univariate

Paula Wu

6/9/2022

```
full_df_no_invalid_uni = read.csv("./data/full_df.csv") %>%
  select(-1) %>%
  mutate(B1PRSEX = as.factor(B1PRSEX),
         B4ALCOH = factor(B4ALCOH, levels = c("former_light/abs", "former_moderate", "former_heavy", "curr
         D1PB19 = factor(D1PB19, levels = c(-1,0,1))
# 1 for white, 2 for non-white
full_df_lm = full_df_no_invalid_uni %>%
  mutate(B1PRSEX = as.factor(B1PRSEX),
         B4ALCOH = factor(B4ALCOH, levels = c("former_light/abs", "former_moderate", "former_heavy", "curr
         D1PB19 = factor(D1PB19, levels = c(0,-1,1)), # marital status, 0 - unchanged, -1 - divorced, 1 -
         D1PA6A = factor(D1PA6A),
         B1PF7A = ifelse(as.numeric(B1PF7A) != 1, 2, as.numeric(B1PF7A)),
         B1PF7A = as.factor(B1PF7A),
         B1PB1 = as.factor(B1PB1),
         B1PA39 = factor(B1PA39, levels = c("non_smoker", "former_smoker", "current_smoker")),
         B1SA11W = as.factor(B1SA11W),
         B1SA62A = as.factor(B1SA62A),
         B1SA62B = as.factor(B1SA62B),
         B1SA62C = as.factor(B1SA62C),
         B1SA62D = as.factor(B1SA62D),
         B1SA62E = as.factor(B1SA62E),
         B1SA62F = as.factor(B1SA62F),
         B1SA62G = as.factor(B1SA62G),
         B1SA62H = as.factor(B1SA62H),
         B1SA62I = as.factor(B1SA62I),
         B1SA62J = as.factor(B1SA62J)) %>%
  select(-c(M2ID, M2FAMNUM, B3TCOMPZ3, B3TEMZ3, B3TEFZ3, B1PB19, C3TCOMP, C3TEM, C3TEF, C3IDATE_MO, C3IDAT
  select(D3TCOMP, D3TEM, D3TEF, ctq_total, everything())
full_df_lm_num = full_df_lm %>%
  select(B1PAGE M2, B1PTSEI, B1SPWBA2, B1SPWBE2, B1SPWBG2, B1SPWBR2, B1SPWBU2, B1SPWBS2, B4HMETMW)
stargazer(full_df_lm_num, type = "latex", title="Descriptive statistics (Numeric Variables)", digits=3)
\% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com \%
Date and time: Thu, Jun 30, 2022 - 14:43:30
Composite Scores
uni_comp = lapply(full_df_lm[c(5:7, 9, 11:28, 31)], function(x) summary(lm(D3TCOMP~x, data = full_df_lm)))
df_comp = list()
ind = c(5:7, 9, 11:28, 31)
for (i in 1:length(uni_comp)){
  ind_i = ind[i]
  str = colnames(full_df_lm)[ind_i]
  resl = uni_comp[[str]]$coefficients[2, c(1,2,4)]
```

Table 1: Descriptive statistics (Numeric Variables)

Statistic	N	Mean	St. Dev.	Min	Max
$B1PAGE_M2$	867	53.591	10.625	34	81
B1PTSEI	867	42.693	13.891	13.850	80.530
B1SPWBA2	867	37.439	6.766	14.000	49.000
B1SPWBE2	867	38.846	7.536	11.000	49.000
B1SPWBG2	867	40.084	6.447	14.000	49.000
B1SPWBR2	867	41.045	6.908	17.000	49.000
B1SPWBU2	867	39.980	6.460	10.000	49.000
B1SPWBS2	867	38.972	7.975	10.000	49.000
B4HMETMW	867	$1,\!475.465$	$2,\!339.804$	0.000	$26,\!355.000$

```
df_comp = rbind(df_comp, resl)
}
df_comp = as.data.frame(df_comp) %>%
  unnest() %>%
  as.data.frame()
rownames(df_comp) = c("Age", "Sex (Female)", "Race (Black)", "SES", "Sleep Problem", "Sedative", "Tranquil
uni_comp_mul = lapply(full_df_lm[c(8, 10, 29, 30)], function(x) summary(lm(D3TCOMP~x, data = full_df_lm)))
df_{comp_2} = list()
ind_2 = c(8, 10, 29, 30)
length_sp = c(10, 2, 5, 2)
for (i in 1:length(uni_comp_mul)){
  ind_i = ind_2[i]
  str = colnames(full_df_lm)[ind_i]
  resl = uni_comp_mul[[str]]$coefficients[2:(1+length_sp[i]), c(1,2,4)]
  df_comp_2 = rbind(df_comp_2, resl)
df_comp_2 = as.data.frame(df_comp_2) %>%
  unnest() %>%
  as.data.frame()
rownames(df_comp_2) = c("Some high School", "GED", " High School", "1-2 yr college", ">3 college", " 2-yr
df_comp = rbind(df_comp, df_comp_2) %>%
  janitor::clean_names()
df_comp = tibble::rownames_to_column(df_comp, "Variables")
df_comp = df_comp %>%
  mutate(sig = case_when(pr_t < 0.001 ~ "***",</pre>
                         pr_t < 0.01 ~ "**",
                         pr_t < 0.05 ~ "*",
                         pr_t < 0.1 ~ ".",
                         pr_t >= 0.1 ~ ""))
df_comp =
  df_comp %>%
  mutate(estimate = paste0(round(estimate, digits = 4), " (", round(std_error, digits = 3), ") ", sig)) %>
  select(-c(std_error, pr_t, sig))
\#knitr::kable(df\_comp, col.names = c("", "Estimate", "Std Error", "Pr(>|t|)"))
```

