Languages, Automata and Computation II
Assignment 1

Dominik Wawszczak Student ID Number: 440014

Group Number: 1

Problem 1

We define an ω -word u as universal if, and only if, for any $i \in \mathbb{N}$, there exists a j > i such that $u[i] \neq u[j]$. Intuitively, this means that u contains an infinite subsequence of the form $(ab)^{\infty}$. Note that if $u \in \Sigma^{\omega}$ is universal, then for any $v \in \Sigma^{\omega}$, it holds that $v \sqsubseteq u$. This is because we can remove finitely or infinitely many letters from u to obtain $(ab)^{\infty}$, and for each i-th pair of consecutive ab occurrences, we can remove either a or b, depending on the value of v[i].

If an ω -word u is not universal, then either $\#_a(u)$ or $\#_b(u)$ is finite. In the first case, u is of the form vb^{∞} , and we will refer to such an ω -word as a-long. In the second case, u is of the form va^{∞} , and we will call it b-long. In both cases, v is a word of finite length.

Let u_1, u_2, \ldots be any infinite sequence of ω -words. We will prove that there exist indices i < j such that $u_i \sqsubseteq u_j$. If there are at least two universal ω -words in this sequence, the proof is straightforward since u_1 can embed into the second universal word in the sequence. Otherwise, either there are infinitely many a-long words in the sequence, or there are infinitely many b-long words. Without loss of generality, assume there are infinitely many a-long words in the sequence. Let k_1, k_2, \ldots be the indices of the a-long words. Denote $u_{k_l} = u'_{k_l} a^{\infty}$, where u'_{k_l} is finite. By Higman's lemma, there exist indices i < j such that u'_{k_i} is a substring of u'_{k_j} , concluding the proof as $u_{k_i} \sqsubseteq u_{k_i}$.

Now, we will show that in the variant where only finitely many letters can be removed, the resulting relation is not a well-quasi-order. Consider the infinite sequence of ω -words u_1, u_2, \ldots such that

$$u_i = a^i b a^{i+1} b a^{i+2} b \dots$$

Clearly, for any $i \in \mathbb{N}^+$, we have $u_i \supseteq u_{i+1}$ because the first i+1 letters of u_i can be removed to obtain u_{i+1} .

Suppose, for the sake of contradiction, that there exists $i \in \mathbb{N}^+$ such that $u_i \sqsubseteq u_{i+1}$. Let k be the smallest number such that a non expandable block of the form $a^k b$ remains intact, after removing finitely many letters from u_{i+1} to obtain u_i . The number of letters b in u_{i+1} before this block equals k - i - 1. However, the number of letters b in u_i before this block equals k - i > 1, which is a contradiction, as letters can only be removed.

Suppose, for the sake of contradiction, that there exists $i \in \mathbb{N}^+$ such that $u_i \sqsubseteq u_{i+1}$. Let k be the smallest number such that a non-expandable block of the form $a^k b$ remains intact after removing finitely many letters from u_{i+1} to obtain u_i . The number of b letters in u_{i+1} before this block is k-i-1. However, the number of b letters in u_i before this block is k-i, which is greater than k-i-1, contradicting the fact that letters can only be removed.

From the above, we conclude that $u_i \supseteq u_{i+1}$ for any $i \in \mathbb{N}^+$. Therefore, u_1, u_2, \ldots forms an infinite sequence of strictly decreasing elements, which shows that the relation is not a well-quasi-order.

Problem 2

For any set $A \subseteq \{1, \ldots, d\}$, define a function $f_A : \mathbb{N} \to \mathbb{N}^d$ as follows:

$$f_A(n) = ([1 \in A] \cdot n, \dots, [d \in A] \cdot n),$$

where [P] denotes the Iverson bracket, i.e., [P] = 1 if P is true, and [P] = 0 otherwise. A set A is called *good* if and only if $f_A(n) \in X$ for every $n \in \mathbb{N}$. Note that \emptyset is good unless X is empty, which is a trivial case.

