STAT 7200

Introduction to Advanced Probability
Lecture 13

Taylor R. Brown

- Theory of Convergence
 - Convergence Almost Surely
 - Convergence in Probability
 - Law of Large Numbers

Convergence Almost Surely and Convergence in Probability

- We say that $\{Z_n\}$ converges to Z almost surely (or a.s., or with probability 1), if $\mathsf{P}(\{\omega \in \Omega : \lim_{n \to \infty} Z_n(\omega) = Z(\omega)\}) = 1$. This definition is equivalent to $\mathsf{P}(|Z_n Z| \ge \varepsilon \ i.o.) = 0$ (or $\mathsf{P}(|Z_n Z| < \varepsilon \ a.a.) = 1$) for each $\varepsilon > 0$,
- By the (first) Borel-Cantelli Lemma, for r.v.s. Z, Z_1, Z_2, \ldots , if for each $\varepsilon > 0$, $\sum_n P(|Z_n Z| \ge \varepsilon) < \infty$, then $P(Z_n \to Z) = 1$.
- We say that $\{Z_n\}$ converges to Z in probability, if for all $\varepsilon > 0$, $P(|Z_n Z| \ge \varepsilon) \to 0$ as $n \to \infty$.
- One key approach to prove convergence almost surely/ in probability is to apply Markov's (or Chebychev's) inequality to obtain an upper bound of $P(|Z_n-Z|\geq \varepsilon)$, and to show $\sum_n P(|Z_n-Z|\geq \varepsilon)<\infty$ (for convergence almost surely) or $P(|Z_n-Z|\geq \varepsilon)\to 0$ (for convergence in probability).

Weak and Strong Laws of Large Numbers Version 1

Theorem 1 (WLLN V1)

For a sequence of independent random variables X_1, X_2, \ldots with the same mean μ and finite variance bounded by σ^2 , define $S_n = X_1 + X_2 + \cdots + X_n$. Then S_n/n converges to μ in probability.

Theorem 2 (SLLN V1)

For a sequence of independent random variables X_1, X_2, \ldots with the same mean μ and bounded finite fourth central moments ($E(X_i - \mu)^4 \le a \le \infty$), define $S_n = X_1 + X_2 + \cdots + X_n$, then S_n/n converges to μ almost surely.

Strong Laws of Large Numbers Version 2

Theorem 3 (SLLN V2)

For a sequence of i.i.d. random variables $X_1, X_2, ...$ with the finite mean μ , define $S_n = X_1 + X_2 + \cdots + X_n$; then S_n/n converges to μ almost surely.

Corollary 4 (WLLN V2)

For a sequence of i.i.d. random variables $X_1, X_2, ...$ with the finite mean μ , define $S_n = X_1 + X_2 + \cdots + X_n$; then S_n/n converges to μ in probability.

The second version of WLLN follows from the fact that convergence almost surely implies convergence in probability.

Proof of SLLN V2: Part I

We now resume the proof to SLLN2 (started last lecture).

If you didn't show this on your own after last lecture, let's do Proposition 4.2.9: if $X \ge 0$, then $\sum_{k=1}^{\infty} P(X \ge k) = E \lfloor X \rfloor$.

$$\sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} P(k+l > X \ge k+l-1)$$

$$= \sum_{l=1}^{\infty} IP(1+l > X \ge 1+l-1)$$

$$= \sum_{l=1}^{\infty} IP(\lfloor X \rfloor = l)$$

$$= E[\lfloor X \rfloor]$$

Proof OF SLLN V2: Part I

- First, without loss of generality, we may assume that $X \ge 0$. Otherwise, we can let $X_i = X_i^+ X_i^-$, and apply the law of large number to X_i^+ and X_i^- respectively.
- Second, to prove almost sure convergence, the most reliable route is to use Chebchev's inequality to obtain an upper bound of $P(|S_n/n-\mu| \geq \varepsilon)$ and then apply the Borel-Cantelli lemma to show that the probability of event $\{|S_n/n-\mu| \geq \varepsilon \ i.o.\}$ equals 0.
- However, the condition of applying Chebchev's inequality is that the variance of X_i exists. For this reason, we need to construct a truncated version of X_i .

Proof OF SLLN V2: Part II

• Let $Y_i = X_i 1_{X_i \le i}$. Then $0 \le Y_i \le i, Y_i \le X_i$, $\mathsf{E}(Y_i^k) \le i^k < \infty$ for any k.

