MB&B 302: Principles of Biophysics

James Diao

Last Updated: 22 January 2018

${\bf Contents}$

Module I: Physical Principles and Biological Macromolecules	2
Lecture 1: Principles of Classical and Statistical Physics	2
Reminders of Physical Principles	2
Ideal Gas Law $(PV = nRT = k_BT)$	2
Lecture 2: Diffusion, Random Walks, and Brownian Motion	
Outline	3
RMS Velocity	3
Collisions with Aqueous Environments	3
1D Random Walks: Theory	3
1D Random Walks: Application to Diffusion	
Random Walks in N dimensions	ŀ
Diffusion Constant Revisited	
Time Dependence of Diffusion and Active Transport	ŀ
Lecture 3: Chemical Equilibria, Binding, and Kinetics	6
Background	6
Conformational Changes	
Boltzmann's Law	6
Applying Boltzmann's Law	6
Module II: Experimental Measurement of Macromolecular Interactions	7
Module III: Mechanical Properties of Biological Polymers and Cells	7
Module IV: Introduction to Biomolecular Structure	7
Module V: Determining the Structures of Biological Macromolecules	7

Module I: Physical Principles and Biological Macromolecules

Lecture 1: Principles of Classical and Statistical Physics

Reminders of Physical Principles

1. Force is transmitted through direct contact or a field.

Force	Expression	Magnitude (pN)
Elastic	-kx	1 - 100
Viscous	$-\gamma v$	1 - 1000
Thermal (Collisional)	$m\frac{dv}{dt}$	100 - 1000
Gravitational	mg	$< 10^{-9}$
"Centrifugal"	$m\omega^2 r$	$< 10^{-3}$
Magnetic	$qv \times B$	$<< 10^{-6}$
Electrostatic	zE	1 - 1000

Note: $\gamma = 6\pi\eta r$ is the drag coefficient.

2. Reynold's number (R_e) characterizes the relative importance of friction and inertia.

$$R_e = \frac{\text{Inertia "Force"}}{\text{Viscous Force}} = \frac{(\text{velocity})(\text{particle size})(\text{fluid density})}{\text{fluid viscosity}} = \frac{vL\rho}{\eta}$$

The inertial term scales with mass, and the viscous term scales with the drag coefficient and velocity. R_e tells you what opposes acceleration. Small R_e (e.g., most biological bodies) means drag dominates and systems are overdamped. Large R_e (e.g., ocean liner) means mass dominates.

Ideal Gas Law $(PV = nRT = k_BT)$

- 1. Both PV and k_BT are expressions of energy (units in Joules).
- 2. The energy of each molecule is $\frac{3}{2}k_BT$.
 - Multiply by 3 to account for x, y, and z axes. Divide by 2 because pressure measurements double-count the energy from a particle's change in momentum $\Delta p = 2mv_x$.
- 3. Law of Equipartition: The mean energy associated with each degree of freedom is $\frac{1}{2}k_BT$. There are up to 3 dfs associated with translation and 3 dfs associated with rotation.
- 4. Background thermal energy is $k_BT = \frac{RT}{N_A} \approx 0.6 \text{ kcal/mol}$ a. 1 $k_BT \Rightarrow$ transient conformational changes.

 - b. 1 ATP = 20 $k_BT \Rightarrow$ stable confirmational changes.
 - c. 1 Glucose = 36 ATP = 720 $k_BT \Rightarrow$ support multiple enzymatic processes.

Lecture 2: Diffusion, Random Walks, and Brownian Motion

Outline

- 1. Background thermal noise provides kinetic energy to particles around and overcome activation barriers. In biological systems, this value is k_BT , which constitutes the minimum stable energy for resisting thermal motion (increases binding affinity by 3x).
- 2. Collisions with other molecules results in random Brownian motion.
- 3. The random walks of diffusing particles yield net displacement without a net change in mean position.

