

PLANO DE ENSINO

I. IDENTIFICAÇÃO		
Unidade Acadêmica: Regional Jataí		
Curso: Bacharelado em Ciência da Computação		
Disciplina: Linguagens Formais e Autômatos	3	
Carga horária semestral: 64	Teórica: 64 Prática: 00	
Semestre/ano: 2017.2 Turma/turno: A		
Professor (a): Esdras Lins Bispo Junior		

II. Ementa

Conjuntos, funções e teoria das provas (direta, contradição, contraexemplo e indução). . Hierarquia de Noam Chomsky. Autômatos Finitos (determinístico, não-determinístico e com transições vazias). Autômatos de Pilha (determinístico, não-determinístico e com transições vazias). Máquinas de Turing. Tese de Church-Turing. Linguagens, gramáticas e reconhecedores. Linguagens regulares. Linguagens livres de contexto. Linguagens sensíveis ao contexto. Linguagens recursivamente enumeráveis. Problemas indecidíveis e os limites da computação convencional.

III. Objetivo Geral

Oferecer o embasamento conceitual e teórico das linguagens formais e autômatos aplicando os conhecimentos no desenvolvimento de sistemas e analisando criticamente os desafios envolvidos.

IV. Objetivos Específicos

- Definir as linguagens formais e autômatos, motivação e aplicações.
- Analisar os principais modelos de computação, apresentando as suas potencialidades e limitações;
- Discutir o estado da arte em linguagens formais e autômatos, perspectivas de evolução e desafios a serem vencidos.

V. Conteúdo

- 1. REVISÃO DE FUNDAMENTOS
- a. Conjuntos
- b. Funções
- c. Teoria das Provas

- 2. AUTÔMATOS FINITOS DETERMINÍSTICOS
- a. Definição
- b. Utilização e aplicações
- c. Limitações do modelo
- 3. AUTÔMATOS FINITOS NÃO-DETERMINÍSTICOS
- a. Definição
- b. Utilização e aplicações
- c. Limitações do modelo
- 4. EXPRESSÕES REGULARES
- a. Definição
- b. Utilização e aplicações
- c. Limitações do modelo
- 5. AUTÔMATOS COM PILHA
- a. Definição
- b. Utilização e aplicações
- c. Limitações do modelo
- 5. GRAMÁTICAS LIVRE-DE-CONTEXTO
- a. Definição
- b. Utilização e aplicações
- c. Forma normal de Chomsky
- 6. TOPICOS AVANÇADOS
- a. Máquina de Turing
- b. Linguagens decidíveis
- c. Limites da computação convencional

VI. Metodologia

- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios.
- Aplicação de atividades utilizando o Canvas AVA (Ambiente Virtual de Aprendizagem).
- Tempo de Aula: 50 minutos*

*Obs.: Para complementar os 10 minutos, esta disciplina fará uso do Canvas AVA para supervisionar atividades práticas, em consonância com a resolução abaixo:

RESOLUÇÃO CNE/CES Nº 3, DE 02 DE JULHO DE 2007

I – preleções e aulas expositivas;

II – atividades práticas supervisionadas, tais como laboratórios, atividades em biblioteca,

iniciação científica, trabalhos individuais e em grupo, práticas de ensino e outras atividades no caso das licenciaturas.

VII. Processos e critérios de avaliação

Serão ministrados 04 (quatro) mini-testes que serão analisados da seguinte forma:

- Primeiro mini-teste (MT₁) equivale a 20% da pontuação total;
- Segundo mini-teste (MT₂) equivale a 20% da pontuação total;
- Terceiro mini-teste (MT₃) equivale a 20% da pontuação total;
- Quarto mini-teste (MT₄) equivale a 20% da pontuação total.

Será ministrada 01 (uma) prova final (PF) que será analisada da seguinte forma:

- Prova equivale a 20% da pontuação total.

Durante a disciplina, alguns Exercícios-Bônus (EB) poderão ser propostos para os alunos.

A PF é composta por duas etapas: a PF₁ e a PF₂.

