(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle Bureau international

(43) Date de la publication internationale 26 avril 2001 (26.04.2001)

PCT

(10) Numéro de publication internationale WO 01/29183 A2

(51) Classification internationale des brevets⁷: C12N 1/20, C12Q 1/68, A23C 19/032 [FR/FR]; 9, rue Magellan, F-78180 Montigny-le-Bretonneux (FR).

(21) Numéro de la demande internationale:

PCT/FR00/02869

(22) Date de dépôt international:

13 octobre 2000 (13.10.2000)

(25) Langue de dépôt:

français

(26) Langue de publication:

français

(30) Données relatives à la priorité: 99/12924 15 octobre 1999 (15.10.1999) F

(71) Déposant (pour tous les États désignés sauf US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE -INRA- [FR/FR]; 147, rue de l'Université, F-75338 Paris Cedex 07 (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement): GUEDON, Eric [FR/FR]; 26, rue Jules Ferry, F-92100 Boulogne (FR). ANBA-MONDOLONI, Jamila [FR/FR]; 13, rue Charles Linné, F-78180 Montigny-le-Bretonneux (FR). DELORME, Christine [FR/FR]; 15, résidence des Basses Garennes, F-91120 Palaiseau (FR). RENAULT, Pierre

- (74) Mandataire: BREESE-MAJEROWICZ; 3, avenue de l'Opéra, F-75001 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

 Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: MUTANT LACTIC BACTERIA WITH A CAPACITY FOR OVEREXPRESSING AT LEAST ONE PEPTIDASE

(54) Titre: BACTERIES LACTIQUES MUTANTES CAPABLES DE SUREXPRIMER AU MOINS UNE PEPTIDASE

(57) Abstract: The invention relates to mutants of lactic bacteria such as L. lactis or S. thermophilus which can overexpress one or more peptidases, characterised in that at least one of the negative regulation factors of at least one of the peptidase genes of said bacteria is inactivated, said negative regulation factor being selected from a group comprising the gene codY, the genes of the operon lev, and a gene coding for a protein that is homologous with a β -glucosidase.

(57) Abrégé: La présente invention se rapporte à des mutants de bactéries lactiques, comme L. lactis ou S. thermophilus capables de surexprimer une ou plusieurs peptidases, caractérisés en ce que l'un au moins des facteurs de régulation négative de l'un au moins des gènes des peptidases desdites bactéries est inactivé, ledit facteur de régulation négative étant choisi dans le groupe comprenant le gène codY, les gènes de l'opéron lev, un gène codant une protéine homologue à une β-glucosidase.

1

BACTERIES LACTIQUES MUTANTES CAPABLES DE SUREXPRIMER AU MOINS UNE PEPTIDASE.

La présente invention concerne des mutants de bactéries lactiques, comme Lactoccocus lactis, capables de surexprimer au moins une et de préférence plusieurs mutants présentent des activités peptidases. Ces peptidolytiques fortes qui permettent d'accélérer dégradation de la caséine en acides aminés. Ces mutants sont donc tout particulièrement utiles pour augmenter la vitesse d'affinage des fromages car les acides aminés sont des précurseurs dans la synthèse d'arômes. L'invention concerne également une méthode d'identification de ces mutants et les constructions génétiques pour la mise en œuvre de cette méthode. L'invention concerne enfin l'utilisation de ces bactéries mutantes dans un procédé de fabrication et/ou de maturation de fromages.

Lactococcus lactis possède un protéolytique complexe pour dégrader les protéines du lait et en particulier la caséine. La caséine est la protéine majoritaire du lait qui fournit tous les acides aminés nécessaires à la croissance (12). La caséine est dégradée protéase de paroi. oligopeptides par une oligopeptides entrent dans la cellule par des systèmes de transport spécifiques puis sont hydrolysés en acides aminés à l'intérieur de la cellule par des peptidases (14). En plus de leur rôle dans la nutrition azotée de L. lactis, les peptidases pourraient avoir également un rôle important dans le développement des flaveurs lors de l'affinage de certains fromages.

Dix gènes de peptidases ont été clonés et leurs produits caractérisés biochimiquement chez L. lactis. Elles sont regroupées dans différentes classes suivant la position et la nature de la liaison peptidique qu'elles

5

10

15

20

25

30

2

hydrolysent et ont souvent une spécificité large (14). A l'heure actuelle, peu d'études sur la régulation de l'expression de ces peptidases chez *L. lactis* ont été menées et seule la régulation de la protéase de paroi a été étudiée de manière approfondie (18, 19).

l'expression de certains gènes chez Lactococcus lactis peut être critique lors de procédés de fabrication de fromages. Aussi, les Inventeurs ont considéré que l'évaluation du niveau d'expression de ces gènes peut se faire en déterminant l'efficacité de leurs promoteurs car la transcription est un des paramètres qui contrôle l'expression des gènes. Les Inventeurs ont donc développé dans le cadre de la présente invention des outils basés sur l'utilisation de gènes rapporteurs. Ils ont construit des vecteurs adaptés à l'étude systématique de nombreux promoteurs dans différents contextes cellulaires et environnementaux et qui peuvent être transférés aisément dans un grand nombre de souches de L. lactis. Ces vecteurs été utilisés pour étudier la variabilité l'expression des enzymes du système protéolytique de L. lactis. L'expression de seize gènes codant pour des enzymes impliquées dans la protéolyse de la souche de L. lactis subsp. cremoris MG1363 ainsi que les deux gènes de la protéase de paroi des souches WG2 et SK11 a pu ainsi être caractérisée, soit grâce aux vecteurs développés par les Inventeurs, soit grâce à la détection des ARN messagers par la technique de Northern-blot (8).

Les travaux réalisés dans le cadre de la présente invention sur la caractérisation de l'expression des gènes codant pour des peptidases, des protéases et des protéines de transport de *L. lactis* ont permis de mettre en évidence une régulation coordonnée de leur expression et ainsi de déterminer les facteurs pouvant affecter cette expression. Les Inventeurs ont notamment réalisé une étude

5

10

15

20

25

3

systématique de la transcription des seize gènes ci-dessus impliqués dans la protéolyse.

Il a ainsi été montré que la transcription de 8 des seize gènes testés est régulée et réprimée simultanément par des dipeptides via le pool intracellulaire d'acides aminés branchés : isoleucine, leucine et valine. Il s'agit des promoteurs des gènes des peptidases suivants :

- prtP, qui est la protéase de paroi (14), et plus particulièrement prtPWG qui est une protéase de paroi isolée de la souche WG2, et prtPSK11, qui est une protéase de paroi isolée de la souche SK11,
- pepN et pepC, qui sont les aminopeptidases de spécificité générale majeure dans la cellule (14),
- pep0, qui est une endopeptidase impliquée dans la dégradation des oligopeptides (14),
- opp, qui est l'opéron codant pour le système d'entrée des oligopeptides (14),
- dtpt, qui code pour une protéine de transport des di et tripeptides hydrophiles (14),
- pepDA2, qui code pour une dipeptidase générale.

Il a aussi été montré dans le cadre des travaux ayant conduit à la présente invention que la transcription des gènes du système protéolytique chez L. lactis est régulée par les produits de divers gènes. On peut citer tout particulièrement le gène codY qui constitue un régulateur central réprimant la transcription des gènes du système protéolytique chez L. lactis. On peut encore citer l'un des gènes de l'opéron lev et un gène codant pour une β -glucosidase.

Les Inventeurs ont donc mis en œuvre une stratégie de mutagenèse aléatoire, appliquée à la souche MG1363 (21), pour trouver des régulateurs de la transcription de ces peptidases. La fusion du second

5

10

15

20

25

30

4

promoteur de l'opéron opp-pepO (PpepOA) au gène de la β -galactosidase a servi de rapporteur pour visualiser des mutants dont la transcription de ce promoteur est dérégulée. Les inventeurs ont ainsi isolé des mutants de L. lactis, obtenus par insertion d'un transposon.

La présente invention a donc pour objet des mutants de bactéries lactiques capables de surexprimer une ou plusieurs peptidases, caractérisés en ce que l'un au moins des facteurs de régulation négative de l'un au moins des gènes des peptidases desdites bactéries est inactivé.

Il peut s'agir d'une inactivation totale ou partielle. On entend par inactivation totale, le fait que ledit facteur n'est pas du tout exprimé, et par inactivation partielle, le fait que que ledit facteur est encore exprimé mais pas suffisamment pour observer l'effet de régulation négative rencontré chez une bactérie non mutée:

L'invention concerne tout particulièrement, des mutants de bactéries lactiques capables de surexprimer une ou plusieurs peptidases, caractérisés en ce que l'un au moins des facteurs de régulation négative de l'un au moins des gènes des peptidases desdites bactéries est inactivé, ledit facteur de régulation négative étant choisi dans le groupe comprenant le gène codY, les gènes de l'opéron lev, un gène codant une protéine homologue à une β -glucosidase.

Comme indiqué précédemment, ladite inactivation peut être totale ou partielle.

Une première forme de réalisation d'une telle inactivation consiste en une modification de la séquence d'ADN de l'un desdits gènes ou d'une séquence impliquée dans l'expression ou la régulation de ce gène. Une seconde forme de réalisation d'une telle inactivation consiste en une modification d'un gène codant pour une protéine cofacteur nécessaire à l'activité de l'un desdits gènes

5

10

15

20

25

30

et/ou la modification d'un gène impliqué dans l'expression ou la régulation de cette protéine cofacteur.

A titre de bactéries lactiques mutantes selon l'invention, on peut citer plus particulièrement des mutants de L. lactis et de S. thermophilus.

On entend tout particulièrement par mutants de bactéries lactiques selon l'invention, des bactéries génétiquement modifiées de façon à ce que l'un au moins des facteurs de régulation négative de l'un au moins des gènes desdites peptidases est inactivé totalement partiellement. Ainsi, on entend par inactivation, modification d'un ou plusieurs gènes codant pour des protéines constituant un ou plusieurs facteurs régulation négative des gènes des peptidases, comme par exemple CODY, ou la modification d'un ou plusieurs gènes codant pour des protéines nécessaires auxdits facteurs de régulation négative des gènes des peptidases, comme par exemple les éléments de transport des acides aminés branchés ou une protéine nécessaire à l'activité de CODY. Les mutants de bactéries lactiques selon l'invention sont donc avantageusement obtenus par mutagenèse.

L'invention se rapporte plus particulièrement à des mutants de bactéries lactiques capables de surexprimer une ou plusieurs peptidases, caractérisés en ce que l'un au moins des facteurs de régulation négative commun à plusieurs gènes desdites peptidases est inactivé.

L'invention concerne plus particulièrement des mutants de bactéries lactiques et notamment de Lactoccocus lactis dont l'un au moins des facteurs de régulation négative de la transcription, commun à deux au moins et de préférence trois des promoteurs des gènes de peptidases, est inactivé.

Les promoteurs des gènes de peptidases dont l'un au moins des facteurs de régulation négative de la

5

10

15

20

25

transcription est inactivé, sont par exemple choisis parmi les gènes prtP, pepN, pepC, pepX, pepO, pepDA2, dtpT et l'opéron opp.

- Il sera fait référence dans ce qui suit à la liste de séquences en annexe dans laquelle :
 - SEQ ID No. 1 représente la séquence du gène codY de L. lactis MG1363.
- SEQ ID No. 2 représente la séquence du gène dtpT L. lactis MG1363.
 - SEQ ID No. 3 représente la séquence du gène secA de L. lactis IL1403.
 - SEQ ID No. 4 représente la séquence du gène secY de L. lactis IL1403.
- SEQ ID No. 5 représente la séquence de l'opéron lev de L. lactis IL1403.
 - SEQ ID No. 6 représente un fragment de séquence d'un gène de L. lactis MG1363 dont le produit est homologue à une β -glucosidase.
- SEQ ID No. 7 représente la séquence du gène de *L. lactis* MG1363 dont le produit est homologue à une formate déshydrogénase.
 - SEQ ID No. 8 représente une partie de la séquence du gène codY de S. thermophilus.
- SEQ ID No. 9 représente la séquence complète du gène codY de S. thermophilus.

Un premier facteur de régulation négative des peptidases de bactéries lactiques notamment de *L. lactis*30 identifié par les Inventeurs est constitué par le pool intracellulaire d'acides aminés branchés qui répriment la transcription de plusieurs gènes de peptidase. Un premier type de mutants est donc caractérisé par la modification de ce pool intracellulaire d'acides aminés branchés. On entend de préférence par modification, une diminution de la

7

quantité d'acides aminés branchés. Un exemple de modification du pool d'acides aminés branchés consiste à modifier sélectivement leur entrée dans la cellule, notamment en bloquant l'un au moins des systèmes de transport :

- des acides aminés,
- des di- et tripeptides,
- des oligopeptides.

Des mutants de *L. lactis* dont l'un au moins des systèmes de transport des acides aminés branchés, des diet tripeptides ou des oligopeptides sont bloqués sont des mutants dans lesquels l'un au moins des gènes codant pour un élément de ces systèmes de transport est inactivé.

Des mutants d'un système de transport des dipeptides et tripeptides ont été obtenus par mutagenèse aléatoire dans le gène dtpT (10) de L. lactis dont la séquence est donnée dans la liste de séquence en annexe sous le numéro SEQ ID No. 2. Les travaux réalisés dans l'art antérieur sur ce gène n'ont jamais mis en évidence qu'il pouvait s'agir de mutants de Lactoccocus lactis capables de surexprimer une ou plusieurs peptidases. Un exemple de gène dtpT modifié dans un mutant est caractérisé par l'insertion par exemple du plasmide pGhost-IIS1 après les nucléotides en positions 280 et 470 dans la séquence SEQ ID No. 2.

La répression de la transcription des gènes codant pour les peptidases est levée chez les mutants de l'invention et peut résulter comme indiqué précédemment de la variation du pool intracellulaire des acides aminés branchés. La variation du pool intracellulaire des acides aminés branchés peut également provenir de la variation de la dégradation desdits peptides (di, tri ou oligopeptides). En conséquence, des mutants de bactéries lactiques et plus particulièrement de L. lactis sont des mutants dans lesquels l'un au moins des gènes codant les peptidases

5

10

15

20

25

30

responsables de la dégradation de ces dipeptides, tripeptides ou oligopeptides est inactivé.

Un facteur important de régulation négative identifié par les inventeurs est le produit du gène codY qui réprime la transcription de plusieurs peptidases au niveau de leur promoteur. En effet, les inventeurs ont obtenu par mutagenèse des mutants de L. lactis inactivés dans un gène qui est homologue au gène codY de Bacillus subtilis. Chez un mutant codY reconstruit par les inventeurs par mutagenèse dirigée, il a été observé que la transcription du gène pepOA et la transcription d'au moins trois gènes de peptidases ne sont plus réprimés par les dipeptides. Ainsi, l'inactivation du gène codY chez L. lactis permet d'augmenter l'expression des gènes de plusieurs peptidases d'un facteur 4 à 55 dans un milieu contenant une source de peptides qui normalement les répriment dans la souche sauvage.

