The Verb Phrase & Subcategorization

Presentation by:
B. Senthil Kumar
Dept. of CSE

Overview

- The Verb phrase [VP] and Subcategorization
- Auxiliaries
- Grammar Equivalence
- Chomsky Normal Form [CNF]
- Finite-State and Context-Free Grammars

The Verb Phrase

The VP consists of the verb and a number of other constituents.

```
VP \rightarrow Verb disappear

VP \rightarrow Verb \ NP prefer a morning flight

VP \rightarrow Verb \ NP \ PP leave Boston in the morning

VP \rightarrow Verb \ PP leaving on Thursday
```

 An entire embedded sentence, called sentential complement, can follow the verb.

```
You [V_P]_V said [V_S]_S there were two flights that were the cheapest [V_S]_S You [V_P]_V said [V_S]_S you had a two hundred sixty six dollar fare [V_S]_S [V_S]_S [V_S]_S [V_S]_S [V_S]_S how to get from the airport in Philadelphia to downtown [V_S]_S [V_S]_S
```

-
$$VP \rightarrow Verb S$$

The Verb Phrase

- Another potential constituent of the VP is another VP
 - Often the case for verbs like want, would like, try, intent, need

I want [VP] to fly from Chennai to Singapore Hi, I want [VP] to arrange three flights

Hello, I'm *trying* [$_{VP}$ to find a flight that goes from Pittsburgh to Denver after two p.m.]

- Verbs can also be followed by particles, word that resemble a
 preposition but that combine with the verb to form a phrasal verb,
 like take off.
 - These particles are integral part of the verb in a way that other post-verbal elements are not;
 - Phrasal verbs are treated as <u>individual verbs</u> composed of two words.

Subcategorization

- A VP can have many possible kinds of constituents, not every verb is compatible with every VP.
 - I want a flight ... [a verb with an NP complement]
 - I want to fly to ... [a verb with an infinitive VP complement]
 - *I found to fly to Dallas.
- The idea that verbs are compatible with different kinds of complements
 - Traditional grammar subcategorize verbs into two categories (transitive and intransitive).
 - Transitive verbs take a direct object NP (I found a flight) while intransitive verbs do not (*I disappeared a flight)
 - Modern grammars distinguish as many as 100 subcategories

Subcategorization

- The idea that verbs are compatible with different kinds of complements:
 - A verb like *find* subcategorizes for an NP, verb like want subcategorizes for either an NP or a *infinitive VP*
 - These constituents are called the *complements* of the verb
 - These possible set of complements are called the subcategorization frame

The Verb Phrase & Subcategorization

Some subcategorization frames and example verbs:

Frame	Verb	Example
ф	eat, sleep	I want to eat
NP NP NP PP _{from} PP _{to}	prefer, find ,leave show, give, find fly, travel	Find [$_{NP}$ the flight from Pittsburgh to Boston] Show [$_{NP}$ me] [$_{NP}$ airlines with flights from Denver] I would like to fly [$_{PP}$ from Boston] [$_{PP}$ to New York]
NP PP _{with}	help, load	Can you help $[NP]$ me] $[PP]$ with a flight]
VPto VPbrst S	prefer,want, need can, would, might mean	I would prefer [$_{VPto}$ to go by United airlines] I can [$_{VPbrst}$ go from Boston] Does this mean [$_{S}$ AA has a hub in Boston?]

The Verb Phrase & Subcategorization

- To relate verbs and their complements use agreement features:
 - Make separate subtypes of the Verb class

```
Verb	enth{-}NP	enth{-}complement 	op find \mid leave \mid repeat \mid \dots
Verb	enth{-}with	enth{-}S	enth{-}complement 	op think \mid believe \mid say \mid \dots
Verb	enth{-}with	enth{-}Inf	enth{-}VP	enth{-}complement 	op want \mid try \mid need \mid \dots
VP Rules with subtype:
VP 	op Verb	enth{-}with	enth{-}no	enth{-}complement 	op disappear
VP 	op Verb	enth{-}with	enth{-}NP	enth{-}complement 	NP 	op refer a morning flight
VP 	op Verb	enth{-}with	enth{-}S	enth{-}complement 	S 	op said there were two flights
```

- Problem: a vast explosion in the number of rules
- Solution: feature structure

Auxiliaries

- Auxiliaries or helping verbs
 - A subclass of verbs
 - Having particular syntactic constraints which can be viewed as a kind of subcategorization
 - Including the **modal** verbs can, could, may, might, must, ought to, will, would, shall, and should
 - The **perfect** auxiliary *have*
 - The **progressive** auxiliary be (am, is, are)
 - The **passive** auxiliary be (was, were, being, been)

Auxiliaries

- Modal verbs subcategorize for a VP whose head verb is a <u>bare stem</u>.
 - can go in the morning, will try to find a flight
 - The perfect verb have subcategorizes for a VP whose head verb is the <u>past participle form</u>:
 - have booked 3 flights
 - The progressive verb be subcategorizes for a VP whose head verb is the <u>gerundive participle</u>:
 - am going from Atlanta
 - The passive verb be subcategorizes for a VP whose head verb is the <u>past participle</u>:
 - was delayed by inclement weather

Auxiliaries

- A sentence may have multiple auxiliary verbs, but they must occur in a particular order.
 - modal < perfect < progressive < passive

modal perfect could have been a contender

modal passive will be married

perfect progressive have been feasting

modal perfect passive might have been prevented

Grammar Equivalence

- Two grammars are equivalent if they generate the same set of strings.
- Two kinds of equivalence
 - Strong equivalence
 - If two grammars generate the same set of strings *and* if they assign the same phrase structure to each sentence
 - Weak equivalence
 - Two grammars generate the same set of strings but *do not* assign the same phrase structure to each sentence.

Chomsky Normal Form [CNF]

- It is useful to have a **normal form** for grammars.
 - A CFG is in **Chomsky normal form** (CNF) if it is ϵ -free and each production is either of the form $A \to B C$ or $A \to a$
- Any grammar can be converted into a weakly-equivalent CNF grammar.
 - For ex: A → B C D can be converted into the following two CNF rules:

$$A \rightarrow B X$$

$$X \rightarrow CD$$

FSA and CFG

- Recursion problem with finite-state grammars
 - Recursion cannot be handled in finite automata.
 - Recursion is quite common in a complete model of NP

```
Nominal \rightarrow Nominal PP -- recursion
Noun Phrase [NP]
(Det)(Card)(Ord)(Quant)(AP)Nominal
(Det)(Card)(Ord)(Quant)(AP)Nominal (PP)*
(Det)(Card)(Ord)(Quant)(AP)Nominal (P NP)*
(Det)(Card)(Ord)(Quant)(AP)Nominal (RelClause|GerundVP|PP)*
```

- Chomsky (1959) proved that a context-free language *L* can generated by a finite automaton if and only if:
 - there is a CFG that generates *L* that does not have any centerembedded recursions (of the form $A \rightarrow \alpha A \beta$)
- An augmented version of the FSA: the recursive transition network
 [RTN]

References

 Speech and Language Processing, Daniel Jurafsky and James H. Martin [Chapter 9. Context-Free Grammars for English]

<Thank You />

