	1	1	1		
Reg. No.					

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Third Semester

18AIS201T – LINEAR SYSTEMS AND SIGNAL PROCESSING

(For the candidates admitted during the academic year 2020-2021 & 2021-2022)

Note:

(i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	over to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in answer	r booklet.
Time: 3 l	PART – A $(20 \times 1 = 20 \text{ Mar})$ Answer ALL Questions	Max. Marks: 100 Marks BL CO
1.		i 2 1
	(A) 0 (B) 3 (C) -3 (D) 1	
2.		1 1 1 mmp function ponential function
3.		total energy of the signal is 1 1 1 finite nly 1
4.	Find the fundamental period of the given signal x (A) 1/5 sec (B) 1 s (C) O Sec (D) 5 s	$f(t) = \cos(60\pi t) - \sin(50\pi t)$ 1 2 1 sec
5.	Convolution of $x(t+5)$ with impulse function $\delta(A)$ (A) (A) (B) (B) (C) (C) (D) (D)	(t+12)
6.		on-causal, unstable uusal, stable
7.		and $h_2(t)$ connected in parallel $\begin{pmatrix} 1 & 3 & 2 \\ (t) + h_2(t) \\ h_1(t) h_2(t) \end{pmatrix}$
8.	Consider a discrete time system with impulse r	esponse $h[n] = \left(\frac{1}{3}\right)^n u[n]$. The
	response of system to input $x[n] = (-1)^n$ for all ' (A) $\frac{1}{1}(-1)^n$ (B) $\frac{3}{1}(-1)^n$	

9.	The trigonometric Fourier series of an even function of time doesn't have the	.e 1	1	3
	(A) DC Term (B) Cosine Terms (C) Sine Terms (D) Odd harmonic terms			
10.	If x (t) is even, then its Fourier series coefficient must be (A) Real and Odd (B) Real and Even (C) Imaginary and Odd (D) Imaginary and Even	1	2	3
11.	The Fourier Transform of a real-valued time signal has (A) Odd Symmetry (B) Even Symmetry (C) Conjugate Symmetry (D) No Symmetry	1	3	3
12.	If $x(t)$ is odd then $x(j\omega)$ is (A) Imaginary and Odd (B) Imaginary and Even (C) Real and Odd (D) Real and Even	1	2	3
13.	If $\delta(t)$ denotes a unit impulse, then Laplace transform of $\frac{d^2\delta(t)}{dt^2}$ will be	1	2	4
	(A) 1 (B) S^2 (C) S (D) S^{-2}			
14.	The inverse Laplace transform of $X(S) = \frac{s}{s^2 + 5s + 6}$ is	1	3	4
	(A) $x(t) = -2e^{-2t}u(t) + 3e^{-3t}u(t)$ (B) $x(t) = e^{-t}\sin t \ 2t$ (C) $x(t) = e^{-2t}\cos 5t$ (D) $x(t) = -2e^{-2t}u(t)$			
15.	The final value of $L^{-1}\left[\frac{2s+1}{s^4+8s^3+16s^2+s}\right]$ is	1	3	4
	(A) 0 (B) 1 (C) 2 (D) 5			
16.	Find the z-transform and ROC of $x(n) = \delta(n)$ (A) 0, ROC: entire z-plane (B) 1, ROC: entire z-plane (C) 0, ROC: doesn't exist (D) 1, ROC: doesn't exist	1	2	4
17.	Find the Nyquist frequency and Nyquist interval of the speech signal containing frequencies upto 4 kHz (A) 8 kHz 0.125 ms (B) 4 kHz 0.125 ms (C) 8 kHz 0.225 ms (D) 4 kHz 0.425 ms	g 1	2	5
18.	Find the z-transform and ROC of the given sequence $x(n) = \{3, 2, -1, -4, \frac{1}{1}\}$	1	2	5
	(A) $3z^4 + 2z^3 - z^2 - 4z + 1$ (B) $z^4 + 2z^3 - z^2 - 4z + 1$ (C) $3 - 2z^3 + z^4$ (D) $z^{-4} + 2z^{-3} + 3$			
19.	Determine the z-transform and ROC for the given signal $x(n) = a^n u(n)$ (A) $\frac{1}{-1}$, $ROC: z > a $ (B) $\frac{1}{-1}$, $ROC: z > \frac{1}{-1}$	1	2	5
	(A) $\frac{1}{1-az^{-1}}, ROC: z > a $ (B) $\frac{1}{1-az^{-1}}, ROC: z > \frac{1}{a}$ (C) $\frac{1}{a-z^{-1}}, ROC: z > \frac{1}{a}$ (D) $\frac{1}{a-z^{-1}}, ROC: z > a $			

