Nilvariedades y estructuras Kähler

Santiago Pareja Pérez 5 de abril de 2024

Nilvariedades y cohomología

Recordatorio: álgebras de Lie nilpotentes

Definición

La sucesión central descendente de un álgebra de Lie $\mathfrak g$ es

$$\mathfrak{g} \supseteq \left[\mathfrak{g},\,\mathfrak{g}\right] \supseteq \left[\mathfrak{g},\left[\mathfrak{g},\,\mathfrak{g}\right]\right] \supseteq \left[\mathfrak{g},\left[\mathfrak{g},\left[\mathfrak{g},\,\mathfrak{g}\right]\right]\right] \supseteq \cdots.$$

Denotamos $\mathfrak{g}^0 = \mathfrak{g} \ y \ \mathfrak{g}^k = [\mathfrak{g}, \mathfrak{g}^{k-1}].$

Definición

Un álgebra de Lie $\mathfrak g$ es *nilpotente* de paso k si su sucesión central descendente llega a $\{0\}$ en k pasos.

Es decir, $\mathfrak{g}^k = \{0\}$ y $\mathfrak{g}^i \neq \{0\}$ para i < k.

Nilvariedades compactas

Definición

Una *nilvariedad compacta* es un cociente $\Gamma \setminus G$ de un grupo de Lie G nilpotente y simplemente conexo por un *retículo* Γ .

Definición

Un *retículo* es un subgrupo de Lie discreto.

Teorema (Critero de Mal'cev)

Sea G un grupo de Lie nilpotente simplemente conexo. G admite retículo si y solo si g admite base con tensor de estructura racional.

Las nilvariedades compactas son muy tratables.

Teorema (Nomizu)

Si $N = \Gamma \setminus G$ es una nilvariedad compacta, existe un isomorfismo de anillos $H^*(\mathfrak{g}, \mathbb{R}) \cong H^*_{dR}(N)$.

Nilvariedades compactas

Definición

Una *nilvariedad compacta* es un cociente $\Gamma \setminus G$ de un grupo de Lie G nilpotente y simplemente conexo por un *retículo* Γ .

Definición

Un *retículo* es un subgrupo de Lie discreto.

Teorema (Critero de Mal'cev)

Sea G un grupo de Lie nilpotente simplemente conexo. G admite retículo si y solo si g admite base con tensor de estructura racional.

Las nilvariedades compactas son muy tratables.

Teorema (Nomizu)

Si $N = \Gamma \setminus G$ es una nilvariedad compacta, existe un isomorfismo de anillos $H^*(\mathfrak{g}, \mathbb{R}) \cong H^*_{dR}(N)$.

Nilvariedades compactas

Definición

Una *nilvariedad compacta* es un cociente $\Gamma \setminus G$ de un grupo de Lie G nilpotente y simplemente conexo por un *retículo* Γ .

Definición

Un *retículo* es un subgrupo de Lie discreto.

Teorema (Critero de Mal'cev)

Sea G un grupo de Lie nilpotente simplemente conexo. G admite retículo si y solo si g admite base con tensor de estructura racional.

Las nilvariedades compactas son muy tratables.

Teorema (Nomizu)

Si $N = \Gamma \setminus G$ es una nilvariedad compacta, existe un isomorfismo de anillos $H^*(\mathfrak{g}, \mathbb{R}) \cong H^*_{dR}(N)$.

Ejemplos: nilvariedades compactas en dimensión 4

- Los cocientes de \mathbb{R}^4 , como el toro $\mathbb{T}^4 = \mathbb{Z}^4 \setminus \mathbb{R}^4$.
- Sea $H_3 \oplus \mathbb{R}$, donde H_3 es el grupo de Heisenberg:

$$H_{3} \oplus \mathbb{R} = \left\{ \begin{bmatrix} 1 & x & z & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \middle| x, y, z, w \in \mathbb{R} \right\}$$

Consideramos el retículo Γ obtenido tomando x, y, z, $w \in \mathbb{Z}$. El cociente es la variedad de Kodaira–Thurston:

$$\mathsf{KT} \coloneqq \Gamma \backslash (H_3 \oplus \mathbb{R}).$$

El otro álgebra de Lie nilpotente de dimensión 4 es la filiforme f₄, con corchetes no triviales [e₁, e₂] = e₃ y [e₁, e₃] = e₄.
 (De nuevo, cocientando por un retículo del grupo, se obtiene una nilvariedad compacta).

Ejemplos: nilvariedades compactas en dimensión 4

- Los cocientes de \mathbb{R}^4 , como el toro $\mathbb{T}^4 = \mathbb{Z}^4 \setminus \mathbb{R}^4$.
- Sea $H_3 \oplus \mathbb{R}$, donde H_3 es el grupo de Heisenberg:

$$H_{3} \oplus \mathbb{R} = \left\{ \begin{bmatrix} 1 & x & z & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \middle| x, y, z, w \in \mathbb{R} \right\}$$

Consideramos el retículo Γ obtenido tomando x, y, z, $w \in \mathbb{Z}$. El cociente es la variedad de Kodaira-Thurston:

$$\mathsf{KT} \coloneqq \Gamma \backslash (H_3 \oplus \mathbb{R}).$$

El otro álgebra de Lie nilpotente de dimensión 4 es la filiforme f₄, con corchetes no triviales [e₁, e₂] = e₃ y [e₁, e₃] = e₄.
 (De nuevo, cocientando por un retículo del grupo, se obtiene una nilvariedad compacta).

