Lineare Algebra Matrizen

Reinhold Hübl

Wintersemester 2020/21

Matrizenaddition und -subtraktion

Wir betrachten zwei $m \times n$ -Matrizen $A = (a_{i,j})$ und $B = (b_{i,j})$.

Definition

Die $m \times n$ -Matrix

$$A + B = (c_{i,j})$$
 mit $c_{i,j} = a_{i,j} + b_{i,j} \forall i, j$

heißt Summe von A und B.

Matrizenaddition und -subtraktion

Wir betrachten zwei $m \times n$ -Matrizen $A = (a_{i,j})$ und $B = (b_{i,j})$.

Definition

Die $m \times n$ -Matrix

$$A + B = (c_{i,j})$$
 mit $c_{i,j} = a_{i,j} + b_{i,j} \forall i,j$

heißt **Summe** von *A* und *B*. Die $m \times n$ -Matrix

$$A - B = (c_{i,j})$$
 mit $c_{i,j} = a_{i,j} - b_{i,j} \forall i, j$

heißt **Differenz** von A und B.

Matrizenaddition und -subtraktion

Wir betrachten zwei $m \times n$ -Matrizen $A = (a_{i,j})$ und $B = (b_{i,j})$.

Definition

Die $m \times n$ -Matrix

$$A + B = (c_{i,j})$$
 mit $c_{i,j} = a_{i,j} + b_{i,j} \forall i,j$

heißt **Summe** von A und B. Die $m \times n$ -Matrix

$$A - B = (c_{i,j})$$
 mit $c_{i,j} = a_{i,j} - b_{i,j} \forall i, j$

heißt **Differenz** von A und B.

Beispiel

Für

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 5 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 3 & 2 \\ 1 & 4 & 1 & 5 \end{pmatrix}$$

gilt

$$A+B = \begin{pmatrix} 1+2 & 2+1 & 3+3 & 4+2 \\ 5+1 & 6+4 & 5+1 & 4+5 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 6 & 6 \\ 6 & 10 & 6 & 9 \end{pmatrix}$$

und

$$A - B = \begin{pmatrix} 1 - 2 & 2 - 1 & 3 - 3 & 4 - 2 \\ 5 - 1 & 6 - 4 & 5 - 1 & 4 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 2 \\ 4 & 2 & 4 & -1 \end{pmatrix}$$

Skalarmultiplikation

Für eine $m \times n$ -Matrizen $A = (a_{i,j})$ und ein $r \in \mathbb{R}$ ist die Skalarmultiplikaton $r \cdot A$ definiert als

$$r \cdot A = (c_{i,j})$$
 textmit $c_{i,j} = r \cdot a_{i,j} \forall i,j$

Beispiel

$$\frac{3}{5} \cdot \begin{pmatrix} 2 & 10 \\ 5 & 4 \\ 1 & 15 \end{pmatrix} = \begin{pmatrix} \frac{6}{5} & 6 \\ 3 & \frac{12}{5} \\ \frac{3}{5} & 9 \end{pmatrix}$$

Skalarmultiplikation

Für eine $m \times n$ -Matrizen $A = (a_{i,j})$ und ein $r \in \mathbb{R}$ ist die Skalarmultiplikaton $r \cdot A$ definiert als

$$r \cdot A = (c_{i,j})$$
 textmit $c_{i,j} = r \cdot a_{i,j} \forall i,j$

Beispiel

$$\frac{3}{5} \cdot \begin{pmatrix} 2 & 10 \\ 5 & 4 \\ 1 & 15 \end{pmatrix} = \begin{pmatrix} \frac{6}{5} & 6 \\ 3 & \frac{12}{5} \\ \frac{3}{5} & 9 \end{pmatrix}$$

Regel

Der Raum Matr(m, n) der reellen $m \times n$ -Matrizen ist ein Vektorraum der Dimension $m \cdot n$.

Skalarmultiplikation

Für eine $m \times n$ -Matrizen $A = (a_{i,j})$ und ein $r \in \mathbb{R}$ ist die Skalarmultiplikaton $r \cdot A$ definiert als

$$r \cdot A = (c_{i,j})$$
 textmit $c_{i,j} = r \cdot a_{i,j} \forall i,j$

Beispiel

$$\frac{3}{5} \cdot \begin{pmatrix} 2 & 10 \\ 5 & 4 \\ 1 & 15 \end{pmatrix} = \begin{pmatrix} \frac{6}{5} & 6 \\ 3 & \frac{12}{5} \\ \frac{3}{5} & 9 \end{pmatrix}$$

Regel

Der Raum Matr(m, n) der reellen $m \times n$ -Matrizen ist ein Vektorraum der Dimension $m \cdot n$.

