11TH INTERNATIONAL CONFERENCE ON

ELECTRICAL AND COMPUTER ENGINEERING (ICECE)

icece.buet.ac.bd Conference Record Number: #51571

Automated Recognition of Rice Grain Diseases Using Deep Learning

Solayman Hossain Emon, MD Afranul Haque Mridha and Mohtasim Shovon

Department of CSE,

Ahsanullah University of Science and Technology.

Outline of the Presentation

- Research Problem
- Motivation
- Related Works
- Challenges Faced
- Methodology
- Dataset
- Experiment & Result
- Conclusion

Research Problem

✓ Automated Recognition of Rice Grain Diseases

- ☐ How can we implement that?
 - Using Deep Learning Based Method

Motivation

01

Early Diagnosis

Early detection of disease can save tones of crops

03

Loss of Productivity

Loss of the crops create great impact on the economy

02

Manual Observation

Manual disease observation procedure is time-consuming and laborious

04

Complex Model Architecture

Existing models have complex architecture with huge parameters

Related Works

A Tabular Gist of the Reviewed Papers

Contributors	Reference Work
Rahman et al. 2020	Identification and Recognition of Rice Diseases and Pests Using Convolutional Neural Networks.
Ahmed et al. 2020	Rice grain disease identification using dual phase convolutional neural network-based system aimed at small dataset.
Devi et al. 2014	Analysis of Segmentation Scheme for Diseased Rice Leaves.
Liu et al. 2018	Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks.
Dubey et al. 2017	Apple disease classification using color, texture and shape features from images.

Challenges Faced

- Achieving Higher Accuracy through Lightweight Model
- Learning Complex Patterns of Diseases.
- Limitation of Availability of Large Dataset
- Ensuring the Memory-Efficient Architecture

Methodology

A custom Convolutional Neural Network (CNN) architecture is proposed namely RiceNet.

- Convolution Layer
- Pooling or Subsampling Layer
- Fully Connected Layer

Methodology

Proposed RiceNet Architecture

Layer Name	Function	Filter Size	Output Tensor
Input			$224 \times 224 \times 3$
Conv1	Convolutional	3×3	$222 \times 222 \times 16$
Pool1	Max-Pooling	2×2	$111 \times 111 \times 16$
Conv2	Convolutional	3×3	$109 \times 109 \times 32$
Pool2	Max-Pooling	2×2	$54 \times 54 \times 32$
Conv3	Convolutional	3×3	$52 \times 52 \times 64$
Pool3	Max-Pooling	2×2	$26\times26\times64$
Conv4	Convolutional	3×3	$24 \times 24 \times 64$
Pool4	Max-Pooling	2×2	$12\times12\times64$
Conv5	Convolutional	3×3	$10\times10\times32$
Pool5	Max-Pooling	2×2	$5\times5\times32$
Output	Softmax Regression		$9\times1\times1$
	No of Parameters		557 389

No. of Parameters 557, 389

Dataset

For convenience, the two dedicated rice leaf datasets simply named as BdRice3 and BdRice9 respectively

Dataset	Class Name	No. of Images
	False Smut	93
	Brown Plant Hopper (BPH)	71
	Bacterial Leaf Blight (BLB)	138
BdRice9	Neck Blast	286
	Stemborer	201
	Hispa	73
	Sheath Blight and/or Sheath Rot	219
	Brown Spot	111
	Others	234
	False Smut	75
BdRice3	Neck Blast	63
	Healthy	62

Related Parameters of the Convolutional Neural Network (CNN)

CNN Architecture	Number of Parameters
VGG16	138 million
ResNet50	23 million
EfficientNetB0	5.3 million
NasNet Mobile	4.3 million
MobileNetv2	2.3 million
RiceNet	0.557 million

Performance of Different CNN Architectures Obtained from 5-Fold Cross Validation With BdRice9 Dataset

CNN Architecture	Weights	Accuracy
VGG16	imagenet	97.23%
ResNet50	imagenet	97.12%
EfficientNetB0	noisy-student	96.88%
MobileNetv2	imagenet	95.32%
NasNet Mobile	imagenet	95.58%
RiceNet	scratch	78.94%

Performance of Different CNN Architectures Obtained from 5-Fold Cross Validation With BdRice3 Dataset

CNN Architecture	Weights	Accuracy
VGG16	imagenet	98.82%
ResNet50	imagenet	98.01%
EfficientNetB0	noisy-student	97.94%
MobileNetv2	imagenet	96.43%
NasNet Mobile	imagenet	96.71%
RiceNet	pre-train	93.75%

F1-score of different CNN Architectures with BdRice3 Dataset

CNN Architecture	F1-Score
VGG16	68.32%
ResNet50	66.41%
EfficientNetB0	66.10%
NasNet Mobile	65.56%
MobileNetv2	65.57%
RiceNet	62.78%

Conclusion

- Achievements of the Proposed Approach
- Limitations

Future Scopes

Question Answer (QA) Session

