Hidden Markov Model

Introduction

- HMM is developed and published in 1960s and 70s by L.E. Baum and coworkers.
- It is a probabilistic models(Dynamic Bayesian Network).
- HMM is a tool for representing probability distributions over sequence of observations.
- It is a combination of Markov process and Bayes theory.
- It is represented as $H(A,B,\pi)$. Where A is the state transition probability, B is the observation probability and Pi is the prior probability.

Applications of HMM

- Uses
 - Speech recognition
 - Recognizing spoken words and phrases
 - Gesture recognition
 - Recognizing hand gestures
 - Text processing
 - Parsing raw records into structured records
 - Bioinformatics
 - Protein sequence prediction
 - Financial
 - Stock market forecasts (price pattern prediction)
 - Comparison shopping services

Main Problems of HMMs

- Evaluation problem. Given the HMM $M=(A,B,\pi)$ and the observation sequence $O=O_1O_2...O_K$, calculate the probability P(O|M) which shows the probability of observation sequences given to HMM .
- **Decoding problem.** Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=O_1O_2...O_K$, calculate the most likely sequence of hidden states S_i that produced the most probable state path to get the given observation sequences.
- **Learning problem.** Given some training observation sequences $O=O_1O_2...O_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.
- $O=O_1...O_K$ denotes a sequence of observations $O_k \in \{V_1,...,V_M\}$.

Problem 1

- Calculate the probability of state sequences where the observation sequences are v1 v3 v2.
- For solving this problem forward algorithm is used i.e. Calculate the probability

$$\alpha_{j}(t) = b_{jk} * \sum_{i=1}^{3} \alpha_{i}(t-1)*a_{ij}$$

• Suppose there are three states s1, s2, s3. i.e. hidden unit in HMM. Calculate the probability that it generates the sequence v1 v3 v2(evaluation problem). Where A is the transition probability from one state to another state a_{ij} and B is the observation probability of visible state.

$$B=b_{jk}=P(v_k(t)|s_j(t))$$

 s0 is the initial state at t=0 and v0 is the initial observation sequence at time t=0.

Transition probability matrix

		s0	s1	s2	s3
$A = a_{ij}$	s0	1	0	0	0
	s1	0.2	0.3	0.1	0.4
	s2	0.2	0.5	0.2	0.1
	s3	0.8	0.1	0.0	0.1

Observation probability matrix

		v0	v1	v3	v2
$B = b_{jk}$	s0	1	0	0	0
	s1	0	0.3	0.4	0.3
	s2	0	0.2	0.1	0.7
	s3	0	0.5	0.4	0.1

- •Initial probabilities: say P(s1)=0.3, P(s2)=0.2, P(s3)=0.1.
- Prior probability: [1 0 0]

- Where s0 is the initial state(start state at t=0).
- here 4 hidden states and 4 visible states. The number shown in circle is $\alpha_i(t)$.
- From figure we see that the system was in hidden state s1 at t=0 i.e.($\alpha_1(0)=1$) and $(\alpha_j(0)=0, j \neq 1)$.
- After that the visible state v1 is emitted at t=1, then calculate

$$(\alpha_{1}(1))=(\alpha_{1}(0))*a_{10}*b_{01}=1*0.2*0=0$$

 $(\alpha_{1}(1))=(\alpha_{1}(0))*a_{11}*b_{11}=1*0.3*0.3=.09$

After that the visible state v3 is emitted at t=2, then α is calculated as:

$$\alpha_{j}(t) = b_{jk} * \sum_{i=1}^{3} \alpha_{i}(t-1) * a_{ij}$$

$$(\alpha_{0}(2)) = b_{03} \sum_{i=1}^{3} \alpha_{i}(1) * a_{i0} = 0$$

$$(\alpha_{1}(2)) = b_{13} \sum_{i=1}^{3} \alpha_{i}(1) * a_{i1} = 0.4*(.09*0.3+0.01*0.5+0.2*0.1) = 0.0208$$

Forward Calculation

	t=0 v0	t=1 v1	t=2 v3	t=3 v2
$\alpha_0(t)$	0	0	0	0
$\alpha_1(t)$	1	0.09	0.0208	0.00079
α ₂ (t)	0	0.01	0.0011	0.001596
$\alpha_3(t)$	0	0.2	0.0228	0.000237

Backward Algorithm

- Where s3 is the final state(Final state at t=3).
- Here 4 hidden states and 4 visible states. The number shown in circle is $\beta_i(t)$.
- From figure we see that the system was in hidden state s at t=3 and the observation sequence is v2.
- Here we assume that $(\beta_0(3)=1)$ and $(\beta_i(3)=1, j>=1)$.

$$m{\beta}_{j}(t) = \sum_{i=0}^{3} m{\beta}_{i}(t+1)^{*} \ a_{ji}^{*} \ b_{ik} v(t+1)$$

- After that the visible state v3 is emitted at t=2, then calculate
 - $\beta_0(2) = (\beta_0(1))^* a_{00}^* b_{0k} v(1) + (\beta_1(1))^* a_{01}^* b_{1k} v(1) (\beta_2(1))^* a_{02}^* b_{2k} v(1) + (\beta_3(1))^* a_{03}^* b_{3k} v(1) = 0$, Here k=3

In similar way $\beta_1(2)$, $\beta_2(2)$, $\beta_3(2)$ is calculated.

