An Event-B Specification of

SetComprehensions

Set comprehension syntax is the most complex part of the Event-B grammar. This project tests all the ways of expressing set comprehension.

It also demonstrates that a machine variable can be overridden with a non-free variable in a set comprehension.

T		HINE Comprehensive	
	1.1	aboolean bools coords numbers	
	1.2	assignzPF	
	1.3	assignFPSpecialForm	
	1.4	assignFPSpecialFormPair	
	1.5	assignFPSpecialCase	
	1.6	assignFPSpecialCaseWithGlobal	
	1.7	assignFPSpecialCaseWithGloball	

The single non-free variable case.

 $numbers := \{x \mid x \in \mathbb{N} \land x < 10\}$

THEN

act1: END

${\tt EVENT} \ assign FP Special Case With Global$

The variable aboolean is used to assign the right hand side in the pairs.

THEN

```
\label{eq:act1:bools} \text{act1:} \quad bools := \{x \mapsto y \mid x \in \mathbb{N} \land aboolean = y\} 
\text{END}
```

${\tt EVENT} \ as sign FP Special Case With Globall$

1.7

1.6

Oups, here aboolean becomes a non-free variable! Which is the reason why it can be typed to \mathbb{N} in this formula.

THEN

```
\mbox{act1:} \quad numbers := \{x + aboolean \mid x \in \mathbb{N} \land aboolean = \mathbf{1}\} END
```

aboolean, 2 assignFPSpecialCase, 2 assignFPSpecialCaseWithGlobal, 3 assignFPSpecialCaseWithGloball, 3 assignFPSpecialForm, 2 assignFPSpecialFormPair, 2 assignzPF, 2

bools, 2

Comprehensive, 2 coords, 2

INITIALISATION, 2

numbers, 2