§5.1 不定积分的概念与性质

数学系 梁卓滨

2017-2018 学年 II

教学要求

- ◇"原函数"的概念,"不定积分"的概念
- ♣ 会计算简单的不定积分

4

We are here now...

1. "原函数"与"不定积分"的概念

2. 不定积分的性质

3. 不定积分的几何意义

函数的导数,即是函数的变化率:

$$F'(x) = f(x)$$

函数的导数,即是函数的变化率:

$$F'(x) = f(x)$$

不少概念是通过导数来定义

路程-速度 路程函数: s = s(t),则

$$s'(t) = v(t)$$

为速度函数。

函数的导数,即是函数的变化率:

$$F'(x) = f(x)$$

不少概念是通过导数来定义

路程-速度 路程函数: s = s(t),则

$$s'(t) = v(t)$$

为速度函数。

曲线图形- 斜率 曲线: y = f(x), 则

$$f'(x) = k(x)$$

为曲线在点 (x, f(x)) 处的斜率。

函数的导数,即是函数的变化率:

$$F'(x) = f(x)$$

不少概念是通过导数来定义

路程-速度 路程函数: s = s(t),则

$$s'(t) = v(t)$$

为速度函数。

曲线图形- 斜率 曲线: y = f(x), 则

$$f'(x) = k(x)$$

为曲线在点 (x, f(x)) 处的斜率。

成本- 边际成本 成本函数: C = C(x), 则

$$C'(x) = MC$$

为边际成本函数。

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = ___; (x^{7/5})' = ; (x^{-1/2})' = ;$$

2.
$$(x^{\alpha})' = ____;$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = ___; (x^{7/5})' = ; (x^{-1/2})' = ;$$

$$2. (x^{\alpha})' = \underline{\alpha x^?};$$

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = ___; (x^{7/5})' = _; (x^{-1/2})' = _;$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = 3x^?$$
; $(x^{7/5})' =$; $(x^{-1/2})' =$;

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' =$; $(x^{-1/2})' =$;

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \underline{\frac{7}{5}x^?}; \quad (x^{-1/2})' = \underline{\qquad};$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' =$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \frac{7}{5}x^{2/5}; \quad (x^{-1/2})' = \underline{-\frac{1}{2}x^?};$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \alpha x^{\alpha-1}$$
;

3.
$$(\sin x)' = ___; (\cos x)' = ___; (\tan x)' = __;$$

 $(\cot x)' = ;$

4.
$$(\arcsin x)' =$$
; $(\arctan x)' =$;

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \underline{\alpha}x^{\alpha-1};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{\qquad}$; $(\tan x)' = \underline{\qquad}$; $(\cot x)' = \underline{\qquad}$;

4.
$$(\arcsin x)' =$$
 ; $(\arctan x)' =$;

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \underline{\alpha}x^{\alpha-1};$$

3.
$$(\sin x)' = \frac{\cos x}{\cos x}$$
; $(\cos x)' = \frac{-\sin x}{\cos x}$; $(\tan x)' = \frac{-\sin x}{\cos x}$; $(\cot x)' = \frac{-\sin x}{\cos x}$;

4.
$$(\arcsin x)' =$$
; $(\arctan x)' =$;

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \underline{\alpha}x^{\alpha-1};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \underline{\frac{1}{\cos^2 x}}$; $(\cot x)' =$;

4.
$$(\arcsin x)' =$$
; $(\arctan x)' =$;

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' =$$
; $(\arctan x)' =$;

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = ____;$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2.
$$(x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \underline{\frac{7}{5}x^{2/5}}; \quad (x^{-1/2})' = \underline{-\frac{1}{2}x^{-3/2}};$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = \underline{\hspace{1cm}}; (a^x)' = \underline{\hspace{1cm}}(a > 0); (5^x)' = \underline{\hspace{1cm}};$$

6.
$$(\ln x)' = (x > 0); (\ln(1 + x^2))' = .$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \underline{\frac{7}{5}x^{2/5}}; \quad (x^{-1/2})' = \underline{-\frac{1}{2}x^{-3/2}};$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = \underline{e^x}$$
; $(a^x)' = \underline{\qquad} (a > 0)$; $(5^x)' = \underline{\qquad}$;

6.
$$(\ln x)' = (x > 0); (\ln(1 + x^2))' = .$$

• 求导的方法:基本公式,运算法则,复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \underline{\frac{7}{5}x^{2/5}}; \quad (x^{-1/2})' = \underline{-\frac{1}{2}x^{-3/2}};$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = \underline{e^x}$$
; $(\alpha^x)' = \underline{\alpha^x \ln \alpha} (\alpha > 0)$; $(5^x)' = \underline{}$;

6.
$$(\ln x)' = (x > 0); (\ln(1 + x^2))' = .$$

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \underline{\frac{7}{5}x^{2/5}}; \quad (x^{-1/2})' = \underline{-\frac{1}{2}x^{-3/2}};$$

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = e^x$$
; $(a^x)' = a^x \ln a \ (a > 0)$; $(5^x)' = 5^x \ln 5$;

