Tracking the gradients using the Hessian:
A new look at variance reducing stochastic methods
Appendix

February 14, 2018

# A Theoretical Analysis: Proofs

Following Bubeck (2015), we consider a single epoch of SVRG and its extensions, that is,  $\bar{\theta} \in \Theta$ , and the iteration, started from  $\theta_0 = \bar{\theta}$ :

$$\theta_t = \Pi_{\Theta} \left( \theta_{t-1} - \gamma \left[ f'_{i_t}(\theta_{t-1}) - z_{i_t}(\theta_{t-1}) + \frac{1}{N} \sum_{j=1}^N z_j(\theta_{t-1}) \right] \right),$$

with  $i_t$  uniformly at random in  $\{1, \ldots, N\}$ .

We also recall that, while the results are given using R the radius of the data, they can be readily transposed to  $L_{\text{max}}$  using  $L_{\text{max}} = R^2$ .

We have, with  $\mathcal{F}_{t-1}$  representing the information up to time t:

$$\begin{split} \mathbf{E} \left[ \| \theta_{t} - \theta_{*} \|^{2} | \mathcal{F}_{t-1} \right] & \leqslant \quad \mathbf{E} \left[ \left\| \theta_{t-1} - \theta_{*} - \gamma \left[ f'_{i_{t}}(\theta_{t-1}) - z_{i_{t}}(\theta_{t-1}) + \frac{1}{N} \sum_{j=1}^{N} z_{j}(\theta_{t-1}) \right] \right\|^{2} | \mathcal{F}_{t-1} \right] \\ & \text{by contractivity of projections,} \\ & \leqslant \quad \| \theta_{t-1} - \theta_{*} \|^{2} - 2\gamma F'(\theta_{t-1})^{\top}(\theta_{t-1} - \theta_{*}) + \gamma^{2} \| F'(\theta_{t-1}) \|^{2} \\ & \quad + \frac{\gamma^{2}}{N} \sum_{i=1}^{N} \left\| f'_{i}(\theta_{t-1}) - z_{i}(\theta_{t-1}) - \frac{1}{N} \sum_{j=1}^{N} f'_{j}(\theta_{t-1}) + \frac{1}{N} \sum_{j=1}^{N} z_{j}(\theta_{t-1}) \right\|^{2} \\ & \leqslant \quad \| \theta_{t-1} - \theta_{*} \|^{2} - 2\gamma F'(\theta_{t-1})^{\top}(\theta_{t-1} - \theta_{*}) + \gamma^{2} \| F'(\theta_{t-1}) \|^{2} \\ & \quad + \frac{\gamma^{2}}{N} \sum_{i=1}^{N} \left\| f'_{i}(\theta_{t-1}) - z_{i}(\theta_{t-1}) \right\|^{2}, \text{ by bounding the variance by the second moment.} \end{split}$$

In the following sections, we provide proofs for several algorithms we consider in this paper.

#### A.1 SVRG

For regular SVRG (we provide the proof for completeness and because we need it later), we have:  $z_i(\theta) = f'_i(\bar{\theta})$  and we consider the bound

$$\frac{\gamma^{2}}{N} \sum_{i=1}^{N} \|f'_{i}(\theta_{t-1}) - z_{i}(\theta_{t-1})\|^{2} \leq \frac{2\gamma^{2}}{N} \sum_{i=1}^{N} \|f'_{i}(\theta_{t-1}) - f'_{i}(\theta_{*})\|^{2} + \frac{2\gamma^{2}}{N} \sum_{i=1}^{N} \|f'_{i}(\bar{\theta}) - f'_{i}(\theta_{*})\|^{2}$$

$$\leq 2\gamma^{2} R^{2} F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + 2\gamma^{2} R^{2} [F(\bar{\theta}) - F(\theta_{*})]$$

leading to

$$\mathbf{E} \left[ \|\theta_{t} - \theta_{*}\|^{2} |\mathcal{F}_{t-1} \right] \leq \|\theta_{t-1} - \theta_{*}\|^{2} - 2\gamma F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + \gamma^{2} \|F'(\theta_{t-1})\|^{2} + 2\gamma^{2} R^{2} F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + 2\gamma^{2} R^{2} [F(\bar{\theta}) - F(\theta_{*})].$$

