

Jim Royer

CIS 352

February 10, 2016

in Royer (Clossos)

Lexical Analysis

February 10, 2016

➤ The Syntactic Side of Languages

Natural Languages

stream of phonemes analysis stream of wia lexical words stream of wia parsing sentences

Artificial Languages

What is a token?

Variable names, numerals, operators (e.g., +, /, etc.), key-words, . . .

Lexical structure is typically specified via regular expressions.

Jim Royer (CIS 352)

Lexical Analysis

February 10, 2016 2 /

➤ Regular Expressions

(S. Kleene, mid-1950s)

Definition

A regular expression has one of six forms:

Ø — matches no string[§]

 ϵ — matches the empty string

x — matches the character 'x'

 $(r_1|r_2)$ — matches the strings matched by r_1 or r_2

 (r_1r_2) — matches the strings w_1w_2 where w_1

matches r_1 and w_2 matches r_2

 $(r)^*$ — matches ϵ and the strings $w_1 \dots w_k$ where k > 0 and each w_i matches r

We omit the parens in $(r_1|r_2)$, (r_1r_2) , and $(r)^*$ when we can.

§Both Thompson and Mogensen omit this form, and henceforth, so shall we. (Ø is very handy in algebraic treatments of regular languages.)

Regular Expressions: Examples

- Sheep Language = { ba!, baaa!, baaaa!, baaaaa!, . . . }. $baa^*! = (b((a(a^*))!))$ matches exactly the Sheep Language strings.
- **②** $(0|1)^*$ matches exactly the strings over 0 and 1, including ϵ .
- \bullet $(\epsilon|(1(0|1)^*))1$ matches exactly the binary representation of odd integers.
 - —more examples shortly—

Notation

 $r \Downarrow s \equiv_{def} regular expression r matches string s.$

Jim Royer (CIS 352) Lexical Analysis February 10, 2016 3/39 Jim Royer (CIS 352) Lexical Analysis February 10, 2016 4

Big-Step Rules for RegEx Matching

ϵ -match: $\frac{\epsilon + \epsilon}{\epsilon + \epsilon}$ Literal-match: $\frac{1}{x + \epsilon}$

$$|-match_1: \frac{r_1 \Downarrow s}{(r_1|r_2) \Downarrow s}$$
 $|-match_2: \frac{r_2 \Downarrow s}{(r_1|r_2) \Downarrow s}$

++-match:
$$\frac{r_1 \Downarrow s_1 \quad r_2 \Downarrow s_2}{(r_1 r_2) \Downarrow s} (s = s_1 + + s_2)$$

*-match₁:
$$\frac{r \Downarrow s_1 \quad r^* \Downarrow s_2}{r^* \Downarrow s}$$
 ($s = s_1 + + s_2$)

[Stage direction: Copy these onto the board, but leave some room.]

February 10, 2016

Lexical Analysis

Applying the Big-Step Rules

Class Exercise 1

$$\underset{1}{\text{Lit}} \frac{0 \downarrow 0}{0 \downarrow 10 \downarrow 0} = \underset{1}{\text{Lit}} \frac{1 \downarrow 1}{1 \downarrow 1} = \underset{1}{\text{Lit}} \frac{1 \downarrow 1}{0 \downarrow 0} = \underset{1}{\text{Lit}} \frac{1 \downarrow 1}{1 \downarrow 1} = \underset{1}{\text{Lit}} \frac{1 \downarrow 1}{1 \downarrow 1} = \underset{1}{\text{Lit}} \frac{1 \downarrow 1}{1 \downarrow 1} = \underset{1}{\text{III}} = \underset{1}{\text{III}} \frac{1 \downarrow 1}{1 \downarrow 1} = \underset{1}{\text{III}} = \underset{1}{\text{II$$

