EÖTVÖS LORÁND TUDOMÁNYEGYETEM BUDAPESTI CORVINUS EGYETEM

KOCKÁZATI FAKTOR MODELLEK

Szakdolgozat

Demeter Adrienn

Biztosítási és Pénzügyi Matematika MSc Kvantitatív Pénzügy szakirány

Témavezetők:

Molnár-Sáska Gábor Molnár Levente Hajnal Áron

Budapest, 2024

Köszönetnyilvánítás

Tartalomjegyzék

1.	Bevezetés								
2.	Faktormodellek története								
3. Faktormodellek az elméletben									
	3.1.	Több-faktoros modellek szerkezete	5						
	3.2.	Faktormodellek típusai	6						
4.	Modellépítés S&P500-ra								
	4.1.	Hozam számolás	8						
	4.2.	Modellben szereplő faktorok	8						
		4.2.1. Iparág faktorok	8						
		4.2.2. Stílus faktorok	10						
		4.2.3. Ország faktor	18						
	4.3.	Keresztmetszeti regresszió	19						
5	Δlka	ılmazások	22						

4. Modellépítés S&P500-ra

Ebben a részben a faktormodelleket egy konkrét példán fogom bemutatni és az eredményeket elemezni. A gyakorlati rész megvalóstásához az S&P500 részvényeket, valamint a 2023.01.03-tól 2024.01.02-ig tartó időszakot választottam. Minden adatom napi rendszerességű, melyeket a Bloombergből töltöttem le. A modellezés során csak a munkanapokat vettem figyelembe. Az egész feladatot Python nyelvben programoztam.

4.1. Hozam számolás

A modellépítés során az első lépés a hozamok kiszámolása volt. A vizsgált időszakra napvégi részvényárfolyamokat és osztalékokat töltöttem le, melyekből napi effektív hozamokat számoltam:

$$r_i = \frac{P_i + div_i}{P_{i-1} + div_{i-1}} - 1$$

 P_i jelöli a nap végi árfolyamot, div_i pedig az osztalékot. Ha az i. napon nem történt osztalék fizetés, akkor aznap $div_i = 0$. Ezután ebből levontam a kockázatmentes hozamot, így valójában többlethozamokkal dolgoztam. A végén százalékosítást nem végeztem, mert a későbbiekben a többi adatom is tört alakban volt megadva. Loghozammal is elvégeztem a modellezést, viszont nem volt jelentős eltérés az eredményben, ezért maradtam az effektív hozamnál.

4.2. Modellben szereplő faktorok

Második lépésben ki kellett választani, hogy milyen faktorokkal szeretnék dolgozni. A rendelkezésre álló adatok és számolási módszerek miatt a választásom a következőkre esett.

4.2.1. Iparág faktorok

A cégek iparágak szerinti csoportosításához a *Global Industry Classification Standard* (GICS) osztályozást használtam. Ezt az osztályozási formát a Standard & Poor's és az

MSCI közösen fejlesztették ki 1999-ben. A GICS a vállalatokat fő üzleti tevékenységük alapján csoportosítja, amelyhez a bevételt használja legfontosabb mutatóként. Ezen kívül figyelembe veszi a nyereséget, illetve a piac megítélését. A 4 szintes hierarchia rendszer első szintjén a szektorok, alatta az iparági csoportok, iparágak, majd aliparágak szerepelnek. Egy vállalatot abba az aliparágba sorolnak be, amely a legjobban tükrözi azokat az üzleti tevékenységeket, amelyek a vállalat bevételeinek túlnyomó részét biztosítják. Ha egy cég kettő vagy több, egymástól lényegesen eltérő üzleti tevékenységeket folytat, és ezek közül egyik sem járul hozzá a bevételek legalább 60%-ához, akkor kezdetben abba az alágazatba sorolják, amely a vállalat bevételeinek és nyereségeinek legnagyobb részét adja. Különböző üzleti tevékenységből származó bevételek esetén a jelenlegi GICS beosztás megváltoztatásához legalább a 60%-os küszöbértéket el kell érni egy adott üzleti tevékenységből. Egy vállalatot a nyilvánosan elérhető információk alapján kategorizálnak, mint például az éves jelentés, a vállalati honlapok, valamint az egyéb hivatalos bejelentések.

