UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA DE CORRECCIÓN. EVALUACIÓN 2. CÁLCULO III. 525211.

1. La superficie del Toro de la Figura está definida paramétricamente como

- a) (1 pt.) Pruebe que existe una vecindad de (x, y, z) = (R, 0, r) en la superficie del Toro, en la que se puede despejar z en términos de x e y : z = f(x, y).
- b) (0.5 pts.) Calcule $\nabla f(x,y)$ en términos de θ y φ .
- c) (0.5 pts.) ξ Existe una vecindad de (R, 0, r) en la que se pueda despejar x en términos de y y z? justifique su respuesta.

Solución

a) Demostremos que podemos aplicar el teorema de la función implícita para despejar (θ, φ) en términos de (x, y). Aquí se trata en realidad de aplicar el teorema de la función inversa (derivado de la función implícita) a $F: \mathbb{R}^2 \to \mathbb{R}^2$, tal que $F(\theta, \varphi) = (F_1(\theta, \varphi), F_2(\theta, \varphi)) = (\cos \theta(R + r \cos \varphi), \sin \theta(R + r \cos \varphi))$. Para ello calculamos el jacobiano de F cuando (x, y, z) = (R, 0, r). Esto es, en :

$$R = \cos \theta (R + r \cos \varphi)$$

$$0 = \sin \theta (R + r \cos \varphi)$$

$$r = r \sin \varphi,$$

$$\implies (\theta, \varphi) = (0, \pi/2)$$

Luego, la matriz jacobiana de F está dada por :

$$JF(\theta,\varphi) = \begin{pmatrix} -\sin\theta(R + r\cos\varphi) & -r\cos\theta\sin\varphi \\ \cos\theta(R + r\cos\varphi) & -r\sin\theta\sin\varphi \end{pmatrix} \Longrightarrow JF(0,\pi/2) = \begin{pmatrix} 0 & -r \\ R & 0 \end{pmatrix}$$

cuyo determinante (jacobiano) es $\det(JF(0,\pi/2)) = Rr \neq 0.$ (0.5 pts.)

Por el teorema de la función inversa, existe una vecindad U de (x, y) = (R, 0) y una vecindad V de $(\theta, \varphi) = (0, \pi/2)$, donde está definida la función $F^{-1}: U \to V$, tal que $F^{-1}(x, y) = (\theta, \varphi)$.

Luego la función $f: U \to \mathbb{R}^2$ está definida por $f(x,y) = z \circ F^{-1}(x,y) = r \operatorname{sen} F_2^{-1}(x,y)$.

(0.3 pts.)

b) Por regla de la cadena $\nabla f(x,y)^t = \nabla z(\theta,\varphi)^t J F^{-1}(\theta,\varphi)$, (0.2 pts.) es decir,

$$\nabla f(x,y) = \begin{bmatrix} JF(\theta,\varphi)^t \end{bmatrix}^{-1} \nabla z(\theta,\varphi) = \begin{bmatrix} -\sin\theta(R+r\cos\varphi) & \cos\theta(R+r\cos\varphi) \\ -r\cos\theta\sin\varphi & -r\sin\theta\sin\varphi \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ r\cos\varphi \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{\sin\theta}{R+r\cos\varphi} & -\frac{\cos\theta}{r\sin\varphi} \\ \frac{\cos\theta}{R+r\cos\varphi} & -\frac{\sin\theta}{r\sin\varphi} \end{bmatrix} \begin{bmatrix} 0 \\ r\cos\varphi \end{bmatrix} = -\begin{bmatrix} \cot\alpha\varphi\cos\theta \\ \cot\alpha\varphi\sin\theta \end{bmatrix}$$

(0.3 pts.)

c) Tratemos de despejar (θ, φ) en una vecindad de $(0, \pi/2)$, en términos de (y, z), usando el teorema de la función inversa. Para ello definimos $G(\theta, \varphi) = (y, z) = (\operatorname{sen} \theta(R + r \cos \varphi), r \operatorname{sen} \varphi)$ cuya matriz jacobiana está dada por :

$$JG(\theta,\varphi) = \begin{pmatrix} \cos\theta(R + r\cos\varphi) & -r\sin\theta\sin\varphi \\ 0 & r\cos\varphi \end{pmatrix} \Longrightarrow JG(0,\pi/2) = \begin{pmatrix} R & 0 \\ 0 & 0 \end{pmatrix}$$

cuyo determinante (jacobiano) es cero. Con lo cuál no se puede aplicar el teorema de la función inversa o impícita. (0.2 pts.)

