[03-60-231] Assignment 2

Stephen Nusko 103693282

October 9, 2013

1 Question 2.1

1.1 Part c

Evaluate $(\forall x)(\exists y)(P(x) \Rightarrow Q(x,y))$

- 1. Let x = 1. We obtain $(\exists y)(P(1) \Rightarrow Q(1, y))$
 - (a) Let y = 2. Then $P(1) \equiv T$ and $Q(1,2) \equiv T$
 - (b) Therefore $(\exists y)(P(1) \Rightarrow Q(1,y))$ is evaluated to true.
- 2. Let x = 2. We obtain $(\exists y)(P(2) \Rightarrow Q(2, y)$
 - (a) Since $P(2) \equiv F$
 - (b) $\therefore (\exists y)(P(2) \Rightarrow Q(2,y))$ is evaluated to true.
- 3. $(\forall x)(\exists y)(P(x) \Rightarrow Q(x,y))$ is evaluated to true.

1.2 Part i

Evaluate $(\exists x)(\exists y)(Q(x, a) \Rightarrow Q(b, y)$

- 1. Let x = 1. We obtain $(\exists y)(Q(1, a) \Rightarrow Q(b, y)$
 - (a) Let y = 2. We obtain $(Q(1, a) \Rightarrow Q(b, 2)$

i. Since
$$Q(1,a) \equiv Q(1,2) \equiv T \equiv Q(b,2) \equiv Q(1,2)$$

- ii. $Q(1,2) \Rightarrow Q(1,2)$ is evaluated to true.
- (b) $\therefore (\exists y)(Q(1,a) \Rightarrow Q(b,y))$ is evaluated to true.
- 2. $\therefore (\exists x)(\exists y)(Q(x,a) \Rightarrow Q(b,y))$ is evaluated to true.

2 Question 2.2

2.1 Part c

Prove $((\forall x)\alpha(x) \lor (\forall x)\beta(x)) \Rightarrow (\forall x)(\alpha(x) \lor \beta(x))$ Solution: (indirect proof)

1.
$$\neg((\forall x)(\alpha(x) \vee \beta(x))$$

2. $(\exists x) \neg (\alpha(x) \lor \beta(x))$

3. $(\exists x)(\neg \alpha(x) \land \neg \beta(x))$

Hypothesis

1, FE7

2, E17

4. $\neg \alpha(c) \land \neg \beta(c)$	3, EI, c is a constant
5. $\neg \alpha(c)$	4, I2
6. $\neg \beta(c) \wedge \neg \alpha(c)$	4, E9
7. $\neg \beta(c)$	6, I2
8. $(\exists x) \neg \alpha(x)$	5, EQ
9. $(\exists x) \neg \beta(x)$	7, EQ
10. $(\exists x) \neg \alpha(x) \land (\exists x) \neg \beta(x)$	8, 9, I6
11. $\neg(\forall x)\alpha(x) \wedge (\exists x)\neg\beta(x)$	10, FE7
12. $\neg(\forall x)\alpha(x) \land \neg(\forall x)\beta(x)$	11, FE7
13. $\neg((\forall x)\alpha(x) \lor (\forall x)\beta(x))$	12, E17

2.2 Part d

Prove $(\forall x)(\alpha(x) \Rightarrow \beta(x)) \Rightarrow ((\forall x) \neg \beta(x) \Rightarrow (\forall x) \neg \alpha(x))$ Solution: (indirect proof)

