

Pairwise Independent Events

Why

Is a sufficient condition for mutual independence of a set of events the fact that each pair of events of the set are independent? The surprising answer is no.

Definition

Suppose P is a event probability function on a finite sample space Ω . The events A_1, \ldots, A_n are *independent* (or *mutually independent*), if for all indices $i \neq j$.

$$P(A_i \cap A_j) = P(A_i)P(A_j)$$

Clearly, if A_1, \ldots, A_n are mutually independent, then they are pairwise independent. The converse, however, is not true.

Counterexample: two tosses

As usual, model tossing a coin twice with the sample space $\Omega = \{0,1\}^2$. Put a distribution $p:\Omega \to [0,1]$ so that $p(\omega) = 1/4$ for all $\omega \in \Omega$. Define $A = \{(1,0),(1,1)\}$ (the first toss is heads), $B = \{(0,1),(1,1)\}$ (the second toss is heads), and $C = \{(0,0),(1,1)\}$. Then P(A) = P(B) = P(C) = 1/2, and

$$P(A \cap B) = P(B \cap C) = P(A \cap C) = 1/4.$$

Hence A, B, C are pairwise independent. However,

$$P(A \cap B \cap C) = 1/4 \neq P(A)P(B)P(C).$$

So A, B, C are not mutually independent.

