Algebra 2

20. oktober 2024

1 Uvod v teorijo grup

1.1 Uvod v teorijo grup

Definicija 1.1. Naj bo S neprazna množica. Operacija na množice S je preslikava $*: S \times S \to S, \ (a,b) \mapsto a*b.$

Operacija * je asociativna, če $\forall a,b,c \in S . (a*b)*c = a*(b*c).$

Operacija * je komutativna, če $\forall a,b \in S$. a*b=b*a.

Definicija 1.2. Neprazna množica S skupaj z operacijo * je polgrupa, če je operacija * asociativna.

Definicija 1.3. Naj bo S množica z operacijo *. Pravimo, da je $e \in S$ enota (oz. nevtralni element) za operacijo *, če $\forall x \in S . e * x = x * e = x$.

Trditev 1.1. Če v množici S obstaja enota za operacijo *, potem je ena sama.

Definicija 1.4. Polgrupa z enoto je *monoid*.

Definicija 1.5. Naj bo S množica z operacijo * in $e \in S$ enota. Naj bo $x \in S$.

- Element $y \in S$ je levi inverz elementa x, če y * x = e.
- Element $y \in S$ je desni inverz elementa x, če x * y = e.
- Element $y \in S$ je inverz elementa x, če x * y = y * x = e.

Trditev 1.2. Če je S monoid, $x \in S$, l levi inverz x ter d desni inverz x, potem l = d.

Definicija 1.6. Pravimo, da je element $x \in S$ obrnljiv, če obstaja inverz od x.

Definicija 1.7. Naj bo S z operacijo * monoid. Pravimo, da je S grupa, če je vsak element iz S obrnljiv. Če je operacija * komutativna, pravimo, da je S Abelova grupa.

Zgled. Nekaj primerov grup.

- 1. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{Q}\setminus\{0\},\cdot)$ so Abelove grupe.
- 2. Naj bo X neprazna množica. Definiramo $\mathrm{Sim}(X) = \{ \text{vse bijektivne preslikave } f: X \to X \}.$ $(\mathrm{Sim}(X), \circ)$ je grupa, imenujemo jo $simetrična\ grupa\ množice\ X.$

V posebnem primeru, ko je X končna dobimo $Sim(\{1,2,\ldots,n\}) = S_n$. S_n je simetrična grupa reda n.

1.2 Ponovitev o permutacijah

Izrek 1.3. Vsaka permutacija je produkt disjunktnih ciklov.

Definicija 1.8. Cikli dolžine 2 so transpozicije.

Trditev 1.4. Vsaka permutacija $\pi \in S_n$ je produkt transpozicij. Teh transpozicij je vedno sodo mnogo ali vedno liho mnogo.

Definicija 1.9. Permutacija je soda (oz. liha), če je produkt sodo (oz. liho) mnogo transpozicij.

Definicija 1.10. Znak permutacije je $sgn(\pi) = \begin{cases} 1; & \pi \text{ je soda} \\ -1; & \pi \text{ je liha} \end{cases}$.

Trditev 1.5. $sgn(\pi \rho) = sgn(\pi) \cdot sgn(\rho)$.

1.3 Primeri grup

Zgled (Simetrije kvadrata). Simetrije kvadrata K so izometrije $f: \mathbb{R}^2 \to \mathbb{R}^2$, da je f(K) = K.

Primeri simetrij: r - rotacija za 90° okoli središča kvadrata, z - zrcaljenje čez fiksno os simetrije ter kompozicije r in z. Iz geometrije lahko vidimo, da je $zr = r^3z$. To pomeni, da je vsak kompozitum r in z oblike r^kz .

Kvadrat ima kvečjemu 8 simetrij, ker je vsaka simetrija določena s sliko oglišča 1 in informacijo, ali smo naredili zrcaljenje ali ne. Dobimo množico simetrij $D_{2\cdot 4} = \{id, r, r^2, r^3, z, rz, r^2z, r^3z\}$. $D_{2\cdot 4}$ je diedrska grupa moči 8.

Zgled (Diedrska grupa moči 2n). Imamo naslednje simetrije pravilnega n-kotnika:

- r rotacija za $\frac{2\pi}{n}$ okoli središča.
- z zrcaljenje čes neko fiksno os simetrije.

Velja: $zr = r^{n-1}z$.

Množica vseh simetrij je $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, z, rz, r^2zn, \dots, r^{n-1}z\}$. D_{2n} je diedrska grupa moči 2n.

Zgled (Monoid -> Grupa). Naj bo (S,*) monoid. Definiramo $S^* = \{obrnljive elementi iz <math>S\}$, potem S^* je grupa za *.

Primer. Naj bo $S = (\mathbb{R}^{n \times n}, \cdot), S^* = \{A \in \mathbb{R}^{n \times n}; \det A \neq 0\} = \operatorname{GL}_n(\mathbb{R}). \operatorname{GL}_n(\mathbb{R}) \text{ je splošna linearna grupa } n \times n \text{ matrik.}$

Zgled (Direktni produkt grup). Naj bodo G_1, G_2, \ldots, G_n grupe z operacijami $*_1, *_2, \ldots, *_n$. Na množice $G_1 \times G_2 \times \ldots \times G_n$ vpeljamo operacijo $(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 *_1 h_1, g_2 *_2 h_2, \ldots, g_n *_n h_n)$. Potem $(G_1 \times G_2 \times \ldots \times G_n, *)$ je grupa.

V grupah ponavadi uporabljamo miltiplikativni zapis: operacija: \cdot , enota: 1, inverz od x: x^{-1} , potenca: x^{n} .

V Abelovih grupah uporabljamo aditivni zapis: operacija: +, enota: 0, inverz od x: -x, potenca: nx.

Lastnosti računanja v grupah

- 1. G ima natanko eno enoto.
- 2. Vsak element iz G ima natanko en inverz.
- 3. $(x^{-1})^{-1} = x$.
- 4. $(xy)^{-1} = y^{-1}x^{-1}$.
- 5. $x^{m+n} = x^m x^n$.
- 6. $(x^m)^n = x^{mn}$.
- 7. $xy = xz \Rightarrow y = z$.
- 8. $yx = zx \Rightarrow y = z$.
- 9. $xy = 1 \Rightarrow yx = 1$.

Trditvi 7. in 8. imenujemo pravili krajšanja v grupi.