

Marten Lienen

21. Januar 2014

Kapitel 1

Maß- und Integrationstheorie

- §1 Quader und Figuren
- §2 σ -Algebren und Maße
- §3 Das Lebesgue-Maß
- §4 Messbare Funktionen
- §5 Integrationstheorie
- §6 Vertauschbarkeit des Integrals mit Grenzprozessen
- §7 Der Satz von Fubini
- §8 Die Transformationsformel
- §9 Die Räume L^p

Kapitel 2

Vektoranalysis

§10 Untermannigfaltigkeiten des \mathbb{R}^n

Bemerkung. Sei $I = [a,b] \subset \mathbb{R}$. Dann ist I eine abgeschlossene 1-dimensionale Untermannigfaltigkeit mit Rand von \mathbb{R} und $\partial I = \{a,b\}$. Ist $f : \mathbb{R} \to \mathbb{R}$ von der Klasse C^1 , so ist $\int_I f'(x) dx = f(b) - f(a) = \int_{\partial I} f$ (man muss aufs Vorzeichen achten).

Bemerkung. Ist X eine n-dimensionale abgeschlossene Untermannigfaltigkeit mit Rand von $M \subseteq \mathbb{R}^N$, so ist $\partial X \subseteq X$.

Satz 1. Ist M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N und X eine abgeschlossene n-dimensionale Untermannigfaltigkeit mit Rand von M, so ist ∂X eine (n-1)-dimensionale Untermannigfaltigkeit von \mathbb{R}^N .

Beweis. Sei $a \in X$ und $\varphi : V \to W$ eine randadaptierte Karte von M bezüglich X mit $a \in W$. Sei $W_0 := \partial X \cap W$, $V_0 := \{x \in \mathbb{R}^{n-1} \mid (0,x) \in V\}$, $\varphi_0 : V_0 \to W_0$ definiert durch $\varphi_0(x) := \varphi(0,x)$. Dann ist φ_0 eine Karte von ∂X mit $a \in W_0$.

Bemerkung. Eine Manigfaltigkeit (im bisherigen Sinn) ist auch eine Manigfaltigkeit mit Rand, deren Rand leer ist; $X \setminus \partial X$ ist eine n-dimensionale Manigfaltigkeit ohne Rand.

Bemerkung. Ist X wie in Satz 5 und $a \in \partial X$, so gibt es eine offene Umgebung W von $a \in X$, die homöomorph $zu \mathbb{R}^n_-$.

§11 Zusammenhängende metrische Räume

Definition. Ein metrischer Raum X heißt <u>zusammenhängend</u>, wenn die einzigen Teilmengen von X, die sowohl offen als auch abgeschlossen in X sind, \emptyset und X sind.

Beispiel. $X = [0,1] \cup [2,3]$ ist nicht zusammenhängend, denn [0,1] und [2,3] sind offen und abgeschlossen in X.

Bemerkung. Genau dann ist X zusammenhängend, wenn gilt: Sind A, B offene Teilmengen von X mit $X = A \cup B$, so ist $A \neq \emptyset$ oder $B \neq \emptyset$.

Satz 1. Sei X eine Teilmenge von \mathbb{R} , die mehr als einen Punkt enthält. Genau dann ist X zusammenhängend, wenn X ein (offenes/abgeschlossenes/halboffenes/eigentliches/uneigentliches) Intervall ist.

Beweis. • Angenommen, X sei kein Intervall. Dann gibt es $x_1, x_2, \xi \in \mathbb{R}$ mit $x_1, x_2 \in X$ und $x_1 < \xi < x_2$. Sei $A := \{x \in X \mid x < \xi\}$ und $B := \{x \in X \mid x > \xi\}$. Dann ist $A \cup B = X$ und A und B sind offen in X nach §10 Satz 3.

• Angenommen X sei nicht zusammenhängend. Dann gibt es offene Teilmengen A, B von X mit $A \cup B = X$ und $A \neq \emptyset \neq B$. Sei $a \in A, b \in B$. O.b.d.A. sei a < b. Wäre X ein Intervall, so wäre $[a,b] \subseteq X$. $M := \{x \in A \mid x < b\}$. Wegen $a \in M$ ist $M \neq \emptyset$. M ist nach oben beschränkt. Sei $c := \sup M \in [a,b] \subseteq X$. Da $A = X \setminus B$ abgeschlossen in X, folgt $c \in A$, also $c \notin B$.

Satz 2. Seien X,Y metrische Räume und sei $f:X\to Y$ eine stetige, surjektive Abbildung. Ist X zusammenhängend, so auch Y.

Beweis. Seien A, B offen in Y mit $Y = A \cup B$. Dann ist $X = f^{-1}(A) \cup f^{-1}(B)$. Weil f stetig ist, sind $f^{-1}(A)$ und $f^{-1}(B)$ offen in X. Weil X zusammenhängend ist, ist $f^{-1}(A) \neq \emptyset$ oder $f^{-1}(B) \neq \emptyset$. Ist etwa $f^{-1}(A) \neq \emptyset$, so ist auch $A \neq \emptyset$, denn, weil f surjektiv ist, ist $A = f(f^{-1}(A))$. Deswegen ist Y zusammenhängend. \square

Bemerkung. Satz 1 und Satz 2 zusammen sind eine weitgehende Verallgemeinerung des Zwischenwertsatzes.

Lemma. Sei X ein metrischer Raum, C ein zusammenhängender Teilraum von X. Dann ist auch \bar{C} zusammenhängend (\bar{C} ist der Abschluss von C in X).

