Конспект по топологии I семестр (лекции Иванова Сергея Владимировича)

Тамарин Вячеслав

26 декабря 2019 г.

Оглавление

ОГЛАВЛЕНИЕ 4

Глава 1

Общая топология

- 1.1 Метрические пространства
- 1.2 Топологические пространства
- 1.3 Внутренность, замыкание, граница
- 1.4 Подпространства
- 1.5 Сравнение топологий
- 1.6 База топологии
- 1.7 Произведение топологических пространств

Def 1. X, Y - топологические пространства.

Топология произведения на $X \times Y$ – топология, база которой равна

$${A \times B \mid A \subset X, B \subset Y \text{ - открыты.}}.$$

 $X \times Y$ с такой топологией – произведение X и Y.

Theorem 1. Определение 1 корректно.

Доказательство. 1. Все пространство открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

Theorem 2. $A \cap X$ – замкнуто, $B \cap Y$ – замкнуто. Тогда $A \times B$ – замкнуто в $X \times Y$.

Рис. 1.1: Пересечение

Доказательство. Докажем, что дополнение открыто.

$$(X \times Y) \setminus (A \times B) = X \times (Y \setminus B) \cup (X \setminus A) \times Y.$$

 $Y\setminus B$ открыто в Y, а $X\setminus A$ открыто в X. Тогда объединение произведений с X и Y есть объединение открытых в $X\times Y$.

Practice. Для любых $A \subset X$, $B \subset Y$:

- 1. $Int(A \times B) = Int(A) \times Int(B)$
- 2. $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3. $A \times B$ как произведение подпространств равно $A \times B$ как подпространство произведения.

1.7.1 Произведение параметризуемых метрических пространств

Здесь все также, только топология задается метрикой. d_X, d_Y - метрики.

Theorem 3.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на $X \times Y$. Произведение метризуемых пространств метризуемо.

Доказательство. 1. Проверим, что d - метрика. Очевидно, что $d((x,y),(x',y'))=0 \iff d_X(x,x')=d_Y(y,y')=0 \iff x=y \land x'=y'$. Также значение не зависит от порядка. Осталось проверить неравенство треугольника.

$$d(p, p') + d(p', p'') \stackrel{?}{\geq} d(p, p'') \stackrel{\text{HYO}}{=} d_X(x, x'').$$

 $d_X(x, x') + d_X(x', x'') \geq d_X(x, x'').$

2. $\Omega_d \subset \Omega_{X \times Y}$

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

 ${\rm A}$ это базовое множество, которое мы представили через базовые множества X и Y.

3. $\Omega_{X\times Y}\subset\Omega_d$ Рассмотрим $W\in\Omega_{X\times Y}$.

$$\exists A\subset X,\ B\subset Y$$
- открытые, $(x,y)\in A\times B\subset W.$
$$\exists r_1>0: B^X_{r_1}(x)\subset A.$$

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

Рис. 1.2: Произведение метрических пространств

$$\exists r_2 > 0 : B_{r_2}^Y(y) \subset B.$$

Теперь возьмем $r = \min(r_1, r_2)$

$$B_r^{X\times Y}((x,y))=B_r^X(x)\times B_r^Y(y)\subset A\times B\subset W.$$

Statement. Согласование метрик:

$$d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y').$$

$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Доказательство. Проверим неравенство треугольника для второй метрики (для первого - очевидно).

$$d_2((x,y),(x'',y'')) \stackrel{?}{\leq} d_2((x,y),(x',y')) + d_2((x',y'),(x'',y'')) \sqrt{(a+b)^2 + (c+d)^2} \leq \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}$$

1.7.2 Тихоновская топология

Designation.

- $X = \prod_{i \in I} X_i$ произведение множеств или пространств.
- $p_i: X \to X_i$ координатная проекция.
- Ω_i топология на X_i .

Рис. 1.3: Неравенство треугольника

Def 2 (Тихоновская топология). Пусть $\{X_i, \Omega_i\}_{i \in I}$ — семейство топологических пространств. Тихоновская топология на $X = \prod X_i$ — топология с предбазой

$$\{p_i^{-1}(U) \mid i \in I, \ U \in \Omega_i\}.$$

Tasks.

- 1. Счетное произведение метризуемых метризуемо. Сначала можно разобраться с отрезком $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$.
- 2. Канторовское множество $\approx \{0,1\}^{\mathbb{N}}$

1.8 Непрерывность

X,Y - топологические пространства, Ω_1,Ω_2 - топологии, $f:X\to Y$.

