

planetmath.org

Math for the people, by the people.

triangle inequality of complex numbers

Canonical name TriangleInequalityOfComplexNumbers

Date of creation 2013-03-22 18:51:47 Last modified on 2013-03-22 18:51:47

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 11

Author pahio (2872) Entry type Theorem Classification msc 30-00 Classification msc 12D99

Synonym triangle inequality

Related topic Modulus

Related topic ComplexConjugate
Related topic SquareOfSum
Related topic TriangleInequality

Theorem. All complex numbers z_1 and z_2 satisfy the triangle inequality

$$|z_1 + z_z| \le |z_1| + |z_2|. \tag{1}$$

Proof.

$$|z_{1}+z_{2}|^{2} = (z_{1}+z_{2})\overline{(z_{1}+z_{2})}$$

$$= (z_{1}+z_{2})(\overline{z_{1}}+\overline{z_{2}})$$

$$= z_{1}\overline{z_{1}}+z_{2}\overline{z_{2}}+z_{1}\overline{z_{2}}+\overline{z_{1}}z_{2}$$

$$= |z_{1}|^{2}+|z_{2}|^{2}+z_{1}\overline{z_{2}}+\overline{z_{1}}\overline{z_{2}}$$

$$= |z_{1}|^{2}+|z_{2}|^{2}+2\operatorname{Re}(z_{1}\overline{z_{2}})$$

$$\leq |z_{1}|^{2}+|z_{2}|^{2}+2|z_{1}\overline{z_{2}}|$$

$$= |z_{1}|^{2}+|z_{2}|^{2}+2|z_{1}|\cdot|\overline{z_{2}}|$$

$$= (|z_{1}|+|z_{2}|)^{2}$$

Taking then the nonnegative square root, one obtains the asserted inequality.

Remark. Since the real numbers are complex numbers, the inequality (1) and its proof are valid also for all real numbers; however the inequality may be simplified to

$$|x+y|^2 \le (x+y)^2 = x^2 + 2xy + y^2 \le x^2 + 2|x||y| + y^2 = |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2.$$