6.
$$(\ln x)' = (x > 0); (\ln(1+x^2))' =$$

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

$$2. (x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = e^x$$
; $(a^x)' = a^x \ln a \ (a > 0)$; $(5^x)' = 5^x \ln 5$;

6.
$$(\ln x)' = \frac{1}{x} (x > 0); (\ln(1 + x^2))' =$$

• 求导的方法: 基本公式, 运算法则, 复合函数求导法

1.
$$(x^3)' = \underline{3x^2}; \quad (x^{7/5})' = \underline{\frac{7}{5}x^{2/5}}; \quad (x^{-1/2})' = \underline{-\frac{1}{2}x^{-3/2}};$$

2.
$$(x^{\alpha})' = \underline{\alpha x^{\alpha-1}};$$

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = e^x$$
; $(a^x)' = a^x \ln a \ (a > 0)$; $(5^x)' = 5^x \ln 5$;

6.
$$(\ln x)' = \frac{1}{x} (x > 0); (\ln(1 + x^2))' = \frac{2x}{1+x^2}.$$

函数 F(x) 的微分是

$$dF(x) = F'(x)dx$$

函数 F(x) 的微分是

$$dF(x) = F'(x)dx$$

例

$$d\ln(1+x^2) = dx$$

函数 F(x) 的微分是

$$dF(x) = F'(x)dx$$

例

$$d \ln(1+x^2) = (\ln(1+x^2))' dx$$

函数 F(x) 的微分是

$$dF(x) = F'(x)dx$$

例

$$d\ln(1+x^2) = \left(\ln(1+x^2)\right)'dx = \frac{2x}{1+x^2}dx$$

原函数的概念

$$F'(x) = f(x)$$

原函数的概念

$$F'(x) = f(x)$$

上学期

• $\vec{x} : F'(x) = ?$

$$F'(x) = f(x)$$

上学期

- | 求: F'(x) = ?
- *F*(*x*) 的导数是 *f*(*x*);*f*(*x*) 是 *F*(*x*) 的导数。

$$F'(x) = f(x)$$

上学期

- 求: F'(x) = ?
- *F*(*x*) 的导数是 *f*(*x*);

f(x) 是 F(x) 的导数。

本学期

问:

$$(?)' = f(x)$$

$$F'(x) = f(x)$$

上学期

- | 求: F'(x) = ?
- F(x) 的导数是 f(x);f(x) 是 F(x) 的导数。

本学期

- (问: (?) ′=f(x)
- F(x) 是 f(x) 的一个原函数;
 f(x) 的一个原函数是 F(x)。

$$F'(x) = f(x)$$

上学期

- *F*(*x*) 的导数是 *f*(*x*);*f*(*x*) 是 *F*(*x*) 的导数。

本学期

- (?)' = f(x)
- F(x) 是 f(x) 的一个原函数;
 f(x) 的一个原函数是 F(x)。

例子

路程- 速度 s'(x) = v(x)

曲线图形- 斜率f'(x) = k(x)

成本- 边际成本 C'(x) = MC

$$F'(x) = f(x)$$

上学期

- | 求: F'(x) = ?
- F(x) 的导数是 f(x);
 - f(x) 是 F(x) 的导数。

本学期

- 问:
- (?)' = f(x)
- F(x) 是 f(x) 的一个原函数; f(x) 的一个原函数是 F(x)。

例子

路程- 速度 s'(x) = v(x) 路程 s(x) 是速度 v(x) 的原函数;

曲线图形- 斜率 f'(x) = k(x)

成本- 边际成本 C'(x) = MC

$$F'(x) = f(x)$$

上学期

- *F*(*x*) 的导数是 *f*(*x*);*f*(*x*) 是 *F*(*x*) 的导数。

本学期

- 问: (?)' = f(x)
- *F*(*x*) 是 *f*(*x*) 的一个原函数;
 f(*x*) 的一个原函数是 *F*(*x*)。

例子

路程-速度 s'(x) = v(x) 路程 s(x) 是速度 v(x) 的原函数;

曲线图形- 斜率 f'(x) = k(x) f(x) 是斜率 k(x) 的原函数;

成本- 边际成本 C'(x) = MC

$$F'(x) = f(x)$$

上学期

- *F*(*x*) 的导数是 *f*(*x*);*f*(*x*) 是 *F*(*x*) 的导数。

本学期

- 问: (?)' = f(x)
- F(x) 是 f(x) 的一个原函数;
 f(x) 的一个原函数是 F(x)。

例子

路程-速度 s'(x) = v(x) 路程 s(x) 是速度 v(x) 的原函数;

曲线图形- 斜率 f'(x) = k(x) f(x) 是斜率 k(x) 的原函数;

成本- 边际成本 C'(x) = MC 成本 C(x) 是边际成本 MC 的原函数

2. $(x^{\alpha})' =$;

上学期

1.
$$(x^3)' = ___; (x^{7/5})' = __; (x^{-1/2})' = __;$$

3.
$$(\sin x)' = ___; (\cos x)' = __;;$$
; $(\tan x)' = __; (\cot x)' = _;;$

4. $(\arcsin x)' =$; $(\arctan x)' =$;

