1830

Министерство науки и высшего образования Российской **Федерации**

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»							
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>							
Лабораторная работа № 6							
Тема Построение и программная реализация алгоритмов численного дифференцирования.							
Студент Алахов А.Г.							
Группа ИУ7-42Б							
Оценка (баллы)							
Преподаватель Градов В.М.							

Цель работы. Получение навыков построения алгоритма вычисления производных от сеточных функций.

1 Исходные данные

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой:

$$y = \frac{a_0 x}{a_1 + a_2 x}$$

параметры функции неизвестны и определять их не нужно.

X	у	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная
- 2 центральная разностная производная
- 3 2-я формула Рунге с использованием односторонней производной
- 4 введены выравнивающие переменные.

В столбец 5 занести вторую разностную производную.

2 Код программы

Код программы представлен на листингах 1-2.

Листинг 1. functions.py

```
def left diff(table):
    table[0].append('
    for i in range(1, len(table)):
        table[i].append(left diff formula(table[i], table[i - 1]))
def centre diff(table):
                      - ')
    table[0].append('
    for i in range(1, len(table) - 1):
        table[i].append((table[i + 1][1] - table[i - 1][1]) /
                        (table[i + 1][0] - table[i - 1][0]))
    table[i + 1].append('
def second Runge(table):
   table[0].append(' -
                           ')
                      - ')
    table[1].append('
    for i in range(2, len(table)):
        table[i].append(left diff formula(table[i], table[i - 1]) * 2 -
                        left diff formula(table[i], table[i - 2]))
def align vars(table):
   new table = []
    for dot in table:
       new_table.append([1 / dot[0], 1 / dot[1]])
   table[0].append(' -
    for i in range(1, len(new table)):
        table[i].append(left diff formula(new table[i], new table[i - 1]) *
                        table[i][1] ** 2 / table[i][0] ** 2)
def second der(table):
    table[0].append('
                      - ')
    for i in range(1, len(table) - 1):
        table[i].append((table[i + 1][1] + table[i - 1][1] - table[i][1] * 2) /
                        (table[i + 1][0] - table[i][0]) ** 2)
                               ')
    table[i + 1].append('
                               Листинг 2. main.py
from functions import *
def main():
    table = [[1., 0.571],
             [2., 0.889],
             [3., 1.091],
             [4., 1.231],
             [5., 1.333],
             [6., 1.412]]
   left_diff(table)
   centre diff(table)
   second_Runge(table)
   align_vars(table)
   second_der(table)
   print('| x | y
                         | left | centre | Runge | align | second', end = '|')
   for string in table:
```

```
print('\n\
+-----+----+-----+-----+-----+\n', end = '|')
for field in string:
    if field == ' - ':
        print(field, end = '|')
else:
        print('{:7.4f}'.format(field), end = '|')

if __name__ == "__main__":
    main()
```

3 Результаты работы

Заполненная таблица с краткими комментариями по поводу использованных формул и их точности:

						second ++
1.0000	0.5710	- 1	- 1	- 1	-	- I
2.0000	0.8890	0.3180	0.2600	- 1	0.2475	-0.1160
3.0000	1.0910	0.2020	0.1710	0.1440	0.1653	-0.0620
4.0000	1.2310	0.1400	0.1210	0.1090	0.1185	-0.0380
5.0000	1.3330	0.1020	0.0905	0.0830	0.0884	-0.0230
		0.0790				

1) Левая разностная производная:

Формула (получается из разложения функции в ряд Тейлора):

$$y'_{n} = \frac{y_{n} - y_{n-1}}{h} + O(h)$$

Точность: первый порядок точности относительно шага h.

2) Центральная разностная производная:

Формула (получается вычитаем разложения ф-и в ряд Тейлора для Yn+1 из разложения ф-и в ряд Тейлора для Yn-1):

$$y'_n = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2)$$

Точность: второй порядок точности относительно шага h.

3) 2-я формула Рунге с использованием односторонней производной: Формула:

Была использована формула Рунге для левой разностной производной, поэтому m = 2 (удвоенный шаг), а p = 1

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1})$$

Где
$$\Phi(h)$$
: $y'_n = \frac{y_n - y_{n-1}}{h} + O(h)$

Точность: вторая формула Рунге позволяет за счет расчета на двух сетках с отличающимися шагами получить решение с более высокой точностью, чем заявленная теоретическая точность используемой формулы. В данном случае точность формулы будет равна 2.

