

CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning

Bill Yuchen Lin Wangchunshu Zhou Ming Shen Pei Zhou Chandra Bhagavatula Yejin Choi Xiang Ren

*University of Southern California *Allen Institute for Artificial Intelligence

[◆]Paul G. Allen School of Computer Science & Engineering, University of Washington

- Most current tasks for machine commonsense focus on discriminative reasoning.
 - CommonsenseQA, SWAG.

-Humans not only use commonsense knowledge for understanding text, but also for generating sentences.

Concept-Set: a collection of objects/actions.

dog, frisbee, catch, throw

[Humans]

Expected Output: everyday scenarios covering all given concepts.

- A dog leaps to catch a thrown frisbee.
- The dog catches the frisbee when the boy throws it.
- A man throws away his dog 's favorite frisbee expecting him to catch it in the air.

Input:

-A set of common concepts (actions & objects)Output:

-A sentence that describes an everyday scenario the given concepts.

Why is it hard? Two key Challenges of CommonGen

(1) Relational knowledge are latent and compositional.

{ exercise, rope, wall, tie, wave }

<u>Underlying Relational Commonsense Knowledge</u>

(exercise, HasSubEvent, releasing energy)

(rope, UsedFor, tying something)

(releasing energy, HasPrerequisite, motion)

(wave, IsA, motion); (rope, UsedFor, waving)

The motion costs more energy if ropes are tied to a wall.

Relational Reasoning for Generation

A woman in a gym exercises by waving ropes tied to a wall.

Category	Relations	1-hop	2-hop	
Spatial knowledge	AtLocation, LocatedNear	9.40%	39.31%	
Object properties	UsedFor,CapableOf,PartOf, ReceivesAction,MadeOf, FormOf, HasProperty,HasA	9.60%	44.04%	
Human behaviors	CausesDesire,MotivatedBy, Desires,NotDesires,Manner	4.60%	19.59%	
Temporal knowledge	Subevent, Prerequisite, First/Last-Subevent	1.50%	24.03%	
General	RelatedTo, Synonym, General DistinctFrom, IsA, HasContext,SimilarTo		69.65%	

CONSTRUCTION

Why is it hard? Two key Challenges of CommonGen

(2) Compositional Generalization for unseen concept compounds.

x_1	= { apple, bag, put }	raining
y ₁	= a girl puts an apple in her bag	
X ₂	= { apple, tree, pick }	
У2	= a man picks some apples from a tree	
X ₃	= { apple, basket, wash }	
y ₃ =	a boy takes an apple from a basket and	washes it.

Compositional Generalization

x = { <u>pear</u> , basket, pick, put, tree }, y =	: ?
Reference: "a girl picks some pear from a	1
tree and put them in her basket."	Test

Statistics	Train	Dev	Test	
# Concept-Sets	32,651	993	1,497	
-Size = 3	25,020	493	-	
-Size = 4	4,240	250	747	
-Size = 5	3,391	250	750	
# Sentences	67,389	4,018	6,042	
per Concept-Set	2.06	4.04	4.04	
Average Length	10.54	11.55	13.34	
# Unique Concepts	4,697	766	1,248	
# Unique Concept-Pairs	59,125	3,926	8,777	
# Unique Concept-Triples	50,713	3,766	9,920	
% Unseen Concepts	-	6.53%	8.97%	
% Unseen Concept-Pairs	_	96.31%	100.00%	
% Unseen Concept-Triples	_	99.60%	100.00%	

-> Unseen Concept in Training

Experimental Results

Model \ Metrics	ROUGI	E-2/L	BLEU	-3/4	METEOR	CIDEr	SPICE	Coverage	
bRNN-CopyNet (Gu et al., 2016)	7.61	27.79	10.70	5.70	15.80	4.79	15.00	51.15	(1)
Trans-CopyNet	8.78	28.08	11.90	7.10	15.50	4.61	14.60	49.06	(1)
MeanPooling-CopyNet	9.66	31.14	10.70	6.10	16.40	5.06	17.20	55.70	Seq2seq
LevenTrans. (Gu et al., 2019)	10.58	32.23	19.70	11.60	20.10	7.54	19.00	63.81	models
ConstLeven. (Susanto et al., 2020)	11.82	33.04	18.90	10.10	24.20	10.51	22.20	94.51	
GPT-2 (Radford et al., 2019)	17.18	39.28	30.70	21.10	26.20	12.15	25.90	79.09	
BERT-Gen (Bao et al., 2020)	18.05	40.49	30.40	21.10	27.30	12.49	27.30	86.06	(2)
UniLM (Dong et al., 2019)	21.48	43.87	38.30	27.70	29.70	14.85	30.20	89.19	Fine-tuning
UniLM-v2 (Bao et al., 2020)	18.24	40.62	31.30	22.10	28.10	13.10	28.10	89.13	pre-trained
BART (Lewis et al., 2019)	22.23	41.98	36.30	26.30	30.90	13.92	30.60	97.35	LMs
T5-Base (Raffel et al., 2019)	14.57	34.55	26.00	16.40	23.00	9.16	22.00	76.67	LIVIS
T5-Large (Raffel et al., 2019)	<u>22.01</u>	42.97	39.00	28.60	<u>30.10</u>	14.96	31.60	95.29	(3)
Human Performance	48.88	63.79	48.20	44.90	36.20	43.53	63.50	99.31	Agreement

Manual Eval.

	C.Leven	GPT	BERT-G.	UniLM	BART	T5
Hit@1	3.2	21.5	22.3	21.0	$\begin{array}{ c c } \hline $	26.8
Hit@3	18.2	63.0	59.5	69.0		70.3
Hit@5	51.4	95.5	95.3	96.8		97.8

Case Study & Transfer Learning

Concept-Set: { hand, sink, wash, soap }

[bRNN-CopyNet]: a hand works in the sink .

[MeanPooling-CopyNet]: the hand of a sink being washed up

[ConstLeven]: a hand strikes a sink to wash from his soap.

[GPT-2]: hands washing soap on the sink.

[BERT-Gen]: a woman washes her hands with a sink of soaps.

[UniLM]: hands washing soap in the sink

[BART]: a man is washing his hands in a sink with soap and

washing them with hand soap.

[T5]: hand washed with soap in a sink.

- 1. A girl is washing her hands with soap in the bathroom sink.
- 2. I will wash each hand thoroughly with soap while at the sink.
- 3. The child washed his hands in the sink with soap.
- 4. A woman washes her hands with hand soap in a sink.
- 5. The girl uses soap to wash her hands at the sink.

Learning curve for the transferring study (acc on dev). We use trained CommonGen models to generate choice-specific context for the CommonsenseQA task.

Thank you for listening!

- Full Paper (non-archival) :
 - https://yuchenlin.xyz/commongen_akbc20.pdf

- Project Page:
 - https://inklab.usc.edu/CommonGen/
- Email yuchen.lin@usc.edu for more questions!

