Álgebra I

Doble Grado de Informática y Matemáticas

1. Anillo conmutativo

Definición (Anillo conmutativo). Un conjunto A es un anillo conmutativo si en él hay definidas dos operaciones; una aplicación de adición y una aplicación de multiplicación, tales que cumplen las siguientes propiedades:

- (i) Asociativa: a + (b+c) = (a+b) + c a(bc) = (ab)c
- (ii) Conmutativa: a + b = b + a ab = ba
- (iii) Existencia elemento neutro: a + 0 = a a * 1 = a
- (iv) Existencia del elemento opuesto: a + (-a) = 0
- (v) Distributiva del producto en la suma: a(b+c) = ab + ac

Definición (Grupo conmutativo). Denominamos un grupo conmutativo o abeliano a aquellos conjuntos que cumplen las propiedades asociativa, conmutativa y existencia de elemento neutro para la suma, y existencia de elemento opuesto.

Definición (monoide). Denominamos monoide a un conjunto con una operación binaria interna que cumple la propiedad asociativa y tiene un elemento neutro a izquierda y derecha. En el caso del producto, se denomina monoide multiplicativo.

Nota. Llamaremos anillo aquellos conjuntos que cumplan todas las propiedades excepto la propiedad conmutativa para la multiplicación.

2. Caracterización de \mathbb{Z}_n .

Llamaremos $R_n : \mathbb{N} \to \mathbb{Z}_n$ a la aplicación definida como:

$$R_n(a) = a - nq = a - nE(\frac{a}{n})$$

Para esta aplicación, definimos las siguientes propiedades:

- Si $0 \le a < n 1 \to R_n(a) = a$
- $\forall a, b \in \mathbb{N}$
 - $R_n(a+b) = R_n(R_n(a) + R_n(b))$
 - $R_n(ab) = R_n(R_n(a) * R_n(b))$

Una vez que tenemos definida una suma y producto con la aplicación R_n , definimos las suma y el producto de \mathbb{Z}_n .

Definición (Suma y producto en \mathbb{Z}_n). Se define la suma y el producto en \mathbb{Z}_n de la forma:

- $\bullet a \oplus b = R_n(a+b)$
- $\bullet \ a \otimes b = R_n(ab)$

Es fácil verificar que \mathbb{Z}_n es un anillo conmutativo con estas operaciones.

Definición (Unidad). Si A es un anillo conmutativo (a.c) $a \in A$ es una "unidad.º "invertible" si $\exists a^{-1}$ t.q. $aa^{-1} = 1$.

 $U(A) = \{a \in A \text{ t.q. a es una unidad}\} = \text{conjunto de las unidades de A}.$

Definición (Cuerpo). Se dice que A es un **cuerpo** si siendo un anillo conmutativo, $U(A) = A - \{0\}$, es decir, $\exists a^{-1} \ \forall a \in A \text{ con } a \neq 0$.

Proposición (Asociatividad generalizada). Sea A un anillo conmutativo, y $a_1...a_n$ una lista de elementos de A. La propiedad de la **asociatividad generalizada** nos dice que: $\forall m$ tal que $1 \leq m < n$ entonces:

$$\sum_{i=1}^{n} a_i = (\sum_{i=1}^{m} a_i) + (\sum_{i=m+1}^{n} a_i)$$

$$\prod_{i=1}^{n} a_i = (\prod_{i=1}^{m} a_i)(\prod_{i=m+1}^{n} a_i)$$

Definición (Distributividad generalizada). Definimos también la distributividad generalizada en un anillo como:

$$(\sum_{i=0}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \qquad \forall a, b \in A$$

Definición (Subanillo). Si A es un anillo conmutativo y B es un subconjunto de A. Se dice que B es un subanillo de A $(B \le A)$ si se verifican:

- $1, -1 \in B$
- B es cerrado para la suma y el producto.

