Зміст

1	МЕТОДИКА ПОБУДОВИ РОЗВ'ЗКІВ МІШАНИХ ЗАДАЧ ТЕОРІЇ ПРУЖНОСТІ ДЛЯ ПРЯМОКУТНОЇ ОБЛАСТІ		I 2
	1.1	Зведення вихідної крайової задачі до одновимірної векторної	4
	1.1	крайової задачі	2
2	Напруженний стан прямокутної області		3
	2.1	Постановка задачі	3
	2.2	Зведеня задачі до одновимірної у просторі трансформант	3
	2.3	Зведення задачі у просторі трансформант до матрично-векторно	ï
		форми	4
	2.4	Фінальний розв'язок задачі	6
	2.5	Чисельні розрахунки	6
3	Напруженний стан прямокутної області динаміка		6
	3.1	Постановка задачі	6
	3.2 3.3	Зведеня задачі до одновимірної у просторі трансформант Зведення задачі у просторі трансформант до матрично-векторної	7 ï
	0.0	форми	8
	3.4	Фінальний розв'язок задачі	10
4	Додаток А		11
5	Дод	даток В	13
6	3 Додаток C		14

Перелік умовних позначень

G - коєфіцієєнт Ламе

E - молуль Юнга

 μ - коєфіцієнт Пуасона

 c_1, c_2 - швидкості хвилі

 ω - частота

 $\mu_0 = \frac{1}{1 - 2\mu}$

 $U_x(x,y) = u(x,y)$ - переміщення по осі x

 $U_y(x,y)=v(x,y)$ - переміщення по осі y

1 МЕТОДИКА ПОБУДОВИ РОЗВ'ЗКІВ МІ-ШАНИХ ЗАДАЧ ТЕОРІЇ ПРУЖНОСТІ ДЛЯ ПРЯМОКУТНОЇ ОБЛАСТІ

У даному розділі наведено опис аналітичного апарату, який використовується для розв'язання мішаних задач теорії пружності для прямокутної області. Цей підхід базується на результати раніше проведених досліджень, зокрема робіт [1] і [2]. Розглянута методика розв'язання мішаних плоских задач ґрунтується на застосуванні інтегральних перетворень безпосередньо до системи рівнянь рівноваги Ламе та крайових умов. Це дозволяє зводити вихідну задачу до векторної одновимірної крайової задачі. Векторна одновимірна крайова задача точно розв'язується за допомогою матричного диференційного числення та матричної функції Гріна.

1.1 Зведення вихідної крайової задачі до одновимірної векторної крайової задачі

Розглядається пружна прямокутна область, яка займає область, що у декартовій системі координат описується співвідношенням $0 \le x \le a, \ 0 \le y \le b$. До прямокутної області на грані y = b додане нормальне навантаження

$$\sigma_y(x, y, t)|_{y=b} = -p(x, t), \quad \tau_{xy}(x, y, t)|_{y=b} = 0, \quad 0 \le x \le a$$
 (1.1)

де p(x,t) відома функція. На бічних гранях x=0 та x=a граничні умови запишемо у формі

$$U_0[f(x,y,t)] = 0, \quad U_1[f(x,y,t)] = 0, \quad 0 \le y \le b$$
 (1.2)

Де

$$U_0[f(x,y,t)] = \left[\alpha_0 f(x,y,t) + \beta_0 \frac{\partial f(x,y,t)}{\partial x}\right]|_{x=0}$$

$$U_1[f(x,y,t)] = \left[\alpha_1 f(x,y,t) + \beta_1 \frac{\partial f(x,y,t)}{\partial x}\right]|_{x=a}$$

граничні функціонали у загальному виді (для кожної конкретної задачі вони будуть деталізовані), $f(x,y,t)=(u(x,y,t),v(x,y,t))^T$ - вектор переміщеннь

2 Напруженний стан прямокутної області

2.1 Постановка задачі

Розглядається пружна прямокутна область, яка займає облась, що описується у декартовій системі координат співвідношенням $0 \le x \le a, \ 0 \le y \le b$. До прямокутної області на грані y = b додане нормальне навантаження

$$\sigma_y(x,y)|_{y=b} = -p(x), \quad \tau_{xy}(x,y)|_{y=b} = 0$$
 (2.1)

де p(x) відома функція. На бічних гранях виконується умова ідеального контакту

$$u(x,y)|_{x=0}, \quad \tau_{xy}(x,y)|_{x=0} = 0$$
 (2.2)

$$u(x,y)|_{x=a}, \quad \tau_{xy}(x,y)|_{x=a} = 0$$
 (2.3)

На нижній грані виконуються наступні умови

$$v(x,y)|_{y=0}, \quad \tau_{xy}(x,y)|_{y=0} = 0$$
 (2.4)

Розглядаються наступні рівняння рівноваги Ламе:

$$\begin{cases} \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial x \partial y} \right) = 0\\ \frac{\partial^2 v(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x \partial y} + \frac{\partial^2 v(x,y)}{\partial y^2} \right) = 0 \end{cases}$$
(2.5)

2.2 Зведеня задачі до одновимірної у просторі трансформант

Для того, щоб звести задачу до одновимірної задачі, використаєм інтегральне перетворення Φ ур'є по змінній x у до рівнянь (2.5) наступному вигляді:

$$\begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix} = \int_0^a \begin{pmatrix} u(x,y)\sin(\alpha_n x) \\ v(x,y)\cos(\alpha_n x) \end{pmatrix} dx, \quad \alpha_n = \frac{\pi n}{a}, n = \overline{1,\infty}$$
 (2.6)

Для цього помножим перше та друге рівняння (2.5) на $sin(\alpha_n x)$ та $cos(\alpha_n x)$ відповідно та проінтегруєм по змінній x на інтервалі $0 \le x \le a$. Покрокове інтегрування рівняння (2.5) наведено у (Додаток A). Отримана система рівнянь задачі у просторі трансформант:

$$\begin{cases} u_n''(y) - \alpha_n \mu_0 v_n'(y) - \alpha_n^2 (1 + \mu_0) u_n(y) = 0\\ (1 + \mu_0) v_n''(y) + \alpha_n \mu_0 u_n'(y) - \alpha_n^2 v_n(y) = 0 \end{cases}$$
(2.7)

