Critical states of slow pattern in neuronal networks

Longbin Zeng¹ S. Another²

¹Department of Computer Science University of Somewhere

²Department of Theoretical Philosophy University of Elsewhere

Conference on Fabulous Presentations, 2003

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Network Dynamics

- Network response correspond to specific neuronal parameter, including fire rate, degree of irregularity, spatiotemporal patterns in neuronal spike trains and neuronal critical dynamics.
- Explor the influence of simulation size of neuronal network as well as the community stuctural network. 2000, 5000, 10000, ..., 100 million.
- Synapase density and input heterogeneity.(to be confirmed)

Theoretical explanation

Mainly three aspects...

- Explain the mechanism underly the trainsition dynamics.
 - input current variablity analysis.
 - Mean-filed equation and hopf bifuraction
 - The real part of fixed point is decreasing.
- fit the network response with a simple f unction.

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Make Titles Informative.

Make Titles Informative.

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Orinignal model

$$C_j \dot{V}_j = -\sum_{A=L,E,I} g_A^j (V_j - E_A),$$

where
$$\frac{g_{E,I}^l}{g_L^j} = au_j \sum_m \sum_{k \mid t_m^k < t} \int_{-\infty}^t dt' \, a_{ au_{decay}} \left(t - t'\right) \delta(t' - t_m^k),$$
 usually, $a_{ au_{decay}}(t) = e^{-t/ au_{decay}}/ au_{decay}$, but here we use the limit that $au_{decay} o 0$.

- excitatory and inhibitory currents must be fine-tuned to produce an average input below threshold. Specifically, if K and J represent the average number of input connections per neuron and synaptic efficacy, respectively, the difference between excitatory and inhibitory presynaptic inputs must be of the order of 1/KJ.
- input fluctuations should be large enough to drive firing.

We can use the diffusion approximation and approximate the conductances as

$$\frac{g_E}{g_L} = a\tau_L \left[Kr_E + \sqrt{Kr_E} \zeta_E \right],
\frac{g_I}{g_L} = ag\tau_L \left[\gamma Kr_I + \sqrt{\gamma Kr_I} \zeta_I \right]$$
(1)

Using the diffusion approximation, OU process, the CV equation can be reduced to

$$\tau \frac{dV}{dt} = -V + \mu + \sigma(V)\sqrt{\tau}\zeta \tag{2}$$

where

$$\tau^{-1} = \tau_{L}^{-1} + aK (r_{E} + r_{I}g\gamma)$$

$$\mu = \tau \{E_{L}/\tau_{L} + aK [r_{E}E_{E} + r_{I}g\gamma E_{I}]\}$$

$$\sigma^{2}(V) = a^{2}K\tau \left[r_{E}(V - E_{E})^{2} + g^{2}\gamma r_{I}(V - E_{I})^{2}\right]$$
(3)

under the assumption that Ka >> 1, we have

$$au \sim rac{ au_0^{
m cond}}{Ka}, \quad \mu \sim \mu_0^{
m cond}, \quad \sigma \sim \sqrt{a}\sigma_0^{
m cond}$$
 (4)

we can conclude that:

- μ is independent of coupling strength, i.e, the synaptic efficacy a and degree k.
- 2 Increasing a modifies the drift force and the input noise, which increase proportionally to a and \sqrt{a}
- incresing k increases the drift force as ka

In this case, ka >> 1, we called it strong coupling. However, if such assumpaiton not holds (weak coupling), the scaling function (4) is not ture.

Biological plausible neuronal network

Consider a balanced E-I network with *N* neurons, in which 80% are excitatory neurons and the others inhibitory ones. Each neuron is equipped with a biological plausible neuronal model, leaky integrate and fire model,

$$C \frac{dV}{dt} = -g_l(V - V_l) + I_{syn} + I_{ext},$$

and the conductance-based synaptical filter

$$egin{aligned} I_{syn}(t) &= \sum_{u} g_{u}S_{u}(t)(V_{rev,u} - V) \ S_{i,u}(t) &= rac{1}{ au_{u}}e^{-t/ au_{u}} * \sum_{n,j \in \partial^{i}} w_{j}\delta\left(t - t_{j}^{n}
ight) \ u &= \{AMPA, NMDA, GABA_{A}, GABA_{B}\}. \end{aligned}$$

Balance condition

Under the given network conditions and default neuron parameters, we need to seek for a group of appropriate parameters (g_u) to make the network self-sustaining in a stable firing state.

we can roughly estimate a gruop of parameter by adopting the first order diffusion approximation.

$$\frac{V_{th} - V_{reset}}{\sum_{u} \langle g_{u} S_{u} (V_{u} - V) \rangle - \langle g_{l} (V - V_{l}) \rangle} = \frac{1}{r_{\text{equilibrium}}},$$

and then we can dervie that

$$\begin{cases} 1g_{AMPA} + 5g_{NMDA} = 0.022\\ 1g_{GABA_A} + 18g_{GABA_B} = 0.5 \end{cases}$$
 (5)

Default Paramters

Symbol	Description	Value
N	Total number of neurons	2000
N_E	Total number of excitatory neurons	1600
N_I	Total number of inhibitory neurons	400
K_{in}	Mean of in-degrees	100
$ au_{\it ref}$	Refractory period	5 <i>ms</i>
tauu	decay time of receptors	(8, 40, 10, 50)
$V_{rev,u}$	reverse voltage	(0,0,-70,-100))

Table: Default values of model parameters used in numerical simulations

Rich dynamics in parameter submainfold

We find rich dynamics in this small balanced E-I network.

