

Universidade do Minho

Escola de Engenharia Departamento de Informática

ADI

Avaliação de Modelos

Licenciatura em Engenharia Informática, 3º ano Mestrado integrado em Engenharia Informática, 4º ano

Um Modelo: Árvores de Decisão (Decision Trees)

Uma Árvore de Decisão é um grafo hierarquizado (árvore!) em que:

o Cada ramo representa a seleção entre um conjunto de alternativas

o Cada folha representa uma decisão;

Um Modelo: Árvores de Decisão (Decision Trees)

Um Modelo: Árvores de Decisão

Um Modelo: Árvores de Decisão (Decision Trees)

- Uma Árvore de Decisão é um grafo hierarquizado (árvore!) em que:
 - Cada nodo interno testa um atributo do dataset;
 - Cada ramo identifica um valor (ou conjunto de valores) do nodo testado;
 - o Cada folha representa uma decisão;

ALMOÇAR	ONDE	DECISÃO
12h30	Cantina	
13h15	Cantina	
13h10	Restaurant e	
11h00	Restaurant e	
13:30	Cantina	

Um Modelo: Árvores de Decisão (Decision Trees)

- Uma Árvore de Decisão é um grafo hierarquizado (árvore!) em que:
 - Cada nodo interno testa um atributo do dataset;
 - Cada ramo identifica um valor (ou conjunto de valores) do nodo testado;
 - o Cada folha representa uma decisão;

ALMOÇAR	ONDE	DECISÃO
12h30	Cantina	NÃO
13h15	Cantina	NÃO
13h10	Restaurant e	SIM
11h00	Restaurant e	NÃO
13:30	Cantina	NÃO

Modelos de Decisão

- o Top-down:
 - O modelo é construído a partir do conhecimento de especialistas;
 - O "todo" é dividido em "partes";

o Bottom-up:

- O modelo é construído pela identificação de relações entre os atributos do dataset;
- O modelo é induzido por "generalização" dos dados;

Modelos de Decisão Árvores de Decisão

- Árvores de Decisão seguem o Paradigma Bottom-up:
 - Toda a informação sobre cada item de dados (ou objeto) deve estar definido numa coleção fixa e finita de atributos;
 - Deste modo, objetos distintos não podem requerer coleções distintas de atributos;
 - Quando o conjunto dos níveis de decisão é conhecido a priori, a construção do modelo segue um paradigma de aprendizagem supervisionado;
 - Quando o conjunto dos níveis de decisão é calculado pelo modelo, a sua construção segue um paradigma de aprendizagem não supervisionado;
 - o Os níveis de decisão podem ser de 2 tipos:
 - Discretos: problemas de classificação;
 - Contínuos: problemas de regressão;
 - Quantidade de objetos >> níveis de decisão;

Ciclo de Execução Resolução de Problemas

■ Dada uma árvore de decisão (treinada), o processo de decisão desenvolve-se do seguinte modo:

- Começar no nodo correspondente ao atributo "raiz";
- Identificar o valor do atributo;
- 3. Seguir pelo ramo correspondente ao valor identificado,
- 4. Alcançar o nodo relativo ao ramo percorrido;
- 5. Voltar a 2. até que o nodo seja uma "folha";
- 6. O nodo alcançado indica a decisão para o problema.

Árvores de Decisão Classificação

Uma Árvore de Decisão pode ser utilizada para fazer classificação:

Decidir sobre se ou onde almoçar: classificação binária (SIM/NÃO)

o Prever quem sobreviveu ao acidente do Titanic: classificação binária (SIM/NÃO)

o Classificar um conjunto de imagens: classificação múltipla (laranja, kiwi, romã, ...)

Árvores de Decisão Regressão

- Uma Árvore de Decisão pode ser utilizada para fazer regressão:
 - o Regressão linear, polinomial, múltipla, entre outras;
 - Prever o preço do petróleo/gás/combustíveis: escala contínua ou real, em € ou \$
 - o Estimar a temperatura para o dia de amanhã: escala continua, em ºC ou ºF

Avaliação de Modelos

- Após a criação (treino) de um modelo usando uma técnica de aprendizagem (machine learning), é necessário avaliar o seu desempenho;
- A medição do desempenho de um modelo é feita com dados não apresentados durante o treino;

Avaliação de Modelos

o Conjunto de dados usado para ajustar o mode

Dados de validação:

 Conjunto de dados usado para fornecer uma avaliação imparcial de um ajuste do modelo, no conjunto de dados de treino;

Dados de teste:

 Conjunto de dados usado para fornecer uma avaliação imparcial de um modelo final ajustado ao conjunto de dados de treino.

Hold-out Validation

- Método de particionamento de dados;
- Divide o conjunto de dados em dados de treino e dados de teste;

Separa-se uma parte (hold-out) do conjunto de dados para treino/teste (80/20; 75/25; ...)

