Нечеткие множества и нечеткий вывод

Основные понятия и определения теории нечетких множеств

Пример 1.

Допустим, что X=N — множество натуральных чисел. Определим понятие множества натуральных чисел, «близких числу 7». Это можно сделать определением следующего нечеткого множества $A \subset X$:

$$A = \frac{0.2}{4} + \frac{0.5}{5} + \frac{0.8}{6} + \frac{1}{7} + \frac{0.8}{8} + \frac{0.5}{9} + \frac{0.2}{10}.$$
 (9)

Пример 2.

Если X=R, где R — множество действительных чисел, то множество действительных чисел, «близких числу 7», можно определить функцией принадлежности вида

$$\mu_{A}(X) = \frac{1}{1 + (x - 7)^{2}}.$$
(10)

Поэтому нечеткое множество действительных чисел, «близких числу 7», описывается выражением

$$A = \int_{x} \frac{1 + (x - 7)^{2}}{x} dx. \tag{11}$$

Нечеткие множества натуральных или действительных чисел, «близких числу 7», можно записать различными способами. Например, функцию принадлежности (10) можно заменить выражением

ТОИП, №1

$$\mu_{\mathbf{A}}(\mathbf{x}) = \begin{cases} 1 - \sqrt{\frac{|\mathbf{x} - 7|}{3}} & npu \ 4 \le \mathbf{x} \le 10 \\ 0 & \epsilon & npomubhom cnyyae \end{cases}$$
 (12)

Пример 3.

Формализуем неточное определение «подходящая температура для купания в Балтийском море». Зададим область рассуждений в виде множества $X=[5^{\circ},...,25^{\circ}]$. Отдыхающий I, лучше всего чувствующий себя при температуре 21°, определил бы для себя нечеткое множество:

$$A = \frac{0.1}{16} + \frac{0.3}{17} + \frac{0.5}{18} + \frac{0.8}{19} + \frac{0.95}{20} + \frac{1}{21} + \frac{0.9}{22} + \frac{0.8}{23} + \frac{0.75}{24} + \frac{0.7}{25}.$$
 (13)

Отдыхающий II, предпочитающий температуру 20°, предположил бы другое определение этого множества:

$$B = \frac{0.1}{15} + \frac{0.2}{16} + \frac{0.4}{17} + \frac{0.7}{18} + \frac{0.9}{19} + \frac{1}{20} + \frac{0.9}{21} + \frac{0.85}{22} + \frac{0.8}{23} + \frac{0.75}{24} + \frac{0.7}{25}.$$
 (14)

С помощью нечетких множествA и B формализуем неточное определение понятия «подходящая температура для купания в Балтийском море».

Функции принадлежности класса s (по виду графического представления):

$$s(x;a,b,c) = \begin{cases} 0 \ \partial \pi x \ x \le a, \\ 2\left(\frac{x-a}{c-a}\right)^2 \ \partial \pi x \ a \le x \le b, \\ 1-2\left(\frac{x-c}{c-a}\right)^2 \ \partial \pi x \ b \le x \le c, \\ 1 \ \partial \pi x \ x \ge c. \end{cases}$$
(15)

где b=(a+c)/2. Форма графического представления зависит от параметра a, b и c. В точке x=b=(a+c)/2 функция принадлежности класса s принимает значение, равное 0,5.

1. Функция принадлежности класса π определяется через функцию принадлежности класса s:

$$\pi(x;b,c) = \begin{cases} s(x;c-b,c-b/2,c) & \partial n x \le c, \\ 1 - s(x;c,c+b/2,c+b) & \partial n x \ge c. \end{cases}$$
(16)

Функции принадлежности класса π принимает нулевые значения для $x \ge c + b$ и $x \le c - b$. В точках $x = c \pm b/2$ ее значение равно 0,5.

2. Функция принадлежности класса у задается выражением:

$$\gamma(x;a,b) = \begin{cases} 0 \ \partial \pi x & x \le a, \\ \frac{x-a}{b-a} \ \partial \pi x & a \le x \le b, \\ 1 \ \partial \pi x & x \ge b. \end{cases}$$
(17)

Наблюдается аналогия между формами функций принадлежности классов s и γ .

