2014-2015 学年北京市初二下学期数学学习能力检测练习(二)

2015.06.11

满分: 58 分, 时间: 70 分钟.

- 一、选择题(本题共12分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.
- 1. 函数 $y = \sqrt{x-2}$ 中,自变量 x 的取值范围是(

A. $x \neq 2$

B. $x \ge 2$

C. x > 2

D. $x \ge -2$

2. 某居民小区开展节约用电活动,该小区 100 户家庭 4 月份的节电情况如下表所示.

	20		40	
节电量(千瓦时)	20	30	40	50
户数 (户)	20	30	30	20

那么 4 月份这 100 户家庭的节电量(单位:千瓦时)的平均数是()

A. 35

B. 26

C. 25

D. 20

- 3、甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的 数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是()
- A. 甲的方差比乙的方差大
- B. 甲的方差比乙的方差小
- C. 甲的平均数比乙的平均数小 D. 甲的平均数比乙的平均数大

4、如图,将正方形 OABC 放在平面直角坐标系 xOy 中,O 是原点,若点 A 的坐标为 $(1,\sqrt{3})$,则点 C 的坐

) A. $(\sqrt{3},1)$ 标为(

B. $(-1,\sqrt{3})$ C. $(-\sqrt{3},1)$

D. $(-\sqrt{3},-1)$

二、填空题(本题共12分,每小题3分)

5、如图, 点 A, B 是棱长为 1 的正方体的两个项点,将正方体按图中所示展开,则在展开图中 A, B 两点 间的距离为

6、如图,在平面直角坐标系 xOy 中,直线 y=3x 与双曲线 $y=\frac{n}{x}$ $(n\neq 0)$ 在第一象限的公共点是 P(1,m). 小明说: "从图象上可以看出,满足 $3x>\frac{n}{x}$ 的 x 的取值范围是 x>1." 你同意他的观点吗?答: ________. 理

由是 .

第7题图

第8题图

8、如图,在平面直角坐标系 xOy 中,点 D 为直线 y=2x 上且在第一象限内的任意一点, $DA_1 \perp x$ 轴于点 A_1 ,以 DA_1 为边在 DA_1 的右侧作正方形 $A_1B_1C_1D$; 直线 OC_1 与边 DA_1 交于点 A_2 ,以 DA_2 为边在 DA_2 的右侧作正方形 $A_2B_2C_2D$; 直线 OC_2 与边 DA_1 交于点 A_3 ,以 DA_3 为边在 DA_3 的右侧作正方形 $A_3B_3C_3D$,……,接这种方式进行下去,则直线 OC_1 对应的函数表达式为______,直线 OC_3 对应的函数表达式为______

- 三、解答题(每小题5分,共20分)
- 9. 已知 $x^2-5x-4=0$,求代数式(x+2)(x-2)-(2x-1)(x-2)的值.

10. 解方程:
$$\frac{3}{x-3} - \frac{1}{x} = \frac{2}{x^2 - 3x}$$
.

- 11. 已知关于x的方程 $x^2-4x+3a-1=0$ 有两个实数根.
- (1) 求实数 a 的取值范围;
- (2) 若 a 为正整数, 求方程的根.

- (1) 求证: 四边形 AFCE 是菱形;
- (2) 若 $\angle B$ =45°, $\angle FCE$ =60°, AB=6 $\sqrt{2}$, 求线段 D'F 的长.

张明东老师 17310512331 公众号:中学数学一加一

四、解答题 (第13题3分,第14题7分,第15题4分,共14分)

13. 阅读下面材料: 小明研究了这样一个问题: 求使得等式 kx+2-|x|=0(k>0) 成立的 x 的个数. 小明发现, 先将该等式转化为 kx+2=|x|,再通过研究函数 y=kx+2 的图象与函数 y=|x| 的图象(如图)的交点,使问题得到解决.

请回答:

- (1) 当 k=1 时,使得原等式成立的 x 的个数为_____;
- (2) 当 0 < k < 1 时,使得原等式成立的 x 的个数为_____;
- (3) 当 k>1 时,使得原等式成立的 x 的个数为_____.

- 14. 如图 1,在 $\triangle ABC$ 中, AB=AC, $\angle ABC=\alpha$, D 是 BC 边上一点,以 AD 为边作 $\triangle ADE$,使 AE=AD, $\angle DAE+\angle BAC=180$ °.
- (1) 直接写出 $\angle ADE$ 的度数 (用含 α 的式子表示);
- (2)以AB, AE 为边作平行四边形 ABFE,
 - ①如图 2, 若点 F 恰好落在 DE 上, 求证: BD=CD;

②如图 3, 若点 F 恰好落在 BC 上, 求证: BD=CF.

