Package 'Spectrum'

October 12, 2022

Title Fast Adaptive Spectral Clustering for Single and Multi-View Data

Author Christopher R John, David Watson

Version 1.1

Maintainer Christopher R John <chris.r.john86@gmail.com></chris.r.john86@gmail.com>
Description A self-tuning spectral clustering method for single or multi-view data. 'Spectrum' uses a new type of adaptive density aware kernel that strengthens connections in the graph based on common nearest neighbours. It uses a tensor product graph data integration and diffusion procedure to integrate different data sources and reduce noise. 'Spectrum' uses either the eigengap or multimodality gap heuristics to determine the number of clusters. The method is sufficiently flexible so that a wide range of Gaussian and non-Gaussian structures can be clustered with automatic selection of K.
Depends R (>= $3.5.0$)
License AGPL-3
Encoding UTF-8
LazyData true
Imports ggplot2, ClusterR, Rfast, diptest
Suggests knitr
VignetteBuilder knitr
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-10 08:40:02 UTC
R topics documented:
blobs 2 brain 2 circles 3 cluster_similarity 3 CNN_kernel 4 constructor by 4
estimate_k

2 brain

Index		14
	spirals	13
	Spectrum	
	sigma_finder	
	rbfkernel_b	
	pca	
	ng_kernel	
	misslfilled	
	missl	
	mean_imputation	
	kernel_pca	
	integrate_similarity_matrices	
	harmonise_ids	

Description

blobs

A simulated dataset of 8 Gaussian blobs. Simulated using the 'clusterlab' CRAN package.

8 blob like structures

Usage

blobs

Format

A data frame with 10 rows and 800 variables

brain A brain cancer dataset

Description

A dataset containing The Cancer Genome Atlas expression data. From this publication https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2016/. The first data frame is a 5133X150 RNA-seq data matrix, the second is a 262X150 miRNA-seq data matrix, the third is 45X150 protein array data matrix. The data was all pre-normalised then subject to log transform.

Usage

brain

Format

A list of data frames

circles 3

Source

https://gdac.broadinstitute.org/

circles

Three concentric circles

Description

Simulated data using the 'clusterSim' CRAN package.

Usage

circles

Format

A data frame with 2 rows and 540 variables

cluster_similarity

cluster_similarity: cluster a similarity matrix using the Ng method

Description

This function performs clustering of a similarity matrix following the method of Ng or of Melia. We recommend using the Ng method with GMM to cluster the eigenvectors instead of k-means.

Usage

```
cluster_similarity(A2, k = k, clusteralg = "GMM", specalg = "Ng")
```

Arguments

A2 Data frame or matrix: a similarity matrix k Numerical value: the number of clusters

clusteralg Character value: GMM or km clustering algorithm (suggested=GMM)
specalg Character value: Ng or Melia variant of spectral clustering (default=Ng)

Value

A numeric vector of cluster assignments

CNN_kernel

References

Ng, Andrew Y., Michael I. Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm." Advances in neural information processing systems. 2002.

Meila, Marina, et al. "Spectral Clustering: a Tutorial for the 2010's." Handbook of Cluster Analysis. CRC Press, 2016. 1-23.

Examples

```
ng_similarity <- cluster_similarity(missl[[1]],k=8)</pre>
```

CNN_kernel

CNN_kernel: fast adaptive density-aware kernel

Description

CNN_kernel: fast adaptive density-aware kernel

Usage

```
CNN_kernel(mat, NN = 3, NN2 = 7)
```

Arguments

mat Matrix: matrix should have samples as columns and rows as features

NN Numerical value: the number of nearest neighbours to use when calculating

local sigma

NN2 Numerical value: the number of nearest neighbours to use when calculating

common nearest neighbours

Value

A kernel matrix

Examples

```
CNN_kern <- CNN_kernel(blobs[,1:50])</pre>
```

estimate_k 5

estimate_k	estimate_k: heuristics	estimate	K using	the	eigengap	or multi	modality	gap

Description

This function will try to estimate K given a similarity matrix. Generally the maximum eigengap is preferred, but on some data examining the distribution of the eigenvectors as in the multimodality gap heuristic may be beneficial.

Usage

```
estimate_k(A2, maxk = 10, showplots = TRUE)
```

Arguments

A2 Data frame or matrix: a similarity matrix

maxk Numerical value: maximum number of K to be considered showplots Character value: whether to show the plot on the screen

Value

A data frame containing the eigenvalues and dip-test statistics of the eigenvectors of the graph Laplacian

Examples

```
k_test <- estimate_k(missl[[1]])</pre>
```

hammantaa tala	
harmonise_ids	harmonise_ids: works on a list of similarity matrices to add entries of
	NA where there are missing observations between views

Description

Simply adds a column and row of NA with the missing ID for data imputation. The similarity matrix requires row and column IDs present for this to work.

Usage

```
harmonise_ids(1)
```

Arguments

1 A list of similarity matrices: those to be harmonised.

Value

A list of harmonised similarity matrices.