2.1. Ejemplos- Anillos de números cuadráticos

• $\mathbb{Z}[\sqrt{n}]$. Definimos este conjunto de la siguiente forma:

$$\mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n} \in \mathbb{C} : a, b \in \mathbb{Z}\} \le \mathbb{C}$$

Podemos definir también $\mathbb{Q}[\sqrt{n}]$ de la misma forma:

$$\mathbb{Q}[\sqrt{n}] = \{a + b\sqrt{n} \in \mathbb{C} : a, b \in \mathbb{Q}\} \le \mathbb{C}$$

Se puede comprobar que $\mathbb{Z}[\sqrt{n}] \leq \mathbb{Q}[\sqrt{n}]$ y que $\mathbb{Q}[\sqrt{n}]$ es un cuerpo.

Definición (Conjugado). Si $\alpha = a + b\sqrt{n} \in \mathbb{Q}[\sqrt{n}]$ se define su conjugado como $\bar{\alpha} = a - b\sqrt{n}$. Este verifica que:

1.
$$\overline{(\alpha+\beta)} = \bar{\alpha} + \bar{\beta}$$

$$2. \ \overline{\alpha\beta} = \bar{\alpha}\bar{\beta}$$

3.
$$\alpha = \bar{\alpha} \Leftrightarrow b = 0$$

Definición (Norma). Se define entonces la Norma $N(\alpha) = \alpha \bar{\alpha} = a^2 - nb^2 \in \mathbb{Q}$. Así:

1.
$$N(\alpha\beta) = N(\alpha) * N(\beta)$$

2.
$$N(\alpha) = 0 \Leftrightarrow \alpha = 0$$

Proposición. $\alpha \in a + b\sqrt{n} \in \mathbb{Z}[\sqrt{n}]$ es invertible $\Leftrightarrow N(\alpha) \in \{-1, 1\}$

Anillos de series.

Definición. Si A es un anillo conmutativo y X es un símbolo que no denota ningún elemento de A. El anillo de series con coeficientes en A, denotado con A[[x]] esta definido como:

$$A[[x]] = \{a = \sum_{i=1}^{n} a_i x^i = a_0 + a_1 x^1 + \dots + a_n x^n\} \ a_i \in A$$

Y definimos la suma y el producto de la siguiente forma:

$$(a+b) = \sum_{i=0}^{n} (a_i + b_i)x^i$$

$$(ab) = \sum_{k=0}^{n} \sum_{i=0}^{k} a_i b_{k-i}$$

Se puede probar que con estas operaciones de suma y producto, A[[x]] es un anillo y A[x] es un subanillo de A[[x]]

3. Homomorfismos

Definición. Si A, B son anillos conmutativos, una aplicación $\varphi : A \to B$ es un homomorfismo si:

1.
$$\varphi(1) = 1$$

2.
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

3.
$$\varphi(ab) = \varphi(a)\varphi(b)$$

Además, decimos que:

- 1. Es monomorfismo si es inyectivo.
- 2. Es epimorfismo si es sobreyectivo.
- 3. Es isomorfismo si es biyectivo.

Propiedades de los homomorfismos

- $\varphi(0) = 0$
- $\varphi(-a) = -\varphi(a)$
- $\varphi(\sum_{i=1}^{n} a_i) = \sum_{i=1}^{n} \varphi(a_i).$ $\varphi(\prod_{i=1}^{n} a_i) = \prod_{i=1}^{n} \varphi(a_i).$
- $\varphi(na) = n\varphi(a)$

Ya sabemos que $Im(\varphi) = \{\varphi(x) : x \in A\} \leq B$ es un subanillo.

Proposición. Si φ es monomorfismo, entonces la aplicación restringida:

$$A \to Im(\varphi)$$

$$a \mapsto \varphi(a)$$

es un epimorfismo y por ello es un isomorfismo, podemos decir que $A \cong Im(\varphi)$.