Az évek folyamán számos modósítás történt a GICS felépítésében. A legutolsó frissítés 2023-ban volt, amely szerint a GICS jelenleg 11 szektort, 25 iparági csoportot, 74 iparágat és 163 aliparágat tartalmaz. A szakdolgozatom során a lefrissebb struktúrát használtam. Mivel viszonylag kevés eszközöm volt, ezért a szektor szintet választottam, hogy a végső regresszióban legyenek szignifikáns iparág faktoraim is. Így az alábbi kategóriák kerültek a modellbe:

- Energia (Energy)
- Nyersanyagok (Materials)
- Ipari termékek (Industrials)
- Nem alapvető fogyasztási termékek (Consumer Discretionary)
- Alapvető fogyasztási termékek (Consumer Staples)
- Egészségügy (Health Care)

- Pénzügy (Financials)
- IT (Information Technology)
- Kommunikációs szolgáltatások (Communication Services)
- Közüzemek (Utilities)
- Ingatlan (Real Estate)

Ez alapján 11 bináris iparág faktorom lett. Amelyik csoportba tartozik az adott eszköz, arra a faktorra nézve 1 a kitettsége, a többire 0, ezért ezek 0-1 mátrix formájában

építhetők be a modellbe. Az alábbi táblázat tartalmazza, hogy az *S&P*500 esetén hány cég tartozott az egyes kategóriákba.

lparágak	db	lparágak	db
Energia	23	Pénzügy	72
Nyersanyagok	28	IT	64
Ipari termékek	78	Kommunikációs szolgáltatások	22
Nem alapvető fogyasztási termékek	53	Közüzemek	30
Alapvető fogyasztási termékek	38	Ingatlan	31
Egészségügy	64		

4.2.2. Stílus faktorok

A stílus faktorok már sokkal összetettebb faktorok, ugyanis ezek már nem bináris változók, hanem folytonosak, valamint egy-egy stílus faktor több alap elemből tevődik össze. A modellezéshez a Bloomberg által közétett 10 darab stílus faktort választottam, melyeket az alábbiakban részletezek.

Momentum

A momentum faktor célja, hogy megragadja a dinamikát a részvények hozamában, így a jelentése lényegében az, hogy akik eddig jól teljesítettek, rövidtávon ezután is jól fognak, akik pedig rosszul, azok ezután is rosszul fognak teljesíteni. Ennek eredményeként elkülönülnek az elmúlt egy évben alul- és felülteljesítő részvények. Ez látható az 1. ábrán is: az *Apple* és a *Microsoft* az *S&P*500 legjobban teljesítő 25 cége közé tartozik, a *Zions* és a *Comerica* a legrosszabb 25-be, az *American Tower* pedig a középmezőnybe.

Annak érdekében, hogy mérsékeljük az árfolyam-visszafordító hatást, az utolsó két heti hozamot kihagyjuk a számolásból. Ez alapján a formula a következő:

$$Momentum = \sum_{t=-270 \text{ nap}}^{t=-10 \text{ nap}} \log(1+r_{n,t}),$$

ahol $r_{n,t}$ az n eszköz hozama a t időpontban. A momentum faktor érdekessége, hogy a többi faktortól eltérően, nem alap komponensek súlyozásából tevődik össze. Azok

a részvények, amelyek az elmúlt évben jelentősen emelkedtek, nagy faktorkitettséggel rendelkeznek.

1. ábra. Momentum faktor

Érték

Az érték faktor megkülönbözteti az érték alapú részvényeket (value stock) a növekedési részvényektől (growth stock). Érték alapú részvényeknek nevezzük azokat a részvényeket, amelyekkel a valódi értéküknél alacsonyabb áron kereskednek. Azaz, ezek a részvények alulértékeltek. A növekedési részvények viszont olyan részvények, amelyek a piacon tapasztalható átlagos növekedési ütemhez képest lényegesen magasabb növekedési rátával rendelkeznek. Ezáltal az ilyen részvények gyorsabb ütemben hoznak nyereséget. Az ebbe a csoportba tartozó részvények általában nem fizetnek osztalékot.

