Class 28

Sec. 2.14 Fundamental Thm of Calculus on \mathbb{R} :

(I) f Lebesgue integrable on [a,b]

Let
$$g(x) = \int_{a}^{x} f(t)dt$$

Then g' exists a.e. & g' = f a.e.

Note: f Riemann integrable on [a,b]

f conti. for some $x_0 \in (a,b)$

Then $g'(x_0)$ exists & $g'(x_0) = f(x_0)$

Ex.1. $f(x) = \begin{cases} 1 & \text{if } x \text{ rational} \\ 0 & \text{if } x \text{ irrational} \end{cases}$ not applicable in Riemann, applicable in Lebesgue.

$$\therefore g'(\frac{1}{2})$$
 not exists ($\because f$ not conti. at $\frac{1}{2}$), but $g' = f$ a.e.

(Note: special case of (I))

Lma 1: f Lebesgue integrable on [a,b]

If
$$\int_{a}^{x} f(t)dt = 0$$
 for all $x \in (a,b)$, then $f = 0$ a.e.

Pf:
$$\int_E f = 0 \ \forall$$
 interval (open or closed) E

$$\int_{E} f = 0 \ \forall \text{ open } E \text{ (Reason: } E = \bigcup_{i} I_{i}, I_{i} \text{ disjoint open intevals}$$

&
$$\int_{\mathbf{E}} f = \int_{i} I_{i} f = \sum_{i} I_{i} f = 0$$

$$\int_E f = 0 \ \forall \ \text{closed} \ E \ (\text{Reason:} \int_E f = \int_a^b f - \int_{[a,b] \setminus E} f = 0 - 0 = 0)$$

Assume Lebesgue integrable $f \neq 0$ a.e.

∴
$$\exists F \subseteq (a,b) \ni F$$
 Lebesgue measurable, $m(F) > 0 \& f(x) \neq 0$ for $x \in F$
⇒ $\exists G$ closed in $[a,b]$, $G \subseteq F$, $m(G) > 0 \& f > 0$ on G

$$(\because \text{ consider } \{x \in F : f(x) > 0\} \& \{x \in F : f(x) < 0\})$$

Thm.2.7.5
$$\Rightarrow \int_G f > 0$$
 $\rightarrow \leftarrow$

Lma 2: $f \uparrow$ on [a,b].

Then f' exists a.e.

Note: f conti. a.e. (Ex.2.11.2)

Note: Two proofs:

(I) Use Vitali Lemma (measure theoretic proof)

(Ref. H. L. Royden, Real Analysis, Chap. 5., Sec. 1.)

Assume $\ell = a$ set of intervals in \mathbb{R}

$$E \subset \mathbb{R}$$

Def: ℓ covers E in the sense of Vitali if $\forall \varepsilon > 0$, $\forall x \in E$, $\exists I \in \ell \ \ni \ x \in I$ & $m(I) < \varepsilon$ (usual covering)

Vitali Lemma

 $m^*(E) < \infty$, ℓ covers E in the sense of Vitali.

Then
$$\forall \varepsilon > 0, \exists \{I_1, ..., I_N\} \subseteq \ell$$
, disjoint $\ni m^*(E \setminus \bigcup_{n=1}^N I_n) < \varepsilon$

(II) Use F. Riesz's flowing water lemma (advanced calculus proof)

(rising sun lemma)

$$g: I \to \mathbb{R}$$
 conti.

Then g has equal values at ends of I_i , i = 2, 3, 4

Summary: projection of mountain shades is open set with equal height Lma:

Let g be conti. on interval I, except jumps.

Let
$$G(x) = \max \{g(x-), g(x), g(x+)\}$$

Let
$$E = \{x \in I : \exists y \in I, y > x, g(y) > G(x)\}$$

Then (1) E open,

(2) If
$$E = \bigcup_i (a_i, b_i), \{(a_i, b_i)\}$$
 disjoint, then $g(a_i +) \leq G(b_i)$.

(Ref. R.P. Boas, Jr., A primer of real functions, Sec. 22, pp.134-135)

Other uses of rising sum lemma:

- (1) proof of Hardy-Littlewood maximal thm;
- (2) Lebesgue's Thm on pts of density;
- (3) Birkhoff ergodic thm.

Lma 3: f Lebesgue integrable on [a,b]

$$g(x) = \int_{a}^{x} f(t)dt$$

Then g is abso. conti. & of bdd variation & g' exists a.e.

Pf: By Ex.2.8.2 & Ex.2.8.4

Lma 4: f bdd & Lebesgue integrable on [a,b]

$$g(x) = \int_{a}^{x} f(t)dt$$

Then g' exists a.e. & g' = f a.e. on [a,b].