RMS Velocity

Set kinetic energy equal to thermal energy and solve:

$$E_k = \frac{1}{2}m(v^2)_{avg} = \frac{3}{2}k_BT$$

$$v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{N_Am}} = \sqrt{\frac{3RT}{M}}$$

- For a lysozyme (M.W. = 14 kg/mol), $v_{rms} = 23 \text{ m/s} = 50 \text{ mph}$.
- For an H_2O molecule (M.W. = 0.018 kg/mol), $v_{rms} = 640 \text{ m/s} = 1400 \text{ mph}$.
- These are instantaneous (pre-collision) velocities.

Collisions with Aqueous Environments

1. Compute the density of water from 55 M.

$$\frac{55N_A}{1000\text{cm}^3} = \frac{55(6.022 \times 10^{23})}{10^{24}} \frac{\text{molecules}}{\text{nm}^3} = 33.1 \frac{\text{molecules}}{\text{nm}^3}$$

- The average volume occupied per H_2O is 1/33.1 = 0.03 nm³.
- The mean distance between the centers of water molecules is $\sqrt[3]{0.03} = 0.32$ nm.
- 2. Nanosecond timescale simulations are achieved with MD.

1D Random Walks: Theory

- 1. We can model the random walk as a Markov chain with states $\{-3\delta, -2\delta, -\delta, 0, +\delta, +2\delta, +3\delta\}$ with transition probabilities P(left) = P(right) = 0.5.
- 2. In other words, $X_n = X_{n-1} + \delta I_{\delta}$, where I_{δ} is a random variable indicating right movement (1) or left movement (-1). $P(I_{\delta} = 1) = P(I_{\delta} = -1) = 0.5$, and $E[I_{\delta}] = 0$.
- 3. Result 1: Mean displacement $E[X_n] = 0$. Proof:

$$E[X_n] = E[X_{n-1}] + \delta E[I_{\delta}] \tag{1}$$

$$= E[X_{n-1}] + 0 (2)$$

$$= E[X_0]$$
 (by recursion) (3)

$$= 0$$
 (starting position $= 0$) (4)

4. Result 2: Mean square displacement (or MSD) $E[X_n^2] \propto n$. Proof:

$$E[X_n^2] = E[(X_{n-1} + \delta I_\delta)^2]$$
 (5)

$$= E[X_{n-1}^2 + 2X_{n-1}\delta I_{\delta} + \delta^2] \tag{6}$$

$$= E[X_{n-1}^2] + 2X_{n-1}\delta E[I_{\delta}] + E[\delta^2]$$
(7)

$$= E[X_{n-1}^2] + \delta^2 \quad \text{(middle term = 0)} \tag{8}$$

$$=n\delta^2$$
 (by recursion) (9)

Let τ indicate the time per step $(t = n\tau)$. From this, we can compute:

$$E[X_t^2] = t\left(\frac{\delta^2}{\tau}\right) \tag{10}$$

$$E[X_t^2] \propto t \tag{11}$$

$$RMS(X_t) \propto \sqrt{t}$$
 (12)

1D Random Walks: Application to Diffusion

- 1. Diffusion vs. Active Transport In diffusion:
- RMS displacement is proportional to $\sqrt{\text{time}}$.
- MSD is proportional to time.

In active transport:

- Velocity is constant.
- RMS displacement is proportional to time.
- MSD is proportional to time².
- 2. Diffusion coefficient (D)

Defining $D = \frac{\delta^2}{2\tau}$ allows us to simplify:

- $E[X_t^2] = 2Dt$
- $RMS(X_t) = \sqrt{2Dt}$

We can use this to compute how fast a molecule diffuses down a line.

3. Diffusion by Increased Variance

Because variance is defined as the centered second moment, we should expect it to vary exactly like the mean squared displacements.

Proof:

$$Var[X_t] = E[X_t^2] - E[X_t]^2$$
(13)

$$=t\left(\frac{\delta^2}{\tau}\right)-0\tag{14}$$

$$\propto t$$
 (15)

The variance of particle displacements increases linearly with time. This means that any initial distribution of particle positions will spread out over time.

