Solutions for Exam 1

1. (a) $sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$

(b)
$$sinh^{-1}(x) = \ln[x + \sqrt{x^2 + 1}] \ for \ \infty < x < \infty$$

- 2. $1 + \epsilon < e^{\epsilon} = 1 + \epsilon + \frac{\epsilon^2}{2!} + \cdots$, then $(1+\epsilon)^n 1 < e^{n\epsilon} 1 = \sum_{k=1}^{\infty} \frac{(n\epsilon)^k}{k!} = (n\epsilon) \sum_{k=0}^{\infty} \frac{(n\epsilon)^k}{(k+1)!} \le (n\epsilon) \sum_{k=0}^{\infty} \frac{(n\epsilon)^k}{2^k} = (n\epsilon) \frac{1}{1 n\epsilon/2} < \frac{0.01}{1 0.01/2} = \frac{0.01}{0.995} < 0.01006$
- 3. Let $L = [l_{ij}], M = [m_{ij}],$ with $l_{ii} = 1, m_{ii} = 1, l_{ij} = 0, m_{ij} = 0$ for i < j, denote $LM = [a_{ij}],$ then

(a)

$$a_{ii} = \sum_{k=1}^{n} l_{ik} m_{ki} = l_{ii} m_{ii} + \sum_{k=1}^{i-1} l_{ik} m_{ki} + \sum_{k=i+1}^{n} l_{ik} m_{ki} = 1 + \sum_{k=1}^{i-1} l_{ik} \times 0 + \sum_{k=i+1}^{n} 0 \times m_{ki} = 1$$

$$a_{ij} = \sum_{k=1}^{n} l_{ik} m_{kj} = \sum_{k=1}^{j-1} l_{ik} m_{kj} + \sum_{k=j}^{n} l_{ik} m_{kj} = \sum_{k=1}^{j-1} l_{ik} \times 0 + \sum_{k=j}^{n} 0 \times m_{kj} = 0 \quad \forall \ i < j$$

(b)

$$L = \prod_{j=1}^{n-1} \prod_{i=j+1}^{n} [I + l_{ij} \mathbf{e}_i \mathbf{e}_j^t]$$

Then

$$L^{-1} = \prod_{j=1}^{n-1} \prod_{i=0}^{j-1} [I - l_{n-i,n-j} \mathbf{e}_{n-i} \mathbf{e}_{n-j}^t]$$

- **4.** Since A is nonsingular, suppose $A = L_1U_1 = L_2U_2$, where L_1, L_2 are unit lower- Δ , and U_1, U_2 are upper- Δ with nonzero diagonal elements. then $L_1^{-1}L_2 = U_1U_2^{-1}$. $L_1^{-1}L_2$ is unit- Δ and $U_1U_2^{-1}$ is upper- Δ by (3), which implies that $L_1^{-1}L_2 = U_1U_2^{-1} = I$. Thus, $L_1 = L_2$ and $U_1 = U_2$.
- 5. ||A|| < 1, $(I+A)(I+A+A^2+\cdots) = I$ implies $||(I+A)^{-1}|| = ||limit_{n\to\infty} \sum_{k=0}^n A^k||$, then $||(I+A)^{-1}|| \le limit_{n\to\infty} \sum_{k=0}^n ||A||^k \le limit_{n\to\infty} \frac{1-||A||^{n+1}}{1-||A||}$. Therefore, $||(I+A)^{-1}|| \le (1-||A||)^{-1}$.

- **6.** (a) Show that $A\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$. Suppose that $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution \mathbf{y} , then it has a solution \mathbf{x} with $\|\mathbf{x}\|_{\infty} = 1$, w.l.o.g., let $x_k = 1$ such that $|x_j| \leq |x_k| \ \forall \ 1 \leq j \leq n$, from $\sum_{j=1, j \neq k}^n a_{kj} x_j = -a_{kk} x_k$, we have $|a_{kk}| \leq \sum_{j=1, j \neq k}^n |a_{kj}|$ which contradicts the assumption that A is diagonally dominant.
 - (b) for i = 1, n 1 $\alpha \leftarrow t_{i+1,i}/t_{i,i};$ $t_{i+1,i} \leftarrow \alpha; \quad (l_{i+1,i})$ $t_{i+1,i+1} \leftarrow t_{i+1,i+1} \alpha * t_{i,i+1}$ endfor
 - (c) 3(n-1) operations
- 7.

$$||A||_{1} = max_{||\mathbf{x}||_{1}=1} \{ ||A\mathbf{x}||_{1} \}$$

$$= max_{||\mathbf{x}||_{1}=1} \{ \sum_{i=1}^{m} |\sum_{j=1}^{n} a_{ij}x_{j} | \}$$

$$\leq max_{||\mathbf{x}||_{1}=1} \{ \sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}| |x_{j}| \}$$

$$\leq [\sum_{i=1}^{m} |a_{ik}|] \{ \sum_{j=1}^{n} |x_{j}| \} \text{ for some } k$$

$$= [\sum_{i=1}^{m} |a_{ik}|]$$

where $\sum_{i=1}^{m} |a_{ik}| = \max_{1 \le i \le n} \{\sum_{i=1}^{m} |a_{ij}|\}.$

Then

$$||A||_1 \le \max_{1 \le j \le n} \{ \sum_{i=1}^m |a_{ij}| \}$$

Furthermore, choose $\mathbf{x} = \mathbf{e}_k$, then the equality holds.

8. Since \mathbf{x}, \mathbf{y} are unit vectors, that is, $\langle \mathbf{x}, \mathbf{x} \rangle = 1$ and and $\langle \mathbf{y}, \mathbf{y} \rangle = 1$. Let $\mathbf{v} = \mathbf{x} - \mathbf{y}$, and define $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$. Then, $H = I - 2\mathbf{u}\mathbf{u}^t$ satisfies $H\mathbf{x} = \mathbf{y}$.

9. Let

$$A = \begin{bmatrix} 2 & -1 & & & & & \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{bmatrix} \quad and \quad J = \begin{bmatrix} 0 & 1 & & & & \\ 0 & 0 & 1 & & & \\ & 0 & 0 & 1 & & \\ & & & \ddots & \ddots & \ddots & \\ & & & 0 & 0 & 1 \\ & & & & 0 & 0 \end{bmatrix}$$

For Jacobi iteration method,

$$A = C - M = 2I - (J^t + J)$$

and

$$B_{Jacobi} = (2I)^{-1}(J^t + J) = \frac{1}{2}(J^t + J)$$

For Gauss-Seidel iteration method,

$$A = (D - L) - M = (2I - J^{t}) - J = 2(I - \frac{J^{t}}{2}) - J$$

and

$$B_{GS} = (2I - J^t)^{-1}J = \frac{1}{2} \left[I + \sum_{k=1}^{n-1} \frac{(J^t)^k}{2^k} \right] J$$

$$B_{Jacobi} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ & \frac{1}{2} & 0 & \frac{1}{2} \\ & & & & \\ & & \ddots & \ddots & \ddots \\ & & & \frac{1}{2} & 0 & \frac{1}{2} \\ & & & & \frac{1}{2} & 0 \end{bmatrix}, \quad B_{GS} = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{4} & \frac{1}{2} \\ & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} \\ & & & & \\ \vdots & & \ddots & \ddots & \ddots \\ & & & & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} \\ & & & & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$