21-127 Homework 8

Christian Broms Section J

Thursday 29th March, 2018

Complete the following problems. Fully justify each response.

NOTE: due to the Spring Break, this homework set is a bit longer than is typical. You only need to turn in those problems marked with (*).

1. (*) Let X be a finite set, and suppose there is a surjection $f: X \to Y$. Prove that $|X| \ge |Y|$.

Proof. Assume by contradiction, that |X| < |Y|. If f is surjective, then $\forall y \in Y, \exists x \in X$ such that f(x) = y. Because every $y \in Y$ must be mapped to an $x \in X$, and |X| < |Y|, there will not be enough elements in X to map to every y, and we have arrived at a contradiction. Since f is a function and surjective, each y must have an $x \in X$, so it follows that $|X| \ge |Y|$.

2. (*) Let

$$X_2 = \{ n \mid 1 \le n \le 200, n = k^2 \exists k \in \mathbb{Z} \},$$

 $X_3 = \{ n \mid 1 \le n \le 200, n = k^3 \exists k \in \mathbb{Z} \},$

and

$$X_4 = \{ n \mid 1 \le n \le 200, n = k^4 \ \exists k \in \mathbb{Z} \}.$$

Determine $|X_2 \cup X_3 \cup X_4|$.

The set of X_2 is defined as $\{1, 4, 9, 16, 25, 36 \dots 196\}$, so it has the squares of k = 1 through k = 14. Thus $|X_2| = 14$. The set X_3 is defined as $\{1, 8, 27, 64, 125\}$, with k = 1 through k = 5. So $|X_3| = 5$.

Finally, the set X_4 is defined as $\{1, 16, 81\}$. So it has values for k = 1 through k = 3, and $|X_4| = 3$.

To calculate $|X_2 \cup X_3 \cup X_4|$, we use the inclusion-exclusion rule to get $|X_2 \cup X_3 \cup X_4| = |X_2| + |X_3| + |X_4| - |X_2 \cap X_3| - |X_2 \cap X_4| - |X_3 \cap X_4| + |X_2 \cap X_3 \cap X_4|$. Now, we can simply insert the cardinalities. So, 14 + 5 + 3 - 2 - 3 - 1 + 1 = 17. Thus, $|X_2 \cup X_3 \cup X_4| = 14$.

- 3. (*) Let $X = \{(a_1, a_2, \dots, a_n) \mid a_i \in \{0, 1\} \forall i\} = \{0, 1\}^n$. These are sometimes called bitstrings of length n.
 - (a) Show that there is a bijection between X and $\{f : [n] \to \{0,1\}\}$, the set of functions from [n] to $\{0,1\}$

Proof. The function works by taking a bitstring of length n and mapping each index to 0 or 1. So the bitstring can be written as $(a_1, a_2 \dots a_i)$, where each a_i is mapped to $\{0, 1\}$ by $f(a_i)$. Let $Y = \{f : [n] \to \{0, 1\}\}$ and $g : X \to Y$, where g(x) = f([n]), and $x = \{0, 1\}^n$. We can show that this function is injective. Let g(a) = g(b) for some $a, b \in \mathbb{Z}$. Then $\{0, 1\}^a = \{0, 1\}^b$, and a = b. Thus g is injective.

Now, we will show g is surjective. For all f([n]) there exists some $\{0,1\}^n$. Thus, for all f([n]) there exists some $x \in X$.

Since g is injective and surjective, it must be bijective. Thus, there is a bijection between X and $\{f : [n] \to \{0,1\}\}$.

(b) Show that there is a bijection between X and $\mathcal{P}([n])$.

Proof. Let $Y = \{f : [n] \to \{0, 1\}\}$ and define $g : Y \to \mathcal{P}([n])$ and $g(f) = \{n \in [n] \mid f(n) = 1\}.$

Thus, to show g is injective, we set $g(f_1) = g(f_2)$ for some f_1, f_2 . Then $f_1(n) = 1$ when $f_2(n) = 1$ and $f_1(n) = 0$ when $f_2(n) = 0$. Thus, $f_1 = f_2$ and g is injective.

Show g surjective. Let $A \in \mathcal{P}([n])$. For some f, g(f) maps every element in A to 1 or 0. So g is surjective.

Thus, there exists a bijection between X and $\mathcal{P}([n])$.

(c) Determine |X|.

