

Components and materials

Book C14

1986

	page
pe survey	ii
ection guide	
Aluminium electrolytic capacitors	2
Solid aluminium capacitors	4
roduction	
General	7
Principles	7
Description	
Electrical impedance	
Ripple current	
O.C. leakage current	
Life time	
Reliability	
Tests and requirements	
vice specifications	
Aluminium electrolytic capacitors	23
Solid aluminium capacitors	
Maintenance types	

TYPE SURVEY

type	application	series number 2222	characteristic	page
ALUMINIUM ELECTROLYTIC CAPACITORS Miniature/small		014 021 030	low impedance; LV small dimensions; LV	41 79
	long-life, general, industrial	031 032 033 041	LV	109
		042 043 065	HV low leakage current	203 257
		117	LV; ultra miniature	339
Miniature/small				
	extra	108 118	acc. to CECC; LV 125 ^o C; LV	285 353
	long-life,	132	acc. to DIN 41257; LV	365
	industrial	133	acc. to DIN 41257; HV	365
Miniature/small		035	LV	153
	long-life,	035	LV	187
	general,	036	LV	171
	industrial	013	low leakage current; LV	
		116	long-life; LV	323
Miniature; surface mounted				
	general	085	LV	271
Large		050	0500 114	
	long-life,	050 051	acc. to CECC; LV small dimensions; LV	223 247
	industrial	052	acc. to CECC; HV	223
		053	small dimensions; HV	247
Large	long-life,			
	industrial,	114 115	screw terminal	299
	military	115		
SOLID ALUMINIUM CAPACITORS				
Miniature				
•	very long-life,	122	acc. to CECC;	407
	general, industrial	124	epoxy potted	491
Miniature/small	very	404		
	long-life,	121 123	acc. to CECC	385 435
	military,	125		511
	industrial			٠.,

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating								
T2a	Transmitting tubes for communications, glass types								
T2b	Transmitting tubes for communications, ceramic types								
Т3	Klystrons								
T4	Magnetrons for microw	ave heating							
T5	Cathode-ray tubes Instrument tubes, moni	itor and display tubes, C.R. tubes for special applications							
Т6	Geiger-Müller tubes								
T7	Gas-filled tubes (will no	ot be reprinted)							
Т8	Colour display systems Colour TV picture tube	es, colour data graphic display tube assemblies, deflection units							
Т9	Photo and electron mul	Itipliers							
T10	Plumbicon camera tube	es and accessories							
T11	Microwave semiconduc	tors and components							
T12	Vidicon and Newvicon	camera tubes							
T13	Image intensifiers								
T14	Infrared detectors	Data collations on these subjects are available now. Data Handbooks will be published in 1985.							
T15	Dry reed switches								

Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

Monochrome tubes and deflection units

T16

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

Surface acoustic wave devices

S12

S1	$\label{eq:continuous} \textbf{Diodes} \\ \textbf{Small-signal germanium diodes, small-signal silicon diodes, voltage regulator diodes (< 1,5 W), \\ \textbf{voltage reference diodes, tuner diodes, rectifier diodes} \\ \\ \\ \\ \textbf{voltage resultator diodes} \\ \\ \textbf{voltage resultator diodes} \\ \\ \textbf{voltage resultator diodes} \\ voltage$
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8	Devices for optoelectronics Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices.
S9	Power MOS transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXIST	ING SERIES	Superseded by:
IC1	Bipolar ICs for radio and audio equipment	IC01N
IC2	Bipolar ICs for video equipment	IC02Na and IC02Nb
IC3	ICs for digital systems in radio, audio and video equipment	IC01N, IC02Na and IC02Nb
IC4	Digital integrated circuits CMOS HE4000B family	
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX family), dedicated of	IC08N lesigns
IC6	Professional analogue integrated circuits	
IC7	Signetics bipolar memories	
IC8	Signetics analogue circuits	IC11N
IC9	Signetics TTL logic	IC09N and IC15N
IC10	Signetics Integrated Fuse Logic (IFL)	IC13N
IC11	Microprocessors, microcomputers and peripheral circuitry	IC14N

NEW SER	IES	
IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
IC02Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)
IC02Nb	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)
IC03N	Integrated circuits for telephony	(published 1985)
IC04N	HE4000B logic family CMOS	
IC05N	HE4000B logic family — uncased ICs CMOS	(published 1984)
IC06N	High-speed CMOS; PC54/74HC/HCT/HCU Logic family	(published 1985)
Suppleme to IC06N	nt High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1985)
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU — uncased ICs Logic family	
IC08N	ECL 10K and 100K logic families	(published 1984)
IC09N	TTL logic series	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Linear LSI	(published 1985)
IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS	
IC13N	Semi-custom Integrated Fuse Logic	(published 1985)
IC14N	Microprocessors, microcontrollers & peripherals Bipolar, MOS	(published 1985)
IC15N	FAST TTL logic series	(published 1984)
Note		
Books ava	ilable in the new series are shown with their date of publication.	

October 1985

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

Permanent magnet materials

Assemblies for industrial use

Direct current motors

Piezoelectric ceramics

Stepping motors and associated electronics

Wire-wound components for TVs and monitors

HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices

Programmable controller modules

C1

	PLC modules, PC20 modules
C2	Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
С3	Loudspeakers
C4	Ferroxcube potcores, square cores and cross cores
C 5	Ferroxcube for power, audio/video and accelerators
C6	Synchronous motors and gearboxes
C7	Variable capacitors
C8	Variable mains transformers
C9	Piezoelectric quartz devices
C10	Connectors
C11	Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)
C12	Potentiometers, encoders and switches
C13	Fixed resistors
C14	Electrolytic and solid capacitors
C15	Ceramic capacitors

C16

C17

C18

C19

C20

C21*

C22

Film capacitors

^{*} Will be issued in 1985.

SELECTION GUIDE

SELECTION GUIDE

ALUMINIUM ELECTROLYTIC CAPACITORS

type	series number 2222	application	nominal capacitance μF	rated voltage (U _R) V	page
Miniature/small	014	long-life, general, industrial; low impe- dance for s.m.p.s.	1 to 10 000	6,3 to 100	41
Miniature/small	021	long-life, general, industrial; small dimensions	0,22 to 15 000	10 to 100	79
Miniature/small	030 031 032 033	long-life,	0,33 to 15 000	6,3 to 100	109
	041 042 043	industrial	1 to 220	160 to 385	203
Miniature	065	long-life, general, industrial; low leakage current	0,33 to 68	6,3 to 25	257
Ultra miniature	117	general	0,1 to 0,22	6,3 to 63	339
Small	108	extra long-life, industrial	2,2 to 2 200	6,3 to 100	285
Miniature/small	118	extra long-life industrial, military	1 to 15 000	6,3 to 200	353
Miniature/small	132 133	extra long-life, industrial DIN 41257	1 to 4 700	10 to 350	365

Selection guide

ELECTROLYTIC AND SOLID CAPACITORS

type	series number 2222	application	nominal capacitance μF	rated voltage (U _R) V	page		
Miniature/small							
	035	general	0,1 to 4 700	6,3 to 100	153		
Miniature/small							
	037	general	0,1 to 10 000	6,3 to 100	187		
Miniature							
	036	long-life, general, industrial	0,15 to 470	6,3 to 63	171		
Miniature							
	013	long-life, general, industrial; low leakage current	0,15 to 220	10 to 25	25		
Miniature							
	116	extra long-life, industrial	0,47 to 470	6,3 to 50	323		
Miniature; surface mounted							
	085	general	0,1 to 22	6,3 to 63	271		

ALUMINIUM ELECTROLYTIC CAPACITORS (continued)

type		series number 2222	application	nominal capacitance μF	rated voltage (U _R) V	page
Large		114 115	long-life industrial	150 to 220 000	10 to 385	299
Large		050 052	long-life, industrial	47 to 68 000	10 to 385	223
Large		051 053	long-life, industrial; small dimensions	68 to 150 000	10 to 385	247
SOLID A	ALUMINIUM CAPACITORS					
Miniatur	re; resin dipped	122	very long-life, general, industrial	0,1 to 68	6,3 to 40	407
Miniatur	re; epoxy potted	124	extra long-life, general, industrial	0,1 to 68	6,3 to 40	491
Small		121	very long-life, military, industrial	2,2 to 330	6,3 to 50	385
Small		123	very long-life, military, industrial	2,2 to 2 200	4 to 40	435
Miniatur	re	125	long-life military, industrial	0,22 to 68	4 to 35	511

INTRODUCTION

INTRODUCTION

1. GENERAL

Electrolytic and solid capacitors are most commonly used in such circuit functions as filtering, coupling, smoothing and by-passing, and for energy storage, or wherever there is a need for capacitive reactance.

These functions are often applied under specific circumstances and the requirements specified by users have grown steadily. The outcome has been a wide range of electrolytic and solid capacitor programmes to cover the different applications, for example:

General purpose

radio, television, and general/industrial applications.

Professional/industrial

long life and high reliability — telecommunications equipment, electronic

data processing.

high temperature - motor cars.

small size - hybrid circuits, paging systems.

low equivalent series resistance at high frequency — switched-mode power

supplies.

2. PRINCIPLES

The essential property of a capacitor is to store electrical charge. The amount of electrical charge (Q) in the capacitor (C) is proportional to the applied voltage (U). The relationship of these parameters is:

$$Q = C \cdot U$$

where Q = charge in coulombs (C)

C = capacitance in farads (F)

U = voltage in volts (V)

The value of capacitance is directly proportional to the (anode) surface area and inversely proportional to the thickness of the dielectric layer, thus:

$$C = \epsilon_r \cdot \epsilon_0 \cdot \frac{A}{d}$$
,

where ϵ_0 = absolute permittivity (8,85 x 10⁻¹² F/m)

 ϵ_r = relative dielectric constant (dimensionless)

A = surface area (m²)

d = thickness of dielectric (oxide) layer (m)

The dielectric layer consists of aluminium oxide (AI $_2O_3$) which is formed by an electrochemical oxidizing process of aluminium. This layer withstands extremely high electrical field strength. During the electrochemical forming process the dielectric layer is exposed to the physical limit of electrical field strength mentioned above. So the thickness of the layer is determined by a voltage UF, the so-called forming voltage. To avoid changing the thickness of the layer during normal use the operating voltage should always be lower than the forming voltage. For general purpose electrolytic capacitors the value of U_R/U_F is about 0,8 (U_R being the rated voltage). Types for professional and industrial applications are sometimes rated to 0,6. Solid capacitors are rated to approx. 0,25 due to various reasons.

The relative dielectric constant of Al_2O_3 is approx. 8 (dimensionless), its electrical field strength amounts to 7.10 8 V/m.

3. DESCRIPTION

The above-mentioned dielectric layer is electrically contacted on one side by its base metal (aluminium) and on the other side by a conductor, being an electrolyte in the case of an electrolytic capacitor and a solid semiconductor in the case of a solid capacitor. The metal contact electrode is called the anode. To obtain high capacitance values per unit volume the surface of the anode is artificially enlarged by etching processes.

Aluminium electrolytic capacitors

The containing electrode opposite to the anode is an ionic conductor in the case of an electrolytic capacitor. Because of this ionic conduction the potential of the anode should never be lower than the potential of the electrolyte: if the potential of the anode is lower than that of the electrolyte, positive hydrogen ions will move through the dielectric layer to the anode metal where they are discharged.

The hydrogen gas so formed blows up the dielectric layer, causing a high leakage current or even a short circuit. In the case of the anode being at a positive potential with respect to the electrolyte (this is the case of normal use) the oxidizing ions are driven towards the dielectric layer.

These oxidizing ions are not able to pass through the dielectric layer at field strengths lower than the physical limit (7.10⁸ V/m). In the case of a defect in the dielectric layer the limiting field strength might be reached even during normal use. In that case the oxidizing ions will pass through the defect to the anode metal where new oxide is formed, which repairs the defect.

It is necessary to make electrical contact to the electrolyte from outside. This is usually done by inserting an etched aluminium electrode into the electrolyte. This electrode, called the cathode, is always covered by a relatively thin oxide layer. To avoid direct mechanical contact between the oxide layers of cathode and anode (which would cause mechanical damage of the dielectric) a soft spacer of porous paper is used which also serves as a sponge for the electrolyte.

The total thickness of the system described is only a fraction of a millimetre. Therefore, during manufacture, long strips of the described system are wound into cylindrical bodies and encased. Figure 1 shows a cross-section of a typical design.

Solid aluminium capacitors

In a solid capacitor the contacting electrode opposite to the anode is formed by manganese dioxide (MnO₂), a semiconductor, and called the cathode. Therefore, in principle, the potential of the anode with respect to the cathode is allowed to be positive as well as negative. However, due to the absence of oxidizing ions, no self-repairing effect of the dielectric layer by the leakage current is obtained. In practice it is advisable to maintain the anode potential positive with respect to the cathode, because no solid capacitor is absolutely free of moisture, so ionic reactions could take place.

Via the system manganese dioxide — aluminium foil — case — tinned leads, the cathode is electrically connected with the outside in our 121 and 123 series of solid aluminium capacitors (Fig. 1). A glass fibre spacer is used to avoid direct mechanical contact between anode layer and the aluminium contact foil.

In the 122 series of solid aluminium capacitors the cathode is connected to the outside via the system manganese dioxide — graphite — silver — tin solder — tinned leads (Fig. 2).

NOTE:

Standard MIL-C-62 for dry electrolytics is based on a now obsolete construction and does not apply to solid aluminium capacitors.

ALUMINIUM ELECTROLYTIC TYPES

SOLID ALUMINIUM TYPES (121/123 types)

Fig. 1.

811216-13-01

Fig. 2 Solid aluminium type 2222 122.

4. ELECTRICAL IMPEDANCE

The electrical impedance Z of a capacitor in its reference plane (being the connecting points on a printed-wiring board) consists of a real part R, and an imaginary part j. X, thus:

$$Z = R + j$$
. X and $\tan \delta = \frac{R}{X}$

where R = the equivalent series resistance (ESR) (Ω)

i. X = the imaginary part of the series impedance (Ω)

= the complex series impedance (Ω)

 $\tan \delta = dissipation factor (dimensionless)$

The actual values of R and X depend upon two parameters: the frequency f and the temperature T. It is usual to express X in terms of C_s (equivalent series capacitance) and ω :

$$X = -\frac{1}{\omega C_s}$$
 $\omega = 2. \pi$. f, f in (Hz)

At high frequencies (> 100 kHz) an inductive part contributes to the impedance, changing X into $X = i\omega L$, where L = inductance in H.

Fig. 3 Typical capacitance as a function of frequency. Co = capacitance at 25 °C, 100 Hz.

Fig. 4 Typical ESR as a function of frequency; ESR₀ = ESR at 25 °C, 100 Hz.

---- Alumium electrolytic capacitors;

Solid aluminium capacitors.

Fig. 5 Typical capacitance as a function of ambient temperature; C_0 = capacitance at 25 o C, 100 Hz.

Fig. 6 Typical ESR as a function of ambient temperature. ESR $_0$ = ESR at 100 Hz, at 25 °C.

5. RIPPLE CURRENT

In various applications a considerable amount of ripple current (Ir) passes through the capacitor. Due to the equivalent series resistance (R) power (P) is dissipated in the device: P (watt) = $I_r^2 \cdot R$.

The power causes an increase in temperature of the capacitor core. In the data sheets the maximum

permissible ripple current ($I_{r\,max}$) is generally specified in such a way that it causes an equilibrium temperature difference (ΔT) between core and upper category temperature of 10 °C. A ripple current I_a different from $I_{r\,max}$ causes a temperature difference $\Delta T = \left(\frac{I_a}{I_{r\,max}}\right)^2 \times 10$ °C, so the actual core

temperature $T_{core} = T_{amb} + \left(\frac{I_a}{I_{core}}\right)^2 \times 10^{\circ}$ C. Temperature equilibrium is reached when the power

(P) passes through the case surface into the ambient. From this it is clear, that the maximum permissible ripple current depends on the maximum permissible temperature of the capacitor, equivalent series resistance, case size and ambient temperature (Tamb).

In the data sheets the maximum permissible ripple current is specified under certain conditions,

$$I_r = \sqrt{\frac{P}{R}} = \sqrt{\frac{\alpha \cdot S (T_c - T_{amb})}{R}}$$

where I_r = ripple current (A); R = equivalent series resistance (Ω); P = heat dissipation (W); α = heat transfer coefficient (W/m² °C); S = heat transfer surface area (m²); T_C = temperature of case surface (°C); Tamb = ambient temperature (°C).

6. D.C. LEAKAGE CURRENT

In normal use a small amount of direct current passes through the capacitor. This current is called the d.c. leakage current (II) and depends on the applied voltage and temperature. The dependency of II/In (In being the d.c. leakage current at voltage $U_{
m R}$ and 25 $^{
m OC}$) on temperature, is shown in Fig. 7 for an aluminium electrolytic capacitor and a solid aluminium capacitor.

The dependency of I_I/I_O as a function of U/U_R is given in Fig. 8 for an aluminium electrolytic capacitor and a solid aluminium capacitor, U being the working voltage.

Fig. 7 Typical d.c. leakage current as a function of temperature. In = d.c. leakage current during continuous operation at T_{amb} = 25 °C.

Fig. 8 Typical d.c. leakage current as a function of U/UB. In = d.c. leakage current at UB at a discrete constant temperature within category temperature range, U is working voltage.

7. LIFE TIME

Aluminium electrolytic capacitors

The phenomena which determine the life time of an aluminium electrolytic capacitor are, among others, changes of the following parameters exceeding the specified limits:

- capacitance
- dissipation factor
- impedance
- d.c. leakage current

Most of them are directly or indirectly caused by a failure mechanism occurring in the electrolyte (drying out, chemical reactions).

Two types of electrolyte can be distinguished:

- a. Glycol-electrolyte which is somewhat aggressive to the dielectric layer at higher temperatures. This liquid has a relatively high specific resistance and high temperature coefficient.
- b. modern electrolytes (based upon DiMethyl Acetamide) require very good sealing (due to high diffusiveness of the volatile solvent). This liquid has a relatively low specific resistance and a low temperature coefficient, and can generally be used over a wider temperature range than the glycol type of electrolyte.

In general the life time of an aluminium electrolytic capacitor can be increased by a factor of 2 when the temperature is dropped by 10 °C.

By using the capacitor at a voltage lower than the rated voltage, the d.c. leakage current decreases, which means that the process of forming hydrogen gas at the cathode takes place at a lower rate. This also improves the life time of the capacitor.

The typical life time at U_R , as given in the data sheets, is the time during which the number of inoperatives is $\leq 1\%$.

Criteria for an inoperative are: $\Delta C/C \ge 50\%$:

impedance \geq 3 x stated limit; tan δ (and ESR) \geq 3 x stated limit; d.c. leakage current \geq 3 x stated limit.

Solid aluminium capacitors

The end of life is determined by gradual degradation of the dielectric oxide layer, resulting in increase of leakage current. The life time can be increased by derating the voltage and, to a less extent, the temperature.

Due to the fact that no electrolyte is used in solid aluminium capacitors the associated failure mechanisms do not occur.

NOTE

Some solvents for cleaning printed-circuit boards after soldering may adversely affect electrolytic capacitors. Please contact local sales office for suitable cleaning agents.

8. RELIABILITY

In life testing, reliability can be determined by means of a failure rate (F.R.), which is expressed as:

Failure rate (F.R.) =
$$\frac{\text{number of failures during test}}{\text{number of components tested x test duration}}$$

Two types of failures can be found:

- catastrophic failures: short circuits, open circuits.
- degradation failures: parameter drifts outside the specification limits.

With aluminium electrolytic capacitors degradation failures mostly occur, due to factors like:

- agressiveness of the electrolyte.
- diffusion of the electrolyte.
- material impurities and other accidents of production.

The failure rate of solid aluminium and tantalum capacitors is determined by short circuits or open circuits, due to breakdown of the dielectric layer. The electron current does not constitute a repair action in this oxide layer.

The failure rate in solid tantalum capacitors is mostly influenced by a field-crystallization process. The F.R. can be improved by lowering the temperature and applied voltage or placing a series resistor in the circuitry.

The phenomenon of the formation of a low resistance aluminium oxide does not exist in solid aluminium capacitors, therefore they have greater reliability than solid tantalum types. Under the most severe conditions (maximum category temperature, rated voltage), the catastrophic failure rates (with a 60% confidence level) are:

- electrolytic capacitors 10⁻⁶/h,
- solid aluminium capacitors 10⁻⁷/h.

Analysis of failure in the field (under normal operating conditions) shows a far better F.R.: $\approx 10^{-9}/h$ for solid aluminium capacitors.

9 TESTS AND REQUIREMENTS

The description of tests and requirements, given in the following tables, is valid for the complete range of aluminium electrolytic capacitors and solid aluminium capacitors. Specific tests for a certain type of capacitor are not included in these tables; those tests are given in the data sheet of the relevant type.

Aluminium electrolytic capácitors

In the description of the procedure and the requirements of the tests, in some case distinction has to be made for the different types of aluminium electrolytic capacitors with respect to their size or with respect to their application fields. In the table this distinction is indicated in the columns 'type' with the indication for size:

m for miniature types,
s for small types,

I for large types,

It for large types with screw terminals,

- or with the indication for application fields:

 1 for long-life grade types,
- 2 for general-purpose grade types.

Tb

(method 1A)

If no indication is given in these columns, reference is made to all types.

IEC 384-4 IEC 68-2 test name of test sub clause method			procedure (quick reference)			requirements	
		type description		type	description		
	Ua	Tensile strength s		Loading force 10 N for 10 s.	m s	No visible damage.	
		Of terminations		Loading force 20 N for 10 s.	1		
	Ub	Bending of terminations	m s	Loading force 5 N, two consecutive bends.	m s	No visible damage	
	Uc	Torsion of terminations	m s	Two successive rotations of 180° in opposite direction, 5 s per rotation.	m s	No visible damage.	
	Ud	Torque on nut (stud)	lt	Torque of 1,76 Nm gradually applied.	lt ·	No visible damage.	
			1				

Solder bath: 260 °C, 10 s, for capacitors

with printed-wiring pins.

ober 1	9.8.2	Tb (method 1B)	soldering heat	s	Solder bath 350 °C, 3,5 s for capacitors with solder leads or tags.
1979	9.8.1	Та	Solderability	m s l	Solder bath: 235 °C, 2 s for capacitors with printed-wiring pins, 270 °C, 2 s for capacitors with solder leads or tags, immersed up to 2 mm from the body

m

AND SOLID
CAPACITORS

No visible damage, marking legible,

No visible damage, marking legible,

 $\Delta C/C \leq 5\%$.

good tinning.

m

S

m

for s

IEC 384-4		682 est	name of test	proce	dure (quick reference)	requir	ements
sub clause	method		name or test	type	description	type	description
9.9	Na Rapid change of temperature		1 .		5 cycles of 3 h at upper and lower category temperature.		No visible damage, no leakage of electrolyte.
9.10	Fc		Vibration	1	10 to 500 Hz, 0,75 mm or 10g (whichever is less), 2 directions, 3 h per direction.		No visible damage, no leakage of electrolyte, marking legible;
						$\Delta C/C \le 5\%$ with respect to initial measurement.	
9.11	Eb Bu		Bump	1	40g, 2 directions, 4000 bumps total.		No visible damage, no leakage of
				2	40g, 2 directions, 1000 bumps total.		electrolyte; $\Delta C/C \le 5\%$ with respect to initial measurement.
		Ва	Dry heat		16 h at upper category temperature, no voltage applied.		No visible damage, no leakage of electrolyte.
		D	Damp heat, cyclic		1 cycle of 24 h at 55 ± 2 °C, R.H. 95 to 100%, no voltage applied.		
	nence	Aa	Cold		2 h at lower category temperature, no voltage applied.		No visible damage, no leakage of electrolyte.
9.12.1	imatic		Low air pressure		5 min. at 15 to 35 °C, at atmospheric pressure of 85 mbar, last minute U _R applied.		No visible damage, no evidence of breakdown or flashover.
			Damp heat, cyclic		5 cycles of 24 h at 55 \pm 2 °C, R.H. 95 to 100%, no voltage applied.		
9.12.2		Qc	Sealing		1 min. in water at upper category temperature + 5 °C.		No continuous chain of bubbles.
					Final measurement		No visible damage, no leakage of electrolyte, marking legible; d.c. leaks current \leq stated limit; tan $\delta \leq$ 1,2 x stated limit; $\Delta C/C \leq$ 10%.

procedure (quick reference)

sub clause method description description type type Ca 56 days at 40 °C, R.H. 90 to 95%: Damp heat, No visible damage, no leakage of steady state no voltage applied. electrolyte, marking legible; d.c. leakage current \leq stated limit, tan $\delta \leq 1.2 \text{ x}$ stated limit, insulation resistance > 100 M Ω , no breakdown or flashover below 1000 V. 1 $\Delta C/C \leq 10\%$. $\Delta C/C \leq 20\%$. No visible damage, no leakage of electrolyte, marking legible; d.c. leakage current ≤ stated limit, insulation resistance $> 100 M\Omega$, no breakdown

requirements

ELECTROLYTIC AND SOLID CAPACITORS

December 1981

IEC 384-4 IEC 68-2

9.13

test

name of test

IEC 3844	IEC 68-2	name of test	procedure (quick reference)		requirements	
sub clause	method	Tiame or test	type	description	type	description
9.16		Reverse voltage		1 V in reverse polarity followed by U _R in forward polarity, both for 125 h at upper category temperature.		D.C. leakage current \leqslant stated limit, tan $\delta \leqslant$ stated limit, $\Delta C/C \leqslant$ 10%.
9.17	_	Pressure relief	l It	D.C. voltage applied in reverse direction producing a current of 1 to 10 A.	l lt	Pressure relief opens prior to danger of explosion or fire.
9.18	На	Storage at upper category temperature		96 ± 4 h at upper category temperature.		No visible damage, no leakage of electrolyte; d.c. leakage current $\leq 2 \times 1$ stated limit, tan $\delta \leq 1,2 \times 1$ stated limit; $\Delta C/C \leq 10\%$.
9.19	Hb	Storage at low temperature		72 h at a temperature of 15 °C below the lower category temperature.		No visible damage, no leakage of electrolyte; d.c. leakage current \leq state limit, $\tan \delta \leq$ stated limit; $\Delta C/C \leq 10\%$
9.20		Characteristics at high and low temperature		Step 1: reference measurement at 20 ^{o}C of capacitance, impedance at 100 Hz and tan $\delta.$		
				Step 2: measurement at lower category temperature.		Impedance at 100 Hz \leq 7 x value of step 1 for U _R \leq 6,3 V or U _R $>$ 160 V, \leq 5 x value of step 1 for 6,3 $<$ U _R \leq 16 V, \leq 4 x value of step 1 for 16 $<$ U _R \leq 160 V.
				Step 3: Measurement at upper category temperature.		D.C. leakage current \leq 5 x stated limit at 85 °C, \leq 3 x stated limit at 70 °C.
9.21		Charge and discharge		For $U_R \le 160 \text{ V}$: 10^6 cycles of 0,5 s charge to U_R (RC = 0,1 s) and 0,5 s		No visible damage, no leakage of electrolyte, ΔC/C ≤ 10%.

ELECTROLYTIC AND SOLID CAPACITORS charge to U_R (RC = 0,1 s) and 0,5 s discharge (RC = 0,1 s). For $U_R > 160 \text{ V}$: under consideration.

Solid aluminium capacitors

In the description of the procedure and the requirements of the tests, in some cases distinction has to be made for the types 2222 121, 2222 122 and 2222 123. In the table this distinction is indicated by 121/123 or 122 in the columns 'type'. If no indication is given in these columns reference is made to all types.

IEC 384-4			proced	dure (quick reference)	requirements		
sub clause	test method	name of test	type	description	type	description	
_	Ua	Tensile strength of terminations		Loading force 10 N for 10 s.		No visible damage; no rupture of wires	
	Ub	Bending of terminations		Loading force 5 N, two consecutive bends.		No visible damage; no rupture of wires	
	Uc	Torsion of terminations	121/ 123	Two successive rotations of 180° in opposite direction, 5 s per rotation.	121/ 123	No visible damage.	
9.8.2	Tb (method 1A)	Resistance to	122	Solder bath: 260 °C, 10 s, for capacitors with printed-wiring pins.		No visible damage, marking legible,	
	Tb (method 1B)	soldering heat	121/ 123	Solder bath: 350 °C, 3,5 s, for capacitors with solder leads.		ΔC/C ≤ 5%.	
9.8.1	Та	Ta Solderability		Solder bath: 235 °C, 2 s for capacitors with printed-wiring pins, immersed up to 2 mm from the body.		No visible damage, marking legible, good tinning.	
				Solder bath: 270 °C, 2 s for capacitors with solder leads, immersed up to 2 mm from the body.			
9.9	Na	Rapid change of temperature		5 cycles of 30 min at upper and lower category temperature.		D.C. leakage current \leq stated limit,* tan $\delta \leq$ stated limit, $\Delta C/C \leq 10\%$	
9.10	Fc	Vibration		10 to 500 Hz, 0,75 mm or 10g (whichever is less), 2 directions, 3 h per direction.		No visible damage, marking legible; $\Delta C/C \leqslant 5\%$ with respect to initial measurement.	

^{*} For capacitors 2222 122, 15 s value of d.c. leakage current measured after 5 min.

EC 384-4		68–2	name of test	proced	dure (quick reference)	requir	ements
sub clause	test se method				description	type	description
9.11	Eb		Bump		40g, 2 directions, 4000 bumps total.		No visible damage; $\Delta C/C \le 5\%$ with respect to initial measurement.
		Ва	Dry heat		16 h upper category temperature, no voltage applied.		No visible damage.
		D	Damp heat, cyclic		1 cycle of 24 h at 55 \pm 2 °C, R.H. 95 to 100%, no voltage applied.		
		Aa	Cold		2 h at lower category temperature, no voltage applied.		No visible damage.
9.12.1	Climatic sequence	М	Low air pressure		5 min. at 15 to 35 °C, at atmospheric pressure of 85 mbar, last minute U _R applied.	-	No visible damage.
E	atic se	D	Damp heat, cyclic		5 cycles of 24 h at 55 \pm 2 °C, R.H. 95 to 100%, no voltage applied.		No visible damage.
	Clin				Final measurement.		No visible damage, marking legible; d.c. lekage current \leq stated limit, * tan $\delta \leq$ 1,2 x stated limit, insulation resistance $>$ 100 M Ω , no breakdown or flashover below 1000 V.
·						121/ 123	ΔC/C ≤ 5%.
						122	$\Delta C/C \le 10\%$.
9.13	Ca		Damp heat, steady state		56 days at 40 °C, R.H. 90 to 95%; no voltage applied.		No visible damage, marking legible; d.c. leakage current \leq stated limit; tan $\delta \leq$ 1,2 x stated limit, insulation resistance $>$ 100 M Ω , no breakdown or flashover below 1000 V.
				4 (1) 4 (1)		121/ 123	ΔC/C ≤ 5%.
4.41	1					122	ΔC/C ≤ 15%.

^{*} For capacitors 2222 122, 15 s value of d.c. leakage current measured after 5 min.

IEC 384-4	IEC 68-2	name of test	procedure (quick reference)			ements
sub clause	method	name or test	type description		type	description
9.14	_	Endurance	122/ 123	2000 h at 125 °C, UR** applied.		No visible damage, marking legible; d.c. leakage current ≤ stated limit,
			121	5000 h at 125 °C, U _R ▲ applied.		tan $\delta \le 1,2$ x stated limit, insulation resistance $> 100 \text{ M}\Omega$, no breakdown
				5000 h at 85 °C, U _R applied.		or flashover below 1000 V, $\Delta C/C \leq 109$
9.15	_	Surge		From source of 1,15 x U _R at 85 °C or 1,15 x derated voltage at 125 °C,		No visible damage; d.c. leakage current \leq stated limit, tan $\delta \leq$ stated limit.
				1000 cycles of 30 s on, 330 s off.	121/ 123	$\Delta C/C \leq 5\%$.
					122	ΔC/C ≤ 10%.
9.16	_	Reverse voltage		0,30 x U_R in reverse polarity at 85 °C for 125 h, followed by U_R in forward polarity at 85 °C for 125 h.		D.C. leakage current \leq stated limit, tan $\delta \leq$ stated limit, $\Delta C/C \leq$ 10%.
			121/ 123	0,15 x U _R [♠] in reverse polarity at 125 °C for 125 h, followed by U _R [♠] in forward polarity at 125 °C for 125 h.		
			122	$0.30 \times U_R^{**}$ in reverse polarity at 125 °C for 125 h, followed by U_R^{**} in forward polarity at 125 °C for 125 h.		
9.18	На	Storage at upper category tempera-		96 ± 4 h at upper category temperature.		No visible damage; d.c. leakage current \leq stated limit,* tan $\delta \leq$ stated limit.
		ture			121/ 123	ΔC/C ≤ 5%.
					122	ΔC/C ≤ 10%.

^{*} For capacitors 2222 122, 15 s value of d.c. leakage current measured after 5 min.

** 25 V for 40 V versions (capacitors 2222 122).

4 0 V for 50 V versions.

IEC 384-4		name of test	procedure (quick reference)			ements
sub clause	test method			type description		description
		Long storage (≥ 1 year)		At ambient temperature.		D.C. leakage current ≤ stated limit*
9.20		Characteristics at high and low temperature		Step 1: reference measurement at 20 $^{\rm OC}$ of capacitance, impedance at 100 Hz and tan $\delta.$		
				Step 2: measurement at lower category, 2h		Tan $\delta \le 2$ x stated limit, impedance ratio ≤ 2 , $\Delta C/C \le 20\%$.
				Step 3: measurement at 85°C, 16 h		D.C. leakage current \leq 10 x stated limit, tan $\delta \leq$ stated limit, $\Delta C/C \leq$ 20%.
9.21		Charge and discharge		10^6 cycles of 0,5 s charge to U $_{\hbox{\scriptsize R}}$ and 0,5 s discharge.		No visible damage, $\Delta C/C \le 5\%$.

^{*} For capacitors 2222 122, 15 s value of d.c. leakage current measured after 1 min.

ALUMINIUM ELECTROLYTIC CAPACITORS

ALUMINIUM ELECTROLYTIC CAPACITORS

- Low-leakage version of 2222 036 series
- Miniature type
- Single ended
- Long life
- General and industrial applications
- Alternative for tantalum capacitors

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

Tolerance on nominal capacitance

Rated voltage range, UR (R5 series)

Leakage current after 2 min

Category temperature range

Endurance test

Shelf life at 0 V

Basic specification

Climatic category

IEC68

DIN 40040

0,15 to 220 μF -20 to + 20%* 10 to 25 V

0,002 CU or 0,7 μA

-55 to +85 °C

2000 h at 85 °C

500 h at 85 °C

IEC 384-4, long-life grade DIN 41332/DIN 41259

55/085/56

FPF

Selection chart for C_{nom}-U_R and relevant case sizes.

C _{nom}		U _R (V)				
μF	10	16	25			
0,15			11			
0,22			11			
0,33			11			
0,47			11			
0,68			11			
1			11			
1,5 2,2			11			
2,2			11			
3,3			11			
4,7			11			
6,8			11			
10			11			
15			11			
22			11			
33		11	13			
47	11		13			
68	11		13			
100		13				
150	13					
220	13					

case size	dimensions (mm)			
11	Ø 5 x 11			
13	Ø 8,2 x 11			
	ψ 0,2 X 11			

^{* ± 10%} to special order.

APPLICATION

These capacitors are suited for those applications where a low leakage current is required. In many cases they are a cost-effective substitute for tantalum capacitors.

The capacitors are mainly used for high impedance coupling and decoupling purposes in consumer applications, such as audio and television circuits, and in industrial applications, such as measuring and regulating circuits.

Other applications are in timing and delay circuits with large time constants. The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitor has etched and oxidised aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitor is in an all-insulated aluminium case.

MECHANICAL DATA

Dimensions in mm

The capacitor is available in 6 styles:

style 1: long leads; in boxes;

style 2: straight short leads; non preferred, in boxes;

style 3: bent short leads (only case size 11); non preferred, in boxes;

style 4: long leads; on tape on reel, positive leading;

style 5: long leads; on tape in ammunition pack:

style 6: long leads; on tape on reel, negative leading.

Fig. 1 Style 1; see Table 1 for dimensions d, D, L and P.

Fig. 2 Style 2; non preferred, see Table 1 for dimensions d, D and L.

Fig. 3 Style 3; case size 11 only; non preferred, see Table 1 for dimensions d, D and L.

Table 1

case		mass				
size	d	D _{max}	L _{max}	Р	approx. g	
11	0,5*	5,5	12,0	2,5	0,4	
13	0,6	8,7	12,0	5,0	1,1	

^{* 0,6} mm under consideration.

-- direction of tape transport (positive leading)

Fig. 4 Styles 4, 5 and 6; see Table 2 for dimensions. For style 6 the tape transport is in opposite direction (negative leading).

Table 2

	symbol	case	case size		
	symbol	11	13	tol.	
Body diameter	D	5,5	8,7	max.	
Body height	Α	12,0	12,0	max.	
Lead-wire diameter	d	0,5*	0,6	± 0,05	
Pitch of component	P	12,7	12,7	± 1,0	
Feed-hole pitch	Po	12,7	12,7	± 0,2**	
Hole centre to lead	P ₁	3,85	3,85	± 0,5	
Feed hole centre to component centre	P ₂	6,35	6,35	± 0,7	
Lead-to-lead distance	F	5,0	5,0	+ 0,6/-0	
Component alignment	Δ h	0	0	± 1,0	
Tape width	W	18,0	18,0	± 0,5	
Hold-down tape width	w _o	6,0	6,0	min.	
Hole position	W ₁	9,0	9,0	± 0,5	
Hold-down tape position	W ₂	2,5	2,5	max.	
Height of component from tape centre	H	18,0	18,0	+1,5/0	
Lead-wire clinch height	Ho	16,0	_	± 0,5	
Component height	H ₁	32,0	32,0	max.	
Feed-hole diameter	D ₀	4,0	4,0	± 0,2	
Total tape thickness	t	0,9	0,9	max.	

^{* 0,6} mm under consideration.

^{**} Cumulative pitch error: ± 1 mm/20 pitches.

Marking

The capacitors are marked as follows:

on the top

- nominal capacitance;
- code letter for tolerance on nominal capacitance, according to IEC62;
- rated voltage:
- polarity identification.

on the circumference

- name of manufacturer;
- group number (013);
- code letter of manufacturer;
- date code (year and month) according to IEC 62.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled; caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 3 apply at an ambient temperature of 20 to $25\,^{\circ}$ C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

UR	nom.	max. r.m.s.	max. d.c. leakage	max.	case		Ca	talogue nu	ımber 2222 (nber 2222 013 followed by			
V	cap. μF	ripple current at T _{amb} = 85 °C mA	current at U _R after 2 min	tan δ	size*	Company Commany							
						U			on reel**	in ammopack	on reel ≜		
						style 1	style 2	style 3	style 4	style 5	style 6		
10	47	55	1,0	0,16	11	54479	84479	64479	24479	34479	44479		
	68	70	1,4	0,16	11	54689	84689	64689	24689	34689	44689		
	150	130	3,0	0,16	13	54151	64151		24151	34151	44151		
	220	160	4,4	0,16	13	54221	64221		24221	34221	44221		
16	33	50	1,1	0,13	11	55339	85339	65339	25339	35339	45339		
	100	120	3,2	0,13	13	55101	65101		25101	35101	45101		
25	0,15	5,0	0,7	0,08	11	56157	86157	66157	26157	36157	46157		
	0,22	6,5	0,7	0,06	11	56227	86227	66227	26227	36227	46227		
	0,33	8,0	0,7	0,06	11	56337	86337	66337	26337	36337	46337		
	0,47	9,5	0,7	0,06	11	56477	86477	66477	26477	36477	46477		
	0,68	11	0,7	0,06	11	56687	86687	66687	26687	36687	46687		
	1,0	13,5	0,7	0,06	11	56108	86108	66108	26108	36108	46108		
	1,5	16,5	0,7	0,06	11	56158	86158	66158	26158	36158	46158		
	2,2	20	0,7	0,06	11	56228	86228	66228	26228	36228	46228		
	3,3	25	0,7	0,06	11	56338	86338	66338	26338	36338	46338		
	4,7	29,5	0,7	0,06	11	56478	86478	66478	26478	36478	46478		
	6,8	36	0,7	0,06	11	56688	86688	66688	26688	36688	46688		

0,7

0,8

1,1

1,7

2,4

0,06

0,08

0,08

0,06

0,08

0,08

June 1985

^{3,4} Case size 11: ϕ 5 mm x 11 mm; case size 13: ϕ 8,2 mm x 11 mm (nominal dimensions).

Positive leading.

Negative leading.

Capacitance

Nominal capacitance at 100 Hz and Tamb = 20 °C

see Table 3

Tolerance on nominal capacitance at 100 Hz

_{7Z80360} = 20 to + 20%

Fig. 5 Typical multiplier of capacitance as a function of ambient temperature; C₀ = capacitance at 20 °C, 100 Hz.

Curve 1 = 25 V; 0,15 to 2,2 μ F;

curve 3 = 25 V, 10 to 68 μ F;

curve $2 = 25 \text{ V}, 3,3 \text{ to } 6,8 \,\mu\text{F};$

curve 4 = 10 V/16 V. 7Z80361.1

C₀ = capacitance at 20 °C, 100 Hz. Curve 1 = 25 V, 0,15 to 2,2 μ F;

curve $4 = 25 \text{ V}, 22 \text{ to } 68 \mu\text{F};$

curve 2 = 25 V, 3,3 to 6,8 μ F;

curve 5 = 16 V;

curve 3 = 25 V, $10/15 \mu F$;

curve 6 = 10 V.

Voltage

Max. permissible voltage at \leq 95 °C (core temperature \triangleq)

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

(a) max. (d.c. + peak a.c.) voltage

(b) max. peak a.c. voltage without d.c. voltage applied

(c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

1,6 x U_R

1,6 x U_R

2 V between 1,6 x U_R and -2 V

1,6 x U_R

2 V

Ripple current **

Maximum permissible r.m.s, ripple current at 100 Hz and $T_{amb} = 85 \text{ }^{o}\text{C}$

Fig. 7 Typical multiplier of ripple current as a function of ambient temperature; $I_{\rm CO}$ = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- * Specified ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Specified ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 8 Typical multiplier of ripple current as a function of frequency;

 I_{r0} = ripple current at 85 °C, 100 Hz.

Curve 1 = 25 V, 0,15 to 2,2 μ F; curve 3 = 25 V, 10 to 68 μ F;

curve 2 = 25 V, 3,3 to 6,8 μ F; curve 4 = 10 V, 16 V.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents. The following requirements must then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leq I_{r \text{ max}^{2}}$$

I_{r max} = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0}$ = multiplying factor at a same frequency.

Charge and discharge current

There is no limit on the charge or discharge rate. If the capacitors are charged and discharged continuously several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and requirements.)

D.C. leakage current

Maximum d.c. leakage current 2 min after application

see Table 3 (0,002 CU or 0,7 μ A, whichever is greater)

If owing to prolonged storage and/or storage at an excessive temperature (> 40 $^{\rm o}$ C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 3.

Fig. 9 Multiplier of d.c. leakage current as a function of ambient temperature; $I_0 = \text{d.c.}$ leakage current during continuous operation at 25 $^{\circ}\text{C}$ and U_R .

Fig. 10 Multiplier of d.c. leakage current as a function of U/U $_R$; I $_0$ = d.c. leakage current during continuous operation at 25 $^{\rm oC}$ and U $_R$.

Fig. 11 Multiplier of typical d.c. leakage current as a function of time; I₀ is d.c. leakage current value as specified in Table 3.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 o C, measured by a four-terminal circuit (Thomson circuit)

see Table 3

Fig. 12 Typical tan δ at 100 Hz as a function of ambient temperature.

Curve 1 = 10 V; curve 2 = 16 V;

curve 3 = 25 V, 22 to 68 μ F;

curve 4 = 25 V, $10/15 \mu F$;

curve 5 = 25 V, $3.3 \text{ to } 6.8 \mu\text{F}$; curve 6 = 25 V, $0.15 \text{ to } 2.2 \mu\text{F}$.

Fig. 13 Typical tan δ as a function of frequency at T_{amb} = 20 °C.

Curve 1 = 10 V; curve 4 = 25 V, $10/15 \mu F$;

curve 2 = 16 V; curve 5 = 25 V, 3,3 to 6,8 μ F;

curve 3 = 25 V, 22 to 68 μ F; curve 6 = 25 V, 0,15 to 2,2 μ F.

Equivalent series resistance (ESR)

ESR = $\tan \delta/\omega C$

Maximum tan δ and C at 100 Hz and T_{amb} = 25 °C

see Table 3

Equivalent series inductance (ESL)

Case size 11 Case size 13 typ. 13 nH typ. 16 nH

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C, -25 °C and -40 °C and 10 kHz, measured by a four-terminal circuit (Thomson circuit)

see Table 4

Maximum ratio between impedances at T_{amb} = -25 °C and + 20 °C at T_{amb} = -40 °C and + 20 °C, and at T_{amb} = -55 °C and + 20 °C, at 100 Hz measured by a four-terminal circuit (Thomson circuit)

Table 4

	T					Τ		
U_R	nom.	case	maximun	n impedanc	e at 10 kHz	maximum imp	edance ratio at l	J _R and 100 Hz
	cap.	size*	T _{amb} = 20 °C	T _{amb} = -25 °C	T _{amb} = -40 °C	Z at -25 °C Z at +20 °C	Z at -40 °C Z at +20 °C	Z at -55 °C Z at +20 °C
V	μF		Ω	Ω	Ω			·
10	47	11	2,8	11,9	31,9	2	3	5
10	68	11	1,9	8,2	22,1	2		5
	150	13	0,9	3,7	10,0	2	3 3 3	5
	220	13	0,6	2,6	6,8	2 2	3	5 5
40	İ	l					I	1
16	33	11	2,7	12,1	33,1	1,5	2 2	4
	100	13	0,9	4,0	11,0	1,5	l .	4
25	0,15	11	300	1070	3870	1,5	2 2 2 2 2 2 2 2 2 2 2 2	3
	0,22	11	205	727	2636	1,5	2	3 3 3 3 3
	0,33	11	136	485	1758	1,5	2	3
	0,47	11	96	340	1234	1,5	2	3
	0,68	11	66	235	853	1,5	2	3
	1,0	11	45	160	580	1,5	2	3
	1,5	11	30	107	387	1,5	2	3
	2,2	11	20,5	72,7	264	1,5	2	3
	3,3	11	13,6	48,5	176	1,5	2	3
	4,7	11	9,6	34,0	123	1,5	2	. 3
	6,8	11	6,6	23,5	85,3	1,5	2	3
	10	11	6,0	25,0	75	1,5	2	3
	15	11	4,0	16,7	50	1,5	2 2 2	3
	22	11	3,2	13,6	40,9	1,5		3 3 3 3 3 3 3 3 3 3
	33	13	1,4	4,9	17,6	1,5	2 2 2	3
	47	13	1,3	5,3	15,6	1,5	2	3
	68	13	1,0	4,4	13,2	1,5	2	3

^{*} Case size 11: ϕ 5 mm x 11 mm; case size 13: ϕ 8,2 mm x 11 mm (nominal dimensions).

Fig. 14 Typical impedance at 10 kHz as a function of ambient temperature, case size 11.

Fig. 15 Typical impedance at 10 kHz as a function of ambient temperature, case size 13.

Fig. 16 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 11.

Fig. 17 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 13.

OPERATIONAL DATA

Category temperature range	−55 to +85 °C
Typical life time	
at T _{amb} = 40 °C	70 000 h
at T _{amb} = 85 °C	3 000 h
at T _{amb} = 95 °C	1 500 h
at T _{amb} = 105 °C	750 h
Shelf life at 0 V and $T_{amb} = 85$ °C	500 h

PACKING

Capacitors of styles 1, 2 and 3 are supplied in boxes, those of styles 4,6 and 5 on tape on reel and in ammunition pack respectively. The numbers per box, per reel and per ammunition pack are given in Table 5.

Table 5

		number of capacitors								
case size	style 1 per box	style 2 per box	style 3 per box	styles 4 and 6 per reel (min.)	style 5 per ammunition pack					
11 13	1000 1000	1000 1000	1000 1000	1000 500	2000 1000					

Fig. 18 Capacitors (style 4) on tape on reel.

- 1 = capacitor
- 4 = flange
- 2 = tape
- 3 = paper
- 5 = cylinder

Fig. 19 Capacitors (style 5) on tape in ammunition pack.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition. After *endurance test*, 2000 h, 85 °C, the capacitors meet the following requirements:

 $\Delta C/C \leq \pm 15\%$;

tan $\delta \le 130\%$ of specified value;

d.c. leakage current ≤ specified value.

After shelf life test, 500 h, 85 $^{\circ}$ C, the capacitors meet the same requirements as after endurance test, except for leakage current: \leq 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 013 are miniature, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- · Axial leads and single ended
- Long life
- Low impedance, high ripple current
- For Switched Mode Power Supplies (SMPS)

QUICK REFERENCE DATA

Nominal capacitance range

(E6 series):

1 to 10 000 μF

Tolerance on nominal

capacitance:

-10 to +50%

Rated voltage range, UR

(R5 series):

6,3 to 100 V

Category temperature range: -55 to +85 °C

Endurance test at 85 °C:

2000 h

Shelf life at 0 V; 85 °C:

500 h

Basic specifications:

IEC 384-4, long-life grade

DIN 41316

DIN 41240

Climatic category

IEC 68:

55/085/56

DIN 40040:

FPF

case	nominal	
size	dimensions (mm)	
3	Ø 6 x 10	
5a	Ø 8 x 11	စ္
4	Ø 6,5 x 18	miniature
5	Ø 8 x 18	: <u>E</u>
6	Ø 10 x 18	Ē
7	Ø 10 x 25	
00	Ø 10 × 30	
01	Ø 12,5 x 30	•
02	Ø 15 x 30	small
03	Ø 18 × 30	ES
04	Ø 18 × 40	
05	Ø 21 x 40	

Selection chart for C_{nom}-U_R and relevant case sizes.

case sizes.										
Cnom			U	R (V)					
μF	6,3	10	16	25	40	63	100			
1 1,5 2,2 3,3 4,7						3 3 3 3 3	3			
6,8 10 15 22 33				3	3 3 4/5a	3 3 4/5a 4/5a 5				
47 68 100 150 220	3 4/5a	3 4/5a	3 4/5a 4/5a 5 5		4/5a 5 6 7 7/00	6 ! 7 .	7 01 03			
330 470 680 1 000 1 500	5	6 7 00 01	6 7 00 01 02	7 00 01 02 03	01 01 02 03 04	02 02 03 05 05	05			
2 200 3 300 4 700 6 800 10 000	01 02 03 04	01 02 03 04 05 05	02 03 04 05 05 05	03 04 05 05	04 05 05	US				

^{*} Case sizes 3 to 7 (miniature types) are still under development; information on these capacitors is derived from development samples, and does not necessarily imply that they will go into regular production.

APPLICATION

These capacitors with high CU-product per unit volume are designed for use in switched-mode power supplies (SMPS) or other applications where high ripple currents at high frequencies occur. Their low ESR, $\tan \delta$ and impedance values, even at high frequencies and low temperatures render them suitable for bypass and coupling applications in high-frequency equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in an aluminium case, which is insulated with a blue plastic sleeve.

The capacitors are available in 3 styles, all with soldered-copper leads.

Style 1: axial leads; all case sizes; case sizes 3 to 7 are supplied on bandoliers.

Style 2: single ended; with mounting ring with printed-wiring pins; especially for use in applications

with severe shocks and vibrations; case sizes 02 to 05.

Style 3: single ended; case sizes 3 to 7 and 00 to 02.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions d, D, L, I and P.

Table 1a

case					style 1			mass	
size	d	1	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	approx.	
3	0,6	*	6,0	10,0	6,3	10,5	15	0,70	
5a	0,6	*	8,0	11,0	8,5	11,5	15	1,1	
4	0,8	*	6,5	18,0	6,9	18,5	25	1,3	
5	0,8	*	8,0	18,0	8,5	18,5	25	1,7	
6	0,8	*	10,0	18,0	10,5	18,5	25	2,5	
7	0,8	*	10,0	25,0	10,5	25,0	30	3,3	
00	0,8	55 ± 1	10,0	30,0	10,5	30,5	35,0	4	
01	0,8	55 ± 1	12,5	30,0	13,0	30,5	35,0	6,3	
02	0,8	55 ± 1	15,0	30,0	15,5	30,5	35,0	8,2	
03	0,8	55 ± 1	18,0	30,0	18,5	30,5	35,0	10,9	
04	0,8	34 ± 1	18,0	40,0	18,5	41,5	45,0	14	
05	0,8	34 ± 1	21,0	40,0	21,5	41,5	45,0	19	

^{*} Case sizes 3 to 7 are supplied on bandoliers in boxes or on reels (see PACKING).

Table 1b

case size				style 2)		mass approx.
	d ₁	d ₂	D1	D2 _{max}	D3	L	g g
02	0,8	1 + 0,1	15,0	17,5	16,5 ± 0,2	31 ± 1	8,6
03	0,8	1 + 0,1	18,0	19,5	18,5 ± 0,2	31 ± 1	11,5
04	1,0	1,3 + 0,1	18,0	19,5	18,5 ± 0,2	42 ± 1	14,5
05	1,0	1,3 + 0,1	21,0	22,5	21,5 ± 0,2	42 ± 1	19,7

Fig. 2 Style 2; see Table 1b for dimensions d_1 , d_2 , D1, D2, D3 and L.

Table 1c

case size			style 3	1	mass
3126	d	D _{max}	L _{max}	Р	approx. g
3 5a	0,6 0,6	6,3 8,5	12,5 13,0	3,5— 7,5 5 —10	0,55 1,0
4 5 6 7	0,8 0,8 0,8 0,8	6,9 8,5 10,5 10,5	21,5 21,5 21,5 28,0	5 –10 5 –10 7,5–12,5 7,5–12,5	1,2 1,6 2,3 3,1
00 01 02	0,8 0,8 0,8	10,5 10,5 13,0 15,5	34,0 34,0 34,0 34,0	7,5—12,5 7,5—12,5 7,5—12,5 10,0—15,0	3,8 6,1 8,0

Fig. 3 Style 3 see Table 1c for dimensions d, D, L and P.

Marking

The capacitors are marked with:

nominal capacitance;

tolerance on nominal capacitance

rated voltage;

group number; code of origin;

name of manufacturer;

date code (year and month) according to IEC 62;

band to identify the negative terminal;

+ signs to identify the positive terminal (not for case sizes 3 and 5a).

Mounting

The capacitors are suitable for mounting on printed-wiring boards; the required hole diameters are shown in Table 1d.

Table 1d

style	lead/pin diameter	required hole diameter
1 and 3	0,6 mm lead 0,8 mm lead	0,8 + 0,1 mm 1,0 + 0,1 mm
2	0,8 mm anode pin 1,0 mm anode pin cathode pins	1 + 0,1 mm 1,3 + 0,1 mm 1,3 + 0,1 mm

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

UR	nom.	max. r.m.s.	max. d.c. leakage	max.	max.	1	pedance	case	catalogue
	cap.	ripple cur-	current at UR	tan δ	ESR	m:		size	number*
	_	rent at Tamb	after 1 min		_	at	at		2222 014
	μF	= 85 °C (mA)	μΑ		mΩ	10 kHz	100 kHz		followed by
6,3	100	75	7,8	0,20	3200	1700	1500	3	.3101
	220	135	12,5	0,20	1450	770	680	5a	**
	220	145	12,5	0,20	1450	770	680	4	.3221
	330	200	16,5	0,20	960	520	460	5	.3331
	1500	525	61	0,26	290	250	220	00	.3152
	2200	700	88	0,27	205	180	140	01	.3222
	3300	900	129	0,30	150	100	90	02	.3332
	4700	1170	182	0,32	114	70	80	03	.3472
	6800	1470	261	0,37	91	50	60	04	.3682
	10 000	1800	382	0,43	72	50	60	05	.3103
10	68	70	8,1	0,14	3300	2100	1750	3	.4689
	150	130	13	0,14	1500	930	800	4	.4151
	150	140	13	0,14	1500	930	800	5a	**
	470	325	32	0,14	470	300	260	6	.4471
	680	445	45	0,14	330	210	180	7	.4681
	1000	470	64	0,18	300	180	160	00	.4102
	1500	700	94	0,19	212	160	140	01	.4152
	2200	850	136	0,20	152	100	90	02	.4222
	3300	1000	202	0,22	111	80	70	03	.4332
	4700	1500	286	0,24	85	50	60	04	.4472
	6800	1800	412	0,28	69	50	60	05	.4682
	10 000	2260	604	0,30	50	50	60	05	.4103

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 3 and 4) case sizes 3 to 7

³ for style 1 on bandoliers in box (preferred for case sizes 5a to 7)

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 3 to 02.

^{**} See Table 3.

UR	nom. cap.	max. r.m.s. ripple cur-	max. d.c. leakage current at U _R	$\text{max.}\\ \text{tan } \delta$	max. ESR		pedance Ω	case size	catalogue number*
		rent at Tamb	after 1 min		mΩ	at	at		2222 014
٧	μF	= 85 °C (mA)	μΑ	1		10 kHz	100 kHz		followed by
16	47	65	8,5	0,11	3700	2100	1700	3	.5479
	68	100	10,5	0,11	2600	1450	1200	5a	**
	68	105	10,5	0,11	2600	1450	1200	4	.5689
	100	125	13,5	0,11	1750	1000	800	5a	**
	100	130	13,5	0,11	1750	1000	800	4	.5101
	150	180	18,5	0,11	1150	670	530	5	.5151
	220	220	25	0,11	800	450	360	5	.5221
	330	305	36	0,11	530	300	240	6	.5331
	470	415	49	0,11	370	210	170	7	.5471
	680	500	70	0,13	320	180	160	00	.5681
	1000	715	100	0,13	218	110	100	01	.5102
	1500	900	148	0,14	156	100	100	02	.5152
	2200	1270	215	0,15	114	70	80	03	.5222
	3300	1560	321	0,17	86	50	60	04	.5332
	4700	1820	455	0,20	71	50	60	05	.5472
	6800	2000	654	0.24	59	50	60	05	.5682
	10 000	2400	984	0,26	44	50	60	05	.5103
25	33	65	9	0,09	4300	2100	1800	3	.6339
	100	165	19	0,09	1450	700	600	5	.6101
	150	230	27	0,09	950	470	400	6	.6151
	220	280	37	0,09	650	320	270	6	.6221
	330	390	54	0,09	430	210	180	7	.6331
	470	540	74	0,11	392	180	160	00	.6471
	680	600	106	0,12	295	130	110	01	.6681
	1000	920	154	0,12	200	100	100	02	.6102
	1500	1040	229	0,13	145	70	80	03	.6152
	2200	1480	334	0,13	99	50	60	04	.6222
	3300	1800	500	0,14	71	50	60	05	.6332
	4700	2140	709	0,15	54	50	60	05	.6472

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 3 and 4) case sizes 3 to 7 for style 1 on bandoliers in box (preferred for case sizes 5a to 7)

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 3 to 02.

^{**} See Table 3.

	,				·				
UR	nom.	max. r.m.s.	max. d.c. leakage	max.	max.	max. ir	npedance	case	catalogue
	cap.	ripple cur-	current at UR	tan δ	ESR	n	Ω n	size	number*
		rent at Tamb	after 1 min			at	at		2222 014
V	μF	= 85 °C (mA)	μΑ		mΩ	10 kHz	100 kHz		followed by
40	15	45	7,6	0,08	8500	3300	3000	3	.7159
	22	55	9,3	0,08	5800	2300	2000	3	.7229
	33	85	12	0,08	3900	1500	1350	5a	**
	33	90	12	0,08	3900	1500	1350	4	.7339
	47	95	15,5	0,08	2700	1050	960	5a	**
	47	105	15,5	0,08	2700	1050	960	4	.7479
	68	145	20	0,08	1850	740	660	5	.7689
	100	200	28	0,08	1250	500	450	6	.7101
	150	280	40	80,0	850	330	300	7	.7151
	220	340	57	80,0	580	230	200	7	**
	220	365	57	0,08	600	220	170	00	.7221
	330	500	84	0,08	405	150	120	01	.7331
	470	575	117	80,0	285	110	110	01	.7471
	680	800	167	0,08	197	100	100	02	.7681
	1000	1100	244	0,08	134	70	80	03	.7102
	1500	1330	364	0,10	112	60	70	04	.7152
	2200	1660	532	0,11	84	50	70	05	.7222
	3300	1900	796	0,14	71	50	60	05	.7332
63	1	13	4,4	0,06	95 000	40 000	35 000	3	.8108
	1,5	16	4,6	0,06	64 000	27 000	23 000	3	.8158
	2,2	20	4,8	0,06	43 000	18 000	16 000	3	.8228
	3,3	24	5,2	0,06	29 000	12 000	10 500	3	.8338
	4,7	29	5,8	0,06	20 000	8500	7400	3	.8478
	6,8	35	6,6	0,06	14 000	5900	5100	3	.8688
	10	42	7,8	0,06	9500	4000	3500	3	.8109
	15	63	9,7	0,06	6400	2700	2300	5a	**
	15	68	9,7	0,06	6400	2700	2300	4	.8159
	22	78	12,5	0,06	4300	1800	1600	5a	**
	22	82	12,5	0,06	4300	1800	1600	4	.8229
	33	115	16,5	0,06	2900	1200	1050	5	.8339
	47	135	22	0,06	2000	850	740	5	.8479
	68	190	30	0,06	1400	590	510	6	.8689
	100	260	42	0,06	950	400	350	7	.8101
	150	345	61	0,06	670	370	220	00	.8151
	220	500	87	0,06	457	150	120	01	.8221
	330	650	129	0,06	305	150	120	02	.8331
	470	870	182	0,06	214	100	100	02	.8471
	680	1030	261	0,06	148	80	100	03	.8681
	1000	1600	382	0,06	100	50	70	05	.8102
	1500	1800	571	0,08	89	50	70	05	.8152
				-,			L		1

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 3 and 4) case sizes 3 to 7 3 for style 1 on bandoliers in box (preferred for case sizes 5a to 7)

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 3 to 02.

^{**} See Table 3.

U _R	nom. cap. μF	max. r.m.s. ripple cur- rent at T _{amb} = 85 °C (mA)	max.d.c. leakage current at U _R after 1 min μA	max. tan δ	max. ESR mΩ	max. impedance mΩ at at 10 kHz		case size	catalogue number* 2222 014 followed by
100	4,7 10 10 15 22 33 47 100 220 470	16 55 60 85 105 140 195 340 650 1090	6,8 10 10 13 17 24 32 64 139 286	0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05	17 000 8000 8000 5300 3600 2400 1700 838 381 178	7400 3500 3500 2300 1600 1050 740 315 150 100	6400 3000 3000 2000 1350 910 640 200 120	3 5a 4 5 5 6 7 01 03	.9478 *** .9109 .9159 .9229 .9339 .9479 .9101 .9221 .9471

Table 3

UR	nom.	case	catalogue number					
V	cap. μF	size	style 1 on bandoliers on reel	style 1 on bandoliers in box	style 3			
6,3	220	5a	2222 014 90534	2222 014 90535	2222 014 90536			
10	150	5a	2222 014 90501	2222 014 90502	2222 014 90503			
16	68 100	5a 5a	2222 014 90504 2222 014 90507	2222 014 90505 2222 014 90508	2222 014 90506 2222 014 90509			
40	33 47 220	5a 5a 7	2222 014 90511 2222 014 90514 2222 014 90517	2222 014 90512 2222 014 90515 2222 014 90518	2222 014 90513 2222 014 90516 2222 014 90519			
63	15 22	5a 5a	2222 014 90521 2222 014 90524	2222 014 90522 2222 014 90525	2222 014 90523 2222 014 90526			
100	10	5a	2222 014 90527	2222 014 90528	2222 014 90529			

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 3 and 4) 3 for style 1 on bandoliers in box (preferred for case sizes 5a to 7)

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 3 to 02.

^{**} See Table 3.

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 °C see Table 2

Tolerance on nominal capacitance at 100 Hz -10 to +50%

Fig. 4 Multiplier of capacitance as a function of ambient temperature; case sizes 3 to 7; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 5 Multiplier of capacitance as a function of ambient temperature; case sizes 00 to 05; C_0 = capacitance at 20 $^{\circ}$ C, 100 Hz.

Fig. 6 Multiplier of capacitance as a function of frequency; case sizes 3 to 7; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 7 Multiplier of capacitance as a function of frequency; case sizes 00 to 05; C_0 = capacitance at 20 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max. peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

core temperature A

Ripple current**

Maximum permissible r.m.s. ripple current at

100 Hz and
$$T_{amb} = 85$$
 °C

see Table 2

Fig. 8 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

curve 1 = case sizes 3 to 7; curve 2 = case sizes 00 to 05.

- See Introduction, section 5, "Ripple current".
- * Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 9 Multiplier of ripple current as a function of frequency, case sizes 3 to 7; I_{r0} = ripple current at 85 °C, 100 Hz.

Fig. 10 Multiplier of ripple current as a function of frequency, case sizes 00 to 05; I_{r0} = ripple current at 85 °C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r \max}^{2}$$

 $I_{r,max}$ = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_0} = I_r/I_{r0} = \text{multiplying factor at a same frequency.}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitors. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of U_{B_r} at T_{amb} = 25 °C

see Table 2 (0,006 CU + 4 μA)

Maximum d.c. leakage current 5 min after application of U_{B} , at T_{amb} = 25 °C

 $0.002 \text{ CU} + 2 \mu \text{A}$

D.C. leakage current during continuous operation at UR,

at T_{amb} = 25 °C, case sizes 3 to 7 at T_{amb} = 25 °C, case sizes 00 to 05 at T_{amb} = 85 °C 0,1 x values of Table 2 0,01 x values of Table 2 ≤ values of Table 2

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Fig. 11 Multiplier of d.c. leakage current as a function of ambient temperature, case sizes 00 to 05; $I_0 = d.c.$ leakage current during continuous operation at 25 $^{\circ}$ C and U_R.

Fig. 12 Multiplier of d.c. leakage current as a function of U/U_R , case sizes 00 to 05; I_0 = d.c. leakage current during continuous operation at 25 °C and U_R .

Tan δ (dissipation factor) Maximum tan δ at 100 Hz and T_{amb} = 25 °C measured by means of a four-terminal circuit (Thomson circuit)

Fig. 13 Typical tan δ as a function of ambient temperature at 100 Hz; case sizes 3 to 7.

Fig. 14 Typical tan δ as a function of frequency at 25 °C, case sizes 3 to 7.

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and T_{amb} = 25 o C, measured by means of a four-terminal circuit (Thomson circuit)

Fig. 15 Multiplier of ESR as a function of ambient temperature, case sizes 00, 01 and 02; ESR₀ = typ. ESR at 20 °C, 100 Hz.

Fig. 16 Multiplier of ESR as a function of ambient temperature, case sizes 03, 04 and 05; ESR₀ = typ. ESR at 20 °C, 100 Hz.

Fig. 17 Multiplier of ESR as a function of frequency, case sizes 00 to 05; $ESR_0 = typical ESR$ at 20 °C, 100 Hz.

Impedance

Maximum impedance at T_{amb} = 25 °C and 10 kHz or 100 kHz, measured by means of a four-terminal circuit (Thomson circuit)

Fig. 18 Typical impedance as a function of ambient temperature at 10 kHz; case size 3:

```
curve 1 = 4,7 \muF, 100 V; curve 2 = 10 \muF, 63 V; curve 3 = 22 \muF, 40 V; curve 4 = 47 \muF, 16 V; curve 5 = 68 \muF, 10 V; curve 6 = 100 \muF, 6,3 V.
```


Fig. 19 Typical impedance as a function of ambient temperature at 10 kHz; case size 5a:

```
curve 1 = 22 \muF, 63 V;
curve 2 = 47 \muF, 40 V;
curve 3 = 100 \muF, 16 V;
curve 4 = 150 \muF, 10 V;
curve 5 = 220 \muF, 6,3 V.
```


Fig. 20 Typical impedance as a function of ambient temperature at 10 kHz; case size 4:

curve 1 = 22 μ F, 63 V; curve 2 = 47 μ F, 40 V; curve 3 = 100 μ F, 16 V; curve 4 = 220 μ F, 6,3 V.

Fig. 21 Typical impedance as a function of ambient temperature at 10 kHz; case size 5:

curve 1 = 47 μ F, 63 V; curve 2 = 150 μ F, 16 V; curve 3 = 330 μ F, 6,3 V.

Fig. 22 Typical impedance as a function of ambient temperature at 10 kHz; case size 6:

curve 1 = 68 μ F, 63 V; curve 2 = 150 μ F, 25 V;

curve 3 = 220 μ F, 25 V;

curve $4 = 330 \,\mu\text{F}$, $16 \,\text{V}$.

Fig. 23 Typical impedance as a function of ambient temperature at 10 kHz; case size 7:

curve 1 = $100 \mu F$, 63 V;

curve 2 = 220 μ F, 40 V;

curve 3 = 470 μ F, 16 V.

Fig. 24 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 3:

```
curve 1 = 4,7 \muF, 100 V;
curve 2 = 10 \muF, 63 V;
curve 3 = 22 \muF, 40 V;
curve 4 = 47 \muF, 16 V;
curve 5 = 68 \muF; 10 V;
curve 6 = 100 \muF; 6,3 V.
```


Fig. 25 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 5a:

```
curve 1 = 22 \muF, 63 V;
curve 2 = 47 \muF, 40 V;
curve 3 = 100 \muF, 16 V;
curve 4 = 150 \muF, 10 V;
curve 5 = 220 \muF, 6,3 V.
```

Fig. 26 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 4:

curve 1 = 22 μ F, 63 V; curve 2 = 47 μ F, 40 V; curve 3 = 100 μ F, 16 V; curve 4 = 220 μ F, 6,3 V.

Fig. 27 Typical impedance as a function frequency at T_{amb} = 20 °C; case size 5:

curve 1 = 47 μ F, 63 V; curve 2 = 150 μ F, 16 V; curve 3 = 330 μ F, 6,3 V.

Fig. 28 Typical impedance as a function of frequency at $T_{amb} = 20$ °C; case size 6:

```
curve 1 = 68 \muF, 63 V;
curve 2 = 150 \muF, 25 V;
curve 3 = 220 \muF, 25 V;
curve 4 = 330 \muF, 16 V.
```


Fig. 29 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 7:

```
curve 1 = 100 \muF, 63 V;
curve 2 = 220 \muF, 40 V;
curve 3 = 470 \muF, 16 V.
```

Fig. 30 Typical impedance as a function of frequency at $T_{amb} = 20$ °C, case size 00. curve 1 = 150 μ F, 63 V; curve 2 = 220 μ F, 40 V; curve 3 = 470 μ F, 25 V; curve 4 = 680 μ F, 16 V; curve 5 = 1000 μ F, 10 V; curve 6 = 1500 μ F, 6,3 V.

Fig. 31 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 01. curve 1 = 220 μ F, 63 V; curve 2 = 330 μ F, 40 V; curve 3 = 470 μ F, 40 V; curve 4 = 680 μ F, 25 V; curve 5 = 1000 μ F, 16 V; curve 6 = 1500 μ F, 10 V; curve 7 = 2200 μ F, 6,3 V.

Fig. 32 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 02. curve 1 = 330 μ F, 63 V; curve 2 = 470 μ F, 63 V; curve 3 = 680 μ F, 40 V; curve 4 = 1000 μ F, 25 V; curve 5 = 1500 μ F, 16 V;

curve $6 = 2200 \,\mu\text{F}$, $10 \,\text{V}$;

curve $7 = 3300 \,\mu\text{F}$, 6,3 V.

Fig. 33 Typical impedance as a function of frequency at $T_{amb} = 20$ °C, case size 03. curve 1 = 680 μ F, 63 V; curve 2 = 1000 μ F, 40 V; curve 3 = 1500 μ F, 25 V; curve 4 = 2200 μ F, 16 V; curve 5 = 3300 μ F, 10 V; curve 6 = 4700 μ F, 6,3 V.

Fig. 34 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 04. curve 1 = 1500 μ F, 40 V; curve 2 = 2200 μ F, 25 V; curve 3 = 3300 μ F, 16 V; curve 4 = 4700 μ F, 10 V; curve 5 = 6800 μ F, 6,3 V.

Fig. 35 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 05. curve 1 = 1000 μ F, 63 V; curve 2 = 1500 μ F, 63 V; curve 3 = 2200 μ F, 40 V; curve 4 = 3300 μ F, 25 and 40 V; curve 5 = 4700 μ F, 16 and 25 V; curve 6 = 6800 μ F, 10 and 16 V; curve 7 = 10 000 μ F, 6,3, 10 and 16 V.

Fig. 36 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 00. curve 1 = 150 μ F, 63 V; curve 2 = 220 μ F, 40 V; curve 3 = 470 μ F, 25 V; curve 4 = 680 μ F, 16 V; curve 5 = 1000 μ F, 10 V;

curve 6 = 1500 μ F, 6,3 V.

Fig. 37 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 01. curve 1 = 220 μ F, 63 V; curve 2 = 330 μ F, 40 V; curve 3 = 470 μ F, 40 V; curve 4 = 680 μ F, 25 V; curve 5 = 1000 μ F, 16 V; curve 6 = 1500 μ F, 10 V; curve 7 = 2200 μ F, 6.3 V.

curve 3 = 680 μ F, 40 V; curve 4 = 1000 μ F, 25 V; curve 5 = 1500 μ F, 16 V; curve 6 = 2200 μ F, 10 V; curve 7 = 3300 μ F, 6,3 V.

Fig. 39 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 03. curve 1 = 680 μ F, 63 V; curve 2 = 1000 μ F, 40 V; curve 3 = 1500 μ F, 25 V; curve 4 = 2200 μ F, 16 V; curve 5 = 3300 μ F, 10 V; curve 6 = 4700 μ F, 6,3 V.

Fig. 40 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 04. curve 1 = 1500 μ F, 40 V; curve 2 = 2200 μ F, 25 V; curve 3 = 3300 μ F, 16 V; curve 4 = 4700 μ F, 10 V; curve 5 = 6800 μ F, 6,3 V.

Fig. 41 Typical impedance as a function of frequency at $T_{amb} = 85$ °C, case size 05. curve 1 = 1000 μ F, 63 V; curve 2 = 1500 μ F, 63 V; curve 3 = 2200 μ F, 40 V; curve 4 = 3300 μ F, 25 and 40 V; curve 5 = 4700 μ F, 16 and 25 V; curve 6 = 6800 μ F, 10 and 16 V; curve 7 = 10 000 μ F, 6,3, 10 and 16 V.

Fig. 42 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 00. curve 1 = 150 μ F, 63 V; curve 2 = 220 μ F, 40 V; curve 3 = 470 μ F, 25 V; curve 4 = 680 μ F, 16 V; curve 5 = 1000 μ F, 10 V; curve 6 = 1500 μ F, 6,3 V.

Fig. 43 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 01. curve 1 = 220 μ F, 63 V; curve 2 = 330 μ F, 40 V; curve 3 = 470 μ F, 40 V; curve 4 = 680 μ F, 25 V; curve 5 = 1000 μ F, 16 V; curve 6 = 1500 μ F, 10 V; curve 7 = 2200 μ F, 6,3 V.

curve $7 = 3300 \,\mu\text{F}$, 6,3 V.

Fig. 45 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 03. curve 1 = 680 μ F, 63 V; curve 2 = 1000 μ F, 40 V; curve 3 = 1500 μ F, 25 V; curve 4 = 2200 μ F, 16 V; curve 5 = 3300 μ F, 10 V; curve 6 = 4700 μ F, 6,3 V.

Fig. 46 Typical impedance as a function of frequency at T_{amb} = -25 °C, case size 04. curve 1 = 1500 μ F, 40 V; curve 2 = 2200 μ F, 25 V; curve 3 = 3300 μ F, 16 V; curve 4 = 4700 μ F, 10 V; curve 5 = 6800 μ F, 6,3 V.

Fig. 47 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 05. curve 1 = 1000 μ F, 63 V; curve 2 = 1500 μ F, 63 V; curve 3 = 2200 μ F, 40 V; curve 4 = 3300 μ F, 25 and 40 V; curve 5 = 4700 μ F, 16 and 25 V; curve 6 = 6800 μ F, 10 and 16 V; curve 7 = 10 000 μ F, 6,3, 10 and 16 V.

Fig. 48 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 00. curve 1 = 150 μ F, 63 V; curve 2 = 220 μ F, 40 V; curve 3 = 470 μ F, 25 V; curve 4 = 680 μ F, 16 V; curve 5 = 1000 μ F, 10 V; curve 6 = 1500 μ F, 6.3 V.

Fig. 49 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 01. curve 1 = 220 μ F, 63 V; curve 2 = 330 μ F, 40 V; curve 3 = 470 μ F, 40 V; curve 4 = 680 μ F, 25 V; curve 5 = 1000 μ F, 16 V; curve 6 = 1500 μ F, 10 V; curve 7 = 2200 μ F, 6,3 V.

curve 7 = 3300 μ F, 6,3 V.

10² Z (Ω)

7Z90539

Fig. 51 Typical impedance as a function of frequency at T_{amb} = -40 °C, case size 03. curve 1 = $680~\mu\text{F}$, 63~V; curve 2 = $1000~\mu\text{F}$, 40~V;

```
curve 1 = 680 \muF, 63 V;

curve 2 = 1000 \muF, 40 V;

curve 3 = 1500 \muF, 25 V;

curve 4 = 2200 \muF, 16 V;

curve 5 = 3300 \muF, 10 V;

curve 6 = 4700 \muF, 6,3 V.
```


Fig. 52 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 04. curve 1 = 1500 μ F, 40 V; curve 2 = 2200 μ F, 25 V; curve 3 = 3300 μ F, 16 V; curve 4 = 4700 μ F, 10 V; curve 5 = 6800 μ F, 6,3 V.

Fig. 53 Typical impedance as a function of frequency at $T_{amb} = -40^{\circ}\text{C}$, case size 05. curve 1 = 1000 μF , 63 V; curve 2 = 1500 μF , 63 V; curve 3 = 2200 μF , 40 V; curve 4 = 3300 μF , 25 and 40 V; curve 5 = 4700 μF , 16 and 25 V; curve 6 = 6800 μF , 10 and 16 V;

curve $7 = 10\,000\,\mu\text{F}$, 6,3, 10 and 16 V.

Fig. 54 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 00. curve 1 = 150 μ F, 63 V; curve 2 = 220 μ F, 40 V; curve 3 = 470 μ F, 25 V; curve 4 = 680 μ F, 16 V; curve 5 = 1000 μ F, 10 V; curve 6 = 1500 μ F, 6,3 V.

Fig. 55 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 01. curve 1 = 220 μ F, 63 V; curve 2 = 330 μ F, 40 V; curve 3 = 470 μ F, 40 V; curve 4 = 680 μ F, 25 V; curve 5 = 1000 μ F, 16 V; curve 6 = 1500 μ F, 10 V; curve 7 = 2200 μ F, 6,3 V.

Fig. 57 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 03. curve 1 = 680 μ F, 63 V; curve 2 = 1000 μ F, 40 V; curve 3 = 1500 μ F, 25 V; curve 4 = 2200 μ F, 16 V; curve 5 = 3300 μ F, 10 V; curve 6 = 4700 μ F, 6,3 V.

Fig. 58 Typical impedance as a function of frequency at T_{amb} = -55 °C, case size 04. curve 1 = 1500 μ F, 40 V; curve 2 = 2200 μ F, 25 V; curve 3 = 3300 μ F, 16 V; curve 4 = 4700 μ F, 10 V; curve 5 = 6800 μ F, 6,3 V.

Fig. 59 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 05. curve 1 = 1000 μ F, 63 V; curve 2 = 1500 μ F, 63 V; curve 3 = 2200 μ F, 40 V; curve 4 = 3300 μ F, 25 and 40 V; curve 5 = 4700 μ F, 16 and 25 V; curve 6 = 6800 μ F, 10 and 16 V; curve 7 = 10 000 μ F, 6.3, 10 and 16 V.