La séquence d'ADN du gène codY de L. lactis et de la séquence de la protéine codY pour lequel il code sont représentées dans SEQ ID No. 1 en annexe.

Les inventeurs ont également mis en évidence la présence du gène codY chez S. thermophilus, qui est comme L. Lactis une bactérie lactique. La séquence d'ADN partielle du gène codY de S. thermophilus et la séquence de la protéine pour lequel il code sont représentées dans SEQ ID No. 8 en annexe. La séquence d'ADN complète du gène codY de S. thermophilus et la séquence de la protéine pour lequel il code sont représentées dans SEQ ID No. 9 en annexe. Ainsi l'inactivation complète ou partielle du gène codY chez les autres bactéries lactiques (Streptocoque, Lactobacille, Pediocoque, Leuconostoc) pourrait également permettre d'augmenter l'expression des peptidases.

En conséquence, un type préféré de mutants de bactéries lactiques selon l'invention, plus

5

10

15

20

25

30

9

particulièrement de L. lactis, est caractérisé par l'inactivation du gène codY. Un premier exemple d'une telle inactivation consiste en une modification de la séquence d'ADN du gène codY, tout particulièrement des séquences SEQ ID No. 1, 8 ou 9 en annexe, ou d'une séquence impliquée dans l'expression ou la régulation de ce gène. Un second exemple d'une telle inactivation consiste en une modification d'un gène codant pour une protéine cofacteur nécessaire à l'activité du gène codY et/ou la modification d'un gène impliqué dans l'expression ou la régulation de cette protéine cofacteur.

Comme indiqué précédemment, dans les bactéries mutantes pour codY de l'invention l'expression d'au moins 3 peptidases est augmentée de 4 à 55 fois dans un milieu contenant une source de peptides qui normalement répriment leur expression. Une bactérie mutante pour codY selon l'invention interrompt la cascade de régulation qui conduit à la répression des peptidases via le pool de peptides du milieu extérieur. Un changement de la séquence d'ADN dans le gène codY ou dans sa séquence de régulation consiste par exemple en une mutation ou une délétion qui peuvent être réalisées par des méthodes bien connues de mutagenèse. Ainsi les inventeurs ont répertorié 13 mutants de codY avec par exemple une insertion du plasmide pGhost-IIS1 après les nucléotides en positions 87, 112, 122, 289, 313, 409, 575, 604, 641, 693, 821, 877 et 882 dans la séquence SEQ ID No. 1.

Comme indiqué précédemment, d'autres mutants de 30 bactéries lactiques, notamment de *L. lactis*, capables de surexprimer une ou plusieurs peptidases ont été caractérisés par les Inventeurs. Il s'agit de mutants dans lesquels l'un au moins des facteurs de régulation négative de la transcription d'un ou plusieurs gènes desdites

5

10

15

20

10

peptidases est inactivé. A titre d'exemples de tels mutants, on peut citer :

- Les mutants dans lesquels un gène codant pour des protéines impliquées dans la sécrétion des protéines de transport des dipeptides ou tripeptides est inactivé. Il s'agit plus particulièrement de mutants dont l'un au moins des gènes secA (3) et secY (13) est modifié. Les protéines codées par ces gènes pourraient intervenir dans la translocation de la protéine DtpT qui est impliquée dans le transport des di- et tripeptides. Les séquences des gènes secA et secY de L. lactis sont données dans la liste de séquences en annexe respectivement sous les numéros SEO ID No. 3 et SEQ ID No. 4. Des mutants pour secA ont été préparés par insertion du plasmide pGhost-IIS1 après les nucléotides en positions 1689 et 1698 dans la séquence SEQ ID No. 3. Des mutants pour secY ont été préparés par insertion du plasmide pGhost-IIS1 après les nucléotides en positions 1273 et 1281 dans la séquence SEQ ID No. 4.

- Les mutants dans lesquels l'un des gènes de l'opéron lev est inactivé (17). Les gènes de l'opéron lev codent pour un système de transport des sucres. La séquence de l'opéron lev de L. lactis est donnée dans la liste de séquences en annexe sous le numéro SEQ ID No. 5. Des mutants pour l'opéron lev selon l'invention ont été préparés par insertion du plasmide pGhost-IIS1 après les nucléotides en positions 40, 108, 1075, 1140, 1145 et 2735 dans la séquence SEQ ID No. 5.

- Les mutants dans lesquels l'un au moins des gènes présentant une homologie avec un gène codant une protéine dont la structure est du type de celle d'une β -glucosidase et/ou une formate deshydrogénase est inactivé. La séquence d'un gène codant cette protéine homologue à une β -glucosidase est donnée dans la liste de séquences en annexe sous les numéros SEQ ID No. 6. La séquence d'un gène

5

10

15

20

25

11

codant une formate deshydrogénase est donnée dans la liste de séquences en annexe sous les numéros SEQ ID No. 7.

Comme précédemment, on entend par un gène inactivé un gène dont la séquence ou une séquence impliquée dans son expression ou sa régulation sont modifiées.

En conséquence, un autre type préféré de mutants de bactéries lactiques selon l'invention, plus particulièrement de L. lactis, est caractérisé par l'inactivation de l'un des gènes de l'opéron lev. Un premier exemple d'une telle inactivation consiste en une modification de la séquence d'ADN de l'un des gènes de l'opéron lev, tout particulièrement de la SEQ ID No. 5 annexe, ou d'une séquence impliquée dans l'expression ou la régulation de l'un des gènes de cet opéron. Un second exemple d'une telle inactivation consiste modification d'un gène codant pour une protéine cofacteur nécessaire à l'activité de l'un des gènes de l'opéron lev et/ou la modification d'un gène impliqué dans l'expression ou la régulation de cette protéine cofacteur.

Un troisième type préféré de mutants l'invention, selon bactéries lactiques lactis, est caractérisé par particulièrement de L. l'inactivation d'un gène codant pour une protéine homologue une β-glucosidase. Un premier exemple d'une telle inactivation consiste en une modification de la séquence d'ADN d'un gène codant pour une β-glucosidase, tout particulièrement de la SEQ ID No. 6 annexe, ou d'une séquence impliquée dans l'expression ou la régulation de ce gène. Un second exemple d'une telle inactivation consiste en une modification d'un gène codant pour une protéine cofacteur nécessaire à l'activité d'un gène codant pour une β-glucosidase et/ou la modification d'un gène impliqué dans l'expression ou la régulation de cette protéine cofacteur.

5

10

15

20

25

Bien entendu, les mutants selon l'invention peuvent également être caractérisés par plusieurs des mutations décrites ci-dessus.

Comme indiqué précédemment les Inventeurs ont développé dans le cadre de la présente invention des outils basés sur l'utilisation de gènes rapporteurs comme la luciférase de Vibrio harveyi. L'expression de la luciférase qui se détecte par une émission de lumière, permet de mesurer facilement l'activité des promoteurs y compris dans des milieux complexes (4). Les vecteurs pVar construits par les Inventeurs contiennent une origine de réplication inactivée après intégration, un marqueur d'antibiotique et une partie du gène cluA (6). Ce dernier fragment permet au plasmide de s'intégrer par recombinaison homologue dans le facteur sexuel. Celui-ci est un élément conjugatif de 60 kb présent sous forme intégrée dans le chromosome de certaines souches de L. lactis. Les constructions intégrées dans le facteur sexuel au niveau du gène cluA dans une souche peuvent donc être transférées dans de nombreuses souches de L. lactis par conjugaison.

L'invention concerne donc aussi, un vecteur recombinant pour identifier ou sélectionner les bactéries mutantes selon l'invention. Ce vecteur est caractérisé en ce qu'il comprend un gène marqueur fusionné à un gène de peptidase ou un promoteur de de gène, une origine de réplication inactivée après intégration dans la bactérie, un marqueur antibiotique, et une partie du gène cluA.

Un tel vecteur permet de distinguer une souche mutante selon l'invention d'une souche sauvage incapable de surexprimer une ou plusieurs peptidases. Une méthode permettant de distinguer ces souches est par exemple la suivante. Pour connaître le niveau d'expression des peptidases dans des souches, un vecteur pVar contenant le promoteur PpepOA de l'opéron opp-pepO, fusionné au gène de

5

10

15 .

20

25

30

13

la luciférase, est transféré dans les souches par conjugaison. Les mesures de l'activité luciférase sous le contrôle du *PpepOA* indiquent si la transcription au moins du gène *pepO* est déréprimée dans ces souches. Les constructions avec les autres promoteurs permettent de vérifier le nombre de gènes de peptidases dont la transcription est déréprimée. Les activités luciférases de référence de la souche sauvage qui reflètent la répression de la transcription des gènes de peptidases lors de croissance en présence de peptides, via le pool d'acides aminés branchés, sont répertoriés dans la figure 1.

En conséquence, l'invention concerne également une méthode d'identification ou de sélection d'une bactérie lactique mutante selon l'invention, caractérisée en ce ce que l'on transfère un gène de peptidase ou un promoteur de ce gène dans une bactérie par conjugaison avec le vecteur défini ci-dessus, puis l'on cultive ladite bactérie en présence de peptides et l'on mesure par tout moyen approprié l'activité du gène rapporteur qui reflètent la répression de la transcription des gènes de peptidases.

Avantageusement le gène rapporteur est le gène de la luciférase.

L'invention concerne également l'utilisation des mutants de bactéries lactiques tels que décrits précédemment ou un mélange de ceux-ci dans un procédé de fabrication et/ou de maturation du fromage. De façon avantageuse, les mutants de bactéries lactiques tels que décrits précédemment ou un mélange de ceux-ci sont utilisés dans un procédé de fabrication et/ou de maturation de fromages type pâte molle ou pâte pressée.

D'autres avantages et caractéristiques de l'invention apparaîtront des exemples qui suivent. Ces exemples concernent l'obtention par mutagenèse de mutants

5

10

15

20

25

30

de *L. lactis* selon l'invention, et se réfèrent aux figures en annexe dans lesquelles :

- la figure 1 représente l'activité luciférase de différentes fusions transcriptionnelles à D.O. 0,4 en milieu chimiquement défini (CDM) acides aminés (AA) et CDM casitone (Cas),
- la figure 2 représente la répression de la transcription en A des promoteurs régulés, et en B des promoteurs non régulés. Ces résultats ont été obtenus à partir de l'extraction des ARNm totaux de la souche sauvage cultivée en CDM + acides aminés (AA) et CDM + casitone (Cas) à différentes densités optiques (0,2; 0,6; 0,8; 1,2). Les hybridations ont été effectuées avec différentes sondes spécifiques des promoteurs de peptidases. Les promoteurs régulés correspondent à une diminution de l'ARN dans les conditions de croissance en présence de casitone, ce qui est le reflet d'une répression de la transcription.
- La figure 3 est une représentation schématique des différents facteurs intervenant sur l'expression des peptidases de *L. lactis* et ayant permis de concevoir les différents mutants de l'invention.
- La figure 4 est un alignement des séquences des gènes codY de L. lactis et de Bacillus subtillis.

I - <u>Matériel et Méthodes</u>.

1) Souches bactériennes, milieux, vecteurs et manipulations d'ADN.

La souche de *L. lactis* MG1363 a été cultivée à 30°C en milieu M17 glucose. Au besoin, 5μg/ml d'érythromycine sont ajoutés au milieu de culture. Les promoteurs de peptidases à étudier (PepP, PepA, PepF2, PepDA1, PepOA, PepQ, PepX, PepOD, PepM, PepT, PepN et PepC) et les deux promoteurs de l'opéron *opp* (*pepOA/pepOD*) ont été amplifiés par PCR à l'aide d'amorces spécifiques à

5

10

15

20

25

30

5

15

20

25

30

partir du chromosome de la souche de *L. lactis* subsp. cremoris MG1363. Une série de vecteurs à réplication conditionnelle, contenant les gènes rapporteurs de la luciférase de *Vibro harveyi* et un fragment du facteur sexuel (gène cluA) a été construite. Le pVar-1 a été utilisé pour fusionner aux gènes luciférase, les fragments d'ADN obtenus par PCR et correspondant aux différents promoteurs.

2) <u>Intégration des fusions transcriptionnelles</u> sur le chromosome de MG1363 et conjugaison.

Après transformation de la souche MG1363 par les plasmides pVar-1 contenant les promoteurs de peptidases, les fusions sont intégrées dans le chromosome par recombinaison homologue, soit au locus promoteur peptidase, soit au locus du facteur sexuel (dans le gène cluA). L'identification du locus d'intégration se fait grâce à des amorces appropriées par amplification PCR et par hybridation d'un gel Southern. Le transfert du facteur sexuel se fait par conjugaison entre deux souches (5).

3) <u>Détermination de l'activité luciférase chez</u> <u>L. lactis</u>.

Les mesures d'activité luciférase sont effectuées sur le luminomètre Bertold Lumat LB9501. Un millilitre de culture de L. lactis est mélangé avec $5\mu l$ de nonaldehyde et l'émission de lumière est directement mesurée. La valeur du pic est ramenée à la DO_{600nm} de la culture et l'activité luciférase est mesurée tout au long de la croissance. L'activité luciférase reportée dans la figure 1 est mesurée à $DO_{600nm} = 0.4$ et exprimée en 10^3 lux/DO.

4) Milieu Chimiquement Défini (CDM).

Ce milieu chimiquement défini (CDM) est décrit dans Sissler et al. (22). La source d'azote de ce milieu est un mélange d'acides aminés. Dans le "CDM cas", est ajouté un extrait de casitones (caséines du lait dégradées par des enzymes pancréatiques) qui est une source de petits peptides.

5) Constructions: PpepOA-βgal.

Le second promoteur de l'opéron opp-pep0 de la souche MG1363 a été amplifié par les oligonucléotides suivant (GGGAATTCTTTGGGAACAATGATAA et CGGGATCCGTTACTTCTGAACCA) et le fragment amplifié de 500pb a été cloné dans le plasmide pJIM762 au site EcoRI-BamHI en amont du gène de la β -galactosidase de *Escherichia coli* (E. Guédon, résultats non encore publiés). Ce plasmide, dont le gène de la β -galactosidase est sous le contrôle des signaux d'expressions de PpepOA, a été intégré dans le chromosome la MG1363 par recombinaison homologue au locus promoteur. La transcription à PpepOA est réprimée par les dipeptides contenu dans la casitone du milieu et la souche contenant la fusion est blanche sur un milieu chimiquement défini (CDM) contenant des casitones. La transcription à PpepOA est déréprimée sur un milieu CDM contenant des acides aminés comme source d'azote et la souche contenant la fusion est bleue [dans les deux cas la souche est cultivée avec du phospho- β -galactoside (P- β -gal).