Ez a faktor a Fama-French-féle háromfaktoros modellben is szerepel HML néven, és azt mutatja meg, hogy a magas *könyv szerinti érték/piaci érték* rátával rendelkező érték alapú részvények nagyobb hozamot biztosítanak, mint a növekedési részvények. Kiszámítása pedig a következőképpen alakul:

$$\acute{E}rt\acute{e}k = 0, 13*\frac{B}{P} + 0, 18*\frac{CF}{P} + 0, 18*\frac{E}{P} + 0, 21*\frac{EBITDA}{EV} + 0, 16*For\frac{E}{P} + 0, 13*\frac{Sales}{EV},$$

ahol a $\frac{B}{P}$ (book to price ratio) a vállalat aktuális részvényárfolyamának és a könyv szerinti értékének hányadosából számolt reciprok. Az árfolyam-könyv szerinti érték arány mutatja a vállalat piaci értékelését a könyv szerinti értékéhez képest. Az árfolyam-cash flow arány egy részvény árfolyamának értékét méri az egy részvényre jutó működési tevékenységből származó cash flow-hoz viszonyítva. Működési tevékenységből származó cash flow alatt egy vállalatnak a folyamatban lévő, rendszeres üzleti tevékenységeiből származó pénzösszegét értjük. Ennek reciprokaként kapjuk a $\frac{CF}{P}$ (cash flow to price) komponenst. A $\frac{P}{E}$ ráta méri, hogy egy adott vállalat részvényének a piaci ára mennyire drága az egy részvényre jutó nyereséghez képest. Ennek szintén a reciproka szerepel a képletben. Ezen kívül szükséges a nyereség 1 és 2 éves súlyozott előrejelzése, amelyekből megkapjuk az előrejelzett $\frac{E}{P}$ ($For \frac{E}{P}$) alap komponenst:

$$For \frac{E}{P} = \frac{w * EF1 + (1 - w)EF2}{P}$$

A w-t az egyszerűség kedvéért 0,5-nek szokás venni, de el lehetne tolni úgy, hogy a 2 éves előrejelzésnél legyen a nagyobb súly. *EF1* és *EF2* jelöli a nyereség 1, illetve 2 év múlvai becslését. 2 éves előrejelzéshez nem volt elérhető információ a Bloombergben, ezért azt én becsültem meg az elmúlt 5 év alapján rendelkezésre álló adatokból, illetve az 1 éves előrejelzésből. Mivel nem minden eszköz esetében volt megfigyelhető trend, ezért ennek a 6 pontnak vettem az átlagát, és azt használtam 2 éves becslésnek.

Az érték faktor képletében szereplő $\frac{EBITDA}{EV}$ reciproka mutatja, hogy a vállalat értékéhez képest mekkora az éves eredmény. A versenytársakhoz vagy az iparági átlaghoz viszonyított alacsony arányszám alulárazottságot, míg a magas túlárazottságot jelez. Az EBITDA a kamatok, adózás, értékcsökkenés és amortizáció előtti eredményt jelenti, az EV (enterprise value) pedig a vállalati értéket, azaz hogy mennnyi lenne a vállalat átvételi költsége az adott pillanatban. Ezt a következőképp számoljuk:

$$EV = Market \ cap + LT \ Debt + \max(ST \ Debt - Cash, 0),$$

ahol a piaci kapitalizáció mutatja, hogy mennyit kellene fizetni a vállalatért tőzsdei felvásárlás esetén. Az *LT Debt* jelöli az 1 évnél hosszabb lejáratú adósságot, *ST Debt* pedig a rövid lejáratú adósságot, azaz azon pénzügyi kötelezettségeket, amelyek várhatóan 1 éven belül visszafizetésre kerülnek. *Cash* pedig ismét a működési tevékenységből származó pénzösszeg.

Végül, a fenti képletben szereplő utolsó alap elem reciproka azt mutatja, hogy hogyan

kell értékelni egy vállalatot a bevétele alapján, figyelembe véve mind a vállalat saját tőkéjét, mind az adósságát.

Mindegyik alap elem számlálójában egy könyv szerinti, nevezőjében pedig egy piaci mérték szerepel, ezért egy olyan érték alapú részvénynek, amelynek nagy értékei vannak ezekre a mutatókra nézve, nagy lesz a faktorkitettsége is.