Застосовуючи інтегральне перетворення до граничних умов, отримаємо наступні умови задачі у просторі трансформант

$$\begin{cases}
\left((2G + \lambda)v'_{n}(y) + \alpha_{n}\lambda u_{n}(y) \right) |_{y=b} = -p_{n} \\
\left(u'_{n}(y) - \alpha_{n}v_{n}(y) \right) |_{y=b} = 0 \\
v_{n}(y)|_{y=0} = 0 \\
\left(u'_{n}(y) - \alpha_{n}v_{n}(y) \right) |_{y=0} = 0
\end{cases}$$
(2.8)

Де $p_n = \int_0^a p(x)cos(\alpha_n x)dx$

2.3 Зведення задачі у просторі трансформант до матричновекторної форми

Для того щоб розв'язати задачу у простосторі трансформант, перепишмо її у матрично-векторній формі. Рівняння рівноваги (2.7) запишемо у наступному вигляді:

$$L_{2}[Z_{n}(y)] = A * Z_{n}''(y) + B * Z_{n}'(y) + C * Z_{n}(y)$$

$$L_{2}[Z_{n}(y)] = 0$$
(2.9)

Де

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \mu_0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -\alpha_n \mu_0 \\ \alpha_n \mu_0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -\alpha_n^2 (1 + \mu_0) & 0 \\ 0 & -\alpha_n^2 \end{pmatrix}$$
$$Z_n(y) = \begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix}$$

Граничні умови (2.8) запишемо у наступному вигляді:

$$U_{i}[Z_{n}(y)] = E_{i} * Z'_{n}(b_{i}) + F_{i} * Z_{n}(b_{i})$$

$$U_{i}[Z_{n}(y)] = D_{i}$$
(2.10)

Де $i = \overline{0,1}, b_0 = b, b_1 = 0,$

$$E_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 2G + \lambda \end{pmatrix}, \quad F_{0} = \begin{pmatrix} 0 & -\alpha_{n} \\ \alpha_{n}\lambda & 0 \end{pmatrix},$$

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad F_{1} = \begin{pmatrix} 0 & -\alpha_{n} \\ 0 & 1 \end{pmatrix},$$

$$D_{0} = \begin{pmatrix} 0 \\ -p_{n} \end{pmatrix}, \quad D_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

Для знаходження розв'язку задачі у просторі трансформант, знайдем фундаментальну матрицю рівняння (2.9). Шукати її будем у наступному вигляді:

$$Y(y) = \frac{1}{2\pi i} \oint_C e^{sy} M^{-1}(s) ds$$
 (2.11)

Де M(s) - характерестична матриця рівняння (2.9), а C - замкнений контур який містить усі особливі точки. Яку будемо шукати з наступної умовни

$$L_2[e^{sy} * I] = e^{sy} * M(s), \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (2.12)

$$\begin{split} &L_{2}\left[e^{sy}*I\right] = e^{sy}\left(s^{2}A*I + sB*I + C*I\right) = \\ &= e^{sy}\left(\begin{pmatrix} s^{2} & 0 \\ 0 & s^{2}(1+\mu_{0}) \end{pmatrix} + \begin{pmatrix} 0 & -\alpha_{n}\mu_{0}s \\ \alpha_{n}\mu_{0}s & 0 \end{pmatrix} + \begin{pmatrix} -\alpha_{n}^{2}(1+\mu_{0}) & 0 \\ 0 & -\alpha_{n}^{2} \end{pmatrix}\right) = \\ &= e^{sy}\begin{pmatrix} s^{2} - \alpha_{n}^{2}(1+\mu_{0}) & -\alpha_{n}\mu_{0}s \\ \alpha_{n}\mu_{0}s & s^{2}(1+\mu_{0}) - \alpha_{n}^{2} \end{pmatrix} = > \end{split}$$

$$M(s) = \begin{pmatrix} s^2 - \alpha_n^2 (1 + \mu_0) & -\alpha_n \mu_0 s \\ \alpha_n \mu_0 s & s^2 (1 + \mu_0) - \alpha_n^2 \end{pmatrix}$$
(2.13)

Знайдемо тепер $M^{-1}(s) = \frac{\widetilde{M(s)}}{\det[M(s)]}$.

$$\widetilde{M(s)} = \begin{pmatrix} s^2(1+\mu_0) - \alpha_n^2 & \alpha_n \mu_0 s \\ -\alpha_n \mu_0 s & s^2 - \alpha_n^2 (1+\mu_0) \end{pmatrix}$$
 (2.14)

$$det[M(s)] = (s^2 - \alpha_n^2 (1 + \mu_0))(s^2 (1 + \mu_0) - \alpha_n^2) + (\alpha_n \mu_0 s)^2 =$$

$$= (1 + \mu_0)(s - \alpha_n)^2 (s + \alpha_n)^2$$
(2.15)

Враховучи це, тепер знайдемо значення фундаментальної матрицю за допомогою теореми про лишки:

$$\frac{1}{2\pi i} \oint_C e^{sy} M^{-1}(s) ds = \frac{2\pi i}{2\pi i (1 + \mu_0)} \sum_{i=1}^2 Res \left[e^{sy} \frac{\widetilde{M(s)}}{\det[M(s)]} \right] = \frac{1}{(1 + \mu_0)} \left(Y_0(y) + Y_1(y) \right)$$

Знайдем $Y_0(y)$:

$$Y_{0}(y) = \frac{\partial}{\partial s} \left(\frac{e^{sy}}{(s + \alpha_{n})^{2}} \widetilde{M(s)} \right) \Big|_{s = \alpha_{n}} =$$

$$= \frac{e^{\alpha_{n}y}}{4\alpha_{n}} \begin{pmatrix} \alpha_{n}\mu_{0}y + 2 + \mu_{0} & \alpha_{n}\mu_{0}y \\ -\alpha_{n}\mu_{0}y & -\alpha_{n}\mu_{0}y + 2 + \mu_{0} \end{pmatrix}$$
(2.16)

