PRIMOS, TEORIA FUNDAMENTAL DE LA ARITMETICA, TEOREMA CHINO DEL RESTO RSA

CRYPTOGRAPHY AND NETWORK SECURITY (BEHROUZ FOROUZAN)

MATHEMATICS OF CRYPTOGRAPHY

CAP. 9, 10

NÚMEROS PRIMOS

Un primo es divisible por el mismo y por 1

Ejemplo:

• ¿Cuál es el primo más pequeño?

• Liste los primos más pequeños que 10 10: 2, 3, 5, y 7.

• Coprimos:

- Dos enteros a y b son coprimos, o relativamente primos, si mcd(a,b)=1
- O Si p es un primo, entonces todos los enteros desde 1 a p-1 son relativamente primos con p.

Primos: Cardinalidad

• Hay infinitos números primos o existe un límite?

Hay infinitos números primos

 Dado un número n, cuántos primos son más pequeños o menores que n?

 $\Pi(n)$ = encuentra números primos más pequeños o iguales a n.

$$\pi(1) = 0$$
 $\pi(2) = 1$ $\pi(3) = 2$ $\pi(10) = 4$ $\pi(20) = 8$ $\pi(50) = 15$ $\pi(100) = 25$

$$[n/(\ln n)] < \pi(n) < [n/(\ln n - 1.08366)]$$

Comprobación de Primalidad

- Dado un número "n" ¿cómo podemos determinar si "n" es un primo?
 - O Si el número es divisible por todos los primos menores que

Ejemplo:

- Es 97 primo?
 - 0 $\sqrt{97} = 9$. Los primos menores a 9 son 2, 3, 5, y 7. Es primo
- Es 301 primo?
 - o $\sqrt{301}$ = 17. Los primos menores a 17 son 17 2, 3, 5, 7, 11, 13, y 17. 7 divide a 301.
 - 301 no es primo.

La criba de Eratosthenes

- Método que encuentra todos los primos menores que n.
- Encontrar todos los números menores que 100.

 Table 9.1
 Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	5 4	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

La función Phi-Euler

• La función phi-Euler, $\phi(n)$, encuentra el número de enteros que son más pequeños que n y relativamente primos a n.

- 1. $\phi(1) = 0$.
- 2. $\phi(p) = p 1$ if p is a prime.
- 3. $\phi(m \times n) = \phi(m) \times \phi(n)$ if m and n are relatively prime
- 4. $\phi(p^e) = p^e p^{e-1}$ if p is a prime.

La función Phi-Euler

• Las 4 reglas pueden ser combinadas,

n puede ser factorizado como

$$n = p_1^{e_1} \times p_2^{e_2} \times \dots \times p_k^{e_k}$$

$$\phi(n) = (p_1^{e_1} - p_1^{e_1-1}) \times (p_2^{e_2} - p_2^{e_2-1}) \times \dots \times (p_k^{e_k} - p_k^{e_k-1})$$

La dificultad de encontrar $\phi(n)$ depende de la dificultad de encontrar la factorización de n.

La función Phi-Euler

Ejemplos:

• ¿Cuál es el valor de φ(13)?

$$\phi(13) = (13 - 1) = 12$$
. (propiedad 2)

• ¿Cuál es el valor de φ(10)?

$$\phi(10) = \phi(2) \times \phi(5) = 1 \times 4 = 4 \text{ (Propiedad 3)}$$

• ¿Cuál es el valor de $\phi(240)$?

$$240 = 2^4 \times 3^1 \times 5^1$$
.
 $\phi(240) = (2^4 - 2^3) \times (3^1 - 3^0) \times (5^1 - 5^0) = 64$ (propiedad 4)

- Podemos decir que $\phi(49) = \phi(7) \times \phi(7) = 6 \times 6 = 36$?
 - O No, m y n deben ser relativamente primos
 - $049 = 7^2$: $\phi(49) = 7^2 7^1 = 42$ (propiedad 4)

La función Phi-Euler: Ejemplos

• Cuál es el número de elementos en \mathbb{Z}_{14}^* ?

$$\phi(14) = \phi(7) \times \phi(2) = 6 \times 1 = 6.$$

Los elementos son: 1, 3, 5, 9, 11, y 13.