6. $(\ln x)' = (x > 0); (\ln(1+x^2))' = ...$

5.
$$(e^x)' = \underline{\hspace{1cm}}; (a^x)' = \underline{\hspace{1cm}}; (5^x)' = \underline{\hspace{1cm}};$$

2. $(x^{\alpha})' = \alpha x^{\alpha-1}$;

上学期

§5.1 不定积分的概念与性质

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

3.
$$(\sin x)' = ____; (\cos x)' = ___; ;$$

4.
$$(\arcsin x)' =$$
; $(\arctan x)' =$;

 $(\tan x)' = \qquad ; \quad (\cot x)' = \qquad ;$

5.
$$(e^x)' = \underline{\hspace{1cm}}; (a^x)' = \underline{\hspace{1cm}}; (5^x)' = \underline{\hspace{1cm}};$$

6.
$$(\ln x)' = (x > 0); (\ln(1 + x^2))' =$$

2. $(x^{\alpha})' = \alpha x^{\alpha-1}$;

上学期

§5.1 不定积分的概念与性质

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; ;
 $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = \underline{\hspace{1cm}}; (a^x)' = \underline{\hspace{1cm}}; (5^x)' = \underline{\hspace{1cm}};$$

6.
$$(\ln x)' = (x > 0); (\ln(1+x^2))' = .$$

上学期

1.
$$(x^3)' = 3x^2$$
; $(x^{7/5})' = \frac{7}{5}x^{2/5}$; $(x^{-1/2})' = -\frac{1}{2}x^{-3/2}$;

2. $(x^{\alpha})' = \alpha x^{\alpha-1}$;

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; ; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$$

5.
$$(e^x)' = \underline{e^x}$$
; $(a^x)' = \underline{a^x \ln a} (a > 0)$; $(5^x)' = \underline{5^x \ln 5}$;

6.
$$(\ln x)' = \frac{1}{x} (x > 0); (\ln(1+x^2))' = \frac{2x}{1+x^2}.$$

2. ()' = $\alpha x^{\alpha-1}$;

本学期

1. ()' =
$$3x^2$$
; ()' = $\frac{7}{5}x^{2/5}$; ()' = $-\frac{1}{2}x^{-3/2}$;

3.
$$(\sin x)' = \underline{\cos x}$$
; $(\cos x)' = \underline{-\sin x}$; ; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$;

4. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; \quad (\arctan x)' = \frac{1}{1+x^2};$

5.
$$(e^x)' = \underline{e^x}$$
; $(a^x)' = \underline{a^x \ln a} (a > 0)$; $(5^x)' = \underline{5^x \ln 5}$;

2. ()' = $\alpha x^{\alpha-1}$;

本学期

1. ()' =
$$3x^2$$
; ()' = $\frac{7}{5}x^{2/5}$; ()' = $-\frac{1}{2}x^{-3/2}$;

3. ()' =
$$\frac{\cos x}{;}$$
 ()' = $\frac{-\sin x}{;}$;
()' = $\frac{1}{\cos^2 x}$; ()' = $\frac{1}{\sin^2 x}$;
4. ()' = $\frac{1}{\sqrt{1-x^2}}$; ()' = $\frac{1}{1+x^2}$;

5. $(e^x)' = e^x$; $(a^x)' = a^x \ln a \ (a > 0)$; $(5^x)' = 5^x \ln 5$;

6.
$$(\ln x)' = \frac{1}{x}(x > 0); \quad (\ln(1+x^2))' = \frac{2x}{1+x^2}.$$
 定积分的概念与性质

本学期

1. ()' =
$$3x^2$$
; ()' = $\frac{7}{5}x^{2/5}$; ()' = $-\frac{1}{2}x^{-3/2}$;
2. ()' = $\alpha x^{\alpha - 1}$;

3. ()' =
$$\frac{\cos x}{;}$$
 ()' = $\frac{-\sin x}{;}$;
()' = $\frac{1}{\cos^2 x}$; ()' = $\frac{1}{\sin^2 x}$;
4. ()' = $\frac{1}{\sqrt{1-x^2}}$; ()' = $\frac{1}{1+x^2}$;

5. ()' =
$$\underline{e^x}$$
; ()' = $\underline{a^x \ln a}$ ($a > 0$); ()' = $\underline{5^x \ln 5}$;

原函数的准确定义

定义 设函数 f(x) 定义在区间 (a, b) 上,如果存在一个函数 F(x) 满足:

$$F'(x) = f(x) \quad \forall x \in (a, b)$$

则称 F(x) 是 f(x) 在该区间上的一个原函数。

例 求下列函数的一个原函数:

1.
$$f(x) = x^2, x \in (-\infty, +\infty)$$

2.
$$f(x) = \sin x, x \in (-\infty, +\infty)$$

3.
$$f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$$

例 求下列函数的一个原函数:

- 1. $f(x) = x^2, x \in (-\infty, +\infty)$
- 2. $f(x) = \sin x, x \in (-\infty, +\infty)$
- 3. $f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$

例 求下列函数的一个原函数:

1.
$$f(x) = x^2, x \in (-\infty, +\infty)$$

2.
$$f(x) = \sin x, x \in (-\infty, +\infty)$$

3.
$$f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$$

1.
$$()' = x^2$$

例 求下列函数的一个原函数:

1.
$$f(x) = x^2, x \in (-\infty, +\infty)$$

2.
$$f(x) = \sin x, x \in (-\infty, +\infty)$$

3.
$$f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$$

1.
$$(x^3)' = 3x^2$$
 $()' = x^2$

例 求下列函数的一个原函数:

1.
$$f(x) = x^2, x \in (-\infty, +\infty)$$

2.
$$f(x) = \sin x, x \in (-\infty, +\infty)$$

3.
$$f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$$

1.
$$(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$$

例 求下列函数的一个原函数:

- 1. $f(x) = x^2, x \in (-\infty, +\infty)$
- 2. $f(x) = \sin x, x \in (-\infty, +\infty)$
- 3. $f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$

作如下"猜"(主要是求导基本公式的运用)

1. $(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$, 所以 $\frac{1}{3}x^3 \in x^2$ 的一个原函数;

例 求下列函数的一个原函数:

1.
$$f(x) = x^2, x \in (-\infty, +\infty)$$

2.
$$f(x) = \sin x, x \in (-\infty, +\infty)$$

3.
$$f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$$

1.
$$(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$$
,所以 $\frac{1}{3}x^3$ 是 x^2 的一个原函数;

$$()' = \sin x$$

例 求下列函数的一个原函数:

1.
$$f(x) = x^2, x \in (-\infty, +\infty)$$

2.
$$f(x) = \sin x, x \in (-\infty, +\infty)$$

3.
$$f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$$

1.
$$(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$$
, $\text{MUR} \frac{1}{3}x^3 \neq x^2$ 的一个原函数;

2.
$$(\cos x)' = -\sin x$$
 ()' = $\sin x$

例 求下列函数的一个原函数:

- 1. $f(x) = x^2, x \in (-\infty, +\infty)$
- 2. $f(x) = \sin x, x \in (-\infty, +\infty)$
- 3. $f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$

- 1. $(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$, 所以 $\frac{1}{3}x^3 \in x^2$ 的一个原函数;
- 2. $(\cos x)' = -\sin x \Rightarrow (-\cos x)' = \sin x$

例 求下列函数的一个原函数:

- 1. $f(x) = x^2, x \in (-\infty, +\infty)$
- 2. $f(x) = \sin x, x \in (-\infty, +\infty)$
- 3. $f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$

- 1. $(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$, 所以 $\frac{1}{3}x^3 \in x^2$ 的一个原函数;
- 2. $(\cos x)' = -\sin x \Rightarrow (-\cos x)' = \sin x$, 所以 $-\cos x$ 是 $\sin x$ 的一个原函数;

例 求下列函数的一个原函数:

- 1. $f(x) = x^2, x \in (-\infty, +\infty)$
- 2. $f(x) = \sin x, x \in (-\infty, +\infty)$
- 3. $f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$

- 1. $(x^3)' = 3x^2 \Rightarrow (\frac{1}{3}x^3)' = x^2$, 所以 $\frac{1}{3}x^3 \in x^2$ 的一个原函数;
- 2. $(\cos x)' = -\sin x \Rightarrow (-\cos x)' = \sin x$, 所以 $-\cos x$ 是 $\sin x$ 的一个原函数;
- 3. 直接验证 $\ln |x|$ 是 $\frac{1}{x}$ 的一个原函数。

验证

验证

● 当 *x* > 0 时,

$$(\ln |x|)' =$$

$$(\ln |x|)' =$$

验证

● 当 *x* > 0 时,

$$(\ln |x|)' = (\ln x)' =$$

$$(\ln |x|)' =$$

验证

● 当 *x* > 0 时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

$$(\ln |x|)' =$$

验证

● 当 *x* > 0 时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

当 x < 0 时,

$$(\ln |x|)' = (\ln (-x))' =$$

验证

当 x > 0 时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

当 x < 0 时,

$$(\ln |x|)' = (\ln (-x))' = \frac{1}{-x} (-x)' =$$

验证

当 x > 0 时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

当 x < 0 时,

$$(\ln |x|)' = (\ln (-x))' = \frac{1}{-x}(-x)' = \frac{1}{-x}(-1) =$$

验证

当x>0时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

● 当 *x* < 0 时,

$$(\ln |x|)' = (\ln (-x))' = \frac{1}{-x}(-x)' = \frac{1}{-x}(-1) = \frac{1}{x}$$

验证

当 x > 0 时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

当 x < 0 时,

$$(\ln |x|)' = (\ln (-x))' = \frac{1}{-x}(-x)' = \frac{1}{-x}(-1) = \frac{1}{x}$$

总之, $(\ln |x|)' = \frac{1}{y}$, $x \in (-\infty, 0) \cup (0, +\infty)$.

