正規分布を使った ベイズ的モデリング

正田 備也 masada@rikkyo.ac.jp

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

正規ガンマ分布の応用

指数型分布族と共役事前分布

単変量正規分布

- ightharpoons 単変量正規分布は、 $\mathbb{R}=(-\infty,\infty)$ 上に定義される
- ightharpoonup 単変量正規分布のパラメータは、平均 μ と標準偏差 σ
 - lacktriangle 平均 μ 、標準偏差 σ の単変量正規分布を、以下、 $\mathcal{N}(\mu,\sigma^2)$ と書く
 - lacktriangle 確率変数 x が $\mathcal{N}(\mu, \sigma^2)$ に従うことを、以下、 $x \sim \mathcal{N}(\mu, \sigma^2)$ と書く
- lackbox 単変量正規分布 $x \sim \mathcal{N}(\mu, \sigma^2)$ の確率密度関数:

$$p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \tag{1}$$

多変量正規分布

ト 平均ベクトル
$$\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$

$$egin{bmatrix} egin{bmatrix} \mu_d \ \end{pmatrix}$$
 $lacktriangle$ 分散共分散行列 $oldsymbol{\Sigma} = egin{bmatrix} \sigma_{11} & \cdots & \sigma_{1d} \ dots & \ddots & dots \ \sigma_{1d} & \cdots & \sigma_{dd} \ \end{pmatrix}$ (ただし $oldsymbol{\Sigma} \mid oldsymbol{\Xi} \mid oldsymbol{\Delta} \mid oldsymbol{\Xi} \mid o$

$$lackbox$$
 確率密度関数(ただし $ar{|\Sigma|}\equiv {\sf det}\Sigma$):

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\boldsymbol{x} - \boldsymbol{\mu})^{\intercal} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2}\right\}$$

多変量正規分布(共分散行列が対角行列の場合)

- ▶ 実際には共分散行列を対角行列と仮定することも多い
 - ▶ ∑の扱いがしばしば数値計算的に難しいため
- $ightharpoonup \Sigma$ が $\sigma_1^2,\ldots,\sigma_d^2$ を対角成分とする対角行列のとき、密度関数は単変量正規分布の密度関数の積となる

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2}\right\}$$
$$= \prod_{j=1}^d \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right) \tag{3}$$

単変量正規分布に従う観測データの尤度

- ▶ 与えられている観測データを $\mathcal{D} \equiv \{x_1, \dots, x_N\}$ とする ▶ 各 x_i は、 $-\infty < x_i < \infty$ を満たす実数値とする
- ト 各観測データ x_i を同じ正規分布 $\mathcal{N}(\mu, \sigma^2)$ に独立にしたがうものとしてモデル化することにする(つまり i.i.d. を仮定)
- ▶ このとき、データセット \mathcal{D} の尤度は以下のように μ と σ の 関数として書くことができる:

$$p(\mathcal{D}; \mu, \sigma) = \prod_{i=1}^{N} p(x_i; \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

(4) 5 / 36

単変量正規分布の最尤推定

▶ 式(4)より、観測データ $\mathcal{D} \equiv \{x_1,\ldots,x_N\}$ の対数尤度は

$$\ln p(\mathcal{D}; \mu, \sigma) = -\frac{N}{2} \ln(2\pi\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$
 (5)

ightharpoonup この対数尤度を最大化する μ と σ を求めると

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{N} = \bar{x} , \ \hat{\sigma}^{2} = \frac{\sum_{i} (x_{i} - \bar{x})^{2}}{N}$$
 (6)

/ 36

多変量正規分布の最尤推定 (1/2)

lacktriangle 観測データ $\mathcal{D} \equiv \{m{x}_1,\ldots,m{x}_N\},m{x}_i \in \mathbb{R}^d$ の対数尤度は

$$p(\mathcal{D}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{N} \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left[-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})\right]$$
(7

ightharpoonup この対数尤度を最大化する μ と Σ を求めると

$$\hat{\boldsymbol{\mu}} = \frac{\sum_{i} \boldsymbol{x}_{i}}{N} = \bar{\boldsymbol{x}}$$
, $\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{i} (\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}) (\boldsymbol{x}_{i} - \bar{\boldsymbol{x}})^{\mathsf{T}}$ (8)

