Analiza Matematyczna II

Rafal Wlodarczyk

INA 2 Sem. 2023

1 Wykład I

Iloczyn skalarny

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n), x_i \in \mathbb{R}\}\$$

Definicja 1.1.1. Dla $x, y \in \mathbb{R}^n$ definiujemy iloczyn skalarny:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

$$\begin{aligned} &(x=(x_1,x_2,\ldots,x_n)y=(y_1,y_2,\ldots,y_n))\\ &ax=(ax_1,ax_2,\ldots,ax_n)\\ &\sqrt{\langle x,x\rangle}=\sqrt{x_1^2+x_2^2+\cdots+x_n^2}\\ &\text{Własności:} \end{aligned}$$

- 1. $\langle x, y \rangle = \langle y, x \rangle$
- $2. < ax, y > = < x, ay > = a < x, y >, a \in \mathbb{R}$
- 3. < x + y, z > = < x, z > + < y, z >

Definicja 1.1.2. Długość wektora $x \in \mathbb{R}^n$

$$|x| = \sqrt{\langle x, x \rangle}$$

Przykład 1.1.1. $\mathbb{R}:|x|=|x_1|$ - oś liczbowa $\mathbb{R}^2:|x|=\sqrt{x_1^2+y_2^2}$ - płaszczyzna

Twierdzenie 1.1.1. $x \in \mathbb{R}^n$. Wówczas $|\langle x, y \rangle| \leq |x| \cdot |y|$

D-d.
$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n)$$

 $|\langle x, y, \rangle| = |\sum_{i=1}^n x_i y_i| \le \sqrt{\sum_{i=1}^n x_i^2} + \sqrt{\sum_{i=1}^n y_1^2}$
Nierówność Cauchy'ego Schwarza, a zatem dowód.

Wniosek $x, y \in \mathbb{R}^n$.

$$|x+y| \leqslant |x| + |y|$$

D-d.

$$|x+y|^2 = \langle x+y, x+y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, y \rangle + \langle y, x \rangle = |x|^2 + |y|^2 + 2\langle x, y \rangle \leqslant |x|^2|y|^2 + 2|x||y| = (|x|+|y|)^2 = |x+y|^2 \leqslant (|x|+|y|)^2 \iff |x+y| \leqslant |x|+|y| \quad \square$$

1.2 Kąt między wektorami

$$\overrightarrow{x_1}, \overrightarrow{x_2} \in \mathbb{R}^2, \ \overrightarrow{x_1} = (x_{11}, x_{12}), \ \overrightarrow{x_2} = (x_{21}, x_{22})$$

$$\cos(\overrightarrow{x_1}, \overrightarrow{x_2}) = \frac{\overrightarrow{x_1} \odot \overrightarrow{x_2}}{|\overrightarrow{x_1}| |\overrightarrow{x_2}|}$$

Rozważmy funkcję:

$$d_n \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$d_n(x,y) = |x - y|$$
, dla $n = 2$:

$$x = (x_1, x_2), y = (y_1, y_2) |x - y| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
 Własności:

- 1. $d_n(x,y) \ge 0$
- 2. $d_n(x,y) = 0 \iff x = y$
- 3. $d_n(x,y) = d_n(y,x)$
- 4. $d_n(x,z) \leq d_n(x,y) + d_n(y,z)$ nierówność trójkąta

1.3 Przestrzeń metryczna

Definicja 1.3.1. Przestrzenią metryczną nazywamy dowolny zbiór X, pewną funkcję $X \times X \to \mathbb{R}$, która spełnia następujące aksjomaty:

- 1. $d(x,y) \ge 0$
- 2. $d(x,y) = 0 \iff x = y$
- 3. d(x,y) = d(y,x) dla $x, y \in X$
- 4. $d(x,z) \leq d(x,y) + d(y,z)$ dla każdych $x,y,z \in X$

Funkcję d nazywamy metryką, a wartość d(x,y) odległością punktów.

