Foundations of Computing Lecture 4

Arkady Yerukhimovich

January 23, 2025

Outline

- 1 Lecture 3 Review
- Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs

Lecture 3 Review

- Regular Languages
- Nondeterministic Finite Automata
- Understanding Nondeterminism

Outline

- 1 Lecture 3 Review
- Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs

Question: Does M accept 01101? 01001?

Question: Does M accept 01101? 01001?

Question: What is L(M)?

Question: Does M accept 01101? 01001?

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

Question: Does M accept 01101? 01001?

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

How does it work?

ullet M waits in q_1 until it "guesses" that it is 3 symbols from the end

Question: Does M accept 01101? 01001?

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

How does it work?

- M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end

Question: Does M accept 01101? 01001?

Question: What is L(M)?

Answer: Strings in $\{0,1\}^*$ with a 1 as third from the end

How does it work?

- ullet M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen – requires 8 states

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains }$

- 101, or
- ② the substring 010}

- $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}$
 - 101, or
 - the substring 010}

Algorithm:

- Guess which of 101 or 010 occur in the string
- Verify (using DFA) that this is indeed the case

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains } \}$

- ① the substring 101, or
- the substring 010}

Algorithm:

- Guess which of 101 or 010 occur in the string
- Verify (using DFA) that this is indeed the case

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains }$

- 101, or
- the substring 010}

Algorithm:

- Guess which of 101 or 010 occur in the string
- Verify (using DFA) that this is indeed the case

DFA for prop. (1)

DFA for prop. (2)

 $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains }$

① the substring 101, or

4 the substring 010}

NFA for L

Quiz

Quiz

- Does N accept $w = \epsilon$?
- ② Does N accept w = aaa?
- **1** Does N accept w = babba?
- **1** Does N accept w = abaaba?

NFA Summary

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

NFA Summary

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

Question

Are NFAs more powerful than DFAs?

Outline

- 1 Lecture 3 Review
- Example NFAs
- 3 Equivalence of NFAs and DFAs
- 4 Properties of Regular Languages Using NFAs

Nondeterministic Finite Automaton – Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- ullet Σ is a finite input alphabet
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:

P(Q) is the power set of Q, i.e., the set of all subsets of Q

Nondeterministic Finite Automaton – Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- ullet is a finite input alphabet
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$ is the transition function
- $ullet q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:

P(Q) is the power set of Q, i.e., the set of all subsets of Q

Changes:

- **1** Transition function allows empty symbol (ϵ)
- ② Output of transition function is a set of states $\in P(Q)$, not a single state in Q

Theorem

For every NFA $\it N$ there exists an equivalent DFA $\it M$

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

• Let node of DFA *M* represent set of "highlighted" nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- ullet Define δ to move to new set of highlighted nodes

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- ullet Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node

Theorem

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- ullet Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node
- ullet Can deal with ϵ edges by "placing more fingers" on resulting nodes

Let N be an NFA recognizing L. Contruct DFA M recognizing L

Let N be an NFA recognizing L. Contruct DFA M recognizing L

Let N be an NFA recognizing L. Contruct DFA M recognizing L

- ② For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

Let N be an NFA recognizing L. Contruct DFA M recognizing L

- ② For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

 $q_0' = \{q_0\}$

Let N be an NFA recognizing L. Contruct DFA M recognizing L

- ② For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

- $q_0' = \{q_0\}$
- $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$ Accept if any state in R is an accept state

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges

Intuition: For every ϵ edge, just place a new "finger" on the graph

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges

Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:

1 Let $E(R) = \{q | q \text{ can be reached from } R \text{ along } \epsilon \text{ arrows}\}$

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges

Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:

- **1** Let $E(R) = \{q | q \text{ can be reached from } R \text{ along } \epsilon \text{ arrows}\}$
- 2 Define extended transition function

$$\delta'(R,a) = \cup_{r \in R} E(\delta(r,a))$$

Map to set of states that can be reached on input a or $a\epsilon$

• states: Q' =

- states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- **2** start state: q' =

- states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- ② start state: $q' = E(1) = \{1, 3\}$
- \odot accept states: F =

- **1** states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- ② start state: $q' = E(1) = \{1, 3\}$

4 Transition function δ' :

$$\delta'(\emptyset, a) = \emptyset$$

$$\delta'(\{1\}, a) = \emptyset$$

$$\delta'(\{2\}, a) = \emptyset$$

$$\delta'(\{1, 2\}, a) = \emptyset$$

$$\delta'(\{3\}, a) = \emptyset$$

$$\delta'(\{1, 3\}, a) = \emptyset$$

$$\delta'(\{2, 3\}, a) = \emptyset$$

$$\delta'(\{1, 2, 3\}, a) = \emptyset$$

$$\delta'(\emptyset, b) = \\ \delta'(\{1\}, b) = \\ \delta'(\{2\}, b) = \\ \delta'(\{1, 2\}, b) = \\ \delta'(\{3\}, b) = \\ \delta'(\{1, 3\}, b) = \\ \delta'(\{2, 3\}, b) = \\ \delta'(\{1, 2, 3\}, b) = \\$$

1 Transition function δ' :

$$\begin{array}{lll} \delta'(\emptyset,a) = \emptyset & \delta'(\emptyset,b) = \emptyset \\ \delta'(\{1\},a) = \emptyset & \delta'(\{1\},b) = \{2\} \\ \delta'(\{2\},a) = \{2,3\} & \delta'(\{2\},b) = \{3\} \\ \delta'(\{1,2\},a) = \{2,3\} & \delta'(\{1,2\},b) = \{2,3\} \\ \delta'(\{3\},a) = \{1,3\} & \delta'(\{3\},b) = \emptyset \\ \delta'(\{1,3\},a) = \{1,3\} & \delta'(\{1,3\},b) = \{2\} \\ \delta'(\{2,3\},a) = \{1,2,3\} & \delta'(\{2,3\},b) = \{3\} \\ \delta'(\{1,2,3\},a) = \{1,2,3\} & \delta'(\{1,2,3\},b) = \{2,3\} \end{array}$$

Outline

- 1 Lecture 3 Review
- Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Closure Under Union

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Proof:

Closure Under Concatenation

Closure Under Concatenation

If L_1 and L_2 are both regular languages then $L_1 \circ L_2$ is also regular

$$L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$$

Proof:

Closure Under the Star Operation

Closure Under Star Operation

If L is a regular languages then L^* is also regular

 $L^* = \{0 \text{ or more strings from } L\}$

Proof: