Outline

Introduction to Word Problem

Teppei Saito

July 16, 2022

Introduction to Word Problem

1/14

Word Problem

Definition (rewriting)

Let $\mathcal E$ be set of equations on strings Σ^* . String $w_1\in\Sigma^*$ rewrites to $w_2\in\Sigma^*$ $(w_1\to_{\mathcal E} w_2)$ if there exists $l\approx r\in\mathcal E$ such that $w_1=w_3lw_4$ and $w_2=w_3rw_4$ for some strings w_3,w_4 .

Definition (word problem)

Let \mathcal{E} be set of equations. Following problem is called word problem on \mathcal{E} .

- Input: strings w_1, w_2
- lacktriangle Output: YES if $w_1 \leftrightarrow_{\mathcal{E}}^* w_2$ holds, NO otherwise

where $\leftrightarrow_{\mathcal{E}}^*$ denotes reflexive transitive symmetric closure of $\rightarrow_{\mathcal{E}}$.

1 Word Problem on Chameleons

2 Completion

Aim

Solve chameleon puzzle by completion procedure

Introduction to Word Problem

2/14

Example: Word Problem on Chameleons

Example

Consider word problem on following equations \mathcal{E} (chameleon system):

 $RB \approx GG$

 $\mathsf{BG} \approx \mathsf{RR}$

 $RG \approx BB$

 $BR \approx GG$

 $GB \approx RR$

 $GR \approx BB$

Questions:

 $\boxed{1}$ GGBB $↔_{\mathcal{E}}^*$ RRRR ?

Answers:

 $\boxed{1} \ \ \mathsf{YES} \text{: } \mathsf{GGBB} \to_{\mathcal{E}} \mathsf{GRRB} \leftarrow_{\mathcal{E}} \mathsf{GBGB} \to_{\mathcal{E}} \mathsf{RRGB} \to_{\mathcal{E}} \mathsf{RRRR}$

2 NO! (But why?)

Idea

Idea

- Restriction of \leftrightarrow^* to $\rightarrow^* \cdot \leftarrow^*$
- Termination
- Church-Rosser property

Example

Questions:

$$\boxed{1} (1+2) + 3 = 3 + (1+2) ?$$

$$\boxed{2} 1 + (2+1) = 1 + (2+3) ?$$

Answers:

1 YES:
$$(1+2) + 3 \rightarrow 3 + 3 \rightarrow 6 \leftarrow 3 + 3 \leftarrow 3 + (1+2)$$
.

2 NO:
$$1 + (2+1) \rightarrow 1 + 3 \rightarrow 4 \neq 6 \leftarrow 1 + 5 \leftarrow 1 + (2+3)$$

Introduction to Word Problem

5/14

Termination of Chameleon System

Example

Consider chameleon system \mathcal{R} :

$$\mathsf{RB} \to \mathsf{GG}$$

$$\mathsf{BG}\to\mathsf{RR}$$

$$\mathsf{RG} \to \mathsf{BB}$$

$$\mathsf{BR} \to \mathsf{GG}$$

$$\mathsf{GB} \to \mathsf{RR}$$

$$\mathsf{GR} \to \mathsf{BB}$$

Chameleon system ${\mathcal R}$ is not terminating since it admits loop:

$$\underline{\mathsf{BR}\mathsf{RG}} \to_{\mathcal{R}} \mathsf{G}\underline{\mathsf{GR}}\mathsf{G} \to_{\mathcal{R}} \underline{\mathsf{GB}}\mathsf{BG} \to_{\mathcal{R}} \underline{\mathsf{RRB}}\mathsf{G} \to_{\mathcal{R}} \underline{\mathsf{RG}}\mathsf{GG} \to_{\mathcal{R}} \underline{\mathsf{BBG}}\mathsf{G} \to_{\mathcal{R}} \underline{\mathsf{BRRG}}$$

Termination

Definition

When we restrict rewriting to one direction \rightarrow ,

- \blacksquare set of equation is denoted by \mathcal{R} , and
- lacksquare equation $l \approx r$ is denoted by $l \rightarrow r$.

Definition (termination)

Let \mathcal{R} be set of equations on strings. We say \mathcal{R} is terminating if there is no infinite sequence $w_1 \to_{\mathcal{R}} w_2 \to_{\mathcal{R}} w_3 \to_{\mathcal{R}} \dots$

Example

Informally, addition + on natural numbers is terminating

Introduction to Word Problem

6/14

Church-Rosser Property

Definition (Church-Rosser property)

Let \mathcal{R} be set of equations on strings. We say \mathcal{R} has Church-Rosser property if $w_1 \to_{\mathcal{R}}^* \cdot \leftarrow_{\mathcal{R}}^* w_2$ whenever $w_1 \leftrightarrow_{\mathcal{R}}^* w_2$.

Example

 \blacksquare Chameleon system ${\cal R}$

$$\mathsf{RB} \to \mathsf{GG}$$

$$\mathsf{BG} \to \mathsf{RR}$$

$$\mathsf{RG} \to \mathsf{BB}$$

$$\mathsf{BR} \to \mathsf{GG}$$

$$\mathsf{GB} \to \mathsf{RR}$$

$$\mathsf{GR} \to \mathsf{BB}$$

is not confluent: $GGG \leftarrow_{\mathcal{R}} RBG \rightarrow_{\mathcal{R}} RRR$.

■ Informally, addition on natural numbers is confluent.

Complete Presentation

Definition (complete presentation)

Let $\mathcal E$ and $\mathcal R$ be sets of equations. $\mathcal R$ is complete presentation of $\mathcal E$ if

- $\blacksquare \leftrightarrow_{\mathcal{E}}^*$ and $\leftrightarrow_{\mathcal{R}}^*$ coincide, and
- \blacksquare \mathcal{R} is terminating, and
- \blacksquare \mathcal{R} has Church-Rosser property.

Theorem

If set of equations \mathcal{E} admits complete presentation, word problem on \mathcal{E} is decidable.

Introduction to Word Problem

9/14

Completion Procedure

Theorem (completion procedure)

Let $\mathcal E$ be equations. There exists procedure ψ such that $\psi(\mathcal E)$ returns complete presentation of $\mathcal E$ if it terminates.

- Maxcomp is completion tool available at https://www.jaist.ac.jp/project/maxcomp/.
- mkbTT has web interface at http://colo6-c703.uibk.ac.at/mkbtt/interface/index.php.
- Mædmax is another completion tool available at http://cl-informatik.uibk.ac.at/software/maedmax/.

Solve Word Problem by Complete Presentation

Theorem

If set of equations $\mathcal E$ admits complete presentation, word problem on $\mathcal E$ is decidable.

Proof.

Let \mathcal{R} be complete presentation of \mathcal{E} , w_1 and w_2 strings. \mathcal{R} yields following decision procedure:

- **1** Apply rewriting $\rightarrow_{\mathcal{R}}$ to w_1 and w_2 until no rules are applicable.
- 2 Compare w_1 and w_2 .
 - If $w_1 = w_2$, output YES and terminate.
 - Otherwise, output NO and terminate.

Introduction to Word Problem

10/14

Chameleon Problem Revisited

Example

Chameleon system ${\mathcal E}$

$RB \approx GG$	$BG \approx RR$	$RG \approx BB$
$BR \approx GG$	$GB \approx RR$	$GR \approx BB$

admits complete presentation \mathcal{R} :

$RB \rightarrow GG$	$BG \to GB$	$RG \rightarrow GR$
$BR \to GG$	$RR \to GB$	$BB \to GR$

RRRR $\leftrightarrow_{\mathcal{E}}^*$ BBBB does not hold since:

- \blacksquare RRRR $\rightarrow_{\mathcal{R}}$ GBRR $\rightarrow_{\mathcal{R}}$ GBGB $\rightarrow_{\mathcal{R}}$ GGBB $\rightarrow_{\mathcal{R}}$ GGGR
- $\blacksquare \ \mathsf{BBBB} \to_{\mathcal{R}} \mathsf{GRBB} \to_{\mathcal{R}} \mathsf{GRGR} \to_{\mathcal{R}} \mathsf{GGRR} \to_{\mathcal{R}} \mathsf{GGGB}$

Example: Group Theory

Conclusion

Example

Equational theory of group

$$x + 0 \approx x$$

$$x + -x \approx 0$$

$$x + 0 \approx x$$
 $x + -x \approx 0$ $(x + y) + z \approx x + (y + z)$

admits complete presentation:

$$x + 0 \rightarrow x$$

$$x + 0 \rightarrow x$$
 $x + -x \rightarrow 0$ $(x + y) + z \rightarrow x + (y + z)$

$$\begin{array}{cccc}
x + 0 \to x & x + -x \to 0 & (x + y) + z \to x + (y + z) \\
0 + x \to x & -x + x \to 0 & -(x + y) \to -x + -y \\
-(-x) \to x & x + (-x + y) \to y
\end{array}$$

13/14

$$-(-x) \rightarrow$$

Introduction to Word Problem

$$+(-x+y) \rightarrow$$

$$-0 \rightarrow 0$$
 $-x + (x + y) \rightarrow y$

Hence $x + y \approx y + x$ does not hold in general.

Word problem can be solved by finding complete presentation.