Stats_506_PS6

```
suppressWarnings(library(nycflights13))
suppressWarnings(library(future))

# Load our data
data <- flights[, c("origin", "dest", "air_time")]
set.seed(8964)</pre>
```

First, we can use the following function to perform stratified bootstrap. This function is the only computationally costly function in this problem set.

```
# Function to perform stratified bootstrap
stratified_bootstrap <- function(data) {
   unique_strata <- unique(data$dest)
   bootstrap_sample <- data.frame()

for (stratum in unique_strata) {
    stratum_data <- subset(data, dest == stratum)
        n_stratum <- nrow(stratum_data)

# Sample with replacement within each stratum
   resample_indices <- sample(1:n_stratum, n_stratum, replace = TRUE)
   stratum_bootstrap_sample <- stratum_data[resample_indices, ]

# Combine resamples
   bootstrap_sample <- rbind(bootstrap_sample, stratum_bootstrap_sample)
}

# Aggregate here to save memory
# bootstrap_sample is a 336776*3 data frame</pre>
```

```
# After aggregation, our return value is of size 3*1
return(aggregate(air_time ~ origin, data = bootstrap_sample, FUN = mean))
}
```

After obtaining the means from bootstrap samples, we can store the means of different origins from different samples into a single data frame.

Notice that for a single bootstrap sample, we only record k mean values, where k is the number of different origins, which is always 3 in our case.

```
# bootstrap sample is a 3*1 vector
# bootstrap samples is a length-1000 list of 3*1 vectors
# This function takes in bootstrap samples as input
# And returns a 3*1000 data frame
get_summary_vectors <- function(bootstrapped_samples){</pre>
  summary_vectors <- bootstrapped_samples[[1]]</pre>
  for (sample in bootstrapped_samples[-1]){
    summary_vectors <- cbind(summary_vectors, sample$air_time)</pre>
  }
  origins <- summary_vectors[, 1]</pre>
  summary_vectors <- summary_vectors[, -1]</pre>
  rownames(summary_vectors) <- origins</pre>
  return(summary_vectors)
}
# Input 'row' is a length-1000 vector
# Return value is a list of point estimate and confidence interval
calculate_stats <- function(row) {</pre>
  mean value <- mean(row, na.rm = TRUE)</pre>
  lwb <- quantile(row, 0.025, na.rm = TRUE)</pre>
  upb <- quantile(row, 0.975, na.rm = TRUE)</pre>
  return(c(mean_value, lwb, upb))
# Print out the resultt data frame
print result <- function(summary vectors){</pre>
  summary_stats <- t(apply(summary_vectors, 1, calculate_stats))</pre>
  summary stats <- as.data.frame(summary stats)</pre>
  colnames(summary_stats) <- c("Estimate",</pre>
                               "Lower Bound(2.5%)", "Upper Bound(97.5%)")
  return(summary_stats)
}
```

Functions get_summary_vectors, calculate_stats, print_result, are not time consuming. We can check it later.

Without parallel processing

The above is the time we used to perform the bootstrap without parallel processing.

And the following is the point estimate and the confidence interval we obtained.

```
print_result(get_summary_vectors(bootstrapped_samples))
```

As mentioned, we can rerun print_result to check it is not computationally costly.

```
system.time({
   print_result(get_summary_vectors(bootstrapped_samples))
})

user system elapsed
0.04 0.00 0.06
```

With parallel

The above is the time we used to perform the bootstrap with parallel processing using future package. And the obtained point estimates and confidence intervals are given below.

```
print_result(get_summary_vectors(bootstrapped_samples))
```

```
Estimate Lower Bound(2.5%) Upper Bound(97.5%)
EWR 153.297 152.8747 153.7091
JFK 178.352 177.9037 178.8064
LGA 117.824 117.5868 118.0551
```

And we can also check print_result function is not time-consuming.

```
system.time({
   print_result(get_summary_vectors(bootstrapped_samples))
})

user system elapsed
0.02 0.00 0.06
```