

eMall – e-Mobility for all

REQUIREMENT ANALYSIS AND SPECIFICATION DOCUMENT - RASD

Author(s): Fabio Lusha - 10882532

Bianca C. Savoiu Marinas - 10684465

Academic Year: 2022-2023

Contents

C	onter	ats	i							
1	Intr	oduction	1							
	1.1	Purpose	1							
	1.2	Scope	2							
	1.3	Definitions, Acronyms, Abbreviations	ŝ							
		1.3.1 Abbreviations	ŝ							
		1.3.2 Definitions	7							
	1.4	Reference Documents	3							
	1.5	Document Structure	9							
2	Ove	Overall description 11								
	2.1	Product perspective	L							
	2.2	Product functions	l							
	2.3	User characteristics	l							
	2.4	Assumptions, dependencies and constraints	Ĺ							
3	Spe	Specific requirements 13								
	3.1	External Interface Requirements	3							
		3.1.1 User Interfaces	3							
		3.1.2 Hardware Interfaces	3							
		3.1.3 Software Interfaces	3							
		3.1.4 Communication Interfaces	3							
	3.2	Functional Requirements	3							
	3.3	Performance Requirements	3							
	3.4	Design Constraints	3							
		3.4.1 Standards compliance	3							
		3.4.2 Hardware limitations	3							

		3.4.3	Any other constraint	13	
	3.5	Softwa	are System Attributes	13	
		3.5.1	Reliability	13	
		3.5.2	Availability	13	
		3.5.3	Security	13	
		3.5.4	Maintainability	14	
		3.5.5	Portability	14	
4	4 Formal analysis using Alloy 15				
5	5 Effort spent			17	
6	6 References			19	
Li	List of Figures 2				
\mathbf{Li}	ist of Tables 2				

1.1. Purpose

Widespread electrification of transport is the most efficient way to reach Europe's climate objectives for the sector and electric charging is the main asset to overcome the obstacles of the take-up of electric vehicles (EVs). EVs can reduce CO2 by an estimated annual 600,000 tons by 2030, going towards a carbon neutral Europe and the importance of this aim raises the problem of having efficient systems that manage the charging services. The e-Mall is thought as an all-encompassing application that oversees the entire process from the user interaction to the effective recharge of the EV's battery.

The main goal we want to achieve with the e-Mall software is to help The EVDs (electric vehicle drivers) to have a better access to recharge and to be able to book a charging point in order to avoid interference with his daily plans. Another important purpose of the system is to safeguard not only the users but also the providers of the service and this is made thought privacy agreements and the actual interaction that guarantees to supervise the both interested parts, in order to get the best possible service and pay for it accordingly, having also a technical and economic exploitation of the charging infrastructures.

In this context there is an increase in the requested electric energy, but large amounts of power in short periods would require investments in the reinforcement of the distribution networks, which have not been designed to accommodate such load. It becomes necessary to introduce new systems and solutions to optimize the operation of distribution networks and we can identify the DSOs as important actors that have to monitor the networks in order to have a safe and controlled supply of the energy and manage faults in the assets. The DSOs communicate with the e-Mall, and in particular with the CPMS modules that decide from where to acquire energy in order to satisfy as well as possible the CPOs economical interests.

Goal	Description
G1	The EVD is able to identify the charging stations nearby
G2	The EVD is able to visualize the tariffs of the charging stations
G3	The EVD is able to visualize any special offer available at the charging station
G4	The EVD is able to book a charge in a specific charging station for a certain
	time-frame
G5	The EVD is able to start the charging process at a certain station
G6	The EVD is able to pay for the obtained service
G7	The CPO can decide from which DSO to acquire energy
G8	The CPO can decide the cost of charging
G9	The CPO can set special offers
G10	The CPO can decide whether to store or not energy in batteries
G11	The CPO can decide whether to use the energy available in the batteries

Table 1.1: Goals

1.2. Scope

World phenomena	Description
WP1	The EVD wants to charge the EV's battery
WP2	The EVD wants to plan where and when to charge the EV's
	battery
WP3	The prices for energy often vary in real world economy
WP4	The providers of energy, as marketing strategy, have special offers
	during certain time periods.
WP5	The providers of the charging service make special offers during
	certain time periods.
WP6	EVs may have an integrated rectifier that converts AC electricity
	to DC
WP7	Some type of chargers have an integrated rectifier that converts
	AC electricity to DC. They supply the EV directly with DC cur-
	rent
WP8	A charging of type X, provides electricity in mode C and is given
	through Z connectors