Beweis. Seien A, B offene Teilmengen von \bar{C} mit $\bar{C} = A \cup B$. Dann gibt es (nach §10 Satz 3) offene Teilmengen A', B' von X mit $A = \bar{C} \cap A'$ und $B = \bar{C} \cap B'$. Nach Satz 3 §10 sind $C \cap A'$ und $C \cap B'$ offen in C. Es ist $C \cap A' \subseteq \bar{C} \cap A' = A$, also $C \cap A' = C \cap A$; ebenso ist $C \cap B' = C \cap B$. Deswegen ist $C = (C \cap A') \cup (C \cap B')$. Also ist o.B.d.A. $C \cap A' = \emptyset$. Wäre A' nicht leer, so wäre auch $A' \cap C$ nicht leer (gäbe es $x \in A' \cap C$, so wäre $c \in C$ und A' Umgebung von x in X).

Lemma. Sei X ein metrischer Raum, $X = \bigcup_{i \in I} X_i$. Jedes X_i sei zusammenhängend und $\bigcap_i X_i \neq \emptyset$. Dann ist X zusammenhängend.

Beweis. Seien A, B offen in X mit $X = A \cup B$. Angenommen $A \neq \emptyset \neq B$. Es gibt ein $a \in \cap_i X_i$. Sei o.B.d.A. $a \in A$. Weil $B \neq \emptyset$, gibt es ein $b \in B$. Es gibt ein $i_0 \in I$ mit $b \in X_{i_0}$. a ist insbesondere auch in X_{i_0} . Deshalb ist X_{i_0} die disjunkte Vereinigung der beiden nicht-leeren, offenen Teilräume $X_{i_0} \cap A$ und $X_{i_0} \cap B$, Widerspruch. \square

Definition. Sei X ein metrischer Raum, $x \in X$. Dann sei C(x) die Vereinigung aller zusammenhängenden Teilräume von X, die x enthalten. C(x) heißt die Zusammenhangskomponente von x in X.

Beispiel. • Ist $X = [1,2] \cup [3,4] \subset \mathbb{R}$. Dann ist C(1) = [1,2].

• Ist $X = \mathbb{Q} \subset \mathbb{R}$ und $x \in X$, so ist $C(x) = \{x\}$.

Satz 3. Sei X ein metrischer Raum, $x, y \in X$.

- a) C(x) ist die größte zusammenhängende Teilmenge von X, die x enthält
- b) Entweder ist C(x) = C(y) oder $C(x) \cap C(y) = \emptyset$
- c) C(x) ist abgeschlossen in X

Beweis. a) Folgt aus Lemma 2

b) Sei $C(x) \cap C(y) \neq \emptyset$. Nach Lemma 2 ist $C(x) \cup C(y)$ zusammenhängend. Weil C(x) die größte zusammenhängende Teilmenge von X, die x enthält, ist, ist $C(x) = C(x) \cup C(y)$, also $C(y) \subseteq C(x)$. Ebenso $C(x) \subseteq C(y)$.

c) Folgt aus a) und Lemma 1

Bemerkung. Im Allgemeinen ist C(x) nicht offen in X, wie das Beispiel $X = \mathbb{Q}$ zeigt.

Definition. Sei X ein metrischer Raum. X heißt wegzusammenhängend, wenn gilt: Sind $a, b \in X$, so gibt es eine stetige Abbildung $w : [0,1] \to X$ (einen Weg) $mit \ w(0) = a \ und \ w(1) = b$.

Satz 4. Ein wegzusammenhängender metrischer Raum ist zusammenhängend.

Beweis. Wähle $x_0 \in X$. Für jedes $x \in X$ gibt es einen Weg $w_x : [0,1] \to X$ mit $w(0) = x_0$ und w(1) = x. Nach Satz 1 ist [0,1] zusammenhängend. Nach Satz 2 ist $w_x([0,1])$ zusammenhängend. $X = \bigcup_{x \in X} w_x([0,1])$ und $x_0 \in \bigcap_x w_x([0,1])$. Nach Lemma 2 ist X zusammenhängend.

Bemerkung. Es gibt zusammenhängende metrische Räume, die <u>nicht</u> wegzusammenhängend sind, z.B. $\{(0,y) \mid y \in \mathbb{R}\} \cup \{(x,\sin(\frac{1}{x})) \mid x > 0\} \subset \mathbb{R}^2$.

Satz 5. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N .

- a) M ist genau dann zusammenhängend, wenn M wegzusammenhängend ist
- b) Die Zusammenhangskomponenten von M sind offen in M
- c) Die Zusammenhangskomponenten von M sind n-dimensionale Untermannigfaltigkeiten von \mathbb{R}^N

Entsprechendes gilt für Untermannigfaltigkeiten mit Rand.

Beweisskizee als Hilfestellung für Übung. a) Sei M zusammenhängend. Sei $x_0 \in M$. Sei $A := \{x \in M \mid es \ gibt \ einen \ Weg \ w : [0,1] \to M \ mit \ w(0) = x_0 \ und \ w(1) = x\}$. Zu zeigen: A = M. Dann ist $A \neq \emptyset$, denn $x_0 \in A$.

A ist offen in M Sei $a \in A$. Nach der Folgerung aus Satz 1 von §10 besitzt a eine Umgebung U in M, die homöomorph zu \mathbb{R}^n ist. Ist $x \in U$, so gibt es einen Weg w in U mit w(0) = a, w(1) = x. Es gibt einen Weg v von v_0 nach v_0 nach v

A ist abgeschlossen in M Weil M zusammenhängend ist, folgt A = M.

