

DTG TILE COPY

AD-A224

Institute Report No. 435

Ninety Day Subchronic Oral Toxicity Study of Pyridostigmine Bromide in Rats

> (Volume 1 of 2) (Part 1)

Earl W. Morgan, DVM, MAJ, VC Gary M. Zaucha, DVM, CPT, VC Paul P. Waring, BS Yvonne LeTellier, BS Joel B. Seewald, BS, SPC Charles B. Clifford, PhD, DVM, MAJ, VC Don W. Korte, Jr., PhD, LTC, MSC

> MAMMALIAN TOXICOLOGY BRANCH DIVISION OF TOXICOLOGY

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO CALIFORNIA 94129

DESTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

07 30 098 Ninety Day Subchronic Oral Toxicity Study of Pyridostigmine Bromide in Rats (Toxicology Series 185)-Morgan et al.

This document has been approved for public release and sale; its distribution is unlimited.

Destroy this report when it is no longer needed. Do not return to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

This research was conducted in compliance with the "Guide for the Care and Use of Laboratory Animals," NIH Publication No. 85-23, as prepared by the Institute of Laboratory Animal Resources, National Research Council.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

Donald G. Corby

COL, MC Commanding

(date)

SECURITY CLASSIFICATION OF THIS PAGE								
REPORT I	OCUMENTATION				orm Approved IMB No. 0704-0188			
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE						
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT				
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE		FOR PUBLIC		E;			
4. PERFORMING ORGANIZATION REPORT NUMBE	R/S)		ION IS UNI. ORGANIZATION RE		ER(S)			
	11/2/		S. S. Warrion No.	4				
Institute Report No.: 435 6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGAN	IZATION				
Mammalian Toxicology	(If applicable)		edical Mat					
Division of Toxicology	SGRD-ULE-T	_	nt Activit					
6c. ADDRESS (City, State, and ZIP Code)	_		y, State, and ZIP C	ode)				
Letterman Army Institute of		Fort Detr		0100-	5000			
Presidio of San Francisco,	CA 94129-6800	rrederick	, Maryland	21701-	5009			
8a. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9 PROCUREMENT	T INSTRUMENT IDE	NTIFICATION	NUMBER			
ORGANIZATION US Army Medical		JJ. CONCINEN		. ,				
Research & Development Comm								
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBER	فطنت بدرج بجمعي برواي بدروي				
Fort Detrick	:012	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.			
Frederick, Maryland 21701-5	1017	63002A	D995	BD	176TLHO			
11. TITLE (Include Security Classification)		0002A	2220		1101740			
(U) Ninety Day Subchronic (ral Toxicity :	Study of P	yridostiam	ine Bro	mide in			
Rats	· · · · · · · · · · · · · · · · · · ·							
12. PERSONAL AUTHOR(S) EW Morgan,		Waring, Y	LeTellier	, JB Se	ewald, CB			
Clifford, and DW Korte, Jr.		-		O	CT COUNT			
13a. TYPE OF REPORT 13b. TIME C Institute FROM 21	OVERED OCT861012MAR87	14. DATE OF REPO May 19	RT (Year, Month, 90	• •	AGE COUNT 550			
16. SUPPLEMENTARY NOTATION	3010,000,0121111,07	1103 13						
Toxicology Series No. 185								
17. COSATI CODES	18. SUBJECT TERMS (C							
FIELD GROUP SUB-GROUP	Subchronic Sprague-Da							
	Cholineste	-	THE CATCHOT	cotel	ase,			
(9. ABSTRACT (Continue on reverse if necessary	and identify by block nu	ımber)						
The 90-day subchronic	oral toxicity	of pyrido	stigmine b	romide	was			
evaluated in male and fema.	Le Sprague-Daw	ley rats.	Pyridosti	gmine w	as			
administered in the diet at	dose levels	or 0, 1, 1	0, 30, 60,	and 90	mg/kg/day			
for 90 days. The addition related decreases in plasma	or pyridostig	mine to th	e alet res	urted i	n aose-			
acetylcholinesterase activity	ity ranging fr	oe and ery	onrocyte	m 10º +	0 052			
respectively. Toxic signs	associated wit	th the dec	rease in o	m 100 t	terase			
activity included muscaring	ic (perianal,	perioral.	and period	ular st	ains or			
material, diarrhea, and increased salivation) and nicotinic (hypertonia and								
tremors) effects. Other s:	igns observed	with incre	ased incid	lence am	long			
pyridostigmine-treated anim	mals included	irritabili	ty, aggres	sion, i				
startle reflex, inactivity,	jumping, hyp	eractivity	, and chew	ing. T	he addition			
or pyridostigmine to the di	of pyridostigmine to the diet at the 60 and 90 mg/kg/day dose levels resulted							
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT SI	ECURITY CLASSIFIC	ATION				
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS								
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE	(Include Area Code	1				
DONALD G. CORBY, COL, MC		(415) 56			SGRD-UIZ			
DD Form 1472 IIIN 96	Decuious aditions are	ahealata	CECLIBITY	CLASSISICATI	ION OF THIS PAGE			

19 (cont.) in transient reduction in food and water consumption, and correspondingly reduced weight gains for the first two weeks of the study period. Blood samples taken at necropsy for hematological and serum chemistry analyses exhibited no significant (p \leq 0.05) abnormalities that could be attributed to pyridostigmine dosing, and no morphologic signs of pyridostigmine-induced toxicity were detected during necropsy or subsequent microscopic examination of the tissues. These findings indicate that pyridostigmine bromide, when administered for 90 days to rats at doses that produce up to 75% inhibition of cholinesterase activity, produces little subchronic toxicity other than that attributable to cholinesterase inhibition.

(Steen)

ABSTRACT

The 90-day subchronic oral toxicity of pyridostigmine bromide was evaluated in male and female Sprague-Dawley rats. Pyridostigmine was administered in the diet at dose levels of 0, 1, 10, 30, 60, and 90 mg/kg/day for 90 days. The addition of pyridostigmine to the diet resulted in dose-related decreases in plasma cholinesterase and erythrocyte acetylcholinesterase activity ranging from 5% to 76% and from 18% to 95%, respectively. Toxic signs associated with the decrease in cholinesterase activity included muscarinic (perianal, perioral, and periocular stains or material, diarrhea, and increased salivation) and nicotinic (hypertonia and tremors) effects. Other signs observed with increased incidence among pyridostigmine-treated animals included irritability, aggression, increased startle reflex, inactivity, jumping, hyperactivity, and chewing. The addition of pyridostigmine to the diet at the 60 and 90 mg/kg/day dose levels resulted in transient reduction in food and water consumption, and correspondingly reduced weight gains for the first two weeks of the study period. samples taken at necropsy for hematological and serum chemistry analyses exhibited no significant (p \leq 0.05) abnormalities that could be attributed to pyridostigmine dosing, and no morphologic signs of pyridostigmine-induced toxicity were detected during necropsy or subsequent microscopic examination of the tissues. These findings indicate that pyridostigmine bromide, when administered for 90 days to rats at doses that produce up to 75% inhibition of cholinesterase activity, produces little subchronic toxicity other than that attributable to cholinesterase inhibition.

PREFACE

TYPE REPORT: 90-Day Subchronic Oral Toxicity GLP Study Report

TESTING FACILITY:

U.S. Army Medical Research and Development Command Letterman Army Institute of Research Presidio of San Francisco, CA 94129-6800

SPONSOR:

U.S. Army Medical Research and Development Command U.S. Army Medical Materiel Development Activity Fort Detrick, MD 21701-5009

PROJECT/WORK UNIT/APC: Pyridostigmine Projects/993/LLHO

GLP STUDY NUMBER: 86005

STUDY DIRECTOR: LTC Don W. Korte Jr., PhD, MSC

Diplomate, American Board of Toxicology

PRINCIPAL INVESTIGATOR:

MAJ Earl W. Morgan, DVM, VC Diplomate, American College of Veterinary Preventive Medicine and American Board of Toxicology

CO-PRINCIPAL INVESTIGATORS:

Yvonne LeTellier, BS

SPC Joel B. Seewald, BS

Paul P. Waring, BS

PATHOLOGISTS: Col Robert L. Morrissey, DVM, VC, USAR Diplomate, ACVP

MAJ Charles L. Clifford, DVM, PhD, VC Diplomate, ACVP

REPORT AND DATA MANAGEMENT:

A copy of the final report, study protocol, retired SOPs, raw data, analytical, stability, and purity data of the test compound, and an aliquot of the test compound will be retained in the LAIR Archives.

TEST SUBSTANCE: Pyridostigmine bromide

INCLUSIVE STUDY DATES: 21 Oct 86 - 12 Mar 87

OBJECTIVE: The objective of this study was to determine the 90-day subchronic oral toxicity of pyridostigmine bromide in male and female Sprague-Dawley rats.

ACKNOWLEDGMENTS

SPC Theresa L. Polk, SGT Tammie Heineman, SPC Dean K. Magnuson, BS, SPC Scott L. Schwebe, Richard Katona, Gregory A. Rothhammer, Richard A. Spieler, Charlotte L. Gomez, and Obie Goodrich, Jr. provided research assistance and animal care; SPC Paul B. Simboli, BS, and SPC John R. G. Ryabik, BS, provided chemical preparation and analysis.

SIGNATURES OF PRINCIPAL SCIENTISTS INVOLVED IN THE STUDY

We, the undersigned, declare that GLP Study 86005 was performed under our supervision, according to the procedures described herein, and that this report is an accurate record of the results obtained.

DON W. KORTE, JR., PhD/DATE

LTC, MSC

Study Director

Co-Principal Investigator

EARL W. MORGAN,

Principal Investigator

Co-Author

YVONNE LETELLIER, BS/DATE

DAC

Co-Principal Investigator

SUELLEN FERRARIS, PhD/DATE

Analytical Chemist

Talk Sur JOEL B. SEEWALD, BS/DATE

Co-Principal Investigator

MAJ, VC

Pathologist

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129-6800

SGRD-ULX-QA

17 April 1990

MEMORANDUM FOR RECORD

SUBJECT: GLP Compliance for GLP Study 86005

1. This is to certify that in relation to LAIR GLP Study 86005 the following inspections were made:

21 August 1986	- Protocol Review
11 March 1987	- Terminal Sacrifice, Females
11 March 1985	- Blood Chemistry
18 March 1987	- Micronucleus Test
14 April 1987	- Diet Preparation
14 April 1987	- Weigh Rats/Feeders, Observations
Ø5 May 1987	- Observations & Interim Sacrifice, Males
Ø2 June 1987	- Final Sacrifice, Males
Ø2 June 1987	- Final Observations, Weights

2. The institute report entitled "Ninety Day Subchronic Oral Toxicity Study of Pyridostigmine Bromide in Rats," Toxicology Series 185, was audited on 12 April 1990.

CAROLYN M. LEWIS

Diplomate, American Board of

Toxicology

Quality Assurance Auditor

TABLE OF CONTENTS

Abstracti
Prefaceiii
Acknowledgmentsiv
Signatures of Principal Scientists
Report of Quality Assurance Unitvi
Table of Contentsvii
INTRODUCTION
Objective of Study
MATERIALS
Test Substance
METHODS
Group Assignment/Acclimation
RESULTS
Food and Water Consumption
DISCUSSION33
CONCLUSION

TABLE OF CONTENTS (cont.)

REFERENCES
APPENDICES
Appendix A. Chemical Data
Determinations
OFFICIAL DISTRIBUTION LIST550

Ninety-Day Subchronic Oral Toxicity Study of Pyridostigmine Bromide in Rats -- Morgan et al.

INTRODUCTION

Soman, the primary nerve agent utilized by threat forces, is refractory to the standard antidotal therapy, atropine and pralidoxime (2-PAM) chloride, currently fielded by the U.S. Army. Consequently, the U.S. Army Medical Research and Development Command (USAMRDC) has proposed a treatment regimen incorporating prophylaxis with a reversible cholinesterase inhibitor and, following nerve agent exposure, antidotal therapy with an oxime and an anticholinergic agent. The rationale for this approach is that the pretreatment will protect an adequate percentage (approximately 25%) of a soldier's cholinesterase from inhibition by a nerve agent without affecting his battlefield performance. Exposure to a nerve agent would irreversibly inhibit only the remaining cholinesterase. Antidotal therapy with atropine, an anticholinergic agent, and pralidoxime, an oxime, would accomplish two goals: the oxime would reverse the inhibition induced by the reversible cholinesterase inhibitor prophylaxis, and the atropine will attenuate the excessive muscarinic response associated with cholinesterase inhibition. The immediate goal of the USAMRDC is to field a reversible cholinesterase inhibitor as the pretreatment component of a therapeutic regimen that would include antidotal therapy with 2-PAM chloride and atropine. A regimen incorporating pyridostigmine as a prophylactic agent, combined with standard atropine/2-PAM chloride therapy, has proven extremely effective in reducing mortality of Rhesus monkeys to multilethal concentrations of soman (1).

Pyridostigmine is the drug of choice for the treatment of myasthenia gravis because of its relative lack of untoward effects in comparison with other anticholinesterases (2). This relative lack of climical toxicity was reflected in animal studies conducted for Hoffman-La Roche by Pharmacology Research, Inc. The oral LD50 for pyridostigmine in rats was calculated as 87 mg/kg and was associated with signs of cholinergic and neuromuscular toxicity (3). Pyridostigmine was also fed to rats for 21 weeks, mixed in the feed at a maximum concentration of 0.064%, without producing significant toxicity or histological changes (4). These studies suggest that the only toxicological action of pyridostigmine is on cholinesterase activity, and that death would occur acutely before morphological alterations could be observed. The carbamate, pyridostigmine bromide, was selected as a candidate reversible anticholinesterase because

it has been shown by Kluwe et al. (1) to be effective as the pretreatment component of a combined treatment regimen, and has been approved by the FDA for chronic treatment of myasthenia gravis.

Objective of Study

The objective of this study was to determine the 90-day subchronic toxicity of pyridostigmine bromide in male and female Sprague-Dawley rats.

MATERIALS

Test Substance

Chemical name: Pyridostigmine bromide

Chemical Abstracts Registry Number: 101-26-8

Lot Number: 590034

LAIR Code Number: TW71A

WRAIR Code Number: WR-250710AF

Chemical Structure:

$$\begin{array}{c} CH_3 \\ N^{+} \\ \hline \\ O \\ C \\ CH_3 \\ CH_3 \\ \end{array}$$

Molecular Formula: C9H13BrN2O2

Other test substance information is presented in Appendix A.

<u>Vehicle</u>

The test compound was mixed into the feed (see ${\tt Husbandry}$).

<u>Animal Data</u>

One hundred four male and 104 female albino Sprague-Dawley rats (Charles River Laboratories, Inc., Portage, MI) were used in this study. Tail tattoos were used to identify each animal individually. Four males and 4 females were used for necropsy quality controls. Ten males and 10 females were used as baseline controls. The body weights on receipt (males, 21 Oct 1986; females, 25 Nov 1986) ranged from 91 g to 151 g. Additional animal data are presented in Appendix B.

Husbandry

The animals assigned to this study were housed individually in clear polycarbonate shoeboxes in drawer rack cages. Alpha-dri® (Shepherd Specialty Papers, Kalamazoo, MI), a cellulose fiber, was used as bedding. The shoeboxes and bedding were changed twice weekly. The diet, fed ad libitum, consisted of Certified Purina Rodent Chow® 5002 Meal Form (Ralston Purina, St. Louis, MO). Water was provided by 16-ounce water bottles with stoppers and sipper tubes. The temperature range maintained throughout this study was 20.0°C - 26.7°C with one brief decrease to 13.3°C (22 Feb 87), and a relative humidity of 24-72%. Data collected on 22 February 1987 was unaffected by the transient temperature decrease. The photoperiod was 12 hours of light daily with a 1/2-hour dawn phase-in and a 1/2-hour dusk phaseout.

METHODS

This study was performed in accordance with LAIR SOP OP-STX-74, "Subchronic Oral Toxicity Testing in Rodents," (5) as presented in Appendix C, and FDA guidelines (6). Appendix D is a complete historical listing of study events.

Group Assignment/Acclimation

The animals were acclimated for 14 or 15 days (males and females, respectively) from receipt to the onset of dosing. During the acclimation period, the animals were observed daily for signs of illness. Food and water consumption were measured during the second week of quarantine.

Male animals were assigned to treatment groups, each consisting of 15 male and 15 female study animals, and a baseline group consisting of 10 males and 10 females, using a random number generating program according to LAIR SOP OP-ISG-21 (7). The TOXSYS® Animal Allocation Program (8), a weight-biased randomization program, was used to assign the female study animals. LAIR SOP OP-ISG-21 (7) was used to select the five interim sacrifice animals for each group.

Dose Levels

The dose levels, 0, 1, 10, 30, 60, and 90 mg/kg/day, were selected on the basis of the results of a 14-day pilot study by Page and Emmerling (9) and the electron microscopy studies of Page (10).

Compound and Diet Preparation

The pyridostigmine was received as a white crystalline material, 99.6% pure (by HPLC). All diet preparations were done in accordance with LAIR SOP OP-STX-16 (11), as presented in Appendix E. Preliminary studies indicated that pyridostigmine was stable in the feed for at least 8 days. New diets were prepared each week to compensate for changes in food consumption and body weight. Separate premixes consisting of appropriate concentrations of pyridostigmine and Rodent Chow were prepared for each final dietary concentration. On the day of the diet change, after the new diet concentrations had been calculated, the appropriate amounts of premix and meal were blended together using a Patterson-Kelley Twin-Shell® Blender (Patterson-Kelley Co., Division of Harsco Corp., East Stroudsburg, PA) for at least 15 minutes. Pyridostigmine was mixed into the feed at a level that, based on the feed consumption of the previous week and the animal's weight, would provide the desired dose (mg/kg) on a daily basis. With the exception of 10% of the diet mixture samples that were within 15% of target concentrations, all diet mixes were within 10% of target concentration and were adequately homogeneous. Additional mixing data and analyses are presented in Appendix F.

Test Procedures

Food and water consumption were measured on a weekly basis. Individual feed jars were weighed at the beginning and end of each week. The feed was sifted using a 10-mesh sieve to remove bedding and feces prior to the final weighing. If there were signs of spillage in the bedding, the bedding was also sifted and the feed obtained was returned to the jar prior to weighing. Records for water bottles with obvious spillage were flagged, and the weights were omitted. Recordkeeping initiated during the final week of quarantine provided the baseline consumption data to calculate the first week's diet mixture.

Early on the day of diet change, the animals were weighed and observed, and their water bottles and feeders were weighed. These data were collected on a Beckman TOXSYS® data collection terminal. The Beckman Diet Computation

Subsystem was used for the calculations. After the new diet was mixed, the feeders and water bottles were filled, weighed, and returned to the cages.

Observations were performed twice daily throughout the 90-day test period. During the morning observations, the animals were observed undisturbed in their cages, outside of their cages, and after return to their cages. All findings were recorded. A second "walk through" observation was performed in the afternoon, and only significant observations were recorded. Body weights were recorded weekly and on the day of sacrifice.

All animals were subjected to a complete necropsy following exsanguination under sodium pentobarbital anesthesia on Day 28 (interim sacrifice) or Day 90 (terminal sacrifice). Under anesthesia, blood was collected from the right ventricle for serum chemistry, hematology, plasma cholinesterase (ChE), and erythrocyte acetylcholinesterase (AChE) activity measurements. Samples for ChE and AChE analyses were prepared in accordance with LAIR SOP OP-ACH-83 (12), Appendix G. ChE and AChE activities were determined using a Technicon Auto-Analyzer II System as described in LAIR SOP OP-ACH-83 (12), Appendix G. The following tissues were examined microscopically for all groups: diaphragm, extensor digitorum longus muscle, kidney, liver, lungs, soleus muscle, and all gross lesions. In addition to the tissues listed above, the following tissues were also examined microscopically for the control and 90 mg/kg/day groups: adrenal glands, aorta, femur, brain, sternum, cecum, colon, duodenum, ear, exorbital lacrimal gland, esophagus, eyes with optic nerve, Harderian gland, heart, ileum, jejunum, submandibular lymph node, mammary gland, mesenteric lymph node, mandibular/submandibular salivary gland, nose/turbinates, ovaries, pancreas, parotid salivary gland, pituitary, parathyroid, rectum, spinal cord, skin, sublingual salivary gland, skeletal muscle, sciatic nerve, spleen, stomach, thyroid, thymus, tongue, trachea, urinary bladder, uterus, male accessory sex organs, and testes.

Statistical Analysis

Data for body weights, food consumption, water consumption, serum chemistry, hematology, and cholinesterase activity were analyzed statistically with programs available on BMDP software (13). The equality of the variances of the groups was tested using the Levene's Test. If the variances were equal, the vehicle control group and the dose groups were compared by the standard one-way analysis of variance (ANOVA). Otherwise, the Welch one-way ANOVA, which is not

based on the assumption that the variances are equal, was If the F-statistic was significant in either case, the Dunnett's t test was performed to determine whether or not the vehicle control group was significantly different from any of the dose groups. In the event that the n value for a group was greater than that of the control group, the Tukey Studentized Range Method was used instead of the Dunnett's t test. The preponderance of "0" values precluded any valid statistical analysis of bilirubin data. Percent inhibition of cholinesterase activities were calculated as [(mean baseline activity - normalized mean treated activity) + mean baseline activity] x 100%. The normalized mean treated activity was calculated as (mean baseline activity + mean control group activity) x mean treatment group activity. Statistical analyses for organ weights were done on the Xybion software program using the standard one-way ANOVA. The homogeneity of the groups was tested by the Bartlett's If the groups were found to be non-homogeneous, then a modified t test was performed instead of the Dunnett's t test. The incidence of microscopic lesions for each test group was compared to the control group using the Kolmogorov-Smirnov two-tailed test. The 0.05 level of significance was used for all tests.

Changes/Deviations

This study was accomplished according to the protocol and applicable amendments with the following exception: During the first week of quarantine, difficulties in adapting to the watering system resulted in slow growth for a number of male rats. The TOXSYS® Animal Allocation Program could not provide satisfactory randomization due to the increased variation in body weights. Therefore, male study animals were assigned to dose groups using a random number generating program. This deviation did not affect the outcome of this study.

Storage of Raw Data and Final Report

A copy of the final report, study protocols, raw data, retired SOPs, and an aliquot of the test compound will be retained in the LAIR Archives.

RESULTS

Food and Water Consumption

Mean daily consumption of pyridostigmine is presented in Table 1. Mean weekly food and water consumption data are

presented in Tables 2 and 3, respectively. Individual pyridostigmine, food, and water consumption data are presented in Appendices H, I, and J, respectively. Individual pyridostigmine consumption was calculated based on the mean of each animal's body weights taken at the beginning and end of each week, the individual food consumption of the animal for that week, and the pyridostigmine concentration as determined by analysis of the feed mixtures. The mean daily pyridostigmine consumption taken for the entire 13-week study period ranged from 91.5-102.8% of the target doses.

Compared to the controls, statistically significant decreases in food consumption were observed for the male study animals during weeks 1 (Groups 5 and 6) and 2 (Group 6) of the study period. Water consumption was also significantly decreased during week 1 (Group 6). However, the effect was transient, and by week 3, no significant differences from the controls were observed in the food or water consumption of the males. For the females, with the exception of a statistically significant decrease in food consumption for group 6 during week 1, food and water consumption of the treated groups were consistently increased compared to the controls throughout the study period. The increases in food consumption for the females were statistically significant at weeks 1 (Groups 3 and 4), 2 (Groups 3, 4, and 5), 8 (Group 3), and 10 (Group 3). Increases in water consumption by the females, however, were not statistically significant at any time during the study The increased food and water consumption exhibited period. by the females could not be attributed to the test compound, since the increases were already apparent during quarantine week 2, prior to the initiation of dosing.

Body Weights

Individual body weight data are presented in Appendix K. The group mean body weight data are presented in Table 4. Mean body weights for the male treatment groups were significantly less than those of the controls during weeks 1 (Groups 5 and 6) and 2 (Group 6). The decreases were transient, with no significant differences from controls being observed for the remainder of the study period. Mean body weights for the female treatment groups were consistently greater than those of the controls throughout the study period. The increases for the females were statistically significant at weeks 2 (Group 3) and 3 (Groups 3 and 5). The differences in body weights observed for the females were not attributable to the test compound, since the body weights of the controls were already lagging behind those of the treatment groups at the beginning of week 0.

TABLE 1: Daily Consumption of Pyridostigmine

Group	Week	n	Males (mg/kg/day)	n	Females (mg/kg/day)
Control	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10	$\begin{array}{c} 0.00 * \pm 0.00 \\ 0.00 \pm $	15 15 15 10 10 10 10 10 10	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.00 \pm 0.$
1.0 mg/kg/day	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10	$\begin{array}{c} 1.11 \pm 0.03 \\ 1.02 \pm 0.02 \\ 0.87 \pm 0.02 \\ 0.90 \pm 0.02 \\ 0.83 \pm 0.02 \\ 1.01 \pm 0.01 \\ 1.00 \pm 0.02 \\ 0.87 \pm 0.02 \\ 0.85 \pm 0.01 \\ 0.89 \pm 0.02 \\ 0.87 \pm 0.05 \\ 0.84 \pm 0.02 \\ 1.07 \pm 0.05 \\ \end{array}$	15 15 15 10 10 10 10 10 10	1.00 ± 0.02 0.88 ± 0.02 0.91 ± 0.02 0.82 ± 0.02 1.08 ± 0.03 0.81 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.88 ± 0.02 1.23 ± 0.04 0.89 ± 0.03
10.0 mg/kg/da	Y 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 14 15 10 9 10 10 10 10	9.39 ± 0.25 8.80 ± 0.20 8.49 ± 0.18 9.36 ± 0.20 7.96 ± 0.29 9.61 ± 0.25 10.28 ± 0.17 10.02 ± 0.17 9.31 ± 0.21 9.29 ± 0.15 9.47 ± 0.14 9.47 ± 0.19 10.24 ± 0.15	15 14 15 10 10 10 10 10 10	10.43 ± 0.16 9.35 ± 0.20 9.03 ± 0.19 9.29 ± 0.18 9.81 ± 0.24 9.53 ± 0.33 9.86 ± 0.25 9.84 ± 0.24 8.80 ± 0.31 9.59 ± 0.29 8.70 ± 0.47 9.75 ± 0.26

^{*} Data are presented as the mean ± the standard error.

TABLE 1 (cont.): Daily Consumption of Pyridostigmine

Group	Week	n	Males (mg/kg/day)	n	Females (mg/kg/day)
30.0 mg/kg	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 10 10 10 10 10 8 8 10	$29.04*\pm0.89$ 29.24 ± 0.69 27.21 ± 0.48 27.57 ± 0.60 25.42 ± 0.41 31.28 ± 0.64 27.93 ± 0.53 18.77 ± 0.43 27.44 ± 0.60 28.31 ± 0.59 25.66 ± 0.44 28.82 ± 0.58 30.06 ± 0.36	15 15 15 15 10 10 10 10 10 10 10	31.98 ± 0.68 29.93 ± 0.76 27.75 ± 0.43 28.66 ± 0.69 28.06 ± 0.56 28.40 ± 0.78 30.08 ± 1.29 29.58 ± 0.94 29.05 ± 0.88 29.91 ± 0.63 27.36 ± 1.09 35.58 ± 1.03 31.30 ± 1.13
60.0 mg/kg	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 14 15 15 10 10 10 10 10 10	54.76 ± 1.78 63.99 ± 1.98 54.27 ± 1.18 56.02 ± 1.18 56.61 ± 3.02 58.22 ± 1.45 61.02 ± 1.09 61.75 ± 1.35 59.04 ± 1.22 54.67 ± 1.01 61.29 ± 1.29 57.66 ± 1.08 63.54 ± 1.32	14 14 13 9 9 8 9 9 9	54.73 ± 1.38 63.60 ± 1.04 57.40 ± 1.29 55.80 ± 0.84 60.69 ± 0.81 58.28 ± 1.31 58.45 ± 1.36 59.55 ± 1.58 61.12 ± 0.79 60.21 ± 0.98 54.96 ± 1.40 69.74 ± 1.86 62.52 ± 1.43
90.0 mg/k	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10	67.05 ± 2.44 107.70 ± 2.15 84.36 ± 1.61 85.31 ± 1.80 77.22 ± 2.56 95.61 ± 2.23 87.27 ± 2.41 99.89 ± 2.20 81.93 ± 1.99 89.46 ± 2.03 85.00 ± 1.62 87.34 ± 2.22 129.29 ± 1.83	14 15 15 10 10 9 10 10 9 10	73.88 ± 2.28 116.89 ± 2.46 96.29 ± 1.80 84.66 ± 1.73 85.75 ± 2.39 86.15 ± 2.26 89.21 ± 2.46 84.63 ± 3.40 90.69 ± 1.70 93.81 ± 2.23 100.16 ± 3.73 106.61 ± 2.32 93.63 ± 2.37

^{*} Data are presented as the mean \pm the standard error.

TABLE 2: Food Consumption Summary

			•		
Group	Week	n	Males (g/week)	n	Females (g/week)
Control	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 10 10	$171.9* \pm 5.3$ 171.2 ± 4.2 168.2 ± 4.4 173.9 ± 5.0 172.1 ± 5.8 171.6 ± 6.4 171.0 ± 6.2 173.0 ± 5.2 178.8 ± 4.5 178.2 ± 5.5 166.7 ± 6.6 177.2 ± 5.7 178.6 ± 7.8	15 14 14 15 10 10 10 10 10 10	118.5 ± 3.0 116.2 ± 2.7 121.9 ± 2.8 118.9 ± 3.3 120.6 ± 3.9 113.9 ± 3.1 116.0 ± 3.2 116.5 ± 3.4 107.3 ± 4.6 109.4 ± 3.3 105.8 ± 3.3 113.2 ± 3.5 117.5 ± 3.4
1.0 mg/kg	/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 15 15 10 10 10 10 10 10	125.7 ± 3.9 125.7 ± 5.3 128.8 ± 5.0 119.9 ± 4.9 132.4 ± 6.7 128.9 ± 8.9 131.3 ± 7.7 124.6 ± 4.1 127.3 ± 6.5 125.8 ± 7.6 107.1 ± 4.5 117.5 ± 5.0 126.9 ± 5.7
10.0 mg/kg	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 14 15 10 9 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 14 15 15 10 10 10 10 10 10	$136.0^{\circ} \pm 3.3$ $136.4^{\circ} \pm 4.3$ 134.5 ± 4.8 132.1 ± 3.8 138.8 ± 6.0 126.5 ± 5.9 134.7 ± 5.8 $136.3^{\circ} \pm 4.9$ 127.3 ± 6.2 $127.4^{\circ} \pm 4.5$ 107.9 ± 5.8 129.7 ± 6.3 126.3 ± 5.7

^{*} Data are presented as the mean \pm the standard error. @ Significant difference from controls at p \leq 0.05.

TA	BLE 2 (c	cont.):	Food	Consump	ption	Summary	
Group	Week	n	Male (g/we		n	Fema: (g/we	
30.0 mg/k	eg/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 10 10 10 10 10 8 8 10	160.7* 171.5 172.1 176.4 169.8 173.2 178.3 191.2 172.1 183.4 175.8 168.7 169.0	± 4.0 ± 4.6 ± 4.6 ± 4.7 ± 5.8 ± 7.7 ± ± 7.3 ± ± 5.7 2.5 ± ± 5.7	15 15 15 15 10 10 10 10 10 10	133.6 ⁰ 136.0 ⁰ 131.9 127.5 129.9 125.8 134.2 128.5 125.1 122.4 109.1 122.6 128.8	± 3.0 ± 4.0 ± 3.9 ± 2.6 ± 3.1 ± 3.0 ± ± 3.7 ± ± 2.7 ± ± 4.2
60.0 mg/	cg/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 14 15 15 10 10 10 10 10 10	140.9 [®] 165.9 168.2 175.5 173.4 172.3 169.0 176.8 177.8 177.8 172.1 165.4 168.0	± ± ± 4.0 ± ± 4.1 ± ± 5.3 5.3 5.8 9.2 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	14 14 13 9 8 9 9 9 9	124.1 134.7 [©] 135.2 128.2 134.1 128.2 129.0 122.4 123.4 117.9 105.7 121.0 124.0	± 3.5 ± 3.2 ± 4.8 ± 3.5 ± 3.0 ± 5.1 ± 4.2 ± 4.2 ± 4.2 ± 2.5
90.0 mg/l	kg/day 1 2 3 4 5 6 7 8 9 10	15 15 15 10 10 10 10 10	106.8 [©] 147.2 [©] 163.7 176.0 181.7 175.7 173.6 189.2 174.8 181.9		14 15 15 10 10 10 10 10	97.0 ⁶ 120.9 129.5 130.1 132.0 131.6 135.3 126.5 123.6 125.6	± 3.7 ± 3.7 ± 4.9 ± ± 4.5 3.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4

^{*} Data are presented as the mean \pm the standard error. § Significant difference from controls at p \leq 0.05.

170.2 176.2

± 8.7

± 5.3

10

10

128.0

126.0

± 4.6

± 5.3

9

10

12

13

TABLE 3: Water Consumption Summary

Group	Week	n	Males (ml/week)	n	Femal	
Control	1 2 3 4 5 6 7 8 9 1) 11 12 13	15 15 14 15 10 10 10 10 10 10	260.1* ± 11.1 264.4 ± 11.8 273.1 ± 13.7 288.3 ± 13.2 263.3 ± 11.6 256.8 ± 10.2 258.9 ± 12.0 264.6 ± 16.6 248.7 ± 16.2 263.5 ± 14.2 260.9 ± 13.5 267.3 ± 16.3 275.7 ± 18.9	15 15 15 10 10 10 10 10 10	197.7 194.9 200.7 195.4 214.0 199.5 205.4 192.8 204.5 185.0 198.1 206.8 212.3	± 6.3 ± 10.8 ± 10.8 ± 13.1 ± 14.7 ± 16.5 ± 11.2 ± 18.6 ± 11.7 ± 16.6 ± 16.6
1.0 mg/kg/	day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 10	254.8 ± 14.9 256.9 ± 11.8 266.2 ± 13.7 274.3 ± 17.0 247.8 ± 18.6 241.8 ± 17.4 262.5 ± 15.5 256.2 ± 18.3 249.2 ± 19.9 253.2 ± 17.7 253.4 ± 17.1 255.1 ± 17.6 258.3 ± 31.3	15 15 13 15 9 10 10 9	212.8 217.9 217.1 210.9 225.6 227.4 251.3 245.8 224.9 225.2 211.3 240.4 258.4	± 11.7 ± 12.8 ± 11.9 ± 11.2 ± 14.5 ± 13.4 ± 17.7 ± 24.0 ± 11.6 ± 16.0 ± 14.9 ± 12.9 ± 13.3
10.0 mg/kg	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 14 15 9 10 10 10 10 10	278.1 ± 13.2 283.3 ± 16.5 269.6 ± 12.7 278.5 ± 15.0 242.1 ± 14.8 273.2 ± 19.3 261.7 ± 18.8 272.6 ± 17.9 246.6 ± 18.9 295.4 ± 31.3 282.3 ± 25.4 258.0 ± 14.3 248.3 ± 13.6	15 13 14 15 10 10 10 7 10 10 10 10	224.4 218.7 218.5 221.0 239.4 240.3 240.7 225.4 221.4 211.2 187.1 257.7 219.7	± 11.7 ± 12.6 ± 15.1 ± 13.3 ± 17.2 ± 17.4 ± 12.0 ± 19.9 ± 17.7 ± 14.8 ± 16.9 ± 18.1 ± 13.1

^{*} Data are presented as the mean ± the standard error.

TAE	BLE 3 (co	nt.):	Water	Consump	ption	Summar	Y
Group	Week	n	Male (ml/we		n	Fema (m1/w	
30.0 mg/k	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 10 10 10 10 10 10 10	265.2 268.4 272.5 269.5 274.0 269.5 269.6 257.8 266.8 260.7	± 13.0 ± 13.4 ± 13.1 ± 12.3 ± 18.7 ± 17.8 ± 16.3 ± 15.8 ± 14.8 ± 17.3 ± 18.1 ± 17.5	15 15 15 10 10 10 10 10 10	225.3 231.4 230.0 202.0 216.7 223.1 224.3 210.7 225.0 204.6 192.9 237.9 224.2	± 8.5 ± 12.3 ± 13.8 ± 9.3 ± 11.0 ± 9.6 ± 8.3 ± 9.6 ± 12.5 ± 12.5
60.0 mg/k	ag/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 10	225.9 242.9 257.5 254.3 245.5 243.9 238.2 236.1 240.9 237.1 236.3 223.2	± 11.5 ± 9.8 ± 11.0 ± 11.4 ± 13.7 ± 12.8 ± 12.9 ± 12.2 ± 13.5 ± 13.8 ± 12.9 ± 14.5	15 15 14 10 10 10 10 10 10 10	214.9 212.4 220.2 210.0 223.9 218.9 221.4 207.2 214.6 195.1 170.4 217.8 210.7	± 5.6 ± 5.4 ± 7.2 ± 6.3 ± 9.1 ± 9.0 ± 7.6 ± 8.5 ± 10.6 ± 8.0
90.0 mg/k	ag/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10	206.7 [®] 238.5 259.9 267.2 278.1 278.2 280.1 280.5 265.9 275.9 268.1 261.5 253.1	± 14.5 ± 13.8 ± 14.9 ± 16.6 ± 15.6 ± 18.5 ± 20.9 ± 17.0 ± 17.4 ± 17.3 ± 16.4 ± 17.0	14 15 15 15 10 10 10 10 10	205.4 207.5 226.3 222.9 241.4 242.5 246.9 237.7 230.0 214.9 199.0 252.5 240.0	± 12.2 ± 11.5 ± 11.0 ± 10.3 ± 14.6 ± 13.7 ± 14.8 ± 14.8 ± 12.3 ± 19.4 ± 16.0 ± 14.6

^{*} Data are presented as the mean \pm the standard error. @ Significant difference from controls at p \leq 0.05.

TABLE 4: Body Weight Summary

							
Group Week		n	Males n (g)				ales g)
Control	1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 10	287* 326 358 388 413 438 457 476 488 506 520 532 544	± 8 ± 9 ± 14 ±16 ±16 ±16 ±16 ±16 ±17 ±17	15 15 15 10 10 10 10 10 10 10	217 232 241 252 264 269 274 281 282 289 287 298 302	± ± 4 4 5 6 9 9 8 9 0 0 9 9 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ±
1.0 mg/kg/	'day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10	287 329 362 393 414 439 461 477 492 508 519 528 522	±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	15 15 15 10 10 10 10 10 10 10	221 240 255 264 278 289 298 303 315 321 318 330 335	± 5 ± 8 ± 7 ± 13 ±13 ±13 ±15 ±15 ±16
10.0 mg/kg	g/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 10	278 321 358 390 409 432 453 473 487 505 518 528 545	± 8 ± 9 ± 10 ±12 ±13 ±13 ±14 ±14 ±16 ±17 ±18 ±19	15 15 15 10 10 10 10 10 10	229 252 [®] 265 [®] 274 294 298 305 314 324 332 324 341 342	± 4 ± 6 ± 7 ± 10 ±12 ±13 ±12 ±13 ±14 ±14 ±14

^{*} Data are presented as the mean \pm the standard error.
© Significant difference from controls at p \leq 0.05.

TABLE 4 (cont.): Body Weight Summary

Group	Week	n	Mal (g		n		ales g)
30.0 mg/k	ag/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10	281* 325 362 393 416 434 454 479 494 515 524 538 552	±10 ±10 ±11 ±11 ±15 ±16 ±16 ±16 ±17 ±19 ±18 ±21 ±19	15 15 15 10 10 10 10 10 10	221 241 259 266 273 280 288 294 299 305 299 311 315	4566667667677 ±±±±±±±±±±±
60.0 mg/}	2 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 15 10 10 10 10 10 10	251 ⁰ 300 339 369 403 426 446 469 485 503 517 529 539	±11 ±10 ±10 ±15 ±15 ±15 ±15 ±15 ±15 ±16 ±16 ±16	15 15 15 10 10 10 10 10 10 10	227 248 268 [©] 276 292 297 311 310 320 321 318 329 329	±±±±±±±±±±±±±±±
90.0 mg/	kg/day 1 2 3 4 5 6 7 8 9 10 11 12 13	15 15 15 10 10 10 10 10 10 10	243 ⁶ 285 ⁶ 328 360 399 425 442 464 481 500 515 527 540	± 9 ± 9 ± 11 ±11 ±12 ±13 ±12 ±14 ±14 ±15 ±16	15 15 15 10 10 10 10 10 10 10	207 229 248 262 277 286 300 305 310 314 312 326 328	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

^{*} Data are presented as the mean \pm the standard error.
© Significant difference from controls at p \leq 0.05.

Clinical Observations

A summary of clinical observations is presented in Table 5. Individual animal histories are presented in Appendix L. The clinical signs observed were grouped into reflexive, behavioral, respiratory, skin/fur, ocular, gastrointestinal, and general categories. No deaths occurred during the study.

The most frequently observed signs were of the behavioral category (121 of 150 treated animals). These signs included irritability, aggression, inactivity, jumping, hypertonia, hyperactivity, chewing, and tremors. All behavioral signs were observed with slightly increased incidence in the treatment groups as compared to the controls. Among pyridostigmine-treated animals, irritability and aggression were the most prominent behavioral signs, while inactivity, jumping, hypertonia, hyperactivity, chewing, and tremors occurred sporadically.

The only reflexive sign observed, increased startle reflex (104 of 150), appeared to be dose-related, occurring most frequently in the high-dose groups.

Respiratory signs characterized by stains or material around the nose (85 of 150) were observed with relatively equal distribution among the treated and control groups.

Abnormalities of the skin/fur occurred with increased incidence in the pyridostigmine-treated animals (66 of 150). Rough coat was observed most frequently in the males, while stains or material on various parts of the body were observed most frequently in the females. Other skin/fur signs were observed with relatively equal distribution among treated and control groups.

Ocular signs observed (19 of 150) included stain or material around the eyes, conjunctivitis, corneal erosion, corneal opacity, and chromodacryorrhea. Although female animals treated with pyridostigmine exhibited an increased incidence of conjunctivitis and stains or material around the eyes, males were unaffected compared to the controls. Corneal erosion, corneal opacity, and chromodacryorrhea occurred in no more than one animal of each affected group.

Gastrointestinal signs observed (13 of 150) included perianal stain/feces, stains around the mouth, diarrhea, and increased salivation. Although relatively sporadic, the incidence of gastrointestinal signs appeared to be doserelated. None of the control or low-dose animals exhibited any gastrointestinal signs.

The general signs, emaciation and dehydration, occurred in isolated cases unrelated to treatment group.

Serum Chemistry

Individual serum chemistry values are presented in Appendix M. A summary of serum chemistry data is presented in Table 6. Although statistically significant variations from control values were observed for several serum chemistry measurements (blood urea nitrogen, phosphorus, sodium, chloride, lactate dehydrogenase, total protein, albumin, and iron), the affected parameters generally remained within clinically acceptable limits and no treatment-related trends were observed. Alterations from control values were inconsistent among treatment groups or sexes, and appeared to be relatively random incidents with little if any clinical significance.

Hematology

Individual hematology data are presented in Appendix N. Group mean summary data are presented in Table 7. No clinically significant variations or treatment-related trends in hematology measurements were observed during the study period. Statistically significant differences from control values were observed in the mean corpuscular hemoglobin concentration for males and females, but the actual variations from control values were very slight and had no clinical relevance. Statistically significant variations from control values were also observed for hematocrit and white blood cell count, but they were isolated incidents also lacking clinical significance.

Cholinesterase Activity

Individual plasma cholinesterase (ChE) and erythrocyte acetylcholinesterase (AChE) activities are presented in Appendix M. Group mean ChE and AChE data are presented in Table 6. Percent inhibition calculations are presented in Table 8. In general, ChE and AChE activity levels exhibited dose-related decreases compared to control levels for both sexes. Exceptions occurred in the low-dose groups at Day 28, when the ChE levels for Group 2 males and Group 2 and 3 females, and the AChE levels for Group 2 females increased compared to controls. An exception to the dose-response also occurred at Day 28 when the mean AChE for Group 6 males, although decreased compared to control values, did not follow the typical dose-response relationship. The decreases in

TABLE 5: Clinical Observations Summary*

Group (mg/kg/day) Observation	Control	1.0	10.0	30.0	60.0	90.0
	M	ſales				
NORMAL THROUGHOUT	3	1	3	3	-	-
BEHAVIORAL IRRITABLE AGGRESSIVE HYPERACTIVE JUMPING TREMORS INACTIVE	11 11 1 - -	10 10 1 - - -	12 11 3 - - 1	12 12 6 - - 1	13 13 2 1 - -	14 13 2 - 5 1 3
REFLEXIVE INCR. STARTLE REFI	2 JEX 2	3 3	4 4	9 9	14 14	13 13
RESPIRATORY STAIN/MATERIAL NOS	6 SE 6	8 8	9 9	7 7	9 9	9 9
SKIN/FUR ROUGH COAT ALOPECIA STAIN/MATERIAL LEG BACK, NECK, HEAL EAR, ABDOMEN		4 2 3 2	3 1 1 2	3 1 - 3	4 3 - 1	9 7 3 1
OCULAR STAIN/MATERIAL EYE CHROMODACRYORRHEA	1 - 1	- - -	- - -	1 1 -	- - -	- - -
GASTROINTESTINAL PERIANAL STAIN/FEC STAIN MOUTH DIARRHEA	- CES - - -	- - -	1 1 -	- - -	3 3 - 1	4 2 2 -
GENERAL DEHYDRATED EMACIATED	- - -	- - -	- - -	- - -	- - -	2 2 1

^{*} Data presented as number of animals exhibiting the sign with 15 animals per group.

TABLE 5 (cont.):	Clin	ical	Observa	ations	Summar	У*
Group (mg/kg/day) Co Observation	ntrol	1.0	10.0	30.0	60.0	90.0
	Fe	males				
NORMAL THROUGHOUT	3	_	1	-		_
BEHAVIORAL IRRITABLE AGGRESSIVE CHEWING HYPERACTIVE HYPERTONIA	8 8 1 - -	12 12 - 2 -	13 13 2 1 -	10 10 1 - 1	13 13 4 - - 1	12 12 3 - 1 3
REFLEXIVE INCR. STARTLE REFLEX	8 8	7 7	13 13	12 12	14 14	15 15
RESPIRATORY STAIN/MATERIAL NOSE	8 8	10 10	8 8	8 8	9 9	8 8
SKIN/FUR ROUGH COAT ALOPECIA STAIN/MATERIAL LEG, BACK, NECK, HEAD,	6 1 5 2	8 1 6 4	10 3 6 4	9 4 3 5	5 1 2 5	11 1 5 8
EAR, ABDOMEN SCAB LEG, BACK, NECK HAIR CLUMPED	2 1	1 -	2	2 -	- -	1_
OCULAR STAIN/MATERIAL EYE CONJUNCTIVITIS CORNEAL EROSION CORNEAL OPACITY	- - - -	2 1 - 1	1 1 -	6 3 2 1	4 4 - -	5 2 4 -
GASTROINTESTINAL INCR. SALIVATION STAIN MOUTH DIARRHEA	- - -	- - - -	1 1 -	1 1 -	- - -	3 1 1 1
GENERAL DEHYDRATED EMACIATED	1 1 -	- - 1	1 1 -	- - -	- - -	1 1 -

^{*} Data presented as number of animals exhibiting the sign with 15 animals per group.

TABLE 6: Serum Chemistry Summary*

			M	ales	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Group Day n	Baseli 0 9	ne Cor 28 5	90 10		/kg/day 90 10	10.0 m 28 5	ng/kg/day 90 10
ACHE	1.4333	2.0840	1.6468	1.5448	1.1484 [@]	1.4418	0.9666 [@]
U/ml	±0.1967	0.9129	0.2225	0.4673	0.2470	0.5141	0.1958
CHE	0.3367	0.2876	0.2830	0.2986	0.2412	0.1540 ⁰	0.1414 ⁰
U/ml	±0.0810	0.0215	0.0728	0.0639	0.0760	0.0364	0.0253
ALT	56.58	50.54	99.21	49.74	84.89	54.80	50.33
U/l	±9.61	16.89	98.34	9.41	96.38	24.40	17.65
AST	138.67	129.14	164.42	94.80	243.43	129.24	126.64
U/l	±64.79	69.52	108.24	20.29	445.10	71.65	26.84
ALK	254.66	196.18	162.97	198.52	187.09	232.96	152.48
U/l	±55.92	59.25	53.53	44.24	68.20	48.21	56.51
LDH	601.80	520.26	939.26	459.14	499.41	927.34	1158.02
U/l	±305.44	346.49	307.70	193.19	269.55	1034.26	338.87
CK	853.17	1457.80	630.03	702.44	398.70	676.76	1122.97
U/l	±386.24	1323.84	181.82	408.53	163.79	95.21	568.54
BILI mg/dl	0.000 ±0.000		0.005 0.016	0.000 0.000	0.007 0.019	0.000	0.020 0.037
CHOL	58.26	64.02	59.13	70.72	63.10	68.04	68.44
mg/dl	±10.97	20.29	14.24	15.95	16.55	24.12	11.91
TRIG	91.99	182.48	195.06	119.62	173.70	141.54	185.52
mg/dl	±33.65	135.29	60.14	47.43	74.54	56.78	65.58
URIC	2.44	3.26	1.69	2.40	1.74	2.94	1.83
mg/dl	±0.50	1.99	0.70	0.94	0.68	1.74	0.80
TP	5.14	5.86	6.20	5.62	6.11	5.68	6.51
g/dl	±0.25	0.72	0.45	0.36	0.61	0.37	0.47

^{*} Data are presented as the mean \pm the standard deviation. § Significant difference from controls at p \leq 0.05.

