A Preliminary Analysis of Syntax-Semantics Separation and Sense Selection in Word Embedding

QiPeng Guo 1 ShuaiChen Chang 1 Quan Gan 2 Xing Tian 3 XiangYang Xue 1 Zheng Zhang 3

¹Fudan University, China

²NYU

³NYU Shanghai

April 19, 2017

• Separate syntax and semantics

- Separate syntax and semantics
 - We will have a syntactic embedding (which we don't really care in qualitative analysis) and a semantic embedding for each word.
 - Syntax sends structural input to semantics and phonology (Chomsky, 1995)
 - Semantic-syntactic separation is also suggested by receptive aphasia (speaking grammatically without semantic significance) and expressive aphasia (in reverse).

- Separate syntax and semantics
 - We will have a syntactic embedding (which we don't really care in qualitative analysis) and a semantic embedding for each word.
 - Syntax sends structural input to semantics and phonology (Chomsky, 1995)
 - Semantic-syntactic separation is also suggested by receptive aphasia (speaking grammatically without semantic significance) and expressive aphasia (in reverse).
- Select senses for a word given its context to deal with polysemous words.

- Separate syntax and semantics
 - We will have a syntactic embedding (which we don't really care in qualitative analysis) and a semantic embedding for each word.
 - Syntax sends structural input to semantics and phonology (Chomsky, 1995)
 - Semantic-syntactic separation is also suggested by receptive aphasia (speaking grammatically without semantic significance) and expressive aphasia (in reverse).
- Select senses for a word given its context to deal with polysemous words.
 - More favorably, use a single embedding to start with, and obtain the "context-dependent" embedding by selecting the senses from it.

- Separate syntax and semantics
 - We will have a syntactic embedding (which we don't really care in qualitative analysis) and a semantic embedding for each word.
 - Syntax sends structural input to semantics and phonology (Chomsky, 1995)
 - Semantic-syntactic separation is also suggested by receptive aphasia (speaking grammatically without semantic significance) and expressive aphasia (in reverse).
- Select senses for a word given its context to deal with polysemous words.
 - More favorably, use a single embedding to start with, and obtain the "context-dependent" embedding by selecting the senses from it.
 - Contrary to one-sense-per-word approach.

Two-stream Model (Figure)

Baseline:

$$egin{aligned} m{h}_t &= \mathrm{GRU}(m{h}_{t-1}, \mathrm{tanh}(m{W}_{x}m{x}_t); m{ heta}_{\mathsf{GRU}}) \ m{y}_t &= \mathrm{Softmax}(m{h}_t; m{ heta}_{\mathsf{Softmax}}) \end{aligned}$$

$$\begin{aligned} \boldsymbol{d}_t^y &= \psi(\boldsymbol{h}_{t-1}^y, \boldsymbol{x}_t^y; \boldsymbol{W}_c^y, \boldsymbol{W}_x^y) \\ \boldsymbol{h}_t^y &= \operatorname{GRU}(\boldsymbol{h}_{t-1}^y, \boldsymbol{d}_t^y; \boldsymbol{\theta}_{\mathsf{GRU}}^y) \\ \boldsymbol{y}_t^{pos} &= \operatorname{Softmax}(\boldsymbol{h}_t^y; \boldsymbol{\theta}_{\mathsf{Softmax}}^y) \\ \psi(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t; \boldsymbol{W}_c, \boldsymbol{W}_x) &= g(\boldsymbol{W}_c \boldsymbol{h}_{t-1}) \odot \tanh(\boldsymbol{W}_x \boldsymbol{x}_t) \\ g(x) &= \begin{cases} 0 & x \leq 0 \\ 1/(1 + e^{-x}) & x > 0 \end{cases} \end{aligned}$$

$$\begin{aligned} \boldsymbol{d_t^e} &= \psi(\boldsymbol{h_{t-1}^e}, \boldsymbol{x_t^e}; \boldsymbol{W_c^e}, \boldsymbol{W_x^e}) \\ \boldsymbol{h_t^e} &= \operatorname{GRU}(\boldsymbol{h_{t-1}^e}, \left[\boldsymbol{d_t^e}; \boldsymbol{h_t^y}\right]; \boldsymbol{\theta_{\mathsf{GRU}}^e}) \\ \boldsymbol{y_t^{\mathsf{sem}}} &= \operatorname{Softmax}(\boldsymbol{h_t^e}; \boldsymbol{\theta_{\mathsf{Softmax}}^e}) \\ \psi(\boldsymbol{h_{t-1}}, \boldsymbol{x_t}; \boldsymbol{W_c}, \boldsymbol{W_x}) &= g(\boldsymbol{W_c}\boldsymbol{h_{t-1}}) \odot \operatorname{tanh}(\boldsymbol{W_x}\boldsymbol{x_t}) \\ g(\boldsymbol{x}) &= \begin{cases} 0 & x \leq 0 \\ 1/(1 + e^{-x}) & x > 0 \end{cases} \end{aligned}$$

