2017 高考试题(全国卷 I) 文科数学

一、选择题: (本大题共12个小题, 每小题5分, 满分 60分, 在每小题给出的四个选项中, 只有 一项是符合题目要求的)

1. 己知集合 $A = \{x \mid x < 2\}, B = \{x \mid 3 - 2x > 0\}, 则$

A. $A \cap B = \{x \mid x < \frac{3}{2}\}$

使用省份: 闽、豫、冀、晋、鄂、湘、粤、皖

C. $A \cup B = \{x \mid x < \frac{3}{2}\}$

D. $A \cup B = \mathbf{R}$

2. 为评估一种农作物的种植效果,选了 n 块地做试验田,这 n 块地的亩产量(单位: kg)分别为 x_1, x_2, \cdots, x_n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是

A. x_1, x_2, \cdots, x_n 的平均数

B. x_1, x_2, \cdots, x_n 的标准差

C. x_1, x_2, \cdots, x_n 的最大值

D. x_1, x_2, \cdots, x_n 的中位数

3. 下列各式的运算结果为纯虚数的是

- A. $i(1+i)^2$
- B. $i^2(1-i)$
- C. $(1+i)^2$
- D. i(1+i)

4. 如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的 黑色部分和白色部分关于正方形的中心成中心对称, 在正方形内随 机取一点,则此点取自黑色部分的概率是

5. 已知 F 是双曲线 $C: x^2 - \frac{y^2}{3} = 1$ 的右焦点,P 是 C 上的一点,且 PF 与 x 轴垂直,点 A 的 坐标是 (1,3), 则 $\triangle APF$ 的面积为

A. $\frac{1}{3}$

6. 如图,在下列四个正方体中,A, B 为正方体的两个顶点,M, N, Q 为所在棱的中点,则在这四 个正方体中,直线 AB 与平面 MNQ 不平行的是

7. 设 x,y 满足约束条件 $\begin{cases} x+3y \leqslant 3, \\ x-y \geqslant 1, \end{cases}$,则 z=x+y 的最大值为

A. 0

B. 1

C. 2

D. 3

8. 函数 $y = \frac{\sin 2x}{1 - \cos x}$ 的部分图像大致为

9. 己知函数 $f(x) = \ln x + \ln(2-x)$, 则

- A. f(x) 在 (0,2) 单调递增
- B. f(x) 在 (0,2) 单调递减
- C. y = f(x) 的图像关于直线 x = 1 对称 D. y = f(x) 的图像关于点 (1,0) 对称

- D. $A \le 1000$ 和 n = n + 2
- 11. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c. 己知 $\sin B + \sin A(\sin C \cos C) = 0$, a = 2, c = $\sqrt{2}$,则 C=
 - A. $\frac{\pi}{12}$ B. $\frac{\pi}{6}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{3}$

12. 设 A, B 是椭圆 $C: \frac{x^2}{3} + \frac{y^2}{m} = 1$ 长轴的两个端点,若 C 上存在点 M 满足 $\angle AMB = 120^\circ$,则 m 的取值范围是

- A. $(0,1] \cup [9,+\infty)$ B. $(0,\sqrt{3}] \cup [9,+\infty)$ C. $(0,1] \cup [4,+\infty)$ D. $(0,\sqrt{3}] \cup [4,+\infty)$

二、填空题: (共 4个小题, 每小题5分, 满分 20分)

13. 已知向量 a = (-1, 2), b = (m, 1). 若向量 a + b 与 a 垂直,则 m =

14. 曲线 $y = x^2 + \frac{1}{x}$ 在点 (1,2) 处的切线方程为______.

15. 已知 $\alpha \in (0, \frac{\pi}{2})$, $\tan \alpha = 2$,则 $\cos (\alpha - \frac{\pi}{4}) =$ _____.

16. 己知三棱锥 S-ABC 的所有顶点都在球 O 的球面上, SC 是球 O 的直径. 若平面 $SCA \perp$ 平面 SCB, SA = AC, SB = BC, 三棱锥 S-ABC 的体积为 9, 则求 O 的表面积为