

<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Work, Potential Energy and Power 2

Work, Potential Energy and Power 2

Essential GCSE Physics 33.2

A builder	needs to drag a	a sack of cemer	nt $20\mathrm{m}$ along	the floor aga	ainst a friction t	force of $60\mathrm{N}$

Part A Work Done					
Calculate the work done.					
Part B Power					
If the builder took two minutes to do the dragging, what was their power?					

<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Work, Potential Energy and Power 5

Work, Potential Energy and Power 5

Essential GCSE Physics 33.5

A lighting bar on stage has a mass of $300\mathrm{kg}$ when supporting stage lights.						
Part A Weight						
What is its weight?						
Part B Energy to lift						
How much energy do you need to lift it by $10\mathrm{m}$?						
Part C Time to lift						
If your power is $100\mathrm{W}$, how long would it take you to lift the bar by $10\mathrm{m}$?						
Part D Gravitational potential energy						
What is the increase in gravitational potential energy when the bar is lifted by $10\mathrm{m}$?						

Gameboard:

STEM SMART Physics 7 - Energy

<u>Home</u> Physics Dynamics Kinetic Energy 2 <u>Gameboard</u> Mechanics

Kinetic Energy 2

Essential GCSE Physics 34.2
Calculate the kinetic energy of an $800\mathrm{kg}$ car when it is going at
Part A Kinetic energy at 30 mph
$30\mathrm{mph}$ (which is $13.4\mathrm{m/s}$);
Part B Kinetic energy at 40 mph
$40\mathrm{mph}$ (which is $17.9\mathrm{m/s}$).
Part C Road safety
Road safety campaigners are continually reminding motorists that $40\mathrm{mph}$ is much more dangerous than $30\mathrm{mph}$ even though it only seems a little bit faster. What does this question suggest about the issue?
The difference between the two is actually minimal.
The kinetic energy is a lot greater, almost double.
$40\mathrm{mph}$ is actually safer than $30\mathrm{mph}$.

Gameboard:

STEM SMART Physics 7 - Energy

Work, Energy and Power 2

GCSE A Level

Essential Pre-Uni Physics B8.2

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Part A GPE lost by the ball

An object of mass $3.5\,\mathrm{kg}$ slides all the way down a slope inclined at 40° to the horizontal, with a base of length $4.8\,\mathrm{m}$. How much GPE does the object lose?

Part B Work done by the ball against friction

If the average frictional forces are $4.0\,\mathrm{N}$, work out how much work the object does against friction.

Gameboard:

STEM SMART Physics 7 - Energy

Work, Energy and Power 3

GCSE A Level

Essential Pre-Uni Physics B8.3

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

 $50\,\mathrm{J}$ of work is done in stretching a spring to an extension of $3.5\,\mathrm{cm}$. Work out the average force applied.

Gameboard:

STEM SMART Physics 7 - Energy

Work, Energy and Power 4

GCSE A Level

Essential Pre-Uni Physics B8.4

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

A boy whirls a $30\,\mathrm{g}$ conker around his head in a circle at a speed of $2.2\,\mathrm{m\,s^{-1}}$, using a <u>taut inextensible</u> string. How much work is done on the conker by the tension in the string?

Gameboard:

STEM SMART Physics 7 - Energy

Work, Energy and Power 7

Essential Pre-Uni Physics B8.7

A child of $40\,\mathrm{kg}$ rides a $35\,\mathrm{kg}$ bike at $9.0\,\mathrm{m\,s^{-1}}$. The brakes are then applied and the bike is slowed to $3.8\,\mathrm{m\,s^{-1}}$. How much work is done by frictional forces?

Gameboard:

STEM SMART Physics 7 - Energy

Home Gameboard Physics Mechanics Dynamics Kinetic Energy 9

Kinetic Energy 9

Essential GCSE Physics 34.9

This question allows you to derive the equation for kinetic energy using a numeric example. We assume constant acceleration and no resistive forces. You can use these equations:

 $\begin{aligned} & \text{distance} = \text{average speed} \times \text{time} \\ & \text{acceleration} = \text{change in speed} \ / \ \text{time taken} \\ & \text{force} = \text{mass} \times \text{acceleration} \\ & \text{energy transferred} = \text{force} \times \text{distance} \end{aligned}$

Part A Acceleration

A $700\,\mathrm{kg}$ car accelerates uniformly from rest to $30\,\mathrm{m/s}$ in $10\,\mathrm{s}$. Calculate its acceleration.

Part B Force

Calculate the force needed to give the car this acceleration.

Part C Distance

The average speed of the car is midway between the starting speed $(0.0\,\mathrm{m/s})$ and the final speed. Use this information to work out how far the car will go while accelerating.

Part D Kinetic energy	
The kinetic energy equals the work done in accelerating the car. Use this fact to calculate the kinetic energy.	
Part E Symbolic	
Now repeat this question for a car of mass m going from rest to speed v in time t .	
The following symbols may be useful: E, m, t, v	
Gameboard:	

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

STEM SMART Physics 7 - Energy

Work, Energy and Power 9

Essential Pre-Uni Physics B8.9

Physical constants which may be necessary to answer this problem can be found within the hint tab.

A $4.0 \,\mathrm{kg}$ ball is thrown vertically up into the air with an initial velocity of $8.5 \,\mathrm{m\,s^{-1}}$. By the time it is height h metres above the starting point, it has a velocity of $3.0 \,\mathrm{m\,s^{-1}}$ and has done $4.0 \,\mathrm{J}$ of work against air resistance. Find h.