Student name:	
Student number:	

There are 9 questions and 100 marks total.

- 1. (15 points) Let $A = \{a, b, c\}, B = \{x, y\}, \text{ and } C = \{0, 1\}.$ Find a) $A \times B \times C$. b) $C \times B \times A$. c) $C \times A \times B$.
- 2. (10 points) Find $f \circ g$ and $g \circ f$, where f(x) = 2x + 1 and $g(x) = x^3 + 2$, are functions from R to R.
- 3. (10 points) Let f(x) = ax + b and g(x) = cx + d, where a, b, c, and d are constants. Determine necessary and sufficient conditions on the constants a, b, c, and d so that $f \circ g = g \circ f$.
- 4. (10 points) Determine whether $f: Z \times Z \rightarrow Z$ is onto if a) f(m, n) = m + n + 1. b) f(m, n) = |m| |n|.
- 5. (15 points) A factory makes custom sports cars at an increasing rate. In the first month only one car is made, in the second month two cars are made, and so on, with n cars made in the nth month.
 - a) Set up a recurrence relation for the number of cars produced in the first n months by this factory.
 - b) How many cars are produced in the first year?
 - c) Find an explicit formula for the number of cars produced in the first n months by this factory.
- 6. (10 points) Show that $\begin{bmatrix} 2 & 3 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 3 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 7 & -8 & 5 \\ -4 & 5 & -3 \\ 1 & -1 & 1 \end{bmatrix}$.
- 7. (10 points) Let $A_i = \{-i, -i + 1, \dots, -1, 0, 1, \dots, i 1, i\}$ for every positive integer i. Find a) $\bigcup_{i=1}^{\infty} A_i$ b) $\bigcap_{i=1}^{\infty} A_i$
- (10 points) Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.
 - a) $a_n = a_{n-1} + 3a_{n-2}$, $a_0 = 1$, $a_1 = 2$ b) $a_n = na_{n-1} + n^2 a_{n-2}$, $a_0 = 1$, $a_1 = 1$
- 9. (10 points) Compute each of these double sums.

a)
$$\sum_{i=1}^{3} \sum_{j=1}^{2} (2i - j)$$
 b) $\sum_{i=0}^{3} \sum_{j=0}^{2} i^2 j^3$