

**AMMUNITION ARTICLES WITH PLASTIC COMPONENTS AND METHOD OF
MAKING AMMUNITION ARTICLES WITH
PLASTIC COMPONENTS**

Inventors

Nabil Husseini

David E. Byron

Burns, Doane, Swecker & Mathis LLP
P.O. Box 1404
Alexandria, Virginia 22313-1404

Telephone (703) 836-6620

Attorney Docket No. 032391-001

PATENT
Atty Dkt. No. 032391-002

**AMMUNITION ARTICLES WITH PLASTIC COMPONENTS AND
METHOD OF MAKING AMMUNITION ARTICLES WITH
PLASTIC COMPONENTS**

This application claims the benefit of U.S. Provisional Application No.
5 60/116,232, filed January 15, 1999.

Field of the Invention

The present invention relates to ammunition articles and methods of
making ammunition articles and, more particularly, to ammunition articles with
plastic components such as cartridge casing bodies and bases, and methods of
10 making ammunition articles with plastic components.

Background and Summary

Plastic cartridge casings have been known for many years but have failed
to provide satisfactory ammunition that could be produced in commercial
quantities with sufficient safety, ballistic, and handling characteristics. The
15 problems evidenced by all of the known methods of producing plastic or
substantially plastic ammunition include the possibility of the projectile being
pushed into the cartridge casing, the bullet pull being too light such that the bullet

can fall out, the bullet pull being insufficient to create enough chamber pressure, the bullet pull being too great causing excessive chamber pressure, the bullet pull not being uniform from round to round, portions of the cartridge casing breaking off upon firing of the projectile causing damage or danger when subsequent rounds 5 are fired or when the casing portions themselves become projectiles, and expense due to manufacturing techniques or multiple material constructions. In the manufacture of blanks using plastic cartridge cases, similar problems to those present with prior art cartridge cases for conventional ammunition exist, as well as problems associated with portions of the cartridge cases breaking off and becoming 10 dangerous, high velocity plastic projectiles.

Certain of the foregoing problems are addressed in European Patent Application 0 131 863, which discloses a plastic cartridge casing that is provided with a ring or a plurality of rings or with a pronounced radially inward taper to engage corresponding surfaces on the bullet so that the bullet may be snapped into 15 the casing. However, the technique of forming a cartridge casing and then snapping a bullet into the casing is time consuming in that it involves multiple steps, is manpower and equipment intensive in that different equipment is necessary to perform various tasks in the manufacturing process, and still risks a less than perfect fit between bullet and casing in that the casings are not custom fit 20 to each bullet. It is desirable to provide ammunition articles having plastic cartridge casing bodies, cartridge casings with plastic cartridge casing bodies, and plastic cartridge casing bodies that ensure a high-quality fit between the plastic

cartridge casing body and the projectile, and methods of manufacture for such articles that are simple and require minimal manpower and equipment.

According to one aspect of the present invention, an ammunition article is provided, the ammunition article including a molded plastic cartridge casing body 5 having a first end and a second end, and a projectile attached to the first end of the cartridge casing body. The cartridge casing body is molded around at least a portion of the projectile.

According to another aspect of the present invention, an ammunition article is provided, the ammunition article including a cartridge casing body having a first 10 end and a second end, a projectile attached to the first end of the cartridge casing body, and a single piece, molded plastic base, the base being attached to the second end of the cartridge casing body.

According to another aspect of the present invention, an ammunition article is provided, the ammunition article including a molded plastic cartridge case body 15 having a closed front end and a second end.

According to another aspect of the present invention, an ammunition article is provided, the ammunition article including a molded plastic cartridge case body, the cartridge case body including a web dividing an internal volume of the body to define a lower cavity for receiving a propellant and an upper cavity for receiving a 20 projectile, the web including an upwardly extending prong for being received in a corresponding recess in a base of the projectile to fasten the body to the projectile.

According to another aspect of the present invention, a method of making an ammunition article includes the steps of molding plastic around at least a portion of a projectile to form a plastic cartridge casing body having a first end to which the projectile is attached and a second end.

5 According to another aspect of the present invention, a method of making an ammunition article includes the steps of molding plastic to form a single piece, molded plastic base, and attaching the base to an end of a cartridge casing body.

