Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	Метрические пространства. Определение, примеры	3
2	Сходимость в метрическом пространстве. Фундаментальные последовательности. Полнота метрического пространства	4
3	Открытые и замкнутые множества. Предельные и внутренние точки множества. Замыкание множества	5
4	Принцип сжимающих отображений. Неподвижная точка оператора	6
5	Линейные пространства. Линейно независимая система. Размерность	8
6	Нормированные пространства. Банаховы пространства. Определение, при меры. Сходимость в нормированном пространстве	9
7	Линейные, непрерывные операторы. Норма оператора	10
8	Гильбертово пространство. Ортонормированный базис. Ряд Фурье	11
9	Процесс ортогонализации Грамма-Шмидта	12

1 Метрические пространства. Определение, примеры

Определение 1.1. Пространство X называется метрическим, если $\forall x, y \in X \; \exists ! \rho(x, y) \in \mathbb{R}$, такое, что:

- 1) $\rho(x,y) \ge 0$, при этом $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2) $\rho(x,y) = \rho(y,x)$ (симметричность);
- 3) $\rho(x,y) \le \rho(x,z) + \rho(y,z)$ (неравенство треугольника); $\forall x,y,z \in X.$

Пример 1.1.

1.
$$X = \mathbb{R}$$
, тогда $\rho(x, y) = |x - y|$.

2.
$$X = \mathbb{R}^n$$
, тогда:

(a)
$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (сферическая метрика);

(b)
$$\rho(x,y) = \max_{i=\overline{1,n}} |x_i - y_i|$$
 (параллелепипедальная);

(c)
$$\rho(x,y) = \sum_{i=1}^{n} |x_i - y_i|;$$

(d)
$$\rho(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$
.

3.
$$X = C[a, b]$$
.

(a)
$$\rho(f(x), g(x)) = \max_{[a,b]} |f(x) - g(x)|$$

(b)
$$\rho(f(x), g(x)) = \int_a^b |f(x) - g(x)| dx$$
.

2 Сходимость в метрическом пространстве. Фундаментальные последовательности. Полнота метрического пространства

Определение 2.1. Пусть $\{x^{(k)}\}_{k=1}^{\infty}$ — последовательность элементов в X. И пусть $x^* \in X$. Тогда $x^{(k)} \to x^*$, если $\rho(x^{(k)}, x^*) \to_{k \to \infty} 0$.

Определение 2.2. Последовательность $\{x^{(k)}\}_{k=1}^{\infty}$ фундаментальна, если для нее выполнен критерий Коши: $\forall \varepsilon > 0 \ \exists N > 0 : \ \forall k, n \geq N$ выполняется $\rho(x^{(k)}, x^{(n)}) < \varepsilon$.

Теорема 2.1. Если последовательность сходится, то она фундаментальна.

Доказательство. Рассмотрим $0 \le \rho(x^{(k)}, x^{(n)}) \le \rho(x^{(k)}, x^*) + \rho(x^*, x^{(n)}) \to_{\{k,n\} \to \infty} 0$. Теорема о двух милиционерах.

Определение 2.3. Пространство X — полное, если любая фундаментальная последовательность в нем сходится к элементу этого пространства: \forall фундаментальной последовательности $\{x^{(k)}\} \in X \; \exists x^* \in X$, такое, что $x^{(k)} \to_{k \to \infty} x^*$.

Пример 2.1. $X = \mathbb{R}$ — полное. $X = \mathbb{Q}$ — не полное, так как $x^{(k)} = (1 + \frac{1}{k})^k \in \mathbb{Q}$ сходится к e, но $e \notin Q$.

Замечание 2.1. Полнота пространства зависит, вообще говоря, от введенной метрики.

Пример 2.2. $X = C[a,b], \, \rho_1(f(x),g(x)) = \max_{[a,b]} |f(x)-g(x)| \, \text{и} \, \rho_2(f(x),g(x)) = \int_a^b |f(x)-g(x)| dx$. Если рассматривать $\rho_1(f_k(x),g(x)) \to_{k\to\infty} 0 \Rightarrow f_k(x) \rightrightarrows_{k\to 0}^{[a,b]} f(x) \Rightarrow f(x) \in X$, но $\rho_2(f_k(x),g(x)) \to_{k\to\infty} 0 \not\Rightarrow f(x) \in X$.

Определение 2.4. A плотно в X, если всякая окрестность любой точки $x \in X$ содержит элемент из A. То есть всюду плотное множенство — подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства.

Пример 2.3. Множество рациональных чисел $\mathbb Q$ плотно в пространстве вещественных чисел $\mathbb R$.

Определение 2.5. X^* называется пополнением пространства X, если:

- 1) $X \subset X^*$;
- (2) X всюду плотно в X^* .
- 3) X^* полное.

