The Inner Beauty of Firms

Jacob Kohlhepp

UCLA

December 5, 2022

Motivation

- Organizational differences are well-documented across firms.
- Motivating Question: Do these differences matter?
- ▶ They determine firm ability to make use of individual talents.

Motivation

- Research Question: How does internal organization interact with product and labor markets?
- ▶ Empirical Challenge: Rarely observe task assignments within competing firms.
- ► Theoretical Challenge: Do not have a model where firms with different abilities choose their structure based on product/labor market conditions.

This Paper

- 1. Stylized Facts: Internal complexity is heterogeneous and firm-specific. Complex firms have ↑ revenue, employees, prices, repeat customers.
- 2. Theory: Oligopolistic firms with shared labor market choose their internal structure s.t. heterogeneous organization costs. Complex assignments are costly but improve product quality by better matching workers to tasks.
- 3. Identification of Org. Costs and Estimation for Manhattan Hair Salons
- 4. Policy Experiments
 - Minimum wage to \$20: ↓ competitive position of firms intense in min. wage workers & shifts tasks away from min. wage workers within firms ⇒ + and − wage spillovers that are non-monotone in initial wage
 - ► Eliminate Sales Tax: ↓ competitive position of specialized firms & ↑ specialization within firms ⇒ increased specialization for all workers

Contributions

- ➤ To the Labor Literature on Tasks: Incorporate product market power, specialization costs, horizontal worker skills, firm-level task data
 - Lazear (2009); Haanwinckel (2020); Adenbaum (2021)
- ► To Organizational Economics: Measure heterogeneity in organizational capabilities and understand how it impacts economic outcomes
 - Baker, Gibbons, and Murphy (2002) (relational contracts); Garicano and Wu (2012) (knowledge); Meier, Stephenson, and Perkowski (2019) (trust); Martinez et al. (2015) (culture)

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Data

- Salon management software company founded in 2016
- Clients concentrated in New York City and Los Angeles, but scattered salons throughout US
- Observe 13 million assignments of services to hair stylists across hundreds of salons from 2016 to Q3 2021

A Data Snapshot

Firm	Salon	Арр.	Cust.	Service	Staff	Time Stamp	Price	Duration
1	1A	123	Blake	Advanced Cut	Rosy	3/26/2021 16:15	100	72
1	1A	123	Blake	Full Head - Highlights	Rosy	3/26/2021 16:15	243	127
1	1A	123	Blake	Treatment Add On (Olaplex)	Rosy	3/26/2021 16:15	39	72
2	2A	9982	Grace	Women's Cut	Tyler	3/17/2021 11:00	225	43
2	2A	9982	Grace	Single Process	Ben	3/17/2021 11:00	200	77

A Data Snapshot

Firm	Salon	Арр.	Cust.	Service	Staff	Time Stamp	Price	Duration
1	1A	123	Blake	Advanced Cut	Rosy	3/26/2021 16:15	100	72
1	1A	123	Blake	Full Head - Highlights	Rosy	3/26/2021 16:15	243	127
1	1A	123	Blake	Treatment Add On (Olaplex)	Rosy	3/26/2021 16:15	39	72
2	2A	9982	Grace	Women's Cut	Tyler	3/17/2021 11:00	225	43
2	2A	9982	Grace	Single Process	Ben	3/17/2021 11:00	200	77

- Services are aggregated to form one representative product per firm-quarter.
- ▶ A firm's **price** is the sum of service prices divided by total customers.
- ▶ A firm's **required labor** is the sum of durations divided by total customers.
- A firm's task-mix is the fraction of labor classified as each task.

Creating Tasks

- ▶ 20,560 unique text descriptions of services.
- Hired a certified cosmetologist via UpWork to classify into 6 categories.
- ► For multi-category services: time is split across the tasks.
- Patterns are robust to method of classification (i.e. NLP classification)

Firm-Quarter Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Revenue	4,558	213,201.30	248,359.90	5	58,912.5	271,236.5	2,559,703
Price	4,558	199.73	135.16	0.20	111.71	261.88	3,180.44
Employees	4,558	13.38	10.79	1	6	17	92
Customers	4,558	1,159.23	1,098.45	1	397	1,619	16,768
Task Categories	4,558	4.45	0.86	1	4	5	5
Labor per. Customer	4,558	2.15	1.63	0.10	1.52	2.57	61.33

Task-Mix Variation

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

What is an Organization Structure?

Definition 1

A firm's organization structure (B_j) , is a matrix where element (i, k) is the fraction of labor assigned to worker i and task k.

What is an Organization Structure?

Definition 1

A firm's organization structure (B_j) , is a matrix where element (i, k) is the fraction of labor assigned to worker i and task k.

