Trabajo de Laboratorio Número 3

Sistemas con Microprocesadores

26/10/2022

Instrucciones

- Los problemas de ejercitación propuestos en el presente trabajo de laboratorio pueden ser resueltos en forma individual o grupal.
- El planteo de la solución debe realizarse basándose en lo aprendido en las clases teóricas.
- Puede utilizar las clases de consulta para resolver problemas de interpretación de los enunciados y para verificar la validez de las soluciones obtenidas.
- Incluya comentarios en sus programas para que otros puedan entenderlo.
- Enfatice claridad, simplicidad y buena estructura. No pierda estos atributos para lograr mayor performance, a menos que así se especifique en el enunciado. Los programas deben ser razonablemente eficientes.
- Emplee rótulos y variables que posean significado, por ej. SUMA o PRUEBA en lugar de X o Y.
- En todos los casos comience por un diagrama de flujo de nivel intermedio (similar a un código escrito en lenguaje C).
- Recuerde que el procesador utilizado tiene un ordenamiento de byte del tipo Little-endian por lo cual la parte menos significativa de un número se ubica en la dirección de memoria más baja.
- Posteriormente, se tomará una evaluación con problemas similares a los de este trabajo, la cual deberá ser resuelta en forma individual. La fecha de evaluación se encuentra en el sitio web de la materia.

Conceptos involucrados

- Interrupciones.
- Entradas/Salidas digitales.

Problemas propuestos

- Escriba un programa en lenguaje ensamblador del ARM-Cortex M4 para demostrar el funcionamiento de las teclas y leds de la placa EDU-CIAA-NXP. En el ejemplo a desarrollar se debe encender cada uno de los tres canales del LED RGB mientras se mantengan presionadas las teclas 1 a 3. Además deberá destellar el led 3 una vez cada segundo utilizando la interrupción periódica del SysTick.
- 2) Modifique el proyecto de ejemplo suministrado por la cátedra en la guía de solución, para que utilizando las cuatro teclas del poncho se prendan y apaguen los cuatro segmentos verticales del display de la derecha. Tenga en cuenta la disposición de las conexiones de los dispositivos de la placa y del poncho indicadas en la sección de información complementaria.
- 3) Se desea implementar el modulo de visualización del reloj descrito en el tema 2 de teoría. Para ello debe configurar al módulo SysTick para que produzca una interrupción cada 1ms, y en dicha rutina gestionar el refresco de los dígitos y la actualización de la hora. Se propone que reutilice todo el código desarrollado en los laboratorios y evaluaciones anteriores. Para facilitar el desarrollo puede acortar la duración de los minutos.
- 4) Modifique el programa del ejercicio anterior para convertir el reloj en un cronómetro. Para ello se utilizará el botón aceptar para iniciar o detener la cuenta y el botón cancelar para volver a cero.

Información complementaria

En la siguiente tabla se detalla a que puerto y terminal se encuentra conectado cada dispositivo del poncho para la placa EDU-CIAA-NXP. Se indica también a que puerto GPIO y bit corresponde cada terminal y que función debe seleccionarse para que el terminal funcione como un bit de GPIO.

Dispositivo	Terminal	Función
BOTON1	P4_8	4:GPIO5[12]
BOTON2	P4_9	4:GPIO5[13]
BOTON3	P4_10	4:GPIO5[14]
BOTON4	P6_7	4:GPIO5[15]
ACEPTAR	P3_1	4:GPIO5[8]
CANCELAR	P3_2	4:GPIO5[9]
DIGITO1	P0_0	0:GPIO0[0]
DIGITO2	P0_1	0:GPIO0[1]
DIGITO3	P1_15	0:GPIO0[2]
DIGITO4	P1_17	0:GPIO0[3]

Dispositivo	Terminal	Función
SEG A	P4 0	0:GPIO2[0]
SEG B	P4 1	0:GPIO2[1]
SEG C	P4 2	0:GPIO2[2]
SEG D	P4 3	0:GPIO2[3]
SEG E	P4 4	0:GPIO2[4]
SEG_F	P4_5	0:GPIO2[5]
SEG_G	P4_6	0:GPIO2[6]
SEG_DP	P6_8	4:GPIO5[16]