3 Открытые и замкнутые множества. Предельные и внутренние точки множества. Замыкание множества

Определение 3.1. ε -окрестность точки x_0 — множенство $V_{\varepsilon}(x_0) = \{x \in X : \rho(x_0, x) < \varepsilon\}$. Также ε -окрестность эквивалентна открытому шару $B_{\varepsilon}(x_0)$, где x_0 — центр, а ε — радиус.

Определение 3.2. Закрытый шар $\overline{B}_{\varepsilon}(x_0)$ — это такие $x: \rho(x,x_0) \leq \varepsilon$.

Определение 3.3. $E \subset X$. x_0 — внутренняя точка, если $\exists \varepsilon > 0$, такое, что $B_{\varepsilon}(x_0) \in E$.

Определение 3.4. Открытое множество — множество, состоящее только из внутренних точек.

Определение 3.5. $E \subset X$. x_0 — предельная точка для E, если $\forall \varepsilon > 0$ выполняется $B_{\varepsilon}(x_0) \cap E \neq \varnothing$.

Определение 3.6. Замыкание множества — процесс присоединения к нему всех его предельных точек: $\overline{E} = E \cup \{$ предельные точки $\}$.

4 Принцип сжимающих отображений. Неподвижная точка оператора

Пусть X, Y — два метрических пространства. Пусть ρ_1, ρ_2 — метрики в пространствах X и Y соответственно. И пусть задано отображение $\mathcal{A}: X \to Y \ (\forall x \in X \ \exists y = \mathcal{A}x \in Y)$.

Определение 4.1. Отображение \mathcal{A} называется непрерывным в точке $x_0 \in X$, если $\forall \{x_k\} \in X: x_k \to_{k\to\infty} x_0 \Rightarrow \mathcal{A}x_k \to_{k\to\infty} \mathcal{A}x_0$.

Или, что то же самое: $\forall \varepsilon > 0 \; \exists \delta > 0$, такое, что если $\rho_1(x, x_0) < \delta$, то $\rho_2(\mathcal{A}x, \mathcal{A}x_0) < \varepsilon$.

Предположим далее, что X = Y, то есть $A : X \to X$ и $\rho_1 = \rho_2 = \rho$.

Определение 4.2. Точка $x^* \in X$ — неподвижная точка отображения A, если $Ax^* = x^*$.

Определение 4.3. Отображение $A: X \to X$ называется сжимающим, если $\exists \alpha \in [0,1)$, такая, что $\forall x, y \in X$ верно $\rho(Ax, Ay) \leq \alpha \rho(x, y)$.

Лемма 4.1. \mathcal{A} сжимающее $\Rightarrow \mathcal{A}$ непрерывное на X.

Доказательство.
$$\forall x_0 \in X, \forall \{x_k\} \in X: x_k \to_{k \to \infty} x_0 \Rightarrow 0 \leq \rho(\mathcal{A}x_k, \mathcal{A}x_0) \leq \alpha \rho(x_k, x_0) \to_{k \to \infty} 0$$

Теорема 4.1. (о неподвижной точке, она же Каччапалья-Банаха, она же принцип сжимающих отображений)

Пусть X — полное метрическое пространство, $A: X \to X$ — сжимающее. Тогда у отображения $A \exists !$ неподвижная точка.

Доказательство. $\forall x_0 \in X$:

$$x_1 = \mathcal{A}x_0$$

$$x_2 = \mathcal{A}x_1 = \mathcal{A}(\mathcal{A}x_0) = \mathcal{A}^2x_0$$

...

 $X_k = \mathcal{A}^k x_0$

Докажем, что эта последовательность является фундаментальной:

 $\forall n \geq m \geq 1$

$$\rho(x_{n}, x_{m}) = \rho(\mathcal{A}^{n} x_{0}, \mathcal{A}^{m} x_{0}) \leq \alpha \rho(\mathcal{A}^{n-1} x_{0}, \mathcal{A}^{m-1} x_{0}) \leq \dots \leq \alpha^{m} \rho(\mathcal{A}^{n-m} x_{0}, x_{0}) \leq (*) \leq
\leq \alpha^{m} \left(\rho(\mathcal{A}^{n-m} x_{0}, \mathcal{A}^{n-m-1} x_{0}) + \dots + \rho(\mathcal{A}^{n-m-1} x_{0}, \mathcal{A}^{n-m-2} x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq
\leq \alpha^{m} \left(\alpha^{n-m-1} \rho(\mathcal{A} x_{0}, x_{0}) + \alpha^{n-m-2} \rho(\mathcal{A} x_{0}, x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq
\leq \alpha^{m} \rho(x_{0}, x_{1}) \left(1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1} + \dots \right) = \frac{\alpha^{m} \rho(x_{0}, x_{1})}{1 - \alpha} \to_{m \to \infty} 0$$

(*) — по неравенству треугольника.

