Zadanie 7 Pomóż zajączkowi

Opis

Zajączek Dilon z końcem października zapadł w sen zimowy. Właśnie nadeszły pierwsze ciepłe dni, które go przebudziły. Okazało się, że zajączek usnął na szczycie wysokiej góry. Dilon jest bardzo głodny - nie jadł już prawie pół roku. Na szczycie natomiast trudno znaleźć coś do przekąszenia. Rozpościera się jednak stąd wspaniały widok na nizinne łąki przesycone zieloną i soczystą trawą. Okaż dobre serce i pomóż zajączkowi odnaleźć najkrótszą drogę z góry na dół.

Opis zadania

Do zaimplementowania jest algorytm odnajdujący najkrótszą drogę zejścia z góry, poczynając od początkowego pola położenia zajączka. Droga składa się z kolejnych sąsiadujących

ze sobą pól, dla których różnica wysokości jest **równa lub mniejsza od pięciu**. Góra jest reprezentowana przez mapę wysokości w postaci dwuwymiarowej macierzy. Do zadania dołączony jest przykładowy plik, pod adresem:

mastercoder.pl/download/zad7/gora zajaczka.csv

który zawiera mapę wysokości w postaci macierzy 35x35. Wartości w polach macierzy są liczbami całkowitymi dodatnimi z przedziału [0..169], gdzie: **0** - **najniższe pole** góry, natomiast wartość **169** - **najwyższe pole** góry. Wartości mapy w pliku są oddzielone średnikami ';'. **Początkowe pole** położenia zajączka [i,j] = [17,18], gdzie "i" to wiersz macierzy, a "j" kolumna macierzy. Współrzędne liczone są od pola [1,1] znajdującego się w pierwszej linii i pierwszej kolumnie pliku.

Reguły algorytmu i uwagi do mapy

Przy podróży zajączka ze szczytu góry w stronę dolin obowiązują następujące zasady:

- Każde pole na którym znajdował lub znajduje się zajączek stanowi element drogi po której zajączek schodzi z góry.
- Zajączek może przeskakiwać tylko na pola sąsiadujące z aktualnym. tj. zasięg skoku jest x+1, x-1, y+1, y-1, gdzie x,y współrzędne aktualnego pola. Przy czym dozwolone są przeskoki tylko w linii prostej. Np. dozwolony jest przeskok z [2,2] na [2,3], ale nie z [2,2] na [3,1].
- Zajączek może przeskoczyć na następne pole wtedy i tylko wtedy gdy: różnica wysokości między aktualnym a następnym polem wynosi maksymalnie 5.
- Mapa może zawierać ścieżki, które łączą się ze sobą.
- Mapa może zawierać ścieżki zamknięte, które są odizolowane. Czyli takie, które nie łączą się z polem początkowym.
- Mapa może zawierać ścieżki które są ślepe. tj. kończą się na polu o wartości większym od 0 i nie ma już dalszej drogi.

Zakończenie algorytmu

Zajączek dociera do pola z wartością 0.

Wejście

Trzy parametry podane poprzez standardowe wejście:

- ścieżka do pliku z mapą wysokości
- numer wiersza pola startowego
- numer kolumny pola startowego

Przykładowe wejście

LINUX:

./wyznacz_droge mapa_wysokosci.txt 34 35

WINDOWS:

..\wyznacz_droge.exe mapa_wysokosci.txt 34 35

 \mathbb{N}

Wynik

Lista współrzędnych pól [i,j] stanowiących najkrótszą ścieżkę zejścia z góry. Każda para współrzędnych oddzielona jest średnikiem. Lista współrzędnych musi zawierać współrzędne pola startowego oraz współrzędne pola ostatniego (z wartością 0).

