УДК 546.[2+6+57+02]

https://doi.org/10.37827/ntsh.chem.2022.70.062

Інна ІВАЩЕНКО, Валентина КОЗАК, Любомир ГУЛАЙ, Іван ОЛЕКСЕЮК

КРИСТАЛІЧНА СТРУКТУРА СПОЛУК AgGa₂Se₃Cl(Br)

Волинський національний університет імені Лесі Українки, просп. Волі, 13, 43000 Луцьк, Україна e-mail: ivashchenko.inna@vnu.edu.ua

Вперше методом порошку досліджено кристалічну структуру нових тетрарних сполук, що кристалізуються в тетрагональній сингонії, пр. гр. I-4, структурний тип $CuIn_2Te_3Cl$, з параметрами комірки: $AgGa_2Se_3Cl$ (a=5,9789(3) Å, c=10,8592(7) Å), $AgGa_2Se_3Br$ (a=5,9767(3) Å, c=10,8558(7) Å). З аналізу кристалічної структури випливає, що досліджені сполуки належать до групи напівпровідників загальної формули $A^IB^{III}_2X^{VI}_3Y^{VII}$ (A^I-Cu , Ag; $B^{III}-Ga$, In; $X^{VI}-S$, Se; $Y^{VII}-Cl$, Br, I).

Ключові слова: халькогалогеніди, кристалічна структура, рентгеноструктурний аналіз, напівпровідник.

Досліджуючи систему In_2S_3 —CuI [1], ми зафіксували утворення тетрарної сполуки $CuIn_2S_3I$, що належить до більшої групи $A^IB^{III}_2X^{VI}_3Y^{VII}$ (A^I — Cu, Ag; B^{III} — Ga, In; X^{VI} — S, Se; Y^{VII} — Cl, Br, I). Заміною Cu^+ , In^{3+} , Se^{2-} та I^- на Ag^+ , Ga^{3+} , Se^{2-} , Cl^- та Br^- було вирішено отримати низку тетрарних сполук, для подальшого дослідження їх кристалічної структури. Автори [2, 3] досліджували тетрарні сполуки складу $A^IB_2X^{VI}_3Y^{VII}$, де A^I — Cu, Ag; B^{III} — In; X^{VI} — S, Se, Te; Y^{VII} — Cl, Br, I. Були отримані фази з кристалічними структурами дефектної цинкової обманки ($CuIn_2Se_3I$, $CuIn_2Te_3Cl$, $CuIn_2Te_3Br$, $CuIn_2Te_3I$, $AgIn_2Se_3I$, $AgIn_2Te_3I$), шпінелі ($AgIn_2Se_3Cl$, $AgIn_2Se_3Cl$, $AgIn_2Se_3Cl$, $AgIn_2Se_3Cl$, $AgIn_2Se_3Cl$, $AgIn_2Te_3Cl$, $AgIn_2Te_$

Для проведення власного дослідження зразки синтезували з простих речовин Ga 99,99 ваг.%, Se 99,99 ваг.% та попередньо синтезованих AgCl(Br). Контейнерами для синтезу були спеціально підготовлені кварцові ампули, які після наважування шихти вакуумували до залишкового тиску $1,33\times10^{-2}$ Па. Синтез виконували в промислових автоматичних печах регульованого нагріву «Термодент» з системою регулювання температури печі ± 5 К. Синтез проводили шляхом нагрівання до 1270 К, витримкою протягом 4 годин, охолодженням отриманих сплавів до 770 К, витримуванням зразків за цієї температури протягом 300 годин, після чого гартували взірці в насичений водний розчин натрій хлориду. Вищенаведеним методом були отримані тетрарні сполуки AgGa₂Se₃Cl, AgGa₂Se₃Br, для яких кристалічна структура вивчалася за допомогою методу порошку. Умови проведеного експерименту та отримані результати розрахунку кристалічних структур наведено в табл. 1-5, рис. 1; 2.

Таблиця 1

Результати уточнення кристалічних структур сполук AgGa₂Se₃Cl, AgGa₂Se₃Br

Table 1

To Results of refinement of crystal structures of AgGa₂Se₃Cl, AgGa₂Se₃Br compounds

