

Pontificia Universidad Javeriana

Facultad de Ingeniería Departamento de Electrónica

Control de Sistemas

Clase 3: Diagramas de Bloques de Sistemas en Lazo Cerrado

Gerardo Becerra, Ph.D.

gbecerra@javeriana.edu.co

Febrero 11, 2020

1

Introducción

- Sistema: interconexión de subsistemas.
- Subsistema: representado por una función de transferencia.
- Objetivo: obtener la función de transferencia de un sistema formado por varios subsistemas.
- Representación gráfica de subsistemas:
 - Diagramas de bloques.
 - Diagramas de flujo.
- Métodos para simplificar los diagramas:
 - Diagramas de bloques: álgebra de bloques.
 - Diagramas de flujo: regla de Mason.

Diagramas de Bloques

Diagramas de Bloques

Componentes:

- Aplican para sistemas lineales e invariantes en el tiempo (LTI).
- Pueden organizarse en múltiples configuraciones / topologías.

Configuración en Cascada

• La salida de un subsistema se alimenta al siguiente subsistema.

• La función de transferencia equivalente es el producto de las funciones de transferencia en cascada.

• Éste resultado aplica bajo la suposición de que no existe **efecto de carga**: la salida de un subsistema se mantiene igual aunque el siguiente bloque se encuentre conectado o no.

Efecto de Carga: Circuitos RC en Cascada

El efecto se previene usando un amplificador de ganancia K con alta impedancia de entrada y baja impedancia de salida.

Configuración Paralela

- Varios subsistemas se alimentan con una misma entrada.
- Las salidas de los subsistemas se suman.

• La función de transferencia equivalente es la suma de las funciones de transferencia en paralelo.

$$+ G_1(s) \pm G_2(s) \pm G_3(s)$$

Configuración en Lazo Retroalimentado

- Configuración fundamental en los sistemas de control.
- La salida se retroalimenta para compararla con la referencia y generar una señal de error.

• La función de transferencia equivalente es:

 El signo depende del tipo de retroalimentación (positiva o negativa).

Movimiento de Bloques para Crear Formas Familiares

- Formas familiares (cascada, paralelo, retroalimentación) no siempre son aparentes en el diagrama de bloques.
- Movimiento de bloques a través de puntos de unión o sumadores: permite obtener formas familiares.

Movimiento hacia atrás en un sumador.

Movimiento hacia adelante en un sumador.

Movimiento de Bloques para Crear Formas Familiares

Movimiento hacia atrás en un punto de unión.

Movimiento hacia adelante en un punto de unión.

Reducir el diagrama de bloques a una sola función de transferencia.

1. Colapsar todos los sumadores en uno sólo:

2. Encontrar el equivalente paralelo:

3. Calcular la función de transferencia total usando la fórmula de lazo retroalimentado:

Reducir el diagrama de bloques a una sola función de transferencia.

$$\begin{array}{c|c} R(s) & & G_1(s)G_2(s) & & V_4(s) \\ \hline 1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s) & & & & \\ \hline \end{array} \begin{array}{c|c} V_4(s) & & & \\ \hline \end{array} \begin{array}{c|c} \left(\frac{1}{G_2(s)} + 1\right) \left(\frac{G_3(s)}{1 + G_3(s)H_3(s)}\right) & & \\ \hline \end{array}$$

$$\begin{array}{c|c} R(s) & \hline & G_1(s)G_3(s)[1+G_2(s)] & C(s) \\ \hline & [1+G_2(s)H_2(s)+G_1(s)G_2(s)H_1(s)][1+G_3(s)H_3(s)] & \\ \hline \end{array}$$

Diagramas de Flujo

Diagramas de Flujo

- Alternativa a los diagramas de flujo.
- Elementos:
 - Ramas: representan sistemas.
 - Nodos: representan señales.
- Las ramas tienen una flecha.
 Representan la dirección de flujo de la señal a través del sistema.
- Cada señal es igual a la suma de señales que entran al nodo.

Ejemplo 3: Convertir Diagramas de Bloques en Diagramas de Flujo

Convierta los diagramas de bloques de las formas familiares a diagramas de flujo.

Ejemplo 4: Convertir Diagramas de Bloques en Diagramas de Flujo

Convierta el siguiente diagrama de bloques en diagrama de flujo.

Regla de Mason

- Aplicación de una fórmula obtenida por S.J. Mason (1953).
- Puede ser más fácil obtener la función de transferencia que usando reducción de diagramas de bloques.
- Definición de elementos del diagrama:
 - Ganancia de lazo: Producto de ganancias de ramas que se recorren iniciando en un nodo y finalizando en el mismo nodo siguiendo la dirección de flujo, sin pasar por cualquier otro nodo más de una vez.
 - Ganancia de trayectoria: Producto de ganancias de ramas que se recorren desde el nodo de entrada hasta el nodo de salida siguiendo la dirección de flujo.
 - Lazos que no se tocan: Lazos que no tienen nodos en común.

Regla de Mason

Theorem

La función de transferencia C(s)/R(s) de un sistema representado por un diagrama de flujo es:

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k} T_{k} \Delta_{k}}{\Delta}$$

Donde:

- k: Número de trayectorias directas.
- T_k: Ganancia de la k-ésima trayectoria directa.
- Δ = 1 \sum ganancias de lazo individuales + \sum ganancias de 2 lazos que no se tocan \sum ganancias de 3 lazos que no se tocan + \sum ganancias de 4 lazos que no se tocan ...
- Δ_k = 1 ∑ ganancias de lazo en Δ que tocan la k-ésima trayectoria. (Δ_k se forma eliminando de Δ las ganancias de lazo que tocan la k-ésima trayectoria).

Para el diagrama de bloques de la figura:

- → C(s) Obtenga la función de transferencia usando reducción de bloques.
 - Obtenga el diagrama de flujo equivalente.
 - Obtenta la función de transferencia usando la regla de Mason.
 - Verifique los resultados y concluya.