

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 39/02		A1	(11) International Publication Number: WO 94/21290 (43) International Publication Date: 29 September 1994 (29.09.94)
(21) International Application Number: PCT/US94/02550		(81) Designated States: AU, BR, CA, FI, JP, KR, NO, RU, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 15 March 1994 (15.03.94)		Published With international search report.	
(30) Priority Data: 038,682 16 March 1993 (16.03.93) US			
(71)(72) Applicants and Inventors: BARENKAMP, Stephen, J. [US/US]; 16 Villawood Lane, Webster Grove, MO 63119-4954 (US). ST. GEME, Joseph, William, III [US/US]; 45 Bershire Drive, St. Louis, MO 63117 (US).			
(74) Agent: BERKSTRESSER, Jerry, W.; Shoemaker and Mattare, Ltd., 2001 Jefferson Davis Highway, 1203 Crystal Plaza Building 1, P.O. Box 2286, Arlington, VA 22202-0286 (US).			

(54) Title: HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

(57) Abstract

High molecular weight surface proteins of non-typeable *Haemophilus influenzae* which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

TITLE OF INVENTIONHIGH MOLECULAR WEIGHT SURFACE PROTEINS
OF NON-TYPEABLE HAEMOPHILUSFIELD OF INVENTION

5 This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

10 Non-typeable Haemophilus influenzae are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known H. influenzae capsular antigens.

15 These organisms commonly inhabit the upper respiratory tract of humans and are frequently responsible for infections, such as otitis media, sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharid capsule, they are not controlled by the present Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides.

20 The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not protect against all strains of the organism.

25 There have previously been identified by Barenkamp et al (Pediatr. Infect. Dis. J., 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present invention, the structures of these proteins were unknown as were pure isolates of such proteins.

SUBSTITUTE SHEET (RULE 26)

SUMMARY OF INVENTION

The inventors, in an effort to further characterize
the high molecular weight (HMW) Haemophilus proteins,
have cloned, expressed and sequenced the genes coding for
5 two immunodominant HMW proteins (designated HMW1 and
HMW2) from a prototype non-typeable Haemophilus strain
and have cloned, expressed and almost completely
sequenced the genes coding for two additional
10 immunodominant HMW proteins (designated HMW3 and HMW4)
from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein of a non-typeable Haemophilus strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the immunological ability to protect against disease caused by a non-typeable Haemophilus strain. In another aspect, the invention provides a high molecular weight protein of non-typeable Haemophilus influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

25 Figure 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

Figure 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

30 Figure 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

Figure 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

35 Figure 5B shows the restriction map of the T7 expression vector pT7-7;

Figure 6 contains the DNA sequence of a gene cluster for the hmw1 gene (SEQ ID NO: 5), comprising nucleotides 351 to 4958 (ORF a) (as in Figure 1), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5114-6748 and c nucleotides 7062-9011;

Figure 7 contains the DNA sequence of a gene cluster for the hmw2 gene (SEQ ID NO: 6), comprising nucleotides 792 to 5222 (ORF a) (as in Figure 3), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5375-7009, and c, nucleotides 7249-9198;

Figure 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

Figure 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

Figure 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in Figures 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in Figures 2 and 4 respectively, are about 70% identical. Furthermore, the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella pertussis. A monoclonal antibody prepared against filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight proteins. This data suggests that the HMW and FHA proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA protein. It has further been shown that the s

antigenically-related proteins are produced by the majority of the non-typeable strains of Haemophilus. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the B. pertussis FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the B. pertussis FHA, which may be obtained from natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable Haemophilus was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 or HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in Figure 1 and the corresponding derived amino acid sequence in Figure 2. Similarly, the DNA sequence of HMW2 is shown in Figure 3 and the corresponding derived amino acid sequence in Figure 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

Subcloning studies with respect to the hmw1 and hmw2 genes indicated that correct processing of the HMW proteins required the products of additional downstream genes. It has been found that both the hmw1 and hmw2 genes are flanked by two additional downstream p n

reading frames (ORFs), designated b and c, respectively, (see Figures 6 and 7).

The b ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of hmw1 and nucleotides 5375 to 7009 in the case of hmw2, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of hemolysins of P. mirabilis and S. marcescens.

The c ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of hmw1 and nucleotides 7249 to 9198 in the case of hmw2, with their derived amino acid sequences 96% identical. The hmw1 c ORF is preceded by a series of 9 bp direct tandem repeats. In plasmid subclones, interruption of the hmw1 b or c ORF results in defective processing and secretion of the hmw1 structural gene product.

The two high molecular weight proteins have been isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular weight proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

Since the proteins provided herein are good cross-reactive antigens and are present in the majority of non-typeable Haemophilus strains, it is evident that these HMW proteins may become integral constituents of a universal Haemophilus vaccine. Indeed, these proteins may be used not only as protective antigens against otitis, sinusitis and bronchitis caused by the non-typeable Haemophilus strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also

may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

5 The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable Haemophilus strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in Figures 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high
10 molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

15 Figure 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable Haemophilus strains.
20

25 In addition, mutants of non-typeable H. influenzae strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in E. coli and have been examined for in vitro adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other H. influenzae surface structures.
30

35 With the isolation and purification of the high molecular weight proteins, the inventors are able to

determin th major pr t ctive epitopes by conventi nal epitope mapping and synth siz peptides c rresponding to thes d terminants to be incorporat d in fully synth tic or recombinant vaccines. Accordingly, the invention also 5 comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeabl Haemophilus influenzae. Such peptides are of varying length that constitute portions of the high- 10 molecular-weight proteins, that can be used to induc immunity, either directly or as part of a conjugate, against the relative organisms and thus constitut vaccines for protection against the corresponding diseases.

15 The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable Haemophilus strains. The variants may be constructed by partial deletions or mutations of the 20 genes and expression of the resulting modified genes to give the protein variations.

EXAMPLES

Example 1:

25 Non-typeable H.influenzae strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction 30 digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into λEMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of E. coli LE392.

35 For plasmid subcl ning studi s, DNA from a representative recombinant phag was subcloned into th

T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter Φ 10, a ribosomal binding site and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see Figure 5B).

5 DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

10 Western immunoblot analysis was performed to identify the recombinant proteins being produced by reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 cells on YT plates were solubilized in gel electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel 15 electrophoresis was performed on 7.5% or 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the high-molecular-weight proteins and then with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains high-titer antibody directed against surface-exposed 20 high-molecular-weight proteins of non-typeable H. influenzae. One such serum sample was used as the screening antiserum after having been extensively 25 absorbed with LE392 cells.

30 To identify recombinant proteins being produced by E. coli transformed with recombinant plasmids, the plasmids of interest were used to transform E. coli BL21 (DE3)/pLySS. The transformed strains were grown to an A_{600} of 0.5 in L broth containing 50 μ g of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. 35 The protein concentrations of the samples were determined by the bicinchoninic acid method. Cell sonicates

containing 100 µg of total protein were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the E. coli-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat anti-human IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous non-typeable H. influenzae strains expressed high-molecular-weight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. Nitrocellulose was probed sequentially with polyclonal rabbit rHMW1 antiserum and then with alkaline phosphatase-conjugated goat anti-rabbit IgG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable Haemophilus strains expressed proteins antigenically related to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, a murin immunoglobulin G (IgG) antibody which recognizes filamentous hemagglutinin, was used to probe cell sonicates by Western blot. An alkaline phosphatase-conjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, E. coli BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000 x g for 30 min. The recombinant protein fractionated with the

5 pell t fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein in four ml of the pell t fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host E. coli strain transformed with cloning vector alone.

10 To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 µl of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's phosphate-buffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMW1 antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (Sigma) at a concentration of 0.54 mg/ml in 0.1 M sodium citrate buffer, pH 4.2, containing 0.03% H₂O₂. Absorbances were read on an automated ELISA reader.

20 Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable H. influenzae strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an E. coli-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins.

5 Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 and HMW2. The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. Lysates of

10 LE392 infected with the λ EMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive *E. coli* proteins or λ EMBL3-encoded proteins.

15 Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

20 Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. Figure 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

25 HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (Fig. 5A and B). HMW2 plasmid subclones also were constructed, and the results with

these latter subclones were similar to those observed with the HMW1 constructs.

The approximate location and direction of transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (Fig. 5A). This plasmid was constructed by inserting the 8.5-kb BamHI-SalI fragment from λ HMW1 into BamHI- and SalI-cut pT7-7. E. coli transformed with pHMW1 expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMW1 with PstI, isolation of the resulting 8.8-kb fragment, and religation. Plasmid pHMW1-2 was constructed by digestion of pHMW1 with HindIII, isolation of the resulting 7.5-kb fragment, and religation. E. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb BamHI-HindIII fragment from λ HMW1 into a pT7-7-derived plasmid containing the upstream 3.8-kb EcoRI-BamHi fragment. E. coli transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these

transformants were substantially lower than those with the pHMW1-2 transformants described above. Plasmid pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. coli transformed with pHMW1-7 also expressed an immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the λ HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. This size discrepancy was disconcerting. One possible explanation was that an additional gene or genes necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. To address this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and MluI and inserting the 7.6-kbp NdeI-MluI fragment isolated from pHMW1-4. Such a construct would contain the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa as well as additional degradation products. The 125- and 160-kDa bands were identical to the major and minor immunoreactive bands detected in the HMW1 phage lysates. Interestingly, the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (Figure 1) revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosome-binding site with the sequence AGGAG begins 10 bp upstream of the putative initiation codon. Five other in-frame ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. These tandem repeats stop 100 bp 5' of the putative initiation codon. An 8-bp inverted repeat characteristic of a rho-independent transcriptional terminator is present, beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (Figure 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. The BamHI site used in generation of pHMW1 comprises bp 1743 through 1748 of the nucleotide sequence. The ORF downstream of the BamHI site would be predicted to encode a protein of 111 kDa, in good agreement with the 115 kDa

estimated for the apparent molecular mass f the pHMW1-encoded fusion protein.

The s quence of the HMW2 gene (Figure 3) consists of a 4,431-bp ORF, beginning with an ATG ccdon at nucleotide 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene ar identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. With the exception of a single base addition at nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 ORF is noted, beginning at nucleotide 4804. The discrepancy in the lengths of the two genes is principally accounted for by a 186-bp gap in the HMW2 sequence, beginning at nucleotide position 3839. The derived amino acid sequence of the protein encoded by th HMW2 gene (Figure 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequenc of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (Figures 2 and 4) demonstrated sequenc similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence comparison were 68 and 196, respectively. The z score for the latter comparis n was 48.7. Th magnitudes f

th initial and optimized TFASTA scores and the z scores suggest d that a biologically significant relati nship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three sequences. Twelve of the first 22 amino acids in the predicted peptide sequences were identical. In additional, the sequences demonstrated a common five-amino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2:

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was assessed. The rHMW1 antiserum demonstrated ELISA reactivity with filamentous hemagglutinin in a dose-dependent manner. Preimmune rabbit serum had minimal reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak but positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native Haemophilus protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable H. influenzae strains, a panel of Haemophilus strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, resp ctively.

When used to screen non-heterologous non-typeable H. influenzae strains, rHMW1 antiseraum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. Monoclonal antibody X3C recognized both the high-molecular-weight proteins in non-typeable H. influenzae strain 12 which were recognized by the recombinant-protein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous non-typeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein antiserum. Overall, monoclonal antibody X3C recognized high-molecular-weight protein bands identical to those recognized by the rHMW1 antiserum in approximately 35% of our collection of non-typeable H. influenzae strains.

Example 3:

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, Figure 5A) was

digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamHI fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of these colonies demonstrated two populations of transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. After deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMW1 structural gene in pHMw-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoRI fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. Southern analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2⁻ mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmissio

electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, bacteria were inoculated into broth and allowed to grow to a density of $\sim 2 \times 10^9$ cfu/ml. Approximately 2×10^7 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at $165 \times g$ for 5 minutes to facilitate contact between bacteria and the epithelial surface. After incubation for 30 minutes at $37^\circ C$ in 5% CO₂, monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2⁻) was also quite efficient and comparable to that by the wild type strain. In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1⁻) was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1⁻/HMW2⁻) was decreased even further, approximately 50-fold compared with the wild type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2.

Example 4:

Using the plasmids pHMW1-16 and pHMW1-17 (see Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmw1-like (designated hmw3) locus, a second with an insertion in the hmw2-like (designated hmw4) locus, and a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmw1-like locus had lost expression of the HMW3 125-kD protein, while the mutant with insertion into the hmw2-like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the HMW1-like protein was reduced about 5-fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins.

Example 5:

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other H. influenzae surface structures, the hmw1 and the hmw2 gene clusters were introduced into E. coli DH5 α , using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into E. coli DH5 α . Western blot

analysis demonstrated that E. coli DH5 α containing the hmw1 genes expressed a 125 kDa protein, while the same strain harboring the hmw2 genes expressed a 120-kDa protein. E. coli DH5 α containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the E. coli strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5 α containing vector alone was less than 1% of that for strain 12. In contrast, E. coli DH5 α harboring the hmw1 gene cluster demonstrated adherence levels comparable to those for strain 12. Adherence by E. coli DH5 α containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5 α with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with E. coli HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5 α derivatives (see Table 2).

Example 6:

HMW1 and HMW2 were isolated and purified from non-typeable H. influenzae (NTHI) strain 12 in the following manner. Non-typeable Haemophilus bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37°C in an incubator with 5% CO₂. 50ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 µg/ml each of hemin and NAD was inoculated with growth on chocolate plate. The start r

culture was grown until the optical density (O.D. - 600nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The 5 bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the O.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume 10 of 250 ml of an extraction solution comprising 0.5 M NaCl, 0.01 M Na₂EDTA, 0.01 M Tris 50 μM 1,10-phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed 15 to sit on ice at 0°C for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 4°C to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000 xg for 60 minutes at 4°C. The supernatant again was collected and dialyzed overnight at 4°C against 0.01 M sodium phosphate, pH 6.0.

20 The sample was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01 M sodium phosphate, pH 6. 25 Following application to this column, the column was washed with 0.01 M sodium phosphate. Proteins were elevated from the column with a 0 - 0.5M KCl gradient in 0.01 M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions 30 were carried out to identify those fractions containing high molecular weight proteins. The fractions containing high molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

35 A Sepharose CL-4B gel filtration column was equilibrated with phosphat -buff red saline, pH 7.5. The

concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 µg of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challenged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4×10^6 in control animals versus 1.3×10^5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multi-component NTHI vaccine.

These animal challenge tests were repeated in Chinchillas at a lower dose challenge than the 300 cfu employed above. In this instance, complete protection was achieved. In these experiments, groups of five animals were immunized with 20 µg of the HMW1-HMW2

mixture on days 1, 28, and 42 in the presence of AlPO₄. Blood samples were collected on day 53 to monitor the antibody response. On day 56, the left ear of animals was challenged with about 10 cfu of H. influenzae strain 12. Ear infection was monitored on day 4. Four animals in Group 3 were infected previously by H. influenzae strain 12 and were recovered completely for at least one month before the second challenge. The results are outlined in the following Table A:

10

TABLE A

15

**Protective ability of HMW protein against
non-typeable H. influenzae challenge
in chinchilla model**

20

Group (#)	Antigens	Total Animals	Number of Animals Showed Positive Ear Infection		
			Tympano- gram	Otosco- pic Examina- tion	cfu of Bac- teria/ 10 μ L
1	HMW	5	0	0	0
2	None	5	5	5	850- 3200 (4/5)
3	Convalescent	4	0	0	0

25

Example 7:

30

A number of synthetic peptides were derived from HMW1. Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 to 1481 of HMW1, has the sequence VDEVIEAKRILEVKVVKDLSDEEREALAKLG (SEQ ID NO:9), and represents bases 1498 to 1576 in Figure 10.

35

This finding demonstrates that the DNA sequence and the derived protein is being interpreted in the correct

reading frame and that peptides derived from the sequence can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention provides high molecular weight proteins of non-typeable Haemophilus, genes coding for the same and vaccines incorporating such proteins. Modifications are possible within the scope of this invention.

Table 1. Effect of mutation of high molecular weight proteins on adherence to Chang epithelial cells by nontypable *H. influenzae*.

<u>Strain</u>	<u>ADHERENCE*</u>	
	<u>% inoculum</u>	<u>relative to wild type†</u>
Strain 12 derivatives		
wild type	87.7 ± 5.9	100.0 ± 6.7
HMW1- mutant	6.0 ± 0.9	6.8 ± 1.0
HMW2- mutant	89.9 ± 10.8	102.5 ± 12.3
HMW1-/HMW2- mutant	2.0 ± 0.3	2.3 ± 0.3
Strain 5 derivatives		
wild type	78.7 ± 3.2	100.0 ± 4.1
HMW1-like mutant	15.7 ± 2.6	19.9 ± 3.3
HMW2-like mutant	103.7 ± 14.0	131.7 ± 17.8
double mutant	3.5 ± 0.6	4.4 ± 0.8

* Numbers represent mean (± standard error of the mean) of measurements in triplicate or quadruplicate from representative experiments.

† Adherence values for strain 12 derivatives are relative to strain 12 wild type; values for strain 5 derivatives are relative to strain 5 wild type.

- 27 -

Table 2. Adherence by *E. coli* DH5 α and HB101 harboring *hmwl* or *hmw2* gene clusters.

<u>Strain*</u>	Adherence relative to <u><i>H. influenzae</i> strain 12†</u>
DH5 α (pT7-7)	0.7 \pm 0.02
DH5 α (pHMW1-14)	114.2 \pm 15.9
DH5 α (pHMW2-21)	14.0 \pm 3.7
HB101 (pT7-7)	1.2 \pm 0.5
HB101 (pHMW1-14)	93.6 \pm 15.8
HB101 (pHMW2-21)	3.6 \pm 0.9

* The plasmid pHMW1-14 contains the *hmwl* gene cluster, while pHMW2-21 contains the *hmw2* gene cluster; pT7-7 is the cloning vector used in these constructs.

† Numbers represent the mean (\pm standard error of the mean) of measurements made in triplicate from representative experiments.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: BARENKAMP, STEPHEN J
ST. GEME III, JOSEPH W
- (ii) TITLE OF INVENTION: HIGH MOLECULAR WEIGHT SURFACE PROTEINS
OF NON-TYPEABLE HAEMOPHILUS
- (iii) NUMBER OF SEQUENCES: 8
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Shoemaker and Mattare, Ltd
 - (B) STREET: 2001 Jefferson Davis Hwy., 1203 Crystal Plaza
Bldg. 1
 - (C) CITY: Arlington
 - (D) STATE: Virginia
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 22202-0286
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/038,682
 - (B) FILING DATE: 16-MAR-1993
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BERKSTRESSER, JERRY W
 - (B) REGISTRATION NUMBER: 22,651
 - (C) REFERENCE/DOCKET NUMBER: 1038-293
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (703) 415-0810
 - (B) TELEFAX: (703) 415-0813

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA ACAATTACAA	60
CACCTTTTGCAGTCTATA TGCAAATATT TTAACCAATAA GTATAAATCC GCCATATAAAA	120
ATGGTATAAT CTTTCATCTT TCATCTTCA TCTTTCATCT TTCATCTTCA ATCTTTCATC	180
TTCATCTTTCATCTTCA TCTTTCATCTT TCATCTTCA TCTTTCATCT TTCATCTTCA	240
ACATGCCCTG ATGAACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACG	300

SUBSTITUTE SHEET (RULE 26)

AACGCAAATG ATAAAGTAAT TTAATTGTTA AACTAACCTT AGGAGAAAAT ATGAACAAGC	360
TATATCGTCT CAAATTCAAGC AAACGCCCTGA ATGCTTTGGT TGCTGTGTCT GAATTGGCAC	420
GGGGTTGTGA CCATTCCACA GAAAAAGGCA GCGAAAAACC TGCTCGCATG AAAGTGCCTC	480
ACTTAGCGTT AAAGCCACTT TCCGCTATGT TACTATCTT AGGTGTAACA TCTATTCCAC	540
AATCTGTTT AGCAAGCGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCACTATGC	600
AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGA CGATATCATT AATTGGAAAC	660
AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTACA AGAAAACAAC AACTCCGCCG	720
TATTCAACCG TGTACATCT AACCAAATCT CCCAATTAAA AGGGATTTA GATTCTAACG	780
GACAAGTCTT TTTAATCAAC CCAAATGGTA TCACAATAGG TAAAGACGCA ATTATTAACA	840
CTAATGGCTT TACGGCTTCT ACGCTAGACA TTTCTAACGA AAACATCAAG GCGCGTAATT	900
TCACCTTCGA GCAAACCAAA GATAAAGCGC TCGCTGAAAT TGTGAATCAC GGTTTAATTA	960
CTGTCGGTAA AGACGGCAGT GTAAATCTT TTGGTGGCAA AGTAAAAAC GAGGGTGTGA	1020
TTAGCGTAAA TGGTGGCAGC ATTTCTTTAC TCGCAGGGCA AAAATCACC ATCAGCGATA	1080
TAATAAACCC AACCATTACT TACAGCATTG CCGCGCCTGA AAATGAAGCG GTCAATCTGG	1140
GCGATATTT TGCCAAAGGC GGTAACATTA ATGTCCGTGC TGCCACTATT CGAAACCAAG	1200
GTAAACTTTC TGCTGATTCT GTAAGCAAAG ATAAAAGCGG CAATATTGTT CTTTCCGCCA	1260
AAGAGGGTGA AGCGGAAATT GGCGGTGTAA TTTCCGCTCA AAATCAGCAA GCTAAAGGCG	1320
GCAAGCTGAT GATTACAGGC GATAAAGTCA CATTAAAAAC AGGTGCAGTT ATCGACCTTT	1380
CAGGTAAAGA AGGGGGAGAA ACTTACCTTG GCGGTGACGA GCGCGCGAA GGTAAAAGG	1440
GCATTCAATT AGCAAAGAAA ACCTCTTAG AAAAAGGCTC AACCATCAAT GTATCAGGCA	1500
AAGAAAAGG CGGACGCGCT ATTGTGTGGG GCGATATTGC GTTAATTGAC GGCAATATTA	1560
ACGCTCAAGG TAGTGGTGAT ATCGCTAAAA CCGGTGGTTT TGTGGAGACG TCGGGGCATG	1620
ATTTATTCAAT CAAAGACAAT GCAATTGTTG ACGCCAAAGA GTGGTTGTTA GACCCGGATA	1680
ATGTATCTAT TAATGCAGAA ACAGCAGGAC GCAGCAATAC TTCAGAAGAC GATGAATACA	1740
CGGGATCCGG GAATAGTGCC AGCACCCAA AACGAAACAA AGAAAAGACA ACATTAACAA	1800
ACACAACCTCT TGAGAGTATA CTAAAAAAAG GTACCTTTGT TAACATCACT GCTAATCAAC	1860
GCATCTATGT CAATAGCTCC ATTAATTAT CCAATGGCAG CTTAACTCTT TGGAGTGAGG	1920
GTCGGAGCGG TGGCGCGTT GAGATTAACA ACGATATTAC CACCGGTGAT GATACCAGAG	1980
GTGCAAACCTT ACAATTAC TCAGGCGGCT GGGTTGATGT TCATAAAAAT ATCTCACTCG	2040
GGGCGCAAGG TAACATAAAC ATTACAGCTA AACAAAGATAT CGCCTTGAG AAAGGAAGCA	2100
ACCAAGTCAT TACAGGTCAA GGGACTATTA CCTCAGGCAA TCAAAAAGGT TTTAGATTAA	2160
ATAATGTCTC TCTAAACGGC ACTGGCAGCG GACTGCAATT CACCACTAAA AGAACCAATA	2220
AATACGCTAT CACAAATAAA TTTGAAGGGA CTTTAAATAT TTCAGGGAAA GTGAACATCT	2280
CAATGGTTT ACCTAAAAAT GAAAGTGGAT ATGATAAATT CAAAGGACGC ACTTACTGGA	2340

ATTTAACCTC CTTAAATGTT TCCGAGAGTG GCGAGTTAA CCTCACTATT GACTCCAGAG	2400
GAAGCGATAG TGCAGGCACA CTTACCCAGC CTTATAATT AAACGGTATA TCATTCAACA	2460
AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA CTTTGACATC AAGGCACCAA	2520
TAGGGATAAA TAAGTATTCT AGTTTGAATT ACGCATCATT TAATGGAAAC ATTTCAGTTT	2580
CGGGAGGGGG GAGTGTGAT TTCACACTTC TCGCCTCATC CTCTAACGTC CAAACCCCCG	2640
GTGTAGTTAT AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA AGATTTAAAAA	2700
CTTCAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA AATGCCACCG	2760
GAGGCAACAT AACACTTTG CAAGTTGAAG GCACCGATGG AATGATTGGT AAAGGCATTG	2820
TAGCCAAAAA AAACATAACC TTTGAAGGAG GTAACATCAC CTTTGGCTCC AGGAAAGCCG	2880
TAACAGAAAT CGAAGGCART GTTACTATCA ATAACAACGC TAACGTCACT CTTATCGGTT	2940
CGGATTTGA CAACCATCAA AAACCTTTAA CTATTAAAAA AGATGTCATC ATTAATAGCG	3000
GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTACC GTTGAAGTA	3060
ACGCTAATTT CAAAGCTATC ACAAAATTCA CTTTTAATGT AGGCGGCTTG TTTGACAACA	3120
AAGGCAATTG AAATATTCC ATTGCCAAG GAGGGGCTCG CTTTAAAGAC ATTGATAATT	3180
CCAAGAATT AAGCATCACC ACCAACTCCA GCTCCACTTA CCGCACTATT ATAAGCGGCA	3240
ATATAACCAA TAAAAACGGT GATTAAATA TTACGAACGA AGGTAGTGAT ACTGAAATGC	3300
AAATTGGCGG CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTCTTCT GACAAAATCA	3360
ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG GGAGAAATTCC GATTCAGACG	3420
CGACAAACAA TGCCAATCTA ACCATTAAA CCAAAGAATT GAAATTAAACG CAAGACCTAA	3480
ATATTCAGG TTTCAATAAA GCAGAGATTA CAGCTAAAGA TGGTAGTGAT TTAACTATTG	3540
GTAACACCAA TAGTGCTGAT GGTACTAATG CCAAAAAAGT AACCTTTAAC CAGGTTAAAG	3600
ATTCAAAAAT CTCTGCTGAC GGTACAAGG TGACACTACA CAGCAAAGTG GAAACATCCG	3660
GTAGTAATAA CAACACTGAA GATAGCAGTG ACAATAATGC CGGCTTAACT ATCGATGCAA	3720
AAAATGTAAC AGTAAACAAAC AATATTACTT CTCACAAAGC AGTGAGCATC TCTGCGACAA	3780
GTGGAGAAAT TACCACTAAA ACAGGTACAA CCATTAACGC AACCACTGGT AACGTGGAGA	3840
TAACCGCTCA AACAGGTAGT ATCCTAGGTG GAATTGAGTC CAGCTCTGGC TCTGTAACAC	3900
TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTTC GGGCAACACC GTTACTGTTA	3960
CTGCAAATAG CGGTGCATTA ACCACTTTGG CAGGCTCTAC AATTAAAGGA ACCGAGAGTG	4020
TAACCACTTC AAGTCATCA GGCGATATCG GCGGTACGAT TTCTGGTGGC ACAGTAGAGG	4080
TTAAAGCAAC CGAAAGTTA ACCACTCAAT CCAATTCAA AATTAAAGCA ACAACAGGCG	4140
AGGCTAACGT AACAAAGTGCA ACAGGTACAA TTGGTGGTAC GATTTCGGT AATACGGTAA	4200
ATGTTACGGC AACCGCTGGC GATTTAACAG TTGGGAATGG CGCAGAAATT AATGCGACAG	4260
AAGGAGCTGC AACCTTAACT ACATCATCGG GCAAATTAAAC TACCGAAGCT AGTTCACACAA	4320
TTACTTCAGC CAAGGGTCAG GTAAATCTTT CAGCTCAGGA TGGTAGCGTT GCAGGAAGTA	4380

TTAATGCCGC CAATGTGACA CTAATACTA CAGGCACTTT AACTACCGTG AAGGGTTCAA	4440
ACATTAATGC AACCAAGCGGT ACCTTGGTTA TTAACGCAAA AGACGCTGAG CTAAATGGCG	4500
CAGCATTGGG TAACCACACA GTGGTAAATG CAACCAACGC AAATGGCTCC GGCAGCGTAA	4560
TCGCGACAAC CTCAAGCAGA GTGAACATCA CTGGGGATTT AATCACAATA AATGGATTAA	4620
ATATCATTTC AAAAAACGGT ATAAACACCG TACTGTTAAA AGGC GTTAAA ATTGATGTGA	4680
AATACATTCA ACCGGGTATA GCAAGCGTAG ATGAAGTAAT TGAAGCGAAA CGCATCCTTG	4740
AGAAGGTAAA AGATTTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT GGAGTAAGTG	4800
CTGTACGTTT TATTGAGCCA AATAATACAA TTACAGTCGA TACACAAAAT GAATTTGCAA	4860
CCAGACCATT AAGTCGAATA GTGATTCTG AAGGCAGGGC GTGTTTCTCA AACAGTGATG	4920
GCGCGACGGT GTGCGTTAAC ATCGCTGATA ACGGGGCGTA GCGGTCAGTA ATTGACAAGG	4980
TAGATTCAT CCTGCAATGA AGTCATTTA TTTTCTGATT ATTTACTGTG TGGGTTAAAG	5040
TTCAGTACGG GCTTTACCCA TCTTGTAAAA AATTACGGAG AATACAATAA AGTATTTTA	5100
ACAGGTTATT ATTATG	5116