6) Plasmide Pghost8-ISS1.

Ce plasmide à réplication conditionnelle (protéine de réplication thermosensible) possède un marqueur d'antibiotique tétracycline et une séquence d'insertion ISS1 (16). L'augmentation de la température de 30°C à 37°C inhibe la réplication de ce plasmide et les souches résistantes à la tétracycline obtenues contiennent le plasmide intégré dans le chromosome. Il s'intègre de

5

10

15

20

25

30

façon aléatoire dans le chromosome de L. lactis par transposition réplicative (16).

7) Mutagenèse par transposition.

Une mutagenèse aléatoire est effectuée avec le plasmide thermosensible pGhost8-ISS1 dans la souche MG1363 contenant la fusion promoteur PpepOA- β -gal. En milieu MCD casitone, en présence de P- β -gal, sur 50000 clones blancs isolés, 46 présentent un phénotype de couleur bleue. Dans ces mutants l'expression de la fusion β -gal est déréprimée. Le plasmide pGhost8-ISS1 est donc inséré dans un gène dont le produit est un répresseur direct ou indirect de l'expression de PpepOA.

8) <u>Identification des mutants par clonage des</u> jonctions.

La transposition par ISS1 dans le chromosome donne une insertion du pGhost8 entouré d'une copie dupliquée de ISS1. Les jonctions ont été clonées, en utilisant des sites uniques de restriction (EcoRI et HindIII) présents sur le pGhost8. La digestion du chromosome par ces enzymes permet d'obtenir le plasmide pGhost8 contenant les régions flanquantes. Le site de transposition est ainsi caractérisé par séquençage des jonctions avec les oligonucléotides suivants (pour la jonction TCACCTCATATAAATTCCCCA EcoRI: AAATGGAACGCTCTTCGG) (pour la jonction HindIII : CGCCAGGGTTTTCCCAGTCACGAC et ACCAACAGCGACAATAATCACA).

9) Mutant codY.

Une mutagenèse aléatoire a permis d'obtenir entre autre, des mutants codY pour lesquels la transcription de plusieurs gènes codant pour des enzymes protéolytiques est dérégulée. L'inactivation de ce gène chez L. lactis augmente l'expression des gènes opp-pep0,

5

10

15

20

25

30

5

10

15

20

30

35

pepN et pepC respectivement d'un facteur 55, 14 et 4 en milieu CDM avec casitones où l'expression est normalement réprimée par la source de peptides.

10) <u>Inactivation de codY par simple crossing-over</u>.

Un fragment PCR de 540 pb a été amplifié par les oligonucléotides suivants (CAGTATGACTGAACGCTTGGC et GCGATAACATGCCCTTCTTCA) et cloné dans le plasmide pJIM2242. Ce plasmide est intégré dans le gène codY par simple crossing-over et un mutant codY est vérifié par une hybridation Southern. Ce mutant a le même phénotype que les mutants codY obtenus par mutagenèse.

11) Autres mutants.

La mutagenèse aléatoire a permis d'identifier plusieurs mutants autre que codY. Des mutations des gènes dtpT, de l'opéron lev, secA, secY, et des gènes codant pour une hélicase, une β -glucosidase et une enzyme homologue à une formate déshydrogénase ont également conduit à des mutants surexprimant au moins pepO ou plusieurs peptidases.

II - Résultats.

25 1) Construction du vecteur pVar-1.

Des vecteurs intégratifs permettant de suivre l'expression d'un gène rapporteur sous le contrôle d'un promoteur sur le chromosome ont été construits. Les gènes de la luciférase de Vibrio harveyi ont été utilisés comme gène rapporteur. L'activité luciférase des fusions transcriptionnelles avec les promoteurs de gènes de peptidases est le reflet de l'expression des gènes de peptidases (11, 20). Un vecteur qui se réplique de façon conditionnelle a été utilisé pour intégrer les fusions transcriptionnelles sur le chromosome (15). Ce vecteur a

facilement transférable conçu pour être conjugaison, en particulier dans des souches industrielles difficilement transformables. Un fragment (gène cluA) de l'élément chromosomique de 60kb nommé le facteur sexuel, que possèdent certaines souches de lactocoques, a été introduit dans ce vecteur. Cet élément est capable de s'auto-transférer à une haute fréquence par conjugaison dans l'espèce L. lactis (7). En intégrant nos fusions transcriptionnelles dans ce facteur sexuel, celles-ci sont alors transférables à d'autres souches de lactocoques par conjugaison du facteur sexuel. Parmi différents vecteurs construits, le pVar-1 utilisé dans cette étude contient, en plus des composants décrits ci-dessus un gène de résistance à l'érythromycine. Il a été vérifié que les fusions transcriptionnelles intégrées au locus promoteur ou dans le gène cluA avec le pVar-1 avaient des activités luciférases identiques (9).

2) <u>Expression de fusions avec les promoteurs</u> <u>des gènes codant pour des peptidases</u>.

Les promoteurs de 11 gènes codant pour des peptidases (pep) de L. lactis MG1363 : pepA, pepC, pepDA1, pepF2, pepM, pepN, pepP, pepQ, pepT, pepX; et les deux promoteurs de l'opéron opp-pepO (PpepOA et PpepOD) dans lequel se trouve le gène pepO, ont été clonés, fusionnés au gène lux dans le vecteur pVar-1 et intégrés par recombinaison homologue dans le chromosome de L. lactis MG1363 au locus des différents promoteurs. Les deux promoteurs de protéase (prt des souches WG2 et SK11) sont fusionnés au gène luciférase sur un plasmide. L'expression de ces fusions a été déterminée en milieu CDM et CDM cas et les valeurs des mesures luciférases sont rapportées dans la figure 1. En milieu CDM, selon le taux de luciférase mesuré, les fusions ont été regroupées en différentes classes. La plus forte activité luciférase est obtenue avec

5

10

15

20

25

30

les fusions plasmidiques contenant les promoteurs des gènes prt (10.103 lux/DO (103)). Pour les fusions chromosomiques, la plus forte activité luciférase est obtenue avec les promoteurs PpepN, PpepC, PpepOA et PpepOD (1 à 5 10.103 lux/DO (103), une activité moyenne est obtenue avec les promoteurs des gènes pepQ, pepX, pepM et pepT (200 à 300 lux/DO (103)) et une activité faible est obtenue avec les promoteurs des gènes pepP, pepA, pepF2 et pepDA1 (20 à 80 (103)). Il est à remarquer que les niveaux d'expression les plus élevés sont obtenus avec des fusions contenant les promoteurs des gènes codant pour les peptidases de très large spécificité (pepC, pepN, pepO) et pour un système de transport des oligopeptides (Opp) qui est essentiel à la croissance des lactocoques en milieu lait. L'expression des gènes de peptidases est diminuée en milieu CDM cas qui contient une source d'azote constituée d'acides aminés et de peptides (figure 1). La force des promoteurs PpepP, PpepA, PpepF2, PpepDA1, PpepQ, PpepT et PpepM est diminuée de 2 à 3 fois en CDM cas tandis que celle des promoteurs PpepX, PpepC, PpepN, PprtPWG2, PprtPSK11, pep0, et l'opéron opp-pep0 est réprimée respectivement 5, 7, 13, 21, 12 et 153 fois par les dipeptides du milieu de culture via le pool d'acides aminés branchés dans la cellule. L'analyse des transcrits par Northern Blot a permis de confirmer les résultats obtenus avec les fusions transcriptionnelles et de montrer que la transcription des gènes pepDA2 et dtpT, mais non celle de dtpP, était réprimée par les peptides de la casitone (figure 2).

30

35

5

10

15

20

25

3) Obtention et caractérisation de mutants déréprimés.

Sur un milieu riche en peptides et en présence de P- β gal, la souche sauvage contenant la fusion $PpepOA-\beta$ gal donne des colonies blanches car l'expression de la

21

fusion est réprimée. Les mutants obtenus donnent des colonies bleues car la fusion fusion PpepOA- β gal est déréprimée.

Différents gènes des mutants dans lesquels le pGhost s'est inséré ont été identifiés (codY, dtpT, l'opéron lev, secA, secY, et les gènes codant pour une β-glucosidase et une enzyme homologue à une formate deshydrogénase (fdh)). L'analyse des ARNm par Northern Blot d'une souche mutante cultivée dans un milieu riche en peptides, a confirmé que la transcription du gène pep0 n'est plus réprimée dans les mutants des gènes codY, dtpT, fdh et l'opéron lev. La dérepression de pep0 dans les mutants des gènes codant pour SecA, SecY et la β-glucosidase reste à être confirmé.

15

20

25

30

10

5

4) Caractérisation de l'expression des peptidases dans les mutants dérégulés.

La transcription des gènes de peptidases a été caractérisée dans les mutants par mesure d'activité. Deux classes de mutants peuvent être obtenues, l'une pour laquelle la transcription de plusieurs peptidases est déréprimée (mutants pléiotropes) et l'autre où seule la transcription du gène pep0 est déréprimée.

Mutants des gènes codY, dtpT: dans un milieu riche M17 qui contient des peptides répresseurs, les activités luciférases ont été mesurées dans une souche sauvage et dans un mutant codY pour les promoteurs PpepOD, PpepC et PpepN, et dans un mutant dtpT pour le promoteur PpepOD. Dans un mutant codY, la répression de la transcription est diminuée d'un facteur 35, 4 et 14 respectivement pour les gènes pepOD, pepC et pepN. Dans un mutant dtpT, la répression de la transcription est diminuée d'un facteur 15 pour le gène pepOD.

5

15

20

REFERENCES BIBLIOGRAPHIQUES

- 1) BOUTROU R., SEPULCHRE A., GRIPON J.C., MONNET V., 1998. Simple test for predicting the lytic behavior and proteolytic activity of lactococcal strains in cheese. J. Dairy Sci., 81,2321-2328.
- 2) DELORME C., EHRLICH S.D., RENAULT P., 1999. Regulation of expression of the *Lactococcus lactis* histidine operon. *J. Bacteriol.*, 181, 2026-2037.
- 3) Driessen A., Fekkes P., van der Wolk JP,
 "The Sec system" 1998, Curr. Opin. Microbiol., 1(2), 216222.
 - 4) DROUAULT S., CORTHIER G., DELORME C., EHRLICH S.D., RENAULT P., 1998. Régulations métaboliques de *Lactococcus lactis* en culture pure ou mixte dans le lait. *Lait*, 77, 15-23.
 - 5) GASSON M. J., SWINDELL S., MAEDA S., DODD H.M., 1992. Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Mol. Microbiol., 6, 3213-3223.
 - 6) GODON J. J., JURY K., SHEARMAN C. A., GASSON M. J., 1994. The *Lactococcus lactis* sex-factor aggregation gene *cluA*. *Mol. Microbiol.*, 12, 655-663.
- 7) GODON J. J., PILLIDGE C. J., JURY K., GASSON, M. J., 1996. Caractérisation d'un élément conjugatif original, le facteur sexuel de *Lactococcus lactis* 712. *Lait*, 76, 41-50.
- 8) Guédon E., Renault P., Ehrlich SD., Delorme
 30 C. "Environmental factors involved in the transcriptional regulation of 18 proteolysis components in Lactococci" soumis pour publication).
 - 9) E. Guédon, P. Renault, SD Ehrlich et C.Delorme "Evaluation de la diversité de l'expression génétique chez les lactocoques : développement d'un outil

et son application aux peptidases", accepté pour publication dans Science des aliments).

- 10) Hagting A. et al., 1994, "The di- and tripeptide transport protein of Lactococcus lactis", J. Biol. Chem., 269, 11391-11399.
- 11) HILL P. J., REES C. E. D., WINSON M. K., STEWART, G. S. A. B., 1993. The application of lux genes. Biotechnol. Appl. Biochem., 17, 3-14.
- 12) JUILLARD V., LE BARS D., KUNJI E. R.,

 KONINGS W. N., GRIPON J. C., RICHARD, J., 1995.

 Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ.

 Microbiol., 61, 3024-3030.
- 13) Koivula T., Palva I., Hemila H.,

 "Nucleotide sequence of the secY gene from Lactococcus
 lactis and identification of conserved regions by
 comparison of four secY proteins" 1991, FEBS Lett. 288:
 114-8.
- 14) KUNJI E. R., MIERAU I., HAGTING A., POOLMAN

 B., KONINGS, W. N., 1996. The proteolytic systems of lactic

 acid bacteria. Antonie Van Leeuwenhoek, 70, 187-221.
 - 15) LAW J., BUIST G., HAANDRIKMAN A., KOK J., VENEMA G., LEENHOUTS K., 1995. A system to generate chromosomal mutations in *Lactococcus lactis* which allows fast analysis of targeted genes. *J. Bacteriol.*, 177, 7011-7018.
 - 16) Maguin E., Prevost , Ehrlich SD, Gruss A., "Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria", 1996, J. Bact. 178, 931-935.
- 17) Martin-Verstraete I., Debarbouillé M., Klier A., Rapoport G. "Levanase operon of Bacillus subtilis includes a fructose specific phosphotransferase system regulating the expression of the operon" 1990, J. Mol. Biol., 244, 657-671.

25

5

10

- 18) MARUGG J. D., MEIJER W., VAN KRANENBURG R., LAVERMAN P., BRUINENBERG P. G., DE VOS W. M., 1995. Medium-dependent regulation of proteinase gene expression in Lactococcus lactis, control of transcription initiation by specific dipeptides. J. Bacteriol., 177, 2982-2989.
- 19) MEIJER W., MARUGG J. D., HUGENHOLTZ J., 1996. Regulation of proteolytic enzyme activity in Lactococcus lactis. Appl. Environ. Microbiol., 62, 156-161.
- 20) RENAULT P., CORTHIER G., GOUPIL N., DELORME C., EHRLICH S.D., 1996. Plasmid vectors for gram-positive bacteria switching from high to low copy number. *Gene.* 183, 175-182.
- 21) PREVOST H., EHRLICH S.D., GRUSS A., 1996, Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol., 178 : 931-935.
- 22) SISSLER M., DELORME C., BOND J., EHRLICH SD, RENAULT P., FRANCKLYN C,. 1999, "An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis" PNAS, 96:8985-8990.

