# Lattice-Based Cryptography, LWE/LWR

Srikar Varadaraj

Columbia University

5/3/2016

### Introduction

- What exactly is lattice cryptography?
- Why should we care about it?

### Peikert

The use of *apparently* hard problems on point lattices in  $\mathbb{R}^n$  as the foundation for secure cryptographic constructions.

# What makes Lattice-Crypto Special?

Conjectured security against quantum attacks.

Number-Theoretic cryptography (Diffie-Hellman,RSA) rely on hardness of integer factorization/ discrete-log in groups. But Shor's Quantum Algorithm finds integer factorization in time O(n)!

Ajtai'96 proved that the worst-case hardness of lattice problems implies average-case hardness of certain problems.

# What makes Lattice-Crypto Special?

Gentry [Gen09b, Gen09a] proposed the first candidate for FHE (Fully Homomorphic Encryption) based on lattices! All further constructions were based on lattices as well.

### Lattice: Definition



An n-dimensional lattice L is a subset of  $\mathbb{R}^n$  which has the structure of:

- (1). An additive subgroup  $\implies$  **0**  $\in$  L,  $-x, x + y \in L \ \forall x, y \in L$ .
- (2). A discrete set  $\implies \forall x \in L, \exists$  a neighborhood of x in  $\mathbb{R}^n$  such that x is the only point in L contained in the neighborhood.

## GapSVP, SVP

We define the minimum distance of a lattice L as the length of the shortest non-zero lattice vector:  $\lambda_1(L) = \min_{v \in L - \{0\}} ||v||$ . ||v|| denotes the Euclidean norm. The notion can be generalized by defining  $\lambda_i(L)$  as the smallest r such that L has i linearly independent vectors of norm at most r.

## GapSVP,SVP

### **SVP Problem:**

Given an arbitrary basis B of an n-dimensional lattice L=L(B), find a non-zero vector  $v\in L$  for which  $||v||=\lambda_1(L)$ .

### **SVP**<sub>\(\gamma\)</sub> Problem:

Given a lattice basis B, find a nonzero  $v \in L(B)$  such that  $0 < ||v|| \le \gamma \lambda_1(L(B))$ . Here  $\gamma = \gamma(n) \ge 1$  is a function of dimension n.

## GapSVP,SVP

### **GapSVP** $_{\gamma}$ **Problem:**

Given a lattice basis B and a positive integer d, output whether

 $\lambda_1(L(B)) \le d$  is true or  $\lambda_1(L(B)) > d$ .

We have the intuitive result:  $GapSVP_{\lambda} \leq SVP_{\lambda}$  in general.

### LPN: Definition

We are provided with samples (x, f(x)) where  $f(x) \in \{0, 1\}$ . However, with some small probability, we are provided with 1 - f(x). The idea is to recover the secret if the output is sometimes flipped, or perturbed. Since f(x) has only two possibilities, it represents the parity of a number, since 0 represents 0 (mod 2) and 1 represents 1 (mod 2).

### LPN - Algorithm

For an integer  $n \ge 1$  and some real number  $\epsilon \ge 0$ , we need to find an unknown  $s \in \mathbb{Z}_2^n$  if we have a list of equations:

 $< s, a_1 > \approx_{\epsilon} b_1 \pmod{2}$ 

## LPN-Algorithm

We can find a set S of O(n) equations such that  $\sum_{S} a_i = (1, 0, ..., 0)$  using Gaussian Elimination. Summing the corresponding values for  $b_i$ , gives us a good guess for the first bit of s.

Each  $b_i$  is correct with a probability  $1 - \epsilon$ . We note that this is  $\frac{1}{2} + 2^{-\Theta(n)}$ . This implies that to get the first bit of s with high probability  $(1 - \frac{1}{poly(n)})$ , we need to repeat the algorithm  $2^{\Theta(n)}$  times.

## LPN-Algorithm

Blum et al. provide a subexponential algorithm for the problem. They only use  $2^{O(n/logn)}$  equations/time. Best algorithm known today!

### LWE: Definition

Let  $q = p(n) \le poly(n)$  be some prime integer (note that in later discussions, we do not have this restriction) and we have a list of equations with error:

$$< s, a_1 > \approx_{\chi} b_1(modq)$$
  
 $< s, a_2 > \approx_{\chi} b_2(modq)$   
 $\vdots$ 

 $s \in \mathbb{Z}_n^q$  and  $a_i$  are chosen independently and uniformly from  $\mathbb{Z}_q^n$ ,  $b_i \in \mathbb{Z}_q$ . Note that the error now has a distribution specified by  $\chi : \mathbb{Z}_q \to \mathbb{R}^+$  on  $\mathbb{Z}_q$ .

Thus we have:

$$b_i = \langle s, a_i \rangle + e_i \tag{1}$$

where each  $e_i$  is chosen independently according to  $\chi$ . Now we simply have the problem of learning the secret s given all the equations above with the error added. We denote this problem by LWE $_{a,\chi}$  as in the paper.

### Regev's Result

Let n,p be integers and  $\alpha\in(0,1)$  be such that  $\alpha p>2\sqrt(n)$ . If there is an efficient algorithm that solves  $\mathrm{LWE}_{p,\psi_\alpha}$  then there exists an efficient quantum algorithm that approximates the decision version of the shortest vector problem (GAPSVP) and the shortest independent vectors problem (SIVP) to within  $\tilde{O}(n/\alpha)$  in the worst case.

## Learning With Rounding (LWR)

Proposed by Banerjee, Peikert, Rosen.

**LWR**<sub>n,q,p</sub> **Definition:** We draw independent samples  $a_i \in \mathbb{Z}_q^n$  and then round  $< a_i, s > \text{mod } p$ . We then have to distinguish these rounded inner products from uniform random samples in  $\mathbb{Z}_p$ . Here  $q, p \in \mathbb{N}$ .

### Discrete Gaussian

The Discrete Gaussian Distribution  $\chi_{\sigma}$  on  $\mathbb{Z}_q$  with standard deviation  $\sigma: \chi_{\sigma}(x)$ .

#### **Definition:**

For any center  $c \in R$ , and Gaussian parameter  $s \in \mathbb{R}+$ , define the discrete Gaussian distribution as:

$$D_{s,c}(x) = \frac{\rho_{s,c}(x)}{\sum_{y=-\infty}^{\infty} \rho_{s,c}(y)} \forall x \in \mathbb{Z},$$
 (2)

where ho denotes the Gaussian function  $ho_{s,c}(x)=e^{-\pi|x-c|^2/s^2}$