# **Exploration Numérique 1**

### MAP-433 - statistiques

Gr 5

Guilherme Vieira, João Andreotti, Nicolas Lopes

1.

Comme S est une application continue et différenciable sur  $\mathcal{R}^2$ , on cherche con minimum global en étudiant les minimums locales, qui satisfont l'equation:

$$abla_{eta_1,eta_2}S=ec{0}$$

On établit la notation  $ec{eta} = [eta_1, eta_2]^T$  et  $ilde{t} = [ec{1}, ec{t}]$ . Alors, on a:

$$abla_{ec{eta}} S(\hat{ec{eta}}) = -2 { ilde{t}}^T (ec{X} - { ilde{t}} \, ec{eta}) = ec{0}$$

Comme  $\tilde{t}^T \tilde{t}$  est une matrice carré inversible (en supposant que la famille  $\{\vec{t},\vec{1}\}$  est libre), alors:

$$\hat{ec{eta}} = \left( ilde{t}^T ilde{t} 
ight)^{-1} ilde{t}^T ec{X}$$

On peut montrer que cette solution est unique et correspond au minimum globale de la fonction S.

En dévelopant les expressions on arrive a montrer que:

$$\hat{eta}_2 = rac{\sum_{i=1}^n (t_i - ar{t}) X_i}{\sum_{i=1}^n (t_i - t)^2}$$

$$\hat{eta_1} = ar{X} - \hat{eta_2}ar{t}$$

2

In [ ]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from scipy.stats import chi2
from scipy.stats import t as student

from typing import Tuple

1 of 9

```
In [ ]:
    # Reading the data into a pandas dataframe
    GLB_data = pd.read_csv("GLB.Ts+dSST.csv", header=1)
    GLB_data = GLB_data[1:-2] # removing years with missing values
    GLB_data["J-D"] = GLB_data["J-D"].astype(float) # Converts means to floats
    GLB_data
```

| Out[ ]: |     | Year | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug  | Sep | Oct  | Nov  | Dec  | J-D   | D-N  | DJF  |
|---------|-----|------|-------|-------|-------|-------|-------|-------|-------|------|-----|------|------|------|-------|------|------|
|         | 1   | 1881 | -0.19 | -0.14 | 0.04  | 0.05  | 0.07  | -0.18 | 0.01  | 03   | 15  | 22   | 18   | 07   | -0.08 | 09   | 17   |
|         | 2   | 1882 | 0.16  | 0.14  | 0.05  | -0.16 | -0.13 | -0.22 | -0.16 | 07   | 14  | 23   | 17   | 36   | -0.11 | 08   | .08  |
|         | 3   | 1883 | -0.29 | -0.37 | -0.12 | -0.19 | -0.18 | -0.07 | -0.07 | 14   | 22  | 11   | 24   | 11   | -0.18 | 20   | 34   |
|         | 4   | 1884 | -0.13 | -0.08 | -0.37 | -0.40 | -0.34 | -0.35 | -0.31 | 28   | 27  | 25   | 33   | 31   | -0.28 | 27   | 11   |
|         | 5   | 1885 | -0.58 | -0.33 | -0.26 | -0.42 | -0.45 | -0.44 | -0.34 | 31   | 29  | 24   | 24   | 10   | -0.33 | 35   | 41   |
|         | ••• |      |       |       |       |       |       |       |       |      |     |      |      |      |       |      |      |
|         | 136 | 2016 | 1.17  | 1.37  | 1.36  | 1.10  | 0.95  | 0.80  | 0.84  | 1.02 | .90 | .88  | .91  | .86  | 1.01  | 1.04 | 1.23 |
|         | 137 | 2017 | 1.02  | 1.14  | 1.16  | 0.94  | 0.91  | 0.72  | 0.82  | .87  | .77 | .90  | .88  | .93  | 0.92  | .92  | 1.01 |
|         | 138 | 2018 | 0.82  | 0.84  | 0.88  | 0.89  | 0.82  | 0.77  | 0.82  | .76  | .80 | 1.01 | .82  | .92  | 0.85  | .85  | .86  |
|         | 139 | 2019 | 0.93  | 0.95  | 1.17  | 1.01  | 0.85  | 0.91  | 0.94  | .94  | .92 | 1.01 | .99  | 1.09 | 0.98  | .96  | .93  |
|         | 140 | 2020 | 1.16  | 1.24  | 1.17  | 1.13  | 1.02  | 0.92  | 0.90  | .87  | .98 | .88  | 1.10 | .81  | 1.01  | 1.04 | 1.16 |
|         |     |      |       |       |       |       |       |       |       |      |     |      |      |      |       |      |      |