Uwaga: aksjomat 1 wynika z pozostałych aksjomatów

 D_{-d}

$$d(x,y) = \frac{1}{2} \left(d(x,y) + d(y,x) \right) \geqslant \frac{1}{2} d(x,x) = 0,$$
zatem $d(x,y) \geqslant 0$

Twierdzenie 1.3.1. Stwierdzenie. Niech (X, d) (Corollary) będzie przestrzenią metryczną oraz $x_1, x_2, \ldots, x_n \in X$. Wówczas:

$$d(x_1, x_n) \leqslant \sum_{j=1}^{n-1} d(x_j, x_{j+1}), n \geqslant 2$$

Dla n=2:

$$d(x_1, x_2) \leq d(x_1, x_2)$$
 - oczywiste

Dla n = 3:

$$d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3)$$
 - nierówność trójkąta

Krok indukcyjny:

$$d(x_1, x_{n+1}) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_n, x_{n+1})$$

$$d(x_1, x_{n+1}) \leqslant d(x_1, x_n) + d(x_n, x_{n+1}) \leqslant_{ind} d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n) + d(x_n, x_n) + d(x_n,$$

 $d(x_n, x_{n+1})$ \square

1.4 Przestrzeń metryczna dyskretna

X - dowolny zbiór i metryka określona wzorem:

$$d(x,y) = \begin{cases} 0 \text{ dla } x = y\\ 1 \text{ dla } x \neq y \end{cases}$$

Aksjomaty 1, 2, 3, 4 są oczywiste.

1.5 Metryka Euklidesowa

$$d_n : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$x = (x_1, x_2, \dots, x_n)$$

$$y = (y_1, y_2, \dots, y_n)$$

$$d_n(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

1.6 Przestrzeń Hilberta

$$x = (x_1, x_2, \dots, x_n)$$

$$y = (y_1, y_2, \dots, y_n)$$

$$\sum_{i=1}^{\infty} x_i^2 \leqslant \infty, \sum_{i=1}^{\infty} y_i^2 < \infty$$

$$x = (\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{i}, \dots)$$

$$\sum_{i=1}^{\infty} \frac{1}{i^2} \leqslant \infty$$

$$\sum_{i=1}^{\infty} \left(\frac{1}{\sqrt{i}}\right)^2 = \sum_{i=1}^{\infty} \frac{1}{i} = \infty$$

$$y = \left(\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \dots\right)$$

1.7 Metryka Manhattan

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

$$d((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$$

2 Wykład II

2.1 Kula otwarta

Definicja 2.1.1. Kula otwarta w przestrzeni metrycznej Y:

$$K(y_0,r) = \{ y \in Y : d(y,y_0) < r \}$$

Gdzie:

- y_0 środek
- \bullet r promień
- $\bullet\,$ Wnętrze okręgu w \mathbb{R}^2 metryka Euklidesowa
- Wnętrze kuli w \mathbb{R}^3

Przykład 2.1.1. Rozważmy następujący przykład:

 $K((x_0, y_0), r) :: \sqrt{(x - x_0)^2 + (y - y_0)^2} < r$ zachodzący warunek (wyobraż sobie rysunek poglądowy)

Definicja 2.1.2. Niech (X,d) będzie przestrzenią metryczną. Zbiór $U\subseteq X$ jest otwarty, jeśli:

$$\forall_{x \in U} \exists_{\varepsilon > 0} (K(x, \varepsilon) \subseteq U)$$

(Kula otwarta o środku w punkcie X i promieniu $\varepsilon > 0$)

Przykład 2.1.2. Przykłady:

(a,b) - jest otwarty

[a,b) - nie jest otwarty

Definicja 2.1.3. Niech (X,d) będzie przestrzenią metryczną. Zbiór $D\subseteq X$ jest zbiorem domkniętym $\iff X-D$ jest otwarty.

$$[a,b] \subset \mathbb{R} \implies \mathbb{R} - [a,b] = (\infty,a) \cup (b,\infty)$$
 - zbiór otwarty

Definicja 2.1.4. $(X, d_1), (Y, d_2)$ - przestrzenie metryczne

 $F:X\to Y$

 $\lim F(x) = b :: x \to a :: a \in X, b \in Y$

Przykład. Dla $X=\mathbb{N}, Y=\mathbb{R}$ - ciagi, dla obu \mathbb{R} - funkcje

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_x (0 < d_1(x, a) < \delta \implies d_2(F(x), b) < \varepsilon)$$