Lemma 5

Define $T_n = Y_1 + \cdots + Y_n$, if T_n/n converges to μ almost surely, S_n/n also converges to μ almost surely

- **Proof:** We only need to show that $(T_n S_n)/n \to 0$ almost surely.
- As $\sum_{k=1}^{\infty} P(X_k \neq Y_k) = \sum_{k=1}^{\infty} P(X_k > k) \leq \sum_{k=1}^{\infty} P(X_1 \geq k) \leq E(X_1) = \mu < \infty$ (see Proposition 4.2.9). By the Borel-Cantelli Lemma, $P(X_k \neq Y_k \ i.o.) = 0$. Thus $P(X_k Y_k = 0 \ a.a) = 1$.
- For any $\omega \in \{\omega : X_k(\omega) Y_k(\omega) = 0 \ a.a\}$, there is an $N \in \mathbb{N}$ so that for any n > N, $X_n(\omega) = Y_n(\omega)$. Correspondingly, for n > N, $(T_n(\omega) S_n(\omega))/n = \sum_{i=1}^N (Y_i(\omega) X_i(\omega))/n \to 0$ as $n \to \infty$. Thus $P(\lim_n (T_n S_n)/n = 0) \ge P(X_k Y_k = 0 \ a.a) = 1$.

Proof OF SLLN V2: Part III

Another trick we would like to use is to focus on a subsequence.

Lemma 6

For $\alpha>1$, let $a_k=\lfloor \alpha^k\rfloor$, the greatest integer less than or equal to α^k . If for any $\alpha>1$, T_{a_n}/a_n converges to μ almost surely, then T_n/n also converges to μ almost surely.

• **Proof:** For any k, we can find $n_k = n$ such that $a_n \le k < a_{n+1}$:

$$\frac{a_n}{a_{n+1}} \frac{T_{a_n}}{a_n} = \frac{T_{a_n}}{a_{n+1}} \le \frac{T_k}{k} \le \frac{T_{a_{n+1}}}{a_n} = \frac{a_{n+1}}{a_n} \frac{T_{a_{n+1}}}{a_{n+1}}$$

- As $k \to \infty$, $\frac{a_n}{a_{n+1}} \to \frac{1}{\alpha}$ and $\frac{a_{n+1}}{a_n} \to \alpha$.
- Goal:

$$\mu - \varepsilon \leq \frac{\mu}{(1+\delta)\alpha} \leq \frac{a_n}{a_{n+1}} \frac{T_{a_n}}{a_n} \leq \frac{T_k}{k} \leq \frac{a_{n+1}}{a_n} \frac{T_{a_{n+1}}}{a_{n+1}} \leq \mu(1+\delta)\alpha < \mu + \varepsilon$$

Proof OF SLLN V2: Part III (continued)

- Goal:

$$\mu - \varepsilon \leq \frac{\mu}{(1+\delta)\alpha} \leq \frac{a_n}{a_{n+1}} \frac{T_{a_n}}{a_n} \leq \frac{T_k}{k} \leq \frac{a_{n+1}}{a_n} \frac{T_{a_{n+1}}}{a_{n+1}} \leq \mu(1+\delta)\alpha < \mu + \varepsilon$$

- Pick $\varepsilon > 0$. Pick $\alpha > 1$ so that $\mu \alpha^2 < \mu + \varepsilon$. Then pick δ such that $(1 + \delta) < \alpha$. These two together imply $\mu(1 + \delta)\alpha < \mu + \varepsilon$.
- Pick N_1 such that $n>N_1$ implies $a_{n+1}/a_n<\alpha(1+\delta)^{1/2}$. Pick N_2 such that $n>N_2$ implies $T_{a_{n+1}}/a_{n+1}<\mu(1+\delta)^{1/2}$. Pick N_3 such that $n>N_3$ implies $T_{a_n}/a_n>\mu/(1+\delta)^{1/2}$