A PF1 é composta por dois mini-testes de caráter substitutivo:

- o SMT₁ (referente ao MT₁), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

O cálculo da média final será dada da seguinte forma:

$$MF = MIN(10, PONT)$$

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

$$PONT = \left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0.2 + EB$$

VIII. Local de divulgação dos resultados das avaliações

Os resultados das avaliações serão divulgados através do SIGAA e/ou Canvas AVA.

XI. I	Ribi	liografia	basica	e co	mpie	mentar
-------	------	-----------	--------	------	------	--------

BÁSICA:

HOPCROFT, John E., ULLMAN, Jeffery D., MOTWANI, Rajeev. Introdução à teoria de autômatos, linguagens e computação, 2. ed., Rio de Janeiro: Campus, 2003.

RAMOS, Marcos Vinícius M.; NETO, João José e VEGA, Italo Santiago. Linguagens formais: teoria, modelagem e implementação, 1. ed., São Paulo: Bookman, 2009. LINZ, Peter. An introduction to formal language and automata, 4th. ed., Sudbury: Jones and Bartlett Publishers. 2006.

COMPLEMENTAR:

VIEIRA, Newton José. Introdução aos fundamentos da computação: linguagens e máquinas, 1. ed., São Paulo: Thomson Pioneira, 2006.

SIPSER, Michael. *Introdução à teoria da computação*, 2. ed., São Paulo: Thomson Pioneira, 2007.

MENEZES, Paulo Blauth. *Linguagens formais e autômatos*, 3. ed., São Paulo: Bookman, 2008.

RICH, Elaine A., Automata, computability and complexity: theory and applications, 1st. ed., Prentice Hall, 2007.

MOZGOVOY, Maxim. Algorithms, languages, automata & compilers: a practical approach, 1st. ed., Johns and Bartlett Publishers, 2009.

WEBBER, Adan. Formal language: a practical introduction, 1st. ed., Franklin, Beedle & Associates, 2008.

X. Cronograma

Nº da Aula Conteúdo CH T/P

01	Apresentação da disciplina e Revisão dos Fundamentos	2h	Т
02	Revisão dos Fundamentos	2h	Т
03	Revisão dos Fundamentos	2h	Т
04	Revisão dos Fundamentos	2h	Т
05	Autômatos Finitos Determinísticos	2h	Т
06	Autômatos Finitos Determinísticos	2h	Т
07	Autômatos Finitos Determinísticos	2h	Т
80	Autômatos Finitos Não-Determinísticos	2h	Т
09	Autômatos Finitos Não-Determinísticos	2h	Т
10	Autômatos Finitos Não-Determinísticos	2h	Т

11	Expressões Regulares	2h	Т
12	Expressões Regulares	2h	Τ
13	Expressões Regulares	2h	Τ
14	Expressões Regulares	2h	Τ
15	Linguagens Livres-de-Contexto	2h	Τ
16	Linguagens Livres-de-Contexto	2h	Τ
17	Linguagens Livres-de-Contexto	2h	T
18	Linguagens Livres-de-Contexto	2h	T
19	Gramáticas Livre-de-Contexto	2h	Т
20	Gramáticas Livre-de-Contexto	2h	T
21	Gramáticas Livre-de-Contexto	2h	Т
22	Gramáticas Livre-de-Contexto	2h	Τ
23	Gramáticas Livre-de-Contexto	2h	Т
24	Tópicos Avançados	2h	Т
25	Tópicos Avançados	2h	Τ
26	Resolução de exercícios e Revisão	2h	Т
27	Prova Final (Parte 1)	2h	Τ
28	Entrega de notas e Resolução da Prova	2h	Τ
29	Prova Final (Parte 2)	2h	Т
30	Entrega de notas e Resolução da Prova	2h	Т
31	Confraternização	2h	Τ
32	Fechamento das médias finais	2h	Т

Data	Jataí, 06 de outubro de 2017.
------	-------------------------------

Esdras Lins Bispo Junior Professor Adjunto – Ciência da Computação