

Winning Space Race with Data Science

Prepared by: Sayli Shiradkar

Date: 11th May,2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- ➤ Data Collection with API and Web scraping
- ➤ Data Wrangling
- > Exploratory Data Analysis and Visualization
- ➤ Interactive Maps with Folium and Dashboard with Plotly Dash
- Predictive Analysis for various classification models

Summary of all results

- Interactive Data Visualization
- Best Classification Model for Predictive Analysis

Model evaluation

3

Introduction

- SpaceX Falcon 9 rocket launches cost \$62 M
- Other providers cost \$165M
- Why are costs so different?
- because SpaceX can reuse the first stage!

Problems of interest:

- What factors determine successful rocket landing?
- Understanding Relationship among different predictor variables and outcome
- Predict if the first stage will land successfully or not

Landing Success

Motivation

- Graduated from a university in Florida and lived in Florida for about five years
- Have witnessed rocket launches in KSC!
- Data Science project with SpaceX launches gave great opportunity to explore data and factors behind launch success and failure

Methodology

Executive Summary

- Data collection:
 - > SpaceX API was requested to get information about SpaceX launches
 - ➤ Web scraping of Wikipedia page* to collect Falcon 9 historical launch records
- Data wrangling
 - Converting outcome labels and other data for training supervised models
- Exploratory data analysis (EDA) using visualization and SQL
- Interactive visual analytics using Folium and Plotly Dash
- Predictive analysis using classification models
 - ➤ Split Data into train and test, use train data for training different classification models, evaluate model accuracy using test data

Data Collection

- Relevant data on SpaceX to predict rocket launch outcomes was gathered
- SpaceX API was requested to get launches related data
- Web scraping of SpaceX Wikipedia page to collect Falcon 9 historical launch records

Data Collection – SpaceX API

Data Collection - Scraping

static_url=https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922

html_data = requests.get(static_url).text

soup = BeautifulSoup(html_data, 'html5lib')

html_tables=soup.find_all('table')

column_names = []
for row in first_launch_table.find_all('th'):
 name = extract_column_from_header(row)
 if name != None and len(name) > 0:
 column_names.append(name)

launch_dict= dict.fromkeys(column_names)

Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
1	CCAFS	Dragon Spacecraft Qualification Unit	NaN	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	18:45
2	CCAFS	Dragon	NaN	LEO	NASA	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43

Data Wrangling

- Data was preprocessed, explored and Outcome labels for training models determined -
 - > % missing values in each attribute: df.isnull().sum()/ df.count()*100
 - > Identify which columns are numerical and categorical: df.dtypes
 - ➤ Number of launches per orbit type: df['Orbit'].value_counts()
 - > Number of landing outcomes: df['Outcome'].value counts()
 - > Landing Class was created with 0 as Success and 1 as failure in landing
 - > Dummy variables were created for categorical columns

GitHub URL wrangling 11

EDA with Data Visualization

- Various charts were plotted to visualize relationships between various variables of interest
 - ➤ FlightNumber vs PayloadMass
 - > Flight Number vs Launch Site
 - ➤ Payload and Launch Site
 - ➤ Success rate per Orbit Type
 - > FlightNumber and Orbit type
 - ➤ Launch success yearly trend from 2013 to 2020

GitHub URL EDA Visualization

EDA with SQL

• The SQL queries performed to gain insights on payloads, mission outcomes, launch sites and landing outcomes

- %sql select unique(launch_site) from SPACEXTBL
- > %sql select avg(payload_mass__kg_) as avg_payload_mass from SPACEXTBL where (booster_version) like 'F9 v1.1';
- %sql select min(DATE) as firstSuccessGroundDate from SPACEXTBL where LANDING__OUTCOME='Success (ground pad)';
- %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS__KG_=(select max(PAYLOAD MASS KG) from SPACEXTBL);
- %sql select MISSION_OUTCOME,count(MISSION_OUTCOME) as cnt from SPACEXTBL GROUP BYMISSION_OUTCOME;

Build an Interactive Map with Folium

- Does launch success depend on the location and proximities of a launch site?
- What factors decide building a launch site?
- Folium Map objects created to visualize launch sites on global map
 - ➤ Circle highlighting circle area with location name on coordinates
 - > Marker Cluster and markers- mark for each site launch success (green) and failure(red)
 - > Mouse Position -get the coordinate (Lat, Long) for a mouse over on the map
 - > PolyLine -draw a line between a launch site to city, coast, railway, highway locations

GitHub URL Folium Map

Build a Dashboard with Plotly Dash

- Interactive Dashboard with Plotly Dash developed to visualize and compare
 - Total successful launches for all launch sites
 - Launch site wise success and failure ratio
 - Effect of Payload mass on success/ failure rates and booster versions
- Dropdown menu was used to display success/failure rate for sites
- Slider was added to select payload range

GitHub URL PlotlyDash

Predictive Analysis (Classification)

GitHub URL predictive analysis

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- CCAFS: Success rate increases as flight numbers increase beyond 65
- VAFB: Success rate increases after 20 Flight Number
- Many launches between range of 0 to 25 Flight Numbers for CCAFS site while KSC has none

Payload vs. Launch Site

 VAFB-SLC launch site: no rockets launched for heavy pay load mass (greater than 10000)

Success Rate vs. Orbit Type

- High Success rate Orbits:
 - ➤ ES-L1
 - **➢** GEO
 - **≻** HEO
 - > SSO

Flight Number vs. Orbit Type

- LEO orbit: Success rate increases with Flight Number
- GTO orbit: no relationship with Flight Number

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for PO, LEO and ISS
- No specific pattern for GTO

Launch Success Yearly Trend

 The success rate increasing since 2013 till 2020

All Launch Site Names

There are four different lauching sites of SpaceX in US

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

SQL magic query

%sql select unique(launch_site) from SPACEXTBL

Launch Site Names Begin with 'CCA'

- There are 2 launch sites that begin with CCA
- First 5 records fetched from sql query are from CCAFS LC-40 site only!

