Discusión #8

VIERNES 18 DE OCTUBRE DE 2024

Ejercicio 1: Teorema de Green

Utilice el teorema de Green para evaluar para evaluar $\int_C \mathbf{F} \cdot d\mathbf{r}$ (Verifique la orientación de la curva antes de aplicar el teorema). Además, encuentre el área encerrada por la curva.

- 1. $\mathbf{F}(x,y) = \langle y \cos(y), xsen(y) \rangle$, C es el círculo $(x-3)^2 + (y+4)^2 = 4$ orientado en el sentido de las manecillas del reloj.
- 2. $\mathbf{F}(x,y) = (3 + e^{x^2}, \tan^{-1} y + 3x^2)$, donde C es la curva simple cerrada:

3. $\mathbf{F}(x, y) = \langle x^{\frac{2}{3}} + y^2, y^{\frac{4}{3}} - x^2 \rangle$, donde C es la curva simple cerrada:

Ejercicio 2: Rotacional y divergencia

Determine el rotacional y la divergencia del campo vectorial para los siguientes vectores:

1.
$$\mathbf{F}(x,y,z) = \frac{\sqrt{x}}{1+z}\hat{\imath} + \frac{\sqrt{y}}{1+x}\hat{\jmath} + \frac{\sqrt{z}}{1+y}\hat{k}$$

2.
$$\mathbf{F}(x, y, z) = \ln(2y + 3z)\hat{\imath} + \ln(x + 3z)\hat{\jmath} + \ln(x + 2y)\hat{k}$$

3.
$$\mathbf{F}(x,y,z) = \langle \arctan(xy), \arctan(yz), \arctan(zx) \rangle$$

Ejercicio 3: Hallar el área superficial

1. Encontrar el área superficial de la región delimita por el plano x = 0, y = 0, z = 5 y el casquete del paraboloide $z = 1 + x^2 + y^2$ en el primer octante.