SUPPLEMENTARY INFORMATION

Model Predictive Control using Physics Informed Neural Networks for Process Systems.

Rahul Patel, Sharad Bhartiya, Ravindra Gudi*

Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
*(E-mail: ravigudi@iitb.ac.in)

Table S1. Model Parameters of CSTR System

Parameter	Units	Nominal Operating
		Points
Coolant flow rate $(U_1 = F_C)$	m³/min	15
Inlet flow rate of A $(U_2 = F)$	m³/min	1
Reactor concentration of A $(X_1 = C_A)$	kmol/m³	0.265
Reactor temperature $(X_2 = T)$	K	393.954
Inlet concentration of A (D = C_{AO})	kmol/m³	2.0
Parameter	Units	Values
Reaction rate constant (k ₀)	min ⁻¹	10^{10}
Density of the reagent A (ρ)	g/m^3	10^{6}
Specific heat capacity of A (C _p)	cal/g°C	1.0
Heat of reaction (ΔH_r)	cal/kmol	-130*10 ⁶
Density of the coolant (ρ_c)	g/m^3	10^{6}
Specific heat capacity of coolant (C _{pc})	cal/g°C	1.0
Volume of the CSTR (V)	m^3	1.0
Inlet temperature of the coolant (T _{cin})	K	365
Inlet temperature of A (T _o)	K	323
a	(cal/min)/K	1.678*10 ⁶
Reaction Rate Parameter (E/R)	K-1	8330
ь		0.5

Table S2. Model Parameters of Electrochemical System

Parameter	Values
F	96487
R	8.314
$\phi_{eq,1}$	0.420
φ _{eq,2}	0.303
ρ	3.4
W	92.7
V	1×10^{-5}
i _{app}	1×10^{-5}
i_{01}	1×10^{-04}
i_{02}	1×10^{-08}

Table S3. Bounds of variables for PINN training and MPC

For a CSTR ODE System:				
Inputs	Lower Bound	Upper Bound	Max Move	
U_1	12	18	1.2	
U_2	0.5	1.5	0.2	
X_1	0.01	0.9	-	
X_2	330	450	-	
Timestep (t)	0	0.8	-	
For an Electroch	nemical DAE System:		I	
Inputs	Lower Bound	Upper Bound	Max Move	
U_1	273	343	10	
X_1	0.01	1	-	
X_2	0.3	0.54	-	
Timestep (t)	0	500	-	

Table S4. MPC Parameters

For a CSTR ODE System:			
Parameter	Value		
Prediction Horizon (P)	20		
Control Horizon (M)	6		
No of simulation steps	130		
α	[10000, 0]		
β	[1, 1]		
For an Electrochemical DAE System:			
Inputs	Lower Bound		
Prediction Horizon (P)	7		
Control Horizon (M)	3		
No of simulation steps	50		
α	[10000, 0]		
β	[0.05]		