Equivalent series inductance (ESL)

Case sizes 3 and 4	typ. 30 nH
Case size 5a	typ. 85 nH
Case size 5	typ. 50 nH
Case sizes 6 and 7	typ. 65 nH
Case sizes 00 and 01	typ. 50 nH
Case size 02	typ. 55 nH
Case sizes 03, 04 and 05	tvp. 60 nH

OPERATIONAL DATA

Category temperature range	-55 to + 85 °C			
Typical life time	T _{amb} = 85 °C	T _{amb} = 40 °C		
case sizes 3 to 7	3000 h	70 000 h		
case sizes 00 to 05	5000 h	100 000 h		
Shelf life at 0 V and T_{amb} = 85 °C	500 h			

PACKING

All capacitors are supplied in boxes, except case sizes 3 to 7 of style 1, which are on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 4.

Table 4

	number of capacitors						
case size	style 1	style 1	styles 2 and 3				
	per reel	per box	per box				
3	1000	1000	1000				
5a	500	500	1000				
4	1000	1000	1000				
5	500	500	1000				
6	500	500	1000				
7	500	500	500				
00		200	200				
01		200	200				
02		200	200				
03		200	200				
04		100	100				
05		100	100				

Fig. 60 Style 1 capacitors (case sizes 3 to 7) on bandoliers: the bandolier to which the negative capacitor terminals are connected is blue. See Table 5 for dimensions A, S, T and L_{max} . |B1 - B2| = max. 1,4 mm.

Table 5
Dimensions in mm

case size	А	S	T for nu of cap	L _{max}		
			n < 50	50 < n < 100	1	
3	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	10,5	
5a	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	11,5	
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5	
5	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5	
6	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	18,5	
7	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	25,0	

Fig. 61 Style 1 capacitors (case sizes 3 to 7) on bandoliers on reel; dimension C is 83,5 mm for case sizes 3 and 5a, and 88,5 mm for case sizes 4, 5, 6 and 7; the overall width of the reel is 94,5 mm and 99,5 mm respectively.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 014 are miniature and small types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads and single ended
- Very high CU-product per unit volume
- Long life
- General and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range

(E6 series): 0.22 to 15 000 µF

Tolerance on nominal capacitance: ± 20%

Rated voltage range, UR

(R5 series): 10 to 100 V

Category temperature range: -55 to +85 °C

Endurance test at 85 °C

case sizes 2 to 7: 1000 h* case sizes 00 to 05: 2000 h

Shelf life at 0 V, 85 °C: 500 h

Basic specifications

case sizes 2 to 7: IEC 384-4, G.P. grade DIN 41332, type II case sizes 00 to 05:

IEC 384-4, L.L. grade, DIN 41316

Climatic category IEC 68:

DIN 40040:

55/085/56 **FPF**

case size	nominal dimensions (mm)	
2 3 5a 4 5 6 7	0 4,5 × 10 0 6 × 10 0 8 × 11 0 6,5 × 18 0 8 × 18 0 10 × 18 0 10 × 25	miniature
00 01 02 03 04 05	Ø 10 x 30 Ø 12,5 x 30 Ø 15 x 30 Ø 18 x 30 Ø 18 x 40 Ø 21 x 40	small

Selection chart for Cnom-UR and relevant case sizes

C _{nom}		U _R (V)							
μF	10	16	25	40	63	100			
0,22 0,33 0,47 0,68					2 2 2 2				
1 1,5 2,2 3,3 4,7 6,8					2 2 2 2 2 2 2 2 3 3	2 2 2 2 3			
10 15 22 33 47 68		2	2	2	2 3 3 4/5a 4/5a	4/5a 4/5a 4 5			
100 150 220 330 470 680	2 3 5a 4 5	3 5a 4 5	3 4/5a 4 5 6 7/00	4/5a 5 6 7 00 01	5 6 7/00 01 01 02	7/00 01 01 02 03 04			
1000 1500 2200 3300 4700 6800 10 000 15 000	6 7/00 01 01 02 03 04 05	7/00 01 01 02 03 04	01 01 02 03 04 05	01 02 03 04 05	03 04 05	05			

^{* 2000} h under consideration.

APPLICATION

These capacitors have extremely high CU-product per unit volume, which render them very suitable for applications, where high requirements are imposed on size and mass, e.g. portable and mobile equipment. They are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and video circuits, and in other applications such as measuring, regulating, timing and delay circuits. The bandoliered version is extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in an aluminium case.

The capacitors are available in 3 styles, all with soldered-copper terminations.

Style 1: axial leads; case insulated with a blue plastic sleeve; all case sizes; case sizes 2 to 7 are supplied on bandoliers.

Style 2: single ended; with mounting ring with printed-wiring pins; especially for use in applications with severe shocks and vibrations; case sizes 02 to 05.

Style 3: single ended; case insulated with a blue plastic sleeve; case sizes 2 to 7 and 00 to 02.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions d, D, L, I and P.

Table 1a

case					style 1			mass
size	d	I D _{no}		L _{nom}	D _{max}	L _{max}	P _{min}	approx.
2	0,6	*	4,5	10,0	5,0	10,5	15	0,50
3	0,6	*	6,0	10,0	6,3	10,5	15	0,70
5a	0,6	*	8,0	11,0	8,5	11,5	15	1,1
4	0,8	*	6,5	18,0	6,9	18,5	25	1,3
5	0,8	*	8,0	18,0	8,5	18,5	25	1,7
6	0,8	*	10,0	18,0	10,5	18,5	25	2,5
7	0,8	*	10,0	25,0	10,5	25,0	30	3,3
00	0,8	55 ± 1	10,0	30,0	10,5	30,5	35	4
01	0,8	55 ± 1	12,5	30,0	13,0	30,5	35	6,3
02	0,8	55 ± 1	15,0	30,0	15,5	30,5	35	8,2
03	0,8	55 ± 1	18,0	30,0	18,5	30,5	35	10,9
04	0,8	34 ± 1	18,0	40,0	18,5	41,5	45	14
05	0,8	34 ± 1	21,0	40,0	21,5	41,5	45	19

^{*} Case sizes 2 to 7 are supplied on bandoliers in boxes or on reels (see PACKING).

Table 1b

case size		style 2							
	d ₁	d ₂	D1	D2 _{max}	D3	L	g		
02	0,8	1 + 0,1	15,0	17,5	16,5 ± 0,2	31 ± 1	8,6		
03	0,8	1 + 0,1	18,0	19,5	18,5 ± 0,2	31 ± 1	11,5		
04	1,0	1,3 + 0,1	18,0	19,5	18,5 ± 0,2	42 ± 1	14,5		
05	1,0	1,3 + 0,1	21,0	22,5	21,5 ± 0,2	42 ± 1	19,7		

Fig. 2 Style 2; see Table 1b for dimensions d, D1, D2, D3 and L.

Table 1c

case		style 3								
5126	d	d D _{max} L _{max} P								
2	0,6	5,0	12,5	2,5- 5	0,40					
3	0,6	6,3	12,5	3,5- 7,5	0,55					
5a	0,6	8,5	13,0	5 -10	1,0					
4	0,8	6,9	21,5	5 –10	1,2					
5	0,8	8,5	21,5	5 -10	1,6					
6	0,8	10,5	21,5	7,5-12,5	2,3					
7	0,8	10,5	28,0	7,5-12,5	3,1					
00	0,8	10,5	34,0	7,5-12,5	3,8					
01	0,8	13,0	34,0	7,5-12,5	6,1					
02	0,8	15,5	34,0	10,0—15,0	8,0					

Fig. 3 Style 3; see Table 1c for dimensions d, D, L and P.

Marking

The capacitors are marked with:

nominal capacitance:

tolerance on nominal capacitance;

rated voltage;

group number; code of origin;

name of manufacturer;

date code (year and month) according to IEC 62;

band to identify the negative terminal;

+ signs to identify the positive terminal (not for case sizes 2, 3 and 5a).

Mounting

The capacitors are suitable for mounting on printed-wiring boards; the required hole diameters are shown in Table 1c.

Table 1d

style	lead/pin diameter	required hole diameter		
1 and 3	0,6 mm lead 0,8 mm lead	0,8 + 0,1 mm 1,0 + 0,1 mm		
2	0,8 mm anode pin 1,0 mm anode pin cathode pins	1 + 0,1 mm 1,3 + 0,1 mm 1,3 + 0,1 mm		

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%. (See also the relevant paragraphs).

UR	nom. cap.	max. r.m.s.	max. d.c. leakage current at U _R	max. tan δ	max. ESR	max. imp	edance	case size	catalogue number* 2222 021
V	μF	at T _{amb} = 85 °C mA	μA		Ω	at 10 kHz	at 1kHz		followed by
10	100	65	10	0,20	3,2	2,0		2	. 4101
	220	110	17	0,20	1,5	0,91		3	. 4221
	330	165	24	0,20	1,0	0,61		5a	. 4331
	470	210	32	0,20	0,68	0,43		4	. 4471
	680	285	45	0,20	0,47	0,29		5	. 4681
	1000	400	64	0,20	0,32	0,20		6	. 4102
	1500	530	94	0,23	0,25	0,18		7	**
	1500	570	94	0,23	0,245		0,30	00	. 4152
	2200	740	136	0,25	0,177		0,20	01	. 4222
	3300	920	202	0,27	0,128		0,14	01	. 4332
	4700	1150	288	0,29	0,100		0,096	02	. 4472
	6800	1480	412	0,34	0,079		0,066	03	. 4682
	10000	1840	604	0,40	0,064		0,045	04	. 4103
	15000	2200	904	0,50	0,054		0,040	05	. 4153
16	68	60	11	0,16	3,8	2,4		2	. 5689
	150	100	18	0,16	1,7	1,1		3	. 5151
	220	150	25	0,16	1,2	0,73		5a	. 5221
	330	200	36	0,16	0,77	0,48		4	. 5331
	470	265	49	0,16	0,55	0,34		5	. 5471
	680	365	69	0,16	0,38	0,24		6	. 5681
	1000	510	100	0,16	0,26	0,16		7	**
	1000	530	100	0,16	0,260	0,175		00	. 5102
	1500	680	148	0,19	0,205		0,267	01	. 5152
	2200	880	216	0,21	0,150		0,182	01	. 5222
	3300	1120	321	0,23	0,111		0,121	02	. 5332
	4700	1380	455	0,25	0,087		0,085	03	. 5472
	6800	1760	656	0,30	0,070	-	0,060	04	. 5682
	10000	2100	964	0,36	0,058		0,042	05	. 5103

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 2, 3 and 4)

³ for style 1 on bandollers in box (preferred for case sizes 5a, 5, 6 and 7) case sizes 2 to 7

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 2 to 02.

^{**} See Table 3.

Table 2 (continued)

									and the second second
UR	nom.		max. d.c. leakage	1	max.	max. imp		case	catalogue
	сар.	ripple current	current at UR	tan δ	ESR	Ω		size	number*
	l _	at T _{amb} = 85 °C	after 1 min			.40			2222 021
V	μF	mA	μΑ		Ω	at 10 kHz	at 1 kHz		followed by
25	47	50	11	0,14	4.8	2,6		2	. 6479
	100	90	19	0.14	2,3	1,2		3	. 6101
	150	135	27	0.14	1,5	0,80		5a	**
	150	145	27	0,14	1,5	0,80		4	. 6151
	220	170	37	0,14	1,0	0,55		4	. 6221
	330	240	54	0,14	0,68	0,36		5	. 6331
	470	325	75	0,14	0,48	0,26		6	. 6471
	680	450	106	0.14	0,33	0,18		7	**
	680	480	106	0,14	0,323	0,175		00	. 6681
	1000	630	154	0,14	0,220	0,095		01	. 6102
	1500	780	229	0,17	0,179		0,20	01	. 6152
	2200	1020	334	0,19	0,132		0,136	02	. 6222
	3300	1240	499	0,21	0,099		0,091	03	. 6332
	4700	1650	709	0,23	0,079		0,064	04	. 6472
	6800	2000	1024	0,28	0,064	- y -	0,044	05	. 6682
40	22	40	9	0,11	8,0	3,2		2	. 7229
	47	70	15	0,11	3,8	1,5		3	. 7479
	100	120	28	0,11	1,8	0,70		5a	**
	100	130	28	0,11	1,8	0,70		4	. 7101
	150	180	40	0,11	1,1	0,47		5	. 7151
	220	250	57	0,11	0,8	0,32		6	. 7221
	330	350	83	0,11	0,53	0,21		7	. 7331
	470	440	117	0,12	0,404	0,175		00	. 7471
	680	580	167	0,12	0,279	0,095		01	. 7681
	1000	730	244	0,12	0,190	0,095		01	. 7102
	1500	815	364	0,15	0,159		0,160	02	. 7152
	2200	1170	532	0,17	0,118		0,110	03	. 7222
-	3300	1500	796	0,19	0,090	4.5	0,073	04	. 7332
	4700	1815	1132	0,21	0,072	1. 4	0,051	05	. 7472

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 2, 3 and 4) 3 for style 1 on bandoliers in box (preferred for case sizes 5a, 5, 6 and 7) case sizes 2 to 7

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 2 to 02.

^{**} See Table 3.

Table 2 (continued)

UR	nom. cap.	max. r.m.s. ripple current at T _{amb} = 85 °C	max. d.c. leakage current at U _R after 1 min	max. tan δ ESR		max. impedance Ω			catalogue number* 2222 021
	μF	mA mA	μA		Ω	at 10 kHz	at 1 kHz		followed by
63	0,22	5	4,1	0,09	650	250		2	. 8227
	0,33	5	4,1	0,09	440	170		2	. 8337
	0,47	8	4,2	0,09	310	120			. 8477
	0,68	10	4,3	0,09	210	81		2	. 8687
	1	12	4,4	0,09	150	55		2	. 8108
	1,5	12	4,6	0,09	100	37		2	. 8158
	2,2	21	4,8	0,09	65	25		2	. 8228
	3,3	25	5,2	0,09	44	17		2	. 8338
	4,7	31	5,8	0,09	31	12		2	. 8478
	6,8	31	6,6	0,09	21	8,1		2	. 8688
	10	35	7,8	0,08	13	5,5		2	. 8109
	15	40	9,5	0,08	8,5	3,7		2	. 8159
	22	55	12	0,08	5,8	2,5		3	. 8229
	33	65	16	0,08	3,9	1,7		3	. 8339
	47	100	22	0,08	2,7	1,2		5a	**
	47	105	22	0,08	2,7	1,2		4	. 8479
	68	120	30	0,08	1,9	0,81		5a	**
	68	125	30	0,08	1,9	0,81		4	. 8689
	100	175	42	0,08	1,3	0,55		5	. 8101
	150	245	61	0,08	0,85	0,37		6	. 8151
	220	350	88	0,08	0,60	0,25		7	**
	220	350	88	0,08	0,614	0,20		00	. 8221
	330	480	129	0,08	0,409	0,14		01	. 8331
	470	570	182	0,08	0,287	0,10		01	. 8471
	680	770	261	0,08	0,199	0,080		02	. 8681
	1000	1035	382	0,08	0,135	0,065		03	. 8102
	1500	1330	571	0,11	0,122		0,143	04	. 8152
	2200	1740	836	0,13	0,099		0,098	05	. 8222

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 2, 3 and 4)

³ for style 1 on bandoliers in box (preferred for case sizes 5a, 5, 6 and 7) case sizes 2 to 7

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 2 to 02.

^{**} See Table 3.

Table 2 (continued)

u _R	nom. cap. μF	max. r.m.s. ripple current at T _{amb} = 85 °C mA	max. d.c. leakage current at U _R after 1 min μA	max. tan δ	max. ESR Ω	max. impedance Ω at 10 kHz at 1 kHz		size	catalogue number* 2222 021 followed by
100	1	14	4,6	0,08	130	90		2	. 9108
100	2,2	20	5,3	0,08	1	41		2	. 9228
	4,7	21	7	0,08	27	19		2	. 9478
	6,8	25	8	0,08	19	13		2	. 9688
	10	45	10	0,08	13	9		3	. 9109
	15	55	13	0,08	8,5	6		5a	**
	15	60	13	0,08	8,5	6		4	. 9159
	22	67	17	0,08	5,8	4,1		5a	**
	22	72	17	0,08	5,8	4,1		4	. 9229
	33	90	24	0,08	3,9	2,7		4	. 9339
	47	120	32	0,08	2,7	1,9		5	. 9479
	68	165	45	0,08	1,9	1,3		6	. 9689
	100 230		64	0,08	1,3	0,9		7	**
	100	1		0,07	1,150			00	. 9101
	150	415	94	0,07	0,645			01	. 9151
	220	454	136	0,08	0,610		-	01	. 9221
	330	544	202	0,09	0,420			02	. 9331
	470	695	286	0,09	0,310			03	. 9471
	680	971	412	0,09	0,195	0,18		04	. 9681
	1000	1161	604	0,10	0,160	0,15		05	. 9102

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 2, 3 and 4) 3 for style 1 on bandoliers in box (preferred for case sizes 5a, 5, 6 and 7) case sizes 2 to 7

⁴ for style 2; case sizes 02 to 05;

⁸ for style 3; case sizes 2 to 02.

^{**} See Table 3.

Table 3

UR	nom.	case	catalogue number					
V	cap. μF	size	style 1 on reel	style 1 in box	style 3			
10	1500	7	2222 021 90524	2222 021 90525	2222 021 90526			
16	1000	7	90517	90518	90519			
25	150 680	5a 7	90534 90527	90535 90528	90536 90529			
40	100	5a	90537	90538	90539			
63	47 68 220	5a 5a 7	90541 90544 90511	90542 90545 90512	90543 90546 90513			
100	15 22 100	5a 5a 7	90547 90551 90531	90548 90552 90532	90549 90553 90533			

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2 ± 20%

Fig. 4 Multiplier of capacitance as a function of ambient temperature; case sizes 00 to 05; C_0 = capacitance at 20 $^{\rm o}$ C, 100 Hz.

Fig. 5 Multiplier of capacitance as a function of frequency; case sizes 00 to 05; C_0 = capacitance at 20 $^{\circ}$ C; 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max. peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max, permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

core temperature A							
< 60 oC	60 to 90 °C						
1,1 x U _R	U _R						
1,1 x U _R							
between U_R and $-2~V$							
1,2 x U _R	1,15 x U _R						
2 V							

Ripple current*

Maximum permissible r.m.s. ripple current at

100 Hz and $T_{amb} = 85 \, {}^{\circ}\text{C}$

see Table 2

Fig. 6 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 7 Multiplier of ripple current as a function of frequency; case sizes 00 to 05; I_{r0} = ripple current at 85 °C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\frac{\sum \frac{I_{n^2}}{r_n} \leqslant I_{r \max}^2}$$

 $I_{r \text{ max}}$ = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0}$ = multiplying factor at a same frequency.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitors. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of the rated voltage at T_{amb} = 25 ^{o}C

D.C. leakage current during continuous operation at U_R , case sizes 00 to 05, at T_{amb} = 25 °C

see Table 2 (0,006 CU + 4 μ A)

approx. 0,01 x values stated in Table 2 ≤ values stated in Table 2

If the d.c. leakage current is too high, owing to prolonged storage and/or storage at an excessive temperature (> 40 °C), application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Fig. 8 Multiplier of d.c. leakage current as a function of ambient temperature; case sizes 00 to 05; I_0 = d.c. leakage current during continuous operation at 25 $^{\circ}$ C and U $_{R}$.

Fig. 9 Multiplier of d.c. leakage current as a function of U/U $_{R}$; case sizes 00 to 05; I_{0} = d.c. leakage current during continuous operation at 25 o C and U $_{R}$.

Tan δ (dissipation factor)

Maximum $\tan \delta$ at 100 Hz and $T_{amb} = 25$ °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 10 Multiplier of ESR as a function of ambient temperature, case sizes 00, 01 and 02; ESR $_0$ = typical ESR at 20 $^{\rm o}$ C, 100 Hz.

Fig. 11 Multiplier of ESR as a function of ambient temperature, case sizes 03, 04 and 05; ESR $_0$ = typical ESR at 20 $^{\circ}$ C, 100 Hz.

Fig. 12 Multiplier of ESR as a function of frequency; case sizes 00 to 05; ESR $_0$ = typical ESR at 20 °C, 100 Hz.

Impedance

Maximum impedance at T_{amb} = 25°C and 1 kHz or 10 kHz, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

 $z = Z \times C_{nom}$, at 10 kHz; case sizes 2 to 7

see Table 4

Table 4

_	$z = Z \times C_{nom} (\Omega \mu F)$ at U_R ; at 10 kHz										
T _{amb}	10 V	16 V	25 V	40 V	63 V	100 V					
+20 °C	≤ 200	≤ 160	≤ 120	≤ 70	≤ 55	≤ 90					
–25 °C –40 °C	≤ 1200 ≤ 3200		≤ 560 ≤ 1500	≤ 300 ≤ 900	≤ 180 ≤ 500	≤ 600≤ 1600					
–55 °C	typ. 9000	typ. 6500	typ. 5000	typ. 3000	typ. 1500	typ. 5000					

Fig. 13 Typical impedance as a function of frequency at $T_{amb} = 20$ °C, case size 00. Curve 1 = 220 μ F, 63 V; curve 2 = 470 μ F, 40 V; curve 3 = 680 μ F, 25 V;

curve 4 = $1000 \mu F$, 16 V; curve 5 = $1500 \mu F$. 10 V.

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 20 o C, case size 01. Curve 1 = 330 μF , 63 V; curve 2 = 470 μF , 63 V; curve 3 = 680 μF , 40 V; curve 4 = 1000 μF , 25 V and 40 V; curve 5 = 1500 μF , 16 V and 25 V; curve 6 = 2200 μF , 10 V and 16 V; curve 7 = 3300 μF , 10 V.

Fig. 15 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 02. Curve 1 = 680 μ F, 63 V; curve 2 = 1500 μ F, 40 V; curve 3 = 2200 μ F, 25 V; curve 4 = 3300 μ F, 16 V; curve 5 = 4700 μ F, 10 V.

Fig. 16 Typical impedance as a function of frequency at $T_{amb} = 20$ °C, case size 03. Curve 1 = 1000 μ F, 63 V; curve 2 = 2200 μ F, 40 V;

Fig. 17 Typical impedance as a function of frequency at $T_{amb} = 20$ °C, case size 04. Curve 1 = 1500 μ F, 63 V; curve 2 = 3300 μ F, 40 V; curve 3 = 4700 μ F, 25 V; curve 4 = 6800 μ F, 16 V; curve 5 = 10 000 μ F, 10 V.

Fig. 19 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 00. Curve 1 = 220 μ F, 63 V; curve 2 = 470 μ F, 40 V; curve 3 = 680 μ F, 25 V; curve 4 = 1000 μ F, 16 V; curve 5 = 1500 μ F, 10 V.

Fig. 20 Typical impedance as a function of frequency at T_{amb} = 85 o C, case size 01. Curve 1 = 330 μ F, 63 V; curve 2 = 470 μ F, 63 V; curve 3 = 680 μ F, 40 V; curve 4 = 1000 μ F, 25 V and 40 V; curve 5 = 1500 μ F, 16 V and 25 V; curve 6 = 2200 μ F, 10 V and 16 V; curve 7 = 3300 μ F, 10 V.

Fig. 21 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 02. Curve 1 = $680~\mu\text{F}$, 63~V; curve 2 = $1500~\mu\text{F}$, 40~V; curve 3 = $2200~\mu\text{F}$, 25~V; curve 4 = $3300~\mu\text{F}$, 16~V; curve 5 = $4700~\mu\text{F}$, 10~V.

Fig. 22 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 03. Curve 1 = 1000 μ F, 63 V; curve 2 = 2200 μ F, 40 V; curve 3 = 3300 μ F, 25 V; curve 4 = 4700 μ F, 16 V; curve 5 = 6800 μ F, 10 V.

Fig. 23 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 04. Curve 1 = 1500 μ F, 63 V; curve 2 = 3300 μ F, 40 V; curve 3 = 4700 μ F, 25 V; curve 4 = 6800 μ F, 16 V; curve 5 = 10 000 μ F, 10 V.

Fig. 24 Typical impedance as a function of frequency at T_{amb} = 85 °C, case size 05. Curve 1 = 2200 μ F, 63 V; curve 2 = 4700 μ F, 40 V; curve 3 = 6800 μ F, 25 V; curve 4 = 10 000 μ F, 16 V; curve 5 = 15 000 μ F, 10 V.

Fig. 25 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 00. Curve 1 = 220 μ F, 63 V; curve 2 = 470 μ F, 40 V; curve 3 = 680 μ F, 25 V; curve 4 = 1000 μ F, 16 V; curve 5 = 1500 μ F, 10 V.

Fig. 26 Typical impedance as a function of frequency at $T_{amb}=-25$ ^{o}C , case size 01. Curve 1 = 330 μF , 63 V; curve 2 = 470 μF , 63 V; curve 3 = 680 μF , 40 V; curve 4 = 1000 μF , 25 V and 40 V; curve 5 = 1500 μF , 16 V and 25 V; curve 6 = 2200 μF , 10 V and 16 V; curve 7 = 3300 μF , 10 V.

Fig. 27 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 02. Curve 1 = 680 μ F, 63 V; curve 2 = 1500 μ F, 40 V; curve 3 = 2200 μ F, 25 V; curve 4 = 3300 μ F, 16 V; curve 5 = 4700 μ F, 10 V.

Fig. 28 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 03. Curve 1 = 1000 μ F, 63 V; curve 2 = 2200 μ F, 40 V; curve 3 = 3300 μ F, 25 V; curve 4 = 4700 μ F, 16 V; curve 5 = 6800 μ F, 10 V.

Fig. 29 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 04. Curve 1 = 1500 μ F, 63 V; curve 2 = 3300 μ F, 40 V; curve 3 = 4700 μ F, 25 V; curve 4 = 6800 μ F, 16 V; curve 5 = 10 000 μ F, 10 V.

Fig. 30 Typical impedance as a function of frequency at $T_{amb} = -25$ °C, case size 05. Curve 1 = 2200 μ F, 63 V; curve 2 = 4700 μ F, 40 V; curve 3 = 6800 μ F, 25 V; curve 4 = 10 000 μ F, 16 V;

curve $5 = 15000 \,\mu\text{F}$, $10 \,\text{V}$.

Fig. 31 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 00. Curve 1 = 220 μ F, 63 V; curve 2 = 470 μ F, 40 V; curve 3 = 680 μ F, 25 V; curve 4 = 1000 μ F, 16 V; curve 5 = 1500 μ F, 10 V.

Fig. 32 Typical impedance as a function of frequency at $T_{amb} = -40~^{\circ}\text{C}$, case size 01. Curve 1 = 330 μF , 63 V; curve 2 = 470 μF , 63 V; curve 3 = 680 μF , 40 V; curve 4 = 1000 μF , 25 V and 40 V; curve 5 = 1500 μF , 16 V and 25 V; curve 6 = 2200 μF , 10 V and 16 V; curve 7 = 3300 μF , 10 V.

Fig. 33 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 02. Curve 1 = 680 μ F, 63 V; curve 2 = 1500 μ F, 40 V; curve 3 = 2200 μ F, 25 V; curve 4 = 3300 μ F, 16 V; curve 5 = 4700 μ F, 10 V.

Fig. 34 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 03. Curve 1 = 1000 μ F, 63 V; curve 2 = 2200 μ F, 40 V; curve 3 = 3300 μ F, 25 V; curve 4 = 4700 μ F, 16 V; curve 5 = 6800 μ F, 10 V.

Fig. 35 Typical impedance as a function of frequency at $T_{amb} = -40$ °C, case size 04. Curve 1 = 1500 μ F, 63 V; curve 2 = 3300 μ F, 40 V; curve 3 = 4700 μ F, 25 V; curve 4 = 6800 μ F, 16 V; curve 5 = 10 000 μ F, 10 V.

a function of frequency at $T_{amb} = -40$ °C, case size 05. Curve 1 = 2200 μ F, 63 V; curve 2 = 4700 μ F, 40 V; curve 3 = 6800 μ F, 25 V; curve 4 = 10 000 μ F, 16 V; curve 5 = 15 000 μ F, 10 V.

Fig. 36 Typical impedance as

Fig. 37 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 00. Curve 1 = 220 μ F, 63 V; curve 2 = 470 μ F, 40 V; curve 3 = 680 μ F; 25 V; curve 4 = 1000 μ F; 16 V; curve 5 = 1500 μ F; 10 V.

Fig. 38 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 01. Curve 1 = 330 μF , 63 V; curve 2 = 470 μF , 63 V; curve 3 = 680 μF , 40 V; curve 4 = 1000 μF , 25 V and 40 V; curve 5 = 1500 μF , 16 V and 25 V; curve 6 = 2200 μF , 10 V and 16 V; curve 7 = 3300 μF , 10 V.

Fig. 39 Typical impedance as a a function of frequency at $T_{amb} = -55$ °C, case size 02. Curve 1 = 680 μ F, 63 V; curve 2 = 1500 μ F, 40 V; curve 3 = 2200 μ F, 25 V; curve 4 = 3300 μ F, 16 V; curve 5 = 4700 μ F, 10 V.

Fig. 40 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 03. Curve 1 = 1000 μ F, 63 V; curve 2 = 2200 μ F, 40 V; curve 3 = 3300 μ F, 25 V; curve 4 = 4700 μ F, 16 V; curve 5 = 6800 μ F, 10 V.

Fig. 41 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 04. Curve 1 = 1500 μ F, 63 V; curve 2 = 3300 μ F, 40 V; curve 3 = 4700 μ F, 25 V; curve 4 = 6800 μ F, 16 V; curve 5 = 10 000 μ F, 10 V.

Fig. 42 Typical impedance as a function of frequency at $T_{amb} = -55$ °C, case size 05. Curve 1 = 2200 μ F, 63 V; curve 2 = 4700 μ F, 40 V; curve 3 = 6800 μ F, 25 V; curve 4 = 10 000 μ F, 16 V; curve 5 = 15 000 μ F, 10 V.

Equivalent series inductance (ESL)

0	4 1711
Case size 2	typ. 17 nH
Case sizes 3 and 4	typ. 30 nH
Case size 5a	typ. 85 nH
Case size 5	typ. 50 nH
Case sizes 6 and 7	typ. 65 nH
Case sizes 00 and 01	typ. 50 nH
Case size 02	typ. 55 nH
Case sizes 03, 04 and 05	typ. 60 nH

OPERATIONAL DATA

Category temperature range	е
----------------------------	---

Typical life time
case sizes 2 to 7
case sizes 00 to 05
Shelf life at 0 V and T_{amb} = 85 o C

-55 to +85 °C

$T_{amb} = 85$ °C	$T_{amb} = 40 {}^{\circ}C$
2000 h	50 000 h
5000 h	< 100 000 h
500 h	

PACKING

All capacitors are supplied in boxes, except case sizes 2 to 7 of style 1, which are on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 5.

Table 5

	number of capacitors							
case size	style 1 per reel	style 1 per box	styles 2 and 3 per box					
2	3000	1000	1000					
3	1000	1000	1000					
5a	500	500	1000					
4	1000	1000	1000					
5	500	500	1000					
6	500	500	1000					
7	500	500	500					
00		200	200					
01		200	200					
02		200	200					
03		200	200					
04		100	100					
05		100	100					

Fig. 43 Style 1 capacitors (case sizes 2 to 7) on bandoliers: the bandolier to which the negative capacitor terminals are connected is blue. See Table 6 for dimensions A, S, T and L_{max} . |B1-B2| = max. 1,4 mm.

Table 6
Dimensions in mm

case size A		S	1	number (n) pacitors	L _{max}
			n < 50	50 < n < 100	
2	63,5 ± 1,5	5 ± 0,4	5 (n-1) ± 2	5 (n-1) ± 4	10,5
3	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	10,5
5a	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	11,5
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
5	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
6	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	18,5
7	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	25,0

Fig. 44 Style 1 capacitors (case sizes 2 to 7) on bandoliers on reel; dimensions C is 83,5 mm for case sizes 2, 3 and 5a, and 88,5 mm for case sizes 4, 5, 6 and 7; the overall width of the reel is 94,5 mm and 99,5 mm respectively.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After shelf life test, 500 h, 85 $^{\circ}$ C, the capacitors meet the same requirements as after endurance test, except for d.c. leakage current (case size 2 to 7): \leq 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

Note:

Capacitors 2222 021 are miniature types, general-purpose grade, and small types, long-life grade.

030; 031; 032; 033; 041; 042; 043

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads or single ended
- Long life
- General and industrial applications

Selection chart for C. -Up and relevant case sizes

C _{nom}						U _R (V)					
μF	6,3	10	16	25	40	63	100	160	250	350	385
0,33						2					
0,47						2					
0,68						2		<u> </u>			
1						2	2				4
1,5						2					
2,2					1	2	2		4		5
3,3				1		2	2				
4,7			1			2	3	4	5	6	7
6,8		1			2	2	3	L		00	00
10	1			2	2	3	4/5a	5	7/00	01	01
15			2		2	3			01	01	02
22		2		2	3	4/5a	5	7/00	01	02	03
33	2		2		3		6	01	02	03	04
47		2		3	4/5a	5	7	02	03	04	04
68	2		3			6	00	02	04	05	05
100		3		4/5a	5	7	01	03	05		
150	3		4/5a	5	6	00	02	04			
220		4/5a	5	6	7/00	01	03	05			
330		5	6	7	01	02	04				
470	5	6	7	00	01	02	05	<u> </u>			
680	6	7	00	01	02	03	05				
1 000	7	00	01	02	03	05					
1 500	00	01	02	03	04	05					
2 200	01	02	03	04	05						
3 300	02	03	04	05	05						
4 700	03	04	05	05							
6 800	04	05	05								
10 000	05	05									
15 000	05										
	2		30; 031						22 041; pages 2		
		see	pages 1	see pages 109 to 151							

Miniature types

case size	nominal dimensions mm	series number	
1	Ø 3,3 x 11		4
2	Ø 4,5 x 10	030	
3	Ø 6 × 10	030	
5a	Ø 8 x 11		
4	Ø 6,5 x 18		
5	Ø 8 × 18	031	
6	Ø 10 × 18	041	
7	Ø 10 × 25		

Small types

Sman types								
case size	nominal dimensions mm	series number						
00	Ø 10 × 30							
01	Ø 12,5 x 30	032						
02	Ø 15 × 30	042						
03	Ø 18 × 30							
04	Ø 18 × 40	033						
05	Ø 21 x 40	043						

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads and single ended
- Long life
- General and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range

(E6 series):

0,33 to 15 000 μF

Tolerance on nominal capacitance: -10 to +50%

Rated voltage range, UR

(R5 series):

6,3 to 100 V

Category temperature range:

case sizes 1 to 7 case sizes 00 to 05

 $-55 \text{ to} + 85 \text{ }^{\circ}\text{C}$

-40 to +85 °C

Endurance test at 85 °C

case size 1:

1000 h

case sizes 2 to 7: case sizes 00 to 05:

2000 h 5000 h

Shelf life at 0 V; 85 °C:

5000 H

Shell me at o v, os

500 h

Basic specifications:

IEC 384-4, long-life grade*

DIN 41316 (6,3 to 63 V versions)

DIN 41332 (100 V version)

Climatic category

IEC 68, case sizes 1 to 7:

55/085/56

case sizes 00 to 05:

40/085/56

DIN 40040, case sizes 1 to 7:

: FPF

case sizes 00 to 05: GPF

		Γ	I
case	nominal	series	
size	dimensions (mm)	number	
1	Ø 3,3 x 11		
2	Ø 4,5 x 10	030	
3	Ø 6 × 10	030	a l
5a	Ø 8 × 11		효
4	Ø 6,5 x 18		miniature
5	Ø 8 × 18	031	٤
6	Ø10 × 18	031	
7	Ø10 x 25		
00	Ø10 ×30		
01	Ø 12,5 x 30	032	
02	Ø15 x30	032	
03	Ø18 x30		small
04	Ø18 × 40	033	22
05	Ø21 x 40	033	

Selection chart for $\mathbf{C}_{nom}\text{-}\mathbf{U}_{R}$ and relevant case sizes.

C _{nom}			U	٦ (V)			
	6,3	10	16	25	40	63	100
0,33						2	
0,47						2	
0,68						2	
1						2	2
1,5						2	
2,2					1	2	2
3,3				1		2	2 2 3 3
4,7			1			2	3
6,8		1			2	2 2 2 2 2 2 2 2 2 2 2 3	3
10	1			2	2 2 2 3 3	3	4/5a
15			2		2	3	
22		2		2	3	4/5a	
33	2		2		3		6
47		2		3	4/5a	5	7
68	2		3			6 7	00
100		3		4/5a			01
150	3		4/5a		6	00	02
220		4/5a		6	7/00		03
330		5	6	7	01	02	04
470	5	6	7	00	01	02	05
680	6	7	00	01	02	03	05
1 000		00	01	02	03	05	
1 500		01	02	03	04	05	-
2 200		02	03	04	05		
3 300		03	04	05	05		
4 700		04	05	05			
6 800		05	05				-
10 000)	05	l				
15 000	05						
			l	}			
			<u> </u>			L	

^{*} Not applicable to case size 1, which is general-purpose grade.

APPLICATION

These capacitors with high CU-product per unit volume are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and television circuits, and in industrial applications, such as measuring and regulating circuits. Other applications are in timing and delay circuits. The taped versions are extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in an aluminium case, which is insulated with a blue plastic sleeve.

The capacitors are available in 3 styles, all with soldered-copper leads.

Style 1: axial leads; all case sizes; case sizes 1 to 7 are supplied on bandoliers.

Style 2: single ended; with mounting ring with printed-wiring pins; especially for use in applications with severe shocks and vibrations; case sizes 02 to 05.

Style 3: single ended; case sizes 1 to 7 and 00 to 02.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions d, D, L, I and P.

Table 1a

case					style 1			mass
size d l	1	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	approx	
1	0,6	*	3,3	11,0	3,5	12,0	15	0,35
2	0,6	*	4,5	10,0	5,0	10,5	15	0,50
3	0,6	*	6,0	10,0	6,3	10,5	15	0,70
5а	0,6	*	8,0	11,0	8,5	11,5	15	1,1
4	0,8	*	6,5	18,0	6,9	18,5	25	1,3
5	0,8	*	8,0	18,0	8,5	18,5	25	1,7
6	0,8	*	10,0	18,0	10,5	18,5	25	2,5
7	0,8	*	10,0	25,0	10,5	25,0	30	3,3
00	0,8	55 ± 1	10,0	30,0	10,5	30,5	35,0	4
01	0,8	55 ± 1	12,5	30,0	13,0	30,5	35,0	6,3
02	0,8	55 ± 1	15,0	30,0	15,5	30,5	35,0	8,2
03	0,8	55 ± 1	18,0	30,0	18,5	30,5	35,0	10,9
04	0,8	34 ± 1	18,0	40,0	18,5	41,5	45,0	14
05	0,8	34 ± 1	21,0	40,0	21,5	41,5	45,0	19

^{*} Case sizes 1 to 7 are supplied on bandoliers in boxes or on reels (see PACKING).

Tab	ole	1	b
-----	-----	---	---

Table 1c

case size		mass approx.					
	d ₁	d ₂	D1	D2 _{max}	D3	L	g
02 03 04 05	0,8 0,8 1,0 1,0	1 + 0,1 1 + 0,1 1,3 + 0,1 1,3 + 0,1	18,0 18,0	17,5 19,5 19,5 22,5	16,5 ± 0,2 18,5 ± 0,2 18,5 ± 0,2 21,5 ± 0,2	31 ± 1 31 ± 1 42 ± 1 42 ± 1	8,6 11,5 14,5 19,7

case size			mass approx.		
3126	d	D _{max} L _{max}		Р	g g
1 2 3 5a	0,6 0,6 0,6 0,6	3,5 5,0 6,3 8,5	14,0 12,5 12,5 13,0	2,5— 5 2,5— 5 3,5— 7,5 5—10	0,25 0,40 0,55 1,0
4 5 6 7	0,8 0,8 0,8 0,8	6,9 8,5 10,5 10,5	21,5 21,5 21,5 21,5 28,0	5 –10 5 –10 7,5–12,5 7,5–12,5	1,2 1,6 2,3 3,1
00 01 02	0,8 0,8 0,8	10,5 13,0 15,5	34,0 34,0 34,0	7,5—12,5 7,5—12,5 10,0—15,0	3,8 6,1 8,0

 $1 - {0 \atop 0,1} (3x)$

-1,3 _ 0,05 (3x)

90° ± 2°

Fig. 3 Style 3 see Table 1c for dimensions d, D, L and P.

Marking

The capacitors are marked with:

nominal capacitance;

tolerance on nominal capacitance (not for case size 1);

rated voltage;

group number; code of origin;

name of manufacturer:

date code (year and month) according to IEC 62;

band to identify the negative terminal;

+ signs to identify the positive terminal (not for case sizes 1 to 5a).

Mounting

The capacitors are suitable for mounting on printed-wiring boards; the required hole diameters are shown in Table 1d.

Table 1d

style	lead/pin diameter	required hole diameter		
1 and 3	0,6 mm lead 0,8 mm lead	0,8 + 0,1 mm 1,0 + 0,1 mm		
2	0,8 mm anode pin 1,0 mm anode pin cathode pins	1 + 0,1 mm 1,3 + 0,1 mm 1,3 + 0,1 mm		

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

UR	nom. cap.	max. r.m.s. ripple current at 85 °C	max. d.c. leak- age current at UR after 1 min.	tan δ	max. ESR	max. impedance Ω		case size	catalogue number * 2222 followed by
٧	μF	mA	μΑ		Ω	at 10 kHz	at 1 kHz		Tollowed by
6,3	10	14	5	0,30	47,8	20		1	030 .3109
6,3	33	42	11	0,25	12,1	6,1		2	030 .3339
6,3	68	53	22	0,25	5,86			2	030 .3689
6,3	150	87	10	0,25	2,66	1,3		3	030 .3151
6,3	470	220	22	0,25	0,85			5	031 .3471
6,3	680	350	30	0,25	0,59			6	031 .3681
6,3	1000	480	42	0,25	0,40			7	031 .3102
6,3	1500	450	61	0,28	0,30		0,23	00	032 .3152
6,3	2200	610	88	0,29	0,21		0,16	01	032 .3222
6,3	3300	790	129	0,32	0,15		0,11	02	032 .3332
6,3	4700	1000	182	0,34	0,12		0,07	03	032 .3472
6,3	6800	1280	261	0,39	0,09		0,05	04	033 .3682
6,3	10000	1570	382	0,45	0,07		0,05	05	033 .3103
6,3	15000	1600	571	0,67	0,07		0,05	05	033 .3153
10	6,8	14	5	0,25	58,6	24		1	030 .4688
10	22	42	11	0,20	14,5	7,3		2	030 .4229
10	47	53	24	0,20	6,78			2	030 .4479
10	100	87	10	0,20	3,19			3	030 .4101
10	220	150	18	0,20	1,45			5a	030 .4221
10	220	150	18:	0,20	1,45			4	031 .4221
10	330	220	24	0,20	0,97			5	031 .4331
10	470	350	33	0,20	0,68			6	031 .4471
10	680	480	45	0,20	0,47			7	031 .4681
10	1000	430	64	0,20	0,32			00	032 .4102
10	1500	570	94	0,23	0,25		0,20	01	032 .4152
10	2200	740	136	0,24	0,18	1	0,14	02	032 .4222
10	3300	950	202	0,27	0,13		0,09	03	032 .4332
10	4700	1220	286	0,29	0,10		0,06	04	033 .4472
10	6800	1500	412	0,34	0,08		0,04	05	033 .4682
10	10000	1520	604	0,49	0,08		0,05	05	033 .4103

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 1 to 4) 3 for style 1 on bandoliers in box (preferred for case sizes 5a to 7)

⁴ for style 2, case sizes 02 to 05;

⁸ for style 3, case sizes 1 to 02.

_										
	UR	nom. cap.	max. r.m.s. ripple current at 85 °C	max. d.c. leak- age current at UR after 1 min.	max. tan δ	max. ESR	max. impe	dance	case size	catalogue number * 2222 followed by
	٧	μF	mA	μΑ		Ω	at 10 kHz	at 1 kHz		: 1
	16	4,7	14	5	0,20	67,8	26		1	030 .5478
	16	15	42	12	0,16	17,0	8		2	030 .5159
	16	33	53	27	0,16	7,72	3,6		2	030 .5339
	16	68	87	11	0,16	3,75	1,8		3	030 .5689
	16	150	150	19	0,16	1,70			5a	030 .5151
	16	150	150	19	0,16	1,70	0,80		4	031 .5151
	16	220	220	26	0,16	1,16	0,55		5	031 .5221
	16	330	350	36	0,16	0,78	0,36		6	031 .5331
	16	470	480	49	0,16	0,55	0,26		7	031 .5471
	16	680	400	70	0,16	0,38	0,18		00	032 .5681
	16	1000	550	100	0,16	0,26	0,12		01	032 .5102
	16	1500	680	148	0,19	0,21		0,17	02	032 .5152
	16	2200	880	216	0,20	0,15		0,13	03	032 .5222
	16	3300	1160	321	0,23	0,11		0,08	04	033 .5332
	16	4700	1430	455	0,25	0,09		0,06	05	033 .5472
	16	6800	1460	657	0,36	0,08		0,06	05	033 .5682
	25	3,3	13	5	0,18	86,9	27		1	030 .6338
	25	10	36	13	0,14	22,3	9		2	030 .6109
	25	22	43	28	0,14	10,2	4,1		2	030 .6229
	25	47	83	12	0,14	4,80	1,9		3	030 .6479
	25	100	120	19	0,14	2,23	0,90		5a	030 .6101
	25	100	120	19	0,14	2,23	0,90		4	031 .6101
	25	150	190	27	0,14	1,49	0,60		5	031 .6151
	25	220	280	37	0,14	1,02	0,41		6	031 .6221
	25	330	350	54	0,14	0,68	0,27		7	031 .6331
	25	470	360	75	0,14	0,47	0,19		00	032 .6471
	25	680	500	106	0,14	0,32	0,13		01	032 .6681
	25	1000	660	154	0,14	0,22	0,09		02	032 .6102
	25	1500	810	229	0,17	0,18		0,15	03	032 .6152
	25	2200	1060	334	0,18	0,13		0,10	04	033 .6222
	25	3300	1340	499	0,21	0,10		0,07	05	033 .6332
	25	4700	1370	709	0,28	0,10		0,06	05	033 .6472
			. 1		1	1	1		1	l e

^{*} Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 1 to 4) 3 for style 1 on bandoliers in box (preferred for case sizes 5a to 7) case sizes 1 to 7

⁴ for style 2, case sizes 02 to 05;

⁸ for style 3, case sizes 1 to 02.

2222 030 2222 031 2222 032 2222 033

		T	,			r			
$U_{\mathbf{R}}$	nom.	max, r.m.s.	max. d.c. leak-	max.	max.	max. imp	edance	case	catalogue
- N	cap.	ripple current at		tan δ	ESR			size	number *
		85 °C	UR after 1 min.				Ω		2222
			,,			at	at		followed by
٧	μF	mA	μΑ		Ω	10 kHz	1 kHz		
			_						000 7000
40	2,2	13	5	0,15	109	32	İ	1	030 .7228
40	6,8	36	14	0,11	25,8	10		2	030 .7688
40	10	38	20	0,11	17,6	7		2	030 .7109
40	15	43	30	0,11	11,7	4,7	1	2	030 .7159
40	22	61	9	0,11	8,0	3,2		3	030 .7229
40	33	83	12	0,11	5,31	2,1		3	030 .7339
40	47	120	16	0,11	3,73	1,5		5a	030 .7479
40	47	120	16	0,11	3,73	1,5		4	031 .7479
40	100	190	28	0,11	1,75	0,70		5	031 .7101
40	150	280	40	0,11	1,17	0,47		6	031 .7151
40	220	430	57	0,11	0,80	0,32		7	031 .7221
40	220	260	57	0,12	0,86	0,32		00	032 .7221
40	330	370	84	0,12	0,58	0,21	ļ	01	032 .7331
40	470	440	117	0,12	0,40	0,15		01	032 .7471
40	680	580	167	0,12	0,28	0,10		02	032 .7681
40	1000	780	244	0,12	0,19	0,07		03	032 .7102
40	1500	970	364	0,15	0,16		0,13	04	033 .7152
40	2200	1220	532	0,16	0,12		0,09	05	033 .7222
40	3300	1284	796	0,24	0,11		0,07	05	033 .7332
63	0,33	5	5	0,09	435	167	}	2	030 .8337
63	0,47	8	5	0,09	305	117	ļ	2	030 .8477
63	0,68	10	5	0,09	211	81		2	030 .8687
63	1,0	12	5	0,09	143	55		2	030 .8108
63	1,5	12	5	0,09	95,6	37		2	030 .8158
63	2,2	21	7	0,09	65,2	25		2	030 .8228
63	3,3	25	11	0,09	46,5	17		2	030 .8338
63	4,7	31	15	0,09	30,5	12		2	030 .8478
63	6,8	35	22	0,09	21,1	8,1		2	030 .8688
63	10	51	7	0,08	12,8	5,5		3	030 .8109
63	15	61	10	0,08	8,5	3,7		3	030 .8159
63	22	90	13	0,08	5,79	2,5		5a	030 .8229
63	22	90	13	0,08	5,79	2,5		4	031 .8229
63	47	120	22	0,08	2,71	1,2		5	031 .8479
63	68	200	30	0,08	1,88	0,81		6	031 8689
63	100	260	42	0,08	1,28	0,55		7	031 .8101
63	150	260	61	80,0	0,90	0,37		00	032 .8151
63	220	350	88	80,0	0,61	0,25		01	032 .8221
63	330	480	129	0,08	0,41	0,17		02	032 .8331
63	470	570	182	0,08	0,29	0,15		02	032 .8471
63	680	770	261	0,08	0,20	0,08		03	032 .8681
63	1000	1140	382	0,08	0,14	0,06		05	033 .8102
63	1500	1110	571	0,12	0,15	1	0,15	05	033 .8152
							<u> </u>		

^{*} See footnote on the opposite page.

		T	г		,				
U_{R}	nom.	1	max. d.c. leak-		max.	max. impedance		case	catalogue
	cap.	ripple current at	· -	tan δ	ESR			size	number *
		85 oC	UR after 1 min.			1 5	$\mathbf{\Omega}$	1	2222
						at	at		followed by
V	μF	mA	μΑ		Ω	10 kHz	1 kHz		
100	1,0	14	5	0,08	128	45		2	030 .9108
100	2,2	25	11	80,0	57,9	21		2	030 .9228
100	3,3	35	17.	0,08	38,6	14		2	030 .9338
100	4,7	38	22	0,07	23,7	9,6		3	030 .9478
100	6,8	61	34	0,07	16,4	6,6		3	030 .9688
100	10	90	50	0,07	11,2	4,5		5a	030 .9109
100	10	90	50	0,07	11,2	4,5		4	031 .9109
100	22	120	80	0,07	5,07	2,1		5	031 .9229
100	33	200	119	0,07	3,38	1,4		6	031 .9339
100	47	260	33	0,07	2,37	0,96		7	031 .9479
100	68	130	45	0,15	3,53	2,0		00	032 .9689
100	100	190	64	0,15	2,40	1,2		01	032 .9101
100	150	250	94	0,15	1,60	0,85		02	032 .9151
100	220	330	136	0,15	1,09	0,60		03	032 .9221
100	330	460	202	0,15	0,73	0,50		04	033 .9331
100	470	600	286	0,15	0,51	0,35		05	033 .9471
100	680	650	412	0,15	0,42	0,35		05	033 .9681

^{*} Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel (preferred for case sizes 1 to 4) 3 for style 1 on bandoliers in box (preferred for case sizes 5a to 7) case sizes 1 to 7

⁴ for style 2, case sizes 02 to 05;

⁸ for style 3, case sizes 1 to 02.

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 °C see Table 2

Tolerance on nominal capacitance at 100 Hz -10 to +50%

Fig. 4 Multiplier of capacitance as a function of ambient temperature; case sizes 1 to 7; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 5 Multiplier of capacitance as a function of ambient temperature; case sizes 00 to 05; C_0 = capacitance at 25 °C, 100 Hz.

Fig. 6 Multiplier of capacitance as a function of frequency; case sizes 1 to 7; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 7 Multiplier of capacitance as a function of frequency; case sizes 00 to 05; C_0 = capacitance at 25 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max, peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max, permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity at the maximum category temperature for short periods

core tem	perature 📤
<60 oC	60 to 95 °C
1,1 x U _R	UR
1,1 x U _R 1 between U _F 1,15 x	•

Ripple current **

Maximum permissible r.m.s. ripple current at

100 Hz and $T_{amb} = 85$ °C 100 Hz and $T_{amb} = 40$ °C see Table 2 2,24 x values stated in Table 2

1 V

Fig. 8 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- * Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 9 Multiplier of ripple current as a function of frequency, case sizes 1 to 7; I_{r0} = ripple current at 85 °C, 100 Hz.

Fig. 10 Multiplier of ripple current as a function of frequency, case sizes 00 to 03; I_{r0} = ripple current at 85 o C, 100 Hz.

Fig. 11 Multiplier of ripple current as a function of frequency, case sizes 04 and 05; I_{r0} = ripple current at 85 $^{\circ}$ C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n^2}}{r_n} \leqslant I_{r \text{ max}^2}$$

I_{r max} = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0} = \text{multiplying factor at a same frequency.}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of U_R , at $T_{amb} = 20$ °C.

case sizes 3 to 7 and 00 to 05

whichever is greater)

see Table 2 (0.05 CU or 5 μ A,

see Table 2 (0,006 CU + 4 μ A for CU > 1000 μ C; 0,01 CU or 1 μ A, whichever is greater for CU \le 1000 μ C)

approx. 0,1 x values of Table 2 approx. 0,01 x values of Table 2 \leq values of Table 2

D.C. leakage current during continuous operation at U_R at T_{amb} = 20 °C, case sizes 1 to 7 at T_{amb} = 20 °C, case sizes 00 to 05 at T_{amb} = 85 °C

If owing to prolonged storage and/or storage at an excessive temperature (> 40 $^{\circ}$ C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Fig. 12 Multiplier of d.c. leakage current as a function of ambient temperature, cases sizes 00 to 05; $I_0 = \text{d.c.}$ leakage current during continuous operation at 25 °C and U $_{\rm R}$.

Fig. 13 Multiplier of d.c. leakage current as a function of U/U $_{\rm R}$, case sizes 00 to 05; I $_{\rm 0}$ = d.c. leakage current during continuous operation at 25 $^{\rm O}$ C and U $_{\rm R}$.

Tan δ (dissipation factor) Maximum tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 14 Typical tan δ as a function of ambient temperature at 100 Hz; case sizes 1 to 7.

Fig. 15 Typical tan δ as a function of frequency at 25 °C, case sizes 1 to 7.

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson Circuit) (ESR = $\tan \delta/\omega$ C)

see Table 2

Fig. 16 Typical ESR as a function of ambient temperature at 100 Hz.

Case size 00:

```
curve 1 = 68 \muF, 100 V;
curve 2 = 150 \muF, 63 V;
curve 3 = 220 \muF, 40 V;
curve 4 = 470 \muF, 25 V;
curve 5 = 680 \muF, 16 V;
curve 6 = 1000 \muF, 10 V;
curve 7 = 1500 \muF, 6,3 V.
```

Fig. 17 Typical ESR as a function of ambient temperature at 100 Hz.

Case size 01:

```
curve 1 = 100 \muF, 100 V;

curve 2 = 220 \muF, 63 V;

curve 3 = 330 \muF, 40 V;

curve 4 = 470 \muF, 40 V;

curve 5 = 680 \muF, 25 V;

curve 6 = 1000 \muF, 16 V;

curve 7 = 1500 \muF, 10 V and 2200 \muF, 6,3 V.
```


Tamb (°C)

Fig. 19 Typical ESR as a function of ambient temperature at 100 Hz.

Case size 03: $\operatorname{curve} 1 = 220 \ \mu\text{F}, \ 100 \ \text{V};$ $\operatorname{curve} 2 = 680 \ \mu\text{F}, \ 63 \ \text{V};$ $\operatorname{curve} 3 = 1000 \ \mu\text{F}, \ 40 \ \text{V};$ $\operatorname{curve} 4 = 1500 \ \mu\text{F}, \ 25 \ \text{V};$ $\operatorname{curve} 5 = 2200 \ \mu\text{F}, \ 16 \ \text{V};$

Fig. 18 Typical ESR as a function of ambient temperature at 100 Hz.

Case size 02: curve 1 = 150 μ F, 100 V; curve 2 = 330 μ F, 63 V; curve 3 = 470 μ F, 63 V; curve 4 = 680 μ F, 40 V; curve 5 = 1000 μ F, 25 V; curve 6 = 1500 μ F, 16 V; curve 7 = 2200 μ F, 10 V and 3300 μ F, 6,3 V.

curve 6 = 3300 μ F, 10 V and 4700 μ F, 6,3 V.

curve 1 = 330 μ F, 100 V; curve 2 = 1500 μ F, 40 V and 2200 μ F, 25 V; curve 3 = 3300 μ F, 16 V, 4700 μ F, 10 V and 6800 μ F, 6,3 V.

Fig. 21 Typical ESR as a function of ambient temperature at 100 Hz.

case size 05:

curve 1 = 470 μ F, 100 V and 680 μ F, 100 V; curve 2 = 1000 μ F, 63 V; curve 3 = 1500 μ F, 63 V; curve 4 = 2200 μ F, 40 V and 3300 μ F, 25 V; curve 5 = 4700 μ F, 16 V, 6800 μ F, 10 V, 10 000 μ F, 6,3 V and 15 000 μ F, 6,3 V.

Fig. 22 Typical ESR as a function of frequency at 25 °C. 6,3 to 63 V versions, case size 00:

curve 1 = 150 μ F, 63 V;

curve 3 = 470 μ F, 25 V;

curve 5 = $1000 \mu F$, 10 V; curve 6 = $1500 \mu F$, 6.3 V.

curve $2 = 220 \,\mu\text{F}$, 40 V;

curve $4 = 680 \,\mu\text{F}$, $16 \,\text{V}$;

Fig. 23 Typical ESR as a function of frequency at 25 °C. 6,3 to 63 V versions, case size 01:

curve 1 = 220 μ F, 63 V;

curve 3 = 470 μ F, 40 V;

curve 5 = 1000 μ F, 16 V;

curve 2 = 330 μ F, 40 V;

curve $4 = 680 \,\mu\text{F}, 25 \,\text{V};$

curve 6 = 1500 μ F, 10 V; and 2200 μ F, 6,3 V.

and 2200 μ1 , 0,5 v

Fig. 24 Typical ESR as a function of frequency at 25 °C. 6,3 to 63 V versions, case size 02:

curve 1 = 330 μ F, 63 V; curve 2 = 470 μ F, 63 V; curve 3 = 680 μ F, 40 V; curve 4 = 1000 μ F, 25 V; curve 5 = 1500 μ F, 16 V; curve 6 = 2200 μ F, 10 V;

and 3300 μF, 6,3 V.

Fig. 25 Typical ESR as a function of frequency at 25 °C. 6,3 to 63 V versions, case size 03:

curve 1 = $680 \mu F$, 63 V;

curve 3 = 1500 μ F, 25 V;

curve 5 = 3300 μ F, 10 V; and 4700 μ F, 6,3 V.

curve 2 = 1000 μ F, 40 V;

Fig. 26 Typical ESR as a function of frequency at 25 °C. Case size 04: curve 1 = 1500 μ F, 40 V and 2200 μ F, 25 V; curve 2 = 3300 μ F, 16 V, 4700 μ F, 10 V and 6800 μ F, 6,3 V.

Fig. 27 Typical ESR as a function of frequency at 25 °C. Case size 05: curve 1 = 1000 μ F, 63 V; curve 2 = 1500 μ F, 63 V; curve 3 = 2200 μ F, 40 V and 3300 μ F, 25 V; curve 4 = 4700 μ F, 16 V, 6800 μ F, 10 V, 10 000 μ F and 15 000 μ F, 6,3 V.

Fig. 28 Typical ESR as a function of frequency at 25 °C; 100 V version:

curve 1 = 68 μ F, case size 00;

curve 2 = $100 \mu F$, case size 01;

curve 3 = 150 μ F, case size 02;

curve $4 = 220 \mu F$, case size 03;

curve $5 = 330 \mu F$, case size 04;

curve 6 = 470 μ f and 680 μ F, case size 05.

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C and 1 kHz or 10 kHz, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

 $z = Z \times C_{\text{nom}}$, at 10 kHz $z = Z \times C_{\text{nom}}$, at 1 kHz see Table 3

see Table 4

Table 3

T .	$z = Z \times C_{nom} (\Omega \mu F)$ at U _R ; at 10 kHz								
l amb	6,3 V	10 V	16 V	25 V	40 V	63 V	100 V		
+ 20 °C -25 °C -40 °C -55 °C*	≤ 200 ≤ 1200 ≤ 3200 typ. 6500	≤ 160 ≤ 750 ≤ 2000 typ. 5000	≤ 120 ≤ 560 ≤ 1500 typ. 3300	≤ 90 ≤ 400 ≤ 1100 typ. 2400	≤ 70 ≤ 300 ≤ 900 typ. 1500	≤ 55 ≤ 180 ≤ 500 typ. 850	≤ 45≤ 130≤ 350typ. 500		

Table 4

-			z = Z x C _{nom}	, (Ω μF) at U	R; at 1 kHz		
amb	6,3 V	10 V	16 V	25 V	40 V	63 V	100 V
+ 20 °C -25 °C -40 °C	≤ 350 ≤ 1700 ≤ 4500	≤ 300 ≤ 1100 ≤ 2800	< 250 ≤ 800 ≤ 2000	<pre>≤ 220 ≤ 570 ≤ 1400</pre>	≤ 200≤ 430≤ 1100	< 180 ≤ 330 ≤ 800	≤ 175 ≤ 300 ≤ -

^{*} For case sizes 1 to 7 only.

Fig. 29 Typical impedance as a function of ambient temperature at 10 kHz; case size 1:

```
curve 1 = 1 \muF, 63 V;
curve 2 = 2,2 \muF, 40 V;
curve 3 = 4,7 \muF, 16 V;
curve 4 = 10 \muF, 6,3 V.
```

Fig. 30 Typical impedance as a function of ambient temperature at 10 kHz; case size 2:

```
curve 1 = 0,47 \muF, 63 V;
curve 2 = 1 \muF, 63 V;
curve 3 = 3,3 \muF, 63 V;
curve 4 = 6,8 \muF, 63 V;
curve 5 = 10 \muF, 25 V;
curve 6 = 22 \muF, 25 V;
curve 7 = 47 \muF, 10 V;
curve 8 = 68 \muF, 6,3 V.
```


Fig. 31 Typical impedance as a function of ambient temperature at 10 kHz; case size 3:

```
curve 2 = 10 \muF, 63 V;
curve 3 = 22 \muF, 40 V;
curve 4 = 47 \muF, 25 V;
curve 5 = 68 \muF, 16 V;
curve 6 = 100 \muF, 10 V;
curve 7 = 150 \muF, 6,3 V.
```

curve 1 = 4,7 μ F, 100 V;

Fig. 32 Typical impedance as a function of ambient temperature at 10 kHz; case size 5a:

```
curve 1 = 22 \muF, 63 V; curve 2 = 47 \muF, 40 V; curve 3 = 100 \muF, 25 V; curve 4 = 150 \muF, 16 V; curve 5 = 220 \muF, 10 V.
```


Fig. 33 Typical impedance as a function of ambient temperature at 10 kHz; case size 4:

curve 1 = 22 μ F, 63 V; curve 2 = 47 μ F, 40 V; curve 3 = 100 μ F, 25 V; curve 4 = 220 μ F, 10 V.

Fig. 34 Typical impedance as a function of ambient temperature at 10 kHz; case size 5:

curve 1 = 47 μ F, 63 V; curve 2 = 150 μ F, 25 V; curve 3 = 330 μ F, 10 V; curve 4 = 470 μ F, 6,3 V.

Fig. 35 Typical impedance as a function of ambient temperature at 10 kHz; case size 6:

curve 1 = 68 μ F, 63 V; curve 2 = 150 μ F, 40 V; curve 3 = 220 μ F, 25 V; curve 4 = 330 μ F, 16 V; curve 5 = 680 μ F, 6,3 V.

Fig. 36 Typical impedance as a function of ambient temperature at 10 kHz; case size 7:

curve 1 = 100 μ F, 63 V; curve 2 = 220 μ F, 40 V; curve 3 = 470 μ F, 16 V; curve 4 = 1000 μ F, 6,3 V.

Fig. 37 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 1: curve 1 = 1 μ F, 63 V; curve 2 = 4,7 μ F, 16 V; curve 2 = 2,2 μ F, 40 V; curve 4 = 10 μ F, 6,3 V.

Fig. 38 Typical impedance as a function of frequency at T_{amb} = 20 o C; case size 2: curve 1 = 0,47 μ F, 63 V; curve 5 = 10 μ F, 25 V; curve 2 = 1 μ F, 63 V/100 V; curve 6 = 22 μ F, 25 V; curve 3 = 3,3 μ F, 63 V/100 V; curve 7 = 47 μ F, 10 V; curve 4 = 6,8 μ F, 63 V; curve 8 = 68 μ F, 6,3 V.

Fig. 39 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 3:

curve 1 = 4,7 μ F, 100 V; curve 2 = 10 μ F, 63 V; curve 5 = 68 μ F, 16 V; curve 6 = 100 μ F, 10 V;

curve 3 = 22 μ F, 40 V;

curve $7 = 150 \,\mu\text{F}$, 6,3 V.

curve 4 = 47 μ F, 25 V;

Fig. 40 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 5a:

curve 1 = 22 μ F, 63 V;

curve 4 = $150 \,\mu\text{F}$, $16 \,\text{V}$;

curve 2 = 47 μ F, 40 V;

curve $5 = 220 \,\mu\text{F}$, $10 \,\text{V}$.

curve 3 = 100 μ F, 25 V;

Fig. 41 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 4: curve 1 = 22 μ F, 63 V; curve 3 = 100 μ F, 25 V; curve 2 = 47 μ F, 40 V; curve 4 = 220 μ F, 10 V.

Fig. 42 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 5: curve 1 = 47 μ F, 63 V; curve 3 = 330 μ F, 10 V; curve 2 = 150 μ F, 25 V; curve 4 = 470 μ F, 6,3 V.

Fig. 43 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 6: curve 1 = 68 μ F, 63 V; curve 4 = 330 μ F, 16 V; curve 1 = $68 \mu F$, 63 V; curve $2 = 150 \,\mu\text{F}$, $40 \,\text{V}$;

curve $5 = 680 \,\mu\text{F}$, 6,3 V.

curve 3 = 220 μ F, 25 V;

Fig. 44 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 7: curve 1 = 100 μ F, 63 V; curve 3 = 470 μ F, 16 V;

curve 1 = $100 \mu F$, 63 V;

curve 2 = 220 μ F, 40 V;

curve $4 = 1000 \mu F$, 6,3 V.

Fig. 45 Typical impedance as a function of frequency at 20 °C. Case size 00: curve 1 = 68 μ F, 100 V; curve 4 = 470 μ F, 25 V; curve 6 = 1000 μ F, 10 V; curve 2 = 150 μ F, 63 V; curve 5 = 680 μ F, 16 V; curve 7 = 1500 μ F, 6,3 V. curve 3 = 220 μ F, 40 V;

Fig. 46 Typical impedance as a function of frequency at 20 °C. Case size 01: curve 1 = 100 μ F, 100 V; curve 4 = 470 μ F, 40 V; curve 6 = 1000 μ F, 16 V; curve 2 = 220 μ F, 63 V; curve 5 = 680 μ F, 25 V; curve 7 = 1500 μ F, 10 V; curve 3 = 330 μ F, 40 V; curve 8 = 2200 μ F, 6,3 V.

Fig. 47 Typical impedance as a function of frequency at 20 °C. Case size 02: curve 1 = 150 μ F, 100 V; curve 4 = 680 μ F, 40 V; curve 6 = 1500 μ F, 16 V; curve 2 = 330 μ F, 63 V; curve 5 = 1000 μ F, 25 V; curve 7 = 2200 μ F, 10 V; curve 3 = 470 μ F, 63 V; curve 8 = 3300 μ F, 6,3 V.

Fig. 48 Typical impedance as a function of frequency at 20 °C. Case size 03: curve 1 = 220 μ F, 100 V; curve 4 = 1500 μ F, 25 V; curve 6 = 3300 μ F, 10 V; curve 2 = 680 μ F, 63 V; curve 5 = 2200 μ F, 16 V; curve 7 = 4700 μ F, 6,3 V. curve 3 = 1000 μ F, 40 V;

Fig. 49 Typical impedance as a function of frequency at 20 °C. Case size 04: curve 1 = 330 μ F, 100 V; curve 3 = 2200 μ F, 25 V; curve 5 = 4700 μ F, 10 V; curve 2 = 1500 μ F, 40 V; curve 4 = 3300 μ F, 16 V; curve 6 = 6800 μ F, 6,3 V.

Fig. 50 Typical impedance as a function of frequency at 20 °C. Case size 05: curve 1 = 470 μ F, 100 V; curve 4 = 1500 μ F, 63 V; curve 7 = 4700 μ F, 16 V; curve 2 = 680 μ F, 100 V; curve 5 = 2200 μ F, 40 V; curve 8 = 6800 μ F, 10 V; curve 3 = 1000 μ F, 63 V; curve 6 = 3300 μ F, 25 V; curve 9 = 10 000 μ F, 6,3 V; curve 10 = 15 000 μ F, 6,3 V.

Fig. 51 Typical impedance as a function of frequency at 85 °C. Case size 00:

curve 1 = 68 μ F, 100 V;

curve $4 = 470 \,\mu\text{F}, 25 \,\text{V};$ curve $5 = 680 \,\mu\text{F}$, $16 \,\text{V}$;

curve 6 = $1000 \mu F$, 10 V; curve $7 = 1500 \mu F$, 6,3 V.

curve 2 = 150 μ F, 63 V;

curve 3 = 220 μ F, 40 V;

10² Ζ (Ω) 10 10^{-1} 10⁻² 10² 104 10⁵ 10⁶ 10⁷ 10³ 10 f (Hz)

Fig. 52 Typical impedance as a function of frequency at 85 °C. Case size 01:

curve 1 = 100 μ F, 100 V;

curve $4 = 470 \,\mu\text{F}, 40 \,\text{V};$

curve 6 = $1000 \mu F$, 16 V;

curve 2 = 220 μ F, 63 V;

curve $5 = 680 \,\mu\text{F}, 25 \,\text{V};$

curve 7 = 1500 μ F, 10 V;

curve 3 = 330 μ F, 40 V;

curve 8 = 2200 μ F, 6,3 V.

Fig. 53 Typical impedance as a function of frequency at 85 °C. Case size 02: curve 1 = 150 μ F, 100 V; curve 4 = 680 μ F, 40 V; curve 6 = 1500 μ F, 16 V; curve 2 = 330 μ F, 63 V; curve 5 = 1000 μ F, 25 V; curve 7 = 2200 μ F, 10 V; curve 3 = 470 μ F, 63 V; curve 8 = 3300 μ F, 6,3 V.

Fig. 54 Typical impedance as a function of frequency at 85 °C. Case size 03: curve 1 = 220 μ F, 100 V; curve 4 = 1500 μ F, 25 V; curve 6 = 3300 μ F, 10 V; curve 2 = 680 μ F, 63 V; curve 5 = 2200 μ F, 16 V; curve 7 = 4700 μ F, 6,3 V. curve 3 = 1000 μ F, 40 V;

Fig. 55 Typical impedance as a function of frequency at -25 °C. Case size 00: curve 1 = 68 μ F, 100 V; curve 4 = 470 μ F, 25 V; curve 6 = 1000 μ F, 10 V; curve 2 = 150 μ F, 63 V; curve 5 = 680 μ F, 16 V; curve 7 = 1500 μ F, 6,3 V. curve 3 = 220 μ F, 40 V;

Fig. 56 Typical impedance as a function of frequency at -25 °C. Case size 01: curve 1 = $100~\mu\text{F}$, 100~V; curve 4 = $470~\mu\text{F}$, 40~V; curve 6 = $1000~\mu\text{F}$, 16~V; curve 2 = $220~\mu\text{F}$, 63~V; curve 5 = $680~\mu\text{F}$, 25~V; curve 7 = $1500~\mu\text{F}$, 10~V; curve 3 = $330~\mu\text{F}$, 40~V; curve 60~C curve $60~\text{$

Fig. 57 Typical impedance as a function of frequency at -25 °C. Case size 02: curve 1 = 150 μ F, 100 V; curve 4 = 680 μ F, 40 V; curve 6 = 1500 μ F, 16 V; curve 2 = 330 μ F, 63 V; curve 5 = 1000 μ F, 25 V; curve 7 = 2200 μ F, 10 V; curve 3 = 470 μ F, 63 V; curve 8 = 3300 μ F, 6,3 V.

Fig. 58 Typical impedance as a function of frequency at -25 °C. Case size 03: curve 1 = 220 μ F, 100 V; curve 4 = 1500 μ F, 25 V; curve 6 = 3300 μ F, 10 V; curve 2 = 680 μ F, 63 V; curve 5 = 2200 μ F, 16 V; curve 7 = 4700 μ F, 6,3 V. curve 3 = 1000 μ F, 40 V;

Fig. 59 Typical impedance as a function of frequency at -40 °C. Case size 00: curve 1 = $68~\mu\text{F}$, 100~V; curve 4 = $470~\mu\text{F}$, 25~V; curve 6 = $1000~\mu\text{F}$, 10~V; curve 2 = $150~\mu\text{F}$, 63~V; curve 5 = $680~\mu\text{F}$, 16~V; curve 7 = $1500~\mu\text{F}$, 6,3~V. curve 3 = $220~\mu\text{F}$, 40~V;

Fig. 60 Typical impedance as a function of frequency at -40 °C. Case size 01: curve 1 = 100 μ F, 100 V; curve 4 = 470 μ F, 40 V; curve 6 = 1000 μ F, 16 V; curve 2 = 220 μ F, 63 V; curve 5 = 680 μ F, 25 V; curve 7 = 1500 μ F, 10 V; curve 3 = 330 μ F, 40 V; curve 8 = 2200 μ F, 6,3 V.

Fig. 61 Typical impedance as a function of frequency at -40 °C. **Case size 02**: curve 1 = 150 μ F, 100 V; curve 4 = 680 μ F, 40 V; curve 6 = 1500 μ F, 16 V; curve 2 = 330 μ F, 63 V; curve 5 = 1000 μ F, 25 V; curve 7 = 2200 μ F, 10 V; curve 3 = 470 μ F, 63 V; curve 8 = 3300 μ F, 6,3 V.

Fig. 62 Typical impedance as a function of frequency at -40 °C. Case size 03: curve 1 = 220 μ F, 100 V; curve 4 = 1500 μ F, 25 V; curve 6 = 3300 μ F, 10 V; curve 2 = 680 μ F, 63 V; curve 5 = 2200 μ F, 16 V; curve 7 = 4700 μ F, 6,3 V. curve 3 = 1000 μ F, 40 V;

Equivalent series inductance (ESL)

Case size 1	typ.	15 nH
Case size 2	typ.	17 nH
Case sizes 3 and 4	typ.	30 nH
Case size 5a	typ.	85 nH
Case size 5	typ.	50 nH
Case sizes 6 and 7	typ.	65 nH
Case sizes 00 and 01	typ.	50 nH
Case size 02	typ.	55 nH
Case sizes 03, 04 and 05	tvp.	60 nH

OPERATIONAL DATA

Category temperature range	
case sizes 1 to 7	-55 to +85 °C
case sizes 00 to 05	-40 to +85 °C

Typical life time	$T_{amb} = 85 ^{\circ}\text{C}$	$T_{amb} = 40 {}^{\circ}\text{C}$
case size 1	1500 h	35 000 h
case sizes 2 to 7	3000 h	70 000 h
case sizes 00 to 05	10 000 h	> 200 000 h

500 h

Shelf life at 0 V and T_{amb} = 85 °C

PACKING

All capacitors are supplied in boxes, except case sizes 1 to 7 of style 1, which are on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 5.

Table 5

		nur	nber of capacito	rs	
case size	style 1 on bandoliers	style 1 on bandoliers	style 1	style 2	style 3
	per reel	per box	per box	per box	per box
1	4000	1000			1000
2	3000	1000			1000
3	1000	1000			1000
5a	500	500			1000
4	1000	1000			1000
5	500	500			1000
6	500	500			1000
7	500	500			500
00			200		200
01			200		200
02			200		200
03			200	200	
04			100	100	
05			100	100	

Fig. 63 Style 1 capacitors (case sizes 1 to 7) on bandoliers: the bandolier to which the negative capacitor terminals are connected is blue. See Table 6 for dimensions A, S, T and L. $|B1 - B2| = \max. 1,4 \text{ mm}$.

Table 6
Dimensions in mm

case size	A	S	T for nur of cap	L _{max}	
			n < 50	50 < n < 100	
1	63,5 ± 1,5	5 ± 0,4	5 (n-1) ± 2	5 (n-1) ± 4	12,0
2	63,5 ± 1,5	5 ± 0,4	5 (n-1) ± 2	5 (n-1) ± 4	10,5
3	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	10,5
5a	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	11,5
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
5	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
6	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	18,5
7	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	25,0

Fig. 64 Style 1 capacitors (case sizes 1 to 7) on bandoliers on reel; dimension C is 83,5 mm for case sizes 1, 2, 3 and 5a, and 88,5 mm for case sizes 4, 5, 6 and 7; the overall width of the reel is 94,5 mm and 99,5 mm respectively.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition for case sizes 1 to 7.

After endurance test, 2000 h (1000 h for case size 1), 85 °C, the capacitors meet the following requirements:

 $\Delta C/C \le \pm$ 15%, for U $_R$ = 10 to 100 V;

 $\Delta C/C \le +15\%$, -25% for U_R = 6,3 V;

tan $\delta \leq 130\%$ of specified value;

d.c. leakage current ≤ specified value;

impedance at 10 kHz ≤ 200% of specified value.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note:

Capacitors 2222 030, case size 1 are miniature types, general-purpose grade.

Capacitors 2222 030 and 2222 031, case sizes 2 to 7, are miniature types, long-life grade.

Capacitors 2222 032 and 2222 033 are small types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Single ended
- General applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series):

series): 0,10 to 4700 μF

Tolerance on nominal capacitance:

-20 to +20%*

Rated voltage range, U_R (R5 series):

6,3 to 100 V

Category temperature range:

-40 to +85 °C

Endurance test at 85 °C:

1000 h

Shelf life at 0 V, 85 °C:

500 h

Basic specifications:

IEC 384-4, G.P. grade DIN 41332/DIN 41259

Climatic category:

IEC 68: 40/085/56 DIN 40040: GPF

Selection chart for Cnom - UR and relevant case sizes

Selection chart for C _{nom} – U _R and relevant case sizes.										
C _{nom}				U	R (V)					
μF	6,3	10	16	25	35	40	50	63	100	
0,10 0,15 0,22 0,33 0,47 0,68								11 11 11 11 11 11	11 11	
1 1,5 2,2 3,3 4,7 6,8								11 11 11 11 11	11 11 11 11 12 12	
10 15 22 33 47 68		11	11 12	12	11	11 12 12 13	11 12 13 14	12 12 13 13 14 15	13 13 14 15 16 17	
100 150 220 330 470 680	12 13 15	12 13 14 15 16	13 14 15 16 17	13 14 15 16 17 18	14	15 16 17 18 19	15 16 17 18	16 17 18 19 19 20	18 18 19 20	
1000 1500 2200 3300 4700	16 17 18 19 20	17 18	18 19 19 20	19 20 20	19		20			

^{* ± 10%} to special order.

