COVID-19 in India: A Time Series Analysis

Srijan Mallick

Alimpan Barik

M.Sc. BDA 2nd year, RKMVERI

Project Objective:

The COVID-19 pandemic has led to a dramatic loss of human life worldwide and presents an unprecedented challenge to public health. India has been one of the most affected countries in the world, recording more than 3.43 crore cases and 4.5 lakh deaths till the end of October 2021. Here we have tried to study the daily cases and daily deaths due to COVID-19 using various time series modelling techniques.

Daily Cases (03-04-2020 - 11-10-2021)

Smoothed Cases (7-day moving average)

Second Wave

First Wave Analysis (Cases)

Transformation:

Original Time Series X,

 $log(X_t/X_{t-1})$

(Growth Rate)

Growth rate of daily cases

(obtained by log differencing the data)

Squared growth rate

Observation: The mean appears to be non-constant and there are signs of volatility in the data.

ACF AND PACF plots of Growth rate

Unit Root Test

Value of test-statistic is: -5.8257 17.3265

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.44 -2.87 -2.57

phi1 6.47 4.61 3.79

Unit root not present, but we must check for volatility before making any remark on the stationarity of the time series

Rolling mean and variance of growth rate

Histogram of growth rate (first wave)

Positively skewed

Skewness = 1.948

Modelling first wave using ARMA-GARCH:

ARMA GARCH (m,n,p,q) MODEL:

$$egin{aligned} x_t &= \mu + \sum_{i=1}^m a_i x_{t-i} + \sum_{j=1}^n b_j \epsilon_{t-j} + \epsilon_t \ \epsilon_t &= z_t \sigma_t \ z_t &= N(0,1) \ \sigma_t^2 &= w + \sum_{i=1}^p lpha_i \epsilon_{t-i}^2 + \sum_{i=1}^q eta_j \sigma_{t-j}^2 \end{aligned}$$

Model using minimum AiCc

ORDER	AIC	BIC	AICc
1042	-5.62992079931565	-5.48675474340154	-5.24504107422973
1043	-5.62297726797339	-5.46679611606709	-5.12642554383545
1044	-5.6158289880832	-5.44663274018472	-4.99299161784099
1111	-5.72123634288985	-5.61711557495232	-5.58518192112114
1112	-5.69723477831194	-5.58009891438222	-5.49245662131536
1113	-5.67430627940743	-5.54415531948552	-5.38663504653072
1114	-5.66688465247231	-5.5237185965582	-5.28200492738639

Model using minimum BIC

3242	-5.58855625065093	-5.39332981076806	-4.66869562347323
3243	-5.59188706685718	-5.38364553098212	-4.50097797594808
3244	-5.62245477549124	-5.40119814362398	-4.3452617930351
3311	-5.77680907247234	-5.62062792056604	-5.2802573483344
3312	-5.77542442656479	-5.6062281786663	-5.15258705632258
3313	-5.77849284571589	-5.59628150182521	-5.014603956827
3314	-5.58312196558509	-5.38789552570222	-4.66326133840739

Suggested Models

(minimum AICc)

- Mean model: ARMA(1,1)
- Variance model: GARCH(1,1)

$$Y_{t+1} = -0.00297 + 0.9635*Y_t + Z_{t+1} -0.3662*Z_t$$

$$\sigma_{t+1}^2 = 0.000007 + 0.1332 * Z_t^2 + 0.8303 * \sigma_t^2$$

(minimum BIC)

- Mean model: ARMA(3,3)
- Variance model: GARCH(1,1)

$$\begin{split} \mathbf{Y}_{\text{t+1}} &= 0.188022 + 2.578620 \text{* Y}_{\text{t}} \text{- } 2.327144 \text{* Y}_{\text{t-1}} + \\ 0.748875 \text{* Y}_{\text{t-2}} + \ Z_{\text{t+1}} \ \text{- } 2.090002 \text{* Z}_{\text{t}} + 1.626706 \text{*} \\ Z_{\text{t-1}} \text{- } 0.472380 \text{* Z}_{\text{t-2}} \end{split}$$

$$\sigma_{t+1}^2 = 0.000007 + 0.157867 * Z_t^2 + 0.807702 * \sigma_t^2$$

Forecasting First wave growth rate using ARMA-GARCH:

(minimum AICc model)

MSE: 0.0004870874

Forecasting First wave growth rate using ARMA-GARCH:

(minimum BIC model)

MSE: 0.0003856014

Second Wave Analysis (Cases)

Transformation:

Original Time Series X,

 $log(X_t/X_{t-1})$

(Growth Rate)

Growth rate of daily cases

(obtained by log differencing the data)

Squared growth rate

ACF and PACF plots of Growth rate during 2nd wave

(lag-1 differencing)

Differenced growth rate of daily cases

Residuals of Growth Rate of Dally Covid Cases in India during Second Wave

Squared differenced growth rate of daily cases

Observation: The mean appears to be somewhat constant and there are signs of volatility in the data.