多変量正規分布の最尤推定 (2/2)

- ▶ 共分散行列が対角行列だと仮定する
- lackbox 観測データ $\mathcal{D} \equiv \{oldsymbol{x}_1,\dots,oldsymbol{x}_N\},oldsymbol{x}_i \in \mathbb{R}^d$ の対数尤度は

$$\ln p(\mathcal{D}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \sum_{j=1}^{d} \ln(2\pi\sigma_j^2) - \sum_{i=1}^{N} \sum_{j=1}^{d} \frac{(x_{i,j} - \mu_j)^2}{2\sigma_j^2}$$
(9)

ightharpoonup この対数尤度を最大化する μ と Σ を求めると

$$\hat{\mu}_j = rac{\sum_i x_{i,j}}{N} = ar{x}_j$$
 , $\hat{\sigma}_j^2 = rac{\sum_i (x_{i,j} - ar{x}_j)^2}{N}$

9 / 36

(10)

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

正規ガンマ分布の応用

指数型分布族と共役事前分布

ベイズ的なモデリングとは

- ▶ 統計モデルは観測データの不確かさ uncertainty を表現する
- ► だが、ベイズ的な統計モデリングでは、観測データをもとに して統計モデルの**パラメータを決めること自体にも不確か さ uncertainty がある**と考える
- ▶ そこで、パラメータも確率変数とみなし、パラメータも確率 分布にしたがっているものとしてモデリングする
- ▶ そこで導入されるのが事前分布である
- ▶ 事前分布はパラメータがしたがう確率分布として導入される

単変量正規分布を使うベイズ的モデリング(1)

- ▶ 観測データ $\mathcal{D} \equiv \{x_1, \dots, x_N\}$ の尤度は $p(\mathcal{D}|\mu, \sigma)$
 - ▶ 事前分布を使わないときは $p(\mathcal{D}; \mu, \sigma)$ と書いていた
 - ightharpoonup ベイズ的モデリングでは、 $p(\mathcal{D}|\mu,\sigma)$ と、条件付き確率として書く
 - ightharpoonup 観測変数 x_i だけでなく、 μ と σ も確率変数となるからである
- ightharpoonup まず、 μ についてだけ、それがしたがう事前分布を導入する
 - つまり、σは自由パラメータのままとする
- lacktriangleright μ の事前分布として、正規分布 $\mathcal{N}(\mu_0,\sigma_0^2)$ を選ぶ
- ▶ このとき、正規分布が共役事前分布となる
 - ▶ このことを次の2枚のスライドで示す

共役事前分布としての正規分布(1)

$$p(\mathcal{D}|\mu;\sigma)p(\mu;\mu_{0},\sigma_{0}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right] \times \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{(\mu-\mu_{0})^{2}}{2\sigma_{0}^{2}}\right]$$

$$= \frac{1}{(\sqrt{2\pi})^{N}\sigma^{N}} \exp\left[-\frac{\sum_{i}(x_{i}-\mu)^{2}}{2\sigma^{2}}\right] \times \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{(\mu-\mu_{0})^{2}}{2\sigma_{0}^{2}}\right]$$

$$= \frac{1}{(\sqrt{2\pi})^{N}\sigma^{N}} \exp\left[-\frac{N\mu^{2}-2\sum_{i}x_{i}\mu+\sum_{i}x_{i}^{2}}{2\sigma^{2}}\right] \times \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{\mu^{2}-2\mu_{0}\mu+\mu_{0}^{2}}{2\sigma_{0}^{2}}\right]$$

$$= \frac{1}{(\sqrt{2\pi})^{N+1}\sigma^{N}\sigma_{0}} \exp\left[-\left(\frac{N}{2\sigma^{2}}+\frac{1}{2\sigma_{0}^{2}}\right)\mu^{2}+2\left(\frac{\sum_{i}x_{i}}{2\sigma^{2}}+\frac{\mu_{0}}{2\sigma_{0}^{2}}\right)\mu-\frac{\sum_{i}x_{i}^{2}}{2\sigma^{2}}-\frac{\mu_{0}^{2}}{2\sigma_{0}^{2}}\right]$$

