Inteligentne Systemy Obliczeniowe Wykład 2

Piotr Wąsiewicz Zakład Sztucznej Inteligencji - ISE PW

pwasiewi@elka.pw.edu.pl

Techniki zapisu wiedzy niepewnej

Prawdopodobieństwo

- P(A) prawdopodobieństwo zdarzenia A
- ${\cal K}$ liczba zdarzeń elementarnych sprzyjających zdarzeniu A
- ${\cal N}$ liczba wszystkich możliwych zdarzeń elementarnych

Prawdopodobieństwo warunkowe

jest chory na chorobę C, jeśli ma objawy O

$$P(O|C) = \frac{P(O \cap C)}{P(C)}$$
 - prawdopodobieństwo warunkowe, że pacje

ma objawy O, jeśli jest chory na chorobę C

 ${\cal P}({\cal O})$ - prawdopodobieństwo występowania objawów

Wzór Bayesa

$$P(O|C) = \frac{P(O \cap C)}{P(C)}$$

$$P(C|O) = \frac{P(O|C) * P(C)}{P(O)}$$

Tabela opisująca prawdopodobieństwa warunkowe występowania chorób, gdy zaobserwowano odpowiedni objaw

	grypa C_1	przeziępienie	-	alergia C_4
		C_2	płuc C_3	
ból głowy	$P(C_1 O_1)$	$P(C_2 O_1)$	$P(C_3 O_1)$	$P(C_4 O_1)$
O_1				
kaszel O_2	$P(C_1 O_2)$	$P(C_2 O_2)$	$P(C_3 O_2)$	$P(C_4 O_2)$
katar O_3	$P(C_1 O_3)$	$P(C_2 O_3)$	$P(C_3 O_3)$	$P(C_4 O_3)$
podwyższona	$P(C_1 O_4)$	$P(C_2 O_4)$	$P(C_3 O_4)$	$P(C_4 O_4)$
temperatu-				
\parallel ra O_4				

Opracował P. Wasiewicz

$$\sum_{i=1}^{m} P(C_j|O_i) = 1$$

$$\sum_{i=0}^{m} P(C_j|O_i) = 1 \qquad P(C_j) = \sum_{i=0}^{m} P(O_i) *P(C_j|O_i)_{\text{SO-p. 6/35}}$$

Uogólniony wzór Bayesa

Formuła Bayesa ma również postać <u>ogólną</u> dla <u>wielu</u> chorób i <u>wielu</u> objawów danej choroby.

$$P(C_j|O_{i1}\cap...\cap O_{ik}) = \frac{P(C_j) * P(O_{i1}|C_j) * ... * P(O_{ik}|C_j)}{\sum_{l=1}^{n} P(C_l) * P(O_{i1}|C_l) * ... * P(O_{ik}|C_l)}$$

Porównanie

F - zbiór formuł elementarnych, takich, że $a\in F\Leftrightarrow b\notin F-\{\mathbf{0},a\}$ czyli $b\wedge \neg a=\mathbf{0}$

$P(\phi) = 0 \qquad P(\Omega) = 1$	$P(0) = 0 \qquad P(1) = 1$	
$A \cap A' = \phi A \cup A' = \Omega$	$a \wedge \neg a = 0$ $a \vee \neg a = 1$	
$\forall A, B \in 2^{\Omega} A \cap B = \phi$	$\forall a, b \in F a \wedge b = 0$	
$P(A \cup B) = P(A) + P(B)$	$P(a \lor b) = P(a) + P(b)$	
$\forall A \in 2^{\Omega} P(A) + P(A') = 1$	$\forall a \in F P(a) + P(\neg a) = 1$	
$A \subseteq B$ $P(A) \le P(B)$	$(a \Rightarrow b) = 1$ $P(a) \le P(b)$	

 $(F, \vee, \wedge, \neg, \mathbf{1}, \mathbf{0})$

Model Bayesa

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)}$$

jest odpowiednikiem zwykłej

Twierdzenie Bayesa

$$P(h_i|e_1,...,e_m) = \frac{P(e_1,...,e_m|h_i)P(h_i)}{\sum_{k=1}^{n} P(e_1,...,e_m|h_k)P(h_k)}$$

$$P(h_i|e_1,\ldots,e_m)=rac{\displaystyle\prod_{j=1}^m P(e_j|h_i)}{\displaystyle\sum_{k=1}^n \prod_{j=1}^m P(e_j|h_k)P(h_k)}$$

Sieci (grafy) wnioskowania

Modyfikacje w PROSPECTORZE (1976)

Dodatkowe założenie:

$$P(e_1, \dots, e_m | \neg h_i) = \prod_{j=1}^m P(e_j | \neg h_i), \ i = 1, \dots, n$$

