

*DP*  
Title: Pectins as foam stabilizers for beverages having a foam head.

*1st part claimed*  
The invention relates to the use of pectins in the stabilization of foam heads of beverages such as beer.

In addition, the invention relates to methods for producing such pectins and beverages stabilized with such pectins.

*5 Description of Related Art*

Pectins are polysaccharides occurring in particular in the cell walls of dicotylous plants. The main chain of pectins contains  $\alpha$ -D-galacturonic acid, while residues may contain L-rhamnose, D-galactose, L-arabinose, D-xylose and L-fucose.

10 Each type of plant, in principle even each variety, possesses type-specific pectins whose compositions differ from those of the pectins of other types/varieties.

15 Hitherto, pectins have been used in particular in jelly-like products such as confiture and other fruit-jelly products. The pectins used herein are generally isolated from apple pulp and citrus pulp (see for instance US Patent Specification No. 4,943,443).

US Patent 5,008,254 describes pectins that are isolated from sugar beet pulp and can be used for improving various properties such as nutritional value and in many applications such as the improvement of consistency, non-hygroscopic adhesive, stabilizer of emulsions, etc.

20 In column 15 of the patent specification in question, the use of these pectins as a foam improver is mentioned, with the understanding that marshmallows and imitation whipped cream are involved here.

25 Of course, these permanent foams cannot be compared with the foam head of a beverage such as beer.

Beer differs from other beverages through, among other things, a persistent foam head.

Owing to the natural ingredients of beer and the specific know-how of the brewer, a foam of good quality can be obtained.

The most important properties of such a foam are:

- 5     - compactness
- slow, regular settlement
- good adhesion to the wall of the glass
- formation of fine-meshed "clings" during the drying of the foam.

10     These parameters, which are of particular importance for the consumer's appreciation of the beer, can be determined relatively objectively by means of equipment that is available on the market.

15     To obtain a high-quality foam, a foam stabilizer is added to various beers.

20     In general, the substance montol is used, although cobalt salts and iron salts are used as well.

25     In a number of countries, the addition of such substances is not allowed, as they are not necessary for the preparation of beer and/or are not inherent to beer.

30     Montol is a polypropylene glycol alginate (a composition of  $\beta$ -D-mannuronic acid and  $\alpha$ -L-guluronic acid having a molecular weight of between 30,000 and 200,000). This substance is isolated from algae. It is isolated in particular from the brown algae *Laminaria digitata* and *Macrocystis pyrifera*.

35     A known drawback of the use of montol, apart from the fact that it is not inherent in beer, are the chances of precipitate formation in the final product.

40     The invention provides a method for improving the stability of the foam head of beverages, wherein one or more pectins are added to the beverage before, during or after the process of its preparation.

45     Preferably added are pectins that have been isolated or extracted from the hop plant or other necessary starting materials for beer, on account of the fact that these pectins are derived from an ingredient that is inherent in beer and

INS G1>

DISCUSSION OF THE PREFERRED EMBODIMENTS

hence will not affect the taste properties, which could well be the case with commercially available pectins from, for instance, citrus fruits.

Although hops are added in the form of hop cones, 5 pellets, hop concentrates or isomerized hop extract during the process of brewing beer, their presence does not result in the presence of pectins from the hops with a foam-stabilizing action in the eventual beer, as the process conditions of the brewing process (for instance the high temperature at neutral 10 pH during wort boiling) lead to the breakdown of the pectins, for instance due to, inter alia, the  $\beta$ -elimination reaction according to Albersheim (Albersheim et al., 1960) (the breaking of glycoside bonds next to carboxymethyl groups). Due to this breakdown, their foam-improving capacity is also lost.

15 Hence, US Patent Specification No. 3,099,563, which relates to foam stabilizers for beer, starting from residual products of the brewing process, cannot relate to pectins from hops or other beer ingredients. It is not clear which substances are in fact prepared with the method according to 20 this patent specification.

According to the present invention, it is preferred to start from pectins isolated from fresh hop parts or from by-products of the hop extraction.

25 Preferably, the pectins according to the present invention are obtained from the hop cones or the bines of the hop plant. The pectins do not need be isolated to a high purity, although this is in fact preferred, in particular because of the possible presence of undesired substances that may have a negative effect on the taste, the color or the foam 30 stability of the eventual end product, such as for instance polyphenols.