		"Spe	ecialist" S	Salon			"Gei	neralist"	Salon		
			Tasks					Tasks			
		Cut	Color	Dry			Cut	Color	Dry		
Worker	Α	1/2	0	0	1/2	Α	1/6	1/12	1/12	1/3	Worker
	В	0	1/4	0	1/4	В	1/6	1/12	1/12	1/3	
	С	0	0	1/4	1/4	С	1/6	1/12	1/12	1/3	Shar
	Tot.	1/2	1/4	1/4		Tot.	1/2	1/4	1/4		e (<i>E</i>

Task-Mix (α)

What is Organizational Complexity?

Definition 2

The complexity of an organization structure B_i is:

$$I(B_j) = \sum_{i,k} B_j(i,k) log\left(\frac{B_j(i,k)}{\sum_{k'} B_j(i,k') \sum_{i'} B_j(i',k)}\right)$$

- ► Intuition: the amount of instructions (measured in bits) that must be communicated within the firm to implement B_i
 - Data plan required to communicate assignments to employees
- ► Several Micro-Foundations: Manager Attention (Task-Specialization) (Highly Correlated with Specialization)

What is Organizational Complexity?

Definition 2

The complexity of an organization structure B_i is:

$$I(B_j) = \sum_{i,k} B_j(i,k) log\left(\frac{B_j(i,k)}{\alpha_j(k)E_j(i)}\right)$$

- ► Intuition: the amount of instructions (measured in bits) that must be communicated within the firm to implement B_i
 - Data plan required to communicate assignments to employees
- ► Several Micro-Foundations: Manager Attention (Task-Specialization) Highly Correlated with Specialization

What is Organizational Complexity?

Definition 2

The complexity of an organization structure B_j is: Define generalist structure as $B_i^G(i,k) = \alpha_j(k) \cdot E_j(i)$ then:

$$I(B_j) = D_{KL}(B_j||B_j^G(i,k))$$

- ► Intuition: the amount of instructions (measured in bits) that must be communicated within the firm to implement B_i
 - Data plan required to communicate assignments to employees
- ► Several Micro-Foundations: Manager Attention (Task-Specialization) (Highly Correlated with Specialization)

Complexity of the Two Structures

		"Employee" Salon								
			Tasks							
		Cut	Color	Dry						
Employee	Α	1/2	0	0	1/2					
	В	0	1/4	0	1/4					
	С	0	0	1/4	1/4					
	Tot.	1/2	1/4	1/4						

C 0 0 1/4 1/4

Tot. 1/2 1/4 1/4

Exactly match tasks and workers

If cut send "0" assign to A

If color send "01" assign to B

If dry send "10" assign to C

$$\frac{1}{2}(1bit) + \frac{1}{4}(2bit) + \frac{1}{4}(2bit) = 1.5$$

"Chair Renter" Salon

		Tasks		
	Cut	Color	Dry	
Α		1/12		1/3
В	1/6	1/12	1/12	1/3
С	1/6	1/12	1/12	1/3
Tot.	1/2	1/4	1/4	

Randomly match tasks and workers

If cut send nothing roll dice

If color send nothing roll dice

If dry send nothing roll dice $\frac{1}{2}(0bit) + \frac{1}{4}(0bit) + \frac{1}{4}(0bit) = 0$

Fact 1: Complexity is heterogeneous and firm-specific.

$$I_{j,t} = \bar{I}_j + \bar{I}_t + e_{j,t}$$
 $Var(I_{j,t}) = Var(\bar{I}_j) + Var(\bar{I}_t) + 2Cov(\bar{I}_j, \bar{I}_t) + Var(e_{j,t})$
.0516 .0464 .0002 -.0009 0.0059

Takeaway: Internal complexity is driven by a deep characteristic of the firm.

Fact 2: Complex salons have higher revenue and employment

Takeaway: There is an organizational competitive advantage.

Fact 3: Complex salons have higher prices and repeat customers

Takeaway: This advantage operates through quality NOT quantity. Theory

Table of Contents

Data

Stylized Facts

Model

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Model: Salons and Workers

J Salons

- ▶ Salon-specific internal organization cost $\gamma_i \ge 0$
- lacktriangle Leontief task-based production function with task-mix parameter $lpha \in \mathbb{R}_+^K$
 - Producing 1 unit requires assigning α_k labor to task k. Normalize $\sum_k \alpha_k = 1$
 - ▶ I allow for firm-specific task-mix in structural model

N Worker Types

- Skill set $\theta_i = \{\theta_{i,1}, ...\theta_{i,k}, ...\theta_{i,K}\}$
- lnelastic total labor supply L_i and wage w_i determined in equilibrium