EM

```
uni_em = lapply(full_df_lm[c(5:7, 9, 11:28, 31)], function(x) summary(lm(D3TEM~x, data = full_df_lm)))
df em = list()
for (i in 1:length(uni_em)){
  ind_i = ind[i]
  str = colnames(full_df_lm)[ind_i]
  resl = uni_em[[str]]$coefficients[2, c(1,2,4)]
  df em = rbind(df em, resl)
df_em = as.data.frame(df_em) %>%
  unnest() %>%
  as.data.frame()
rownames(df_em) = c("Age", "Sex (Female)", "Race (Black)", "SES", "Sleep Problem", "Sedative", "Tranquiliz
uni_em_mul = lapply(full_df_lm[c(8, 10, 29, 30)], function(x) summary(lm(D3TEM~x, data = full_df_lm)))
df_em_2 = list()
for (i in 1:length(uni_em_mul)){
  ind_i = ind_2[i]
  str = colnames(full_df_lm)[ind_i]
  resl = uni_em_mul[[str]]$coefficients[2:(1+length_sp[i]), c(1,2,4)]
  df_em_2 = rbind(df_em_2, resl)
df_em_2 = as.data.frame(df_em_2) %>%
  unnest() %>%
  as.data.frame()
rownames(df_em_2) = c("Some high School", "GED", " High School", "1-2 yr college", ">3 college", " 2-yr co
df_em = rbind(df_em, df_em_2) %>%
  janitor::clean_names()
df_em = tibble::rownames_to_column(df_em, "Variables")
df_em = df_em \%
  mutate(sig = case\_when(pr_t < 0.001 \sim "***",
                         pr_t < 0.01 ~ "**",
                         pr_t < 0.05 ~ "*",
                         pr_t < 0.1 ~ ".",
                         pr t \ge 0.1 \sim "")
df_em =
  df em %>%
  mutate(estimate = paste0(round(estimate, digits = 4), " (", round(std_error, digits = 3), ") ", sig)) %>
  select(-c(std_error, pr_t, sig))
EF
uni_ef = lapply(full_df_lm[c(5:7, 9, 11:28, 31)], function(x) summary(lm(D3TEF~x, data = full_df_lm)))
df_ef = list()
for (i in 1:length(uni_ef)){
  ind_i = ind[i]
  str = colnames(full_df_lm)[ind_i]
  resl = uni_ef[[str]]$coefficients[2, c(1,2,4)]
  df_ef = rbind(df_ef, resl)
df_ef = as.data.frame(df_ef) %>%
  unnest() %>%
  as.data.frame()
rownames(df_ef) = c("Age", "Sex (Female)", "Race (Black)", "SES", "Sleep Problem", "Sedative", "Tranquiliz
```

```
uni_ef_mul = lapply(full_df_lm[c(8, 10, 29, 30)], function(x) summary(lm(D3TEF~x, data = full_df_lm)))
df ef 2 = list()
for (i in 1:length(uni_ef_mul)){
  ind_i = ind_2[i]
  str = colnames(full_df_lm)[ind_i]
 resl = uni_ef_mul[[str]]$coefficients[2:(1+length_sp[i]), c(1,2,4)]
  df_ef_2 = rbind(df_ef_2, resl)
df_ef_2 = as.data.frame(df_ef_2) \%
  unnest() %>%
  as.data.frame()
