

EN 55032:2015/A1:2020 EN 55035:2017/A11:2020 EN IEC 61000-3-2:2019/A1:2021 EN 61000-3-3:2013/A2:2021

TEST REPORT

For

QuarkPi-CA2

MODEL NUMBER: QuarkPi-CA2

REPORT NUMBER: E04A25020911E00101

ISSUE DATE: March 7, 2025

Prepared for

Guangzhou Xingyi Electronic Technology Co., Ltd Room 805-808, Room 801, Building 4, No. 1, 3, and 5, Kesheng Road, Guangzhou Private Science and Technology Park, No. 1633 Beitai Road, Baiyun District, Guangzhou City

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A25020911E00101 Page 2 of 59

Revision History

Rev.	Issue Date	Revisions	Revised By
VO	March 7, 2025	Initial Issue	

REPORT NO.: E04A25020911E00101 Page 3 of 59

Summary of Test Results

Emission						
Standard	Test Item	Limit	Result			
	Conducted emissions (AC mains power ports)	Clause 5	Pass			
EN 55032:2015/A1:202	Conducted emissions (Asymmetric mode)	Clause 5	Pass			
0	Radiated emissions below 1GHz	Clause 5	Pass			
	Radiated emissions above 1GHz	Clause 5	Pass			
EN IEC 61000-3- 2:2019/A1:2021	Harmonic current emissions	Clause 6	N/A (NOTE 1, 3)			
EN 61000-3- 3:2013/A2:2021	Voltage fluctuations and flicker	Clause 4	Pass			

Immunity						
Basic Standard	Test Item	Test Specification	Criteria	Result		
IEC 61000-4-2:2008	Electrostatic Discharge	Contact +/- 4 kV; Air +/- 2 kV;+/- 4 kV;+/- 8 kV	В	Pass		
IEC 61000-4-3:2006 +A1:2007+A2:2010	Continuous RF electromagnetic field disturbances	3 V/m, 80 %; 1 kHz, AM 80 MHz-1000 MHz; 1800 MHz,2600 MHz,3500 MHz,5000 MHz	А	Pass		
IEC 61000-4-4:2012	Electrical fast transients burst (AC mains power ports)	+/- 1.0 kV 5/50 ns, 5 kHz	В	Pass		
IEC 61000-4-4.2012	Electrical fast transients burst (analogue digital data ports)	5/50 ns, 5 kHz +/-0.5 kV 5/50 ns, 5 kHz B B A +/-2 kV (Common)	Pass			
IEC 61000-4-5:2014	Surges (AC mains power ports)	+/-1 kV (Differential)	В	Pass		
IEC 61000-4-6:2013	Continuous induced RF disturbances (AC mains power ports)	150 kHz-80 MHz 80 %, 1 kHz 0.15 MHz-10 MHz: 3 V 10 MHz-30 MHz: 3 V~1 V 30 MHz-80 MHz: 1 V	A	Pass		
01000-4-0.2013	Continuous induced RF disturbances (analogue digital data ports)	tontinuous induced RF 80 %, 1 kHz 80 MHz 80 %, 1 kHz 150 kHz-10 MHz: 3 V		Pass		
IEC 61000-4-8:2009	Power frequency magnetic field	50 Hz, 1 A/m	А	N/A (NOTE 1, 2)		

TRF No.: 04-E001-0B

REPORT NO.: E04A25020911E00101 Page 4 of 59

IEC 61000-4- 11:2004	Voltage dips and interruptions (AC mains power ports)	Residual < 5 %: 0.5 cycle; Residual 70 %: 25 cycles; Residual < 5 %: 250 cycles;		Pass
-------------------------	---	---	--	------

Note:

- 1. N/A: In this whole report not applicable.
- 2. Only applicable to EUT containing devices susceptible to magnetic fields, such as CRT monitors, Hall elements, electrodynamic microphones, magnetic field sensors.
- 3. If EUT rated power is less than 75 W, there is no need for Harmonics test to be performed.

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <EN 55032:2015/A1:2020, EN 55035:2017/A11:2020, EN IEC 61000-3-2:2019/A1:2021, EN 61000-3-3:2013/A2:2021> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATT	ESTATION OF TEST RESULTS	6
2. TES	T METHODOLOGY	8
3. FAC	CILITIES AND ACCREDITATION	8
4. CAL	IBRATION AND UNCERTAINTY	9
4.1.	MEASURING INSTRUMENT CALIBRATION	g
4.2.	MEASUREMENT UNCERTAINTY	g
5. EQU	JIPMENT UNDER TEST	10
5.1.	DESCRIPTION OF EUT	10
5.2.	TEST MODE	10
5.3.	SUPPORT UNITS FOR SYSTEM TEST	10
6. ME <i>l</i>	ASURING EQUIPMENT AND SOFTWARE USED	11
7. EMI	SSION TEST	15
7.1.	Conducted emissions (AC mains power ports)	15
7.2.	Conducted emissions (Asymmetric mode)	20
7.3.	Radiated emissions below 1GHz	22
7.4.	Radiated emissions above 1GHz	26
7.5.	Voltage fluctuations and flicker	30
8. IMM	UNITY TEST	33
8.1.	PERFORMANCE CRITERIA	33
8.2.	Electrostatic Discharge	36
8.3.	Continuous RF electromagnetic field disturbances	39
8.4.	Electrical fast transients burst	42
8.5.	Surges (AC mains power ports)	44
8.6.	Continuous induced RF disturbances	46
8.7.	Voltage dips and interruptions (AC mains power ports)	49
APPEND	DIX: PHOTOGRAPHS OF TEST CONFIGURATION	51
	NIV. BUOTOOD ABUO OF THE FUT	=-

REPORT NO.: E04A25020911E00101 Page 6 of 59

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangzhou Xingyi Electronic Technology Co., Ltd

Address: Room 805-808, Room 801, Building 4, No. 1, 3, and 5, Kesheng

Road, Guangzhou Private Science and Technology Park, No.