Si n > 2, el valor de $\phi(n)$ es par

Pequeño Teorema de Fermat

- Primera versión
 - o Si "p" es primo y "a" es un entero, tal que "p" no divide a "a"

$$a^{p-1} \equiv 1 \mod p$$

- Segunda versión
 - o Si "p" es primo y "a" es un entero

$$a^p \equiv a \bmod p$$

Pequeño Teorema de Fermat: Aplicaciones

Exponenciación

Ejemplos:

- O Encontrar el resultado de 6¹⁰ mod 11
 - \times 6¹⁰ mod 11 = 1. (Primera versión p=11)
- o Encontrar el resultado de 3¹² mod 11 (segunda versión)

$$3^{12} \mod 11 = (3^{11} \times 3) \mod 11 = (3^{11} \mod 11) (3 \mod 11) = (3 \times 3) \mod 11 = 9$$

Pequeño Teorema de Fermat: Aplicaciones

Inversa multiplicativa:

o Si "p" es primo y "a" es un enero y "p" no divide "a",

$$a^{-1} \mod p = a^{p-2} \mod p$$

Ejemplos:

- a. $8^{-1} \mod 17 = 8^{17-2} \mod 17 = 8^{15} \mod 17 = 15 \mod 17$
- b. $5^{-1} \mod 23 = 5^{23-2} \mod 23 = 5^{21} \mod 23 = 14 \mod 23$
- c. $60^{-1} \mod 101 = 60^{101-2} \mod 101 = 60^{99} \mod 101 = 32 \mod 101$
- d. $22^{-1} \mod 211 = 22^{211-2} \mod 211 = 22^{209} \mod 211 = 48 \mod 211$

Teorema de Euler

- Primera versión
 - Si a y n son coprimos, entonces

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

- Segunda versión
 - \circ Si n = pxq, a<n, y k un entero

$$a^{k \times \phi(n) + 1} \equiv a \pmod{n}$$

La segunda versión es usada en el RSA

Teorema de Euler

Exponenciación

Ejemplos:

- o 6²⁴ mod 35
 - \times 6²⁴ mod 35 = 6^{ϕ (35)} mod 35 = 1.
- o 20⁶² mod 77
 - \times k = 1 (segunda versión),

Teorema de Euler

Inversa multiplicativa:

o Si "n" y "a" son coprimos:

$$a^{-1} \bmod n = a^{\phi(n)-1} \bmod n$$

Ejemplos:

- a. $8^{-1} \mod 77 = 8^{\phi(77)-1} \mod 77 = 8^{59} \mod 77 = 29 \mod 77$
- b. $7^{-1} \mod 15 = 7^{\phi(15)-1} \mod 15 = 7^7 \mod 15 = 13 \mod 15$
- c. $60^{-1} \mod 187 = 60^{\phi(187)-1} \mod 187 = 60^{159} \mod 187 = 53 \mod 187$
- d. $71^{-1} \mod 100 = 71^{\phi(100)-1} \mod 100 = 71^{39} \mod 100 = 31 \mod 100$

Test de Primalidad

- Algoritmos determinísticos
 - o Algoritmo de la divisibilidad
 - Algoritmo AKS
- Algoritmos probabilísticos
 - Test de Fermat
 - o Test de la raíz cuadrada
 - O Test de Miller-Rabin

Algoritmo Determinístico

Algoritmo de la divisibilidad

Algorithm 9.1 Pseudocode for the divisibility test

```
Divisibility_Test (n)  // n is the number to test for primality { r \leftarrow 2 while (r < \sqrt{n}) { if (r \mid n) return "a composite" r \leftarrow r + 1 } return "a prime" }
```

FACTORIZACION

TEOREMA FUNDAMENTAL DE LA ARITMÉTICA

• **Teorema**: Un número entero n>1 ó es primo o puede ser escrito de manera única, como un producto de números primos,

$$n = p_1^{e_1} \times p_2^{e_2} \times \cdots \times p_k^{e_k}$$

Ejemplo:

$$\circ$$
 360 = 2³ x 3² x 5

Aplicación:

o Máximo común divisor:

$$a = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_k^{a_k}$$

$$b = p_1^{b_1} \times p_2^{b_2} \times \cdots \times p_k^{b_k}$$

$$\gcd(a, b) = p_1^{\min(a_1, b_1)} \times p_2^{\min(a_2, b_2)} \times \cdots \times p_k^{\min(a_k, b_k)}$$

Ejemplo:

• a = 588, b = 936 $588 = 2^2 \cdot 3 \cdot 7^2$ $936 = 2^3 \cdot 3^2 \cdot 13$ mcd(a,b) = 12

