Analiza zjawisk kaskadowych w sieciach transportowych

Tomasz Szypuła

Wydział Fizyki Politechnika Warszawska

5 lutego 2019

STUDIA II STOPNIA

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Vstęp

Korelacja Pearsona i Spearmana

Plan Prezentacji

Wstęp

Cel Pracy

Dane

Nowe pojęcia

Korelacja Pearsona i Spearmana

Pearson

Spearman

Wyniki

Heatmapy

Wykresy

Boxploty

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Plan

Wstęp

Cel Pracy

Dan

Nowe pojęcia

Korelacja Pearsona i Spearmana

Pearson

Spearman

Wyniki

Heatmapy

Wykresy

Boxploty

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Vstęp

Cel Pracy

Nowe polecis

rz . . . 1

Korelacja Pearsona i Spearmana

Cel pracy

Wyznaczyć

- 1. Współczynnik Korelacji Pearson
- 2. Współczynnik Korelacji Spearmana (rangowa korelacja Pearsona)

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

wstęp

Cel Pracy

Nowe pojęcia

lorelacja 'earsona i pearmana

Wyniki

vv y IIIKI

Wyznaczyć

Cel Pracy

korelacja Pearsona)

Dla sieci

1. ARABIDOPSIS MULTIPLEX GPI NETWORK

2. Współczynnik Korelacji Spearmana (rangowa

2. ARXIV NETSCIENCE MULTIPLEX

1. Współczynnik Korelacji Pearson

3. PADGETT-FLORENTINE-FAMILIES MULTIPLEX NETWORK

Plan

Wstęp

Dane

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Dane

ARABIDOPSIS MULTIPLEX GPI NETWORK

Opis

We consider different types of genetic interactions for organisms in the Biological General Repository for Interaction Datasets (BioGRID, thebiogrid.org), a public database that archives and disseminates genetic and protein interaction data from humans and model organisms. BioGRID currently includes more than 720,000 interactions that have been curated from both high-throughput data sets and individual focused studies using over 41,000 publications in the primary literature. We use BioGRID 3.2.108 (updated 1 Jan 2014).

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Cel Pracy Dane

Nowe pojęcia

Torelacja Jearsona i pearmana

ARABIDOPSIS MULTIPLEX GPI NETWORK

Poziomy

- 1. Direct interaction
- 2. Physical association
- 3. Additive genetic interaction defined by inequality
- 4. Suppressive genetic interaction defined by inequality
- 5. Synthetic genetic interaction defined by inequality
- 6. Association
- 7. Colocalization

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Cel Pracy Dane

Nowe pojęcia

orelacja earsona i pearmana

/yniki

ARXIV NETSCIENCE MULTIPLEX

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp Cel Pracy

Dane Nowe pojecia

Korelacja Pearsona i Spearmana

Vyniki

Opis

The multiplex consists of layers corresponding to different arXiv categories. To restrict the analysis to a well-defined topic of research, we only included papers with networks" in the title or abstract up to May 2014.

ARXIV NETSCIENCE MULTIPLEX

Poziomy

- 1. physics.soc-ph
- 2. physics.data-an
- 3. physics.bio-ph
- 4. math-ph
- 5. math.OC
- 6. cond-mat.dis-nn
- 7. cond-mat.stat-mech
- 8. q-bio.MN
- 9. q-bio
- 10. q-bio.BM
- 11. nlin.AO
- 12. cs.SI
- 13. cs.CV

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Cel Pracy Dane

Nowe pojęcia

orelacja earsona i pearmana

PADGETT-FLORENTINE-FAMILIES MULTIPLEX NETWORK

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Vstęp

Dane

Nowe pojęcia

orelacja earsona i pearmana

Vyniki

Opis

The multiplex social network consists of 2 layers (marriage alliances and business relationships) describing florentine families in the Renaissance.

PADGETT-FLORENTINE-FAMILIES MULTIPLEX NETWORK

Poziomy

- 1. marriage alliances
- 2. business relationships

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Cel Pracy Dane

Nowe pojęcia

lorelacja Jearsona i pearmana

Plan

Wstęp

Nowe pojęcia

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Nowe pojecia

Property matrix P

Sieci wielopoziomowe zazwyczaj były reprezentowane przez macierze sąsiedztwa. Do liczenia miar podobieństwa jednak praktyczniejsza może okazać się macierz właściwości ${\bf P}.$

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Cel Pracy

Nowe pojęcia

orelacja earsona i oearmana

Property matrix **P**

Sieci wielopoziomowe zazwyczaj były reprezentowane przez macierze sąsiedztwa. Do liczenia miar podobieństwa jednak praktyczniejsza może okazać się macierz właściwości **P**.