- Obvious transition in the fire rate.
- CV is larger than 1, and multi stratification.
- Coherence coefficient reflects the spike coherence.
- Critical dynamics occurs in the stratification line paramete space.

avalanches pehenomena

Mainly due to E-I delay feedback...

Figure: raster plot of slow dynamics

avalanches pehenomena

Figure: avalanches pehenomena

The slope of best fit powerlaw distribution for avalanche size is -1.6 and avalanche duration is -1.8

Characteristic in boundary line

if we dive into the characteristices of the network on the boundary line space

17-16-15-28-4-13-12-11-0.025 0.050 0.075 0.100 0.125 0.150 0.175 gabaA

Figure: ks distance

Figure: slope

robust on size

The corresponding relationship between *coherence coefficient* and *ks distance* is shown in the figure below

degree inluence

we perform experiments and summarize the main findings based on shifted exponential in- degree distributions.

Figure: degree influence

parameter heterogeneity

- the raidus is from 1 to 15
- along the boundary line

Figure: parameter heterogeneity

Criticality in large-scale network

Fit to function $s \cdot tanh(ax + by + c) + t$

- in the small blcok, slop is 1.6
- in the large-scale block, slop is 1.6

Peason correlation coefficient Coefficient

Figure: size=2k

Figure: size=100m

Criticality in large-scale network

Figure: pcc with respect to different sizes

Figure: avalanches distribution

Criticality in large-scale network

Some simulation case from a fixed parameter of critical space.

 The avalanche size increases with the size of the simulation.

Figure: size=10k

Figure: size=100m

Dependence on connection density

grid search on network of 2000 neurons with 300 in-connections. x and y range is [0, 1], each 50 points.

Dependence on connection density

grid search on network of 2000 neurons with 500 in-connections.

As we can see, the plane is much more smooth than its in degree=100 and the one-dimensional linear submanifold disappears.

Dependence on connection density

If all case fit to function $s \cdot tanh(ax + by + c) + t$, we can find that its slope is smaller with the degree increasing.

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Synaptic drive

The full model:

$$egin{aligned} C_j \dot{V}_j &= -\sum_A g_{L,A}^j (V_j - E_A) \ g_A^j &= c_A \sum_m \sum_{k \mid t_m^k < t} \int_{-\infty}^t dt' a_{ au_{decay}} \left(t - t'
ight) \delta(t' - t_m^k), \end{aligned}$$

where A = AMPA, NMDA, $GABA_A$, $GABA_B$. Herein, only the single neuron properties will be considered. We aim to explore the influence of restricted parameter c_A to the synaptic drive and membrane response.

The diffusion approximation

The number of pulses that arrive within the timescales τ_A will be approximately gaussian distributed. Thus, we can constitute this Ornstein-Uhlenbeck process.

$$au_A rac{dg_A}{dt} \simeq g_{A0} - g_A + \sqrt{2}\sigma_A \xi_A(t)$$
 (6)

where the gaussian white noise ξ_A has a zero mean and relatively independent.

$$\langle \xi_{A}(t) \rangle = 0 \quad \langle \xi_{A}(t)\xi_{A}(t') \rangle = \tau_{A}\delta(t-t')$$
 (7)

The average conductance $g_{A,0}$ and the standard deviation σ_A are related to the variables c_A , τ_A and \mathcal{R} through

$$g_{A0} = c_A \tau_A \mathcal{R}_A, \quad \sigma_A = c_A \sqrt{\frac{\tau_A \mathcal{R}_A}{2}}$$
 (8)

The diffusion approximation

we sole the above OU equation, then derive:

$$g_{A}(t) = g_{A}(0)e^{-t/\tau_{A}} + g_{A0}\left(1 - e^{-t/\tau_{A}}\right) + \sqrt{2}\sigma_{e} \int_{0}^{t} \frac{1}{\tau_{A}}e^{-(t-s)/\tau_{A}}dB_{s},$$
(9)

and

$$g_{AF}(t) \equiv g_A(t) - g_{A0} \simeq \sqrt{2}\sigma_A \int_0^t \frac{1}{\tau_A} e^{-(t-s)/\tau_A} dB_s$$
 (10)

$$g_{AF}(t) \sim \mathcal{N}\left(0, 2\sigma_A^2 \int_0^t (\frac{1}{\tau_A} e^{-(t-s)/\tau_A})^2 dt\right)$$
 (Ito isometry), (11)

if $t \to \infty$,

$$p_D(g_A) = \frac{1}{\sqrt{2\pi\sigma_A^2}} \exp\left(-\frac{(g_A - g_{A0})^2}{2\sigma_A^2}\right) \tag{12}$$

