Résumé de cours : Semaine 3, du 20 au 24 septembre.

Première partie

Dérivation et intégration (fin)

1 Applications trigonométriques réciproques

Les graphes des fonctions usuelles de ce chapitre sont à connaître.

1.1 Trigonométrie circulaire

La fonction arcsin : l'application sin : $[-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow [-1, 1]$ est surjective, continue et strictement croissante. On note arcsin son application réciproque, de [-1, 1] dans $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Elle est continue, impaire et strictement croissante sur [-1, 1].

La restriction de sin à $]-\frac{\pi}{2},\frac{\pi}{2}[$ est un C^{∞} -difféomorphisme sur]-1,1[, dont le C^{∞} -difféomorphisme réciproque est la restriction de arcsin à]-1,1[.

Pour tout $x \in]-1,1[,\arcsin'(x)=\frac{1}{\sqrt{1-x^2}}.$

La fonction arccos : l'application cos : $[0,\pi] \longrightarrow [-1,1]$ est surjective, continue et strictement décroissante. On note arccos son application réciproque, de [-1,1] dans $[0,\pi]$. Elle est continue et strictement décroissante sur [-1,1].

La restriction de cos à $]0,\pi[$ est un C^{∞} -difféomorphisme sur]-1,1[, dont le C^{∞} -difféomorphisme réciproque est la restriction de arccos à]-1,1[.

réciproque est la restriction de arccos à] -1,1[. Pour tout $x \in]-1,1[$, $\arccos'(x)=\frac{-1}{\sqrt{1-x^2}}.$

Propriété. $\forall t \in [-1,1] \quad \cos(\arccos t) = t$ et $\sin(\arcsin t) = t$, mais en général, $\arccos(\cos t) \neq t$. Plus précisément, $\arccos(\cos t) = t \iff t \in [0,\pi]$.

Ainsi, lorsque $t \notin [0, \pi]$, $\arccos(\cos t) = t_0$ où $t_0 \in [0, \pi]$ et $\cos t = \cos t_0$.

La fonction arctan : l'application tan :] $-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow \mathbb{R}$ est un C^{∞} -difféomorphisme strictement croissant, dont le C^{∞} -difféomorphisme réciproque est noté.

Pour tout $x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$

1.2 Trigonométrie hyperbolique

Les fonctions réciproques des fonctions ch, sh et th ne sont pas au programme.

La fonction argsh : sh est un C^{∞} -difféomorphisme de $\mathbb R$ dans $\mathbb R$, dont le difféomorphisme réciproque est noté argsh ("argument sinus hyperbolique"). Ainsi argsh est une application C^{∞} , impaire, strictement croissante. $\operatorname{argsh}'(x) = \frac{1}{\sqrt{1+x^2}}$.

A savoir établir : Pour tout $x \in \mathbb{R}$, $\operatorname{argsh} x = \ln(x + \sqrt{1 + x^2})$.

La fonction argch : L'application che st une bijection continue strictement croissante de \mathbb{R}_+ dans $[1, +\infty[$. Son application réciproque est notée argch. C'est une bijection continue strictement croissante de $[1, +\infty[$ dans \mathbb{R}_+ .

ch est un C^{∞} -difféomorphisme de \mathbb{R}_{+}^{*} dans $]1,+\infty[$, donc argch est C^{∞} sur $]1,+\infty[$.

$$\operatorname{argch}'(x) = \frac{1}{\sqrt{x^2 - 1}}$$
. Pour tout $x \in [1, +\infty[$, $\operatorname{argch} x = \ln(x + \sqrt{x^2 - 1})$.

La fonction argth : the st un C^{∞} -difféomorphisme de $\mathbb R$ dans]-1,1[, dont le difféomorphisme réciproque est noté argth Ainsi argth est une application C^{∞} , impaire, strictement croissante de]-1,1[dans $\mathbb R$. $\operatorname{argth}'(x)=\frac{1}{1-x^2}$. Pour tout $x\in]-1,1[$, $\operatorname{argth}x=\frac{1}{2}\ln\Big(\frac{1+x}{1-x}\Big)$.

2 Calculs d'intégrales

2.1 Changement de variables

Théorème. On suppose que f est une application continue d'un intervalle I dans \mathbb{R} , et que φ est une application **de classe** C^1 d'un intervalle J dans I. Alors,

$$\forall (\alpha, \beta) \in J^2 \left[\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx. \right]$$
 (1)

Lorsque l'on remplace un membre de cette égalité par l'autre, on dit que l'on effectue le changement de variable $x = \varphi(t)$.

Démonstration à connaître.

Propriété. Soit $a \in \mathbb{R}_+^*$ et soit f une application continue sur [-a, a]. Si f est paire, alors $\int_a^a f(t) dt = 2 \int_0^a f(t) dt$. Si f est impaire, $\int_a^a f(t) dt = 0$.

Théorème. Soit $T \in \mathbb{R}_+^*$. On suppose que f est une fonction continue et T-périodique définie sur \mathbb{R} .

Alors,
$$\forall t_0 \in \mathbb{R}$$

$$\int_0^T f(t) dt = \int_{t_0}^{T+t_0} f(t) dt.$$

Démonstration à connaître.

2.2 Intégration par parties

Théorème. Soit $u:I\longrightarrow \mathbb{R}$ et $v:I\longrightarrow \mathbb{R}$ deux applications de classe C^1 sur I.

Pour tout
$$(a,b) \in I^2$$
, $\int_a^b u(t)v'(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t) dt$.

Démonstration à connaître.

Théorème. Soit $u: I \longrightarrow \mathbb{R}$ et $v: I \longrightarrow \mathbb{R}$ deux applications de classe C^1 sur I. Alors, $\int u(t)v'(t)\ dt = u(t)v(t) - \int u'(t)v(t)\ dt$, $t\in I$.