Theorem

- i) the columns correspond to a set S of network structures (nodes, edges, triangles, . . .)
- (ii) the rows correspond to a set C of contexts where these structures are observed (layers, groups, snapshots, . . .)
 (iii) $P_{s,c}$ is the value of an observational function mapping each pair structure/context into a number(degree, distance, . . .).

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Cel Pracy
Dane
Nowe pojęcia

Korelacja Pearsona i Spearmana

Sieci wielopoziomowe zazwyczaj były reprezentowane przez macierze sąsiedztwa. Do liczenia miar podobieństwa jednak praktyczniejsza może okazać się macierz właściwości ${\bf P}$.

Theorem

- i) the columns correspond to a set S of network structures (nodes, edges, triangles, . . .)
- (ii) the rows correspond to a set C of contexts where these structures are observed (layers, groups, snapshots, . . .) (iii) $P_{s,c}$ is the value of an observational function mapping each pair structure/context into a number(degree, distance, . . .).
 - ▶ Dla mnie C czyli kontekst to warstwa

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Cel Pracy Dane Nowe pojęcia

Korelacja Pearsona i Spearmana

Property matrix **P**

Sieci wielopoziomowe zazwyczaj były reprezentowane przez macierze sąsiedztwa. Do liczenia miar podobieństwa jednak praktyczniejsza może okazać się macierz właściwości **P**.

Theorem

- i) the columns correspond to a set S of network structures (nodes, edges, triangles, . . .)
- (ii) the rows correspond to a set C of contexts where these structures are observed (layers, groups, snapshots, . . .)
 (iii) $P_{s,c}$ is the value of an observational function mapping each pair structure/context into a number(degree, distance, . . .).
 - ► Strukturą S będą węzły

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Cel Pracy
Dane
Nowe pojęcia

Korelacja Pearsona i Spearmana

Property matrix **P**

Sieci wielopoziomowe zazwyczaj były reprezentowane przez macierze sąsiedztwa. Do liczenia miar podobieństwa jednak praktyczniejsza może okazać się macierz właściwości **P**.

Theorem

- i) the columns correspond to a set S of network structures (nodes, edges, triangles, . . .)
- (ii) the rows correspond to a set C of contexts where these structures are observed (layers, groups, snapshots, . . .)
 (iii) $P_{s,c}$ is the value of an observational function mapping each pair structure/context into a number(degree, distance, . . .).

► Funkcją mapującą będą stopnie węzłów

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Cel Pracy Dane Nowe pojęcia

Korelacja Pearsona i Spearmana

Wyniki

4 D > 4 A > 4 E > 4 E > 9 Q P

Macierz **P**

Przykładowa macierz ${\bf P}$ do reprezentacji stopni węzłów.

	n_1	n_2	n_3	n_4	n_5
l_1	2	1	4	2	2
l_2	4	3	NA	1	3

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Dane Dane

Nowe pojęcia

orelacja earsona i pearmana

Vvniki

Macierz P

Przykładowa macierz ${\bf P}$ do reprezentacji stopni węzłów.

	$\mid n_1 \mid$	n_2	n_3	n_4	n_5	
l_1	2	1	4	2	2	Mając już każdą warstwą
l_2	4	3	NA	1	3	

przedstawioną jako wektor, możemy policzyć korelacje Pearsona (i Spearmana) między różnymi wektorami. Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Dane

Nowe pojęcia

Korelacja Pearsona i Spearmana

Plan

Wstęp

Cel Pracy

Dan

Nowe pojęcia

Korelacja Pearsona i Spearmana

Pearson

Spearman

Wyniki

Heatmapy

Wykresy

Boxploty

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Pearson

*** .. .

Korelacja Pearsona

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

lorelacja Pearsona i pearmana

Pearson Spearman

Vvniki

Korelacja Pearsona jest miarą liniowej Korelacji pomiędzy dwoma zmiennymi (wektorami) $\mathbb X$ i $\mathbb Y$. Przyjmuje wartości z zakresu <-1,1>

Pearsona i Spearmana Pearson

Spearman

Wyniki

Korelacja Pearsona jest miarą liniowej Korelacji pomiędzy dwoma zmiennymi (wektorami) $\mathbb X$ i $\mathbb Y$. Przyjmuje wartości z zakresu <-1,1>

- 1 całkowita dodatnia korelacja
- -1 całkowita ujemna korelacja
 - 0 brak korelacji liniowej

Korelacja Pearsona

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Korelacja Pearsona i Spearmana

Pearson Spearman

Wyniki

Współczynnik korelacji Pearsona został policzony wzorem

$$Pearson = \frac{[p_{l_1} - mean(p_{l_1})]'[p_{l_2} - mean(p_{l_2})]}{||[p_{l_1} - mean(p_{l_1})]|||[p_{l_2} - mean(p_{l_2})]||}$$

Gdzie p jest właśnie macierzą ${\bf P}$ wyżej omówioną.

