3a - Aniket Maheshwari

UB Person Number: 50360266

Setting up our environment and importing important libraries:

```
### Clear the environment
rm(list = ls())
### First we will set the directory of the R script
setwd("C:/Users/anike/Desktop/Sem 1/EAS 506 Statistical Data
Mining/Homework/Homework 3")
## Loading all the libraries
library(ISLR)
library(corrplot)
## corrplot 0.90 loaded
library(MASS)
library(klaR)
library(leaps)
library(lattice)
library(ggplot2)
library(corrplot)
library(car)
## Loading required package: carData
library(caret)
library(class)
```

Part a)

In this question, I need to create my own simulated dataset of matrix 1000*20.

```
## [4,] 1.5952808 0.21073159 0.51926990 -0.8035584 -1.3516939
## [5,] 0.3295078 0.06939565 -0.05584993 -1.6026257 -2.0298855
```

Now, I'll add Beta values to this matrix. I'll made 4 of the beta values zero so that i can make some estimations later on about my model. I've made my beta = 4,7,12 and 16 as zero. I'll Also create epsilon (Noise) value so that i don't create a perfect model but i'll scale this so that i don't have the same scale as my data.

```
set.seed(1)
beta <- runif(20)
beta[c(4,7,12,16)] = 0

set.seed(1)
epsilon <- 0.001 * rnorm(1000)</pre>
```

Now, I'll create my Y (response variable) as Y = X*Beta +epsilon

```
Y <- X%*%beta + epsilon
length(Y)
## [1] 1000
```

Merging both the X and Y to get the full dataset:

```
full_dataset <- data.frame(X,Y)
dim(full_dataset)
## [1] 1000 21</pre>
```

Density Plots:

```
x11()
par(mfrow=c(4,5))
densityPlot(full_dataset$X1)
densityPlot(full_dataset$X2)
densityPlot(full dataset$X3)
densityPlot(full_dataset$X4)
densityPlot(full dataset$X5)
densityPlot(full dataset$X6)
densityPlot(full_dataset$X7)
densityPlot(full dataset$X8)
densityPlot(full dataset$X9)
densityPlot(full_dataset$X10)
densityPlot(full dataset$X11)
densityPlot(full_dataset$X12)
densityPlot(full_dataset$X13)
densityPlot(full dataset$X14)
densityPlot(full dataset$X15)
densityPlot(full_dataset$X16)
densityPlot(full dataset$X17)
densityPlot(full_dataset$X18)
```

densityPlot(full_dataset\$X19)
densityPlot(full dataset\$X20)

The density plot of the data tells that all the classes in our data are in normal distribution.

Part b)

Splitting the dataset in test and train dataset:

I'll split my data in 10:90 ratio that is after the splitting my train set will have 100 observation and test set will have 900 observations.

```
train_index = sample(1:nrow(full_dataset) , nrow(full_dataset)*.1)
train_data <- full_dataset[train_index, ]
test_data <- full_dataset[-train_index, ]
dim(test_data)

## [1] 900 21
dim(train_data)

## [1] 100 21

y.test = test_data$Y
y.train = train_data$Y</pre>
```

Part c)