Следовательно, последовательность является фундаментальной.

X полное, следовательно, $\exists x^* \in X: \ x_k \to_{k \to \infty} x^*.$ Покажем, что x^* будет неподвижной точкой:

$$\mathcal{A}x^* = \mathcal{A}\lim_{k\to\infty} x_k = (A \text{ сжим, непр}) = \lim_{k\to\infty} \mathcal{A}x^* = \lim_{k\to\infty} x_{k+1} = x^*$$

Докажем, что точка единственная. От противного:

 x^*, y^* — неподвижные точки \mathcal{A} . Тогда:

$$0 < \rho(x^*, y^*) = \rho(\mathcal{A}x^*, \mathcal{A}y^*) \le \underbrace{\alpha}_{<1} \rho(x^*, y^*)$$

противоречие, то есть $\rho(x^*, y^*) = 0$.

Замечание 4.1. В доказательстве содержится алгоритм поиска неподвижной точки. Выберем любую точку, применим к ней несколько раз отображение и предел данной последовательности будет неподвижной точкой.

Линейные пространства. Линейно независимая система. Размерность

Определение 5.1. Непустое множество L называют линейным пространством (или векторным пространством), если выполняются следующие условия:

 $\forall x,y \in L \ \exists z = x+y \in L$, причем выполнены:

- 1) Коммутативность: x + y = y + x;
- 2) Ассоциативность: (x + y) + z = x + (y + z);
- 3) Существование нулевого элемента: $\exists 0 \in L$, что $\forall x \in L : x + 0 = x$;
- 4) Существование противоположного элемента: $\forall x \in L \ \exists -x \in L$, такой что x+(-x)=0 Для любого числа α и любого элемента $x \in L$ определён элемент $\alpha x \in L$ (произведение элемента на число), причём
 - 1) $\alpha(\beta x) = (\alpha \beta)x$;
 - 2) $1 \cdot x = x$;
 - 3) $(\alpha + \beta)x = \alpha x + \beta x$;
 - 4) $\alpha(x+y) = \alpha x + \alpha y$.

Определение 5.2. Система элементов $\{x_1,...,x_n\}$ линейного пространства L называется линейно независимой, если равенство $\sum_{i=1}^n a_i x_i = 0$ возможно только при $a_1 = a_2 = ... = a_n = 0$.

Определение 5.3. Базисом в n-мерном линейном пространстве называется любая система n линейно независимых элементов.

Определение 5.4. Если в линейном пространстве L можно найти n линейно независимых элементов, а любые n+1 элементов являются линейно-зависимыми, то пространство L имеет размерность n. Если же в линейном пространстве можно выбрать любое конечное число линейно независимых элементов, то такое пространство называют бесконечномерным.

6 Нормированные пространства. Банаховы пространства. Определение, примеры. Сходимость в нормированном пространстве

Определение 6.1. Норма — функция $||\cdot||: X \to \mathbb{R}$, удовлетворяющая свойствам:

- 1) $||x|| \ge 0$;
- 2) $||x|| = 0 \Leftrightarrow x = 0;$
- 3) $||\alpha x|| = \alpha ||x||$;
- 4) $||x+y|| \le ||x|| + ||y||$; где $x \in X$.

Определение 6.2. Нормированное пространство — линейное пространство, на котором введена норма.

Определение 6.3. Банахово пространство — полное нормированное пространство.

Пример 6.1. Пусть пространство имеет вид:

- 1) C[a, b]: f непрерывна, $||f|| = \max_{x \in [a, b]} |f(x)|$;
- 2) $C^{k}[a, b]$: ||f||: $\max_{x \in [a, b]} |f(x)| + \sum_{n=1}^{k} \max |f^{(n)}(x)|$;
- 3) $L_1[a,b]: f$ интегрируема по Лебегу на $[a,b], ||f|| = \int_a^b |f(x)| dx;$
- 4) $L_p[a,b]: ||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p};$
- 5) $l_p(\mathbb{N}):=$ {последовательности $x=\{x_n\}: \sum_n |x_n|^p<+\infty\}: ||x||_p=(\sum_n |x_n|^p)^{1/p}<+\infty.$

Определение 6.4. Пусть $\{x^{(k)}\}_{k=1}^{\infty}$ — последовательность элементов в X. И пусть $x^* \in X$. Тогда $x^{(k)} \to_{k \to \infty} x^*$, если $||x^* - x_k|| \to_{k \to \infty} 0$.

7 Линейные, непрерывные операторы. Норма оператора

Определение 7.1. X,Y — линейные пространства. $A:X\to Y$ — оператор, если $\forall x\in X\ \exists y=Ax\in Y.$

Определение 7.2. Если $Y = \mathbb{R}$, то есть оператор $A : X \to \mathbb{R}$, то A называется функционалом.