Class Exercise 2

$$\begin{array}{c} \text{Lit} \ \frac{1}{0 \Downarrow 0} \\ \underset{*_{2}}{\overset{}{\text{lit}}} \ \frac{1}{(0 | 1) \Downarrow 0} \\ \\ \underset{*_{1}}{\overset{}{\text{lit}}} \ \frac{1}{(0 | 1) \Downarrow 1} \\ \\ \underset{*_{2}}{\overset{}{\text{lit}}} \ \frac{1}{(0 | 1)^{*} \Downarrow \varepsilon} \\ \\ \underset{*_{1}}{\overset{}{\text{lit}}} \ \frac{1}{1 \Downarrow 1} \\ \\ \underset{*_{1}}{\overset{}{\text{Lit}}} \ \frac{1}{0 \Downarrow 0} \\ \\ \underset{*_{1}}{\overset{}{\text{lit}}} \ \frac{1}{0 \Downarrow$$

Applying the Big-Step Rules

Lit
$$\frac{1}{a \Downarrow a}$$
 $\frac{1}{a \Downarrow a}$ $\frac{1}{a \Downarrow a$

Class Exercise. Work out derivations for:

- $(0|1)^* \Downarrow 0101$
- $(0|1)^*((01)|(10)) \downarrow 0110$

February 10, 2016

Matching Regular Expressions in Haskell, I

```
data Reg = Epsilon
         | Literal Char
         | Or Reg Reg
         | Then Reg Reg
         | Star Reg
           deriving (Eq)
```

```
matches :: Reg -> String -> Bool
matches Epsilon st
                      = (st == "")
matches (Literal ch) st = (st == [ch])
matches (Or r1 r2) st = matches r1 st || matches r2 st
```

Credits/Pointers

• The code here is based on work by Simon Thompson. See: http://www.haskellcraft.com/craft3e/Reg_exps.html

February 10, 2016

Matching Regular Expressions in Haskell, II

Jim Rover (CIS 352)

Lexical Analysis

February 10, 2016

Lexical Analysis

—Matching Regular Expressions in Haskell, II

deriving (Eq)

matches (Them r1 r2) st
= or [matches r1 st &k matches r2 s2 | (s1,s2) <- splits s
matches (Star r) st
= matches (Star r) st
= matches (Star r) st
= matches r2 st &k matches (Star r) s2

splits, frontSplits:: $[a] \rightarrow [([a], [a])]$ splits at = $[splitk n at | n \leftarrow [c.. length at]$ frontSplits at = $[splitk n at | n \leftarrow [t.. length at]$ Our first example of sputting a left-experient (in a Mark bold)

```
Replace the case for Star with
```

Regular Expressions and the Languages They Name

Definition

Suppose *r* is a regular expression and *A* and *B* are sets of strings.

- (a) L(r) = the set of strings matched by r.
- (b) $A \cdot B = \{ w_a w_b \mid w_a \in A, w_b \in B \}.$
- (c) $A^0 = \{ \epsilon \}, A^1 = A, A^2 = A \cdot A, A^3 = A \cdot A \cdot A, \dots$

Thus:

$$\begin{array}{rcl} L(\epsilon) & = & \{ \, \epsilon \, \} \\ L(\mathbf{x}) & = & \{ \, \mathbf{x} \, \} \\ L(r_1|r_2) & = & L(r_1) \cup L(r_2) \\ L(r_1r_2) & = & L(r_1) \cdot L(r_2) \\ L(r^*) & = & \{ \, \epsilon \, \} \cup L(r) \cdot L(r^*) & = & \bigcup_{i \geq 0} L(r)^i \end{array}$$

Short Cuts (Mogensen, §2.1.1)

- We can write (0|1|2|3|4|5|6|7|8|9) as [0123456789] or [0-9].
- $r^+ = r r^*$, i.e.,

 $r^* \equiv 0$ more more matches of r $r^+ \equiv 1$ more more matches of r

• r? = $r | \epsilon$ \equiv 0 or 1 matches of r.

Examples

- [a-zA-Z] = all alphabetic characters
- $(0|([1-9][0-9]^*))$ = all natural number constants
- $[a-zA-Z_{-}][a-zA-Z0-9]^* \equiv C$ variable names
- " $([a-zA-Z0-9]|\setminus [a-zA-Z0-9])^*$ " \equiv C string constants

Jim Royer (CIS 352) Lexical Analysis February 10, 2016 9 / 39 Jim Royer (CIS 352) Lexical Analysis February 10, 2016 10 / 3

 $^{^*}$ Our first example of avoiding a *left-recursion* (pprox *a black hole*).