1633 Beitai Road, Baiyun District, Guangzhou City

Manufacturer Information

Company Name: Guangzhou Xingyi Electronic Technology Co., Ltd

Address: Room 805-808, Room 801, Building 4, No. 1, 3, and 5, Kesheng

Road, Guangzhou Private Science and Technology Park, No.

1633 Beitai Road, Baiyun District, Guangzhou City

Factory Information

Company Name: Guangzhou P.E.T Precision Electronic Technology Co., Ltd

Address: 3rd Floor, No. 11 Shunjing Road, Daxiang Village, Renhe Town,

Baiyun District, Guangzhou City (Airport Baiyun)

EUT Information

Product Description: QuarkPi-CA2
Model: QuarkPi-CA2
Brand: ALIENTEK

Sample Received Date: 27 February 2025 Sample ID: A25020911 001

Date of Tested: February 28, 2025 to March 7, 2025

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
EN 55032:2015/A1:2020	Pass			
EN 55035:2017/A11:2020	Pass			
EN IEC 61000-3-2:2019/A1:2021	Pass			
EN 61000-3-3:2013/A2:2021	Pass			

REPORT NO.: E04A25020911E00101 Page 7 of 59

Prepared By:

Jamen in

obal Testing Tech

Jansen Lin

Project Engineer

Approved By:

Shawn Wen

Laboratory Manager

Checked By:

Alan He

Laboratory Leader

San I Ce

REPORT NO.: E04A25020911E00101 Page 8 of 59

2. TEST METHODOLOGY

All tests were performed in accordance with the standard EN 55032:2015/A1:2020, EN 55035:2017/A11:2020, EN IEC 61000-3-2:2019/A1:2021, EN 61000-3-3:2013/A2:2021

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)
	Guangdong Global Testing Technology Co., Ltd.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1343)
	Guangdong Global Testing Technology Co., Ltd.
	has been recognized to perform compliance testing on equipment
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and
	Certification rules
	ISED (Company No.: 30714)
	Guangdong Global Testing Technology Co., Ltd.
	has been registered and fully described in a report filed with ISED.
	The Company Number is 30714 and the test lab Conformity
	Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A25020911E00101 Page 9 of 59

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests

performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions (AC mains power ports)	0.009 MHz - 30 MHz	2	3.37
Conducted emissions (Asymmetric	0.15 MHz - 30 MHz (ANN)	2	3.27
mode)	0.15 MHz - 30 MHz(Current Probe)	2	2.73
Radiated emissions below 1GHz	30 MHz -1 GHz	2	3.79
Radiated emissions above 1GHz	1 GHz - 18 GHz	2	5.62

Note1: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Note 2: According to the standard CISPR 16-4-2, the MU for the Conducted emissions from the AC mains power ports using AMN should not exceed 3.8 in range of 9kHz to 150kHz and 3.4 in range of 150kHz to 30MHz. We have considered the test results containing the value of Ulab (in dB) for the measurement instrumentation actually used for the measurements.

REPORT NO.: E04A25020911E00101 Page 10 of 59

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		QuarkPi-CA2		
Model		QuarkPi-CA2		
EUT Classification		Class B		
Internal Frequency		above 108MHz		
Ratings		INPUT:DC12V 2.5A		
Power Supply	DC	DC12V from adapter		

5.2. TEST MODE

Test Mode	Description
M01	FULL LOAD

5.3. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

REPORT NO.: E04A25020911E00101 Page 11 of 59

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted emissions (AC mains power ports)						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Shielding Room 1	CHENG YU	8*5*4	N/A	10/29/2022	10/28/2025	
LISN	R&S	ENV216	102843	9/13/2024	9/12/2025	
EMI Test Receiver	R&S	ESR3	102647	9/14/2024	9/13/2025	
LISN	Schwarzbeck	NNLK 8129 RC	5046	9/13/2024	9/12/2025	
8-Wire ISN CAT6	Schwarzbeck	NTFM 8158	#237	9/14/2024	9/13/2025	
CURRENT PROBE	R&S	EZ-17	101602	9/14/2024	9/13/2025	
Test Software for CE	Farad	EZ-EMC	V1.1.4.2	N/A	N/A	

Test Equipment of Conducted emissions (Asymmetric mode)						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Shielding Room 1	CHENG YU	8*5*4	N/A	10/29/2022	10/28/2025	
LISN	R&S	ENV216	102843	9/13/2024	9/12/2025	
EMI Test Receiver	R&S	ESR3	102647	9/14/2024	9/13/2025	
LISN	Schwarzbeck	NNLK 8129 RC	5046	9/13/2024	9/12/2025	
8-Wire ISN CAT6	Schwarzbeck	NTFM 8158	#237	9/14/2024	9/13/2025	
CURRENT PROBE	R&S	EZ-17	101602	9/14/2024	9/13/2025	
Test Software for CE	Farad	EZ-EMC	V1.1.4.2	N/A	N/A	

Test Equipment of Radiated emissions below 1GHz							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Chamber	ETS	9*6*6	Q2146	8/30/2022	8/29/2025		
Receiver	R&S	ESCI3	101409	9/14/2024	9/13/2025		
Loop Antenna	ETS	6502	243668	3/30/2022	3/30/2025		
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	9/14/2024	9/13/2025		
Biconilog Antenna	Schwarzbeck	VULB 9168	1315	10/10/2022	10/9/2025		
Biconilog Antenna	ETS	3142E	243646	3/23/2022	3/22/2025		
Test Software for RE	Farad	EZ-EMC	V1.1.4.2	N/A	N/A		

REPORT NO.: E04A25020911E00101 Page 12 of 59

Test Equipment of Radiated emissions above 1GHz							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Spectrum Analyzer	R&S	FSV40	101413	9/14/2024	9/13/2025		
Pre-Amplifier	HzEMC	HPA-1G1850	HYPA21003	9/14/2024	9/13/2025		
Horn antenna	ETS	3117	246069	3/11/2022	3/10/2025		
Test Software for RE	Farad	EZ-EMC	V1.1.4.2	N/A	N/A		

Test Equipment of Electrostatic Discharge					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
ESD Simulator	TESEQ	NSG437	336	9/14/2024	9/13/2025

