Support Vector Regression vs. Relevance Vector Regression a sparsity / performance study

L.Faury

 ${\bf G. Gallois\text{-}Montbrun} \\ 26/05/2017$

H.Hendrikx

Outline

Theoretical reminders on both methods

• Introduction to a sparse-regression metric, experimental justification

Sparse-regression metric based cross-validation

•Performance vs. sparsity discussion

Learn $f: \mathbb{R}^d \to \mathbb{R}$ thanks to a dataset $\{X, t\} \in (\mathbb{R}^d)^n \times \mathbb{R}^n$

Learn $f: \mathbb{R}^d \to \mathbb{R}$ thanks to a dataset $\{X, t\} \in (\mathbb{R}^d)^n \times \mathbb{R}^n$

Assuming a Gaussian conditional p.d.f around a linear transformation of features :

$$p(t \mid x, w) = \mathcal{N}(t \mid w^T \phi(x), \beta^{-1})$$

Learn $f: \mathbb{R}^d \to \mathbb{R}$ thanks to a dataset $\{X, t\} \in (\mathbb{R}^d)^n \times \mathbb{R}^n$

Assuming a Gaussian conditional p.d.f around a linear transformation of features :

$$p(t \mid x, w) = \mathcal{N}(t \mid w^T \phi(x), \beta^{-1})$$

the maximum-likelihood estimator (MLE) writes:

$$\hat{w} = \operatorname{argmax}_{w} p(t \mid X, w)$$

$$= \operatorname{argmin}_{w} \frac{1}{2} \sum_{i=1}^{n} ||w^{t} \phi(x) - t||^{2}$$

¹ Vladimir Vapnik, The nature of statistical learning theory, 1995

Support Vector Regression

• Introduce the ε -insensitive⁽¹⁾ loss-function.

Source: Bishop, Pattern Recognition and Machine Learning (2006)

¹ Vladimir Vapnik, The nature of statistical learning theory, 1995

• Introduce the ε -insensitive⁽¹⁾ loss-function.

$$min_w \frac{C}{n} \sum_n (\xi_n + \hat{\xi}_n) + \frac{1}{2} ||w||^2$$

s.t
$$\begin{cases} \xi, \hat{\xi} \ge 0 \\ w^T \phi(x_n) + \xi_n + \varepsilon \ge t_n \\ w^T \phi(x_n) - \hat{\xi}_n - \varepsilon \le t_n \end{cases}$$

Source: Bishop, Pattern Recognition and Machine Learning (2006)

¹ Vladimir Vapnik, The nature of statistical learning theory, 1995

• Introduce the ε -insensitive⁽¹⁾ loss-function.

$$min_w \frac{C}{n} \sum_n (\xi_n + \hat{\xi}_n) + \frac{1}{2} ||w||^2$$

s.t
$$\begin{cases} \xi, \hat{\xi} \ge 0 \\ w^T \phi(x_n) + \xi_n + \varepsilon \ge t_n \\ w^T \phi(x_n) - \hat{\xi}_n - \varepsilon \le t_n \end{cases}$$

Source: Bishop, Pattern Recognition and Machine Learning (2006)

• Only points outside the ε -tube (active constraints) are used for predictions :

$$y(x) = \sum_{n \in \mathcal{S}} (a_n - \hat{a}_n) k(x, x_n)$$
 Posterior **decision**

¹ Vladimir Vapnik, The nature of statistical learning theory, 1995

• Introduce the ε -insensitive⁽¹⁾ loss-function.

$$\min_{w} \sum_{n} (\xi_{n} + \hat{\xi}_{n}) + \frac{1}{2} ||w||^{2}$$

s.t
$$\begin{cases} \xi, \hat{\xi} \ge 0 \\ w^T \phi(x_n) + \xi_n + \varepsilon \ge t_n \\ w^T \phi(x_n) - \hat{\xi}_n - \varepsilon \le t_n \end{cases}$$

Source: Bishop, Pattern Recognition and Machine Learning (2006)

• Only points outside the ε -tube (active constraints) are used for predictions :

$$y(x) = \sum_{n \in \mathcal{S}} (a_n - \hat{a}_n) k(x, x_n)$$
 Posterior decision

¹ Vladimir Vapnik, The nature of statistical learning theory, 1995

Relevance Vector Regression⁽²⁾

²Tipping Michael, Sparse Bayesian learning and the relevance vector machine, Journal of machine learning research, 2001

■Relevance Vector Regression⁽²⁾

• Provide the predictor with a Gaussian prior : $w \sim \prod_i \mathcal{N}(w_i \mid 0, \alpha_i^{-1})$

$$y(x) = \sum_{n} w_n k(x, x_n)$$

■Relevance Vector Regression⁽²⁾

• Provide the predictor with a Gaussian prior : $w \sim \prod_i \mathcal{N}(w_i \mid 0, \alpha_i^{-1})$

$$y(x) = \sum_{n} w_n k(x, x_n)$$

• Use **type-2 likelihood** (evidence approximation) to determine :

$$(\alpha^*, \beta^*) = \operatorname{argmax}_{\alpha, \beta} \left[p(t \mid \alpha, \beta) = \int_w p(t \mid w, \beta) p(w \mid \alpha) \right]$$

■Relevance Vector Regression⁽²⁾

• Provide the predictor with a Gaussian prior : $w \sim \prod_i \mathcal{N}(w_i \mid 0, \alpha_i^{-1})$

$$y(x) = \sum_{n} w_n k(x, x_n)$$

• Use **type-2 likelihood** (evidence approximation) to determine :

$$(\alpha^*, \beta^*) = \operatorname{argmax}_{\alpha, \beta} \left[p(t \mid \alpha, \beta) = \int_w p(t \mid w, \beta) p(w \mid \alpha) \right]$$

• Automatic Relevance Detection : drives some α_i to $+\infty$ (sparse model). Others are called **relevant** vectors.

■Relevance Vector Regression⁽²⁾

• Provide the predictor with a Gaussian prior : $w \sim \prod_i \mathcal{N}(w_i \mid 0, \alpha_i^{-1})$

$$y(x) = \sum_{n} w_n k(x, x_n)$$

• Use **type-2 likelihood** (evidence approximation) to determine :

$$(\alpha^*, \beta^*) = \operatorname{argmax}_{\alpha, \beta} \left[p(t \mid \alpha, \beta) = \int_w p(t \mid w, \beta) p(w \mid \alpha) \right]$$

• Automatic Relevance Detection : drives some α_i to $+\infty$ (sparse model). Others are called **relevant** vectors.

• Compute posterior and **predictive distribution**

Relevance Vector Regression⁽²⁾

• Provide the predictor with a Gaussian prior : $w \sim \prod_i \mathcal{N}(w_i \mid 0, \alpha_i^{-1})$

$$y(x) = \sum_{n} w_n k(x, x_n)$$

• Use **type-2 likelihood** (evidence approximation) to determine :

$$(\alpha^*, \beta^*) = \operatorname{argmax}_{\alpha, \beta} \left[p(t \mid \alpha, \beta) = \int_w p(t \mid w, \beta) p(w \mid \alpha) \right]$$

• Automatic Relevance Detection : drives some α_i to $+\infty$ (sparse model). Others are called **relevant** vectors.

• Compute posterior and **predictive distribution**

Comparison

 $\underline{\text{SVR}}$ $\underline{\text{RVR}}$

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

Comparison

<u>SVR</u>

▶ Predictive choice

RVR

▶ Predictive distribution

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

\underline{SVR}

- Predictive choice
- ► Held-out method for hyper-parameters (at least 3)

$\overline{\text{RVR}}$

- ▶ Predictive distribution
- ► Hyper-parameters are determined automatically (except kernel)

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

\underline{SVR}

- Predictive choice
- Held-out method for hyper-parameters (at least 3)
- ► Mercer kernel

- ▶ Predictive distribution
- ► Hyper-parameters are determined automatically (except kernel)
- ► Arbitrary base functions

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

\underline{SVR}

- Predictive choice
- ► Held-out method for hyper-parameters (at least 3)
- ► Mercer kernel
- ► **Training** : SMO⁽³⁾ (somewhere between linear and quadratic)

- ▶ Predictive distribution
- ► Hyper-parameters are determined automatically (except kernel)
- ► Arbitrary base functions
- ▶ **Training** : cubic complexity

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

\underline{SVR}

- Predictive choice
- ► Held-out method for hyper-parameters (at least 3)
- ► Mercer kernel
- ► **Training**: SMO⁽³⁾ (somewhere between linear and quadratic)
- ► **Testing** : linear in the SV

- ▶ Predictive distribution
- ► Hyper-parameters are determined automatically (except kernel)
- ► Arbitrary base functions
- ► **Training** : cubic complexity
- ► **Testing**: linear in the RV

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

<u>SVR</u>

- ▶ Predictive choice
- ► Held-out method for hyper-parameters (at least 3)
- ► Mercer kernel
- ▶ **Training** : SMO⁽³⁾ (somewhere between linear and quadratic)
- ► **Testing**: linear in the SV

- ▶ Predictive distribution
- ► Hyper-parameters are determined automatically (except kernel)
- ► Arbitrary base functions
- ▶ **Training** : cubic complexity
- ▶ **Testing** : linear in the RV

³John Platt, Sequential Minimal Optimization: A fast algorithm for training support vector machines. 1998

Goal

Sparsity / Performance

⁴Christopher Bishop, Pattern Recognition Machine Learning, 2006

Sparsity / Performance

• **Question**: Compare the tradeoff found between performance (MSE minimization) and sparsity

⁴Christopher Bishop, Pattern Recognition Machine Learning, 2006

Sparsity / Performance

• **Question**: Compare the tradeoff found between performance (MSE minimization) and sparsity

• Literature⁽⁴⁾: RVR reaches sparser models with equivalent generalization skills.

Sparsity / Performance

• **Question**: Compare the tradeoff found between performance (MSE minimization) and sparsity

• Literature⁽⁴⁾: RVR reaches sparser models with equivalent generalization skills.

- <u>Initial idea</u>: Test (**experimentally**) this assertion
 - what is performance?
 - what do we want with sparsity?
 - ▶ how to measure the tradeoff?

⁴Christopher Bishop, Pattern Recognition Machine Learning, 2006

Datasets

⁵T.F. Brooks, D.S. Pope, and A.M. Marcolini. Airfoil self-noise and prediction. Technical report NASA. 1989.

Datasets

Dimension	Points	Support	Noise variance	Outlier
1	100	[-5,5]	0.01	No

⁵T.F. Brooks, D.S. Pope, and A.M. Marcolini. Airfoil self-noise and prediction. Technical report NASA. 1989.

Dataset presentation

Datasets

Dimension	Points	Support	Noise variance	Outlier
1	100	[-5,5]	0.01	No

Real (5d)

• Airfoil Self-Noise Data Set (NASA)⁽⁵⁾

Dimension	Points
5	1503

- Predict sound pressure (dB) according to few features :
 - Eigen frequency
 - Angle of attack
 - Chord Length
 - Free stream
 - ▶ Suction side displacement thickness

■ Test Run

Test Run

■ Test Run

$$\begin{cases} \nu - \text{SVR, RBF kernel with:} \\ \nu = 0.08 \\ C = 8.5 \\ \sigma = 1.4 \text{ (kernel width)} \end{cases}$$

Test Run

■ Test Run

$$\begin{cases} \nu - \text{SVR, RBF kernel with:} \\ \nu = 0.08 \\ C = 8.5 \\ \sigma = 1.4 \text{ (kernel width)} \end{cases}$$

RVR, RBF kernel with: $\sigma = 1$

Intuition

Sparse Regression Metric

Intuition

• Goal: Maximize performance while penalizing complexity

Intuition

- Goal: Maximize performance while penalizing complexity
- BIC (Bayesian Information Criterion) for model selection:

$$BIC = -2 \underbrace{\log \mathcal{L}(x)}_{\text{likelihood}} + \underbrace{M \log N}_{\text{model complexity}}$$

Intuition

- Goal: Maximize performance while penalizing complexity
- BIC (Bayesian Information Criterion) for model selection:

$$BIC = -2 \underbrace{\log \mathcal{L}(x)}_{\text{likelihood}} + \underbrace{M \log N}_{\text{model complexity}}$$

• Adaptation to regression :

$$-\log \mathcal{L}(x) = \beta N \cdot MSE(x,t)$$
 Gaussian likelihood
$$M \stackrel{\triangle}{\sim} |SV| = k$$
 complexity = number of support vectors

Intuition

- Goal: Maximize performance while penalizing complexity
- BIC (Bayesian Information Criterion) for model selection:

$$BIC = -2 \underbrace{\log \mathcal{L}(x)}_{\text{likelihood}} + \underbrace{M \log N}_{\text{model complexity}}$$

• Adaptation to regression :

$$-\log \mathcal{L}(x) = \beta N \cdot MSE(x,t)$$
 Gaussian likelihood
$$M \stackrel{\triangle}{\sim} |SV| = k$$
 complexity = number of support vectors

• BICSR (BIC for Sparse Regression)

$$BICSR = \beta N \cdot MSE + k \log N$$

Experimental Evaluation

Experimental Evaluation

• Goal: Evaluate the tradeoff found by the BICSR metric

Experimental Evaluation

• Goal: Evaluate the tradeoff found by the BICSR metric

- For each method (SVR and RVR):
 - ▶ Cross-validation to find the best hyper-parameters according to BICSR and MSE
 - Compare them with arbitrary models

■ Best hyper-parameters selection

- Best hyper-parameters selection
- Example for SVR with BICSR:

- Best hyper-parameters selection
- Example for SVR with BICSR:

- Best hyper-parameters selection
- Example for SVR with BICSR:

Figure: 50-fold cross-validation (0.75 training/test ratio)

- Tradeoff evaluation (artificial dataset)
 - Example for SVR (50 fold, 75 training/test ratio):

- Tradeoff evaluation (artificial dataset)
 - Example for SVR (50 fold, 75 training/test ratio):

- Tradeoff evaluation (artificial dataset)
- Can we do better (different penalization)?

$$BICSR = \beta^{-1}N \cdot MSE + k \log N$$

- Tradeoff evaluation (artificial dataset)
- Can we do better (different penalization)?

$$BICSR = \beta^{-1}N \cdot MSE + k \log N$$

■ Model Comparaison (real dataset)

Conclusions

• BICSR seems to be a well-behaved sparse-regression metric (tradeoff between sparsity and performance)

• Even without sparsity penalization, RVR finds a fairly good compromise

most suited for fast predictions!

• SVR can be tuned to achieve either high sparsity or high regression performance

Other aspects:

- Behavior far from data
- Training cost
- Decision theory for predictions (predictive distribution)

Advanced Machine Learning

Thank you for your attention!