1. $\neg((\forall x)\neg\beta(x) \Rightarrow (\forall x)\neg\alpha(x))$	Hypothesis
2. $\neg(\neg((\forall x)\neg\beta(x))\lor(\forall x)\neg\alpha(x))$	1, E18
3. $\neg\neg(\forall x)\neg\beta(x)\wedge\neg(\forall x)\neg\alpha(x)$)	$2,\mathrm{E}17$
4. $(\forall x) \neg \beta(x) \land \neg(\forall x) \neg \alpha(x)$	3, E15
5. $(\forall x) \neg \beta(x)$	4, I2
6. $\neg(\forall x)\neg\alpha(x)\wedge(\forall x)\neg\beta(x)$	4, E9
7. $\neg(\forall x)\neg\alpha(x)$	7, I2
8. $(\exists x) \neg \neg \alpha(x)$	8, FE7
9. $\neg\neg\alpha(c)$	8, EI
10. $\neg \beta(c)$	5, UI
11. $\neg\neg\alpha(c) \land \neg\beta(c)$	9, 10, I6
12. $(\exists x)(\neg\neg\alpha(x)\wedge\neg\beta(x))$	11, EQ
13. $(\exists x) \neg (\neg \alpha(x) \lor \beta(x))$	12, E17
14. $\neg((\forall x)(\neg\alpha(x)\vee\beta(x)))$	13, FE7
15. $\neg((\forall x)(\alpha(x) \Rightarrow \beta(x)))$	14, E18
$ \therefore \neg((\forall x) \neg \beta(x) \Rightarrow (\forall x) \neg \alpha(x)) \Rightarrow \neg((\forall x)(\alpha(x) \Rightarrow \beta(x))) $ $ \therefore (\forall x)(\alpha(x) \Rightarrow \beta(x)) \Rightarrow (\forall x) \neg \beta(x) \Rightarrow (\forall x) \neg \alpha(x) $	

3 Question 2.3

3.1 Part d

- P1: $(\exists x)(P(x) \land (\forall y)((R(y) \land S(x,y)) \Rightarrow Z(x,y))$
- P2: $(\forall x)(P(x) \Rightarrow (\exists y)(R(y) \land \neg U(x,y) \land T(x,y))$
- P3: $(\forall x)(\forall y)((P(x) \land R(y) \land T(x,y)) \Rightarrow S(x,y)$
 - C: $(\exists x)(\exists y)(P(x) \land R(x) \land Z(x,y) \land \neg U(x,y))$

Prove: $((P1 \land P2 \land P3) \Rightarrow C)$

Solution: (direct proof)

1. $(\exists x)(P(x) \land (\forall y)((R(y) \land S(x,y)) \Rightarrow Z(x,y)))$	Hypothesis from P1
2. $(\forall x)(P(x) \Rightarrow (\exists y)(R(y) \land \neg U(x,y) \land T(x,y)))$	Hypothesis from P2
3. $(\forall x)(\forall y)((P(x) \land R(y) \land T(x,y)) \Rightarrow S(x,y))$	Hypothesis from P3
4. $P(c) \wedge (\forall y)((R(y) \wedge S(c,y)) \Rightarrow Z(c,y)$	1, EI, c is a constant
5. $P(c)$	4, I2
6. $(\exists y)(R(y) \land \neg U(c,y) \land T(c,y)$	5, 2, I3
7. $R(k) \wedge \neg U(c,k) \wedge T(c,k)$	6, EI, k is a constant
8. $R(k) \wedge \neg U(c,k)$	7, I2
9. $R(k)$	8, I2
10. $\neg U(c,k) \land R(k)$	9, E9
11. $\neg U(c,k)$	10, I2
12. $T(c,k) \wedge (R(k) \wedge \neg U(c,k))$	7, E9
13. $T(c,k)$	12, I2
14. $P(c) \wedge R(k)$	5, 9, I6
15. $P(c) \wedge R(k) \wedge T(c,k)$	14, 13, I6
16. $S(c, k)$	15, 3, I3
17. $(\forall y)((R(y) \land S(c, y) \Rightarrow Z(c, y)) \land P(c)$	4, E9
18. $(\forall y)((R(y) \land S(c, y) \Rightarrow Z(c, y))$	17, I2
19. $(R(k) \wedge S(x,k)) \Rightarrow Z(c,k)$	18, UI
20. $R(k) \wedge S(c, y)$	9, 16, I6
21. $Z(c,k)$	20, 19, I3
22. $P(c) \wedge R(k) \wedge Z(c,k)$	14, 21, I6
23. $P(c) \wedge R(k) \wedge Z(c,k) \wedge \neg U(c,k)$	22, 11, I6
24. $(\exists y)(P(c) \land R(y) \land Z(c,y) \land \neg U(c,y)$	23, EQ
25. $(\exists x)(\exists y)(P(x) \land R(y) \land Z(x,y) \land \neg U(x,y)$	24, EQ
$\therefore ((P1 \land P2 \land P3) \Rightarrow C)$	

20, UI

4 Question 2.4

4.1 Part f

The universe of discourse are poems.

