Account forms now or after class!

Account forms now or after class!
Static Course Webpage. (inst.cs.berkeley.edu/~cs170)

Account forms now or after class!
Static Course Webpage. (inst.cs.berkeley.edu/~cs170)
Watching piazza yet?

Account forms now or after class!

Static Course Webpage. (inst.cs.berkeley.edu/~cs170)

Watching piazza yet?

Did you find a scanner, yet?

n-bit numbers x, y, z.

n-bit numbers x, y, z. Addition: O(n)

Multiplication: $O(n^2)$

Modular Exponentiation: $O(n^3)$

n-bit numbers x, y, z. Addition: O(n) Multiplication: $O(n^2)$ Modular Exponentiation: $O(n^3)$ Division.

n-bit numbers x, y, z. Addition: O(n)

Multiplication: $O(n^2)$

Modular Exponentiation: $O(n^3)$

Division. Multiplicative inverse of *x* mod *N*?

n-bit numbers x,y,z. Addition: O(n) Multiplication: $O(n^2)$ Modular Exponentiation: $O(n^3)$ Division. Multiplicative inverse of $x \mod N$? Find a, where $ax = 1 \mod N$.

Inverse of 4 (mod 6)?

Inverse of 4 (mod 6)?

No!

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

```
Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

gcd(x,y) \neq 1 implies no inverse.
```

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof:

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof: $ax = 1 \pmod{y}$ " \equiv "

Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1.

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1.

x = id, y = jd

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

$$ax - by = 1$$
.

$$x = id, y = jd$$

$$a(id) - b(jd) = 1 \rightarrow d(ia - jd) = 1.$$

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Thm: $gcd(x,y) = d \rightarrow \text{no inverse.}$

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1.

x = id, y = jd

 $a(id)-b(jd)=1\rightarrow d(ia-jd)=1.$

d must be a factor of 1.

```
Inverse of 4 (mod 6)?
No!
   4i is at least 2 away from 6k for any i, k.
They have a common divisor that is greater than 1.
gcd(x,y) - greatest common divisor of x and y.
  gcd(x,y) \neq 1 implies no inverse.
Thm: gcd(x, y) = d \rightarrow \text{no inverse.}
Proof: ax = 1 \pmod{y} "\equiv" ax = 1 + by for integer b
ax - by = 1.
x = id, v = id
a(id) - b(id) = 1 \rightarrow d(ia - id) = 1.
d must be a factor of 1. That is, d = 1.
```

Inverse of 4 (mod 6)?

Inverse of 4 (mod 6)? No!

```
Inverse of 4 (mod 6)?
No!
```

4j is at least 2 away from 6k for any j,k.

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

```
Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.
```

They have a common divisor that is greater than 1. gcd(x,y) - greatest common divisor of x and y.

```
Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1. gcd(x,y) - greatest common divisor of x and y. gcd(x,y) \neq 1 implies no inverse.
```

Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

Proof:

Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

Proof: $ax = 1 \pmod{y}$ " \equiv "

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1.

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1. x = id, y = jd since d divides both.

```
Inverse of 4 (mod 6)?
```

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

 $gcd(x,y) = d, d \ge 1 \to x$ has no multiplicative inverse modulo y.

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1. x = id, y = jd since d divides both.

$$a(id)-b(jd)=1\rightarrow d(ia-jb)=1.$$

```
Inverse of 4 (mod 6)?
No!
   4i is at least 2 away from 6k for any i, k.
They have a common divisor that is greater than 1.
gcd(x,y) - greatest common divisor of x and y.
  gcd(x,y) \neq 1 implies no inverse.
Theorem:
gcd(x,y) = d, d \ge 1 \rightarrow x has no multiplicative inverse modulo y.
Proof: ax = 1 \pmod{y} "\equiv" ax = 1 + by for integer b
ax - by = 1. x = id, y = jd since d divides both.
a(id) - b(id) = 1 \to d(ia - ib) = 1.
d must be a factor of 1.
```

```
Inverse of 4 (mod 6)?
No!
   4i is at least 2 away from 6k for any i, k.
They have a common divisor that is greater than 1.
gcd(x,y) - greatest common divisor of x and y.
  gcd(x,y) \neq 1 implies no inverse.
Theorem:
gcd(x,y) = d, d \ge 1 \rightarrow x has no multiplicative inverse modulo y.
Proof: ax = 1 \pmod{y} "\equiv" ax = 1 + by for integer b
ax - by = 1. x = id, y = jd since d divides both.
a(id) - b(id) = 1 \to d(ia - ib) = 1.
d must be a factor of 1. That is, d = 1.
```

Inverse of 4 (mod 6)?

No!

