CSCE60413 - Semantic Web Web versus Semantic Web

Adila Krisnadhi

Hello!

I am Adila Krisnadhi

Faculty member at the Faculty of Computer Science, Universitas Indonesia.

Co-director of Tokopedia-UI AI Center of Excellence
Ontology engineer and Semantic Web enthusiast

Credits

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>
- Backgrounds by <u>SubtlePatterns</u>
- Content by Eero Hyvonen from the CS-E410 lecture slides "WWW Today" and "Semantic Web" (with partial adaptation by me).

1. The World Wide Web

The Web in a nutshell

- 7.676 billion world population.
- 4.4 billion Internet users.
- 5.1 billion unique mobile users.

Content

- Approx. 55 billion pages indexed by Google (size of Surface Web).
- Deep Web (not just Dark Web) is est. up to 400 times larger

Effectiveness of publishing

All information readable by everyone.

New content easy to publish to billions of audiences.

Almost "free" usage.

Basic ingredients of the Web

<http://www.blablabla.com/myfolder/mydoc.html>

URL addresses

Represent resources such as websites, documents, pictures

HTML language

Expresses resource content (Web pages) Enables hyperlinks

HTTP protocol

Specifies mechanism for transferring resources between server and client.

2. Services on the web

The Web provides the following services ...

Functional

Banking, shopping, government, entertainment, etc.

Information retrieval

Search engines and browsing.

Portals, directories.

Databases in different applications.

Information retrieval challenges: end-user perspective

Search query formulation

Creating queries that work as intended is not always easy.

Search result quality

- Recall: proportion of the relevant information is found.
- Precision: proportion of the found information is relevant.
- Relevance: how well the results correspond to the user needs

Search result presentation

- Ease of understanding
- Ranking and structuring

Limitation of basic text search: Examples (1)

Search term may appear in an irrelevant document

"Halaman ini tidak berbicara tentang kucing."

Identifying (some) synonyms

- "hewan" vs. "satwa", "pranala" vs. "tautan"
 - O Bad recall (relevant pages not found), query formulation difficult

Identifying homonyms

- "Palu": a city, a tool
- "Depok": a city south of Jakarta, a district in Yogyakarta
 - Bad precision, garbage results; results hard to understand; query formulation hard

Limitation of basic text search: Examples (2)

Computer does not understand relations between concepts

- Narrower-broader concept, part-whole (Google is smarter now)
 - Search "surface depression in solar system" should return all craters on Earth.
- Missing background or common sense knowledge
 - Searching 'smoke' may not return pages about 'fire'

Information to be searched is fragmented, but results cannot be aggregated

"Search publications of the members of the research group X"

Limitation of basic text search: Examples (3)

Finding relations between information resources is hard

* "How is Dieng related to Borobudur?"

Search does not go beyond "memorizing"

- Now much does a kilogram of feathers weigh on the moon?
- With lots of memorizing, problem solving resembles remembering.

Context/personalization is under-utilized

♦ What could I do today in Depok?

Computer unable to "understand" meaning/semantics

Which city has Makassar as one of its district?

Browsing challenges in the Web: end-user perspective

- Understanding the "big picture" in a large fragmented information space
 - "Lost in the hyperspace"
- Links get out of date and destroyed
 - The linked target pages expire or are removed entirely
 - New pages do not get linked to old ones
 - Old pages do not get linked to new ones
- Reliability of information and their providers
 - "Web of trust"
 - "Flat Earth" organization's page vs. our university's scientific page
 - Wikipedia vs. Encyclopedia Britannica

Knowledge management challenges: Information provider perspective

- Structuring contents with links is manual work
 - ◆ Information does not get linked at content level without human effort
- **Different organizations create overlapping information**
 - The same work is done multiple times
- The contents and their structures are not interoperable
 - Aggregation of collections of different memory organizations is difficult
 - Lack of interoperability prevents combining of contents
 - Lack of interoperability prevents the management of contents
- **♦** Information about the contents and their changes is not communicated between organizations

Machine Processability (and Understandability?)

Web content is mainly created for ...

♦ Humans

Machines

What can machines do w.r.t. information on the Web?

♦ Mediate

Display

Understand

Machine processability problem

- ♦ Web content → for humans
- Machines only mediate and display content, and do not understand Web content.
- ♦ A web service → machine to help human
 - But requires machine to understand Web content.

How can we build a more intelligent Web?

Make applications to be more intelligent?

Represent content in a more intelligent way?

Smart application approach

Machines need to be able to understand/interpret content, but:

- Automated interpretation of natural language is difficult
- ♦ Non-textual content is very hard to interpret
- ♦ Interpretation often needs context and common sense.