3. Функция принадлежности класса t определяется в виде:

$$t(x;a,b,c) = \begin{cases} 0 \ \partial \pi x & x \le a, \\ \frac{x-a}{b-a} \ \partial \pi x & a \le x \ge b, \\ \frac{c-x}{c-b} \ \partial \pi x & b \le x \le c. \\ 0 \ \partial \pi x & x \ge c. \end{cases}$$
(18)

В некоторых приложениях функции принадлежности класса tможет быть альтернативой по отношению к функции класса π .

4. Функция принадлежности класса L определяется выражением

$$L(x;a,b) = \begin{cases} 1 & \partial \pi x \le a, \\ \frac{b-x}{b-a} & \partial \pi x \le b, \\ 0 & \partial \pi x \ge b. \end{cases}$$
 (19)

Пример 4.

Рассмотрим три неточных формулировки:

- 1) «малая скорость автомобиля» $\mu_A(x)$,
- 2) «средняя скорость автомобиля» $\mu_B(x)$,
- 3) «большая скорость автомобиля» $\mu_C(x)$.

В качестве области рассуждений примем диапазон ϕ , x_{max} , где x_{max} – это максимальная скорость. Для нечетких множеств A, B и C функции принадлежности имеют вид: для A – тип L, для B – тип t, для C – тип γ .

В фиксированной точке x=40 км /час функция принадлежности нечеткого множества «малая скорость автомобиля» принимает значение 0,5, т.е. $\mu_A(40)$ =0,5. Такое значение принимает функция принадлежности нечеткого множества «средняя скорость автомобиля», т.е. $\mu_B(40)$ =0,5, тогда как $\mu_C(40)$ =0.

Пример 5.

Множество элементов пространства X, для которых $\mu_A(x)>0$, называется носителем нечеткого множества A и обозначается supp A (support). Формальная его запись имеет вид

$$A = \left\{ x \in X; \mu_A(x) > 0 \right\}. \tag{20}$$

Высота нечеткого множестваAобозначается h(A) и определяется как

$$h(A) = \max_{X \in A} \mu_A(x). \tag{21}$$

Пример 6.

Если
$$X=\{1, 2, 3, 4, 5\}$$
 и $A=\frac{0.2}{1}+\frac{0.4}{2}+\frac{0.7}{4}$, (22)

To $supp A = \{1, 2, 4\}.$

Если
$$X=\{1, 2, 3, 4\}$$
 и $A=\frac{0.3}{2}+\frac{0.8}{3}+\frac{0.5}{4}$, (23)

TO $h(A) = \{0,8\}.$

Нечеткое множествоA называется нормальным тогда и только тогда, когда h(A)={1}. Если нечеткое множествоA не является нормальным, то его можно нормализовать при помощи преобразования

$$\mu_{A_N}(x) = \frac{\mu_A(x)}{h(A)},$$
 (24)

где h(A) – высота этого множества.

Пример 7.

Нечеткое множество

$$A = \frac{0.1}{2} + \frac{0.5}{4} + \frac{0.3}{6} \tag{25}$$

После нормализации принимает вид

$$A = \frac{0.2}{2} + \frac{1}{4} + \frac{0.6}{6}.\tag{26}$$

Нечеткое множество A пустым и обозначается $A = \emptyset$ тогда и только тогда, когда $\mu_A(x) = 0$ для каждого $x \in X$.

Нечеткое множество Aсодержится в нечетком множестве B, что записывается как $A \subset B$, тогда и только тогда, когда

$$\mu_A(x) \le \mu_B(x) \tag{27}$$

для каждого $x \in X$.

Пример включения (содержания) нечеткого множестваA в нечетком множестве B показано на рисунке.

В литературе встречается также понятие степени включения нечетких множеств. Степень включения нечеткого множества A в нечеткое множество B (полное включение, рис.) равна 1.

Нечеткие множества (рис. ниже) не удовлетворяют зависимости 27. Нечеткое множествоA содержится в нечетком множестве B в степени

$$I(A \subset B) = \min_{x \in T} \mu_B(x), \tag{28}$$

где
$$T = \{ x \in X; \mu_A(x) \le \mu_B(x), \mu_A(x) > 0 \}.$$

Нечеткое множество A равно нечеткому множеству B, т.е. A=B, тогда и только тогда, когда $\mu_A(x)=\mu_B(x)$ (29)

для каждого $x \in X$.

