

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170709603

FCC REPORT

(WIFI)

Applicant: Libre Wireless Technologies Inc.

Address of Applicant: 2100 Geng Road, Suite 210 Palo Alto, CA 94303, USA

Equipment Under Test (EUT)

Product Name: WiFi Media Streaming Module

Model No.: LS9AD-AC11DBT, LS9AD-AC11DBT-V, LS9AD-AC11DBT-GV

Trade mark:

FCC ID: 2ADBM-LS9ADAC11DBT

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Jun., 2017

Date of Test: 29 Jun., to 07 Jul., 2017

Date of report issued: 07 Jul., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Jul., 2017	Original

Tested by: O7 Jul., 2017

Test Engineer

Reviewed by: Date: 07 Jul., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1	Conducted Emission Method	68
	6.7.2	Radiated Emission Method	73
7	TES	T SETUP PHOTO	93
8	EUT	CONSTRUCTIONAL DETAILS	94

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Libre Wireless Technologies Inc.
Address of Applicant:	2100 Geng Road, Suite 210 Palo Alto, CA 94303, USA
Manufacturer:	Shenzhen Zowee Technology Co., Ltd.
Address of Manufacturer:	NO.5 Zowee technology building, Science & Technology industrial park of privately owned enterprises, Pingshan, Xili, Nanshan district, Shenzhen
Factory:	Shenzhen Zowee Technology Co., Ltd.
Address of Factory:	No 149, Tongfuyu Industrial Zone Songgang,Baoan District Shenzhen Guangdong 518105 China

5.2 General Description of E.U.T.

Product Name:	WiFi Media Streaming Module	
Model No.:	LS9AD-AC11DBT, LS9AD-AC11DBT-V, LS9AD-AC11DBT-GV	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	3.5dBi	
Power supply:	DC 3.3V	
	The No.: LS9AD-AC11DBT, LS9AD-AC11DBT-V, LS9AD-AC11DBT-GV were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name ,DDR3, Flash for different customer LS9AD-AC11DBT: this is the standard LS9AD, and this is the variant used for testing at the BTL laboratory. Memory Configuration - 256MB Flash/ 256MB DDR3.	
Remark:	LS9AD-AC11DBT-V: this variant is the same as the standard except for the memory configuration. Memory Configuration - 256MB Flash / 512MB DDR3. LS9AD-AC11DBT-V with different shield design. LS9AD-AC11DBT-GV: this variant is the same as the standard except for the memory configuration. Memory Configuration - 512MB Flash / 512MB DDR3. Base on the differences description, We chose LS9AD-AC11DB model	
	No. as the main test, Conducted Emission and Spurious Emission was re-tested for LS9AD-AC11DBT-V and LS9AD-AC11DBT-GV.	

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation	Operation Frequency each of channel For 802.11n(H40)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

■ **U E O** Report No: CCISE170709601

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation
Remark:	The EUT have two chains, but cannot transmit simultaneously, so all test items performed on each chain respectively.

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE170709601

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Cond	Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017						
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018						
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018						
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018						
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A						

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.5 dBi.

6.2 Conducted Emission

· · · · · · · · · ·	. •							
Test Requirement:	FCC Part 15 C Section 1	5.207						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz						
Limit:	Frequency range	Limit (dBuV)					
Limit	(MHz)							
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the log	arithm of the frequency.						
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. light interference. In order positions of equipments.	a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).						
Test setup:	AUX Equipment Test table/Insula Remark E U.T: Equipment Under LISN Test table height=0 8m	E.U.T EMI Receiver	ilter — AC power					
Test Instruments:	Refer to section 5.7 for d	letails						
Test mode:	Refer to section 5.3 for d							
Test results:	Passed							
	-							

Measurement Data:

Neutral:

Site

: CCIS Shielding Room : FCC PART 15.247 QP LISN NEUTRAL Condition EUT : WiFi Media Streaming Module

Model : LS9AD-AC11DBT Test Mode : 2.4GWIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	₫₿u₹	₫₿	₫B	dBu₹	₫₿uѶ	₫B	
1 2	0.154 0.166	33.31 33.30	-0.38 -0.37	10.78 10.77	43.71	A COUNTY OF THE PARTY OF THE PA	-22.07 -21.46	1 TO
3	0.166 0.178	15.46	-0.37		25.86 43.02	55.16		Average
2 3 4 5 6 7 8 9		28.16 14.16	-0.31	10.74	38.58 24.59	46.67		Average
8	0.582	16.66	-0.30	10.76	27.12	46.00		Average
10 11	0.739 2.779 2.824	14. 12 13. 04	-0.30 -0.21 -0.21	10.79 10.93	23.76	46.00		Average Average
12	3.058	13.06	-0.20	10.92	23.78			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Site

: CCIS Shielding Room : FCC PART 15.247 QP LISN LINE : WiFi Media Streaming Module Condition EUT

Model : LS9AD-AC11DBT Test Mode : 2.4GWIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT

temark	:								
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark	
	MHz	dBu₹	₫₿	₫₿	dBu∀	dBu∜	dB		-
1	0.150	36.50	-0.56	10.78	46.72	66.00	-19.28	QP	
2	0.150	14.41	-0.56	10.78	24.63	56.00	-31.37	Average	
3	0.162	14.41	-0.55	10.77	24.63	55.34	-30.71	Average	
4	0.178	31.77	-0.54	10.77	42.00	64.59	-22.59	QP	
5	0.178	13.66	-0.54	10.77	23.89	54.59	-30.70	Average	
6	0.198	30.57	-0.52	10.76	40.81	63.71	-22.90	QP	
2 3 4 5 6 7 8 9	0.527	28.13	-0.49	10.76	38.40	56.00	-17.60	QP	
8	0.573	15.11	-0.49	10.76	25, 38	46.00	-20.62	Average	
9	0.739	22.70	-0.48	10.79	33.01	56.00	-22.99	QP	
10	0.739	14.18	-0.48	10.79	24.49	46.00	-21.51	Average	
11	2.636	21.67	-0.44	10.93	32.16	56.00	-23.84	QP	
12	2.636	13.91	-0.44	10.93	24.40	46.00	-21.60	Average	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 9.2.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