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu			
1	5	10	15
Val Ala Val Ser Glu Leu Ala Arg Gly Cys Asp His Ser Thr Glu Lys			
20	25	30	
Gly Ser Glu Lys Pro Ala Arg Met Lys Val Arg His Leu Ala Leu Lys			
35	40	45	
Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln			
50	55	60	
Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr			
65	70	75	80
Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val			
85	90	95	
Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met			
100	105	110	
Val Gln Phe Leu Gln Glu Asn Asn Asn Ser Ala Val Phe Asn Arg Val			
115	120	125	
Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly			
130	135	140	

Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala
 145 150 155 160
 Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn
 165 170 175
 Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys
 180 185 190
 Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp
 195 200 205
 Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile
 210 215 220
 Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr
 225 230 235 240
 Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro
 245 250 255
 Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Gly Asn
 260 265 270
 Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala
 275 280 285
 Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys
 290 295 300
 Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln
 305 310 315 320
 Ala Lys Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys
 325 330 335
 Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr
 340 345 350
 Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala
 355 360 365
 Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys
 370 375 380
 Glu Lys Gly Arg Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp
 385 390 395 400
 Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly
 405 410 415
 Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile
 420 425 430
 Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn
 435 440 445
 Ala Glu Thr Ala Gly Arg Ser Asn Thr Ser Glu Asp Asp Glu Tyr Thr
 450 455 460
 Gly Ser Gly Asn Ser Ala Ser Thr Pro Lys Arg Asn Lys Glu Lys Thr
 465 470 475 480
 Thr Leu Thr Asn Thr Thr Leu Glu Ser Ile Leu Lys Lys Gly Thr Phe
 485 490 495

Val Asn Ile Thr Ala Asn Gln Arg Ile Tyr Val Asn Ser Ser Ile Asn
 500 505 510
 Leu Ser Asn Gly Ser Leu Thr Leu Trp Ser Glu Gly Arg Ser Gly Gly
 515 520 525
 Gly Val Glu Ile Asn Asn Asp Ile Thr Thr Gly Asp Asp Thr Arg Gly
 530 535 540
 Ala Asn Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn
 545 550 555 560
 Ile Ser Leu Gly Ala Gln Gly Asn Ile Asn Ile Thr Ala Lys Gln Asp
 565 570 575
 Ile Ala Phe Glu Lys Gly Ser Asn Gln Val Ile Thr Gly Gln Gly Thr
 580 585 590
 Ile Thr Ser Gly Asn Gln Lys Gly Phe Arg Phe Asn Asn Val Ser Leu
 595 600 605
 Asn Gly Thr Gly Ser Gly Leu Gln Phe Thr Thr Lys Arg Thr Asn Lys
 610 615 620
 Tyr Ala Ile Thr Asn Lys Phe Glu Gly Thr Leu Asn Ile Ser Gly Lys
 625 630 635 640
 Val Asn Ile Ser Met Val Leu Pro Lys Asn Glu Ser Gly Tyr Asp Lys
 645 650 655
 Phe Lys Gly Arg Thr Tyr Trp Asn Leu Thr Ser Leu Asn Val Ser Glu
 660 665 670
 Ser Gly Glu Phe Asn Leu Thr Ile Asp Ser Arg Gly Ser Asp Ser Ala
 675 680 685
 Gly Thr Leu Thr Gln Pro Tyr Asn Leu Asn Gly Ile Ser Phe Asn Lys
 690 695 700
 Asp Thr Thr Phe Asn Val Glu Arg Asn Ala Arg Val Asn Phe Asp Ile
 705 710 715 720
 Lys Ala Pro Ile Gly Ile Asn Lys Tyr Ser Ser Leu Asn Tyr Ala Ser
 725 730 735
 Phe Asn Gly Asn Ile Ser Val Ser Gly Gly Ser Val Asp Phe Thr
 740 745 750
 Leu Leu Ala Ser Ser Ser Asn Val Gln Thr Pro Gly Val Val Ile Asn
 755 760 765
 Ser Lys Tyr Phe Asn Val Ser Thr Gly Ser Ser Leu Arg Phe Lys Thr
 770 775 780
 Ser Gly Ser Thr Lys Thr Gly Phe Ser Ile Glu Lys Asp Leu Thr Leu
 785 790 795 800
 Asn Ala Thr Gly Gly Asn Ile Thr Leu Leu Gln Val Glu Gly Thr Asp
 805 810 815
 Gly Met Ile Gly Lys Gly Ile Val Ala Lys Lys Asn Ile Thr Phe Glu
 820 825 830
 Gly Gly Asn Ile Thr Phe Gly Ser Arg Lys Ala Val Thr Glu Ile Glu
 835 840 845

SUBSTITUTE SHEET (RULE 26)

Gly Asn Val Thr Ile Asn Asn Ala Asn Val Thr Leu Ile Gly Ser
 850 855 860
 Asp Phe Asp Asn His Gln Lys Pro Leu Thr Ile Lys Lys Asp Val Ile
 865 870 875 880
 Ile Asn Ser Gly Asn Leu Thr Ala Gly Gly Asn Ile Val Asn Ile Ala
 885 890 895
 Gly Asn Leu Thr Val Glu Ser Asn Ala Asn Phe Lys Ala Ile Thr Asn
 900 905 910
 Phe Thr Phe Asn Val Gly Gly Leu Phe Asp Asn Lys Gly Asn Ser Asn
 915 920 925
 Ile Ser Ile Ala Lys Gly Gly Ala Arg Phe Lys Asp Ile Asp Asn Ser
 930 935 940
 Lys Asn Leu Ser Ile Thr Thr Asn Ser Ser Thr Tyr Arg Thr Ile
 945 950 955 960
 Ile Ser Gly Asn Ile Thr Asn Lys Asn Gly Asp Leu Asn Ile Thr Asn
 965 970 975
 Glu Gly Ser Asp Thr Glu Met Gln Ile Gly Gly Asp Val Ser Gln Lys
 980 985 990
 Glu Gly Asn Leu Thr Ile Ser Ser Asp Lys Ile Asn Ile Thr Lys Gln
 995 1000 1005
 Ile Thr Ile Lys Ala Gly Val Asp Gly Glu Asn Ser Asp Ser Asp Ala
 1010 1015 1020
 Thr Asn Asn Ala Asn Leu Thr Ile Lys Thr Lys Glu Leu Lys Leu Thr
 1025 1030 1035 1040
 Gln Asp Leu Asn Ile Ser Gly Phe Asn Lys Ala Glu Ile Thr Ala Lys
 1045 1050 1055
 Asp Gly Ser Asp Leu Thr Ile Gly Asn Thr Asn Ser Ala Asp Gly Thr
 1060 1065 1070
 Asn Ala Lys Lys Val Thr Phe Asn Gln Val Lys Asp Ser Lys Ile Ser
 1075 1080 1085
 Ala Asp Gly His Lys Val Thr Leu His Ser Lys Val Glu Thr Ser Gly
 1090 1095 1100
 Ser Asn Asn Asn Thr Glu Asp Ser Ser Asp Asn Asn Ala Gly Leu Thr
 1105 1110 1115 1120
 Ile Asp Ala Lys Asn Val Thr Val Asn Asn Ile Thr Ser His Lys
 1125 1130 1135
 Ala Val Ser Ile Ser Ala Thr Ser Gly Glu Ile Thr Thr Lys Thr Gly
 1140 1145 1150
 Thr Thr Ile Asn Ala Thr Thr Gly Asn Val Glu Ile Thr Ala Gln Thr
 1155 1160 1165
 Gly Ser Ile Leu Gly Gly Ile Glu Ser Ser Ser Gly Ser Val Thr Leu
 1170 1175 1180
 Thr Ala Thr Glu Gly Ala Leu Ala Val Ser Asn Ile Ser Gly Asn Thr
 1185 1190 1195 1200

SUBSTITUTE SHEET (RULE 26)

Val Thr Val Thr Ala Asn Ser Gly Ala Leu Thr Thr Leu Ala Gly Ser
 1205 1210 1215
 Thr Ile Lys Gly Thr Glu Ser Val Thr Thr Ser Ser Gln Ser Gly Asp
 1220 1225 1230
 Ile Gly Gly Thr Ile Ser Gly Gly Thr Val Glu Val Lys Ala Thr Glu
 1235 1240 1245
 Ser Leu Thr Thr Gln Ser Asn Ser Lys Ile Lys Ala Thr Thr Gly Glu
 1250 1255 1260
 Ala Asn Val Thr Ser Ala Thr Gly Thr Ile Gly Gly Thr Ile Ser Gly
 1265 1270 1275 1280
 Asn Thr Val Asn Val Thr Ala Asn Ala Gly Asp Leu Thr Val Gly Asn
 1285 1290 1295
 Gly Ala Glu Ile Asn Ala Thr Glu Gly Ala Ala Thr Leu Thr Thr Ser
 1300 1305 1310
 Ser Gly Lys Leu Thr Thr Glu Ala Ser Ser His Ile Thr Ser Ala Lys
 1315 1320 1325
 Gly Gln Val Asn Leu Ser Ala Gln Asp Gly Ser Val Ala Gly Ser Ile
 1330 1335 1340
 Asn Ala Ala Asn Val Thr Leu Asn Thr Thr Gly Thr Leu Thr Thr Val
 1345 1350 1355 1360
 Lys Gly Ser Asn Ile Asn Ala Thr Ser Gly Thr Leu Val Ile Asn Ala
 1365 1370 1375
 Lys Asp Ala Glu Leu Asn Gly Ala Ala Leu Gly Asn His Thr Val Val
 1380 1385 1390
 Asn Ala Thr Asn Ala Asn Gly Ser Gly Ser Val Ile Ala Thr Thr Ser
 1395 1400 1405
 Ser Arg Val Asn Ile Thr Gly Asp Leu Ile Thr Ile Asn Gly Leu Asn
 1410 1415 1420
 Ile Ile Ser Lys Asn Gly Ile Asn Thr Val Leu Leu Lys Gly Val Lys
 1425 1430 1435 1440
 Ile Asp Val Lys Tyr Ile Gln Pro Gly Ile Ala Ser Val Asp Glu Val
 1445 1450 1455
 Ile Glu Ala Lys Arg Ile Leu Glu Lys Val Lys Asp Leu Ser Asp Glu
 1460 1465 1470
 Glu Arg Glu Ala Leu Ala Lys Leu Gly Val Ser Ala Val Arg Phe Ile
 1475 1480 1485
 Glu Pro Asn Asn Thr Ile Thr Val Asp Thr Gln Asn Glu Phe Ala Thr
 1490 1495 1500
 Arg Pro Leu Ser Arg Ile Val Ile Ser Glu Gly Arg Ala Cys Phe Ser
 1505 1510 1515 1520
 Asn Ser Asp Gly Ala Thr Val Cys Val Asn Ile Ala Asp Asn Gly Arg
 1525 1530 1535

SUBSTITUTE SHEET (RULE 26)

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4937 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TAAATATACA AGATAATAAA AATAAAATCAA GATTTTTGTG ATGACAAACA ACAATTACAA	60
CACCTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAAT AGTATAAATC CGCCATATAA	120
AATGGTATAA TCTTTCATCT TTCATCTTTA ATCTTTCATC TTTCATCTTT CATCTTCAT	180
CTTTCATCTT TCATCTTCATC TCTTTCATCT TTTCATCTTC ATCTTCATC TTTCATCTTT	240
CACATGAAAT GATGAACCGA GGGAAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGCTGAAC	300
GAACGCAAAT GATAAAGTAA TTTAATTGTT CAACTAACCT TAGGAGAAA TATGAACAAG	360
ATATATCGTC TCAAATTCAAG CAAACGCCCTG AATGCTTTGG TTGCTGTGTC TGAATTGGCA	420
CGGGGTTGTG ACCATTCCAC AGAAAAAGGC TTCCGCTATG TTACTATCTT TAGGTGTAAC	480
CACTTAGCGT TAAAGCCACT TTCCGCTATG TTACTATCTT TAGGTGTAAC ATCTATTCCA	540
CAATCTGTT TAGCAAGCGG CTTACAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG	600
CAAGTAGATG GTAATAAAAC CATTATCCGC AACAGTGTG ACGCTATCAT TAATTGGAAA	660
CAATTAAACA TCGACCAAAA TGAAATGGTG CAGTTTTAC AAGAAAACAA CAACTCCGCC	720
GTATTCAACC GTGTTACATC TAACCAAATC TCCCAATTAA AAGGGATTTT AGATTCTAAC	780
GGACAAAGTCT TTTTAATCAA CCCAAATGGT ATCACAAATAG GTAAAGACGC AATTATTAAC	840
ACTAATGGCT TTACGGCTTC TACGCTAGAC ATTCTAACG AAAACATCAA GGCGCGTAAT	900
TTCACCTTCG AGCAAACCAA AGATAAAAGCG CTCGCTGAAA TTGTGAATCA CGGTTTAATT	960
ACTGTCGGTA AAGACGGCAG TGTAATCTT ATTGGTGGCA AAGTAAAAAA CGAGGGTGTG	1020
ATTAGCGTAA ATGGTGGCAG CATTCTTTA CTCGCAGGGC AAAAAATCAC CATCAGCGAT	1080
ATAATAAAACC CAACCATTAC TTACAGCATT GCCGCGCCTG AAAATGAAGC GGTCAATCTG	1140
GGCGATATTG TTGCCAAAGG CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA	1200
GGTAAACTTT CTGCTGATTG TGTAAGCAA GATAAAAGCG GCAATATTGT TCTTTCCGCC	1260
AAAGAGGGTG AAGCGGAAAT TGGCGGTGTA ATTCCGCTC AAAATCAGCA AGCTAAAGGC	1320
GGCAAGCTGA TGATTACAGG CGATAAAAGTC ACATTAAAAA CAGGTGCAGT TATCGACCTT	1380
TCAGGTAAG AAGGGGGAGA AACTTACCTT GGCGGTGACG AGCGCGGCGA AGGTAAAAAC	1440
GGCATTCAAT TAGCAAAGAA AACCTCTTTA GAAAAAGGCT CAACCATCAA TGTATCAGGC	1500
AAAGAAAAAG GCGGACGCGC TATTGTGTGG GCGATATTG CGTTAATTGA CGGCAATATT	1560
AACGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT TTGTGGAGAC ATCGGGGCAT	1620

TATTTATCCA TTGACAGCAA TGCAATTGTT AAAACAAAAG AGTGGTTGCT AGACCCTGAT	1680
GATGTAACAA TTGAAGCCGA AGACCCCCT CGCAATAATA CCGGTATAAA TGATGAATTC	1740
CCAACAGGCA CCGGTGAAGC AAGCGACCCCT AAAAAAAATA GCGAACTCAA AACAACGCTA	1800
ACCAATACAA CTATTTCAAA TTATCTGAAA AACGCCTGGA CAATGAATAT AACGGCATCA	1860
AGAAAACCTTA CCGTTAATAG CTCATCACAC ATCGGAAGCA ACTCCCACCTT AATTCTCCAT	1920
AGTAAAGGTC AGCGTGGCGG AGGCAGTCAG ATTGATGGAG ATATTACTTC TAAAGGCGGA	1980
AATTTAACCA TTTATTCTGG CGGATGGGTT GATGTTCATATAAAATATTAC GCTTGATCAG	2040
GGTTTTTAA ATATTACCGC CGCTTCCGTA GCTTTGAAG GTGGAAATAA CAAAGCACGC	2100
GACGCGGCAA ATGCTAAAT TGTCGCCAG GGCAGTGTAA CCATTACAGG AGAGGGAAAA	2160
GATTCAGGG CTAACAACGT ATCTTAAAC GGAACGGGTA AAGGTCIGAA TATCATTCA	2220
TCAGTGAATA ATTAAACCCA CAATCTTAGT GGCACAAATTA ACATATCTGG GAATATAACA	2280
ATTAACCAA CTACGAGAAA GAACACCTCG TATTGGCAAACCCAGCATGA TTGCGACTGG	2340
AACGTCAGTG CTCTTAATCT AGAGACAGGC GCAAATTTA CCTTTATTAA ATACATTCA	2400
AGCAATAGCA AAGGCTAAC AACACAGTAT AGAAGCTCTG CAGGGGTGAA TTTTAACGGC	2460
GTAAATGGCA ACATGTCATT CAATCTAAA GAAGGAGCGA AAGTTAATT CAAATTAAAA	2520
CCAAACGAGA ACATGAACAC AAGCAAACCT TTACCAATTG GGTTTTAGC CAATATCACA	2580
GCCACTGGTG GGGGCTCTGT TTTTTTGAT ATATATGCCA ACCATTCTGG CAGAGGGCT	2640
GAGTTAAAAA TGAGTGAAT TAATATCTCT AACGGCGCTA ATTTTACCTT AAATTCCAT	2700
GTTCGCGGCG ATGACGCTTT TAAAATCAAC AAAGACTTAA CCATAAATGC AACCAATTCA	2760
AATTCAGCC TCAGACAGAC GAAAGATGAT TTTTATGACG GGTACGCACG CAATGCCATC	2820
AATTCAACCT ACAACATATC CATTCTGGC GGTAAATGTCA CCCTTGGTGG ACAAAACCTCA	2880
AGCAGCAGCA TTACGGGGAA TATTACTATC GAGAAAGCAG CAAATGTTAC GCTAGAAGCC	2940
AATAACGCC CTAATCAGCA AAACATAAGG GATAGAGTTA TAAAACCTGG CAGCTTGCTC	3000
GTAAATGGGA GTTTAAGTTT AACTGGCGAA AATGCAGATA TTAAAGGCAA TCTCACTATT	3060
TCAGAAAGCG CCACTTTAA AGGAAAGACT AGAGATAACCC TAAATATCAC CGGCAATT	3120
ACCAATAATG GCACTGCCGA AATTAATATA ACACAAGGAG TGGTAAAAC TGGCAATGTT	3180
ACCAATGATG GTGATTTAAA CATTACCACT CACGCTAAC GCAACCAAAG AAGCATCATC	3240
GGCGGAGATA TAATCAACAA AAAAGGAAGC TTAAATATTA CAGACAGTAA TAATGATGCT	3300
GAAATCCAAA TTGGCGGCAA TATCTCGCAA AAAGAAGGCA ACCTCACGAT TTCTTCCGAT	3360
AAAATTAATA TCACCAAACA GATAACAATC AAAAAGGGTA TTGATGGAGA GGACTCTAGT	3420
TCAGATGCCA CAAGTAATGC CAACCTAACT ATTAAAACCA AAGAATTGAA ATTGACAGAA	3480
GACCTAAGTA TTTCAGGTTT CAATAAAGCA GAGATTACAG CCAAAGATGG TAGAGATT	3540
ACTATTGGCA ACAGTAATGA CGGTAACAGC GGTGCCGAAG CCAAACAGT AACTTTAAC	3600
AATGTTAAAG ATTCAAAAT CTCTGCTGAC GGTACAAATG TGACACTAAA TAGCAAAGTG	3660

AAAACATCTA	GCAGCAATGG	CGGACGTGAA	AGCAATAGCG	ACAACGATAAC	CGGCTTAACT	3720
ATTACTGCAA	AAAATGTAGA	AGTAAACAAA	GATATTACTT	CTCTCAAAAC	AGTAAATATC	3780
ACCGCGTCGG	AAAAGGTTAC	CACCACAGCA	GGCTCGACCA	TTAACGCAAC	AAATGGCAAA	3840
GCAAGTATTA	CAACCAAAAC	AGGTGATATC	AGCGGTACGA	TTTCCGGTAA	CACGGTAAGT	3900
GTTAGCGCGA	CTGGTGATT	AACCACTAAA	TCCGGCTCAA	AAATTGAAGC	GAAATCGGGT	3960
GAGGCTAATG	TAACAAGTGC	AACAGGTACA	ATTGGCGGT	CAATTTCGG	TAATACGGTA	4020
AATGTTACGG	CAAACGCTGG	CGATTAAACA	GTTGGGAATG	GCGCAGAAAT	TAATGCGACA	4080
GAAGGAGCTG	CAACCTTAAC	CGCAACAGGG	AATACCTTGA	CTACTGAAGC	CGGTTCTAGC	4140
ATCACTTCAA	CTAAGGGTCA	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC	4200
ATTAATGCTG	CTAATGTGAC	ATTAATACT	ACAGGCACCT	TAACCACCGT	GGCAGGCTCG	4260
GATATTAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	AAGATGCTAA	GCTAAATGGT	4320
GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCACG	CAAGCGGCTC	TGGTAGTGTG	4380
ACTGCGGCAA	CCTCAAGCAG	TGTGAATATC	ACTGGGGATT	AAACACAGT	AAATGGGTTA	4440
AATATCATT	CGAAAGATGG	TAGAAACACT	GTGCGCTAA	GAGGCAAGGA	AATTGAGGTG	4500
AAATATATCC	AGCCAGGTGT	AGCAAGTGT	GAAGAAGTAA	TTGAAGCGAA	ACGCGTCCTT	4560
GAAAAAGTAA	AAGATTATAC	TGATGAAGAA	AGAGAAACAT	TAGCTAAACT	TGGTGTAAAGT	4620
GCTGTACGTT	TTGTTGAGCC	AAATAATACA	ATTACAGTCA	ATACACAAAA	TGAATTACAA	4680
ACCAGACCGT	CAAGTCAAGT	GATAATTCT	GAAGGTAAGG	CGTGTTCCTC	AAGTGGTAAT	4740
GGCGCACGAG	TATGTACCAA	TGTTGCTGAC	GATGGACAGC	CGTAGTCAGT	AATTGACAAG	4800
GTAGATTTC	TCCTGCAATG	AAGTCATTTT	ATTTCTGTAT	TATTTACTGT	GTGGGTTAAA	4860
GTTCAAGTACG	GGCTTTACCC	ATCTTGTAAA	AAATTACGGA	GAATACAATA	AA GTATTTT	4920
AACAGGTTAT	TATTATG					4937

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1477 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Asn	Lys	Ile	Tyr	Arg	Leu	Lys	Phe	Ser	Lys	Arg	Leu	Asn	Ala	Leu
1				5					10				15		
Val	Ala	Val	Ser	Glu	Leu	Ala	Arg	Gly	Cys	Asp	His	Ser	Thr	Glu	Lys
	20				25							30			
Gly	Ser	Glu	Lys	Pro	Ala	Arg	Met	Lys	Val	Arg	His	Leu	Ala	Leu	Lys
	35					40						45			

SUBSTITUTE SHEET (RULE 26)

Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln
 50 55 60

Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr
 65 70 75 80

Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val
 85 90 95

Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met
 100 105 110

Val Gln Phe Leu Gln Glu Asn Asn Ser Ala Val Phe Asn Arg Val
 115 120 125

Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly
 130 135 140

Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala
 145 150 155 160

Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn
 165 170 175

Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys
 180 185 190

Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp
 195 200 205

Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile
 210 215 220

Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr
 225 230 235 240

Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro
 245 250 255

Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Gly Asn
 260 265 270

Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala
 275 280 285

Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys
 290 295 300

Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln
 305 310 315 320

Ala Lys Gly Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys
 325 330 335

Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr
 340 345 350

Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala
 355 360 365

Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys
 370 375 380

Glu Lys Gly Gly Phe Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp
 385 390 395 400

SUBSTITUTE SHEET (RULE 26)

40

Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly
 405 410 415
 Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile
 420 425 430
 Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn
 435 440 445
 Ala Glu Asp Pro Leu Phe Asn Asn Thr Gly Ile Asn Asp Glu Phe Pro
 450 455 460
 Thr Gly Thr Gly Glu Ala Ser Asp Pro Lys Lys Asn Ser Glu Leu Lys
 465 470 475 480
 Thr Thr Leu Thr Asn Thr Ile Ser Asn Tyr Leu Lys Asn Ala Trp
 485 490 495
 Thr Met Asn Ile Thr Ala Ser Arg Lys Leu Thr Val Asn Ser Ser Ile
 500 505 510
 Asn Ile Gly Ser Asn Ser His Leu Ile Leu His Ser Lys Gly Gln Arg
 515 520 525
 Gly Gly Val Gln Ile Asp Gly Asp Ile Thr Ser Lys Gly Gly Asn
 530 535 540
 Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn Ile Thr
 545 550 555 560
 Leu Asp Gln Gly Phe Leu Asn Ile Thr Ala Ala Ser Val Ala Phe Glu
 565 570 575
 Gly Gly Asn Asn Lys Ala Arg Asp Ala Ala Asn Ala Lys Ile Val Ala
 580 585 590
 Gln Gly Thr Val Thr Ile Thr Gly Glu Gly Lys Asp Phe Arg Ala Asn
 595 600 605
 Asn Val Ser Leu Asn Gly Thr Gly Lys Gly Leu Asn Ile Ile Ser Ser
 610 615 620
 Val Asn Asn Leu Thr His Asn Leu Ser Gly Thr Ile Asn Ile Ser Gly
 625 630 635 640
 Asn Ile Thr Ile Asn Gln Thr Thr Arg Lys Asn Thr Ser Tyr Trp Gln
 645 650 655
 Thr Ser His Asp Ser His Trp Asn Val Ser Ala Leu Asn Leu Glu Thr
 660 665 670
 Gly Ala Asn Phe Thr Phe Ile Lys Tyr Ile Ser Ser Asn Ser Lys Gly
 675 680 685
 Leu Thr Thr Gln Tyr Arg Ser Ser Ala Gly Val Asn Phe Asn Gly Val
 690 695 700
 Asn Gly Asn Met Ser Phe Asn Leu Lys Glu Gly Ala Lys Val Asn Phe
 705 710 715 720
 Lys Leu Lys Pro Asn Glu Asn Met Asn Thr Ser Lys Pro Leu Pro Ile
 725 730 735
 Arg Phe Leu Ala Asn Ile Thr Ala Thr Gly Gly Ser Val Phe Phe
 740 745 750

SUBSTITUTE SHEET (RULE 26)

Asp Ile Tyr Ala Asn His Ser Gly Arg Gly Ala Glu Leu Lys Met Ser
 755 760 765
 Glu Ile Asn Ile Ser Asn Gly Ala Asn Phe Thr Leu Asn Ser His Val
 770 775 780
 Arg Gly Asp Asp Ala Phe Lys Ile Asn Lys Asp Leu Thr Ile Asn Ala
 785 790 795 800
 Thr Asn Ser Asn Phe Ser Leu Arg Gln Thr Lys Asp Asp Phe Tyr Asp
 805 810 815
 Gly Tyr Ala Arg Asn Ala Ile Asn Ser Thr Tyr Asn Ile Ser Ile Leu
 820 825 830
 Gly Gly Asn Val Thr Leu Gly Gly Gln Asn Ser Ser Ser Ser Ile Thr
 835 840 845
 Gly Asn Ile Thr Ile Glu Lys Ala Ala Asn Val Thr Leu Glu Ala Asn
 850 855 860
 Asn Ala Pro Asn Gln Gln Asn Ile Arg Asp Arg Val Ile Lys Leu Gly
 865 870 875 880
 Ser Leu Leu Val Asn Gly Ser Leu Ser Leu Thr Gly Glu Asn Ala Asp
 885 890 895
 Ile Lys Gly Asn Leu Thr Ile Ser Glu Ser Ala Thr Phe Lys Gly Lys
 900 905 910
 Thr Arg Asp Thr Leu Asn Ile Thr Gly Asn Phe Thr Asn Asn Gly Thr
 915 920 925
 Ala Glu Ile Asn Ile Thr Gln Gly Val Val Lys Leu Gly Asn Val Thr
 930 935 940
 Asn Asp Gly Asp Leu Asn Ile Thr Thr His Ala Lys Arg Asn Gln Arg
 945 950 955 960
 Ser Ile Ile Gly Gly Asp Ile Ile Asn Lys Lys Gly Ser Leu Asn Ile
 965 970 975
 Thr Asp Ser Asn Asn Asp Ala Glu Ile Gln Ile Gly Gly Asn Ile Ser
 980 985 990
 Gln Lys Glu Gly Asn Leu Thr Ile Ser Ser Asp Lys Ile Asn Ile Thr
 995 1000 1005
 Lys Gln Ile Thr Ile Lys Lys Gly Ile Asp Gly Glu Asp Ser Ser Ser
 1010 1015 1020
 Asp Ala Thr Ser Asn Ala Asn Leu Thr Ile Lys Thr Lys Glu Leu Lys
 1025 1030 1035 1040
 Leu Thr Glu Asp Leu Ser Ile Ser Gly Phe Asn Lys Ala Glu Ile Thr
 1045 1050 1055
 Ala Lys Asp Gly Arg Asp Leu Thr Ile Gly Asn Ser Asn Asp Gly Asn
 1060 1065 1070
 Ser Gly Ala Glu Ala Lys Thr Val Thr Phe Asn Asn Val Lys Asp Ser
 1075 1080 1085
 Lys Ile Ser Ala Asp Gly His Asn Val Thr Leu Asn Ser Lys Val Lys
 1090 1095 1100

SUBSTITUTE SHEET (RULE 26)