According to another aspect of the present invention, a method of making an ammunition article includes the steps of molding plastic around a core pull to 10 form a molded plastic cartridge case body having a closed front end and a second end, and removing the core pull from the cartridge casing body.

According to another aspect of the present invention, a method of making an ammunition article includes the steps of molding plastic to form a molded plastic cartridge case body, the cartridge case body including a web dividing an 15 internal volume of the body to define a lower cavity for receiving a propellant and an upper cavity for receiving a projectile, the web including an upwardly extending prong, and causing the upwardly extending prong to be received in a corresponding recess in a base of the projectile to fasten the body to the projectile.

Brief Description of the Drawings

The features and advantages of the present invention are well understood by reading the following detailed description in conjunction with the drawings in which like numerals indicate similar elements and in which:

5 FIG. 1 is a top perspective view of an ammunition article according to a first embodiment of the present invention;

FIG. 2 is a bottom perspective view of an ammunition article according to the first embodiment of the present invention;

10 FIG. 3 is a side view of an ammunition article according to the first embodiment of the present invention;

FIGS. 4A and 4B are side, cross-sectional views of an ammunition article according to the first embodiment of the present invention;

FIG. 5 is a top perspective view of a cartridge casing body according to the first embodiment of the present invention and illustrated without the projectile;

15 FIG. 6 is a cross-sectional view of a portion of an ammunition article according to the first embodiment of the present invention;

FIG. 7 is a cross-sectional view of an embodiment of a projectile for use in connection with the ammunition article according to the first embodiment of the present invention;

20 FIG. 8 is a cross-sectional view of another embodiment of a projectile for use in connection with the ammunition article according to the first embodiment of the present invention;

FIG. 9A is a cross-sectional view of a portion of an ammunition article according to the first embodiment of the present invention;

FIGS. 9B and 9C are partial, top views of a portion of an ammunition article according to the first embodiment of the present invention, showing
5 possible forms of flanges;

FIG. 10 is a cross-sectional view of a portion of an embodiment of the ammunition article according to the first embodiment of the present invention shown after firing;

10 FIG. 11 is a cross-sectional view of an embodiment of the ammunition article according to the first embodiment of the present invention;

FIG. 12 is a cross-sectional view of a portion of an ammunition article according to the first embodiment of the present invention;

15 FIG. 13A-14B are partially cross-sectional views of molding equipment for making an embodiment of a cartridge casing body for an ammunition article according to the first embodiment of the present invention;

FIG. 15 is a cross-sectional view of an assembly step according to a method for making an ammunition article according to the first embodiment of the present invention;

20 FIG. 16 is an exploded view of an ammunition article according to a second embodiment of the present invention;

FIG. 17 is an exploded, cross-sectional view of an ammunition article according to the second embodiment of the present invention;

FIG. 18A is a front perspective view of a molded plastic base according to an embodiment of the ammunition article according to the second embodiment of the present invention;

FIG. 18B is a side, cross-sectional view of a molded base according to an
5 embodiment of the ammunition article;

FIG. 19 is a rear perspective view of a molded plastic base according to an embodiment of the ammunition article according to the second embodiment of the present invention;

FIG. 20 is a rear perspective view of an embodiment of a cartridge casing
10 body for use with an embodiment of the ammunition article according to the second embodiment of the present invention;

FIG. 21 is a partially cross-sectional view of molding equipment for making a plastic base for an ammunition article according to the second embodiment of the present invention;

15 FIG. 22 is a side view of an ammunition article according to a third embodiment of the present invention;

FIG. 23 is a partially cross-sectional view of molding equipment for making an ammunition article according to the third embodiment of the present invention;

20 FIG. 24 is a front perspective view of a core pull for use in making an ammunition article according to the third embodiment of the present invention;

FIG. 25 is a front end view of a core pull for use in making an ammunition article according to the third embodiment of the present invention;

FIG. 26 is a side view of a core pull for use in making an ammunition article according to the third embodiment of the present invention;

5 FIG. 27 is a side view of a core pull inserted in a partially broken ammunition article according to the third embodiment of the present invention;

FIG. 28 is a side, cross-sectional view of a portion of an ammunition article according to a fourth embodiment of the present invention;

10 FIG. 29 is a side, cross-sectional view of a portion of an ammunition article according to a fifth embodiment of the present invention; and

FIG. 30 is a side, cross-sectional view of a portion of an ammunition article according to a sixth embodiment of the present invention.

