

ABS0550

Issue 5 Page 1 of 10 April 2008

Pin, Swage Locking, Stump Type 100° Countersunk Intermediate Head

"When this standard is applied, a careful check must be made as to whether any protective rights exist. This standard issuer hereby disclaims any liability for infringement of patent or design rights resulting from the use of this standard'

Published and distributed by AIRBUS S.A.S. ENGINEERING DIRECTORATE 31707 BLAGNAC FRANCE

Contents

- 1 Scope
- 2 Normative references
- 3 Requirements
- 4 Designation
- 5 Marking
- 6 Technical specification

1 Scope

This standard specifies the dimensions and tolerances of a 100° countersunk stump type swage locking pin for use in aerospace applications.

2 Normative References

This Airbus Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this Airbus Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

EN 2000	Aerospace series – Quality assurance EN aerospace products – Approval of the quality system of manufacturers.
EN2424	Marking of aerospace products.
ASNA2025	Aluminium alloy collars
AMS4967	Titanium alloy, bars, wire, forgings and rings 6AL-4V annealed, heat-treatable.
ANSI B46.1	Surface texture (surface roughness, waviness and lay)
EN6117	Specification for Lubricant of fasteners with Cetyl alcohol.
NAS4006	Aluminium coating.
HPS C 2010	Technical specification

3 Requirements

3.1 Configuration, dimensions, tolerances and mechanical properties.

- 3.1.1 The configuration, dimensions, tolerances and mechanical properties shall conform with Figure 1 and Tables 2.3 & 4
- 3.1.2 Shank straightness to be within 'S' values TIR per inch of shank length. See table 2
- 3.1.3 The conical surface of the countersunk head shall be concentric with the shank Diameter 'A' within 0.005 inch (0,127mm).
- 3.1.4 Pins shall be permanently and legibly marked on the head with at least the manufacturer's part number and trademark and the material code, by depressed characters 0.006 inch (0,15 mm) maximum depth.
- 3.1.5 Surface texture before coating (Ra max in accordance with ANSI B46.1) conical surface of head, head to shank fillet radius, shank and transition radius, 32 µin (0,8µm) all other surfaces 125 µin (3,2µm)

3.2 Material and surface treatment

3.2.1 Heat treated to 95 KSI (662 N/mm²) minimum ultimate shear strength.

Table 1: Material and surface treatment

Material	Surface treatment	Code
6AL-4V Titanium alloy per AMS4967	Resin based Aluminium per NAS4006 plus Cetyl alcohol lube per EN6117	VHK

Figure 1 : Configuration

Table 2: Nominal Dimensions

Dimensions in inch (mm) continued

Dash No	Nominal Dia	Ø	ØA		ø	B ₁	C Nom	G Gauge Ø		H Gauge Height	
140	Dia	Max	Min	Nom	Max	Min	140111	Max	Min	Max	Min
3	3/16	0.1895 (4,813)	0.1885 (4,788)	0.322 (8,19)	0.3100 (7,874)	0.2921 (7,419)	0.056 (1,42)	0.2441 (6,200)			0.0313 (0,795)
ЗА	7/32	0.2182 (5,542)	0.2172 (5,517)	0.371 (9,44)	0.3595 (9,131)	0.3527 (8,959)	0.065 (1,64)	0.2982 (7,574)			0.0293 (0,744)
4	1/4	0.2495 (6,337)	0.2485 (6,312)	0.423 (10,75)	0.4108 (10,434)	0.3933 (9,990)	0.073 (1,86)	0.3315 (8,420)	0.3313 (8,415)		0.0370 (0,940)
5	5/16	0.3120 (7,925)	0.3110 (7,899)	0.530 (13,47)	0.5174 (13,142)	0.5011 (12,728)	0.092 (2,33)	0.4320 (10,973)	0.4318 (10,968)		0.0396 (1,006)
6	3/8	0.3745 (9,512)	0.3735 (9,487)	0.636 (16,15)	0.6216 (15,789)	0.6071 (15,420)	0.110 (2,79)	0.4854 (12,329)	0.4852 (12,324)		0.0613 (1,557)
7	7/16	0.4370 (11,100)	0.4360 (11,074)	0.736 (18,69)	_	0.6900 (17,526)	0.126 (3,19)	0.6582 (16,718)	0.6580 (16,713)		