The action of the pectins according to the invention is probably based on the same principle as the action of montol. Pectins as well as alginates possess a charge in beer (as 35 described by Benard et al. Ann. Fals. Exp. Chim., 1981), enabling them to start an interaction with beer proteins. This may lead to a more stable foam.

If this charge of the pectins is indeed relevant for the foam-stabilizing action thereof, it may be advantageous to subject the isolated pectins to a partial saponification/de-esterification reaction. The average normal degree of esterification of 70% can then be reduced to 40-50%.

In the above-referred publication by Benard et al., pectins that may be present are only mentioned as being interfering during a montol determination, and nothing is mentioned about any function of those pectins.

The pectins according to the invention can be added at any desired moment from about 10 minutes before the end of the wort boiling (this is not critical) to the end of the preparation process. In any case, they have to be added late enough to prevent the above-mentioned breakdown from taking place to a large extent. Preferably, the pectins are added before the bright beer filtration, because any precipitates that may be present can be removed by means of the filtration. When, during the brewing process, a step known as posthopping (adding a hop preparation at the end of the wort boiling) is applied, the pectin preparation can suitably be added to this hop preparation.

The amounts of pectin that have to be added in order to achieve the improved stability can readily be determined by a skilled person. They will depend on, inter alia, the purity of the pectin preparation and the type of beer to which the preparation is added. In general, the amount of preparation to be added will be between 0.5 and 20 g/hl, preferably around 3 g/hl.

In principle, the invention is applicable to all types of beer for which a foam head is desired. The invention is in particular suitable for use in for instance beer of the pilsner type. (A bottom-fermented gold-colored beer having a characteristic hopped taste.)

According to the invention, with the pectins isolated from hops a foam stability is obtained that is at least as good as the foam stability obtained with montol, without the drawbacks attached thereto, and when the purity of the pectins

is sufficiently high, even a surprisingly better foam stability is obtained.

The invention will be explained in and by the following examples.

5

#### EXAMPLE 1

##### **INTRODUCTION**

The stabilization of the foam with pectin is probably based on the fact that pectin has a charge in beer. As a consequence, it may form compounds in the surface of the foam films. Hops contain 1-3% (d.s.) pectin. Hence, the pectins were isolated from hops and compared with commercially available pectins from Quest International.

10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
998  
999  
999  
1000

## RESULTS

When pectins are added to beer, an improvement of the foam stability can indeed be observed after incubation for 2 days by shaking of the bottle. The foam figures are given in Table I (Nibem meter).

| Table 1               | foam      | average | test   |
|-----------------------|-----------|---------|--------|
|                       | stability |         | minus  |
|                       | (sec)     |         | contr. |
| Hcp pectin (1 g/hl)   | 276       | 273     | 274    |
| 5 "                   | 266       | 285     | 275    |
| 10 "                  | 282       | 269     | 275    |
| Pectin (vis 200 ) 1 " | 283       | 262     | 272    |
| 5 "                   | 283       | 305     | 289    |
| 10 "                  | 300       | 301     | 300    |
| Pectin (200816) 1 "   | 275       | 271     | 273    |
| 5 "                   | 289       | 288     | 288    |
| 10 "                  | 286       | 304     | 300    |
| Control 0 "           | 225       | 245     | 235    |
|                       |           |         | --     |

25 1. Pectin exhibits good foam-stabilizing properties in dosages of 5 g/hl. in beer.

2. The foam-stabilizing properties of hop constituents are based not only on those of the bittering substances, but also on those of the pectins from hops.

## METHOD

 From a water extract of hop cones, pectins (1-3% d.s.) can be extracted according to the following method:

1. Incubate the extract with 0.3 N HCl at 70°C for 4 hours. Then centrifuge after the pH has been adjusted to 3 with  $\text{Na}_2\text{CO}_3$ .

5 2. Next, add  $\text{Al}_2(\text{SO}_4)_3$  and adjust the pH to 4 with  $\text{Na}_2\text{CO}_3$ . Separate the precipitate by centrifugation.