Detailed Description

An ammunition article 21 according to an embodiment of the present invention is shown in FIGS. 1-3. As seen in cross-section in FIGS. 4A and 4B, the ammunition article 21 includes a molded plastic cartridge casing body 23 having a first end 25 and a second end 27. A projectile 29 is attached to the first end 25 of the cartridge casing body 23. The cartridge casing body 23 is a molded plastic part, and is formed by plastic being molded around at least a portion 31 of the projectile 29. As discussed with reference to FIG. 29, if desired or necessary, the cartridge casing body may be formed by plastic being molded to conform only

with a bottom of a projectile, with a plastic protrusion extending into a cavity in the bottom of the projectile. The projectile 29 is preferably any one of the wide variety of well-known projectiles but may, if desired or necessary, include one or more features useful in connection with the present invention.

5 As seen in FIG. 5 (showing the cartridge casing body with the projectile removed for illustration) the cartridge casing body 23 preferably includes an interior volume 33 including a first interior portion 35 defined by the portion 31 of the projectile 29 and a second interior portion 37 having a smaller diameter than the first interior portion and being separated from the first interior portion by a shoulder 39. As seen in FIGS. 5 and 6, the shoulder 39 is preferably of sufficient size to prevent axial movement of the projectile 29 into the second interior portion 37. The second interior volume 37 is preferably formed by a core pull (FIGS. 13A-14B) used in a cartridge casing body molding operation wherein a leading end of the core pull preferably abuts against the base 40 of the projectile 29. As seen in FIG. 7, the base 40 of the projectile may be flat or, as seen in FIG. 8, contoured, such as by being concave. The base 40 may be contoured to any shape desired or necessary, such as concave, convex, a combination of concave or convex, have straight portions, or curved portions, depending upon factors such as the ballistic requirements of the projectile.

15 The projectile 29 is preferably attached to the cartridge casing body 23 by one or more attachment arrangements 41 directed to preventing axial movement of the projectile relative to the cartridge casing body prior to firing, such as during

20

storage or shipment, and during accidents such as dropping of the ammunition article. Depending upon the type of ammunition article being manufactured, desirable characteristics of the attachment arrangement 41 may include the ability to provide sufficient bullet pull to permit creation of neither too much nor too little chamber pressure during firing of the projectile, ensuring uniform bullet pull from round to round, and avoiding causing portions of the cartridge casing body to break off when the ammunition article is fired. Suitable attachment arrangements 41 include a heat bond, an adhesive bond, and a weld, such as an ultrasonic weld, between the portion 31 of the projectile and the cartridge casing body 23. The attachment arrangement may be a mechanical attachment arrangement wherein portions of the cartridge casing body 23 and the portion 31 of the projectile 29 are caused to interconnect. The attachment arrangement may, of course, be nothing more than a metal to plastic bond between the portion 31 of the projectile 29 and the cartridge casing body 23 created during the molding operation.

A form of attachment arrangement 41, seen in detail in FIG. 9A, includes a flange 41' on the cartridge casing body 23 extending into a recess 43 in the projectile 29. Optimal dimensions for the flange 41' will vary depending upon the specific type of ammunition article 21 to be made. When the cartridge casing body 23 is made of a modified ZYTEL resin, available from E.I. DuPont De Nemours Co., a modified 612 nylon resin, modified to increase elastic response, and the ammunition article is so-called "38 Special" type ammunition, a desirable dimension for an annular flange 41' is 0.009" thick by 0.020" wide, i.e., the

recess 43 is an annular recess in the projectile 29 that is about 0/009" thick by 0.020" wide. The flange 41' and the recess 43 are not limited to being annular, and can be any of a variety of shapes and sizes, such as pins and grooves, detents and detent receiving recesses, helixes, such as screw threads, or any other suitable 5 mechanically interconnectable structure sufficient to retain the projectile 29 in position in the cartridge casing body 23. By proper selection of materials and flange 41' and recess 43 size, it is possible to design to a very exact degree features of the ammunition article 21 such as bullet pull. As seen in FIGS. 9B and 10C, the flange 41' need not be continuous around the entire circumference of the 10 projectile, such as in the embodiment shown in FIG. 5, but may be in the form of multiple, discontinuous or interrupted forms. The shape of the flange 41' may be any suitable shape, such as a cone, a pyramid, a half-sphere, a half circular cylinder, a cube, or other geometrical form.