Métodos de Factorización

Método de división

Algorithm 9.3 Pseudocode for trial-division factorization

```
Trial_Division_Factorization (n)
                                                        // n is the number to be factored
    a \leftarrow 2
   while (a \le \sqrt{n})
        while (n \mod a = 0)
             output a
                                                       // Factors are output one by one
             n = n / a
        a \leftarrow a + 1
   if (n > 1) output n
                                                     // n has no more factors
```

Métodos de Factorización

Método de división

Ejemplo:

o Encuentre los factores de 1233

$$1233 = 3^2 \times 137$$

o Encuentre los factores de 1523357784

$$1523357784 = 2^{3} \times 3^{2} \times 13 \times 37 \times 43987$$

Métodos de Factorización

- Método de Fermat
- Método de Pollard p-1
- Método rho Pollard
- Criba cuadrática
- Criba de campos númericos

TEOREMA CHINO DEL RESTO

• TCR es usado para resolver un conjunto de ecuaciones de congruencia con una variable, pero con diferentes módulos, que son coprimos entre si

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
...
 $x \equiv a_k \pmod{m_k}$

- Solución:
- 1. Encontrar $M=m_1\times m_2\times \ldots \times m_k$ M es el módulo común.
- 2. Encontrar

```
M_1 = M/m_1,

M_2 = M/m_2, ...,

M_k = M/m_k
```

- 3. Encontrar la inversa multiplicativa M_1^{-1} , M_2^{-1} , , M_k^{-1} de M_1 , M_2 , ..., M_k usando su correspondiente módulo $(m_1, m_2, ..., m_k)$.
- 4. La solución de esta ecuación es:

Ejemplo:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

•
$$M = 3 \times 5 \times 7 = 105$$

$$M_1 = 105 / 3 = 35$$

$$M_2 = 105 / 5 = 21$$
,

$$M_3 = 105 / 7 = 15$$

• Las inversas son:

$$M_1^{-1} = 2,$$

$$M_2^{-1} = 1$$
,

$$M_3^{-1} = 1$$

•
$$x = (2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1) \mod 105 = 23 \mod 105$$

Ejemplo:

• Encuentre un entero que tiene resto 3 cuando es dividido por 7 y 13, pero es divisible por 12

$$x = 3 \mod 7$$
$$x = 3 \mod 13$$
$$x = 0 \mod 12$$

CRIPTOGRAFIA DE CLAVE PUBLICA

- Rivest, Shamir & Adleman of MIT in 1977
- Usa un esquema de clave pública
- Basado en exponenciación módulo "n"
- Usa enteros grandes (Ej. 1024 bits)
- Seguridad debido al costo de factorización de números grandes

RSA – Generación de claves

- Cada usuario genera una clave pública y privada al:
 - Seleccionar dos primos aleatorios grandes: "p" y""q"
 - o Calcula N= pxq
 - \times Note que \varnothing (N) = (p-1) (q-1)
 - o Selecciona una clave pública aleatoria "e"
 - ightharpoonup Donde 1<e< \varnothing (N), gcd(e, \varnothing (N))=1
 - o Resuelve la ecuación para encontrar la clave privada "d"
 - \times e.d=1 mod \varnothing (N) and $0 \le d \le N$
 - o Publica la clave pública: <e,N>
 - o Guarda la clave privada: <d,N>, <d,p,q>

RSA – Generación de claves

Algorithm 10.2 RSA Key Generation

```
RSA_Key_Generation
   Select two large primes p and q such that p \neq q.
   n \leftarrow p \times q
   \phi(n) \leftarrow (p-1) \times (q-1)
   Select e such that 1 < e < \phi(n) and e is coprime to \phi(n)
   d \leftarrow e^{-1} \mod \phi(n)
                                                            // d is inverse of e modulo \phi(n)
   Public_key \leftarrow (e, n)
                                                             // To be announced publicly
   Private_key \leftarrow d
                                                              // To be kept secret
   return Public_key and Private_key
```

RSA – Cifrado, Descifrado

- Para cifrar un mensaje M, el emisor
 - Obtiene la clave pública del receptor <e, N>
 - o calcula: C=Me mod N, donde 0 ≤ M < N
- Para descifrar el mensaje C el receptor:
 - O Usa su clave privada <d, N>
 - o calcula: M=Cd mod N
- Note que el mensaje M debe ser más pequeño que el módulo N (bloques)

RSA – Cifrado, Descifrado

Cifrado

Algorithm 10.3 RSA encryption

```
RSA_Encryption (P, e, n)  // P is the plaintext in \mathbb{Z}_n and \mathbb{P} < n

{
    C \leftarrow Fast_Exponentiation (P, e, n)  // Calculation of (\mathbb{P}^e \mod n)
    return C
}
```

