Examen No. 2 - Paralelo A

NOMBRE:CA	ALIFICACIÓN:
-----------	--------------

Asignatura: Leyes Físicas III - Fecha: 15 de mayo de 2018 - Créditos: 10 puntos a ponderarse.

PARTE A - 40 minutos:

Escoja la respuesta correcta a cada una de las siguientes preguntas y justifique brevemente su selección en el espacio en blanco asignado a cada pregunta.

1. (0.5 puntos)

uQué sucede con la energía mecánica de un objeto en movimiento si no todas las fuerzas aplicadas sobre él son conservativas?

- A. Aumenta
- B Disminuye
- C. Permanece constante
- D. Se conserva
- E. Se duplica

2. (0.5 puntos)

Para cuadruplicar la energía cinética de una partícula, su rapidez debe:

- A. Reducirse a la mitad
- B Duplicarse
- C. Cuadruplicarse
- D. Aumentarse en un 25%
- E. Reducirse en un 25%

$$k_2 = 4 k_1$$

 $\Rightarrow \frac{1}{2} m N_2^2 = 2 m N_1^2$

Las fuerzas no conservativas

hacen trabajo negativo.

$$\Rightarrow O_z^2 = 4O_1^2 \Rightarrow O_z = 2O_1$$

3. (0.5 puntos)

Una persona de $62\,\mathrm{kg}$ camina a una rapidez de $2\,\mathrm{m\,s^{-1}}$. ¿Cuál es el módulo de su cantidad de movimiento?

- \bigcirc 124 kg m s⁻¹
- B. 124 N
- C. $124 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2}$
- D. $248 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-1}$
- E. $248 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2}$

$$\rho = |\vec{p}| = |\vec{m}\vec{v}| = m\vec{v} = 62kg \times 2\frac{m}{s}$$
 $\Rightarrow p = 124 \text{ kg} \frac{m}{s}$

4. (0.5 puntos)

Un jugador de hockey, que pesa $72 \,\mathrm{kg}$ (sin casco), se encuentra inicialmente en reposo sobre una pista de hielo sin fricción. El jugador se quita el casco de $1.5 \,\mathrm{kg}$ y lo arroja horizontalmente, por lo cual, el jugador retrocede con una velocidad de $-0.3 \,\mathrm{im} \,\mathrm{s}^{-1}$ en dirección contraria a la del lanzamiento. ¿Con qué velocidad fue arrojado el casco?

- A. $+6.25 \times 10^{-3} \, \vec{i} \,\mathrm{m \, s^{-1}}$ B) $+14.4 \, \vec{i} \,\mathrm{m \, s^{-1}}$
- C. $-14.4 \, \vec{i} \, \text{m s}^{-1}$
- D. $+160\,\vec{i}\,\mathrm{m}\,\mathrm{s}^{-1}$
- E. $+32.4 \, \vec{i} \,\mathrm{m \, s^{-1}}$

$$\vec{p_o} = 0 \qquad \vec{p_f} = m_j \vec{N_j} + m_c \vec{V_c}$$

$$\Rightarrow \Delta \vec{p} = 0 \Rightarrow \vec{p_f} = \vec{p_o} = 0 \Rightarrow m_j \vec{N_j} + m_c \vec{N_c} = 0$$

$$\Rightarrow \vec{N_c} = -\frac{m_j}{m_c} \vec{N_j} = -\frac{72 \text{kg}}{1.5 \text{kg}} (-0.3 \text{ m/s}) = 14.4 \text{ m/s}$$

5. (0.5 puntos)

Una bomba eléctrica es capaz de elevar 500 kg de agua a una altura de 25 m en 50 s. ¿Cuál es la potencia útil de la bomba?

D.
$$-2450$$
 watt

 $R_{I} = \frac{d_{I}}{d_{I}} = \frac{5m}{2m} = 2.5 \frac{5m}{2m}$

6. (0.5 puntos)

¿Cuál es la ventaja mecánica ideal de la palanca de la figura a continuación?