TX0

1710						
Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Lillit(dBill)	Nesult
Lowest	15.16	14.12	13.39	12.38		
Middle	14.93	14.40	13.62	12.28	30.00	Pass
Highest	15.05	14.58	13.64	12.33		

TX1

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dDin)	rvesuit
Lowest	15.00	14.25	13.43	12.39		
Middle	14.75	14.33	13.58	12.31	30.00	Pass
Highest	14.75	14.40	13.40	12.35		

6.4 Occupy Bandwidth

Measurement Data:

TX0

Test CH		6dB Emission	Bandwidth (MHz))	Limit(kHz)	Result
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit
Lowest	10.24	16.56	17.76	36.48		
Middle	10.24	16.48	17.76	36.32	>500	Pass
Highest	10.24	16.56	17.76	36.64		
Test CH		99% Occupy	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	resuit
Lowest	13.20	16.48	17.60	36.16		
Middle	13.20	16.48	17.60	36.16	N/A	N/A
Highest	13.12	16.48	17.60	36.16		

TX1

171							
Test CH		6dB Emission)	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit	
Lowest	10.24	16.56	17.76	36.64			
Middle	10.24	16.48	17.76	36.64	>500	Pass	
Highest	10.24	16.56	17.76	36.32			
Test CH		99% Occupy	Limit(kHz)	Result			
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Result	
Lowest	13.20	16.48	17.60	36.16			
Middle	13.20	16.48	17.60	36.16	N/A	N/A	
Highest	13.20	16.48	17.60	36.16			

Test plot as follows: TX0

Date: 6.JUL.2017 20:03:22

Date: 6.JUL.2017 20:05:49

Date: 6.JUL.2017 20:07:20

Middle channel

Highest channel

802.11b

Date: 6.JUL.2017 20:03:54

Lowest channel

Date: 6.JUL.2017 20:04:25

Middle channel

Date: 6.JUL.2017 20:07:41

Highest channel

RBW 100 kHz Delta 2 [Y1] **YNW 300 kHz Delta 2 [Y1] **YNW 300 kHz 16.5 dbm **Att 20 db SWY 5 ms 16.5600000 MHz **The state of the state of the

802.11g

Date: 6.JUL.2017 20:09:25

Lowest channel

Date: 6.JUL.2017 20:08:25

Date: 6.JUL.2017 20:10:44

Date: 6.JUL.2017 20:12:47

Date: 6.JUL.2017 20:11:27

Date: 6.JUL.2017 20:11:50

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n20

ABE ## 100 kHz Celta 2 [T1] **ABE 10.0 kHz Celta 2 [T1] **ABE 20 db SHY S ma 17.76000000 kHz **Off st 6.1 db 2 db SHY S ma 17.76000000 kHz **Doff st 6.1 db 2 db SHY S ma 17.76000000 kHz **Doff st 6.1 db 2 db SHY S ma 17.76000000 kHz **Doff st 6.1 db 2 db SHY S ma 17.76000000 kHz **Doff st 6.1 db 3 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.76000000 kHz **Doff st 6.1 db SHY S ma 17.760000000 kHz **Doff st 6.1 db SHY S ma 17.760000000 kHz **Doff st 6.1 db SHY S ma 17.760000000 kHz **Doff st 6.1 db SHY S ma 17.760000000 kHz **Doff st 6.1 db SHY S ma 17.760000000 kHz **Doff st 6.1 db SHY S ma 17.760000000 kHz **Doff st 6.1 db

Date: 6.JUL.2017 20:15:02

Lowest channel

. .

Date: 6.JUL.2017 20:15:55

Date: 6.JUL.2017 20:17:22

Date: 6.JUL.2017 20:16:34

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n40

Date: 6.JUL.2017 20:22:41

Date: 6.JUL.2017 20:19:29

Lowest channel

Lowest channel

Date: 6.JUL.2017 20:23:44

Date: 6.JUL.2017 20:19:58

Middle channel

Middle channel

Highest channel

Highest channel

TX1

Date: 2.JUL.2017 10:02:24

Date: 2.JUL.2017 10:08:05 Middle channel

Highest channel

802.11b

Date: 2.JUL.2017 10:03:13

Lowest channel

Date: 2.JUL.2017 10:08:25

Middle channel

Date: 2.JUL.2017 10:11:32

Highest channel

99% **OBW**

ARM 100 kHz Celts 2 [T1] **PAN 300 kHz Celts 2 [T1] *

LVL

Date: 2.JUL.2017 10:16:10

802.11g

Lowest channel

Date: 2.JUL.2017 10:15:28

Lowest channel

Date: 2.JUL.2017 10:20:26

Middle channel

Highest channel

Middle channel

10.24.32

hannel Highest channel

802.11n20

Date: 2.JUL.2017 10:29:49

Lowest channel

Date: 2.JUL.2017 10:30:11

Date: 2.JUL.2017 10:34:56

Date: 2.JUL.2017 10:35:16

Middle channel

Middle channel

Date: 2.JUL.2017 10:39:02 Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

100 http: Colta 2 [T1] ### 100 http: Colta 2 [T1] ### 100 http: Colta 2 [T1] ### 10 htt 10 htt 2 [T1] ### 10 htt 10 htt 3 [T1] ### 10 htt 1

802.11n40

Date: 2.JUL.2017 10:43:50

Lowest channel

Date: 2.JUL.2017 10:48:05

Date: 2.JUL.2017 10:52:14

Date: 2.JUL.2017 10:53:15

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

TX0

170						
Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	result
Lowest	5.13	1.60	0.59	-3.78		
Middle	4.83	0.99	0.51	-4.10	8.00	Pass
Highest	4.62	1.56	0.63	-4.04		

TX1

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	resuit
Lowest	5.04	1.29	0.50	-3.86		Pass
Middle	4.72	1.44	0.53	-4.15	8.00	
Highest	4.48	1.44	0.56	-3.81		

Test plot as follows:

Date: 7.JUL.2017 10:06:45

Lowest channel

Date: 7.JUL.2017 10:07:33

Date: 7.JUL.2017 10:07:59

Middle channel

Highest channel

802.11b

Date: 7.JUL.2017 10:48:13

Lowest channel

Date: 7.JUL.2017 10:51:45

Middle channel

Date: 7.JUL.2017 10:52:08

Highest channel

802.11g

Date: 7.JUL.2017 10:13:17

Date: 7.JUL.2017 11:29:24

Lowest channel

Date: 7.JUL.2017 10:14:01

Date: 7.JUL.2017 11:30:37

Middle channel

Middle channel

Date: 7.JUL.2017 11:31:31

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n20

Date: 7.JUL.2017 10:16:14

Lowest channel

Lowest channel

Date: 7.JUL.2017 10:16:37

Date: 7.JUL.2017 11:34:11

Date: 7.JUL.2017 11:33:03

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n40

Date: 7.JUL.2017 10:17:51

Lowest channel

Date: 7.JUL.2017 11:36:03

Lowest channel

Date: 7.JUL.2017 10:18:20

Date: 7.JUL.2017 11:37:53

Date: 7.JUL.2017 11:38:24

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6 Band Edge

6.6.1 Conducted Emission Method

	Т				
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	d: ANSI C63.10:2013 and KDB558074v01r04 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

TX0

Lowest channel

Highest channel

Lowest channel

Highest channel

Date: 6.JUL.2017 20:30:33

Lowest channel Highest channel

Date: 6.JUL.2017 20:31:17

TX1

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

.6.2 Radiated Emission Method									
Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 and KDB558074v01r04 section 12.1								
Test Frequency Range:	2.3GHz to 2.5GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW		Remark			
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz		Peak Value Average Value			
Limit:	Frequenc		Limit (dBuV/m @3n		11112	Remark			
	Above 1GH	17	54.00			erage Value			
Total Donald and			74.00	tating t		Peak Value			
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the makers and to find the maters and to find the material specified Barbara in the limit	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test setup:	1.50cm	AE EUT (Turntable)	Ground Reference Plane	n Antenna Pre- Pre- Control	Antenna Tow	er			
Test Instruments:	Refer to section	Refer to section 5.7 for details							
Test mode:	Refer to section	Refer to section 5.3 for details							
Test results:	Passed								

TX0

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11b-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq								Remark
MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	−−−dB	
2390.000					50.05 38.23			Peak Average

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module : LS9AD-AC11DBT Condition

EUT

Model Test mode : 802.11b-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT : CON 1 REMARK

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dB/m dB dBuV/m dBuV/m 0.00 47.44 74.00 -26.56 Peak 37.99 54.00 -16.01 Average 2390.000 17.30 25.45 4.69 2390.000 7.85 25.45

0.00

4.69

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module : LS9AD-AC11DBT : 802,11b-H Mode Condition

EUT

Model Test mode Power Rating: AC 120V/60Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: YT
REMARK: CON 1

REMARK

Limen	990000					Level			
	MHz	dBu∀	dB/m	₫₿	dB	dBuV/m	dBuV/m	₫₿	
1 2	2483.500 2483.500								Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11b-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 1

ReadAntenna Cable Preamp Over Limit Loss Factor Level Freq Level Factor Line Limit Remark dB/m dB dB dBuV/m dBuV/m

0.00 49.65 74.00 -24.35 Peak 0.00 39.43 54.00 -14.57 Average 4.81 2483.500 19.18 25.66 2483,500 8.96 25.66 4.81

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT
Test mode : 802.11g-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK

REMARK : CON 1

	Freq		Antenna Factor						
9	MHz	dBu∜	dB/n	d₿	dB	dBuV/n	dBuV/m	dB	
1 2	2390.000 2390.000	21.52 11.26	25.45 25.45	4.69 4.69	0.00 0.00	51.66 41.40	74.00 54.00	-22.34 -12.60	Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11g-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT REMARK : CON 1

1AM	Œ:	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∛	dB/n	dB	₫B	dBuV/m	dBuV/m	dB	
1	2390,000						74.00 54.00		Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module : LS9AD-AC11DBT Condition

EUT

Model Test mode : 802.11g-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT

: CON 1 REMARK

	Freq	Read. Level	låntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500								Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : WiFi Media Streaming Module

Model : LS9AD-AC11DBT Test mode : 802.11g-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 1

ReadAntenna Cable Preamp Limit Over
Freq Level Factor Loss Factor Level Line Limit Remark

MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

1 2483.500 22.19 25.66 4.81 0.00 52.66 74.00 -21.34 Peak 2 2483.500 10.10 25.66 4.81 0.00 40.57 54.00 -13.43 Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: WiFi Media Streaming Module EUT

Model : LS9AD-AC11DBT Test mode : 802.11n20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

REMARK : CON 1

	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390, 100 2390, 100								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : WiFi Media Streaming Module Model : LS9AD-AC11DBT

Model : LS9AD-AC11DBT Test mode : 802.11n20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 1

ReadAntenna Cable Preamp Limit Over
Freq Level Factor Loss Factor Level Line Limit Remark

MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

2390,000 19.48 25.45 4.69 0.00 49.62 74.00 -24.38 Peak
2390,000 10.40 25.45 4.69 0.00 40.54 54.00 -13.46 Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

: LS9AD-AC11DBT : 802.11n20-H Mode Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT

: CON 1 REMARK

	ReadAntenna Freq Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	−dB/m dB		₫₿	dBuV/n	dBuV/m	−−−dB	
2483.500 2483.500								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : WiFi Media Streaming Module

Model : LS9AD-AC11DBT : 802.11n20-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 1

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m

0.00 49.53 74.00 -24.47 Peak 0.00 40.59 54.00 -13.41 Average 2483, 500 19.06 25,66 4.81 2483.500 10.12 25.66 4.81

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11n40-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK : CON 1

	Freq		ReadAntenna Level Factor						
9	MHz	dBu√	dB/m	₫B	dB	dBuV/n	dBuV/m	−−−dB	
1 2 3 4		20.84	25.45 25.45	4.69 4.69 4.69	0.00	42.83 50.98	74.00	-11.17 -23.02	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUI

: LS9AD-AC11DBT Model Test mode : 802.11n40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT : CON 1

ReadAntenna Cable Preamp Over Limit Freq Level Factor Loss Factor Level Line Limit Remark WIL 135.0 13672 135 15 36 36.072 36.072

	MHZ	abuv	dD/n	αb	αb	dbuy/ R	qpn/m	an	
1	2386.991	24.54	25.45	4.69	0.00	54.68	74.00	-19.32	Peak
2	2386.991	11.45	25.45	4.69	0.00	41.59	54.00	-12.41	Average
3	2390.000	21.91	25.45	4.69	0.00	52.05	74.00	-21.95	Peak
4	2390.000	11.99	25.45	4.69	0.00	42.13	54.00	-11.87	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11n40-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 1

