para el vector velocidad se obtienen de la definición de derivada. Sin embargo, el límite se puede interpretar también en el sentido vectorial. En la Figura 2.4.8, vemos que $[\mathbf{c}(t+h)-\mathbf{c}(t)]/h$ aproxima la tangente a la trayectoria cuando $h\to 0$.

Vector tangente La velocidad $\mathbf{c}'(t)$ es un vector tangente a la trayectoria $\mathbf{c}(t)$ en el instante t. Si C es la curva trazada por \mathbf{c} y si $\mathbf{c}'(t)$ no es igual a $\mathbf{0}$, entonces $\mathbf{c}'(t)$ es un vector tangente a la curva C en el punto $\mathbf{c}(t)$.

Figura 2.4.8 El vector $\mathbf{c}'(t)$ es tangente a la trayectoria $\mathbf{c}(t)$.

Si pensamos en la derivada $\mathbf{Dc}(t)$ como en una matriz, esta será un vector columna con los elementos x'(t), y'(t) y z'(t). Por tanto, la derivada aquí es coherente con nuestra noción anterior.

Ejemplo 5

Calcular el vector tangente a la trayectoria $\mathbf{c}(t) = (t, t^2, e^t)$ en t = 0.

Solución

Aquí $\mathbf{c}'(t)=(1,2t,e^t)$ y en t=0 obtenemos el vector tangente (1,0,1).

Ejemplo 6

Describir la trayectoria $\mathbf{c}(t) = (\cos t, \sin t, t)$. Determinar el vector velocidad en el punto de la curva imagen cuando $t = \pi/2$.

Solución

Para un t dado, el punto $(\cos t, \sin t, 0)$ está sobre la circunferencia $x^2 + y^2 = 1$ en el plano xy. Por tanto, el punto $(\cos t, \sin t, t)$ está t unidades por encima del punto $(\cos t, \sin t, 0)$ si t es positivo y -t unidades por debajo $(\cos t, \sin t, 0)$ si t es negativo. A medida que t crece, $(\cos t, \sin t, t)$ se enrolla alrededor del cilindro $x^2 + y^2 = 1$ con la coordenada z creciente. La curva que traza se llama hélice y se muestra en la Figura 2.4.9. En $t = \pi/2$, $\mathbf{c}'(\pi/2) = (-\sin \pi/2, \cos \pi/2, 1) = (-1, 0, 1) = -\mathbf{i} + \mathbf{k}$.