Departamento de Matemática Aplicada

IMECC - UNICAMP

Exame de Admissão 2011

Programa de Pós-Graduação em Matemática Aplicada

α \prime 1.	7	<i>Identificação:</i>
Lindian	de	Identificacao
		1 (4)(-11)(-11)(-11)(-11)(-11)(-11)

$Quest\~oe.$	Pontos	
Questão	1	
Questão	2	
Questão	3	
Questão	4	
Questão	5	
Questão	6	
Questão	7	
Questão	8	
Questão	9	
Questão	10	
Tota	l	

Inicialmente, faça uma leitura com muita atenção do enunciado de todas as questões. Apresente a resolução de somente oito questões, dentre as cinco questões de Álgebra Linear e as cinco questões de Cálculo Diferencial e Integral. Todas as questões têm a mesma pontuação. A prova tem duração de quatro horas. Justifique todos os argumentos. Respostas sem justificativas **não** serão consideradas.

Boa Prova!

Álgebra Linear

Definição 1 Seja A uma matriz real simétrica de ordem n. Dizemos que A é uma matriz positiva—definida se

$$X^t A X > 0$$

para toda matriz coluna não-nula X de ordem $n \times 1$.

Questão 1. (20 Pontos)

Sejam V um espaço vetorial real de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$ e $\beta = \{v_1, \dots, v_n\}$ uma base ordenada de V.

- (a) Determine a matriz do produto interno $\langle \cdot, \cdot \rangle$ com relação à base ordenada β de V.
- (b) Mostre que a matriz do produto interno é uma matriz positiva-definida.
- (c) Dados os escalares c_1, \dots, c_n , mostre que existe um único elemento $u \in V$ tal que

$$\langle u, v_i \rangle = c_i$$
 para $i = 1, \dots, n$.

(d) Considerando o espaço vetorial real \mathbb{R}^2 munido do produto interno

$$\langle u, v \rangle = 5x_1 y_1 - 2x_1 y_2 - 2y_1 x_2 + 4x_2 y_2,$$

onde $u=(x_1, x_2)$ e $v=(y_1, y_2)$, determine a matriz do produto interno $\langle \cdot, \cdot \rangle$ com relação à base ordenada $\beta = \{v_1 = (1, 1), v_2 = (1, -1)\}$ do \mathbb{R}^2 .

Questão 2. (20 Pontos)

Considere U, V e W espaços vetoriais de dimensão finita sobre o corpo $I\!\!F, S$ um subconjunto de V com um número finito de elementos, e $\langle \, \cdot \, , \, \cdot \, \rangle$ um produto interno em V. Diga se é $\bf F$ alsa ou $\bf V$ erdadeira cada uma das afirmações abaixo, justificando sua resposta.

- (a) Se T um operador linear sobre V tal que $\langle T(u), T(u) \rangle = \langle u, u \rangle$ para todo $u \in V$, então T é um operador linear injetor.
- (b) Se S é um conjunto linearmente dependente, então qualquer subconjunto de S é também linearmente dependente.
- (c) Se $T: V \longrightarrow V$ é um operador linear tal que T(T(v)) = T(v) para todo $v \in V$, então $V = Im(T) \oplus Ker(T)$, onde Ker(T) é o núcleo do operador linear T e Im(T) é a imagem do operador linear T.
- (d) Se $T:U\longrightarrow V$ e $P:V\longrightarrow W$ são transformações lineares bijetoras, então $P\circ T$ também é uma transformação linear bijetora.
- (e) Se os elementos $u, v, w \in V$ são tais que $\langle u, v \rangle = \langle u, w \rangle$, então v = w.

Questão 3. (20 Pontos)

Considere a aplicação $T: \mathcal{P}_3(I\!\! R) \longrightarrow \mathcal{P}_3(I\!\! R)$ definido da seguinte forma:

$$T(p(x)) = x^2 p''(x) + p'(x) + p(0)$$
 ; $x \in \mathbb{R}$,

onde $\mathcal{P}_3(\mathbb{R})$ é o espaço vetorial dos polinômios com coeficientes reais de grau ≤ 3 .

- (a) Mostre que $\,T\,$ é uma aplicação linear.
- (b) Determine a matriz da transformação linear T, $[T]^{\beta}_{\beta}$, onde β é a base canônica de $\mathcal{P}_{3}(\mathbb{R})$, isto é, $\beta = \{1, x, x^{2}, x^{3}\}$.
- (c) O operador linear T é injetor?
- (d) O operador linear T é diagonalizável? Em caso afirmativo, determine uma base ordenada γ para $\mathcal{P}_3(\mathbb{R})$ de modo que $[T]^{\gamma}_{\gamma}$ seja uma matriz diagonal.

Questão 4. (20 Pontos)

Seja A uma matriz anti–simétrica de ordem n, isto é, $A^t = -A$.

- (a) Mostre que os elementos da diagonal principal da matriz $\,A\,$ são todos nulos.
- (b) Mostre que $X^tAX = 0$ para toda matriz coluna X de ordem $n \times 1$.
- (c) Mostre que a matriz $I_n + A$ é não—singular, onde I_n é a matriz identidade de ordem n.