Osztalékhozam

Ez is egy érték faktor, de kellően nagy figyelmet kap ahhoz, hogy önálló faktorként szerepeljen. A faktorkiettség ebben az esetben a legutóbb bejelentett éves nettó osztalék és a piaci ár hányadosa. A magas osztalékhozamú részvényeknek nagy kitettsége van erre a faktorra nézve.

$$Osztalékhozam = \frac{Utolsó\ kifizetett\ osztalék}{\acute{A}rfolyam}$$

Méret

Ez a másik olyan faktor, ami a háromfaktoros Fama-French-féle modellben is szerepel, csak ott SMB néven. Ez egy olyan több tényezős mérőszám, amelynek segítségével megkülönböztethetők a kis- és nagyvállalatok. Azt mutatja meg, hogy a kis kapitalizációjú vállalatok tartósan magasabb hozamot érnek el, mint a nagy piaci kapitalizációval rendelkező cégek. E faktor 3 alap komponensből tevődik össze: piaci kapitalizáció, bevétel és teljes eszközállomány, kiszámítása pedig az alábbiak szerint alakul:

$$M\acute{e}ret = 0.28 * \log(Market\ cap) + 0.36 * \log(Sales) + 0.36 * \log(Total\ assets),$$

ahol a *Sales* jelöli a árbévetelt, azaz a szokásos üzleti tevékenységből származó pénzösszeget, amelyet az átlagos eladási ár és az eladott egységek számának szorzataként számolnak ki. A teljes eszközállomány, vagy más néven mérlegfőösszeg pedig az adott vállalat tulajdonában lévő összes eszköz könyv szerinti értékének összegeként számítódik.

Mivel a bevétel és a teljes eszközállomány csak negyedévente frissül, ezért a többi napon az adott időpontig rendelkezésre álló legfrissebb értékkel számoltam. A piaci kapitalizáció viszont naponta változik, ezért a kietettségek is naponta módosultak.

Kereskedési aktivitás

Ez a faktor azt próbálja megragadni, hogy a likviditás és a kereskedés gyakorisága milyen hatással van a részvények hozamaira. Szeretnénk elkerülni a méret faktorral történő korrelációt, hiszen az a keresztmetszeti regresszióban téves eredményhez vezetne, ezért ebben a faktorban a forgalmat számoljuk:

$$\textit{Keresked\'esi aktivit\'as} = \sum_{t=-500 \text{ nap}}^{t=-1 \text{ nap}} exp \left(t * \frac{log(2)}{180} \right) * \frac{\textit{Volume}}{\textit{Shares outstanding}}$$

Ez az adott napon kereskedett részvények száma (*Volume*), valamint a forgalomban levő részvények (*Shares outstanding*) számának hányadosa az elmúlt 2 évre visszamenőleg összegezve. Minden megfigyelést exponenciálisan súlyozunk.

Növekedés

E faktor az elmúlt években eltérő ütemben növekedő részvények hozamai közötti különbséget próbálja megragadni. Hozam alapján megkülönbözteti a kis és nagy növekedést felmutató vállalatokat. A Bloomberg a faktorkitettségek kiszámolásához ebben az esetben historikus és elemzői adatokat is használ. Figyelembe veszi a teljes eszközállományban, a bevételben, illetve a nyereségben elért 5 éves növekedést, melyeket rendre *TAG* (Total Asset Growth), *SG* (Sales Growth) és *EG* (Earnings Growth) jelöl. Ezen kívül szükség van a rövidtávú bevétel és nyereség előrejelzésére, melyeket *EFG*-vel és *SFG*-vel jelölünk:

$$N\ddot{o}veked\acute{e}s = 0,23*TAG+0,26*SG+0,15*EG+0,16*EFG+0,2*SFG,$$

ahol

$$TAG = \frac{\textit{Teljes eszközállomány 5 éves átlagos növekedése}}{\textit{Átlagos teljes eszközállomány az elmúlt 5 évben}}$$

$$SG = \frac{Bev\acute{e}tel~5~\acute{e}ves~\acute{a}tlagos~n\"{o}veked\acute{e}se}{\acute{A}tlagos~teljes~eszk\"{o}z\acute{a}llom\acute{a}ny~az~elm\'{u}lt~5~\acute{e}vben}$$

$$EG = \frac{Nyereség\ 5\ éves\ átlagos\ növekedése}{\acute{A}tlagos\ teljes\ eszközállomány\ az\ elmúlt\ 5\ évben}$$

$$EFG = \frac{R\acute{e}szv\acute{e}nyenk\acute{e}nti\ nyeres\acute{e}g\ 2\ \acute{e}ves\ előrejelz\acute{e}se}{R\acute{e}szv\acute{e}nyenk\acute{e}nti\ nyeres\acute{e}g\ 1\ \acute{e}ves\ előrejelz\acute{e}se}$$

$$SFG = \frac{Bev\acute{e}tel~2~\acute{e}ves~előrejelz\acute{e}se}{Bev\acute{e}tel~1~\acute{e}ves~előrejelz\acute{e}se}$$

Mivel 2 éves előrejelzés ehhez a faktorhoz sem állt rendelkezésemre, ezért ezeket az érték faktornál említett módon becsültem itt is.