REVENDICATIONS

- Mutant de bactérie lactique capable de surexprimer une ou plusieurs peptidases, caractérisé en ce que l'un au moins des facteurs de régulation négative de l'un au moins des gènes des peptidases desdites bactéries est inactivé, ledit facteur de régulation négative étant choisi dans le groupe comprenant le gène cody, les gènes de l'opéron lev, un gène codant une protéine homologue à une β-glucosidase.
 - 2) Mutant de bactérie lactique selon la revendication 1, caractérisé en ce que ladite inactivation est totale ou partielle.
 - 3) Mutant de bactérie lactique selon l'une des revendications 1 ou 2, caractérisé en ce que la séquence d'ADN de l'un desdits gènes ou d'une séquence impliquée dans l'expression ou la régulation de ce gène est modifiée.
 - 4) Mutant de bactérie lactique selon l'une des revendications 1 à 3, caractérisé en ce qu'un gène codant pour une protéine cofacteur nécessaire à l'activité de l'un desdits gènes et/ou la modification d'un gène impliqué dans l'expression ou la régulation de cette protéine cofacteur est modifié.
- 5) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce que la bactérie lactique est *L. lactis*.
- 6) Mutant de bactérie lactique selon l'une quelconque des revendications 1 à 4, caractérisé en ce que
 35 la bactérie lactique est S. thermophilus.

15

20

7) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce que le gène *codY* est inactivé.

5

8) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce que la séquence d'ADN du gène *codY* ou d'une séquence impliquée dans l'expression ou la régulation de ce gène est modifiée.

10

9) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un gène codant pour une protéine cofacteur nécessaire à l'activité du gène *codY* et/ou un gène impliqué dans l'expression ou la régulation de ladite protéine cofacteur est modifié.

20

15

10) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un des gènes de l'opéron lev est inactivé.

25

11) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce que la séquence d'ADN de l'un des gènes de l'opéron lev ou d'une séquence impliquée dans l'expression ou la régulation de l'un des gènes de cet opéron est modifiée.

30.

12) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un gène codant pour une protéine cofacteur nécessaire à l'activité de l'un des gènes de l'opéron lev et/ou un gène impliqué dans l'expression ou la régulation de ladite protéine cofacteur est modifié.

27

13) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un gène codant pour une protéine homologue à une β -glucosidase est inactivé.

5

10

15

20

25

- 14) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un gène codant pour une protéine homologue à une β -glucosidase ou une séquence impliquée dans l'expression ou la régulation de ce gène est modifié.
- 15) Mutant de bactérie lactique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un gène codant pour une protéine cofacteur nécessaire à l'activité d'un gène codant pour une protéine codant pour une β -glucosidase et/ou un gène impliqué dans l'expression ou la régulation de ladite protéine cofacteur est modifié.
- 16) Vecteur recombinant pour identifier ou sélectionner les bactéries lactiques mutantes selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un gène marqueur fusionné à un gène de peptidase ou un promoteur de de gène, une origine de réplication inactivée après intégration dans la bactérie, un marqueur antibiotique, et une partie du gène cluA.
- 17) Méthode d'identification ou de sélection d'une bactérie lactique mutante selon l'une quelconque des revendications l à 15, caractérisé en ce que l'on transfère un gène de peptidase ou un promoteur de ce gène dans une bactérie par conjugaison avec le vecteur selon la revendication 16, puis l'on cultive ladite bactérie en présence de peptides et l'on mesure par tout moyen approprié l'activité du gène rapporteur.

28

18) Utilisation des mutants de bactéries lactiques selon l'une quelconque des revendications 1 à 15, ou un mélange de ceux-ci dans un procédé de fabrication et/ou de maturation du fromage.

Fig. 1

A/ Promoteurs régulés

Fig. 2

B/ Promoteurs non régulés

Fig. 3 dıpT pepDA2 Pool d'ILV peptidases prtP opp Di/Tripeptides contenant ILV contenant ILV Di/Tripeptides Helicase BGlucosidase like FDH like LevDFG SecA SecY

Fig. 4

codyMG codybac	1 ~LLEKTRKIT ALLQKTRIIN	AILQDGVTDL SMLQAAA	QQELPYNSMT GKPVNFKEMA	ERLANVIDON ETLRDVIDSN	50 ACVINTKGEL IFVVSRRGKL
codyMG codybac	51 LGYSLPYNTN LGYSINQQIE			AVRIYDTMAN LFNVPETSSN	
codyMG codybac		GVTTLAPIYG GLTTIVPIIG		WREDGEFTDD SRLQDQFNDD	150 DLVLVELATT DLILAEYGAT
codyMG codybac	151 VIGVQLSNLK VVGMEILREK	LEQMEENIRK AEEIEEEARS	DTMATMAVNT KAVVQMAISS	LSYSEMKAVK LSYSELEAIE	200 AIIEELDGEE HIFEELDGNE
codyMG codybac	201 GHVIASVIAD GLLVASKIAD	KIGITRSVIV RVGITRSVIV		VIESRSLGMK VIESRSLGMK	
codyMG codybac	251 26 LFDKLAGRNF FLIELENLKS	_			

codyMG, séquence protéique de CodY de L. lactis subsp. cremoris MG1363 codybac, séquence protéique de CodY de B. subtilis

INFORMATION POUR LA SEQUENCE ID No. 1

1

LISTE DE SÉQUENCES

i) CARACTÉRISTIQUE DE LA SÉQUENCE ID No. 1 A) LONGUEUR: B) TYPE : ADN C) NOMBRE DE BRIN : double D) CONFIGURATION : linéaire xi) DESCRIPTION DE LA SÉQUENCE ID No. 1 AGAGTAATTT TTCTGACAAT TTTTTATTGT TTTTCCATAT GCTTTTTAT GTTATACTGA 60 TTATGAAAAA TTTTGTATAA AAACAAGAAT ATAAAAAAAT AGGAGAACAA AGTGGCTACA 120 TTA CTT GAA AAA ACA CGT AAA ATC ACC GCG ATT TTG CAA GAT GGA GTG Leu Leu Glu Lys Thr Arg Lys Ile Thr Ala Ile Leu Gln Asp Gly Val ACC GAT TTG CAA CAA GAG TTG CCA TAC AAC AGT ATG ACT GAA CGC TTG Thr Asp Leu Gln Glu Leu Pro Tyr Asn Ser Met Thr Glu Arg Leu GCA AAC GTC ATT GAT TGC AAC GCC TGC GTG ATT AAT ACG AAG GGC GAG Ala Asn Val Ile Asp Cys Asn Ala Cys Val Ile Asn Thr Lys Gly Glu 40 TTG CTT GGT TAC TCA TTG CCT TAC AAT ACA AAC AAT GAT CGC GTT GAC 312 Leu Leu Gly Tyr Ser Leu Pro Tyr Asn Thr Asn Asn Asp Arg Val Asp 55 CAA TTT TTC TAC GAT CGT AAA TTG CCT GAC GAA TAC GTT CGT GCA GCA 360 Gln Phe Phe Tyr Asp Arg Lys Leu Pro Asp Glu Tyr Val Arg Ala Ala GTA CGT ATT TAC GAT ACA ATG GCA AAC GTT CCT GTT GAT CGT CCT TTA 408 Val Arg Ile Tyr Asp Thr Met Ala Asn Val Pro Val Asp Arg Pro Leu 90 GCA ATT TTC CCA GAA GAA AGT CTT AGC GAT TTT CCA AAA GGT GTA ACA Ala Ile Phe Pro Glu Glu Ser Leu Ser Asp Phe Pro Lys Gly Val Thr 100 105 ACT TTA GCG CCT ATC TAT GGT TCT GGA ATG CGT CTT GGA ACA TTT ATT 504 Thr Leu Ala Pro Ile Tyr Gly Ser Gly Met Arg Leu Gly Thr Phe Ile 115 120 ATG TGG CGT GAA GAT GGT GAA TTT ACA GAT GAC GAT CTT GTT TTG GTT 552 Met Trp Arg Glu Asp Gly Glu Phe Thr Asp Asp Asp Leu Val Leu Val 130 GAG CTT GCA ACA ACA GTA ATC GGT GTA CAA CTC TCA AAC CTT AAA CTT Glu Leu Ala Thr Thr Val Ile Gly Val Gln Leu Ser Asn Leu Lys Leu 145 150 GAA CAA ATG GAA GAA AAT ATC CGT AAA GAC ACT ATG GCA ACA ATG GCT 648 Glu Gln Met Glu Glu Asn Ile Arg Lys Asp Thr Met Ala Thr Met Ala 165 170

Val	AAT Asn	ACA Thr	CTT Leu 180	TCT Ser	TAC Tyr	TCA Ser	GAA Glu	ATG Met 185	AAA Lys	GCT Ala	GTC Val	AAA Lys	GCA Ala 190	ATT Ile	ATT Ile	696
GAA Glu	GAA Glu	CTT Leu 195	GAT Asp	GGT Gly	GAA Glu	GAA Glu	GGG Gly 200	CAT His	GTT Val	ATT Ile	GCC Ala	TCT Ser 205	GTC Val	ATT Ile	GCT Ala	744
GAC Asp	AAG Lys 210	ATT Ile	GGT Gly	ATT Ile	ACA Thr	CGT Arg 215	TCA Ser	GTG Val	ATT İle	GTT Val	AAT Asn 220	GCT Ala	TTA Leu	CGT Arg	AAA Lys	792
CTT Leu 225	GAA Glu	TCT Ser	GCT Ala	GGT Gly	GTT Val 230	ATT	GAA Glu	TCA Ser	CGT Arg	TCA Ser 235	CTT Leu	GGT Gly	ATG Met	AAA Lys	GGA Gly 240	840
ACT Thr	TAT Tyr	CTT Leu	AAA Lys	GTT Val 245	CTT Leu	AAT Asn	ACT Thr	GGT Gly	TTG Leu 250	TTT Phe	GAT Asp	AAA Lys	CTT Leu	GCT Ala 255	GGA Gly	888
	AAT Asn		TAA	AAGT(CAG A	AGCTT	raaco	GC T	rgtto	CTTT	TA T	CATT	rgtt			937
INFORMATION POUR LA SEQUENCE ID No. 2 i) CARACTÉRISTIQUE DE LA SÉQUENCE ID No. 2 A) LONGUEUR: B) TYPE : ADN C) NOMBRE DE BRIN : double D) CONFIGURATION : linéaire xi) DESCRIPTION DE LA SÉQUENCE ID No. 2																
	CON	FIG	JRAI	OI	:	liné	éair	e	E II	D No	. 2					
xi)	CON DE	FIGU SCR	JRAT IPTI	ION ON	: DE	liné	éair SÉQU	e ENC					Thr	Ala 15	Asp	
xi) Met 1	CON DE Arg GCA	FIGU SCR: Ala GGT	URAT IPTI Ile TTA	ION ON Leu 5 GGA	DE DE CTT	liné LA S	éair SÉQU Tyr AAA	e ENC Leu GCT	Tyr 10 CAG	Ala	Leu ATG	Thr	ATT	15 GTA	AGT	96
Met 1 AAC Asn	CON DE Arg GCA Ala TAT	FIGU SCR: Ala GGT Gly GGT	URATIPTIILE	Leu 5 GGA Gly	: DE : Val CTT Leu	liné LA S Tyr CCT	éair SÉQU Tyr AAA Lys	CENC Leu GCT Ala 25 TCA	Tyr 10 CAG Gln ACA	Ala GCA Ala	Leu ATG Met	Thr GCG Ala	ATT Ile 30 GGA	TGG	AGT Ser	96 144
Met 1 AAC Asn ATT Ile	CON DE Arg GCA Ala TAT Tyr GAC	FIGURE SCREEN ALA GGT Gly GGT Gly 35 CGG	JRAT IPTI Ile TTA Leu 20 GCA Ala	CION Leu 5 GGA Gly CTT Leu TTG	DE D	liné LA S Tyr CCT Pro	Eair SÉQU Tyr AAA Lys CTT Leu 40	GCT Ala 25 TCA Ser	Tyr 10 CAG Gln ACA Thr	Ala GCA Ala ATT Ile	Leu ATG Met GTT Val	Thr GCG Ala GGG Gly 45 TTG	ATT Ile 30 GGA Gly	TGG Trp	AGT Ser GTT Val	
Met 1 AAC Asn ATT 11e GCT Ala	CON DE Arg GCA Ala TAT Tyr GAC Asp 50	FIGURE SCREEN ALA GGT Gly 35 CGG Arg	JRAT IPTI Ile TTA Leu 20 GCA Ala TTG Leu TTA	CION Leu 5 GGA Gly CTT Leu TTG Leu GGA	CTT Leu GTC Val GGC Gly CAC	LA S Tyr CCT Pro TAT Tyr GCT Ala	Eair SÉQU Tyr AAA Lys CTT Leu 40 TCG Ser	GCT Ala 25 TCA Ser CGC Arg	Tyr 10 CAG Gln ACA Thr	Ala GCA Ala ATT Ile ATC Ile	Leu ATG Met GTT Val TTC Phe 60 CCA	Thr GCG Ala GGG Gly 45 TTG Leu	ATT Ile 30 GGA Gly GGT Gly	GTA Val TGG Trp GGT Gly TTA	AGT Ser GTT Val ATT Ile	144
Met 1 AAC Asn ATT Ile GCT Ala TTA Leu 65 TCA	CON DE Arg GCA Ala TAT Tyr GAC Asp 50 ATC Ile CTC	FIGURE SCREEN ALA GGT Gly 35 CGG Arg ACT Thr	JRAT IPTI Ile TTA Leu 20 GCA Ala TTG Leu TTA Leu GTG	CION Leu 5 GGA Gly CTT Leu TTG Leu GGA Gly	CTT Leu GTC Val GGC Gly CAC His 70 TTA	LA S Tyr CCT Pro TAT Tyr GCT Ala 55	Eair SÉQU Tyr AAA Lys CTT Leu 40 TCG Ser GCT Ala	GCT Ala 25 TCA Ser CGC Arg TTA Leu ATT	Tyr 10 CAG Gln ACA Thr ACA Thr	Ala GCA Ala ATT Ile ATC Ile ACA Thr 75	Leu ATG Met GTT Val TTC Phe 60 CCA Pro	Thr GCG Ala GGG Gly 45 TTG Leu TTT Phe	ATT Ile 30 GGA Gly GGT Gly GGT GGG	GTA Val TGG Trp GGT Gly TTA Leu	AGT Ser GTT Val ATT Ile TCT Ser 80	144

			ACT Thr												384
			GCT Ala												432
			GGT Gly												480
			TGG Trp 165												528
			AAT Asn											_	576
			ATT Ile												624
			AGT Ser												672
Ser			GGT Gly		Val					Tyr					720
			AAG Lys 245	Val											768
			Phe					Val					Glu	GAA Glu	816
		Thr					Trp					Ser		TTA Leu	864
	Thr		TTT Phe			Thr					Pro			TAC	912
Leu					Phe					. Ser				GTA Val 320	960
				Leu					Pro					AAA Lys	1008
			/ Lev					/ Ala					Met	ACA Thr	1056
		/ Let					r Se					Ala		TGG Trp	1104