Rolling mean and variance of differenced growth rate

Histogram of diff growth rate (second wave)

Negatively skewed

Skewness = -0.2387

Modelling second wave using ARMA-GARCH:

ARMA GARCH(m,n,p,q) MODEL:

$$egin{aligned} x_t &= \mu + \sum_{i=1}^m a_i x_{t-i} + \sum_{j=1}^n b_j \epsilon_{t-j} + \epsilon_t \ \epsilon_t &= z_t \sigma_t \ z_t &= N(0,1) \ \sigma_t^2 &= w + \sum_{i=1}^p lpha_i \epsilon_{t-i}^2 + \sum_{i=1}^q eta_j \sigma_{t-j}^2 \end{aligned}$$

(Same) Model using minimum AICc/BIC

ORDER	AIC	BIC	AICc
0333	-6.18394309001847	-5.99313879567384	-5.4522357729453
0334	-6.16445330465548	-5.95897175689973	-5.26649412098201
0341	-6.14225764069676	-5.96613059976326	-5.55926168927976
0342	-6.13878098227539	-5.94797668793076	-5.40707366520222
0343	-6.16346574672102	-5.95798419896527	-5.26550656304755
0344	-6.15597871610209	-5.9358199149352	-5.07401150298733
1011	-6.18432729092107	-6.08158651704319	-6.08908919568298
1012	-6.18049873563322	-6.06308070834422	-6.02113618583242
1013	-6.20750010708086	-6.07540482638073	-5.96750010708086
1014	-6.18570476963518	-6.03893223552393	-5.84835537204482
1021	-6.17532764420936	-6.05790961692036	-6.01596509440856
1022	-6.17202415785167	-6.03992887715154	-5.93202415785167
1023	-6.19953980652047	-6.05276727240922	-5.86219040893011

Suggested Model (minimum AICc/BIC)

- Mean model: ARMA(1,0)
- Variance model: GARCH(1,1)

$$Y_{t+1} = -0.000345 - 0.261105 * Y_t + Z_{t+1}$$

$$\sigma_{t+1}^2 = 0.00001 + 0.163929 \times Z_t^2 + 0.777992 \times \sigma_t^2$$

Forecasting Second wave growth rate using ARMA-GARCH:

(minimum AICc/BIC model)

MSE: 0.0002039771

Daily Deaths (03-04-2020 - 11-10-2021)

Smoothed Deaths

(7-day moving average)

Transformation:

Original Time Series X,

 $log(X_t/X_{t-1})$

(Growth Rate)

Growth rate of daily deaths

(obtained by log differencing the data)

Squared growth rate of daily deaths

Observation: The mean appears to be constant in the long run and there are signs of volatility in the data.

Rolling mean and variance of growth rate of death (first wave)

Histogram of growth rate of deaths (first wave)

Positively skewed

Skewness = 3.2735

Modelling first wave deaths using ARMA-GARCH:

ARMA GARCH(m,n,p,q) MODEL:

$$egin{aligned} x_t &= \mu + \sum_{i=1}^m a_i x_{t-i} + \sum_{j=1}^n b_j \epsilon_{t-j} + \epsilon_t \ \epsilon_t &= z_t \sigma_t \ z_t &= N(0,1) \ \sigma_t^2 &= w + \sum_{i=1}^p lpha_i \epsilon_{t-i}^2 + \sum_{i=1}^q eta_j \sigma_{t-j}^2 \end{aligned}$$

Model using minimum AiCc

ORDER	AIC	BIC	AICc
1031	-3.89739740799553	-3.7937857901466	-3.51222585927427
1032	-3.89799631828047	-3.78287229844833	-3.43179624872299
1033	-3.91241302121452	-3.78577659939917	-3.31533728790966
1111	-4.13797635440513	-4.04587713853942	-3.76175833386495
1112	-4.13404375325452	-4.0304321354056	-3.69130012619648
1113	-4.12053899374946	-4.00541497391732	-3.61608156387625
1121	-4.13384471994539	-4.03023310209647	-3.69398939481553

