Devoir à la maison n° 13

À rendre le 9 février

I. Une étude de fonction.

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ $t \mapsto \begin{cases} e^{1/t} & \text{si } t < 0 \\ 0 & \text{si } t \geqslant 0 \end{cases}$

- 1) Démontrer que f est dérivable sur \mathbb{R} , en particulier en 0.
- 2) Calculer f''(x) pour tout $x \in \mathbb{R}^*$ et étudier l'existence de f''(0).
- 3) Étudier les variations de f' sur \mathbb{R}_- .
- 4) Dresser le tableau de variations et tracer l'allure de la courbe de f dans un repère orthonormé (unité 2 cm).
- 5) On veut montrer que pour tout $n \in \mathbb{N}^*$, il existe un polynôme P_n tel que, pour tout t < 0,

$$f^{(n)}(t) = \frac{P_n(t)}{t^{2n}} e^{1/t}.$$

- a) Trouver P_1 et P_2 .
- b) Montrer l'existence de P_n et trouver une relation de récurrence entre P_{n+1} , P_n et P'_n pour tout $n \in \mathbb{N}$.
- **6)** Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .

II. Une décomposition très simple.

Donner une CNS sur $(p,q) \in \mathbb{R}^2$ pour qu'il existe $(a,b) \in \mathbb{R}^2$ tel que :

$$\frac{X^2 + pX + q}{(X^2 - 1)^2} = \frac{a}{(X - 1)^2} + \frac{b}{(X + 1)^2}.$$