As seen in FIG. 10, the flange 41', when provided, is preferably sized such 15 that, and the cartridge casing body 23 is preferably made of a plastic material suitable for its specific intended application such that, upon firing of the projectile 29, the flange 41' breaks off from the rest of the body 23 and is carried off with the projectile, without also causing other portions of the body 23 to break off. If desired or necessary, multiple flanges 41 and recesses 43 can be arranged along a 20 length of the cartridge casing body 23 and the portion 31 of the projectile 29. It will be understood that an ammunition article 21 with a flange 41' is just one embodiment of the present invention, and that the flange may be omitted in favor

of one or more alternative attachment arrangements, such as metal-plastic bonding from the molding operation, interference fit, heat bonding, adhesive, or ultrasonic welding, as seen in FIG. 11.

The ammunition article 21 preferably also includes a base 45 attached to
5 the second end 27 of the cartridge casing body 23. One suitable material for the
cartridge casing body 23 is a modified ZYTEL resin, available from E.I. DuPont
De Nemours Co., a modified 612 nylon resin, modified to increase elastic
response. In embodiments of the present invention wherein a molded cartridge
casing body may be provided, a suitable cartridge casing body may also be made
10 of a moldable material that forms part of the propellant pack, i.e., a moldable
propellant, or otherwise is itself combustible or consumable by a propellant such
as a powder ignition. The base 45 may be made of any suitable conventional
material, for example, a metal material such as brass. According to one
embodiment of the present invention, the base 45 is made of a plastic material,
15 and is preferably molded out of a long fiber reinforced nylon material to provide
great stiffness, high compressive strength, and minimal cold flow, although other
well known materials may be used for the base. As desired or necessary, the base
may be a metal base, such as a brass base, or a plastic material base, a ceramic
base, a composite base, a combination of plastic, composite, or ceramic, or may
20 incorporate the composite reinforced ceramic technology disclosed in U.S. Patent
Application No. 08/590,621, which is expressly incorporated by reference. If
desired or necessary, the base 45 and the cartridge casing body 23 can be made of

the same material. For at least some applications, the cartridge casing body 23 is preferably somewhat more flexible than the base 45 to facilitate creation of a gas seal with the chamber, but fracture properties are preferably such as to facilitate breaking off of a flange 41' (if provided) relatively cleanly from the rest of the 5 cartridge casing body without causing other parts of the cartridge casing body to break off and follow the projectile 29 during firing. Preferably, the base 45 is sufficiently sturdy to be reusable, even when it may be necessary to replace the cartridge casing body 23 after each use.

The base 45 is attached to the cartridge casing body 23 by any suitable 10 attachment arrangement, or combination of attachment arrangements. As seen in FIG. 12, the base 45 may be attached to the cartridge casing body 23 by a suitable attachment arrangement 47, such as by a mechanically interconnecting structure or otherwise. Suitable attachment arrangements 47 may include, for example, screw threads, a tongue and groove arrangement, flanges or pins and grooves, detent and 15 detent receiving recesses, an interference fit, a heat bond, an adhesive, or an ultrasonic weld, or a combination of these attachment arrangements.

As seen in FIG. 4B, the ammunition article 21 preferably includes a propellant charge P inside the cartridge casing body 23. A variety of propellant charge types are well known and, for purposes of the present application and 20 except where otherwise indicated, can be considered to broadly include all suitable types of charges, such as those that are conventionally thought of as propellant charges and those that are conventionally considered to be explosive charges, such

as black powder charges or charges such as PYRODEX, a smokeless black powder substitute available from Hodgdon Powder Co., Inc., Shawnee Mission, Kansas.

