Quiz 05	
Thursday, 13 October 2022 11:51	
The mapping of a logical address to a physical address is done dynamically in	
The mapping of a logical address to a physical address is done dynamically in	
O a. load-time binding	
O b. compile-time binding	
⊙ c. execution-time binding	
Which dynamic storage-allocation policy results in the largest leftover hole in mem	ory?
Which dynamic storage-allocation policy results in the largest leftover hole in memory?	•
O a. First fit	
b. Worst fits	
○ c. Best fit	
Which of the following memory allocation methods may result in external fragmen Which of the following memory allocation methods may result in external fragmentation	
a. Both paging and segmentation	
O b. Paging	
c. Both dynamic partitioning & segmentation	
Od. Both dynamic partitioning & paging	
Considering a logical address with a page size of 8 KB, how many bits must be used in the logical address? Considering a logical address with a page size of 8 KB, how many bits must be used to represent the	
⊚ a. 13	
O b. 10	
O c. 8	
○ d.12	
Which of the following memory allocation methods may result in internal fragment	tation?
Which of the following memory allocation methods may result in internal fragmer	ntation?
a. Dynamic partitioning	
b. Paging	
C. Segmentation	
Which dynamic storage-allocation policy has least overhead?	
Which dynamic storage-allocation policy has least overhead?	
O a. Worst fits	
○ b. Best fit	
⊙ c. First fit	
Which of the following statement about memory compaction is true? Which of the following statement about memory compaction is true?	
a. It can be done at compile, load, or execution time.	
b. It is possible only if address binding is dynamic and done at execution time.	
O c. It does not shuffle memory contents.	
O d. It is used to solve the problem of internal fragmentation.	

Quiz 05
Thursday, 13 October 2022 11:51
Re-locatable code will be generated for
Re-locatable code will be generated for
a. execution-time binding
O b. load-time binding
C. compile-time binding
Memory compaction can be performed if address binding is done in
Memory compaction can be performed if address binding is done in
O a. compile-time
o b. execution-time
○ c. load-time
Which of the following memory allocation approaches assumes logical address space of a process is contiguous? Which of the following memory allocation approaches assumes logical address space of a process is contiguous?
O a. Dynamic partitioning
O b. Paging
O c. Segmentation
d. All the above
Which of the following memory allocation approaches allocates contiguous memory space for a process?
Which of the following memory allocation approaches allocates contiguous memory space for a process?
a. Dynamic partitioning
O b. Paging
O c. Segmentation
O d. All the above
Which dynamic storage-allocation policy results in the smallest leftover hole in memory?
Which dynamic storage-allocation policy results in the smallest leftover hole in memory?
a. Worst fits
b. Best fit
C. First fit
Logical address and physical address will be the same if address binding is performed in
Logical address and physical address will be the same if address binding is performed in
O compile-time
O load-time O execution-time
both compile-time and load-time

Quiz 05
Thursday, 13 October 2022 11:51
Given the logical address 0xAEF9 (in hexadecimal) with a page size of 256 bytes, what is the page offset? Given the logical address 0xAEF9 (in hexadecimal) with a page size of 256 bytes, what is the page offset?
O a. 0X9
● b. 0XF9
O c. 0xAF9
○ d.0xAE
Given the logical address 0xAEF9 (in hexadecimal) with a page size of 256 bytes, what is the page number of this logical address?
Given the logical address 0xAEF9 (in hexadecimal) with a page size of 256 bytes, what is the page number of this logical address?
O b. 0xA
○ c. 0X9
O d. 0xF9