3. Next, add  $\text{Al}_2(\text{SO}_4)_3$  and adjust the pH to 4 with  $\text{Na}_2\text{CO}_3$ . Separate the precipitate by centrifugation.

10 The pectins were added to bottles of beer in dosages as indicated in Table 1. After this, the bottles were shaken slowly at room temperature for two days. Finally, at the service laboratory, the foam stabilities were determined in duplicate.

15 **EXAMPLE 2**

**2.1 MATERIAL**

Exploratory experiments were conducted with Northern Brewer A, B and C (Dutch hops). The experiments were repeated with four 20 other varieties (German hops). Northern brewer A and B originate from the same location; Northern brewer C comes from another location.

Table 2

| Variety of hop    | Hop cones | Bines | Waste |
|-------------------|-----------|-------|-------|
| Northern brewer A | X         | X     | -     |
| Northern brewer B | X         | X     | -     |
| Northern brewer C | X         | x     | -     |
| <hr/>             |           |       |       |
| Hersbrücker       | X         | X     | X     |
| Aroma perle       | X         | X     | X     |
| Northern brewer   | X         | -     | X     |
| Brewers gold      | X         | X     | X     |

For comparison, the foam stabilization experiments were also conducted with commercial citrus pectin (DE 67%) and montol. For the foam experiments, reference pilsner beer was used.

5

## 2.2 METHODS

### 1) Pectin extraction

The separate parts of the hop plant (bines, cones, leaves and the waste) were extracted with water (acidified to pH 2) to isolate pectin. The procedure followed is set forth in annex 1.

### 2) Determination of the AUA content and degree of esterification

The purity of the isolated pectin fractions was determined by means of a titration/saponification/titration. JECEFA: Compendium of food additive specifications, volume 2, Food and Agriculture Organization of the United Nations, Rome 1992, p 1055.

The content of AUA (anhydrogalacturonic acid) can thus be determined. Thus, the degree of esterification (DE) of the fractions was determined as well.

### 25 3) Determination of the foam influence of pectin

The purified pectin fractions were added to beer to determine the influence thereof on the foam stability. The procedure is described in annex 2.

## 30 2.3 RESULTS

### 2.3.1 Dutch hops

The Dutch hop plants were harvested at two points of time to investigate variation in the maturity of the plant (time 1 is the proper moment of harvesting; the hop cones have the required maturity (plant A); time 2 is approx. 3 weeks after the proper time of harvesting (the leaves, cones and bines are

withered (plants B and C)). Table 3 shows the yields of the extracted pectin fractions. The leaves of all plants gave too low a yield of pectin, as a consequence of which they are not further considered separately.

5

Table 3 Yields of extraction from the Dutch hop plants

|    | Pectin  | weighed-in<br>(g) | volume<br>extraction<br>(ml) | pectin<br>weight<br>(mg) | %<br>extracted |
|----|---------|-------------------|------------------------------|--------------------------|----------------|
| 10 |         |                   |                              |                          |                |
| 15 | Bine A  | 20                | 100                          | 440                      | 2.2            |
|    | Bine B  | 90                | 500                          | 310                      | 0.34           |
|    | Bine C  | 610               | 2600                         | 3500                     | 0.57           |
| 20 | Cones A | 30                | 250                          | 440                      | 1.2            |
|    | Cones B | 75                | 600                          | 520                      | 0.69           |
|    | Cones C | 160               | 1300                         | 1400                     | 0.88           |

At the proper time of harvesting, more pectin can be isolated from the bines and cones than approx. 3 weeks after this time. Particularly the bines are sensitive to the time of harvesting (the extracted pectin content decreases by 75-85%).

25 The purity of the fractions also decreases (% AUA from 80 to 70). The degree of esterification of the cones and bines remains equal in time and is 75% for both.

Fig. 1 shows the influence of the hop pectins on the foam stability of beer in comparison with commercial citrus pectin (DE 67%) and montol (in annex 3 the results are given in tables). For dosing the pectin fractions 100% purity was assumed. However, the AUA content of bine A and cone A is 80%, the AUA content of bines B and C and cones B and C is 70%. For the comparison with montol, this should be taken into account.

35 This was not corrected for in the experiments with the Dutch

hops, but it was corrected for in the experiments with the German hops.