rownames(df ef 2) = c("Some high School", "GED", " High School", "1-2 yr college", ">3 college", " 2-yr co
df_ef = rbind(df_ef, df_ef_2) %>%
  janitor::clean_names()
df_ef = tibble::rownames_to_column(df_ef, "Variables")
df_ef = df_ef %>%
  mutate(sig = case\_when(pr_t < 0.001 \sim "***",
                         pr_t < 0.01 ~ "**",
                         pr_t < 0.05 ~ "*",
                         pr_t < 0.1 ~ ".",
                         pr_t >= 0.1 ~ ""))
df_ef =
  df_ef %>%
  mutate(estimate = paste0(round(estimate, digits = 4), " (", round(std_error, digits = 3), ") ", sig)) %>
  select(-c(std_error, pr_t, sig))
CTQ Total
uni_ctq = lapply(full_df_lm[c(5:7, 9, 11:28, 31)], function(x) summary(lm(ctq_total~x, data = full_df_lm))
df_ctq = list()
for (i in 1:length(uni_ctq)){
  ind i = ind[i]
  str = colnames(full_df_lm)[ind_i]
 resl = uni_ctq[[str]]$coefficients[2, c(1,2,4)]
  df_ctq = rbind(df_ctq, resl)
df_ctq = as.data.frame(df_ctq) %>%
  unnest() %>%
  as.data.frame()
rownames(df_ctq) = c("Age", "Sex (Female)", "Race (Black)", "SES", "Sleep Problem", "Sedative", "Tranquili
uni_ctq_mul = lapply(full_df_lm[c(8, 10, 29, 30)], function(x) summary(lm(ctq_total~x, data = full_df_lm))
df_ctq_2 = list()
for (i in 1:length(uni_ctq_mul)){
  ind_i = ind_2[i]
 str = colnames(full_df_lm)[ind_i]
 resl = uni_ctq_mul[[str]]$coefficients[2:(1+length_sp[i]), c(1,2,4)]
  df_ctq_2 = rbind(df_ctq_2, resl)
df_ctq_2 = as.data.frame(df_ctq_2) %>%
  unnest() %>%
  as.data.frame()
```

```
rownames(df_ctq_2) = c("Some high School", "GED", " High School", "1-2 yr college", ">3 college", " 2-yr c
df_ctq = rbind(df_ctq, df_ctq_2) %>%
 janitor::clean_names()
df_ctq = tibble::rownames_to_column(df_ctq, "Variables")
df_ctq = df_ctq %>%
  mutate(sig = case_when(pr_t < 0.001 ~ "***",</pre>
                         pr_t < 0.01 ~ "**",
                         pr_t < 0.05 ~ "*",
                         pr_t < 0.1 ~ ".",
                         pr_t >= 0.1 ~ ""))
df_ctq =
  df_ctq %>%
  mutate(estimate = paste0(round(estimate, digits = 4), " (", round(std_error, digits = 3), ") ", sig)) %>
  select(-c(std_error, pr_t, sig))
uni_full = cbind(df_comp, df_em[2], df_ef[2], df_ctq[2])
colnames(uni_full) = c("var", "comp", "em", "ef", "ctq")
knitr::kable(uni_full, col.names = c("", "Composite Scores", "Episodic Memory", "Executive Function", "CTQ
```

