

Dr. Gavin McArdle

Email: gavin.mcardle@ucd.ie

Office: A1.09 Computer Science

RECAP

Confidentiality

- Encryption
 - Symmetric
 - Public key

Authentication & Integrity

- MAC
- Digital Signatures

TODAY'S PLAN

Applying Security

- Security in the Web
- PKI
- DNS Spoofing
 - Security Extensions
- Firewalls
- Distributed Denial of Service/Access
- IP Spoofing

WEB SECURITY - HTTPS

Securing the web

- Focus on SSL/TLS for HTTPS
- Secure Sockets Layer/Transport Layer Security
- Based on certificates

GOAL AND THREAT MODEL

Much can go wrong on the web!

- Clients encounter malicious content
- Web servers are target of break-ins
- Fake content/servers trick users
- Data sent over network is stolen ...

GOAL AND THREAT MODEL

Goal of HTTPS is to secure HTTP We focus on network threats:

- Eavesdropping client/server traffic
- 2. Tampering with client/server traffic
- 3. Impersonating web servers

HTTPS CONTEXT

HTTPS (HTTP Secure) is an add-on

- Means HTTP over SSL/TLS
- SSL (Secure Sockets Layer) precedes TLS (Transport Layer Security)

Motivated by secure web commerce

- Slow adoption, now widespread use
- Can be used by any app, not just HTTP

SSL/TLS OPERATION

Protocol provides:

- Verification of identity of server (and optionally client)
- Message exchange between the two with confidentiality, integrity, authenticity and freshness

Consists of authentication phase (handshake that sets up encryption) followed by data transfer phase

SSL/TLS AUTHENTICATION

Must allow clients to securely connect to servers not used before

- Client must authenticate server
- Server typically doesn't identify client

Uses public key authentication

- But how does client get server's key?
- With <u>certificates</u> »

CERTIFICATES

A certificate binds public key to an identity, e.g., domain

- Distributes public keys when signed by a party you trust
- Commonly in a format called X.509

I hereby certify that the public key

19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A
belongs to

Robert John Smith

12345 University Avenue
Berkeley, CA 94702
Birthday: July 4, 1958
Email: bob@superdupernet.com

PKI (PUBLIC KEY INFRASTRUCTURE)

Adds hierarchy to certificates to let many parties issue

Issuing parties are called CAs (Certificate Authorities)

PKI

Need public key of PKI root and trust in servers on path to verify a public key of website ABC

- Browser has Root's public key
- {RA1's key is X} signed Root
- •{CA1's key is Y} signed RA1
- {ABC's key Z} signed CA1

PKI

Browser/OS has public keys of the trusted roots of PKI

- >100 root certificates!
- That's a problem ...
- Inspect your web browser

Certificate for wikipedia.org issued by DigiCert

PKI

Real-world complication:

- Public keys may be compromised
- Certificates must then be revoked

PKI includes a CRL (Certificate Revocation List)

Browsers use to weed out bad keys

DNS SECURITY

Securing Internet naming

DNS security extensions (DNSSEC)

GOAL AND THREAT MODEL

Naming is a crucial Internet service

- Binds host name to IP address
- Wrong binding can be disastrous ...

GOAL AND THREAT MODEL

Goal is to secure the DNS so that the returned binding is correct

Integrity/authenticity vs confidentiality

Attacker can intercept/tamper with messages on the network

How can a network attacker corrupt the DNS?

Trudy can trick a nameserver into caching the wrong binding

- By using the DNS protocol itself
- This is called <u>DNS spoofing</u>

Trudy returns a fake DNS response that appears to be true

Lots of questions!

- 1. How does Trudy know when the DNS query is sent and what it is for?
- 2. How can Trudy supply a fake DNS reply that appears to be real?
- 3. What happens when the real DNS reply shows up?

Lots of questions!

- 1. How does Trudy know when the DNS query is sent and what it is for?
 - Trudy can make the query herself!
 - Nameserver works for many clients
 - Trudy is just another client
- 2. How can Trudy supply a fake DNS reply that appears to be real?
- 3. What happens when the real DNS reply shows up?

Lots of questions!

- 1. How does Trudy know when the DNS query is sent and what it is for?
- 2. How can Trudy supply a fake DNS reply that appears to be real?
 - A bit more difficult. DNS checks:
 - Reply is from authoritative nameserver (e.g., .com)
 - Reply ID that matches the request
 - Reply is for outstanding query
- 3. What happens when the real DNS reply shows up?

Lots of questions!

- 1. How does Trudy know when the DNS query is sent and what it is for?
- 2. How can Trudy supply a fake DNS reply that appears to be real?
 - Put IP of authoritative nameserver as the source IP address
 - ID is 16 bits (64K). Send many guesses! (Or if a counter, simple to predict.)
 - Send reply right after query
- 3. What happens when the real DNS reply shows up?