Cross Validation

- Método de validação por cruzamento de dados;
- Consiste em dividir o conjunto de dados em k partes (k folds);
 - o A cada iteração, o método utiliza k-1 partes (folds) para treino e 1 parte (fold) para teste;

O processo repete-se durante k vezes;

o O erro final é dado pela média dos valores parciais dos erros.

Leave-one-out Cross Validation (k=N)

Método de validação por cruzamento de dados;

Caso particular em que o número de casos N é igual ao número de folds k;

Cross Validation

- Qual o número ideal para k (folds)?
- Se o dataset for grande, um valor pequeno para k pode ser suficiente, uma vez que teremos uma quantidade grande de dados para treino;
- Se o dataset for pequeno, um valor grande de k ≈ N pode revelar-se mais adequado para maximizar a quantidade de dados para treino;
- Quanto maior a quantidade de folds, melhor a estimativa do erro, mais baixo será o viés(*) (bias)
 e menor será o sobreajuste (overfitting);
- De facto, o valor de k depende do valor de N!

(*) viés = distorção enviesar = entortar

Universidade do Minho

Escola de Engenharia Departamento de Informática

Técnicas de Regressão

Licenciatura em Engenharia Informática, 3º ano Mestrado integrado em Engenharia Informática, 4º ano

Regressão

Quão bem uma determinada variável independente prevê outra variável dependente?

 A regressão é um procedimento estatístico que determina a equação para a linha reta que melhor se ajusta a um conjunto específico de dados.

Regressão Linear

- Tem como objetivo prever o valor de um resultado, Y, com base no valor de uma variável de previsão, X;
 - o Como "encaixar" uma linha reta num conjunto de dados;
 - Usar esta linha para estimar a resolução de problemas.

Regressão Linear

Regressão Linear

- O método dos mínimos quadrados minimiza a so 10dos erros ao quadrado:
 - *y_i*: valor verdadeiro
 - $f(x_i, \beta)$: valor previsto / linha ajustada
- O resíduo para uma observação é a diferença entre a observação (valor y) e a linha ajustada:

•
$$r_i = y_i - f(x_i, \beta)$$

 O método dos mínimos quadrados procura os parâmetros ótimos, minimizando a soma S:

•
$$S = \sum_{i=1}^{n} r_i^2$$

Regressão Linear Múltipla

- A regressão múltipla é usada para determinar o efeito de diversas variáveis independentes, $x_1, x_2, x_3, ...$ numa variável dependente, y;
- As diferentes variáveis x_i são combinadas de forma linear e cada uma tem seu próprio coeficiente de regressão:

$$y = a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n + b + \varepsilon$$

 Os parâmetros a_i refletem a contribuição independent de cada variável independente x_i, para o valor da variá dependente, y.

Multiple Linear Regression

Regressão Logística

A diferença essencial entre regressão linear e regressão logística é que esta é usada quando a variável dependente é de natureza binária.

- Em contraste, a regressão linear é usada quando a variável dependente é contínua e a natureza da linha de regressão é linear.
- A Regressão Logística é uma técnica de classificação:
 - Empréstimo (SIM/NÃO)
 - Diagnóstico (São/Doente)
 - Vinho (Branco/Rosé/Tinto)

Universidade do Minho

Escola de Engenharia Departamento de Informática

Métricas de Qualidade

Licenciatura em Engenharia Informática, 3º ano Mestrado integrado em Engenharia Informática, 4º ano

Métricas de Qualidade

- Porquê métricas de qualidade?
 - o Para avaliar o desempenho do modelo.
- As métricas são usadas para monitorizar e medir o desempenho de um modelo:
 - o Erro Médio Absoluto (Mean Absolute Error MAE)
 - o Erro Médio Quadrado (Mean Squared Error MSE)
 - o Precisão (Precision)
 - o F1-Score,
 - o entre outras...
- No entanto, depende do problema em mãos:
 - É um problema de classificação?
 - o De regressão?
 - Séries temporais?

Matrizes de Confusão

o Tabela utilizada para descrever o desempenho de um modelo de classificação.

