Number Theory

Ikhan Choi

February 29, 2024

Contents

Ι	Quadratic reciprocity	3
1	Congruence 1.1 1.2 Quadratic residue	4 4
2		6
3	Binary quadratic forms 3.1 Reduced forms	7 7 7 7
II	Multiplicative number theory	8
4	Arithmetic functions	9
5	Dirichlet's theorem	10
6	Prime number theorem	11
II	I Quadratic Diophantine equations	12
7	Pell's equation 7.1 Continued fraction	13 13 13
8	<i>p</i>-adic numbers8.1 Hensel lemma	15
9	Local-global principle 9.1 Hasse-Minkowski theorem	1 7 17
IV	Elliptic curves	18
10	Elliptic curves over $\mathbb C$ 10.1 $\mathbb P^2(\mathbb C)$	19 19

11 Elliptic curves over $\mathbb Q$	21
11.1 Finitely generatedness	21
11.2 Integral solutions	21
12 Elliptic curves over \mathbb{F}_p	22

Part I Quadratic reciprocity

Congruence

1.1

- 1.1 (Computation with binomial theorem).
- 1.2 (Fermat's little theorem). and Euler theorem

$$a^p \equiv a \pmod{p}$$
. $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Wilson's theorem $(n-1)! \equiv -1 \pmod{n}$.

1.2 Quadratic residue

1.3.

$$x^2 \equiv 0,1 \pmod{3,4}$$

 $x^2 \equiv 0,1,4 \pmod{5,8}$
 $x^2 \equiv 0,1,3,4 \pmod{6}$

$$x^2 \equiv 0, 1, 2, 4 \pmod{7}$$

$$x^2 \equiv 0, 1, 4, 7 \pmod{9}$$

$$x^2 \equiv 0, 1, 4, 9 \pmod{12}$$

- **1.4** (Supplental laws). Let p be an odd prime.
 - (a) $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$.
 - (b) $\left(\frac{2}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{8}$.
 - (c) $\left(\frac{3}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{12}$.
 - (d) $\left(\frac{5}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{5}$.
- 1.5 (Euler's criterion).

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

1.6 (Quadratic Gauss sum). Let p be an odd prime. The quadratic Gauss sum is

$$\tau_p := \sum_{n=0}^{p-1} \zeta_p^{n^2},$$

where $\zeta_p:=e^{2\pi i/p}$ is a primitive pth root of unity in any field. Define $p^*:=(-1)^{\frac{p-1}{2}}p$.

(a) We have

$$\tau_p = \sum_{a=0}^{p-1} \left(\frac{a}{p}\right) \zeta_p^a.$$

(b) We have

$$\tau_p^2 = p^*.$$

1.7 (Quadratic reciprocity). Let p and q be distinct odd primes. Let L be the splitting field of x^p-1 over \mathbb{F}_q . Let $\zeta_p \in L$ be a primitive p-th root of unity. Define $p^* := (-1)^{\frac{p-1}{2}}p$ and write

$$\sqrt{p^*} := \sum_{n=0}^{p-1} \zeta_p^{n^2} \in L.$$

Note that $\sigma_q:L\to L:x\mapsto x^q$ is a field automorphism.

(a) From the Gauss sum, we have

$$\sigma_q(\sqrt{p^*}) = \left(\frac{q}{p}\right)\sqrt{p^*}.$$

(b) From the Euler criterion, we have

$$\sigma_q(\sqrt{p^*}) = \left(\frac{p^*}{q}\right)\sqrt{p^*}.$$

Proof. (a) We have

$$\sigma_q(\sqrt{p^*}) = \sigma_q\left(\sum_{a=0}^{p-1} \left(\frac{a}{p}\right)\zeta_p^a\right) = \sum_{a=0}^{p-1} \left(\frac{a}{p}\right)\zeta_p^{aq} = \sum_{a=0}^{p-1} \left(\frac{q}{p}\right)\left(\frac{aq}{p}\right)\zeta_p^{aq} = \left(\frac{q}{p}\right)\sqrt{p^*}$$

(b) By the Euler criterion, we have

$$\sigma_q(\sqrt{p^*}) = (p^*)^{\frac{q-1}{2}} \sqrt{p^*} = \left(\frac{p^*}{q}\right) \sqrt{p^*}.$$

Exercises

- **1.8** (Dirichlet theorems by quadratic reciprocity). (a) For $f(x) \in \mathbb{Z}[x]$, there exist infinitely many primes p such that $p \mid f(x)$ for some x.
 - (b) There are infinitely many primes p such that $p \equiv 1 \pmod{4}$.
- 1.9. $y^2 = f(x)$

Higher order sides: At least a prime divisor of f with a congruence (e.g. 4k + 3) Quantratic sides: Every prime divisor of f must satisfy a congruence (e.g. 4k + 1)

1.10 (Primes of the form $x^2 - ny^2$). (It is a very important problem in listing primes in \mathcal{O}_K) (Want to describe the surjective homomorphism $\operatorname{Spec} \mathbb{Z}[i] \to \operatorname{Spec} \mathbb{Z}$)

Problems

- 1. Show that if $\frac{x^2+y^2+z^2}{xy+yz+zx}$ is an integer, then it is not divided by three.
- 2. There is no non-trivial integral solution of $x^4 y^4 = z^2$.