Random Walks in N dimensions

If the particle moves independently in n dimensions, we have:

$$d_n^2 = X_1^2 + X_2^2 + \dots + X_n^2 \tag{16}$$

$$E[d_n^2] = E\left[X_1^2 + X_2^2 + \dots + X_n^2\right]$$
(17)

$$= E\left[\sum_{i=1}^{n} X_i^2\right] \tag{18}$$

$$=\sum_{i=1}^{n} 2Dt \tag{19}$$

$$=2nDt\tag{20}$$

(21)

- $RMS(d_1) = \sqrt{2Dt}$
- $RMS(d_2) = \sqrt{4Dt}$
- $RMS(d_3) = \sqrt{6Dt}$
- $RMS(d_n) = \sqrt{2nDt}$

First passage time: the time it takes to diffuse over a given distance (solve for t in the above equations).

Diffusion Constant Revisited

The Einstein relation (for spherical particle):

$$D = \frac{k_B T}{\gamma}$$

For translational diffusion:

- $\gamma = 6\pi\eta r$
- D is inversely proportional to size/radius

For rotational diffusion:

- $\gamma_{\theta} = 8\pi \eta r^3$
- \bullet D is inversely proportional to size/radius CUBED

Time Dependence of Diffusion and Active Transport

- It takes 100x longer to diffuse 10x as far.
- Large cells adapted in two ways:
 - Active transport: skip diffusion altogether
 - Confinement (vesicles and organelles): constrains diffusive motion to "corrals"
- Active transport creates a quadratic relationship between time and MSD (as opposed to linear in diffusion).
- Confinement radius is approximately equal to the average RMS displacement, and can therefore be computed as $\sqrt{\text{MSD plateau value}}$.

Lecture 3: Chemical Equilibria, Binding, and Kinetics

Background

Ligand binding to macromolecules can be modeled as a reversible bimolecular reaction.

$$M + L \rightleftharpoons ML$$

Equilibrium constant:

$$K_a = \frac{[ML]}{[M][L]} \quad \rightarrow \quad K_d = \frac{[M][L]}{[ML]}$$

Equilibrium is when the chemical potentials are equal. Chemical potential:

$$\mu_i = \frac{\partial G}{\partial N_i}$$

At constant temperature and pressure, chemical potential is equivalent to the molar free energy.

$$G_{eq} = G_{M',eq} - G_{M,eq} = 0$$

Conformational Changes

Structural state: time-averaged mean of conformational states about a stable energy minimum. Conformation changes can be modeled as a reversible unimolecular reaction.

$$M \leftrightharpoons M' \to K_d = \frac{M'}{M}$$

Boltzmann's Law

Boltzmann's Law defines the probability of occupying any state (i) with energy U.

$$p_i = \frac{1}{Z} exp \left[\frac{-U_i}{k_B T} \right]$$

Z is a normalizing constant called the "partition function," i.e., the sum of all probability mass contributions.

$$Z = \sum_{i} exp \left[\frac{-U_i}{k_B T} \right]$$

Applying Boltzmann's Law

The probability of populating the less favorable energy state $U_2 > U_1$ can be predicted from ΔU :

$$\frac{p_2}{p_1} = \frac{[M']}{[M]} = K_a = exp\left[\frac{-\Delta U}{k_B T}\right] = exp\left[\frac{-\Delta G^0}{k_B T}\right]$$

Smaller ΔU (rotational < vibrational < electronic) leads to larger fractions occupying the higher state (between 0-50%).

Adding energy (e.g., work) can shift the equilibrium distribution of states:

$$K_{eq} = exp\left[\frac{-\Delta G^0 + F\Delta x}{k_B T}\right]$$

Module II: Experimental Measurement of Macromolecular Interactions

Module III: Mechanical Properties of Biological Polymers and Cells

Module IV: Introduction to Biomolecular Structure

Module V: Determining the Structures of Biological Macro-molecules