Leu Val		ATG Met	TTT Phe	GCT Ala	GTT Val 375	CAA Gln	ATG Met	GCA Ala	GGT Gly	GAA Glu 380	TTA Leu	CTT Leu	GTT Val	TCA Ser	1152
CCA GTT Pro Val 385	GGT Gly	TTA Leu	TCA Ser	GTT Val 390	TCA Ser	ACA Thr	AAA Lys	TTA Leu	GCG Ala 395	CCA Pro	GTA Val	GCA Ala	TTC Phe	CAA Gln 400	1200
TCT CAA Ser Gln	ATG Met	ATG Met	GCA Ala 405	ATG Met	TGG Trp	TTC Phe	TTG Leu	GCA Ala 410	GAC Asp	TCA Ser	ACT Thr	TCA Ser	CAA Gln 415	GCG Ala	1248
ATT AAT Ile Asn	GCC Ala	CAA Gln 420	ATT Ile	ACA Thr	CCT Pro	ATC Ile	TTT Phe 425	AAA Lys	GCA Ala	GCA Ala	ACA Thr	GAA Glu 430	GTT Val	CAC His	1296
TTC TTT Phe Phe	GCA Ala 435	ATT Ile	ACA Thr	GGG Gly	ATT Ile	ATC Ile 440	GGT Gly	ATT Ile	ATC Ile	GTT Val	GGA Gly 445	ATC Ile	ATC Ile	CTC Leu	1344
CTT ATT Leu Ile 450	Ile	AAA Lys	AAA Lys	CCT Pro	ATT Ile 455	TTG Leu	AAA Lys	TTA Leu	ATG Met	GGA Gly 460	GAT Asp	GTT Val	CGT Arg		1389
A) LON B) TYP	ACTI GUE E :	ÉRIS UR : ADN	TIQ								. 3				
D) CON	FIG	JRAT	'ION	: .		air	е	E II	O No	o. 3					٠
D) CON	FIGU SCRI	JRAT IPTI GTT	ION ON GCC	: DE :	liné LA S ACT	eair SÉQU CAC	e ENC TTT	GTA	GAT	AAT	GCT	TTA Leu	CGT Arg 15	GCC Ala	48
D) CON xi) DE ATG GAA Met Glu	FIGU SCR AAT ASD	JRAT IPTI GTT Val ATG	CTT	DE TTA Leu	liné LA S ACT Thr	Eair SÉQU CAC His	e ENC TTT Phe	GTA Val 10	GAT Asp	AAT Asn GTT	GCT Ala GAT	Leu GAA	Arg 15 AAC	Ala CAA	48 96
D) CON xi) DE ATG GAA Met Glu 1	AAT Asn ATC Ile	JRAT IPTI GTT Val ATG Met 20 ATT	GCC Ala 5 CTT Leu	: DE TTA Leu CAC His	liné LA S ACT Thr GAC Asp	eair SÉQU CAC His ATC Ile	ENC TTT Phe GAC Asp 25	GTA Val 10 TAT Tyr	GAT Asp ATG Met	AAT Asn GTT Val	GCT Ala GAT Asp	GAA Glu 30	Arg 15 AAC Asn	Ala CAA Gln	
D) CON xi) DE ATG GAA Met Glu 1 AAC TTT Asn Phe	AAT ASD ATC Ile TTG Leu 35	JRATIPTI GTT Val ATG Met 20 ATT Ile	CON GCC Ala 5 CTT Leu ATT Ile	E TTA Leu CAC His GAC Asp	liné LA S ACT Thr GAC Asp CAA Gln	CAC His ATC Ile TTT Phe 40	ENC TTT Phe GAC Asp 25 ACT Thr	GTA Val 10 TAT Tyr GGA Gly	GAT Asp ATG Met CGT Arg	AAT Asn GTT Val ACG Thr	GAT Asp ATG Met 45	GAA Glu 30 CCT Pro	Arg 15 AAC Asn GGA Gly	Ala CAA Gln CGT Arg	96
D) CON xi) DE ATG GAA Met Glu 1 AAC TTT Asn Phe GAA GTT Glu Val CGC TAT Arg Tyr	AAT ASN ATC ILEU 35 TCT Ser CAA	JRATIPTI GTT Val ATG Met 20 ATT Ile GAT Asp	GCC Ala 5 CTT Leu ATT Ile GGT Gly	TTA Leu CAC His GAC Asp CTT Leu	line LA S ACT Thr GAC Asp CAA Gln CAC His 55	CAC His ATC Ile TTT Phe 40 CAA Gln	ENC TTT Phe GAC Asp 25 ACT Thr	GTA Val 10 TAT Tyr GGA Gly ATT Ile	GAT Asp ATG Met CGT Arg GAA Glu	AAT Asn GTT Val ACG Thr GCT Ala 60	GCT Ala GAT Asp ATG Met 45 AAA Lys	GAA Glu 30 CCT Pro GAA Glu	Arg 15 AAC Asn GGA Gly GCT Ala	CAA Gln CGT Arg GTG Val	96
D) CON xi) DE ATG GAA Met Glu 1 AAC TTT Asn Phe GAA GTT Glu Val CGC TAT Arg Tyr 50 CCA ATT Pro Ile	AAT Asn ATC Ile TTG Leu 35 TCT Ser CAA Gln CGG	JRATIPTI GTT Val ATG Met 20 ATT Ile GAT Asp GAT Asp	CON GCC Ala 5 CTT Leu ATT Ile GGT Gly GAA Glu TAT	TTA Leu CAC His GAC Asp CTT Leu TCA Ser 70 AAA	line LA S ACT Thr GAC Asp CAA Gln CAC His 55 AAA Lys	CAC His ATC Ile TTT Phe 40 CAA Gln ACA Thr	ENC TTT Phe GAC Asp 25 ACT Thr GCA Ala ATG Met	GTA Val 10 TAT Tyr GGA Gly ATT Ile GCT Ala	GAT Asp ATG Met CGT Arg GAA Glu TCA Ser 75	AAT Asn GTT Val ACG Thr GCT Ala 60 ATT Ile	GCT Ala GAT Asp ATG Met 45 AAA Lys	GAA Glu 30 CCT Pro GAA Glu ATT Ile	Arg 15 AAC Asn GGA Gly GCT Ala CAA Gln	CAA Gln CGT Arg GTG Val AAC Asn 80	96 144 192

			10C					105					110			
													GAT Asp			384
													GAT Asp			432
													GTT Val			480
													AAA Lys			528
													CAA Gln 190			576
Met	Asn	Ala 195	Gly	Gln	Gln	Gly	Ala 200	Val	Thr	Ile	Ala	Thr 205	AAC Asn	Met	Ala	624
													GAT Asp			672
Asp 225	Pro	Glu	Phe	Arg	Gly 230	Leu	Ala	Val	Ile	Gly 235	Thr	Glu	CGT Arg	His	Glu 240	720
													CGT Arg			768
Asp	Pro	Gly	Val 260	Ser	Gln	Phe	Tyr	Leu 265	Ser	Leu	Glu	Asp	GAA Glu 270	Leu	Met	816
													AGA Arg			864
Ile	Ser 290	Gly	Glu	Asp	Ala	Val 295	Ile	Lys	Ser	Gly	Leu 300	Ile	ACT Thr	Arg	Gln	912
													GAT Asp			960
													CGT Arg			1008
													GAT Asp 350			1056
CCT	GTT	TTG	ATG	GGC	ATG	TTC	AAG	CGA	ACA	ATT	GAT	CGT	CAA	GTG	GAT	1104

Pro	Val	Leu 355	Met	Gly	Met	Phe	Lys 360	Arg	Thr	Ile	Asp	Arg 365	Gln	Val	Asp	
GGT Gly	CAT His 370	GAA Glu	CTT Leu	GCA Ala	GGA Gly	AGT Ser 375	CTT Leu	AAA Lys	GAT Asp	GAA Glu	GAA Glu 380	AAT Asn	GTC Val	AAA Lys	AAT Asn	1152
CTC Leu 385	TTG Leu	CAA Gln	ACA Thr	TTA Leu	CAC His 390	AAT Asn	ACA Thr	ATG Met	TTG Leu	CCA Pro 395	GAA Glu	GAT Asp	GGC Gly	ATT Ile	GAA Glu 400	1200
TTG Leu	TCT Ser	GAA Glu	CTG Leu	ACA Thr 405	GGT Gly	TTG Leu	TCA Ser	GTA Val	CAA Gln 410	GCA Ala	ATG Met	AAA Lys	GAT Asp	TTG Leu 415	ATT Ile	1248
TTT Phe	GAT Asp	AAA Lys	GTC Val 420	AAA Lys	GCT Ala	CGT Arg	TAT Tyr	GCT Ala 425	TCA Ser	CAA Gln	ATG Met	GAA Glu	AAA Lys 430	TTA Leu	TCT Ser	1296
GAC Asp	CCA Pro	GAA Glu 435	CGT Arg	CAG Gln	TTG Leu	GAA Glu	TTC Phe 440	CAA Gln	CGT Arg	GCA Ala	GTT Val	ATC Ile 445	TTA Leu	CGA Arg	GTT Val	1344
GTT Val	GAT Asp 450	AAT Asn	AAC Asn	TGG Trp	TCA Ser	GAA Glu 455	CAC His	ATT Ile	GAT Asp	GCG Ala	CTT Leu 460	GAC Asp	CAA Gln	ATG Met	CGT Arg	1392
CAA Gln 465	TCA Ser	GTA Val	GGA Gly	CTT Leu	CGT Arg 470	GGT Gly	TAT Tyr	GCC Ala	CAA Gln	AAT Asn 475	AAC Asn	CCT Pro	ATT Ile	GTT Val	GAA Glu 480	1440
TAT Tyr	CAA Gln	GAA Glu	GAA Glu	TCA Ser 485	TAT Tyr	AAA Lys	ATG Met	TAC Tyr	AAT Asn 490	AAT Asn	ATG Met	ATT Ile	GGT Gly	GCG Ala 495	ATT Ile	1488
GAA Glu	TTT Phe	GAA Glu	GTG Val 500	ACT Thr	CGT Arg	TTG Leu	ATG Met	ATG Met 505	AAA Lys	GCT Ala	CAA Gln	ATT Ile	CAA Gln 510	CCA Pro	CAA Gln	1536
ACG Thr	GCA Ala	ATC Ile 515	CGT Arg	CAG Gln	GAA Glu	GCG Ala	CCA Pro 520	AGA Arg	ATG Met	ACA Thr	ACC Thr	ACA Thr 525	GCT Ala	TCA Ser	CAA Gln	1584
GAA Glu	AAT Asn 530	ATT Ile	ACA Thr	AAT Asn	GTT Val	GAT Asp 535	ACT Thr	GAA Glu	CAT His	TCT Ser	GTC Val 540	AGT Ser	GAA Glu	GAA Glu	ATT Ile	1632
TCA Ser 545	TTT Phe	GAA Glu	AAT Asn	GTT Val	GGT Gly 550	CGT Arg	AAC Asn	GAC Asp	CTT Leu	TGT Cys 555	CCT Pro	TGT Cys	GGT Gly	TCT Ser	GGT Gly 560	1680
AAG Lys	AAG Lys	TTT Phe	AAA Lys	AAT Asn 565	TGT Cys	CAC His	GGA Gly	CGT Arg	ACA Thr 570	CAT His	ATT Ile	GCC Ala 573				1719

INFORMATION POUR LA SEQUENCE ID No. 4

A) B) C)	LONG TYP: NOM: CON:	GUEU E : BRE FIGU	JR : ADN DE JRAT	BRI	N :	dou liné LA S	ıble eair	e e								-
						AAG Lys										48
						ATT Ile										96
GCT Ala	CAT His	ATT Ile 35	ACG Thr	GTA Val	CCT Pro	GGC Gly	GTC Val 40	AAC Asn	GTT Val	CAA Gln	AAC Asn	TTA Leu 45	ACA Thr	GAA Glu	GTA Val	144
						AAC Asn 55										192
						TTT Phe										240
GCT Ala	TCA Ser	ATC Ile	ATT Ile	GTT Val 85	CAA Gln	TTG Leu	TTG Leu	CAA Gln	ATG Met 90	GAT Asp	ATT Ile	TTA Leu	CCA Pro	AAA Lys 95	TTT Phe	288
GTT Val	GAG Glu	TGG Trp	TCA Ser 100	AAA Lys	CAA Gln	GGG Gly	GAA Glu	ATT Ile 105	GGA Gly	CGT Arg	CGT Arg	AAA Lys	CTG Leu 110	AAT Asn	CAA Gln	336
						TTA Leu										384
ATT Ile	ACT Thr 130	GCT Ala	GGT Gly	TTC Phe	CAA Gln	GCC Ala 135	ATG Met	AGC Ser	TCG Ser	TTA Leu	AAT Asn 140	ATT Ile	GTG Val	CAA Gln	AAT Asn	432
CCA Pro 145	AAT Asn	TGG Trp	CAA Gln	AGC Ser	TAT Tyr 150	TTG Leu	ATG Met	ATT Ile	GGT Gly	GCA Ala 155	ATT Ile	TTG Leu	ACC Thr	ACT Thr	GGT Gly 160	480
TCA Ser	ATG Met	GTT Val	GTC Val	ACT Thr 165	TGG Trp	ATG Met	GGT Gly	GAA Glu	CAA Gln 170	ATT Ile	AAT Asn	GAC Asp	CAA Gln	GGT Gly 175	TTT Phe	528
GGC Gly	TCA Ser	GGT Gly	GTT Val 180	TCA Ser	GTA Val	ATC Ile	ATC Ile	TTT Phe 185	GCT Ala	GGG Gly	ATT Ile	GTC Val	TCT Ser 190	AGT Ser	ATT Ile	576
						GTT Val										624