- Fix the syntactic stream and train another recurrent net to predict the next actual word, with syntactic information (semantic stream).
- Minimize the negative log-likelihood for both part-of-speech and words.

$$\begin{aligned} \overrightarrow{\boldsymbol{d}}_{t}^{y} &= \psi(\overrightarrow{\boldsymbol{h}}_{t-1}^{y}, \boldsymbol{x}_{t}^{y}; \overrightarrow{\boldsymbol{W}}_{c}^{y}, \overrightarrow{\boldsymbol{W}}_{x}^{y}) \\ \overleftarrow{\boldsymbol{d}}_{t}^{y} &= \psi(\overleftarrow{\boldsymbol{h}}_{t-1}^{y}, \boldsymbol{x}_{t}^{y}; \overleftarrow{\boldsymbol{W}}_{c}^{y}, \overleftarrow{\boldsymbol{W}}_{x}^{y}) \\ \overrightarrow{\boldsymbol{h}}_{t}^{y} &= \operatorname{GRU}(\overrightarrow{\boldsymbol{h}}_{t-1}^{y}, \overrightarrow{\boldsymbol{d}}_{t}^{y}; \overrightarrow{\boldsymbol{\theta}}_{\mathsf{GRU}}^{y}) \\ \overleftarrow{\boldsymbol{h}}_{t}^{y} &= \operatorname{GRU}(\overleftarrow{\boldsymbol{h}}_{t+1}^{y}, \overleftarrow{\boldsymbol{d}}_{t}^{y}; \overleftarrow{\boldsymbol{\theta}}_{\mathsf{GRU}}^{y}) \\ \boldsymbol{y}_{t}^{pos} &= \operatorname{Softmax}([\overrightarrow{\boldsymbol{h}}_{t}^{y}; \overleftarrow{\boldsymbol{h}}_{t+2}^{y}]; \boldsymbol{\theta}_{\mathsf{Softmax}}^{y}) \end{aligned}$$

- Fix the syntactic stream and train another recurrent net to predict the next actual word, with syntactic information (semantic stream).
- Minimize the negative log-likelihood for both part-of-speech and words.

$$\begin{aligned} \overrightarrow{\boldsymbol{d}}_{t}^{e} &= \psi(\overrightarrow{\boldsymbol{h}}_{t-1}^{e}, \boldsymbol{x}_{t}^{e}; \overrightarrow{\boldsymbol{W}}_{c}^{e}, \overrightarrow{\boldsymbol{W}}_{x}^{e}) \\ \overleftarrow{\boldsymbol{d}}_{t}^{e} &= \psi(\overleftarrow{\boldsymbol{h}}_{t-1}^{e}, \boldsymbol{x}_{t}^{e}; \overleftarrow{\boldsymbol{W}}_{c}^{e}, \overleftarrow{\boldsymbol{W}}_{x}^{e}) \\ \overrightarrow{\boldsymbol{h}}_{t}^{e} &= \operatorname{GRU}(\overrightarrow{\boldsymbol{h}}_{t-1}^{e}, \left[\overrightarrow{\boldsymbol{d}}_{t}^{e}; \overrightarrow{\boldsymbol{h}}_{t}^{y}\right]; \overrightarrow{\boldsymbol{\theta}}_{\mathsf{GRU}}^{e}) \\ \overleftarrow{\boldsymbol{h}}_{t}^{e} &= \operatorname{GRU}(\overleftarrow{\boldsymbol{h}}_{t+1}^{e}, \left[\overleftarrow{\boldsymbol{d}}_{t}^{e}; \overleftarrow{\boldsymbol{h}}_{t}^{y}\right]; \overleftarrow{\boldsymbol{\theta}}_{\mathsf{GRU}}^{e}) \\ \boldsymbol{y}_{t}^{sem} &= \operatorname{Softmax}([\overrightarrow{\boldsymbol{h}}_{t}^{e}; \overleftarrow{\boldsymbol{h}}_{t+2}^{e}]; \boldsymbol{\theta}_{\mathsf{Softmax}}^{e}) \end{aligned}$$

- Fix the syntactic stream and train another recurrent net to predict the next actual word, with syntactic information (semantic stream).
- Minimize the negative log-likelihood for both part-of-speech and words.

Sense Selection

 Recall that we want to select only a subset of the dynamic embeddings:

$$\psi(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t; \boldsymbol{W}_c, \boldsymbol{W}_x) = g(\boldsymbol{W}_c \boldsymbol{h}_{t-1}) \odot \tanh(\boldsymbol{W}_x \boldsymbol{x}_t)$$

- We want $\boldsymbol{g} = g(\boldsymbol{W}_c \boldsymbol{h}_{t-1})$ to be sparse.
- Additional penalty for each gating function output:

$$egin{align} \mathcal{L}_{\mathsf{s}} &=
ho \log(
ho/ar{g}) + (1-
ho) \log(1-
ho/ar{g}) \ ar{g} &= \sum_{i=1}^{|oldsymbol{g}|} g_i \ \end{aligned}$$

Purging Syntactic Information

• How to ensure that there is no syntactic information left in semantic embedding x^e ?