Binary quadratic forms

- 3.1 Reduced forms
- 3.2 Indefinite forms
- 3.3 Ideal class group
- **3.1** (Heegner number). There are only nine numbers

$$-1, -2, -3, -7, -11, -19, -43, -67, -163.$$

Exercises

- **3.2** (Mordell equation with no solutions). k = 7, -5, -6, 45, 6, 46, -24, -3, -9, -12.
 - (a) $y^2 = x^3 + 7$ has no integral solutions.

Proof. (a) Taking mod 8, x is odd and y is even. The factorization

$$y^2 + 1 = (x + 2)((x - 1)^2 + 3),$$

implies the existence of a prime factor p = 4k + 3 of $y^2 + 1$, which is impossible, so the equation has no solutions.

3.3 (Mordell equation with solutions). (a) $y^2 = x^3 - 2$ has only two solutions.

Proof. (a) Taking mod 8, x and y are odd. Consider a ring of algebraic integers $\mathbb{Z}[\sqrt{-2}]$. Write $N = N_{\mathbb{Q}(\sqrt{-2})/\mathbb{Q}}$. The equation is factorized into

$$x^3 = (y - \sqrt{-2})(y + \sqrt{-2}).$$

Let δ be a common divisor of $y \pm \sqrt{-2}$. Then $\delta \mid 2\sqrt{-2}$ implies $N(\delta) \mid N(2\sqrt{-2}) = 8$, and since $N(\delta) \mid N(y - \sqrt{-2}) = x^3$ is odd, we have $N(\delta) = 1$ and δ is a unit. It means that $y \pm \sqrt{-2}$ are relatively prime. Since the units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 , which are all cubes, $y \pm \sqrt{-2}$ are cubes in $\mathbb{Z}[\sqrt{-2}]$.

Let

$$y + \sqrt{-2} = (a + b\sqrt{-2})^3 = a(a^2 - 6b^2) + b(3a^2 - 2b^2)\sqrt{-2}$$

so that $1 = b(3a^2 - 2b^2)$. We can conclude $b = \pm 1$. The possible solutions are $(x, y) = (3, \pm 5)$, which are in fact solutions.

Part II Multiplicative number theory

Arithmetic functions

Dirichlet's theorem

Prime number theorem

Part III Quadratic Diophantine equations

Pell's equation

7.1 Continued fraction

Diophantine approximation, Thue theorem

7.2

Ellipse is reduced by finitely many computations.

Especially for hyperbola, here is a strategy to use infinite descent.

- (a) Let midpoint to be origin.
- (b) Find the subgroup of $SL_2(\mathbb{Z})$ preserving the image of hyperbola(which would be isomorphic to \mathbb{Z}).
- (c) Find an impossible region.
- (d) Assume a solution and reduce it to the either impossible region or the ground solution.

Example 7.2.1 (Pell's equation). Consider

$$x^2 - 2y^2 = 1$$
.

A generator of hyperbola generating group is $g = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$. It has a ground solution (1,0) and impossible region 1 < x < 3. If (a,b) is a solution with a > 0, then we can find n such that $g^n(a,b)$ is in the region [1,3). The possible case is $g^n(a,b) = (1,0)$.

Example 7.2.2 (IMO 1988, the last problem). Consider a family of equations

$$x^2 + y^2 - kxy - k = 0.$$

By the vieta jumping, a generator is $g:(a,b)\mapsto (b,kb-a)$. It has an impossible region xy<0: $x^2+y^2-kxy-k\geq x^2+y^2>0$. If (a,b) is a solution with a>b, then we can find n such that $g^n(a,b)$ is in the region $xy\leq 0$. Only possible case is $g^n(a,b)=(\sqrt{k},0)$ or $g^n(a,b)=(0,-\sqrt{k})$. In ohter words, the equation has a solution iff k is a perfect square.