- b) Ähnlich
- c) folgt direkt aus b)

§12 Kompakte metrische Räume

Definition. Ist X eine Menge und ist $\{A_i \mid i \in \Lambda\}$ eine Menge von Teilmengen von X so heißt $\{A_i \mid i \in \Lambda\}$ eine Überdeckung von X, wenn $X = \bigcup_{i \in \Lambda} A_i$.

Definition. Sei X ein metrischer Raum und $\{A_i \mid i \in \Lambda\}$ eine Überdeckung von X. Dann heißt $\{A_i \mid i \in \Lambda\}$ eine offene Überdeckung von X, wenn alle A_i offen in X sind.

Definition. Ein metrischer Raum heißt <u>kompakt</u>, wenn jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt, wenn also gilt: Ist $\{A_i \mid i \in \Lambda\}$ eine offene Überdeckung von X, so gibt es $n \in \mathbb{N}$ und $i_1, \ldots, i_n \in \Lambda$ mit $X = A_{i_1} \cup \cdots \cup A_{i_n}$.

Bemerkung. Eine Teilmenge A eines metrischen Raumes X ist genau dann kompakt, wenn gilt: Sind $A_i (i \in \Lambda)$ offene Teilmengen von X mit $A \subseteq \bigcup_{i \in \Lambda} A_i$, so gibt es ein $n \in \mathbb{N}$ und $i_1, \ldots, i_n \in \Lambda$ mit $A \subseteq A_{i_1} \cup \cdots \cup A_{i_n}$.

Satz 1. Seien X, Y metrische Räume und sei $f: X \to Y$ stetig. Ist K eine kompakte Teilmenge von X, so ist f(K) kompakt.

Beweis. Seien $A_i(i \in \Lambda)$) offene Teilmengen von Y mit $f(K) \subseteq \bigcup_{i \in \Lambda} A_i$. Weil f stetig ist, ist $f^{-1}(A_i)$ offen in $X \, \forall i \in \Lambda$. Es ist $K \subseteq f^{-1}(\bigcup_{i \in \Lambda}) A_i = \bigcup_{i \in \Lambda} f^{-1}(A_i)$. Es gibt also ein $n \in \mathbb{N}$ und $i_1, \ldots, i_n \in \Lambda$ mit $K \subseteq f^{-1}(A_{i_1}) \cup \cdots \cup f^{-1}(A_{i_n})$. Daraus folgt

$$f(K) \subseteq f(f^{-1}(A_{i_1}) \cup \dots \cup f^{-1}(A_{i_n})) = f(f^{-1}(A_{i_1})) \cup \dots \cup f(f^{-1}(A_{i_n})) = A_{i_1} \cup \dots \cup A_{i_n}$$
 (2.1)

Satz 2. Jede abgeschlossene Teilmenge A eines kompakten metrischen Raumes X ist kompakt.

Beweis. Seien $A_i(i \in \Lambda)$) offene Teilmengen von X mit $A \subseteq \bigcup_{i \in \Lambda} A_i$. Die A_i zusammen mit $X \setminus A$ bilden eine offene Überdeckung von X. Weil X kompakt ist, gibt es eine endliche Teilüberdeckung von X, d.h. es gibt ein $n \in \mathbb{N}$ und $i_1, \ldots, i_n \in \Lambda$ mit $X = A_{i_1} \cup \cdots \cup A_{i_n} \cup (X \setminus A) \Rightarrow A \setminus A_{i_1} \cup \cdots \cup A_{i_n}$.

Satz 3. Jede kompakte Teilmenge A eines metrischen Raumes X ist abgeschlossen in X.

Beweis. Zeige $X \setminus A$ ist offen in X. Sei $x \in X \setminus A$. Wir wollen zeigen: $X \setminus A$ ist Umgebung von x in X. Ist $y \in A$, so ist $y \neq x$; deswegen gibt es offene Teilmengen $U_y und V_y$ von X mit $x \in U_y$, $y \in V_y$ und $U_y \cap V_y = \emptyset$. Dann ist $A \subseteq \bigcup_{y \in A} V_y$. Weil A kompakt ist, gibt es ein $n \in \mathbb{N}$ und Punkte $y_1, \ldots, y_n \in A$ mit $A \subseteq V_{y_1} \cup \cdots \cup V_{y_n} = V$. Sei $U := U_{y_1} \cap \cdots \cap U_{Y-n}$. Dann ist U eine offene Umgebung von x mit $U \cap V = \emptyset$, also $U \subseteq X \setminus A$.

Satz 4. Seien X, Y metrische Räume; X sei kompakt und $f: X \to Y$ sei stetig und bijektiv. Dann ist $f^{-1}: Y \to X$ stetig. Deswegen ist f ein Homöomorphismus.

Beweis. Wir zeigen: Ist A abgeschlossen in X, so ist $f(A) = (f^{-1})^{-1}(A)$ abgeschlossen in Y. Nach Satz 2 ist A abgeschlossen \Rightarrow nach Satz 1 ist f(A) kompakt \Rightarrow nach Satz 3 f(A) ist abgeschlossen in Y.

Definition. Sei X ein metrischer Raum, (x_n) eine Folge in X und $a \in X$. Dann heißt a ein Häufungspunkt von (x_n) , wenn es eine Teilfolge von (x_n) gibt, die gegen a konvergiert; äquivalent dazu: Wenn es für jede Umgebung U von a in X unendlich viele $n \in \mathbb{N}$ gibt mit $x_n \in U$.