140 rows × 19 columns

```
In [ ]: # Plotting and visualizing the data
ax = GLB_data.plot(
    x='Year',
    y='J-D')
ax.set_ylabel("Temperature Anomaly [°C]")
```

Out[]: Text(0, 0.5, 'Temperature Anomaly [°C]')



#### Estimation des paramètres

```
In [ ]:
         # We convert the data to numpy arrays
         t = np.array(GLB_data['Year'], dtype=int)
         X = np.array(GLB data['J-D'], dtype=float)
         one = np.ones_like(t)
In [ ]:
         # Funciton to calculate estimators
         def calculate_estimators(t: np.array, X: np.array) -> Tuple[float, float, float]:
             t_bar = t.mean()
             X_bar = X.mean()
             n = len(t)
             beta_2_est = (t - t_bar) @ X / ((t - t_bar) @ (t - t_bar))
             beta 1 est = X bar - beta 2 est * t bar
             X_hat = beta_1_est + beta_2_est * t
             epsilon_hat = X - X_hat
             sigma_2_hat = epsilon_hat @ epsilon_hat / (n - 2)
             return beta 1 est, beta 2 est, sigma 2 hat
In [ ]:
         delta_t = 30
         t len = 10
In [ ]:
         # calculating the estimators every 10 years in a 30 years interval
         t0 = t[0]
         tf = t[-1]
         ranges = [
             range(time, time + delta_t)
             for time in range(0, len(t) - delta_t, t_len)
         ranges = np.array(ranges)
         times = ranges + t0
         estimators = np.array([
             calculate_estimators(t[r], X[r])
             for r in ranges
         ])
         estimators
Out[]: array([[ 1.17521869e+01, -6.34037820e-03, 1.12774861e-02],
               [ 8.06885206e+00, -4.38932147e-03, 1.22446194e-02],
               [-9.95107453e+00, 5.03893215e-03, 1.02644319e-02],
               [-2.24428024e+01, 1.15461624e-02, 8.35584830e-03],
               [-2.04927208e+01, 1.05361513e-02, 1.33537121e-02],
               [-4.42806452e+00, 2.25806452e-03, 1.43103687e-02],
               [ 6.02434038e+00, -3.08787542e-03, 1.06317909e-02],
               [-1.01532614e+01, 5.16573971e-03, 1.00866344e-02],
```

4

I) Déterminons d'abord pour  $\sigma^2$ . Nous avons que :

$$rac{n-2}{\sigma^2}\hat{\sigma}^2 \sim \chi^2_{(n-2)}$$

Nous cherchons avoir un intervale de confiance avec  $\alpha$ . En utilisant les quantiles d'une loi de  $\chi^2_{(n-2)}$  nous pouvons écrire que:

$$\mathbb{P}\left[q_{lpha/2}^{\chi_{n-2}^2} \leq rac{n-2}{\sigma^2}\hat{\sigma}^2 \leq q_{1-lpha/2}^{\chi_{n-2}^2}
ight] = 1-lpha$$

Donc:

$$\mathbb{P}\left[rac{(n-2)\hat{\sigma}^2}{q_{1-lpha/2}^{\chi_{(n-2)}^2}}\leq \sigma^2 \leq rac{(n-2)\hat{\sigma}^2}{q_{lpha/2}^{\chi_{(n-2)}^2}}
ight]=1-lpha$$

Nous avons donc que l'intervale de confiance pour  $\sigma^2$  avec  $\alpha$  est:

$$I_{1-lpha}(\sigma^2) = \left[rac{(n-2)\hat{\sigma}^2}{q_{1-lpha/2}^{\chi^2_{(n-2)}}}, rac{(n-2)\hat{\sigma}^2}{q_{lpha/2}^{\chi^2_{(n-2)}}}
ight]$$

II) Soit  $j\in\{1,2\}$ . Déterminons l'intervale de confience lpha pour  $eta_j$ . Nous avons que :

$$rac{\hat{eta}_j - eta_j}{\hat{\sigma}_j} \sim T_{n-2}$$

Nous cherchons avoir un intervale de confiance avec  $\alpha$ . En utilisant les quantiles d'une loi de  $\chi^2_{(n-2)}$  nous pouvons écrire que:

$$\mathbb{P}\left[q_{lpha/2}^{T_{n-2}} \leq rac{\hat{eta}_j - eta_j}{\hat{\sigma}_j} \leq q_{1-lpha/2}^{T_{n-2}}
ight] = 1-lpha$$

Donc:

$$\mathbb{P}\left[\hat{\beta}_j - \hat{\sigma}_j q_{1-\alpha/2}^{T_{n-2}} \leq \beta_j \leq \hat{\beta}_j - \hat{\sigma}_j q_{\alpha/2}^{T_{n-2}}\right] = 1 - \alpha$$