Model: Salon Choices and Consumers

Salon Choices

- ▶ Org. structure $B_j \in \Delta^{N \times K}$ s.t. $\sum_i B_j(i, k) = \alpha_k$
 - ▶ Product Quality: $\xi(B_j) = \sum_{i,k} \theta_{i,k} B_j(i,k)$
 - Per-Unit Wage Bill: $W(B_j) = \sum_{i,k} w_i B_j(i,k)$
 - ▶ Per-Unit Internal Organization Cost: $\gamma_j I(B_j)$ where $I(B_j)$ is complexity
- ▶ Price $p_i \in \mathbb{R}_+$

Mass M Consumers

▶ Utility for good j: $u_{z,j} = \xi(B_j) - \rho p_j + \epsilon_{z,j}$, $\epsilon \sim \text{ i.i.d. Type-1 E.V.}$

The Firm's Problem

Denote feasible organization structures $\mathbb{B} = \{B_j \in \Delta^{N \times K} | \sum_i B_j(i, k) = \alpha_k \}$

$$\max_{p_{j},B_{j}\in\mathbb{B}_{j}}\underbrace{\frac{exp(\xi(B_{j})-\rho p_{j})}{\sum_{j'}exp(\xi(B_{j'})-\rho p_{j'})}}_{\text{market share, }s_{j}}\left[p_{j}-\underbrace{\left(\overbrace{\gamma_{j}I(B_{j})}^{\text{org.}}+\overbrace{W(B_{j})}^{\text{avg. wage}}\right)}_{\text{constant marginal cost, }MC_{j}}\right]$$

Equilibrium

An equilibrium consists of firm strategies $\{p_j, B_j\}_{j=1}^J$ and wages w such that:

- 1. Firm strategies maximize profits.
- 2. Labor markets for each worker type clear:

$$\sum_{j} \frac{\exp(\xi(B_{j}) - \rho p_{j})}{\sum_{j'} \exp(\xi(B_{j'}) - \rho p_{j'})} \sum_{k} B_{j}(i, k) = L_{i} \, \forall \, i = 1, ..., N$$

Summary of the Model

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Theorem

The profit-maximizing organizational structure B^* also solves:

$$\min_{B_j \in \mathbb{B}} \gamma_j I(B_j) + W(B_j) - \rho^{-1} \xi(B_j)$$

Theorem

The profit-maximizing organizational structure B^* also solves:

$$\min_{B_j \in \mathbb{B}} I(B_j) + \gamma_j^{-1} \sum_{i,k} B_j(i,k) (w_i - \rho^{-1}\theta_{i,k})$$

Rate-distortion problem (information theory)

Theorem

The profit-maximizing organizational structure B^* also solves:

$$\max_{B_j \in \mathbb{B}} \sum_{i,k} B_j(i,k) (\rho^{-1} \theta_{i,k} - W_i) - \gamma_j I(B_j)$$

- Rate-distortion problem (information theory)
- Rational inattention problem with MI costs (behavioral econ)
 - ▶ Org. frictions make the firm act as if it is run by a manager with limited attention

Theorem

The profit-maximizing organizational structure B^* also solves:

$$\min_{B_j \in \mathbb{B}} \gamma_j I(B_j) + W(B_j) - \rho^{-1} \xi(B_j)$$

- Rate-distortion problem (information theory)
- Rational inattention problem with MI costs (behavioral econ)
 - Org. frictions make the firm act as if it is run by a manager with limited attention
- \triangleright B_i^* depends on other salon actions only indirectly via wages.

The Quality-Wage-Complexity Trade-Off

Organization Frontier

$$\min_{B_j \in \mathbb{B}} \underbrace{I(B_j)}_{\text{complexity}} + \gamma_j^{-1} \left[\underbrace{W(B_j) - \rho^{-1} \xi(B_j)}_{\text{quality-adjusted wages}} \right]$$

Definition

The organization frontier is the set of organization structures which minimize complexity for some quality-adjusted wages.

Because this is a rate-distortion problem:

Proposition

Complexity along the organization frontier is continuous, convex and decreasing in quality-adjusted wages. Proof

Choosing an Organizational Structure

Fitting the Facts

- 1. Fact 1: Complexity is heterogeneous and firm-specific
 - Firms in the same product and labor market choose different internal structures based on individual org. cost (γ_i) .
- 2. Fact 2: Complex salons have more employees and higher revenue
 - In equilibrium complexity and market share are positively correlated.
- 3. Fact 3: Complex salons have higher prices and higher quality
 - Price-complexity relationship depends on parameters.
 - Quality is the main benefit of complexity.