Satz 5. Sei X ein metrischer Raum. Äquivalent sind:

a) X ist kompakt

- b) Jede Folge in X besitzt eine Häufungspunkt in X
- c) X ist vollständig und für jedes $\varepsilon > 0$ gibt es ein $n \in \mathbb{N}$ und $x_n, \ldots, x_n \in X$ mit $X = \bigcup_{i=1}^n B_{\varepsilon}(x_i)$

Beweis. $a) \Rightarrow b$): Sei X kompakt und (x_n) eine Folge in X. Sei F_n der Abschluss der Menge $\{x_n, x_{n+1}, x_{n+2}, \dots\}$ in X. Wir werden zeigen, dass $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$. (Ein Element von $\bigcap_{n=1}^{\infty} F_n$ ist ein Häufungspunkt von (x_n))

Angenommen, es sei $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Sei $A_n := X \setminus F_n$. Dann ist A_n offen in X und $\bigcap_{n=1}^{\infty} A_n = \bigcap_n (X \setminus F_n) = X \setminus \bigcap_n F_n = X$. Deswegen bilden die A_n mit $n \in \mathbb{N}$ eine offene Überdeckung von X. Weil X kompakt ist, gibt es $n_n, \ldots, n_k \in \mathbb{N}$ mit $X = A_{n_1} \cup \cdots \cup A_{n_k}$. Für $n \geq m$ ist $F_n \subseteq F_m$, also $A_n \supseteq A_m$. Ist $n_0 = \max\{n_1, \ldots, n_k\}$, so ist also $X = A_{n_0} \Rightarrow F_{n_0} = \emptyset$, Widerspruch, da $x_{n_0} \in F_{n_0}$.

- $b) \Rightarrow c$): Sei (x_n) eine Cauchy-Folge in X. Dann besitzt (x_n) einen Häufungspunkt a, d.h. eine Teilfolge von (x_n) konvergiert gegen a. Nach Aufgabe 40 konvergiert (x_n) gegen a. Deswegen ist X vollständig.
- Sei $\varepsilon > 0$. Angenommen X ist nicht die Vereinigung von endlich vielen Kugeln von Radius ε . Dann definiert man induktiv eine Folge (x_n) in X, so dass gilt: Ist $n \neq m$, so ist $d(x_n, x_m) \geq \varepsilon$. Dann kann (x_n) keinen Häufungspunkt besitzen, Widerspruch.
- $c) \Rightarrow a$): Sei $\{A_i \mid i \in \Lambda\}$ offene Überdeckung von X. Angenommen, es gäbe keine endliche Teilüberdeckung. Wir werden induktiv eine Folge (B_n) von Kugeln vom Radius $\frac{1}{2^n}$ definieren, von denen jede nicht durch endlich viele A_i überdeckt wird:
- n=0 Nach Vorraussetzung wird X von endlich vielen Kugeln vom Radius 1 überdeckt. Von diesen kann eine nicht von endlich vielen A_i überdeckt werden; nenne sie B_0 .
- $n-1 \to n$ Sei bereits B_{n-1} konstruiert. Weil X von endlich vielen Kugeln vom Radius $\frac{1}{2^n}$ überdeckt wird, gibt es unter diesen eine, die nicht von endlich vielen der A_i überdeckt wird und nicht-leeren Schnitt mit B_{n-1} hat. B_n habe den Mittelpunkt x_n . Wegen $B_n \cap B_{n-1} \neq \emptyset$ ist $d(x_n, x_{n-1}) \leq \frac{1}{2^n} + \frac{1}{2^{n-1}} \leq \frac{1}{2^{n-2}}$. Ist also $n \leq p < q$, so $d(x_p, x_q) \leq d(x_p, x_{p-1}) + \cdots + d(x_{q-1}, x_q) \leq \frac{1}{2^{p-2}} \leq \frac{1}{2^{n-2}}$.

Deswegen ist (x_n) eine Cauchy-Folge, konvergiert also gegen ein $a \in X$. Es gibt ein $i_0 \in \Lambda$ mit $a \in A_{i_0}$. Da A_{i_0} offen ist, existiert $\varepsilon > 0$ mit $B_{\varepsilon}(a) \subseteq A_{i_0}$. Für großes n ist $x_n \in B_{\frac{\varepsilon}{2}}(a)$ und $B_n \subseteq B_{\varepsilon}(a)$. Daher ist B_n für großes n in A_{i_0} enthalten, Widerspruch.

Satz 6 (Heine-Borel). Für eine Teilmenge X von \mathbb{R}^n sind äquivalent:

- a) X ist kompakt
- b) X ist beschränkt und abgeschlossen in \mathbb{R}^n

Beweis. $a) \Rightarrow b$): Ist X kompakt, so ist X abgeschlossen in \mathbb{R}^n nach Satz 3. Nach Satz 5 wird X durch endlich viele Kugeln vom Radius 1 überdeckt, ist also beschränkt.

- $(b) \Rightarrow a$): Weise Bedingung c) vom Satz 5 nach:
- X ist vollständig: Sei (x_m) eine Cauchy-Folge in X. Weil \mathbb{R}^n vollständig ist, konvergiert (x_m) gegen ein $a \in \mathbb{R}^n$. Weil X abgeschlossen in \mathbb{R}^n ist, ist $a \in X$.

• Weil X beschränkt ist, wird X für jedes $\varepsilon > 0$ durch endlich viele $B_{\varepsilon}(x_i)$ überdeckt.

