Math Problem Set 5 Open Source Macroeconomics Laboratory Boot Camp

Ruby Zhang

July 18, 2017

7.1 Take any two points $\mathbf{v}, \mathbf{u} \in \text{conv}(S)$. Then \mathbf{v} and \mathbf{u} are convex combinations of elements of S, so let's write them as $\mathbf{v} = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k, \mathbf{v} = \beta_1 \mathbf{y}_1 + \cdots + \beta_n \mathbf{y}_n$ where $\mathbf{x}_i, \mathbf{y}_j \in S, k, n \in \mathbb{N}, \alpha_i, \beta_j \geq 0, \alpha_1 + \cdots + \alpha_k = \beta_1 + \cdots + \beta_n = 1$. Then for any $\lambda \in [0, 1]$, we have that

$$\lambda \mathbf{v} + (1 - \lambda)\mathbf{u} = \lambda(\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k) + (1 - \lambda)(\beta_1 \mathbf{y}_1 + \dots + \beta_n \mathbf{y}_n)$$
$$= \lambda \alpha_1 \mathbf{x}_1 + \dots + \lambda \alpha_k \mathbf{x}_k + (1 - \lambda)\beta_1 \mathbf{y}_1 + \dots + (1 - \lambda)\beta_n \mathbf{y}_n)$$

Note that

$$\lambda \alpha_1 + \dots + \lambda \alpha_k + (1 - \lambda)\beta_1 + \dots + (1 - \lambda)\beta_n = \lambda(\alpha_1 + \dots + \alpha_k) + (1 - \lambda)(\beta_1 + \dots + \beta_n)$$
$$= \lambda + (1 - \lambda) = 1$$

By definition, the result is also a convex combination of elements of S, which means that any convec combination of \mathbf{v} and \mathbf{u} are in conv(S), thus making conv(S) a convex set.

7.2 (i) Take any two elements $\mathbf{x_1}, \mathbf{x_2}$ in the hyperplane $P = {\mathbf{x} \in V | \langle \mathbf{a}, \mathbf{x} \rangle = b}$. For all $\lambda \in [0, 1]$, we have that:

$$\langle \mathbf{a}, \lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2} \rangle = \lambda \langle \mathbf{a}, \mathbf{x} - \mathbf{1} \rangle + (1 - \lambda) \langle \mathbf{a}, \mathbf{x_2} \rangle$$

= $\lambda b + (1 - \lambda) b = b$

Therefore, any convex combination of two points in P is still in hyperplane P so hyperplanes are convex.

(ii) Take any two elements $\mathbf{x_1}, \mathbf{x_2}$ in the half-space $H = \{\mathbf{x} \in V | \langle \mathbf{a}, \mathbf{x} \rangle \leq b\}$. For all $\lambda \in [0, 1]$, we have that:

$$\langle \mathbf{a}, \lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2} \rangle = \lambda \langle \mathbf{a}, \mathbf{x} - \mathbf{1} \rangle + (1 - \lambda) \langle \mathbf{a}, \mathbf{x_2} \rangle$$

 $< \lambda b + (1 - \lambda) b = b$

Therefore, any convex combination of two points in H is still in half-space H so half-spaces are convex.

7.4 (i)

$$\|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle = \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle + \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$+ \langle \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y} \rangle$$

$$+ \langle \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

$$= \|\mathbf{x} - \mathbf{y}\|^2$$

(ii) Suppose we have that $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \leq 0 \quad \forall \mathbf{y} \in C$. Since the inner product is always positive, we have that:

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$\geq \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2$$

$$\geq \|\mathbf{x} - \mathbf{p}\|^2$$

$$\therefore \|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{p}\| \quad \forall \mathbf{y} \in C, \mathbf{y} \neq \mathbf{p}$$

(iii) Suppose $\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{p}$ for $\lambda \in [0, 1]$. Then we have:

$$\begin{aligned} \|\mathbf{x} - \mathbf{z}\|^2 &= \langle \mathbf{x} - \mathbf{z}, \ \mathbf{x} - \mathbf{z} \rangle \\ &= \langle \mathbf{x} - \mathbf{z}, \mathbf{x} - \lambda \mathbf{y} - (1 - \lambda) \mathbf{p} \rangle \\ &= \langle \mathbf{x} - \mathbf{z}, \mathbf{x} - \mathbf{p} \rangle + \lambda \langle \mathbf{x} - \mathbf{z}, \mathbf{p} - \mathbf{y} \rangle \\ &= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle + \lambda \langle \mathbf{p} - \mathbf{y}, \mathbf{x} - \mathbf{p} \rangle + \lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 \langle \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle \\ &= \|\mathbf{x} - \mathbf{p}\|^2 + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2 \end{aligned}$$

(iv) If \mathbf{p} is a projection of \mathbf{x} onto convex set C, then by definition $\|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{y} \in C$. Since C is convex, $\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{p} \in C \quad \forall \mathbf{y} \in C, \lambda \in [0, 1]$ and we have that $\|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{z}\|$. Thus, $0 \le \|\mathbf{x} - \mathbf{z}\| - \|\mathbf{x} - \mathbf{p}\| = 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2$ from part (iii). Since $0 \le \lambda$, we have that $0 \le 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda \|\mathbf{y} - \mathbf{p}\|^2$.

 \Longrightarrow

Suppose that a point **p** is a projection of **x** onto convex set C. From part (iv), we know that $0 \le 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda ||\mathbf{y} - \mathbf{p}||^2 \quad \forall \lambda \in [0, 1]$. Then the statement holds true for $\lambda = 0$, in which case $0 \le 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \Longrightarrow 0 \le \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$.

