# Data Analysis ¶

In this notebook, our goal is to perform a comprehensive analysis of our dataset to extract valuable information and gain insights from the data. Through this analysis, we hope to identify trends, patterns, and relationships in the data that can help us understand a little more from roller coasters.

### In [114]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import geopandas as gpd
```

# In [115]:

```
df = pd.read_csv('coaster_db_clean.csv')
```

#### In [116]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1087 entries, 0 to 1086
Data columns (total 25 columns):

| #                                        | Column           | Non-Null Count | Dtype   |  |  |  |
|------------------------------------------|------------------|----------------|---------|--|--|--|
|                                          |                  | 1007 11        |         |  |  |  |
| 0                                        | name             | 1087 non-null  | object  |  |  |  |
| 1                                        | location         | 915 non-null   | object  |  |  |  |
| 2                                        | manufacturer     | 1028 non-null  | object  |  |  |  |
| 3                                        | designer         | 578 non-null   | object  |  |  |  |
| 4                                        | type             | 1087 non-null  | object  |  |  |  |
| 5                                        | model            | 629 non-null   | object  |  |  |  |
| 6                                        | track_layout     | 366 non-null   | object  |  |  |  |
| 7                                        | status           | 874 non-null   | object  |  |  |  |
| 8                                        | lift_launch      | 804 non-null   | object  |  |  |  |
| 9                                        | latitude         | 812 non-null   | float64 |  |  |  |
| 10                                       | longitude        | 812 non-null   | float64 |  |  |  |
| 11                                       | open_year        | 1087 non-null  | int64   |  |  |  |
| 12                                       | close_year       | 236 non-null   | float64 |  |  |  |
| 13                                       | height           | 965 non-null   | float64 |  |  |  |
| 14                                       | length           | 953 non-null   | float64 |  |  |  |
| 15                                       | drop             | 494 non-null   | float64 |  |  |  |
| 16                                       | max_angle        | 357 non-null   | float64 |  |  |  |
| 17                                       | inversions       | 1087 non-null  | int64   |  |  |  |
| 18                                       | speed            | 937 non-null   | float64 |  |  |  |
| 19                                       | restriction_low  | 831 non-null   | float64 |  |  |  |
| 20                                       | restriction_up   | 96 non-null    | float64 |  |  |  |
| 21                                       | gforce           | 362 non-null   | float64 |  |  |  |
| 22                                       | duration         | 763 non-null   | float64 |  |  |  |
| 23                                       | riders_per_hour  | 575 non-null   | float64 |  |  |  |
| 24                                       | riders_per_train | 716 non-null   | float64 |  |  |  |
| dtypes: float64(14), int64(2), object(9) |                  |                |         |  |  |  |

memory usage: 212.4+ KB

# In [117]:

```
plt.figure(figsize=(20, 6))
sns.heatmap(df.isnull());
```



As we can see from our dataset, there are numerous missing values, which can pose a challenge to our data analysis. Missing data can lead to biased or incomplete results, and can limit the scope of our analysis. The upper restriction has a lot of missing values, we are dropping it.

```
In [118]:
```

```
df = df.drop('restriction_up', axis = 1)
```

# 1. Identifying Outliers

Outliers have a significant impact on data analysis, as they can skew results and prevent an accurate representation of the majority of the data. This can lead to misleading insights and inferences, and can even invalidate statistical analyses and models. Our approach to identifying them are boxplots.

#### In [119]:

```
cat = range(1, 9)
geo = [9, 10]
num = range(11,24)
var = range(13, 18)
target = range(18, 24)

df_aux = df.iloc[:, num]

plt.figure(figsize=(21, 6))
sns.boxplot(df_aux);
```



Since we are trying to identify outliers for features with different ranges, we have some distortions, making difficult to address outliers properly. In order to solve this problem, it is recommended to scale the features to the same mean and standard deviation. By doing so, we can obtain a more accurate visual analysis that is not biased towards features with a larger range.

#### In [120]:

```
df_aux = df.iloc[:, num]
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df_aux)
df_scaled = pd.DataFrame(df_scaled, columns=df_aux.columns)
plt.figure(figsize=(21, 6))
sns.boxplot(df_scaled);
```



Let's investigate the outliers for the following features: height, max\_angle, gforce, restriction\_low, riders\_per\_train.