TABLE 6 (cont.): Serum Chemistry Summary*

Group Day n	30.0 m 28 5	g/kg/day 90 10	Males 60.0 mg 28 5	g/kg/day 90 10	90.0 mg 28 5	90 10
ACHE	1.3750	0.5446 ^{†@}	0.6940	0.2881 [@]	1.4826	0.1865 [@]
U/ml	±0.5331		0.8335	0.3196	0.2910	0.1490
CHE	0.0924 [@]	0.1103 ^{†@}	0.0924 ⁰	0.0925 [@]	0.0808 [@]	0.0672 [@]
U/ml	±0.0174	0.0513	0.0357	0.0269	0.0108	0.0122
ALT	42.22	48.75	49.86	59.58	40.20	44.44
U/1	±6.58	15.44	7.21	43.82	2.30	10.22
AST	105.36	120.09	109.60	169.49	87.96	100.33
U/l	±22.06	53.86	31.08	177.35	6.24	25.72
ALK	188.06	130.85	206.92	107.34	212.70	138.34
U/l	±39.86	55.79	76.14	40.22	42.74	30.05
LDH	760.50	676.73	526.42	673.40	473.62	572.42
U/l	±491.49	469.99	200.22	559.54	112.02	369.55
CK	909.84	1324.15	955.66	1187.56	561.34	521.54
U/l	±247.66	1990.96	644.23	2031.49	74.45	209.48
BILI mg/dl	0.000 ±0.000	0.014 0.030	0.000	0.009 0.019	0.000	0.000
CHOL	70.12	65.01	55.36	55.82	46.50	60.15
mg/dl	±13.12	12.86	13.33	9.13	9.83	11.89
TRIG	123.22	224.65	122.65 ^{\$}	221.63 [†]	94.30	243.19
mg/dl	±40.66	89.12	36.57	106.45	20.77	116.22
URIC	1.44	1.79	2.40	2.28	3.36	1.81
mg/dl	±0.42	0.62	1.16	2.29	1.04	0.77
TP	5.58	6.23	5.88	6.31	5.56	5.93
g/dl	±0.38	0.47	0.49	0.43	0.32	0.38

^{*} Data are presented as the mean \pm the standard deviation.

[†] The number of animals per group, n, equals 9.

^e Significant difference from controls at $p \le 0.05$.

^{\$} The number of animals per group, n, equals 4.

TABLE 6 (cont.): Serum Chemistry Summary*

			M	ales	<u> </u>		
Group Day n	Baseli 0 9	ne Cor 28 5	90 10		g/kg/day 90 10	10.0 m 28 5	ng/kg/day 90 10
ALB	2.776	2.892	3.169	2.812	3.262	2.930	3.416
g/dl	±0.208	0.420	0.210	0.258	0.228	0.322	0.264
GLU	237.83	285.42	232.71	277.44	221.64	270.56	236.15
mg/dl	±29.79	72.98	15.59	38.99	66.57	51.65	30.98
BUN	15.84	19.36	23.03	20.20	23.22	19.72	20.69
mg/dl	±2.53	2.86	2.99	2.76	4.19	1.42	2.88
CR	0.451	0.652	0.621	0.622	0.635	0.608	0.635
mg/dl	±0.079	0.137	0.087	0.076	0.066	0.209	0.103
CAL	10.98	11.44	10.33	10.94	10.69	10.86	11.31
mg/dl	±0.56	1.35	0.76	0.41	0.75	0.93	0.79
PHOS	9.833	9.580	6.670	9.140	6.918	9.700	7.108
mg/dl	±0.870	1.446	0.963	0.984	1.160	1.037	1.452
NA	146.3	142.4	140.9	144.6	142.3	145.4	140.1
Meq/l	±3.0		3.9	2.4	5.0	3.2	5.9
CL	101.8	99.4	101.4	104.4	102.1	102.0	104.1
Meq/l	±2.2	2.1		4.5	4.7	1.6	5.1
K	6.50	6.52	5.85	6.56	5.85	7.80	5.69
Meq/l	±0.43	1.22	0.69	1.46	0.53	1.25	0.60
IRON	287.3	191.4	171.5	219.2	189.4	165.2	158.8
μg/dl	±106.6	44.3	20.5	46.7	62.1	42.2	38.7
MAG	2.723	2.956	2.461	2.578	2.499	2.758	2.672
mg/dl	±0.131	0.388	0.202	0.340	0.226	0.413	0.340

^{*} Data are presented as the mean \pm the standard deviation.

TABLE 6 (cont.): Serum Chemistry Summary*

· · · · · · · · · · · · · · · · · · ·						
Group Day n	30.0 mg 28 5	g/kg/day 90 10	Males 60.0 mg 28 5	g/kg/day 90 10	90.0 mg 28 5	g/kg/day 90 10
ALB	2.894	3.427	2.996	3.287	2.948	3.273
g/dl	±0.099	0.361	0.243	0.217	0.123	0.207
GLU	252.42	241.39	247.62	269.23	249.18	232.74
mg/dl	±18.73	15.11	60.92	63.43	20.08	41.09
BUN	18.64	20.45	19.04	17.27 ⁰	16.04	19.15 [@]
mg/dl	±3.11	2.26	2.67	1.96	2.58	2.67
CR	0.680	0.630	0.680	0.635	0.608	0.630
mg/dl	±0.070	0.118	0.064	0.110	0.077	0.075
CAL	10.46	10.97	10.68	11.26	11.12	10.75
mg/dl	±0.80	0.81	0.54	0.99	0.58	0.62
PHOS	8.420	7.249	9.700	8.882 ⁰	9.600	7.368
mg/dl	±0.835	0.746	0.771	2.839	0.495	0.790
NA	144.2	142.3	147.4	142.1 [†]	141.8	142.6
Meq/l	±3.1	3.9	3.3	3.9		3.4
CL	101.4	104.6	101.8	105.9	101.2	107.2 ⁰
Meq/l	±1.1	2.6	2.8	4.4		4.8
K	5.74	5.75	6.62	5.69 [†]	7.12	5.65
Meq/l	±0.75	0.59	0.86	0.53	1.26	0.38
IRON	177.4	152.5	163.6	144.6	179.6	178.6
µg/dl	±40.6	24.3	32.6	29.6	42.1	87.9
MAG	2.446	2.523	2.624	2.471	2.854	2.312
mg/dl	±0.190	0.170	0.319	0.437	0.152	0.234

^{*} Data are presented as the mean \pm the standard deviation.
§ Significant difference from controls at p \leq 0.05.
† The number of animals per group, n, equals 9.

TABLE 6 (cont.): Serum Chemistry Summary*

				emales			
Group	Baseli	ne Cor	ntrol	1.0 mg	g/kg/day	10.0 m	ng/kg/day
Day	0	28	90	28	90	28	90
n	10	5	10	5	10	5	10
				· · · · · · · · · · · · · · · · · · ·			
ACHE	1.5720	1.4754	1.0236	1.5914	0.2704 [@]	1.2026	0.2223 [®]
U/ml	±0.6128	0.1069	0.3541	0.2158	0.5021	0.1932	0.3528
CHE	0.5999	0.4522	1.0783	0.8176@		0.5266	0.7869
U/ml	±0.0900	0.0775	0.4123	0.2760	0.2342	0.1111	0.2779
ALT	43.75	36.70	59.42	48.22	47.93	42.96	45.30
U/l	±7.35	3.45	30.60	11.69	16.51	6.46	18.81
AST	170.54	98.14	157.38	191.44	128.13	125.36	119.08
U/l	±79.25	19.08	77.56	113.57	40.14	39.84	46.78
ALK	208.42	165.10	98.40	160.28	88.75	119.36	99.50
U/l	±28.55	40.89	32.15	57.30	30.84	33.33	35.79
LDH	685.47	330.24	710.49	952.16 ⁰	605.81	552.08	543.16
U/l	±392.17	129.57	335.85	336.12	260.09	84.02	354.95
CK	2911.29	467.46	700.63	2419.98	945.70	685.90	770.89
U/l :	±3451.05	222.72	262.55	3075.92	1039.49	234.30	621.10
BILI mg/dl	0.000 ±0.000	0.000	0.001 0.003	0.000	0.005 0.008	0.000	0.000 0.000
CHOL	60.76	66.16	75.00	70.80	60.82	73.14	61.74
mg/dl	±7.75	13.69	20.78	12.79	8.65	8.99	12.43
TRIG	75.73	60.72	124.51	73.45 ^{\$}	138.80	104.92	98.17
mg/dl	±28.56	13.91	55.34	51.26	76.52	27.53	36.85
URIC	2.80	1.68	2.44	2.94	2.19	2.26	1.68
mg/dl	±0.70	0.31	0.88	1.84	0.92	0.58	0.61
TP	5.17	5.66	6.84	6.18 ^{\$}	6.66	6.10	6.11
g/dl	±0.32	0.30	0.61	0.32	0.57	0.26	0.56

^{*} Data are presented as the mean \pm the standard deviation. § Significant difference from controls at p \leq 0.05.

^{\$} The number of animals per group, n, equals 4.

	TABLE 6	(cont.):	Serum	Chemistry	Summar	y *
Group Day n	30.0 m 28 5	g/kg/day 90 10	Females 60.0 m 28 5	g/kg/day 90 9	90.0 mg 28 5	g/kg/day 90 10
ACHE	0.9096 ⁰	0.1774 ⁰	0.7480 ⁰	0.1490 ⁰	0.5814 ⁰	0.0468 ⁰
U/ml	±0.1797	0.2316	0.1269	0.1630	0.1386	0.1233
CHE	0.4300	0.5288 [@]	0.2960	0.4628 ⁰	0.2854	0.3799 ⁰
U/ml	±0.1712	0.2609	0.1165	0.2543	0.0899	0.1657
ALT	41.04	52.61	35.38	55.28	39.76	57.70
U/1	±8.32	25.28	3.47	29.30	5.99	21.23
AST	135.10	145.46	116.38	140.02	130.08	161.32
U/1	±85.52	82.07	57.98	45.13	55.15	66.75
ALK	165.88	130.79	115.28	94.72	157.60	86.09
U/l	±66.57	36.62	33.34	20.47	41.09	31.68
LDH	433.24	647.88	595.04	548.91	678.74	562.80
U/l	±322.86	267.38	298.47	261.01	195.96	282.48
CK	454.54	604.92	675.46	492.53	723.36	896.40
U/l	±116.24	234.06	377.44	149.01	370.65	645.56
BILI mg/dl	0.000 ±0.000	0.000 0.000	0.000	0.000 0.000	0.000	0.000 0.000
CHOL	81.50	53.50	68.76	63.46	72.34	63.70
mg/dl	±6.88	19.76	14.80	14.16	6.34	12.66
TRIG	82.88 ^{\$}	121.36	58.86	91.29	59.26	90.97 [†]
mg/dl	±41.49	63.56	5.92	40.74	17.56	46.69
URIC	2.06	2.24	2.16	2.07	2.64	2.17
mg/dl	±0.46	0.56	0.44	0.75	1.29	1.07
TP	6.26 [@]	6.52	6.04	6.50	5.96	6.46
g/dl	±0.48	0.47	0.21	0.30	0.45	0.66

^{*} Data are presented as the mean \pm the standard deviation.

^e Significant difference from controls at $p \le 0.05$.

^{\$} The number of animals per group, n, equals 4.
† The number of animals per group, n, equals 9.

TABLE 6 (cont.): Serum Chemistry Summary*

· 			Fe	males			
Group	Baseli	ne Coi	ntrol	1.0 mg	/kg/day	10.0 m	ng/kg/day
Day	0	28	90	28	90	28	90
n	10	5	10	5	10	5	10
							
ALB	2.983	3.124	4.021	3.388 ^{\$}	3.866	3.300	3.520 ⁰
g/dl	±0.273	0.398	0.392	0.178	0.262	0.193	0.595
GLU	264.19	223.96	223.20	258.66	233.95	227.64	210.14
mg/dl	±26.55	24.08	34.07	17.04	32.58	31.65	43.98
BUN	16.50	17.76	18.17	15.46	19.11	21.18	21.31
mg/dl	±3.11	1.09	3.52	6.46	3.18	6.52	1.74
CR	0.433	0.574	0.729	0.488	0.669	0.632	0.595
mg/dl	±0.147	0.065	0.091	0.126	0.102	0.071	0.081
CAL	11.20	10.42	10.93	10.70	10.69	10.78	10.25
mg/dl	±0.52	0.58	0.45	0.76	0.69	0.70	0.55
PHOS	9.840	5.440	5.471	6.950 ^{\$}	6.314	5.860	5.803
mg/dl	±1.338	0.966	1.670	0.473	1.953	0.932	1.307
NA	149.6	148.4	144.0	149.3 ^{\$}	149.7 ⁰	149.2	142.5
Meq/l	±3.0	3.5	2.7	4.1	4.1	4.8	2.1
CL	103.5	102.0	105.5	102.3\$	102.5	101.0	104.0
Meq/l	±1.1	2.1	3.0	2.9	3.1	4.7	
K	6.78	5.80	5.70	6.28 ^{\$}	6.09	6.42	5.48
Meq/l	±0.89	0.46	0.78	0.84	1.03	0.47	0.74
IRON	299.6	333.8	347.0	232.3 ^{\$}	295.7	255.4	280.5
μg/dl	±68.0	54.1	69.2	70.0	73.8	35.2	69.0
MAG	2.776	2.520	2.651	3.002	2.470	2.858	2.308
mg/dl	±0.198	0.237	0.270	0.562	0.224	0.235	0.349

^{*} Data are presented as the mean ± the standard deviation.

^{\$} The number of animals per group, n, equals 4.
@ Significant difference from controls at $p \le 0.05$.

	TABLE 6	(cont.):	Serum	Chemistry	Summary	7 *
Group Day n	30.0 mg 28 5	/kg/day 90 10	Females 60.0 mg 28 5	g/kg/day 90 9	90.0 mg 28 5	/kg/day 90 10
ALB	3.402	3.353 ⁰	3.296	3.517 [@]	3.246	3.922
g/dl	±0.290	0.347	0.101	0.220	0.322	0.381
GLU	215.14	218.08	222.78	218.69	229.70	230.56
mg/dl	±10.79	34.22	38.04	29.97	28.67	18.72
BUN	19.36	17.73	18.18	16.32	15.16	19.11
mg/dl	±1.43	2.36	3.19	2.86	2.73	3.59
CR	0.600	0.644	0.652	0.677	0.590	0.650
mg/dl	±0.123	0.075	0.084	0.114	0.044	0.096
CAL	10.96	10.67	10.34	10.87	10.60	10.75
mg/dl	±0.43	0.59	0.53	0.47	0.80	0.79
PHOS	8.000 ^{\$@}	5.422	7.860 ⁰	5.026	9.140 [@]	6.137
mg/dl	±1.128	1.566	1.104	0.974	1.069	1.289
NA	150.2	141.1	147.0	141.2 2.0	147.8	142.7
Meq/l	±5.8	1.6	3.9		5.6	6.9
CL	102.6	105.6	103.0	108.3	105.6	110.4 ⁰
Meq/l	±3.7	2.5	2.8	2.6	4.2	4.9
K	5.88	5.63	5.84	5.00	6.28	5.66
Meq/l	±0.55	1.07	0.93	0.72	0.78	0.90
IRON	249.8	328.7	222.2	289.9	263.4	268.6 ⁰
µg/dl	±23.3	23.6	52.1	58.0	91.4	44.7
MAG	2.638	2.611	2.728	2.404	2.732	2.544
mg/dl	±0.142	0.210	0.249	0.263	0.328	0.289

^{*} Data are presented as the mean \pm the standard deviation.
§ Significant difference from controls at p \leq 0.05.
§ The number of animals per group, n, equals 4.

TABLE 7: Hematology Summary*

			Mal			······································	
Group Day	Baseline 0	Contr 28		1.0 mg/k 28	g/day 90	10.0 mg/	kg/day 90
n	10	5	10	5	10	5	10
RBC	5.925	7.270	7.801	7.338	7.673	6.724	7.202
x10 ⁶ /μ1	±0.672	0.304	0.540	0.402	0.470	1.192	0.435
HGB	13.15	15.40	15.21	15.32	15.05	14.48	14.56
g/dl	±1.61	0.41	0.67	0.71	0.61	2.23	0.41
HCT	37.04	43.06	42.04	42.94	41.48	39.88	39.07 [@]
%	±4.26	1.45	1.70	2.28	2.11	7.07	0.82
MCV	61.0	59.0	53.3	58.4	54.1	59.4	53.3
fl	±1.3	1.2	2.2	1.9	1.8	1.8	1.1
MCH	22.27	21.06	19.22	20.80	19.58	21.54	19.83
	±0.74	0.30	0.66	0.58	0.65	0.78	0.49
MCHC	35.43	33.28	36.00	35.48	36.11	36.22	37.01 ⁰
g/dl	±0.66	5.04	0.53	0.43	0.56	1.18	0.47
RET	0.40	0.36	0.78	0.20	0.52	0.28	1.36
%	±0.30	0.22	0.38	0.24	0.33	0.23	1.04
PLT	795.7	587.6	843.0	728.8	810.4	584.4	752.1
x10 ³ /μ1	±144.6	77.9	144.6	286.2	274.3	151.3	107.1
WBC	5.10	9.18	6.00	6.48	6.91	7.02	6.94
×10 ³ /μ1	±1.39	3.23	0.89	2.90	2.56	2.71	2.46
SEG	17.0	17.8	13.6	12.6	16.1	14.2	13.7
%	±8.4	13.7	4.8	6.7	10.2	1.3	5.8
BAN %	0.0 ±0.0	0.2 0.4	0.0	0.0	0.0	0.2 0.4	0.0
EOS	0.2	0.2	0.4	0.4	0.3	0.4	0.8
%	±0.4	0.4	0.5	0.5	0.5	0.5	
LYM	82.5	81.8	86.0	86.6	83.6	85.2	85.5
%	±8.0	13.5	4.8	6.7	10.0	1.5	5.9
MON &	0.3 ±0.5	0.0	0.0	0.0	0.0	0.0	0.0 0.0

^{*} Data are presented as the mean \pm the standard deviation. § Significant difference from controls at p \leq 0.05.

TABLE 7 (cont.): Hematology Summary*

			1			
Group Day n	30.0 mg 28 5		ales 60.0 mg 28 5	/kg/day 90 10	90.0 mg 28 5	/kg/day 90 9
RBC	7.150	7.608	6.886	7.541	7.062	7.486
x10 ⁶ /μ1	±0.246	0.256	0.527	0.584	0.607	0.418
HGB	15.10	15.00	15.18	14.62	15.10	15.06
g/dl	±0.58	0.48	0.61	0.73	0.42	0.78
HCT	41.56	40.64	41.26	39.73 [@]	41.74	40.62
%	±2.06	1.31	1.97	2.29	1.22	
MCV	58.2	53.4	58.2	52.7	57.2	53.6
fl	±3.1	0.7	1.3	2.4	1.5	1.1
MCH	20.98	19.69	21.32	19.38	20.70	19.74
Pg	±0.91	0.39	0.57	0.88	0.59	0.49
MCHC	36.12	36.72 ⁰	36.52	36.63 [@]	36.00	36.83 ⁰
g/dl	±0.55	0.42	0.36	0.67	0.00	0.47
RET	0.20	0.53	0.32	0.67	0.40	0.80
%	±0.35	0.60	0.46	0.71	0.37	0.45
PLT $\times 10^3/\mu$ l	801.2	861.3	642.0	971.6	604.3	866.9
	±127.9	190.7	110.5	75.8	164.4	172.0
WBC	7.08	6.48	5.78	7.35	5.66	7.10
×10 ³ /μ1	±2.91	1.33	3.09	1.30	1.38	1.42
SEG	9.6	10.2	21.8	13.7	15.0	13.0
%	±8.8		16.5	6.7	7.4	7.7
BAN %	0.0 ±0.0	0.0	0.0	0.0	0.0	0.0
EOS	0.4	0.2	0.6	0.3	0.0	0.2
%	±0.5	0.4	0.5	0.5		0.4
LYM	90.0	89.6	77.6	85.9	85.0	86.8
%	±9.2	4.1	16.8	6.6	7.4	7.6
MON %	0.0 ±0.0	0.0	0.0	()	9.0 9.0	0.0

^{*} Data are presented as the mean \pm the standard deviation. § Significant difference from controls at p ≤ 0.05 .

TABLE 7 (cont.): Hematology Summary*

_			Fema				
Group	Baseline	Contr	ol	1.0 mg/k	g/day	10.0 mg/	kg/day
Day	0	28	90	28	90	28	90
n	10	5	10	5 	9	5 	8
RBC	6.155	6.174	7.241	6.862	7.233	6.726	7.314
×10 ⁶ /μ1	±0.286	1.156	0.693	0.288	0.467	0.155	0.213
HGB	14.03	13.60	15.49	14.98	15.04	14.58	15.11
g/dl	±0.72	2.58	0.57	0.70	0.79	0.38	0.39
HCT	38.56	34.98	40.66	39.28	40.09	39.06	39.86
%	±2.04	6.97	1.70	2.27	2.33	1.09	0.89
MCV	62.4	56.4	54.1	57.2	55.3	57.8	54.3
fl	±1.0	2.6	1.1	1.6	1.0	1.6	1.2
MCH	22.63	21.86	20.46 0.40	21.76	20.76	21.60	20.65
PG	±0.31	0.83		0.88	0.47	0.55	0.52
MCHC	36.18	38.70	37.87	37.94	37.36	37.12	37.76
g/dl	±0.57	1.54	0.52	0.92	0.63	0.55	0.34
RET	2.28	0.36	0.16	0.44	0.29	0.52	0.13
%	±2.83	0.09	0.21	0.22	0.44	0.11	0.18
PLT	559.3	932.8	739.3	873.6	731.6	881.6	707.0
×103/μ1	±152.2	111.8	96.8	67.1	117.4	129 . 1	114.7
WBC	4.47	4.22	4.17	4.90	5.78	5.52	4.50
×10 ³ /μl	±1.25	1.22	1.69	2.02	1.68	1.40	1.61
SEG	12.9	12.2	12.3	11.2	10.1	10.4	8.4
%	±4.8	4.9	4.8	7.9	3.2	3.2	3.9
BAN %	0.0 ±0.0	0.0	0.0	0.0	0.1 0.3	0.0 0.0	0.0
EOS	0.8	0.0	0.4	1.0	0.3	1.0	0.5
%	±0.9		0.5	1.4	0.7	1.0	0.8
LYM	86.3	87.8	87.1	87.8	89.3	88.4	91.1
%	±5.0	4.9	4.9	7.2	3.1	2.5	3.6
MON %	0.0 ±0.0	0.0	0.2 0.4	0.0 0.0	0.1 0.3	0.0 0.0	0.0

^{*} Data are presented as the mean ± the standard deviation.

TABLE 7 (cont.): Hematology Summary*

	•					
Group Day n	30.0 mg/ 28 5		nales 60.0 mg/ 28 5	/kg/day 90 10	90.0 mg/ 28 5	'kg/day 90 9
RBC	7.102	7.303	6.870	7.026	6.878	7.253
x10 ⁶ /μl	±0.351	0.389	0.475	0.559	0.453	0.662
HGB	15.16	15.34	14.84	15.17	15.00	15.37
g/dl	±0.78	0.73	0.77	0.77	1.04	0.97
HCT	39.78	39.48	40.28	39.16	40.86	40.47
%	±3.06	2.07	3.06	2.10	3.17	2.45
MCV	56.0	53.9	58.4	54.1	59.2	55.1
fl	±3.0	1.6	1.8	1.2	1.6	0.9
MCH	21.28	20.91	21.56	20.90	21.64	20.83
pg	±0.68	0.36	0.81	0.34	0.56	
MCHC	37.98	38.61 ⁰	36.72 [@]	38.46	36.48 ⁰	37.83
g/dl	±0.86	0.55	1.27	0.45	0.72	0.70
RET	0.60	0.18	0.56	0.26	0.64	0.16
%	±0.45	0.23	0.22	0.31	0.38	0.22
PLT	952.4	719.6	927.2	700.3	878.4	743.6
x10 ³ /μ1	±94.6	124.2	72.9	249.4	74.4	121.3
WBC	7.06	5.69	6.60	5.25	9.68 [@]	4.32
x10 ³ /μ1	±2.80	1.38	1.33	1.55	2.63	1.87
SEG	11.4	9.4	8.2	13.6	14.0	10.8
%	±3.9	5.1	3.8	7.8	3.4	3.3
BAN %	0.0 ±0.0	0.0	0.0	0.0	0.0	0.0
EO3	0.8	0.3	0.4	1.0	0.6	0.6
%	±1.1	0.5	0.5	0.9	1.3	0.7
LYM	87.8	90.3	91.4	85.3	85.4	88.7
%	±4.1	5.3	4.2	7.3	4.6	3.2
MON %	0.0 ±0.0	0.1 0.4	0.0	0.1 0.3	0.2 0.4	0.0

^{*} Data are presented as the mean \pm the standard deviation. § Significant difference from controls at p \leq 0.05.

TABL	E 8: I	Percent	Cholineste	rase	Inhibition*	
Group (mg/kg/day	Control	1.0	10.0	30.0	60.0	90.0
		Ма	ales Day 28			
ACHE CHE	0.0		30.8 46.5	34.0 67.9		28.9 71.9
		Ma	ales Day 90			
ACHE CHE	0.0 0.0		41.3 50.0	66.9 61.0		88.7 76.3
		Fen	males Day 28			
ACHE CF:E			18.5 -16.5	38.3 4.9		60.6 36.9
		Fen	males Day 90			
ACHE CHE	0.0		78.3 27.0	82.7 51.0		95.4 64.8

^{*} Percent inhibition calculated as [(mean baseline activity - normalized mean treated activity) + mean baseline activity] x 100%.

Normalized mean treated activity calculated as (mean baseline activity \div mean control group activity) x mean treatment group activity.

^e Negative percent inhibition indicates treatment group activity level exceeded the baseline activity.

AChE were statistically significant for all male and female treatment groups at Day 90. At Day 28, the decreases in AChE were statistically significant only for female Groups 4, 5, and 6. The decreases in ChE were statistically significant for male Groups 3, 4, 5, and 6 at Days 28 and 90. For the females, statistically significant decreases in ChE were observed for Groups 4, 5, and 6 at Day 90. Percent inhibition ranged from ~5% to 76% (ChE) and ~18% to 95% (AChE).

Necropsy Findings

All gross and microscopic lesions were considered to be incidental findings commonly observed in Sprague-Dawley rats. No compound-related gross or microscopic lesions were observed. There were no microscopic lesions that were significantly different in severity from the control using the Kolmogorov-Smirnov two-tailed test. The pathology report is presented in Appendix O.

DISCUSSION

Doses of pyridostigmine that produced up to 76% cholinesterase inhibition in plasma and 95% acetylcholinesterase inhibition in erythrocytes did not have toxic effects other than those attributable to cholinergic stimulation. No consistent treatment-related changes attributable to pyridostigmine administration were observed in serum chemistry or hematology values during the 90-day study period. In addition, there were no mortalities or lesions noted at necropsy or on microscopic examination of tissues that could be attributed to pyridostigmine administration.

The clinical signs of toxicity observed were consistent with cholinergic stimulation following cholinesterase inhibition (14,15). Toxic signs attributable to excessive muscarinic stimulation included stains or material on various parts of the body (perianal, perioral, or periocular), diarrhea, and increased salivation. The nicotinic effects observed included hypertonia and tremors. The other behavioral signs and increased startle reflex may have been due to stimulation of the central nervous system as has been observed with other anti-ChE agents. Such signs are consistent with CNS signs such as confusion, ataxia, slurred speech, and loss of reflexes, which have been observed in humans exposed to anti-ChE agents (14).

The initial transient decrease in food consumption exhibited by Group 5 and 6 males, and Group 6 females may be attributed either to decreased acceptance of the pyridostigmine-treated diets or a toxic manifestation of the test compound. Reduced food consumption upon initial exposure to a test compound in the feed is often observed in toxicity studies, and is generally associated with the reduced palatability at the higher concentration of test compound. However, the possibility that decreased food consumption may have been induced by the pharmacologic activity of the test compound cannot be ruled out. muscarinic effects associated with the therapeutic administration of pyridostigmine in humans are anorexia, nausea, vomiting, and abdominal cramps (14,16). Most patients eventually develop resistance to these muscarinic effects (14). Similar effects induced in animals of the high-dose groups in this study with the subsequent development of tolerance, could easily have contributed to transiently decreased food and water consumption, and correspondingly reduced weight gains. Increased food consumption, water consumption, and body weights observed among the remaining female treatment groups relative to the controls were already apparent at the end of quarantine, and may be attributed to differences in acclimation unrelated to administration of the test compound.

Pyridostigmine reduced plasma cholinesterase and erythrocyte acetylcholinesterase significantly (p \leq 0.05). Variations from the expected dose-response relationship could be attributed to several factors, the most important being that the large sample volume required for the cholinesterase determination precluded each animal from serving as its own baseline. Consequently, the percent cholinesterase inhibition for a particular treatment required normalizing the mean cholinesterase activity for baseline control animals obtained on Day 0 and the mean activity for the Day 28 or Day 90 concurrent control group. Other factors contributing to this variation may have been the small number of animals (n=5/group) for the Day 28 determinations, differences in age of the animals when activity was determined (7-8 weeks at Day 0, 11-12 weeks at Day 28, and 20-21 weeks at Day 90), and variations in the time interval from the last feeding episode to blood sample collection at necropsy. Pyridostigmine must be administered every 3 to 6 hours to achieve reasonably constant levels of pharmacologic activity in man; the elimination half-life of pyridostigmine in man has been reported to be 1.9 \pm 0.2 hours (17), as compared to 24.8 minutes in the rat (18). Therefore, in order to achieve constant levels of cholinesterase inhibition in the rat, the required frequency of oral dosing would be expected to be considerably greater than that in man. Consequently, in this

study, levels of cholinesterase inhibition would naturally fluctuate as a result of the feeding frequency. These fluctuations in cholinesterase inhibition would also increase variability in the measured dose-response.

CONCLUSION

Administration of pyridostigmine at doses of 1 to 90 mg/kg/day did not cause any appreciable toxicologic effects. Transient reductions in food consumption and rate of growth observed at the high-dose levels, and clinical signs of cholinergic stimulation due to subchronic inhibition of plasma ChE and erythrocyte AChE were present but were considered to be mild and nondebilitating.

REFERENCES

- 1. Kluwe WM, Chinn JC, Feder P, Olson C, Joiner R. Efficacy of pyridostigmine pretreatment against acute soman intoxication in a primate model (paper No. IX-1). In: Proceedings of the Sixth Medical Chemical Defense Bioscience Review. Columbia, MD (4-6 Aug) 1987: 227-234.
- 2. Osserman KE, et al: Arch Int Med. 1958; 102:72-81.
- 3. Latven AR. Pharmacology Research, Inc., Darby, PA, Laboratory Report, 8 June 1954.
- 4. Roe M, Wong T. Roche Internal Report, 26 Jan 1955.
- 5. Subchronic oral toxicity testing in rodents. LAIR Standard Operating Procedure OP-STX-74, Presidio of San Francisco, CA: Letterman Army Institute of Research, June 1986.
- 6. Food and Drug Administration. Nonclinical laboratory studies, good laboratory practice regulations, final rule. In: 21 CFR 58. Washington, DC: Food and Drug Administration, 22 Dec 1978; 43 FR 59986-60025.
- 7. Animal randomization procedure. LAIR Standard Operating Procedure OP-ISG-21, Presidio of San Francisco, CA: Letterman Army Institute of Research, 9 December 1980.
- 8. Standard procedures for assigning animals to treatment groups. LAIR Standard Operating Procedure OP-ISG-24, Presidio of San Francisco, CA: Letterman Army Institute of Research, 28 December 1981.
- 9. Page JG, Emmerling DC. Battelle/Columbus, Study Report 8740-85-15, 25 Sep 1985.
- 10. Page JG. Battelle/Columbus, Study Report 8740-86-3, 15 May 1986.
- 11. Diet preparation for feeding studies. LAIR Standard Operating Procedure OP-STX-16, Presidio of San Francisco, CA: Letterman Army Institute of Research, 28 June 1985.

REFERENCES (cont.)

- 12. Autoanalyzer II procedure for the determination of erythrocyte acetylcholinesterase and plasma cholinesterase activities in pyridostigmine-inhibited blood. LAIR Standard Operating Procedure OP-ACH-83, Presidio of San Francisco, CA: Letterman Army Institute of Research, 20 February 1987.
- 13. Dixon WJ, ed. BMDP statistical software. Berkeley: University of California Press, 1981: 555-573.
- 14. Taylor P. Anticholinesterase agents. In: Gilman AG, Goodman LE, Rall TW, Murad F, eds. The pharmacological basis of therapeutics. 7th ed. New York: MacMillan Publishing Co., Inc., 1985; 110-129.
- 15. Ellenhorn MJ, Barceloux DG. Medical toxicology diagnosis and treatment of human poisoning. New York: Elsevier Science Publishing Co., Inc., 1988: 1072.
- 16. Barnhart ER. Physician's desk reference. 42nd ed. Oradell, NJ: Medical Economics Co., Inc., 1988: 1493-1494.
- 17. Cronnelly R, Stanski DR, Miller RD, Sheiner LB.
 Pharmacokinetics of pyridostigmine in patients with and without renal function. Clin Pharmacol Ther 1980; 27.
- 18. Meyer HG, Lukey BJ, Gepp RT, Corpuz RP, Lieske CN. A radicimmunoassay for pyridostigmine. J Pharmacol Exp Ther 1988; 247(2): 432-438.

Appendices

		Pag	је
Appendix Appendix Appendix Appendix Appendix Appendix	B. C. D. E. F.	Chemical Data	41 42 51 53
Appendix	G.	Procedures for Cholinesterase Determinations	a a
Appendix Appendix Appendix	I.	Pyridostigmine Consumption	02 14
Appendix Appendix	K.	Body Weights	38
Appendix Appendix	M. N.	Serum Chemistry	91 25
Appendix	0.	Pathology Report	48

Appendix A: CHEMICAL DATA

Chemical Name: Pyridostigmine bromide

Other Names: 3-[[(Dimethylamino)carbamyl]oxy]-1-methylpyridinium bromide, 3-hydroxy-1-methylpyridinium bromide dimethylcarbamate, 1-methyl-3-hydroxypyridinium bromide dimethylcarbamate, 3-(dimethylcarbamyloxy)-1-methylpyridinium bromide

Chemical Abstracts Registry Number: 101-26-8

Lot Number: 590034

LAIR Code Number: TW71A

WRAIR Code Number: WR-250710AF

Chemical Structure:

Molecular Formula: C9H13BrN2O2

Molecular Weight: 261.13

Analytical Data:

The test compound was analyzed by the sponsors using HPLC, elemental analysis, and UV spectroscopy. This data verified the identity of the compound and provided the following estimates of purity: 99.6% (by HPLC), 98% (by elemental bromide), and 100% (by UV spectroscopy).

Pyridostigmine bromide was analyzed in this lab by NMR^2 and $HPLC^3$.

Appendix A (cont.): CHEMICAL DATA

NMR (300 MHz, D₂O): d 3.02, 3.16 (singlets, (CH₃)₂-N-, 6 H); 4.43 (singlet, CH₃-N(pyr), 3H); 8.09 (quartet, J = 8.6, 6.3 Hz, O-C=CH-CH=CH-N, 1 H); 8.39 (doublet, J = 9.0 Hz, O-C=CH-CH-, 1 H); 8.71 (doublet, J = 6.0 Hz, CH=CH-N, 1 H); 8.86 (singlet, O-C=CH-N, 1 H). No other signals were observed in the spectrum.

HPLC analysis of the compound was performed using a Hewlett-Packard 1090 HPLC equipped with a diode array detector. The compound was chromatographed under the following conditions: column, silica (Brownlee Labs, Inc., 4.6 x 100 mm); mobile phase, 80% buffer (0.01 M heptane sulfonic acid, 0.01 M sodium dihydrogen phosphate, 0.0025 M tetramethylammonium chloride, pH adjusted to 3 with sulfuric acid)/20% acetonitrile; flow, 1.5 ml/min; wavelength monitored, 269 nm. Under these conditions, pyridostigmine bromide eluted as one peak at 2.4 min. No other peaks were present in the chromatogram.

The data obtained in our lab confirm the identity and high purity of the test compound.

Source: Mr. William Ellis

Division of Experimental Therapeutics Walter Reed Army Institute of Research

Washington, DC

Requested by LTC William Ritter, WRAIR

Petesch R, Benitez A and Lim P. Assay of pyridostigmine bromide, WR-250710AF, BK75309, lot no. 590034. Menlo Park, California: SRI International, 3 July 1984; Draft report no. 476.

Wheeler CR. Toxicity testing of antidotes of chemical warfare agents. Laboratory notebook #85-12-024.1, p. 70-71. Letterman Army Institute of Research, Presidio of San Francisco, CA.

³ Ibid. p. 72-74.

Appendix B: ANIMAL DATA

Species: Rattus norvegicus

Strain: Sprague-Dawley

Source: Charles River Laboratories, Inc.

Charles River Portage

Shaver Road

Portage, Michigan 49081

Sex: Male and female

Date of birth: Males - 15 September 1986

Females - 17 October 1986

Method of randomization: Males - Random number generating

program (LAIR SOP OP-ISG-21)
Females - Weight bias, stratified
animal allocation (TOXSYS Animal
Allocation Program, LAIR SOP OP-ISG-

24).

Animals in each group: 15 male and 15 female animals

Condition of animals at start of study: Normal

Body weight range at start of dosing: 151 - 287 q

Identification procedures: Tail tattoo (SOP OP-ARG-1)

Pretest conditioning: Quarantine/acclimation; males from 21

October - 3 November 1986, females from

25 November - 9 December 1986

Justification: The laboratory rat has proven to be a

sensitive and reliable system for subchronic oral toxicity determination.

OP-STX-74 PAGE 1 of 9 15 May 1987 Replaces 21 Jun 85

TITLE: Subchronic Toxicity Testing in Rodents

SCOPE: This subchronic toxicity study is designed to assess the toxic potential of a test substance when administered to a rodent for between 28 and 180 consecutive days. It is conducted in compliance with the Toxic Substance Control Act as administered by the EPA. This study will also be conducted in compliance with the Good Laboratory Practices regulation promulgated by the FDA.

REFERENCES:

- 1. EPA, Toxic Substances Control, GLP Standards; Final Rule, (40 CFR 792) 29 Nov 83, (48 FR 53922-53944).
- 2. EPA, Pesticide Programs, GLP Standards; Final Rule, (48 CFR 160) 29 Nov 83 (48 FR 53946-53969).
- 3. FDA, Nonclinical Laboratory Studies (21 CFR 58) Final Rule, 22 Dec 78 (43 FR 59986-60025), as amended 11 Apr 80 (45 FR 24865).
- 4. EPA, Health effects test guidelines. Office of Pesticides and Toxic Substances. EPA 560/6-82-001.
- 5. Chan PK, O'Harra GP, Hayes AW. Principles and methods for acute and subchronic toxicity. In: Hayes AW, ed. Principles and methods of toxicology. New York: Raven Press, 1982:1-52.

PROCEDURE:

- A. Study Design
- 1. Species: A recognized strain of the laboratory rodent (e.g., rat; Sprague-Dawley, Fisher-344) will be purchased from a licensed dealer by the Division of Animal Care and Service, LAIR. Generally the strain selected should be one which will be utilized in chronic studies.

OP-STX-74 PAGE 2 of 9 15 May 1987

- 2. Age and Sex: Equal number of males and females will be tested. Animals should receive the initial dose before attaining eight weeks of age.
- 3. Number of Animals: Each group, treatment and concurrent control, must contain a minimum of 10 animals/sex/group. If interim sacrifices are required the number of animals will be increased by the number scheduled for sacrifice.
- 4. Quarantine: Animals will be quarantined for two weeks in the GLP Suite for environmental acclimatization and detection of disease/parasites/poor health. Randomly selected animals (2% of total) will be sacrificed by the pathologists for quality control.
- 5. Animal Identification and Randomization: Animals will be identified by tail tathoo and randomly assigned to control and treatment groups. Randomization will be by a weight stratification procedure.
- 6. Husbandry: Animals will be housed individually in shoe-box cages in the GLP Suite. Temperature in the GLP Suite will be maintained in the range of 72 76' F with relative humidity of 40-60%. A 12 hour light/dark cycle will be utilized. Temperature and relative humidity will be recorded. Animals will be fed batch certified rodent chow ad libitum and provided deionized reverse osmosis treated water ad libitum. The deionized reverse osmosis water is periodically analyzed on a retrospective basis. None of the contaminants in food and water are reasonably expected to be of sufficient titre as to interfere with conduct of the proposed studies.
- 7. Control Group(s): A vehicle control group will be used, and in cases where the effects of the vehicle are unknown, an untreated control group will also be tested.
- 8. Treatment Groups: At least three dose levels will be tested. The highest dose level should produce toxicological or pharmacological effect but produce no more than 10 percent lethality. This dose should be higher than that expected for human exposure. The low dose should not produce evidence of toxicity. The intermediate dose should be a multiple of the low dose and provide an estimate of the dose-response relationship. Generally, a limit dose of 1000 mg/kg will be the maximum dose level used, unless higher dose levels are justified.

OP-STX-74 PAGE 3 of 9 15 May 1987

- 9. Duration: The test substance will be administered for between 28 and 180 consecutive days.
- 10. Administration of Test Substance: The test substance will be administered in the diet at a constant concentration (ppm) unless oral gavage or diet administration (constant dose, mg/kg) is required by the Sponsor. The constant dose procedures requires weekly adjustment of dose because of changing body weights. Other routes, such as subcutaneous, dermal patch, I.V., etc., may be used if they are more representative of the potential route of exposure or administration.
- ll. Test Substance Analysis and Stability: Physio-chemical data on the batch or lot of the test substance used in the study will be provided by the sponsor as well as an analytical profile of major constituents and/or contaminants/impurities. Safety precautions will also be provided by the sponsor. Stability of the test substance in the diet (vehicle) and homogeneity for the range of concentrations used will be determined at the initiation of the study. Additionally, assays for homogenicity will be run at selected intervals during conduct of the study. Assays for concentration will be conducted on each dosing mixture prepared.
- 12. Quality Assurance: The LAIR Quality Assurance Unit will audit the protocol, in-life phase, and final report for compliance with GLP procedures.

B. Study Conduct

- 1. Observations: All toxicological and pharmacological signs will be recorded daily, including time of onset, intensity and duration. Food and water consumption will be measured and animals will be weighed weekly.
- 2. Clinical Laboratory Testing: At least 5 animals/sex/group will be bled at selected intervals during the study and at termination of the study. The same animals should be bled on each occasion if possible. At the discretion of the sponsor and/or study director, clinical laboratory testing may be done by serial sacrifice.
- a. Hematologic evaluation The PCV, Hgb, RBC, WBC, differential, MCV, MCHC, and platelets determinations are required. If signs of anemia are present, reticulocyte counts will be performed on whole anticoagulated blood.

OP-STX-74 PAGE 4 of 9 15 May 1987

- b. Blood Chemistry Ca, Na, K, Mg, Cu, total Fe, LDH, serum ALT, serum AST, glucose, BUN, direct/total bilirubin, A/G ratio, cholesterol, albumin, globulin, total protein, Cl, uric acid, creatinine, CPK, methemoglobin, P, and triglycerides will be measured.
- c. Cholinesterase inhibition If the sponsor indicates that the test substance may inhibit acetylcholinesterase activity, plasma and erythrocyte acetylcholinesterase activity will be monitored at selected intervals during the study.
- d. Urinalysis If applicable the following will be measured before the initiation of dosing, during the seventh week, and near the termination of the study:
 - specific gravity (osmolarity)
 - 2. pH
 - 3. protein
 - 4. ketones
 - 5. glucose
 - 6. bilirubin
 - 7. urobilinogen
 - 8. occult blood
 - 9. microscopic observation of casts, etc.
- 3. Moribund animals should be sacrificed and a complete necropsy and tissue/blood collection performed, to lessen the likelihood of unobserved death and post mortem autolysis. Animals found dead will be subjected to a gross necropsy. Histopathology on these animals will be at the discretion of the Pathologist.

4. Gross Necropsy

a. All animals are subjected to gross necropsy and examination of external surface, all orifices, cranial cavity, external and cut surfaces of the brain and spinal cord, the thoracic, abdominal and pelvic cavities and their viscera; the cervical tissues and organs, and carcass.

OP-STX-74 PAGE 5 of 9 15 May 1987

b. The following tissues are weighed:

liver

kidneys

inrenals

heart

gonads

brain

5. Histopathology

a. Animals in vehicle and cage control and high dose groups will have histopathology performed on:

brain (3 levels)

eye

pituitary

salivary gland

heart

thymus

thyroid/parathyroid

lung w/mainstem bronchi

trachea

esophagus

stomach

small and large intestine

adrenals

OP-STX-74 PAGE 6 of 9 15 May 1987

pancreas

liver

kidneys

urinary bladder

testes

prostate

ovaries

uterine horn and corpus

spleen

bone (with marrow) from sternebrae, vertebrae, tibio-

femoral

joint

skeletal muscle

all gross lesions

- b. Low and intermediate dose groups will have histopathology performed on liver, lung, kidney, heart, any gross lesion and any target organ (determined from either the high dose or from laboratory tests).
 - 6. Data Reporting and Evaluation
- a. Animal records will be arranged by dose level and sex. All means accompanied by standard deviation and/or standard error of the mean will be reported.
- b. In tabular form data must be provided, as follows, for each animal.
 - 1. Identification number
 - 2. Status at and date of death

OP-STX-74 PAGE 7 of 9 15 May 1987

- 3. Age at beginning of study
- c. Toxic, pharmacologic and behavioral effects for each animal and each group.
 - 1. A list of each sign of toxicity affecting any animal
 - 2. Number of animals affected
 - 3. The median time for development of such responses
 - 4. Weekly survival and sacrifice data
- d. Food consumption and body weight data: ' for each animal, the following should be tabulated:
 - 1. Identification number
 - 2. Weekly measured food consumption
 - 3. Weekly body weight
 - 4. Food and body weight means for each group
- 5. If compound mixed with diet, weekly compound consumption per group.
 - e. Clinical laboratory tests results:
 - 1. Rationale for timing if different from this SOP.
- 2. Rationale and method for selection of animals for clinical laboratory tests.
 - 3. Results by animal and by group.
 - f. Gross anatomy results by test group in tabular form
- 1. Data on gross abnormalities, description by animal and group.
- 2. For each individual, body weight, organ weight, and organ to body weight ratio, mean weights of each type of organ, mean organ to body weight ratio.

PAGE 8 of 9 15 May 1987

- g. Histopathology data arranged by test group:
- 1. For each animal, its identification number and complete description and diagnosis of every lesion in the animal. Abnormalities observed repeatedly need to be described only once and may subsequently be supplied by reference, with any individual variation noted as necessary.
- 2. For each animal a table or paragraph listing tissues found to be normal.
- 3. If a grading system is used, a description of the system.
- 4. Counts and incidence of lesions by test groups. In tabular form for each test group:
- a. The number of animals at the start, and number of animals in which any lesion was found.
- b. The number affected by each different type of lesion, the number examined for each type, the percentage of animals examined that were affected.
 - c. The number of different types of lesions.
- 5. Observance of tumors will necessitate the inclusion of a complete description and diagnosis of each tumor.
- h. Data Evaluation: An evaluation of the test results, including the statistical analyses, based on clinical findings, gross necropsy findings and histopathology results will be made. It will include the evaluation of the relationship of the animal's exposure to the test substance and the incidence and severity of all abnormalities, gross and histological changes, organ weight changes, effects on mortality and other toxic effects. It should include dose response curves for effects that appear compound related and description of statistical methods.

