DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 1

Today's Lecture

Beyond Greedy

- Greedy algorithms are typically fast, but may not find the optimal answer.
- Brute force guarantees the optimal answer, but is slow.

Can we guarantee the optimal answer and be faster than brute force?

Today

- The backtracking idea.
- ► It is a useful, general algorithm design technique¹.
- ► And the foundation of **dynamic programming**.

¹Commonly seen in tech interviews

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 2

The 0-1 Knapsack Problem

0-1 Knapsack

- Suppose you're a thief.
- You have a knapsack (bag) that can fit 100L.
- And a list of *n* things to possibly steal.

item	size (L)	price
TV	50	\$400
iPad	2	\$900
Printer	10	\$100
:	:	:

 Goal: maximize total value of items you can fit in your knapsack.

Example

item	size (L)	price	
1	50	\$40	
2	10	\$25	In the bag:
3	80	\$100	Total value
4	5	\$10	Total value:
5	20	\$20	Space remaining:
6	30	\$6	
7	8	\$32	
8	17	\$34	

Greedy

- Does a greedy approach find the optimal?
- What do we mean by "greedy"?
- Idea #1: take most expensive available that will fit.

Example

item	size (L)	price	
1	50	\$40	
2	10	\$25	In the bag:
3	80	\$100	Total value
4	5	\$10	Total value:
5	20	\$20	Space remaining:
6	30	\$6	
7	8	\$32	
8	17	\$34	

Greedy, Idea #2

- We want items with high value for their size.
- Define "price density" =
 item.price / item.size
- Idea #2: take item with highest price density.

Example

item	size (L)	price	
1	50	\$40	
2	10	\$25	In the bag:
3	80	\$100	Total value
4	5	\$10	Total value:
5	20	\$20	Space remaining:
6	30	\$6	
7	8	\$32	
8	17	\$34	

Greedy is Not Optimal

- Claim: the best possible total value is \$157.
 - ► Items 2, 3, and 7.

Never Looking Back

- Once greedy makes a decision, it never looks back.
- This is why it may be suboptimal.
- Backtracking: go back to reconsider every previous decision.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 3

- Reconsider every decision.
- If we initially tried including x, also try *not* including x.

```
def knapsack(items. bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary_item(fitting_in=bag_size)
    # if None. it means there was no item that fit
    if x is None:
        return o
    # assume x should be in bag, see what we get
    best with = ...
    # backtrack: now assume x should not be in bag, see what we get
    best without = ...
    return max(best with, best without)
```

Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is in the bag?
- Imagine choosing x.
 - ► Your current total value is x.price.
 - ► You have bag size x.size space left.
 - ► Items left to choose from: items x.
- Clearly, you want the best outcome for new situation (subproblem).
- Answer: x.price + BEST(items x, bag_size x.size)

Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is not the bag?
- Imagine deciding x is not in the bag.
 - ► Your current total value is o.
 - You have bag_size space left.
 - ► Items left to choose from: items x.
- Clearly, you want the best outcome for new situation (subproblem).
- Answer: 0 + BEST(items x, bag_size)

```
def knapsack(items, bag size):
    # choose item arbitrarily from those that fit in bag
   x = items.arbitrary_item(fitting_in=bag_size)
   # if None. it means there was no item that fit
   if x is None:
        return o
    # assume x is in the bag, see what we get
    best with = x.price + knapsack(items - x. bag size - x.size)
    # now assume x is not in bag, see what we get
    best without = 0 + knapsack(items - x, bag size)
    return max(best with, best without)
```

```
def knapsack(items. bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary item(fitting in=bag size)
    # if None. it means there was no item that fit
    if x is None:
        return o
    items remove(x)
    best_with = x.price + knapsack(items, bag_size - x.size)
    best without = knapsack(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

Backtracking: go back to reconsider every previous decision.

- Searches the whole tree.
- Can be thought of as a DFS on implicit tree.

Exercise

Is the backtracking solution guaranteed to find an optimal solution?

Yes!

- ► It tries every **valid** combination and keeps the best.
 - A combination of items is valid if they fit in the bag together.

Leaf Nodes

Each leaf node is a different valid combination.

Exercise

Suppose instead of choosing an arbitrary node we choose most expensive. Does the answer change?

No!

- ► The choice of node is arbitrary.
- Call tree will change, but all valid combinations are tried.

Exercise

How does backtracking relate to the greedy approach? How would you change the code to make it greedy?

Summary