Thus if  $\gamma \leqslant 1/(2R^2 + L)$ , we get

$$\mathbf{E} \left[ \|\theta_{t} - \theta_{*}\|^{2} |\mathcal{F}_{t-1}| \right] \leqslant \|\theta_{t-1} - \theta_{*}\|^{2} - \gamma \left[ F(\bar{\theta}_{t-1}) - F(\theta_{*}) \right] + 2\gamma^{2} R^{2} \left[ F(\bar{\theta}) - F(\theta_{*}) \right].$$

This implies that

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \left[ F(\bar{\theta}_{t-1}) - F(\theta_*) \right] \leq \frac{1}{\gamma T} \|\bar{\theta} - \theta_*\|^2 + 2\gamma R^2 [F(\bar{\theta}) - F(\theta_*)]$$

$$\mathbf{E} \left[ F\left(\frac{1}{T} \sum_{t=1}^{T} \bar{\theta}_{t-1}\right) - F(\theta_*) \right] \leq \left(\frac{2}{\mu \gamma T} + 2\gamma R^2\right) [F(\bar{\theta}) - F(\theta_*)].$$

This implies that if  $\gamma = \frac{1}{4R^2}$  and  $T \ge 8/(\gamma \mu) = \frac{32R^2}{\mu}$ , then

$$\mathbf{E}\left[F\left(\frac{1}{T}\sum_{t=1}^{T}\bar{\theta}_{t-1}\right) - F(\theta_*)\right] \leqslant \frac{3}{4}[F(\bar{\theta}) - F(\theta_*)].$$

Thus, after  $K = O(\log \frac{1}{\varepsilon})$  epochs of SVRG we have attained the required precision, which makes an overall access to gradients of  $KN + KT = \left(N + \frac{R^2}{\mu}\right) \log \frac{1}{\varepsilon}$ .

### A.2 SVRG-2

We assume that  $\frac{4\beta^2R^4}{\alpha}D^2\leqslant L$  and  $\gamma=1/(4L)$ . In this situation, with no approximation, we have  $z_i(\theta)=f_i'(\bar{\theta})+f_i''(\bar{\theta})(\theta-\bar{\theta})$  and:

$$\begin{split} \frac{\gamma^2}{N} \sum_{i=1}^{N} \left\| f_i'(\theta_{t-1}) - z_i(\theta_{t-1}) \right\|^2 \\ &\leqslant \frac{\gamma^2}{N} \sum_{i=1}^{N} R^2 \big[ \frac{\beta}{2} (x_i^\top \theta_{t-1} - x_i^\top \bar{\theta})^2 \big]^2 = \frac{\gamma^2 \beta^2 R^2}{4N} \sum_{i=1}^{N} \left( x_i^\top (\theta_{t-1} - \bar{\theta}) \right)^4 \text{ using the bound on } \varphi''', \\ &\leqslant \frac{\gamma^2 \beta^2 R^2}{N} \sum_{i=1}^{N} \left[ 2 (x_i^\top (\theta_{t-1} - \theta_*))^4 + 2 (x_i^\top (\theta_* - \bar{\theta}))^4 \right] \\ &\leqslant \frac{\gamma^2 \beta^2 R^2}{N} \sum_{i=1}^{N} \left[ 2 R^2 \|\theta_{t-1} - \theta_*\|^2 (x_i^\top (\theta_{t-1} - \theta_*))^2 + 2 R^2 \|\bar{\theta} - \theta_*\|^2 (x_i^\top (\bar{\theta} - \theta_*))^2 \right] \text{ using } \|x_i\| \leqslant R, \\ &\leqslant \frac{2\gamma^2 \beta^2 R^4}{N} \|\theta_{t-1} - \theta_*\|^2 \sum_{i=1}^{N} (x_i^\top (\theta_{t-1} - \theta_*))^2 + \frac{2\gamma^2 \beta^2 R^4}{N} \|\bar{\theta} - \theta_*\|^2 \sum_{i=1}^{N} (x_i^\top (\bar{\theta} - \theta_*))^2 \\ &\leqslant \frac{4\gamma^2 \beta^2 R^4}{\alpha} \|\theta_{t-1} - \theta_*\|^2 [F(\theta_{t-1}) - F(\theta_*)] + \frac{4\gamma^2 \beta^2 R^4}{\alpha} \|\bar{\theta} - \theta_*\|^2 [F(\bar{\theta}) - F(\theta_*)] \text{ using } \varphi'' \geqslant \alpha, \\ &\leqslant \frac{4\gamma^2 \beta^2 R^4}{\alpha} D^2 [F(\theta_{t-1}) - F(\theta_*)] + \frac{4\gamma^2 \beta^2 R^4}{\alpha} D^2 [F(\bar{\theta}) - F(\theta_*)], \text{ using the compactness of } \Theta. \end{split}$$

With our assumptions, we have  $\gamma \left(L + \frac{4\beta^2 R^4}{\alpha} D^2\right) \leqslant 1$ , and we get that

$$\mathbf{E} \left[ \|\theta_{t} - \theta_{*}\|^{2} |\mathcal{F}_{t-1} \right] \leq \|\theta_{t-1} - \theta_{*}\|^{2} - \gamma F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + \frac{4\gamma^{2}\beta^{2}R^{4}}{\alpha} D^{2} [F(\bar{\theta}) - F(\theta_{*})]$$

$$\leq \|\theta_{t-1} - \theta_{*}\|^{2} - \gamma [F(\theta_{t-1}) - F(\theta_{*})] + \frac{4\gamma^{2}\beta^{2}R^{4}}{\alpha} D^{2} [F(\bar{\theta}) - F(\theta_{*})].$$

This leads to, with  $T \geqslant 4/(\mu\gamma) = \frac{16L}{\mu}$  and using  $\gamma\left(\frac{4\beta^2R^4}{\alpha}D^2\right) \leqslant 1/2$ ,

$$\mathbf{E}\left[F\left(\frac{1}{T}\sum_{t=1}^{T}\bar{\theta}_{t-1}\right) - F(\theta_{*})\right] \leqslant \left(\frac{2}{\mu\gamma T} + \frac{4\gamma\beta^{2}R^{4}}{\alpha}D^{2}\right)\left[F(\bar{\theta}) - F(\theta_{*})\right]$$
$$\leqslant \frac{3}{4}\left[F(\bar{\theta}) - F(\theta_{*})\right].$$

Thus, after  $K=O(\log\frac{1}{\varepsilon})$  epochs of SVRG we have attained the required precision, which makes an overall access to gradients of  $KN+KT=\left(N+\frac{L}{\mu}\right)\log\frac{1}{\varepsilon}$ .

## A.3 Stability of SVRG-2

If we make no compactness assumption on  $\Theta$ , then we have:

$$\frac{\gamma^{2}}{N} \sum_{i=1}^{N} \|f'_{i}(\theta_{t-1}) - z_{i}(\theta_{t-1})\|^{2}$$

$$\leq \frac{2\gamma^{2}}{N} \sum_{i=1}^{N} \|f'_{i}(\theta_{t-1}) - f_{i}(\bar{\theta})\|^{2} + \frac{2\gamma^{2}}{N} \sum_{i=1}^{N} \|f''_{i'}(\bar{\theta})(\theta_{t-1} - \bar{\theta})\|^{2}$$

$$\leq 2\gamma^{2} R^{2} F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + 2\gamma^{2} R^{2} [F(\bar{\theta}) - F(\theta_{*})] \text{ from the SVRG proof },$$

$$+ \frac{2\gamma^{2}}{N} \sum_{i=1}^{N} R^{2} \|x_{i}^{\top}(\theta_{t-1} - \bar{\theta})\|^{2}$$

$$\leq 2\gamma^{2} R^{2} F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + 2\gamma^{2} R^{2} [F(\bar{\theta}) - F(\theta_{*})]$$

$$\frac{2\gamma^{2} R^{2}}{\alpha} F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + \frac{2\gamma^{2} R^{2}}{\alpha} [F(\bar{\theta}) - F(\theta_{*})]$$

$$\leq \frac{4\gamma^{2} R^{2}}{\alpha} F'(\theta_{t-1})^{\top} (\theta_{t-1} - \theta_{*}) + \frac{4\gamma^{2} R^{2}}{\alpha} [F(\bar{\theta}) - F(\theta_{*})]$$

Thus, if we take the smaller step-size  $\gamma=\frac{\alpha}{8R^2}$  and  $T=\frac{64R^2}{\alpha\mu}$ , we get the same convergence.

