Musterlösung zu Level 2

Berichtigungen gerne an joschua.ruwe AT uni-bielefeld.de

Behauptung: Sei R ein Ring. Seien $\mathfrak{a},\mathfrak{b}\subseteq R$ Ideale. Dann gilt stets $\mathfrak{a}\cdot\mathfrak{b}\subseteq\mathfrak{a}\cap\mathfrak{b}$, wobei

$$\mathfrak{a} \cdot \mathfrak{b} = \left\{ \sum_{i=1}^{\infty} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \right\}$$
$$\mathfrak{a} \cap \mathfrak{b} = \{ x \mid x \in \mathfrak{a} \land x \in \mathfrak{b} \}.$$

Beweis.

Sei $\alpha \in \mathfrak{a} \cdot \mathfrak{b}$. Dann ist α darstellbar als

$$\alpha = \sum_{i=1}^{n} a_i b_i \quad n \in \mathbb{N}, \ a_i \in \mathfrak{a}, \ b_i \in \mathfrak{b}.$$

Nun gilt aber $a_i \in \mathfrak{a} \subseteq R$ und nach Definition¹ (also (ii) aus der Fußnote), dass $a_1b_1 \in \mathfrak{b}, \ldots, a_nb_n \in \mathfrak{b}$ und somit $\alpha \in \mathfrak{b}$. Analog ergibt sich dann $\alpha \in \mathfrak{a}$. Insgesamt erhalten wir also $\alpha \in \mathfrak{a} \cap \mathfrak{b}$, wie behauptet.

 $^{{}^1\}mathfrak{c} \subseteq R$ ist ein Ideal, wenn (i) \mathfrak{c} eine additive Untergruppe von R ist und (ii) für $r \in R$, $c \in \mathfrak{c}$ folgt $rc \in \mathfrak{c}$ (bzw. $cr \in \mathfrak{c}$.)