RELATÓRIO V DE FÍSICA II

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO

INSTITUTO DE FÍSICA

FÍSICA II - EXPERIMENTAL

PROFESSOR: NILSON ANTUNES DE OLIVEIRA ALUNO: MURILO DE JESUS SANTOS SILVA

CURSO: CIÊNCIA DA COMPUTAÇÃO

PRÁTICA: CARGA E DESCARGA DE CAPACITOR

BANCADA: 4

<u>Sumário</u>

- 1- Objetivos da experiência Pág. 3
- 2- Introdução teórica Pág. 3
- 3- Material utilizado Pág. 3
- 4- Procedimentos Experimentais Pág 4
- 5- Dados Experimentais Pág. 4
- 6- Gráfico Pág. 4
- 7- Cálculos Pág. 5
- 8- Conclusão Pág. 6
- 9- Referências Bibliográficas Pág. 6

Objetivos da experiência

Através dos gráficos das experiências, verificar se a expressão teórica para a descarga de capacitores está correta, assim como as expressões de associação de capacitores em série e paralelo.

Introdução teórica

Capacitor é um um dispositivo de circuito elétrico que tem como função armazenar cargas elétricas e consequente energia eletrostática, ou elétrica. Ele é constituído de duas peças condutoras que são chamadas de armaduras.

Os capacitores são utilizados nos mais variados tipos de circuitos elétricos, nas máquinas fotográficas armazenando cargas para o flash, por exemplo. Eles podem ter o formato cilíndrico ou plano, dependendo do circuito ao qual ele está sendo empregado.

Capacitância:

É a propriedade que os capacitores têm de armazenar cargas elétricas na forma de campo eletrostático, e ela é medida através do quociente entre a quantidade de carga (Q) e a diferença de potencial (V) existente entre as placas do capacitor:

$$C = \frac{Q}{V}$$

Material Utilizado

- * Fonte CC 2 20 V
- * Cronômetro digital
- * Protoboard
- * Fios com pinos banana 4 unidades
- * Voltímetro
- * Resistores com 150 Ω e 350 Ω
- * Multímetro
- * Capacitor de µF / 35 V

Procedimento Experimental

Montou-se o circuito com um capacitor de 220µF por 35V, após isso ligou-se-o na fonte de corrente contínua com intuito de se carregar o capacitor envolvido no sistema.

Após carregar o capacitor C1, desligou-se a fonte de corrente contínua do sistema retirando um dos fios que nele estava conectado e mediu-se o tempo dos instantes em que a tensão decaía nos terminais do capacitor C1 com auxílio de um voltímetro e um cronômetro digital.

Dados experimentais

Posição		ΔΤ	ΔV	
	1	00:00:04		9
	2	00:00:10		8
	3	00:00:16		7
	4	00:00:23		6
	5	00:00:32		5
	6	00:00:43		4
	7	00:00:57		3
	8	00:01:15		2

Posição

	ΔΤ	ΔV
1	00:00:10	9
2	00:00:22	8
3	00:00:37	7
4	00:00:53	6
5	00:01:14	5
6	00:01:38	4
7	00:02:07	3
8	00:02:54	2
9	00:04:59	1

00:01:46

<u>Cálculos</u>

* RESISTÊNCIA ELÉTRICA:

$$\Delta V f = \Delta V i \cdot e^{\frac{(\Delta V i)}{(R*C)}}$$

ΔVf – Variação de potencial final em Volts

ΔVi - Variação de potencial inicial em Volts.

Δt – Variação de tempo em segundos

C – Capacitância

R – Resistência em Ohms

Primeira medição: $\Delta V f = 8 \cdot e^{\frac{1,42}{((220 \times 10^{-6})) \times 150)}} = e^{(43,\bar{03})} \times 8$

Segunda medição: $\Delta V f = 8 \cdot e^{\frac{4,49}{((220*10^{(-6)})*350)}} = e^{(58,311)} \times 8$

Conclusão

Após o experimento ficou claro que as expressões teóricas utilizadas para carga e descarga de capacitores são totalmente válidas. Quanto a resistência R encontrada, conclui-se que a mesma é a resistência interna de nosso voltímetro, que necessita de uma resistência muito grande, que tenda ao infinito.

Referências Bibliográficas

*http://brasilescola.uol.com.br/fisica/capacitores.htm

* Halliday Volume 3 – 8ª Edição