Let I(x) denote an interesting poem.

Let M(x) denote a modern poem.

Let F(x) denote a poem written by me.

Let S(x) denote a poem written about a soap bubble.

Let R(x) denote a poem that is popular with people of real taste.

Let A(x) denote a poem that is affected.

P1:
$$\neg(\exists x)(I(x) \land \neg R(x))$$

P2: $\neg(\exists x)(M(x) \land \neg B(x))$
P3: $(\forall x)(F(x) \Rightarrow S(x))$
P4: $\neg(\exists x)(B(x) \land R(x))$
P5: $\neg(\exists x)(\neg M(x) \land S(x))$
C: $(\forall x)(F(x) \Rightarrow \neg I(x))$

Prove $((P1 \land P2 \land P3 \land P4 \land P5) \Rightarrow C)$

Solution: (direct proof)

21. $M(x) \Rightarrow B(x)$

1. $\neg(\exists x)(I(x) \land \neg R(x))$	Hypothesis from P1
2. $\neg(\exists x)(M(x) \land \neg B(x))$	Hypothesis from P2
3. $(\forall x)(F(x) \Rightarrow S(x))$	Hypothesis from P3
4. $\neg(\exists x)(B(x) \land R(x))$	Hypothesis from P4
5. $\neg(\exists x)(\neg M(x) \land S(x))$	Hypothesis from P5
6. $(\forall x) \neg (I(x) \land \neg R(x))$	1, FE8
7. $(\forall x)(\neg I(x) \lor \neg \neg R(x))$	6, E16
8. $(\forall x)(\neg \neg R(x) \lor \neg I(x))$	7, E10
9. $(\forall x)(\neg R(x) \Rightarrow \neg I(x))$	8, E18
10. $\neg R(x) \Rightarrow \neg I(x)$	$9, \mathrm{UI}$
11. $(\forall x) \neg (\neg M(x) \land S(x))$	5, FE8
12. $(\forall x)(\neg \neg M(x) \lor \neg S(x))$	11, E16
13. $(\forall x)(\neg S(x) \lor \neg \neg M(x))$	12, E10
14. $(\forall x)(\neg S(x) \lor M(x))$	$13,\mathrm{E}15$
15. $(\forall x)(S(x) \Rightarrow M(x))$	14, E18
16. $S(x) \Rightarrow M(x)$	15, UI
17. $(\forall x) \neg (M(x) \land \neg B(x))$	2, FE8
18. $(\forall x)(\neg M(x) \lor \neg \neg B(x))$	17, E16
19. $(\forall x)(\neg M(x) \lor B(x))$	18, E15
20. $(\forall x)(M(x) \Rightarrow B(x))$	19, E18

22. $(\forall x) \neg (B(x) \land R(x))$	4, FE8
23. $(\forall x)(\neg B(x) \lor \neg R(x))$	22, E16
24. $(\forall x)(B(x) \Rightarrow \neg R(x))$	23, E18
25. $B(x) \Rightarrow \neg R(x)$	24, UI
26. $S(x) \Rightarrow B(x)$	16, 21, I5
27. $S(x) \Rightarrow \neg R(x)$	26, 25, I5
28. $S(x) \Rightarrow \neg I(x)$	27, 10, I5
29. $F(x) \Rightarrow \neg I(x)$	3, 28, I5
$\therefore ((P1 \land P2 \land P3 \land P4 \land P5) \Rightarrow C)$	