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m MHz dB dB dBuV/m dBuV/m 2483.500 19.12 25.66 4.81 2483.500 10.51 25.66 4.81 0.00 49.59 74.00 -24.41 Peak 0.00 40.98 54.00 -13.02 Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: WiFi Media Streaming Module FIIT

Model : LS9AD-AC11DBT Test mode : 802.11n40-H Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK : CON 1

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m dB dBuV/m dBuV/m

2483.500 20.93 25.66 2483.500 10.89 25.66 0.00 51.40 74.00 -22.60 Peak 0.00 41.36 54.00 -12.64 Average 4.81 4.81

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

TX1 802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11b-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 2

n	370		Antenna				Limit			
	rreq	rever	ractor	Loss	ractor	rever	Line	Limit	Remark	
	MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBuV/m	dB		
	2390, 000									

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

: WiFi Media Streaming Module EUT

: LS9AD-AC11DBT Model Test mode : 802.11b-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON

: CON 2

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB/m	₫B	₫₿	dBuV/m	dBuV/m	₫B	
2390.000 2390.000								

Remark:

2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

: LS9AD-ACIIDBT Model Test mode : 802.11b-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT REMARK : CON 2

	Read	Ant enna	Cable	Preamp		Limit	Over		
Freq		Factor				Line	Limit	Remark	
MHz	dBu₹	dB/m	₫B	dB	$\overline{dBuV/m}$	dBuV/m	₫₿		
2483, 500 2483, 500									

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

FUT

Model : LS9AD-AC11DBT Test mode : 802.11b-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT

: CON 2 REMARK

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor WHz. dBuV dB/m dB T dB dBuV/a dBuV/a 2483,500 16.95 25.66 4.81 0.00 47.42 74.00 -26.58 Peak 8.69 25.66 4.81 0.00 39.16 54.00 -14.84 Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11g-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 2

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 0.00 48.73 74.00 -25.27 Peak 0.00 40.50 54.00 -13.50 Average 2390.000 18.59 25.45 4.69 2390.000 10.36 25.45 4.69

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUT

: LS9AD-AC11DBT Model Test mode : 802.11g-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK : CON 2

mar	a :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	<u>d</u> B	₫₿	dBuV/m	dBuV/m	dB	
1 2	2390,000 2390,000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module : LS9AD-AC11DBT Condition

EUT

Model Test mode : 802.11g-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 2

EMA	nh :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	***
1 2	2483.500 2483.500								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

REMARK : CON 2

-		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu₹	dB/n	dB	dB	dBuV/m	dBuV/m	dB	
	2483,500 2483,500				27 5 (7) 70		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

EUT : WiFi Media Streaming Module

: LS9AD-AC11DBT Model Test mode : 802.11n20-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT : CON 2 REMARK

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m MHz ₫₿ dB dBuV/m dBuV/m ďB 2390,000 16.72 25.45 4.69 0.00 46.86 74.00 -27.14 Peak 2390,000 7.38 25.45 4.69 0.00 37.52 54.00 -16.48 Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : WiFi Media Streaming Module

Model : LS9AD-AC11DBT Test mode : 802.11n20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

REMARK : CON 2

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dB/m dB dB dBuV/m dBuV/m 53.30 74.00 -20.70 Peak 38.50 54.00 -15.50 Average 4.69 2390.000 23.16 25.45 0.00 2390.000 8.36 25.45 4.69 0.00

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

FIIT

Model : LS9AD-AC11DBT Test mode : 802.11n20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

: CON 2 REMARK

-		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	−−−dB	₫₿	dBuV/m	dBuV/n	₫B	
	2483,500 2483,500								Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11n20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 2

	200 C	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB/m	d₿	d₿	dBuV/m	dBuV/m	₫₿	
1 2	2483, 500 2483, 500	19.15 9.04	25.66 25.66	4.81	0.00	49.62 39.51	74.00 54.00	-24.38 -14.49	Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11n40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YI : CON 2 REMARK

ReadAntenna Cable Preamp Limit Over Loss Factor Level Freq Level Factor Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m

2390.000 18.38 25.45 4.69 0.00 48.52 74.00 -25.48 Peak 8.56 25.45 4.69 0.00 38.70 54.00 -15.30 Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

MHz

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUT

dBuV dB/a

Model : LS9AD-AC11DBT Test mode : 802.11n40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

: CON 2 REMARK

ReadAntenna Cable Preamp Limit Over Limit Remark Freq Level Factor Loss Factor Level Line

dB

74.00 -24.63 Peak 2390.000 19.23 25.45 4.69 0.00 49.37 11.12 25.45 0.00 41.26 54.00 -12.74 Average 2390.000 4.69

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

dB dBuV/m dBuV/m

dB

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11n40-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK : CON 2

		Pand	Ant enna	Cable	Drasan		Timis	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
	MHz	dBu∀	dB/m	−−−dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
1	2483.500	26.70	25.66	4.81	0.00	57.17	74.00	-16.83	Peak
2	2483, 500	15, 11	25, 66	4.81	0.00	45, 58	54.00	-8.42	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : WiFi Media Streaming Module Condition

EUT

Model : LS9AD-AC11DBT Test mode : 802.11n40-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK : CON 2

CHOIN		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	₫₿u₹	dB/n	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483,500 2483,500				0.00				Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.7 for details					
Test results:	Passed					

Test plot as follows:

802.11b

Date: 6.JUL.2017 15:49:12

Date: 7.JUL.2017 10:47:14

Date: 6.JUL.2017 15:49:49

Date: 6.JUL.2017 15:50:48

Date: 7.JUL.2017 10:50:59

Date: 7.JUL.2017 10:53:54

Highest channel

Highest channel

Date: 6.JUL.2017 15:52:37

Date: 7.JUL.2017 11:11:01

Date: 6.JUL.2017 15:53:02

Date: 6.JUL.2017 15:53:23

Date: 7.JUL.2017 11:12:07

Date: 7.JUL.2017 11:13:31

Highest channel

Highest channel

802.1120

Date: 6.JUL.2017 15:54:08

Date: 6.JUL.2017 15:55:42

Date: 6.JUL.2017 15:54:32

Date: 6.JUL.2017 15:56:13

Date: 7.JUL.2017 11:18:02

Date: 7.JUL.2017 11:18:56

Highest channel

Highest channel

802.1140

Date: 6.JUL.2017 15:57:07

Date: 7.JUL.2017 11:20:06

Date: 6.JUL.2017 15:57:47

Date: 6.JUL.2017 15:58:21

Date: 7.JUL.2017 11:21:04

Date: 7.JUL.2017 11:23:25

Highest channel

Highest channel

6.7.2 Radiated Emission Method

6.7.2 Radiated Ellission	Metriod										
Test Requirement:	FCC Part 15 C S	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:20	13									
Test Frequency Range:	9kHz to 25GHz										
Test site:	Measurement Dis	stance: 3m									
Receiver setup:	Frequency	Detector	RBW	VI	BW	Remark					
	30MHz-1GHz	Quasi-peak	120KHz)KHz	Quasi-peak Value					
	Above 1GHz	Peak RMS	1MHz 1MHz		ЛНz ЛНz	Peak Value					
Limit:	Frequency		t (dBuV/m @3		/IПZ	Average Value Remark					
Liiiit.	30MHz-88MHz 40.0 Quasi-peak Va										
	88MHz-216MHz 43.5 Quasi-peak V										
	216MHz-960MHz 46.0 Quasi-peak Value										
	960MHz-1GH	960MHz-1GHz 54.0 Quasi-peak Value									
	Above 1GHz 54.0 Average Value										
	1. The EUT was placed on the top of a rotating table 0.8m(below										
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground the ground the ground the make the make the make the make the find the meters and to find the moders and to find the moders. The test-recessive Specified Base 6. If the emissing the limit specified by the EUT was a simple control of the EUT was a simple control	as rotated 360 ation. as set 3 meters ich was moun a height is vario determine thatal and vertical and vertical assurement. Spected emissen the antennathe rota table vaximum readileiver system vandwidth with I on level of the cified, then tes yould be repor	degrees to degrees to degrees to degrees to degrees to degree ted on the top ded from one remaximum val polarization degree to degree to degree to degree de	he into of a meter value as of the was a o heigom 0 of a mode stoppes the one by	erferent variable to four of the to the ante arrange this fro degree tect Furde. e was 1 ped and emissione us	meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees unction and 10dB lower than d the peak values ions that did not sing peak, quasi-					

Below 1GHz

Horizontal:

Site : 3m chamber
Condition : FCC PART 15.247 3m VULB9163(30M2G) HORIZONTAL
EUT : WiFi Media Streaming Module
Model : LS9AD-AC11DBT
Test mode : 2.4GWIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%
Test Engineer: YT

Test Engineer: YT

Little	(3)	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
-	MHz	dBu∇	$\overline{-dB/n}$	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	34.156	37.92	11.67	0.98	29.95	20.62	40.00	-19.38	QP
2 3	171.995	36.11	9.10	2.67	29.03	18.85	43.50	-24.65	QP
3	221.392	41.76	11.30	2.84	28.70	27.20	46.00	-18.80	QP
4	369.405	50, 71	14.53	3.09	28, 65	39.68	46.00	-6.32	QP
4 5	417.641	48.01	15.35	3.12	28, 81	37.67	46.00	-8.33	QP
6	467.235	49.30	15.53	3.34	28.90	39.27	46.00	-6.73	QP

Vertical:

REMARK

TEMPLE		Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
) <u>123</u>	MHz	dBu∛	dB/n	₫B	₫B	dBuV/n	dBuV/m	<u>dB</u>	
1	88.342	50.47	10.60	2.00	29.58	33.49	43.50	-10.01	QP
2	221.392	41.84	11.30	2.84	28.70	27.28	46.00	-18.72	QP
3	417.641	45.48	15.35	3.12	28.81	35.14	46.00	-10.86	QP
4	467.235	52.45	15.53	3.34	28.90	42.42	46.00	-3.58	QP
23456	517.248	48.63	16.70	3.71	29.00	40.04	46.00	-5.96	QP
6	566.622	47.69	17.65	3.91	29.05	40.20	46.00	-5.80	QP

Above 1GHz LS9AD-AC11DBT test data:

TX0

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(MHz) (dBuV)		(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	i olar.	
4824.00	49.52	36.06	6.81	41.82	50.57	74.00	-23.43	Vertical	
4824.00	50.75	36.06	6.81	41.82	51.80	74.00	-22.20	Horizontal	
Test	mode: 802.	11b	Test channel: Lowest			Rem	ark: Avera	age	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubu v/III)	(dB)		
4824.00	39.32	36.06	6.81	41.82	40.37	54.00	-13.63	Vertical	
4824.00	39.25	36.06	6.81	41.82	40.30	54.00	-13.70	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.85	36.32	6.85	41.84	51.18	74.00	-22.82	Vertical
4874.00	48.36	36.32	6.85	41.84	49.69	74.00	-24.31	Horizontal
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.23	36.32	6.85	41.84	40.56	54.00	-13.44	Vertical
4874.00	40.22	36.32	6.85	41.84	41.55	54.00	-12.45	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.26	36.58	6.89	41.86	50.87	74.00	-23.13	Vertical
4924.00	48.22	36.58	6.89	41.86	49.83	74.00	-24.17	Horizontal
Test	mode: 802.	11b	Test channel: Highest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.61	36.58	6.89	41.86	41.22	54.00	-12.78	Vertical
4924.00	38.24	36.58	6.89	41.86	39.85	54.00	-14.15	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	50.24	36.06	6.81	41.82	51.29	74.00	-22.71	Vertical	
4824.00	49.66	36.06	6.81	41.82	50.71	74.00	-23.29	Horizontal	
Test	t mode: 802.	11g	Test channel: Lowest			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.28	36.06	6.81	41.82	41.33	54.00	-12.67	Vertical	
4824.00	39.88	36.06	6.81	41.82	40.93	54.00	-13.07	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.58	36.32	6.85	41.84	50.91	74.00	-23.09	Vertical	
4874.00	48.77	36.32	6.85	41.84	50.10	74.00	-23.90	Horizontal	
Test	t mode: 802.	11g	Test channel: Middle			Rem	ark: Avera	ige	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.23	36.32	6.85	41.84	41.56	54.00	-12.44	Vertical	
4874.00	39.55	36.32	6.85	41.84	40.88	54.00	-13.12	Horizontal	