Up to a content of 5 g/hi, the foam-stabilizing action of bine/cone pectin (A and B) is equal to the action of montol.

5 At higher concentrations, the action of pectin lags behind when compared with montol (partly due to the 70-80% purity of the fractions). Bine/cone pectin extracted from plant C shows a different pattern. The cone pectin has a negative effect on the foam stability, while the bine pectin has a greater  
10 positive effect on the foam stability in comparison with bine pectin of plant A and B. It is possible that in the case of the cone pectin (plant C) more foam-negative components (such as polyphenols) have been extracted along.

15 **2.3.2 German hops**

From the bines, cones and the waste of four German hop varieties, pectin was extracted as well.

The yields are given in Table 4. In the experiments, the leaves are not considered on account of the low pectin yields  
20 in Dutch hop plants.

Waste is a mixture of bines, leaves and cones such as it is left in the field after harvesting.

Table 4 Yields of the pectin extraction from the German hop plants

|    | Pectin  | weighed-in<br>(g) | volume<br>extraction<br>(ml) | pectin<br>weight<br>(mg) | %<br>extracted |
|----|---------|-------------------|------------------------------|--------------------------|----------------|
| 5  |         |                   |                              |                          |                |
| 10 | Bine 1  | 250               | 1250                         | 2.64                     | 1.06           |
| 15 | Bine 2  | 250               | 1250                         | 5.46                     | 2.18           |
| 20 | Bine 4  | 250               | 1250                         | 4.99                     | 2.00           |
|    | Cones 1 | 165               | 1750                         | 4.36                     | 2.64           |
|    | Cones 2 | 165               | 1750                         | 3.26                     | 1.98           |
|    | Cones 3 | 165               | 1750                         | 2.36                     | 1.43           |
|    | Cones 4 | 150               | 1750                         | 3.01                     | 2.00           |
|    | Waste 1 | 250               | 1750                         | 4.04                     | 1.62           |
|    | Waste 2 | 250               | 1750                         | 3.75                     | 1.50           |
|    | Waste 3 | 250               | 1750                         | 6.73                     | 2.69           |
|    | Waste 4 | 250               | 1750                         | 4.78                     | 1.91           |

From the German hops a greater pectin fraction is extracted than from the Dutch hops. However, the purity of these preparations is lower than for the Dutch hops. This is probably due to the fact that for the German hops more material was purified at the same time. The AUA contents are shown in Fig. 2 (in annex 6 the results are shown in tables).

The average purity of the fractions is around 60%. The degree of esterification of all isolated pectin fractions is around 70% (in annex 6 the results are shown in tables).

Figs 3-5 show the influence of the different hop pectin fractions on the foam stability of reference beer in comparison with commercial citrus pectin (DE 67%) and montol (in annex 4 the results are shown in tables). In these Figures, a purity of 60% for the pectin fractions was assumed.

The concentration of the montol added was therefore also reduced to 60% to enable a good comparison between the two.

Bine pectin, hop cone pectin and montol give an almost equal foam stability after being added to reference beer. At an addition of 3 g/hl the foam improvement is approx. 40 sec. At a dosage of 3 g/hl, waste pectin gives an average foam improvement of 35 sec. To all pectin fractions it applies that the stabilization is variety-dependent. If the dosage of the pectin fractions is adjusted, so that 1, 5 and 10 g AUA/hl is dosed, the foam stability is not proportionally increased (see Fig. 6, in annex 5 the results are shown in tables). The fractions are only 60% pure on average, the other 40% may also consist of foam-negative components. If the dosage of the pectin fractions is increased, more foam-negative components may end up in the beer as well. In order to reduce or eliminate this problem, the fractions must be purified more.

After the addition to water and beer it was investigated whether the isolated pectin fractions were detectable by means of the montol test. As a standard, mannuronic acid was included. Fig. 7 shows the chromatograms. This proves that according to this method, pectin is not detectable. The course of the standard beer is identical to that of standard beer to which hop pectin has been added.

