4. Załóżmy, że $f:A\to B$ jest bijekcją, o jest działaniem na zbiorze A i * jest działaniem indukowanym w zbiorze B przez działanie \circ poprzez funkcję f. Udowodnić, że:

1

Algebra 1, 2022/2023

11 października 2022

- (i) jeśli ∘ jest przemienne, to * jest przemienne (na wykładzie był dowód analogicznego faktu dla łączności);
- (ii) jeśli \circ ma element neutralny w A, to * ma element neutralny w B;

= $f(t-1)(t-1(a) \circ f-1(b)) \circ t-1(c)) =$

(iii) jeśli (A, \circ) jest grupą, to (B, *) jest grupą.

(i)
$$a,b \in B$$
 $a*b = f(f^{-1}(a) \circ f^{-1}(b)) = f(f^{-1}(b) \circ f^{-1}(a)) =$
 $= b*a$

(ii) $e_A, a \in A$
 $a = a \circ e_A$, $f(a) \in B$
 $f(a) = f(a \circ e_A) = f(f^{-1}(f(a)) \circ f^{-1}(f(e_A))) =$
 $= f(a) * f(e_A)$ czyli $f(e_A)$ jest elementem neutralnym w B (prawostronnym)

[rozumowanie analogiczne dla (ewostronnego]

(iii)

 1° togzności

 $a_1b_1c \in B$
 $(a*b)*c = f(f^{-1}(a) \circ f^{-1}(b))*c =$

= $f(f^{-1}[f(f^{-1}(a) \circ f^{-1}(b))] \circ f^{-1}(c)) =$ $= f([f^{-1}(a) \circ f^{-1}(b)] \circ f^{-1}(c)) =$ = f(f-1(a) o [f-1(b) o f-1(c)]) = $= f(f^{-1}(a) \circ f^{-1}(f(f^{-1}(b) \circ f^{-1}(a)))) = a*(b*c)$ 2º element neutralny Z (ii) 3º a EA, a LeA relodwrotry do a (60 (A,0)) grupa $f(e_A) = f(\alpha \circ \alpha^{-1}) = f(f^{-1}(f(\alpha)) \circ f^{-1}(f(\alpha^{-1}))) =$ $= f(a) * f(a^{-1}) = e_B$ czyli f(a-1) odwrotny do f(a)

(a f jest bijelujų, więc hazde

beb ma element odwrotny) czyci (B,*) grupa