```
In [121]:
```

```
df.query('height > 1000').transpose()
```

### Out[121]:

|                  | 905                           |
|------------------|-------------------------------|
| name             | Smoky Mountain Alpine Coaster |
| location         | NaN                           |
| manufacturer     | Wiegand                       |
| designer         | NaN                           |
| type             | Steel                         |
| model            | custom                        |
| track_layout     | NaN                           |
| status           | operating                     |
| lift_launch      | lift                          |
| latitude         | 35.7934                       |
| longitude        | -83.5965                      |
| open_year        | 2013                          |
| close_year       | NaN                           |
| height           | 1199.9976                     |
| length           | NaN                           |
| drop             | NaN                           |
| max_angle        | NaN                           |
| inversions       | 0                             |
| speed            | 43.2                          |
| restriction_low  | 1.4224                        |
| gforce           | NaN                           |
| duration         | NaN                           |
| riders_per_hour  | NaN                           |
| riders_per_train | 2.0                           |
|                  |                               |

The Smoky Mountain Alpine Coaster is actually a type of roller coaster known as a mountain coaster, which uses the natural terrain of a mountain to create a unique and thrilling ride experience. It's true that the coaster's location on a mountain contributes to its height. The coaster uses magnetic braking systems to maintain a slower speed despite its height, which can impact the overall ride experience for riders.

# In [122]:

```
df.query('restriction_low < 0.8').transpose()</pre>
```

# Out[122]:

| 4 | 2 | • |
|---|---|---|
| 1 | J | 4 |

|                  | 132                       |
|------------------|---------------------------|
| name             | Lil' Thunder              |
| location         | Six Flags Great Adventure |
| manufacturer     | Molina & Sons             |
| designer         | NaN                       |
| type             | Steel                     |
| model            | little dipper             |
| track_layout     | NaN                       |
| status           | closed                    |
| lift_launch      | NaN                       |
| latitude         | 40.138                    |
| longitude        | -74.44                    |
| open_year        | 1976                      |
| close_year       | 1983.0                    |
| height           | 2.7432                    |
| length           | 60.6552                   |
| drop             | 0.9144                    |
| max_angle        | NaN                       |
| inversions       | 0                         |
| speed            | 8.0                       |
| restriction_low  | 0.508                     |
| gforce           | NaN                       |
| duration         | 27.0                      |
| riders_per_hour  | NaN                       |
| riders_per_train | NaN                       |
|                  |                           |

Lil' Thunder have the lowest height restriction, but also have the slowest speed, which justifies this particular characteristic, ensuring a safer and more enjoyable experience for riders.

```
In [123]:
```

```
df.query('gforce > 6.5').transpose()
```

# Out[123]:

|                  | 1                 |
|------------------|-------------------|
| name             | Flip Flap Railway |
| location         | Sea Lion Park     |
| manufacturer     | Lina Beecher      |
| designer         | Lina Beecher      |
| type             | Wood              |
| model            | NaN               |
| track_layout     | NaN               |
| status           | closed            |
| lift_launch      | NaN               |
| latitude         | 40.578            |
| longitude        | -73.979           |
| open_year        | 1895              |
| close_year       | 1902.0            |
| height           | NaN               |
| length           | NaN               |
| drop             | NaN               |
| max_angle        | NaN               |
| inversions       | 1                 |
| speed            | NaN               |
| restriction_low  | NaN               |
| gforce           | 12.0              |
| duration         | NaN               |
| riders_per_hour  | NaN               |
| riders_per_train | 2.0               |
|                  |                   |

Flip Flap Railway was notorious for the extreme g-forces that it produced in its riders. The circular nature of the coaster's loop, as well as its relatively small diameter of 25 feet, meant that it could produce forces of approximately 12 g. This caused riders to often experience discomfort and neck injuries from whiplash.

# In [124]:

```
df.query('max_angle > 130').transpose()
```

### Out[124]:

|                  | 679                      | 833        |
|------------------|--------------------------|------------|
| name             | G Force                  | BuzzSaw    |
| location         | Drayton Manor Theme Park | Dreamworld |
| manufacturer     | Maurer AG                | Maurer AG  |
| designer         | NaN                      | NaN        |
| type             | Other                    | Steel      |
| model            | custom                   | custom     |
| track_layout     | NaN                      | NaN        |
| status           | closed                   | closed     |
| lift_launch      | NaN                      | lift       |
| latitude         | 52.6128                  | -27.8623   |
| longitude        | -1.7147                  | 153.3149   |
| open_year        | 2005                     | 2011       |
| close_year       | 2018.0                   | 2021.0     |
| height           | 24.9936                  | 46.20768   |
| length           | 384.9624                 | 45.72      |
| drop             | NaN                      | NaN        |
| max_angle        | 360.0                    | 360.0      |
| inversions       | 3                        | 2          |
| speed            | 69.6                     | 104.32     |
| restriction_low  | 1.3462                   | 1.3        |
| gforce           | 4.3                      | 5.0        |
| duration         | 45.0                     | 50.0       |
| riders_per_hour  | 1100.0                   | 600.0      |
| riders_per_train | 12.0                     | 12.0       |

BuzzSaw and GForce are twisted roller coasters, which justified the max angle being 360°.

# In [125]:

```
df.loc[905, 'height'] = np.nan
df.loc[1, 'gforce'] = np.nan
df.loc[[679, 833], 'max_angle'] = np.nan

df.loc[df['type'] == 'other', 'type'] = np.nan
```

# 2. Top 5 locations, manufacturers and designers analysis

# In [126]:

```
for col in df.iloc[:, cat].columns:
    n = len(df[col].value_counts())
    print(f'{col:12s}: {n:3d}')
```

location : 298
manufacturer: 102
designer : 153
type : 3
model : 50
track\_layout: 14
status : 3
lift\_launch : 2

location, manufacturer, designer, model and track\_layout exhibit a high cardinality, posing challenges in analyzing the dataset. Consequently, our focus will be on investigating the top five most frequently occurring values within these variables.

# In [127]:

```
df aux = df.iloc[:, cat]
cols = df.iloc[:, cat].columns
cc = ['location', 'manufacturer', 'designer']
col_drop = cols.to_list()
col_drop = [cd for cd in col_drop if cd not in cc]
def plot_categorical(df, c):
    series = df.loc[:, c].value_counts(
   ).sort_values(ascending = False)
   series = series.iloc[:5].index
    ind = df.loc[:, c].isin(series)
   df_ = df.loc[ind, :]
   fig, ax = plt.subplots(2, 3, figsize = (15, 10))
   fig.suptitle(f'Categorical Relationships of {c} feature')
   for i, col in enumerate(col drop):
        if col == 'model':
            series = df_.loc[:, col].value_counts(
            ).sort_values(ascending = False)
            series = series.iloc[:10].index
            ind = df_.loc[:, col].isin(series)
            df_2 = df_.loc[ind, :]
            sns.histplot(data=df_2, x = c, y = col, ax = ax[i//3, i%3])
            ax[i//3, i%3].tick_params(axis='x', rotation=75)
            ax[i//3, i%3].set_title(' ')
        else:
            sns.histplot(data=df_, x = c, y = col, ax = ax[i//3, i%3])
            ax[i//3, i%3].tick_params(axis='x', rotation=75)
            ax[i//3, i%3].set title(' ')
    sns.histplot(data=df_, x = c, ax = ax[1, 2])
   ax[1, 2].tick_params(axis='x', rotation=75)
   ax[1, 2].set_title('')
   fig.tight layout()
   return None
plot_categorical(df_aux, 'location')
```



- Custom models are more presented in Six Flags Great Adventure.
- Suspended models are predominant in Kings Island.
- Terrain track layout are predominant in Six Flags Magic Mountain and Kings Island.

# In [128]:



- Inverted models are predominant in Bolliger & Mabillard.
- Wild Mouse track layouts are predominant in Mack Rides.
- Twister track layouts are predominant in Bolliger & Mabillard.
- Vekoma produces the most roller coasters, with a wide variety in model and track layout types.

# In [129]:

# plot\_categorical(df\_aux, 'designer')



- Werner Stengel is responsible for the largest amount of roller coasters designed, with wide variety in model and track layout types.
- i-box seems to be only produced by Alan Schlike, how mostly produced this type of roller coaster model.
- Walk Disney Imagineening highly focus in custom track layouts.

#### In [130]:

```
cc = ['location', 'manufacturer', 'designer']
drops = ['inversions']
num_cols = df.iloc[:, num].columns
total cols = list(num cols) + cc
df_aux = df.loc[:, total_cols]
col_drop = num_cols.to_list()
col drop = [cd for cd in col drop if cd not in drops]
def plot_numeric(df_aux, c):
   series = df_aux.loc[:, c].value_counts(
   ).sort_values(ascending = False)
   series = series.iloc[:5].index
   ind = df_aux.loc[:, c].isin(series)
   df_aux1 = df_aux.loc[ind, :]
   sc = 0.8
   color = ['b', 'g', 'm', 'r', 'c']
   my_pal = {s:cr for s, cr in zip(series, color)}
   fig, ax = plt.subplots(3, 4, figsize = (20 * sc, 15 * sc))
   fig.suptitle(f'Numerical Relationships of {c} feature')
   for i, col in enumerate(col_drop):
        my_order = df_aux1.groupby(
            by=[c])[col].median(
        ).sort_values(ascending=False)
        sns.boxplot(data=df_aux1, x = c, y = col, ax = ax[i//4, i%4],
                    order = my_order.index, palette=my_pal);
        ax[i//4, i%4].tick_params(axis='x', rotation=75)
        ax[i//4, i%4].set title(' ')
   fig.tight_layout()
plot_numeric(df_aux, 'location')
```



- Six Flags Magic Mountain roller coaster were closed in proximate dates.
- Canada's Wonderland have a small length distribuition, as well as drop.
- Canada's Wonderland max angle are predominaly large.
- Canada's Wonderland have a unique g-force.

# In [131]:

plot\_numeric(df\_aux, 'manufacturer')



- Mack Rides drop have a small drop distribuition.
- Boilinger & Mabillard have a high height restriction.
- Boilinger & Mabillard rides per train are considerable values.

# In [132]:

plot\_numeric(df\_aux, 'designer')



- Vekoma roller coasters speed values have low variance.
- Ron Toomer have designed riders per train have a low variance.

# 3. Numerical Features

Next, let's explore the correlation matrix of the roller coaster, focusing solely on its numerical features. Then, the most notable correlation are going to be further explored.

#### In [133]:



#### Some relations to highlight:

- Speed is strongly correlated with drop and height, and moderately with max angle, restriction height, length, gforce and riders per train.
- Height is strongly correlated with drop, and moderately with length, height restriction, max angle, inversions, gforce and riders per train.
- Length is moderately correlated with drop, duration, riders per hour and riders per train.
- GForce is moderately correlated with max angle, drop, inversions and height restriction.
- Height restriction is moderately with max angle, drop, inversions and close year.
- Riders per train is moderately correlated with duration, drop, riders per hour, max angle.
- · Open year is strongly correlated with close year and max angle.
- Duration is moderately correlated with riders per hour.
- · Drop is moderately correlated with max angle.

# 3.1. Speed

#### In [134]:

```
fig, ax = plt.subplots(2, 4, figsize = (12, 6))

feats = ['drop', 'height', 'length', 'restriction_low', 'max_angle', 'gforce', 'riders_p

for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = 'speed', y=f, ax = ax[i//4, i%4])

bin_number = 25 #int((sum(df['speed'].notnull()))**0.5)

sns.histplot(data = df, x = 'speed', ax = ax[1, 3], bins = bin_number)

fig.tight_layout()
```



- A roller coaster's speed is directly influenced by the height and drop it possesses. The higher the drop and height, the faster the train will ride.
- Roller coasters with longer lengths provide ample space for the train to gather speed, enhancing the overall experience.
- Higher speeds necessitate stricter restrictions for riders due to the increased intensity and potential risks.
- The maximum angle of a roller coaster impacts its speed since the gravitational force becomes more prominent, affecting the overall velocity.
- Generally, as speed increases, the g-force experienced by riders also tends to increase.
- There is a positive correlation between the number of riders per train and speed. This relationship can
  be explained by the additional weight that riders contribute to the train, thereby increasing the
  gravitational force experienced during the ride.

# 3.2. Height

#### In [135]:

```
fig, ax = plt.subplots(2, 4, figsize = (12, 6))
feats = ['drop', 'length', 'restriction_low', 'max_angle', 'inversions', 'gforce', 'ride

xx = 'height'
for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = xx, y=f, ax = ax[i//4, i%4])

bin_number = 25
sns.histplot(data = df, x = xx, ax = ax[1, 3], bins = bin_number)

fig.tight_layout()
```



- Higher heights allow for the setting of more significant drops in a roller coaster.
- Roller coasters with greater heights require a longer track length to accommodate the thrilling ride experience.
- Large height values necessitate more stringent height restrictions for riders.
- Increasing the height of a roller coaster leads to higher costs and increased track usage, which may not always justify the additional expenses associated with incorporating inversion systems.
- As height influences speed, it indirectly affects the experienced g-force during the ride.
- There is a positive correlation between the maximum angle and the number of riders per train with the height of the roller coaster.

# 3.3. Length

#### In [136]:

```
fig, ax = plt.subplots(2, 3, figsize = (12, 6))

feats = ['drop', 'duration', 'riders_per_hour', 'riders_per_train']

xx = 'length'

for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = xx, y=f, ax = ax[i//2, i%2])

gs = ax[0, 2].get_gridspec()

ax[0, 2].remove()

ax[1, 2].remove()

bin_number = 25

axbig = fig.add_subplot(gs[:, 2])

sns.histplot(data = df, x = xx, bins = bin_number)

fig.tight_layout()
```



- When examining the relationship between length and height, it becomes evident that length indirectly
  influences the value of the drop in a roller coaster.
- Roller coaster rides tend to last longer when the length of the track is increased.
- One might expect that longer rides would result in a decrease in the number of riders per hour.
  However, the increase in the number of riders per train as the length of the roller coaster increases
  leads to an overall increase in riders per hour. This phenomenon can be attributed to the careful
  consideration of ride duration by designers. They take into account how long the ride will last and the
  willingness of people to wait, leading them to carefully select the number of riders per train.

#### 3.4. G-force

#### In [137]:

```
fig, ax = plt.subplots(2, 3, figsize = (12, 6))
feats = ['max_angle', 'drop', 'inversions', 'restriction_low']

xx = 'gforce'

for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = xx, y=f, ax = ax[i//2, i%2])

gs = ax[0, 2].get_gridspec()

ax[0, 2].remove()
ax[1, 2].remove()
bin_number = 18

axbig = fig.add_subplot(gs[:, 2])
sns.histplot(data = df, x = xx, bins = bin_number)

fig.tight_layout()
```



- The maximum angle and drop of a roller coaster directly impact the experienced g-force during the ride.
- G-forces smaller than 3 can only be achieved when the roller coaster does not have any inversions.
- The level of g-force experienced on a roller coaster affects the height restrictions for riders.

# 3.5. Height restriction

#### In [138]:

```
fig, ax = plt.subplots(2, 3, figsize = (12, 6))

feats = ['max_angle', 'drop', 'inversions', 'close_year']

xx = 'restriction_low'

for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = xx, y=f, ax = ax[i//2, i%2])

gs = ax[0, 2].get_gridspec()

ax[0, 2].remove()

ax[1, 2].remove()

bin_number = 10

axbig = fig.add_subplot(gs[:, 2])

sns.histplot(data = df, x = xx, bins = bin_number)

fig.tight_layout()
```



#### Conclusions:

• To accommodate smaller children in the roller coaster, it is necessary for the ride to exclude inversions. This design choice ensures a safer and more accessible experience for young riders.

# 3.6. Riders per train

#### In [139]:

```
fig, ax = plt.subplots(2, 3, figsize = (12, 6))
feats = ['duration', 'drop', 'riders_per_hour', 'max_angle']
xx = 'riders_per_train'
for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = xx, y=f, ax = ax[i//2, i%2])
gs = ax[0, 2].get_gridspec()
ax[0, 2].remove()
ax[1, 2].remove()
bin_number = 10
axbig = fig.add_subplot(gs[:, 2])
sns.histplot(data = df, x = xx, bins = bin_number)
fig.tight_layout()
```



- The number of riders per train is indirectly related to the drop of the roller coaster due to the relationship with the length of the ride. Longer rides often allow for more riders per train, as there is ample track to accommodate multiple passengers.
- There is a positive correlation between the number of riders per train and the number of riders per hour. When the roller coaster can accommodate more passengers in each train, it increases the overall capacity of the ride, resulting in a higher number of riders per hour.

# 3.7. Open Year

#### In [140]:

```
fig, ax = plt.subplots(1, 3, figsize = (12, 4))

feats = ['close_year', 'max_angle']

xx = 'open_year'

for i, f in enumerate(feats):
    sns.scatterplot(data = df, x = xx, y=f, ax = ax[i ])

bin_number = 15

sns.histplot(data = df, x = xx, ax = ax[2], bins = bin_number)

fig.tight_layout()
```



- The difference between the close date and the open date is not significantly large.
- High max angles started to be considered past 1975.
- · Most of the roller coaster were built recently.

# 3.8. Duration and Drop

#### In [141]:

```
fig, ax = plt.subplots(2, 2, figsize = (12, 6))

feats = ['riders_per_hour', 'max_angle']

xx = ['duration', 'drop']

sns.scatterplot(data = df, x = xx[0], y=feats[0], ax = ax[0, 0])
sns.scatterplot(data = df, x = xx[1], y=feats[1], ax = ax[1, 0])

sns.histplot(data = df, x = xx[0], ax = ax[0, 1])
sns.histplot(data = df, x = xx[1], ax = ax[1, 1])

fig.tight_layout()
```



#### Conclusions:

- Similarly, we can observe the same relationship between riders per hour and the duration of the ride, as we did with riders per hour and the length of the roller coaster.
- A steeper maximum angle often corresponds to a larger drop, adding to the excitement and intensity of the ride.

# 4. Geospatial Information

Since we have access to the locations of our roller coasters, let's explore the possibility of extracting geospatial information.

### In [142]:

```
fig, ax = plt.subplots(1, 1, figsize = (12, 6))
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world.plot(ax = ax);
sns.scatterplot(data = df, x = 'longitude', y = 'latitude', color = 'r');
ax.set_xlim(-181, 181);
ax.set_ylim(-90, 85);
```



We have a point in the middle of nowhere, the only one below -40° latitude.

```
In [143]:
```

```
df.query('latitude < -40').transpose()</pre>
```

# Out[143]:

|                  | 1062               |
|------------------|--------------------|
| name             | Krampus Expédition |
| location         | Nigloland          |
| manufacturer     | Mack Rides         |
| designer         | NaN                |
| type             | Steel              |
| model            | NaN                |
| track_layout     | water              |
| status           | operating          |
| lift_launch      | lift               |
| latitude         | -48.2617           |
| longitude        | 4.6142             |
| open_year        | 2021               |
| close_year       | NaN                |
| height           | 28.01112           |
| length           | 599.9988           |
| drop             | NaN                |
| max_angle        | NaN                |
| inversions       | 0                  |
| speed            | 78.4               |
| restriction_low  | 1.1                |
| gforce           | 3.5                |
| duration         | 240.0              |
| riders_per_hour  | 850.0              |
| riders_per_train | 8.0                |

The roller coaster is located in France. It was supposed to be positive latitude (+48.2617). Let's give a correction.

```
In [144]:
```

```
df.loc[1062, 'latitude'] *= (-1)
```

The majority of roller coasters are concentrated in two main regions: the United States and Europe, while Asia and Oceania have fewer instances. Let's categorize the roller coasters into three main groups based on their locations: America, Europe, and Asia/Oceania.

#### In [145]:

```
fig, ax = plt.subplots(1, 1, figsize = (12, 8))
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))

world.plot(ax = ax);
sns.scatterplot(data = df, x = 'longitude', y = 'latitude', color = 'r');
ax.axvline(45, color= 'k', ls = '--')
ax.axvline(-25, color= 'k', ls = '--');
ax.set_xlim(-181, 181);
ax.set_ylim(-90, 85);
```



#### In [146]:

```
mask1 = (df.loc[:, 'longitude'] <= - 25)
mask2 = (df.loc[:, 'longitude'] > - 25) & (df.loc[:, 'longitude'] < 48)
mask3 = (df.loc[:, 'longitude'] >= 48)

df['geo_pos'] = np.nan
df.loc[mask1, 'geo_pos'] = 'America'
df.loc[mask2, 'geo_pos'] = 'Europe'
df.loc[mask3, 'geo_pos'] = 'Asia/Oceania'
```

#### In [149]:

```
num cols = df.iloc[:, num].columns
total_cols = list(num_cols) + ['geo_pos']
df_aux = df.loc[:, total_cols]
series = df_aux.loc[:, 'geo_pos'].value_counts().index
col_drop = num_cols.to_list()
col_drop.remove('inversions')
sc = 0.8
color = ['b', 'g', 'r']
my_pal = {s:cr for s, cr in zip(series, color)}
fig, ax = plt.subplots(3, 4, figsize = (20 * sc, 15 * sc))
fig.suptitle(f'Numerical Relationships of Geographic Position')
for i, col in enumerate(col_drop):
        my_order = df_aux.groupby(
            by=['geo_pos'])[col].median(
        ).sort_values(ascending=False)
        sns.violinplot(data=df_aux, x = 'geo_pos', y = col, ax = ax[i//4, i%4],
                    order = my_order.index, palette=my_pal);
        ax[i//4, i%4].tick_params(axis='x', rotation=75)
fig.tight_layout()
```



#### Conclusions:

- One might supposed that the roller coasters started in America. But the dataset did not considered the
  previous initiatives in Russia and France, leading to wrong conclusions.
- · The large drops roller coasters are concentrated in America.
- Max angles are located in Asia/Oceania on average, followed by Europe and America, the last one having a
- Asia/Oceania have the fastest roller coasters, followed by America and Europe.

#### In [150]:

```
df_aux.loc[:, ['geo_pos', 'speed']].groupby('geo_pos').describe()
```

#### Out[150]:

|              |       |           |           |       |       |       |        | speed  |
|--------------|-------|-----------|-----------|-------|-------|-------|--------|--------|
|              | count | mean      | std       | min   | 25%   | 50%   | 75%    | max    |
| geo_pos      |       |           |           |       |       |       |        |        |
| America      | 439.0 | 80.001458 | 27.555190 | 8.00  | 63.84 | 80.00 | 96.00  | 204.80 |
| Asia/Oceania | 74.0  | 90.125405 | 31.541243 | 41.60 | 71.52 | 87.52 | 104.32 | 238.56 |
| Europe       | 186.0 | 75.443441 | 24.018277 | 26.88 | 59.68 | 75.84 | 89.44  | 159.04 |

#### In [151]:

```
df_aux.loc[:, ['geo_pos', 'max_angle']].groupby('geo_pos').describe()
```

# Out[151]:

|              |       |           |           |      |       |      | max_angle |       |
|--------------|-------|-----------|-----------|------|-------|------|-----------|-------|
|              | count | mean      | std       | min  | 25%   | 50%  | 75%       | max   |
| geo_pos      |       |           |           |      |       |      |           |       |
| America      | 190.0 | 65.375789 | 20.350233 | 3.0  | 50.00 | 60.0 | 84.0      | 121.5 |
| Asia/Oceania | 29.0  | 79.931034 | 21.655057 | 45.0 | 65.00 | 85.0 | 90.0      | 121.0 |
| Europe       | 58.0  | 73.737931 | 21.786354 | 29.0 | 55.25 | 80.0 | 90.0      | 113.1 |

# 5. Conclusion

By analyzing these various aspects, we can gain insights into the design, safety considerations, and rider experience of roller coasters. These findings can be valuable for park operators, ride designers, and enthusiasts seeking to understand the dynamics and characteristics of roller coasters worldwide.

# In [36]:

```
#df_ml = df.loc[:, ['type',
              'geo_pos',
#
              'lift_launch',
              'height',
'length',
#
#
              'drop',
#
              'max_angle',
#
              'inversions',
#
#
              'speed',
#
              'restriction_low',
#
              'gforce',
              'duration',
#
#
              'riders_per_hour',
#
              'riders_per_train']]
```