Przykładowy wynik

[12,13];[12,14];[13,14];[15,14];[15,15]

Graficzny przykład

Przykład graficznej reprezentacji mapy wysokości wraz z zaznaczonymi ścieżkami:

	1	2	3	4	5	6	7	8	9	10			
1	0	0	0	0	0	0	0	0	0	0			
2	0	12	12	12	12	12	12	12	12	0			
3	0	2	22	22	22	35	30	25	12	0			
4	0	6	22	32	32	40	32	20	12	0			
5	0	7	40	33	38	42	32	15	26	0			
6	0	12	40	28	42	42	32	10	20	0			
7	0	12	40	25	20	15	10	8	12	0			
8	0	10	15	20	39	39	5	22	12	0			
9	0	20	21	29	12	12	2	12	12	0			
10	0	0	0	0	0	0	0	0	0	0			
pole	poc	zątko	we	[5,6]									
najk	rótsz	a dro	oga:	[5,6]	:[5,5]];[5,4	1];[6,	4];[7,	4];[7	,5];[7,	6];[7,7	7;[8,7	7:[9.7

Wymagania programu

- Program musi być dostarczony wraz z kodem źródłowym
- Program musi się kompilować
- Błędy kompilacji wykluczają z dalszej weryfikacji
- Program musi być uruchamiany z linii poleceń
- Jedyna akceptowalne parametry wejściowe programu to: ścieżka do pliku z mapą wysokości oraz współrzędne [i,j] pola startowego zajączka. Patrz 'Przykładowe wejście'.
- Inne parametry wejściowe spowodują zdyskwalifikowane podesłanego rozwiązania.
- Wartością wyjściową jest wypisanie na standardowe wyjście wszystkich współrzędnych drogi, w
 formie: [a,b];[c,d];[e,f]...[y,z], gdzie a..z należą odpowiednio do zbioru współrzędnych [i,j]. Patrz
 'Przykładowy wynik'
- Wyjście programu na standardowe wyjście musi być zgodne z wymaganiami zadania. W innym przypadku zadanie jest dyskwalifikowane.

Akceptowane rozwiązania

Kod w jednym z wymienionych języków **C/C++**¹/**C**#²/**Java**³.

Ważne terminy:

• Publikacja zadania: 08-04-2014

Ostateczny termin nadsyłania odpowiedzi: 13-04-2014 godz.: 23:59

Ogłoszenie wyników: 21-04-2014

Ocenianie

Zadanie będzie oceniane według poniższych kryteriów:

- Znaleziona najkrótsza droga zejścia z góry: 250 pkt
- Znaleziona inna droga niż najkrótsza możliwa: 0 pkt
- Dodatkowe punkty można uzyskać za zastosowany algorytm. Przy czym algorytm jest oceniany tylko wtedy gdy zwraca najkrótszą drogę: 150 pkt

Maksymalna ilość punktów do uzyskania w zadaniu: 400 pkt⁴

⁴ Rozwiązania, które nie zwrócą wyniku po 600 sekundach będą otrzymywały 0 punktów. Maszyna referencyjna: Core: i5 2,5GHz, RAM: 4GB

Mill War

¹ Kod C/C++ będzie uruchamiany na Ubuntu 13.10, kompilowany kompilatorem gcc, z wykorzystaniem standardowej biblioteki C.

² Preferowane środowisko .NET 3.5 lub wyższy

³ Preferowane środowisko Java 7

Złote zasady

- przed wysłaniem sprawdź, czy kod się kompiluje
- przestrzegaj podanego formatu wejścia i wyjścia
- źródła przesyłaj jako załącznik do e-maila skompresowany za pomocą ZIPa, 7ZIP bądź RAR możliwe też jest umieszczenie rozwiązania jako publicznego zasobu np.: na OneDrive,
 GoogleDrive
- w treści e-maila mile widziana jest krótka notatka na temat Twojego rozwiązania
- swoje rozwiązanie prześlij na: mastercoder.poland@cybercom.com
- w temacie e-maila z odpowiedzią podaj język, technologię za pomocą której problem został rozwiązany, przykładowo: [Re: MasterCoder Zadanie 7 Zajączek rozwiązanie C#]
- w razie pytań pisz na wyżej wymieniony adres e-mail
- dobrze się baw!!!

 $(
\sqrt{1})$