Predicted Class

Negative Positive

	Positive	Negative	
)	TP	FP	
0	FN	TN	

True Class

- Matrizes de Confusão
 - o Tabela utilizada para descrever o desempenho de um modelo de classificação.
- Accuracy
 - o Quantidade de previsões corretas dividido pela quantidade total de observações:

$$\circ Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

	True Class		
	Positive	Negative	
ed Class Positive	TP	FP	
Predicted Negative P	FN	TN	

- Matrizes de Confusão
 - o Tabela utilizada para descrever o desempenho de um modelo de classificaç
- Precisão (Precision aka Sensitivity)
 - É uma medida da exatidão;
 - o Determina a proporção de itens relevantes entre todos os itens:

•
$$Precision = \frac{TP}{TP+FP}$$

- Recall (aka Specificity)
 - É uma medida de completude;
 - Determina a proporção de itens relevantes obtidos:

•
$$Precision = \frac{TP}{TP+FN}$$

- Matrizes de Confusão
 - o Tabela utilizada para descrever o desempenho de um modelo de classificação.
- Precisão (Precision aka Sensitivity)
 - o É uma medida da exatidão;
 - Determina a proporção de itens relevantes entre todos os itens:

•
$$Precision = \frac{TP}{TP+FP}$$

- Recall (aka Specificity)
 - o É uma medida de completude;
 - Determina a proporção de itens relevantes obtidos:

•
$$Precision = \frac{TP}{TP+FN}$$

Type II error (false negative)

Matrizes de Confusão

o Tabela utilizada para descrever o desempenho de um modelo de classificação.

ROC curve:

- A curva Receiver Operating Characteristics (ROC) encontra o desempenho de um modelo de classificação em diferentes limites de classificação;
- Reduzindo o patamar (threshold) de classificação, são classificados mais itens como positivos, aumentando os falsos positivos e os verdadeiros positivos.

Matrizes de Confusão

o Tabela utilizada para descrever o desempenho de um modelo de classificação.

AUC curve:

- o A Area Under the Curve (AUC) mede a área abaixo da curva ROC;
- Mede quão bem as previsões são classificadas, em vez de avaliar os seus valores absolutos (varia de 0 a 1);
- Um modelo cujas previsões estão 100% erradas tem uma AUC de 0 aquele cujas previsões estão 100% corretas tem uma AUC de 1.

- Erro Médio Absoluto (Mean Absolute Error MAE)
 - Mede a magnitude média dos erros num conjunto de previsões (não considera a direção):

$$\circ MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

em que n é a quantidade de observações, y_j e \hat{y}_j são, respetivamente, a observação atual e o valor previsto.

$$MAE = \underbrace{\frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \underbrace{\frac{y}{y} - \frac{y}{y}}_{\text{The absolute value of the residual}}^{\text{Predicted output value}}$$

- Erro Médio Quadrado (Mean Squared Error MSE)
 - Consiste no cálculo da média das diferenças, ao quadrado, entre os erros num conjunto de previsões (não considera a direção):

$$OMSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

em que n é a quantidade de observações, y_j e \hat{y}_j são, respetivamente, a observação atual e o valor previsto.

$$MSE = \frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \underbrace{\left[y - \widehat{y} \right]^2}_{\substack{\text{The absolute value of the residual}}}$$

- Raiz Quadrada do Erro Médio Quadrado (Root Mean Squared Error RMSE)
 - Consiste no cálculo da média das diferenças, ao quadrado, entre os erros num conjunto de previsões (não considera a direção):

$$\circ RMSE = \frac{1}{n} \sqrt{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

em que n é a quantidade de observações, y_j e \hat{y}_j são, respetivamente, a observação atual e o valor previsto.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j| \qquad MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 \qquad RMSE = \frac{1}{n} \sqrt{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

- Três das métricas mais comuns usadas para medir a precisão de variáveis contínuas;
- Todas expressam o erro médio de previsão do modelo (valores mais baixos são melhores);
- Todos variam de 0 a ∞ e são indiferentes à direção dos erros;
- MAE e RMSE expressam o erro de previsão na mesma unidade da variável de interesse;
- MSE e RMSE, ao elevar o erro ao quadrado, d\u00e3o um peso relativamente alto para erros grandes;
- MSE e RMSE são mais úteis quando grandes erros são especialmente indesejáveis.

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$
 $MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$

$$RMSE = \frac{1}{n} \sqrt{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

#	Error	Error	Error ²
1	1	1	1
2	-1	1	1
3	3	3	9
4	3	3	9

	#	Error	Error	Error ²
_	1	0	0	0
	2	0	0	0
	3	0	0	0
	4	10	10	100

MAE	MSE	RMS F
2	5	2.24

MAE	MSE	RMS
		E
2.5	25	5

Referências bibliográficas

- Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021
- Ranganathan, Priya, C. S. Pramesh, and Rakesh Aggarwal. "Common pitfalls in statistical analysis: logistic regression." Perspectives in clinical research 8.3, 2017
- Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984), "Classification and regression trees", Monterey, CA
- Ross Quinlan (1993), "C4.5 Programs for Machine Learning", Morgan Kaufmann

Universidade do Minho

Escola de Engenharia Departamento de Informática

Aprendizagem e Decisão Inteligentes

Licenciatura em Engenharia Informática, 3º ano Mestrado integrado em Engenharia Informática, 4º ano