验证

当 x > 0 时,

$$(\ln |x|)' = (\ln x)' = \frac{1}{x}$$

当 x < 0 时,

$$(\ln |x|)' = (\ln (-x))' = \frac{1}{-x}(-x)' = \frac{1}{-x}(-1) = \frac{1}{x}$$

总之,
$$(\ln |x|)' = \frac{1}{x}$$
, $x \in (-\infty, 0) \cup (0, +\infty)$ 。

所以, $\ln |x| \stackrel{1}{=} 0$ 的一个原函数

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

- 1. 求 x^{α} 的一个原函数,其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

1.
$$()' = x^{\alpha}$$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

1.
$$(x^{\alpha+1})'$$
 $($ $)'=x^{\alpha}$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha}$$
 $($ $)' = x^{\alpha}$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
, 所以 $\frac{1}{\alpha+1}x^{\alpha+1} \not = x^{\alpha}$ 的一个原函数

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数

$$()' = e^{2x+1}$$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数

2.
$$(e^{2x+1})'$$
 $($ $)' = e^{2x+1}$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数

2.
$$(e^{2x+1})' = 2e^{2x+1}$$
 $($ $)' = e^{2x+1}$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。

1.
$$(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数

2.
$$(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, 所以 $\frac{1}{2}e^{2x+1}$ 是 e^{2x+1} 的一个原函数

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, 所以 $\frac{1}{2}e^{2x+1}$ 是 e^{2x+1} 的一个原函数

注()'=
$$e^{kx+b}$$
, $(k \neq 0)$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, 所以 $\frac{1}{2}e^{2x+1}$ 是 e^{2x+1} 的一个原函数

注
$$(e^{kx+b})'=e^{kx+b}, (k \neq 0)$$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, 所以 $\frac{1}{2}e^{2x+1}$ 是 e^{2x+1} 的一个原函数

注
$$\left(\frac{1}{k}e^{kx+b}\right)'=e^{kx+b}$$
, $(k\neq 0)$

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

解

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1} \not = x^{\alpha}$ 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, 所以 $\frac{1}{2}e^{2x+1}$ 是 e^{2x+1} 的一个原函数

注
$$\left(\frac{1}{k}e^{kx+b}\right)'=e^{kx+b}$$
, $(k\neq 0)$

练习问 $e^{\sin x}$ 是哪个函数的原函数?

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

解

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, 所以 $\frac{1}{2}e^{2x+1}$ 是 e^{2x+1} 的一个原函数

$$\dot{\mathbb{E}}\left(\frac{1}{k}e^{kx+b}\right)' = e^{kx+b}, (k \neq 0)$$

练习问 $e^{\sin x}$ 是哪个函数的原函数?

§5.1 不定积分的概念与性质

- 1. 求 x^{α} 的一个原函数, 其中 $\alpha \neq -1$ 。
- 2. 求 e^{2x+1} 的一个原函数?

解

§5.1 不定积分的概念与性质

- 1. $(x^{\alpha+1})' = (\alpha+1)x^{\alpha} \Rightarrow \left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$, 所以 $\frac{1}{\alpha+1}x^{\alpha+1}$ 是 x^{α} 的一个原函数
- 2. $(e^{2x+1})' = 2e^{2x+1} \Rightarrow (\frac{1}{2}e^{2x+1})' = e^{2x+1}$, $\text{MU} \frac{1}{2}e^{2x+1} \not\equiv e^{2x+1}$ 的一个原函数

注
$$\left(\frac{1}{k}e^{kx+b}\right)'=e^{kx+b}$$
, $(k \neq 0)$

练习问 $e^{\sin x}$ 是哪个函数的原函数?

$$\frac{1}{3}x^{3}$$

是 x^2 的原函数

$$\frac{1}{3}x^3$$
, $\frac{1}{3}x^3 - 1$

是 x^2 的原函数

$$\frac{1}{3}x^3$$
, $\frac{1}{3}x^3 - 1$, $\frac{1}{3}x^3 + \pi$

是 x^2 的原函数

$$\frac{1}{3}x^3$$
, $\frac{1}{3}x^3 - 1$, $\frac{1}{3}x^3 + \pi$, $\frac{1}{3}x^3 + C$,...

都是 x^2 的原函数

$$\frac{1}{3}x^3$$
, $\frac{1}{3}x^3 - 1$, $\frac{1}{3}x^3 + \pi$, $\frac{1}{3}x^3 + C$,...

都是 x^2 的原函数

问题 f(x) 的原函数 F(x) 不唯一,如何求出全部原函数?

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C,C 为任意常数

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C, C 为任意常数

证明

• 设函数 G(x) 也是 f(x) 的一个原函数,则

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C, C 为任意常数

证明

• 设函数 G(x) 也是 f(x) 的一个原函数,则 (G(x) - F(x))' =

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C, C 为任意常数

证明

• 设函数 G(x) 也是 f(x) 的一个原函数,则

$$(G(x)-F(x))' = G'(x)-F'(x) =$$

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C, C 为任意常数

证明

• 设函数 G(x) 也是 f(x) 的一个原函数,则

$$(G(x)-F(x))' = G'(x)-F'(x) = f(x)-f(x) = 0.$$

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C, C 为任意常数

证明

• 设函数 G(x) 也是 f(x) 的一个原函数,则

$$(G(x)-F(x))' = G'(x)-F'(x) = f(x)-f(x) = 0.$$

• 所以利用拉格朗日中值定理的推论得到

$$G(x) - F(x) = C$$
.

