Alternative and Quantitative Investment Strategies

Mnacho Echenim, Sonia Jimenez

Grenoble INP-Ensimag

2020-2021

Echenim, Jimenez (Ensimag)

Alternative and Quantitative Investment Strategies

Quick recap on the Momentum strategy

- Strategy designed to exploit market inefficiency
 - Exploit the fact that not all financial actors have the same information at the same time, and that there is a time lapse before prices incorporate investors' private information
 - ▶ Principle: invest in underlying assets with the highest returns, in order to gain from continuing elevated returns
- Related questions
 - Over what period should the returns be computed?
 - ▶ After what period of time should the assets be reallocated?

Notes			
Notes			

Echenim, Jimenez (Ensimag) Alternative and Quantitative Investment Strategies

Goal of the project

- About cryptocurrencies
 - ► Recent market with a high volatility
 - ▶ It seems plausible that the market is not efficient
 - ▶ But very few academic results on this topic
- Goal of the project
 - ► Investigate the efficiency of the cryptocurrency market
 - ▶ By applying the Momentum strategy on a set of 50 cryptocurrencies

Echenim, Jimenez (Ensimag)

Alternative and Quantitative Investment Strategies

Notes

Constructing portfolios P_1, \ldots, P_5

Warning

The algorithms presented below are meant to make sure there is no misunderstanding, they are not necessarily the versions that should actually be implemented

```
Input: Value i for portfolio P_{i+1} (i = 0, ..., 4)
   Input: Market data for 50 cryptocurrencies
   Input: List of rebalancing dates (t_1, \ldots, t_n), returns horizon h
1 foreach rebalancing date t do
         R_t := (r_t^1, \dots, r_t^{50}); // compute returns \frac{S_t - S_{t-h}}{S_{t-h}}
C_t := (c_t^1, \dots, c_t^{50}); // order cryptocurrencies, decreasing order of returns
          \kappa_t := (c_t^{10i+1}, \dots c_t^{10(i+1)}); // extract cryptocurrencies for portfolio i+1
5 end
6 return (\kappa_{t_1},\ldots,\kappa_{t_n});
```

Algorithm 1: GetPortfolioCompo

Notes		
Notes		

Constructing portfolios P_1, \ldots, P_5 (2)

Computation of the values of P_i (i = 1, ..., 5)

```
Input: Initial value V of portfolio, sequence of compositions
Input: Market data for 50 cryptocurrencies, list of rebalancing dates

foreach date t do

if t is a rebalancing date then

//nb: this condition should be true for first date of backtest

UpdateCompo(\kappa_t, V); self-financing, equally weighted portfolios

end

V_t := \text{UpdateValue}(t);

end

return (V_{t_1}, \dots, V_{t_N});
```

Algorithm 2: BacktestPortfolio

Echenim, Jimenez (Ensimag)

Alternative and Quantitative Investment Strategies

2020-2021

< 6 / 15

Outcome of the project

- **Goal:** produce a financial document analyzing the characteristics and performance of the Momentum strategy on cryptocurrencies
- Core version
 - ▶ Portfolios are rebalanced monthly, returns are computed over a period of 2 weeks
 - ▶ The analyses rely on the statistical indicators described in the upcoming slides
- Next version
 - ▶ Carry out same analyses using the CRIX index instead of a standard market index
 - Analyze the effect of changing the rebalancing period and over what horizon returns are computed
- If there is still time
 - ► Come up with your own strategy and compare it with this one

Votes			

Strategy data generation

Portfolio values: generate the following portfolio values

- Portfolios P_1, \ldots, P_5
- Portfolio P_{1-5} : strategy that consists in buying P_1 and selling P_5

Strategy returns: compute the following daily returns

- Daily return series R_i for portfolio P_i (i = 1, ..., 5)
- Daily return series R_{1-5} for portfolio P_{1-5}
- Daily return difference $R_5 R_1$
 - ▶ Nb: this difference is the one analyzed in the foundational article on the Momentum strategy: Jedadeesh, N., and Titman, S. (1993) Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency

Get rid of extreme values for each of these series (winsorization)

Echenim, Jimenez (Ensimag)

Alternative and Quantitative Investment Strategies

Notes

Statistical descriptions

Compute the following indicators for each returns series:

- Mean
- Stddev
- Median
- Min and max return
- Skewness
- Kurtosis

Notes			

Sharpe, Treynor, Jensen

Given the series R_f of risk-free rates and the series R_M of market returns, compute the following indicators for each returns series R with stddev σ :

- Sharpe ratio: $\frac{R-R_f}{\sigma}$
- Treynor ratio and Jensen's alpha: perform the regression

$$(R - R_f) = \alpha_J + \beta_M (R_M - R_f) + \varepsilon_P$$

- $ightharpoonup rac{R-R_f}{eta_M}$ is the Treynor ratio for the series
- $ightharpoonup lpha_J$ is Jensen's alpha for the series

Notes

Echenim, Jimenez (Ensimag)

Alternative and Quantitative Investment Strategies

2020-2021

2021 < 11 / 1

Fama & French and Carhart alphas

Given the following series:

- SMB: "Small minus Big"
- HML: "High minus Low"
- UMD: "Up minus Down"

Perform the following regressions

$$R - R_f = \alpha_F + \beta_M (R_M - R_f) + \beta_S SMB + \beta_H HML + \varepsilon_F$$

 $R - R_f = \alpha_C + \beta_M (R_M - R_f) + \beta_S SMB + \beta_H HML + \beta_U UMD + \varepsilon_F$

- ullet $\alpha_{\it F}$ is the Fama & French alpha
- ullet $\alpha_{\mathcal{C}}$ is the Carhart alpha

Nb

The P-Value and R-squared indicators must be computed to evaluate the statistical significance level of all the results

Votes		

Quick intro to Pandas

- Main library for data analysis in Python
- Built on top of numpy for efficiency
- Main features
 - ▶ Data import from many different formats
 - ► Data cleaning
 - ► Data manipulation
 - ► Data visualization
- Main data structures
 - Series: one-dimensional arrays with a fixed size, homogeneous data, accessible via an index
 - Dataframes: 2-dimensional array with a mutable size, possibly different data types in each column
- Some operations on dataframes: data inspection, filtering, slicing, arithmetic, statistics...

Echenim, Jimenez (Ensimag)

Alternative and Quantitative Investment Strategies

2020-2021

< 14 / 15

Data and code

- What is available
 - ► Cryptocurrency data (crypto_prices.csv, clean data)
 - ► Series for alpha computations (*F-F_Research_Data_Factors_daily.csv* and *F-F_Momentum_Factor_daily.csv*, data requires some cleaning)
 - ► Hands-on Jupyter notebook
 - * Basic tutorial on using Pandas with focus on financial data analysis
 - ▶ Solution to hands-on
- What to produce
 - ► A Jupyter notebook with analysis and code
 - ▶ **Nb:** the final notebook must be easy to read

Notes		
Notes		