[확률의 개념과 응용]

학습목표

- 1. 이산형 균등분포를 이해할 수 있다.
- 2. 베르누이 분포를 이해할 수 있다.
- 3. 이항분포를 이해할 수 있다.

들어가기

학습하기

7강 이산형 확률분포 1

이산형 확률변수

1.이산형 확률변수

이산형확률변수

- ◆ 셀 수 있는 값을 가지는 확률변수
- ◆ 확률분포는 확률질량함수로 표현

1.이산형 확률변수

이산형확률분포

분포 이름	확률질량함수	기댓값	분산
이산형 균등분포 DU(n)	$f(x) = \frac{1}{n},$ $x = 1, 2, \dots, n$	$\frac{n+1}{2}$	$\frac{(n+1)(n-1)}{12}$
베르누이 분포 Ber(<i>p</i>)	$f(x) = p^{x} (1-p)^{1-x},$ x = 0, 1	p	p(1-p)
이항분포 B(n, p)	$f(x) = \binom{n}{x} p^x (1-p)^{n-x},$ $x = 0, 1, 2, \dots, n$	np	np(1-p)
포아송 분포 Poisson(λ)	$f(x) = \frac{\lambda^x e^{-\lambda}}{x!},$ $x = 0, 1, 2, \dots (\lambda > 0)$	λ	λ

1.이산형 확률변수

이산형확률분포

분포 이름	확률질량함수	기댓값	분산
초기하분포 HYP(n, D, N)	$f(x) = \binom{D}{x} \binom{N-D}{n-x} / \binom{N}{n},$ $x = 1, 2, \dots, n$	$\frac{nD}{N}$	$\frac{nD}{N} \left(\frac{(N-D)(N-n)}{N(N-1)} \right)$
기하분포 Geometric(p)	$f(x) = p(1-p)^x,$ $x = 0, 1, 2, \cdots$	$\frac{(1-p)}{p}$	$\frac{(1-p)}{p^2}$
음이항분포 NB(<i>r</i> , <i>p</i>)	$f(x) = {r+x-1 \choose x} p^r (1-p)^x, x = 0, 1, 2, \dots$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$

학습하기

7강 이산형 확률분포 1

이산형 균등분포

이산형균등분포의확률질량함수

◆ 이산형 확률변수 값의 확률이 모두 같을 때 분포

$$P(X = x_i) = \frac{1}{n}, \quad i = 1, 2, 3, \dots n$$

이산형균등분포의확률질량함수

◆ 이산형 균등분포의 확률질량함수와 누적분포함수

이산형균등분포의기댓값

$$E(X) = \frac{n+1}{2}$$

이산형균등분포의분산

$$Var(X) = \frac{n^2 - 1}{12}$$

이산형균등분포의예

주사위 값(X)의 분포와 기댓값, 분산은?

학습하기

7강 이산형 확률분포 1

베르누이분포

베르누이(Bernoulli) 시행

◆ 실험이 오직 두 가지 서로 배반적인 사건만을 가질 때의 시행

(예) 동전의 앞면과 뒷면, 양품과 불량품

베르누이분포의확률질량함수

◆ 베르누이 분포 : 베르누이 시행의 분포

$$P(X = x) = p^{x} (1-p)^{1-x}$$
 $x = 0,1$

베르누이분포의확률질량함수

◆ 베르누이 분포의 확률질량함수와 누적분포함수

베르누이분포의기댓값과분산

◆ 기댓값과 분산

$$E(X) = p,$$
 $Var(X) = p(1-p)$

베르누이분포의기댓값

$$\bullet$$
 $E(X) = p$ 의 증명

3.베르누이분포

베르누이분포의분산

$$\bullet Var(X) = p(1-p)$$
의 증명

학습하기

7강 이산형 확률분포 2

이항분포

베르누이시행과이항분포

 이항분포: 베르누이 시행을 독립적으로 여러 번 시행한 후 성공(실패) 횟수의 분포

예

불량률이 5%인 제품을 3개 뽑아서 불량품 이 0~3개일 확률은?

예

불량률이 5%인 제품을 3개 뽑아서 불량품 이 0~3개일 확률은?

예

불량률이 5%인 제품을 3개 뽑아서 불량품 수의 확률분포는?

X	0	1	2	3	합
P(X)	$_{3}C_{0}\left(\frac{5}{100}\right)^{0}\left(\frac{95}{100}\right)^{3}$	$_{3}C_{1}\frac{5}{100}\left(\frac{95}{100}\right)^{2}$	$_{3}C_{2}\left(\frac{5}{100}\right)^{2}\frac{95}{100}$	$_3C_3\left(\frac{5}{100}\right)^3\left(\frac{95}{100}\right)^0$	1

이항분포의확률질량함수

lacktriangle 성공률 p, 시행횟수 n, 성공횟수 X의 확률분포

$$P(X = x) = {}_{n}C_{x}p^{x}(1-p)^{n-x}$$
$$x = 0, 1, \dots, n$$

성공률에 따른 이항분포

◆ B(10,0.2)

성공률에따른이항분포

◆ B(10,0.5)

성공률에 따른 이항분포

◆ B(10,0.8)

시행횟수에 따른 이항분포

 $X \sim B(n,p)$ 표본공간에서의 확률이 1임을 증명

아들과 딸을 나을 확률이 0.5이고 서로 독립

(1) 아이 3명 낳을 때 두 명의 딸을 낳을 확률은?

예

아들과 딸을 나을 확률이 0.5이고 서로 독립

(2) 아이 3명 낳을 때 적어도 한 명의 딸을 낳을 확률은?

아들과 딸을 나을 확률이 0.5이고 서로 독립

(3) 아이 2명 낳았는데 세 번째 아이가 딸일 확률은?

이항분포의기댓값과분산

◆ 기댓값과 분산

$$E = np$$
$$Var(X) = np(1-p)$$

이항분포의기댓값

 \bullet E(X) = np 의 증명

이항분포의분산

$$\bullet Var(X) = np(1-p)$$
의 증명

이항분포의분산

$$\bullet Var(X) = np(1-p)$$
의 증명

예

시험의 합격률 0.4이며 서로 독립적인 5명 시험 응시

(1) 한 명이 합격할 확률은?

시험의 합격률 0.4이며 서로 독립적인 5명 시험 응시

(2) 합격자 수의 평균(기댓값)은?

시험의 합격률 0.4이며 서로 독립적인 5명 시험 응시

(3) 합격자 수의 분산은?

이항분포의특징

 $\bullet X_1, X_2, \cdots, X_n \sim Ber(p)$ 독립 $\to \sum_{i=1}^n X_i \sim B(n, p)$

학습정리

- 이산형 균등분포는 이산형 확률변수가 그 값이 유한 개이며 각 값에서의 확률이 모두 같을 때의 분포이다.
- 베르누이 분포는 한 실험이 두 배반적 사건으로 구분 될 때 한 사건발생 여부의 확률분포이다.
- 이항분포는 베르누이 시행이 독립적으로 이루어 졌을 때의 성공횟수(실패횟수)의 분포이다.

수고하셨습니다.

07 이산형 확률분포 1

이산형확률분포 2