OP-STX-74 PAGE 9 of 9 15 May 1987

Approved: 7APR\$7 (Date)

MAJ, MS

Chief, Toxicology Branch

Certified: 13 May 87 (Date)

Quality Assurance Officer

Appendix D: HISTORICAL LISTING OF STUDY EVENTS

Date	<u>Event</u>
21 Oct 86	Male animals arrived at LAIR. They were sexed, observed for illness, weighed, and caged in the GLP Suite.
22 Oct 86	Four male animals were submitted for quality control necropsy.
22,24, 29 Oct 86	Male animals were tattooed.
22 Oct - 3 Nov 86	Male animals were checked daily.
28 Oct 86	Male animals were weighed and food and water consumption monitored (feeders and water bottles weighed).
29 Oct,1 Dec 86,5 Jan,2,3 Feb,10 Mar 87	Ophthalmic examinations were performed at baseline and within 1 week prior to sacrifice for males and females.
4 Nov 86	Male animals were removed from quarantine and weighed, dietary concentrations were calculated, and diet containing test compound was started. Ten baseline control males were submitted for necropsy, hematology, serology, and cholinesterase determinations.
4 Nov 86 - 11 Mar 87	Observations were conducted twice daily.
11,18,25 Nov, 2,9,16,23,30 Dec 86,6,13, 20,27 Jan,3 Feb 87	Males were observed and weighed, and water bottles and feeders were weighed. Diet requirements were recalculated and new feed mixes prepared. Feeders were changed to new mix.
25 Nov 86	Female animals arrived at LAIR. They were sexed, observed for illness, weighed, and caged in the GLP Suite.
26 Nov 86	Female animals were tattooed. Four animals were submitted for quality control necropsy.
26 Nov - 9 Dec 86	Female animals were checked daily.

Appendix D (cont.): HISTORICAL LISTING OF STUDY EVENTS

Date	Event
1 Dec 86	Female animals were weighed.
2,3 Dec 86	Five males per group were submitted for necropsy, hematology, serology, and cholinesterase determinations.
3 Dec 86	Food and water consumption monitored for females (feeders and water bottles weighed).
10 Dec 86	Female animals were removed from quarantine and weighed, dietary concentrations were calculated, and diet containing test compound was started. Ten baseline control females were submitted for necropsy, hematology, serology, and cholinesterase determinations.
17,24,31 Dec 86,7,14,21,28 Jan,4,11,18,25 Feb,4,11 Mar 87	Females were observed and weighed, and water bottles and feeders were weighed. Diet requirements were recalculated and new feed mixes prepared. Feeders were changed to new mix.
7 Jan 87	Five females per group were submitted for necropsy, hematology, serology, and cholinesterase determinations.
3,4,5 Feb 87	Ten males per group were submitted for necropsy, hematology, serology, and cholinesterase determinations.
11,12 Mar 87	Ten females per group were submitted for necropsy, hematology, serology, and cholinesterase determinations.

Appendix E: PROCEDURES FOR DIET PREPARATION

OP-STX-16
Page 1 of 16
20 May 1988
REPLACES: 1 November 1986

TITLE: Diet Preparation for Feeding Studies

SCOPE: These procedures comply with the FDA and EPA GLP Regulations and are applicable to preparation of diets for studies in which the test chemical is administered in the food.

REFERENCES:

- 1. EPA, Toxic Substances Control, GLP Standards (40 CFR 792). Final Rule, 29 Nov 83, (48 FR 53922-53944).
- 2. EPA, Pesticide Programs, GLP Standards (40 CFR 160) Final Rule, 29 Nov 83 (48 FR 53946-53969).
- 3. FDA, Nonclinical Laboratory Studies (21 CFR 58) Final Rule, 22 Dec 78 (43 FR 59986-60025).
- 4. EPA, Health effects test guidelines. Office of Pesticides and Toxic Substances. EPA 560/6-82-001.
- 5. Chan PK, O'Hara GP, Hayes AW. Principles and methods for acute and subchronic toxicity. In: Hayes AW ed. Principles and methods of toxicology. New York: Raven Press, 1982: 1-52.
- 6. Kuhn GO, Rollheiser JJ, Schworer BA, Jameson CW. Methods Development for Mixing Chemicals in Rodent Feed. In: Jameson CW, Waters DB, eds. Chemistry for Toxicity Testing. Boston: Butterworth Publishers, 1984: 59-81.
- Paget GE, Thomson R. Standard operating procedures in toxicology. Baltimore: University Park Press, 1979: 123-158.
- 8. Stevens KR, Gallo MA. Practical considerations in the conduct of chronic toxicity studies. In: Hayes AW ed. Principles and methods of toxicology. New York: Raven Press, 1982: 53-77.

OP-STX-16 PAGE 2 of 16 20 May 1988

20 May 1988
Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

INTRODUCTION:

Overview

Diet preparation consists of four stages: inital testing, target concentration calculations, premix preparation and diet preparation. The time required for each of these stages depends in part on the methods used and on the number of diets prepared. From start to finish, diet preparation for one feeding period can take from one to four days.

Safety Precautions

Certain precautions should be taken to prevent worker exposure and contamination of other areas outside the diet mixing room when preparing the premix and the diet. People preparing diet should be familiar with LAIR SOP OP-STX-69, "Safety Procedures for Handling of Test Compound and Positive Control Carcinogens". The risk of exposure when making premix in the jar mill may not be as great as when making diet in the open mixers since it is not as likely to become airborne, but one should still be cautious when handling the premix since the concentration of the test chemical is much greater. With highly toxic chemicals or suspect carcinogens, individuals preparing the premix should at least wear gloves, disposable gown, and shoe coverings. Individuals preparing the diet should also wear a mask and head covering. The type of gloves, gown, and mask worn will depend on the physical nature of the chemical and the degree of toxicity or carcinogenicity of the chemical. With chemicals of low toxicity these measures are optional. The safety officer for the group should be consulted if there are any questions regarding the appropriate clothing to wear. The protective clothing should not be worn outside the diet mixing area to prevent contamination of other areas. To minimize contamination, it is recommended that the door to the diet mixing room be closed and locked during diet preparation. The jar mill and open mixers should be used in the hood with the blower on.

Cleaning up is also critical for keeping contamination to a minimum. After completing the diet preparation, the equipment should be cleaned including the jar mills, grinding pellets, mixing bowls, beaters, V-type blender, weighing containers, scoops and spatulas. In addition, the counter tops should be cleaned and the floor swept or vacuumed. If a vacuum cleaner is used it should have a HEPA filter on the exhaust. The floor should be cleaned with a wet mop as needed.

OP-STX-16 PAGE 3 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION PROCEDURES:

I. Initial Testing

Before a feeding study starts the following needs to be done: validate the adequacy of the cleaning procedures, determine the stability of the test compound in the feed, and verify the homogeneity of the test compound/feed mixtures.

A. Validating the Cleaning Procedures

- 1. After mixing the test compound with the feed at the highest concentration to be used during a study, wash the blender or mixer. The recommended procedure for washing the blenders/mixers is to fill them about a third full with water and add approximately 10-30 mls of laboratory glassware detergent. Blenders, like the Patterson-Kelley blenders, which have mixing containers that cannot be easily removed for cleaning should be turned on for no more than 1 minute after adding the soapy water. Be sure the blender is sealed tightly so that the water does not leak out. The mixers or blenders should then be rinsed at least twice with water (the volume equal to the wash volume). The blenders will be turned on for approximately 1 minute per rinse.
- 2. These procedures can be modified. The procedures used to clean the mixers and blenders should be documented in the cleaning log book each time they are cleaned, regardless of the method used. The type of detergent, solvent, and number of rinses should be recorded.
- 3. After cleaning the mixer or blender, it will be checked for residual test compound. A small amount (10-50 mls) of an appropriate solvent (water, methanol, ethanol, isopropanpol, etc.) will be added. The blender or mixer will be turned on for no more than 1 minute. The solvent wash will be analyzed by appropriate method (HPLC, GC, etc.). The solvent and method of analysis used will be documented.

B. Stability Determination

The stability of the test compound in the feed should be determined for a period of time no less than the time from which the diet is prepared to the time it is removed from the feeders. The stability should be tested at concentrations which bracket the range of concentrations

OP-STX-16 PAGE 4 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

that will be used in the study. For additional information refer to OP-STX-95, "Analytical Chemistry Requirements for Toxicity Testing of Chemicals."

C. Homogeneity Verification

The adequacy of the mixing procedures is verified by preparing the test compound/feed mixtures at concentrations which bracket the concentrations to be used in the study. The volume of the mixtures prepared should also bracket the volumes to be used in the study. Homogeneity is tested by removing samples from the top, middle, and bottom of the mixing bowl or from each of the three ports of the Patterson-Kelly blenders. Samples will be analyzed by the appropriate method for the test compound (HPLC, GC, etc.). The concentrations of each sample should deviate no more than 10% from the mean of the three samples. For additional information refer to OP-STX-95, "Analytical Chemistry Requirements for Toxicity Testing of Chemicals." Homogeneity should be re-checked periodically during the course of the study.

II. Calculation of Target Concentration for Diets

The time required for calculating the target concentration for each dose group can vary depending on whether they are done automatically by the TOXSYS programs or manually. If the TOXSYS programs are used, the calculations can be done on the same day the diets are blended. If the calculations are performed manually, they should to be done at least one day before the diets are blended.

- A. Place the animals on the powdered feed (control diet) during quarantine. Record feeder weights on TOXSYS IAW SOP OP-ISG-17, "Standard Procedures for Acquiring Toxicology Experiment Data Using a TOXSYS Data Collection Terminal" or manually (Figure 1). If recorded manually, calculate the net food consumed for each animal by subtracting the old feeder weight from the previous new feeder weight. Record the net food consumed on the form in Figure 1.
- B. Determine the mean daily food consumption for each group during the baseline period. If TOXSYS is used, the calculations described in steps B F are done automatically with the DIET Program (SOP OP-ISG-36, Standard Procedures for Computing Diet Mix Concentration on a TOXSYS Data Collection Terminal) on the TOXCART or with the DIETPREP program (SOP OP-ISG-33, Standard Procedures for Reporting Animal Data Base Records on the LAIR Central Computer) on the mainframe computer. If the calculations are done manually,

OP-STX-16 PAGE 5 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

record your results from steps B - F on the form in Figure 2. To calculate the mean daily food consumption manually, average the net food consumed by all the animals in a group and divide that by the number of days in the dose period.

- C. Weigh the animals at the end of the same week that baseline food consumption data are collected during quarantine. Use the data to calculate the mean body weights for each group.
- D. Multiply the dose level (mg/kg/day) for each group by the mean body weight (kg) and divide by the corresponding mean daily food consumption (g/day) to obtain the target concentration (mg/g) of the diet for that group.
- E. Multiply the target concentration by the correction factor to allow for changes in the ratio of the mean body weight and the mean food consumption that occur as a result of growth. The correction factor is based on historical data from animals of the same species and strain which are of similar age and have been fed a similar diet. If no data is available set the correction factor equal to 1 which will not affect the target concentration.
- F. At the end of each week or feeding period recalculate the mean daily food consumption and the mean body weight for each group based on the feeder weights and body weights recorded during that period.
- G. Recalculate the target concentration for each group using the new mean daily food consumption and new mean body weight.
- H. If an animal dies during a feeding period, do not use it in the calculations. In addition, do not include animals whose food consumption is questionable due to some unusual circumstance, such as significant spillage of food or wet food.

III. Premix Preparation

The premix may be made several ways. If the test chemical is a solid that is stable in the feed, then a premix can be made up several days in advance and can be used with all the diets. If the dosing range is too large (greater than a 100 fold difference between low and high dose levels), then 2 or more premixes may be needed. In this situation, making separate premixes for each diet may be easier. Procedures for both methods are given below.

OP-STX-16 PAGE 6 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

A. Preparation of a Single Premix for All Diets

If a single premix is prepared for all diets, then the premix should be prepared at least one day prior to diet preparation. The time required for premix preparation will depend on whether the chemical needs to be ground in the jar mill. If the jar mill is used, premix preparation may require 4-8 hours.

1. Calculation of Premix Concentration

- a. For the first dose period approximate the diet concentration for the each dose group by using estimates of the mean daily food consumption and the mean body weight. For subsequent dose periods use the diet concentrations from the previous period. Select a concentration for the premix that is at least 2 3 times greater than the diet concentration of the high dose group.
- b. Calculate the amount of diet needed for each group by multiplying the number of animals per group times the mean daily food consumption times the number of days per period times 1.5 to allow for wastage.
- c. Approximate the amount of test chemical needed by multiplying the amount of diet needed for each group (g) by its concentration.
- d. To determine the amount of premix needed, divide the amount of test chemical needed (g) by the concentration of the premix (mg/g). Add at least another one third more to this amount to allow for increases in the diet concentrations due to animal growth.

2. Blending of Premix

- a. Calibrate the balances(s) to be used for preparing the premix and record the weights in the appropriate log book(s). Record the LAIR ID number (4-digit number) of the balance on the form in Figure 3.
- b. Weigh out the desired amount of test chemical on the balance. Record the weight and lot number of the test chemical on the form in Figure 3.

Morgan et al--59

OP-STX-16 PAGE 7 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

- c. Transfer the test chemical to the bowl of a mixer. NOTE: If the test chemical is coarsely ground or in clumps, transfer it to the porcelain jar of the jar mill. Add the porcelain grinding pellets. Grind the test chemical alone for at least 15 minutes.
- d. Weigh out the amount of feed needed to achieve the desired concentration. Record the weight and the lot number of the feed. Record the LAIR ID number for the balance, if different from the one above.
- e. Add a portion of the feed roughly equal to the weight of the test chemical to the mixer or jar mill. Stir with a spatula. If the premix is prepared in the jar mill, grind at least 15 minutes. Repeat this step, doubling the amount of feed added, until all the feed has been added.
- f. Mix the premix with the mixer for 15 minutes in the hood. If the jar mill is used, grind another 15 minutes after the last addition of feed.
- g. Remove at least a 10 g sample from the premix. Part of the sample is for analysis and the remainder is for archival.
- h. Transfer the rest of the premix to a plastic bag and label it clearly with the study number, date, chemical, concentration and your initials. If the premix was prepared in the jar mill, be sure to remove all of the grinding pellets from the premix since they can be harmful to the blender if not detected before adding the premix to the feed (not to mention its effect on the concentration). The easiest way to remove them is to sift the premix "through a large mesh sieve when transfering it to the bag.
- B. Preparation of Separate Premixes for Each Diet

This method is recommended when using a liquid, hygroscopic, or unstable test chemical or when the range of dose levels is large.

- 1. Blending of Premixes with Solid Chemicals
 - a. Calibrate balances (s) to be used in premix

OP-STX-16 PAGE 8 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

preparation and record weights in log book(s). Record the LAIR ID number(s) (4-digit number) of the balance(s) on the form in Figure 4.

- b. Record lot numbers of the test chemical and feed on the form in Figure 4.
- c. Accurately weigh out the test chemical and transfer it to a large beaker (600-2000 ml) or a large mortar if the chemical is coarsely ground or in clumps. Record the weight on the form.
- d. Weight out the total amount of feed to be added to the premix and record the weight on the form. The total weight of the premix should be at least 10% of the total weight of the diet.
- e. From the feed that has been weighed out, take an amount that is roughly equal to the weight of the chemical and add it to the chemical, mixing or grinding afterwards.
- f. Add more feed and mix or grind in, doubling the amount of feed added each time until all the feed has been added.
- g. Transfer to the bowl for the small mixer and mix at low speed for at least 5 minutes in the hood.
- Blending of Premixes with Liquid or Hygroscopic Chemicals
 - a. Calibrate balances(s) to be used in premix preparation and record weights in log book(s). Record the LAIR ID number(s) (4-digit number) of the balance(s) on the form in Figure 4.
 - b. Record lot numbers of the test chemical and feed on the form in Figure 4.
 - c. Accurately weight out test chemical into a small (50-200 ml) beaker. Record weight on the form. NOTE: If the chemical has large clumps or is coarsely ground, weight out the chemical on a weight boat and transfer to a mortar. Grind the chemical alone before adding any feed.
 - d. Weight out the total amount of feed to be

Morgan et al--61 OP-STX-16 PAGE 9 of 16 20 May 1988

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

added to the premix and record the weight on
the form. The total weight of the premix
should be at least 10% of the total weight of
the diet.

- e. Transfer roughly 100 g of the feed that has been weighed to a USS No. 100 mesh sieve and shake until approximately 10g of feed flour have been collected.
- f. Add approximately 1 g of feed flour to the beaker or mortar containing the test chemical and mix or grind. Continue to add 1-2 g increments of flour until all the feed flour has been added. If a weigh boat was used, add the increments of feed to the weigh boat first. Stir with spatula and transfer to the mortar.
- g. Transfer the mixture to the bowl for the small mixer. Add the coarse feed left on the sieve in increments of 25-50 g, stirring the coarse feed in the beaker or mortar first before adding to the bowl. Stir with a spatula after each addition.
- h. Add the remaining feed in increments of roughly 100 g, stirring with a spatula after each addition.
- Mix for at least 5 minutes on low speed in the hood.

IV. Blending of Diets

The type of blender used will depend on the toxicity/ carcinogenicity of the test chemical. If the chemical is highly toxic or suspected of being carcinogenic, the diet should be prepared in the Patterson-Kelley V-type blender which is closed. Should it be necessary to use an open blender like the Hobart with a highly toxic/carcinogenic test chemical, use the blendein the hood. If an open blender is used with a low or moderately toxic chemical, place a large (preferably clear) plastic garbage bag over the blender when mixing to minimize the amount of diet that becomes airborne during mixing.

Each diet requires at least 45 minutes to an hour to prepare, allowingfor set-up and clean-up time. Depending on how many diets there are to prepare, it may require more than one day to complete this stage.

OP-STX-16 PAGE 10 of 16 20 May 1988

į

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

- A. Calibrate the balance(s) to be used for diet preparation and record weights in the appropriate log book.
- B. Calculate the amount of feed that should be added to the premix to get the desired concentration and divide in half. Weigh out the feed into two separate containers (i.e., one half of total into each). Record the weights on the form in Figure 5. Record the lot number and the LAIR ID number(s) (4-digit number) for the balance(s) on the form, too.
- C. If using a single premix prepared ahead of time, weigh out the desired amount of premix and record it on the form. Record the date of the premix and the balance used (if different from the one above).
- D. The procedure for mixing the diet will depend on the blender selected.
 - 1. Hobart or Open Type of Blenders
 - And the premix on top of the feed in the mixing bowl. Add the premix on top of the feed in the mixing bowl, then add the other half of the feed on top of the premix.
 - b. Mix the diet in the mixer for at least 15 minutes.
 - Patterson-Kelley V-Type Blenders
 - a. Transfer half of the feed to the blender shell. Load the blender with the two ports pointing upwards. Make sure the bottom port is sealed tightly before loading. Spread the feed evenly in the bottom of the blender. Add the premix in roughly equal portions to each port and spread it evenly over the feed. Add the remaing feed in a even layer over the premix. Seal the lids tightly on the top ports.
 - b. Mix the diet in the blender for 15 minutes, using the intensifier bar only during the first 5 minutes.
- E. Remove at least a 10 g sample from each diet. Part of the sample is for analysis and the remainder is for archival.
- F. Transfer the rest of the diet to a plastic bag and

Morgan et al--63 OP-STX-16 PAGE 11 of 16 20 May 1988

PROCEDURES FOR DIET PREPARATION Appendix E (cont.):

> label it clearly with the study number, date, chemical, concentration and your initials. To aid in identification the bag may be color coded with tape for the group and sex.

Approved: 27 may88

DON W. KORTE,

MAJ, MSC

Chief, Division'of Toxicology

Certified: 77 Ma

CAROLYN M. LEWIS, MS Cheif, Quality Assurance

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

OP-STX-16 Page 12 of 16 20 May 1988

Figure 1

GLP Study #:						- S	udy T	Study Title:												1
	-		-	╽┟	-			ă	Date of Weighing	et Bir							1 1			
Animal #	32	- <u>- 2</u>	zer z	- -	OF NFT	- =	6	131	9. N	30		ž	á				197			·
		_	-	├		! -	L					+-	1-	-	1-	+-	+-	+		
_	-	-	<u> </u> 	-	_	<u> </u>					Π	İ		Ì	İΤ		İ	1		1
<u> </u> 	\vdash	\vdash	<u> </u>	L	_	<u> </u>	L			Ì	Ī	T	İ	i		H	 	\vdash	İ	
<u>' </u>	╁	├	 	\vdash	-	<u> </u>				T	Ì	T	T	i	Τ	T	¦	\dagger	$\dot{\parallel}$	
$\frac{1}{1}$	\vdash	┝	<u> </u>	╀	-	<u> </u>				İ	İ	T	T	Τ	十	T	†	\dagger	Ť	
<u> </u>		-	<u> </u>	<u> </u>	┞	Ļ				Ì		T	†	†	T	t	†	T	Ť	
		_		_		<u>_</u>	L			İ	İ	İΤ		'	╁╴	t	†	T	T	
<u> </u> 	-	-	<u> </u> 	-	L	L				İ	İ	十	T	 	╁	╁	 	十	\dagger	
	_	_	<u> </u> 	_	_					†	i T	\dagger	╁	†	Ϋ́	1	十	\dagger		
	\vdash									İ	İ	╁╴	十	t	╁	╁	╁	╁	十	
	-	4								<u> </u>	<u>-</u>	╁	\vdash	$\frac{1}{1}$	╁	╁	 	t	T	
 	\dashv	-							j –	╁	İ	╁╴	十	÷	+	$^{+}$	╬	t	十	Ī
<u> </u> 	-	4	_	_						<u>!</u>	i	├-	┢	╁╴	\vdash	+	╁	\dagger	十	T
	_	_										-	\vdash	\vdash	├	┝	 	十	\vdash	1
													-	 	-	-	<u> </u>	 	 -	Π
_	_				_								<u> </u>	<u> </u> 	┝	-	<u>!</u> 	-	┝	Ī
Intefals			Ц							Н		-	\vdash	-	Н	Н		Н	H	
NF= New Feeder OF= Old Feeder NET= Food Consumed		E- Empty T- Tipped W- Vater in Jar	r fn	je r		8 00	Coments:										•			

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

OP-STX-16 Page 13 of 16 20 May 1988

Figure 2

Group #	Dose Level mg/kg/da
Sex	For Dates to
1. Mean Daily Food Cons	umption (MDFC)
*	g/day
2. Mean Body Weight (MB	₹)
.	kg
4. Correction Factor (C	
= CF X TC =	mg/g

Appendix	E	(cont.):	PROCEDURES	FOR	DIET	PREPARATION
				Figure	3	OP-STX-16 Page 14 of 16 20 May 1988
		GLP Study #				Date
			BLENDING OF A	SINGLE F	PREMIX FO	R ALL DIETS
		1. Test Comp	ound			
		Lot No(s)	. (if available)			
		Weight				
		LAIR ID #	of Balance Used			
		2. Feed				
		Lot No(s)	•			
			of Balance Used		·	
		Comments:				

Prepared by _____

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

OP-STX-16 Page 15 of 16 20 May 1988

Prepared by

Figure 4

•	rigure 4
GLP Study #	Date
BLENDING OF SEPARATE	PREMIXES FOR EACH DIET
Lot No(s) of Test Chemical	
Lot No(s). of Feed	
LAIR ID No(s). of Balance(s) Used	
Group # Sex	
Conc. mg/g Batch #	Concmg/g Batch #
Wt. of Chemical g	Wt. of Chemical
Wt. of Feedg	Wt. of Feed
	Group # Sex
Conc. mg/g Batch #	Concmg/g Batch #
Wt. of Chemical g	Wt. of Chemical
Wt. of Feedg	Wt. of Feed
Group # Sex	Group # Sex
Concmg/g Batch #	Conc. mg/g Batch #
Wt. of Chemicalg	Wr. of Chemical
Wt. of Feedg	Wt. of Feed

Appendix E (cont.): PROCEDURES FOR DIET PREPARATION

OP-STX-16 Page 16 of 16 20 May 1988 Figure 5 GLP Study # Date BLENDING OF DIETS Lot No(s). of Feed Date(s) Premix Prepared _____ LAIR ID No(s). of Balance(s) Used Group #_____ Sex___ Group #____ Sex____ Conc. mg/g Batch f Conc. mg/g Batch f Wt. of Premix_____g Wt. of Premix _______8 Wt. of Feed______8 Wt. of Feed_____g Group # Sex Group #_____Sex___ Conc. mg/g Batch # Conc. mg/g Batch Wt. of Premix_____g Wt. of Premix_____g Wt. of Feed_____8 Wt. of Feed_____g Group #_____Sex___ Group #____ Sex____ Conc. mg/g Batch #____ Conc. mg/g Batch # Wt. of Premix_____g Wt. of Premix____g Wt. of Feed______8 Wt. of Feed_____8

Prepared by _____

Feed mixtures containing pyridostigmine bromide (PYR) were prepared for GLP Study 86005 to provide dose levels of 1, 10, 30, 60, and 90 mg/kg body weight/day. PYR was determined to be stable in the diet for at least 8 days. New diets were prepared weekly to compensate for changes in food consumption and body weights due to growth. Male and female diets were prepared separately due to differences in body weight and food consumption. The target concentration of PYR in the feed mixtures ranged from 0.011 to 2.590 mg PYR/g feed.

<u>Materials</u>

Pyridostigmine bromide (Lot No. 590034) was supplied by Walter Reed Army Institute of Research (Washington, DC). Certified Rodent Chow #5002 (Lot Nos. JULY10861AMEAL, SEP03862AMEAL, SEP05862DMEAL, OCT03861EMEAL, JULY22861DMEAL, NOV13862CMEAL, NOV05861BMEAL, DEC04862EMEAL, JAN05871BMEAL, DEC16862DMEAL, FEB04872BMEAL, FEB26871DMEAL) was obtained from Ralston Purina (St. Louis, MO). All other chemicals were reagent grade. Tetramethylammonium chloride and 1-heptanesulfonic acid, sodium salt, were obtained from Aldrich Chemical Company (Milwaukee, WI); sodium phosphate monobasic was obtained from J.T. Baker Chemical Company (Phillipsburg, NJ). The water used in preparation of all HPLC solutions was deionized, distilled, and purified of organics using an Organicpure Water Purifier (Barnstead, Boston, MA).

The chromatographic system consisted of a Hewlett-Packard 1090 liquid chromatograph with diode array detector, an 85 B Personal Computer, a DPU Multichannel Integrator, and a ThinkJet Printer (Santa Clara, CA). Separations were obtained on a Brownlee silica column (4.6 x 100 mm, Brownlee Labs, Inc., Santa Clara, CA).

Methods

Stock solutions of PYR were made at two concentrations for use in the preparation of the standard curve. Solution 1 contained 10 mg PYR/ml water and Solution 2 contained 1 mg PYR/ml water. Each solution was divided into $500\text{-}\mu\text{l}$ portions, placed in plastic microcentrifuge tubes and stored in the freezer. New stock solutions were made every month. Six concentrations of PYR in rodent chow were used for the standard curve and were prepared by adding various amounts of the stock solutions to rodent chow as shown in Table 1.

Appendix F (cont.): ANALYSIS OF FEED MIXTURES
Table 1

Level	Target Conc. (mg PYR/g chow)	Chow (g)	Amt. of Stock Solution (µ1)	Stock Solution #
1	2.00	1	200	1
2	1.00	1	100	1
3	0.50	1	50	1
4	0.10	1	100	2
5	0.05	1	50	2
6	0.01	2	20	2

A standard curve was run every day that analyses were performed.

Samples of the feed mixtures were extracted for analysis by adding water, shaking on a mechanical shaker, and centrifuging. The supernatant was poured into a volumetric flask, based on the concentration of sample as shown in Table 2.

Table 2

Dose Level (mg PYR/ g chow)	g of Diet Analyzed	ml of Water Added per Extraction	Minutes of Shaking per Extraction	Number of Extractions per Sample	Final Vol. (ml)
2.00	1	35	15	4	200
1.00	1	35	15	4	200
0.50	1	35	15	4	200
0.10	1	25	40	2	50
0.05	1	25	40	2	50
0.01	2	25	40	2	50

The volumetrics containing the combined extracts of each sample were brought to volume with water and mixed well.

Small portions of these solutions were filtered through 0.2 μm membrane filters directly into sample vials for subsequent HPLC analysis.

To determine the homogeneity of the feed mixtures, samples were taken from the left, right, and bottom ports of the Twin Shell Blender used in the preparation of the diet and analyzed in duplicate or triplicate for each dose level. Samples for testing homogeneity were collected during the first and thirteenth weeks of the study.

The analysis of PYR in the feed mixtures was accomplished under the following HPLC conditions:

Column: Brownlee silica 5 μ m (100 x 4.6 mm)

Flow: 1.5 ml/min

Mobile Phase: 20% acetonitrile, 80% buffer

Buffer: 0.01 M heptanesulfonic acid

0.01 M sodium dihydrogen phosphate 0.0025 M tetramethylammonium chloride pH adjusted to 3 with sulfuric acid

Wavelength Monitored: 269 nm

Injection Volume: $25 \mu l$

Under these conditions, PYR eluted with a retention time of 2.5 minutes.

Calculations

All calculations were performed on either a TI 55-111 calculator or the HP-85 personal computer, which is part of the HP 1090 HPLC System. Results were in close agreement using either method. Least squares linear regression analysis of the standard concentration versus the peak height of PYR was performed to obtain the equation of the best fitting line in the form of

$$y = mx + b$$

where y is the peak height, m is the slope, x is the concentration $(ng/\mu l)$, and b is the intercept. The concentration of each sample was calculated by substituting for y the peak height obtained by HPLC analysis and solving for x. To calculate the concentration of PYR in the diet in terms of mg PYR/g diet, the concentration of extract was multiplied by the dilution factor and divided by the weight of the diet sample extracted.

Concentration in diet = $\frac{\text{Conc. of extract x dilution factor}}{\text{Grams of diet extracted}}$

When the calculations were performed on the 85 B personal computer, an average standard was entered into the program and the points on the standard curve run each day were averaged in with this curve. The resulting standard curve was used for calculating the values for that day's samples. Final concentrations of PYR in the diet were calculated on the 85 B by entering the proper dilution factor for each sample before the runs were made. All calculations were performed when the runs were integrated and the results were printed out on the chromatographic reports.

Initial intentions were to use the 85 B for all calculations since it was more convenient and less time consuming than the TI 55-111. However, due to either operator or instrumental error, results were not always obtained from the 85 B. In these instances, the TI 55-111 was used.

After the first month of the study, it was noted that the results for the lowest concentration dose were more consistent and accurate when a standard curve consisting of only the lowest three values of the daily standard curve was used. This curve was always calculated using the TI 55-111.

The plots of PYR concentration versus the peak height were linear within the range of concentrations analyzed. The results of the regression analysis for each run and the method of calculation are shown in Table 3.

Table 3: Regression Analysis Values for Each Run

Date of Run	y-intercept	Slope	Method of Calculation
5-Nov-86*			85 B
6-Nov-86	0.11991	0.06701	TI 55-111
7-Nov-86	-0.11140	0.07134	TI 55-111
10-Nov-86	-0.09979	0.07240	TI 55-111
12-Nov-86*			85 B
13-Nov- ×6	-0.13481	0.07124	T'I 55-111

^{*} These results were not printed out and saved.

Table 3 (cont.): Regression Analysis Values for Each Run

					
Date of Run	1		y-intercept	Slope	Method of Calculation
14-Nov-86			0.21714	0.06763	TI 55-111
17-Nov-86			-0.15374	0.07350	TI 55-111
18-Nov-86*					85 B
19-Nov-86			-0.02409	0.06918	TI 55-111
20-Nov-86			-0.02409	0.06918	TI 55-111
21-Nov-86			0.02978	0.06992	85 B
24-Nov-86			-0.10483	0.07487	85 B
25-Nov-86			-0.10483	0.07487	85 B
1-Dec-86			0.04999	0.06381**	85 B
2-Dec-86			-0.11485	0.06261	85 B
3-Dec-86			0.18716	0.05320	TI 55-111
3-Dec-86	(low	conc)	-0.07324	0.05895	TI 55-111
4-Dec-86			-0.02315	0.06153	TI 55-111
4-Dec-86	(low	conc)	-0.05328	0.06137	TI 55-111
10-Dec-86			0.04529	0.06122	85 B
11-Dec-86			-0.03430	0.06159	85 B
12-Dec-86			-0.03430	0.06160	85 B
17-Dec-86			0.04519	0.06360	85 B
18-Dec-86			0.06507	0.06427	85 B
5-Jan-87			0.09999	0.06428	85 B
6-Jan-87			0.04261	0.06681	85 B
6-Jan-87	(low	conc)	-0.02199	0.06834	TI 55-111
7-Jan-87			0.03631	0.06719	85 B
7-Jan~87	(low	conc)	0.08869	0.07162	TI 55-111
9-Jan-87			0.04124	0.06607	85 B
9-Jan-87	(low	conc)	-0.06343	0.06929	TI 55-111
12-Jan-87			0.03472	0.06506	85 B
13-Jan-87			0.05315	0.06639	85 B
14-Jan-87			-0.02611	0.06859	85 B
15-Jan-87			-0.03996	0.06839	85 B
20-Jan-87			0.00972	0.06744	85 B
21-Jan-87			-0.03440	0.06749	85 B
22-Jan-87			-0.00037	0.06749	85 B
27-Jan-87			-0.01826	0.06223**	85 B
28-Jan-87			-0.01548	0.06419	TI 55-111
29-Jan-87			-0.10175	0.06136	85 B
2-Feb-87			-0.00757	0.06179	85 B
27-Jan-87 28-Jan-87 29-Jan-87			-0.01826 -0.01548 -0.10175	0.06223** 0.06419 0.06136	85 B TI 55-111 85 B

^{*} These results were not printed out and saved.

** The column went dry and affected the slope of the standard curve.

Table 3 (cont.): Regression Analysis Values for Each Run

				
Date of Ru	n	y-intercept	Slope	Method of Calculation
3-Feb-87		-0.00757	0.06179	85 B
3-Feb-87	(low conc)	-0.03661	0.06215	TI 55-111
4-Feb-87		-0.04286	0.06288	85 B
5-Feb-87		-0.03285	0.06224	85 B
9-Feb-87		-0.01013	0.06192	85 B
9-Feb-87	(low conc)	-0.09660	0.06329	TI 55-111
11-Feb-87		-0.02811	0.06218	85 B
11-Feb-87	(low conc)	-0.07611	0.06165	TI 55-111
12-Feb-87		-0.02435	0.06189	85 B
12-Feb-87	(low conc)	-0.06025	0.06128	TI 55-111
18-Feb-87		-0.01429	0.06154	85 B
18-Feb-87	(low conc)	-0.06049	0.06064	TI 55-111
19-Feb-87		-0.08454	0.06434	85 B
25-Feb-87		0.09787	0.05144*	85 B
25-Feb-87	(low conc)	-0.06000	0.05496	TI 55-111
26-Feb-87		-0.05239	0.04827	85 B
4-Mar-87		0.02750	0.05762	85 B
5-Mar-87		0.00086	0.05842	85 B
11-Mar-87		0.05947	0.05599	85 B
12-Mar-87		0.00224	0.05686	85 B
18-Mar-87		0.03156	0.05721	85 B
18-Mar-87	(low conc)	-0.03014	0.05723	TI 55-111
25-Mar-87	, ,	-0.00694	0.05624	85 B
25-Mar-87	(low conc)	0.03689	0.05099	TI 55-111
1-Apr-87	,,	0.00634	0.05629	85 B
8-Apr-87		-0.02953	0.05749	85 B
8-Apr-87	(low conc)		0.05749	TI 55-111
21-Apr-87	, ,,	0.02658	0.06218	85 B
22-Apr-87		-0.03619	0.05784	85 B
5-May-87		-0.01189	0.05723	85 B
11-May-87		-0.06157	0.05754	85 B
11-May-87	(low conc)		0.05509	TI 55-111
LI May 07	(200 00110)	0.07000	0.0000	11 00 111

^{*} The column was replaced with a new one.

The results from the analysis of the diet mixtures are shown in Table $4. \,$

Appendix F (cont.): ANALYSIS OF FEED MIXTURES
Table 4

Sex Week Conc.* Number Prepared Date Date Date Date Determined Target Date Date Date Determined Target Date Date Date Determined Determined Date Date Date Date Date Determined Date Dat			·				· · · · · · · · · · · · · · · · · · ·	
3/M 1 0.1064 1 4-Nov-86 10-Nov-86 0.0972 91.4 3/M 1 0.1064 2 4-Nov-86 10-Nov-86 0.0989 93.0 4/M 1 0.3260 1 4-Nov-86 10-Nov-86 0.3150 96.6 4/M 1 0.3260 2 4-Nov-86 10-Nov-86 0.3150 97.5 5/M 1 0.6339 1 4-Nov-86 6-Nov-86 0.6153 97.1 6/M 1 1.0099 1 4-Nov-86 6-Nov-86 0.6153 97.1 6/M 1 1.0099 1 4-Nov-86 17-Nov-86 0.0127 102.4 2/M 2 0.0124 1 11-Nov-86 17-Nov-86 0.0127 102.4 2/M 2 0.0124 2 11-Nov-86 17-Nov-86 0.1092 91.8 3/M 2 0.1190 1 11-Nov-86 17-Nov-86 0.1092 91.8 3/M 2 0.1190 2 11-Nov-86 17-Nov-86 0.3677 102.5 4/M 2 0.3590 1 11-Nov-86 17-Nov-86 0.3487 97.1 5/M 2 0.7470 1 11-Nov-86 13-Nov-86 0.3487 97.1 5/M 2 0.7470 1 11-Nov-86 13-Nov-86 0.3487 97.1 5/M 3 0.0135 1 18-Nov-86 13-Nov-86 0.0122 90.4 2/M 3 0.0135 2 18-Nov-86 25-Nov-86 0.0122 90.4 2/M 3 0.0135 2 18-Nov-86 19-Nov-86 0.1220 91.0 3/M 3 0.1340 1 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 1 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 1 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 2 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 1 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 2 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 2 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 2 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 3 0.3990 2 18-Nov-86 19-Nov-86 0.3860 96.7 4/M 4 0.0150 1 25-Nov-86 2-Dec-86 0.0138 92.0 3/M 4 0.1470 1 25-Nov-86 2-Dec-86 0.0138 92.0 3/M 4 0.1470 2 25-Nov-86 2-Dec-86 0.0138 92.0 3/M 4 0.1470 2 25-Nov-86 2-Dec-86 0.0138 92.0 3/M 4 0.4400 1 25-Nov-86 2-Dec-86 0.0130 93.6 4/M 4 0.4400 1 25-Nov-86 2-Dec-86 0.0120 93.0 5/M 4 0.4400 1 25-Nov-86 2-Dec-86 0.0120 93.0 5/M 4 0.4400 1 25-Nov-86 2-Dec-86 0.0120 93.0 5/M 4 0.4400 1 25-Nov-86 2-Dec-86 0.0120 93.0 5/M 4 0.8460 1 25-Nov-86 2-Dec-86 0.0120 93.0 6/M 4 0.8460 1 25-Nov-86 1-Dec-86 0.0120 93.0	_						Determined	Target
5/M 4 0.8460 1 25-Nov-86 1-Dec-86 0.7870 93.0 6/M 4 1.2610 1 25-Nov-86 1-Dec-86 1.1620 92.1	2/M 3/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 6/M 2/M 3/M 4/M 5/M 4/M 5/M 6/M 2/M 3/M 4/M 4/M 5/M 4/M 5/M 4/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 4/M 5/M 5/M 5/M 5/M 5/M 5/M 5/M 5/M 5/M 5	Week 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4	Conc.* 0.0114 0.1064 0.1064 0.3260 0.3260 0.6339 1.0099 0.0124 0.1190 0.3590 0.7470 1.4330 0.0135 0.0135 0.0135 0.0135 0.1340 0.3990 0.7595 1.2203 0.0150 0.0150 0.1470 0.1470 0.4400	Number 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1	4-Nov-86 4-Nov-86 4-Nov-86 4-Nov-86 4-Nov-86 4-Nov-86 4-Nov-86 11-	5-Nov-86 10-Nov-86 10-Nov-86 10-Nov-86 10-Nov-86 6-Nov-86 6-Nov-86 17-Nov-86	Determined by Analysis 0.0122 0.0972 0.0989 0.3150 0.3180 0.6153 1.0447 0.0127 0.0131 0.1092 0.1109 0.3677 0.3487 0.7330 1.3510 0.0122 0.0126 0.1220 0.1180 0.3860 0.3710 0.7163 1.1000 0.0138 0.0138 0.0138 0.1330 0.1360	Target Conc. 107.0 91.4 93.0 96.6 97.5 97.1 103.4 105.6 91.8 93.2 102.5 97.1 98.1 94.3 90.4 93.3 91.0 88.1 96.7 93.0 94.3 90.1 92.0 90.5 92.5
2/M 5 0.0158 2 2-Dec-86 3-Dec-86 0.0144 91.1	4/M 4/M 5/M 6/M 2/M	4 4 4 4 5	0.4400 0.4400 0.8460 1.2610 0.0158	1 2 1 1	25-Nov-86 25-Nov-86 25-Nov-86 25-Nov-86 2-Dec-86	2-Dec-86 2-Dec-86 1-Dec-86 1-Dec-86 3-Dec-86	0.4120 0.4100 0.7870 1.1620 0.0146	93.6 93.2 93.0 92.1 92.4
2/M	3/M 4/M 4/M 5/M 6/M	4 4 4 4	0.1470 0.4400 0.4400 0.8460 1.2610	2 1 2 1	25-Nov-86 25-Nov-86 25-Nov-86 25-Nov-86 25-Nov-86	2-Dec-86 2-Dec-86 2-Dec-86 1-Dec-86 1-Dec-86	0.1360 0.4120 0.4100 0.7870 1.1620	92.5 93.6 93.2 93.0 92.1

^{*} mg PYR/g chow.

Appendix F (cont.): ANALYSIS OF FEED MIXTURES Table 4 (cont.)

Group/ Sex	Study Week	Target Conc.*	Batch Number	Date Prepared	Date Analyzed	Conc. Determined by Analysis	% of Target Conc.
5/M 6/M 2/M 2/M 3/M 3/M 4/M 5/M 6/M 2/F 3/F 4/F 5/F 6/F 2/M 2/M	5 5 6 6 6 6 6 1 1 1 7	Conc.* 0.8840 1.2870 0.0172 0.0172 0.1702 0.1702 0.5129 0.9769 1.4170 0.0117 0.1127 0.3165 0.6925 1.0542 0.0183 0.0183	Number 1 1 1 2 1 1 1 1 1 1 1 1 2	2-Dec-86 2-Dec-86 9-Dec-86 9-Dec-86 9-Dec-86 9-Dec-86 9-Dec-86 9-Dec-86 10-Dec-86 10-Dec-86 10-Dec-86 10-Dec-86 10-Dec-86	3-Dec-86 4-Dec-86 10-Dec-86 10-Dec-86 12-Dec-86 12-Dec-86 12-Dec-86 12-Dec-86 11-Dec-86 11-Dec-86 11-Dec-86 11-Dec-86 11-Dec-86 9-Jan-87	Determined by Analysis 0.8820 1.1410 0.0185 0.0177 0.1677 0.1756 0.5351 0.9762 1.5680 0.0117 0.1167 0.3483 0.6626 1.0889 0.0180 0.0165	99.8 88.7 107.6 102.9 98.5 103.2 104.3 99.9 110.7 100.0 103.5 110.0 95.7 103.3 98.4 90.2
3/M 3/M 5/M 5/F 5/F 5/F 2/M 3/M 5/M 5/F 5/F 4/F 3/F	777772222288888883333	0.1763 0.1763 0.5160 1.0377 1.5221 0.0123 0.1179 0.3480 0.7678 1.3770 0.0180 0.1841 0.1841 0.5351 1.1079 1.6033 0.0134 0.1240 0.3725	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16-Dec-86 16-Dec-86 16-Dec-86 16-Dec-86 17-Dec-86 17-Dec-86 17-Dec-86 17-Dec-86 17-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 23-Dec-86 24-Dec-86 24-Dec-86	17-Dec-86 17-Dec-86 17-Dec-86 17-Dec-86 17-Dec-86 9-Jan-87 18-Dec-86 18-Dec-86 18-Dec-86 18-Dec-86 9-Jan-87 9-Jan-87 9-Jan-87 9-Jan-87 5-Jan-87 6-Jan-87 6-Jan-87	0.1843 0.1869 0.4852 1.0989 1.5240 0.0114 0.1163 0.3560 0.7849 1.4760 0.0156 0.0163 0.1759 0.1809 0.3202 1.1147 1.6736 0.0123 0.0123 0.1215 0.3687	104.5 106.0 94.0 105.9 100.1 92.7 98.6 102.3 102.2 107.2 86.7 90.6 95.5 98.3 59.8 100.6 104.4 91.8 98.0 99.0

^{*} mg PYR/g chow. @ This sample was misprepared.

Appendix F (cont.): ANALYSIS OF FEED MIXTURES

Table 4 (cont.)

Group/ Sex	Study Week	Target Conc.*	Batch Number	Date Prepared	Date Analyzed	Conc. Determined by Analysis	% of Target Conc.
_	_	_				Determined	Target
5/F 6/F 2/M 2/M 3/M 3/M 4/M	5 11 11 11 11	1.2662 0.0200 0.0200 0.2005 0.2005 0.5532	1 1 2 1 2	7-Jan-87 7-Jan-87 13-Jan-87 13-Jan-87 13-Jan-87 13-Jan-87	14-Jan-87 20-Jan-87 20-Jan-87 15-Jan-87 15-Jan-87	1.2310 0.0182 0.0194 0.1930 0.1969	97.2 91.0 97.0 96.3 98.2
5/M 6/M 2/F 3/F 4/F 5/F	11 11 11 6 6 6	1.2287 1.7356 0.0147 0.1483 0.4410 0.9293	1 1 1 1 1	13-Jan-87 13-Jan-87 13-Jan-87 14-Jan-87 14-Jan-87 14-Jan-87	15-Jan-87 15-Jan-87 15-Jan-87 20-Jan-87 20-Jan-87 20-Jan-87 20-Jan-87	0.5288 1.2685 1.6904 0.0125 0.1557 0.4354 0.9418	95.6 103.2 97.4 85.0 105.0 98.7 101.3

^{*} mg PYR/g chow.

Appendix F (cont.): ANALYSIS OF FEED MIXTURES

Table 4 (cont.)

Group/ Sex	Study Week	Target Conc.*	Batch Number	Date Prepared	Date Analyzed	Conc. Determined by Analysis	% of Target Conc.
Sex 6/FMMMMMFFFFFFMMMMMMFFFFFMMMMMMMFFFFFMMMMM	6 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	Conc.* 1.3230 0.0215 0.0215 0.2045 0.2045 0.6292 1.2612 1.8150 0.0157 0.1648 0.4669 0.9876 1.3706 0.0237 0.0237 0.0237 0.0237 0.0238 0.6722 1.3443 2.5908 0.0159 0.1585 0.4538 1.0582 1.3981 0.0229 0.2183 0.6800 1.3756 1.9451 0.0170	Number 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared 14-Jan-87 20-Jan-87 20-Jan-87 20-Jan-87 20-Jan-87 20-Jan-87 20-Jan-87 21-Jan-87 21-Jan-87 21-Jan-87 21-Jan-87 27-Jan-87 28-Jan-87 28-Jan-87 3-Feb-87 3-Feb-87 3-Feb-87 3-Feb-87 3-Feb-87 3-Feb-87	20-Jan-87 22-Jan-87 22-Jan-87 21-Jan-87 21-Jan-87 21-Jan-87 21-Jan-87 21-Jan-87 21-Jan-87 22-Jan-87 22-Jan-87 22-Jan-87 22-Jan-87 22-Jan-87 29-Jan-87 29-Jan-87 29-Jan-87 29-Jan-87 2-Feb-87 3-Feb-87 3-Feb-87 3-Feb-87 4-Feb-87 5-Feb-87 5-Feb-87 5-Feb-87 5-Feb-87	Determined by Analysis 1.2889 0.0188 0.0185 0.1976 0.2055 0.6333 1.2740 1.8737 0.0142 0.1541 0.4458 0.9656 1.3503 0.0227 0.0225 0.2183 0.2182 0.6550 1.4118 2.7393 0.0143 0.1558 0.4669 1.0610 1.4149 0.204 0.2096 0.2023 0.6770 1.3501 1.8748 0.0155	Target Conc. 97.4 87.4 86.0 96.6 100.5 100.7 101.0 103.2 90.4 93.5 95.8 98.5 97.8 98.9 98.9 98.9 98.9 98.9 98.3 105.0 105.7 89.9 98.3 102.9 100.3 101.2 89.1 96.0 92.7 99.6 98.1 96.4 91.2
3/F 4/F 5/F 6/F 2/F	9 9 9 9	0.1613 0.4808 1.0726 1.5170 0.0173	1 1 1 1	4-Feb-87 4-Feb-87 4-Feb-87 4-Feb-87 11-Feb-87	9-Feb-87 9-Feb-87 9-Feb-87 9-Feb-87 12-Feb-87	0.1539 0.4807 1.1012 1.5767 0.0157	95.4 100.0 102.7 103.9 90.8

^{*} mg PYR/g chow.

