Berechnungen und Logik Hausaufgabenserie 8

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

Vor.: $L := \{ \langle M \rangle \in \{0,1\}^* | \forall w : w \in L(M) \Leftrightarrow w = w^R \}$

Beh.: L ist unentscheidbar.

Bew.: Sei $f: \{0,1\}^* \to \{0,1\}^*, \langle M \rangle \mapsto \langle M \circ l \rangle$, wobei $l \in L$ und \circ so, dass erst M berechnet wird und dann l berechnet wird.

 $M \circ l \in L$ gilt also genau dann, wenn M und l in einem akzeptierenden Zustand enden.

Dann gilt: $w \in \text{HALT}_{\text{TM}}^{\epsilon} \Rightarrow f(w) \in L \text{ und } w \notin \text{HALT}_{\text{TM}}^{\epsilon} \Rightarrow f(w) \notin L^{1}$

Somit sind beide Richtungen gezeigt damit f Reduktionsfunktion für die Reduktion $\text{HALT}_{\text{TM}}^{\epsilon} \leq L$ ist.

Nach Satz "Eigenschaften der Reduktion" ist somit L nicht entscheidbar. \square

A3

a)

Es gilt: $\overline{\text{NONSTOP}_{\text{TM}}^{\epsilon}} = \text{HALT}_{\text{TM}}^{\epsilon}$. Wir zeigen also, dass $\text{HALT}_{\text{TM}}^{\epsilon}$ erkennbar ist.

Folgende Turingmaschine erkennt HALT $_{\mathrm{TM}}^{\epsilon}$:

$$M: \{0,1\}^* \to \mathbb{B}, \langle w \rangle \mapsto \begin{cases} \text{wahr h\"alt } w? \\ \text{falsch sonst} \end{cases}$$

Diese TM erkennt dann also alle haltenden Turingmaschinen, hält sie nicht interessiert uns das nicht, da wir nur zeigen wollten, dass $NONSTOP_{TM}^{\epsilon}$ coerkennbar ist.

 $^{^1{\}rm Wir}$ haben hier die Äquivalenz aufgeteilt und die Zweite, also die "Rückrichtung" mittels Kontraposition gezeigt.

b)

Definiere die TM H so, dass H für jede Eingabe hält, außer der leeren Eingabe, also ϵ . Sei $f: \{0,1\}^* \to \{0,1\}^*, \langle w \rangle \mapsto \langle w \circ H \rangle$ so, dass $w \circ H$ erst w simuliert und dann H simuliert für die gleiche Eingabe.

Dann gilt folgendes:

Ist $\langle w \rangle \in \text{NONSTOP}_{\text{TM}}^{\epsilon}$, dann hält $w \circ H$, also f(w) "decodiert" für keine Eingabe, also es gilt $f(w) = \langle w \circ H \rangle \in \text{NONSTOP}_{\text{TM}}$.

Ist $\langle w \rangle \not\in \text{NONSTOP}_{\text{TM}}^{\epsilon}$, dann existiert ein Eingabewort, sodass w hält und damit dann auch $w \circ H$, also gilt dann $f(w) = \langle w \circ H \rangle \not\in \text{NONSTOP}_{\text{TM}}$.

Somit eignet sich f als Reduktionsfunktion für die zu zeigende Reduktion NONSTOP $_{\text{TM}}^{\epsilon} \leq \text{NONSTOP}_{\text{TM}}$.