Sets Client Location Set = \mathcal{J}

Fixed Facilities Location Set = \mathcal{I}_{Fixed} Possible Location Set = $\mathcal{I} = \mathcal{I}_{Fixed} \cup \mathcal{J}$

Variables $y[i] = \begin{cases} 1, & \text{if a facility is open at location } i \\ 0, & \text{otherwise} \end{cases}, \quad \forall i \in \mathcal{I}$

$x[i,j] = \begin{cases} 1, & \text{if the client demand at } j \text{ is served by facility at } i \\ 0, & \text{otherwise} \end{cases}, \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{J}$

Parameters

P = Total of located facilities

$\text{cost_matrix}[i,j] = \text{cost}$ of client demand at j being served by the facility at $i, \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{J}$

Objective function Minimize total_costs = $\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}} \text{cost_matrix}[i, j] \cdot x[i, j]$

Subject to

- (1) $\sum_{i \in \mathcal{T}} y[i] = P$

- (2) $\sum_{i \in \mathcal{T}} x[i, j] = 1, \quad \forall j \in \mathcal{J}$

- (3) $x[i,j] \le y[i], \forall i \in \mathcal{I}, \forall j \in \mathcal{J}$

- (5) y[j] = 0, $\forall j \in \mathcal{J}$, if $\exists i \in \mathcal{I}_{Fixed}$ such that $j \in fixed_facilities[i]$.exclusive_region

(8) $\sum_{j \in \mathcal{J}} \text{clients}[j].\text{demand} \cdot x[i,j] \leq \text{fixed_facilities}[i].\text{max_demand}, \quad \forall i \in \mathcal{I}_{\text{Fixed}}$

- (4) y[i] = 1, $\forall i \in \mathcal{I}_{Fixed}$

- (6) x[i,j] = 1, $\forall i \in \mathcal{I}_{Fixed}, \forall j \in \mathcal{J}$, if $j \in fixed_facilities[i].exclusive_region$
- (7) $\sum_{j \in \mathcal{J}} \text{clients}[j].\text{demand} \cdot x[i,j] \geq \text{fixed_facilities}[i].\text{min_demand}, \quad \forall i \in \mathcal{I}_{\text{Fixed}}$