4) Введение выравнивающих переменных:

Формула:

По условию исходная сеточная функция может быть описана следующей зависимостью:

$$y = \frac{a_0 x}{a_1 + a_2 x},$$

Смысл выравнивающих переменных состоит в том, чтобы исходная кривая была преобразована в прямую линию. Исходя из этого целесообразно ввести следующие выравнивающие переменные:

$$\eta(y) = 1 / y$$
 $\xi(x) = 1 / x$

Тогда указанная зависимость принимает вид:

$$\eta(\xi) = \frac{a1 * \xi + a2}{a0}$$

Для возврата к исходным переменным используется формула:

$$y'_{x} = y'_{\eta} \eta'_{\xi} \xi'_{x} = \frac{\eta'_{\xi} \xi'_{x}}{\eta'_{y}}$$

В таком случае формула приобретает вид:

res =
$$\xi_{\eta}$$
`* y[i]² / x[i]², где
$$\xi_{\eta}$$
` = ξ [i] - ξ [i - 1] / η [i] - η [i - 1]

Точность: абсолютная

5) Вторая разностная производная:

Формула (получается сложением разложения ф-и в ряд Тейлора для Yn+1 и разложения ф-и в ряд Тейлора для Yn-1):

$$y_n'' = \frac{y_{n-1} - 2y_n + y_{n+1}}{h^2} + O(h^2)$$

Точность: второй порядок точности относительно шага h.

4 Вопросы при защите лабораторной работы

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной у' $_N$ в крайнем правом узле x_N .

$$\begin{cases} y_{n-1} = y_n - \frac{h}{1!} y'_n + \frac{h^2}{2!} y''_n - \frac{h^3}{3!} y'''_n + \cdots \\ y_{n-2} = y_n - \frac{2h}{1!} y'_n + \frac{(2h)^2}{2!} y''_n - \frac{(2h)^3}{3!} y'''_n + \cdots \end{cases}$$

Из данной системы исключаем слагаемое, содержащее h^2 , тем самым получим трехчленную формулу:

$$y'_{n} = \frac{3y_{n} - 4y_{n-1} + y_{n-2}}{2h}$$

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной у" $_0$ в крайнем левом узле x_0 .

$$\begin{cases} y_1 = y_0 + \frac{h}{1!} y'_0 + \frac{h^2}{2!} y''_0 + \frac{h^3}{3!} y'''_0 + \cdots \\ y_2 = y_0 + \frac{2h}{1!} y'_0 + \frac{(2h)^2}{2!} y''_0 + \frac{(2h)^3}{3!} y'''_0 + \cdots \end{cases}$$

Складываем уравнения данной системы вплоть до слагаемого, содержащего h³, тем самым получим формулу:

$$y''_{0} = \frac{-7y_{0} + 8y_{1} - y_{2} + 9hy_{0} - 12hy_{1} + 6hy_{2}}{2h^{2}}$$

3. Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой производной у'₀ в левом крайнем узле:

$$y'_{\underline{0}} = \frac{-3y_{\underline{0}} \pm 4y_{\underline{1}} - y_{\underline{2}}}{2h} \pm O(h^2).$$

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1})$$
, где m = 2, p = 1
$$\Phi(h) = \frac{y_1 - y_0}{h}$$

$$\Phi(2h) = \frac{y_2 - y_0}{2h}$$

Формула после подстановки:

$$\Omega = \frac{y_1 - y_0}{h} + \frac{\frac{y_1 - y_0}{h} - \frac{y_2 - y_0}{2h}}{2^1 - 1} + 0(h^2) = \frac{4(y_1 - y_0) - (y_2 - y_0)}{2h} + 0(h^2)$$
$$= \frac{-3y_0 + 4y_1 - y_2}{2h} + 0(h^2)$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной y'_0 в крайнем левом узле x_0 .

$$\begin{cases} y_1 = y_0 + \frac{h}{1!} y'_0 + \frac{h^2}{2!} y''_0 + \frac{h^3}{3!} y'''_0 + \cdots \\ y_2 = y_0 + \frac{2h}{1!} y'_0 + \frac{(2h)^2}{2!} y''_0 + \frac{(2h)^3}{3!} y'''_0 + \cdots \\ y_3 = y_0 + \frac{3h}{1!} y'_0 + \frac{(3h)^2}{2!} y''_0 + \frac{(3h)^3}{3!} y'''_0 + \cdots \end{cases}$$

Из данной системы исключаем слагаемое, содержащее h^2 , тем самым получим формулу:

$$y'_0 = \frac{-11y_0 + 18y_1 - 9y_2 + 2y_3}{6h}$$