よって

$$p(\mu|\mathcal{D};\sigma,\mu_0,\sigma_0) \propto \exp\left[-\left(\frac{N}{2\sigma^2} + \frac{1}{2\sigma_0^2}\right)\mu^2 + 2\left(\frac{\sum_i x_i}{2\sigma^2} + \frac{\mu_0}{2\sigma_0^2}\right)\mu\right]$$

(12)

指数関数の中身に注目すると・・・

$$\left(\frac{N}{2\sigma^2} + \frac{1}{2\sigma_0^2}\right)\mu^2 - 2\left(\frac{\sum_i x_i}{2\sigma^2} + \frac{\mu_0}{2\sigma_0^2}\right)\mu = \frac{N\sigma_0^2 + \sigma^2}{2\sigma^2\sigma_0^2}\left(\mu^2 - 2\frac{N\sigma_0^2\bar{x} + \sigma^2\mu_0}{N\sigma_0^2 + \sigma^2}\mu\right)
= \frac{N\sigma_0^2 + \sigma^2}{2\sigma^2\sigma_0^2}\left(\mu - \frac{N\sigma_0^2\bar{x} + \sigma^2\mu_0}{N\sigma_0^2 + \sigma^2}\right)^2 + const.$$
(13)

以上より、

$$p(\mu|\mathcal{D}; \sigma, \mu_0, \sigma_0) \propto \exp\left[-\frac{N\sigma_0^2 + \sigma^2}{2\sigma^2\sigma_0^2} \left(\mu - \frac{N\sigma_0^2\bar{x} + \sigma^2\mu_0}{N\sigma_0^2 + \sigma^2}\right)^2\right]$$
(14)

共役事前分布としての正規分布(2)

▶ 事後分布 $p(\mu|\mathcal{D}; \sigma, \mu_0, \sigma_0)$ は、下に示した平均と分散を持つ 正規分布 $\mathcal{N}(\mu_{\mathcal{D}}, \sigma_{\mathcal{D}}^2)$ であることが分かった

$$\mu_{\mathcal{D}} = \frac{N\sigma_0^2 \bar{x} + \sigma^2 \mu_0}{N\sigma_0^2 + \sigma^2} , \ \sigma_{\mathcal{D}}^2 = \frac{\sigma^2 \sigma_0^2}{N\sigma_0^2 + \sigma^2}$$
 (15)

- lacktriangle 平均 $rac{N\sigma_0^2ar x+\sigma^2\mu_0}{N\sigma_0^2+\sigma^2}$ は、ar xと μ_0 を $rac{N}{\sigma^2}$ 対 $rac{1}{\sigma_0^2}$ の割合で混ぜたもの
- ト 分散 $\frac{\sigma^2 \sigma_0^2}{N \sigma_0^2 + \sigma^2}$ の逆数は、 $\frac{N}{\sigma^2}$ と $\frac{1}{\sigma_0^2}$ の和
 - ▶ 分散の逆数を精度 (precision) という

単変量正規分布を使うベイズ的モデリング(2)

- ▶ 観測データ $\mathcal{D} \equiv \{x_1, \dots, x_N\}$ の尤度は $p(\mathcal{D}|\mu, \sigma)$
- ightharpoonup 今度は、 μ と σ^2 の両方について事前分布を導入する
- ト ただし、分散 σ^2 については、その逆数である精度 precision $\tau \equiv \sigma^{-2}$ がしたがう事前分布を導入する
- ▶ このとき、正規ガンマ分布 normal-gamma distribution が共役事前分布となる
- ▶ 正規ガンマ分布の確率密度関数は

$$p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta) = \frac{\beta^{\alpha} \sqrt{\lambda_0}}{\Gamma(\alpha) \sqrt{2\pi}} \tau^{\alpha - \frac{1}{2}} e^{-\beta \tau} e^{-\frac{\lambda_0 \tau (\mu - \mu_0)^2}{2}}$$
(16)

ガンマ分布

- ▶ ガンマ分布は非負実数 [0, ∞) 上に定義される確率分布
- ▶ パラメータ
 - ト shape パラメータ α
 - ightharpoonup rate パラメータ β
- ▶ ガンマ分布の確率密度関数は

$$p(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 (17)

