Fourier transform on the real line

The treatment is based on analogies: recall the discrete and the periodic models.

The function space

The signal: $x : \mathbb{R} \to \mathbb{C}$

Proper function space: $L^1(\mathbb{R})$, $L^2(\mathbb{R})$, etc. (Lebesgue–integral).

Instead: a more simple mathematical model.

We assume (improper Riemann-integral)

$$\exists \int_{-\infty}^{\infty} |x(u)|^k du = \lim_{t \to \infty} \int_{-t}^t |x(u)|^k du < \infty,$$

where k = 1 or 2. Notation: $x \in R^k(-\infty, +\infty)$.

The trigonometric system

$$e_{\lambda}(t) = e^{2\pi i \lambda t}$$
 $(\lambda \in \mathbb{R})$.

Fourier transform

$$\widehat{x}: \mathbb{R} \to \mathbb{C} , \qquad x \in R^1(-\infty, +\infty), \qquad \widehat{x}(\lambda) = \int_{-\infty}^{\infty} x(t)e^{-i2\pi\lambda t} dt .$$

The spectrum is "continuous".

Inversion

The Fourier transform is invertible.

Inversion formula: If x, $\hat{x} \in R(-\infty, \infty)$, then

$$x(t) = \int_{-\infty}^{\infty} \widehat{x}(\lambda) e^{i2\pi\lambda t} d\lambda.$$

Remark: The inversion formula holds in the case if $x \in R^1(-\infty, \infty)$ piecewise (finite many pieces) continuously differentiable and $x' \in R^1(-\infty, \infty)$.

Examples

1.
$$x(t) = e^{-a|t|}, \quad \widehat{x}(\lambda) = \frac{2a}{a^2 + 4\pi^2\lambda^2};$$

3.
$$\operatorname{rect} t := \chi_{[-0.5,0.5]}, \quad \operatorname{sinc} \lambda := \begin{cases} \frac{\sin \pi \lambda}{\pi \lambda} &, \ \lambda \neq 0 \\ 1 &, \ \lambda = 0 \end{cases}$$
$$x(t) = \operatorname{rect} t, \qquad \widehat{x}(\lambda) = \operatorname{sinc} \lambda;$$

Note that sinc $\notin R^1(-\infty,\infty)$.

4.
$$x(t) = e^{-\pi t^2}, \quad \hat{x}(\lambda) = e^{-\pi \lambda^2}.$$

The Gauss-function is eigenfunction of the Fourier transform.

Remark: The inversion formula can be generalized: $\widehat{\text{sinc}} = \text{rect.}$

Properties

- **1.** Translation: $y(t) = x(t \tau)$ $\hat{y}(u) = e^{-2\pi i \tau} \hat{x}(u)$.
- **2.** Modulation: $y(t) = e^{2\pi i\lambda}x(t)$ $\widehat{y}(u) = \widehat{x}(u-\lambda)$. These are similar to the discrete and the periodic cases.
- **3.** Dilation: y(t) = x(at) $\widehat{y}(u) = \frac{1}{|a|}\widehat{x}(\frac{u}{a})$. This is new. "Uncertainty relations"
- **4.** Convolution: z(t) = (x * y)(t) $\widehat{z}(u) = \widehat{x}(u)\widehat{y}(u)$.
- **5.** Multiplication: z(t) = x(t)y(t) $\widehat{z}(u) = (\widehat{x} * \widehat{y})(u)$. In both cases convolution on the real line:

$$(x*y)(t) = \int_{-\infty}^{\infty} x(t-u)y(u) du.$$