#### 25 2.4 CONCLUSIONS

Pectins can be extracted from the different parts of the hop plant (bines, cones). The pectin yield from leaves was too small for experiments. Sufficient pectin can, however, be extracted from the waste that is left behind in the field after harvesting. The purity (AUA content) of the pectin fractions proves to depend on the time of harvesting, the amount of material during purification and the hop variety. The average degree of esterification of the Dutch hop plants is 75% and of the German hop plants 70%. Little difference is discernible between bines, cones or the waste. After addition to pilsner reference beer, "bine" and "hop cone" pectin yield the best foam improvements and these results are comparable

with montol additions. An addition of 3 g pectin or montol per  
hl yields a foam improvement of approx. 40 sec.

2025 RELEASE UNDER E.O. 14176

## Annex to Example 2

**ANNEX 1 PECTIN EXTRACTION FROM HOPS**

- 5 1 Grinding the separate hop parts (cones, leaves, bines and the waste) (priorly freezing with nitrogen).
- 2 Adding warm water acidifying with HCl to pH 2.
- 3 Maintaining for 2 hours at 80°C under constant agitation.
- 4 Filtering over cheese cloth.
- 10 5 Mixing the supernatant with alcohol 96% (1:2) without neutralizing.
- 6 Filtering over cheese cloth.
- 7 Washing out precipitate 2x with 60% alcohol.
- Washing out precipitate 1x with 96% alcohol (with intermediate fine-grinding with the ultraturrax).
- 15 8 Filtering over cheese cloth.
- 9 Drying overnight in Petri dish.

**ANNEX 2 DETERMINATION OF THE FOAM INFLUENCE OF PECTINS**

- 20 1 Dried pectins were crushed and dissolved in 5 ml water under heating before being added to beer in the following concentrations: 3 mg/bottle (approx. 1 g/hl), 15 mg/bottle (approx. 5 g/hl), 30 mg/bottle (approx. 10 g/hl). For this purpose, the pectin fractions were assumed to be 100 % pure. An experiment was conducted wherein the addition was based on the actual purity of the pectin fractions.
- 25 2 The bottles were shaken (50 rpm) for 48 hours (Dutch hops) or 60 hours (German hops).
- 30 3 Measurement of the foam stability with the Nibem meter.

ANNEX 3 RESULTS OF FOAM STABILITY AFTER ADDITION OF  
PECTINS TO BEER (PECTINS ISOLATED FROM DUTCH HOPS) -  
addition based on 100% purity

|                   | Content added (g/hl) | Actual content AUA (g/hl) | Foam stability (sec) | Test minus control (sec) |
|-------------------|----------------------|---------------------------|----------------------|--------------------------|
| commercial pectin | 1                    | 1                         | 273                  | 16                       |
| 29-9-93           | 5                    | 5                         | 276                  | 19                       |
| control 257 sec   | 10                   | 10                        | 287                  | 30                       |
| 12-10-93          | 1                    | 1                         | 273                  | 7                        |
| control 267 sec   | 5                    | 5                         | 285                  | 18                       |
|                   | 10                   | 10                        | 296                  | 29                       |
| 28-10-93          | 1                    | 1                         | 288                  | 8                        |
| control 276 sec   | 5                    | 5                         | 313                  | 37                       |
|                   | 10                   | 10                        | 320                  | 44                       |
| bine A            | 1                    | 0.8                       | 265                  | 8                        |
| 29-9-93           | 5                    | 4                         | 281                  | 24                       |
| control 257 sec   | 10                   | 8                         | 285                  | 28                       |
| 28-10-93          | 1                    | 0.8                       | 275                  | -1                       |
| control 276 sec   | 5                    | 4                         | 308                  | 32                       |
|                   | 10                   | 8                         | 316                  | 40                       |
| bine B            | 1                    | 0.7                       | 298                  | 22                       |
| 26-10-93          | 5                    | 3.5                       | 310                  | 34                       |
|                   | 10                   | 7                         | 320                  | 44                       |
| bine C            | 1                    | 0.7                       | 276                  | 9                        |
| 12-10-93          | 5                    | 3.5                       | 305                  | 38                       |
| control 267 sec   | 10                   | 7                         | 318                  | 51                       |
| 28-10-93          | 1                    | 0.7                       | 283                  | 7                        |
| control 276 sec   | 5                    | 3.5                       | 328                  | 52                       |
|                   | 10                   | 7                         | -                    | -                        |
| cones A           | 1                    | 0.8                       | 265                  | 8                        |
| 29-9-93           | 5                    | 4                         | 284                  | 27                       |
| control 257 sec   | 10                   | 8                         | 284                  | 27                       |
| 28-10-93          | 1                    | 0.8                       | 265                  | -9                       |
| control 276 sec   | 5                    | 4                         | 312                  | 36                       |
|                   | 10                   | 8                         | 319                  | 43                       |
| cones B           | 1                    | 0.7                       | 289                  | 13                       |
| 26-10-93          | 5                    | 3.5                       | 290                  | 14                       |
|                   | 10                   | 7                         | 293                  | 17                       |
| cones C           | 1                    | 0.7                       | 238                  | -29                      |
| 12-10-93          | 5                    | 3.5                       | 192                  | -75                      |
| control 267 sec   | 10                   | 7                         | 180                  | -87                      |
| 28-10-93          | 1                    | 0.7                       | 247                  | -19                      |
| control 276 sec   | 5                    | 3.5                       | 215                  | -61                      |
|                   | 10                   | 7                         | 192                  | -84                      |
| montol            | 1                    | 1                         | 297                  | 21                       |
| 28-10-93          | 5                    | 5                         | 314                  | 38                       |
| control 276 sec   | 10                   | 10                        | 340                  | 64                       |