Regular Expressions with Their Work Boots On

- See http://en.wikipedia.org/wiki/Grep
- Also see tr, sed, ... (The original Unix developers knew their automata theory cold.)
- See http://perldoc.perl.org/perlre.html. (Folks in bioinformatics know their pattern matching cold.)
- See http://en.wikipedia.org/wiki/List_of_regular_ expression_software.

• grep, egrep, fgrep — print lines matching a pattern

February 10, 2016

➤ Non-deterministic Finite Automata

A Non-deterministic Finite Automaton (abbreviated NFA) consists of:

- A finite set of states, *S*.
- A finite set of moves (labeled edges between states) (Moves are labeled by either ϵ or a $c \in \Sigma$ = the input alphabet)
- A start state (in *S*).
- A set of terminal or final states (a subset of *S*).

Example

```
S = \{0, 1, 2, 3\}, start state = 0, final sets = \{3\}
moves = \{0 \xrightarrow{a} 0, 0 \xrightarrow{b} 0, 0 \xrightarrow{a} 1, 1 \xrightarrow{b} 2, 2 \xrightarrow{b} 3\}
```


Iim Rover (CIS 352)

The Data.Set Module

To implement NFA's we need a module for representing sets. We use:

http://hackage.haskell.org/packages/archive/containers/latest/ doc/html/Data-Set.html

```
Prelude> :browse Data.Set
           empty :: Set a
        fromList :: Ord a => [a] -> Set a
    intersection :: Ord a => Set a -> Set a -> Set a
    Data.Set.map :: (Ord a, Ord b) => (a -> b) -> Set a -> Set b
       singleton :: a -> Set a
            size :: Set a -> Int
          toList :: Set a -> [a]
           union :: Ord a => Set a -> Set a -> Set a
                etc.
```

NFAs represented in Haskell

```
data Move a = Move a Char a | Emove a a
              deriving (Eq,Ord,Show)
data Nfa a = NFA (Set a) (Set (Move a)) a (Set a)
              deriving (Eq,Show)
```

```
machM :: Nfa Int
machM = NFA
        (S.fromList [0..3])
        (S.fromList [Move 0 'a' 0, Move 0 'a' 1, Move 0 'b' 0,
                    Move 1 'b' 2, Move 2 'b' 3] )
        (S.singleton 3)
```


February 10, 2016

February 10, 2016

Another Example NFA

Note the two sorts of nondeterminism this machine exhibits.

Accepting and rejecting strings

- What is the accepting path of *abb* through *M*?
- What other paths are possible?
- What are the accepting paths of *ab* through *N*?
- What happens with *N* and *aa*?

0	<u>a</u> ▶ 1 <u>b</u>	2	<u>b</u> <u>3</u>

Machine M

Machine N

Jim Royer (CIS 352)

Lexical Analysis

February 10, 2016 16 / 39

im Royer (CIS 352)

Lexical Analysis

February 10, 2016

A small-step semantics for an NFA

Notation

For M = (States, Moves, start, Final):

- $M \vdash s \stackrel{a}{\Longrightarrow} s' \equiv_{\text{def}} (s, a, s') \in Moves.$
- $M \vdash s \stackrel{\epsilon}{\Longrightarrow} s' \equiv_{\text{def}} (s, \epsilon, s') \in Moves.$

$$\frac{}{M \vdash s \stackrel{a}{\Longrightarrow} s'} \ \big((s, a, s') \in Moves \big)$$

$$\frac{}{M \vdash s \stackrel{\epsilon}{\Longrightarrow} s'} \ \big((s, \epsilon, s') \in Moves \big)$$

[Stage direction: Copy these onto the board.]

Applying the Small-Step Rules, 1

$$M = (\{0,1,2,3\}, \{0 \xrightarrow{b} 1, 1 \xrightarrow{a} 2, 2 \xrightarrow{a} 2, 2 \xrightarrow{!} 3\}, 0, \{3\})$$

An accepting path for baaa!:

$$0 \xrightarrow{b} 1 \xrightarrow{a} 2 \xrightarrow{a} 2 \xrightarrow{a} 2 \xrightarrow{!} 3$$

Applying the Small-Step Rules, Class Exercise

$$M = (\{0,1,2\}, \{0 \xrightarrow{a} 1, 1 \xrightarrow{a} 0, 0 \xrightarrow{b} 2, 2 \xrightarrow{b} 0\}, 0, \{0\})$$

What are accepting paths for aabbaa and aabaa?

lim Rover (CIS 352)

Lexical Analysis

February 10, 2016

19 / 39

Lexical Analysis

2016-02-10

Applying the Small-Step Rules, Class Exercise

What are accepting paths for anbhus and ashas?