Table 2: Univariate Analysis

	Composite Scores	Episodic Memory	Executive Function	CTQ Total
Age	7e-04 (0.002)	-0.0094 (0.003) **	-0.0011 (0.002)	-0.1692 (0.044) ***
Sex (Female)	-0.0313 (0.039)	$0.1006 \ (0.063)$	-0.0169 (0.038)	3.6529 (0.942) ***
Race (Black)	0.2485 (0.052) ***	$0.1596 \; (0.085)$.	0.21 (0.051) ***	5.2514 (1.277) ***
SES	-0.0055 (0.001) ***	-0.002 (0.002)	-0.0043 (0.001) **	-0.1237 (0.034) ***
Sleep Problem	-0.0219 (0.062)	-0.0062 (0.099)	-0.0015 (0.06)	9.9653 (1.461) ***
Sedative	-0.3017 (0.118) *	$-0.3222 \ (0.189)$.	-0.2826 (0.114) *	6.8612 (2.858) *
Tranquilizer	$0.0431 \ (0.132)$	$0.3219 \ (0.212)$	$0.0229 \ (0.128)$	5.5053 (3.208).
Stimulant	0.1029 (0.191)	0.0067 (0.306)	$0.0383 \ (0.185)$	13.4287 (4.62) **
Painkiller	-0.1172 (0.096)	$-0.1468 \ (0.154)$	-0.0308 (0.093)	4.6841 (2.322) *
DepressMed	-0.0913 (0.181)	-0.2506 (0.291)	-0.098 (0.176)	9.6417 (4.394) *
Inhalant	$0.0751 \ (0.57)$	$-0.7062 \ (0.915)$	$-0.0306 \ (0.553)$	-3.3033 (13.861)
Marijuana	-0.0325 (0.086)	$0.1201\ (0.139)$	-0.0224 (0.084)	3.5634 (2.096).
Cocaine	0.2849 (0.181)	-0.1063 (0.291)	0.2779 (0.175)	$1.4168 \ (4.406)$
LDS	-0.1902 (0.403)	$-0.7345 \ (0.647)$	-0.5404 (0.391)	-4.8106 (9.806)
Heroin	$0.0751 \ (0.57)$	$-0.7062 \ (0.915)$	$-0.0306 \ (0.553)$	-3.3033 (13.861)
Autonomy	$-9e-04 \ (0.003)$	$7e-04 \ (0.005)$	$-5e-04 \ (0.003)$	-0.23 (0.069) ***
Environ Mastery	-0.004 (0.003)	-0.0022 (0.004)	-0.0057 (0.002) *	-0.5904 (0.059) ***
Personal Growth	-0.004 (0.003)	$9e-04 \ (0.005)$	-0.0023 (0.003)	-0.3999 (0.072) ***
Positive Relation	-0.0071 (0.003) *	-0.0011 (0.004)	-0.0069 (0.003) *	-0.5208 (0.066) ***
Purpose in Life	$-0.0051 \ (0.003)$.	$0.0019 \ (0.005)$	-0.0059 (0.003) *	-0.5611 (0.07) ***
Self-Acceptance	-0.0071 (0.002) **	-0.004 (0.004)	-0.0069 (0.002) **	-0.5495 (0.056) ***
MET	0 (0)	0 (0)	0 (0)	-1e-04(0)
Stroke (between)	-0.0955 (0.123)	$0.0536 \ (0.197)$	-0.4578 (0.118) ***	1.9919 (2.991)
Some high School	0.0217 (0.304)	$0.5239 \ (0.49)$	$-0.1243 \ (0.295)$	5.85(7.309)
GED	-0.0827 (0.339)	$0.5357 \ (0.547)$	$-0.2991 \ (0.329)$	$9.6944 \ (8.157)$
High School	-0.2029 (0.285)	$0.1628 \ (0.46)$	$-0.2313 \ (0.277)$	-4.5891 (6.862)
1-2 yr college	-0.192 (0.286)	$0.0984 \ (0.461)$	$-0.1721 \ (0.278)$	-4.3554 (6.878)
>3 college	$-0.1103 \ (0.297)$	$0.653 \ (0.479)$	-0.207 (0.288)	-7.7365 (7.144)
2-yr college	-0.2045 (0.29)	$0.0745 \ (0.468)$	$-0.2276 \ (0.282)$	-0.5397 (6.983)
4/5-yr college	$-0.3019 \ (0.285)$	$0.2386 \ (0.459)$	-0.3377 (0.277)	$-6.3851 \ (6.856)$
Some Graduate School	$-0.3579 \ (0.297)$	$0.3265 \ (0.479)$	$-0.4471 \ (0.288)$	-8.8176 (7.144)
Master's Degree	$-0.4149 \ (0.286)$	$0.1716 \ (0.462)$	$-0.3945 \ (0.278)$	-7.039 (6.893)
Doctoral Degree	-0.3572 (0.296)	$0.1312 \ (0.477)$	$-0.3568 \ (0.287)$	-7.05 (7.118)

	Composite Scores	Episodic Memory	Executive Function	CTQ Total
Former Smoker	0.0594 (0.044)	0.0763 (0.071)	0.0173 (0.043)	0.9602 (1.063)
Current Smoker	$0.0858\ (0.066)$	-0.0875 (0.107)	0.072(0.064)	7.2015 (1.598) ***
Former Moderate	0.1179(0.076)	$0.1197 \ (0.122)$	0.0861(0.074)	3.9385 (1.846) *
Drinker		, ,	, ,	, ,
Former Heavy Drinker	0.0092 (0.083)	0.073(0.132)	-0.0051 (0.08)	5.0019 (2.003) *
Current light Drinker	3e-04 (0.099)	0.2314(0.159)	-0.1164 (0.096)	-0.3079 (2.403)
Current Moderate	0.0504(0.062)	0.1983 (0.099) *	-0.0019 (0.06)	2.7727(1.496).
Drinker		, ,	` '	, ,
Current Heavy Drinker	-0.0017 (0.063)	0.0096(0.1)	-0.0084 (0.061)	2.602(1.52).
Divorced or equi	$0.0676 \ (0.066)$	-0.0436 (0.105)	$0.1128 \ (0.063)$.	0.2331(1.592)
Married	-0.0416 (0.097)	-0.0242 (0.156)	$0.0425\ (0.094)$	4.4002 (2.361) .

#kableExtra::kable_styling(latex_options = "scale_down")