Знайдем $Y_1(y)$:

$$Y_{1}(y) = \frac{\partial}{\partial s} \left(\frac{e^{sy}}{(s - \alpha_{n})^{2}} \widetilde{M(s)} \right) \Big|_{s = -\alpha_{n}} =$$

$$= \frac{e^{-\alpha_{n}y}}{4\alpha_{n}} \begin{pmatrix} \alpha_{n}\mu_{0}y - 2 - \mu_{0} & -\alpha_{n}\mu_{0}y \\ \alpha_{n}\mu_{0}y & -\alpha_{n}\mu_{0}y - 2 - \mu_{0} \end{pmatrix}$$
(2.17)

Таким чином ми можемо записати розв'язок задачі у просторі трансформант:

$$Z_n(y) = \frac{1}{1+\mu_0} \left(Y_0(y) * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + Y_1(y) * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix} \right)$$
 (2.18)

Залишилось знайти невідомі коєфіцієнти c_1 , c_2 , c_3 , c_4 , використовуючи граничні умови (2.10). Покрокове знаходження коєфіцієнтів наведено у (Додаток В). Таким чином ми можемо записати розв'зок у просторі трансформант:

$$u_n(y) = \frac{e^{\alpha_n y}}{4\alpha_n (1 + \mu_0)} \left[c_1(\alpha_n \mu_0 y + 2 + \mu_0) + c_2(\alpha_n \mu_0 y) \right] + \frac{e^{-\alpha_n y}}{4\alpha_n (1 + \mu_0)} \left[c_3(\alpha_n \mu_0 y - 2 - \mu_0) + c_4(-\alpha_n \mu_0 y) \right]$$
(2.19)

$$v_n(y) = \frac{e^{\alpha_n y}}{4\alpha_n (1 + \mu_0)} \left[c_1(-\alpha_n \mu_0 y) + c_2(-\alpha_n \mu_0 y + 2 + \mu_0) \right] + \frac{e^{-\alpha_n y}}{4\alpha_n (1 + \mu_0)} \left[c_3(\alpha_n \mu_0 y) + c_4(-\alpha_n \mu_0 y - 2 - \mu_0) \right]$$
(2.20)

Фінальний розв'язок задачі

Викорустовуючи обернене інтегральне перетворення Фур'є до розв'язку задачі у просторі трансформант (2.19), (2.20), отримаємо фінальний розв'язок задачі

$$u(x,y) = \frac{2}{a} \sum_{n=1}^{\infty} u_n(y) \sin(\alpha_n x), \quad \alpha_n = \frac{\pi n}{a}$$
 (2.21)

$$v(x,y) = \frac{v_0(y)}{a} + \frac{2}{a} \sum_{n=1}^{\infty} v_n(y) cos(\alpha_n x), \quad \alpha_n = \frac{\pi n}{a}$$
 (2.22)

Останній крок це знаходження $v_0(y)$ у випадку коли $n=0,\,\alpha_n=0.$ Для цього повернемся до другого рівняння (2.7), та запишем його для цього випадку:

$$(1 + \mu_0)v_n''(y) = 0 (2.23)$$

Та граничні умови:

$$\begin{cases} (2G + \lambda)v_0'(y)|_{y=b} = -p_0\\ v_0(y)|_{y=0} = 0 \end{cases}$$
 (2.24)

Де $p_0 = \int_0^a p(x) dx$ Розв'язок рівняння (2.23):

$$v_0(y) = c_1 + c_2 y (2.25)$$

Застовоючи граничні умови (2.24) для знаходження коєфіцієнтів $c_1, c_2,$ отримаємо розв'язок задачі задачі:

$$v_0(y) = \frac{-p_0}{(2G+\lambda)}y$$
 (2.26)

Тепер остаточний розв'зок задачі можна записати у вигляді:

$$\begin{cases} u(x,y) = \frac{2}{a} \sum_{n=1}^{\infty} u_n(y) \sin(\alpha_n x), & \alpha_n = \frac{\pi n}{a} \\ v(x,y) = \frac{-p_0}{(2G+\lambda)a} y + \frac{2}{a} \sum_{n=1}^{\infty} v_n(y) \cos(\alpha_n x), & \alpha_n = \frac{\pi n}{a} \end{cases}$$

$$(2.27)$$

Чисельні розрахунки 2.5

Напруженний стан прямокутної області динаміка

3.1 Постановка задачі

Розглядається пружна така сама прямокутна область як і в попередній задачі $0 \le x \le a, \ 0 \le y \le b.$

До прямокутної області на грані y = b додане нормальне навантаження

$$\sigma_y(x, y, t)|_{y=b} = -p(x, t), \quad \tau_{xy}(x, y, t)|_{y=b} = 0$$
 (3.1)

де p(x,t) відома функція. На бічних гранях виконується умова ідеального контакту

$$u(x, y, t)|_{x=0}, \quad \tau_{xy}(x, y, t)|_{x=0} = 0$$
 (3.2)

$$u(x, y, t)|_{x=a}, \quad \tau_{xy}(x, y, t)|_{x=a} = 0$$
 (3.3)

На нижній грані виконуються наступні умови

$$v(x, y, t)|_{y=0}, \quad \tau_{xy}(x, y, t)|_{y=0} = 0$$
 (3.4)

Розглядаються наступні рівняння рівноваги Ламе:

$$\begin{cases} \frac{\partial^{2}u(x,y,t)}{\partial x^{2}} + \frac{\partial^{2}u(x,y,t)}{\partial y^{2}} + \mu_{0}\left(\frac{\partial^{2}u(x,y,t)}{\partial x^{2}} + \frac{\partial^{2}v(x,y,t)}{\partial x\partial y}\right) = \frac{1}{c_{1}^{2}}\frac{\partial^{2}u(x,y,t)}{\partial t^{2}} \\ \frac{\partial^{2}v(x,y,t)}{\partial x^{2}} + \frac{\partial^{2}v(x,y,t)}{\partial y^{2}} + \mu_{0}\left(\frac{\partial^{2}u(x,y,t)}{\partial x\partial y} + \frac{\partial^{2}v(x,y,t)}{\partial y^{2}}\right) = \frac{1}{c_{2}^{2}}\frac{\partial^{2}v(x,y,t)}{\partial t^{2}} \end{cases}$$
(3.5)