CCA Pro	TCT Ser 210	GAA Glu	ATT Ile	CCT Pro	ATG Met	TCT Ser 215	Trp	ATA Ile	TTT Phe	GTT Val	ATT Ile 220	Gly	TTG Leu	ATT Ile	TTG Leu	672
TCA Ser 225	GCA Ala	ATT Ile	GTC Val	ATT Ile	ATT Ile 230	TAT Tyr	GTT Val	ACA Thr	ACA Thr	TTT Phe 235	GTT Val	CAA Gln	CAA Gln	GCG Ala	GAA Glu 240	720
CGT Arg	AAA Lys	GTA Val	CCA Pro	ATT Ile 245	CAA Gln	TAC Tyr	ACT Thr	AAG Lys	TTG Leu 250	ACT Thr	CAA Gln	GGC Gly	GCA Ala	CCA Pro 255	ACA Thr	768
AGT Ser	TCG Ser	TAC Tyr	TTT Phe 260	CCA Pro	CTT Leu	CGT Arg	GTC Val	AAT Asn 265	CCA Pro	GCT Ala	GGT Gly	GTT Val	ATC Ile 270	CCA Pro	GTT Val	816
ATC Ile	TTT Phe	GCT Ala 275	GGT Gly	TCA Ser	ATT Ile	ACA Thr	ACT Thr 280	GCT Ala	CCT Pro	GCT Ala	ACG Thr	ATC Ile 285	TTG Leu	CAA Gln	TTC Phe	864
TTG Leu	CAA Gln 290	CGT Arg	TCA Ser	CAA Gln	GGT Gly	AGC Ser 295	AAT Asn	GTA Val	GGT Gly	TGG Trp	TTA Leu 300	TCA Ser	ACC Thr	TTA Leu	CAA Gln	912
AAC Asn 305	GCC Ala	TTG Leu	TCA Ser	TAT Tyr	ACG Thr 310	ACT Thr	TGG Trp	ACA Thr	GGA Gly	ATG Met 315	CTC Leu	TTC Phe	TAC Tyr	GCA Ala	TTA Leu 320	960
TTG Leu	ATT Ile	GTT Val	CTC Leu	TTT Phe 325	ACT Thr	TTC Phe	TTC Phe	TAC Tyr	TCA Ser 330	TTC Phe	GTT Val	CAG Gln	GTC Val	AAT Asn 335	CCT Pro	1008
GAA Glu	AAG Lys	ATG Met	GCT Ala 340	GAA Glu	AAC Asn	CTT Leu	CAA Gln	AAA Lys 345	CAA Gln	GGC Gly	TCT Ser	TAC Tyr	ATT Ile 350	CCA Pro	TCT Ser	1056
GTT Val	CGT Arg	CCG Pro 355	GGT Gly	AAA Lys	GGA Gly	ACC Thr	GAA Glu 360	AAG Lys	TAT Tyr	GTT Val	TCT Ser	CGT Arg 365	CTC Leu	TTA Leu	ATG Met	1104
CGT Arg	CTT Leu 370	GCA Ala	ACG Thr	GTT Val	GGT Gly	TCG Ser 375	CTC Leu	TTC Phe	CTT Leu	GGA Gly	TTG Leu 380	ATT Ile	TCA Ser	ATC Ile	ATT Ile	1152
CCA Pro 385	ATT Ile	GCG Ala	GCC Ala	CAA Gln	AAC Asn 390	GTT Val	TGG Trp	GGA Gly	CTT Leu	CCA Pro 395	AAA Lys	ATC Ile	GTC Val	GCT Ala	CTT Leu 400	1200
GGA Gly	GGG Gly	ACA Thr	TCA Ser	TTA Leu 405	TTA Leu	ATC Ile	TTG Leu	ATT Ile	CAA Gln 410	GTT Val	GCG Ala	ATT Ile	CAA Gln	GCA Ala 415	GTT Val	1248
AAA Lys	CAA Gln	CTT Leu	GAA Glu 420	GGA Gly	TAT Tyr	TTA Leu	CTT Leu	AAA Lys 425	CGT Arg	AAA Lys	TAT Tyr	GCA Ala	GGA Gly 430	TTT Phe	ATG Met	1296
					ACA Thr											1317

INFORMATION	POUR	LA	SEQUENCE	ID	NO:5
-------------	------	----	----------	----	------

- i) CARACTÉRISTIQUE DE LA SÉQUENCE ID NO:5
- A) LONGUEUR:
- B) TYPE : ADN
- C) NOMBRE DE BRIN : double
- D) CONFIGURATION : linéaire
- xi) DESCRIPTION DE LA SÉQUENCE ID NO:5

GTAATATTTT TATGAAAACA TTTGCAAATA TCGATTTGAA GTAGTATAAT AACTAAGTAA 60

TAATTTTTAT TATAATCTTA TATAGGAGGT TACTCACATT GAGTATCGGA ATTGTTATTG 120

- CGAGCC ATG GTG AAT TCG CCG CAG ATC AAA CAA TCT GGT TCT ATG ATT

 Met Val Asn Ser Pro Gln Ile Lys Gln Ser Gly Ser Met Ile

 1 5 10
- TTC GGA GAG CAA GAA AAA GTA CAA GTT GTT ACT TTT ATG CCT AGC GAA 216
 Phe Gly Glu Gln Glu Lys Val Gln Val Val Thr Phe Met Pro Ser Glu
 15 20 25 30
- GGA CCA ACT GAT TTG CAT GCT AAA ATC GAA GCT GCC ATC GCA ACA TTT 264
 Gly Pro Thr Asp Leu His Ala Lys Ile Glu Ala Ala Ile Ala Thr Phe
 35 40 45
- GAT GCT GAA GAT GAA GTA CTT GTC CTT GCT GAC TTA TGG AGC GGT TCT 312
 Asp Ala Glu Asp Glu Val Leu Val Leu Ala Asp Leu Trp Ser Gly Ser
 50 55
- CCA TTT AAT CAA GCA AGT GCA GTG ATG GGT GAA AAT CCA GAG CGC AAG
 Pro Phe Asn Gln Ala Ser Ala Val Met Gly Glu Asn Pro Glu Arg Lys
 65 70 75
- ATT GCT ATC ACA GGC CTC AAC CTG CCT ATG CTT ATC CAA GCC TAC

 Ile Ala Ile Ile Thr Gly Leu Asn Leu Pro Met Leu Ile Gln Ala Tyr

 80 85 90
- ACA GAA CGC ATG ATG GAT GCG TCT GCC GGG GTG GAT AAA GTC GTA GCA

 Thr Glu Arg Met Met Asp Ala Ser Ala Gly Val Asp Lys Val Val Ala

 95 100 105 110
- AAT ATT ATG AAA GAA GCC AAA GGC GGT ATT AAA GTA CTA CCT GAA GAA 504 Asn Ile Met Lys Glu Ala Lys Gly Gly Ile Lys Val Leu Pro Glu Glu 115 120 125
- CTT CAA CCT GCT GAA GAA ACT GCT GTT GCA GCT GCT CCG GCT GCT GTT 552
 Leu Gln Pro Ala Glu Glu Thr Ala Val Ala Ala Pro Ala Ala Val
- CAA GGT GCG ATT CCT GAA GGA ACA GTC ATC GGT GAT GGT AAA ATT AAA 600 Gln Gly Ala Ile Pro Glu Gly Thr Val Ile Gly Asp Gly Lys Ile Lys 145 150
- ATT AAC CTC GCT CGT ATT GAC TCA CGT TTG CTT CAC GGA CAA GTT GCA

 11e Asn Leu Ala Arg Ile Asp Ser Arg Leu Leu His Gly Gln Val Ala

 160 165 170
- ACT GCT TGG ACT CCA GAC TCA AGA GCA AAC CGC ATC ATC GTT GTT TCT

 Thr Ala Trp Thr Pro Asp Ser Arg Ala Asn Arg Ile Ile Val Val Ser

 175 180 185 190

GAC Asp	ACC Thr	GTT Val	TCT Ser	AAA Lys 195	GAT Asp	GAA Glu	CTT Leu	CGT Arg	AAG Lys 200	AAG Lys	CTC Leu	ATT Ile	GAA Glu	CAA Gln 205	GCG Ala	744
GCT Ala	CCA Pro	ACT Thr	GGT Gly 210	GTA Val	AAA Lys	GCT Ala	AAC Asn	GTT Val 215	ATA Ile	CCA Pro	ATT Ile	AAG Lys	AAA Lys 220	ATG Met	ATT Ile	792
GAA Glu	GTT Val	GCT Ala 225	AAA Lys	GAC Asp	CCA Pro	CGT Arg	TTT Phe 230	GGT Gly	GAC Asp	ACT Thr	AAA Lys	GCC Ala 235	CTT Leu	CTT Leu	CTT Leu	840
TTC Phe	GAA Glu 240	ACG Thr	CCA Pro	CAA Gln	GAC Asp	GCT Ala 2 4 5	CTT Leu	GCA Ala	ACA Thr	ATC Ile	GAA Glu 250	GGT Gly	GGC Gly	GTA Val	CCA Pro	888
ATT Ile 255	GAA Glu	ACA Thr	TTG Leu	AAC Asn	GTT Val 260	GGT Gly	TCT Ser	ATG Met	GCT Ala	CAC His 265	TCA Ser	ACT Thr	GGT Gly	AAA Lys	ACA Thr 270	936
ATG Met	CTC Leu	AAC Asn	AAA Lys	GTT Val 275	CTT Leu	TCT Ser	ATG Met	GAC Asp	AAA Lys 280	GAT Asp	GAC Asp	GTT Val	GCT Ala	ACT Thr 285	TTT Phe	984
GAA Glu	AAA Lys	TTG Leu	CGT Arg 290	GAC Asp	CTC Leu	GGA Gly	GTT Val	AAA Lys 295	TTC Phe	GAC Asp	GTA Val	CGT Arg	AAA Lys 300	GTT Val	CCA Pro	1032
GCT Ala	GAC Asp	TCT Ser 305	AAA Lys	TCT Ser	GAC Asp	CTC Leu	TTT Phe 310	GGT Gly	TTG Leu	ATT Ile	AAC Asn	AAA Lys 315	GCT Ala	GAC Asp	GTA Val	1080
CAA Gln	TAA	rcag <i>i</i>	AAT 1	ATGCT	rcgt <i>i</i>	AT GA	ATAT	rctg?	A TT	ACTA	LAAT	TGA	ATAT	rag		1133
Gln								A C A	ATTA ATG (Met (320	SAA T	rac c	GT (STT 1	ra T		1133 1185
Gln GCA	GCCA/ ATC	AAT A	AATT! GTC	AAGGA ATT	AG AI	TATA.∕ GTT	AAAA GCC	A C A	ATG (GAA T	PAC (Pyr (GGT (Gly \	STT T /al I GAA	TTA T Leu S 325 GGT	Ser ATC	
GIn GCAG GTA Val	ATC Ile	TTG Leu CAA	GTC Val 330	AAGGA ATT Ile CAA	GTT Val	GTT Val CAC	GCC Ala	TTC Phe 335	ATG (Met (Met (Met (Met (Met (Met (Met (Met	GCT Ala	GGT GCG	GGT (Gly \ CTT Leu	GAA Glu 340	TTA T Leu S 325 GGT Gly	ATC Ile	1185
GTA Val CTT Leu	ATC Ile GAC Asp	TTG Leu CAA Gln 345	GTC Val 330 TGG Trp	AAGGA ATT Ile CAA Gln	GTT Val TTC Phe	GTT Val CAC His	GCC Ala CAA Gln 350	TTC Phe 335 CCA Pro	ATG (Met (B)	GCT Ala ATC Ile	GGT GCG Ala	GGT (GI) (GI) (GI) (GI) (GI) (GI) (GI) (GI)	GAA Glu 340 TCG Ser	GGT CTC Leu	ATC Ile ATC Ile TCA	1185
GIN GCAC GTA Val CTT Leu GGT Gly	ATC Ile GAC Asp ATT Ile 360 CAA	TTG Leu CAA Gln 345 GTT Val	GTC Val 330 TGG Trp ACC Thr	AAGGA ATT Ile CAA Gln GGT Gly	GTT Val TTC Phe CAT His	GTT Val CAC His GCT Ala 365 GGT	GCC Ala CAA Gln 350 TCT Ser	TTC Phe 335 CCA Pro GCA Ala	ATG (Met (Met (Met (Met (Met (Met (Met (Met	GAA TGlu TGLU TALA	GGT GCG Ala ATC Ile 370	GGT (GI) (CTT Leu TGC Cys 355 CTC Leu	GAA Glu 340 TCG Ser GGT Gly	GTC	ATC Ile ATC Ile TCA Ser	1185 1233 1281
GIN GCAC GTA Val CTT Leu GGT Gly CTT Leu 375	ATC Ile GAC Asp ATT Ile 360 CAA Gln	TTG Leu CAA Gln 345 GTT Val TTG Leu	GTC Val 330 TGG Trp ACC Thr	AAGGAATILE CAA Gln GGT Gly GCT Ala	GTT Val TTC Phe CAT His CTT Leu 380	GTT Val CAC His GCT Ala 365 GGT Gly	GCC Ala CAA Gln 350 TCT Ser TGG Trp	TTC Phe 335 CCA Pro GCA Ala GCT Ala	ATG (Met (Met (Met (Met (Met (Met (Met (Met	GCT Ala ATC Ile ATT Ile GTT Val 385	GGT Gly GCG Ala ATC Ile 370 GGT Gly	CTT Leu TGC Cys 355 CTC Leu GCC Ala	GAA Glu 340 TCG Ser GGT Gly GCT Ala	GTC Val	ATC Ile ATC Ile TCA Ser GCA Ala 390 CAA	1185 1233 1281 1329

				GCA Ala										 1521
				GTG Val										1569
				GGT Gly										1617
				ATT Ile 475										1665
				CAA Gln										1713
				GTC Val										1761
				CTT Leu										1809
				CTC Leu										1857
				GTT Val 555										1905
				GGA Gly										1953
GGC Gly	GAC Asp	ATC Ile 585	TTG Leu	AAC Asn	GAC Asp	TAC Tyr	TAA	GAAA(GGA (GGAT(CTAA	AA A	TCT Ser	2004
				CTT Leu										2052
				CAA Gln										2100
				TCG Ser										2148
				AAA Lys 645										2196

