EE142 Problem Set 9

Vighnesh Iyer

November 16, 2017

1 Review of Important Concepts

Assume a memoryless distortion circuit is modeled by $I_{out} = a_0 + a_1 V_{in} + a_2 V_{in}^2 + a_3 V_{in}^3$ and the input DC bias voltage is $V_{in,0}$.

(a) Derive IIP3, OIP3, IP_{1dB} , and IP_{3dB}

We begin by driving the circuit with a two-tone input with equal amplitude A and frequencies ω_1 and ω_2 :

$$S_i = A\cos(\omega_1 t) + A\cos(\omega_2 t)$$

Now the full expanded form of the output can be derived:

$$S_o = \frac{9a_3}{4}A^3\cos(\omega_1 t) + \frac{A^3a_3}{4}\cos(3\omega_1 t) + \frac{9a_3}{4}A^3\cos(\omega_2 t) + \frac{A^3a_3}{4}\cos(3\omega_2 t) + \frac{3a_3}{4}A^3\cos(2\omega_1 t + \omega_2 t) + \frac{A^2a_2}{2}\cos(2\omega_1 t) + \frac{A^2a_2}{2}\cos(2\omega_2 t) + A^2a_2\cos(\omega_1 t - \omega_2 t) + A^2a_2\cos(\omega_1 t + \omega_2 t) + A^2a_2 + Aa_1\cos(\omega_1 t) + Aa_1\cos(\omega_2 t)$$

We define IM3 as $\frac{\text{Amplitude of one 3rd order IM product}}{\text{Amplitude of Fundamental}}$

$$IM3 = \frac{3a_3/4 \cdot A^3}{Aa_1}$$
$$= \frac{3}{4} \frac{a_3}{a_1} A^2$$

To find IIP3, set |IM3| = 1 and solve for A. OIP3 is just the IIP3 power referenced to the output.

$$IIP3 = \sqrt{\frac{4}{3} \left| \frac{a_1}{a_3} \right|}$$
$$OIP3 = IIP3 \cdot a_1$$

 IP_{1dB} is defined by using a single-tone input and checking at what input power level the circuit's apparent gain has dropped by 1dB.

EE142 Problem Set 9

$$S_{o} = \frac{3a_{3}}{4}A^{3}\cos(\omega_{1}t) + \frac{A^{3}a_{3}}{4}\cos(3\omega_{1}t) + \frac{A^{2}a_{2}}{2}\cos(2\omega_{1}t) + \frac{A^{2}a_{2}}{2} + Aa_{1}\cos(\omega_{1}t)$$

$$Apparent Gain = \frac{a_{1}A + \frac{3}{4}a_{3}A^{3}}{A}$$

$$= a_{1}(1 + \frac{3}{4}\frac{a_{3}}{a_{1}}A^{2})$$

$$20\log(1 + \frac{3}{4}\frac{a_{3}}{a_{1}}A^{2}) = -1dB$$

$$IP_{1}dB = \sqrt{\frac{4}{3}\left|\frac{a_{1}}{a_{3}}\right|} \cdot \sqrt{0.11}$$

$$IP_{3}dB = \sqrt{\frac{4}{3}\left|\frac{a_{1}}{a_{3}}\right|} \cdot \sqrt{0.085}$$

(b) If IIP3 is 10V, what is the input-blocker level that degrades the small-signal gain of the desired signal by 2dB?

We model an input signal $S_i = A\cos(\omega_1 t) + B\cos(\omega_2 t)$, where ω_1 is the blocker, ω_2 is the desired tone, and A and B are their magnitudes with A >> B.

We want to look at the cubic terms in S_o , the output signal.

- (c) Following part (b), what will be the tolerable blocker levels for a two-tone blocker?
- (d) If IIP3 is 10V, what are the IP_{1dB} for two-tone and three-tone input signals?
- (e) If the modeled circuit is a BJT with $I_{out} = I_s \exp(V_{be}/V_T)$, use a math tool to find the actual output third-harmonic current as a function of the input magnitude. Compare the actual values to the estimated values via the power series.

2 Distortion of a Source Follower

For the source follower shown below, calculate the required bias current (I_{bias} and W/L for the long-channel transistor to drive the load with a swing of 100 mV (at both f_1 and f_2), with IM3 equal to -50 dBc.

Correction: vout= 0.1cos(2pi*f1*t)+0.1cos(2pi*f2*t) vin magnitude is not specified

EE142 Problem Set 9

3 Pre-distortion and Source-degeneration Linearizer

- (a) For the above schematic, what are the OIP3 of the BJT stage for $R_e=0\Omega$ and $R_e=0.02\Omega$?
- (b) What are the two possible R_e for the BJT stage to have an OIP3 of 10A?