Pf: (1) Let
$$f = f^+ - f^-$$

$$\therefore g(x) = \underbrace{\int_{a}^{x} f^{+}(t)dt}_{\uparrow} - \underbrace{\int_{a}^{x} f^{-}(t)dt}_{\uparrow}$$
Lma 2 \Rightarrow \text{differ a.e.}

 \Rightarrow g' exists a.e (without f bdd)

or Lma
$$3 \Rightarrow g = g_1 - g_2$$
, where $g_1, g_2 \uparrow$

- \therefore Lma 2 \Rightarrow g' exists a.e
- (2)Let $|f| \le M$ on [a,b] (main idea:reduces to fundamental thm for Riemann integrals) Extend f to \mathbb{R} by defining f(a), f(b) beyond a,b

$$\left| \frac{g(x+h) - g(x)}{h} \right| = \left| \frac{1}{h} \left(\int_{a}^{x+h} f - \int_{a}^{x} f \right) \right| = \left| \frac{1}{h} \int_{x}^{x+h} f(t) dt \right| \le \frac{1}{|h|} \int_{x}^{x+h} |f| \le M \frac{(x+h) - x}{h}$$

$$\uparrow \qquad \qquad ||$$

$$\text{assume } h > 0 \qquad M \quad \forall h$$

$$\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = g'(x) \text{ a.e. & } \frac{1}{h} [g(x+h) - g(x)] \text{ conti.} \Rightarrow \text{integrable on [a,b]}$$

 $(Riemann \Rightarrow Lebesgue)$

g' meas. (:: limit of conti. functions)

DCT
$$\Rightarrow$$
 g' integrable & $\int_a^x \frac{g(t+h) - g(t)}{h} dt \rightarrow \int_a^x g'(t) dt \ \forall x \in [a,b]$

$$\frac{1}{h} \left(\int_{a+h}^{x+h} g(t)dt - \int_{a}^{x} g(t)dt \right)$$

 $\frac{1}{h} \left(\int_{x}^{x+h} - \int_{a}^{a+h} \right) \to g(x) - g(a)$

(By fundamental thm. for Riemann integrals)

$$\Rightarrow \int_{a}^{x} g'(t)dt = g(x) - g(a) \quad \forall x \in [a,b]$$

$$\parallel \qquad \qquad \parallel$$

$$\int_{a}^{x} f(t)dt \quad 0$$

$$\Rightarrow \int_a^x [g'(t) - f(t)] dt = 0 \quad \forall x \in [a,b]$$

Lma $1. \Rightarrow g' = f$ a.e.

Lma 5. $\phi \uparrow$ on [a,b]

 $\Rightarrow \phi'$ integrable, $\phi' \ge 0$ a.e. & $\int_a^b \phi' \le \phi(b) - \phi(a)$

Note 1. "<" may occur.

Ex:
$$\varphi(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } 0 \le x < 1 \end{cases}$$

Then $\varphi \uparrow$ on [0,1] & $\varphi' = 0$ a.e.

$$\int_{0}^{1} \varphi' = 0 < \varphi(1) - \varphi(0) = 1$$

Note 2. "<" may occur even for φ conti. & \uparrow

Ex: (cf. K.L. Chung, A Course in probability theory, 1st edi., pp.12-13)

constructed from Cantor set: φ conti, \uparrow , $\varphi' = 0$ a.e. on [0,1], $\varphi(0) = 0$, $\varphi(1) = 1$

i.e., φ is singular function (cf. Ex.2.14.5)

$$\therefore \int_0^1 \varphi' = 0 < \varphi(1) - \varphi(0) = 1$$

Note 3. $\varphi \downarrow$ on [a,b]

Then
$$-\varphi \uparrow$$

$$\Rightarrow \varphi'$$
 integrable $\varphi' \le 0$ a.e. & $\int_a^b -\varphi' \le -\varphi(b) + \varphi(a)$

$$\Rightarrow \int_a^b \varphi' \ge \varphi(b) - \varphi(a)$$

Pf: Define
$$\varphi(x) = \begin{cases} \varphi(b) & \text{if } x > b \\ \varphi(a) & \text{if } x < a \end{cases}$$
Consider $\left\{ \frac{\varphi(x+h) - \varphi(x)}{h} \right\}_{h \neq 0}$

Then(1) meas.

Reason: $\varphi \uparrow \Rightarrow$ measurable (Ex.2.1.10)

 $(2) \ge 0$

Reason: $\varphi \uparrow$, consider h > 0 & < 0, separately.

(3) $\rightarrow \varphi'$ a.e. ($\Rightarrow \varphi'$ meas. & $\varphi' \ge 0$ a.e.)

Reason: Lma 2

$$\therefore \text{ Fatou's Lma} \Rightarrow \int_a^b \varphi' \le \underline{\lim}_{h \to 0^+} \int_a^b \frac{\varphi(x+h) - \varphi(x)}{h} dx$$

(∵ no DCT or MGT)

$$\underline{\lim} \frac{1}{h} (\int_{b}^{b+h} \varphi - \int_{a}^{a+h} \varphi)$$

$$\varphi(b) - \varphi(a)$$

$$\varphi(x) \ge \varphi(a) \quad \forall x \in [a, a+h]$$

$$\Rightarrow \frac{1}{h} \int_{a}^{a+h} \varphi \ge \frac{1}{h} \varphi(a) \cdot (a+h-a) = \varphi(a)$$

$$a + h$$
 $b + h + b$

$$\because \int_a^b \varphi' \le \varphi(b) - \varphi(a) < \infty$$

 $\Rightarrow \varphi'$ integrable on [a,b]

1896