4j is at least 2 away from 6k for any j, k.

They have a common divisor that is greater than 1.

gcd(x,y) - greatest common divisor of x and y.

 $gcd(x,y) \neq 1$ implies no inverse.

Theorem:

$$gcd(x,y) = d, d \ge 1 \rightarrow x$$
 has no multiplicative inverse modulo y .

Proof: $ax = 1 \pmod{y}$ " \equiv " ax = 1 + by for integer b

ax - by = 1. x = id, y = jd since d divides both.

$$a(id)-b(jd)=1\rightarrow d(ia-jb)=1.$$

d must be a factor of 1. That is, d = 1.

Extended GCD:

Extended GCD: Given *x*, *y*.

Extended GCD:

Given x, y.

Returns: (d, a, b) where ax + by = d, and d = gcd(x, y)

Extended GCD:

Given x, y.

Returns: (d, a, b) where ax + by = d, and d = gcd(x, y)

Extended GCD:

Given x, y.

Returns: (d, a, b) where ax + by = d, and d = gcd(x, y)

- (A) Run Euclid on x, N, output a.
- (B) Run Euclid on x, N, output b.

Extended GCD:

Given x, y.

Returns: (d, a, b) where ax + by = d, and d = gcd(x, y)

- (A) Run Euclid on x, N, output a.
- (B) Run Euclid on x, N, output b.

A.
$$1 = ax + bN$$

Extended GCD:

Given x, y.

Returns: (d, a, b) where ax + by = d, and d = gcd(x, y)

- (A) Run Euclid on x, N, output a.
- (B) Run Euclid on x, N, output b.

$$A. 1 = ax + bN = ax \pmod{N},$$

Extended GCD:

Given x, y.

Returns: (d, a, b) where ax + by = d, and d = gcd(x, y)

- (A) Run Euclid on x, N, output a.
- (B) Run Euclid on x, N, output b.
- A. $1 = ax + bN = ax \pmod{N}$, so a is multiplicative inverse of x modulo N.

Ext-gcd(x,y): (d, a, b); d = ax + by.

Ext-gcd(x,y): (d, a, b); d = ax + by. $x = \underline{\qquad}$ $y = \underline{\qquad}$

```
Ext-gcd(x,y): (d, a, b); d = ax + by.

x = \underline{\hspace{1cm}}

y = \underline{\hspace{1cm}}
```

Get "close" to y with x's:

$Ext\text{-}gcd(x,y)\colon (d,a,b); d=ax+by.$	
x =	
<i>y</i> =	_
Get "close" to y with x's:	
kx =	
v —	

Ext-gcd(x,y):
$$(d, a, b)$$
; $d = ax + by$.

 $x = \underline{\hspace{1cm}}$
 $y = \underline{\hspace{1cm}}$

Get "close" to y with x 's:

 $kx = \underline{\hspace{1cm}}$
 $y = \underline{\hspace{1cm}}$
 $k = |y/x|$ (Use long division.) (Time: $O(n^2)$ time.)

Ext-gcd(x,y): (d, a, b); d = ax + by.

x = _____
y = ____

Get "close" to y with x's:

kx = _____
y = _____

 $k = \lfloor y/x \rfloor$ (Use long division.) (Time: $O(n^2)$ time.)

(y-kx) preserves common divisor!

Ext-gcd(x,y): (d, a, b); d = ax + by.

x = _____
y = ____

Get "close" to y with x's:

kx = ____
y = ____

 $k = \lfloor y/x \rfloor$ (Use long division.) (Time: $O(n^2)$ time.)

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Ext-gcd(x,y): (d, a, b); d = ax + by. $x = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ Get "close" to y with x's: $kx = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ k = |y/x| (Use long division.) (Time: $O(n^2)$ time.)

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Recurse for y - kx and x

Ext-gcd(x,y): (d, a, b); d = ax + by. $x = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ Get "close" to y with x's: $kx = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ $k = \lfloor y/x \rfloor$ (Use long division.) (Time: $O(n^2)$ time.)

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Recurse for y - kx and $x = d \mid x$ and $d \mid (y - kx)$

Ext-gcd(x,y): (d, a, b); d = ax + by. $x = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ Get "close" to y with x's: $kx = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ $k = \lfloor y/x \rfloor$ (Use long division.) (Time: $O(n^2)$ time.)

$$\lambda = [y/\lambda]$$
 (Ose long division.) (Time.

