

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

Facultad de Ingeniería Electrónica y Eléctrica Algebra y Geometría Analítica

Semestre 2023 - I

Tema: Vectores en \mathbb{R}^2 . Operaciones suma y producto por un escalar. Norma de un vector. Producto escalar. Propiedades.

GUÍA DE PRÁCTICA Nº 9

1. En las siguientes relaciones hallar, si existen, todos los números reales r y s

a)
$$r(-2,3) - s(8,1) = (16,15)$$
 b) $r(-2,3) + s(4,-6) = (0,2)$ c) $r(4,3) + s(-1,2) = (2,-26)$

b)
$$r(-2,3) + s(4,-6) = (0,2)$$

c)
$$r(4,3) + s(-1,2) = (2,-26)$$

- 2. Si $\overrightarrow{u} = (n, m)$, $\overrightarrow{v} = (1, -2)$, $\overrightarrow{w} = (-1, -3)$ y $m\overrightarrow{u} + n\overrightarrow{v} \overrightarrow{w} = (0, m^2)$, hallar el valor de 3m + 2n
- 3. Hallar un vector de módulo 10 que forma un ángulo de 37° con el eje X positivo.
- 4. Dados los vectores $\overrightarrow{u} = (3x 5, x 2y + 2)$ y $\overrightarrow{v} = (x y 2, 3 2y)$, hallar $x \in y$ tales que $3\overrightarrow{u} = 4\overrightarrow{v}$.
- 5. El vector $\overrightarrow{v}=(3,2)$ es el vector localizado del segmento \overline{AB} cuyo punto medio es C=(3,1). Hallar las coordenadas de los extremos de \overline{AB} .
- 6. Sea $\overrightarrow{v} = (7, -6)$ el vector localizado del segmento \overline{AB} y C = (5/3, 3) el punto de trisección más cercano de B, de dicho segmento. Hallar las coordenadas de A y B.
- 7. Los vectores \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} forman entre sí un ángulo de 60^o , con $||\overrightarrow{u}|| = 4$, $||\overrightarrow{v}|| = 2$ y $||\overrightarrow{w}|| = 6$. Determinar el valor de $||\overrightarrow{u_1}||$, si $\overrightarrow{u_1} = \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}$
- 8. Se dan las coordenadas de los puntos A y B. Expresar $\overrightarrow{v} = \overrightarrow{AB}$ en términos de su magnitud y de su ángulo de dirección.

a)
$$A(\sqrt{12}, -3), B = (\sqrt{27}, -4)$$

b)
$$A(3\sqrt{5},4), B = (\sqrt{48},5)$$

c)
$$A(-3,4), B = (-5,6)$$

- 9. Hallar un vector que tenga la misma magnitud del vector que va de A(-2,3) a B=(-5,4) y que tenga el sentido opuesto al vector que va de S(9,-1) a T(12,-7).
- 10. Dado el vector \overrightarrow{AB} , y el punto C, donde A=(1,-2), B=(4,1), C=(3,6). Halle el simétrico D del punto C con respecto a \overrightarrow{AB}
- 11. Si \overrightarrow{u} es unitario y se cumple $2\overrightarrow{u} 3\overrightarrow{v} = \overrightarrow{w}$ y $3\overrightarrow{u} 2\overrightarrow{v} = 5\overrightarrow{w}$, calcular la norma de $\overrightarrow{v} \overrightarrow{w}$
- 12. Dados los vectores \overrightarrow{u} y \overrightarrow{v} con $\overrightarrow{u} \overrightarrow{v} \neq \overrightarrow{0}$. Demostrar que $\left| \frac{||\overrightarrow{u}|| ||\overrightarrow{v}||}{||\overrightarrow{u} \overrightarrow{v}||} \right| \leq 1$

- 13. Si A, B y C son los vértices de un triángulo, además $\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}, \overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}, \overrightarrow{AF} = \frac{2}{3}\overrightarrow{AB}$. Demostrar que $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$
- 14. Si $\overrightarrow{v} = (x, y)$, cuya norma es 6 e $y = \sqrt{3}x$, hallar dicho vector.
- 15. Sabiendo que los puntos A(1,1), B(6,6) y C(3,9) son tres vértices consecutivos de un paralelogramo, determinar las coordenadas del cuarto vértice.
- 16. Si $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$ y $||\overrightarrow{u}|| = 4$; $||\overrightarrow{v}|| = 2$, $||\overrightarrow{w}|| = 5$, determinar $\left(3\overrightarrow{v} + \frac{\overrightarrow{w}}{2}\right) \cdot \overrightarrow{w}$
- 17. Sean \overrightarrow{u} y \overrightarrow{v} vectores en \mathbb{R}^2 . Utilizando las propiedades del producto escalar demostrar:

a)
$$||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u} - \overrightarrow{v}||^2 = 4\overrightarrow{u}.\overrightarrow{v}$$

b)
$$||\overrightarrow{u} + \overrightarrow{v}||^2 + ||\overrightarrow{u} - \overrightarrow{v}||^2 = 2(||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2)$$

- 18. Demostrar mediante un contraejemplo que $\overrightarrow{u}.\overrightarrow{v}=\overrightarrow{v}.\overrightarrow{w}$ no implica ni que $\overrightarrow{u}=\overrightarrow{w}$, ni que $\overrightarrow{u}=0$
- 19. Si \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{u} + \overrightarrow{v} son vectores unitarios, hallar la norma del vector \overrightarrow{u} \overrightarrow{v} .
- 20. Si $\overrightarrow{u} = (2,3)$, $\overrightarrow{v} = (3,-2)$ y $\overrightarrow{w} = (4,-1)$, resolver la ecuación

$$2\overrightarrow{u} - 3\left[\frac{1}{2}(\overrightarrow{v} - 3\overrightarrow{w}) + \frac{3}{4}\overrightarrow{x}\right] = \frac{1}{4}\overrightarrow{x} + 3\overrightarrow{w}$$

- 21. Si M(9/2, -3), N(2, 6), P(-7/2, 9) y Q(-1, -1) son los puntos medios de los lados del trapecio ABCD y $||\overrightarrow{AD}|| = \sqrt{52}$, hallar los vértices del trapecio.
- 22. Dados los vértices consecutivos de un paralelogramo A(7,-1), B=(-3,1) y C(-5,5), determinar el cuarto vértice y la longitud de la diagonal \overrightarrow{BD}
- 23. Si \overrightarrow{u} y \overrightarrow{v} son vectores tales que $||\overrightarrow{u}|| < 1$ y $||\overrightarrow{v}|| < 1$, demostrar que $\forall t \in [0,1], ||\overrightarrow{u} + t(\overrightarrow{v} \overrightarrow{u})|| < 1$

Ciudad Universitaria, junio del 2023

Los profesores del curso