15. 如图 1,在平面直角坐标系 xOy 内,已知点 A(-1,0) , B(-1,1) , C(1,0) , D(1,1) , 记线段 AB 为 T_1 , 线段 CD 为 T_2 , 点 P 是坐标系内一点.给出如下定义:若存在过点 P 的直线 l 与 T_1 , T_2 都有公共点,则称点 P 是 $T_1 - T_2$ 联络点.

张明东老师 17310512331 公众号:中学数学一加一

例如,点 $P(0,\frac{1}{2})$ 是 $T_1 - T_2$ 联络点.

- (1) 以下各点中,_______是 $T_1 T_2$ 联络点(填出所有正确的序号);
 - $\textcircled{1}(0,2); \ \textcircled{2}(-4,2); \ \textcircled{3}(3,2).$

(2) 直接在图 1 中画出所有 $T_1 - T_2$ 联络点所组成的区域,用阴影部分表示;

张明东老师 17310512331 公众号:中学数学一加一答案:

-, 1, B; 2, A; 3, A; 4, C;

\equiv 5, $\sqrt{5}$:

- 6、不同意; x 的取值范围是-1 < x < 0 或x > 1 (或其他正确结论)
- 7、(5,1); (1分) (3,7) 或(7,3) (2分)答对1个给1分

8.
$$y = \frac{2}{3}x$$
; $y = \frac{14}{15}x$

三、9. 解: (x+2)(x-2)-(2x-1)(x-2)

 $x^2 - 5x - 4 = 0$,

$$= x^{2} - 4 - (2x^{2} - 5x + 2)$$

$$= x^{2} - 4 - 2x^{2} + 5x - 2$$

$$= -x^{2} + 5x - 6.$$

$$3 /3$$

$$\therefore x^2 - 5x = 4. \dots 4$$

所以原方程的解是 $x = -\frac{1}{2}$.

11. (本小题满分5分)

解: (1) : 关于x的方程 $x^2-4x+3a-1=0$ 有两个实数根,

- $\therefore a$ 的取值范围为 $a \leqslant \frac{5}{3}$.
- (2) $: a \leq \frac{5}{3}$, 且 a 为正整数,

- ∴方程 $x^2 4x + 3a 1 = 0$ 可化为 $x^2 4x + 2 = 0$.

12. (1) 证明: 如图 2.

- :点 C 与点 A 重合, 折痕为 EF,
- \therefore $\angle 1 = \angle 2$, AE = EC.
- : 四边形 ABCD 为平行四边形,
- $\therefore AD \parallel BC.$
- \therefore $\angle 3 = \angle 2$.
- \therefore $\angle 1 = \angle 3$.

1 /\

 \therefore AF=EC.

又 $: AF \parallel EC$,

- ∴ 四边形 AFCE 为菱形. ······ 3 分

 \therefore AE=AF.

- :: 点 D 的落点为点 D' , 折痕为 EF,
- D'F = DF
- :: 四边形 ABCD 为平行四边形,
- AD=BC.

又:AF=EC,

- ∴ 在 Rt $\triangle AGB$ 中, $\angle AGB$ =90°, $\angle B$ =45°, AB=6 $\sqrt{2}$,
- $\therefore AG=GB=6.$
- : 四边形 AFCE 为平行四边形,
- $\therefore AE \parallel FC.$
- ∴ ∠ 4=∠ 5=60°.
- ∴ 在 Rt \triangle AGE 中, \angle AGE=90°, \angle 4=60°,

$$\therefore GE = \frac{AG}{\tan 60^{\circ}} = 2\sqrt{3}.$$

$$BE = BG + GE = 6 + 2\sqrt{3}.$$

∴
$$D'F = 6 + 2\sqrt{3}$$
.....5 $\%$

张明东老师 17310512331 公众号:中学数学一加一 13、(本小题满分3分) 1 2 3 4 5 _5 _4 _3 _2 _1 *O* 14、(本小题满分7分) (1) $\angle ADE = 90^{\circ} - \alpha$1 分 (2) ①证明: : 四边形 ABFE 是平行四边形, $\therefore AB // EF$2 分 $\therefore \angle EDC = \angle ABC = \alpha$. 由(1)知, $\angle ADE = 90^{\circ} - \alpha$, $\therefore \angle ADC = \angle ADE + \angle EDC = 90^{\circ}$3 分 $\therefore AD \perp BC$. AB=AC, :4 分 ②证明: AB=AC, $\angle ABC=\alpha$, $\therefore \angle C = \angle B = \alpha$. ::四边形 ABFE 是平行四边形, $\therefore AE//BF, AE=BF.$:. 由(1)知, $\angle DAE = 2\alpha$,

 $\therefore \angle DAC = \angle C .$ $\therefore AD = CD.$ $\therefore AD = AE = BF,$ $\therefore BF = CD.$

张明东老师 17310512331 公众号:中学数学一加一

15、(本小题满分4分)

(2) 所有 $T_1 - T_2$ 联络点所组成的区域为图中阴影部分(含边界).