Table 2: Nominal Dimensions (concluded)

Dash No	Nominal Dia	J Max	N Rad	ØP Max	F	₹	S See Note	T Ref	Ø ND	NL Max
NO	Dia	IVIAX	Min	IVIAX	Max	Min	3.1.2	IVEI	Max	IVIAX
3	3/16	0.015 (0,38)	0.079 (2,01)	0.184 (4,67)	0.030 (0,76)	0.020 (0,51)	0.0045 (0,114)	0.171 (4,34)	0.086 (2,18)	0.118 (3,00)
ЗА	7/32	0.010 (0,25)	0.242 (6,15)	0.213 (5,41)	0.030 (0,76)	0.020 (0,51)	0.0045 (0,114)	0.231 (5,87)	0.086 (2,18)	0.118 (3,00)
4	1/4	0.015 (0,38)	0.242 (6,15)	0.244 (6,20)	0.030 (0,76)	0.020 (0,51)	0.0045 (0,114)	0.231 (5,87)	0.109 (2,77)	0.162 (4,11)
5	5/16	0.015 (0,38)	0.420 (10,67)	0.306 (7,77)	0.040 (1,02)	0.030 (0,76)	0.0045 (0,114)	0.296 (7,52)	0.141 (3,58)	0.216 (5,49)
6	3/8	0.015 (0,38)	0.388 (9,86)	0.370 (9,40)	0.040 (1,02)	0.030 (0,76)	0.0060 (0,152)	0.345 (8,76)	0.171 (4,34)	0.243 (6,17)
7	7/16	0.022 (0,56)	0.319 (8,10)	0.431 (10,95)	0.050 (1,27)	0.040 (1,02)	0.0060 (0,152)	0.392 (9,96)	0.199 (5.05)	0.260 (6,60)

Table 3 : Grip Dimensions and Mass

			ı		ı		 	L	imensions	in inch (mm
Grip Dash	Grip	range	2	K		Ø Dash No 3 Y		Ø Dash No 3A Y		Mass
No	Max	Min	Max	Min	Max	Min	grammes	Max	Min	grammes
03	0.188 (4,78)	0.126 (3,20)	0.193 (4,90)	0.183 (4,65)	0.369 (9,37)	0.349 (8,86)	0.76	0.429 (10.90)	0.409 (10.39)	1.37
04	0.250 (6,35)	0.189 (4,80)	0.255 (6,48)	0.245 (6,22)	0.431 (10,95)	0.411 (10,44)	0.89	0.491 (12,47)	0.471 (11,96)	1.54
05	0.312 (7,92)	0.251 (6,38)	0.317 (8,05)	0.307 (7,80)	0.493 (12,52)	0.473 (12,01)	1.02	0.553 (14,05)	0.533 (13,54)	1.71
06	0.375 (9,52)	0.313 (7,95)	0.380 (9,65)	0.370 (9,40)	0.556 (14,12)	0.536 (13,61)	1.23	0.616 (15,65)	0.596 (15,14)	1.88
07	0.438 (11,13)	0.376 (9,55)	0.443 (11,25)	0.433 (11,00)	0.619 (15,72)	0.599 (15,21)	1.36	0.679 (17,25)	0.659 (16,74)	2.08
08	0.500 (12,70)	0.439 (11,15)	0.505 (12,83)	0.495 (12,57)	0.681 (17,30)	0.661 (16,79)	1.49	0.741 (18,82)	0.721 (18,31)	2.22
09	0.562 (14,27)	0.501 (12,73)	0.567 (14,40)	0.557 (14,15)	0.743 (18,87)	0.723 (18,36)	1.62	0.803 (20,40)	0.783 (19,89)	2.38
10	0.625 (15,88)	0.563 (14,30)	0.630 (16,00)	0.620 (15,75)	0.806 (20,47)	0.786 (19,96)	1.69	0.866 (22,00)	0.846 (21,49)	2.55
11	0.688 (17,48)	0.626 (15,90)	0.693 (17,60)	0.683 (17,35)	0.869 (22,07)	0.849 (21,56)	1.81	0.929 (23,60)	0.909 (23,09)	2.72
12	0.750 (19,05)	0.689 (17,50)	0.755 (19,18)	0.745 (18,92)	0.931 (23,64)	0.911 (23,14)	1.94	0.991 (25,17)	0.971 (24,66)	2.89
13	0.812 (20,62)	0.751 (19,08)	0.817 (20,75)	0.807 (20,50)	0.993 (25,22)	0.973 (24,71)	2.07	1.053 (26,75)	1.033 (26,24)	3.06
14	0.875 (22,22)	0.813 (20,65)	0.880 (22,35)	0.870 (22,10)				1.116 (28,35)	1.096 (27,84)	3.24
15	0.938 (23,83)	0.876 (22,25)	0.943 (23,95)	0.933 (23,70)				1.179 (29,95)	1.159 (29,44)	3.40
16	1.000 (25,40)	0.939 (23,85)	1.005 (25,53)	0.995 (25,27)				1.241 (31,52)	1.221 (31,01)	3.58
17	1.062 (26,97)	1.001 (25,43)	1.067 (27,10)	1.057 (26,85)				1.303 (33,10)	1.283 (32,59)	3.75
18	1.125 (28,58)	1.063 (27,00)	1.130 (28,70)	1.120 (28,45)				1.366 (34,70)	1.346 (34,19)	3.91
19	1.188 (30,18)	1.126 (28,60)	1.193 (30,30)	1.183 (30,05)				1.429 (36,30)	1.409 (35,79)	4.08
20	1.250 (31,75)	1.189 (30,20)	1.255 (31,88)	1.245 (31,62)				1.491 (37,87)	1.471 (37,36)	4.25
21	1.312 (33,32)	1.251 (31,78)	1.317 (33,45)	1.307 (33,20)				1.553 (39,45)	1.533 (38,94)	4.42
22	1.375 (34,92)	1.313 (33,35)	1.380 (35,05)	1.370 (34,80)						
23	1.438 (36,53)	1.376 (34,95)	1.443 (36,65)	1.433 (36,40)						 Continued

Table 3: Grip Dimensions and Mass (Continued)

