Statistical analysis using SciPy and statsmodels

```
import warnings
import sys
if not sys.warnoptions:
    warnings.simplefilter("ignore")
```

Step 1: Setup and Dataset Loading

```
In [33]: import seaborn as sns
         import numpy as np
         from scipy import stats
         import statsmodels.api as sm
         import matplotlib.pyplot as plt
         # Load the tips dataset
        tips = sns.load dataset('tips')
         # Display the first few rows of the dataset
         print(tips.head())
          total bill tip
                              sex smoker day
                                               time size
               16.99 1.01 Female
                                     No Sun Dinner
       1
               10.34 1.66
                            Male
                                     No Sun Dinner
       2
               21.01 3.50
                            Male
                                     No Sun Dinner
                                     No Sun Dinner
       3
               23.68 3.31
                             Male
                                                        2
               24.59 3.61 Female
                                     No Sun Dinner
```

Step 2: Descriptive Statistics

```
print(f"Variance: {tips[col].var()}")
     print(f"Standard Deviation: {tips[col].std()}")
     print(f"Skewness: {stats.skew(tips[col])}")
     print(f"Kurtosis: {stats.kurtosis(tips[col])}\n")
Statistics for total_bill:
Mean: 19.78594262295082
Median: 17.795
Variance: 79.25293861397826
Standard Deviation: 8.902411954856856
Skewness: 1.1262346334818638
Kurtosis: 1.1691681323851366
Statistics for tip:
Mean: 2.99827868852459
Median: 2.9
Variance: 1.9144546380624725
Standard Deviation: 1.3836381890011826
Skewness: 1.4564266884221506
Kurtosis: 3.5495519893455114
```

Step 3: Hypothesis Testing

3.1 T-Test: Smokers vs. Non-Smokers

```
In [37]: # Separate tips for smokers and non-smokers
smokers = tips[tips['smoker'] == 'Yes']['tip']
non_smokers = tips[tips['smoker'] == 'No']['tip']

# Perform independent t-test
t_stat, p_val = stats.ttest_ind(smokers, non_smokers)
print(f"T-Statistic: {t_stat}, P-Value: {p_val}")
```

T-Statistic: 0.09222805186888201, P-Value: 0.9265931522244976

3.2 Correlation Analysis

```
In [39]: # Pearson correlation between total_bill and tip
    corr, p_val = stats.pearsonr(tips['total_bill'], tips['tip'])
```

```
print(f"Correlation Coefficient: {corr}, P-Value: {p_val}")
```

Correlation Coefficient: 0.6757341092113645, P-Value: 6.692470646863819e-34

3.3 ANOVA Test

F-Statistic: 2.7674794432863363, P-Value: 0.04245383328952047

Step 4: Regression Analysis

```
In [43]: # Prepare data for regression
X = tips['total_bill']
y = tips['tip']

# Add a constant for the intercept
X = sm.add_constant(X)

# Fit the OLS model
model = sm.OLS(y, X).fit()

# Print the model summary
print(model.summary())
```

OLS Regression Results

Dep. Variable:		ti	p R-sq	uared:		0.457
Model:		OL	S Adj.	R-squared:		0.454
Method:		Least Square	s F-st	atistic:		203.4
Date:		Sat, 28 Dec 202	4 Prob	(F-statistic):	6.69e-34
Time:		17:24:4	0 Log-	Likelihood:		-350.54
No. Observatio	ns:	24	4 AIC:			705.1
Df Residuals:		24	2 BIC:			712.1
Df Model:			1			
Covariance Typ	e:	nonrobus	t			
	coef	std err	t	P> t	[0.025	0.975]
const	0.9203	0.160	5.761	0.000	0.606	1.235
total_bill			14.260	0.000	0.091	0.120
	.======		======	=========		
Omnibus:		20.18	5 Durb	in-Watson:		2.151
Prob(Omnibus):		0.00	0 Jarq	ue-Bera (JB):		37.750
Skew:		0.44	3 Prob	(JB):		6.35e-09
Kurtosis:		4.71	1 Cond	. No.		53.0
=========		=========	======	=========	=======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Step 5: Distribution Fitting

```
In [45]: # Fit total_bill to a normal distribution
    mean, std = stats.norm.fit(tips['total_bill'])

# Plot histogram and PDF
    plt.hist(tips['total_bill'], bins=20, density=True, alpha=0.6, color='g')
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = stats.norm.pdf(x, mean, std)
    plt.plot(x, p, 'k', linewidth=2)
    plt.title("Fit to Normal Distribution")
    plt.show()

# Perform goodness-of-fit test
```

```
stat, p_val = stats.kstest(tips['total_bill'], 'norm', args=(mean, std))
print(f"Kolmogorov-Smirnov Test Statistic: {stat}, P-Value: {p_val}")
```


Kolmogorov-Smirnov Test Statistic: 0.1188459508899175, P-Value: 0.0018463244831193226

Interpreting Results

1. **Descriptive Statistics:** Understand the data's distribution and shape.

2. Hypothesis Testing:

- a. **T-Test:** Determine if smoking affects tipping. b. **Correlation:** Evaluate the strength and direction of the relationship between total bill and tip. c. **ANOVA:** Check if the day of the week impacts spending.
- 3. **Regression Analysis:** Assess the relationship between total bill and tip, including model significance.

4. **Distribution Fitting:** Evaluate if total_bill follows a normal distribution.