性质 设函数 F(x) 是 f(x) 的一个原函数,则 f(x) 的所有原函数是 F(x) + C,C 为任意常数

证明

• 设函数 G(x) 也是 f(x) 的一个原函数,则

$$(G(x)-F(x))' = G'(x)-F'(x) = f(x)-f(x) = 0.$$

• 所以利用拉格朗日中值定理的推论得到

$$G(x) - F(x) = C$$
.

所以

$$G(x) = F(x) + C$$

• 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数

• 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数 读作: f(x) 的不定积分

• 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数 读作: f(x) 的不定积分

● "∫": 积分号;

• 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数 读作: f(x) 的不定积分

"∫": 积分号; f(x): 被积函数;

• 符号 " $\int f(x)dx$ "表示: f(x) 的任意一个原函数

读作: f(x) 的不定积分

• " \int ": 积分号; f(x): 被积函数; f(x)dx: 被积表达式(微分形式)

● 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数

读作: f(x) 的不定积分

● "∫": 积分号; f(x): 被积函数; f(x)dx: 被积表达式(微分形式)

如果 F(x) 是 f(x) 的一个原函数,则

$$\int f(x)dx =$$

● 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数

读作: f(x) 的不定积分

● "∫": 积分号; f(x): 被积函数; f(x)dx: 被积表达式(微分形式)

如果 F(x) 是 f(x) 的一个原函数,则

$$\int f(x)dx = F(x) + C$$

- 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数 读作: f(x) 的不定积分
- "∫": 积分号; f(x): 被积函数; f(x)dx: 被积表达式(微分形式)

如果 F(x) 是 f(x) 的一个原函数,则

$$\int f(x)dx = F(x) + C$$

其中 C 是任意常数, 称为积分常数。

● 符号 " $\int f(x)dx$ " 表示: f(x) 的任意一个原函数

读作: f(x) 的不定积分

• " \int ": 积分号; f(x): 被积函数; f(x)dx: 被积表达式(微分形式)

如果 F(x) 是 f(x) 的一个原函数,则

$$\int f(x)dx = F(x) + C$$

其中 C 是任意常数, 称为积分常数。

总结 求不定积分 $\int f(x)dx$ 的步骤:

- 1. 求出一个原函数 F(x);
- $2. \int f(x)dx = F(x) + C$

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为 ()' =
$$x^2$$
,

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$

2. 因为()'=
$$\sin x$$
,

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$

2. 因为
$$(-\cos x)' = \sin x$$
,

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$

2. 因为
$$(-\cos x)' = \sin x$$
, 所以 $\int \sin x dx = -\cos x + C$

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

- 1. 因为 $(\frac{1}{3}x^3)' = x^2$,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$
- 2. 因为 $(-\cos x)' = \sin x$, 所以 $\int \sin x dx = -\cos x + C$
- 3. 因为 () $' = \frac{1}{x}$,

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$

- 2. 因为 $(-\cos x)' = \sin x$, 所以 $\int \sin x dx = -\cos x + C$
- 3. 因为 $(\ln |x|)' = \frac{1}{x}$,

例子 求下列不定积分:

(1)
$$\int x^2 dx$$
; (2) $\int \sin x dx$; (3) $\int \frac{1}{x} dx$

1. 因为
$$(\frac{1}{3}x^3)' = x^2$$
,所以 $\int x^2 dx = \frac{1}{3}x^3 + C$

2. 因为
$$(-\cos x)' = \sin x$$
, 所以 $\int \sin x dx = -\cos x + C$

3. 因为
$$(\ln |x|)' = \frac{1}{x}$$
,所以 $\int \frac{1}{x} dx = \ln |x| + C$

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为 ()'=
$$x^{\alpha}$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$(x^{\alpha+1})' = x^{\alpha}$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为 ()'=
$$e^{3x}$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为
$$(e^{3x})' = e^{3x}$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为
$$(\frac{1}{3}e^{3x})' = e^{3x}$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为
$$(\frac{1}{3}e^{3x})' = e^{3x}$$
,所以 $\int e^{3x} dx = \frac{1}{3}e^{3x} + C$

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为
$$(\frac{1}{3}e^{3x})' = e^{3x}$$
,所以 $\int e^{3x} dx = \frac{1}{3}e^{3x} + C$

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为
$$(\frac{1}{3}e^{3x})' = e^{3x}$$
,所以 $\int e^{3x} dx = \frac{1}{3}e^{3x} + C$

3. 因为
$$(0)'=0$$
,

练习 求下列不定积分:

(1)
$$\int x^{\alpha} dx \quad (\alpha \neq -1); \qquad (2) \int e^{3x} dx; \qquad (3) \int 0 dx$$

1. 因为
$$\left(\frac{1}{\alpha+1}x^{\alpha+1}\right)' = x^{\alpha}$$
,所以 $\int x^{\alpha}dx = \frac{1}{\alpha+1}x^{\alpha+1} + C$

2. 因为
$$(\frac{1}{3}e^{3x})' = e^{3x}$$
,所以 $\int e^{3x} dx = \frac{1}{3}e^{3x} + C$

3. 因为
$$(0)'=0$$
,所以 $\int 0 dx = 0 + C = C$

We are here now...