Thr Ser Ser Ser Asn Gly Gly Arg Glu Ser Asn Ser Asp Asn Asp Thr
 1105 1110 1115 1120
 Gly Leu Thr Ile Thr Ala Lys Asn Val Glu Val Asn Lys Asp Ile Thr
 1125 1130 1135
 Ser Leu Lys Thr Val Asn Ile Thr Ala Ser Glu Lys Val Thr Thr Thr
 1140 1145 1150
 Ala Gly Ser Thr Ile Asn Ala Thr Asn Gly Lys Ala Ser Ile Thr Thr
 1155 1160 1165
 Lys Thr Gly Asp Ile Ser Gly Thr Ile Ser Gly Asn Thr Val Ser Val
 1170 1175 1180
 Ser Ala Thr Val Asp Leu Thr Thr Lys Ser Gly Ser Lys Ile Glu Ala
 1185 1190 1195 1200
 Lys Ser Gly Glu Ala Asn Val Thr Ser Ala Thr Gly Thr Ile Gly Gly
 1205 1210 1215
 Thr Ile Ser Gly Asn Thr Val Asn Val Thr Ala Asn Ala Gly Asp Leu
 1220 1225 1230
 Thr Val Gly Asn Gly Ala Glu Ile Asn Ala Thr Glu Gly Ala Ala Thr
 1235 1240 1245
 Leu Thr Ala Thr Gly Asn Thr Leu Thr Thr Glu Ala Gly Ser Ser Ile
 1250 1255 1260
 Thr Ser Thr Lys Gly Gln Val Asp Leu Leu Ala Gln Asn Gly Ser Ile
 1265 1270 1275 1280
 Ala Gly Ser Ile Asn Ala Ala Asn Val Thr Leu Asn Thr Thr Gly Thr
 1285 1290 1295
 Leu Thr Thr Val Ala Gly Ser Asp Ile Lys Ala Thr Ser Gly Thr Leu
 1300 1305 1310
 Val Ile Asn Ala Lys Asp Ala Lys Leu Asn Gly Asp Ala Ser Gly Asp
 1315 1320 1325
 Ser Thr Glu Val Asn Ala Val Asn Ala Ser Gly Ser Gly Ser Val Thr
 1330 1335 1340
 Ala Ala Thr Ser Ser Val Asn Ile Thr Gly Asp Leu Asn Thr Val
 1345 1350 1355 1360
 Asn Gly Leu Asn Ile Ile Ser Lys Asp Gly Arg Asn Thr Val Arg Leu
 1365 1370 1375
 Arg Gly Lys Glu Ile Glu Val Lys Tyr Ile Gln Pro Gly Val Ala Ser
 1380 1385 1390
 Val Glu Glu Val Ile Glu Ala Lys Arg Val Leu Glu Lys Val Lys Asp
 1395 1400 1405
 Leu Ser Asp Glu Glu Arg Glu Thr Leu Ala Lys Leu Gly Val Ser Ala
 1410 1415 1420
 Val Arg Phe Val Glu Pro Asn Asn Thr Ile Thr Val Asn Thr Gln Asn
 1425 1430 1435 1440
 Glu Phe Thr Thr Arg Pro Ser Ser Gln Val Ile Ile Ser Glu Gly Lys
 1445 1450 1455

SUBSTITUTE SHEET (RULE 26)

Ala Cys Phe Ser Ser Gly Asn Gly Ala Arg Val Cys Thr Asn Val Ala
 1460 1465 1470

Asp Asp Gly Gln Pro
 1475

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA ACAATTACAA	60
CACCTTTTTT GCAGTCTATA TGCATAATATT TTAAAAAATA GTATAAAATCC GCCATATAAA	120
ATGGTATAAT CTTTCATCTT TCATCTTCA TCTTTCATCT TTCATCTTC ATCTTTCATC	180
TTTCATCTT CATCTTCAT CTTTCATCTT TCATCTTCA TCTTTCATCT TTCATCTTC	240
ACATGAAATG ATGAACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACG	300
AACGCAAATG ATAAAGTAAT TTAATTGTTCA AACTAACCTT AGGAGAAAAT ATGAACAAGA	360
TATATCGTCT CAAATTCAAGC AAACGCTGA ATGCTTTGGT TGCTGTGTCT GAATTGGCAC	420
GGGGTTGTGA CCATTCCACA GAAAAAGGCA GCGAAAACC TGCTCGCATG AAAGTGCCTC	480
ACTTAGCGTT AAAGCCACTT TCCGCTATGT TACTATCTT AGGTGTAACA TCTATTCCAC	540
AATCTGTTTT AGCAAGCGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCACTATGC	600
AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGA CGCTATCATT AATTGGAAAC	660
AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA AGAAAACAAC AACTCCGCCG	720
TATTCAACCG TGTTACATCT AACCAAATCT CCCAATTAAA AGGGATTTA GATTCTAACG	780
GACAAGTCTT TTTAATCAAC CCAAATGGTA TCACAATAGG TAAAGACGCA ATTATTAACA	840
CTAATGGCTT TACGGCTTCT ACGCTAGACA TTTCTAACGA AAACATCAAG GCGCGTAATT	900
TCACCTTCGA GCAAACCAAA GATAAAGCGC TCGCTGAAAT TGTGAATCAC GGTTTAATT	960
CTGTCGGTAA AGACGGCAGT GTAAATCTTAA TTGGTGGCAA AGTAAAAAAC GAGGGTGTGA	1020
TTAGCGTAA TGTTGGCAGC ATTTCTTAC TCGCAGGGCA AAAATCACC ATCAGCGATA	1080
TAATAAAACCC AACCATTACT TACAGCATTG CCGCGCCTGA AAATGAAGCG GTCAATCTGG	1140
GCGATATTT TGCCAAAGGC GGTAACATTA ATGTCCGTGC TGCCACTATT CGAAACCAAG	1200
CTTCCGCCA AAGAGGGTGA AGCGGAAATT GGCGGTGTAA TTTCCGCTCA AAATCAGCAA	1260
GCTAAAGGCG GCAAGCTGAT GATTACAGGC GATAAAAGTCA CATTAAAAAC AGGTGCAGTT	1320
ATCGACCTTT CAGGTAAAGA AGGGGGAGAA ACTTACCTTG GCGGTGACGA GCGCGGCCAA	1380
GGTAAAAACG GCATTCAATT AGCAAAAGAAA ACCTCTTTAG AAAAAGGCTC AACCATCAAT	1440

SUBSTITUTE SHEET (RULE 26)

GTATCAGGCA AAGAAAAAGG CGGACCGCGT ATTGTGTGGG GCGATATTGC GTTAATTGAC	1500
GGCAATATTA ACGCTCAAGG TAGTGGTGAT ATCGCTAAA CCGGTGGTTT TGTGGAGACG	1560
TCGGGGCATG ATTTATTCTAT CAAAGACAAT GCAATTGTTG ACGCCAAAGA GTGGTTGTTA	1620
GACCCGGATA ATGTATCTAT TAATCCAGAA ACAGCAGGAC GCAGCAATAC TTCAGAAGAC	1680
GATGAATACA CGGGATCCGG GAATAGTGCC AGCACCCCCAA AACGAAACAA AGAAAAGACA	1740
ACATTAACAA ACACAACTCT TGAGAGTATA CTAAAAAAAG GTACCTTGAT TAACATCACT	1800
GCTAATCAAC GCATCTATGT CAATAGCTCC ATTAATTAT CCAATGGCAG CTTAACTCTT	1860
TGGAGTGAGG GTCGGAGCGG TGGCGCGTT GAGATTAACA ACGATATTAC CACCGGTGAT	1920
GATACCAGAG GTGCAAACCTT AACAAATTAC TCAGGCGGCT GGGTTGATGT TCATAAAAAT	1980
ATCTCACTCG GGGCGCAAGG TAACATAAAC ATTACAGCTA AACAAAGATAT CGCCTTGAG	2040
AAAGGAAGCA ACCAAGTCAT TACAGGTCAA GGGACTATTA CCTCAGGCAA TCAAAAAGGT	2100
TTTAGATTTA ATAATGTCTC TCTAACGGC ACTGGCAGCG GACTGCAATT CACCACTAAA	2160
AGAACCAATA AATACTGCTAT CACAAATAAA TTTGAAGGGA CTTTAAATAT TTCAGGGAAA	2220
GTGAACATCT CAATGGTTTT ACCTAAAAAT GAAAGTGGAT ATGATAAATT CAAAGGACGC	2280
ACTTACTGGA ATTTAACCTC GAAAGTGGAT ATGATAAATT CAAAGGACGC CCTCACTATT	2340
GAECTCAGAG GAAGCGATAG TGCAGGCACA CTTACCCAGC CTTATAATT AAACGGTATA	2400
TCATTCAACA AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA CTTTGACATC	2460
AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTGAATT ACGCATCATT TAATGGAAAC	2520
ATTTCACTTT CGGGAGGGGG GAGTGGAT TTCACACTTC TCGCCTCATC CTCTAACGTC	2580
CAAACCCCCG GTGTAGTTAT AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA	2640
AGATTTAAA CTTCAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA	2700
AATGCCACCG GAGGCAACAT AACACTTTG CAAGTTGAAG GCACCGATGG AATGATTGGT	2760
AAAGGCATTG TAGCCAAAAA AAACATAACC TTTGAAGGAG GTAAGATGAG GTTTGGCTCC	2820
AGGAAAGCCG TAACAGAAAT CGAAGGCAAT GTTACTATCA ATAACAAACGC TAACGTCACT	2880
CTTATCGGTT CGGATTTGA CAACCATCAA AAACCTTTAA CTATTAAAAA AGATGTCATC	2940
ATTAATAGCG GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTACC	3000
GTTGAAAGTA ACGCTAATT CAAAGCTATC ACAAAATTCA CTTTTAATGT AGGCGGCTTG	3060
TTTGACAACA AAGGCAATTG AAATATTCC ATTGCCAAG GAGGGCTCG CTTTAAAGAC	3120
ATTGATAATT CCAAGAATTG AAGCATCACC ACCAACTCCA GCTCCACTTA CCGCACTATT	3180
ATAAGCGGCA ATATAACCAA TAAAAACGGT GATTAAATA TTACGAACGA AGGTAGTGAT	3240
ACTGAAATGC AAATTGGCGG CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTCTTCT	3300
GACAAAATCA ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG GGAGAATTCC	3360
GATTCAAGACG CGACAAACAA TGCCAATCTA ACCATTAAAA CCAAAGAATT GAAATTAACG	3420
CAAGACCTAA ATATTCAGG TTTCAATAAA GCAGAGATTA CAGCTAAAGA TGGTAGTGAT	3480

TTAACTATTG GTAACACCAA TAGTGCTGAT GGTACTAATG CCAAAAAAGT AACCTTTAAC	3540
CAGGGTAAAG ATTCAAAAAT CTCTGCTGAC GGTACACAAGG TGACACTACA CAGCAAAGTG	3600
GAAACATCCG GTAGTAATAA CAACACTGAA GATAGCAGTG ACAATAATGC CGGCTTAAC	3660
ATCGATGCAA AAAATGTAAC AGTAAACAAAC AATATTACTT CTCACAAAGC AGTGAGCATC	3720
TCTGCGACAA GTGGAGAAAT TACCACTAAA ACAGGTACAA CCATTAACGC AACCACTGGT	3780
AACGTGGAGA TAACCGCTCA AACAGGTAGT ATCCTAGGTG GAATTGAGTC CAGCTCTGGC	3840
TCTGTAACAC TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTC GGGCAACACC	3900
GTTACTGTTA CTGCAAATAG CGGTGCTTA ACCACTTTGG CAGGCTCTAC AATTAAAGGA	3960
ACCGAGAGTG TAACCACCTTC AAGTCAATCA GGCGATATCG GCGGTACGAT TTCTGGTGGC	4020
ACAGTAGAGG TTAAAGCAAC CGAAAGTTA ACCACTCAAT CCAATTCAA AATTAAAGCA	4080
ACAACAGGCG AGGCTAACGT AACAAAGTGCA ACAGGTACAA TTGGTGGTAC GATTTCCGGT	4140
AATACGGTAA ATGTTACGGC AAACGCTGGC GATTTAACAG TTGGGAATGG CGCAGAAATT	4200
AATGCGACAG AAGGAGCTGC AACCTTAACACT ACATCATCGG GCAAATTAAC TACCGAAGCT	4260
AGTTCACACA TTACTTCAGC CAAGGGTCAG GTAAATCTT CAGCTCAGGA TGGTAGCGTT	4320
GCAGGAAGTA TTAATGCCGC CAATGTGACA CTAAATACTA CAGGCACCTT AACTACCGTG	4380
AAGGGTTCAA ACATTAATGC AACCAAGCGGT ACCTTGGTTA TTAACGAAA AGACGCTGAG	4440
CTAAATGGCG CAGCATTGGG TAACCACACA GTGGTAAATG CAACCAACGC AAATGGCTCC	4500
GGCAGCGTAA TCGCGACAAC CTCAAGCAGA GTGAACATCA CTGGGGATT AATCACAATA	4560
AATGGATTAA ATATCATTTC AAAAACCGT ATAAACACCG TACTGTTAAA AGCGTTAAA	4620
ATTGATGTGA AATACATTCA ACCGGGTATA GCAAGCGTAG ATGAAGTAAT TGAAGCGAAA	4680
CGCATCCTTG AGAAGGTAAA AGATTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT	4740
GGCGTAAGTG CTGTACGTTT TATTGAGCCA AATAATACAA TTACAGTCGA TACACAAAAT	4800
GAATTTGCAA CCAGACCATT AAGTCGAATA GTGATTTCTG AAGGCAGGGC GTGTTCTCA	4860
AACAGTGATG GCGCGACGGT GTGCGTTAAT ATCGCTGATA ACGGGCGGT ACGGTCAAGTA	4920
ATTGACAAGG TAGATTTCAT CCTGCAATGA AGTCATTTA TTTTCGTATT ATTTACTGTG	4980
TGGGTTAAAG TTCAGTACGG GCTTTACCA TCTTGTAAA AATTACGGAG AATACAATAA	5040
AGTATTTTA ACAGGTTATT ATTATGAAAA ATATAAAAAG CAGATTAAAA CTCAGTGCAA	5100
TATCAGTATT GCTTGGCCTG GCTTCTTCAT CATTGTATGC AGAAGAAGCG TTTTTAGTAA	5160
AAGGCTTTCA GTTATCTGGT GCACCTGAAA CTTTAAGTGA AGACGCCAA CTGTCTGTAG	5220
CAAATCTT ATCTAAATAC CAAGGCTCGC AAACCTTAAC AAACCTAAAA ACAGCACAGC	5280
TTGAATTACA GGCTGTGCTA GATAAGATTG AGCCAAATAA GTTTGATGTG ATATTGCCAC	5340
AACAAACCAT TACGGATGGC AATATTATGT TTGAGCTAGT CTCGAAATCA GCCGCAGAAA	5400
GCCAAGTTT TTATAAGGCG AGCCAGGGTT ATAGTGAAGA AAATATCGCT CGTAGCCTGC	5460
CATCTTGAA ACAAGGAAAA GTGTATGAAG ATGGTCGTCA GTGGTTCGAT TTGCGTGAAT	5520

SUBSTITUTE SHEET (RULE 26)

TCAATATGGC AAAAGAAAAT CCACTTAAAG TCACTCGCGT GCATTACGAG TTAAACCCCTA	5580
AAAACAAAAC CTCTGATTTG GTAGTTGCAG GTTTTTCGCC TTTTGGCAAAC CGCGTAGCT	5640
TTGTTTCCTA TGATAATTC GGCGCAAGGG AGTTTAACCA TCAACGTGTA AGTCTAGGTT	5700
TTGTAAATGC CAATTTGACC GGACATGATG ATGTATTAAA TCTAAACGCA TTGACCAATG	5760
TAAAAGCACC ATCAAAATCT TATGCGGTAG GCATAGGATA TACTTATCCG TTTTATGATA	5820
AACACCAATC CTTAAGTCTT TATACCAGCA TGAGTTATGC TGATTCTAAT GATATCGACG	5880
GCTTACCAAG TGCGATTAAT CGTAAATTAT CAAAAGGTCA ATCTATCTCT GCGAATCTGA	5940
AATGGAGTTA TTATCTCCCC ACATTTAACCTTGGAATGGA AGACCAGTTT AAAATTAATT	6000
TAGGCTACAA CTACCGCCAT ATTAATCAAA CATCCGAGTT AAACACCCCTG GGTGCAACGA	6060
AGAAAAAATT TGCAGTATCA GGCGTAAGTG CAGGCATTGA TGGACATATC CAATTTACCC	6120
CTAAAACAAT CTITAATATT GATTAACTC ATCATTATTA CGCGAGTAAA TTACCAGGCT	6180
CTTTTGGAAAT GGAGCGCATT GGCGAAACAT TTAATCGCAG CTATCACATT AGCACAGCCA	6240
GTTTAGGGTT GAGTCAAGAG TTTGCTCAAG GTGGCATT TAGCAGTCAA TTATCGGGTC	6300
AGTTTACTCT ACAAGATATA AGTAGCATAG ATTTATTCTC TGTAACAGGT ACTTATGGCG	6360
TCAGAGGCTT TAAATACGGC GGTGCAAGTG GTGAGCGCGG TCTTGTATGG CGTAATGAAT	6420
TAAGTATGCC AAAATACACC CGCTTCAAA TCAGCCCTTA TGCGTTTAT GATGCAGGTC	6480
AGTTCCGTTA TAATAGCGAA AATGCTAAA CTTACGGCGA AGATATGCAC ACGGTATCCT	6540
CTGCGGGTTT AGGCATTAAA ACCTCTCCTA CACAAAACCTT AAGCTTAGAT GCTTTGTTG	6600
CTCGTCGCTT TGCAAATGCC AATAGTGACA ATTTGAATGG CAACAAAAAA CGCACAAGCT	6660
CACCTACAAAC CTTCTGGGT AGATTAACAT TCAGTTCTA ACCCTGAAAT TTAATCAACT	6720
GGTAAGCGTT CCCGCTACCA GTTTATAACT ATATGCTTTA CCCGCCAATT TACAGTCTAT	6780
ACGCAACCCCT GTTTCATCC TTATATATCA AACAAACTAA GCAAACCAAG CAAACCAAGC	6840
AAACCAAGCA AACCAAGCAA ACCAAGCAA CCAAGCAAC CAAGCAAACC AAGCAAACCA	6900
AGCAAACCAA GCAAACCAAG CAAACCAAGC AACCAAGCA ATGCTAAAAA ACAATTATA	6960
TGATAAACTA AACACATACTC CATAACATGG CAATACAAGG GATTAAATAA TATGACAAAA	7020
GAAAATTAC AAAGTGTCC ACAAAATACG ACCGCTTCAC TTGTAGAATC AAACAACGAC	7080
CAAACTTCCC TGCAAATACT TAAACAAACCA CCCAAACCCA ACCTATTACG CCTGGAACAA	7140
CATGTCGCCA AAAAAGATTA TGAGCTTGCT TGCGCGAAT TAATGGCGAT TTTGGAAAAA	7200
ATGGACGCTA ATTTGGAGG CGTTCACGAT ATTGAATTG ACGCACCTGC TCAGCTGGCA	7260
TATCTACCCG AAAAACTACT AATTCACTTT GCCACTCGTC TCGCTAATGC AATTACAACA	7320
CTCTTTCCG ACCCGAATT GGCAATTCC GAAGAAGGGG CATTAAAGAT GATTAGCCTG	7380
CAACGCTGGT TGACGCTGAT TTTTGCCTCT TCCCCCTACG TTAACGCAGA CCATATTCTC	7440
AATAAAATATA ATATCAACCC AGATTCCGAA GGTGGCTTTC ATTTAGCAAC AGACAACCTCT	7500
TCTATTGCTA AATTCTGTAT TTTTACTTA CCCGAATCCA ATGCTAATAT GAGTTTAGAT	7560

GCCTTATGGG CAGGGAATCA ACAACTTTGT GCTTCATTGT GTTTGCGTT GCAGTCCTCA	7620
CGTTTATTG GTACTGCATC TGCGTTCAT AAAAGAGCGG TGGTTTACA GTGGTTCCCT	7680
AAAAAACTCG CCGAAATTGC TAATTTAGAT GAATTGCCTG CAAATATCCT TCATGATGTA	7740
TATATGCACT GCAGTTATGA TTTAGAAAA AACAAAGCACG ATGTTAAGCG TCCATTAAAC	7800
GAACTTGTCC GCAAGCATAT CCTCACGCAA GGATGGCAAG ACCGCTACCT TTACACCTTA	7860
GGTAAAAAAGG ACGGCAAACC TGTGATGATG GTACTGCTTG AACATTTAA TTCGGGACAT	7920
TCGATTTATC GCACGCATTC AACTTCAATG ATTGCTGCTC GAGAAAAATT CTATTTAGTC	7980
GGCTTAGGCC ATGAGGGCGT TGATAACATA GGTCGAGAAG TGTTGACGA GTTCTTGAA	8040
ATCAGTAGCA ATAATATAAT GGAGAGACTG TTTTTTATCC GTAAACAGTG CGAAACTTTC	8100
CAACCCGCAG TGTCTATAT GCCAAGCATT GGCATGGATA TTACCCACGAT TTTTGTGAGC	8160
AACACTCGGC TTGCCCTAT TCAAGCTGTA GCCTTGGGTC ATCCTGCCAC TACGCATTCT	8220
GAATTTATTG ATTATGTCA CGTAGAAGAT GATTATGTGG GCAGTGAAGA TTGTTTTAGC	8280
GAAACCCTTT TACGCTTACC CAAAGATGCC CTACCTTATG TACCATCTGC ACTCGCCCCA	8340
AAAAAAGTGG ATTATGTACT CAGGGAAAAC CCTGAAGTAG TCAATATCGG TATTGCCGCT	8400
ACCACAATGA AATTAAACCC TGAATTGGT CTAACATTGC AAGAAATCAG AGATAAAGCT	8460
AAAGTCAAAA TACATTTCA TTTCGCACTT GGACAATCAA CAGGCTTGAC ACACCCTTAT	8520
GTCAAATGGT TTATCGAAAG CTATTTAGGT GACGATGCCA CTGCACATCC CCACGCACCT	8580
TATCACGATT ATCTGGCAAT ATTGCGTGT TGCGATATGC TACTAAATCC GTTTCCTTTC	8640
GGTAATACTA ACGGCATAAT TGATATGGTT ACATTAGTT TAGTTGGTGT ATGAAAACG	8700
GGGGATGAAG TACATGAACA TATTGATGAA GGTCTGTTA AACGCTTAGG ACTACCAGAA	8760
TGGCTGATAG CCGACACACG AGAAACATAT ATTGAATGTG CTTTGCCTCT AGCAGAAAAC	8820
CATCAAGAAC GCCTTGAACT CCGTCGTTAC ATCATAGAAA ACAACGGCTT ACAAAAGCTT	8880
TTTACAGGCG ACCCTCGTCC ATTGGGAAA ATACTGCTTA AGAAAACAAA TGAATGGAAG	8940
CGGAAGCACT TGAGTAAAAA ATAACGGTTT TTTAAAGTAA AAGTGCCTT AATTTTCAAA	9000
CGGTTTAAA AACCTCTCAA AAATCAACCG CACTTTATC TTTATAACGC TCCCGCGCGC	9060
TGACAGTTA TCTCTTCTT AAAATACCCA TAAAATTGTG GCAATAGTTG GGTAATCAAA	9120
TTCAATTGTT GATA CGGCAA ACTAAAGACG GCGCGTCTT CGGCAGTCAT C	9171

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 9323 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CGCCACTTCA	ATTGGGATT	GTTGAAATC	AACTAACCAA	AAAGTGCAGGT	TAAAATCTGT	60
GGAGAAAATA	GGTTGTAGTG	AAGAACGAGG	TAATTGTTCA	AAAGGATAAA	GCTCTCTTAA	120
TTGGGCATTG	GTTGGCGTTT	CTTTTCGGT	TAATAGTAA	TTATATTCTG	GACGACTATG	180
CAATCCACCA	ACAACCTTAC	CGTTGGTTT	AAGCGTTAAT	GTAAGTTCTT	GCTCTCTTGA	240
GCGAATACGT	AATCCCATT	TTTGTGTTAGC	AAGAAAATGA	TCGGGATAAT	CATAATAGGT	300
GTTGCCAAA	AATAAATTTT	GATGTTCTAA	AATCATAAAT	TTTGCAGAT	ATTGTGGCAA	360
TTCAATACCT	ATTGGTGGCG	AAATGCCAA	TTTTAATTCA	ATTCTTGT	GCATAATATT	420
TCCCACCTCAA	ATCAACTGGT	AAAATATACA	AGATAATAAA	AATAAATCAA	GATTTTGTG	480
ATGACAAACA	ACAATTACAA	CACCTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAAT	540
AGTATAAATC	CGCCATATAA	AATGGTATAA	TCTTCATCT	TTCATCTTTC	ATCTTCATC	600
TTTCATCTT	CATCTTCAT	CTTTCATCTT	TCATCTTCA	TCTTCATCT	TTCATCTTTC	660
ATCTTCATC	TTTCATCTT	CACATGAAAT	GATGAACCGA	GGGAAGGGAG	GGAGGGCAA	720
GAATGAAGAG	GGAGCTGAAC	GAACGCAAAT	GATAAAAGTAA	TTTAATTGTT	CAACTAACCT	780
TAGGAGAAA	TATGAACAAG	ATATATCGTC	TCAAATTCA	CAAACGCCTG	AATGCTTTGG	840
TTGCTGTGTC	TGAATTGGCA	CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	AGCGAAAAAC	900
CTGCTCGCAT	GAAAGTGCAGT	CACTTAGCGT	TAAAGCCACT	TTCCGCTATG	TTACTATCTT	960
TAGGTGTAAC	ATCTATTCCA	CAATCTGTTT	TAGCAAGCGG	CAATTTAAC	TCGACCAAAA	1020
TGAAATGGTG	CAGTTTTAC	AAGAAAACAA	GTAATAAAC	CATTATCCGC	AACAGTGTG	1080
ACGCTATCAT	TAATTGGAAA	CAATTTAAC	TCGACCAAAA	TGAAATGGTG	CAGTTTTAC	1140
AAGAAAACAA	CAACTCCGCC	GTATTCAACC	GTGTTACATC	TAACCAAATC	TCCCAATTAA	1200
AAGGGATTT	AGATTCTAAC	GGACAAGTCT	TTTTAATCAA	CCCAAATGGT	ATCACAATAG	1260
GTAAAGACGC	AATTATTAAC	ACTAATGGCT	TTACGGCTTC	TACGCTAGAC	ATTTCTAACG	1320
AAAACATCAA	GGCGCGTAAT	TTCACCTTCG	AGCAAACCAA	AGATAAAAGCG	CTCGCTGAAA	1380
TTGTGAATCA	CGGTTTAATT	ACTGTCGGTA	AAGACGGCAG	TGTAAATCTT	ATTGGTGGCA	1440
AAGTAAAAAA	CGAGGGTGTG	ATTAGCGTAA	ATGGTGGCAG	CATTCTTTA	CTCGCAGGGC	1500
AAAAATCAC	CATCAGCGAT	ATAATAAAC	CAACCATTAC	TTACAGCATT	GCCGCGCCTG	1560
AAAATGAAGC	GGTCAATCTG	GGCGATATT	TTGCCAAAGG	CGGTAACATT	AATGTCCTG	1620
CTGCCACTAT	TCGAAACCAA	GGTAAACTTT	CTGCTGATT	TGTAAGCAA	GATAAAAGCG	1680
GCAATATTGT	TCTTCGCC	AAAGAGGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC	1740
AAAATCAGCA	AGCTAAAGGC	GGCAAGCTGA	TGATAAAAGTC	CGATAAAAGTC	ACATTAACAA	1800
CAGGTGCAGT	TATCGACCTT	TCAGGTAAAG	AAGGGGGAGA	AACTTACCTT	GGCGGTGACG	1860
AGCGCGGCCGA	AGGTAAAAAC	GGCATTCAAT	TAGCAAAGAA	AACCTCTTTA	AAAAAAGGCT	1920
CAACCATCAA	TGTATCAGGC	AAAGAAAAAG	GCGGACGCC	TATTGTGTGG	GGCGATATTG	1980

CGTTAATTGA CGGCAATATT AACGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT	2040
TTGTGGAGAC ATCGGGGCAT TATTTATCCA TTGACAGCAA TGCAATTGTT AAAACAAAAG	2100
AGTGGTTGCT AGACCCCTGAT GATGTAACAA TTGAAGCCGA AGACCCCTT CGCAATAATA	2160
CCGGTATAAA TGATGAATTG CCAACAGGCA CCGGTGAAGC AAGCGACCCT AAAAAAAATA	2220
GCGAACTCAA ACAAACGCTA ACCAATACAA CTATTCAAA TTATCTGAAA AACGCCTGGA	2280
CAATGAATAT AACGGCATCA AGAAAACCTA CCGTTAATAG CTCAATCAAC ATCGGAAGCA	2340
ACTCCCACCTT AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGGCAGTCAG ATTGATGGAG	2400
ATATTACTTC TAAAGGCGGA AATTTAACCA TTTATTCTGG CGGATGGGTT GATGTTCATA	2460
AAAATATTAC GCTTGATCAG GGTTTTTAA ATATTACCGC CGCTTCCGTA GCTTTGAAG	2520
GTGGAAATAA CAAAGCACGC GACGCGGCAA ATGCTAAAAT TGTCGCCAG GGCACGTAA	2580
CCATTACAGG AGAGGGAAAA GATTCAGGG CTAACAACGT ATCTTAAAC GGAACGGGTA	2640
AAGGTCTGAA TATCATTTC TCAAGTGAATA ATTTAACCCA CAATCTTAGT GGCACAAATTAA	2700
ACATATCTGG GAATATAACA ATTAACAAA CTACGAGAAA GAACACCTCG TATTGGCAAA	2760
CCAGCCATGA TTCGCACTGG AACGTCAGTG CTCTTAATCT AGAGACAGGC GCAAATTTA	2820
CCTTTATTAA ATACATTTC AGCAATAGCA AAGGCTTAAC AACACAGTAT AGAAGCTCTG	2880
CAGGGGTGAA TTTAACGGC GTAAATGGCA ACATGTCATT CAATCTCAA GAAGGAGCGA	2940
AAGTTAATT CAAATTAAAA CAAACGAGA ACATGAACAC AAGCAAACCT TTACCAATTTC	3000
GGTTTTAGC CAATATCACA GCCACTGGTG GGGGCTCTGT TTTTTTGAT ATATATGCCA	3060
ACCATTCTGG CAGAGGGCT GAGTTAAAAA TGAGTGAAT TAATATCTCT AACGGCGCTA	3120
ATTTTACCTT AAATTCCAT GTTCGGCG ATGACGCTTT TAAAATCAAC AAAGACTTAA	3180
CCATAAATGC AACCAATTCA ATTTCAGCC TCAGACAGAC GAAAGATGAT TTTTATGACG	3240
GGTACGCACG CAATGCCATC AATTCAACCT ACAACATATC CATTCTGGC GGTAAATGTCA	3300
CCCTTGGTGG ACAAAACTCA AGCAGCAGCA TTACGGGGAA TATTACTATC GAGAAAGCAG	3360
CAAATGTTAC GCTAGAAGCC AATAACGCC CTAATCAGCA AAACATAAGG GATAGAGTTA	3420
TAAAACTTGG CAGCTTGCTC GTTAATGGGA GTTTAAGTTT AACTGGCGAA AATGCAGATA	3480
TTAAAGGCAA TCTCACTATT TCAGAAAGCG CCACTTTAA AGGAAAGACT AGAGATAACCC	3540
TAAATATCAC CGGCAATTAA ACCAATAATG GCACTGCCGA AATTAATATA ACACAAGGAG	3600
TGGTAAACT TGGCAATGTT ACCAATGATG GTGATTTAAA CATTACCACT CACGCTAAC	3660
GCAACCAAAG AAGCATCATC GGCGGAGATA TAATCAACAA AAAAGGAAGC TTAAATATTA	3720
CAGACAGTAA TAATGATGCT GAAATCCAAA TTGGCGGCAA TATCTCGCAA AAAGAAGGCA	3780
ACCTCACGAT TTCTTCCGAT AAAATTAATA TCACCAAACA GATAACAATC AAAAAGGGTA	3840
TTGATGGAGA GGACTCTAGT TCAGATGCGA CAAGTAATGC CAACCTAACT ATTAAAACCA	3900
AAGAATTGAA ATTGACAGAA GACCTAAGTA TTTCAGGTTT CAATAAGCA GAGATTACAG	3960
CCAAAGATGG TAGAGATTAA ACTATTGGCA ACAGTAATGA CGGTAACAGC GGTGCCGAAG	4020