ANNEX 4 RESULTS OF FOAM STABILITY AFTER ADDITION OF  
 PECTINS TO BEER (PECTINS ISOLATED FROM GERMAN HOPS) -  
 addition based on 100% purity

| 5  | Experiment<br>15-11-1993 | Content<br>added<br>(g/hl) | Actual<br>content AUA<br>(g/hl) | Foam<br>stability<br>(sec) | Test minus<br>control<br>(sec) |
|----|--------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------|
| 10 | control water            | -                          | -                               | 302                        | -                              |
| 15 | control water            | -                          | -                               | 306                        | -                              |
| 20 | commercial<br>pectin     | 1                          | 1                               | 323                        | 19                             |
| 25 |                          | 5                          | 5                               | 337                        | 33                             |
| 30 |                          | 10                         | 10                              | 356                        | 52                             |
| 35 | montol                   | 0.6                        | 0.6                             | 314                        | 10                             |
| 40 |                          | 1                          | 1                               | 335                        | 31                             |
| 45 |                          | 3                          | 3                               | 346                        | 42                             |
| 50 |                          | 5                          | 5                               | 367                        | 63                             |
| 55 |                          | 6                          | 6                               | 368                        | 64                             |
|    |                          | 10                         | 10                              | 381                        | 77                             |
|    | bine 1                   | 1                          | 0.66                            | 319                        | 15                             |
|    |                          | 5                          | 3.3                             | 346                        | 42                             |
|    |                          | 10                         | 6.6                             | 354                        | 50                             |
|    | bine 2                   | 1                          | 0.75                            | 323                        | 19                             |
|    |                          | 5                          | 3.75                            | 343                        | 39                             |
|    |                          | 10                         | 7.5                             | 374                        | 69                             |
|    | bine 4                   | 1                          | 0.64                            | 320                        | 16                             |
|    |                          | 5                          | 3.2                             | 336                        | 32                             |
|    |                          | 10                         | 6.4                             | 468                        | 64                             |
|    | cones 1                  | 1                          | 0.61                            | 325                        | 21                             |
|    |                          | 5                          | 3.05                            | 351                        | 47                             |
|    |                          | 10                         | 6.1                             | 365                        | 61                             |
|    | cones 2                  | 1                          | 0.65                            | 316                        | 12                             |
|    |                          | 5                          | 3.25                            | 342                        | 38                             |
|    |                          | 10                         | 6.5                             | 366                        | 62                             |
|    | cones 3                  | 1                          | 0.56                            | 319                        | 15                             |
|    |                          | 5                          | 2.8                             | 346                        | 42                             |
|    |                          | 10                         | 5.6                             | 360                        | 56                             |
|    | cones 4                  | 1                          | 0.6                             | 313                        | 9                              |
|    |                          | 5                          | 3                               | 341                        | 37                             |
|    |                          | 10                         | 6                               | 359                        | 55                             |
|    | waste 1                  | 1                          | 0.55                            | 320                        | 16                             |
|    |                          | 5                          | 2.75                            | -                          | -                              |
|    |                          | 10                         | 5.5                             | 345                        | 41                             |
|    | waste 2                  | 1                          | 0.56                            | 320                        | 16                             |
|    |                          | 5                          | 2.8                             | 339                        | 35                             |
|    |                          | 10                         | 5.6                             | 351                        | 47                             |
|    | waste 3                  | 1                          | 0.72                            | 309                        | 5                              |
|    |                          | 5                          | 3.8                             | 334                        | 30                             |
|    |                          | 10                         | 7.2                             | 360                        | 56                             |
|    | waste 4                  | 1                          | 0.65                            | 314                        | 10                             |
|    |                          | 5                          | 3.25                            | 343                        | 39                             |
|    |                          | 10                         | 6.5                             | 352                        | 46                             |

