Sucesiones de funciones

Definición 1. Sea $A \subseteq \mathbb{R}$, $A \neq \emptyset$ y para cada $n \in \mathbb{N}$, está dada una función $f_n \colon A \to \mathbb{R}$. Entonces, $(f_n)_{n \in \mathbb{N}}$ es una sucesión de funciones en A.

Definición 2. Sean $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones en A y $f: A \to \mathbb{R}$. Decimos que $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a f si para cada $x \in A$,

$$\lim_{n \to \infty} f_n(x) = f(x).$$

En este caso escribimos $f_n \longrightarrow f$.

Vale la pena resaltar, que por unicidad del límite de una sucesión de números reales, el límite de puntual de una sucesión de funciones es único.

Ejemplo 3. Sean $f_n: [0,1] \to \mathbb{R}$, $f_n(x) = x^n \ y \ f: [0,1] \to \mathbb{R}$,

$$f(x) := \begin{cases} 0, & 0 \le x < 1; \\ 1, & x = 1. \end{cases}$$

Entonces, $f_n \longrightarrow f$.

En este ejemplo, cada f_n es continua, sin embargo su límite puntual no lo es. De igual modo, cada f_n es diferenciable en todo su dominio, pero f no es diferenciable en 1. Ahora, si consideramos la sucesión de integrales,

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \lim_{n \to \infty} \frac{1}{n+1} = 0 = \int_0^1 \lim_{n \to \infty} f(x) \, dx.$$

Ejemplo 4. Sean $f_n: [0,1] \to \mathbb{R}$, $f_n(t) = 2nt e^{-nt^2}$ $y f: [0,1] \to \mathbb{R}$, f(t) = 0 para todo $t \in [0,1]$. Entonces, $f_n \longrightarrow f$.

En este caso, cada f_n es continua y diferenciable en [0,1] y el límite también lo es. Sin embargo,

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \lim_{n \to \infty} \int_0^1 2nx \, e^{-nx^2} \, dx = \lim_{n \to \infty} (1 - e^{-n}) = 1.$$

Υ

$$\int_0^1 f(x) \, \mathrm{d}x = 0.$$

Por lo tanto,

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, \mathrm{d}x \neq \int_0^1 \lim_{n \to \infty} f_n(x) \, \mathrm{d}x.$$

Para garantizar que las propiedades de las funciones se conservan en el límite, es necesario considerar otro tipo de convergencia.

Definición 5. Sean $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones en A y $f: A \to \mathbb{R}$. Decimos que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f en A si para todo $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que para cada n > N,

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall x \in A.$$

Proposición 6. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones en A y $f: A \to \mathbb{R}$ tales que $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f. Entonces, $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a f.

Demostración. Ejercicio.

Ejemplo 7. Sean A := [-5, 5], $(f_n)_{n \in \mathbb{N}}$, $f_n(x) = \frac{2xn + (-1)^n x^2}{n}$ $y \ f : A \to \mathbb{R}$, f(x) := 2x. Entonces $(f_n)_{n \in \mathbb{N}}$ converge uniformemente $a \ f \ en \ A$.

Demostración. Sea $\varepsilon > 0$ y $x \in A$. Entonces,

$$|f_n(x) - f(x)| = \left| \frac{2xn + (-1)^n x^2}{n} - 2x \right|$$

= $\left| \frac{(-1)^n x^2}{n} \right| \le \frac{25}{n}$.

Por la propiedad arquimediana existe $N \in \mathbb{N}$ tal que $\frac{25}{n} < \varepsilon$. Por lo tanto, $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f.

Proposición 8. Sean $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones en A y $f: A \to \mathbb{R}$. Entonces, $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f en A si y solo si existe una sucesión $(M)_{n \in \mathbb{N}}$, tal que

$$\lim_{n \to \infty} M_n = 0, \quad M_n \ge 0, \ \forall n \in \mathbb{N}, \quad y \quad \sup_{x \in A} |f_n(x) - f(x)| \le M_n.$$

Demostración. Ejercicio.

Proposición 9. Sean $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones acotadas en A $y \ f \colon A \to \mathbb{R}$ tal que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f en A. Entonces, f es acotada en A.

Demostraci'on. Ejercicio.

Proposición 10. Sean $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones continuas en A y $f: A \to \mathbb{R}$ tal que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f en A. Entonces, f es continua en A.