SUBSTITUTE SHEET (RULE 26)

CCAAAACAGT AACTTTAAC AATGTTAAAG ATTCAAAAAT CTCTGCTGAC GGTCACAATG	4080
TGACACTAAA TAGCAAAGTG AAAACATCTA GCAGCAATGG CGGACGTGAA AGCAATAGCG	4140
ACAACGATAAC CGGCTTAAC TATTACTGCAA AAAATGTAGA AGTAAACAAA GATATTACTT	4200
CTCTCAAAAC AGTAAATATC ACCGCGTCGG AAAAGGTTAC CACCACAGCA GGCTCGACCA	4260
TTAACGCAAC AAATGGCAAAC GCAAGTATTA CAACCAAAAC AGGTGATATC AGCGGTACGA	4320
TTTCCGGTAA CACGGTAAGT GTTAGCGCGA CTGGTGATTT AACCACTAAA TCCGGCTCAA	4380
AAATTGAAGC GAAATCGGGT GAGGCTAATG TAACAAGTGC AACAGGTACA ATTGGCGGTA	4440
CAATTTCGG TAATACGGTA AATGTTACGG CAAACGCTGG CGATTTAAC A GTGGGAATG	4500
GCGCAGAAAT TAATGCGACA GAAGGAGCTG CAACCTTAAC CGCAACAGGG AATACCTTGA	4560
CTACTGAAGC CGGTTCTAGC ATCACTTCAA CTAAGGGTCA GGTAGACCTC TTGGCTCAGA	4620
ATGGTAGCAT CGCAGGAAGC ATTAATGCTG CTAATGTGAC ATTAAATACT ACAGGCACCT	4680
TAACCACCGT GGCAGGCTCG GATATTAAAG CAACCAGCGG CACCTTGGTT ATTAACGCAA	4740
AAGATGCTAA GCTAAATGGT GATGCATCAG GTGATAGTAC AGAAGTGAAT GCAGTCAACG	4800
ACTGGGGATT TGGTAGTGTG ACTGCGGCAA CCTCAAGCAG TGTGAATATC ACTGGGGATT	4860
TAAACACAGT AAATGGGTTA AATATCATTG CGAAAGATGG TAGAAACACT GTGCGCTTAA	4920
GAGGCAAGGA AATTGAGGTG AAATATATCC AGCCAGGTGT AGCAAGTGT A GAAGAAGTAA	4980
TTGAAGCGAA ACGCGTCCTT GAAAAAGTAA AAGATTTATC TGATGAAGAA AGAGAAACAT	5040
TAGCTAAACT TGGTAGTAAAGT GCTGTACGTT TTGTTGAGCC AAATAATACA ATTACAGTCA	5100
ATACACAAAA TGAATTTACA ACCAGACCGT CAAGTCAGT GATAATTCT GAAGGTAAGG	5160
CGTGTTCCTC AAGTGGTAAT GGCGCACGAG TATGTACCAA TGTTGCTGAC GATGGACAGC	5220
CGTAGTCAGT AATTGACAAG GTAGATTCA TCCTGCAATG AAGTCATTTT ATTTTCTGAT	5280
TATTTACTGT GTGGGTTAAA GTTCAGTACG GGCTTACCC ATCTTGTAAA AAATTACGGA	5340
GAATACAATA AAGTATTTT AACAGGTTAT TATTATGAAA AATATAAAA GCAGATTAAA	5400
ACTCAGTGCA ATATCAGTAT TGCTTGGCCT GGCTTCTTCA TCATTGTATG CAGAAGAACG	5460
GT TTTAGTA AAAGGCTTTC AGTTATCTGG TGCACTTGAA ACTTTAAGTG AAGACGCCA	5520
ACTGTCTGTA GCAAAATCTT TATCTAAATA CCAAGGCTCG CAAACTTAA CAAACCTAAA	5580
AACAGCACAG CTTGAATTAC AGGCTGTGCT AGATAAGATT GAGCCAAATA AATTTGATGT	5640
GATATTGCCG CAACAAACCA TTACGGATGG CAATATCATG TTTGAGCTAG TCTCGAAATC	5700
AGCCGCAGAA AGCCAAGTTT TTTATAAGGC GAGCCAGGGT TATAGTGAAG AAAATATCGC	5760
TCGTAGCCTG CCATCTTGA ACAAGGAAA AGTGTATGAA GATGGTCGTC AGTGGTTCGA	5820
TTTGCCTGAA TTTAATATGG CAAAAGAAAA CCCGCTTAAG GTTACCCGTG TACATTACGA	5880
ACTAAACCTT AAAAACAAAA CCTCTAATTG GATAATTGCG GGCTTCTCGC CTTTTGGTAA	5940
AACCGTAGC TTTATTTCTT ATGATAATTG CGGCGCGAGA GAGTTAACT ACCAACGTGT	6000
AAGCTTGGGT TTTGTTAATG CCAATTAAAC TGGTCATGAT GATGTGTTAA TTATACCAGT	6060

SUBSTITUTE SHEET (RULE 26)

ATGAGTTATG CTGATTCTAA TGATATCGAC GGCTTACCAA GTGCGATTAA TCGTAAATTA	6120
TCAAAAGGTC AATCTATCTC TGCGAATCTG AAATGGAGTT ATTATCTCCC AACATTTAAC	6180
CTTGGCATGG AAGACCAATT TAAAATTAAT TTAGGCTACA ACTACCGCCA TATTAATCAA	6240
ACCTCCGCGT TAAATCGCTT GGGTGAAACG AAGAAAAAAAT TTGCAGTATC AGGCGTAAGT	6300
GCAGGCATTG ATGGACATAT CCAATTACC CCTAAAACAA TCTTTAATAT TGATTTAACT	6360
CATCATTATT ACGCGAGTAA ATTACCAAGC TCTTTGGAA TGGAGCGCAT TGGCGAAACA	6420
TTTAATCGCA GCTATCACAT TAGCACAGCC AGTTTAGGGT TGAGTCAAGA GTTTGCTCAA	6480
GGTTGGCATT TTAGCAGTCA ATTATCAGGT CAATTTACTC TACAAGATAT TAGCAGTATA	6540
GATTTATTCT CTGTAACAGG TACTTATGGC GTCAGAGGCT TTAAATACGG CGGTGCAAGT	6600
GGTGAGCGCG GTCTTGTATG GCGTAATGAA TTAAGTATGC CAAAATACAC CCGCTTCAA	6660
ATCAGCCCTT ATGCCTTTA TGATGCAGGT CAGTTCCGTT ATAATAGCGA AAATGCTAAA	6720
ACTTACGGCG AAGATATGCA CACGGTATCC TCTGCCGGTT TAGGCATTAA AACCTCTCCT	6780
ACACAAAAC TAAGCCTAGA TGCTTTGTT GCTCGTCGCT TTGCAAATGC CAATAGTGAC	6840
AATTTGAATG GCAACAAAAA ACGCACAAGC TCACCTACAA CCTCTGGGG GAGATTAACA	6900
TTCAGTTCT AACCTGAAA TTTAATCAAC TGGTAAGCGT TCCGCCTACC AGTTTATAAC	6960
TATATGCTTT ACCCGCCAAT TTACAGTCTA TAGGCAACCC TGTTTTACC CTTATATATC	7020
AAATAAACAA GCTAAGCTGA GCTAAGCAAA CCAAGCAAAAC TCAAGCAAGC CAAGTAATAC	7080
TAAAAAAACA ATTTATATGA TAAACTAAAG TATACTCCAT GCCATGGCGA TACAAGGGAT	7140
TTAATAATAT GACAAAAGAA AATTTGCAAACGCTCCTCA AGATGCGACC GCTTTACTTG	7200
CGGAATTAAG CAACAATCAA ACTCCCCTGC GAATATTTAA ACAACCACGC AAGCCCAGCC	7260
TATTACGCTT GGAACAAACAT ATCGCAAAAAA AAGATTATGA GTTTGCTTGT CGTGAATTAA	7320
TGGTGATTCT GGAAAAAAATG GACGCTAATT TTGGAGGGGT TCACGATATT GAATTTGACG	7380
CACCCGCTCA GCTGGCATAT CTACCCGAAA AATTACTAAT TTATTTGCC ACTCGTCTCG	7440
CTAATGCAAT TACAACACTC TTTCCGACC CCGAATTGGC AATTCTGAA GAAGGGCGT	7500
TAAAGATGAT TAGCCTGCAA CGCTGGTTGA CGCTGATTT TGCCCTTCC CCCTACGTTA	7560
ACGCAGACCA TATTCTCAAT AAATATAATA TCAACCCAGA TTCCGAAGGT GGCTTTCATT	7620
TAGCAACAGA CAACTCTTCT ATTGCTAAAT TCTGTATTTT TTACTTACCC GAATCCAATG	7680
TCAATATGAG TTTAGATGCG TTATGGCGAG GGAATCAACA ACTTTGTGCT TCATTGTGTT	7740
TTGCGTTGCA GTCTTCACGT TTTATTGGTA CCGCATCTGC GTTTCATAAA AGAGCGGTGG	7800
TTTACAGTG GTTTCTAAA AAACTCGCCG AAAATTGCTAA TTAGATGAA TTGCTGCAA	7860
ATATCCTTCA TGATGTATAT ATGCACTGCA GTTATGATTT AGCAAAAAAC AAGCACGATG	7920
TTAAGCGTCC ATTAAACGAA CTTGTCGCA AGCATATCCT CACGCAAGGA TGGCAAGACC	7980
GCTACCTTTA CACCTTAGGT AAAAAGGACG GCAAACCTGT GATGATGGTA CTGCTTGAAC	8040
ATTTTAATTC GGGACATTG ATTTATCGTA CACATTCAAC TTCAATGATT GCTGCTCGAG	8100

AAAAATTCTA TTTAGTCGGC TTAGGCCATG AGGGCGTTGA TAAAATAGGT CGAGAAGTGT	8160
TTGACGAGTT CTTTGAATC AGTAGCAATA ATATAATGGA GAGACTGTTT TTTATCCGTA	8220
AACAGTGCAG AACTTTCCAA CCCGCAGTGT TCTATATGCC AAGCATTGGC ATGGATATTA	8280
CCACGATTT TGTGAGCAAC ACTCGGCTTG CCCCTATTCA AGCTGTAGCC CTGGGTCATC	8340
CTGCCACTAC GCATTCTGAA TTTATTGATT ATGTCATCGT AGAAGATGAT TATGTGGCA	8400
GTGAAGATTG TTCAGCGAA ACCCTTTAC GCTTACCCAA AGATGCCCTA CCTTATGTAC	8460
CTTCTGCACT CGCCCCACAA AAAGTGGATT ATGTACTCAG GGAAAACCT GAAGTAGTCA	8520
ATATCGGTAT TGCCGCTACC ACAATGAAAT TAAACCTGA ATTTTGCTA ACATTGCAAG	8580
AAATCAGAGA TAAAGCTAAA GTCAAAATAC ATTTTCATTT CGCACTTGGA CAATCAACAG	8640
GCTTGACACA CCCTTATGTC AAATGGTTA TCGAAAGCTA TTTAGGTGAC GATGCCACTG	8700
CACATCCCCA CGCACCTTAT CACGATTATC TGGCAATATT GCGTGATTGC GATATGCTAC	8760
TAAATCCGTT TCCCTTCGGT AATACTAACG GCATAATTGA TATGGTTACA TTAGGTTAG	8820
TTGGTGTATG CAAAACGGGG GATGAAGTAC ATGAACATAT TGATGAAGGT CTGTTAAC	8880
GCTTAGGACT ACCAGAATGG CTGATAGCCG ACACACGAGA AACATATATT GAATGTGCTT	8940
TGCGTCTAGC AGAAAACCAT CAAGAACGCC TTGAACCTCG TCGTTACATC ATAGAAAACA	9000
ACGGCTTACA AAAGCTTTT ACAGGCAGCC CTCGTCCATT GGGCAAAATA CTGTTAAGA	9060
AAACAAATGA ATGGAAGCGG AAGCACTTGA GTAAAAAATA ACGGTTTTT AAAGTAAAAG	9120
TGCGGTTAAT TTCAAAGCG TTTAAAAAC CTCTAAAAA TCAACCGCAC TTTTATCTTT	9180
ATAACGATCC CGCACGCTGA CAGTTATCA GCCTCCGCC ATAAAACCTCC GCCTTTCATG	9240
GC GGAGAGTT TAGCCAAAAC TGGCAGAAAT TAAAGGCTAA AATCACCAAA TTGCACCACA	9300
AAATCACCAA TACCCACAAA AAA	9323

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4287 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GATCAATCTG GGCGATATTT TTGCCAAAGG TGGTAACATT AATGTCCGCG CTGCCACTAT	60
TCGCAATAAA GGTAACATT CTGCCGACTC TGTAAGCAAA GATAAAAGTG GTAACATTGT	120
TCTCTCTGCC AAAGAAGGTG AAGCGGAAAT TGGCGGTGTA ATTTCCGCTC AAAATCAGCA	180
AGCCAAAGGT GGTAAGTTGA TGATTACAGG CGATAAAAGTT ACATTGAAAA CGGGTGCACT	240
TATCGACCTT TCGGGTAAAG AAGGGGGAGA AACATTATCTT GGCGGTGACG AGCGTGGCGA	300
AGGTAAAAAC GGCATTCAAT TAGCAAAGAA AACCACTTAA GAAAAAGGCT CAACAATTAA	360

SUBSTITUTE SHEET (RULE 26)

TGTGTCAGGT AAAGAAAAAG CTGGCGCGC TATTGTATGG GGCGATATTG CGTTAATTGA	420
CGGCAATATT AATGCCAAG GTAAAGATAT CGCTAAAAT GGTGGTTTG TGGAGACGTC	480
GGGGCATTAC TTATCCATTG ATGATAACGC AATTGTTAAA ACAAAAGAAT GGCTACTAGA	540
CCCAGAGAAT GTGACTATTG AAGCTCCTTC CGCTTCTCGC GTCGAGCTGG GTGCCGATAG	600
GAATTCCCAC TCGGCAGAGG TGATAAAAGT GACCCTAAAA AAAAATAACA CCTCCTTGAC	660
AACACTAACCA AATACAACCA TTTCAAATCT TCTGAAAAGT GCCCACGTGG TGAACATAAC	720
GGCAAGGAGA AAACCTACCG TTAATAGCTC TATCAGTATA GAAAGAGGCT CCCACTTAAT	780
TCTCCACAGT GAAGGTCAGG GCGGTCAAGG TGTTCAGATT GATAAAGATA TTACTTCTGA	840
AGGCAGGAAAT TTAACCATT ATTCTGGCGG ATGGGTTGAT GTTCATAAAA ATATTACGCT	900
TGGTAGCGGC TTTTAAACA TCACAACTAA AGAAGGAGAT ATCGCCTTCG AAGACAAGTC	960
TGGACGGAAC AACCTAACCA TTACAGCCCA AGGGACCATC ACCTCAGGTA ATAGTAACGG	1020
CTTTAGATTT AACAACGTCT CTCTAACAG CTTGGCGGA AAGCTGAGCT TTACTGACAG	1080
CAGAGAGGAC AGAGGTAGAA GAACTAAGGG TAATATCTCA AACAAATTG ACGGAACGTT	1140
AAACATTCC GGAACGTAG ATATCTCAAT GAAAGCACCC AAAGTCAGCT GGTTTACAG	1200
AGACAAAGGA CGCACCTACT GGAACGTAAC CACTTTAAAT GTTACCTCGG GTAGTAAATT	1260
TAACCTCTCC ATTGACAGCA CAGGAAGTGG CTCAACAGGT CCAAGCATAAC GCAATGCAGA	1320
ATTAAATGGC ATAACATTAA ATAAAGCCAC TTTTAATATC GCACAAGGCT CAACAGCTAA	1380
CTTTAGCATC AAGGCATCAA TAATGCCCTT TAAGAGTAAC GCTAACTACG CATTATTAA	1440
TGAAGATATT TCAGTCTCAG GGGGGGGTAG CGTTAATTTC AAACCTTAACG CCTCATCTAG	1500
CAACATACAA ACCCCTGGCG TAATTATAAA ATCTCAAAAC TTTAATGTCT CAGGAGGGTC	1560
AACTTTAAAT CTCAAGGCTG AAGGTTCAAC AGAAACCGCT TTTCAATAG AAAATGATTT	1620
AAACTAAAC GCCACCGGTG GCAATATAAC AATCAGACAA GTCGAGGGTA CCGATTACG	1680
CGTCAACAAA GGTGTCGCAG CCAAAAAAAA CATAACTTT AAAGGGGTA ATATCACCTT	1740
CGGCTCTCAA AAAGCCACAA CAGAAATCAA AGGCAATGTT ACCATCAATA AAAACACTAA	1800
CGCTACTCTT CGTGGTGCAG ATTTGCCGA AAACAAATCG CCTTTAAATA TAGCAGGAAA	1860
TGTTATTAAT AATGGCAACC TTACCACTGC CGGCTCCATT ATCAATATAG CGGGAAATCT	1920
TACTGTTCA AAAGGCGCTA ACCTTCAAGC TATAACAAT TACACTTTA ATGTAGCCGG	1980
CTCATTGAC AACAAATGGCG CTTCAAACAT TTCCATTGCC AGAGGAGGGG CTAAATTAA	2040
AGATATCAAT AACACCAAGTA GCTTAAATAT TACCACCAAC TCTGATACCA CTTACCGCAC	2100
CATTATAAAA GGCAATATAT CCAACAAATC AGGTGATTG AATATTATTG ATAAAAAAAAG	2160
CGACGCTGAA ATCCAAATTG GCGGCAATAT CTCACAAAAA GAAGGCAATC TCACAATTTC	2220
TTCTGATAAA GTAAATATTA CCAATCAGAT AACAAATCAA GCAGGCGTTG AAGGGGGGCG	2280
TTCTGATTCA AGTGAGGCAG AAAATGCTAA CCTAACTATT CAAACCAAAG AGTTAAAATT	2340
GGCAGGAGAC CTAAATATT CAGGCTTTAA TAAAGCAGAA ATTACAGCTA AAAATGGCAG	2400

SUBSTITUTE SHEET (RULE 26)

TGATTTAACT ATTGGCAATG CTAGCGGTGG TAATGCTGAT GCTAAAAAAG TGACTTTGA	2460
CAAGGTTAAA GATTCAAAAA TCTCGACTGA CGGTCACAAT GTAAACACTAA ATAGCGAAGT	2520
GAAAACGTCT AATGGTAGTA GCAATGCTGG TAATGATAAC AGCACCCGGTT TAACCATTTC	2580
CGCAAAAGAT GTAACGGTAA ACAATAACGT TACCTCCCAC AAGACAATAA ATATCTCTGC	2640
CGCAGCAGGA AATGTAACAA CCAAAGAAGG CACAACATC AATGCAACCA CAGGCAGCGT	2700
GGAAGTAACT GCTCAAAATG GTACAATTAA AGGCAACATT ACCTCGCAA ATGTAACAGT	2760
GACAGCAACA GAAAATCTTG TTACACAGA GAATGCTGTC ATTAATGCAA CCAGCGGCAC	2820
AGTAAACATT AGTACAAAAA CAGGGGATAT TAAAGGTGGA ATTGAATCAA CTTCCGGTAA	2880
TGTAAATATT ACAGCGAGCG GCAATAACT TAAGGTAAGT AATATCACTG GTCAAGATGT	2940
AACAGTAACA GCGGATGCAG GAGCCTTGAC AACTACAGCA GGCTCAACCA TTAGTGCAC	3000
AACAGGCAAT GCAAATATTA CAACCAAAAC AGGTGATATC AACGGTAAAG TTGAATCCAG	3060
CTCCGGCTCT GTAACACTTG TTGCAACTGG AGCAACTCTT GCTGTAGGTA ATATTCAGG	3120
TAACACTGTT ACTATTACTG CGGATAGCGG TAAATTAACC TCCACAGTAG GTTCTACAAT	3180
TAATGGGACT AATAGTGTAA CCACCTCAAG CCAATCAGGC GATATTGAAG GTACAATTTC	3240
TGGTAATACA GTAAATGTTA CAGCAAGCAC TGGTGATTAA ACTATTGGAA ATAGTGC	3300
AGTTGAAGCG AAAATGGAG CTGCAACCTT AACTGCTGAA TCAGGCAAAT TAACCACCCA	3360
AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAAC CTTACAGCCA AGGATAGCAG	3420
TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGC CTTTAAC	3480
TACAGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC	3540
CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA ACGCAAGTGG	3600
CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG ATTTAAACAC	3660
AATAATGGG TTAAATATCA TTTCGAAAAA TGGTAGAAAC ACTGTGCGCT TAAGAGGCAA	3720
GGAAATTGAT GTGAAATATA TCCAACCAGG TGTAGCAAGC GTAGAAGAGG TAATTGAAGC	3780
GAAACCGTC CTTGAGAAGG TAAAAGATTT ATCTGATGAA GAAAGAGAAA CACTAGCCAA	3840
ACTTGGTGTA AGTGTGTAC GTTTCGTTGA GCCAAATAAT GCCATTACGG TTAATACACA	3900
AAACGAGTTT ACAACCAAAAC CATCAAGTCA AGTGACAATT TCTGAAGGTA AGGCCTGTTT	3960
CTCAAGTGGT AATGGCGCAC GAGTATGTAC CAATGTTGCT GACGATGGAC AGCAGTAGTC	4020
AGTAATTGAC AAGGTAGATT TCATCCTGCA ATGAAGTCAT TTTATTTTCG TATTATTTAC	4080
TGTGTGGTT AAAGTTCACT ACGGGCTTTA CCCACCTTGT AAAAAATTAC GAAAAATACA	4140
ATAAAGTATT TTTAACAGGT TATTATTATG AAAAAACATAA AAAGCAGATT AAAACTCAGT	4200
GCAATATCAA TATTGCTTGG CTTGGCTTCT TCATCGACGT ATGCAGAAGA AGCGTTTTA	4260
GTAAAAGGCT TTCAGTTATC TGGCGCG	4287

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4702 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGAATGAGC	GTCGTACACG	GTACAGCAAC	CATGCAAGTA	GACGGCAATA	AAACCACATAT	60
CCGTAATAGC	ATCAATGCTA	TCATCAATTG	GAAACAATT	AACATTGACC	AAAATGAAAT	120
GGAGCAGTTT	TTACAAGAAA	GCAGCAACTC	TGCCGTTTTC	AACCGTGT	CATCTGACCA	180
AATCTCCCAA	TTAAAAGGGA	TTTAGATT	TAACGGACAA	GTCTTTTAA	TCAACCCAAA	240
TGGTATCACA	ATAGGTAAAG	ACGCAATTAT	TAACACTAAT	GGCTTTACTG	CTTCTACGCT	300
AGACATTCT	AACGAAAACA	TCAAGGCGCG	TAATTCACC	CTTGAGCAAA	CCAAGGATAAA	360
AGCACTCGCT	GAAATCGTGA	ATCACGGTTT	AATTACCGTT	GGTAAAGACG	GTAGCGTAAA	420
CCTTATTGGT	GGCAAAGTGA	AAAACGAGGG	CGTGATTAGC	GTAAATGGCG	GTAGTATTTC	480
TTTACTTGCA	GGGCAAAAAAA	TCACCATCAG	CGATATAATA	AATCCAACCA	TCACCTACAG	540
CATTGCTGCA	CCTGAAAACG	AAGCGATCAA	TCTGGCGAT	ATTTTGCCA	AAGGTGGTAA	600
CATTAATGTC	CGCGCTGCCA	CTATTCGCAA	TAAAGGTAAA	CTTTCTGCCG	ACTCTGTAAG	660
CAAAGATAAA	AGTGGTAACA	TTGTTCTCTC	TGCCAAAGAA	GGTGAAGCGG	AAATTGGCGG	720
TGTAATTTC	GCTCAAAATC	AGCAAGCCAA	AGGTGGTAAG	TTGATGATTA	CAGGTGATAAA	780
AGTCACATTA	AAAACAGGTG	CAGTTATCGA	CCTTCAGGT	AAAGAAGGGG	GAGAGACTTA	840
TCTTGGCGGT	GATGAGCGTG	GCGAAGGTAA	AAATGGTATT	CAATTAGCGA	AGAAAACCTC	900
TTTAGAAAAAA	GGCTCGACAA	TTAATGTATC	AGGCAAAGAA	AAAGGCGGGC	GCGCTATTGT	960
ATGGGGCGAT	ATTGCATTAA	TTAATGGTAA	CATTAATGCT	CAAGGTAGCG	ATATTGCTAA	1020
AACTGGCGGC	TTTGTGGAAA	CATCAGGACA	TGACTTATCC	ATTGGTGATG	ATGTGATTGT	1080
TGACGCTAAA	GAGTGGTTAT	TAGACCCAGA	TGATGTGTCC	ATTGAAACTC	TTACATCTGG	1140
ACGCAATAAT	ACCGCGAAA	ACCAAGGATA	TACAACAGGA	GATGGGACTA	AAGAGTCACC	1200
TAAAGGTAAAT	AGTATTCTA	AACCTACATT	AACAAACTCA	ACTCTTGAGC	AAATCCTAAG	1260
AAGAGGTTCT	TATGTTAATA	TCACTGCTAA	TAATAGAATT	TATGTTAATA	GCTCCATCAA	1320
CTTATCTAAT	GGCAGTTAA	CACTTCACAC	TAAACGAGAT	GGAGTTAAAA	TTAACGGTGA	1380
TATTACCTCA	AACGAAAATG	GTAATTAAAC	CATTAAGCA	GGCTCTGGGG	TTGATGTTCA	1440
TAAAAACATC	ACGCTTGGTA	CGGGTTTTT	CAATATTGTC	GCTGGGATT	CTGTAGCTTT	1500
TGAGAGAGAG	GGCGATAAAAG	CACGTAACGC	AACAGATGCT	CAAATTACCG	CACAAGGGAC	1560
GATAACCGTC	AATAAAGATG	ATAAACAAATT	TAGATTCAAT	AATGTATCTA	TTAACGGGAC	1620

SUBSTITUTE SHEET (RULE 26)

