GSOE9210 Engineering Decisions

Problem Set 07

1. Show that an irreflexive and transitive relation is asymmetric.

Solution

Suppose R is irreflexive and transitive (i.e., R is a strict preorder). Suppose xRy and yRx. Then by transitivity xRx, which would contradict irreflexivity. It follows that if xRy, then it cannot be that yRx. That is, R is asymmetric.

2. An equivalence relation on a set A is any binary relation which is: a) reflexive; b) symmetric; and c) transitive

Show that for any fixed $m \in \mathbb{N}$, the relation $R_m \subseteq \mathbb{Z} \times \mathbb{Z}$ such that xR_my iff x - y = km for some $k \in \mathbb{Z}$, is an equivalence relation.

Define $[n]_m = [n]_{R_m}$. Describe the equivalence class $[3]_0$, $[3]_1$, and $[3]_2$, $[3]_3$. In general, describe the equivalence classes $[n]_m$? Show that $[m]_4 \subseteq [m]_2$, for any $m \in \mathbb{Z}$. More generally, show that if for some $k, n, p \in \mathbb{Z}$, n = kp, then $[m]_n \subseteq [m]_p$

Solution

Let $x \in [m]_4$; i.e., mR_4x ; i.e., m-x=4k, for some $k \in \mathbb{Z}$. Then m-x=2(2k). But then for some $j \in \mathbb{Z}$ (specifically j=2k), m-x=2j; i.e., mR_2x . Therefore, $x \in [m]_2$, and hence, $[m]_4 \subseteq [m]_2$.

- 3. Verify that for any finite (or indeed infinite) sets A and B, the relation $A \simeq B$ iff |A| = |B|, where |A| is the *cardinality* of A (i.e., the number of elements in A) is an equivalence relation.
- 4. A partial order is any relation which is reflexive, antisymmetric, and transitive.

Define the relation $|\subseteq \mathbb{N} \times \mathbb{N}$ by x|y iff x divides y (or x is a factor of y, or y is a multiple of x). Show that | is a partial order (i.e., that it is reflexive, antisymmetric, and transitive).

Solution

x|y iff there exists some $k \in \mathbb{Z}$ such that y = kx.

(Reflexivity) Since x = 1x, it follows that if y = x for k = 1, y = 1x = x and hence x|x.

(Antisymmetry) Suppose x|y and y|x; i.e., for some $k, j \in \mathbb{Z}$, y = kx and x = jy. Substituting the second into the first: y = k(jy) = (kj)y. But this can only hold if kj = 1, making j the multiplicative inverse of k: $j = k^{-1}$. Since $k^{-1} \in \mathbb{Z}$ only for k = 1, in which case j = 1, it follows that k = j = 1, and kj = 1. Hence y = 1x = x, as required.

(Transitivity) Suppose x|y and y|z; i.e., y=kx and z=jy, for some $k,j \in \mathbb{Z}$. But then z=j(kx)=(jk)x, hence there is some $n \in \mathbb{Z}$ (specifically n=jk) such that z=nx; i.e., x|z.

Since | is reflexive, antisymmetric, and transitive, it is a partial order. Note that it is not total; e.g., neither 2|3 nor 3|2 (nor 2=3).

- 5. For a weak preference relation \succsim , verify the following:
 - (a) If an agent's preferences are consistent then \sim is an equivalence relation
 - (b) The corresponding strict preference relation ≻ is a strict total order
 - (c) Strict preference satisfies an 'indifference version' of the trichotomy law; i.e., exactly one of the following holds between any $x, y \in A$: $x \succ y$ or $x \sim y$ or $y \succ x$.

Solution

- (a) If an agent's preferences are consistent then \succeq is a weak total order; i.e., it is reflexive, antisymmetric, transitive, and connected. Now \sim is defined as $x \sim y$ iff $x \succeq y$ and $y \succeq x$.
 - (Reflexivity) Since \succsim is reflexive, for every $x \in A, x \succsim x$, hence $x \sim x$.
 - (Symmetry) Suppose $x \sim y$; i.e., $x \succsim y$ and $y \succsim x$. Since the order of these two facts is irrelevant, this implies $y \sim x$.
 - (Transitivity) Suppose $x \sim y$ and $y \sim z$. Then $x \succsim y$ and $y \succsim x$, and $y \succsim z$ and $z \succsim y$. Since \succsim is transitive, then $x \succsim z$ and $z \succsim x$; i.e., $x \sim z$.
- (b) By definition $x \succ y$ iff it is not the case that $y \succsim x$. We need to show that \succ is transitive and satisfies: either $x \succ y$ or $x \sim y$ or $y \succ x$. Suppose $x \succ y$ and $y \succ z$; i.e., neither $y \succsim x$ nor $z \succsim y$ hold. Since \succsim is connected, $x \succsim y$ and $y \succsim z$. But then $x \succsim z$, which, by ...
- 6. Verify that the following properties hold from the axiomatisation of \gtrsim given in lectures.
 - Strict preference properties:
 - if $x \succ y$, then it should be that $y \succ x$
 - if $x \succ y$ and $y \succ z$, then it should not be that $z \succ x$
 - Indifference properties:
 - if $x \sim y$, then $y \sim x$
 - if $x \sim y$ and $y \sim z$, then $x \sim z$
 - $-x \sim x$ holds for any $x \in A$
 - Combined properties:
 - if $x \sim y$ and $z \succ x$, then $z \succ y$
 - if $x \sim y$ and $x \succ z$, then $y \succ z$
 - for any x, y either $x \succ y$ or $x \sim y$ or $y \succ x$
- 7. Let [x] be an abbreviation for $[x]_{\sim}$, show that:
 - (a) if $x \sim y$, then [x] = [y]
 - (b) if $[x] \cap [y] \neq \emptyset$, then [x] = [y]

- (c) if $x \succ y$, then if $a \in [x]$ and $b \in [y]$, then $a \succ b$
- 8. Left the left-to-right edges in the Hasse diagram below represent ≻.

