511-2018-09-26-neurochemistry-II

Rick Gilmore

Today's Topics

- Neurochemistry
 - How neurons talk to one another
- Synaptic communication
- Neurotransmitters

In the beginning

- Soma receives input from dendrites
- Axon hillock sums/integrates
- If sum > threshold, AP "fires"

Illustration of summation

Steps in synaptic transmission

- · Rapid change in voltage triggers neurotransmitter (NT) release
- Voltage-gated calcium Ca++ channels open
- Ca++ causes synaptic vesicles to bind with presynaptic membrane, merge, exocytosis

Steps in synaptic transmission

- NTs diffuse across synaptic cleft
- NTs bind with receptors on postsynaptic membrane
- Receptors respond
- NTs unbind, are inactivated

Synaptic transmission

Excocytosis

Nature Reviews | Neuroscience

http://dx.doi.org/doi:10.1038/nrn2948

Why do NTs move from presynaptic terminal toward postsynaptic cell?

- Electrostatic force pulls them
- Force of diffusion

Why do NTs move from presynaptic terminal toward postsynaptic cell?

- Electrostatic force pulls them
- · Force of diffusion

Postsynaptic receptor types

Ionotropic receptor

Metabotropic receptor

Fig. 5a. Ionotropic receptors and their associated ion channels form one complex (top). Each iGluR is formed from the co-assembly of multiple (4-5) subunits (From Kandel et al., 1991).

Fig. 5b. Metabotropic receptors are coupled to their associated ion channels by a second messenger cascade (top). Each mGluR is composed of one polypeptide, which is coupled to a G-protein (from Kandel et al., 1991).

Postsynaptic receptor types

- Ligand-gated ion channels
- Ionotropic (receptor + ion channel)
 - Ligand-gated
 - Open/close channel
 - Faster, but short-acting effects

Postsynaptic receptor types

- Metabotropic (receptor only)
 - Trigger 2nd messengers
 - G-proteins
 - Open/close adjacent channels, change metabolism
 - Slower, but longer lasting effects

Receptor types

Ionotropic receptor

Metabotropic receptor

Fig. 5a. Ionotropic receptors and their associated ion channels form one complex (top). Each iGluR is formed from the co-assembly of multiple (4-5) subunits (From Kandel et al., 1991).

Fig. 5b. Metabotropic receptors are coupled to their associated ion channels by a second messenger cascade (top). Each mGluR is composed of one polypeptide, which is coupled to a G-protein (from Kandel et al., 1991).

Receptors generate postsynaptic potentials (PSPs)

- Small voltage changes
- Amplitude scales with # of receptors activated
 - Dendrites usually lack voltage gated Na+ channels
- Excitatory PSPs (EPSPs)
 - Depolarize neuron (make more +)
- Inhibitory (IPSPs)
 - Hyperpolarize neuron (make more -)

NTs inactivated

- Buffering
 - e.g., glutamate into astrocytes (Anderson & Swanson, 2000)
- · Reuptake via *transporters*
 - molecules in membrane that move NTs inside
 - e.g., serotonin via serotonin transporter (SERT)
- Enzymatic degradation
 - e.g., acetylcholinesterase (AChE) degrades acetylcholine (ACh)

Questions to ponder

Why must NTs be inactivated?

Questions to ponder

- Why must NTs be inactivated?
 - Keeps messages discrete, localized in time and space
 - Maximizes concentration gradient

What sort of PSP would opening a Na+ channel produce?

- Excitatory PSP, Na+ flows in
- Excitatory PSP, Na+ flows out
- Inhibitory PSP, Na+ flows in
- Inhibitory PSP, Na+ flows out

What sort of PSP would opening a Na+ channel produce?

- Excitatory PSP, Na+ flows in
- Excitatory PSP, Na+ flows out
- · Inhibitory PSP, Na+ flows in
- Inhibitory PSP, Na+ flows out

What sort of PSP would opening a Cl-channel produce?