Examples

```
h_test <- harmonise_ids(missl)</pre>
```

```
integrate_similarity_matrices
```

integrate_similarity_matrices: integrate similarity matrices using a tensor product graph linear combination and diffusion technique

Description

Given a list of similarity matrices this function will integrate them running the Shu algorithm, also can reduce noise if the input is a list consisting of a single matrix.

Usage

```
integrate_similarity_matrices(kernellist, KNNs_p = 10,
  diffusion_iters = 4, method = "TPG")
```

Arguments

kernellist A list of similarity matrices: those to be integrated

KNNs_p Numerical value: number of nearest neighbours for KNN graph (default=10,

suggested=10-20)

diffusion_iters

Numerical value: number of iterations for graph diffusion (default=4, suggested=2-

6)

method Character: either TPG (see reference below) or mean (default=TPG)

Value

An integrated similarity matrix

References

Shu, Le, and Longin Jan Latecki. "Integration of single-view graphs with diffusion of tensor product graphs for multi-view spectral clustering." Asian Conference on Machine Learning. 2016.

Examples

```
i_test <- integrate_similarity_matrices(misslfilled,method='mean')</pre>
```

kernel_pca 7

Description

kernel_pca: A kernel pca function

Usage

```
kernel_pca(datam, labels = FALSE, axistextsize = 18,
  legendtextsize = 18, dotsize = 3, similarity = TRUE)
```

Arguments

datam Dataframe or matrix: a data frame with samples as columns, rows as features,

or a kernel matrix

labels Factor: to label the plot with colours

axistextsize Numerical value: axis text size legendtextsize Numerical value: legend text size

dotsize Numerical value: dot size

similarity Logical flag: whether the input is a similarity matrix or not

Value

A kernel PCA plot

Examples

```
ex_kernel_pca <- kernel_pca(blobs[,1:50], similarity=FALSE)</pre>
```

mean_imputation	mean_imputation: mean imputation function for multi-view spectral
	clustering with missing data

Description

Works on a list of similarity matrices to impute missing values using the mean from the other views.

Usage

```
mean_imputation(1)
```

Arguments

1 A list of data frames: all those to be included in the imputation.

8 misslfilled

Value

A list of completed data frames.

Examples

```
m_test <- mean_imputation(misslfilled)</pre>
```

missl

A list of the blob data as similarity matrices with a missing entry in one

Description

Two copies of a simulated dataset of 8 Gaussian blobs in a list converted to a similarity matrix, but one has a missing observation.

Usage

missl

Format

A list of two data frames

тi	99	lfi	11	ച

A list of the blob data as similarity matrices with a missing entry in one filled with NAs

Description

Two copies of a simulated dataset of 8 Gaussian blobs in a list converted to a similarity matrix, but one has a missing observation filled with NAs.

Usage

misslfilled

Format

A list of two data frames

ng_kernel 9

ng_kernel

ng_kernel: Kernel from the Ng spectral clustering algorithm

Description

This is the kernel from the Ng spectral clustering algorithm. It takes a global sigma which requires tuning for new datasets in most cases. It is possible to use the sigma_finder function to find a sigma for a dataset. Sigma is assumed to be squared already.

Usage

```
ng_kernel(data, sigma = 0.1)
```

Arguments

data Data frame or matrix: with points as columns, features as rows

sigma Numerical value: a global sigma that controls the drop off in affinity

Value

A similarity matrix of the input data

References

Ng, Andrew Y., Michael I. Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm." Advances in neural information processing systems. 2002.

Examples

```
ng_similarity <- ng_kernel(brain[[1]])</pre>
```

рса

pca: A pca function

Description

```
pca: A pca function
```

Usage

```
pca(mydata, labels = FALSE, dotsize = 3, axistextsize = 18,
  legendtextsize = 18)
```

10 rbfkernel_b

Arguments

mydata Data frame or matrix: matrix or data frame with samples as columns, features

as rows

labels Factor: to label the plot with colours

dotsize Numerical value: dot size
axistextsize Numerical value: axis text size
legendtextsize Numerical value: legend text size

Value

A pca plot object

Examples

```
ex_pca <- pca(blobs[,1:50])</pre>
```

rbfkernel_b

rbfkernel_b: fast self-tuning kernel

Description

rbfkernel_b: fast self-tuning kernel

Usage

```
rbfkernel_b(mat, K = 3, sigma = 1)
```

Arguments

mat Matrix: matrix should have samples as columns and rows as features

K Numerical value: the number of nearest neighbours to use when calculating

local sigma

sigma Numerical value: a global sigma, usually left to 1 which has no effect

Value

A kernel matrix

Examples

```
stsc_kern <- rbfkernel_b(blobs[,1:50])</pre>
```

sigma_finder 11

sigma_finder

sigma_finder: heuristic to find sigma for the Ng kernel

Description

This is a heuristic to find the sigma for the kernel from the Ng spectral clustering algorithm. It returns a global sigma. It uses the mean K nearest neighbour distances of all samples to determine sigma.