For any good set $A \subseteq \{1, \ldots, d\}$, let g(A) denote the set of tuples (a_1, \ldots, a_d) satisfying the following conditions:

- 1. $a_i = 0$, if $i \in A$;
- 2. $\bigvee_{n \in \mathbb{N}} (a_1, \dots, a_d) + f_A(n) \in X;$
- 3. $\exists_{n_0 \in \mathbb{N}} \forall_{n \geqslant n_0} \forall_{i \in \{1,\dots,d\} \setminus A} (a_1,\dots,a_{i-1},a_i+1,a_{i+1},\dots,a_d) + f_A(n) \notin X,$

where $(a_1, ..., a_d) + (b_1, ..., b_d) = (a_1 + b_1, ..., a_d + b_d)$, for any tuples $(a_1, ..., a_d)$ and $(b_1, ..., b_d)$ in \mathbb{N}^d

Suppose, for the sake of contradiction, that g(A) is infinite. Let

$$g(A) = \{(a_1^1, \dots, a_d^1), (a_1^2, \dots, a_d^2), \dots\}$$

By Dickson's lemma, the structure (\mathbb{N}^d, \leq) is a well-quasi-order. Therefore, there exist indices $i, j \in \mathbb{N}$ such that i < j and $(a_1^i, \ldots, a_d^i) \leq (a_1^j, \ldots, a_d^j)$, contradicting the third condition for tuples in g(A).

Define $\operatorname{down}(g(A))$ as the set of all tuples $(b_1, \ldots, b_d) \in \mathbb{N}^d$ such that there exists a tuple $(a_1, \ldots, a_d) \in g(A)$ with $(a_1, \ldots, a_d) \geq (b_1, \ldots, b_d)$. If g(A) is empty, let $\operatorname{down}(g(A))$ be the singleton containing the zero tuple.

The set down(g(A)) is finite, with the following upper bound on its size:

$$|\text{down}(g(A))| \leq \sum_{(a_1,\dots,a_d)\in g(A)} \prod_{i=1}^d (a_i+1).$$

Using this, define a semilinear set

$$Y = \bigcup_{A \subseteq \{1, \dots, d\} \land A \text{ is good}} \left(\operatorname{down}(g(A)) + \left(\bigcup_{i \in A} ([1 = i], \dots, [d = i]) \right)^* \right).$$

By definition of g(A), we have $Y \subseteq X$. Our goal is to show that Y = X.

Suppose, for the sake of contradiction, that there exists a tuple $(a_1, \ldots, a_d) \in X \setminus Y$. We will construct a tuple $(b_1, \ldots, b_d) \in X$ such that $(b_1, \ldots, b_d) \geqslant (a_1, \ldots, a_d)$. Since Y is downward closed, this will imply $(b_1, \ldots, b_d) \in X \setminus Y$.

Proceed through indices $i=1,\ldots,d$, choosing b_i iteratively while maintaining a set A, initially empty. Assume b_1,\ldots,b_{i-1} have been chosen. For all $j\in\{1,\ldots,i-1\}$, define $b'_j=b_j$ if $j\in A$, and $b'_j=0$ otherwise. If there exists a number $c_i\in\mathbb{N}$ such that

•
$$\forall_{n \in \mathbb{N}} (b'_1, \dots, b'_{i-1}, c_i, a_{i+1}, \dots, a_d) + f_A(n) \in X$$
, and

•
$$\exists_{n_0 \in \mathbb{N}} \forall_{n \ge n_0} (b'_1, \dots, b'_{i-1}, c_i + 1, a_{i+1}, \dots, a_d) + f_A(n) \notin X$$
,

set $b_i = c_i$. Otherwise, let $b_i = a_i$ and add i to A. Note that $b_i \ge a_i$.

By construction, $(b_1, \ldots, b_d) \in X$, and A is good. Furthermore,

$$\exists_{n_0 \in \mathbb{N}} \forall_{n \geqslant n_0} \forall_{i \in \{1,\dots,d\} \setminus A} (b_1,\dots,b_{i-1},b_i+1,b_{i+1},\dots,b_d) + f_A(n) \notin X.$$

Thus,

$$(b_1, \dots, b_d) \in \text{down}(g(A)) + \left(\bigcup_{i \in A} ([1 = i], \dots, [d = i])\right)^*.$$

This contradiction completes the proof that X is a semilinear set.