In terms of \succ what is the relationship between:

- (a) d and a
- (b) a and e
- (c) a and b
- (d) f and d

Solution

- (a) $d \succ a$ as there is a left-to-right edge connecting d to a.
- (b) $a \succ e$
- (c) $a \succ b$, by transitivity, as $a \succ e$ and $e \succ b$. Alternatively, there is a left-to-right path from a to b.
- (d) There is no left-to-right path from f to d or from d to f, so neither $f \succ d$ nor $d \succ f$.
- 9. Consider the following preferences on the set $A = \{a, b, c, d, e\}$:

$$c \succsim a \quad b \succsim d \quad e \succsim d \quad d \succsim a \quad d \succsim e \quad a \succsim c$$

- (a) What additional instances of \succsim can be inferred from the axioms given in lectures?
- (b) Assume that any inference not present above, or inferred from them, is false. From the definition of \succ in terms of \succsim , what are the instances of \succ ?
- (c) For an equivalence relation (A, \sim) , denote the set of all equivalence classes of A by A/\sim . (Sometimes A/\sim is called the *quotient class* of A.) List the indifference classes in A/\sim ?
- (d) Draw the Hasse diagram for \succ .
- (e) Draw the Hasse diagram for \succ_I : the preference relation on indifference classes.
- (f) Define an ordinal function V on the members of A/\sim (i.e., $V:A/\sim\to\mathbb{R}$) and hence, one on A ($v:A\to\mathbb{R}$).

Solution

(a) All the reflexive instances:

$$a \succeq a, b \succeq b, c \succeq c, d \succeq d, e \succeq e$$

All the instances derived from transitivity:

$$b \succsim a, b \succsim e, b \succsim d, b \succsim c, e \succsim a, e \succsim c, d \succsim c, e \succsim a, e \succsim c$$

In summary (omitting reflexive instances):

$$\begin{array}{l} a \succsim c \\ b \succsim a, b \succsim c, b \succsim d, b \succsim e \\ c \succsim a \\ d \succsim a, d \succsim c, d \succsim e \\ e \succsim a, e \succsim c, e \succsim d \end{array}$$

In tabular form, placing an \times in row x and column y iff $x \succsim y$ is true:

	a	b	c	d	e
a	×		×		
b	×	×	×	×	×
c	× × ×		×		
d	×		×	×	×
e	×		×	×	×

Note that the diagonal entries are all true, as \succeq is reflexive.

- (b) Assuming the table above is complete, we look for entries that are empty; e.g., entry (a,b). This implies that it is not the case that $a \succeq b$, hence, by the assumption that any instance that can't be derived is false, we infer that $b \succ a$. In this way, we look down the columns for blank entries: for (column) a: there is nothing strictly less preferred than a (no blanks in column a); for b: $b \succ a, b \succ c, b \succ d, b \succ e$; for c: nothing; for d: $d \succ a, d \succ c$; for e: $e \succ a, e \succ c$.
- (c) Since we have $a \succsim c$ and $c \succsim a$, then $a \sim c$. Similarly, as $e \succsim d$ and $d \succsim e$, then $d \sim e$. Therefore, the indifference classes are $[b] = \{b\}, [a] = [c] = \{a,c\}, [d] = [e] = \{d,e\}.$

- (f) For instance: $V(\{b\}) = 2$, $V(\{d,e\}) = 1$, $V(\{a,c\}) = 0$. That is v(b) = 2, v(d) = v(e) = 1, v(a) = v(c) = 0.
- 10. Show that the weak preference ordering \succeq_I on indifference classes is antisymmetric.
- 11. Show that for the weak preference relation \succeq_I on indifference classes:
 - (a) for any $X,Y\in A/\!\!\sim,\, X\succsim_I Y$ iff for every $x\in X$ and $y\in Y,\, x\succsim y$
 - (b) \succsim_I is a weak total order
- 12. Show that for any ordinal value function v:
 - (a) v(x) > v(y) iff $x \succ y$.
 - (b) v(x) = v(y) iff $x \sim y$.

Solution

- (a) Let v be an ordinal value function; i.e., $v(x) \ge v(y)$ iff $x \succeq y$. Assume v(x) > v(y). It follows that $v(y) \not \le v(x)$. But then $y \not \succeq x$. By definition of \succ , then $x \succ y$, and conversely.
- (b) Assume v(x) = v(y). It follows that $v(x) \ge v(y)$ and $v(y) \ge v(x)$. Therefore, $x \succeq y$ and $y \succeq x$. By definition of \sim , $x \sim y$, and conversely.