α-Sn薄膜を蒸着するためのレシピ

2018年10月9日 平松信義

α錫と基板の格子定数

Hans Lüth, Solid Surfaces, Interfaces and Thin Films, Springer

Fig. 2.12 Energy gap [eV] and corresponding optical wavelengths $[\mu m]$ versus lattice constant at 300 K for important semiconductors. The connection lines describe the behavior of corresponding alloys. Direct gap materials are plotted as solid lines, whereas indirect gap semiconductors are shown by broken lines

	格子定数	α錫とのミスマッチ	β錫とのミスマッチ
α錫	6.489 Å	-	11%
β錫	5.831 Å	11%	-
InSb	6.479Å	0.14%	11%
CdTe	6.483 Å	0.03%	11%
Si	5.430 Å	16%	6.8%

界面エネルギーの利得により、InSb/CdTe上には α 錫ができやすくなる $(T_{transition} \uparrow)$

InSb基板にα-Snを蒸着するために

蒸着条件

最適な基板温度(~320K): 基板温度が大きくなると、Sn中にInの拡散が起きやすく β 相の核生成も起こりやすくなる[1]。温度を低くしすぎると結晶粒が小さくなる最適な蒸着レート(~0.5 $^{\rm A}$ /min): 基板温度や表面荒さなどへの影響がある高い表面洗浄度: CやOなどが残っていると α 相の成長が阻害される。多くの文献では洗浄のためArをスパッタした後アニールを行っている[1][2]

膜厚: 基板の結晶方向に依存するが、InSb(110)面に蒸着した場合50nm程度まで

InSb基板の結晶方向:

InSb(100)面: α 相が最もできやすく、温度を上げるとシャープな α - β 相転移が見られる[2]

InSb(110)面: α 相と β 相が共存し、 α 相が島になる[3]。

InSb(111)面: 積み重なる(Layer-by-layer)ように α 相が成長する[3]

- [1] M. G. Betti et al., Growth morphology of (1×2) α -Sn(100): a surface diffraction study, Surface Science, 507, 335 (2002)
- [2] J. Menendez et al., Study of the phase transition in heteroepitaxially grown films of α -Sn by Raman spectroscopy, Thin Solid Films 111, 375 (1984)
- [3] E. Magnano et al., Growth morphology and electronic properties of Sn deposited on different InSb surfaces, Surface Science 433, 387 (1999)

表1: 錫薄膜に関する先行研究のサーベイ(不完全ですが参考のため)

論文のタイトル	THE ELECTRO N ENERGY LOSS SPECTRU M OF TIN AT LOW PRIMARY BEAM ENERGIES	Distruction of supercondu ctivity in quench- condensed two- dimensional films	Epitaxial and endotaxial semiconductor quantum dots: atomic order, morphological transformations, and structural transitions	on of epitaxia I -Sn islands at the interfac e of	of island arrays by melting of Bi, Pb and Sn continuou s films on	Sn on InSb(100)– c(238): growth morphology and electronic structure	Growth morphology of (1 2) a-Sn(1 0 0): a surface diffraction study	Growth and annealing behaviour of a- Sn on InSb(001) measured by LEED and He atom scattering	THE GROWTH OF METASTAB LE, HETEROEPI TAXIAL FILMS OF ct-Sn BY METAL BEAM EPITAXY	HETEROEPITA XIALLY GROWN FILMS OF a-Sn BY RAMAN	and	Insb(IIO)-Sn SCHOTIXY BARRIER BY MEANS OF ELECTRON ENERGY LOSS SPECTROSCO		Supercondu ctivity in Sn films on InSb(110) taking account of the film morphology and structure	Inelastic scattering of low- energy electrons from Sn overlayers on cleaved Insb(110) surfaces	The electrical and structural properties of granular supercond ucting Sn on InSb(1 1 0)	Growth morpholog y and electronic properties of Sn deposited on different InSb surfaces	a-Sn pseudomorp hic growth on InSb (111) and (111) surfaces: a high- resolution photoemissi on study	Surface phase transition and interface interactio n in the a-Sn/ InSb j111)syst em	CUBIC Sn FROM LIQUID PHASE EPITAXY ON InSb	The Dynamical Observation of α -Sn (111) This Films Grown on InSb (bar 1bar 1bar 1by RHEED.pdf
出版年	1979	1986	2005 (Review)		2014	2002	2002	1992	1981		2000	1987	1982	2002	1985			2000	1994		1988
成膜法	熱蒸着	熱蒸着			熱蒸着	電子ビーム蒸着	電子ビーム蒸着	電子ビーム蒸着	MBE	MBE	電子ビーム蒸着	熱蒸着	熱蒸着	蒸着	熱蒸着		熱蒸着		MBE	液相エピタ キシー	MBE
基板	銅	ガラス	Si	Si	Si (111)	InSb(100)	InSb (100)	InSb (100)	InSb (001)	InSb (100)	InSb (100)	InSb(110)	InSb(110)	InSb(110)	InSb(110)	InSb(110)	InSb(111)/ (110)	InSb(111)/ (111)	InSb(111)/(111)	InSb(111)	InSb(111)
基板の洗浄法						Arスパッタ 後、350℃で 10分アニー ル	Arイオンでスパッした後、 350°Cで10分アニール			500eV Ar+, ア ニール								500eV Ar+, 400°C			
蒸着レート						0.25 A / min	0.1ML/min						0.1~1.5ML /min				1ML/min	1ML/min			
基板の温度	室温/ 液体 窒素温度	1.5-8K							室温(~25℃)			室温						室温			
真空度					~(1- 3)×10-8 Torr								<7*10^-8P a		10^-8Pa	UHV		<1*10^-8Pa			
ポスト熱処理																					
α相の最大の厚 み									500nm			50nm	50ML (~25nm)	180ML	50nm	64 nm		4ML?			
α-β相転移温 度					点点				70°C	60nmで115°C; 190nmで70°C										60°C	
評価手法							X線回折														
知見1					45nm以下 の厚みでは 均一な大き さの島がで きる	低い蒸着レート(0.25 A/min)と基板 温度300Kで 良質の試料が 得られた	基板の温度が 影響を与える			InSbの(110)と (111)面ではシャープな相転移 が見られなかった(110と111 はβ相も好む)		多結晶 α 相が最 大50nmの厚み でできる	基板の方向 と表面の preparatio nがα相の 成長に大き な影響を与 える	厚みを大きく するか、アニ ールによりベ ータ相の合 が大きくなる	上でα相と β相が共存	薄いサンプ ルの臨界温 度は3K程度 まで下がる	111面上で 積み重なる; 110上で島 を作る				150ML以上 の厚みをもつ 安定なα相を 作った
知見2							成長 中の基 が の と Inの Sn 中 の 基 板 の と Inの Sn 中 の べ の と い か が 起 の り か が 起 の り か は む な も む こ の っ さ す 皮 を い っ く く な る (な ぜ ?)		Ge添 α - β - α - β	β相からα相へ のreversibleな 転移は難しい				島の大きさが 37ML以下の 試料に超伝導 は現れなかっ た							30MLの厚み の試料を 170°Cに加熱 するとβ相に ならずに液相 になった
知見3										500nmのα相 wetting layerが 作れる											