л Ст	CAC	CCA	ም እ <i>C</i>	CTT	ccc	COT	CCT	אתוכ	n m.c	CCE		. ~-	~~~			
Thr	His	Pro	Tyr 660	Val	Ala	Ala	Pro	Ile 665	Ile	Gly	GTA Val	Thr	Leu 670	Ala	Leu	2244
GAA Glu	GAA Glu	GAA Glu 675	CGT Arg	GCT Ala	AAC Asn	GGT Gly	GCT Ala 680	GAT Asp	ATC Ile	GAT Asp	GAT Asp	GCC Ala 685	GCT Ala	ATT Ile	CAA Gln	2292
GGG Gly	GTT Val 690	AAA Lys	GTT Val	GGT Gly	ATG Met	ATG Met 695	GGT Gly	CCT Pro	CTT Leu	GCC Ala	GGT Gly 700	ATC Ile	GGT Gly	GAC Asp	CCT Pro	2340
GTC Val 705	TTC Phe	TGG Trp	TTT Phe	ACA Thr	GTA Val 710	CGT Arg	CCT Pro	ATC Ile	GTT Val	GGT Gly 715	GCG Ala	ATT Ile	GCA Ala	GCT Ala	TCA Ser 720	2388
											TTC Phe					2436
											ACT Thr					2484
TAT Tyr	AAA Lys	TCA Ser 755	GGT Gly	TCT Ser	GCA Ala	ATC Ile	ACT Thr 760	AAA Lys	GAC Asp	CTT Leu	GGT Gly	GGA Gly 765	GGA Gly	CTT Leu	CTC Leu	2532
											ATG Met 780					2580
GTA Val 785	TTG Leu	ATT Ile	CAA Gln	CGT Arg	TGG Trp 790	GTA Val	ACA Thr	ATT Ile	AAC Asn	TTT Phe 795	AAT Asn	GGT Gly	CCT Pro	AAC Asn	GCT Ala 800	2628
											TAT Tyr					2676
											ATT Ile					2724
GGT Gly	AAC Asn	AAA Lys 835	CTT Leu	TCT Ser	CTT Leu	GAT Asp	CCT Pro 840	ACA Thr	AAA Lys	GTA Val	ACT Thr	TAC Tyr 845	CTT Leu	CAA Gln	GAT Asp	2772
AAC Asn	TTG Leu 850	AAT Asn	CAA Gln	TTG Leu	ATT Ile	CCT Pro 855	GGT Gly	CTT Leu	GCT Ala	GGT Gly	TTG Leu 860	CTT Leu	ATC Ile	ACA Thr	TTC Phe	2820
											CCA Pro					2868
TTT Phe	GGT Gly	CTC Leu	TTC Phe	GTC Val 885	GTG Val	GGT Gly	ATC Ile	CTC Leu	GGT Gly 890	CGA Arg	TGG Trp	GCT Ala	CAA Gln	ATC Ile 895	ATG Met	2916

INFORMATION POUR LA SEQUENCE ID NO:	INFORMATION.	POUR	LΑ	SEQUENCE	TD	NO:
-------------------------------------	--------------	------	----	----------	----	-----

- i) CARACTÉRISTIQUE DE LA SÉQUENCE ID NO:6
- A) LONGUEUR:
- B) TYPE : ADN
- C) NOMBRE DE BRIN : double
- D) CONFIGURATION : linéaire
- xi) DESCRIPTION DE LA SÉQUENCE ID NO:6

GACTTTATTA	TCTTTCAAAA	GTTGATAGGT	GTTTTTATTT	CATCTGTTAA	AATTATTGTT	60
TACTTCTAGT	TCAGAAGTAA	GATTTTTTAT	AAAATCTGTT	AAGGAAATTT	CTTAGTAACT	120
TAAATCTTCT	CCGTTTGTCG	AAATCACTTT	TTTGTACCAG	TCAAAGCCCC	GTTTTTTGAT	180
ACGTTTATAA	TCTTTATCTA	TATAAACAAA	ACCATAACGT	TTTTCAAAAC	CTTCACGAGT	240
AGAGTAAAGG	TCCGTTGCAG	ACCATGTAAG	ATAACCAATC	ATTTCTACTC	CCTCTTCAAC	300
CGCTTCTTTC	ATACGAGCAA	TATGGTCTGC	TAAATACTTA	ATTCTGTAAT	CATCATTAAC	360
CGTTCCG						367

INFORMATION POUR LA SEQUENCE ID NO:7

- i) CARACTÉRISTIQUE DE LA SÉQUENCE ID NO:7
- A) LONGUEUR:
- B) TYPE : ADN
- C) NOMBRE DE BRIN : double
- D) CONFIGURATION : linéaire
- xi) DESCRIPTION DE LA SÉQUENCE ID NO:7
- TTCATTTTAT ACAAAGGAGT CCCA ATG ATA AAA GCA ATT GCC TTA GAA AAT 51
 Met Ile Lys Ala Ile Ala Leu Glu Asn
 1 5
- GTT TGG TTA AAT TTT TCA GAT GAA ACA AAA GCG GCT TTC AAG AAA AAT 99
 Val Trp Leu Asn Phe Ser Asp Glu Thr Lys Ala Ala Phe Lys Lys Asn
 10 20 25
- AAA GCT TAC CAG TTT CAA TTT AAA AAA GAA GAA GAG CTG ACA GAA TCA
 Lys Ala Tyr Gln Phe Gln Phe Lys Lys Glu Glu Glu Leu Thr Glu Ser
 30 35 40
- GAT TTT CTG GAA ACA GAA GTA TTA GTT GGT CTG CCA AAG CCT GAT TTA 195
 Asp Phe Leu Glu Thr Glu Val Leu Val Gly Leu Pro Lys Pro Asp Leu
 50
 55
- TTA GCA AAA TAT AAA AAT TTA AAA TGG CTC CAA CTT TTA TCA GCT GGG 243 Leu Ala Lys Tyr Lys Asn Leu Lys Trp Leu Gln Leu Leu Ser Ala Gly 60 65 70
- ACC AAT GGT TAT ACT CAA GGA GCA AAT TTT CCT CAA GAG GTA GTT TTG 291
 Thr Asn Gly Tyr Thr Gln Gly Ala Asn Phe Pro Gln Glu Val Val Leu
 75
- ACA AAT GCA ACA GGA ACT TAT GGA CTT ACG ATT TCT GAG CAT TTA CTA

 Thr Asn Ala Thr Gly Thr Tyr Gly Leu Thr Ile Ser Glu His Leu Leu

 90 95 100 105
- ACA ATG GCT TTC GTT CTT CTA AGA AAA TTT GAC CTT TAT CAA AAA CAA 387
 Thr Met Ala Phe Val Leu Leu Arg Lys Phe Asp Leu Tyr Gln Lys Gln
 110 115 120

14

CAA Gln	GAA Glu	AAA Lys	GAA Glu 125	ATC Ile	TGG Trp	GAA Glu	AAT Asn	ATT Ile 130	GGT Gly	CAG Gln	ATT Ile	CAA Gln	TCT Ser 135	ATT Ile	TAT Tyr	435
GGC Gly	TCA Ser	ACA Thr 140	GTA Val	TTG Leu	GTT Val	CAT His	GGT Gly 145	TTA Leu	GGT Gly	GAT Asp	ATT Ile	GGA Gly 150	AGT Ser	CAC His	TTT Phe	483
-GCA Ala	CAA Gln 155	AAG Lys	ATT Ile	CAA Gln	GCT Ala	TTG Leu 160	GGA Gly	GGT Gly	CAT His	GTC Val	ATT Ile 165	GCA Ala	GTC Val	AAA Lys	CGA Arg	531
ACT Thr 170	GTT Val	TAT Tyr	GGT Gly	GAT Asp	GAA Glu 175	GAA Glu	TTT Phe	GCT Ala	GAT Asp	GAA Glu 180	GTC Val	TAT Tyr	GCC Ala	GAA Glu	ACT Thr 185	579
GAC Asp	CTA Leu	GAC Asp	AAA Lys	GTT Val 190	TTA Leu	CCG Pro	AGA Arg	GCT Ala	GAT Asp 195	ATT Ile	ATT Ile	GCT Ala	TCA Ser	AGT Ser 200	GTC Val	627
CCT Pro	GGG Gly	ACC Thr	CAT His 205	GAA Glu	ACT Thr	TAT Tyr	AAA Lys	TTA Leu 210	TTT Phe	AAT Asn	CAA Gln	GAA Glu	AAA Lys 215	TTT Phe	GAT Asp	675
TTA Leu	ATG Met	AAA Lys 220	GAA Glu	AAT Asn	GCT Ala	ATT Ile	TTC Phe 225	CTA Leu	AÀT Asn	GTT Val	GGT Gly	CGG Arg 230	GGA Gly	ACA Thr	AAT Asn	723
GTC Val	GAT Asp 235	TTA Leu	GAA Glu	GCC Ala	TTG Leu	TGT Cys 240	GAT Asp	GCT Ala	CTT Leu	GAG Glu	TCT Ser 245	AAA Lys	AAA Lys	ATT Ile	GCT Ala	771
GGG Gly 250	GCA Ala	GGA Gly	ATT Ile	GAC Asp	GTG Val 255	ACC Thr	GAC Asp	CCA Pro	GAA Glu	CCA Pro 260	TTG Leu	CCT Pro	AAA Lys	GGT Gly	CAC His 265	819
CGG Arg	GCT Ala	TGG Trp	CAT His	ACA Thr 270	GAA Glu	AGA Arg	CTA Leu	TTA Leu	ATC Ile 275	ACT Thr	CCT Pro	CAT His	GCT Ala	TCT Ser 280	GGC Gly	867
GGT Gly	TAT Tyr	ACT Thr	CTT Leu 285	CCT Pro	GAA Glu	ACA Thr	TGG Trp	CGT Arg 290	CGC Arg	TTT Phe	ATG Met	AAA Lys	ATA Ile 295	TTG Leu	GAA Glu	915
AAA Lys	AAT Asn	CTC Leu 300	GAT Asp	GCC Ala	TAT Tyr	GCA Ala	AAT Asn 305	GGT Gly	AAG Lys	GAA Glu	TTG Leu	ACA Thr 310	AAT Asn	ATT Ile	GTT Val	963
					TAT Tyr											999

- i) CARACTÉRISTIQUE DE LA SÉQUENCE ID NO:8
- A) LONGUEUR:
- B) TYPE : ADN
- C) NOMBRE DE BRIN : double
- D) CONFIGURATION : linéaire
- xi) DESCRIPTION DE LA SÉQUENCE ID NO:8

XI)	DE.	SCK	LPII	.ON	UE.	ьм з	sEQU	ENC	E 11) NC):8					
GAT Asp 1	ATT Ile	ATT Ile	GAT Asp	TGT Cys 5	AAT Asn	GCT Ala	GCT Ala	ATT Ile	GTA Val 10	AAT Asn	GGT Gly	GGA Gly	GGT Gly	GCT Ala 15	CTC Leu	48
CTT Leu	GGT Gly	TTT Phe	GCT Ala 20	ATG Met	AAA Lys	TAC Tyr	AAA Lys	ACC Thr 25	AAC Asn	AAT Asn	GAC Asp	CGT Arg	GTG Val 30	GAA Glu	AAG Lys	96
TTT Phe	TTT Phe	AAA Lys 35	GCT Ala	AAA Lys	CAA Gln	CTT Leu	CCA Pro 40	GAG Glu	GAA Glu	TAC Tyr	ATA Ile	CGT Arg 45	GGT Gly	ATC Ile	AGC Ser	144
CGT Arg	GTT Val 50	TAT Tyr	GAT Asp	ACT Thr	CAA Gln	GAA Glu 55	AAT Asn	ATC Ile	GGT Gly	ATT Ile	GAC Asp 60	AGT Ser	GAC Asp	TTG Leu	ACC Thr	192
ATC Ile 65	TTC Phe	CCA Pro	GTG Val	GAA Glu	TTA Leu 70	AAA Lys	GAT Asp	GAT Asp	TTC Phe	CCT Pro 75	GAC Asp	GGT Gly	TTG Leu	ACT Thr	ACA Thr 80	240
ATT Ile	GCA Ala	CCA Pro	ATC Ile	TAT Tyr 85	GGT Gly	GGT Gly	GGT Gly	ATG Met	CGT Arg 90	CTT Leu	GGT Gly	TCT Ser	TTC Phe	ATT Ile 95	ATT Ile	288
TGG Trp	CGT Arg	AAC Asn	GAC Asp 100	CAT His	GAT Asp	TTT Phe	GTG Val	GAC Asp 105	GAC Asp	GAC Asp	CTT Leu	ATC Ile	TTG Leu 110	GTT Val	GAG Glu	336
ATT Ile	GCA Ala	TCT Ser 115	ACA Thr	GTA Val	GTT Val	GGT Gly	TTG Leu 120	CAA Gln	TTG Leu	TTG Leu	CAT His	CTT Leu 125	CAA Gln	ACA Thr	GAA Glu	384
AAC Asn	TTG Leu 130	GAA Glu	GAA Glu	ACG Thr	ATT Ile	CGT Arg 135	AAA Lys	CAA Gln	ACA Thr	GCT Ala	ATT Ile 140	AAT Asn	ATG Met	GCT Ala	ATT Ile	432
AAT Asn 145	ACC Thr	TTG Leu	TCT Ser	TAC Tyr	TCA Ser 150	GAA Glu	ATC Ile	AAG Lys	GCA Ala	GTT Val 155	TCA Ser	GCT Ala	ATC Ile	TTG Leu	AAT Asn 160	480
GAG Glu	TTG Leu	GAC Asp	GGT Gly	TTA Leu 165	GAA Glu	GGT Gly	CGT Arg	TTG Leu	ACA Thr 170	GCC Ala	TCT Ser	GTT Val	ATC Ile	GCG Ala 175	GAC Asp	528
CGT	ATC	GGA	ATT	ACT	CGT	TCT			GTT	AAT	GCT	CTT	CGT	AAA	TTA	576

