CS420: Operating Systems Paging and Page Tables

James Moscola Department of Engineering & Computer Science York College of Pennsylvania

Paging

- Paging is a memory-management scheme that permits the physical address space of a process to be noncontiguous
 - Avoids external fragmentation
 - Avoids the need for compaction
 - May still have internal fragmentation
- Divide physical memory into fixed-sized blocks called frames
 - Size is power of 2, between 512 bytes and 16 Mbytes
 - Must keep track of all free frames
- Divide logical memory into blocks of same size called pages
 - Backing store is also split into pages of the same size
- To run a program of size N pages, need to find N free frames and load program

Address Translation Scheme

- Set up a page table to translate logical to physical addresses
- Address generated by CPU is divided into:
 - Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit
 - For given logical address space 2^m and page size 2ⁿ

page number	page offset
р	d
m - n	n

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

page number	page offset
p	d
m - n	n

frame 0	0	
frame 1	4	i j k l
frame 2	8	m n o p
frame 3	12	
frame 4	16	
frame 5	20	a b c d
frame 6	24	e f g h
frame 7	28	

• Example setup:

- n=2 and m=4 (p and d are each 2-bits)
- 32-bytes of physical memory and
- 4-byte pages (8 pages can fit in physical memory space)

• Example:

- Logical address 10 is in page 2 at offset 2
- According to the page table, page 2 is located in frame 1
- Physical memory address is: (Frame # * Page size) + Offset
- Physical memory address for logical address 10 is : (1 * 4 bytes) + 2 byte offset = 6

physical memory

Another Paging Example

page number	page offset
р	d
m - n	n

page 0	0 1 2	a b c	
	3	d	
	4	е	
page 1	5	f	
	6	g	
	7	h	
	8	i	
page 2	9	i	
	10	k	
	11	-	
page 3	12	m	
	13	n	
	14	0	
	15	р	
logical memory			

• Example setup:

- n=2 and m=4 (p and d are each 2-bits)
- 32-bytes of physical memory and
- 4-byte pages (8 pages can fit in physical memory space)

• Example:

- Logical address 4 is in page 1 at offset 0
- According to the page table, page 1 is located in frame 6
- Physical memory address is: (Frame # * Page size) + Offset
- Physical memory address for logical address 10 is : (6 * 4 bytes) + 0 byte offset = 24

physical memory

28

frame 7

Another Paging Example

page number	page offset
р	d
m - n	n

0

3

2

page table

• Example setup:

- n=2 and m=4 (p and d are each 2-bits)
- 32-bytes of physical memory and
- 4-byte pages (8 pages can fit in physical memory space)

• Example:

- Logical address 7 is in page 1 at offset 3
- According to the page table, page 1 is located in frame 6
- Physical memory address is: (Frame # * Page size) + Offset
- Physical memory address for logical address 10 is : (6 * 4 bytes) + 3 byte offset = 27

physical memory

Paging

- A user program views memory as a single contiguous memory space
- In actuality, the user program is scattered throughout physical memory in page sized chunks

- Since the operating system is responsible for managing memory, it must be aware of the allocation details of the physical memory
 - which frames are allocated
 - and to which page of which process each frame is allocated
 - which frames are available
 - how many frames there are in total

Allocating Frames to a New Process

Implementation of Page Table (The Slow Way)

- Page table is kept in main memory
- Page-table base register (PTBR) points to the page table in memory
 - Another register that is loaded when process is dispatched to run
- In this scheme every data/instruction access requires two memory accesses
 - One for the page table and one for the data / instruction

Implementation of Page Table (The Better Way)

- The two memory access problem can be solved by the use of a special fastlookup hardware cache of associative memory called translation look-aside buffers (TLBs)
 - Lookup page number in TLB to quickly determine the frame number
- TLBs are typically small (64 to 1,024 entries)
- On a TLB miss, value is loaded into the TLB for faster access next time
 - Replacement policies must be considered (which entries to overwrite when TLB is full)
 - Some entries can be wired down for permanent fast access (entries for kernel code)

Paging Hardware with TLB

Memory Protection

- In a paged environment memory protection is implemented by associating a protection bit with each frame
 - Indicates if read-only or read-write access is allowed
 - Can also add more bits to indicate page execute-only, and so on

- Valid-invalid bit attached to each entry in the page table
 - "valid" indicates that the associated page is in the process' logical address space, and is thus a legal page
 - "invalid" indicates that the page is not in the process' logical address space

Any violations result in a trap to the kernel

Valid (v) or Invalid (i) Bit in a Page Table

- Example system has 14-bit logical address space (0 to 16383) with 2 KB pages
 - Total of 8 pages $(16384 / 2048 = 2^{14} / 2^{11} = 2^3 = 8)$
- An example process only requires 10468 bytes
 - Pages 0 through 4 and part of page 5
 - Pages 0 through 5 access valid frames in physical memory
 - A page request for page 6 or 7 would be invalid
- Most processes will not use all pages of logical address space
 - A Page-Table Length Register
 can specify number of pages used

0 page 0 page 1 page 2 5 6 page 3 page 4 page 5 page n

Shared Pages

If multiple process are sharing common code

- Use only one copy of read-only (reentrant) code among those processes (i.e., text editors, compilers, window systems)
- For portions of the process that are not shared, each can have it own pages

Shared Pages Example