Емпірична формула	AgGa ₂ Se ₃ Cl	AgGa ₂ Se ₃ Br
Просторова група	<i>I</i> –4	<i>I</i> –4
Z	2	2
Періоди елементарної комірки, Å	a = 5,9789(3), c = 10,8592(7)	a = 5,9767(3), c = 10,8558(7)
V, Å ³	388,18(6)	387,77(6)
Кількість атомів у комірці	14	14
Розрахована густина (г/см ³)	4,4454(6)	4,8308(7)
Коефіцієнт абсорбції (1/см)	499,53	536,03
Випромінювання, довжина хвилі (Å)	CuKα; 1,54185	CuKα; 1,54185
Дифрактометр	ДРОН 4-13	ДРОН 4-13
Спосіб обчислення	Повнопрофільний	Повнопрофільний
Кількість вільних параметрів	10	10
$R_{I}; R_{p}$	0,0932; 0,2028	0,0698; 0,2303
Фактор шкали	1,170(8)	1,39(3)
Вісь текстури та параметр	[1 0 0]; 0,4154	[1 0 0]; 0,49(4)

Уточнення координат та ізотропних теплових параметрів атомів у структурах тетрарних сполук $AgGa_2Se_3Cl$, $AgGa_2Se_3Br$ наведено у табл. 2; 4. Міжатомні відстані та координаційні числа атомів у структурах сполук наведені у табл. 3; 5.

Таблиця 2 Уточнені координати атомів та ізотропні теплові параметри в AgGa₂Se₃Cl

Table 2
The refined coordinates of atoms and isotropic thermal parameters of AgGa₂Se₃Cl

Атом	ПСТ	x/a	y/b	z/c	Зайнятість позицій	$B_{i\text{30t.}}{\times}10^2,\text{Å}^2$
Ga1	2 <i>a</i>	0	0	0	0,8	0,4(4)
Ga2	2c	0	0,5	0,25	0,8	1,1(5)
M1	2b	0	0	0,5	0,5 Ag + 0,2 Ga	1,7(8)
M2	2 <i>d</i>	0	0,5	0,75	0,5 Ag + 0,2 Ga	0,4(4)
X	8 <i>g</i>	0,2161(15)	0,270(3)	0,1236(10)	0,75 Se + 0,25 Cl	2,4(2)

Подібно до попередніх Купрумвмісних сполук, в Аргентумвмісних дві правильні системи точок (2b, 2d) також займають статистичні суміші M1 (Ag + Ga) і M2 (Ag + Ga), координаційне оточення — тетраедр [M1 4S(Se)₁], [M2 4S(S,Se)₁]. Статистичні суміші M1 (2b) і M2 (2d) характеризуються складом: 50% Ag і 20% Ga, 30% позицій не заповнені, положення Галію заповнені на 80%.

Уточнюючи кристалічну структуру сполук, за основу взято модель структури CuIn₂Te₃Cl. У цій структурі існують чотири позиції катіонів і одна позиція аніонів. Склад позиції аніонів зафіксовано відповідно до складу зразка. Беручи до уваги

міжатомні відстані катіон-аніон, бачимо, що для позицій 2a і 2c ці відстані менші, ніж для позицій 2b і 2d. Тому в положеннях 2a і 2c розміщені атоми Ga, а в положеннях 2b і 2d — статистичні суміші Ag+Ga. У заповненні позицій катіонів враховано склад вихідних зразків, а також виконання умови: cyma зарядів катіонів дорівнює cymi зарядів аніонів. Використана модель структури була найкращою і добре узгоджувалася з попередніми дослідженнями для ізоструктурних сполук.

Таблиця 3

Table 3

Міжатомні відстані та координаційні числа (К.Ч.) атомів у структурі сполуки $AgGa_2Se_3Cl$

Interatomic distances and coordination numbers (C.N.) of atoms in the structure of the AgGa₂Se₃Cl compound

A - C - C - C 1			
AgGa ₂ Se ₃ Cl			
Атоми	Міжатомні відстані, Å	К.Ч.	
Ga1 – 4X	2,467(11)	4	
Ga2 – 4X	2,332(11)	4	
M1 – 4X	2,563(11)	4	
M2 – 4X	2,717(11)	4	

Рис. 1. Експериментальний (точки), розрахований (суцільний) і різницевий (нижня шкала) профілі сполуки AgGa₂Se₃Cl.

Fig. 1. Experimental (points), calculated (solid) and difference (lower scale) profiles of the AgGa₂Se₃Cl compound.

Атоми Ga займають двi правильні системи точок (2a i 2c) і мають тетраедричне оточення (табл. 2; 4, рис. 3). Значення міжатомних відстаней в AgGa₂Se₃Cl, AgGa₂Se₃Br добре узгоджуються з радіусами відповідних іонів (табл. 3; 5).

Структуру халькогалогенідів типу $A^IC^{III}_2X^{VI}_3Y^{VII}$ можна подати як тришарову найщільнішу упаковку аніонів, в якій 3/4 тетраедричних пустот зайняті катіонами C^{III} , наприклад, Ga чи In, та статистичними сумішами 0,5 A^I + 0,2 C^{III} , (A^I – Cu, Ag), а 1/4 пустот залишаються вакантними [6].

