

MAT1830 - Discrete Mathematics for Computer Science - S1 2022

<u>Dashboard</u> / My units / <u>MAT1830 - S1 2022</u> / <u>Assessments</u> / <u>Quiz 2</u>

Started on Monday, 28 March 2022, 8:36 PM

State Finished

Completed on Wednesday, 30 March 2022, 11:55 PM

Time taken 2 days 3 hours

Grade 10.00 out of 15.00 (67%)

Print friendly format

Information

Each answer to a short answer question on this quiz is an integer. Enter your answers as follows.

- Enter all integers as numerals. For example 16, 1, or 0 BUT NOT sixteen, 1.0, zero.
- Enter negative integers using the minus character -. For example -12 or -4 BUT NOT minus 12 or negative four.
- Do not enter anything other than the integer. For example 6 BUT NOT z=6.
- No answer should contain a space, equals sign, comma, full stop etc.

The quiz is auto-marked. Answers entered incorrectly will be marked wrong. Failure to follow instructions is not grounds for an appeal.

Question 1
Correct

Mark 3.00 out of 3.00

Which of the following sentences is logically equivalent to $\neg \forall x \forall y (P(x,y) \rightarrow Q(x,y))$?

- $\bigcirc \forall x \forall y (P(x,y) \land \neg Q(x,y))$
- $\bigcirc \ \ \forall x \forall y (\neg Q(x,y) \rightarrow \neg P(x,y))$
- $\exists x \exists y (P(x,y) \land \neg Q(x,y))$
- $\bigcirc \exists x \exists y (\neg Q(x,y) \rightarrow \neg P(x,y))$

Your answer is correct.

Question 2
Correct
Mark 2.00 out of 2.00
Consider the sentences $\forall x\exists y P(x,y)$ and $\exists y \forall x P(x,y)$. Are these sentences true or false under the interpretation where x and y range over the positive integers and $P(x,y)$ is " $x+y$ is even"?
$\bigvee \forall x \exists y P(x, y)$ is true, $\exists y \forall x P(x, y)$ is true
$\bigcirc \ \(x,y)\)$ is false, $\(x,y)\)$ is true
$\bigcirc \ \(\x \in Y(x,y)\) $ is false, $\(\x \in Y(x,y)\)$ is false
Your answer is correct.
Under the given interpretation:
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$(\exp x)$ such that, for all positive integer (x) , we have $(x+y)$ is even. This is clearly false.
The correct answer is: $\(x \in y \in (x,y) \)$ is true, $\(x \in y \in x,y) \in y $
Question 3 Incorrect Mark 0.00 out of 2.00
Consider the sentences $\(\ x \in Y(x,y) \)$ and $\(\ x \in Y(x,y) \)$. Are these sentences true or false under the interpretation where $\(x)$ and $\(y)$ range over the integers and $\(P(x,y))$ is " $\(y+4x)$ is even"?
\bigcirc \(\forall x \exists y P(x,y)\) is true, \(\exists y \forall x P(x,y)\) is true
$\bigcirc \ \(\forall\ x \exists\ y\ P(x,y)\) \ is\ true,\ \(\exists\ y\ forall\ x\ P(x,y)\) \ is\ false$
\bigcirc \(\forall x \exists y P(x,y)\) is false, \(\exists y \forall x P(x,y)\) is true
\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Your answer is incorrect.
Under the given interpretation:
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
(exists y forall x P(x,y)) states that there is a fixed integer (y) such that, for all integers (x) , we have $(y+4x)$ is even. This is true as we can take $(y=2)$ for example.
The correct answer is: $\(x \in Y (x,y)) $ is true, $\(x \in Y (x,y)) $ is true
Question 4
Correct
Mark 3.00 out of 3.00

 $\label{lem:consider} Consider the sentence $$ (\exp x) \rightarrow (\exp x) \cdot (\exp x). $$ (P(x) \rightarrow Q(x)). $$ (P(x) \rightarrow Q(x)) : (P(x) \rightarrow Q(x)). $$ (P(x) \rightarrow Q(x)) : (P(x) \rightarrow Q(x)) :$

A. The sentence is valid.

	sentence is not valid. It is false under the interpretation where (x) ranges over the positive integers, $(P(x))$ is " $(x \neq 3)$ " and $(Q(x))$ is " $(x \neq 3)$ ".	
	sentence is not valid. It is false under the interpretation where $\(x\)$ ranges over the positive integers, $\(P(x)\)$ is " $\(x \geq 3\)$ " and $\(Q(x)\)$ is " $\(x \geq 6\)$ ".	
	sentence is not valid. It is false under the interpretation where $\(x\)$ ranges over the positive integers, $\(P(x)\)$ is "\(2x \equiv 3 \pmod 6\)".	
Your answer	is correct.	
The sentence	e is valid.	
	$(P(x) \setminus Q(x))$ is true, then there is a choice for (x) , (x') say, such that $(P(x'))$ and $(Q(x'))$ are both true. In this exists $x P(x)$ and (x') are true (because (x') exists) and so (x') wedge exists $x Q(x)$ is true.	
	shown that, under any interpretation, if $(\x) \x (P(x) \x)$ is true, then $(\x) \x P(x) \x Q(x)$ is nows that the overall sentence is true under any interpretation. So it is valid.	
The correct a	answer is: The sentence is valid.	
Question 5		
Correct		
Mark 2.00 out of 2	.00	
-	oting to prove by simple induction that $(2! + 4! + 6! + \cdot + $	
\(2! + 4!	< 4^{8}\)	
\(2! + 4!	+ 6! +8! < 8^{16}\)	
\(1!+2!+	3!+4! > 4^{4}\)	
\(1!+2!+	3!+4!+5!+6!+7!+8! < 4^{8}\)	
\(2! + 4!	+ 6! +8! > 8^{16}\)	
\(2! + 4!	+ 6! +8! < 4^{8}\) ✓	
Your answer	is correct.	
The base ste 4^{8}\).	p of the induction would be to prove the statement for $(n=4)$. Setting $(n=4)$ in the statement we get $(2! + 4! + 6! + 8! < 6! + 8! < 6! + 8! < 6! + 8!$	
The correct a	answer is: \(2! + 4! + 6! +8! < 4^{8}\)	
Question 6		
Incorrect Mark 0.00 out of 3		
ivialk 0.00 out of 3	.00	
Suppose you	know the following about a statement \(P(n)\).	
	$N(P(9)\setminus)$ and $N(P(15)\setminus)$ are all true.	
\(P(2)\) isFor all int	s false. egers \(k \geq 6\), if \(P(k)\) is true then \(P(k+1)\) is true.	
	smallest integer $\(x\)$ for which you can be sure that $\(P(n)\)$ is true for all integers $\(n \neq x\)$?	
Answer: 3	×	

You know (P(9)) is true and that, for all integers $(k \geq 9)$, if (P(k)) is true then (P(k+1)) is true. This means that (P(n)) is true for all integers $(n \geq 9)$ by induction.

You cannot be sure that (P(8)) is true, however, so the smallest (x) can be is 9.

The correct answer is: 9

■ Assignment 1 solutions

Jump to...

Assignment 2 ▶