Théorie des ensembles

On travaille dans un ensemble *E*, parfois appelé *univers*.

Pour un ensemble A et un élément x, $x \in A$ ou (exclusif) $x \notin A$. On remarque que $\overline{x \in A} \Leftrightarrow x \notin A$, et on note \emptyset l'ensemble vide. L'ensemble des éléments de E qui n'appartiennent pas à A est noté \overline{A} et s'appelle le complémentaire de A dans E.

L'ensemble des éléments de E qui appartiennent à A <u>et</u> à B est noté $A \cap B$ et s'appelle l'*intersection* de A et de B (se dit « A inter B »).

L'ensemble des éléments de E qui appartiennent à A ou à B est noté $A \cup B$ et s'appelle l'*union* de A et de B (se dit « A union B »).

Attention au vocabulaire, l'utilisation du mot « et » peut prêter à confusion.

Savoir simplifier : \overline{E} et $\overline{\mathcal{D}}$; $A \cap E$ et $A \cup E$; $A \cap \emptyset$ et $A \cup \emptyset$. Sachant que $A \subset B$, simplifier $A \cap B$ et $A \cup B$.

Le cardinal de *A* est le nombre d'éléments de *A* et se note Card(*A*).

Si E et F sont deux ensembles, le produit cartésien de E et F se note $E \times F$ et est $\{(x,y), x \in E, y \in F\}$ (ensemble des couples...). Card($E \times F$) = Card(E) × Card(F)

Relations binaires

Une relation *R* est :

<u>réflexive</u> si tout élément de E est en relation avec lui-même ; (on teste les éléments un par un) <u>symétrique</u> si pour tout couple (x,y) on a xRy => yRx; (on teste les éléments deux par deux) <u>antisymétrique</u> si pour tout couple (x,y) on a $(xRy \land yRx) \Rightarrow x = y$; (on teste les éléments deux par deux) <u>transitive</u> si pour tout triplet (x,y,z) on a $(xRy \land yRz) \Rightarrow xRz$. (on teste les éléments trois par trois)

Théorie des ensembles

On travaille dans un ensemble *E*, parfois appelé *univers*.

Pour un ensemble A et un élément x, $x \in A$ ou (exclusif) $x \notin A$. On remarque que $\overline{x \in A} \Leftrightarrow x \notin A$, et on note \emptyset l'ensemble vide. L'ensemble des éléments de E qui n'appartiennent pas à A est noté \overline{A} et s'appelle le complémentaire de A dans E.

L'ensemble des éléments de E qui appartiennent à A <u>et</u> à B est noté $A \cap B$ et s'appelle l'*intersection* de A et de B (se dit « A inter B »).

L'ensemble des éléments de E qui appartiennent à A ou à B est noté $A \cup B$ et s'appelle l'*union* de A et de B (se dit « A union B »).

Attention au vocabulaire, l'utilisation du mot « et » peut prêter à confusion.

Savoir simplifier : \overline{E} et $\overline{\mathcal{D}}$; $A \cap E$ et $A \cup E$; $A \cap \emptyset$ et $A \cup \emptyset$. Sachant que $A \subset B$, simplifier $A \cap B$ et $A \cup B$.

Le cardinal de *A* est le nombre d'éléments de *A* et se note Card(*A*).

Si E et F sont deux ensembles, le produit cartésien de E et F se note $E \times F$ et est $\{(x,y), x \in E, y \in F\}$ (ensemble des couples...). Card($E \times F$) = Card(E) × Card(F)

Relations binaires

Une relation *R* est :

<u>réflexive</u> si tout élément de E est en relation avec lui-même ; (on teste les éléments un par un) <u>symétrique</u> si pour tout couple (x,y) on a $xRy \Rightarrow yRx$; (on teste les éléments deux par deux) <u>antisymétrique</u> si pour tout couple (x,y) on a $(xRy \land yRx) \Rightarrow x = y$; (on teste les éléments deux par deux) <u>transitive</u> si pour tout triplet (x,y,z) on a $(xRy \land yRz) \Rightarrow xRz$. (on teste les éléments trois par trois)