Plan

Korelacja Pearsona i Spearmana

Spearman

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Spearman

Korelacja Spearmana

Współczynnik korealcji Spearmana jest między dwoma zmiennymi $\mathbb X$ i $\mathbb Y$ jest równy korelacji Pearsona między wartościami rang tych dwóch zmiennych, $\rho(\mathbb X)$ i $\rho(\mathbb Y)$.

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Korelacja Pearsona i Spearmana

Spearman

Korelacja Spearmana

Współczynnik korealcji Spearmana jest między dwoma zmiennymi $\mathbb X$ i $\mathbb Y$ jest równy korelacji Pearsona między wartościami rang tych dwóch zmiennych, $\rho(\mathbb X)$ i $\rho(\mathbb Y)$. Podczas gdy korelacja Pearsona bada liniowe zależności. Korelacja Spearmana bada monotoniczne zależności.

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Spearman

Korelacja Spearmana

Współczynnik korealcji Spearmana jest między dwoma zmiennymi \mathbb{X} i \mathbb{Y} jest równy korelacji Pearsona między wartościami rang tych dwóch zmiennych, $\rho(\mathbb{X})$ i $\rho(\mathbb{Y})$. Podczas gdy korelacja Pearsona bada liniowe zależności. Korelacja Spearmana bada monotoniczne zależności. Intuicyjnie, współczynnik korelacji Spearmana będzie wysoki, gdy obserwacje mają podobną rangę w stosunku do wartości.

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Korelacja Pearsona i Spearmana

Spearman

Plan

Wstęp

Cel Pracy

Dane

Nowe pojęcia

Korelacja Pearsona i Spearmana

Pearson

Spearman

Wyniki

Heatmapy

Wykresy

Boxploty

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Vyniki

Heatmapy Wykresy

>

Pearson, ARABIDOPSIS

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

wyniki

Heatmapy

Pearson, ARXIV

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

wyniki

Heatmapy

Pearson, PADGETT-FLORENTINE-FAMILIES

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

orelacja earsona i pearmana

Wyniki

Heatmapy

Spearman, ARABIDOPSIS

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Wyniki

Heatmapy

Spearman, ARXIV

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Wyniki

Heatmapy

Vykresy Soxploty

Spearman, PADGETT-FLORENTINE-FAMILIES

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

orelacja earsona i pearmana

Wyniki

Heatmapy Wykresy Boxploty

Plan

Wstęp

Cel Pracy

Dan

Nowe pojęcia

Korelacja Pearsona i Spearmana

Pearson

Spearman

Wyniki

Heatmapy

Wykresy

Boxploty

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Vyniki

Heatmapy Wykresy

oxploty

Pearson/Spearman, ARABIDOPSIS

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Wyniki Heatmapy Wykresy

Pearson/Spearman, ARXIV

Layer

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Heatmapy Wykresy

Pearson/Spearman, PADGETT-FLORENTINE-FAMILIES

1.000

1.025

1.050

0.975

0.950

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Wyniki Heatmapy Wykresy

Boxploty

Plan

Wstęp

Cel Pracy

Dane

Nowe pojęcia

Korelacja Pearsona i Spearmana

Pearson

Spearman

Wyniki

Heatmapy

Wykresy

Boxploty

Analiza zjawisk kaskadowych w sieciach transportowych

> Tomasz Szypuła

Wstęp

Korelacja Pearsona i Spearmana

Vyniki

Heatmapy Wykresy

Boxploty

>

Pearson

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Korelacja Pearsona i Spearmana

Vyniki

eatmapy /ykresy

Boxploty

>

Spearman

Analiza zjawisk kaskadowych w sieciach transportowych

 $\begin{array}{c} {\rm Tomasz} \\ {\rm Szypuła} \end{array}$

Wstęp

Korelacja Pearsona i Spearmana

Vyniki

Wykre

Boxploty