Remember [Cl-out]>>[Cl-in]

- Excitatory PSP, Cl- flows in
- Excitatory PSP, Cl- flows out
- Inhibitory PSP, CI- flows in
- Inhibitory PSP, Cl- flows out

What sort of PSP would opening a Cl-channel produce?

Remember [Cl-out]>>[Cl-in]

- Excitatory PSP, Cl- flows in
- Excitatory PSP, Cl- flows out
- · Inhibitory PSP, Cl- flows in
- Inhibitory PSP, Cl- flows out

Types of synapses

Synapses on

- dendrites
 - usually excitatory
- · cell bodies
 - usually inhibitory
- axons
 - usually modulatory (change p(fire))

Summary of chemical transmission

Neurotransmiters

Family Neurotansmitter

Amino acids Glutamate

 γ aminobutyric acid (GABA)

Glycine

Aspartate

Glutamate

- Primary excitatory NT in CNS
- Role in learning (via NMDA)
- Receptors on neurons and glia (astrocytes and oligodendrocytes)
- Linked to umami (savory) taste sensation (think monosodium glutamate or MSG)
- Dysregulation in schizophrenia? (Javitt, 2010)

Glutamate

TypeReceptorEsp Permeable toIonotropicAMPANa+, K+KainateKainateNMDACa+MetabotropicmGlu

γ aminobutyric acid (GABA)

- Primary inhibitory NT in CNS
- Excitatory in developing CNS, [Cl-] in >> [Cl-] out
- Binding sites for benzodiazepines (e.g., Valium), barbiturates, ethanol, etc.

Туре	Receptor	Esp Permeable to
Ionotropic	GABA-A	CI-
Metabotropic	GABA-B	K+

GABA

"GABAA-receptor-protein-example" by Chemgirl131 at English Wikipedia - Transferred from en.wikipedia to Commons by Sreejithk2000 using CommonsHelper.. Licensed under Public Domain via Commons.

Other amino acid NTs

- Aspartate
 - Like Glu, stimulates NMDA receptor
- Glycine
 - Spinal cord interneurons

Acetylcholine (ACh)

- Primary excitatory NT of CNS output
- Somatic nervous system (motor neuron -> neuromuscular junction)
- Autonomic nervous system
 - Sympathetic branch: preganglionic neuron
 - Parasympathetic branch: pre/postganglionic

ACh anatomy

http://myzone.hrvfitltd.netdna-cdn.com/wp-content/uploads/2014/09/Image-1.jpg

Acetylcholine

Туре	Receptor	Esp Permeable to	Blocked by
Ionotropic	Nicotinic (nAChR)	Na+, K+	e.g., Curare
Metabotropic	Muscarinic (mAChR)	K+	e.g., Atropine

Curare

http://www.general-anaesthesia.com/images/indian-curare.jpg

Atropine

· aka, nightshade or belladonna

Fig. 2 Pharmacologically dilated pupil.

http://www.aapos.org/client_data/files/2011/_138_dilatingeyedrops2.jpg

Monoamine NTs

Family Neurotansmitter

Monoamines Dopamine (DA)

Norepinephrine (NE)/Noradrenaline (NAd)

Epinephrine (Epi)/Adrenaline (Ad)

Serotonin (5-HT)

Melatonin

Histamine

Information processing

- · Point-to-point
 - One sender, small number of recipients
 - Glu, GABA
- Broadcast
 - One sender, widespread recipients
 - DA, NE, 5-HT, melatonin, histamine
- Need to know
 - NT, where projecting, type of receptor to predict function

Dopamine

- · Released by
 - Substantia nigra -> striatum, meso-striatal projection
 - Ventral tegmental area (VTA) -> nucleus accumbens, ventral striatum, hippocampus, amygdala, cortex; meso-limbo-cortical projection

Dopamine Anatomy

http://thebrain.mcgill.ca/flash/a/a_03/a_03_cl/a_03_cl_que/a_03_cl_que_1a.

