EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

10119100

PUBLICATION DATE

12-05-98

APPLICATION DATE

16-10-96

APPLICATION NUMBER

08273238

APPLICANT: SUMITOMO HEAVY IND LTD;

INVENTOR: OKADA NORIHITO;

INT.CL.

B29C 45/66 B29C 45/70 B29C 45/76

TITLE

MOLD CLAMPING FORCE

CONTROLLER FOR TOGGLE TYPE MOTOR OPERATED INJECTION

MOLDING MACHINE

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a mold clamping force controller for ultraprecision molding by a toggle type mold clamping mechanism.

SOLUTION: A detector 30 for sensing a strain amount of constituting member to detect a mold clamping force is provided at the member of a mold clamping mechanism 20. The detected force is fed back to a control system for controlling a servo motor 26 based on a mold clamping force pattern from a mold clamping force pattern generator 35. The force itself is always controlled to control it so that the force is not raised even if an injection pressure is received but becomes constant.

COPYRIGHT: (C)1998,JPO

AN - 1998-327081 [29]

AP - JP19960273238 19961016; [Previous Publ. JP10119100]; JP19960273238 19961016

CPY - SUMH

DC - A32

FS - CPI

IC - B29C45/66; B29C45/70; B29C45/76

MC - A09-D01 A11-B12C

PA - (SUMH) SUMITOMO HEAVY IND LTD

PN - JP3069840B2 B2 20000724 DW200040 B29C45/66 004pp

- JP10119100 A 19980512 DW199829 B29C45/66 004pp

PR - JP19960273238 19961016

XA - C1998-100806

XIC - B29C-045/66 ; B29C-045/70 ; B29C-045/76

AB - J10119100 The motor-driven injection moulding machine incorporates a servo-motor for reciprocating a movable platen through a toggle type mould clamping device. The mould clamping force control device comprises a detector provided on a component member of the mould clamping device to detect mould clamping force by detecting an amount of strain of the component member and feeds the detected mould clamping force back to a control system for controlling operation of the servo-motor according to a mould clamping pattern generated by a mould clamping pattern generator so as to make the mould clamping force constant by controlling the mould clamping force itself without increasing the mould clamping force even though injection pressure is acted on the clamping device.

- ADVANTAGE - A constant mould clamping force is maintained always and a precise moulded article with less strain is obtained.

- (Dwg.0/5)

IW - MOULD CLAMP FORCE CONTROL DEVICE TOGGLE TYPE MOTOR DRIVE INJECTION MOULD MACHINE INCORPORATE SERVO MOTOR RECIPROCAL MOVE PLATEN THROUGH TOGGLE TYPE MOULD CLAMP DEVICE

IKW - MOULD CLAMP FORCE CONTROL DEVICE TOGGLE TYPE MOTOR DRIVE INJECTION MOULD MACHINE INCORPORATE SERVO MOTOR RECIPROCAL MOVE PLATEN THROUGH TOGGLE TYPE MOULD CLAMP DEVICE

NC - 001

OPD - 1996-10-16

ORD - 1998-05-12

PAW - (SUMH) SUMITOMO HEAVY IND LTD

TI - Mould clamping force control device for toggle type motor-driven injection moulding machine - incorporates servo motor to reciprocate a movable platen through a toggle type mould clamping device

A01 - [001] 018; P0000; S9999 S1434;

- [002] 018; ND05; J9999 J2915-R; N9999 N6484-R N6440; N9999 N6611-R; K9416;

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特關平10-119100

(43)公開日 平成10年(1998) 5月12日

(51) Int.Cl.⁶

識別記号

FΙ

B 2 9 C 45/66

45/70

45/76

B 2 9 C 45/66

45/70

45/76

審査請求 有 請求項の数3 OL (全 4 頁)

(21)出願番号

特願平8-273238

(71) 出願人 000002107

住友重機械工業株式会社

東京都品川区北品川五丁目9番11号

(22)出願日 平成8年(1996)10月16日

(72) 発明者 岡田 則人

千獎県千葉市稲毛区長沼原叮731番地1

住友重機械工業株式会社千葉製造所内

(74)代理人 弁理士 後藤 祥介 (外2名)

