Appendice A

Richiami di Algebra Lineare

È opportuno qui richiamare dal corso di Algebra delle matrici alcune proprietà delle matrici simili.

A.0.4 Matrici simili e Diagonalizzazione

- $A \in \mathbb{R}^{n \times n}$ è simile a $\hat{A} \in \mathbb{R}^{n \times n}$ se esiste una matrice $T \in \mathbb{R}^{n \times n}$ invertibile tale che $A = T^{-1}\hat{A}T$;
- Due matrici simili hanno gli stessi autovalori, mentre gli autovettori sono trasformati secondo T: se $Ax = \lambda_1 x$, $\hat{A}y = \lambda_2 y \Rightarrow TAT^{-1}y = \lambda_2 y$; posto $z = T^{-1}y$, premoltiplicando per T^{-1} si ha $Az = \lambda_2 z$, quindi $\lambda_2 = \lambda_1$ e $z = x \Rightarrow y = Tx$.
- Per una matrice A che ha n autovettori indipendenti, esiste una Q che trasforma A per similitudine in una matrice Λ diagonale, $Q^{-1}AQ = \Lambda$. Λ può essere ordinata in modo da avere l'i-esimo autovalore più grande di A, λ_i , nella posizione diagonale $\Lambda(i,i)$, nel qual caso la i-esima colonna Q(:,i) di Q è l'autovettore di A corrispondente a λ_i .
- La i-esima riga $Q^{-1}(i,:)$ di Q^{-1} soddisfa alla equazione $Q^{-1}(i,:)A = \lambda_i Q^{-1}(i,:)$, e viene pertanto detta autovettore destro di A. Si noti che, trasponendo questa relazione e poichè gli autovalori di una matrice e della sua trasposta coincidono, risulta che gli autovettori destri di A sono i trasposti degli autovettori comuni, o sinistri, di A^T .
- Un altro modo di scrivere $A = Q\Lambda Q^{-1}$ è pertanto

$$A = \sum_{i=1}^{n} \lambda_i Q(:, i) Q^{-1}(i, :),$$

cioè come somma pesata di matrici diadiche (prodotto colonna per riga).

- Caso particolare: una matrice simmetrica $A = A^T$ ha sempre n autovettori indipendenti, che possono sempre essere scelti ortogonali tra loro, e di norma unitaria. Pertanto esiste una matrice Q che diagonalizza A per similitudine, ed è ortonormale: $Q^TQ = I \Leftrightarrow Q^T = Q^{-1}$. Autovettori destri e sinistri in questo caso coincidono, a meno di una trasposizione.
- Non tutte le matrici $n \times n$ sono in generale diagonalizzabili per similitudine, in quanto possono non possedere n autovettori indipendenti con cui costruire la matrice Q. Questo caso è escluso per matrici A che abbiano tutti gli autovalori diversi: infatti, autovettori corrispondenti ad autovalori diversi sono certamente indipendenti (se $Ax_1 = \lambda_1 x_1$ e $Ax_2 = \lambda_2 x_2$, posto per assurdo $x_2 = \gamma x_1$ si ottiene $\lambda_1 = \lambda_2$).
- La non-diagonalizzabilità (o difettività) può darsi solo se la matrice ha qualche autovalore multiplo, cioè se il polinomio caratteristico della matrice, ottenuto ponendo $\det(A-\lambda I)=0$, contiene almeno una soluzione con molteplicità algebrica doppia o superiore. In altri termini, il polinomio caratteristico $\pi(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_1\lambda+a_0$, deve essere fattorizzabile nella forma $(\lambda-\lambda_1)^{\mu_1}(\lambda-\lambda_2)^{\mu_2}\cdots(\lambda-\lambda_q)^{\mu_q}$, dove $\lambda_i, i=1,\ldots,q$ sono i q autovalori distinti $(\lambda_i\neq\lambda_j)$, e μ_i le loro rispettive molteplicità algebriche, tali che $\sum_{i=1}^q \mu_i=n$, con almeno uno dei μ_i maggiore di uno.
- Non tutte le matrici con autovalori multipli sono difettive: esempio lampante di matrice con autovalore multiplo ma diagonalizzabile è la matrice identica di ordine n (che ha un solo autovalore $\lambda=1$ con molteplicità algebrica n); esempi meno banali sono tutte le matrici simili ad una matrice diagonale D, possibilmente con alcuni elementi della diagonale ripetuti (cioè del tipo PDP^{-1}). In questi casi, nonostante la presenza di autovalori λ_i a molteplicità algebrica $\mu_i > 1$, è ancora possibile trovare un numero di autovettori corrispondenti pari ad μ_i . In altri termini, l'equazione $(A \lambda_i I)x = 0$ può ammettere μ_i soluzioni x_1, \ldots, x_{μ_i} indipendenti, o ancora, equivalentemente, lo spazio nullo (kernel) della matrice $(A \lambda_i I)$ ha dimensione μ_i . Questi μ_i autovettori indipendenti possono essere usati quindi come colonne della matrice diagonalizzante Q.

- Il numero ν_i di autovettori indipendenti corrispondenti allo stesso autovalore λ_i , cioè la dimensione dello spazio nullo di $(A \lambda_i I)$, viene detta "molteplicità geometrica" dell'autovalore. Una condizione necessaria e sufficiente alla diagonalizzabilità di una matrice è quindi che i suoi autovalori abbiano molteplicità geometrica pari a quella algebrica.
- Uno degli esempi più semplici di difettività è offerto dalla seguente matrice:

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

al cui unico autovalore $\lambda_1 = 0$, di molteplicità algebrica 2, corrisponde un solo autovettore, $x = [1, 0]^T$.

A.0.5 Forma di Jordan

Un risultato assai utile dell'algebra lineare, che generalizza la diagonalizzazione per similitudine delle matrici, è quello che afferma che ogni matrice A quadrata di dimensione n può essere trasformata per similitudine in forma di Jordan, $A = QJQ^{-1}$. Una matrice in forma di Jordan J è diagonale ($J_{ij} = 0$ per $i \neq j$), eccetto al più per elementi non nulli sulla prima sopradiagonale ($J_{i+1,i}$). Di questi elementi sopradiagonali non nulli ve ne sono tanti quanti la differenza tra la somma delle molteplicità algebriche degli autovalori di A (cioè n), e la somma delle molteplicità geometriche degli autovalori stessi. Pertanto, la diagonalizzazione di una matrice è un caso particolare della sua jordanizzazione.

• Più precisamente, la forma di Jordan di A è una matrice diagonale a blocchi di dimensioni diverse, i cui blocchi sono tanti quanti gli autovettori indipendenti di A. Ogni blocco ha sulla diagonale l'autovalore corrispondente al suo autovettore, e sulla sopradiagonale tutti 1. Ad esempio la matrice di Jordan

$$J = \begin{bmatrix} 1.3 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 2 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 3.5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3.5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3.5 \end{bmatrix}$$

corrisponde (al variare di Q) a matrici A 6 × 6 con tre soli autovalori distinti (1.3 con molteplicità algebrica 1; 2 con μ = 2; e 3.5 con μ = 3), ognuno dei quali ha molteplicità geometrica uno.

• Invece, nel caso

$$J = \begin{bmatrix} 1.3 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 2 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 3.5 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 3.5 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 3.5 \end{bmatrix}$$

si hanno gli stessi autovalori e le stesse molteplicità algebriche dell'esempio precedente, ma l'autovalore in 3.5 ha ora molteplicità geometrica doppia. Esistono altre quattro possibili strutture non equivalenti per una matrice con gli stessi autovalori e le stesse molteplicità algebriche di quelle sopra riportate.

• Si deve notare che conoscere la molteplicità algebrica e geometrica degli autovalori di una matrice non è sufficiente a stabilire la struttura della sua forma di Jordan: ad esempio, nel caso di un autovalore λ con $\mu=4$ e $\nu=2$, si possono avere i due casi

$$J = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}; \quad J = \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix};$$

• Consideriamo ad esempio il caso di una matrice A $n \times n$ con un autovalore λ a molteplicità algebrica $\mu = n$ e geometrica $\nu = 1$. Sia x_1 un autovettore corrispondente; per ottenere una matrice Q che rappresenti un legittimo cambiamento di coordinate, possiamo utilizzare x_1 come prima colonna di Q, ma abbiamo bisogno di altri n-1 vettori indipendenti da questo per completare le colonne di Q. Se vogliamo che la trasformata per similitudine di A sia in forma di Jordan, dovra' essere

$$AQ = QJ$$

quindi (ponendo per semplicità n=3)

$$A[q_1, q_2, q_3] = [q_1, q_2, q_3] \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

da cui si ricava

$$Aq_1 = \lambda q_1$$

$$Aq_2 = q_1 + \lambda q_2$$

$$Aq_3 = q_2 + \lambda q_3$$

ovvero ancora

$$(A - \lambda I)q_1 = 0$$

$$(A - \lambda I)q_2 = q_1$$

$$(A - \lambda I)q_3 = q_2.$$
 (A.1)

Da queste relazioni risulta chiaramente che, mentre come ovvio $q_1 \in \text{kernel}(A-\lambda I)$ essendo un autovettore, $q_2 \in \text{kernel}(A-\lambda I)^2$ e $q_3 \in \text{kernel}(A-\lambda I)^3$. Da questo esempio si capisce il ruolo che, nella jordanizzazione di una matrice, viene svolto dallo spazio nullo delle potenze successive di $(A-\lambda I)$, quando lo spazio nullo di $(A-\lambda I)$ stessa non offra una dimensione pari alla molteplicità algebrica di λ . Per questo motivo, lo spazio nullo di $(A-\lambda I)^k$ viene definito "autospazio generalizzato di ordine k associato a λ ".