Nous avons donc que l'intervale de confiance pour  $\beta_j$  avec  $\alpha$  est:

4 of 9

$$oxed{I_{1-lpha}(eta_j) = \left[\hat{eta}_j - \hat{\sigma}_j q_{1-lpha/2}^{T_{n-2}}, \hat{eta}_j - \hat{\sigma}_j q_{lpha/2}^{T_{n-2}}
ight]}$$

III)

L'intervalle de confiance autour de la droite de régression est determiné par le résidu de prédiction:

$$\hat{arepsilon}_i = X_i - \hat{X}_i = X_i - \hat{eta}_2 t - \hat{eta}_1$$

Nous avons, donc que:

$$rac{\hat{arepsilon}_i}{\hat{\sigma}_1} \sim T_{n-2}$$

Or, cela implique que:

$$oxed{I_{1-lpha}(X_j) = \left[\hat{X}_j - \hat{\sigma}_1 q_{1-lpha/2}^{T_{n-2}}, \hat{X}_j - \hat{\sigma}_1 q_{lpha/2}^{T_{n-2}}
ight]}$$

Obtenons numériquement leur valeur pour lpha=0.05

```
In [ ]:
         def sigma_2_confidence_interval(t: np.array, X: np.array, n: int, alpha: float):
             beta_1_hat, beta_2_hat, sigma_2_hat = calculate_estimators(t, X)
             lower_bound = (n - 2) * sigma_2_hat / chi2.ppf(1 - alpha / 2, n - 2)
             upper_bound = (n - 2) * sigma_2_hat / chi2.ppf(alpha / 2, n - 2)
             return lower_bound, upper_bound
In [ ]:
         def beta_1_confidence_interval(t: np.array, X: np.array, n: int, alpha: float):
             beta_1_hat, beta_2_hat, sigma_2_hat = calculate_estimators(t, X)
             sigma_2_jhat = sigma_2_hat * (t**2).sum() / (n * ((t - t.mean())**2).sum())
             sigma_j_hat = np.sqrt(sigma_2_j_hat)
             lower_bound = beta_1_hat - sigma_j_hat * student.ppf(1 - alpha / 2, n - 2)
             upper_bound = beta_1_hat - sigma_j_hat * student.ppf(alpha / 2, n - 2)
             return lower_bound, upper_bound
In [ ]:
         def beta_2_confidence_interval(t: np.array, X: np.array, n: int, alpha: float):
             beta_1_hat, beta_2_hat, sigma_2_hat = calculate_estimators(t, X)
             sigma_2_j_hat = sigma_2_hat / ((t - t.mean())**2).sum()
             sigma_j_hat = np.sqrt(sigma_2_j_hat)
             lower_bound = beta_2_hat - sigma_j_hat * student.ppf(1 - alpha / 2, n - 2)
             upper_bound = beta_2_hat - sigma_j_hat * student.ppf(alpha / 2, n - 2)
             return lower_bound, upper_bound
In [ ]:
         def prediction_uncertainty(t: np.array, X: np.array, n: int, alpha: float):
             _, _, sigma_2_hat = calculate_estimators(t, X)
```

5 of 9 13/09/2022, 18:57

return student.ppf(1 - alpha / 2, n - 2) \* np.sqrt(sigma\_2\_hat)

```
In [ ]:
         alpha = 0.05
         n = len(ranges[0])
         confidence_intervals = [
                 beta_1_confidence_interval(t[r], X[r], n, alpha),
                 beta_2_confidence_interval(t[r], X[r], n, alpha),
                 sigma_2_confidence_interval(t[r], X[r], n, alpha),
                 prediction_uncertainty(t[r], X[r], n, alpha)
             for r in ranges
         ]
         confidence_intervals
Out[]: [((3.0545574932863424, 20.44981625532322),
           (-0.010928897693893522, -0.001751858702102027),
           (0.00710220393377239, 0.020627938802648297),
          0.2175316387139444),
          ((-1.0418639664336187, 17.17956808211771),
           (-0.009170545312657163, 0.00039190237606094667),
           (0.007711273901226003, 0.022396947146019072),
          0.22666732893952182),
          ((-18.336410734135857, -1.565738320369146),
           (0.0006613541765281101, 0.009416510117131512),
           (0.006464214458780436, 0.0187749354293873),
          0.20753136394637806),
          ((-30.047984434606093, -14.837620311407996),
           (0.007596484279764446, 0.01549584052557482),
           (0.005262248886136066, 0.015283896238369787),
          0.1872455713082802),
          ((-30.15689952771755, -10.828542074062213),
           (0.005543083805717633, 0.015529218752680589),
           (0.008409745356877338, 0.024425616919081964),
          0.23671037045548984),
          ((-14.484113388846628, 5.627984356588561),
           (-0.0029107606463023663, 0.0074268896785604326),
           (0.009012217417444684, 0.026175462025133083),
          0.24504265674697231),
          ((-2.687937492484565, 14.73661824888056),
           (-0.007543100438659266, 0.001367349604398976),
           (0.006695565515366034, 0.019446881135491645),
          0.21121244023033292),
          ((-18.68262894354497, -1.6238938595696037),
           (0.0008262409366423477, 0.009505238484937185),
           (0.006352243185354862, 0.018449721369439787),
          0.20572611283046585),
          ((-37.42471668582555, -19.817073451363925),
           (0.010081915777548524, 0.018994836169058824),
           (0.006699278610140873, 0.01945766560359451),
          0.21127099712950825),
          ((-41.433798097935636, -24.15129941782263),
           (0.012281901212759874, 0.02098617442683969)
           (0.006389296075051177, 0.018557339335390093),
          0.20632524475119873),
          ((-42.52189026858127, -26.794025193042778),
           (0.013638736741149286, 0.0215203288873268),
           (0.005238607970971887, 0.01521523257342962),
           0.18682449282023306)
```

```
((eta_{1,min},eta_{1,max}),(eta_{2,min},eta_{2,max}),(\sigma_{min}^2,\sigma_{max}^2),\hat{\sigma}_1q_{1-lpha/2}^{T_{n-2}})
```