APPLICATION

These capacitors with high CU-product per unit volume are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and television circuits. Other applications are in timing and delay circuits. The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitor has etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitor is in an insulated aluminium case.

MECHANICAL DATA

Dimensions in mm

The capacitor is available in 5 styles:

style 1: long leads; in boxes;

style 2: straight short leads; non preferred, in boxes;

style 3: bent short leads only case sizes 11, 12 and 13; non preferred, in boxes;

style 4: long leads; on tape on reel, positive leading; only case sizes 11 to 13;

style 5: long leads; on tape in ammunition pack; only case sizes 11 to 13.

Fig. 1 Style 1; see Table 1 for dimensions d, D, L and P.

Fig. 2 Style 2; non preferred, see Table 1 for dimensions d, D, L and P.

case

Fig. 3 Style 3, case sizes 11, 12 and 13; non preferred, see Table 1 for dimensions d, D and L.

mass

Table 1

case		dimensions									
size	d	D _{max}	L _{max}		g						
11	0,5*	5,5	12,0	2,0]	0,4					
12	0,6	6,5	12,0	2,5		0,6					
13	0,6	8,5	12,5	3,5	± 0,5	1,1					
14	0,6	10,5	12,5	5,0		1,6					
15	0,6	10,5	17,0	5,0	}	1,9					

size	d	D _{max}	L _{max}		P	g
16	0,6	10,5	21,0	5,0)	2,2
17	0,6	13,0	21,0	5,0		4,0
18	0,6	13,0	26,0	5,0	± 0,5	5,0
19	0,8	16,5	26,0	7,5		8,0
20	0,8	16,5	32,0	7,5)	9,0

dimensions

^{* 0,6} mm under consideration.

Fig. 4 Styles 4 and 5, case sizes 11 to 13; see Table 2 for dimensions. Negative-leading tapes are available to special order.

Table 2

	sym-		case size		tol.
	bol	11	12	13	toi.
Body diameter	D	5,5	6,5	8,5	max.
Body height	Α	12,0	12,0	12,5	max.
Lead-wire diameter	d	0,5*	0,6	0,6	± 0,05
Pitch of component	Р	12,7	12,7	12,7	± 1,0
Feed-hole pitch	Po	12,7	12,7	12,7	± 0,2**
Hole centre to lead	P ₁	3,85	3,85	3,85	± 0,5
Feed hole centre to component centre	P ₂	6,35	6,35	6,35	± 1,0
Lead-to-lead distance	F	5,0	5,0	5,0	+ 0,6/-0
Component alignment	Δh	0	0	0	± 1,0
Tape width	W	18,0	18,0	18,0	± 0,5
Hold-down tape width	Wo	12,5	12,5	12,5	min. * * *
Hole position	W ₁	9,0	9,0	9,0	± 0,5
Hold-down tape position	W ₂	2,5	2,5	2,5	max.
Height of component from tape centre	H -	18,0	18,0	18,0	+1,5/0
Lead-wire clinch height	HO	16,0	16,0	16,0	± 0,5
Component height	H ₁	32,0	32,0	32,0	max.
Lead-wire protrusion	1	2,0	2,0	2,0	max.
Feed-hole diameter	D ₀	4,0	4,0	4,0	± 0,2
Total tape thickness	t	0,9	0,9	0,9	max.

^{* 0,6} mm under consideration.

^{**} Cumulative pitch error: ± 1 mm/20 pitches.

^{***} Other widths under consideration.

Marking

The capacitors are marked with: nominal capacitance, rated voltage, a symbol to identify the negative terminal, group number (035), code for factory of origin, name of manufacturer and date code (year and month) according to IEC 62.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 3 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

January 1984

January 1984

JR	nom.	max. r.m.s.	max.d.c. leakage	max.	max.	(0)	case	ca	talogue nu	mber 2222	2 035 follo	wed by
	cap.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ		ance (Ω) ab = 20 °C	size					
					a+	o.t			11		L	in ammopaci
<i>,</i> '	μF	mA	μΑ		at 1 kHz	at 10 kHz		style 1	style 2	style 3	style 4	style 5
5	47	140	27	0,14		1,91	12	56479	86479	66479	26479	36479
	100	230	53	0,14		0,90	13	56101	86101	66101	26101	36101
	150	330	78	0,14		0,60	14	56151	66151			
	220	400	113	0,14		0,41	15	56221	66221			
	330	500	168	0,14		0,27	16	56331	66331			
	470	600	238	0,14		0,19	17	56471	66471			-
	680	710	343	0,14		0,13	18	56681	66681			
	1000	850	503	0,14		0,09	19	56102	66102			
	1500	1000	753	0,14	0,15	0,06	20	56152	66152			
	2200	1200	1103	0,14	0,10	0,04	20	56222	66222			
5	22	90	18	0,12		3,41	11	90003	90004	90005	90034	90085
	100	280	73	0,12		0,75	14	90059	90081			
	1000	1050	703	0,12		0,08	19	90006	90007			
10	15	70	15	0,12		4,67	11	57159	87159	67159	27159	37159
•	22	90	21	0,12		3,18	12	57229	87229	67229	27229	37229
	33	140	29	0,12		2,12	12	57339	87339	67339	27339	37339
	68	200	57	0,12		1,03	13	57689	87689	67689	27689	37689
	150	320	123	0,12		0,47	15	57151	67151	0.000	2.000	0,000
	220	470	179	0,12		0,32	16	57221	67221			
	330	590	267	0,12		0,21	17	57331	67331			
	470	800	379	0,12		0,15	18	57471	67471	-		
	680	960	547	0,12		0,10	19	57681	67681			
50	10	60	13	0,10		6.00	11	90008	90009	90011	90035	90087
00	22	100	25	0,10		2,73	12	90012	90003	90011	90036	90088
	47	180	50	0,10	-	1,28	13	90012	90016	90033	90036	90038
	68	260	71	0,10		0,88	14	90015	90018	30033	30037	30038
	100	320	103	0,10		0,60	15	90017	90018			1
	150	410	153	0,10		0,40	16	90019	90021			
	220	500	223	0,10		0,40	17	90022	90025			1
	330	650	333	0,10		0,27	18	90024	90025			
	680		683	0,10				90028				
	1000	980	1003	0,10		0,09	19		90029			
	1000	1100	1003	0,10		0,06	20	90031	90032			l

U_{R}	nom.	max. r.m.s.	max.d.c. leakage		max.	(0)	case	Ci	atalogue ni	umber 222	2 035 follo	owed by
	сар.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ	impedance (Ω) at T _{amb} = 20 °		size				- o	
					at	at		'		' '	on reel	in ammopack
V	μF	mA	μΑ		1 kHz	10 kHz		style 1	style 2	style 3	style 4	style 5
33	0,10	3,5	3	0,08		550	11	58107	88107	68107	28107	38107
	0,15	4,5	3 3 3	0,08		367	11	58157	88157	68157	28157	38157
	0,22	6	3	0,08		250	11	58227	88227	68227	28227	38227
	0,33	7	3	0,08		167	11	58337	88337	68337	28337	38337
	0,47	- 8	4	0,08		117	11	58477	88477	68477	28477	38477
	0,68	10	4	0,08		81	11	58687	88687	68687	28687	38687
	1,0	12	4	0,08		55,0	11	58108	88108	68108	28108	38108
	1,5	16	4 5 6	0,08		36,7	11	58158	88158	68158	28158	38158
	2,2	22	6	0,08		25,0	11	58228	88228	68228	28228	38228
	3,3	32	7	0,08		16,7	11	58338	88338	68338	28338	38338
	4,7	40	9	0,08		11,7	11	58478	88478	68478	28478	38478
	6,8	55	12	0,08		8,09	11	58688	88688	68688	28688	38688
	10	70	16	0,08		5,50	12	58109	88109	68109	28109	38109
	15	98	22	0,08		3,67	12	58159	88159	68159	28159	38159
	22	120	31	0,08		2,50	13	58229	88229	68229	28229	38229
	33	160	45	0,08		1,67	13	58339	88339	68339	28339	38339
	47	200	62	0,08		1,17	14	58479	68479			
	68	280	89	0,08		0,81	15	58689	68689			
	100	360	129	0,08		0,55	16	58101	68101			
	150	480	192	0,08		0,37	17	58151	68151			
	220	600	280	0,08		0,25	18	58221	68221			
	330	750	419	0,08		0,17	19	58331	68331			
	470	900	595	0,08		0,12	19	58471	68471		1	
	680	1040	860	0,08		0,08	20	58681	68681			
	1		1		1	j		1			1	

l	UR	nom.	max. r.m.s.	max. d.c. leakage			case	cat	alogue nui	mber 2222	035 follo	wed by					
		сар.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ		impedance (Ω) at T _{amb} = 20 °C									(O 0)	0 0 0
1	-					at	at			• •	1 1		in ammopack				
	V	μF	mA	μΑ		1 kHz	10 kHz		style 1	style 2	style 3	style 4	style 5				
١	100	0,22	10	3	0,07		205	11	59227	89227	69227	29227	39227				
١		0,47	12	4	0,07	1	95,7	11	59477	89477	69477	29477	39477				
l		1,0	15	5	0,07		45,0	11	59108	89108	69108	29108	39108				
۱		1,5	20	6	0,07		30,0	11	59158	89158	69158	29158	39158				
l		2,2	27	7	0,07		20,5	11	59228	89228	69228	29228	39228				
l		3,3	35	10	0,07		13,6	11	59338	89338	69338	29338	39338				
l		4,7	45	12	0,07		9,57	12	59478	89478	69478	29478	39478				
l		6,8	59	17	0,07		6,62	12	59688	89688	69688	29688	39688				
l		10	80	23	0,07		4,50	13	59109	89109	69109	29109	39109				
l		15	105	33	0,07	l	3,00	13	59159	89159	69159	29159	39159				
l		22	140	47	0,07		2,05	14	59229	69229							
ı		33	180	69	0,07		1,36	15	59339	69339							
ı		47	240	97	0,07		0,96	16	59479	69479							
l		68	340	139	0,07		0,66	17	59689	69689							
۱		100	440	203	0,07		0,45	18	59101	69101							
ı		150	630	303	0,07		0,30	18	59151	69151							
		220	800	443	0,07		0,20	19	59221	69221							
l		330	900	663	0,07		0,14	20	59331	69331							
							r 1										

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 ^{o}C

Tolerance on nominal capacitance at 100 Hz

see Table 3
-20 to +20%

Fig. 5 Typical multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at 20 $^{\rm o}$ C, 100 Hz.

Fig. 6 Typical multiplier of capacitance as a function of frequency; C_0 = capacitance at 20 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max. peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

core temperature						
$<$ 50 $^{\rm o}$ C	50 to 95 °C					
1,15 x U _R	UR					
1,15 x U _R	U _R					
_	R and -2 V					
1,15	x U _R					
2	V					

Ripple current**

Maximum permissible r.m.s. ripple current at 100 Hz and $T_{amb} = 85 \, ^{\circ}\text{C}$

see Table 3

Fig. 7 Typical multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

- ▲ See Introduction, section 5, "Ripple current".
- * Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 8 Typical multiplier of ripple current as a function of frequency; I_{r0} = ripple current at 85 °C; 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_n^2}{r_n} \leqslant I_{r \, max}^2$$

I_{r max} = maximum ripple current at 100 Hz and applicable ambient temperature;

= ripple current at a certain frequency;

 $\sqrt{r_0} = I_r/I_{r0} = \text{multiplying factor at a same frequency.}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and requirements.)

D.C. leakage current

Maximum d.c. leakage current 1 min after application

D.C. leakage current during continuous operation at UR,

at T_{amb} = 25 °C at T_{amb} = 85 °C

approx. 0,1 x value stated in Table 3 ≤ value stated in Table 3

see Table 3 (0,02 CU + 3 μ A)

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 3.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 3

Fig. 9 Typical tan δ at 100 Hz as a function of ambient temperature.

Fig. 10 Typical tan δ as a function of frequency at T_{amb} = 20 °C.

Equivalent series resistance (ESR)

ESR = $\tan \delta/\omega C$

Maximum tan δ and C at 100 Hz and $T_{amb} = 25$ °C see Table 3

Equivalent series inductance (ESL)

Case sizes 11, 12, 13 typ. 13 nH
Case sizes 14, 15, 16 typ. 16 nH
Case sizes 17, 18, 19, 20 typ. 18 nH

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C and 10 kHz and 1 kHz (C_{nom} > 1000 μ F), measured by means of a four-terminal circuit (Thomson circuit)

 $\begin{array}{ll} \mbox{circuit (Thomson circuit)} & \mbox{see Table 3} \\ \mbox{z = Z \times C}_{nom} & \mbox{see Table 4} \end{array}$

Maximum ratio between impedances at T_{amb} = -25 °C and + 20 °C, and at T_{amb} = -40 °C and + 20 °C, at 100 Hz measured by means of a four-terminal circuit (Thomson circuit)

see Table 5

Table 4

,	T _{amb}	$z = Z \times C_{nom} (\Omega \mu F)$ at U_R								
		6,3 V	10 V	16 V	25 V	35 V	40 V	50 V	63 V	100 V
$C_{nom} > 1000 \mu F$, measured at 1 kHz	+ 20 °C -25 °C -40 °C	350 1700 4500	300 1100 2800	250 800 2000	220 570 1400		200 430 1100	_ _ _	180 330 800	175 300 700
$C_{nom} \le 1000 \mu\text{F},$ measured at 10 kHz	+ 20 °C -25 °C -40 °C	200 1200 3200	160 750 2000	120 560 1500	90 400 1100	75 330 950	70 300 900	60 220 700	55 180 500	45 130 350

Table 5

	maximum impedance ratio at U _R and 100 Hz								
	6,3 V	10 V	16 V	25 V	35 V	40 V	50 V	63 V	100 V
Z at -25 °C Z at +20 °C	4	3	2	2	2	2	2	2	2
Z at -40 °C Z at +20 °C	7	5	5	4	4	4	4	4	4


```
Curve 1
          = 0.47 \mu F; 63 V;
curve 2
             4,7 μF; 63 V;
curve 3
              15 μF; 40 V;
              47 μF; 10 V;
curve 4
curve 5
              47 μF; 25 V;
curve 6
          = 330 \mu F; 6,3 V;
curve 7
             150 μF; 6,3 V;
curve 8
          = 680 μF; 6,3 V;
curve 9
          = 680 \mu F; 50 V;
curve 10 = 4700 \muF; 6,3 V.
```

Fig. 11 Typical impedance at 10 kHz as a function of ambient temperature.

Curve 1 = 0,47 μ F; 6,3 V; curve 2 = 4,7 μ F; 63 V; curve 3 = 15 μ F; 40 V; curve 4 = 47 μ F; 10 V; curve 5 = 47 μ F; 25 V; curve 6 = 47 μ F; 63 V; curve 7 = 330 μ F; 6,3 V.

Fig. 12 Typical impedance as a function of frequency at $T_{amb} = 20$ °C.

Curve 1 = $150 \mu\text{F}$; 63 V; curve 2 = $680 \mu\text{F}$; 6,3 V; curve 3 = $680 \mu\text{F}$; 50 V; curve 4 = $4700 \mu\text{F}$; 6,3 V.

OPERATIONAL DATA

Category	temperature	range

-40 to +85 °C

Typical life time

at $T_{amb} = 40$ °C at $T_{amb} = 85$ °C

at T_{amb} = 95 °C

at T_{amb} = 105 °C

Shelf life at 0 V and $T_{amb} = 85$ °C

-40 to +85 °C

50 000 h 2000 h

1000 h 500 h

500 h

PACKING

Capacitors of styles 1, 2 and 3 are supplied in boxes, those of styles 4 and 5 on tape on reel and in ammunition pack respectively. The numbers per box, per reel and per ammunition pack are given in Table 6.

Table 6

	number of capacitors								
case size	style 1 per box	style 2 per box	style 3 per box	style 4 per reel	style 5 per ammunition pack				
11	1000	1000	1000	1000	2000				
12	1000	1000	1000	1000	2000				
13	1000	1000	1000	500	1000				
14	1000	1000	ļ						
15	500	500							
16	500	500							
17	200	200							
18	200	200							
19	200	200							
20	200	200							

Fig. 15 Capacitors (style 5) on tape in ammunition pack.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test, except for d.c. leakage current of the 100 V range: ≤200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 035 are miniature and small, general-purpose grade.

For low-leakage version, see 2222 013; for high-temperature version, see 2222 116.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature type
- Single ended
- Long life
- General and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

Tolerance on nominal capacitance

Rated voltage range, UR (R5 series)

Category temperature range

Endurance test at 85 °C

Shelf life at 0 V, 85 °C

Basic specification

Climatic category IEC68

DIN40040

0,15 to $470 \mu F$

-20 to +20%*

6,3 to 63 V

-55 to +85 °C

2000 h

500 h

IEC384-4, long-life grade DIN41332/DIN41259

55/085/56

FPF

Selection chart for Cno	_m -U _R and	i relevant	case sizes.
-------------------------	----------------------------------	------------	-------------

Cnom		U _R (V)						
C _{nom} μF	6,3	10	16	25	35	40	50	63
0,15								11
0,22 0,33								11
0,33								11
0,47								11_
0,68	L							11
1					ļ			11
1,5 2,2 3,3								11
2,2								11
3,3								11
4,7								11
6,8							<u></u>	11
10							11	11
15						11		
22					11		L	11
33			11				11	13
47		11			11		13	13
68		11		11		13	<u> </u>	13
100	11		11	13			13	
150		11	13		13			
220		13	13	13				
330	13		13					
470		13			L	L		

case size	nominal dimensions (mm)			
11	φ 5 × 11			
13	φ 8,2 x 11			

^{* ± 10%} to special order.

APPLICATION

These capacitors with extremely high CV product to volume ratio are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and television circuits, and in industrial applications, such as measuring and regulating circuits. Other applications are timing and delay circuits. The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitor has etched and oxidised aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitor is in all-insulated aluminium case.

MECHANICAL DATA

Dimensions in mm

The capacitor is available in 5 styles:

style 1: long leads; in boxes;

style 2: straight short leads; non preferred, in boxes;

style 3: bent short leads (only case size 11); non preferred, in boxes;

style 4: long leads; on tape on reel, positive leading; style 5: long leads; on tape in ammunition pack.

Fig. 1 Style 1; see Table 1 for dimensions d, D, L and P.

Fig. 2 Style 2; non preferred, see Table 1 for dimensions d, D and L.

Fig. 3 Style 3; case size 11 only; non preferred, see Table 1 for dimensions d, D and L.

Table 1

case		dimer	sions		mass
size	d	D _{max}	L _{max}	Р	approx.
11	0,5*	5,5	12,0	2,5	0,4
13	0,6	8,7	12,0	5,0	1,1

^{* 0,6} mm under consideration.

Fig. 4 Styles 4 and 5; see Table 2 for dimensions. Negative-leading tapes are available to special order.

Table 2

	symbol	case	size	tól.
	Symbol	11	13	
Body diameter	D	5,5	8,7	max.
Body height	Α	12,0	12,0	max.
Lead-wire diameter	d	0,5*	0,6	± 0,05
Pitch of component	P	12,7	12,7	± 1,0
Feed-hole pitch	Po	12,7	12,7	± 0,2**
Hole centre to lead	P ₁	3,85	3,85	± 0,5
Feed hole centre to component centre	P ₂	6,35	6,35	± 0,7
Lead-to-lead distance	F	5,0	5,0	+ 0,6/0
Component alignment	Δh	0	0	± 1,0
Tape width	W	18,0	18,0	± 0,5
Hold-down tape width	w _o	6,0	6,0	min.
Hole position	W ₁	9,0	9,0	± 0,5
Hold-down tape position	W ₂	2,5	2,5	max.
Height of component from tape centre	H T	18,0	18,0	+ 1,5/0
Lead-wire clinch height	Ho	16,0	_	± 0,5
Component height	H ₁	32,0	32,0	max.
Feed-hole diameter	D ₀	4,0	4,0	± 0,2
Total tape thickness	t	0,9	0,9	max.

^{* 0,6} mm under consideration.

^{**} Cumulative pitch error: ± 1 mm/20 pitches.

Marking

The capacitors are marked as follows:

on the top

- nominal capacitance:
- code letter for tolerance on nominal capacitance, according to IEC62;
- rated voltage;
- polarity identification.

on the circumference

- name of manufacturer;
- group number (036);
- code letter of manufacturer;
- date code (year and month) according to IEC 62.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 3 apply at an ambient temperature of 20 to $25\,^{\circ}$ C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

Table 3	}	▼								
UR	nom.	max. r.m.s. ripple current	max.d.c.leakage current at U _R	max. tan δ	case size*	car	talogue nu	mber 2222	036 follo	wed by
V	μF	at T _{amb} = 85 °C mA	after 1 min. μΑ	tan o	3126	style 1	style 2	style 3	on reel style 4	in ammopack style 5
6,3	100 330	80 180	7 16	0,20 0,20	11 13	53101 53331	83101 63331	63101	23101 23331	33101 33331
10	47 68 150 220 470	60 70 95 170 230	6 7 12 17 31	0,16 0,16 0,20 0,16 0,20	11 11 11 13 13	54479 54689 54151 54221 54471	84479 84689 84151 64221 64471	64479 64689 64151	24479 24689 24151 24221 24471	34479 34689 34151 34221 34471
16	33 100 150 220 330	55 90 150 180 210	7 13 18 24 35	0,14 0,16 0,14 0,14 0,16	11 11 13 13 13	55339 55101 55151 55221 55331	85339 85101 65151 65221 65331	65339 65101	25339 25101 25151 25221 25331	35339 35101 35151 35221 35331
25	68 100 220	80 130 180	13 18 36	0,14 0,12 0,14	11 13 13	56689 56101 56221	86689 66101 66221	66689	26689 26101 26221	36689 36101 36221
35	22 47 150	50 70 160	8 13 35	0,10 0,12 0,12	11 11 13	90001 90094 90099	90002 90095 90101	90003 90096	90016 90097 90102	90027 90098 90103
40	15 68	45 120	7 20	0,10 0,10	11 13	57159 57689	87159 67689	67159	27159 27689	37159 37689
50	10 33 47 100	40 65 110 150	6 13 18 33	0,08 0,10 0,08 0,10	11 11 13 13	90004 90104 90011 90109	90005 90105 90012 90111	90006 90106	90017 90107 90019 90112	90028 90108 90031 90113

^{*} Case size 11: ϕ 5 mm x 11 mm; case size 13; ϕ 8,2 mm x 11 mm (nominal dimensions).

June 1985

Table 3 (continued)

UR	nom.	max. r.m.s.	max. d.c. leakage	max.	case	C	atalogue ni	ımber 222	22 036 foll	owed by
V	cap. μF	ripple current at T _{amb} = 85 °C mA	current at U _R after 1 min. μΑ	tan δ	size*				on reel	in ammopack
						style 1	style 2	style 3	style 4	style 5
63	0,15 0,22 0,33 0,47 0,68 1,0 1,5 2,2 3,3 4,7 6,8 10 22 33 47 68	5 6,5 8 9,5 11 13,5 16,5 20 25 30 40 45 55 110 120 140	4 4 4 4 4 4 5 5 6 7 11 16 21 29	0,08 0,06 0,06 0,06 0,06 0,06 0,06 0,06	11 11 11 11 11 11 11 11 11 11 11 11 11	58157 58227 58337 58477 58687 58108 58158 58228 58338 58478 58688 58109 58229 58339 58479 58689	88157 88227 88337 88477 88687 88108 88158 88228 88338 88478 88688 88109 88229 68339 68479 68689	68157 68227 68337 68477 68687 68108 68158 68228 68338 68478 68688 68109 68229	28157 28227 28337 28477 28687 28108 28158 28228 28338 28478 28668 28109 28229 28339 28479 28689	38157 38227 38337 38477 38687 38108 38158 38228 38338 38478 38688 38109 38229 38339 38479 39689

^{*} Case size 11: ϕ 5 mm x 11 mm; case size 13: ϕ 8,2 mm x 11 mm (nominal dimensions).

Capacitance

Nominal capacitance at 100 Hz and $T_{amb} = 20$ °C Tolerance on nominal capacitance at 100 Hz

see Table 3
--20 to +20%

Fig. 5 Typical multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at 20 $^{\rm o}$ C, 100 Hz.

Fig. 6 Typical multiplier of capacitance as a function of frequency; C_0 = capacitance at 20 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- (a) max. (d.c. + peak a.c.) voltage
- (b) max. peak a.c. voltage without d.c. voltage applied
- (c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

core temperature								
< 50 °C	50 to 95 °C							
1,15 x U _R	UR							
1,15 x U _R	U _R V							
between U _R	and -2 V							
1,2 x U _R	1,15 x U _R							
2	2 V							

Ripple current**

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 $^{\circ}C$

see Table 3

Fig. 7 Typical multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- * Specified ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Specified ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 8 Typical multiplier of ripple current as a function of frequency; I_{r0} = ripple current at 85 $^{\circ}$ C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents. The following requirements must then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r \, max}^{2}$$

 $I_{r\,max}$ = maximum ripple current at 100 Hz and applicable ambient temperature; I_{n} = ripple current at a certain frequency; $\sqrt{r_{n}} = I_{r}/I_{r0}$ = multiplying factor at a same frequency.

Charge and discharge current

value lower than specified in Table 3.

There is no limit on the charge or discharge rate. If the capacitors are charged and discharged continuously several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and requirements.)

D.C. leakage current

Maximum d.c. leakage current 1 min after application of U_R at T_{amb} = 20 °C see Table 3 (0,006 CU + 3 μ A)

D.C. leakage current during continuous operation at U_R , at T_{amb} = 25 °C at T_{amb} = 85 °C approx. 0,1 x value stated in Table 3 \leq value stated in Table 3

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 ^{o}C , measured by a four-terminal circuit (Thomson circuit)

see Table 3

Fig. 9 Typical tan δ at 100 Hz as a function of ambient temperature.

Fig. 10 Typical tan δ as a function of frequency at T_{amb} = 20 °C.

Equivalent series resistance (ESR)

ESR = $\tan \delta/\omega C$

Maximum tan δ and C at 100 Hz and $T_{amb} = 25$ °C

Equivalent series inductance (ESL)

Case size 11 typ. 13 nH
Case size 13 typ. 16 nH

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C, -25 °C and -40 °C and 10 kHz, measured by a four-terminal circuit (Thomson circuit)

see Table 4

see Table 3

Maximum ratio between impedances at $T_{amb} = -25$ °C and +20 °C, at $T_{amb} = -40$ °C and +20 °C, and at $T_{amb} = -55$ °C and +20 °C, at 100 Hz measured by a four-terminal circuit (Thomson circuit)

see Table 4

Table 4

UR	nom.	case	max. im	pedance at 1	0 kHz	maximum impo	edance ratio at	Up and 100 Hz
°R	cap.	size*	T _{amb} =	T _{amb} =	T _{amb} =	Z at -25 °C	Z at -40 °C	Z at55 °C
V	μF		20 °C Ω	–25 °C Ω	–40 °C Ω	Z at +20 °C	Z at +20 °C	Z at + 20 °C
6,3	100	11	1,7	9,0	25,0	2	3	7
	330	13	0,52	2,7	7,6	2	3	7
10	47	11	2,8	11,9	31,9	2	3	5
	68	11	1,9	8,2	22,1	2	3	5
	150	11	1,3	8,0	21,3	2	3	8
	220	13	0,59	2,6	6,8	2	3	5
	470	13	0,43	2,6	6,8	2	3	8
16	33	11	2,7	12,1	33,1	1,5	2	5
	100	11	1,6	7,5	20,0	1,5	2	6
	150	13	0,60	2,7	7,3	1,5	2	5
	220	13	0,55	2,5	6,8	1,5	2	5
	330	13	0,48	2,3	6,1	1,5	2	6
25	68	11	1,8	8,2	22,1	1,5	2	5
	100	13	0,70	3,0	9,0	1,5	2	4
	220	13	0,55	2,6	6,8	1,5	2	5
35	22	11	2,7	11,4	34,1	1,5	2	4
	47	11	1,9	8,5	23,4	1,5	2	4
	150	13	0,60	2,7	7,3	1,5	2	4
40	15	11	3,7	14,7	46,7	1,5	2	3
	68	13	0,81	3,2	10,3	1,5	2	3
50	10	11	4,5	16,0	58,0	1,5	2	3
	33	11	2,1	9,1	27,3	1,5	2	3
	47	13	0,96	3,4	12,3	1,5	2	3
	100	13	0,70	3,0	9,0	1,5	2	3
63	0,15 0,22 0,33 0,47 0,68 1,0 1,5 2,2 3,3 4,7 6,8 10 22 33 47	111 111 111 111 111 111 111 111 111 11	267 182 121 85,1 58,1 40 26,7 18,2 12,1 8,5 5,9 4,0 2,7 1,2	867 591 394 277 191 130 86,7 59,1 39,4 27,2 19,1 13,0 10,0 3,9 3,5	2670 1818 1212 851 588 400 267 182 121 85,1 58,8 40,0 31,8 12,1 11,2	1,3 1,3 1,3 1,3 1,3 1,3 1,5 1,5 1,5 1,5	1,5 1,5 1,5 1,5 1,5 1,5 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
	68	13	0,88	3,2	10,3	1,5	2	3

^{*} Case size 11: ϕ 5 mm x 11 mm; case size 13: ϕ 8,2 mm x 11 mm (nominal dimensions).

Fig. 11 Typical impedance at 10 kHz as a function of ambient temperature, case size 11.

Fig. 12 Typical impedance at 10 kHz as a function of ambient temperature, case size 13.

Fig. 13 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 11.

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 20 o C, case size 13.

OPERATIONAL DATA

Category temperature range	−55 to +85 °C
Typical life time	
at T _{amb} = 40 °C	70 000 h
at T _{amb} = 85 °C	3000 h
at T _{amb} = 95 °C	1500 h
at T _{amb} = 105 °C	750 h
Shelf life at 0 V and T_{amb} = 85 °C	500 h

PACKING

Capacitors of styles 1, 2 and 3 are supplied in boxes, those of styles 4 and 5 on tape on reel and in ammunition pack respectively. The numbers per box, per reel and per ammunition pack are given in Table 5.

Table 5

			number of	capacitors	
case size	style 1 per box	style 2 per box	style 3 per box	style 4 per reel (min.)	style 5 per ammunition pack
11 13	1000 1000	1000 1000	1000 1000	1000 500	2000 1000

Fig. 15 Capacitors (style 4) on tape on reel.

i = capacitor	4 = flange
2 = tape	5 = cylinder
3 = paper	

Fig. 16 Capacitors (style 5) on tape in ammunition pack.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After endurance test, 2000 h, 85 °C, the capacitors meet the following requirements:

 $\Delta C/C \le \pm 15\%$, for U_R = 10 to 63 V,

 $\Delta C/C \le +15\%$, -25% for $U_R = 6.3 \text{ V}$;

tan $\delta \le 130\%$ of specified value;

d.c. leakage current ≤ specified value.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note- Capacitors 2222 036 are miniature, long-life grade.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Single ended
- Very high CU-product per unit volume
- General applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

0,10 to 10 000 μF

Tolerance on nominal

capacitance

-20 to + 20%*

Rated voltage range, UR

(R5 series)
Category temperature range

6,3 to 100 V -40 to +85 °C

Endurance test at 85 °C

U_R = 6,3 to 16 V

1000 h**

 $U_R = 25 \text{ to } 100 \text{ V}$ Shelf life at 0 V, 85 °C 2000 h 500 h

Basic specifications

IEC 384-4, G.P. grade

DIN 41332/DIN 41259

Climatic category

IEC 68 40/085/56 DIN 40040 GPF

- ± 10% to special order.
- ** 2000 h under development.

case size	nominal dimensions (mm)					
11	Ø 5 x 11					
12	Ø 6 x 11					
13	Ø 8 x 12					
14	Ø 10 x 12					
15	Ø 10 x 16					
16	Ø 10 x 20					
17	Ø 12,5 x 20					
18	Ø 12,5 x 25					
19	Ø 16 x 25					
20	Ø 16 x 31					

Selection chart for $C_{\mbox{\scriptsize nom}}$ - $U_{\mbox{\scriptsize R}}$ and relevant case sizes.

C _{nom}									
-nom		U _R (V)							
μF	6,3	10	16	25	35	40	50	63	100
0,10								11	
0,15				ĺ				11	
0,22								11	11
0,33								11	
0,47								11	11
0,68								11	
1								11	11
1,5								11	11
2,2								11	11
3,3								11	11
4,7		-						11	11
6,8		-						11	11
10							11	11	12
15						11		11	13
22					11	11	12	12	13
33			11		11	12	12	13	14
47 68	11	11	11	11 12		12 13	13 13	13 14	15 15
			-				13	-	
100	10	11	12	13 13		13		14	16
150 220	12 12	12 13	13 13	13	14	14	15	15 16	17 18
330	13	13	14		15	16	15	17	19
470	13	13	14		16	17	17	18	20
680	10	14	15		17	18	18	19	20
1000		15	16	17	18	19	19	20	
1500	16	.5	17	18	19	20	13	20	
2200	17		18	19	20				
3300	• •	18	19	20					
4700		19	20						
6800	19	20							
10 000	20								

APPLICATION

These capacitors with very high CU-product per unit volume are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and television circuits.

Other applications are in timing and delay circuits. The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in an insulated aluminium case.

MECHANICAL DATA

Dimensions in mm

The capacitor is available in 6 styles:

style 1: long leads; in boxes;

style 2: straight short leads; non preferred, in boxes;

style 3: bent short leads only case sizes 11, 12 and 13; non preferred, in boxes; style 4: long leads; on tape on reel, positive leading; only case sizes 11 to 13; style 5: long leads; on tape in ammunition pack; only case sizes 11 to 13;

style 6: long leads; on tape on reel, negative leading; only case sizes 11 to 13.

Fig. 1 Style 1; see Table 1 for dimensions d, D, L and P.

Fig. 2 Style 2; non preferred, see Table 1 for dimensions d, D, L and P.

Fig. 3 Style 3, case sizes 11, 12 and 13; non preferred, see Table 1 for dimensions d, D and L.

mass

dimensions

Table 1

case										
size	d	D _{max}	L _{max}		g					
11	0,5*	5,5	12,0	2,0	}	0,4				
12	0,6	6,5	12,0	2,5	·	0,6				
13	0,6	8,5	12,5	3,5	± 0,5	1,1				
14	0,6	10,5	12,5	5,0		1,6				
15	0,6	10,5	17,0	5,0		1,9				

е	d	D_{max}	L _{max}	1	P	g		size	d	D_{max}	L_{max}		P	g	
1	0,5*	5,5	12,0	2,0		0,4		16	0,6	10,5	21,0	5,0)	2,2	1
2	0,6	6,5	12,0	2,5		0,6		17	0,6	13,0	21,0	5,0		4,0	
3	0,6	8,5	12,5	3,5	± 0,5	1,1		18	0,6	13,0	26,0	5,0	± 0,5	5,0	
4	0,6	10,5	12,5	5,0		1,6		19	0,8	16,5	26,0	7,5		8,0	
5	0,6	10,5	17,0	5,0		1,9		20	0,8	16,5	32,0	7,5		9,0	l
							•								-

case

size

^{0.6} mm under consideration.

Fig. 4 Styles 4, 5 and 6, case sizes 11 to 13; see Table 2 for dimensions. For style 6 the tape transport

Table 2

	symbol		case size		tol.
	Syllibol	11	12	13	101.
Body diameter	D	5,5	6,5	8,5	max.
Body height	Α	12,0	12,0	12,5	max.
Lead-wire diameter	d	0,5*	0,6	0,6	± 0,05
Pitch of component	P	12,7	12,7	12,7	± 1,0
Feed-hole pitch	Po	12,7	12,7	12,7	± 0,2**
Hole centre to lead	P ₁	3,85	3,85	3,85	± 0,5
Feed hole centre to component centre	P ₂	6,35	6,35	6,35	± 1,0
Lead-to-lead distance	F F	5,0	5,0	5,0	+ 0,6/0
Component alignment	Δh	0	0	0	± 1,0
Tape width	W	18,0	18,0	18,0	± 0,5
Hold-down tape width	w _o	12,5	12,5	12,5	min. ***
Hole position	W ₁	9,0	9,0	9,0	± 0,5
Hold-down tape position	W ₂	2,5	2,5	2,5	max.
Height of component from tape centre	H	18,0	18,0	18,0	+ 1,5/0
Lead-wire clinch height	H ₀	16,0	16,0	16,0	± 0,5
Component height	H ₁	32,0	32,0	32,0	max.
Lead-wire protrusion	1	2,0	2,0	2,0	max.
Feed-hole diameter	D _O	4,0	4,0	4,0	± 0,2
Total tape thickness	t	0,9	0,9	0,9	max.

^{* 0,6} mm under consideration.

is in opposite direction (negative leading).

^{**} Cumulative pitch error: ± 1 mm/20 pitches.

^{***} Other widths under consideration.

Marking

The capacitors are marked with: nominal capacitance, rated voltage, a symbol ot identify the negative terminal, group number (037), code for factory of origin, name of manufacturer and date code (year and month) according to IEC 62.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 3 apply at an ambient temperature of 20 to $25\,^{\circ}\text{C}$, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

2222 037

Table 3

UR	nom.	max. r.m.s.	max. d.c. leakage		max.		case		catalo	jue numl	per 2222 0	37 followed by	
	сар.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ	impeda at T _{aml}	nce (Ω) _b = 20 °C	size						
V	μF	mA	μΑ		at 1 kHz	at 10 kHz		style 1	style 2	style 3	on reel* style 4	in ammopack style 5	on reel** style 6
6,3	68 150 220 330 470 1 500 2 200 6 800	57 92 110 160 200 480 640 1200	7,3 12 17 24 33 98 140 430	0,24 0,24 0,24 0,24 0,25 0,26 0,35	0,44 0,31 0,12	8,8 4,0 2,7 1,8 1,3	11 12 12 13 13 16 17	53689 53151 53221 53331 53471 53152 53222 53682	83689 83151 83221 83331 83471 63152 63222 63682	63689 63151 63221 63331 63471	23689 23151 23221 23331 23471	33689 33151 33221 33331 33471	43689 43151 43221 43331 43471
10	10 000 47 100 150 220 330 680 1 000 3 300 4 700 6 800	1500 51 75 100 150 180 300 400 900 1100 1400	630 7,7 13 18 25 36 71 100 330 470 680	0,42 0,20 0,20 0,20 0,20 0,20 0,20 0,20	0,10 0,18 0,13 0,10	9,6 4,5 3,0 2,0 1,4 0,66 0,45	20 11 11 12 13 14 15 18 19 20	53103 54479 54101 54151 54221 54331 54681 54102 54332 54472 54682	63103 84479 84101 84151 84221 84331 64681 64102 64332 64472 64682	64479 64101 64151 64221 64331	24479 24101 24151 24221 24331	34479 34101 34151 34221 34331	44479 44101 44151 44221 44331

^{*} Positive leading.** Negative leading.

July 1985

U_{R}	nom.	max. r.m.s.	max. d.c. leak age	max.	max.		case		catalog	gue numb	er 2222 0	37 followed by	
	сар.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ	impeda at T _{am} l	nce (Ω) _b = 20 °C	size						
					at	at				' '	on reel*	in ammopack	on reel*
٧	μF	mA	μΑ		1 kHz	10 kHz		style 1	style 2	style 3	style 4	style 5	style 6
16	33	48	8,3	0,16		9,7	11	55339	85339	65339	25339	35339	45339
	68	69	14	0,16		4,7	11	55689	85689	65689	25689	35689	45689
	100	92	19	0,16		3,2	12	55101	85101	65101	25101	35101	45101
	150	140	27	0,16		2,1	13	55151	85151	65151	25151	35151	45151
	220	160	38	0,16		1,5	13	55221	85221	65221	25221	35221	45221
	330	230	56	0,16		0,97	14	55331	65331				
	470	270	78	0,16		0,68	14	55471	65471				
	680	370	110	0,16		0,47	15	55681	65681				
	1000	490	160	0,16		0,32	16	55102	65102				
	1500	650	240	0,17	0,29		17	55152	65152				
	2200	840	360	0,18	0,21		18	55222	65222				
	3300	1100	530	0,20	0,15		19	55332					
	4700	1300	760	0,24	0,11		20	55472	65472				
25	47	62	15	0,14		4,7	11	56479	86479	66479	26479	36479	46479
	68	81	20	0,14		3,2	12	56689	86689	66689	26689	36689	46689
	100	120	28	0,14	1	2,2	13	56101	86101	66101	26101	36101	46101
	150	140	41	0,14		1,5	13	56151	86151	66151	26151	36151	46151
	1000	590	250	0,14		0,22	17	56102	66102			(-	
	1500	760	380	0,15	0,24		18	56152	66152				
	2200	1000	550	0,16	0,17		19	56222	66222				
	3300	1300	830	0,18	0,12		20	56332	66332				

^{*} Positive leading.** Negative leading.

2222 037

U_R	nom.	max. r.m.s.	max.d.c. leakage		max.	401	case		catalog	jue numb	er 2222 0	37 followed by	
	cap.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ	impeda at T _{ami}	nce (\$2) b = 20 °C	size						
V	μF	mA	μΑ		at 1 kHz	at 10 kHz		style 1	style 2	style 3	on reel* style 4	in ammopack style 5	on reel** style 6
35	22	45	11	0,12		6,8	11	50229	80229	60229	20229	30229	40229
	33	56	15	0,12		4,5	11	50339	80339	60339	20339	30339	40339
	220	220	80	0,12		0,68	14	50221	60221				
	330	300	120	0,12		0,45	15	50331	60331				
	470	390	170	0,12		0,32	16	50471	60471				
	680	520	240	0,12		0,22	17	50681	60681				
	1000	690	250	0,12		0,15	18	50102	60102				
	1500	940	530	0,13	0,21		19	50152					
	2200	1200	770	0,14	0,14		20	50222	60222				
40	15	38	9	0,12		8,7	11	57159	87159	67159	27159	37159	47159
	22	45	12	0,12		5,9	11	57229	87229	67229	27229	37229	47229
	33	61	16	0,12		3,9	12	57339	87339	67339	27339	37339	47339
	47	73	22	0,12		2,8	12	57479	87479	67479	27479	37479	47479
	68	100	30	0,12		1,9	13	57689	87689	67689	27689	37689	47689
	100	130	43	0,12		1,3	13	57101	87101	67101	27101	37101	47101
	150	180	63	0,12		0,87	14	57151	67151				-
	330	320	140	0,12		0,39	16	57331	67331				-
	470	440	190	0,12		0,28	17	57471	67471				•
	680	570	280	0,12		0,19	18	57681	1				-
	1000	870	400	0,12		0,13	19	57102					
	1500	1000	600	0,13	0,18		20	57152	67152			Ì	

^{*} Positive leading.** Negative leading.

July 1985

Table 3 (continued)

UR	nom.	max. r.m.s.	max.d.c. leakage		max.	4.5.	case		catalog	jue numb	er 2222 0	37 followed by	
	cap.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ		nce (Ω) _b = 20 °C	size	0					
V	μF	mA	μΑ		at 1 kHz	at 10 kHz		style 1	style 2	style 3	on reel* style 4	in ammopack style 5	on reel** style 6
50	10	34	8	0,10		9,5	11	51109	81109	61109	21109	31109	41109
	22	54	14	0,10		4,3	12	51229	81229	61229	21229	31229	41229
	33	67	20	0,10		2,9	12	51339	81339	61339	21339	31339	41339
1	47	96	27	0,10		2,0	13	51479	81479	61479	21479	31479	41479
	68	120	37	0,10		1,4	13	51689	81689	61689	21689	31689	41689
	220	260	110	0,10		0,43	15	51221	61221				
]	470	480	240	0,10		0,20	17	51471	61471				
	680	630	340	0,10		0,14	18	51681	61681				l
	1000	·680	500	0,10		0,10	19	51102	61102				

^{*} Positive leading.

^{**} Negative leading.

2222 037

Table 3 (continued)

U_R	nom.	max. r.m.s.	max.d.c. leakage		max.		case		catalog	gue numb	er 2222 0	37 followed by	
	сар.	ripple current at T _{amb} = 85 °C	current at UR after 1 min	tan δ	impeda at T _{ami}	nce (Ω) _b = 20 °C	size						
					at	at		1.		' '	on reel*	in ammopack	on reel**
V	μF	mA	μΑ		1 kHz	10 kHz		style 1	style 2	style 3	style 4	style 5	style 6
63	0,10	3,5	3,1	0,09		800	11	58107	88107	68107	28107	38107	48107
	0,15	4,3	3,1	0,09		530	11	58157	88157	68157	28157	38157	48157
	0,22	5,2	3,1	0,09		360	11	58227	88227	68227	28227	38227	48227
	0,33	6,4	3,2	0,09	İ	240	11	58337	88337	68337	28337	38337	48337
	0,47	7,7	3,3	0,09	1	170	11	58477	88477	68477	28477	38477	48477
	0,68	9,2	3,4	0,09		120	11	58687	88687	68687	28687	38687	48687
	1,0	11	3,6	0,09		80	11	58108	88108	68108	28108	38108	48108
	1,5	14	3,9	0,09		53	11	58158	88158	68158	28158	38158	48158
	2,2	17	4,4	0,09		36	11	58228	88228	68228	28228	38228	48228
	3,3	20	5,1	0,09		24	11	58338	88338	68338	28338	38338	48338
	4,7	24	6,0	0,09		17	11	58478	88478	68478	28478	38478	48478
	6,8	29	7,3	0,09		12	11	58688	88688	68688	28688	38688	48688
	10	35	9,3	0,09		8,0	11	58109	88109	68109	28109	38109	48109
	15	43	12	0,09		5,3	11	58159	88159	68159	28159	38159	48159
	22	57	17	0,09		3,6	12	58229	88229	68229	28229	38229	48229
	33	85	24	0,09		2,4	13	58339	88339	68339	28339	38339	48339
	47	100	33	0,09		1,7	13	58479	88479	68479	28479	38479	48479
	68	140	46	0,09		1,2	14	58689	68689				
	100	170	66	0,09	1	0,80	14	58101	68101				
	150	230	98	0,09		0,53	15	58151	68151	l			
	220	300	140	0,09	l	0,36	16	58221	68221	l			
	330	420	210	0,09		0,24	17	58331	68331				
	470	550	300	0,09	1	0,17	18	58471	68471				
	680	760	430	0,09	1	0,12	19	58681	68681				
	1000	1000	630	0,09		0,08	20	58102	68102	1			

^{*} Positive leading.

** Negative leading.

July 1985

UR	nom.	max. r.m.s.	max. d.c. leakage	max.	max.		case		catalog	jue numb	er 2222 0	37 followed by	
	сар.	ripple current at T _{amb} = 85 °C	current at U _R after 1 min	tan δ	impeda at T _{aml}	nce (Ω) _o = 20 °C	size					0 0 0 0 0	
	μF	mA	μΑ		at 1 kHz	at 10 kHz		style 1	style 2	style 3	on reel* style 4	in ammopack style 5	on reel** style 6
100	0,22	5,9	3,2	0,07		270	11	59227	89227	69227	29227	39227	49227
	0,47	8,7	3,5	0,07		130	11	59477	89477	69477	29477	39477	49477
	1,0	13	4	0,07		60	11	59108	89108	69108	29108	39108	49108
	1,5	16	4,5	0,07		40	11	59158	89158	69158	29158	39158	49158
	2,2	19	5,2	0,07		27	11	59228	89228	69228	29228	39228	49228
	3,3	23	6,3	0,07		18	11	59338	89338	69338	29338	39338	49338
	4,7	27	7,7	0,07		13	11	59478	89478	69478	29478	39478	49478
	6,8	33	9,8	0,07		8,8	11	59688	89688	69688	29688	39688	49688
	10	44	13	0,07		6,0	12	59109	89109	69109	29109	39109	49109
	15	65	18	0,07		4,0	13	59159	89159	69159	29159	39159	49159
	22	78	25	0,07		2,7	13	59229	89229	69229	29229	39229	49229
	33	110	36	0,07		1,8	14	59339	69339				
	47	150	50	0,07		1,3	15	59479	69479				
	68	180	71	0,07		0,88	15	59689	69689				
	100	230	100	0,07		0,60	16	59101	69101				
	150	320	150	0,07		0,40	17	59151	69151				
	220	430	220	0,07		0,27	18	59221	69221			-	
	330	600	330	0,07		0,18	19	59331	69331				
	470	780	470	0,07		0,13	20	59471	69471			-	

^{*} Positive leading.** Negative leading.

Capacitance

Nominal capacitance at 100 Hz and $T_{amb} = 20 \, ^{\circ}\text{C}$ Tolerance on nominal capacitance at 100 Hz

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max. peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

1 V

Ripple current * *

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 °C

see Table 3

see Table 3

-20 to + 20%

Fig. 5 Typical multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- * Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 6 Typical multiplier of ripple current as a function of frequency; $I_{\rm r0}$ = ripple current at 85 °C; 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leq I_{r \text{ max}^{2}}$$

 $I_{r max}$ = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0}$ = multiplying factor at a same frequency.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and requirements).

D.C. leakage current

Maximum d.c. leakage current 1 min after application

of U_R at T_{amb} = 20 °C see Table 3 (0,01 CU + 3 μ A)

D.C. leakage current during continuous operation at UR,

at T_{amb} = 25 °C

at T_{amb} = 85 °C

approx. 0,1 x value stated in Table 3 ≤ value stated in Table 3

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 3.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and $T_{amb} = 25$ °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 3

Equivalent series resistance (ESR)

ESR = $\tan \delta/\omega C$

Maximum tan δ and C at 100 Hz and $T_{amb} = 25$ °C

see Table 3

Equivalent series inductance (ESL)

Case sizes 11, 12, 13 Case sizes 14, 15, 16 Case sizes 17, 18, 19, 20 typ. 13 nH typ. 16 nH typ. 18 nH

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C and 10 kHz ($C_{nom} \le 1000 \mu F$) and

1 kHz ($C_{nom} > 1000 \mu F$),

measured by means of a four-terminal

circuit (Thomson circuit)

see Table 3

 $z = Z \times C_{nom}$

see Table 4

Maximum ratio between impedances at $T_{amb} = -25$ °C and + 20 °C, and at $T_{amb} = -40$ °C and + 20 °C, at 100 Hz measured by means of a four-terminal circuit (Thomson circuit)

see Table 5

Table 4

	T .			z =	ZxCr	nom (Ω	μF) at l	JR		
	amb	6,3 V	10 V	16 V	25 V	35 V	40 V	50 V	63 V	100 V
$C_{nom} > 1000 \mu F$, measured at 1 kHz*	+ 20 °C	650	530	430	350	300	270	260	250	240
	-25 °C	5500	4000	2700	1700	1200	1000	700	550	500
$C_{\text{nom}} \le 1000 \mu\text{F},$ measured at 10 kHz	+ 20 °C	600	450	320	220	150	130	95	80	60
	-25 °C	5500	4000	2700	1700	1200	950	650	500	450

Table 5

		maximum impedance ratio at $U_{\hbox{\scriptsize R}}$ and 100 Hz											
	6,3 V	10 V	16 V	25 V	35 V	40 V	50 V	63 V	100 V				
Z at -25 °C Z at +20 °C	4	3	2	2	2	2	2	2	2				
Z at -40 °C Z at +20 °C	8	6	5	4	4	4	3	3	3				

^{*} Values shall be increased by 5% per 1000 μ F.

OPERATIONAL DATA

Category ten	perature	range
--------------	----------	-------

Typical life ti	me	
at T _{amb} =	40 °C	;
at T _{amb} =	85 °C	;
at Tamb =	95 °C	;
at T _{amb} =	105 °C	;

Shelf life at 0 V and Tamb = 85 °C

-40 to +85 °C	
U _R = 25 to 100 V	U _R = 6,3 to 16 V
70 000 h	35 000 h
3000 h	1500 h
1500 h	750 h
750 h	400 h
500 h	500 h

PACKING

Capacitors of styles 1, 2 and 3 are supplied in boxes, those of styles 4, 6 and 5 on tape on reel and in ammunition pack respectively. The numbers per box, per reel and per ammuniation pack are given in Table 6.

Table 6

	number of capacitors						
case size	style 1 per box	style 2 per box	style 3 per box	styles 4 and 6 per reel	style 5 per ammuniation pack		
11	1000	1000	1000	1000	2000		
12	1000	1000	1000	1000	2000		
13	1000	1000	1000	500	1000		
14	1000	1000		5.3			
15	500	500					
16	500	500					
17	200	200					
18	200	200					
19	200	200					
20	200	200					

3 = paper

Fig. 8 Capacitors (style 5) on tape in ammunition pack.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After endurance test, 1000 h (U_R = 6,3 to 16 V) or 2000 h (U_R = 25 to 100 V), 85 °C, the capacitors meet the following requirements:

$$\Delta C/C \leq \pm 20\%$$
,

tan $\delta \leq 1.5$ x specified value,

d.c. leakage current ≤ specified value.

After shelf life test, 500 h, 85 $^{\circ}$ C, the capacitors meet the same requirements as after endurance test, except for leakage current of the 100 V range: \leq 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 037 are miniature and small, general-purpose grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads and single ended
- Long life
- General and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range Tolerance on nominal capacitance Rated voltage range, U_R (R5 series) Category temperature range

Endurance test at 85 °C case sizes 4 to 7 case sizes 00 to 05 Shelf life at 0 V, 85 °C

Basic specifications

Climatic category IEC 68 DIN 40040 1 to 220 μF

-10 to +50%

-40 to +85 °C

2000 h 5000 h 500 h

IEC 384-4, type 1, long-life grade

DIN 41240

40/085/56 GPF

Selection chart for C_{nom}-U_R and relevant case sizes.

C _{nom}		U _R (V)						
μF	160	250	350	385				
1				4				
2,2		4		5				
4,7	4	5	6	7				
6,8			00	00				
10	5	00/7	01	01				
15		01	01	02				
22	00/7	01	02	03				
33	01	02	03	04				
47	02	03	04	04				
68	02	04	05	05				
100	03	05						
150	04							
220	05							

case size	nominal dimensions (mm)	series number	
4 5 6 7	Ø 6,5 x 18 Ø 8 x 18 Ø 10 x 18 Ø 10 x 25	041	miniature
00 01 02 03	Ø 10 × 30 Ø 12,5 × 30 Ø 15 × 30 Ø 18 × 30	042	small
04 05	Ø 18 × 40 Ø 21 × 40	043	

APPLICATION

For smoothing, coupling and decoupling purposes in circuits where a high voltage is required. The bandoliered version is extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitor has etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitor is in an aluminium case, which is insulated with a blue plastic sleeve.

The capacitors are available in 3 styles, all with soldered-copper leads.

Style 1: axial leads; all case sizes; case sizes 4 to 7 are supplied on bandoliers.

Style 2: single ended; with mounting ring with printed-wiring pins; especially for use in applications with severe shocks and vibrations; case sizes 02 to 05.

Style 3: single ended; case sizes 4 to 7 and 00 to 02.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions D, L, I and P.

Table 1a

case		style 1						
size	r Paris	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	approx g	
4	*	6,5	18,0	6,9	18,5	25	1,3	
5	* * ;	8,0	18,0	8,5	18,5	25	1,7	
6	*	10,0	18,0	10,5	18,5	25	2,5	
7	*	10,0	25,0	10,5	25,0	30	3,3	
00	55 ± 1	10,0	30,0	10,5	30,5	35,0	4,0	
01	55 ± 1	12,5	30,0	13,0	30,5	35,0	6,3	
02	55 ± 1	15,0	30,0	15,5	30,5	35,0	8,2	
03	55 ± 1	18,0	30,0	18,5	30,5	35,0	10,9	
04	34 ± 1	18,0	40,0	18,5	41,5	45,0	14	
05	34 ± 1	21,0	40,0	21,5	41,5	45,0	19	

^{*} Case sizes 4 to 7 are supplied on bandoliers in boxes or on reels (see PACKING).

Table 1b

case	style 2							
size	d ₁	d ₂	D1	D2 _{max}	D3	L	approx.	
02	0,8	1 + 0,1	15,0	17,5	16,5 ± 0,2	31 ± 1	8,6	
03	0,8	1 + 0,1	18,0	19,5	18,5 ± 0,2	31 ± 1	11,5	
04	1,0	1,3 + 0,1	18,0	19,5	18,5 ± 0,2	42 ± 1	14,5	
05	1,0	1,3 + 0,1	21,0	22,5	21,5 ± 0,2	42 ± 1	19,7	

± 2 1 0,5 - Ød1 ØD2

ØD1-

Fig. 2 Style 2; see Table 1b for dimensions d₁, d₂, D1, D2,

Table 1c

D3 and L.

case	d		mass approx.		
size		D _{max}	L _{max}	Р	g g
4	8,0	6,9	21,5	5 -10	1,2
5	0,8	8,5	21,5	5 -10	1,6
6	0,8	10,5	21,5	7,5-12,5	2,3
7	0,8	10,5	28,0	7,5-12,5	3,1
00	0,8	10,5	34,0	7,5-12,5	3,8
01	0,8	13,0	34,0	7,5-12,5	6,1
02	0,8	15,5	34,0	10,0-15,0	8,0

Fig. 3 Style 3 see Table 1c for dimensions d, D, L and P.

Marking

The capacitors are marked with:
nominal capacitance;
tolerance on nominal capacitance;
rated voltage;
group number; code of origin;
name of manufacturer;
date code (year and month) according to IEC 62;
band to identify the negative terminal;
+ signs to identify the positive terminal.

Mounting

The diameter of the holes in the printed-wiring board for styles 1 and 3 is 1 + 0,1 mm.

The hole diameter for style 2 is 1,3 + 0,1 mm, except that for the anode pin of case sizes 02 and 03: 1 + 0,1 mm.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%. (See also the relevant paragraphs.)

UR	nom.	max. r.m.s.	max.d.c.leakage	max.	max.	typ.	case	catalogue
∪K	cap.	ripple current	current at UR	ESR	tan δ	impedance	size	number*
	oup.	at T _{amb} = 85 °C	after 1 min			at 10 kHz		2222 followed by
V	μF	mA	μΑ	Ω		Ω		,
160	4,7	26	38	53,2	0,15	26	4	041 .1478
	10	41	68	25,0	0,15	12	5	041 .1109
	22	77	126	11,4	0,15	5,5	7	041 .1229
	22	106	42	6,8	0,10	1,3	00	042 .1229
	33	146	58	4,5	0,10	1,0	01	042 .1339
	47	194	78	3,2	0,10	0,66	02	042 .1479
	68	233	108	2,2	0,10	0,48	02	042 .1689
	100	313	154	1,5	0,10	0,37	03	042 .1101
	150	433	226	1,0	0,10	0,21	04	043 .1151
	220	571	327	0,7	0,10	0,18	05	043 .1221
250	2,2	18	28	132	0,18	35	4	041 .3228
	4,7	29	55	61,7	0,18	18	5	041 .3478
	10	55	95	29	0,18	7	7	041 .3109
	10	72	33	15	0,10	4,2	00	042 .3109
	15	100	44	10	0,10	2,8	01	042 .3159
	22	120	60	6,8	0,10	2,2	01	042 .3229
	33	162	84	4,5	0,10	1,4	02	042 .3339
	47	215	116	3,2	0,10	0,75	03	042 .3479
	68	291	163	2,2	0,10	0,4	04	043 .3689
	100	385	235	1,5	0,10	0,28	05	043 .3101
350	4,7	32	69	68,1	0,20	12	6	041 .5478
	6,8	60	32	22	0,10	5,0	00	042 .5688
	10	81	42	15	0,10	4,2	01	042 .5109
	15	100	57	10	0,10	2,8	01	042 .5159
	22	133	79	6,8	0,10	2,1	02	042 .5229
	33	162	114	4,5	0,10	0,9	03	042 .5339
	47	242	158	3,2	0,10	0,7	04	043 .5479
	68	317	224	2,2	0,10	0,4	05	043 .5689
385	1	12	19	335	0,20	40	4	041 .8108
	2,2	23	42	152	0,20	20	5	041 .8228
	4,7	43	71	71,3	0,20	8	7	041 .8478
	6,8	60	34	22	0,10	5,0	00	042 .8688
	10	81	45	15	0,10	4,2	01	042 .8109
	15	110	62	10	0,10	2,3	02	042 .8159
	22	147	86	6,8	0,10	2,0	03	042 .8229
	33	203	124	4,5	0,10	0,8	04	043 .8339
	47	242	173	3,2	0,10	0,7	04	043 .8479
	68	317	246	2,2	0,10	0,4	05	043 .8689

^{*} Note is on the next page.

- * Replace dot in catalogue number by:
 - 1 for style 1, case sizes 00 to 05, supplied in box;
 - 2 for style 1 on bandoliers on reel (preferred for case size 4) case sizes 4 to 7
 - 3 for style 1 on bandoliers in box (preferred for case size 5 to 7)
 - 4 for style 2, case sizes 02 to 05:
 - 8 for style 3.

Capacitance

Nominal capacitance at 100 Hz and Tamb = 20 °C

Tolerance on nominal capacitance at 100 Hz -10 to + 50%

Fig. 4 Multiplier of capacitance as a function of ambient temperature; case sizes 4 to 7; C₀ = capacitance at 20 °C, 100 Hz.

Fig. 5 Multiplier of capacitance as a function of ambient temperature; case sizes 00 to 05; C₀ = capacitance at 25 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage at core temperature < 60 °C 1,1 x U_R 60 to 95 °C UR Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met: a) max. (d.c. + peak a.c.) voltage UR b) max, peak a.c. voltage without d.c. voltage applied c) momentary value of applied voltage between UR and -1 V Surge voltage = max, permissible voltage for short periods for UR = 160 V or 250 V 1,15 x UR for UR = 350 V or 385 V 1,1 x UR Reverse voltage = max. d.c. voltage applied in the reverse polarity 1 V at 85 °C for short periods

Ripple current **

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 °C

Fig. 6 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- * Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 7 Multiplier of ripple current as a function of frequency; case sizes 4 to 7; I_{r0} = ripple current at 85 °C, 100 Hz.

Fig. 8 Multiplier of ripple current as a function of frequency; case sizes 00 to 05: I_{r0} = ripple current at 85 °C, 100 Hz.

Aluminium electrolytic capacitors

2222 041 2222 042 2222 043

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r \text{ max}^{2}}$$

I_{r max} = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0}$ = multiplying factor at a same frequency.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitors. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of the rated voltage at T_{amb} = 20 °C case sizes 4 to 7

case sizes 00 to 05

Maximum d.c. leakage current **5 min** after application of the rated voltage at T_{amb} = 20 °C; all case sizes

see Table 2 (0,05 CU or 5 μ A, whichever is greater for CU \leq 1000 μ C; 0,03 CU + 20 μ A for CU > 1000 μ C) see Table 2 (0,009 CU + 10 μ A)

0,01 CU or 1 μ A (whichever is greater) for CU \leq 1000 μ C; 0,006 CU + 4 μ A for CU > 1000 μ C CU > 1000 μ C

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Fig. 9 Multiplier of d.c. leakage current as a function of ambient temperature; I $_{0}$ = d.c. leakage current during continuous operation at 25 $^{\rm o}C$ and U $_{\rm R}.$

Fig. 10 Multiplier of d.c. leakage current as a function of U/U_R ; I_0 = d.c. leakage current during continuous operation at 25 $^{\circ}$ C and U_R .

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

10⁴

7283138

10²

7288117.1

ESR
(Ω)

10³

10²

10³

10³

10³

10³

10⁴

10³

6

100

T_{amb} (OC)

10-

-50

Fig. 11 Typical ESR as a function of ambient temperature at 100 Hz; case sizes 4 to 7. Curve 1 = case size 4, 385 V; curve 2 = case size 5, 385 V; curve 3 = case size 4, 160 V; curve 4 = case size 7, 385 V; curve 5 = case size 5, 160 V; curve 6 = case size 7, 160 V.

0

-50

50

Fig. 12 Multiplier of ESR as a function of ambient temperature; case sizes 00 to 05; ESR $_0$ = typ. ESR at 25 °C, 100 Hz.

0

50

100

T_{amb} (OC)

Fig. 13 Typical ESR as a function of frequency at 20 $^{\circ}$ C; U_R = 250 V; case sizes 4 to 7.

Fig. 14 Multiplier of ESR as a function of frequency; case sizes 00 to 05; ESR_0 = typ. ESR at 25 °C, 100 Hz.

Impedance

Typical impedance at 10 kHz, measured by a four-terminal circuit (Thomson circuit)

Fig. 15 Typical impedance as a function of ambient temperature at 10 kHz; $U_R = 250 \text{ V}$; case sizes 4 to 7.

Fig. 16 Multiplier of impedance as a function of ambient temperature; case sizes 00 to 05; $Z_{\rm O}$ = typ. impedance at 25 $^{\rm O}$ C, 10 kHz (see Table 2).

Fig. 17 Typical impedance as a function of frequency at 20 °C. Case sizes 4 to 7.

Curve 1 = case size 4, 250 V;

curve 2 = case size 5, 250 V;

curve 3 = case size 6, 350 V;

curve 4 = case size 7, 250 V.

Fig. 18 Typical impedance as a function of frequency at different temperatures. Case size 00.

Curve 1 = 6,8 μ F, 350/385 V; -40 °C;

curve 2 = 10 μ F, 250 V; -40 °C;

curve 3 = 22 μ F, 160 V; -40 °C;

curve $4 = 6.8 \mu F$, 350/385 V; + $20 \, {}^{\circ}C$;

curve $5 = 10 \mu F$, 250 V; + 20 °C;

curve 6 = $22 \mu F$, 160 V; + $20 \circ C$;

curve 7 = 6,8 μ F, 350/385 V; + 85 °C;

curve 8 = 10 μ F, 250 V; +85 °C;

curve 9 = 22 μ F, 160 V; +85 °C.

Fig. 19 Typical impedance as a function of frequency at different temperatures. Case size 01.

```
Curve 1 = 10 \muF, 350/385 V; -40 °C; curve 2 = 15 \muF, 250 V; -40 °C; curve 3 = 33 \muF, 160 V; -40 °C; curve 4 = 10 \muF, 350/385 V; +20 °C; curve 5 = 15 \muF, 250 V; +20 °C; curve 5 = 15 \muF, 250 V; +20 °C; curve 6 = 33 \muF, 160 V; +85 °C; curve 9 = 33 \muF, 160 V; +85 °C.
```


Fig. 20 Typical impedance as a function of frequency at different temperatures. Case size 02.

Curve 1 = 15 μ F, 385 V; -40 °C; curve 6 = 68 μ F, 160 V; + 20 °C; curve 2 = 22 μ F, 350 V; -40 °C; curve 7 = 15 μ F, 385 V; + 85 °C; curve 3 = 68 μ F, 160 V; -40 °C; curve 8 = 22 μ F, 350 V; + 85 °C; curve 4 = 15 μ F, 385 V; +20 °C; curve 5 = 22 μ F, 350 V; +20 °C;

Fig. 21 Typical impedance as a function of frequency at different temperatures. Case size 03.

```
Curve 1 = 22 \muF, 385 V; -40 °C; curve 6 = 100 \muF, 160 V; +20 °C; curve 2 = 47 \muF, 250 V; -40 °C; curve 7 = 22 \muF, 385 V; +85 °C; curve 3 = 100 \muF, 160 V; -40 °C; curve 8 = 47 \muF, 250 V; +85 °C; curve 4 = 22 \muF, 385 V; +20 °C; curve 5 = 47 \muF, 250 V; +20 °C;
```


Fig. 22 Typical impedance as a function of frequency at different temperatures. Case size 04.

```
Curve 1 = 33 \muF, 385 V; -40 °C; curve 6 = 150 \muF, 160 V; +20 °C; curve 2 = 68 \muF, 250 V; -40 °C; curve 7 = 33 \muF, 385 V; +85 °C; curve 3 = 150 \muF, 160 V; -40 °C; curve 8 = 68 \muF, 250 V; +85 °C; curve 4 = 33 \muF, 385 V; +20 °C; curve 5 = 68 \muF, 250 V; +20 °C;
```


Fig. 23 Typical impedance as a function of frequency at different temperatures. Case size 05.

Curve 1 = 68
$$\mu$$
F, 350/385 V; -40 °C; curve 2 = 100 μ F, 250 V; -40 °C; curve 3 = 220 μ F, 160 V; -40 °C; curve 4 = 68 μ F, 350/385 V; + 20 °C; curve 5 = 100 μ F, 250 V; + 20 °C; curve 5 = 100 μ F, 250 V; + 20 °C;

Inductance (ESL)

Case size 4 Case size 5 Case sizes 6 and 7 Case sizes 00 and 01	30 nH 50 nH 65 nH 50 nH	typical values
Case sizes 00 and 01 Case size 02 Case sizes 03, 04 and 05	50 nH 55 nH 60 nH	

OPERATIONAL DATA	
Category temperature range	-40 to +85 °C
Typical life time	$T_{amb} = 85 {}^{\circ}\text{C} T_{amb} = 40 {}^{\circ}\text{C}$
case sizes 4 to 7	5000 h > 100 000 h
case sizes 00 to 05	10 000 h > 200 000 h
Shelf life at 0 V and T _{amb} = 85 °C	500 h

PACKING

All capacitors are supplied in boxes, case sizes 4 to 7 of style 1 are on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 3.

Table 3

		number of capa	citors
case size	style 1 per reel	style 1 per box	styles 2 and 3 per box
4	1000	1000	1000
5	500	500	1000
6	500	500	1000
7	500	500	500
00		200	200
01		200	200
02		200	200
03		200	200
04		100	100
05		100	100

Fig. 24 Style 1 capacitors (case sizes 4 to 7) on bandoliers: the bandolier to which the negative capacitor terminals are connected is blue. See Table 4 for dimensions A, S, T and L. |B1 - B2| = max. 1,4 mm.

Table 4
Dimensions in mm

case size A	S		umber (n) pacitors	L _{max}	
		n < 50	50 < n < 100		
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
5	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
6	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	18,5
7	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	25,0

Fig. 25 Style 1 capacitors (case sizes 4 to 7) on bandoliers on reel; dimension C is 88,5 mm; the overall width of the reel is 99,5 mm.

1 = capacitor

3 = paper

5 = cylinder

2 = bandolier

4 = flange

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test, except for d.c. leakage current: ≤ 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 041 are miniature types, long-life grade.

Capacitors 2222 042 and 2222 043 are small types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Large type with solder tags or printed-wiring pins
- Long life
- Industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

Tolerance on nominal capacitance

Rated voltage, UR

Category temperature range

Endurance test at 85 °C, at UR

Shelf life at 0 V. 85 °C

Basic specification

Dimensional specification

Climatic category, IEC 68

DIN 40040

Approval

Selection chart for $\mathsf{C}_{nom}\text{-}\mathsf{U}_R$ and relevant case sizes.

C_{nom}		U _R (V)						
μ F	10	16	25	40	63	100	250	385
47								1
68								2
100							1	3
150							2	4
220							3	5/6
330							4	7
470						1	5/6	8
680						2	7	
1 000					1	3	8	
1 500				1	2	4		
2 200			1	2	3	5/6		
3 300		1	2	3	4	7		
4 700	1	2	3	4	5/6	8		
6 800	2	3	4	5/6	7	9		
10 000	3	4	5/6	7	8			
15 000	4	5/6	7	8	9			-
22 000	5/6	7	8	9				
33 000	7	8	9					
47 000	8	9						
68 000	9							

47 to 68 000 μF

-10 to + 30%

10 to 385 V

-40 to +85 °C

2000 h

500 h

IEC 384-4, long-life grade;

DIN 41240

DIN 41238

40/085/56

GPF (56 days)

€ CECC 30 301-033

	nominal dimensions (mm)					
case size	versions with solder tags	versions with printed-wiring pins				
1	φ 25 x 35	φ 25 x 35				
2	φ 25 x 45	φ 25 x 45				
3	$\phi 30 \times 45$	φ 30 x 45				
4	φ 35 x 45	φ 35 x 45				
5	ϕ 35 x 55	φ 3 5 x 55				
6		φ 40 x 45				
7	φ 40 x 55	ϕ 40 x 55				
8	ϕ 40 x 75	φ 40 x 75				
9	ϕ 40 x 105	φ 40 x 105				

APPLICATION

These capacitors have low ESR and ESL values and a high resistance to shock and vibration which render them suitable for application such as:

- switched-mode power supplies;
- power supplies in digital equipment;
- energy storage in pulse systems:
- filters in measuring and control apparatus.

DESCRIPTION

The resistance to shock and vibration is achieved by a special internal construction.

The capacitors are completely cold welded and charge/discharge proof. The aluminium case is fully insulated. The solder tag versions have a safety vent in the discs, the printed-wiring versions have a safety vent in the case bottom.

MECHANICAL DATA

Capacitors with solder tags

Fig. 2 Bolt version.

Table 1a

case size		D		L	mass approx.
1 2 3 4 5 7 8	25 25 30 35 35 40 40 40	+ 0,6	35 45 45 45 55 55 75 105	+ 1,3	25 30 40 55 65 85 115

Fig. 1.

- 1 = positive terminal;
- 5 = negative terminal.

Capacitors with printed-wiring pins

Fig. 3a.

1 = positive terminal;

5 = negative terminal.

Fig. 4a.

1 = positive terminal; 5 = negative terminal.

Fig. 3b Piercing diagram viewed from component side.

Table 1b

case size	L	mass approx.
1	35	25
2	45 + 1,3	30

Fig. 4b Piercing diagram viewed from component side.

Table 1c

case size	L	mass approx.
3	45 + 1,3	40

Fig. 5a.

1 = positive terminal;

5 = negative terminal.

1 = positive terminal;

5 = negative terminal.

Fig. 5b Piercing diagram viewed from component side.

Table 1d

case size	L	mass approx.
4	45	55
5	55 + 1,3	65

Fig. 6b Piercing diagram viewed from component side.

Table 1e

case size	L		mass approx.
6	45 55)	70 85
8	75	+ 1,3	115
9	105)	160

Marking

The capacitors are marked with: nominal capacitance, tolerance on capacitance, rated voltage, temperature range, IEC grade, catalogue number, date code (year, week) according to IEC 62, name of manufacturer, indication of production centre, polarity of the terminals and CECC specification BS. CECC 30 301-033.

The terminals are marked as shown in the dimensional figures.

Mounting

The capacitors may be mounted in any position with or without a mounting clamp. When a number of capacitors are connected in a bank, they must not be closer together than 15 mm, when no derating of ripple current and/or temperature is applied.

If the case has to be at a specified potential, it should be connected to the negative terminal only.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured,

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $20\,^{\circ}$ C, a frequency of $100\,$ Hz, an atmospheric pressure of 86 to $106\,$ kPa and a relative humidity of 45 to 75%.

Table 2 (note is at the end of the table)

U _R	nom. cap.	max. ripple ((A) 100 Hz,	current	max. d.c. leakage current at Up after	typ. tan δ	max. ESR	max. impedance at 10 kHz	case size	catalogue number* 2222 followed
V	μF	85 °C	70 °C	1 min (mA)		mΩ	mΩ		by
10	4 700 6 800	2,4	4,6	0,28	0,19	74	50	1	050 . 4472
	10 000	3,2 3,8	6,1 7,2	0,41 0,60	0,18 0,24	51 39	37	2	. 4682
	15 000	4,1	7,2	0,80	0,24	35	29 26	4	. 4103
	22 000	5,0	9,5	1,32	0,33	27	20	5	. 4153
	22 000	4,2	8,0	1,32	0,37	36	27	6	. 4223 . 4223
	33 000	5,0	9,5	1,98	0,58	29	22	7	. 4223
	47 000	6,8	12,9	2,82	0,58	20	17	8	. 4473
	68 000	9,2	17,5	4,08	0,62	15	14	9	. 4683
16	3 300	2,4	4,6	0,32	0,13	75	50	1	. 5332
	4 700	3,1	5,9	0,45	0,14	52	37	2	. 5472
	6 800	3,7	7,0	0,65	0,17	40	30	3	. 5682
	10 000	4,1	7,8	0,96	0,22	36	27	4	. 5103
	15 000	5,0	9,5	1,44	0,25	28	21	5	. 5153
	15 000	4,2	8,0	1,44	0,33	36	27	6	. 5153
	22 000	5,0	9,5	2,12	0,38	29	22	7	. 5223
	33 000	6,7	12,7	3,17	0,41	20	17	8	. 5333
	47 000	9,1	17,3	4,51	0,42	15	14	9	. 5473
25	2 200	2,3	4,4	0,33	0,10	78	52	1	. 6222
	3 300	3,1	5,9	0,49	0,11	53	38	2	. 6332
	4 700	3,7	7,0	0,70	0,12	42	31	3	. 6472
	6 800	4,1	7,8	1,02	0,15	37	28	4	. 6682
	10 000 10 000	5,0	9,5	1,50	0,17	28	21	5	. 6103
	15 000	4,2 5,0	8,0	1,50	0,22	36	27	6	. 6103
	22 000	6,8	9,5 12,9	2,25 3,30	0,26 0,27	29 20	22 17	7 8	. 6153
	33 000	9,2	17,5	4,95	0,27	15	14	9	6333
40	1 500	2,0	3,8	0,36	0,085	112	68	1	. 7152
	2 200	2,7	5,1	0,53	0,087	76	51	2	. 7132
	3 300	3,3	6,3	0,79	0,10	57	41	3	. 7332
	4 700	3,8	7,2	1,13	0,10	48	35	4	. 7472
	6 800	4,7	8,9	1,64	0,13	36	27	5	. 7682
	6 800	4,1	7,8	1,64	0,17	45	33	6	. 7682
	10 000	4,9	9,3	2,40	0,19	35	27	7	. 7103
	15 000	6,6	12,5	3,60	0,21	25	20	8	. 7153
	22 000	9,0	17,1	5,28	0,22	18	16	9	. 7223

Table 2 (continued)

	Т	I				I		т	
U_R	nom	l	r.m.s.	max. d.c.	typ.	max.	max.	case	catalogue
	cap.		current	leakage	tan δ	ESR	impedance	size	number*
		100 Hz,	() at 20 kHz,	current at			at 10 kHz	}	2222
V	μF	85 °C	70 °C	U _R after		mΩ	mΩ		followed by
	μι	00 0	70 00	I min (mA)		11177	11177	l 	БУ
63	1 000	1,8	3,4	0,38	0,064	122	74	1	050 . 8102
	1 500	2,5	4,7	0,57	0,065	83	54	2	. 8152
	2 200	3,1	5,9	0,83	0,076	57	41	3	. 8222
	3 300	3,6	6,8	1,25	0,094	48	35	4	. 8332
	4 700	4,4	8,3	1,78	0,10	36	27	5	. 8472
	4 700	3,8	7,2	1,78	0,13	45	33	6	. 8472
	6 800	4,7	8,9	2,57	0,14	35	27	7	. 8682
	10 000	6,2	11,8	3,78	0,15	25	20	8	. 8103
	15 000	8,5	16,1	5,67	0,16	18	16	9	. 8153
100	470	1,2	2,3	0,28	0,086	429	300	1	. 9471
	680	1,7	3,2	0,41	0,087	297	210	2	. 9681
	1 000	2,2	4,2	0,60	0,092	208	150	3	. 9102
	1 500	2,6	4,9	0,90	0,10	152	120	4	. 9152
	2 200	3,2	6,1	1,32	0,11	109	90	5	. 9222
	2 200	3,0	5,7	1,32	0,12	124	110	6	. 9222
	3 300	3,6	6,8	1,98	0,14	91	75	7	. 9332
	4 700	5,0	9,5	2,82	0,13	63	55	8	. 9472
	6 800	6,9	13,1	4,08	0,14	44	40	9	. 9682
250	100	0,6	1,15	0,15	0,085	1800	1300	1	052 . 3101
	150	0,8	1,5	0,23	0,08	1100	850	2	. 3151
	220	1,0	1,9	0,33	0,08	750	550	3	. 3221
	330	1,4	2,65	0,49	0,08	500	400	4	. 3331
	470	1,8	3,4	0,70	0,08	360	290	5	. 3471
	470	1,8	3,4	0,70	0,095	420	350	6	. 3471
	680	2,3	4,4	1,02	0,08	250	190	7	. 3681
	1 000	3,0	5,7	1,50	0,08	170	140	8	. 3102
385	47	0,4	0,75	0,11	0,065	2800	2200	1	. 8479
	68	0,6	1,15	0,16	0,055	1700	1350	2	. 8689
	100	0,8	1,5	0,23	0,055	1100	850	3	. 8101
	150	1,0	1,9	0,34	0,055	725	525	4	. 8151
	220	1,3	2,45	0,50	0,055	500	350	5	. 8221
	220	1,3	2,45	0,50	0,065	600	420	6	. 8221
	330	1,7	3,2	0,75	0,055	340	230	7	. 8331
	470	2,8	5,3	1,06	0,055	240	160	8	. 8471

^{*} To complete the catalogue number, replace dot (8th digit) by:

^{1 =} solder tag version;

^{4 =} printed-wiring version, case size 6 only;

^{5 =} printed-wiring version, except case size 6;

^{6 =} solder tag, bolt version.

