Ejercicios tema 2

Blanca Cano Camarero

16 de abril de 2020

Índice

1.	Ejercicio 9	1
2.	Ejercicio 10	3
3.	Ejercicio 13	4
4.	Ejercicio 21	7

Sea Gun grupo y sean $a,b\in G$ tales que $ba=ab^k,a^n=1=b^m$ con n,m>0

Demuestre

1. Para todo i = 0, ..., m-1 se verifica $b^i a = ab^{ik}$

Demostraremos por inducción que se cumple para todo i = 0, ..., m-1.

- Caso base i = 0 evidente
- \blacksquare Supongamos que para $i \in \{0...m-2\}$ se cumple y veamos que para i+1 también

 $b^{i+1}a=bb^ia$ usando hipótesis de inducción y después hipótesis iniciales llegamos a $b(b^ia)=(ba)b^{ik}=ab^kb^{ik}=a^{(i+1)k}$ Como se quería probar.

2. Para todo j = 0, ..., n-1 se vereifica $ba^j = a^j b^{k^j}$

Lo demostraremos por inducción que se cumple para todo j=0,...,n-1:

- Caso base j = 0 evidente.
- Supongamos que para $j \in \{0...n-2\}$ se cumple y veamos que para j+1 también $ba^{j+1}=(ba^j)a$. Por la hipótesis de inducción $(ba^j)a=a^jb^{k^j}a$

Usando ahora el partado 1 de este mismo ejercicio. $a^{j}(b^{k^{j}}a) = a^{j}ab^{k^{j}k} = a^{j+1}b^{k^{j+1}}$

Como queríamos ver

3. Para todo i=0,..,m-1 y para todo j = 0,..n-1 se verifica $b^ia^j=a^jb^{ik^j}$.

Sea un j cualquiera en el rango mencionado. Lo demostraremos por inducción sobre i.

- Caso base i=0, evidente para cualquier j.
- Hipótesis de inducción, supongamos cierto para $1 \le i < m-1$ y veamo que se cumple para el caso i+1. $b^{i+1}a^j = b(b^ia^j) = (ba^j)b^{ik^j} = a^jb^{k^j}b^{ik^j} = a^jb^{(i+1)k^j}$ Donde para la primera igualadas se ha usado la prompiedad asociativa, para la segunda la hipótesisi de inducción, para la tercera el apartado 2 de este mismo ejercicio y finalmente otra vez la propiedad asociativa. Como el j era arbitrario hemos probado lo que queríamos.

4. Demostrar que todo elemento de < a, b > puede escribirse como a^rb^a con 0 < s < m 0 < r < n.

Esto es consecuencia directa del apartado anterior y la definición de grupo generado, ya que todo elemento tendrá la forma $a^{z_0}b^{z_1}a*z_2...$ con los exponentes enteros. Por tanto utilizando el apartado 3 podremos quedarno con que $a^{z_0}b^{z_1}a*z_2...=a^xb^y$ con x,y enteros.

Y como sea cual sera x e y podemos expresarlos como x = pnr, y = qm + s Usando las hipótesisi iniciales probamos con ello lo que queríamos.

Demostrar que un subconjunto no vacío $X \subseteq G$ de un grupo G es un subgrupo si y solo si X = < X >.

Condición suficiente Si $y \in X$ > entonces tendrá la forma de producto de elementos de X (definición de grupo generado), como X es subgrupo entonces será cerrado para el producto y tenemo por tanto que X = X >.

Condición necesaria Para cualesquiera $a, b \in X$ se tiene que $ab^{-1} \in X >= X$ (por hipótesis) entonces acabamos de probar que X es subgrupo.

1. Demostrar que si $H \leq G$ es un subgrupo, entonces [G:H] = |G| si y solo si, $H = \{1\}$, mientras que [G:H] = 1 sii H = G.

Todo esto es consecuencia inmediata del teorema de Lagrange. Para [G:H]=|G| si y solo si, $H=\{1\}$

- Condición necesaria. Por ser H subgrupo distinto del vacío $1 \in H$. El teorema de lagrange nos dice que [G:H]|H| = |G|, entonces tenemos que |H| = 1 y esto implica que $H = \{1\}$.
- Condición suficiente. Si $H = \{1\}$ entonces |H| = 1 y por el teorema de lagrange [G:H] = |G|.