Definition. Ein metrischer Raum X heißt <u>lokalkompakt</u>, wenn jeder Punkt $a \in X$ eine kompakte Umgebung in X besitzt.

Beispiel. • \mathbb{R}^n ist lokalkompakt, aber nicht kompakt

• Jede Untermannigfaltigkeit des \mathbb{R}^n ist lokalkompakt

§13 Tangentialräume und Orientierungen

Definition. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^n und $a \in M$. Ein Element $v \in \mathbb{R}^n$ heißt <u>Tangentialvektor</u> an M im Punkt a, wenn es ein offenes Intervall I in \mathbb{R} mit $0 \in I$ und eine C^1 -Abbildung $\psi: I \to \mathbb{R}^n$ gibt mit:

- $\psi(I) \in M$
- $\psi(0) = a$
- $\psi'(0) = v$

5

Mit $T_a(M)$ bezeichnet man die Menge aller Tangentialvektoren an M im Punkt a und nennt $T_a(M)$ den Tangentialraum an M in a.

Satz 1. Sei M eine n-dimensionaler linearer Teilraum von \mathbb{R}^n .

- a) $T_a(M)$ ist en n-dimensionaler linearer Teilraum von \mathbb{R}^n
- b) Sei $\varphi: W \to V$ eine Karte von M und $a \in V$. Sei $b \in W$ mit $\varphi(b) = a$. Dann ist $T_a(M) = Bild(D\varphi(b)) = \{D\varphi(b) \cdot u \mid u \in \mathbb{R}^n\}$
- c) Sei U eine offene Umgebung von a in \mathbb{R}^n und sei $g: U \to \mathbb{R}^{N-n}$ eine Submersion mit $M \cap U = \{x \in U \mid g(x) = 0\}$. Dann ist:

$$T_a(M) = Kern(Dg(a)) = \{ v \in \mathbb{R}^n \mid Dg(a) \cdot v = 0 \}$$

$$(2.2)$$

Beweis. Analysis II, §16, Satz 5

Beispiel.

$$M = S^{N-1} \tag{2.3}$$

Sei $U = \{x \in \mathbb{R}^N \mid x \neq 0\}$ und $g: U \to \mathbb{R}$ gegeben durch $g(x) = x_1^2 + \dots + x_N^2 - 1$. Dann ist $S^{N-1} = \{x \in U \mid g(x) = 0\}$.

$$Dg(x) = 2x^{\perp} \tag{2.4}$$

Nach Satz 1c) ist $T_a(S^{N-1}) = \{v \in \mathbb{R}^n \mid 2a^{\perp}v = 0\} = a^{\perp}$.

Beispiel. Sei M ein n-dimensionaler affiner Teilraum von \mathbb{R}^N , d.h. es gibt ein $x_0 \in \mathbb{R}^N$ und einen n-dimensionalen linearen Teilraum E von \mathbb{R}^n mit $M = x_0 + E$. Dann ist M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N : Sei $h: \mathbb{R}^n \to E$ ein linearer Isomorphismus. Sei $\varphi(y) := x_0 + h(y), \ \varphi: \mathbb{R}^n \to \mathbb{R}^N$. Für $y \in \mathbb{R}^n$ ist $D\varphi(y) \cdot u = h(u)$. Deswegen ist φ eine Karte von M mit $\varphi(\mathbb{R}^n) = M$. Sei $a \in M$ und $b \in \mathbb{R}^n$ mit $\varphi(b) = a$. Nach Satz 1b) ist $T_a(M) = Bild(D\varphi(b)) = Bild(h) = E$.

Beispiel. Sei M wie im vorigen Beispiel und sei U offen in M. Dann ist U eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N und für $a \in U$ ist $T_a(u) = E$.

Definition. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^n und $a \in M$. Ein Element $v \in \mathbb{R}^N$ heißt Normalenvektor an M in a, wenn $\langle v \mid w \rangle = 0 \forall w \in T_a(M)$. Die Menge aller Normalenvektoren an M in a wird mit $N_a(M)$ bezeichnet und heißt der Normalenraum an M in a.

$$N_a(M) = T_a(M)^{\perp} \tag{2.5}$$

Dies ist ein (N-n)-dimensionaler Teilraum vom \mathbb{R}^n .

Beispiel.

$$N_a(S^{n-1}) = \mathbb{R} \cdot a \tag{2.6}$$

Definition. Sei M eine Hyperfläche in \mathbb{R}^N . Ein <u>Einheitsnormalenfeld</u> auf M ist eine stetige Abbildung $\nu: M \to \mathbb{R}^N$ mit $\nu(a) \in N_a(M)$ und $||\nu(a)||_2 = 1 \forall a \in M$.

Beispiel. Auf S^{N-1} gibt es zwei Normalfelder: ν_+ und ν_-

$$\nu_{+}(a) := a, \nu_{-}(a) := -a \tag{2.7}$$

Definition. Seien U, V offen in \mathbb{R}^n und $\varphi: U \to V$ ein Diffeomorphismus. φ heißt <u>orientierungserhalten</u>, wenn $\det(D\varphi(x)) > 0$.

Definition. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N mit $n \geq 1$.

- a) Zwei Karten $\varphi_1: W_1 \to V_1$ und $\varphi_2: W_2 \to V_2$ von M heißen gleichorientiert, wenn die Parametertransformation $\tau(\varphi_1, \varphi_2)$ orientierungserhalten ist.
- c) M heißt orientierbar, wenn M einen orientierten Atlas besitzt.
- d) Zwei Atlanten $\mathscr A$ und $\mathscr B$ von M heißen <u>äquivalent</u>, wenn jede Karte von $\mathscr A$ mit jeder Karte von $\mathscr B$ gleichorientiert ist.
- e) Eine Äquivalenzklasse σ orientierter Atlanten von M heißt eine <u>Orientierung</u> von M. Man nennt dann (M, σ) eine orientierte Untermannigfaltigkeit.