Test Equipment of Continuous RF electromagnetic field disturbances						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Stacked Log-Per- Broadband Antenna	Schwarzbeck	STLP 9129	170	N/A	N/A	
Power amplifier	MiCOTOP	MPA-80- 1000-500	MPA220933 6	9/13/2024	9/12/2025	
Power amplifier	MiCOTOP	MPA-1000- 6000-100	MPA220933 7	9/13/2024	9/12/2025	
EPM Series Power Meter	Keysight	N1914A	MY53240003	9/14/2024	9/13/2025	
Average Power Sensor	Keysight	E9304A	MY41498925	9/14/2024	9/13/2025	
Average Power Sensor	Keysight	E9304A	MY41497454	9/14/2024	9/13/2025	
EXG Analog Signal Generator	Keysight	N5171B	MY61252624	9/14/2024	9/13/2025	
Field Probe	Narda	EP 601	811ZX11137	9/14/2024	9/13/2025	
Microphone kit	Magasig	MPA 663	220803075	9/14/2024	9/13/2025	
Test Software for RS	HzEMC	FASLAB-RS	V2.7.2.3	N/A	N/A	

Test Equipment of Electrical fast transients burst (AC mains power ports)						
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date					Due Date	
EFT Generator	Everfine	EMS61000- 4B	G114921CA 1341115	9/13/2024	9/12/2025	

REPORT NO.: E04A25020911E00101 Page 13 of 59

Test Equipment of Electrical fast transients burst (analogue digital data ports)						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EFT Generator	Everfine	EMS61000- 4B	G114921CA 1341115	9/13/2024	9/12/2025	
Capacitive Coupling Clamp	Everfine	EFTC-2-V200	N/A	9/13/2024	9/12/2025	

Test Equipment of Surges (AC mains power ports)						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Immunity Teat System	EMC PARTNER	IMU3000 S-T	105684-2060	9/13/2024	9/12/2025	
Signal line coupled decoupling network	EMC PARTNER	CDN-UTP8 ED3	1558	9/13/2024	9/12/2025	

Test Equipment	Test Equipment of Continuous induced RF disturbances (AC mains power ports)						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
EXG Analog Signal Generator	KEYSIGHT	N5171B	MY61252670	9/14/2024	9/13/2025		
EPM Series Power Meter	KEYSIGHT	N1914A	MY50000188	9/14/2024	9/13/2025		
Power Sensor	KEYSIGHT	E9304A	MY51180004	9/14/2024	9/13/2025		
Power Sensor	KEYSIGHT	E9304A	MY51120019	9/14/2024	9/13/2025		
Power Amplifier	AR	AR/100A 400M	305558	9/14/2024	9/13/2025		
Double directional coupler	XIANGHUA	DDT0-1-40	221008732	9/13/2024	9/12/2025		
COUPLING AND DECOUPLING NETWORK	Schwarzbeck	CDN M2/M3PE 16A	148	9/14/2024	9/13/2025		
COUPLING AND DECOUPLING NETWORK	Schwarzbeck	CDN T8	53	9/14/2024	9/13/2025		
Electromagnetic injection pliers	3ctest	EM CL100	EM C22060625	9/14/2024	9/13/2025		
6 db attenuator	Huaxiang	WDTS	220831156	9/13/2024	9/12/2025		
Microphone kit	Magasig	MPA 663	220803075	9/14/2024	9/13/2025		
Signal conditioner	Magasig	PM 0083	5000718022 0009	9/14/2024	9/13/2025		
Test Software for CS	HzEMC	FASLAB-CS	V2.7.2.1	N/A	N/A		

Test Equipment of Continuous induced RF disturbances (analogue digital data ports)						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EXG Analog Signal Generator	KEYSIGHT	N5171B	MY61252670	9/14/2024	9/13/2025	
EPM Series Power Meter	KEYSIGHT	N1914A	MY50000188	9/14/2024	9/13/2025	
Power Sensor	KEYSIGHT	E9304A	MY51180004	9/14/2024	9/13/2025	
Power Sensor	KEYSIGHT	E9304A	MY51120019	9/14/2024	9/13/2025	
Power Amplifier	AR	AR/100A 400M	305558	9/14/2024	9/13/2025	
Double directional coupler	XIANGHUA	DDT0-1-40	221008732	9/13/2024	9/12/2025	
COUPLING AND DECOUPLING NETWORK	Schwarzbeck	CDN M2/M3PE 16A	148	9/14/2024	9/13/2025	
COUPLING AND DECOUPLING NETWORK	Schwarzbeck	CDN T8	53	9/14/2024	9/13/2025	
Electromagnetic injection pliers	3ctest	EM CL100	EM C22060625	9/14/2024	9/13/2025	
6 db attenuator	Huaxiang	WDTS	220831156	9/13/2024	9/12/2025	
Microphone kit	Magasig	MPA 663	220803075	9/14/2024	9/13/2025	
Signal conditioner	Magasig	PM 0083	5000718022 0009	9/14/2024	9/13/2025	
Test Software for CS	HzEMC	FASLAB-CS	V2.7.2.1	N/A	N/A	

Test Equipment of Voltage dips and interruptions (AC mains power ports)						
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date						
DIP Generator	Everfine	EMS61000- 11K	G113317CA 8341117	9/13/2024	9/12/2025	

Test Equipment of Voltage fluctuations and flicker						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Harmonic and Fliker Analyzer	EMC PARTNER	Harmonics 1000-1P 230V	241	9/14/2024	9/13/2025	
Test Software for H&F	EMC PARTNER AG	HARCS	V6.2	N/A	N/A	

REPORT NO.: E04A25020911E00101 Page 15 of 59

7. EMISSION TEST

7.1. CONDUCTED EMISSIONS (AC MAINS POWER PORTS)

LIMITS

(a.) Limits of conducted emissions from the AC mains power ports of Class A equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class A voltage limits dB(uV)
0.15 to 0.5	ANANI	Ougoi Book / 0 kHz	79
0.5 to 30	AMN	Quasi Peak / 9 kHz	73
0.15 to 0.5	ANANI	Average / O kHz	66
0.5 to 30	AMN	Average / 9 kHz	60