Definition

Für eine $m \times n$ -Matrix $A = (a_{i,j})$ und eine $n \times I$ -Matrix $B = (b_{i,j})$ definieren wir das **Matrizenprodukt** $A \cdot B$ von A und B als diejenige $m \times I$ -Matrix $C = (c_{i,j})$ mit

$$c_{i,j} = a_{i,1} \cdot b_{1,j} + a_{i,2} \cdot b_{2,j} + \dots + a_{i,n} \cdot b_{n,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 20 & 26 \\ 15 & 18 \end{pmatrix}$$

Definition

Für eine $m \times n$ -Matrix $A = (a_{i,j})$ und eine $n \times I$ -Matrix $B = (b_{i,j})$ definieren wir das **Matrizenprodukt** $A \cdot B$ von A und B als diejenige $m \times I$ -Matrix $C = (c_{i,j})$ mit

$$c_{i,j} = a_{i,1} \cdot b_{1,j} + a_{i,2} \cdot b_{2,j} + \dots + a_{i,n} \cdot b_{n,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 20 & 26 \\ 15 & 18 \end{pmatrix}$$

Übung

Berechnen Sie

$$\begin{pmatrix} 2 & -4 \\ 3 & 1 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & 3 \\ -3 & 4 & -4 \end{pmatrix}$$

Übung

Berechnen Sie

$$\begin{pmatrix} 2 & -4 \\ 3 & 1 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & 3 \\ -3 & 4 & -4 \end{pmatrix}$$

Lösung:

$$\begin{pmatrix} 2 & -4 \\ 3 & 1 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & 3 \\ -3 & 4 & -4 \end{pmatrix} = \begin{pmatrix} 16 & -20 & 22 \\ 3 & -2 & 5 \\ -7 & 8 & -10 \end{pmatrix}$$

Übung

Berechnen Sie

$$\begin{pmatrix} 2 & -4 \\ 3 & 1 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & 3 \\ -3 & 4 & -4 \end{pmatrix}$$

Lösung:

$$\begin{pmatrix} 2 & -4 \\ 3 & 1 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & 3 \\ -3 & 4 & -4 \end{pmatrix} = \begin{pmatrix} 16 & -20 & 22 \\ 3 & -2 & 5 \\ -7 & 8 & -10 \end{pmatrix}$$

Eine $m \times n$ -Matrix kann auch mit einem Vektor $\overrightarrow{v} \in \mathbb{R}^n$ multipliziert werden.

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 13 \\ 9 \end{pmatrix}$$

Eine $m \times n$ -Matrix kann auch mit einem Vektor $\overrightarrow{V} \in \mathbb{R}^n$ multipliziert werden.

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 13 \\ 9 \end{pmatrix}$$

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = A_{\bullet,1}$$

und generell ist $A \cdot \overrightarrow{e_i} = A_{\bullet,j}$ die j-te Spalte von A.

Eine $m \times n$ -Matrix kann auch mit einem Vektor $\overrightarrow{V} \in \mathbb{R}^n$ multipliziert werden.

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 13 \\ 9 \end{pmatrix}$$

Beispiel

$$\begin{pmatrix} 2 & 1 & 3 \\ -2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = A_{\bullet,1}$$

und generell ist $A \cdot \overrightarrow{e_i} = A_{\bullet,j}$ die j-te Spalte von A.

Regel

Ist $A = (a_{i,j})$ eine $m \times n$ -Matrix mit den Spaltenvektoren

$$\overrightarrow{a_1} = A_{ullet,1}, \ldots, \overrightarrow{a_n} = A_{ullet,n}$$
, und ist $\overrightarrow{V} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ ein n-dimensionaler Vektor,

so gilt

$$A \cdot \overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + \cdots + v_n \cdot \overrightarrow{a_n}$$

Beispiel

$$\begin{pmatrix} 2 & 1 \\ 3 & -2 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Regel

Ist $A = (a_{i,j})$ eine $m \times n$ -Matrix mit den Spaltenvektoren

$$\overrightarrow{a_1} = A_{\bullet,1}, \ldots, \overrightarrow{a_n} = A_{\bullet,n}$$
, und ist $\overrightarrow{V} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ ein n-dimensionaler Vektor,

so gilt $\Delta \cdot \overrightarrow{y} = y_0$

$$A \cdot \overrightarrow{V} = v_1 \cdot \overrightarrow{a_1} + \cdots + v_n \cdot \overrightarrow{a_n}$$