Twierdzenie 2.1.1. Warunki (1), (2) są równoważne:

- 1. $\lim_{x \to a} F(x) = b$
- 2. dla dowolnego ciągu $(x_n)_{n\geqslant 0}$ punktów przestrzeni metrycznej $X(x_n\neq a)$ jeśli $\lim_{n\to a}x_n=a$ w metryce d_1 to $\lim_{n\to\infty}F(x_n)=b$

$$\lim_{n\to\infty} x_n = a \iff (\forall \varepsilon)(\exists n_0)(\forall n > n_0) \ d_1(x_n, a) < \varepsilon$$

$$(|x_n - a| < \varepsilon), x_n, a \in (X, d_1) \implies \lim_{n \to \infty} d_1(x_n, a) = 0$$

Przykład 2.1.3. $x_n \in \mathbb{R}, a \in X$

 $d_1(x_n, a) \in \mathbb{R}$

 $\lim_{n\to\infty} x_n = a \iff \lim_{n\to\infty} d_1(x_n, a) = 0$ w metryce d_1

Przykład 2.1.4. $(a_n, b_n, c_n) \in \mathbb{R}^3$

 $\lim_{n\to\infty}(a_n,b_n,c_n)=(g_1,g_2,g_3)$ w metryce Eulidesowej \mathbb{R}^3 \iff

 $\lim_{n\to\infty} a_n = g_1 \wedge \lim_{n\to\infty} b_n = g_2 \wedge \lim_{n\to\infty} c_n = g_3$

Idea:

$$\sqrt{(a_n-g_1)^2+(b_n-g_2)^2+(c_n-g_3)^2}\to 0 \iff a_n\to g_1\wedge b_n\to g_2\wedge c_n\to g_3$$

Dla \mathbb{R}^k podane włansości zachodzą analogicznie.

Definicja 2.1.5. Ciągłość funkcji. $(X, d_1), (Y, d_2), F: X \to Y$.

Funkcja F jest ciągła w punkcie a jeśli:

$$\lim_{x \to a} F(x) = F(a)$$

$$x \to a \le d_1 \implies F(x) \to F(a) \le d_2$$

Przykład 2.1.5. Weźmy funkcje $f: \mathbb{R}^2 \to \mathbb{R}$.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{dla } x^2 + y^2 > 0\\ 0 & \text{dla } (x,y) = (0,0) \end{cases}$$

Pokażmy, że f nie jest ciągła w (0,0)

Tokaziny, ze
$$f$$
 me jest cią $(x_n, y_n) = (\frac{1}{n}, \frac{1}{n}) \rightarrow (0, 0)$

 $\lim_{n\to\infty} f(x_n, y_n)$ $f(\frac{1}{n}, \frac{1}{n}) = \frac{1}{2} - \text{nie dąży do 0 nie jest ciągła w } (0, 0).$

Przykład 2.1.6. $f: \mathbb{R}^3 \to \mathbb{R}^2$

 $f(x, y, z) = (x^2, y^2 \cdot z)$

Zbadajmy ciąg $a = (x_0, y_0, z_0)$

 $f(x_0, y_0, z_0) = (x_0^2, y_0^2 \cdot z)$

 $(x_n, y_n, z_n) \to (x_0, y_0, z_0)$

 $x_n \to x_0 \land y_n \to y_0 \land z_n \to z_0$ $f(x_n, y_n, z_n) = (x_n^2, y_n z_n)$

Przykład 2.1.7.