Ejemplos: nilvariedades compactas en dimensión 4

- Los cocientes de \mathbb{R}^4 , como el toro $\mathbb{T}^4 = \mathbb{Z}^4 \setminus \mathbb{R}^4$.
- Sea $H_3 \oplus \mathbb{R}$, donde H_3 es el grupo de Heisenberg:

$$H_3 \oplus \mathbb{R} = \left\{ \begin{bmatrix} 1 & x & z & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \middle| x, y, z, w \in \mathbb{R} \right\}$$

Consideramos el retículo Γ obtenido tomando x, y, z, $w \in \mathbb{Z}$. El cociente es la variedad de Kodaira–Thurston:

$$\mathsf{KT} \coloneqq \Gamma \backslash (H_3 \oplus \mathbb{R}).$$

El otro álgebra de Lie nilpotente de dimensión 4 es la filiforme f₄, con corchetes no triviales [e₁, e₂] = e₃ y [e₁, e₃] = e₄.
 (De nuevo, cocientando por un retículo del grupo, se obtiene una nilvariedad compacta).

Cálculo de la cohomología de KT (i)

Sea $\mathfrak{tt} \coloneqq \mathfrak{h}_3 \oplus \mathbb{R}$. Admite generadores $\{e_1, e_2, e_3, e_4\}$ con corchetes

$$[e_1, e_2] = -e_3, \quad [e_1, e_3] = [e_1, e_4] = [e_2, e_3] = [e_2, e_4] = [e_3, e_4] = 0.$$

Equivalentemente, $\mathfrak{k}\mathfrak{t}^*$ admite una base $\{\alpha^1, \alpha^2, \alpha^3, \alpha^4\}$ con

$$d\alpha^1=0$$
, $d\alpha^2=0$, $d\alpha^3=-\alpha^1\wedge\alpha^2$, $d\alpha^4=0$.

Decimos que tiene coeficientes de estructura (0, 0, -12, 0).

Calculamos la cohomología de Chevalley–Eilenberg. En primer lugar,

1-formas cerradas:
$$\mathcal{Z}^1(\mathfrak{k}\mathfrak{t},\mathbb{R})=\operatorname{Ker} d_1=\langle\alpha^1,\alpha^2,\alpha^4\rangle$$
,
1-formas exactas: $\mathcal{B}^1(\mathfrak{k}\mathfrak{t},\mathbb{R})=\operatorname{Im} d_0=\langle\varnothing\rangle$.

$$\mathsf{H}^1(\mathfrak{k}\mathfrak{t},\mathbb{R}) = \frac{\mathcal{Z}^1(\mathfrak{k}\mathfrak{t},\mathbb{R})}{\mathcal{B}^1(\mathfrak{k}\mathfrak{t},\mathbb{R})} = \langle [\alpha^1], [\alpha^2], [\alpha^4] \rangle.$$

Calculamos ahora los grupos de orden superior

Cálculo de la cohomología de KT (i)

Sea $\mathfrak{kt}\coloneqq\mathfrak{h}_3\oplus\mathbb{R}$. Admite generadores $\{e_1,\,e_2,\,e_3,\,e_4\}$ con corchetes

$$[e_1, e_2] = -e_3, \quad [e_1, e_3] = [e_1, e_4] = [e_2, e_3] = [e_2, e_4] = [e_3, e_4] = 0.$$

Equivalentemente, $\mathfrak{k}\mathfrak{t}^*$ admite una base $\{\alpha^1, \alpha^2, \alpha^3, \alpha^4\}$ con

$$d\alpha^1=0$$
, $d\alpha^2=0$, $d\alpha^3=-\alpha^1\wedge\alpha^2$, $d\alpha^4=0$.

Decimos que tiene coeficientes de estructura (0,0,-12,0).

Calculamos la cohomología de Chevalley-Eilenberg. En primer lugar,

1-formas cerradas:
$$\mathcal{Z}^1(\mathfrak{kt},\mathbb{R}) = \operatorname{Ker} d_1 = \langle \alpha^1, \alpha^2, \alpha^4 \rangle$$
,
1-formas exactas: $\mathcal{B}^1(\mathfrak{kt},\mathbb{R}) = \operatorname{Im} d_0 = \langle \emptyset \rangle$.

$$\mathsf{H}^1(\mathfrak{k}\mathfrak{t},\mathbb{R}) = \frac{\mathcal{Z}^1(\mathfrak{k}\mathfrak{t},\mathbb{R})}{\mathcal{B}^1(\mathfrak{k}\mathfrak{t},\mathbb{R})} = \langle [\alpha^1], [\alpha^2], [\alpha^4] \rangle.$$

Calculamos ahora los grupos de orden superior.

Cálculo de la cohomología de KT (ii)

$$d\alpha^1=d\alpha^2=d\alpha^4=0,\quad d\alpha^3=-\alpha^{12}.$$

Escribimos $\alpha^{ij} = \alpha^i \wedge \alpha^j$. Calculamos las diferenciales:

$$d\alpha^{12} = -(d \circ d)\alpha^{3} = 0, \qquad d\alpha^{23} = d\alpha^{2} \wedge \alpha^{3} - \alpha^{2} \wedge d\alpha^{3} = 0,$$

$$d\alpha^{13} = d\alpha^{1} \wedge \alpha^{3} - \alpha^{1} \wedge d\alpha^{3} = 0, \qquad d\alpha^{24} = d\alpha^{2} \wedge \alpha^{4} - \alpha^{2} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0, \qquad d\alpha^{34} = d\alpha^{3} \wedge \alpha^{4} - \alpha^{3} \wedge d\alpha^{4} = -\alpha^{124}.$$

$$H^{2}(\mathfrak{k}\mathfrak{t}, \mathbb{R}) = \frac{\mathcal{Z}^{2}(\mathfrak{k}\mathfrak{t}, \mathbb{R})}{\alpha^{2}(\mathfrak{k}\mathfrak{t}, \mathbb{R})} = \frac{\langle \alpha^{12}, \alpha^{13}, \alpha^{14}, \alpha^{23}, \alpha^{24} \rangle}{\alpha^{2}(\mathfrak{k}\mathfrak{t}, \mathbb{R})} = \langle [\alpha^{13}], [\alpha^{14}], [\alpha^{23}], [\alpha^{24}] \rangle.$$