Будемо розглядати випадок гармонічних коливань, тому можемо предствавити функції у наступному вигляді:

$$u(x, y, t) = u(x, y)e^{i\omega t}, \quad v(x, y, t) = v(x, y)e^{i\omega t}, \quad p(x, t) = p(x)e^{i\omega t}$$
 (3.6)

Таким чином отримаємо наступні рівняння рівноваги:

$$\begin{cases}
\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial x \partial y} \right) = -\frac{\omega^2}{c_1^2} u(x,y) \\
\frac{\partial^2 v(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x \partial y} + \frac{\partial^2 v(x,y)}{\partial y^2} \right) = -\frac{\omega^2}{c_2^2} v(x,y)
\end{cases}$$
(3.7)

Та граничні умови:

$$\begin{cases}
\sigma_y(x,y)|_{y=b} = -p(x,t), & \tau_{xy}(x,y)|_{y=b} = 0 \\
u(x,y)|_{x=0}, & \tau_{xy}(x,y)|_{x=0} = 0 \\
u(x,y)|_{x=a}, & \tau_{xy}(x,y)|_{x=a} = 0 \\
v(x,y)|_{y=0}, & \tau_{xy}(x,y)|_{y=0} = 0
\end{cases}$$
(3.8)

3.2 Зведеня задачі до одновимірної у просторі трансформант

Для того, щоб звести задачу до одновимірної задачі, використаєм інтегральне перетворення Φ ур'є по змінній x у до рівнянь (2.5) наступному вигляді:

$$\begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix} = \int_0^a \begin{pmatrix} u(x,y)\sin(\alpha_n x) \\ v(x,y)\cos(\alpha_n x) \end{pmatrix} dx, \quad \alpha_n = \frac{\pi n}{a}, n = \overline{1,\infty}$$
 (3.9)

Для цього помножим перше та друге рівняння (3.7) на $sin(\alpha_n x)$ та $cos(\alpha_n x)$ відповідно та проінтегруєм по змінній x на інтервалі $0 \le x \le a$. Покрокове інтегрування рівняння (3.7) наведено у (Додаток A). Отримана система рівнянь задачі у просторі трансформант:

$$\begin{cases} u_n''(y) - \alpha_n \mu_0 v_n'(y) + (-\alpha_n^2 - -\alpha_n^2 \mu_0 + \frac{\omega^2}{c_1^2}) u_n(y) = 0\\ (1 + \mu_0) v_n''(y) + \alpha_n \mu_0 u_n'(y) + (-\alpha_n^2 + \frac{\omega^2}{c_2^2}) v_n(y) = 0 \end{cases}$$
(3.10)

Застосовуючи інтегральне перетворення до граничних умов, отримаємо наступні умови задачі у просторі трансформант

$$\begin{cases}
\left((2G + \lambda)v'_{n}(y) + \alpha_{n}\lambda u_{n}(y) \right) |_{y=b} = -p_{n} \\
\left(u'_{n}(y) - \alpha_{n}v_{n}(y) \right) |_{y=b} = 0 \\
v_{n}(y)|_{y=0} = 0 \\
\left(u'_{n}(y) - \alpha_{n}v_{n}(y) \right) |_{y=0} = 0
\end{cases}$$
(3.11)

Де $p_n = \int_0^a p(x)cos(\alpha_n x)dx$

3.3 Зведення задачі у просторі трансформант до матричновекторної форми

Для того щоб розв'язати задачу у простосторі трансформант, перепишмо її у матрично-векторній формі. Рівняння рівноваги (3.10) запишемо у наступному вигляді:

$$L_{2}[Z_{n}(y)] = A * Z''_{n}(y) + B * Z'_{n}(y) + C * Z_{n}(y)$$

$$L_{2}[Z_{n}(y)] = 0$$
(3.12)

Де

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \mu_0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -\alpha_n \mu_0 \\ \alpha_n \mu_0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} -\alpha_n^2 - \alpha_n^2 \mu_0 + \frac{\omega^2}{c_1^2} & 0 \\ 0 & -\alpha_n^2 + \frac{\omega^2}{c_2^2} \end{pmatrix}, \quad Z_n(y) = \begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix}$$

Граничні умови (3.11) запишемо у наступному вигляді:

$$U_{i}[Z_{n}(y)] = E_{i} * Z'_{n}(b_{i}) + F_{i} * Z_{n}(b_{i})$$

$$U_{i}[Z_{n}(y)] = D_{i}$$
(3.13)

Де $i = \overline{0,1}, b_0 = b, b_1 = 0,$

$$E_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 2G + \lambda \end{pmatrix}, \quad F_{0} = \begin{pmatrix} 0 & -\alpha_{n} \\ \alpha_{n}\lambda & 0 \end{pmatrix},$$
$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad F_{1} = \begin{pmatrix} 0 & -\alpha_{n} \\ 0 & 1 \end{pmatrix},$$
$$D_{0} = \begin{pmatrix} 0 \\ -p_{n} \end{pmatrix}, \quad D_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

Для знаходження розв'язку задачі у просторі трансформант, знайдем фундаментальну матрицю рівняння (3.12). Шукати її будем у наступному вигляді:

$$Y(y) = \frac{1}{2\pi i} \oint_C e^{sy} M^{-1}(s) ds$$
 (3.14)