- aabbaa $0 \stackrel{a}{\Longrightarrow} 1 \stackrel{a}{\Longrightarrow} 0 \stackrel{b}{\Longrightarrow} 2 \stackrel{b}{\Longrightarrow} 0 \stackrel{a}{\Longrightarrow} 1 \stackrel{a}{\Longrightarrow} 0$
- aabaa $0 \stackrel{a}{\Longrightarrow} 1 \stackrel{a}{\Longrightarrow} 0 \stackrel{b}{\Longrightarrow} 2 \text{ Stuck!}$

➤ NFAs implemented in Haskell

```
-- (trans nfa str)
```

-- = the **set** of states reachable in nfa by following str

trans :: Ord a => Nfa a -> String -> Set a

See http://www.cis.syr.edu/courses/cis352/code/RegExp/ImplementNfa.hs

trans machN "a" = $\{1,3,4\}$

- ullet ϵ -moves are a problem
- The ε-closure of a set of states S
 the set of states accessible from S via ε-moves

Machine N

Handling ϵ -Closures

Jim Royer (CIS 352) Lexical Analysis February 10, 2016 20 / 39 Jim Royer (CIS 352) Lexical Analysis February 10, 2016

Example: An NFA for $(ab|ba)^*$


```
*Top> closure m (singleton 2)
fromList [2]

*Top> closure m (singleton 1)
fromList [1,2,5]

*Top> closure m (singleton 0)
fromList [0,1,2,5,9]
```

Jim Rover (CIS 352)

Lexical Analysis

February 10, 2016

February 10, 2016

Taking one step

```
onetrans :: Ord a => Nfa a -> Char -> Set a -> Set a
onetrans mach c x = closure mach (onemove mach c x)
```

Iim Rover (CIS 352)

Lexical Analysis

February 10, 2016

Taking many steps

```
trans :: Ord a => Nfa a -> String -> Set a

trans mach str = foldl step startset str
   where
    step set ch = onetrans mach ch set
    startset = closure mach S.singleton (startstate mach))
```

```
foldl :: (a -> b -> a) -> a -> [b] -> a

foldl step s (c1:c2:...:ck:[])
= (... ((s 'step' c1) 'step' c2) 'step' ... 'step' ck)
```

ightharpoonupRegExps ightharpoonupNFAs

M(r) = an NFA for accepting L(r).

Figure: $M(\epsilon)$

 $\rightarrow 1 \xrightarrow{x} 2$

Figure: $M(r_1|r_2)$

Figure: M(x)

0 E M(r)

Figure: $M(r^*)$

Figure: $M(r_1r_2)$

n Royer (CIS 352) Lexical Analysis February 10, 2016

Example: The NFA for $(ab|ba)^*$

m Royer (CIS 352) Lexical Analysis February 10, 2016 26 / 39

Theory Break: Regular Languages

Definition

The *regular languages* are the languages described by regular expressions (= $\{L(r) : r \text{ is a reg. exp. }\}$).

Theorem

The regular languages \subseteq *the languages accepted by NFAs.*

Proof: We need to show the reg.-exp.→NFA translation is correct — which is a not-too-hard structural induction.

Theorem

The regular languages \supseteq *the languages accepted by NFAs.*

Proof: There turns out to be an NFA→reg.-exp. translation (which we'll skip here).

The translation in Haskell

See BuildNfa.hs.

m_or, m_then, and m_star are on the ugly side.