Y los de orden 3

$$d\alpha^{123} = d\alpha^{12} \wedge \alpha^3 - \alpha^{12} \wedge d\alpha^3 = 0, \quad d\alpha^{134} = d\alpha^{13} \wedge \alpha^4 - \alpha^{13} \wedge d\alpha^4 = 0,$$

$$d\alpha^{124} = -(d \circ d)\alpha^{34} = 0, \qquad d\alpha^{234} = d\alpha^{23} \wedge \alpha^4 - \alpha^{23} \wedge d\alpha^4 = 0.$$

$$\mathsf{H}^{3}(\mathfrak{k}\mathfrak{t},\mathbb{R}) = \frac{\mathcal{Z}^{3}(\mathfrak{k}\mathfrak{t},\mathbb{R})}{\mathcal{B}^{3}(\mathfrak{k}\mathfrak{t},\mathbb{R})} = \frac{\langle \alpha^{123}, \alpha^{124}, \alpha^{134}, \alpha^{234} \rangle}{\langle \alpha^{124} \rangle} = \langle [\alpha^{123}], [\alpha^{134}], [\alpha^{234}] \rangle.$$

Cálculo de la cohomología de KT (ii)

$$d\alpha^1 = d\alpha^2 = d\alpha^4 = 0$$
, $d\alpha^3 = -\alpha^{12}$.

Escribimos $\alpha^{ij} = \alpha^i \wedge \alpha^j$. Calculamos las diferenciales:

$$d\alpha^{12} = -(d \circ d)\alpha^{3} = 0, \qquad d\alpha^{23} = d\alpha^{2} \wedge \alpha^{3} - \alpha^{2} \wedge d\alpha^{3} = 0,$$

$$d\alpha^{13} = d\alpha^{1} \wedge \alpha^{3} - \alpha^{1} \wedge d\alpha^{3} = 0, \qquad d\alpha^{24} = d\alpha^{2} \wedge \alpha^{4} - \alpha^{2} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0, \qquad d\alpha^{34} = d\alpha^{3} \wedge \alpha^{4} - \alpha^{3} \wedge d\alpha^{4} = -\alpha^{124}.$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0, \qquad d\alpha^{34} = d\alpha^{3} \wedge \alpha^{4} - \alpha^{3} \wedge d\alpha^{4} = -\alpha^{124}.$$

$$d\alpha^{12} = -(d \circ d)\alpha^{3} = 0, \qquad d\alpha^{23} = d\alpha^{2} \wedge \alpha^{3} - \alpha^{2} \wedge d\alpha^{3} = 0,$$

$$d\alpha^{13} = d\alpha^{2} \wedge \alpha^{3} - \alpha^{2} \wedge d\alpha^{3} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = -\alpha^{124}.$$

$$d\alpha^{15} = d\alpha^{1} \wedge \alpha^{3} - \alpha^{2} \wedge d\alpha^{3} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{2} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{15} = d\alpha^{1} \wedge \alpha^{1} \wedge \alpha^{1} - \alpha^{1} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{15} = d\alpha^{1} \wedge \alpha^{1} \wedge \alpha^{$$

$$\mathsf{H}^2(\mathfrak{kt},\mathbb{R}) = \frac{\mathcal{Z}^2(\mathfrak{kt},\mathbb{R})}{\mathcal{B}^2(\mathfrak{kt},\mathbb{R})} = \frac{\langle \alpha^{12}, \alpha^{13}, \alpha^{14}, \alpha^{23}, \alpha^{24} \rangle}{\langle \alpha^{12} \rangle} = \langle [\alpha^{13}], [\alpha^{14}], [\alpha^{23}], [\alpha^{24}] \rangle.$$

Y los de orden 3:

$$d\alpha^{123} = d\alpha^{12} \wedge \alpha^3 - \alpha^{12} \wedge d\alpha^3 = 0, \quad d\alpha^{134} = d\alpha^{13} \wedge \alpha^4 - \alpha^{13} \wedge d\alpha^4 = 0,$$

$$d\alpha^{124} = -(d \circ d)\alpha^{34} = 0, \qquad d\alpha^{234} = d\alpha^{23} \wedge \alpha^4 - \alpha^{23} \wedge d\alpha^4 = 0.$$

$$H^{3}(\mathfrak{kt},\mathbb{R}) = \frac{\mathcal{Z}^{3}(\mathfrak{kt},\mathbb{R})}{\mathcal{B}^{3}(\mathfrak{kt},\mathbb{R})} = \frac{\langle \alpha^{123}, \alpha^{124}, \alpha^{134}, \alpha^{234} \rangle}{\langle \alpha^{124} \rangle} = \langle [\alpha^{123}], [\alpha^{134}], [\alpha^{234}] \rangle.$$

Cálculo de la cohomología de KT (ii)

$$d\alpha^1 = d\alpha^2 = d\alpha^4 = 0$$
, $d\alpha^3 = -\alpha^{12}$.