Para $[G:H] = 1 \sin H = G$.

- Condición necesaria. Como $H \leq G$ y por el teorema de lagrange |H| = |G| entonces H = G.
- Condición suficiente. Si H = G entonces |H| = |G| y por el teorema de lagrangre no nos queda más que [G:H]=1, como queriamos probar.

2. Demostrar que si se tienen los subgrupos $G_2 \leq G_1 \leq G$, entonces $|G:G_2|=[G:G_1][G1:G2]$

Por la transitividad de ser subgrupo y el teorema de lagrange, llegamos a las siguientes igualdades:

$$|G| = [G:G_1]|G_1| \tag{1}$$

$$|G| = [G:G_2]|G_2| \tag{2}$$

$$|G_1| = [G_1 : G_2]|G_2| \tag{3}$$

Sustituimos en la primera igualdad la el valor de |G| que nos da la segunda y para el mienbro de la derechas Sustituimos el valor de $|G_1|$ por el que nos da la tercera igualdad obteniendo la siguiente ecuación.

 $[G:G_2]|G_2|=[G:G_1][G_1:G_2]|G_2|,$ por tanto hemos probado lo que buscábamos

$$[G:G_2]|G_2| = [G:G_1][G_1:G_2]|G_2|$$

3. Demostrar que si se tiene una cadena descendente de subgrupos de la forma

$$G = G_0 \ge G_1 \ge ... \ge G_{r-1} \ge G_r$$

entonces

$$|G:G_r| = \prod_{i=0}^{r-1} [Gi:G_{i+1}]$$

Procederemos a demostrarlo por inducción, el caso base r=3 ya está hecho en el apartado anterior. Supongamos ahora cierta la hipótesis de inducción $|G:G_r|=\prod_{i=0}^{r-1}[Gi:Gi+1]$ para $r\geq 3$ y veamos que se cumple para r+1. Por la transitividad de ser subgrupo y el teorema de lagrange, llegamos a las siguientes igualdades:

$$|G| = [G:G_r]|G_r| \tag{4}$$

$$|G| = [G:G_{r+1}]|G_{r+1}| \tag{5}$$

$$|G_r| = [G_r : G_{r+1}]|G_{r+1}| \tag{6}$$

Sustituimos en (4) el valor de |G| con (5) y $|G_r|$ con (6), llegando a

$$[G:G_{r+1}]|G_{r+1}| = [G:G_r][G_r:G_{r+1}]|G_{r+1}|,$$

entonces $[G:G_{r+1}]=[G:G_r][G_r:G_{r+1}]$ y utilizando la hipótesis de inducción llegamos a

$$[G:G_{r+1}] = (\prod_{i=0}^{r-1} [Gi:G_{i+1}])[G_r:G_{r+1}] = \prod_{i=0}^{r} [Gi:G_{i+1}].$$

Probando lo que queríamos.

4. Demostrar que si se tiene una cadena descendente de subgrupos de la forma

$$G = G_0 \ge G_1 \ge \dots \ge G_{r-1} \ge G_r = \{1\},$$

entonces

$$|G| = \prod_{i=0}^{r-1} [Gi: G_{i+1}]$$

Esto es consecuencia se los apartado (1) y (3) de este ejercio. Gracias a (3) tenemos que $|G:G_r|=\prod_{i=0}^{r-1}[Gi:G_{i+1}]$, usando ahora la hipótesis de que $G_r=\{1\}$ y por el apartado (1)

$$|G| = |G:G_r| = \prod_{i=0}^{r-1} [Gi:G_{i+1}]$$

Probando con ello lo que buscábamos.

Sea G un grupo, $a, b \in G$.

- 1. Demuestra que el elemento b y su conjugado aba^1 tienen el mismo orden.
- 2. Desmostra que o(ba) = o(ab).

$$(aba^{-1})^r = ab^ra^{-1} = 1 \Longleftrightarrow b^r = 1$$

. Por tanto si r es el orden de alguno de ellos también lo será ara el otro.