 \leftarrow

Suppose we have that $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \leq 0 \quad \forall \mathbf{y} \in C$. According to part(ii), $\|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{p}\| \quad \forall \mathbf{y} \in C$, $\mathbf{y} \neq \mathbf{p}$. By definition, \mathbf{p} is the projection of \mathbf{x} onto convex set C.

7.6 Take any two points $\mathbf{x_1}, \mathbf{x_2} \in A = {\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x} \leq c)}$. Since f is a convec function, for any $\lambda \in [0, 1]$, we have that

$$f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) \le \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2}) \le \lambda c + (1 - \lambda)c = c$$

Therefore, any convex combination of two points in A is still in A, so set A is convex.

7.7 Let $f(\mathbf{x}) = \sum_{i=1}^k \alpha_i f_i(\mathbf{x})$ where $\alpha_i \in \mathbf{R}_+, f_i : C \to \mathbb{R}, f_i \text{ convex} \quad \forall 1 \leq i \leq k \text{ and } C \text{ convex}$. Then $f: C \to \mathbb{R}$. For any two points $\mathbf{x_1}, \mathbf{x_2} \in C$ and $\lambda \in [0, 1]$, we have that

$$f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) = \sum_{i=1}^k \alpha_i f_i(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2})$$

$$\leq \lambda \sum_{i=1}^k \alpha_i f_i(\mathbf{x_1}) + (1 - \lambda) \sum_{i=1}^k \alpha_i f_i(\mathbf{x_2})$$

$$= \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2})$$

$$\therefore f(\mathbf{x}) \text{ is a convex function}$$

7.13 Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and bounded above by M. Suppose there exists two points $\mathbf{x_1} \neq \mathbf{x_2} \in \mathbb{R}^n$ such that $f(\mathbf{x_1}) > f(\mathbf{x_2})$. Then for all $\lambda \in [0, 1]$, we have that

$$f(\mathbf{x_1}) = f(\lambda \frac{\mathbf{x_1} - (1 - \lambda)\mathbf{x_2}}{\lambda} + (1 - \lambda)\mathbf{x_2})$$

$$\leq \lambda f(\frac{\mathbf{x_1} - (1 - \lambda)\mathbf{x_2}}{\lambda}) + (1 - \lambda)f(\mathbf{x_2})$$

$$\frac{f(\mathbf{x_1}) - (1 - \lambda)f(\mathbf{x_2})}{\lambda} \leq f(\frac{\mathbf{x_1} - (1 - \lambda)f(\mathbf{x_2})}{\lambda}) < M$$

$$\therefore \frac{f(\mathbf{x_1}) - f(\mathbf{x_2})}{\lambda} + f(\mathbf{x_2}) < M$$

However, the last statement is a contradiction since as $\lambda \to 0$, the expression approaches infinity, contradicting the fact that f is bounded above.

7.20 Note that if $f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$ is affine, then we can express it as $f(\mathbf{x}) = L(\mathbf{x}) + c$ so for any $\mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n$ and $a, b \in \mathbb{R}$ we have that

$$f(a\mathbf{x}_1 + b\mathbf{x}_2) = L(a\mathbf{x}_1 + b\mathbf{x}_2) + c \tag{1}$$

$$= aL(\mathbf{x_1}) + bL(\mathbf{x_2}) + c \tag{2}$$

$$\therefore f(a\mathbf{x_1} + b\mathbf{x_2}) = af(\mathbf{x_1}) + bf(\mathbf{x_2}) + (1 - a - b)c$$
(3)

Now let us suppose that f, -f are convex and f is NOT affine. Then there exist $\mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n$ such that equation (3) does not hold for all $a, b \in \mathbb{R}$. Since f is convex, for any $\lambda \in [0, 1]$ we have that:

$$f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) \le \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2})$$

$$f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) \ge -\lambda f(\mathbf{x_1}) - (1 - \lambda)f(\mathbf{x_2})$$

Similarly, since -f is convex, we also have that:

$$-f(\lambda \mathbf{x_1} + (1-\lambda)\mathbf{x_2}) \le -\lambda f(\mathbf{x_1}) - (1-\lambda)f(\mathbf{x_2})$$

Therefore, $f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) = \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2})$. This contradicts the fact that $\mathbf{x_1}, \mathbf{x_2}$ does not satisfy equation (3) for all scalars in \mathbb{R} . Therefore, f is affine.

$7.21 \Longrightarrow$

Suppose \mathbf{x}^* is a local minimizer for the problem with objective function f. Since ϕ is strictly increasing, then for all $\mathbf{x} \neq \mathbf{x}^*$ that satisfy the constraints, $f(\mathbf{x}^*) \leq f(\mathbf{x}) \Longrightarrow \phi \circ f(\mathbf{x}^*) \leq \phi \circ f(\mathbf{x})$ so by definition, \mathbf{x}^* is also a minimizer for the objective function $\phi \circ f$.

 \Leftarrow

Suppose \mathbf{x}^* is a local minimizer for the problem with objective function $\phi \circ f$ but not a local minimizer for the problem with objective function f. Then there exists $\mathbf{x_0}$ in the neighborhood of \mathbf{x}^* that satisfies the constraints and $f(\mathbf{x_0}) \leq f(\mathbf{x}^*) \Longrightarrow \phi \circ f(\mathbf{x_0}) \leq \phi \circ f(\mathbf{x}^*)$, which contradicts the fact that \mathbf{x}^* is a local minimizer for $\phi \circ f$. Thus, \mathbf{x}^* is also a local minimizer for f.