Определение не учитывает случай, когда значения функций принадлежности $\mu_A(x)$ и $\mu_B(x)$ почти равны между собой. В такой ситуации можно ввести понятие степени равенства нечетких множеств A и B, например, в виде

$$E(A=B) = 1 - \max_{x \in T} \left| \mu_A(x) - \mu_B(x) \right|,$$
где $T = x \in X$; $\mu_A(x) \neq \mu_B(x)$. (30)

 α -разрезом нечеткого множества $A \subseteq X$, обозначаемым как A_{α} , называется следующее четкое множество:

$$A_{\alpha} = \left\{ x \in X : \mu_{A}(x) \ge \alpha \right\},\tag{31}$$

т.е. множество, определяемое функцией:

$$\chi_{A_{\alpha}}(x) = \begin{cases} 1 & \partial \pi & \mu_{A}(x) \ge \alpha, \\ 0 & \partial \pi & \mu_{A}(x) < \alpha. \end{cases}$$
 (32)

Определение α -разреза нечеткого множества иллюстрирует рис. Легко заметить истинность импликации

$$\alpha_2 < \alpha_1 \Rightarrow A_{\alpha_1} \subset A_{\alpha_2}. \tag{33}$$

ТОИП, №1

Пример 8.

Рассмотрим нечеткое множество $A \subseteq X$

$$A = \frac{0.1}{2} + \frac{0.3}{4} + \frac{0.7}{5} + \frac{0.8}{8} + \frac{1}{10}$$

причем $X=\{1, ..., 10\}$.

В соответствии с определением α -разреза конкретные α -разрезы определяются в виде

(34)

$$A_0=X=\{1,\ldots,10\},\$$

$$A_{0,7}=\{5, 8, 10\},\$$

$$A_{0,1}=\{2, 4, 5, 8, 10\},\$$

$$A_{0,8}=\{8, 10\},\$$

$$A_{0.3} = \{4, 5, 8, 10\},\$$

$$A_1 = \{10\}.$$

Нечеткое множество $A \subseteq R$ является выпуклым тогда и только тогда, когда для произвольных $x_1, x_2 \in R$ и $\lambda \in [0,1]$ выполняется условие

$$\mu_{A} \left[\lambda x_{1} + (1 - \lambda) x_{2} \right] \ge \mu_{A}(x_{1}) \wedge \mu_{A}(x_{2}) = \min \left\{ \mu_{A}(x_{1}), \mu_{A}(x_{2}) \right\}. \tag{35}$$

Пример нечеткого выпуклого множества

Нечеткое множество $A \subseteq R$ является вогнутым тогда и только тогда, когда для произвольных $x_1, x_2 \in R$ и $\lambda \in [0,1]$ выполняется условие

$$\mu_{A} \left[\lambda x_{1} + (1 - \lambda) x_{2} \right] \le \mu_{A}(x_{1}) \lor \mu_{A}(x_{2}) = \max \left\{ \mu_{A}(x_{1}), \mu_{A}(x_{2}) \right\}. \tag{36}$$

Пример нечеткого вогнутого множества

ТОИП, №1

Рисунок иллюстрирует нечеткое вогнутое множество. Нечеткое множество $A \subseteq R$ является выпуклым (вогнутым), тогда и только тогда, когда являются выпуклыми (вогнутыми) все его α -разрезы.

Операции на нечетких множествах

Пересечением нечетких множеств $A, B \subseteq X$ называется нечеткое множество $A \cap B$ с функцией принадлежности

$$\mu_{A \cap B}(x) = \mu_{A}(x) \wedge \mu_{B}(x) = \min(\mu_{A}(x), \mu_{B}(x))$$
 (37)

для каждого $x \in X$.

Пересечение нечетких множеств $A_1, A_2, ..., A_n$ определяется функцией принадлежности

$$\mu_{A_{i}}(x) = \min \left[\mu_{A_{1}}(x), \mu_{A_{2}}(x), \dots, \mu_{A_{n}}(x) \right]$$
(38)

для каждого $x \in X$.

Помимо определения понятия «пересечение» нечетких множеств также встречается определение понятия «алгебраическое произведение» этих множеств. Алгебраическое произведение нечетких множеств A и B – это нечеткое множество $C = A \cdot B$, определенное как

$$C = \left\{ \left(x, \mu_{A}(x) \bullet \mu_{B}(x) \right) | x \in X \right\}. \tag{39}$$

Ниже представлена графическая интерпретация.