Де M(s) - характерестична матриця рівняння (3.12), а C - замкнений контур який містить усі особливі точки. Яку будемо шукати з наступної умовни

$$L_2[e^{sy} * I] = e^{sy} * M(s), \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (3.15)

$$L_{2}\left[e^{sy}*I\right] = e^{sy}\left(s^{2}A*I + sB*I + C*I\right) =$$

$$= e^{sy}\begin{pmatrix}s^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}} & -\alpha_{n}\mu_{0}s\\ \alpha_{n}\mu_{0}s & s^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{1}^{2}}\end{pmatrix} =>$$

$$M(s) = \begin{pmatrix}s^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}} & -\alpha_{n}\mu_{0}s\\ \alpha_{n}\mu_{0}s & s^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}}\end{pmatrix}$$
(3.16)

Знайдемо тепер $M^{-1}(s) = \frac{\widetilde{M(s)}}{\det[M(s)]}$.

$$\widetilde{M(s)} = \begin{pmatrix} s^2(1+\mu_0) - \alpha_n^2 + \frac{\omega^2}{c_2^2} & \alpha_n \mu_0 s \\ -\alpha_n \mu_0 s & s^2 - \alpha_n^2 - \alpha_n^2 \mu_0 + \frac{\omega^2}{c_1^2} \end{pmatrix}$$
(3.17)

$$det[M(s)] = (s^{2}(1 + \mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}})(s^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}}) + (\alpha_{n}\mu_{0}s)^{2} =$$

$$= (1 + \mu_{0})(s - a_{1})(s + a_{1})(s - a_{2})(s + a_{2})$$
(3.18)

Де a_1, a_2 :

$$a_{1} = \sqrt{\frac{b_{1}}{b_{3}} - \omega \sqrt{\frac{b_{2}}{b_{3}}}},$$

$$a_{2} = \sqrt{\frac{b_{1}}{b_{3}} + \omega \sqrt{\frac{b_{2}}{b_{3}}}}$$

$$\begin{split} b_1 &= 2\alpha_n^2 c_1^2 c_2^2 \mu_0 + 2\alpha_n^2 c_1^2 c_2^2 - c_1^2 \omega^2 - c_2^2 \mu_0 \omega^2 - c_2^2 \omega^2, \\ b_2 &= 4\alpha_n^2 c_1^4 c_2^2 \mu_0^2 + 4\alpha_n^2 c_1^4 c_2^2 \mu_0 - 4\alpha_n^2 c_1^2 c_2^4 \mu_0^2 - \\ &- 4\alpha_n^2 c_1^2 c_2^4 \mu_0 + c_1^4 \omega^2 - 2c_1^2 c_2^2 \mu_0 \omega^2 - 2c_1^2 c_2^2 \omega^2 + \\ &+ c_2^4 \mu_0^2 \omega^2 + c_2^4 \omega^2, \\ b_3 &= 2c_1^2 c_2^2 \mu_0 + 2c_1^2 c_2^2 \end{split}$$

Враховучи це, тепер знайдемо значення фундаментальної матрицю за допомогою теореми про лишки:

$$\frac{1}{2\pi i} \oint_C e^{sy} M^{-1}(s) ds = \frac{2\pi i}{2\pi i (1 + \mu_0)} \sum_{i=1}^2 Res \left[e^{sy} \frac{\widetilde{M(s)}}{\det[M(s)]} \right] =$$

$$= \frac{1}{(1 + \mu_0)} \left(Y_0(y) + Y_1(y) + Y_2(y) + Y_3(y) \right)$$

Знайдем $Y_0(y)$:

$$Y_{0}(y) = \left(\frac{e^{sy}}{(s+a_{1})(s-a_{2})(s+a_{2})}\widetilde{M(s)}\right)\Big|_{s=a_{1}} =$$

$$= \frac{e^{a_{1}y}}{2a_{1}(a_{1}^{2}-a_{2}^{2})} \begin{pmatrix} a_{1}^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}} & \alpha_{n}\mu_{0}a_{1} \\ -\alpha_{n}\mu_{0}a_{1} & a_{1}^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}} \end{pmatrix}$$
(3.19)

Знайдем $Y_1(y)$:

$$Y_{1}(y) = \left(\frac{e^{sy}}{(s-a_{1})(s-a_{2})(s+a_{2})}\widetilde{M(s)}\right)\Big|_{s=-a_{1}} =$$

$$= -\frac{e^{-a_{1}y}}{2a_{1}(a_{1}^{2}-a_{2}^{2})} \begin{pmatrix} a_{1}^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}} & -\alpha_{n}\mu_{0}a_{1} \\ \alpha_{n}\mu_{0}a_{1} & a_{1}^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}} \end{pmatrix} (3.20)$$

Знайдем $Y_2(y)$:

$$Y_{2}(y) = \left(\frac{e^{sy}}{(s+a_{2})(s-a_{1})(s+a_{1})}\widetilde{M(s)}\right)\Big|_{s=a_{2}} =$$

$$= \frac{e^{a_{2}y}}{2a_{2}(a_{2}^{2}-a_{1}^{2})} \begin{pmatrix} a_{2}^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}} & \alpha_{n}\mu_{0}a_{2} \\ -\alpha_{n}\mu_{0}a_{2} & a_{2}^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}} \end{pmatrix}$$
(3.21)

Знайдем $Y_3(y)$:

$$Y_{3}(y) = \left(\frac{e^{sy}}{(s - a_{2})(s - a_{1})(s + a_{1})}\widetilde{M(s)}\right)\Big|_{s = -a_{2}} =$$

$$= -\frac{e^{-a_{2}y}}{2a_{2}(a_{2}^{2} - a_{1}^{2})} \begin{pmatrix} a_{2}^{2}(1 + \mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}} & -\alpha_{n}\mu_{0}a_{2} \\ \alpha_{n}\mu_{0}a_{2} & a_{2}^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}} \end{pmatrix} (3.22)$$

Таким чином ми можемо записати розв'язок задачі у просторі трансформант:

$$Z_n(y) = \frac{1}{1+\mu_0} \left(Y_0(y) + Y_1(y) \right) * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \frac{1}{1+\mu_0} \left(Y_2(y) + Y_3(y) \right) * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix}$$
(3.23)