RSA – Cifrado, Descifrado

Descifrado

Algorithm 10.4 RSA decryption

```
RSA_Decryption (C, d, n)  //C is the ciphertext in \mathbb{Z}_n {
P \leftarrow \mathbf{Fast\_Exponentiation} (C, d, n)  // \mathbf{Calculation} \text{ of } (\mathbf{C}^d \bmod n)
\mathbf{return} \mathbf{P}
}
```

Ejemplo 1:

- Bob escoge:
 - o p= 7
 - o q=11
 - \circ calcula n = 77.
 - El valor de ϕ (n) = (7 1)(11 1) = 60.
 - Escoge e = 13,
 - o d=37 (Note que $e \times d \mod 60 = 1$ (son inversas))
- Imagine que Alice quiere enviar un texto plano 5 a Bob. Ella usa e=13 para cifrar 5.

Plaintext: 5

 $C = 5^{13} = 26 \mod 77$

Ciphertext: 26

 Bob recibe el texto cifrado 26 y usa la clave privada 37 para descifrar el texto cifrado:

Ciphertext: 26

 $P = 26^{37} = 5 \mod 77$

Plaintext: 5

Ejemplo 1:

 Asuma que otra persona, John, quiere enviar un mensaje a Bob. John quiere enviar el texto plano 63, usa la clave pública de Bob

Plaintext: 63

$$C = 63^{13} = 28 \mod 77$$

Ciphertext: 28

 Bob recibe el texto cifrado 28 y usa su clave privada 37 para descifrar el texto cifrado

Ciphertext: 28

$$P = 28^{37} = 63 \mod 77$$

Plaintext: 63

Ejemplo 2:

- 1. Selecciona primos: p=17 & q=11
- 2. Calcula $n = pq = 17 \times 11 = 187$
- 3. Calcula $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Selectiona e : gcd(e, 160) = 1; escoge e=7
- 5. Determina d: d.e=1 (mod160) y (d < 160) El valor de d=23</p>
- 6. Publica la clave pública <7, 187>
- 7. Guarda la clave privada <23, 187>

Ejemplo 2:

Dado un mensaje M=88

• Cifrado:

$$\circ$$
 C = 88⁷ mod 187 = 11

Descifrado

$$OM = 11^{23} \mod 187 = 88$$

Ejemplo 3:

- Jennifer crea un par de claves. Ella escoge p = 397 y q = 401. Calcula n = 159197. Entonces calcula $\phi(n) = 158400$. Escoge e = 343 y d = 12007. Muestre como Ted puede enviar un mensaje a Jennifer si conoce e y e
- Suponga que Ted quiere enviar el mensaje "NO" a Jennifer.

Ejemplo 4:

RSA

p =

961303453135835045741915812806154279093098455949962158225831508796 479404550564706384912571601803475031209866660649242019180878066742 1096063354219926661209

q =

 $120601919572314469182767942044508960015559250546370339360617983217\\314821484837646592153894532091752252732268301071206956046025138871\\45524969000359660045617$

n =

 $115935041739676149688925098646158875237714573754541447754855261376\\147885408326350817276878815968325168468849300625485764111250162414\\552339182927162507656772727460097082714127730434960500556347274566\\628060099924037102991424472292215772798531727033839381334692684137\\327622000966676671831831088373420823444370953$

 $\phi(n) =$

 $115935041739676149688925098646158875237714573754541447754855261376\\147885408326350817276878815968325168468849300625485764111250162414\\552339182927162507656751054233608492916752034482627988117554787657\\013923444405716989581728196098226361075467211864612171359107358640\\614008885170265377277264467341066243857664128$

Ejemplo 4:

<i>e</i> =	35535
<i>d</i> =	580083028600377639360936612896779175946690620896509621804228661113 805938528223587317062869100300217108590443384021707298690876006115 306202524959884448047568240966247081485817130463240644077704833134 010850947385295645071936774061197326557424237217617674620776371642 0760033708533328853214470885955136670294831

Alicia quiere enviar "THIS IS A TEST"

P = 1907081826081826002619041819

• $C = P^e$

C = 475309123646226827206365550610545180942371796070491716523239243054 452960613199328566617843418359114151197411252005682979794571736036 101278218847892741566090480023507190715277185914975188465888632101 148354103361657898467968386763733765777465625079280521148141844048 14184430812773059004692874248559166462108656