Def 3. f – непрерывна, если $\forall U \subset \Omega_Y: f^{-1}(U) \subset \Omega_X$.

Note.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Exs.

- 1. Тождественное отображение непрерывно. $id_X: X \to X$
- 2. Константа тоже непрерывна. $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно, $\forall f: X \to Y$ непрерывно.

Рис. 1.4: Тихоновская топология

4. Если Y - антидискретно, $\forall f: X \to Y$ - непрерывно.

Def 4.
$$f:X\to Y,\ x_0\in Y$$
 f непрерывна в точке $x_0,$ если
$$\forall \text{ окрестности }U\ni y_0=f(x_0)\exists \text{ окрестность }V\ni x_0:f(U)\subset V.$$

Theorem 4. f - непрерывна тогда и только тогда, когда $\forall x_0 \in X : f$ - непрерывна в точке x_0 .

Доказательство. \Rightarrow) $y_0 \in U$.

$$\left\{ \begin{array}{ll} f^{-1}(U) \text{ открыт} & V := f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{array} \right..$$

 \Leftarrow) $U \subset Y$ - открыто, хотим доказать, что $f^{-1}(U)$ - открыто. Достаточно доказать, что $\forall x \in f^{-1}(x)$ - внутренняя.

$$\exists V\ni x: f(V)\subset U \Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x - внутренняя точка $f^{-1}(U)$.

1.8.1 Непрерывность в метрических пространствах

1.9. ГОМЕОМОРФИЗМ 10

Theorem 5. X, Y – метрические пространства. $f: X \to Y, x_0 \in X$.

Tогда f – непрерывна в точка x_0 тогда и только тогда, когда

$$\forall \varepsilon > \exists \delta > 0 : f(B_{\delta}) \subset B_{\varepsilon}(f(x)).$$

Или можем записать альтернативную формулировку непрерывности:

$$\forall \varepsilon \exists \delta : \forall x' \in X \land d(x, x') < d \Rightarrow d(f(x), f(x')) < \varepsilon.$$

Доказательство. \Rightarrow) Так как f – непрерывна в точке x, существует окрестность $V \ni x : f(v) \subset B_{\varepsilon}(f(x))$. Так как V открыто, $\exists \delta > 0 : B_{\delta} \subset V$.

$$\Leftarrow$$
) Рассмотрим $U \ni f(x)$. Тогда $\exists \varepsilon > 0 : B_{\varepsilon}(f(x)) \subset U :$ $\exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset U$. Можем взять $V := B_{\delta}(x)$.

1.8.2 Липшицевы отображения

Def 5. X, Y – метрические пространства.

 $f:X\to Y$ — липшицево, если $\exists c>0 \forall x,x'\in X:d_Y(f(x),f(x'))\leq cd_X(x,x')$. C — константа Липшица данного отображения.

Corollary. Все липшицевы отображения непрерывны.

Доказательство. Рассмотрим $\delta = \frac{\varepsilon}{c}$.

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) \le C\delta = \varepsilon.$$

Ех. X – метрика, $x0 \in X$. $f: X \to \mathbb{R}$, $f(x) = d(x, x_0)$

$$|f(x) = f(y)| = f(y) - f(x) = d(y, x_0) - d(x, x_0) \le d(x, y).$$

Получили, что липшицево с константой 1.

Task. $A \subset X$

$$f(x) = dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Доказать, что X тоже липшицево с константой 1.

Ех. $d: X \times X \to \mathbb{R}$ – непрерывна.

1.8.3 Композиция непрерывных отображений

Theorem 6. Композиция непрерывных отображений непрерывна.

1.9 Гомеоморфизм

Designation. X, Y — топологические пространства.

Def 6. Гомеоморфизм между X и Y — непрерывное биективное отображение $f: X \to Y$ такое, что $f^{-1}: Y \to X$ тоже непрерывно.

1.9. ГОМЕОМОРФИЗМ

Рис. 1.5: Композиция отображений

Def 7. X и Y гомеоморфны, если существует гомеоморфизм между ними.

Designation. X и Y гомеоморфны: $X \cong Y$ или $X \simeq Y$.

Property.

- 1. Тождественное отображение гомеоморфизм.
- 2. Если f гомеоморфизм, то f^{-1} гомеоморфизм.
- 3. Композиция гомеоморфизмов гомеоморфизм.