Depending upon the type of ammunition article 21, the ammunition article may include some means for igniting the propellant, such as a primer 49 (FIG. 4B) for

5 igniting the propellant, or an electronic ignition 49' for igniting the propellant (shown schematically in FIG. 4A), or means for igniting the propellant may be partially or completely external to the ammunition article.

As seen in FIG. 13A, the cartridge casing body 23 is preferably made by molding plastic around at least the portion 31 of the projectile 29 to form the

10 plastic cartridge casing body having the first end 25 to which the projectile is attached and a second end 27. Numerous plastic molding techniques are well known and are suitable for use in connection with the present application. The plastic is preferably molded around a core pull 51 such that the core pull and the portion 31 of the projectile 29 define the interior volume 33 of the plastic cartridge

15 casing body 23. A leading end 52 of the core pull 51 preferably abuts against the base 40 of the projectile 29. After molding, the core pull 51 is removed from the plastic cartridge casing body 23. Preferably, the core pull 51 has a smaller diameter than the portion 31 of the projectile such that the interior volume 33 of the cartridge casing body 23 includes the first interior portion 35 defined by the

20 portion of the projectile and a second interior portion 37 having a smaller diameter than the first interior portion and being separated from the first interior portion by

the shoulder 39. The shoulder 39 is preferably of sufficient size to prevent axial movement of the projectile 29 into the second interior portion 37.

If desired or necessary, one or more attachment arrangements above and beyond the metal-plastic bond developed upon molding the plastic of the plastic cartridge casing body 23 around the portion 31 of the projectile 29 may be provided. The attachment arrangement 41 can be provided by, for example, heat bonding the projectile to the cartridge casing body, by adhesive bonding of the projectile to the cartridge casing body, or ultrasonic welding of the cartridge casing body to the projectile. The attachment arrangement may be provided by providing one or more recesses 43 in the portion 31 of the projectile 29 such that, when the plastic is molded around the portion of the projectile, the plastic enters the recesses and forms what is referred to herein as a flange 41' on the cartridge casing body 23, the flange 41' extending into the recess.

As seen in FIGS. 13A and 13B, the molding operation is preferably performed in a mold 53 (showing a half mold and not showing another half of the mold which is preferably symmetrical to the illustrated half mold). The mold 53 preferably includes a cavity 55 in which the core pull 51 is axially movable to a position in which the leading end of the core pull preferably abuts against the base 40 of the projectile 29. As seen in FIG. 13A, a front end 57 of the projectile 29 is preferably positioned against a mold element 59 corresponding in shape to the front end of the projectile, and which ensures proper axial positioning of the projectile relative to walls of the cavity 55. The mold element 59 may be integral

with the mold 53, or may be a separate part that may be movable, as desired or necessary. An alternative form of mold 53" is shown in FIG. 13C, wherein a stationary or movable element 59" is substituted for the mold element 59, and receives a front end of the projectile for axial positioning of the projectile 29, and 5 separable mold halves close around a rear portion of the projectile to define, with the projectile and a pull 51, walls of a cavity 55" in which a plastic cartridge casing body is to be formed.

Another form of mold 53' is shown in FIGS. 14A and 14B and, instead of two identical or similar mold halves, such as are used in the embodiment of the 10 method shown in FIGS. 13A and 13B, as seen in FIG. 14A, the mold 53' preferably includes an end 53a having a portion 59' in which the front end 57 of the projectile 29 is received and which positions the projectile relative to walls 55' of another end 53b of the mold in which a core pull 51' is provided. The core pull 51' is preferably axially movable relative to the end 53b. If desired or 15 necessary, the mold end 53b may include two separable halves to facilitate removal of the cartridge casing body 23 and the projectile 29 after forming.

Regardless of the mold type used, and as discussed with reference to FIG. 13A, plastic is provided to the cavity 55 to fill voids between the walls of the cavity 55 and the walls of the portion 31 of the projectile, including any exposed 20 portions of the base 40 of the projectile, and the core pull 51 to form the cartridge casing body 23. If one or more recesses 43 are provided in the projectile 29, corresponding flanges 41' are formed when the plastic fills the recesses.