5

```
def plot_interval(X, t, plot_range, beta_1_hat, beta_2_hat, epsilon_ci):
    plot_lower, plot_upper = plot_range[0], plot_range[-1]
    plt.plot(plot_range, beta_1_hat + beta_2_hat * plot_lower + epsilon_ci
    max_left = beta_1_hat + beta_2_hat * plot_lower - epsilon_ci
    min_left = beta_1_hat + beta_2_hat * plot_upper - epsilon_ci
    min_right = beta_1_hat + beta_2_hat * plot_upper + epsilon_ci
    max_right = beta_1_hat + beta_2_hat * plot_upper + epsilon_ci
    plt.fill_between([plot_lower, plot_upper],
        [max_left, max_right],
        [min_left, min_right],
        alpha=0.35,
)
```

Pour changer les périodes pour lesquelles la droite de régression est visualisée, changer la variable "plot\_periods"

```
In [ ]:
         plot_periods = [0, 3, 7, 10] # Change this value to change plotted periods [0, 10]
         lost_pts = t[-1] - times[-1][-1]
         plt.plot(t[:-lost_pts], X[:-lost_pts])
         for time_interval in plot_periods:
             beta_1_hat, beta_2_hat, _, = estimators[time_interval]
             beta_1_interval, beta_2_interval, _, prediction_uncertainty = confidence_interval
             time = times[time_interval]
             rang = ranges[time interval]
             plot_interval(
                 Χ,
                 t,
                 time,
                 beta_1_hat,
                 beta_2_hat,
                 prediction_uncertainty
             )
         plt.xlabel("Year [-]")
         plt.ylabel("J-D [°]")
         plt.grid()
         plt.show()
```



6

```
In [ ]:
         # Calculating the p-value
         def p_value(t, X, n):
             beta_1_hat, beta_2_hat, sigma_2_hat = calculate_estimators(t, X)
             sigma_2_j_hat = sigma_2_hat / ((t - t.mean())) @ (t - t.mean()))
             return 2 * (1 - student.cdf(np.abs(beta_2_hat) / np.sqrt(sigma_2_j_hat), n - 2))
In [ ]:
         p_values = [
             p_value(t[r], X[r], n)
             for r in ranges
         p_values
Out[]: [0.008505785813796463,
         0.07047873226794543,
         0.025598638615577318,
         1.8893823596766168e-06,
         0.00017604854704034167,
         0.3784841191076409,
         0.16672427700696524,
         0.021350839327671567,
         2.9776871546260963e-07,
         1.5792273933001866e-08,
         6.776170735633968e-10]
```

### 7

## Conclusion

Les p-valeurs indiquent que pendant plusieurs périodes de 30 ans le coefficient angulaire de la régression est différent de zéro (à niveau  $\alpha=0.05$ ). Notamment, pour toutes périodes s'amorçant après 1960 le coefficient  $\beta_2$  est positif et les p-valeurs sont inférieures à  $10^{-7}$ . Cela est indicatif d'un réchauffement de la planète pendant les dernières décennies qui correspondent

à celles où les émissions de gaz à effet de serre ont été les plus élevées [1]. Cela dit, l'analyse réalisée ne permet pas d'établir un lien de causalité entre ces deux quantités (quoique cette relation ait été établie par d'autres études).

[1] - https://ourworldindata.org/co2-dataset-sources

9 of 9