Module 6B: Surjective, injective, and bijective functions

MTH 225 12 Oct 2020

Agenda

- Review of Daily Prep activity + Q/A time
- Activities:
 - Constructing functions with given surjective/injective properties
 - Inverse images
- Q&A and quizzing

Consider the mapping $f:\{1,2,3,4,5,6\} o \{a,b,c\}$ given by $f=\begin{pmatrix}1&2&3&4&5&6\\a&a&b&b&c\end{pmatrix}$. Then f is

Injective

Surjective

Bijective

Neither injective nor surjective

Not a function in the first place

Consider the mapping $f:\{1,2,3,4,5,6\} o \{a,b,c\}$ given by f(1)=b, f(1)=a, f(2)=b, f(3)=c, f(4)=a. Then f is

Injective

Surjective

Bijective

Neither injective nor surjective

Not a function in the first place

Let `phone_number` be a Python function from the set of all GVSU students to the set of all 10-decimal digit integers, and plugging in a person into this function returns their primary phone number as listed in Banner. This function is

Injective

Surjective

Bijective

Neither injective nor surjective

Function construction activity ---Jamboard

Let A and B be finite sets and suppose |A|>|B| . Then

it's not possible to construct an injective function from A to B.

it's not possible to construct an surjective function from A to B.

it IS possible to build a function from A to B that has any combination of injective/surjective we want.

True or false?: It's possible to build a bijective function from

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$
 to $\mathbb{N} = \{0, 1, 2, 3, ...\}.$

True

False

Recall $\mathbb Q$ is the set of all *rational numbers* -- numbers that can be written as a fraction of two integers in lowest form. True or false: It's possible to build a *bijective* function from $\mathbb Q$ to $\mathbb N$.

True

False

$$1/1$$
 $1/2 \rightarrow 1/3$ $1/4 \rightarrow 1/5$ $1/6 \rightarrow 1/7$ $1/8 \rightarrow \cdots$
 $2/1$ $2/2$ $2/3$ $2/4$ $2/5$ $2/6$ $2/7$ $2/8$ \cdots
 $3/1$ $3/2$ $3/3$ $3/4$ $3/5$ $3/6$ $3/7$ $3/8$ \cdots
 $4/1$ $4/2$ $4/3$ $4/4$ $4/5$ $4/6$ $4/7$ $4/8$ \cdots
 $5/1$ $5/2$ $5/3$ $5/4$ $5/5$ $5/6$ $5/7$ $5/8$ \cdots
 $6/1$ $6/2$ $6/3$ $6/4$ $6/5$ $6/6$ $6/7$ $6/8$ \cdots
 $7/1$ $7/2$ $7/3$ $7/4$ $7/5$ $7/6$ $7/7$ $7/8$ \cdots
 $8/1$ $8/2$ $8/3$ $8/4$ $8/5$ $8/6$ $8/7$ $8/8$ \cdots

Have a great day 😜

Check your info sources to stay up to speed!