Capacitance

Nominal capacitance values at 100 Hz and T_{amb} = 20 °C see Table 2

Tolerance on nominal capacitance at 100 Hz -10 to + 30%

Fig. 7 Multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at 25 $^{
m oC}$, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following conditions are met:

- (a) max. positive voltage on anode (d.c. + peak a.c.)
- (b) max. positive voltage on cathode (reverse voltage)

Surge voltage = max. permissible voltage at the maximum category temperature for short periods

10 to 100 V versions

250 V version

385 V version

Reverse voltage = max. d.c. voltage applied in the reverse polarity at the maximum category temperature for short periods

core ter	core temperature A					
< 60 oC	60 to 95 °C					
1,1 x U _R	UR					
≤ 1,1 x U _R 2	V ≤UR					
1,25 x U _R 1,15 x U _R 1,1 x U _R	1,15 x U _R 1,15 x U _R 1,1 x U _R					
2	V					

[▲] See Introduction, section 5, "Ripple current".

^{*} Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.

Ripple current*

Maximum permissible r.m.s. ripple current

Table 3

multiplier of max. ripple current
1,00
1,22
1,41
1,58
1,73
1,87
2,00
2,12
2,24
2,35

see	Table	2
see	Table	2
see	Table	3
see	Table	4

Table 4

frequency	multiplier of max. ripple		
Hz	current,√r		
50	0,83		
100	1,00		
200	1,10		
400	1,15		
1000	1,19		
≥ 2000	1,20		

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leq I_{r \, \text{max}^{2}}$$

 $I_{r max}$ = maximum ripple current at 100 Hz and applicable ambient temperature

In = ripple current at a certain frequency

 $\sqrt{r_n}$ = multiplying factor at same frequency (Table 4).

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

^{*} Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of the rated voltage at T_{amb} = 20 °C

see Table 2 (0,006 CU + 4 μA)

Maximum d.c. leakage current 15 min after application of the rated voltage

at $T_{amb} = 20$ °C at $T_{amb} = 85$ °C

0,125 x value stated in Table 2 0.625 x value stated in Table 2

If owing to prolonged storage and/or storage at an excessive temperature the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ (dissipation factor)

Tan δ at 100 Hz and T_{amb} = 20 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Equivalent series inductance (ESL)

 Case sizes 1 and 2
 max. 25 nH

 Case sizes 3, 4 and 5
 max. 30 nH

 Case sizes 6, 7 and 8
 max. 35 nH

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and Tamb = 20 °C

Fig. 8 Typical ESR as a function of temperature at 100 Hz, U_{R} = 10 V.

Fig. 9 Typical ESR as a function of temperature at 100 Hz, $U_{\mbox{\scriptsize R}} = 63~\mbox{\scriptsize V}.$

Fig. 10 Typical ESR as a function of temperature at 100 Hz, $\rm U_{\sc R}$ = 100 V.

Fig. 11 Typical ESR as a function of temperature at 100 Hz, $\ensuremath{\text{U}_{R}} = 250 \ \ensuremath{\text{V}}.$

Fig. 12 Typical ESR as a function of temperature at 100 Hz, $U_R = 385 \text{ V}$.

Impedance

Maximum impedance at 10 kHz and T_{amb} = 20 °C, measured by means of a four-terminal circuit (Thomson circuit)

Fig. 13 Typical impedance as a function of temperature at 10 kHz, $U_R = 10 \text{ V}$.

Fig. 14 Typical impedance as a function of temperature at 10 kHz, U_R = 63 V.

Fig. 15 Typical impedance as a function of temperature at 10 kHz, U_R = 100 V.

Fig. 16 Typical impedance as a function of temperature at 10 kHz, U_R = 250 V.

Fig. 17 Typical impedance as a function of temperature at 10 kHz, U_R = 385 V.

Fig. 18 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 1: curve 1 = 47 μ F, 385 V; curve 2 = 100 μ F, 250 V; curve 3 = 470 μ F, 100 V; curve 3 = 470 μ F, 100 V;

Fig. 19 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 2: curve 1 = 68 μ F, 385 V; curve 2 = 150 μ F, 250 V; curve 3 = 680 μ F, 100 V; curve 3 = 680 μ F, 100 V;

Fig. 20 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 3: curve 1 = 100 μ F, 385 V; curve 4 = 2200 μ F, 63 V; curve 2 = 220 μ F, 250 V; curve 5 = 10 000 μ F, 10 V; curve 3 = 1000 μ F, 100 V;

Fig. 21 Typical impedance as a function of frequency at T $_{amb}$ = 20 °C; case size 4: curve 1 = 150 μ F, 385 V; curve 4 = 3300 μ F, 63 V; curve 2 = 330 μ F, 250 V; curve 5 = 15 000 μ F, 10 V. curve 3 = 1500 μ F, 100 V;

Fig. 22 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 5: curve 1 = 220 μ F, 385 V; curve 4 = 4700 μ F, 63 V; curve 2 = 470 μ F, 250 V; curve 5 = 22 000 μ F, 10 V; curve 3 = 2200 μ F, 100 V;

Fig. 23 Typical impedance as a function of frequency at T $_{amb}$ = 20 o C; case size 6: curve 1 = 220 μ F, 385 V; curve 4 = 4700 μ F, 63 V; curve 2 = 470 μ F, 250 V; curve 5 = 22 000 μ F, 10 V; curve 3 = 2200 μ F, 100 V;

Fig. 24 Typical impedance as a function of frequency at T_{amb} = 20 $^{\circ}$ C; case size 7: curve 1 = 330 μ F, 385 V; curve 2 = 680 μ F, 250 V; curve 3 = 3300 μ F, 100 V; curve 3 = 3300 μ F, 100 V;

Fig. 25 Typical impedance as a function of frequency at T_{amb} = 20 o C; case size 8: curve 1 = 470 μ F, 385 V; curve 2 = 1000 μ F, 250 V; curve 2 = 1000 μ F, 250 V; curve 3 = 4700 μ F, 100 V;

Fig. 26 Typical impedance as a function of frequency at T $_{amb}$ = 20 o C; case size 9: curve 1 = 6800 μ F, 100 V; curve 3 = 68 000 μ F, 10 V. curve 2 = 15 000 μ F, 63 V;

OPERATIONAL DATA

Category temperature range —40 to +85 °C

Life expectancy

Typical life time

at $T_{amb} = 85 \, {}^{\circ}\text{C}$

at T_{amb} = 40 °C. Shelf life at 0 V and T_{amb} = 85 °C. > 5000 h

> 100 000 h

500 h

Failure rate

Failure rate, catastrophic, at rated voltage, T_{amb} = 40 °C and confidence level 60%

 $< 0.5 \times 10^{-7}$

PACKING

The capacitors are packed in boxes containing 100 pieces.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

For the 385 V version the d.c. leakage current and $\tan \delta$ measurements of the reverse voltage test (sub clause 9. 16 IEC 384-4) should be carried out after 250 h, U_{R} in forward polarity.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 050 and 2222 052 are large types, long-life grade.

MOUNTING ACCESSORIES

Dimensions in mm

Clamps

To facilitate vertical mounting, a series of rigid clamps made of cadmium-plated steel are available. They can easily be slid over the capacitor and then fixed to it with a nut and bolt. The clamps have two mounting lugs. Four types are available, one for each case diameter of the capacitor range. They are delivered without nuts or bolts.

Fig. 27 Clamp for case sizes 1, 2, 3, 7, 8 and 9.

Fig. 28 Clamp for case sizes 4 and 5.

		dir	nensions (1	mm)		catalogue number
case size	a	b	С	d	е	- Cutarogae Hamber
1, 2	41,5 ± 0,2	25	35	18,5	56	4322 043 03301
3	46,5 ± 0,2	30	40	21	61	03311
4, 5	51,5 ± 0,2	35	_	23,5	63	04272
7, 8, 9	56,5 ± 0,2	40	50	26	71	03331

Bolt/nut

When mounting by means of the bolt, which is an integral part of the case, standard metal M8 nuts and washers can be used; the maximum permissible torque is 7Nm.

If insulated mounting is required synthetic nuts and rubber washers are available; for these nuts the maximum permissible torque is 4Nm.

Fig. 29.

Fig. 31 Rubber washer (thickness 2 mm).

D mm	catalogue number
24	4322 043 05611
29	4322 043 05601
34	4322 043 05591
39	4322 043 05581

Fig. 30 Synthetic cap nut M8, threaded depth min 11,5 mm. Catalogue number 4322 043 05561.

ALUMINIUM ELECTROLYTIC CAPACITORS

- · Very high CU-product per unit volume
- Large type with printed-wiring pins
- Long life
- Industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series) Tolerance on nominal capacitance Rated voltage range, U_R Category temperature range for $U_R \le 63$ V for $U_R > 63$ V Endurance test at 85 °C Shelf life at 0 V, 85 °C Basic specification Climatic category, IEC 68

± 20% 10 to 385 V -55 to + 85 °C -40 to + 85 °C 2000 h

68 to 150 000 μ F

500 h IEC 384-4, long-life grade 40/085/56

Selection chart for C_{nom}-U_R and relevant case sizes

C _{nom}				UR	(V)			
μF	10	16	25	40	63	100	200	385
68								1
100								2
150							1	3
220							2	4
330							3	5/6
470							4	7
680						1	5/6	8
1 000						2	7	9
1 500						3	8	
2 200					1	4	9	
3 300				1	2	5/6		
4 700			11	2	3	7		
6 800		11	2	3	4	8		
10 000	1	2	3	4	5/6	9		
15 000	2	3	4	5/6	8			
22 000	3	4	5/6	7	9			
33 000	4	5/6	7	8				
47 000	5/6	7	8	9				
68 000	7	8	9					
100 000	8	9						
150 000	9							

case	nominal				
size	dimensions				
	mm				
1	Ø 25 x 35				
2	Ø 25 x 45				
3	Ø 30 x 45				
4	Ø 35 x 45				
5	Ø 35 x 55				
6	Ø 40 x 45				
7	Ø 40 x 55				
8	Ø 40 x 75				
9	Ø 40 x 105				
	L				

APPLICATION

These capacitors have low ESR and ESL values and feature extremely small dimensions which render them suitable for applications such as:

- switched-mode power supplies;
- power supplies in digital equipment;
- energy storage in pulse systems;
- · filters in measuring and control equipment.

DESCRIPTION

The capacitors have deeply etched anode foil electrodes, which achieves extremely small dimensions for a given CU-product. They are completely cold welded and charge/discharge proof. The aluminium case is fully insulated. A safety vent is located in the case bottom.

MECHANICAL DATA

Capacitors with printed-wiring pins

Fig. 1a.

1 = positive terminal;

5 = negative terminal.

Fig. 1b Piercing diagram viewed from component side.

Table 1a

case size	L	mass approx.		
1	35	25		
2	45 + 1,3	30		

Fig. 2a.

1 = positive terminal;

5 = negative terminal.

Fig. 3a.

1 = positive terminal;

5 = negative terminal.

Fig. 2b Piercing diagram viewed from component side.

Table 1b

case size	L	mass approx. g
3	45 + 1,3	40

Fig. 3b Piercing diagram viewed from component side.

Table 1c

case size	L	mass approx. g
4	45	55
5	55 } + 1,3	65

Fig. 4a.

1 = positive terminal;

5 = negative terminal.

Fig. 4b Piercing diagram viewed from component side.

Table 1d

case size		L	mass approx.
6	45		70
7	55		85
8	75	+ 1,3	115
9	105		160

Marking

The capacitors are marked with: nominal capacitance, tolerance on capacitance, rated voltage, temperature range, data code (year and week) according to IEC62, name of manufacturer, indication of production centre, polarity of the terminals and rill to identify the negative terminal.

Mounting

The capacitors may be mounted in any position with or without a mounting clamp. Where a number of capacitors are connected to form a capacitor bank, the proximity to one another must not be less than 15 mm, when no derating of ripple current and/or temperature is applied. If the case has to be at a specified potential, it should be connected to the negative terminal only.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of 20 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

Table 2 (see also corresponding paragraphs)

U_R	nom.	max.	r.m.s.	max.d.c.leakage	max.	max.	case	catalogue
,,	сар.		urrent at	current at	ESR	impedance	size	number
	·	100 Hz/85 °C		U _R after 1 min		at 10 kHz		2222
V	μF	Α	Α	'' mA	$m\Omega$	mΩ		followed by
10	10 000	3,1	5,9	0,60	51	40	1	051 54103
	15 000	4,1	7,8	0,90	37	30	2	54153
	22 000	5,0	9,5	1,32	30	25	3	54223
	33 000	5,5	10,4	1,98	28	24	4	54333
	47 000	6,8	12,9	2,82	23	20	5	54473
	47 000	5,8	10,4	2,82	29	22	6	44473
	68 000	7,1	13,5	4,08	24	20	7	54683
	100 000	9,2	17,4	6,00	19	16	8	54104
	150 000	12,0	22,7	9,00	16	14	9	54154
16	6 800	3,1	5,9	0,65	53	42	1	55682
	10 000	4,0	7,6	0,96	39	34	2	55103
	15 000	5,0	9,5	1,44	31	27	3	55153
	22 000	5,5	10,4	2,12	29	26	4	55223
	33 000	6,7	12,7	3,17	23	21	5	55333
	33 000	5,7	10,8	3,17	30	24	6	45333
	47 000	7,0	13,3	4,52	24	20	7	55473
	68 000	9,2	17,4	6,53	19	16	8	55683
	100 000	12,0	22,7	9,60	16	14	9	55104
25	4 700	2,9	5,5	0,71	60	42	1	56472
	6 800	3,9	7,4	1,02	42	34	2	56682
	10 000	4,8	9,1	1,50	34	27	3	56103
	15 000	5,3	10,0	2,25	30	26	4	56153
	22 000	6,5	12,3	3,30	24	21	5	56223
	22 000	5,7	10,8	3,30	31	24	6	46223
	33 000	7,0	13,3	4,95	25	20	7	56333
	47 000	9,2	17,4	7,05	19	16	8	56473
	68 000	12,0	22,7	10,20	16	14	9	56683
40	3 300	2,9	5,5	0,80	87	63	1	57332
	4 700	3,8	7,2	1,13	62	47	2	57472
	6 800	4,7	8,9	1,64	49	38	3	57682
1	10 000	5,2	9,8	2,40	48	37	4	57103
}	15 000	6,3	11,9	3,60	37	28	5	57153
	15 000	5,6	10,6	3,60	50	35	6	47153
	22 000	5,8	11,0	5,28	39	28	7	57223
	33 000	7,8	14,8	7,92	28	21	8	57333
	47 000	10,4	19,7	11,28	22	17	9	57473

Table 2 (continued)

UR	nom.		r.m.s. urrent at	max.d.c. leakage current at	max. ESR	max. impedance	case size	catalogue number
		100 Hz/85 °C	20 kHz/70 °C	U _R after 1 min		at 10 kHz		2222
٧	μF	Α	Α	mA .	$m\Omega$	mΩ		followed by
63	2 200	2,5	4,7	0,84	83	62	1	051 58222
	3 300	3,3	6,2	1,25	58	42	2	58332
	4 700	4,1	7,8	1,78	49	38	3	58472
	6 800	4,5	8,5	2,57	48	37	4	58682
	10 000	5,4	10,2	3,78	37	28	5	58103
	10 000	4,6	8,7	3,78	52	37	6	48103
	15 000	7,5	14,2	5,67	29	24	8	58153
	22 000	10	19	8,32	22	19	9	58223
100	680	1,74	3,30	0,41	190	130	1	59681
	1 000	2,34	4,44	0,60	130	90	2	59102
	1 500	2,95	5,59	0,90	95	67	3	59152
	2 200	3,69	7,00	1,32	7.1	53	4	59222
	3 300	4,37	8,29	1,98	55	41	5	59332
	3 300	4,16	7,89	1,98	64	48	6	49332
	4 700	5,21	9,88	2,82	49	38	7	59472
	6 800	6,97	13,22	4,08	35	28	8	59682
	10 000	9,50	18,00	6,00	26	21	9	59103
200	150	0,70	1,33	0,18	1000	770	1	053 52151
	220	0,94	1,78	0,26	680	525	2	52221
	330	1,27	2,41	0,40	460	360	3	52331
	470	1,66	3,15	0,57	320	250	4	52471
	680	2,19	4,15	0,82	220	170	5	52681
	680	2,17	4,11	0,82	220	170	6	42681
	1 000	2,86	5,42	1,20	150	115	7	52102
1.2	1 500	3,81	7,22	1,80	110	85	8	52152
	2 200	5,20	9,86	2,64	80	60	9	52222
385	68	0,47	0,89	0,16	2200	1400	1	58689
	100	0,64	1,21	0,23	1500	940	2	58101
	150	0,90	1,71	0,35	1000	620	3	58151
	220	1,15	2,18	0,51	680	420	4	58221
	330	1,53	2,90	0,77	450	270	5	58331
	330	1,52	2,88	0,77	450	270	6	48331
	470	1,96	3,72	1,09	320	190	7	58471
	680	2,70	5,12	1,58	220	135	8	58681
	1 000	3,70	7,02	2,31	180	125	9	58102

Capacitance

Nominal capacitance values at 100 Hz and T_{amb} = 20 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2 ± 20%

Voltage

Rated voltage = max, permissible voltage

Ripple voltage*= max. permissible a.c. voltage providing the following conditions are met:

- (a) max. positive voltage on anode (d.c. + peak a.c.)
- (b) max. positive voltage on cathode (reverse voltage)

Surge voltage = max. permissible voltage for short periods

 $\begin{array}{c|cccc} < 60 \text{ °C} & | & 60 \text{ to } 95 \text{ °C} \\ \hline \hline 1,1 \times U_R & | & U_R \\ \\ \leqslant 1,1 \times U_R & | & \leqslant U_R \\ & & 1 \text{ V} \\ \hline 1,25 \times U_R & | & 1,15 \times U_R \text{ (\leqslant 100 V)} \\ 1,15 \times U_R \text{ (200 V version)} \\ 1,1 & \times U_R \text{ (385 V version)} \\ \end{array}$

core temperature A

Reverse voltage = max. d.c. voltage applied in the reverse polarity at the maximum category temperature for short periods

1 V

Ripple current **

Maximum permissible r.m.s, ripple current

at 100 Hz and T_{amb} = 85 °C or 20 kHz and T_{amb} = 70 °C at 100 Hz and other temperatures at other frequencies and T_{amb} = 85 °C

see Table 2 see Table 3 see Table 4

Table 3

oC temberature ampient	multiplier of max. ripple current
85	1,00
80	1,22
75	1,41
70	1,58
65	1,73
60	1,87
55	2,00
50	2,12
45	2,24
≤ 40	2,35

Table 4

frequency	multiplier of max, ripple
Hz	current √ r
50	0,83
100	1,00
200	1,10
400	1,15
1000	1,19
≥ 2000	1,20

- See Introduction, section 5, "Ripple current".
- * Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

2222 051 2222 053

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r \text{ max}^{2}}$$

I_{r max} = maximum ripple current at 100 Hz and applicable ambient temperature

= ripple current at a certain frequency ln.

= multiplying factor at same frequency (Table 4). $\sqrt{r_n}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit,

D.C. leakage current

Maximum d.c. leakage current 1 min after application

of the rated voltage at Tamb = 20 °C

see Table 2 (0,006 CU + 4 μ A)

If owing to prolonged storage and/or storage at an excessive temperature the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Impedance

Maximum impedance at 10 kHz and Tamb = 20 °C

measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and Tamb = 20 °C

see Table 2

Inductance (ESL)

Case sizes 1 and 2 Case sizes 3, 4 and 5

max. 25 nH max. 30 nH

Case sizes 6, 7, 8 and 9

max, 35 nH

OPERATIONAL DATA

Category temperature range

For U_R ≤ 63 V

-55 to +85 °C

For $U_R > 63 V$

-40 to +85 °C

Life expectancy

Typical life time

at Tamb = 85 °C

at Tamb = 40 °C

> 5000 h

> 1000000 h

Shelf life at 0 V and Tamb = 85 °C

500 h

Failure rate

Failure rate, catastrophic, at rated voltage,

Tamb = 40 °C and confidence level 60%

< 10-7

PACKING

The capacitors are packed in boxes containing 100 pieces.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

For the 385 V version the d.c. leakage current and tan δ measurements of the reverse voltage test (sub clause 9. 16 IEC 384-4) should be carried out after 250 h, U_R in forward polarity.

Note: Capacitors 2222 051 and 2222 053 are large types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Low-leakage version of 2222 030/031 series
- Miniature type
- Axial leads
- Long life
- General and industrial applications
- Alternative for tantalum capacitors

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

Tolerance on nominal capacitance Rated voltage range, U_R (R5 series)

Leakage current after 2 min

Category temperature range

Endurance test at 85 °C

Shelf life at 0 V, 85 °C

Basic specification

Climatic category

IEC 68

DIN 40040

0,33 to 68 μF

-10 to + 50%

6,3 to 25 V

0,002 CU or 0,7 μA

-55 to +85 °C

2000 h

500 h

IEC 384-4, long-life grade;

DIN41316

55/085/56

FPF

Selection chart for C_{nom}-U_R and relevant case sizes.

C _{nom}		UF	_{ (V)	
μF	6,3	10	16	25
0,33				2 2 2
0,47				2
0,68				2
1				2
1,5	ļ			2 2 2 2 2 2
2,2				2
3,3				2
4,7				2
6,8			2	2
10		2	2	3
15	2		2	3
22		2	3	
33	2		3	
47		3		
68	3			

case	nominal
size	dimensions (mm)
2	Ø 4,5 x 10 Ø 6 x 10

APPLICATION

These capacitors are suited for those applications where a low leakage current is required. In many cases they are a cost-effective substitute for tantalum capacitors.

The capacitors are mainly used for high impedance coupling and decoupling purposes in consumer applications, such as audio and television circuits, and in industrial applications such as measuring and regulating circuits. Other applications are in timing and delay circuits with large time constant. The taped versions are extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in an aluminium case, which is insulated with a blue plastic sleeve.

They have axial soldered-copper leads, and are supplied on bandoliers on reels.

MECHANICAL DATA

Dimensions in mm

Fig. 1 See Table 1 for dimensions d, D, L and P.

Table 1

case size	dimensions							
	d	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	approx.	
2	0,6	4,5	10,0	5,0	10,5	15	0,50	
3	0,6	6,0	10,0	6,3	10,5	15	0,70	

Marking

The capacitors are marked with:

nominal capacitance;

tolerance on nominal capacitance;

rated voltage;

group number; code of origin;

name of manufacturer;

date code (year and month) according to IEC 62;

band to identify the negative terminal.

Mounting

The capacitors are suitable for mounting on printed-wiring boards; the required hole diameter is 0.8 ± 0.1 mm.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled; caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to $25\,^{\circ}\text{C}$, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

nom. cap.	max. r.m.s. ripple current at T _{amb} = 85 °C	max. d.c leakage current at U _R after 2 min.	max. tan δ	max. impedance at 10 kHz	case size	catalogue number 2222 065 followed by
μF	mA	μΑ		Ω		Tollowed by
15 33 68	26,5 39 67	0,7 0,7 0,9	0,16 0,16 0,16	8 3,6 1,8	2 2 3	23159 23339 23689
10 22 47	23 34 60	0,7 0,7 0,9	0,14 0,14 0,14	9 4,1 1,9	2 2 3	24109 24229 24479
6,8 10 15 22 33	21 25 31 44 54	0,7 0,7 0,7 0,7 1,1	0,12 0,12 0,12 0,12 0,12	10 7 4,7 3,2 2,1	2 2 2 3 3	25688 25109 25159 25229 25339
0,33 0,47 0,68 1,0 1,5 2,2 3,3 4,7 6,8	5,6 6,6 8,0 9,7 11,2 13,5 16,6 20 24 34	0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	0,08 0,08 0,08 0,09 0,09 0,09 0,09 0,09	170 120 81 55 37 25 17 12 8,1 5,5	2 2 2 2 2 2 2 2 2 2 2 2 3	26337 26477 26687 26108 26158 26228 26338 26478 26688 26109 26159
	cap. μF 15 33 68 10 22 47 6,8 10 15 22 33 0,47 0,68 1,0 1,5 2,2 3,3 4,7 6,8	cap. ripple current at T _{amb} = 85 °C μF mA 15 26,5 33 39 68 67 10 23 22 34 47 60 6,8 21 10 25 15 31 22 44 33 54 0,33 5,6 0,47 6,6 0,68 8,0 1,0 9,7 1,5 11,2 2,2 13,5 3,3 16,6 4,7 20 6,8 24 10 34	cap. ripple current at $T_{amb} = 85$ °C current at U_R after 2 min. μF mA μA 15 26,5 0,7 33 39 0,7 68 67 0,9 10 23 0,7 22 34 0,7 47 60 0,9 6,8 21 0,7 10 25 0,7 15 31 0,7 22 44 0,7 33 5,6 0,7 0,47 6,6 0,7 0,47 6,6 0,7 0,68 8,0 0,7 1,0 9,7 0,7 1,5 11,2 0,7 2,2 13,5 0,7 3,3 16,6 0,7 4,7 20 0,7 6,8 24 0,7 10 34 0,7	cap. ripple current at $T_{amb} = 85$ °C	cap. ripple current at $T_{amb} = 85 ^{\circ}\text{C}$ current after 2 min. tan δ at 10 kHz μF mA μA Ω 15 26,5 0,7 0,16 8 33 39 0,7 0,16 3,6 68 67 0,9 0,16 1,8 10 23 0,7 0,14 9 22 34 0,7 0,14 4,1 47 60 0,9 0,14 1,9 6,8 21 0,7 0,12 10 10 25 0,7 0,12 7 15 31 0,7 0,12 4,7 22 44 0,7 0,12 3,2 33 54 1,1 0,12 2,1 0,33 5,6 0,7 0,08 170 0,47 6,6 0,7 0,08 120 0,68 8,0 0,7 0,08 55 1,5 <td>cap. ripple current at $T_{amb} = 85 ^{\circ}\text{C}$ current at U_R after 2 min. tan δ at 10kHz size μF mA μA Ω 15 26,5 0,7 0,16 8 2 33 39 0,7 0,16 3,6 2 68 67 0,9 0,16 1,8 3 10 23 0,7 0,14 9 2 22 34 0,7 0,14 4,1 2 47 60 0,9 0,14 1,9 3 6,8 21 0,7 0,12 10 2 10 25 0,7 0,12 7 2 15 31 0,7 0,12 4,7 2 22 44 0,7 0,12 3,2 3 33 5,6 0,7 0,08 170 2 0,47 6,6 0,7 0,08 120 2</td>	cap. ripple current at $T_{amb} = 85 ^{\circ}\text{C}$ current at U_R after 2 min. tan δ at 10kHz size μF mA μA Ω 15 26,5 0,7 0,16 8 2 33 39 0,7 0,16 3,6 2 68 67 0,9 0,16 1,8 3 10 23 0,7 0,14 9 2 22 34 0,7 0,14 4,1 2 47 60 0,9 0,14 1,9 3 6,8 21 0,7 0,12 10 2 10 25 0,7 0,12 7 2 15 31 0,7 0,12 4,7 2 22 44 0,7 0,12 3,2 3 33 5,6 0,7 0,08 170 2 0,47 6,6 0,7 0,08 120 2

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 °C Tolerance on nominal capacitance at 100 Hz

see Table 2 -10 to + 50%

Fig. 2 Multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 3 Multiplier of capacitance as a function of frequency; C_0 = capacitance at 20 °C, 100 Hz.

Voltage

Max, permissible voltage at core temperature ≤ 95 °C ▲

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

(a) max. (d.c. + peak a.c.) voltage

(b) max. peak a.c. voltage without d.c. voltage applied

(c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

1,6 x U_R

1,6 x U_R

between 1,6 x U_R and -2 V

1,6 x U_R

2 V

Ripple current**

Maximum permissible r.m.s. ripple current at

100 Hz and Tamb = 85 °C

100 Hz and Tamb = 40 °C

see Table 2

2,24 x values stated in Table 2

Fig. 4 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at 85 o C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- Specified ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Specified ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 5 Multiplier of ripple current as a function of frequency; I_{rO} = ripple current at 85 °C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r \text{ max}^{2}}$$

Ir max = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0} = \text{multiplying factor at a same frequency.}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 2 min after application of UR, at T_{amb} = 20 °C

see Table 2 (0,002 CU or 0,7 μ A, whichever is greater)

If owing to prolonged storage and/or storage at an excessive temperature (> 40 $^{\rm o}$ C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Fig. 6 Multiplier of d.c. leakage current as a function of ambient temperature; $I_0 = d.c.$ leakage current during continuous operation at 25 °C and U_B .

Fig. 7 Multiplier of d.c. leakage current as a function of U/U_R ; I_0 = d.c. leakage current during continuous operation at 25 °C and U_R .

Fig. 8 Multiplier of typical d.c. leakage current as a function of time; $I_0 = d.c.$ leakage current value as specified in Table 2.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 9 Typical tan δ as a function of ambient temperature at 100 Hz.

Fig. 10 Typical tan δ as a function of frequency at 25 $^{\text{O}}\text{C}.$

Equivalent series resistance (ESR)

ESR = $\tan \delta/\omega C$

Maximum tan δ and C at 100 Hz and T_{amb} = 25 °C

see Table 2

Equivalent series inductance (ESL)

Case size 2 Case size 3 typ. 17 nH typ. 30 nH

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C and 10 kHz, measured by means of a four-terminal circuit (Thomson circuit)

 $z = Z \times C_{nom}$, at 10 kHz

see Table 2 see Table 3

Table 3

T _{amb}	$z = Z \times C_{nom} (\Omega \mu F)$ at U_R ; at 10 kHz							
	6,3 V	10 V	16 V	25 V				
+ 20 °C -25 °C -40 °C -55 °C	≤ 120 ≤ 560 ≤ 1500 typ. 3300	≤ 90 ≤ 400 ≤ 1100 typ. 2400		≤ 55 ≤ 180 ≤ 500 typ. 850				

Fig. 11 Typical impedance as a function of ambient temperature at 10 kHz; case size 2:

```
curve 1 = 0,47 \muF, 25 V; curve 2 = 1 \muF, 25 V; curve 3 = 3,3 \muF, 25 V; curve 4 = 6,8 \muF, 25 V; curve 5 = 10 \muF, 10 V; curve 6 = 22 \muF, 10 V.
```

Fig. 12 Typical impedance as a function of ambient temperature at 10 kHz; case size 3:

```
curve 1 = 10 \muF, 25 V;
curve 2 = 22 \muF, 16 V;
curve 3 = 47 \muF, 10 V;
curve 4 = 68 \muF, 6,3 V.
```


Fig. 13 Typical impedance as a function of frequency at 20 °C; case size 2:

curve 1 = 0,47 μ F, 25 V; curve 2 = 1 μ F, 25 V;

curve $4 = 6.8 \mu F$, 25 V; curve 5 = 10 μ F, 10 V;

curve 3 = 3,3 μ F, 25 V;

curve 6 = 22 μ F, 10 V.

Fig. 14 Typical impedance as a function of frequency at 20 °C; case size 3:

curve 1 = 10 μ F, 25 V; curve 2 = 22 μ F, 16 V; curve 3 = 47 μ F, 10 V;

curve $4 = 68 \mu F$, 6,3 V.

OPERATIONAL DATA

OI EIIATIONAL DATA	
Category temperature range	-55 to +85 °C
Typical life time	
at T _{amb} = 85 °C	3000 h
at T _{amb} = 40 °C	70 000 h
Shelf life at 0 V and T _{amb} = 85 °C	500 h

PACKING

The capacitors are supplied on bandoliers on reels. The number of capacitors per reel is 3000 for case size 2, and 1000 for case size 3.

Fig. 15 Capacitors on bandoliers: the bandolier to which the negative capacitor terminals are connected is blue. See Table 4 for dimensions A, S, T and L. |B1-B2| = max. 1,4 mm.

Table 4
Dimensions in mm

case	А	S	T for nu of cap	L _{max}	
1			n < 50	50 < n < 100	
2 3	63,5 ± 1,5 63,5 ± 1,5	5 ± 0,4 10 ± 0,4	5 (n-1) ± 2 10 (n-1) ± 2	5 (n-1) ± 4 10 (n-1) ± 4	10,5 10,5

Fig. 16 Capacitors on bandoliers on reel; dimension C is 83,5 mm; the overall width of the reel is 94,5 mm.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After endurance test, 2000 h, 85 °C, the capacitors meet the following requirements:

 $\Delta C/C \le \pm 15\%$, for U_B = 10 to 25 V;

 $\Delta C/C \le + 15\%$, -25% for $U_R = 6.3 \text{ V}$;

tan $\delta \leq 130\%$ of specified value:

d.c. leakage current ≤ specified value;

impedance at 10 kHz ≤ 200% of specified value.

After shelf life test, 500 h, 85 $^{\circ}$ C, the capacitors meet the same requirements, except for d.c. leakage current: \leq 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

Note:

Capacitors 2222 065 are miniature types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Surface mounted type
- Supplied in rail or in blister tape
- General applications

Climatic category IEC 68 DIN 40040

0,1 to 22 μ F -10 to +50% or \pm 20% 6,3 to 63 V -40 to +85 °C 1000 h 500 h 260 °C, 10 s; immersion in solder permitted IEC 384-4, G.P. grade DIN 41332, type II

40/085/56 GPF

Selection chart for C_{nom} - U_R and relevant case sizes.

C _{nom}		U _R (V)							
μF	6,3	10	16	25	40	63			
0,1						1a			
0,15						1a			
0,22						1a			
0,33						1a			
0,47						1a			
0,68						1a			
1						1a			
1,5						1a			
2,2					1a	1			
3,3				1a		1			
4,7			1a		1				
6,8		1a		1					
10	1a		1						
15		1							
22	1								

case size	maximum dimensions (mm) length x width x height
1a	9 x 4 x 4
1	12 x 4 x 4

APPLICATION

These capacitors with high CU-product per unit volume are for surface mounted assembly. They are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and television circuits. Other applications are in timing and delay circuits.

The capacitors are suitable for automatic placement,

DESCRIPTION

The capacitors have highly etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in a rectangular plastic case with flat soldered-copper tags.

The capacitors are supplied in rails in boxes or in blister tape on reel.

MECHANICAL DATA

Dimensions in mm

Fig. 1a Case size 1a.

Fig. 1b Case size 1.

Marking

The capacitors are marked on the top with nominal capacitance, "—" sign to identify the cathode, and code for rated voltage, see Table 1. The numerals are those of the capacitance in μ F, and the position of the letter indicating the rated voltage, marks the position of the decimal point in the capacitance value. Example: 3H3 indicates 3,3 μ F, 63 V. Bevelled edges identify the anode end.

Table 1

rated voltage V	code letter
6,3 10 16 25 40 63	C D E F G

Mounting

The capacitors can be placed and soldered on to printed-circuit boards or on to hybrid circuits. Suitable mounting methods include those where the device is totally immersed in a solder bath (260 °C, 10 s), as in wave soldering, and reflow methods where the solder and device are heated together, as in vapour phase soldering.

T (°C)
250

175

200 K/s

20 K/s

20 K/s

max 45 s

preheating soldering cooling

Fig. 2 Typical temperature-time curve for wave soldering.

Fig. 3 Typical temperature-time curve for reflow soldering.

In both soldering processes, the capacitors reach the actual soldering temperature. The temperature rise caused by preheating and immersion in solder has no adverse effects on the life of the capacitors, provided the restrictions indicated by Fig. 4 are observed. This curve indicates the acceptable combination of temperature and time. The conditions indicated by the solid parts of the curve can be applied once to each capacitor: a preheating stage at or below one of the temperature-time points on part A, and a soldering stage at or below one of the temperature-time points on part B. Furthermore, the time in part B can be split into two, for double soldering. Typically, an example might be a preheating stage at 165 °C for 60 s followed by a first soldering stage for 4 s at 260 °C and directly followed by a second soldering stage for 6 s at 260 °C (total soldering 10 s at 260 °C).

Fig. 4 Preheating (A) and soldering (B) limits for undiminished life expectancy.

Fig. 5 Recommended dimensions of metal connection pads on printed-circuit board or substrate surface.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled; caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 $^{\rm o}$ C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

U_R	nom.	max. r.m.s.	max. d.c. leakage	max.	max.	max.	case	catalogue number 2222 085 followed by			
٧	cap. μF	ripple current at T _{amb} = 85 °C mA	current at U _R after 1 min	tan δ	ESR Ω	impedance at 10 kHz Ω	size*	-10/+ 50% in tape	-10/+ 50% in rail	± 20% in tape	± 20% in rail
6,3	10	11	4	0,30	48	20	1a	23109	33109	63109	73109
	22	20	6	0,30	22	9	1	23229	33229	63229	73229
10	6,8	10	4	0,25	59	24	1a	24688	34688	64688	74688
	15	18	6	0,25	27	11	1	24159	34159	64159	74159
16	4,7	9	5	0,20	68	26	1a	25478	35478	65478	75478
	10	16	6	0,20	32	12	1	25109	35109	65109	75109
25	3,3	8	5	0,18	87	27	1a	26338	36338	66338	76338
	6,8	14	6	0,18	42	13	1	26688	36688	66688	76688
40	2,2	7	5	0,16	116	32	1a	27228	37228	67228	77228
	4,7	13	7	0,16	54	15	1	27478	37478	67478	77478
63	0,1	2	4	0,10	1590	550	1a	28107	38107	68107	78107
	0,15	3	4	0,10	1060	367	1a	28157	38157	68157	78157
	0,22	3	4	0,10	723	250	1a	28227	38227	68227	78227
	0,33 0,47	4 4	4	0,10 0,10	482 339	167 117	1a 1a	28337 28477	38337 38477	68337 68477	78337 78477
	0,68 1	5 6	4	0,10 0,12	234 191	81 55	1a 1a	28687 28108	38687 38108	68687 68108	78687 78108
	1,5 2,2 3,3	7 11 13	5 6 7	0,14 0,14 0,14	149 87 68	37 25 17	1a 1	28158 28228 28338	38158 38228 38338	68158 68228 68338	78158 78228 78338

^{*} Case size 1a: 9 mm x 4 mm x 4 mm (max, dimensions). Case size 1: 12 mm x 4 mm x 4 mm (max, dimensions).

Capacitance

Nominal capacitance at 100 Hz and $T_{amb} = 20$ °C Tolerance on nominal capacitance at 100 Hz

see Table 2
-10 to +50% or ± 20%

Fig. 6 Multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at T_{amb} = 20 °C, 100 Hz.

Fig. 7 Multiplier of capacitance as a function of frequency; C_0 = capacitance at T_{amb} = 20 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max. peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max, permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

Ripple current**

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 $^{\circ}C$

< 60 °C</p>
1,1 x U_R
U_R
1,1 x U_R
U_R
2 V
between U_R and -2 V
1,2 x U_R
1,15 x U_R
2 V

see Table 2

core temperature A

Fig. 8 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at T_{amb} = 85 °C, 100 Hz.

- ▲ See Introduction, section 5, "Ripple current".
- Specified ripple voltages are not applicable if the maximum permissible ripple current is exceeded.
 In that case the ripple current is decisive.
- ** Specified ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 9 Multiplier of ripple current as a function of frequency; I_{r0} = ripple current at T_{amb} = 85 °C, 100 Hz

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_n^2}{r_n} \leqslant I_{r \text{ max}^2}$$

 $I_{r,max}$ = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0} = \text{multiplying factor at a same frequency.}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of U_R at T_{amb} = 20 $^{\circ}C$

see Table 2 (0,02 CU + 3 μ A)

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ Maximum tan δ at 100 Hz and T_{amb} = 20 °C

see Table 2

Fig. 10 Typical tan δ as a function of ambient temperature at 100 Hz.

```
Curve 1 = 6,3 V;

curve 2 = 10 V;

curve 3 = 16 V;

curve 4 = 25 V;

curve 5 = 40 V;

curve 6 = 1,5 to 3,3 \muF, 63 V;

curve 7 = 0,68 and 1 \muF, 63 V;

curve 8 = 0,22 to 0,47 \muF, 63 V;

curve 9 = 0,1 and 0,15 \muF, 63 V.
```


Fig. 11 Typical tan δ as a function of frequency at $T_{amb} = 20$ °C.

```
Curve 1 = 6,3 V;

curve 2 = 10 V;

curve 3 = 16 V;

curve 4 = 25 V;

curve 5 = 40 V;

curve 6 = 1,5 to 3,3 \muF, 63 V;

curve 7 = 0,68 and 1 \muF, 63 V;

curve 8 = 0,22 to 0,47 \muF, 63 V;

curve 9 = 0,1 and 0,15 \muF, 63 V.
```


2222 085

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and T_{amb} = 20 o C

see Table 2

Impedance (Z)

Maximum impedance at 10 kHz and $T_{amb} = 20$ °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

see Table 3

 $z = Z \times C_{nom}$, at 10 kHz

Table 3

_		z = Z x C	nom (Ω μF	at U _R ; at 1	10 kHz	
T _{amb}	6,3 V	10 V	16 V	25 V	40 V	63 V
+ 20 °C -25 °C -40 °C	≤ 200 ≤ 1200 ≤ 3200	≤ 160 ≤ 750 ≤ 2000	≤ 120 ≤ 560 ≤ 1500	≤ 90 ≤ 400 ≤ 1100	≤ 70 ≤ 300 ≤ 900	≤ 55 ≤ 180 ≤ 500

Fig. 12 Typical impedance as a function of ambient temperature at 10 kHz; case size 1a.

```
Curve 1 = 0.1 \mu F, 63 V;
curve
        2 = 0.15 \mu F, 63 V;
        3 = 0.22 \mu F, 63 V;
curve
       4 = 0.33 \,\mu\text{F}, 63 \,\text{V};
curve
curve 5 = 0.47 \,\mu\text{F}, 63 V;
        6 = 0.68 \,\mu\text{F}, 63 V;
curve
curve 7 = 1
                   \muF, 63 V;
curve 8 = 1.5 \mu F, 63 V;
curve 9 = 2.2 \mu F, 40 V;
curve 10 = 3,3 \mu F, 25 V;
curve 11 = 4.7 \mu F. 16 V;
curve 12 = 6.8 \mu F, 10 V;
curve 13 = 10
                   μF, 6,3 V.
```


Fig. 13 Typical impedance as a function of ambient temperature at 10 kHz; case size 1.

```
Curve 1 = 2.2 \mu F, 63 V;
curve 2 = 3.3 \mu F, 63 V;
curve 3 = 4.7 \mu F, 40 V;
curve 4 = 6.8 \mu F, 25 V;
curve 5 = 10 \mu F, 16 V;
curve 6 = 15 \mu F, 10 V;
curve 7 = 22 \mu F, 6.3 V.
```

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 1a. Curve 1 = 0,1 μ F, 63 V; curve 2 = 0,22 μ F, 63 V; curve 3 = 0,47 μ F, 63 V; curve 4 = 1 μ F, 63 V; curve 5 = 2,2 μ F, 40 V;

curve 6 = 4,7 μ F, 16 V; curve 7 = 10 μ F, 6,3 V;

Equivalent series inductance (ESL)

case size 1a case size 1

typ. 13 nH typ. 15 nH

OPERATIONAL DATA

Category temperature range

-40 to +85 °C

PACKING

Dimensions in mm

The capacitors are supplied in rail (100 per rail, 5000 per inner box, 20 000 per outer box), and in 16 mm blister tape of 2000 on reel.

Cumulative pitch error : ≤ 0,2 mm over 10 pitches

Fig. 16 Blister tape.

Fig. 17 Rail.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After endurance test, 1000 h, 85 °C, the capacitors meet the following requirements:

 $\Delta C/C \leq \pm 20\%$

tan $\delta \le 200\%$ of specified value,

d.c. leakage current ≤ specified value.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test, except for d.c. leakage current: ≤ 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Resistance to soldering heat: 260 ± 5 °C, 10 ± 1 s.

After soldering test, the capacitors meet the following requirements:

 $\Delta C/C \leq \pm 10\%$,

tan $\delta \leq$ specified value,

d.c. leakage current ≤ 200% of specified value,

no visible damage.

Note: Capacitors 2222 085 are miniature types, general purpose grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads
- Long life
- Industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series) Tolerance on nominal capacitance Rated voltage range (U_R) (R5 series)

Category temperature range

Endurance test at 85 °C at 105 °C

Shelf life at 0 V, 85 °C Basic specification

Climatic category IEC 68 DIN 40040 NF C93-001

Approval

2,2 to 2200 μF -10 to + 50%

6,3 to 100 V -40 to +85 °C

5000 h 1000 h*

500 h

IEC 384-4, long-life grade DIN 41240 (IA)

NF C93-110 (type 1)

40/085/56 GPF (56 days)

554

€ CECC 30 301-027*

Selection chart for C-UR and relevant case sizes.

Cnom				U _R (V)			
C _{nom} μF	6,3	10	16	25	40	63	100
2,2 3,3 4,7 6,8						5	
3,3						5	
4,7						5	5
6,8						5	5
10						5	5
15					5	6	6
22					5	6	6
33				5	6	00	00
47				5	6	00	00
68			5		00	01	01
100		5		6	01	02	02
150	5		6	00	01	03	03
220		6	00	01	02		
330	6	00			03		
470	00		01	02			
680		01	02	03			
1000	01	02	03				
1500	02	03					
2200	03						

" NOT	applical	or aic	IUU V	range.
-------	----------	--------	-------	--------

case	nominal
size	dimensions (mm)
5	Ø 8 x 18
6	Ø 10 x 18
00	Ø 10 x 30
01	Ø 12,5 x 30
02	Ø 15 x 30
03	Ø 18 x 30

APPLICATION

These axial-type capacitors are especially designed for those applications where extreme requirements have to be met concerning reliability and long lifetime both at high and low temperatures, such as in computer, telecommunication and telephony equipment.

DESCRIPTION

The capacitor has etched and oxidized aluminium foil electrodes rolled up with a porous paper spacer, which separates the anode and the cathode. The spacer is impregnated with an electrolyte which retains its good characteristics both at low and high temperatures. The capacitor is housed in an aluminium case with axial soldered-copper leads, sealed with a synthetic disc and is insulated with a blue synthetic sleeve. The all-welded construction, the built-in voltage derating, and the close quality control during manufacture ensure a reliability and a life expectancy far superior to normal grade electrolytic capacitors.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Case sizes 5 and 6. For dimensions D, L and P, see Table 1.

Fig. 2 Case sizes 00, 01, 02 and 03. For dimensions D, L and P, see Table 1.

Table 1

case		dimensions					
size	С)	L		P _{min}	mass	
5	8,0	1	18,0)	25	1,8	
6	10,0		18,0		25	2,5	
00	10,0	+ 0,5	30,0	+ 0,5	35	4,3	
01	12,5	1 0,5	30,0	(+ 0,5	35	6,6	
02	15,0		30,0		35	8,5	
03	18,0		30,0	J	35	11,2	

Marking

The capacitors are marked with: nominal capacitance, rated voltage, tolerance on capacitance, group number 108.3, maximum temperature, code of origin, date code, a band to identify the negative terminal and "+" signs for positive terminal.

Mounting

The capacitors may be mounted in any position by their leads (see also Tests and requirements in the Introduction).

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

V 6,3	μF		current at UR	tanδ*	ESR *	at 100		size	number
6.3	, ~.	rent at T _{amb} = 85 °C (mA) *	after 1 min μΑ		Ω	max.	typ.		
	150	130	10	0,20	1,06	1,60	0,70	5	2222 108 33151
-,-	330	220	17	0,20	0,49	0,84	0,76	6	33331
	470	325	22	0,20	0,49	0,42	0,36	00	33331
	1000	470	42	0,20	0,34	0,30	0,18	01	33102
	1500	630	60	0,20		0,30	0,13	02	33152
	2200	920	85		0,11			03	
	l	1		0,20	0,09	0,19	0,09	l	33222
10	100	120	10	0,15	1,27	1,60	0,70	5	34101
	220	205	17	0,15	0,57	0,84	0,36	6	34221
	330	325	24	0,15	0,38	0,42	0,18	00	34331
	680	470	45	0,15	0,19	0,30	0,13	01	34681
	1000	630	65	0,15	0,13	0,22	0,10	02	34102
	1500	920	95	0,15	0,09	0,19	0,09	03	34152
16	68	110	11	0,12	1,40	1,60	0,70	5	35689
	150	190	18	0,12	0,63	0,84	0,36	6	35151
	220	270	25	0,12	0,44	0,42	0,18	00	35221
	470	360	50	0,12	0,21	0,30	0,13	01	35471
	680	500	70	0,12	0,14	0,22	0,10	02	35681
	1000	650	100	0,12	0,10	0,19	0,09	03	35102
25	33	85	8	0,10	2,41	1,60	0,70	5	36339
	47	100	11	0,10	1,70	1,60	0,70	5	36479
	100	170	19	0,10	0,80	0,84	0,36	6	36101
	150	270	26	0,10	0,53	0,42	0,18	00	36151
	220	360	37	0,10	0,36	0,30	0,13	01	36221
	470	500	75	0,10	0,17	0,22	0,10	02	36471
	680	650	105	0,10	0,12	0,19	0,09	03	36681
40	15	65	6	0,08	4,24	1,60	0,70	5	37159
40	22	80	9	0,08	2,89	1,60	0,70	5	37139
	33	110	12	0,08	1,93	0,84	0,76	6	37339
	47	130	15	0,08	1,36	0,84	0,36	6	37339
	68	195	20	0,08	0,93	0,42	0,30	00	37479 37689
	100	245	28	0,08	0,63	0,30	0,13	01	37101
	150	280	40	0,08	0,43	0,30	0,13	01	37151
	220	360	55	0,08	0,34	0,22	0,10	02	37131
	330	495	85	0,08	0,34	0,19	0,09	03	37331
63	2,2	25	1,5**	0,08	28,9	1,60	0,70	5	38228
00	3,3	30	2**	0,08	19,3	1,60	0,70	5	38338
	4,7	35	3**	0,08	13,5	1,60	0,70	5	38478
	6,8	45	4**	0,08	9,36	1,60	0,70	5	38688
	10	50	6	0,08	6,37	1,60	0,70	5	38688
	15	75	10	0,08	2,90	0,84	0,76	6	38159
	22	90	12	0,08	4,25	0,84	0,36	6	38229
	33	125	17	0,08	1,93	0,42	0,30	00	38339
	47	150	22	0,08	1,36	0,42	0,18	00	38479
	68	195	30	0,08	0,93	0,30	0,13	01	38689
	100	275	42	0,08	0,63	0,22	0,10	02	38101
	150	355	60	80,0	0,43	0.19	0.09	03	38151

See also corresponding paragraph.

^{**} Measured after 5 min.

U _R	nom. cap.	max. r.m.s. ripple cur- rent at Tamb	max.d.c.leakage current at U _R after 1 min	max. tan δ*	typ. ESR*		dance 0 kHz	case size	catalogue number
٧	μF	= 85 °C (mA)*	μΑ		Ω	max.	typ.		
100	4,7	40	5**	0,07	8,5	1,6	8,0	5	2222 108 39478
	6,8	50	7**	0,07	5,9	1,6	0,8	5	39688
	10	60	10	0,07	4,0	1,6	0,8	5	39109
	15	80	13	0,07	2,7	0,84	0,4	6	39159
	22	90	17	0,07	1,8	0,84	0,4	6	39229
	33	105	24	0,15	4,8	1,9	0,9	00	39339
	47	125	33	0,15	3,4	1,9	0,9	00	39479
	68	165	45	0,15	2,4	1,6	0,7	01	39689
	100	225	64	0,15	1,6	1,3	0,5	02	39101
	150	300	94	0,15	1,1	0,9	0,3	03	39151

Capacitance

Nominal capacitance at 100 Hz at T_{amb} = 20 °C Tolerance on nominal capacitance at 100 Hz

Fig. 3 Typical capacitance as a function of temperature, U $_{R}$ = 6,3 to 63 V; $_{C_{O}}$ = capacitance at 20 $^{\rm o}$ C, 100 Hz.

Fig. 4 Typical capacitance as a function of temperature, $U_R = 100 \text{ V}$; $C_0 = \text{capacitance}$ at 20 °C, 100 Hz. curve 1 = case sizes 5 and 6; curve 2 = case sizes 00 to 03.

^{*} See also corresponding paragraph.

^{**} Measured after 5 min.

Fig. 5 Typical capacitance as a function of frequency, $U_R = 6.3$ to 63 V; Co = capacitance at 20 °C, 100 Hz.

Fig. 6 Typical capacitance as a function of frequency, UR = 100 V; Co = capacitance at 20 °C, 100 Hz. curve 1 = case sizes 5 and 6; curve 2 = case sizes 00 to 03.

Voltage

Max. permissible voltage

Ripple voltage * = max. permissible a.c. voltage

providing the following three

conditions are met: a) max. (d.c. + peak a.c.) voltage

b) max. peak a.c. voltage, without d.c. voltage applied

c) momentary value of applied

voltage

Surge voltage = max. permissible voltage for short

periods (see also Tests and requirements

in the Introduction)

Reverse voltage = max. d.c. voltage applied in the reverse

polarity at 85 °C

Ripple current **

Maximum permissible r.m.s. ripple current at 100 Hz and

 $T_{amb} = 85 \, {}^{\circ}C$

 $T_{amb} = 75 \, {}^{\circ}\text{C}$

T_{amb} ≤ 65 °C

1,1 x U_B

1,1 x U R

1 V

between 1,1 x UR and -1 V

1,15 x UR

1 V

see Table 2

1,7 x values of Table 2

2,2 x values of Table 2

- Ripple voltages are not applicable if the max. permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the max. permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 7 Multiplying factor as a function of frequency, $U_R = 6.3$ to 63 V; $I_0 =$ maximum ripple current at 85 °C, 100 Hz.

Fig. 8 Multiplying factor as a function of frequency, $U_R = 100 \text{ V}$; $I_0 = \text{maximum ripple current at } 85 \,^{\circ}\text{C}$, 100 Hz.

Curve 1 = case sizes 5 and 6;

Curve 2 = case sizes 00 to 03.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r}^{2} \max$$

I_{r max} = max. ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n}$ = multiplying factor at same frequency.

Note

These ripple currents are not applicable if the max. permissible ripple voltage is exceeded. In that case the ripple voltage is decisive (see Ripple voltage).

Charge and discharge current

The capacitors may be charged from a source with a source impedance of $0\ \Omega$, and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min* after application

of U_R, atT_{amb} = 20 °C D.C. leakage current during continuous operation at U_R

at 20 °C

at 85 °C

see Table 2

approx. 0,2 x values stated in Table 2

≤ values stated in Table 2

^{*} For capacitors < 10 μF the d.c. leakage current shall be measured 5 min after application of U $_R$.

Fig. 9 Multiplier I/I_{01} as a function of temperature. I_{01} = d.c. leakage current during continuous operation at T_{amb} = 85 $^{\rm o}{\rm C}$ at U_R.

Fig. 10 Multiplier I/I $_{02}$ as a function of U/U $_{R}$. I $_{02}$ = d.c. leakage current at U $_{R}$ at a discrete constant temperature within category temperature range.

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and $T_{amb} = 20$ °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

Typical ESR at 100 Hz and Tamb = 20 °C

see Table 2

Impedance

Impedance at 100 kHz and T_{amb} = 20 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 11 Typical impedance as a function of frequency at 20 $^{\circ}$ C, U $_{R}$ = 16 $^{\circ}$ V.

Fig. 12 Typical impedance as a function of temperature at 100 kHz, U_R = 6,3 to 63 V.

Equivalent series inductance (ESL)

•	•
Case size 5	typ. 40 nH
Case size 6	typ. 50 nH
Case sizes 00 and 01	typ. 50 nH
Case size 02	typ. 55 nH
Case size 03	typ. 60 nH

OPERATIONAL DATA

Category temperature range

for rated voltage	-40 to +85 °C	
Typical lifetime	case sizes 5 and 6	case sizes 00 to 03
at + 40 °C	> 120 000 h	> 200 000 h
at + 85 °C	> 6 000 h	> 10 000 h
at + 105 °C	> 1 200 h	> 2000 h*
Shelf life at 0 V and T = 85 00	500 h	'

Fig. 13 Typical lifetime as a function of temperature.

^{*} Not applicable to 100 V range.

PACKING

Capacitors with case sizes 00 to 03 are supplied in boxes of 200. Capacitors with case sizes 5 and 6 are supplied on bandoliers in boxes of 500.

Fig. 14 Capacitors (case size 5 or 6) on bandoliers: the bandolier to which the negative capacitor terminals are connected is blue. See Table 3 for simendions A, S, T and L. |B1-B2| = max. 1,4 mm.

Table 3
Dimensions in mm

case size	A S		T for nu of cap	L _{max}	
			n < 50	50 <n<100< td=""><td></td></n<100<>	
5 6	73 ± 1,6 73 ± 1,6	10 ± 0,4 15 ± 0,75	10 (n-1) ± 2 15 (n-1) ± 2	10 (n-1) ± 4 15 (n-1) ± 4	18,5 18,5

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the exception of IEC 384–4 sub clause 9. 14, for which the following is valid.

IEC 384-4 sub clause 9. 14.

IEC 68-2 test method: no reference.

Name of test: Endurance.

Procedure: 5000 h at 85 °C, rated voltage and ripple current applied.

Requirements: No visible damage, no leakage of electrolyte, insulation resistance > 100 M Ω , no breakdown or flashover, d.c. leakage current \le stated limit, tan $\delta \le$ 1,3 x stated limit, impedance at 100 kHz \le 2 x stated limit, $\Delta C/C \le$ 15%.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

Note:

Capacitors 2222 108 are miniature and small types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Large type with screw terminals
- Long life
- Industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series) Tolerance on nominal capacitance Rated voltage range, U_R Category temperature range Endurance test at 85 °C Shelf life at 0 V, 85 °C

Detail specification Climatic category IEC 68 DIN 40040 NF C93-001

Basic specifications

150 to 220 000 μF -10 to + 30% 10 to 385 V -40 to + 85 °C 5000 h 1EC 384-4, long-life grade DIN 41240

40/085/56 GPF (56 days) 554

350

14

15a

385 10 11

12a

14

15a

16a

16a

17

250

10

11

12a

14

15a

16a

16a 17

DIN 41248

Selection chart for C_{nom}-U_R and relevant case sizes.

C _{nom}					U _R (V)	
μF	10	16	25	40	63	100
150						
220						
330						
470						
680						
1 000						10
1 500						10
2 200					10	11
3 300				10	10	12a
4 700			10	10	11	14
6 800			10	11	12a	15a
10 000		10	11	12a	14	16a
15 000	10	11	12a	14	15a	16a
22 000	11	12a	14	15a	16a	17
33 000	12a	14	15a	16a	16a	
47 000	14	15a	16a	16a	17	
68 000	15a	16a	16a	17		
100 000	16a	16a	17			
150 000	16a	17				
220 000	-17				·	

case	nominal
size	dimensions (mm)
10	Ø 35 x 60
11	Ø 35 x 80
12a	Ø 35 x 105
14	Ø 50 x 80
15a	Ø 50 x 105
16a	Ø 65 x 105
17	Ø 75 x 105

APPLICATION

These capacitors have extremely low impedance and inductance values and high resistance to shock and vibration which render them very suitable for applications such as:

- switched-mode power supplies;
- power supplies in digital equipment;
- energy storage in pulse systems;
- filters in measuring and control apparatus.

DESCRIPTION

The low impedance and inductance are achieved by a special construction with multiple internal anode and cathode connections. The high resistance to shock and vibration is achieved by the longitudinal rills and special internal construction. The capacitors are completely cold-welded and there are no limitations on charge/discharge rate (see paragraph "Charge and discharge current"). The aluminium cases are fully insulated and sealed by a synthetic disc with a vent. The capacitors are delivered with screws and washers.

MECHANICAL DATA

Dimensions in mm

Fig. 1 See Table 1 for dimensions D, L, P, A, d₁, d₂, and l.

(1) Maximum permissible torque which may be applied to the termination screws at various heights (dimension x in drawing):

×	max. permissible torque (Nm)
2	1,5
4	1
6	0,5

Table 1

case size		D	L		F)	Α		d ₁	d ₂ x l
10 11 12a 14 15a 16a	35 35 35 50 50 65 75	+ 1,5	60 80 105 80 105 105	+3	13,0 13,0 13,0 22,0 22,0 28,5 32,0	± 0,1	8,4 8,4 14,3 14,3 19,0 21,0	8 8 8 8 11	± 0,2	M8 x 12 M8 x 12 M8 x 12 M12 x 16 M12 x 16 M12 x 16 M12 x 16

Marking

The capacitors are marked with: nominal capacitance, tolerance on nominal capacitance, rated voltage, temperature range, IEC grade, maximum r.m.s. ripple current at 70 °C and 20 kHz, catalogue number, date code (year/week), name of manufacturer.

Mounting

The capacitor may be mounted vertically or horizontally, with or without mounting clamp. For proper functioning the vent should be on the upper side, whether the capacitor is mounted horizontally or vertically. When a number of capacitors are connected in a bank, they must not be closer together than 15 mm when no derating of ripple current and/or temperature is applied. See also Mounting Accessories, at the end of this data sheet.

Minimum atmospheric pressure

8.5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

Table 2

	т	,			,	·				
U_R	nom.	max.	r.m.s.*	max.d.c.leakage		max.	imped	dance	case	catalogue
	cap.	ripple cu	rrent (A)	current at	ESR	tan δ*	at 20		size	number**
		at T _{amb} = 85 °C	at T _{amb} = 70 °C	U _R after 1 min			m۵	2		
V	μF	100 Hz	20 kHz	mA	mΩ		typ.	max.		
							-71-			
10	15 000	6	11,4	0,90	20	0,32	13	20	10	2222 114 14153
	22 000	7,5	14,2	1,32	14	0,33	9,5	14	11	14223
	33 000	10	19	1,98	10	0,35	7,5	10	12a	14333
	47 000	14	26,5	2,82	7,5	0,36	5,0	9,5	14	14473
	68 000	18	34	4,08	5,5	0,38	4,0	8,0	15a	14683
	100 000	30	50	6,00	3,5	0,34	3,0	5,0	16a	14104
	150,000	30	50	9,00	3,0	0,45	3,0	5,0	16a	14154
	220 000	37	50	13,20	2,0	0,45	2,5	4,0	17	14224
16	10 000	6	11,4	0,96	22	0,22	13	20	10	15103
	15 000	7,5	14,2	1,44	15	0,23	9,5	14	11	15153
	22 000	10	19	2,12	11	0,25	7,0	10	12a	15223
	33 000	13	24,6	3,17	7,5	0,26	5,0	9,5	14	15333
	47 000	18	34	4,52	5,5	0,27	4,0	8,0	15a	15473
	68 000	28	50	6,53	3,5	0,24	3,0	5,0	16a	15683
	100 000	28	50	9,60	3,0	0,31	3,0	5,0	16a	15104
	150 000	37	50	14,40	2,0	0,31	2,5	4,0	17	15154
25	4 700	5,2	1,0	0,71	30	0,14	15	23	10	16472
	6 800	5,2	10	1,02	25	0,18	14	21	10	16682
	10 000	6,7	12,7	1,50	18	0,18	10	15	11	16103
	15 000	9,7	18,4	2,25	12	0,19	7,5	11	12a	16153
	22 000	12,5	23,7	3,30	8,5	0,19	5,5	9,5	14	16223
	33 000	18	34	4,95	6,0	0,21	4,0	8,0	15a	16333
	47 000	27	50	7,05	4,0	0,18	3,0	5,0	16a	16473
	68 000	27	50	10,20	3,5	0,23	3,0	5,0	16a	16683
	100 000	37	50	15,00	2,5	0,23	2,5	4,0	17	16104
40	3 300	4,5	8,5	0,80	37	0,13	21	32	10	17332
	4 700	4,5	8,5	1,13	35	0,17	22	33	10	17472
	6 800	6	11,4	1,64	25	0,17	15	23	11	17682
	10 000	7,5	14,2	2,40	17	0,18	11	17	12a	17103
	15 000	10	19	3,60	11	0,17	7,5	13	14	17153
	22 000	15	28,5	5,28	8,0	0,18	5,5	10,5	15a	17223
	33 000	21	40	7,92	5,0	0,16	3,5	6,0	16a	17333
	47 000	22	42	11,28	4,5	0,21	3,5	6,0	16a	17473
	68 000	30	50	16,32	3,0	0,21	3,0	4,5	17	17683
		L					-,-	L	L	

See also corresponding paragraph. Replace 8th digit by 5 for bolt version.

UR	nom.	max. r		max.d.c.leakage current at	typ.* ESR	max. tan δ *	imper at 20		case size	catalogue number**
		at T _{amb} = 85 °C	at T _{amb} = 70 °C	U _R after 1 min			m	Ω		
V	μF	100 Hz	20 kHz	mA	mΩ		typ.	max.		
63	2 200	3,7	7	0,84	39	0,09	22	33	10	2222 114 18222
	3 300	3,7	7	1,25	32	0,11	20	30	10	18332
	4 700	5,2	10	1,78	23	0,11	14	21	11	18472
	6 800	7,5	14,2	2,57	17	0,11	10	15	12a	18682
	10 000	9,5	18	3,78	12	0,12	7,5	14	14	18103
	15 000	13,5	25,6	5,67	8,5	0,13	5,5	10,5	15a	18153
	22 000	21	40	8,32	5,0	0,11	3,5	6,0	16a	18223
	33 000	22	42	12,48	4,5	0,14	3,5	6,0	16a	18333
	47 000	30	50	17,77	3,0	0,14	3,0	4,5	17	18473
100	1 000	2,2	4,2	0,60	220	0,22	160	240	10	19102
	1 500	2,2	4,2	0,90	220	0,33	160	240	10	19152
	2 200	3,3	6,3	1,32	150	0,33	110	165	11	19222
	3 300	4,5	8,5	1,98	100	0,33	75	115	12a	19332
	4 700	5,7	10,8	2,82	70	0,33	55	85	.14	19472
	6 800	8,0	15,2	4,08	50	0,33	35	55	15a	19682
	10 000	13,5	25,6	6,00	22	0,22	16	25	16a	19103
	15 000	13,5	25,6	9,00	22	0,33	16	25	16a	19153
	22 000	15,0	28,5	13,20	15	0,33	11	17	17	19223
250	330	1,8	3,4	0,50	300	0,15	275	500	10	2222 115 13331
	470	2,5	4,7	0,71	250	0,15	140	375	11	13471
	680	3,5	6,6	1,02	180	0,15	125	300	12a	13681
	1 000	4,2	8	1,50	110	0,15	60	130	14	13102
	1 500	6,3	12	2,25	60	0,15	40	100	15a	13152
	2 200	8,8	16,7	3,30	45	0,15	30	60	16a	13222
	3 300	10,5	20	4,95	30	0,15	25	50	16a	13332
	4 700	14	26,5	7,05	25	0,15	20	40	17	13472
350	680	2,7	5,1	1,47	140	0,10	60	130	14	15681
	1 000	4,8	9,1	2,14	65	0,10	50	100	15a	15102
385	150	1,2	2,3	0,34	425	0,10	250	500	10	18151
	220	1,6	3	0,50	275	0,10	200	380	11	18221
	330	2,2	4,2	0,75	175	0,10	140	300	12a	18331
	470	2,7	5,1	1,06	110	0,10	75	130	14	18471
	680	4,8	9,1	1,53	90	0,10	60	130	15a	18681
	1 000	7	13,3	2,25	70	0,10	45	60	16a	18102
	1 500	7	13,3	3,38	45	0,10	30	50	16a	18152
	2 200	9	17	4,95	35	0,10	20	45	17	18222

^{*} See also corresponding paragraph.** Replace 8th digit by 5 for bolt version.

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 o C

Tolerance on nominal capacitance at 100 Hz

Voltage

Rated voltage = max. permissible voltage

Ripple voltage = max. permissible a.c. voltage providing the following three conditions are met:

(a) max. positive voltage on anode (d.c. + peak a.c.)

(b) max. positive voltage on cathode

(reverse voltage)(c) max. ripple current is not exceeded

Surge voltage

= max. permissible voltage for short periods (see also "Tests and requirements")

 $U_R = 10 \text{ to } 100 \text{ V}$

U_R = 250 V U_B = 350 V and 385 V

Reverse voltage = max. d.c. voltage applied in the reverse polarity at the maximum category

temperature (for short periods)

see Table 2 -10 to + 30%

mperature*
60 to 95 °C
U _R
U _R
V
1,15 x U _R x U _R x U _R

^{*} See Introduction, section 5, "Ripple current".

Ripple current

Maximum permissible r.m.s. ripple current

at 100 Hz and Tamb = 85 °C

at 20 kHz and Tamb = 70 °C

at other frequencies and temperatures

Table 3

ambient temperature	multiplier of				
oC	max. ripple current				
85	1,00				
80	1,22				
75	1,41				
70	1,58				
65	1,73				
60	1,87				
55	2,00				
50	2,12				
45	2,24				
≤ 40	2,35				

Table 4

frequency Hz	multiplier of max. ripple current (√r)
50	0,83
100	1,00
200	1,10
400	1,15
1000	1,19
≥ 2000	1,20

see Table 2

see Table 2 see Tables 3 and 4*

*With an absolute maximum of 50 A.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_n^2}{r_n} \leqslant I_r^2_{\text{max}}.$$

 $I_{r,max}$ = max. ripple current at 100 Hz and applicable ambient temperature;

l_n = ripple current at a certain frequency:

 $\sqrt{r_n}$ = multiplying factor at same frequency (Table 4)

Note

Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of the rated voltage at Tamb = 20 °C

see Table 2 (0,006 CU + 4 µA)

0,125 x value stated in Table 2

D.C. leakage current after 15 min at UR,

at Tamb = 20 °C

at T_{amb} = 85 °C

0,625 x value stated in Table 2

If owing to prolonged storage and/or storage at an excessive temperature the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 20 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Equivalent series resistance (ESR)

Typical ESR at 100 Hz and Tamb = 20 °C

see Table 2

Fig. 2 Typical ESR as a function of temperature at 100 Hz, U_R = 10 V.

Fig. 3 Typical ESR as a function of temperature at 100 Hz, U_R = 63 V.

Fig. 4 Typical ESR as a function of temperature at 100 Hz, $\ensuremath{\text{U}_{R}} = 250 \ensuremath{\text{ V}}.$

Fig. 5 Typical ESR as a function of temperature at 100 Hz, $U_{\mbox{\scriptsize R}} = 350~\mbox{\scriptsize V}.$

Fig. 6 Typical ESR as a function of temperature at 100 Hz, $U_{\mbox{\scriptsize R}}$ = 385 V.

Impedance

Impedance at 20 kHz and T_{amb} = 20 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 7 Typical impedance as a function of temperature at 20 kHz, $U_R = 10 \text{ V}$.

Fig. 8 Typical impedance as a function of temperature at 20 kHz, $U_R = 63 \text{ V}$.

Fig. 9 Typical impedance as a function of temperature at 20 kHz, U_R = 250 V.

Fig. 10 Typical impedance as a function of temperature at 20 kHz, $U_R = 350 \text{ V}$.

Fig. 11 Typical impedance as a function of temperature at 20 kHz, U_R = 385 V.

Fig. 12 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 10: curve 1 = 2200 μ F, 63 V; curve 2 = 15 000 μ F, 10 V.

Fig. 13 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 11: curve 1 = 4700 μ F, 63 V; curve 2 = 22 000 μ F, 10 V.

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 12a: curve 1 = 6800 μ F, 63 V; curve 2 = 33 000 μ F, 10 V.

Fig. 15 Typical impedance as a function of frequency at T_{amb} = 20 o C; case size 14: curve 1 = 10 000 μ F, 63 V; curve 2 = 47 000 μ F, 10 V.

Fig. 16 Typical impedance as a function of frequency at T $_{amb}$ = 20 °C; case size 15a: curve 1 = 15 000 μ F, 63 V; curve 2 = 68 000 μ F, 10 V.

Fig. 17 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 16a: curve 1 = 22 000 μ F, 63 V; curve 2 = 150 000 μ F, 10 V.

Fig. 18 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 17: curve 1 = 47 000 μ F, 63 V; curve 2 = 220 000 μ F, 10 V.

Fig. 19 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 10: curve 1 = 150 μ F, 385 V; curve 2 = 330 μ F, 250 V.

Fig. 20 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 11: curve 1 = 220 μ F, 385 V; curve 2 = 470 μ F, 250 V.

Fig. 21 Typical impedance as a function of frequency at T $_{amb}$ = 20 °C; case size 12a: curve 1 = 330 μ F, 385 V; curve 2 = 680 μ F, 250 V.

Fig. 22 Typical impedance as a function of frequency at T $_{amb}$ = 20 o C; case size 14: curve 1 = 470 μ F, 385 V; curve 3 = 1000 μ F, 250 V.

Fig. 23 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 15a: curve 1 = 680 μ F, 385 V; curve 2 = 1000 μ F, 350 V; curve 3 = 1500 μ F, 250 V.

Fig. 24 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 16a: curve 1 = 1000 μ F, 385 V; curve 3 = 2200 μ F, 250 V; curve 4 = 3300 μ F, 250 V.

Fig. 25 Typical impedance as a function of frequency at T $_{amb}$ = 20 °C; case size 17: curve 1 = 2200 μ F, 385 V; curve 2 = 4700 μ F, 250 V.

Equivalent series inductance (ESL)

case size	typ. inductance
10, 11 and 12a	13 nH
14 and 15a	16 nH
16a	19 nH
17	20 nH

OPERATIONAL DATA

Category temperature range (for rated voltage)

-40 to +85 °C

Life expectance

Typical life time

> 10 000 h

> 200 000 h (25 years)

Failure rate

Failure rate, catastrophic, at rated voltage, T_{amb} = 40 °C, confidence level 60%

< 10-7

500 h

PACKING

The capacitors are packed in boxes.

Case sizes 10, 11, 12a, 14 and 15a: 50 capacitors per box;

case sizes 16a and 17: 25 capacitors per box.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 114 and 2222 115 are large types with screw terminals, long-life grade.

MOUNTING ACCESSORIES

Clamps

To facilitate vertical mounting, a series of rigid clamps made of cadmium-plated steel are available. They can easily be slipped over the capacitor and then clamped with a nut and bolt. The clamps have either two or three mounting lugs. Four types of clamp are available, one for each case diameter. They are delivered without nuts or bolts.

Fig. 26 Clamp for case diameter of 35 mm. Catalogue number: 4322 043 04272.

Fig. 27 Clamp for case diameter of 50 mm. Catalogue number: 4322 043 04281.

Fig. 28 Clamp for case diameter of 65 mm. Catalogue number: 4322 043 04291.

Fig. 29 Clamp for case diameter of 75 mm. Catalogue number: 4322 043 12990.

Bolt/nut

When mounting with the bolt, which is an integral part of the case, standard metal M8 and M12 nuts and washers can be used; the maximum permissible torque is 7Nm for M8 nuts, and 19Nm for M12 nuts. If insulated mounting is required, synthetic nuts and rubber washers are available; for these nuts the maximum permissible torque is 4Nm (M8) and 11Nm (M12).

Fig. 30 Insulated mounting.

Fig. 31 Synthetic cap nut; see Table 5 (next page) for dimensions D, H and W.

Table 5

thread	D	Н	W*	min. threaded depth	catalogue number
.M8	25	15	17	11,5	4322 043 05561
M12	30	20	19	15,5	4322 043 05571

Fig. 32 Rubber washer; thickness 2 mm.

dimensions in mm

D	d	catalogue number
34	8,4	4322 043 05591
49	13	4322 043 05531
64	13	4322 043 05521
74	13	4322 043 13000

ALUMINIUM ELECTROLYTIC CAPACITORS

- High-temperature version of 2222 036 series
- Miniature type
- Single ended
- Long life
- Industrial applications
- High CU product per unit volume

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

Tolerance on nominal capacitance

Rated voltage range, UR (R5 series)

Category temperature range

Endurance test

Shelf life at 0 V

Basic specification

Climatic category

IEC 68

DIN 40040

0.47 to 470 μF

-20 to + 20%

6.3 to 50 V

-55 to + 105 °C

1500 h at 105 °C/5000 h at 85 °C

1500 h at 105 °C/5000 h at 85 °C

IEC 384-4, long-life grade DIN 41332/DIN 41259

55/105/56

FPF

Selection chart for Cnom-UR and relevant case sizes.

C _{nom} μF		U _R (V)							
μF	6,3	10	16	25	35	50			
0,47						11			
0,68						11			
1						11			
1,5						11			
2,2 3,3 4,7						11			
3,3						11			
4,7						11			
6,8						11			
10						11			
15						11			
22						11			
33					11	13			
47				11		13			
68			11			13			
100		11			13				
150	11			13					
220			13						
330		13							
470	13								

case	nominal
size	dimensions (mm)
11	Ø 5 × 11
13	Ø 8,2 × 11

APPLICATION

These capacitors with extremely high CU product to volume ratio are mainly used for smoothing, coupling and decoupling purposes in industrial applications, where high reliability and/or a wide temperature range is required. Other applications are timing and delay circuits. The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitor has etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitor is in an all-insulated aluminium case.

MECHANICAL DATA

Dimensions in mm

The capacitor is available in 6 styles:

style 1: long leads; in boxes;

style 2: straight short leads; non preferred, in boxes;

style 3: bent short leads (only case size 11); non preferred, in boxes;

style 4: long leads; on tape on reel, positive leading;

style 5: long leads; on tape in ammunition pack;

style 6: long leads; on tape on reel, negative leading.

Fig. 1. Style 1; see Table 1 for dimensions d, D, L and P.

Fig. 2 Style 2; non preferred, see Table 1 for dimensions d, D and L.

Fig. 3 Style 3; case size 11 only; non preferred, see Table 1 for dimensions d, D and L.

Table 1

case		mass			
size	d	D _{max}	L _{max}	Р	approx. g
11 13	0,5* 0,6	5,5 8,7	12,0 12,0	2,5 5,0	0,4 1,1

^{* 0,6} mm under consideration.

direction of tape transport (positive leading)

Fig. 4 Styles 4, 5 and 6; see Table 2 for dimensions. For style 6 the tape transport is in opposite

Fig. 4. Styles 4, 5 and 6; see Table 2 for dimensions. For style 6 the tape transport is in opposite direction (negative leading).

Table 2

	symbol	case	case size			
	Symbol	11	13	tol.		
Body diameter	D	5,5	8,7	max.		
Body height	A	12,0	12,0	max.		
Lead-wire diameter	d	0,5*	0,6	± 0,05		
Pitch of component	P	12,7	12,7	± 1,0		
Feed-hole pitch	P ₀	12,7	12,7	± 0,2**		
Hole centre to lead	P ₁	3,85	3,85	± 0,5		
Feed hole centre to component centre	P ₂	6,35	6,35	± 0,7		
Lead-to-lead distance	F	5,0	5,0	+ 0,6/0		
Component alignment	Δh	0	0	± 1,0		
Tape width	W	18,0	18,0	± 0,5		
Hold-down tape width	W _O	6,0	6,0	min.		
Hole position	W ₁	9,0	9,0	± 0,5		
Hold-down tape position	W ₂	2,5	2,5	max.		
Height of component from tape centre	H _	18,0	18,0	+ 1,5/-0		
Lead-wire clinch height	H ₀	16,0	_	± 0,5		
Component height	H ₁	32,0	32,0	max.		
Feed-hole diameter	D ₀	4,0	4,0	± 0,2		
Total tape thickness	t	0,9	0,9	max.		