Escribimos $\alpha^{ij} = \alpha^i \wedge \alpha^j$. Calculamos las diferenciales:

$$d\alpha^{12} = -(d \circ d)\alpha^{3} = 0, \qquad d\alpha^{23} = d\alpha^{2} \wedge \alpha^{3} - \alpha^{2} \wedge d\alpha^{3} = 0,$$

$$d\alpha^{13} = d\alpha^{1} \wedge \alpha^{3} - \alpha^{1} \wedge d\alpha^{3} = 0, \qquad d\alpha^{24} = d\alpha^{2} \wedge \alpha^{4} - \alpha^{2} \wedge d\alpha^{4} = 0,$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0, \qquad d\alpha^{34} = d\alpha^{3} \wedge \alpha^{4} - \alpha^{3} \wedge d\alpha^{4} = -\alpha^{124}.$$

$$d\alpha^{14} = d\alpha^{1} \wedge \alpha^{4} - \alpha^{1} \wedge d\alpha^{4} = 0, \qquad d\alpha^{34} = d\alpha^{3} \wedge \alpha^{4} - \alpha^{3} \wedge d\alpha^{4} = -\alpha^{124}.$$

$$\mathsf{H}^2(\mathfrak{kt},\mathbb{R}) = \frac{\mathcal{Z}^2(\mathfrak{kt},\mathbb{R})}{\mathcal{B}^2(\mathfrak{kt},\mathbb{R})} = \frac{\langle \alpha^{12}, \alpha^{13}, \alpha^{14}, \alpha^{23}, \alpha^{24} \rangle}{\langle \alpha^{12} \rangle} = \langle [\alpha^{13}], [\alpha^{14}], [\alpha^{23}], [\alpha^{24}] \rangle.$$

Y los de orden 3:

$$d\alpha^{123} = d\alpha^{12} \wedge \alpha^3 - \alpha^{12} \wedge d\alpha^3 = 0, \quad d\alpha^{134} = d\alpha^{13} \wedge \alpha^4 - \alpha^{13} \wedge d\alpha^4 = 0,$$

$$d\alpha^{124} = -(d \circ d)\alpha^{34} = 0, \qquad d\alpha^{234} = d\alpha^{23} \wedge \alpha^4 - \alpha^{23} \wedge d\alpha^4 = 0.$$

$$\mathsf{H}^3(\mathfrak{kt},\mathbb{R}) = \frac{\mathcal{Z}^3(\mathfrak{kt},\mathbb{R})}{\mathcal{B}^3(\mathfrak{kt},\mathbb{R})} = \frac{\langle \alpha^{123}, \, \alpha^{124}, \, \alpha^{134}, \, \alpha^{234} \rangle}{\langle \alpha^{124} \rangle} = \langle [\alpha^{123}], \, [\alpha^{134}], \, [\alpha^{234}] \rangle.$$

Cálculo de la cohomología de KT (iii)

Finalmente, α^{1234} no es exacta, así que

$$\mathsf{H}^4(\mathfrak{kt},\mathbb{R}) = \frac{\mathcal{Z}^4(\mathfrak{kt},\mathbb{R})}{\mathcal{B}^4(\mathfrak{kt},\mathbb{R})} = \frac{\langle \alpha^{1234} \rangle}{\langle \varnothing \rangle} = \langle [\alpha^{1234}] \rangle.$$

Por el Teorema de Nomizu, estos son los grupos de cohomología de de Rham de la nilvariedad compacta KT:

$$H^*_{dR}(KT) \cong H^*(\mathfrak{t}\mathfrak{t}, \mathbb{R}).$$

$$\begin{split} &H^1_{dR}(KT) = \left\langle \alpha^1, \ \alpha^2, \ \alpha^4 \right\rangle, \\ &H^2_{dR}(KT) = \left\langle \alpha^{13}, \ \alpha^{14}, \ \alpha^{23}, \ \alpha^{24} \right\rangle, \\ &H^4_{dR}(KT) = \left\langle \alpha^{1234} \right\rangle. \end{split}$$

Cálculo de la cohomología de KT (iii)

Finalmente, α^{1234} no es exacta, así que

$$\mathsf{H}^4(\mathfrak{kt},\mathbb{R}) = \frac{\mathcal{Z}^4(\mathfrak{kt},\mathbb{R})}{\mathcal{B}^4(\mathfrak{kt},\mathbb{R})} = \frac{\langle \alpha^{1234} \rangle}{\langle \emptyset \rangle} = \langle [\alpha^{1234}] \rangle.$$

Por el Teorema de Nomizu, estos son los grupos de cohomología de de Rham de la nilvariedad compacta KT:

$$H_{dR}^*(KT) \cong H^*(\mathfrak{kt}, \mathbb{R}).$$

$$\begin{split} &H^1_{dR}(\mathsf{KT}) = \left\langle \alpha^1, \, \alpha^2, \, \alpha^4 \right\rangle, & H^3_{dR}(\mathsf{KT}) = \left\langle \alpha^{123}, \, \alpha^{134}, \, \alpha^{234} \right\rangle, \\ &H^2_{dR}(\mathsf{KT}) = \left\langle \alpha^{13}, \, \alpha^{14}, \, \alpha^{23}, \, \alpha^{24} \right\rangle, & H^4_{dR}(\mathsf{KT}) = \left\langle \alpha^{1234} \right\rangle. \end{split}$$

compleja, simpléctica, Kähler.

Existencia de estructura adicional:

Variedades casi-complejas

Sea M²ⁿ una variedad diferenciable de dimensión par.

Definición

Una *estructura casi-compleja* sobre M es un automorfismo $J: TM \rightarrow TM$ con $J^2 = -Id$.

Definición

I es **integrable** si su tensor de Nijenhuis se anula:

$$N_J(X,Y) = [JX,JY] - J[JX,Y] - J[X,JY] - [X,Y] \equiv 0.$$

Teorema (Newlander-Nirenberg

Si J es integrable, existe una variedad compleja que la realiza

Variedades casi-complejas

Sea M²ⁿ una variedad diferenciable de dimensión par.

Definición

Una **estructura casi-compleja** sobre M es un automorfismo $J: TM \rightarrow TM \text{ con } J^2 = -\text{Id.}$

Definición

J es *integrable* si su tensor de Nijenhuis se anula:

$$N_J(X,Y)=[JX,JY]-J[JX,Y]-J[X,JY]-[X,Y]\equiv 0.$$

Teorema (Newlander-Nirenberg)

Si J es integrable, existe una variedad compleja que la realiza.