Best Subset Selection: Now I'll perform best subset selection to see which is the best model. As i made 4 beta's value zero, i should get 16 variable model as the best model.

```
dataset best subset selection <- regsubsets(Y ~ . , data = train data , nbest
= 1, really.big = TRUE , nvmax = 21)
dataset_best_subset_selection_sum <- summary(dataset_best_subset_selection)</pre>
dataset_best_subset_selection_sum
## Subset selection object
## Call: regsubsets.formula(Y ~ ., data = train_data, nbest = 1, really.big =
TRUE,
##
     nvmax = 21)
## 20 Variables (and intercept)
     Forced in Forced out
##
## X1
        FALSE
                 FALSE
## X2
        FALSE
                 FALSE
## X3
        FALSE
                 FALSE
## X4
        FALSE
                 FALSE
## X5
        FALSE
                 FALSE
## X6
        FALSE
                 FALSE
## X7
        FALSE
                 FALSE
## X8
        FALSE
                 FALSE
## X9
        FALSE
                 FALSE
## X10
        FALSE
                 FALSE
## X11
        FALSE
                 FALSE
## X12
        FALSE
                 FALSE
## X13
        FALSE
                 FALSE
## X14
        FALSE
                 FALSE
## X15
        FALSE
                 FALSE
## X16
        FALSE
                 FALSE
## X17
        FALSE
                 FALSE
## X18
        FALSE
                 FALSE
## X19
        FALSE
                 FALSE
## X20
        FALSE
                 FALSE
## 1 subsets of each size up to 20
## Selection Algorithm: exhaustive
##
          X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16
X17
          ## 1
    (1)
11 11
          ## 2
   (1)
.. ..
            ## 3 (1)
            ## 4
    (1)
          ## 5 (1)
```

```
(1)
## 6
"*"
    ## 7
 (1)
"*"
## 8
 (1)
     "*"
    (1)
## 9
"*"
 ## 10
"*"
 ## 11
"*"
  ## 12
"*"
  ## 13
  ## 14
"*"
  ## 15
"*"
 ## 16
"*"
  ## 17
  ## 18
"*"
  ## 19
" * "
 ## 20
"*"
   X18 X19 X20
##
   . . . . . . . .
## 1
 (1)
 (1)
## 2
## 3
  1)
 (1)
## 4
 (1)
## 5
## 6
 (1)
 (1)
## 7
    " " "*"
## 8
 (1)
    (1)
## 9
 (1)
## 10
   "*"
## 11
  (1
## 12
  (1
## 13
  (1
## 14
  (1)
## 15
  (1
  1
   "*" "*"
## 16
  (
   )
##
17
  1
   "*" "*" "*"
  (1)
## 18
```

```
## 19 ( 1 ) "*" "*" "*"
## 20 ( 1 ) "*" "*"
```

Now if i look at the best subset selection, i made my beta's zero for 4 classes that were 4,7,12 and 16, So the best 16 variable model should exclude those classes for me.

```
coef(dataset_best_subset_selection , 16)
                                                                   X5
    (Intercept)
                                        X2
                                                      X3
##
                           X1
X6
## 3.205769e-15 2.665087e-01 3.721239e-01 5.728534e-01 2.016819e-01
8.983897e-01
             X8
                           X9
                                       X10
##
                                                    X11
                                                                  X13
X14
## 6.607978e-01 6.291140e-01 6.178627e-02 2.059746e-01 6.870228e-01
3.841037e-01
##
            X15
                         X17
                                       X18
                                                     X19
                                                                  X20
## 7.698414e-01 7.176185e-01 9.919061e-01 3.800352e-01 7.774452e-01
```

So our model is fitted perfectly. The best 16 variable model excludes 4,7,12 and 16.

```
plot(dataset_best_subset_selection, scale = "bic")
```


The BIC plot also has the class X4,X7,X12 and X16 as the lowest.

Fitting out model on train set:

```
predict.regsubsets = function(object, newdata, id , ...){
  form = as.formula((object$call[[2]]))
  mat = model.matrix(form, newdata)
  coefi = coef(object , id = id)
  xvars = names(coefi)
  mat[,xvars]%*%coefi
}
training_error_value <- matrix(rep(NA, 20))</pre>
y true train = train data$Y
for (i in 1:20){
  training_pred = predict(dataset_best_subset_selection , newdata =
train data , id = i )
  training_error_value[i] = (1/length(y_true_train)) * sum ((y_true_train -
training_pred ) ^ 2) #MSE training error
training_error_value
##
   [1,] 4.027980e+00
##
## [2,] 3.300227e+00
## [3,] 2.737178e+00
## [4,] 2.228156e+00
## [5,] 1.692807e+00
## [6,] 1.259145e+00
## [7,] 9.116538e-01
## [8,] 6.864932e-01
## [9,] 5.119322e-01
## [10,] 3.783410e-01
## [11,] 2.579054e-01
## [12,] 1.421895e-01
## [13,] 6.836531e-02
## [14,] 3.571408e-02
## [15,] 3.095459e-03
## [16,] 5.872195e-28
## [17,] 5.891018e-28
## [18,] 5.979518e-28
## [19,] 5.975569e-28
## [20,] 5.953250e-28
```