- 20. The Z transform of u(n) is
 - (A) $\delta(n)$

(C) 1

- (B) 0
- (D) <u>Z</u>

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

Marks BL CO

2

3

- 21. Check whether the given signal is energy or power signal $x(t) = e^{j\left(2t + \frac{\pi}{4}\right)}$.
- 22. Find whether the following signals are periodic or not

2

- (i) $\sin^2 t$
- (ii) $\cos\left(\frac{1}{4}n\right)$
- 23. Find the convolution of $x_1(t)$ and $x_2(t)$ of the given signal $x_1(t) = tu(t) \& x_2(t) = u(t)$.

- 2 2
- 24. Explain the conditions under which any periodic wave form can be expressed using Fourier series.
- 1 2

25. Find the Fourier transform of the given signal $x(t) = \delta(t)$.

2 3

26. Find the Laplace transform and ROC of the signal $x(t) = e^{-at}u(t)$.

4 3 4

27. Find the z-transform and ROC of the signal $x(t) = a^n u(n)$.

4 3 5

$$PART - C (5 \times 12 = 60 Marks)$$

Answer ALL Questions

Marks BL CO

28. a.

12 2 1

- (i) For the above given signal x(t) draw the following
 - I. x(t-2)
 - II. x(2t+3)
- III. x(-t+1)
- (ii) Check whether the given signal is energy or power signal

$$x(t) = e^{j\left(2t + \frac{\pi}{4}\right)}$$

(OR)

- b.i. Check whether the given signal is periodic or not and also find the fundamental 4 2 1 time period $x(t) = 2\cos(10t + 1) \sin(4t 1)$.
- ii. For the given system $y(t) = x(t)\cos \omega t$, check the system is:

2

- Linear or non-linear
- Time invariant or time variant
- Static or dynamic

iii. Find
$$x \left[\frac{x}{2} \right]$$
 for the given signal $x(n) = \{1, 2, 3, 4, 5\}$.

2

29. a. Find the convolution of $x_1(t)$ and $x_2(t)$

 $x_1(t) = \sin t \ u(t) \& x_2(t) = u(t).$

12

$$x_1(t) = e^{-at}u(t)$$
$$x_2(t) = e^{-bt}u(t)$$

(OR)

- b.i. Find whether the following system with impulse response h(t) is stable or not 3 $h(t) = \frac{1}{RC}e^{-t/RC \ u(t)}.$
 - ii. Find the convolution of $x_1(t)$ and $x_2(t)$ of the given signal 2
- 30. a. Find the trigonometric Fourier series for the periodic signal x(t) shown below.

3 12 2

12 b. Determine the Fourier transform of the square wave signal x(t) as shown below.

12 Find the inverse Laplace $X(s) = \frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}.$ function. given of the transform 31. a. Find

(OR)

b.i. Find the laplace transform and RoC of the function $x(t) = e^{-at}u(t) + e^{-bt}u(-t)$

5

- ii. Define Nyquist sampling theorem and explain analog to digital conversion process using suitable block diagram.
- 12 2 32. a. Find the inverse of z-transform of the following

$$X(z) = \frac{z^2}{(1-az)(z-a)}ROC: a < |z| < \frac{1}{a}$$

12 2 z-transform b. Using long division, determine the inverse $X(z) = \frac{1 + 2z^{-1}}{1 - 2z^{-1} + z^{-2}}$. If (a) x(n) is causal and (b) is anticausal.