GGGCAAGGGT TAAAGTTA TTGCAAATCA AAATAATTTC ACTCATAAAT TTGATGGCGA	1680
AATTAACATA TCTGGAATAG TAACAATTAA CCAAACCACG AAAAAAGATG TTAAATACTG	1740
GAATGCATCA AAAGACTCTT ACTGGAATGT TTCTTCTCTT ACTTTGAATA CGGTGCAAAA	1800
ATTTACCTTT ATAAAATTCG TTGATAGCGG CTCAAATTCC CAAGATTGGA GGTCACTCACG	1860
TAGAAGTTTT GCAGGCGTAC ATTTAACCGG CATCGGAGGC AAAACAAACT TCAACATCGG	1920
AGCTAACGCA AAAGCCTTAT TTAAATTAAA ACCAAACGCC GCTACAGACC CAAAAAAAAGA	1980
ATTACCTATT ACTTTAACCG CCAACATTAC AGCTACCGGT AACAGTGATA GCTCTGTGAT	2040
GTTTGACATA CACGCCAATC TTACCTCTAG AGCTGCCGGC ATAAACATGG ATTCAATTAA	2100
CATTACCGGC GGGCTTGACT TTTCCATAAC ATCCCATAAT CGCAATAGTA ATGCTTTGA	2160
AATCAAAAAA GACTTAACTA TAAATGCAAC TGGCTCGAAT TTTAGTCTTA AGCAAACGAA	2220
AGATTCTTTT TATAATGAAT ACAGCAAACA CGCCATTAAC TCAAGTCATA ATCTAACCAT	2280
TCTTGGCGGC AATGTCACTC TAGGTGGGAA AAATTCAAGC AGTAGCATT CGGGCAATAT	2340
CAATATCACC AATAAAGCAA ATGTTACATT ACAAGCTGAC ACCAGCAACA GCAACACAGG	2400
CTTGAAGAAA AGAACTCTAA CTCTTGGCAA TATATCTGTT GAGGGGAATT TAAGCCTAAC	2460
TGGTGCAAAT GCAAACATTG TCGGCAATCT TTCTATTGCA GAAGATTCCA CATTAAAGG	2520
AGAAGCCAGT GACAACCTAA ACATCACCGG CACCTTTACC AACAAACGGTA CCGCCAACAT	2580
TAATATAAAA CAAGGAGTGG TAAAACCTCA AGGCGATATT ATCAATAAAG GTGGTTAAA	2640
TATCACTACT AACGCCTCAG GCACTAAAA AACCATTATT AACGGAAATA TAACTAACGA	2700
AAAAGGCGAC TAAACATCA AGAATATTAA AGCCGACGCC GAAATCCAAA TTGGCGCAA	2760
TATCTCACAA AAAGAAGGCA ATCTCACAAT TTCTTCTGAT AAAGTAAATA TTACCAATCA	2820
GATAACAATC AAAGCAGGCG TTGAAGGGGG GCGTTCTGAT TCAAGTGAGG CAGAAAATGC	2880
TAACCTAACT ATTCAAACCA AAGAGTTAAA ATTGGCAGGA GACCTAAATA TTTCAGGCTT	2940
TAATAAAGCA GAAATTACAG CTAAAATGG CAGTGATTAA ACTATTGGCA ATGCTAGCGG	3000
TGGTAATGCT GATGCTAAA AAGTGACTTT TGACAAGGTT AAAGATTCAA AAATCTCGAC	3060
TGACGGTCAC AATGTAACAC TAAATAGCGA AGTGAAAACG TCTAATGGTA GTAGCAATGC	3120
TGGTAATGAT AACAGCACCG GTTAAACCAT TTCCGAAAAA GATGTAACGG TAAACAATAA	3180
CGTTACCTCC CACAAGACAA TAAATATCTC TGCCGCAGCA GGAAATGTAA CAACCAAAGA	3240
AGGCACAAC ATCAATGCAA CCACAGGCAG CGTGGAAAGTA ACTGCTAAA ATGGTACAAT	3300
TAAAGGCAAC ATTACCTCGC AAAATGTAAC AGTGACAGCA ACAGAAAATC TTGTTACAC	3360
AGAGAATGCT GTCATTAATG CAACCGAGCGG CACAGTAAC ATTAGTACAA AAACAGGGGA	3420
TATTAAGGT GGAATTGAAT CAACTTCCGG TAATGTAAT ATTACAGCGA GCGGCAATAC	3480
ACTTAAGGTA AGTAATATCA CTGGTCAAGA TGTAACAGTA ACAGCGGATG CAGGAGCCTT	3540
GACAACCTACA GCAGGCTCAA CCATTAGTGC GACAACAGGC AATGCAAATA TTACAACCAA	3600
AACAGGTGAT ATCAACGGTA AAGTTGAATC CAGCTCCGGC TCTGTAACAC TTGTTGCAAC	3660

SUBSTITUTE SHEET (RULE 26)

TGGAGCAACT CTTGCTGTAG GTAATATTC AGGTAACACT GTTACTATT A CTGCGGATAG	3720
C CGTAAATTA ACCTCCACAG TAGGTTCTAC AATTAATGGG ACTAATAGTG TAACCACCTC	3780
AAGCCAATCA GGCGATATTG AAGGTACAAT TTCTGGTAAT ACAGTAAATG TTACAGCAAG	3840
CACTGGTGAT TTAACTATTG GAAATAGTGC AAAAGTTGAA GCGAAAAATG GAGCTGCAAC	3900
CTTAACTGCT GAATCAGGCA AATTAACCAC CCAAACAGGC TCTAGCATTA CCTCAAGCAA	3960
TGGTCAGACA ACTCTTACAG CCAAGGATAG CAGTATCGCA GGAAACATTA ATGCTGCTAA	4020
TGTGACGTTA AATACCACAG GCACTTTAAC TACTACAGGG GATTCAAAGA TTAACGCAAC	4080
CAGTGGTACC TTAACAATCA ATGCAAAAGA TGCCAAATTA GATGGTGCTG CATCAGGTGA	4140
CCGCACAGTA GTAAAATGCAA CTAACGCAAG TGGCTCTGGT AACGTGACTG CGAAAACCTC	4200
AAGCAGCGTG AATATCACCG GGGATTAAA CACAATAAT GGGTTAAATA TCATTTCGGA	4260
AAATGGTAGA AACACTGTGC GCTTAAGAGG CAAGGAAATT GATGTGAAAT ATATCCAACC	4320
AGGTGTAGCA AGCGTAGAAG AGGTAAATTGA AGCGAAACGC GTCCCTGAGA AGGTAAAAGA	4380
TTTATCTGAT GAAGAAAGAG AAACACTAGC CAAACTTGGT GTAAGTGCTG TACGTTTCGT	4440
TGAGCCAAAT AATGCCATTA CGGTTAACAC ACAAAACGAG TTTACAACCA AACCATCAAG	4500
TCAAGTGACA ATTTCTGAAG GTAAGCGTG TTTCTCAAGT GGTAATGGCG CACGAGTATG	4560
TACCAATGTT GCTGACGATG GACAGCAGTA GTCAGTAATT GACAAGGTAG ATTTCATCCT	4620
GCAATGAAGT CATTATTTTC TCGTATTATT TACTGTGTGG GTTAAAGTTC AGTACGGGCT	4680
TTACCCACCT TGTAAAAAAT TA	4702

CLAIMS

What we claim is:

1. A vaccine against disease caused by non-typeable Haemophilus influenzae, including otitis media, sinusitis and bronchitis, comprising an effective amount of a high molecular weight protein of non-typeable Haemophilus influenzae which is protein HMW1, HMW2, HMW3 or HMW4 or a variant or fragment of said protein retaining immunological properties thereof or a synthetic peptide having an amino acid sequence corresponding to that of said protein, and a physiological carrier therefor.
2. The vaccine of claim 1 wherein said protein is HMW1 encoded by the DNA sequence shown in Figure 1 (SEQ ID NO:1), having the derived amino acid sequence of Figure 2 (SEQ ID NO:2) and having an apparent molecular weight of 125 kDa.
3. The vaccine of claim 1 wherein said protein is HMW2 encoding by the DNA sequence shown in Figure 3 (SEQ ID NO:3), having the derived amino acid sequence of Figure 4 (SEQ ID NO:4) and having an apparent molecular weight of 120 kDa.

SUBSTITUTE SHEET (RULE 26)

FIG. 1A. DNA SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN

I (HMW1)

1 ACAGCGTTCT CTTAAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA
 51 ACAATTACAA CACCTTTTT GCAGTCTATA TGCAAATATT TTAAAAATA
 101 GTATAAATCC GCCATATAAA ATGGTATAAT CTTTCATCTT TCATCTTTCA
 151 TCTTTCATCT TTTCATCTTTC ATCTTTCATC TTTCATCTT CATCTTCAT
 201 CTTTCATCTT TCATCTTCA TCTTTCATCT TTTCATCTTTC ACATGCCCTG
 251 ATGACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACG
 301 AACGCAAATG ATAAAGTAAT TTAATGTTC AACTAACCTT AGGAGAAAAT
 351 ATGAAACAAGC TATATCGTCT CAAATCAGC AAACGCCCTGA ATGCTTTGGT
 401 TGCTGTGTCT GAATTGGCAC GGGGTGTGA CCATTCCACA GAAAAGGCA
 451 GCGAAAAACC TGCTCGCATG AAAGTGGCTC ACTTAGCGTT AAAGCCACTT
 501 TCCGGCTATGT TACTATCTT AGGTGTAACA TCTATTCCAC AATCTGTTT
 551 AGCAAGGGC TTACAAGGAA TGGATGTAGT ACACGGGCACA GCCACTATGC
 601 AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGTA CGATATCATT
 651 AATTGGAAC AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA
 701 AGAAAACAC AACTCCGGCG TATTCAACCG TGTACATCT ACCAAATCT

1 / 68

FIG. 1B.

751 CCCAATTAAA AGGGATTTTA GATTCTAACCG GACAAGTCTT TTTAATTCAAC
 801 CCAAATGGTA TCACAATAAGG TAAAGACGCA ATTATTAAACA CTAATGGCTT
 851 TACGGCTTCT ACGGCTAGACA TTTCTAACGA AAACATCAAG GCGCGTAATT
 901 TCACCTTCCA GCAAACCAAA GATAAAGCGC TCGCTGAAAT TGTGAATCAC
 951 GGTTTAATTAA CTGTCGGTAA AGACGGCAGT GTAAATCTTA TTGGTGGCAA
 1001 AGTGAAAAC GAGGGTGTGA TTAGCGTAAA TGGTGGCAGC ATTTCTTTAC
 1051 TCGCAGGCC AAAAATCACC ATCAGCGATA TAATAAACCC ACCATTACT
^{2 / 6}
 1101 TACAGCATTG CCGCGCCTGA AAATGAAGCG GTCAATCTGG GCGATATT
 1151 TGCCAAAGGC GGTAACATTA ATGTCCTGTGC TGCCACTATT CGAACCAAG
 1201 GTAAACTTC TGCTGATTCT GTAAGCAAAG ATAAAAGCGG CAATATTGTT
 1251 CTTTCCGCCA AAGAGGGTGA AGCGGAAATT GGCGGTGTAA TTTCCGCTCA
 1301 AAATCAGCAA GCTAAAGGCG GCAAGCTGAT GATTACAGGC GATAAAGTCA
 1351 CATTAAAAC AGGTGCAGTT ATCGACCTTT CAGGTAAGA AGGGGGAGAA
 1401 ACTTACCTTG GCGGTGACGA GGGCGCGAA CGTAAAAGG GCATTCAATT
 1451 AGCAAAGAAA ACCTCTTAG AAAAGGCTC AACCATCAAT GTATCAGGCA
 1501 AAGAAAAAGG CGGACGGCCT ATTGTGTGGG GCGATATTGC GTTAATTGAC

FIG. 1C.

3 / 68

1551	GGCAATATA	ACGCTCAAGG	TAGTGGTGAT	ATCGCTAAAAA	CCGGTGGTTT
1601	TGTGGAGACG	TCGGGCATG	ATTATTCTAT	CAAAGACAAT	GCAATTGTGTTG
1651	ACGCCAAAGA	GTGGTTGTTA	GACCCGGATA	ATGTATCTAT	TAATGCAGAA
1701	ACAGCAGGAC	GCAGCAATAAC	TTCAGAAGAC	GATGAATAACA	CGGGATCCGG
1751	GAATAGTGCC	AGCACCCAA	AACGAAACAA	AGAAAAGACA	ACATTAACAA
1801	ACACAACTCT	TGAGAGTATA	CTAAAAAAAG	GTACCCTTTGT	TAACATCACT
1851	GCTAATCAAC	GCATCTATGT	CAATAGCTCC	ATTAATTAT	CCAATGGCAG
1901	CCTTAACTCTT	TGGAGTGAGG	GTCGGAGCGG	TGGCGGGCTT	GAGATAAACAA
1951	ACGATATTAC	CACCGGTGAT	GATACCAGAG	GTGCCAAACTT	ACAATTAC
2001	TCAGGGGCT	GGGTGATGT	TCATAAAAAT	ATCTCACTTCG	GGGGCAAGG
2051	TAACATAAAC	ATTACAGCTA	AACAAGATAT	CGCCTTTGAG	AAAGGAAGCA
2101	ACCAAGTCAT	TACAGGTCAA	GGGACTATTA	CCTCAGGCCA	TCAAAAAGGT
2151	TTTAGATTAA	ATAATGTC	TCTAAACGGC	ACTGGCAGCG	GACTGCAATT
2201	CACCACTAAA	AGAACCAAATA	AATAAGCTAT	CACAAATAAA	TTTGAGGGA
2251	CTTTAAATAT	TTCAAGGGAAA	GTGAACATCT	CAATGGTTT	ACCTAAAAAT
2301	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	ACTTACTGGA	ATTAAACCTC

FIG. 1D.

2351 CTTAAATGTT TCCGAGAGTG GCGAGTTAA CCTCACTATT GACTCCAGAG
 2401 GAAGCGATAG TGCAGGCACA CTTACCCAGC CTTATAATT AACGGTATA
 2451 TCATTCAACA AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA
 2501 CTTTGACATC AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTTGAAATT
 2551 ACGCATCATTAATGGAAAC ATTTCAGTT CGGGAGGGG GAGTGTGAT
 2601 TTCAACACTTC TCGCCTCATC CTCTAACGTC CAAACCCCC GTGTAGTTAT
 2651 AAATTCATAA TACTTTAATG TTTCACACAGG GTCAAGTTA AGATTAAAA 4 / 60
 2701 CTTCAGGCTC AACAAAACACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA
 2751 AATGCCACCG GAGGCAACAT AACACTTTTG CAAGTTGAAG GCACCCGATGG
 2801 AATGATTGGT AAAGGCATTG TAGCCAAAAA AACACATAACC TTTGAAGGAG
 2851 GTAACATCAC CTTTGGCTCC AGGAAAGCCG TAACAGAAAT CGAAGGCAAT
 2901 GTTACTATCA ATAACAAACGC TAACGTCACT CTTATCGGTT CGGATTGTGA
 2951 CAACCATCAA AACCTTTAA CTATTAAGA AGATGTCATC ATTAATAGCG
 3001 GCAACCTTAC CGCTGGAGGC AATATGTCATC ATATAGCCGG AAATCTTACC
 3051 GTTGAAGTA ACCGCTAATT CAAAGCTATC ACAAAATTCA CTTTTAATGT
 3101 AGGGGGCTTG TTGACAAACA AAGGCAATTCA AAATATTCC ATTGCCAAAG
 3151 GAGGGGCTCG CTTTAAAGAC ATTGATAATT CCAAGAATT CCTCACTCACC

FIG. 1E.

3201 ACCAAACTCCA GCTCCACTTA CCGCACTATT ATAAGCGGCA ATATAACCAA
 3251 TAAAACGGT GATTTAAATA TTACCGAACGA AGGTAGTGAT ACTGAAATGC
 3301 AAATTGGCGG CGATGTCCTCG CAAAAGAAG GTAAATCTCAC GATTCTTCT
 3351 GACAAAATCA ATATTACCAA ACAGATAACCA ATCAAGGCAG GTGTTGATGG
 3401 GGAGAATTCC GATTCAGACG CGACAAACAA TGCCAATCTA ACCATTTAAA
 3451 CCAAAGAATT GAAATTAAACG CAAGACCTAA ATATTTCAGG TTTCAATAAA
 3501 GCAGAGATTA CAGCTAAAGA TGTTAGTGAT TAACTATTG GTAACACCAA 5/
 3551 TAGTGCTGAT GGTACTAATG CCAAAAAAGT AACCTTTAAC CAGGTTAAAG 6/
 3601 ATTCAAAAT CTCTGCTGAC GGTCAACAAGG TGACACTACA CAGCAAAGTG
 3651 GAAACATCCG GTAGTAATAA CAACACTGAA GATAGCAGTG ACAATAATGC
 3701 CGGCCTTAACT ATCGATGCCA AAAATGTAAC AGTAAACAAAC AATATTACTT
 3751 CTCACAAAGC AGTGAGCATC TCTGCGACAA GTGGAGAAAT TACCACTAAA
 3801 ACAGGTACAA CCATTAAACGC AACCACTGGT AACGTGGAGA TAACCGCTCA
 3851 AACAGGTAGT ATCCTAGGTG GAATTGAGTC CAGCTCTGGC TCTGTAACAC
 3901 TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTTC GGGCAACACC
 3951 GTTACTGTTA CTGCAAATAG CGGTGCATTA ACCACTTTGG CAGGGCTCTAC

FIG. 1F.

4001 AATTAAAGGA ACCGAGAGTG TAACCCTTC AAGTCATCA GGGGATATCG
 4051 GCGGTACGAT TTCTGGTGGC ACAGTAGAGG TAAAGCAAC CGAAAGTTA
 4101 ACCACTCAAT CCAATTCAA AATTAAAGCA ACAACAGGG AGGCTAACGT
 4151 AACAAAGTGCA ACAGGTACAA TTGGTGGTAC GATTTCGGT AATACGGTAA
 4201 ATGTTACGGC AAACGCTGGC GATTAAACAG TTGGGAAATGG CGCAGAAATT
 4251 AATGCCACAG AAGGAGCTGC AACCTTAAC TACATCATCGG GCAAAATTAAAC
 4301 TACCGAAGCT AGTTCACACA TTACTTCAGC CAAGGGCTCAG GTAAATCTTT
 4351 CAGCTCAGGA TGGTAGCGTT GCAGGAAGTA TTAATGCCGC CAATGTGACA
 4401 CTTAAATACTA CAGGCCACTT AACTACCGTG AAGGGTTCAA ACATTAATGCC
 4451 AACCAAGCGGT ACCTTGGTTA TTAAACGAAA AGACGGCTGAG CTAATGGCC
 4501 CAGCATTGGG TAACCACACA GTGGTAAATG CAAACCAACGC AAATGGCTCC
 4551 GGCAGCGTAA TCGCGACAACT CTCAGCAGA GTGAAACATCA CTGGGGATT
 4601 AATCACAAATA AATGGATTAA ATATCATTTC AAAAACGGT ATAAACACCG
 4651 TACTGTTAAA AGGCGTTAAA ATTGATGTGA ATACATTCA ACCGGGTATA
 4701 GCAAGCGTAG ATGAAAGTAAT TGAAAGCGAAA CGCATCCTTG AGAAGGTAAA
 4751 AGATTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT GGAGTAAGTGC
 4801 CTGTACGTTT TATTGAGCCA AATAATAACAA TTACAGTCGA TACACAAAT

6/60

7/68

FIG. 1G.

4851	GAATTTCGCAA	CCAGACCATT	AAGTCGAATA	GTGATTTCCTG	AAGGCAGGGC
4901	GTGTTTCTCA	AACAGTGTATG	GCCCGACGGT	GTGCCGTTAAT	ATCGCTGATA
4951	ACGGGCGGTA	GCGGTCACTA	ATTGACAAAGG	TAGATTTCAT	CCTGCAATGA
5001	AGTCATTCTTA	TTTTCGTATT	ATTACTGTG	TGGGTTAAAG	TTCAAGTACGG
5051	GCTTTACCCA	TCTTGTAATA	ATTACGGAG	AATAACAATAA	AGTATTTTTA
5101	ACAGGTATT	ATTATG			

FIG. 2A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN I

1	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
51	SAMLLSLGVVT	SIPQSVLNASG	LQGMDV VHGT	ATMQVDGNKT	IIRNSVDAII
101	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVUTS	NQISQLKGIL	DSNGQVFILIN
151	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTFEQTK	DKALAEIVNH
201	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT
251	YSIAAPNEA	VNLGDFIAKG	GNINVRRAATTI	RNQGKLSADS	VSKDKSGNIV
301	LSAKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE
351	TYLGDDERGE	GKNGIQLAKK	TSLEKGSTIN	VSGKEKGRA	IWGDIALID
401	GNINAQGSGD	IAKTGGFVET	SGHDLIFIKDN	AIVDAKEWLL	DFDNVSINAE
451	TAGRSNTSED	DEYTGSNSA	STPKRNKEKT	TLTNTTLESI	LKKGTFVNIT
501	ANQRRIYVNSS	INLSNGSLTL	WSEGRSGGGV	EINNDITTG	DTRGANLTIY
551	SGGWVVDVHKN	ISLGQAQGNIN	ITAKQDIAFE	KGSNQVITGQ	GTITSQGNQKG
601	FRFNNVSLNG	TGSGLQFTTK	RTNKYAITNK	FEGTLNISGK	VNIISMVLPKN
651	ESGYDKFKGR	TYWNLTSLNV	SESGEFNLTI	DSRGSDSAQT	LTQPYNLNGI
701	SFNKDTTFNV	ERNARVNFDI	KAPIGINKYS	SLNYASFNGN	ISVSGGGSV

8 / 68

FIG. 2B.

751 FTLLASSSSNV QTPGVVINSK YFNVSTGSSL RFKTSGSTKT GFSIEKDLTL
 801 NATGGNITLL QVEGTDGMIG KGIVAKKKNIT FEGGNITFGS RKAVTEIEGN
 851 VTINNNANVT LIGSDFDNHQ KPLTIKKDVTI INSGNLTAGG NIVNIAGNLIT
 901 VESNANFKAI TNFTENVGGL FDNKGNNSNIS IAKGGARFKD LDNSKNLSTIT
 951 TNSSSTYRTI ISGNNITNKG DLNITNEGSD TEMQIGGDVS QKEGNLTISS
 1001 DKINITKQIT IKAGVDGENS DSDATNNANL TIKTKELKLTT QDLNISGFNK
 1051 AEITAKDGSD LTIGNTNASD GTNAKKVTFN QVKDSKISAD GHKVTLHSKV
 1101 ETSGSNNNTE DSSDNNAGLT IDAKNVTVMN NITSHKAVSI SATSGEITTK
 1151 TGTTINATTG NVEITAQTGS ILGGIESSSG SVTLLTATEGA LAVSNISGNT
 1201 VTVTANSGAL TTLAGSTIKG TESVTTSSQS GDIGGTTSGG TVEVKATESL
 1251 TTQSNSKIIKA TTGEANVTSA TGTIGGTISG NTVNVVTANAG DLTVGNGAEI
 1301 NATEGAATLT TSSGKLITTEA SSHITSAKGQ VNLSAQDGSV AGSINAANVT
 1351 LNTTGTLLTV KGSNNINATSG TLVINAKDAE LNGAALGNHT VVNATNANGS
 1401 GSVIATTSSR VNITGDLITI NGLNIISKNG INTVLLKGVK DVKYIQPGI
 1451 ASVDEVIEAK RILEKVKDLS DEEREALAKL GVSAVRFIEP MNTITVDTQN
 1501 EFATRPLSRI VISEGRACFS NSDGATVCVN IADNGR

9 / 68

FIG. 3A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT

PROTEIN II (HMW2)

1 TAAATACA AGATAATAA AATAAATCAA GATTTTGTG ATGACAAACA
 51 ACAATTACAA CACCTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAT
 101 AGTATAAATC CGCCATATAA AATGGTATAA TCTTTCATCT TTCACTTTA
 151 ATCTTTCATC TTTCATCTTT CATCTTTCAT CTTTCATCTT TCATCTTCA
 201 TCTTTCATCT TTTCATCTTTC ATCTTTCATC TTTCATCTTT CACATGAAT
 251 GATGAACCGA GGGAAAGGGAG GGAGGGCAA GAATGAAGAG GGAGCTGAAC 10 /
 301 GAACGCAAAT GATAAAAGTAA TTTAATTGTT CAACTAACCT TAGGAGAAA 68
 351 TATGAAACAAAG ATATATCGTC TCAAATTTCAG CAAACGCCCTG AATGCTTTGG
 401 TTGCTGTGTC TGAATTGGCA CGGGGTTGTG ACCATTCCAC AGAAAAAGGC
 451 TTCCGCTATG TTACTATCTT TAGGTGTAAC CACTTAGCGT TAAAGCCACT
 501 TTCCGCTATG TTACTATCTT TAGGTGTAAC ATCTTATCCA CAATCTGTT
 551 TAGGAAAGCGG CTTACAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG
 601 CAAGTAGATG GTAATAAAC CATTATCCGC AACAGTGTG ACGCTATCAT
 651 TAATTGGAAA CAATTAAACA TCGACCAAAA TGAAATGTG CAGTTTTAC
 701 AAGAAAACAA CAACTCCGCC GTATTCAACC GTGTTACATC TAACCAAATC

FIG. 3B.

751 TCCCCAATTAA AAGGGATT TT AGATTCTAAC GGACAAGTCT TTTTAATCAA
 801 CCCAAATGGT ATCACAAATAG GTAAAGACGC AATTATTAAC ACTAATGGCT
 851 TTACGGCTTC TAGGCTAGAC ATTCTAACCG AAAACATCAA GGCGCGTAAT
 901 TTCACCTTCG AGCAAACCAA AGATAAAGCC CTCGCTGAAA TTGTGAATCA
 951 CGGTAAATT ACTGTGGTA AAGACGGCAG TGTAATCTT ATTGGTGGCA
 1001 AAGTGAAAAA CGAGGGTGTG ATTAGCGTAA ATGGTGGCAG CATTCTTTA
 1051 CTCGCAGGGC AAAAAATCAC CATCAGCGAT ATAATAAACCA ACCATTAC
 1101 TTACAGCATT GCCGGCCTG AAAATGAAGC GGTCAATCTG GGCGATATT 11 / 68
 1151 TTGCCAAAGG CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA
 1201 GGTAAACTTT CTGCTGATT TC GTAAAGCAA GATAAAAGCG GCAATATTGT
 1251 TCTTCCGCC AAAGAGGTG AAGCGGAAT TGGCGGTGTA ATTTCCGCTC
 1301 AAAATCAGCA AGCTAAAGGC GGCAGGCTGA TGATTACAGG CGATAAAGTC
 1351 ACATTAAGAA CAGGTGCAGT TATCGACCTT TCAGGTAAAG AGGGGGAGA
 1401 AACTTACCTT GGCAGGTGACG AGCGGGCGA AGGTAAAAAC GGCATTCAT
 1451 TAGCAAAGAA AACCTCTTTA GAAAAGGCT CAACCATCAA TGTATCAGGC
 1501 AAAGAAAAG GCGGACGGCGC TATTGTGTGG GGCAGTATTG CGTTAATGGA

FIG. 3C.

1551 CGGCAATATT AACGGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT
 1601 TTGTGGAGAC ATCGGGCAT TATTATCCA TTGACAGCAA TGCAATTGTT
 1651 AAAACAAAG AGTGGTGCT AGACCCCTGAT GATGTAACAA TTGAAGCCGA
 1701 AGACCCCCCTT CGCAATAATA CCGGTATAAA TGATGAATTTC CCAACAGGCA
 1751 CCGGTGAAGC AAGGGACCCCT AAAAAAATA GCGAACTCAA AACAACGCTA
 1801 ACCAATACAA CTATTCAAAATTATCTGAAA AACGGCTGGAA CAATGAATAT
 1851 AACGGCATCA AGAAAACCTA CCGTTAATAG CTCAATCAAC ATCGGAAGCA 12 / 68
 1901 ACTCCCACTT AATTCCTCCAT AGTAAAGGTC AGCGTGGCGG AGGCGTTCA
 1951 ATTGATGGAG ATATTACTTC TAAAGGCCGA ATTAAACCA TTATTTCTGG
 2001 CGGATGGTT GATGTTCATTA AAAATATTAC GCTTGATCAG GGTTTTTTAA
 2051 ATATTACCGC CGCTTCCGTA GCTTTTGAAAG GTGGAATAA CAAAGCACGC
 2101 GACGGGCAA ATGCTAAAT TGTGCCCAG GGCACITGTAAC CCATTACAGG
 2151 AGAGGGAAAA GATTCAAGGG CTAACAACCGT ATCTTTAAC CAAACGGGTAA
 2201 AAGGGTCTGAA TATCATTTCAT TCAGTGAATA ATTAAACCA CAATCTTAGT
 2251 GGCACAAATTCA ACATATCTGG GAATATAACCA ATTAAACCAAA CTACCGAGAAA
 2301 GAACACCTCTG TATTGGCAA CCAGCCATGAA TTCGGCACTGG AACGTCAGTG
 2351 CTCTTAATCT AGAGACAGGC GCAAATTATA CCTTTTATTAA ATACATTCA

FIG. 3D.

2401 AGCAATAGCA AAGGCTTAAC AACACAGTAT AGAACGCTCTG CAGGGGTGAA
 2451 TTTAACGGC GTAAATGGCA ACATGTCATT CAATCTCAA GAAGGAGCGA
 2501 AAGTTAATT CAATTAAAA CCAAAACGAGA ACATGAACAC AAGCAAACCT
 2551 TTACCAATTGCA GGTTTTTAGC CAATATCACA GCCACTGGTG GGGCTCTGT
 2601 TTTTTTGAT ATATATGCCA ACCATTCTGG CAGAGGGCT GAGTTAAAAA
 2651 TGAGTGAAT TAATATCTCT AACGGGGCTA ATTTCACCTT AAATTCCCAT
 2701 GTTGGCGGGCG ATGACGGCTTT TAAAATCAAC AAAGACTTAA CCATAAATGC
 2751 AACCAATTCA AATTTCAGCC TCAGACAGAC GAAAGATGAT TTTTATGACG 13 / 68
 2801 GGTACGCCACG CAAATGCCATC ATTCAACCT ACAACATATC CATTCTGGGC
 2851 GGTAAATGTCA CCCTTGGTGG ACAAACATCA AGCAGCAGCA TTACGGGAA
 2901 TATTACTATC GAGAAAGCAG CAAATGTTAC GCTAGAAGCC ATAACGCC
 2951 CTAATCAGCA AACATAAGG GATAGAGTTA TAAAACCTTGG CAGCTTGCTC
 3001 GTTAATGGCA GTTTAAGTTT AACTGGCGAA AATGCAGATA TTAAAGGCAA
 3051 TCTCACTATT TCAGAAAGCG CCACTTTAA AGGAAAGACT AGAGATAACCC
 3101 TAAATATCAC CGGCAATT TTACCAATAATG GCACGTGCCGA ATTAAATATA
 3151 ACACAAGGAG TGGTAAACT TGGCAATGTT ACCAATGATG GTGATTAAA

FIG. 3E.