(b.) Limits of conducted emissions from the AC mains power ports of Class B equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class B voltage limits dB(uV)
0.15 to 0.5			66 to 56
0.5 to 5	AMN	Quasi Peak / 9 kHz	56
5 to 30			60
0.15 to 0.5	ANANI		56 to 46
0.5 to 5	AMN	Average / 9 kHz	46
5 to 30			50

(c.) Limits of asymmetric mode conducted emissions of Class A equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class A voltage limits dB(uV)	Class A current limits dB(uA)
0.15 -0.5	AAN	Quasi Peak / 9 kHz	97 to 87	n/a
0.5 -30	AAN	Quasi Peak / 9 km2	87	n/a
0.15 -0.5	AAN	Average / 9 kHz	84 to 74	n/a
0.5 -30	AAN	Average / 9 KHZ	74	n/a
0.15 -0.5	Current	Quasi Peak / 9 kHz	N/A	53 to 43
0.5 -30	Probe	Quasi Feak / 9 kHz	N/A	43
0.15 -0.5	Current	Average / OkHz	N/A	40 to 30
0.5 -30	Probe	Average / 9 kHz	N/A	30

REPORT NO.: E04A25020911E00101 Page 16 of 59

(d.) Limits of asymmetric mode conducted emissions of Class B equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class B voltage limits dB(uV)	Class B current limits dB(uA)
0.15 -0.5	AAN	Quasi Peak / 9 kHz	84 to 74	n/a
0.5 -30	AAN	Quasi Feak / 9 KHZ	74	n/a
0.15 -0.5	AAN	Avorago / O kHz	74 to 64	n/a
0.5 -30	AAN	Average / 9 kHz	64	n/a
0.15 -0.5	Current	Quasi Peak / 9 kHz	n/a	40 to 30
0.5 -30	Probe	Quasi Peak / 9 km2	n/a	30
0.15 -0.5	Current	Average / 9 kHz	n/a	30 to 20
0.5 -30	Probe	Average / 9 KHZ	n/a	20

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

The female in ignored to the estimate of the feature.					
Receiver Parameters	Setting				
Attenuation	10 dB				
Start Frequency	0.15 MHz				
Stop Frequency	30 MHz				
IF Bandwidth	9 kHz				

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the horizontal ground plane and being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end
 of the cable may be terminated, if required, using the correct terminating impedance.
 The overall length shall not exceed 1 m.
- d. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- e. LISN at least 80 cm from nearest part of EUT chassis.
- f. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

REPORT NO.: E04A25020911E00101 Page 17 of 59

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST MODE

Pre-test Mode:	M01 ~ M01
----------------	-----------

TRF No.: 04-E001-0B

Final Test Mode:

Note: All test modes had been tested, but only the worst data recorded in the report.

TEST RESULTS

Phase: N	Mode: M01

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1545	42.23	9.90	52.13	65.75	-13.62	QP
2	0.1545	24.33	9.90	34.23	55.75	-21.52	AVG
3	0.2625	35.76	9.79	45.55	61.35	-15.80	QP
4	0.2625	23.97	9.79	33.76	51.35	-17.59	AVG
5	0.6045	36.67	9.77	46.44	56.00	-9.56	QP
6	0.6045	28.17	9.77	37.94	46.00	-8.06	AVG
7	1.0184	28.87	9.84	38.71	56.00	-17.29	QP
8	1.0184	20.61	9.84	30.45	46.00	-15.55	AVG
9	1.3829	26.99	9.80	36.79	56.00	-19.21	QP
10	1.3829	19.71	9.80	29.51	46.00	-16.49	AVG
11	6.9045	35.06	9.97	45.03	60.00	-14.97	QP
12	6.9045	21.29	9.97	31.26	50.00	-18.74	AVG

Phase: L1	Mode: M01

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	39.88	9.71	49.59	66.00	-16.41	QP
2	0.1500	20.96	9.71	30.67	56.00	-25.33	AVG
3	0.6045	35.69	9.82	45.51	56.00	-10.49	QP
4	0.6045	26.59	9.82	36.41	46.00	-9.59	AVG
5	1.0184	26.10	9.74	35.84	56.00	-20.16	QP
6	1.0184	16.49	9.74	26.23	46.00	-19.77	AVG
7	1.7655	28.92	9.89	38.81	56.00	-17.19	QP
8	1.7655	22.39	9.89	32.28	46.00	-13.72	AVG
9	2.2425	29.63	9.93	39.56	56.00	-16.44	QP
10	2.2425	18.95	9.93	28.88	46.00	-17.12	AVG
11	3.5520	27.29	9.87	37.16	56.00	-18.84	QP
12	3.5520	18.95	9.87	28.82	46.00	-17.18	AVG

Remark: Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)
Margin = Result - Limit

7.2. CONDUCTED EMISSIONS (ASYMMETRIC MODE)

TEST SETUP

TEST ENVIRONMENT

Temperature	20.1 ℃	Relative Humidity	50%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A25020911E00101 Page 21 of 59

TEST MODE

Pre-test Mode:	M01 ~ M01
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

TEST RESULTS

Phase: Asymmetric mode Mode: M01

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.4650	57.17	9.69	66.86	74.60	-7.74	QP
2	0.4650	32.55	9.69	42.24	64.60	-22.36	AVG
3	0.5504	57.33	9.66	66.99	74.00	-7.01	QP
4	0.5504	32.82	9.66	42.48	64.00	-21.52	AVG
5	0.7035	58.90	9.61	68.51	74.00	-5.49	QP
6	0.7035	34.56	9.61	44.17	64.00	-19.83	AVG
7	1.3064	55.98	9.74	65.72	74.00	-8.28	QP
8	1.3064	29.59	9.74	39.33	64.00	-24.67	AVG
9	2.3774	52.42	9.89	62.31	74.00	-11.69	QP
10	2.3774	29.37	9.89	39.26	64.00	-24.74	AVG
11	3.3540	48.23	9.91	58.14	74.00	-15.86	QP
12	3.3540	26.42	9.91	36.33	64.00	-27.67	AVG

REPORT NO.: E04A25020911E00101 Page 22 of 59

7.3. RADIATED EMISSIONS BELOW 1GHZ

LIMITS

(a). Limits up to 1 GHz

•	Clas	ss A	Class B		
FREQUENCY (MHz)	At 10 m	At 3 m	At 10 m	At 3 m	
	dBμV/m	dBμV/m	dBμV/m	dBμV/m	
30 – 230	40	50	30	40	
230 – 1000	47	57	37	47	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBµV/m)=20log Emission level (uV/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

TEST PROCEDURE

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak and QP
Trace	Max hold

- 1. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp was used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 2. The EUT was placed on a turntable with 80 cm above ground.
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 5. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.