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

The Econometric Model

- Market: Analyze Manhattan 2021 Q2 with sales tax $\tau = 4.5\%$
 - Outside option is no purchase. Compute via Consumer Expenditure Survey.
- ▶ Utility for good $j: u_{z,j} = \xi(B_j) \rho p_j + \epsilon_{z,j}, \epsilon \sim \text{ i.i.d. Type-1 E.V.}$
- ▶ Workers: Base skill β_k , skill gap θ_k
 - ► Color Specialist: $\theta = \{\beta_{cut}, \beta_{color} + \theta_{color}, \beta_{dry}, \beta_{admin}, \beta_{misc}\}$
- Labor Supply: Individual workers also differ in their labor supply
 - For example: two color specialists may supply different number of hours.
- ► Task Heterogeneity: Different material costs (m)
- Firm Heterogeneity: Firm-specific task-mix (α_j) , effective labor per unit (\bar{a}_j) , exogenous quality (ν_j) , marginal cost shifter (ϕ_j)

What does firm profit look like?

The Econometric Model

► A natural notion of task-specialization:

Definition 3

Task-specialization is the fraction of total labor spent on specialty tasks.

- ▶ 6 utility + 5 cost + 5 wages + 5 skills = 21 parameters
- ightharpoonup Call these market parameters and denote Ω
- ▶ 42 salons ⇒ 42 org. cost parameters

Identification Problem

Identification: Firm-Specific Organization Costs γ_j

Proposition 1

Organization costs (γ_j) and organization structures (B_j) are a known function of firm task-mixtures (α_j) , complexities (I_j) and market parameters (Ω) for all firms with positive complexity, except for a set of market parameters with measure 0. Visual Intuition

- $\{\gamma_j\}_{j=1}^J$ do not need to be estimated
- $ightharpoonup \alpha_i$, I_i are sufficient for the internal organization of the firm
- lacktriangle There is a one-to-one mapping from observed complexity to unobserved γ_j
- ► 2-part Proof: Complexity = Mutual Information Essential Equilibrium Uniqueness

Identification: Firm-Specific Organization Costs γ_j

Identification: Market Parameters

► Use firm price FOC (supply side moments):

$$p_j = rac{1}{
ho(1+ au)(1-s_j)} + ar{a}_j igg[\gamma(\Omega, \mathit{I}_j, lpha_j) \mathit{I}_j + \mathit{wE}(\Omega, \mathit{I}_j, lpha_j) igg] + \mathit{m}lpha_j + \phi_j$$

▶ Use market-share equation (demand side moments):

$$log(s_j) - log(s_0) = \xi(\Omega, I_j, \alpha_j) - \rho(1+\tau)p_j + \beta\alpha_j + \nu_j$$

▶ Match avg. beauty salon QCEW wage bill with measurement error:

$$W_i = Ms_i a_i w E(\Omega, I_i, \alpha_i) + e_i$$

 \triangleright The model is globally identified if Ω uniquely satisfies:

$$\mathbb{E}\left[\begin{pmatrix} \phi_j(\Omega, I_j, \alpha_j) \\ \nu_j(\Omega, I_j, \alpha_j) \end{pmatrix} \begin{pmatrix} \alpha_j & \alpha_j I_j \end{pmatrix}\right] = 0 \qquad \mathbb{E}[e_j(\Omega, I_j, \alpha_j)] = 0$$

Identification: Identification: Market Parameters (Ω)

From Identification to Estimation

- Issue
 - \triangleright B_j is a 5 \times 5 matrix which solves a non-linear minimization problem
 - ▶ Must solve for B_j repeatedly to get γ_j
 - Must solve for γ_j for each set of market parameters Ω
- ► Solution: Blahut-Arimoto algorithm
 - Fixed point algorithm which is globally convergent
 - Can use because of equivalence to a rate-distortion problem
 - ► Algorithm

Estimation Routine Summarized

Construct the sample analogue of the moment conditions, call it $G(\cdot)$. Then solve:

$$\operatorname*{arg\,min}_{\hat{\Omega}}G(\hat{\Omega})'WG(\hat{\Omega})$$

This amounts to:

- 1. Guess $\hat{\Omega}$.
- 2. Recover implied quality, marginal costs, and organization cost parameters using the Blahut-Arimoto algorithm.
- 3. Evaluate GMM objective. If minimum achieved, stop. Otherwise return to 1.

