DMA Přednáška – Posloupnosti

Definice.

Posloupnost je libovolné zobrazení z nějaké množiny $\{n_0, n_0 + 1, n_0 + 2, \dots\}$ do \mathbb{R} , kde pro $n_0 \in \mathbb{Z}$.

Definice.

Nechť $\{a_k\}$ je posloupnost.

Řekneme, že tato posloupnost jde do nekonečna, popřípadě že má limitu nekonečno, značeno $\lim(a_k) = \infty$ popřípadě $a_k \to \infty$, jestliže

pro každé K > 0 existuje k_0 tak, aby $a_k > K$ pro všechna $k \ge k_0$.

Řekneme, že tato posloupnost jde k nule, popřípadě že konverguje k nule, popřípadě že má limitu rovnou nule, značeno $\lim(a_k) = 0$ popřípadě $a_k \to 0$, jestliže

pro každé K > 0 existuje k_0 tak, aby $|a_k| < K$ pro všechna $k \ge k_0$.

Fakt.

- (i) Nechť a>0. Pak $k^a\to\infty$ a $\frac{1}{k^a}\to0$. (ii) Jestliže q>1, pak $q^k\to\infty$.
- Jestliže |q| < 1, pak $q^k \to 0$.
- (iii) $k! \to \infty$.
- (iv) $k^k \to \infty$.
- (v) Nechť b > 0. Pak $[\ln(k)]^b \to \infty$.

10^6 operací za 1 sec.			čas in ms.		s=sec	m=min	d=d	en r	=rok
k =	5	10	20	50	100	1000	10^{5}	10^{8}	
$\ln(k)$:	0.0016	0.0023	0.003	0.004	0.0046	0.007	0.01	0.018	
• k:	0.005	0.01	0.02	0.05	0.1	1	0.1s	1.7m	
• k^2 :	0.025	0.1	0.4	2.5	10	1s	28m	317r	
$\frac{1}{100}k^2$:	0.0002	0.001	0.004	0.025	0.01	10	1.7m	3.2r	
$k^{1.585}$:	0.013	0.038	0.12	0.49	1.5	57	1.4m	55d	
2^k :	0.03	1	1s	35.7r	$4 \times 10^{16} \mathrm{r}$	$3\times10^{287}\mathrm{r}$			

Hardware setup: $k = 10 \implies 1$ sec. čas in s.										
k =	10	20	30	40	50	100				
ln(k):	1	1.3	1.5	1.6	1.7	2				
• k:	1	2	3	4	5	10				
20k:	1	2	3	4	5	10				
20k + 5:	1	2	3	3.9	4.9	9.8				
k^2 :	1	4	9	16	25	$1 \mathrm{m} 40 \mathrm{s}$				
k^3 :	1	8	27	1m	2m	17m				
2^k :	1	17m	12d	34r	$35 \times 10^3 \mathrm{r}$	$4 \times 10^{19} \mathrm{r}$				
k!:	1	21×10^3 r	$2 \times 10^{18} \mathrm{r}$	7×10^{33} r	$3 \times 10^{50} \mathrm{r}$					

d=den r=rok

Definice.

Nechť $\{a_k\}$, $\{b_k\}$ jsou posloupnosti splňující $a_k \to \infty$, $b_k \to \infty$. Řekneme, že a_k je $o(b_k)$, jestliže $\frac{a_k}{b_k} \to 0$ neboli $\frac{b_k}{a_k} \to \infty$. Řekneme, že a_k je $\omega(b_k)$, jestliže $\frac{a_k}{b_k} \to \infty$ neboli $\frac{b_k}{a_k} \to 0$. Řekneme, že a_k je $O(b_k)$, jestliže $\exists N \in \mathbb{N} \ \exists K > 0$ aby $\forall k \geq N \colon a_k \leq K b_k$.

Řekneme, že a_k je $\Omega(b_k)$, jestliže $\exists N \in \mathbb{N} \ \exists L > 0 \ \text{aby} \ \forall k \geq N \colon a_k \geq Lb_k$.

Řekneme, že a_k je $\Theta(b_k)$ nebo že $a_k \approx b_k$, jestliže $\exists N \in \mathbb{N} \ \exists K, L > 0 \ \text{aby} \ \forall k \geq N \colon Lb_k \leq a_k \leq Kb_k$.

Fakt.

Nechť $\{a_k\}$, $\{b_k\}$ jsou posloupnosti splňující $a_k \to \infty$, $b_k \to \infty$. Jestliže $\frac{a_k}{b_k} \to A > 0$, pak a_k je $\Theta(b_k)$.

Věta. (škála mocnin)

(i) Nechť a, b > 0 a q > 1. Pak platí

 $[\ln(k)]^a$ je $o(k^b)$, k^b je $o(q^k)$, q^k je o(k!) a k! je $o(k^k)$.

- (ii) Jestliže 0 < a < b, pak $[\ln(k)]^a$ je $o([\ln(k)]^b)$ a k^a je $o(k^b)$.
- (iii) Jestliže 1 < q < r, pak q^k je $o(r^k)$.

Fakt.

Jestliže $b_k = o(a_k)$, pak $a_k + b_k = \Theta(a_k)$.