Beispiel

$$\begin{pmatrix} 2 & 1 \\ 3 & -2 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Regel

Ist A eine $n \times n$ -Matrix und sind \overrightarrow{v} und \overrightarrow{w} zwei n-dimensonale Vektoren, so gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A^{\top} \cdot \overrightarrow{w} \rangle$$

Ist also speziell A eine symmetrische Matrix, ist also $A^{\top} = A$, so gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A \cdot \overrightarrow{w} \rangle$$

Regel

Ist A eine $n \times n$ -Matrix und sind \overrightarrow{v} und \overrightarrow{w} zwei n-dimensonale Vektoren, so gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A^{\top} \cdot \overrightarrow{w} \rangle$$

Ist also speziell A eine symmetrische Matrix, ist also $A^{\top} = A$, so gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A \cdot \overrightarrow{w} \rangle$$

Folgerung

Genau dann ist eine n \times n-Matrix symmetrisch, wenn für alle n-Vektoren \overrightarrow{V} und \overrightarrow{w} gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A \cdot \overrightarrow{w} \rangle$$

Regel

Ist A eine $n \times n$ -Matrix und sind \overrightarrow{v} und \overrightarrow{w} zwei n-dimensonale Vektoren, so gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A^{\top} \cdot \overrightarrow{w} \rangle$$

Ist also speziell A eine symmetrische Matrix, ist also $A^{\top} = A$, so gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A \cdot \overrightarrow{w} \rangle$$

Folgerung

Genau dann ist eine n \times n-Matrix symmetrisch, wenn für alle n-Vektoren \overrightarrow{v} und \overrightarrow{w} gilt

$$\langle A \cdot \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{v}, A \cdot \overrightarrow{w} \rangle$$

Betrachten wir ein allgemeines lineares Gleichungssystem mit nUnbekannten und mit Koeffizientenmatrix A und Ergbnisvektor \overrightarrow{b} , so gilt: Genau dann bilden r_1, \ldots, r_n eine Lösung des Gleichungssystems, wenn

$$A \cdot \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \overrightarrow{b}$$

Betrachten wir ein allgemeines lineares Gleichungssystem mit n Unbekannten und mit Koeffizientenmatrix A und Ergbnisvektor \overrightarrow{b} , so gilt: Genau dann bilden r_1, \ldots, r_n eine Lösung des Gleichungssystems, wenn

$$A \cdot \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \overrightarrow{b}$$

Deshalb wird ein allgemeines lineares Gleichungssystem auch in der Form

$$A \cdot \overrightarrow{X} = \overrightarrow{b}$$

mit Koeffizientenmatrix A und Ergebnisvektor \overrightarrow{b} notiert.

Betrachten wir ein allgemeines lineares Gleichungssystem mit n Unbekannten und mit Koeffizientenmatrix A und Ergbnisvektor \overrightarrow{b} , so gilt: Genau dann bilden r_1, \ldots, r_n eine Lösung des Gleichungssystems, wenn

$$A \cdot \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \overrightarrow{b}$$

Deshalb wird ein allgemeines lineares Gleichungssystem auch in der Form

$$A \cdot \overrightarrow{x} = \overrightarrow{b}$$

mit Koeffizientenmatrix A und Ergebnisvektor \overrightarrow{b} notiert.

Definition

Eine Abbildung $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ heißt **lineare Abbildung** von \mathbb{R}^n nach \mathbb{R}^m , wenn sie die folgenden beiden Eigenschaften hat

• Für \overrightarrow{V} , $\overrightarrow{w} \in \mathbb{R}^n$ gilt:

$$f_A(\overrightarrow{V} + \overrightarrow{w}) = f_A(\overrightarrow{V}) + f_A(\overrightarrow{w})$$

Definition

Eine Abbildung $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ heißt **lineare Abbildung** von \mathbb{R}^n nach \mathbb{R}^m , wenn sie die folgenden beiden Eigenschaften hat

• Für \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^n$ gilt:

$$f_A(\overrightarrow{v} + \overrightarrow{w}) = f_A(\overrightarrow{v}) + f_A(\overrightarrow{w})$$

• Für $\overrightarrow{V} \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ gilt:

$$f_A(\lambda \cdot \overrightarrow{V}) = \lambda \cdot f_A(\overrightarrow{V})$$

Definition

Eine Abbildung $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ heißt **lineare Abbildung** von \mathbb{R}^n nach \mathbb{R}^m , wenn sie die folgenden beiden Eigenschaften hat

• Für \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^n$ gilt:

$$f_A(\overrightarrow{v}+\overrightarrow{w})=f_A(\overrightarrow{v})+f_A(\overrightarrow{w})$$

• Für $\overrightarrow{V} \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ gilt:

$$f_A(\lambda \cdot \overrightarrow{V}) = \lambda \cdot f_A(\overrightarrow{V})$$

Beispiel

Die Abbildung $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ mit

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + y + z \\ 2x - 3y - z \end{pmatrix}$$

ist linear.