Smart content approach

- ♦ Information is provided in a way that allows machines to understand it.
 - → Key idea of Semantic Web
- Who provides the information in that form?
 - → Human (and machines)
- ♦ History:
 - W3C Semantic Web activity in 2001
 - W3C Web Services activity in 2002

"Semantic" in Semantic Web means "understandable" to machines

4. Data (Knowledge?) Representation

Markup Languages: Main Ideas

Domain- and environment- independent standard for documents	Creation
	Management
	Transferring
Documents are text files	Open, simple format
	Usable on all platforms
	Easy modification, storing, reading, transfer
	Future-proof
Separate structure, content, and presentation	Describing document structure (for programmer) → HTML: <h1> Heading </h1>
	Describing information content (for programmer) → XML: <address>Jl. Margonda</address>
	Presentation is decided by the reader (browser)

The case for XML

- Utilization of content structure
 - Better recall/precision by search engines
- Syntax validation
- Widely used on the Web
 - Encoding of knowledge in open format
 - Open APIs for programming languages allow programmatic processing of the pages' content
- **♦ Vendor-independent**
- **♦** File format is unlikely to change
 - Pages are text files
- Enables domain-specific standard languages to be built on top

Syntactic interoperability through standardization

World Wide Web Consortium (W3C)

- Cooperation body of vendors, operators, universities, etc.
- Creates and maintains Web standards/recommendations (HTML, XML, etc.)

Domain-specific organizations

- ISO: various domains, except electrical/electronical
- ♦ IEC: electronical
- **CEN:** european body, various domains
- ♦ UN/CEFACT: electronic
- OASIS: IT-related
- **③**

Case against XML

- Difficult to read and process by humans
 - Notation is not human-friendly
- Documents contain lots of repetition
 - Lots of redundancy, e.g., start and end tags, blowing up the size of the markup files.
 - Laborius to write.
 - Needs more bandwith for transfer

Alternative (better) notations

- JSON (JavaScript Object Notation)
 - Representation as nested key-value pairs
 - Integrated into JavaScript: easy, efficient to use
 - Widely adopted
 - Standardized by IETF (RFC) and ISO/IEC
 - Adopted and extended into Semantic Web as JSON-LD
- Simple Semantic Web notations
 - Turtle and various OWL notations
 - Widely used
 - Standardized by W3C

5. Semantic Web: Why Syntax only is not Enough

Why syntax-only content is limited

Metadata cannot answer the following:

- Find all vessels?
- Find all metal product?
- Find all artifacts manufactured in South East Asia?
- Does Puri Klungkung own metal artifacts?

Key approach in Semantic Web: Use (Knowledge) Graph

Key approach in Semantic Web: Use (Knowledge) Graph


```
GC-A23098
  rdfs:label "Cup";
  :object object:cup;
  :material material:gold;
  :creationLocation place:Bali;
  :originalOwner actor:PuriKlungkung.
```

```
object:cup rdfs:subClassOf object:vessel .
place:Bali loc:partof place:Indonesia .
place:Indonesia loc:partOf place:SouthEastAsia .
```


Why XML (and JSON) only is not enough

- ♦ Interpretation of XML languages need to be defined in domain-specific way.
- ♦ Integration of XML documents is cumbersome.
- ♦ Semantic of XML tags is only in human brain
 - Machines only see arbitrary symbols.

So, we need ...

- A markup language whose interpretation is:
 - commonly agreed
 - shared across different application domains
 - machine-understandable

Semantic Web solution → Resource Description Framework (RDF)

Semantic Web original vision

A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities ...

Tim Berners-Lee, James Hendler and Ora Lassila (Scientific American, May 2001) https://www.scientificamerican.com/article/the-semantic-web/

Smart (Cognitive) Applications & Services

The Layer Cake: The Technology Components

Proof

Trust

Unifying Logic First-Order Logic (FOL)

Rules SWRL, SPIN, R2RML, SHACL

Query SPARQL, SPASQL **Dictionaries**

Transmission

Security

(Crypto)

(Ontologies) RDF, RDFS, OWL, SKOS, Schema.org

Abstract Language

RDF Subject->Predicate->Object Sentences

Sentence Part Identifiers

HTTP IRIS & URIS

Document Types

RDF-NTriples, RDF-Turtle, RDF-XML, RDF-JSON, JSON-LD, others

Semantic Web of Linked Data

So, what is Semantic Web?

- Content-perspective: a new metadata layer on the web describing its contents in terms of shared vocabularies
 - Web as a global database system
 - Web of data (instead of Web of documents)
- **Application perspective**: machine-understandable web
 - Meaning/semantics of content accessible by machines.
 - Intelligent web services
 - Semantic interoperability
- **Technology perspective**: the layer(s) above XML.

COMPUTER SCIENCE

Fin.