Attachment arrangements 41 such as heat bonds, adhesive bonds, and ultrasonic welds may be provided while the projectile 29 and the cartridge casing body 23 reside in the cavity 55, or after removal of the cartridge casing body and the projectile from the cavity, as desired or necessary. Techniques for providing
5 attachment arrangements 41 are well known and will not be further described here.
When the cartridge casing body 23 is molded, the core pull 51 is axially drawn from the second interior portion 37 of the cartridge casing body.

As seen in FIG. 15, the propellant charge P, such as gunpowder or other propellant, is preferably provided inside of the cartridge casing body 23, generally
10 in the second interior portion 37 of the cartridge casing body, and the base 45 is preferably attached to the second end 27 of the cartridge casing body, preferably following removal of the cartridge casing body and the projectile 29 from the mold 53. If provided, an ignition device such as a primer (FIG. 4B) or an electronic ignition (FIG. 4A) is also provided, or, depending upon the nature of the ignition
15 device, partially provided. If desired or necessary, it is, of course, possible to construct a mold and core arrangement to permit providing the charge P and attachment of the base 45 and primer while the cartridge casing body 23 and the projectile 29 continue to reside in the mold 53.

The base 45 may be a metal, such as brass, base, or may be plastic,
20 composite, ceramic, or a combination of materials. A plastic or composite base 45 is preferably molded separately from the molding operation in which the cartridge casing body 23 is molded, before attachment to the cartridge casing

body. The base 45 may be attached to the cartridge casing body 23 by any suitable attachment arrangement technique, such as through a mechanical attachment wherein interconnecting components of the base and the cartridge casing body are fitted together, or by any other suitable technique or combination 5 of techniques. The base 45 may, for example, be attached to the cartridge casing body 23 by an attachment arrangement involving the screwing together of threads on the base with threads on the cartridge casing body. The base 45 may be attached to the cartridge casing body 23 by an attachment arrangement technique involving connecting a tongue and groove arrangement between attachable portions 10 of the base and the cartridge casing body. The base 45 may be attached to the cartridge casing body 23 by an attachment arrangement technique involving forming an interference fit between the cartridge casing body and the base. The base 45 may be attached to the cartridge casing body 23 by an attachment arrangement technique involving adhesive joining. The base 45 may be attached 15 to the cartridge casing body 23 by an attachment arrangement technique involving heat bonding. The base 45 may be attached to the cartridge casing body 23 by an attachment arrangement technique involving ultrasonic welding.

Another embodiment of an ammunition article 121 according to the present invention is shown in an exploded view in FIG. 16 but, when assembled, can 20 appear substantially the same as the ammunition article 21 illustrated in FIGS. 1-3. As seen in FIG. 17, the ammunition article 121 includes a cartridge casing body 123 having a first end 125 and a second end 127. A projectile 129 is attached to

the first end 125 of the cartridge casing body 123. A base 131, seen in FIGS. 18A-19, is preferably formed as a single piece of molded plastic, or from a ceramic, a composite, or a combination of plastic, composite, or ceramic, such as, for example, by starting with a ceramic liner 1311 and molding a composite or 5 plastic material 131m over the ceramic liner, as seen in FIG. 18B. The base 131 may also incorporate the composite reinforced ceramic technology disclosed in U.S. Patent Application No. 08/590,621, which is hereby expressly incorporated by reference. As seen in FIG. 17, the base 131 is attached to the second end of the cartridge casing body. In this embodiment, the cartridge casing body 123 may 10 be a plastic cartridge casing body, such as the plastic cartridge casing body described in connection with FIGS. 1-15, or a metallic cartridge casing body, such as a brass body in which a projectile is installed, as seen in FIG. 20, or which is for a blank cartridge, or a suitable ceramic, composite, or other desired material. The cartridge casing body 123 may also be made of a moldable material that forms 15 part of the propellant pack, i.e., a moldable propellant, or otherwise is itself combustible or consumable by a propellant such as a powder ignition.