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.78	36.58	6.89	41.86	50.39	74.00	-23.61	Vertical
4924.00	49.22	36.58	6.89	41.86	50.83	74.00	-23.17	Horizontal
Tes	t mode: 802.	11g	Test channel: Highest			Rem	ark: Avera	ige
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.62	36.58	6.89	41.86	41.23	54.00	-12.77	Vertical
4924.00	38.55	36.58	6.89	41.86	40.16	54.00	-13.84	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.46	36.06	6.81	41.82	51.51	74.00	-22.49	Vertical
4824.00	49.72	36.06	6.81	41.82	50.77	74.00	-23.23	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.23	36.06	6.81	41.82	41.28	54.00	-12.72	Vertical
4824.00	39.52	36.06	6.81	41.82	40.57	54.00	-13.43	Horizontal

Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.62	36.32	6.85	41.84	50.95	74.00	-23.05	Vertical	
4874.00	48.77	36.32	6.85	41.84	50.10	74.00	-23.90	Horizontal	
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Vertical	
4874.00	38.27	36.32	6.85	41.84	39.60	54.00	-14.40	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.85	36.58	6.89	41.86	51.46	74.00	-22.54	Vertical
4924.00	48.77	36.58	6.89	41.86	50.38	74.00	-23.62	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.62	36.58	6.89	41.86	40.23	54.00	-13.77	Vertical
4924.00	39.46	36.58	6.89	41.86	41.07	54.00	-12.93	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	49.68	36.06	6.81	41.82	50.73	74.00	-23.27	Vertical
4844.00	48.59	36.06	6.81	41.82	49.64	74.00	-24.36	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	39.70	36.06	6.81	41.82	40.75	54.00	-13.25	Vertical
4844.00	38.62	36.06	6.81	41.82	39.67	54.00	-14.33	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	50.26	36.32	6.85	41.84	51.59	74.00	-22.41	Vertical	
4874.00	49.77	36.32	6.85	41.84	51.10	74.00	-22.90	Horizontal	
Test m	ode: 802.11	n(H40)	Test channel: Middle			Rem	nark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.27	36.32	6.85	41.84	41.60	54.00	-12.40	Vertical	
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Horizontal	

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	50.43	36.45	6.87	41.85	51.90	74.00	-22.10	Vertical		
4904.00	49.62	36.45	6.87	41.85	51.09	74.00	-22.91	Horizontal		
Test m	ode: 802.11	n(H40)	Tes	st channel: H	ighest	Rem	74.00 -22.91 Horizon Remark: Average Limit Line (dBuV/m) Over Limit Pola			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)		Polar.		
4904.00	38.62	36.45	6.87	41.85	40.09	54.00	-13.91	Vertical		
4904.00	39.77	36.45	6.87	41.85	41.24	54.00	-12.76	Horizontal		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

TX1

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level	Antenna Factor	Cable Preamp Level Limit Line		Over Limit	Polar.		
(IVIHZ)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
4824.00	49.85	36.06	6.81	41.82	50.90	74.00	-23.10	Vertical
4824.00	48.62	36.06	6.81	41.82	49.67	74.00	-24.33	Horizontal
Test	mode: 802.	11b	Test channel: Lowest			Rem	ark: Aver	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	38.25	36.06	6.81	41.82	39.30	54.00	-14.70	Vertical
4824.00	39.62	36.06	6.81	41.82	40.67	54.00	-13.33	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.42	36.32	6.85	41.84	51.75	74.00	-22.25	Vertical
4874.00	49.78	36.32	6.85	41.84	51.11	74.00	-22.89	Horizontal
Test	mode: 802.	11b	Te	st channel: M	1iddle	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	37.68	36.32	6.85	41.84	39.01	54.00	-14.99	Vertical
4874.00	38.85	36.32	6.85	41.84	40.18	54.00	-13.82	Horizontal

Test mode: 8	02.11b		Test char	nnel: Highest		Remark: Pea	ık			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	49.78	36.58	6.89	41.86	51.39	74.00	-22.61	Vertical		
4924.00	48.51	36.58	6.89	41.86	50.12	74.00	-23.88	Horizontal		
Test	t mode: 802.	11b	Tes	st channel: H	ighest	Rem	Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	39.62	36.58	6.89	41.86	41.23	54.00	-12.77	Vertical		
4924.00	38.17	36.58	6.89	41.86	39.78	54.00	-14.22	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.56	36.06	6.81	41.82	50.61	74.00	-23.39	Vertical	
4824.00	50.25	36.06	6.81	41.82	51.30	74.00	-22.70	Horizontal	
Test	t mode: 802.	11g	Test channel: Lowest			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.25	36.06	6.81	41.82	40.30	54.00	-13.70	Vertical	
4824.00	38.47	36.06	6.81	41.82	39.52	54.00	-14.48	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.76	36.32	6.85	41.84	52.09	74.00	-21.91	Vertical
4874.00	49.11	36.32	6.85	41.84	50.44	74.00	-23.56	Horizontal
Tes	t mode: 802.	.11g	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.29	36.32	6.85	41.84	39.62	54.00	-14.38	Vertical
4874.00	39.68	36.32	6.85	41.84	41.01	54.00	-12.99	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.62	36.58	6.89	41.86	51.23	74.00	-22.77	Vertical
4924.00	50.72	36.58	6.89	41.86	52.33	74.00	-21.67	Horizontal
Tes	t mode: 802.	11g	Test channel: Highest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.62	36.58	6.89	41.86	41.23	54.00	-12.77	Vertical
4924.00	40.11	36.58	6.89	41.86	41.72	54.00	-12.28	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	50.75	36.06	6.81	41.82	51.80	74.00	-22.20	Vertical	
4824.00	49.10	36.06	6.81	41.82	50.15	74.00	-23.85	Horizontal	
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Rem	nark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.25	36.06	6.81	41.82	40.30	54.00	-13.70	Vertical	
4824.00	38.47	36.06	6.81	41.82	39.52	54.00	-14.48	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.44	36.32	6.85	41.84	51.77	74.00	-22.23	Vertical
4874.00	49.70	36.32	6.85	41.84	51.03	74.00	-22.97	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.27	36.32	6.85	41.84	41.60	54.00	-12.40	Vertical
4874.00	39.61	36.32	6.85	41.84	40.94	54.00	-13.06	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.43	36.58	6.89	41.86	52.04	74.00	-21.96	Vertical
4924.00	49.77	36.58	6.89	41.86	51.38	74.00	-22.62	Horizontal
Test m	ode: 802.11	n(H20)	Tes	st channel: H	ighest	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.25	36.58	6.89	41.86	40.86	54.00	-13.14	Vertical
4924.00	40.12	36.58	6.89	41.86	41.73	54.00	-12.27	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H40)		Test char	nnel: Lowest		Remark: Pea	ık			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	49.78	36.06	6.81	41.82	50.83	74.00	-23.17	Vertical		
4844.00	50.15	36.06	6.81	41.82	51.20	74.00	-22.80	Horizontal		
Test m	ode: 802.11	n(H40)	Te	st channel: L	owest	Rem	Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	39.62	36.06	6.81	41.82	40.67	54.00	-13.33	Vertical		
4844.00	40.27	36.06	6.81	41.82	41.32	54.00	-12.68	Horizontal		

Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.78	36.32	6.85	41.84	52.11	74.00	-21.89	Vertical
4874.00	49.62	36.32	6.85	41.84	50.95	74.00	-23.05	Horizontal
Test m	ode: 802.11	n(H40)	Te	Test channel: Middle		Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.25	36.32	6.85	41.84	39.58	54.00	-14.42	Vertical
4874.00	39.47	36.32	6.85	41.84	40.80	54.00	-13.20	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	50.65	36.45	6.87	41.85	52.12	74.00	-21.88	Vertical
4904.00	49.82	36.45	6.87	41.85	51.29	74.00	-22.71	Horizontal
Test m	ode: 802.11	n(H40)	Tes	st channel: H	ighest	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	39.32	36.45	6.87	41.85	40.79	54.00	-13.21	Vertical
4904.00	40.23	36.45	6.87	41.85	41.70	54.00	-12.30	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No: CCISE170709601

LS9AD-AC11DBT-V test data:

TX0

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.26	36.06	6.81	41.82	51.31	74.00	-22.69	Vertical
4824.00	49.65	36.06	6.81	41.82	50.70	74.00	-23.30	Horizontal
Test	mode: 802.	11b	Te	Test channel: Lowest Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	39.25	36.06	6.81	41.82	40.30	54.00	-13.70	Vertical
4824.00	48.77	36.06	6.81	41.82	49.82	54.00	-4.18	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	51.45	36.32	6.85	41.84	52.78	74.00	-21.22	Vertical
4874.00	49.52	36.32	6.85	41.84	50.85	74.00	-23.15	Horizontal
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.25	36.32	6.85	41.84	40.58	54.00	-13.42	Vertical
4874.00	39.44	36.32	6.85	41.84	40.77	54.00	-13.23	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.40	36.58	6.89	41.86	52.01	74.00	-21.99	Vertical
4924.00	49.17	36.58	6.89	41.86	50.78	74.00	-23.22	Horizontal
Test	mode: 802.	11b	Test channel: Highest Remark: Average				age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	40.25	36.58	6.89	41.86	41.86	54.00	-12.14	Vertical
4924.00	39.46	36.58	6.89	41.86	41.07	54.00	-12.93	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.26	36.06	6.81	41.82	51.31	74.00	-22.69	Vertical
4824.00	51.47	36.06	6.81	41.82	52.52	74.00	-21.48	Horizontal
Test	t mode: 802.	11g					ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.95	36.06	6.81	41.82	42.00	54.00	-12.00	Vertical
4824.00	39.62	36.06	6.81	41.82	40.67	54.00	-13.33	Horizontal

Test mode: 80)2.11g		Test char	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.44	36.32	6.85	41.84	51.77	74.00	-22.23	Vertical
4874.00	49.15	36.32	6.85	41.84	50.48	74.00	-23.52	Horizontal
Test	t mode: 802.	11g	Tes	st channel: Mi	ddle	Rem	ark: Avera	ige
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Vertical
4874.00	38.25	36.32	6.85	41.84	39.58	54.00	-14.42	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.78	36.58	6.89	41.86	51.39	74.00	-22.61	Vertical
4924.00	50.19	36.58	6.89	41.86	51.80	74.00	-22.20	Horizontal
Tes	t mode: 802.	11g	Tes	t channel: Hig	ghest	Rem	ark: Avera	ige
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	40.26	36.58	6.89	41.86	41.87	54.00	-12.13	Vertical
4924.00	41.79	36.58	6.89	41.86	43.40	54.00	-10.60	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.26	36.06	6.81	41.82	52.31	74.00	-21.69	Vertical
4824.00	49.78	36.06	6.81	41.82	50.83	74.00	-23.17	Horizontal
Test m	ode: 802.11	n(H20)	Te	Test channel: Lowest		Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.26	36.06	6.81	41.82	41.31	54.00	-12.69	Vertical
4824.00	49.58	36.06	6.81	41.82	50.63	54.00	-3.37	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.41	36.32	6.85	41.84	51.74	74.00	-22.26	Vertical
4874.00	50.23	36.32	6.85	41.84	51.56	74.00	-22.44	Horizontal
Test m	ode: 802.11	n(H20)	Te	st channel: M	1iddle	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	41.40	36.32	6.85	41.84	42.73	54.00	-11.27	Vertical
4874.00	39.67	36.32	6.85	41.84	41.00	54.00	-13.00	Horizontal

Test m	ode: 802.11	n(H20)	Tes	st channel: H	ighest	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.78	36.58	6.89	41.86	51.39	74.00	-22.61	Vertical
4924.00	50.18	36.58	6.89	41.86	51.79	74.00	-22.21	Horizontal
Test m	ode: 802.11	n(H20)	Tes	Test channel: Highest		Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	40.29	36.58	6.89	41.86	41.90	54.00	-12.10	Vertical
4924.00	41.79	36.58	6.89	41.86	43.40	54.00	-10.60	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	50.63	36.06	6.81	41.82	51.68	74.00	-22.32	Vertical
4844.00	49.77	36.06	6.81	41.82	50.82	74.00	-23.18	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	39.26	36.06	6.81	41.82	40.31	54.00	-13.69	Vertical
4844.00	41.44	36.06	6.81	41.82	42.49	54.00	-11.51	Horizontal

