Universidade de Aveiro, DETI

Arquitetura de Computadores I, Teste Prático 2 – dd/mm/aaaa Ano Letivo xxxx/xx - 1º Semestre

Nº Mec.:	Nome:	

NOTE BEM: Leia atentamente todas as questões, comente o código usando a linguagem C e respeite a convenção de passagem de parâmetros e salvaguarda de registos que estudou. Na tradução para o *Assembly* do MIPS respeite rigorosamente os aspetos estruturais e a sequência de instruções indicadas no código original fornecido.

O código em C apresentado pode não estar funcionalmente correcto, pelo que **não deve ser interpretado**.

Este teste é constituído por 4 folhas.

1) Analise o programa Assembly seguinte e responda às questões que se seguem:

X1: X2: X3:	.data .asciiz .space .byte	"TSTEX2-2021" 26 0xff	# # #	0x10010000
main:	.text .globl ori la la	main \$t0,\$0,0x39 \$t4,X1 \$t5,X2	#####	0x00400000
L1:	move 8 bge 41b 8bgt 4sb 4addiu	\$t6,\$t5 \$t4,\$t5,L3 \$a0,0(\$t4) \$a0,\$t0,L2 \$a0,0(\$t6) \$t6,\$t6,1	#####	0x0040001C(começa nesta)
L2: L3:	addiu j lw ir	\$t4,\$t4,1 L1 \$v0,0(\$t5) \$ra	####	

Carater	Cod. ASCII
'i'	0x21
'#'	0x23
'\$ '	0x24
'%'	0x25
! *!	0x2A
'+'	0x2B
''	0x2D
'0'	0x30
<u>.</u> @	0x40
'A'	0x41
Z'	0x5A
'a'	0x61
'z'	0x7A

- a) Qual o número total de posições de memória ocupado pela string "X1"?
 - 12 posições de memória
- **b)** Qual o endereço de memória a que corresponde o *label* "**x2**"? Irá ser o 0x10010000 + 12 = 0x1001000C

c) Se "x2" for o endereço inicial de um *array* de "floats", qual a dimensão máxima desse *array*? Um float corresponde a 4 bytes, portanto com 26 teríamos um array com 26/4 = 6 floats

d) Se "x2" for o endereço inicial de um *array* de "floats", qual o endereço de memória da posição x2 [4] desse array? Endereço inicial = 0x1001000C (para o x2[0]), portanto o x[4] corresponde a 0x1001001C

e) Qual o número total de bytes de memória usado pelo segmento de dados do programa? 39 bytes

f) Considerando que a primeira instrução do trecho de código fornecido está armazenada a partir do endereço 0x00400000, quais os endereços a que correspondem os labels "L1" e "L2"? (tenha em atenção as instruções virtuais do programa).

g) Quantas vezes é realizado, de forma completa, o ciclo de programa?

<u>7</u>_____

 $\boldsymbol{h)} \hspace{0.2cm} \text{Qual o valor do registo $\textbf{$t5}$ no fim do programa?} \\$

\$t5:

i) Qual o valor do registo \$v0 no fim do programa?

\$v0: 0

Arquitetura de Computadores I – TP2 – dd/mm/aaaa

N.º Mec.:	Nome:

2) Codifique em Assembly do MIPS a seguinte função fun1 ():

```
int fun1(double *a, int N, double *b)
                                                                   Variável Registo
                                                                      а
  int k = 0;
  double *p;
                                                                      Ν
                                                                      b
  for (p = a; p < (a + N); p++)
                                                                      k
                                                                      p
    if( (*p / 2.0) != 0.0)
       *b++ = *p;
    }
    else
      k++;
  return (N - k);
```

Label	Instrução em assembly	Comentário em C

Arquitetura de Computadores I – TP2 – dd/mm/aaaa

N.º Mec.:	Nome:

3) Codifique em Assembly do MIPS a seguinte função fun2 ():

```
int funk( int, int );
int fun2(int *p, int k)
{
   int n=0;
   while ( *p != k )
   {
        n = n + funk(*p, k);
        p++;
   }
   return n;
}
```

Label	Instrução em assembly	Comentário em C

Cotações: 1-25%, 2-25%, 3-25%, 4-25%

Arquitetura de Computadores I – TP2 – dd/mm/aaaa

N.º Mec.: _____ Nome: _____

- 4) Analise a seguinte estrutura student.
 - a) Preencha a tabela seguinte:

Name	Size	Align	Offset
name	50	1	0
num	4	4	50 -> 52
grade	4	4	56
type	1	1	60
student	64	4	

```
typedef struct
{
   char name[50];
   int num;
   float grade;
   char type;
} student;
```

b) Codifique em assembly do MIPS as seguintes funções main () e fun3 ():

```
float fun3(student *std, int n)
                                                                  Variável Registo
{
                                                                             $a0
                                                                    std
  int i;
                                                                             $a1
  float sum=0.0;
                                                                            $t0
                                                                     i
                                                                            $f2
  for(i=0; i < n; i++)
                                                                    sum
    print_string(std[i].name);
    print_float(std[i].grade);
    sum += std[i].grade;
  return sum / 2.0;
}
int main (void)
  static student std[2] = {{ "Rei Eusebio", 12345, 17.2, 'F' },
                             { "Rainha Amalia", 23450, 12.5, 'C' }};
 print_float(fun3(std, 2));
  return -1;
}
```

Label	Instrução em assembly	Comentário em C