^{* 0,6} mm under consideration.

^{**} Cumulative pitch error: ± 1 mm/20 pitches.

Marking

The capacitors are marked as follows:

on the top

- nominal capacitance;
- code letter for tolerance on nominal capacitance, according to IEC 62;
- rated voltage;
- polarity identification.

on the circumference

- name of manufacturer;
- group number (116); code for long-life grade (LL);
- code letter of manufacturer;
- date code (year and month) according to IEC 62.

Minimum atmospheric pressure

8.5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled; caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 3 apply at an ambient temperature of 20 to $25\,^{\circ}$ C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

22
22
⇉
0

Table	3											
U_R	nom.	max. r		max. d.c. leakage		case	catalogue nun		ue numbe	r 2222 116 followed by		
V	cap. μF	ripple m	current A	current at U _R after 1 min μA	tan δ	size*				[2]		
		at T _{amb} = 85 °C	at T _{amb} = 105 °C				style 1	style 2	style 3	on reel** style 4	in ammopack style 5	on reel▲ style 6
6,3	150 470	81 190	47 110	8,7 21	0,25 0,25	11 13	53151 53471	83151 63471	63151	23151 23471	33151 33471	43151 43471
10	100 330	74 180	43 105	9 23	0,2 0,2	11 13	54101 54331	84101 64331	64101	24101 24331	34101 34331	44101 44331
16	68 220	69 165	40 95	9,5 24	0,16 0,16	11 13	55689 55221	85689 65221	65689	25689 25221	35689 35221	45689 45221
25	47 150	61 145	35 83	10 26	0,14 0,14	11 13	56479 56151	86479 66151	66479	26479 26151	36479 36151	46479 46151
35	33 100	55 130	32 74	9,9 24	0,12 0,12	11 13	50339 50101	80339 60101	60339	20339 20101	30339 30101	40339 40101
50	0,47 0,68 1 1,5 2,2 3,3 4,7	7,6 9,1 11 13,5 16,5 20 24	4,4 5,3 6,4 7,8 9,5 11,5	3,1 3,2 3,3 3,5 3,7 4 4,4	0,09 0,09 0,09 0,09 0,09 0,09	11 11 11 11 11 11	51477 51687 51108 51158 51228 51338 51478	81477 81687 81108 81158 81228 81338 81478	61477 61687 61108 61158 61228 61338 61478	21477 21687 21108 21158 21228 21338 21478	31477 31687 31108 31158 31228 31338 31478	41477 41687 41108 41158 41228 41338 41478
	6,8 10 15	29 35 43	16,5 20 25	5 6 7,5	0,09 0,09 0,09	11 11 11	51688 51109 51159	81688 81109 81159	61688 61109 61159	21688 21109 21159	31688 31109 31159	41688 41109 41159
	22 33 47 68	52 85 100 120	30 49 58 70	9,6 13 17 23	0,09 0,09 0,09 0,09	11 13 13 13	51229 51339 51479 51689	81229 61339 61479 61689	61229	21229 21339 21479 21689	31229 31339 31479 31689	41229 41339 41479 41689

^{*} Case size 11: ϕ 5 mm x 11 mm; case size 13: ϕ 8,2 mm x 11 mm (nominal dimensions).

^{**} Positive leading.

[▲] Negative leading.

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 °C Tolerance on nominal capacitance at 100 Hz

see Table 3
-20 to + 20%

Fig. 5 Typical multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 6 Typical multiplier of capacitance as a function of frequency; C_0 = capacitance at 20 °C, 100 Hz.

Voltage

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- (a) max. (d.c. + peak a.c.) voltage
- (b) max. peak a.c. voltage without d.c. voltage applied
- (c) momentary value of applied voltage

Surge voltage = max, permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

core tem	perature [•]
< 95 °C	95 to 115 °C
1,3 x U _R	UR
1,3 x U _R	UR
2 \	/
between U	$_{R}$ and $-2~V$
1,5 x U _R	1,3 x U _R
2 \	/

Ripple current **

Maximum permissible r.m.s. ripple current at 100 Hz and $T_{amb} = 85 \text{ }^{\circ}\text{C}$ and $105 \text{ }^{\circ}\text{C}$

see Table 3

Fig. 7 Typical multiplier of ripple current as a function of ambient temperature; $\rm I_{r0}$ = ripple current at 85 °C, 100 Hz.

- See Introduction, section 5, "Ripple current".
- Specified ripple voltages are not applicable if the maximum permissible ripple current is exceeded.
 In that case the ripple current is decisive.
- ** Specified ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 8 Typical multiplier of ripple current as a function of frequency; I_{r0} = ripple current at 85 °C, 100 Hz.

Fig. 9 Typical multiplier of ripple current as a function of life time at 85 °C; $\rm I_{rO}$ = ripple current at 85 °C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents. The following requirements must then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leqslant I_{r \max}^{2}$$

 $I_{r\ max}$ = maximum ripple current at 100 Hz and applicable ambient temperature; I_{n} = ripple current at a certain frequency; $\sqrt{r_{n}}$ = I_{r}/I_{r0} = multiplying factor at a same frequency.

Charge and discharge current

There is no limit on the charge or discharge rate. If the capacitors are charged and discharged continuously several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and requirements.)

D.C. leakage current

Maximum d.c. leakage current 1 min after application of U_R at T_{amb} = 20 °C

see Table 3 (0,006 CU + 3 μ A)

D.C. leakage current during continuous operation at UR,

approx. 0,05 x value stated in Table 3

at
$$T_{amb} = 25$$
 °C
at $T_{amb} = 85$ °C

≤ value stated in Table 3

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and $T_{amb} = 25$ °C, measured by a four-terminal circuit (Thomson circuit)

see Table 3

Fig. 10 Typical tan δ at 100 Hz as a function of ambient temperature.

Fig. 11 Typical tan δ as a function of frequency at T_{amb} = 20 °C.

Equivalent series resistance (ESR)

ESR = tan δ/ω C Maximum tan δ and C at 100 Hz and T _{amb} = 25 °C	see Table 3
Equivalent series inductance (ESL)	
Case size 11	typ. 13 nH
Case size 13	typ. 16 nH
Impedance (Z)	
Maximum impedance at T_{amb} = 20 °C, -25 °C and -40 °C and 10 kHz, measured by a four-terminal circuit (Thomson circuit)	see Table 4
Maximum ratio between impedances at T_{amb} = -25 °C and + 20 °C, at T_{amb} = -40 °C and + 20 °C, and at T_{amb} = -55 °C and + 20 °C, at 100 Hz measured by	
a four-terminal circuit (Thomson circuit)	see Table 4

Table 4

UR	nom. case					maximum impedance ratio at $U_{\hbox{\scriptsize R}}$ and 100 Hz			
V	cap. μF	size*	T _{amb} = 20 °C Ω	T _{amb} = -25 °C Ω	T _{amb} = -40 °C Ω	Z at -25 °C Z at +20 °C	Z at -40 °C Z at +20 °C	Z at -55 °C Z at +20 °C	
6,3	150	11	2	12	32	2	3	8	
	470	13	0,64	3,8	10	2	3	8	
10	100	11	2	12	32	1,5	2	6	
	330	13	0,61	3,6	9,7	1,5	2	6	
16	68	11	2,4	11	29	1,5	2	5	
	220	13	0,73	3,4	9,1	1,5	2	5	
25	47	11	2,6	12	32	1,5	2	4	
	150	13	0,8	3,7	10	1,5	2	4	
35	33	11	2,7	12	33	1,5	2	3	
	100	13	0,9	4	11	1,5	2	3	
50	0,47 0,68 1 1,5	11 11 11 11	150 105 70 47	640 440 300 200	1900 1300 900 600	1,3 1,3 1,3 1,3	1,5 1,5 1,5 1,5	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	2,2	11	32	135	410	1,3	1,5	2	
	3,3	11	21	91	270	1,5	2	3	
	4,7	11	15	64	190	1,5	2	3	
	6,8 10 15	11 11 11	10,5 7 4,7	44 30 20	130 90 60	1,5 1,5 1,5	2 2 2 2 2 2	3 3 3	
	22	11	3,2	13,5	41	1,5	2	3	
	33	13	2,1	9,1	27	1,5	2	3	
	47	13	1,5	6,4	19	1,5	2	3	
	68	13	1,05	4,4	13	1,5	2	3	

^{*} Case size 11: ϕ 5 mm x 11 mm; case size 13: ϕ 8,2 x 11 mm (nominal dimensions).

Fig. 12 Typical impedance at 10 kHz as a function of ambient temperature, case size 11.

Fig. 13 Typical impedance at 10 kHz as a function of ambient temperature, case size 13.

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 20 o C, case size 11: curve 1 = 0,47 μ F; curve 7 = 4,7 μ F; curve 13 = 47 μ F; curve 2 = 0,68 μ F; curve 8 = 6,8 μ F; curve 3 = 1 μ F; curve 9 = 10 μ F; curve 15 = 100 μ F; curve 4 = 1,5 μ F; curve 10 = 15 μ F; curve 5 = 2,2 μ F; curve 11 = 22 μ F;

Fig. 15 Typical impedance as a function of frequency at T_{amb} = 20 °C, case size 13: curve 1 = 33 μ F; curve 4 = 100 μ F; curve 7 = 330 μ F; curve 2 = 47 μ F; curve 5 = 150 μ F; curve 8 = 470 μ F. curve 3 = 68 μ F; curve 6 = 220 μ F;

OPERATIONAL DATA

Category temperature range	-55 to + 105 °C
Typical life time at T_{amb} = 40 °C at T_{amb} = 85 °C at T_{amb} = 105 °C	120 000 h 6000 h 2000 h
Shelf life at 0 V at T _{amb} = 85 °C at T _{amb} = 105 °C	5000 h 1500 h

PACKING

Capacitors of styles 1, 2 and 3 are supplied in boxes, those of styles 4, 6 and 5 on tape on reel and in ammunition pack respectively. The numbers per box, per reel and per ammunition pack are given in Table 5.

Table 5

case size	number of capacitors								
	style 1 per box	style 2 per box	style 3 per box	styles 4 and 6 per reel (min.)	style 5 per ammunition pack				
11 13	1000 1000	1000 1000	1000 1000	1000 500	2000 1000				

Fig. 16 Capacitors (style 4) on tape on reel.

1 = capacitor

4 = flange

2 = tape

5 = cylinder

3 = paper

Fig. 17 Capacitors (style 5) on tape in ammunition pack.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After endurance test, at U_R , 1500 h, 105 °C or 5000 h, 85 °C, the capacitors meet the following requirements:

 Δ C/C \leq ± 20%, for U_R = 10 to 50 V;

 $\Delta C/C \le +20\%$, -30% for U_B = 6,3 V;

tan $\delta \le 130\%$ of specified value;

d.c. leakage current ≤ specified value

After shelf life test, at 0 V, the capacitors meet the same requirements, except for d.c. leakage current: ≤ 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 116 are miniature, long-life grade.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Ultra miniature type
- · Axial leads or single ended
- Very high CU-product per unit volume
- General applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series) Tolerance on nominal capacitance Rated voltage range, U_R (R5 series) Category temperature range Endurance test at 85 °C Shelf life at 0 V, 85 °C Basic specification

Climatic category IEC 68 DIN 40040 0,1 to 22 μF -10 to +50% (± 20% to special order) 6,3 to 63 V -40 to +85 °C 1500 h 500 h IEC 384-4, G.P. grade DIN 41332, type II

40/085/56 GPF

Selection chart for $c_{\mbox{nom}\mbox{-}\mbox{U}_{\mbox{R}}}$ and relevant case sizes.

C _{nom}		U _R (V)							
μF	6,3	10	16	25	40	63			
0,1						1a			
0,15						1a			
0,22						1a			
0,33						1a			
0,47						1a			
0,68						1a			
1						1a			
1,5						1a			
2,2					1a	1			
3,3				1a		1			
4,7			1a		1				
6,8		1a		1					
10	1a		1						
15		1							
22	1								

case size	nominal dimensions (mm)	
1a	φ 3,3 x 8	4
1	φ 3,3 x 11	•

APPLICATION

These capacitors have extremely high CU-product per unit volume, which render them very suitable for applications, where high requirements are imposed on size and mass, e.g. portable and mobile high density electronic equipment. They are mainly used for smoothing, coupling and decoupling purposes in consumer applications, such as audio and video circuits, and in other applications such as measuring, regulating, timing and delay circuits. The bandoliered version is extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have highly etched and oxidized aluminium foil electrodes rolled up with a paper strip impregnated with an electrolyte. The capacitors are in an aluminium case, which is insulated with a blue plastic sleeve.

The capacitors are available in 2 styles, both with soldered-copper leads.

Style 1: axial leads; supplied on bandoliers.

Style 3: single ended.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions D. L and P.

Table 1a

	ase ize	style 1						
-	3126	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	approx. g	
→	1a 1	3,3 3,3	8 11	3,5 3,5	9 12	12,5 15	0,30 0,35	

Table 1b

case size		mass approx.			
5.20	D _{max}	L _{max}	Р	g	
1a 1	3,5 3,5	11 14	2 – 5 2 – 5	0,20 0,25	

Fig. 2 Style 3: see Table 1b for dimensions D, L and P.

Marking

The capacitors are marked with:

- nominal capacitance;
- rated voltage;
- group number; code of origin; name of manufacturer;
- date code (year and month) according to IEC 62;
- band to identify the negative terminal.

Mounting

The capacitors are suitable for mounting on printed-wiring boards; the required hole diameter is 0.8 ± 0.1 mm.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled; caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

U_R	nom.	max. r.m.s.	max. d.c. leakage		max. ESR		impedance		case size*	catalogue ni	umber 2222 117	followed by
	cap.	ripple current at T _{amb} = 85 °C	current at UR after 1 min	tan δ	ESK	ESR at 10 kHz, at T _{amb} =			size			A
V μ	μF mA	μ F mA μ A Ω	Ω	20 °C -25 °C -	-40 °C							
								·		on reel style 1	in box style 1	style 3
6,3	10 22	11 20	4 6	0,30 0,30	48 22	20 9	120 55	320 145	1a 1	23109 23229	33109 33229	83109 83229
10	6,8 15	10 18	4 6	0,25 0,25	59 27	24 11	110 50	294 133	1a 1	24688 24159	34688 34159	84688 84159
16	4,7 10	9 16	5 6	0,20 0,20	68 32	26 12	119 56	319 150	1a 1	25478 25109	35478 35109	85478 85109
25	3,3 6,8	8 14	5 6	0,18 0,18	87 42	27 13	121 59	333 162	1a 1	26338 26688	36338 36688	86338 86688
40	2,2 4,7	7 13	5 7	0,16 0,16	116 54	32 15	136 64	409 191	1a 1	27228 27478	37228 37478	87228 87478
63	0,1 0,15	2 3 3	4 4 4	0,10 0,10 0,10	1590 1060 723	550 367 250	1800 1200 818	5000 3330 2270	1a 1a 1a	28107 28157 28227	38107 38157 38227	88107 88157 88227
	0,22 0,33 0,47	4	4 4	0,10 0,10 0,10	482 339	167 117	545 383	1520 1060	1a 1a	28337 28477	38337 38477	88337 88477
	0,68 1	5 6	4	0,10 0,12	234 191	81 55	265 180	735 500	1a 1a	28687 28108	38687 38108	88687 88108
	1,5 2,2 3,3	7 11 13	5 6 7	0,14 0,14 0,14	149 87 68	37 25 17	120 82 55	333 227 152	1a 1 1	28158 28228 28338	38158 38228 38338	88158 88228 88338

^{*} Case size 1a: φ 3,3 mm x 8 mm. Case size 1: φ 3,3 mm x 11 mm.

Capacitance

Nominal capacitance at 100 Hz and T_{amb} = 20 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2
-10 to +50%
(± 20% to special order)

Fig. 3 Multiplier of capacitance as a function of ambient temperature; C_0 = capacitance at T_{amb} = 20 °C, 100 Hz.

Fig. 4 Multiplier of capacitance as a function of frequency; C₀ = capacitance at T_{amb} = 20 °C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing the following three conditions are met:

- a) max. (d.c. + peak a.c.) voltage
- b) max. peak a.c. voltage without d.c. voltage applied
- c) momentary value of applied voltage

Surge voltage = max. permissible voltage for short periods

Reverse voltage = max. d.c. voltage applied in the reverse polarity for short periods

Ripple current**

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 °C

< 60 °C | 60 to 95 °C |
1,1 x U_R | U_R
1,1 x U_R | U_R
2 V

core temperature

see Table 2

Fig. 5 Multiplier of ripple current as a function of ambient temperature; I_{r0} = ripple current at T_{amb} = 85 °C, 100 Hz.

- ▲ See Introduction, section 5, "Ripple current".
- Specified ripple voltages are not applicable if the maximum permissible ripple current is exceeded.
 In that case the ripple current is decisive.
- ** Specified ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 6 Multiplier of ripple current as a function of frequency; I_{r0} = ripple current at T_{amb} = 85 o C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_n^2}{r_n} \leqslant I_{r \text{ max}^2}$$

I_{r max} = maximum ripple current at 100 Hz and applicable ambient temperature;

In = ripple current at a certain frequency;

 $\sqrt{r_n} = I_r/I_{r0} = \text{multiplying factor at a same frequency.}$

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and Requirements).

D.C. leakage current

Maximum d.c. leakage current 1 min after application of U_R at T_{amb} = 20 °C

see Table 2 (0,02 CU + 3 μ A)

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C)the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ Maximum tan δ at 100 Hz and T_{amb} = 20 ^{o}C

see Table 2

Fig. 7 Typical tan δ as a function of ambient temperature at 100 Hz.

```
Curve 1 = 6,3 V;

curve 2 = 10 V;

curve 3 = 16 V;

curve 4 = 25 V;

curve 5 = 40 V;

curve 6 = 1,5 to 3,3 \muF, 63 V;

curve 7 = 0,68 and 1 \muF, 63 V;

curve 8 = 0,22 to 0,47 \muF, 63 V;

curve 9 = 0,1 and 0,15 \muF, 63 V.
```


Fig. 8 Typical tan δ as a function of frequency at $T_{amb} = 20$ °C.

```
Curve 1 = 6,3 V; curve 2 = 10 V; curve 3 = 16 V; curve 4 = 25 V; curve 5 = 40 V; curve 6 = 1,5 to 3,3 \muF, 63 V; curve 7 = 0,68 and 1 \muF, 63 V; curve 8 = 0,22 to 0,47 \muF, 63 V; curve 9 = 0,1 and 0,15 \muF, 63 V.
```


Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and Tamb = 20 °C

see Table 2

Impedance (Z)

Maximum impedance at 10 kHz and T_{amb} = 20 °C, -25 °C and -40 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 9 Typical impedance as a function of ambient temperature at 10 kHz; case size 1a.

```
Curve 1 = 0.1 \mu F, 63 V;
curve 2 = 0.15 \mu F, 63 V;
curve 3 = 0.22 \mu F, 63 V;
curve 4 = 0.33 \,\mu\text{F}, 63 V;
curve 5 = 0.47 \,\mu\text{F}, 63 V;
curve 6 = 0.68 \,\mu\text{F}, 63 \,\text{V};
                   μF, 63 V;
        7 = 1
curve
curve 8 = 1,5 \mu F, 63 V;
curve 9 = 2,2 \mu F, 40 V;
curve 10 = 3,3 \muF, 25 V;
curve 11 = 4.7 \mu F, 16 V;
curve 12 = 6.8 \mu F, 10 V;
curve 13 = 10
                  μF, 6,3 V.
```


Fig. 10 Typical impedance as a function of ambient temperature at 10 kHz; case size 1.

```
Curve 1 = 2,2 \muF, 63 V;
curve 2 = 3,3 \muF, 63 V;
curve 3 = 4,7 \muF, 40 V;
curve 4 = 6,8 \muF, 25 V;
curve 5 = 10 \muF, 16 V;
curve 6 = 15 \muF, 10 V;
curve 7 = 22 \muF, 6,3 V.
```


Fig. 11 Typical impedance as a function of frequency at T_{amb} = 20 °C; case size 1a. Curve 1 = 0,1 μ F, 63 V; curve 2 = 0,22 μ F, 63 V; curve 3 = 0,47 μ F, 63 V; curve 4 = 1 μ F, 63 V; curve 5 = 2,2 μ F, 40 V; curve 6 = 4,7 μ F, 16 V;

curve 7 = 10 μ F, 6,3 V.

Equivalent series inductance (ESL)

case size 1a case size 1

typ. 13 nH typ. 15 nH

OPERATIONAL DATA

Category temperature range

Typical life time

at $T_{amb} = 40$ °C at $T_{amb} = 85$ °C

Shelf life at 0 V and T_{amb} = 85 $^{\rm o}C$

-40 to +85 °C

50 000 h

2000 h 500 h

PACKING

Capacitors of style 3 are supplied in boxes; capacitors of style 1 are supplied on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 3.

Table 3

case	numi	per of capaci	tors	
size	style 1	style 1	style 3	
	per reel	per box	per box	
1a	4000	1000	1000	
1	4000	1000	1000	

Fig. 13 Style 1 capacitors on bandoliers; the bandolier to which the negative capacitor terminals are connected is blue. See Table 4 for dimensions A, S, T and L. |B1-B2| = max. 1,4 mm.

Table 4 (Dimensions in mm)

case size		А	S	T for	L _{max}	
				n < 50	50 < n < 100	
	1a 1	63,5 ± 1,5 63,5 ± 1,5	5 ± 0,4 5 ± 0,4	5(n-1) ± 2 5(n-1) ± 2	5(n-1) ± 4 5(n-1) ± 4	9 12

Fig. 14 Style 1 capacitors on bandoliers on reel; dimension C = 83,5 mm; the overall width of the reel is 94,5 mm.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After endurance test, 1500 h, 85 °C, the capacitors meet the following requirements:

 $\Delta C/C \leq \pm 20\%$

tan $\delta \le 200\%$ of specified value,

d.c. leakage current ≤ specified value.

After shelf life test, 500 h, 85 $^{\circ}$ C, the capacitors meet the same requirements as after endurance test, except for d.c. leakage current: \leq 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note: Capacitors 2222 117 are miniature types, general purpose grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads
- Extended temperature range
- Very long life, high stability
- Very high CU-product per unit volume
- Industrial and military applications

QUICK REFERENCE DATA

	Nominal capacitance range (E6 series): 1 to 15 000 μ F		Selection chart for C _{nom} -U _R and relevant case sizes.								
-	·	1 to 15 000 μF	C _{nom} U _R (V)								
	ce on nominal citance :	± 20%	μF	6,3	10	16	25	40	63	100	200
(R5 s Categor case s	oltage range, U _R series): y temperature range sizes 4 to 7:	6,3 to 200 V -40 to+125 °C	1 1,5 2,2 3,3 4,7						4 4 4 4		
case sizes 00 to 05: Endurance test at 125 °C, with max. ripple current: at 150 °C, without ripple		-55 to +125 °C	6,8 10 15 22 33						4 4 4 5		00 01 02
	nt: fe at 0 V, 125 °C: decifications:	500 h 500 h IEC 384-4, long-life grade; DIN 41257;	47 68 100 150 220		4	4 5	4 5 6	4 5 5 6 7/00	5 6 7]/00 01 01	00 01 01 02 03	03 04 05
		DIN 41240, type 1 40/125/56 55/125/56	330 470 680 1 000 1 500	4 6 7/00	5 6 6 7/00	6 6 7/00 01 01	7. 7/00 01 01 02	01 01 02 03 04	02 03 04 05	04 05	
DIN 400	040, case sizes 4 to 7 case sizes 00 to 05	GKD * T	2 200 3 300 4 700	01 01 02	01 02 03	02 03 04	03 04 05	05			
case size	nominal dimensions (mm)		6 800 10 000	03 04	04 05	05	03				
4	Ø 6,5 x 18	go l	15 000	05	1		1	1		1 1	

case	nominal	1
size	dimensions (mm)	
4	Ø 6,5 x 18	e.
5	Ø 8 x 18	1 2
6	Ø 10 × 18	miniature
7	Ø 10 × 25	Ē
00	Ø 10 × 30	
01	Ø 12,5 x 30	
02	Ø 15 × 30	=
03	Ø 18 × 30	small
04	Ø 18 × 40	S
05	Ø 21 × 40	

Case sizes 4 to 7 (miniature types) are still under development; information on these capacitors are derived from development samples, and does not necessarily imply that they will go into regular production.

APPLICATION

These capacitors are especially designed for those applications where extreme ambient temperatures exist. They are very suitable for applications where very high requirements have to be met concerning reliability and long lifetime over a wide temperature range, such as in automotive, computer, telecommunication and telephony equipment.

The high CU-product per unit volume offers additional advantages in applications where high requirements are imposed on size and mass, e.g. automotive equipment. They are mainly used for energy storage, smoothing, coupling and decoupling purposes, as well as for timing and delay circuits. The bandoliered version is extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have deeply etched and oxidized aluminium foil electrodes rolled up with a porous paper spacer, which separates the anode and the cathode. The spacer is impregnated with an electrolyte which retains its good characteristics at extreme temperatures. The capacitors are housed in an aluminium case with axial soldered-copper terminations, sealed with a synthetic disc. The all-welded construction, the built-in voltage derating, and the close quality control during manufacture ensure a reliability and a life expectancy far superior to normal grade electrolytic capacitors.

The capacitors are available in 2 styles:

- style 1: axial leads, case insulated with a blue synthetic sleeve; all case sizes; case sizes 4 to 7 are supplied on bandoliers:
- style 2: single ended; with mounting ring with printed-wiring pins; especially for use in applications with severe shocks and vibrations; case sizes 02 to 05.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions D, L, I and P.

Table 1a

			mass				
case size	I	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	approx. g
4	*	6,5	18,0	6,9	18,5	25	1,3
5	*	8,0	18,0	8,5	18,5	25	1,7
6	*	10,0	18,0	10,5	18,5	25	2,5
7	*	10,0	25,0	10,5	25,0	30	3,3
00	55 ± 1	10,0	30,0	10,5	30,5	35,0	4,3
01	55 ± 1	12,5	30,0	13,0	30,5	35,0	6,6
02	55 ± 1	15,0	30,0	15,5	30,5	35,0	8,5
03	55 ± 1	18,0	30,0	18,5	30,5	35,0	11,2
04	34 ± 1	18,0	40,0	18,5	41,5	45,0	14
05	34 ± 1	21,0	40,0	21,5	41,5	45,0	19

^{*} Case sizes 4 to 7 are supplied on bandoliers in boxes or on reels (see Packing).

Table 1b

case		style 2								
size	d ₁	d ₂	D1	D2 _{max}	D3	L	approx. g			
02	0,8	1 + 0,1	15,0	17,5	16,5 ± 0,2	31 ± 1	8,6			
03	0,8	1 + 0,1	18,0	19,5	18,5 ± 0,2	31 ± 1	11,5			
04	1,0	1,3 + 0,1	18,0	19,5	18,5 ± 0,2	42 ± 1	14,5			
05	1,0	1,3 + 0,1	21,0	22,5	21,5 ± 0,2	42 ± 1	19,7			

D1, D2, D3 and L.

Marking

The capacitors are marked with:
nominal capacitance;
tolerance on nominal capacitance according to IEC 62;
rated voltage at 125 °C and 85 °C;
group number 118;
maximum temperature; grade reference LL;
name of manufacturer; code of origin;
date code (year and month) according to IEC 62;
band to identify the negative terminal;
+ signs to identify the positive terminal.

Mounting

The capacitors may be mounted in any position by their leads.

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

	1			r	T		1	ı
U_R	nom.	max. r.m.s.	max.d.c.leakage	max.	max.	max. impedance	case	catalogue
	cap.	ripple current at	current at UR	tan δ	ESR	at 10 kHz	size	number*
		T _{amb} = 125 °C	after 1 min					2222 118
V	μF	mA	μΑ		Ω	Ω		followed by
6,3	330	112	20	0,50	2,41	2,1	4	. 3331
٥,٥	1000	251	42	0,50	0,79	0,8	6	. 3102
	1500	352	61	0,50	0,53	0,53	7	**
	1500	416	61	0,46	0,485	0,45	00	. 3152
	2200	590	87	0,46	0,305	0,28	01	. 3222
	3300	648	129	0,58	0.280	0,27	01	. 3332
	4700	826	182	0,58	0,185	0,18	02	. 3472
	6800	1040	261	0,66	0,155	0,15	03	. 3682
	10 000	1417	382	0,66	0,098	0,10	04	. 3103
	15 000	1707	571	0,77	0,082	0,10	05	. 3153
10	220	109	20	0,35	2,53	2,1	4	. 4221
	330	150	24	0,35	1,69	1,4	5	. 4331
	470	179	32	0,35	1,19	1,0	5	. 4471
	680	247	45	0,35	0,82	0,81	6	. 4681
	1000	343	64	0,35	0,56	0,55	7	**
	1000	409	64	0,32	0,505	0,45	00	. 4102
	1500	590	94	0,32	0,285	0,28	01	. 4152
	2200	634	136	0,40	0,290	0,27	01	. 4222
	3300	826	202	0,40	0,190	0,18	02	. 4332
	4700	1035	286	0,46	0,155	0,15	03	. 4472
	6800	1395	412	0,53	0,100	0,10	04	. 4682
	10 000	1674	604	0,53	0,084	0,10	05	. 4103
16	150	106	20	0,25	2,65	2,2	4	. 5151
	220	145	25	0,25	1,81	1,5	5	. 5221
	330	204	36	0,25	1,21	1,2	6	. 5331
	470	243	49	0,25	0,85	0,83	6	. 5471
	680	335	69	0,25	0,58	0,57	7	**
	680	389	69	0,22	0,525	0,45	00	. 5681
	1000	557	100	0,22	0,345	0,28	01	. 5102
	1500	609	148	0,29	0,305	0,27	01	. 5152
	2200	790	215	0,29	0,205	0,18	02	. 5222
	3300	1008	321	0,34	0,165	0,15	03	. 5332
	4700	1363	455	0,34	0,105	0,10	04	. 5472
	6800	1627	657	0,38	0,088	0,10	05	. 5682

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel

³ for style 1 on bandoliers in box case sizes 4 to 7

⁴ for style 2; case sizes 02 to 05.

See Table 3.

		_						
UR	nom. cap.	max. r.m.s. ripple current at T _{amb} = 125 °C	max.d.c.leakage current at U _R after 1 min	max. tan δ	max. ESR	max. impedance at 10 kHz	case size	catalogue number* 2222 118
V	μF	mA	μΑ		Ω	Ω		followed by
25	100	102	20	0,18	2,86	2,3	4 5	. 6101
	150 220	141 196	27 37	0,18 0,18	1,91 1,30	1,55 1,25	6	. 6151 . 6221
	330	274	54	0,18	0,87	0,82	7	. 6331
	470	327	75	0,18	0,61	0,57	7	**
	470	366	75	0,18	0,62	0,50	00	. 6471
	680	515	106	0,18	0,38	0,30	01	. 6681
	1000	531	154	0,24	0,375	0,28	01	. 6102
	1500	691	229	0,25	0,263	0,22	02	. 6152
	2200	919	334	0,26	0,185	0,17	03	. 6222
	3300	1280	499	0,26	0,120	0,11	04	. 6332
	4700	1464	709	0,28	0,095	0,10	05	. 6472
40	47	89,8	20	0,11	3,72	2,8	4	. 7479
	68	121	20	0,11	2,57	1,9	5	. 7689
	100	147	28	0,11	1,75	1,3	5	. 7101
	150	207	40	0,11	1,17	1,0	6	. 7151
	220	287	57	0,11	0,80	0,68	7	**
	220	338	57	0,10	0,695	0,55	00	. 7221
	330	484	83	0,10	0,430	0,33	01	. 7331
	470	522	117	0,11	0,380	0,30	01 02	. 7471 . 7681
	680	695	167	0,11	0,255	0,23	02	
	1000 1500	852 1196	244 364	0,13 0,13	0,205 0,130	0,18 0,11	03	. 7102 . 7152
	2200	1403	532	0,13	0,130	0,10	05	.7222
63	1	16.4	20	0.07	111	22	4	. 8108
	1,5	20,1	20	0,07	74,3	18	4	. 8158
	2,2	24,3	20	0,07	50,6	14,5	4	. 8228
	3,3	29,8	20	0,07	33,8	11,2	4	. 8338
	4,7	35,6	20	0,07	23,7	8,9	4	. 8478
	6,8	42,8	20	0,07	16,4	7,2	4	. 8688
	10	51,9	20	0,07	11,1	5,6	4	. 8109
	15	63,6	20	0,07	7,43	4,2	4	. 8159
	22	77,0	20	0,07	5,06	3,2	4	. 8229
	33	106	20	0,07	3,38	2,1	5 5	. 8339
	47 68	126 175	22 30	0,07	2,37	1,5 1,05	6	. 8479 . 8689
	100	243	42	0,07 0,07	1,64 1,14	0,7	7	. 0009
	100	243 262	42	0,07	1,14	1,0	00	. 8101
	150	415	61	0,07	0,645	0,61	01	. 8151
	220	454	87	0,07	0,610	0,56	01	. 8221
	330	544	129	0,09	0,420	0,40	02	. 8331
	470	695	182	0,09	0,310	0,33	03	. 8471
	680	971	261	0,09	0,195	0,18	04	. 8681
	1000	1161	382	0,10	0,160	0,15	05	. 8102
	•				*		•	

^{*} See note on the next page.

^{**} See Table 3.

UR	nom. cap.	max. r.m.s. ripple current at T _{amb} = 125 °C	max.d.c.leakage current at U _R after 1 min	,	max. ESR	max, impedance at 10 kHz	case size	catalogue number* 2222 118
V	μF	mA	μΑ		Ω	Ω		followed by
100	47	178	33	0,08	2,60	2,0	00	. 9479
	68	278	45	0,08	1,78	1,2	01	. 9689
	100	303	64	0,09	1,37	1,15	01	. 9101
	150	368	94	0,10	0,94	0,78	02	. 9151
	220	481	136	0,10	0,66	0,55	03	. 9221
	330	644	202	0,10	0,45	0,37	04	. 9331
	470	833	282	0,10	0,33	0,28	05	. 9471
200	15	129	22	0,046	4,76	3,75	00	92159
	22	198	31	0,046	3,17	2,22	01	92229
	33	242	44	0,046	2,11	1,11	02	**
	47	317	61	0,046	1,48	0,60	03	**
	68	428	86	0,046	1,02	0,42	04	**
	100	551	124	0,046	0,96	0,39	05	**

Table 3

U_{R}	nom.	case	catalogue	catalogue number						
V	cap. μF	size	capacitors on bandoliers on reel	capacitors on bandoliers in box						
6,3	1500	7	2222 118 90502	2222 118 90503						
10	1000	7	90504	90505						
16	680	7	90506	90507						
25	470	7	90508	90509						
40	220	7	90511	90512						
63	100	7	90513	90514						

Table 4

UR	nom. cap.	case	catalogue number					
V .	μF	size	style 1	style 2				
200	33	02	2222 118 92339	2222 118 90002				
	47	03	92479	90003				
	68	04	92689	90004				
	100	05	92101	90005				

- Replace dot in catalogue number by:
- 1 for style 1, case sizes 00 to 05, supplied in box;

 - 2 for style 1 on bandoliers on reel case sizes 4 to 7 3 for style 1 on bandoliers in box
 - 4 for style 2; case sizes 02 to 05.
- ** See Table 4.

Capacitance

Nominal capacitance at 100 Hz and Tamb = 25 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2

63 V

100 V

200 V

± 20%

Voltage

Note: For applications at capacitor core temperatures ♠ of ≤ 95 °C the rated voltage (UR) may be raised according to Table 5.

10 V

6.3 V

16 V

25 V

40 V

1,2 x U_{R2} 1,15 x U_{R2} 1,1 x U_R

Tab	le 5
-----	------

 U_R at > 95 to 130 °C

11			1	1						
U _{R2} at ≤ 95 °C	J _{R2} at ≤ 95 °C		16 V	25 V	40 V	63 V	100 V	125 V	250 V	
				core temperature						
			<	≤ 60 °C		> 60 to ≤ 95 °C		> 95 to ≤ 130 °		
Max. permissible ve	oltage		1,	1 x U _{R2}	2	U _{R2}		UR		
	max. permissible a.voltage providing th following three con are met: a. max. (d.c. + peak voltage b. max. peak a.c. vo	ne ditions a.c.) oltage	1,	1 x U _{R2}	2	U _{R2}		U _R		
	without d.c. volt applied c. momentary value applied voltage			V etween l nd –2 V	J _{R2}	2 V between and –2 \		2 V between and -2 V		

Ripple current**

Surge voltage

Maximum permissible r.m.s. ripple current at 100 Hz and Tamb = 125 °C

Reverse voltage = max, d,c, voltage applied

= max. permissible voltage

in the reverse polarity for

for short periods

short periods

see Table 2

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitors. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

- See Introduction, section 5, "Ripple current".
- Ripple voltages are not applicable if the max. permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the max. permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

D.C. leakage current

Maximum d.c. leakage current 1 min after application

of UR at Tamb = 25 °C see Table 2 (0,006 CU + 4 μ A or 20 μ A, whichever is greater)

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and $T_{amb} = 20$ °C, measured by a four-terminal circuit

(Thomson circuit) see Table 2

Equivalent series resistance (ESR)

Maximum ESR at 100 Hz and Tamb = 20 °C, measured by a four-terminal circuit (Thomson circuit)

see Table 2

Impedance

Maximum impedance at 10 kHz, measured by a four-terminal circuit (Thomson circuit)

see Table 2

500 h

Equivalent series inductance (ESL)

Case size 4 typ. 25 nH Case size 5 typ. 40 nH Case sizes 6, 7, 00 and 01 typ. 50 nH Case size 02 typ. 55 nH Case sizes 03, 04 and 05 typ. 60 nH

OPERATIONAL DATA

Category temperature range

case sizes 4 to 7 -40 to +125 °C case sizes 00 to 05 -55 to +125 °C

Typical life time, at max. ripple current according to Table 2

at Tamb = 40 °C 450 000 h (approx. 50 years) at Tamb = 85 °C 20 000 h

at Tamb = 125 °C 3000 h Shelf life at 0 V and Tamb = 125 °C

PACKING

All capacitors are supplied in boxes, except case sizes 4 to 7 of style 1, which are on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 6.

Table 6

case	number of capacitors
3120	per box or per reer
4	1000
5	500
6	500
7	500
00	200
01	200
02	200
03	200
04	100
05	100

Fig. 3 Capacitors (case sizes 4 to 7) on bandoliers; the bandolier to which the negative capacitor terminals are connected is blue. See Table 7 for dimensions A, S, T and L_{max} . $|B1 - B2| = 1.4 + (L_{max} - L)$ mm max.

Table 7
Dimensions in mm

case	А	S	1	mber (n) pacitors	
size		_	n ≤ 50	50 < n < 100	
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
5	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
6	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	18,5
7	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	25,0

Fig. 4 Capacitors (case sizes 4 to 7) on bandoliers on reel; dimension C is 88,5 mm; the overall width of the reel is 99,5 mm.

1 = capacitor 2 = bandolier 3 = paper 4 = flange 5 = cylinder

TESTS AN REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the following addition.

After shelf life test, 500 h, 125 °C, the capacitors meet the same requirements as after endurance test, except for d.c. leakage current: \leq 200% of specified value. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

After reverse voltage test, 125 °C (IEC 384-4, sub clause 9.16), the capacitors meet the following requirements:

d.c. leakage current ≤ stated limit,

 $tan \delta$

≤ stated limit,

 $\Delta C/C$

≤ 20%

Note

Capacitors 2222 118 are miniature and small types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Miniature and small types
- Axial leads
- Long life
- Industrial applications

to 05)

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)
Tolerance on nominal capacitance
Rated voltage, UR (R5 series)
Category temperature range case sizes 4 to 7 case sizes 00 to 05 (UR ≤ 100 V)
case sizes 00 to 05 (U _R ≥ 160 V)
Endurance test at 85 °C

case sizes 6 to 05 Shelf life at 0 V, 85 $^{\circ}$ C (case sizes 5 to 05)

Basic specifications

case sizes 4 and 5

Climatic category case sizes 4 to 7 case sizes 00 to 05 (U $_{R} \leqslant$ 100 V) case sizes 00 to 05 (U $_{R} \geqslant$ 160 V)

1 (0 4/00 μΓ		
-10 to +50%		
10 to 350 V		
-40 to +85	οС	
-55 to +85 °	οС	
-40 to +85 °	oC.	
6000 h		
8000 h		
500 h		
IEC 384-4, lo	ng-l	ife grade
DIN 41257		
UTE C031/C	033	(case sizes 00
IEC 68	1	DIN 40040

1 to 4700 uF

IEC 68 DIN 40040 40/085/56 GPF 55/085/56 FPF 40/085/56 GPF

Selection chart for Cnom-UR and relevant case sizes.

C _{nom}				UR	(V)				
μF	10	16	25	40	63	100	160	250	350
1						4			4
1,5						4		4	5
2,2						4	4	5	5
3,3						4	5		6
4,7					4	4	5	6	6
6,8					4	5	6	7 _	
10					4	5	6	7	01
15				4	5	6	7		
22			4		5	6	7 /00	01	02
33			4	5	6	7	L. J		
47		4		5	6	7/00	02	03	04
68		4	5	6	7/00	01			
100		5		6	00	02	03	05	
150		5	6	7/01	02	03			
220	5	6	7/01	01	02	04	05		
330		7/01	01	02	03	04			
470	01	7/01	01	02	04	05			
680	01	02	03	03	05				
1000	02	02	03	04	05				
1500	03	03	04	05					
2200	03	04	05	05					
3300	04	05							
4700	05	05							

	·	
	nominal	case
	dimensions (mm)	size
e	Ø 6,5 x 18	4
miniature	Ø 8 x 18	5
iğ.	Ø 10 × 18	6
Έ	Ø 10 x 25	7
	Ø 10 × 30	00
	Ø 12,5 x 30	01
small	Ø 15 x 30	02
E	Ø 18 × 30	03
1	Ø 18 × 40	04
	Ø 21 × 40	05
لـــا	W 21 X 70	00

* Case sizes 4 to 7 (U_R ≥ 160 V) are still under development; information on these capacitors is derived from development samples, and may change in any manner without notice.

APPLICATION

These capacitors are especially designed for those applications where extreme requirements have to be met concerning reliability and long lifetime both at high and low temperatures, such as in computer, telecommunication and telephony equipment.

They are mainly used for energy storage, smoothing, coupling and decoupling purposes, as well as for timing and delay circuits. The bandoliered version is extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes rolled up with a porous paper spacer, which separates the anode and the cathode. The spacer is impregnated with an electrolyte which retains its good characteristics both at low and high temperatures. The capacitors are housed in an aluminium case with axial soldered-copper terminations, sealed with a synthetic disc. The all-welded construction, the built-in voltage derating, and the close quality control, during manufacture ensure a reliability and a life expectancy far superior to normal grade electrolytic capacitors.

The capacitors are available in 2 styles:

- style 1: axial leads, case insulated with a blue synthetic sleeve; all case sizes; case sizes 4 to 7 are supplied on bandoliers;
- style 2: single ended; with mounting ring with printed-wiring pins; especially for use in applications with severe shocks and vibrations: case sizes 02 to 05.

MECHANICAL DATA

Dimensions in mm

Fig. 1a See Table 1a for dimensions D, L, I and P.

Table 1a

case size	ı	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	mass approx. g
4	*	6,5	18,0	6,9	18,5	25	1,3
5	*	8,0	18,0	8,5	18,5	25	1,7
6	*	10,0	18,0	10,5	18,5	25	2,5
7	*	10,0	25,0	10,5	25,0	30	3,3
00	55 ± 1	10,0	30,0	10,5	30,5	35,0	4,3
01	55 ± 1	12,5	30,0	13,0	30,5	35,0	6,6
02	55 ± 1	15,0	30,0	15,5	30,5	35,0	8,5
03	55 ± 1	18,0	30,0	18,5	30,5	35,0	11,2
04	34 ± 1	18,0	40,0	18,5	41,5	45,0	14
05	34 ± 1	21,0	40,0	21,5	41,5	45,0	19

^{*} Case sizes 4 to 7 are supplied on bandoliers in boxes or on reels (see Packing).

Table 1b

10010 11							
case size		mass approx.					
3120	d ₁	d ₂	D1	D2 _{max}	D3	L	g
02	0,8	1 + 0,1	15,0	17,5	16,5 ± 0,2	31 ± 1	8,6
03	0,8	1 + 0,1	18,0	19,5	18,5 ± 0,2	31 ± 1	11,5
04	1,0	1,3 + 0,1	18,0	19,5	18,5 ± 0,2	42 ± 1	14,5
05	1,0	1,3 + 0,1	21,0	22,5	21,5 ± 0,2	42 ± 1	19,7

Marking

The capacitors are marked with:

- nominal capacitance;
- tolerance on nominal capacitance according to IEC 62;
- rated voltage;
- group number 132 or 133;
- maximum temperature; grade reference LL;
- name of manufacturer; code of origin;
- date code (year and month) according to IEC 62;
- band to identify the negative terminal;
- + signs to identify the positive terminal.

Mounting

The capacitors may be mounted in any position by their leads (see also Tests and Requirements in the Introduction).

Minimum atmospheric pressure

8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

UR	nom. cap.	max. r.m.s. ripple current	max.d.c.leakage current at Up		max. ESR	max. im	pedance 2	case size	catalogu number	
	·	at T _{amb} = 85 °C	after 5 min			at	at		2222	
V	μF	mA	μΑ		Ω·	10 kHz	100 kHz		followe	d b
10	220	190	8,4	0,18		0,73	0,70	5	132 . 4	221
	470	350	9,4	0,18	0,77	0,26	0,60	01	132 . 4	471
	680	460	13,6	0,18	0,53	0,20	0,40	01	132 . 4	68
	1000	640	20	0,18	0,36	0,12		02	132 . 4	10
	1500	800	30	0,22	0,29	0,10		03	132 . 4	15
	2200	1100	44	0,22	0,20	0,09		03	132 . 4	22
	3300	1300	66	0,27	0,16	0,05		04	132 . 4	33
	4700	1800	94	0,27	0,12	0,05		05	132 . 4	
16	47	95	5,5	0,14		2,6	2,2	4	132 . 5	47
	68	110	6,2	0,14		1,8	1,6	4	132 . 5	
	100	150	7,2	0,14		1,2	1,1	5	132 . 5	10
	150	190	8,8	0,14		0,80	0,80	5	132 . 5	15
	220	250	11	0,14		0,55	0,55	6	132 . 5	22
	330	320	14,6	0,14		0,36	0,36	7	**	
	330	320	10,6	0,14	0,80	0,36	0,60	01	132 . 5	33
	470	450	19	0,14	0,55	0,26	0,26	7	**	
	470	450	15	0,14	0,55	0,26	0,40	01	132 . 5	47
	680	550	22	0,14	0,39	0,14	·	02	132 . 5	68
	1000	780	32	0,14	0,26	0,12		02	132 . 5	10
	1500	950	48	0,15	0,19	0,10		03	132 . 5	15
	2200	1300	70	0,15	0,12	0,06		04	132 . 5	
	3300	1600	106	0,15	0,09	0,05		05	132 . 5	33
	4700	2300	150	0,15	0,08	0,05		05	132 . 5	
25	22	60	5,1	0,11		4,1	2,9	4	132 . 6	
	33	80	5,7	0,11	100	2,7	2,3	4	132 . 6	33
	68	140	7,4	0,11		1,3	1,1	5	132 . 6	68
	150	230	11,5	0,11		0,60	0,60	6	132 . 6	15
	220	340	15	0,11		0,40	0,40	7	**	
	220	340	11	0,11	1,0	0,40	0,60	01	132 . 6	22
	330	410	16,5	0,11	0,63	0,30	0,40	01	132 . 6	33
	470	560	24	0,11	0,47	0,20		01	132 . 6	47
	680	700	34	0,11	0,32	0,10	1.0	03	132 . 6	68
	1000	1000	50	0,11	0,22	0,10		03	132 . 6	10
	1500	1100	75	0,12	0,16	0,06		04	132 . 6	15
	2200	1850	110	0,13	0,12	0,05		05	132 . 6	

^{*} Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel 3 for style 1 on bandoliers in box case sizes 4 to 7

⁴ for style 2; case sizes 02 to 05.

^{**} See Table 3.

UR	nom.	max. r.m.s.	max.d.c.leakage	max	max.	max. im	nedance	case	catalogue
~ K	cap.	ripple current	current at UR	tan δ	ESR		2	size	number*
	oup.	at T _{amb} = 85 °C	after 5 min	tuiro		at	at	0.20	2222
V	μF	mA	μΑ		Ω	10 kHz	100 kHz		followed by
					32				
40	15	60	5,2	0,09	•	5	3,2	4	132 . 7159
	33	100	6,6	0,09		2,3	1,9	5	132 . 7339
	47	120	7,8	0,09	l	1,6	1,4	5	132 . 7479
	68	170	9,4	0,09	ĺ	1,1	1,0	6	132 . 7689
	100	210	12	0,09	1	0,75	0,75	6	132 . 7101
	150	310	16	0,09		0,50	0,50	7	** .
	150	310	12	0,09	1,27	0,50	0,60	01	132 . 7151
	220	410	17,5	0,09	0,86	0,34	0,40	01	132 . 7221
	330	550	26	0,09	0,58	0,20	,	02	132 . 7331
	470	700	38	0,09	0,40	0,16		02	132 . 7471
	680	900	54	0,09	0,28	0,10		03	132 . 7681
	1000	1200	80	0,09	0,19	0,08		04	132 . 7102
	1500	1500	120	0,10	0,14	0,06		05	132 . 7152
	2200	1900	176	0,10	0,10	0,05		05	132 . 7222
					0,10				
63	4,7	38	4,6	0,07		12	5	4	132 . 8478
	6,8	45	4,9	0,07	l	8,1	4	4	132 . 8688
	10	64	5,3	0,07	1	5,5	3,3	4	132 . 8109
	15	80	5,9	0,07		3,7	2,5	5	132 . 8159
	22	100	6,8	0,07		2,5	2,1	5	132 . 8229
	33	140	8,2	0,07		.1,7	1,5	6	132 . 8339
	47	170	9,9	0,07		1,2	1,1	6	132 . 8479
	68	210	12,6	0,07		0,81	0,60	7	**
	68	210	8,6	0,07	1,9	0,80	0,60	00	132 . 8689
	100	300	12,6	0,07	1,3	0,60	0,40	00	132 . 8101
	150	350	19	0,07	0,87	0,37		02	132 . 8151
	220	520	28	0,07	0,58	0,25		02	132 . 8221
	330	600	42	0,07	0,40	0,15		03	132 . 8331
	470	970	59	0,07	0,27	0,12		04	132 . 8471
	680	1000	86	0,07	0,19	0,08		05	132 . 8681
	1000	1600	126	0,07	0,13	0,06		05	132 . 8102
100	1	20	4,2	0,06		45	6	4	132 . 9108
100	1,5	25	4,3	0,06		30	6	4	132 . 9158
	2,2	30	4,4	0,06		20	5	4	132 . 9228
	3,3	37	4,7	0,06		14	5	4	132 . 9338
	4,7	48	4,9	0,06		9,6	4	4	132 . 9478
	6,8	60	5,4	0,06		6,6	3,5	5	132 . 9688
	10	73	6	0,06		4,5	2,8	5	132 . 9109
	15	100	7	0,06		3	1,8	6	132 . 9159
	22	130	, 8,4	0,06		2	1,3	6	132 . 9229
	33	170	10,6	0,06	l	1,4	1,1	7	132 . 9339
	47	220	13,4	0,06	[1	0,90	7	**
	47	220	9,4	0,06	2,4	1	0,90	00	132 . 9479
	68	250	13,5	0,06	1,7	0,80	0,50	01	132 . 9689
	100	380	20	0,06	1,1	0,50	1	02	132 . 9101
	150	400	30	0,06	0,75	0,35		03	132 . 9151
	1	660	44		0,75	0,35		03	132 . 9221
	220			0,06		1 .		04	132 . 9331
	330	700	66	0,06	0,34	0,15		05	132 . 9331
	470	1200	94	0,06	0,24	0,10	l	l no	132.94/1

Table 2 (continued)

UR	nom. cap.	max. r.m.s. ripple current	max.d.c.leakage current at UR		max. ESR	max. im Ω	pedance	case size	catalogue number*
	oup.	at T _{amb} = 85 °C	after 5 min	tuii o		at	at	3120	2222
٧	μF	mA	μΑ		Ω	10 kHz	100 kHz		followed b
160	2,2	22	7	0,10		55	30	4	133 . 1228
	3,3	30	. 7	0,10		36	25	5	133 . 1338
	4,7	37	7	0,10		26	20	5	133 . 1478
	6,8	50	7	0,10		18	16	6	133 . 1688
	10	61	7	0,10		12	10	6	133 . 1109
	15	85	9	0,10		8	6	7	133 . 1159
	22	120	11	0,10		5,5	2,5	7	**
	22	120	7	0,10	6,8	5,5	2,5	00	133 . 1229
	47	180	15	0,10	3,2	2,6		02	133 . 1479
	100	350	32	0,10	1,5	1,2		03	133 . 110
	220	610	70	0,10	0,7	0,60		05	133 . 122
250	1,5	18	7 7	0,10		73	35	4	133 . 3158
	2,2	25	7	0,10		50	30	5	133 . 3228
	4,7	37	7	0,10		23	16	6	133 . 3478
	6,8	55	7,4	0,10		16	12	7	133 . 3688
	10	66	9	0,10		11	9	7	133 . 3109
	22	130	11	0,10	6,8	5		01	133 . 3229
	47	200	24	0,10	3,2	2,3		03	133 . 3479
	100	370	50	0,10	1,5	1,1		05	133 . 310°
350	1	15	7	0,10		100	40	4	133 . 5108
	1,5	20	7	0,10		67	32	5	133 . 5158
	2,2	25	7	0,10		45	28	5	133 . 5228
	3,3	34	7	0,10		30	20	6	133 . 5338
	4,7	43	7,3	0,10		21	15	6	133 . 5478
	10	90	7	0,10	15	10		01	133 . 510
	22	140	15,5	0,10	6,8	4,5		02	133 . 522
	47	270	33	0,10	3,2	2,1		04	133 . 547

Replace dot in catalogue number by:

¹ for style 1, case sizes 00 to 05, supplied in box;

² for style 1 on bandoliers on reel 3 for style 1 on bandoliers in box case sizes 4 to 7

⁴ for style 2; case sizes 02 to 05.

^{**} See Table 3.

Table 3

UR	nom.	case	catalogue number					
V	cap. μF	size	capacitors on bandoliers on reel	capacitors on bandoliers in box				
16	330	7	2222 132 90508	2222 132 90509				
	470	7	90507	90502				
25	220	7	90503	90504				
40	150	7	90511	90512				
63	68	7	90513	90514				
100	47	7	90505	90506				
160	22	7	2222 133 90502	2222 133 90503				

Capacitance

Nominal capacitance at 100 Hz and Tamb = 20 °C

Tolerance on nominal capacitance at 100 Hz

Fig. 2 Multiplier of capacitance as a function of ambient temperature, case sizes 4 to 7; C_0 = capacitance at 20 °C, 100 Hz.

Fig. 4 Multiplier of capacitance as a function of frequency, case sizes 4 to 7; C₀ = capacitance at 20 °C, 100 Hz.

Fig. 3 Multiplier of capacitance as a function of ambient temperature, case sizes 00 to 05; C_O = capacitance at 20 °C, 100 Hz.

Fig. 5 Multiplier of capacitance as a function of frequency, case sizes 00 to 05; C₀ = capacitance at 20 °C, 100 Hz.

Voltage

Max. permissible voltage

Ripple voltage* = max. permissible a.c. voltage providing

the following three conditions are met: a. max. (d.c. + peak a.c.) voltage

b. max. peak a.c. voltage without d.c. voltage applied

c. momentary value of applied voltage

max, permissible voltage for short

periods (see also Tests and Requirements in the Introduction)

max. d.c. voltage applied in the reverse Reverse voltage =

polarity at 85 °C

1.1 x UR

1,1 x UR

between 1,1 x U_R and -1 V

1,15 x UR

1 V

Ripple current**

Surge voltage

Maximum permissible r.m.s. ripple current at 100 Hz and

T_{amb} = 85 °C

Fig. 6 Multiplier of ripple current as a function of ambient temperature, case sizes 4 to 7; I_{rO} = ripple current at 85 °C and 100 Hz.

Fig. 7 Multiplier of ripple current as a function of ambient temperature, case sizes 00 to 05; IrO = ripple current at 85 °C and 100 Hz.

- Ripple voltages are not applicable if the max. permissible ripple current is exceeded. In that case the ripple current is decisive.
- ** Ripple currents are not applicable if the max, permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

Fig. 8 Multiplier of ripple current as a function of frequency, case sizes 4 to 7; I_{r0} = ripple current at 85 °C and 100 Hz.

Curve 1 = 1
$$\mu$$
F, 100 V;

curve 2 = 1,5
$$\mu$$
F, 100 V;

curve $3 = 2.2 \,\mu\text{F}$, 100 V;

curve 4 = \geq 3,3 μ F, 100 V;

curve 5 = 16 V.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\frac{\sum\limits_{n}^{I}\frac{I_{n}^{2}}{r_{n}}\leqslant I_{r^{2}}_{max}$$

Ir max

= maximum ripple current at 100 Hz and applicable ambient temperature;

In

= ripple current at a certain frequency;

 $\sqrt{r_n}=I_r/I_{r0}$

= multiplying factor at a same frequency.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitors. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Case sizes 4 to 7

Maximum d.c. leakage current 1 min after application

of UR at Tamb = 20 °C,

U_R = 10 to 100 V

 $U_R = 160 \text{ to } 350 \text{ V}$

 $0.01 \text{ CU} + 3 \mu \text{A}$

 $(0.01 \text{ CU} + 3 \mu\text{A}) \text{ or } 20 \mu\text{A},$ whichever is greater

Maximum d.c. leakage current 5 min after application

of UR at Tamb = 20 °C

U_R = 10 to 100 V

U_R = 160 to 350 V

see Table 2 (0,002 CU + 4 μ A) (0,002 CU + 4 μ A) or 7 μ A,

D.C. leakage current during continuous operation at UR

at Tamb = 20 °C

at Tamb = 85 °C

whichever is greater $0.001 \text{ CU} + 1 \mu\text{A}$

0.002 CU + 4 µA

Case sizes 00 to 05

Maximum d.c. leakage current 1 min after application

of UR at Tamb = 20 °C

 $0.006 \text{ CU} + 4 \mu \text{A}$

Maximum d.c. leakage current 5 min after application

of UR at Tamb = 20 °C

see Table 2 (0,002 CU)

D.C. leakage current during continuous operation at $U_{\mbox{\scriptsize R}}$

at Tamb = 20 °C

at Tamb = 85 °C

< 0,0005 CU 0,002 CU

If owing to prolonged storage and/or storage at an excessive temperature (> 40 °C) the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 20 °C, measured by a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 9 Typical tan δ as a function of ambient temperature at 100 Hz, case sizes 4 to 7.

Fig. 10 Typical tan δ as a function of frequency at 20 °C, case sizes 4 to 7.

Impedance (Z)

Maximum impedance at T_{amb} = 20 °C and 10 kHz or 100 kHz, measured by a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 11 Typical impedance as a function of ambient temperature at 10 kHz, case size 4. Curve 1 = 1 μ F, 100 V; curve 2 = 4,7 μ F, 100 V; curve 3 = 47 μ F, 16 V.

Fig. 12 Typical impedance as a function of ambient temperature at 10 kHz, case size 5. Curve 1 = 10 μ F, 100 V; curve 2 = 150 μ F, 16 V.

Fig. 13 Typical impedance as a function of ambient temperature at 10 kHz, case size 6. Curve 1 = 22 μ F, 100 V; curve 2 = 220 μ F, 16 V.

Fig. 14 Typical impedance as a function of ambient temperature at 10 kHz, case size 7. Curve 1 = 47 μ F, 100 V; curve 2 = 470 μ F, 16 V.

Fig. 15 Typical impedance as a function of frequency at 20 °C, case size 4. Curve 1 = 1 μ F, 100 V; curve 2 = 4,7 μ F, 100 V;

Fig. 16 Typical impedance as a function of frequency at 20 °C, case size 5. Curve 1 = 10 μ F, 100 V; curve 2 = 150 μ F, 16 V.

Fig. 17 Typical impedance as a function of frequency at 20 °C, case size 6. Curve 1 = 22 μ F, 100 V; curve 2 = 220 μ F, 16 V.

Fig. 18 Typical impedance as a function of frequency at 20 °C, case size 7. Curve 1 = 47 μ F, 100 V; curve 2 = 470 μ F, 16 V.

Equivalent series resistance (ESR)

see Table 2
typ. 25 nH
typ. 40 nH
typ. 5 0 nH
typ. 55 nH
typ. 60 nH

OPERATIONAL DATA

Category temperature range case sizes 4 to 7 case sizes 00 to 05, U $_{R} \le 100$ V case sizes 00 to 05, U $_{R} \ge 160$ V	-40 to + 85 °C -55 to + 85 °C -40 to + 85 °C	
Typical life time case sizes 4 and 5 case sizes 6 to 05	$T_{amb} = 85 \text{ oC}$ $\geq 10 000 \text{ h}$ $\geq 15 000 \text{ h}$	$T_{amb} = 40 ^{\circ}\text{C}$ $\geq 200 000 \text{h}$ $\geq 300 000 \text{h}$ (approx. 40 years)
Shelf life at 0 V and T _{amb} = 85 °C	500 h	

PACKING

All capacitors are supplied in boxes, case sizes 4 to 7 are on bandoliers in boxes or on reels. The number of capacitors per box or per reel is shown in Table 4.

Table 4

case size	number of capacitors per box or per reel
4	1000
5	500
6	500
7	500
00	200
01	200
02	200
03	200
04	100
05	100

Fig. 19 Capacitors (case sizes 4 to 7) on bandoliers; the bandolier to which the negative capacitor terminals are connected is blue. See Table 5 for dimensions A, S, T and L_{max} . $|B1-B2|=1,4+(L_{max}-L)$ mm max.

Table 5
Dimensions in mm

case A		S	T for nu of cap	L _{max}	
3126			n < 50	50 < n < 100	
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
5	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	18,5
6	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	18,5
7	73 ± 1,6	15 ± 0,75	15 (n-1) ± 2	15 (n-1) ± 4	25,0
		1	1		I

Fig. 20 Capacitors (case sizes 4 to 7) on bandoliers on reel; dimension C is 88,5 mm; the overall width of the reel is 99,5 mm.

1 = capacitor

3 = paper

5 = cylinder

2 = bandolier

4 = flange

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the exception of IEC 384-4 subclause 9.14, for which the following is valid.

IEC 384-4 subclause 9.14.

IEC 68-2 test method: no reference.

Name of test: Endurance.

Procedure: 6000 h at U $_{R}$ and 85 ^{o}C for case sizes 4 and 5;

8000 h at UR and 85 °C for case sizes 6 to 05.

Requirements: No visible damage, no leakage of electrolyte, insulation resistance > 100 M Ω , no breakdown or flashover, d.c. leakage current \leq stated limit, tan $\delta \leq$ 1,3 x stated limit, impedance at 10 kHz \leq 2 x stated limit, Δ C/C \leq 15%.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min, at least 24 h and not more than 48 h before measurements.

Note

Capacitors 2222 132 and 2222 133 are miniature and small types, long-life grade.

SOLID ALUMINIUM CAPACITORS

- Small type
- Axial leads; metal case; ceramic seal
- Very long life
- High reliability
- Industrial and military applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series) Tolerance on nominal capacitance Rated voltage range, UR (R5 series)

Category temperature range Usable temperature range

Endurance test

at Tamb = 125 °C at Tamb = 150 °C

Basic specification

Climatic category, IEC 68; 6,3 V to 40 V ranges

Climatic category, IEC 68; 50 V range

at 50 V at 40 V

> DIN 40040 NF C20-600

Approvals; 6,3 V to 40 V ranges

2,2 to 330 μF -20 to +20% *

6.3 to 50 V

-55 to +125 °C

-80 to +200 °C

5000 h 2000 h

IEC 384-4, long-life grade

55/125/56

55/085/56 55/125/56 EHC/JQ/TW 434

€ CECC 30 302-001

U.K. : Post Office;

Ministry of Defence DEF 59-44

Sweden: FOA/FTL

ESA : SCC Arcao AR C121 (Ariane)

France: Liste LNZ 44-04 COS-A

Selection chart for Cnom-UR and relevant case sizes.

C _{nom}	υ _R (ν)					
μF	6,3	10	16	25	40	50
2,2					1	1
3,3					1	
4,7				1	2A	2A
6,8					2A	2A
10			1	2A	2A	
15		1	2A			4
22	1			2A	4	5
33		2A	2A	4	5	6
47	2A	2A	4	5	6	
68	2A		5	6		
100		4	6			
150	4	5				
220	5	6				
330	6					

case size	nominal dimensions (mm)
1	Ø 6,5 x 15
2A	Ø 7,5 x 20
4	Ø 9 x 22,5
5	Ø 10 × 31,5
6	Ø 12,5 x 31,5

^{* ± 10%} to special order.

APPLICATION

These capacitors utilize advanced technology to achieve long life, high stability, excellent reliability, very high ripple current rating and low temperature dependence. The capacitors are not subject to a limitation on charge or discharge currents and they will function in circuits where voltage reversal may occur.

The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched aluminium foil electrodes separated by a layer of glassfabric and filled with solid semiconductive, pyrolitically formed manganese dioxide. The capacitors are housed in an aluminium case with soldered-copper axial leads and are sealed by a ceramic disc. The cathode lead is welded to the case, which is insulated with a blue transparent plastic sleeve.

The capacitors are supplied on bandoliers in boxes and on reels.

Note: A special version is available, which is partly epoxy-filled, withstanding severe shock and vibration tests; see also "Tests and requirements".

MECHANICAL DATA

Dimensions in mm

Fig. 1 For dimensions d, D, L and P, see Table 1a.

Table 1a

case size	d*	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	mass** approx. g
1 2A	0,6 +0,06	6,5 7,5	15 20	6,7 7,6	15,3 20,4	20 22,5	1,2 2,4
4	0,6 -0,05	9	22,5	9,3	23,3	25	3,3
5	0,8 \ +0,08	10	31,5	10,3	32	35	4,5
6	0,8 / -0,05	12,5	31,5	12,9	32	35	6,3

- * Tolerance according to IEC 301; not applicable to a length of 2 mm from the lead ends, which is covered by the bandoliers.
- ** Add 10% for epoxy-filled version.

Fig. 2 Capacitors on bandoliers; the bandolier to which the negative capacitor terminals are connected is blue. See Table 1b for dimensions A, S, T and L_{max} . $|B1-B2| = 1,4 + (L_{max}-L)$ mm max.

Table 1b

case size A S	A	S	1	T for number (n) of capacitors		
		n < 50	50 < n < 100			
1	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	15,3	
2A	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	20,4	
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	23,3	
5	73 ± 1,6	15 ± 0,75	10 (n-1) ± 2	10 (n-1) ± 4	32	
6	73 ± 1,6	15 ± 0,75	10 (n-1) ± 2	10 (n-1) ± 4	32	

Marking

The capacitors are marked with: group number (121), capacitance, tolerance, rated and derated voltages at corresponding maximum temperatures, date code, a band to identify the negative terminal, "+" signs for the positive terminal and name of manufacturer.

Mounting

No special provisions are required for soldering to the tinned leads. (2 mm of the anode lead nearest the body are not solderable).

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%. See also the corresponding paragraphs.

Table 2

U _R	nom.	max. r.m.s.	max. d.c.	max.	max.	max.	case	catalogue	number 2222 121	followed by
	сар.	ripple current at T _{amb} = 125 °C, no d.c. voltage applied	leakage current at UR after 1 min*	tan δ	ESR	impedance at 100 kHz*	size			£:UJ
. V	μF	mA	μΑ		Ω	Ω		in box	on reel	epoxy-filled version**
6,3	22	60	10	0,18	16,5	1,2	1	13229	23229	63229
	47	100	21	0,18	7,6	1,0	2A	13479	23479	63479
	68	130	30	0,18	5,3	0,75	2A	13689	23689	63689
	150	220	66	0,18	2,4	0,4	4	13151	23151	63151
	220	320	97	0,18	1,6	0,3	5	13221	23221	63221
	330	430	146	0,18	1,1	0,2	6	13331	23331	63331
10	15	50	11	0,16	21,5	2,5	1	14159	24159	64159
	33	85	23	0,16	9,6	1,25	2A	14339	24339	64339
	47	115	33	0,16	6,8	0,75	2A	14479	24479	64479
	100	190	70	0,16	3,2	0,5	4	14101	24101	64101
	150	280	105	0,16	2,1	0,4	5	14151	24151	64151
	220	380	154	0,16	1,4	0,4	6	14221	24221	64221
16	10	45	16	0,14	28	2,5	1	15109	25109	65109
	15	60	24	0,14	19	1,25	2A	15159	25159	65159
_	33	105	53	0,14	8,4	1,25	2A	15339	25339	65339
	47	140	75	0,14	5,9	0,5	4	15479	25479	65479
	68	200	109	0,14	4,1	0,4	5	15689	25689	65689
	100	270	160	0,14	2,8	0,4	6	15101	25101	65101

^{*} Capacitors with lower values of max. d.c. leakage current or max. impedance are available to special order.

^{**} Withstands severe shock and vibration.

Table 2 (continued)

UR	nom.	max. r.m.s.	max. d.c.	max.	max. ESR	max.	case size	catalogue number 2222 121 followed by		
	cap.	at T _{amb} = 125 °C, no d.c. voltage applied	leakage current at U _R after 1 min*	tall 0	ESN	impedance at 100 kHz*	size			
٧	μF	mA	μΑ		Ω	Ω		in box	on reel	epoxy-filled version**
25	4,7	30	12	0,14	60	5	1	16478	26478	66478
	10	50	25	0,14	28	2,5	2A	16109	26109	66109
	22	85	55	0,14	13	2,5	2A	16229	26229	66229
	33	120	83	0,14	8,4	1	4	16339	26339	66339
	47	160	118	0,14	5,9	0,8	5	16479	26479	66479
	68	220	170	0,14	4,1	0,5	6	16689	26689	66689
10	2,2	20	9	0,12	109	7,5	1	17228	27228	67228
	3,3	30	13	0,12	73	7,5	1	17338	27338	67338
	4,7	35	19	0,12	51	2,5	2A	17478	27478	67478
	6,8	45	27	0,12	35	2,5	2A	17688	27688	67688
	10	60	40	0,12	24	2,5	2A	17109	27109	67109
	22	100	88	0,12	11	1	4	17229	27229	67229
	33	150	132	0,12	7,3	0,8	5	17339	27339	67339
	47	200	188	0,12	5,1	0,5	6	17479	27479	67479
50	2,2	15	11	0,25	230	20	1	18228	28228	68228
	4,7	25	24	0,25	106	10	2A	18478	28478	68478
	6,8	35	34	0,25	74	6	2A	18688	28688	68688
	15	60	75	0,25	34	4	4	18159	28159	68159
	22	85	110	0,25	23	3,2	5	18229	28229	68229
	33	110	165	0,25	15,5	2	6	18339	28339	68339

^{*} Capacitors with lower values of max. d.c. leakage current or max. impedance are available to special order.
** Withstands severe shock and vibration.

Capacitance

Nominal capacitance values at 100 Hz and T_{amb} = 25 °C Tolerance on nominal capacitance at 100 Hz

see Table 2 ± 20%; ± 10% to special order

 U_{R}

0,63 x U_R

Fig. 3 Typical multiplier of capacitance as a function of ambient temperature. C_0 = capacitance at T_{amb} = 25 °C, 100 Hz.

Voltage

Rated voltage

6,3 V to 40 V ranges = max. permissible voltage at

T_{amb} ≤ 125 °C

= max. permissible voltage at

T_{amb} ≤ 85 °C U_R*

Derated voltage

50 V range

6,3 V to 40 V ranges = max. permissible voltage at

T_{amb} from 125 °C to 200 °C

50 V range = max. permissible voltage at T_{amb} from 85 °C to 125 °C 40 V

Ripple voltage

Max. permissible a.c. voltage providing the

following four conditions are met:

a) Max. a.c. voltage, with negative d.c. voltage applied 2 V

^{* 63} V is permissible for max. 500 h at Tamb = 85 °C.

- b) Max. peak a.c. voltage, without d.c. voltage applied at $f\leqslant 0,1$ Hz at 0,1 Hz $< f\leqslant 1$ Hz at 1 Hz $< f\leqslant 10$ Hz at 1 Hz $< f\leqslant 10$ Hz at 10 Hz $< f\leqslant 50$ Hz at 10 Hz $< f\leqslant 50$ Hz
- c) Momentary value of applied voltage, with positive d.c. voltage applied
- d) Ripple voltage limits are not applicable if the maximum ripple current is exceeded. In that case the ripple current is decisive. Whichever is in practice decisive, depends on the actual impedance of the capacitor. Table 3 should be considered as an aid only in establishing whether the ripple voltage or the ripple current is decisive.

 $\begin{array}{lll} T_{amb} \leqslant 85 \text{ °C} & 85 \text{ °C} < T_{amb} \leqslant 125 \text{ °C*} \\ 0.30 \times U_R & 0.15 \times U_R \\ 0.45 \times U_R & 0.22 \times U_R \\ 0.60 \times U_R & 0.30 \times U_R \\ 0.65 \times U_R & 0.32 \times U_R \\ 0.80 \times U_R & 0.40 \times U_R \\ \end{array}$

between $U_{\mbox{\scriptsize R}}$ (in the positive half wave) and the limits mentioned under b) (in the negative half wave)

Table 3

fraguanay	decisive factor				
frequency	at T _{amb} ≤ 85 °C	T _{amb} > 85 °C			
f ≤ 50 Hz	voltage	voltage, if actual capacitor im- pedance is high; current, if actual capacitor im- pedance is low			
50 Hz < f ≤ 1 kHz	voltage, if actual capacitor im- pedance is high; current, if actual capacitor im- pedance is low	current			
f > 1 kHz	current	current			

Surge voltage
6,3 V to 40 V ranges = max. permissible voltage for short periods (see also "Tests and requirements")

50 V range

= max. permissible voltage for max. 500 h

 $T_{amb} \le 85 \text{ °C}$ | $85 \text{ °C} < T_{amb} \le 125 \text{ °C}$ | $1,15 \times U_R$ | 63 V | 45 V

^{*} For 50 V range, $U_R = 40 \text{ V}$.

Reverse voltage

6,3 V to 40 V ranges = max. d.c. voltage continuously (2000 h) applied in the reverse

polarity,

50 V range

at T $_{amb}$ \leq 85 °C at 85 °C < T $_{amb}$ \leq 125 °C = max. d.c. voltage applied in the reverse polarity at the

maximum category temperature for short periods (see also "Tests and requirements") $T_{amb} \le 85 \text{ °C} | 85 \text{ °C} < T_{amb} \le 125 \text{ °C}$ 0,30 x U_R 0,15 x UR

Ripple current

Maximum permissible r.m.s. ripple current at 100 Hz and $T_{amb} = 125 \, {}^{\circ}C$

Maximum permissible r.m.s. ripple current at other frequencies, temperatures and conditions

Table 4 Temperature multiplier of ripple current (\sqrt{k}), at 100 Hz

T _{amb} °C	\sqrt{k}
25 35 45 55 65 70 75 80 85 90 95 100 105 110 115 120	2,6 2,5 2,4 2,25 2,1 2,05 2,0 1,9 1,8 1,7 1,6 1,45 1,35 1,2

see Table 2

see Table 4 to 6, and Fig. 4

Table 5 Frequency multiplier of ripple current (\sqrt{r}) at 25 °C

Fig. 4 Combined temperature/frequency multiplier of ripple current (\sqrt{kr}) as a function of frequency. $I_{r max} = I_{r0} \sqrt{kr}$.

Table 6 Multiplier of ripple current for various application conditions

coı	ndition	multiplier
Α.	Capacitor insulated with a blue sleeve, mounted horizontally on a thermally non-conducting printed-circuit board, in free flowing air and in a surrounding that allows the absorption of radiation heat.	1,0
в.	As under A but capacitor is not insulated	0,9
C.	As under A but capacitor is mounted vertically.	0,7
D.	As under A but capacitor is mounted on a good thermally conducting printed-circuit board.	1,25
E.	As under A but the surrounding walls etc. have a temperature higher than 125 °C and therefore prevent the absorption of heat by radiation.	0,6
F.	Capacitor has an ESR value lower than the maximum ESR.	√ESR _{max} ESR _{actual}
G.	As under A but capacitor is epoxy-filled (for severe shock and vibration resistance).	1,05
Н.	As under G but capacitor is mounted on a good thermally conducting printed-circuit board.	1,5

Note: Neither the maximum permissible ripple current nor the maximum permissible ripple voltage values are to be exceeded. Refer to Table 3 to find whichever factor will be decisive.

Calculation of ripple currents

The maximum permissible ripple current (Ir max) is a function of temperature and frequency:

$$\begin{array}{lll} I_{r\,max} &= I_{r\,0} \sqrt{kr}, \\ &\text{where} & I_{r\,0} &= \text{max. ripple current at } 100 \text{ Hz and } 125 \, ^{\circ}\text{C} \text{ (see Table 2)}; \\ &\sqrt{k} &= \text{temperature multiplier (neglecting the frequency dependence)} = \\ &\sqrt{P_{max}/P_{125}}; \\ &\sqrt{r} &= \text{frequency multiplier (neglecting the temperature dependence)} = \\ &\sqrt{ESR_{100}/ESR_{max}}; \\ &\text{(for} \sqrt{k} \text{ and } \sqrt{r}, \text{ see Tables 4 and 5, for} \sqrt{kr}, \text{ see Fig. 4)}; \\ &\text{while} &P_{max} &= \text{max. permissible power dissipation, temperature dependent;} \\ &P_{125} &= \text{max. permissible power dissipation at } 125 \, ^{\circ}\text{C} = I_{r\,0}^2 \text{ ESR}_{100}; \\ &ESR_{max} &= \text{max. equivalent series resistance, frequency dependent;} \end{array}$$

The formula is derived for any temperature and frequency as follows:

ESR₁₀₀ = max. equivalent series resistance at 100 Hz.

$$I^{2}_{r \text{ max}}$$
 = $P_{\text{max}}/\text{ESR}_{\text{max}}$
= $kr P_{125}/\text{ESR}_{100}$
= $kr I^{2}_{r0} \text{ESR}_{100}/\text{ESR}_{100}$
Thus $I_{r \text{ max}}$ = $I_{r0}\sqrt{kr}$.

 $= \beta \times S \times \Delta T$.

The values of the temperature multiplier \sqrt{k} and of P125 have been calculated allowing a capacitor temperature of 138 °C and assuming the values of ESR_{max} at 138 °C to be 0,8 times the ESR_{max} at 25 °C at all frequencies.

The values of the frequency multiplier \sqrt{r} have been measured at 25 °C assuming it to be the same at all temperatures.

The power dissipation (P_{max}) has been calculated assuming it to be governed by the simplified relation:

```
where \beta = heat transfer coefficient, taken as 9,0 W/m²K;
S = capacitor outer surface;
\Delta T = temperature difference between capacitor surface and the ambient atmosphere, taken as 13 °C at T_{amb} = 125 °C.
```

Charge and discharge current

P_{max}

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of UR, at Tamb = 25 °C

D.C. leakage current during continuous operation at UR,

at Tamb = 25 °C

at T_{amb} = 85 °C at T_{amb} = 125 °C

D.C. leakage current during continuous operation at 40 V,

Tamb = 125 °C (only applicable to 50 V range)

see Table 2 (max. 0,1 CU)

approx. 0,5 x value stated in Table 2 approx. 2 x value stated in Table 2

approx. 7 x value stated in Table 2

approx. 2 x value stated in Table 2

Fig. 5 Multiplier I/I01 as a function of ambient temperature. Io1 = d.c. leakage current during continuous operation at UR, Tamb = 25 °C.