(54) 【発明の名称】 トグル式電動射出成形機における型締力制御装置

(57)【要約】

【課題】 トグル式型締機構での超精密成形を可能とする型締力制御装置を提供すること。

【解決手段】 型締機構20の構成部材に、該構成部材の歪量を検知することで型締力を検出する検出装置30を設け、型締力パターン発生器35からの型締力パターンに基づいてサーボモータ26を制御する制御系に、前記検出した型締力をフィードバックし、型締力そのものを常に制御することによって、射出圧力を受けても型締力が上昇せず、一定となるように制御を行う。

【特許請求の範囲】

【請求項1】 トグル式の型締機構を介して可動プラテンを前後進させるサーボモータを備えた電動射出成形機において、前記型締機構の構成部材に、該構成部材の歪量を検知することで型締力を検出する検出装置を設け、型締力パターン発生器からの型締力パターンに基づいて前記サーボモータを制御する制御系に、前記検出した型締力をフィードバックし、型締力そのものを常に制御することによって、射出圧力を受けても型締力が上昇せず、一定となるように制御を行うことを特徴とするトグル式電動射出成形機における型締力制御装置。

【請求項2】 請求項1記載の型締力制御装置において、前記型締力パターン発生器から多段型締のための型締力パターンを発生するようにし、射出圧縮成形を行う際の多段型締動作を実際の型締力に比例する前記検出装置の検出値を用いて行うことを特徴とするトグル式電動射出成形機における型締力制御装置。

【請求項3】 請求項1あるいは2記載の型締力制御装置において、前記検出装置は、前記型締機構の構成部材であるタイバー、アーム、トグルレバー、トグルサポートのいずれかに設けられることを特徴とするトグル式電動射出成形機における型締力制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はトグル式型締機構を 備えた電動射出成形機における型締力制御装置に関す る。

[0002]

【従来の技術】従来のトグル式型締機構における型締力 設定は、型厚調整装置により金型厚さに合わせてタイバーの基準長さを決め、型締力に相当するタイバーの伸ば し量分だけトグルサポートを追い込むことによって行 う。そのため、連続成形運転中に型締力を変えることは 不可能である。また、機械的に型締力を発生させるた め、温度変動や金型剛性などにより型締力が変動し、成 形中に実際どれだけの型締力が発生しているのかを知る ことはできない。

[0003]

【発明が解決しようとする課題】図4を参照して、従来のトグル式型締機構は、機械的に型締力を発生させているため、金型が成形中に射出圧力を受けると、金型内圧に同期してこの力によって型締力が増加する。そのため、成形品にはバリが発生しにくい反面、余分な型締力増加があるため、型締力と射出圧力のバランスが崩れ、樹脂の流動性が悪くなる。つまり、従来のトグル式型締機構における型締力制御法では超精密成形への対応は困難であるというのが現状である。

【0004】そこで、本発明では、成形中にも常に一定の型締力を発生し、さらに成形品に合わせた型締力パターンを用いて形締を行うことによって、トグル式型締機

構での超精密成形を可能とする型締力制御装置を提供することを課題とする。

[0005]

【課題を解決するための手段】本発明によるトグル式電動射出成形機における型締力制御装置は、トグル式の型締機構を介して可動プラテンを前後進させるサーボモータを備え、前記型締機構の構成部材に、該構成部材の歪量を検知することで型締力を検出する検出装置を設け、型締力パターン発生器からの型締力パターンに基づいて前記サーボモータを制御する制御系に、前記検出した型締力をフィードバックし、型締力そのものを常に制御することによって、射出圧力を受けても型締力が上昇せず、一定となるように制御を行うことを特徴とする。

【0006】なお、前記型締力パターン発生器から多段型締のための型締力パターンを発生するようにし、射出 圧縮成形を行う際の多段型締動作を実際の型締力に比例 する前記検出装置の検出値を用いて行うようにしても良い。

【0007】また、前記検出装置は、前記型締機構の構成部材であるタイバー、アーム、トグルレバー、トグルサポートのいずれかに設けられることが好ましい。

[0008]

【発明の実施の形態】図2において、本発明による型締力制御装置は、固定プラテン21と、タイバー22と、可動プラテン23と、アーム24と、トグルサポート25と、型締用サーボモータ26と、ボールネジ27と、クロスヘッド28等を有するトグル式の型締機構20に適用される。10は型厚調整装置である。

【0009】サーボモータ26の回転運動はボールネジ27によって直線運動に変換され、ボールネジ27に連結されたトグル機構(クロスヘッド28、トグルレバー29a、29b、アーム24から成る)を介して可動プラテン23を前後進させる。可動プラテン23が前進して可動金型が固定金型(いずれも図示せず)に接触し、さらに前進すると、タイバー22は伸ばされ型締力が発生する。

