1. Solve the following equations for A and B where $A, B \in \mathbb{R}$

(a)
$$\frac{11}{x^2 - 4x - 12} = \frac{A}{x - 6} + \frac{B}{x + 2}$$

(c)
$$\frac{1}{(n)(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$

(b)
$$\frac{2x+5}{x^2-4x-12} = \frac{A}{x-6} + \frac{B}{x+2}$$

(d)
$$\frac{2}{(n+1)(n+3)} = \frac{A}{n+1} + \frac{B}{n+3}$$

2. Complete the following table.

Value x	Floor $\lfloor x \rfloor$	Ceiling $\lceil x \rceil$	Fractional $\{x\}$
-1.4	-2	-1	
2.3			
7/9			
-16/3			
0			0
1		1	

3. Provide some values for x and y that **contradict** the following statement.

$$\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$$

If the values of x and y were integers, would the equation be true for all values of x and y?

4. Express the following numbers as fractions. For example $0.77777... = \frac{7}{9}$

(i) 0.29292929....

(iii) 0.45454545.....

(ii) 0.475475475....

(iv) 0.473473473......

5. Evaluate the following function for x = -1,0,1 and 2 respectively.

$$f(x) = \frac{e^x - e^{-x}}{2}$$

6. Evaluate the function for each of the following values: 0.5, 1, 1.25, 2.

$$f(x) = \sqrt{1 + e^x}$$

7. Evaluate the following function for x = -1,0,1 and 2 respectively.

$$f(x) = \frac{e^x - e^{-x}}{2}$$

8. Evaluate the function for each of the following values: 0.5, 1, 1.25, 2.

$$f(x) = \sqrt{1 + e^x}$$

9. Provide some values for x and y that **contradict** the following statement.

$$|x+y| = |x| + |y|$$

If the values of x and y were integers, would the equation be true for all values of x and y?

- 10. Use the Laws of Logarithms to evaluate the following expressions:
 - (i) $\log_2(8)$

(iv) $\log_5(125) + \log_3(729)$

(ii) $\log_2(\sqrt{128})$

(v) $\log_2(64/4)$

(iii) $\log_2(64)$

- (vi) $\log_3(\frac{1}{81})$
- 11. Determine the values of A and B from the following expression

$$\frac{7}{x^2 - x - 12} = \frac{A}{x+3} + \frac{B}{x-4}$$

12. Determine whether or not the function

$$f(x) = x\cos(x)$$

is odd, even or neither.

- 13. Consider the functions $f(x) = \sqrt{2x-6}$ and $g(x) = \log_e(2x+1)$
 - (a) Find $f(4-2x^2)$ and simplify answer.
 - (b) Write down the domain and range of f(x).
 - (c) Determine $g^{-1}(x)$, the inverse of g(x).
- 14. Evaluate the function for the values of $x = \{0.25, 0.5, 0.75\}$

$$f(x) = \sqrt{1 + x^2}$$

- 15. Find the value of x in each of the following equations.
 - (a) $\log_3(x+1) + \log_3(5) = 5$
- (c) $ln(e^x + 2) = 4$

(b) $e^{2x-5} = 3$.

- (d) $\log_3(2x-1) + \log_3(5) = 3$
- 16. Determine if the function $f(x) = x^4 + x^2$ is an even function, an odd function or neither. Justify your answer.