1 Криптография

1.1

Постановка задачи. Простейшие криптосистемы. Сдвиг и афинное преобразование. Частотный анализ. Биграммы.

1.2

1.3

Вычет а называется обратимым по модулю N, если сущетсвует вычет x такой, что

$$ax \equiv 1 \pmod{N}$$

Вычет является обратимым тогда и только тогда, когда он взаимно прост с модулем (HOД(a, N) = 1).

Теорема Ферма утверждает, что если p - простое число и a - целое число, не делящееся на p, то

$$a^{p-1} \equiv 1 \pmod{p};$$

Функция Эйлера $\varphi(n)$ — мультипликативная арифметическая функция, равная количеству натуральных чисел, меньших n n и взаимно простых с ним. При этом полагают по определению, что число 1 взаимно просто со всеми натуральными числами, и $\varphi(1)=1$. Пример: $\varphi(24)=8$: 1, 5, 7, 11, 13, 17, 19, 23.

Теорема Эйлера гласит, что если a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod{m}$. Малая теорема Ферма является следствием теореми Эйлера.

Китайская теорема об остатках. Пусть $n_1, n_2, ..., n_k$ - некоторые попарно взаимно простые числа, а $r_1, r_2, ..., r_k$ - некоторые целые числа. Тогда существует такое целое число M, что оно будет решением системы уравнений:

$$\begin{cases} M \equiv r_1 \pmod{n_1} \\ M \equiv r_2 \pmod{n_2} \\ + \cdot \\ M \equiv r_k \pmod{n_k} \end{cases}$$

Причём это решение единственно по модулю $n_1 \cdot n_2 \cdot ... \cdot n_k$

Метод повторного возведения в квадрат. Дальше идут мои личные объяснения. Пусть нам нужно возвести чилсло a в степень n. Представим n как сумму степеней двойки. Пример: 51=32+16+2+1. Мы будем вычислять a^n циклом из n итераций. На итерации $i=\overline{0,n-1}$ будет вычисляться a^{2^i} . Причём это будет сделано с помощью уже полученного результата ($a^{2^i}=(a^{2^{i-1}})^2$). Переменная результата будет инициализирована единицей и будет домножаться на a^{2^i} каждый раз, когда i слева бит числа n не равен нулю. Таким образом, число мы возведём число в степень n примерно за $\log_2 n$ операций.