The Vampire and the FOOL

 $\frac{ {\sf Evgenii\ Kotelnikov}^1\quad {\sf Laura\ Kov\acute{a}cs}^1\quad {\sf Giles\ Reger}^2}{ {\sf Andrei\ Voronkov}^{123}}$

 $^{\rm 1}$ Chalmers University of Technology, Gothenburg, Sweden

 $^{2}\,$ The University of Manchester, Manchester, UK

³ Easychair

CPP 2016 18 January

Outline

First-Order Logic with First Class Boolean Sort

Polymorphic Theory of Arrays

Program Analysis with Vampire

Future Work

Outline

First-Order Logic with First Class Boolean Sort

Polymorphic Theory of Arrays

Program Analysis with Vampire

Future Work

First-Order Logic with First Class Boolean Sort

E. Kotelnikov, L. Kovács, and A. Voronkov. *A First Class Boolean Sort in First-Order Theorem Proving and TPTP.* In Proc. of CICM, volume 9150 of LNCS, pages 71–86, 2015.

$$FOOL (FOL + Bool)$$

- 1. First-class boolean sort
 - ► Interpreted sort *bool*
 - Boolean variables can be used as formulas
 - ▶ Formulas can be used as boolean terms
- 2. if-then-else expressions
- 3. let-in expressions

Reasoning with the Boolean Sort

- ▶ Add boolean constants *true* and *false*
- ▶ Add axioms $true \neq false$ and $(\forall x : bool)(x \doteq true \lor x \doteq false)$

FOOL paramodulation

$$\frac{C[s]}{C[\mathit{true}] \vee s \doteq \mathit{false}}$$

where

- 1. s is a term of the sort bool other than true and false
- 2. s is not a variable

Enabled with --fool_paramodulation on

Implementation of FOOL in Vampire

- Translate FOOL formulas into standard FOL
- For each part of the input problem that is not syntactically correct in standard FOL
 - 1. Introduce a fresh function or predicate symbol
 - 2. Replace with an application of the symbol
 - 3. Extend the set of assumtions with definition(s) for the symbol
- Extend input language (modification of TFF0)

Boolean variables

Example

 $(\forall x:bool)(x \vee \neg x)$

Translation

 $(\forall x:bool)(x \doteq true \lor x \not\equiv true)$

TPTF

 $![X:\$o]: (X \mid \sim X)$

Boolean variables

Example

 $(\forall x:bool)(x \vee \neg x)$

Translation

 $(\forall x:bool)(x \doteq true \lor x \not = true)$

TPTP

 $![X:\$o]:(X \mid \sim X)$

Boolean variables

Example

 $(\forall x : bool)(x \lor \neg x)$

Translation

 $(\forall x:bool)(x \doteq true \lor x \not = true)$

TPTP

 $! [X:\$o]: (X \mid \sim X)$

Functions and Predicates with Boolean Arguments

```
Example  (\forall x:bool)(\forall y:bool)(impl(x,y)\Leftrightarrow \neg x\vee y)  TPTP  \mathbf{tff}(\mathsf{impl},\ \mathbf{type},\ (\$o*\$o)>\$o).   \mathbf{tff}(\mathsf{impl}\_\mathsf{definition},\ \mathbf{axiom}, \\  \  \, ! \  [\mathtt{X}:\$o,\ \mathtt{Y}:\$o]:\ (\mathsf{impl}(\mathtt{X},\mathtt{Y}) <=>\ (\sim\mathtt{X}\ |\ \mathtt{Y}))).
```

Example

$$(\forall x:\sigma)(\forall y:\tau)(\forall z:\tau)impl(P(x,y) \land P(x,z), y \doteq z)$$

Translation

$$(\forall x : \sigma)(\forall y : \sigma)(\forall z : \sigma) impl(g_1(x, y, z), g_2(y, z))$$

- $(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau)(P(x, y) \land P(x, z) \Leftrightarrow g_1(x, y, z) \doteq true)$
- $(\forall y : \tau)(\forall z : \tau)(y \doteq z \Leftrightarrow g_2(y, z) \doteq true)$

TPTF

```
![X:s, Y:t, Z:t]: impl(p(X,Y) \& p(X,Z), Y = Z)
```

Example

```
(\forall x:\sigma)(\forall y:\tau)(\forall z:\tau)impl(P(x,y) \land P(x,z), y \doteq z)
```

Translation

$$(\forall x : \sigma)(\forall y : \sigma)(\forall z : \sigma) impl(g_1(x, y, z), g_2(y, z))$$

- $(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau)(P(x, y) \land P(x, z) \Leftrightarrow g_1(x, y, z) \doteq true)$
- $(\forall y : \tau)(\forall z : \tau)(y \doteq z \Leftrightarrow g_2(y, z) \doteq true)$

```
![X:s, Y:t, Z:t]: impl(p(X,Y) \& p(X,Z), Y = Z)
```

Example

$$(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau) impl(P(x, y) \land P(x, z), y \doteq z)$$

Translation

$$(\forall x : \sigma)(\forall y : \sigma)(\forall z : \sigma) impl(g_1(x, y, z), g_2(y, z))$$

- $(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau)(P(x, y) \land P(x, z) \Leftrightarrow g_1(x, y, z) \doteq true)$
- $(\forall y : \tau)(\forall z : \tau)(y \doteq z \Leftrightarrow g_2(y, z) \doteq true)$

```
![X:s, Y:t, Z:t]: impl(p(X,Y) & p(X,Z), Y = Z)
```

Example

```
(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau) impl(P(x, y) \land P(x, z), y \doteq z)
```

Translation

$$(\forall x : \sigma)(\forall y : \sigma)(\forall z : \sigma) impl(g_1(x, y, z), g_2(y, z))$$

- $(\forall x : \sigma)(\forall y : \tau)(\forall z : \tau)(P(x, y) \land P(x, z) \Leftrightarrow g_1(x, y, z) \doteq true)$
- $(\forall y : \tau)(\forall z : \tau)(y \doteq z \Leftrightarrow g_2(y, z) \doteq true)$

```
![X:s, Y:t, Z:t]: impl(p(X,Y) & p(X,Z), Y = Z)
```

Examples

- 1. $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(max(x, y) \doteq \text{if } x \geq y \text{ then } x \text{ else } y)$
- 2. $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(\text{if } max(x,y) \doteq x \text{ then } x \geq y \text{ else } y \geq x)$

Translation

 $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(max(x, y) \doteq g(x, y))$

- $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(x \ge y \Rightarrow g(x, y) \doteq x)$
- $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(x \geq y \Rightarrow g(x, y) \doteq y)$

Examples

- 1. $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(max(x, y) \doteq \text{if } x \geq y \text{ then } x \text{ else } y)$
- 2. $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(\text{if } max(x,y) \doteq x \text{ then } x \geq y \text{ else } y \geq x)$

Translation

$$(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(\max(x, y) \doteq g(x, y))$$

- $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(x \ge y \Rightarrow g(x, y) \doteq x)$
- $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(x \not\geq y \Rightarrow g(x, y) \doteq y)$

Examples

- 1. $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(max(x, y) \doteq \text{if } x \geq y \text{ then } x \text{ else } y)$
- 2. $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(\text{if } max(x,y) \doteq x \text{ then } x \geq y \text{ else } y \geq x)$

Translation

 $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(max(x, y) \doteq g(x, y))$

- $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(x \ge y \Rightarrow g(x, y) \doteq x)$
- $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(x \not\geq y \Rightarrow g(x, y) \doteq y)$

let-in expressions

let
$$f_1(x_1^1:\sigma_1^1,\ldots,x_{n_1}^1:\sigma_{n_1}^1)=s_1;$$
 ... $f_m(x_1^m:\sigma_1^m,\ldots,x_{n_m}^m:\sigma_{n_m}^m)=s_m$ in t

```
Code fragment
array[3] := 5;
array[2] + array[3];
   \blacktriangleright (\forall i : \mathbb{Z})(q(i) \doteq \text{if } i \doteq 3 \text{ then } 5 \text{ else } array(i)).
```

```
Code fragment
array[3] := 5;
array[2] + array[3];
In FOOL
let array(i : \mathbb{Z}) = if \ i = 3 \text{ then } 5 \text{ else } array(i)
  in array(2) + array(3)
   \triangleright (\forall i : \mathbb{Z})(q(i) \doteq \text{if } i \doteq 3 \text{ then } 5 \text{ else } array(i)).
```

```
Code fragment
array[3] := 5;
array[2] + array[3];
In FOOL
let array(i : \mathbb{Z}) = if \ i = 3 \text{ then } 5 \text{ else } array(i)
  in array(2) + array(3)
Translation
q(2) + q(3)
   \blacktriangleright (\forall i : \mathbb{Z})(q(i) \doteq \text{if } i \doteq 3 \text{ then } 5 \text{ else } array(i)).
```

```
Code fragment
array[3] := 5;
array[2] + array[3];
In FOOL
let array(i : \mathbb{Z}) = if \ i = 3 \text{ then } 5 \text{ else } array(i)
 in array(2) + array(3)
Translation
q(2) + q(3)
   \blacktriangleright (\forall i : \mathbb{Z})(q(i) \doteq \text{if } i \doteq 3 \text{ then } 5 \text{ else } array(i)).
TPTP
\text{slet}(\operatorname{array}(I:\sin t) := \text{site}(I = 3, 5, \operatorname{array}(I)),
       sum(array(2), array(3)).
```

```
Code fragment
a, b := b, a

TPTP
$let(a := b; b := a, f(a,b))
```

