

Project Description

 Leverage transfer learning to retrain an object detection model to identify 5 classes of vehicles in satellite and aerial imagery:

- Dataset for Object deTection in Aerial images (DOTA):
 - 2806 images across 15 categories

Business Problem

Context

Military Intelligence and Data Collection on foreign militaries

Solution

Automated Aerial Object
Detection

Challenge

Manual review of satellite and aerial photography is time and resource intensive.

Example Application

Tracking Russian military build up prior to invasion of Ukraine

Deep Learning Model: You Only Look Once (YOLO) v4-tiny

Pretrained on MS COCO

Using the Darknet framework

Retrained on DOTA

Limited to 803 satellite images containing instances of the 5 classes

Prediction

Horizontal bounding boxes with labels for each class

Model Accuracy

Mean Average Precision: **19.34%**

Avg. Loss: **~5**%

Pros

I selected this model for its **SPEED**!

Cons

YOLOv4-tiny sacrifices accuracy for training and inference speed

Model Results

```
class_id = 0, name = small-vehicle, ap = 10.36%
class_id = 1, name = large-vehicle, ap = 28.66%
class_id = 2, name = plane, ap = 42.47%
class_id = 3, name = ship, ap = 15.23%
class_id = 4, name = helicopter, ap = 0.00%
```


Model Results Test Set

Detection of Russian Military Build up near Ukraine

Russian military planes at Saki Air Base in Crimea

Tanks and other military equipment on the Pogorovo training area near Voronezh, Russia.

Images from: RadioFreeEurope

Video Demo Detecting Russian Military Vehicles

UT
Bounding Box
Annotation Format

02Limited
Resources

U3 Low Accuracy

Future Design, Plans, Costs

Distinguish Commercial and Military Vehicles

UZ
Integration into
Satellite Networks

90% Cost Reduction (compared to manual annotation)

References

- 1. Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., ... & Zhang, L. (2018). DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3974-3983). https://doi.org/10.48550/arXiv.1711.10398
- 2. Solawetz, J., Nelson, J., MAY 21, S. S., & Read, 2020 9 Min. (2020, May 21). How to Train Y0L0v4 on a Custom Dataset. Roboflow Blog. https://blog.roboflow.com/training-yolov4-on-a-custom-dataset/
- 3. Ivan Goncharov. (2019, July 18). Set Up YOLOv3 & Darknet on Google Colab. https://www.youtube.com/watch?v=USdaipggZR8
- 4. Techzizou. (2021, February 24). TRAIN A CUSTOM YOLOv4-tiny OBJECT DETECTOR USING GOOGLE COLAB. Analytics Vidhya. https://medium.com/analytics-vidhya/train-a-custom-yolov4-tiny-object-detector-using-google-colab-b58be08c9593#d4cc
- 5. Radio Free Europe/Radio Liberty. (2021, April 21). Satellite Images Show Military Buildup In Russia, Ukraine. Radio Free Europe/Radio Liberty. https://www.rferl.org/a/russia-ukraine-military-buildup-satellite-images/31214867.html
- 6. Reuters. (2022, January 20). Satellite images show Russian troop build-up near Ukraine border. https://www.youtube.com/watch?v=u06ePMYR3IU
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection (arXiv:1506.02640). arXiv. https://doi.org/10.48550/arXiv.1506.02640
- 8. de Morsier, F., Alonso, V., & Nguyen, L. (2019, September 24). Al-powered Object Detection as a Mapping-business Accelerator. https://www.gim-international.com/case-study/ai-powered-object-detection-as-a-mapping-business-accelerator

