Class 07: Machine Learning 1

Helena Khalil #A16313711

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans().

Let's try it on some made up data where we know what the answer should be

```
x<- rnorm(10000, mean=3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30,mean=-3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 2.581773 -3.732943
[2,] 3.365479 -5.357727
[3,] 2.423953 -1.012311
[4,] 2.536880 -5.069415
[5,] 2.466016 -2.356520
[6,] 2.347141 -3.484514
```

We can pass this to the base R plot() function fot a quick.

```
plot(x)
```



```
k <- kmeans(x,centers=2,nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
       X
1 -3.173481 3.136637
2 3.136637 -3.173481
Clustering vector:
 Within cluster sum of squares by cluster:
[1] 83.57406 83.57406
 (between_SS / total_SS = 87.7 %)
Available components:
[1] "cluster"
              "centers"
                          "totss"
                                      "withinss"
                                                 "tot.withinss"
[6] "betweenss"
              "size"
                          "iter"
                                      "ifault"
   Q1. How mnay points are in each cluster?
  k$size
[1] 30 30
   Q2. Cluster membership?
 k$cluster
```

- - Q3. Cluster centers?

k\$centers

x y 1 -3.173481 3.136637 2 3.136637 -3.173481

Q4. Plot my clustering results

Q5. Cluster the data again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x, centers=4, nstart=20)
plot(x, col=k4$cluster, pch=16)</pre>
```


K-menas is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how mnay groups (k, or centers) you want. #Hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

 $\begin{array}{lll} \hbox{\tt Cluster method} & : & \hbox{\tt complete} \\ \hbox{\tt Distance} & : & \hbox{\tt euclidean} \end{array}$

Number of objects: 60

```
plot(hc)
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find the clisters (cluster membership vector) from a 'hclust()' result we can "cut" the tree at a certain height that we like.

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30</pre>
```

Q6. Plot our hclust results.

```
plot(x,col=grps,pch=16)
```


#Principal Component Analysis

 $\#\#\mathrm{PCA}$ of UK food data

Read data showinf the consumpt

Let's see how PCA can help us but first we can try conventional analysis.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187

11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

dim(x)

[1] 17 5

X

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	$Fresh_fruit$	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${\tt Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

I need to fix that first column...

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
dim(x)
```

[1] 17 4

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

The first approch take away a column each time which if you play it multiple times it will start deleating data.

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

Changing the beside factor to falsse makes it a thicker bar chart

Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

The diagonal of the plot shows similarities between the countries and the green dot is the outlier.

```
pairs(x, col=rainbow(10), pch=17)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

It is hard to tell but Ireland looks different than the other countries, its like the outlier in the situation

##Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first take the transpose of our input x so the column are the food types and the countries are the rows.

head(t(x))

	Cheese	Carcass_r	neat	Other	_meat	Fish	Fats_and_oils	Sugars
England	105		245		685	147	193	156
Wales	103		227		803	160	235	175
Scotland	103		242		750	122	184	147
N.Ireland	66		267		586	93	209	139
	Fresh_p	potatoes	Fresl	h_Veg	Other	_Veg	Processed_pota	toes
England		720		253		488		198
Wales		874		265		570		203
Scotland		566		171		418		220

N.Ireland	103	3 143	143 355		187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drin	ks Confection	nery		
England	;	375	54		
Wales 475		475	64		
Scotland	4	458	62		
N.Ireland		135	41		

```
pca <- prcomp(t(x) )
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

```
plot(pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "darkgreen"), pch=16)
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "darkgreen"), pch=16)
text(pca$x[,1], pca$x[,2],colnames(x), col=c("orange", "red", "blue", "darkgreen"))
```


The "loading tell us how much the original variables (in our case the foods) contribute to the new variables.

head(pca\$rotation)

```
PC2
                        PC1
                                                 PC3
                                                               PC4
Cheese
               -0.056955380
                              0.01601285
                                          0.02394295 -0.694538519
                             0.01391582
Carcass_meat
                0.047927628
                                          0.06367111
                                                       0.489884628
Other_meat
               -0.258916658 -0.01533114 -0.55384854
                                                       0.279023718
Fish
               -0.084414983 -0.05075495
                                          0.03906481 -0.008483145
Fats_and_oils
               -0.005193623 -0.09538866 -0.12522257
                                                       0.076097502
Sugars
               -0.037620983 -0.04302170 -0.03605745
                                                      0.034101334
```

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

Fresh potatos and soft drinks, it tells us about the food groups that differ significantly with Ireland vs the other countries. It accounts for the varients that it didn't account for in PC1

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```