Nested fixed-point GMM, similar to Berry, Levinsohn, and Pakes (1995)

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Task Parameter Estimates

	Associated Specialist			
Task	Skill Gap	Wage	Skill Base	Material Cost
Administrative	43.29*	26.99	-16.16	-147.60*
	(21.66)	(63.75)	(14.58)	(13.47)
Blowdry/Etc.	141.69*	20.91	-70.56*	12.39
	(36.67)	(40.22)	(13.57)	(16.65)
Color/Highlight/Wash	60.03*	37.75*	-9.69	56.49*
	(21.24)	(7.00)	(11.97)	(15.79)
Haircut/Shave	32.45*	16.96*		
	(13.07)	(8.32)		
Nail/Spa/Eye/Misc.	66.48	81.16	-252.58*	-1061.12*
	(37.72)	(53.52)	(11.47)	(10.73)

Standard errors from 500 bootstrap replications in parentheses.

^{*} indicates significance at the 0.05 level.

Equilibrium Task Specialization Across Workers

Equilibrium Task Specialization Across Firms

Cost of Median Complexity Organization Across Firms

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Fit: Supply Side Relationships

Validation: The Task Content of Jobs

Model generated jobs:

$$b_{j}(i,k) = \alpha_{k} \frac{\exp(-\gamma^{-1}w_{i} + (\rho\gamma)^{-1}\theta_{i,k})}{\sum_{i'} E_{j}(i')\exp(-\gamma^{-1}w_{i'} + (\rho\gamma)^{-1}\theta_{i',k})}$$

	Total Variance		Between Firm Variance	
Task	Model	Observed	Model	Observed
Haircut/Shave	0.1110	0.1268	0.0597	0.0597
Color/Highlight/Wash	0.1127	0.1105	0.0365	0.0365
Blowdry/Style/Treatment/Extension	0.0472	0.0194	0.0111	0.0111
Administrative	0.0098	0.0080	0.0063	0.0063
Nail/Spa/Eye/Misc.	0.0120	0.0171	0.0050	0.0050

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Counterfactual Implementation

- Preparation
 - ▶ Weight salons so that observed demand equals CEX market demand.
 - Derive type total labor using estimated wages and firm labor demands.
 - Change deep parameter.
- Solving for a New Equilibrium
 - 1. Guess wages, solve for organization structures.
 - 2. Use org. structures to solve for prices.
 - 3. Check labor market clearing, if not return to 1 and repeat.
 - 4. Compute consumer welfare using closed form.

Decomposing Mechanisms

Minimum Wage Increase from \$15 to \$20

Wages Changes

Туре	Wage Change	Total Wages Gained/Los	
Haircut/Shave - UNEMPLOYED	-100.00%	-\$600,240	
Haircut/Shave - EMPLOYED	17.95%	\$1,528,205	
Color/Highlight/Wash	-0.61%	-\$228,453	
Blowdry/Style/Treatment/Extension	3.48%	\$323,374	
Administrative	4.17%	\$47,154	
Nail/Spa/Eye/Misc.	0.68%	\$19,319	

Wage Changes by Initial Wage Percentile

Employment and Wages

Technical Details

The Reallocation Effect

The Reallocation Effect: Wage Spillovers

	Reallocation Change		
Туре	Employment	Wage	
Haircut/Shave	-5.85%	17.95%	
Color/Highlight/Wash	0%	-1.13%	
Blowdry/Style/Treatment/Extension	0%	4.63%	

Fraction Haircut Specialists • 0.2 • 0.4 • 0.6 • 0.

The Reorganization Effect

The Reorganization Effect: Wage Spillovers

	Reorganization Change		
Туре	Employment	Task-Spec.	Wage
Haircut/Shave	-0.73%	0.12%	0%
Color/Highlight/Wash	0%	-0.33%	0.52%
Blowdry/Style/Treatment/Extension	0%	0.03%	-1.15%
Administrative	0%	0.03%	-1.05%
Nail/Spa/Eye/Misc.	0%	-0.00%	0.10%

Service Sales Tax Elimination (4.5% to 0%)

Firm Choice	s	Welfare		
Statistic	Total	Source Change		Percent Change
Avg. Price	8.68%	Salon Profit	\$942,740	0.58%
Avg. Complexity	5.53%	Consumer Welfare	-\$494,199	-0.30%
Avg. Quality	10.03%	Wages	\$11,603,777	7.12%
Task Specialization	1.83%	Tax Revenue	-\$11,739,300	-7.20%
		Total Welfare	\$313,017	0.19%

Effects by Worker Type

Sales Tax Elimination Reallocation Effect

Sales Tax Elimination Reorganization Effect

Table of Contents

Data

Stylized Facts

Mode

Theoretical Results

Identification and Estimation

Estimation Results

Model Fit and Validation

Counterfactuals

Conclusion

Extensions

- ► In the paper:
 - Multiplicative quality (i.e. Kremer's O-Ring)
 - Quantity-based productivity (i.e. manufacturing)
 - Large firms (continuous tasks, worker types)
- ► Future work:
 - Imperfectly competitive labor markets with task-content as amenity
 - Accumulation of task-specific human capital