Lots of questions!

- 1. How does Trudy know when the DNS query is sent and what it is for?
- 2. How can Trudy supply a fake DNS reply that appears to be real?
- 3. What happens when the real DNS reply shows up?
 - There is no outstanding query after fake reply is accepted
 - So real reply will be discarded

DNSSEC (DNS SECURITY EXTENSIONS)

As well as the usual A, NS records to map a domain name to IP address, DNSSEC extends DNS with new record types

- RRSIG for digital signatures of records
- DNSKEY for public key validation
- DS for public keys for delegation

Clients query DNS as usual, then validate replies to check that content is authentic

DNSSEC – VALIDATING REPLIES

Client queries www.uw.edu as usual

Replies include signatures/keys

Same as we have seen. We need to make sure we can trust the keys so we have to validate up to the root node which is trusted

Client validates answer:

- 1. KROOT is a trust anchor
- 2. Use Kroot to check Kedu
- 3. Use Kedu to check Kuw.edu
- 4. Use Kuw.EDU to check IP

FIREWALLS

Firewalls

Protecting hosts by restricting network connectivity

MOTIVATION

The best part of IP connectivity

You can send to any other host

The worst part of IP connectivity

- Any host can send packets to you!
- There's nasty stuff out there ...

GOAL AND THREAT MODEL

Goal of firewall is to implement a boundary to restrict IP connectivity:

- You can talk to hosts as intended
- Trudy can't talk to you over network

RECALL MIDDLEBOXES

Sit "inside the network" but perform "more than IP" processing on packets to add new functionality

NAT box, Firewall / Intrusion Detection System

FIREWALL AS MIDDLEBOX

OPERATION

Firewall has two sides:

Internal (organization) and external (Internet)

For each packet that tries to cross, decide whether to:

- ACCEPT = pass unaltered; or DENY = discard silently
- Decision is a local policy; firewall centralizes IT job

Key tension:

How to translate desired policies into packet filtering rules

Policies are high-level statements

Relate to usage of apps, content

Packet filtering is low-level

 Limited viewpoint in the network, e.g., no app messages, encryption

Stateless firewall

- Simplest kind of firewall
- Implements static packet filter rules
- Typically using TCP/UDP ports
- E.g., deny TCP port 23 (telnet)
- Can allow/disallow many types of services and destinations

Stateful firewall

- A step up from stateless
- Implements stateful packet filter rules that track packet exchanges
- NAT example: accept incoming TCP packets after internal host connects

Application layer firewall:

- Another step up
- Implements rules based on app usage and content
- E.g., inspect content for viruses
- Tries to look beyond packets by emulating higher layers, e.g., by reassembling app messages

DEPLOYMENT

Firewall is placed around internal/external boundary

Classic setup includes DMZ (DeMilitarized Zone) to put busy Internet hosts on the outside for better separation

DISTRIBUTED DENIAL-OF-SERVICE (DDOS)

Distributed Denial-of-Service (DDOS)

An attack on network availability

MOTIVATION

Flooding a host with many packets can interfere with its IP connectivity

- Host may become unresponsive
- This is a form of <u>denial-of-service</u>

GOAL AND THREAT MODEL

Goal is for host to keep network connectivity for desired services

Threat is Trudy may overwhelm host with undesired traffic

INTERNET REALITY

Distributed Denial-of-Service is a huge problem today!

There are no great solutions

CDNs, network traffic filtering, and best practices all help

HOST DENIAL-OF-SERVICE

Strange packets can sap host resources!

- "Ping of Death" malformed packet
- "SYN flood" sends many TCP connect requests and never follows up
- Few bad packets can overwhelm host

Patches exist for these vulnerabilities

Read about "SYN cookies" for interest

NETWORK DENIAL-OF-SERVICE

Network DOS needs many packets

- To saturate network links
- Causes high congestion/loss

Helpful to have many attackers ... or <u>Distributed Denial-of-Service</u>

DISTRIBUTED DENIAL-OF-SERVICE (DDOS)

Botnet provides many attackers in the form of compromised hosts

- Hosts send traffic flood to victim
- Network saturates near victim

COMPLICATION: SPOOFING

Attackers can falsify their IP address

- Put fake source address on packets
- Historically network doesn't check
- Hides location of the attackers
- Called IP address spoofing

SPOOFING

- Trudy can even trick Bob into really sending packets to Alice
- To do so, Trudy spoofs Alice to Bob

BEST PRACTICE: INGRESS FILTERING

Idea: Validate the IP source address of packets at ISP boundary

Ingress filtering is a best practice, but deployment has been slow

FLOODING DEFENSES

- 1. Increase network capacity around the server; harder to cause loss
- Use a CDN for high peak capacity
- 2. Filter out attack traffic within the network (at routers)
- The earlier the filtering, the better
- Ultimately what is needed, but ad hoc measures by ISPs today