Purging Syntactic Information

- How to ensure that there is no syntactic information left in semantic embedding x^e?
 - Idea: use an *adversary* to predict the part-of-speech directly from \mathbf{x}^e ;
 - Then the model tries to fool the adversary .

Purging Syntactic Information

- How to ensure that there is no syntactic information left in semantic embedding x^e?
 - Idea: use an adversary to minimize $\sum_{t} -\log P(\mathsf{POS}^e_t \mid \mathbf{x}^e_t; \theta_{\mathsf{adv}}) \text{ w.r.t. } \theta_{\mathsf{adv}} ;$
 - Then the model tries to additionally minimize the penalty $\mathcal{L}_{\text{adv}} = -H(\text{pos} \mid \mathbf{x}_t^e; \theta_{\text{adv}}) \text{ w.r.t. } \mathbf{x}_t^e, \text{ freezing everything else }.$

 Visualization (next frame): Pick a sentence and a word there, replace the word with every word in the vocabulary, and search the nearest neighbor of d^e_t:

Measuring Cleanness

 Assumption: if separated successfully, given a word w and its embedding, the word of the nearby embedding should have more varied syntactic roles different from that of w.

$$\frac{1}{K} \sum_{w' \in NN_K(w)} 1_{POS(w) = POS(w')}$$

Result of this quantity:

Model	Top-5	Top-10	Top-15	Top-20
Baseline	64.9%	69.8%	72.1%	73.1%
SynSem	60.7%	64.9%	66.7%	67.5%
SynSem + adv	48.4%	52.9%	54.8%	55.7%

Measuring Cleanness

 Assumption: if separated successfully, given a word w and its embedding, the word of the nearby embedding should have more varied syntactic roles different from that of w.

$$\frac{1}{|V|} \sum_{w \in V} \frac{1}{K} \sum_{w' \in NN_K(w)} 1_{POS(w) = POS(w')}$$

Result of this quantity:

Model	Top-5	Top-10	Top-15	Top-20
Baseline	64.9%	69.8%	72.1%	73.1%
SynSem	60.7%	64.9%	66.7%	67.5%
SynSem + adv	48.4%	52.9%	54.8%	55.7%

More Results: Language Modeling

Model	Dataset	PPL	$ \theta $	POS PPL
Zaremba et al., 2014	PTB	78.4	66M	-
Merity et al., 2016	PTB	70.9	21M	-
Zilly et al., 2016	PTB	66.0	24M	-
Baseline Uni	PTB	74.4	6.7M	-
Baseline Uni + POS	PTB	71.7		-
SynSem Uni	PTB	73.1	7.1M	6.35
Baseline Uni	Wiki	70.3	98M	-
SynSem Uni	Wiki	67.0	100M	5.47
Baseline Bi	Wiki	39.0	149M	_
SynSem Bi	Wiki	25.5	150M	3.15

- Stanford Contextual Word Similarities (SCWS) Dataset:
 - ... majority decisions are not binding on the minority ...
 - ... the signatories was subject to **minor** reservations ...
 - 10 humans rated an average score of 5.3

- Stanford Contextual Word Similarities (SCWS) Dataset:
 - ...Polymers with microcrystalline regions are generally tougher (can be bent more without breaking)...
 - ...Sigismund was **bent** on strengthening the power of the monarchy...
 - 10 humans rated an average score of 1.7

- Stanford Contextual Word Similarities (SCWS) Dataset:
 - ...Polymers with microcrystalline regions are generally tougher (can be bent more without breaking)...
 - \dots Sigismund was bent on strengthening the power of the monarchy...
 - 10 humans rated an average score of 1.7
- We can also take a subset where each pair of queried words are identical.
 - But apparently nobody has done this before (to our best knowledge).

- Stanford Contextual Word Similarities (SCWS) Dataset:
 - ...Polymers with microcrystalline regions are generally tougher (can be bent more without breaking)...
 - \dots Sigismund was bent on strengthening the power of the monarchy...
 - 10 humans rated an average score of 1.7
- We can also take a subset where each pair of queried words are identical.
 - But apparently nobody has done this before (to our best knowledge).
- We give score by scaling the embedding (either [d^y; d^e] or d^e only) to norm 1 and computing the cosine distance.

Model	w/o Ctxt	with Ctxt	Polysemous
Skip-gram-300d	65.2	-	-
Huang	62.8	65.7	-
Chen	66.2	68.9	-
Neelakantan-50d	64.0	66.1	-
Neelakantan-300d	67.3	69.3	17.2 ¹
Li et al	-	69.7	-
Qiu et al	-	66.1	-
Baseline	62.0	-	-
SynSem(400)	64.3	61.9	22.4
SynSem(600)	66.2	63.1	-
SynSem(800)	66.6	66.2	-

¹Our reproduction

Discussion & Future Work

- In terms of performance in language modeling and SCWS, it does not seem worth such hassle...
 - Do we really need to explicitly separate & select for downstream tasks (e.g. language modeling, machine translation)?
 - · Likely not, but still needs investigation.