Grip					Ø Das	Ø Dash No 4		Ø Dasi	n No 5	
Dash	Grip ı	range	2	(Mass			Mass
No	Max	Min	Max	Min	Max	Min	grammes	Max	Min	grammes
03	0.188 (4,78)	0.126 (3,20)	0.193 (4,90)	0.183 (4,65)	0.429 (10.90)	0.409 (10,39)	1.64			
04	0.250 (6,35)	0.189 (4,80)	0.255 (6,48)	0.245 (6,22)	0.491 (12,47)	0.471 (11,96)	1.87	0.556 (14,12)	0.536 (13,61)	3.52
05	0.312 (7,92)	0.251 (6,38)	0.317 (8,05)	0.307 (7,80)	0.553 (14,05)	0.533 (13,54)	2.10	0.618 (15,70)	0.598 (15,19)	3.69
06	0.375 (9,52)	0.313 (7,95)	0.380 (9,65)	0.370 (9,40)	0.616 (15,65)	0.596 (15,14)	2.33	0.681 (17,30)	0.661 (16,79)	4.04
07	0.438 (11,13)	0.376 (9,55)	0.443 (11,25)	0.433 (11,00)	0.679 (17,25)	0.659 (16,74)	2.44	0.744 (18,90)	0.724 (18,39)	4.39
08	0.500 (12,70)	0.439	0.505 (12,83)	0.495 (12,57)	0.741 (18,82)	0.721 (18,31)	2.64	0.806 (20,47)	0.786 (19,96)	4.74
09	0.562 (14,27)	0.501 (12,73)	0.567 (14,40)	0.557 (14,15)	0.803 (20,40)	0.783 (19,89)	2.86	0.868 (22,05)	0.848 (21,54)	5.08
10	0.625 (15,88)	0.563	0.630 (16,00)	0.620 (15,75)	0.866 (22,00)	0.846 (21,49)	3.08	0.931 (23,65)	0.911 (23,14)	5.45
11	0.688 (17,48)	0.626 (15,90)	0.693 (17,60)	0.683 (17,35)	0.929 (23,60)	0.909 (23,09)	3.30	0.994 (25,25)	0.974 (24,74)	5.80
12	0.750 (19,05)	0.689 (17,50)	0.755 (19,18)	0.745 (18,92)	0.991 (25,17)	0.971 (24,66)	3.52	1.056 (26,82)	1.036 (26,31)	6.16
13	0.812 (20,62)	0.751	0.817 (20,75)	0.807 (20,50)	1.053 (26,75)	1.033 (26,24)	3.91	1.118 (28,40)	1.098 (27,89)	6.51
14	0.875 (22,22)	0.813	0.880 (22,35)	0.870 (22,10)	1.116 (28,35)	1.096 (27,84)	4.13	1.181 (30,00)	1.161 (29,49)	6.86
15	0.938 (23,83)	0.876 (22,25)	0.943 (23,95)	0.933 (23,70)	1.179 (29,95)	1.159 (29,44)	4.36	1.244 (31,60)	1.224 (31,09)	7.22
16	1.000 (25,40)	0.939	1.005 (25,53)	0.995 (25,27)	1.241 (31,52)	1.221 (31,01)	4.58	1.306 (33,17)	1.286 (32,66)	7.57
17	1.062 (26,97)	1.001	1.067 (27,10)	1.057 (26,85)	1.303 (33,10)	1.283 (32,59)	4.69	1.368 (34,75)	1.348 (34,24)	7.92
18	1.125	1.063	1.130 (28,70)	1.120 (28,45)	1.366 (34,70)	1.346 (34,19)	4.92	1.431 (36,35)	1.411 (35,84)	8.27
19	1.188 (30,18)	1.126	1.193 (30,30)	1.183 (30,05)	1.429 (36,30)	1.409 (35,79)	5.14	1.494 (37,95)	1.474 (37,44)	8.63
20	1.250 (31,75)	1.189	1.255 (31,88)	1.245 (31,62)	1.491 (37,87)	1.471 (37,36)	5.36	1.556 (39,52)	1.536 (39,01)	8.98
21	1.312 (33,32)	1.251	1.317 (33,45)	1.307 (33,20)	1.553 (39,45)	1.533 (38,94)	5.59	1.618 (41,10)	1.598 (40,59)	9.11
22	1.375 (34,92)	1.313	1.380 (35,05)	1.370 (34,80)				1.681 (42,70)	1.661 (42,19)	9.46
23	1.438 (36,53)	1.376	1.443 (36,65)	1.433 (36,40)				1.744 (44,30)	1.724 (43,79)	9.81

Table 3 : Grip Dimensions and Mass (Continued)

Grip Dash	Grip	range	2	(Ø Dash	No 6 ′	Mass	Ø Dasl Y		Mass
No	Max	Min	Max	Min	Max	Min	Grammes	Max	Min	grammes
05	0.312 (7,92)	0.251 (6,38)	0.317 (8,05)	0.307 (7,80)	0.667 (16,94)	0.647 (16,43)	5.94			
06	0.375 (9,52)	0.313 (7,95)	0.380 (9,65)	0.370 (9,40)	0.730 (18,54)	0.710 (18,03)	5.87	0.777 (19,74)	0.757 (19,23)	8.58
07	0.438 (11,13)	0.376 (9,55)	0.443 (11,25)	0.433 (11,00)	0.793 (20,14)	0.773 (19,63)	6.38	0.840 (21,34)	0.820 (20,83)	9.31
80	0.500 (12,70)	0.439 (11,15)	0.505 (12,83)	0.495 (12,57)	0.855 (21,72)	0.835 (21,21)	6.90	0.902 (22,91)	0.882 22,40)	10.04
09	0.562 (14,27)	0.501 (12,73)	0.567 (14,40)	0.557 (14,15)	0.917 (23,29)	0.897 (22,78)	7.39	0.964 (24,49)	0.944 (23,98)	10.77
10	0.625 (15,88)	0.563 (14,30)	0.630 (16,00)	0.620 (15,75)	0.980 (24,89)	0.960 (24,38)	7.89	1.027 (26,09)	1.007 (25,58)	11.40
11	0.688 (17,48)	0.626 (15,90)	0.693 (17,60)	0.683 (17,35)	1.043 (26,49)	1.023 (25,98)	8.40	1.090 (27,69)	1.070 (27,18)	12.10
12	0.750 (19,05)	0.689 (17,50)	0.755 (19,18)	0.745 (18,92)	1.105 (28,07)	1.085 (27,56)	8.91	1.152 (29,26)	1.132 (28,75)	12.80
13	0.812 (20,62)	0.751 (19,08)	0.817 (20,75)	0.807 (20,50)	1.167 (29,64)	1.147 (29,13)	9.41	1.214 (30,84)	1.194 (30,33)	13.50
14	0.875 (22,22)	0.813 (20,65)	0.880 (22,35)	0.870 (22,10)	1.230 (31,24)	1.210 (30,73)	9.92	1.277 (32,44)	1.257 (31,93)	14.70
15	0.938 (23,83)	0.876 (22,25)	0.943 (23,95)	0.933 (23,70)	1.293 (32,84)	1.273 (32,33)	10.42	1.340 (34,04)	1.320 (33,53)	15.40
16	1.000 (25,40)	0.939 (23,85)	1.005 (25,53)	0.995 (25,27)	1.355 (34,42)	1.335 (33,91)	10.93	1.402 (35,61)	1.382 (35,10)	16.10
17	1.062 (26,97)	1.001 (25,43)	1.067 (27,10)	1.057 (26,85)	1.417 (35,99)	1.397 (35,48)	11.43	1.464 (37,19)	1.444 (36,68)	16.80
18	1.125 (28,58)	1.063 (27,00)	1.130 (28,70)	1.120 (28,45)	1.480 (37,59)	1.460 (37,08)	11.93	1.527 (38,79)	1.507 (38,28)	17.50
19	1.188 (30,18)	1.126 (28,60)	1.193 (30,30)	1.183 (30,05)	1.543 (39,19)	1.523 (38,68)	12.45	1.590 (40,39)	1.570 (39,88)	18.20
20	1.250 (31,75)	1.189 (30,20)	1.255 (31,88)	1.245 (31,62)	1.605 (40,77)	1.585 (40,26)	12.97	1.652 (41,96)	1.632 (41,45)	18.90
21	1.312 (33,32)	1.251 (31,78)	1.317 (33,45)	1.307 (33,20)	1.667 (42,34)	1.647 (41,83)	13.46	1.714 (43,54)	1.694 (43,03)	19.60
22	1.375 (34,92)	1.313 (33,35)	1.380 (35,05)	1.370 (34,80)	1.730 (43,94)	1.710 (43,43)	13.97	1.777 (45,14)	1.757 (44,63)	20.30
23	1.438 (36,53)	1.376 (34,95)	1.443 (36,65)	1.433 (36,40)	1.793 (45,54)	1.773 (45,03)	14.48	1.840 (46,74)	1.820 (46,23)	22.19
24	1.500 (38,10)	1.439 (36,55)	1.505 (38,23)	1.495 (37,97)	1.855 (47,12)	1.835 (46,61)	14.99	1.902 (48,31)	1.882 (47,80)	22.87
25	1.562 (39,67)	1.501 (38,13)	1.567 (39,80)	1.557 (39,55)	1.917 (48,69)	1.897 (48,18)	15.50	1.964 (49,89)	1.944 (49,38)	23.55
26	1.625 (41,28)	1.563 (39,70)	1.630 (41,40)	1.620 (41,15)	1.980 (50,29)	1.960 (49,78)	16.01	2.027 (51,49)	2.007 (50,98)	24.23
27	1.688 (42,88)	1.626 (41,30)	1.693 (43,00)	1.683 (42,75)	2.043 (51,89)	2.023 (51,38)	17.03	2.090 (53,09)	2.070 (52,58)	24.92

Table 3 : Grip Dimensions and Mass (Concluded)

Grip Dash	Grip	range	,	(Ø Dash	No 6 Y	Mass	Ø Dash Y	No 7	Mass
No	Max	Min	Max	Min	Max	Min	grammes	Max	Min	grammes
28	1.750 (44,45)	1.689 (42,90)	1.755 (44,58)	1.745 (44,32)	2.105 (53,47)	2.085 (52,96)	17.54	2.152 (54,66)	2.132 (54,15)	25.60
29	1.812 (46,02)	1.751 (44,48)	1.817 (46,15)	1.807 (45,90)	2.167 (55,04)	2.147 (54,53)	18.05	2.214 (56,24)	2.194 (55,73)	26.28
30	1.875 (47,62)	1.813 (46,05)	1.880 (47,75)	1.870 (47,50)	2.230 (56,64)	2.210 (56,13)	18.56	2.277 (57,84)	2.257 (57,33)	26.96
31	1.938 (49,23)	1.876 (47,65)	1.943 (49,35)	1.933 (49,10)	2.293 (58,24)	2.273 (57,73)	19.07	2.340 (59,44)	2.320 (58,93)	27.64
32	2.000 (50,80)	1.939 (49,25)	2.005 (50,93)	1.995 (50,67)	2.355 (59,82)	2.335 (59,31)	19.58	2.402 (61,01)	2.382 (60,50)	28.32

Table 4: Mechanical Properties

Pin Part Number	Nom D	ninal ia		mum e Shear	Minimum Ultimate Tensile with collar		
	in	mm	lbf	N	lbf	N	
ABS0550VHK3-	0.1900	4,83	5380	23931	1600	7117	
ABS0550VHK3A-	0.2190	5,55	7200	32027	2250	10008	
ABS0550VHK4-	0.2500	6,35	9300	41368	3000	13344	
ABS0550VHK5-	0.3125	7,92	14600	64944	5000	22241	
ABS0550VHK6-	0.3750	9,53	21000	93412	7000	31137	
ABS0550VHK7-	0.4375	11,11	28600	127219	9500	42258	
** Minimum Ultimat Collars.	te Tensil	e Streng	ths using	ASNA20	25 Alumin	ium Alloy	

4 Designation

5 Marking

Parts to be marked in accordance with EN2424 Style 'B' and paragraph 3.1.4

6 Technical specification

Product Specification HPS C 2010

RECORD OF REVISIONS

Issue	Clause modified	Description of modification
5	2	Normative reference amended to change MIL-L-87132 to EN6117.
04/08	Table 1	Hi-Kote 1 and Kalgard 2245 replaced by 'Resin based Aluminium.
	Fig 1 & Table 1	Figure 1 and table 1 amended to include dimension Ø B ₁
	Table 3	Grip lengths –30, -31 & -32 for diameter -6 added for A340 Aircraft
	5	Part marking amended from 'style A' to 'Style B'.
		Mass values added for all diameters.