#### A.4 Robustness to errors in the Hessian

We assume that  $z_i(\theta) = f_i'(\bar{\theta}) + H_i(\theta - \bar{\theta})$ , with a relative error  $\frac{1}{N} \sum_{i=1}^N (f_i''(\bar{\theta}) - H_i)^2 \leq R^2 \eta \frac{1}{N} \sum_{i=1}^n f_i''(\bar{\theta})$ . If we take  $H_i = 0$  (plain SVRG), we can take  $\eta = 1$ . We assume  $\frac{8\beta^2 R^4}{\alpha} D^2 \leq L$  and  $\gamma = 1/(4L)$  with  $8\frac{R^2}{\alpha} \eta \leq L$ . Then

$$\frac{\gamma^{2}}{N} \sum_{i=1}^{N} \left\| f'_{i}(\theta_{t-1}) - z_{i}(\theta_{t-1}) \right\|^{2}$$

$$\leq 2 \frac{\gamma^{2}}{N} \sum_{i=1}^{N} \left\| f'_{i}(\theta_{t-1}) - f'_{i}(\bar{\theta}) - f''_{i}(\bar{\theta})(\theta_{t-1} - \bar{\theta}) \right\|^{2} + 2 \frac{\gamma^{2}}{N} \sum_{i=1}^{N} \left\| (H_{i} - f''_{i}(\bar{\theta}))(\theta_{t-1} - \bar{\theta}) \right\|^{2}$$

$$\leq \frac{4\gamma^{2}\beta^{2}R^{4}}{\alpha} D^{2} [F(\theta_{t-1}) - F(\theta_{*})] + \frac{4\gamma^{2}\beta^{2}R^{4}}{\alpha} D^{2} [F(\bar{\theta}) - F(\theta_{*})]$$

$$+ 2 \frac{\gamma^{2}R^{2}\eta}{N} \sum_{i=1}^{n} (x_{i}^{\top}(\bar{\theta} - \theta_{t-1}))^{2}$$

$$\leq \frac{4\gamma^{2}\beta^{2}R^{4}}{\alpha} D^{2} [F(\theta_{t-1}) - F(\theta_{*})] + \frac{4\gamma^{2}\beta^{2}R^{4}}{\alpha} D^{2} [F(\bar{\theta}) - F(\theta_{*})]$$

$$+ 4 \frac{\gamma^{2}R^{2}\eta}{\alpha} \left( [F(\bar{\theta}) - F(\theta_{*})] + [F(\theta_{t-1}) - F(\theta_{*})] \right)$$

Thus, with the exact same proof as before (i.e., combining regular SVRG and SVRG2) we reach the desired result.



Figure 1: Performance of the SVRG2sec with different choices of  $\sigma$  on: (a) a9a (b) covtype (c) phishing (d) mushrooms.

## B Robustness of the diagonal approximation.

Our robust secant equation has a hyperparameter,  $\sigma^2$ . Since the popularity of an optimization method depends as much of its ease of use as of its convergence rate, we tested the impact of  $\sigma^2$  on the convergence speed. In the supplementary material we show that the impact is generally very limited and that our method is robust to the choice of  $\sigma^2$ . In all other experiments we set  $\sigma^2 = 0.01$ .

## C Additional experiments

We include here the results on two additional LIBSVM datasets,  $\it gisette$  and  $\it madelon$ .



Figure 2: Performance of various SVRG-based methods on LIBSVM test problems: (a) gisette (b) madelon.

# References

[1] Sébastien Bubeck et al. "Convex optimization: Algorithms and complexity". In: Foundations and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.