1065 - Number Sequence

Let's define another number sequence, given by the following function:

$$f(0) = a$$

 $f(1) = b$
 $f(n) = f(n-1) + f(n-2), n > 1$

When $\mathbf{a} = \mathbf{0}$ and $\mathbf{b} = \mathbf{1}$, this sequence gives the Fibonacci sequence. Changing the values of \mathbf{a} and \mathbf{b} , you can get many different sequences. Given the values of \mathbf{a} , \mathbf{b} , you have to find the last \mathbf{m} digits of $\mathbf{f}(\mathbf{n})$.

Input

Input starts with an integer T (\leq 10000), denoting the number of test cases.

Each test case consists of a single line containing four integers a b n m. The values of a and b range in [0,100], value of n ranges in [0, 109] and value of m ranges in [1, 4].

Output

For each case, print the case number and the last **m** digits of **f(n)**. However, do **NOT** print any leading zero.

Sample Input	Output for Sample Input
4	Case 1: 89
0 1 11 3	Case 2: 4296
0 1 42 4	Case 3: 7711
0 1 22 4	Case 4: 946
0 1 21 4	