Summary

- 1. Stylized Facts: Internal complexity is heterogeneous and firm-specific. Complex firms have ↑ revenue, employees, prices, repeat customers.
- 2. Theory: Oligopolistic firms with shared labor market choose their internal structure s.t. heterogeneous organization costs. Complex assignments are costly but improve product quality by better matching workers to tasks.
- 3. Identification of Org. Costs and Estimation for Manhattan Hair Salons
- 4. Policy Experiments
 - Minimum wage to \$20: ↓ competitive position of firms intense in min. wage workers & shifts tasks away from min. wage workers within firms ⇒ + and − wage spillovers that are non-monotone in initial wage
 - ► Eliminate Sales Tax: ↓ competitive position of specialized firms & ↑ specialization within firms ⇒ increased specialization for all workers

Table of Contents

Appendix

Task-Mix Variation

Back

Organization Costs As Average Task-Specialization

Define the generalist job as the job as: $b_i^G(k) = \alpha_k$

Proposition 2

Complexity $(I(B_j))$ is the weighted-average Kullback-Leibler divergence between the jobs at a firm and the firm's generalist job $b_j^G(k)$, where the weights are the share of each worker type.

Proof. Using the definition of mutual information, we can write out complexity as:

$$I(B_{j}) = \sum_{i,k} B(i,k) log \left(\frac{B(i,k)}{\sum_{k'} B(i,k') \sum_{i'} B(i',k)} \right) = \sum_{i,k} E_{i} \frac{B(i,k)}{E_{i}} log \left(\frac{B(i,k)}{E_{i}\alpha_{k}} \right)$$

$$= \sum_{i} E_{i} \sum_{k} b_{i}(k) log \left(\frac{b_{i}(k)}{\alpha_{k}} \right) = \sum_{i} E_{i} \sum_{k} b_{i}(k) log \left(\frac{b_{i}(k)}{b_{j}^{G}(k)} \right)$$

$$= \sum_{i} E_{i} D_{KL}(b_{i}||b_{j}^{G})$$

Managerial Attention

- ightharpoonup X is the task type, with prior α . Y is assigned worker type. Manager's payoff from the assignment of workers to tasks is m(X,Y).
- Manager chooses any signal Z with info about the task-type and an assignment function $\delta(Z)$ mapping signal to an assignment.
- ▶ Cost of signal is $\gamma I(Z, X)$ where I is the mutual information:

$$\max_{\delta,Z} \mathbb{E}[m(X,\delta(Z))] - \gamma I(X,Z)$$

Jung et al. (2019) (and others) show this is equivalent to:

$$\max_{B_j} \mathbb{E}[m(X,Y)] - \gamma I(X,Y)$$

▶ Thus complexity measures the attention paid to assignments.

Relationship Between Complexity and Customers/Visits

Back

Firm Size and Complexity Regressions

Dependent Variables:	Revenue	Employees	Utilized Labor	Customers	Visits
Model:	(1)	(2)	(3)	(4)	(5)
Variables					
Org. Complexity	347549.2***	9.75**	26481	334.6	731.7
	(79546.2)	(3.016)	(35653.2)	(259.6)	(450.1)
Fixed-effects					
Quarter-Year	Yes	Yes	Yes	Yes	Yes
County	Yes	Yes	Yes	Yes	Yes
Fit statistics					
Observations	4,558	4,558	4,558	4,558	4,558
R ²	0.32465	0.34319	0.28918	0.34901	0.35004

Standard-errors clustered at the salon level.

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Manhattan Firm Size and Complexity Regressions

Dependent Variables:	Revenue (1)	Employees (2)	Utilized Labor	Customers (4)	Visits (5)
Variables	(1)	(2)	(5)	(4)	(5)
variables					
Org. Complexity	430406.6*	12.55	-17733.9	277.2	876.9
	(179977.4)	(6.531)	(70765.2)	(600)	(907.1)
Fixed-effects					
Quarter-Year	Yes	Yes	Yes	Yes	Yes
Fit statistics					
Observations	595	595	595	595	595
R ²	0.33485	0.21039	0.20359	0.44164	0.48831

Clustered standard-errors in parentheses

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Fact 2: Complex salons have higher revenue and employment

Fact 3: Complex salons have higher prices and repeat customers

9/26

Quantity Model Implies Price ↓ Complexity

$$F_{\alpha,B}(a_j) = \min \left\{ \frac{a_1}{\alpha_1 \sum_i \theta_{i,1} B_j(i,1)}, ... \frac{a_k}{\alpha_k \sum_i \theta_{i,k} B_j(i,k)}, ..., \frac{a_K}{\alpha_K \sum_i \theta_{i,K} B_j(i,K)} \right\}$$

Given any fixed organizational structure, the efficient way to produce a single unit of output is to set $a_k = \alpha_k \sum_i \theta_{i,k} B_j(i,k)$. Thus marginal costs are constant and consist of the per-unit wage bill and organization costs:

$$MC_j = \sum_i w_i \sum_k \alpha_k \sum_i \theta_{i,k} B_j(i,k) + \gamma_j I(B_j)$$

Proposition 3

Under these assumptions, prices are decreasing with organizational complexity.