3201 CATTACCACT CACGGCTAAC GCAACCCAAG AAGCCATCATC GGGGGAGATA
 3251 TAATCAACAA AAAAGGAAGC TTAATATTAA CAGACAGTAA TAATGATGCT
 3301 GAAATCCAAA TTGGCGGCAA TATCTCGCAA AAAGAAGGCA ACCTCACGAT
 3351 TTCTTCCGAT AAAATTAATA TCACCAAACA GATAACAAATC AAAAGGGTA
 3401 TTGATGGACA GGAECTCTAGT TCAGATGGCA CAAGTAATGC CAACCTTAACT
 3451 ATTAAAACCA AAGAATTGAA ATTGACAGAA GACCTAAGTA GACCTAAGTA TTTCAAGGTT
 3501 CAATAAGCA GAGATTACAG CCAAAAGATGG TAGAGATTAA ACTATTTGGCA
 3551 ACAGTAATGA CGGTAAACAGC GGTGCCGAAG CCAAAACAGT AACTTTAAC¹⁴
 3601 AATGTTAAAG ATTCAAAAAT CTCTGCTGAC GGTCACAAATG TGACACTAAA
 3651 TAGCAAAGTG AAAACATCTA GCAGGCAATGG CGGACGTTGAA AGCAATAGCG
 3701 ACAACGATAC CGGCTTAACT ATTACTGCCTA AAAATGTAGA AGTAAACAAA
 3751 GATATTACTT CTCTCAAAAC AGTAAATATC ACCGGGTCGG AAAAGGTTAC
 3801 CACCAACAGCA GGCTCGACCA TTAACGCAAC AAATGGAAA GCAAGTTATA
 3851 CAACCAAAC AGGTGATATC AGCGGTACGA TTTCCGGTAA CACGGTAAGT
 3901 GTTAGCGGCA CTGGTGATT AACCACTAAA TCCGGCTCAA AAATTGAAGC
 3951 GAAATCGGGT GAGGCTAATG TAACAAAGTGC AACAGGTACA ATTGGCGGTA

FIG. 3E.

4 001	CAATTCCGG	TAATACGGTA	AATGTACGG	CAAACGCTGG	CGATTAAACA
4 051	GTTGGGAATG	GCCAGAAAT	TAATGCCGACA	GAAGGGAGCTG	CAACCTTAAC
4 101	CGCAACAGGG	AATAACCTTGA	CTACTGAAGC	CGGTTCTAGC	ATCACTTCAA
4 151	CTAAGGGTCA	GGTAGACCTC	TGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC
4 201	ATTAATGCTG	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	TAACCACCGT
4 251	GGCAGGGCTCG	GATATTAAG	CAACCAGGG	CACCTTGCTT	ATTAACGCAA
4 301	AAGATGCTAA	GCTAAATGGT	GATGCCATCAG	GTGATAGTAC	AGAAAGTGAAT
4 351	GCAGTCAACG	CAAGGGCTC	TGGTAGTGTG	ACTGGGGCAA	CCTCAAGCAG
4 401	TGTGAATAATC	ACTGGGGATT	TAAACACAGT	AAATGGTTA	AATATCATT
4 451	CGAAAAGATGG	TAGAAACACT	GTGGCGCTAA	GAGGCAAGGA	AATTCAGGTG
4 501	AAATATATCC	AGCCAGGTGT	AGCAAGTGT	GAAGAAGTAA	TTGAAAGCGAA
4 551	ACGGCGTCCTT	GAAAAGTAA	AAGATTATC	TGATGAAGAA	AGAGAAACAT
4 601	TAGCTAAACT	TGGGTGTAAGT	GCTGTTACGTT	TTGTTGAGCC	AAATAATACA
4 651	ATTACAGTCA	ATACACAAAA	TGAATTACA	ACCAGACCGT	CAAGTCAAGT
4 701	GATAATTFTCT	GAAGGTAAGG	CGTGTTCCTC	AAGTGTAAAT	GGCCGCACGAG
4 751	TATGTACCAA	TGTGCTGAC	GATGGACAGC	CGTAGTCAGT	AATTGACAAG
4 801	GTAGATTTCATCA	TCCTGCAATG	AAGTCATT	ATTTTCGTT	TATTTACTGT

16/68

FIG. 3G.

4851	GTGGGTTAAA	GTTCAAGTACCG	GGCTTTACCC	ATCTTGTA	AAATTACGGAA
4901	GAATAACAATA	AAGTATT	TACAGGT	TAT	TATTATG

FIG. 4A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT**PROTEIN 2**

1 MNKIIYRLKFS KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLLALKPL
 51 SAMLLSLGVVT S1PQSVLASF LQGMDVVHGT ATMQVDGNKT IIRNSVDAII
 101 NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNGQVFELIN
 151 PNGITIGKDA IINTNGFTAS TLDISNENIK ARNFTFEQTK DKALAEIVNH
 201 GLITVGKDGS VNLLGGKVKN EGVISVNGGS ISLLAGQKIT ISDIINPTIT
 251 YSIAAPNEA VNLLGDIFAKG GNINVRAATTI RNQGKLSADS VSKDKSGNIV
 301 LSAKEGEAEI GGVISAQNQQ AKGGKRLMITG DKVTLKTGAV IDLSGKEGGE
 351 TYLGGDERGE GKNGIQIQLAKK TSLEKGSTIN VSGKEKGGRA IVWGDIALID
 401 GNINAQGSGD IAKTGGFVET SGHDLFIKDN AIVDAKEWLL DFDDNVSINAЕ
 451 DPLRNNTGIN DEFPTGTGEA SDPKKKNSELK TTLTNNTTISN YLKNAWTMNI
 501 TASRKLTVNS SINIGSMSHL ILHSKGQRGG GVQIQDGDTIS KGGNLTIYSG
 551 GWVDVDHKNIT LDQGFLNITA ASVAFEGGNN KARDAANAKI VAQGTVTITG
 601 EGKDFRANNV SLNGTGKGLN IISSVNNLTH NLSGTINISG NITINQQTTRK
 651 NTSYWQTSHD SHWNVSALNL ETGANFTFIK YISSLNSKGLT TQYRSSAGVN
 701 FNGVNGNMSF NLKEGAKVNF KLKPNNEMNT SKPLPIRFLA NITATGGSV

17 / 68

FIG. 4B.

751 FFDIYANHSG RGAELKMSEI NISNGANFTL NSHVFRGDDAF KINKDLTINA
 801 TNSNFSLRQT KDDFYDGYAR NAINSTYNIS ILGGNNVTLGG QNSSSSITGN
 851 ITIEKAANVT LEANNAPNQQ NIRDRVIKLG SLLVNGSLSL TGENADIKGN
 901 LTISESATFK GKTRDTLNIT GNFTNNNGTAE INITQGVVKL GNVTNDCDLN
 951 ITTHAKRNQR SIIGGDIINK KGSLNNTDSN NDAEIQIGGN ISOKEGNLTI
 1001 SSDKINITKQ ITIKKGIDGE DSSSDATSN A NLTIKTKELK LTEDLSISGF
 1051 NKAETITAKDG RDLTIGNSND GNSGAEAKTV TFNNVKDSKI SADGHNVTLN 18 /
 1101 SKVKTSSSNG GRESNSDNDT GLTITAKNVE VNKDITSLKT VNITASEKVT 60
 1151 TTAGSTINAT NGKASITTTKT GDISGTISGN TVSVSATVDL TTKSGSKIEA
 1201 KSGEANVTSA TGTIGGTISG NTVNVTANAG DLTVGNGAEI NATEGAATLT
 1251 ATGNTLTTEA GSSITSTKQQ VDLLAQNGSI AGSINAANVT LNTTGTLITV
 1301 AGSDIKATSG TLVINAKDAK LNGDASGDST EVNAVNASGS GSVTAATSSS
 1351 VNITGDLMTV NGLNIISKDG RNTVRLRGKE IEVKYIQPGV ASVEEVIEAK
 1401 RVLEKVKDLS DEERETLAKL GVSAVRFVEP NNNTITVNTQN EFTTRPSSQV
 1451 IISSEGKACFS SGNGARVCTN VADDGQP

19/68

FIG. 5 A.

20/68

FIG. 5B.

(A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter ϕ 10, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (37).

FIG. 6A.

1 ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA
 51 ACAATTACAA CACCTTTT GCAGTCTATA TGCAAATATT TAAAAAATA
 101 GTATAAATCC GCCATATAAA ATGGTATAAT CTTTCATCTT TCATCTTTCA
 151 TCTTCATCT TTCACTCTTC ATCTTCATC TTTCATCTT CATCTTTCAT
 201 CTTTCATCT TCATCTTCA TCTTCATCTT TTCATCTTC ACATGAAATG
 251 ATGAAACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGGCTGAACG
 301 AACGCAAATG ATAAGTAAT TTAATGTTC AACTAACCTT AGGAGAAAT /
 351 ATGAAACAAGA TATATCGTCT CAAATTCAGC AACGCCTGA ATGCTTTGGT
 401 TGCTGTGTCT GAATTGGCAC GGGGTTGTGA CCATTCCACAA GAAAAGGCA
 451 GCGAAAAACC TGCTCGCATG AAAGTGGCTC ACTTAGCGTT AAAGCCACTT
 501 TCCGCTATGT TACTATCTT AGGTGTAACA TCTATTCCAC AATCTGTTT
 551 AGCAAGGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCACTATGC
 601 AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGTA CGCTATCATT
 651 AATTGAAAC AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA
 701 AGAAAACAAAC AACTCCGGCG TATTCAACCG TGTACATCT ACCAAATCT
 751 CCCAATTAAA AGGGATTAA GATTCTAACCG GACAAGTCTT TTTAATCAAC

FIG. 6B.

801 CCAAATGGTA TCACAAATTAGG TAAAGACCGCA ATTATTAAACA CTAATGGCTT
 851 TACGGCTTCT ACGGCTAGACA TTTCTAACGA AAACATCAAG GCGCGTAATT
 901 TCACCTTCGA GCAAACCAA GATAAGCGC TCGCTGAAAT TGTGAATCAC
 951 GGTTAATT CTGTCGGTAA AGACGGCAGT GTAAATCTTA TTGGTGGCAA
 1001 AGTGAACAC GAGGGTGTGA TAGGCGTAA TGGTGGCAGC ATTTCTTTAC
 1051 TCGCAGGGCA AAAAATCACCC ATCAGCGATA TAATAAACCC ACCATTACT
 1101 TACAGCATTG CCGGCCCTGA AAATGAAGCG GTCAATCTGG CGCATTTT
 1151 TGCCAAGGC GGTAAACATTA ATGTC CGTGC TGCCACTATT CGAAACCAAG
 1251 CTTTCCGCCA AAGAGGGTGA AGCGGAATT GGCGGTGTAA TTTCCGCTCA
 1301 AAATCAGCAA GCTAAAGGCC GCAAGCTGAT GATTACAGGC GATAAAGTCA
 1351 CATTAAAC AGGTGCAGTT ATCGACCTTT CAGGTAAAGA AGGGGGAGAA
 1401 ACTTACCTTG GCGGTGACGA GCGCGGGCAA GGTAAAACG GCATTCAATT
 1451 AGCAAAGAAA ACCTCTTAG AAAAGGCTC AACCATCAAT GTATCAGGCA
 1501 AAGAAAAGG CGGACGGCT ATTGTGTGGG GCGATATTGC GTTAATTGAC
 1551 GGCAATATTAA ACGGCTCAAGG TAGTGGTGTAAATCGCTAAAA CCGGTGGTT
 1601 TGTGGAGACG TCGGGCATG ATTATTATTCAAT CAAAGACAAT GCAATTGTTG

22 / 68

FIG. 6C.

1651 ACGCCAAAGA GTGGTTGTTA GACCCGGATA ATGTATCTAT TAATGCCAGAA
 1701 ACAGCAGGAC GCAGCAATAC TTTCAGAAC GATGAATACA CGGGATCCGG
 1751 GAATAGTGCC AGCACCCCCAA AACGAAACAA AGAAAAGACA ACATTAACAA
 1801 ACACAACTCT TGAGAGTATA CTAaaaaaaAG GTACCTTTGT TAACATCACT
 1851 GCTAATCAAC GCATCTATGT CAATAGCTCC ATTAAATTAT CCAATGGCAG
 1901 CTTAACTCTT TGGAGTGAGG GTCCGGAGGG TGGGGGGTT GAGATTAACA
 1951 ACGATATTAC CACCGGTGAT GATACCAGAG GTGCAAACCT AACAAATTAC 33 / 68
 2001 TCAGGGGCT GGGTTGATGT TCATAAAAAT ATCTCACTCG GGGGCCAAGG
 2051 TAACATAAAC ATTACAGCTA ACAAGATAT CGCCTTTGAG AAAGGAAGCA
 2101 ACCAAGTCAT TACAGGTCAA GGGACTATTAA CCTCAGGCAA TCAAAGGT
 2151 TTTAGATTAA ATAATGTCCTC TCTAAACGGC ACTGGCAGGC GACTGCAATT
 2201 CACCACTAAA AGAACCAATA AATACGCTAT CACAAATAAA TTTGAAGGGA
 2251 CTTTAATAAT TTCAGGGAAA GTGAACATCT CAATGGTTT ACCTAAAAAT
 2301 GAAAGTGGAT ATGATAAAATT CAAAGGACGGC ACTTTACTGGAA ATTAAACCTC
 2351 GAAAGTGGAT ATGATAAAATT CAAAGGACGGC CCTCACTATT GACTCCAGAG
 2401 GAAGGGATAG TGCAGGCACA CTTACCCAGC CTTATAATT AAACGGTATA
 2451 TCATTCAACA AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAC

FIG. 6D.

2501 CTTTGACATC AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTTGAATT
 2551 ACGCATCATTAATGGAAC ATTTCAAGTT CGGGAGGGG GAGTAGTTGAT
 2601 TTCAACACTTC TCGCCTCATC CTCTAACGTC CAAACCCCCG GTGTAGTTAT
 2651 AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA AGATTAAAA
 2701 CTTCAAGGCTC AACAAAACACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA
 2751 AATGCCACCG GAGGCAACAT AACACTTTTG CAAGTTGAAG GCACCCGATGG
 2801 AATGATTGGT AAAAGGCATTG TAGCCAAAAA AAACATAACC TTTGAAGGAG 24/68
 2851 GTAAGATGAG GTTTGGCTCC AGGAAAGCCG TAACAGAAAT CGAAGGCAAT
 2901 GTTACTATCA ATAACAACGC TAACGTCACT CTTATGGTT CGGATTGTGA
 2951 CAACCATCAA AACCTTTAA CTATTTAAA AGATGTCATC ATTAATAGCG
 3001 GCAACCTTAC CGCTGGAGGC AATATGTCA ATATAGCCGG AAATCTTACC
 3051 GTTGAAGTA ACCCTAATT CAAAGCTATC ACAAAATTCA CTTTTAATGT
 3101 AGGGGGCTTGT TTGACAAACA AAGGCAATT AAATATTCC ATTGCCAAAG
 3151 GAGGGGCTCG CTTTAAAGAC ATTGATAATT CCAAGAATT AAGCATCACC
 3201 ACCAAACTCCA GCTCCCACTTA CGGCACATT ATAAGGGCA ATATAACCA
 3251 TAAAACGGT GATTTAAATA TTACGAACGA AGGTAGTGT ACTGAAATGC

FIG. 6E.

3301 AAATTGGCGG CGATGTCTCG CAAAAGAAG GTAATCTCAC GATTTCTCT
 3351 GACAAATCA ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG
 3401 GGAGAATTCC GATTCAGACG CGACAAACAA TGCCAATCTA ACCATTA^{AAA}
 3451 CCAAGAAATT GAAATTAACG CAAGACCTAA ATATTTCAAGG TTTCAAT^{AAA}
 3501 GCAGAGATT AAGCTAAAGA TGGTAGTGAT TTAACTATTG GTAACACCAA
 3551 TAGTGCTGAT GGTACTAATG CCAAAAAAGT AACCTTTAAC CAGGTTAAAG
 3601 ATTCAAAAT CTCTGCTGAC GGTCAACAAAGG TGACACTACA CAGCAAAGTG
 3651 GAAACATCCG GTAGTAATAA CAACACTGAA GATAAGCAGTG ACAATAATGC
 3701 CGGCTTAAC^T ATCGATGCAA AAAATGTAAC AGTAAACAAAC ATATTA^TACTT
 3751 CTCACAAAGC AGTGAGGCATC TCTGCGACAA GTGGAGAAAT TACCACTAA
 3801 ACAGGTACAA CCATTAACGC AACCACTGGT AACGTGGAGA TAACCGCTCA
 3851 AACAGGTAGT ATCCTAGGTG GAATTGAGTC CAGCTCTGGC TCTGTAACAC
 3901 TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTTC GGGCAACACC
 3951 GTTACTGTTA CTGCAAATAG CGGTGCATTA ACCACTTTGG CAGGCTCTAC
 4001 ATTAAAGGA ACCGAGAGTG TAACCACTTC AAGTCAATCA GGGGATATCG
 4051 GCGGTACGAT TTCTGGTGGC ACAGTAGAGG TAAAGAAC CGAAAGTTA

FIG. 6F.

4101 ACCACTCAAT CCAATTCAA AATTAAAGCA ACAACAGGCG AGGCTAACGT
 4151 AACAAAGTGC A ACAGGTACAA TTGGTGGTAC GATTTCGGT AATAACGGTAA
 4201 ATGTTACGGC AAACGGCTGGC GATTAAACAG TTGGGAATGG CGCAGAAATT
 4251 AATGCCGACAG AAGGAGCTGC AACCTTAAC ACTCATCGG GCAAATTAAAC
 4301 TACCGAAGCT AGTTCACACA TTACTTCAGC CAAGGGTCAG GTAAATCTTT
 4351 CAGCTCAGGA TGGTAGCGTT GCAGGAAGTA TTAATGCCGC CAATGTGACA
 4401 CTAAATACTA CAGGCACTT AACTACCCTG AAGGGTTCAA ACATTAATGC 26 / 68
 4451 AACCAAGGGT ACCTTGGTTA TTAACGGCAA AGACGGCTGAG CTAATGGCG
 4501 CAGCATTGGG TAACCACACA GTGGTAAATG CAACCAACGG AAATGGCTCC
 4551 GGCAGCGTAA TCGGACAACTCAAGCAGA GTGAACATCA CTGGGGATT
 4601 AATCACAAATA AATGGATTAA ATATCATTTC AAAAAACGGT ATAAACACCG
 4651 TACTGTTAAA AGGGCGTTAAA ATTGATGTGA AATACATTCA ACCGGGTATA
 4701 GCAAGCGTAG ATGAAGTAAT TGAAGCGAAA CGCATCCTTG AGAAGGTAAA
 4751 AGATTTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT GGCCTAAAGTG
 4801 CTGTACGTT TATTGACCCA ATAATACAA TTACAGTCGA TACACAAAT
 4851 GAATTTGCAA CCAGACCATT AAGTCGAATA GTGATTCTG AAGGCAGGGC
 4901 GTGTTCCTCA AACAGTGATG GCGGCACGGT GTGCGTTAAAT ATCGCTGATA

FIG. 6G.

4951 ACGGGCGGT A GCGGTCACTA ATTGACAAGG TAGATTTCAT CCTGCAATGA
 5001 AGTCATTTA TTTTCGTATT ATTACTGTG TGGGTTAAAG TTCAGTACGG
 5051 GCTTACCCA TCCTTGTA_{AAA} AATTACGGAG AATAACAATAA AGTATTTTA
 5101 ACAGGTTATT ATATGAAA ATATAAAAAG CAGATTAAA CTCAGTGCAA
 5151 TATCACTATT GCTTGGCCTG GCTTCTTCAT CATGTATGC AGAAGAACGCG
 5201 TTTTAGTAA AAGGCTTCA GTTATCTGGT GCACCTTGAA CTTTAAGTGA
 5251 AGACGCCAA CTGCTCTGTAG CAAAATCTTT ATCTAAATAC CAAGGCCCGC 27/
 5301 AAACTTAAC AAACCTAAC ACAGCACAGC TTGAATTACA GGCTGTGCTA 68
 5351 GATAAGATTG AGCCAAATAA GTTTGATGTG ATATTGCCAC ACAAAACCAT
 5401 TACGGATGCC AATATTATGT TTGAGCTAGT CTCGAATCA GCCGCAGAAA
 5451 GCCAAGTTT TTATAAGGCC AGCCAGGGTT ATAGTGAAGA AAATATCGCT
 5501 CGTAGCCTGC CACCTTGAA ACAAGGAAAA GTGTATGAAG ATGGTCGTCA
 5551 GTGGTTCGAT TTGCGTGAAT TCAATATGGC AAAAGAAAAT CCACTAAAG
 5601 TCACTCGGGT GCATTACGAG TTAAACCCCTA AAAACAAAC CTCTGATTG
 5651 GTAGTTGCAG GTTTTTCGCC TTTTGGCAA ACGCGTAGCT TTGTTTCCTA
 5701 TGATAATTTC GCGGCAAGGG AGTTAACTA TCAACGTGTA AGTCTAGGTT

FIG. 6H.

5751 TTGTAAATGC CAATTGACCG GGACATGATG ATGTATTAAGA TCTAAACGCC
 5801 TTGACCAATG TAAAGCACCA ATCAAATCT TATGCGGTAG GCATAGGATA
 5851 TACTTATCCG TTTTATGATA AACACCAATC CTTAACGTCTT TATACCAGCA
 5901 TGAGTTATGC TGATCTAAT GATATCGACG GCTTACCAAG TGGGATTAAT
 5951 CGTAAATTAT CAAAGGTCA ATCTATCTCT GCGAATCTGA AATGGAGTTA
 6001 TTATCTCCG ACATTTAACCTT GCGAATGGA AGACCAGTTT AAAATTAAATT
 6051 TAGGCTACAA CTACCGCCAT ATTAAATCAA CATCCGAGTT AAACACCCCTG
 6101 GGTGCAACGA AGAAAAAATT TGCAGTATCA GCGCTAAGTG CAGGCATTGA 28 / 68
 6151 TGGACATATC CAATTACCC CTAAAACAAT CTTTAATATT GATTAAACTC
 6201 ATCATTATTA CGCGAGTAA TTACCAAGCT CTTTTGAAAT GGAGCCATT
 6251 GGGGAAACAT TTAAATCGCAG CTATCACATT AGCACAGCCA GTTTAGGGTT
 6301 GAGTCAGAG TTTGCTCAAG GTTGGCATTT TAGCAGTCAA TTATGGGTC
 6351 AGTTTACTCT ACAAGATATA AGTAGCATAG ATTATTCCTC TGTAACAGGT
 6401 ACTTATGGCG TCAGAGGCTT TAATAACGGC GGTGCAAGTG GTGAGCGCGG
 6451 TCTTGTATGG CGTAATGAAT TAAGTATGCC AAAATACACC CGCTTTCAA
 6501 TCAGCCCCTTA TGCCTTTTAT GATGCAGGTC AGTTCCGTTA TAATAGCGAA
 6551 AATGCTAAAAA CTTACGGCGA AGATATGCC ACGGTATCCT CTGGGGTTT

FIG. 6I.

6601 AGGCATTAAA ACCCTCTCTA CACAAACTT AAGCTTAGAT GCTTTGTG
 6651 CTCGTCGCTT TGCAAATGCC AATAAGTGACA ATTGAATGG CAACAAAAAA
 6701 CGCACAAAGCT CACCTAACAC CTTCTGGGT AGATTAAACAT TCAGTTCTA
 6751 ACCCTGAAAT TTAATCAACT GGTAAGCGGT CCGCCTACCA GTTTATAACT
 6801 ATATGCTTAA CCCGCCATT TACAGTCTAT ACGCAAACCT GTTTCATCC
 6851 TTATATATCA AACAAACTAA GCAAACCAAG CAAACCAAGC AAACCAAGCA
 6901 AACCAAGCAA ACCAAGCAA CCAAGCAAAC CAAAGCAAAC CAAGCAAACC AAGCAAACCA 20
 6951 AGCAAACCAA GCAAACCAAG CAAACCAAGC AAACCAAGC AAACCAAGCA ATGCTAAAAA 68
 7001 ACAATTATA TGATAAACTA AACATATACTC CATAACCAGG CAATACAAGG
 7051 GATTAAATA TATGACAAAA GAAATTTCAC AAAGTGTTC ACAAAATAACG
 7101 ACCGCTTCAC TTGTAGAATC AAACAAACGAC CAAACTCCC TGCAAATACT
 7151 TAAACACCA CCCAAACCCA ACCTATTACG CCTGGAAACAA CATGTGCCA
 7201 AAAAGATTA TGAGCTTGCT TGCCGCGAAT TAATGGCGAT TTTGGAAAAA
 7251 ATGGACGCTA ATTTGGAGG CGTTCACCGAT ATTGAATTG ACGCACCTGC
 7301 TCAGCTGGCA TATCTACCCG AAAAACTACT AATTCAATT GCCACTCGTC
 7351 TCGCTTAATGC ATTACACAA CTCTTTCCG ACCCCGATT GGCAATTTC

FIG. 6J.

7401 GAAGAAGGGG CATTAAAGAT GATTAGGCCTG CAACGGCTGGT TGACCGCTGTGAT
 7451 TTTTGCCCTCT TCCCCCTACG TTAACGGCAGA CCATATTCTC AATAAAATA
 7501 ATATCAACCC AGATTCCGAA GGTGGCTTTC ATTAGCAAC AGACAACTCT
 7551 TCTATTGCTA AATTCTGTAT TTTTTACTTA CCCGAATCCA ATGTCATAAT
 7601 GAGTTTAGAT GCGTTATGGG CAGGGAAATCA ACAACTTGT GCTTCATTTGT
 7651 GTTTTGCCTT GCAGTCTTCA CGTTTATTG GTACTGCATC TGGGTTTCAT
 7701 AAAAGAGCGG TGGTTTACA GTGGTTTCCT AAAAAACTCG CCGAAATTGCC
 7751 TAATTAGAT GAATTGCCTG CAAATATCCT TCATGATGTA TATATGCACT³⁰
 7801 GCAGTTATGA TTAGCAAAA AACAAAGCACCG ATGTTAACCG TCCATTAAAC
 7851 GAACCTGTCC GCAAGCATAT CCTCAGGCAA GGATGGCAAG ACCGCTACCT
 7901 TTACACCTTA GGTAAGG ACGGCAAACC TGTGATGATG GTACTGCTTG
 7951 AACATTTTAA TTCGGGACAT TCGATTATTC GCACGGCATTC AACTTCAATG
 8001 ATTGCTGCTC GAGAAAATT CTATTAGTC GGCTTAGGCC ATGAGGGCGT
 8051 TGATAACATA GGTGAGAAG TGTTTGACGA GTTCTTTGAA ATCAGTAGCA
 8101 ATAATATAAT GGAGAGACTG TTTTTTATCC GTAAACAGTG CGAAACTTTC
 8151 CAACCCGGCAG TGTTCTATAT GCCAAGGCATT GGCATGGATA TTACACCGAT

FIG. 6K.

8201 TTTTGTGAGC AACACTCGGC TTGCCCCAT TCAAGCTGT A GCCTTGGGT
 8251 ATCCTGCCAC TACGCATTCT GAATTATTG ATTATGTCAT CGTAGAAAGAT
 8301 GATTATGTGG GCAGTGAAGA TTGTTAGC GAAACCCTT TACGCTTAC
 8351 CAAAGATGCC CTACCTTATG TACCATCTGC ACTCGCCCCA CAAAAGTGG
 8401 ATTATGTACT CAGGGAAAC CCTGAAGTAG TCAATATCGG TATTGCCGCT
 8451 ACCACAATGA AATTAACCC TGAATTTTG CTAACATTGC AAGAAATCAG
 8501 AGATAAAGCT AAAGTCAA AA TACATTTCATTTCA TTTCGGCACTT GGACAAATCAA
 8551 CAGGCCTTGAC ACACCCTTAT GTCAAATGGT TTATCGAAAG CTATTTAGGT
 8601 GACGGATGCCA CTGGCACATCC CCACGGCACCT TATCACGATT ATCTGGCAAT
 8651 ATTGGCGTGT TGCGATATGC TACTAAATCC GTTTCCCTTTC GGTAATACTA
 8701 ACGGCATAAT TGATATGGTT ACATTAGTT TAGTTGGGT ATGCAAAACG
 8751 GGGGATGAAAG TACATGAACA TATTGATGAA GGTCTGTTA AACGCTTAGG
 8801 ACTACCAGAA TGGCTGATAG CCGACACACG AGAAACATAT ATTGAATGTG
 8851 CTTTGCCTCT AGCAGAAAC CATCAAGAAC GCCTTGAAC CCGTCGTAC
 8901 ATCATAGAAA ACAACGGCTT ACAAAAGCTT TTTACAGGGC ACCCTCGTCC
 8951 ATTGGCAAA ATACTGCTTA AGAAAACAAA TGAATGGAAG CGGAAGGCACT
 9001 TGAGTAAAAA ATAACGGTTT TTAAAGTAA AAGTGGGTT AATTTCAAA

31/68

32 / 68

FIG. 6L.

9051	GGGTTTAAA	AACCTCTCAA	AAATCAACCG	CACTTTTATC	TTTATAACGC
9101	TCCCGCGGC	TGACAGTTA	TCTCTTCTT	AAAATACCCA	TAAAATTGTG
9151	GCAATAGTTG	GGTAATCAA	TTCATTGTT	GATACGGCAA	ACTAAAGACG
9201	GCGCGTTCTT	CGGCAGTCAT	C		

FIG. 7A.

1 CGCCACTTCA ATTGTTGGATT GTTGAATTC AACTAACCA AAAGTCCGGT
 51 TAAATCTGT GGAGAAATA GGTGTTAGTG AAGAACGAGG TAATTGTTCA
 101 AAAGGATAAA GCTCTCTTAA TTGGGCATTG GTTGGCGTTT CTTTTTCGGT
 151 TAATAGTAAA TTATATTCTG GACGGACTATG CAATCCACCA ACAACTTTAC
 201 CGTTGGTTT AAGCGTTAAT GTAAAGTTCTT GCTCTTCTTG GCGAATACGT
 251 AATCCCATTT TTGTTAGC AAGAAAATGA TCGGGATAAT CATAATAGGT
 301 GTTGCCAA AATAAATTT GATGTTCTAA AATCATAAAAT TTTGCAAGAT 33 /
 351 ATTGTGGCAA TTCAAATACCT ATTTGTGGCG AAATCGCCAA TTTTAATTCA 68
 401 ATTCTTGTA GCATAATATT TCCCACCTCAA ATCAAACCTGGT TAAATATAACA
 451 AGATAATAAA AATAAATCAA GATTTTGTG ATGACAAACA ACAATTACAA
 501 CACCTTTTG CAAGTCTATA TGCAAATATT TTAAAAAAAT AGTATAAATC
 551 CGCCATATAA AATGGTATAA TCTTTTCATCT TTCACTCTTC ATCTTTCATC
 601 TTTCATCTT CATCTTTCAT CTTCATCTT TCATCTTC TCTTTCATCT
 651 TTCACTCTTC ATCTTTCATC TTTCATCTT CACATGAAAT GATGAACCGA
 701 GGGAAAGGGAG GGAGGGCAA GAATGAAGAG GGAGGCTGAAC GAACGCAAAT
 751 GATAAAGTAA TTAAATTGTT CAACTAACCT TAGGAGAAA TATGAACAAG

FIG. 7B.