Залишилось знайти невідомі коєфіцієнти c_1 , c_2 , c_3 , c_4 , використовуючи граничні умови (3.13). Покрокове знаходження коєфіцієнтів наведено у (Додаток С). Таким чином ми можемо записати розв'зок у просторі трансформант:

$$u_{n}(y) = \frac{(a_{1}^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}})(e^{a_{1}y} - e^{-a_{1}y})}{2a_{1}(a_{1}^{2} - a_{2}^{2})(1+\mu_{0})}c_{1} + \frac{(a_{2}^{2}(1+\mu_{0}) - \alpha_{n}^{2} + \frac{\omega^{2}}{c_{2}^{2}})(e^{a_{2}y} - e^{-a_{2}y})}{2a_{2}(a_{2}^{2} - a_{1}^{2})(1+\mu_{0})}c_{3} + \frac{(a_{1}\alpha_{n}y)(e^{a_{1}y} + e^{-a_{1}y})}{2a_{1}(a_{2}^{2} - a_{2}^{2})(1+\mu_{0})}c_{2} + \frac{(a_{2}\alpha_{n}y)(e^{a_{2}y} + e^{-a_{2}y})}{2a_{2}(a_{2}^{2} - a_{2}^{2})(1+\mu_{0})}c_{4}$$

$$(3.24)$$

$$v_{n}(y) = \frac{(a_{1}^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}})(e^{a_{1}y} - e^{-a_{1}y})}{2a_{1}(a_{1}^{2} - a_{2}^{2})(1 + \mu_{0})}c_{2} + \frac{(a_{2}^{2} - \alpha_{n}^{2} - \alpha_{n}^{2}\mu_{0} + \frac{\omega^{2}}{c_{1}^{2}})(e^{a_{2}y} - e^{-a_{2}y})}{2a_{2}(a_{2}^{2} - a_{1}^{2})(1 + \mu_{0})}c_{4} - \frac{(a_{1}\alpha_{n}y)(e^{a_{1}y} + e^{-a_{1}y})}{2a_{1}(a_{1}^{2} - a_{2}^{2})(1 + \mu_{0})}c_{1} - \frac{(a_{2}\alpha_{n}y)(e^{a_{2}y} + e^{-a_{2}y})}{2a_{2}(a_{2}^{2} - a_{1}^{2})(1 + \mu_{0})}c_{3}$$

$$(3.25)$$

3.4 Фінальний розв'язок задачі

Викорустовуючи обернене інтегральне перетворення Фур'є до розв'язку задачі у просторі трансформант (3.24), (3.25), отримаємо фінальний розв'язок задачі

$$u(x,y) = \frac{2}{a} \sum_{n=1}^{\infty} u_n(y) \sin(\alpha_n x), \quad \alpha_n = \frac{\pi n}{a}$$
 (3.26)

$$v(x,y) = \frac{v_0(y)}{a} + \frac{2}{a} \sum_{n=1}^{\infty} v_n(y) cos(\alpha_n x), \quad \alpha_n = \frac{\pi n}{a}$$
 (3.27)

Останній крок це знаходження $v_0(y)$ у випадку коли $n=0,\,\alpha_n=0.$ Для цього повернемся до другого рівняння (3.10), та запишем його для цього випадку:

$$(1 + \mu_0)v_n''(y) + \frac{\omega^2}{c_2^2}v_0(y) = 0$$
(3.28)

Та граничні умови:

$$\begin{cases} (2G + \lambda)v_0'(y)|_{y=b} = -p_0\\ v_0(y)|_{y=0} = 0 \end{cases}$$
 (3.29)

Де $p_0 = \int_0^a p(x) dx$ Розв'язок рівняння (3.28):

$$v_0(y) = c_1 \cos\left(y\sqrt{\frac{\omega^2}{c_2^2(1+\mu_0)}}\right) + c_2 \sin\left(y\sqrt{\frac{\omega^2}{c_2^2(1+\mu_0)}}\right)$$
(3.30)

Застовоючи граничні умови (3.29) для знаходження коєфіцієнтів $c_1,\ c_2,$ отримаємо розв'язок задачі задачі:

$$v_0(y) = \frac{-p_0}{(2G+\lambda)\sqrt{\frac{\omega^2}{c_2^2(1+\mu_0)}}} \sin\left(b\sqrt{\frac{\omega^2}{c_2^2(1+\mu_0)}}\right) \sin\left(y\sqrt{\frac{\omega^2}{c_2^2(1+\mu_0)}}\right)$$
(3.31)

Література

- [1] Попов Г. Я. Концентрация упругих напряжений возле штампов разрезов тонких включений и подкреплений. М.: Наука. Главная редакция физико-математической литературы, 1982. 344 с.
- [2] Попов Г.Я. Точные решения некоторых краевых задач механики деформируемого твердого тела. Одесса: Астропринт, 2013. 424 с.

Додаток А $\mathbf{4}$

Помножим перше та друге рівняння (2.5) на $sin(\alpha_n x)$ та $cos(\alpha_n x)$ відповідно та проінтегруєм по змінній x на інтервалі $0 \le x \le a$.

Розглянемо перше рівнняня

$$\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x^{2}} \sin(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial y^{2}} \sin(\alpha_{n}x) dx +$$

$$+ \mu_{0} \left(\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x^{2}} \sin(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x \partial y} \sin(\alpha_{n}x) dx \right)$$

$$\int_0^a \frac{\partial^2 u(x,y)}{\partial x^2} sin(\alpha_n x) dx = \frac{\partial u(x,y)}{\partial x} sin(\alpha_n x)|_{x=0}^{x=a} - \alpha_n \int_0^a \frac{\partial u(x,y)}{\partial x} cos(\alpha_n x) dx =$$

$$= \frac{\partial u(x,y)}{\partial x} sin(\alpha_n x)|_{x=0}^{x=a} - \alpha_n \left(u(x,y) cos(\alpha_n x)|_{x=0}^{x=a} + \alpha_n \int_0^a u(x,y) sin(\alpha_n x) dx \right) =$$

$$= -\alpha_n^2 u_n(y)$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial y^{2}} sin(\alpha_{n}x) dx = \frac{\partial^{2}}{\partial y^{2}} \int_{0}^{a} u(x,y) sin(\alpha_{n}x) dx = u_{n}^{"}(y)$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x \partial y} \sin(\alpha_{n} x) dx = \frac{\partial v(x,y)}{\partial y} \sin(\alpha_{n} x)|_{x=0}^{x=a} - \alpha_{n} \int_{0}^{a} \frac{\partial v(x,y)}{\partial y} \cos(\alpha_{n} x) dx =$$

$$= -\alpha_{n} \frac{\partial}{\partial y} \int_{0}^{a} v(x,y) \cos(\alpha_{n} x) dx = -\alpha_{n} v_{n}^{'}(y)$$