Variedades Kähler

Sea M²ⁿ una variedad diferenciable de dimensión par.

Definición

Una forma simpléctica sobre M es una 2-forma $\omega \in \Omega^2(M)$ cerrada y no degenerada.

Cerrada: $d\omega = 0$. No degenerada: $\omega^n = \omega \bigwedge_{n=1}^{\infty} \omega$ es no nula.

Definición

Una variedad **Kähler** es una variedad equipada con una forma simpléctica ω y una estructura compleja J compatibles:

- $g(X, Y) = \omega(X, JY)$ es una métrica de Riemann.

Las variedades Kähler surgen naturalmente como subvariedades de $\mathbb{C}P^n$. El recíproco requiere condiciones (ej, Teorema de Kodaira).

Variedades Kähler

Sea M^{2n} una variedad diferenciable de dimensión par.

Definición

Una forma simpléctica sobre M es una 2-forma $\omega \in \Omega^2(M)$ cerrada y no degenerada.

Cerrada: $d\omega = 0$. **No degenerada:** $\omega^n = \omega \wedge \cdots \wedge \omega$ es no nula.

Definición

Una variedad **Kähler** es una variedad equipada con una forma simpléctica ω y una estructura compleja J compatibles:

- $\omega(JX, JY) = \omega(X, Y);$
- $g(X, Y) = \omega(X, JY)$ es una métrica de Riemann.

Las variedades Kähler surgen naturalmente como subvariedades de $\mathbb{C}P^n$. El recíproco requiere condiciones (ej, Teorema de Kodaira).

La propiedad de ser Kähler y compacta genera obstrucciones fuertes:

- El grupo fundamental $\pi_1(M)$ es un grupo de Kähler.
- M es formal en el sentido de Sullivan.
 (Su cohomología de de Rham determina su tipo de homotopía racional).
- Los números de Betti de orden impar son pares: $b_{2k-1}(M) \equiv_2 0$.
- Teorema duro de Lefschetz:

la aplicación de Lefschetz \mathcal{L}^{n-p} es un isomorfismo.

$$\mathcal{L}^{n-p}: H^p(M, \mathbb{R}) \longrightarrow H^{2n-p}(M, \mathbb{R}), \qquad \mu \longmapsto \mu \wedge [\omega]^{n-p}.$$

La propiedad de ser Kähler y compacta genera obstrucciones fuertes:

- El grupo fundamental $\pi_1(M)$ es un grupo de Kähler.
- M es formal en el sentido de Sullivan.
 (Su cohomología de de Rham determina su tipo de homotopía racional).
- Los números de Betti de orden impar son pares: $b_{2k-1}(M) \equiv_2 0$.
- Teorema duro de Lefschetz:

la aplicación de Lefschetz \mathcal{L}^{n-p} es un isomorfismo.

$$\mathcal{L}^{n-p}: H^p(M, \mathbb{R}) \longrightarrow H^{2n-p}(M, \mathbb{R}), \qquad \mu \longmapsto \mu \wedge [\omega]^{n-p}.$$

La propiedad de ser Kähler y compacta genera obstrucciones fuertes:

- El grupo fundamental $\pi_1(M)$ es un grupo de Kähler.
- M es formal en el sentido de Sullivan.
 (Su cohomología de de Rham determina su tipo de homotopía racional).
- Los números de Betti de orden impar son pares: $b_{2k-1}(M) \equiv_2 0$.
- Teorema duro de Lefschetz:

la aplicación de Lefschetz \mathcal{L}^{n-p} es un isomorfismo.

$$\mathcal{L}^{n-p}: H^p(M, \mathbb{R}) \longrightarrow H^{2n-p}(M, \mathbb{R}), \qquad \mu \longmapsto \mu \wedge [\omega]^{n-p}.$$

La propiedad de ser Kähler y compacta genera obstrucciones fuertes:

- El grupo fundamental $\pi_1(M)$ es un grupo de Kähler.
- M es formal en el sentido de Sullivan.
 (Su cohomología de de Rham determina su tipo de homotopía racional).
- Los números de Betti de orden impar son pares: $b_{2k-1}(M) \equiv_2 0$.
- Teorema duro de Lefschetz:

la aplicación de Lefschetz \mathcal{L}^{n-p} es un isomorfismo.

$$\mathcal{L}^{n-p}: H^p(M, \mathbb{R}) \longrightarrow H^{2n-p}(M, \mathbb{R}), \qquad \mu \longmapsto \mu \wedge [\omega]^{n-p}.$$

Variedades Kähler compactas

En su día (1970s) se conocían pocos ejemplos de variedades simplécticas. La mayoría eran por geometría algebraica.

Conjetura:

En el caso compacto, compleja simpléctica es lo mismo que Kähler.

Variedades Kähler compactas

En su día (1970s) se conocían pocos ejemplos de variedades simplécticas. La mayoría eran por geometría algebraica.

Conjetura:

En el caso compacto, compleja simpléctica es lo mismo que Kähler.

Falso.

Primer contraejemplo:

Nilvariedad de Kodaira-Thurston. (Kodaira, 1964; Thurston, 1976).

La variedad de Kodaira-Thurston no es Kähler

Sea $\mathfrak{kt} := \mathfrak{h}_3 \oplus \mathbb{R}$. Tiene coeficientes de estructura (0, 0, -12, 0).