Arg Ile Gly Ile Thr Arg Ser Val Ile Val Asn Ala Leu Arg Lys Leu

185

180

GAA Glu	TCA Ser	GCT Ala 195	Gly	ATT Ile	ATT Ile	GAA Glu	AGT Ser 200	CGT Arg	TCG Ser	CTT Leu	GGT Gly	ATG Met 205	Lys	GGC Gly	ACT Thr	624
TAC Tyr	CTC Leu 210	AAA Lys	GTC Val	CTT Leu	AAC Asn	GAA Glu 215	GGT Gly	ATC Ile	TAC Tyr	GAC Asp	AAA Lys 220	TTG Leu	AAA Lys	GAA Glu	TAC Tyr	672
i) A) B) C) D)	CAR LON TYP NOM CON	ACT: GUE E: BRE FIG	ÉRIS UR : ADN DE URAT	STIÇ : N BRI SION	DUE N:	SEG DE 1 dou line LA 2	LA S uble éair	SÉQU e e	ENC	E II	O NC):9				
ATG Met 1	GCA Ala	AAT Asn	TTG Leu	CTT Leu 5	GAT Asp	AAA Lys	ACA Thr	CGT Arg	AAA Lys 10	ATT Ile	ACT Thr	TCT Ser	ATC Ile	TTG Leu 15	CAA Gln	48
CGC Arg	TCA Ser	GTA Val	GAT Asp 20	AGT Ser	TTG Leu	GAA Glu	GGA Gly	GAT Asp 25	CTT Leu	CCA Pro	TAC Tyr	AAC Asn	AAC Asn 30	ATG Met	GCT Ala	96
GCT Ala	CAG Gln	TTG Leu 35	GCA Ala	GAT Asp	ATT Ile	ATT Ile	GAT Asp 40	TGT Cys	AAT Asn	GCT Ala	GCT Ala	ATT Ile 45	GTA Val	AAT Asn	GGT Gly	144
GGA Gly	GGT Gly 50	GCT Ala	CTC Leu	CTT Leu	GGT Gly	TTT Phe 55	GCT Ala	ATG Met	AAA Lys	TAC Tyr	AAA Lys 60	ACC Thr	AAC Asn	AAT Asn	GAC Asp	192
CGT Arg 65	GTG Val	GAA Glu	AAG Lys	TTT Phe	TTT Phe 70	AAA Lys	GCT Ala	AAA Lys	CAA Gln	CTT Leu 75	CCA Pro	GAG Glu	GAA Glu	TAC Tyr	ATA Ile 80	240
CGT Arg	GGT Gly	ATC Ile	AGC Ser	CGT Arg 85	GTT Val	TAT Tyr	GAT Asp	ACT Thr	CAA Gln 90	GAA Glu	AAT Asn	ATC Ile	GGT Gly	ATT Ile 95	GAC Asp	288
AGT Ser	GAC Asp	TTG Leu	ACC Thr 100	ATC Ile	TTC Phe	CCA Pro	GTG Val	GAA Glu 105	TTA Leu	AAA Lys	GAT Asp	GAT Asp	TTC Phe 110	CCT Pro	GAC Asp	336
GGT Gly	TTG Leu	ACT Thr 115	ACA Thr	ATT Ile	GCA Ala	CCA Pro	ATC Ile 120	TAT Tyr	GGT Gly	GGT Gly	GGT Gly	ATG Met 125	CGT Arg	CTT Leu	GGT Gly	384
TCT Ser	TTC Phe 130	ATT Ile	ATT Ile	TGG Trp	CGT Arg	AAC Asn 135	GAC Asp	CAT His	GAT Asp	TTT Phe	GTG Val 140	GAC Asp	GAC Asp	GAC Asp	CTT Leu	432
ATC Ile 145	TTG Leu	GTT Val	GAG Glu	ATT Ile	GCA Ala 150	TCT Ser	ACA Thr	GTA Val	GTT Val	GGT Gly 155	TTG Leu	CAA Gln	TTG Leu	TTG Leu	CAT His 160	480
CTT Leu	CAA Gln	ACA Thr	GAA Glu	AAC Asn	TTG Leu	GAA Glu	GAA Glu	ACG Thr	ATT Ile	CGT Arg	AAA Lys	CAA Gln	ACA Thr	GCT Ala	ATT Ile	528

		165			170			175	
					TCA Ser				576
					GAA Glu				624
					CGT Arg				672
					ATT Ile				720
					AAC Asn 250				768
AAA Lys									783

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

. | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1886 | 1

(43) Date de la publication internationale 26 avril 2001 (26.04.2001)

PCT

(10) Numéro de publication internationale WO 01/29183 A3

- (51) Classification internationale des brevets⁷: C12N 1/20, C12Q 1/68, A23C 19/032 // C12R 1:46
- (21) Numéro de la demande internationale :

PCT/FR00/02869

(22) Date de dépôt international:

13 octobre 2000 (13.10.2000)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 99/12924 15 octobre 1999 (15.10.1999) FI

- (71) Déposant (pour tous les États désignés sauf US):
 INSTITUT NATIONAL DE LA RECHERCHE
 AGRONOMIQUE -INRA- [FR/FR]; 147, rue de l'Université, F-75338 Paris Cedex 07 (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): GUEDON, Eric [FR/FR]; 26, rue Jules Ferry. F-92100 Boulogne (FR). ANBA-MONDOLONI, Jamila [FR/FR]; 13, rue Charles Linné, F-78180 Montigny-le-Bretonneux (FR). DELORME, Christine [FR/FR]; 15, résidence des Basses Garennes, F-91120 Palaiseau (FR). RENAULT, Pierre [FR/FR]; 9, rue Magellan, F-78180 Montigny-le-Bretonneux (FR).

- (74) Mandataire: BREESE-MAJEROWICZ; 3, avenue de l'Opéra, F-75001 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID. IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- (88) Date de publication du rapport de recherche internationale: 22 novembre 2001

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: MUTANT LACTIC BACTERIA WITH A CAPACITY FOR OVEREXPRESSING AT LEAST ONE PEPTIDASE
- lacktriangled (54) Titre : BACTERIES LACTIQUES MUTANTES CAPABLES DE SUREXPRIMER AU MOINS UNE PEPTIDASE
 - (57) Abstract: The invention relates to mutants of lactic bacteria such as L. lactis or S. thermophilus which can overexpress one or more peptidases, characterised in that at least one of the negative regulation factors of at least one of the peptidase genes of said bacteria is inactivated, said negative regulation factor being selected from a group comprising the gene codY, the genes of the operon lev, and a gene coding for a protein that is homologous with a β -glucosidase.
 - (57) Abrégé: La présente invention se rapporte à des mutants de bactéries lactiques, comme L. lactis ou S. thermophilus capables de surexprimer une ou plusieurs peptidases, caractérisés en ce que l'un au moins des facteurs de régulation négative de l'un au moins des gènes des peptidases desdites bactéries est inactivé, ledit facteur de régulation négative étant choisi dans le groupe comprenant le gène codY, les gènes de l'opéron lev, un gène codant une protéine homologue à une β-glucosidase.

Intern	ıal	Application No
PCT/	'FR	00/02869

A CLASS	CIFICATION OF CUIT	PC	CT/FR 00/02869
ÎPC 7	GIFICATION OF SUBJECT MATTER C12N1/20 C12Q1/68 A23C19 //C12R1:46	9/032	
According t	to International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
IPC /	ocumentation searched (classification system followed by classific C12N C07K C12Q A23C		
	tion searched other than minimum documentation to the extent the		
BIOSIS	lata base consulted during the international search (name of data, WPI Data, EPO-Internal	base and, where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	KUNJI EDMUND R S ET AL: "Trans beta-Casein-derived Peptides by Oligopeptide Transport System I Step in the Proteolytic Pathway Lactococcus lactis." JOURNAL OF BIOLOGICAL CHEMISTRY vol. 270, no. 4, 1995, pages 15 XP002141676 ISSN: 0021-9258 the whole document	the s a Crucial of	
X Furthe	er documents are listed in the continuation of box C.	Patent family members	are listed in annex.
"A" document consider "E" earlier do filing dat "L" document which is citation of "O" document other me "P" document later thar	which may throw doubts on priority claim(s) or cited to establish the publication date of another or other special reason (as specified) t referring to an oral disclosure, use, exhibition or	"T" later document published aft or priority date and not in cited to understand the prin invention "X" document of particular releving cannot be considered nove involve an inventive step with document of particular releving cannot be considered to involve an inventive step with document is combined with	ter the international filing date onflict with the application but ciple or theory underlying the ance; the claimed invention of cannot be considered to then the document is taken alone ance; the claimed invention volve an inventive step when the one or more other such docueing obvious to a person skilled me patent family
16	February 2001		07.05.2001
	ling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer VAN DER SCHA	AL C.A.

Interr 1al Application No PCT/FR 00/02869

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category	ondition of decement, with includation, where appropriate, of the relevant passages	nelevani to datin No.
A	MARUGG JOEY D ET AL: "Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: Control of transcription initiation by specific dipeptides." JOURNAL OF BACTERIOLOGY, vol. 177, no. 11, 1995, pages 2982-2989, XP002141677 ISSN: 0021-9193 cited in the application the whole document	
A	FISHER SUSAN H ET AL: "Role of Cody in regulation of the Bacillus subtilis hut operon." JOURNAL OF BACTERIOLOGY, vol. 178, no. 13, 1996, pages 3779-3784, XP002160377 ISSN: 0021-9193 the whole document	7-9
A	DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; April 1999 (1999-04) FISHER SUSAN H: "Regulation of nitrogen metabolism in Bacillus subtilis: Vive la difference!" Database accession no. PREV199900269050 XP002160389 abstract & MOLECULAR MICROBIOLOGY, vol. 32, no. 2, April 1999 (1999-04), pages 223-232, ISSN: 0950-382X	7-9
A	KUNJI E ET AL: "The proteolytic systems of lactic acid bacteria" ANTONIE VAN LEEUWENHOEK, vol. 70, 1996, pages 187-221, XP000914826 cited in the application the whole document	

International application No.

PCT/FR00/02869

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)								
This inte	This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:								
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:								
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:								
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).								
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)								
inis inte	See supplemental sheet								
1 2 3	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:								
4 X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 7-9 in their entirety, 1-6, 10-15, 18 in part on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.								

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

International application No. PCT/FR 00/02869

The international searching authority has established that this international application contains multiple (groups of) inventions as follows:

1. Claim nos.: 7-9 in their entirety, 1-6, 10-15, 18 in part

mutant of lactic bacterium with the gene codY inactivated

2. Claim nos.: 1-6, 10-15, 18 in part

mutant of lactic bacterium with the operon lev inactivated, apart from the mutant in 1

3. Claim nos.: 1-6 and 13-15, 18 in part

mutant of lactic bacterium with a gene coding for an inactivated beta-glu coside, apart from the mutants in 1 and 2

4. Claim nos.: 16 and 17

recombinant vector for use for identifying or selecting mutant lactic bacteria and use thereof

Form PCT/ISA/210

RAPPORT DE RECHERCHE INTERNATIONALE

Dema Internationale No PCT/FR 00/02869

A.CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE C12N1/20 C12Q1/68 A23C19/03 //C12R1:46	2	
Selon la clas	ssification internationale des brevets (CIB) ou à la tois selon la classifica	tion nationale et la CIB	
B. DOMAIN	NES SUR LESQUELS LA RECHERCHE A PORTE		
Documentat CIB 7	tion minimale consultée (système de classification suivi des symboles de C12N C07K C12Q A23C	e classement)	
Documentat	tion consultée autre que la documentation minimale dans la mesure où c	ces documents relèvent des domaines su	ir lesquels a porté la recherche
	nnées électronique consultée au cours de la recherche internationale (no , WPI Data, EPO-Internal	om de la base de données, et si réalisabl	e, termes de recherche utilisés)
C. DOCUME	ENTS CONSIDERES COMME PERTINENTS		,
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication de	es passages pertinents	no. des revendications visées
A	KUNJI EDMUND R S ET AL: "Transpor beta-Casein-derived Peptides by th Oligopeptide Transport System Is a Step in the Proteolytic Pathway of Lactococcus lactis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 4, 1995, pages 1569-XP002141676 ISSN: 0021-9258 le document en entier	e Crucial	
X Voir	la suite du cadre C pour la fin de la liste des documents	Les documents de familles de bre	evets sont indiqués en annexe
"A" docume consic "E" docume ou api "L" docume priorite autre ("O" docume une e:	ent définissant l'état général de la technique, non déré comme particulièrement pertinent ent antérieur, mais publié à la date de dépôt international rès cette date ent pouvant jeter un doute sur une revendication de é ou cité pour déterminer la date de publication d'une citation ou pour une raison spéciale (telle qu'indiquée) ent se référant à une divulgation orale, à un usage, à xposition ou tous autres moyens ent publié avant la date de dépôt international, mais	document ultérieur publié après la date de priorité et n'appartenenant patechnique pertinent, mais cité pour co ou la théorie constituant la base de l'i (document particulièrement pertinent; l' être considérée comme nouvelle ou inventive par rapport au document comment particulièrement pertinent; l' ne peut être considérée comme impliorsque le document est associé à ur documents de même nature, cette co pour une personne du métier (document qui fait partie de la même fa	as à l'état de la omprendre le principe invention l'inven tion revendiquée ne peut comme impliquant une activité onsidéré isolément l'inven tion revendiquée iquant une activité inventive o ou plusieurs autres ombinaison étant évidente
Date à laqu	relle la recherche internationale a été effectivement achevée	Date d'expedition du présent rapport d	de recherche internationale
1	.6 février 2001	07	.05.2001
Nom et adre	esse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnaire autorisé	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	VAN DER SCHAAL C	.A.

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

3

RAPPORT DE RECHERCHE INTERNATIONALE

Demar 'nternationale No PCT/FR 00/02869

C.(suite) DC	DCUMENTS CONSIDERES COMME PERTINENTS	1100702003
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
4	MARUGG JOEY D ET AL: "Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: Control of transcription initiation by specific dipeptides." JOURNAL OF BACTERIOLOGY, vol. 177, no. 11, 1995, pages 2982-2989, XP002141677 ISSN: 0021-9193 cité dans la demande le document en entier	
	FISHER SUSAN H ET AL: "Role of CodY in regulation of the Bacillus subtilis hut operon." JOURNAL OF BACTERIOLOGY, vol. 178, no. 13, 1996, pages 3779-3784, XP002160377 ISSN: 0021-9193 le document en entier	7-9
	DATABASE BIOSIS [en ligne] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; avril 1999 (1999-04) FISHER SUSAN H: "Regulation of nitrogen metabolism in Bacillus subtilis: Vive la difference!" Database accession no. PREV199900269050 XP002160389 abrégé & MOLECULAR MICROBIOLOGY, vol. 32, no. 2, avril 1999 (1999-04), pages 223-232, ISSN: 0950-382X	7-9
	KUNJI E ET AL: "The proteolytic systems of lactic acid bacteria" ANTONIE VAN LEEUWENHOEK, vol. 70, 1996, pages 187-221, XP000914826 cité dans la demande le document en entier	

RAPPORT DE RECHERCHE INTERNATIONALE

nde internationale n° PCT/FR 00/02869

D

Cadre l'Observations - lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)
Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:
Les revendications nos se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:
Les revendications nos se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:
Les revendications n ^{os} sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).
Cadre II Observations - lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)
L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir: voir feuille supplémentaire
Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.
2. Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.
3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n os
4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n os 7-9 complètement, 1-6, 10-15, 18 partiellement
Remarque quant à la réserve Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

Formulaire PCT/ISA/210 (suite de la première feuille (1)) (Juillet 1998)

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

- 1. revendications: 7-9 complètement, 1-6 10-15 18 partiellement Mutant de bactérie lactique avec le gène codY inactivé
- 2. revendications: 1-6 10-15 18 partiellement

Mutant de bactérie lactique avec l'opéron lev inactivé, à l'exception du mutant du sujet 1

3. revendications: 1-6 et 13-15 18 partiellement

Mutant de bactérie lactique avec un gène codant pour une beta-glucosidase inactivée, à l'exception du mutant des sujets 1 et 2

4. revendication: 16 et 17

Vecteur recombinant utile pour identifier ou sélectionner des bactéries lactiques mutantes et son utilisation