Table 1.2: World Phenomena

World phenomena CPO	Description		
WP9	A charging station is owned and managed by one CPO		
WP10	A CPO owns and manages one or more charging stations		
WP11	A charging station may be equipped with batteries		
WP12	Charging stations equipped with batteries grant more flexibility to		
	CPOs on how to choose between the energy stored in the batteries		
	and the one offered by DSOs		
WP13	Low voltage (3.7 - 11 kW) chargers need more time to charge the		
	battery		
WP14	Medium voltage (22-90 kW) chargers need less time to recharge		
	a battery of capacity C than a low voltage charger		
WP15	High voltage (> 90 kW) chargers need less time to recharge a		
	battery of capacity C than a medium voltage charger		
WP16	Batteries can only be charged with direct current (DC) electric		
	power		
WP17	Given a continuous supply of power W, and a battery with finite		
	capacity C, than the charging time T is finite.		
WP18	The charger of a specific charging station may be unusable be-		
	cause of maintenance or faults		

Table 1.3: World Phenomena

World phenomena DSO	Description
WP19	The DSOs provide energy to a charging station
WP20	Most electricity is delivered from the power grid as alternating
	current (AC)
WP21	During the day the electric power supplied to the station can vary
WP22	During the day a short-duration reduction in the voltage supplied
	to the electrical power systems may occur due to high current
	demand or faults in the system.
WP23	During the day a momentary increase in voltage may occur. This
	may happen when a heavy load turns off in a power system.

Table 1.4: World Phenomena

Shared	Description	Controller	Observer
phenomena			
SP1	The eMall notifies the EVD when the	eMall	EVD
	charging process is finished		
SP2	The EVD creates an account	EVD	eMall
SP3	The EVD in order to register inserts	EVD	eMall
	in the mobile app of the eMall the		
	personal data (name, surname, pay-		
	ment details)		
SP4	The EVD logs in	EVD	eMall
SP5	The EVD accepts the terms of ser-	EVD	eMall
	vice in order to use the eMall		
SP6	The EVD shares its location with the	EVD	eMall
	eMall		
SP7	The EVD confirms the payment from	EVD	eMall
	the mobile application of the eMall		
SP8	The EVD deletes previously inserted	EVD	eMall
	EVs from its account		
SP9	The EVD updates the specifications	EVD	eMall
	of the EVs on its account		
SP10	The EVD adds a new EV to its ac-	EVD	eMall
	count		
SP11	The EVD inserts the maximum and	EVD	eMall
	minimum current supported by the		
	EV		
SP12	The EVD inserts the maximum	EVD	eMall
	power supported by the EV		
SP13	The EVD inserts the inlet type of the	EVD	eMall
	EV		
SP14	The EVD inserts whether the EV is	EVD	eMall
	equipped with a built-in rectifier		
SP15	The EVD inserts the capacity of the	EVD	eMall
	battery in kWh		

SP16	The eMall shows to the EVD the map of the charging stations nearby his location	eMall	EVD
SP17	The EVD chooses a charging station from the map	EVD	eMall
SP18	The eMall shows the user the rating of the charging station	eMall	EVD
SP19	The EVD inserts the expected time when he plans to start the charging process	EVD	eMall
SP20	The EVD inserts the expected time when he plans to end the charging process	EVD	eMall
SP21	The eMall shows to the EVD the list of available chargers of the charging station	eMall	EVD
SP22	The eMall shows the charger type and its connectors	eMci / eMma	EVD
SP23	The EVD chooses the charger he wants to use from the list of available ones	EVD	eMall
SP24	The eMall shows to the EVD the charger costs (per kWh, per minute, additional costs)	eMma/eMci	EVD
SP25	The eMall shows to the EVD the status of the charger	eMci	EVD
SP26	The eMall shows to the EVD the battery level of the connected EV	eMci	EVD
SP27	During the charging session the eMall shows to the EVD the power output of the charger	eMci	EVD
SP28	During the charging session the eMall shows to the EVD the remaining time to complete the charging process	eMci	EVD

SP29	The EVD starts the charging session	EVD	eMSP
	from the charger		

Table 1.5: Shared Phenomena

1.3. Definitions, Acronyms, Abbreviations

1.3.1. Abbreviations

• eMall: e-Mobility for all

• eMma: e-Mall mobile application

• eMci: e-Mall charger interface

• CPMS: Charging Point Management System

• **CPO**: Charge Point Entity

• eMSP: Electric Mobility Service Providers

• DMS: Distribution Management System

• **DSO**: Distribution System Operator

• EV: Electric Vehicle

• EVD: Electric Vehicle Driver

• EVSE: Electric Vehicle Supply Equipment

• **HV**: High Voltage

• LV: Low Voltage

• MV: Medium Voltage

• SCADA: Supervisory Control and Data Acquisition

• SCM: Smart Charging Management

• OMS: Outage Management System

• AC: Alternating current

• DC: Direct current

1.3.2. Definitions

• **DSO**: typically the entity responsible for the operation and management of distribution networks – High, Medium and Low Voltage networks. For this purpose, the DSO typically owns systems such as Supervisory and Control Data Acquisition (SCADA)/ Distribution Management System (DMS) for the monitoring and general overview of the state of the network. It also owns other systems such as the Outage Management System (OMS) and Work Force Management System (WFMS) for addressing the network operation problems related with the continuity and quality of service.

