Social Choice Theory

Exercice 1:(Scoring voting rules)

A scoring voting rule is defined by :

- A non decreasing sequence of integers : $s_0 \le s_1 \le ... s_{m-1}$ such that $s_0 < s_{m-1}$
- Each voter gives s_0 points to the candidate he ranks in last, s_1 points to the candidate he ranks in next to last...
- The candidate who gets the more points is elected
- 1. Let the following voters. Give the result obtained by each candidate

voters	preferences
3	c > a > b
2	a > b > c
1	a > c > b
1	b > c > a

- 2. Is there a Condorcet winner? If yes, can he be elected (and be the only winner) by a scoring method? If he can, give the value of s_1 , s_2 and s_3 ; otherwise explain why
- 3. What are your conclusions?

Exercice 2:(Straffin [1980])

Let the following profile:

voters	preferences
1	a > b > c > d > e
4	$\begin{vmatrix} a > b > c > d > e \\ c > d > b > e > a \end{vmatrix}$
1	e > a > d > b > c
3	e > a > b > d > c

- 1. Who is the Copeland winner? The Kramer-Simpson winner? How can you deduct that there is no Condorcet winner from these results?
- 2. Who is the Borda winner?
- 3. Is there a scoring method which elects only c? Only b? Only d?

Exercice 3:(Separability)

Let V_1 and V_2 be two disjoint groups of voters over the same set of candidates A. Let B_1 be the subset of candidates elected by V_1 , and B_2 be the candidates elected by V_2 .

Thus, if $B_1 \cap B_2 \neq \emptyset$, then the set of voters $V_1 \cup V_2$ should elect $B_1 \cap B_2$.

- 1. Do you know a method which does not satisfy this property? Which one?
- 2. Prove that scoring methods satisfy this property

Exercice 4:(Voting methods)

Let *A* be the finite set of candidates, and *V* be the finite set of voters. We consider the following voting rule :

- 1. Each voter presents a total order over the set of candidates A
- 2. Each candidate ranked in first position gets 4 points
- 3. Each candidate ranked in second position gets 2 points
- 4. Each candidate ranked in third position gets 1 point
- 5. All the other candidates get 0 point
- 6. The candidate who gets the more points is elected

Analyze this procedure with respect to Arrow's theorem.

Exercice 5:(Board meeting)

The CEO of a firm, Mr LeChef, wants to see his candidate, d, elected against the three other candidates a, b and c. He knows that the 20 members of the board meeting have the following preferences:

voters	preferences
3	$b \succ c \succ a \succ d$
8	$\begin{vmatrix} a \succ d \succ c \succ b \\ c \succ d \succ a \succ b \end{vmatrix}$
5	$c \succ d \succ a \succ b$
4	$d \succ c \succ a \succ b$

What voting method could choose Mr LeChef in order to ensure the election of d?