Сумма нечетких множествA и B — нечеткое множество $C = A \cup B$, определенное функцией принадлежности

$$\mu_{A \bigcup B}(x) = \mu_{A}(x) \lor \mu_{B}(x) = \max(\mu_{A}(x), \mu_{B}(x))$$
 для каждого $x \in X$. (40)

Следует помнить, что свойство выпуклости нечетких множеств сохраняется для их пересечения, а свойство вогнутости – для их суммы, т.е.

- 1) ЕслиA и B выпуклые нечеткие множества, то $A \cap B$ выпуклое нечеткое множество;
- 2) ЕслиA и B вогнутые нечеткие множества, то $A \cup B$ вогнутое нечеткое множество.

Пример 9.

Допустим, что $X = \{1, 2, 3, 4, 5, 6, 7\}$ и $A = \frac{0.9}{3} + \frac{1}{4} + \frac{0.6}{6}, \tag{42}$ $B = \frac{0.7}{3} + \frac{1}{5} + \frac{0.4}{6}. \tag{43}$ $A \cap B = \frac{0.7}{3} + \frac{0.4}{6}. \tag{44}$ $A \cup B = \frac{0.9}{3} + \frac{1}{4} + \frac{1}{5} + \frac{0.6}{6}. \tag{45}$ $A \bullet B = \frac{0.63}{3} + \frac{0.24}{6}. \tag{46}$

Любое нечеткое множество $A \subseteq X$ можно представить в виде $A = \bigcup_{\alpha \in [0,1]} \alpha A_{\alpha}$, (47)

где αA_{α} означает нечеткое множество, элементам которого приписаны следующие степени принадлежности:

$$\mu_{\alpha A_{\alpha}}(x) = \begin{cases} \alpha & \partial \pi x & x \in A_{\alpha}, \\ 0 & \partial \pi x & x \notin A_{\alpha}. \end{cases}$$

$$\tag{48}$$

Пример 10.

Проведем декомпозицию нечеткого множества (34). В соответствии с выражением (47) получим $A = \left(\frac{0.1}{2} + \frac{0.1}{4} + \frac{0.1}{5} + \frac{0.1}{8} + \frac{0.1}{10}\right) \cup \left(\frac{0.3}{4} + \frac{0.3}{5} + \frac{0.3}{8} + \frac{0.3}{10}\right) \cup \left(\frac{0.7}{5} + \frac{0.7}{8} + \frac{0.7}{10}\right) \cup \left(\frac{0.8}{8} + \frac{0.8}{10}\right) \cup \left(\frac{1}{10}\right) =$

$$= \frac{0.1}{2} + \frac{0.3}{4} + \frac{0.7}{5} + \frac{0.8}{8} + \frac{1}{10}.$$
 (49)

Известны и другие, отличающиеся определения пересечения и суммы нечетких множеств. Вместо продублированной формулы

$$\begin{cases} \mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x)), \\ \mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)), \end{cases}$$

можно встретить и альтернативные определения.

Дополнением нечеткого множества $A \subseteq X$ называется нечеткое множество \hat{A} с функцией принадлежности $\mu_{\hat{A}}(x) = 1 - \mu_{A}(x)$ для каждого $x \in X$.

Пример 11.

Допустим, что $X=\{1, 2, 3, 4, 5, 6\}$, а также $A=\frac{0.3}{2}+\frac{1}{3}+\frac{0.7}{5}+\frac{0.9}{6}$.

Дополнением множества \hat{A} считается множество $\hat{A} = \frac{1}{1} + \frac{0.7}{2} + \frac{1}{4} + \frac{0.3}{5} + \frac{0.1}{6}$.

Обратим внимание, что $A \cap \hat{A} = \frac{0.3}{2} + \frac{0.3}{5} + \frac{0.1}{6} \neq \emptyset$,

а также
$$A \cup \hat{A} = \frac{1}{1} + \frac{0.7}{2} + \frac{1}{3} + \frac{1}{4} + \frac{0.7}{5} + \frac{0.9}{6} \neq X$$
.

Представленные выше операции на нечетких множествах обладают свойствами коммутативности, связности и сепарабельности, и кроме того, отвечают правилу де Моргана и абсорбции. Однако в случае нечетких множеств не выполняется условие дополнительности, т.е. $A \cap \hat{A} \neq \emptyset$, $A \cup \hat{A} \neq X$.

