Lab Report (Lab 5 - jpy19)

Question One

Questions

a. $x \equiv 5 \mod 7$ and $x \equiv 7 \mod 10$

b. $x \equiv 3 \mod 7$ and $x \equiv 7 \mod 14$

c. $x \equiv 2 \mod 6$ and $x \equiv 3 \mod 11$

Solutions

a. $x \equiv 5 \mod 7$ and $x \equiv 7 \mod 10$

pq = 70

 $x = 397 \mod 70$

 $x=47 \mod 70$

1b)

b. $x \equiv 3 \mod 7$ and $x \equiv 7 \mod 14$

NOTE: gcd(7, 14) = 7 not co-prime

1c)

c. $x \equiv 2 \mod 6$ and $x \equiv 3 \mod 11$

pq = 66

```
x = 146 \mod 66x = 14 \mod 66
```

Question Two

Find $\phi(20)$ $\phi(21)$ $\phi(22)$ $\phi(23)$ $\phi(24)$ $\phi(25)$

- $\phi(20) = (1 \frac{1}{2}) \cdot (1 \frac{1}{5}) = 8$
- $\phi(21) = 21 \cdot \frac{2}{3} \cdot \frac{6}{7} = 12$
- $\phi(22) = 22 \cdot \frac{1}{2} \cdot \frac{10}{11} = 10$
- $\phi(23) = 23 1 = 22$
- $\phi(24) = 24 \cdot \frac{1}{2} \cdot \frac{2}{3} = 8$
- $\phi(25) = 25 \cdot \frac{4}{5} = 20$

Question Three

Questions

Find the discrete logarithm of the number 3 with regard to base 2 for:

- a. modulus p = 5
- b. modulus p = 11
- c. modulus p = 29

Solutions

- $2^3 \equiv 3 \mod 5$
- $2^8 \equiv 3 \mod 11$
- $2^5 \equiv 3 \mod 29$

Question Four

Use the Fermat test to check whether the following numbers are prime or not:

- 979
- 983

```
def fermats_prime(a, primes):
    for prime in primes:
        for ab in a:
        print("Number:", prime, "Value: ", ab**(prime-1) % prime)
```

- 979 is not prime
- 983 is prime

Question Five

We first recall the Miller-Rabin algorithm. Let n and u be odd, and v s.t. $n-1=2^vu$:

- a. using the above algorithm, check n=17 if n is prime
- b. using the above algorithm, check $n=15\ {\rm if}\ n$ is prime

```
1 def miller(n,a,u,v):
2
       b = a**u % n
3
       if b == 1:
4
           return True
5
       else:
6
           for _ in range(0, ∨-1):
                if b == -1:
7
                    return True
8
                b = b**2 \% n
9
10
           return False
```

With values n = 17, a = 11, u = 1, v = 3

Miller-Rabin algorithm returns:

- n=17 is prime
- n=15 is composite