Experimental Results

TPTP Problems

Translated from some of the THF0 problems of TPTP

Prover	Solved	Time
Vampire	134	3.59
Vampire ⋆	134	7.28
Satallax	134	23.93
Leo-II	127	27.42
Isabelle	128	893.80

A total of 134 problems

Algebraic Datatypes Problems

Translated from SMT-LIB problems generated by Isabelle

Prover	Solved	Time
Vampire	59	26.580
Z3	57	4.291
$Vampire \star$	56	26.095
CVC4	53	25.480

A total of 152 problems

Outline

First-Order Logic with First Class Boolean Son

Polymorphic Theory of Arrays

Program Analysis with Vampire

Future Work

Polymorphic Theory of Arrays

A union of theories of arrays parametrised by two sorts: sort τ of indexes and sort σ of values

Theory of arrays with indexes au and values σ

- ▶ Sort $array(\tau, \sigma)$
- ▶ Function symbol $select: array(\tau, \sigma) \times \tau \rightarrow \sigma$
- ► Function symbol $store: array(\tau, \sigma) \times \tau \times \sigma \rightarrow array(\tau, \sigma)$
- Three theory axioms
 - 1. read-over-write 1
 - 2. read-over-write 2
 - extensionality

Polymorphic Theory of Arrays

Outline

First-Order Logic with First Class Boolean Sort

Polymorphic Theory of Arrays

Program Analysis with Vampire

Future Work

```
\label{eq:code_fragment} \begin{array}{lll} \textbf{FOOL} \\ \\ \textbf{res} := \textbf{x}; & & & & & \\ \textbf{if} \ (\textbf{x} > \textbf{y}) & & & & \\ \textbf{if} \ (\textbf{x} > \textbf{y}) & & & & \\ \textbf{then} \ \textbf{max} := \textbf{x}; & & & \\ \textbf{x}, \ \textbf{y}), & & \\ \textbf{else} \ \textbf{max} := \textbf{y}; & & & \\ \textbf{ste} \ (\textbf{res} := \textbf{site}(\textbf{sgreater}(\textbf{max}, \textbf{0}), \\ \textbf{olse} \ \textbf{res} := \textbf{res} + \textbf{max}; & & \\ \textbf{else} \ \textbf{res} := \textbf{res} - \textbf{max}; & & \\ \textbf{else} \ \textbf{res} := \textbf{res} - \textbf{max}; & & \\ \textbf{res})))). \end{array}
```

Code fragment

```
if (x > y) then
t := x;
x := y;
y := t;
```

FOOL with tuples

```
let (x, y, t) =

if x > y then

let (x, y, t) = (x, y, x) in

let (x, y, t) = (y, y, t) in

let (x, y, t) = (x, t, t) in (x, y, t)

else (x, y, t)

in (x, y, t)
```

Code fragment

```
if (x > y) then
t := x;
x := y;
y := t;
```

FOOL with tuples

```
\begin{split} & \text{let } (x,y,t) = \\ & \text{if } x > y \text{ then} \\ & \text{let } (x,y,t) = (x,y,x) \text{ in} \\ & \text{let } (x,y,t) = (y,y,t) \text{ in} \\ & \text{let } (x,y,t) = (x,t,t) \text{ in } (x,y,t) \\ & \text{else } (x,y,t) \\ & \text{in } (x,y,t) \end{split}
```

Outline

First-Order Logic with First Class Boolean Sort

Polymorphic Theory of Arrays

Program Analysis with Vampire

Future Work

Future Work

- ► Improved translation of FOOL
- Add tuples to FOOL
- Parser for SMT-LIB syntax
- Support for polymorphism and TFF1