Bemerkung. Meist sagt man: "Sei M eine orientierte Manigfaltigkeit." statt "Sei (M, σ) eine orientierte Manigfaltigkeit".

- **Beispiel.** Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N . Es gebe eine Karte φ von M, so dass M das Bild von φ ist. Dann ist $\{\varphi\}$ ein orientierter Atlas von M; daher ist M orientierbar.
 - Ist insbesondere U offen in \mathbb{R}^n , so ist U eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^n mit Atlas $\{id_U\}$. Er definiert eine Orientierung von U, die sogenannte kanonische Orientierung.

Bemerkung. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N mit $n \geq 1$ und M orientierbar.

- a) Es gibt einen orientierten Atlas $\mathscr A$ von M, so dass alle Karten von $\mathscr A$ den Definitionsbereich $\mathbb R^n$ haben.
- b) Sei \mathscr{A} ein orientierter Atlas wie in a). Ist $\varphi : \mathbb{R}^n \to V$ eine Karte in \mathscr{A} , so definieren wir $\tilde{\varphi} : \mathbb{R}^n \to V$ durch $\tilde{\varphi}(x_1,\ldots,x_n) := \varphi(-x_1,x_2,\ldots,x_n)$. Dann ist $\tilde{\varphi}$ eine Karte von M und φ und $\tilde{\varphi}$ sind nicht gleichorientiert. Sei $\tilde{\mathscr{A}}$ die Menge aller $\tilde{\varphi}$ mit $\varphi \in \mathscr{A}$. Dann ist $\tilde{\mathscr{A}}$ ein orientierter Atlas von M und \mathscr{A} und $\tilde{\mathscr{A}}$ sind nicht äquivalent. Deswegen besitzt M mindestens zwei verschiedene Orientiertungen (falls $M \neq \emptyset$).
- c) Ist M orientierbar und zusammenhängend, so besitzt M genau zwei Orientiertungen.

Satz 2. Sei M eine Hyperfläche in \mathbb{R}^N . Dann sind äquivalent:

- a) M ist orientierbar
- b) Es gibt ein Einheitsnormalenfeld auf M

Beweis. $a)\Rightarrow b$): Sei \mathscr{A} ein orientierter Atlas von M. Sei $a\in M$. Wähle eine Karte $\varphi:W\to V$ in \mathscr{A} mit $a\in V$ und sei $b\in W$ mit $\varphi(b)=a$. Die lineare Abbildung $D\varphi(b)$ ist injektiv. Ist e_1,\ldots,e_n die Standardbasis von \mathbb{R}^n , so ist $D\varphi(b)e_1,\ldots,D\varphi(b)e_n$ eine Basis von $T_a(M)$ (nach Satz 1). Sei $\nu(a)$ dasjenige der beiden Elemente vom Normalenraum $N_a(M)$ mit Norm 1, für das die Matrix mit den Spalten $D\varphi(b)e_1,\ldots,D\varphi(b)e_n,\nu(a)$ positive Determinante hat. Dann ist ν ein Einheitsnormalenfeld auf M.

Beispiel. • S^{n-1} ist orientierbar, weil es Einheitsnormalenfelder auf S^{n-1} gibt

• Das Möbiusband ist nicht orientierbar

Bemerkung. Der Beweis von Satz 2 liefert für Hyperflächen eine Bijektion von der Menge der Orientierungen auf die Menge der Einheitsnormalenfelder.

Satz 3. Sei M eine n-dimensionale orientierte Untermannigfaltigkeit von \mathbb{R}^N , $n \geq 2$. Sei X eine abgeschlossene n-dimensionale Untermannigfaltigkeit mit Rand von M. Dann ist die (n-1)-dimensionale Untermannigfaltigkeit ∂X von \mathbb{R}^N orientierbar.

Beweis. Sei \mathscr{A} ein Atlas von M, der zur gegebenen Orientierung gehört und folgende Eigenschaften hat:

- Ist $\varphi: W \to V$ eine Karte aus \mathscr{A} mit $V \cap \partial X \neq \emptyset$, so ist φ randadaptiert, d.h. $\varphi(\mathbb{R}^n_- \cap W) = X \cap V$, $\varphi(\partial \mathbb{R}^n_- \cap W) = \partial X \cap V$, $\mathbb{R}^n_- := \{x \in \mathbb{R}^n \mid x_1 \leq 0\}$.
- Wenn man eine Karte $\varphi: W \to V$ hat, so setzt man $W_0 := \{x \in \mathbb{R}^{n-1} \mid (0, x) \in W\}, V_0 := V \cap \partial X.$ $\varphi_0: W_0 \to V_o$ sei gegeben durch $\varphi_0(x) := \varphi(0, x).$

Dann bilden die φ_0 eine orientierten Atlas von ∂X .

Definition. Ist σ eine Orientierung von M, so liefert der Beweis von Satz 3 eine Orientierung von ∂X , welche die von σ induzierte Orientierung von ∂X heißt.

§14 Glatte Zerlegung der Eins

Definition. Sei X ein metrischer Raum, $f: X \to \mathbb{R}$ eine Funktion. Mit Supp(f) bezeichnet man den Abschluss der Menge $\{x \in X \mid f(x) \neq 0\}$ in X und nennt Supp(f) den Träger von f.

