Supporting Information

Critical Role of Explicit Inclusion of Solvent and Electrode Potential in Electrochemical Description of Nitrogen Reduction

Sheng-Jie Qian¹, Hao Cao¹, Jie-Wei Chen¹, Jun-Chi Chen¹, Yang-Gang Wang^{1*}, Jun Li^{1,2*}

¹Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China ²Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China

Corresponding authors: wangyg@sustech.edu.cn; junli@tisnghua.edu.cn

Figure S1. The side view (a) and top view (b) of Fe-N₄-C catalyst model in liquid phase system at PZC. The C, N, Fe, O, H atoms are denoted as ginger, blue, orange, pink and white spheres, respectively.

Figure S2. Radial distribution function of water from equilibrated AIMD trajectory. (a) The radial distribution function (RDF) of O-H and O-O and (b) the coordination number (integrated RDF) of O-H and O-O.

Figure S3. The water density distribution along the surface perpendicular from equilibrated AIMD trajectories.

Figure S4. The illustrations of reaction coordinates for the (a) N_2 adsorption, (b) N_2 first protonation. The C, N, Fe, O, H atoms are denoted as ginger, blue, orange, pink and white spheres, respectively.

Figure S5. (a) pDOS for free N₂, Fe-N₄-C before N₂ adsorption in clean system (b) and liquid system (c).

Figure S6. The snapshots of the Fe-N₄-C/water interfaces of the system containing (a) 1, (b) 2 and (c) $3 \text{ H}_3\text{O}^+$. The position variation in z direction of H_3O^+ and the corresponding electrode potential variation in systems containing different amounts of H_3O^+ . (d), (e), and (f) respectively correspond to the system containing 1, 2 and 3 H_3O^+ . (Bar for electrode potential and line for position in z axis)

Figure S7. pDOS of liquid system with different potential before and after N_2 adsorption. ((a) for -0.23 V; (b) for -0.48 V and (c) for -0.68 V)

Figure S8. Bond length variation of N-N and Fe-N (a); Bader charge variation of the adsorbate *N₂ (b) under different electrode potential by adding K counterions.

Figure S9. The averaged force of constrained MD simulations for the N_2 adsorption at (a) -0.09 V, (b) -0.31 V, (c) -0.56 V and (d) -0.79 V vs RHE. The error bars were in correspond to margins of error calculated considering a 95% confidence level.

Figure S10. The averaged force of constrained MD simulations for the N_2 first protonation at (a) - 0.23 V, (b) -0.48 V and (c) -0.68 V vs. RHE. The error bars were in correspond to margins of error calculated considering a 95% confidence level.

Figure S11. The N-N distances along the reaction paths of the N₂ adsorption (a) and first protonation (b) reactions under different electrode potentials.

Table S1. Summary of the reported $Fe-N_x-C$ catalysts for NRR at low temperature. The maximum yield rate, maximum faradaic efficiency (FE) and the electrode potential (U) at the maximum yield rate are shown

Catalyst	Electrolyte	NII wield	FE	U vs. RHE
		NH ₃ yield	(%)	(V)
FeSA-N-C	0.1 M KOH	7.48 µg h ⁻¹ mgcat ⁻¹	56.55	0.0
ISAS-Fe/NC	0.1 M PBS	62.9 µg h ⁻¹ mgcat ⁻¹	18.6	-0.4
FePc/C	$0.1 \text{ M Na}_2\text{SO}_4$	137.95µg h ⁻¹ mgcat ⁻¹	10.5	-0.3
	(pH = 6.8)	137.93µg ii Angeat		
Fe-N/C-CNT	0.1 M KOH	34.83 μg h ⁻¹ mgcat ⁻¹	9.28	-0.2
Fe ₁ -N-C	0.1 M KOH	1.56×10 ⁻¹¹ mol cm ⁻² s ⁻¹	4.51	-0.05

Table S2. Adsorption structures and the corresponding optimized energies of $*N_2$ on the Fe-N₄-C catalyst. (Orange atom is Fe, blue atom is N, ginger atom is C and white atom is H.)

	end-on		side-on	
system	configuration	Energy/eV	configuration	Energy/eV
clean		-896.63		-895.73
liquid		-2997.46		-2996.51

Table S3. Adsorption Gibbs free energy of H₂ under different electrode potential.

Electrode potential	Adsorption Energy/eV
0.02	0.28
-0.22	-0.02
-0.50	-0.35
-0.76	-0.59

Table S4. Electrode potential of the initial state (U_{IS}) , final state (U_{FS}) for various electrochemical reactions at different potentials. The variation of surface charge (Δq) during reactions and the free energy corrections for constant potential $((\Delta U \cdot \Delta q)/2, \Delta U = U_{IS} - U_{FS})$ proposed by Nørskov et al. are also presented at list.

Reaction	U _{IS} (V)	U _{FS} (V)	△q (e)	(△U·△q) / 2 (eV)
N ₂ adsorption (No counterions)	-0.09	0.02	0.35	0.02
N_2 adsorption (1H ⁺)	-0.31	-0.23	0.28	0.01
N_2 adsorption (2H ⁺)	-0.56	-0.48	0.27	0.01
N_2 adsorption (3H ⁺)	-0.79	-0.68	0.31	0.01
N ₂ first protonation (1H ⁺)	-0.23	0.06	0.96	0.14
N_2 first protonation (2H ⁺)	-0.48	-0.13	1.16	0.20
N ₂ first protonation (3H ⁺)	-0.69	-0.38	1.02	0.16