Appreciating O₂

- Oxygen is a diradical held by weak bonds (BDE = 498 kJ/mol)
- Contrast to H₂ (872 kJ/mol)

Energy is required for all activities – ecological and industrial – a universal currency

Energy is critical to Human well-being

Sources of Energy

H2+02-> H20= -460kT/hole

$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$		Moles of	ΔH (calc)
$2C_8H_{18} + 25O_2 \longrightarrow CO_2 + 2H_2O$	(kJ/mol)	O_2	(kJ/mol)
C21450H	-890	2	2×-460 =-920
	-5452	12.5	12.5X-460 5750
62H50H	-1367	3	-1320
Sucrose	-5520	12	~5644

• Combustion of any "fuel" is very favorable due to the exothermic nature of the reaction ($^460 \text{ kJ/mol of O}_2$) leading to the formation of water

O₂ Production and Utilization in Nature

Coupled to production of ATP

N-side

8 H+

Reactivity of O₂

Why doesn't O₂ react spontaneously?

Triplet and Singlet O₂

Fiplet & Singlet recultin

Spin-Forbidden

Fxitee state > O₂ in sught

$$\bigcirc \xrightarrow{10_2} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$$

O₂ binding to Heme group

Each subunit of hemoglobin or myoglobin contains a heme.

•Binds one molecule of oxygen

•Heterocyclic porphyrin derivative

•Specifically protoporphyrin [

The iron must be in the Fe(II) form or reduced form. (ferrous oxidation) state.

Binding of O₂ vs CO