Appendix F (cont.): ANALYSIS OF FEED MIXTURES

Table 4 (cont.)

Group/ Sex	Study Week	Target Conc.*	Batch Number	Date Prepared	Date Analyzed	Conc. Determined by Analysis	% of Target Conc.
~ ′-					10 - 1 05		
3/F	10	0.1780	1	11-Feb-87	12-Feb-87	0.1717	96.5
4/F	10	0.5012	1	11-Feb-87	12-Feb-87	0.5146	102.7
5/F	10	1.1047	1	11-Feb-87	12-Feb-87	1.1554	104.6
6/F	10	1.5811	1	11-Feb-87	12-Feb-87	1.6181	102.3
2/F	11	0.0181	1	18-Feb-87	19 - Feb-87	0.0174	96.1
3/F	11	0.1822	1	18-Feb-87	19-Feb-87	0.1830	100.4
4/F	11	0.5229	1	18-Feb-87	19-Feb-87	0.5275	100.9
5/F	11	1.1537	1	18-Feb-87	19-Feb-87	1.1742	101.8
6/F	11	1.8954	1	18-Feb-87	19-Feb-87	1.9432	102.5
2/F	12	0.0239	1	25-Feb-87	26-Feb-87	0.0237	99.2
3/F	12	0.2186	1	25-Feb-87	26-Feb-87	0.2159	98.8
4/F	12	0.5751	1	25-Feb-87	26-Feb-87	0.6168	107.3
5/F	12	1.2716	1	25-Feb-87	26-Feb-87	1.3129	103.2
6/F	12	1.7411	1	25-Feb-87	26-Feb-87	1.8597	106.8
2/F	13	0.0186	1	4-Mar-87	5-Mar-87	0.0162	87.1
3/F	13	0.1843	1	4-Mar-87	5-Mar-87	0.1841	99.9
4/F	13	0.5319	1	4-Mar-87	5-Mar-87	0.5302	99.7
5/F	13	1.1575	1	4-Mar-87	5-Mar-87	1.1687	101.0
6/F	13	1.6050	1	4-Mar-87	5-Mar-87	1.7029	106.1
4/F	14	0.5551	1	11-Mar-87	12-Mar-87	0.5534	99.7
5/F	14	1.1195	ī	11-Mar-87	12-Mar-87	1.1803	105.4

^{*} mg PYR/g chow.

Results of the homogeneity study are presented in Tables 5, 6, and 7.

Table 5

Target Conc. of PYR (mg/g)	Site of Sampling	Conc. Detn. by Analysis (mg/g)	Mean Conc. (mg/g)	Absolute Deviation from Mean (%)
		Week 1 - Males	3	
0.0114	Right Left Bottom	0.01208 0.01220 0.01225	0.01218	0.8 0.2 0.6
0.1070	Right Left Bottom	0.09357 0.09537 0.09893	0.09596	2.5 0.6 3.1
0.3260	Right Left Bottom	0.3256 0.3046 0.3145	0.3149	3.4 3.3 0.1
0.6339	Right Left Bottom	0.6140 0.6272 0.6048	0.6153	0.2 1.9 1.7
1.0099	Right Left Bottom	1.0461 1.0136 0.9185	0.9927	5.4 2.1 7.5

Table 6

Target Conc. of PYR (mg/g)	Site of Sampling	Conc. Detn. by Analysis (mg/g)	Mean Conc. (mg/g)	Absolute Deviation from Mean (%)
	V	Week 13 - Male	s	
0.0237	Right Left Bottom	0.0227 0.0227 0.0219	0.0224	1.2 1.2 2.4
0.2375	Right Left Bottom	0.2292 0.2286 0.2187	0.2255	1.6 1.4 3.0
0.2208	Right Left Bottom	0.2183 0.2234 0.2138	0.2185	0.1 2.2 2.2
0.6722	Right Left Bottom	0.6519 0.6643 0.6489	0.6550	0.5 1.4 0.9
1.3443	Right Left Bottom	1.3841 1.4261 1.4118	1.4073	1.7 1.3 0.3
2.5908	Right Left Bottom	2.7393 2.7495 2.7352	2.7413	0.1 0.3 0.2

Table 7

Target Conc. of PYR (mg/g)	Site of Sampling	Conc. Detn. by Analysis (mg/g)	Mean Conc. (mg/g)	Absolute Deviation From Mean (%)
	We	eek 13 - Femal	es	
0.0159	Right Left Bottom	0.0141 0.0145 0.0142	0.0143	1.2 1.6 0.5
0.1585	Right Left Bottom	0.1563 0.1560 0.1551	0.1558	0.3 0.1 0.4
0.4538	Right Left Bottom	0.4930 0.4431 0.4647	0.4669	5.6 5.1 0.5
1.0582	Right Left Bottom	1.0253 1.0846 1.0730	1.0610	3.4 2.2 1.1
1.3981	Right Left Bottom	1.4140 1.4656 1.3652	1.4149	0.1 3.6 3.5

Discussion

The concentration of PYR in the mixtures was within 10% of the target concentration with the exception of 10% of the diet mixture samples, which were within 15% of the target concentration. One sample was misprepared and was 40% low. Samples collected during the first and thirteenth weeks of the study showed that the PYR concentrations were homogeneous in the feed over the range tested, according to the EPA and NIH criteria for homogeneity¹.

¹ EPA, GLP Standards, Final Rule (40 CFR 160) as published in the Federal Register, Vol. 48, n.l. 230, Nov 29, 1983, p. 53955-53959.

OP-ACH-83 Page 1 of 18 Feb 20, 1987

Title: AutoAnalyzer II Procedure for the Determination of Erythrocyte Acetylcholinesterase and Plasma Cholinesterase Activities in Pyridostigmine - Inhibited Blood.

Scope: This SOP specifies the instrumentation, reagents, and procedures used to measure cholinesterase activities in animal blood derived from investigations which involve the use of pyridostigmine or similar anti-cholinesterase compounds.

References:

- 1. FDA GLP regulations (21 CFR58) and preamble as published in the Federal Register, 22 Aug 78 (43 FR 5986-60025).
- 2. EPA GLP regulations (40 CFR792) and preamble as published in the Federal Register, 29 Nov 83 (48 FR 53922).
- 3. Kaminskis, A., "Determination of Erythrocyte Acetylcholinesterase Activity in Pyridostigmine Inhibited Human Blood." SOP Analytical Chemistry Branch, US Army Medical Research Institute for Chemical Defense, 18 Jun 85.
- 4. Ellman, G.L., K.D. Courtney, V. Andres, Jr. and R.M. Featherstone. "A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity." <u>Biochem. Pharm.</u> 7:88-95, 1961.
- 5. Humiston, C.G. and G.J. Wright. "An Automated Method for the Determination of Cholinesterase Activity." Toxicology and Applied Pharm. 10:467-480, 1967.
- 6. Groff, W.A., A. Kaminskis and R.I. Ellin. "Interconversion of Cholinesterase Enzyme Activity Units by the Manual Delta pH Method and a Recommended Automated Method." Clin Tox.. 9:353-358, 1976.
- 7. Technical Publication No. TG1-0170-01, "Course Guide for the Technicon AutoAnalyzer II System." Technicon Instruments Corp., Tarrytown, New York, Aug 72.
- 8. Technicon Manual No. TP1-0170-10, "Programmed Instruction for the Technicon AutoAnalyzer II System." Technicon Instruments Corp., Tarrytown, New York, Dec 73.

OP-ACH-83 Page 2 of 18 Feb 20, 1987

9. Meyer, S.L. Straight-line Graphs and Fitting. In: Data Analysis for Scientists and Engineers. John Wiley & sons, Inc., New York, NY, 1975, pp 71-75.

Purpose: To apply the essential requirements of an accepted methon for measuring cholinesterase activity in human blood (3) in performing comparable measurements using animal blood.

Justification for Reference Method Modifications

Species differences in erythrocyte and plasma cholinesterase activities prohibit direct utilization of previously reported methods without some modification. To establish comparability of values between human and animal blood, the reference method was modified to increase measurement sensitivity at lower activity levels and to compensate for species variability in hemolytic susceptibility. The basic reaction mechanism and underlying measurement principles were not changed. A list of hardware and procedural differences is included in Appendix A.

Kethod Derivation and Reaction Rechanism

This SOP was adapted from the AutoAnalyzer procedure of Kaminskis for measuring acetylcholinesterase activity in human erythrocytes (3). His method was based on the basic reaction mechanism of Ellman's manual assay (4) as previously modified for semi-automated continuous flow analyses (5,6).

In the presence of nonlimiting amounts of acetyltbiocholine substrate under controlled reaction conditions, red cell acetylcholinesterase (E.C. 3.1.1.7) and plasma cholinesterase (E.C. 3.1.1.8) catalyze the production of thiocholine and acetic acid at rates proportionate to enzyme concentration. Thiocholine reacts with DTNB, 5,5-dithiobis-(2-nitrobenzoic acid), to produce equimolar amounts of a mixed disulfide and colored dianion, 2-nitro-5-thiobenzoic acid. The absorbance change at 410 nm occurring within a measured time period is proportionate to enzymatic activity when properly blanked and calibrated.

Equipment and Materials

A. Instruments

1. AutoAnalyzer II System consisting of a Technicon Sampler IV, Proportioning Pump III, Two Channel Recorder, two Single

Page 3 of 18 Feb 20, 1987

Channel Colorimeters with 15 mm flow cells and 410 nm filters, and two identical Cholinesterase Chemistr: Modules constructed according to the manifold diagram shown in Fig. 1 using the hardware components listed in Appendix A.

- 2. Eppendorf Micro-Centrifuge Model 5412.
- 3. Beckman Altex PHI 61 pH meter.

B. Niscellaneous Equipment

- 1. Analytical balance
- 2. Eppendorf and Gilsen pipettors and disposable tips
- 3. 1.5 mL polypropylene centrifuge tubes
- 4. 2.5 mL AutoAnalyzer cups
- 5. 0-100 linear chart scale paper

C. Chemicals

Chemical Name	Sup	pli	er'	s A	ldd1	ress	3	Catalog #
Tris (hydroxymethyl) aminomethane	•	•	Che			Со		T-1503
5,5'-dithiobis (2- nitrobenzoic acid)	•	•	•	•	•	•	•	D-8130
Prij 35,30% solution	•	•	•	•	•		•	430 AG-6
Acetylthiocholine iodide					•		•	A-5751
Reduced Glutathione			•			•	•	G-4251
Eel Acetylcholinesterase, Type VI-S	•	•	•	•	•	•	•	C-3389
Bovine Albumin, Fx V	•	•	•	•	•	•	•	A-4503
Hydrochloric Acid							s Co	9530-3
Sodium Chloride (NaCl)AR	•	•	sps •	•			•	5-3624
Ethylenedinitrilo- tetraacetic acid (EDTA) disodium dibydrate		-	nchi , Si				ical MO	4931

Appendix G (cont.): PROCEDURES FOR CHOLINESTERASE DETERMINATIONS OP-ACH-83 Page 4 of 18

Page 4 of 18 Feb 20, 1987

AutoAnalyzer System Nechanisms

The system Flow Diagram is shown in Figure 1. Sampled specimens are split into two equal aliquots which are injected into separate but identical flow pathways. One path combines DTNE reagent (Tris-buffered at pH 8.2) with specimen and acetyl-thiocholine in saline (Channel A). The second substitutes saline without substrate in an otherwise identical blanking reaction mixture (Channel B). Both streams are incubated in 37° C heating baths before passage through 24 inch dialyzers.

Dialysates in Tris buffer are mixed and debubbled prior to passage through the flow cells of two colorimeters. A 30/hr, 1:2 (sample: wash) cam in the Sampler IV provides acceptable flow cell flushing for baseline recovery between peaks.

Procedures '

Preparation of Reagents

1) AutoAnalyzer Wash Solution:

Add 1.5 mL of Erij 35, 30% solution to 1 L of distilled deionized water (DD). Mix thoroughly with magnetic stirrer.

2) 50 ml Tris Buffer, pH 8.2, containing 114 mM NaCl:

Dissolve 6.05 g Tris base and 6.64 g NaCl in 900 mL DD-water. Adjust pH to 8.2 by drop wise addition of con HCL. Dilute to 1L with DD water and add 1.5 mL of Erij 35. Confirm pH after thorough mixing and readjust if necessary.

3) 1.68 mM DTNE reagent:

Dissolve 0.6653 g DTNB in 1 L of 50 mk Tris buffer, pH 8.2 (see above). Mix with magnetic stirrer until clear, yellow solution. Confirm pH 8.2 and adjust if necessary.

4) 0.9% NaCl:

Dissolve 9 g NaCl in 900 mL DD water and dilute to 1 L with DD water.

5) 1mM EDTA:

Dissolve 0.372 g EDTA-disodium dibydrate salt in 1 L DD water.

OP-ACH-83

Page 5 of 18 Feb 20, 1987

6) 12.7 mM Acetylthiocholine (ATC) Substrate:

Prepare 100 m M ATC by dissolving 1.4478g of acetylthiocholine iodide in 50 mL of 0.9% saline. Dilute 12.7 mL of 100 mM ATC to 100 mL using 0.9% saline.

Preparation of Standards and Controls

1) 60 mM Reduced Glutathione (GSH) Stock Standard:

Dissolve 0.9219 g GSH in 40 mL of 1 mM EDTA. Dilute to .50 mL with 1 mM EDTA. Store in refrigerator in separate 1 mL aliquots in tightly capped vials. Stock preparation · is stable up to 6 months at refrigerator temperature.

2) Working GSH Standard Dilutions:

On day of assay, warm an aliquot of 60 mM GSH stock standard. Add 0.2 mL of stock to 9.8 mL of 1 mM EDTA, and mix on vortex. Prepare standard dilutions according to the following table:

Lab #	Aliquot 60 mM GSH (mL)	+ Aliquot 1 mM ED (mL)	TA Concentration (umol GSH/mL)
so	0	2.00	0
S1	0.25	1.75	0.15
S2	0.50	1.50	0.30
S3	1.00	1.06	0.60
S4	1.50	0.50	0.90
S 5	2.00	0	1.20
S6	2.00	0	1.20

Prepare fresh dilutions for each day's assays and confirm concentrations using a spectrophotometric assay.

3) Stock Eel Acetylcholinesterase Control:

Dissolve 1 g Serum Bovine Albumin in 100 mL of 0.9% NaCl. Use 50 mL of this diluent to dissolve 1.7 mg of Eel Cholinesterase lyophilized powder. Store frozen in 1 mL aliquots in capped polypropylene tubes.

OF-ACH-83 Page 6 of 18 Feb 20, 1987

4) Working Eel Acetylcholinesterase control dilutions:

On day of assay, thaw an aliquot of stock control, and warm to room temperature. Prepare dilutions according to the following table:

Lab #	Aliquot stock control (\mathfrak{mL})	+	aliquot saline diluent (mL)
	~		
E1	0.025		1.975
E2	0.050		1.950
E3	0.075		1.925
E4	0.100		1.900

Prepare fresh dilutions for each day's assays and include analyses of all dilutions in the beginning and end of each day's run.

Preparation of Blood Specimens

- 1) Use freshly drawn whole blood anticoagulated with EDTA.
- 2) Transfer aliquots into capillary tubes for duplicate Micro-hematocrit determinations on each specimen.
- 3) Transfer measured volumes of whole blood into 1.5 mL polypropylene centrifuge tubes labelled to identify specimens in the sample preparations shown below.
- 4) Centrifuge at 15000 RPM in Eppendorf centrifuge for 2 min.
- 5) Withdraw plasma as completely as possible without disturbing the packed red cells (PCV) and transfer plasma into I.D. labelled tubes.
- 6) Select one or more of the following options for red blood cell preparation:
- a. Unwashed intact red cells Add 1 mL 0.9% saline to PCV, gently mix to complete and uniform suspension, and transfer to AAII cups for immediate sampling.

Appendix G (cont.): PROCEDURES FOR CHOLINESTERASE DETERMINATIONS OP-ACH-83 Page 7 of 18

Feb 20, 1987

- b. Washed intact red cells Perform saline suspension as for "unwashed" cells but remove and discard supernatants after 1 min centrifugation. Repeat twice before transferring final suspension into AAII cups for immediate sampling.
- c. Unwashed hemolyzed red cells Add measured volume of specified lysing solution (max 1.5 mL) to PCV after plasma removal. Mix on vortex mixer for 30 sec. Transfer to AAlI cups for sampling.
- d. Washed hemolyzed red cells Perform saline washes as for "washed intact red cells" and discard supernatant after final wash. Continue preparation as for "unwashed hemolyzed red cells." Transfer to AAII cups for sampling.
- 7) Add measured volume of plasma from each specimen into a specified volume of 0.9% saline in identification labelled AAII cups and mix thoroughly before sampling by system.
- 8) Record sample preparation designation codes and note any exceptions for individual specimens for subsequent calculation of dilution factors.

Operation and Maintenance of AutoAnalyzer II System

- 1) Perform general maintenance operations as outlined in LAIR OP-ACH-26 except use Brij 35/water flushing solution.
- 2) Install or confirm correct chemistry module and pump tube manifold for assay shown in Flow Diagram of Figure 1.
- 3) Turn on power to all instrument modules for minimum 30 min warm up.
- 4) Engage pump tubes, insert platen and initiate flush of flow system using freshly prepared Brij $35/{\rm H}_2{\rm O}$ wash solution during warm up period. Observe bubble pattern for regularity of size and flow. Initiate corrective action according to OP-ACH-26 if required.
- 5) After stabilization of electronic components, check alignment of colorimeter signal ouputs with recorder scale. Use screwdriver adjustments on colorimeter as necessary: Display rotary switch position zero, recorder baseline, zero. Display rotary switch position full scale, recorder pen deflection full scale (100 chart units).

OP-ACH-83 Page 8 of 18 Feb 20, 1987

- 6) Set baseline controls to rotation midpoint (5 turns from either limit), all apertures fully open (aperture knurled screws rotated fully clockwise), and Std Cal controls of both channels to 350.
- 7) Initiate flow of reagents in pump tubes as shown in Figure 1. After 15 min, turn rotary display switches to position Normal on both colorimeters.
- 8) Set recorder pen positions for baseline (0 chart units) by adjusting reference apertures on both colorimeters. Use baseline controls for fine tuning.

Assay Calibration (7,8)

- 1) Activate Sampler to initiate sampling of GSH Std dilutions in the following sequence:
 - (1) 1.2 umol GSH/mL
 - (2) 1 mM EDTA blank
 - (3) 0.15 umol GSH/mL
 - (4) 0.30 " "
 - (5) 0.60 " "
 - (6) 0.90 " "
 - (7) 1.20 " "
 - (8) 1 mM EDTA blank.
- 2) Measure and record the reaction time in minutes from the point of substrate injection into the stream flow to dialyzer exit. (Additional air bubbles drawn into the stream during sampler probe movement from reservoir to sample cup and the color intensity of the highest GSH std can be used to perform this measurement accurately and reproducibly.) Reaction time approximates 3.9 min with the chemistry module components and pump tubes shown in Figure 1 and listed in Appendix A.
- 3) As the peak corresponding with the highest GSH std in the presence of ATC substrate is recorded, adjust the STD Cal control of the channel without substrate to achieve equivalent pen deflection. Record the control settings.
- 4) Observe peaks for succeeding series of GSH Std dilutions and repeat calibration procedure if equivalent response in the presence or absence of substrate is not confirmed throughout the std concentration range.

OP-ACH-83 Page 9 of 18 Feb 20, 1987

- 5) Set rotary display switches of both colorimeters to DAMP 1 position after acceptable calibration.
- 6) Assay a series of eel acetylcholinesterase Control dilutions immediately following a complete set of GSH Stds prior to and on completion of a designated group of specimen analyses.
- 7) Use GSH stds as markers during extended runs to confirm calibration stability and aid in peak identification.

Specimen Analyses

- 1) Initiate sampling of specimen preparations in a recorded sequence to enable peak identification on the chart record.
- 2) Repeat analysis of specimens exhibiting overscale chart peaks using appropriate dilutions of the cup preparation. Specify corrective action on the chart record at associated peak.
- 3) Repeat sampling of cup preparations whose peaks follow abnormal baseline elevations with insertion of a preceding wash cup (Brij/ $\rm H_2O$).
- 4) Annotate the chart record to identify the study, assay, specimens, data, instrument operation variables, and date of run.
- 5) Sign chart record which comprises the primary raw data of the assay.
- 6) Flush entire flow system using $\rm Brij/H_2O$ wash solution for a minimum of 30 min before shutdown.
 - 7) Turn off power, release platen, and disengage pump tubes.

Data Processing

1) Measure peak heights on the chart record as the difference in the number of chart units (C.U.) between the baseline value immediately before each peak and the point of maximum pen deflection. (A transparent overlay transcribed with 0-100 divisions equivalent to those of the chart scale facilitates these measurements.)

Page 10 of 18 Feb 20, 1987

- 2) Record C.U. values with corresponding identification numbers on Data Worksheets for subsequent calculation and evaluation procedures.
- 3) Record all other pertinent information and variables required for identification, calculations, results, and assay quality control.
- 4) Perform calculations as subsequently indicated in SOF and record results in format shown in Figures 2-5.
- 5) Assure compliance with requirements of Good Laboratory Practices (GLP) in maintenance and disposition of records and data.

Calculations

- 1) Calculate linear regression for GSH standard by the Wethod of Least Squares (9) expressed as $(y = m\dot{x} + b)$. Determine the correlation coefficient (r).
- 2) Use regression to calculate concentration values corresponding to peak heights of specimen and control cup preparations as follows:

Appendix G (cont.): PROCEDURES FOR CHOLINESTERASE

DETERMINATIONS OP-ACH-83
Page 11 of 18
Feb 20, 1987

C.U._{specimen} - C.U._{specimen} = \triangle C.U._{specimen} +substrate - substrate

$$\triangle C.U._{specimen} = (mx + b) \triangle umol SH/mL/T$$

$$T = Reaction time (min)$$

3) Calculate enzyme activities:

4) Use alternative formula to derive $\ensuremath{\mathsf{DF}}_{\ensuremath{\mathsf{RPC}}}$ from HCT measurements when required

Packed cell vol
$$(PCV^*) = Vol_{WB}(mL)xHCT/_{100}$$

$$DF_{RBC} = (PCV + Vol_{diluent}^*)$$

- * in mL
- 5) Record results on data sheets in format shown in Figures 2-5.

OP-ACH-83 Page 12 of 18 Feb 20,1987

Appendix A

Hardware components - AAII Chemistry Module - ACHe

- 1) 2 ea (#177P004-02) 3 input connector
- 2) 2 ea (#177E004-01) 2 input connector
- 3) 2 ea (#157E095-01) 20 turn coil + terminal injection fitting
- 4) 2 ea (#A157-0202-01) 1 turn phasing coil
- 5) 2 ea (#157-E273-01) 37° C heating bath, B Coil (5.37 mL)
- 6) 2 ea (#157-B369-C1/ 24" dialyzer assembly #157B670-O1)
- 7) 2 ea (#170-0103-01) 5 turn mixing coil
- 8) 2 ea (#170-0472-02) Type C dialyzer membranes
- 9) Misc glass tubing and plastic tubing for custom-fit connections
- 10) 2 ea AAII manifold trays, shell, covers, and heating bath mounting brackets.

List of Reference Procedure Modifications:

- 1) 50-fold dilution of Glutathione calibration standards.
- 2) Saline suspension of intact erythrocytes sampled into AAII system.
- 3) Separate colorimeters used to monitor absorbance activity in the presence and absence of substrate.
- 4) Two-channel recorder used for continuous, simultaneous chart record for both channels.
- 5) Shortened flow pathways prior to point of substrate addition.
- 6) 24 inch dialyzers
- 7) Glutathione Stds used to calibrate both channels.

OP-ACH-83 Page 13 of 18 Feb 20, 1987

(Fig 1)

FIGURE 1. FLOW DIAGRAM ACHE MANIFOLD

OP-ACH-83 Page 14 of 18 Feb 20, 1987

(Fig 2)

PREPARATION OF	SAMPLES			
Study	Assay	Date	Analyst	
Code	WB VoluL	>PCV +	_uLDF	
Code	Vol. R8CuL +	บโ	OF	
Code	Vol. Plasma	uL+ ul	OF	
Code				

Lab	Specimen 1.D. #	Ri	HCT R2	Mean	RBC Prep Code	REC DF	COMMENTS
1			<u> </u>				
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
15							
19							
20		<u> </u>					
21			<u> </u>	<u> </u>			
55			<u> </u>				
S 3							
24			<u> </u>	<u> </u>			
25			<u></u>		<u> </u>		
26				<u> </u>			
27				<u> </u>	l		
28							
29					<u> </u>		
30					<u> </u>	<u> </u>	

OP-ACH-83 Page 15 of 18 Feb 20, 1987

(Fig 3)

Study											
Assay											
Date											
Analyst											
				D	D = 4 =						
			OCK	Prep.	DALP_			°'	.eex c	.onc	
	librat	_				V 11-1	15		11 / 1		
LAD I.D.#	X Va	lues 1/mL)			+ Sust	Y Valu		nart -	Subst	rate	.)
					1						
						- †					
				 						i	
				 -		·					
	 										
	 			 	 -				<u></u>	<u> </u>	
	L			L	L		l		L	1	L
Linear	Regre	ssion									
(y = n	nx + b)	, у =.		x	+	!	Yumber	s of	valu	es, n	
Correl	ation	Cowffi	cient	, r =	·						
AA II	Reacti	on Tim	•		min	. at_		°c			
										tock C	onc
Lab I.	D. #	Diluti	on	Δ	Char	t Unit			Activ	ity (U	/mL)
					<u> </u>	 	T	T			
					ļ	 	 -		-i	~~~~	~~~~
						 	 				
	}				 	 	╬				
				~~	 	 	 -		~~~~		
	}				 	 					
	}						ļ				
					ļ		ļ			~~-~-	
]		1	J	1	-			

Appendix G (cont.): PROCEDURES FOR CHOLINESTERASE DETERMINATIONS

OP-ACH-83 Page 16 of 18 Feb 20, 1987

(Fig 4)

		Recorder D.					Page	of	0
	Study			_			Date		riges
	Assay			-			Analu Analu	**	
		D to	:c	•		PLASI	I.H.	st	
Lab	CLF I.D.*	+Subst.	-Subst.	<u> </u>		+Subst.	-Subst.	<u> </u>	Notes
1									
2									
3									
4								<u> </u>	
5								<u> · </u>	<u> </u>
6			<u> </u>			<u></u>	ļ	ļ	<u> </u>
7						ļ		<u> </u>	<u> </u>
8								<u> </u>	<u> </u>
9								<u> </u>	<u> </u>
10			<u> </u>						
11			<u> </u>					<u> </u>	ļ
12			<u> </u>				<u> </u>	<u> </u>	<u> </u>
13		<u> </u>	<u> </u>				<u> </u>		<u> </u>
14									<u> </u>
15	<u> </u>			<u> </u>			<u> </u>		
16			J				<u> </u>	<u> </u>	!
17	<u> </u>								
18									
19									<u></u>
20									
21		<u> </u>							
22	1								
20]				
24]				
25]				
26]				
27									
23									
23	<u> </u>				j	<u> </u>			
	1			1	1	1	1		

1

Appendix G (cont.): PROCEDURES FOR CHOLINESTERASE DETERMINATIONS

OP-ACH-83 Page 17 of 18 Feb 20, 1987

(Fig 5)

ULTS dy	SOP #Assay	Species	Oate
09	RBC	. Placma 1	Vati
pecimen HCT) !!Arua/~! }	Plasma UCHe/mt	,
*-×	.		
1 1	1 1	{	- 1
	L		
	1	1 1	1
	ļ		
1 1	1 1		į
	<u></u>		
		·	1
1 1		l l	1
1 1	- 1	,	
	}		
'		1 1	1
		ii	
1 1		I	
	L		
· · · · · · · · · · · · · · · · · · ·		I I	1
	}		
	L		
} {			
		i	
}		ļ ļ	
	i		
		<u></u>	
1	1		
	}		
	<u> </u>		
	[~~~~~
	<u> </u>		
1 1		·	

Appendix G (cont.): PROCEDURES FOR CHOLINESTERASE **DETERMINATIONS**

OP-ACH-83 Page 18 of 18 Feb 20, 1987

SIGNATURES PAGE

Approved: 21 Jeh 87

EVELYN L. MCGOWN, PhD DAC

Chief, Chemistry Eranch Division of Biophysical

Research

Certified: do Feb 87.

DAC

Chief, Quality Assurance

Unit

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) Appendix H:

Group 1 Males

2000as	WK.1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
530			•		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
539	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
543*	•	•	•	•									
557	•	•	•	•	0.0	•	0.0	0.0	0.0	0.0	•	0.0	•
566	٠	•	•	•	0.0		0.0	0.0	0.0	0.0	•	0.0	•
577	•	•	•	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
618	•	•	•	•	0.0		0.0	0.0	0.0	0.0	•	0.0	•
620*	•	•	•	•									
635	•	•		•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
680 *	•	•	•	•									
681*	•	٠	•	•									
688	•	•	•		0.0	•	0.0	0.0	0.0	0.0		•	•
902	•	•	•		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
707	•	٠	•	•	0.0	•	0.0	0.0	0.0	0.0		•	•
712*	•	•	•										
Mean	•	•	•			•	0.0	0.0	0.0	0.0	0.0	0.0	•
Std Dev	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0.0		0.0
SEM	٠	•	•			•	0.0	0.0	0.0	•	•		•

* Interim sacrifice animal.

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) Appendix H (cont.):

Group 2 Males

Animal# 86D00-	WK1	WK2	wK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
206*	1.4	•	•	•									
507*	•	1.0	•	•									,
531	•	•	•		6.0	1.1	1.0	6.0	o. o.	1.0	1.0	o o	1.3
548*	•	1.0	•	٠									ı
009	1.1	•	٠		6.0	1.1	1.0	0.0	0.0	o. 0	o. 0	ω. Ο	1.3
*909	•	•	•	•									
625	•	•	•	•	•	-	1.0	6.0		•	•	0.0	1.0
628	•	•	•	•	•	_	1.2	•		•	•		
634		•	•	•			1.0	•		•	•		•
999		•			6.0	1.0	1.0	0.8	6.0	o. 0	0.8	o. 0	1.0
678	•	•	٠	•	•	-	1.0	0.8		•	•		•
694	•	•	•	•	•		6.0			•	٠		•
731		6.0	6.0	8.0		-	6.0	•		•	•		•
733*	1.0	•	•										
734	1.0	•	•	•	6.0	1.0	6.0	0.8	0.8	o. 0	6.0	0.8	1.0
Mean		1.0	•	•	•		1.0			6.0	6.0	0.8	1.1
Std Dev	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.1	0.0	•	0.1
	0.0	•	•	•	•		0.0	•		0.0	•	•	0.0

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) (cont.): Appendix H

Group 3 Males

Animal# 86D00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
510*	•	•		9.1									
511	•	•		8.7	8,3	9.6	10.2	6,6	9.2	6	0.6	0	9
520*	•	•		9.0	•		!) 		•	•	:	•
526	•	•	8.0	10.4	8.2	9.4	10.3	9,5	9.2			9.6	10.6
544	•	•		8.6	7.2	8.3	0	9.6	8.7		•	9	10.2
553		•		9.3	8.4	10.8	10.6	10.4	10.0	9.7	6	10.0	10.7
581	•	•		11.0	9.4	•	11.3	10.8	10.1			8,6	10.7
583	•	•		e.6	8.3	10.3	10.7	10.7	7.6			10.4	10.7
299*	•	•		8.6				, , ,	•			•	•
602×	•			8.6									
969	•	•		8.5	7.7		10.0		•		6		10.0
869	•	•	•	8.8	7.8	8.	10.0	0	9.6	9.6	6.0	, c	
713*	•		•	9.7			• •		•		•	•	•
717	8.7	8.2	8.7	8.6	•	8.9	9.6	9.1	•		6,8	•	10.0
723	•	•	9.4	6.6	8.3	10.0	10.3	10.4	8.6	9.7	9.6	0.6	10.4
Mean			8.5			9.0	10.3	10.0		ر د.	9,5		10.2
Std Dev	1.0	0.8	0.7	8.0	6.0	0.7	0.5	0.5	0.7	0.5	0.4	9.0	0.5
S:S:S		•	0.2			0.2	0.2	0.2	•	0.1	0.1	0.2	0.1
1													

^{*} Interim sacrifice animal. • Unable to consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) Appendix H (cont.):

Group 4 Males

Animal# 86D00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
554*	4	9	у.	4.									
593*	26.9	26.8	27.2	26.2									
604×	7.	9	5.	5.									
612	5	0	7.	7.	ო	0	ა.	ω.	•	7	ന	•	•
626	8	ω,	7.	0	9	ς.	9	6	7.	7	S	•	•
636	3	4	6	о О		33.4	29.0	•	28.7	29.9	27.3	30.7	31.9
639	9	9	4	4.	24.8	•	7.	7	5.	9	S	•	0
644*	di.	2	<u>б</u>	<u>б</u>									
645*	9	٠,	4	4.									
646	6	φ.	7.	6	4.	0	ė.	•	7.	•	رى	ω	ω.
655	3	0	ა	0	7.	2	ä	•	0	31.0	ω	2	0
675	5	H	თ	0	9	თ	7	•			ა.	7	თ
949	ഗ	α,	ω.	6	25.8	31.5	29.3	20.9	α	29.9	26.0	28.6	29.6
703	-	φ.	7.	8	5	0	ė.	٠		•	Ą.	ω.	0
718	7	ω.	Ŋ.	9	ъ.	0	7	17.7	25.6	27.3	4	9	თ
Mean	29.0	•	27.2	•	•	•	•	18.8		•	25.7	•	30.1
Std Dev	т М	2.7	1.9	2.3	1.3	2.0	1.7	1.4	1.7	1.7	1.4	1.8	1.0
	0.9	•	0.5	•	•	•	•	0.4		•	0.4	•	•

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) (cont.): 耳 Appendix

5 Males Gronb

Animal# 86D00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
*60		2	4	,									
533*	49.3	70.7	58.2	61.0									
550	ъ Э	0	Ξ.	٠ د	ij.	9	9	ω.	•	•	•	4.	0
370	2	80	7	~·	55.1	57.3	60.1	59.2	60.1	55.8	9.09	57.0	64.3
517	2	ω.	0	$\dot{}$	4.	7.	ω.	6	•	7.	•	φ.	ж ж
521*	4	7	о О	7									
532	0	у.	7.	<u>.</u>	•	~	ė.	ö	ъ.	Ξ.	5.	4.	2
541	Ŋ,	7	ω.	7	58.8	59.5	63.1	65.2	6.09	56.5	61.0	57.1	66.3
548*	о О	ς.	6	٠. د									
584	ó,	0	9	ι.	5	60.	3	2	•	∞	٦.	ø.	4.
989	α,	•	ä	-	9	8	σ	φ.	•	S	т М	ο,	4.
689	4	0	0	m	9	5.	ω	ω.	•	∞	ω.	H.	7.
069	'n,	78.9	.		80.1	64.3	62.9	9.89	65.0	55.7	66.3	61.0	64.9
669	5.	φ.	6	~	4	0	α	7.	٠	\sim	7	φ.	9
126*	9	1.	2.										
Mean		•	54.3	•	•	•	•		•	•	•	•	•
Std Dev	6,9	7.4	4.6	4.6	9.6	4.6	3.5	4.3	ന	3.0	4.1	3.4	4.2
SEM		•	٠	•	•	•	•		٠	•	•		٠

^{*} Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) (cont.): Ħ Appendix

Group 6 Males

Anima1# 86D00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
523*		06.	ω,	0									
552*	46.1	115.6	83.5	89.0									
563		21.	ö	ъ.	2	104.3	•		ф •	92.1	о О	ė.	32.
565	2	04.	8	e,	72.4	93.4	88.2	97	84.4	87.3	84.9	87.0	127.8
568	ω,	22.	ω,	φ,	9	108.7	•	•	_;	101.9	5	΄ ω	39.
587*	α,	09.	5	0							,	,	• •
209	ω.	07.	7.	4	4.	н	ч	•	<u>ი</u>		•	90.0	H
630	0	13.	4		73.4	95.0	88.7	98.5	82.9	90.5	87.9		129.3
631*	4	05.	6.	7))
652	80.9	07.	ъ.	e.	5.	ω	ω	00.	•	ω.	4		34.
629	5.	08.	9.	5	74.6	94.9	89.8	101.1	82.4	86.7	83.2	83.4	131.0
674*	2		ω.	о О									·
619	5.		ω,	ς.	٠	•	7.	2	•	78.8	ري ري	Η.	21
708	Ξ.		0	-	٠	94.0	•	2		•	0	5	25
728	9		0	٠. دا	94.2	92.8	S	94.5	33.6	91.5	85.4	77.4	130.7
Mean	67.0	•	•			•	•	•		89.5	•	87.3	•
Std Dev	9.4	8.3	6.2	7.0	8.1	7.0	7.6	7.0	6.3	9	5.1	6.7	ິນ.
SEM	2.4	•	•			•	•	•	2.0	2.0	•	2.2	1.8

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

(mg/kg/day) PYRIDOSTIGMINE CONSUMPTION (cont.): Ħ Appendix

000000 0.0 0.00 WK13 000000 0.0 0.00 WK12 000000 0. 0.00 WK11 000000 0 0.00 WK10 Ö WK9 000000 0.0 0.00 000000 0.00 WK8 0 0 Females 000000 0.0 000 WK7 000000 0.0 WK6 000 Н Group 000000 0. 0.00 WK5 0 000000000000000 WK4 000000000000000 WK3 000000000000000 WK2 000000000000000 WK1 Animal# 86D00-

* Interim sacrifice animal.

000

000

0.00

0.00

0.00

000

0.00

000

0.00

000

000

000

000

Std Dev

Mean

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) (cont.): Appendix H

Group 2 Females

Animal# 86D00-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
752	•	•	•		1.0	8.0	6.0		6,0			<i>-</i> ب	
755	1.0	6.0	0.0	1.0	근	8.0	0.0	0.0	1.0	0.0	0	1.0	0 0
758*	•	•	•) - 	
764	•	•	•		1.0	0.7	1.1		•	•		1.2	
774	•	•	•		1.1	6.0	6.0	0.8	0.0	6.0	0.8	1.1	6,0
781*	•		٠									 - 	
795	•	•	•	•	1.3	1.0	1.1	0.8	1.0	6.0	0.8	1.2	6.0
199 *	•	•	•									 - 	i
804	•	•	٠		1.1	0.8	0.8	0.0	0.8	0.0	0.7	1.3	6.0
329*	•	•	•)	
337*	•	•	•										
338		•	•				٠			٠		1.4	
340		•	٠				•			•		1.2	
350	•	•	•		1.1	8.0	6.0	1.0	0.9	0.8	0.0	1.4	1.1
355	•	•	•				•			•		1.2	0.9
Mean	•	•	•	•	•	0.8		6.0	6.0	•		•	0.9
Std Dev	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1
SEM	•	•	•			0.0		0.0	0.0		•		0.0

^{*} Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) (cont.): Appendix H

Group 3 Females

Animal# {6000-	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
749	10				10.2			10.9		10.8		•	•
751					10.0	တ (ထ	1.6	10.0	ე ი	10.4	8.0	12.4	8.2
753	11.2	8.6	8.3	8.9	9.7		•	10.3	•	9.6	•		•
759*		•	•										
761		•	•		10.1	9.5	10.0	10.3	9.5	9.1	11.1	14.6	8 6.8
771*		•	•										
784		•	•		8.5	8.6	8.8	9.5	°.0	9.4	7.6	8.8	9.7
189 *		•	•	•									
802		٠	٠					o.8		•	•	•	•
803		•	•					8.6		•	7.9	•	•
805		•	0					10.9		•	•		•
826		•	•		8.8	6.3	0.6	0.6	6.4	8.6	•	10.1	o. 9
827		•	•					0.6		•	8.6	•	•
846*		•	•										
852*		•	•										
								:					
Mean	•				•	•	•	•	•	9.6		12.1	•
Std Dev	9.0	0.7	0.7	7.0	ω. 0 0	1.0	8.0	۵. د	0.0	o .	H. C	H (۰. م. ه
NEW SEW	•				•	•	•	•	•	0.0		0.0	•

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) Appendix H (cont.):

Group 4 Females

	TWW	WKZ	WK3	WN4	CVM	WK6	MA	WK8	WK9	WKIO	WK11	WK12	WK13
766	6	•	0.	4.0	31.0	32.8	32.3	34.8	32.8	32.7	34.9	37.6	34.7
785*	2 6		. 6	ກ່ວ	٥	٥	χ	ω	•		•	•	•
787 790*	8 %		90.	10 c)	26.5	24.4	25.4	26.5	24.7	28.3	23.9	33.7	28.2
793 794*	30.9	28.0	28.5	28.3	27.0	27.6	39.8	28.5	25.8	28.7	27.3	33.8	29.5
811	ω.	•	8	ക്	6	•	٦.	1.	•	•	•	•	
812	ж •	•	9	io.	27.9	27.1	28.1	27.8	30.4	28.3	23.2	34.7	30.3
821*	4.	•	7	~									,
842*	8		ე.	6									
844	Ξ.	•	27.6	7	9	ω,	•	ω	6	ω	8	4	0
848	ა	•	کا	Ġ	26.8	26.5	27.0	27.0	26.8	28.1	24.9	29.8	ς.
851	4.	•	9	_:	ω	0	•	4	0	2	ω.	2	7
854	5.	• 1	30.0		0	6	•	ထ	9	6	•	9	29.5
Mean	•	•	27.7	28.7	•	•	•	•	•	•		•	•
Std Dev	2.6	3.0	1.7	2.7	1.8	2.5	4.1	3.0	2.8	2.0	3.5	3.2	3.6
SEM	•	•	0.4	0.7	•	•	•	•	•	•	•	•	•

* Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) Appendix H (cont.):

Females เว Gronb

Animal# 86D00-	WK.1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
760	•	•	•	•	•	•	•	•	•	•	•	•	•
762	ij	2	0	ω.	4	61.3	61.1	φ,	61.6	ж Э	ა.	80.8	9.99
769	7.	0	8	Η.	63.5	0.09		55.5	63.8	62.0	50.9	67.2	61.3
770	56.4	64.9	62.6	56.7	σ.	•	63.6	ä	•	٠,	ä	•	4
775*	4.	7	7	۲.									
782*	5.	щ	5.	ъ.									
797 *	9	ω.	ω.	7.									
819	4.	۲.	<u>ښ</u>	Ή.	φ.	2	•	2	•	ω.	ж Э	•	٠
820	Η.	ω.	5.		58.4	52.8	9.09	69.3	57.3	56.1	48.9	67.5	67.9
831	2	7	7	9	Ξ.	0	•	0	•	0	0	•	•
835*	φ.	0	9	55.1									
841*	2	2	7	6									
845	0.	г.	φ.	9	ж Э	S	7.	<u>ა</u>	•	4.	ä	•	7.
847	ъ.	ω.	4.	ω.	58.1	56.1	59.5	55.5	62.8	61.6	54.0	67.9	66.5
856	9.	5.	•	7	9	σ	2	2.	•	8	8	•	4.
Mean	•	•	•	•		•	•	•	•	•		•	•
Std Dev	5.4	4.0	5.0	3.1	5.6	4.1	4.1	5.0	2.5	3.1	4.4	5.9	4.5
SEM	•	•	•	•		•	•	•	•	•		•	•

^{*} Interim sacrifice animal.
• Unable to calculate due to incomplete food consumption data (spill).

PYRIDOSTIGMINE CONSUMPTION (mg/kg/day) Appendix H (cont.):

Group 6 Females

Animal# 86D00-	WK1	WK2	WK3	WK4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
0 3 6	,		r	010	60	o C	87 9	7 92	α α	•	87.4	97.2	88.7
06/	;	2	'n	7.10	7.00	٠	0.10				•	1	
754*	ω.	14	ς.	81.1									
757*	ω.	12	6	87.7									
773*	9	18	0	80.0									
*6 <i>LL</i>	ო	15	•	93.5									
783	<u>ე</u>	33	ά.	85.3	95.1	81.1	92.0	73.2	86.3	8.66	•	113.5	က
792	7	22	φ.	77.9	78.1	80.7	•	72.8	8.06	92.3		103.5	S
798	7	03	ω,	85.5	86.8	95.6	•	100.6	96.1	102.3		112.0	S
80%	0	28	9	92.9	87.1	82.7	88.2	86.1	88.5	85.6	•	97.2	7
813	79.2	22	•	87.4	87.3	86.8	97.3	93.6	98.2	98.0	120.5	110.1	105.3
816	·	21	7	100.2	99.4	102.0	103.5	101.9	98.1	101.5	•	111.1	~
817	•	00	ω.	80.8	78.7	85.8	84.2	83.9	87.1	85.9	•	117.5	ന
822	•	15	9	78.1	87.2	83.5	84.1	79.8	91.4	90.0		105.7	9
830	, o	103.4	86.3	77.1	74.8	82.3	79.3	77.8	82.0	88.8	•	98.3	◡
*688		125.8	•	81.3									
Mean	•	•	•	84.7	•	86.1	•		7.06	93.8	•	106.6	
Std Dev	8	တ	7	6.7	7.6	7.1	7.4	10.8	5.4	6.7	11.8	7.3	7.5
	•	•	1.8	1.7	•	2.3	•	•	1.7	2.2	•	2.3	•

* Interim sacrifice animal.
 • Unable to calculate due to incomplete food consumption data (spill).

FOOD CONSUMPTION (g/week) Appendix I:

Group 1 Males

Animal# 86D00-	QWK2 [@]	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
530	ហ	7	9	4	7	Ŋ	9	9	Ω	S	7	9		~
0 E S	132	153	165	165	161	146	150	157	165	151	182	164	167	163
543*	4	7	α	7	0									
557	-	ω	α	ω	ω	σ	σ	σ	ω	∞	7	7	ω	
566	5	ω	ω	α	0	∞	ω	σ	σ	ω	σ	Ч	0	2
577	ಯ	2	Н	0	0	203		σ	198		204	Н	203	
618	0	7	7	7	7		193	185		182	7	7	7	7
620×	(-	9	9	ω	∞									
635	マ	ω	9	9	ŗ	168	161	172	174	177	179	164	181	178
*089	$^{\circ}$	σ	7	7	S									
681*	$^{\circ}$	4	9	S	7									
688	m	4	വ	S	S	9	S	S	S	198	S	160	9	162
902	$^{\circ}$	S	S	S	S	151	143	138	144	181	147	121	147	150
707	4	9	9	S	9	7	9	9	7	179	σ	ω	7	9
712*	ഗ	S	വ	വ	2									
Mean	•	•	171.	•	•	•	•	•	•	•	178	166.	17	178.
Std Dev	20.8	0 u	7 16.1	16.9	on u	18.2	20.1	19.6	16.5	4, 4	4 17. 5 5	თ დ	ထပ	m r
E TO	•	•	.	٠	•	•	•	•	•	•		;		•

@ Quarantine week 2.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 2 Males

WK13	203 235 178 160 164 171	7 0
WK12	164 186 190 158 162 164	157 166. 12.
WK11	178 192 170 173 150 156	16 16 16 16 16
WK10	190 205 1170 1183 1153	7 0
WK9 V	174 199 1173 1172 1163	7 0 71
WK8	173 210 210 184 182 111 171	7 9 7 7 7
WK7	171 199 184 211 187 sp 173	78 9
WK6	162 185 161 160 157 166	- 9 9
WK5	159 179 163 168 1168	9 9 9 1
WK4	206 1158 1158 1163 1173 1179	999 7-1
WK3	11	16 677
WK2	1198 1177 1164 1170 1176 1166 1168	1 5 5 7 7
WK1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74 57 54 64.0 4.0
QWK2 [@] 1	S S D 1111 1120 1140 1139 159	60 52 36 42.3 42.3
Animal# 86D00-		Ette man

@ Quarantine week 2.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 3 Males

Animal# 86D00-	QWK2 ⁰	WK1	WK2	WK3	WK4	WKS	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13	1
⊣	S	7	ω	ω	9										
ᅮ	വ	S	9	9	9	173	166	170	179	173	177	166	158	160	
N	ш	7	0	0	Ч										
N	2	4	m	$^{\circ}$	7	4	က	4	4	4	സ	ന	3	な	
4	4	9	9	S	9	4	4	2	7	9	9	9	7	7	
ഹ	S	7	ω	ω	σ	188	201	193	205	205	204	199	200	203	
ထ	S	S	4	2	g	∞	ij	∞	9	σ	σ	∞	∞	Q	
α	7	ω	α	9	0	93	20	0	2	Сĺ	ч	0	2	2	
£868	132	147	145	155	160										
0	3	9	9	വ	7										
ര	4	S	4	2	S	152		157	167	156	155	161	147	161	
ത	S	S	54 s	\vdash	9	S	165	9	7	7	7	7	9	S	
ᠵᢇ	B	σ	89	16	0										
щ	9	ω	ω	∞	α	ന	Ó	178		164	182	174	spill	181	
0	\vdash	4	S	S	9	155	156	S	175	7	7	Ó	15	9	
															1
Mou	α	4	166	7	181	~	165	_	~	ع	178	17	17	176.	
Std Dev	23.3	16.5		18.7		19.4		19.1	22.0	21.	6 22.5	23	27	6 23.1	
SEM	•	•	ъ.		4.	•	7.	•	•	•	7			7.	