ANNEX 5 RESULTS OF FOAM STABILITY AFTER ADDITION OF  
PECTINS TO BEER (PECTINS ISOLATED FROM GERMAN HOPS)  
addition based on purity measured

| Experiment<br>19-11-1993 | Content<br>added<br>(g/hl) | Actual<br>content AUA<br>(g/hl) | Foam<br>stability<br>(sec) | Test minus<br>control<br>(sec) |
|--------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------|
| control water            |                            |                                 | 301                        | -                              |
| bine 1                   | 5.2                        | 1                               | 322                        | 21                             |
|                          | 31                         | 5                               | 348                        | 47                             |
|                          | 51                         | 10                              | 359                        | 58                             |
| bine 4                   | 4.7                        | 1                               | 323                        | 22                             |
|                          | 23                         | 5                               | 341                        | 40                             |
|                          | 47                         | 10                              | 373                        | 72                             |
| montol                   | 1.8                        | 1.8                             | 311                        | 10                             |
|                          | 3                          | 3                               | 329                        | 28                             |
|                          | 9                          | 9                               | 343                        | 42                             |
|                          | 15                         | 15                              | 358                        | 57                             |
|                          | 18                         | 18                              | 369                        | 68                             |
|                          | 30                         | 30                              | 378                        | 77                             |

ANNEX 6 PURITY OF THE PECTIN FRACTIONS (AUA CONTENT)  
AND DEGREE OF ESTERIFICATION (DE) OF THE GERMAN HOP VARIETIES

| Sample               | AUA (mg) | AUA (%) | DE (%) |
|----------------------|----------|---------|--------|
| pectin<br>commercial | 285      | 95      | 69     |
| bine 1               | 146      | 66      | 76     |
| bine 2               | 227      | 75      | 70     |
| bine 4               | 192      | 64      | 73     |
| cone 1               | 183      | 61      | 69     |
| cone 2               | 194      | 65      | 75     |
| cone 3               | 164      | 56      | 72     |
| cone 4               | 181      | 60      | 68     |
| waste 1              | 164      | 55      | 75     |
| waste 2              | 167      | 56      | 77     |
| waste 3              | 225      | 72      | 70     |
| waste 4              | 195      | 55      | 77     |

EXAMPLE 3

## 3.1 MATERIAL

Residues of the following hop extracts were used:

- 5 A Ethanol extract residues
- B CO<sub>2</sub> extract residues
- C CO<sub>2</sub> extract residues
- D Hexane extract residues

For comparison, the foam-stabilization experiments were 10 also conducted with commercial citrus pectin (DE 67%), montol and priorly purified pectin fractions from hop bines and hop cones (Example 2)

For the foam experiments reference beer was used.

## 15 3.2 METHODS

## 3.2.1) Pectin extraction

The ground residues were extracted with water (acidified to pH 2) to isolate pectin. The procedure followed is set 20 forth in annex 1.

## 3.2.2) Determination of the foam influence of pectin

The purified pectin fractions were added to beer in order 25 to determine the influence thereof on the foam stability. The procedure is described in annex 2.