Beispiel

Die Abbildung $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ mit

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x^2 + y^2 + z^2 \\ x + y + z \end{pmatrix}$$

ist nicht linear.

Beispiel

Die Abbildung $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ mit

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + y + z \\ 2x - 3y - z \end{pmatrix}$$

ist linear.

Beispiel

Die Abbildung $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ mit

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x^2 + y^2 + z^2 \\ x + y + z \end{pmatrix}$$

ist nicht linear.

Übung

Überprüfen Sie, ob die Abbildung

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x + 3y + 4z \\ x + y + z + 1 \end{pmatrix}$$

linear ist.

Übung

Überprüfen Sie, ob die Abbildung

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x + 3y + 4z \\ x + y + z + 1 \end{pmatrix}$$

linear ist.

Lösung:

Dei Abildung ist nicht linear.

Übung

Überprüfen Sie, ob die Abbildung

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x + 3y + 4z \\ x + y + z + 1 \end{pmatrix}$$

linear ist.

Lösung:

Dei Abildung ist nicht linear.

Jede $m \times n$ -Matrix A bestimmt eine lineare Abbildung

$$f = f_A : \mathbb{R}^n \longrightarrow R^m$$

durch

$$f_A(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$

Umgekehrt gibt es auch zu jeder linearen Abbildung $f: \mathbb{R}^n \longrightarrow R^m$ eine $m \times n$ -Matrix A mit der Eigenschaft, dass

$$f(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$

Jede $m \times n$ -Matrix A bestimmt eine lineare Abbildung

$$f = f_A : \mathbb{R}^n \longrightarrow R^m$$

durch

$$f_A(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$

Umgekehrt gibt es auch zu jeder linearen Abbildung $f: \mathbb{R}^n \longrightarrow R^m$ eine $m \times n$ -Matrix A mit der Eigenschaft, dass

$$f(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$

Diese Matrix A heißt darstellende Matrix von f.

Jede $m \times n$ -Matrix A bestimmt eine lineare Abbildung

$$f = f_A : \mathbb{R}^n \longrightarrow R^m$$

durch

$$f_A(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$

Umgekehrt gibt es auch zu jeder linearen Abbildung $f: \mathbb{R}^n \longrightarrow R^m$ eine $m \times n$ -Matrix A mit der Eigenschaft, dass

$$f(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$

Diese Matrix A heißt darstellende Matrix von f.

Die darstellende Matrix A einer lineare Abbildung kann wie folgt gewonnen werden:

• Bezeihen mit $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ die Standardbasis des \mathbb{R}^n .

Die darstellende Matrix A einer lineare Abbildung kann wie folgt gewonnen werden:

- Bezeihen mit $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ die Standardbasis des \mathbb{R}^n .
- Berechne die Vektoren $\overrightarrow{a_i} = f(\overrightarrow{e_i})$ für j = 1, ..., n.

Die darstellende Matrix A einer lineare Abbildung kann wie folgt gewonnen werden:

- Bezeihen mit $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ die Standardbasis des \mathbb{R}^n .
- Berechne die Vektoren $\overrightarrow{a_j} = f(\overrightarrow{e_j})$ für $j = 1, \dots, n$.
- Bilde die $m \times n$ -Matrix A mit $\overrightarrow{a_1}, \dots, \overrightarrow{a_n}$ als Spalten

Dann gilt in der Tat

$$f(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$
 für alle $\overrightarrow{x} \in \mathbb{R}^n$

Die darstellende Matrix A einer lineare Abbildung kann wie folgt gewonnen werden:

- Bezeihen mit $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ die Standardbasis des \mathbb{R}^n .
- Berechne die Vektoren $\overrightarrow{a_j} = f(\overrightarrow{e_j})$ für $j = 1, \dots, n$.
- Bilde die $m \times n$ -Matrix A mit $\overrightarrow{a_1}, \dots, \overrightarrow{a_n}$ als Spalten

Dann gilt in der Tat

$$f(\overrightarrow{x}) = A \cdot \overrightarrow{x}$$
 für alle $\overrightarrow{x} \in \mathbb{R}^n$

Beispiel

Für die lineare Abbildung $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ mit

