KNN: Rozpoznání matematických rovnic

Jakub Málek Tomáš Milostný Marek Večeřa

11. května 2025

{xmalek17,xmilos02,xvecer31}@vutbr.fit.cz ${\it Akademick\'y\ rok\ 2024/2025}$

Obsah

1	$\acute{ ext{U}} ext{vod}$	3
2	Struktura projektu	4
3	Popis modulů3.1 Modul main.py3.2 Modul preprocessing3.3 Modul recognition3.4 Modul parsing3.5 Modul utils3.6 Modul config.py	4 4 4 4 4 5
4	Algoritmus rozpoznávání	5
5	KNN klasifikátor	5
6	Dataset a trénování	6
7	Použití aplikace7.1 Trénování modelu7.2 Testování modelu7.3 Rozpoznávání matematického výrazu v obrázku	6 6 6
8	Možná rozšíření	6
9	Závěr	7
7.0	droie	8

1 Úvod

Tento dokument popisuje strukturu a implementaci projektu KNN-Math, který se zaměřuje na rozpoznávání matematických vzorců pomocí algoritmu k-nejbližších sousedů (KNN). Systém je navržen pro rozpoznávání jak tištěných, tak ručně psaných matematických výrazů a jejich převod do formátu LaTeX.

2 Struktura projektu

Projekt je organizován do modulárního systému, který usnadňuje údržbu a rozšiřitelnost. Hlavní adresářová struktura je následující:

3 Popis modulů

3.1 Modul main.py

Tento modul slouží jako hlavní vstupní bod aplikace a poskytuje rozhraní příkazové řádky pro různé operace:

- Trénování modelu pomocí trénovacích dat
- Testování modelu na testovacích datech
- Rozpoznávání matematických výrazů v jednotlivých obrázcích

3.2 Modul preprocessing

Tento modul se stará o přípravu vstupních obrázků pro rozpoznávání:

• segmentation.py - Obsahuje funkce pro segmentaci matematických symbolů z celého obrázku, převod obrázků do stupňů šedi, prahování pro oddělení symbolů od pozadí a normalizaci velikosti obrázků na standardní rozměr.

3.3 Modul recognition

Tento modul implementuje algoritmus rozpoznávání symbolů:

 knn_classifier.py - Implementuje KNN klasifikátor pro rozpoznávání jednotlivých symbolů. Zahrnuje funkce pro trénování modelu, predikci symbolů, ukládání a načítání natrénovaného modelu.

3.4 Modul parsing

Tento modul převádí rozpoznané symboly do LaTeX formátu:

 latex_converter.py - Obsahuje mapování mezi rozpoznanými symboly a jejich LaTeX reprezentací, a funkci pro sestavení výsledného LaTeX kódu z posloupnosti symbolů.

3.5 Modul utils

Tento modul poskytuje pomocné funkce:

- data loader.py Funkce pro načítání obrázků a popisků z datasetu.
- evaluation.py Funkce pro vyhodnocení přesnosti a výkonnosti modelu.

3.6 Modul config.py

Konfigurační soubor obsahující globální parametry:

- Cesty k adresářům (dataset, modely)
- Parametry KNN klasifikátoru (počet sousedů, váhy)
- Parametry pro předzpracování obrázků (velikost po normalizaci)

4 Algoritmus rozpoznávání

Algoritmus rozpoznávání matematických výrazů v aplikaci probíhá v následujících krocích:

- 1. Načtení vstupního obrázku Obrázek je načten a převeden do stupňů šedi.
- 2. **Segmentace symbolů** Obrázek je prahován pro oddělení symbolů od pozadí. Následně jsou nalezeny kontury jednotlivých symbolů a extrahovány jako samostatné obrázky.
- 3. **Předzpracování symbolů** Každý extrahovaný symbol je normalizován na standardní velikost a provedeny další úpravy pro zvýšení přesnosti rozpoznávání.
- 4. **Klasifikace symbolů** KNN klasifikátor predikuje identitu každého symbolu na základě natrénovaného modelu.
- 5. **Konverze do LaTeXu** Posloupnost rozpoznaných symbolů je převedena do LaTeX formátu, který zachovává matematickou strukturu výrazu.

5 KNN klasifikátor

Pro rozpoznávání jednotlivých symbolů je použit algoritmus k-nejbližších sousedů (KNN). Princip tohoto algoritmu je následující:

- Každý obrázek je reprezentován jako vektor příznaků (v našem případě jako vektor hodnot pixelů).
- Pro klasifikaci nového symbolu je vypočtena vzdálenost mezi jeho vektorem příznaků a vektory všech trénovacích vzorků.
- Je vybráno k trénovacích vzorků s nejmenší vzdáleností.
- Nový symbol je klasifikován do třídy, která se nejčastěji vyskytuje mezi těmito k nejbližšími sousedy.

V implementaci používáme weighted KNN, kde vzdálenější sousedé mají menší vliv na konečnou klasifikaci.

6 Dataset a trénování

Pro trénování a testování modelu je použit dataset matematických symbolů. Dataset obsahuje tisíce obrázků v adresáři dataset a soubor train_labels.txt, který obsahuje mapování mezi názvy souborů a odpovídajícími symboly.

Proces trénování zahrnuje:

- 1. Načtení obrázků a jejich štítků
- 2. Předzpracování obrázků (normalizace velikosti, převod do stupňů šedi, atd.)
- 3. Extrakce příznaků (v našem případě příznaky jsou přímo hodnoty pixelů)
- 4. Trénování KNN klasifikátoru
- 5. Uložení natrénovaného modelu pro pozdější použití

7 Použití aplikace

Aplikaci lze použít několika způsoby:

7.1 Trénování modelu

```
python -m app.main --train
```

7.2 Testování modelu

```
python -m app.main --test
```

7.3 Rozpoznávání matematického výrazu v obrázku

```
python -m app.main --recognize cesta/k/obrazku.png --output
vystup.tex
```

8 Možná rozšíření

Navržená struktura projektu umožňuje snadné rozšíření o další funkce:

- Lepší algoritmy segmentace Implementace pokročilejších metod pro segmentaci složitějších matematických struktur (zlomky, mocniny, integrály).
- Pokročilejší klasifikátory Nahrazení KNN klasifikátoru konvolučními neuronovými sítěmi nebo jinými algoritmy strojového učení.
- Rozpoznávání struktury Implementace algoritmů pro rozpoznávání struktury matematických výrazů, nejen jednotlivých symbolů.
- Webové rozhraní Vytvoření webového rozhraní pro snadné použití aplikace.

9 Závěr

Tato dokumentace popisuje strukturu a implementaci projektu KNN-Math. Projekt je navržen modulárně, což umožňuje snadnou údržbu a rozšiřování. Implementovaný systém používá algoritmus k-nejbližších sousedů pro rozpoznávání matematických symbolů a převod do LaTeX formátu.

Zdroje

- [1] ZHELEZNIAKOV, Dmytro; ZAYTSEV, Viktor; RADYVONENKO, Olga. Online Handwritten Mathematical Expression Recognition and Applications: A Survey. *IEEE Access.* 2021, roč. 9, s. 38352–38373. Dostupné z doi: 10.1109/ACCESS.2021. 3063413.
- [2] LI, Zhe; JIN, Lianwen; LAI, Songxuan; ZHU, Yecheng. Improving Attention-Based Handwritten Mathematical Expression Recognition with Scale Augmentation and Drop Attention. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR). 2020, s. 175–180. Dostupné z DOI: 10.1109/ICFHR2020.2020.00041.