Лабораторная работа №2.2.5 Определение вязкости жидкости по скорости истечение через капиляр

Александр Романов Б01-107

1 Введение

Цель работы: 1) определение вязкости воды по измерению объе- ма жидкости, протекшей через капилляр; 2) определение вязкости других жидкостей путем сравнения скорости их перетекания со скоростью перетекания воды.

В работе используются: сосуд Мариотта; капиллярная трубка; мензурка; секундомер; стакан; микроскоп на стойке.

2 Работа

2.1 А. Измерение вязкости воды

Запишем параметры установки:

Рис. 2. Схема установки для определения вязкости воды

Длина капиляра А, мм	Диаметр капиляра А, мм
131	9

- 1. Снимем пробку С и, дождавшись первых пузырьков на нижнем конце трубки В, начнём измерения расхода воды. Два раза измерим время за которое мензурка заполняется на 25 мл (185 и 180 с). Мы понимаем, что скорость истечения не зависит от уровня воды в сосуде. Измерения проводились при h=85мм.
- 2. Приступим к основной серии измерений. Мы будем менять глубину погружения трубки В и измерять время, за которое через капиляр вытечет 20 мл воды. Результаты измерений занесём в таблицу:

h, mm	29	38	44	57	62
$t_{\rm зап}$, с	576	383	327	248	213

Вычислив расход воды по формуле:

$$Q = \frac{V}{t_{\rm san}}$$

Получим слудующие данные:

h, MM	29	38	44	57	62
$Q, \frac{MJI}{c}$	0.035	0.052	0.061	0.081	0.094
Re	2.5	3.69	4.3	5.73	6.65
a, MM	2.25	3.32	3.87	5.16	5.98

 Γ де a - это расстояние пройдя которое в капиляре установиться ламинарное течении. В его вычислении мы использовали формулу:

$$a = 0.2R \cdot Re = 0.2R \cdot \frac{QR\rho}{S\eta}$$

Изобразив Q(h) на графике:

Полчуена зависимость вида (y=kx+b): $k=0.0017\pm5.56979\cdot10^{-5}\frac{\rm MЛ}{\rm c\cdot MM};$

 $b = -0.0144 \pm 0.0007 \frac{{\rm M}\Pi}{{\rm c}}$ По углу наклона графика определим вязкость воды:

$$\eta = \frac{\pi R^4 \rho g}{8lQ'(h)} = 0.0072\Pi$$

2.2 В. Измерение вязкости раствора глицерина вискозометром Оствальда

Будем измерять время протекания между отметками "1" и "0" Вискозометра различных жидкостей. Результаты измерений сведём в таблицу:

Номер опыта	1	2	3	4	5	Среднее значение	погрешность
t воды, с	5,91	5,87	5,84	5,89	6,09	5,92	0.039
t глицерина 10%, с	8,32	8,36	8,33	8,68	8,86	8,51	0.242
<i>t</i> глицерина 20%, с	10,72	11,35	10,65	10,79	11,17	10,94	0.376
<i>t</i> глицерина 30%, с	15,15	15,18	15,49	15,19	15,08	15,2	0.099

Вычислим коэффициенты вязкости растворов по формуле:

$$\eta_x = \eta_0 \frac{\rho_x}{\rho_0} \frac{t_x}{t_0}$$

Получим значения:

Глицерин, %	η , c Π
10	1.1
20	1.4
30	1.97

Эти значения достаточно точно совпдают с табличными:

Глицерин, %	Коэффициент вязкости
0	1,0000
10 20	1,3137 1,7197
30	2,5340
40 50	3,6451 5,4108

3 Выводы

- 1. В данной работе мы определили коэффициент вязкости воды при температруе около 293 K по скорости протекания через капиляр при постоянном давлении. Полученное значение $(0.0072~\Pi)$ довольно неплохо совпадает с табличным $(0.011~\Pi)$
- 2. Мы также определили коэффициенты вязкости воднфх растворов глицерина пользуясь вискозиметром Оствальда. Полученные значения также совпадают с табличными весьма точно.