Statistics and Probability

Discrete Random Variables

www.Stats-Lab.com

Twitter: @StatsLabDublin

Consider the random variables X and Y. X takes the values 0,1 and 2. Y takes the values 0 and 1. The joint probabilities for each pair are given by the following table.

	X = 0	X = 1	X=2
Y = 0	0.1	0.4	0.1
Y=1	0.1	0.1	0.2

- Compute the expected values of X and Y.
- ▶ Compute the E(X|Y=1)

Compute E(X) and E(Y).

First compute the marginal distributions.

	X = 0	X = 1	X = 2	
Y=0	0.1	0.4	0.1	
Y=1	0.1	0.1	0.2	

Compute E(X) and E(Y).

First compute the marginal distributions.

	X = 0	X = 1	<i>X</i> = 2	
Y = 0	0.1	0.4	0.1	0.6
Y=1	0.1	0.1	0.2	0.4
	0.2	0.5	0.3	

Compute E(X)

Xi	0	1	2
$p(x_i)$	0.20	0.50	0.30

$$E(X) = \sum x_i \cdot p(x_i)$$

Compute E(X)

Xi	0	1	2
$p(x_i)$	0.20	0.50	0.30

$$E(X) = \sum x_i \cdot p(x_i)$$

$$E(X) = (0 \times 0.2) + (1 \times 0.5) + (2 \times 0.3) = 1.1$$