Implement SVM/Decision tree classification technique

AIM:

To Implement SVM and Decision tree classification techniques using R programming in R Studio.

a) SVM IN R

```
# Install and load the e1071 package (if not already
installed) install.packages("e1071") library(e1071)
# Load the iris dataset
data(iris)
# Inspect the first few rows of the dataset
head(iris)
# Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample indices <- sample(1:nrow(iris), 0.7 * nrow(iris))
train data <- iris[sample indices, ]
test data <- iris[-sample indices, ]
# Fit the SVM model svm model <- svm(Species ~ ., data =
train data, kernel = "radial")
# Print the summary of the model
summary(svm model)
# Predict the test set predictions <- predict(svm model,
newdata = test data)
# Evaluate the model's performance
confusion matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion matrix)
# Calculate accuracy accuracy <-
sum(diag(confusion matrix)) / sum(confusion matrix)
cat("Accuracy:", accuracy * 100, "%\n")
```

OUTPUT:

```
Package e1071 required but is not installed. Install Don't Show Again

# Install and load the e1071 package (if not already installed)

install.packages("e1071")

library(e1071)

# Load the iris dataset

data(iris)

# Inspect the first few rows of the dataset

head(iris)

# split the data into training (70%) and testing (30%) sets

set.seed(123) # For reproducibility

set.seed(123) # For reproducibility

sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))

train_data <- iris[sample_indices, ]

# Fit the SVM model

# sym_model <- sym(Species ~ ., data = train_data, kernel = "radial")

# Predict the test set

predictions <- predict(sym_model, newdata = test_data)

# Evaluate the model's performance

confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)

print(confusion_matrix)

# Calculate accuracy

accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)

cat("Accuracy:", accuracy * 100, "%\n")
```

package 'proxy' successfully unpacked and MD5 sums checked package 'e1071' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

Predicted	cotoca	versicolor	virginica
Predicted	secusa	versicolor	virgilica
setosa	14	0	0
versicolor	0	17	0
virginica	0	1	13
Accussos 07	77770 0	V	

Accuracy: 97.77778 %

b) Decision tree in R

```
# Install and load the rpart package (if not already installed)
install.packages("rpart") library(rpart)
# Load the iris dataset
data(iris)
# Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample indices <- sample(1:nrow(iris), 0.7 * nrow(iris))
train_data <- iris[sample_indices, ]</pre>
test data <- iris[-sample indices, ]
# Fit the Decision Tree model tree model <- rpart(Species ~
., data = train data, method = "class")
# Print the summary of the model summary(tree model)
# Plot the Decision Tree
plot(tree model)
text(tree_model, pretty =
0)
# Predict the test set predictions <- predict(tree model,
newdata = test data, type = "class")
# Evaluate the model's performance
confusion matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion matrix)
# Calculate accuracy
accuracy <- sum(diag(confusion matrix)) / sum(confusion matrix)
cat("Accuracy:", accuracy * 100, "%\n")
```

OUTPUT:

```
SVM.R × Decision tree.R ×
       # Install and load the rpart package (if not already installed) install.packages("rpart") library(rpart) # Load the iris dataset
                                                                                                    → Run → ↑ → Source -
         data(iris)
        # Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))
train_data <- iris[sample_indices, ]
test_data <- iris[-sample_indices, ]
# Fit the Decision Tree mode]</pre>
    9
   10
        # Print the summary of the model
summary(tree_model)
# Plot the Print the Summary(tree_model)
   11
   12
   13
   14
          # Plot the Decision Tree
   16
         plot(tree_model)
         text(tree\_model, pretty = 0)
   17
        # Predict the test set
predictions <- predict(tree_model, newdata = test_data, type = "class")
# Evaluate the model's performance</pre>
   18
   19
   20
         confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)</pre>
   22
         print(confusion_matrix)
        # Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
cat("Accuracy:", accuracy * 100, "%\n")</pre>
   23
   24
   25
```


RESULT:

Thus, the Implementation SVM/Decision tree classification techniques using R programming in R Studio.