Tőkeáttétel

Ez a faktor a vállalatok tőkeáttételének szintjét mutatja, amelyet három mutató átlaga határoz meg. Az egyes cégek eladósodottsági szintjének kiszámításához használt tőkeáttételi mutatók a könyv szerinti tőkeáttétel (*BLev*), amely a vállalat könyv szerinti értékéhez viszonyított adósságát mutatja, a piaci tőkeáttétel (*MLev*), azaz a vállalat piaci értékéhez viszonyított adósság, valamint a teljes eszközállományhoz viszonyított adósság (*D2TA*). Mindhárom mutatót közel azonos súllyal vesszük figyelembe:

$$T\"{o}ke\'{a}tt\'{e}tel = 0,34 * BLev + 0,33 * MLev + 0,33 * D2TA,$$

ahol

$$BLev = \frac{LT \ Debt + \max(ST \ Debt - Cash, 0)}{Book \ Value + LT \ Debt + \max(ST \ Debt - Cash, 0)}$$

$$MLev = \frac{LT \ Debt + \max(ST \ Debt - Cash, 0)}{Market \ cap + LT \ Debt + \max(ST \ Debt - Cash, 0)}$$

$$D2TA = \frac{LT \, Debt + \max(ST \, Debt - Cash, 0)}{Total \, Assets}$$

A faktorkitettségek napi változása a piaci kapitalizációnak köszönhető, hiszen minden más mutató csak negyedévente változik.

Jövedelmezőség

A jövedelmezőség faktor haszonkulcsokat (profit margins) használ az egyes vállalatok teljesítményének mérésére. A haszonkulcsok olyan pénzügyi mutatók, amelyek a vállalatok árbevételének azt a részét mutatják meg, amelyet az összes költség levonása után

nyereségként megtarthatnak. Az értéküket százalékban fejezik ki. Ezeket felhasználva számolják ki a sajáttőke-arányos nyereséget (*ROE*), a lekötött tőkével arányos megtérülést (*ROCE*), az eszközarányos nyereséget (*ROA*) és az EBITDA-marzsot (*EBITDA margin*).

A sajáttőke-arányos nyereség azt mutatja meg, hogy mennyire hatékonyan használja fel a vállalat a sajáttőkét profittermelésre. Minél magasabb ez az érték, annál jobban tudja a cég a sajáttőkét nyereséggé alakítani. Az eszközarányos nyereség méri, hogy egy vállalat mennyire hatékonyan tud profitot előállítani a gazdasági erőforrásaiból vagy a mérlegében szereplő eszközeiből. A lekötött tőkével arányos megtérülés azt vizsgálja, hogy egy vállalat mennyire eredményesen teremt hasznot a tőke felhasználásával. A sajáttőke-arányos nyereségtől abban különbözik, hogy ebbe már a felvett hitelek is beletartoznak. Végül, az EBITDA-marzs jelentése, hogy mekkora egy vállalat kamatok, adók, értékcsökkenés és amortizáció előtti eredménye a bevétel százalékában kifejezve. Ezeket az alábbi módon tudjuk kiszámolni:

$$ROE = \frac{Nett\'oj\"ovedelem}{Saj\'att\'oke k\"onyv szerinti\'ert\'eke}$$

$$ROA = \frac{Nettó\ jövedelem}{Teljes\ eszközállomány}$$

$$ROCE = \frac{Nett\acute{o}\ j\"{o}vedelem}{Lek\"{o}t\"{o}tt\ t\~{o}ke}$$

$$EBITDA \ margin = \frac{EBITDA}{Bev\acute{e}tel}$$

Az első három képlet az egyszerűsítés utáni alakban van felírva, emiatt ezekben a haszonkulcsok közvetlenül nem jelennek meg. Ezen mutatók súlyozásával a következő formulával tudjuk meghatározni a jövedelmezőségi faktort:

 $J\ddot{o}vedelmez\ddot{o}s\acute{e}g = 0,26*ROE+0,28*ROCE+0,28*ROA+0,18*EBITDA$ margin