Nota. Se puede probar que $R_n: \mathbb{Z} \to \mathbb{Z}_n$ es un homomorfismo, llamado Homomorfismo de reducción módulo n

Proposición (1). Dado A cualquier anillo conmutativo, conocido A[x]. $Si \varphi : A \to B$ es homomorfismo de anillos conmutativos, entonces:

$$\exists \varphi : A[x] \to B[x] : \varphi\left(\sum_{i} a_{i} x^{i}\right) = \sum_{i} \varphi(a_{i}) x^{i}$$

Proposición (Sustición en un polinomio(2)). Si A es cualquier conjunto y $a \in A$ entonces: existe un homomorfismo $E_a : A[x] \to A$ tal que $E_a(\sum_i a_i x^i) = \sum_i a_i a^i$.

Proposición (3). Si $A \leq B$ es un subanillo $y \ b \in B$, la aplicación $E_b : A[x] \to B$ definida como $E_b(\sum_i a_i x_i) = \sum_i a_i b^i$ es un homomorfismo

Proposición (Engloba a las anteriores). Si $\varphi: A \to B$ es un homomorfismo $y \ b \in B$, la aplicación $\Phi: A[x] \to B$ definida como $\Phi(\sum_i a_i x_i) = \sum_i \varphi(a_i) b^i \in B$ es un homomorfismo

Demostración. Veamos primero cómo (4) engloba a las demás:

- (i) $4 \Rightarrow 3$. Se ve tomando como φ la inclusión en B
- (ii) $4 \Rightarrow 2$. Tomamos esta vez como φ la identidad
- (iii) $4 \Rightarrow 1$. Suponemos 4 válido. probaremos que $\varphi : A \to B[x]$ que lleva $a \to \varphi(a)$. Ahora, podemos ver que esa aplicación es como usar primero φ para ir de A a B y luego usar la inclusión de B en B[x]:

$$A \to B \to B[x]$$

$$a \to a \to \varphi(a)$$

De esta forma, tomamos $x \in B[x]$. Entonces:

$$A[x] \to B[x]$$
$$\sum_{i} a_{i} x_{i} \to \sum_{i} \varphi(a_{i}) x_{i}$$

Que es justamente el enunciado de la primera proposición.

Pasamos ahora a la demostración de la Proposición 4.

Sean
$$f = \sum a_i x_i$$
 y $g = \sum b_i x_i \in A[x]$. Entonces: $f + g = \sum c_i x_i$ con $c_i = a_i + b_i$

Si ahora aplicamos $\Phi(f+g) = \sum \varphi(c_i)b^i = \sum \varphi(a_i+b_i)b^i$.

Como φ es homomorfismo , eso es igual a: $\sum (\varphi(a_i) + \varphi(b_i))b^i$.

Usando que B es un anillo y por ello hay distributividad, eso es igual a: $\sum (\varphi(a_i)b^i + \varphi(b_i)b^i$.

Por la asociatividad generalizada eso es igual a: $\sum \varphi(a_i)b^i + \sum \varphi(b_i)b^i = \Phi(f) + \Phi(g)$ Por lo que queda probado para la suma.

Ahora probaremos el producto:

$$fg = \sum c_i x^i \text{ con } c_i = \sum_{i+j=n} a_i b_j$$

Así:

$$\Phi(f+g) = \sum_{n} \varphi(c_n)b^n = \sum_{i+j=n} \varphi(\sum_{i+j=n} a_i b_j)b^n = \sum_{n} (\sum_{i+j=n} \varphi(a_i)\varphi(b_j))b^n$$

Desarrollamos por otro lado

$$\Phi(f) + \Phi(g) = \left(\sum_{i} \varphi(a_i)b^i\right)\left(\sum_{j} \varphi(b_j)b^i\right) = \sum_{i,j} \varphi(a_i)b^i\varphi(b_j)b^j = \sum_{i,j} \varphi(a_ib_j)b^{i+j} = \sum_{i} \left(\sum_{i,j:i+j=n} \varphi(a_ib_j)b^n\right)$$

Donde en (1) hemos usado la distributividad general y en (2) hemos usado que estamos en un anillo conmutativo y que φ es un homomorfismo.

Así, hemos llegado a dos expresiones que son iguales, probando así el resultado.