

Veronika, Borozenets xborozv00

14. prosince 2023

Obsah

1	Příklad 1	2
2	Příklad 2	6
3	Příklad 3	9
4	Příklad 4	11
5	Příklad 5	12
6	Shrnutí výsledků	13

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$	
G	130	60	380	420	330	440	450	650	410	275	

Řešení

 $\mathbf{Krok}\ \mathbf{1}$ - Zjednodušení R_7 a R_8 podle vzorce pro seriové rezistory

$$R_{78} = R_7 + R_8 = 410\Omega + 275\Omega = 685\Omega$$

Krok 2 - Zjednodušení R_5 a R_6 podle vzorce pro paralelní rezistory

$$R_{56} = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{450\Omega \cdot 650\Omega}{450\Omega + 650\Omega} = 265,9\Omega$$

Krok 3 - Trojuhelník $\implies Hv \check{\mathbf{e}} z da$

$$R_A = \frac{R_3 \cdot R_{56}}{R_3 + R_4 + R_{56}} = \frac{330\Omega \cdot 265,9\Omega}{330\Omega + 440\Omega + 265,9\Omega} = 84,706\Omega$$

$$R_B = \frac{R_3 \cdot R_4}{R_3 + R_4 + R_{56}} = \frac{330\Omega \cdot 440\Omega}{330\Omega + 440\Omega + 265,9\Omega} = 140,16797\Omega$$

$$R_C = \frac{R_{56} \cdot R_4}{R_3 + R_4 + R_{56}} = \frac{265,9\Omega \cdot 440\Omega}{330\Omega + 440\Omega + 265,9\Omega} = 112,9414\Omega$$

Krok 4 - Zjednodušení sériových rezistorů $(R_A, R_1 \implies R_{A1}; R_B, R_2 \implies R_{B2}; R_C, R_{78} \implies R_{C78})$

$$R_{A1} = R_A + R_1 = 84,706\Omega + 380\Omega = 464,706\Omega$$

 $R_{B2} = R_B + R_2 = 140,16797\Omega + 420\Omega = 560,16797\Omega$
 $R_{C78} = R_C + R_{78} = 112,9414\Omega + 685\Omega = 797,9414\Omega$

Krok 5 - Zjednodušení paralelních rezistorů $(R_{A1}, R_{B2} \implies R_{A1B2})$

$$R_{A1B2} = \frac{R_{A1} \cdot R_{B2}}{R_{A1} + R_{B2} +} = \frac{464,706\Omega \cdot 560,16797\Omega}{464,706\Omega + 560,16797\Omega} = 253,16797\Omega$$

Krok 6 -Zjednodušení sériových rezistorů $(R_{A1B2}, R_{C78} \implies R_{ekv})$

$$R_{ekv} = R_{A1B2} + R_{C78} = 253,16797\Omega + 797,9414\Omega = 1051.10937\Omega$$

Zjednodušení napětí
$$(U_1, U_2 \implies U): U = U_1 + U_2 = 130 V + 60 V = 190 V$$

Výpočet proudu : I =
$$\frac{U}{R} = \frac{190V}{1051.10937\Omega} = 0,18mA$$

Teď vypočítáme napětí na R_{A1B2} :

$$U_{RA1B2} = I \cdot R_{A1B2} = 0,18mA \cdot 253,16797 = 45,57V$$

$$U_{RB2} = U_{RA1B2} = 45,57V$$

Teď můžeme spočítat $\mathbf{I_{R2}}$, protože víme, že $\mathbf{I_{R2}} = I_{RB2}$:

$$\mathbf{I_{R2}} = \frac{U_{RB2}}{R_{B2}} = \frac{45,57 \,\mathrm{V}}{560,16797 \,\Omega} = \mathbf{0},\mathbf{0819mA}$$

Dopočitáme $U_{\mathbf{R2}}$:

$$\mathbf{U_{R2}} = I_{R2} \cdot R_2 = 0,0819 mA \cdot 420\Omega = 34,398 \mathbf{V}$$

Příklad 2

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
A	50	100	525	620	210	530	50

