Faculté de Mathématiques Département de Recherche Opérationnelle

Module : Théorie des graphes

Rattrapage

Durée: 1h30

Année: 2018/2019

3ème Lic RO

Exercice 1 .(5 points)

Huit personnes se retrouvent pour diner, un soir.

Le tableau suivant indique pour chaque personne les personnes avec lesquelles il a une incompatibilité d'humeur.

1									
La personne	A	B	C	D	E	F	G	H	
est incompatible avec	B,D	E, F, A	D, E	A, C, G	B, C, F	B, H, E	D, H	F, G	

1. Representer cette situation par un graphe G.

2. Proposez un plan de tabe (la table est ronde) pour ce groupe en évitant de placer côte à côte deux personnes "d'humeurs incompatibles".

Que represente une telle solution par rapport à G?

Exercice 2 .(8points)

- 1. Soit G un graphe simple connexe d'ordre n et \overline{G} son complémentaire. Prouver que si $n \geq 11$, alors G ou \overline{G} est non planaire.
- 2. (a) Trouver le nombre de sommets d'un graphe 3-régulier planaire ayant 6 faces.
 - (b) Donner un graphe ayant la propriété de la question (2.a).
- 3. Montrer que G_1 n'est pas planaire est que G_2 est planaire.

 G_1

 G_2

Exercice 3 .(7 points)

Soit G = (X, E) un graphe simple non orienté avec |X| = n, |E| = m.

1. Montrer que si G est connexe et possède n-1 arêtes, alors G est sans cycle et si on lui ajoute une arête on obtient un cycle.

- 2. Supposons que G soit connexe et soit T un graphe partiel de G qui soit un arbre. Supposons que dans T, les degrés des sommets sont soit 3 ou 1. Si T a 10 sommets de degré 3, combien de sommets de degré 1 a t il?
- 3. En utilisant l'algorithme de Kruskal, trouver un arbre maximal de poids minimum dans le gaphe suivant :