7. (0.5 puntos)

Un sistema masa-resorte horizontal con movimiento armónico simple (M.A.S.) tiene máxima velocidad en:

8. (0.5 puntos)

Un cuerpo de 15 kg se eleva desde el piso hasta una altura de 10 m sobre él. Calcule el trabajo realizado por el peso del cuerpo en ese trayecto.

$$\bigcirc$$
 -1470 J

$$B. +1470 J$$

$$C. -150 J$$

D.
$$+150 \,\mathrm{J}$$

$$W = -mgh$$

9. (1 punto)

Deduzca una expresión para la fuerza \vec{F} aplicada sobre una partícula, cuya función de energía potencial en dos dimensiones viene dada por: $U(x,y) = x^3 y^2 - x^2 + y$ [J]

$$\Rightarrow \vec{F} = -\left(\frac{2}{3}\vec{r} + \frac{2}{3}\vec{j}\right)U = -\frac{2U\vec{r}}{2x} - \frac{2U\vec{j}}{2y}\vec{j}$$

$$\Rightarrow \vec{F} = -\frac{2}{2x} (x^3 y^2 - x^2 + y) \vec{x} - \frac{2}{2y} (x^3 y^2 - x^2 + y) \vec{y} [N]$$

$$\Rightarrow \vec{F} = (-3x^2y^2 + 2x)\vec{r} - (2x^3y + 1)\vec{j} [N]$$

NOMBRE:	

PARTE B - 1 hora 20 minutos:

Resuelva los siguientes problemas y exprese las respuestas en unidades SI.

10. (2.5 puntos)

Un bloque de 30.6 kg de masa desliza desde el reposo hacia abajo del plano inclinado y después sobre un plano horizontal (ver figura), hasta ser detenido por un resorte. Si el resorte es comprimido 30.5 cm por el bloque y el coeficiente de rozamiento cinético en ambos planos es $\mu_k = 0.2$:

(a) Determinar la constante k del resorte.

(b) ¿Se conserva la energía mecánica del bloque en el trayecto A-C?

Altura:

$$h = d_1 \text{ sen } (36.86^\circ)$$

 $\Rightarrow h = 4.56 \text{ m}$
Distancia Horizontal.
 $d_2 = d_3 + \Delta s = 1.055 \text{ m}$

Fuerzas en A-B:

Energias:

$$En D: K_D = 0$$

$$Ug_D = 0$$

$$Ve_D = \frac{1}{2} k \Delta s^2$$

Ecuación de Conservación:

$$\Rightarrow \frac{1}{2}k\Delta s^2 - mgh = - \mu_k \left(N_1 d_1 + N_2 d_2\right)$$

⇒
$$k = \frac{mgh - \mu (N_1 d_1 + N_2 d_2)}{\frac{1}{2} \Delta s^2} = \frac{20198.21}{1} \frac{N_1}{m}$$

Reemplazo

b) No se conserva porque existe rozamiento

11. (2.5 puntos)

Un bloque A de $9\,\mathrm{kg}$ está ligado a dos resortes idénticos de longitud normal $3\,\mathrm{m}$ y de constante $21.25\,\mathrm{N}\,\mathrm{m}^{-1}$. El bloque está en reposo sobre una mesa rugosa y los dos resortes están sujetos a la mesa en M y N. Una bala de $1\,\mathrm{kg}$ golpea al bloque A con una rapidez de $50\,\mathrm{m}\,\mathrm{s}^{-1}$ y se incrusta en él. Con el impacto, el conjunto bala-bloque se mueve hacia la derecha una distancia de $4\,\mathrm{m}$ como se indica en la figura.

- (a) Calcular el coeficiente de rozamiento entre el bloque y la mesa.
- (b) ¿Qué tipo de choque se produjo?

b) El choque es perfectamente inelástico porque ambos cuerpos se mueven juntos al final.

Examen No. 2 - Paralelo B

NOMBRE:	CALIFICACIÓN:
Asignatura: Leyes Físicas III - Fecha:	: 18 de mayo de 2018 - Créditos: 10 puntos a ponderarse.
	da una de las siguientes preguntas y <u>justifique</u> breve- en blanco asignado a cada pregunta.
1. (0.5 puntos) ¿Qué sucede con la energía me aplicadas sobre él son conservat	cánica de un objeto en movimiento si no todas las fuerzas sivas?
A. Se duplica	
B. Aumenta C Disminuye D. Permanece constante E. Se conserva	Las fuerzas no conservativas hacen trabajo negativo.
2. (0.5 puntos)	
Para cuadruplicar la energía cir	nética de una partícula, su rapidez debe:
 A. Cuadruplicarse B. Aumentarse en un 25% C. Reducirse en un 25% D. Reducirse a la mitad E Duplicarse 	$k_2 = 4k_1$ $\Rightarrow \frac{1}{2} m_1 N_2^2 = 2 m_1 N_1^2$ $\Rightarrow N_2^2 = 4N_1^2 \Rightarrow N_2 = 2N_1$
3. (0.5 puntos) Una persona de 52 kg camina a de movimiento?	una rapidez de $2\mathrm{ms^{-1}}$. ¿Cuál es el módulo de su cantidad
A. 104 N B) 104 kg m s^{-1} C. 104 kg m s^{-2} D. 208 kg m s^{-1} E. 208 kg m s^{-2}	$p= \vec{p} = m\vec{n} =mnr=52kg\times 2\frac{m}{s}$ $\Rightarrow p=104kg\frac{m}{s}$
una pista de hielo sin fricción. talmente, por lo cual, el jugado	$72 \mathrm{kg}$ (sin casco), se encuentra inicialmente en reposo sobre El jugador se quita el casco de $1.5 \mathrm{kg}$ y lo arroja horizonor retrocede con una velocidad de $-0.3 \mathrm{7ms^{-1}}$ en dirección ¿Con qué velocidad fue arrojado el casco?
A. $+6.25 \times 10^{-3} \vec{i} \mathrm{m s^{-1}}$ B. $+14.4 \vec{i} \mathrm{m s^{-1}}$ C. $-14.4 \vec{i} \mathrm{m s^{-1}}$ D. $+160 \vec{i} \mathrm{m s^{-1}}$	$\vec{p}_0 = 0$ $\vec{p}_f = m_j \vec{N}_j + m_c \vec{V}_c$ $ivgador casco$ $\Rightarrow \Delta \vec{p} = 0 \Rightarrow \vec{p}_f - \vec{p}_0 = 0 \Rightarrow m_j \vec{N}_j + m_c \vec{N}_c = 0$

5. (0.5 puntos)

Una bomba eléctrica es capaz de elevar 500 kg de agua a una altura de 25 m en 50 s. ¿Cuál es la potencia útil de la bomba?

A. 122500 J

C. 2450 J

D. -2450 watt

E. 98 watt

$$\Rightarrow P = \frac{500 \text{ kg} \times 9.8 \frac{\text{m}}{\text{s}^2} \times 25 \text{ m}}{50 \text{ s}} = 2450 \text{ wall}$$

6. (0.5 puntos)

¿Cuál es la ventaja mecánica ideal del plano inclinado de la figura a continuación?

7. (0.5 puntos)

Un sistema masa-resorte horizontal con movimiento armónico simple (M.A.S.) tiene máxima velocidad en:

- A. La máxima elongación
- B. La amplitud
- C. La mitad de la amplitud
- D. Un tercio de la amplitud
- E La posición de equilibrio

K se maximiza en la posición de equilibrio

8. (0.5 puntos)

Un cuerpo de 15 kg se eleva desde el piso hasta una altura de 10 m sobre él. Calcule el trabajo realizado por el peso del cuerpo en ese trayecto.

A.
$$+1470 \text{ J}$$

B) -1470 J
C. $+150 \text{ J}$
D. -150 J
E. 0 J
 $W = -mg h$
 $W = -15 \text{kg} \times 9.8 \frac{m}{s^2} \times 10 \text{ m}$
 $W = -1470 \text{ J}$

9. (1 punto)

Deduzca una expresión para la fuerza \vec{F} aplicada sobre una partícula, cuya función de energía potencial en dos dimensiones viene dada por: $U(x,y) = x^2y^4 - 2x$ [J]

$$\vec{F} = -\nabla U$$

$$\Rightarrow \vec{F} = -\left(\frac{\partial}{\partial x}\vec{x} + \frac{\partial}{\partial y}\vec{J}\right)U = -\frac{\partial U}{\partial x}\vec{x} - \frac{\partial U}{\partial y}\vec{J}$$

$$\Rightarrow \vec{F} = -\frac{\partial}{\partial x}(x^{2}y^{4} - 2x)\vec{x} - \frac{\partial}{\partial y}(x^{2}y^{4} - 2x)\vec{J}[N]$$

$$\Rightarrow \vec{F} = \left(-2xy^{4} + 2\right)\vec{x} - \left(4x^{2}y^{3}\right)\vec{J}[N]$$

PARTE B - 1 hora 20 minutos:

Resuelva los siguientes problemas y exprese las respuestas en unidades SI.

10. (2.5 puntos)

Un bloque con una masa de 8 kg se deja libre, a partir del reposo, sobre la rampa curva y lisa de la figura de abajo. Al pie de la rampa se instala un resorte de constante $k = 400 \,\mathrm{N\,m^{-1}}$.

- (a) Calcular la velocidad del bloque cuando pasa por la posición de equilibrio del resorte.
- (b) Calcular la distancia máxima que se comprime el resorte.

En A tengo Uga (tomando el nivel de En B tengo KB | referencia En C tengo Uec] No tengo UeB en B porque no hay fuerzas elásticas en la posición de Nivel de Referencia equilibrio.

- a) No hay rozamiento >> DEMAB = O >> EmB-EMA = O
 - ⇒ Ema = EmB ⇒ Uga = KB > mg Ah = 1 m NB2
 - \Rightarrow NB = $\sqrt{2g\Delta h} = \sqrt{2 \times 9.8 \frac{m}{5^2} \times 10 m} = 14 \frac{m}{5}$
- b) Tampoco hay rozamiento > DEmBC = 0 > Emc-EmB=0
 - ⇒ EmB = Emc => KB = Uec => 1/2 m NB2 = 1/2 K AX2
 - $\Delta x = \sqrt{\frac{m}{k}} N_8 = \sqrt{\frac{8kq}{400 \text{ Nm}^{-1}}} \times 14 \frac{m}{s} = 1.98 \text{ m}$

11. (2.5 puntos)

Una bala de rifle, de masa 10 g, choca contra un bloque de masa 990 g que se encuentra en reposo sobre una superficie horizontal lisa, y queda incrustada en él. El bloque está unido a un resorte en hélice, como se indica en la figura, y el choque comprime el resorte 10 cm. Si la constante del resorte es $k=10^5\,\mathrm{dy\,cm^{-1}}$:

- (a) Calcular la velocidad de la bala antes del choque.
- (b) ¿Qué tipo de choque se produjo?

- b) Se produce un choque perfectamente inelástico porque la bala y el bloque se mueven juntos luego de la colisión.
- a) Divido al problema en 3 instantes:

Nivel de referencia

Antes del choque:

N= N= napidez de la bala
V= napidez inicial del
bloque
Tenne 2 momentos

Tengo 2 momentos lineales: Pry P.

@ Justo en el choque:

Nob = napidez inicial del sistema bala-bloque

Tengo KB

Tengo un momento lineal: Ppb

© Después del choque: Npb≡rapidez inicial del sistema bala-bloque

Tengo Vec

Dado que conozco la compresión máxima del resorte, puedo calcular la relocidad del sistema bloque-bala, Upb, luego del impacto analizando la energía mecánica entre los instantes By C.

Como no hay rozamiento:
$$\Delta \text{Emec} = 0 \Rightarrow \text{Emc-Emb} = 0 \Rightarrow \text{Emb} = \text{Emc}$$

$$\Rightarrow \text{Ke} = \text{Uec} \Rightarrow \frac{1}{2} \text{m} \text{Upc}^2 = \frac{1}{2} \text{k} \Delta x^2 \Rightarrow \text{Upc} = \sqrt{\frac{\text{k} \Delta x^2}{\text{m}}} = \sqrt{\frac{\text{k} \Delta x^2}{\text{m}}$$

Para calcular la rapidez de la bala antes del choque, conozco que el momento lineal debe conservarse entre los instantes AyB.

$$\Rightarrow \vec{P_p} + \vec{P_b} = \vec{P_{pb}} \Rightarrow m_p \vec{v_p} + m_b \vec{v_b} = (m_p + m_b) \vec{v_{pb}}$$

$$\Rightarrow \vec{v_p} = \frac{(m_p + m_b)}{m_p} \vec{v_{pb}} = \frac{(0.01 + 0.99) \, \text{kg}}{0.01 \, \text{kg}} \left(1 \, \vec{x} \, \frac{m}{s}\right)$$