Subi	\searrow_2^1	
` (3	
·	3 4	proc
	5	
	6	sign
	7	
	8	inpu
	9	
ame "	1	
# ## # ## # ##	1 2	acce
B		
9 H 42 mm 8 mm 8 mm 8 H 455 H 165 H	1	
	1 2	of sa
Herri Be		
14	1	

1.	A digital signal processor comprising:
	a mathematical processor;
	an input processor that processes input signals to the digital signal
processor;	
	an output processor that processes output signals from the digital
signal proces	ssor;
	a master processor that controls said mathematical processor, said
input process	sor and said output processor; and
	a storage selectively accessible by each of said processors.
2.	The digital signal processor of claim 1 further including a random
access memo	ory processor that stores intermediate calculation results.
3.	The digital signal processor of claim 2 including a bus coupling each
of said proce	essors to said storage.
4.	The digital signal processor of claim 1 wherein said input and
output proce	ssors also implement mathematical operations.
5.	The digital signal processor of claim 1 wherein each of said
processors h	ave their own instructions sets.

Cont

	1
7.	The digital signal processor of claim 1 wherein each of said
processors u	se very long instruction words.

- 8. The digital signal processor of claim 1 wherein said master processor provides the timing for the other processors.
- 9. The digital signal processor of claim 1 wherein said master processor waits for the input processor to complete a given operation.
 - 10. The digital signal processor of claim 1 wherein each of said processors includes its own random access memory.
 - 11. The digital signal processor of claim 1 wherein said storage includes a plurality of registers, said registers automatically transfer existing data from a first register to a second register when new data is being written into said first register.
 - 12. The digital signal processor of claim 11 wherein said input processor causes the automatic transfer of data.
 - 13. The digital signal processor of claim 11 wherein said mathematical processor causes said data to be transferred from one register to another.
 - 14. The digital signal processor of claim 1 including a mathematical processor which is pipelined.

1	15.	The digital signal process of claim 1 wherein said mathematical
2	processor is	a multi-cycled mathematical processor.
1	16.	A method of digital signal processing comprising:
2		using a first processor to process input signals to said digital signal
3	processor;	
4		using a second processor to process output signals from said signal
5	digital signal	processor;
6		using a third processor for mathematical operations;
7		controlling said first, second and third processors using a fourth
8	processor; a	nd
9		enabling each of said processors to selectively access a storage.
1	17.	The method of claim 16 including providing the timing from said
2	fourth proce	ssor for each of the other processors.
1	18.	The method of claim 16 including automatically transferring data
2	from a first r	register in said storage to a second register in said storage when new
3	data is being	g written into sajd first register.
1	19.	The method of claim 18 including automatically transferring said
2	data in respo	onse to action by said first processor.
1	20.	The method of claim 18 including automatically transferring said
2	data in respo	onse to action by said third processor.
	1 2 3 4 5 6 7 8 9 1 2 1 2 3	2 processor is 1 16. 2 3 processor; 4 5 digital signal 6 7 8 processor; a 9 17. 2 fourth proce 1 18. 2 from a first is 3 data is being 1 19. 2 data in response

21.	The method of claim 18 including storing a bit which indicates
which proce	ssor may control/said automatic transfer of data from one register to
another.	

- 22. The method of claim 16 including accommodating for timing differences between said processors by operating one of said processor in a pipelined fashion.
- 23. The method of claim 16 including accommodating differences in processing cycle time of one of said processors by operating said processor in a multi-cycle mode.
- 24. The method of claim 23 including holding off said fourth processor when one of said processors is taking more than a cycle to complete an instruction.
- 25. A method comprising:
 digital signal processing input data; and
 in response to a write request to a first register, automatically
 transferring data from a first register to a second register.
- 26. The method of claim 25 including automatically transferring data from said second register to a third register in response to the transfer of data from said first register to said second register.

	1
1	27. The method of claim 26 including using a plurality of parallel
2	processors to process said data and storing information to control which
3	processors can cause the automatic transfer of data.
1	28. An article comprising a medium for storing instructions that cause a
2	processor-based system to:
3	digital signal process input data; and
4	in-response to a write request to a first register, automatically
5	transfer data from a first register to a second register.
1	29. The article of claim 28 further storing instructions that cause a
2	processor-based system to automatically transfer data from said second register
3	to a third register in response to the transfer of data from said first register to
4	said second register.
1	30. The article of claim 29 further storing instructions that cause a
2	processor-based system to use a plurality of parallel processors to process said
3	data and store information to control which of said processors can cause the
4	automatic transfer of data.