Следует отметить, что функция принадлежности пересечения нечетких множеств Аи \hat{A} отвечают неравенству $\mu_{A \cap \hat{A}}(x) = \min(\mu_A(x), \mu_{\hat{A}}(x)) \leq \frac{1}{2}$.

Аналогично в случае суммирования $\mu_{A \cup \hat{A}}(x) = \max(\mu_{A}(x), \mu_{\hat{A}}(x)) \ge \frac{1}{2}$.

Лингвистические переменные

Лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка.

Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно.

Ежедневно мы принимаем решения на основе лингвистической информации типа: «очень высокая температура»; «длительная поездка»; «быстрый ответ» и т.п.

Понятие лингвистической переменной играет важную роль в нечетком логическом выводе и в принятии решений на основе приближенных рассуждений. Формально, лингвистическая переменная определяется следующим образом.

 $\mathit{Линг}$ вистическая переменная задается пятеркой $\langle x,T,U,G,M \rangle$,

где x - имя переменной;

T - терм-множество, каждый элемент которого (терм) представляется как нечеткое множество на универсальном множестве U;

 ${\it G}$ - синтаксические правила, часто в виде грамматики, порождающие название термов;

M - семантические правила, задающие функции принадлежности нечетких термов, порожденных синтаксическими правилами G.

Пример 1. Рассмотрим лингвистическую переменную с именем x=»температура в комнате». Тогда оставшуюся четверку $\langle T, U, G, M \rangle$ можно определить так:

- универсальное множество –U=[5, 35];
- терм-множество $T=\{$ «холодно», «комфортно», «жарко» $\}$ с такими функциями принадлежностями ($u\in U$):

$$\mu_{\text{"холодно"}}(u) = \frac{1}{1 + \left(\frac{u - 10}{7}\right)^{12}}, \ \mu_{\text{"комфортно"}}(u) = \frac{1}{1 + \left(\frac{u - 20}{3}\right)^{6}}, \ \mu_{\text{"жарко"}}(u) = \frac{1}{1 + \left(\frac{u - 30}{6}\right)^{10}}.$$

- синтаксические правилаG, порождающее новые термы с использованием квантификаторов «не», «очень» и «более-менее»;
- семантические правилаM, в виде таблицы.

Таблица- Правила расчета функций принадлежности

	Функция
Квантифика	принадле
тор	жности (
	$u \in U$)
не t	$1-\mu_t(u)$
очень <i>t</i>	$(\mu_t(u))^2$
более-менее t	$\sqrt{\mu_t(u)}$

Графики функций принадлежности термов «холодно», «не очень холодно», «комфортно», «более-менее комфортно», «жарко» и «очень жарко» лингвистической переменной «температура в комнате» показаны на рис.

Нечеткая истинность

В классической логике истинность может принимать только 2 значения: истинно и ложно.

В нечеткой логике истинность «размытая».

Нечеткая истинность определяется аксиоматически, причем разные авторы делают это по-разному. Интервал [0,1] используется как универсальное множество для задания лингвистической переменной «истинность». Обычная, четкая истинность м. б. представлена нечеткими множествами-синглтонами. В этом случае четкому понятию истинно будет соответствовать функция принадлежности $\mu_{\text{"истинно"}}(u) = \begin{cases} 0, & u \neq 1 \\ 1, & u = 1 \end{cases}$, а четкому понятию ложно -

 $\mu_{\text{"ложно"}}(u) = \begin{cases} 0, & u \neq 0 \\ 1, & u = 0, \end{cases}$.Заде предложил такие функции принадлежности термов «истинно»

и «ложно»: $\mu_{\text{"ложно"}}(u) = \mu_{\text{"истинно"}}(1-u), u \in 0,1$

$$\mu_{\text{"MCTHHO"}}(u) = \begin{cases} 0, & 0 \le u \le a \\ 2\left(\frac{u-a}{1-a}\right)^2, & a < u \le \frac{a+1}{2} \\ 1 - 2\left(\frac{u-1}{1-a}\right)^2, & \frac{a+1}{2} < u \le 1 \end{cases}$$

и «ложно» изображены на рис.

Они построены при значении параметраа=0,4. Как видно, графики функций принадлежности термов «истинно» и «ложно» представляют собой зеркальные отображения.

Лингвистическая переменная «истинность» по Заде

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких «истинно» и «ложно»: $\mu_{\text{"истинно"}}(u) = u; \mu_{\text{"ложно"}}(u) = 1 - u;$ где $u \in [0,1]$.

