Preparing gases in lab		
Gas	Method(s)	Reaction(s)
H ₂ S	Treat FeS with acid	$FeS + 2H^+ \rightarrow Fe^{2+} + H_2S$
CO ₂	Treat marble stone or limestone	CaO + 2HCl
	(CaCO₃) with HCl	\rightarrow CaCl ₂ + CO ₂ + H ₂ O
SO ₂	Heat Cu with conc. H₂SO₄	Cu + 2H₂SO₄
		\rightarrow CuSO ₄ + SO ₂ +2H ₂ O
	Treat Na ₂ SO ₃ or NaHSO ₃ with diluted	$Na_2SO_3 + H_2SO_4$
	H₂SO₄	\rightarrow Na ₂ SO ₄ + SO ₂ + H ₂ O /
		2NaHSO ₃ + H ₂ SO ₄
		\rightarrow Na ₂ SO ₄ + 2SO ₂ + 2H ₂ O
NΗ ₃	Heat NH ₄ Cl with NaOH or Ca(OH) ₂	$NH_4^+ + OH^- \rightarrow NH_3 + H_2O$
H ₂	Treat Zn with acid	$Zn + 2H^+ \rightarrow Zn^{2+} + H_2$
	Electrolysis of water	$2H_2O \rightarrow 2H_2 + O_2$
O ₂	Catalytic decomposition of H ₂ O ₂ with	$2H_2O_2 \rightarrow 2H_2O + O_2$
	MnO ₂ catalyst	
	Thermal decomposition of KClO ₃ with	$2KClO_3 \rightarrow 2KCl + 3O_2$
	MnO ₂ catalyst	
	Electrolysis of water	$2H_2O \rightarrow 2H_2 + O_2$
NO ₂	Treat Cu with diluted HNO ₃	Cu + 4HNO ₃
		\rightarrow Cu(NO ₃) ₂ + 2H ₂ O + 2NO ₂
NO	Treat Cu with conc. HNO ₃	3Cu + 8HNO₃
		\rightarrow 3Cu(NO ₃) ₂ + 4H ₂ O + 2NO
Cl ₂	Treat bleaching powder (ClO ⁻ ion)	ClO⁻ + 2HCl
	with HCl	\rightarrow Cl ⁻ + Cl ₂ + H ₂ O
	Heat conc. HCl with MnO ₂	MnO ₂ + 4HCl
		\rightarrow MnCl ₂ + Cl ₂ + 2H ₂ O
N_2	Thermal decomposition of NH ₄ NO ₂	$NH_4NO_2 \rightarrow 2H_2O + N_2$
HCl	Heat table salt (NaCl) with conc. H_2SO_4	$2\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{ HCl}$
HF	Heat fluorite (CaF_2) with conc. H_2SO_4	$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$
CO	Dehydration of formic acid	HCOOH → H ₂ O + CO

Industrial processes

-Ammonia-soda process (Solvay process): $2NaCl + CaCO_3 \rightarrow Na_2CO_3 + CaCl_2$

Step 1: NaCl + H_2O + CO_2 + NH_3 \rightarrow NaHCO₃ + NH_4Cl (neutralisation + precipitation)

Step 2: $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$ (thermal decomposition)

Step 3: $CaCO_3 \rightarrow CaO + CO_2$ (thermal decomposition)

Step 4: CaO + H₂O → Ca(OH)₂ (combination reaction)

Step 5: $2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + 2H_2O + CaCl_2$ (double displacement)

Flowchart:

-Haber process (Haber–Bosch process): $N_2 + 3 H_2 \rightleftharpoons 2NH_3$

Optimum condition: 400°C, 200 atm (Note: Coefficients in the reactant and product sides)

-Ostwald process: $NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$

Step 1: $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ (Pt catalyst)

Step 2: $2NO + O_2 \rightarrow 2NO_2$

Step 3: $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$

-Contact method:

Step 1: $S + O_2 \rightarrow SO_2$

Step 2: $2SO_2 + O_2 \rightarrow 2SO_3$ (V_2O_5 catalyst)

Step 3: Absorb SO_3 with conc. H_2SO_4 to produce oleum (fuming sulphuric acid) and then dilute it to conc. H_2SO_4 (Overall equation: $SO_3 + H_2O \rightarrow H_2SO_4$)

-Membrane cell: $2NaCl + 2H_2O \rightarrow 2NaOH + H_2 + Cl_2$

Anode: $2H_2O + 2e^- \rightarrow 2OH^- + H_2$ (Ni electrode)

Cathode: $2NaCl \rightarrow 2Na^+ + Cl_2 + 2e^-$ (Ti electrode)

Setting:

-Ethanol production:

Step 1: $CH_4 + H_2O \rightarrow 3H_2 + CO$ (steaming forming to produce syngas)

Step 2: $2H_2 + CO \rightarrow CH_3OH$ (High pressure temperature, $CuO + ZnO + Al_2O_3$ catalyst)

-Cumene process (Hock process):

Step 1:
$$+ \langle \longrightarrow \rangle$$
 (Addition)

Step 2: Cumene hydroperoxide (Aerobic oxidation)

Step 3: Cumene hydroperoxide Phenol Acetone