- **CPO**: entity that technically manages all the EV infrastructure assets, depending of existing country regulation this role can be assured by the DSO or other entity.
- eMSP: is the entity that can explore the economic side of the EV charging infrastructure, namely by selling energy for charging purposes.
- **CPMS**: is a software system that manages the charge point infrastructure can manage the technical and economic aspects of the charging infrastructures.
- EV Driver: person or entity who owns an EV car and can use the public or private facilities for charging purposes.
- EVSE: responsible for the charging of the EV. It is an equipment that is able to charge EV batteries with AC or DC loads and with different rated powers depending on the type of equipment.
- **Private parking**: can be a condominium, industry or other entity who has private owned EV
- Voltage sag: a short-duration reduction in voltage of an electric power distribution system. It can be caused by high current demand or fault current elsewhere in the system.
- Voltage swell: the opposite of voltage sag. Voltage swell, which is a momentary increase in voltage, happens when a heavy load turns off in a power system.
- Socket outlet: the port on the electric vehicle supply equipment (EVSE) that supplies charging power to the vehicle
- Plug: the end of the flexible cable that interfaces with the socket outlet on the

EVSE.

• Cable: a flexible bundle of conductors that connects the EVSE with the electric vehicle

- Connector: the end of the flexible cable that interfaces with the vehicle inlet
- Vehicle inlet: the port on the electric vehicle that receives charging power
- *Inverter*: It is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC).
- Rectifier: an electrical device that converts alternating current (AC) to direct current (DC).
- eMma: the eMSP subsystem responsible for the EVD interaction from the mobile app
- eMci: the eMSP subsystem responsible for the EVD interaction at the charger
- additional costs: overtime penalty, deposit for unregistered users
- status of the charger: can be free, occupied, booked and in maintenance.

1.4. Reference Documents

- IEEE 29148-2018 International Standard Requirements engineering: defines the construct of a good requirement and provides attributes and characteristics of requirements; provides also additional guidelines for applying the requirements and requirements-related processes
- RDD assignment document
- Electric Vehicle CPMS and Secondary Substation Management by F. Campos, Efacec, Portugal; L. Marques, Efacec, Portugal and K. Kotsalos, Efacec, Portugal (15 October 2018): used to define the interactions between the different parts of the system and the actors; models the EV public infrastructures, the eMSP, the DSO and the CPMS together with the APIs and protocols that allow their communication
- EV CHARGING: HOW TO TAP IN THE GRID SMARTLY? by Platform for Electromobility (May 2022): used to understand the environment of the problem and contextualize the analysis

1.5. Document Structure

$\mathbf{2}$ Overall description

- 2.1. Product perspective
- 2.2. Product functions
- 2.3. User characteristics

2.4. Assumptions, dependencies and constraints

Assumptions	Description
A1	The end user has internet connection
A2	The end user has a mobile phone with an integrated GPS module
A3	The end user has the mobile application of the eMSP installed
	on his mobile phone
A4	The CPMS shares the location of the charging station to the
	eMSP through APIs
A5	The end user payment from the mobile app is handled by external
	APIs.
A6	The EVD that creates an account inserts the personal data and
	the EVs specifications during registration
A7	The non registered EVD inserts the EVs specifications and pay-
	ment details during the booking phase

Table 2.1: Assumptions

3 | Specific requirements

3.1.	External	Interface	Rec	quiren	nents
------	----------	-----------	-----	--------	-------

- 3.1.1. User Interfaces
- 3.1.2. Hardware Interfaces
- 3.1.3. Software Interfaces
- 3.1.4. Communication Interfaces
- 3.2. Functional Requirements
- 3.3. Performance Requirements
- 3.4. Design Constraints
- 3.4.1. Standards compliance
- 3.4.2. Hardware limitations
- 3.4.3. Any other constraint
- 3.5. Software System Attributes
- 3.5.1. Reliability
- 3.5.2. Availability
- 3.5.3. Security

- 3.5.4. Maintainability
- 3.5.5. Portability

4 Formal analysis using Alloy

5 Effort spent

6 References

List of Figures

List of Tables

1.1	Goals	2
1.2	World Phenomena	2
1.3	World Phenomena	3
1.4	World Phenomena	3
1.5	Shared Phenomena	6
2.1	Assumptions	11