Fig. 6 Multiplier I/I02 as a function of U/UR. In a discrete In a discrete constant temperature.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

Typical tan δ at 100 Hz and T_{amb} = 25 °C

see Table 2 approx. 0,6 x value stated in Table 2

Fig. 7 Multiplier of dissipation factor as a function of ambient temperature; tan δ_0 = dissipation factor at 25 $^o\text{C},$ 100 Hz.

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

Maximum ESR at 100 Hz and T_{amb} = 25 °C (calculated from maximum tan δ and 0,8 x nominal capacitance)

see Table 2

Impedance

Maximum impedance at 100 kHz, and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 8 Typical impedance as a function of temperature at 100 kHz.

Curve 1 = 2,2 μ F, 40 V; curve 2 = 4,7 μ F, 25 V; curve 3 = 10 μ F, 16 V; curve 4 = 15 μ F, 10 V; curve 5 = 22 μ F, 6,3 V.

Fig. 10 Typical impedance as a function of temperature at 100 kHz.

Curve 1 = 10 μ F, 40 V; curve 2 = 22 μ F, 25 V; curve 3 = 33 μ F, 16 V; curve 4 = 47 μ F, 10 V; curve 5 = 68 μ F, 6,3 V.

Fig. 9 Typical impedance as a function of temperature at 100 kHz.

Curve 1 = 4,7 μ F, 40 V; curve 2 = 10 μ F, 25 V; curve 3 = 15 μ F, 16 V; curve 4 = 33 μ F, 10 V; curve 5 = 47 μ F, 6,3 V.

Fig. 11 Typical impedance as a function of temperature at 100 kHz.

Curve 1 = $22 \mu F$, 40 V; curve 2 = $33 \mu F$, 25 V; curve 3 = $47 \mu F$, 16 V; curve 4 = $100 \mu F$, 10 V; curve 5 = $150 \mu F$, 6,3 V.

Fig. 12 Typical impedance as a function of temperature at 100 kHz.

```
Curve 1 = 33 \mu F, 40 V; curve 2 = 47 \mu F, 25 V; curve 3 = 68 \mu F, 16 V; curve 4 = 150 \mu F, 10 V; curve 5 = 220 \mu F, 6,3 V.
```


Fig. 13 Typical impedance as a function of temperature at 100 kHz.

```
Curve 1 = 47 \mu F, 40 V;
curve 2 = 68 \mu F, 25 V;
curve 3 = 100 \mu F, 16 V;
curve 4 = 220 \mu F, 10 V;
curve 5 = 330 \mu F, 6,3 V.
```


Fig. 14 Typical impedance as a function of temperature at 100 kHz.

```
Curve 1 = 2,2 \muF, 50 V;
curve 2 = 4,7 \muF, 50 V;
curve 3 = 6,8 \muF, 50 V;
curve 4 = 15 \muF, 50 V;
curve 5 = 22 \muF, 50 V;
curve 6 = 33 \muF, 50 V.
```


Fig. 15 Typical impedance as a function of frequency at T_{amb} = 25 °C.

Curve 1 = 2,2 μ F, 40 V; curve 2 = 4,7 μ F, 40 V; curve 3 = 22 μ F, 6,3 V; curve 6 = 330 μ F, 6,3 V.

Fig. 16 Typical impedance as a function of frequency at T_{amb} = 25 °C.

Curve 1 = 10 µF, 40 V; curve 4 = 68 µF, 6,3 V; curve 2 = 22 µF, 40 V; curve 5 = 150 µF, 6,3 V; curve 3 = 33 µF, 40 V; curve 6 = 220 µF, 6,3 V.

Fig. 17 Typical impedance as a function of frequency at T_{amb} = 25 °C.

Curve 1 = 2,2 μ F, 50 V; curve $2 = 4.7 \mu F, 50 V;$

curve $4 = 15 \mu F$, 50 V; curve $5 = 22 \mu F$, 50 V;

curve $3 = 6.8 \mu F, 50 V;$

curve 6 = 33 μ F, 50 V.

Equivalent series inductance (ESL)

case size 5 case size 6

Equivalent series inductance, measured by means of a four-terminal circuit (Thomson circuit), at 10 MHz; the capacitor leads bent to the pitch as indicated case size 1 case size 2A case size 4

pitch	max. ESL	typ. ESL
20,3 mm	30 nH	15 to 23 nH
25,4 mm	30 nH	16 to 24 nH
27,9 mm	35 nH	20 to 27 nH
35,6 mm	40 nH	26 to 33 nH
35,6 mm	55 nH	41 to 49 nH

Typical parameter change after endurance

test at Tamb = 125 °C

see Figs. 18, 19 and 20

OPERATIONAL DATA	
Category temperature range, 6,3 V to 40 V ranges	-55 to + 125 °C
Category temperature range, 50 V range for rated voltage for derated voltage (40 V)	–55 to + 85 °C –55 to + 125 °C
Usable temperature range	-80 to + 200 °C
Typical life time, 6,3 V to 40 V ranges at T_{amb} = 125 o C and U_{R} at T_{amb} = 150 o C and U_{R} at T_{amb} = 175 o C and U_{R}	> 20 000 h > 5 000 h > 2 000 h
Typical li † e time, 50 V range at T _{amb} = 85 °C and U _R at T _{amb} = 125 °C and derated voltage (40 V) Field failure rate	> 10 000 h > 10 000 h < 1 x 10 ⁻⁹ /h

Fig. 18 Change of capacitance after endurance test.

Fig. 19 Tan δ after endurance test. 7Z80996 100 init. 80 5000h 60 50 10000h d.c. leakage current (% of initial requirements) 40 30 20 10 8 6 5 4 3 2 0,01 0,05 10 20 30 40 50 60 70 80 98 99 99,5 99,95 99,99 cumulative frequency (%)

Fig. 20 D.C. leakage current after endurance test.

PACKING

The capacitors are supplied on bandoliers in boxes or on reels, (according to IEC 286-1). The number of capacitors per box or per reel is shown in Table 7.

Table 7

case size	number of capacitors				
	per box	per reel			
1	100	1000			
2A	100	1000			
4	100	500			
5	100	500			
6	100	400			

Fig. 21 Capacitors on bandoliers on reel.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under solid aluminium capacitors, with the addition of the following tests.

Severe rapid change of temperature test: 100 cycles of 15 min at -40 °C and + 125 °C.

Requirements: d.c. leakage current ≤ stated limit,

tan $\delta \leq 1.6$ x stated limit,

impedance ≤ 1,6 x stated limit,

 $\Delta C/C \leq 10\%$.

Solvent resistance tests:

Severity 1, according to MIL-STD-202, method 215, including brushing of all portions of the specimens.

Solvents:

- deionized water (50 ± 5 °C);
- 1.1.1. trichloro-ethane;
- mixture of 25 vol.% 2-propanol (isopropanol) and 75 vol.% mineral spirits.

Severity 2, according to IEC 68-2-45, and IEC 653, test XA with the following details and additions.

Conditions:

immersion time of samples 5 min., at ambient temperature, at boiling temperature, in vapour of boiling solvent, and ultrasonic (40 kHz).

Solvents:

- deionized water (50 ± 5 °C);
 calgonite solution (20 g/l. 70 ± 5 °C), a dishwasher detergent;
- mixture of 4,5% 2-butoxyethanol, 4,5% 2-amino-ethanol, and 91% water (70 ± 5 °C);
- 1.1.1. trichloro-ethane;
- mixtures of 1.1.2-trichloro- 1.2.2-trifluoro-ethane (fluorocarbon 113) and the following solvents in the respective mass percentage ratios of these solvents to fluorocarbon:
 - 2-propanol (isopropanol), 25%: 75% (Arklone K*); up to the ratio 35%: 65%;
 - ethanol, 4.5%: 95,5% (e.g. Arklone A*, Freon TE**);
 - methanol and nitromethane, 5,7%: 0,3%: 94% (Freon TMS**).

Requirement: visual appearance not affected.

Note: Tests are carried out using non-contaminated solvents.

Trade mark of I.C.I.

^{**} Trade mark of Dupont de Nemours.

Severe vibration tests (for epoxy-filled version only): according to IEC68-2-6 and MIL-STD-202, method 204, letters E and F, with the following details and additions.

a. Method of mounting: clamping both the body and the leads.

b. Severity:

1. frequency range

: 10 - 3000 Hz; : 20 - 25 °C;

temperature 2. frequency range

: 50 - 2000 Hz;

temperature

: 125 °C.

1 and 2. vibration amplitude: 50g or 3,5 mm, whichever is less.

c. Direction and duration motion:

Severity 1:

1 octave/min, 3 directions (mutually perpendicular), 20 sweeps per direction

(total 60 sweeps or 18 h);

Severity 2:

1 octave/min, 2 directions (longitudinal and transversal), 3 sweeps per direction

(total 6 sweeps or 1 h).

d. Functioning:

severity 1 severity 2 : rated voltage applied;

: no voltage applied.

: ≤ 1.4 x stated limit

e. Requirements:

 $\Delta C/C$

: ≤ 10% tan δ : ≤ 1,2 x stated limit

impedance

general

d.c. leakage current : ≤ stated limit : no intermittent contacts:

> no indication of breakdown; no open circuiting;

no evidence of mechanical damage.

f. Typical capability: up to 80g at 10 to 3000 Hz (also at 125 °C).

Severe shock tests (for epoxy-filled version only): according to IEC68-2-27 and MIL-STD-202, method 213, letter F, with the following details and additions.

a. Method of mounting: clamping both the body and the leads.

b. Pulse shape:

half-sine or sawtooth.

c. Severity:

1. 1500g, 0,5 ms (MIL-STD-202, method 213, letter F);

2. 3000g, 0,2 ms;

3. 10000g, 0,1 ms;

d. Direction and number of shocks:

severity 1 and 2:

3 successive shocks in each direction of 3 mutually perpendicular axes (total

18 shocks);

severity 3:

1 shock, any direction.

e. Functioning:

rated voltage applied.

f. Requirements:

see "Severe vibration tests" par. e.

q. Typical capability:

≥ 100000g; these shock tests can be preceded by severe vibration tests on the

same samples.

SOLID ALUMINIUM CAPACITORS

- Miniature type
- Single ended
- Resin dipped
- Long life
- · No derating at maximum temperature
- General and industrial applications

Approvals

± 20% (± 10% to special order)

6,3 to 40 V -55 to + 125 °C -55 to + 175 °C 5000 h 2000 h

2000 h IEC 384-4, long-life grade 55/125/56 FKD/KQ/SV 434

CECC 30 302-002 Liste LNZ 44-04 COS-B Gam-t-1

Selection chart for C_{nom}-U_R and relevant case sizes.

C _{nom} U _R (V)						
μF	6,3	10	16	25	35	40*
0,1						1
0,15						1
0,22						1
0,33						1
0,47						2
0,68				1		2
1				1	2	3
1,5				1		4
2,2			1	2		4
2,2 3,3 4,7			1	2		
4,7		1	2	3		
6,8		1	2	4		
10	1	2	3	4		
15	2	2	4			
22	2	3				
33	3	4				
47	4					
68	4					

 $^{^{*}}$ Up to 85 °C; from 85 to 125 °C this value is 25 V.

case size	maximum dimensions (mm)
1	12,5 x 8 x 3,5
2	12,5 x 8 x 4,5
3	12,5 x 8 x 5
4	12,5 x 8 x 6

APPLICATION

Especially for filtering, smoothing, coupling and decoupling purposes in general and industrial applications. These capacitors utilize advanced technology to achieve long life, high reliability, high stability and low temperature dependence.

The capacitors have a very low and stable leakage current, small dimensions and a fixed pitch of 5 mm.

The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

This capacitor is of a construction with a highly etched aluminium plate anode, aluminium oxide as a dielectric and a solid cathode. The capacitor is coated with an orange synthetic resin. The terminal leads are brought out on one side.

The capacitor is available in four styles, all with soldered-copper leads:

style 1: with short leads,

style 2: with long leads of which the anode lead has a flattened area at the end,

style 3: with long leads (without flattened area) on tape on reel, positive leading,

style 4: with long leads (without flattened area) on tape in ammunition pack.

MECHANICAL DATA

Dimensions in mm*

Fig. 1 Style 1; see Table 1a for dimensions T and W. Note: Capacitors with other lead lengths are available to special order.

* Measured according to IEC 717.

Fig. 2 Style 2; see Table 1a for dimensions T and W.

Table 1a

case size	T _{max}	W _{max}	mass g
1	3,5	8	0,30
2	4,5	8	0,35
3	5	8	0,50
4	6	8	0,60

Note: A kink in the cathode lead avoids solder wetting problems of the lacquer dipped leads. The lacquer is so applied that it cannot pass beyond the centre of the kink, thus ensuring a clean surface of the part of the lead in the printed-wiring board hole. (Also suitable for use in plated-through holes).

direction of tape transport (positive leading)

Table 1b

	symbol	value	tolerance	remarks
Body thickness	Т	3,5-4,5-5-6	max.	for case sizes 1, 2, 3 and 4 respectively
Body width	Wb	8	max.	
Component alignment	Δh	0	± 1	
Lead-wire diameter	d	0,6	+ 0,02/-0	
Lead straightness	Δs	0	± 0,2	
Length of snipped leads	L	11	max.	
Lead-to-lead distance	F	5	+ 0,4/-0,2	
Pitch of components	P	12,7	± 1	
Feed-hole pitch	PO	12,7	± 0,2	*
Feed-hole centre to lead	P ₁	3,85	± 0,5	
Feed-hole centre to component centre	P2	6,35	± 1	
Feed-hole diameter	$\overline{D_0}$	4	± 0,2	
Height of component from tape centre	H	18,5	± 0,5	
Component height	H ₁	32	max.	
Tape width	W	18	± 0,5	
Hold-down tape width	W _O	6	± 0,5	Feed hole shall be free
Hole position	W ₁	9	+ 0,5/-0,2	
Hold-down tape position	W ₂	0,5	+ 0,5/-0,2	
Total tape thickness	t	0,9	max.	
	1	4		ı

^{*} Cumulative pitch error: \pm 0,5 mm/4 pitches, and \pm 1 mm/20 pitches.

Marking

The capacitors are marked with: nominal capacitance, rated voltage, "+" signs to identify the anode terminal, tolerance code ($M = \pm 20\%$, $K = \pm 10\%$), date code (year and month) and name of manufacturer.

Mounting

The diameter of the mounting holes in the printed-wiring board is 0.8 ± 0.1 mm, except that of the hole for the anode lead of style 2 capacitors: 1.3-0.2 mm.

When bending, cutting or straightening the leads, ensure that the capacitor body is relieved of stress.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 93 to 106 kPa and a relative humidity of 45 to 75%. See also the corresponding paragraphs.

Table 2

) <u> </u>		may rms	may de	loakago	may	max.	max.	case	catalogue number 2222 122 followed by			
′ ∪ _R *	nom. cap.	max. r.m.s. ripple current at T _{amb} = 125 °C, no d.c. voltage applied	max. d.c. leakage current (μΑ)** at U _R after		current $(\mu A)^{**}$ tan δ		impedance at 100 kHz**	size	Latalogu	e number	لے	o d
V	μF	mA	15 s	1 min		Ω	Ω		style 1	style 2	on reel style 3	in ammopack style 4
6,3	10	9	1,6	0,6	0,15	30	5	1	53109	73109	23109	33109
, ·	15	13	2,4	0,9	0,15	20	3	2	53159	73159	23159	33159
1	22	20	3,5	1,4	0,15	14	1,3	2	53229	73229	23229	33229
	33	30	5,2	2,1	0,15	9	0,9	3	53339	73339	23339	33339
	47	42	7,4	3,0	0,15	6,4	0,7	4	53479	73479	23479	33479
	68	61	10,7	4,3	0,15	4,4	0,5	4	53689	73689	23689	33689
10	4,7	7	1,2	0,5	0,15	64	7	1	54478	74478	24478	34478
	6,8	10	1,7	0,7	0,15	44	5	1	54688	74688	24688	34688
	10	14	2,5	1,0	0,15	30	1,5	2	54109	74109	24109	34109
	15	21	3,8	1,5	0,15	20	1	2	54159	74159	24159	34159
	22	31	5,5	2,2	0,15	14	0,7	3	54229	74229	24229	34229
	33	47	8,3	3,3	0,15	9	0,5	4	54339	74339	24339	34339
16	2,2	5	0,9	0,4	0,10	91	10	1	55228	75228	25228	35228
	3,3	8	1,3	0,5	0,10	61	7	1	55338	75338	25338	35338
	4,7	11	1,9	0,8	0,10	43	2	2	55478	75478	25478	35478
	6,8	16	2,7	1,1	0,10	29,5	1,5	2	55688	75688	25688	35688
	10	23	4,0	1,6	0,10	20	1	3	55109	75109	25109	35109
	15	34	6,0	2,4	0,10	13,5	0,7	4	55159	75159	25159	35159

^{*} Up to T_{amb} = 125 °C. ** Versions with lower values of max. d.c. leakage current or max. impedance are available to special order.

U_{R}^*	nom.	max. r.m.s. ripple current at T _{amb} = 125 °C, no d.c. voltage applied	max. d.c. leakage current (μΑ)** at U _R after		1)	max.	max. impedance at 100 kHz**	case size	catalogue number 2222 122 followed by			
-	cap.					ESR						
V	μF	mA	15 s	1 min		Ω	Ω		style 1	style 2	on reel style 3	in ammopack style 4
25	0,68	2	0,4	0,2	0,10	295	30	1	56687	76687	26687	36687
	1,0	4	0,6	0,3	0,10	200	20	1	56108	76108	26108	36108
	1,5	5	0,9	0,4	0,10	135	15	1	56158	76158	26158	36158
	2,2	8	1,4	0,6	0,10	91	10	2	56228	76228	26228	36228
	3,3	12	2,1	0,8	0,10	61	7	2	56338	76338	26338	36338
	4,7	17	2,9	1,2	0,10	43	5	3	56478	76478	26478	36478
	6,8	24	4,2	1,7	0,10	29,5	3	4	56688	76688	26688	36688
	10	35	6,2	2,5	0,15	20	2	4	56109	76109	26109	36109
35	1,0	3	0,9	0,4	0,10	200	15	2	50108	70108	20108	30108
40▲	0,1	0,4	0,1	0,04	0,10	1990	70	1	57107	77107	27107	37107
	0,15	0,5	0,15	0,06	0,10	1330	50	1	57157	77157	27157	37157
	0,22	0,8	0,22	0,88	0,10	910	30	1	57227	77227	27227	37227
	0,33	1	0,33	0,13	0,10	610	30	1	57337	77337	27337	37337
	0,47	2	0,5	0,2	0,10	430	20	2	57477	77477	27477	37477
	0,68	2	0,7	0,3	0,10	295	15	2	57687	77687	27687	37687
	1,0	4	1,0	0,4	0,10	200	10	3	57108	77108	27108	37108
	1,5	5	1,5	0,6	0,10	135	7	4	57158	77158	27158	37158
	2,2	8	2,2	0,9	0,10	91	5	4	57228	77228	27228	37228

^{*} Up to T_{amb} = 125 °C. ** Versions with lower values of max. d.c. leakage current or max. impedance are available to special order.

[▲] Up to T_{amb} = 85 °C; at T_{amb} from 85 °C to 125 °C this value is 25 V.

Capacitance

Nominal capacitance values at 100 Hz and Tamb = 25 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2

 U_{R}

± 20% (± 10% to special order)

Fig. 4 Typical multiplier of capacitance as a function of ambient temperature. C₀ = capacitance at 25 °C, 100 Hz.

Voltage

Rated voltage

6,3 V to 25 V ranges = max. permissible voltage at

T_{amb} ≤ 125 °C

= max. permissible voltage at 40 V range T_{amb} ≤ 85 °C U_{R}

Derated voltage

6,3 V to 25 V ranges = max. permissible voltage at

Tamb from 125 °C to 175 °C 0,63 x U_R

40 V range = max. permissible voltage at

> Tamb from 85 °C to 175 °C 0,63 x U_R

Surge voltage

= max, permissible voltage for short

periods (see also Tests and

requirements)

Reverse voltage = max, d.c. voltage applied in the reverse polarity at the maximum category temperature for short periods (see also Tests and

requirements)

Ripple voltage

Max. permissible a.c. voltage providing the following four conditions are met:

- a) Max. a.c. voltage, with negative d.c. voltage applied
- b) Max. peak a.c. voltage, without d.c. voltage applied

at
$$f \le 0,1$$
 Hz
at 0,1 Hz $< f \le 1$ Hz
at 1 Hz $< f \le 10$ Hz
at 10 Hz $< f \le 50$ Hz
at $f > 50$ Hz

- c) Momentary value of applied voltage, with positive d.c. voltage applied
- d) Ripple voltage limits are not applicable if the maximum ripple current is exceeded. In that case the ripple current is decisive. Whichever is in practice decisive, depends on the actual impedance of the capacitor. In the survey at the end of this data sheet the ripple current and ripple voltage limits can be found for each capacitor.

Ripple current

Maximum permissible r.m.s, ripple current at 100 Hz and T_{amb} = 125 °C

Maximum permissible r.m.s, ripple current at other frequencies and temperatures

Maximum permissible r.m.s. ripple current at 100 Hz and Tamb = 125 °C for capacitors with lower ESR value than the maximum ESR

1,15 x UR

 $0.30 \times U_{R}$

2 V

T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 125 °C
0,30 x U _R	0,15 x U _R
0,45 x U _R	0,22 x U _R
0,60 x U _R	0,30 x U _R
0,65 x U _R	0,32 x U _R
0,80 x U _R	0,40 x U _R

between U_R (in the positive half wave) and the limits mentioned under b) (in the negative half wave)

see Table 2

see survey at the end of this data sheet

/ESR_{max}/ESR_{actual} x value stated in Table 2

Calculation of ripple currents

The maximum permissible ripple current (Ir max) is a function of temperature and frequency:

 $\begin{array}{lll} I_{r\;max} &= I_{r0} \sqrt{kr}, \\ \text{where} & I_{r0} &= \text{max. ripple current at 100 Hz and 125 °C (see Table 2);} \\ &\sqrt{k} &= \text{temperature multiplier (neglecting the frequency dependence)} = \\ &\sqrt{r} &= frequency \, \text{multiplier (neglecting the temperature dependence)} = \\ &\sqrt{ESR_{100}/ESR_{max}}; \\ \text{while} & P_{max} &= \text{max. permissible power dissipation, temperature dependent;} \end{array}$

P₁₂₅ = max. permissible power dissipation at 125 °C = I^2_{r0} ESR₁₀₀;

ESR_{max} = max. equivalent series resistance, frequency dependent;

ESR₁₀₀ = max. equivalent series resistance at 100 Hz.

The formula is derived for any temperature and frequency as follows:

 $I^{2}_{r \text{ max}}$ = P_{max}/ESR_{max} = $kr P_{125}/ESR_{100}$ = $kr I^{2}_{r0} ESR_{100}/ESR_{100}$ Thus $I_{r max}$ = $I_{r0}\sqrt{kr}$.

The values of the temperature multiplier \sqrt{k} and of P_{125} have been calculated allowing a capacitor temperature of 138 °C and assuming the values of ESR_{max} at 138 °C to be 0,8 x or 1,05 x the ESR_{max} at 25 °C at all frequencies for case sizes 1 to 3 or case size 4 respectively.

The values of the frequency multiplier \sqrt{r} have been measured at 25 °C assuming it to be the same at all temperatures.

The power dissipation (P_{max}) has been calculated assuming it to be governed by the simplified relation:

P_{max} = $\beta \times S \times \Delta T$,
where β = heat transfer coefficient, taken as 18 W/m² K (capacitor mounted on a thermally well-conducting printed-circuit board, in free flowing air, the board being in vertical position);

S = capacitor outer surface; ΔT = temperature difference between capacitor surface and the ambient atmosphere, taken as 13 °C at T_{amb} = 125 °C.

For case sizes 1 to 3 P_{125} = 45 mW, for case size 4 P_{125} = 65 mW.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit. (See also Tests and Requirements).

D.C. leakage current

Maximum d.c. leakage current 15 s after application of U_R , at T_{amb} = 25 $^{\circ}C$

Maximum d.c. leakage current 1 min after application of U_{R} , at $T_{amb} = 25$ °C

Typical d.c. leakage current 15 s or 1 min after application of U_R, at T_{amb} = 25 °C 6,3 V to 16 V ranges 25 V to 40 V ranges

Typical d.c. leakage current during continuous operation at UR

at $T_{amb} = 25$ °C at $T_{amb} = 85$ °C at $T_{amb} = 125$ °C see Table 2 (0,025 CU or 0,1 μ A whichever is greater)

see Table 2 (0,01 CU or 0,04 μ A whichever is greater)

approx. 0,2 x value stated in Table 2 approx. 0,1 x value stated in Table 2

approx. 0,02 x 15 s-value stated in Table 2 approx. 0,1 x 15 s-value stated in Table 2 approx. 0,3 x 15 s-value stated in Table 2

Fig. 5 Typical multiplier I/I₀₁ as a function of ambient temperature; I₀₁ = d.c. leakage current during continuous operation at U_R , T_{amb} = 25 $^{\circ}$ C.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T $_{amb}$ = 25 $^o C$, measured by means of a four-terminal circuit (Thomson circuit)

Typical tan δ at 100 Hz and T_{amb} = 25 °C

see Table 2 0,05

Fig. 6 Typical multiplier of dissipation factor as a function of temperature; tan δ_0 = dissipation factor at T_{amb} = 25 °C, 100 Hz.

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

Maximum ESR at 100 Hz and T $_{amb}$ = 25 °C (calculated from maximum tan δ and 0,8 x nominal capacitance) Maximum ESR at 100 kHz and T $_{amb}$ = 25 °C

see Table 2
equal to values of max. impedance at 100 kHz, see Table 2

Fig. 7 Typical ESR as a function of ambient temperature at 100 Hz.

Curve 1 = 0,1 μ F, 40 V; curve 2 = 1,5 μ F, 40 V; curve 3 = 3,3 μ F, 25 V; curve 6 = 68 μ F, 6,3 V.

Fig. 8 Typical ESR as a function of frequency at T_{amb} = 25 °C; case size 1. Curve 1 = 0,33 μ F, 40 V; curve 4 = 4,7 μ F, 10 V; curve 2 = 1 μ F, 25 V; curve 5 = 10 μ F, 6,3 V. curve 3 = 3,3 μ F, 16 V;

Fig. 9 Typical ESR as a function of frequency at T_{amb} = 25 °C; case size 2. Curve 1 = 0,47 μ F, 40 V; curve 4 = 10 μ F, 10 V; curve 2 = 2,2 μ F, 25 V; curve 5 = 22 μ F, 6,3 V. curve 3 = 4,7 μ F, 16 V;

Fig. 10 Typical ESR as a function of frequency at $T_{amb} = 25$ °C; case size 3. Curve 1 = 1 μ F, 40 V; curve 2 = 4,7 μ F, 25 V; curve 4 = 33 μ F, 6,3 V.

Fig. 11 Typical ESR as a function of frequency at T_{amb} = 25 °C; case size 4. Curve 1 = 1,5 μ F, 40 V; curve 2 = 6,8 μ F, 25 V; curve 5 = 68 μ F, 6,3 V. curve 3 = 15 μ F, 16 V;

Impedance

Maximum impedance at 100 kHz and $T_{amb} = 25$ °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 12 Typical multiplier of impedance Z/Z_0 as a function of frequency at different temperatures; Z_0 = impedance initial value at T_{amb} = 25 °C.

Fig. 13 Typical impedance as a function of frequency at T_{amb} = 25 °C; case size 1. curve 3 = $4,7 \mu F, 10 V;$

Curve 1 = 0,15
$$\mu$$
F, 40 V; curve 3 curve 2 = 0,68 μ F, 25 V; curve 4

curve 4 = 10
$$\mu$$
F, 6,3 V.

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 25 °C; case size 2.

Curve 1 = 0,47 μ F, 40 V;

curve 3 = $10 \mu F$, 10 V;

curve $2 = 2,2 \mu F, 25 V;$

curve $4 = 22 \mu F$, 6,3 V.

Fig. 15 Typical impedance as a function of frequency at T_{amb} = 25 °C; case size 3.

Curve 1 = 1 μ F, 40 V;

curve 3 = $10 \mu F$, 16 V;

curve $2 = 4.7 \mu F$, 25 V;

curve $4 = 33 \mu F$, 6,3 V.

Fig. 16 Typical impedance as a function of frequency at T_{amb} = 25 °C; case size 4. Curve 1 = 6,8 μ F, 25 V; curve 3 = 68 μ F, 6,3 V. curve 2 = 15 μ F, 16 V;

Equivalent series inductance (ESL)

Equivalent series inductance, measured by means of a four-terminal circuit (Thomson circuit), at 10 MHz; capacitor leads bent to a pitch of 5,1 mm case sizes 1 and 2 case sizes 3 and 4

max. 20 nH; typ. 9 to 14 nH max. 20 nH; typ. 11 to 16 nH

OPERATIONAL DATA

Category temperature range

for rated voltage, 6,3 V to 25 V range	−55 to + 125 °C
for rated voltage, 40 V range	−55 to + 85 °C
for derated voltage, 40 V range	-55 to + 125 °C

Usable temperature range —55 to + 175 °C

Typical life time

at T _{amb} = 85 °C	> 20 000 h
at T _{amb} = 125 °C	> 10 000 h
at T _{amb} = 175 °C	> 2 000 h
Field failure rate	$< 1 \times 10^{-8}/h$

Typical parameter change after endurance test at T_{amb} = 125 $^{\rm o}{\rm C}$

see Figs. 17, 18 and 19

Fig. 17 Change of capacitance after endurance test.

Fig. 18 Tan δ after endurance test.

Fig. 19 D.C. leakage current after endurance test.

PACKING

Capacitors of styles 1 and 2 are supplied in boxes, those of styles 3 and 4 on tape on reel and in ammunition packing resp. The number of capacitors per box, per reel or per ammunition packing is:

style 1, all case sizes : 1000 capacitors per box; 200 per plastic bag, 5 bags per box; style 2, case sizes 1, 2 and 3: 1000 capacitors per box, 200 per plastic bag, 5 bags per box; style 2, case size 4 : 800 capacitors per box, 200 per plastic bag, 4 bags per box;

style 3, case sizes 1 and 2 : 2000 capacitors per reel; style 3, case sizes 3 and 4 : 1000 capacitors per reel;

style 4, case sizes 1 and 2 : 2000 capacitors per ammunition packing; style 4, case sizes 3 and 4 : 1000 capacitors per ammunition packing.

Fig. 20 Style 3 capacitors on tape on reel.

1 = capacitor 4 = flange

2 = tape 5 = cylinder

3 = paper

Fig. 21 Style 4 capacitors on tape in ammunition packing.

→ TESTS AND REQUIREMENTS

See Introduction, section 9, under solid aluminium capacitors, with the addition of the following tests.

Solvent resistance tests:

Severity 1, according to MIL-STD-202, method 215, including brushing of all portions of the specimens,

Solvents:

- deionized water (50 ± 5 °C);
- 1.1.1, trichloro-ethane:
- mixture of 25 vol. % 2-propanol (isopropanol) and 75 vol. % mineral spirits.
- mixture of 50,5 mass % 1.1.2-trichloro-1.2.2-trifluoroethane (fluorocarbon 113) and 49,5 mass % dichloromethane (methylene chloride, Freon TMC**).

Severity 2, according to IEC 68-2-45, and IEC 653, test XA with the following details and additions,

Conditions:

immersion time of samples 5 min., at ambient temperature, at boiling temperature, in vapour of boiling solvent, and ultrasonic (40 kHz).

Solvents:

- deionized water (50 ± 5 °C);
 calgonite solution (20 g/l, 70 ± 5 °C);
- mixture of 4,5% 2-butoxyethanol, 4,5% 2-amino-ethanol, and 91% water $(70 \pm 5 \, {}^{\circ}\text{C})$;
- 1.1.1, trichloro-ethane:
- mixtures of 1.1.2-trichloro-1.2.2.-trifluoro-ethane (fluorocarbon 113) and the following solvents in the respective mass percentage ratios of these solvents to fluorocarbon;
 - 2-propanol (isopropanol), 25%: 75% (Arklone K*); up to the ratio 35%: 65%;
 - dichloromethane (methylene chloride), 49,5%: 50,5% (Freon TMC**);
 - ethanol, 4,5%: 95,5% (e.g. Arklone A*, Freon TE**);
 - methanol and nitromethane, (5,7%: 0,3%: 94% (Freon TMS**).

Requirement: visual appearance not affected.

Note: Tests are carried out using non-contaminated solvents.

Extended vibration test, according to IEC 68-2-6, test Fc: 10 to 2000 Hz, 1,5 mm or 20 g (whichever is less), 1 octave/min, 3 directions (mutually perpendicular), 1 sweep per direction, no voltage applied.

Requirements: no intermittent contacts; no breakdown; no open circuiting; no mechanical damage;

 Δ C/C \leq 5%;

tan δ and h.f. impedance \leq 1,2 x stated limit;

d.c. leakage current ≤ 1,5 x stated limit;

typical capability: up to 50 g (clamping both the body and the leads).

Shock test, according to IEC 68-2-27, test Ea: half sine or sawtooth pulse shape, 50 g, 11 ms, 3 successive shocks in each direction of 3 mutually perpendicular axes, no voltage applied.

Requirements: no intermittent contacts; no breakdown; no open circuiting; no mechanical damage; $\Delta C/C \le 5\%$:

tan δ and h.f. impedance \leq 1,2 x stated limit;

d.c. leakage current ≤ 1,5 x stated limit;

typical capability: up to 100 g, also in combination with extended vibration test.

Passive flammability test, according to IEC 695-2-2, capacitor mounted to a vertical printed-wiring board, one flame on capacitor body, $T_{amb} = 20$ to 25 °C, test duration = 20 s.

Requirements: after removing the test flame from the capacitor, the capacitor must not continue to burn for more than 15 s; no burning particles must drop from the sample.

- Trade mark of I.C.I.
- ** Trade mark of Dupont de Nemours.

Survey of maximum permissible ripple voltage and ripple current values at various ambient temperatures and frequencies

Notes

- Zero d.c. voltage is assumed; at non-zero d.c. voltage the values in the tables can be adapted according to paragraphs "Ripple voltage" and "Ripple current".
- If the limiting current value given in the tables is applied, the voltage limit mentioned in "Ripple voltage, b", is not exceeded; if the limiting voltage value given in the tables is applied, the current limit calculated as in "Calculation of ripple currents" is not exceeded.

										frequ	ency	(Hz)					_		_
			1	5	0	10	00	30	00	60	0	15	00	10	4	10) ⁵	10) ⁶
C μF	T _{amb} °C	I _{ac} mA	V _P V	l _{ac} mA	V _P V	I _{ac} mA	V _P V	l _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _F
UR	= 6,3 V																		
10	25	0,1	3	9	5	18	5	54	5	108	5	166	3	203	0,6	229	0,1	244	0
	45	0,1	3.	,9	5	18	5	54	5	108	5	154	3	187	0,5	211	0,1	226	0
	65	0,1	3	9	5	18	5	54	5	108	5	141	2,5	172	0,5	194	0,1	207	0
	85	0,1	3	9	5	18	5	54	5	108	5	128	2,5	156	0,4	176	0,1	188	0
	125	0	1,5	5	2,5	9	2,5	27	2,5	54	2,5	64	1	78	0,2	88	0	94	0
15	25	0,2	3	13	5	27	5	81	5	161	5	208	2,5	254	0,5	286	0,1	306	0
	45	0,2	3	13	5	27	5	81	5	161	5	192	2,5	234	0,4	264	0,1	282	0
	65	0,2	3	13	5	27	5	81	5	160	5	176	2	215	0,4	242	0	259	0
	85	0,2	3	13	5	27	5	81	5	145	4,5	160	2	195	0,4	220	0	235	0
	125	0,1	1,5	7	2,5	13	2,5	40	2,5	73	2,5	80	1	98	0,2	110	0	118	0
22	25	0,2	3	20	5	39	5	118	5	226	5	250	2	304	0,4	343	0	367	0
	45	0,2	3	20	5	39	5	118	5	209	4,5	230	2	281	0,4	317	0	338	0
	65	0,2	3	20	5	39	5	118	5	191	4	211	2	257	0,3	290	0	310	0
	85	0,2	3	20	5	39	5	118	5	174	3,5	192	1,5	234	0,3	264	0	282	0
	125	0,1	1,5	10	2,5	20	2,5	59	2,5	87	2	96	8,0	117	0,2	132	0	141	0
33	25	0,3	3	30	5	59	5	177	5	283	4	312	2	380	0,3	429	0	458	0
	45	0,3	3	30	5	59	5	177	5	261	3,5	288	1,5	351	0,3	396	0	423	0
	65	0,3	3	30	5	59	5	177	5	239	3.5	264	1,5	322	0,3	363	0	388	0
	85	0,3	3	30	5	59	5	177	5	218	3	240	1,5	293	0,2	330	0	353	0
	125	0,2	1,5	15	2,5	30	2,5	89	2,5	109	1,5	120	0,7	146	0,1	65	0	176	0
47	25	0,5	3	42	5	84	5	253	5	358	3,5	395	1,5	482	0,3	543	0	581	0
	45	0,5	3	42	5	84	5	253	5	331	3,5	365	1,5	445	0,3	502	0	536	0
	65	0,5	3	42	5	84	5	253	5	303	3	334	1,5	408	0,2	460	0	491	0
	85	0,5	3	42	5	84	5	247	5	276	2,5	304	1	371	0,2	418	0	447	0
	125	0,2	1,5	21	2,5	42	2,5	124	2,5	138	1,5	152	0,6	185	0,1	209	0	223	0
68	25	0,7	3	61	5	122	5	365	5	434	3	478	1,5	583	0,2	658	0	703	0
	45	0,7	3	61	5	122	5	359	5	400	3	442	1	538	0,2	607	0	649	0
	65	0,7	3	61	5	122	5	329	4,5	367	2,5	405	1	493	0,2	557	0	595	0
	85	0,7	3	61	5	122	5	266	4	334	2,5	368	1	449	0,2	506	0	541	0
	125	0,3	1,5	31	2,5	61	2,5	150	2	167	1	814	0.5	224	0,1	253	0	270	0

										freque					4		5		6
		1		5	0	11	00	30	0	60	0	15	00	10)*	10		10	
C μF	T _{amb} °C	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	l _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V
u _R =	10 V																		
4,7	25	0,1	4,5	7	8	13	8	40	8	80	8	125	5	152	0,9	172	0,1	183	0
	45	0,1	4,5	7	8	13	8	40	8	80	8	115	4,5	140	8,0	158	0,1	169	0
	65	0,1	4,5	7	8	13	8	40	8	80	8	106	4	129	0,8	145	0,1	155	0
	85	0,1	4,5	. 7	8	13	8	40	8	80	8	96	4	117	0,7	132	0,1	141	0
	125	0	2	3	4	7	4	20	4	40	4	48	2	59	0,4	66	0	71	0
6,8	25	0,1	4,5	10	8	19	8	58	8	116	8	146	4	178	0,7	200	0,1	214	0
	45	0,1	4,5	10	8	19	8	58	8	116	8	134	3,5	164	0,7	185	0,1	197	0
	65	0,1	4,5	10	8	19	8	58	8	112	7,5	123	3,5	150	0,6	169	0,1	181	0
	85	0,1	4,5	10	8	19	8	58	8	102	7	112	3	137	0,6	154	0,1	165	0
	125	0,1	2	5	4	10	4	29	4	51	3,5	56	1,5	68	0,3	77	0	82	0
10	25	0,2	4,5	14	8	28	8	85	8	151	7	166	3	203	0,6	229	0,1	244	0
	45	0,2	4,5	14	8	28	8	85	8	139	6,5	154	3	187	0,5	211	0,1	226	0
	65	0,2	4,5	14	8	28	8	85	8	128	6	141	2,5	172	0,5	194	0,1	207	0
	85	0,2	4,5	14	8	28	8	85	8	116	5,5	128	2,5	156	0,4	176	0,1	188	0
	125	0,1	2	7	4	14	4	43	4	58	2,5	64	1	78	0,2	88	0	94	0
15	25	0,2	4,5	21	8	43	8	128	8	189	6	208	2,5	254	0,5	286	0,1	306	0
	45	0,2	4,5	21	8	43	8	128	8	174	5,5	192	2,5	234	0,4	264	0,1	282	0
	65	0,2	4,5	21	8	43	8	128	8	160	5	176	2	215	0,4	242	0	259	0
	85	0,2	4,5	21	8	43	8	128	8	145	4,5	160	2	195	0,4	220	0	235	0
	125	0,1	2	11	4	21	4	64	4	73	2,5	80	1	98	0,2	110	0	118	0
22	25	0,4	4,5	31	8	63	8	188	8	116	5	250	2	304	0,4	343	0	367	0
	45	0,4	4,5	31	8	63	8	187	8	209	4,5	230	2	281	0,4	317	0	338	0
	65	0,4	4,5	31	8	63	8	172	7,5	191	4	211	2	257	0,3	290	0	310	0
	85	0,4	4,5	31	8	63	8	156	6,5	174	3,5	192	1,5	234	0,3	264	0	282	0
	125	0,2	2	16	4	31	4	78	3,5	87	2	96	0,8	117	0,2	132	0	141	0
33	25	0,5	4,5	47	8	94	8	270	7,5	302	4,5	333	2	406	0,3	458	0	489	0
	45	0,5	4,5	47	8	94	8	250	7	278	4	307	1,5	374	0,3	422	0	451	0
	65	0,5	4,5	47	8	94	8	229	6,5	255	3,5	282	1,5	343	0,3	387	0	414	0
	85	0,5	4,5	47	8	94	8	208	6	232	3,5	256	1,5	312	0,3	352	0	376	0
	125	0,3	2	24	4	47	4	104	3	116	1,5	128	0,7	156	0,1	176	0	188	0

										equen	cy (Hz						_		
			1	5	0	10	00	30	0	60	0	15	00	10) ⁴ 	10) ⁵	10)°
C μF	T _{amb} °C	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	l _{ac} mA	V _P V	I _{ac} mA	V _P V
U _R =	16 V																		
2,2	25	0,1	7	5	13	10	13	30	13	60	13	104	9	127	1,5	143	0,2	153	0
	45	0,1	7	5	13	10	13	30	13	60	13	96	8	117	1,5	132	0,2	141	0
	65	0,1	7	5	13	10	13	30	13	60	13	88	7,5	107	1,5	121	0,2	129	0
	85	0,1	7	5	13	10	13	30	13	60	13	80	7	98	1	110	0,1	118	0
	125	0	3,5	3	6,5	5	6,5	15	6,5	30	6,5	40	3,5	49	0,6	55	0,1	59	0
3,3	25	0,1	7	8	13	15	13	45	13	90	13	125	7	152	1,5	172	0,1	183	0
	45	0,1	7	8	13	15	13	45	13	90	13	115	6,5	140	1	158	0,1	169	0
	65	0,1	7	8	13	15	13	45	13	90	13	106	6	129	1	145	0,1	155	0
	85	0,1	7	8	13	15	13	45	13	87	12,5	96	5,5	117	1	132	0,1	141	0
	125	0	3,5	4	6,5	8	6,5	23	6,5	44	6	48	2,5	59	0,5	66	0,1	71	0
4,7	25	0,1	7	11	13	21	13	64	13	128	13	146	6	178	1	200	0,1	214	0
	45	0,1	7	11	13	21	13	64	13	122	12	134	5,5	164	1	185	0,1	197	0
	65	0,1	7	11	13	21	13	64	13	112	11	123	5	150	0,9	169	0,1	181	0
	85	0,1	7	11	13	21	13	64	13	102	10	112	4,5	137	0,8	154	0,1	165	0
	125	0,1	3,5	5	6,5	11	6,5	32	6,5	51	5	56	2	68	0,4	77	0	82	0
6,8	25	0.2	7	16	13	31	13	93	13	151	10,5	166	4,5	203	0,8	229	0,1	244	0
-,-	45	0,2	7	16	13	31	13	93	13	139	9,5	154	4	187	0.8	211	0,1	226	0
	65	0,2	7	16	13	31	13	93	13	128	9	141	4	172	0.7	194	0,1	207	0
	85	0,2	7	16	13	31	13	93	13	116	8	128	3,5	156	0,6	176	0.1	188	0
	125	0,1	3,5	8	6,5	16	6,5	46	6,5	58	4	64	2	78	0,3	88	0	94	0
10	25	0,3	7	23	13	46	13	137	13	189	9	208	4	254	0,7	286	0,1	306	0
	45	0,3	7	23	13	46	13	137	13	174	8	192	3,5	234	0,7	264	0,1	282	0
	65	0,3	7	23	13	46	13	137	13	160	7,5	176	3,5	215	0,6	242	0,1	259	0
	85	0.3	7	23	13	46	13	130	12	145	7	160	3	195	0,5	220	0,1	235	0
	125	0,1	3,5	11	6,5	23	6,5	65	6	73	3,5	80	1,5	98	0,3	110	o o	118	0
15	25	0,4	7	34	13	68	13	205	13	245	7,5	270	3,5	330	0.6	372	0.1	397	0
	45	0,4	7	34	13	68	13	203	12,5	226	7	250	3	304	0,6	343	0,1	367	0
	65	0,4	7	34	13	68	13	186	11,5	207	6.5	229	3	279	0,5	315	0.1	336	0
	85	0,4	7	34	13	68	13	169	10,5	189	6	208	2,5	254	0,5	286	0,1	306	0
	125	0,2	3,5	17	6,5	34	6,5	85	5,5	94	3	104	1,5	127	0.2	143	0	153	

											ncy (H						_		•
		1		5	0	10	00	30		60		15		10		10		10	
C μF	T _{amb} °C	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P V	I _{ac} mA	V _P	I _{ac} mA	V _P V	I _{ac} mA	V _F
U _R =	= 25 V																		
0,68	25	0	11	2	20	5	20	15	20	29	20	58	16	71	3	80	0,3	86	0
	45	0	11	2	20	5	20	15	20	29	20	54	15	66	2,5	74	0,3	79	0
	65	0	11	2	20	5	20	15	20	29	20	49	13,5	60	2,5	68	0,3	72	0
	85 125	0	11 5,5	2 1	20	5 2	20	15 7	20	29	20	45	12,5	55 27	2,5	62 31	0,3	66 33	0
	125	l			10		10		10	15	10	22	6		1		0,1		
1	25	0	11	4	20	7	20	21	20	43	20	67	12,5	81	2,5	92	0,3	98	0
	45 65	0	11	4	20	7	20	21	20	43	20	61	11,5	75 60	2	85	0,2	90	0
	65 85	0	11 11	4	20 20	7 7	20 20	21 21	20 20	43 43	20 20	56 51	10,5 9,5	69 62	2	77 70	0,2	83 75	0
	125	0	5,5	2	10	4	10	11	10	21	10	26	9,5 5	31	0.9	35	0,2 0,1	38	0
															•				
1,5	25 45	0,1	11 11	5 5	20 20	11 11	20 20	32 32	20 20	64 64	20 20	83	10,5	101 94	2	114	0,2	122	0
	45 65	0,1	11	5	20	11	20	32	20	64	20	77 70	9,5 9	86	1.5	106 97	0,2 0.2	113 103	0
	85	0,1	11	5	20	11	20	32	20	58	18	64	8	78	1,5	88	0,2	94	0
	125	0	5,5	3	10	5	10	16	10	29	9	32	4	39	0,7	44	0,1	47	0
2,2	25	0,1	11	8	20	16	20	47	20	94	20	104	9	127	1,5	143	0,2	153	0
	45	0,1	11	8	20	16	20	47	20	87	18,5	96	8	117	1,5	132	0,2	141	0
	65	0,1	11	8	20	16	20	47	20	80	17	88	7,5	107	1,5	121	0,2	129	0
	85	0,1	11	8	20	16	20	47	20	73	15,5	80	7	98	1	110	0,1	118	0
	125	0	5,5	4	10	8	10	24	10	36	7,5	40	3,5	49	0,6	55	0,1	59	0
3,3	25	0,1	11	12	20	24	20	70	20	113	16	125	7	152	1,5	172	0,1	183	0
	45	0,1	11	12	20	24	20	70	20	104	15	115	6,5	140	1	158	0,1	169	0
	65	0,1	11	12	20	24	20	70	20	96	13,5	106	6	129	1	145	0,1	155	0
	85	0,1	11	12	20	24	20	70	20	87	12,5	96	5,5	117	1	132	0,1	141	0
	125	0,1	5,5	6	10	12	10	35	10	44	6	48	2,5	59	0,5	66	0,1	71	0
4,7	25	0,2	11	17	20	33	20	100	20	132	13	146	6	178	1	200	0,1	214	0
	45	0,2	11	17	20	33	20	100	20	122	12	134	5,5	164	1	185	0,1	197	0
	65 85	0,2	11	17	20	33	20	100	20	112	11	123	5	150	0,9	169	0,1	181	0
	125	0,2	11 5.5	17 8	20 10	33 17	20 10	91 46	18 9	102 51	10 5	112 56	4,5	137	0,8	154	0,1	165	0
0.0		·							_				2	68	0,4	77	0	82	0
6,8	25	0,3	11	24	20	48	20	145	20	170	11,5	187	5	228	0,9	257	0,1	275	0
	45 65	0,3	11	24	20	48	20	140	19,5	157	11	173	5	211	0,9	238	0,1	254	0
	85	0,3	11 11	24 24	20 20	48 48	20 20	129 117	17,5	144	10	158	4,5 4	193	0,8	218	0,1	233	0
	125	0,3	5.5	12	10	48 24	10	59	16 8	131 65	9 4.5	144 72	4 2	176 88	0,7 0.4	198 99	0,1 0	212 106	0
	120	0,1	5,5	14	10		10			00	4,0	12			0,4	99	U	100	

			1	10)	10	0	30) 00		ncy (H 00	z) 15(00	10	4	10	5	10	6
C μF	T _{amb} °C	I _{ac} mA	V _P	I _{ac} mA	V _P	I _{ac} mA	V _P	I _{ac} mA	V _P	I _{ac} mA	V _P	I _{ac} mA	V _P V	I _{ac}	V _P	I _{ac} mA	V _P	l _{ac} mA	V _F
U _R =	40 V														-	-	***************************************		
0,1	25	0	18	0,6	32	1	32	3	32	7	32	17	32	25	7	29	0,8	31	0,
	45	0	18	0,6	32	1	32	3	32	7	32	17	32	23	6,5	26	0,7	28	0,
	65 85	0	18 18	0,6 0,6	32 32	1 1	32 32	3	32 32	7 7	32 32	17 16	32 30	22 20	6 5,5	24 22	0,7 0,6	26 24	0,
	125	0	9	0,0	10	0.4	10	1	10	2	10	5	10	10	3	11	0,3	12	0
0,15	25	0	18	0,9	32	2	32	5	32	10	32	25	31,5	30	5,5	34	0,6	37	0,
0,13	45	0	18	0,9	32	2	32	5	32	10	32	23	29	28	5,5	32	0,6	34	0,
	65	0	18	0,9	32	2	32	5	32	10	32	21	26,5	26	5	29	0,5	31	0,
	85	0	18	0,9	32	2	32	5	32	10	32	19	24	23	4,5	26	0,5	28	0,
	125	0	9	0,3	10	0,5	10	2	10	3	10	8	10	12	2	13	0,2	14	0
0,22	25	0	18	1	32	3	32	8	32	15	32	33	28,5	41	5	46	0,6	49	0,
	45	0	18	1	32	3	32	8	32	15	32	31	26	37	5	42	0,5	45	0,
	65 85	0 0	18 18	1 1	32 32	3 33	32 32	8 8	32 32	15 15	32 32	28 26	24 22	34 31	4,5 4	39 35	0,5 0,5	41 38	0, 0
	125	0	9	0,4	10	0,8	10	2	10	5	10	12	10	16	2	18	0,2	19	0
0,33	25	0	18	2	32	4	32	11	32	23	32	42	23,5	51	4,5	57	0,5	61	0,
-,	45	Ö	18	2	32	4	32	11	32	23	32	38	22	47	4	53	0,5	56	0
	65	0	18	2	32	4	32	11	32	23	32	35	20	43	3,5	48	0,4	52	0
	85	0	18	2	32	4	32	11	32	23	32	32	18	39	3,5	44	0,4	47	0
	125	0	9	0,6	10	1	10	4	10	7	10	16	9	20	1,5	22	0,2	24	0
0,47	25	0	18	3	32	5	32	16	32	32	32	50	20	61	3,5	69	0,4	73	0
	45 65	0 0	18 18	3 3	32 32	5 5	32 32	16 16	32 32	32 32	32 32	46 42	18,5 17	56 52	3,5 3	63 58	0,4 0,3	68 62	0
	85	0	18	3	32	5	32	16	32	32	32	38	15,5	47	3	53	0,3	56	0
	125	Ō	9	0,8	10	2	10	5	10	10	10	19	7,5	23	1,5	26	0,2	28	0
0,68	25	0	18	4	32	8	32	23	32	46	32	58	16	71	3	80	0,3	86	0
,	45	0	18	4	32	8	32	23	32	46	32	54	15	66	2,5	74	0,3	79	0
	65	0	18	4	32	8	32	23	32	45	31	49	13,5	60	2,5	68	0,3	72	0
	85	0	18	4	32	8	32	23	32	41	28	45	12,5	55	2,5	62	0,3	66	0
	125	0	9	1	10	2	10	7	10	15	10	22	6	27	1	31	0,1	33	0
1	25 45	0,1 0,1	18 18	6 6	32 32	11 11	32 32	34 34	32 32	60 56	28,5 26	67 61	12,5 11,5	81 75	2,5 2	92 85	0,3 0,2	98 90	0
	65	0,1	18	6	32	11	32	34	32	51	24	56	10,5	69	2	77	0,2	83	0
	85	0,1	18	6	32	11	32	34	32	46	22	51	9,5	62	2	70	0,2	75	0
	125	0	9	2	10	4	10	11	10	21	10	26	5	31	0,9	35	0,1	38	0
1,5	25	0,1	18	9	32	17	32	51	32	75	23,5	83	10,5	101	2	114	0,2	122	0
	45	0,1	18	9	32	17	32	51	32	70	22	77	9,5	94	2	106	0,2	113	0
	65	0,1	18	9	32	17	32	51	32	64	20	70	9	86	1,5	97	0,2	103	0
	85 125	0,1 0	18 9	9 3	32 10	17 5	32 10	51 16	32 10	58 29	18 9	64 32	8 4	78 39	1,5 0,7	88 44	0,2 0,1	94 47	0
2,2	25	0,1	18	13	32	25	32	75	32	94	20	104	9	127	1,5	143	0,1	153	0
۷,۷	45	0,1	18	13	32	25 25	32	. 75	32 32	94 87	18.5	96	8	117	1,5	132	0,2	141	0
	65	0,1	18	13	32	25	32	72	30,5	80	17	88	7,5	107	1,5	121	0,2	129	0
	85	0,1	18	13	32	25	32	65	27,5	73	15,5	80	7	98	1	110	0,1	118	0
	125	0,1	9	4	10	8	10	24	10	36	7,5	40	3,5	49	0,6	55	0,1	59	0

SOLID ALUMINIUM CAPACITORS

- Enhanced capacitance
- Small type
- · Axial leads; metal case; ceramic seal
- Long life
- High reliability
- Industrial and military applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)
Tolerance on nominal capacitance
Rated voltage range, U_R
Category temperature range
Usable temperature range
Endurance test

Basic specification Climatic category, IEC 68 DIN 40040 NF C20-600

Approval

2,2 to 2200 μ F \pm 20% (\pm 10% to special order) 4 to 40 V -55 to \pm 125 °C -80 to \pm 200 °C 5000 h at 125 °C 2000 h at 150 °C IEC 384-4, long-life grade 55/125/56 EHC/JQ/TW 434 Liste LNZ 44-04 COS-C gam-t-1

Selection chart for C_{nom} - U_R and relevant case sizes.

C _{nom}				UR	(V)			
	4	6,3	10	16	20	25	35	40
2,2							1	1
3,3							1	1
4,7							1	1
6,8							1	1
10				1	1	1	2A	2A
15				1	1	1	2A	2A
22				1		2A	2A	4
33			1	2A		2A	4	4
47		1	1	2A	2A	2A*	4	5
68	1	1	2A	2A		4	5	5
100	1		2A	4	4	4	6	6
150		2A	4	4	5	5	6*	
220	2A		4	5	5	6		
330		4	5	5	6	6		
470	4		5	6	6			
680		5	6	6				
1000	5	6	6					
1500	6	6						
2200	6				<u> </u>			

*	Available	to	special	order.

case size	nominal dimensions (mm)
1	Ø 6,5 x 15
2A	Ø 7,5 x 20
4	Ø 9 x 22,5
5	Ø 10 x 31,5
6	Ø 12,5 x 31,5

APPLICATION

These capacitors with high CU-product per unit volume, utilize advanced technology to achieve long life, high stability, excellent reliability, high ripple current rating and low temperature dependence. The capacitors are not subject to a limitation on charge or discharge currents and they will function in circuits where voltage reversal may occur.

The taped versions are suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have highly etched aluminium foil electrodes separated by a layer of glass fabric and filled with solid, semiconductive, pyrolitically formed manganese dioxide. The capacitors are housed in an aluminium case and are sealed by a ceramic disc. The cathode lead is welded to the case.

The capacitors are available in 4 styles, all with soldered-copper leads:

- style 1: axial leads, case insulated with a blue transparant plastic sleeve; supplied on bandoliers in box;
- style 2: as style 1, however supplied on bandoliers on reel;
- style 3: single-ended, case insulated with a blue transparant plastic sleeve;
- style 4: single-ended, case fitted in a yellow plastic foot; available to special order.

Note: A special version is available, which is partly epoxy-filled, withstanding severe shock and vibration tests; see also paragraph "Tests and requirements".

MECHANICAL DATA

Dimensions in mm

Fig. 1a Styles 1 and 2; for dimensions d, D, L and P, see Table 1a.

Table 1a

case size	d*	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	mass** approx. g
1	0,6 +0,06	6,5	15	6,7	15,3	20	1,2
2A	0,6 -0,05	7,5	20	7,6	20,4	22,5	2,4
4	0,6 -0,05	9	22,5	9,3	23,3	25	3,3
5	0,8 +0,08	10	31,5	10,3	32	35	4,5
6	0,8 -0,05	12,5	31,5	12,9	32	35	6,3

^{*} Tolerance according to IEC 301; not applicable to a length of 2 mm from the lead ends, which is covered by the bandoliers.

^{**} Add 10% for epoxy-filled version.

Fig. 1b Style 3; for dimensions d, D and L see Table 1a. Available to special order.

Fig. 1c Style 4; for dimensions d, D, L and P see Table 1a. Available to special order.

Fig. 2 Capacitors (style 1 and 2) on bandoliers; the bandolier to which the negative capacitor terminals are connected is blue. See Table 1b for dimensions A, S, T and L_{max} . $|B1-B2|=1,4+(L_{max}-L)$ mm max.

Table 1b

case size	A	S	1	mber (n) acitors	L _{max}
			n < 50	50 < n < 100	
1	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	15,3
2A	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	20,4
4	73 ± 1,6	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	23,3
5	73 ± 1,6	15 ± 0,75	10 (n-1) ± 2	10 (n-1) ± 4	32
6	73 ± 1,6	15 ± 0,75	10 (n-1) ± 2	10 (n-1) ± 4	32

Marking

The capacitors are marked with: group number (123), capacitance, tolerance, rated voltage at corresponding maximum temperature, date code, a band to identify the negative terminal, "+" signs for the positive terminal and name of manufacturer.

Mounting

No special provisions are required for soldering to the tinned leads. (2 mm of the anode lead nearest the body are not solderable).

2222 123

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%. See also the corresponding paragraphs.

Table 2

U _R *	nom.	max. r.m.s. ripple current	1	()	max. ESR	1 1	case	catalogue number▲ 2222 123 followed by		
		at T _{amb} = 125 °C, no d.c. voltage applied	after 1 min**			at 100 kHz**	Size			
	μF	mA	μΑ		Ω	Ω		style 1	style 2	epoxy-filled version
4	68 100 220	53 77 160	19 28 60	0,25 0,25 0,25	7,3 5,0 2,3	1,2 1,2 1,0	1 1 2A	12689 12101 12221	22689 22101 22221	62689 62101 62221
	470 1000 1500 2200	300 630 950 1250	130 280 420 610	0,25 0,25 0,25	1,1 0,50 0,33	0,4 0,3 0,2	4 5 6	12471 12102 12152	22471 22102 22152	62471 62102 62152
6,3	47 68 150 330 680	58 83 160 330 680 940	21 30 65 150 300	0,25 0,18 0,18 0,18 0,18 0,18	0,23 7,6 5,3 2,4 1,1 0,55	0,2 1,2 1,2 1,0 0,4 0,3	6 1 1 2A 4 5	12222 13479 13689 13151 13331 13681	22222 23479 23689 23151 23331 23681	62222 63479 63689 63151 63331
	1500	1220	440 660	0,18 0,18	0,36 0,24	0,2 0,2	6 6	13102 13152	23102 23152	63102 63152

Up to T_{amb} = 125 °C. Capacitors with lower values of max. d.c. leakage current or max. impedance are available to special order.

[▲] Catalogue numbers are given for capacitors with tolerance ± 20%; for ± 10% tolerance replace the first digits in the columns by 4 (style 1), 7 (epoxy-filled version) or 8 (epoxy-filled version, level S certified).

August 1985

U _R *	nom.	1 .	max. d.c. leakage	1	max.	max.	case	catalogue number▲ 2222 123 followed by		
	cap. ripple current at T _{amb} = 125 °C, no d.c. voltage applied		current at UR after 1 min**	tan δ	ESR	impedance at 100 kHz**	size			
v	μF	mA	μΑ		Ω	Ω		style 1	style 2	epoxy-filled version
10	33	63	23	0,18	11	1,2	1	14339	24339	64339
	47	83	35	0,18	7,6	1,2	1	14479	24479	64479
	68	110	50	0,18	5,3	1,0	2A	14689	24689	64689
	100	160	70	0,18	3,6	1,0	2A	14101	24101	64101
	150	240	100	0,18	2,4	0,4	4	14151	24151	64151
	220	350	150	0,18	1,7	0,4	4	14221	24221	64221
	330	490	230	0,18	1,1	0,3	5	14331	24331	64331
	470	570	330	0,18	0,8	0,3	5	14471	24471	64471
	680	760	480	0,18	0,55	0,2	6	14681	24681	64681
	1000	1000	700	0,18	0,36	0,2	6	14102	24102	64102
16	10	31	16	0,14	28	2,5	1	15109	25109	65109
	15	47	24	0,14	19	2,5	1	15159	25159	65159
	22	63	35	0,14	13	2,5	1	15229	25229	65229
	33	89	55	0,14	8,4	2,0	2A	15339	25339	65339
	47	120	75	0,14	5,9	2,0	2A	15479	25479	65479
	68	180	110	0,14	4,1	2,0	2A	15689	25689	65689
	100	260	160	0,14	2,8	0,8	4	15101	25101	65101
	150	310	240	0,16	2,1	0,8	4	15151	25151	65151
	220	420	350	0,16	1,5	0,6	5	15221	25221	65221
	330	510	500	0,16	1,0	0,6	5	15331	25331	65331
	470	680	750	0,16	0,7	0,4	6	15471	25471	65471
	680	850	870	0,16	0,5	0,4	6	15681	25681	65681

^{*} Up to T_{amb} = 125 °C.

** Capacitors with lower values of max. d.c. leakage current or max, impedance are available to special order.

[▲] Catalogue numbers are given for capacitors with tolerance ± 20%; for ± 10% tolerance replace the first digits in the columns by 4 (style 1), 7 (epoxy-filled version) or 8 (epoxy-filled version, level S certified).

epoxy-filled

see Table 2a

66109

66159

66229

66339

66479

66689

66101

66151

66221

66331

version

catalogue number ▲ 2222 123 followed by

style 2

see Table 2a

26109

26159

26229

26339

26479

26689

26101

26151

26221

26331

U_R*

٧

20

25

nom.

cap.

μF

10

15

47

100

150

220

330

470

10

15

22

33

68

100

150

220

330

47▲▲

max, r.m.s.

ripple current

at $T_{amb} = 125$ °C,

no d.c. voltage applied

mΑ

39

52

150

270

350

420

570

720

43

60

88

130

160

230

250

350

460

600

max. d.c. leakage

μΑ

20

30

95

200

300

440

660

940

25

35

55

85

100

170

250

400

550

800

current at UR

after 1 min**

max.

tan δ

0,14

0,14

0,14

0.14

0.16

0,16

0,16

0,16

0,14

0,14

0.14

0,14

0,14

0,14

0.16

0,16

0.16

0,16

max.

ESR

Ω

28

19

5,9

2.8

2.1

1,5

1,0

0,7

28

19

13

8,4

5,9

4,1

3.1

2,1

1,5

1.0

max.

impedance

at 100 kHz**

Ω

2,5

2,5

2,0

0,8

0,6

0,6

0,4

0,4

5

5

2,5

2,5

2,5

1.0

1.0

0,8

0,6

0,6

case

size

1

1

4

5

5

6

6

1

1

2A

2A

2A

4

4

5

6

6

2A

style 1

see Table 2a

16109

16159

16229

16339

16479

16689

16101

16151

16221

16331

^{*} Up to $T_{amb} = 125$ °C.

^{**} Capacitors with lower values of max. d.c. leakage current or max, impedance are available to special order.

[▲] Catalogue numbers are given for capacitors with tolerance ± 20%; for ± 10% tolerance replace the first digits in the columns by 4 (style 1), 7 (epoxy-filled version) or 8 (epoxy-filled version, level S certified).

^{▲▲} Available to special order.

- 1									
	U _R *	nom.	max. r.m.s.	max. d.c. leakage	max.	max.	max.	case	catalogue number▲ 2222 123 followed b
		сар.	ripple current	current at UR	tan δ	ESR	impedance	size	[

2222 123

١	U _R *	nom.	max. r.m.s.	max. d.c. leakage	max.	max.	max.	case	catalogue ni	umber ≜ 2222	123 followed by
		сар.	ripple current at T _{amb} = 125 °C, no d.c. voltage applied	current at U _R after 1 min**	tan δ	ESR	impedance at 100 kHz**	size			
	V	μF	mA	μΑ		Ω	Ω		style 1	style 1	epoxy-filled version
J	35	2,2	10	5	0,12	109	7,5	1	97228	20228	60228
		3,3	14	7	0,12	73	7,5	1	97338	20338	60338
1		4,7	20	10	0,12	51	7,5	1	97478	20478	60478
١		6,8	27	15	0,12	35	7,5	1	97688	20688	60688
١		10	37	20	0,12	24	2,5	2A	97109	20109	60109
		15	53	30	0,12	16	2,5	2A	97159	20159	60159
1		22	78	45	0,12	11	2,5	2A	97229	20229	60229
		33	120	65	0,12	7,2	1,0	4	97339	20339	60339
١		47	140	95	0,12	5,1	1,0	4	97479	20479	60479
- [68	170	135	0,16	4,7	0,8	5	97689	20689	60689
		100	220	200	0,16	3,2	0,6	6	97101	20101	60101
-		150▲▲	290	300	0,16	2,1	0,6	6	97151	20151	60151
ı	40	2,2	11	9	0,12	109	7,5	1	17228	27228	67228
		3,3	16	13	0,12	73	7,5	1	17338	27338	67338
-		4,7	22	19	0,12	51	7,5	1	17478	27478	67478
		6,8	28	27	0,12	35	7,5	1	17688	27688	67688
	1	10	41	40	0,12	24	2,5	2A	17109	27109	67109
		15	61	60	0,12	16	2,5	2A	17159	27159	67159
		22	89	90	0,12	11	1,5	4	17229	27229	67229
		33	120	130	0,12	7,2	1,0	4	17339	27339	67339
		47	160	190	0,12	5,1	1,0	5	17479	27479	67479
1		68	170	270	0,16	4,7	0,8	5	17689	27689	67689
ı		100	220	400	0,16	3,2	0,6	6	17101	27101	67101

Up to T_{amb} = 125 °C.
 Capacitors with lower values of max. d.c. leakage current or max. impedance are available to special order.

[▲] Catalogue numbers are given for capacitors with tolerance ± 20%; for ± 10% tolerance replace the first digits in the columns by 4 (style 1), 7 (epoxy-filled version) or 8 (epoxy-filled version, level S certified).

[▲] Available to special order.

Table 2a

U _R *	case		catalogue number 2222 123 followed by						
• • • • • • • • • • • • • • • • • • • •	size	sty	le 1	sty	le 2	epoxy-filled version			
V		tol. ± 20%	tol. ± 10%	tol. ± 20%	tol. ± 10%	tol. ± 20%	tol. ± 10%	level S certified	
20	1	90037	90137	90057	90157	90077	90177	90277	
	1	90038	90138	90058	90158	90078	90178	90278	
	2A	90042	90142	90062	90162	90082	90182	90282	
	4	90044	90144	90064	90164	90084	90184	90284	
	5	90045	90145	90065	90165	90085	90185	90285	
	5	90046	90146	90066	90166	90086	90186	90286	
	6	90047	90147	90067	90167	90087	90187	90287	
	6	90048	90148	90068	90168	90088	90188	90288	

^{*} Up to $T_{amb} = 125$ °C.

Capacitance

Nominal capacitance values at 100 Hz and $T_{amb} = 25$ °C

Tolerance on nominal capacitance at 100 Hz

see Table 2 ± 20% (± 10% to special order)

Fig. 3 Typical multiplier of capacitance as a function of ambient temperature. C_0 = capacitance at 25 $^{\rm o}$ C, 100 Hz.

Voltage

Rated voltage = max. permissible voltage	U _R
Derated voltage = max. permissible voltage at T _{amb} from 125 ^o C to 200 ^o C	0,63 x U _R
Surge voltage = max. permissible voltage for short periods at T _{amb} = 125 °C (see also "Test and requirements")	1,15 x U _R
Reverse voltage = max. d.c. voltage continuously (2000 h) applied in the reverse polarity, at $T_{amb} \le 85$ °C at 85 °C $< T_{amb} \le 125$ °C	0,30 x U _R 0,15 x U _R

Ripple voltage =

max. permissible a.c. voltage providing the following four conditions are met:

- a) Max. a.c. voltage, with negative d.c. voltage applied
- b) Max. peak a.c. voltage, without d.c. voltage applied

2 V

URXMEXMT

 M_F = frequency multiplier, see Table below, M_T = capacitor core temperature multiplier; M_T = 1 for core temperatures \leq 85 °C, M_T = 1100/(T_{core} + 273) -2,06 for core temperatures > 85 °C.

frequency (Hz)	MF				
≤ 0,1 > 0,1 to 1 > 1 to 10 > 10 to 50 > 50	0,30 × U _R 0,45 × U _R 0,60 × U _R 0,65 × U _R 0,80 × U _R				

between U_R (in the positive half wave) and the limits mentioned under b) (in the negative half wave)

 c) Momentary value of applied voltage, with positive d.c. voltage applied

d) Ripple voltage limits are not applicable if the maximum ripple current is exceeded. In that case the ripple current is decisive. Whichever is in practice decisive, depends on the actual impedance of the capacitor. In the Survey at the end of this data sheet the ripple current and ripple voltage limits can be found for each capacitor.

Ripple current

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 125 $^{\rm o}{\rm C}$

Maximum permissible r.m.s. ripple current at other frequencies and temperatures, at standard condition*

Maximum permissible r.m.s. ripple current at various application conditions

see Table 2

see Survey at the end of this data sheet

see Table 3

^{*} See Table 3, condition A.

Table 3 Multiplier of ripple current for various application conditions

CO	ndition	multiplier
Α.	Standard condition: capacitor insulated with a blue sleeve, mounted horizontally on a vertical printed-circuit board with thermal conductivity of 0,4 Wm ⁻¹ K ⁻¹ , in free flowing air and in a surrounding that allows the absorption of radiation heat at 125 °C.	1,0
B.	As under A but capacitor is not insulated.	0,83
C.	As under A but capacitor is mounted horizontally at the bottom of a horizontal printed-circuit board	0,96
D.	As under A but capacitor is mounted on a thermally well-conducting printed-circuit board.	1,08
Ε.	As under A but capacitor is mounted on a thermally non-conducting printed-circuit board.	0,90
F.	As under A but the surrounding walls etc. have a temperature higher than 125 °C and therefore prevent the absorption of heat by radiation	0,86
G.	Capacitor has an ESR value lower than the maximum ESR.	√ ESR _{max} ESR _{actual}
Н.	As under A but capacitor is applied in low-density air, in particular at 10 km height.	0,94
J.	As under A but capacitor is epoxy-filled (for severe shock and vibration resistance).	1,16

Notes

- If required the various multiplying factors can be multiplied together, e.g. if conditions B and C apply the multiplier is 0,83 x 0,96.
- Neither the maximum permissible ripple current nor the maximum permissible ripple voltage values are to be exceeded. Refer to the Tables at the end of this data sheet to find whether a current increase is permissible by the voltage limits.

Calculation of ripple currents

The maximum permissible ripple current (Ir max) is a function of temperature and frequency:

$$\begin{array}{lll} I_{r\,max} &= I_{r0}\sqrt{kr}, \\ \text{where} & I_{r0} &= \text{max. ripple current at } 100 \text{ Hz and } 125 \text{ }^{\circ}\text{C (see Table 2)}; \\ &\sqrt{k} &= \text{temperature multiplier (neglecting the frequency dependence)} = \\ &\sqrt{P_{max}/P_{125}}; \\ &\sqrt{r} &= \text{frequency multiplier (neglecting the temperature dependence)} = \\ &\sqrt{ESR_{100}/ESR_{max}}; \\ \text{while} &P_{max} &= \text{max. permissible power dissipation, temperature dependent;} \\ &P_{125} &= \text{max. permissible power dissipation at } 125 \text{ }^{\circ}\text{C} = I_{r0}^2 \text{ ESR}_{100}; \\ &ESR_{max} &= \text{max. equivalent series resistance, frequency dependent;} \\ &ESR_{100} &= \text{max. equivalent series resistance at } 100 \text{ Hz.} \\ \end{array}$$

The formula is derived for any temperature and frequency as follows:

$$I_{r max^2}$$
 = P_{max}/ESR_{max}
= $kr P_{125}/ESR_{100}$
= $kr I_{r0}^2 ESR_{100}/ESR_{100}$
Thus I_{rmax} = $I_{r0}\sqrt{kr}$.

The values of the temperature multiplier \sqrt{k} and P_{125} have been calculated allowing a capacitor core temperature of 145 °C and assuming the values of ESR_{max} to be independent of temperature at all frequencies.

The values of the frequency multiplier \sqrt{r} have been measured at 25 °C and 125 °C assuming to be the same at all temperatures.

The power dissipation (P_{max}) has been calculated assuming it to be governed by the simplified relation:

P_{max}		$=(\beta S + \gamma) \Delta T;$
where	β	 total heat transfer coefficient, comprising internal and external heat transfer, with exception of case ends and leads;
	S	= capacitor outer surface;
	γ	= correction factor covering the heat conduction through case end and leads;
	ΔΤ	 temperature difference between capacitor core and the ambient atmosphere, taken as 20 °C at T_{amb} = 125 °C.

For this calculation the standard condition (A, Table 3) has been assumed; in that case the following numerical values apply:

case	β (Wm ⁻² K ⁻¹)	γ (WK ⁻¹)	$P_{max}(W) = P_{125}$
1	6,2	0,0042	0,13
2A	7,2	0,0042	0,16
4	8,5	0,0042	0,21
5	8,0	0,0042	0,26
6, low cap.	7,7	0,0042	0,32
6, high cap.	9,2	0,0042	0,36

The results for all combinations of ESR and case size are shown in Fig. 4.

Fig. 4 Maximum permissible r.m.s. ripple current at T_{amb} = 125 °C as a function of ESR, at standard condition (A, Table 3).

As the ripple current and the ripple voltage depend on the capacitor impedance, which has a certain spread, one of the following situations occur:

- only the current is limiting:
- only the voltage is limiting;
- both current and voltage are limiting.

The tables at the end of this data sheet show the worst-case calculation: if the limiting current value given in the tables is applied, the voltage limit mentioned in "Ripple voltage, b", is not exceeded; if the limiting voltage value given in the tables is applied, the current limit calculated as in "Calculation of ripple currents" is not exceeded.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of UR, at T_{amb} = 25 °C

Maximum d.c. leakage current during continuous operation at UR,

at Tamb = 25 °C

at Tamb = 85 °C

at T_{amb} = 125 °C

Fig. 5 Multiplier I/I₀₁ as a function of temperature. I₀₁ = d.c. leakage current during continuous operation at U_R , $T_{amb} = 25$ °C.

see Table 2 (max. 0,1 CU)

approx. 0,5 x value stated in Table 2 approx. 2 x value stated in Table 2 approx. 7 x value stated in Table 2

Fig. 6 Multiplier I/I₀₂ as a function of U/U_R. In a discrete constant temperature

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

Typical tan δ at 100 Hz and $T_{amb} = 25$ °C

Fig. 7 Multiplier of dissipation factor as a function of ambient temperature; tan δ_0 = dissipation factor at 25 °C, 100 Hz.

see Table 2

0,6 x value stated in Table 2

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

Maximum ESR at 100 Hz and T_{amb} = 25 °C (calculated from maximum tan δ and 0,8 x nominal capacitance) Maximum ESR at 100 kHz and T_{amb} = 25 °C

Typical ESR

see Table 2
equal to values of max. impedance
at 100 kHz, see Table 2
see graphs below; the standard
deviation is 20% of each value

Curve 1 = $10~\mu\text{F}$, 20 V and 25 V, and 6,8 μF , 35 V and 40 V; curve 2 = $10~\mu\text{F}$, 16 V; curve 3 = $22~\mu\text{F}$, 16 V; curve 4 = $33~\mu\text{F}$, 10 V; curve 5 = $47~\mu\text{F}$, 6,3 V and 10 V, and $68~\mu\text{F}$, 4 V and 6,3 V.

Fig. 8 Typical ESR as a function of ambient temperature at 100 Hz, case size 1.

Curve 1 = 10μ F, 35 and 40 V; curve 2 = 33μ F, 25 V; curve 3 = 47μ F, 20 V and 25 V; curve 4 = 68μ F, 10 V and 150μ F, 6,3 V; curve 5 = 100μ F, 10 V.

Fig. 9 Typical ESR as a function of ambient temperature at 100 Hz, case size 2A.

Fig. 10 Typical ESR as a function of ambient temperature at 100 Hz, case size 4. Curve 1 = 33 μ F, 35 V and 40 V; curve 3 = 470 μ F, 4 V.

curve 2 = 220 μ F, 10 V and 330 μ F, 6,3 V;

Fig. 11 Typical ESR as a function of ambient temperature at 100 Hz, case size 5. Curve 1 = 68 μ F, 35 V and 40 V; curve 2 = 150 μ F, 20 V and 25 V; curve 4 = 470 μ F, 10 V.

Fig. 12 Typical ESR as a function of ambient temperature at 100 Hz, case size 6.

Curve 1 = $100 \mu F$, 35 and 40 V;

curve $2 = 150 \mu F$, 35 V;

curve $3 = 220 \mu F, 25 V;$

curve $4 = 470 \,\mu\text{F}, \, 16 \,\text{V};$

curve $5 = 1000 \,\mu\text{F}$, 6,3 V and

680 μF, 10 V.

Fig. 13 Typical ESR as a function of frequency at T_{amb} = 25 o C, case size 1.

Curve 1 = 10 μ F, 20 V and 25 V, and $6.8 \mu F$, 35 V and 40 V;

curve 2 = 10 μ F, 16 V;

curve 3 = 22 μ F, 16 V; curve 4 = 33 μ F, 10 V;

curve 5 = 68 μ F, 4 V and 6,3 V, and 47 μ F, 6,3 V and 10 V.