正規ガンマ分布の密度関数の見方

$$p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta) = \frac{\beta^{\alpha} \sqrt{\lambda_0}}{\Gamma(\alpha) \sqrt{2\pi}} \tau^{\alpha - \frac{1}{2}} e^{-\beta \tau} e^{-\frac{\lambda_0 \tau (\mu - \mu_0)^2}{2}}$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha - 1} e^{-\beta \tau} \times \frac{\sqrt{\lambda_0}}{\sqrt{2\pi}} \tau^{\frac{1}{2}} e^{-\frac{\lambda_0 \tau (\mu - \mu_0)^2}{2}}$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha - 1} e^{-\beta \tau} \times \frac{\sqrt{\lambda_0 \tau}}{\sqrt{2\pi}} \exp\left(-\frac{\lambda_0 \tau (\mu - \mu_0)^2}{2}\right)$$
(6)

- ▶ ガンマ分布の密度関数と、正規分布の密度関数との、積
- $ightharpoonup \lambda_0 au$ が、正規分布の精度(分散の逆数)に対応

.8 / 36

共役事前分布としての正規ガンマ分布

以下、事後分布 $p(\mu,\tau|\mathcal{D};\mu_0,\lambda_0,\alpha,\beta)$ も正規ガンマ分布であることを示す。 ベイズ則より $p(\mu,\tau|\mathcal{D};\mu_0,\lambda_0,\alpha,\beta) \propto p(\mathcal{D}|\mu,\tau)p(\mu,\tau;\mu_0,\lambda_0,\alpha,\beta)$ である。右辺は、

$$\begin{split} & p(\mathcal{D}|\mu,\tau)p(\mu,\tau;\mu_{0},\lambda_{0},\alpha,\beta) \\ & = \prod_{i=1}^{N} \sqrt{\frac{\tau}{2\pi}} e^{-\frac{\tau(x_{i}-\mu)^{2}}{2}} \times \frac{\beta^{\alpha}\sqrt{\lambda_{0}}}{\Gamma(\alpha)\sqrt{2\pi}} \tau^{\alpha-\frac{1}{2}} e^{-\beta\tau} e^{-\frac{\lambda_{0}\tau(\mu-\mu_{0})^{2}}{2}} \\ & \propto \tau^{\alpha+\frac{N}{2}-\frac{1}{2}} e^{-\beta\tau} e^{-\frac{\tau}{2}(\sum_{i=1}^{N}(x_{i}-\mu)^{2}+\lambda_{0}(\mu-\mu_{0})^{2})} \\ & = \tau^{\alpha+\frac{N}{2}-\frac{1}{2}} e^{-\beta\tau} e^{-\frac{\tau}{2}\{(\lambda_{0}+N)\mu^{2}-2(\lambda_{0}\mu_{0}+\sum_{i}x_{i})\mu+\lambda_{0}\mu_{0}^{2}+\sum_{i}x_{i}^{2}\}} \\ & \propto \tau^{\alpha+\frac{N}{2}-\frac{1}{2}} \exp\left[-\tau\left(\beta+\frac{(\lambda_{0}\mu_{0}^{2}+\sum_{i}x_{i}^{2})(\lambda_{0}+N)-(\lambda_{0}\mu_{0}+N\bar{x})^{2}}{2(\lambda_{0}+N)}\right)\right] \\ & \times \exp\left[-\frac{\tau}{2}(\lambda_{0}+N)\left(\mu-\frac{\lambda_{0}\mu_{0}+N\bar{x}}{\lambda_{0}+N}\right)^{2}\right] \end{split}$$

19/36

(19)

ここで標本分散を
$$s$$
とおくと、 $s=rac{\sum_i x_i^2}{N} - ar{x}^2$ となるから、

$$(\lambda_0 \mu_0^2 + \sum_i x_i^2)(\lambda_0 + N) - (\lambda_0 \mu_0 + N\bar{x})^2$$

$$= \lambda_0 \sum_i x_i^2 + N\lambda_0 \mu_0^2 + N \sum_i x_i^2 - 2\lambda_0 \mu_0 N\bar{x} - N^2 \bar{x}^2$$

$$= \lambda_0 N(s + \bar{x}^2) + N\lambda_0 \mu_0^2 - 2\lambda_0 \mu_0 N\bar{x} + N^2 s$$

$$= \lambda_0 N(\bar{x} - \mu_0)^2 + Ns(\lambda_0 + N)$$
(20)

