

Scheda tecnica - Programmazione e sensori

Sistema di monitoraggio VOC con display LCD

Le interfacce di programmazione per le schede NUCLEO-L476RG, micro:bit e Arduino sono molto simili. Qui presentiamo un programma progettato per micro:bit. Visualizza gli elementi misurati sullo schermo LCD.

Editor utilizzato: vittascience.com/l476; vittascience.com/arduino o vittascience.com/microbit

Collegamento di assemblaggio con un Arduino

Il sensore multicanale MICS6814 è collegato a una porta I2C sullo shield.

Il display è collegato a una porta I2C.

Il modulo Openlog per la registrazione dei dati su una scheda SD è collegato a una porta digitale (da D2 a D8).

Collegamento di assemblaggio con un micro:bit

Il sensore multicanale MICS6814 è collegato a una porta I2C sullo shield.

Il display è collegato a una porta I2C.

Il modulo Openlog per la registrazione dei dati su una scheda SD è collegato a una porta digitale P0.

Codice

```
da microbit import *
da lcd_i2c importa LCD1602
da gas_gmxxx importa GAS_GMXXX

lcd = LCD1602()
multicanale_v2 = GAS_GMXXX(0x08)

mentre Vero:
lcd.setCursor(0, 0)
lcd.writeTxt('Misura VOC')
lcd.setCursor(0, 1)
lcd.writeTxt(str(multichannel_v2.calcVol(multichannel_v2.measure_VOC())))
```


Documentazione: Glossario degli inquinanti

inquinanti	Effetti sull'ambiente (climatici e locali)	Effetti sulla salute	Valori massimi raccomandati dall'OMS
Polveri fini PM10 / PM2.5	Effetto diffondente o assorbente, aumento dell'effetto serra Danni agli edifici e ai monumenti: formazione di uno strato nero, sporcizia	Quanto più fine è la particella, tanto più è dannosa per l'organismo: PM10: trattenuto nel naso e nelle vie respiratorie profonde PM2.5: penetra in profondità, attraversa la barriera polmonare ed entra nel flusso sanguigno	Per PM2.5: 10 μg/m3 media annua 25 μg/m3 in media nelle 24 ore Per PM10: 20 μg/m3 media annua 50 μg/m3 in media nelle 24 ore
Biossido di azoto (NO2)	Contribuisce alla pioggia acida, colpendo piante e terreni Responsabile della formazione di aerosol di nitrati e del loro accumulo nel suolo	Concentrazioni elevate possono essere tossiche e causare gravi infiammazioni delle vie respiratorie.	40 μg/m3 media annua 200 μg/m3 media oraria
Monossido di carbonio (CO)	Partecipa al meccanismo di formazione dell'ozono Trasformazione in CO2, contribuendo all'effetto serra	Avvelenamento ad alto livello: in caso di inquinamento indoor, rischio di avvelenamento Agisce sul sistema nervoso centrale e sugli organi sensoriali legandosi all'emoglobina del sangue invece che all'ossigeno	10 mg.m-3 in media in 8 ore 30 mg.m-3 in media in 1 ora
Composti organici volatili (COV)	Precursore della formazione dell'ozono	Diversi effetti sulla salute a seconda del composto specifico	Varia a seconda del composto
Ozono (O3)	Contribuisce all'effetto serra Interrompe la fotosintesi, portando a rese inferiori delle colture Ossidazione dei materiali	Gas irritante per le vie respiratorie. A concentrazioni eccessivamente elevate, può causare problemi respiratori, asma, riduzione della funzionalità polmonare e insorgenza di malattie respiratorie.	100 μg/m3 in media su 8 ore