Reguła Bayesa ma postać
$$P(\neg h|e) = \frac{P(e|\neg h)P(\neg h)}{P(e)}$$

$$\frac{P(h|e)}{P(\neg h|e)} = \frac{P(e|h)}{P(e|\neg h)} \frac{P(h)}{P(\neg h)}$$

$$O(h) = \frac{P(h)}{P(\neg h)}$$
 - szansa a priori

$$O(h|e) = \frac{P(h|e)}{P(\neg h|e)}$$
 - szansa a posteriori

Współczynnik wiarygodności

$$\lambda = \frac{P(e|h)}{P(e|\neg h)} \Rightarrow O(h|e) = \lambda O(h)$$

Modyfikacje w PROSPECTORZE

$$O(h_i|e_1,\ldots,e_m) = O(h_i)\prod_{k=1}^m \lambda_{k_i},$$
gdzie $\lambda_{k_i} = rac{P(e_k|h_i)}{P(e_k|
egh_i)}$

$$\overline{\lambda} = \frac{P(\neg e|h)}{P(\neg e|\neg h)} \Rightarrow O(h|\neg e) = \overline{\lambda}O(h)$$

Współczynnki λ i $\overline{\lambda}$ są określane a priori. λ określa dostateczność obserwacji e (szczególnie dla $\lambda\gg 1$), a $\overline{\lambda}$ określa konieczność e (szczególnie dla $0\leq\overline{\lambda}\leq 1$).

Wady podejścia bayesowskiego

- Niewiedza ukryta jest zwykle w prawdopodobieństwach a priori.
- Przydzielanie prawdopodobieństw jedynie zdarzeniom elementarnym, a nie dowolnym ich alternatywom.
- Informacja konfliktowa nie jest wykrywana, ale przechodzi przez sieć wnioskowania.

Współczynniki niepewności w systemie MYCIN

$$CF(h,e) = MB(h,e) - MD(h,e),$$

gdzie CF jest współczynnikiem <u>niepewności</u>, MB(h,e) jest miarą *wiarygodności* i reprezentuje stopień <u>wzmocnienia</u> hipotezy h przez obserwację e, MD(h,e) jest miarą *niewiarygodności* i reprezentuje stopień <u>osłabienia</u> hipotezy h przez e.

Interpretacja probabilistyczna (1988)

$$MB(h,e) = \begin{cases} \frac{P(h|e) - P(h)}{1 - P(h)}, & P(h|e) > P(h), \\ 0, & \text{w przeciwnym przypadku,} \end{cases}$$

gdzie P(h) jest prawdopodobieństwem a priori hipotezy $h,\ P(h|e)$ - a posteriori

Interpretacja przyrostowa prawdopodobieństwa

$$P(h|e) = \begin{cases} P(h) + CF(h,e)[1 - P(h)], & CF(h,e) > 0, \\ P(h) - |CF(h,e)|P(h), & CF(h,e) < 0, \end{cases}$$

Funkcje połączenia informacji

$$CF(h,e_1,e_2) =$$

$$= \begin{cases} CF(h, e_1) + CF(h, e_2) - CF(h, e_1)CF(h, e_2), & CF(h, e_1) \ge 0, \\ \frac{CF(h, e_1) + CF(h, e_2)}{1 - min(|CF(h, e_1)|, |CF(h, e_2)|)}, & CF(h, e_1)CF(h, e_2) < 0, \\ CF(h, e_1) + CF(h, e_2) + CF(h, e_1)CF(h, e_2), & CF(h, e_1) < 0, \\ CF(h, e_1) < 0, & CF(h, e_2) < 0, \end{cases}$$

$$CF(h, e_1) = \begin{cases} CF(e_2, e_1)CF(h, e_2), & CF(e_2, e_1) \ge 0, \\ -CF(e_2, e_1)CF(h, \neg e_2), & CF(e_2, e_1) < 0, \end{cases}$$

Redukowanie drzewa reguł z CF

Modyfikacje współczynnika CF

Aksjomaty Heckermana (1988) są spełnione np. przez funkcję: $CF(h,e)=F(\lambda)$, gdzie F jest monotonicznie rosnącą funkcją, spełniającą: $F(\frac{1}{x})=-F(x)$ oraz $\lim_{x\to\infty}F(x)=1$

Sam Heckerman zaproponował funkcję:

$$F(x) = \frac{x-1}{x+1}$$

$$CF(h,e) = \frac{\lambda - 1}{\lambda + 1} = \frac{P(h|e) - P(h)}{P(h)(1 - P(h|e)) + P(h|e)(1 - P(h))}$$