Pero, lo que prueba definitivamente que no existe tal vecindad, es que al tomar $y=0 \Rightarrow \theta=0$, se obtiene $x=R+r\cos\varphi=R\pm r\sqrt{1-sen^2\varphi}=R\pm \sqrt{r^2-z^2}$. Es decir, si y=0, en una vecindad $z=r-\varepsilon$ de z=r, se tienen dos soluciones para x:

$$x = R + \sqrt{2r\varepsilon - \varepsilon^2}$$
, o bien $x = R - \sqrt{2r\varepsilon - \varepsilon^2}$.

Como esto es cierto para ε arbitrario, queda demostrado que no se puede despejar de manera única x como función de y, z, cualquiera sea la vecindad de (R, 0, r). (0.3 pts.)

2. (2 pts.) Mediante el cambio de variable de coordenadas toroidales a cilíndricas :

$$\Phi: [0,r) \times [0,2\pi) \times [0,2\pi) \longrightarrow \text{Interior del Toro en coord. Cilíndricas}$$

 $(\xi,\theta,\varphi) \longmapsto (\rho,\theta,z) = (R + \xi\cos\varphi,\theta,\xi\sin\varphi)$

Calcule el Volumen del Toro de la Figura usando las coordenadas toroidales.

Solución. El jacobiano del cambio de variable φ está dado por :

$$\det \left[J\varphi(\xi,\theta,\varphi) \right] = \begin{vmatrix} \frac{\partial \rho}{\partial \xi} & \frac{\partial \rho}{\partial \theta} & \frac{\partial \rho}{\partial \varphi} \\ \frac{\partial \theta}{\partial \xi} & \frac{\partial \theta}{\partial \theta} & \frac{\partial \theta}{\partial \varphi} \\ \frac{\partial z}{\partial \xi} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & 0 & -\xi \sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \xi \cos \varphi \end{vmatrix} = \xi$$
 (0.5 pts.)

Luego el Volumen del Toro está dado por :

$$V = \int \int \int_{\text{Toro en Cartesianas}} dx dy dz = \int \int \int_{\text{Toro en Cilindricas}} \rho \, d\rho d\theta dz$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{r} \rho \xi \, d\xi d\theta d\varphi = \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{r} (R + \xi \cos \varphi) \xi \, d\xi d\theta d\varphi \qquad (\textbf{0.5 pts.})$$

$$= \int_{0}^{2\pi} dt \left(R \int_{0}^{2\pi} d\varphi \int_{0}^{r} \xi d\xi + \int_{0}^{2\pi} \cos \varphi d\varphi \int_{0}^{r} \xi^{2} d\xi \right) \qquad (\textbf{0.5 pts.})$$

$$= 2\pi (R\pi r^{2} + 0) = 2\pi^{2} r^{2} R \qquad (\textbf{0.5 pts.})$$

3. Multiplicadores de Lagrange y Geometría Optica. Se envía un haz de luz desde un faro en $A \in \mathbb{R}^3$ hacia un punto $X \in \mathbb{R}^3$ sobre la superficie del mar. Desde X, el rayo de luz se refleja hacia un punto B sobre la superficie del agua, y se refracta hacia un punto C, dentro del agua. La luz se mueve en linea recta en cada medio (aire, agua), de modo que el tiempo de refracción :

$$t(X) = \frac{1}{v_1} ||\vec{AX}|| + \frac{1}{v_2} ||\vec{XC}||,$$

sea mínimo respecto de X, con v_1 , v_2 , las velocidades de la luz, en el aire, y en el agua respectivamente. Suponga que la superficie del agua está parametrizada por F(X) = 0, donde $F : \mathbb{R}^3 \to \mathbb{R}$ es una función de clase \mathcal{C}^1 .

a) (1 pt.) Pruebe que existe
$$\lambda \in \mathbb{R}$$
 tal que,
$$\frac{1}{v_1} \frac{\vec{AX}}{\|\vec{AX}\|} - \frac{1}{v_2} \frac{\vec{XC}}{\|\vec{XC}\|} = \lambda \nabla F(X).$$

Suponga que el tiempo de reflexión se comporta igual, reemplazando C por B, y v_2 por v_1 .

- b) (0.5 pts.) Deduzca la primera ley que dice que : Los rayos de reflexión, de refracción, y de incidencia, y la normal a la superficie del mar en el punto X, se encuentran en un mismo plano.
- c) (0.5 pts.) Proyectando sobre la superficie del agua, deduzca la segunda ley que dice que : los ángulos de incidencia y de reflexión con respecto del plano tangente a la superficie del agua son iguales, mientras que los ángulos de incidencia θ_i y de refracción bajo el agua θ_r verifican la relación conocida como ley de Snell : $\frac{\sin \theta_r}{\sin \theta_i} = \frac{v_2}{v_1}$.

