Mile Stone 2 Implement baseline

Question to answer

Read Me

- Dataset link
- How to import data
- Additional library (OpenCV?, Keras?)
- Other environment setting

Training process

- Goal
- Network Structure

Result

- Table
 - for loss or acc@k or other?
 - After cross-validation
- Graph for loss/epoch or acc/epoch
- ScreenShot for program

		Flat hit@ k (%)				Hierarchical precision@k			
Model type	dim	1	2	5	10	2	5	10	20
Softmax baseline	N/A	55.6	67.4	78.5	85.0	0.452	0.342	0.313	0.319
DeViSE	500	53.2	65.2	76.7	83.3	0.447	0.352	0.331	0.341
	1000	54.9	66.9	78.4	85.0	0.454	0.351	0.325	0.331
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042

Rule

- One question for one section!
- Deadline: 11/10 23:59
- Format: ICML 2017 (using latex)
- Naming: Team01_MS2.zip
 - Include Team01_MS2.pdf and code (naming is unnecessary), dataset is unnecessary
- 0 point for delay

Grading for Lecture Note

- Graph&equation: 80%
 - -5% if lost one
 - -2.5% if screenshot equation each
- Additional Supplement: 20%
 - Derivation will get 5% each
 - Supplement knowledge will get 5% each

Grading for HW1

- Upload on ILMS: 40%
- Accuracy: 30%
 - below 34% will get all
 - Above 1% will -1%
- Explain the graph: 30%
 - Textbook solution: explain the relation of matrix will get all.
 - Other solution: using gradient decent or other solution, must also explain your complicated graph.
- Bouns: 20%
 - Greater than baseline: 10%
 - Explain how and comment: 10%