よって

$$p(\mu, \tau | \mathcal{D}; \mu_0, \lambda_0, \alpha, \beta) \propto p(\mathcal{D} | \mu, \tau) p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta)$$

$$\propto \tau^{\alpha + \frac{N}{2} - \frac{1}{2}} \exp\left[-\tau \left(\beta + \frac{Ns}{2} + \frac{\lambda_0 N(\bar{x} - \mu_0)^2}{2(\lambda_0 + N)}\right)\right] \exp\left[-\frac{\tau}{2}(\lambda_0 + N)\left(\mu - \frac{\lambda_0 \mu_0 + N\bar{x}}{\lambda_0 + N}\right)^2\right]$$
(21)

この式は、事後分布も正規ガンマ分布であることを示している。

多変量正規分布を使ったベイズ的モデリング

- ▶ 多変量正規分布 $\mathcal{N}(\mu, \Sigma)$ の場合も、平均パラメータ μ につ いては正規分布 $\mathcal{N}(\boldsymbol{\mu}_0, (\beta \boldsymbol{\Lambda})^{-1})$ を事前分布として使う
- ightharpoonup 精度行列 Λ (ただし $\Lambda \equiv \Sigma^{-1}$)については、次のような密 度関数を持つウィシャート分布を事前分布として使う

度関数を持つウィシャート分布を事前分布として使う
$$\mathcal{W}(\boldsymbol{W}, \nu) = B|\boldsymbol{\Lambda}|^{(\nu-D-1)/2} \exp\left(-\frac{1}{2} \text{Tr}(\boldsymbol{W}^{-1}\boldsymbol{\Lambda})\right) \quad (22)$$

 \triangleright B は規格化定数で、以下のような W と ν の関数である

$$B(\mathbf{W}, \nu) = |\mathbf{W}|^{-\nu/2} \left(2^{\nu d/2} \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma\left(\frac{\nu+1-i}{2}\right) \right)^{-1}$$
21/36

共役事前分布としての正規ウィシャート分布

- ▶ 正規ウィシャート分布が多変量正規分布の共役事前分布に なっていることの証明は割愛する
- ► Christopher M. Bishop, *Pattern Recognition and Machine Learning* の Exercise 2.45 参照

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

正規ガンマ分布の応用

指数型分布族と共役事前分布

Rosenthal and Jacobson (1968)の実験

- ▶ IQ スコアの変化の分析
 - ▶ この例は、STA 360/602: Bayesian Methods and Modern Statistics @ Duke University の Module 4 から取った
 - ▶ いわゆる「ピグマリオン効果」を明らかにした実験らしい

▶ 実験の設定

▶ 先生の期待は学生の学修に影響するかを調べたい。まず、年度初めにIQ テストを実施。そして、各クラスから2割の学生を無作為に選び、先生に「この学生は伸びる学生 spurter だ」と告げる。年度終わりにまたIQ テストを実施。IQ スコアの変化を調べる。

データ例

```
#spurters
x \leftarrow c(18, 40, 15, 17, 20, 44, 38)
#controls
y \leftarrow c(-4, 0, -19, 24, 19, 10, 5, 10,
      29. 13. -9. -8. 20. -1. 12. 21.
      -7. 14. 13. 20. 11. 16. 15. 27.
      23. 36. -33. 34. 13. 11. -19. 21.
      6. 25. 30. 22. -28. 15. 26. -1. -2.
      43. 23. 22. 25. 16. 10. 29)
igData <- data.frame(Treatment =
      c(rep("Spurters", length(x)).
      rep("Controls". length(v))).
      Gain = \mathbf{c}(x, y)
```

分析の方法

- ▶ 知りたいのは、spurters の平均スコア μ_S と、controls の平均スコア μ_C とについて、 $\mu_S > \mu_C$ となる確率
- ▶ サンプル数が少ないため、spurters と controls それぞれの分 散をちゃんと推定できなさそう
- ► そこで、spurters と controls それぞれの平均と分散に、別々 の正規ガンマ分布を事前分布として使う
- ▶ 観測データをもとに事後分布を計算、その事後分布から 10 万のサンプル対を draw し、spurters の事後分布からのサンプ ルのほうが大きかった割合を求める
 - ▶ 分布からのサンプリングについては「統計モデリング2」で 26/36