Test m	ode: 802.11	n(H40)	Te	st channel: M	/liddle	Re	mark: Pea	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.87	36.32	6.85	41.84	51.20	74.00	-22.80	Vertical	
4874.00	48.22	36.32	6.85	41.84	49.55	74.00	-24.45	Horizontal	
Test m	ode: 802.11	n(H40)	Test channel: Middle			Rem	ark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	39.62	36.32	6.85	41.84	40.95	54.00	-13.05	Vertical	
4874.00	38.22	36.32	6.85	41.84	39.55	54.00	-14.45	Horizontal	

Test m	ode: 802.11	n(H40)	Tes	st channel: H	ighest	Re	mark: Pea	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	50.44	36.45	6.87	41.85	51.91	74.00	-22.09	Vertical	
4904.00	48.61	36.45	6.87	41.85	50.08	74.00	-23.92	Horizontal	
Test m	ode: 802.11	n(H40)	Tes	st channel: H	ighest	Rem	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	39.23	36.45	6.87	41.85	40.70	54.00	-13.30	Vertical	
4904.00	41.26	36.45	6.87	41.85	42.73	54.00	-11.27	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

TX1

Test	mode: 802.	11b	Te	st channel: L	owest	Re	Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	Loss (dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polal.	
4824.00	49.85	36.06	6.81	41.82	50.90	74.00	-23.10	Vertical	
4824.00	48.62	36.06	6.81	41.82	49.67	74.00	-24.33	Horizontal	
Test	mode: 802.	11b	Test channel: Lowest			Rem	ark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	38.25	36.06	6.81	41.82	39.30	54.00	-14.70	Vertical	
4824.00	39.62	36.06	6.81	41.82	40.67	54.00	-13.33	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.42	36.32	6.85	41.84	51.75	74.00	-22.25	Vertical
4874.00	49.78	36.32	6.85	41.84	51.11	74.00	-22.89	Horizontal
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	37.68	36.32	6.85	41.84	39.01	54.00	-14.99	Vertical
4874.00	38.85	36.32	6.85	41.84	40.18	54.00	-13.82	Horizontal

Test	mode: 802.	11b	Te	st channel: H	ighest	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.78	36.58	6.89	41.86	51.39	74.00	-22.61	Vertical
4924.00	48.51	36.58	6.89	41.86	50.12	74.00	-23.88	Horizontal
Test	mode: 802.	11b	Tes	Test channel: Highest				age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.62	36.58	6.89	41.86	41.23	54.00	-12.77	Vertical
4924.00	38.17	36.58	6.89	41.86	39.78	54.00	-14.22	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.56	36.06	6.81	41.82	50.61	74.00	-23.39	Vertical	
4824.00	50.25	36.06	6.81	41.82	51.30	74.00	-22.70	Horizontal	
Test	t mode: 802.	11g	Test channel: Lowest			Rem	nark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.25	36.06	6.81	41.82	40.30	54.00	-13.70	Vertical	
4824.00	38.47	36.06	6.81	41.82	39.52	54.00	-14.48	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Pea	k		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	50.76	36.32	6.85	41.84	52.09	74.00	-21.91	Vertical	
4874.00	49.11	36.32	6.85	41.84	50.44	74.00	-23.56	Horizontal	
Tes	t mode: 802.	11g	Test channel: Middle			Rem	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.29	36.32	6.85	41.84	39.62	54.00	-14.38	Vertical	
4874.00	39.68	36.32	6.85	41.84	41.01	54.00	-12.99	Horizontal	

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea	k		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	49.62	36.58	6.89	41.86	51.23	74.00	-22.77	Vertical	
4924.00	50.72	36.58	6.89	41.86	52.33	74.00	-21.67	Horizontal	
Tes	t mode: 802.	11g	Test channel: Highest			Rem	ark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.62	36.58	6.89	41.86	41.23	54.00	-12.77	Vertical	
4924.00	40.11	36.58	6.89	41.86	41.72	54.00	-12.28	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	50.75	36.06	6.81	41.82	51.80	74.00	-22.20	Vertical	
4824.00	49.10	36.06	6.81	41.82	50.15	74.00	-23.85	Horizontal	
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Rem	nark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.25	36.06	6.81	41.82	40.30	54.00	-13.70	Vertical	
4824.00	38.47	36.06	6.81	41.82	39.52	54.00	-14.48	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.44	36.32	6.85	41.84	51.77	74.00	-22.23	Vertical
4874.00	49.70	36.32	6.85	41.84	51.03	74.00	-22.97	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.27	36.32	6.85	41.84	41.60	54.00	-12.40	Vertical
4874.00	39.61	36.32	6.85	41.84	40.94	54.00	-13.06	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.43	36.58	6.89	41.86	52.04	74.00	-21.96	Vertical
4924.00	49.77	36.58	6.89	41.86	51.38	74.00	-22.62	Horizontal
Test m	ode: 802.11	n(H20)	Tes	st channel: H	ighest	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.25	36.58	6.89	41.86	40.86	54.00	-13.14	Vertical
4924.00	40.12	36.58	6.89	41.86	41.73	54.00	-12.27	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	49.78	36.06	6.81	41.82	50.83	74.00	-23.17	Vertical
4844.00	50.15	36.06	6.81	41.82	51.20	74.00	-22.80	Horizontal
Test mode: 802.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	39.62	36.06	6.81	41.82	40.67	54.00	-13.33	Vertical
4844.00	40.27	36.06	6.81	41.82	41.32	54.00	-12.68	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.78	36.32	6.85	41.84	52.11	74.00	-21.89	Vertical
4874.00	49.62	36.32	6.85	41.84	50.95	74.00	-23.05	Horizontal
Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.25	36.32	6.85	41.84	39.58	54.00	-14.42	Vertical
4874.00	39.47	36.32	6.85	41.84	40.80	54.00	-13.20	Horizontal

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	50.65	36.45	6.87	41.85	52.12	74.00	-21.88	Vertical
4904.00	49.82	36.45	6.87	41.85	51.29	74.00	-22.71	Horizontal
Test mode: 802.11n(H40)			Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	39.32	36.45	6.87	41.85	40.79	54.00	-13.21	Vertical
4904.00	40.23	36.45	6.87	41.85	41.70	54.00	-12.30	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.