HW6

Sallinger Christian

4 5 2021

1. Method of moment estimator

Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x) = \begin{cases} \frac{\theta x^{\theta-1}}{3^{\theta}}, & 0 < x < 3\\ 0, & \text{otherwise} \end{cases}$$

where $\theta \in \mathbb{R}^+$ is an unknwn parameter.

- (a) Show that the method of moments estimator for θ is $T_n = \frac{\bar{X}}{3-\bar{X}}$.
- (b) Find the limiting distribution of $\frac{T_n \theta}{1/\sqrt{n}}$ as $n \to \infty$.

Solution:

2. Box of candles

There are blue and red candles in a box. Probability that a randomly chosen candle is blue is $\frac{1}{1+2a}$, for a > 0. Based on a sample of sample size n, find the maximum likelihood estimator (MLE) \hat{a} of the parameter a.

Solution:

3. Point estimator statistics: Comparison

Let X_1, \ldots, X_n be i.i.d. uniform $(0, \theta)$, with unknown parameter $\theta > 0$.

- (a) Show that the method of moments estimator of θ is $2\bar{X}$ and the MLE of θ is $X_{(n)} = \max_{1 \leq i \leq n} X_i$.
- (b) Compare the mean-square errors of the two estimators. Which of the estimator should be preferred if any? Explain your reasoning.

Solution:

4. Unbiased estimators

Let \hat{a} and \hat{b} be unbiased estimators of unknown parameters a and b respectively.

- (a) Check if $\alpha \hat{a} + \beta \hat{b}$ is an unbiased estimator of the parameter $\alpha a + \beta b$, where $\alpha, \beta \in \mathbb{R}$.
- (b) Is \hat{a}^2 an unbiased estimator of a^2 ?
- (c) Based on the following measurements of a side of a square (in millimeters)

find and unbiased estimator of the area.

Solution:

5. Rayleigh distribution

Let X_1, \dots, X_n be a random sample with Rayleigh distribution

$$f(x \mid \theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

where $\theta > 0$ is unknown.

- (a) Find the method of moments estimator of θ .
- (b) Find the MLE of θ and its asymptotic variance.

Hint: Show that the first two moments are $\mathbb{E}X = \theta\sqrt{\frac{\pi}{2}}$ and $\mathbb{E}X^2 = 2\theta^2$.

Solution: