Logistic regression

$$\min_{w,b} J(w,b)$$

$$J(\omega,b) = \lim_{n \to \infty} \int_{\mathbb{R}^n} \left(\frac{\Lambda(\omega)}{\gamma} \psi(\omega) + \frac{\lambda}{2m} \|\omega\|_2^2 +$$

Neural network

$$J(\omega^{r0}, b^{r0}, ..., \omega^{r0}, b^{r0}) = \frac{1}{m} \sum_{i=1}^{m} d(y^{i}, y^{i}) + \frac{1}{2m} \sum_{i=1}^{m} ||\omega^{r0}||_{F}^{2}$$

$$||\omega^{r0}||_{F}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{m} (\omega^{r0})^{2} \qquad \omega: (n^{r0}, n^{r0})$$

$$||\cdot||_{F}^{2}$$

Neural network

$$J(\omega^{\tau_0}, b^{\tau_0}, ..., \omega^{\tau_{12}}, b^{\tau_{12}}) = \frac{1}{m} \sum_{i=1}^{m} \lambda \left(y^{(i)}, y^{(i)}\right) + \frac{1}{2m} \sum_{i=1}^{m} \lambda^{\tau_{12}} \left(\omega^{\tau_{12}}, b^{\tau_{12}}\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2$$

$$||\omega^{\tau_{12}}||_F^2 = \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2\right)^2 \qquad \omega: \left(\int_{0}^{\infty} \sum_{i=1}^{m} \sum_{i=1}^{m} \left(\omega^{\tau_{12}}\right)^2} \left(\omega^{\tau_{12}}\right)$$

Andrew Ng

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Dropout regularization

Normalizing inputs to speed up learning

Normalizing inputs to speed up learning

Batch Normalization

Implementing Batch Norm

Problem of plateaus

- Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow

```
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
<script>
    async function run(){
        const MODEL_URL = 'http://127.0.0.1:8887/model.json';
        const model = await tf.loadLayersModel(MODEL_URL);
        console.log(model.summary());
        const input = tf.tensor2d([10.0], [1, 1]);
        const result = model.predict(input);
        alert(result);
    run();
</script>
<body>
</body>
</html>
```

Learning rate decay

E poch	2	
(0.1	
2	0.67	
3	6.5	
4	0.4	
•	1	

Learning rate decay

