上节提要

- 》初步了解《概率论与数理统计》的研究对象, 区别与联系,应用;
- ☞ 了解随机试验、样本空间、随机事件概念;
- 掌握事件间的关系与事件的运算律;
- 掌握频率、概率的定义及其性质。

§ 4 等可能概型

回顾§1中的一些试验:

 E_1 : 抛一枚硬币,观察正面H、反面T出现的情况。 S_1 : $\{H, T\}$

E4: 抛一颗骰子,观察出现的点数。

 S_4 : {1, 2, 3, 4, 5, 6}

E₅: 从一个装有5只白球,5只红球的盒中任取一只,观察其颜色。

 S_5 : {红色,白色}

 S_1 : {H, T}

 S_4 : {1, 2, 3, 4, 5, 6}

S₅: {红色,白色}

一、定义

上述E具有以下特点:

- 1. E的样本空间包含有限个元素;
- 2. E中每个基本事件发生的可能性(即概率)相同;

称这种试验为等可能概型(古典概型)。

说明 等可能概型是一种重要的概率模型,对其界定主要是判断有限性和等可能性这两个假设是否成立。基于这两个假设,给直接计算事件概率带来了很大的方便。

说明

有限性容易判断,而等可能性一般不是通过实际验证,往往是根据人们长期形成的对称性经验来判断的。

例如: 装在盒中的小球,颜色可以不同,质量分布均匀,只要大小和形状相同,则取出任一只球的可能性都相等。

因此,等可能性假设不是人为的,而是人们根据对事物的认识——对称性特征来确定的。

二、等可能概型中事件概率的计算

1. 基本事件发生的概率

设试验E的样本空间 $S=\{e_1,e_2,...,e_n\}$,由于 $P(e_1)=P(e_2)=\cdots=P(e_n)$,且基本事件 e_i (i=1,2,...,n) 两两互不相容,

$$1 = P(S) = P(e_1 \cup e_2 \cup \dots \cup e_n) \xrightarrow{\text{P有限可加性}} \sum_{i=1}^n P(e_i) = nP(e_i)$$

所以,
$$P(e_i) = \frac{1}{n}, i = 1, 2, \dots, n$$

2. 事件发生的概率

设事件A包含k个基本事件,即

$$A = e_{i_1} \cup e_{i_2} \cup \cdots \cup e_{i_k}, (1 \le i_1 < i_2 < \cdots i_k \le n)$$

则
$$P(A) = P(e_{i_1} \cup e_{i_2} \cup \dots \cup e_{i_k})$$

P有限可加性
$$\sum_{j=1}^k P(e_{ij}) = \frac{k}{n}$$

所以,
$$P(A) = \frac{k}{n} = \frac{A + \overline{A} + \overline{A} + \overline{A} + \overline{A}}{S + \overline{A} + \overline{A}$$

$$P(A) = \frac{k}{n} = \frac{A + \overline{A} + \overline{A} + \overline{A}}{S + \overline{A} + \overline{A} + \overline{A} + \overline{A}}$$

法国数学家拉普拉斯(Laplace)在1812年把上式作为概率的一般定义,事实上它只适用于等可能概型场合。

该计算公式虽很简单,但应用起来并不容易, 关键是要弄清楚S和A中所包含的基本事件个数。具 体操作时,可应用以下一些原理:

3. 加法原理、乘法原理、排列与组合

①加法(分类)原理

设完成一件事有r 类方法,每类方法又分别有 m_1 , $m_2,...,m_r$ 种方法,而完成这件事只需一种方法,则完成这件事共有 $m_1+m_2+...+m_r$ 种方法。

② 乘法原理

设完成一件事有n个步骤(仅当这n步都完成时才可完成这件事),每步又分别有 $m_1, m_2, ..., m_n$ 种方法,则完成这件事共有 $m_1 \times m_2 \times ... \times m_n$ 种方法。

③ 排列

从n个不相同的元素中,<u>无效回</u>地取出m ($0 < m \le n$) 个元素,<u>按照一定的顺序排成一列</u>,这样的一列元素叫做从n个不同元素中取m个不同元素的一个排列,其排列总数为 P_n^m ($\vec{\mathbf{y}}A_n^m$)

$$P_n^m(\vec{x}A_n^m) = n(n-1)...(n-m+1) = \frac{n!}{(n-m)!}$$

④ 组合

从n个不同元素中任意取出 $m(0 < m \le n)$ 个不同元素,不考虑其次序排成一列,这样的一列元素叫做从n个不同元素中取m个不同元素的一个组合,其组合

总数为
$$C_n^m$$
 或 $\binom{n}{m}$

$$\binom{n}{m} = C_n^m = \frac{P_n^m}{m!} = \frac{n(n-1)...(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

计算等可能性概型中事件的概率时,参考以下思路:

- ❸ 先判断等可能概型成立与否?
- ◎ 弄清样本空间和所求事件的构成,利用公式计算。

可能性概型问题大致分为三类问题

取球 球盒 随机取数

取球问题

- 例1 一口袋装有6只球,其中4只白球、2只红球。从袋中取球两次,每次随机地取一只。考虑两种取球方式:
- (a)第一次取一只球,观察其颜色后放回袋中,搅匀后再取一球。这种取球方式叫做放回抽样。
- (b)第一次取一球不放回袋中,第二次从剩余的球中再取一球。这种取球方式叫做不放回抽样。

试分别就上面两种情况求:

- (1)取到的两只球都是白球的概率;
- (2)取到的两只球颜色相同的概率;
- (3)取到的两只球中至少有一只是白球的概率。

袋中6球: 4白, 2红

设A: 2白; B: 2红; C: 至少1白 解: 等可能概型?

