

Statistical Testing and Sample Size Calculation Basics Part I

06.03.2024

Christina Abele
Center for Thrombosis and Hemostasis
University Medical Center, Mainz
christina.abele@uni-mainz.de

- Research question
- Statistical testing
- Confidence intervals
- Sample size planning

- Research question
- Statistical testing
- Confidence intervals
- Sample size planning

Imagine you have developed a new drug against pulmonary hypertension. There are many possible research questions:

- Efficacy compared to the standard treatment:
 - Is the new drug more effective than standard treatment?
 - Is the new drug different from standard treatment with respect to efficacy?
 - Is the new drug at least almost as effective as standard treatment?
- Meaning of "more effective":
 - Patients live longer.
 - It takes longer to reach a certain level of disease progression.
 - Clinical parameters (6MWT distance, mPAP, ...) or patient reported outcomes (QoL, dyspnea, ...) are better on average.
 - Improvement reaches a certain level in more patients.
- Target population

• • •

to efficacy?

Imagine you have developed a new drug against pulmonary hypertension. There are many possible research questions:

- Efficacy compared to the standard treatment:
 - Is the new drug more effective than standard treatment?
 - Is the new d
 - Is the new d This is the most crucial It?
- Meaning of step in the whole process.
 - Patients live Tonger.
 - It takes longer to reach a certain level of disease progression.
 - Clinical parameters (6MWT distance, mPAP, ...) or patient reported outcomes (QoL, dyspnea, ...) are better on average.
 - Improvement reaches a certain level in more patients.
- Target population

• • •

Testing scenarios:

In this course: Focus on testing for difference.

"More effective" Test for **superiority**

"Different with respect to efficacy" Test for **difference**

"At least almost as effective" Test for **non-inferiority**

- Research question
- Statistical testing
- Confidence intervals
- Sample size planning

Does the new drug lead to a different average mPAP after 1 month compared to standard treatment?

What is our null hypothesis?

- Basic principle of statistical testing: Proof by contradiction
- Step 1: Frame the **null hypothesis** H_0 . It always states the **opposite** of what we want to show (this is the **alternative** hypothesis H_1)!
- Step 2: Measure outcomes in a sample representative of the target population. Assess how well the data observed agree with H_0 . To quantify this, we use the **test statistic** T: The closer T is to zero, the better the data agree with H_0 .
- Step 3:
 If the distance between T and zero exceeds the critical value c, the data agree so badly with H₀ that we are sure H₀ must be false and reject it.
 ⇒ "The result of the test was significant." / "H₁ could be confirmed."

Statistical testing revisited

- Step 1: Frame the null hypothesis H₀.
- Step 2:

Answer the following question:

"Assuming H_0 is true, how likely is it to obtain data whose corresponding test statistic is at least as far away from zero as with the observed data?" This likelihood is the **p-value**. If the p-value is small, the observed data agree badly with H_0 .

- Step 3:
 - The limit of this likelihood below which we assume H_0 is false and reject it is the **significance level** α of the test. The lower it is, the stricter is the test.
- The p-value equals α just if the test statistic equals the critical value.

What can go wrong?

	H ₀ is rejected H ₁ is confirmed	H ₀ is not rejected H ₁ can not be confirmed
H ₀ is true H ₁ is false	Type I error (false positive rate, α error): ⇒ Fix level of significance in order to control for it	OK
H ₀ is false H ₁ is true	OK	Type II error (false negative rate, β error): \Rightarrow Use sufficiently large samples to get the power $1 - \beta$

$p < \alpha$ is evidence for the alternative H_1 . Is $p \ge \alpha$ evidence for H_0 ?

NO! Logically, this would be circular reasoning:

In this case we can only state that we can't reject H_0 / can't confirm H_1 \Rightarrow Further research is necessary!

- Research question
- Statistical testing
- Confidence intervals
- Sample size planning

Confidence intervals

- Observed data permit not only hypothesis testing, but also estimation of quantities of interest (e. g. difference of means, odds ratio, ...). The estimated value is called point estimate.
- Due to random variation, different samples from the same population will lead to different point estimates.
- So how is the true value related to its point estimate? Or: How precise is the estimation?
- This question is answered by the concept of the confidence interval (CI). It is a range around the point estimate, computed at a specified confidence level (e. g. 95%).
- The confidence level is the chance of obtaining a CI containing the true value.

Confidence intervals

- Often, there is a mathematical relationship between test statistics and point estimates. In such cases, CIs can be constructed by inverting hypothesis tests if the distributions under H₁ are known or can be estimated.
- A test at significance level α corresponds to an interval at confidence level $1-\alpha$.
- This opens up a third way of significance testing:
 - Step 1: Compute the $(1-\alpha)$ -CI for the quantity of interest.
 - Step 2: Check whether the CI contains the value the quantity of interest would have under the null hypothesis (0 for differences, 1 for ratios).
 - Step 3:
 Reject the null hypothesis if the CI doesn't contain this value.

- Research question
- Statistical testing
- Confidence intervals
- Sample size planning

Sample size planning

- Decide on relevant alternative H₁.
 (What is "relevant"? Not a statistical, but a medical/biological question!)
- Fix power = probability of getting a significant result under H₁.
- For all practically relevant test statistics T, the distribution of T depends on sample size N. Power usually grows with increasing N. Find the value of N at which the desired power is obtained.
- Simple trial designs: Sample size formulas
- More complex trial designs: Sample size planning by simulation (Monte Carlo method)