Model using minimum BIC

2131	-4.14895072446738	-4.02231430265203	-3.52875449476532
2132	-4.14524579527963	-4.00709697148107	-3.42400223337438
2133	-4.14616250727461	-3.99650128149283	-3.30692759932491
2211	-4.18755610302275	-4.07243208319062	-3.61560089254615
2212	-4.18152539758308	-4.05488897576773	-3.52306321790904
2213	-4.16643146158867	-4.02828263779011	-3.4448574861314
2221	-4.18149549649751	-4.05485907468216	-3.52957126867425

Suggested Models

(minimum AICc)

- Mean model: ARMA(1,1)
- Variance model: GARCH(1,1)

$$Y_{t+1} = -0.016215 + 0.9765* Y_t + Z_{t+1} -0.8204* Z_t$$

$$\sigma_{t+1}^2 = 0.00007 + 0.1079 * Z_t^2 + 0.8363 * \sigma_t^2$$

(minimum BIC)

- Mean model: ARMA(2,2)
- Variance model: GARCH(1,1)

$$Y_{t+1} = -0.029884 + 1.692425* Y_{t} - 0.694092* Y_{t-1} + Z_{t+1} - 1.478185* Z_{t} + 0.494570* Z_{t-1}$$

$$\sigma_{t+1}^2 = 0.000087 + 0.130202 * Z_t^2 + 0.794233 * \sigma_t^2$$

Forecasting First wave death rate using ARMA-GARCH:

(minimum AICc model)

MSE: 0.001814932

Forecasting First wave death rate using ARMA-GARCH:

(minimum BIC model)

MSE: 0.001534467

Second Wave Analysis (Deaths)

Transformation:

Original Time Series X,

 $log(X_t/X_{t-1})$

(Growth Rate)

Growth rate of daily deaths

(obtained by log differencing the data)

Squared growth rate of daily deaths

Observation : There are signs of volatility in the data.

Rolling mean and variance of growth rate of death (second wave)

Histogram of growth rate of deaths (second wave)

Negatively skewed

Skewness = -0.5321

Modelling second wave deaths using ARMA-GARCH:

ARMA GARCH(m,n,p,q) MODEL:

$$egin{aligned} x_t &= \mu + \sum_{i=1}^m a_i x_{t-i} + \sum_{j=1}^n b_j \epsilon_{t-j} + \epsilon_t \ \epsilon_t &= z_t \sigma_t \ z_t &= N(0,1) \ \sigma_t^2 &= w + \sum_{i=1}^p lpha_i \epsilon_{t-i}^2 + \sum_{i=1}^q eta_j \sigma_{t-i}^2 \end{aligned}$$

(Same) Model using minimum AICc/BIC

ORDER	AIC	BIC	AICc
1021	-3.69806616498918	-3.56659134277788	-3.512880979804
1022	-3.68811582409438	-3.54020664910666	-3.40904605665252
1023	-3.65277292314993	-3.48842939538579	-3.26024955866395
1031	-3.68664446392543	-3.53873528893771	-3.40757469648357
1032	-3.67669420790666	-3.51235068014253	-3.28417084342068
1033	-3.64282266802662	-3.46204478748607	-3.11700107178249
1111	-3.87770036285046	-3.74622554063915	-3.69251517766527
1112	-3.86571873084764	-3.71780955585992	-3.58664896340578
1113	-3.86097952305993	-3.6966359952958	-3.46845615857395
1121	-3.86840799946669	-3.72049882447897	-3.58933823202483
1122	-3.85845775544015	-3.69411422767601	-3.46593439095417
1123	-3.85371699398897	-3.67293911344843	-3.32789539774484
1131	-3.86366724373657	-3.69932371597244	-3.47114387925059

Suggested Model (minimum AICc/BIC)

- Mean model: ARMA(1,1)
- Variance model: GARCH(1,1)

$$Y_{t+1}$$
= 0.023062 + 0.9527* Y_{t} + Z_{t+1} - 0.4859* Z_{t}

$$\sigma_{t+1}^2 = 0.002274 + 0.8478 \times Z_t^2 + 0.1512 \times \sigma_t^2$$

Modelling Second wave death rate using ARMA-GARCH: Forecasting

MSE: 0.003233904

Summary

DATA	MINIMUM AICc MODEL	MINIMUM BIC MODEL
Cases in Wave 1	ARMA-(1,1)-GARCH(1,1)	ARMA-(3,3)-GARCH(1,1)
Cases in Wave 2	ARMA-(1,0)-GARCH(1,1)	ARMA-(1,0)-GARCH(1,1)
Deaths in Wave 1	ARMA-(1,1)-GARCH(1,1)	ARMA-(2,2)-GARCH(1,1)
Deaths in Wave 2	ARMA-(1,1)-GARCH(1,1)	ARMA-(1,1)-GARCH(1,1)

Thank you!