HW05 Hints

- 1. This problem is to be done purely by hand and most of your answers will involve some sort of summation. Below are some similar questions and answers.
 - **Example 1.** What is the j^{th} column of $\mathbf{r}\mathbf{w}^{\text{T}}$, where $\mathbf{r} \in \mathbb{R}^m$ and $\mathbf{w} \in \mathbb{R}^n$? What is the size of the resulting matrix?

Answer. The expression $\mathbf{r}\mathbf{w}^{\mathrm{T}}$, as an outer product, produces an $m \times n$ matrix

$$\mathbf{rw}^{T} = \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{m} \end{bmatrix} \begin{bmatrix} w_{1} & w_{2} & \cdots & w_{n} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1}w_{1} & r_{1}w_{2} & \cdots & r_{1}w_{j} & \cdots & r_{1}w_{n} \\ r_{2}w_{1} & r_{2}w_{2} & \cdots & r_{2}w_{j} & \cdots & r_{2}w_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{m}w_{1} & r_{m}w_{2} & \cdots & r_{m}w_{j} & \cdots & r_{m}w_{n} \end{bmatrix},$$

whose j^{th} column is

$$egin{bmatrix} r_1w_j \ r_2w_j \ dots \ r_mw_j \end{bmatrix}.$$

Notation. For a matrix M, denote by $[M]_{ij} = m_{ij}$ the (i,j)-element of M.

Observation. Since rows of M becomes columns of M^{T} , and vice versa, the (i, j)-element of M^{T} is the same as the (j, i)-element of M, *i.e.*,

$$[M^{\mathrm{T}}]_{ij} = [M]_{ji} = m_{ji}.$$

This is going to be useful in the following example.

Example 2. What is the j^{th} element of the column vector $A^{\text{T}}\mathbf{x}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^m$? What is the size of the resulting vector?

1

Answer. Since $A \in \mathbb{R}^{m \times n}$, $A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$ and so $A^{\mathrm{T}}\mathbf{x} \in \mathbb{R}^n$, a column vector with n elements. The j^{th} element of $A^{\mathrm{T}}\mathbf{x}$ is

$$\sum_{i=1}^{m} [A^{\mathrm{T}}]_{ji} x_i = \sum_{i=1}^{m} [A]_{ij} x_i = \sum_{i=1}^{m} a_{ij} x_i.$$

- 2. The symbol \mathcal{O} in the third line of the problem stands for the zero matrix, with suitable dimensions according to the context.
- 3. Just to clarify what it means to plot a column of a matrix, consider the Vandermonde matrix

$$V = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{n-1} \end{bmatrix},$$

where $-1 = x_1 < x_2 < \cdots < x_m = 1$ are equally spaced. So each column of V is a set of evenly distributed samples of a monomial function x^j , $j = 0, \ldots, n-1$. That is, the first column is a discrete representation of the constant function $f_1(x) = 1$, the second column $f_2(x) = x$, and the general j^{th} column $f_j(x) = x^{j-1}$. Thus if every column of V is plotted against $\mathbf{x} = (x_1, x_2, \cdots, x_m)^{\text{T}}$, one obtains something like

Now, thin QR factorization of V will find the orthonormal set of vectors whose span coincides with the one of V and put them in \hat{Q} (with \hat{R} being the recovery formula). When the columns of \hat{Q} are plotted against \mathbf{x} , you will see a visualization of so-called orthogonal polynomials.

4. The key modification must take place in the lines where X is defined and norm_Y is calculated. The rest can be simply re-used in your function with minimal modification.