Geometric Flow and Curve Shortening Flow

Jaehoon Yoo(Sungkyunkwan University)

MIMIC

Tuesday 25 September 2023

Contents

1 Flow

- 2 Curve and Convex body
- 3 Curve Shortening Flow

Table of Contents

1 Flow

- 2 Curve and Convex body
- 3 Curve Shortening Flow

Flow

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
.

For example, Gravitational Force Field.

$$G(x,y) = \left(-x/\sqrt{x^2 + y^2}, -y/\sqrt{x^2 + y^2}\right)$$

$$\dot{x}(t) = G(x(t))$$

Gradient

Let
$$F: \mathbb{R}^2 \to \mathbb{R}$$
.
Gradient of $\nabla F = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)$.

What is the geometric meaning of gradient?

What is the geometric meaning of gradient? The direction with maximum slope of the graph z = f(x, y).

What is the geometric meaning of gradient? The direction with maximum slope of the graph z = f(x, y).

Let's try it!

Gradient Flow

We can use this idea to minimizing or maximizing something. For example, Artificial Neural Network in Deep Learning, we use gradient to optimize loss function.

Gradient Descent

$$x_{t+1} = x_t - \eta \nabla F(x_t)$$

Figure 1: Gradient Descent

Gradient Descent

$$x_{t+1} = x_t - \eta \nabla F(x_t)$$

Figure 1: Gradient Descent

Also there are many different methods, such as stochastic gradient descent, AdaGrad, Adam, ...

Like these cases, we can think *flow* as changing or moving from the states.

Table of Contents

1 Flow

- 2 Curve and Convex body
- 3 Curve Shortening Flow

Let the curve $\gamma(t): \mathbb{R} \to \mathbb{R}^2$

Let the curve $\gamma(t): \mathbb{R} \to \mathbb{R}^2$

Smooth Curve

The curve is differentiable.

Let the curve $\gamma(t): \mathbb{R} \to \mathbb{R}^2$

Smooth Curve

The curve is differentiable.

Closed Curve

$$\gamma$$
 (0) = γ (1)

Let the curve $\gamma(t): \mathbb{R} \to \mathbb{R}^2$

Smooth Curve

The curve is differentiable.

Closed Curve

$$\gamma\left(0\right)=\gamma\left(1\right)$$

Simple Curve

Curve does not cross itself.

Arc Length

Arc length S(p)

Arc length
$$S(p) = \int_0^p \left\| \frac{d}{du} \gamma(u) \right\| du$$

Complete Curve

$$\lim_{\|p\|\to\infty}S(p)=\infty$$

Figure 2: T, N and Curvature

Curvature of the curve

$$\frac{ds}{dp} = \|\gamma'(p)\| > 0.$$

$$T := \gamma_s = \frac{d}{ds}\gamma = \frac{dp}{ds}\frac{d}{dp}\gamma = \frac{\gamma'(p)}{\|\gamma'(p)\|}$$

Curvature of the curve

$$\frac{ds}{dp} = \|\gamma'(p)\| > 0.$$

$$T := \gamma_s = \frac{d}{ds}\gamma = \frac{dp}{ds}\frac{d}{dp}\gamma = \frac{\gamma'(p)}{\|\gamma'(p)\|}$$

After that choose normal vector N and $\gamma_{ss} = \frac{\langle \gamma'', N \rangle N}{\|\gamma'\|^2} = \kappa N$

Convex Set

Convex Set

Let S be a vector space or an affine space over the real numbers, or, more generally, over some ordered field (this includes Euclidean spaces, which are affine spaces). A $C \subset S$ is convex if, for all $x,y \in C$, the line segment connecting x and y is included in C.

Figure 3: Convex Set

Convex Body

Convex Body

A convex body in \mathbb{R}^n is a compact convex set with non-empty interior.

Convex Body

Convex Body

A convex body in \mathbb{R}^n is a compact convex set with non-empty interior.

Figure 4: Convex Body

For someone(CW) who wants...

Here is the example of Convex Set but not Convex Body.

Let M be the set of all points in l_2 , satisfying $\sum_{n=0}^{\infty} n^2 x_n^2 \leq 1$

Table of Contents

1 Flow

2 Curve and Convex body

3 Curve Shortening Flow

We can also consider the "Geometric Flow" similarly before.

$$\frac{\partial}{\partial t} \gamma$$

We can also consider the "Geometric Flow" similarly before.

$$rac{\partial}{\partial t}\gamma=\gamma_{ extit{SS}}$$

We can also consider the "Geometric Flow" similarly before.

$$\frac{\partial}{\partial t}\gamma = \gamma_{SS} = \kappa N$$

We can also consider the "Geometric Flow" similarly before.

$$\frac{\partial}{\partial t}\gamma = \gamma_{SS} = \kappa N$$

Let's see through the simulation!

Curve Shortening Flow

Definition

Let $\{\Gamma_t\}_{t\in[0,T]}$ be a one-parameter family of complete curve with C^∞ immersion, $\gamma:\mathbb{R}\times[0,T]\to\mathbb{R}^2$ satisfying $\gamma_t=\gamma_{ss}=\kappa N$. Then $G=\bigcup_{t\in[0,T]}\Gamma_t\times\{t\}\subseteq\mathbb{R}^2\times[0,T]$ is a Curve Shortening Flow.