【0010】型締機構20にて型締力を発生させた場合に、タイバー22や可動プラテン23、アーム24、およびトグルサポート25等は、弾性変形して歪を生じやすい。特に、タイバー22における弾性変形量が大きいので、本例ではタイバー22であって金型の設置に邪魔にならない箇所に型締力検出装置30を設けているが、上記構成部材のいずれに設けられても良い。この型締力検出装置30は、例えば歪みセンサが適している。

【0011】次に、形締力制御系を示した図1をも参照して説明する。図1において、この形締力制御系は、サーボモータ26に設けられたアブソリュートエンコーダ31によりサーボモータ26の回転数を示す信号を得て、微分器32を通して位置を示す信号に変換し、この信号に基づいて速度制御アンプ33、ベクトル制御ドラ

イバ34を介してサーボモータ26を制御する位置制御ループによりクロスペッド28の位置、間接的には可動プラテン23の位置が制御される。アブソリュートエンコーダ31の信号はベクトル制御ドライバ34にも供給される。

【0012】本発明では、あらかじめオペレータにより図示しない入力装置から1サイクルあたりの型締力パターンが入力される型締力パターン発生器35を有する。そして、減算器36により、型締力パターン発生器35の出力信号と、型締力検出装置30からの検出信号をアンプ37を通して得られる型締力を示す信号との差をとって型締力補償器38に供給する。型締力補償器38に供給する。型締力補償器38に関発36の信号からクロスヘッド28の位置を示す信号と微分器32の信号との差をとって速度制御アンプ33に入力させる。なお、図1中、破線で囲まれた構成要素は、ディジタルコントローラとして構成される。

【0013】上記の構成により、クロスヘッド28、ひいては可動プラテン23の位置は、サーボモータ26とアブソリュートエンコーダ31により形成される位置制御ループによって正確に制御される。この位置制御ループに、型締力検出装置30による、型締力の検出値を常にフィードバックし、型締力パターン発生器35で設定された型締力になるようにクロスヘッド28の位置、ひいては可動プラテン23の位置を制御することにより、常に一定の型締力を得ることが可能となる。

【0014】このように、型締力の検出を行い、その検出値をサーボモータ26に常にフィードバックして型締力を制御することにより、図3に示すように、トグル式型締機構の特性である、射出圧力を受けたときの型締力の上昇(図3に破線で示す部分)が抑制される。すなわち、トグル式型締機構で、油圧直圧式の型締機構のような動作が可能となる。

【0015】また、図4に示すように、型締カパターン発生器35において多段型締などの型締カパターンを容易に設定することができ、射出圧縮成形を行う際の多段

型締動作を実際の型締力に比例する型締力検出装置30 の検出値を用いて行うことにより、型締力パターン通り の型締力を正確に再現することが可能となる。

[0016]

【発明の効果】以上、説明してきたように、本発明ではトグル式型締機構で、油圧直圧的な動作をさせることにより、常に一定の型締力が保たれ、そのことにより、金型のキャビティ内の樹脂の流動性が良くなり、歪みの少ない精密な成形品が得られる。また、型締力パターン発生器により型締力のパターン設定を多段に行うことにより、射出圧縮やガス抜き成形が可能となる。

【図面の簡単な説明】

【図1】本発明の実施の形態による射出成形機の型締力 制御系を示す図である。

【図2】本発明が適用される型締装置の構造を示した図 である。

【図3】本発明による成形中の型締力の挙動を示した特 性図である。

【図4】本発明の多段型締により成形中の型締力の挙動を示した特性図である。

【図5】従来の射出成形機による成形中の型締力の挙動を示した特性図である。

【符号の説明】

- 10 型厚調整装置
- 20 型締機構
- 21 固定プラテン
- 22 タイバー
- 23 可動プラテン
- 24 アーム
- 25 トグルサポート
- 26 型締用サーボモータ
- 27 ボールネジ
- 28 クロスヘッド
- 29a、29b トグルレバー
- 30 型締力検出装置
- 31 アブソリュートエンコーダ

【図1】

設定 38 33 34 26 20 型梯力 型締力 ベクトル制御 型給力 速度制御 型締機枠 発生器 射出圧力 アブソリュー 型箱力 ,37 金型内圧 保圧行程→ 充填行程

【図3】

