ANALISIS PERAMALAN JUMLAH PENERBITAN AKTE KELAHIRAN MENGGUNAKAN METODE SIMPLE MOVING AVERAGE

DI BANDA ACEH

Oleh:

Nama: Dini Kristianti

NIM : 200605220015

Kelas: B

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2021

Abstrak

Data Mining adalah proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yang tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statistic dan matematika. Peramalan adalah metode untuk memperkirakan suatu nilai dimasa depan dengan menggunakan data masa lalu. Penelitian ini dilakukan pada Data Dispenduk Capil Banda Aceh yaitu Penerbitan Akte Kelahiran. Pada penelitian ini, penulis membahas mengenai analisis peramalan jumlah penerbitan akte kelahiran. Peramalan yang dilakukan menggunakan Metode Simple Moving Average. Selain itu juga dilengkapi evaluasi nilai peramalan dengan menggunakan metode mean absolute errorsehingga pengguna dapat mengetahui tingkat akurasi sistem. Proses peramalan yang dilakukan oleh sistem ini menggunaka data-data yang telah direcord sebelumnya. Peramalan ini dilakukan dengan tujuan supaya pendataan terhadap angka kelahiran bayi dapat terkontrol dengan baik

Kata kunci: Data Mining, Akte Kelahiran, SMA, Simple Moving Average, Banda Aceh, Dispenduk

DAFTAR ISI

DAFTA	R ISI	i
BAB I P	ENDAHULUAN	1
1.1.	Latar Belakang	1
1.2.	Perumusan Masalah	1
BAB II	FEORI PENDUKUNG	3
1.1.	Data Mining	3
1.2.	Peramalan	3
1.3.	Simple Moving Average	4
1.4.	Sejarah Bahasa Python	4
BAB III	METODE ANALISIS	7
BAB IV	PEMBAHASAN	8
4.1.	Proses Data Mining	8
4.1.	1. Pemrosesan Awal	8
4.1.	2. Menampilkan Nilai MSE dan RMSE	9
4.1.	3. Hasil Prediksi Menggunakan Simple Moving Average (SMA)	10
4.1.	4. Grafik Hasil Prediksi Menggunakan Simple Moving Average (SMA)	11
BAB V	PENUTUP	12
5.1. K	esimpulan	12
DAFTA	R PUSTAKA	13

BAB I PENDAHULUAN

1.1.Latar Belakang

Pertumbuhan penduduk setiap tahunnya terus meningkat, itu di sebabkan oleh jumlah penduduk yang semakin bertambah. Masalah ini sangat berpengaruh terhadap daya dukung lingkungan, baik di lingkungan pendidikan maupun di lingkungan msyarakat. Setiap peningkatan jumlah penduduk berpengaruh terhadap kondisi ekonomi, sosial, kesehatan dan pendidikan di dalam suatu keluarga.

Angka harapan hidup merupakan alat untuk mengevaluasi kinerja pemerintah dalam meningkatkan kesejahteraan penduduk pada umumnya dan meningkatkan derajat kesehatan pada kasusnya. Dalam membandingkan tingkat kesehatan kelompok masyarakat sangatlah penting untuk melihat angka harapan hidup. Di negara-negarayang tingkat kesehatannya lebih baik, setiap individu memiliki rata-rata hidup lama,dengan demikian secara ekonomis mempunyai peluang untuk memperoleh pendapatan lebih tinggi (ARSYAD, 2016)

Tercapainya tujuan pendidikan dan kesehatan yang tinggi dapat meningkatkan kualitas dan produktivitas penduduk, karena pertumbuhan produktivitas penduduk tersebut merupakan penggerak pertumbuhan ekonomi dan kesejahteraan penduduk itu sendiri. Pendidikan akan mampu meningkatkan kualitas sumber daya manusia yang dapat dilihat dari pengetahuan dan keterampilan yang mendorong peningkatan produktivitas kerja seseorang, dan pada akhirnya seseorang yang memiliki produktivitas yang tinggi maka akan memperoleh kesejahteraan yang lebih baik dan tak akan tertinggal dari kemajuan zaman.

Sebuah data diri dalam bentuk berkas yang bernama Akte Kelahiran, merupakan data yang paling penting, data yang dapat diperlukan dalam berbagai kebutuhan. Salah satunya adalah syarat saat kita mendaftar ke sekolah.

Menurut (PURWANTO, 2010) pendidikan adalah bimbingan atau pertolongan yangdiberikan pada anak oleh orangtua dewasa secara sengaja agar anak menjadi dewasa.