Es decir, existe una base $\{\alpha^1, \alpha^2, \alpha^3, \alpha^4\}$ de \mathfrak{t} t* con

$$d\alpha^1=0,\quad d\alpha^2=0,\quad d\alpha^3=-\alpha^1\wedge\alpha^2=:-\alpha^{12},\quad d\alpha^4=0.$$

La cohomología de Chevalley–Eilenberg de ‡t es

$$\begin{aligned} &H^{1}(\mathfrak{k}\mathfrak{t},\mathbb{R})=\left\langle \alpha^{1},\,\alpha^{2},\,\alpha^{4}\right\rangle, &H^{3}(\mathfrak{k}\mathfrak{t},\mathbb{R})=\left\langle \alpha^{123},\,\alpha^{134},\,\alpha^{234}\right\rangle, \\ &H^{2}(\mathfrak{k}\mathfrak{t},\mathbb{R})=\left\langle \alpha^{13},\,\alpha^{14},\,\alpha^{23},\,\alpha^{24}\right\rangle, &H^{4}(\mathfrak{k}\mathfrak{t},\mathbb{R})=\left\langle \alpha^{1234}\right\rangle. \end{aligned}$$

Por Nomizu, estos son también los grupos $H_{dR}^*(KT)$

 $b_1(KT) = 3$ es impar, luego no puede ser Kähler

La variedad de Kodaira-Thurston no es Kähler

Sea $\mathfrak{kt} = \mathfrak{h}_3 \oplus \mathbb{R}$. Tiene coeficientes de estructura (0, 0, -12, 0).

Es decir, existe una base $\{\alpha^1, \alpha^2, \alpha^3, \alpha^4\}$ de \mathfrak{t} t* con

$$d\alpha^1=0,\quad d\alpha^2=0,\quad d\alpha^3=-\alpha^1\wedge\alpha^2=:-\alpha^{12},\quad d\alpha^4=0.$$

La cohomología de Chevalley–Eilenberg de ‡t es

$$\begin{split} &H^{1}(\mathfrak{kt},\mathbb{R})=\left\langle \alpha^{1},\,\alpha^{2},\,\alpha^{4}\right\rangle, &H^{3}(\mathfrak{kt},\mathbb{R})=\left\langle \alpha^{123},\,\alpha^{134},\,\alpha^{234}\right\rangle, \\ &H^{2}(\mathfrak{kt},\mathbb{R})=\left\langle \alpha^{13},\,\alpha^{14},\,\alpha^{23},\,\alpha^{24}\right\rangle, &H^{4}(\mathfrak{kt},\mathbb{R})=\left\langle \alpha^{1234}\right\rangle. \end{split}$$

Por Nomizu, estos son también los grupos $H_{dR}^*(KT)$.

 $b_1(KT) = 3$ es impar, luego no puede ser Kähler.

La variedad de Kodaira-Thurston es compleja y simpléctica

$$\mathsf{H}^2_\mathsf{dR}(\mathsf{KT}) = \left\langle \alpha^{13}, \; \alpha^{14}, \; \alpha^{23}, \; \alpha^{24} \right\rangle, \qquad \qquad \mathsf{H}^4_\mathsf{dR}(\mathsf{KT}) = \left\langle \alpha^{1234} \right\rangle.$$

- KT es simpléctica: Tomamos $\omega \coloneqq \alpha^{13} + \alpha^{24}$. ω es cerrada ($\omega \in \mathcal{Z}_{dR}^2(KT)$) y no degenerada ($\omega^2 = -2\alpha^{1234} \neq 0$).
- KT es compleja: Sea la base $\left\{X = \frac{\partial}{\partial x}, Y = \frac{\partial}{\partial y} + X \frac{\partial}{\partial z}, Z = \frac{\partial}{\partial z}, W = \frac{\partial}{\partial w}\right\}$. El único corchete no nulo es [X, Y] = Z. Definimos

$$JX = Y$$
, $JY = -X$, $JZ = -W$, $JW = Z$.

Por las propiedades del tensor $(N_J(JU, V) = -JN_J(U, V))$:

$$N_{J}(X,Y) = JN_{J}(-Y,Y)$$
 $N_{J}(X,Z) = ?$ $N_{J}(X,W) = JN_{J}(X,-Z)$
 $N_{J}(X,Z) = JN_{J}(-X,Z)$ $N_{J}(X,W) = JN_{J}(X,W) = JN_{J}(X,W)$

y se comprueba que
$$N_J(X,Z) = [JX,JZ] - J[JX,Z] - J[X,JZ] - [X,Z] = 0$$
. $N_J \equiv 0$, luego es integrable.

La variedad de Kodaira–Thurston es compleja y simpléctica

$$\mathsf{H}^2_{\mathsf{dR}}(\mathsf{KT}) = \left\langle \alpha^{13}, \; \alpha^{14}, \; \alpha^{23}, \; \alpha^{24} \right\rangle, \qquad \qquad \mathsf{H}^4_{\mathsf{dR}}(\mathsf{KT}) = \left\langle \alpha^{1234} \right\rangle.$$

- KT es simpléctica: Tomamos $\omega \coloneqq \alpha^{13} + \alpha^{24}$. ω es cerrada ($\omega \in \mathcal{Z}_{dR}^2(KT)$) y no degenerada ($\omega^2 = -2\alpha^{1234} \neq 0$).
- KT es compleja: Sea la base $\left\{X = \frac{\partial}{\partial x}, Y = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, Z = \frac{\partial}{\partial z}, W = \frac{\partial}{\partial w}\right\}$. El único corchete no nulo es [X, Y] = Z. Definimos

$$JX = Y$$
, $JY = -X$, $JZ = -W$, $JW = Z$.

Por las propiedades del tensor $(N_j(JU, V) = -JN_j(U, V))$:

$$N_{J}(X,Y) = JN_{J}(-Y,Y)$$
 $N_{J}(X,Z) = ?$ $N_{J}(X,W) = JN_{J}(X,-Z)$
 $N_{I}(Y,Z) = JN_{I}(-X,Z)$ $N_{I}(Y,W) = JN_{I}(-X,-Z)$ $N_{I}(Z,W) = JN_{I}(-W,W).$

y se comprueba que
$$N_J(X,Z) = [JX,JZ] - J[JX,Z] - J[X,JZ] - [X,Z] = 0$$
. $N_J = 0$, luego es integrable.