Torniamo al caso generale di una matrice A $n \times n$ con autovalori λ_i a molteplicità algebrica μ_i e geometrica ν_i , e consideriamo la matrice $A_p = A - pI$ e le sue potenze A_p^k . Definiamo $d_k = \dim \ker A_p^k$: è facile vedere che $d_k \leq d_{k+1}$. Inoltre $d_k \leq n$ per ovvi motivi. È possibile dimostrare che, se $d_k = d_{k+1}$, allora $d_{k+p} = d_k, \forall p \geq 1$. Questo significa che la successione dei d_k , $k = 1, 2, \ldots$ è strettamente crescente sino ad un valore $k = \bar{k}$, per il quale la successione si stabilizza al valore $d_{\bar{k}}$.

Per
$$p \neq \lambda_i$$
, si ha $d_0 = d_1 = 0$, per cui $d_k = 0, \forall k$.

Per $p = \lambda_i$ si ha invece $d_0 = 0$ e $d_1 = \nu_i$; poniamo che sia s_i il valore a cui si stabilizza la successione dei d_k . Si dimostra che $s_i = \mu_i$, in altre parole: La dimensione dello spazio nullo di $(A - \lambda_i I)^k$, cioè dell'autospazio di ordine k associato a λ , per k sufficientemente alto è pari alla molteplicità algebrica di λ_i .

I vettori che appartengono ad un autospazio generalizzato associato all'autovalore λ_i di ordine k, ma non a quello di ordine k-1, si dicono "autovettori generalizzati" di ordine k associati a λ_i . A ogni autovettore generalizzato di ordine k associato a λ_i , designato ad esempio con $q_i^{(k)}$, si associano altri k-1 vettori mediante una "catena" definita da

$$q_i^{(k-1)} = (A - \lambda_i I) q_i^{(k)}$$

 \vdots
 $q_i^{(1)} = (A - \lambda_i I) q_i^{(2)}$

Se si prendessero tutte le catene di autovettori generalizzati si potrebbe avere un numero di vettori maggiore di n, quindi certamente dipendenti tra loro. Per costruire una base di n vettori giustapponendo catene prive di vettori in comune, si procede dunque in questo modo:

- 1. Si prendono al livello \bar{k} $d_{\bar{k}}-d_{\bar{k}-1}$ autovettori generalizzati di ordine \bar{k} , $q_1^{(\bar{k})},\ldots,q_{d_{\bar{k}}-d_{\bar{k}-1}}^{(\bar{k})}$ e se ne costruiscono le catene lunghe \bar{k} .
- 2. Al livello $\bar{k}-1$ è necessario avere $d_{\bar{k}-1}-d_{\bar{k}-2}$ vettori indipendenti. Se tale numero è uguale al numero di vettori generati a questo livello dalle catene iniziate a livello superiore, si prendono questi e si procede. Altrimenti (cioè se $(d_{\bar{k}-1}-d_{\bar{k}-2})>(d_{\bar{k}}-d_{\bar{k}-1})$), si aggiungono al livello $\bar{k}-1$ tutti gli autovettori generalizzati di ordine $\bar{k}-1$ che sono linearmente indipendenti dai vettori $q_1^{(\bar{k}-1)},\ldots,q_{d_{\bar{k}}-d_{\bar{k}-1}}^{(\bar{k}-1)}$, e se ne generano le catene corrispondenti. Risulteranno in questo caso $(d_{\bar{k}-1}-d_{\bar{k}-2})-(d_{\bar{k}}-d_{\bar{k}-1})$ nuove catene, lunghe $\bar{k}-1$;
- 3. si procede così sino ad avere generato un totale di $d_1 = \nu$ catene, il che avviene quando sono stati generati n vettori indipendenti.
- Si procede ora a costruire la matrice Q ponendo nelle sue colonne tutti le catene generate dagli autovettori generalizzati, con l'accortezza di porre a sinistra l'ultimo elemento della catena $q_i^{(1)}$, poi $q_i^{(2)}$, sino a $q_i^{(k)}$. Se si invertisse questo ordine, la matrice $Q^{-1}AQ$ avrebbe non nulla la sottodiagonale, anzichè la sopradiagonale.
- Ad ogni catena di vettori corrisponde nella forma di Jordan un miniblocco di dimensioni pari alla lunghezza della catena.
- Si noti che, data una forma di Jordan $A = QJQ^{-1}$, è possibile ottenere un'altra forma con scambi dell'ordine dei blocchi di Jordan, semplicemente scambiando l'ordine delle corrispondenti catene in Q. A meno di questi inessenziali scambi, la forma di Jordan di una matrice è peraltro unica, ed è perciò chiamata "canonica". Invece, date una coppia di matrici simili A e J (questa in forma di Jordan), esistono infinite possibili matrici Q.