Demostración. Sea $c \in A$ y $\varepsilon > 0$. Veamos que f es continua en c. Como $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f, existe $N \in \mathbb{N}$ tal que si n > N, para cada $x \in A$, $|f_n(x) - f(x)| < \varepsilon/3$. Además, cada f_n es continua, por lo que existe $\delta > 0$ tal que si $|x - c| < \delta$, entonces $|f_{N+1}(x) - f_{N+1}(c)| < \varepsilon/3$. Por lo tanto, si $x \in A$, tal que $|x - c| < \delta$, entonces

$$|f(x) - f(c)| = |f(x) - f_{N+1}(x) + f_{N+1}(x) - f_{N+1}(c) + f_{N+1}(c) - f(c)|$$

$$\leq |f(x) - f_{N+1}(x)| + |f_{N+1}(x) - f_{N+1}(c)| + |f_{N+1}(c) - f(c)|$$

$$< \varepsilon.$$

Proposición 11. Sean $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones integrables en A y $f: A \to \mathbb{R}$ tal que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f en A. Entonces, f es integrable en A y

$$\int_A f = \lim_{n \to \infty} \int_A f_n.$$

Demostración. Sin pérdida de generalidad, suponemos que A = [a, b]. Sea $\varepsilon > 0$. Entonces, existe $N \in \mathbb{N}$ tal que si n > N,

$$|f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)}, \quad \forall x \in [a, b].$$

Por otro lado, como f_{N+1} es integrable. existe $P \in \mathcal{P}([a,b])$ tal que

$$U(f_{N+1}, P) - L(f_{N+1}, P) < \frac{\varepsilon}{2}.$$

Como cada f_n es acotada, por la proposición 9, f es acotada. Entonces, cada $M_j(f, P)$ y $m_j(f, P)$ estan bien definidas. Además,

$$M_j(f,P) \le M_j(f_{N+1},P) + \frac{\varepsilon}{4(b-a)}, \qquad m_j(f,P) \ge m_j(f_{N+1},P) - \frac{\varepsilon}{4(b-a)}.$$

Luego,

$$U(f, P) = \sum_{j=1}^{m} M_j(f, P)(t_j - t_{j-1})$$

$$\leq \sum_{j=1}^{m} \left(M_j(f_{N+1}, P) + \frac{\varepsilon}{4(b-a)} \right) (t_j - t_{j-1})$$

$$= U(f_{N+1}, P) + \frac{\varepsilon}{4}.$$

De igual manera,

$$L(f,P) \ge L(f_{N+1},P) - \frac{\varepsilon}{4}.$$

Por lo tanto,

$$U(f,P) - L(f,P) \le U(f_{N+1},P) - L(f_{N+1},P) + \frac{\varepsilon}{2} < \varepsilon.$$

Así, f es integrable. Entonces,

$$\left| \int_{a}^{b} f - \int_{a}^{b} f_{n} \right| = \left| \int_{a}^{b} (f - f_{n}) \right|$$

$$\leq \int_{a}^{b} |f - f_{n}|$$

$$< (b - a) \frac{\varepsilon}{4(b - a)} = \frac{\varepsilon}{4}.$$

Proposición 12. Sean $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones diferenciables en A y $f: A \to \mathbb{R}$ tal que $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a f en A y f'_n converge uniformemente a alguna función g en A. Entonces, f es diferenciable en [a,b] y para cada $x \in A$, $f'(x) = \lim_{n \to \infty} f'_n(x)$.

Demostración. Ejercicio.

Ejercicios

- 1. Sean $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones en $A\subseteq\mathbb{R}$ tal que para cada $n\in\mathbb{N}$, f_n es creciente y $f\colon A\to\mathbb{R}$ tal que $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a f en A. Demostrar que f es creciente.
- 2. Dar un ejemplo de una sucesión de funciones acotadas que converge puntualmente a una función no acotada.
- 3. Realizar un dibujo donde se ilustre la diferencia entre la convergencia puntual y la convergencia uniforme.
- 4. Demostrar la proposición 6.
- 5. Demostrar la proposición 8.
- 6. Enuncie una "condición de Cauchy" equivalente a la convergencia uniforme. Demuestre que esta condición es en efecto equivalente a la convergencia uniforme.
- 7. Demostrar la proposición 9.
- 8. Demostrar la proposición 12.

9. Para cada $n \in \mathbb{N}$, sea $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ y $f : [0,1] \to \mathbb{R}$, tal que para cada $x \in [0,1]$, f(x) = 0. Demuestre que f_n converge uniformemente a f.