Квантификаторы «более-менее» и «очень» часто применяют к нечеткими множествами «истинно» и «ложно», получая т.о. термы «очень ложно», «более-менее ложно», «более-менее истинно», «очень истинно», «очень очень ложно» и т.п.

Функции принадлежности новых термов получают, выполняя операции концентрации и растяжения нечетких множеств «истинно» и «ложно».

Операция концентрации соответствует возведению функции принадлежности в квадрат, а операция растяжения- возведению в степень $\frac{1}{2}$.

Графики функций принадлежности этих термов показаны на рис.

Лингвистическая переменная «истинность» по Балдвину

Функции принадлежности

Практическое использование теории нечетких множеств предполагает наличие функций принадлежности, которыми описываются лингвистические термы «низкий», «средний», «высокий» и т.п. Задача построения функций принадлежности ставится следующим образом. Даны два множества: множество термов $L=\{l_1, l_2, , l_m\}$ и универсальное множество $U=\{u_1, u_2, , u_n\}$. Нечеткое множество \tilde{l} для задания лингвистического терма l_j на универсальном множестве

$$U$$
 представляется в виде: $\tilde{l}_j = \left(\frac{\mu_{l_j}(u_1)}{u_1}, \frac{\mu_{l_j}(u_2)}{u_2}, ..., \frac{\mu_{l_j}(u_n)}{u_n}\right), j = \overline{1,m}$.

Необходимо определить степени принадлежностей элементов множества U к элементам из множества L, т.е. найти $\mu_{l_i}(u_i)$ для всех $j=\overline{1,m}$ и $i=\overline{1,n}$.

Ниже рассматриваются методы построения функций принадлежности. Первый метод основан на статистической обработке мнений группы экспертов. Второй метод базируется на парных сравнениях, выполняемых одним экспертом.

1. Эксперт заполняет анкету, в которой указывает свое мнение о наличии у элементов $u_i(i=\overline{1,n})$ свойств нечеткого множества \tilde{i} ($j=\overline{1,m}$). Анкета имеет следующий вид:

	u_1	u_2	 u_n
$\widetilde{l}_{_{1}}$			
\widetilde{l}_2			
\widetilde{l}_m			

Обозначения: K — количество экспертов; $b^k j_i$ - мнение k-го эксперта о наличии у элемента u_i свойств нечеткого множества l_j , $k=\overline{1,K}$, $i=\overline{1,n}$, $j=\overline{1,m}$. Будем считать, что экспертные оценки бинарные, т.е. $b^k j_i \in \mathfrak{A}$ 1, где 1 указывает на наличие у элемента u_i свойств нечеткого множества \tilde{l}_j , а 0 — на их отсутствие. По результатам анкетирования степени принадлежности нечеткому

множеству \tilde{l}_j рассчитываются так: $\mu_l (u_i) = \frac{1}{K} \sum_{k=1,K} b^k j, i, i = \overline{1,n}$. (1)

Результаты опроса экспертов

	Терм	[160,165)	[165,170)	[170,175)	[175,180)	[180,185)	[185,190)	[190,195)	[195,200)
Экс1	Низкий	1	0	1	0	0	0	0	0
	Средний	0	1	1	1	1	0	0	0
	Высокий	0	0	0	0	0	1	1	1
Экс2	Низкий	1	1	1	0	0	0	0	0
	Средний	0	0	1	1	0	0	0	0
	Высокий	0	0	0	0	1	1	1	1
Экс3	Низкий	1	0	0	0	0	0	0	0
	Средний	0	1	1	1	1	1	0	0
	Высокий	0	0	0	0	0	1	1	1
Экс4	Низкий	1	1	1	0	0	0	0	0
	Средний	0	0	0	1	1	1	0	0
	Высокий	0	0	0	0	0	0	1	1
Экс5	Низкий	1	1	0	0	0	0	0	0
	Средний	0	1	1	1	0	0	0	0
	Высокий	0	0	0	1	1	1	1	1

Пример.

Построить функции принадлежности термов «низкий», «средний», «высокий», используя для лингвистической оценки переменной «рост мужчины».

Результаты обработки экспертных мнений приведены ниже в таблице.