Nilvariedades compactas en dimensión 4, de nuevo

Proposición

Una nilvariedad compacta de dimensión 4 pertenece a una de las siguientes clases:

- ı) Cocientes de \mathbb{R}^4 , como el toro $\mathbb{T}^4 = \mathbb{Z}^4 \setminus \mathbb{R}^4$. Son Kähler.
- II) Cocientes de $H_3 \times \mathbb{R}$, como la variedad de Kodaira-Thurston KT. Son complejas y simplécticas, pero no Kähler.
- Nilvariedades compactas asociadas al álgebra filiforme f₄.
 No son complejas, pero sí simplécticas.

Veamos que el caso de la filiforme no admite estructura compleja. Antes, un teorema fuerte de clasificación.

Nilvariedades compactas en dimensión 4, de nuevo

Proposición

Una nilvariedad compacta de dimensión 4 pertenece a una de las siguientes clases:

- ı) Cocientes de \mathbb{R}^4 , como el toro $\mathbb{T}^4 = \mathbb{Z}^4 \setminus \mathbb{R}^4$. Son Kähler.
- II) Cocientes de $H_3 \times \mathbb{R}$, como la variedad de Kodaira-Thurston KT. Son complejas y simplécticas, pero no Kähler.
- Nilvariedades compactas asociadas al álgebra filiforme f₄.
 No son complejas, pero sí simplécticas.

Veamos que el caso de la filiforme no admite estructura compleja. Antes, un teorema fuerte de clasificación.

Superficies complejas Kähler

Teorema (Buchdahl-Lamari)

Una superficie compleja compacta ($\dim_{\mathbb{R}} M = 4$) admite métrica Kähler si y solo si su primer número de Betti es par:

 $M \ K\ddot{a}hler \iff b_1(M) \ par.$

La implicación hacia la izquierda es falsa en dimensiones superiores.

La nilvariedad F₄ no admite estructura compleja (i)

La filiforme \mathfrak{f}_4 tiene coeficientes de estructura (0, 0, -12, -13): existe $\{\alpha^i\}$ base de \mathfrak{f}_4^* con

$$d\alpha^{1} = d\alpha^{2} = 0$$
, $d\alpha^{3} = -\alpha^{12}$, $d\alpha^{4} = -\alpha^{13}$.

Sea G el grupo de Lie simplemente conexo asociado a f_4 . Por el criterio de Mal'cev, admite un retículo, luego existe una nilvariedad compacta $F_4 \coloneqq \Gamma \setminus G$.

Utilizamos Nomizu para calcular $H_{dR}^*(F_4)$.

$$\begin{split} H_{dR}^{1}(F_{4}) &= \left\langle \alpha^{1}, \; \alpha^{2} \right\rangle, & H_{dR}^{3}(F_{4}) &= \left\langle \alpha^{134}, \; \alpha^{234} \right\rangle, \\ H_{dR}^{2}(F_{4}) &= \left\langle \alpha^{14}, \; \alpha^{23} \right\rangle, & H_{dR}^{4}(F_{4}) &= \left\langle \alpha^{1234} \right\rangle. \end{split}$$

Asumamos que F_4 admite estructura compleja, y veamos que llegamos a contradicción.

La nilvariedad F₄ no admite estructura compleja (i)

La filiforme \mathfrak{f}_4 tiene coeficientes de estructura (0, 0, -12, -13): existe $\{\alpha^i\}$ base de \mathfrak{f}_4^* con

$$d\alpha^{1} = d\alpha^{2} = 0$$
, $d\alpha^{3} = -\alpha^{12}$, $d\alpha^{4} = -\alpha^{13}$.

Sea G el grupo de Lie simplemente conexo asociado a f_4 . Por el criterio de Mal'cev, admite un retículo, luego existe una nilvariedad compacta $F_4 \coloneqq \Gamma \setminus G$.

Utilizamos Nomizu para calcular $H_{dR}^*(F_4)$.

$$\begin{split} &H_{\mathrm{dR}}^{1}(F_{4})=\left\langle \alpha^{1},\,\alpha^{2}\right\rangle, &H_{\mathrm{dR}}^{3}(F_{4})=\left\langle \alpha^{134},\,\alpha^{234}\right\rangle, \\ &H_{\mathrm{dR}}^{2}(F_{4})=\left\langle \alpha^{14},\,\alpha^{23}\right\rangle, &H_{\mathrm{dR}}^{4}(F_{4})=\left\langle \alpha^{1234}\right\rangle. \end{split}$$

Asumamos que F_4 admite estructura compleja, y veamos que llegamos a contradicción.

La nilvariedad F_4 no admite estructura compleja (ii)

$$\begin{split} H_{\rm dR}^{1}(F_4) &= \left<\alpha^{1}, \; \alpha^{2}\right>, & H_{\rm dR}^{3}(F_4) &= \left<\alpha^{134}, \; \alpha^{234}\right>, \\ H_{\rm dR}^{2}(F_4) &= \left<\alpha^{14}, \; \alpha^{23}\right>, & H_{\rm dR}^{4}(F_4) &= \left<\alpha^{1234}\right>. \end{split}$$

Hemos asumido que F_4 admite estructura compleja.

Como $b_1(F_4) = 2$ es par, por Buchdahl-Lamari debe admitir métrica Kähler. Sea (F_4, J, ω) Kähler.

Por ser F_4 compacta, por el Teorema duro de Lefschetz el producto exterior por $[\omega]$ es un isomorfismo:

$$- \wedge [\omega] \colon H^1_{dR}(F_4) \xrightarrow{\sim} H^3_{dR}(F_4).$$

Como ω es cerrada, $[\omega] \in H^2_{dR}(F_4)$. Luego $[\omega] = a \cdot [\alpha^{14}] + b \cdot [\alpha^{23}]$.