Example

Let
$$\Gamma_0 = \{ \|x\| = r \} \Rightarrow \Gamma_t = \{ \|x\|^2 = r^2 - 2t \}$$
 is a CSF. Why?

Curve Shortening Flow

Definition

Let $\{\Gamma_t\}_{t\in[0,T]}$ be a one-parameter family of complete curve with C^{∞} immersion, $\gamma:\mathbb{R}\times[0,T]\to\mathbb{R}^2$ satisfying $\gamma_t=\gamma_{ss}=\kappa N$. Then $G=\bigcup_{t\in[0,T]}\Gamma_t\times\{t\}\subseteq\mathbb{R}^2\times[0,T]$ is a Curve Shortening Flow.

Example

Let
$$\Gamma_0 = \{ \|x\| = r \} \Rightarrow \Gamma_t = \{ \|x\|^2 = r^2 - 2t \}$$
 is a CSF. Why?

$$\gamma(\theta, t) = \sqrt{r^2 - 2t} (\cos \theta, \sin \theta)$$

$$\Rightarrow \gamma_t = \gamma_{\theta\theta} = -\frac{(\cos \theta, \sin \theta)}{\sqrt{r^2 - 2t}}$$

Convex Complete Curve

Convex Complete Curve

If $\Gamma \subset \mathbb{R}^2$ is a convex complete curve if $\Gamma = \partial K$ for some convex body K.

Support function

Given a convex body $K \subset \mathbb{R}^2$, we can define support function

$$S(\theta) := \sup_{x \in K} \langle x, (\cos \theta, \sin \theta) \rangle$$

We can just consider $S(\theta) = -\langle \gamma(\theta), N(\theta) \rangle$.

Reparametrization

If ∂K is C^{∞} and closed, ∂K can be reparametrizated by $\gamma: S^1 \to \mathbb{R}^2$ with $N(\theta) = (-\cos \theta, \sin \theta)$ such as $\gamma = (S\cos \theta - S_{\theta}\sin \theta, S\sin \theta + S_{\theta}\cos \theta).$

Then we can express the curvature $\kappa=\frac{d\theta}{ds}$. Also, using chain rule, we can derive $\kappa=\frac{1}{S_{\theta\theta}+S}>0$

Convex closed CSF

Suppose Γ_t is a convex closed CSF. Then $\gamma_t = \kappa N$ where

$$\kappa(\theta, t) = \left\langle \frac{\partial}{\partial t} \gamma(\theta, t), N(\theta) \right\rangle = -\frac{\partial}{\partial t} S.$$

$$S_t = -\kappa = -\frac{1}{S_{\theta\theta} + S}$$

$$\kappa_t = \kappa^2 \kappa_{\theta\theta} + \kappa^3.$$

So we also can analyze through the semi-linear heat equation!

Properties

There are some interesting properties of the convex closed CSF.

Area

Area of the region enclosed by Γ , $A(\Gamma_t)$ decreases in rate of 2π i.e. $\frac{d}{dt}A(\Gamma_t)=-2\pi$.

So
$$A(\Gamma_t) = A(\Gamma_0) - 2\pi t$$
.
And let $\bar{T} := A(\Gamma_0)/2\pi$

Local Existence

Convex Body

During $t < \overline{T}$, convex body $K_{t_2} \subset K_{t_1}$ where $t_1 \le t_2$ and $\Gamma_t = \partial K_t$.

Local Existence

Convex Body

During $t < \overline{T}$, convex body $K_{t_2} \subset K_{t_1}$ where $t_1 \leq t_2$ and $\Gamma_t = \partial K_t$.

Unit Circle[2]

Also if we resclaed the area as 1, there is a $t_0 < \bar{T}$ such that Γ_{t_0} is a unit circle.

Curve Shortening Flow

$$t
ightarrow ar{\mathcal{T}}$$

When $t o \bar{\mathcal{T}}$, $\Gamma_t o$ a point!

Application in mathematics

We can use the CSF to isoperimetric inequality[3].

Figure 5: Isoperimetric Inequality

Applications |

- Annealing metal sheets
- Reaction—diffusion

More

Related Geometric Flows

- Mean Curvature Flow Area Minimizing
- Ricci Flow as the solution of the Poincare's conjecture.
- Inverse Mean Curvature Flow

Numerical Approximation

Also it can be numerically approximated by Finite Difference Method well.

Reference I

The normalized curve shortening flow and homothetic solutions.

Journal of Differential Geometry, 23(2):175 - 196, 1986.

M.E. Gage.

Curve shortening makes convex curves circular. *Inventiones mathematicae*, 76:357–364, 1984.

Ivan Izmestiev.

Convex Bodies: Mixed Volumes and Inequalities, pages 171–203.

Springer International Publishing, Cham, 2022.

Reference II

James Stewart.

Calculus.

Cengage Learning, 2016.

X.P. Zhu.

Lectures on Mean Curvature Flows.

AMS/IP studies in advanced mathematics. American Mathematical Soc., 2002.

Thank you