Eredmény változékonysága

Ez a faktor a cash flow, az árbevétel és a nyereség stabilitását méri az elmúlt 5 évre vonatkozóan. Kiszámítása a következőképpen néz ki:

 $Eredmény \ változékonysága = 0,34 * EarnVol + 0,35 * CFVol + 0,31 * SalesVol,$

ahol az egyes komponensek az említett mutatók volatilitását jelölik, és az alábbiak szerint alakulnak:

$$EarnVol = \frac{Nyereség \ volatilitása \ az \ elmúlt \ 5 \ évre \ nézve}{Teljes \ eszközállomány \ mediánja \ az \ elmúlt \ 5 \ évre \ nézve}$$

$$CFVol = \frac{Cash \ flow \ volatilit\'{a}sa \ az \ elm\'{u}lt \ 5 \ \'{e}vre \ n\'{e}zve}{Teljes \ eszk\"{o}z\'{a}llom\'{a}ny \ medi\'{a}nja \ az \ elm\'{u}lt \ 5 \ \'{e}vre \ n\'{e}zve}$$

$$SalesVol = rac{Bev\'etel\ volatilit\'asa\ az\ elm\'ult\ 5\ \'evre\ n\'ezve}{Teljes\ eszk\"oz\'allom\'any\ medi\'anja\ az\ elm\'ult\ 5\ \'evre\ n\'ezve}$$

Volatilitás

E faktor feladata a volatilitás mérése az egyes értékpapírok esetén. Különböző volatilitás mérőszámok alkalmazásával megkülönbözteti a volatilis, valamint a kevésbé volatilis részvényeket.

Volatilitás =
$$0.30 * VLRT + 0.14 * \beta + 0.29 * \sigma + 0.26 * CRNG$$

Az itt megjelenő β a CAPM béta, a σ a CAPM reziduálisok szórása, *CRNG* pedig az elmúlt 1 év alatt bekövetkező árfolyamok maximumának és minimumának hányadosa. *VLRT* jelöli a hozamok volatilitását az elmúlt 252 kereskedési napra nézve.

A CAPM képlet alapján

$$E(r_i) = r_f + \beta_i (E(r_M) - r_f)$$

látszik, hogy regresszióval tudjuk kiszámolni a bétát. Először meg kell határozzuk a piaci hozamot. Ehhez én az S&P500 indexet választottam, és abból számoltam effektív hozamot a 4.1. szakaszban leírtak szerint. Ezután idősoros regressziót alkalmazva az első lépésben kiszámolt részvényhozamokat regresszáltam a piaci többlethozammal. A

regressziót 5 éves időintervallumon futtattam, hiszen a bétát általában az elmúlt 5 év alapján határozzák meg. Az ily módon létrejövő regressziós koefficiens éppen a béta. Ezt követően kiszámoltam a reziduálisok szórását, amiből megkaptam a σ -t.

Miután minden faktorkitettséget meghatároztunk, a volatilitás kitettségét regresszáljuk a többi faktorkitettséggel. Az ebből kapott reziduális kerül a keresztmetszeti regresszióba volatilitás faktorkitettségként. Erre a módosításra azért van szükség, hogy a keresztmetszeti regresszió magyarázó változói ne korreláljanak egymással.

Felmerülhet a kérdés, hogy az egyes stílus faktorok esetén miért pont úgy súlyozzuk az alap elemeket, ahogyan az a képletben szerepel, és miért van minden stílus faktorban más és más súly. Mi alapján változik? A Bloomberg kifejlesztett egy algoritmust, melynek alapötlete, hogy egy adott stílus faktoron belül közös dimenziót találjon az alap komponensek számára. Az azonos súlyozás lenne a legegyszerűbb megoldás, de az nem feltétlenül optimális, hiszen figyelmen kívül hagyja a komponensek közötti korrelációt.

Az eljárás első lépéseként kiszámoljuk az alap elemek Spearman-féle rangkorrelációs mátrixát. Ezután erre a mátrixra futtatunk egy főkomponens elemzést, és kiválasztjuk az első főkomponenst, hiszen ez magyarázza a variancia legnagyobb részét. Végül, az első fokomponensben kapott loadingokat összegezzük, és megnézzük hogy egy-egy loading hány százalékát teszi ki az összegnek. Ezek a százalékban kifejezett értékek lesznek a végső súlyok, melyekkel az alap elemeket szorozzuk.

