Self-assessment

- **SA1**: Consider a dynamic Bayesian game where player 1 moves first and player 2 moves second. Player 1 has three available moves (A,B,C) and only one possible type; player 2 has two available moves (J,K) and two possible types
 - Draw the game in extensive form (without payoffs)
 - How many moves specify one strategy of player 1? Why?
 - How many moves specify one strategy of player 2? Why?
 - Is SPE enough to characterize the equilibria of the game? Or do you need PBE?

Self-assessment

- **SA2**: Consider a dynamic Bayesian game where player 1 moves first and player 2 moves second. Player 1 has two available moves (C,D) and two possible types (t_L, t_R) with prior (p, 1-p); player 2 has only one type and moves (M,N)
 - Draw the game in extensive form (without payoffs)
 - How many moves specify one strategy of player 1? Why?
 - How many moves specify one strategy of player 2? Why?
 - Is SPE enough to characterize the equilibria of the game (i.e., to determine whether a BNE is sequentially rational)? Or do you need PBE?

Self-assessment

- **SA2** (cont'd): Consider a dynamic Bayesian game where player 1 moves first and player 2 moves second. Player 1 has two available moves (C,D) and two possible types (t_L, t_R) with prior (p, 1-p); player 2 has only one type and moves (M,N)
 - Let h_D be the information set where player 2 moves after observing move D by player 1: what are 2's belief values μ in each node of h_D assuming separating strategy DC for 1?
 - What are 2's belief values μ in each node of h_D assuming pooling strategy DD for 1?
 - What are 2's belief values μ in each node of h_D assuming pooling strategy CC for 1?

Questions?