Dalam makalah ini akan dilakukan peramalan terhadap Jumlah Penerbitan Akte Kelahiran Menggunakan Metode Simple Moving Average di Banda Aceh.

1.2.Perumusan Masalah

Berdasar pada latar belakang di atas, maka dapat di rumuskan masalah pada pembuatan makalah ini, sebagai berikut :

- 1. Bagaimana membangun model yang dapat digunakan untuk meramal Jumlah Penerbitan Akte Kelahiran Menggunakan Metode Simple Moving Average di Banda Aceh?
- 2. Bagaimana menggunakan model untuk meramal Jumlah Penerbitan Akte Kelahiran Menggunakan Metode Simple Moving Average di Banda Aceh?

BAB II TEORI PENDUKUNG

1.1.Data Mining

Menurut Gartner Group, *data mining* adalah suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yang tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statistic dan matematika. Data mining bukanlah suatu bidang yang sama sekali baru. Salah satu kesulitan untuk mendefinisikan data mining adalah kenyataan bahwa *data mining* mewarisi banyak aspek dan teknik dari bidang-bidang ilmu yang sudah mapan terlebih dulu. Berawal dari beberapa disiplin ilmu, *data mining* bertujuan untuk memperbaiki teknik tradisional sehingga bias menangani:

- 1. Jumlah data yang sangat besar.
- 2. Dimensi data yang tinggi.
- 3. Data yang heterogen dan berbeda bersifat

1.2.Peramalan

Peramalan adalah metode untuk memperkirakan suatu nilai dimasa depan dengan menggunakan data masa lalu. Peramalan juga dapat diartikan sebagai senidan ilmu untuk memperkirakan kejadian pada masa yang akan dating. Peramalan bertujuan mendapatkan peramalan (forecast) yang bisa meminimumkan kesalahanmeramal (forecast error) yang biasanya diukurdengan MSE(Mean Squared Error), MAE (MeanAbsolute Error), dan sebagainya. Peramalan yang baik adalah peramalan yang dilakukandengan mengikuti langkah-langkah atau prosedurpenyusunan yang baik yang akan menentukan kualitasatau mutu dari hasil peramalan yang disusun. Pada dasarnya ada 3 langkah peramalan yang penting, yaitu:

- 1. Menganalisa data yang lalu, tahap ini berguna untuk pola yang terjadi pada masa lalu.
- 2. Menentukan data yang dipergunakan. Metode yang baik adalah metode yang memberikan hasil ramalan yang tidak jauh berbeda dengan kenyataan yang terjadi.
- 3. Memproyeksikan data yang lalu dengan menggunakan metode yang dipergunakan, dan mempertimbangkan adanya beberapa factor perubahan (perubahan kebijakan-kebijakan yang mungkin terjadi, termasuk perubahan kebijakan pemerintah, perkembangan potensi masyarakat, perkembangan teknologi dan penemuan-penemuanbaru). (Wardah & Iskandar, 2016)

1.3.Simple Moving Average

Peramalan rata-rata bergerak (*moving average*) menggunakan sejumlah data aktual masa lalu untuk menghasilkan peramalan. Rata-rata bergerak berguna jika diasumsikan bahwa permintaan pasar akan stabil sepanjang masa yang diramalkan. Secara matematis,rata-rata bergerak sederhana (merupakan prediksi permintaan periode mendatang).

Simple MA (atau single moving average) memiliki fungsi Pred(y) yang sangat sederhana, yaitu menghitung nilai rata-rata dari n sample di dalam window, dinyatakan sebagaiberikut:

$$\bar{a}_{\text{SM}} = \frac{x_n + x_{n-1} + \dots + x_{M-(n-1)}}{M}$$

di mana M adalah jumlah periode dalam rata-ratabergerak, sebagai contoh, 4, 5, atau 6 bulan, berartirata-rata bergerak untuk 4, 5, atau 6 periode. (Khamaludin, Agustianna, Darmawan, & Dermawan, 2019)