TRF No.: 04-E001-0B

REPORT NO.: E04A25020911E00101 Page 23 of 59

- 6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 7. For measurement below 1 GHz, the initial step in collecting Radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

TEST SETUP

TEST ENVIRONMENT

Temperature	23℃	Relative Humidity	47%
Atmosphere Pressure	101kPa		

TEST MODE

Pre-test Mode:	M01 ~ M01
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

REPORT NO.: E04A25020911E00101 Page 24 of 59

TEST RESULTS

Antenna::Vertical Mode: M01

No	Frequenc	Reading	Correct	Measure-	Limit	Margi	Detecto	Commen
•	y	Level(dBuV	Factor(dB/m	ment(dBuV/m	(dBuV/m	n	r	t
	(MHz)))))	(dB)		
1 *	148.4410	48.56	-11.59	36.97	40.00	-3.03	QP	
2!	199.9856	52.33	-15.50	36.83	40.00	-3.17	QP	
3!	219.8449	51.68	-14.95	36.73	40.00	-3.27	QP	
4!	270.3748	56.15	-13.49	42.66	47.00	-4.34	QP	
5!	307.8313	56.25	-12.40	43.85	47.00	-3.15	QP	
6	706.6999	42.38	-3.27	39.11	47.00	-7.89	QP	

REPORT NO.: E04A25020911E00101 Page 25 of 59

Antenna::Horizontal	Mode: M01

No	Frequenc	Reading	Correct	Measure-	Limit	Margi	Detecto	Commen
•	y	Level(dBuV	Factor(dB/m	ment(dBuV/m	(dBuV/m	n	r	t
	(MHz)))))	(dB)		
1	97.4560	46.59	-15.78	30.81	40.00	-9.19	QP	
2	148.4410	45.02	-11.59	33.43	40.00	-6.57	QP	
3	197.8928	46.95	-15.36	31.59	40.00	-8.41	QP	
4 *	315.4808	54.94	-12.18	42.76	47.00	-4.24	QP	
5!	355.4273	52.73	-11.07	41.66	47.00	-5.34	QP	
6	742.2587	42.44	-2.58	39.86	47.00	-7.14	QP	

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor) 2. Margin = Result - Limit

REPORT NO.: E04A25020911E00101 Page 26 of 59

7.4. RADIATED EMISSIONS ABOVE 1GHZ

LIMITS

(a). Limits above 1 GHz

EDECLIENCY (MILE)	Class A (at 3	3 m) dBµV/m	Class B (at 3 m) dBµV/m		
FREQUENCY (MHz)	Peak Avg		Peak	Avg	
1000-6000	80	60	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBµV/m)=20log Emission level (uV/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

TEST PROCEDURE

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	3 MHz
Sweep	Auto
II IOTOCTOR	Peak: Peak AVG: RMS
Trace	Max hold

- a. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- b. The EUT was placed on a turntable with 80 cm above ground.
- c. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- d. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- e. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal

TRF No.: 04-E001-0B

REPORT NO.: E04A25020911E00101 Page 27 of 59

used.

- f. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- g. For measurement above 1 GHz, the peak emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the peak limit. If peak result complies with average limit, average result is deemed to comply with average limit.
- h. The average emission measurement will be measured by the RMS detector and must comply with the average limit.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST MODE

Pre-test Mode:	M01 ~ M01
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

REPORT NO.: E04A25020911E00101 Page 28 of 59

TEST RESULTS

Mode:	Full Load
Power:	AC 230V/50Hz for DC12V
TE:	Fink
Date	2025/03/01
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1188.000	59.82	-	45.14	74.00	28.86	PK+	V
2	2146.000	56.47	-9.05	47.42	74.00	26.58	PK+	V
3	2600.000	60.53	-8.15	52.38	74.00	21.62	PK+	V
4	3340.800	64.96	-	50.49	74.00	23.51	PK+	V
5	4826.400	64.96	-	53.47	74.00	20.53	PK+	V
6	5568.900	60.89	-9.3	51.59	74.00	22.41	PK+	V

Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	1188.000	44.91	-	30.23	54.00	23.77	AVG	V	PASS
2	2146.000	41.22	-9.05	32.17	54.00	21.83	AVG	V	PASS
3	2600.000	45.64	-8.15	37.49	54.00	16.51	AVG	V	PASS
4	3340.800	49.73	-	35.26	54.00	18.74	AVG	V	PASS
5	4826.400	50.26	-	38.77	54.00	15.23	AVG	V	PASS
6	5568.900	46.20	-9.3	36.90	54.00	17.10	AVG	V	PASS

Mode:	Full Load
Power:	AC 230V/50Hz for DC12V
TE:	Fink
Date	2025/03/01
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1114.000	60.34	-15.04	45.30	74.00	28.70	PK+	Н
2	1864.000	59.29	-10.4	48.89	74.00	25.11	PK+	Н
3	2000.000	58.15	-9.1	49.05	74.00	24.95	PK+	Н
4	2126.000	58.05	-9.07	48.98	74.00	25.02	PK+	Н
5	3341.100	64.85	-14.47	50.38	74.00	23.62	PK+	Н
6	4752.300	60.90	-11.43	49.47	74.00	24.53	PK+	Н

Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	1114.000	45.31	-15.04	30.27	54.00	23.73	AVG	Ι	PASS
2	1864.000	43.76	-10.4	33.36	54.00	20.64	AVG	Н	PASS
3	2000.000	43.60	-9.1	34.50	54.00	19.50	AVG	Н	PASS
4	2126.000	42.52	-9.07	33.45	54.00	20.55	AVG	Н	PASS
5	3341.100	49.88	-14.47	35.41	54.00	18.59	AVG	Н	PASS
6	4752.300	45.68	-11.43	34.25	54.00	19.75	AVG	Н	PASS

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

REPORT NO.: E04A25020911E00101 Page 30 of 59

7.5. VOLTAGE FLUCTUATIONS AND FLICKER

LIMITS

Test items	Limits (EN 61000-3-3)	Descriptions
P _{st}	\leq 1.0, T _p =10 min	short-term flicker indicator
P _{it}	\leq 0.65, T_p =2 h	long-term flicker indicator
d _c	≤3.3 %	relative steady-state voltage change
d _{max}	≤4 %(or 6 % _{Note(1)} , 7 % _{Note(2)})	maximum relative voltage change:
$d_{(t)}$	\leq 3.3 %, more than 500 ms	relative voltage change characteristic

Note:

(1)6 % for equipment which is:

a. switched manually, or

b. switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.

(2)7 % for equipment which is

a. attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or b. switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal Condition
- b. During the flick measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.
- c. Tests was performed according to the Test Condition/Assessment of Voltage Fluctuations specified in Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.
- d. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

REPORT NO.: E04A25020911E00101 Page 31 of 59

TEST SETUP

TEST ENVIRONMENT

Temperature	22.2 ℃	Relative Humidity	49%
Atmosphere Pressure	101kPa		

TEST MODE

Pre-test Mode:	M01 ~ M01
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

REPORT NO.: E04A25020911E00101 Page 32 of 59

TEST RESULTS

Flicker Emission - IEC 61000-3-3 , EN 61000-3-3		
Flicker Emission IEC 61000-4-15 for 230V/50Hz		
100%	Actual Flicker (Fli): 0.00	
	Short-term Flicker (Pst): 0.07 Limit (Pst): 1.00	
80%	Long-term Flicker (Plt): 0.07	
	Limit (Plt): 0.65	
	Maximum Relative Volt. Change (dmax): 0.00%	
40%	Limit (dmax): 4.00%	
	Relative Steady-state Voltage Change (dc): 0.01%	
20%	Limit (dc): 3.30%	
<u> </u>	Tmax 3.30% (dt): 0.00ms	
0.01 0.1 1 10 100 1000 10000 Clas	Limit (dt>Lim): 500ms	
Flicker Emission - IEC 61000-3-3 , EN 61000-3-3	2025/3/1 10:45:19	
	Range: 0.25 A	
Urms = 230.3 V P = 2.424 W Irms = 0.028 A pf = 0.380	V-nom: 230 V TestTime: 10 min (100%))
Test completed, Result: PA	ASSED	
	HAR-1000 EMC-Partner	
Urms = 230.3V Freq = 50.013 Range: 0.25 A		
Irms = 0.028A Ipk = 0.151A cf = 5.441		
P = 2.424W S = 6.382VA pf = 0.380		
Test - Time : 1 x 10min = 10min (100 %)		
LIN (Line Impedance Network) : L: 0.24ohm +j0.	15ohm N: 0.16ohm +j0.10ohm	
Limits: Plt: 0.65 Pst: 1.00		
dmax: 4.00 % dc : 3.30 %		
dtLim: 3.30 % dt>Lim: 500ms		
Test completed, Result: PASSED		

REPORT NO.: E04A25020911E00101 Page 33 of 59

8. IMMUNITY TEST

8.1. PERFORMANCE CRITERIA

EN 55035:2017/A11:2020

GENERAL PERFORMANCE CRITERIA

According to EN 55035 standard, the general performance criteria as following:

Criteria A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria B	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

REPORT NO.: E04A25020911E00101

Page 34 of 59

PERFORMANCE CRITERIA FOR BROADCAST RECEPTION FUNCTION

The broadcast reception function shall comply with the general performance criteria given in Clause 8 and any relevant annex with the deviations defined in Table A.2.

Table A.2 – Modified test levels for performance criterion A for the broadcast reception function			
Performance	Test type	Group 1	Group 2
criteria	table clause		
	1.2	The disturbance level is	No test requirements apply
	1.3	reduced to	
		1 V/m for in-band	
Criterion A		frequencies.	
	2.1	The disturbance level is	
	3.1	reduced to	
	4.1	1 V for in-band frequencies.	

In-band is defined as the entire tuneable operating range of the selected broadcast reception function.

The tuned channel ± 0.5 MHz (lower edge frequency -0.5 MHz up to the upper edge frequency ± 0.5 MHz of the tuned channel) is excluded from testing.

Note: In some countries, there is a requirement to test the tuned channels. Refer to the relevant regional requirements for guidance.

PERFORMANCE CRITERIA FOR PRINT FUNCTION

Criterion A	Refer to chapter B.3.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter B.3.2 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter B.3.3 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR SCAN FUNCTION

Criterion A	Refer to chapter C.3.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter C.3.2 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter C.3.3 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR DISPLAY AND DISPLAY OUTPUT FUNCTION

Criterion A	Refer to chapter D.3.1 and D.3.2 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter D.3.3 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter D.3.4 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR MUSICAL TONE GENERATING FUNCTION

Criterion A	Refer to chapter E.3.2 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter E.3.3 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter E.3.4 of EN 55035:2017/A11:2020

REPORT NO.: E04A25020911E00101 Page 35 of 59

PERFORMANCE CRITERIA FOR NETWORKING FUNCTION

General requirements for network functions		
Criterion A	Refer to chapter F.3.3.1 of EN 55035:2017/A11:2020	
Criterion B	Refer to chapter F.3.3.2 of EN 55035:2017/A11:2020	
Criterion C	Refer to chapter F.3.3.3 of EN 55035:2017/A11:2020	