Fig. 14 Typical ESR as a function of frequency at Tamb = 25 °C, case size 2A.

Curve 1 = 10 μ F, 35 V and 40 V;

curve 2 = 33 μ F, 25 V;

curve $3 = 47 \mu F$, 20 V and 25 V;

curve $4 = 68 \mu F$, 10 V, and 150 μF, 6,3 V;

curve 5 = $100 \mu F$, 10 V.

Fig. 15 Typical ESR as a function of frequency at $T_{amb} = 25$ °C, case size 4.

Curve 1 = 33 μ F, 35 V and 40 V;

curve 2 = 220 μ F, 10 V, 330 μ F, 6,3 V and 470 μ F, 4 V.

Fig. 16 Typical ESR as a function of frequency at $T_{amb} = 25$ °C, case size 5. Curve 1 = 68 μ F, 35 V and 40 V; curve 3 = 330 μ F, 10 V;

Fig. 17 Typical ESR as a function of frequency at T_{amb} = 25 o C, case size 6.

Curve 1 = 100 μ F, 35 V and 40 V; curve 2 = 150 μ F, 35 V; curve 3 = 220 μ F, 25 V;

curve $2 = 150 \mu F$, 20 V and 25 V;

curve 4 = 470 μ F, 16 V; curve 5 = 1000 μ F, 6,3 V and 680 μ F, 10 V.

curve $4 = 470 \,\mu\text{F}, 10 \,\text{V}.$

Impedance

Maximum impedance at 100 kHz and $T_{amb} = 25$ °C, measured by means of a four-terminal circuit (Thomson circuit)

Typical impedance at 100 kHz, and $T_{amb} = 25$ °C

see Table 2 0,5 x value stated in Table 2

Fig. 18 Typical multiplier of impedance as a function of frequency at different ambient temperatures; Z_0 = initial impedance value at any frequency and T_{amb} = 25 $^{\rm O}$ C.

Curves 1 = case sizes 1 and 2A, 16 to 40 V;

curves 2 = case sizes 1 and 2A, 4 to 10 V;

curves 3 = case sizes 4, 5 and 6.

Fig. 19 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 1, U_R = 4 to 16 V. Curve 1 = 10 μ F; 16 V; curve 2 = 15 μ F; 16 V; curve 3 = 22 μ F; 16 V; curve 4 = 33 μ F; 10 V;

Fig. 20 Typical impedance as a function of frequency at T_{amb} = 25 o C, case size 1, U_{R} = 20 to 40 V. Curve 1 = 2,2 $_{\mu}$ F, 35 V and 40 V; curve 2 = 3,3 $_{\mu}$ F, 35 V and 40 V; curve 3 = 4,7 $_{\mu}$ F, 35 V and 40 V; curve 6 = 15 $_{\mu}$ F, 20 V and 25 V.

Fig. 21 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 2A, U_R = 4 to 16 V. Curve 1 = 33 μ F, 16 V; curve 2 = 47 μ F, 16 V; curve 3 = 68 μ F, 10 V; curve 6 = 220 μ F, 4 V.

Fig. 22 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 2A, U_R = 16 to 40 V. Curve 1 = 10 μ F, 35 V and 40 V; curve 2 = 15 μ F, 35 V and 40 V; curve 3 = 22 μ F, 25 V and 35 V; curve 3 = 22 μ F, 25 V and 35 V; curve 6 = 68 μ F, 16 V.

Fig. 23 Typical impedance as a function of frequency at T_{amb} = 25 o C, case size 4, U_{R} = 4 to 10 V. Curve 1 = 150 μ F, 10 V; curve 2 = 220 μ F, 10 V; curve 2 = 220 μ F, 10 V; curve 4 = 470 μ F, 4 V.

Fig. 24 Typical impedance as a function of frequency at T_{amb} = 25 o C, case size 4, U_{R} = 16 to 40 V. Curve 1 = 22 μ F, 40 V; curve 4 = 68 μ F, 25 V; curve 2 = 33 μ F, 35 V and 40 V; curve 5 = 100 μ F, 16 V, 20 V and 25 V; curve 3 = 47 μ F, 35 V; curve 6 = 150 μ F, 16 V.

Fig. 25 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 5, U_R = 4 to 16 V. Curve 1 = 220 μ F, 16 V; curve 2 = 330 μ F, 16 V; curve 3 = 330 μ F, 10 V; curve 3 = 680 μ F, 6,3 V; curve 6 = 1000 μ F, 4 V.

Fig. 26 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 5, U_R = 20 to 40 V. Curve 1 = 47 μ F, 40 V; curve 2 = 68 μ F, 35 V and 40 V; curve 4 = 220 μ F, 20 V.

Fig. 27 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 6, U_R = 4 to 10 V. Curve 1 = 680 μ F, 10 V; curve 2 = 1000 μ F, 6,3 V; curve 2 = 1000 μ F, 6,3 V; curve 4 = 2200 μ F, 4 V.

Fig. 28 Typical impedance as a function of frequency at $T_{amb} = 25$ °C, case size 6, $U_R = 10$ to 40 V. Curve 1 = 100 μ F, 35 V and 40 V; curve 5 = 470 μ F, 16 V and 20 V; curve 2 = 150 μ F, 35 V; curve 6 = 680 μ F, 16 V; curve 3 = 220 μ F, 25 V; curve 4 = 330 μ F, 20 V;

Equivalent series inductance (ESL)

Equivalent series inductance, measured by means of a four-terminal circuit (Thomson circuit),

at 10 MHz; the capacitor leads bent to the
pitch as indicated
case size 1
case size 2A
case size 4
case size 5
case size 6, lower capacitance
case size 6, higher capacitance

pitch	max. ESL	typ. ESL
20,3 mm	30 nH	15 to 23 nH
25,4 mm	30 nH	16 to 24 nH
27,9 mm	35 nH	20 to 27 nH
35,6 mm	40 nH	26 to 33 nH
35,6 mm	55 nH	41 to 49 nH
35.6 mm	50 nH	32 to 42 nH

OPERATIONAL DATA

Category temperature range	-55 to + 125 °C
Usable temperature range	-80 to + 200 °C
Typical life time at T_{amb} = 125 °C and U_R	> 20 000 h
Field failure rate	$< 1 \times 10^{-9}/h$

PACKING

Capacitors of style 1 are supplied on bandoliers in boxes, those of style 2 are on bandoliers on reels (according to IEC 286—1).

The number of capacitors per box or per reel is shown in Table 4.

Table 4

	number of capacitors							
case size	style 1 per box	style 2 per reel						
1	100	1000						
2A	100	1000						
4	100	500						
5	100	500						
6	100	400						

Fig. 29 Style 2 capacitors on bandoliers on reel.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under solid aluminium capacitors, with the addition of the following tests.

Severe rapid change of temperature test: 100 cycles of 15 min at -40 °C and + 125 °C.

Requirements: d.c. leakage current ≤ stated limit,

tan $\delta \leq 1.6$ x stated limit,

impedance ≤ 1,6 x stated limit,

 $\Delta C/C \leq 10\%$.

Solvent resistance tests:

Severity 1, according to MIL-STD-202, method 215, including brushing of all portions of the specimens.

Solvents: — deionized water (50 \pm 5 °C);

- 1.1.1. trichloro-ethane;

- mixture of 25 vol. % 2-propanol (isopropanol) and 75 vol. % mineral spirits.

Severity 2, according to IEC 68-2-45, and IEC 653, test XA with the following details and additions.

Conditions: immersion time of samples 5 min., at ambient temperature, at boiling temperature, in vapour of boiling solvent, and ultrasonic (40 kHz).

Solvents:

- deionized water (50 ± 5 °C);
- calgonite solution (20 g/l, 70 ± 5 °C), a dishwasher detergent;
- mixture of 4,5% 2-butoxyethanol, 4,5% 2-amino-ethanol, and 91% water (70 ± 5 °C);
- 1.1.1, trichloro-ethane:
- mixtures of 1.1.2-trichloro-1.2.2-trifluoro-ethane (fluorocarbon 113) and the following solvents in the respective mass percentage ratios of these solvents to fluorocarbon:
 - 2-propanol (isopropanol), 25%: 75% (Arklone K*); up to the ratio 35%: 65%;
 - ethanol, 4,5%: 95,5% (e.g. Arklome A*, Freon TE**);
 - methanol and nitromethane, 5,7%: 0,3%: 94% (Freon TMS**).

Requirement: visual appearance not affected.

Note: Tests are carried out using non-contaminated solvents.

Severe vibration tests (for epoxy-filled version only); according to IEC 68-2-6 and MIL-STD-202. method 204, letters E and F, with the following details and additions.

a. Method of mounting: clamping both the body and the leads.

b. Severity 1:

frequency range temperature: 10 - 3000 Hz; $20 - 25 \text{ }^{\circ}\text{C}$;

2: 1 and 2: frequency range temperature: 50 - 2000 Hz; 125 °C.

c. Direction and duration of motion:

severity 1: 1 octave/min, 3 directions (mutually perpendicular), 20 sweeps per direction

(total 60 sweeps or 18 h);

vibration amplitude:

2: 1 octave/min, 2 directions (longitudinal and transversal), 3 sweeps per

direction (total 6 sweeps or 1 h).

d. Functioning:

severity 1: rated voltage applied; 2: no voltage applied.

e. Requirements: ΔC/C: ≤ 10%

tan δ: ≤ 1.2 x stated limit impedance: ≤ 1.4 x stated limit

d.c. leakage current: ≤ stated limit

general: no intermittent contacts:

no indication of breakdown;

no open circuiting;

no evidence of mechanical damage.

50g or 3.5 mm, whicever is less.

up to 80g at 10 to 3000 Hz (also at 125 °C). f. Typical capability:

Severe shock tests (for epoxy-filled version only): according to IEC 68-2-27 and MIL-STD-202, method 213, letter F, with the following details and additions.

a. Method of mounting: clamping both body and the leads.

b. Pulse shape: half-sine or sawtooth.

c. Severity 1:

1500g, 0,5 ms (MIL-STD-202, method 213, letter F); 2: 3000g, 0,2 ms; 3: 10 000g, 0,1 ms.

d. Direction and number of shocks:

severity 1 and 2: 3 successive shocks in each direction of 3 mutually perpendicular axes

(total 18 shocks);

3: 1 shock, any direction.

e. Functioning: rated voltage applied.

f. Requirements: see "Severe vibration tests" par. e. g. Typical capability:

≥ 100000g; these shock tests can be preceded by severe vibration tests on

the same samples.

→ Survey of maximum permissible ripple voltage and ripple current values at various ambient temperatures and frequencies

Notes

- Zero d.c. voltage is assumed; at non-zero d.c. voltage the values in the tables can be adapted according to paragraphs "Ripple voltage" and "Ripple current".
- If the limiting current value given in the tables is applied, the voltage limit mentioned in "Ripple voltage, b", is not exceeded; if the limiting voltage value given in the tables is applied, the current limit calculated as in "Calculation of ripple currents" is not exceeded.
- 1E + 04 to be read as 10⁴ Hz;
 - 1E + 05 to be read as 105 Hz;
 - 1E + 06 to be read as 10⁶ Hz.

$68 \mu F - 4 V$ - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	1.80	.0	1.80	. 0	1.80	0	1.80	. 0	1.50	0	1.30
10	6	2.40	6	2.40	6	2.40	6	2.40	5	2.00	4	1.70
50	32	2.60	32	2.60	32	2.60	32	2.60	27	2.20	22	1.80
100	75	3.20	75	3.20	.75	3.20	75	3.20	63	2.70	53	2.20
300	230	3.20	230	3.20	210	3.00	180	2.60	150	2.10	130	1.50
600	330	2.20	270	2.00	250	1.80	250	1.50	250	1.30	190	0.89
1000	360	1.70	360	1.50	360	1.40	360	1.20	290	0.97	210	0.68
1500	520	1.20	470	1.10	420	0.96	370	0.83	300	0.68	210	0.48
1E+04	630	0.28	580	0.26	520	0.23	450	0.20	370	0.16	260	0.12
1E+05	710	0.12	650	0.11	580	0.10	500	0.09	410	0.07	290	0.05
1E+06	760	0.13	700	0.12	620	0.11	540	0.09	440	0.08	310	0.05

$100 \mu F - 4 V$ - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	1.80	1	1.80	1	1.80	1	1.80	1	1.50	0	1.30
10	9	2.40	9	2.40	9	2.40	9	2.40	7	2.00	6	1.70
50	47	2.60	47	2.60	47	2.60	47	2.60	40	2.20	33	1.80
100	110	3.20	110	3.20	110	3.20	110	3.20	93	2.70	77	2.20
300	330	3.00	300	2.80	260	2.50	220	2.10	190	1.70	190	1.20
600	370	1.80	370	1.60	370	1.50	370	1.30	320	1.00	230	0.73
1000	530	1.40	530	1.30	500	1.10	430	0.97	350	0.79	250	0.56
1500	630	0.97	570	0.89	510	0.79	440	0.69	360	0.56	260	0.40
1E+04	760	0.23	700	0.21	620	0.19	540	0.16	440	0.13	310	0.10
1E+05	860	0.15	790	0.13	700	0.12	610	0.10	500	0.08	350	0.06
1E+06	920	0.16	840	0.14	750	0.13	650	0.11	530	0.09	380	0.06

$220~\mu\text{F}-4~\text{V}-\text{case}$ size 2A

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	1.80	1	1.80	1	1.80	1	1.80	1	1.50	1	1.30
10	19	2.40	19	2.40	19	2.40	19	2.40	16	2.00	13	i.70
50	100	2.40	100	2.60	100	2.60	100	2.60	88	2.20	73	1.80
100	240	3.20	240	3.20	240	3.20	240	3.20	200	2.70	160	2.20
300	580	2.30	480	2.10	420	1.80	420	1.60	420	1.30	330	0.93
600	820	1.30	820	1.20	750	1.10	650	0.95	530	0.77	370	0.55
1000	1000	1.00	910	0.94	820	0.84	710	0.73	580	0.60	410	0.42
1500	1030	0.73	940	0.66	840	0.59	730	0.51	600	0.42	420	0.30
1E+04	1260	0.17	1150	0.16	1030	0.14	890	0.12	730	0.10	510	0.07
1E+05	1420	0.14	1300	0.13	1160	0.11	1010	0.10	820	0.08	580	0.06
1E+06	1520	0.16	1390	0.14	1240	0.13	1070	0.11	880	0.09	620	0.06

470 μ F - 4 V - case size 4

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	٧	mΑ	V	mΑ	V	mΑ	V
1	3	1.80	3	1.80	3	1.80	3	1.80	3	1.50	2	1.30
10	40	2.40	40	2.40	40	2.40	40	2.40	34	2.00	28	1.70
50	220	2.60	220	2.60	220	2.60	220	2.60	190	2.20	150	1.80
100	520	3.20	520	3.20	520	3.20	480	3.00	390	2.40	300	1.70
300	900	1.80	900	1.60	900	1.40	900	1.20	760	1.00	540	0.72
600	1510	1.00	1380	0.94	1230	0.84	1070	0.73	870	0.60	620	0.42
1000	1450	0.80	1510	0.73	1350	0.65	1170	0.56	950	0.46	670	0.33
1500	1700	0.56	1560	0.51	1390	0.46	1210	0.40	980	0.32	700	0.23
1E+04	2080	0.13	1900	0.12	1700	0.11	1470	0.10	1200	0.08	850	0.06
1E+05	2340	0.10	2140	0.09	1910	0.08	1660	0.07	1350	0.06	960	0.04
1E+06	2500	0.13	2290	0.12	2040	0.11	1770	0.09	1450	0.08	1020	0.05

1000 μ F - 4 V - case size 5

F	T 25	-	T 45		T 65	-		degC		degC		degC
Freq			Irms	Vpeak	Irms	Vpeak	irms	Vpeak	irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	6	1.80	6	1.80	6	1.80	6	1.80	5	1.50	4	1.30
10	85	2.40	85	2.40	85	2.40	85	2.40	72	2.00	60	1.70
50	470	2.60	470	2.60	470	2.60	470	2.60	400	2.20	330	1.80
100	1100	3.20	1060	3.10	940	2.70	820	2.40	670	1.90	630	1.40
300	1910	1.40	1910	1.30	1800	1.10	1560	0.97	1270	0.79	900	0.56
600	2530	0.81	2310	0.74	2060	0.66	1790	0.57	1460	0.47	1030	0.33
1000	2760	0.62	2520	0.57	2250	0.51	1950	0.44	1590	0.36	1130	0.25
1500	2850	0.44	2400	0.40	2330	0.36	2010	0.31	1640	0.25	1160	0.18
1E+04	3470	0.11	3170	0.10	2830	0.09	2450	0.07	2000	0.06	1420	0.04
1E+05	3920	0.11	3570	0.10	3200	0.09	2770	0.08	2260	0.06	1600	0.05
1E+06	4030	0.19	3820	0.17	3420	0.16	2960	0.13	2410	0.11	1710	0.08

$\mu F - 4 V$ — case size 6

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	10	1.80	10	1.80	10	1.80	10	1.80	8	1.50	7	1.30
10	130	2.40	130	2.40	130	2.40	130	2.40	110	2.00	90	1.70
50	710	2.60	710	2.60	710	2.60	710	2.60	590	2.20	480	1.80
100	1660	3.00	1490	2.80	1280	2.50	1100	2.10	950	1.70	950	1.20
300	2870	1.20	2730	1.10	2440	1.00	2110	0.88	1730	0.72	1220	0.51
600	3430	0.73	3130	0.67	2800	0.40	2420	0.52	1980	0.42	1400	0.30
1000	3740	0.66	3410	0.60	3050	0.54	2640	0.47	2160	0.38	1530	0.27
1500	3840	0.53	3520	0.49	3150	0.44	2730	0.38	2230	0.31	1580	0.22
1E+04	4700	0.14	4290	0.12	3840	0.11	3330	0.10	2720	0.08	1920	0.06
1E+05	5310	0.15	4840	0.14	4330	0.12	3750	0.11	3060	0.09	2170	0.06
1E+06	3240	0.32	3240	0.29	3240	0.26	3240	0.23	3240	0.18	2310	0.13

μ F - 4 V - case size 6

	T 25	degC		degC	T 65	-	T 85	-		degC		degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	14	1.80	14	1.80	14	1.80	14	1.80	12	1.50	10	1.30
10	190	2.40	190	2.40	190	2.40	190	2.40	160	2.00	130	1.70
50	1040	2.60	1040	2.60	1040	2.60	1030	2.60	850	2.10	640	1.60
100	2290	2.60	1920	2.40	1620	2.10	1410	1.90	1390	1.50	1250	1.10
300	3800	1.10	3470	0.98	3100	0.88	2690	0.76	2190	0.62	1550	0.44
600	4350	0.63	3970	0.58	3550	0.52	3080	0.45	2510	0.37	1780	0.26
1000	4750	0.57	4340	0.52	3880	0.47	3360	0.40	2740	0.33	1940	0.23
1500	4900	.0.46	4480	0.42	4000	0.38	3470	0.33	2830	0.27	2000	0.19
1E+04	5980	0.12	5460	0.11	4880	0.10	4230	0.08	3 45 0	0.07	2440	0.05
1E+05	6470	0.19	6150	0.17	5500	0.16	4770	0.13	3890	0.11	2750	0.08
1E+06	3470	0.38	3470	0.35	3470	0.31	3470	0.27	3470	0.22	2940	0.15

μ F - 6,3 V - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	deqC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V ·	mΑ	V ·	mΑ	v
1	1	2.80	1	2.80	1	2.80	1	2.80	0	2.40	0	2.00
10	6	3.80	6	3.80	6	3.80	6	3.80	5	3.20	4	2.60
50	35	4.10	35	4.10	35	4.10	35	4.10	30	3.50	25	2.90
100	83	5.00	83	5.00	83	5.00	83	5.00	70	4.30	58	3.50
300	250	5.00	240	4.70	210	4.20	180	3.60	150	3.00	140	2.10
600	300	3.00	280	2.80	280	2.50	280	2.10	260	1.80	180	1.20
1000	390	2.30	390	2.10	390	1.90	350	1.70	280	1.30	200	0.95
1500	510	1.60	460	1.50	420	1.30	360	1.20	290	0.95	210	0.67
1E+04	620	0.40	570	0.36	510	0.32	440	0.28	360	0.23	250	0.16
1E+05	700	0.12	640	0.11	570	0.10	490	0.08	400	0.07	290	0.05
1E+06	750	0.13	680	0.12	610	0.10	530	0.09	430	0.07	300	0.05

$68 \, \mu F - 6.3 \, V - case size 1$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	2.80	1	2.80	1	2.80	1	2.80	1	2.40	1	2.00
10	9	3.80	9	3.80	9	3.80	9	3.80	8	3.20	6	2.60
50	51	4.10	51	4.10	51	4.10	51	4.10	43	3.50	36	2.90
100	120	5.00	120	5.00	120	5.00	120	5.00	100	4.30	83	3.50
300	350	4.30	290	3.90	250	3.50	220	3.00	210	2.50	190	1.70
600	400	2.50	400	2.30	400	2.10	380	1.80	310	1.50	220	1.00
1000	570	1.90	540	1.80	480	1.60	420	1.40	340	1.10	240	0.79
1500	610	1.40	560	1.20	500	1.10	430	0.97	350	0.79	250	0.56
1E+04	740	0.33	680	0.30	610	0.27	520	0.23	430	0.19	300	0.13
1E+05	840	0.14	760	0.13	680	0.12	590	0.10	480	0.08	340	0.06
1E+06	890	0.15	820	0.14	730	0.13	630	0.11	520	0.09	370	0.06

150 μ F - 6,3 V - case size 2A

F		degC		degC	T 65	-	T 85	-		degC		degC
Freq	Irms	Vpeak	Irms	Vpeak	irms	Vpeak	irms	Vpeak	TLW2	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V .	πA	V	mΑ	V	mΑ	V
1	2	2.80	2	2.80	2	2.80	2	2.80	1	2.40	1	2.00
10	20	3.80	20	3.80	20	3.80	20	3.80	17	3.20	14	2.60
50	110	4.10	110	4.10	110	4.10	110	4.10	96	3.50	79	2.90
100	260	5.00	260	5.00	260	5.00	260	5.00	220	4.20	160	3.10
300	530	3.20	470	2.90	460	2.60	460	2.30	450	1.90	320	1.30
600	890	1.90	820	1.70	730	1.50	640	1.30	520	1.10	370	0.77
1000	980	1.50	890	1.30	800	1.20	690	1.00	570	0.84	400	0.60
1500	1010	1.00	920	0.94	830	0.84	720	0.73	580	0.59	410	0.42
1E+04	1230	0.25	1130	0.23	1010	0.20	870	0.17	710	0.14	500	0.10
1E+05	1390	0.14	1270	0.13	1140	0.11	980	0.10	800	0.08	570	0.06
1E+06	1490	0.15	1360	0.14	1210	0.12	1050	0.11	860	0.09	610	0.06

330 μ F - 6,3 V - case size 4

Freq	T 25 Irms	-		degC Vpeak	T 65 Irms	degC Voeak	T 85 Irms	degC Voeak		degC Vpeak		degC Voeak
Hz	mΑ	i	· mA	v	mΑ	V	mΑ	V	mΑ	V	mΑ	v
1	3	2.80	3	2.80	3	2.80	3	2.80	3	2.40	2	2.00
10	45	3.80	45	3.80	45	3.80	45	3.80	38	3.20	31	2.60
50	250	4.10	250	4.10	250	4.10	250	4.10	210	3.50	170	2.90
100	580	5.00	580	5.00	560	4.90	490	4.20	400	3.40	330	2.40
300	1010	2.50	1010	2.20	1010	2.00	930	1.70	760	1.40	540	1.00
600	1510	1.40	1380	1.30	1230	1.20	1070	1.00	870	0.84	620	0.59
1000	1650	1.10	1510	1.00	1350	0.91	1170	0.79	950	0.64	670	0.46
1500	1700	0.79	1560	0.72	1390	0.64	1210	0.56	980	0.45	700	0.32
1E+04	2080	0.19	1900	0.17	1700	0.15	1470	0.13	1200	0.11	850	0.08
1E+05	2340	0.10	2140	0.09	1910	0.08	1660	0.07	1350	0.06	960	0.04
1E+06	2500	0.13	2290	0.12	2040	0.11	1770	0.09	1450	0.08	1020	0.05

$680 \, \mu F - 6.3 \, V - case \, size \, 5$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	7	2.80	7	2.80	7	2.80	7	2.80	6	2.40	5	2.00
10	93	3.80	93	3.80	93	3.80	93	3.80	78	3.20	65	2.60
50	510	4.10	510	4.10	510	4.10	510	4.10	430	3.40	340	2.70
100	1200	4.60	1050	4.20	900	3.80	780	3.30	680	2.70	680	1.90
300	2070	1.90	1920	1.70	1720	1.60	1490	1.30	1210	1.10	860	0.78
600	2410	1.10	2200	1.00	1970	0.92	1700	0.79	1390	0.65	980	0.46
1000	2630	0.86	2400	0.79	2150	0.71	1860	0.61	1520	0.50	1070	0.35
1500	2720	0.61	2480	0.56	2220	0.50	1920	0.43	1570	0.35	1110	0.25
1E+04	3310	0.15	3020	0.13	2700	0.12	2340	0.10	1910	0.08	1350	0.06
1E+05	3730	0.11	3410	0.10	3050	0.09	2640	0.07	2160	0.06	1520	0.04
1E+06	3990	0.18	3640	0.17	3260	0.15	2820	0.13	2300	0.10	1630	0.07

1000 μ F - 6,3 V - case size 6

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	10	2.80	10	2.80	10	2.80	10	2.80	9	2.40	7	2.00
10	140	3.80	140	3.80	140	3.80	140	3.80	120	3.20	95	2.60
50	750	4.10	750	4.10	750	4.10	750	4.10	630	3.40	480	2.60
100	1730	4.30	1440	3.90	1220	3.50	1060	3.00	1010	2.50	940	1.80
300	2860	1.80	2610	1.60	2340	1.40	2020	1.20	1650	1.00	1170	0.72
600	3280	1.00	2990	0.95	2680	0.85	2320	0.73	1890	0.60	1340	0.42
1000	3580	0.93	3270	0.85	2920	0.76	2530	0.66	2070	0.54	1460	0.38
1500	3700	0.76	3370	0.69	3020	0.62	2610	0.53	2130	0.44	1510	0.31
1E+04	4500	0.19	4110	0.18	3680	0.16	3180	0.14	2600	0.11	1840	0.08
1E+05	5080	0.14	4640	0.13	4150	0.12	3590	0.10	2930	0.08	2070	0.06
1E+06	5100	0.31	4950	0.28	4430	0.25	3840	0.22	3130	0.18	2220	0.13

1500 μ F - 6,3 V - case size 6

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	15	2.80	15	2.80	15	2.80	15	2.80	13	2.40	11	2.00
10	200	3.80	200	3.80	200	3.80	200	3.80	170	3.20	140	2.60
50	1130	4.10	1130	4.10	1130	4.10	1070	3.90	880	3.20	650	2.30
100	2210	3.70	1820	3.40	1590	3.00	1510	2.60	1510	2.10	1220	1.50
300	3720	1.50	3400	1.40	3040	1.20	2630	1.10	2150	0.88	1520	0.62
600	4260	0.90	3890	0.82	3480	0.73	3010	0.63	2460	0.52	1740	0.37
1000	4650	0.81	4240	0.74	3800	0.66	3290	0.57	2680	0.47	1900	0.33
1500	4800	0.65	4380	0.40	3920	0.53	3390	0.46	2770	0.38	1960	0.27
1E+04	5850	0.17	5340	0.15	4780	0.14	4140	0.12	3380	0.10	2390	0.07
1E+05	6600	0.19	6020	0.17	5390	0.15	4670	0.13	3810	0.11	2690	0.08
1E+06	5470	0.37	5470	0.34	5470	0.30	4990	0.26	4070	0.21	2880	0.15

33 μ F - 10 V - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	4.50	1	4.50	1	4.50	1	4.50	1	3.80	0	3.20
10	7	6.00	7	6.00	7	6.00	7	6.00	6	5.10	5	4.20
50	39	6.50	39	4.50	39	6.50	39	6.50	33	5.50	28	4.60
100	92	8.00	92	8.00	92	8.00	92	8.00	78	6.70	63	5.50
300	240	6.10	200	5.60	170	5.00	160	4.30	160	3.50	130	2.50
600	310	3.60	310	3.30	310	2.90	270	2.50	220	2.10	150	1.50
1000	410	2.80	370	2.50	330	2.30	290	2.00	240	1.60	170	1.10
1500	420	2.00	390	1.80	350	1.60	300	1.40	240	1.10	170	0.80
1E+04	520	0.47	470	0.43	420	0.38	360	0.33	300	0.27	210	0.19
1E+05	580	0.10	530	0.09	470	0.08	410	0.07	340	0.06	240	0.04
1E+06	620	0.11	570	0.10	510	0.09	440	0.08	360	0.06	250	0.04

$47 \mu F - 10 V - case size 1$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	πA	V	mΑ	V	mΑ	V
1	1	4.50	1	4.50	1	4.50	1	4.50	1	3.80	1	3.20
10	10	6.00	10	6.00	10	6.00	10	6.00	9	5.10	7	4.20
50	56	6.50	56	6.50	56	6.50	56	6.50	48	5.50	39	4.60
100	130	8.00	130	8.00	130	8.00	130	8.00	110	6.60	83	5.00
300	270	5.10	230	4.70	230	4.20	230	3.60	230	3.00	160	2.10
600	440	3.00	410	2.80	370	2.50	320	2.10	260	1.80	180	1.20
1000	490	2.30	450	2.10	400	1.90	350	1.70	280	1.30	200	0.95
1500	510	1.60	460	1.50	420	1.30	360	1.20	290	0.95	210	0.67
1E+04	620	0.40	570	0.36	510	0.32	440	0.28	360	0.23	250	0.16
1E+05	700	0.12	640	0.11	570	0.10	490	0.08	400	0.07	290	0.05
1E+06	750	0.13	680	0.12	610	0.10	530	0.09	430	0.07	300	0.05

$68 \mu F - 10 V - case size 2A$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	4.50	1	4.50	1	4.50	1	4.50	1	3.80	1	3.20
10	15	6.00	15	6.00	15	6.00	15	6.00	12	5.10	10	4.20
50	81	6.50	81	6.50	81	6.50	81	6.50	69	5.50	57	4.60
100	190	8.00	190	8.00	190	8.00	190	7.80	150	6.40	110	4.70
300	350	4.80	330	4.30	330	3.90	330	3.40	300	2.70	220	1.90
600	600	2.80	550	2.60	490	2.30	430	2.00	350	1.60	250	1.10
1000	660	2.20	600	2.00	540	1.80	470	1.50	380	1.20	270	0.88
1500	680	1.50	620	1.40	560	1.20	480	1.10	390	0.88	280	0.62
1E+04	830	0.37	760	0.33	680	0.30	590	0.26	480	0.21	340	0.15
1E+05	940	0.09	850	0.08	760	0.08	660	0.07	540	0.05	380	0.04
1E+06	1000	0.10	910	0.09	820	0.08	710	0.07	580	0.04	410	0.04

$100 \, \mu F - 10 \, V - case size 2A$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V .	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	2	4.50	2	4.50	2	4.50	2	4.50	1	3.80	1	3.20
10	22	6.00	22	6.00	22	6.00	22	6.00	18	5.10	15	4.20
50	120	6.50	120	6.50	120	6.50	120	6.50	100	5.50	83	4.50
100	280	8.00	280	8.00	270	7.80	230	6.70	190	5.50	160	3.90
300	480	3.90	480	3.60	480	3.20	450	2.80	370	2.30	260	1.60
600	730	2.30	670	2.10	600	1.90	520	1.60	420	1.30	300	0.95
1000	800	1.80	730	1.60	650	1.50	570	1.30	460	1.00	330	0.73
1500	830	1.30	750	1.10	670	1.00	580	0.89	480	0.73	340	0.51
1E+04	1010	0.30	920	0.28	820	0.25	710	0.21	580	0.17	410	0.12
1E+05	1140	0.11	1040	0.10	930	0.09	800	0.08	660	0.06	460	0.05
1E+06	1210	0.12	1110	0.11	990	0.10	860	0.09	700	0.07	500	0.05

$150 \, \mu F - 10 \, V$ - case size 4

Freq		degC Vpeak		degC Voeak	T 65	degC Voeak		degC Voeak		degC Vpeak		i degC Voeak
										•		
Hz	mΑ	V	mΑ	V .	mΑ	V.	mΑ	V	πA	V	mΑ	v
1	2	4.50	2	4.50	2	4.50	2	4.50	2	3.80	2	3.20
10	32	6.00	32	4.00	32	6.00	32	6.00	27	5.10	23	4.20
50	180	6.50	180	6.50	180	6.50	180	6.50	150	5.50	130	4.50
100	420	8.00	420	8.00	380	7.20	330	6.30	270	5.10	240	3.60
300	730	3.70	730	3.30	730	3.00	630	2.60	520	2.10	370	1.50
600	1020	2.20	930	2.00	840	1.80	720	1.50	590	1.20	420	0.88
1000	1120	1.70	1020	1.50	910	1.40	790	1.20	650	0.96	460	0.68
1500	1150	1.20	1050	1.10	940	0.96	820	0.83	670	0.68	470	0.48
1E+04	1410	0.28	1280	0.26	1150	0.23	990	0.20	810	0.16	570	0.11
1E+05	1590	0.07	1450	0.06	1300	0.05	1120	0.05	920	0.04	650	0.03
1E+06	1690	0.09	1550	0.08	1380	0.07	1200	0.06	980	0.05	690	0.04

$220 \, \mu\text{F} - 10 \, \text{V} - \text{case size 4}$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	4	4.50	4	4.50	4	4.50	4	4.50	3	3.80	. 2	3.20
10	48	6.00	48	6.00	48	6.00	48	6.00	40	5.10	33	4.20
50	260	6.50	260	6.50	260	6.50	260	6.50	220	5.50	170	4.30
100	610	7.20	530	6.60	450	5.90	390	5.10	350	4.20	350	3.00
300	1060	3.00	970	2.70	870	2.40	750	2.10	610	1.70	430	1.20
600	1220	1.70	1110	1.60	990	1.40	860	1.20	700	1.00	500	0.71
1000	1330	1.30	1210	1.20	1080	1.10	940	0.95	770	0.78	540	0.55
1500	1370	0.95	1250	0.87	1120	0.78	970	0.67	790	0.55	560	0.39
1E+04	1670	0.23	1530	0.21	1360	0.19	1180	0.16	960	0.13	680	0.09
1E+05	1880	0.08	1720	0.07	1540	0.07	1330	0.06	1090	0.05	770	0.03
1E+06	2010	0.11	1840	0.10	1640	0.09	1420	0.07	1160	0.06	820	0.04

330 μ F - 10 V - case size 5

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	5	4.50	5	4.50	5	4.50	5	4.50	5	3.80	4	3.20
10	71	6.00	71	6.00	71	6.00	71	6.00	60	5.10	50	4.20
50	390	6.50	390	6.50	390	6.50	390	6.50	330	5.40	250	4.10
100	900	6.80	750	6.20	640	5.50	550	4.80	530	3.90	490	2.80
300	1490	2.80	1360	2.50	1210	2.30	1050	2.00	860	1.60	610	1.10
600	1700	1.60	1560	1.50	1390	1.30	1200	1.20	980	0.94	700	0.67
1000	1860	1.30	1700	1.10	1520	1.00	1320	0.89	1070	0.73	760	0.51
1500	1920	0.89	1750	0.81	1570	0.72	1360	0.63	1110	0.51	780	0.36
1E+04	2340	0.21	2140	0.19	1910	0.17	1650	0.15	1350	0.12	960	0.09
1E+05	2640	0.07	2410	0.07	2160	0.06	1870	0.05	1520	0.04	1080	0.03
1E+06	2820	0.13	2570	0.12	2300	0.10	1990	0.09	1630	0.07	1150	0.05

470 μ F - 10 V - case size 5

F	T 25	-		degC		degC	T 85	_		degC		degC
Freq	Irms	Vpeak	ırms	Vpeak	TLWZ	Vpeak	Irms	Vpeak	Irms	Vpeak	irms	Vpeak
Hz	mΑ	V										
1	8	4.50	8	4.50	8	4.50	8	4.50	6	3.80	5	3.20
10	100	6.00	100	6.00	100	6.00	100	6.00	86	5.10	71	4.20
50	560	6.50	560	6.50	560	6.50	510	5.90	420	4.80	320	3.50
100	1010	5.40	840	5.10	750	4.50	750	3.90	750	3.20	570	2.30
300	1740	2.30	1590	2.10	1420	1.90	1230	1.60	1010	1.30	710	0.93
600	2000	1.30	1820	1.20	1630	1.10	1410	0.95	1150	0.78	820	0.55
1000	2180	1.00	1990	0.95	1780	0.85	1540	0.73	1260	0.60	890	0.42
1500	2250	0.73	2060	0.67	1840	0.60	1590	0.52	1300	0.42	920	0.30
1E+04	2740	0.18	2500	0.16	2240	0.14	1940	0.12	1580	0.10	1120	0.07
1E+05	3100	0.09	2830	0.08	2530	0.07	2190	0.06	1790	0.05	1260	0.04
1E+06	3310	0.15	3020	0.14	2700	0.12	2340	0.11	1910	0.09	1350	0.06

$680 \, \mu F - 10 \, V - case \, size \, 6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	11	4.50	11	4.50	11	4.50	11	4.50	9	3.80	8	3.20
10	150	6.00	150	6.00	150	6.00	150	6.00	120	5.10	100	4.20
50	810	6.50	810	6.50	790	6.30	680	5.50	560	4.40	460	3.20
100	1260	5.10	1110	4.70	1090	4.20	1090	3.60	1080	3.00	760	2.10
300	2320	2.10	2110	1.90	1890	1.70	1640	1.50	1340	1.20	950	0.85
600	2650	1.20	2420	1.10	2170	1.00	1880	0.87	1530	0.71	1080	0.50
1000	2900	1.10	2640	1.00	2360	0.91	2050	0.78	1670	0.64	1180	0.45
1500	2990	0.90	2730	0.82	2440	0.73	2110	0.64	1730	0.52	1220	0.37
1E+04	3640	0.23	3330	0.21	2970	0.19	2580	0.16	2100	0.13	1490	0.09
1E+05	4110	0.12	3750	0.11	3360	0.09	2910	0.08	2370	0.07	1680	0.05
1E+06	4390	0.25	4010	0.23	3590	0.20	3100	0.18	2530	0.14	1790	0.10

$1000 \, \mu\text{F} - 10 \, \text{V} - \text{case size 6}$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	16	4.50	16	4.50	16	4.50	16	4.50	14	3.80	11	3.20
10	220	6.00	220	6.00	220	6.00	220	6.00	180	5.10	150	4.20
50	1200	6.50	1160	6.30	1040	5.60	900	4.90	730	4.00	680	2.80
100	1600	4.60	1600	4.20	1600	3.70	1600	3.20	1410	2.60	1000	1.90
300	3040	1.90	2770	1.70	2480	1.50	2150	1.30	1750	1.10	1240	0.76
600	3480	1.10	3180	1.00	2840	0.90	2460	0.78	2010	0.63	1420	0.45
1000	3800	0.99	3470	0.90	3100	0.81	2680	0.70	2190	0.57	1550	0.40
1500	3920	0.80	3580	0.73	3200	0.65	2770	0.57	2260	0.46	1600	0.33
1E+04	4780	0.20	4360	0.19	3900	0.17	3380	0.14	2760	0.12	1950	0.08
1E+05	5390	0.15	4920	0.14	4400	0.12	3810	0.11	3110	0.09	2200	0.06
1E+06	5760	0.30	5250	0.28	4700	0.25	4070	0.21	3320	0.18	2350	0.12

$10 \,\mu\text{F} - 16 \,\text{V} - \text{case size 1}$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	i degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	7.20	0	7.20	0	7.20	0	7.20	0	6.10	0	5.00
10	3	9.60	3	9.60	3	9.60	3	9.60	3	8.10	2	6.70
50	19	10.40	19	10.40	19	10.40	19	10.40	16	8.80	13	7.30
100	45	12.80	45	12.80	45	12.80	45	12.80	38	10.80	31	8.90
300	140	12.50	130	11.40	110	10.20	94	8.80	78	7.20	78	5.10
600	150	7.40	150	6.70	150	6.00	150	5.20	140	4.30	96	3.00
1000	210	5.70	210	5.20	210	4.60	180	4.00	150	3.30	100	2.30
1500	260	4.00	240	3.70	220	3.30	190	2.80	150	2.30	110	1.60
1E+04	320	0.96	290	0.88	260	0.79	230	0.68	190	0.56	130	0.39
1E+05	360	0.13	330	0.12	300	0.11	260	0.09	210	0.07	150	0.05
1E+06	390	0.14	360	0.13	320	0.11	280	0.10	220	0.08	160	0.06

$15 \mu F - 16 V$ - case size 1

Freq		degC Vpeak		degC Vpeak		degC Vpeak		degC Vpeak		degC Vpeak		degC Vpeak
Hz	mΑ	V	mΑ	v	mΑ	Ÿ	mΑ	V	mΑ	v	mΑ	v
1	0	7.20	0	7.20	0	7.20	0	7.20	0	6.10	0	5.00
10	5	9.60	5	9.60	5	9.60	5	9.60	4	8.10	4	6.70
50	29	10.40	29	10.40	29	10.40	29	10.40	24	8.80	20	7.30
100	68	12.80	68	12.80	68	12.80	68	12.80	57	10.80	47	8.80
300	190	10.10	150	9.20	130	8.30	120	7.20	120	5.90	100	4.10
600	230	6.00	230	5.50	230	4.90	200	4.20	160	3.50	120	2.40
1000	310	4.60	280	4.20	250	3.80	220	3.30	180	2.70	130	1.90
1500	320	3.20	290	3.00	260	2.70	230	2.30	190	1.90	130	1.30
1E+04	390	0.78	360	0.71	320	0.64	280	0.55	230	0.45	160	0.32
1E+05	440	0.16	400	0.14	360	0.13	310	0.11	260	0.09	180	0.06
1E+06	470	0.17	430	0.15	390	0.14	330	0.12	270	0.10	190	0.07

$22 \mu F - 16 V$ — case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	7.20	1	7.20	1	7.20	1	7.20	1	6.10	0	5.00
10	8	9.60	8	9.60	8	9.60	8	9.50	٤	8.10	5	6.70
50	42	10.40	42	10.40	42	10.40	42	10.40	36	8.80	30	7.30
100	99	12.80	99	12.80	99	12.80	99	12.70	82	10.60	6 3	8.10
300	210	B.40	180	7.60	170	6.80	170	5.90	170	4.80	120	3.40
600	330	4.90	320	4.50	280	4.00	240	3.50	200	2.80	140	2.00
1000	380	3.80	340	3.50	310	3.10	270	2.70	220	2.20	150	1.60
1500	390	2.70	360	2.40	320	2.20	270	1.90	220	1.50	160	1.10
1E+04	470	0.64	430	0.59	390	0.53	340	0.45	270	0.37	190	0.26
1E+05	530	0.19	490	0.17	440	0.15	380	0.13	310	0.11	220	0.08
1E+06	570	0.20	520	0.18	470	0.17	400	0.14	330	0.12	230	0.08

$33 \, \mu F - 16 \, V - case size 2A$

	T 25	degC	T 45	degC	T 65	deqC	T 85	deqC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	7.20	1	7.20	1	7.20	1	7.20	1	6.10	1	5.00
10	11	9.60	11	9.60	11	9.60	11	9.60	10	8.10	8	6.70
50	64	10.40	64	10.40	64	10.40	64	10.40	54	8.80	45	7.30
100	150	12.80	150	12.80	150	12.80	150	12.50	120	10.40	89	7.60
300	270	7.70	260	7.10	260	6.30	260	5.50	240	4.50	170	3.20
600	480	4.60	440	4.20	390	3.70	340	3.20	280	2.60	200	1.90
1000	520	3.50	480	3.20	430	2.90	370	2.50	300	2.00	210	1.40
1500	540	2.50	490	2.30	440	2.00	380	1.80	310	1.40	220	1.00
1E+04	660	0.60	600	0.54	540	0.49	470	0.42	380	0.34	270	0.24
1E+05	740	0.16	680	0.14	610	0.13	530	0.11	430	0.09	300	0.06
1E+06	790	0.17	730	0.16	650	0.14	560	0.12	460	0.10	320	0.07

47 μ F - 16 V - case size 2A

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	i degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	7.20	1	7.20	1	7.20	1	7.20	1	6.10	1	5.00
10	16	9.60	16	9.60	16	9.60	16	9.60	14	8.10	11	6.70
50	91	10.40	91	10.40	91	10.40	91	10.40	77	8.80	63	7.20
100	210	12.80	210	12.80	210	12.80	180	11.10	150	9.10	120	6.50
300	370	6.50	370	5.90	370	5.30	350	4.60	290	3.70	200	2.60
600	570	3.80	520	3.50	470	3.10	410	2.70	330	2.20	230	1.60
1000	630	2.90	570	2.70	510	2.40	440	2.10	360	1.70	260	1.20
1500	650	2.10	590	1.90	530	1.70	460	1.50	370	1.20	260	0.85
1E+04	790	0.50	720	0.46	640	0.41	560	0.35	450	0.29	320	0.20
1E+05	890	0.15	810	0.14	720	0.12	630	0.11	510	0.09	360	0.06
1E+06	950	0.16	870	0.15	770	0.13	670	0.12	550	0.09	390	0.07

$68 \, \mu F - 16 \, V - case \, size \, 2A$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	2	7.20	2	7.20	2	7.20	2	7.20	2	6.10	1	5.00
10	24	9.60	24	9.60	24	9.60	24	9.60	20	8.10	17	6.70
50	130	10.40	130	10.40	130	10.40	130	10.40	110	8.80	90	7.20
100	310	12.80	290	12.00	260	10.70	220	9.20	180	7.60	180	5.40
300	530	5.40	530	4.90	490	4.40	420	3.80	350	3.10	240	2.20
600	690	3.20	430	2.90	560	2.60	490	2.20	400	1.80	280	1.30
1000	750	2.40	680	2.20	610	2.00	530	1.70	430	1.40	310	1.00
1500	770	1.70	710	1.60	630	1.40	550	1.20	450	1.00	320	0.70
1E+04	940	0.41	860	0.38	770	0.34	670	0.29	540	0.24	390	0.17
1E+05	1060	0.18	970	0.16	870	0.15	750	0.13	610	0.10	430	0.07
1E+06	1140	0.20	1040	0.18	930	0.16	800	0.14	660	0.11	460	0.08

$100 \, \mu F - 16 \, V - case size 4$

	T 25	degC	T 45	degC	T 65	deaC	T 85	degC	T 105	deqC	T 125	deaC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	٧	· mA	V	mΑ	٧	mΑ	V	mA	V	mΑ	V
1	3	7.20	3	7.20	3	7.20	3	7.20	2	6.10	2	5.00
10	35	9.60	35	9.60	35	9.60	35	9.60	29	8.10	24	6.70
50	190	10.40	190	10.40	190	10.40	190	10.40	160	8.80	130	7.10
100	450	12.30	410	11.30	350	10.10	310	8.70	260	7.10	260	5.00
300	780	5.00	760	4.60	680	4.10	590	3.60	480	2.90	340	2.10
600	950	3.00	870	2.70	770	2.40	670	2.10	550	1.70	390	1.20
1000	1030	2.30	940	2.10	840	1.90	730	1.60	600	1.30	420	0.94
1500	1070	1.60	980	1.50	870	1.30	760	1.10	620	0.93	440	0.66
1E+04	1300	0.39	1190	0.35	1060	0.32	920	0.27	750	0.22	530	0.16
1E+05	1470	0.17	1340	0.15	1200	0.14	1040	0.12	850	0.10	600	0.07
1E+06	1570	0.18	1430	0.17	1280	0.15	1110	0.13	910	0.11	640	0.08

150 $\mu\text{F}-16~\text{V}-\text{case size 4}$

Freq		degC Vpeak		degC Voeak	T 65 Irms	degC Voeak		degC Voeak		degC Voeak		degC Voeak
Hz	mA	V	mA	V	mA	VPEAR	mA	V	mA	VPEAR	mA	ν ν ν ν ν ν ν
1	4	7.20	4	7.20	4	7.20	4	7.20	3	6.10	3	5.00
10	52	9.60	52	9.60	52	9.60	52	9.60	44	8.10	36	6.70
50	290	10.40	290	10.40	290	10.40	270	9.90	230	8.10	160	5.90
100	570	9.50	470	8.70	410	7.80	3 9 0	6.70	390	5.50	310	3.90
300	960	3.90	870	3.60	780	3.20	680	2.80	550	2.20	390	1.60
600	1090	2.30	1000	2.10	890	1.90	770	1.60	630	1.30	450	0.94
1000	1190	1.80	1090	1.60	980	1.40	840	1.30	690	1.00	490	0.72
1500	1230	1.20	1130	1.10	1010	1.00	870	0.88	710	0.72	500	0.51
1E+04	1500	0.30	1370	0.27	1230	0.24	1060	0.21	870	0.17	610	0.12
1E+05	1700	0.19	1550	0.18	1380	0.16	1200	0.14	980	0.11	690	0.08
1E+06	1810	0.21	1650	0.19	1480	0.17	1280	0.15	1050	0.12	740	0.09

$220 \, \mu F - 16 \, V - case \, size \, 5$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	6	7.20	6	7.20	6	7.20	6	7.20	5	6.10	4	5.00
10	76	9.60	76	9.60	76	9.60	76	9.60	65	8.10	53	6.70
50	420	10.40	420	10.40	420	10.40	370	9.20	300	7.50	240	5.40
100	720	8.70	610	7.90	560	7.10	560	6.10	560	5.00	420	3.50
300	1270	3.50	1160	3.20	1040	2.90	900	2.50	740	2.00	520	1.40
600	1460	2.10	1330	1.90	1190	1.70	1030	1.50	840	1.20	600	0.85
1000	1590	1.60	1450	1.50	1300	1.30	1130	1.10	920	0.93	650	0.66
1500	1640	1.10	1500	1.00	1340	0.93	1160	0.80	950	0.66	670	0.46
1E+04	2000	0.27	1830	0.25	1640	0.22	1420	0.19	1160	0.16	820	0.11
1E+05	2260	0.13	2060	0.12	1850	0.10	1600	0.09	1310	0.07	920	0.05
1E+06	2410	0.16	2200	0.15	1970	0.13	1710	0.11	1390	0.09	990	0.07

330 $\mu\text{F}-16~\text{V}-\text{case size 5}$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	9	7.20	9	7.20	9	7.20	9	7.20	7	6.10	6	5.00
10	110	9.60	110	9.60	110	9.60	110	9.60	97	8.10	80	6.70
50	630	10.40	600	9.80	530	8.80	460	7.60	380	6.20	360	4.40
100	850	7.10	850	6.50	850	5.80	850	5.00	730	4.10	510	2.90
300	1560	2.90	1420	2.60	1270	2.40	1100	2.00	900	1.70	640	1.20
600	1790	1.70	1630	1.60	1460	1.40	1260	1.20	1030	0.99	730	0.70
1000	1950	1.30	1780	1.20	1590	1.10	1380	0.93	1130	0.76	800	0.54
1500	2010	0.93	1840	0.85	1640	0.76	1420	0.66	1160	0.54	820	0.38
1E+04	2450	0.22	2240	0.20	2000	0.18	1740	0.16	1420	0.13	1000	0.09
1E+05	2770	0.16	2530	0.14	2260	0.13	1960	0.11	1600	0.09	1130	0.06
1E+06	2960	0.20	2700	0.18	2410	0.16	2090	0.14	1710	0.11	1210	0.08

470 μ F - 16 V - case size 6

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1 .	12	7.20	12	7.20	12	7.20	12	7.20	10	6.10	9	5.00
10	160	9.40	160	9.60	160	9.60	160	9.60	140	8.10	110	6.70
50	900	9.90	820	9.10	700	8.10	610	7.00	520	5.70	520	4.10
100	1210	6.50	1210	6.00	1210	5.30	1170	4.60	960	3.80	680	2.70
300	2050	2.70	1870	2.40	1680	2.20	1450	1.90	1190	1.50	840	1.10
600	2350	1.60	2150	1.40	1920	1.30	1660	1.10	1360	0.91	960	0.64
1000	2570	1.40	2340	1.30	2100	1.20	1820	1.00	1480	0.82	1050	0.58
1500	2650	1.10	2420	1.00	2160	0.94	1870	0.81	1530	0.66	1080	0.47
1E+04	3230	0.29	2950	0.27	2640	0.24	2280	0.21	1860	0.17	1320	0.12
1E+05	3640	0.21	3330	0.19	2970	0.17	2580	0.15	2100	0.12	1490	0.08
1E+06	3890	0.29	3550	0.27	3180	0.24	2750	0.21	2250	0.17	1590	0.12

$680 \, \mu F - 16 \, V - case \, size \, 6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	18	7.20	18	7.20	18	7,20	18	7.20	15	6.10	12	5.00
10	240	9.60	240	9.60	240	9.60	240	9.60	200	8.10	160	6.70
50	1240	8.60	1040	7.90	880	7.00	760	6.10	750	5.00	680	3.50
100	1740	5.70	1740	5.20	1700	4.60	1470	4.00	1200	3.30	850	2.30
300	2580	2.30	2350	2.10	2100	1.90	1820	1.60	1490	1.30	1050	0.95
600	2950	1.40	2690	1.20	2410	1.10	2090	0.97	1700	0.79	1200	0.56
1000	3220	1.20	2940	1.10	2630	1.00	2280	0.87	1860	0.71	1320	0.50
1500	3330	1.00	3040	0.91	2720	0.81	2350	0.71	1920	0.58	1360	0.41
1E+04	4050	0.26	3700	0.23	3310	0.21	2870	0.18	2340	0.15	1650	0.10
1E+05	4570	0.19	4170	0.18	3730	0.16	3230	0.14	2640	0.11	1870	0.08
1E+06	4880	0.30	4460	0.27	3990	0.24	3450	0.21	2820	0.17	1990	0.12

$10 \mu F - 20 V$ - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	9.00	0	9.00	0	9.00	0	9.00	0	7.60	0	6.30
10	4	12.00	4	12.00	4	12.00	4	12.00	4	10.20	- 3	8.40
50	24	13.00	24	13.00	24	13.00	24	13.00	20	11.00	17	9.10
100	56	16.00	56	16.00	56	16.00	56	16.00	47	13.50	3 9	11.00
300	150	12.50	130	11.40	110	10.20	98	8.90	98	7.20	84	5.10
600	190	7.40	190	6.70	190	6.00	170	5.20	140	4.30	96	3.00
1000	260	5.70	230	5.20	210	4.60	180	4.00	150	3.30	100	2.30
1500	260	4.00	240	3.70	220	3.30	190	2.80	150	2.30	110	1.60
1E+04	320	0.96	290	0.88	260	0.79	230	0.48	190	0.56	130	0.39
1E+05	360	0.13	330	0.12	300	0.11	260	0.09	210	0.07	150	0.05
1E+06	390	0.14	360	0.13	320	0.11	280	0.10	220	0.08	160	0.06

15 μ F - 20 V - case size 1

Frea		degC Vpeak		degC Vpeak		degC Voeak		degC Voeak		5 degC Voeak		degC Vpeak
Hz	mA	V	mΑ	V								
1 1	1	9.00	1	9.00	1	9.00	1	9.00	0	7.60		6.30
10	_	12.00	_	12.00	_	12.00	7		6		5	8.40
50		13.00		13.00	-	13.00	•	13.00		11.00	25	9.10
100		16.00	84		84	16.00			70	13.20	52	9.90
300			150	9.20	150	8.30	150	7.20	140	5.90	100	4.10
600	280	6.00	260	5.50	230	4.90	200	4.20	160	3.50	120	2.40
1000	310		280	4.20	250	3.80	220	3.30	180	2.70	130	1.90
1500	320	3,20	290	3.00	260	2.70	230	2.30	190	1.90	130	1.30
1E+04	390	0.78	360	0.71	320	0.64	280	0.55	230	0.45	160	0.32
1E+05	440	0.16	400	0.14	360	0.13	310	0.11	260	0.09	180	0.06
1E+06	470		430		390	0.14	330	0.12	270	0.10	190	0.07
	.,.				2.0							

47 μ F - 20 V - case size 2A

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΆ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	2	9.00	2	9.00	2	9.00	2	9.00	1	7.60	1	6.30
10	20	12.00	20	12.00	20	12.00	20	12.00	17	10.20	14	8.40
50	110	13.00	110	13.00	110	13.00	110	13.00	95	11.00	78	8.90
100	260	15.80	250	14.50	210	12.90	180	11.20	150	9.10	150	6.50
300	460	6.50	460	5.90	410	5.30	350	4.60	290	3.70	200	2.60
600	570	3.80	520	3.50	470	3.10	410	2.70	330	2.20	230	1.60
1000	630	2.90	570	2.70	510	2.40	440	2.10	360	1.70	260	1.20
1500	650	2.10	590	1.90	530	1.70	460	1.50	370	1.20	260	0.85
1E+04	790	0.50	720	0.46	640	0.41	560	0.35	450	0.29	320	0.20
1E+05	890	0.25	810	0.23	720	0.20	6 30	0.18	510	0.14	360	0.10
1E+06	950	0.27	870	0.25	770	0.22	670	0.19	550	0.16	390	0.11

$100 \, \mu F - 20 \, V$ — case size 4

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	3	9.00	3	9.00	3	9.00	3	9.00	3	7.60	2	6.30
10	44	12.00	44	12.00	44	12.00	44	12.00	37	10.20	30	8.40
50	240	13.00	240	13.00	240	13.00	230	12.60	190	10.40	140	7.60
100	500	12.30	410	11.30	350	10.10	320	8.70	320	7.10	270	5.00
300	830	5.00	760	4.60	680	4.10	590	3.60	480	2.90	340	2.10
600	950	3.00	870	2.70	770	2.40	670	2.10	550	1.70	390	1.20
1000	1030	2.30	940	2.10	840	1.90	730	1.60	600	1.30	420	0.94
1500	1070	1.60	980	1.50	870	1.30	760	1.10	620	0.93	440	0.66
1E+04	1300	0.39	1190	0.35	1060	0.32	920	0.27	750	0.22	530	0.16
1E+05	1470	0.17	1340	0.15	1200	0.14	1040	0.12	850	0.10	600	0.07
1E+06	1570	0.18	1430	0.17	1280	0.15	1110	0.13	910	0.11	640	0.08

$150 \, \mu F - 20 \, V - case \, size \, 5$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	٧	mΑ	V	mΑ	V	mΑ	V
1	5	9.00	5	9.00	5	9.00	5	9.00	4	7.60	3	6.30
10	65	12.00	65	12.00	65	12.00	65	12.00	55	10.20	46	8.40
50	360	13.00	360	13.00	360	13.00	310	11.40	260	9.30	210	6.70
100	610	10.70	520	9.80	480	8.80	480	7.60	480	6.20	350	4.40
300	1080	4.40	980	4.00	880	3.60	760	3.10	620	2.50	440	1.80
600	1230	2.60	1130	2.40	1010	2.10	870	1.80	710	1.50	500	1.10
1000	1350	2.00	1230	1.80	1100	1.60	950	1.40	780	1.20	550	0.81
1500	1390	1.40	1270	1.30	1130	1.10	980	0.99	800	0.81	570	0.57
1E+04	1690	0.34	1550	0.31	1380	0.28	1200	0.24	980	0.19	690	0.14
1E+05	1910	0.16	1740	0.15	1560	0.13	1350	0.11	1100	0.09	780	0.07
1E+06	2040	0.19	1860	0.17	1670	0.15	1440	0.13	1180	0.11	830	0.08

220 μ F - 20 V - case size 5

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	٧	mΑ	V	mΑ	V
1	7	9.00	7	9.00	7	9.00	7	9.00	6	7.60	5	6.30
10	95	12.00	95	12.00	95	12.00	95	12.00	81	10.20	67	8.40
50	530	13.00	500	12.00	430	10.70	380	9.30	310	7.60	300	5.40
100	710	8.70	710	7.90	710	7.10	710	6.10	590	5.00	420	3.50
300	1270	3.50	1160	3.20	1040	2.90	900	2.50	740	2.00	520	1.40
600	1460	2.10	1330	1.90	1190	1.70	1030	1.50	840	1.20	600	0.85
1000	1590	1.60	1450	1.50	1300	1.30	1130	1.10	920	0.93	650	0.66
1500	1640	1.10	1500	1.00	1340	0.93	1160	0.80	950	0.66	670	0.46
1E+04	2000	0.27	1830	0.25	1640	0.22	1420	0.19	1160	0.16	820	0.11
1E+05	2260	0.19	2060	0.18	1850	0.16	1600	0.14	1310	0.11	920	0.08
1E+06	2410	0.22	2200	0.20	1970	0.18	1710	0.16	1390	0.13	990	0.09

$330~\mu\text{F}-20~\text{V}-\text{case size }6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	11	9.00	11	9.00	11	9.00	11	9.00	9	7.60	8	6.30
10	140	12.00	140	12.00	140	12.00	140	12.00	120	10.20	100	8.40
50	790	11.80	690	10.80	590	9.70	510	8.40	450	6.80	450	4.80
100	1060	7.80	1060	7.10	1060	6.40	980	5.50	800	4.50	570	3.20
300	1720	3.20	1570	2.90	1400	2.60	1210	2.30	990	1.80	700	1.30
600	1970	1.90	1800	1.70	1610	1.50	1390	1.30	1140	1.10	800	0.77
1000	2150	1.70	1960	1.50	1750	1.40	1520	1.20	1240	0.98	880	0.69
1500	2220	1.40	2020	1.30	1810	1.10	1570	0.97	1280	0.79	910	0.56
1E+04	2700	0.35	2470	0.32	2210	0.29	1910	0.25	1560	0.20	1100	0.14
1E+05	3050	0.17	2780	0.16	2490	0.14	2160	0.12	1760	0.10	1240	0.07
1E+06	3260	0.24	2970	0.22	2660	0.20	2300	0.17	1880	0.14	1330	0.10

470 $\mu\text{F}-20~\text{V}-\text{case size 6}$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	15	9.00	15	9.00	15	9.00	15	9.00	13	7.60	11	6.30
10	200	12.00	200	12.00	200	12.00	200	12.00	170	10.20	140	8.40
50	1050	10.50	870	9.60	740	8.60	640	7.40	640	6.10	570	4.30
100	1510	6.90	1510	6.30	1430	5.70	1240	4.90	1010	4.00	720	2.80
300	2180	2.80	1990	2.60	1780	2.30	1540	2.00	1260	1.60	890	1.20
600	2490	1.70	2280	1.50	2040	1.40	1760	1.20	1440	0.97	1020	0.48
1000	2720	1.50	2490	1.40	2220	1.20	1930	1.10	1570	0.87	1110	0.61
1500	2810	1.20	2570	1.10	2290	1.00	1990	0.86	1620	0.70	1150	0.50
1E+04	3430	0.31	3130	0.28	2800	0.25	2420	0.22	1980	0.18	1400	0.13
1E+05	3860	0.22	3530	0.20	3160	0.18	2730	0.15	2230	0.13	1580	0.09
1E+06	4130	0.30	3770	0.27	3370	0.24	2920	0.21	2380	0.17	1690	0.12

$10 \,\mu\text{F} - 25 \,\text{V} - \text{case size 1}$

Freq		degC Vpeak		degC Voeak		degC Vpeak		degC Vpeak		degC Vpeak	T 125 Irms	o degC Voeak
Hz	mΑ	V	mΑ	V								
1	0	11.20	0	11.20	0	11.20	0	11.20	0	9.50	0	7.90
10	5	15.00	5	15.00	5	15.00	5	15.00	5	12.70	4	10.50
50	30	16.20	30	16.20	30	16.20	30	16.20	25	13.80	21	11.40
100	70	20.00	70	20.00	70	20.00	70	19.80	58	16.50	43	12.30
300	140	12.50	120	11.40	120	10.20	120	8.90	120	7.20	84	5.10
600	240	7.40	210	6.70	190	6.00	170	5.20	140	4.30	96	3.00
1000	260	5.70	230	5.20	210	4.60	180	4.00	150	3.30	100	2.30
1500	260	4.00	240	3.70	220	3.30	190	2.80	150	2.30	110	1.60
1E+04	320	0.96	290	0.88	260	0.79	230	0.68	190	0.56	130	0.39
1E+05	290	0.26	330	0.24	300	0.21	260	0.18	210	0.15	150	0.11
1E+06	390	0.28	360	0.25	320	0.22	280	0.19	220	0.16	160	0.11

$15 \mu F - 25 V$ — case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	i degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	11.20	1	11.20	1	11.20	1	11.20	1	9.50	0	7.90
10	8	15.00	8	15.00	8	15.00	8	15.00	7	12.70	6	10.50
50	45	16.20	45	16.20	45	16.20	45	16.20	38	13.80	31	11.30
100	110	20.00	110	20.00	110	20.00	91	17.30	75	14.10	60	10.10
300	180	10.10	180	9.20	180	8.30	180	7.20	140	5.90	100	4.10
600	290	6.00	260	5.50	230	4.90	200	4.20	160	3.50	120	2.40
1000	310	4.60	280	4.20	250	3.80	220	3.30	180	2.70	130	1.90
1500	320	3.20	290	3.00	260	2.70	230	2.30	190	1.90	130	1.30
1E+04	390	0.78	360	0.71	320	0.64	280	0.55	230	0.45	160	0.32
1E+05	440	0.31	400	0.29	360	0.26	310	0.22	260	0.18	180	0.13
1E+06	470	0.33	430	0.31	390	0.27	330	0.24	270	0.19	190	0.14

22 μ F - 25 V - case size 2A

Freq		degC Voeak		degC Vpeak	T 65 Irms	degC Voeak		degC Voeak		degC Vpeak	T 125 Irms	degC Voeak
Hz	mΑ	V	mΑ	V	mΑ	v	mΑ	v	mΑ	V	mΑ	V
1	1	11.20	1	11.20	1	11.20	1	11.20	1	9.50	1	7.90
10	12	15.00	12	15.00	12	15.00	12	15.00	10	12.70	8	10.50
50	66	16.20	66	16.20	66	16.20	66	16.20	56	13.80	46	11.30
100	150	20.00	150	20.00	140	18.50	120	16.00	100	13.10	88	9.30
300	270	9.30	270	8.50	270	7.60	240	6.60	190	5.40	140	3.80
600	390	5.50	350	5.00	320	4.50	270	3.90	220	3.20	160	2.20
1000	420	4.20	380	3.90	340	3.50	300	3.00	240	2.50	170	1.70
1500	430	3.00	400	2.70	360	2.40	310	2.10	250	1.70	180	1.20
1E+04	530	0.72	480	0.66	430	0.59	370	0.51	310	0.42	220	0.29
1E+05	600	0.21	550	0.19	490	0.17	420	0.15	350	0.12	240	0.09
1E+06	640	0.23	580	0.21	520	0.18	450	0.16	370	0.13	260	0.09

$33 \, \mu F - 25 \, V - case size 2A$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	٧	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	11.20	1	11.20	1	11.20	1	11.20	1	9.50	1	7.90
10	18	15.00	18	15.00	18	15.00	18	15.00	15	12.70	13	10.50
50	99	16.20	99	16.20	99	16.20	99	16.20	83	13.60	67	11.00
100	230	18.90	210	17.30	180	15.40	150	13.30	130	10.90	130	7.70
300	400	7.70	380	7.10	340	6.30	200	5.50	240	4.50	170	3.20
600	480	4.60	440	4.20	390	3.70	340	3.20	280	2.60	200	1.90
1000	520	3.50	480	3.20	430	2.90	370	2.50	300	2.00	210	1.40
1500	540	2.50	490	2.30	440	2.00	380	1.80	310	1.40	220	1.00
1E+04	660	0.60	600	0.54	540	0.49	470	0.42	380	0.34	270	0.24
1E+05	740	0.26	680	0.24	610	0.21	530	0.19	430	0.15	300	0.11
1E+06	79 0	0.28	730	0.26	650	0.23	560	0.20	460	0.16	320	0.11

$47 \mu F - 25 V$ - case size 2A

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	2	11.20	2	11.20	2	11.20	2	11.20	2	9.50	1	7.90
10	26	15.00	26	15.00	26	15.00	26	15.00	22	12.70	18	10.50
50	140	16.20	140	16.20	140	16.20	140	16.00	110	13.20	84	9.70
100	300	15.80	250	14.50	210	12.90	190	11.20	190	9.10	160	4.50
300	500	6.50	460	5.90	410	5.30	350	4.60	290	3.70	200	2.60
600	570	3.80	520	3.50	470	3.10	410	2.70	330	2.20	230	1.60
1000	630	2.90	570	2.70	510	2.40	440	2.10	360	1.70	260	1.20
1500	650	2.10	590	1.90	530	1.70	460	1.50	370	1.20	260	0.85
1E+04	790	0.50	720	0.46	640	0.41	560	0.35	450	0.29	320	0.20
1E+05	890	0.31	810	0.29	720	0.26	630	0.22	510	0.18	360	0.13
1E+06	950	0.34	870	0.31	770	0.27	670	0.24	550	0.19	390	0.14

$68~\mu\text{F}-25~\text{V}-\text{case size}~4$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	3	11.20	3	11.20	- 3	11.20	3	11.20	2	9.50	2	7.90
10	37	15.00	37	15.00	37	15.00	37	15.00	31	12.70	26	10.50
50	200	16.20	200	16.20	200	16.20	200	15.60	160	12.80	120	9.30
100	410	15.00	340	13.70	290	12.20	270	10.60	270	8.70	230	6.10
300	680	6.10	620	5.60	560	5.00	480	4.30	390	3.50	280	2.50
600	780	3.60	720	3.30	640	3.00	550	2.60	450	2.10	320	1.50
1000	860	2.80	780	2.50	700	2.30	600	2.00	490	1.60	350	1.10
1500	880	2.00	810	1.80	720	1.60	620	1.40	510	1.10	360	0.80
1E+04	1080	0.47	980	0.43	880	0.39	760	0.33	620	0.27	440	0.19
1E+05	1210	0.17	1110	0.16	990	0.14	860	0.12	700	0.10	500	0.07
1E+06	1300	0.19	1180	0.17	1060	0.15	920	0.13	750	0.11	530	0.08

100 μ F - 25 V - case size 4

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	4	11.20	4	11.20	4	11.20	4	11.20	3	9.50	3	7.90
10	54	15.00	54	15.00	54	15.00	54	15.00	46	12.70	38	10.50
50	300	16.20	200	16.00	260	14.30	230	12.40	190	10.10	170	7.20
100	410	11.60	400	10.60	400	9.40	400	8.20	360	6.70	250	4.70
300	770	4.70	710	4.30	630	3.90	550	3.30	450	2.70	320	1.90
600	890	2.80	810	2.50	720	2.30	630	2.00	510	1.60	360	1.10
1000	970	2.20	880	2.00	790	1.80	680	1.50	560	1.20	400	0.88
1500	1000	1.50	910	1.40	820	1.20	710	1.10	580	0.88	410	0.62
1E+04	1220	0.36	1110	0.33	990	0.30	860	0.26	700	0.21	500	0.15
1E+05	1370	0.19	1250	0.18	1120	0.16	970	0.14	790	0.11	560	0.08
1E+06	1470	0.21	1340	0.19	1200	0.17	1040	0.15	850	0.12	600	0.09

150 μ F - 25 V - case size 5

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1,	6	11.20	6	11.20	6	11.20	6	11.20	5	9.50	4	7.90
10	81	15.00	81	15.00	81	15.00	81	15.00	69	12.70	57	10.50
50	450	16.20	420	14.90	370	13.30	320	11.50	260	9.40	260	6.70
100	600	10.70	600	9.80	600	8.80	600	7.60	500	6.20	350	4.40
300	1080	4.40	980	4.00	880	3.60	760	3.10	620	2.50	440	1.80
600	1230	2.60	1130	2.40	1010	2.10	870	1.80	710	1.50	500	1.10
1000	1350	2.00	1230	1.80	1100	1.60	950	1.40	780	1.20	550	0.81
1500	1390	1.40	1270	1.30	1130	1.10	980	0.99	800	0.81	570	0.57
1E+04	1690	0.34	1550	0.31	1380	0.28	1200	0.24	980	0.19	690	0.14
1E+05	1910	0.22	1740	0.20	1560	0.18	1350	0.15	1100	0.12	780	0.09
1E+06	2040	0.24	1860	0.22	1670	0.20	1440	0.17	1180	0.14	830	0.10

220 $\mu\text{F}-25~\text{V}-\text{case size }6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	i degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	٧	mΑ	V	mΑ	V
1	9	11.20	9	11.20	9	11.20	9	11.20	8	9.50	6	7.90
10	120	15.00	120	15.00	120	15.00	120	15.00	100	12.70	84	10.50
50	660	14.50	570	13.20	480	11.80	420	10.20	380	8.40	370	5.90
100	880	9.50	880	8.70	880	7.80	800	6.70	650	5.50	460	3.90
300	1400	3.90	1280	3.60	1150	3.20	990	2.80	810	2.30	570	1.60
600	1610	2.30	1470	2.10	1310	1.90	1140	1.60	930	1.30	660	0.94
1000	1750	2.10	1600	1.90	1430	1.70	1240	1.50	1010	1.20	720	0.84
1500	1810	1.70	1650	1.50	1480	1.40	1280	1.20	1050	0.97	740	0.68
1E+04	2210	0.43	2010	0.39	1800	0.35	1560	0.30	1270	0.25	900	0.18
1E+05	2490	0.21	2270	0.19	2030	0.17	1760	0.15	1440	0.12	1020	0.09
1E+06	2660	0.26	2430	0.24	2170	0.21	1880	0.18	1540	0.15	1090	0.11

$330 \, \mu\text{F} - 25 \, \text{V} - \text{case size } 6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V .	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	13	11.20	13	11.20	13	11.20	13	11.20	11	9.50	9	7.90
10	180	15.00	180	15.00	180	15.00	180	15.00	150	12.70	120	10.50
50	870	12.50	720	11.50	620	10.20	570	8.90	570	7.20	480	5.10
100	1320	8.30	1320	7.50	1200	6.70	1040	5.80	850	4.80	600	3.40
300	1820	3.40	1660	3.10	1490	2.80	1290	2.40	1050	2.00	740	1.40
600	2090	2.00	1910	1.80	1700	1.60	1480	1.40	1200	1.20	850	0.81
1000	2280	1.80	2080	1.60	1860	1.50	1610	1.30	1320	1.00	930	0.73
1500	2350	1.50	2150	1.30	1920	1.20	1660	1.00	1360	0.84	960	0.59
1E+04	2870	0.37	2620	0.34	2340	0.30	2030	0.26	1650	0.21	1170	0.15
1E+05	3230	0.18	2950	0.17	2640	0.15	2290	0.13	1870	0.11	1320	0.07
1E+06	3450	0.25	3150	0.23	2820	0.20	2440	0.18	1990	0.14	1410	0.10

$2,2 \mu F - 35 V$ - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	9.90	0	9.90	0	9.90	0	9.90	0	8.40	0	6.90
10	1	13.20	1	13.20	1	13.20	1	13.20	1	11.20	1	9.30
50	6	14.30	6	14.30	6	14.30	6	14.30	- 5	12.10	4	10.00
100	14	17.60	14	17.60	14	17.60	14	17.60	12	14.90	10	12.40
300	41	17.60	41	17.60	39	16.50	34	14.30	27	11.60	24	8.30
600	60	12.00	50	10.90	46	9.80	46	8.50	46	6.90	34	4.90
1000	65	9.20	65	8.40	65	7.50	65	6.50	53	5.30	38	3.80
1500	95	6.50	87	6.00	78	5.30	67	4.60	55	3.80	39	2.70
1E+04	120	1.60	110	1.40	95	1.30	82	1.10	67	0.90	47	0.64
1E+05	130	0.14	120	0.13	110	0.11	92	0.10	75	0.08	53	0.06
1E+06	140	0.15	130	0.14	110	0.12	99	0.10	81	0.09	57	0.06

3,3 μF – 35 V – case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	9.90	0	9.90	0	9.90	0	9.90	0	8.40	. 0	6.90
10	2	13.20	2	13.20	2	13.20	2	13,20	1	11.20	1	9.30
50	9	14.30	9	14.30	9	14.30	9	14.30	7	12.10	6	10.00
100	21	17.60	21	17.60	21	17.60	21	17.60	17	14.90	14	12.30
300	62	16.60	56	15.10	48	13.50	41	11.70	36	9.60	36	6.80
600	69	9.80	69	8.90	69	8.00	69	6.90	59	5.60	42	4.00
1000	98	7.50	98	6.90	92	6.10	79	5.30	65	4.30	46	3.10
1500	120	5.30	110	4.80	95	4.30	82	3.80	67	3.10	47	2.20
1E+04	140	1.30	130	1.20	. 120	1.00	100	0.90	82	0.74	58	0.52
1E+05	160	0.17	150	0.15	130	0.14	110	0.12	92	0.10	65	0.07
1E+06	170	0.18	160	0.17	140	0.15	120	0.13	98	0.10	- 70	0.07

4,7 μ F - 35 V - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	9.90	0	9.90	0	9.90	0	9.90	0	8.40	0	6.90
10	2	13.20	2	13,20	2	13,20	2	13.20	2	11.20	2	9.30
50	13	14.30	13	14.30	13	14.30	13	14.30	11	12.10	9	10.00
100	29	17.60	29	17.60	29	17.60	29	17.60	25	14.90	20	12.20
300	80	13.90	67	12.70	57	11.30	51	9.80	51	8.00	44	5.70
600	98	8.20	98	7.50	98	6.70	87	5.80	71	4.70	50	3.40
1000	130	6.30	120	5.80	110	5.20	95	4.50	78	3.70	55	2.60
1500	140	4.50	130	4.10	110	3.60	98	3.20	80	2.60	57	1.80
1E+04	170	1.10	150	0.98	140	0.87	120	0.76	98	0.62	69	0.44
1E+05	190	0.20	170	0.18	160	0.17	130	0.14	110	0.12	78	0.08
1E+06	200	0.22	190	0.20	170	0.18	140	0.15	120	0.12	83	0.09

$6.8 \mu F - 35 V - case size 1$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	9.90	0	9.90	0	9.90	0	9.90	0	8.40	0	6.90
10	3	13.20	3	13.20	3	13.20	3	13.20	3	11.20	2	9.30
50	18	14.30	18	14.30	18	14.30	18	14.30	15	12.10	13	10.00
100	42	17.60	42	17.60	42	17.60	42	17.60	35	14.70	27	11.30
300	89	11.60	77	10.60	73	9.50	73	8.20	73	6.70	53	4.70
600	140	6.80	140	6.30	120	5.60	110	4.80	86	4.00	61	2.80
1000	160	5.30	150	4.80	130	4.30	110	3.70	94	3.00	66	2.20
1500	170	3.70	150	3.40	140	3.00	120	2.60	97	2.10	68	1.50
1E+04	200	0.89	190	0.82	170	0.73	140	0.63	120	0.52	83	0.36
1E+05	230	0.24	210	0.22	190	0.20	160	0.17	130	0.14	94	0.10
1E+06	250	0.26	220	0.24	200	0.21	170	0.18	140	0.15	100	0.11

$10 \mu F - 35 V - case size 2A$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 10	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V								
1	0	9.90	0	9.90	0	9.90	0	9.90	0	8.40	О	6.90
10	5	13.20	5	13.20	5	13.20	5	13.20	4	11.20	3	9.30
50	27	14.30	27	14.30	27	14.30	27	14.30	23	12.10	19	10.00
100	62	17.60	62	17.60	62	17.60	61	17.30	51	14.30	37	10.50
300	110	10.70	110	9.70	110	8.70	110	7.50	100	6.20	72	4.40
600	200	6.30	180	5.70	160	5.10	140	4.40	120	3.60	82	2.60
1000	220	4.80	200	4.40	180	4.00	160	3.40	130	2.80	89	2.00
1500	230	3.40	210	3.10	180	2.80	160	2.40	130	2.00	92	1.40
1E+04	280	0.82	250	0.75	230	0.67	200	0.58	160	0.47	110	0.34
1E+05	310	0.11	280	0.10	250	0.09	220	0.08	180	0.06	130	0.04
1E+06	330	0.12	300	0.11	270	0.10	230	0.08	190	0.07	140	0.05

