Vorkurs Mathematik 2019 | Aufgaben zum Thema

Folgen und Grenzwerte

× Aufgabe 1

Notiere jeweils die ersten fünf Folgenglieder der durch a_n definierten Folge (a_n) . Falls nichts anderes angegeben ist, gilt $n \in \mathbb{N}$.

1.
$$a_n = \sum_{k=1}^n 2k$$

2.
$$a_n = \frac{1}{2n-1}$$
, $n \in \mathbb{N}_0$ 3. $a_n = \frac{(-1)^n}{n+5}$

3.
$$a_n = \frac{(-1)^n}{n+5}$$

4.
$$a_n = c^n$$
, $n \in \mathbb{N}_0, c \in \mathbb{R} \setminus \{0\}$ 5. $a_n = \log_4(2^n)$

5.
$$a_n = \log_4(2^n)$$

× Aufgabe 2

(a) Untersuche die Folge (a_n) auf Monotonie, mit

$$1. a_n = -\frac{5}{n}$$

1.
$$a_n = -\frac{5}{n}$$
 2. $a_n = \lambda^n$, $0 < \lambda < 1$ 3. $a_n = (-1)^{n+1} \cdot n$

3.
$$a_n = (-1)^{n+1} \cdot r$$

(b) Bestimme bei den drei in (a) definierten Folgen die größte untere Schranke, die kleinste obere Schranke sowie die kleinste Schranke.

× Aufgabe 3

- (a) Welche der Folgen aus Aufgabe 1 konvergieren? Gegen welchen Grenzwert konvergieren diese?
- (b) Beweise deine Aussage bei der ersten konvergenten Folge.

Aufgabe 4

- 1. Betrachte die Folge (a_n) mit $a_n = \frac{15n 5n^2 + 3n^3}{n^3 10n}$.
 - a) Konvergiert (a_n) ? Falls ja, was ist ihr Grenzwert?
 - b) Ist (a_n) beschränkt? Hinweis: Ein Blick auf Aufgabe 8 kann helfen. ©

- 2. Beweise, dass konstante Folgen konvergieren.
- 3. Zeige mittels ε -Beweis, dass (a_n) mit $a_n = \frac{(-1)^n}{n}$ konvergiert.

Aufgabe 5

Sei (a_n) eine Folge mit dem Bildungsgesetz $a_n = 44 - \frac{3 \cdot (-1)^n}{2n}$.

- 1. Skizziere die ersten fünf Folgenglieder in einem Koordinatensystem.
- 2. Konvergiert die Folge (a_n) ? Falls ja, welchen Grenzwert a hat die Folge? Zeichne ihn und einen ε -Streifen mit $\varepsilon = 1$ gegebenenfalls mit in das Koordinatensystem.
- 3. Bestimme jeweils zum gegebenen ε das kleinste $n_0 \in \mathbb{N}$, sodass für alle $n \geq n_0$ gilt: $|a_n a| < \varepsilon$.

a)
$$\varepsilon = 1$$
 b) $\varepsilon = \frac{1}{2}$

$$c) \varepsilon = \frac{1}{10}$$

Aufgabe 6

Zeige, dass die Folge (c_n) mit $c_n = (-1)^n$ divergiert.

Hinweis: Erinnere dich an das Negieren von Aussagen aus dem Quantorenlogik-Vortrag und negiere die ε -Definition

$$\exists a \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : |a_n - a| < \varepsilon$$

der Konvergenz mit Grenzwert a (diesen Grenzwert gibt es ja nicht, wenn die Folge divergiert – warum ergibt dann der Quantor vor dem a in der negierten Aussage Sinn?). Dann weißt du, was du zeigen musst, um Divergenz nachzuweisen. Eine Skizze kann anschließend auch immer gute Denkanstöße liefern.

Aufgabe 7

Finde und korrigiere den Fehler:

Behauptung: (b_n) mit $b_n = \frac{\cos(n)}{n+1} + 5$ konvergiert nicht gegen 5.

Beweis: Sei $\varepsilon > 0$ beliebig, $n_0 = 56$. Dann gilt für alle $n \ge n_0$:

$$|b_n - b| = \left| \frac{\cos(n)}{n+1} + 5 - 5 \right| = \left| \frac{\cos(n)}{n+1} \right| = \frac{|\cos(n)|}{|n+1|} \le \frac{1}{n} \le \frac{1}{n_0} < 1 \not< \varepsilon$$

! Aufgabe 8

Beweise den folgenden Satz:

Satz I

Jede konvergente Folge ist beschränkt.

Hinweis: Mache vielleicht zunächst eine Skizze, um dir die Aussage bildlich klar zu machen.

! Aufgabe 9

Findest du heraus, ob (a_n) mit $a_n = \left(1 - \frac{1}{n}\right)^n$ konvergiert? Falls ja, wogegen?

Hinweis: Führe die Substitution k=n-1 durch. Es darf außerdem verwendet werden, dass $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$ gilt.