Proof OF SLLN V2: Part IV

- Here we will show that, for $a_k = \lfloor \alpha^k \rfloor$ $(\alpha > 1)$, T_{a_n}/a_n converges to μ almost surely.
- First, as $Y_n=X_n1_{X_n\leq n}$, and X_i s are i.i.d. random variables. $\mathsf{E}(Y_n)=\mathsf{E}(X_n1_{X_n\leq n})=\mathsf{E}(X_11_{X_1\leq n})\to\mathsf{E}(X_1)=\mu$ by the monotone convergence theorem.
- Second, as $n \to \infty$, $a_n \to \infty$, $\mathsf{E}(T_{a_n})/a_n = \sum_{i=1}^{a_n} \mathsf{E}(Y_i)/a_n \to \mu$. Thus, we only need to show $(T_{a_n} \mathsf{E}(T_{a_n}))/a_n \to 0$ almost surely.
- Our goal is then to verify that for any $\varepsilon > 0$

$$\sum_{n=1}^{\infty} P\left(\left|\frac{T_{a_n} - \mathsf{E}(T_{a_n})}{a_n}\right| \ge \varepsilon\right) \le \sum_{n=1}^{\infty} \frac{\mathsf{Var}(T_{a_n})}{a_n^2 \varepsilon^2} < \infty$$

Proof OF SLLN V2: Part V

• To show $\sum_{n=1}^{\infty} \frac{\text{Var}(T_{a_n})}{a_n^2 \varepsilon^2} < \infty$, note that:

$$\begin{split} \mathsf{Var}(T_{a_n}) &= \sum_{k=1}^{a_n} \mathsf{Var}(Y_k) \leq \sum_{k=1}^{a_n} \mathsf{E}(Y_k^2) \\ &= \sum_{k=1}^{a_n} \mathsf{E}(X_k^2 1_{X_k \leq k}) = \sum_{k=1}^{a_n} \mathsf{E}(X_1^2 1_{X_1 \leq k}) \leq a_n \mathsf{E}(X_1^2 1_{X_1 \leq a_n}) \end{split}$$

- So we have

$$\sum_{n=1}^{\infty} \frac{\mathsf{Var}(T_{\mathsf{a}_n})}{\mathsf{a}_n^2 \varepsilon^2} \leq \sum_{n=1}^{\infty} \frac{\mathsf{E}(X_1^2 1_{X_1 \leq \mathsf{a}_n})}{\mathsf{a}_n \varepsilon^2} = \frac{1}{\varepsilon^2} \mathsf{E}(X_1^2 \sum_{n=1}^{\infty} \frac{1}{\mathsf{a}_n} 1_{\mathsf{a}_n \geq X_1})$$

- We will show that $\sum_{n=1}^{\infty} \frac{1}{a_n} 1_{a_n \ge x} \le \frac{2/x}{1-\alpha^{-1}}$, so that

$$\mathsf{E}(X_1^2 \sum_{n=1}^{\infty} \frac{1}{a_n} 1_{a_n \ge X_1}) \le \mathsf{E}(X_1^2 \frac{2/X_1}{1 - \alpha^{-1}}) = \mathsf{E}(\frac{2X_1}{1 - \alpha^{-1}}) = \frac{2\mu}{1 - \alpha^{-1}} < \infty$$

Proof OF SLLN V2: Part VI

- We still need to show that $\sum_{n=1}^{\infty} \frac{1}{a_n} 1_{a_n \ge x} \le \frac{2/x}{1-\alpha^{-1}}$ for $a_k = \lfloor \alpha^k \rfloor$ $(\alpha > 1)$.
- We can verify that $a_n \ge \alpha^n/2$, then

$$\sum_{n=1}^{\infty} \frac{1}{a_n} 1_{a_n \ge x} = \sum_{a_n \ge x} \frac{1}{a_n} \le \sum_{\alpha^n \ge x} \frac{1}{a_n} \le \sum_{\alpha^n \ge x} \frac{2}{\alpha^n}$$
$$\le \sum_{k=0}^{\infty} \frac{2}{\alpha^k x}$$
$$= \frac{2/x}{1 - \alpha^{-1}}$$

Proof OF SLLN V2: Part VII

- **Summary** We first assume $X \ge 0$, then we define $Y_i = X_i 1_{X_i \le i}$, then for $\alpha > 0$, we define the index of a subsequence as $a_k = \lfloor \alpha^k \rfloor$.
- 1) We show that $(T_{a_n} E(T_{a_n}))/a_n \to 0$ almost surely,
- 2) $T_{a_n}/a_n \to \mu$ almost surely.
- 3) $T_n/n \rightarrow \mu$ almost surely.
- 4) $S_n/n \to \mu$ almost surely.
- 5) For general X, $\sum_{i=1}^{n} X_{i}^{+}/n \to \mathsf{E}(X^{+})$ and $\sum_{i=1}^{n} X_{i}^{-}/n \to \mathsf{E}(X^{-})$ almost surely, then $\sum_{i=1}^{n} X_{i}/n \to \mu$ almost surely.