Ejercicio 1

Filtro con GIC

1.1 Introducción: el general $impedance\ converter$

explicar:cuando se quiere hacer un filtro de segundo orden sin usar bobinas, usamos GIC para simular sus efectos

Figura 1.1: GIC genérico con op amps ideales

Como consideramos ideales a ambos operacionales, la tensión de entrada se encuentra replicada donde se encuentran los terminales inversores del circuito, y a su vez en la entrada no inversora del segundo operacional. Asimismo, como no hay corriente entre V^+ y V^- para ninguno de los operacionales, hay sólo tres corrientes, puesto que la corriente de Z_2 es la misma que la de Z_3 , y la de Z_4 que la de Z_5 . Quedan definidas entonces las ecuaciones:

$$\begin{cases} \frac{V_{GIC} - V_1}{Z_1} - I = 0\\ \frac{V_{GIC} - V_1}{Z_2} + \frac{V_{GIC} - V_2}{Z_3} = 0\\ \frac{V_{GIC} - V_2}{Z_4} + \frac{V_{GIC}}{Z_5} = 0 \end{cases}$$

Sustituyendo hacia atrás, podemos obtener la transferencia hasta la salida de cada operacional:

$$\begin{cases} \frac{V_1}{V_{GIC}} = -\frac{Z_2 \cdot Z_4}{Z_3 \cdot Z_5} \\ \frac{V_2}{V_{GIC}} = 1 + \frac{Z_4}{Z_5} \end{cases}$$
 (1.1)

De aquí se puede despejar la impedancia de entrada del GIC, es decir $\frac{V_{GIC}}{I}$:

$$Z = \frac{Z_1 \cdot Z_3 \cdot Z_5}{Z_2 \cdot Z_4} \tag{1.2}$$

De esta forma, combinando las impedancias convenientemente, se pueden obtener impedancias de toda índole (es decir, donde el número Z puede estar teóricamente en cualquier punto del plano complejo).

1.2 Filtro a diseñar

Figura 1.2: Esquema del circuito

El GIC que utilizaremos en este trabajo se obtiene con las siguientes sustituciones:

$$\begin{cases} Z_1 = R_1 \\ Z_2 = \frac{1}{s \cdot C_2} \\ Z_3 = R_3 \\ Z_4 = R_4 \\ Z_5 = R_8 \end{cases}$$

Por lo tanto, reemplazando en la ecuación (1.2) obtenemos la impedancia de este GIC:

$$Z(s) = s \cdot \frac{R_1 \cdot R_3 \cdot R_8 \cdot C_2}{R_4} \tag{1.3}$$

Entonces, con esta sección del filtro estamos emulando una bobina ideal de inductancia:

$$L_{GIC} = \frac{R_1 \cdot R_3 \cdot R_8 \cdot C_2}{R_4} \tag{1.4}$$

La salida, sin embargo, se mide dentro del GIC. Trataremos a este sistema como la combinación en cascada de dos sistemas: de V_{in} a V_{GIC} , y de V_{GIC} a V_{out} .

1.2.1 Transferencia de V_{in} a V_{GIC}

Teniendo en cuenta el resultado obtenido en la ecuación (1.3), podemos simplificar el circuito de la siguiente manera:

Figura 1.3: Reemplazo del GIC por su inductancia equivalente

La tensión de salida de esta sección, entonces, puede hallarse aplicando un divisor de tensión entre la impedancia de entrada desde V_{in} y del paralelo de la bobina y el capacitor. Se obtiene entonces que:

$$\frac{V_{GIC}}{V_{in}}(s) = \frac{s \cdot \frac{L_{GIC}}{R_6}}{LC_6 \cdot s^2 + \frac{L_{GIC}}{R_c} \cdot s + 1}$$
(1.5)

1.2.2 Transferencia de V_{GIC} a V_{out}

Para obtener esta transferencia, basta observar que lo que ahora llamamos V_{out} es lo que en la introducción llamamos V_2 . Por lo tanto, reemplazando los valores genéricos de la ecuación (1.1) por los particulares de este circuito, obtenemos que:

$$\frac{V_{out}}{V_{GIC}}(s) = 1 + \frac{R_4}{R_5} \tag{1.6}$$

Por lo tanto, la función transferencia del circuito se obtiene haciendo el producto de las ecuaciones (1.5) y (1.6):

$$H(s) = \left(1 + \frac{R_4}{R_5}\right) \cdot \left(\frac{s \cdot \frac{L_{GIC}}{R_6}}{LC_6 \cdot s^2 + \frac{L_{GIC}}{R_6} \cdot s + 1}\right) \quad (1.7)$$

Esto corresponde a un **filtro pasabanda**, definido por los siguientes parametros:

$$\begin{cases}
\omega_0 = \sqrt{\frac{1}{L_{GIC}C_6}} \\
Q = R_6 \cdot \sqrt{\frac{C_6}{L_{GIC}}} \\
|H(i\omega_0)| = 1 + \frac{R_4}{R_5}
\end{cases}$$
(1.8)

$$\begin{cases} \frac{V_1}{V_{GIC}} = -\frac{R_4}{R_8} \cdot \frac{1}{s \cdot CR_3} \\ \frac{V_2}{V_{GIC}} = 1 + \frac{R_4}{R_5} \end{cases}$$
(1.9)

1.3 Análsis de los componentes del circuito

1.3.1 Función de R_8

Como ya se mencionó, la resistencia R_8 es el componente que reemplaza a la Z_5 del análisis genérico. Por lo tanto, se encuentra entre los operacionales que hacen funcionar al GIC y tierra. De la misma forma que en la sección \ref{C} ? al considerar ideales a los $op\ amps$, la tensión V_{GIC} se veía replicada de la entrada a los terminales inversores de los operacionales, y de ahí al no inversor del segundo operacional, si R_8 fuese reemplazada por un cable, a la entrada del operacional veríamos simplemente la tensión de tierra, es decir que funcionaría como un cable. Esto también puede verse en la ecuación \ref{C} : se comportaría como una bobina de omega H, es decir un cable ideal.

Al conectarlo el GIC a R_6 y C_6 en estas condiciones

Por otro lado, hacer este parámetro infinito es equivalente a cortar el cable entre la salida del segundo operacional y tierra: se pierde entonces la referencia a masa. Por lo tanto, la impedancia del GIC se hace infinita (como se ve en la ecuación ??, con lo cual se hace desp

1.4 Diseño del filtro pasabanda

Las especificaciones de diseño de este filtro son:

$$\begin{cases} \omega_0 = 13,000 \frac{rad}{s} & \Rightarrow f_0 = 2,079Hz \\ Q = 4 \end{cases}$$
 (1.10)

Asimismo, se establecen las siguientes relaciones entre los componentes:

R=2.2k -> C=34.965nF=39n serie 330n (0.25%) -> R6=4R=8.8k=12k //33k (clavado) en mc: de 1.8 a 2.4k -> -13 a +16%