VE311 Electronic Circuits RC Final

Yucheng Huang

University of Michigan Shanghai Jiao Tong University Joint Institute

July 28, 2023

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- Current Mirror
 - Current Mirror

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- 3 Current Mirror
 - Current Mirror

CS with Resistive Load

If no channel-length and body effect:

$$A_{v} = \frac{v_{out}}{v_{in}} = -g_{m1}R_{D} \tag{1}$$

No body effect:

$$A_{v} = -g_{m1}(R_{D} \parallel r_{o1}) \tag{2}$$

CS with Diode-connected Load

NMOS:

$$A_{\rm v} = -\sqrt{\frac{(W/L)_1}{(W/L)_2}} \frac{1}{1+\eta} \qquad \eta = g_{\rm mb2}/g_{\rm m2}$$
 (3)

PMOS:

$$A_{\rm v} = -\sqrt{\frac{\mu_{\rm n}(W/L)_1}{\mu_{\rm p}(W/L)_2}} \tag{4}$$

CS with Current Source Load

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- Current Mirror
 - Current Mirror

Source Follower

$$A_{v} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}(1 + \eta)} = \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}} \approx \frac{1}{1 + \eta}$$
 (6)

In the source follower with current source load, the current source is ideal. Find the output impedance for the amplifier when $I_0=0.01$ and 0.1mA respectively. (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V,$ $K_n=110\mu A/V^2, \lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V,$ $K_p=50\mu A/V^2, \lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m, L=1\mu m$

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- Current Mirror
 - Current Mirror

Common Gate

$$R_{in} = \frac{R_D + r_o}{1 + (g_m + g_{mb})r_o} \begin{cases} \text{If } R_D = 0 & R_{in} = r_o \parallel \frac{1}{g_m} \parallel \frac{1}{g_{mb}} \\ \text{If } R_D = \infty & R_{in} = \infty \end{cases}$$

$$R_{out} = [R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S] \parallel R_D$$
 (8)

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- 3 Current Mirror
 - Current Mirror

Cascode

Cascode

$$G_{m} = -g_{m1} \frac{r_{o1}}{r_{o1} + \left(r_{o2} \parallel \frac{1}{g_{m2} + g_{mb2}}\right)}$$

$$R_{out} = r_{o1} + r_{o2} + \left(g_{m2} + g_{mb2}\right) r_{o2} r_{o1}$$

$$A_{v} = G_{m} R_{out}$$

$$(13)$$

Cascode

$$G_m = -g_{m1} \frac{r_{o1}}{r_{o1} + (r_{o2} \parallel \frac{1}{g_{m2}g_{mb2}})}$$
 (14)

$$R_{out} = [r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}]$$

$$\parallel [r_{o3} + r_{o4} + (g_{m3} + g_{mb3})r_{o3}r_{o4}]$$
(15)

$$A_{v} = G_{m}R_{out} \tag{16}$$

In the cascode amplifier , what is the gain when $I_{REF}=0.01mA$ and 0.1mA respectively? (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7\,V$, $K_n=110\mu A/V^2$, $\lambda=0.04\,V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7\,V$, $K_p=50\mu A/V^2$, $\lambda=0.05\,V^{-1}$ All the size of transistor is $W=20\mu m$, $L=1\mu m$

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- Current Mirror
 - Current Mirror

Differential Pair

Differential Pair with MOS Loads

$$A_{DM} = -g_{m1,2}(r_{o1,2} \parallel r_{o3,4}) \qquad (20)$$

Differential Pair with Cascode Loads

$$A_{DM} \cong -g_{m1,2}[(g_{m3,4} + gmb_{3,4})r_{o3,4}r_{o1,2} \parallel (g_{m5,6} + g_{mb5,6})r_{o5,6}r_{o7,8}]$$
(21)

In the differential pair , what is the gain when $I_{SS}=0.02mA$ and 0.2mA respectively? (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V$, $K_n=110\mu A/V^2$, $\lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V$, $K_p=50\mu A/V^2$, $\lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m$, $L=1\mu m$