Терм	[160,	[165,	[170,	[175,	[180,	[185,	[190,	[195,
	165)	170)	175)	180)	185)	190)	195)	200)
Низкий	5	4	3	0	0	0	0	0
	1	0,8	0,6	0	0	0	0	0
Средний	0	2	4	5	3	2	0	0
	0	0,4	0,8	1	0,6	0,4	0	0
Высокий	0	0	0	1	2	4	5	5
	0	0	0	0,2	0,4	0,8	1	1

Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы

2. При построении функций принадлежности по второму методу для каждой пары элементов универсального множества эксперт оценивает преимущество одного элемента над другим по отношению к свойству нечеткого множества. Такие парные сравнения удобно представлять следующей матрицей:

где a_{ij} – уровень преимущества элемента u_i , над u_j (i, $j=\bar{i}_n$), определяемый по девятибалльной шкале Саати:

- 1 если преимущество элемента u_i над элементом u_j отсутствует;
- 3- если преимущество u_i над u_j слабое;
- 5- если преимущество u_i над u_j существенное;
- 7 если преимущество u_i над u_j явное;
- 9 если преимущество u_i над u_i абсолютное;
- 2, 4, 6, 8-промежуточные сравнительные оценки: 2 почти слабое преимущество; 4 почти существенное преимущество, 6 почти явное преимущество, 8 почти абсолютное преимущество. Матрица парных сравнений является диагональной $(a_{ij}=1, i=\overline{1,n})$ и обратно симметричной $(a_{ij}=1/a_{ij}, i, j=\overline{1,n})$.

Степени принадлежности принимают равными соответствующим координатам собственного вектора $W=(w_1,w_2,...,w_n)^T$ матрицы парных сравненийA:

$$\mu(u_1) = w_i, i = \overline{1,n}. \tag{2}$$

Собственный вектор находят из следующей системы уравнений:

$$\begin{cases}
AW = \lambda_{\text{max}}W, \\
w_1 + w_2 + \dots + w_n = 1,
\end{cases}$$
(3)

где λ_{\max} - максимальное собственное значение матрицы A.

Пример.

Построить функцию принадлежности нечеткого множества «высокий мужчина» на универсальном множестве {170, 175, 180, 185, 190, 195}.

Предположим, что известны такие парные сравнения:

- Отсутствие преимущества 195 над 190;
- Существенное преимущество 195 над 180;
- Абсолютное преимущество 195 над 170;
- Почти существенное преимущество 190 над 170;
- Существенное преимущество 185 над 175;
- Слабое преимущество 195 над 185;
- Почти абсолютное преимущество 195 над 175;
- Слабое преимущество 190 над 175;
- Почти существенное преимущество 185 над 180;
- Почти явное преимущество 185 над 170;
- Слабое преимущество 180 над 175;
- Почти существенное преимущество 180 над 170;

• Почти слабое преимущество 175 над 170.

Парные сравнения запишем следующей матрицей:

		170	<i>175</i>	180	185	190	195
	170	1	1/2	1/4	1/6	1/8	1/9
	175	2	1	1/3	1/5	1/7	1/8
A=	180	4	3	1	1/4	1/4	1/5
	185	6	5	4	1	1/3	1/3
	190	8	7	4	3	1	1
	195	9	8	5	3	1	1

Собственные значения матрицы парных сравнений A равны:

6,2494;

0,0318+1,2230i;

0,0318-1,2230*i*;

-0,1567+0,2392i;

-0,1567-0,2392*i*;

0,0004.

Следовательно, $\lambda_{\text{max}} = 6,2494$. Степени принадлежности, найденные по формулам 3 и 2, приведены в таблице.

ТОИП, №1

u_i	170	175	180	185	190	195
	1	2	3	4	5	6
$\mu_{\text{"ввысоки мужчина"}}(u_i)$	0,0284	0,0399	0,0816	0,1754	0,3254	0,3494
для						
субнормального						
нечеткого						
множества						
$\mu_{\text{"ввысоки мужчина"}}(u_i)$	0,0813	0,1141	0,2335	0,5021	0,9314	1,0000
для						
нормального						
нечеткого						
множества						

Нечеткое множество получилось субнормальным. Для его нормализации разделим все степени принадлежности субнормального и нормального нечетких множеств «высокий мужчина». Разница между λ_{max} и п служит мерой несогласованности парных сравнений эксперта. В примере λ_{max} =6,2494, а n=6. Следовательно, мера несогласованности равна 0,2494.

ТОИП, №1