Таблиия 4

Таблиия 5

Уточнені координати атомів та ізотропні теплові параметри у структурі сполуки AgGa₂Se₃Br *Table 4*

Refined coordinates of atoms and isotropic thermal parameters in the structure of the AgGa₂Se₃Br compound

	Параметри атомів у структурі сполуки AgGa ₂ Se ₃ Br					
Атом	ПСТ	x/a	y/b	z/c	Зайнятість позицій	В _{ізот.} ×10 ² , Å ²
Ga1	2 <i>a</i>	0	0	0	0,8	0,85(7)
Ga2	2c	0	0,5	0,25	0,8	0,79(7)
M1	2b	0	0	0,5	0,5 Ag + 0,2 Ga	0,93(7)
M2	2 <i>d</i>	0	0,5	0,75	0,5 Ag + 0,2 Ga	0,72(7)
X	8 <i>g</i>	0,2169(12)	0,260(4)	0,1270(12)	0,75 Se + 0,25 Br	1,17(6)

Міжатомні відстані та координаційні числа (К.Ч.) атомів у структурі сполуки AgGa₂Se₃Br $T_{ab}I$

Table 5

Interatomic distances and coordination numbers (C.N.) of atoms in the structure of the AgGa₂Se₃Br compound

${ m AgGa_2Se_3Br}$			
Атоми	Міжатомні відстані, Å	К.Ч.	
Ga1-4X	2,45(2)	4	
Ga2-4X	2,348(15)	4	
M1 – 4X	2,610(14)	4	
M2 – 4X	2,658(15)	4	

Халькогалогенід типу $A^{I}C^{III}_{2}X^{VI}_{3}Y^{VII}$ належить до катіонодефектних сполук зі співвідношенням катіонів до аніонів 3:4. Аналогічне співвідношення мають сполука типу тіогалату CdGa₂Se₄ та сполука β-Ag₂HgI₄, структурний тип CdAl₂S₄, обидві з яких кристалізуються в пр.гр. *I*-4. Відповідно до [7] співвідношенням катіонів до аніонів 3:4 мають і інші сполуки, наприклад, AgIn₅Se₈, AgZnPS₄, Cu₂HgI₄, Hg₂SnSe₄. Їхній склад можна зобразити формулою K_{n-u}□_uA_n, де K – катіони; □ – вакансії; А – аніони; и – перша літера слова ипоссиріеd, що означає незайнятий, і позначає кількість вакансій. Для цих сполук VEC > 4 [8], зокрема AgIn₅Se₈, AgZnPS₄, Cu₂HgI₄, Hg₂SnSe₄, VEC = 4,571. Таке ж значення отримаємо і для тетрарних халькогенгалогенідів $A^{I}C^{III}_{2}X^{VI}_{3}Y^{VII}$ (1·1+2·3+3·6+1·7)/1+2+3+1 = 4,571.

Рис. 2. Експериментальний (точки), розрахований (суцільний) і різницевий (нижня шкала) профілі сполуки AgGa₂Se₃Br.

Fig. 2. Experimental (points), calculated (solid) and difference (lower scale) profiles of the AgGa₂Se₃Br compound.

Рис. 3. Структура елементарної комірки та координаційні многогранники статистичних сумішей M1, M2 та атомів Ga у структурі сполук $AgGa_2Se_3X$ (X-Cl,Br).

Fig. 3. A unit cell and coordination polyhedra of statistical mixtures M1, M2 and atoms Ga in the structures of AgGa₂Se₃X (X – Cl, Br) compounds.

Якщо вважати вакансію як атом з нульовою валентністю, то отримаємо $(1\cdot1+2\cdot3+1\cdot0+3\cdot6+1\cdot7)/(1+2+1+3+1)=4$ для сполук $A^IC^{III}{}_2\square X^{VI}{}_3Y^{VII}$, тобто ця структура належить до тетраедричних, коли катіони оточені чотирма найближчими аніонами, що розташовані у вершинах тетраедра. Це ж підтверджується дослідженими кристалічними структурами сполук $AgGa_2Se_3Cl(Br)$ (табл. 3; 5; рис. 3). З чого можна очікувати напівпровідникових властивостей у цих та інших сполук цієї групи $A^IB^{III}{}_2X^{VI}{}_3Y^{VII}$ (A^I-Cu , Ag; $B^{III}-Ga$, In; $X^{VI}-S$, Se; $Y^{VII}-Cl$, Br, I).

