

Выполнил студен Б9121-09.03.03ГИКД Лифары Марина

Введение

Сжатие файла — это уменьшение его размера при сохранении исходных данных. обычно делится на два основных типа: с потерями и без потерь Формула : Kc = (Vc/Vo)*100%

История

Метод сжатия LZW был предложен в 1978-ом году израильскими специалистами Лемпелом и Зивом

Авраам Лемпель 10 февраля 1936 г. (86 лет)

Яаков Зив 27 ноября 1931 г. (91 год)

Усовершенствованная версия алгоритма (Terry Welch) была представлена в 1984-ом году.

Терри Велч 20 января 1939 г.-22 ноября 1988 г. (49 лет)

Применение

Метод сжатия графических данных позволяет достичь одну из наилучших степеней сжатия среди других существующих методов, при полном отсутствии потерь или искажений в исходных файлах. В настоящее время используется в файлах формата TIFF, PDF, GIF, PostScript

В настоящее время патент принадлежит компании Unisys.

Описание

Процесс сжатия выглядит следующим образом. Последовательно считываются символы входного потока и происходит проверка, существует ли в созданной таблице строк такая строка.

LZW compression for string: "ABABBABCABABBA"

S	\mathbf{c}	output	code	string	
			1	A	
			2	В	
			3	С	
A	В	1	4	AB	
В	A	2	5	BA	
A	В				
AB	В	4	6	ABB	
В	A				
BA	В	5	7	BAB	
В	C	5 2	8	BC	
C	A	3	9	CA	
A	В	-	0.50		
AB	A	4	10	ABA	
A	В	1.50			
AB	В				
ABB	A	6	11	ABBA	
A	EOF	1			

• The output codes are: 1 2 4 5 2 3 4 6 1. Instead of sending 14 characters, only 9 codes need to be sent (compression ratio = 14/9 = 1.56).

Пример

Текущая	Текущий	Следующий	Вывод		C		
строка	символ	символ	Код	Код Биты		Словарь	
ab	а	b	0	000	5: ab		
ba	b	а	1	001	6:	ba	
ac	а	С	0	000	7:	ac	
ca	С	а	2	010	8:	ca	
ab	а	b	-	-	-	-	
aba	b	а	5	101	9:	aba	
ad	а	d	0	000	10:	ad	
da	d	а	3	011	11:	da	
ab	а	b	-	-	-	-	
aba	b	а	-	-	-	-	
abac	а	С	9	1001	12:	abac	
ca	С	а	-	-	-	-	
cab	а	b	8	1000	13:	cab	
ba	b	а	-	-	-	-	
bae	а	е	6	0110	14:	bae	
е	е	-	4	0100	-	-	

Кодирование

Итак, мы получаем закодированное сообщение «0 1 0 2 5 0 3 9 8 6 4», что на 11 бит короче.

Декодирование

Особенность LZW заключается в том, что для декомпрессии нам не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.

Данные		Ha	Новая запи			ІИСЬ	
Биты	Код	выходе	Полная		Частичная		
000	0	а	-	-	5:	a?	
001	1	b	5 :	ab	6:	b?	
000	0	а	6:	ba	7:	a?	
010	2	С	7:	ac	8:	c?	
101	5	ab	8:	ca	9:	ab?	
000	0	а	9:	aba	10:	a?	
011	3	d	10:	ad	11:	d?	
1001	9	aba	11:	da	12:	aba?	
1000	8	ca	12:	abac	13:	ca?	
0110	6	ba	13:	cab	14:	ba?	
0100	4	e	14:	bae	_	-	

Стоимость

Пример содержащий 613613 символов может быть закодирован 3×613=18393×613=1839 битами.

Алгоритм LZW дал 241241 слово в словарь, стоимость кодирования $3\times3+8\times4+16\times5+32\times6+64\times7+(241-3-120)\times8=1705$ бит $1705/1839\approx0.927$, 1705/1839 ≈0.927 , т.е. получили 88 % экономии.

Более длинный кусок, содержащий 10521052 символа, дал 370370 слов в словарь, стоимость кодирования

 $3\times3+8\times4+16\times5+32\times6+64\times7+128\times8+(370-3-248)\times9=2856$ бит $2856/(1052\times3)\approx0.905$,2856/(1052×3) ≈0.905 , т.е. эффективность сжатия порядка 10%

Достоинства и недостатки

- + Не требует вычисления вероятностей встречаемости символов или кодов.
- + Для декомпрессии не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.
- + Данный тип компрессии не вносит искажений в исходный графический файл, и подходит для сжатия растровых данных любого типа.
- Алгоритм не проводит анализ входных данных поэтому не оптимален.

Заключение

LZW — алгоритм сжатия на основе "словаря". Это означает, что вместо сведения в таблицу количества символов и построения деревьев **LZW** кодирует данные, обращаясь к словарю

Результат работ выложен на GitHub

https://github.com/Marlifa/lzw.cpp.git