$15 \, \mu F - 35 \, V - case size 2A$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	9.90	1	9.90	1	9.90	1	9.90	1	8.40	0	6.90
10	7	13.20	7	13.20	7	13.20	7	13.20	6	11.20	5	9.30
50		14.30	40	14.30	40	14.30	40	14.30	34	12.10	28	10.00
100	93	17.60	93	17.60	91	17.20	79	14.90	64	12.20	53	8.70
300	160	8.70	160	7.90	160	7.10	150	6.20	120	5.00	88	3.60
600	250	5.10	220	4.70	200	4.20	170	3.60	140	3.00	100	2.10
1000	270	4.00	250	3.40	220	3.20	190	2.80	160	2.30	110	1.60
1500	280	2.80	250	2.50	230	2.30	200	2.00	160	1.60	110	1.10
1E+04	340	0.67	310	0.61	280	0.55	240	0.47	200	0.39	140	0.27
1E+05	380	0.13	350	0.12	310	0.11	270	0.10	220	0.08	160	0.05
1E+06	410	0.14	370	0.13	330	0.12	290	0.10	230	0.08	170	0.06

$22 \mu F - 35 V$ - case size 2A

	T 25	degC		degC		degC	T 85	degC		5 degC		degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V								
1	1	9.90	1	9.90	1	9.90	1	9.90	1	8.40	1	6.90
10	11	13.20	11	13.20	11	13.20	11	13.20	9	11.20	7	9.30
50	59	14.30	59	14.30	59	14.30	59	14.30	49	12.10	40	9.80
100	140	17.50	130	16.00	110	14.30	96	12.40	78	10.10	78	7.10
300	240	7.20	240	6.50	210	5.80	180	5.10	150	4.10	110	2.90
600	300	4.20	270	3.90	240	3.40	210	3.00	170	2.40	120	1.70
1000	320	3.30	300	3.00	260	2.70	230	2.30	190	1.90	130	1.30
1500	330	2.30	310	2.10	270	1.90	240	1.60	190	1.30	140	0.94
1E+04	410	0.55	370	0.50	330	0.45	290	0.39	240	0.32	170	0.22
1E+05	460	0.16	420	0.15	380	0.13	320	0.11	270	0.09	190	0.07
1E+06	490	0.17	450	0.16	400	0.14	350	0.12	280	0.10	200	0.07

33 μ F - 35 V - case size 4

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V .	mΑ	V
1	1	9.90	1	9.90	1	9.90	. 1	9.90	1	8.40	1	6.90
10	16	13.20	16	13.20	16	13.20	16	13.20	13	11.20	11	9.30
50	88	14.30	88	14.30	88	14.30	88	14.30	74	12.00	59	9.60
100	210	16.40	180	15.00	160	13.40	130	11.60	120	9.50	120	6.70
300	360	6.70	330	6.10	300	5.50	260	4.80	210	3.90	150	2.70
600	420	4.00	380	3.60	340	3.20	300	2.80	240	2.30	170	1.60
1000	460	3.10	420	2.80	370	2.50	320	2.20	260	1.80	190	1.20
1500	470	2.20	430	2.00	380	1.80	330	1.50	270	1.20	190	0.88
1E+04	570	0.52	520	0.47	470	0.42	410	0.37	330	0.30	230	0.21
1E+05	650	0.09	590	0.08	530	0.07	460	0.06	370	0.05	260	0.04
1E+06	690	0.10	630	0.09	560	0.08	490	0.07	400	0.06	280	0.04

$47 \mu F - 35 V$ — case size 4

	T 25	degC	T: 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	٧	mΑ	V
1	2	9.90	2	9.90	2	9.90	2	9.90	1	8.40	1	6.90
10	23	13.20	23	13.20	23	13.20	23	13.20	19	11.20	16	9.30
50	130	14.30	130	14.30	130	14.30	120	14.00	100	11.50	73	8.40
100	260	13.70	220	12.50	190	11.20	170	9.70	170	7.90	140	5.60
300	430	5.60	400	5.10	350	4.60	310	4.00	250	3.20	180	2.30
600	500	3.30	450	3.00	410	2.70	350	2.30	290	1.90	200	1.40
1000	540	2.50	490	2.30	440	2.10	380	1.80	310	1.50	220	1.00
1500	560	1.80	510	1.60	460	1.50	400	1.30	320	1.00	230	0.73
1E+04	680	0.43	620	0.39	560	0.35	480	0.31	390	0.25	280	0.18
1E+05	770	0.11	700	0.10	630	0.09	540	0.08	440	0.06	310	0.04
1E+06	820	0.12	750	0.11	670	0.10	580	0.08	470	0.07	340	0.05

$68~\mu\text{F}-35~\text{V}-\text{case size}~5$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	2	9.90	2	9.90	2	9.90	2	9.90	2	8.40	2	6.90
10	33	13.20	33	13.20	33	13.20	33	13.20	28	11.20	23	9.30
50	180	14.30	180	14.30	170	13.80	150	11.90	120	9.70	100	6.90
100	270	11.20	240	10.20	240	9.10	240	7.90	240	6.50	170	4.60
300	510	4.60	460	4.20	420	3.70	360	3.20	290	2.60	210	1.90
600	580	2.70	530	2.50	480	2.20	410	1.90	340	1.60	240	1.10
1000	640	2.10	580	1.90	520	1.70	450	1.50	370	1.20	260	0.85
1500	660	1.50	600	1.30	540	1.20	460	1.00	380	0.85	270	0.60
1E+04	800	0.35	730	0.32	650	0.29	570	0.25	460	0.20	330	0.14
1E+05	900	0.09	820	0.08	740	0.07	640	0.06	520	0.05	370	0.04
1E+06	960	0.10	880	0.09	790	0.08	680	0.07	560	0.06	390	0.04

100 μ F - 35 V - case size 6

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	4	9.90	4	9.90	4	9.90	4	9.90	3	8.40	3	6.90
10	48	13.20	48	13.20	48	13.20	48	13.20	41	11.20	34	9.30
50	260	14.30	260	14.00	230	12.50	200	10.80	160	8.90	150	6.30
100	360	10.10	350	9.30	350	8.30	350	7.20	320	5.90	220	4.10
300	680	4.20	620	3.80	550	3.40	480	2.90	390	2.40	280	1.70
600	780	2.40	710	2.20	640	2.00	550	1.70	450	1.40	320	1.00
1000	850	2.20	780	2.00	690	1.80	600	1.60	490	1.30	350	0.90
1500	880	1.80	800	1.60	720	1.50	620	1.30	510	1.00	360	0.73
1E+04	1070	0.46	970	0.42	870	0.37	760	0.32	620	0.26	440	0.19
1E+05	1200	0.10	1100	0.09	980	0.08	850	0.07	700	0.06	490	0.04
1E+06	1290	0.13	1180	0.12	1050	0.10	910	0.09	740	0.07	530	0.05

150 $\mu F - 35 V - case size 6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	5	9.90	5	9.90	5	9.90	- 5	9.90	5	8.40	4	6.90
10	72	13.20	72	13.20	72	13.20	72	13.20	61	11.20	50	9.30
50	400	13.50	360	12.30	300	11.00	260	9.50	230	7.80	230	5.50
100	530	8.90	530	8.10	530	7.20	510	6.30	410	5.10	290	3.60
300	890	3.60	810	3.30	730	3.00	630	2.40	510	2.10	360	1.50
600	1020	2.10	930	2.00	830	1.70	720	1.50	590	1.20	420	0.87
1000	1110	1.90	1010	1.80	910	1.60	790	1.40	640	1.10	450	0.78
1500	1150	1.60	1050	1.40	940	1.30	810	1.10	660	0.90	470	0.64
1E+04	1400	0.40	1280	0.36	1140	0.33	990	0.28	810	0.23	570	0.16
1E+05	1580	0.13	1440	0.12	1290	0.11	1120	0.09	910	0.08	640	0.05
1E+06	1690	0.16	1540	0.15	1380	0.13	1190	0.11	970	0.09	690	0.07

$2,2 \, \mu F - 40 \, V - case size 1$

	T 25	degC	T 45	deqC	T /E	degC	TOE	deaC	T 105	5 deaC	T 100	5 deaC
		_				-		_		_		_
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V.	mΑ	V	mΑ	V	mΑ	V	mΑ	.V
1	0	11.30	0	11.30	0	11.30	0	11.30	0	9.60	0	7.90
10	1	15.10	1	15.10	1	15.10	1	15.10	1	12.80	1	10.60
50	7	16.40	7	16.40	7	16.40	7	16.40	6	13.90	5	11.50
100	16	20.20	16	20.20	16	20.20	16	20.20	13	17.10	11	14.10
300	47	20.20	44	18.60	39	16.50	- 34	14.30	28	11.70	27	8.30
600	55	12.00	53	11.00	53	9.80	53	8.50	49	6.90	34	4.90
1000	75	9.20	75	8.40	75	7.50	65	6.50	53	5.30	38	3.80
1500	. 95	6.50	87	6.00	78	5.30	67	4.60	55	3.80	39	2.70
1E+04	120	1.60	110	1.40	95	1.30	82	1.10	67	0.90	47	0.64
1E+05	130	0.14	120	0.13	110	0.11	92	0.10	75	0.08	53	0.06
1E+06	140	0.15	130	0.14	110	0.12	99	0.10	81	0.09	57	0.06

3,3 μ F - 40 V - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	o degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	11.30	0	11.30	0	11.30	0	11.30	0	9.60	0	7.90
10	2	15.10	2	15.10	2	15.10	2	15.10	2	12.80	1	10.60
50	10	16.40	10	16.40	10	16.40	10	16.40	8	13.90	7	11.50
100	23	20.20	23	20.20	23	20.20	23	20.20	20	17.00	16	14.00
300	67	16.60	56	15.10	48	13.50	41	11.70	41	9.60	37	6.80
600	79	9.80	79	8.90	79	8.00	73	6.90	59	5.60	42	4.00
1000	110	7.50	100	6.90	92	6.10	79	5.30	65	4.30	46	3.10
1500	120	5.30	110	4.80	95	4.30	82	3.80	67	3.10	47	2.20
1E+04	140	1.30	130	1.20	120	1.00	100	0.90	82	0.74	58	0.52
1E+05	160	0.17	150	0.15	130	0.14	110	0.12	92	0.10	65	0.07
1E+06	170	0.18	160	0.17	140	0.15	120	0.13	98	0.10	70	0.07

4,7 μ F - 40 V - case size 1

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	i degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	11.30	0	11.30	0	11.30	0	11.30	0	9.60	0	7.90
10	3	15.10	3	15.10	3	15.10	- 3	15.10	2	12.80	2	10.60
50	14	16.40	14	16.40	14	16.40	14	16.40	12	13.90	10	11.50
100	33	20.20	33	20.20	33	20.20	33	20.20	28	16.90	22	13.40
300	77	13.90	64	12.70	58	11.40	58	9.80	58	8.00	44	5.70
600	110	8.20	110	7.50	100	6.70	87	5.80	71	4.70	50	3.40
1000	130	6.30	120	5.80	110	5.20	95	4.50	78	3.70	55	2.60
1500	140	4.50	130	4.10	110	3.60	98	3.20	80	2.60	57	1.80
1E+04	170	1.10	150	0.98	140	0.87	120	0.76	9 8	0.62	69	0.44
1E+05	190	0.20	170	0.18	160	0.17	130	0.14	110	0.12	78	0.08
1E+06	200	0.22	190	0.20	170	0.18	140	0.15	120	0.12	83	0.09

$6.8 \mu F - 40 V - case size 1$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	11.30	0	11.30	0	11.30	0	11.30	0	9.60	0	7.90
10	4	15.10	4	15.10	4	15.10	4	15.10	3	12.80	3	10.60
50	21	16.40	21	16.40	21	16.40	21	16.40	18	13.90	14	11.50
100	48	20.20	48	20.20	48	20.20	46	19.30	38	15.90	28	11.50
300	85	11.60	84	10.60	84	9.50	84	8.20	75	6.70	53	4.70
600	150	6.80	140	6.30	120	5.60	110	4.80	86	4.00	61	2.80
1000	160	5.30	150	4.80	130	4.30	110	3.70	94	3.00	66	2.20
1500	170	3.70	150	3.40	140	3.00	120	2.60	97	2.10	68	1.50
1E+04	200	0.89	190	0.82	170	0.73	140	0.63	120	0.52	83	0.36
1E+05	230	0.24	210	0.22	190	0.20	160	0.17	130	0.14	94	0.10
1E+06	250	0.26	220	0.24	200	0.21	170	0.18	140	0.15	100	0.11

$10 \mu F - 40 V$ - case size 2A

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	0	11.30	O.	11.30	0	11.30	0	11.30	0	9.60	0	7.90
10	6	15.10	6	15.10	6	15.10	6	15.10	5	12.80	4	10.60
50	30	16.40	30	16.40	30	16.40	30	16.40	26	13.90	21	11.50
100	71	20.20	71	20.20	71	20.20	64	18.20	52	14.80	41	10.60
300	120	10.70	120	9.70	120	8.70	120	7.50	100	6.20	72	4.40
600	200	6.30	180	5.70	160	5.10	140	4.40	120	3.60	82	2.60
1000	220	4.80	200	4.40	180	4.00	160	3.40	130	2.80	89	2.00
1500	230	3.40	210	3.10	180	2.80	160	2.40	130	2.00	92	1.40
1E+04	280	0.82	250	0.75	230	0.67	200	0.58	160	0.47	110	0.34
1E+05	310	0.11	280	0.10	250	0.09	220	0.08	180	0.06	130	0.04
1E+06	330	0.12	300	0.11	270	0.10	230	0.08	190	0.07	140	0.05

μ F - 40 V - case size 2A

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	11.30	1	11.30	1	11.30	1	11.30	1	9.60	0	7.90
10	8	15.10	8	15.10	8	15.10	8	15.10	7	12.80	6	10.60
50	46	16.40	46	16.40	46	16.40	46	16.40	38	13.80	32	11.40
100	110	20.20	100	19.40	92	17.30	79	15.00	65	12.20	61	8.70
300	180	8.70	180	7.90	180	7.10	150	6.20	120	5.00	88	3.60
600	250	5.10	220	4.70	200	4.20	170	3.60	140	3.00	100	2.10
1000	270	4.00	250	3.60	220	3.20	190	2.80	160	2.30	110	1.60
1500	280	2.80	250	2.50	230	2.30	200	2.00	160	1.60	110	1.10
1E+04	340	0.67	310	0.61	280	0.55	240	0.47	200	0.39	140	0.27
1E+05	380	0.13	350	0.12	310	0.11	270	0.10	220	0.08	160	0.05
1E+06	410	0.14	370	0.13	330	0.12	290	0.10	230	0.08	170	0.06

μ F - 40 V - case size 4

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	1	11.30	1	11.30	1	11.30	1	11.30	1	9.60	1	7.90
10	12	15.10	12	15.10	12	15.10	12	15.10	10	12.80	8	10.60
50	67	16.40	67	16.40	67	16.40	67	16.40	56	13.80	46	11.20
100	160	19.90	150	18.20	130	16.20	110	14.00	89	11.50	89	8.10
300	270	8.20	270	7.50	240	6.70	210	5.80	170	4.70	120	3.30
600	340	4.80	310	4.40	280	3.90	240	3.40	200	2.80	140	2.00
1000	370	3.70	340	3.40	300	3.00	260	2.60	210	2.10	150	1.50
1500	380	2.60	350	2.40	310	2.10	270	1.90	220	1.50	160	1.10
1E+04	460	0.63	420	0.57	380	0.51	330	0.44	270	0.36	190	0.26
1E+05	520	0.11	480	0.10	430	0.09	370	0.08	200	0.06	210	0.05
1E+06	560	0.12	510	0.11	460	0.10	400	0.08	320	0.07	230	0.05

μ F - 40 V - case size 4

Freq		degC Vpeak		degC Vpeak		degC Vpeak	T 85 Irms	degC Vpeak	T 105 Irms	degC Vpeak		5 degC Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
. 1	1	11.30	1	11.30	1	11.30	1	11.30	. 1	9.60	1	7.90
10	18	15.10	18	15.10	18	15.10	18	15.10	15	12.80	13	10.60
50	100	16.40	100	16.40	100	16.40	99	16.20	83	13.50	62	10.00
100	220	16.40	180	15.00	160	13.40	130	11.60	130	9.50	120	6.70
300	370	6.70	330	6.10	300	5.50	260	4.80	210	3.90	150	2.70
600	420	4.00	380	3.60	340	3.20	300	2.80	240	2.30	170	1.60
1000	460	3.10	420	2.80	370	2.50	320	2.20	260	1.80	190	1.20
1500	470	2.20	430	2.00	380	1.80	330	1.50	270	1.20	190	0.88
1E+04	570	0.52	520	0.47	470	0.42	410	0.37	330	0.30	230	0.21
1E+05	650	0.09	590	0.08	530	0.07	460	0.06	370	0.05	260	0.04
1E+06	690	0.10	6 30	0.09	560	0.08	490	0.07	400	0.06	280	0.04

47 μ F - 40 V - case size 5

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	2	11.30	2	11.30	2	11.30	2	11.30	2	9.60	1	7.90
10	26	15.10	26	15.10	26	15.10	26	15.10	22	12.80	18	10.60
50	140	16.40	140	16.40	140	16.40	140	15.90	110	13.10	83	9.50
100	290	15.40	240	14.10	210	12.60	190	10.90	190	8.90	160	6.30
300	490	6.30	450	5.80	400	5.20	350	4.50	280	3.60	200	2.60
600	560	3.70	510	3.40	460	3.00	400	2.60	320	2.20	230	1.50
1000	610	2.90	560	2.60	500	2.30	430	2.00	350	1.70	250	1.20
1500	630	2.00	580	1.80	510	1.70	450	1.40	360	1.20	260	0.83
1E+04	770	0.49	700	0.44	630	0.40	540	0.34	440	0.28	310	0.20
1E+05	870	0.09	790	0.08	710	0.07	610	0.06	500	0.05	350	0.04
1E+06	930	0.10	850	0.09	760	0.08	65 0	0.07	530	0.06	380	0.04

$68~\mu\text{F}-40~\text{V}-\text{case size}~5$

Freq	T 25 Irms	degC Voeak		degC Voeak		degC Vpeak		degC Voeak	T 105 Irms	5 degC Voeak		degC Voeak
Hz	mA	V	mA	V	mΑ	V	mA	V	mA	VPEAK	mΑ	VPEak
1		11.30		11.30		11.30		11.30	2	9.60	2	7.90
10	37	15.10	37	15.10	37	15.10		15.10	31	12.80	26	10.60
50	210	16.40	200	15.50	170	13.80	150	12.00	120	9.80	120	6.90
100	270	11.20	270	10.20	270	9.10	270	7.90	240	6.50	170	4.60
300	510	4.60	460	4.20	420	3.70	360	3.20	290	2.60	210	1.90
600	580	2.70	530	2.50	480	2.20	410	1.90	340	1.60	240	1.10
1000	640	2.10	580	1.90	520	1.70	450	1.50	370	1.20	260	0.85
1500	660	1.50	600	1.30	540	1.20	460	1.00	380	0.85	270	0.60
1E+04	800	0.35	730	0.32	650	0.29	570	0.25	460	0.20	330	0.14
1E+05	900	0.08	820	0.07	740	0.06	640	0.05	520	0.04	370	0.03
1E+06	960	0.09	880	0.08	79 0	0.07	680	0.06	560	0.05	390	0.04

$100 \, \mu F - 40 \, V - case size 6$

	T 25	degC	T 45	degC	T 65	degC	T 85	degC	T 105	5 degC	T 125	5 degC
Freq	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak	Irms	Vpeak
Hz	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V	mΑ	V
1	4	11.30	4	11.30	4	11.30	4	11.30	3	9.60	3	7.90
10	55	15.10	55	15.10	55	15.10	55	15.10	46	12.80	38	10.60
50	300	15.40	270	14.10	230	12.60	200	10.90	170	8.90	170	6.30
100	400	10.10	400	9.30	400	8.30	390	7.20	320	5.90	220	4.10
300	680	4.20	620	3.80	550	3.40	480	2.90	390	2.40	280	1.70
600	780	2.40	710	2.20	640	2.00	550	1.70	450	1.40	320	1.00
1000	850	2.20	780	2.00	690	1.80	600	1.60	490	1.30	350	0.90
1500	880	1.80	800	1.60	720	1.50	620	1.30	510	1.00	360	0.73
1E+04	1070	0.46	970	0.42	870	0.37	760	0.32	620	0.26	440	0.19
1E+05	1200	0.10	1100	0.09	980	0.08	850	0.07	700	0.06	490	0.04
1E+06	1290	0.13	1180	0.12	1050	0.10	910	0.09	740	0.07	530	0.05
12,00	1270	0.15	1100	0.12	1030	0.10	710	0.07	740	0.07	330	0.03

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

SOLID ALUMINIUM CAPACITORS

- Miniature type
- Single ended
- Epoxy potted
- Long life
- General and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)

Tolerance on nominal capacitance

Rated voltage range, UR (R5 series)

Category temperature range

Endurance test at 85 °C

Basic specification

Climatic category, IEC 68

0,1 to 68 μ F

± 20% (± 10% to special order)

6.3 to 40 V

-55 to +85 °C

5000 h

IEC 384-4, long-life grade

55/085/56

Selection chart for $C_{\mbox{nom}}$ -UR and relevant case sizes.

C _{nom}		U	R (V)			
μF	6,3	10	16	25	35	40
0,1						1
0,15						1
0,22						1
0,33						1
0,47						1
0,68						1
1				1	1	2*
1,5 2,2				1		2
2,2				1		2
3,3			1	1*		
4,7			1	2*		
6,8			1	2		
10		1	2	2*		
15		1	2			
22	1	2				
33		2				
47	2					
68	2					

case size	maximum dimensions (mm)	
1 2	12,5 x 8,5 x 4,5 12,5 x 8,5 x 6	

^{*} Available to special order.

APPLICATION

These capacitors are for filtering, smoothing, coupling and decoupling purposes in general and industrial applications. They utilize advanced technology to achieve long life, high reliability, high stability and low temperature dependence.

The capacitors have a very low and stable leakage current, small dimensions and a fixed pitch of 5 mm. Thanks to the potted execution they are particularly suited to withstand severe shock and vibration tests.

The taped version is suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitor is of a construction with a highly etched aluminium plate anode, aluminium oxide as a dielectric and a solid cathode. The capacitor is potted with epoxy resin in a blue case.

The capacitor is available in three styles, all with soldered-copper radial leads:

style 1: with short leads;

style 2: with long leads of which the anode lead has a flattened area at the end;

style 3: with long leads (without flattened area) on tape on reel, positive leading.

MECHANICAL DATA

Dimensions in mm

Fig. 1 Style 1; see Table 1a for dimensions T and W.

Note: Capacitors with other lead lengths are available to special order.

Fig. 2 Style 2; see Table 1a for dimensions T and W.

Table 1a

case size	T _{max}	W _{max}	mass g
1	4,5	8,5	0,4
2	6	8,5	0,7

7Z85986.2

direction of tape transport (positive leading)

Fig. 3 Style 3; see Table 1b for dimensions.

Table 1b

	symbol	value	tolerance	remarks
Body thickness	Т	4,5-6	max.	for case sizes 1 and 2 resp.
Body width	Wb	8	max.	
Component alignment	Δĥ	0	± 1	
Lead-wire diameter	d	0,6	+0,02/-0	
Lead straightness	Δs	0	± 0,5	
Length of snipped leads	L	11	max.	
Lead-to-lead distance	F	5	+ 0,4/-0,2	
Pitch of components	P	12,7	± 1	
Feed-hole pitch	Po	12,7	± 0,2	*
Feed-hole centre to lead	P ₁	3,85	± 0,5	
Feed-hole centre to component centre	P ₂	6,35	± 1	
Feed-hole diameter	$\overline{D_0}$	4	± 0,2	
Height of component from tape centre	H	18,5	± 0,5	
Component height	H ₁	32	max.	-
Tape width	W	18	± 0,5	
Hold-down tape width	Wo	6	± 0,5	Feed hole shall be free
Hole position	W ₁	9	+ 0,5/-0,2	
Hold-down tape position	W ₂	0,5	+ 0,5/-0,2	
Total tape thickness	t	0,9	max.	

Cumulative pitch error: \pm 0,5 mm/4 pitches, and \pm 1 mm/20 pitches.

Marking

The capacitors are marked with: nominal capacitance, rated voltage, "+" signs to identify the anode terminal, tolerance code ($M = \pm 20\%$, $K = \pm 10\%$), date code (year and month) and name of manufacturer.

Mounting

The diameter of the mounting holes in the printed-wiring boards is 0.8 ± 0.1 mm, except that of the hole for the anode lead of style 2 capacitors: 1.3-0.2 mm.

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 93 to 106 kPa and a relative humidity of 45 to 75%. See also the corresponding paragraphs.

Table 2

14010	, 6										
UR	nom.	max. r.m.s.		c. leakage	max.	max.	max.	case	catalogue n	umber 2222 1	24 followed by
<i>)</i> \	cap.	ripple current at T _{amb} = 85 °C*	current at U _R a		tan δ	ESR	impedance at 100 kHz**	size			
V	μF	mA	15 s	1 min		Ω	Ω		style 1	style 2	style 3
6,3	22 47 68	20 42 61	3,5 7,4 10,7	1,4 3,0 4,3	0,15 0,15 0,15	14 6,4 4,4	1,3 0,7 0,5	1 2 2	53229 53479 53689	73229 73479 73689	23229 23479 23689
10	10 15 22 33	14 21 31 47	2,5 3,8 5,5 8,3	1,0 1,5 2,2 3,3	0,15 0,15 0,15 0,15	30 20 14 9	1,5 1 0,7 0,5	1 1 2 2	54109 54159 54229 54339	74109 74159 74229 74339	24109 24159 24229 24339
16	3,3 4,7 6,8 10 15	8 11 16 23 34	1,3 1,9 2,7 4,0 6,0	0,5 0,8 1,1 1,6 2,4	0,10 0,10 0,10 0,10 0,10	61 43 29,5 20 13,5	7 2 1,5 1 0,7	1 1 1 2 2	55338 55478 55688 55109 55159	75338 75478 75688 75109 75159	25338 25478 25688 25109 25159
25	1 1,5 2,2 3,3▲ 4,7▲ 6,8	4 5 8 12 17 24	0,6 0,9 1,4 2,1 2,9 4,2	0,3 0,4 0,6 0,8 1,2	0,10 0,10 0,10 0,10 0,10 0,10	200 135 91 61 43 29,5	20 15 10 7 5 3	1 1 1 1 2 2	56108 56158 56228 56338 56478 56688	76108 76158 76228 76338 76478 76688	26108 26158 26228 26338 26478 26688
	10▲	35	6,3	2,5	0,15	20	2	2	56109	76109	2610

^{*} For calculation of the max. ripple current at these and other frequencies and temperatures, see paragraphs "Voltage" and "Ripple current".

^{**} Versions with lower values of max. d.c. leakage current or max. impedance are available to special order.

[▲] Available to special order.

2222 124

DEVELOPMENT DATA

Table 2 (continued)

UR	nom.	max. r.m.s. max. d.c. leakage max. max. max. ripple current current (μA) ** tan δ ESR impedance		case	catalogue number 2222 124 followed by						
	cap.	ripple current at T _{amb} = 85 °C*	at UR at		tan δ	ESR	impedance at 100 kHz**	size			
V	μF	mA	15 s	1 min		Ω	Ω		style 1	style 2	style 3
35	1	3	0,9	0,4	0,10	200	15	1	50108	70108	20108
40	0,1	0,4	0,1	0,04	0,10	1990	70	1	57107	77107	27107
	0,15	0,5	0,15	0,06	0,10	1330	50	1	57157	77157	27157
	0,22	0,8	0,22	0,08	0,10	910	30	1	57227	77227	27227
	0,33	1	0,33	0,13	0,10	610	30	1	57337	77337	27337
	0,47	2	0,5	0,2	0,10	430	20	1	57477	77477	27477
	0,68	2	0,7	0,3	0,10	295	15	1	57687	77687	27687
	1,0▲	4	1,0	0,4	0,10	200	10	2	57108	77108	27108
	1,5	5	1,5	0,6	0,10	135	7	2	57158	77158	27158
	2,2	8	2,2	0,9	0,10	91	5	2	57228	77228	27228

June 1985

^{*} For calculation of the max. ripple current at these and other frequencies and temperatures, see paragraphs "Voltage" and "Ripple current".

^{**} Versions with lower values of max. d.c. leakage current or max. impedance are available to special order.

[▲] Available to special order.

Capacitance

Nominal capacitance values at 100 Hz and T_{amb} = 25 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2 ± 20% (± 10% to special order)

Fig. 4 Multiplier of capacitance as a function of temperature; C_0 = capacitance at T_{amb} = 25 °C, 100 Hz.

Voltage

Rated voltage =

max. permissible voltage at $T_{amb} \! \leqslant \! 85~^{o}\text{C}$

Ripple voltage =

max. permissible a.c. voltage providing the following four conditions are met:

- a) Max. a.c. voltage, with negative d.c. voltage applied
- b) Max. peak a.c. voltage, without d.c. voltage applied

at $f \le 0,1 \text{ Hz}$ at 0,1 Hz $< f \le 1 \text{ Hz}$ at 1 Hz $< f \le 10 \text{ Hz}$

at $10 \text{ Hz} < f \le 50 \text{ Hz}$

at f > 50 Hz

 c) Momentary value of applied voltage, with positive d.c. voltage applied υR

2 V

0,15 x U_R

0,22 x UR

0,30 x UR

0,32 x U_R 0,40 x U_R

between U_R (in the positive half wave) and the limits mentioned under b) (in the negative half wave)

d) Ripple voltage limits are not applicable if the maximum ripple current is exceeded. In that case the ripple current is decisive. Whichever is in practice decisive, depends on the actual impedance of the capacitor. Table 3 should be considered as an aid only in establishing whether the ripple voltage or the ripple current is decisive.

Table 3

frequency	decisive factor
f ≤ 50 Hz	voltage
50 Hz < f ≤ 1 kHz	voltage, if actual capacitor impedance is high; current, if actual capacitor impedance is low
f > 1 kHz	current

Surge voltage =

max. permissible voltage for short periods (see also Tests and requirements)

Reverse voltage =

max. d.c. voltage applied in the reverse polarity at the maximum category temperature for short periods(see also Tests and requirements) 1,15 x U_R

0,30 x U_R

Ripple current

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amh} = 85 $^{\circ}$ C

Maximum permissible r.m.s. ripple current at other frequencies and temperatures

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 °C for capacitors with lower ESR value than the maximum ESR

Table 4 Temperature multiplier of ripple current (\sqrt{k}) , at 100 Hz

T _{amb} °C	\sqrt{k}
25 30 35 40 45 50	2,2 2,15 2,1 2,05 2,0 1,9 1.8
60 65 70 75 80 85	1,7 1,6 1,45 1,35 1,2

see Table 2

see Tables 4 and 5, and Fig. 5

√ESR_{max}/ESR_{actual} x value stated in Table 2

Table 5 Frequency multiplier of ripple current (\sqrt{r}) at 25 °C

frequency kHz 0,05 0,1	√r
0,2 0,5 1 2 5 10 20 50 100 200 500	0,8 1,0 1,2 1,4 1,55 1,70 1,80 1,95 2,05 2,15 2,20 2,25 2,30 2,35

Fig. 5 Combined temperature/frequency multiplier of ripple current (\sqrt{kr}) as a function of frequency. $I_{r max} = I_{r0} \sqrt{kr}$.

Note: Neither the maximum permissible ripple current nor the maximum permissible ripple voltage values are to be exceeded. Refer to Table 3 (paragraph "Voltage") to find whichever factor will be decisive.

Calculation of ripple currents

The maximum permissible ripple current (Ir max) is a function of temperature and frequency:

```
= I_{r0}\sqrt{kr}
   Ir max
                      = max, ripple current at 100 Hz and 85 °C (see Table 2);
where
                      = temperature multiplier (neglecting the frequency dependence) =
                        1/Pmay/P85;
                      = frequency multiplier (neglecting the temperature dependence) =
                        VESR<sub>100</sub>/ESR<sub>max</sub>;
           (for \sqrt{k} and \sqrt{r}, see Tables 4 and 5, for \sqrt{kr}, see Fig. 5);
while
           Pmax
                      = max. permissible power dissipation, temperature dependent;
                      = max, permissible power dissipation at 85 ^{\circ}C = I^{2}_{r0} ESR<sub>100</sub>;
           Pas
           ESR<sub>max</sub> = max. equivalent series resistance, frequency dependent;
           ESR<sub>100</sub> = max. equivalent series resistance at 100 Hz.
```

The formula is derived for any temperature and frequency as follows:

```
\begin{split} \text{I$^2$r$ max} &= \text{P$_{max}/\text{ESR}$_{max}$} \\ &= \text{kr P$_{85}/\text{ESR}$_{100}$} \\ &= \text{kr I$^2$_{r0}$ ESR$_{100}/\text{ESR}$_{100}$} \end{split} Thus I$_{r$ max} = \text{I}_{r0} \sqrt{\text{kr}}.
```

The values of the temperature multiplier \sqrt{k} and of P₈₅ have been calculated allowing a capacitor temperature of 98 °C and assuming the values of ESR_{max} at 98 °C to be 0,8 times the ESR_{max} at 25 °C at all frequencies.

The values of the frequency multiplier \sqrt{r} have been measured at 25 °C assuming it to be the same at all temperatures.

The power dissipation (P_{max}) has been calculated assuming it to be governed by the simplified relation:

```
P<sub>max</sub> = \beta \times S \times \Delta T,
where \beta = heat transfer coefficient, taken as 18 W/m² K (capacitor mounted on a thermally well-conducting printed-circuit board, in free flowing air, the board being in vertical position);

S = capacitor outer surface;
\Delta T = temperature difference between capacitor surface and the ambient atmosphere, taken as 13 °C at T_{amb} = 85 °C.
```

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

→ D.C. leakage current

Maximum d.c. leakage current 15 s after application of U_R , at T_{amb} = 25 $^{\circ}C$ see Table

see Table 2 (0,025 CU or 0,1 μ A whichever is greater)

Maximum d.c. leakage current 1 min after application of U_R, at T_{amb} = 25 °C

see Table 2 (0,01 CU or 0,04 μ A whichever is greater)

Typical d.c. leakage current during continuous operation

at UR,

at Tamb = 25 °C

at T_{amb} = 85 °C at T_{amb} = 125 °C approx. 0,02 x 15 s-value stated in Table 2 approx. 0,1 x 15 s-value stated in Table 2

approx. 0,3 x 15 s-value stated in Table 2

Fig. 6 Multiplier I/I $_{01}$ as a function of ambient temperature; I $_{01}$ = d.c. leakage current during continuous operation at UR, T $_{amb}$ = 25 °C.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and T_{amb} = 25 $^{o}\text{C},$ measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 7 Typical multiplier of dissipation factor as a function of temperature; tan δ_0 = dissipation factor at T_{amb} = 25 o C, 100 Hz.

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

Maximum ESR at 100 Hz and Tamb = 25 °C (calculated from maximum tan δ and 0,8 x nominal capacitance)

Maximum ESR at 100 kHz and Tamb = 25 °C

see Table 2 equal to values of max. impedance at 100 kHz, see Table 2

Fig. 8 Typical ESR as a function of ambient temperature at 100 Hz.

Curve 1 = 0,1 μ F, 40 V;

curve $4 = 22 \mu F$, 10

curve 2 = 1,5 μ F, 40 V;

curve 5 = $68 \mu F$, 6,3 V.

curve 3 = 3,3 μ F, 25 V;

Fig. 9 Typical ESR as a function of frequency at T_{amb} = 25 °C; case size 1.

Curve 1 = 0,47 μ F, 40 V; curve $2 = 2,2 \mu F, 25 V;$

curve 4 = 10 μ F, 10 V; curve 5 = 22 μ F, 6,3 V.

curve $3 = 4.7 \mu F, 16 V;$

Fig. 10 Typical ESR as a function of frequency at T_{amb} = 25 °C; case size 2.

Curve 1 = $1,5 \mu F$, 40 V;

curve 4 = 33 μ F, 10 V;

curve $2 = 6.8 \mu F. 25 V$:

curve $5 = 68 \mu F$, 6,3 V.

curve $3 = 15 \mu F, 16 V;$

Impedance

Maximum impedance at 100 kHz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Fig. 11 Typical multiplier of impedance Z/Z_0 as a function of frequency at different temperatures; Z_0 = impedance initial value at T_{amb} = 25 °C.

Fig. 12 Typical impedance as a function of frequency at T_{amb} = 25 °C, case size 1.

Curve 1 = 0,47 μ F, 40 V;

curve 3 = 10 μ F, 10 V;

curve 2 = 2,2 μ F, 25 V;

curve $4 = 22 \mu F$, 6,3 V.

Fig. 13 ·Typical impedance as a function of frequency at T_{amb} = 25 °C; case size 2. Curve 1 = 1 μ F, 40 V; curve 2 = 4,7 μ F, 25 V; curve 4 = 47 μ F, 6,3 V.

Fig. 14 Typical impedance as a function of frequency at T_{amb} = 25 °C; case size 2. Curve 1 = 6,8 μ F, 25 V; curve 3 = 68 μ F, 6,3 V. curve 2 = 15 μ F, 16 V;

Equivalent series inductance (ESL)

Equivalent series inductance, measured by means of a four-terminal circuit (Thomson-circuit), at 10 MHz; capacitor leads bent to a pitch of 5,1 mm case size 1

case size 2

max. 20 nH; typ. 9 to 14 nH max. 20 nH; typ. 11 to 16 nH

OPERATIONAL DATA

Category temperature range

-55 to +85 °C

Typical life time at Tamb = 85 °C

> 20 000 h

PACKING

Capacitors of styles 1 and 2 are supplied in boxes, those of style 3 on tape on reel.

The number of capacitors per box or per reel is:

styles 1 and 2: 500 capacitors per box; 100 per plastic bag, 5 bags per box;

style 3 : 1000 capacitors per reel.

Fig. 15 Style 3 capacitors on tape on reel.

1 = capacitor

4 = flange

2 = tape

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under solid aluminium capacitors, with the addition of the following tests.

Solvent resistance tests: immersion time of samples 5 min., at ambient temperature, at boiling temperature, in vapour of boiling solvent, and ultrasonic (40 kHz).

Solvents

- : deionized water (50 ± 5 °C);
 - calgonite solution (20 g/I, 70 \pm 5 °C);
 - mixture of 4,5% 2-butoxyethanol, 4,5% 2-amino-ethanol, and 91% water (70 \pm 5 °C);
 - 1.1.1, trichloro-ethane;
 - mixtures of 1.1.2-trichloro-1.2.2-trifluoro-ethane (fluorocarbon 113) and the following solvents in the respective mass percentage ratios of these solvents to fluorocarbon:
 - 2-propanol (isopropanol), 25%: 75% (Arklone K*); up to ratio 35%: 65%;
 - dichloromethane (methylene chloride), 49,5%: 50,5% (Freon TMC**);
 - ethanol, 4,5%: 95,5% (e.g. Arklone A*, Freon TE**);
 - methanol and nitromethane, (5,7%: 0,3%: 94% (Freon TMS**).

Requirement

: visual appearance not affected.

Note: Tests are carried out using non-contaminated solvents.

Extended vibration test, according to IEC 68-2-6, test FC: 10 to 2000 Hz, 1,5 mm or 10 g (whichever is less), 1 octave/min, 3 directions (mutually perpendicular), 1 sweep per direction, no voltage applied.

Requirements : no intermittent contacts; no breakdown; no open circuiting; no mechanical damage; $\Delta C/C \le 5\%$;

tan δ and h.f. impedance \leq 1,2 x stated limit;

d.c. leakage current ≤ 1,5 x stated limit;

typical capability: up to 50 g.

Shock test, according to IEC 68-2-27, test Ea: half sine or sawtooth pulse shape, 50g, 11 ms, 3 successive shocks in each direction of 3 mutually perpendicular axes, no voltage applied.

Requirements : no intermittent contacts; no breakdown; no open circuiting; no mechanical damage; $\Delta C/C \leqslant 5\%$:

tan δ and h.f. impedance \leq 1,2 x stated limit;

d.c. leakage current ≤ 1,5 x stated limit;

typical capability: up to 100 g, also in combination with extended vibration test.

- Trade mark of I.C.I.
- ** Trade mark of Dupont de Nemours.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

SOLID ALUMINIUM CAPACITORS

- Enhanced CU-product per unit volume
- Miniature type, equivalent to solid tantalum types
- Axial leads; metal case; epoxy seal
- Long life
- High reliability
- Industrial and military applications
- Pitch equal to that of tantalum case sizes A and B

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)
Tolerance on nominal capacitance
Rated voltage range, U_R
Category temperature range
Endurance test at 125 °C
Basic specification
Climatic category, IEC 68

0,22 to $68 \mu F$ \pm 20% 4 to 35 V -55 to + 125 °C 2000 h IEC 384-4, long-life grade 55/125/56

Selection chart for Cnom-UR and relevant case sizes.

C _{nom}				U _R (V)			
μF	4	6,3	10	16	20	25	35
0,22							A2
0,33							A2
0,47							A2
0,68							A2
1,0							A2
1,5							A2
2,2							A2
3,3							A2
4,7						A2	A3/B
6,8					A2		A3/B
10				A2		A3/B	
15			A2		A3/B		
22		A2		A3/B			
33	A2		A3/B				
47		A3/B					
68	A3/B						

case	nominal
size	dimensions (mm)
A2	Ø 5,0 x 10
A3	Ø 6,0 x 10
B	Ø 5,0 x 15

APPLICATION

These capacitors with high CU-product per unit volume, utilize advanced technology to achieve long life, high stability and reliability, high ripple current rating and low temperature dependence.

The capacitors are not subject to a limitation on charge or discharge currents and they will function in circuits where voltage reversal may occur.

The minimum pitch corresponds to that of tantalum capacitors, case sizes A and B. The capacitors are on bandoliers; they are extremely suitable for automatic insertion and for cutting and forming equipment.

DESCRIPTION

The capacitors have etched and oxidized aluminium foil electrodes separated by a layer of semiconductive material. The electrolyte is pyrolitically formed manganese dioxide. The capacitors are housed in an aluminium case with axial leads and are sealed with epoxy resin. The cathode lead is welded to the case, which is insulated with a blue transparent plastic sleeve.

The capacitors are supplied on bandoliers in boxes and on reels.

MECHANICAL DATA

Dimensions in mm

Fig. 1 For dimensions d, D, L and P, see Table 1.

Table 1

case size	d	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	mass approx. g
A2	0,6 ± 0,05	5	10	5,1	10,2	12,5	0,55
A3	0,6 ± 0,05	6	10	6,3	10,2	12,5	0,75
В	0,6 ± 0,05	5	15	5,1	15,3	17,5	0,8

Marking

The capacitors are marked with: group number (125), capacitance, tolerance, rated voltage, date code, a band to identify the negative terminal, and name of manufacturer.

Mounting

No special provisions are required for soldering to the tinned leads. (2 mm of the anode lead nearest the body are not solderable).

ELECTRICAL DATA

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 °C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%. See also the corresponding paragraphs.

Table 2

UR	nom. cap.	max. r.m.s. ripple current at T _{amb} = 125 °C	max. d.c. leakage current at U _R after 1 min		max. ESR	max. impedance at 100 kHz	case size	catalogu 2222 12 followed	
٧	μF	mA	μΑ		Ω	Ω		on reel	in box
4	33	40	9,6	0,25	15	5	A2	22339	32339
	68	70	17	0,25	7,3	2,5	A3	90502	90503
	68	70	17	0,25	7,3	2,5	B	22689	32689
6,3	22	40	9,9	0,18	16,5	5	A2	23229	33229
	47	70	18	0,18	7,6	2,5	A3	90504	90505
	47	70	18	0,18	7,6	2,5	B	23479	33479
10	15	35	11	0,16	21	5	A2	24159	34159
	33	60	20	0,16	9,6	2,5	A3	90506	90507
	33	60	20	0,16	9,6	2,5	B	24339	34339
16	10	30	11	0,14	28	10	A2	25109	35109
	22	50	21	0,14	12,5	5	A3	90508	90509
	22	50	21	0,14	12,5	5	B	25229	35229
20	6,8	25	9,8	0,14	41	10	A2	90511	90512
	15	40	18	0,14	18,5	5	A3	90513	90514
	15	40	18	0,14	18,5	5	B	90515	90516
25	4,7	20	8,9	0,12	51	10	A2	26478	36478
	10	35	16	0,12	24	5	A3	90518	90519
	10	35	16	0,12	24	5	B	26109	36109
35	0,22 0,33 0,47 0,68 1 1,5 2,2 3,3 4,7 4,7 6,8 6,8	5 6 7 8,5 10 13 15 19 25 25 30 30	3,4 3,6 3,8 4,2 4,8 5,6 6,9 8,8 11 11 15	0,09 0,09 0,09 0,09 0,09 0,12 0,12 0,12 0,12 0,12	810 540 380 260 180 120 110 72 51 51 35	30 25 20 10 10 10 10 5 5	A2 A2 A2 A2 A2 A2 A2 A3 B	20227 20337 20477 20687 20108 20158 20228 20338 90522 20478 90524 20688	30227 30337 30477 30687 30108 30158 30228 30338 90523 30478 90525 30688

Capacitance

Nominal capacitance values at 100 Hz and T_{amb} = 25 °C

Tolerance on nominal capacitance at 100 Hz

see Table 2 ± 20%

Fig. 2 Typical capacitance as a function of ambient temperature. C_0 = capacitance at 25 $^{\rm o}$ C, 100 Hz.

Voltage

Rated voltage =

max. permissible voltage

at 1 Hz \leq f \leq 10 Hz

Ripple voltage =

max. permissible a.c. voltage providing the following four conditions are met:

- a) Max. a.c. voltage, with negative d.c. voltage applied
- b) Max. peak a.c. voltage, without d.c. voltage applied at $f \le 0.1$ Hz at 0.1 Hz $< f \le 1$ Hz

at 10 Hz < f ≤ 50 Hz at f > 50 Hz c) Momentary value of applied voltage,

with positive d.c. voltage applied

d) Ripple voltage limits are not applicable if the maximum ripple current is exceeded. In that case the ripple current is decisive. Whichever is in practice decisive, depends on the actual impedance of the capacitor. Table 3 should be considered as an aid only in establishing whether the ripple voltage or the ripple current is decisive. U_{R}

2 V

- *	
T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 125 °C
0,30 x U _R	0,15 x U _R
0,45 x U _R	0,22 x U _R
0,60 x U _R	0,30 x U _R
0,65 x U _R	0,32 x U _R
0,80 x U _R	0,40 x U _R

between $U_{\mbox{\scriptsize R}}$ (in the positive half wave) and the limits mentioned under b) (in the negative half wave)

Table 3

	decisive ·	factor
frequency	at T _{amb} ≤ 85 °C	T _{amb} > 85 °C
f ≤ 50 Hz	voltage	voltage, if actual capacitor im- pedance is high; current, if actual capacitor im- pedance is low
50 Hz < f ≤ 1 kHz	voltage, if actual capacitor im- pedance is high; current, if actual capacitor im- pedance is low	current
f > 1 kHz	current	current

Surge voltage =

max. permissible voltage for short periods (see also "Test and requirements")

Reverse voltage =

max. d.c. voltage continuously (2000 h) applied in the reverse polarity,

at $T_{amb} \le 85$ °C at 85 °C $< T_{amb} \le 125$ °C

 $1,15 \times U_{R}$

Ripple current

Maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 125 $^{\rm o}{\rm C}$

Maximum permissible r.m.s. ripple current at other frequencies, temperatures and conditions

Table 4 Temperature multiplier of ripple current (\sqrt{k}) , at 100 Hz

T _{amb} °C	\sqrt{k}
25	2,6
35	2,5
45	2,4
55	2,25
65	2,2
70	2,15
75	2,1
80	2,05
85	2,0
90	1,9
95	1,8
100	1,7
105	1,6
110	1,45
115	1,35
120	1,2

see Table 2

see Tables 4 to 6, and Fig. 3

Table 5 Frequency multiplier of ripple current (\sqrt{r}) at 25 °C

frequency kHz	\sqrt{r}
0,05	0,8
0,1	1,0
0,2	1,2
0,5	1,4
1	1,55
2	1,70
5	1,80
10	1,95
20	2,05
50	2,15
100	2,20
200	2,25
500	2,30
1000	2,35

Fig. 3 Combined temperature/frequency multiplier of ripple current (\sqrt{kr}) as a function of frequency. $I_{r max} = I_{r}0\sqrt{kr}$.

Table 6 Multiplier of ripple current for various application conditions

con	dition	multiplier
Α.	Capacitor insulated with a blue sleeve, mounted horizontally on a thermally non-conducting printed-circuit board, in free flowing air and in a surrounding that allows the absorption of radiation heat.	1,0
В.	As under A but capacitor is not insulated.	0,9
C.	As under A but capacitor is mounted vertically	0,7
D.	As under A but capacitor is mounted on a thermally well-conducting printed-circuit board.	1,25
Ε.	As under A but the surrounding walls etc. have a temperature higher than 125 °C and therefore prevent the absorption of heat by radiation	0,6
F.	Capacitor has an ESR value lower than the maximum ESR.	√ ESR _{max} ESR _{actual}
G.	As under A but capacitor is epoxy-filled (for severe shock and vibration resistance).	1,05
н.	As under G but capacitor is mounted on a thermally well-conducting printed-circuit board.	1,5

Note: Neither the maximum permissible ripple current nor the maximum permissible ripple voltage values are to be exceeded. Refer to Table 3 (paragraph "Voltage") to find whichever factor will be decisive.

Calculation of ripple currents

The maximum permissible ripple current ($I_{r\ max}$) is a function of temperature and frequency:

•	1 max
	$= I_{r0}\sqrt{kr}$
l _r 0	= max. ripple current at 100 Hz and 125 °C (see Table 2);
\sqrt{k}	= temperature multiplier (neglecting the frequency dependence) $\sqrt{P_{\text{max}}/P_{125}}$;
\sqrt{r}	= frequency multiplier (neglecting the temperature dependence) $\sqrt{\text{ESR}_{100}/\text{ESR}_{\text{max}}};$
(for√k	and \sqrt{r} , see Tables 4 and 5, for \sqrt{kr} , see Fig. 3);
P_{max}	= max. permissible power dissipation, temperature dependent;
P ₁₂₅	= max. permissible power dissipation at 125 ${}^{\circ}\text{C} = {}^{12}\text{r0}$ ESR 100 ;
ESR _{max}	= max. equivalent series resistance, frequency dependent;
ESR ₁₀₀	= max. equivalent series resistance at 100 Hz.

The formula is derived for any temperature and frequency as follows:

$$\begin{split} \text{I}_{r\;max^2} &= \text{P}_{max}/\text{ESR}_{max} \\ &= \text{kr}\; \text{P}_{125}/\text{ESR}_{100} \\ &= \text{kr}\; \text{I}^2_{r0}\; \text{ESR}_{100}/\text{ESR}_{100} \end{split}$$
 Thus $\text{I}_{r\;max} = \text{I}_{r0}\sqrt{\text{kr}}.$

The values of the temperature multiplier \sqrt{k} and of P_{125} have been calculated allowing a capacitor temperature of 138 °C and assuming the values of ESR_{max} at 138 °C to be 0,8 times the ESR_{max} at 25 °C at all frequencies.

The values of the frequency multiplier \sqrt{r} have been measured at 25 °C assuming it to be the same at all temperatures.

The power dissipation (Pmax) has been calculated assuming it to be governed by the simplified relation:

 P_{max} = β x S x ΔT, where β = heat transfer coefficient, taken as 9,0 W/m²K;

S = capacitor outer surface;

 ΔT = temperature difference between capacitor surface and the ambient atmosphere, taken as 13 $^{\rm O}C$ at T_{amb} = 125 $^{\rm O}C$.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting. If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 1 min after application of UR, at Tamb = 25 °C

D.C. leakage current during continuous operation at UR,

at Tamb = 25 °C

at Tamb = 85 °C

at T_{amb} = 125 °C

Fig. 4 Multiplier I/I₀₁ as a function of temperature. . In1 = d.c. leakage current during continuous operation In2 = d.c. leakage current at Up at a discrete conat U_R , $T_{amb} = 25$ °C.

see Table 2 (max. 0,05 CU + 3 μ A)

approx. 0,5 x value stated in Table 2 approx. 2 x value stated in Table 2 approx. 7 x value stated in Table 2

Fig. 5 Multiplier I/I₀₂ as a function of U/U_R stant temperature.

Tan δ (dissipation factor)

Maximum tan δ at 100 Hz and $T_{amb} = 25$ °C, measured by means of a four-terminal circuit (Thomson circuit)

Typical tan δ at 100 Hz and $T_{amb} = 25$ °C

see Table 2

0.6 x value stated in Table 2

Fig. 6 Multiplier of dissipation factor as a function of ambient temperature; $\tan \delta_0$ = dissipation factor at 25 °C, 100 Hz.

519

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

Maximum ESR at 100 Hz and T_{amb} = 25 °C (calculated from maximum tan δ and 0,8 x nominal capacitance)

Maximum ESR at 100 kHz and Tamb = 25 °C

see Table 2 equal to values of max. impedance at 100 kHz, see Table 2

Impedance

Maximum impedance at 100 kHz and $T_{amb} = 25$ °C, measured by means of a four-terminal circuit (Thomson circuit)

Typical impedance at 100 kHz, and $T_{amb} = 25$ °C

see Table 2

0,5 x value stated in Table 2

Equivalent series inductance (ESL)

Equivalent series inductance, measured by means of a four-terminal circuit (Thomson circuit), at 10 MHz; the capacitor leads bent to the pitch as indicated case size A2 case size A3 case size B

pitch	typ. ESL
12,5 mm	12 nH
12,5 mm	25 nH
17,5 mm	15 nH

OPERATIONAL DATA

Category temperature range Typical life time at T_{amb} = 125 °C and U_R

$$-55 \text{ to} + 125 \text{ }^{\circ}\text{C}$$

> 5000 h

PACKING

The capacitors are supplied on bandoliers in boxes and on reels. The number of capacitors per box and per reel is 1000.

Fig. 7 Capacitors on bandoliers; the bandolier to which the negative capacitor terminals are connected is blue. See Table 7 for dimensions A, S, T and L_{max} . $|B1-B2|=1,4+(L_{max}-L)$ mm max.

Table 7 (Dimensions in mm)

case size	А	S	T for no	L _{max}	
			n < 50	50 < n < 100	
A2	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	10,2
A3	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	10,2
В	63,5 ± 1,5	10 ± 0,4	10 (n-1) ± 2	10 (n-1) ± 4	15,3

Fig. 8 Capacitors on bandoliers on reel; dimension C = 83,5 mm; the overall width of the reel is 94,5 mm.

1 = capacitor

4 = flange

2 = bandolier

5 = cylinder

3 = paper

TESTS AND REQUIREMENTS

See Introduction, section 9, under solid aluminium capacitors 123, with deviations of requirements of the following tests:

Climatic sequence

Damp heat, steady state

Surge

Storage at upper category temperature

 $\Delta C/C \le 10\%$; 1 min value of d.c. leakage current measured after 5 min.

Additional test:

Severe rapid change of temperature test: 100 cycles of 15 min at -40 °C and + 125 °C.

Requirements: d.c. leakage current ≤ stated limit,

tan $\delta \leq 1.6$ x stated limit,

impedance ≤ 1,6 x stated limit,

 $\Delta C/C \leq 10\%$.

MAINTENANCE TYPES

ALUMINIUM ELECTROLYTIC CAPACITORS

- Small type
- Bipolar
- Long life
- General and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series) 1 to 47 μ F

Tolerance on nominal capacitance —20 to +20%

Rated voltage U_R (a.c.), frequency > 15 Hz 63 V peak (40 V r.m.s.), provided ripple current remains within specified limits

Rated voltage U_R (d.c.) 63 V (in both directions)

Category temperature range —40 to +85 °C

Endurance test at 85 °C 5000 h

Shelf life at 0 V, 85 °C 500 h

Basic specification IEC384-4, long-life grade Climatic category, IEC68 40/085/56

Selection chart for C-UR and relevant case sizes

U _R V	C _{nom} μF	case size	nom. dimensions mm
	1	00	φ 10 × 30
	1,5	00	$\phi 10 \times 30$
	2,2	00	$\phi 10 \times 30$
	3,3	00	$\phi 10 \times 30$
	4,7	00	$\phi 10 \times 30$
63	6,8	00	ϕ 10 × 30
	10	01	ϕ 12,5 x 30
	15	01	ϕ 12,5 x 30
	22	02	ϕ 15 x 30
	33	02	φ 15 × 30
	47	03	φ 18 × 30

APPLICATION

These capacitors are especially designed for those applications where a low impedance, small dissipation and an excellent temperature constancy over the audio frequency range is required such as crossover filters in loudspeaker boxes and intercom systems.

DESCRIPTION

The capacitor has etched aluminium-foil electrodes rolled up with a porous paper spacer which separates the two anodes. The spacer is impregnated with an electrolyte which is the electrical connection between the two anode foils and retains its good characteristics both at low and at high temperatures. The capacitor is housed in an aluminium case. It has soldered-copper leads.

MECHANICAL DATA

Dimensions in mm

Fig. 1 For dimensions d, D, L and P, see Table 1.

Table 1

case size	d	D _{nom}	L _{nom}	D _{max}	L _{max}	P _{min}	mass approx. g
00	0,8	10	30	10,5	30,5	35	4,0
01	0,8	12,5	30	13,0	30,5	35	6,3
02	0,8	15	30	15,5	30,5	35	8,2
03	0,8	18	30	18,5	30,5	35	10,9

Marking

The capacitors are marked with:

nominal capacitance;

tolerance on nominal capacitance;

rated voltage;

group number 039;

name of manufacturer;

date code (year and month) according to IEC62;

bipolar.

Mounting

The diameter of the mounting holes in the printed-wiring board is 1 + 0.1 mm.

Minimum atmospheric pressure 8,5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to $25\,^{\circ}\text{C}$, a frequency of 100 Hz, an atmospheric pressure of 93 to 106 kPa and a relative humidity of 45 to 75%.

U _R	nom. cap. μF	max r.m.s. ripple current at T _{amb} = 85 °C mA*	max. d.c. leakage current at U _R after 5 min μΑ*	typ ESR Ω*	max ESR Ω*	case size	catalogue number
63	1 1,5 2,2 3,3 4,7 6,8 10 15 22 33 47	14 19 25 35 42 51 70 84 121 147	57 57 57 60 65 71 81 97 111 132	260 140 80 38 26 18 12 8,5 5 3,1 1,9	570 290 135 85 59 41 28 19 11 7	00 00 00 00 00 00 01 01 02 02 03	2222 039 18108 18158 18228 18338 18478 18688 18109 18159 18229 18339 18479

Capacitance.

The nominal capacitance values at 100 Hz are given in Table 2. The tolerance on nominal capacitance at 100 Hz is -20 to +20%.

Fig. 2 Typical capacitance as a function of ambient temperature; C_0 = capacitance at 20 $^{\circ}$ C and 100 Hz.

^{*} See also corresponding paragraph.

Fig. 3 Typical capacitance as a function of frequency; C₀ = capacitance at 20 °C and 100 Hz.

Voltage

The rated voltage U $_{\rm R}$ (a.c.) in the temperature range -40 to +85 $^{\rm O}{\rm C}$ is 63 V peak (40 V r.m.s.), provided the ripple current remains below the specified values in Table 2.

The rated voltage U_R (d.c.) in the temperature range -40 to +85 °C is 63 V, independent of polarity.

Ripple current

The maximum permissible r.m.s. ripple current at 100 Hz and T_{amb} = 85 °C is given in Table 2.

Fig. 4 Typical ripple current as a function of ambient temperature; I_0 = ripple current at 85 $^{\rm o}{\rm C}$ and 100 Hz.

Fig. 5 Typical ripple current as a function of frequency; I₀ = ripple current at 85 °C and 100 Hz.

D.C. leakage current

The maximum d.c. leakage current, when the case is at negative potential with respect to the other connection, 5 min after application of the rated voltage at $T_{amb} = 20$ to 25 °C is given in Table 2.

The maximum d.c. leakage current, when the case is at positive potential with respect to the other connection, may be up to $50 \,\mu\text{A}$ higher than the values given in Table 2.

If the d.c. leakage current is too high, owing to prolonged storage and/or storage at an excessive temperature, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Equivalent series resistance (ESR)

The ESR at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit) is given in Table 2.

For ESR at different frequencies, see graphs on the next page.

Fig. 6 Typical ESR as a function of frequency at 25 °C.

Fig. 7 Typical ESR as a function of frequency at 25 °C.

Impedance

Fig. 8 Typical impedance as a function of frequency at 25 °C.

Fig. 9 Typical impedance as a function of frequency at 25 °C.

OPERATIONAL DATA

Category temperature range

-40 to +85 °C

Typical life time

at T_{amb} = 85 °C

at T_{amb} = 40 °C

10 000 h > 200 000 h

Shelf life at 0 V and Tamb = 85 °C

500 h

PACKING

The capacitors are packed in boxes of 200.

TEST AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors, with the exception of IEC384-4 sub clause 9.14, and the figures of $\tan \delta$, for which the following is valid.

IEC384-4 sub clause 9.14.

IEC68-2 test method: no reference.

Name of test: Endurance Procedure a: 5000

5000 h at 85 °C, rated d.c. voltage applied in any direction.

Requirements:

no visible damage, no leakage of electrolyte, d.c. leakage current at applied d.c. voltage in applied direction \leq stated limit, ESR \leq 1,3 x stated limit, Δ C/C \leq 15%, ratio of impedances at 10 kHz before and after test \leq 2, insulation resistance > 100 M Ω , no

breakdown or flashover.

5000 h at 85 °C, rated ripple current applied, no d.c. voltage applied.

Procedure b: Requirements:

no visible damage, no leakage of electrolyte, ESR \leq 2 x stated limit, Δ C/C \leq 15%,

ratio of impedances at 10 kHz before and after test ≤ 2, insulation resistance

> 100 M Ω , no breakdown or flashover.

After shelf life test, 500 h, 85 °C, the capacitors meet the same requirements as after endurance test. The rated voltage shall be applied to the capacitors for minimum 30 min., at least 24 h and not more than 48 h before measurements.

In this data sheet no value is given for tan δ ; where in the tests and requirements tan δ is mentioned, ESR must be read instead.

Note: Capacitors 2222 039 are small types, long-life grade.

ALUMINIUM ELECTROLYTIC CAPACITORS

- Large type with screw terminals
- Long life
- Military and industrial applications

QUICK REFERENCE DATA

Nominal capacitance range (E6 series)
Tolerance on nominal capacitance
Rated voltage range, U_R (R5 series)
Category temperature range
2222 106

2222 107
Typical life time at 85 °C
Basic specification

Climatic category

DIN 40040 NF C93-001 2222 106 IEC 68 DIN 40040 NF C93-001 2222 107

Approvals

1500 to 150 000 μF -10 to +50%

6,3 to 100 V

-40 to +85 °C -25 to +85 °C >5000 h

IEC 384-4, long-life grade

40/085/56 GPF (56 days) 554

25/085/56 GPF (56 days) 654

U.K. Post Office D 2186

Ministry of Defence (Navy) DEF5134-1 FOA/FTL (Sweden)

Selection chart for $C_{\mbox{nom}}$ -UR and relevant case sizes.

C _{nom}	U _R (V)										
μF	6,3	10	16	25	40	63	100				
1500							11				
2200						11	12				
3300						12	14				
4700					11	14	15				
6800				11	12	15					
10 000			11	12	14		16				
15 000		11	12	14	15	16					
22 000	11	12	14	15							
33 000	12	14	15		16						
47 000	14	15		16							
68 000	15		16								
100 000		16									
150 000	16										

case size	nominal dimensions (mm)
11	Ø 35 x 80
12	Ø 35 x 112
14	Ø 50 x 80
15	Ø 50 x 112
16	Ø 65 x 112

APPLICATION

Because of their high reliability and long service life these capacitors are recommended not only for industrial but also for military applications. Their extremely low resistance and inductance values and high resistance to shock and vibration render them very suitable for applications such as:

switched-mode power supplies:

power supplies in digital equipment; energy storage in pulse systems; filters in measuring and control apparatus.

DESCRIPTION

The low values of impedance and inductance are achieved by a special construction with multiple internal anode and cathode connections.

The high resistance to shock and vibration is achieved by the longitudinal rills and special internal construction.

The capacitors are completely cold-welded and charge/discharge proof.

The aluminium cases are fully insulated and sealed by a synthetic resin disc with a vent. In the case of over-pressure the vent releases this pressure and closes again; the proper operation of the capacitor remains guaranteed.

The capacitors are delivered with screws and washers.

MECHANICAL DATA

Dimensions in mm

See Table 1 for dimensions D, L, P and A.

^{*)} Maximum permissible torque which may be applied to the termination screws at various heights (X in drawing):

2	4	6	X (mm)
1,5	1	0,5	max. permissible torque (Nm)

Table 1

case size	D + 1,5	L + 3	P ± 0, 1	A ± 0,2	approx. mass (g)
11	35	80	15	8,4	105
12	35	112	15	8,4	140
14	50	80	22	14,3	200
15	50	112	22	14,3	280
16	65	112	31	19,0	480

Marking

The capacitors are marked with: nominal capacitance, tolerance on nominal capacitance, rated voltage, temperature range, IEC type, maximum permissible ripple current at $50~\rm ^{\circ}C$, catalogue number and date code.

Mounting

The capacitor may be mounted vertically or horizontally, with or without mounting clamp. For proper functioning the vent should be on the upper side, whether the capacitor is mounted horizontally or vertically. When a number of capacitors are connected in a bank, they must not be closer than 15 mm when no derating of ripple current and/or temperature is applied. See also Mounting Accessories, at the end of this data sheet.

Minimum atmospheric pressure

8.5 kPa

PRODUCT SAFETY

Non-solid electrolytic capacitors may contain chemicals which can be regarded as hazardous if incorrectly handled. Caution is necessary should the outer case be fractured.

ELECTRICAL DATA

Table 2

Unless otherwise specified all electrical values in Table 2 apply at an ambient temperature of 20 to 25 o C, a frequency of 100 Hz, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 45 to 75%.

UR	nom. cap.	max. r.m.s. ripple cur- rent at Tamb = 85 °C	le cur - at current at UR after 5 min		max. tan δ	impedance at 20 kHz $(m\Omega)^{-1}$		case	catalogue number	
(V)	(μF)	(A) 1)	(mA) ¹)	(mΩ) 1)	1)	typ.	max.			
6,3	22000	5,5	0,9	13,0	0,32	8,5	13,0	11	2222 106 33223	
	33000	7,9	1,3	8,5	0, 32	7,0	10,5	12	33333	
	47000	9,4	1,8	6,5	0,35	5,5	8,0	14	33473	
1.	68000	13,2	2,6	4,5	0,35	4,0	6,0	15	33683	
	150000	21,3	5,7	2,5	0, 45	3,5	5,5	16	33154	
10	15000	5,3	0,9	14,0	0,23	8,5	13,0	11	34153	
	22000	7,5	1,4	9,5	0,23	7,0	10,5	12	34223	
	33000	9,1	2,0	7,0	0,25	5,5	8,0	14	34333	
	47000	12,8	2, 9	5,0	0,25	4,0	6,0	15	34473	
	100000	20,5	6,0	2,5	0,27	3,5	5,5	16	34104	
16	10000	5,0	1,0	16,0	0, 16	8,5	13,0	11	35103	
	15000	7,1	1,5	10,5	0,16	7,0	10,5	12	35153	
	22000	8,6	2, 2	8,0	0,18	5,5	8,0	14	35223	
	33000	12,4	3, 2	5,0	0,18	4,0	6,0	15	35333	
	68000	19,7	6, 6	2,5	0, 19	3,5	5,5	16	35683	
25	6800	4,7	1,1	18,0	0, 12	8,5	13,0	11	36682	
	10000	6,7	1,5	12,0	0,12	7,0	10,5	12	36103	
	15000	8,2	2, 3	8,5	0,13	5,5	8,0	14	36153	
	22000	11,6	3, 3	6,0	0,13	4,0	6,0	15	36223	
	47000	18,7	7, 1	3,0	0,14	3,5	5,5	16	36473	
40	4700	4,3	1,2	21,0	0,10	11,5	17,0	11	37472	
	6800	6,0	1, 7	14,5	0,10	8,5	13,0	12	37682	
	10000	7,4	2, 4	10,5	0,10	6,0	9,0	14	37103	
	15000	10,6	3, 6	7,0	0,10	4,5	7,0	15	37153	
	33000	17,6	8,0	3,5	0,11	3,5	5,5	16	37333	
63	2200	3,6	0,9	30,0	0,065	11,5	17,0	11	38222	
	3300	5,2	1, 3	20,0	0,065	8,5	13,0	12	38332	
	4700	6,3	1,8	14,5	0.070	6,0	9,0	14	38472	
	6800	8,8	2, 6	10,0	0,070	4,5	7,0	15	38682	
	15000	14,8	5,7	5,0	0,075	3,5	5,5	16	38153	
100	1500	3, 1	0,9	270	0,40	200	300	11	2222 107 30152	
	2200	4,5	1,4	180	0,40	130	200	12	30222	
	3300	5,4	2,0	120	0,40	90	140	14	30332	
	4700	7,7	2,9	80	0,40	60	90	15	30472	
	10000	12,6	6,0	40	0,40	40	60	16	30103	

¹⁾ See also corresponding paragraph.

Capacitance

Nominal capacitance values at 100 Hz and $T_{amb} = 25$ °C

Tolerance on nominal capacitance at 100 Hz

see Table 2 -10 to +50%

Typical capacitance as a function of ambient temperature; C_0 = capacitance at T_{amb} = 25 °C, 100 Hz.

V	ol	ta	ıge

Rated voltage

= max. permissible voltage

Ripple voltage ** = max. permissible a.c. voltage providing the following three conditions

are met:

a) max. (d.c. + peak a.c.) voltage

b) max. peak a.c. voltage, with d.c. voltage applied

c) max. peak a.c. voltage,

without d.c. voltage applied

Surge voltage

= max. permissible voltage for short periods (see also "Tests

maximum category temperature (for short periods)

and requirements")

Reverse voltage = max. d.c. voltage applied in the reverse polarity at the

1,1 x U_R

< 60 °C

1,1 x U_R

applied d.c. voltage + 1 V

UR

core temperature *

UR

60 to 95 °C

1 V

 $1,15 \times U_R$

1 V

See Introduction, section 5, "Ripple current".

Ripple voltages are not applicable if the maximum permissible ripple current is exceeded. In that case the ripple current is decisive.

Ripple current

Maximum permissible r.m.s. ripple current

at 100 Hz and Tamb = 85 °C

at
$$T_{amb} = 80$$
 °C

at
$$T_{amb} = 75$$
 °C

at
$$T_{amb} \le 65$$
 °C

see Table 2

1,4 x values stated in Table 2

 $1,7 \times \text{values stated in Table } 2^{-1}$

2.2 x values stated in Table 2 1)

Multiplying factor as a function of frequency, for calculation of max. ripple current 1). I_0 = maximum ripple current at 85 °C, 100 Hz.

Non-sinusoidal ripple currents have to be analyzed into a number of sinusoidal currents and the following requirements shall then be satisfied:

$$\sum_{n} \frac{I_{n}^{2}}{r_{n}} \leq I_{r}^{2} \max.$$

 $I_{r\ max}$ = max. ripple current at 100 Hz and applicable ambient temperature;

I_n = ripple current at a certain frequency;

 $\sqrt{r_n}$ = multiplying factor at same frequency.

Note

Ripple currents are not applicable if the maximum permissible ripple voltage is exceeded. In that case the ripple voltage is decisive.

¹⁾ With a maximum of 30 A.

Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by short-circuiting.

If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the applicable limit.

D.C. leakage current

Maximum d.c. leakage current 5 min after application of the rated voltage at $T_{amb} = 20 \text{ }^{\circ}\text{C}$

see Table 2 (0,006 CU + 4 μ A)

D.C. leakage current during continuous operation at UR,

at $T_{amb} = 20$ °C

approx. 0,125 of value stated in

Table 2

at $T_{amb} = 85$ °C

≤ value stated in Table 2

If owing to prolonged storage and/or storage at an excessive temperature the d.c. leakage current is too high, application of the rated voltage for some hours will cause the d.c. leakage current to fall to a value lower than specified in Table 2.

Tan δ (dissipation factor)

Tan δ at 100 Hz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit)

see Table 2

Impedance

Impedance at 20 kHz and T_{amb} = 25 °C, measured by means of a four-terminal circuit (Thomson circuit) see Table 2

Typical impedance as a function of temperature at 20 kHz for 6,3 V to 25 V types.

Typical impedance as a function of temperature at 20 kHz for 40 V and $63\ V$ types.

Typical impedance as a function of frequency at $T_{amb} = 25$ OC.

case size 11

Typical impedance as a function of frequency at $T_{amb} = 25$ °C.

case size 12

```
curve 1 = 3300 µF, 63 V

2 = 6800 µF, 40 V

3 = 10000 µF, 25 V

4 = 15000 µF, 16 V

5 = 22000 µF, 10 V

6 = 33000 µF, 6,3 V
```


Typical impedance as a function of frequency at T_{amb} = 25 ^{o}C .

case size 14

curve 1 = 4700 µF, 63 V 2 = 10000 µF, 40 V 3 = 15000 µF, 25 V 4 = 22000 µF, 16 V 5 = 33000 µF, 10 V 6 = 47000 µF, 6,3 V

Typical impedance as a function of frequency at $T_{amb} = 25$ °C.

case size 15

curve 1 = 6800 μF, 63 V 2 = 15000 μF, 40 V 3 = 22000 μF, 25 V 4 = 33000 μF, 16 V 5 = 47000 μF, 10 V 6 = 68000 μF, 6,3 V

Typical impedance as a function of frequency at $T_{amb} = 25$ °C.

case size 16

curve 1 = 15000 µF, 63 V 2 = 33000 µF, 40 V 3 = 47000 µF, 25 V 4 = 68000 µF, 16 V 5 = 100000 µF, 10 V 6 = 150000 µF, 6,3 V

Equivalent series resistance (ESR = $\tan \delta/\omega C$)

ESR at 100 Hz and $T_{amb} = 25$ °C

see Table 2

Typical ESR as a function of temperature at 100 Hz for 6,3 V types.

Typical ESR as a function of temperature at 100 Hz for 63 V types.

Inductance

case size	typical inductance
11 and 12	12 nH
14 and 15	15 nH
16	18 nH

OPERATIONAL DATA

Category temperature range

for rated voltage, 2222 106 for rated voltage, 2222 107

-40 to +85 °C -25 to +85 °C

Life expectancy

Typical lifetime at $T_{amb} = 85$ °C at $T_{amb} = 25$ °C

>5000 h >15 years

PACKING

Case sizes 11, 12, 14 and 15: 50 pieces per box. Case size 16: 25 pieces per box.

TESTS AND REQUIREMENTS

See Introduction, section 9, under aluminium electrolytic capacitors.

Note: Capacitors 2222 106 and 2222 107 belong to the large types with screw terminals, long-life grade.

MOUNTING ACCESSORIES

Clamps

To facilitate vertical mounting, a series of rigid clamps made of cadmium-plated steel are available. They can easily be slid over the capacitor and then fixed to it with a nut and bolt. They are provided with two or three mounting lugs. Three types are available, one for each case diameter of the capacitor range. They are delivered without nuts or bolts.

Clamp for case diameter of 35 mm. Catalogue number: 4322 043 04272.

80max

7799058

Clamp for case diameter of 65 mm. Catalogue number 4322 043 04291.

Clamp for case diameter of 50 mm. Catalogue number 4322 043 04281.

NOTES

STANDARD SERIES OF VALUES IN A DECADE for resistances and capacitances

according to IEC publication 63

E192	E96	E48	E192	E96	E48	E192	E96	E48	E192	E96	E48	E192	E96	E4	8
100 101 102 104	100 102	100	169 172 174 176	169 174	169	287 291 294 298	287 294	287	487 493 499 505	487 499	487	825 835 845 856	825 845	82	5
105 106 107 109	105 107	105	178 180 182 184	178 182	178	301 305 309 312	301 309	301	511 517 523 530	511 523	511	866 876 887 898	866 887	86	6
110 111 113 114	110 113	110	187 189 191 193	187 191	187	316 320 324 328	316 324	316	536 542 549 556	536 549	536	909 920 931 942	909 931	90	9
115 117 118 120	115 118	115	196 198 200 203	196	196	332 336 340 344	332 340	332	562 569 576 583	562 576	562	953 965 976 988	953 976	95	3
121 123 124 126	121 124	121	205 208 210 213	205 210	205	348 352 357 361	348 357	348	590 597 604 612	590 604	590	E24	E12	E6	E3
127 129 130 132	127 130	127	215 218 221 223	215 221	215	365 370 374 379	365 374	365	619 626 634 642	619 634	619	10 11 12 13	10	10	10
133 135 137 138	133 137	133	226 229 232 234	226 232	226	383 388 392 397	383 392	383	649 657 665 673	649 665	649	15 16 18 20	15 18	15	
140 142 143 145	140 143	140	237 240 243 246	237 243	237	402 407 412 417	402 412	402	681 690 698 706	681 698	681	22 24 27 30	22 27	22	22
147 149 150 152	147 150	147	249 252 255 258	249 255	249	422 427 432 437	422 432	422	715 723 732 741	715 732	715	33 36 39 43	33 39	33	
154 156 158 160	154 158	154	261 264 267 271	261 267	261	442 448 453 459	442 453	442	750 759 768 777	750 768	750	47 51 56 62	47 56	47	47
162 164 165 167	162 165	162	274 277 280 284	274 280	274	464 470 475 481	464 475	464	787 796 806 816	787 806	787	68 75 82 91	68 82	68	

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02)439 3322.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.

Belgium: N.Y. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavilion, B-1030 BRUXELLES, Tel. (02) 2427 (A).

Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP. Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Miliner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chilie: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.

Colombia: 1ND PHILIPS DE COLOMBIA S.A., col PRELENSO LTD., Cr. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624.

Denmark: MINIWATT A/S, Strandiodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.

Finland: OY PHILIPS DA, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1727.1

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 338 80-00.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips c.mb. H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.

Gereace: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Alv. Syngrou, ATHENS, Tel. 9215111.

Hong Kong: PHILIPS HONG KONG KONG LTD, Elcoma Divis, 15/F Philips Ind. Bidg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 24-28 Kung Yip St., TWAI CHUNG, Tel. (0)-245121.

Indonesia: PT. PHILIPS RALIN ELECTRONICS, Elcoma Dept., Band Box Building, 2nd Fl., Jl. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 716131.

Ireland: PHILIPS ELCTRICAL ((IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.

Laty: PHILIPS S.P.A., Sezione Elcoma, Piezza IN Novembre 3, 1-20124 MILIANO, Tel. 2-6752.1.

Japan: NIHON PHILIPS CLECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 litaewon-dong, Yongsan-ku, SEOUL, Tel. 794-4202.

Malaysia: PHILIPS SLOED Elcoma, Piezza IN Novembre 3, 1-20124 MILIANO, Tel. 2-6752.1.

Japan: NIHON PHILIPS CLECTRONICS (KOREA) LTD., Elcoma Div., Drilips House, 260-199 litaewon-dong, Yongsan-ku, SEOUL,

P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304, Telex 35000 phtcnl

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE,

© Philips Export B.V 1985

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

A47