WaveFunctionCollapse (WFC)

Matthew Guzdial

guzdial@ualberta.ca

Announcements

- Final PCG topic coverage today
- Monday: wrap-up of PCG topics (maybe touch on some other PCGML topics)
- Future of Game AI topic voting closing soon!*
- Practice Quiz Today
- Quiz 5 on PCG next week

Topic Voting (72/86)

Last Time Review

Perlin Noise

BIKE RIDING! Most doctors agree that bicycle
of exercisea bicycle enables
you to develop yourmuscles
as well asincrease the rateincrease the rate
of yourbeat. More (part of body) (nouns)
around the worldbicycles than (verb)
drive No matter what kind of
you, always be,
sure to wear a/an helmet. Make (adjective)
sure to havereflectors too!
© Classroom/r.com. All Rights Reserve

Procedural Content Generation Thus Far

We either need to...

 (1) iteratively develop a set of tokens and rules by generating and testing

OR

• (2) iteratively develop a way to produce initial random levels, a neighbor function, and a fitness function by generating and testing

This sounds like a lot of work!

"Design Knowledge"

We can think of either of these options as examples of **Design Knowledge**, information about how to design whatever it is we want to generate.

Intuition: What if instead of trying to author the design knowledge for PCG, we had an Al <u>learn it</u>.

PCGML Level Generation Overview

- 1. Wave Function Collapse
- Markov Methods
- 3. Bayesian Networks
- Long Short-Term Memory Recurrent Neural Networks (LSTMs) and Autoencoders
- 5. Generative Adversarial Neural Networks (GANs)

PCGML Level Generation Overview

- 1. Wave Function Collapse
- 2. Markov Methods
- 3. Bayesian Networks
- Long Short-Term Memory Recurrent Neural Networks (LSTMs) and Autoencoders
- 5. Generative Adversarial Neural Networks (GANs)

Wave Function Collapse (WFC)

Example: https://www.youtube.com/watch?v=7ffT_8wViBA&feature=emb_title
WFC Tutorial: http://www.procjam.com/tutorials/wfc/

Bad North, 2018

Caves of Qud, 2015

Townscaper, 2020

WFC: How it Works?

- 1. Extract constraints from example as X*Y windows.
- 2. Generate content according to these constraints in a standard CSP.

"Wave Function Collapse is Constraint Satisfaction" (https://adamsmith.as/papers/wfc is constraint solving in the wild. pdf)

Blog version: https://robertheaton.com/2018/12/17/wavefunction-collapse-algorithm/

CSP Example Step N

> Option 2 (From the Intro)

Tokens

<u>Rules</u>

WFC Example Step 0

Input

Window size 2 by 2

WFC Example Step 1: Decision

Input

Window size 2 by 2

WFC Example Step 1: Implication

Input

Window size 2 by 2

WFC Example Step 2: Decision

Input

Window size 2 by 2

WFC Example Step 2: Implication

Input

Window size 2 by 2

WFC Example Step 3: Decision

Input

Window size 2 by 2

WFC Example Step 3: Implication

Input

Window size 2 by 2

WFC Example

Step 4: Decision

Input

Window size 2 by 2

WFC Example Step 4: Implication

Input

Window size 2 by 2

WFC Example Step 5: Decision

Input

Window size 2 by 2

WFC Example Step 5: Implication

Input

Window size 2 by 2

WFC Example

Step 6: Decision (FINAL)

Input

Window size 2 by 2

Output

https://adamsmith.as/papers/wfc_is_constraint_solving_in_the_wild.pdf

PQ1 https://tinyurl.com/guz-pq30 https://forms.gle/auyfnfUY6UGGwZn36

Why aren't any other PCGML techniques used in any AAA or indie games?

- 2. Markov Methods
- 3. Bayesian Networks
- 4. Long Short-Term Memory Recurrent Neural Networks (LSTMs) and Autoencoders
- 5. Generative Adversarial Neural Networks (GANs)

My Answers

- Lack of training data.
- Lack of expertise/resources.
- Want high quality output that feels handmade, not the "average" of the training data.
- Training ML models like this doesn't fit with game development cycle.

Unity Example

Code by Joseph Parker https://selfsame.itch.io/unitywfc

Wave Function Collapse Problems

- **Controllability**: Since constraints are learned, its possible the wrong or insufficient constraints will be learned.
 - Caves of Qud designer Jason Grinblat used an additional pass to check the generated levels for correctness.
- Complexity: People don't tend to think about design as being based on a series of X*Y windows.

Practice Quiz

https://forms.gle/wpzs3tfirDaCMc3K8

https://tinyurl.com/guz-quiz5

- 1. Which of the following cannot be represented as a grammar?
 - A. English Language

B. Music

C. Ikea Self-Assembly Furniture

- D. All of the above can be.
- 2. What PCG approach(es) would be best for a game about raising creatures, where the player needs to be able to either find a variety of generated creatures out in the wild or "combine" two creatures together to make something new? Why?
- 3. Let's say you're trying to generate an enemy, represented as HP: (0-100) and size (1,2,or 3). You randomly start with an enemy with HP=1 and size =3. Imagine you have a fitness function that returns 1 when the HP=size*33. Imagine you have a neighbour function that adds or subtracts 1 from HP or size. What would the output enemy (HP and size) be using greedy search?
- 4. How would you prefer to spend the majority of Monday's lecture?

Practice Quiz Answers

- 1. D
- 2. Grammar and/or Genetic Algorithm acceptable, depending on the "Why" given.
- 3. HP=33, Size=1
- 4. You tell me!