1.4. Sejarah Bahasa Python

Awal perkembangan Python dilakukan oleh Guido van Rossum pada tahun 1990 di Stichting Mathematisch Centrum (CWI), Amsterdam. Pada tahun 1995, Guido pindah ke CNRI di Virginia Amerika. Versi terakhir pada tahun 2000 dengan versi 1.6. Pada tahun 2000, Guido dan para pengembang inti Python pindah ke Be Open.com yang merupakan sebuah perusahaan komersial dan membentuk Be Open PythonLabs. Dari Be Open PythonLabs inilah pengembangan Python 2.0. Setelah mengeluarkan Python 2.0,Guido dan beberapa anggota tim Python Labs pindah ke Digital Creations. Saat ini pengembangan Python terus dilakukan oleh sekumpulan pemrogram yang dikoordinir Guido dan Python Software Foundation. Python Software Foundation adalah sebuah organisasi non-profit yang dibentuk sebagai pemegang hak cipta intelektual Python sejak versi 2.1 dan dengan demikian mencegah Python dimiliki oleh perusahaan komersial.Saat ini distribusi Python sudah mencapai versi 2.7.14 dan versi 3.6.3 Penggunaan nama Python dipilih oleh Guido sebagai nama bahasa ciptaannya karena kecintaan Guido pada acara televisi Monty Python's Flying Circus. Oleh karena itu

sering kali ungkapan-ungkapan khas dari acara tersebut seringkali muncul dalam korespondensi antar pengguna Python. Berikut sejarah dari aplikasi python.

- Python 1.0 Januari 1994
- o Python 1.2 10 April 1995
- o Python 1.3 12 Oktober 1995
- o Python 1.4 25 Oktober 1996
- o Python 1.5 31 Desember 1997
- o Python 1.6 5 September 2000
- Python 2.0 16 Oktober 2000
- o Python 2.1 17 April 2001
- o Python 2.2 21 Desember 2001
- o Python 2.3 29 Juli 2003
- o Python 2.4 30 Nopember 2004
- o Python 2.5 19 September 2006
- o Python 2.6 1 Oktober 2008
- o Python 2.7 3 Juli 2010
- Python 3.0 3 Desember 2008
- o Python 3.1 27 Juni 2009
- o Python 3.2 20 Februari 2011
- o Python 3.3 29 September 2012
- o Python 3.4 16 Maret 2014
- o Python 3.5 13 September 2015
- o Python 3.6 23 Desember 2016
- o Python 3.7 27 Juni 2018

Python banyak digunakan untuk membuat berbagai macam program, seperti: program CLI, Program GUI (desktop), Aplikasi Mobile, Web, IoT, Game, Program untuk Hacking,dsb. Apa itu program CLI?Antarmuka baris perintah (bahasa Inggris:command-line interface,CLI) adalah mekanismeinteraksi dengan sistem operasi atau perangkat lunak komputer dengan mengetikkanperintah untuk menjalankan tugas tertentu. (HASIBUAN, 2020)

BAB III

METODE ANALISIS

Metode yang digunakan adalah metode kualitatif dengan pendekatan deskriptif. Metode kualitatif sering disebut metode penelitian naturalistik karena penelitiannya dilakukan pada kondisi yang alamiah, dapat diartikan sebagai usaha untuk menyelidiki keadaan yang sebenarnya

BAB IV PEMBAHASAN

4.1.Proses Data Mining

4.1.1. Pemrosesan Awal Persiapan Data

Data jumlah penerbitan Akte Kelahiran Tahun 2016-2020, mulai bulan 1-12, dilakukan teknik data preparation agar kualitas data diperoleh lebih baik.

Berikut dalam bentuk Excell:

Bulan	Tahun	Akte_Kelahiran
1	2016	550
2	2016	539
3	2016	513
4	2016	541
5	2016	537
6	2016	571
7	2016	437
8	2016	670
9	2016	569
10	2016	602
11	2016	555
12	2016	458
1	2017	482
2	2017	438
3	2017	562
4	2017	507
5	2017	575
6	2017	480
7	2017	802
8	2017	790
9	2017	517
10	2017	870
11	2017	622
12	2017	491
1	2018	1504
2	2018	1171
3	2018	1594
4	2018	1311
5	2018	1220

Gambar 1 Data Penerbitan Akte Kelahiran dari tahun 2016- 2020 dalam format Excell
Untuk data yang di olah dalam program python adalah dalam bentuk csv. Dan
data yang di olah adalah kolom Akte_Kelahiran. Berikut data yang akan di olah:

Akte	Kelahiran
	550
	539
	513
	541
	537
	571
	437
	670
	569
	602
	555
	458
	482
	438
	562
	507
	575
	480
	802
	790
	517
	870
	622
	491
	1504
	1171
	1594
	1311
	1220

Gambar kolom data yang akan di olah di python

- ✓ Data yang di olah dari Tahun : 2016 2020 dari bulan Januari- Desember di setiap tahunnya
- ✓ Jumlah datanya ada : 60 data