@ Quarantine week 2.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 4 Males

WK13	111 167 177 173 166 154 181 171	169.0 8.5 3.0
WK12 W	210 sp. 176 sp. 156 174 173 148 149	168.7 : 18.1 5.7
WK11 W	208 175 175 174 176 190 163	175.8 14.4 4.5
WK10 W	226 172 169 172 179 178 178 pill 167	183.4 20.8 7.3
WK9	pill 177 164 164 181 176 197 197 197 157	172.1 13.4
WK8	231 s 201 171 183 185 171 173 178 s	191.2 22.3 7.0
WK7	206 1855 161 176 176 169 169	2 178.3 9 15.1 8 4.8
WK6	213 172 160 168 175 175 168 168	8 173.2 9 16.9 7 5.3
WK5	200 167 152 173 162 160 153	4 169.8 7 14.9 6 4.7
WK4	165 178 178 178 178 177 177 165 165 163	1 176.4 8 17.7 6 4.6
WK3	168 173 173 173 172 173 173 173	172. 17.
WK2	166 173 173 172 176 176 176 176 171 171 181 168	7 171.5 1 15.7 2 4.0
WK1	151 178 178 151 150 151 150 150 150	160. 16. 4.
QWK2 [@]	44444444444444444444444444444444444444	145.6 12.3 3.2
Animai# 86D00-	555 666 666 668 668 668 668 668 668 668	Mean Std Dev SEM

@ Quarantine week 2.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 5 Males

Animal# 86D00-	QWK2 ⁰	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
0	⊣	0	4	S	9									
533*	110	103	156	160	174									
ഗ	2	⊣	S	9	9	9	6	S	B	71	\vdash	7	Ó	9
7	S	9	α	9	σ	193	194	191	194	208	205	196	189	196
\leftarrow	9	9	7	7	9	7	7	9	1-	ω	ω	7	1	7
2	0	2	ഗ	9	9									
ന	ന	3	4	4	S	4	4	4	S	S	ζņ	ന	4	
4	S	4	α	g	∞	191	189	191	206	203	200	189	180	193
4	2	9	S	9	7									
ထ	0	S	4	4	4	4	ഗ	S	S	S	9	S	4	156
ထ	4	36	Н	S	Ø	4	9	9	9	9	9	9	S	157
α	S	69	18	α	Q)	0	σ	∞	∞	ω	~	7	9	165
g	Н	158	ω	~	9	228	178	172	188	191	175	183	173	172
g	ന	9	~	-	-	വ	9	~	1	~	$\bar{\infty}$	~	7	156
N	ω	7	ω	ω	0									
Mean Tean	4		165	8	L.	m	1 ~	6	176	α	177	172	165	168
Std Dev	23.9	27.7		15	15.8	28.8	16.5	16.6	16	18.	4 17.	6 16.5		
SEM	•	٠	4.	4.	4	о О	5	5	5.	ъ	ς.		4	ς,

0 Quarantine week 2.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 6 Males

Animal# 86D00-	QWK2 ^e	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
:23*	~		, -	4	S									
552*	155	67	141	145	164									
163	4		S	7	g	σ	σ	တ	-	200	σ	g	σ	9
165	ന	9	ന	S	9	163	164	167	176	172	169	169	160	164
999	S		7	6	Н	64	\vdash	Ч	m	211	\sim	\leftarrow	Н	Н
387*	4		S	4	9									
507	9	ഗ	ω	α	ω	σ	ω	180	206	189	200	198	196	184
330	4		9	7	ω	174	175		∞	∞	188	89		ω
331*	4		4	9	∞									
552	m		m	വ	9	9	9	Ŋ	171	153	160	156	149	160
559	$^{\circ}$	g	N	4	S	151	150	154	9	2	S	S	4	S
574*	4		Н	~	∞									
579	7	4	-	7	~	7	9	Ó	∞	9	7	7	9	7
108	~		S	7	ω	181	184	184	186	158 s	pill	173	170	176
728	171	0	က	2	9	0	2	$^{\circ}$	9	64	17	9	3	9
Z Q Q	α	ي ا	147	163	ي ا	-	\ r.	<u>س</u>	6	4	181.	178.	170.	176.
Std Dev	14.8	22.6	6 21.0		16.8	21.6	19.1	21	22.3	19	22	20.	26	
SEM	,		r.	رب				•	•	•	7.	<u>ه</u>	ω	ഹ

@ Quarantine week 2.
* Interim sacrifice animal.

FOOD CONSUMPTION (g/week) Appendix I (cont.):

Group 1 Females

Animal# 86D00-	QWK2 ⁶	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
ေဖ	⊣	\leftarrow	~-1	0	~									
768	104	103 s	spill	110	114		ш	0	 1		۲	105		\leftarrow
\sim	0	66	89 8	pil	0	86	104	117	107 s	pill	97	86	93	108
\sim	0	Н	10	11	9	⊣	0	σ	07	ω	Н	87		Ò
~	\leftarrow	2	႕	N	$^{\circ}$		~	\leftarrow	Н		Н	104	Н	Ч
\circ	\sim	$^{\circ}$	Ч	Н	Н	Н	Н	0	0	σ	0	112		2
	Ч	3	Н	4	Н	2	2	ന	ā		$^{\circ}$	111	2	$^{\circ}$
~~		112		\vdash	0									
_	0	Н	Ч	Н	0									
	Н	Н	Н	2	4	123	103	120	129	117	113	118	115	108
\sim	0	⊣	Ч	Ч	┙									
ന	\leftarrow	2	2	m	$^{\circ}$									
m	11	0	2	Н	щ	Н	0	\vdash	0	0		σ	↤	117
ď	\sim	2	3	ന	ന	143	129	126	136	122	122	119	125	127
4	0	4	0	m	$^{\circ}$	3	0	2	2	N	~	\leftarrow 1	2	132
_	111.9	118.	11	121.	118.	•	•	•	•	107.	109.	105.	113.	t t
SEM Dev	1.9		5 %			3.9	3.0	3.2	3.4	4.	. n	. m		

@ Quarantine week 2.
* Interim sacrifice animal.

FOOD CONSUMPTION (g/week) Appendix I (cont.):

						Groap	Z Fe	Females						
Animal# 86D00-	QWK2 ⁰	WK1	WK2	WK3	WK4	WK5	WK 6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
ď			(-	(,	٠,	١ ،	1 1					
א כ	د	-	\sim	-۱ ヘ	$\supset \checkmark$	7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	120	111	110	109	106	106	112	103
758*	153	158	164	173	167	ń	V	N	2	2	V	103		707
Q	\leftarrow	2	3		N	~	Н	9	⊣	-	-	-	-	0
	\sim	4	S	ın	ന	147	161	145	136	137	144	124	115	136
ထ	\sim	က	2	m	0)	1	ŀ	ł)
ത	ന	4	S	10	ത	177	186	180	131	175	166	135	145	157
ത	\vdash	2	2	\sim	Н				ı)	•)	•	-)
0	ന	2	3	m	119	137	131	125	143	125	141	96	125	135
$^{\circ}$	86	0	σ	\sim	S					! !	•		1)
က	Н	\vdash	116	Δ 1	0									
ന	106	0	$\boldsymbol{\omega}$	\sim	104	0	95	0	0	~	0	68	~	0
◡	2	N	3	\sim	\sim	4	4	m	E	സ	C	113	(1)	(m
വ	0	Н	116	_	2	119	107	114	127	113	100	g		m
LO.	0	\leftarrow	0	$\overline{}$	(0	0	\vdash	↤	18	_	95	115	125
C	119.2	125.7	125.7	•	119.	132.	•	•	•	•	125.	107.	117.	126.
Sta Dev	4, U	٠ د	20.	19. 2.			28.0	24.4	13.1	20.6	22			18.1
Ser	•	•		•	ব	٠ ٥	•	٠	•	•	7.	4	δ.	υ.

Quarantine week 2.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 3 Females

WK13	_	4 (107	\vdash		119		140		က	9	2	117	2				(18.2	5.	
WK12 1	0	1 (138	\vdash		166		118		$^{\circ}$	9	۲	110	H				0	20.1	9	
WK11 v	00	١,	113	78		138		106		0	125	\leftarrow	pill	94			:	ŗ	17.4	5.	
WK10 V	-	4 '	146	2		115		139		2	S	3	120 sg	0				ľ	121.4 14.4	4	
WK9 W	-	4 '	147	က		127		130		3	168	Ч	97	117				ţ	19.5	. 6	
WK8	0	1 .	142	3		136		146		က	7	3	129	Н				(15.6	4	
WK7	0	1 (129	Н		128		133		S	7	2	132	2				•	134.7	. v	
WK 6	135) (123	113		115		126		128	172	111	134	108				(18.6	5.	
WK5	6	1	146			135		133		S	∞	2	136	2				(138.8 18.9	9	
WK4	~) (m	\vdash	0	2	2	4	4	m	9	2	144	Ч	4	2		(132.1	 	
WK3	، ا	j i	4	\leftarrow	0	3	Н	ω	3	4	7	4	168	2	ω	2		•	134.5	4.	
WK2	۱ ،	V	4	Н	2	2	0	4	4	3	7	4	155	ന	Ţ	ij		(136.4	4.	
WK1	۱ ،	V	4	က	ന	~	0	4	က	2	9	B	150	3	S	2		(136.0	. n	
QWK2 [@]	- ا	4	$^{\sim}$	Н	щ	pil	13	ч	2	2	S	m	156	7	4	က	İ	(129.4	m	
Animal# 86D00-	2.0	ľ	ഗ	S	ഗ	ဖ	71*	α	α	0	0	0	826	$^{\circ}$	4	വ		,	Mean		

Quarantine week 2.
* Interim sacrifice animal.

FOOD CONSUMPTION (g/week) Appendix I (cont.):

Females Gronb

1																			
WK13	134	4	•	117	(134	(133	4			2	0	143	-		6 128.8	13.	4.
WK12	123	2	,	116		128		125	ന്			Η,	0	133	2		$\frac{1}{1}$ $\frac{122}{2}$.	, ,	7.
WK11	131	0		96		118		116	Ó			┥,	102	106	97		109.	10.	m
WK10	123	111		115		126		129	m			2	-	124	7	,	122	، ف	2.
WK9	130	Н		105		121		137	4			2	Н	124	7		125	11 1	m m
WK8	137	119		116		137		134	137			Ñ	Н	140	ਜ		128.5	<u>ი</u>	'n
WK7	130	2		113		197		136	4			S	2	131	7		134.2	23.	7.
WK6	133	113		109		135		134	3			က	\vdash	124	2		125.8	<u>.</u>	m,
WK5	132	2		122		137		136	4			2	2	121	က		129	ω.	2.
WK4	ല	Н	152	0	S	S	\sim	2	2	3	Н	2	ш	2	3		127.5	12.	'n
WK3	N	2	159	2	9	4	4	ω	4	2	Ч	က	⊣	Н	က		٠	15.2	•
WK2	m	0	159	9	S	က	ω	က	4	2	-	က	2	$^{\circ}$	2		13	15.	4
WK1	<u></u> π	Н	149	Н	4	$^{\circ}$	$^{\circ}$	3	S	က	~	က	ч	ω	က		•	11.7	•
QWIK2 @	1 0	B	164	2	4	4	4	Н	12	Н	М	B	ᅥ	⊣	~		130.5	4.	4.0
Animal# 86D00-		α	785*	α	g	ΟJ	O)	ᅥ	Н	~	4	4	4	ທ	ഗ		Mean	Std Dev	SEM

[@] Quarantine week 2.
* Interim sacrifice animal.

FOOD CONSUMPTION (g/week) Appendix I (cont.):

5 Females Group

WK13	NR	122	124	114				125	2	2			Ò	142	\leftarrow	,	1	174.	164.	124.	164.	164.	164.	2.7.	7 7	164.	164.	164.	164.
WK12	NR	128	119	108				2	106	2				126		•	,	12	12	12	12	12	12	12	7 121. 9 9. 0 3.	12	12	12	12
WK11	NR	96	101	107				109	98	111			\sim	111	0		70	105.	105.	105.	105.	105. 11.	105.	105. 11.	105. 11.	105. 11.	105. 11.	105. 11.	105. 11.
WK10	N. R.	113	125	122				2	103	Н			က	129	0		117	117.	117.	117.	117.	117.	117.	117 10 3	117. 10. 3.	117. 10. 3.	117. 10. 3.	117. 10. 3.	117. 10. 3.
WK9	NR	112	131	140				2	110	Н			က	134	0		23	ო (23.	23. 12.	23.	23.	23. 12.	23 12 4	23. 12.	23. 12.	23. 12.	23. 12.	23. 12.
WK8	NR	110	118	141				П	132	\leftarrow			က	122	Н		c	٠. د	22.	22. 10.	22. 10.	22. 10.	22. 10.	22. 10.	22 10 3	22. 10.	22. 10.	22. 10.	22. 10.
WK7	NR	125	-1					\sim	122	2			က	141	Ó		0	٠. ف	29.	29. 14.	29. 14.	29. 14.	29. 14.	29. 14.		29. 14.	29. 14. 5.	29. 14. 5.	29. 14. 5.
WK6	NR	124	137 sp	32				125		2			4	132	\vdash		α	φ,	28.	28. 11.	28. 11.	28. 11.	28.	28. 11.	28 11 3	28. 11.	28. 11.	28. 11.	28. 11.
WK5	NR	132	144	142				$^{\circ}$	123	$^{\circ}$			4	138	Н		7	٠	34.	34.	34.	34.00.4	4. o. c.	₩ . o u	34 9 8	₩ . o. w	94. 9. 6.	94. 9. 6.	94. 9. e.
WK4	NR	127	142	139	115	131	156	128		Н	117	116	132	132	110		ας	φ,	28.	28. 12.	28. 12.	28. 12.	28.	28. 12.	28. 12.	28 12 3	28. 12.	28. 12.	28. 12.
WK3		135		2	Ч	က	∞	4	N	29	2	2	4	က	0		ς C	ر. ا	35.	35. 17.	35. 17.	35.	35. 17.	35. 17.	35. 17.	35 17 4	35. 17.	35. 17.	35. 17.
WK2	NR	142	132	142	122	143	156	144	121	135	121	115	143	144	126		~	4.	34	34.	34.	34.	34.	34. 12.	34. 12.	34. 12.	34. 12. 3.	34. 12. 3.	34. 12. 3.
WK1	NR NR	30		31	20	32	39	33	20	94	23	7	41	12	22		, ,,	4.1	24.1	24.1	13.0	24.1 13.0	24.1 13.0	24.1 13.0	24.1 13.0 3.5	24.1 13.0 3.5	24.1 13.0 3.5	24.1 13.0 3.5	24.1 13.0 3.5
QWK2 ^e	NR [†]		19	22	90	56	45	26	27	17	19	11	30	32	13		0000	<u>ق</u>	22.9	22.9	22.0	22 0.00 0.00	22 0.0 0.0	0.00 0.00 0.00	22 0 0 0 0 0 9	22 0 0 2 0 0 9	22. 0.02. 0.09.	22. 0.02. 0.09.	22. 0.02. 0.09.
Animal# (86000-	760	762	769	770	S	782*	*197*	819	820	831	835*	841*	845	847	856		Monn	~	~	Mean Std Dev	C	C	C	~	~	~	~	~	C.

[@] Quarantine week 2.
† Not recorded.
* Interim sacrifice animal.

Appendix I (cont.): FOOD CONSUMPTION (g/week)

Group 6 Females

WK13	125 152 100 132 137 142	H07	126.0 16.8 5 16.8
WK12	122 148 103 140 135 133	412	128.0 14.6
WK11	105 137 129 119 135	486	113.0 16.8 5.3
WK10	spill 141 145 133 133 128	100	125.6 13.5
WK9	127 s 124 104 137 133	7 1 1	123.6 11.2 3.5
WK8	121 121 123 152 138 144	707	126.5 18.6
WK7	141 154 113 spill 149 143	212	135.3
WK6	131 131 107 129 140 146	313	131.6
WK5	136 160 105 132 135 149	7 2 7	132.0 16.3 5.1
WK4	134 132 132 132 132 133 133 133 133	0 5 1 5	130.1 15.6 4.0
WK3	135 122 122 123 123 115 131 136 134	777	129.5 12.8 3.3
WK2	127 115 113 128 128 160 112 135 135	0 ~ ~ ~	120.9
WK1	83 100 106 106 132 132 14 94 91	spill 100 108 88	97.0
QWK2 [@]	128 120 120 120 128 136 123 123 123	തയതയ	120.4
Animal# 86D00-	750 754* 754* 773* 783 792 798 809	817 822 830 839*	Mean Std Dev SEM

@ Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) Appendix J:

1 Males Gronb

	QWK2 e	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
ന	9	~		-	229	ᅥ	\leftarrow	, ,	 1		~	~	;−1	0
539	237	316	318	316	287	282	275	289	284	250	309	310	299	275
4	0	7	7	4	437									
ıΩ	ന	ഗ	S	9	276	4	ന	2	0	0	0	0	0	σ
9	4	4	α	α	294	9	∞	9	9	$^{\circ}$	∞	∞	9	$^{\circ}$
7	B	9	7	7	264	236	257	250	232	236	256	249	250	260
Н	2	ഗ	9	7	271	7	~	9	4	4	4	4	4	3
N	\sim	ഗ	4	S	277									
ന	↤	7	S	ω	281	266	257	256	266	261	244	239	238	235
α	0	4	4	4	323									
ω	S	ഗ	α	6	306									
α	3	3	က	Ч	266	ω	9	9	0	S	ω	7	ω	7
0	ω	Ч	(↤	294	212	201	209	215	214	245	250	256	221
0	4	9	9	0	315	m	0	3	∞	ω	S	4	∞	2
Н	S	0	0	0	205									
Mean	•	0	•	ω.	œ	3	9	α.	4	φ.	263.	260.	267.	275.
Std Dev	33.8	42.8	45.5	51	51.1	36 6	32.2	37.8	52.4	51.2	ব্য	42.	5 51.	5 59.9
SEM	•	급.	급.	щ	щ	٦,	。	5	ف	9	14.	13.	16.	18.

@ Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) Appendix J (cont.):

Group 2 Males

Animal#	QWK2 [@]	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
2222		1]											
90	ď٠	S	4	4	on.									
0	0	\sim	٦	2	ι								•	•
3	ب_	0	Н	ω	Ö	301	286	293	288	282	322	297	294	464
4	7	9	0	σ	9									
0	Φ	ന	4	Ч	∞	265	253	288	280	257	275	264	266	285
0	ဘ	ന	7	ω	9									
0	9	0	Н	ന	3	Н	Н	9	ന	ન	2	₽	2	σ
10		m	ന	ന	ひ	\sim	⊣	S	2	\sim	m	9	~	4
1 (*	· 01	S	9	9	~	~	264	306	288	284	301	279	304	spill
) (C	9	6	S	S	တ	~	9	S	∞	σ	$^{\circ}$	က	2	2
7	- ∞	4	۳-	~	-	9	σ	0	Φ	∞	ဖ	7	7	ω
٠ σ	; ;-	6	0	ω	-	9	9	ω	7	9	Q	9	9	S
731	195	229	239	249	248	223	ω	4	m	2	$^{\circ}$	7	$^{\circ}$	-
(1)	S	ω	0	4	9									
3	Ο,	က	4	2	9	238	232	240	258	263	251	290	287	252
M ea n	203.4	254.	256.	266.	274.	247.	241.	262.	256.	249	25	2 253	255	1 258.
Std Dev	36	57.	45.	53.	3 65.9	59.0	55.0	49.1	58.0	62.	9 56.	0 53.	9 55.	5 93.8
SEM	•	14.	11.	m	17.	18.	17.	15.	18	_	-1	1.7	-1	ζĮ.

[@] Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) (cont.): Appendix J

Group 3 Males

Animal# 86000-	QWK2 [@]	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13	1
4		,		(ı							
Н	234	σ	9	ဘ										•	
⊣	252	α	Ч	σ	∞	259	303	267	256	254	spill	274	244	243	
2	283	2	$^{\circ}$	3	0										
2	181	0	0	0	2	0	ന	Н	က	0	Н,	S		0	
4	224	4	~	S	\sim	ω	σ	σ	0	α	ω	\vdash	σ	α	
S	227	ω	0	ω	g		304	287	306	310	297	313	314	296	
ω	400	ω	S	Н	2	\vdash	0	σ	σ	4	7	ω	H	σ	
583	202	226	246		262		7	9	α	4	7	~	σ	9	
σ	185	Н	\vdash	m	0										
0	196	S	7	4	9										
9	228		н	2	⊣	σ	φ	194	211	138	195	206	206	193	
6	211	26	Н	က	ω	276	284		∞	7	4	_	Ó	S	
~	219	2	2	$^{\circ}$	\sim										
Н	266	ဌ	ω	σ	0	7	283	283	296	272	315	314	302	307	
0	223	7	2	3	2	222	4	E	Ŋ	က	Ó	S	(n)	က	
															ŧ
Mean		4 278.	28	269.	278	242.	273.	261.	272.	7	6 295.		3 258	0 248	
Std Dev	53.	5 49.	3 63.	9 47.	4 56.	1 44.	4 60.9	59.3	56.7	S,	σ (0 80	W •	3 43.	
SEM		13.	_	12.		14.	19.	18.	17.	H	3.1	2	⊣	13.	
															1

0 Quarantine week 2. * Interim sacrifice animal.

Appendix J (cont.): WATER CONSUMPTION (ml/week)

Group 4 Males

86D00-	ZMINZ	WKI	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
S	;~;	Н	2	2	225									
	H	4	3	4	249									
0	S	4	ന	m	253									
н	٦	7	α	Н	307	7	∞	~	α	α	α	9	0	α
S	0	ന	ന	7	288	7	9	∞	ω	S	α	α	7	α
m	u")	0	0	0	364	376		332	326	311	302	317	336	275
ന	Q)	S	2	3	213	0	227	\vdash	\vdash	σ	\vdash	0	0	ഗ
4	7	⊣	3	2	235									
4	ပ	9	9	4	271									
4	-	-	2	⊣	221	σ	0	σ	0	σ	σ	Φ	σ	7
S	-	7		9	278	S	9	~	∞	ω	7	σ	ω	S
7	٦, ١	~	ന	(1)	228	0	ω	9	σ	σ	æ	∞	9	7
٦.	1 4	·-	3	3	360	2	S	N	2	Н	ϵ	g	7	∞
· c	٠ 4	ıα	₽	0	302	⊣	328	323	306	278	341	327	323	331
718	200	254	268	271	293	271	ω	9	9	2	2	4	4	3
										0.00	996	090	196	000
Mean Std Dev	219.1	261.	4 265.2 2 51.9	268.4	47.5	269.0	56.4	51.5	49.0	46.7	54.8	52.5	57.2	55.3
		m	13.	13	12.	8	17.	16.	5.	14.	17.	16.	18.	17.

@ Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) Appendix J (cont.):

Males ເນ Gronb

Anima1# 86D00-	QWK2 ⁰	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
0	σ	2	268	7	9									
ന	7	4	233	ഗ	7									
ഗ	S	0	300	$^{\circ}$	₽	0	σ	7	4	2	9	4	4	2
~	m	S	265	ω	ω	281	276	262	267	265	265	277	251	254
Ч	σ	2	185	9	9	9	7	9	7	9	7	α	ന	Ó
N	ന	3	210	~	ϵ									
ന	9	g	200	0	Q	α		187	197	187	182	185	189	172
4	0	4	305	⊣	$^{\circ}$	301	295			0	0	0	g	7
4	ω	3	235	က	S									
ထ	9	9	218	2	2	0	Н	ᠬ	\vdash	ш	0	Н		186
ထ	7	σ	211	щ	2	σ	9	Q	ω	α	α	σ	σ	α
ထ	α	Н	235	4	7	S	2	0	0	0	ω	o)	7	7
ത	Н	0	303	$^{\circ}$	0	258	251	249	244	259	262	239	227	207
669	193	238	235	230	242	~	~	3	\sim	4	4	4	S	9
~	ω	\sim	240	က	ひ									
Mean	•	225.	242.	7.	254.	δ.	243.	8	9	240.9	237.	1 237.1	1 236.	3 223.2
Std Dev	27.8	44	37	42.4	44.0	43.4	40.4	40.9	•	٠	43.	40.	51.	46.
SEM	•	11.	<u>ه</u>	,-i	11.	ж	12.		2	m m	13.	12.	16.	14.

@ Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) Appendix J (cont.):

Group 6 Males

Animal# 86D00-	QWK2 [@]	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
3	187	138	4	7	0									
552*	194	112	189	178 286	191 280	ď	V		1	~	S	LC.	Ç	4
565 565	201	191	2	0 00	ად	239	238	239	246	238	223	221	210	208
568	243	217	0	$^{\circ}$	7	4	S		2	2	2	H	7	α
587*	178	211	Ч	Н	2									
607	130	232	വ	S	9	251	252	232	235	221	244	231	235	210
630	212	245	ω	ω	σ		∞	ω	7	σ	0	0	ω	σ
631*	185	210	~	N	4									
652	224	277	σ	m	~		378	398	411	367	375	379	375	371
629	187	178	2	ω	9	230	225	Ò	3	Н	2	217	2	Н
674*	193	145	7	Н	3									
619	201	191	4	9	ď	4	$^{\circ}$	က	က	217	225	221	223	209
708	308	313	4	9	9	330	343	357	335	0	က	ᅥ	Н	ω
728	192	164	9	\vdash	9	$^{\circ}$	7	0	က	ന	4	က	\sim	⊣
		206.	238.	259.	267.	278.	278.	280.	00	265.	275			5 253.1
Std Dev SEM	42.8	56. 14.		5 57.8 8 14.9	8 64.3 9 16.6	15.6	18.5	20	19.0	17.		17.	16.	17.

[@] Quarantine week 2.
* Interim sacrifice animal.

Appendix J (cont.): WATER CONSUMPTION (ml/week)

Group 1 Females

Animal# 86D00-	QWK2 [@]	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WKlî	WK12	WK13
765*	σ	φ	7	Ó	7									
768	276	240	233	299	200	7	σ	7	⊣	σ	S	7	pi1	
772	S	4	3	4	4	150	158	160	166	154	141	155	160	160
176	ω	ω	9	9	3	œ	4	က	4	⊣	4	$^{\circ}$	4	4
778	0	Н	0	\vdash	0	$^{\circ}$	Ч	0	ᅥ	\vdash	σ	0	4	
908	σ	Н	7	7	9	9	9	2	S	ω	4	2	7	α
810	σ	0	2	'n	0	7	2	\mathbf{S}	∞	S	Н	4	2	9
4	Q	ω	ð	∞	σ									
815*	0	\neg	\sim	Н	0									
818	9	9	∞	9	2	197	163	171	194	188	178	166	179	176
S	ω	ω	0	$\boldsymbol{\vdash}$	0									
832*	9	႕	g	7	∞									
833	7	9	7	7	∞	7	175	ð	182	193	181	154	201	198
843	σ	9	0	m	Ci	247	-	221		Н	σ	9	\vdash	H
849	9	က	 1	4	7	7	က	Φ	വ	9	0	0	ဘ	Ñ
C	•	•	19	0	•	4.	6	رى	81	বা (185.	198.	206.	212.
Std Dev	7	24.5	20. 9.	10.8	33.8 8.6	13.1	14.7	52.3	35.3	18.6	3/	26. 18.	2 4 6 16.0	8 52.6 6 16.6
	•	•	•	,	•	•	:	•	•	•)) 	

@ Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) Appendix J (cont.):

Group 2 Females

Animal# 86D00-	QWK2 ⁰	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
ហ	~	ব	~	G	4	٧	160	7	ហ	ľ	V	7	<u> </u>	ָ ֡ ֡ ֡
755	187	210	207	209	225	230	220	230	225	234	197	211	261	310
2	Φ.	α	7	Н	ω)	•	1)	ſ
9	\circ	ന	S	B	g	↤	303	4	2	7	9	ω	~	α
7	ဖ	ω	α	9	4	257	274	258	247	242	254	245	241	274
ω	∞	0	0	0	ω								1	
S	7	S	79	pil	\sim	spill	spill	349	440	369	315	spill	spill	280
9	\circ	S	80	٦	S								4	• •
0	\circ	Ч	급	25	g	209	222	218	203	204	187	173	210	212
$^{\circ}$	S	7	9	9	S									
37	ŗ.,	α	σ	Н	7									
$^{\circ}$	マ	4	4	α	∞	႕	2	4	B	S	$^{\circ}$	က	α	7
4	$^{\circ}$	٦	Ч	~	0	3	Н	۳	Н	0	9	~	⊣	⊣
S	9	Н	\sim	2	0	224	220	275	272	253	234	244	278	spill
S	S	7	7	7	7	7	른	0	0	0	α	7	2	
Mean	ω.	2	217.	217.	21	22	6 227.	251.	245.	224.	225.	211	240	258.
Std Dev	47.8	45.3	49.	6 42.9	43.	4 43.	6 40.3	3 56.0	75	34.9	50.	7 44.	6 38.	6 37.7
SEM		-	12.		-	-	13.	17.	24.	13.	16.	-	12	13.

 $^{^{\}theta}$ Quarantine week 2. * Interim sacrifice animal. $^{\delta}$ Value not considered reliable, not included in group mean.

WATER CONSUMPTION (ml/week) Appendix J (cont.):

Females ო Gronb

Animal# (86 <u>000</u> -	QWK2. ⁶	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
	თ	ာ	pi]	7	195	0	0	23 s	οil	o Ω	7	S	207	7
	231	250	256	261	262	315	279	284	297	302	293	213	337	spill
	2	വ	~	2	229	B	ന	က	4	ഗ	B	ω	9	24
	ω	σ	9	4	161									
	9	0	0	0	205	209	205	237	229	217	190	263	333	218
	Ч	σ	S	9	172									
	σ	ω	ω	9	304	272	290	281	279	278	249	279	283	265
	α	0	Q	pil	212									
	α	7	Ч	21	209	9	2	4	ω	ω	ω	9	S	m
	2	4	Н	9	353	$^{\circ}$	4	04	iΊ	9	9	0	Ч	α
	0	0	2	σ	188	ω	7	0	ij	9	~	4	ω	7
	ત્ન	Н	pil	2	217	191	191	200	191	159	194	120	218	178
	S	Н	20	∞	184	ω	S	σ	S	9	4	ന	σ	0
	က	9	4	9	236									
	7	7	9	7	188									
		}												
	о	•	218.	218.	221.	9.	0	0	225.	221.	211.	187.	257.	219.
Dev	32.0		2 45.6	5.56.5	51.4	54.5	54.9	37.8	52.5	55.	9 46.5	6 23.	5 57.	2 39.2
	•	٠	H	15.	13.	:	•	, N	٦. د	17.	14.	16.	18.	13.

@ Quarantine week 2.
* Interim sacrifice animal.

Appendix J (cont.): WATER CONSUMPTION (ml/week)

Group 4 Females

Animal# 86D00-	QWK2 [@]	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
· ·	α	217	C		-	C	C	-	τ-	۰	-	(١	CCC
ď	, -	1 6	1 n) (4 (0 0 0	777	7 7 7	177	177	017	677	727	233
0 0	- ·	אר היי	n (\sim	א עכ	N	4	N	~	4		2	∞	262
\mathbf{x}	9	301	~	4	თ [.]									
87	S	215	Н	Ч	σ	223	286	223	209	202	202	166	217	210
O)	ന	263	ŗ	7	4									
ΟJ	-	226	4	ഗ	⊣	259	254	294	245	288	243	233	279	287
$\boldsymbol{\sigma}$	U.	262	ဖ	3	α)))
811	203	219	222	225	201	2	Н	2	Н	N	σ	7	\vdash	-
\leftarrow	Q	231	2	2	7	217	215	225	197	226	217	173	230	214
\sim	တ	221	4-4	σ	g								•	ı
42	Q	192	9	9	9									
4	(2)	253	0	g	m	4	S	S	S	S	ഗ	S	6	7
4	S	184	σ	7	~	194	184	204	188	228	193	198	S	9
വ	ŝ	182	S	4	9	9	œ	σ	9	σ	α	S	0	9
വ	ဖ	215	ω	0	7	ω	∞	9	9	7	S	132	203	159
Mean	•	•	231.	0	202.	216.	223.	224.	210.	225.	4.	192.	237.	224.
Std Dev	0	32.8	47	53.4	36	27	34	30	26	31.	30.	38.	34.	39.
SEM	•	•	12.	ж Э	<u>ه</u>	∞.	11.	<u>ه</u>	ω.	<u>ه</u>	o.	12.	10.	12

[@] Quarantine week 2.
* Interim sacrifice animal.

WATER CONSUMPTION (ml/week) Appendix J (cont.):

5 Females Group

0				•	Į,	,	L 74174	0,717		0 1 245		0 1 745	C 1.7121
	WK1	WKZ	WK3	WK4	WK5	WK6	WK/	WK8	WKS	WELU	MELL	MUTC	CTUM
	. (1		((•	((ſ	(ų.	-
	~	_	\circ	∞	2	4	N	J)	α	-	Y	α	Tid
	N	O	15 s	$\overline{}$	$^{\circ}$	3	2	σ	Н	0	ω	な	3
	4	4	07	22	235	204	189	170	206	182	136	210	183
	\sim	O	ω	Н	2	Н	S	Ч	7	σ	S	S	α
	ω	~	9	S									
	4	α	Н	0									
	0	ω	9	က									
	ᅥ	Н	0	0	0	∞	0	7	0	0	9	႕	ч
	0	g	8	0	203	166	173	192	164	139	122	170	180
	192	22 /	228	226	2	0	m	Н	~	0	0	4	ന
	러	2	$^{\circ}$	g									
	Q)	0	S	0									
	~	0	က	က	227	253	256	243	246	227	204	239	226
	S	4	4	4		4	S	$^{\circ}$	S	3	Н	വ	4
	4	\leftarrow	9	\leftarrow	m	2	0	2	\leftarrow	ω	7	က	0
	214.	212.	•	210.	Э.	•	•	•	•	•	170.	217.	210.
	5 21.8	20.	ω :	23	18.4	28.8	28.3	41	26.6	26.9	32.2		
	N		•	٥	•	•	•	•	•	•	.01	Ď	ò

0 Quarantine week 2.
* Interim sacrifice animal.

Appendix J (cont.): WATER CONSUMPTION (ml/week)

Group 6 Females

Animal# 86D00-	QWK2 ⁶	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
										1	,	•	!	•
750	69	Н	7	Ō	α	195	197	200	181	178	180	162	235	202
154*	95	13	σ	Н	\prec									
757*	9	7	7	\vdash	0									
173*	5	0	0	0	0									
g	щ	က	7	S	9									
783	ഗ	2	₩	ω	S	Н	ω	0	9	0	~	σ	က	な
192	സ	S	9	7	0	ω	α	α	S	ω	7	9	0	α
867	9	9	-	S	9	4	7	9	ω	7	S	ω	ω	9
608	0	9	N	7	တ	0	Н	Н	ω	0	7	7	က	∞
313	0	~ ~	S	4	┌┤	ω	\vdash	4	ω	0	9	0	2	$^{\circ}$
116	9	ω	σ	(-1	N	ന	က	7	4	\vdash	0	Н	2	2
317	7	0	0	4	~	Н	7	4	4	3	0	19	S	S
122	7	α	α	σ	ω	217	227	219	245	213	201	116	222	212
330	181	185	191	213	211	0	Н	0	σ	σ	∞	S	Q	0
39*	4	9	S	9	ഗ									
\$ 6 <u>0</u>	<	200	700	۷	222	241	242	246	237	230	214	9 199.	0 252	5 240.
Std Dev	28.8	45.	44.	42.	39.	46.	42.	3 43.3	46.	46.	9 39.	0 58.	⊣	7 46
200		12	-	-	0	14	7.	73	14.	14.		19.	4	14.

@ Quarantine week 2.
* Interim sacrifice animal.

Appendix K: BODY WEIGHTS (g)

Group 1 Males

11 WK12 WK13	24 537 550 59 482 491	50 573 581 52 571 593 04 619 632 15 553 559	39 553 559 60 458 472 59 464 475 94 511 523	0 532 544 1 52 53
.0 WK11	.3 52 18 45	15 56 16 55 2 60 15 54	13 53 15 45 12 45 19 50	6 52 0 5
9 WK10	2 51 7 44	5 1 3 3 5 0 5 2 0	4 52 3 43 6 45 8 48	8 50 2 5
WK9	503	53 52 51	50, 42, 43, 45,	488
WK8	491 405	532 496 559 500	489 409 425 449	476
WK7	474 389	516 473 541 479	464 398 410 423	457
WK6	454 371	493 452 528 448	446 380 396 410	438
WK5	426 354	466 420 493 417	421 356 381 391	413
WK4	თოთ	, m or r or or	395 395 368 342 363 371 382	388
WK3	717	110405	367 380 326 313 341 350	358 35
WK2	ω	770071	335 334 334 333	326 33
WK1	046	78273	283 314 237 260 279 311	287
WKO	4 L 0	70808	2224 2339 214 221 258 258	225 33
QWK1 [†]	182 97 99	20000	105 105 165 160 190	161 39
ALC\$			150 150 156 153 192 187	1.49 43
#RPT@	W 0 K	0 12 12 13 C	1114 1118 1107 1134 124	122 v 15
Animal#RPT [@] ALC ^{\$} QWK1 [†] 86D00-	530 530 7439 433	557 557 577 618	635 680* 681* 688 706 707	Mean Std Dev

BODY WEIGHTS (g) Appendix K (cont.):

Males Group 2

100000					MINT	7		MAN	CVIM	WAND	WK /	MVO	MNS	WELU WELL	7711	7711	CTVM
06* 1	35 1	0.1	28	0		~ ~	ဖ	()									
507* 1	15 1	84	191	262	315	355	399	424									
31 1	60	83	7	ဖ	$^{\sim}$	-	Ч	4	374	402	421	438	464	489	494	504	524
48* 1	27	66	7	マ	α	2	4	-						t.))	}
00	26 1	7	90	4	တ	4	α	↤	439	463	495	520	536	560	571	592	556
06* 1	33	96	4	7	S	0	က	σ) •	١.)
25 1	12 1	7	79	4	σ	3	S	$^{\circ}$	0	3	~	ω	σ	Н	ന	Ą	9
28 1	10 1	4	52	\sim	φ	3	9	O)	~	3	5	7	α	Н	~	~	-
34 1	15 1	9	71	\sim	ω	3	9	$\boldsymbol{\sigma}$	411	434	469	469	479	490	494	502	516
56 1	19 1	7	73	S	σ	2	9	g	Н	3	S	9	ω	σ	σ	~	-
78 1	31 1	7	82	$\overline{}$	σ	3	7	ത	N	S	7	∞	σ	σ	ᅥ	~	m
94 1	03 1	9	72	₽.	0	4	7	0	2	4	9	ω	0	2	ന	ന	4
31 1	25 1	ω	91	O	Н	2	∞	0	\sim	S	9	∞	0	\leftarrow	2	N	S
33* 1	15 1	9	4	$^{\circ}$	∞	\sim	9	α								1	1
34 1	11 1	9	70	\sim	7	H	2	7	402	430	443	462	478	490	511	517	519
	1																
Mean 1		51	163	230	287	329	362	393				477		508			
Dev	10	36	34	29	23	20	21	18	17	17	20	21	20	21	24	26	42
S S S S	יי	ע	ת	`	٥	ဂ	ဂ	ဂ	٥	2	9	7	ဖ	7	7	∞	

BODY WEIGHTS (9) (cont.): Appendix K

Males ო Group

WK13	525	433 544 601	ο ₁ Ο	513 527 574 514	545 59 19
WK12 4	512	425 530 582	4 C	489 509 555 503	528 56 18
WK11	507	413 516 565		491 505 551 493	518 53 17
WK10	4 9 9	407 498 553	8 7	473 493 542 480	505 49 16
WK9	484	406 481 531	o o	455 474 518 460	487 43 14
WK8	470	394 468 512	α 4.	443 458 516 442	473 44 14
WK7	450	381 449 491	2 2	426 437 501 417	453 42 13
WK6	434	362 428 470	00	406 425 478 394	432 41 13
WK5	418	350 406 441	9	388 402 458 372	409 37 12
WK4	400	N 00 01	5000	366 377 427 431 343	390 37 10
WK3	9 60	σ ω	1040	354 354 378 307	358 33 9
WK2	400	2000	4910	311 320 359 364 270	321 36 9
WK1	တတ	7 2 7 1	219	282 284 308 324 218	278 32 8
WK0	7 7 7	2707	5040	23 241 229 153	218 34 9
QWK1†	ကြဟ	138 138 138 138	9000	178 178 185 191 85	154 35 9
ALC\$	0 4		7000	1163 1169 1184 82	140 39
#RPT@	_ ~ m ∈	3272	000-	107 108 116 125	117 v 11 3
Animal#RPT [@] ALC ^{\$} QWKl [†] WKO 86D00-	(त्न त्न (2245	. co co co	696 698 713* 723	Mean Std Dev SEM

Appendix K (cont.): BODY WEIGHTS (g)

Males Group 4

WK13		702 561 499	2 6	517 497 574 530 516	552 60 19
WK9 WK10 WK11 WK12 WK13		703 547 477	א נר	50 50 50 50 50 60	538 66 21
WK11		664 529 467	7 4	557 557 511 511	524 58 18
WK10		660 512 456	N 6	544 444 548 502 492	515 59 19
WK9		625 434 634	ω ~	442 442 523 4431 471	494 55 17
WK8		597 483 425	n o	4428 4438 474 50	479 51 16
WK7		564 392	9 7	44444 4010000 80000000000000000000000000	454 50 16
WK 6		548 422 378	n n	3379 397 4460 417	434 50 16
WK5		323 359 359	m r	4444 4447 403	416 49 15
WK4	930	9696	0 M O C	3339 339 350 387 371	393 42 11
WK3	ထတတ	300	7007	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	362 42 11
WK2	4 9 5	0000	ഗരസം	2275 275 376 326 310	325 39 10
WK1	めるエ	444	ч ф σ α	232 232 232 296 271	281 38 10
WKO	5 7 9	979	9746	2245 2345 2345 2395 8395	226 40 10
QWK1†	189 208 200	207 111 84	207 97 184	1119 1119 177 168	161 43 11
ALC\$	184 195 193	0 8 7	σσωσι	133 118 120 170 162	152 45 12
Animal#RPT [©] ALC ^{\$} QWK1 [†] WK0 86D00-	0 m m	600	2000	105 117 107 117 114	119 v 11
Animal 86D00-	ഗരവ	428	W 42 42 4	646 655 676 703 718	Mean Std Dev SEM

@ Receipt.

BODY WEIGHTS (9) Appendix K (cont.):

Males Ŋ Gronb

1 WK12 WK13	8 471 485 8 609 621	536 54 469 47 579 59	6 480 492 2 492 496 3 570 585 6 527 542 6 561 562	7 529 539 0 50 51 6 16 16
WK11	4 R)	52 2 5 5 6	3 46 0 48 0 56 5 50 7 54	3 51 0 5 6 1
WK10	439	52 H	448 608 808 808	50 5
WK9	426 556	o nn	431 454 538 472 515	485 48 15
WK8	402 533	7 2 1	412 522 452 494 494	469 48 15
WK7	381 511	ω Ο Φ	392 429 501 421 472	446 47 15
WK6	363 487	8 8	366 4412 3989 451	426 47 15
WK5	346 457	36	338 389 464 373 452	403 47 15
WK4	m m 01 01	೧ ଫ ଫ ଫ	394 312 361 432 406 406	369 38 10
WK3	0000	200	365 278 328 394 309 382	339 40 10
WK2	00 A A	1000	328 241 301 352 269 341 344	300 40
WK1		രപഗശ	279 184 262 299 214 295 293	251
WKO	9999	450	213 153 227 251 154 239	203
QWK1†	95 91 90 187	189 78 161 117	173 84 167 180 87 200 173	138
ALC\$ (00004	179 179 158 93	171 81 168 174 88 187	130
RPT	ਜ਼ਜ਼ਜ਼੶	707	1255 105 1112 1114 1114	117
Animal#RPT [@] ALC ^{\$} QWKl [†] 86D00-	5000 × × × × × × × × × × × × × × × × × ×	. – N m a	6488 6884 6886 6890 7269	Mean Std Dev

BODY WEIGHTS (9) Appendix K (cont.):

Males 9 Group

WK13		7	508	\circ	(601	S	- 1	471	~	- 1		552	σ <u> </u>	540		
WK12		5	496	∞	(288	4	1	461	ဖ	,	9	543	ω	527		
WK11		4	489	9	- 1	578	2	-	454	S		4	524	-	515		
WK10		\sim	472	m	1	260	⊣		442	ന		m	512	Ø	200	43	14
WK9		C	460	~		534	g		431	2		\vdash	494	4	481		
WK8		α	442	0		518	7		412	0		σ	484	0	464	41	13
WK7		5	421	7		491	4		399	α		~	474	0	442		
WK 6		က	403	2		474	2		387	9		9	452	σ	425	$^{\circ}$	11
WK5		0	384	Ò		456	σ		362	4		2	425	7	399		
WK4	7	365	2	α	2	ш	7	S	2	⊣	വ	Н	σ	4	360	33	ω
WK3	7	319	2	4	$^{\circ}$	∞	4	2	0	ω	Н	∞	9	2	328	$^{\circ}$	თ
WK2	8	273	7	0	g	S	σ	7	9	3	9	4	\sim	ω		36	თ
WK1	ω,	223	4	4	Ŋ	0	S	$^{\circ}$	$^{\circ}$	9	\sim	σ	7	4		33	თ
WK0	7	454°	2	2	က	9	2	$^{\circ}$	⊣	9	0	S	9	2		30	∞
QWK1†	σ	114	9	7	7	0	9	7	S	0	7	σ	σ	9	162	$^{\circ}$	∞
ALCS	93	155 91	162	175	164	195	163	167	160	106	168	189	193	160		m	თ
#RPT@	12	115	0	⊣	0	4	Ч	0	0	0	ᅼ	4	ന	\vdash		٢	
Animal#RPT@ ALC\$ QWK1† WK0 86000-	23*	552× 563	9	9	ω	0	m	m	S	S	7	7	0	2	Mean	Std Dev	SEM

@ Receipt.
\$ Allocation.

† Quarantine week 1.
* Interim sacrifice animal.
& Not included in group mean.

