

Here you'll get 🔰

- PPT
- NOTES
- VIDEO LECTURE
- E-BOOK
- PYQ
- EXPERIMENT
- ASSIGNMENT
- TUTORIAL

Total No. of Questions : 4]	8	SEAT No.:	
P1270		[Total]	No. of Pages : 2

OCT/FE/INSEM-3 F.E. (Phase - I) ENGINEERING CHEMISTRY (2019 Pattern)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Solve either Q.No.1 or Q.No.2 and Q.No. 3 or Q.No.4.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Describe Deionisation method of water softening with ion exchange and regeneration reactions. [5]
 - b) Explain the causes and give preventive measures of caustic embrittlement in boilers. [4]
 - c) What is hardness of water? Define temporary and permanent hardness.[3]
 - d) Water sample is not alkaline to phenolphthalein. However, 25 ml of this water sample on titration required 4.5ml 0.02 N HCl for methyl orange end point. Determine the type and amount of alkalinity present in water [3]

OR

- Q2) a) Define scales. Explain in brief four causes of deposit formation in boilers.

 [5]
 - b) What is reverse osmosis? Describe the process with labelled diagram.[4]
 - c) The hardness of 50000 litres of water sample was removed by passing it through a zeolite bed. The zeolite bed then required 200 liters of NaCl solution, containing 100 g / liter of NaCl for regeneration. Calculate the hardness of water sample. [3]
 - d) 25 ml of water sample required 8.8 ml of 0.01M EDTA to reach the end point . 25 ml of the same water sample after boiling and filtration required 6.5 ml of the same EDTA solution to reach the end point . Calculate total and permanent hardness of the water sample. [3]

P.T.O.

Q3) a) Explain the three stages of pH metric titration between strong acid and strong base with titration curve and reaction. [5] What is a reference electrode Explain the construction of calomel b) electrode with labelled diagram and give its representation. Explain the construction of a conductivity cell with labelled diagram.[3] c) Give the composition of the membrane of the ion selective electrode d) used for the determination of H⁺, F⁻ and Cl⁻. [3] OR Explain the three stages of conductometric titration between strong acid *Q***4**) a) and strong base with titration curve and reaction. [5] What are Ion Selective Electrodes? Give the composition and working b) of enzyme based membrane for determination of urea, with figure. [4] Define the following terms and give their SI units. c) [3] Equivalent conductance Specific conductance ii) Which are the different types of buffer solutions? Give example of each d) type.

Total	No	. of Questions : 4] SEAT No. :				
P3		FE/Insem./APR - 3 [Total No. of Pages : 2]				
		F.E. (Semester - II)				
107009: ENGINEERING CHEMISTRY						
	(2019 Pattern)					
Time	:1	Hour] [Max. Marks: 30				
		ons to the candidates:				
	<i>1</i>)	Solve either Q. No. 1 or Q. No. 2. and Q. No. 3. or Q. No. 4.				
2	2)	Neat diagrams must be drawn whenever necessary.				
	3)	Figures to the right indicate full marks.				
4	4)	Use of logrithmic tables slide rule, Mollier charts, electronic pocket calculator and				
		steam tables is allowed.				
	5)	Assume suitable data, if necessary.				
Q 1)	a)	Explain procedure for EDTA method of determining of total hardness of				
		water sample. Draw metal EDTA complex and give chemical reactions				
		involved. [5]				
	b)	Explain causes, disadvantages and preventive measure of caustic				
		embrittlement. [4]				
	_					
	c)	Give exchange reaction of zeolite with following salt. [3]				
		i) $Ca(HCO_3)_2$ ii) $MgCl_2$ iii) $CuSO_4$				
	d)	100 ml of an alkaline water sample requires 5.2 ml of 0.02 m Hcl up to				
		phenolphthalein end point and 15.8 ml for methyl orange end point. Find				
		the type and amount of alkalinity in water sample. [3]				
		OR OR				
0.0						
Q2)	a)	Describe deionization method with figure, process, ion exchange reactions				
		for softening of hard water [5]				
	1- \	What is maining and forming? Cive any that disperse of maining				
	b)	What is priming and foaming? Give any three disadvantages of priming				
		and foaming. [4]				
	c)	50 ml of water sample require 18 ml of 0.05 M EDTA during titration.				
	<i>\()</i>	Whereas 50 ml of boiled water sample, require 12.5 ml of same EDTA in				
		the titration. Calculate total, temporary and permanent hardness of water				
		sample. [3]				
		,				

P.T.O.

	d)	A zeolite bed exhausted by softening 4000 lit. of water requires 10 litres of 15% Nacl solution for regeneration calculate the hardness of water
		sample. [3]
Q 3)	a)	What is reference electrode Give construction of calomel electrode with
~ /	,	labelled diagram and its representation. [5]
	b)	What are ion selective electrode? Discuss the composition and working
	,	with labelled diagram of fluoride ion selective electrode. [4]
	c)	Define the following terms:- [3]
	<i>C)</i>	i) Specific conductance
		ii) Cell constant
		iii) Equivalent conductance
		26.
	d) (Give the procedure for standardisation of PH - meter. [3]
<i>Q4</i>)	a)	OR Draw and explain the various stages of PH metric titration curve for the
2 - 7		titration of Hcl Vs NaoH Give the reactions involved in it. [5]
	b)	Give the constructions of glass electrode with labelled diagram, its representation and applications.
	c)	Explain why [3]
		i) In weak acid and weak base conductometric titration the conductance remains nearly constant after equivalence point.
		ii) In conductometric titration of weak acid and strong base the conductance increases till equivalence point.
	d)	Explain the construction of conductivity cell with labelled diagram. [3]
		C3C3 8080.