A propellant charge is preferably provided inside the cartridge casing body 123 and, as seen in FIG. 17, a device for igniting the propellant, such as a primer 133 or an electronic ignition may be provided, or partially provided, for igniting 20 the propellant. Although the base 131 is a plastic base, the base is preferably made of a sufficiently sturdy material to be reusable although the cartridge casing body 123 may be replaceable. The base 131 is attached to the cartridge casing body 123

by any suitable attachment arrangement 135. The attachment arrangement 135 may, for example, be a mechanical attachment arrangement wherein portions of the base 131 and the cartridge casing body 123 interconnect with each other.

Suitable attachment arrangements 135 include screw thread arrangements wherein
5 the base 131 is attached to the cartridge casing body 123 by screw threads, tongue and groove arrangements, an interference fit the cartridge casing body, adhesive, a heat bond, and an ultrasonic weld.

The ammunition article 121 is preferably made according to a method as seen in FIG. 21 wherein plastic is molded in a mold 137 around one or more cores 10 139 to form the single piece, molded plastic base 131. The mold 137 may have two, substantially symmetrical halves, as seen in FIG. 21, that separate in a direction transverse to a longitudinal axis of the base 131, the mold may have two parts that separate in a direction of a longitudinal axis of the base, or the mold may have a single component, with the core 139 closing an end of the single 15 component mold and one or both of the core and the single component mold being movable to permit removal of the base. If desired or necessary, the cartridge casing body or an ignition device or some component of an ammunition article may form part or all of a core around which the base 131 is molded. As seen in FIGS. 16 and 17, preferably after molding, the base 131 is attached to the second 20 end 127 of the cartridge casing body 123 using a suitable attachment arrangement 135. The cartridge casing body 123 may be a molded plastic cartridge casing body, such as the body described with reference to FIGS. 1-15, which is

preferably formed in a separate operation from the molding of the base 131, or a metallic cartridge casing body, such as the body shown in FIG. 20. Preferably, before attachment of the base 131 and the cartridge casing body 123, a propellant is provided in the cartridge casing body. A device for igniting the propellant may 5 be provided or partially provided, such as a primer 133 or an electronic ignition, and may be attached or partially attached to the base 131 depending upon the nature of the device.

Another embodiment of an ammunition article 221 according to the present invention is shown in FIG. 22. The ammunition article 221 is particularly well-suited for use as a blank cartridge. The ammunition article 221 includes a molded plastic cartridge case body 223 having a closed front end 225 and a second end 227. Although the ammunition article 221 is illustrated as having a convex front end 225, it will be appreciated that the front end can be any shape desired or necessary, such as flat, convex, or whatever shape yields desired characteristics. 10 15

As seen in FIG. 23, the ammunition article 221 is preferably molded in a mold 229 around a core pull 231. The core pull 231 and the mold 229 are preferably shaped such that the closed front end 225 preferably includes walls that reduce in thickness toward an axial center 233 of the closed front end to facilitate causing the ammunition article to break at the tip and minimize the potential for 20 portions of the wall becoming projectiles. Moreover, the closed front end 225 preferably includes at least one, preferably a plurality of stress concentrators 235 for causing preferential tearing of the closed front end at the stress concentrators

such that, upon firing, the front end will tend to split open at the axial tip at the center 233 and permit expansion of a charge, preferably a charge consisting of an explosive charge, such as black powder or PYRODEX, a smokeless black powder substitute available from Hodgdon Powder Co., Inc., Shawnee Mission, Kansas.

5 If desired or necessary, another propellant charge may be used.

As seen in FIG. 24-26, the core pull 231 preferably has raised portions 237 for forming the stress concentrators 235. The raised portions 237 are preferably in the form of intersecting lines that intersect at the tip 239 of the core pull 231 such that the resulting shape of the stress concentrators 235 on the interior wall of the
10 front portion 225 of the cartridge casing body 223 will be such that the cartridge casing body will split open along the stress concentrators at the center 233 and along the length of the stress concentrators, reducing the possibility of portions of the cartridge casing body becoming projectiles upon expansion of a powder charge. If desired or necessary, stress concentrators can be provided on an
15 exterior surface of the cartridge casing body 223 in addition to or instead of the stress concentrators 235 on the interior surface of the front portion 225, preferably by providing appropriately shaped raised portions on the mold 229.