Funkcje Heckermana łączące informację

$$CF(h, e_1, e_2) = \frac{CF(h, e_1) + CF(h, e_2)}{1 + CF(h, e_1)CF(h, e_2)},$$

$$CF(h, e_1) = \frac{-2CF(h, e_2)CF(h, \neg e_2)CF(e_2, e_1)}{[CF(h, e_2) - CF(h, \neg e_2)] - CF(e_2, e_1)[CF(h, e_2) + CF(h, \neg e_2)]}$$

Aksjomaty Prade (1988)

Przy <u>braku pełnej</u> specyfikacji modelu probabilistycznego niektóre metody wykraczają poza ten model opierając się na tzw. miarach *monotonicznych* , tzn. funkcjach przekształcających F w odcinek [0,1] i spełniających *aksjomaty Prade* , które określają dużą rodzinę funkcji, w tym miarę prawdopodobieństwa:

$$g((0)) = 0,$$

$$g((1)) = 1,$$

$$(a \Rightarrow b) = (1) \Rightarrow g(a) \leq g(b),$$

Bezpośrednio z nich wynika, że

$$g(a \lor b) \ge max(g(a), g(b)),$$

 $g(a \land b) \le min(g(a), g(b)).$

Teoria Dempstera-Shafera

Istnieje zbiór *elementów ogniskowych* (ang. focal elements) $T \subseteq F$ reprezentujących formuły, o których posiadamy jakieś informacje. Elementy z T nie muszą być zdaniami elementarnymi oraz wzajemnie się wykluczającymi. Dostępne informacje o T są zapisywane w postaci rozkładu bazowego prawdopodobieństwa (ang. *basic probability assignment*), który prezentuje częściowe przekonania:

$$m(\mathbf{0}) = 0,$$

$$\sum_{a \in T} m(a) = 1,$$

dla wszystkich pozostałych $a\in F$ m(a)=0, a ignorancja to m(1) np. m(1)=1 oznacza *wiem, że nic nie wiem*. Przy braku dodatkowej informacji o formule nie wymaga się rozkładu stopni pewności na jej elementarne formuły.

Teoria Dempstera-Shafera

$$Bel(a) = \sum_{(b \Rightarrow a) = 1} m(b)$$

Funkcja dualna:

$$Pl(a) = \sum_{(b \Rightarrow \neg a) = \mathbf{0}} m(b)$$

Miary Bel i Pl są nazywane <u>przekonaniem</u> i <u>wyobrażalnością</u> (ang. *belief, plausibility*).

Przykład z formułami

$$m(a) = 0, 2$$
 $m(b) = 0, 1$ $m(c) = 0, 1$ $m(a \lor b) = 0, 2$ $m(b \lor c) = 0, 3$ $m(a \lor b \lor c) = 0$ $m(a \lor b \lor c) = 0$

$$\mathsf{Bel}(a \lor b) = m(a) + m(b) + m(a \lor b) = 0, 2 + 0, 1 + 0, 2 = 0, 5$$

$$\mathsf{Bel}(b \lor c) = m(b) + m(c) + m(b \lor c) = 0, 1 + 0, 1 + 0, 3 = 0, 5$$

$$\operatorname{Bel}(a \vee c) = m(a) + m(c) = 0, 2 + 0, 1 = 0, 3$$
 - nie ma informacji, ale jest Bel

0, 1

$$\mathsf{PI}(a) = 1 - \mathsf{BeI}(b, c, b \lor c) = m(b) + m(a \lor b) + m(a \lor b \lor c) = 0, 2 + 0, 2 + 0, 1 = 0, 5$$

$$\mathsf{PI}(b) = m(b) + m(a \lor b) + m(b \lor c) + m(a \lor b \lor c) = 0, 1 + 0, 2 + 0, 3 + 0, 1 = 0, 7$$

$$\mathsf{PI}(c) = m(c) + m(b \lor c) + m(a \lor b \lor c) = 0, 5$$

$$\mathsf{PI}(a \lor b) = m(a) + m(b) + m(a \lor b) + m(b \lor c) + m(a \lor b \lor c) = 0,9$$

Teoria Dempstera-Shafera

$$\forall a,b \in F:$$

$$Pl(a) = 1 - Bel(\neg a),$$

$$Bel(a) + Bel(\neg a) \leq 1,$$

$$Pl(a) + Pl(\neg a) \geq 1,$$

$$Bel(a) \leq Pl(a),$$

$$Bel(a \lor b) \geq Bel(a) + Bel(b) - Bel(a \land b),$$

$$Pl(a \land b) \leq Pl(a) + Pl(b) - Pl(a \lor b).$$

Pewność danej formuły $a \in F$ może być zatem reprezentowana przez odcinek:

Podejście teoriomnogościowe

Przykład z teorii zbiorów 1/2

$$m(\{x_1, x_2, x_3\}) = 0, 5$$

$$m({x_1, x_2}) = 0,25$$

$$m({x_2, x_4}) = 0,25$$

dla pozostałych $A \in \Omega$ m(A) = 0

$$Bel({x_1, x_2}) = 0.25$$

$$Bel({x_1, x_2, x_3}) = 0.75$$

$$\mathsf{Bel}(\{x_1, x_2, x_3, x_4\}) = 1$$

$$\mathsf{Bel}(\{x_1, x_2, x_3, x_4, x_5\}) = 1$$

$$\mathsf{Bel}(\{x_1, x_2, x_3, x_5\}) = 0,75$$

$$Bel({x_1, x_2, x_4}) = 0,5$$

$$\mathsf{Bel}(\{x_1, x_2, x_4, x_5\}) = 0, 5$$

$$Bel(\{x_1, x_2, x_5\}) = 0,25$$

$$\mathsf{Bel}(\{x_2, x_3, x_4\}) = 0, 25$$

$$Bel({x_2, x_3, x_4, x_5}) = 0.25$$

$$Bel({x_2, x_4}) = 0,25$$

$$Bel({x_1, x_4, x_5}) = 0,25$$

$$Bel(\{x_1, x_2\}) = m(\{x_1, x_2\}) = 0,25$$

$$Bel({x_1, x_2, x_3}) = m({x_1, x_2}) + m({x_1, x_2, x_3}) = 0,25 + 0,5 = 0,75$$

$$\mathsf{Bel}(\{x_1, x_2, x_3, x_4\}) = m(\{x_1, x_2\}) + m(\{x_1, x_2, x_3\}) + m(\{x_2, x_4\}) = 1$$

$$Bel({x_1, x_2, x_4}) = m({x_1, x_2}) + m({x_2, x_4}) = 0,25 + 0,25 = 0,5$$

Przykład z teorii zbiorów 2/2

Połączenie dwóch rozkładów

Przykład nr 1A

Przykład bardziej zrównoważonego rozkładu

$$m_1(a) = m_2(a) = 0,3$$
 $m(a) \approx 0.26$
 $m_1(b) = m_2(b) = 0,3$ $m(b) \approx 0.26$
 $m_1(c) = m_2(c) = 0,4$ $m(c) \approx 0.47$
 $Con(m_1, m_2) = log(3)$

Przykład nr 1B

Teoria Dempstera-Shafera

$$\forall C \neq \phi \quad m(C) = \frac{\sum_{A \cap B = C} m_1(A)m_2(B)}{\sum_{A \cap B \neq \phi} m_1(A)m_2(B)} = \frac{\sum_{A \cap B = C} m_1(A)m_2(B)}{1 - \sum_{A \cap B = \phi} m_1(A)m_2(B)}$$

Teoria Dempstera-Shafera: sumowanie ortogonalne

$\begin{cases} x_2 \\ \frac{3}{8} \end{cases}$	$\begin{cases} x_2 \\ \frac{3}{32} \end{cases}$	$\begin{cases} x_2 \\ \frac{3}{16} \end{cases}$	$\begin{cases} x_2 \\ \frac{3}{32} \end{cases}$
$\begin{cases} \{x_1, x_2, x_4\} \\ \frac{3}{8} \end{cases}$	$\begin{cases} x_1, x_2 \end{cases}$	$\{x_1, x_2\}$	$\begin{cases} x_2, x_4 \end{cases}$
$\{x_1, x_2, x_3\}$	$\begin{cases} x_1, x_2 \end{cases}$	$\{x_1, x_2, x_3\}$	$\begin{cases} x_2 \\ \frac{1}{16} \end{cases}$
0	$\left\{x_1, x_2\right\}$	$\{x_1, x_2, x_3\}$	$\left\{x_2, x_4\right\}$

Sumowanie ortogonalne z zerowymi wynikami

$$\sum_{A \cap B = \phi} m_1(A) m_2(B) = \frac{3}{32} + \frac{3}{16} + \frac{3}{32} = \frac{3}{8};$$

$$(m_1 \oplus m_2)(\{x_1, x_2\}) = \frac{\frac{1}{16} + \frac{1}{8}}{1 - \frac{3}{8}} = \frac{\frac{3}{16}}{\frac{10}{16}} = 0.3;$$

$$(m_1 \oplus m_2)(\{x_1\}) = \frac{\frac{3}{22}}{\frac{5}{8}} = 0.15; \quad (m_1 \oplus m_2)(\{x_1, x_3\}) = \frac{\frac{3}{16}}{\frac{5}{8}} = 0.3;$$

$$m(\{x_2\}) = \frac{\frac{1}{16}}{\frac{5}{2}} = 0.1; \quad m(\{x_4\}) = \frac{\frac{3}{32}}{\frac{5}{2}} = 0.15;$$