Theorem 7. Гомеоморфность — отношение эквивалентности.

Note.

- 1. Гомеоморфизм задает биекцию между открытыми множествами в X и Y.
- 2. С топологической точки зрения гомеоморфные пространства неотличимы.

Note. Топологическая эквивалентность — гомеоморфность.

Note. Про гомеоморфные пространства говорят, что у них одинаковый тип.

Пример непрерывной биекции, не являющейся гомеоморфизмом

Пусть $f:[0,2\pi)\to S^1$ такое что:

$$f(t) = (\cos t, \sin t).$$

f — биекция между $[0,2\pi)$ и $S^1,\,f$ — непрерывно, но f^{-1} разрывно в точке $(1,\,0).$

1.10. АКСИОМЫ 12

Примеры гомеоморфных пространств

Statement.

• $\forall a, b, c, d : [a, b] \cong [c, d]$

• $\forall a, b, c, d : (a, b) \cong (c, d)$

• $\forall a, b, c, d : [a, b) \cong [c, d) \cong (c, d]$

• $\forall a, b : (a, +\infty) \cong (b, +\infty) \cong (-\infty, a)$

• $\forall a, b : [a, +\infty) \cong [b, +\infty) \cong (-\infty, a]$

• $(0,1) \cong \mathbb{R}$

• $[0,1) \cong [0,+\infty)$

Theorem 8. Открытый шар в \mathbb{R}^n гомеоморфен \mathbb{R}^n

Designation. D^n — замкнутый единичный шар в \mathbb{R}^n

Designation. S^n — единичная сфера в \mathbb{R}^{n+1}

Theorem 9. $S^n \setminus \{mov\kappa a\} \cong \mathbb{R}^n$

Practice.

- 1. Квадрат с границей гомеоморфен D^2
- 2. $D^m \times D^n \cong D^{n+m}$

1.10 Аксиомы

1.10.1 Аксиомы счетности

Def 8. $X=(X,\Omega)$ База в точке $x\in X$ – такое множество $\Sigma_x\subset\Omega$, что:

- 1. $\forall V \in \Sigma_x : x \in V$
- 2. $\forall U \not\ni x \exists V \in \Sigma_x : V \subset U$

Designation. Счетное множество – не более, чем счетное.

Def 9. Пространство X удовлетворяет первой аксиоме сетности (1AC), если для любой точки $x \in X$ существует счетная база в этой точке.

Def 10. Пространство X удовлетворяет второй аксиоме счетности (2AC), если у него есть счетная база топологии.

1.10. AKCИОМЫ 13

Theorem 10. $2AC \Rightarrow 1AC$

Доказательство. Пусть Σ – база топологии, $x \in X$. Пусть . . .

Theorem 11. Все метрические пространства удовлетворяют второй аксиоме счетности.

Statement. \mathbb{R} *имеет счетную базу.*

Theorem 12. Если X и Y имеют счетную базу, то $X \times Y$ тоже имеет счетную базу.

Theorem 13. Если X имеет счетную базу, то любое его подпространство тоже имеет счетную базу.

Corollary. \mathbb{R}^n имеет счетную базу.

Practice. 1AC тоже наследуется подпространствами и произведениями.

Def 11. Топологические свойство – наследственное, если оно сохраняется при замене пространства на любое подпространство.

Ех. Дискретность, антидискретность, 1АС, 2АС – наследственные свойства.

Theorem 14. Линделёф Если X удовлетворяет 2AC, то из любого открытого покрытия можно выбрать счетное подпокрытие.

Доказательство. Пусть Λ — множество тех элементов базы, которые содержатся хотя бы в одном из элементов покрытия. Λ — счетное покрытие.

Каждому $U \in A$ сопоставим V из исходного покрытия, для которого $U \subset V$.

Все такие V образуют искомое счетное покрытие.

1.10.2 Сеперабельность

Def 12. Всюду плотное множество – множество, замыканние которого есть все пространство.

Def 13. Множество всюду плотно тогда и только тогда, когда оно не пересекается с любым непустым открытым множеством.

Ex. \mathbb{Q} всюду плотно в \mathbb{R}

Def 14. Топологическое пространство сепарабельно, если в нем есть счетное всюду плотное множество.

Property. X, Y – сепарабельны $\Longrightarrow X \times Y$ тоже.

Note. Сепарабельность – не наследственное свойство.