Usage

```
sigma_finder(mat, NN = 3)
```

Arguments

mat

Data frame or matrix: with points as columns, features as rows

NN

Numerical value: the number of nearest neighbours to use (default=3)

Value

A global sigma

Examples

```
sig <- sigma_finder(blobs)</pre>
```

Spectrum

Spectrum: Fast Adaptive Spectral Clustering for Single and Multiview Data

Description

Spectrum is a self-tuning spectral clustering method for single or multi-view data. Spectrum uses a new type of adaptive density-aware kernel that strengthens connections between points that share common nearest neighbours in the graph. For integrating multi-view data and reducing noise a tensor product graph data integration and diffusion procedure is used. Spectrum analyses eigenvector variance or distribution to determine the number of clusters. Spectrum is well suited for a wide range of data, including both Gaussian and non-Gaussian structures.

Usage

```
Spectrum(data, method = 1, silent = FALSE, showres = TRUE,
  diffusion = TRUE, kerneltype = c("density", "stsc"), maxk = 10,
  NN = 3, NN2 = 7, showpca = FALSE, frac = 2, thresh = 7,
  fontsize = 18, dotsize = 3, tunekernel = FALSE,
  clusteralg = "GMM", FASP = FALSE, FASPk = NULL, fixk = NULL,
  krangemax = 10, runrange = FALSE, diffusion_iters = 4,
  KNNs_p = 10, missing = FALSE)
```

12 Spectrum

Arguments

data Data frame or list of data frames: contains the data with points to cluster as columns and rows as features. For multi-view data a list of dataframes is to be

supplied with the samples in the same order.

method Numerical value: 1 = default eigengap method (Gaussian clusters), 2 = mul-

timodality gap method (Gaussian/ non-Gaussian clusters), 3 = no automatic

method (see fixk param)

silent Logical flag: whether to turn off messages

showres Logical flag: whether to show the results on the screen

diffusion Logical flag: whether to perform graph diffusion to reduce noise (default=TRUE)

kerneltype Character string: 'density' (default) = adaptive density aware kernel, 'stsc' =

Zelnik-Manor self-tuning kernel

maxk Numerical value: the maximum number of expected clusters (default=10). This

is data dependent, do not set excessively high.

NN Numerical value: kernel param, the number of nearest neighbours to use sigma

parameters (default=3)

NN2 Numerical value: kernel param, the number of nearest neighbours to use for the

common nearest neighbours (default = 7)

showpca Logical flag: whether to show pca when running on one view

frac Numerical value: optk search param, fraction to find the last substantial drop

(multimodality gap method param)

thresh Numerical value: optk search param, how many points ahead to keep searching

(multimodality gap method param)

fontsize Numerical value: controls font size of the ggplot2 plots dotsize Numerical value: controls the dot size of the ggplot2 plots

tunekernel Logical flag: whether to tune the kernel, only applies for method 2 (default=FALSE)

clusteralg Character string: clustering algorithm for eigenvector matrix (GMM or km)

FASP Logical flag: whether to use Fast Approximate Spectral Clustering (for v. high

sample numbers)

FASPk Numerical value: the number of centroids to compute when doing FASP

fixk Numerical value: if we are just performing spectral clustering without automatic

selection of K, set this parameter and method to 3

krangemax Numerical value: the maximum K value to iterate towards when running a range

of K

runrange Logical flag: whether to run a range of K or not (default=FALSE), puts Kth

results into Kth element of list

diffusion_iters

Numerical value: number of diffusion iterations for the graph (default=4)

KNNs_p Numerical value: number of KNNs when making KNN graph (default=10,

suggested=10-20)

missing Logical flag: whether to impute missing data in multi-view analysis (default=FALSE)

spirals 13

Value

A list, containing: 1) cluster assignments, in the same order as input data columns 2) eigenvector analysis results (either eigenvalues or dip test statistics) 3) optimal K 4) final similarity matrix 5) eigenvectors and eigenvalues of graph Laplacian

Examples

```
res <- Spectrum(brain[[1]][,1:50])</pre>
```

spirals

Two spirals wrapped around one another

Description

Simulated data using the 'mlbench' CRAN package.

Usage

spirals

Format

A data frame with 2 rows and 180 variables

Index

```
* datasets
    blobs, 2
    brain, 2
    circles, 3
    missl, 8
    {\tt misslfilled}, \\ 8
    spirals, 13
blobs, 2
brain, 2
circles, 3
cluster\_similarity, 3
CNN_kernel, 4
estimate_k, 5
harmonise_ids, 5
integrate\_similarity\_matrices, 6
kernel_pca, 7
missl, 8
misslfilled, 8
ng_kernel, 9
pca, 9
rbfkernel_b, 10
sigma_finder, 11
{\it Spectrum},\, {\color{red}11}
spirals, 13
```