Bemerkung (Ziel). Gegeben eine Untermannigfaltigkeit M von \mathbb{R}^N , ein Atlas \mathscr{A} von M und eine C^{∞} -Abbildung $f: M \to \mathbb{R}$ (Funktion). Wir wollen f als Summe von C^{∞} -Funktionen f_{α} schreiben, so dass gilt: Für jedes α gibt es eine Karte $\varphi: W \to V$ in \mathscr{A} mit $Supp(f_{\alpha}) \subseteq V$.

Lemma. Definiert man $f: \mathbb{R} \to \mathbb{R}$ durch

$$f(x) := \begin{cases} 0 & wenn \ x \le 0 \\ \exp(-\frac{1}{x^2}) & wenn \ x > 0 \end{cases}$$
 (2.8)

so ist f von der Klsse C^{∞} .

Beweis.

$$\lim_{x \to 0} f(x) = \lim_{t \to \infty} exp(t) = 0 \tag{2.9}$$

deswegen ist f stetig in 0. Für x > 0 ist $f'(x) = \frac{2}{x^3} \exp(-\frac{1}{x^2})$, allgemeiner $f^{(n)}(x) = P_n(\frac{1}{x}) \exp(-\frac{1}{x^2})$, wobei jedes P_n ein Polynom ist. Also $\lim_{x\to 0} f^{(n)}(x) = 0$. Deswegen ist f von der Klasse C^{∞} .

Satz 1. Es gibt eine C^{∞} -Funktion $g: \mathbb{R}^n \to \mathbb{R}$ mit

- g(x) > 0 für $x \in]-1,1[^n]$
- $Supp(g) = [-1, 1]^n$

Beweis. Sei f wie im Lemma. Definiere $f_1: \mathbb{R} \to \mathbb{R}$ durch $f_1(x) := f(1+x)f(1-x)$. Dann ist $f_1 \geq 0$ und $Supp(f_1) = [-1,1]$. Sei $g(x_1,\ldots,x_n) = f_1(x_1) \cdot \cdots \cdot f_n(x_n)$.

Satz 2. Sei U offen in \mathbb{R}^n und X eine kompakte Teilmenge von \mathbb{R}^n . Seien A_1, \ldots, A_m offene Teilmengen von U mit $X \subseteq A_1 \cup \cdots \cup A_m$. Dann gibt es C^{∞} -Funktionen $g_1, \ldots, g_m : U \to \mathbb{R}$ mit

- $g_j(x) \ge 0 \ \forall x \in U, \forall j$
- $\sum_{j=1}^{m} g_j(x) \le 1 \ \forall x \in U$
- $\forall j \text{ ist } Supp(g_j) \text{ kompakt und enthalten in } A_j$
- $\forall x \in X \text{ ist } \sum_{j=1}^{m} g_j(x) = 1$

Man nennt die Menge g_1, \ldots, g_m eine der Überdeckung $\{a_1, \ldots, A_m\}$ untergeordnete Zerlegung der Eins auf X.

Beweis. Nach Satz 1 gibt es eine C^{∞} -Funktion $g: \mathbb{R}^n \to \mathbb{R}$ mit $g(x) > 0 \ \forall x \in]-1,1[^n \text{ und } Supp(g) = [-1,1]^n$. $\forall x \in X$ wähle ein $k_x \in \{1,\ldots,m\}$ mit $x \in A_{k_x}$, ein $r_x > 0$ mit $B_{r_x}(x) \subseteq A_{k_x}$ und einen Diffeomorphismus φ_x von $B_{r_x}(x)$ auf \mathbb{R}^n mit $\varphi_x(x) = 0$. Definiere $f_x: U \to \mathbb{R}$

$$f_x(y) = \begin{cases} g(\varphi_x(y)) & wenn \ y \in B_{r_x}(x) \\ 0 & sonst \end{cases}$$
 (2.10)

Dann ist $f_x \geq 0$, glatt, C^{∞} und $f_x(x) > 0$. $Supp(f_x)$ ist kompakt und $\subseteq A_{k_x}$. Sei $C_x := \varphi_x^{-1}(]-1,1[^n)$. Dann ist C_x offen mit $x \in C_x$. Also bilden die C_x mit $x \in X$ eine offene Überdeckung von X. Weil X kompakt ist, gibt es eine endliche Teilüberdeckung $(x_1,\ldots,x_N \text{ mit } X \subseteq C_{x_1} \cup \ldots C_{x_N})$. Für $j=1,\ldots,m$ sei $h_j:U\to\mathbb{R}$ definiert durch

$$h_j = \sum_{i \in [1, \dots, N] k_{x_i} = j} f_{x_i} \tag{2.11}$$

Dann ist h_j glatt; es ist

- $h_i \geq 0$ auf U
- $Supp(h_i)$ ist kompakt und $\subseteq A_i$
- Für $x \in X$ ist $\sum_{j=1}^{m} h_j(x) > 0$

Sei $h := \sum_{j=1}^m h_j : U \to \mathbb{R}$. Dann ist h aus C^{∞} . Sei K := Supp(h). Dann ist K kompakt und $K \subseteq K$. ∂K ist eine kompakte Teilmenge von $U \setminus X$. Wende das bisher Bewiesene an auf

- $U \setminus X$ statt U
- ∂K statt X

Man erhält (statt h) eine glatte Funktion $\tilde{h}: U \setminus X \to \mathbb{R}$ mit