- After that the visible state v1 is emitted at t=1, then β is calculated as using above formula.
- In the similar way β is calculated for v0 at t=0.

Backward Calculation

	t=0 v0	t=1 v1	t=2 v3	t=3 v2
β ₀ (t)	.0092	0	0	1
β ₁ (t)	0	0.0092	0.21	1
β ₂ (t)	0	0.00265	0.06.	1
β ₃ (t)	0	0.0086	0.17	1

Decoding problem

- Find the optimal path for the sequence v0 v1 v3 v2?
- The problem is solved using Viterbi algorithm.

- It is similar to dynamic programming approach.
- Here we calculate the maximum probability among all the hidden states.
- After that highest probability hidden state will be explored.
- This process is continued upto final sequence.

- At t=0 i.e.($\alpha_1(0)=1$) and ($\alpha_i(0)=0$, j‡ 1).
- At t=1 i.e. $\alpha_1(1)=\max(\alpha_0(1),\alpha_1(1),\alpha_2(1),\alpha_3(1))$
- At t=2 i.e. $\alpha_j(t) = b_{jk} * max(\alpha_i(t-1) * a_{ij})$
- After that

$$\psi(t) = \text{Arg max} (\alpha_i(t)) \text{ where } j=0,1,2,3$$

Viterbi Algorithm

	t=0 v0	t=1 v1	t=2 v3	t=3 v2
α ₀ (t)	0	0	0	0
$\alpha_1(t)$	1	0.09	0.0208	0.00079
α ₂ (t)	0	0.01	0.0011	.001596
$\alpha_3(t)$	0	0.2	0.0228	0.000237

Learning problem (1)

- •Learning problem. Given some training observation sequences $O=O_1\,O_2\dots\,O_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A,B,\pi)$ that best fit training data, that is maximizes $P(O\mid M)$.
- There is no algorithm producing optimal parameter values.
- Use iterative expectation-maximization algorithm to find local maximum of $P(O\mid M)$ Baum-Welch algorithm.

Learning problem (2)

• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m | s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } S_i}{\text{Number of times in state } S_i}$$

Baum-Welch algorithm

General idea:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Expected number of transitions from state } S_j \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j}$$

$$b_{i}(v_{m}) = P(v_{m} | s_{i}) = \frac{\text{Expected number of times observation } V_{m} \text{ occurs in state } S_{i}}{\text{Expected number of times in state } S_{i}}$$

$$\pi_i = P(S_i) = \text{Expected frequency in state } S_i \text{ at time } k=1.$$

Baum-Welch algorithm: expectation step(1)

• Define variable $\xi_k(i,j)$ as the probability of being in state S_i at time k and in state S_j at time k+1, given the observation sequence $O_1 O_2 \ldots O_K$.

$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j | o_1 o_2 ... o_K)$$

$$\xi_k(i,j) = \ \ \, \frac{ \ \, P(q_k \!\!= s_i \ , q_{k+1} \!\!= s_j \ , o_1 \, o_2 \, ... \, o_k) }{ \, P(o_1 \, o_2 \, ... \, o_k) } \ \, = \, \, \,$$

$$\frac{P(q_k = s_i \ , o_1 \ o_2 \ ... \ o_k) \ a_{ij} \ b_j (o_{k+1}) \ P(o_{k+2} \ ... \ o_K \mid q_{k+1} = s_j)}{P(o_1 \ o_2 \ ... \ o_k)} =$$

$$\frac{\alpha_{k}(i) \ a_{ij} \ b_{j} \left(o_{k+1}\right) \beta_{k+1}(j)}{\sum_{i} \sum_{j} \alpha_{k}(i) \ a_{ij} \ b_{j} \left(o_{k+1}\right) \beta_{k+1}(j)}$$

Learning problem (2)

• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m | s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } S_i}{\text{Number of times in state } S_i}$$

Baum-Welch algorithm

General idea:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Expected number of transitions from state } S_j \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j}$$

$$b_{i}(v_{m}) = P(v_{m} | s_{i}) = \frac{\text{Expected number of times observation } V_{m} \text{ occurs in state } S_{i}}{\text{Expected number of times in state } S_{i}}$$

$$\pi_i = P(S_i) = \text{Expected frequency in state } S_i \text{ at time } k=1.$$

Baum-Welch algorithm: expectation step(1)

• Define variable $\xi_k(i,j)$ as the probability of being in state S_i at time k and in state S_j at time k+1, given the observation sequence $O_1 O_2 \ldots O_K$.

$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j | o_1 o_2 ... o_K)$$

$$\xi_k(i,j) = \ \ \, \frac{ \ \, P(q_k \!\!= s_i \ , q_{k+1} \!\!= s_j \ , o_1 \, o_2 \, ... \, o_k) }{ \, P(o_1 \, o_2 \, ... \, o_k) } \ \, = \, \,$$

$$\frac{P(q_k = s_i \ , o_1 \ o_2 \ ... \ o_k) \ a_{ij} \ b_j (o_{k+1}) \ P(o_{k+2} \ ... \ o_K \mid q_{k+1} = s_j)}{P(o_1 \ o_2 \ ... \ o_k)} =$$

$$\frac{\alpha_{k}(i) \ a_{ij} \ b_{j} \left(o_{k+1}\right) \beta_{k+1}(j)}{\sum_{i} \sum_{j} \alpha_{k}(i) \ a_{ij} \ b_{j} \left(o_{k+1}\right) \beta_{k+1}(j)}$$