Common Mode Response

$$v_{
m in~,cm} = v_{
m gs} + 2g_{
m m}v_{
m gs} \cdot r_{
m ss}$$

$$2g_{
m m}v_{
m gs} + \frac{v_{
m out~,cm}}{R/2} = 0$$

$${
m CMRR} = \frac{|A_{
m vd}|}{|A_{
m vc}|} = 1 + 2g_{
m m}r_{
m ss}$$

In the differential pair , what is the common gain and differential gain and CMRR when $I_{SS}=0.2mA$? (Neglect body effect,

$$R = 10k\Omega, V_{DD} = 5V$$

Parameter for NMOS: $V_{THN} = 0.7 V$,

$$K_n = 110\mu A/V^2, \lambda = 0.04V^{-1}$$

Parameter for PMOS: $V_{THP} = -0.7V$,

$$K_p = 50\mu A/V^2, \lambda = 0.05V^{-1}$$

All the size of transistor is $\textit{W} = 20\mu\textit{m}, \textit{L} = 1\mu\textit{m}$

Mismatch

$$A_{
m cm-dm} = -\left(rac{g_{
m m}\Delta R + \Delta g_{
m m}R}{2g_{
m m}r_{
m ss} + 1}
ight)$$

- MOSFET Single Stage Amplifie
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- MOSFET Differential Pair Amplifier
- 3 Current Mirror
 - Current Mirror

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier
- 2 MOSFET Differential Pair Amplifier
- 3 Current Mirror
 - Current Mirror

Current Mirror

$$\begin{split} I_{\mathrm{REF}} &= \frac{1}{2} \mu_{\mathrm{n}} C_{\mathrm{ox}} \left(\frac{W}{L} \right)_{1} (V_{\mathrm{GS}} - V_{\mathrm{THN1}})^{2} \\ I_{\mathrm{OUT}} &= \frac{1}{2} \mu_{\mathrm{n}} C_{\mathrm{ox}} \left(\frac{W}{L} \right)_{2} (V_{\mathrm{GS}} - V_{\mathrm{THN2}})^{2} \\ I_{\mathrm{OUT}} &= \frac{(W/L)_{2}}{(W/L)_{1}} I_{\mathrm{REF}} \end{split}$$

Current Mirror

$$I_{\text{OUT1}} = \frac{(W/L)_{\text{N2}}}{(W/L)_{\text{N1}}} I_{\text{REF}}$$

$$I_{\text{OUT2}} = \frac{(W/L)_{\text{N3}}}{(W/L)_{\text{N1}}} \frac{(W/L)_{\text{P2}}}{(W/L)_{\text{P1}}} I_{\text{REF}}$$

Cascode Current Mirror

In the cascode current mirror , what is the range of output voltage when $I_{REF}=0.1mA$? (Neglect body effect, channel-length effect) Parameter for NMOS: $V_{THN}=0.7\,V,$ $K_n=110\mu A/V^2, \lambda=0.04\,V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7\,V,$ $K_p=50\mu A/V^2, \lambda=0.05\,V^{-1}$ All the size of transistor is $W=20\mu m, L=1\mu m$

Differential Pair with Current Mirror Load

Differential Pair with Current Mirror Load

$$egin{aligned} A_{
m vd} &= rac{v_{
m out}}{v_{
m d}} = g_{
m m} r_{
m out} \ = g_{
m m} \left(r_{
m o2} \| r_{
m of}
ight) \ A_{
m vc} &pprox - rac{1}{rac{2g_{
m m3,4}}{1} + r_{
m ss}} rac{r_{
m o3,4}}{2}}{pprox - rac{1}{1 + 2g_{
m m1,2} r_{
m ss}} rac{g_{
m m1,2}}{g_{
m m3,4}} \ &
m CMRR = rac{|A_{
m vd}|}{|A_{
m vc}|} = \left(1 + 2g_{
m m1,2} r_{
m ss}
ight) g_{
m m3,4} \left(r_{
m o2} \| r_{
m o4}
ight) \end{aligned}$$

END

Thanks