- $\tilde{h} \ge 0$ auf $U \setminus X$
- $\tilde{K} := Supp(\tilde{h})$ ist kompakt und enthalten in $U \setminus X$

• Für $x \in \partial K$ ist $\tilde{h}(x) > 0$

Wir können \tilde{h} auf ganz U fortsetzen zu einer glatten Funktion durch $\tilde{h}(x) := 0 \ \forall x \in X$. Definiere $g_j : U \to \mathbb{R}$ durch

$$g_j(x) := \begin{cases} \frac{h_j(x)}{h(x) + \tilde{h}(x)} & falls \ h(x) + \tilde{h}(x) \neq 0\\ 0 & sonst \end{cases}$$
 (2.12)

Dann ist g_j glatt, $g_j \geq 0$, $\sum_{j=1}^m g_j(x) = \frac{h(x)}{h(x) + \tilde{h}(x)} \leq 1$, falls $h(x) + \tilde{h}(x) \neq 0$. $Supp(g_j) = Supp(h_j)$ ist kompakt und $\subseteq A_j$. Für $x \in X$ ist h(x) > 0 und $\tilde{h}(x) = 0$, also $\sum_{j=1}^m g_j(x) = \frac{h(x)}{h(x)} = 1$.

§15 Alternierende Multilinearformen

Bemerkung. Sei U offen in \mathbb{R}^3 , sei $C^{\infty}(U)$ die Menge aller C^{∞} -Funktionen $F: U \to \mathbb{R}$ und sei \mathfrak{V} die Menge der glatten Vektorfelder auf U, d.h. der C^{∞} -Abbildungen $F = (f_1, f_2, f_3): U \to \mathbb{R}^3$. Dann hat man lineare Abbildungen

$$C^{\infty}(U) \xrightarrow{grad} \mathfrak{V} \xrightarrow{rot} \mathfrak{V} \xrightarrow{div} C^{\infty}(U)$$
 (2.13)

definiert durch

$$grad(f) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{pmatrix}$$
 (2.14)

$$rot(f_1, f_2, f_3) = \begin{pmatrix} \frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} \\ \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \end{pmatrix}$$

$$(2.15)$$

$$div(f_1, f_2, f_3) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}$$
(2.16)

Wir wissen $rot \circ grad = 0$, $div \circ rot = 0$. Ist U z.B. konvex, so gilt: Ist rot(F) = 0, so $\exists f$ mit grad(f) = F und ist div(F) = 0, so $\exists G$ mit rot(G) = F.

Bemerkung (Ziel von §15 und §16). Verallgemeinerung dieses Kalküls auf beliebige Dimensionen und auf Untermannigfaltigkeiten des \mathbb{R}^n .

Bezeichnung. a) Sei e_1, \ldots, e_n die übliche Basis von \mathbb{R}^n .

b) Sei $(\mathbb{R}^n)^*$ der Dualraum von \mathbb{R}^n , d.h. der Vektorraum aller linearen Abbildungen $\mathbb{R}^n \to \mathbb{R}$. $(\mathbb{R}^n)^*$ ist ein n-dimensionaler \mathbb{R} -Vektorraum mit der Basis $\Delta_1, \ldots, \Delta_n$ wobei

$$\Delta_i(e_j) = \begin{cases} 1 & wenn \ i = j \\ 0 & sonst \end{cases}$$
 (2.17)

 $F\ddot{u}r \ k \in \mathbb{N} \ sei \ (\mathbb{R}^n)^k \ der \ Vektorraum \ der \ n \times k$ -Matrizen.

Definition. Eine alternierende Multilinearform vom Grad k auf \mathbb{R}^n , kurz <u>alternierende k-Form</u> auf \mathbb{R}^n , ist eine Abbildung $\omega : (\mathbb{R}^n)^* \to \mathbb{R}$ mit folgenden Eigenschaften

- 1. ω ist linear in jedem Argument
- 2. $\omega(\ldots,v_i,\ldots,v_j,\ldots) = -\omega(\ldots,v_j,\ldots,v_i,\ldots)$, wenn alle anderen Argumente fest bleiben

Beispiel. Die Determinante det ist eine alternierende n-Form auf \mathbb{R}^n .

Bemerkung. Die alternierenden k-Formen auf \mathbb{R}^n bilden einen \mathbb{R} -Vektorraum, der mit $\Lambda^k(\mathbb{R}^n)^*$ bezeichnet wird (für $k \in \mathbb{N}$).

Beispiel.

$$\Lambda^1(\mathbb{R}^n)^* = (\mathbb{R}^n)^* \tag{2.18}$$

$$\Lambda^0(\mathbb{R}^n)^* = \mathbb{R} \tag{2.19}$$

Bemerkung. Bedingung 2 ist äquivalent zu $\omega(\ldots, v, \ldots, v, \ldots) = 0$.

Definition. Sind $\varphi_1, \ldots, \varphi_n \in (\mathbb{R}^n)^*$, so definiere $\varphi_1 \wedge \cdots \wedge \varphi_n \in \Lambda^k(\mathbb{R}^n)^*$ durch

$$(\varphi_1 \wedge \dots \wedge \varphi_n)(v_1, \dots, v_n) := \det \begin{pmatrix} \varphi_1(v_1) & \dots & \varphi_1(v_k) \\ \vdots & & \vdots \\ \varphi_k(v_1) & \dots & \varphi_k(v_k) \end{pmatrix}$$
(2.20)

Beispiel.

$$\Delta_1 \wedge \dots \wedge \Delta_n = \det \tag{2.21}$$