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + y + z \\ 2x - 3y - z \end{pmatrix}$$

gilt

$$f(\overrightarrow{e_1}) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad f(\overrightarrow{e_2}) = \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \quad f(\overrightarrow{e_3}) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

und damit

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -3 & -1 \end{pmatrix}$$

Übung

Betimmen Sie eine darstellende Matrix für die lineare Abbildung

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 mit

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 2x + 5y \\ -3y \\ 3x - y \end{pmatrix}$$

Übung

Betimmen Sie eine darstellende Matrix für die lineare Abbildung

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 mit

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 2x + 5y \\ -3y \\ 3x - y \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 5 \\ 0 & -3 \\ 3 & -1 \end{pmatrix}$$

Übung

Betimmen Sie eine darstellende Matrix für die lineare Abbildung

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 mit

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 2x + 5y \\ -3y \\ 3x - y \end{pmatrix}$$

Lösung:

$$A = \begin{pmatrix} 2 & 5 \\ 0 & -3 \\ 3 & -1 \end{pmatrix}$$

Definition

Für eine $m \times n$ -Matrix A nennen wir

$$\operatorname{Ker}(A) := \{ \overrightarrow{v} \in \mathbb{R}^n \, | \, A \cdot \overrightarrow{v} = \overrightarrow{0} \}$$

den Kern von A,

$$\operatorname{Im}(A) := \{ \overrightarrow{b} \in \mathbb{R}^m | \exists \overrightarrow{v} \in \mathbb{R}^n \text{ mit } A \cdot \overrightarrow{v} = \overrightarrow{b} \}$$

das Bild oder den Spaltenraum von A.

Definition

Für eine $m \times n$ -Matrix A nennen wir

$$\operatorname{Ker}(A) := \{ \overrightarrow{v} \in \mathbb{R}^n \, | \, A \cdot \overrightarrow{v} = \overrightarrow{0} \}$$

den Kern von A,

$$\operatorname{Im}(A) := \{ \overrightarrow{b} \in \mathbb{R}^m \, | \, \exists \overrightarrow{v} \in \mathbb{R}^n \, \text{ mit } A \cdot \overrightarrow{v} = \overrightarrow{b} \}$$

das Bild oder den Spaltenraum von A.

Satz

Für jede $m \times n$ -Matrix A gilt

Definition

Für eine $m \times n$ -Matrix A nennen wir

$$\operatorname{Ker}(A) := \{ \overrightarrow{v} \in \mathbb{R}^n \, | \, A \cdot \overrightarrow{v} = \overrightarrow{0} \}$$

den **Kern** von *A*,

$$\operatorname{Im}(A) := \{ \overrightarrow{b} \in \mathbb{R}^m \, | \, \exists \overrightarrow{v} \in \mathbb{R}^n \, \text{ mit } A \cdot \overrightarrow{v} = \overrightarrow{b} \}$$

das Bild oder den Spaltenraum von A.

Satz

Für jede m × n-Matrix A gilt

• Ker(A) ist ein Untervektorraum von \mathbb{R}^n .

Definition

Für eine $m \times n$ -Matrix A nennen wir

$$\operatorname{Ker}(A) := \{ \overrightarrow{v} \in \mathbb{R}^n \, | \, A \cdot \overrightarrow{v} = \overrightarrow{0} \}$$

den Kern von A,

$$\operatorname{Im}(A) := \{ \overrightarrow{b} \in \mathbb{R}^m \, | \, \exists \overrightarrow{v} \in \mathbb{R}^n \, \text{ mit } A \cdot \overrightarrow{v} = \overrightarrow{b} \}$$

das Bild oder den Spaltenraum von A.

Satz

Für jede m × n-Matrix A gilt

- Ker(A) ist ein Untervektorraum von \mathbb{R}^n .
- $\operatorname{Im}(A)$ ist ein Untervektorraum von \mathbb{R}^m .

Definition

Für eine $m \times n$ -Matrix A nennen wir

$$\operatorname{Ker}(A) := \{ \overrightarrow{v} \in \mathbb{R}^n \, | \, A \cdot \overrightarrow{v} = \overrightarrow{0} \}$$

den **Kern** von *A*,

$$\operatorname{Im}(A) := \{ \overrightarrow{b} \in \mathbb{R}^m \, | \, \exists \overrightarrow{v} \in \mathbb{R}^n \, \text{ mit } A \cdot \overrightarrow{v} = \overrightarrow{b} \}$$

das Bild oder den Spaltenraum von A.

Satz

Für jede m × n-Matrix A gilt

- Ker(A) ist ein Untervektorraum von \mathbb{R}^n .
- $\operatorname{Im}(A)$ ist ein Untervektorraum von \mathbb{R}^m .

