TEST	Graded
Student	
Sara Huston	
Total Points	
27 / 28 pts	
Question 1	
P1	6 / 7 pts
+ 0 pts Correct	
• + 6 pts 2 minor miscalculations: there must be 8 and 7 instead of 7, and 6.	
Question 2	
P2	7 / 7 pts
+ 0 pts Correct	
9 + 7 pts 11*10/2=55. Otherwise, correct.	
Question 3	
P3	7 / 7 pts
+ 0 pts Correct	
→ + 7 pts Where is h_{11}?	
Question 4	
P4	7 / 7 pts
+ 0 pts Correct	
● +7 pts Point adjustment	

Q1 P1

7 Points

Put the Pledge: your signature; the usage of pdf files is strongly advised. You may have up to 7+7+7+7 exam points (from 20, i.e., up to 140%).

How many hands of 4 cards each (permuting cards doesn't change the hand) can be formed from the set of 10 cards with the denominations $0,1,2,\ldots,9$ if no 3 consecutive cards are to be in a hand.

Sara Muston 4 hand courds set of 10 courds (0 ... 9) No 3 consecutive cards in a hand BIZ hree consecutive +4 consecutive hands nands 10 couds, choosel = 10.3.7=210 4 consecutive: 7 choice 0,1,2,3 3 consecutive 1,2,3,4 0,1,2 -> 3,4,5,6,7,8,9 ->0,4,5,6,7,8,9 112,3 6,7,89 70,1,5,6,7,8,9 2,3,4 3,4,5 ->0,1,2,6,7,8,9 place triplet -10,1,2,3,7,8,9 4.5,6 5,6,7 70,112,3,4,8,9 70,1,2,3,4,5,9 6,7.8 7,89 -> 0,1,2,3,4,5,6, = 10-3=7 add back choices 4 consecutive be muy are double courted

0

Q2 P2

7 Points

PUT YOUR NAME WITH AT LEAST ONE PROBLEM, PLEASE.

Determine the number of combinations with 9 objects (9-baskets) from a set containing $\,8$ objects "A", $\,4$ objects "B", $\,3$ objects "C". Use the inclusion-exclusion principle.

▼ CamScanner 10-28-2024 10.41.pdf	≛ Download
Your browser does not support PDF previews. You can download the fil	e instead.

Sava Huston

$$= R(3,9) = (9+3-1) = (11)$$

$$B_1 = \begin{pmatrix} 9+3-1-9 \\ 3-1 \end{pmatrix} = \begin{pmatrix} 2 \\ 12 \end{pmatrix} = 1$$

$$B_2 = \begin{pmatrix} 9+3-1-5 \\ 3-1 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \frac{6-6}{2} = 15$$

$$B_{3} = \begin{pmatrix} 9+3-1-4 \\ 3-1 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix} = \frac{7\cdot 6}{2} = 21$$

$$B_{23} = {\binom{9+3-1-9}{3-1}} = {\binom{2}{2}} = 1$$
 $\boxed{N_q = 30}$

Q3 P3

7 Points

Assuming that a pair of rabbits gives birth to 6 pairs in half a year, which is (approximately) the maturity period for "real" rabbits, find the recurrence relation for the number of pairs of rabbits g_n at the (beginning of the) n-th half-a-year, solve it (i.e., find a formula in terms of λ) for 1 mature pair to begin with, i.e. when $g_1=1,\ g_2=7,\ g_3=13$ and so on. Thus, the unit of time is 6 months in this problem instead of 1 month for Fibonacci. What is g_{11} (the reproduction period for real rabbits lasts, indeed, about 11*0.5=5.5 years)?

▼ CamScanner 10-28-2024 10.41 2.pdf	≛ Download	
Your browser does not support PDF previews. You can download the file instead.		

half a year = maturity period.

$$Y_{u} = Y_{u-1} + PY_{u-5}$$

$$\gamma_3 - \gamma - \rho = 0$$
$$\gamma_3 = \gamma + \rho$$

$$g_n = \left(\frac{3}{5}\right)(3)^n + \left(\frac{2}{5}\right)(-2)^n$$

$$1 = 3(1-C_2) - 2C_2 C_1 = \frac{3}{5}$$

3

Q4 P4

7 Points

Find but do not solve algebraically the recurrence relation for the number x_n of perfect coverings of the shape $1\times n$ by monominos (single boxes) and dominos such that no three monominos are consecutive (two can be consecutive). Here $x_1=1, x_2=2, x_3=2$; continuing, find x_4, x_5 .

▼ CamScanner 10-28-2024 10.41 3.pdf	≛ Download
our browser does not support PDF previews. You can down	load the file instead.

Sava Huston

[4.] Ix n monominos, dominos

No three monominos $X_0=1$ $X_1=1$ $X_2=1$ $X_3=1$ $X_3=1$ $X_3=1$ $X_3=1$ $X_4=1$ $X_4=1$