BODY WEIGHTS (g) Appendix K (cont.):

Females Group 1

Animal#RPT [@] ALC ^{\$} QWK1 [†] WK0 86D00-	RPT	ALC\$	QWK1†	WKO	WK1	wK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK10 WK11	WK12	WK13
765*	N	~	ω	Н	m	4	S	7									
768	0	4	വ	7	∞	0	0	7	2	က	4	S	ന	വ	വ	~	7
772	0	Ś	വ	7	Ō	σ	σ	0	Н	2	$^{\circ}$	$^{\circ}$	4	B	4	4	S
176	0	4	ഗ	7	0	$^{\circ}$	$^{\circ}$	Н	4	4	4	S	4	9	S	9	9
778	$\overline{}$	S	9	σ	0	4	4	9	1	ω	∞	σ	Q	0	Q	ဌ	Ч
908	\leftarrow	9	~	0	m	Ą	S	9	275	282	282	281	280	287	286	297	299
810	H	Ś	9	σ	2	4	S	S	9	9	∞	7	ω	σ	∞	σ	0
814*	0	9	∞	0	0	0	က	4									
815*	0	マ	9	σ	Ñ	4	4	S									
818	116	160	172	194	228	237	253	289	284	292	286	298	299	305	303	309	307
825*	⊣	Ö	Ó	∞	0	0	3	4									
832*	\leftarrow	S	9	ω	0	ന	m	4									
833	Š	~	-	0	Ñ	$^{\circ}$	$^{\circ}$	9	272	274	282	282	289	292	288		Ч
843	2	9	ω	\vdash	m	9	7	α	0	0		2	2	3	က	343	347
849	3	7	7	g	N	4	4	9	α	α	g	۲	7	2	2	3	4
Mean	114	160						252	264	269	274	281	282				302
Std Dev	1 7	11	10	14	17	17	19	24	27	27	56	28	30	30	29	30	31
SEM	7	m	ო	4	4	4		9	თ	თ	œ	თ	10		თ	0	10

Appendix K (cont.): BODY WEIGHTS (g)

Group 2 Females

WK13	289 291	337 361	N	4 6	395 295 331	333 49 16
WK12	294 295	329 356	\leftarrow	4 6	323 323	330 46 15
WK11	284 290	314 364	0	2 6	367 270 304	318 46 15
WK10	282 299	309 362	405	4. A	375 375 303	321 49 15
WK9	277 304	301 338	397	m v	356 375 310	315 41 13
WK8	270 285	300 340	342	ω 4	352 260 301	303 37 12
WK7	268 287	301 339	346	7 ~	253 251 251 291	298 40 13
WK6	252 281	288 330	347	0 6	249 274 274	289 40 13
WK5	257 279	287 295	311	9 4	230 315 247 269	278 28 9
WK4	400	1881	8 4	272 231 245	1005	264 29 7
WK3	നഗഠ	7 8 25	9	278 220 246	O 0 내 4	255 29 8
WK2	H M a	5 4 4 5	4	253 207 224	и о н о	240 25 7
WK1	~ ~ ~ ~	2 G W 4	w 0		233 222 222	221 18 5
WKO	$\sigma \sigma c$	900	00	224 171 192	075	200 17
QWK1†	ကလေ	コトト	9	150	ဂတယယ ၂	168 11 3
ALC\$	4 5 7	- 6 6 6	5	173	0 6 2 7 0	158 11 3
#RPT@	0 7 -		\vdash	121 105 96		113 v 8 2
Animal#RPT [@] ALC ^{\$} QWK1 [†] 86D00-	សលស	9 4 9 6	σ	804 829* 837*	0 4 r0 r0	Mean Std Dev SEM

BODY WEIGHTS (9) Appendix K (cont.):

Females ო Gronb

WK10 WK11 WK12 WK13	8 264 279 27 2 334 351 33 1 292 313 31	9 340 359 34 5 367 376 38	1 334 356 35 2 407 431 44 9 290 305 30 7 325 348 34 2 282 296 30	2 324 341 34 4 43 45 4 4 14 14 1
WK9	269 26 335 35 305 32	308 309	3 341 34 410 42 3 283 29 3 337 34 2 89 29	324 33 42 4 13 1
WK7 WK8	255 265 315 320 288 288	287 300	333 328 386 392 274 288 315 325 263 283	305 314 40 38 13 12
WK5 WK6	248 252 307 309 266 278	278 276 325 329	313 312 349 364 266 261 312 332 277 266	294 298 32 37 10 12
WK3 WK4	22 23 77 28 49 24	42 25 51 25 45 26 89 30	273 295 280 285 312 316 251 257 301 308 263 263 281 287 232 251	265 274 26 25 7 6
WK1 WK2	06 21 44 26 14 23	22 23 12 23 26 23 59 28	238 264 227 265 258 292 210 238 240 274 233 248 209 221	229 252 17 23 4 6
WKO	7 193 8 212 6 182	5 179 5 214 5 229	1 215 6 215 8 265 2 200 9 220 7 192 0 208 4 172	4 206 4 23 4 6
ALC\$ QWK	64 1 75 1 46 1	57 1 55 1 65 1	164 17 179 19 171 18 155 16 167 17 148 16 149 15	162 17 10 1
Animal#RPT@ ALC\$ QWK1 [†] 86000-	49 12 51 12 53 9	59* 11 61 11 71* 11 84 10	789* 123 802 123 803 116 805 113 826 117 827 113 846* 98	Mean 113 Std Dev 9 SEM 2

[@] Receipt.
\$ Allocation.
† Quarantine week 1.
* Interim sacrifice animal.

Appendix K (cont.): BODY WEIGHTS (g)

Group 4 Females

WK13	298 331	· ~	347	297	2		0	Ч	9	291		22
WK12 W	287	7	340	296	4		0	Н	α	296		21
WK11	289 289	9	327	285	m		0	0	7	286		20
WK10	276	0	324	294	4				α	293		21
WK9	277		321	287	4		0	310	7	ω		20
WK8	267		323	282	7		0	299	α	ω]		9
WK7	258 279	289	319	283	2		σ	290	9	7		22
WK6	254 267		311	275	\vdash		∞	280	9	7		20
WK5	251 265	277	297	270	0		276	270	249	267		18
WK4	დ 4	315 250 316	8 ~	S	മഗ	9	7	S	4	44		24
WK3	24	293 256 302	7	S	∞ 44	S	9	S	3	က ၂		24
WK2	7 7	278 233 269	ഗ ശ	4	gε	2	4	$^{\circ}$	М	N		20
WK1	<u>ი</u> 0	244 212 248	നന	2	4	2	2	0	0	0		16
WKO	7	213 183 209	H	∞	$\circ \circ$	0	0	9	5	8		16
QWK1 [†]	4	168 168 185	8 /	9	∞ ~	7	7	9	S	5	169	3 3
ALC\$	4 C	153 166 171	7	5	2	9	9	S	4	4	160	
#RPT@	പെ	105 124 121	20	~ →	70	2	\sim	Ч	0	\circ !	115	
Animal#RPT [@] ALC ^{\$} QWK1 [†] 86D00-	wω	785* 787 790*	တတ	~ ~	\dashv \circ	4	4	4	S	വ	Mean	Std Dev SEM

(g) BODY WEIGHTS Appendix K (cont.):

Females Group 5

86D00-	₹PT¢	AJC\$	Animal#RPT [@] ALC ^{\$} QWK1 [†] 86D00-	WKO	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13
09	-	7	∞	∞	\sim	4	7	7	α	7	6	6	0	0	∞	9	0
762	120	1.60	168	193	208	232	256	260	268	276	288	283	289	295	286	308	304
69	N	9	8	0	ന	S	9	ω	0	H	2	Н	2	က	~	က	က
70	Ñ	7	ω	0	4	ഗ	ω	9	2	-	4	4	9	S	4	4	S
75*	\vdash	9	9	σ	$^{\circ}$	S	Ø	7									
82*	Q	9	7	0	$^{\circ}$	9	7	ω									
*16	\dashv	7	7	~	4	7	2	0									
19	0	S	7	⊣	゙゙゙゙゙゙゙゙゙゙゙゙゙	ω	σ	σ	318	319	335	321	344	345	338	352	351
20	Н	7	7	0	$^{\circ}$	$^{\circ}$	4	9	~	7	~	g	0	0	g	σ	0
31	Ч	9	7	0	H	$^{\circ}$	S	9	-	∞	g	g				Ч	
35*	Н	S	9	9	\leftarrow	က	4	S									
41*	æ	S	9	α	Ó	М	$^{\circ}$	3									
45	0	S	9	0	ന	S	~	ω	294	322	328	331	332	345	359		361
47	2	7	ω	က	4	9	ω	σ	Н	Н	3	\sim	4	4	4	S	വ
56	0	ന	S	7	러	2	4	S	Ø	7	ω	ω	9	α	9	313	0
ı																	
Mean 1	115	162	173									310		321			
Std Dev	7	10	ص	14	15	19	25	22	21	22	25	22	25	27	27	24	25
	~	ന	7	4								7		∞			

BODY WEIGHTS (g) Appendix K (cont.):

Group 6 Females

WK13	4 27	338 331 340 332 332	33
i		α ω ν ν ω 4 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω	94-1
WK12	4 70 0	322000	326
WK10 WK11	6 9	326 359 317 288 322 315 315	312 30 9
WK10	4 0.0	330 362 305 305 315 315 319	314 28 9
WK9	0 0	325 356 308 292 320 274 311	310 28 9
WK8	2 2 2	317 3317 3316 316 315 315	305 27 8
WK7	H 613	2394 335 2394 301 314 314	300 25 8
WK 6	4 +	294 317 273 268 290 294	286 23 7
WK5	Q 44	272 311 274 259 268 253 288	277 24 8
WK4	3887998	263 291 247 264 206 206	262 24 6
WK3	0 4 W Q T W C	246 263 227 227 250 233 267 211	248 19 5
WK2	4214460	226 233 2233 2233 191 191	229 19 5
WK1	0004448	206 206 206 194 198 198 181	207 15
WKO	400040	217 195 195 188 193 205 175	201 13
QWK1†	レレレレレのな	181 157 161 161 169 175	172 10 3
ALC\$	159 163 167 172	1174 1151 1155 1156 1169	161 10 3
#RPT [@]		126 126 109 122 107 123	113 v 10 3
Animal#RPT [@] ALC ^{\$} QWK1 [†] WK0 86D00-	750 754* 757* 773* 783	8813 8113 8116 8117 830 839*	Mean Std Dev SEM

MALE: 0 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00707	Irritable	Nov 27-Dec 1 Dec 29, Jan 5,6,8,9 Jan 11,12,14-16 Jan 23-30,Feb 2	Moderate
86D00706	Chromodacryorrhea Irritable	Nov 12 Nov 12,13,19,20 Dec 11,23,29	Slight
	Incr. Startle Reflex	Jan 6,28-30 Nov 14	Moderate Slight
86D00688	Incr. Startle Reflex Irritable	Nov 13 Nov 17,21,24	Slight
	Stain, Red, Nose	Dec 17,23,Jan 28 Jan 30	Slight Slight
86D00635	Irritable Stain, Red, Nose	Jan 11,12 Jan 21	Slight Moderate
86D00618	Material, Red, Nose Aggressive	Dec 17 Dec 27,28,Jan 5	Slight
	Irritable	Jan 14,15 Dec 29,Jan 3,22	Moderate
	Stain, Red, Nose	Jan 26,27 Jan 4,10-12	Moderate Moderate
86D00577	Material, Red, Nose Irritable	Dec 17,Feb 4 Dec 23,29,30,Jan 21	Slight
	Stain, Red, Nose Material, Dark, Nose	Jan 28 Jan 28 Feb 2,3	Moderate Slight Slight

MALE: 0 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00566	Stain, Red, Nose Rough Coat Irritable	Dec 13,Jan 3-6,14 Jan 14-24 Jan 30-Feb 2 Jan 30	Slight Moderate Slight
86D00557	Material, Red, Nose Irritable Material, Dark, Nose Stain, Red, Nose	Dec 3 Dec 17,18,29,30 Jan 4,28,30 Dec 24,26,27 Jan 4	Slight Moderate Moderate Slight
86D00539	Irritable Stain, Red, Nose Material, Red, Nose	Dec 24,Jan 1,5,6 Jan 9,10,22-25 Jan 28-30 Jan 9,14 Jan 29	Moderate Slight Slight
86D00530	Irritable	Nov 21,Dec 9 Jan 4,5,8,9,12,22-	-25 Slight

28-DAY INTERIM SACRIFICE
MALE: 0 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00543	Normal	N/A	N/A
86D00620	Irritable	Nov 12,18,25	Moderate
86D00680	Irritable Stain, Orange, Abdomen	Nov 20,21,29,30 Nov 27,28	Slight Slight
86D00681	Normal	N/A	N/A
86D00712	Normal	N/A	N/A

MALE: 1 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00531	Irritable Alopecia, Front Legs Stain, Brown, Front Leg	Dec 25-28 Jan 29,Feb 1,2 Feb 2	Moderate Slight Slight
86D00600	Incr. Startle Reflex Material, Dark, Nose Stain, Red, Nose Alopecia, Hind Legs Rough Coat Aggressive	Nov 13,17,Dec 2 Dec 14,15,24 Dec 30-Jan 5 Jan 13-16,22-25 Dec 24,25 Dec 28,29 Jan 2-5,9 Jan 17-21 Jan 19-21 Jan 26,29,30	Moderate Moderate Slight Slight Slight Slight
86D00625	Stain, Red, Nose	Feb 1	Moderate
86D00628	Material, Red, Nose Irritable Material, Dark, Nose Stain, Red, Nose Stain, Red, Front Legs Stain, Dark, Nose Rough Coat Stain, Brown, Nose	Nov 17 Dec 24, Jan 5-7 Jan 11, 22 Dec 22, 26 Jan 4, 14 Jan 10, 11 Jan 29-31 Feb 1, 2 Feb 2	Slight Moderate Slight Slight Slight Moderate Slight Slight
86D00634	Irritable	Nov 17,Dec 11 Jan 1,7,Feb 5	Moderate
86D00666	Incr. Startle Reflex Alopecia, Front Legs Irritable Alopecia, Hind Legs	Nov 14 Dec 24-Feb 4 Jan 11 Jan 17-Feb 3	Slight Marked Slight Slight
86D00678	Irritable Material, Dark, Nose Stain, Red, Nose	Nov 17, Jan 8,29 Dec 25,27 Jan 4,9,10,21,22	Slight Slight Slight

MALE: 1 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00694	Irritable	Nov 20,21,Dec 11 Jan 5,6,8,12,13,21	Slight
86D00731	Irritable Stain, Red, Nose Material, Dark, Nose	Nov 12,18,Dec 29,30 Jan 1,Feb 3 Jan 4 Jan 22	Moderate Slight Slight
86D00734	Irritable Material, Red, Nose	Nov 14,Dec 2,24 Jan 27,28 Feb 3,4,5 Jan 23	Moderate Slight

28-DAY INTERIM SACRIFICE
MALE: 1 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

86D00506	Normal	N/A	N/A
86D00507	Stain, Red, Nose	Nov 27,28	Slight
86D00548	Material, Dark, Nose	Nov 24	Slight
86D00606	Incr. Startle Reflex	Nov 14	Slight
86D00733	Irritable	Nov 20,21	Slight

MALE: 10 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00511	Irritable Material, Dark, Nose Stain, Red, Nose	Dec 16, Jan 4, 6, 13 Dec 22, Jan 23 Jan 11	Slight Slight Slight
86D00526	Irritable Stain, Red, Nose Stain, Red, Mouth	Jan 1 Jan 8 Jan 8	Slight Slight Slight
86D00544	Material, Red, Nose Stain, Red, Back Irritable Material, Dark, Nose Material, Brown, Nose	Nov 24, Jan 1,4 Jan 5,7,10 Dec 24 Jan 6,9 Jan 23 Feb 1	Slight Moderate Slight Slight Slight
86D00553	Irritable Rough Coat Aggressive Stain, Red, Nose	Nov 12,14,Dec 17 Jan 3,11 Dec 17-23,25-28 Jan 9-14,18-Feb 3 Dec 28,Jan 26-30 Jan 4,8,26	
86D00581	Incr. Startle Reflex Irritable	Nov 13, Jan 3, 4 Jan 4	Slight Slight
86D00583	Incr. Startle Reflex Feces, Brown, Perianal Material, Red, Nose Irritable	Nov 13 Nov 27 Dec 17,29 Jan 5,8,9,11,14 Jan 15,28,29	Slight Slight Slight
	Aggressive Alopecia, Front Legs Stain, Red, Front Legs Stain, Red, Nose Material, Dark, Nose Stain, Brown, Front Legs	Feb 1-3 Jan 7 Jan 11-Feb 3 Jan 11 Jan 26 Jan 30	Moderate Slight Slight Slight Slight Slight

MALE: 10 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00696	Irritable	Nov 12,17,19-21 Dec 5,15,16,22-24 Dec 29,30,Jan 1-4 Jan 6,8,9,12-16	Moderate Moderate
	Stain, Red, Nose	Jan 10,31	Moderate
86D00698	Material, Dark, Nose Irritable	Dec 17 Jan 1	Slight Slight
86D00717	Incr. Startle Reflex Material, Red, Nose Material, Dark, Nose Irritable Stain, Red, Nose	Nov 12,19,20 Dec 24-27 Dec 3,11,25,29 Jan 22 Dec 17-23,Jan 30 Jan 2-6,11,13 Jan 4,5,14,15,26	Slight Slight Slight Moderate Moderate
	Stain, Dark, Nose	Jan 8-10	Slight
86D00723	•	Nov 17,18,Dec 12 Jan 1,4-6,26,27,29 Nov 27,28 Dec 24,Jan 1 Dec 28 Jan 4,9,10,14	-

28 DAY (INTERIM SACRIFICE)
MALE: 10 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

86D00510	Normal	N/A	N/A
86D00520	Irritable	Nov 20	Slight
86D00599	Inactive	Nov 6	Slight
86D00602	Normal	N/A	N/A
86D00713	Normal	N/A	N/A

MALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00612	Material, Red, Nose Incr. Startle Reflex	Nov 13 Nov 13	Slight
	Irritable	Dec 29-Jan 1 Nov 13,14 Dec 3-5,11-13 Dec 22-25,27-29 Jan 1-3,6,8-16	Mocerate
	Material, Dark, Nose Aggressive	Jan 21,22,31 Dec 18,22 Dec 18,26,27	Marked Slight
	Stain, Red, Back Stain, Red, Nose Rough Coat	Jan 23-30,Feb 2 Dec 24 Jan 4,9-11 Jan 11	Moderate Slight Slight Slignt
86D00626	Material, Red, Nose Irritable	Nov 13, Dec 26 Nov 13, Dec 23, 24	Slight
	Material, Dark, Nose Stain, Red, Nose Aggressive	Dec 29-31, Jan 11, Dec 22, Jan 26, 27 Jan 1, 29 Jan 26, 27	28 Marked Slight Slight Slight
86D00636	Incr. Startle Reflex Aggressive Stain, Red, Nose Material, Dark, Nose Irritable Stain, Brown, Nose	Nov 12 Dec 26 Jan 18,30,31 Jan 26,27 Jan 28 Feb 2	Slight Slight Slight Slight Slight Slight
86D00639	Irritable	Dec 3,29 Jan 21,22,29,30	
	Incr. Startle Reflex	Feb 2 Dec 28,29	Moderate
		Jan 17	Moderate

MALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00646	Incr. Startle Reflex Irritable	Nov 12 Dec 23,29-31	Slight
	Aggressive Stain, Red, Front Leg	Jan 5,6 Dec 28 Jan 1,10,11,14-21	Moderate Slight Slight
86D00655	Irritable	Dec 28,29,Jan 6,7 Jan 11,28,Feb 1	Moderate
	Stain, Red, Nose	Jan 19,20	Moderate
86D00675	Incr. Startle Reflex	Nov 12,13,21,22 Dec 24,25	Slight
	Irritable	Nov 12,Dec 23,24 Jan 6	Moderate
86D00676	<pre>Incr. Startle Reflex Material, Red, Nose Irritable Stain, Red, Nose</pre>	Nov 13,21 Nov 27 Jan 6 Jan 11,21,28	Slight Slight Slight Moderate
86D00703	Incr. Startle Reflex Aggressive	Nov 12, Dec 24-26 Nov 12, 19, 21 Dec 18, 24-28	Slight
	Inactive Irritable	Jan 23-30 Nov 12 Nov 13,20,Dec 11, Jan 4-6,9-12,16	
	Material, Red, Nose	Dec 19,20	Slight
86D00718	Irritable Incr. Startle Reflex	Nov 12,13,Dec 29, Jan 3,4,10,12 Nov 13	
	Aggressive Stain, Red, Head Stain, Red, Back Stain, Red, Nose Stain, Red, Eye	Dec 25-28 Jan 26-30,Feb 2,3 Jan 1 Jan 10 Jan 11 Jan 11	Moderate Slight Slight Slight Slight

28-DAY INTERIM SACRIFICE
MALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

86D00554	Normal	N/A	N/A
86D00593	Incr. Startle Reflex	Nov 12-14,18	Madamana
	Irritable	Nov 20,21 Nov 17,Dec 2	Moderate Slight
86D00604	Irritable	Nov 12,20	Slight
86D00644	Normal	N/A	N/A
86D00645	Normal	N/A	N/A

MALE: 60 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00550	Incr. Startle Reflex Material, Dark, Nose Irritable Stain, Red, Nose	Nov 13,14,21 Dec 25 Jan 1,3,4,11,13 Jan 28	Slight Slight Slight Slight
86D00570	Irritable Incr. Startle Reflex Stain, Brown, Nose Stain, Red, Nose	Nov 12,14,17,19,20 Nov 24-Dec 5,Dec 12 Dec 13,15,16,24,25 Jan 1-4,10-13,21-29 Nov 14,19,20,Dec 29 Dec 30,Jan 1,5-7 Ja 23 Jan 26-28,30,31	Moderate Moderate Moderate Slight
86D00617	Incr. Startle Reflex Stain, Red, Nose	Nov 13,14,19 Jan 10,31	Slight Slight
86D00632	Incr. Startle Reflex Material, Red, Nose Stain, Red, Nose Stain, Red, Neck Irritable Aggressive Stain, Red, Ear	Nov 14 Dec 3 Jan 1,11,26-28 Jan 1,3 Jan 4 Jan 5 Jan 28-Feb 1	Slight Slight Slight Moderate Slight Slight Slight
86D00641	Irritable Incr. Startle Reflex	Nov 12,14-16 Jan 3-5,11 Nov 14-16,20 Dec 25-28	Slight
	Material, Brown, Nose	Jan 21–23 Jan 22	Moderate Slight
86D00684	Irritable Material, Red, Nose Material, Dark, Nose Stain, Red, Nose	Nov 12,14-16 Dec 2,23,Feb 3 Dec 1 Dec 25,26 Jan 26	Slight Slight Slight Slight

MALE: 60 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00686	Stain, Brown, Perianal Incr. Startle Reflex Hyperactive Irritable	Nov 6 Nov 14,19,Jan 4 Nov 14 Nov 14,15,17	Slight Slight
		Jan 5	Slight
86D00689	Irritable Incr. Startle Reflex Material, Dark, Nose Rough Coat Stain, Dark, Nose Stain, Red, Nose	Nov 12,14-16 Dec 23 Nov 14 Dec 22,Jan 26-30 Jan 19-23,Feb 3 Jan 21-23 Feb 4,5	Slight Slight Moderate Slight Slight Slight
86D00690	Incr. Startle Reflex Irritable Material, Red, Nose Stain, Red, Nose Rough Coat Material, Dark, Nose	Nov 14, Jan 22 Nov 14-16, Dec 23 Jan 1 Dec 28 Jan 18 Jan 19-21 Jan 22, 23	Slight Slight Slight Slight Slight Slight
86D00699	Irritable Incr. Startle Reflex Aggressive	Nov 11,12,14-Dec 5 Dec 9,11,12,23-25 Dec 29-Jan 1 Jan 5,6,8-16 Jan 20,21,31,Feb 1 Nov 12,14,15,19-22 Dec 1,2,13,17-23 Dec 29,30,Jan 26,2 Dec 22,26-28 Jan 7,22-30	Marked 8 Marked
	Material, Red, Nose Rough Coat Material, Brown, Nose Stain, Red, Nose	Feb 3-5 Dec 25,26 Jan 17-19 Jan 30 Feb 4,5	Moderate Slight Slight Slight Slight

28-DAY INTERIM SACRIFICE
MALE: 60 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

86D00533	Irritable Incr. Startle Stain, Brown,		Nov	12,14,17,Dec 13,14 14	2	Slight Moderate Slight
86D00509	Incr. Startle Irritable	Reflex		14,20,21 17,20,21,Dec	2	Slight Slight
86D00621	Irritable Incr. Startle	Reflex		12,14,21,26 14-16,20-22		Slight Slight
86D00648	Irritable Incr. Startle	Reflex	Nov Nov	12,Dec 2 14		Slight Slight
86D00726	Stain, Brown, Diarrhea	Perianal	Nov Nov	•		Slight
	Incr. Startle	Reflex		14,19,21		Slight

MALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00563	Irritable	Nov 5, Dec 15-19 Dec 24, Jan 1, 3, 6, 7	
	Rough Coat	Jan 10,11,13-16 Nov 11,12,15-17 Dec 14-16,26-28 Dec 30,Jan 6,7,9-1	Marked
		Jan 14-20,28-Feb 1	Moderate
	Inactive Incr. Startle Reflex	Nov 14 Nov 20,21,Jan 1	Slight Slight
	Stain, Red, Nose	Jan 3	Moderate
	Stain, Dark, Nose	Jan 21	Moderate
	Aggressive	Jan 28-30	Slight
86D00565	Rough Coat	Nov 12	Slight
	Material, Red, Nose	Nov 12	Slight
	Incr. Startle Reflex Irritable	Nov 14,15, Jan 1 Nov 19,21, Dec 2	Slight
		Jan 7	Slight
	Material, Dark, Nose	Dec 25, Jan 30	Slight
	Stain, Red, Nose	Jan 28,31	Moderate
	Stain, Brown, Mouth	Jan 28	Slight
86D00568	Material, Red, Nose	Nov 12	Slight
	Incr. Startle Reflex	Nov 14-16, Jan 1	Slight
	Irritable	Dec 27,28	Slight
	Stain, Red, Nose	Jan 11 Jan 22-Feb 1	Slight Slight
	Alopecia, Hind Legs Alopecia, Neck	Jan 28-Feb 1	Slight
	Aggressive	Jan 28-31	Slight
86D00607	Muomo no	Nov 12	Slight
0 0000007	Tremors Jumping	Nov 12 Nov 12	Slight
	Incr. Startle Reflex	Nov 12 Nov 13-18	Slight
	Irritable	Nov 17,18, Dec 29,	30
		Jan 6,11,30	Moderate
	Material, Red, Nose	Dec 3	Slight

MALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00630	Stain, Brown, Perianal Incr. Startle Reflex Material, Clear, Nose Alopecia, Front Legs Rough Coat Stain, Red, Nose	Nov 6,7 Nov 17,18,Jan 30,3 Dec 3 Jan 10-Feb 1 Jan 17-20 Jan 28-30,Feb 4	Slight 1 Slight Slight Moderate Slight Slight
86D00652	Jumping Incr. Startle Reflex Irritable Rough Coat Stain, Red, Nose	Nov 12 Nov 17, Jan 12 Jan 3,7,12 Jan 19,20 Jan 31	Slight Slight Slight Slight Moderate
86D00659	Incr. Startle Reflex Irritable Material, Red, Nose Stain, Red, Nose	Nov 14,18,20 Dec 28 Nov 18,Jan 30 Dec 6,15,Jan 6 Jan 30,Feb 1	Slight Slight Moderate Slight
86D00679	Incr. Startle Reflex Irritable	Nov 14,20 Nov 19,Dec 17-21 Jan 3-5,11,29	Moderate
	Rough Coat	Feb 4,5 Nov 19-23 Jan 19-Feb 1	Slight Slight
	Material, Red, Nose Stain, Yellow, Perianal Stain, Red, Nose Alopecia, Front Legs	Dec 17,24	Slight Slight Slight Slight

MALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/1987)	Severity
86D00708	Material, Red, Nose Incr. Startle Reflex	Nov 12, Dec 17, 28 Nov 13-15, 17-20	Slight
	Irritable	Nov 24, Dec 29-Jan 4 Jan 26-30 Nov 16, 19, 20, 24-26	4 Moderate
	Stain, Red, Nose	Jan 1 Jan 7,18,21,22,28	Slight
	1104, 1105	Feb 4	Marked
	Material, Dark, Nose Stain, Red, Front Legs	Jan 9,30,31 Jan 18	Moderate Slight
86D00728	Jumping Incr. Startle Reflex Irritable	Nov 12 Nov 20, Jan 4 Nov 20, Dec 1, 3, 5-8 Dec 29, 30, Jan 10	Slight Moderate
		Jan 13-15, 26-29	Moderate

28-DAY INTERIM SACRIFICE
MALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

86D00523	Dehydrated Rough Coat Jumping Emaciated Incr. Startle Reflex Irritable	Nov 11,12 Nov 11,12,27,28 Nov 12 Nov 12-23 Nov 14-16,19 Nov 17,18,Dec 2	Moderate Slight Slight Slight Slight Slight
86D00552	Dehydrated	Nov 11,12	Moderate
	Rough Coat	Nov 11-16	Moderate
	Irritable	Nov 11,18	Moderate
86D00587	Inactive Irritable Stain, Red, Mouth	Nov 6 Nov 12,14-19,25,26 Dec 3 Dec 1	Slight Slight Slight
86D00631	Inactive	Nov 6,7	Slight
	Incr. Startle Reflex	Nov 13-16	Slight
86D00674	Jumping	Nov 12	Slight
	Irritable	Nov 14-16,24-26	Slight
	Incr. Startle Reflex	Nov 20	Slight

FEMALE: 0 mg/kg/day PYRIDOSTIGMINE BROMIDE

Clinical Signs	Dates Observed (1986/87)	Severity
Incr. Startle Reflex	Dec 16,17	
Irritable	Jan 8,21 Feb 12,Mar 7	Slight Slight
Stain, Red, Back	Dec 16, Jan 18,	
T 01 13 D 51		Moderate
		Slight
		Slight
	-	N/A
Rough Coat		Moderate
Stain, Red. Nose		Slight
· · · · · · · · · · · · · · · · · · ·		Slight
Scab, R. Front Leg Scab, Back Alopecia, Back	Dec 14 Dec 22 Dec 23-28	Slight Slight Slight
Alopecia, Flont Legs		Moderate
Stain, Red. Nose		Slight
		Slight
Material, Red, Nose	Jan 30,Mar 9	Slight
Stain, Red, Nose	Dec 17, Jan 23	
Torre Chauble D. Cl.		Moderate
		Slight
TITICADIE		
		Moderate
Agressive		moderate
		Slight
	Incr. Startle Reflex Irritable Stain, Red, Back Incr. Startle Reflex Dehydrated Hair Clumped, Back Rough Coat Stain, Red, Nose Material, Red, Nose Scab, R. Front Leg Scab, Back Alopecia, Back Alopecia, Front Legs Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Brown, R. Front Le	Incr. Startle Reflex Irritable Stain, Red, Back Dec 16, Jan 18, 3 Feb 12, Mar 7 Stain, Red, Back Dec 30 Dehydrated Hair Clumped, Back Rough Coat Stain, Red, Nose Material, Red, Nose Alopecia, Back Alopecia, Front Legs Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Stain, Red, Nose Dec 17, Jan 23 Feb 21 Jan 8 Irritable Jan 23-28 Feb 7,8,13-19 Feb 21-24

FEMALE: 0 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00810	Scab, Neck Irritable	Dec 13,14 Dec 15,23	Slight
	Alopecia, Neck Alopecia, Front Legs	Jan 23,27,29,30 Feb 21-24,Mar 7,8 Dec 15-28 Jan 17-22,31-Feb	
	Alopecia, flont legs	Mar 8-12	Slight
	Material, Red, Nose	Dec 27	Slight
	Incr. Startle Reflex	Jan 8,21,22	Climbe
	Stain, Red, Nose	Feb 8,9 Jan 16,23,29	Slight
	Stain, Neu, Nose	Feb 1,22	Moderate
	Material, Dark, Nose	Feb 21	Slight
86D00818	Stain, Red, Nose	Jan 27,31	Slight
00000010	Incr. Startle Reflex	Jan 31, Feb 2	Marked
	Irritable	Feb 7,22,Mar 8	Moderate
	Material, Red, Nose	Feb 24	Slight
	Material, Dark, Nose	Feb 21	Slight
86000833	Incr. Startle Reflex	Dec 20, Feb 2,3	Slight
	Irritable	Jan 10,11	Slight
	Stain, Red, Front Legs Stain, Brown, Front Legs	Jan 10,11,16-26	Marked
	Scalli, Brown, Front Legs	Feb 8-Mar 6	Moderate
	Alopecia, Front Leg	Feb 12	Slight
	Stain, Red, Nose	Feb 13	Slight
	Material, Red, Nose	Mar 10,11	Slight
86D00843	Alopecia, Front Legs	Jan 4-Mar 11	Marked
	Irritable	Feb 21,22,Mar 9	Slight
86D00849	Incr. Startle Reflex	Dec 16-18	
		Jan 12-15	Moderate
	Irritable	Jan 4,14,Feb 11	Ma da t
	Stain Rod Noso	Mar 8 Jan 21	Moderate Slight
	Stain, Red, Nose Stain, Dark, Nose	Feb 2	Slight
	Alopecia, Front Legs	Feb 9,11-Mar 12	Marked

28-DAY INTERIM SACRIFICE
FEMALE: 0 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

•			
Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00814	Irritable	Dec 26, Jan 6	Moderate
86D00815	Normal	N/A	N/A
86D00825	Normal	N/A	N/A
86D00832	Normal	N/A	N/A
86D00765	Incr. Startle Reflex	Dec 16-18, Jan 5	Moderate

FEMALE: 1 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Da	tes Observed (1986/87)	Severity
86D00752	Chewing Legs Scab, R. Front Leg Alopecia, Front Legs	Dec Dec	23-Jan 4	Moderate Slight
	Alopecia, Hind Legs		10-Mar 10 3,4	Marked
	Irritable	Dec Jan	10-26 30-Jan 1 5,6,8-12,15	Slight
	Stain, Red, Nose	Feb Mar	24-Mar 3 9	Moderate Slight
86D00755	Incr. Startle Reflex Irritable		1, Feb 7 8, 22-24	Slight Moderate
86D00764	Alopecia, Front Legs Irritable	Jan	1-Mar 10 4,28	Marked
	Stain, Red, Nose, Mouth Stain, Brown, Nose Incr. Startle Reflex	Jan Feb		Slight Slight Slight Slight
86D00774	Material, Dark, Nose Incr. Startle Reflex Stain, Front Leg Alopecia, Front Leg Irritable	Jan Jan Jan	28 1-4,Feb 7-11 3,4,11 5-12,16-Mar 9 6-8, Feb 22 24-Mar 3	Slight Slight Slight Marked Slight
86D00795	Incr. Startle Reflex Irritable Material, Red, Nose		16-18, Jan 1-4 5, 6, 8 9	Slight Slight Slight

FEMALE: 1 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00804	Alopecia, Front Legs Stain, Red, Nose Stain, Brown, Nose Material, Red, L. Eye	Jan 18-21,Feb 21 Jan 18,19 Jan 29 Mar 9,10	Slight Slight Slight Slight
86D00838	Irritable Stain, Red, Back Stain, Red, Nose Rough Coat Material, Dark, Nose Alopecia, Front Leg Pinpoint Erosion, Eye	Dec 19-21,23-28 Jan 1,Feb 13-16 Feb 21,22,24-27 Mar 7 Jan 4,18-20,31 Jan 13-15,22,23,3 Feb 3,7,9,11 Mar 7 Jan 8-21 Feb 12 Feb 23,24 Mar 10	Slight Slight Slight Slight Slight Slight N/A
86D00840	Stain, Red, Neck Irritable Incr. Startle Reflex Stain, Red, Head Stain, Red, Nose Stain, Red, Back	Dec 16 Dec 20,21,Jan 8,9 Feb 7,8,25 Jan 4 Jan 3 Jan 15-17,20-24 Jan 19	Slight Moderate Slight Slight Slight Slight
86D00850 86D00855	Stain, Red, Nose Stain, Red, Nose Stain, Red, Ear Stain, Red, Front Legs Stain, Brown, Front Legs Material, Dark, Nose Irritable Material, Red, Ears	Jan 29 Dec 16, Jan 27 Dec 16, Jan 20 Jan 23, 24, Mar 7, 8 Jan 31-Feb 5 Feb 12 Feb 22, 23, 25 Mar 9, 10	Slight Slight Slight Slight Slight Slight Slight Slight

28 DAY (INTERIM SACRIFICE)
FEMALE: 1 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00837	Irritable	Dec 28	Slight
86D00829	Emaciated Incr. Startle Reflex	Dec 15 Jan 1	Slight Slight
86D00799	Chewing Front Legs Irritable	Dec 16-26 Dec 20,21,29,30 Jan 3-6	Slight Slight
	Alopecia, Front Legs Stain, Red, Nose	Dec 27-31 Jan 4	Slight Slight
86D00781	Irritable	Dec 20-22,30 Jan 4	Cliaba
	Incr. Startle Reflex	Jan 3	Slight Slight
86000758	Irritable	Dec 18-23, Jan 3, 6	Slight

FEMALE: 10 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00749	Rough Coat Incr. Startle Reflex Dehydrated Chewing, Front Leg Stain, Red, Nose Stain, Red, Back Scab, Right Side Irritable	Dec 16,17,19-21 Jan 8-13 Dec 16,17,23,Jan 1,2 Jan 1-3 Jan 1 Jan 4,Feb 21 Jan 18,19 Jan 30-Feb 1 Mar 7	Moderate Slight Slight Slight Slight Moderate Slight Slight
86D00751	Incr. Startle Reflex Stain, Red, Nose Irritable Material, Dark, Nose Aggressive	Jan 1-4,22 Dec 16,Jan 4,12,30 Mar 8 Dec 28,Jan 4,5,11,16 Mar 7-9	Slight Slight Moderate Slight Moderate
86D00753	Stain, Red, Nose Incr. Startle Reflex Irritable Rough Coat	Dec 16 Jan 3,20-22 Jan 5, Feb 11,24 Feb 8,9	Slight Slight Moderate Slight
86D00761	Incr. Startle Reflex Alopecia, Front Legs Stain, Red, Nose Material, Dark, Nose Irritable	Feb 4,5,12-23 Feb 1	Slight Slight Slight Slight Slight
86D00802	Incr. Startle Reflex Irritable Alopecia, Front Legs Stain, Red, Nose Material, Red, Nose Material, Dark, Nose	Dec 15-17 Dec 10,30-Jan 1 Feb 13-16 Jan 19,20 Jan 20,21,29 Feb 7,12 Mar 9	Slight Slight Slight Slight Slight

FEMALE: 10 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00784	Incr. Startle Reflex	Dec 16	Slight
	Material, Red, Nose	Dec 27	Slight
	Irritable Alopecia, Front Legs	Dec 28,29 Jan 2-28	Slight
		Jan 30-Mar 11	Moderate
	Alopecia, Hind Legs	Jan 10-22	Slight
	Alopecia, Perianal	Feb 1,2,4-20	Moderate
	Stain, Red, Nose	Jan 29, Feb 17-2	
		Mar 9-11	Moderate
	Stain, Red, Mouth	Feb 17,18	Moderate
86D00803	Incr. Startle Reflex	Dec 16	Slight
	Irritable	Jan 10,Mar 7,8	
86D00805	Incr. Startle Reflex	Dec 15-17,19-21 Jan 2,3,5-12,26	-28
	Irritable	Feb 3,17,18 Dec 16,Feb 7,23	Moderate
		Mar 7	Moderate
	Rough Coat	Dec 16,Jan 8-15	Slight
86D00826	Stain, Red, Nose	Dec 16	Slight
	Stain, Red, Back	Dec 16	Slight
	Incr. Startle Reflex	Dec 16, Jan 8	Slight
	Irritable	Dec 22,23,Jan 1	
	Chaim Pana	Feb 21,22	Marked
	Stain, Ears Aggressive	Jan 2,3 Feb 2,4,5,17	Slight Moderate
	Material, Dark, Nose	Feb 12	Slight
			-
86D00827		Dec 16, Feb 2, 6	Moderate
	Incr. Startle Reflex	Dec 16,23	01 i ~h+
	Irritable	Jan 4,22 Dec 22,23,Jan 2	Slight.
	ITITCODIC	Feb 12-17,22-24	, 5, 0
		Mar 8	Moderate
	Material. Dark, Nose	Dec 27	Slight

28-DAY INTERIM SACRIFICE FEMALE: 10 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00846	Irritable Incr. Startle Reflex	Dec 27, Jan 2, 6 Jan 2, 3	Slight Slight
86D00852	Normal	N/A	N/A
86D00789	Incr. Startle Reflex Irritable Alopecia, Front Legs Stain, Red, Front Leg	Dec 16,17,19-24 Jan 1 Dec 28-30 Jan 3,4 Jan 4	Moderate Moderate Marked Slight
86D00771	Scab, Front Leg Scab, Neck Irritable Scab, Back Stain, Front Leg Alopecia, Back	Dec 13,14 Dec 15-18 Dec 23,24 Jan 1-4 Jan 7	Moderate Slight Slight Moderate Slight
86D00759	Incr. Startle Reflex Alopecia, Front Legs	Dec 16,17,Jan 1- Jan 3,4	-4 Slight Slight

FEMALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00766	Incr. Startle Reflex Stain, Red, Nose	Dec 17,23-25 Jan 1,20,21 Feb 17-23 Jan 11,29	Slight
	Rough Coat Alopecia, Abdomen Alopecia, Front Legs Stain, Red, Ear Erosion, R. Eye	Feb 2,4,7 Jan 31,Feb 1 Feb 2-18 Feb 17-Mar 9 Feb 3 Mar 10	Slight Slight Moderate Moderate Slight NA
86D00780	Irritable Incr. Startle Reflex Stain, Brown, Mouth Stain, Red, Nose Rough Coat	Dec 15,16,23 Jan 3,7,Feb 7,8 Mar 7 Jan 20,21 Jan 27 Feb 7 Mar 8	Slight Slight Slight Slight Marked
86D00787	Stain, Red, Nose Alopecia, Front Leg Stain, Red, Neck Stain, Red, Ears Material, Red, Nose Conjunctivitis	Dec 13 Jan 30,31 Feb 17,18 Jan 21,Feb 17,18 Mar 10 Mar 10	Slight Moderate Slight Slight Slight Slight
86D00793	Irritable Hyperactive Incr. Startle Reflex Alopecia, Front Legs Stain, Red, Nose	Dec 17, Mar 8-10 Dec 29 Jan 1,26, Feb 2-4 Jan 31-Feb 2,4 Mar 9	-

FEMALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00811	Material, Dark, Nose	Dec 26	Slight
	Scab, Front Leg	Jan 1	Slight
	Stain, Red, Front Legs	Jan 11,23	Slight
	Incr. Startle Reflex Stain, Red, Nose	Jan 20,21 Jan 23, Feb 21	Slight
	Rough Coat	Mar 7 Jan 27,28	Slight
	Stain, Brown, Front Leg	Feb 8-11 Jan 31-Feb 2	Slight
	• • • • • • • • • • • • • • • • • • • •	Feb 4,8-12	Slight
	Stain, Brown, Nose	Feb 23	Slight
	Stain, Red, Eye Lipid Inclusion, Cornea	Mar 8 Mar 10	Slight
86D00812	Stain, Red, Back	Dec 16	Slight
	Incr. Startle Reflex	Jan 1-4	Slight
	Stain, Red, Nose	Jan 13	Slight
	Material, Red, Nose	Feb 24	Slight
	Irritable	Mar 7,8	Moderate
	Stain, Red, Eye	Mar 8	Slight
86D00844	Incr. Startle Reflex	Dec 16,17	
		Jan 1,3,4,12	
		Jan 20-23,26-28	
		Feb 3,17	Moderate
	Irritable	Jan 4,6,16	~3.1.1.
	Conjunctivitis	Mar 10 Mar 10	Slight
	Conjunctivitis	Mai IV	Slight
86D00848	Incr. Startle Reflex	Dec 22, Jan 20	Slight
	Irritable	Dec 23,24	_
	_	Jan 5,10	Slight
	Rough Coat	Mar 7,8	Marked

FEMALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed Sever (1986/87)	ity
86000851	Incr. Startle Reflex Irritable	Dec 16,17 Jan 4 Sli Dec 19-22 Jan 5,15,26,27,30 Feb 5 7 24 May 7 Moder	
	Stain, Red, Nose Material, Dark, Nose Aggressive	Feb 5,7,24,Mar 7 Moder Jan 2,Feb 22 Sli Feb 5 Sli Feb 8,13-18 Mar 9,10 Sli	ght ght
86D00854	Incr. Startle Reflex Material Dark, Eye Stain, Red, Eyes Stain, Red, Head Irritable Material, Dark, Nose Material, Red, Ears	Jan 22-25,Mar 7 Moder Feb 9 Sli	ate ate ght

28-DAY INTERIM SACRIFICE FEMALE: 30 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00842	Incr. Startle Reflex Irritable	Dec 16 Dec 17	Slight Slight
86D00821	Incr. Startle Reflex	Dec 15,16,19-22 Jan 2,4	Slight
86D00794	Incr. Startle Reflex Irritable	Dec 15-17, Jan 1, 3, 4 Dec 11, 19-21, 23-28 Jan 6	Moderate Slight
86D00790	Scab, Back Incr. Startle Reflex	Dec 17-23 Jan 1-4	Slight Moderate
86D00'785	Incr. Startle Reflex Irritable	Dec 17,23,Jan 4 Jan 3	Slight Slight

FEMALE: 60 mg/kg/day PYRIDOSTIGMINE BROMIDE

Clinical Signs	Dates Observed (1986/87)	Severity
Rough Coat Incr. Startle Reflex	Dec 14 Dec 25,Jan 1-3 Jan 10-12.16	Slight
Material, Red, Nose Stain, Red, Nose	Feb 3 Dec 26 Jan 16,23-25	Slight Slight
Stain, Red, Ear	Feb 2,7,Mar 7 Feb 3,4	Marked Slight
Irritable	Dec 15	
Incr. Startle Reflex	Dec 16,17	Slight
Aggressive	Jan 1,14-16 Jan 16	Moderate Slight
Incr. Startle Reflex	Dec 22,23 Jan 1-3,16,20-22 Feb 3,10,11	
Material, Dark, Nose Material, Red, Nose	Mar 9 Jan 22 Dec 27,Feb 5,12,13	
Irritable	Jan 4,5,Feb 12	Slight
Stain, Red, Nose	Jan 12,15,16,20,27	
Stain, Front Legs Aggressive Stain, Red, Eye	Jan 16 Feb 21 Mar 7	Moderate Slight Slight Slight
Incr. Startle Reflex	Dec 16,Jan 1-4 Jan 7.8.Feb 7-9	Slight
Irritable Stain, Red, Nose Stain, Dark, Nose	Jan 2-4,11 Jan 2,Feb 2,12,21 Feb 23	Slight Slight Slight
	Rough Coat Incr. Startle Reflex Material, Red, Nose Stain, Red, Nose Stain, Red, Ear Irritable Incr. Startle Reflex Aggressive Incr. Startle Reflex Material, Dark, Nose Material, Red, Nose Irritable Stain, Red, Nose Stain, Front Legs Aggressive Stain, Red, Eye Incr. Startle Reflex Irritable Stain, Red, Eye Incr. Startle Reflex Irritable Stain, Red, Nose	Rough Coat Incr. Startle Reflex Dec 14 Dec 25, Jan 1-3 Jan 10-12, 16 Feb 3 Material, Red, Nose Stain, Red, Nose Stain, Red, Ear Irritable Incr. Startle Reflex Dec 15 Jan 5, 27, 30 Dec 16, 17 Jan 1, 14-16 Jan 16 Incr. Startle Reflex Dec 22, 23 Jan 1-3, 16, 20-22 Feb 3, 10, 11 Mar 9 Material, Dark, Nose Material, Red, Nose Material, Red, Nose Stain, Red, Nose Stain, Front Legs Aggressive Stain, Red, Eye Incr. Startle Reflex Dec 27, Feb 5, 12, 13 Feb 22, Mar 10, 11 Jan 4, 5, Feb 12 Mar 8 Jan 12, 15, 16, 20, 27 Feb 8, 9 Stain, Front Legs Aggressive Stain, Red, Eye Incr. Startle Reflex Dec 16, Jan 1-4 Jan 7, 8, Feb 7-9 Jan 2-4, 11 Stain, Red, Nose Jan 22, Feb 2, 12, 21

FEMALE: 60 mg/kg/day PYRIDOSTIGMINE BROWIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00819	Incr. Startle Reflex	Dec 15-24 Jan 7-10,13,21-23 Jan 27,28	
	Irritable	Feb 7-14 Dec 25, Jan 4 Feb 8,10-12,21	Marked
	Stain, Red, Nose Stain, Brown, Nose	Mar 10 Jan 13,22 Feb 13-17	Moderate Slight
	Material, Red, Nose Material, Dark, Nose	Feb 7 Feb 21,22	Slight Slight
86D00820	Incr. Startle Reflex Irritable	Dec 23,24,Jan 2-7 Feb 3-5 Jan 3	Slight Slight
	Stain, Red, Eye	Jan 3,4	Slight
86D00831	Incr. Startle Reflex	Dec 16-21, Jan 2, 3 Jan 12, 20, 21, 26, 27 Feb 7-10	7 Slight
	Irritable	Dec 12,19,23-28 Jan 9-12 Feb 11,12	Slight
	Stain, Red, Nose Aggressive	Jan 23,Feb 18-20 Feb 17	Slight Slight
86D00845	Incr. Startle Reflex	Dec 16,17,29 Jan 20,21	Slight
	Irritable	Dec 19-26, Jan 2, 3 Feb 1, 2, 7-9, 21, 24	Moderate
	Stain, Red, Nose Stain, Red, Eye	Jan 13 Feb 17-25	Slight Slight

FEMALE: 60 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00847	Material, Red, Nose	Dec 10	Slight
	Incr. Startle Reflex	Dec 15-17,20-25	
		Jan 2-6,10,15,16	Madanata
	Matanial Dunk Naco	Jan 26,Feb 9,25 Dec 25,Jan 8	Moderate Slight
	Material, Dark, Nose Stain, Red, Head	Jan 1-4	Slight
	Stain, Red, Nose	Jan 4,10,12,13,15	-
	Stain, Rea, Nose	Jan 16,21-24,Feb	
		Feb 21,23,24	
		Mar 9-12	Slight
	Irritable	Jan 13,30,Feb 7-3	11 .
		Feb 22-24	Moderate
	Aggressive	Feb 5	Moderate
	Stain, Brown, Nose	Feb 10-13	Slight
	Stain, Brown, Eye	Feb 11	Slight
	Stain, Red, Eye	Feb 21,22	Slight
	Alopecia, Front Legs Alopecia, Flank	Feb 12-16 Feb 13-16	Moderate Slight
	Alopecia, Flank	rep 13-10	Sirgin
86D00856	Incr. Startle Reflex	Dec 17, Jan 15, 20	
		Feb 3-5	Slight
	Stain, Clear, Leg	Jan 3	Moderate
	Stain, Red, Nose	Feb 2	Slight
	Stain, Brown, Legs	Feb 12-20	Slight
	Irritable	Feb 13-17,22,24	Moderate
	Alopecia, Front Leg	Feb 21-Mar 4	Slight
	Material, Dark, Nose	Feb 21	Slight

28-DAY INTERIM SACRIFICE FEMALE: 60 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00841	Irritable Incr. Startle Reflex	Dec 19,Jan 1 Jan 1	Slight Slight
86D00835	Irritable	Dec 18,23,28	Slight
86D00797	Incr. Startle Reflex Hypertonia Material, Dark, Nose Irritable	Dec 16-18 Dec 16 Dec 26,28 Dec 26	Slight Slight Slight Slight
86D00782	Incr. Startle Reflex Irritable Stain, Red, Front Leg	Dec 14,15,23 Jan 1 Dec 28 Jan 4	Moderate Slight Slight
86D00775	Incr. Startle Reflex	Dec 16,23,Jan 1-3	3 Slight

FEMALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00750	Incr. Startle Reflex	Dec 13,16,18,19 Jan 13-15,Feb 2	
		Feb 17,18	Marked
	Stain, Red, Nose	Jan 13,20,26,27	Slight
	Material, Dark, Nose	Jan 22	Slight
	Stain, Dark, Nose	Jan 23	Slight
	Material, Red, Nose	Feb 5	Slight
	Stain, Brown, Nose Alopecia, Front Leg	Feb 9,12 Feb 17,18	Moderate Slight
	Conjunctivitis	Feb 7,8	Slight
86D00783	Incr. Startle Reflex	Dec 16,17,29,Jan	10
80000783	inci. Startie Reliex	Jan 26-28	Slight
	Stain, Red, Nose	Jan 15, Feb 5-7	Slight
	Irritable	Jan 30	Slight
86D00792	Dehydrated	Dec 16-24	Slight
	Hypertonia	Dec 17-19	Moderate
	Incr. Startle Reflex	Dec 17,18, Jan 1,2	
	Irritable	Feb 3-5	Slight
	ILLICADIE	Dec 24-26, Jan 1, 1 Jan 30	Slight
	Hyperactive	Feb 5	origine
	Aggressive	Mar 8,9	Slight
86D00798	Incr. Startle Reflex	Dec 19-22, Jan 1	
		Feb 7-9	Slight
	Irritable	Dec 11, Jan 1	Slight
	Incr. Salivation	Jan 2	Slight
	Alopecia, Front Legs Alopecia, Hind Legs	Jan 4-Mar 10 Jan 4-26	Marked
	Alopecia, Tail	Jan 17-22	Moderate Moderate
86D00809	Incr. Startle Reflex	Dec 16,17,Jan 1	Slight
	Irritable	Jan 1,3-5,Feb 7-1	
	Stain, Brown, Nose	Feb 12	Slight

FEMALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00813	Rough Coat Incr. Startle Reflex Material, Dark, Nose Irritable Stain, Red, Nose Stain, Dark, Nose Stain, Brown, Front Legs Stain, Red, Eye Conjunctivitis Alopecia, Front Legs Alopecia, Hind Legs	Dec 16, Jan 16 Dec 16,17, Jan 13 Dec 25, Jan 22 Jan 1,7,30, Feb 7 Jan 13 Jan 23 Jan 31-Feb 4 Feb 6-8,12-16 Feb 8-16 Feb 12 Feb 12	Slight
86D00816	Incr. Startle Reflex Stain, Red, Neck Stain, Red, Front Legs Stain, Red, Nose Irritable Alopecia, Front Legs Stain, Brown, Front Legs	Dec 16-18,24,25 Jan 29-31,Feb 3 Dec 16,17 Jan 1-4,16,17 Mar 7,8 Jan 11,12 Jan 16,Feb 10 Jan 19 Jan 31-Feb 4 Feb 11-22	Slight Slight Moderate Slight Slight Slight
86D00817	Stain, Red, Back Incr. Startle Reflex Stain, Red, Ears Irritable Conjunctivitis Stain, Red, Nose	Dec 16 Dec 17,18,Jan 2, Jan 26,27 Jan 13-16,20-22 Feb 1-18,Mar 8-1 Jan 23-26,Feb 22 Feb 6,7 Feb 12	Slight 1 Moderate

FEMALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed Severity (1986/87)
86D00822	Irritable	Dec 17-19,Jan 23-25
		Jan 30, Feb 10, 21, 22 Slight
	Incr. Startle Reflex	Dec 17,18,20,21
		Jan 4 Slight
	Aggressive	Jan 26,27,Feb 23,24
	Ohada Dad Nasa	Mar 7-10 Moderate
	Stain, Red, Nose	Jan 29 Slight Jan 29 Slight
	Stain, Red, Mouth Stain, Red, Ears	Feb 7 Slight
	Conjunctivitis	Feb 7 Slight
86D00830	Incr. Startle Reflex	Dec 16-18,31
		Jan 1,8,12-16,29-31
		Feb 12,13,17,24 Slight
	Irritable	Dec 17,24-27
		Jan 1,4-9,21-28
		Feb 12,18-20,24 Slight
	Material, Red, Nose	Dec 26 Slight
	Material, Dark, Nose Stain, Red, Ears	Jan 8 Slight Jan 21-Feb 3 Slight
	Diarrhea	Jan 26 Slight

28-DAY INTERIM SACRIFICE FEMALE: 90 mg/kg/day PYRIDOSTIGMINE BROMIDE (cont.)