Deuxième partie

Les ensembles

2.3 Ensembles et éléments

 $Axiome\ d'extensionnalit\'e$: Si E et F sont deux ensembles, alors

E = F si et seulement si pour tout $x \in E$, $x \in F$ et pour tout $x \in F$, $x \in E$.

Définition. $\{a\}$ est un singleton.

Lorsque $a \neq b$, $\{a, b\}$ est appelé une paire.

Définition. Un prédicat P sur un ensemble E est une application de E dans $\{V, F\}$, où V symbolise le vrai et F le faux.

Définition d'un ensemble en compréhension : Si E est un ensemble et P un prédicat sur E, alors $F = \{x \in E/P(x)\}$ est un ensemble.

De plus, pour tout $x \in E$, $x \in F \iff P(x)$.

Le paradoxe de Russell :

Notons A la collection de tous les ensembles et posons $B = \{x \in A/x \notin x\}$. Alors $B \in B$ si et seulement si $B \notin B$, ce qui est impossible. Cela signifie que A n'est pas un ensemble! À connaître.

2.4 Quantificateurs

Définition du quantificateur universel :

Soit E un ensemble et P un prédicat sur E. La propriété " $\forall x \in E, P(x)$ " signifie que pour tous les éléments x de E, P(x) est vraie, c'est-à-dire que $\{x \in E/P(x)\}$ est égal à E.

Définition du quantificateur existentiel :

Avec les mêmes notations, la propriété " $\exists x \in E, P(x)$ " signifie qu'il existe au moins un $x \in E$ tel que P(x) est vraie, c'est-à-dire que $\{x \in E/P(x)\} \neq \emptyset$.

Existence et unicité : La propriété " $\exists ! x \in E, P(x)$ " signifie qu'il existe un unique $x \in E$ tel que P(x) est vraie, c'est-à-dire que $\{x \in E/P(x)\}$ est un singleton.

Remarque. L'emploi des quantificateurs en guise d'abréviations est exclu : l'usage d'un " $\forall x$ " est toujours suivi d'un " $\in E$, P(x)" (ou plus rarement d'un ", P(x)"), où P est un prédicat sur E.

Remarque. Soit P un prédicat sur un ensemble E. Alors dans les phrases

" $\forall x \in E, P(x)$ " et " $\exists x \in E, P(x)$ ", on peut remplacer la variable x par y, ou n'importe quel autre symbole. On dit que, dans les phrases " $\forall x \in E, P(x)$ " et " $\exists x \in E, P(x)$ ", x est une variable muette ou bien que c'est une variable liée.

Dans la propriété " $\exists y \in \mathbb{R}, \ x = y^2$ ", y est une variable liée, et par opposition, on dit que x est une variable libre.

2.5 Parties d'un ensemble

Définition. Soit E et F deux ensembles.

On dit que F est inclus dans E et l'on note $F \subset E$ si et seulement si tout élément de F est un élément de E, c'est-à-dire si et seulement si $\forall x \in F, \ x \in E$.

Transitivité de l'inclusion : Si $A \subset B$ et $B \subset C$, alors $A \subset C$.

Définition. Si E est un ensemble, on note $\mathcal{P}(E)$ l'ensemble de ses parties.

2.6 Opérateurs sur les ensembles

Définition. Soit E et F deux ensembles :

- **Intersection** : $x \in E \cap F$ si et seulement si $(x \in E \text{ et } x \in F)$.
- **Réunion :** $x \in E \cup F$ si et seulement si $(x \in E \text{ ou } x \in F)$.
- Différence ensembliste : $E \setminus F = \{x \in E / x \notin F\}.$
- Différence symétrique : $E\Delta F = (E \setminus F) \cup (F \setminus E) = (E \cup F) \setminus (E \cap F)$.
- Complémentaire de F dans E: Si F est une partie de E, le complémentaire de F dans Eest $\overline{F} = E \setminus F$, que l'on note plus rarement \mathcal{C}_E^F .

Propriété. Si F et G sont deux parties d'un ensemble E, alors $F \setminus G = F \cap \overline{G}$.

Propriété. Associativité de l'intersection et de la réunion : Soit A, B, C trois ensembles. Alors, $A \cap (B \cap C) = (A \cap B) \cap C$ et $A \cup (B \cup C) = (A \cup B) \cup C$.

Définition. Soit I un ensemble et $(E_i)_{i \in I}$ une famille d'ensembles. On définit $\bigcup_{i \in I} E_i$ et $\bigcap_{i \in I} E_i$ par :

$$x\in\bigcup_{i\in I}E_i\Longleftrightarrow(\exists i\in I,\ x\in E_i)\text{ et }x\in\bigcap_{i\in I}E_i\Longleftrightarrow(\forall i\in I,\ x\in E_i).$$
 Cette dernière définition n'est pas correcte lorsque $I=\emptyset.$

Distributivité de l'intersection par rapport à la réunion :

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$
 $A \cap \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cap B_i).$

Il faut savoir le démontrer.

Distributivité de la réunion par rapport à l'intersection :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$
 $A \cup \bigcap_{i \in I} B_i = \bigcap_{i \in I} (A \cup B_i) \text{ (avec } I \neq \emptyset).$

Notation. Soit $(E_i)_{i\in I}$ une famille d'ensembles deux à deux disjoints, c'est-à-dire telle que, pour tout $i, j \in I$ avec $i \neq j$, $E_i \cap E_j = \emptyset$.

Alors
$$\bigcup_{i \in I} E_i$$
 est appelée une réunion disjointe et elle est notée $\bigsqcup_{i \in I} E_i$.