In general, the transformation $(x, y) \mapsto (y, ky - x)$ preserving the image of hyperbola is not easy to find. A strategy to find it in this problem is called the *Vieta jumping* or *root flipping*. It gets the name by the following reason: If (a, b) is a solution with a > b, then a quadratic equation

$$x^2 - kbx + b^2 - k = 0$$

has a root a, and the other root is kb-a so that (b,kb-a) is also a solution. The last problem is from the International Mathematical Olympiad 1988, and the Vieta jumping technique was firstly used to solve it.

p-adic numbers

8.1 Hensel lemma

Let $p \in \mathbb{Z}$ be a prime. The ring of the p-adic integers \mathbb{Z}_p is defined by the inverse limit:

$$\mathbb{Z}_p := \lim_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} \mathbb{Z}/p^n \mathbb{Z} \to \cdots \to \mathbb{Z}/p^2 \mathbb{Z} \to \mathbb{Z}/p \mathbb{Z}.$$

We may define the local field \mathbb{Q}_p as $\operatorname{Frac} \mathbb{Z}_p$, or by the completion of \mathbb{Q} with respect to $|\cdot|_p$, where $|\cdot|_p$ is an absolute value on \mathbb{Q} such that $|p^ma|_p=\frac{1}{p^m}$. Then, $\mathbb{Z}_p:=\{x\in\mathbb{Q}_p:|x|_p\leq 1\}$.

Example 8.1.1. Let p = 5. Observe

$$3^{-1} \equiv 2_5 \pmod{5}$$

 $\equiv 32_5 \pmod{5^2}$
 $\equiv 132_5 \pmod{5^3}$
 \vdots
 $\equiv 1313132_5 \pmod{5^7}$.

Therefore, we can write

$$3^{-1} = \overline{132}_5 = 2 + 3p + p^2 + 3p^3 + p^4 + \cdots$$

Since there is no term of negative power of 5, the number 3^{-1} is a 5-adic integer.

Example 8.1.2. Let p = 3.

$$7 \equiv 1_3^2 \pmod{3}$$

$$\equiv 111_3^2 \pmod{3^3}$$

$$\equiv 20111_3^2 \pmod{3^5}$$

$$\equiv 120020111_3^2 \pmod{3^9} \cdots$$

Therefore, we can write

$$\sqrt{7} = \cdots 120020111_3 = 1 + p + p^2 + 2p^4 + 2p^7 + p^8 + \cdots$$

Since there is no term of negative power of 2, $\sqrt{7}$ is a 3-adic integer.

- **8.1.** (a) The absolute value $|\cdot|_p$ is nonarchimedean: it satisfies $|x+y|_p \le \max\{|x|_p,|y|_p\}$.
- (b) Every triangle in \mathbb{Q}_p is isosceles.

- (c) \mathbb{Z}_p is a discrete valuation ring: it is local PID.
- (d) \mathbb{Z}_p is open and compact. Hence \mathbb{Q}_p is locally compact Hausdorff.

Proof. \mathbb{Z}_p is open clearly. Let us show limit point compactness. Let $A \subset \mathbb{Z}_p$ be infinite. Since \mathbb{Z}_p is a finite union of cosets $p\mathbb{Z}_p$, there is α_0 such that $A \cap (\alpha_0 + p\mathbb{Z}_p)$ is infinite. Inductively, since

$$\alpha_n + p^{n+1} \mathbb{Z}_p = \bigcup_{1 \le x < p} (\alpha_n + x p^{n+1} + p^{n+2} \mathbb{Z}_p),$$

we can choose α_{n+1} such that $\alpha_n \equiv \alpha_{n+1}$ (mod p^{n+1}) and $A \cap (\alpha_{n+1} + p^{n+2}\mathbb{Z}_p)$ is infinite. The sequence $\{\alpha_n\}$ is Cauchy, and the limit is clearly in \mathbb{Z}_p .

Local-global principle

9.1 Hasse-Minkowski theorem

Theorem 9.1.1 (Sum of two squares). A positive integer m can be written as a sum of two squares if and only if $v_p(m)$ is even for all primes $p \equiv 3 \pmod{4}$.

Let p be a prime with $p \equiv 1 \pmod{4}$. Every p-adic integer is a sum of two squares of p-adic integers.

Part IV Elliptic curves

Elliptic curves over \mathbb{C}

10.1 $\mathbb{P}^2(\mathbb{C})$

10.1 (Weierstrass form). Let K be a field. An *elliptic curve* over K is a smooth algebraic curve E of genus one together with a specified base point E. There is an embedding E is that E is mapped to the infinity E in the E-axis and E is the zero set of E is the zero set of E-axis.

10.2 (Legendre form). $E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is a double cover ramified over the four points $0, 1, \lambda, \infty \in \mathbb{P}^1(\mathbb{C})$.

10.3 (Invariants of elliptic curves). discriminant, *j*-invariant.