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

正規ガンマ分布の応用

指数型分布族と共役事前分布

指数型分布族 exponential family

▶ 以下のような形の確率密度関数を持つ確率分布をまとめて、 指数型分布族と呼ぶ

$$p(\boldsymbol{x}|\boldsymbol{\eta}) = h(\boldsymbol{x})g(\boldsymbol{\eta})\exp(\boldsymbol{\eta}^{\mathsf{T}}\boldsymbol{u}(\boldsymbol{x})) \tag{24}$$

- $ightharpoonup \eta$ は分布のパラメータだが、指数型分布族については特に、 自然パラメータ (natural parameter) と呼ばれる
- ▶ $g(\eta)$ は、規格化のために導入されている係数とみなせる ▶ $g(\eta)$ は x を含まないことに注意
- ightharpoonup 確率変数 x がとる値は、スカラーでもベクトルでもよいし、 離散値でも連続値でもよい。 $ightharpoonup_{28}$ /

例. ベルヌーイ分布

▶ 確率質量関数が式(24)の形を持つことを確かめる。

$$p(x|\phi) = \phi^x (1 - \phi)^{1-x}$$

$$= \exp(x \ln \phi + (1 - x) \ln(1 - \phi))$$

$$= (1 - \phi) \exp\left(\ln\left(\frac{\phi}{1 - \phi}\right) \times x\right)$$

注. 例えばコイン投げの場合、x=1 は表、x=0 は裏が出ること表す。

- ト $\eta = \ln\left(\frac{\phi}{1-\phi}\right)$ とすればよい。
- ト すると $g(\eta)=1-\phi=\frac{1}{1+e^{\eta}}=\sigma(-\eta)$ となる。
- ▶ そして h(x) = 1 とすれば式 (24) の形になる。

(25)

指数型分布族の対数尤度

▶ 観測データ $\mathcal{D} = \{x_1, \dots, x_N\}$ が独立に同じ指数型分布族の分布にしたがうとき、 \mathcal{D} の対数尤度は

$$\ln p(\mathcal{D}|\boldsymbol{\eta}) = \ln \prod_{i=1}^{N} p(\boldsymbol{x}_i|\boldsymbol{\eta})$$

$$= \sum_{i=1}^{N} \ln h(\boldsymbol{x}_i) + N \ln g(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\mathsf{T}} \sum_{i=1}^{N} \boldsymbol{u}(\boldsymbol{x}_i) \quad (26)$$

ト このとき、 $\frac{\partial}{\partial \eta} \ln p(\mathcal{D}|\eta) = 0$ とおいて η を求める計算(最尤推定でおこなう計算)は、どういう計算になるだろうか?

ここで、 $\frac{1}{a(n)} = \int h(x) \exp(\boldsymbol{\eta}^\intercal \boldsymbol{u}(x)) dx$ (∵ 密度関数なので積分すると 1) より

$$-\frac{1}{(g(\boldsymbol{\eta}))^2} \frac{\partial g(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \frac{\partial}{\partial \boldsymbol{\eta}} \int h(\boldsymbol{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{u}(\boldsymbol{x})) d\boldsymbol{x} = \int h(\boldsymbol{x}) \frac{\partial}{\partial \boldsymbol{\eta}} \exp(\boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{u}(\boldsymbol{x})) d\boldsymbol{x}$$
$$= \int h(\boldsymbol{x}) \boldsymbol{u}(\boldsymbol{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{u}(\boldsymbol{x})) d\boldsymbol{x}$$
(28)

 $rac{\partial}{\partial oldsymbol{\eta}} \ln p(\mathcal{D}|oldsymbol{\eta}) = rac{N}{g(oldsymbol{\eta})} rac{\partial g(oldsymbol{\eta})}{\partial oldsymbol{\eta}} + \sum^{N} oldsymbol{u}(oldsymbol{x}_i)$