Animal Number	Clinical Signs	Dates Observed (1986/87)	Severity
86D00839	Incr. Startle Reflex Hypertonia Irritable Stain, Clear, Abdomen Alopecia, Front Leg	Dec 15,17-23 Jan 1-4 Dec 17,18 Dec 17,18,28,Jan 3 Jan 1 Jan 3,4	Moderate Slight Slight Moderate Slight
86D00779	Scab, Back Incr. Startle Reflex	Dec 16-Jan 4 Dec 20-22	Moderate Slight
86D00773	Stain, Red, Ear Incr. Startle Reflex Irritable Aggressive	Dec 16 Dec 17,18,Jan 1,2 Dec 19-21,Jan 1,4 Dec 28,29	
86D00757	Hypertonia Stain, Red, Neck Incr. Startle Reflex Irritable Stain, Red, Ear Stain, Red, Eyes	Dec 16 Dec 16 Dec 17-25,31,Jan 1 Dec 31 Jan 2 Jan 4	Slight Slight I Moderate Slight Slight Slight
86D00754	Incr. Startle Reflex	Dec 17,19	Slight

Morgan et al--190

Appendix M: SERUM CHEMISTRY

List of Serum Chemistry Abbreviations/Units

ACHE CHE ALT AST ALK LDH CK BILI CHOL TRIG URIC TP ALB GLU	Erythrocyte Acetylcholinesterase (U/ml) Plasma Cholinesterase (U/ml) Alanine Aminotransferase (U/l) Aspartate Aminotransferase (U/l) Alkaline Phosphatase (U/l) Lactate Dehydrogenase (U/l) Creatine Phosphokinase (U/l) Total Bilirubin (mg/dl) Cholesterol (mg/dl) Triglyceride (mg/dl) Uric Acid (mg/dl) Total Protein (g/dl) Albumin (g/dl) Glucose (mg/dl)
BUN CR CAL PHOS NA CL K IRON MAG NT	Blood Urea Nitrogen (mg/dl) Creatinine (mg/dl) Calcium (mg/dl) Phosphorus (mg/dl) Sodium (Meq/l) Chloride (Meq/l) Potassium (Meq/l) Iron (µg/dl) Magnesium (mg/dl) Not Taken

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Day	ACHE	CHE	ALT	AST	ALK	гон	CK	BILI
						l		,		(
600051	Σ	baseline	0	99,	.25	٠	95.	96	54.	٠ ٥ ١	_
600051	Σ	aselin	0	49	.25	•	57.	20.	90	275.	_
60000 600050	ξ.	תרנפט	0	.77	43		99.	55.	34.	21.	_
2000 2000 2000 2000 2000 2000 2000 200	: 2	חיופס	C	12	36		41.	85.	99.	17.	_
	ξ ≱	יינוסיי	· C	31	29	•	11.	87.	67.	89	_
200000	Ξ Σ	תירוסם תירוסם	o C	1.411	0.446	55.8	110.2	227.5	σ	ო	00.0
	EX	4:100	o C	3.1	42		78.	46.	63.	99	_
800000	2 >	1100	o c	47	27		80.	14.	76.	96.	_
010000	Ξ >	ייר ליינ קיר לייני	o	. E-	! E-	. =	E	IN		LN	LN
86D00714	ΞΞ	elin	0	1.327	0.283	54.4	75.0	258.7	141.2		0.00
				433	.336	5	8.6	4.6	601.80	853.17	0.000
Mean Std Dev				0.1967	0.0810	9.61	64.79	55.92	05.4	86.2	•
				;	,	(1	0	,	S	_
6D007	ഥ	sel	0	. 64	S	χ,	ά,	,			
60007	Ŀ	sel	0	. 60	. 55	ထ	26.	80	8	755.	. (
5000	Į.	selin	0	.60	.59	0	72.	23.	13.	75.	٠,
70000	ı İı	selin	0	.53	.55	٠,	05.	36.	07.	619.	٠ •
70000	ıļ.	198	0	.04	. 62	5	17.	84.	76.	073.	9
86000000	ı İr	9	0	0.860	0.486	41.7	174.6	223.2	963.8	2805.3	0.00
	ı İı	ď	С	.55	.60	ä	29.	00	94.	11.	•
	ů,		· C	12	.55	S.	90	56.	90.	34.	0
	чĒ	200111	· c	97	52	2	58.	21.	20.	68.	0
	4 [ביים ביים מים	o c	77	79	σ	43.	49	82.	067.	0
80009	<u>.</u> 41	=======================================	>		•	٠)				
M e c				.572	.599	43.75	170.54	208.42	685.47	2911.29	0.000
Std Dev				0.6128	0.0900	ω.	79.2	28.5	92.1	451.0	•

0.451 .433 0.37 0.37 0.56 0.40 0.42 0.42 0.42 0.35 0.35 0.36 0.59 0.51 0.33 0.48 0.66 NT 0.55 CR 00 15.84 2.53 3.11 19.0 115.2 111.7 114.2 113.5 116.0 116.0 23.2 119.2 116.5 116.2 116.2 117.4 113.3 BUN 237.83 29.79 264.19 26.55 196.2 246.0 241.6 241.6 254.9 186.4 241.3 284.9 240.8 258.6 254.1 246.2 261.9 286.5 278.1 242.0 317.3 225.2 GIU 2.776 0.208 983 273 2.32 2.89 3.02 2.74 2.90 2.74 2.62 2.83 NT 3.25 2.75 2.75 3.34 2.69 2.69 2.69 2.69 2.70 ALB 0.5 5.14 .17 S 0 .44 2.80 URIC 84222428 1047230700 0 0 91.99 .73 167.0 74.1 86.0 1117.8 71.2 71.5 71.5 71.5 NT 56.6 94.1 143.4 67.1 76.9 50.7 82.7 71.0 TRIG 75. 28. 58.26 10.97 60.76 65.8 777.3 855.9 855.9 846.1 855.4 556.1 CHOL 9. 449.4 662.7 559.7 71.9 662.8 662.3 47.0 Day 000000000 000000000 baseline Group Sex ZZZZZZZZZZ च च म म म म म म भ भ म 86D00529 86D00564 86D00777 86D00786 86D00711 86D00714 86D00791 86D00800 86D00807 86D00808 86D00823 86D00828 86D00512 86D00519 86000637 86D00673 86D00687 86D00702 86D00756 86000767 Mean Std Dev Std Dev Animal Mean

SERUM CHEMISTRY

(cont.):

Z

Appendix

2.723 0.131 2.776 0.198 2.75 2.94 2.94 2.75 2.75 2.75 2.75 2.75 2.75 22.79 22.58 22.93 22.93 22.66 23.03 23.03 23.04 23.04 NT 2.58 MAG 299.6 é8.0 m. 0 287 341 334 343 276 276 174 174 170 170 135 251 310 372 246 267 267 359 310 392 321 IRON 6.78 6.50 8.48.50.50.00 0.40.010.00 0.40.010.00 6.3 6.3 6.3 6.3 7.4 7.4 又 CHEMISTRY 101.8 103.5 104 105 105 103 104 104 103 G 149.6 3.0 ლ⊙ SERUM 146. 3. 146 148 147 151 147 148 145 145 140 140 152 144 144 1147 1150 1150 1147 149 9.833 9.840 (cont.): 9.90 11.30 11.30 9.10 9.10 9.10 10.00 9.60 8.00 7.50 9.20 10.10 9.80 10.70 111.40 PHOS 11.20 0.52 10.98 0.56 Σ 111.2 110.9 110.0 111.2 111.2 110.0 110.8 11.0 111.5 111.5 112.2 112.2 110.0 10.0 CAL Appendix Day 000000000 000000000 baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline paseline baseline Group Sex ZZZZZZZZZZ म्ये म्ये भ्ये ग्ये भ्ये भ्ये भ्ये भ्ये 86000519 86D00529 86D00756 86DC0786 86D00800 86D00B08 86000823 86D00512 86D00564 86000637 86D00673 86000687 86D00702 86D00711 86D00714 86D00767 86D00777 86D00791 86D00807 86D00828 Std Dev Std Dev Animal Mean

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Лау	ACHE	СНЕ	ALT	AST	ALK	LDH	ÇK	BILI
86D00543 86D00620 86D00680 86D00681 86D00681	ZZZZ Z	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	2.228 3.070 2.470 2.048 0.604	0.321 0.288 0.288 0.279 0.262	78.3 54.4 36.1 41.8	247.8 131.5 87.6 102.9 75.9	179.7 234.9 143.8 278.6 143.9	1127.4 482.2 328.2 364.9 298.6	3697.4 1561.7 972.9 631.6 425.4	00.00
Mean Std Dev				2.0840	0.2876	50.54	129.14	196.18 59.25	520.26	1457.80	0.000
86D00506 86D00507 86D00548 86D00606 86D00733	ZZZZZ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	8 8 8 8 8 7 7 7 7 7	0.886 1.230 1.837 1.779 1.992	0.337 0.328 0.361 0.205 0.262	66.4 43.4 47.0 45.0	114.3 105.2 71.1 108.7	211.8 217.3 255.3 146.1 162.1	676.0 366.7 187.6 600.4 465.0	826.0 704.3 370.4 1316.0 295.5	000000
Mean Std Dev				1.5448	0.2986	49.74	94.80	198.52	459.14 193.19	702.44 408.53	0.000
86D00510 86D00520 86D00599 86D00602 86D00602	EEEEE	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	88888	1.482 1.987 1.863 1.131 0.746	0.131 0.180 0.131 0.123 0.205	45.3 98.2 42.1 47.5	97.7 257.2 99.2 90.5	294.1 215.0 222.7 168.6 264.4	262.9 2732.3 715.5 690.3 235.7	735.0 784.5 635.9 537.5 690.9	00.00
Mean Std Dev				1.4418	0.1540	54.80 24.40	129.24	232.96 48.21	927.34 1034.26	676.76 95.21	0.000

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group		Day	ACHE	СНЕ	ALT	AST	ALK	гря	CK	BILI
86D00554 86D00593 86D00604 86D00644 86D00644	ZZZZZ	30.0 mg 30.0 mg 30.0 mg 30.0 mg	mg/kg mg/kg mg/kg mg/kg mg/kg	88888	0.633 1.411 1.095 1.969	0.090 0.115 0.082 0.071 0.104	41.2 50.3 35.6 47.6	129.5 111.6 104.7 111.5 69.5	225.5 141.0 216.1 208.7 149.0	1443.8 971.4 482.3 758.9 146.1	1118.7 1025.9 559.3 1103.0 742.3	0.00
Mean Std Dev					1.3750	0.0924	42.22	105.36	188.06 39.86	760.50	909.84 247.66	0.000
86D00509 86D00533 86D00621 86D00648 86D00648	ZZZZZ	60.0 mg 60.0 m	mg/kg mg/kg mg/kg mg/kg	88888	0.000 0.000 0.345 1.258 1.867	0.112 0.071 0.062 0.146 0.071	50.1 53.8 38.3 57.5	102.2 90.4 84.5 162.6 108.3	244.5 319.5 180.8 125.8	526.3 563.0 390.7 315.6 836.5	797.0 745.7 443.7 2081.9 710.0	0.00
Mean Std Dev					0.6940	0.0924	49.86	109.60	206.92 76.14	526.42	955.66 644.23	0.000
86D00523 86D00552 86D00587 86D00631 86D00631	ZZZZZ	om 0.06 om 0.06 om 0.06 om 0.06	mg/kg mg/kg mg/kg mg/kg	88888 7777	1.279 1.825 1.762 1.188 1.359	0.096 0.087 0.079 0.071	41.0 42.0 42.5 37.9	95.3 93.7 84.6 85.4	227.3 277.3 181.6 208.6 168.7	340.9 506.3 406.9 475.9 638.1	674.7 547.0 483.6 588.4 513.0	0.00
Mean Std Dev					1.4826	0.0808	40.20	87.96	212.70 42.74	473.62	561.34 74.45	0.000

CHEMISTRY
SERUM
<u></u>
(cont.)
Σ
Appendix 1

Animal	Sex	Group	Day	CHOL	TRIG	URIC	TP	ALB	GLU	BUN	CR
86D00543 86D00620 86D00680 86D00681 36D00712	EEEE	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	66.0 47.2 39.7 82.6 84.6	198.3 407.9 139.2 102.0 65.0	36.20	4.8.9.9. 6.0.0.0.	2.19 3.29 3.10 3.00	202.5 312.0 261.7 396.0 254.9	20.6 23.7 17.2 16.7	0.47 0.84 0.60 0.64 0.71
Mean Std Dev				64.02	182.48 135.29	3.26	5.86	2.892	285.42 72.98	19.36	0.652
86D00506 86D00507 86D00548 86D00606 86D00733	ΣΣΣΣΣ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	8 8 8 8 8 7 7 7 7 7	84.0 76.8 43.0 74.5	80.5 111.9 86.6 120.0	11.03.7	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	2.63 2.94 2.63 2.65	307.5 294.6 314.2 237.0	20.0 17.6 21.3 24.3 17.8	0.65 0.61 0.72 0.51 0.62
Mean Std Dev				70.72	119.62	2.40	5.62	2.812 0.258	277.44	20.20	0.622
86D00510 86D00520 86D00599 86D00602 86D00602	Z Z Z Z Z	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	8 8 8 8 8 7 7 7 7 7	76.7 28.1 71.7 70.4 93.3	227.6 166.6 126.8 94.1 92.6	31.305 3.43 3.53 3.53	5.5.5.5 5.7.8.2.2 5.7.8.2.2	3.31 3.09 2.82 2.98	329.0 210.3 245.3 247.9 320.3	21.7 19.6 18.0 18.9 20.4	0.76 0.27 0.58 0.63 0.80
Mean Std Dev				68.04 24.12	141.54 56.78	2.94	5.68	2.930 0.322	270.56 51.65	19.72	0.608

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Бау	СНОГ	TRIG	URIC	TP	ALB	GLU	BUN	CR
86D00554 86D00593 86D00604 86D00644 86D00645		30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	88888	75.9 77.1 80.3 69.6	75.8 102.8 173.0 157.8	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.0 2.0 2.0 2.0 2.0 2.0	2.87 2.95 3.03 2.85 2.77	273.7 239.5 270.2 231.4 247.3	20.5 22.9 16.8 18.0	0.71 0.76 0.58 0.64
Mean Std Dev				70.12	123.22	1.44	5.58	2.894	252.42	18.64	0.680
86D6J509 86DC0533 86D00621 86D00648 86D00648	ZZZZ Z	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	8 8 8 8 8 7 7 7 7 7	50.5 75.2 58.2 54.4	88.4 142.3 NT 164.2 95.7	22.14.1 8.2.2.1 8.2.2.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.41 3.00 2.86 2.80 2.91	233.4 184.8 249.6 347.9 222.4	18.3 21.7 20.6 14.8	0.68 0.62 0.63 0.69
Mean Std Dev				55.36	122.65	2.40	5.88	2.996	247.62	19.04	0.680
86D00523 86D00552 86D00587 86D00631 86D00674	ΣΣΣΣΣ	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	88888	49.7 54.1 29.9 8.8	93.1 75.1 126.8 98.9 77.6	40000 845.86	55.73 5.73 5.74 5.74	3.13 2.95 2.98 2.88 2.80	243.6 242.1 278.9 256.5 224.8	16.6 17.0 12.2 19.2 15.2	0.71 0.59 0.64 0.50
Mean Std Dev				46.50	94.30	3.36	5.56	2.948	249.18	16.04	0.608

Animal	Sex	Group	Day	CAL	PHOS	NA	CI	×	IRON	MAG
86D00543 86D00620 86D00680 86D00681 86D00712	ZZZZ	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	28 28 28 28 28	10.1 11.0 10.7 13.6 11.8	9.50 11.90 9.70 8.10 8.70	143 145 143 142 139	97 98 99 102	8.1 5.1 6.9 7.0	240 126 217 171 203	2.58 2.75 3.60 2.96
Mean ord Dev			•	11.44	9.580	142.4	99.4	6.52	191.4	2.956
86D00506 86D00507 86D00548 86D00606 86D006033	2222	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	8 8 8 8 8 7 1 7 7 7 7	10.4 10.8 11.4	9.80 8.40 9.10 10.40 8.00	147 146 146 142	101 104 101 112	5.4 8.5 7.7 6.0 5.2	299 179 215 209 194	2.65 3.01 2.66 2.50 2.07
Mean Std Dev			•	10.94	9.140 0.984	144.6	104.4	6.56 1.46	219.2 46.7	2.578
86D00510 86D00520 86D00599 86D00602 86D00713	ZZZZZ	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	8 8 8 8 8 7 7 7 7 7	11.2 9.7 10.8 10.4	11.00 8.20 9.30 10.10	149 147 147 142	100 103 102 101	9.9 7.6 7.6 0.7	106 215 190 143	3.25 2.22 3.00 2.47 2.85
Mean Std Dev			•	10.86 0.93	9.700 1.037	145.4	102.0	7.80	165.2 42.2	2.758

SERUM CHEMISTRY

Appendix M (cont.):

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Dαу	y CAL	PHOS	NA	CI	ᄶ	IRON	MAG
6D0055	ΣΣ	0.0	000	99,	.6		103	2000 444	161 137 245	2.27
86D00604 86D00644 86D00645	ΣΣΣ	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10.5	8.10 9.60 7.30	142 145 140	00		7 / 9	2 55
Mean Std Dev				10.46	8.420	144.2	101.4	5.74	177.4	2.446
86D00509 86D00533 86D00621 86D00648 86D00648	ZZZZZ	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	288 288 288 288 288	3 11.4 3 10.6 3 10.0 3 11.0	10.30 8.60 9.30 10.50 9.80	143 148 148 146	105 99 104 102	6.1 7.5 7.6 6.1	195 153 187 113	2.94 2.25 2.95 2.97 2.54
Mean Std Dev				10.68	9.700	147.4	101.8 2.8	6.62	163.6 32.6	2.624
86D00523 86D00552 86D00587 85D00631 86D00631	ZZZZZ	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	00000	8 12.0 8 10.5 8 11.1 8 11.3	9.80 9.50 10.10 8.80 9.80	143 141 146 138	100 101 101 100	8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	234 133 143 184 204	3.04 2.82 2.95 2.82 2.64
Mean Std Dev				11.12	9.600	141.8	101.2	7.12	179.6	2.854

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Лау	ACHE	CHE	ALT	AST	ALK	грн	CK	BILI
86D00765 86D00814 86D00815 86D00825 86D00832	14 14 14 14	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	8 8 8 8 8 7 7 7 7 7	1.638 1.376 1.463 1.513	0.398 0.398 0.581 0.416	35.3 35.5 33.2 42.4	130.2 97.6 83.6 83.6 95.7	227.0 125.8 184.5 149.3	537.6 248.6 323.9 198.7 342.4	769.5 524.6 339.8 177.3 526.1	00000
Mean Std Dev			,	1.4754	0.4522	36.70	98.14	165.10	330.24	467.46	0.000
86D00758 86D00781 86D00799 86D00829	में में में में	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	88888	1.399 1.776 1.789 1.326 1.667	1.082 0.754 1.091 0.433	64.2 40.0 36.4 44.1 56.4	228.7 125.8 104.8 122.9 375.0	146.4 98.0 150.3 254.6 152.1	1361.2 912.2 726.0 547.8 1213.6	7757.0 624.0 760.5 581.5 2376.9	00000
Mean Std Dev				1.5914	0.8176	48.22	191.44	160.28	952.16	2419.98 3075.92	0.000
86D00759 86D00771 86D00789 86D00846 86D00852	[단 [단 [단 [단	10.0 mg/kg 10.0 mg/kg 16.0 mg/kg 20.0 mg/kg	8 8 8 8 8 7 7 7 7 7	1.504 1.003 1.219 1.219	0.598 0.563 0.389 0.650	40.9 42.5 34.3 52.1	93.5 117.3 86.6 183.0 146.4	74.1 148.7 122.3 99.0 152.7	635.8 523.3 430.5 626.6 544.2	519.9 576.0 489.4 1044.1 800.1	0.0000000000000000000000000000000000000
Mean Std Dev				1.2026	0.5266	42.96	125.36 39.84	119.36	552.08 84.02	685.90 234.30	0.000

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Бау	ACHE	CHE	ALT	AST	ALK	LDH	CK	BILI
86D00785 86D00790 86D00794 86D00821 86D00842	में भे भे भे	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	88888	1.113 1.050 0.933 0.734	0.424 0.687 0.329 0.233	40.6 52.3 31.0 45.6 35.7	83.0 121.2 86.2 285.7 99.4	277.7 122.3 145.0 112.5 171.9	290.6 443.7 250.8 986.6 194.5	331.4 619.8 362.0 450.3 509.2	00.00
Mean Std Dev				0.9096	0.4300	41.04	135.10 85.52	165.88 66.57	433.24	454.54 116.24	0.000
86D00775 86D00782 86D00797 86D00835 86D00841	स्री भी भी भी	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	88888	0.614 0.917 0.742 0.640 0.827	0.468 0.294 0.329 0.233	33.3 37.6 31.9 33.8 40.3	127.8 90.0 58.1 95.8 210.2	110.2 88.4 89.5 170.3	768.3 360.7 199.0 752.6 894.6	916.3 421.3 230.7 635.7 1173.3	0.00
Mean Std Dev				0.7480	0.2960	35.38	116.38 57.98	115.28 33.34	595.04 298.47	675.46 377.44	0.000
86D00754 86D00757 86D00773 86D00779 86D00839	ម្រា ម្រា ម្រា	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	88888	0.550 0.632 0.609 0.747 0.369	0.130 0.363 0.311 0.303	39.9 32.6 36.1 41.8 48.4	96.1 100.5 97.7 130.7 225.4	151.8 151.2 95.2 194.0 195.8	514.8 648.8 672.0 1008.9 549.2	492.8 544.1 468.6 756.9 1354.4	00.00
Mean Std Dev				0.5814	0.2854	39.76	130.08	157.60	678.74	723.36	0.000

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Лау	СНОГ	TRIG	URIC	TP	ALB	GLU	BUN	CR
86D00765 86D00814 86D00815 86D00825 86D00832	ի ի ի ի ի	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	88888 7777	78.5 74.5 71.9 44.4	41.7 79.9 55.5 64.7 61.8	1.5 2.2 1.4 1.7	იიიი. აღაი. აი	2.94 3.73 3.30 2.72 2.93	239.8 240.3 205.3 191.1 243.3	19.0 17.0 16.9 17.0	0.62 0.60 0.60 0.46 0.59
Mean Std Dev				66.16 13.69	60.72	1.68	5.66	3.124	223.96 24.08	17.76	0.574
86D00758 86D00781 86D00799 86D00829 86D00837	भिभिभिभिभि	2.0 mg/kg 2.0 mg/kg 1.0 mg/kg 1.0 mg/kg	8 8 8 8 7 7 7 7 7	85.6 69.8 73.5 74.6 50.5	149.6 52.5 38.1 53.6 NT	11.6 3.2.2 5.3.0 5.7.0	6.3 6.3 5.7 NT	3.39 3.43 3.15 NT	252.1 238.3 252.2 282.6 268.1	22.5 18.9 15.6 5.2	0.31 0.61 0.61 0.45
Mean Std Dev				70.80	73.45	2.94	6.18	3.388	258.66	15.46	0.488
86D00759 86D00771 86D00789 86D00846 86D00852	ի ի ի ի ի	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	8 8 8 8 7 7 7 7 8	82.2 65.2 81.4 74.2 62.7	83.9 94.0 152.3 89.9	12121 2223 222	0000 4000 7000 7000 7000	3.59 3.19 3.10 3.23	214.9 229.3 212.4 200.4 281.2	14.5 17.6 24.0 31.1	0.65 0.66 0.72 0.53
Mean Std Dev				73.14	104.92	2.26	6.10	3.300	227.64 31.65	21.18	0.632

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Ω.	Day	СНОГ	TRIG	URIC	ŢP	ALB	GIU	BUN	CR
86D00785 86D00790 86D00794 86D00821 86D00842	ધો ખી ખી પ્રવે પ્રવે	30.08	mg/kg mg/kg mg/kg mg/kg	88888	81.5 83.9 78.3 91.2	96.7 135.2 44.9 NT	2.11 11.8 2.8 8.8	6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	3.26 3.79 3.51 3.01	232.2 213.7 216.9 209.5 203.4	20.9 17.8 20.6 19.5	0.69 0.55 0.64 0.41
Mean Std Dev					81.50	82.88	2.06	6.26	3.402	215.14	19.36	0.600
86D00775 86D00782 86D00797 86D00835	ᄪᄪᄪᄪ	60.00	mg/kg mg/kg mg/kg mg/kg	8 8 8 8 7 7 8 8 7 8 8 8 8	90.8 71.1 70.9 59.3 51.7	56.8 50.4 62.1 66.2 58.8	22.2	00000 40000	3.21 3.27 3.21 3.45	213.9 258.9 266.3 189.3 185.5	19.9 17.5 13.5 17.9	0.66 0.76 0.55 0.70 0.59
Mean Std Dev					68.76 14.80	58.86	2.16	-	2.4	22. 38.	ω m	90
86D00754 86D00757 86D00773 86D00779 86D00839	म म म म म	0.000	mg/kg mg/kg mg/kg mg/kg mg/kg	8 8 8 8 8 7 7 8 8 8	74.8 68.6 80.2 74.4 63.7	49.0 63.9 34.1 74.7	4 2 2 3 3 5	50000 50000 50000	2.83 3.28 3.22 3.73	225.6 256.4 209.8 195.5 261.2	14.7 13.0 15.0 19.8 13.3	0.60 0.52 0.60 0.64 0.59
Mean Std Dev					72.34	59.26 17.56	2.64	5.96	3.246	229.70 28.67	15.16	0.530

2.858 0.235 2.520 3.002 2.75 2.39 2.83 3.16 3.88 2.16 2.40 2.71 2.63 2.70 2.63 2.74 2.84 2.83 3.25 MAG 232.3 333.8 255. 35. 215 229 272 272 257 304 IRON 331 325 317 422 274 NT 201 214 335 179 5.80 6.28 6.42 65555 6.3 6.0 5.4 7.4 NT × CHEMISTRY 102.3 101.0 102.0 2.1 104 101 99 102 104 96 103 98 100 108 102 102 102 106 NT CF 149.2 4.8 148.4 3.5 149.3 4.1 SERUM 142 153 149 158 143 148 152 148 152 144 148 153 NT NA 5.860 5.440 6.950 0.473 (cont.): 4.20 5.20 5.50 6.90 5.40 7.60 6.50 6.60 7.00 5.20 6.00 7.40 5.60 PHOS 10.78 10.70 0.58 10.42 10.9 9.9 11.9 10.3 9.8 11.1 11.2 10.3 ¥ 10.2 9.7 10.4 111.3 CAL Appendix Δау 8 8 8 8 7 7 8 8 8 7 8 8 8 8 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Group 10.00 0.0.0.0 00000 Sex 다 다 다 다 다 म्ते म्त्रे म्त्रे म्त्रे में में में में 86D00814 86D00815 86D00825 86D00832 86D00799 86D00829 86D00759 86D00771 86D00758 86D00781 86D00789 86D00846 86000837 86D00852 86D00765 Mean Std Dev Std Dev Std Dev Animal Mean

SERUM

(cont.):

X

2.638 0.142 2.728 0.249 2.732 0.328 2.65 2.85 2.48 2.67 2.54 3.14 2.72 2.47 2.65 2.66 2.36 3.01 2.58 2.57 3.14 MAG 249.8 23.3 222.2 52.1 63.4 IRON 271 247 232 276 276 223 210 207 159 302 233 235 168 231 270 270 5.88 5.84 6.28 0.78 5.5 7.2 6.2 5.2 5.2 5.0 5.3 × 102.6 3.7 0, ∞ 9.7 103 103 103 103 98 102 101 108 108 103 103 104 103 1103 105 CL 147.8 5.6 150.2 5.8 0.0. 147. 3. 145 152 145 159 149 145 141 150 145 152 140 148 154 NA 8.00C 1.128 7.860 .140 9.30 10.10 7.80 8.30 8.40 7.30 9.40 NT 9.20 8.00 8.60 6.60 6.90 PHOS 9 4 10.96 10.34 10.60 0.80 11.0 11.5 10.3 10.9 11.0 10.0 10.8 9.8 11.4 9.8 10.0 11.5 10.3 CAL Day 8 8 8 8 7 7 8 8 8 8 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Group 30.00 60.0 60.0 60.0 60.0 Sex मि मि मि मि मि 대 대 대 대 대 보 보 보 보 보 86D00785 86D00790 86D00794 86D00821 86D00842 86D00775 86D00782 86D00797 86D00835 86D00841 86D00773 86D00779 86D00839 85D00754 86D00757 Mean Std Dev Mean Std Dev Std Dev Animal

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Day	ACHE	СНЕ	ALT	AST	ALK	Трн	CK	BILI
86D00530 86D00539 86D00557 86D00566 86D00577 86D00618 86D00635 86D00688	ZZZZZZZZZZ	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	000000000000000000000000000000000000000	1.467 1.914 1.564 1.943 1.672 1.446 1.269	0.226 0.292 0.292 0.245 0.324 0.324 0.259	369.0 120.1 39.2 50.5 85.3 84.7 93.2 41.0	460.1 198.1 107.5 125.3 160.1 118.3 133.0 143.7	171.7 230.5 82.2 121.0 231.8 102.5 188.3 124.3	1360.2 1272.0 424.8 861.2 11117.4 1150.7 943.6 522.9 1000.3	280.6 613.3 481.8 586.1 843.9 778.3 796.5 774.3	0.00
ean td Dev 6D0053	Σ	.0 mg/k	06	.64	.28	o	8 8.	62. 53.	39. 07.	81.	000
86000625 86000625 86000634 86000634 86000666 86000678 86000694 86000731	ZZZZZZZZZZ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	000000000	1.063 0.938 1.1234 1.173 1.173 1.058 1.186	0.235 0.235 0.207 0.184 0.296 0.175 0.193	358.3 64.9 64.9 64.0 64.0 60.8	1509.6 1509.6 127.9 103.8 80.1 110.6 116.8	218.8 145.0 145.0 179.7 192.4 117.1 223.8	502.3 425.6 295.2 749.0 1090.2 189.5 605.9 534.4	231.3 196.9 239.6 476.6 572.2 260.7 628.2 534.0	00.00
Mean Std Dev				1.1484 0.2470	0.2412	84.89	243.43	187.09 68.20	499.41 269.55	398.70 163.79	0.007

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Бау	ACHE	СНЕ	ALT	AST	ALK	LDH	CK	BILI
86D00511 86D00526 86D00544 86D0053 36D00581 86D00581 86D00583 86D00583 86D00583		10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	000000000	0.998 0.992 1.179 1.061 0.928 0.681 1.316 0.981	0.118 0.109 0.157 0.176 0.128 0.128 0.128 0.118	85.7 465.1 36.2 40.9 78.9 35.6 46.1 51.8	113.6 126.9 110.5 191.0 118.3 145.8 115.6 100.6	201 135.4 149.6 100.8 109.8 199.8	773.6 1098.2 1376.5 1567.5 898.5 1619.1 1518.6 907.9	843.3 1237.0 1364.3 2412.0 644.5 1254.1 1476.4 559.5 514.8	0.00 0.00 0.00 0.00 0.00 0.00 0.003
ean td Dev	;	· · · · · · · · · · · · · · · · · · ·	Ġ			0.7	26.	6.	158. 338.	52. 68.	0.0.
86D00612 86D00626 86D00636 86D00639 86D00646 86D00675 86D00675 86D00703 86D00718	E 	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	000000000	0000000004 0	0.178 0.045 0.074 0.184 0.166 0.091 0.091	443.6 56.3 56.3 56.3 51.0 51.0 42.0 441.5 34.1 57.3	116.3 123.4 105.2 116.9 120.09	158.8 230.2 230.2 64.5 1113.4 191.3 90.6 94.1	845.7 845.7 8695.7 369.6 230.0 712.0 744.0 317.8	22 4 4 6 5 9 4 4 6 5 9 4 4 6 5 9 4 4 6 5 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.0000000000000000000000000000000000000
Std Dev				114	.051	5.4	53.8	55.7	69.9	990.9	ဖ

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Day	ACHE	СНЕ	ALT	AST	ALK	грн	CK	BILI
86D00550 86D00570 86D00617 86D00632 86D00684 86D00686 86D00689 86D00689 86D00689		60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	000000000	0.730 0.616 0.482 0.745 0.120 0.000 0.000 0.000	0.064 0.074 0.064 0.131 0.128 0.072 0.091 0.091	49.1 43.3 41.8 74.7 44.3 37.2 62.1 33.6	93.3 86.7 109.0 247.9 85.0 88.4 131.6 103.1 654.8	120.8 113.5 96.4 96.5 120.1 75.7 138.8 129.6 17.1	360.0 418.5 313.7 1122.7 246.9 234.2 666.0 495.8 826.8	246.9 202.1 304.9 1014.4 463.3 461.8 849.5 690.9 722.8	0.00 0.00 0.00 0.00 0.00 0.00
ean td Dev	;		Ç	.31	.03	oin a	9.5	07.	73.	31.	0.0.
86D00563 86D00568 86D00507 86D00630 86D00652 86D00659 86D00659	Z Z Z Z Z Z Z Z Z	96.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	000000000	0.055 0.367 0.332 0.338 0.399 0.126 0.000	0.084 0.055 0.055 0.053 0.082 0.091	22.0 44.1.1 440.6 37.1.1 40.0 60.0 60.0	146.5 136.4 136.4 109.5 75.2 88.7	1,05.4 105.9 105.9 163.8 128.3 164.7 139.7	25.2 1053.1 1053.1 1049.6 251.4 762.9 119.2	262.5 262.5 262.5 262.5 296.4 296.4 296.4	0000000000
Mean Std Dev				0.1865	0.0672	44.44	100.33 25.72	138.34	572.42 369.55	521.54 209.48	0.000

SERUM

(cont.):

 Σ

0.635 0.621 0.74 0.59 0.59 0.59 0.56 0.56 0.56 0.56 0.51 0.69 0.63 0.63 0.47 0.71 0.76 0.60 0.60 CR 23.22 23.03 2.99 23.9 222.9 222.9 222.1 223.3 23.3 23.9 23.9 23.9 21.9 20.2 20.2 20.8 20.8 21.1 223.7 223.7 223.7 24.3 BUN 221.64 66.57 .71 206.6 249.6 2533.5 209.9 225.4 242.4 239.2 324.0 177.0 205.2 80.5 214.6 213.9 273.1 197.1 232 GLU .262 .169 ALB m 0 m 0 m m m m m m m m m m6.20 6.11 92896888 8388 ďΞ 1.74 1.69 URIC 20876011222 1111812122 201010119 195.06 60.14 173.70 74.54 159.8 347.0 246.5 1120.1 170.3 96.6 128.2 154.0 1150.8 181.2 145.9 277.3 271.3 202.3 202.3 213.4 139.4 175.0 TRIG 59.13 14.24 . 55 952.9 622.2 622.2 779.0 777.8 869.4 36.0 36.0 64.8 49.6 994.0 772.7 772.7 74.5 37.4 57.4 CHOL 63 16 Day 0000000000 00000000000 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Gronp 000000000 Sex ZZZZZZZZZZ ZZZZZZZZZZ 86D00557 86D00566 86D00577 86D00618 86D00635 86D00688 86D00628 86D00634 86D00666 86D00678 36D00625 36D00628 86D00694 86D00731 86D00734 86000600 86D00530 86D00539 86D00531 Std Dev Std Dev Animal Mean Mean

			Appei	endix M	(cont.):	SERUM		CHEMISTRY			
Animal	Sex	Group	Бау	СНОГ	TRIG	URIC	TP	ALB	GLU	BUN	CR
86D00511 86D00526 86D00544 86D00533 86D00581 86D00583 86D00583 86D00583 86D00583		10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg		70.7 75.7 52.1 81.4 82.8 76.2 47.5 63.4 72.3	219.6 77.6 170.0 306.4 201.3 170.3 175.9 235.3 97.5	2.6 0.9 1.2 1.2 1.3 1.3 1.3	6.0 6.0 6.0 6.0	3.07 3.29 3.12 3.47 3.38 3.38 3.44	299.1 240.0 208.4 213.5 219.5 259.1 253.2 188.7 240.6	23.0 22.5 19.6 23.9 24.4 18.2 18.9	0.56 0.80 0.58 0.46 0.72 0.63 0.61
ean td Dev 6D0061	ΣΣ	0.0 mg/k	06	8.1.0	65.	• •		4.0. 4.	30.	2	6.1.
86D00636 86D00636 86D00639 86D00646 86D00655 86D00675 86D00676	Z Z Z Z Z Z Z Z	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg		662.6 67.5 57.7 56.6 88.3 65.4	129.4 129.4 159.9 176.9 131.4 325.9	122250150	5.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00	3.23 3.23 3.23 3.29 3.09 3.09	255.0 248.0 245.7 245.7 225.2 254.3 217.6	20.11 20.13 20.3 20.3 20.3 20.3	0.83 0.61 0.39 0.59 0.59
Mean Std Dev	·			65.01 12.86	224.65 89.12	1.79	6.23	3.427	241.39 15.11	20.45 2.26	0.630 0.118

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Day	СНОГ	TRIG	URIC	TP	ALB	GEU	BUN	S. R.
86D00550 86D00570 86D00617 86D00632 86D00641 86D00684	EZZZZZ	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	0000000	70.7 60.5 52.0 65.7 50.6 41.1	279.3 164.5 168.3 236.2	448440 1510440	7.7.000.000	3.223 3.223 3.223 3.000 3.000	237.7 237.0 304.2 210.2 256.1 295.3	71111111111111111111111111111111111111	0.54 0.72 0.72 0.78 0.67
600068 600069 600069	ΣΣΣ	0.0 mg 0.0 mg 0.0 mg	0 0 0	5	23. 26. NT			0.00	19. 25.	73.	
Mean Std Dev				55.82	221.63 106.45	2.28	6.31	3.287	269.23 63.43	17.27	0.635 0.110
86D00563 86D00568 86D00568 86D00607 86D00652 86D00659 86D00659 86D00679 86D00708	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	00000000000	72.5 64.1 71.14 52.9 655.0 34.1 38.6	486.3 122.8 349.6 290.5 147.3 275.2 100.5 243.9 182.1	2102111220 6398767816	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	3.008 3.228 3.228 3.144 3.009 3.009 3.009	213.5 198.8 331.5 228.9 238.0 232.6 268.1 198.7 196.2	16.4 17.0 18.2 23.1 20.5 17.0 17.0	0.53 0.68 0.60 0.77 0.73 0.73 0.59
Mean Std Dev				60.15	243.19	1.81	5.93	3.273	232.74	19.15	0.630

			Appen	endix M	(cont.):	SERUM C	CHEMISTRY			
Animal	Sex	Group	Dау	CAL	PHOS	NA	CI	Ж	IRON	MAG
86D00530 86D00539 86D00557 86D00566 86D00517 86D00618 86D00635 86D00688 86D00688	ZZZZZZZZZZ	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	000000000	00000010108	.51 .527 .588 .045 .007 .007 .32	8471304884 8471304883	000 000 000 000 000 000 000	<u> </u>	64 65 73 73 95 00 71 77 65	2001
Mean Std Dev				10.33	6.670 0.963	140.9 3.9	101.4	5.85 0.69	20.5	2.461
86D00531 86D00600 86D00628 86D00634 86D00666 86D00678 86D00678 86D00731	ZZZZZZZZZZ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	0000000000	0.100000001 0.000400001		34435 34435 34435 3400 3400 3400 3400 34	000 000 000 000 000 000 000 000	800878087	04000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean Std Dev				10.69	1.160	142.3	4.7	0.53	62.1	0.226

SERUM

2.672 0.340 2.523 3.06 3.24 2.31 2.31 2.43 2.43 2.33 2.58 2.58 22.71 22.36 22.36 22.49 22.38 22.38 22.58 22.58 MAG ი. ო 8.7. 152 24 IRON 152 186 118 118 118 1133 1133 1145 1132 158 38 175 175 175 177 177 178 178 178 178 178 5.69 5.75 × 104.6 2.6 104.1 5.1 102 114 103 103 107 107 103 103 101 101 105 104 101 101 107 109 107 108 108 CL 142.3 3.9 140.1 5.9 146 1146 1147 1147 1140 1140 1140 145 145 145 136 144 141 141 143 143 7.249 0.746 7.108 8.40 7.95 6.77 8.20 7.39 7.01 6.38 6.85 4.81 6.00 7.43 7.06 5.56 7.76 8.00 (cont.): 7.16 PHOS 11.31 0.79 10.97 0.81 10.2 10.1 10.1 12.1 10.7 10.7 112.0 10.7 Z 111.0 110.2 110.2 111.5 110.9 110.9 110.9 110.9 CAL Appendix Day 000000000000 0000000000 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Group Sex ZZZZZZZZZZZ ZZZZZZZZZ 86D00698 86D00717 86D00723 86D00612 86D00626 16D00639 16D00646 86D00655 86D00675 86D00676 86D00703 86D00718 86D00526 86D00544 86D00553 86D00581 86000636 86000583 86000098 6D00511 Mean Std Dev Dev Animal Mean Std

			Appei	endix M	(cont.):	SERUM	CHEMISTRY			
Animal	Sex	Group	Day	CAL	PHOS	NA	CL	Ж	IRON	MAG
600055	Σ	0 mg/k	06	0	5	m	0		5	6.
600057	Σ	.0 mg/k	06	0	7	4	0	•	Н	7
SD0061	Σ	.0 mg/k	06	10.7	7.56	147	110	6.3	156	2.66
600063	Σ	.0 mg/k	90	0	4.	4	0	•	7	0.
6D0064	Σ	.0 mg/k	90	H	ω.	4	0	•	7	7.
600068	Σ	.0 mg/k	90	Η.	4.	4	Ö	•	α	. 4
6D0068	Z	.0 mg/k	90	0	٣.	$^{\circ}$	0	•	Н	7
6D0068	Σ	.0 mg/k	90	H	9	4	Ö	•	σ	۲.
690009	Σ	.0 mg/k	90	Ή.	4.	က	ð			4.
86000699	Σ) E	06	ω	∞	Z		LN	9	.5
Mean				2	88.	١ .	105.9			
Std Dev				0.99	2.839	m	4.		29.	.43
86000563		.0 mg/k	90	H	9.	4	\leftarrow	•	4	.2
86D00565		.0 mg/k	90	0	9.	4	Ч	•	4	0.
86D00568		.0 mg/k	90	10.4	8.39	144	107	6.1	125	2.53
86D00607		.0 mg/k	90	H.	9.	4	0	•	9	ა.
86000630		.0 mg/k	90	٠ ا	ω.	4	Ч	•	2	3
86D00652		.0 mg/k	9.	•	. 7	4	S	•	9	4.
86D00659		.0 mg/k	90	0	∞	ന	0	•	Ō	4.
86D00679		.0 mg/k	90	0	9.	4	0	•	Ŋ	9
86000708		.0 mg/k	90	•	0.	4		•	ო	0
86000728	Σ	0 mg	90	۲.	. 7	\sim	r-i	•	9	. 4
Mean				10.75	7.368	142.6	107.2	5.65	178.6	2.312
Std Dev				9.0	. 79	•	•	.	7.	. 23