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{dla } x^2 + y^4 > 0\\ 0 & \text{dla } (x,y) = (0,0) \end{cases}$$

fjest ciągła w $(0,0)~(\alpha t,\beta t)\rightarrow (0,0)$
 $f(\alpha t,\beta t)=\frac{\alpha\beta^2t^3}{\alpha^2t^2+\beta^4t^4}=$

$$f(\alpha t, \beta t) = \frac{\alpha \beta^2 t^3}{\alpha^2 t^2 + \beta^4 t^4} =$$

$$\frac{\alpha\beta^2 t}{\alpha^2 + \beta^4 t^2} \to \frac{0}{\alpha^2} = 0 = f(0,0)$$

$$\lim_{t \to 0} f(t^2, t) = \lim_{t \to 0} \frac{t^2 t^2}{t^4 + t^4} = \frac{1}{2}$$

fnie jest ciągła $0=f(0,0)\neq\frac{1}{2},$ czyli nie tylko liniowa ale też dowolna

Kolejny przykład obalający dla zdef. funkcji $\left(\frac{1}{n^2}, \frac{1}{n}\right) \to (0,0)$, ale już $f\left(\frac{1}{n^2} + \frac{1}{n}\right) = -\frac{1}{2} \neq f(0,0)$

Przykład 2.1.8. $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ f(x,y) = x + y

 $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \ g(x,y) = xy$

$$(x_n, y_n) \to (x_0, y_0) \iff (x_n \to x_0 \land y_n \to y_0)$$

$$\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} (x_n + y_n) = x_0 + y_0 = f(x_0, y_0)$$

$$\lim_{n\to\infty} g(x_n, y_n) = \lim_{n\to\infty} (x_n, y_n) = x_0 y_0 = g(x_0, y_0)$$

Przykład 2.1.9. $\lim_{x\to 0} (\lim_{y\to 0} f(x,y)) =$

$$\lim_{x \to 0} (\lim_{y \to 0} \frac{xy}{x^2 + y^2}) = \lim_{x \to 0} (0) = 0 \lim_{y \to 0} (\lim_{x \to 0} f(x, y)) = \lim_{y \to 0} (\lim_{x \to 0} \frac{xy}{x^2 + y^2})$$

Nie istnieje

$$(x'_n, y'_n) = (\frac{1}{n}, \frac{1}{n}) \to (0, 0)$$

$$(x_n'', y_n'') = (-\frac{1}{n}, \frac{1}{n}) \to (0, 0)$$

$$(x'_n, y'_n) = (\frac{1}{n}, \frac{1}{n}) \to (0, 0)$$

$$(x''_n, y''_n) = (-\frac{1}{n}, \frac{1}{n}) \to (0, 0)$$

$$f(x'_n, y'_n) = \frac{1/n1/n}{(1/n)^2 + (1/n)^2} = 1/2$$

$$f(x_n'',y_n'')=\frac{-\frac{1}{n}\frac{1}{n}}{(1/n)^2+(1/n)^2}=-1/2$$
 Ergo rozbieżny - granica podwójna nie istnieje.

2.2 Granica podwójna

Definicja 2.2.1. $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$

2.3 Granice iterowane

Definicja 2.3.1.
$$\lim_{x\to x_0} (\lim_{y\to y_n} f(x,y))$$
 $\lim_{y\to y_0} (\lim_{x\to x_n} f(x,y))$

2.4 Różniczkowanie

$$f: \mathbb{R} \to \mathbb{R}: f'(x) = a \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - a = 0$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - ah}{h} = 0$$

$$\lim_{h \to 0} \left| \frac{f(x+h) - f(x) - ah}{h} \right| = 0$$

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - ah|}{|h|} = 0$$

$$L: \mathbb{R} \to \mathbb{R}, L(h) = ah, h \in \mathbb{R}$$

 $L(h_1 + h_2) = L(h_1) + L(h_2)$
 $L(ch) = c \cdot L(h)$ (*L* jest odwzorowaniem liniowym)

Definicja 2.4.1. (Pochodna funkcji) $n,m\in\mathbb{N}-\{0\},\ f:\mathbb{R}^n\to\mathbb{R}^n,x\in\mathbb{R}^n$ Mówimy że funkcja f jest różniczkowalna w punkcie x jeśli istnieje odwzorowaniem liniowe $f'(x):\mathbb{R}^n\to\mathbb{R}^m$ takie że $h\in\mathbb{R}^n0_n=(0,0,\dots,0)$

$$\lim_{h \to 0} \frac{||f(x+h) - f(x) - f'(x)(h)||}{||h||} = 0_{\mathbb{R}}$$