Plotting the training set MSE associated with the best model of each size:

```
plot(training_error_value, col= "blue" , type = "b" , ylab = "Training Error
Value")
which.min(training_error_value)
## [1] 16
```


Part D)

Fitting out model on Test set:

```
testing_error_value <- matrix(rep(NA,20))</pre>
y_true_test = test_data$Y
for (i in 1:20){
  testing_pred = predict(dataset_best_subset_selection , newdata = test_data
, id = i
  testing_error_value[i] = (1/length(y_true_test)) * sum ((y_true_test -
testing_pred ) ^ 2) # MSE testing error
}
testing_error_value
##
                 [,1]
    [1,] 5.209411e+00
##
##
   [2,] 4.275635e+00
    [3,] 3.876153e+00
##
    [4,] 3.143943e+00
##
    [5,] 2.666414e+00
    [6,] 2.128168e+00
##
##
   [7,] 1.543290e+00
  [8,] 1.194799e+00
## [9,] 7.189567e-01
## [10,] 6.672265e-01
```

```
## [11,] 3.688628e-01
## [12,] 2.042332e-01
## [13,] 9.173711e-02
## [14,] 4.885612e-02
## [15,] 4.136706e-03
## [16,] 7.087129e-28
## [17,] 7.189867e-28
## [18,] 7.556354e-28
## [19,] 7.619103e-28
## [20,] 7.533194e-28
```

Plotting the test set MSE associated with the best model of each size:

```
plot(testing_error_value , col= "red" , type = "b")
which.min(testing_error_value)
## [1] 16
points(16, testing_error_value[20],col="red" , cex = 2 , pch = 20)
```


Part E)

```
which.min(testing_error_value)
## [1] 16
```

We have our lowest testing error for model with 16 variables. Our the best fit selection has worked perfectly on the test data because I took beta values zero for 4 variables (4,7,12,16) and best fit model gives the lowest testing error for model with 16 variable excluding those four variables.

Part F)

The best fit model gives 16 variable model as the lowest test set MSE which compare to the true model used to generate the data is correct.

```
coef(dataset_best_subset_selection , 16)
## (Intercept)
                          X1
                                       X2
                                                    Х3
                                                                  X5
Х6
## 3.205769e-15 2.665087e-01 3.721239e-01 5.728534e-01 2.016819e-01
8.983897e-01
             X8
                          Х9
                                      X10
##
                                                   X11
                                                                 X13
X14
## 6.607978e-01 6.291140e-01 6.178627e-02 2.059746e-01 6.870228e-01
3.841037e-01
                         X17
                                      X18
                                                    X19
## 7.698414e-01 7.176185e-01 9.919061e-01 3.800352e-01 7.774452e-01
```

All the features are positively co-related to our response feature.

Part G)

Creating a plot displaying:

for a range of values, r, where Bj is the jTH coefficient estimate for the best model containing r coefficients.

```
val.errors <- rep(NA, 20)
x_cols = colnames(X, do.NULL = FALSE, prefix = "X")
for (i in 1:20) {
   coefi <- coef(dataset_best_subset_selection, id = i)
   val.errors[i] <- sqrt(sum((beta[x_cols %in% names(coefi)] -
   coefi[names(coefi) %in% x_cols])^2) + sum(beta[!(x_cols %in%
   names(coefi))])^2)
}
val.errors</pre>
```

```
## [1] 7.90250787 6.99897360 6.23179430 5.24994962 4.53468301 3.76297211
## [7] 3.09536818 2.52410638 1.89669651 1.64350380 1.13355682 0.76372523
## [13] 0.47877631 0.27240952 0.06538332 0.00100000 0.00100000 0.00100000
## [19] 0.00100000 0.00100000
```

Plotting the error plot:

```
plot(val.errors, xlab = "Number of coefficients", ylab = "Error between
estimated and true coefficients", pch = 19, type = "b")
which.min(val.errors)
points(18, testing_error_value[18],col="red" , cex = 2 , pch = 20)
```


Here, as compared to the test MSE error, 18 variable model has the lowest error value. Although it does have the same decreasing plot as the test MSE error.