Proof of Main Result: Part 1/3

Take the FOC of profit to get the best-response price:

$$p_j^* = \frac{1}{\rho(1-s_j)} + MC_j$$

Once this is plugged into profit, I prove:

Lemma 4

Maximized profit depends on organization structure only through quality-adjusted cost. Additionally, maximized profit is strictly decreasing in quality-adjusted cost.

Firms choose an organization structure which achieves the lowest quality-adjusted marginal cost:

$$\min_{B_j \in \mathbb{B}_j} MC_j(B_j) - \rho^{-1} \xi_j(B_j) \tag{1}$$

Proof of Main Result: Part 2/3

$$\min_{B_{i} \in \mathbb{B}_{i}} MC_{j}(B_{j}) - \rho^{-1}\xi(B_{j}) = \min_{B_{i} \in \mathbb{B}} W(B_{j}) + \gamma_{j}I(B_{j}) - \rho^{-1}\xi_{j}(B_{j})$$
(2)

$$= \gamma_j \min_{B_j \in \mathbb{B}} \left\{ I(B_j) + \gamma_j^{-1} \left[W(B_j) - \rho^{-1} \xi(B_j) \right] \right\}$$
 (3)

I can re-write 3 as a maximization problem:

$$\max_{B_j \in \mathbb{B}} \left\{ \sum_{i,k} B_j(i,k) (\rho^{-1} \theta_{i,k} - W_i) \right] - \gamma_j I(B_j) \right\}$$
 (4)

Comparing 4 to formulations in Jung et al. (2019) illustrates that this is a linear rational inattention problem.

Proof of Main Result: Part 3/3

I re-write 3 one last time:

$$\gamma_{j} \min_{B_{j} \in \mathbb{B}} \left\{ I(B_{j}) + \gamma_{j}^{-1} \sum_{i,k} B_{j}(i,k) (W_{i} - \rho^{-1}\theta_{i,k}) \right] \right\}$$
 (5)

Comparing 5 to formulations in like Equation 6 in Tishby, Pereira, and Bialek (2000) demonstrates this is well-understood minimization problem from information theory called a rate-distortion problem.

Proof of Frontier Shape and Profit Increasing

▶ Denote *Q* as quality-adjusted wages. Because the problem is an RD problem:

$$\min_{Q} R(Q) + \gamma^{-1}Q$$

where R is continuous, convex and decreasing. Taking the cross-partial derivative:

$$\frac{\partial R(Q) + \gamma^{-1}Q}{\partial Q \partial \gamma} = -\gamma^{-2} \le 0$$

- ▶ This implies decreasing differences, which implies Q is increasing in γ_j .
- ightharpoonup R(Q) is decreasing, therefore complexity is increasing in γ_i
- ightharpoonup Envelope condition implies quality-adjusted marginal cost is decreasing in γ_j .
- Profit and quantity are decreasing in quality-adjusted marginal cost, therefore they are decreasing in γ_i .

Profit Under the Econometric Model

$$\frac{\exp(\xi(B_j) - \rho(1+\tau)p_j + \beta\alpha_j + \nu_j)}{\sum_{j'} \exp(\xi(B_{j'}) + -\rho(1+\tau)p_{j'} + \beta\alpha_{j'} + \nu_{j'})} \left[p_j - \bar{\mathbf{a}}_j \left(\gamma_j I(B_j) + W(B_j) + \underline{m}\alpha \right) - \phi_j \right]$$

A Full Solution Method for Optimal Organization Structure

A globally convergent fixed point algorithm to fully solve based on Blahut (1972):

0. Guess some labor demand E^0 . Create matrix V:

$$V_{i,k} = \exp[\gamma^{-1}(\rho^{-1}\theta_{i,k} - W_i)]$$

1. Compute B^t as:

$$B_{i,k}^t = \alpha_k \frac{V_{i,k} E_k^t}{\sum_i E_i^t V_{i,k}}$$

2. Compute E^{t+1} as:

$$E_i^{t+1} = \sum_t B_{i,k}^t$$

3. If converged exit, else return to Step 1 and advance t.

Minimum Wage Counterfactual Details

- Counterfactuals assume the utility of not getting a service remains fixed.
- Ruling out Multiple Equilibria
 - Assume beforehand which wages bind (i.e. which wages are \$20)
 - O excess labor supply for all types except binding types.
 - Check that assumed binding types have excess labor supply.
 - If yes, count as an equilibria. If not excluded.
- ▶ I do this for all possible binding combinations (2⁵).
- ► There is only one equilibrium.