Тоді перше рівняння у просторі трансформант прийме вигляд:

$$u_n''(y) - \alpha_n \mu_0 v_n'(y) - \alpha_n^2 (1 + \mu_0) u_n(y) = 0$$

Розлянемо друге рівняння

$$\int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial x^{2}} cos(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial y^{2}} cos(\alpha_{n}x) dx +$$

$$+ \mu_{0} \left(\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial x \partial y} cos(\alpha_{n}x) dx + \int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial y^{2}} cos(\alpha_{n}x) dx \right)$$

Розглянемо

$$\begin{split} &\int_0^a \frac{\partial^2 v(x,y)}{\partial x^2} cos(\alpha_n x) dx = \frac{\partial v(x,y)}{\partial x} cos(\alpha_n x)|_{x=0}^{x=a} + \alpha_n \int_0^a \frac{\partial v(x,y)}{\partial x} sin(\alpha_n x) dx = \\ &= \frac{\partial v(x,y)}{\partial x} cos(\alpha_n x)|_{x=0}^{x=a} + \alpha_n \left(v(x,y) sin(\alpha_n x)|_{x=0}^{x=a} - \alpha_n \int_0^a v(x,y) cos(\alpha_n x) dx \right) = \\ &= -\alpha_n^2 v_n(y) \end{split}$$

Розглянемо

$$\int_{0}^{a} \frac{\partial^{2} v(x,y)}{\partial y^{2}} cos(\alpha_{n}x) dx = \frac{\partial^{2}}{\partial y^{2}} \int_{0}^{a} v(x,y) cos(\alpha_{n}x) dx = v_{n}^{"}(y)$$

Розглянемо

$$\begin{split} &\int_{0}^{a} \frac{\partial^{2} u(x,y)}{\partial y \partial x} cos(\alpha_{n}x) dx = \frac{\partial u(x,y)}{\partial y} cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \int_{0}^{a} \frac{\partial u(x,y)}{\partial y} sin(\alpha_{n}x) dx = \\ &= \frac{\partial u(x,y)}{\partial y} cos(\alpha_{n}x)|_{x=0}^{x=a} + \alpha_{n} \frac{\partial}{\partial y} \int_{0}^{a} u(x,y) sin(\alpha_{n}x) dx = \alpha_{n} u_{n}^{'}(y) \end{split}$$

Тоді друге рівняння у просторі трансформант прийме вигляд:

$$(1 + \mu_0)v_n''(y) + \alpha_n \mu_0 u_n'(y) - \alpha_n^2 v_n(y) = 0$$

В результаті отримаємо наступну систему рівнянь у просторі трансформант:

$$\begin{cases} u_n''(y) - \alpha_n \mu_0 v_n'(y) - \alpha_n^2 (1 + \mu_0) u_n(y) = 0\\ (1 + \mu_0) v_n''(y) + \alpha_n \mu_0 u_n'(y) - \alpha_n^2 v_n(y) = 0 \end{cases}$$

5 Додаток В

Для знаходження коєфіцієтів c_1, c_2, c_3, c_4 спочатку знайдем $Y_0(y) * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ та $Y_1(y) * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix}$.

$$\begin{split} Y_0(y) * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} &= \frac{e^{\alpha_n y}}{4\alpha_n} \begin{pmatrix} \alpha_n \mu_0 y + 2 + \mu_0 & \alpha_n \mu_0 y \\ -\alpha_n \mu_0 y & -\alpha_n \mu_0 y + 2 + \mu_0 \end{pmatrix} * \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \\ &= \frac{e^{\alpha_n y}}{4\alpha_n} \begin{pmatrix} c_1 (\alpha_n \mu_0 y + 2 + \mu_0) + c_2 (\alpha_n \mu_0 y) \\ c_1 (-\alpha_n \mu_0 y) + c_2 (-\alpha_n \mu_0 y + 2 + \mu_0) \end{pmatrix} \end{split}$$

$$\begin{split} Y_1(y) * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix} &= \frac{e^{-\alpha_n y}}{4\alpha_n} \begin{pmatrix} \alpha_n \mu_0 y - 2 - \mu_0 & -\alpha_n \mu_0 y \\ \alpha_n \mu_0 y & -\alpha_n \mu_0 y - 2 - \mu_0 \end{pmatrix} * \begin{pmatrix} c_3 \\ c_4 \end{pmatrix} = \\ &= \frac{e^{-\alpha_n y}}{4\alpha_n} \begin{pmatrix} c_3 (\alpha_n \mu_0 y - 2 - \mu_0) + c_4 (-\alpha_n \mu_0 y) \\ c_3 (\alpha_n \mu_0 y) + c_4 (-\alpha_n \mu_0 y - 2 - \mu_0) \end{pmatrix} \end{split}$$

Введемо позначення $c = \frac{1}{4\alpha_n(1+\mu_0)}$

Запишем тепер $Z_n(y)$:

$$Z_n(y) = c \begin{pmatrix} c_1 e^{\alpha_n y} (\alpha_n \mu_0 y + 2 + \mu_0) + c_2 e^{\alpha_n y} (\alpha_n \mu_0 y) + \\ + c_3 e^{-\alpha_n y} (\alpha_n \mu_0 y - 2 - \mu_0) + c_4 e^{-\alpha_n y} (-\alpha_n \mu_0 y) \\ c_1 e^{\alpha_n y} (-\alpha_n \mu_0 y) + c_2 e^{\alpha_n y} (-\alpha_n \mu_0 y + 2 + \mu_0) + \\ + c_3 e^{-\alpha_n y} (\alpha_n \mu_0 y) + c_4 e^{-\alpha_n y} (-\alpha_n \mu_0 y - 2 - \mu_0) \end{pmatrix}$$

