In [68]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Out[69]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188!
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460!
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
			•••	•••				
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	len
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	cor
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null val
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ť
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	sea
1549 rows × 11 columns								

In [70]: df=data.head(100)

Out[70]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lc
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.61155986
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.2418899
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417{
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.6346092
4	5.0	рор	73.0	3074.0	106880.0	1.0	41.903221	12.4956502
				•••				
95	96.0	sport	51.0	4292.0	165600.0	1.0	44.715408	11.3083000
96	97.0	рор	51.0	1066.0	28000.0	1.0	41.769051	12.6628100
97	98.0	sport	51.0	2009.0	86000.0	2.0	40.633171	17.6346092
98	99.0	lounge	51.0	456.0	18592.0	2.0	45.393600	10.482239
99	100.0	рор	51.0	731.0	41558.0	2.0	45.571220	9.1591396

100 rows × 11 columns

In [71]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 11 columns):

Duca	COTAMINS (COCAT I	_ co_a	
#	Column	Non-Null Count	Dtype
0	ID	100 non-null	float64
1	model	100 non-null	object
2	engine_power	100 non-null	float64
3	age_in_days	100 non-null	float64
4	km	100 non-null	float64
5	previous_owners	100 non-null	float64
6	lat	100 non-null	float64
7	lon	100 non-null	object
8	price	100 non-null	object
9	Unnamed: 9	0 non-null	float64
10	Unnamed: 10	0 non-null	object

dtypes: float64(7), object(4)

memory usage: 8.7+ KB

In [72]: df.describe()

Out[72]:

	ID	engine_power	oower age_in_days km		previous_owners	lat	Un
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	
mean	50.500000	53.010000	1935.300000	58812.180000	1.180000	43.612648	
std	29.011492	6.014284	1414.251278	44728.034639	0.500101	2.083451	
min	1.000000	51.000000	366.000000	4000.000000	1.000000	38.218128	
25%	25.750000	51.000000	723.500000	19781.750000	1.000000	41.744165	
50%	50.500000	51.000000	1446.000000	44032.000000	1.000000	44.831066	
75%	75.250000	51.000000	3265.500000	95075.750000	1.000000	45.396568	
max	100.000000	74.000000	4658.000000	188000.000000	3.000000	46.176498	
4							•

```
In [73]: df.columns
```

In [74]: sns.pairplot(df)

Out[74]: <seaborn.axisgrid.PairGrid at 0x1ed6b9dbd60>

Out[75]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lc
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.61155986
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.2418899
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.4178
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.6346092
4	5.0	рор	73.0	3074.0	106880.0	1.0	41.903221	12.4956502
				***		•••		
95	96.0	sport	51.0	4292.0	165600.0	1.0	44.715408	11.3083000
96	97.0	рор	51.0	1066.0	28000.0	1.0	41.769051	12.6628100
97	98.0	sport	51.0	2009.0	86000.0	2.0	40.633171	17.6346092
98	99.0	lounge	51.0	456.0	18592.0	2.0	45.393600	10.4822397
99	100.0	рор	51.0	731.0	41558.0	2.0	45.571220	9.15913960

100 rows × 11 columns

In [76]: sns.heatmap(da.corr())

Out[76]: <AxesSubplot:>


```
In [78]: x=df[[ 'engine_power', 'age_in_days', 'km','lat']]
         y=df['price']
In [79]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [80]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[80]: LinearRegression()
In [81]:
         print(lr.intercept_)
         10078.100390681766
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [82]:
         coeff
Out[82]:
                       Co-efficient
                        -18.563262
           engine_power
           age_in_days
                         -0.877070
                         -0.016371
                   km
                        43.956990
                   lat
         prediction=lr.predict(x test)
In [83]:
         plt.scatter(y_test,prediction)
```

Out[83]: <matplotlib.collections.PathCollection at 0x1ed7260f670>


```
In [84]: print(lr.score(x_test,y_test))
         0.7320821613627828
         print(lr.score(x_train,y_train))
In [85]:
         0.93328163999647
In [86]: | from sklearn.linear_model import Ridge,Lasso
In [87]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[87]: Ridge(alpha=10)
In [88]: rr.score(x_test,y_test)
Out[88]: 0.7320400698949787
In [89]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[89]: Lasso(alpha=10)
In [90]: la.score(x_test,y_test)
Out[90]: 0.7322147171785393
In [ ]:
```