Result from sql query

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Total payload mass carried by boosters from NASA was

Average Payload Mass by F9 v1.1

Average Payload Mass carried by booster version is F9 v1.1 was 2928 kg

First Successful Ground Landing Date

• First successful landing outcome on ground pad was on 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 Four Boosters have successfully landed on drone ship and had payload mass between 4000 and 6000

Result

SQL magic query

%sql select BOOSTER_VERSION from SPACEXTBL where LANDING__OUTCOME='Success (drone ship)' and PAYLOAD_MASS__KG_ BETWEEN 4000 and 6000;

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- Total there were 101 mission outcomes in the database
- Only one of the outcome is Failure while 100 are a Success
- Among 100 success outcomes, payload status of one mission was unclear

SQL magic query

%sql select
MISSION_OUTCOME,count(MISSION_OUTCOME) as
counts from SPACEXTBL GROUP BY
MISSION_OUTCOME;

Result

mission_outcome	counts
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

Boosters Carried Maximum Payload

There are 12 boosters which have carried the maximum payload mass

2015 Launch Records

 There were two failed landing outcomes in drone ship from CCAFS launch site in 2015

SQL magic query

%sql SELECT BOOSTER_VERSION,LAUNCH_SITE FROM SPACEXTBL where landing__outcome='Failure (drone ship)'AND EXTRACT(YEAR FROM DATE)='2015';

Result

booster_version	launch_site
F9 v1.1 B1012	CCAFS LC-40
F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Between the date 2010-06-04 and 2017-03-20, there are 31 landing outcome records
- Among 31 landing outcomes, 'No attempt' has highest rank (10) while landing outcome 'Precluded (drone ship)' has lowest rank (1)

landingoutcome	con
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Section 3 **Launch Sites Proximities Analysis**

SpaceX Launching Sites on Global Map

Ciudad de

- 4 launch sites of SpaceX in USA
- 3 launch sites: East Coast
- 1 launch site: West Coast

Launch sites on USA map

Launch Outcomes per Launch Sites

 We can visualize launch outcome as Success or Failure on folium map

CCAFS LC-40 site has 3 successes

CCAFS LC-40 site has 7 successes

Distance between Launch Site and its proximities

- Folium map shows distance between Launch Site CCAFS SLC-40 and its proximities
- Launch site to
 - Coastline = 0.86 KM
 - Railway track=1.28 KM
 - Melbourne city = 51.43 KM
 - Highway=0.58 KM
- Launch site is away from city for public safety
- Launch site is closer to coastline to provide additional boost to the rocket and in case of catastrophe, debris can fall in ocean

launch success count for all sites

- Number of launches with Success for all sites of SpaceX is shown in pie-chart
- Highest Success in KSC LC-39A site while lowest success rate is observed in CCAFS SLC-40

Launch site with highest success ratio

 KSC LC-39A site has highest launch success ratio with 76.9% launch Success rate and 23.1% failure rate

Payload vs. Launch Outcome

- Payload range varies between 362 to 9600 Kg for the highest launch success and 0 to 9600 Kg for the lowest launch success rate
- As the payload increases, success rate decreases
- Success rate of Launches is highest for Booster version category FT

Section 5 **Predictive Analysis** (Classification)

Confusion Matrix

- Confusion matrix for KNN, Tree, SVM and logistic Regression algorithms is same
- It correctly predicts landing Success outcomes
- However, for landing failures, models predict half of the times correctly
- False positive prediction rate 50%

Classification Accuracy

- Four classification models are built for first stage landing prediction :
 - ➤ Logistic Regression
 - > SVM
 - > Tree
 - > Knn
- All built classification models have same classification accuracy=0.8334

Conclusions

- SpaceX Launch Success Rate has been increasing since 2013
- High Success Rate Orbits: ES-L1, GEO, HEO, SSO
- Highest launch Success: KSC LC-39A site
- As payload increases, success rate seem to decrease
- KNN, SVM, LogReg and Decision Tree models have same accuracy (0.8334) for predicting launch outcome
- Future work: need to refine models further to improve accuracy

References

- GitHub URL of the completed SpaceX API calls notebookhttps://github.com/sayliNS/DataScienceCapstone/blob/main/1.jupyter-labs-spacex-data-collection-api%20(1).ipynb
- GitHub URL of the web scraping notebook- https://github.com/sayliNS/DataScienceCapstone/blob/main/2.%20jupyter-labs-webscraping.ipynb
- GitHub URL of data wrangling notebook- https://github.com/sayliNS/DataScienceCapstone/blob/main/3.labs-jupyter-spacex-Data%20wrangling.ipynb
- GitHub URL EDA with data visualization notebook-https://github.com/sayliNS/DataScienceCapstone/blob/main/5.jupyter-labs-eda-dataviz%20(1)new.ipynb
- GitHub URL of EDA with SQL notebook https://github.com/sayliNS/DataScienceCapstone/blob/main/4.jupyter-labs-eda-sql-coursera%20(1)%20(1).ipynb
- GitHub URL of interactive map with Folium map https://github.com/sayliNS/DataScienceCapstone/blob/main/6.lab_jupyter_launch_site_location%20(1).ipynb
- GitHub URL of Plotly Dash lab-https://github.com/sayliNS/DataScienceCapstone/blob/main/spacex_dash_app.py