Krok 1 - Vypočítáme vnitřní odpor R_i , odstraníme R_6 :

$$R_{23} = R_2 + R_3 = 525\Omega + 620\Omega = 1145\Omega$$

$$R_{123} = \frac{R_{23} \cdot R_1}{R_{23} + R_1} = \frac{1145\Omega \cdot 100\Omega}{1145\Omega + 100\Omega} = 91,9679\Omega$$

$$R_{1234} = R_{123} + R_4 = 91,9679\Omega + 210\Omega = 301,9679\Omega$$

$$R_i = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5} = \frac{301,9679\Omega \cdot 530\Omega}{301,9679\Omega + 530\Omega} = 192,3668\Omega$$

Krok 2 - Vypočítáme U_i pomoci smyčkového proudu I_B :

$$\begin{bmatrix} R_1 + R_2 + R_3 & -(R_2 + R_3) \\ -(R_2 + R_3) & R_2 + R_3 + R_4 + R_5 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} U \\ 0 \end{bmatrix}$$

Vypočítáme determinanty matic :

$$M = \begin{vmatrix} 1245 & -1145 \\ -1145 & 1885 \end{vmatrix} = 1035800$$

$$M_{IB} = \begin{vmatrix} 1245 & 50 \\ -1145 & 0 \end{vmatrix} = 57250$$

Použijeme Cramerovo pravidlo pro výpočet I_B :

$$I_B = \frac{M_{IB}}{M} = \frac{57250}{1035800} = 0,0553A$$

 $U_i = U_{R5} = I_B \cdot R_5 = 0.0553A \cdot 530\Omega = 29,2937V$

Krok 3 - Pomoci ekvivalentního obvodu dopočítáme I_{R6} a U_{R6} :

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{29,2937V}{192,3668\Omega + 50\Omega} = 0,1209A$$

$$U_{R6} = R_6 \cdot I_{R6} = 50\Omega \cdot 0,1209A = 6,0433V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	120	0.9	0.7	53	49	65	39	32

Řešení

Krok 1 - Změníme napěťový zdroj na proudový zdroj, označíme nezavisle uzly a vyznačíme jednotlivé proudy, které vtěkají do uzlů:

Převedeme odpor na vodivost : $G = \frac{1}{R}$

$$G = \frac{1}{R}$$

Krok 2 - Vytvoříme rovnice pro jednotlivé uzly :

A:
$$U_A \cdot (-G_1 - G_2) + U_B \cdot (G_2) + U_C \cdot (0) = -I_1$$

B: $U_A \cdot (G_2) + U_B \cdot (-G_2 - G_3) + U_C \cdot (G_3) = -I_2$
C: $U_A \cdot (0) + U_B \cdot (G_3) + U_C \cdot (-G_3 - G_4 - G_5) = I_2 - I_3$

Převedeme do matice a vypočitáme pomoci Cramerova a Sarussového pravidla :

$$\begin{bmatrix} -G_1 - G_2 & G_2 & 0 \\ G_2 & -G_2 - G_3 & G_3 \\ 0 & G_3 & -G_3 - G_4 - G_5 \end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} -I_1 \\ -I_2 \\ I_2 - I_3 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{53} - \frac{1}{49} & 0 \\ \frac{1}{49} & -\frac{1}{49} & \frac{1}{65} \\ 0 & \frac{1}{65} & -\frac{1}{65} - \frac{1}{39} - \frac{1}{32} \end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} -0, 9 \\ -0, 7 \\ 0, 7 - 3, 75 \end{bmatrix}$$

$$I_3 = \frac{U}{R_5} = \frac{120}{32} = 3, 75A$$

$$U_{R4} = U_C = 59, 8478$$

$$I_{R4} = \frac{U_{R4}}{R_4} = \frac{59, 8478V}{39\Omega} = 1, 5345A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [µF]	f [Hz]
В	2	4	11	15	100	85	220	95	80

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Provedte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	C[F]	$R [\Omega]$	$u_C(0)$ [V]
F	22	10	5	8
	1	R	I	
	t = 0 s			
	s\			}
	~ \ _\			u _c
				Ų ŏ
	1.1			•
	الا الله			
	↓ - ∀ -			

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	G	$U_{R2} = 34,398V$	$I_{R2} = 0,0819A$		
2	A	$U_{R6} = 6,0433V$	$I_{R6} = 0,1209A$		
3	A	$U_{R4} = 59,8478V$	$I_{R4} = 1,5345A$		
4	В	$ U_{L_2} =$	$\varphi_{L_2} =$		
5	F	$u_C =$:		