As with the cartridge casing body 23, a base 241 (shown in phantom in FIG. 22) like the base 45 is preferably attached to the cartridge casing body 223
20 by one or more of the same attachment arrangements, and a propellant (not shown) and a powder charge ignition device (not shown) are preferably also

provided. The base may be a reusable base, and the cartridge casing body 223 is preferably replaceable on the base.

As seen in FIGS. 23 and 27, the cartridge casing body 223 is preferably formed by molding plastic around the core pull 231 to form the molded plastic 5 cartridge case body 223 having a closed front end 225 and a second end 227. The core pull 231 is removed from the cartridge casing body 223 after the plastic is molded around the core pull. The mold 229 is preferably a two-piece mold (one piece of which is shown in FIG. 23) that separates along a plane extending through a longitudinal axis of the cartridge casing body, and at least one of the mold and 10 the core pull 231 is movable relative to the other such that the core pull can be removed along the longitudinal axis of the cartridge casing body.

Yet another embodiment of an ammunition article 321 is shown in an exploded view in FIG. 28. The ammunition article 321 includes a molded plastic cartridge case body 323. The cartridge case body 323 includes a web 325 dividing 15 an internal volume of the body to define a lower cavity 327 for receiving a propellant and an upper cavity 329 for receiving a projectile 331. The web 325 includes an upwardly extending prong 333 for being received in a corresponding recess 335 in a base 337 of the projectile 331 to fasten the cartridge casing body 323 to the projectile. The prong 333 may be attached in the recess 335 by any 20 suitable attachment arrangement and attachment technique, such as by an interference fit, by interlocking structures on the prong and the recess, by an adhesive, by heat bonding, and by ultrasonic welding. The cartridge casing body

323 may, of course, be molded around the projectile 331 in a manner similar to the manner in which the cartridge casing body 23 is molded around the projectile 29, except that a core pull would not extend all the way to a base of the projectile. The prong 333 may be formed by causing plastic to enter the recess 335 during the 5 molding operation. Alternatively, the cartridge casing body 323 may be formed in a separate molding operation and thereafter attached to the projectile 331 such that the prong 333 is caused to enter the recess 335. A base (not shown) may be attached by a suitable attachment arrangement in the same way that the base 45 is attached to the cartridge casing body 23, and a propellant charge (not shown) and 10 a propellant ignition device (not shown) may be provided in the same was as with the ammunition article 21. U.S. Patent No. 5,033,386 and U.S. Patent No. 5,151,555 disclose plastic cartridge cases having a web extending across a body of the cartridge cases and are hereby expressly incorporated by reference.

FIG. 29 discloses yet another embodiment of an ammunition article 321' 15 including a plastic cartridge casing body 323'. The body 323' is molded to conform with a bottom end 325' of the projectile in which a recess 327' is provided such that a protrusion 329' is molded in the recess and, preferably, the walls of the body do not extend up the sides of the projectile. This embodiment of the ammunition article 321' facilitates use of a combustible cartridge casing body 20 323', such as where the cartridge casing body itself forms part of the propellant pack. Where the cartridge casing body 323' is intended to be part of the propellant pack, the base is preferably adapted to expand during firing to form a

gas seal. As desired or necessary, the base may be a metal base, such as a brass base, or a plastic material base, a ceramic base, a composite base, a combination of plastic, composite, or ceramic, or may incorporate the composite reinforced ceramic technology disclosed in U.S. Patent Application No. 08/590,621, which is
5 expressly incorporated by reference.

Yet another embodiment of an ammunition article 421 according to the present invention comprises a projectile 423 having cannelure contours 425 and a molded cartridge casing body 427 molded around at least a portion of the projectile such that a portion 429 of a wall 431 of the cartridge casing body
10 follows the cannelure contours of the projectile. The portion 429 of the wall 431 preferably has a substantially constant thickness such that, where the projectile is recessed, the portion of the wall is also recessed.

The foregoing embodiments of the present invention are all believed to be useful for use with all types of cartridges or blanks, regardless of shape. For
15 example, in all of the embodiments, the cartridge casing body may be, for example, cylindrical, bottle-shaped, or have other suitable shapes as desired or necessary.

While this invention has been illustrated and described in accordance with a preferred embodiment, it is recognized that variations and changes may be made
20 therein without departing from the invention as set forth in the claims.