放回抽样 (1) 2白

$$P(A) = \frac{4 \times 4}{6 \times 6} = 0.444$$

(2) $P(A \cup B) = P(A) + P(B)$

$$= \frac{4 \times 4}{6 \times 6} + \frac{2 \times 2}{6 \times 6} = 0.556$$

不放回抽样

$$P(A) = \frac{4 \times 3}{6 \times 5} = 0.4$$

$$P(A \cup B) = P(A) + P(B)$$

$$= \frac{4 \times 3}{6 \times 5} + \frac{2 \times 1}{6 \times 5} = 0.467$$

(3)至少1白 法1: P(C) = P(A) + P(先红后白) + P(先白后红)

$$P(C) = \frac{4\times4}{6\times6} + \frac{2\times4}{6\times6} + \frac{4\times2}{6\times6}$$

$$= 0.889$$

$$P(C) = \frac{4\times3}{6\times5} + \frac{2\times4}{6\times5} + \frac{4\times2}{6\times5}$$

$$= 0.933$$

$$P(C) = \frac{4 \times 3}{6 \times 5} + \frac{2 \times 4}{6 \times 5} + \frac{4 \times 2}{6 \times 5}$$
$$= 0.933$$

袋中6球: 4白, 2红

设A: 2白; B: 2红; C: 至少1白

(3)至少1白

法2: 求逆事件 P(C)

$$\bar{C} = B$$

$$\Rightarrow$$
 P(C) = 1 - P(\overline{C}) = 1 - P(B)

法2启示:有时求逆事件的概率可以简化计算,尤其是直接求解事件概率时情况较多,稍有不慎就会漏掉某种情况,从而导致错误结果。

球盒问题

例2 将m只球随机地放入 $N(N \ge m)$ 个盒子中去,试求每个盒子至多有一只球的概率(设盒子的容量不限)。

解: 等可能概型?

放完球共分m步

球盒问题

例3 假设每人的生日在一年365天中任一天是等可能的,

设: A1={两个人生日在同一天}

A2={随机的n个人生日各不相同}, (n≤365)

A3={n个人中至少有两人的生日在同一天}

试求: P(A1), P(A2), P(A3)。

解: 等可能概型? 365天相当于盒子, 每人生日相当于球

$$P(A_1) = \frac{365 \times 1}{365 \times 365} = \frac{1}{365}$$

$$P(A_2) = \frac{365 \times (365 - 1) \times \dots \times (365 - n + 1)}{365^n}$$

$$P(A_3) = 1 - P(\overline{A}_3) = 1 - P(A_2)$$

n 人班级至少有两人生日同一天的概率

前提:每人的生日在一年365天中任一天是等可能的

n	10	20	23	25	30	35
p	0.1169	0.4114	0.5073	0.5687	0.7063	0.8144
n	40	45	50	55	60	70
p	0.8912	0.9410	0.9704	0.9863	0.9941	0.9992

球盒问题

例4 假设每个意外事件发生在一周中任一天的可能性相同,求

 $P(A) = P\{r个意外事件均发生在周六和周日两天\}。$

例5 某接待站在一周内接待过12个来访,已知所有的这12次接待都是在周二和周四完成的,问是否可以推断接待时间是有规定的?

实际推断原理

概率很小的事件在一次E中实际上几乎是不发生的

随机取数问题

例6 在1~2000的整数中随机地取一个数,问取到的整数既不能被6整除,又不能被8整除的概率是多少?

解:设 A={取到的数能被6整除}, B={取到的数能被8整除}

P(Ā園)
連摩根律 P(ĀŪB)
連事件 1-P(A
$$\cup$$
 B)

加法公式 1-[P(A)+P(B)-P(AB)]

333 < $\frac{2000}{6}$ < 334 \Rightarrow P(A) = $\frac{333}{2000}$ P(B) = $\frac{250}{2000}$

83 < $\frac{2000}{24}$ < 84 \Rightarrow P(AB) = $\frac{83}{2000}$

$$\therefore P(\overline{A}\overline{B}) = 1 - \frac{333}{2000} - \frac{250}{2000} + \frac{83}{2000} = \frac{3}{4}$$

小结

等可能概型 E的S包含有限个元素 等可能概型 E中每个基本事件发生的可能性相同

优点:方便计算,成功地计算了某一类问题的概率

缺点: E的S中样本点个数有限,

对于无限多个试验结果情形不再适用

补充 几何概型

一.定义

若试验E满足:

- 1. S所含样本点数有无限多个,且具有非零的,有限的几何度量m(S),即 $0 < m(S) < \infty$;
- 2. 每个基本事件的出现都是等可能性的。