Solución

a) Si $X = (x_1, x_2, x_3)$ es un mínimo de t(X) sujeto a F(X) = 0, entonces se verifica necesariamente que existe un único $\lambda \in \mathbb{R}$ tal que $\nabla_X \mathcal{L}(x_1, x_2, x_3, \lambda) = 0$, donde $\mathcal{L}(x_1, x_2, x_3, \lambda) = t(X) + \lambda F(X)$. Si $A = (a_1, a_2, a_3)$, entonces se tiene que

$$\nabla_X \|\vec{AX}\| = \begin{pmatrix} \partial_{x_1} \\ \partial_{x_2} \\ \partial_{x_3} \end{pmatrix} \left(\sqrt{(a_1 - x_1)^2 + (a_2 - x_2)^2 + (a_3 - x_3)^2} \right)$$

$$= \frac{1}{\sqrt{(a_1 - x_1)^2 + (a_2 - x_2)^2 + (a_3 - x_3)^2}} \begin{pmatrix} x_1 - a_1 \\ x_2 - a_2 \\ x_3 - a_3 \end{pmatrix}$$

$$= -\frac{\vec{AX}}{\|\vec{AX}\|}$$

(0.5 pts.)

De igual modo, $\nabla_X \| \vec{XC} \| = \frac{\vec{XC}}{\|\vec{XC}\|}$, con lo cuál

$$\nabla_X \mathcal{L}(x_1, x_2, x_3, \lambda) = -\frac{1}{v_1} \frac{\vec{AX}}{\|\vec{AX}\|} + \frac{1}{v_2} \frac{\vec{XC}}{\|\vec{XC}\|} + \lambda \nabla F(X) = 0.$$

Que es lo que se deseaba probar. (0.5 pts.)

b) De la igualdad anterior, se tiene que \vec{XC} es combinación lineal de \vec{AX} y $\nabla F(X)$, con lo cuál están los tres vectores en un mismo plano. (0.2 pts.)

Reemplazando C por B, y v_2 por v_1 , se tiene que existe $\lambda_2 \in \mathbb{R}^2$ tal que :

$$\frac{\vec{AX}}{\|\vec{AX}\|} - \frac{\vec{XB}}{\|\vec{XB}\|} = v_1 \lambda_2 \nabla F(X).$$

De esta igualdad se tiene que \vec{XB} también es combinación lineal de \vec{AX} y $\nabla F(X)$. (0.2 pts.) Por lo tanto, los cuatro vectores \vec{AX} , \vec{XB} , \vec{XC} y $\nabla F(X)$ están en un mismo plano, con lo cuál se deduce la primera ley. (0.1 pts.)

c) Se sabe que $\nabla F(X)$ es proporcional al vector normal al plano tangente a la curva F(X)=0 en el punto X. (0.1 pts.)

Proyectando la segunda igualdad vectorial ortogonalmente sobre el plano tangente a la superficie del mar en X, se tiene que

$$\frac{\|\vec{AX}\|}{\|\vec{AX}\|} \operatorname{sen} \theta_i - \frac{\|\vec{XB}\|}{\|\vec{XB}\|} \operatorname{sen} \theta_{reflej} = 0,$$

donde θ_i es el ángulo del rayo de incidencia, y θ_{reflej} es el ángulo del rayo reflejado. Geométricamente se vé que estos ángulos tienen un rango de validez entre 0 y $\pi/2$, con lo cuál sen $\theta_i = \text{sen } \theta_{reflej} \Longrightarrow \theta_i = \theta_{reflej}$.

(0.2 pts.)

Por otro lado, proyectando la primera igualdad vectorial ortogonalmente sobre el plano tangente a la superficie del mar en X, se tiene que

$$\frac{1}{v_1} \frac{\|\vec{AX}\|}{\|\vec{AX}\|} \operatorname{sen} \theta_i - \frac{1}{v_2} \frac{\|\vec{XC}\|}{\|\vec{XC}\|} \operatorname{sen} \theta_r = 0,$$

donde θ_i es el ángulo del rayo de incidencia con respecto a la normal exterior al océano, y θ_r es el ángulo del rayo de refracción con respecto a la normal interior al océano. De esta última igualdad se deduce la ley de Snell

(0.2 pts.)

$$\frac{\operatorname{sen}\theta_r}{\operatorname{sen}\theta_i} = \frac{v_2}{v_1}$$

MSC/msc (28-Mayo-2004)