Definition

rg(A) := dim(Im(A)) heißt der Rang der Matrix A. nul(A) = dim(Ker(A)) heißt die Nullität von A.

Definition

rg(A) := dim(Im(A)) heißt der **Rang** der Matrix A.

 $\operatorname{nul}(A) = \dim(\operatorname{Ker}(A))$ heißt die **Nullität** von A.

Regel (Rangsatz)

Ist A eine $m \times n$ -Matrix, so gilt

$$rg(A) + nul(A) = n$$

Definition

rg(A) := dim(Im(A)) heißt der **Rang** der Matrix A. nul(A) = dim(Ker(A)) heißt die **Nullität** von A.

Regel (Rangsatz)

Ist A eine $m \times n$ -Matrix, so gilt

$$rg(A) + nul(A) = n$$

Regel (Rangsatz)

Ist A eine $m \times n$ -Matrix, so hat das Gleichungssystem

$$\mathbb{A} \cdot \overrightarrow{\mathsf{x}} = \overrightarrow{\mathsf{b}}$$

genau dann für jedes $\overrightarrow{b} \in \mathbb{R}^m$ eine eindeutige Lösung, wenn n=m und $\operatorname{rg}(A)=n$.

Definition

rg(A) := dim(Im(A)) heißt der **Rang** der Matrix A. nul(A) = dim(Ker(A)) heißt die **Nullität** von A.

Regel (Rangsatz)

Ist A eine $m \times n$ -Matrix, so gilt

$$rg(A) + nul(A) = n$$

Regel (Rangsatz)

Ist A eine $m \times n$ -Matrix, so hat das Gleichungssystem

$$\mathbb{A} \cdot \overrightarrow{\mathsf{x}} = \overrightarrow{\mathsf{b}}$$

genau dann für jedes $\overrightarrow{b} \in \mathbb{R}^m$ eine eindeutige Lösung, wenn n=m und $\operatorname{rg}(A)=n$.

Satz

Genau dann ist x_1, \ldots, x_n eine Lösung des homogenen linearen Gleichungssystems

$$A \cdot \overrightarrow{x} = \overrightarrow{0}$$

wenn
$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \operatorname{Ker}(A)$$
.

Genau dann hat das allgemeine lineare Gleichungssystem

$$A \cdot \overrightarrow{x} = \overrightarrow{b}$$

eine Lösung, wenn $\overrightarrow{b} \in \operatorname{Im}(A)$.

Satz

Genau dann ist x_1, \ldots, x_n eine Lösung des homogenen linearen Gleichungssystems

$$A \cdot \overrightarrow{x} = \overrightarrow{0}$$

wenn
$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \operatorname{Ker}(A)$$
.

Genau dann hat das allgemeine lineare Gleichungssystem

$$A \cdot \overrightarrow{x} = \overrightarrow{b}$$

eine Lösung, wenn $\overrightarrow{b} \in \operatorname{Im}(A)$.

Satz

$$A \cdot \overrightarrow{x} = \overrightarrow{b}$$

so ist jede weitere Lösung dieses Gleichungssystems von der Form $\overrightarrow{v}+\overrightarrow{w}$ für ein $\overrightarrow{w}\in \mathrm{Ker}(A)$ und umgekehrt ist auch für jedes $\overrightarrow{w}\in \mathrm{Ker}(A)$ der Vektor $\overrightarrow{v}+\overrightarrow{w}$ eine Lösung dieses Gleichungssystems.

Zur Lösung eines homogenen linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit einer $m \times n$ -Matrix A gehe vor wie folgt:

• Bestimme eine Normalform von A und bestimme rg(A).

Zur Lösung eines homogenen linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit einer $m \times n$ -Matrix A gehe vor wie folgt:

- Bestimme eine Normalform von A und bestimme rg(A).
- Falls rg(A) = n, so hat $A \cdot \overrightarrow{x} = \overrightarrow{0}$ nur die triviale Lösung $\overrightarrow{x} = \overrightarrow{0}$.

