

Engineering Physics

(PHY1701)

Dr. B. Ajitha

Assistant Professor Division of Physics VIT University Chennai, India ajitha.b@vit.ac.in

Contents

- Physics of Divergence, Gradient and Curl (DJG 13-20),
- Qualitative understanding of surface and volume integral (DJG 24, 26, 27),
- Maxwell Equations (Qualitative) (DJG 232, 321-327),
- Wave Equation (Derivation) (DJG 364-366), &
- EM Waves, Phase velocity, Group velocity, Group index*, Wave guide (Qualitative) (DJG 405)
- William Silfvast, Laser Fundamentals, 2008, Cambridge University Press.

Fundamental Forces

- 1. Gravitation
- 2. Electromagnetism
- 3. Strong Nuclear
- 4. Weak Nuclear

Strong force binds the nucleus

Weak force in radioactive decay

Electromagnetic force binds atoms

What is Electromagnetics?

Electromagnetic Wave Spectrum

Why do we learn Engineering Electromagnetics

Electric and magnetic field exist nearly everywhere.

Applications

Electromagnetic principles find application in various disciplines such as microwaves, x-rays, antennas, electric machines, plasmas, etc.

Applications

- Electromagnetic fields are used in induction heaters for melting, forging, annealing, surface hardening, and soldering operation.
- Electromagnetic devices include transformers, radio, television, mobile phones, radars, lasers, etc.

Applications

Transrapid Train

- A magnetic traveling field moves the vehicle without contact.
- The speed can be continuously regulated by varying the frequency of the alternating current.

Scalars and Vectors

- Scalar refers to a quantity whose value may be represented by a single (positive or negative) real number.
- Some examples include distance, temperature, mass, density, pressure, volume, and time.
- A vector quantity has both a magnitude and a direction in space. We especially concerned with two- and threedimensional spaces only.
- Displacement, velocity, acceleration, and force are examples of vectors.

- Scalar notation: A or A (italic or plain)
- Vector notation: \mathbf{A} or \overrightarrow{A} (bold or plain with arrow)

Suppose $T_1(x,y,z)$ is the temperature at $P_1(x,y,z)$, and $T_2(x+dx,y+dy,z+dz)$ is the temperature at P_2 as shown.

The differential distances dx, dy, dz are the components of the differential distance vector $d\mathbf{L}$:

$$d\mathbf{L} = dx\mathbf{a}_x + dy\mathbf{a}_y + dz\mathbf{a}_z$$

However, from differential calculus, the differential temperature:

$$dT = T_2 - T_1 = \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz$$

But,
$$dx = d\mathbf{L} \cdot \mathbf{a}_{x}$$

 $dy = d\mathbf{L} \cdot \mathbf{a}_{y}$
 $dz = d\mathbf{L} \cdot \mathbf{a}_{z}$

So, previous equation can be rewritten as:

$$dT = \frac{\partial T}{\partial x} \mathbf{a}_x \bullet d\mathbf{L} + \frac{\partial T}{\partial y} \mathbf{a}_y \bullet d\mathbf{L} + \frac{\partial T}{\partial z} \mathbf{a}_z \bullet d\mathbf{L}$$
$$= \left(\frac{\partial T}{\partial x} \mathbf{a}_x + \frac{\partial T}{\partial y} \mathbf{a}_y + \frac{\partial T}{\partial z} \mathbf{a}_z\right) \bullet d\mathbf{L}$$

Gradient

- Gradient of a scalar field is its slope or rate of change.
- The term is called the gradient of f and represents the maximum slope or rate of change of f in any direction
- The term is called the gradient of f and represents the maximum slope or rate of change of f in any direction.

$$df(x, y, z) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

$$= \left(\frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z}\right) \cdot (\hat{x} dx + \hat{y} dx + \hat{z} dz)$$

$$= \vec{\nabla} f \cdot d\vec{l}$$

The vector inside square brackets defines the change of temperature dT corresponding to a vector change in position $d\mathbf{L}$.

This vector is called *Gradient of Scalar* **T**.

For Cartesian coordinate:

$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial v} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z$$

 \succ The Gradient of a scalar function ϕ is a vector whose Cartesian components are,

$$\frac{\partial \phi}{\partial x}$$
, $\frac{\partial \phi}{\partial y}$ and $\frac{\partial \phi}{\partial z}$

Then grad φ is given by,

Grad
$$\phi = \nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}$$

- The magnitude of this vector gives the maximum rate of change of the scalar field and directed towards the maximum change occurs.
- The electric field intensity at any point is given by, $E = - \operatorname{grad} V = \operatorname{negative} \operatorname{gradient} \operatorname{of} \operatorname{potential}$
- The negative sign implies that the direction of *E* opposite to the direction in which *V* increases.

Del Operator

• One can thus define a vector operator "Del" which is defined as:

$$\vec{\nabla} \equiv \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

- This vector operator can operate on a scalar or vector function
 - ∇S : Gradient
 - $\vec{\nabla} \cdot \vec{A}$: Divergence
 - $\nabla \times \vec{A}$: Curl

Illustration of the divergence of a vector field at point P:

Positive Divergence

Negative Divergence

Zero Divergence

Example for Divergence

Physical significance of divergence

- ➤ Physically the divergence of a vector quantity represents the rate of change of the field strength in the direction of the field.
- ➤ If the divergence of the vector field is positive at a point then something is diverging from a small volume surrounding with the point as a source.
- ➤ If it negative, then something is converging into the small volume surrounding that point is acting as sink.
- ➤ if the divergence at a point is zero then the rate at which something entering a small volume surrounding that point is equal to the rate at which it is leaving that volume.
- The vector field whose divergence is zero is called solenoidal

The *divergence of* **A** at a given point **P** is the outward flux per unit volume:

$$div \mathbf{A} = \nabla \bullet \mathbf{A} = \lim_{\Delta v \to 0} \frac{s}{\Delta v}$$

$$\mathsf{div}\,\mathbf{V} = \nabla \bullet \mathbf{V} =$$

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

Where,
$$\oint_{S} \mathbf{A} \cdot dS = \left(\int_{\text{front back left right top bottom}} \right) \mathbf{A} \cdot dS$$

And, **v** is *volume* enclosed by surface **S**

$$\nabla \bullet \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

- Divergence gives a measure of how much a vector function spreads out.
- For $\vec{A} = x \ \hat{x}, \ \vec{\nabla} \cdot \vec{A} = \frac{\partial x}{\partial x} = 1$.

• For $\vec{A} = \vec{r}$, $\vec{\nabla} \cdot \vec{A} = 3$.

- For $\vec{A} = \frac{\hat{r}}{r^2}$, $\vec{\nabla} \cdot \vec{A} = 0$. This is precisely the form of electric field of a point charge and its divergence cannot be zero from Gauss's law.
 - There is clearly something fishy here, we will come back to it later.