Questão 5. (20 Pontos)

Considere A uma matriz de ordem $m \times n$, tal que o sistema linear homogêneo $Ax = 0_{\mathbb{R}^m}$ possui pelo menos uma solução não trivial, isto é, uma solução $\bar{x} \neq 0_{\mathbb{R}^n}$.

- (a) Mostre que o sistema linear $A^ty=b$ não possui solução para alguns elementos $b\in \mathbb{R}^n$.
- (b) Dê um exemplo considerando uma matriz A de ordem 4×3 e um elemento $b \in \mathbb{R}^3$.

Note que estamos considerando que os elementos do \mathbb{R}^n são matrizes coluna de ordem $n \times 1$, e os elementos do \mathbb{R}^m são matrizes coluna de ordem $m \times 1$.

Cálculo Diferencial e Integral

Questão 6. (20 Pontos)

Considere a superfície em \mathbb{R}^3 dada pela equação

$$\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} \,,$$

para a uma constante positiva, e considere um plano tangente a esta superfície em um ponto $P_0 = (x_0, y_0, z_0)$. Este plano vai cortar os eixos coordenados nos pontos $P_1 = (x_1, 0, 0)$, $P_2 = (0, y_1, 0)$ e $P_3 = (0, 0, z_1)$.

Encontre os valores de x_1, y_1 e z_1 e mostre que a soma $x_1 + y_1 + z_1$ é constante, isto é, não depende do ponto P_0 em que o plano tangencia a superfície.

Questão 7. (20 Pontos)

Sejam $\vec{r}(t) = x(t)\vec{1} + y(t)\vec{j}$ a equação de movimento de uma partícula de massa m que se desloca no plano cartesiano do ponto inicial $A = \vec{r}(t_1)$ até a uma posição final $B = \vec{r}(t_2)$, e \vec{F} um campo de força que atua sobre a partícula.

(a) Mostre que o trabalho realizado pela força \vec{F} é igual à diferença dos valores da energia cinética da partícula em suas posições final e inicial, isto é,

$$\int_{\Gamma} \vec{F} \cdot d\vec{r} = \frac{m}{2} ||\vec{v}(t_2)||^2 - \frac{m}{2} ||\vec{v}(t_1)||^2$$

(b) Considere \vec{F} um campo de força conservativo, isto é, existe uma função energia potencial U tal que $\vec{F}=-\vec{\nabla}U$. Mostre que

$$\int_{\Gamma} \vec{F} \cdot d\vec{r} = -(U(B) - U(A))$$

(c) Considere \vec{F} um campo de força conservativo. Mostre que temos uma conservação de energia, isto é,

$$\frac{m}{2} \| \vec{v}(t_1) \|^2 + U(A) = \frac{m}{2} \| \vec{v}(t_2) \|^2 + U(B)$$

onde \vec{v} é o vetor velocidade da partícula, e Γ é a trajetória da partícula.

Questão 8. (20 Pontos)

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, x_1,\cdots,x_n pontos distintos de [a,b], e números reais de mesmo sinal w_1,\cdots,w_n . Mostre que existe pelo menos um ponto $c\in(a,b)$ tal que

$$\sum_{i=1}^{n} f(x_i) w_i = f(c) \sum_{i=1}^{n} w_i.$$

Questão 9. (20 Pontos)

Sejam \vec{n} um vetor normal exterior à circunferência \mathcal{C} definida pela equação

$$x^2 + y^2 = 4 ,$$

e o campo vetorial $\vec{F}(x,y)=3x^2\vec{\imath}+4y^2\vec{\jmath}$. Determine um ponto $\bar{P}=(\bar{x},\bar{y})\in\mathcal{C}$ e uma direção \vec{n} de modo que a taxa de variação do campo escalar $G=div(\vec{F})$ no ponto \bar{P} na direção do vetor \vec{n} seja máxima, isto é, resolva o seguinte problema de maximização com restrição

$$\max \left\{ \frac{\partial G}{\partial \vec{n}} = \vec{\nabla} G \cdot \vec{n} , \quad P = (x, y) \in \mathcal{C} \right\}.$$

Questão 10. (20 Pontos)

Considere o sistema de Equações Diferencias Ordinárias

$$X'(t) = AX(t)$$
 onde $A = \begin{bmatrix} -2 & \alpha \\ 1 & -4 \end{bmatrix}$ e $X(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$.

- (a) Determine o valor do parâmetro α de modo que a matriz A tenha um único autovalor com multiplicidade algébrica igual a dois.
- (b) Para o parâmetro α encontrado no item (a), determine os autovetores da matriz A.
- (c) Determine a solução geral do sistema de equações diferenciais ordinárias, considerando o parâmetro α encontrado no item (a).
- (d) Faça a classificação quanto a estabilidade da solução estacionária do sistema de equações diferenciais ordinárias, considerando o parâmetro α encontrado no item (a).