There are 2 options for each of the n elements of X, so $|X| = 2^n$

4. (*) Let X and Y be finite sets. Define $X^Y = \{f : Y \to X\}$, the set of functions from Y to X. Prove that $|X^Y| = |X|^{|Y|}$.

Proof. Since X, Y are finite sets, let |X| = n, |Y| = m for some $n, m \in \mathbb{N}$. So clearly, $|X|^{|Y|} = n^m$. Then $X = \{x_1, x_2 \dots x_n\}$ and $Y = \{y_1, y_2 \dots y_m\}$. We need to map each $x \in X$ with some $y \in Y$. Each of the elements in X can be mapped to Y in m different ways. Because there are n elements in X, $|X^Y| = n^m$

5. (*) Let $n, k \in \mathbb{N}$ with $n \geq k$. Prove, by counting in 2 ways, that $k \binom{n}{k} = (n-k+1) \binom{n}{k-1}$.

Proof. Suppose we wish to select from a group of n people a committee of k people with a president (so there are k-1 members plus one president on the committee). There are two ways to do this. First, we could select the k people for the committee from the n total people, and then select the president from the committee of k people so we have $\binom{k}{1}\binom{n}{k}=k\binom{n}{k}$.

On the other hand, we could first select the committee with k-1 members from the n total people. We then choose the president from the remaining group of people, which is now n-k+1 in size. Using this selection technique we get $\binom{n-k+1}{1}\binom{n}{k-1}=(n-k+1)\binom{n}{k-1}$.

Thus, since both sides of the equality count the same set, they are equal. \blacksquare

6. (*) How many subsets of [20] contain a multiple of 4? Prove that your answer is correct.

Proof. We have previously proven that $|\mathcal{P}([n])| = 2^n$. We can use this to attain the fact that $|\mathcal{P}([20])| = 2^{20}$, so there are 2^{20} possible subsets of $\{1, 2, 3, \dots 20\}$. We write the set of possible multiples of 4 as $\{4, 8, 12, 16, 20\} = A$. There are 2^5 possible subsets of A. We can also subtract the number of non-multiples of 4 from the set of [20], so $2^{20} - 2^{15} = 2^5 = 32$.

7. (*) Let $f: X \to Y$ be a bijection. Prove that X is countably infinite if and only if Y is countably infinite.

Proof. Assume X is countably infinite. So there exists a bijection $g: \mathbb{N} \to X$. We can therefore create a composition $g \circ f: \mathbb{N} \to Y$. Since there exists a bijection from the naturals to Y, we conclude Y is countably infinite.

Assume Y is countably infinite. So there exists $f^{-1}: Y \to X$. Since Y is countably infinite, there is a function $g: \mathbb{N} \to Y$. So if we take $f^{-1} \circ g: \mathbb{N} \to X$, there is clearly a bijection between the natural numbers and X, so it is countably infinite.

8. (*) Let X be a finite set. Show that $\mathbb{N}^X = \{f : X \to \mathbb{N}\}$ is countably infinite.

Proof. We proceed by induction on X.

Base Case: |X| = 1. X can be mapped to any value in \mathbb{N} by specifying some function f, where f(x) = a, $a \in \mathbb{N}$. Since there are a countably infinite number of possible values to set a to, there are countably infinite possible functions f mapping x to a. There are therefore $|X|^1$ possiblities, which is countably infinite.

Inductive Hypothesis: $\mathbb{N}^X = \{f: X \to \mathbb{N}\}, \ \mathbb{N}^X$ is countably infinite. We will show that \mathbb{N}^{X+1} is countably infinite for $N^{X+1} = f: \{A \to \mathbb{N}\}$, where A is a set with the cardinality |X|+1. For \mathbb{N}^{X+1} to be countably infinite, there must be some $g: \mathbb{N}^{X+1} \to \mathbb{N}$, and g is bijective. $|\mathbb{N}^{X+1}|$ can be found by $\mathbb{N}^X \times \mathbb{N}$, since there are \mathbb{N}^X different functions that map X to \mathbb{N} . Now we must show that $\mathbb{N}^X \times \mathbb{N}$ forms a bijection with \mathbb{N} . We know \mathbb{N}^X is countably infinite by IH and \mathbb{N} is countably infinite as well. The cartesian product of two countably infinite sets is known to be countably infinite as well (proved in book), so we know $\mathbb{N}^X \times \mathbb{N}$ is countably infinite, so we conclude that \mathbb{N}^{X+1} is countably infinite.