Requirements for CPE containing xDSL ports		
Criterion A	Refer to chapter F.4.2 of EN 55035:2017/A11:2020	
Criterion B	Refer to chapter F.4.3 of EN 55035:2017/A11:2020	
Criterion C	Refer to chapter F.4.4 of EN 55035:2017/A11:2020	

PERFORMANCE CRITERIA FOR AUDIO OUTPUT FUNCTION

Criterion A	Refer to chapter G.7.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter G.7.2 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter G.7.3 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR TELEPHONY FUNCTION

Criterion A	Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020

REPORT NO.: E04A25020911E00101

Page 36 of 59

8.2. ELECTROSTATIC DISCHARGE

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-2:2008
Criterion Required:	Performance criteria B
Discharge Impedance:	330(1±10 %) Ω / 150(1±10 %) pF
Polarity:	Positive & Negative
Number of Discharge:	Minimum 10 times at each test point
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum
Test Level:	Air Discharge: 2 kV, 4 kV, 8 kV (Direct); Contact Discharge: 4 kV (Direct/Indirect)

TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5 \text{ m} \times 0.5 \text{ m}$, is placed parallel to, and positioned at a distance 0.1 m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1 m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

- b. Air discharges at insulation surfaces of the EUT.
 - It was at least ten single discharges with positive and negative at the same selected point.
- c. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied.
- d. For air discharge testing, the test shall be applied at all test levels 2 kV, 4 kV and 8 kV.
- e. For the actual test configuration, please refer to the related Item: EUT Test Photos.

REPORT NO.: E04A25020911E00101 Page 37 of 59

TEST SETUP

TEST ENVIRONMENT

Temperature	22.2 ℃	Relative Humidity	49%
Atmosphere Pressure	101kPa	Test Voltage	

Test Mode: M01

REPORT NO.: E04A25020911E00101 Page 38 of 59

TEST RESULTS

Mode	Level(kV)	Polarity	Test Point	Criteria	Result	Judgement
Air Discharge	2,4,8	+	All Slot	В	Α	Pass
Air Discharge	2,4,8	1	All Slot	В	Α	Pass
Contact Discharge	4	+	All Metal	В	Α	Pass
Contact Discharge	4	1	All Metal	В	Α	Pass
Horizontal Coupling	4	+	Front,rear,left,right	В	Α	Pass
Horizontal Coupling	4	1	Front,rear,left,right	В	Α	Pass
Vertical Coupling	4	+	Front,rear,left,right	В	Α	Pass
Vertical Coupling	4	-	Front,rear,left,right	В	Α	Pass
Air Discharge	15	+	All Slot	/	/	/
Air Discharge	15	-	All Slot	/	/	/
Contact Discharge	8	+	All Metal	/	/	/
Contact Discharge	8	-	All Metal	/	/	/

Observation:

REPORT NO.: E04A25020911E00101

Page 39 of 59

8.3. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-3:2006 +A1:2007+A2:2010
Criterion Required:	Performance criteria A
Frequency range:	80 MHz - 1000MHz; 1800 MHz, 2600 MHz, 3500 MHz, 5000 MHz
Test Level:	Level 2: 3 V/m (measured unmodulated)
Modulation:	The test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz.
Frequency Step:	1 % of fundamental
Dwell time:	1 seconds
Antenna Polarization:	Horizontal and vertical

TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3.

- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The disturbance test signal shall be 80 % amplitude modulated by a sine wave, preferably having a frequency of 1 kHz. A frequency other than 1 kHz may be used where permitted within EN 55035 (for example Clause G.3).
- c. 1 % step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4 % of the previous frequency with a test level of twice the value of the specified test level.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time should not exceed 5 s at each of the frequencies during the scan.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields.

REPORT NO.: E04A25020911E00101 Page 40 of 59

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4℃	Relative Humidity	53%
Atmosphere Pressure	101kPa	Test Voltage	

Test Mode:

REPORT NO.: E04A25020911E00101 Page 41 of 59

TEST RESULTS

Freq.Range (MHz)	Position (Face)	Polarity (H or V)	Field Strength (V/m) (unmodulated,r.m.s)	Criterion	Result	Judgment
80-1000; 1800; 2600; 3500; 5000;	0°	H&V	3 V/m	А	А	Pass
80-1000; 1800; 2600; 3500; 5000;	90°	H&V	3 V/m	А	А	Pass
80-1000; 1800; 2600; 3500; 5000;	180°	H&V	3 V/m	А	А	Pass
80-1000; 1800; 2600; 3500; 5000;	270°	H&V	3 V/m	А	А	Pass

Observation:

REPORT NO.: E04A25020911E00101 Page 42 of 59

8.4. ELECTRICAL FAST TRANSIENTS BURST

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-4:2012
Criterion Required:	Performance criteria B
Polarity:	Positive & Negative
Test Level and Repetition Frequency:	The test level for shall be 0.5kV,1 kV open circuit voltage at a repetition rate of 5 kHz as given EN 61000-4-4.
Impulse Wave shape:	5/50 Tr/Th ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	1 Minute

TEST PROCEDURE

- a. Both positive and negative polarity discharges were applied.
- b. The duration time of each test sequential was 1 minute.
- c. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.
- Multi conductor cables shall be tested as a single cable. Cables shall not be split or divided into groups of conductors for this test.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.2℃	Relative Humidity	49%
Atmosphere Pressure	101kPa	Test Voltage	

Test Mode:	M01
------------	-----

REPORT NO.: E04A25020911E00101 Page 43 of 59

TEST RESULTS

Coupling Line	Test Levels(kV)	Polarity	Criteria	Results	Judgement
L	1	+	В	Α	Pass
L	1	-	В	Α	Pass
N	1	+	В	Α	Pass
N	1	-	В	Α	Pass
PE	1	+	В	/	/
PE	1	-	В	/	/
L-N	1	+	В	Α	Pass
L-N	1	-	В	Α	Pass
L1-PE	1	+	В	/	/
L1-PE	1	-	В	/	/
N-PE	1	+	В	/	/
N-PE	1	-	В	/	/
L-N-PE	1	+	В	/	/
L-N-PE	1	-	В	/	/
DC network power ports	0.5	+	В	А	Pass
DC network power ports	0.5	-	В	А	Pass