## 3.3 RESULTS

From different hop suppliers residues were obtained that are left behind after the production of hop extracts. From 30 these residues pectins were isolated. The yields are shown in Table 5. The yields of pectin from these residues are comparable with the yields from fresh material (cones and bines). Residues from CO<sub>2</sub> extracts were obtained from two suppliers and reveal different pectin yields. However, the 35 extraction procedure for the two suppliers is not completely known and different hop varieties were used. Example 2 has shown that the variety influences the amount of pectin that can be isolated.

K

Table 5 Yield of pectin fractions purified from residues formed during the preparation of different hop extracts

5

| Sample                             | Pectin yield (%) |
|------------------------------------|------------------|
| residues ethanol extract A         | 2.3              |
| residues CO <sub>2</sub> extract B | 1.8              |
| residues CO <sub>2</sub> extract C | 2.5              |
| residues hexane extract D          | 2.4              |

Fig. 8 shows the influence of the residual pectins on the foam stability of pilsner beer in comparison with commercial citrus pectin, montol and bine pectin (see Example 2). In annex 3 the results are given in tables. For dosing the pectin fractions 100% purity was assumed. However, the AUA content of the residual fractions will be lower (was not determined). For the comparison with montol, this should be taken into account.

The foam-stabilizing action of pectin from ethanol and hexane extract residues is not substantial. Beer to which these pectins were added exhibits a foam stabilization that is virtually equal to that of control beer. A positive effect can be observed after the addition of pectins from residues of CO<sub>2</sub> extracts. At an addition of 10 g pectin/hl. the foam improvement is 26 sec. The pectins from bine and cones (previous experiment) give an increase of 40 sec, however without corrections having been made for the purity of the fractions.

## ANNEX I (to Example 3) PECTIN EXTRACTION FROM HOPS

- 1 Grinding the different extracts (priorly freezing with nitrogen).
- 5 2 Adding warm water (water:material ratio, see Table 4.1), acidifying with HCl to pH 2.
- 3 Maintaining for 2 hours at 80°C under constant agitation. Filtering over cheese cloth. Mixing the supernatant with alcohol 96% (1:1.5) without neutralizing.
- 10 4 Filtering over cheese cloth.
- 5 Washing out precipitate 3x with 96% alcohol.
- 6 Filtering over cheese cloth.
- 7 Drying overnight in Petri dish.

ପାତା ୩୭୭

ANNEX 2 (to Example 3) DETERMINATION OF THE FOAM  
INFLUENCE OF PECTINS

1 Dried pectins were crushed and dissolved in 5 ml water  
under heating before being added to beer in the following  
concentrations: 15 mg/bottle (approx. 5 g/hl) and  
30 mg/bottle (approx. 10 g/hl). For this purpose, the  
pectin fractions were assumed to be 100% pure.

2 The bottles were shaken (50 rpm) at room temperature for  
60 hours.

25 3 Measurement of the foam stability with the Nibem meter.

ANNEX 3 FOAM STABILITY OF BEERS TO WHICH DIFFERENT  
PECTIN FRACTIONS WERE ADDED  
(to Example 3)

|    | Sample                   | Amount<br>added<br>g/hl | Foam<br>stability<br>sec | Increased<br>stability<br>sec |
|----|--------------------------|-------------------------|--------------------------|-------------------------------|
| 5  | Control                  | --                      | 280                      | --                            |
| 10 | Control water            | --                      | 300                      | --                            |
| 15 | Residues hexane          | 5                       | 300                      | 0                             |
|    | extract A                | 10                      | 294                      | 0                             |
| 20 | Residues CO <sub>2</sub> | 5                       | 302                      | 2                             |
|    | extract B                | 10                      | 327                      | 27                            |
| 25 | Residues CO <sub>2</sub> | 5                       | 300                      | 0                             |
|    | extract C                | 10                      | 326                      | 26                            |
| 30 | Residues ethanol         | 5                       | 296                      | 0                             |
|    | extract D                | 10                      | 298                      | 0                             |
|    | Montcol                  | 5                       | 345                      | 45                            |
|    |                          | 10                      | 361                      | 61                            |
|    | Commercial               | 5                       | 323                      | 23                            |
|    | pectin                   | 10                      | 355                      | 55                            |
|    | Bine 1                   | 10                      | 344                      | 44                            |
|    | Cones 1                  | 10                      | 338                      | 38                            |