Zur Lösung eines homogenen linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit einer $m \times n$ -Matrix A gehe vor wie folgt:

- Bestimme eine Normalform von A und bestimme rg(A).
- Falls rg(A) = n, so hat $A \cdot \overrightarrow{x} = \overrightarrow{0}$ nur die triviale Lösung $\overrightarrow{x} = \overrightarrow{0}$.
- Ist $\operatorname{rg}(A) < n$, so setze $l = n \operatorname{rg}(A)$ und bestimme eine Basis $\overrightarrow{v_1}, \ldots, \overrightarrow{v_l}$ von $\operatorname{Ker}(A)$ wie folgt:

Zur Lösung eines homogenen linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit einer $m \times n$ -Matrix A gehe vor wie folgt:

- Bestimme eine Normalform von A und bestimme rg(A).
- Falls rg(A) = n, so hat $A \cdot \overrightarrow{x} = \overrightarrow{0}$ nur die triviale Lösung $\overrightarrow{x} = \overrightarrow{0}$.
- Ist $\operatorname{rg}(A) < n$, so setze $l = n \operatorname{rg}(A)$ und bestimme eine Basis $\overrightarrow{v_1}, \ldots, \overrightarrow{v_l}$ von $\operatorname{Ker}(A)$ wie folgt:
 - Bestimme die freien Variablen x_{i_1}, \ldots, x_{i_l} , die zur Normalform von A gehören.

Zur Lösung eines homogenen linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit einer $m \times n$ -Matrix A gehe vor wie folgt:

- Bestimme eine Normalform von A und bestimme rg(A).
- Falls rg(A) = n, so hat $A \cdot \overrightarrow{x} = \overrightarrow{0}$ nur die triviale Lösung $\overrightarrow{x} = \overrightarrow{0}$.
- Ist $\operatorname{rg}(A) < n$, so setze $l = n \operatorname{rg}(A)$ und bestimme eine Basis $\overrightarrow{v_1}, \ldots, \overrightarrow{v_l}$ von $\operatorname{Ker}(A)$ wie folgt:
 - Bestimme die freien Variablen x_{i_1}, \ldots, x_{i_l} , die zur Normalform von A gehören.
 - Bestimme den Vektor $\overrightarrow{v_k}$ als die eindeutige Lösung von $A \cdot \overrightarrow{x} = \overrightarrow{0}$, die zu der Belegung

$$x_{i_k} = 1, x_{i_t} = 0$$
 für $t \neq k$

der freien Variablen gehört.

Zur Lösung eines homogenen linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit einer $m \times n$ -Matrix A gehe vor wie folgt:

- Bestimme eine Normalform von A und bestimme rg(A).
- Falls rg(A) = n, so hat $A \cdot \overrightarrow{x} = \overrightarrow{0}$ nur die triviale Lösung $\overrightarrow{x} = \overrightarrow{0}$.
- Ist $\operatorname{rg}(A) < n$, so setze $l = n \operatorname{rg}(A)$ und bestimme eine Basis $\overrightarrow{v_1}, \ldots, \overrightarrow{v_l}$ von $\operatorname{Ker}(A)$ wie folgt:
 - Bestimme die freien Variablen x_{i_1}, \ldots, x_{i_l} , die zur Normalform von A gehören.
 - Bestimme den Vektor $\overrightarrow{v_k}$ als die eindeutige Lösung von $A \cdot \overrightarrow{x} = \overrightarrow{0}$, die zu der Belegung

$$x_{i_k} = 1, x_{i_t} = 0$$
 für $t \neq k$

der freien Variablen gehört.

Übung

Bestimmen Sie eine Basis des homogenen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$ mit Koeffizientenmatrix

$$A = \begin{pmatrix} 3 & 3 & 3 & 3 \\ 2 & 4 & 6 & 8 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Lösung:

Eine Normalform der Koeffizientenmatrix ist

$$A' = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

eine reduzierte Normalform ist.

$$A'' = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\overrightarrow{V_1} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \qquad \overrightarrow{V_1} = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$$
Lineare Algebra Matrizen

Lösung:

Eine Normalform der Koeffizientenmatrix ist

$$A' = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

eine reduzierte Normalform ist

$$A'' = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Eine Basis des Lösungsraums ist

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \qquad \overrightarrow{v_1} = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$$
Lineare Algebra Matrizen

Zur Lösung eines linearen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{b}$ gehe vor wie folgt:

• Bestimme eine Normalform der augmentierten Matrix $(A|\overrightarrow{b})$. Falls $\operatorname{rg}(A|\overrightarrow{b}) > \operatorname{rg}(A) \longrightarrow \operatorname{STOPP}$, das Gleichungsystem hat keine Lösung.

- Bestimme eine Normalform der augmentierten Matrix $(A|\overrightarrow{b})$. Falls $\operatorname{rg}(A|\overrightarrow{b}) > \operatorname{rg}(A) \longrightarrow \mathsf{STOPP}$, das Gleichungsystem hat keine Lösung.
- Bestimme den Lösungsraum $\operatorname{Ker}(A)$ des homogenen Gleichungssystems $A \cdot \overrightarrow{\chi} = \overrightarrow{0}$.