10.4 (Group law). from tangent lines, from Picard group, from quotient of the complex plane,

10.5 (Isogenies). If a morphism $E_1 \to E_2$ maps O_1 to O_2 , then it is a group isomorphism. dual isogeny,

10.6 (Tate modules). Let K be a field of characteristic p and E be an elliptic curve over K. The set E[m] of points of order m is isomorphic to $(\mathbb{Z}/m\mathbb{Z})^2$, where m is prime to the characteristic of K. For a prime $\ell \in \mathbb{Z}$ such that $p \neq 0$, the ℓ -adic Tate module is the group $T_{\ell}(E) := \lim_{\leftarrow n} E[\ell^n]$. As a \mathbb{Z}_{ℓ} -module, we have $T_{\ell}(E) \cong \mathbb{Z}_{\ell}^2$ and $T_p(E) \cong 0$ or \mathbb{Z}_p if p > 0. Then, we can associated a representation $G_{\overline{K}/K} \to \operatorname{GL}_2(\mathbb{Z}_{\ell})$ and $G_{\overline{K}/K} \to \operatorname{GL}_2(\mathbb{Q}_{\ell})$ by tensoring with \mathbb{Q}_{ℓ} .

Let μ_{ℓ^n} be the group of ℓ^n -th roots of unity in \overline{K}^{\times} . Then, we can also define a Tate module $T_{\ell}(\mu)$ as the projective limit, and it is a multiplicative subgroup of \overline{K}^{\times} such that $T_{\ell}(\mu) \cong \mathbb{Z}_{\ell}$. Thus the one-dimensional Galois representation $G_{\overline{K}/K} \to \operatorname{Aut}(\mathbb{Z}_{\ell}) = \mathbb{Z}_{\ell}^{\times}$, called the *cyclotomic representation*.

The group of torsion points are homology groups which admit Galois actions. (E[m] and $T_{\ell}(E)$ can be identified with $H_1(E, \mathbb{Z}/m\mathbb{Z})$ and $H_1(E, \mathbb{Z}_{\ell})$.)

10.7 (Weil pairing).

10.8 (Endomorphism rings). central simple algebras over K is classified by the Brauer group $Br(K) = H^2(G_{\overline{K}/K}, \overline{K}^{\times})$.

10.9 (Automorphism groups). The order of Aut(E) divides 24. Aut(E) is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, or $\mathbb{Z}/6\mathbb{Z}$ over \overline{K} of characteristic not 2 or 3.

Step 1. The Riemann-Roch theorem proves that every curve of genus 1 with a specified base point can be described by the first kind of Weierstrass equation. Explicitly, the first form of Weierstrass equation is

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

 $b_2 := a_1^2 + 4a_2, \quad b_4 = a_1 a_3 + 2a_4, \quad b_6 = a_3^2 + 4a_6.$

$$\begin{aligned} y &\mapsto y - \frac{1}{2}(a_1x + a_3). \\ y^2 &= x^3 + \frac{1}{4}b_2x^2 + \frac{1}{2}b_4x + \frac{1}{4}b_6. \\ c_4 &:= b_2^2 - 24b_4, \quad c_6 := -b_2^3 + 36b_2b_4 - 216b_6. \\ x &\mapsto x - \frac{1}{12}b_2. \\ y^2 &= x^3 - \frac{1}{48}c_4x - \frac{1}{864}c_6. \\ b_8 &:= a_1^2a_6 - a_1a_3a_4 + 4a_2a_6 + a_2a_3^2 - a_4^2 = \frac{b_2b_6 - b_4^2}{4}. \\ \Delta &:= -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6 = \frac{c_4^3 - c_6^2}{1728}, \quad j := c_4^3/\Delta. \end{aligned}$$

Theorem 10.1.1. Let

$$E: y^2 = x^3 - Ax - B.$$

TFAE:

- (a) A point (x, y) is a singular point of E.
- (b) y = 0 and x is a double root of $x^3 Ax B$.
- (c) $\Delta = 0$.

Proof. (1) \Rightarrow (2) $\partial_y f = 0$ implies y = 0. $f = \partial_x f = 0$ implies x is a double root of $x^3 - Ax - B$. A determines whether x is either cusp of node.

10.2 ℂ/Λ

10.10 (Invariant differential). The invariant differential ω is a one-form that is invariant under the translation, which is unique up to scalar. If we consider a projective embedding $E \to \mathbb{P}^2$ such that $E(\mathbb{C})$ is given by the equation $y^2 = f(x)$ for a cubic $f \in \mathbb{C}[x]$, then we can set $\omega = dx/y$. This implies that the second coordinate is equal to the first coordinate, the Weierstrass \wp -function, in the embedding. (Since $\phi : \mathbb{C}/\Lambda \to E(\mathbb{C})$ is a group homomorphism and dz is the invariant differential on \mathbb{C}/Λ , we have $dz = \phi^*(dx/y)$, so $(\wp(x) : \wp'(z) : 1)$.)

Elliptic curves over $\mathbb Q$

11.1 Finitely generatedness

Mordell-Weil, Mazur torsion

11.2 Integral solutions

Nagell-Lutz, Siegel, Baker's bound

Elliptic curves over \mathbb{F}_p