DA Disruption linked to

- Parkinson's Disease (mesostriatal)
 - DA agonists treat (agonists facilitate/increase transmission)
- ADHD (mesolimbocortical)
- Schizophrenia (mesolimbocortical)
 - DA antagonists treat
- Addiction (mesolimbocortical)

DA Inactivated by

Dopamine transporter (DAT) and chemical breakdown

http://www.scholarpedia.org/article/Dopamine_anatomy#Dopamine_recep

Dopamine receptors

Туре	Receptor	Comments
Metabotropic	D1-like (D1 and D5)	more prevalent

D2-like (D2, D3, D4) target of many antipsychotics

Norepinephrine

- · Released by
 - *locus coeruleus* in pons
 - postganglionic sympathetic neurons onto target tissues
- · Role in arousal, mood, eating, sexual behavior
- Monoamine oxidase inhibitors (MAOIs)
 - inactivate monoamines in neurons, astrocytes
 - MAOIs increase NE, DA
 - Treatment for depression

NE Anatomy

https://www.dartmouth.edu/~rswenson/NeuroSci/figures/Figure_9_files/im

NE receptors

Туре	Receptor	Comments
Metabotropic	<i>α</i> (1,2)	antagonists treat anxiety, panic
	β (1,2,3)	'beta blockers' in cardiac disease

Serotonin (5-HT)

- · Released by *raphe nuclei* in brainstem
- · Role in mood, sleep, eating, pain, nausea, cognition, memory
- Modulates release of other NTs
- Most of body's 5-HT regulates digestion

5-HT anatomy

https://www.dartmouth.edu/~rswenson/NeuroSci/figures/Figure_9_files/im

5-HT receptors

- Seven families (5-HT 1-7) with 14 types
- · All but one metabotropic

5-HT clinical significance

- Ecstasy (MDMA) disturbs serotonin
- · So does LSD
- Fluoxetine (Prozac)
 - Selective Serotonin Reuptake Inhibitor (SSRI)
 - Treats depression, panic, eating disorders, others
- 5-HT3 receptor antagonists are anti-mimetics used in treating nausea

Melatonin

Released by pineal gland

http://www.vivo.colostate.edu/hbooks/pathphys/endocrine/otherendo/pin

Histamine

- · Released by hypothalamus, project to whole brain
- Metabotropic receptors
- Role in arousal/sleep regulation
- · In body, part of immune response

Targets of psychotropic drugs

https://stahlonline.cambridge.org/essential_4th_chapter.jsf?page=chapter2_summary.htm&name=Chapter%202&title=Summary

https://en.wikipedia.org/wiki/Mah_Nà_Mah_Nà

Monoamines, do-pa-mine is one Monoamines, norepi, too Monoamines, sero-tonin e-pinephrine, dop-a- mine, nor-epinephrine, melatonin, whoo!

Monoamines, mod-u-late neurons Monoamines, throughout the brain Monoamines, keep people happy, brains snappy, not sleepy, not sappy, do-do do-do do-do do

Others

- Gases
 - Nitric Oxide (NO), carbon monoxide (CO)
- Neuropeptides
 - *Substance P* and *endorphins* (endogenous morphine-like compounds) have role in pain
 - *Orexin/hypocretin*, project from lateral hypothalamus across brain, regulates appetite, arousal
 - Cholecystokinin (CCK) stimulates digestion
- Purines
 - *Adenosine* (inhibited by caffeine)
- Others
 - *Anandamide* (activates endogenous cannabinoid receptors)

References

Anderson, C. M., & Swanson, R. A. (2000). Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. *Glia*, *32*(1), 1–14. <a href="https://doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W">https://doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W

Javitt, D. C. (2010). Glutamatergic theories of schizophrenia. *Israel Journal of Psychiatry and Related Sciences*, *47*(1), 4.