

复杂产品是指研发成本高、规模大、技术含量高、单件或小批量定制化、集成度高的的大型产品、系统或基础设施。它包括大型通讯系统、航空航天系统、大型船只、电力网络控制系统、高速列车、大型武器装备等。

- ▶非线性
- ▶不断演化
- ▶涌现性

覆盖全流程

需求

设计

制造

实验

运维

涉及多学科

气动

动力

弹道

控制

结构

电气

系统

子系统

贯 穿

全系统

设备

组件

零部件

全系统由十多个骨干厂所,数百家协作单位承担

支持多主体

DBSE--基于文档的系统工程

系统设计阶段

各部门各阶段信息交换载体主要是文档。交换的信息大多是非结构化、无统一标准、语法语义模糊甚至歧义的。各种设计文档采用不同开发环境与工具导致一致性和可回溯性差。

系统集成阶段

物理系统的组装集成成本高、周期长、难以进行反复试错。

MBSE--基于模型的系统工程

MBSE

- 基于模型使系统开发形式化、规范化
- 为系统开发提供全生命周期支持

支撑MBSE建模语言--SysML

INCOSE联合OMG在统一建模语言(Unified Modeling Language,UML)的基础上,开发出了适用于描述工程系统的系统建模语言的(System Modeling Language,SysML),一些大型软件供应商开发了相应的SysML工具,为MBSE的具体实施提供支持。

MBSE当前实现模式—存在的问题

MBSE当前主流实现模式

01 系统层级的设计 软件不支持仿真 验证,无法得知 设计是否合理

物理层及的仿真 软件难以进行系 统设计

02

04

03

MBSE新的实现模式—X语言(建模仿真工具)

X语言技术架构与思路

面向复杂系统统一建模模型框架方法图

基于模型 驱动的系 统设计

结果

反馈

具体物理 模型文本 描述

自主开发

的解释器、

仿真器

仿真结果

急需大量X语言来描述物理模型验证其X语言描述物理模型的完备性、并完善X语言 急需大量X语言来描述物理模型完善解释器仿真器 构筑X语言物理模型库:机械模型库、电力模型库、流体模型库、力学模型库