```
In [104...
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import math
 In [26]: dataset = pd.read csv("Boston.csv")
 In [27]: dataset.head()
 Out[27]:
             Unnamed: 0
                                    zn indus chas
                                                                          dis rad tax ptratio black Istat medv
                            crim
                                                      nox
                                                             rm age
                       1 0.00632 18.0
                                         2.31
                                                  0 0.538 6.575 65.2 4.0900
                                                                                1 296
                                                                                           15.3 396.90 4.98
                                                                                                               24.0
         0
                       2 0.02731
                                   0.0
                                                 0 0.469 6.421 78.9 4.9671
                                                                                2 242
                                                                                           17.8 396.90 9.14
                                                                                                               21.6
          1
                                         7.07
                       3 0.02729
                                                 0 0.469 7.185 61.1 4.9671
                                                                                2 242
                                                                                           17.8 392.83 4.03
                                                                                                               34.7
          2
                                   0.0
                                         7.07
                       4 0.03237
          3
                                   0.0
                                         2.18
                                                 0 0.458 6.998 45.8 6.0622
                                                                                3 222
                                                                                           18.7 394.63
                                                                                                        2.94
                                                                                                               33.4
                       5 0.06905
          4
                                   0.0
                                         2.18
                                                 0 0.458 7.147 54.2 6.0622
                                                                                3 222
                                                                                           18.7 396.90 5.33
                                                                                                               36.2
 In [28]: type(dataset)
         dataset.pop("Unnamed: 0")
         dataset
```

Out[28]:		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
	501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67	22.4
	502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6
	503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9
	504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0
	505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88	11.9

 $506 \text{ rows} \times 14 \text{ columns}$

In [29]: # Descriptive statistics for each column
dataset.describe()

Out[29]:		crim	zn	indus	chas	nox	rm	age	dis	rad	
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	50€
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279
	50 %	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330
	75 %	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	66€
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711


```
In [102...
          # outlier analysis
          #Percent of autliers in each column
          outlier_df_col =[]
          outlier_df_val =[]
          for k, v in dataset.items():
              outlier_df_col.append(k)
              col summary = v.describe()
              iqr = col_summary["75%"] - col_summary["25%"]
              lb = col_summary["25%"]-(1.5*iqr)
              if lb < col summary["min"]:</pre>
                  lb=col_summary["min"]
              ub = col_summary["75%"]+(1.5*iqr)
              if ub> col_summary["max"]:
                  ub=col_summary["max"]
              outliers = len(v[(v<lb)|(v>ub)])
              outlier_df_val.append(round((outliers/col_summary["count"])*100,2))
              print(f"Outliers analysis for {k}:")
              print(f"Total rows: {col_summary["count"]}")
              print(f"Total outliers:{outliers}")
              print("Outlier Percent: {percent:.2f}%".format(percent=(outliers/col summary["count"])*100))
              print()
```

```
1.1.1
         outlier df = pd.DataFrame(data=np.array([outlier df val]), columns = outlier df col)
         outlier_df
Out[102...
             crim
                      zn indus chas nox rm age dis rad tax ptratio black Istat medv
         0 13.04 13.44
                            0.0 6.92 0.0 5.93 0.0 0.99 0.0 0.0
                                                                         2.96 15.22 1.38
                                                                                            7.91
In [78]: # skewness plots for each column
         fig, axs= plt.subplots(ncols=3, nrows=5, figsize=(11,20))
         index =0
         axs=axs.flatten()
         for k, v in dataset.items():
             sns.histplot(data=v, ax=axs[index],kde=True)
             index+=1
         plt.tight layout(pad=0.4, w pad=0.4, h pad=2.0)
```



```
In [112...
          # skewness and kurtosis analysis
          df val = []
          df_col= ["Column Name", "Skewness", "Kurtosis"]
          for k, v in dataset.items():
               skew = v.skew()
               kurt = v.kurtosis()
              f_skew = int(v.skew())
              f_kurt = math.floor(v.kurtosis())
              if (f skew>=1):
                   skew_val = "Right Skewed"
              elif( f_skew <=-1):</pre>
                   skew_val= "Left Skewed"
               else:
                   skew val="Normal"
              if(f_kurt>3):
                   kurt_val = "Leptokurtic"
               elif(f_kurt<3 and f_kurt !=0):</pre>
                   kurt_val = "Platykurtic"
               elif(f_kurt==3):
                   kurt_val = "Mesokurtic"
```

```
else:
    kurt_val="Normal"

df_val.append([k, str(skew) + " : "+ skew_val , str(kurt)+ " : "+kurt_val ])

df_skew_kurt = pd.DataFrame(data=np.array(df_val), columns=df_col)

df_skew_kurt
```

Out[112		Column Name	Skewness	Kurtosis			
	0 crim		5.223148798243851 : Right Skewed	37.13050912952203 : Leptokurtic			
	 zn indus chas nox rm 		2.2256663227354307 : Right Skewed	4.031510083739155 : Leptokurtic			
			0.29502156787351164 : Normal	-1.2335396011495188 : Platykurtic			
			3.405904172058746 : Right Skewed	9.638263777819526 : Leptokurtic			
			0.7293079225348787 : Normal	-0.06466713336542629 : Platykurtic			
			0.40361213328874385 : Normal	1.8915003664993404 : Platykurtic			
	6	age	-0.5989626398812962 : Normal	-0.9677155941626912 : Platykurtic			
7 dis		dis	1.0117805793009007 : Right Skewed	0.4879411222443908 : Normal			
	8 rad9 tax		1.0048146482182057 : Right Skewed	-0.8672319936034931 : Platykurtic			
			0.669955941795016 : Normal	-1.1424079924768082 : Platykurtic			
	10	ptratio	-0.8023249268537809 : Normal	-0.28509138330538875 : Platykurtic			
	11	black	-2.8903737121414492 : Left Skewed	7.226817549260753 : Leptokurtic			
	12	Istat	0.9064600935915367 : Normal	0.49323951739272776 : Normal			
	13	medv	1.1080984082549072 : Right Skewed	1.495196944165818 : Platykurtic			

Inference

- 1. The average crime rate per capita by town is 3.61.
- 2. On a average 11.36% of the land is residential land for every 25,000km of plot. Although around 75% of the land have almost 0% residential land.
- 3. Similar to the proportion of land available for residential purposes, there is 11.13% of land available for setting up factories. Although the lowest is 0.5% land which is still higher compared to the land available for residential purposes.
- 4. A mean of 0.06 ie 0.1 indicates that there are more housing areas that do not tract the Charles river.
- 5. The average Nitric oxide concentration is acceptable.
- 6. The average number of room per housing structure is 6 rooms, withe the maximum being 9 rooms.
- 7. About 65.6% of the housing structures are built prior to 1940 and still the owners reside in them.
- 8. The average travelling distance to 5 Boston workplaces is rought 4km.
- 9. The average tax rate is 4% with 408.2 dollars for every 10,000 dollars.
- 10. There is on average 1 teacher for every 19 pupils. with the lowest being 0.32 meaning that there are more teachers than pupil themselves and with a max of 396 pupils to be handled by one teacher indicating less teachers.
- 11. 12.65 % of the population is of lower social economic status, although 75% of the values are below 11.5%.
- 12. The median price is \$22,500 dollars.
- 13. The skewness, kurtosis and outliers can be seen in the above tables.