Jim Rover (CIS 352)

Lexical Analysi

February 10, 2016

27 / 39

➤ Deterministic Finite Automata

Definition

A *deterministic finite automata* (abbreviated DFA) is a NFA that

- ullet contains no ϵ -moves, and
- has at most one arrow labelled with a particular symbol leaving any given state.
- So in a DFA there is *at most one possible move in any situation*.
- The DFAs also characterize the regular languages.

im Royer (CIS 352) Lexical Analysis February 10, 2016 28 / 39 Jim Royer (CIS 352) Lexical Analysis February 10, 2016 29 / 39

Example NFA \rightarrow DFA Translation, I

- $A = \epsilon$ -closure($\{0\}$) = $\{0,1,2,4\}$.
- $B = \epsilon$ -closure($\{s : s' \xrightarrow{a} s, s' \in A\}$) = $\{1, 2, 3, 4, 6, 7\}$. $(A \xrightarrow{a} B)$
- $C = \epsilon$ -closure($\{s : s' \xrightarrow{b} s, s' \in A\}$) = $\{1, 2, 4, 5, 6, 7\}$. $(A \xrightarrow{b} C)$
- $D = \epsilon$ -closure($\{s : s' \xrightarrow{a} s, s' \in B\}$) = $\{1, 2, 4, 5, 6, 7, 8\}$. ($B \xrightarrow{b} D$)
- $C = \epsilon$ -closure($\{s : s' \xrightarrow{b} s, s' \in B\}$) = $\{1, 2, 4, 5, 6, 7\}$. $(B \xrightarrow{b} C)$
- Similarly, $C \xrightarrow{a} D$, $C \xrightarrow{b} C$, $D \xrightarrow{a} D$, $D \xrightarrow{b} C$.

Jim Royer (CIS 352)

Lexical Analysis

February 10, 2016

Example NFA \rightarrow DFA Translation, II

₩

Jim Rover (CIS 352)

Lexical Analysis

February 10, 2016 31

The NFA to DFA algorithm in Haskell

make_deterministic :: Nfa Int -> Nfa Int
make_deterministic = number . make_deter

make_deter :: Nfa Int -> Nfa (Set Int)
make_deter mach = deterministic mach (alphabet mach)

Switch to NfaToDfa.hs.

Extra Topics

Jim Royer (CIS 352) Lexical Analysis February 10, 2016 32 / 39

Minimizing DFAs, 1

Definition

Suppose s and s' are states in a DFA M.

- \bullet s and s' are distinguished by x when M started in s run on x accepts $\iff M$ started in s run on x rejects
- s and s' are indistinguishable when no string x distinguishes them. So, we can treat merge s and s' safely into a single state.

- ϵ distinguishes *D* and each of *A*, *B*, *C*
- *a* distinguishes *A* and each of *B* and *C*.
- *B* and *C* turn out to be indistinguishable.
- The result of merging *B* and *C* is:

February 10, 2016

➤ Minimizing DFAs, 2

See Tom Henzinger's notes on the Myhill-Nerode Theorem

http://engineering.dartmouth.edu/~d25559k/ENGS122_files/Lectures_Notes/ Henzinger-Nerode-7.pdf.

(Much handier than the Pumping Lemma for regular languages)

February 10, 2016

➤ Regular Definitions, 1

• In building a compiler or interpreter, you want to specify the lexical part of the language (e.g., token) by regular definitions (hopped-up regular expressions). E.g.:

$$IF = if$$

$$ID = [a-zA-Z][a-zA-Z0-9]^*$$

$$NUM = [-+][0-9]^*$$

$$FLOAT = a \text{ nasty mess}$$

• Then you translate the entire collection of these to an NFA. E.g.:

Regular Definitions, 2

Figure 2.12: Combined NFA for several tokens

February 10, 2016 February 10, 2016

Regular Definitions, 3

Then you translate the NFA to a DFA with which you scan through the input and spit out tokens with lightening speed.

See §2.9 of Mogensen for details.

Figure 2.13: Combined DFA for several tokens

References

Torben Ægidius Mogensen.

Introduction to Compiler Design.

Diku, 2010.

URL http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/.

Simon Thompson.

Regular expressions and automata using Haskell.

Technical report, Computing Laboratory, University of Kent at Canterbury, 2000.

URL http://www.haskellcraft.com/craft3e/Reg_exps.html.

 Jim Royer (CIS 352)
 Lexical Analysis
 February 10, 2016
 38 / 39
 Jim Royer (CIS 352)
 Lexical Analysis
 February 10, 2016
 39 / 38