- Bestimme eine Normalform der augmentierten Matrix $(A|\overrightarrow{b})$. Falls $\operatorname{rg}(A|\overrightarrow{b}) > \operatorname{rg}(A) \longrightarrow \mathsf{STOPP}$, das Gleichungsystem hat keine Lösung.
- Bestimme den Lösungsraum $\operatorname{Ker}(A)$ des homogenen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$.
- Bestimme eine spezielle Lösung $\overrightarrow{v_p}$ des Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{b}$ (durch Nullsetzen aller freien Variablen).

- Bestimme eine Normalform der augmentierten Matrix $(A|\overrightarrow{b})$. Falls $\operatorname{rg}(A|\overrightarrow{b}) > \operatorname{rg}(A) \longrightarrow \mathsf{STOPP}$, das Gleichungsystem hat keine Lösung.
- Bestimme den Lösungsraum $\operatorname{Ker}(A)$ des homogenen Gleichungssystems $A \cdot \overrightarrow{\chi} = \overrightarrow{0}$.
- Bestimme eine spezielle Lösung $\overrightarrow{v_p}$ des Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{b}$ (durch Nullsetzen aller freien Variablen).
- Die allgemeine Lösung ist von dre Form $\overrightarrow{V} = \overrightarrow{v_p} + \overrightarrow{v_h}$, wobei $\overrightarrow{v_h}$ aus $\operatorname{Ker}(A)$ beliebig.

- Bestimme eine Normalform der augmentierten Matrix $(A|\overrightarrow{b})$. Falls $\operatorname{rg}(A|\overrightarrow{b}) > \operatorname{rg}(A) \longrightarrow \mathsf{STOPP}$, das Gleichungsystem hat keine Lösung.
- Bestimme den Lösungsraum $\operatorname{Ker}(A)$ des homogenen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{0}$.
- Bestimme eine spezielle Lösung $\overrightarrow{v_p}$ des Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{b}$ (durch Nullsetzen aller freien Variablen).
- Die allgemeine Lösung ist von dre Form $\overrightarrow{V} = \overrightarrow{v_p} + \overrightarrow{v_h}$, wobei $\overrightarrow{v_h}$ aus $\mathrm{Ker}(A)$ beliebig.

Übung

Bestimmen Sie die allgemeine Lösung des inhomogenen Gleichungssystems $A \cdot \overrightarrow{x} = \overrightarrow{b}$ mit

$$A = \begin{pmatrix} 3 & 3 & 3 & 3 \\ 2 & 4 & 6 & 8 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \qquad \overrightarrow{b} = \begin{pmatrix} 6 \\ 6 \\ 7 \end{pmatrix}$$

Lösung:

Eine Normalform der augmentierten Matrix ist

$$(A'|\overrightarrow{b'}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

eine reduzierte Normalform ist

$$(A'|\overrightarrow{b'}) = \begin{pmatrix} 1 & 0 & -1 & -2 & 1 \\ 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Die allgemeine Lösng ist

$$\overrightarrow{V} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$$

Lösung:

Eine Normalform der augmentierten Matrix ist

$$(A'|\overrightarrow{b'}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

eine reduzierte Normalform ist

$$(A'|\overrightarrow{b'}) = \begin{pmatrix} 1 & 0 & -1 & -2 & 1 \\ 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Die allgemeine Lösng ist

$$\overrightarrow{V} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$$

Lineare Algebra Matrizen

Lineare Gleichungssysteme, Matrizen und lineare Abbildungen können über jedem Körper betrachtet werden.

Beispiel

Das lineare Gleichungssystem

$$x + i \cdot y = 2 - 4 \cdot i$$

 $i \cdot x + y = 4 + 4 \cdot i$

hat

$$A = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}, \qquad \overrightarrow{b} = \begin{pmatrix} 2 - 4 \cdot i \\ 4 + 4 \cdot i \end{pmatrix}$$

und die eindeutige Lösung

$$x = 3 - 4 \cdot i, \quad v = i$$

Lineare Gleichungssysteme, Matrizen und lineare Abbildungen können über jedem Körper betrachtet werden.

Beispiel

Das lineare Gleichungssystem

$$x + i \cdot y = 2 - 4 \cdot i$$

 $i \cdot x + y = 4 + 4 \cdot i$

hat

$$A = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}, \qquad \overrightarrow{b} = \begin{pmatrix} 2 - 4 \cdot i \\ 4 + 4 \cdot i \end{pmatrix}$$

und die eindeutige Lösung

$$x = 3 - 4 \cdot i, y = i$$