```
def knapsack greedy(items, bag size):
   # choose greedilv
   x = items.most_valuable_item(fitting_in=bag_size)
   # if None. it means there was no item that fit
   if x is None:
        return o
    # assume x is in the bag, see what we get
    best with = x.price + knapsack(items - x. bag size - x.size)
    # in the greedy approach, we don't do this
    # best without = knapsack(items - x, bag size)
   return best with
```

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 4

Efficiency Analysis

A Benchmark

- Brute force: try every **possible** combination of items.
 - Even the invalid ones whose total size is too big.
 - Why? Hard to know which are invalid without trying them.
- ▶ There are $\Theta(2^n)$ possible combinations.
- ▶ So brute force takes $\Omega(2^n)$ time. **Exponential** :(

Time Complexity of Backtracking

```
def knapsack(items, bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary item(fitting in=bag size)
    # if None. it means there was no item that fit
   if x is None:
                                                               T(n) =
        return o
    items.remove(x)
    best with = x.price + knapsack(items. bag size - x.size)
    best without = knapsack(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

Backtracking Takes Exponential Time

- ...in the worst case.
- This is just as bad as brute force.
- So why use it?
- Its worst case isn't always indicative of its practical performance.

Intuition

- Brute force tries all possible combinations.
- Backtracking tries all valid combinations.
- ► The number of valid combinations can be much less than the number of possible combinations.²

²Not always true!

Pruning

yes yes no no yes yes yes no yes no 4

backtracking

brute force

Pruning

Backtracking prunes branches that lead to invalid solutions.

Example

- 23 items with size/price chosen from Unif([23, ..., 46])
- ▶ Bag size is 46
- ▶ Brute force: 52 seconds.
- Backtracking: 4 milliseconds.

Example

- ▶ 300 items with size/price chosen from Unif([150, ..., 300])
- ▶ Bag size is 600
- ► Brute force: ? ($\approx 4.6 \times 10^{77}$ years)
- Backtracking: 30 seconds.

Backtracking Worst Case

- knapsack's worst case is when bag size is very large.
- All solutions are valid, aren't pruned.
- But this is actually an easy case!

```
def knapsack 2(items, bag size):
    if sum(item.size for item in items) < bag size:</pre>
        return sum(item.price for item in items)
    x = items.arbitrary item(fitting in=bag size)
    if x is None:
        return o
    items.remove(item)
    best with = x.price + knapsack 2(items. bag size - x.size)
    best without = knapsack 2(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

Pruning

► This further prunes the tree, resulting in speedup for some inputs.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 5

Branch and Bound

Example

- Suppose you have a bag of size 100.
- One of the items is a diamond.
 - Price: \$10,000. Size: 1
- ► The other 49 items are coal.
 - Price: \$1. Size: 1
- ▶ Do you even consider not taking the diamond?

Idea

Assume we take the diamond, compute best result.

- Find quick upper bound for not taking diamond.
- If upper bound is less than best for diamond, don't go down that branch.
- This is branch and bound; another way to prune tree.

Branch and Bound

```
def knapsack bb(items, bag size, find upper bound):
    # try to make a good first choice
    x = items.item with highest price density(fitting in=bag size)
    if x is None:
        return o
    items.remove(item)
    best with = x.price + knapsack bb(items, bag size - x.size)
    if find upper bound(items, bag size) < best with:
        best without = 0
    else:
        best without = knapsack bb(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

Example

item	size (L)	price
1	50	\$40
2	25	\$25
3	95	\$1000
4	5	\$10

Upper Bounds for Knapsack

- How do we get a good upper bound?
- One idea: the solution to the *fractional* knapsack problem upper bounds that for 0/1 knapsack.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 6

- A backtracking approach is guaranteed to find an optimal answer.
- It is typically faster than brute force, but can still take **exponential time**.

- We can speed up backtracking by pruning:
- Three ways to prune:
 - 1. Prune invalid branches (default).
 - 2. Prune "easy" cases.
 - 3. Prune by branching and bounding.

- ► Next time: **dynamic programming**.
- ► We'll see it is just backtracking + memoization.