

Data Integrated Stochastic Block Models Carter Allen; Dongjun Chung, PhD Medical University of South Carolina Department of Public Health Sciences

ABSTRACT

A fundamental objective in analysis of genomic data is characterization of **gene networks** (hub genes and subnetworks) related to a given disease.

In many complex disease areas, signal from genomic experiments is **weak and widespread**. This poses a challenge for standard statistical network models, such as the stochastic block model (SBM).

We show that the issue of weak and widespread signal can be addressed through **data integration**.

MODEL

Definition: A random graph G is said to follow an SBM(n, P, b) if

- **a. G** has *n* nodes (vertices) denoted by $\mathcal{N} = \{\eta_1, \eta_2, \dots \eta_n\}.$
- **b.** Each node has exactly one label, denoted b_i for i = 1,...,n.
- c. An edge exists between nodes η_i and η_j with probability \mathbf{P}_{b_i,b_i} .

Proposition: We propose **edge union**: a data integration scheme for the SBM.

- 1. Let G_1 and G_2 be two observed networks on the same set of nodes (genes).
- 2. Define \mathscr{E}_1 and \mathscr{E}_2 as the sets of edges in \mathbf{G}_1 and \mathbf{G}_2 , respectively.
- 3. Form G, the data-integrated network, by setting $\mathscr{E} = \mathscr{E}_1 \cup \mathscr{E}_2$, where \mathscr{E} is the set of edges in G.

SIMULATION STUDIES

We assess the performance of edge union data integration through simulation studies.

- 1. For each simulation, sample G_1 and G_2 from an SBM $(n, \mathbf{P}, \mathbf{b})$. Each network has B = 3 true clusters.
- 2. Perform edge union data integration to obtain G.
- 3. Fit Bayesian SBMs to each graph. Use MCMC sampling to obtain estimates of model parameters.
- 4. Plot posterior distributions of parameters of interest.

The Bayesian SBM models fit to G_1 , G_2 , and G are used to estimate the true number of communities B, and the community membership of each node b_1, \ldots, b_n .

We plot the posterior probabilities $P(b_i | \mathbf{G})$ as pie charts on each node to assess node (gene) assignment performance.

We plot the posterior probability $P(B \mid G)$ to assess ability to estimate model dimension (number of sub-networks).

RESULTS

Sim. 1 Sparse networks with strong signal.

Sim. 2 Dense networks with weak signal.

FURTHER RESULTS

We implement two alternative data integration methods:

- 1. **Multigraph SBM:** We form G by combining all edges in G_1 and G_2 , allowing for multiple edges between any two nodes.
- 2. Weighted SBM: We construct G with Binomial edge weights corresponding to the number of times the edge appeared in G_1 and G_2 .

These approaches tend to overestimate B.

CONCLUSIONS

- 1. Data integration allows for reliable inference in the case of weak and widespread signal.
- 2. Compared to alternative approaches to data integration, edge union offers better performance.
- 3. Bayesian SBMs allow for quantification of uncertainty in model parameter estimates.

We plan to implement our proposed method to study hub genes and sub-networks related to systemic sclerosis (SSc).

REFERENCES

Peixoto, Tiago P. "Nonparametric weighted stochastic block models." *Physical Review E* 97 1 (2018): 012306

Peixoto, Tiago P. "Nonparametric Bayesian inference of the microcanonical stochastic block model." *Physical Review E* 95.1 (2017): 012317.

Aicher, Christopher, Abigail Z. Jacobs, and Aaron Clauset. "Adapting the stochastic block model to edge-weighted networks." arXiv preprint arXiv:1305.5782 (2013).

van der Pas, S. L., and A. W. van der Vaart. "Bayesian community detection." *Bayesian Analysis* 13.3 (2018): 767-796.