1. "原函数"与"不定积分"的概念

2. 不定积分的性质

3. 不定积分的几何意义

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]'$$

;

,

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]'=f(x)$$

;

:

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

;

.

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx =$$

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x)$$

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C$$

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C \qquad \text{or} \qquad \int dF(x) = F(x) + C$$

;

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C \qquad \text{or} \qquad \int dF(x) = F(x) + C$$

例子 (1)
$$\left(\int e^{\sin x} dx\right)' =$$

- (2) $\int d \arcsin(\sqrt{x}) =$
 - (3) 若 $\int f(x)dx = x^2 e^{3x} + C$,则 f(x) =

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C \quad \text{or} \quad \int dF(x) = F(x) + C$$

例子 (1)
$$\left(\int e^{\sin x} dx\right)' = \underline{e^{\sin x}};$$

- (2) $\int d \arcsin(\sqrt{x}) =$
 - (3) 若 $\int f(x)dx = x^2 e^{3x} + C$, 则 f(x) =

不定积分与微分/导数关系: 互为逆运算

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C \qquad \text{or} \qquad \int dF(x) = F(x) + C$$

例子 (1)
$$\left(\int e^{\sin x} dx\right)' = \underline{e^{\sin x}};$$

- (2) $\int d \arcsin(\sqrt{x}) = \arcsin(\sqrt{x})$
 - (3) 若 $\int f(x)dx = x^2e^{3x} + C$, 则 f(x) =_

不定积分与微分/导数关系: 互为逆运算

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C \qquad \text{or} \qquad \int dF(x) = F(x) + C$$

例子 (1)
$$\left(\int e^{\sin x} dx\right)' = e^{\sin x}$$
;

- (2) $\int d \arcsin(\sqrt{x}) = \arcsin(\sqrt{x}) + C$;
 - (3) 若 $\int f(x)dx = x^2e^{3x} + C$, 则 f(x) =_

不定积分与微分/导数关系: 互为逆运算

• $\int f(x)dx$ 是 f(x) 的(任意一个)原函数,所以

$$\left[\int f(x)dx\right]' = f(x) \quad \text{or} \quad d\left[\int f(x)dx\right] = f(x)dx$$

• F(x) 是 F'(x) 的原函数,所以

$$\int F'(x)dx = F(x) + C \quad \text{or} \quad \int dF(x) = F(x) + C$$

例子 (1)
$$\left(\int e^{\sin x} dx\right)' = e^{\sin x}$$
;

- (2) $\int d \arcsin(\sqrt{x}) = \arcsin(\sqrt{x}) + C$;
 - (3) 若 $\int f(x)dx = x^2e^{3x} + C$, 则 $f(x) = 2xe^{3x} + 3x^2e^{3x}$

性质 $1 \int kf(x)dx = k \int f(x)dx$, $k \neq 0$ 为常数性质 $2 \int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

性质 $1 \int kf(x)dx = k \int f(x)dx$, $k \neq 0$ 为常数性质 $2 \int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分 $\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$

性质
$$1 \int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 $2 \int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

性质 $1 \int kf(x)dx = k \int f(x)dx$, $k \neq 0$ 为常数性质 $2 \int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

性质 1
$$\int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 2 $\int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$\mathbf{H} \int \left(2\cos x - \frac{1}{3x} + e^x \right) dx$$

$$= \int 2\cos x dx - \int \frac{1}{3x} dx + \int e^{x} dx = 2 \int \cos x dx - \frac{1}{3} \int \frac{1}{x} dx + \int e^{x} dx$$

_

性质 1
$$\int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 2 $\int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$\mathbf{H} \int \left(2\cos x - \frac{1}{3x} + e^x \right) dx$$

$$= \int 2\cos x dx - \int \frac{1}{3x} dx + \int e^{x} dx = 2 \int \cos x dx - \frac{1}{3} \int \frac{1}{x} dx + \int e^{x} dx$$

$$=2($$
) $-\frac{1}{3}($) $+($)

性质 1
$$\int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 2 $\int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$\mathbf{R} \int \left(2\cos x - \frac{1}{3x} + e^{x} \right) dx$$

$$= \int 2\cos x dx - \int \frac{1}{3x} dx + \int e^{x} dx = 2 \int \cos x dx - \frac{1}{3} \int \frac{1}{x} dx + \int e^{x} dx$$

$$= 2(\sin x + C_1) - \frac{1}{3}($$
) + (

性质 1
$$\int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 2 $\int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$\mathbf{H} \int \left(2\cos x - \frac{1}{3x} + e^{x} \right) dx$$

$$= \int 2\cos x dx - \int \frac{1}{3x} dx + \int e^{x} dx = 2 \int \cos x dx - \frac{1}{3} \int \frac{1}{x} dx + \int e^{x} dx$$

$$= 2(\sin x + C_1) - \frac{1}{3}(\ln|x| + C_2) + ($$

性质
$$1 \int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 $2 \int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$\mathbf{H} \int \left(2\cos x - \frac{1}{3x} + e^x \right) dx$$

$$= \int 2\cos x dx - \int \frac{1}{3x} dx + \int e^{x} dx = 2 \int \cos x dx - \frac{1}{3} \int \frac{1}{x} dx + \int e^{x} dx$$