Определение 7.3. Оператор A называется линейным, если он удовлетворяет свойству дистрибутивности: $\forall x_1, x_2 \in X, \ \forall \alpha_1, \alpha_2 = const \ A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2$. Также линейным может быть и функционал.

Пример 7.1. $X = C^1[a, b], Y = C[a, b]. A = \frac{d}{dt}: x(t) \in X \to x'(t) \in Y.$

Определение 7.4. Линейный оператор непрерывен, если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$, такое, что $||x_1 - x_2||_x < \delta \Rightarrow ||Ax_1 - Ax_2||_y$.

Определение 7.5. A — ограничен, если $\forall x \in X$ выполняется $||Ax||_y \le C ||x||_x$.

Утверждение 7.1. A непрерывен ⇔ A ограничен.

Определение 7.6. Пусть P и Q — два нормированных линейных пространства и $A:P\to Q$. Если A ограничен, наименьшее возможное M называется его нормой.

Норма оператора определяется как $||A|| = \sup_{||x||_x \le 1} ||Ax||_y = \sup_{||Ax||_y} \frac{||Ax||_y}{||x||_x}$.

8 Гильбертово пространство. Ортонормированный базис. Ряд Фурье

Определение 8.1. Скалярное произведение — функция $H \times H \to \mathbb{R}$ (обозначается как (x,y)), удовлетворяющее условиям:

- 1) $(x, x) = 0 \Leftrightarrow x = 0$;
- 2) (x,y) = (y,x);
- 3) $(\lambda x, y) = \lambda(x, y);$
- 4) (x + z, y) = (x, y) + (z, y);

Пример 8.1. В пространстве:

$$\mathbb{R}^{n} - (x, y) = \sum_{i=1}^{n} x_{i} y_{i};$$

$$l_{2}(\mathbb{N}) - (x, y) = \sum_{i=1}^{n} x_{i} y_{i};$$

$$L_{2}[0, 1] - (f, g) = \int_{0}^{1} f \cdot g.$$

Определение 8.2. Гильбертово пространство — Банахово пространство, в котором введено скалярное произведение.

Определение 8.3. Элементы x и y гильбертова пространства H называются ортогональными, если (x,y)=0. При этом пишут $x\perp y$.

Определение 8.4. Система векторов гильбертова пространства называется ортогональной, если все векторы этой системы попарно ортогональны между собой.

Определение 8.5. Линейно независимая ортогональная система называется ортогональным базисом.

Определение 8.6. Если все вектора ортогонального базиса нормированы (то есть $a_i = \frac{b_i}{||b_i||}$), то такой базис называется ортонормированным.

Определение 8.7. Рассмотрим систему $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots$ На промежутке $[-\pi, \pi]$ данная система является ортогональной. $\forall f(x) \in L_2[-\pi, \pi]$ существует разложение

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right)$$

где $a_k, b_k - const.$ Подобное разложение называется рядом Фурье.

Определение 8.8. Рассмотрим систему $\{\varphi_k\}_{k=1}^{\infty}$ — ортонормированный базис в X — сепарабельном евклидовом пространстве.

 $\forall f \in X$ существует разложение

$$f = \sum_{k=1}^{\infty} c_k \varphi_k$$

где $c_k = (f, \varphi_k)$ — коэффициент Фурье. Такое разложение называется обобщенным рядом Фурье.

9 Процесс ортогонализации Грамма-Шмидта

Определение 9.1. Процессом ортогонализации системы векторов $a_1, a_2, ..., a_s$ называется переход от данной системы к системе $b_1, b_2, ..., b_s$, построенной следующим образом: $b_1 = a_1; b_k = a_k - \sum_{i=1}^{n-1} c_i b_i \ (k=2,3,...,s)$, где $c_i = \frac{(a_k,b_i)}{(b_i,b_i)}$.

Процесс ортогонализации Грама Шмидта:

Данный алгоритм позволяет из множества линейно независимых векторов $m_1, ..., m_n$ построить множество ортогональных векторов $t_1, ..., t_n$ или ортонормированных векторов $k_1, ..., k_n$, однако при условии, что выполняется: каждый вектор t_j либо же k_j выражается линейной комбинацией векторов $m_1, ..., m_j$.

Алгоритм:

Полагают $b_1 = a_1$, и, если уже построены векторы $b_1, b_2, ..., b_{i-1}$, то

$$b_i = a_i - \sum_{j=1}^{i-1} \frac{(a_i, b_j)}{(b_j, b_j)} b_j$$

Геометрический смысл описанного процесса состоит в том, что на каждом шагу вектор b_i является перпендикуляром, восстановленным к линейной оболочке векторов $a_1, ..., a_{i-1}$ до конца вектора a_i .

Нормируя полученные векторы b_i : $c_i = \frac{b_i}{|b_i|}$ получают искомую ортонормированную систему $\{c_i\}$.