Appendix M (cont.): SERUM CHEMISTRY

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Day	АСНЕ	СНЕ	ALT	AST	ALK	трн	СК	BILI
86D00749 86D00751 86D00753 86D00761 86D00784 86D00802 86D00803 86D00803 86D00805	ես ես ես ես ես ես ես ես	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg		0.222 0.909 0.000 0.000 0.000 0.279 0.000	0.752 0.820 0.342 0.527 1.055 0.701 0.869 0.664 0.781	53.8 35.8 35.8 37.8 42.2 96.2	129.6 105.6 87.3 239.6 143.5 76.0 94.1 116.4	156.7 73.0 92.4 78.4 157.6 52.1 126.3 77.3	541.4 421.9 291.7 1373.2 845.9 264.8 470.3 707.7 224.9	2092.8 851.4 340.0 1691.0 565.7 278.3 484.3 638.2 408.0 359.2	000000000000000000000000000000000000000
Mean Std Dev				0.2223	0.7869	45.30 18.81	119.08 46.78	99.50	543.16 354.95	770.89	0.000
86D00766 86D00780 86D00787 86D00793 86D00811 86D00812 86D00844 86D00848 86D00848	ի եր եւ եւ եւ եւ եւ եւ	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	000000000	0.000 0.419 0.283 0.245 0.000 0.149 0.000	0.172 0.334 0.540 0.540 0.363 0.945 0.879 0.248	31.9 31.9 31.1 51.4 77.9 44.2 44.0 46.1 46.1	885.1 833.5 167.9 1138.1 120.7 151.3	150.6 172.5 1144.8 112.3 134.0 153.9 152.5 65.2	116.9 889.4 889.4 885.5 887.6 115.9 03.8	666.2 765.9 765.9 888.4 898.3 897.6 87.8 87.8 882.8	0000000000
Mean Std Dev				0.1774	0.5288	52.61 25.28	145.46	130.79	647.88 267.38	604.92	0.000

Appendix M (cont.): SERUM CHEMISTRY

			1								
Animal	Sex	Group	Day	ACHE	CHE	ALT	AST	ALK	трн	CK	BILI
920003	ß		Co	,	42	C	7 2	7	α	٥	
0 / 0 0 0 0 0	ម 🏻		200		0.460		r o	,	4.77	7.00	
910003	4		0 0	9 6	, c) (,	·)	
6D0076	Ŀı	0.0	000	00.	28	ή.	⊢	14.	75.	74.	0.00
6D0077	ក	0.0	90	EH	[- 4		LN		Z	E٠	LN
6D0081	Íц	0.0	90	00.	.19	ω.	49.	2	23.	32.	0.00
6D0082	Ŀı	0.0	90	.26	.25	7.	12.	70.	68.	58.	0.00
6D0083	Гщ	0.0	90	44	.83	7	80.	06.	51.	23.	00.0
6D0084	Ŀı	0.0	90	000.0	0.401	118.6	216.0	9.98	993.2	580.1	0.00
6D0084	ţzı	0.0	90	29	.75	39.	42.	07.	88.	53.	00.0
86D00856	ជា	60.0 mg/kg	90	00.	.77	2	12.	12.	93.	32.	0.00
Mean				4	4 62	5.	0	4.	48.9	92.5	1 .
Std Dev				.163	0.2543	29.30	45.1	20.47	261.01	149.01	000.0
6D0075	Íщ	0.0	90	.39	.46	5.	29.	7.	43.	342.	0
6D0078	Ĺτι	0.0	90	.07	.79	7.	60.	φ.	45.	372.	0.
86000792	ĹĿĮ	90.0 mg/kg	90	000.0	0.313	8.06	254.8	87.9	941.6	2250.0	0.00
6D0009	Ĺц	0.0	90	00.	.23	ж •	16.	7.	229.	259.	0
6D0080	Ĺ'n	0.0	90	00.	.19	2	74.	2	46.	92.	0
6D0081	ĺΉ	0.0	90	00.	.35	4.	11.	ა.	43.	520.	0
6D0081	Ŀų	0.0	90	00.	.40	÷	05.	50.	87.	582.	0
6D0081	Ĺτί	0.0	90	00.	.33	5.	23.	7.	11.	02.	0
600082	Ĺτί	0.0	90	00.	.41	ف	95.	4.	90.	76.	0
6D0083	Įъ	0	90	00.	.30	<u>ი</u>	2	0	87.	64.	Ö.
Mean				.046	.379	7.7	1.3	6.0	62.8	96.4	0
Std Dev				0.1233	0.1657	21.23	99	31.68	282.48	645.56	000.0

Appendix M (cont.): SERUM CHEMISTRY

Animal	Sex	Group	Day	CHOL	TRIG	URIC	ŢЪ	ALB	GLU	BUN	CR
86D00768 86D00772 86D00776 86D00778 86D00806 86D00818 86D00818 86D00833 86D00843	는 는 는 는 는 는 는 는 는	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	0000000000	82.4 64.4 87.2 88.8 115.7 62.7 62.7 68.0	107.5 142.9 74.2 53.1 136.5 215.7 72.8 147.8 89.9	00000000000000000000000000000000000000	7.000.7.7.000.7.7.000.00.7.000.00.7.000.00.	4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	217.9 262.1 195.7 250.4 206.2 179.8 275.8 236.8	23.1 22.8 12.9 12.2 13.5 16.4 17.3	0.78 0.75 0.73 0.86 0.73 0.67 0.67 0.52
Mean Std Dev				75.00	124.51	2.44	6.84	4.021	223.20 34.07	18.17	0.729
86D00752 86D00755 86D00764 86D00774 86D00804 86D00838 86D00838 86D00838	ես ես ես ես ես ես ես ես	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	000000000	81804867	97.3 647.1 114.8 188.4 114.8 114.8 14.8 14.8 14.	2008482470	7.087.080033	04488000000000000000000000000000000000	96.11.00.10.1	0.0111.00000000000000000000000000000000	
Mean Std Dev				8.65	76.52	0.92	0.57	0.262	32.58	3.18	0.102

SERUM

(cont.):

Σ

0.595 0.644 0.57 0.57 0.75 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.73 0.71 0.57 0.60 0.58 0.71 0.68 CR 21.31 17.73 16.4 116.3 118.0 118.0 118.0 118.3 118.3 18.5 18.6 224.2 222.0 20.7 20.7 21.6 221.6 221.6 22.5 BUN 210.14 43.98 218.08 34.22 170.5 242.3 251.3 250.7 131.7 198.5 225.9 251.4 155.1 248.2 224.7 231.1 230.3 177.4 1187.9 212.7 213.0 213.0 GLU 3.520 3.353 3.38 2.85 3.469 3.08 3.08 3.08 3.18 3.18 3.18 ALB 6.11 6.52 8.0.0000.0.00 8.0.4.0.0.0.00 1.0.00 TP 1.68 URIC 1122112 ...24112110 ...44.252110 2.24 121.36 63.56 98.17 36.85 257.0 101.8 71.9 136.6 109.9 73.9 96.8 52.0 204.7 108.0 70.3 111.9 146.2 40.3 130.3 72.4 59.2 TRIG 61.74 12.43 53.50 62.9 48.6 71.1 71.1 755.2 64.5 64.5 63.1 51.8 CHOL 52.3 547.4 571.2 571.2 65.2 65.2 65.2 65.3 66.3 79.6 8.9 Day 00000000000 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Group Sex मं मं मं मं मं मं मं मं मं म म म म म म म म म म म 86D00803 86D00805 86D00826 86D00780 86D00787 86D00793 86D00811 86D00784 86D00802 86D00812 86D00844 86D00851 86D00854 86D00749 86D00753 86D00766 86000848 86D00751 86D00761 6D00827 Std Dev Std Dev Animai

			:								
Animal	Sex	Group	Day	СНОГ	TRIG	URIC	TP	ALB	GLU	BUN	CR
6D0076 6D0076 6D0076 6D0076 6D0077	रं में में में	0.0 mg	00000	H	9 H S 8 6	2.0 3.1 NT	6.8 6.0 7.0 NT	3.71 3.35 3.75 NT	888. 111. 225. NT	0.00 H m	
8600831 8600831 8600831 8600845 8600847 8600887	그 다 다 다 다 다	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	00000	00000000000000000000000000000000000000	133.7 133.3 60.5	321710 321710	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.26 3.26 3.38 3.68 3.75	246.0 211.8 179.6 278.9	11111111111111111111111111111111111111	0.57 0.75 0.63 0.74 0.85
Mean Std Dev				63.46	91.29	2.07	6.50	3.517	218.69	16.32 2.86	0.677
86D00750 86D00783 86D00792 86D00798 86D00813 86D00816 86D00817 86D00817 86D00817	मं मं मं मं मं मं मं मं	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	0000000000	71.7 79.7 60.0 73.4 75.3 37.6 59.4 57.0	91.5 55.8 NT 76.2 30.5 94.7 79.7	2141121821 8910103644	08000000000000000000000000000000000000	3 3 4 3 3 3 3 3 4 3 5 5 5 5 5 5 5 5 5 5	228.2 229.1 260.6 229.8 244.9 208.1 214.7 219.8	21.3 16.5 16.5 17.6 14.6 14.6 14.4	0.71 0.79 0.51 0.69 0.70 0.63 0.63 0.63
Mean Std Dev				63.70 12.66	90.97	2.17	6.46	3.922 0.381	230.56 18.72	19.11	0.650

SERUM CHEMISTRY

Appendix M (cont.):

SERUM

(cont.):

Σ

2.470 2.651 0.270 22.48 22.12 22.12 22.32 22.32 22.32 22.50 22.50 2.52 2.90 2.90 2.32 2.32 2.32 2.94 2.94 2.94 2.97 2.95 MAG 295.7 73.8 347.0 69.2 IRON 399 390 445 255 255 299 469 421 3394 303 303 206 207 223 365 365 341 6.09 5.70 × 105.5 102.5 3.1 1001 1002 1002 1003 1003 1003 110 107 105 101 104 107 103 CL 144.0 2.7 149.7 4.1 145 146 148 1149 1159 1150 1170 140 144 141 144 139 143 147 NA 6.314 1.953 5.471 5.52 2.88 2.88 5.07 5.07 5.16 7.46 8.99 8.99 3.14 3.83 4.09 4.09 6.13 5.61 7.61 7.23 PHOS 10.69 10.93 110.4 110.7 110.7 110.5 110.2 110.9 110.9 11.4 10.5 11.0 111.7 110.5 110.3 110.3 CAL Day 00000000000 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Group 000000000 Sex ज ज ज ज ज ज ज ज ज ज ज में में में में में में में में में 86D00818 86D00833 86D00843 86D00772 86D00776 86D00795 86D00804 86000850 6D00849 86000755 86D00764 86D00774 86000838 86D00840 86D00855 86000778 86000806 86000810 86000752 86D00768 Std Dev Std Dev Animal Mean Mean

Animal	Sex	Group	Day	CAL	PHOS	NA	CI	ᄶ	IRON	MAG
86D00749 86D00751 86D00753 86D00761 86D00784 86D00802 86D00803 86D00803 86D00805	한 한 한 한 한 한 한 한 한	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	0000000000	0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	4.83 3.91 6.00 7.16 6.31 5.15 8.06	144 1442 1443 1443 1438	103 102 102 104 105 108	იი. ი. ი. ი. ი. ბ. ი. ი. ი. ი. ი. ი. ი. ი. ი. ი. ი. ი. ი.	343 343 221 221 232 233 223 273	2.15 2.22 2.32 2.32 2.13 2.34 1.69
Mean Std Dev				10.25	5.803	142.5	104.0	5.48	280.5	2.308
86D00766 86D00780 86D00787 86D00793 86D00812 86D00844 86D00848 86D00848	ւմ եմ եմ եմ եմ եմ եմ եմ եմ	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg		1001001001		4 W 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6	004 007 007 008 009	044777 C W W Q O O O	57 004 110 226 73 73	06 75 72 72 72 72 73 74 75 75 76
Mean Std Dev				10.67	5.422	141.1	105.6	1.07	328.7	2.611

SERUM CHEMISTRY

Appendix M (cont.):

SERUM

(cont.):

Z

2.404 0.263 .544 2.25 2.60 2.67 NT 2.44 1.89 2.33 2.31 2.31 2.31 22.53 22.53 22.30 22.30 22.30 23.32 23.33 MAG 70 289.9 58.0 268.6 44.7 IRON 2224 22224 2224 2235 2359 2359 5.00 5.66 $\begin{matrix} \mathbf{v} + \mathbf{L} \cdot \mathbf{v} & \mathbf{o} \cdot \mathbf{v} + \mathbf{o} \cdot \mathbf{v} + \mathbf{o} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v}$ × 108.3 2.6 110.4 109 108 109 1111 104 1104 1110 1111 1113 1113 1114 1114 1114 CF 141.2 2.0 142.7 6.9 144 139 139 140 139 140 142 146 152 144 144 142 144 125 141 144 145 NA 5.026 6.137 6.86 5.85 7.27 5.34 4.28 7.20 7.18 3.49 4.74 4.13 NT 5.07 5.02 5.86 5.84 4.43 6.65 4.27 PHOS 10.75 10.87 10.9 111.7 111.0 10.9 10.9 10.9 110.9 11.3 11.9 10.9 10.4 10.7 10.5 9.1 CAL Day 00000000000 00000000000 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Group 0.000000 90.0 Sex ज में की की भी भी भी भी भी भी भी म म म म म म म म म म 86D00792 86D00792 86D00798 86D00809 86D00769 86D00770 86D00822 86D00830 86D00820 86D00831 86000819 86000845 36D00856 86000813 86000816 86D00817 86000760 86D00762 86D00847 86D00750 Std Dev Std Dev Animal Mean Mean

Appendix N: HEMATOLOGY

List of Hematology Abbreviations/Units

RBC	Erythrocytes (x10 ⁶ /μl)
HGB	Hemoglobin (g/dl)
HCT	Hematocrit (%)
MCV	Mean Corpuscular Volume (femtoliters)
MCH	Mean Corpuscular Hemoglobin (picograms)
MCHC	Mean Corpuscular Hemoglobin Concentration (g/dl)
RET	Reticulocytes (%)
PLT	Platelets $(x10^3/\mu l)$
WBC	Total Leukocyte Count (x10 ³ /μl)
SEG	Polymorphonuclear Granulocytes (%)
BAN	Immature Neutrophils (%)
EOS	Eosinophils (%)
BAS	Basophils (%)
LYM	Lymphocytes (%)
MON	Monocytes (%)
ATL	Atypical Lymphocytes (%)
NRBC	Nucleated Red Blood Cell (#/100 WBC)
NT	Not Taken

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Dαу	RBC	нев	HCT	MCV	МСН	МСНС	RET	PLT
0 0	>		_ c	4	4	6		H	ທ.	•	∞
100000	Ξ >	1100	o c	•	•	_		2	د	•	9
TCOORD	Z 2	111100	o c		·	. LC		20.9	34.7	0.8	652
700000	Ξ >	ָט מילי	> C	•	. 4	σ		2	5	٠	3
950009	Ξ;	100	.	. <	. 4			8	9	•	96
6000063	ឌ	ה ה ה	> C	י ר	r (*	, ,		· m	ک	•	S
600008 610008	Ξ;	י מ	> 0) (· α		2	4.	•	\vdash
790009	ឌ ;	1 6	> C	, <) (8	9	•	ω
6D00070	E ;	selin	> C	י ע) (, ,		. 7	4.	•	7
86D00714 86D00714	ΞΣ	baseline	00	6.35	13.9	38.9	61	•	5.	•	α
				6	-	0	1 .	7	4	1 .	0
Mean Std Dev				0.672	1.61	4.26	1.3	0.74	99.0	3	
							,	(,		u
6D0075	Ŀι	baseline	0	Ġ.	٠ د	℧	19			•	n c
6D0076	ĮΞι	asel	0	7	m	7	64		٠ ر	٠	n (
60007	[1.	sel	0	0	т М	7.	62	2	9	٠	7
6700G	ı [z	ase	0	2	ж Ж	ω.	62	5		٠	∞
0.0000 0.0000	ı [ı	א נפ פיי	0	9	رى	← i	63	т С	<u>.</u>		0
	ı (t	ם כ	0		4	<u>ი</u>	63	22.8	36.0	10.0	434
	ı Çı	ָר פַּ	· C	4	4.	0	63	ς.	ა.	•	7
	ı [z	ָ מַסְ	o C	`	4	7.	61	ς.	7	•	0
	ų į.	ָר (מ מ	o C		4	о О	62	2	٠,	•	S
86000829	ıl L	haseline) C	6.23	14.1	39.5	63	2	ა.	•	$^{\circ}$
200000	4	3	>								
Mean				15	º.	٠.	62.4	22.63	36.18	2.28	559.3
Std Dev				0.286	0.72	2.0	ij	ω.	.5	φ.	52.

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	WBC	SEG	BAN	EOS	BAS	LYM	MON	ATL	NRBC
86D00512 86D00519 86D00529 86D00564 86D00637 86D00637 86D00673 86D00702 86D00711	ZZZZZZZZZ	baseline baseline baseline baseline baseline baseline baseline baseline baseline	000000000	0.44.00.00.40 .0.44.00.00.00.00.00.00.00.00.00.00.00.0	10 10 13 13 27 28 8	000000000	00100001	000000000	880 880 91 73 72 90	H O O O O O O H	000000000	000000000
Mean Std Dev 86D00756 86D00777 86D00777 86D00786 86D00800 86D00800 86D00808 86D00808	मं सं सं सं सं सं सं सं	baseline baseline baseline baseline baseline baseline baseline baseline	000000000	21 422440224 1410602262	17.0 12.0 11.1 13.1 15.0 20.0 20.0 20.0 20.0	00 00000000	00 00 00 00 00 00 00 00 00 00 00 00 00	00 000000000	82.5 8 82.5 887 887 919 793	m.v.	00 00000000	00 00000000
Mean Std Dev				4.47	12.9	0.0	0.0	0.0	86.3	0.0	0.0	0.0

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	RBC	нсв	HCT	MCV	МСН	мснс	RET	PLT
86D00543 86D00620 86D00680 86D00681 86D00681	EEEEE	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	\$ 8 8 8 8 5 7 7 8 8	6.96 7.44 7.70 7.03	14.9 15.7 15.9 15.1	41.3 44.2 44.8 42.9	5 5 8 8 8 8 8	21.1 21.0 20.6 21.4 21.2	24. 355.3 35.3 36.3	0.000	644 560 574 480 680
Mean Std Dev				7.270	15.40	43.06	59.0	21.06	33.28	0.36	587.6
86D00506 86D00507 86D00548 86D00606 86D00733	ΣΣΣΣΣ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	88888 7777	6.78 7.87 7.24 7.53	14.6 15.9 14.7 16.2	40.9 45.1 41.2 41.8	60 57 57 61	21.4 20.2 20.2 21.3 20.9	3333 335 335 34 35 35 35 35 35 35 35 35 35 35 35 35 35	00000	902 720 402 512 1108
Mean Std Dev				7.338	15.32	42.94	58.4 1.9	20.80	35.48	0.20	20
86D00510 86D00520 86D00599 86D00602 86D00602	ZZZZZ	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	2 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.07 4.61 7.43 7.38	15.6 10.5 15.4 15.5	43.7 27.3 42.2 42.5	62 53 60 60	22.0 22.6 20.7 20.9 21.5	38.2 38.2 36.2 36.2 36.2	0000	816 398 610 548 550
Mean Std Dev				6.724	14.48	39.88	59.4	21.54	36.22	0.28	584.4

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Лау	RBC	нсв	HCT	MCV	МСН	МСНС	RET	PLT
86D00554 86D00593 86D00604 86D00644 86D00645	2222	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.24 7.13 6.95 7.52 6.91	14.2 15.5 15.1 15.7	38.6 43.6 41.5 43.4	53 60 58 59	19.5 21.6 21.6 20.7 21.5	36.5 35.3 36.2 36.7	800000	714 816 888 952 636
Mean Std Dev				7.150	15.10	41.56	58.2	20.98	36.12	0.20	801.2
86D00509 86D00533 86D00621 86D00648 86D00726	ZZZZZ	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	8 8 8 8 8 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8	6.33 6.85 6.89 7.7	15.7 14.7 14.5 15.1	43.1 41.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21.3 21.3 21.8 21.8 20.4	36.0 36.5 37.0 36.5 36.6	0.00	604 492 612 740 762
Mean Std Dev				6.886 0.527	15.18	41.26	58.2	21.32	36.52	0.32	642.0
86D00523 86D00552 86D00587 86D00631	Z Z Z Z Z	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7.09 7.58 7.04 7.53	15.3 14.6 15.0 14.9	42.2 40.2 41.5 41.3	55 57 58 58	21.4 20.7 20.6 19.8 21.0	36.0 36.0 36.0 36.0	9.0000	560 888 592 504 80
Mean Std Dev				7.062	15.10	41.74	57.2	20.70	36.00	0.40	604.8

Appendix N (cont.): HEMATOLOGY

	j											
Animal	Sex	Group	Лау	WBC	SEG	BAN	EOS	BAS	LYM	MON	ATL	NRBC
86D00543 86D00620 86D00680 86D00681 86D00612	ZZZZZ	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	8 8 8 8 8 7 8 8 8 8	8.7 14.3 8.8 5.3	19 13 41 8	00400	00004	00000	8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	00000	00000	00000
Mean Std Dev				9.18	17.8	0.2	0.2	0.0	81.8	0.0	0.0	0.0
86D00506 86D00507 86D00548 86D00606 86D00606	ZZZZZ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	88888	2000 2000 2000 2000 2000 2000 2000 200	15 23 11 8	00000	00101	00000	880788 89000	00000	00000	00000
Mean Std Dev				6.48	12.6	0.0	0.4	0.0	86.6	0.0	0.9	0.0
86D00510 86D00520 86D00599 86D00602 86D00613	ZZZZ	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	8 8 8 8 8 7 7 7 7 8	8 6 9 9	113 13 13	0000	00044	00000	888 83 83	00000	00000	00000
Mean Std Dev				7.02 2.71	14.2	0.2	0.4	0.0	85.2	0.0	0.0	0.0

Animal	Sex	Group	Лау	WBC	SEG	BAN	EOS	BAS	LYM	MON	ATL	NRBC
86D00554 86D00593 86D00604 86D00644 86D00645	ZZZZ Z	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	28 28 28 28 28	5.2 12.0 5.8 7.4 5.0	255 8	00000	10100	00000	922 955 97 92	00000	00000	00000
Mean Std Dev				7.08	9.6	0.0	0.4	0.0	90.0	0.0	0.0	0.0
86D00509 86D00533 86D00621 86D00648 86D00726	ZZZZZ	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	8 8 8 8 8 7 7 7 7 7	5.5 10.9 4.2 5.6	18 11 15 14	00000	H 0 0 H	00000	81 89 85 85	00000	00000	00000
Mean Std Dev				5.78	21.8	0.0	0.6	0.0	77.6	0.0	0.0	0.0
86D00523 86D00552 86D00587 86D00631	ZZZZZ	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	8 8 8 8 8 7 7 7 7 7 7	0 80 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 25 119	00000	00000	00000	90 94 75 81 85	00000	00000	00000
Mean Std Dev				5.66	15.0	0.0	0.0	0.0	85.0	0.0	0.0	0.0

HEMATOLOGY

Appendix N (cont.):

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Бау	RBC	нсв	нст	MCV	МСН	МСНС	RET	PLT
86D00765 86D00814 86D00815 86D00825 86D00832	मिसिसिस	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	88888	6.61 4.25 6.83 6.01 7.17	15.1 9.1 14.7 13.8 15.3	40.2 23.6 37.8 33.2 40.1	61 555 655 67	22.7 21.1 21.5 22.8 21.2	37.4 38.2 38.8 41.3 37.8	00000 44.000	936 1076 946 944 762
Mean Std Dev				6.174	13.60	34.98	56.4	21.86	38.70	0.36	932.8
86D00781 86D00758 86D00799 86D00829 86D00837	म्ये म्ये म्ये	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	88888 77777	6.99 6.68 7.14 7.05 6.45	144, 74 114.7 115.4 16.0	38.9 37.7 40.5 36.8	56 57 60 57	20.4 21.9 22.7 22.3	36.7 38.7 37.7 37.6 39.0	00000	972 786 890 858 862
ean td Dev 6D0075	ध्य (0.0 mg/k		000, 001	40 44	60 80		40 0-	7.00.7		20 88
86D00789 86D00789 86D00846 86D00852	म मि मि मि	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	8 8 8 0 7 7 7 7	6.49 6.91	14.5 15.4 15.1	38.5 38.7 41.0	57 60 59	21.5 22.1 21.8	37.4 37.1 36.6	0.00	822 922 998
Mean Std Dev				6.726	14.58	39.06	57.8	21.60	37.12	0.52	881.6

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Бау	RBC	нев	HCT	MCV	МСН	МСНС	RET	PLT
600078	Ĺt.	0.0		ი.	4.	ω		,	8	•	9
600009	ı [I	0.0		7	4	7.		i.	ω.	•	9
86D00794	ı Eu	30.0 ma/kg		7.56	15.4	40.1	53	20.3	38.2	0.4	1016
6D0082	ĮΞι	0.0		ω.	9	4		2	ė.	٠	90
6D0084	Íц	0	28	ω.	4.	7 .		;	ω.	•	ω
Mean				15	17	1.		2	0.	9.	2
Std Dev				0.351	0.78	3.06	ന	0	0.86	0.45	94
86000775	[tu	0		ω.	σ	2		0	4.	•	H
86D00782	ı İzı	0		6.82	15.0	41.1	09	21.9	36.4	9.0	942
86D00797	Į.	0		9	5	<u>ი</u>		2	7.	•	ဖ
86D00835	Ĺ	0		ω.	5.	2		ä	9	•	7
86D00841	្រា	60.0 mg/kg	28	.2	ж •	5.		٦.	φ.	•	က
Mean				.87	8	7		5.	7.	5.	7.
Std Dev				0.475	0.77	3.06	Н	0.81	H	0.22	72.9
600075	Įzi	0.		ω.	4.	9		0	ა.	•	S
86D00757	Įτί	90.0 mg/kg	28	6.93	15.5	42.3	61	22.2	36.4	1.0	964
6L0077	ដែ	0.		Ŝ	4.	ف		ä	6.	•	႕
6D0077	ŗ	0.		4.	4.	7.		ä	7.	•	4
6D0083	Įті	•		9.	9	گ		;	9	•	\leftarrow
Mean				.87	15.00	40.86	59.2	21.64	36.48	0.64	878.4
Std Dev				0.453	1.0	3.1	H	0.5	.7	٣.	44

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	WBC	SEG	BAN	EOS	BAS	ГХМ	MON	ATL	NRBC
86D00765 86D00314 86D00815 86D00825 86D00832	मि मि मि मि मि	0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg 0 mg/kg	22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	20.4 6.4 8.6.6.0	20 7 11 13	00000	00000	00000	80 93 89 90	00000	00000	00000
Mean Std Dev				4.22	12.2	0.0	0.0	0.0	87.8	0.0	0.0	0.0
86D00781 86D00758 86D00799 86D00829	[백 [백 [대 [址 [대	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	28 28 28 28 28	7.5.4.8.0.0 7.5.4.8.0.0	2 2 3 1 4	00000	0000	00000	96 77 92 86	00000	00000	00000
Mear. Std Dev				4.90	11.2	0.0	1.0	0.0	87.8 7.2	0.0	0.0	0.0
86D00759 86D00771 86D00789 86D00846 86D00852	[대 [대 [대 [대	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	8 8 8 8 7 7 7 8 8 8 8 8	44.1 4.7.7 5.6 5.0 8.3	703 100 00	00000	70707	00000	0 0 8 8 8 0 0 0 4 0	00000	00000	00000
Mean Std Dev				5.52	10.4	0.0	1.0	0.0	88.4	0.0	0.0	0.0

HEMATOLOGY
(cont.):
Appendix N

Animal Sex 86D00785 F 86D00790 F 86D00794 F											
6D00785 6D00790 6D00794 6D00821	Group	Лау	WBC	SEG	BAN	EOS	BAS	LYM	MOM	ATL	NRBC
6D00842	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	88888	11.6 7.9 5.7 5.2 4.9	17 17 8 14	00000	00000	00000	9 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9	00000	00000	00000
Mean Std Dev			7.06	11.4	0.0	0.8	0.0	87.8	0.0	0.0	0.0
86D00775 F 86D00782 F 86D00797 F 86D00835 F 86D00841 F	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	88888	87.08.8 6.00.00	11 10 7 11	00000	нооон	00000	8 0 0 0 8 8 0 0 0 8	00000	00000	00000
Mean Std Dev			6.60	3.8	0.0	0.4	0.0	91.4	0.0	0.0	0.0
86D00754 F 86D00757 F 86D00773 F 86D00779 F	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	88888 7777	10.0 13.9 9.5	11 11 11 11 12	00000	000m0	00000	86 90 78 85	00000	00000	00000
Mean Std Dev			9.68	14.0	0.0	0.6	0.0	85.4	0.2	0.0	0.0

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	RBC	нсв	HCT	MCV	МСН	МСНС	RET	PLT
86D00530 86D00539 86D00557 86D00577 86D00618 86D00635 86D00635	ZZZZZZZZZZ	0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg	0000000000	7.15 7.97 8.43 8.15 7.87 7.78 8.20 6.60	0. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	88 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2000 2000 2000 2000 2000 2000 2000 200	11121111211 088890191 4478700890	88888888888 8888888888 888888 8888 8888 8888	00001100401	746 648 1000 1218 724 862 896 864
Mean Std Dev 86D00531 86D00625 86D00628 86D00628 86D00666 86D00666 86D00673 86D00673	ZZZZZZZZZ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	000000000	7.801 0.540 6.99 7.81 7.60 6.95 8.23 7.97 7.97 7.97 7.97 8.23	15.21 0.57 14.2 15.4 15.4 15.8 14.5 15.8	42.04 40.1 40.44 42.66 44.1.2 44.1.2 45.11 46.11 43.88	53 53 53 53 53 53 53 53 53 53 53 53 53 5	19.22 0.66 0.66 19.20 20.2 20.2 19.3 19.3 19.3 19.3	36.00 36.4 36.7 36.7 36.5 36.3 36.1 36.1 35.9	0.78 0.38 0.00 0.02 1.0 0.4 0.6 0.6	843.0 144.6 756 902 830 90 1008 848 1040 758 838
Mean Std Dev				7.673	15.05	41.48	54.1	19.58	36.11	0.52	810.4 274.3

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	RBC	HGB	HCT	MCV	МСН	MCHC	RET	PLT
86D00511 86D00526 86D00544 86D00553 86D00581 86D00583 86D00696 86D00698	ZZZZZZZZ ZZ	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	0000000000	7.42 7.26 7.17 7.17 7.37 7.09 6.11	144.1144.3 144.0 144.0 14.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	1200.00 1200.00 1200.00 1200.00 1200.00	37.5 36.6 37.5 37.5 36.7 36.7	1110040 400 80.111	520 768 701 907 658 783 758 821
Mean Std Dev				7.202	14.56	39.07	53.3	19.83	37.01	1.36	752.1
86D00612 86D00626 86D00636 86D00646 86D00646 86D00655 86D00675 86D00676 86D00718	ZZZZZZZZZ Z	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	0000000000	NT 7.36 7.31 7.61 7.58 7.93 7.60	M H H H H H H H H H H H H H H H H H H H	NT 38.5 39.9 39.5 41.0 40.7 43.1 41.7	N C C C C C C C C C C C C C C C C C C C	NT 19.4 19.4 19.4 19.5 19.7 19.5	NT 36.9 36.7 36.7 36.7 36.8 36.9	NT 0.0 1.0 1.0 1.6 0.0 0.0	NT 594 662 614 914 930 928 1016
Mean Std Dev				7.608	15.00	40.64	53.4	19.69 0.39	36.72	0.53	861.3 190.7

HEMATOLOGY (cont.): Appendix N

Animal	Sex	Group	Dау	RBC	нсв	HCT	MCV	МСН	мснс	RET	PLT
86D00550 86D00570 86D00617 86D00632 86D00641 86D00684 86D00689 86D00689		60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	0000000000	7.02 7.50 7.00 6.83 7.83 8.10 8.00 8.35 6.80	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	36.0 36.0 36.2 36.2 44.2 36.2 38.7 38.7	\$	10000000000000000000000000000000000000	36.9 37.3 37.7 35.9 36.2 35.9 35.9	0.00 0.03 0.00 0.00 0.04 4.45	858 956 972 854 1018 1022 1072 926
Mean Std Dev 86D00563 86D00568 86D00568 86D00659 86D00659 86D00659 86D00659	Z Z Z Z Z Z Z Z Z	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	0000000000	7.541 0.584 6.86 6.79 7.22 7.79 7.64 1.69*	14.62 0.73 13.6 14.3 15.6 15.1 15.1 15.1	39.73 2.29 40.6 36.3 38.1 41.6 41.3 41.3 41.0 42.1	52 22 22 22 22 24 24 24 24 24 24 24 24 24	11121200000000000000000000000000000000	36.63 0.67 37.1 37.2 37.2 36.5 35.9	0.67 0.71 0.8 0.8 0.0 0.2 0.8 0.6 0.6	971.6 75.8 904 748 500 850 846 942 972 1212* 1124
Mean Std Dev * Insufficient	cient	sample f	or valid	7.486 0.418 test re	15.06 0.78 result. V	40.62 2.22 Value not	53.6 1.1 included	19.74 0.49	1 36.83 9 0.47 group mean.	0.80	866.9

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Бау	WBC	SEG	BAN	EOS	BAS	LYM	MON	ATL	NRBC
86D00539 86D00539 86D00557 86D00577 86D00618 86D00635 86D00688	EEEEEEEE	0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg	0000000000	4887699899 647.6887.000	21 10 8 12 18 10 17 17	000000000	00000000	000000000	79 90 81 82 83 83	000000000	000000000	000000000
Mean Std Dev 86D00531 86D00628 86D00628 86D00634 86D00666 86D00678 86D00678	ZZZZZZZZZZ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	0000000000	6.00 8.1 8.1 9.0 9.0 10.5 10.5	13.6 22 22 20 44 11 13 8	00 00000000	4.0000011001	00 00000000	86.0 81 78 80 80 96 96 91 87	00 00000000	00 00000000	00 00000000
Mean Std Dev				6.91 2.56	16.1	0.0	0.3	0.0	83.6	0.0	0.0	0.0

HEMATOLOGY

Appendix N (cont.):

Animal	Sex	Group	Dαу	WBC	SEG	BAN	EOS	BAS	LYM	MOM	ATL	NRBC
			6	1		_	^	O	76	0	0	0
6D0051	Σ	o.o mg/k	2 (•	y [> <	1 (o c	. 0	· C	C	C
6D0052	Σ	0.0 mg/k	90	٠) (۰ د	>	ر ا د	o c	o C	o C
6D0054	Σ	0.0 mg/k	8	٠	22)	·	> (- 0	> () C	o c
6D0055	Σ	0.0 mg/k	90	•	20	0 (φ.	> (200	>	> <	> C
6D0058	Σ	0.0 mg/k	90	•	ത (0 (7 (5 (ם טינ	>	> C	> <
6D0058	Σ	0.0 mg/k	06	•	۳ ر	o () r	> (~ y	o c	> C) C
6900 0 9	Σ	0.0 mg/k	90	•	13)	⊣ ,	> 0	0 6	>) C	o
86000698	Σ	10.0 mg/kg	06	6.9	∞ «	0 (٦,	> (1 0	> C	> C	o
6D0071	Σ	0.0 mg/k	90	•	, س	> (- 1 (> 0	0 0	o c	o c	o C
6D0072	Σ	0.0 mg/k	8	•	14	5	>	>	0)	>	>
Mean				6.94	13.7	0.0	0.8	0.0	85.5	0.0	0.0	0.0
Std Dev				4.	•	•	•	•	•	•	•	•
600061	Σ	0,0	თ	ľN	IN	LN	ΤN	LN	LN	IN	TN	TN
	: ≥		σ		છ	0	0	0	94	o))
	2 2		0		12	0	0	0	88	0	0	0
60000	Σ		ത		9	0	0	0	94	0	0 (0 (
60000	Σ	0.0	ത		12	0	0	0	& ·	o (> (> 0
86D00655	Σ	30.0 mg/kg	90	4.7	7	0	ᆏ '	0 (92 20	>	>	>
600067	Σ	0.0	ഗ	•	თ	0	0 '	o (T 0	> 0	>	>
6D0067	Σ	0.0	o	•	13	0 (0 (0 0	χ,	>	> <	> C
6D0070	Σ	0.0	O)	•	თ [,]	0 (۰ د	5 (α Το C	>	> C	o c
6D0071	Σ	\supset	01	•	∞	0	-4	>	31	>	>	
Mean				6.48	10.2	0.0	0.2	0.0	89.6	0.0	0.0	0.0
Std Dev				•	•	•	•	•	٠ ١	٠	٠ ١	.

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Лау	WBC	SEG	BAN	EOS	BAS	гхм	MON	ATL 1	NRBC
86D00550 86D00570 86D00617 86D00632 86D00641 86D00684 86D00689 86D00689 86D00689	EEEEEEEE	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	000000000	65.7 65.7 65.7 65.0 65.0 65.0	11 10 10 22 22 25 25	000000000	044000004	000000000	88888888 890 800 800 800 800 800	010000000	00000000	000000000
Mean Std Dev				7.35	13.7	0.0	0.3	0.0	85.9	0.1	0.0	0.0
86D00563 86D00568 86D00568 86D00607 86D00652 86D00659 86D00679 86D00708	ZZZZZZZZ Z	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	0000000000	00077000100 6100010000000000000000000000	17 11 12 10 10 11 11 11	0000000	400000n*	0000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000	000000000	0000000000
Mean Std Dev				7.10	13.0	0.0	0.2	0.0	86.8 7.6	0.0	0.0	0.0

* Insufficient sample for valid test result. Value not included in group mean.

HEMATOLOGY (cont.): Appendix N

.42 15.2 39.3 53 20.4 38.5 .44 15.5 40.7 55 20.7 37.9 .62 16.1 42.1 55 20.7 37.9 .54 15.7 41.4 55 20.7 37.9 .62 16.1 42.1 55 20.7 37.9 .63 14.4 37.3 53 20.4 38.5 .81 16.2 41.9 54 20.7 37.1 .81 16.2 41.9 54 20.7 37.9 .82 15.6 41.1 53 20.1 37.9 .92 14.8 39.0 56 21.4 37.9 .94 14.5 39.0 56 21.4 37.9 .94 14.5 39.0 56 21.4 37.9 .94 14.5 39.0 56 22.4 20.4 36.9 .94 14.5 39.8 57 20.8 36.9 37.4 .94 14.1 37.2 20.1	Animal	Sex	Group	Лау	RBC	нсв	нст	MCV	МСН	мснс	RET	PLT
Dev 0.693 0.57 1.70 1.1 0.40 0.55 0.693 0.57 1.70 1.1 0.40 0.55 0.752 F 1.0 mg/kg 90 6.92 14.8 39.0 56 21.4 37.9 0755 F 1.0 mg/kg 90 6.96 14.5 39.8 57 20.8 36.9 0774 F 1.0 mg/kg 90 7.54 15.4 41.5 55 20.4 36.9 0795 F 1.0 mg/kg 90 6.84 14.1 37.4 55 20.5 37.4 0804 F 1.0 mg/kg 90 7.83 15.8 42.7 54 20.1 36.8 0840 F 1.0 mg/kg 90 6.44 13.9 36.0 56 21.5 38.5 0850 F 1.0 mg/kg 90 7.49 15.1 42.7 55 20.7 37.5 0855 F 1.0 mg/kg 90 7.74 16.1 42.7 55 20.7 37.5	600076 600077 600077 600077 600080 600081 600083	ម្រាក់ក្រក្រក្រក្រក្	0 mg/k 0 mg/k 0 mg/k 0 mg/k 0 mg/k 0 mg/k 0 mg/k	000000000000000000000000000000000000000	4468018087	00004400000 00000	907178717		0000	8777878777	0000000000	677 574 785 810 675 797 797 884
6D00752 F 1.0 mg/kg 90 6.92 14.8 39.0 56 21.4 37.2 6D00755 F 1.0 mg/kg 90 7.34 15.0 40.0 54 20.4 37.2 6D00764 F 1.0 mg/kg 90 6.96 14.5 39.8 57 20.8 36.9 6D00774 F 1.0 mg/kg 90 7.54 15.4 41.5 55 20.4 36.9 6D00804 F 1.0 mg/kg 90 7.83 15.8 42.7 54 20.1 36.8 6D00838 F 1.0 mg/kg 90 7.83 15.8 42.7 54 20.1 36.8 6D00840 F 1.0 mg/kg 90 6.44 13.9 36.0 56 21.5 38.5 6D00850 F 1.0 mg/kg 90 7.74 16.1 42.7 55 20.7 37.5 6D00855 F 1.0 mg/kg 90 7.49	De				. 69	5.4	0.6	4.1	0.4	7.8	0.16	739.3
272 37 00 00 66 3 00 76 37 3	600075 600076 600077 600077 600080 600083 600085 600085	նո նո նո նո նո նո նո նո նո	/pm 0. /pm 0. /pm 0. /pm 0. /pm 0. /pm 0. /pm 0.	0000000000	0.0.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4040460660 80044468648	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6475574656	4 4 8 4 5 8 1 5 7	7.066	4.1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	702 927 649 692 790 541* 815 686 804
.233 15.04 40.09 55.5 20.76 57.5 .467 0.79 2.33 1.0 0.47 0.6	Mean Std Dev		•	7.5	7.233	15.04	40.0	1.0	0.47 0.47		0.29	731.6

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Лау	RBC	нсв	нст	MCV	МСН	мснс	RET	PLT
86D00749 86D00751 86D00753 86D00761 86D00784 86D00802 86D00803 86D00803 86D00805	ես ես ես ես ես ես եւ եւ	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	0000000000	6.97 7.09 7.09 7.61 8.65 8.7 7.33 7.33	14.8 15.0 15.0 14.5 15.0 14.9	39 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21.2 20.9 20.9 19.8 21.0 20.1 20.1 20.6	37.7 38.2 37.7 37.8 37.0 38.5 37.1 37.9	0.0000.0000	909 736 833 622 11.60* 707 588 658
Mean Std Dev				7.314	15.11	39.86	54.3	20.65	37.76	0.13	707.0
86D00766 86D00780 86D00787 86D00811 86D00812 86D00814 86D00844 86D00848	ես ես ես ես ես ես ես ես	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	0000000000	NH 6.93 7.03 NT 7.22 7.64 7.89 6.90 7.72	NT 14.9 15.0 NT 14.9 16.3 16.3	NT 38.6 38.0 38.0 NT 37.3 40.7 41.8 37.4 39.2	N N N N N N N N N N N N N N N N N N N	NT 21.4 21.2 NT 20.5 20.6 20.8 21.1	NT 38.2 39.1 NT 39.7 38.7 38.6 38.3 38.1	NT 0.0 0.0 0.0 0.0 0.6 0.4 0.2	NT 891 635 NT 750 683 520 886 679
Mean Std Dev				7.303	15.34	39.48 2.07	53.9	20.91 0.36	38.61 0.55	0.18	719.6

Value not included in group mean. * Insufficient sample for valid test result.

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	RBC	HGB	HCT	MCV	МСН	МСНС	RET	PLT
86D00760 86D00762 86D00769 86D00770 86D00819 86D00820 86D00831 86D00845 86D00845	[11] [11] [11] [11] [11] [11] [11] [11]	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	000000000	00.00 00	96.24.96.64.4	4.00.4.00.80.0.	i •	o ∠ സ സ സ സ യ ധ പ ⊃ യ	4.80.844400	0,00,00,00,00,00,00,00,00,00,00,00,00,0	76 557 221 14 003 388 70 70 70
Std Dev 86D00750 86D00783 86D00792 86D00809 86D00813 86D00816 86D00816 86D00816 86D00822 86D00830	मिसिसिसिसिसिसिसिस	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	000000000	7.43 7.01 7.92 7.00 5.88 3.33* 6.76 7.72 7.73	15.6 14.7 14.7 14.5 16.0 16.0 16.5 15.37	40.2 38.1 42.6 38.9 38.4 18.4* 42.2 43.1 40.47 2.45	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	21.3 20.34 20.9 20.9 20.4 21.1 20.4 21.2 21.3 0.33	38.7 38.3 37.9 37.0 37.7 36.6 38.6 38.1	0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00	249.4 773 637 693 710 601 734* 631 951 893 803

* Insufficient sample for valid test result. Value not included in group mean.

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	WBC	SEG	BAN	EOS	BAS	LYM	MON	ATL	NRBC
86D00768 86D00772 86D00776 86D00778 86D00810 86D00818 86D00818 86D00833 86D00843	다 다 다 다 다 다 다 다 다	0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg 0.0 mg/kg	0000000000	ろまな4550 	14 12 16 17 13 10	000000000	000000000	000000000	8 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0000000000	000000000	000000000
Mean Std Dev				4.17	12.3	0.0	0.5	0.0	87.1	0.2	0.0	0.0
86D00755 86D00755 86D00764 86D00774 86D00804 86D00838 86D00838 86D00838	ւս եւ եւ եւ եւ եւ եւ եւ	1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg 1.0 mg/kg	0000000000	0.4.6.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	15 11 12 10 7 7 10	00000000	00000000	0000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000°+000	000000000	0000000000
Mean Std Dev				5.78	10.1	0.1	0.3	0.0	89.3	0.1	0.0	0.0

* Insufficient sample for valid test result. Value not included in group mean.

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Day	WBC	SEG	BAN	EOS	BAS	LYM	MON	ATL N	NRBC
86D00749 86D00751 86D00753 86D00761 86D00784 86D00802 86D00803 86D00803 86D00805	मिसिमिसिसिसिसिसिसि	10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg 10.0 mg/kg	0000000000	04.0.04.04.0. 1.7.0.04.04.0. * * * 0.00.	211122 1414 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000	00000	000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000000	0000000000	000000000
Mean Std Dev				4.50	3.9	0.0	0.5	0.0	91.1	0.0	0.0	0.0
86D00766 86D00780 86D00787 86D00783 86D00811 86D00814 86D00848 86D00848	한 한 한 한 한 한 한 한 한	30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg 30.0 mg/kg	00000000000	NT 6.8 3.0 9.0 6.0 6.0 6.3	N 119 111 10 12 3	H 0 0 H 0 0 0 0 0 0	tn 0 0 1 0 0 1 0	H 0 0 H 0 0 0 0 0 0	N 8 8 N 9 9 9 9 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9	HU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean Std Dev				5.69	5.1			100	90.3	0.1	0.0	0.0
* Insuff	icient	nt sample for	r valid	test	result.	Value	not incl	included in	drozb	mean.		

Appendix N (cont.): HEMATOLOGY

Animal	Sex	Group	Лау	WBC	SEG	BAN	EOS	BAS	LIM	MON	ATL	NRBC
86D00769 86D00762 86D00769 86D00770 86D00819 86D00831 86D00845 86D00845	ես ես ես ես ես ես ես ես եւ	60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg 60.0 mg/kg	0000000000	4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 10 20 20 14 15 9	000000000	0 1 0 1 8 1 0 1 0	00000000	888979888 88888888888888888888888888888	00000000н	000000000	00000000
Mean Std Dev				5.25	13.6	0.0	1.0	0.0	85.3	0.1	0.0	0.0
86D00750 86D00783 86D00792 86D00798 86D00813 86D00816 86D00817 86D00817 86D00822	ն եւ ն ն ն ն ն ն ն ն ն	90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg 90.0 mg/kg	0000000000	28448112864 4708233999999	12 13 13 13 11 11	0000000000	7000000	00000*0000	92 88 92 83 * 86 87	00000*	00000*	0000000000
Mean Std Dev				4.32	10.8	0.0	0.6	0.0	88.7 3.2	0.0	0.0	0.0

^{*} Insufficient sample for valid test result. Value not included in group mean.