= 2 (sin x + C₁) -
$$\frac{1}{3}$$
 (ln |x| + C₂) + (e^x + C₃)

性质 1 $\int kf(x)dx = k \int f(x)dx$, $k \neq 0$ 为常数 性质 2 $\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$= 2 \sin x - \frac{1}{3} \ln |x| + e^{x} + \left(2C_{1} - \frac{1}{3}C_{2} + C_{3}\right)$$
The supposition of the first state of

性质
$$1 \int kf(x)dx = k \int f(x)dx$$
, $k \neq 0$ 为常数性质 $2 \int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx$ (对多个函数情形也成立)

例 求不定积分
$$\int \left(2\cos x - \frac{1}{3x} + e^x\right) dx$$

$$\widetilde{H} \int \left(2\cos x - \frac{1}{3x} + e^{x}\right) dx$$

$$= \int 2\cos x dx - \int \frac{1}{3x} dx + \int e^{x} dx = 2 \int \cos x dx - \frac{1}{3} \int \frac{1}{x} dx + \int e^{x} dx$$

=
$$2(\sin x + C_1) - \frac{1}{3}(\ln|x| + C_2) + (e^x + C_3)$$

$$= 2\sin x - \frac{1}{3}\ln|x| + e^{x} + \left(2C_{1} - \frac{1}{3}C_{2} + C_{3}\right) = 2\sin x - \frac{1}{3}\ln|x| + e^{x} + C_{3}$$

例 求不定积分 $\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}} \right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int \frac{1}{\sqrt{x}} dx$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= \arctan x$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x \qquad \tan x$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x - \frac{1}{3} \tan x$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x - \frac{1}{3} \tan x \qquad x^{\frac{1}{2}}$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x - \frac{1}{3} \tan x \qquad 2x^{\frac{1}{2}}$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x - \frac{1}{3} \tan x + 6 \cdot 2x^{\frac{1}{2}}$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x - \frac{1}{3} \tan x + 6 \cdot 2x^{\frac{1}{2}} + C$$

例 求不定积分
$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{2}{1+x^2} - \frac{1}{3\cos^2 x} + \frac{6}{\sqrt{x}}\right) dx$$

$$= 2 \int \frac{1}{1+x^2} dx - \frac{1}{3} \int \frac{1}{\cos^2 x} dx + 6 \int x^{-\frac{1}{2}} dx$$

$$= 2 \arctan x - \frac{1}{3} \tan x + 6 \cdot 2x^{\frac{1}{2}} + C$$

$$= 2 \arctan x - \frac{1}{3} \tan x + 12x^{\frac{1}{2}} + C$$

补充:不定积分的存在性

如果 f(x) 是连续函数,则 f(x) 一定存在原函数,从而不定积分 $\int f(x)dx$ 也一定存在

问题是 如何把 $\int f(x)dx$ 求出来?

We are here now...

1. "原函数"与"不定积分"的概念

2. 不定积分的性质

3. 不定积分的几何意义

例子 设 y = f(x) 的图形经过点 (1, 3),并且其切线的斜率为 2x。试求

例子 设 y = f(x) 的图形经过点 (1, 3),并且其切线的斜率为 2x。试求 出 f(x)。

$$f'(x) = 2x$$

例子 设 y = f(x) 的图形经过点 (1, 3),并且其切线的斜率为 2x。试求 出 f(x)。

$$f'(x) = 2x \implies f(x) = x^2 + C$$

例子 设 y = f(x) 的图形经过点 (1, 3), 并且其切线的斜率为 2x。试求 出 f(x)。

解

$$f'(x) = 2x \implies f(x) = x^2 + C$$

又因为f(1) = 3,所以

例子 设 y = f(x) 的图形经过点 (1, 3),并且其切线的斜率为 2x。试求 出 f(x)。

解

$$f'(x) = 2x \implies f(x) = x^2 + C$$

又因为f(1) = 3, 所以 $3 = f(1) = 1^2 + C$,

例子 设 y = f(x) 的图形经过点 (1, 3),并且其切线的斜率为 2x。试求 出 f(x)。

解

$$f'(x) = 2x \implies f(x) = x^2 + C$$

又因为f(1) = 3, 所以 $3 = f(1) = 1^2 + C$, C = 2。所以

例子 设 y = f(x) 的图形经过点 (1, 3), 并且其切线的斜率为 2x。试求 出 f(x)。

$$f'(x) = 2x \implies f(x) = x^2 + C$$

又因为 $f(1) = 3$,所以 $3 = f(1) = 1^2 + C$, $C = 2$ 。所以

$$f(x) = x^2 + 2$$