Тепер $Z'_n(y)$:

$$Z'_{n}(y) = c \begin{pmatrix} c_{1}e^{\alpha_{n}y}(\alpha_{n}^{2}\mu_{0}y + 2\alpha_{n} + 2\alpha_{n}\mu_{0}) + c_{2}e^{\alpha_{n}y}(\alpha_{n}^{2}\mu_{0}y + \alpha_{n}\mu_{0}) + \\ +c_{3}e^{-\alpha_{n}y}(-\alpha_{n}^{2}\mu_{0}y + 2\alpha_{n} + 2\alpha_{n}\mu_{0}) + c_{4}e^{-\alpha_{n}y}(\alpha_{n}^{2}\mu_{0}y - \alpha_{n}\mu_{0}) \\ c_{1}e^{\alpha_{n}y}(-\alpha_{n}\mu_{0}y) + c_{2}e^{\alpha_{n}y}(-\alpha_{n}\mu_{0}y + 2 + \mu_{0}) + \\ +c_{3}e^{-\alpha_{n}y}(\alpha_{n}\mu_{0}y) + c_{4}e^{-\alpha_{n}y}(-\alpha_{n}\mu_{0}y - 2 - \mu_{0}) \end{pmatrix}$$

Тепер використаєм граничні умови (2.10) та побудуєм алгебричну систему відносно коєфіцієнтів.

Використаєм $U_0[Z_n(y)]$:

$$E_0 * Z_n'(b) + F_0 * Z_n(b) = D_0 \Leftrightarrow$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 2G + \lambda \end{pmatrix} * Z_n'(b) + \begin{pmatrix} 0 & -\alpha_n \\ \alpha_n \lambda & 0 \end{pmatrix} * Z_n(b) = \begin{pmatrix} 0 \\ -p_n \end{pmatrix}$$

Отримаємо перші 2 рівняння системи:

$$\begin{cases} c_1 e^{\alpha_n b} (\alpha_n^2 \mu_0 b + \alpha_n \mu_0 + \alpha_n) + c_2 e^{\alpha_n b} (\alpha_n^2 \mu_0 b - \alpha_n) + \\ + c_3 e^{-\alpha_n b} (-\alpha_n^2 \mu_0 b + \alpha_n + \alpha_n \mu_0) + c_4 e^{-\alpha_n b} (\alpha_n^2 \mu_0 b + \alpha_n) = 0 \\ c_1 e^{\alpha_n b} (-2G\alpha_n^2 \mu_0 b - 2G\alpha_n \mu_0 + 2\lambda \alpha_n) + c_2 e^{\alpha_n b} (-2G\alpha_n^2 \mu_0 b + (2G + \lambda)2\alpha_n) + c_3 e^{-\alpha_n b} (-2G\alpha_n^2 \mu_0 b + 2G\alpha_n \mu_0 - 2\lambda \alpha_n) + \\ + c_4 e^{-\alpha_n b} (2G\alpha_n^2 \mu_0 b + (2G + \lambda)2\alpha_n) = -cp_n \end{cases}$$

Використаєм $U_1[Z_n(y)]$:

$$E_{1} * Z_{n}^{'}(0) + F_{1} * Z_{n}(0) = D_{1} \Leftrightarrow$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} * Z_{n}^{'}(0) + \begin{pmatrix} 0 & -\alpha_{n} \\ 0 & 1 \end{pmatrix} * Z_{n}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Отримаємо другі 2 рівняння системи:

$$\begin{cases} c_1(\alpha_n + \alpha_n \mu_0) + c_2(-\alpha_n) + c_3(\alpha_n + \alpha_n \mu_0) + c_4(\alpha_n) = 0 \\ c_2(2 + \mu_0) + c_4(-2 - \mu_0) = 0 \end{cases}$$

Звідси видно, що $c_3 = -c_1$, $c_4 = c_2$. Введемо наступні позначення:

$$a_{1} = e^{\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b + \alpha_{n}\mu_{0} + \alpha_{n}) - e^{-\alpha_{n}b}(-\alpha_{n}^{2}\mu_{0}b + \alpha_{n} + \alpha_{n}\mu_{0}),$$

$$a_{2} = e^{\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b - \alpha_{n}) + e^{-\alpha_{n}b}(\alpha_{n}^{2}\mu_{0}b + \alpha_{n}),$$

$$a_{3} = e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b - 2G\alpha_{n}\mu_{0} + 2\lambda\alpha_{n}) - e^{-\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + 2G\alpha_{n}\mu_{0} - 2\lambda\alpha_{n})$$

$$a_{4} = e^{\alpha_{n}b}(-2G\alpha_{n}^{2}\mu_{0}b + (2G + \lambda)2\alpha_{n}) + e^{-\alpha_{n}b}(2G\alpha_{n}^{2}\mu_{0}b + (2G + \lambda)2\alpha_{n})$$

Враховуючи останнє отримаємо:

$$\begin{cases} c_3 = -c_1 \\ c_4 = c_2 \\ c_1a_1 + c_2a_2 = 0 \\ c_1a_3 + c_2a_4 = -cp_n \end{cases} \Leftrightarrow, \begin{cases} c_3 = -c_1 \\ c_4 = c_2 \\ c_1 = -c_2 \frac{a_2}{a_1} \\ c_2(a_4a_1 - a_2a_3) = -cp_na_1 \end{cases} \Leftrightarrow$$

$$\begin{cases} c_1 = cp_n \frac{a_2}{(a_4a_1 - a_2a_3)} \\ c_2 = -cp_n \frac{a_1}{(a_4a_1 - a_2a_3)} \\ c_3 = -cp_n \frac{a_2}{(a_4a_1 - a_2a_3)} \\ c_4 = -cp_n \frac{a_1}{(a_4a_1 - a_2a_3)} \end{cases}$$

6 Додаток С