ЛІТЕРАТУРА

- 1. *Inoue Banerjee S., Ramanujan R.V.* New aluminium base alloys. Advances in Physical Metallurgy. 1996. P. 127–134.
- Козак В.С., Іващенко І.А., Олексеюк І.Д. Фазові рівноваги в квазіпотрійній системі Cu₂S In₂S₃ CuI. Наук. вісник Одеського ун-ту (Сер. Хімія). 2020. Vol. 1(73). С. 43–53. (https://doi.org/10.18524/2304-0947.2020.1(73).198313).
- 3. Range K.-J., Huebner H.J., Teil B. Hochdrucksynthese quaternarer Chalkogenidhalogenide AB₂X₃Y (A Cu, Ag; B In; X S, Se, Te; Y Cl, Br, I). Anorg. Chem. 1983. Vol. 38. P. 155–160. (https://doi.org/10.1515/znb-1983-0207).
- Range K.-J., Handrick K. New 13₂06₃7 Compounds. Z. Naturforsch. 1988. Vol. 43. P. 240– 242.
- 5. Moroz M.V., Demchenko P.Yu., Prokhorenko S.V., Moroz V.M. Physical properties of glasses in the Ag₂GeS₃ AgBr system. J. Phys. Solid State. 2013. Vol. 55. P. 1613–1618. (https://doi.org/10.1134/S1063783413080209).
- 6. Moroz M.V., Prokhorenko M.V., Prokhorenko S.V., Yatskov M.V., Reshetnyak O.V. Thermodynamic Properties of AgIn₂Te₃I and AgIn₂Te₃Br, Determined by EMF Method. Rus. J. Phys. Chem. 2018. Vol. 92(1). P. 19–23. (https://doi.org/10.1134/S0036024418010168).
- 7. Parte E. Elements of Inorganic Structural Chemistry. Second edition, K.S.P., 1996, 168 p. (https://doi.org/10.1016/B978-0-88415-860-8.50020-9).
- 8. *Hahn H., Frank G., Klingler W., Strorger A.D., Strorger G.* Ueber ternaere chalcogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Z. Anorg. Chem. 1955. Vol. 279. P. 241–270. (https://doi.org/10.1002/zaac.19552790502).
- 9. *Hahn H., Frank G., Klingler W.* Zur Struktur des β-CuHgJ₄ und des β-Ag₂HgJ₄. Z. Anorg. Chem. 1955. Vol. 279. P. 271–280. (https://doi.org/10.1002/zaac.19552790503).

SUMMARY

Inna IVASHCHENKO, Valentyna KOZAK, Lyubomyr GULAY, Ivan OLEKSEYUK CRYSTAL STRUCTURE OF AgGa₂Se₃Cl(Br) COMPOUNDS

Lesya Ukrainka Volyn National University, Volya Ave., 13, 43000 Lutsk, Ukraine e-mail: ivashchenko.inna@vnu.edu.ua

For the first time, the crystal structures of new quaternary compounds were studied by the powder method. They crystallize in tetragonal system, Sp.Gr. *I*-4, structural type $CuIn_2Te_3Cl$, with cell parameters: AgGa₂Se₃Cl (a=5.9789(3) Å, c=10.8592(7) Å), AgGa₂Se₃Br (a=5.9767(3) Å, c=10.8558(7) Å). From the analysis of the crystal structure it was found that the researched quaternary compounds belong to semiconductors with the general formula $A^IB^{III}_2X^{VI}_3Y^{VII}$ (A^I-Cu , Ag; $B^{III}-Ga$, In; $X^{VI}-S$, Se; $Y^{VII}-Cl$, Br, I). Chalcohalide

compounds of the $A^IC^{III}_2X^{VI}_3Y^{VII}$ type refers to cation-defective compounds with a ratio of cations to anions 3:4. Their compositions can be represented by the formula Kn-u uAn, where K cations, upactions, a anions, upper the word unoccupied. For these compounds VEC = 4.571. If we consider the vacancy as an atom with zero valence, we get for compounds $A^IC^{III}_2 \square X^{VI}_3Y^{VIII}$ VEC = 4. This structure refers to the tetrahedrals when the cations are surrounded by the four nearest anions. This is confirmed by the studied crystal structures of the compounds $AgGa_2Se_3CI(Br)$. The semiconductor properties can be expected from these and other compounds from the group $A^IB^{III}_2X^{VI}_3Y^{VIII}$ (A^I-Cu , Ag; $B^{III}-Ga$, In; $X^{VI}-S$, Se; $Y^{VII}-CI$, Br, II).

Keywords: chalcohalides, crystal structure, X-ray diffraction analysis, semiconductor.

Стаття надійшла 30.04.2022. Після доопрацювання 22.06.2022. Прийнята до друку 30.09.2022.