Il livello "collegamento dati" - Esempio di calcolo di un codice di Hamming

Gruppo Reti TLC giancarlo.pirani@telecomitalia.it http://www.telematica.polito.it/

Codici a correzione di errore (1)

Supponiamo di voler progettare un codice con \mathbf{m} bit di messaggio e \mathbf{r} bit di controllo $(\mathbf{n}=\mathbf{m}+\mathbf{r})$.

Ciascuno dei **2m** messaggi legali ha **n** parole di codice illegali a distanza **1** da essa -> ogni parola di codice richiede **n+1** pattern di bit dedicati ad essa -> dobbiamo avere (**n+1**) $2^m \le 2^n$.

Usando n=m+r questo requisito diventa: $(m+r+1) \le 2^r$ per correggere gli errori singoli.

Si può costruire un codice in questo modo:

I bit che sono in posizioni che sono potenze di 2 sono bit di controllo; un bit e' controllato dai bit che sono nelle posizioni della sua espansione in potenze di 2.

Quando arriva una parola di codice il ricevitore inizializza un contatore a zero: Poi esamina ogni bit di controllo (nelle posizioni 1, 2, 4, 8, ...) per vedere quali hanno la parità corretta. Se tutti hanno la parità corretta la parola viene accettata. Se il contatore e' diverso da zero esso contiene il numero d'ordine del bit sbagliato. Ad esempio se i bit di controllo 1, 2 e 8 non soddisfano la parità il bit invertito e' quello di posizione 11.

Questo tipo di codice si chiama codice di Hamming e corregge solo gli errori singoli.

Codici a correzione di errore (2)

Char.	ASCII	Check bits
Н	1001000	00110010000
а	1100001	10111001001
m	1101101	11101010101
m	1101101	11101010101
İ	1101001	01101011001
n	1101110	01101010110
g	1100111	01111001111
	0100000	10011000000
С	1100011	11111000011
0	1101111	10101011111
d	1100100	11111001100
е	1100101	00111000101
		Order of bit transmission

Esempio (1)

1100001

$$3 = 1 + 2$$
 $5 = 1 + 4$
 $6 = 2 + 4$
 $7 = 1 + 2 + 4$
 $9 = 1 + 8$

$$10 = 2 + 8$$
 $11 = 1 + 2 + 8$

10111001001

Esempio (2)

Trasmesso

10111001001

Ricevuto (errore sull'ultimo bit)

10111001000

Bit errato in posizione 1+2+8=11