LAPORAN UTS KECERDASAN BUATAN PART II

Disusun oleh:

Ananda Putri Rahmadani 21091397046

UNIVERSITAS NEGERI SURABAYA MANAJEMEN INFORMATIKA 2022

1. Buat kodingan

- a. Multi Neuron Batch Input
 - i. Input layer feature 10
 - ii. Per batch nya 6 input
 - iii. Hidden layer 1, 5 neuron
 - iv. Hidden layer 2, 3 neuron

• Kodingan

```
uts part 2_046_Ananda.py X
Nomer 1C_UTS_046_Ananda Putri R.py
                           [1.3, 0.1, 2.2, 2.6, 3.2, 3.4, 0.2, 2.4, 9.2, 7.4], [1.4, 9.5, 18.0, 20.5, 32.1, 60.12, 33.7, 67.1, 76.0, 50.5], [6.0, 3.4, 2.6, 7.8, 3.6, 3.8, 4.6, 4.8, 5.6, 5.8], [1.4, 0.3, 7.2, 5.0, 8.2, 6.1, 9.2, 9.4, 27.3, 0.4], [13.2, 17.3, 14.5, 10.5, 38.1, 12.6, 11.7, 3.23, 59.2, 82.4]]
ڪ
                     weights1 = [
                           [6.0, 4.8, 8.4, 2.5, 0.1, 3.5, 9.7, 4.5, 6.2, 15.5],
                           [7.4, 9.7, 4.10, 2.84, 3.52, 38.4, 45.2, 4.4, 5.2, 5.4], [3.3, 6.1, 2.3, 10.9, 31.6, 3.82, 4.26, 4.8, 56.6, 55.8], [5.8, 4.3, 4.2, 7.8, 0.2, 7.4, 3.5, 0.7, 40.3, 71.1], [5.1, 13.7, 30.6, 42.7, 95.1, 12.3, 29.0, 40.7, 28.1, 93.11]]
                    # inisialisasi jumlah weight 2, weight layer 2 = neuron layer 1 yaitu 5
# memasukkan jumlah weight sesuai dengan neuron layer 2 yaitu 3 neuron
weights2 = [
                           [10.3, 4.4, 2.9, 3.2, 11.2],
[5.0, 1.3, 4.2, 7.5, 9.9],
[0.1, 6.6, 3.0, 0.0, 3.7]]
                                                                                                                                                            Ln 38, Col 1 Spaces: 4 UTF-8 CRLF () Python 3.10.8 64-bit @ Go Live 尽
                               biases2 = [8.2, 4.2, 5.6]
                               layer1_outputs = np.dot(inputs, np.array(weights1).T) + biases1
                               layer2_outputs = np.dot(layer1_outputs, np.array(weights2).T) + biases2
 (2)
                               print(layer2 outputs)
```

• Penjelasan

4 #inisialisasi numpy 5 import numpy as np	Line ke 4 terdapat tanda # ini menunjukan komentar Line ke5 menginisialisasi numpy ke np untuk mempermudah dalam mengoprasionalkan kodingan
<pre># memasukan nilai variabel layer feature 10 dengan batch sejumlah 6 inputs = [</pre>	Pada line ke 9 variabel diinisialisasikan , lalu memasukan nilai input dengan jumlah 10 baris angka sesuai dengan yang ditentukan yakni feature layer 10 dan 6 kolom angka sesuai yang diminta yaitu batch = 6
# memasukan jumlah weight sesuai dengan jumlah neuron yaitu sejumlah 5 weights1 = [[6.0, 4.8, 8.4, 2.5, 0.1, 3.5, 9.7, 4.5, 6.2, 15.5], [7.4, 9.7, 4.10, 2.84, 3.52, 38.4, 45.2, 4.4, 5.2, 5.4], [3.3, 6.1, 2.3, 10.9, 31.6, 3.82, 4.26, 4.8, 56.6, 55.8], [5.8, 4.3, 4.2, 7.8, 0.2, 7.4, 3.5, 0.7, 40.3, 71.1], [5.1, 13.7, 30.6, 42.7, 95.1, 12.3, 29.0, 40.7, 28.1, 93.11]]	Line ke 19 memasukan nilai weight dengan 5 kolom , hal ini sesuai dengan neuron yang diperintahkan yaitu 5 dan 10 baris angka
30 # memasukkan jumlah weight sesual dengan neuron layer 2 yaitu 3 neuron 31 weights2 = [32	Line 31 memasukan nilai weight2 dengan jumlah weight sama dengan neuron yang ditentukan yakni 5
42 layer1_outputs = np.dot(inputs, np.array(weights1).T) + biases1	Pada line 42 terdapat rumus untuk menghitung layer 1 dengan weight lalu mentranspose lebih dulu
45 layer2_outputs = np.dot(layer1_outputs, np.array(weights2).T) + biases2	Line 45 terdapat rumus untuk menghitung dari hasil layer 1 dikalikan dengan weight transpose lalu dijumlahkan dengan biases 2
48 print(layer2_outputs)	Line 48 ini berfungsi untuk menampilkan hasil output dari kodingan

• Output

```
TERMINAL
                                                   JUPYTER
       Copyright (C) Microsoft Corporation. All rights reserved.
       Try the new cross-platform PowerShell https://aka.ms/pscore6
       PS D:\Ananda (semester 3)\kecerdasan buatan> & C:/Users/user/AppData/Local/Programs/Python/Python310/p
       [[ 36758.5658
                       32317.0597
                                    19947.1463 ]
          27542.382
                       29008.873
                                    10961.0326
(8)
        [275823.28296 271126.19558 120520.3529
         [ 32320.308
                       31232.2158 13631.249
          49247.283
                       48803.0156
                                    22385.3772
        [253128.0635 265354.8398 98603.9884 ]]
       PS D:\Ananda (semester 3)\kecerdasan buatan>
```

• Perhitungan Output

```
# menghitung layer1 dengan (inputs*weight1) dan biases1
layer1_outputs = np.dot(inputs, np.array(weights1).T) + biases1
```


Ketika layer 1sudah ditemukan dengan melakukan perkalian input dan transpose weight1 hasil np.dot ditambah dengan biases 1

403.19 223.96 2352.87 298.16 411.99 2130.465	558.264 921.414	1095.12 9156.5804 943.052	807.54 1292.84	1774.585 1578.394 15901.551 1905.058 2753.474 14781.2		+	4.7 2.8 1.0 9.6 3.1		228.66 2357.57 302.86 416.69	271.618 5145.31 561.064 924.214	1096.12 9157.5804 944.052 2012.744	966.37 7563.648 817.14 1302.44	1777.685 1581.494 15904.651 1908.158 2756.774 14784.315	
---	--------------------	---------------------------------	-------------------	--	--	---	---------------------	--	---------------------------------------	--	---	---	--	--

Menghitung hidden layer 2

```
43
44  # menghitung layer2 dengan hasil perhitungan pada layer1
45  layer2_outputs = np.dot(layer1_outputs, np.array(weights2).T) + biases2
46
```

Saat hasil dari layer 1 didapatkan lalu lanjut masuk ke penghitungan layer 2, mencari nilai np.dot layer 2 dengan cara hasil layer 1 dikali dengan weight transpose 2. Weights 2 di transpose untuk menyamakan ordo output hidden layer 1

Setelah didapatkan hasil np.dot layer 2 lalu ditambah dengan biases 2 dan hasil layer 2 didapatkan