1.10. AKCИОМЫ 14

Theorem 15.

- ullet Счетная база \Longrightarrow сепарабельность.
- ullet Для метризуемых пространств сеперабельность \Longrightarrow счетная база

1.10.3 Аксиомы отделимости

Def 15. X обладает свойтсвом T_1 , если для любой различных точек $x,y \in X$ существует такое открытое U, что $x \notin U \land y \notin U$.

Theorem 16. $T_1 \iff$ любая точка является замкнутым множеством.

Def 16. X – хаусдорфово, если для любых $x, y \in X$ существуют окрестности $U \ni x \land V \ni y : U \cap V = \emptyset$.

Def 17. X хаусдорфово \iff Диагональ $\Delta := \{(x,x) \mid x \in X\}$ замкнута в $X \times X$

Def 18. X – регулярно, если

- обладает T_1
- \forall замкнутого $A\subset X\ \forall x\in X\setminus A$ \exists открытые $U,V:A\subset U\land x\in V\land U\cap V=\varnothing$ Другое название T_3 -пространство

Def 19. X – нормально, если

- обладает T₁
- $\forall A, B \in X (A \cap B = \emptyset)$ \exists открытые $U, V : A \subset U, B \subset V \land U \cap V = \emptyset$

Другое название T_4 -пространство

Statement. $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$

Practice. Свойства $T_1 - T_3$ наследуются подпространствами и произведениям. Нормальность не наследственная.

Def 20. Все метрические пространства нормальны.

Доказательство. Хороший метод.

$$f: X \to Y$$

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Она корректна, непрерывна, и принимает значение ноль на A и единице B.

1.11. СВЯЗНОСТЬ 15

Lemma (Урысон). X – нормально, $A, B \subset X$ – замкнуты, $A \cap B = \emptyset$. Тогда существует непрерывна функция $f: X \to [0,1]: f \upharpoonright_A = 0 \land f \upharpoonright_B = 1$

1.11 Связность

1.12 Линейная связность

1.13 Компактность

1.14 Полные метрические пространства

1.14.1 Компактность полных метрических пространств

1.15 Факторизация

Ех. Склеим в квадрате ABCD стороны \overrightarrow{AB} и \overrightarrow{DC} по аффинной биекции между ними, сохраняющей отученное направление. Получим цилиндр $S^1 \times [0,1]$.

Ex. Если склеить \overrightarrow{AB} и \overrightarrow{CD} , получилась лента Мебиуса.

Def 21. Пусть X – топологическое пространство. Γ – подгруппа группы Homeo(X) – группы всех гомеоморфизмов из X в себя.

Введем отношение эквивалентности \sim на X :

$$a \sim b \iff \exists q \in \Gamma : q(a) = b.$$

Designation. Факторпространство X/\sim обозначается X/Γ или $\Gamma\backslash X$

Ex. $\mathbb{R}/\mathbb{Z} \cong S^1$, где \mathbb{Z} действует на \mathbb{R} параллельными переносами.

Theorem 17. Пусть $p: X \to X/\sim -$ каноническая проекция. $f: X \to Y$ переводит эквивалентные точки в равные:

$$\forall x, y \in X : x \sim y \Longrightarrow f(x) = f(y).$$

 $Toz\partial a$

- 1. $\exists \overline{f}: X/\sim \to Y: f = \overline{f} \circ p$.
- 2. \overline{f} непрерывно тогда и только тогда, когда f непрерывно.

Доказательство.

- Определим $\overline{f}([x]) = f(x)$ для всех $x \in X$
- ullet По непрерывности композиции, если \overline{f} непрерывна, то f тоже.
- В обратную сторону по определению фактортопологии. (проверим определение непрерывности)

1.16. МНОГООБРАЗИЯ

Theorem 18. $[0,1]/\{1,0\} \cong S^1$

Theorem 19. X – замкнуто, Y – хаусдорфово. $f: X \to Y$ – непрерывно и сюрьективно. Тогда $X/_{\sim} \cong Y$. Γ де \sim – эквивалентность .

