Name: Maurice Wenig Matrikelnummer: 178049

Rechnersehen Theorieaufgaben 5. Übungsserie

Aufgabe 1:

a) C_p ist positiv semi-definit:

$$C_{p} = \begin{pmatrix} \sum\limits_{\omega \in \Omega(p)} I_{x}^{2}(\omega) & \sum\limits_{\omega \in \Omega(p)} I_{x}(\omega)I_{y}(\omega) \\ \sum\limits_{\omega \in \Omega(p)} I_{y}(\omega)I_{x}(\omega) & \sum\limits_{\omega \in \Omega(p)} I_{y}^{2}(\omega) \end{pmatrix}$$

$$= \sum\limits_{\omega \in \Omega(p)} \begin{pmatrix} I_{x}^{2}(\omega) & I_{x}(\omega)I_{y}(\omega) \\ I_{y}(\omega)I_{x}(\omega) & I_{y}^{2}(\omega) \end{pmatrix}$$

$$= \sum\limits_{\omega \in \Omega(p)} I(\omega)I(\omega)^{T}, \quad I(\omega) = \begin{pmatrix} I_{x}(\omega) \\ I_{y}(\omega) \end{pmatrix}$$

$$u^{T}C_{p}u = u^{T} \begin{pmatrix} \sum\limits_{\omega \in \Omega(p)} I(\omega)I(\omega)^{T} \end{pmatrix} u$$

$$= \sum\limits_{\omega \in \Omega(p)} u^{T}I(\omega)I(\omega)^{T}u$$

$$= \sum\limits_{\omega \in \Omega(p)} (I(\omega)^{T}u)^{2} \geq 0, \quad u \in \mathbb{R}^{2} \quad \Box$$

und per Definition symmetrisch. Deshalb ist C_p diagonalisierbar.

b) Die beiden Diagonaleinträge sind die Eigenwerte λ_1, λ_2 von C_p . Da C_p positiv semi-definit ist, gilt mit Eigenvektor v_i von λ_i :

$$\underbrace{v_i^T C_p v_i}_{>0} = \lambda_i v_i^T v_i = \lambda_i \underbrace{v_i^2}_{\geq 0}$$

Dadurch gilt auch $\lambda_i \geq 0$ \square

c) Die Eigenwerte sind die Nullstellen des Charakteristischen Polynoms. Mit

$$a = \sum_{\omega \in \Omega(p)} I_x^2(\omega)$$

$$b = \sum_{\omega \in \Omega(p)} I_x(\omega)I_y(\omega) = \sum_{\omega \in \Omega(p)} I_y(\omega)I_x(\omega)$$

$$c = \sum_{\omega \in \Omega(p)} I_y^2(\omega)$$

soll gelten:

$$\det \begin{pmatrix} a - \lambda & b \\ b & c - \lambda \end{pmatrix} \stackrel{!}{=} 0$$
$$(a - \lambda)(c - \lambda) - b^2 \stackrel{!}{=} 0$$
$$\lambda^2 - (a + c)\lambda + ac - b^2 \stackrel{!}{=} 0$$

Somit gilt
$$\lambda_1, \lambda_2 = \frac{(a+c)\pm\sqrt{(a+c)-4(ac-b^2)}}{2}$$

d) Die Eigenwerte geben in diesem Kontext an, wie schnell sich das Bild um das Zentrum in die Richtung der zugehörigen Eigenwerte verändert. So kann man feststellen, ob sich im beobachteten Bereich eine Ecke, eine Kante, oder ein homogener Bereich befindet.