801 ATATATCGTC TCAAATTCA GAAACGCCCTG AATGCTTTGG TTGCTGTGTC
 851 TGAATTGGCA CGGGGTTGTG ACCATCCAC AGAAAAAGGC AGCGAAAAAC
 901 CTGCTCGCAT GAAAGTGGGT CACTTAGCGT TAAAGCCACT TTCCGCTATG
 951 TTACTATCTT TAGGTTGTAAC ATCTATTCCA CAATCTGTTT TAGCAAGCGG
 1001 CAATTAAACA TCGACCAAA TGAAATGGTG CAGTTTTAC AAGAAAACAA
 1051 GTAATAAAC CATTATCGC AACAGTGTG ACGCTATCAT TAATTGGAAA
 1101 CAATTAAACA TCGACCAAA TGAAATGGTG CAGTTTTAC AAGAAAACAA
 1151 CAACTCCGCC GTATTCAACC GTGTTACATC TAACCAAATC TCCCATTAA 34 / 68
 1201 AAGGGATTIT AGATTCTAAC GGACAAGTCT TTTTAATCAA CCCAATGGT
 1251 ATCACAAATAG GTAAAGACGC AATTATTAAAC ACTAATGGCT TTACGGCTTC
 1301 TACGCTAGAC ATTCTAACG AAAACATCAA GGCGCGTAAT TTCACCTTCG
 1351 AGCAAACCAA AGATAAAGCG CTCGCTGAAA TTGTGAATCA CGGTTTAATT
 1401 ACTGTTGGTA AAGACGGCAG TGTAAATCTT ATGGTGGCA AAGTGGAAA
 1451 CGAGGGTGTG ATTAGCGTAA ATGGTGGCAG CATTTCTRTA CTCGCAGGGC
 1501 AAAAAATCAC CATCAGCGAT ATAATAAACC CAACCATTAC TTACAGCATT
 1551 GCCGGCCCTG AAAATGAAGC GGTCATCTG GGGGATATT TTGCCAAAGG

FIG. 7C.

1601 CGGTAACATT AATGTCCGTG CTGCCCACTAT TCGAAACCAA GTAAACTTT
 1651 CTGCTGATT C TGTAAGCCAA GATAAAAGCC GCAATATTGT TCTTTCGGCC
 1701 AAAGAGGGTG AGCGGGAAAT TGGGGTGTGA ATTTCGGCTC AAAATCAGCA
 1751 AGCTAAAGGC GGCAGGCTGA TGATTACAGG CGATAAAGTC ACATTAAGAA
 1801 CAGGTGCAGT TATCGACCTT TCAGGTAAG AAGGGGAGA AACTTACCTT
 1851 GGCGGTGACG AGCGGGCGA AGGTAAAAC GGCATTCAAT TAGCAAAGAA
 1901 AACCTCTTAA GAAAAGGCT CAACCATCAA TGTATCAGGC AAAGAAAAG
 1951 GCGGACGGC TATTGTGTGG GGGGATATTG CGTTAATTGA CGGCAATTATT /
 2001 AACGCTCAAG GTAGTGGTGA TATCGCTAA ACCGGTGGTT TTGTGGAGAC 35
 2051 ATCGGGCAT TATTATCCA TTGACAGCAA TGCAATTGTT AAAACAAAAG
 2101 AGTGGTTGCT AGACCCCTGAT GATGTAACAA TTGAAGCCGA AGACCCCCCTT
 2151 CGCAATAATA CCGGTATAAA TGATGAATTG CCAACAGGCA CCGGTGAAGC
 2201 AAGGGACCCCT AAAAAATA GCGAAACTCAA AACAAACGCTA ACCAATACAA
 2251 CTATTTCAA TTATCTGAAA AACGGCCTGGA CAATGAATAT AACGGCATCA
 2301 AGAAAACCTA CCGTTAATAG CTCAATCAAC ATCGGAAGCA ACTCCCCACTT
 2351 AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGGCCTTCAG ATTGATGGAG
 2401 ATATTACTTC TAAAGGCGGA AATTAAACCA TTTATTCTGG CGGATGGTT

FIG. 7D.

2451 GATGTTCAT AAAATATTAC CCTTGTATCAG GGTTTTTAA ATATTACCGC
 2501 CGCTTCCGTA GCTTTTGAAAG GTGGAAATAA CAAAGCACGC GACGGGGCAA
 2551 ATGCTAAAT TGTGCCAG GGCACGTGTA CCATTACAGG AGAGGGAAA
 2601 GATTCAAGG CTAACAACGT ATCTTTAAC GGAACGGGTA AAGGTCTGAA
 2651 TATCATTCA TCAGTGAATA ATTAAACCCA CAATCTTAGT GGCACAATTAA
 2701 ACATATCTGG GAATATAACA ATTAACCAA CTACGAGAAA GAACACCTCG
 2751 TATTGGCAA CCAAGCCATGA TTTCGCACTGG AACGTCAGTG CTCTTAATCT 36 /
 2801 AGAGACAGGC GCAAATTAA CCTTTATTAA ATACATTTCATAGCA AGCAATAGCA 68
 2851 AAGGCTAAC AACACAGTAT AGAAGCTCTG CAGGGGTGAA TTTTAACGGC
 2901 GTAAATGGCA ACATGTCACTT CAATCTCAA GAAGGAGCGA AAGTTAATT
 2951 CAAATTAAA CCAAACGAGA ACATGAACAC AAGCAAACCT TTACCAATT
 3001 GGTTTTAGC CAATATCACA GCCACGTGGTG GGGGCTCTGT TTTTTTGAT
 3051 ATATATGCCA ACCATTCTGG CAGAGGGCT GAGTTAAAAA TGAGTGAAT
 3101 TAATATCTT AACGGCGCTA ATTACCTT AAATTCCCAT GTTCGGGGCG
 3151 ATGACGCTTT TAAAATCAAC AAAGACTTAA CCATAATGCA ACCAAATTCA
 3201 AATTCAAGC TCAGACAGAC GAAAGATGAT TTTTATGACG GGTACGCCACG

FIG. 7E.

3251 CAAATGCCATC AATTCAACCT ACAACATATC CATTCGGGC GGTAAATGTC
 3301 CCCTTGGTGG ACAAAACTCA AGCAGCAGCA TTACGGGAA TATTACTATC
 3351 GAGAAAGCAG CAAATGTTAC GCTAGAAGCC AATAACGCC CTAATCAGCA
 3401 AACACATAAGG GATAGAGTTA TAAAACCTTGG CAGCTTGCTC GTTAATGGGA
 3451 GTTTAACGTT AACTGGCGAA AATGCCAGATA TTAAAGGCAA TCTCACTATT
 3501 TCAGGAAAGCG CCACTTTAA AGGAAAGACT AGAGATACCC TAAATATCAC
 3551 CGGCAATT ACCAATAATG GCAC TGCCGA AATTAATA ACACAGGAG
 3601 TGGTAAACT TGGCAATGTT ACCAATGATG GTGATTAAA CATTACCACT
 3651 CACGCTAAC GCAACCAAG AAGCATC ATC GGCGGAGATA TAATCAACAA
 3701 AAAAGGAAGC TAAATATTA CAGACAGTA TAATGATGCT GAAATCCAA
 3751 TTGGCGGCAA TATCTCGCAA AAAGAAGGCA ACCTCACCGAT TTCTTCCGAT
 3801 AAAATTAAATA TCACCAACA GATAACAATC AAAAAGGGTA TTGATGGAGA
 3851 GGACTCTAGT TCAGATGCGA CAAGTAATGC CAACCTAACT ATTAAACCA
 3901 AAGAATTGAA ATTGACAGAA GACCTAACGTA TTTCAGGTTT CAATAAGCA
 3951 GAGATTACAG CCAAAGATGG TAGAGATTAA ACTATTGGCA ACAGTAATGA
 4001 CGGTAACAGC GGTGCCGAAG CCAAAACAGT AACTTTAAC AATGTTAAAG

37 / 68

FIG. 7F.

4051 ATTCAAAAT CTCGTGAC GGTACACAATG TGACACTAAA TAGCAAAGTG
 4101 AAAACATCTA GCAGCAATGG CGGACGTGAA AGCAAATAGCG ACAACGATA
 4151 CGGCCTTAACCT ATTACTGCAA AAAATGTAGA AGTAAACAAA GATATTACTT
 4201 CTCTCAAAAC AGTAAATATC ACCGGCTCGG AAAAGGTTAC CACCACAGCA
 4251 GGCTCCGACCA TTAACGCAAC AAATGGCAA GCAAGTATTAA CAACCAAAAC
 4301 AGGTGATATC AGCGGTACGA TTTCGGTAA CACGGTAAGT GTTAGCGCGA
 4351 CTGGTGATT AACCACTAAA TCCGGCTCAA AAATTGAAGC GAAATCGGGT
 4401 GAGGCTAATG TAAACAAGTGC AACAGGTACA ATTGGGGTA CAATTCCGG
 4451 TAATAACGGTA AATGTTACGG CAAACGGCTGG CGATTAAACA GTTGGGAATG
 4501 GCGCAGAAAT TAATGGGACA GAAGGGAGCTG CAACCTTAAAC CGCAAACAGGG
 4551 AATAACCTTGA CTACTGAAGC CGGTTCTAGC ATCAACTTCAA CTAAGGGTCA
 4601 GGTAGACCTC TTGGCTCAGA ATGGTAGGCAT CGCAGGAAGC ATTAAATGCTG
 4651 CTAATGTGAC ATAAATACT ACAGGCACCT TAACCACCGT GGCAGGGCTCG
 4701 GATATTAAG CAAACCGGG CACCTTGGTT ATTAAACGCAA AAGATGCTAA
 4751 GCTAAATGGT GATGCATCAG GTGATAGTAC AGAAAGTGAAT GCAGTCAAACG
 4801 ACTGGGGAT TGGTAGTGTG ACTGGGGCAA CCTCAAGCAG TGTGAATATC
 4851 ACTGGGGAT TAAACACAGT AAATGGTTA AATATCATTT CGAAACATGG

38 / 68

FIG. 7G.

4901 TAGAAACACT GTGGCGCTTAA GAGGCCAAGGA AATTGAGGTG AAATATAATCC
 4951 AGCCAGGTGT AGCAAAGTGTAA GAAGAAAGTAA TTGAAGCCGAA ACGCGGTCCCTT
 5001 GAAAAGTAA AAGATTATC TGATGAAGAA AGAGAAACAT TAGCTAAACT
 5051 TGGTGTAACT GCTGTACGTT TTGTTGAGCC AAATAATACA ATTACAGTCA
 5101 ATACACAAA TGAAATTACA ACCAGACCGT CAACTCAAGT GATAATTCTC
 5151 GAAGGTAAGG CGTGTTCCTC AAGTGTAAAT GGCGCACCGAG TATGTACCAA
 5201 TGTGCTGAC GATGGACAGC CGTAGTCAGT AATGACAAG GTAGATTCTCA 39 /
 5251 TCCTGCAATG AAGTCATTT ATTTCGTAT TATTACTGT GTGGGTTAAA 68
 5301 GTTCAGTACG GGCTTTACCC ATCTTGTAAGG AAATTACCGGA GAATACAATA
 5351 AAGTATTCTT AACAGGTTAT TATTATGAAA AATATAAAAA GCAGATTAAA
 5401 ACTCACTGCCA ATATCAGTAT TGCTTGGCCT GGCTTCTCA TCATTGTATG
 5451 CAGAAGAACCG GTTTTTAGTA AAAGGCTTTTC AGTTATCTGG TGCACCTTGAA
 5501 ACTTTAAGTGT AAGACGCCA ACTGTCTGTA GCAAATCTT TATCTAAATA
 5551 CCAAGGCTCG CAAACTTAA CAAACCTAAA AACAGCACAG CTTGAATTAC
 5601 AGGCTGTGCT AGATAAGATT GAGCCAATA AATTGTGATGT GATATTGCCG
 5651 CAACAAACCA TTACGGATGG CAATATCATG TTTGAGCTAG TCTCGAAATC

FIG. 7H.

5701 AGCCGAGAA AGCCAAGTT TTTATAAGGC GAGCCAGGGT TATACTGAAG
 5751 AAAATATCGC TCGTAGCCTG CCATCTTGA ACAAAGGAAA AGTGTATGAA
 5801 GATGGTCGTC AGTGGTTCGA TTTGCGTGAA TTAAATATGG CAAAAGAAAA
 5851 CCCGCTTAAG GTTACCCGTG TACATTACGA ACTAAACCCCT AAAAACAAA
 5901 CCTCTAATT GATAATTGCG GGCTTCTCGC CTTTGGTAA AACGCGTAGC
 5951 TTATTTCTT ATGATAATTIT CGGGCGGAGA GAGTTTAACT ACCAACGTTG
 6001 AAGCTTGGGT TTTGTTAATG CCAATTAAAC TGTCATGAT GATGTGTTAA
 6151 TTATACCACT ATGAGTTATG CTGATTCTAA TGATATCGAC GGCTTACCAA
 6201 GTGCGATTAA TCGTAATTAA TCAAAAGGTC AATCTATCTC TGGAAATCTG
 6251 AAATGGAGTT ATTATCTCCC AACATTAAAC CTTGGCATGG AAGACCAATT
 6301 TAAATTAAAT TTAGGCTACA ACTACCGCCA TATTAATCAA ACCTCCGGGT
 6351 TAAATCGCTT GGGTGAACG AAGAAAAAAT TTGCAGTATC AGGGCTAAGT
 6401 GCAGGCATTG ATGGACATAT CCAATTACCA CCTAAACAA TCTTTAATAT
 6451 TGATTTAACT CATCATTATT ACGGGAGTAA ATTACAGGC TCTTTGGAA
 6501 TGGAGGCAT TGGCGAAACA TTAAATGCCA GCTATCACAT TAGCACAGCC
 6551 AGTTTAGGGT TGAGTCAAGA GTTGTGCTCAA GGTTGGCATT TAGCAGTCA
 6601 ATTATCAGGT CAATTACTC TACAAGATAT TAGCAGTATA GATTATTCT

40 / 68

FIG. 7I.

6651 CTCGTAACAGG TACTTATGGC GTCAGAGGCT TTAAATAACGG CGGTGCAAGT
 6701 GGTGAGGGCG GTCTTGTATG GCGTAATGAA TTAAGTATGC CAAATAACAC
 6751 CCGCTTCCAA ATCAGCCCTT ATGCCTTTA TGATGCAGGT CAGTCCGTT
 6801 ATAATAGCGA AAATGCTAAA ACTTACGGCG AAGATATGCA CACGGTATCC
 6851 TCTGCCGGTT TAGGCATTA AACCTCTCCT ACACAAACT TAAGCCTAGA
 6901 TGCTTTTGTGTT GCTCGTCGCT TTGCAAATGC CAATAGTGCAC ATTGTGAATG
 6951 GCAACAAAAA ACCCACAGC TCACCTACAA CCTTCTGGGG GAGATTAACA 41 / 68
 7001 TTCAGTTCT AACCCCTGAAA TTTAATCAAC TGGTAAGCGT TCCGCCCTACC
 7051 AGTTTATAAC TATATGCTTT ACCCGCCAAT TTACAGTCTA TAGGCAACCC
 7101 TGTTTTTACCTTATATC AAATAAACAA GCTAAGCTGA GCTAAGCAA
 7151 CCAAGCAAC TCAAGCAAGC CAAGTAATAAC TAAAAAAACA ATTATATGAA
 7201 TAAACTAAAG TATACTCCAT GCCATGGCGA TACAAGGGAT TTAATAATAT
 7251 GACAAAGAA AATTGTGAAA ACGCTCCCTCA AGATGGGACC GCTTTACTTG
 7301 CGGAATTAAG CAAACAATCAA ACTCCCCCTGC GAATATTAA ACAACCACGC
 7351 AAGCCCCAGCC TATTACGCTT GGAACAAACAT ATCGCAAAAGAAGATTATGA
 7401 GTTTGCTTGT CGTGAATAA TGGTGATTCT GGAAAGAAATG GACCGCTAATT

FIG. 7J.

7451	TTGGAGGGT	TCACCGATATT	GAATTGTGACCG	CACCCGGTCA	GCTGGCATAT
7501	CTACCCGAAA	AATTACTAAT	TTATTGTGCC	ACTCGTCTCG	CTAATGCAAT
7551	TACAACACTC	TTTCCGACC	CCGAATTGGC	AATTGTGAA	GAAGGGCGT
7601	TAAAGATGAT	TAGCCTGCAA	CGCTGCTTGAA	CGCTGATT	TGCCTCTTCC
7651	CCCTACGTTA	ACGGAGACCA	TATTCTCAAT	AAATAATAA	TCAACCCAGA
7701	TTCCCGAAGGT	GGCTTTCAATT	TAGCAACAGA	CAACTCTCT	ATTGCTAAAT
7751	TCTGTATT	TTACTTACCC	GAATCCAATG	TCAATATGAG	TTTAGATGCC
7801	TTATGGCAG	GGAAATCAACA	ACTTTGTGCT	TCATTGTGTT	TTGCGTTGCA
7851	GTCTTCACGT	TTTATTGGTA	CCGCATCTGC	GTTTCATAAA	AGAGGGTGG
7901	TTTACAGTG	GTTT CCTAAA	AAACTCGCCG	AAATTGCTAA	TTTAGATGAA
7951	TTGCCCTGCAA	ATATCCTCA	TGATGTATAT	ATGCACTGCA	GTTATGATT
8001	AGCAAAAC	AAGCACGATG	TTAACGGTCC	ATTAACGAA	CTTGTCCGCA
8051	AGCATATCCT	CACGCCAAGGA	TGGCAAGACC	GCTACCTTAA	CACCTTAGGT
8101	AAAAGGACG	GCAAACCTGT	GATGATGGTA	CTGCTTGAAAC	ATTTAATT
8151	GGGACATTGCG	ATTATCGTA	CACATCAAC	TTCAATGATT	GCTGCTCGAG
8201	AAAATTCTA	TTTAGTGGC	TAGGCCATG	AGGGCGTTGA	AAAATAGGT

FIG. 7K.

8251 CGAGAAAGTGT TTGACCGAGTT CTTTGAATC AGTAGCAATA ATATAATGGA
 8301 GAGACTGTTT TTTATCCGTA AACAGTGCAG AACTTICCAA CCCGCAGTGT
 8351 TCTATATGCC AAGCATTGGC ATGGATATT CCACGATT TTGAGGCAAC
 8401 ACTCGGCTTG CCCCTATTCA AGCTGTAGCC CTGGGTCACTC CTGCCCACTAC
 8451 GCATTCTGAA TTTATTGATT ATGTCATCGT AGAAGATGAT TATGTGGCA
 8501 GTGAAGATTTG TTTCAGGAA ACCCTTTTAC GCTTACCCAA AGATGCCCTA
 8551 CCTTATGTAC CTTCTGCACT CGCCCCACAA AAAGTGGATT ATGTA
43 / 68
 8601 GGAAAACCCT GAAGTAGTCA ATATCGGTAT TGCCGCTACC ACAATGAAAT
 8651 TAAACCCCTGA ATTTCGCTA ACATTGCAAG AAATCAGAGA TAAAGCTAAA
 8701 GTCAAATAAC ATTTCAATT CGCACTTGG CAATCAACAG GCTTGACACA
 8751 CCCTTATGTC AAATGGTTA TCGAAAGCTA TTAGGTGAC GATGCCACTG
 8801 CACATCCCCA CGCACCTTAT CACGATTATC TGGCAATT ATT GCGTGATTGC
 8851 GATATGCTAC TAAATCCGTT TCCCTTCCGTT AATACTAACG GCATAATTGA
 8901 TATGGTTACA TTAGGTTAG TTGGTGTATG CAAACGGGG GATGAAGTAC
 8951 ATGAACATAT TGATGAAGGT CTGTTAAC GCTTAGGACT ACCAGAATGG
 9001 CTGATAGCCG ACACACGAGA AACATATATT GAATGTGCTT TGGGTCTAGC
 9051 AGAAAAACCAT CAAGAACGCC TTGAACTCCG TC GTTACATC ATAGAAAACA

FIG. 7L.

9101	ACGGCTTACA	AAAGCTTTT	ACAGGCGACC	CTCGTCCATT	GGGCAAAATA
9151	CTGCTTAAGA	AAACAAATGA	ATGGAAGCGG	AAGCACTTGA	GTAAAAAATA
9201	ACGGTTTTT	AAAGTAAAAG	TGCCGTTAAT	TTTCAAAGCG	TTTTAAAAC
9251	CTCTCAAAA	TCAACCGCAC	TTTATCTTT	ATAACGATCC	CGCACGCTGA
9301	CAGTTATCA	GCCTCCCCGCC	ATAAAACCTCC	GCCTTTCATG	GCGGAGATT
9351	TAGCCAAAC	TGGCAGAAAT	TAAGGCTAA	AATCACCAA	TTGGCACCACA
9401	AAATCACCA	TACCCACAA	AAA		

FIG. 8A.

1 GATCAATCTG GGCGATATT TGGCCAAAGG TGGTAACATT AATGTCCGCG
 51 CTGCCACTAT TCGCAATAAA GGTAAACTTT CTGCCGACTC TGTAAGCCAA
 101 GATAAAAGTG GTAACATTGT TCTCTCTGCC AAAGAAGGTG AAGCGGAAAT
 151 TGGCGGTGTA ATTICCGCTC AAAATCAGCA AGCCAAAGGT GGTAAAGTTGA
 201 TGATTACAGG CGATAAAAGTT ACATTGAAAA CGGGTGCAGT TATCGACCTT
 251 TCGGGTAAG AAGGGGAGA AACTTATCTT GCGGGTGACG AGCGTGGCGA
 301 AGGTAAAAC GGCAATTCAAT TAGCAAAGAA AACCACTTTA GAAAAGGCT 45 /
 351 CAACAAATTAA TGTGTCAGGT AAAGAAAAG GTGGGGCGGC TATTTGATGC 68
 401 GGGGATATTG CGTTAATTGA CGGCAATATT AATGCCAAG GTAAAGATA
 451 CGCTAAACT GGTGTTTTC TGAGACGTC GGGGCATTAC TTATCCATTG
 501 ATGATAACGC AATTGTTAAA ACAAAAGAAT GGCTACTAGA CCCAGAGAAT
 551 GTGACTTATGT AAGCTCCTTC CGCTTCTCGC GTCGAGCTGG GTGCCGATAG
 601 GAATTCCCAC TCGGCAGAGG TGATAAAAGT GACCCTAAAA AAAAATAACA
 651 CCTCCCTTGAC AACACTAACCA AATACAACCA TTTCAATCT TCTGAAAAGT
 701 GCCCCACGTGG TGAACATAAC GGCAGGAGA AAACCTACCG TTAATAGCTC
 751 TATCAGTATA GAAAGAGGCT CCCACTTAAT TCTCCACAGT GAAGGGTCAGG

FIG. 8B.

801 GCGGTCAAGG TGTTCAGAT^T GATAAAGATA TTACTTCTGA AGGGGAAAT
 851 TTAACCATT ATTCTGGCGG ATGGGTGAT GTTCATAAAA ATATTACGCT
 901 TGGTAGCGGC TTTTAAACA TCACAACTAA AGAAGGAGAT ATCGCCTTCG
 951 AAGACAAGTC TGGACGGAAC AACCTAACCA TTACAGCCA AGGGACCATC
 1001 ACCTCAGGTA ATAGTAACGG CTTAGAT^T ACAAACGTT CTCTAAACAG
 1051 CCTTGCGGA AAGCTGAGCT TTACTGACAG CAGAGGGAC AGAGGGTAA
 1101 GAACTAAGGG TAATATCTCA AACAAAT^TTG ACGGAACGTT AAACATTCC
 1151 GGAAGCTGTAG ATATCTCAAT GAAAGCACCC AAAGTCAGCT GGTTTACAG
 1201 AGACAAAGGA CGCACCTACT GGAAACGTAAC CACTTTAAAT GTTACCTCGG
 1251 GTAGTAAATT TAACCTCTCC ATTGACAGCA CAGGAAGTGG CTCAACAGGT
 1301 CCAAGCATAc GCAATGCGAGA ATTAAATGGC ATAACATTAA ATAAGCCAC
 1351 TTTTAATATC GCACAAAGGCT CAACAGCTAA CTTTAGCATC AAGGCATCAA
 1401 TAATGCCCTT TAAGAGTAAC GCTAACTACG CATTATTA TGAAAGATATT
 1451 TCAGTCTCAG GGGGGGTAG CGTTAATTTC AAACCTAAAC CCTCATCTAG
 1501 CAACATACAA ACCCCTGGCG TAATTATAAA ATCTCAAAAC TTTAATGTCT
 1551 CAGGAGGGTC AACTTTAAAT CTCAGGCTG AAGGTTCAAC AGAAACCGCT
 1601 TTTTCATAATAG AAAATGATTt AAACTTAAAC GCCACCGGTG GCAATATAAC

46 / 68

FIG. 8C.

47 / 68

1651	AATCAGACAA	GTCGAGGGTA	CCGATTCACG	CGTCAACAAA	GGTGTGGCAG
1701	CCAAAAAAA	CATAACTTT	AAAGGGGTA	ATATCACCTT	CGGCTCTCAA
1751	AAAGCCACAA	CAGAAATCAA	AGGCAATGTT	ACCATCAATA	AAAACACTAA
1801	CGCTACTCTT	CGTGGTGGGA	ATTGGCCGA	AAACAAATCG	CCTTTAAATA
1851	TAGCAGGAAA	TGTTTATTAAAT	AATGGCAACC	TTACCACTGC	CGGCTCCATT
1901	ATCAATATAG	CCGAAATCT	TACTGTTCA	AAAGGGGCTA	ACCTTCAAGC
1951	TATAAACATT	TACACTTTA	ATGTTGCCGG	CTCATTTGAC	AACAATGGCG
2001	CTTCAAAACAT	TTCCATTGCC	AGAGGAGGGG	CTAAATTAA	AGATATCAAT
2051	AACACCAGTA	GCTTAATAT	TACCAAC	TCTGATACCA	CTTACCGCAC
2101	CATTATAAA	GGCAATATAT	CCAACAAATC	AGGTGATTG	ATATTTATTG
2151	ATAAAAAAG	CGACGCTGAA	ATCCAAATTG	GGGGCAATAT	CTCACAAAAA
2201	GAAGGCAATC	TCACAATTTC	TTCTGATAAA	GTAAATATTA	CCAATCAGAT
2251	AACAAATCAA	GCAGGGCTTG	AAGGGGGGG	TTCTGATICA	AGTGAGGCAG
2301	AAAATGCTAA	CCTAACTATT	CAAACCAAG	AGTTAAATT	GGCAGGGAGAC
2351	CTAAATATT	CAGGCTTTAA	TAAGCAGAA	ATTACAGCTA	AAATGGCAG
2401	TGATTAACT	ATTGGCAATG	CTAGCGGTGG	TAATGCTGAT	GCTAAAMAAAC

FIG. 8D.

2451 TGACTTTGAA CAAGGTTAAA GATTCAAAAA TCTCGACTGA CGGTCAACAA
 2501 GTAACACTAA ATAGCGAAGT GAAAACGTCT AATGGTAGTA GCAATGCTGG
 2551 TAATGATAAC AGCACCCGGTT TAACCATTTC CGCAAAGAT GTAACGGTAA
 2601 ACAATAACGT TACCTCCCAC AACACAATAA ATATCTCTGC CGCAGCAGGA
 2651 AATGTAACAA CCAAGAAGG CACAACATC AATGCAACCA CAGGCAGCGT
 2701 GGAAGTAACT GCTCAAATG GTACAATTAA AGGCAACATT ACCTCGCAA
 2751 ATGTAACAGT GACAGCAACA GAAAATCTTG TTACACAGA GAATGCTGTC
 2801 ATTAAATGCAA CCAGGGGCAC AGTAAACATT AGTACAAAAA CAGGGATAT⁴⁸
 2851 TAAAGGTGGA ATTGAATCAA CTTCCGGTAA TGTAATATT ACAGGGAGCC⁶⁸
 2901 GCAATACACT TAAGGTAAGT AATATCACTG GTCAAGATGT AACAGTAACA
 2951 GCGGATGCAG GAGCCTTGAC AACTACAGCA GGCTCAACCA TTAGTGGCAG
 3001 AACAGGCAAT GCAAATATTA CAACCAAAAC AGGTGATATC AACGGTAAAG
 3051 TTGAATCCAG CTCCGGCTCT GTAACACTTG TTGCAACTGG AGCAACTCTT
 3101 GCTGTAGGTAA ATATTTCAGG TAACACTGTT ACTATTACTG CGGATAGCGG
 3151 TAAATTAAACC TCCACAGTAG GTTCTACAAAT TAATGGGACT AATAGTGTAA
 3201 CCACCTCAAG CCAATCAGGC GATATTGAAG GTACAATTTC TGGTAATAACA
 3251 GTAAATGTTA CAGCAAGGCAC TGGTGATTTA ACTATTGGAA ATAGTGGCAA

FIG. 8E.