Theorem 20. $D^n/S^{n-1} \cong S^n$

Доказательство. Вместо D^n возьмем B – замкнутый шар радиуса π с центром в $0 \in \mathbb{R}^n$. По прошлой теореме ?? достаточно построить сюрьективный гомеоморфизм $f: B \to S^n$, отображающий край шара в одну точку, а в остальном инъективен. Сойдет такое

$$f(x) = \left(\frac{1}{|x|}\sin(|x|)\cos(|x|)\right), f(0) = (0_{\mathbb{R}_{n-1}}, 1).$$

1.16 Многообразия

Designation. Здесь и далее $n \in \mathbb{N} \cup \{0\}$

Def 22. n-мерное многообразие — хаусдорфово топологическое пространство со счетной базой, обладающее свойством локальной евклидовости: у любой точки $x \in M$ есть окрестность, гомеоморфная \mathbb{R}^n .

Число n – размерность многообразия.

Theorem 21. При $m \neq n$ никакие непустые открытые подмножества \mathbb{R}^n и \mathbb{R}^m не гомеоморфны.

Corollary. Многообразие размерности n не гомеоморфно многообразию размерности m.

Ех. 0-мерные многообразия – не более чем счетные дискретные пространства.

 $\mathbf{Ex.}$ Любое открытое подмножество \mathbb{R}^n или любого многообразия – многообразие той же размерности.

Ех. Сфера S^{n} – n-мерное многообразие

Ex. Проективное пространство $\mathbb{R}P^n = S^n/\{id, -id\}$ – многообразие

Practice. В диске D^n склеим противоположные точки границы. Полученное пространство гомеоморфно $\mathbb{R}P^n$.

Def 23. n-мерное многообразие с краем – хаусдорфово пространство M со счетной базой и такое, что у каждой точки есть окрестность, гомеоморфная либо \mathbb{R}^n , либо \mathbb{R}^n .

Множество точек, у которых нет окрестностей первого вида, называются краем M и обозначаются ∂M .

Def 24. Поверхность – двумерное многообразие.

1.16. МНОГООБРАЗИЯ

Theorem 22.

• Пусть дан правильный 2n угольник D^2 с границей разбитой на части), стороны которого разбиты на пары и ориентированы. Склеим кажу пару сторон по естественному отображению с учетом ориентации. Тогда получится двумерное многообразие.

• Пусть дан m-угольник некоторые 2n сторон (2n < m) которого разбиты на пары, ориентированы u склеены аналогично. Тогда получается двумерное многообразие.

Note. Можно брать и несколько многоугольников и склеивать из между собой.

1.16.1 Классификация многообразий

Note. Любое многообразие локально линейно связно. Следовательно, компоненты линейной связности совпадают с комнопнентами связности и открыты. Будем исследовать только связные многообразия.

Theorem 23. Пусть M – непустое связное 1-мерное многообразие. Тогда

- 1. M компактно, без края $\Longrightarrow M \cong S^1$
- 2. M некомпактно, без края $\Longrightarrow M \cong \mathbb{R}$
- 3. M -

Def 25. Пусть $p \in \mathbb{N}$. Сфера с p ручками строится так: берем сфер S^2 , вырезаем p не пересекающихся дырок D^2 . Далее берем p торов с такими же дырками и приклеиваем по дыркам торы к сфере.

Def 26. Сфера с пленками – аналогично, только приклеиваем ленты Мебиуса.

Practice. Сфера с одной пленкой – $\mathbb{R}P^3$, сфера с двумя пленками – бутылка Клейна.

Statement. Поверхность – связное двумерное многообразие.

Theorem 24.

- Компактная поверхность без края гомеоморфна сфере или сфере с ручками или сфере с пленками.
- Поверхности разного типа, сферы с разным числом ручек, сферы с разным числом пленок попарно не гомеоморфны.
- Компактная поверхность с краем гомеоморфна одному из этих цилиндров с несколькими дырками.

Поверхности с разным числом дырок негомеоморфны.

1.16.2 Эйлерова характеристика

Def 27. Пусть M — компактная поверхность, разбитая вложенным связным графом на областидиски (замыкание области гомеоморфно диску, граница — цикл в графе). Эйлерова характеристика M — целое число:

$$\chi(M) = V - E + F.$$

Theorem 25. Эйлерова характеристика – топологический инвариант.

Exs.

- $\chi(S^2) = 2$
- $\chi(T^2) = 0$
- χ (бутылки Клейна) = 0
- При вырезании дырки χ уменьшается на 1
- χ (сферы с n дырками) = $2 n, \chi$ (тора с дыркой) = -1
- $\chi(A \cap B) = \chi(A) + \chi(B) \chi(A \cup B)$
- χ (сферы с р ручками) = 2-2p
- χ (сферы с q пленками) = 2 q