Pero – $\Lambda[\omega]$ no puede ser isomorfismo

$$[\alpha^1] \wedge [\omega] = [\alpha^1 \wedge (a \cdot a^{14} \wedge b \cdot \alpha^{23})] = [b \cdot \alpha^{123}] = [0].$$

La nilvariedad F₄ no admite estructura compleja (ii)

$$\begin{split} &H^1_{dR}(F_4) = \left\langle \alpha^1, \, \alpha^2 \right\rangle, & H^3_{dR}(F_4) = \left\langle \alpha^{134}, \, \alpha^{234} \right\rangle, \\ &H^2_{dR}(F_4) = \left\langle \alpha^{14}, \, \alpha^{23} \right\rangle, & H^4_{dR}(F_4) = \left\langle \alpha^{1234} \right\rangle. \end{split}$$

Hemos asumido que F₄ admite estructura compleja.

Como $b_1(F_4) = 2$ es par, por Buchdahl–Lamari debe admitir métrica Kähler. Sea (F_4, J, ω) Kähler.

Por ser F_4 compacta, por el Teorema duro de Lefschetz el producto exterior por $[\omega]$ es un isomorfismo:

$$- \wedge [\omega] : H^1_{dR}(F_4) \xrightarrow{\sim} H^3_{dR}(F_4).$$

Como ω es cerrada, $[\omega] \in H^2_{dR}(F_4)$. Luego $[\omega] = a \cdot [\alpha^{14}] + b \cdot [\alpha^{23}]$.

Pero – Λ [ω] no puede ser isomorfismo:

$$[\alpha^1] \wedge [\omega] = [\alpha^1 \wedge (\alpha \cdot \alpha^{14} \wedge b \cdot \alpha^{23})] = [b \cdot \alpha^{123}] = [0].$$

Nilvariedades Kähler compactas

Utilizando argumentos similares (con el Teorema duro de Lefschetz), se puede probar

Teorema (Benson-Gordon)

Las únicas nilvariedades Kähler compactas son los toros.

¡Gracias por vuestra atención!

Bibliografía

Bibliografía i

- [BFM14] G. Bazzoni, M. Fernández y V. Muñoz. A 6-dimensional simply connected complex and symplectic manifold with no Kähler metric. 2014. arXiv: 1410.6045 [math.SG].
- [BG88] C. Benson y C. S. Gordon. «Kähler and Symplectic Structures on Nilmanifolds». En: *Topology* 27.4 (1988), págs. 513-518. DOI: 10.1016/0040-9383(88)90029-8.
- [BM14] G. Bazzoni y V. Muñoz. *Manifolds which are complex and* symplectic but not Kähler. 2014. arXiv: 1404.7662 [math.SG].
- [Buc99] N. Buchdahl. **«On Compact Kähler Surfaces».** En: Annales de l'Institut Fourier 49.1 (1999), págs. 287-302. DOI: 10.5802/aif.1674.

Bibliografía ii

- [Kas16] H. Kasuya. **«An Extention of Nomizu's Theorem –A User's Guide–».** En: *Complex Manifolds* 3.1 (2016). DOI:
 10.1515/coma-2016-0011.
- [Lam99] A. Lamari. **«Courants Kählériens et Surfaces Compactes».** En: Annales de l'Institut Fourier 49.1 (1999), págs. 263-285. DOI: 10.5802/aif.1673.
- [Nom54] K. Nomizu. **«On the Cohomology of Compact Homogeneous Spaces of Nilpotent Lie Groups».** En: Annals of Mathematics 59.3 (1954), págs. 531-538. DOI: 10.2307/1969716.
- [Rag72] M. S. Raghunathan. Discrete Subgroups of Lie Groups.
 Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 2. Folge 68.
 Berlin Heidelberg: Springer, 1972. ISBN: 978-3-642-86428-5
 978-3-540-05749-9 978-0-387-05749-1.

Bibliografía iii

[Voi02] C. Voisin. Hodge Theory and Complex Algebraic Geometry.

Vol. 1. Cambridge Studies in Advanced Mathematics 76. New York: Cambridge University Press, 2002. DOI: 10.1017/CB09780511615344.

Espacios homogéneos

Espacios homogéneos y nilvariedades no compactas

Sea G grupo de Lie.

Definición

Un *G-espacio homogéneo* es un cociente $M = \Gamma \setminus G$ por un subgrupo cerrado $\Gamma \leq G$.

Definición

Una *nilvariedad* es un *G*-espacio homogéneo para *G* nilpotente y simplemente conexo.

Proposición (Mal'cev)

Una nilvariedad es compacta si y solo si puede escribirse como un cociente $M = \Gamma \setminus G$ por un retículo $\Gamma \leq G$.

Solvariedades

Solvariedades

Definición

Un álgebra de Lie es *resoluble* si su sucesión derivada

$$\mathfrak{g} \supseteq [\mathfrak{g},\mathfrak{g}] \supseteq \big[[\mathfrak{g},\mathfrak{g}], [\mathfrak{g},\mathfrak{g}] \big] \supseteq \big[\big[\mathfrak{g}, [\mathfrak{g},\mathfrak{g}] \big], \big[\mathfrak{g}, [\mathfrak{g},\mathfrak{g}] \big] \big] \supseteq \cdots$$

estaciona en 0.

Definición

Una **solvariedad** es un *G*-espacio homogéneo para *G* resoluble y simplemente conexo.

NO tenemos Mal'cev.

Nomizu extendido

Teorema (Kasuya)

Sea G resoluble simplemente conexo y $\Gamma \leq G$ retículo.

Podemos construir explícitamente un álgebra diferencial graduada de dimensión finita A_{Γ}^* que computa la cohomología de de Rham compleja de $\Gamma \setminus G$.

Influye el retículo Γ, y no podemos garantizar su existencia.