Consumer Welfare

Therefore expected utility of consumer *i* has the well-known closed form:

$$V_i = \mathbb{E}[\max_j \{\xi_j -
ho p_j + \epsilon_{i,j}\}] = In \left[\sum_{i=1}^J exp\left(\xi_j -
ho p_j\right)\right] + C$$

where C is Euler's Constant. There are a mass M of consumers, therefore total consumer expected utility is $M \cdot V_i$. We then can denominate this in dollar terms by dividing by the coefficient on price, ρ . Our measure of total consumer welfare in dollar terms is:

$$CS = \frac{M}{\rho} \left\{ ln \left[\sum_{i=1}^{J} exp \left(\xi_{j} - \rho p_{j} \right) \right] + C \right\}$$

With a sales tax τ , it is:

$$CS = \frac{M}{
ho} \left\{ ln \left[\sum_{j=1}^{J} exp \left(\xi_{j} -
ho(1+ au)p_{j} \right) \right] + C \right\}$$

Equilibrium Uniqueness

Proposition 4

Suppose wages are fixed parameters. A pure strategy equilibrium exists, and is unique for almost any parameter values.

Proof Sketch:

Bertrand oligopoly with logit demand has unique NE

Caplin and Nalebuff (1991)

Profit is strictly incr. in quality-adjusted cost

Algebra + Aravindakshan and Ratchford (2011)

Quality-adjusted cost matrices with mult. equilibria is null

Lipnowski and Ravid (2022)

- ▶ QA matrices are function F of params. Jacobian of F is rank $N \times K$
- Parameters which generate mult. equilibria are measure 0

Identification Proof Sketch

- ▶ All workers with the same skill set are assigned the same distribution of tasks.
- ➤ To see why, suppose not. Then we can take any pair of tasks where the two have different distributions, and re-distributed so that they are more similar.
- Reduces org. cost, does not change wage or quality. This contradicts optimality.
- This with algebra implies complexity wrt identities is equal to complexity wrt just skill set.
- ▶ When $I_j > 0$, we have that I_j is strictly decreasing in γ_j .

Condition for Uniqueness

For price uniqueness use Caplin and Nalebuff (1991). For uniqueness of B_j we require this condition derived from Matêjka and McKay (2015):

Assumption

Define the wage-quality vector of a worker of type i as $v_i = \{w_i - \rho^{-1}\theta_{i,k}\}_{k=1}^K$. The set of wage-quality vectors $\{v_i\}_{i\in\mathcal{I}}$ is affinely independent.

Minimum Wage Counterfactual Employment and Wages

	Initial		Counterfactual	
Worker Type	Hours	Wage	Hours	Wage
Haircut/Shave	537550	\$16.96	502152	\$20.00
Color/Highlight/Wash	997053	\$37.75	997053	\$37.52
Blowdry/Style/Treatment/Extension	444040	\$20.91	444040	\$21.64
Administrative	41860	\$26.99	41860	\$28.12
Nail/Spa/Eye/Misc.	34844	\$81.16	34844	\$81.71

Regressions of Worker Specialization on Organization Complexity

Why Aggregation?

- A single product allows me to focus on the effects of organization on overall salon quality.
- Consumers buy a bundle of services at salons.
- ▶ It buys significant numerical/theoretical tractability.
- Nocke and Schutz (2018): any pricing game with multi-product firms and MNL demand can be represented as a single product firm game with transformed qualities and costs:

$$ilde{q}_j =
ho logigg(\sum_k exp((q_k-c_k)/
ho)igg) + 1 \qquad ilde{c}_j = 1$$

Sales Tax Elimination Effects by Worker Type

Туре	Wage Change	Task-Spec. Change	
Haircut/Shave	31.99%	0.29%	
Color/Highlight/Wash	20.09%	2.57%	
Blowdry/Style/Treatment/Extension	6.06%	3.01%	
Administrative	17.99%	1.03%	
Nail/Spa/Eye/Misc.	12.74%	2.39%	

Minimum Wage Welfare Effects

Source	Change	Percent Change	
Salon Profit	-\$714,413	-0.472%	
Consumer Welfare	-\$2,528,784	-1.671%	
Employed Wages	\$1,689,600	1.116%	
Unemployed Wages	-\$600,240	-0.397%	
Total Welfare	-\$2,153,838	-1.423%	