Observation:

REPORT NO.: E04A25020911E00101 Page 44 of 59

8.5. SURGES (AC MAINS POWER PORTS)

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-5:2014	
Criterion Required:	Performance criteria B	
Wave Shape:	Tr/Th 1.2/50 us or 10/700 us	
Test Level:	1 kV (Line to Line for AC mains power ports) 2 kV (Line to Ground for AC mains power ports) 1 kV (Lines to Ground for Analogue/Digital data ports) 0.5 kV (shield to ground for coaxial/shielded cable on Analogue/Digital data ports) 0.5 kV (each individual line to reference ground for DC network power ports)	
Polarity:	Positive & Negative	
Interval:	60s between each surge	
No. of Surges:	Five positive pulses at 90° phase Five negative pulses at 270° phase	

TEST PROCEDURE

- a. The EUT and the auxiliary equipment were placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m×1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT was less than 2 meters (provided by the manufacturer).
- b. The EUT was connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise was applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- c. The surges were applied line to line and line(s) to earth. When testing line to earth the test voltage was applied successively between each of the lines and earth. Steps up to the test level specified increased the test voltage. All lower levels including the selected test level were tested. The polarity of each surge level included positive and negative test pulses.

REPORT NO.: E04A25020911E00101 Page 45 of 59

TEST SETUP

TEST ENVIRONMENT

Temperature	22.2 ℃	Relative Humidity	49%
Atmosphere Pressure	101kPa	Test Voltage	

TEST MODE

Test Mode:	M01

TEST RESULTS

Coupling Line	Voltage(kV)	Polarity	Phase	Criteria	Result	Judgment
L-N	1	+	90°	В	Α	Pass
L-N	1	-	90°	В	А	Pass
L-N	1	+	270°	В	А	Pass
L-N	1	-	270°	В	А	Pass
Signal Line	0.5	+	/	/	/	/
Signal Line	0.5	-	/	/	/	/

Observation:

A: No observable change.

Conclusion: The EUT met the requirements of the standard

REPORT NO.: E04A25020911E00101 Page 46 of 59

8.6. CONTINUOUS INDUCED RF DISTURBANCES

TEST SPECIFICATION

Standard: EN 55035:2017/A11:2020 IEC 61000-4-6:2013	
Criterion Required:	Performance criteria A
0.15 MHz to 10 MHz: 3 V (r.m.s) 10 MHz to 30 MHz: 3 to 1 V (r.m.s) 30 MHz to 80 MHz: 1 V (r.m.s)	
Modulation:	80%, 1kHz Amplitude Modulation
Step Size:	1% increment
Dwell Time:	1s

TEST PROCEDURE

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.
- c. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate shall not exceed 1.5×10⁻³ decades/s. The step size shall not exceed 1 % of the start and thereafter 1 % of the preceding frequency value where the frequency is swept incrementally.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- e. Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

REPORT NO.: E04A25020911E00101 Page 47 of 59

TEST SETUP

TEST ENVIRONMENT

Temperature	21.6℃	Relative Humidity	50%
Atmosphere Pressure	kPa	Test Voltage	

Test Mode: M01	
----------------	--

REPORT NO.: E04A25020911E00101 Page 48 of 59

TEST RESULTS

Test Ports (Mode)	Freq.Range (MHz)	Field Strength (unmodulated,r.m.s)	Criteria	Results	Judgment
AC mains power ports	0.1510	3 V	А	А	Pass
AC mains power ports	1030	3 V to 1V	А	А	Pass
AC mains power ports	3080	1 V	А	А	Pass
DC network power ports	0.1510	3 V	А	/	/
DC network power ports	1030	3 V to 1V	А	/	/
DC network power ports	3080	1 V	А	/	/
Analogue/digital data ports	0.1510	3 V	А	А	Pass
Analogue/digital data ports	1030	3 V to 1V	А	А	Pass
Analogue/digital data ports	3080	1 V	А	А	Pass

Observation:

REPORT NO.: E04A25020911E00101

Page 49 of 59

8.7. VOLTAGE DIPS AND INTERRUPTIONS (AC MAINS POWER PORTS)

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-11:2004
Criterion Required:	Voltage dips: performance criteria B or C; Interruptions: performance criteria C
Test Port:	AC mains power port
Test Level:	>95 % reduction: 0.5 period >30 % reduction: 25 period for 50Hz/ 30 period for 60Hz >95 % reduction: 250 period for 50Hz/ 300 period for 60Hz
No. of Dips / Interruptions:	3 per Level
Interval between Event:	Minimum 10 seconds
Phase Angle:	0°

TEST PROCEDURE

- a. The power cord was used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.
- Voltage reductions occur at 0 degree crossover point of the voltage waveform. The performance of the EUT was checked after the voltage dip or interruption.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.2 ℃	Relative Humidity	49%
Atmosphere Pressure	101kPa	Test Voltage	

Test Mode:

REPORT NO.: E04A25020911E00101 Page 50 of 59

TEST RESULTS

Voltage (AC)	Interruption & Dips	Durations(T)	Volatge Reduction	Perform Criteria	Results	Judgment
230V 50Hz	Voltage dips	0.5 Cycles	>95%	В	Α	Pass
230V 50Hz	Voltage dips	25 Cycles	30%	С	Α	Pass
230V 50Hz	Voltage interruptions	250 Cycles	>95%	С	С	Pass
100V 60Hz	Voltage dips	0.5 Cycles	>95%	В	Α	Pass
100V 60Hz	Voltage dips	30 Cycles	30%	С	А	Pass
100V 60Hz	Voltage interruptions	300 Cycles	>95%	С	С	Pass

Observation:

REPORT NO.: E04A25020911E00101 Page 51 of 59

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

REPORT NO.: E04A25020911E00101 Page 58 of 59

APPENDIX: PHOTOGRAPHS OF THE EUT

END OF REPORT