4.1.2. Menampilkan Nilai MSE dan RMSE

Untuk menampilkan nilai MSE dan RMSE silahkan memakai script di bawah ini :

```
from sklearn.metrics import mean_squared_error
mse=mean_squared_error(d['prediksi'],d['Akte_Kelahiran'])
rmse=np.sqrt(mse)
print("MSE: ",mse)
print("RMSE: ",rmse)
```

Berikut adalah nilai MSE dan RMSE:

MSE: 44411.87962962963 RMSE: 210.74126228536647

Nilai MSE (*Mean Square Error*) adalah cara kedua untuk mengukur kesalahan peramalan keseluruhan. rata-rata selisih kuadrat antara nilai yang diramalkan dan yang diamati

Nilai RMSE (*Root Mean Square Error*,) adalah jumlah dari kesalahan kuadrat atau selisih antara nilai sebenarnya dengan nilai prediksi yang telah ditentukan

4.1.3. Hasil Prediksi Menggunakan Simple Moving Average (SMA)

	Akte Kelahiran	prediksi		1 8	-	
0	550	NaN	36		694	1086.000000
ĭ	539	NaN	37		521	818.666667
2	513	534.000000				
3	541	531.000000	38		630	615.000000
4	537	530.333333	39		537	562.666667
5	571	549.666667	40		487	551.333333
6 7	437 670	515.000000 559.333333				
8	569	558.666667	41		504	509.333333
9		613.666667	42		737	576.000000
10		575.333333	43		548	596.333333
1		538.333333	44		598	627.666667
13		498.333333 459.333333				
14		494.000000	45		720	622.000000
1		502.333333	46		626	648.000000
16		548.000000	47		554	633.333333
17		520.666667				
18		619.000000	48		512	564.000000
19		690.666667	49		501	522.333333
20		703.000000 725.666667	50		514	509.000000
2		669.666667				
2		661.000000	51		380	465.000000
24		872.333333	52		323	405.666667
2		1055.333333	53		665	456.000000
26		1423.000000				
23		1358.666667 1375.000000	54		514	500.666667
29		1079.000000	55		404	527.666667
30		1363.666667	56		424	447.333333
3		1395.333333				
32		1813.666667	57		468	432.000000
33		1725.333333	58		534	475.333333
3: 3:		1728.000000	59		486	496.000000
3:	1241	1488.000000	,,,		700	450.00000

Dengan menggunakan rumus:.

$$\bar{a}_{\text{SM}} = \frac{x_n + x_{n-1} + \dots + x_{M-(n-1)}}{M}$$

Maka diperoleh hasil data prediksi seperti di atas.

4.1.4. Grafik Hasil Prediksi Menggunakan Simple Moving Average (SMA)

Dimana:

- > Warna merah adalah adalah menunjukkan grafik hasil prediksi
- Warna Hijau adalah data sebenarnya (data yang di olah)

BAB V PENUTUP

5.1. Kesimpulan

Metode *moving average* dengan berbagai variannya, dapat dilakukan untuk memprediksi suatu nilai di masa depan berdasarkan data *time series* di masa sebelumnya, dengan tingkat kesalahan yang cukup kompetitif dibanding metodemetode berbasis pembelajaran mesin seperti*neural network*. Dalam penelitian ini,di hasilkan nilai MSE = 44411.87962962963 dan nilai RMSE = 210.74126228536647. Penulis berharap akan ada penelitianserupa menggunakan metode peramalan lainuntuk mengetahui metode mana yang palingefektif digunakan.

DAFTAR PUSTAKA

- ARSYAD. (2016). *Pengantar perencanaan dan pembangunan ekonomi daerah Lincolin Arsyad.* Yogyakarta BPFE 1999.
- HASIBUAN, M. S. (2020). SINAU PYTHON. Yogyakarta.
- Khamaludin, Agustianna, V., Darmawan, A., & Dermawan, M. L. (2019). Peramalan Penjualan Hijab Sxproject Menggunakan MetodeMoving Average dan Exponential Smoothing. *Jurnal Keilmuan dan Aplikasi Teknik*, 6, 1-4.
- PURWANTO. (2010). EVALUASI HASIL BELAJAR. PUSTAKA PELAJAR.
- Santosa, B. (2007). Data mining teknik pemanfaatan data untuk keperluan bisnis. 978(979), 756.
- Wardah, S., & Iskandar. (2016, September). ANALISIS PERAMALAN PENJUALAN PRODUK KERIPIK PISANG KEMASAN BUNGKUS (Studi Kasus : Home Industry Arwana Food Tembilahan). *Jurnal Teknik Industri, XI*, 1-8.