OBHPC - maths CM4

William JALBY *

xx xxxxx 2022

DO
$$I=1, N_1$$
 DO $J=1, N_2$ DO $K=1, N_3$
$$C(I,J) = C(I,J) + A(I,K) * B(K,J)$$
 IJK
$$ENDDO$$

$$ENDDO$$

$$ENDDO$$

	INNER	IN BETWEEN	ACCES AUX TABLEAUX
IJK	DOT PRODUCT	$VEC \times MAT$	C:Strive0 A:Ligne B:Colonne
JIK	DOT PRODUCT	$MAT \times MAT$	C:Strive0 A:Ligne B:Colonne
IKJ	AXPY	$VEC \times MAT$	C:Ligne A:Strive0 B:Ligne
JKI	AXPY	$MAT \times VEC$	C:Colonne A:Colonne B:Strive0
KIJ	AXPY	OUTER PRODUCT	C:Ligne A:Strive0 B:Ligne
KJI	AXPY	OUTER PRODUCT	C:Colonne A:Colonne B:Strive0

 $A \in \mathbb{R}^{m \times n}$

 $B \in \mathbb{R}^{n \times l}$

$$C = A, B$$

Produit de matrices non commutatif $A.B \neq B.A$

 $m \neq n$ Matrices Rectangulaires — $\in \mathbb{R}^{n \times n}$ — (n'existe pas)

 $\mathbf{A} \in \mathbb{R}^{n \times n} \ \mathbf{B} \in \mathbb{R}^{n \times n}$

Matrices carrées

 $A.B \neq B.A$

 $(A+B).C = (A.C) + (BC) A^{-1}$ n'existe pas toujours.

 $A \in \mathbb{R}^{n \times n} \ Ax = b$

 $x,\!b \in \mathbb{R}^{n \times 1}$

A et b donnés, chercher $x \Leftrightarrow x = A^{-1}b$

F.P:Commutativité OK

("+" op flottante)

$$a" + "b = b" + "a$$

$$a" * "b = b" * "a$$

^{*}william.jalby@uvsq.fr

Associativié $(a" + "b)" + "c \neq a" + "(b" + "c)$ erreur d'arrondi Une erreur = OK

Mais GROS problème d'accumulation d'erreurs.

Mais GROS probleme d'accumulation d'erreurs.
$$A \in \mathbb{R}^{n \times m} A = \begin{pmatrix} A_{11} & \dots & A_{1s} \\ \dots & \dots & \dots \\ A_{r1} & \dots & A_{rs} \end{pmatrix} u_1 + \dots + u_r = n$$

$$v_1 + \dots v_s = m$$

$$B \in \mathbb{R}^{m \times l} B = \begin{pmatrix} B_{11} & \dots & B_{1t} \\ \dots & \dots & \dots \\ B_{s1} & \dots & B_{st} \end{pmatrix} w_1 + \dots + w_t = l$$

$$C \in \mathbb{R}^{n \times l} C = \begin{pmatrix} C_{11} & \dots & C_{1t} \\ \dots & \dots & \dots \\ C_{r1} & \dots & C_{rt} \end{pmatrix}$$

$$DO I = 1, R$$

$$DO J = 1, T$$

$$DO K = 1, S$$

$$BLOCK \rightarrow C_{ij} = C_{ij} + A_{ik} * Bkj$$

$$ENDDO$$
 ENDDO

ENDDO

- Matrice Dense

Une matrice dense est une matrice dans laquelle "à priori" tous les éléments

 $D \in \mathbb{R}^{n \times n}$