称这种试验为几何概型。

二.几何概型中事件概率的计算

对于一个试验E: 以m(A)表示任一事件A的几何度量,若 $0 < m(A) < \infty$,则对事件A定义其发生的概率为

$$P(A) = \frac{m(A)}{m(S)}$$

说明

- ※ 区分等可能概型与几何概型,它们都要求基本事件发生的等可能性,但等可能概型要求基本事件有限,几何概型则要求基本事件无限。针对具体试验,采用恰当的概率模型来计算事件的概率。
- 悉 无论等可能性概型还是几何概型,其中的概率都 满足一般概率定义中的三个条件:

非负性,规范性,可列可加性。

例1 (会面问题)

甲乙二人相约在7点到8点之间的某地会面,先到者等足另一人20分钟方可离去,试求二人能会面的概率。

解: (每一次会面是两人到达的一对时间,二维实数。)以x,y 分别表示甲乙二人到达的时刻(分钟数),事件A={甲乙会面}

$$S = \{(x, y): 0 \le x \le 60, 0 \le y \le 60\}$$

$$A = \{(x, y): |x - y| \le 20, (x, y) \in S\}$$

$$S = \{(x, y): 0 \le x \le 60, 0 \le y \le 60\}$$

$$A = \{(x, y): |x-y| \le 20, (x, y) \in S\}$$

$$P(A) = \frac{m(A)}{m(S)}$$

$$= \frac{60^2 - (60 - 20)^2}{60^2} = \frac{5}{9}$$

例2 蒲丰投针

假设平面上画有等距离为a(>0)的一些平行直线,向该平面随机地投掷一根长为l(<a)的针,试求针与任一平行直线相交的概率P(A)。

红针-针与平行线相交 蓝针-针与平行线未相交

提示: 针与任一条平行 线"相交"和"不相交" 的比例是一样的。因此 选其中任一条直线计算 即可, 把这叫均匀性或 对称性

例2 蒲丰投针

解:设针的中点为M,则平面上一根针的位置可由下面两个几何量完全确定:

x—M与最近一条平行线的距离

φ—针与这条平行线的夹角

针落在平面上的区域

$$S = \{ (x, \varphi) : 0 \le x \le a/2, 0 \le \varphi \le \pi \}$$

针与最近一条平行线相交

$$A = \{(x, \varphi): 0 \le x \le (l/2) \sin \varphi, 0 \le \varphi \le \pi \}$$

$$P(A) = \frac{m(A)}{m(S)}$$

$$= \frac{\int_0^{\pi} \frac{l}{2} \sin \varphi \, d\varphi}{\pi \times \frac{a}{2}}$$

$$= \frac{2l}{\pi a}$$

上式结果表明: P(A) 仅依赖于(l/a), 当l与a成比例变化时P(A)不变。

蒲丰投针试验的应用和意义

$$P(A) = \frac{2l}{\pi a} \qquad \qquad \pi = \frac{2l}{a \times P(A)}$$

由此得到一种求圆周率 π 值的方法:考虑到频率的稳定性与概率间的关系,当投针次数n很大时,数出针与平行线相交的次数m,则频率值

$$m/n \approx P(A)$$

$$\pi \approx \frac{2 \, l}{a \times m/n}$$

蒲丰实验

1777年的一天,法国数学家蒲丰(Buffon)忽发奇想,邀请了许多亲朋好友来到他家里。他要做一个实验。

蒲丰事先准备好一张白纸铺在桌上,纸上画满了一条条距离相等的平行线。他又拿出许许多多的小针,小针的长度刚好等于相邻两条平行直线之间 距离的一半。

实验开始了,蒲丰让客人把小针一根一根随手往纸面上投去,这些针有的落在白纸上的两条平行直线之间,不与直线相交,有的与某一条直线相交

蒲丰实验

蒲丰关心的是针与直线相交的情况。他在一旁 数着投针的次数和相交的次数。结果,共投针2212 次,与直线相交的有704次,蒲丰做了一个简单的除 法:

 $2212 \div 704 \approx 3.142$

他宣布这就是π的近似值,众人惊讶不已。这就是著名的蒲丰投针问题。后来他把这个试验写进了他的论文《或然性算术尝试》中。

历史上一些学者的计算结果(直线距离a=1)

试验者	时间	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218	3.1554
De Morgan	1860	1.0	600	382	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

小结

- > 几何概型的特点;
- > 几何概型中事情概率的计算。

一个事件的概率是介于0~1之间的实数,且知

不可能事件的概率为0 确定性事件的概率为1

概率为0的事件是不可能事件?

概率为1的事件是确定性事件?

投两颗骰子,观察出现的点数之和,试求事件 $A=\{$ 点数之和等于 $6\}$ 的概率?

考察的是两颗骰子点数之和,则样本空间构造如下 $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

由于 $A=\{6\}$,故由等可能概型可知 P(A)=1/11.

事件概率 P(A)=1/11 ?

等可能概型中"等可能性"?

正确答案:

作业

Page 25: 第4, 6, 8, 9, 11题