よって

$$\frac{\partial}{\partial \boldsymbol{\eta}} \ln p(\mathcal{D}|\boldsymbol{\eta}) = -Ng(\boldsymbol{\eta}) \int h(\boldsymbol{x}) \boldsymbol{u}(\boldsymbol{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{u}(\boldsymbol{x})) d\boldsymbol{x} + \sum_{i=1}^{N} \boldsymbol{u}(\boldsymbol{x}_{i})$$

$$= -N \int \boldsymbol{u}(\boldsymbol{x}) h(\boldsymbol{x}) g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{u}(\boldsymbol{x})) d\boldsymbol{x} + \sum_{i=1}^{N} \boldsymbol{u}(\boldsymbol{x}_{i})$$

$$= -N \left(\mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{\eta})}[\boldsymbol{u}(\boldsymbol{x})] - \frac{\sum_{i=1}^{N} \boldsymbol{u}(\boldsymbol{x}_{i})}{N} \right)$$

(27)

指数型分布族の最尤推定

▶ 以上より、 $\frac{\partial}{\partial \boldsymbol{n}} \ln p(\mathcal{D}|\boldsymbol{\eta}) = 0$ とおくと、下の結果を得る。

$$\mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{\eta})}[\boldsymbol{u}(\boldsymbol{x})] = \frac{\sum_{i=1}^{N} \boldsymbol{u}(\boldsymbol{x}_i)}{N}$$
(30)

- ▶ この結果は、指数型分布族に含まれる確率分布であれば、どの分布についても当てはまる。
 - ▶ 例. ベルヌーイ分布の場合、式(30)は何を意味するか?

共役事前分布

▶ 式(24)のような密度関数を持つどの確率分布に対しても、 以下の形の密度関数を持つ共役事前分布が存在する

$$p(\boldsymbol{\eta}; \boldsymbol{\chi}, \nu) = f(\boldsymbol{\chi}, \nu) g(\boldsymbol{\eta})^{\nu} \exp(\nu \boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{\chi})$$
(31)

- ▶ つまり、式(31)の形の密度関数を持つ確率分布を事前分布 とすると、事後分布が事前分布と同じ形の密度関数を持つ
- $lackbox f(oldsymbol{\chi},
 u)$ は、規格化のために導入されている係数とみなせる
 - ▶ $f(\boldsymbol{\chi}, \nu)$ は $\boldsymbol{\eta}$ を含まないことに注意

例. ベルヌーイ分布の共役事前分布

lacktriangleright $\eta = \ln\left(rac{\phi}{1-\phi}
ight)$ および $g(\eta) = 1-\phi$ だったので

$$p(\eta; \chi, \nu) \propto (1 - \phi)^{\nu} \exp\left(\nu \ln\left(\frac{\phi}{1 - \phi}\right)\chi\right)$$
$$= (1 - \phi)^{\nu} \phi^{\nu\chi} (1 - \phi)^{-\nu\chi}$$
$$= \phi^{\nu\chi} (1 - \phi)^{\nu(1 - \chi)}$$

▶ この式の形は、ベータ分布の密度関数の式の形と、同じ!

$$u = \alpha + \beta - 2$$
 および $\chi = \frac{\alpha - 1}{\alpha + \beta - 2}$ と置き換えればよい

(32)

共役事前分布を用いたときの事後分布

- ▶ 式(24)の密度関数を持つ確率分布に対して・・・
- ▶ 式(31)の事前分布を使うと・・・
- ▶ 観測データ $\mathcal{D} = \{ oldsymbol{x}_1, \dots, oldsymbol{x}_N \}$ が所与のときの事後分布は、 以下のようになる

$$p(\boldsymbol{\eta}|\mathcal{D}, \boldsymbol{\chi}, \nu) \propto g(\boldsymbol{\eta})^{\nu+N} \exp\left(\boldsymbol{\eta}^{\mathsf{T}} \left(\sum_{i=1}^{N} \boldsymbol{u}(\boldsymbol{x}_i) + \nu \boldsymbol{\chi}\right)\right)$$
 (33)

問. このことを示せ (cf. PRML, Sec. 2.4.2)

課題

- ▶ 二項分布も、試行の総数を表すパラメータ n が固定されているならば、指数型分布族に属する
- ► そこで、*n* が固定されている二項分布の共役事前分布を、式 (31) をもとに求めてみよう
- ト ヒント:確率質量関数 $p(k; \boldsymbol{\phi}, n) = \frac{n!}{k!(n-k)!} \phi_1^k (1-\phi_1)^{n-k}$ を、まず式 (24) の形に変形する。