4.2.3. Ország faktor

Az ország faktor szintén egy bináris változó, ahol az adott eszköznek egységnyi kitettsége van a hozzátartozó országra, és nulla a többire. Ez alapján ezt is egy 0-1 mátrix formájában tudjuk beépíteni a modellbe, ahol a sorok az értékpapírok és az oszlopok az egyes országok. Mivel a szakdolgozatom során csak amerikai cégek részvényeivel dolgoztam, azaz egy úgynevezett egy-országos faktormodellt építettem, ezért ennek a faktornak nem volt jelentősége. Megvizsgáltam, hogy milyen eredményt kapok, ha hozzáveszem ezt a faktort is, de nem tapasztaltam jelentős eltérést.

4.3. Keresztmetszeti regresszió

Miután az összes faktort kiszámoltam minden eszközre és időpontra, keresztmetszeti regresszió segítségével meghatároztam a faktorhozamokat. Ez annyiban különbözik az idősoros regressziótól, hogy egy adott időponthoz tartozóan regresszálunk különböző változókat, nem pedig egy változót egy meghatározott időintervallumon. Nálam a független változók az első lépésben kiszámolt hozamok voltak, a magyarázó változók pedig a 10 stílus, és a 11 iparág faktorok.

A keresztmetszeti regressziók során kapott együtthatók éppen a faktorhozamok különböző időpontokban. Ezek közül kiválasztottam néhányat, és a kummulált hozamokat ábrázoltam az idő függvényében. A 2. ábra mutatja, hogy ezek közül az eredmény változékonysága és a növekedés faktornak volt egy jelentősebb csökkenése május és július között, de az év végére újra emelkedni kezdtek. A másik három viszonylag egyenletesen teljesített végig.

2. ábra. Stílus faktorok kummulált teljesítménye

A 3. ábrán jól látszik, hogy a vizsgált 1 év alatt az IT faktor teljesített a legjobban. Ez talán annyira nem meglepő, hiszen ez az egyik leggyorsabban fejlődő ágazat.

3. ábra. Iparág faktorok kummulált teljesítménye

A faktorok szignifikanciájának vizsgálata segít megállapítani, hogy releváns faktorokat használtunk-e a modellben. Ehhez a keresztmetszeti regresszióval kapott p-értékeket használhatjuk. Az elemzéshez a szokásos 5%-os szignifikancia szintet választottam. Az eredményeket a következő táblázat foglalja össze. A könnyebb átláthatóság kedvéért oszlopdiagramon is megjelenítettem.

Faktorok	%	Faktorok	%	Faktorok	%
Momentum	62.95	Jövedelmezőség	7.97	Alapvető fogyasztási termékek	44.62
Osztalékhozam	28.29	Eredmény változékonysága	19.12	Egészségügy	49.00
Érték	30.68	Volatilitás	27.89	Pénzügy	43.43
Méret	30.28	Energia	59.76	IT	52.59
Kereskedési aktivitás	51.79	Nyersanyagok	30.28	Kommunikációs szolgáltatások	31.87
Növekedés	31.08	Ipari termékek	39.44	Közüzemek	50.60
Tőkeáttétel	25.50	Nem alapvető fogyasztási termékek	33.47	Ingatlan	46.22

Ahogy az ábrán is látható, a momentum faktor volt a vizsgált időszak alatt legtöbbször szignifikáns, az idő 62,95%-ban. Ezt követte az energia 59,76%-kal, majd az IT, a kereskedési aktivitás, közüzemek és az egészségügy. A felsoroltak mindegyike 50% körüli értéket mutatott. 1%-os szignifikancia szintet vizsgálva a momentum és az energia faktor

4. ábra. A faktorok a vizsgált időszak hány százalékában szignifikánsak

még mindig az idő több, mint 45%-ban szignifikáns volt. E két faktor közül a momentum erős szignifikanciája talán annyira nem meglepő, hiszen már a Fama-French-féle hat faktoros modellben is szerepel, jelentőségét tehát már korábban is felismerték. Érdekes viszont, hogy ahhoz képest, hogy milyen kevés vállalat tartozott az energia szektorba, ez a faktor elég lényegesnek bizonyult. Ennek oka a 2022-es energia válság hatása lehet.

Kirajzoltattam a modell magyarázó erejének időbeli változását is. Az 5. ábrán látható, hogy a korrigált \mathbb{R}^2 értéke a vizsgált időszak alatt többnyire 0,1 és 0,4 között mozgott.

5. ábra. Korrigált R^2 időbeli változása