The diffusion approximation

The criterion for validity of the approximation is $\sigma_A/g_{A0} << 1$. If we thake consideration of the eq(5) and we can derive the total conductance drive. Thus, using excitation as an example,

$$rac{dg_e}{dt} \simeq rac{g_0^{(1)}}{ au_1} + rac{g_0^{(2)}}{ au_2} - (rac{ au_1 + au_2}{ au_1 au_2})g_e + \sqrt{2}(rac{ au_1\sigma_1 + au_2\sigma_1}{ au_1 au_2})\xi_e(t),$$

similarly, we can conclude that the excitatory conducatance obey the gaussian disritbuion.

By separating the synaptic conductances into components $g_0^{(i)}$, i = 1, 2, 3, 4, and fluctuating components $g_F^{(i)}$, i = 1, 2, 3, 4.

$$C\frac{dV}{dt} = -g_0(V - E_0) - \sum_{i=1}^4 g_F^{(i)}(V - E_i)$$
 (13)

where

$$g_0 = g_L + \sum g_0^{(i)}$$
 and $E_0 = \frac{1}{g_0} \left(g_L E_L + \sum g_0^{(i)} E_i \right)$ (14)

effective membrane time constant: $\tau_0 = C/g_0$

the voltage-dependent component of the drive can be expanded around the equilibrium potential E_0

$$g_F^i(V - E_i) = g_F^i(E_0 - E_i) + g_F^i(V - E_i)$$
 (15)

If we drope the multiplicative noise term, that is

$$\begin{cases} C \frac{dV}{dt} \simeq -g_0 \left(V - E_0 \right) + \sum g_F^i \left(E_i - E_0 \right) \\ \tau_i \frac{dg_F^o}{dt} \simeq g_F^i + \sqrt{2} \sigma_i \xi_i(t) \end{cases}$$
(16)

where, ξ_1 and ξ_2 is totally correlated, ξ_3 and ξ_4 is totally correlated.

Then we can rewrite the eq16 as:

$$\frac{dV}{dt} \simeq -\frac{1}{\tau_0} \left(V - E_0 \right) + I_F \tag{17}$$

and we have

$$I_{F}(t) = V(t) - E_{0}$$

$$\simeq \sum \sqrt{2} \left(\frac{\sigma_{i}}{g_{0}}\right) \frac{(E_{i} - E_{0})}{(\tau_{i} - \tau_{0})} \int_{0}^{\infty} ds \left(e^{-s/\tau_{i}} - e^{-s/\tau_{0}}\right) \xi_{i}(t - s)$$
(18)

The distribution predicted for the voltage is the gaussian

$$p_0(V) = \frac{1}{\sqrt{2\pi\sigma_V^2}} \exp\left(-\frac{(V - E_0)^2}{2\sigma_V^2}\right)$$
 (19)

where, for the case where there are no correlations between excitation and inhibition, the variance is

$$\sigma_{V}^{2} = \sum_{i=1}^{4} \left(\frac{\sigma_{i}}{g_{0}}\right)^{2} (E_{i} - E_{0})^{2} \frac{\tau_{i}}{(\tau_{i} + \tau_{0})}$$

$$+ 2\left(\frac{\sigma_{1}\sigma_{2}}{g_{0}^{2}}\right) (E_{1} - E_{0}) (E_{2} - E_{0}) \frac{\sqrt{\tau_{1}\tau_{2}} (2\tau_{1}\tau_{2} + \tau_{1}\tau_{0} + \tau_{2}\tau_{0})}{(\tau_{1} + \tau_{2}) (\tau_{1} + \tau_{0}) (\tau_{2} + \tau_{0})}$$

$$+ 2\left(\frac{\sigma_{3}\sigma_{4}}{g_{0}^{2}}\right) (E_{3} - E_{0}) (E_{4} - E_{0}) \frac{\sqrt{\tau_{3}\tau_{4}} (2\tau_{3}\tau_{4} + \tau_{3}\tau_{0} + \tau_{4}\tau_{0})}{(\tau_{3} + \tau_{4}) (\tau_{3} + \tau_{0}) (\tau_{4} + \tau_{0})}$$

Increasing $GABA_A$ modifies the equilibrium value E_0 , the drift force and the input noise.

Figure: Effects of GABAA on the friing behavior of isolated conductance-based neuron

input-output correlation

Figure: The relationship between the input and output correlation coefficients for an LIF neuron

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.