3301 AGTTGAAGCG AAAAATGGAG CTGCCAACCTT AACTGCTGAA TCAGGCAAAT
 3351 TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT
 3401 CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAAATG CTGCTAATGT
 3451 GACGTTAAAT ACCACAGGCA CTTTAACCTAC TACAGGGAT TCAAAGATTA
 3501 ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAGATGC CAAATTAGAT
 3551 GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA ACGCAAGTGG
 3601 CTCTGGTAAAC GTGACTGGGA AACCTCAAG CAGCGTGAAT ATCACCGGGG 49 / 68
 3651 ATTAAACAC AATAAATGGG TTAATATATCA TTTCGGAAA TGGTAGAAAC
 3701 ACTGTGGCT TAAGGCCA GGAATTGAT GTGAAATATA TCCAACCAGG
 3751 TGTAGCAAGC GTAGAAGAGG TAATTGAAGC GAAACGGGTG CTTGAGAAGG
 3801 TAAAAGATT ATCTGATGAA GAAAGAGAAA CACTAGCCAA ACTTGGTGTA
 3851 AGTGCTGTAC GTTTCGTTGA GCCAAATAAT GCCATTACGG TTAATAACACA
 3901 AAACCGAGTT ACAACCAAC CATCAAGTCA AGTGACAAATT TCTGAGGTA
 3951 AGGCCGTGTT CTCAAGTGGT AATGGCGGCAC GAGTATGTAC CAATGTTGCT
 4001 GACGATGGAC AGCAGTAGTC AGTAATTGAC AAGGTAGATT TCATCCTGCA
 4051 ATGAAAGTCAT TTTATTTCG TATTATTTCG TGTGTGGTT AAAGTTICAGT

50/68

FIG. 8F.

4101	ACGGGCTTTA	CCCACCTGT	AAAAATTAC	GAAAATACA	ATAAAGTATT
4151	TTAACAGGT	TATTATTATG	AAAACATAA	AAAGCAGAT	AAAACACTCAGT
4201	GCAATATCAA	TATTGCTTGG	CTGGCTTCT	TCATCGACGT	ATCCAGAAGA
4251	AGCGTTTTA	GTAAAAGGCT	TTCAGTTATC	TGGCGCG	

FIG. 9A.

1 GGGAAATGAGC GTCGTACACCG GTACAGCAAC CATGCAAAGTA GACGGCAATA
 51 AAACCACTAT CCGTAATAGC GTCAATGCTA TCATCAAATTG GAAACAAATT
 101 AACATTGACC AAAATGAAAT GGAGCAGTTT TTACAAGAAA GCAGCCA⁵ACTC
 151 TGCCGTTTC ACCGTGTTA CATCTGACCA AATCTCCC⁶AA TAAAGGGA
 201 TTTAGATT⁷C TAACGGACAA GTCTTTTAA TCAACCCAAA TGGTATCACA
 251 ATAGGTAAG ACGCAATTAT TAACACTAAT GGCTTTACTG CTCTACGCT
 301 AGACATTCT AACGAAAACA TCAAGGGCG TAATTTCACC CT⁸TGAGCAA
 351 CCAAGGATAAA AGCACTCGCT GAAATCGTGA ATCACGGTT⁹ ATTACCGTT
 401 GGTAAAGGACG GTAGGGTAAA CCTTATTGGT GGCAAAGTGA AAAACGAGGG
 451 CGTGATTAGC GTAAATGGCG GTAGTATTTC TTTACTTGCA GGGCAAAAAA
 501 TCACCATCAG CGATATAATA AATCCAACCA TCACTTACAG CATTGCTGCA
 551 CCTGAAAAACG AAGCGATCAA TCTGGCGAT ATT¹⁰TTGCCA AAGGGTAA
 601 CATTAAATGTC CGGGCTGCCA CTATTGCCA TAAAGGTAAA CT¹¹TTCTGCCG
 651 ACTCTGTAAG CAAAGATAAA AGTGGTAACA TTGTTCTCTC TGCCAAAGAA
 701 GGTGAAGCGG AAATTGGCGG TGTAAATTCC GCTCAAAATC AGCAAGCCAA
 751 AGGTGGTAAAG TTGATGATT¹²A CAGGTGATAA AGTCACATTA AAAACAGGTG

FIG. 9B.

801 CAGTTATCGA CCTTCAGGT AAAGAACGGG GAGAGACTTA TCTTGGCGGT
 851 GATGACCGTG GCGAAGGTAA AAATGGTATT CAATTAGCGA AGAAAACCTC
 901 TTTAGAAAAA GGCTCCGACAA TTAATGTATC AGGCAAAGAA AAAGGGGGGC
 951 GCGCTATTGT ATGGGGCGAT ATTGCATTA TTAATGGTAA CATTAATGCTT
 1001 CAAGGTAGCG ATATTGCTAA AACTGGCGC TTTGTGGAAA CATCAGGACA
 1051 TGACTTATCC ATTGGTGATG ATGTGATTGT TGACGGCTAA GAGTGGTTAT
 1101 TAGACCCAGA TGATGTGTCC ATTGAAACTC TTACATCTGG ACGCAATAAT
 1151 ACCGGCGAAA ACCAAGGATA TACAACAGGA GATGGGACTA AAGAGTCACC 52 / 68
 1201 TAAAGGTAAT AGTATTCTA AACCTACATT AACAAACTCA ACTCTTGAGC
 1251 AAATCCTAACG AAGAGGTTCT TATGTTAATA TCACGTCTAA TAATAGAATT
 1301 TATGTTATA GCTCCATCAA CTIATCTAAT GGCAGTTAA CACTTCACAC
 1351 TAAACGGAGT GGAGTTAAA TTAAACGGTGA TATTACCTCA AACGAAAATG
 1401 GTAATTAAAC CATTAAAGCA GGCTCTGGG TTGATGTTCA TAAAACATC
 1451 ACGCTTGGTA CGGGTTTTT GAATATTGTC GCTGGGGATT CTGTTAGCTT
 1501 TGAGAGAG GGGGATAAAG CACGTAACGC AACAGATGCT CAAATTACCG
 1551 CACAAGGGAC GATAACCGTC AATAAAGATG ATAAACAAATT TAGATTCAAT
 1601 AATGTATCTA TTAACGGGAC GGGCAAGGGT TTAAAGTTA TTGCAAATCA

FIG. 9C.

1651 AAATAATTTC ACTCATAAAT TTGATGGCGA AATTAAACATA TCTGGATAG
 1701 TAACAATTAA CCAAACCACG AAAAAGATG TTAATAACTG GAATGCATCA
 1751 AAAGACTCTT ACTGGAATGT TTCTTCTCTT ACTTTGAATA CGGTGCCAAA
 1801 ATTACCTTT ATAATTCG TTGATAGCGG CTCAAATTCC CAAGATTGGA
 1851 GGTCAATCACG TAGAAGTTT GCAGGGGTAC ATTAAACGG CATCGGAGGC
 1901 AAAACAAACT TCAACATCGG AGCTAACGCA AAAGCCTTAT TAAATTAAA
 1951 ACCAAACGCC GCTACAGACC CAAAAAAGA ATTACCTATT ACTTTAACG
 2001 CCAACATTAC AGCTACCGGT AACAGTGATA GCTCTGTGAT GTTTGACATA
 2051 CACGCCAATC TTACCTCTAG AGCTGCCGGC ATAAACATGG ATTCAATTAA
 2101 CATTACCGGC GGCTTGTACT TTTCATTAAC ATCCCATAAT CGCAATAGTA
 2151 ATGCCTTTGA AATCAAAAAA GACTTAACTA TAAATGCAAC TGGCTCGAAT
 2201 TTTAGTCTTA AGCAAACGAA AGATTCTTT TATAATGAAT ACAGCAAACA
 2251 CGCCATTAAAC TCAAGTCATA ATCTAACCAT TCTTGGGGC ATGTCACTC
 2301 TAGGTGGGA AAATTCAAGC AGTAGCATT CGGGCAATAT CAATATCACC
 2351 AATAAAGCAA ATGTTACATT ACAAGCTGAC ACCAGCAACA GCAACACAGG
 2401 CTTGAAGAAA AGAACTCTAA CTCTGGCAA TATATCTGTT GACGGGGAAATT

53 / 68

FIG. 9D.

2451 TAAGCCTAAC TGGTCCAAT GCAAACATG TCGGCAATCT TTCTATTGCA
 2501 GAAGATTCCA CATTAAAGG AGAAGCCAGT GACAACCTAA ACATCACCGG
 2551 CACCTTACC AACAACGGTA CGGCCAACAT TAATATAAA CAAGGAGTGC
 2601 TAAAACCTCCA AGGGATATT ATCAAATAAG GTGGTTAAA TATCACTACT
 2651 AACGCCCTCAG GCAC'TCAAA AACATT ATT AACGGAAATA TAACTAACGA
 2701 AAAAGGGGAC TAAACATCA AGAATATTAA AGCCGACGCC GAAATCCAAA
 2751 TTGGGGCAA TATCTCACAA AAAGAAGGCA ATCTCACAAAT TTCTTCTGAT 54 / 68
 2801 AAAGTAATA TTACCAATCA GATAACAATC AAAGCAGGGC TTGAAGGGGG
 2851 GCGTTCTGAT TCAAGTGAGG CAGAAATTCG TAACCTAACT ATTCAAACCA
 2901 AAGAGTTAAA ATTGGCAGGA GACTAAATA TTTCAGGCTT TAATAAAGCA
 2951 GAAATTACAG CTAAAAATGG CAGTGATTAA ACTATTGCA ATGCTAGGG
 3001 TGGTAATGCT GATGCTAAA AAGTGACTTT TGACAAAGGT AAAGATTCAA
 3051 AAATCTCGAC TGACGGTCAC AATGTAACAC TAAATAGCGA AGTGAACCG
 3101 TCTAATGGTA GTAGCAATGC TGGTAATGAT AACAGCACCG GTTTAACCAT
 3151 TTCCGCAAA GATGTAACGG TAAACAATA CGTTACCTCC CACAGACAA
 3201 TAAATATCTC TGCCCGAGCA GGAAATGTA CAACCAAAGA AGGCACAACT
 3251 ATCAATGCAA CCACAGGGCAG CGTGGAAAGTA ACTGCTCAA ATGGTACAAAT

FIG. 9E.

3301 TAAAGGCAAC ATTACCTCGC AAAATGTAAC AGTGACAGCA ACAGAAAATC
 3351 TTGTACCAC AGAGAATGCT GTCATTAATG CAACCAGCGG CACAGTAAAC
 3401 ATTAGTACAA AACAGGGGA TATTAAAGGT GGAATTGAAT CAACTCCGG
 3451 TAATGTAAT ATTACAGCGA GCGGCAATAAC ACTTAAGGTA AGTAATATCA
 3501 CTGGTCAACA TGTTAACAGTA ACAGCGGATG CAGGAGCCTT GACAACCTACA
 3551 GCAGGGCTCAA CCATTAGTGC GACAACAGGC AATGCAAATA TTACAAACAA
 3601 AACAGGGTGAAT ATCAACGGTA AAGTTGAATC CAGCTCCGGC TCTGTAACAC 55
 3651 TTGTGCAAC TGAGGCAACT CTTGCTGTAG GTAAATATTTC AGGTAACACT /68
 3701 GTTACTATT CGCGGATAG CGGTTAAATTA ACCCTCCACAG TAGGTTCTAC
 3751 ATTAAATGGG ACTTAATAGTG TAACCACCTC AAGCCAATCA GGGGATATTG
 3801 AAGGTACAAT TTCTGGTAAT ACAGTTAAATG TTACAGCAAG CACTGGTGAT
 3851 TTAACTATIG GAAATAGTGC AAAAGTTGAA GCGAAAATG GAGCTGCAAC
 3901 CTTAACTGCT GAATCAGGCA AATTACCCAC CCAAACAGGC TCTAGCATTAA
 3951 CCTCAAGCAA TGGTCAGACA ACTCTTACAG CCAAGGATAG CAGTATCGCA
 4001 GGAAACATTA ATGCTGCTAA TGTGACGTTA AATACCAACAG GCACTTTAAC
 4051 TACTACAGGG GATTCAAAGA TTAACGCAAC CAGTGGTACC TAAACAAATCA

FIG. 9F.

4101 ATGCCAAAGA TGCCAAATT GATGGTGCTG CATCAGGTGA CGGCACAGTA
 4151 GTAAATGCAA CTAACGCAAG TGGCTCTGGT AACGTGACTG CGAAAACCTC
 4201 AAGCAGCGTG AATATCACCG GGGATTAAA CACAATAAAT GGGTTAAATA
 4251 TCATTTCGGA AAATGGTAGA AACACTGTGC GCTTAAGAGG CAAGGAAATT
 4301 GATGTGAAT ATATCCAACC AGGTGTAGCA AGCGTAGAAG AGGTAATTGA
 4351 AGCGAAACGC GTCCCTGAGA AGGTAAAAGA TTTATCTGAT GAAGAAAGAG
 4401 AACACTAGC CAAACTTGGT GTAAGTGCTG TACGTTTCGTT TGAGCCAAT 56/68
 4451 AATGCCATT CGGTTAACATAC ACAAAACGAG TTTACAAACCA AACCATCAAG
 4501 TCAAGTGACA ATTTCATGAAAG GTAAAGGGCTG TTTCTCAAGT GGTAATGGCG
 4551 CACGAGTATG TACCAATGTT GCTGACGATG GACAGCAGTA GTCAGTAATT
 4601 GACAAGGTAG ATTTCATCCT GCAATGAAGT CATTATTATT TCGTATTATT
 4651 TACTGTGTGG GTTAAAGTTCA AGTACGGGCT TTACCCACCT TGTTAAATA
 4701 TA

FIG. 10A. COMPARISON OF DERIVED AMINO ACID SEQUENCE

1	50	
Hnw3.com	
Hnw4.com	
Hnw1.com	MNKIYRLKFS KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLALKPL	
Hnw2.com	MNKIYRLKFS KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLALKPL	
57 / 68		
51	100	
Hnw3.com	
Hnw4.com	
Hnw1.com	SAMLLSLGVIT SIPQSVLASG LQGMSV VHGT ATMQVDGNKT TIRNSVNALL	
Hnw2.com	SAMLLSLGVIT SIPQSVLASG LQGMSV VHGT ATMQVDGNKT TIRNSVNALL	
100 / 150		
101	150	
Hnw3.com	
Hnw4.com	NWKQFNIDQN EMEQFLQESS NSAVFNRVTS DQISQLKGIL DSNGQVF LIN	

FIG. 10B.

Hmw1.com	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTS	NQISQLKGIL	DSNGQVFLIN	
Hmw2.com	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTS	NQISQLKGIL	DSNGQVFLIN	
						151
Hmw3.com	200
Hmw4.com	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTLEQTK	DKALAEIVNH	
Hmw1.com	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTLEQTK	DKALAEIVNH	
Hmw2.com	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTLEQTK	DKALAEIVNH	58/68
						201
Hmw3.com	250
Hmw4.com	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT	
Hmw1.com	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT	
Hmw2.com	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT	
						251
Hmw3.com	300
						INLGDIIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV

FIG. 10C.

Hmw4.com	YSIAPENEAI	INLGDIFAKG	GNINVRAATTI	RNKGKLSADS	VSKDKSGNIV
Hmw1.com	YSIAPENEAI	VNLGDIFAKG	GNINVRAATTI	RNKGKLSADS	VSKDKSGNIV
Hmw2.com	YSIAPENEAI	VNLGDIFAKG	GNINVRAATTI	RNKGKLSADS	VSKDKSGNIV

301

350

Hmw3.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEEGGE
Hmw4.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEEGGE
Hmw1.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEEGGE
Hmw2.com	LSAKEGEAEI	GGVISQAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEEGGE

59 / 68

351

400

Hmw3.com	TYLGGDERGE	GKNGIQLAKK	TTLEKGSTIN	VSGKEKGGRA	IWGDIALID
Hmw4.com	TYLGGDERGE	GKNGIQLAKK	TTLEKGSTIN	VSGKEKGGRA	IWGDIALID
Hmw1.com	TYLGGDERGE	GKNGIQLAKK	TTLEKGSTIN	VSGKEKGGRA	IWGDIALID
Hmw2.com	TYLGGDERGE	GKNGIQLAKK	TTLEKGSTIN	VSGKEKGGRA	IWGDIALID

FIG. 10D.

401

Hmw3com GNINAQGK.D IAKTGGFVET SGHYLSIDNN AIVKTKEWILL DPENVTEAP
 Hmw4com GNINAQGS.D IAKTGGFVET SGHDLSIGDD VIVDAKEWILL DPDVSIELT
 Hmw1com GNINAQGSGD IAKTGGFVET SGHDLFIKDN AIVDAKEWILL DPDVNTINAE
 Hmw2com GNINAQGSGD IAKTGGFVET SGHYLSIESN AIVKTKEWILL DPDDVTEAE

451

Hmw3com SASRVELGAD RNSHSAEVIK VTLKKNNNTSL TTLTNTTISN LLKSAHVNNI
 Hmw4com TSGRNNTGEN QGYTTGDGTK ESPKGNSISK PTLTNSTLEQ ILRRGSYVNNI
 Hmw1com TAGRSNTSED DEYTGSNSA STPKRNKE.K TTLTNTTLES ILKKGTFVN
 Hmw2com DPLRNNTGIN DEFPTGTGEA SDPKKNSELK TTLTNTTISN YLKNAWTMNI

500

60 / 68

501

Hmw3com TARRKLTVNS SISIERGSHL ILHSEGQGGQ GVQIDKDITS .E... .GGNL
 Hmw4com TANNRIYVNS SINLSNGS.L TLHTK..RD GVKINGDITS NE... .NGNL
 Hmw1com TANQRUYVNS SINL.SNGSL TLWSEGRSGG GVEINNDITT GDDTRGANLT
 Hmw2com TASRKLTVNS SINGSNSSHL ILHSKGQRGG GVQIDGDIT. .SKGGNL

550

FIG. 10E.

551

Hmw3.com	IYSGGWWVDVH	KNITLGS.GF	LNITTKEGDI	AFEDKSGR...	..NNLTITAQ
Hmw4.com	IKAGSWWDVH	KNITLGT.GF	LNIVAGDS.V	AFEREGDKAR	NATDAQITAQ
Hmw1.com	IYSGGWWVDVH	KNISLGAQGN	INITAKQD.I	AFEKGSNQV.ITGQ
Hmw2.com	IYSGGWWVDVH	KNITLTD.QGF	LNITA.AS.V	AFEGGNNKAR	DANNLTITAQ

600

61 / 68

650

601

Hmw3.com	GTITSG.NSN	GFRFNNVSLN	SLGGKLSSFTD	SREDRGRTK	GNISNKFDGT
Hmw4.com	GTITVNKKDK	QFRFNNV\$IN	GTGKGGLKFIA	NQN.....	.NFTTHKFDGE
Hmw1.com	GTIT.SGNQK	GFRFNNVSLN	GTGSGLQFTT	KRTN.....K	YAITNKFEGT
Hmw2.com	GTVTITGECK	DFRANNVSLN	GTGKGGLNIIS	SVNN.....	..LTHNLISGT

709

Hmw3.com	LNISGTVDIS	MKAPKVSWFY	RD.KGRTYWN	VTTLNVNTSGS	KFNLSIDSTG
Hmw4.com	LNISGIVTIN	OTTKKDVKYW	NA.SKDSYWN	VSSLTLNTVQ	KFTF.IKFVD
Hmw1.com	LNISGKVNIS	MVLPKNESGY	DKFKGRTYWN	LTSLMNVSESG	EFLNLTIDSRG

FIG. 10F.

Hmw2com INISGNITIN QTTRKNTSYW QTSHD.SHWN VSALNLETGA NFTF.IKYIS

701

Hmw3com SGSTG...PS IRNA.ELNG ITFN...KA TFNIAQGSTA NFSIKASIMP
 Hmw4com SGSNS...QD LRSSRRSFAG VHFNGIGGKT NFINIGANAKA LFKLKPNAAT
 Hmw1com SDSAGTLTQ.PYNLNG ISFN...KDT TFNVERNARV NFDIKAPIGI
 Hmw2com SNSKGTTQY RSSAGVNFG V..N...GNM SFNLKEGAKV NFLKPENM

62/68

751

Hmw3com FKSANYAL. FNEDISVSG. .GGSVNFKLN ASSSNIQTPG VIIKSQNFNV
 Hmw4com DPKKELPIT. FNANITATGN SDSSVMFDIH A..NLTSRA AGINMDSINI
 Hmw1com NKYSSLNYAS FNGNISVSG. .GGSVDFTLI ASSSNVQTPEG VVINSKYFNV
 Hmw2com NTSKPLPI.R FLANITATG. .GGSVFFDIY ANHS...GRG AELKMSEINI

801

Hmw3com SGGSTLNLKA EGSTETAFSI ENDLNLNATG GNITIRQVEG T..DSRVNK
 Hmw4com TGGLDFSITS HNRNSNAFEI KKDLTINATG SNFSLKQTKD SFYNEYSKHA

850

FIG. 10G.

Hmw1.com STGSSLRFKT SGSTKTFPSI EKDLTINATG GNITLLQVEG T. . DGMIGKG
Hmw2.com SNGANFTLNS HVRGDDAFKI NKDLTINATN SNFSLRQTKD DFYDGYARNA

851	Hmw3.com	VAAKKNITFK	GGNITFGSQK	ATTEIKGNVT	INKNTNATLR	GANFAEN...
	Hmw4.com	INSSHNLTIL	GGNVTLGGEN	SSSSITGNIN	ITNKANVTLLQ	ADTSNSNTGL
	Hmw1.com	IVAKKNITFE	GGNITFGSRK	AVTEIEGNVT	INNNANVTLLI	GSDFDNHQ..
	Hmw2.com	INSTYNISIL	GGNVTLGQN	SSSSITGNIT	IEKAANVTILE	ANNAPNQQNI

901	Hmw3.com	KSP LN IAGNV INNGNLT T TAG S I INIAGNL T VSKGANLQAI TNYTFNVAGS
	Hmw4.com	KKRTL T LGN I SVEGNL S LTG ANANIVGNL S IAEDSTFKGE ASDNLNTGT
	Hmw1.com	KPLTIKKDVI INSGNLTAGG NI V N I AGNL T VESNANFKAI TNFTFNVGGI
	Hmw2.com	RDRV K LGSL LVNGSSL T ENADIKGNL T ISESATFKGK TRDTLNITGN

1000
951

FIG. 10H.

Hmw3.com FDNNGASNIS IARGGAKEK. DINNTSSLNT TTNSDTTYRT IIKGNI SNKS
 Hmw4.com FTNNNGTANIN IKQGVVKLQG DINNKGLNI TTNASGTQKT IINGNITNEK
 Hmw1.com FDNKGNSNIS IAKGGARFK. DIDNSKNLSI TTNSSSTYRT IISGNITNKN
 Hmw2.com FTNNGTAEIN ITQGVVKLG. NVTNDGDLNT TTHAKRNQRS TIGGDIINNK

64 / 68

1001	Hmw3.com GDLNIDKKSS DAEIQIGGNI SQKEGNLTIS SDKVNITNQI TIKAGVEGGR	1050	Hmw3.com SDSSEAENAN LTIQTKEKL AGDLNISGFN KAEITAKNGS DLTIGNASGG	1100
Hmw4.com GDLNIKNIKA DAEIQIGGNI SQKEGNLTIS SDKVNITNQI TIKAGVEGGR	Hmw1.com GDLNITNEGS DTEMQIGGDI SQKEGNLTIS SDKINITKQI TIKAGVDGEN	Hmw4.com SDSSEAENAN LTIQTKEKL AGDLNISGFN KAEITAKNGS DLTIGNASGG	Hmw1.com SDSDATNNAN LTIKTKELKL TQDLNISGFN KAEITAKDGS DLTIGNNTNSA	Hmw2.com SSSDATSNAN LTIKTKELKL TEDLSISGFN KAEITAKDGR DLTIGN SNDG
Hmw2.com GSLNITDSNN DAEIQIGGNI SQKEGNLTIS SDKINITKQI TIKKGIDGED				

FIG. 101.

1101	1150	1151	1200	1201	
Hmw3.com	N..ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT..SNGS SNAGNDNSTG				
Hmw4.com	N..ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT..SNGS SNAGNDNSTG				
Hmw1.com	D.GTNAKKVT FNQVKDSKIS ADGHKVTLHS KVETSGSNNN TEDSSDNNAG				
Hmw2.com	NSGAEAKKVT FNNVKDSKIS ADGHNVTLNS KVKTSSSNNG RESNSDNDTG				
			65 / 68		
Hmw3.com	LTISAKDVTV NNNVTSHKTI NISAAGNVT TKEGTTINAT TGSVEVTAQN				
Hmw4.com	LTISAKDVTV NNNVTSHKTI NISAAGNVT TKEGTTINAT TGSVEVTAQN				
Hmw1.com	LTIDAKNVTV NNNNITSHKAV SISATSGEIT TKTGTTINAT TGNVEIT...				
Hmw2.com	LTITAKNVEV NKDVTSLKTV NITA. SEKVT TTAGSTINAT NGKASIT...				
Hmw3.com	GTIKGNIITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGIES				
Hmw4.com	GTIKGNIITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGIES				
Hmw1.comAQ TGDIKGIES				

FIG. 10J.

Hmw2.com TK T

1251	Hmw3.com	TSGNNVNITAS	GNTLKVSNIT	QDVTVTADA	GALTGTAGST	ISATTGNANI
	Hmw4.com	TSGNNVNITAS	GNTLKVSNIT	QDVTVTADA	GALTGTAGST	ISATTGNANI
	Hmw1.com	SSGSVTLTAT	EGALAVSNIS	GNTVTVTANS	GALTLAGST	IKG.TESVTT
	Hmw2.com

66 / 68
1350
Hmw3com TTKTGADINGK VESSSSGSVTL VATGATLAVG NISGNTVIT ADSGKLITSTV
1301

1351	Hmw3.com	GSTINGTNSV	TTSSOSGDIE	GTISGNTVNV	TASTGDLTIG	NSAKVEAKNG
1400	Hmw4.com	GSTINGTNSV	TTSSQSGDIE	GTISGNTVNV	TASTGDLTIG	NSAKVEAKNG

FIG. 10K.

Hmw1com SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG
 Hmw2com SKIEAKSGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG

1401 1450

Hmw3com AATLTAESGK LTTQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNNTTG
 Hmw4com AATLTAESGK LTTQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNNTTG
 Hmw1com AATLTTSSGK LTTEASHSHIT SAKGQVNLSA QDSSVAGSIN AANVTLNNTTG
 Hmw2com AATLTATGNT LTTEAGSSIT STKGQVDLLA QNSSIAGNIN AANVTLNNTTG
 67 / 68

1451 1500

Hmw3com TLTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNNAT NASGSGNVTAA
 Hmw4com TLTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNNAT NASGSGNVTAA
 Hmw1com TLTTVKGSNI NATSGTLTIN AKDAELNGAA LGNHHTVVNNAT NANGSGSVIA
 Hmw2com TLTTVAGSDI KATSGTLTIN AKDAKLNDA SGDSTEVNAV NASGSGSVTA

1501 1550

FIG. 10L.

Hmw3.com	KTSSSVNITG	DLNTINGLNI	ISENGRNTVR	LRGKEIDVKY	IOPGVASVEE		
Hmw4.com	KTSSSVNITG	DLNTINGLNI	ISENGRNTVR	LRGKEIDVKY	IOPGVASVEE		
Hmw1.com	TTSSRVVNITG	DLITINGLNI	ISKNGINTVL	LKGVKIDVKY	IOPGIASVDE		
Hmw2.com	ATSSSVNITG	DLNTVNGLNI	ISKDGRTNVR	LRGKEIEVKY	IOPGVASVEE		
						1551	1600
Hmw3.com	VIEAKRVLKEK	VKDLSDEERE	TLAKLGVSAV	RFVEPNNAIT	VNTQNEFTTK		
Hmw4.com	VIEAKRVLKEK	VKDLSDEERE	TLAKLGVSAV	RFVEPNNAIT	VNTQNEFTTK	68	/68
Hmw1.com	VIEAKRILEK	VKDLSDEERE	ALAKLGVSAV	RFIEPNNTIT	VDTQNEFATR		
Hmw2.com	VIEAKRVLKEK	VKDLSDEERE	TLAKLGVSAV	RFVEPNNTIT	VNTQNEFTTR		
						1601	1632
Hmw3.com	PSSQVTISEG	KACFSSGNGA	RVCTNVADDG	QQ			
Hmw4.com	PSSQVTISEG	KACFSSGNGA	RVCTNVADDG	QQ			
Hmw1.com	PLSRIVISEG	RACFSNSDGA	TVCVNIAIDNG	R.			
Hmw2.com	PSSQVIISEG	KACFSSGNGA	RVCTNVADDG	QP			

INTERNATIONAL SEARCH REPORT

In international application No.
PCT/US 92/02550

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) : A61K 39/02

US CL : 424/92

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/92; 435/851

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Gene-Seq, APS, Biosis, Embase, Scisearch, Chem Abstracts

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Pediatric Infectious Disease Journal, Volume 9, No. 5, issued 05 May 1990, Barenkamp et al, "Development of Serum Bactericidal Activity Following Nontypable Haemophilus influenzae Acute Otitis Media", pages 333-339, see page 337.	1-3
Y	Pediatric Research, Volume 29, No. 4 part 2, issued 1991, Barenkamp S. J., "DNA Sequence Analysis of Genes for Nontypable Haemophilus influenza High Molecular Weight Outer Membrane Proteins which are Targets of Bactericidal Antibody", see page 167A, column 1, abstract no. 985.	1-3

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
* Special categories of cited documents:		"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
*'A'	document defining the general state of the art which is not considered to be part of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
*'E'	earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
*'L'	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
*'O'	document referring to an oral disclosure, use, exhibition or other means		
*'P'	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 09 MAY 1994	Date of mailing of the international search report JUN 02 1994
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer JULIE KRSEK-STAPLES Telephone No. (703) 308-0196 <i>Jill Warden for</i>

THIS PAGE BLANK (USPTO)