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Recurse for y - kx and xd|x and d|(y - kx) Also d'|x and d'|(y - kx)

Ext-gcd(x,y): (d, a, b); d = ax + by. $x = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ Get "close" to y with x's: $kx = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ $k = \lfloor y/x \rfloor$ (Use long division.) (Time: $O(n^2)$ time.)

$$K = \lfloor y/X \rfloor$$
 (Use long division.) (Time: $O(x)$

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Recurse for y - kx and x d|x and d'|(y - kx) Also d'|x and $d'|(y - kx) \implies d'|y$.

Ext-gcd(x,y): (d, a, b); d = ax + by. $x = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ Get "close" to y with x's: $kx = \underline{\hspace{1cm}}$ $y = \underline{\hspace{1cm}}$ k = |y/x| (Use long division.) (Time: $O(n^2)$ time.)

$$\lambda = \lfloor y/\lambda \rfloor$$
 (Ose long division.) (Time:

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Recurse for y - kx and x d|x and d|(y - kx) Also d'|x and $d'|(y - kx) \implies d'|y$. $\rightarrow gcd(x, y) = gcd(x, y - kx)$.

$$k = \lfloor y/x \rfloor$$
 (Use long division.) (Time: $O(n^2)$ time.)

$$(y-kx)$$
 preserves common divisor!
Anything that divides both x and y , divides $(y-kx)$

Recurse for y - kx and x d|x and d|(y - kx) Also d'|x and $d'|(y - kx) \implies d'|y$. $\rightarrow gcd(x, y) = gcd(x, y - kx)$.

Get (d, a', b') where d = a'(y - kx) + b'x

$$k = \lfloor y/x \rfloor$$
 (Use long division.) (Time: $O(n^2)$ time.)

(y-kx) preserves common divisor! Anything that divides both x and y, divides (y-kx)

Recurse for
$$y - kx$$
 and x
 $d|x$ and $d|(y - kx)$ Also $d'|x$ and $d'|(y - kx) \implies d'|y$.
 $\rightarrow gcd(x, y) = gcd(x, y - kx)$.

Get (d, a', b') where d = a'(y - kx) + b'x = (b' - ka')x + a'y.

Ext-gcd(x,y):
$$(d, a, b)$$
; $d = ax + by$.

 $x =$ ______
 $y =$ _____

Get "close" to y with x 's:

 $kx =$ ______
 $y =$ ______

 $y =$ _______

$$k = \lfloor y/x \rfloor$$
 (Use long division.) (Time: $O(n^2)$ time.)

$$(y-kx)$$
 preserves common divisor!
Anything that divides both x and y , divides $(y-kx)$

Recurse for y - kx and x d|x and d|(y - kx) Also d'|x and $d'|(y - kx) \implies d'|y$. $\rightarrow gcd(x, y) = gcd(x, y - kx)$.

Get
$$(d, a', b')$$
 where $d = a'(y - kx) + b'x = (b' - ka')x + a'y$.
Return $(d, b' - ka', a')$.

Ext-gcd(x,y):
$$(d, a, b)$$
; $d = ax + by$.

 $x = \underline{\hspace{1cm}}$
 $y = \underline{\hspace{1cm}}$

Get "close" to y with x 's:

 $kx = \underline{\hspace{1cm}}$
 $y = \underline{\hspace{1cm}}$
 $k = \lfloor y/x \rfloor$ (Use long division.) (Time: $O(n^2)$ time.)

$$(y - kx)$$
 preserves common divisor!
Anything that divides both x and y , divides $(y - kx)$

Recurse for y - kx and xd|x and d|(y - kx) Also d'|x and $d'|(y - kx) \implies d'|y$.

$$\rightarrow gcd(x,y) = gcd(x,y-kx).$$

Get (d, a', b') where d = a'(y - kx) + b'x = (b' - ka')x + a'y.

Return (d, b' - ka', a').

Time for one recursive call: $O(n^2)$.

Complexity

Time is $O(L) \times O(n^2)$ where L is depth.

Complexity

Time is $O(L) \times O(n^2)$ where L is depth.

What is recursion depth?

Original inputs:

Original inputs:

X =_____

Original inputs:

x =_____ *y* =____

Recurse on

Original inputs:

Recurse on

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y.

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) =$$

 $y - kx =$ _____

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) = \underline{\qquad}$$
$$y - kx = \underline{\qquad}$$

x - (y - kx) is at most half of x.

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) = \underline{\qquad}$$
$$y - kx = \underline{\qquad}$$

x - (y - kx) is at most half of x.

Every 2 recursive calls:

Original inputs:

$$y =_{-}$$

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) = \underline{\qquad}$$
$$y - kx = \underline{\qquad}$$

x - (y - kx) is at most half of x.

Every 2 recursive calls: both arguments halve in value -

Original inputs:

$$y = _$$

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) =$$

 $y - kx =$ _____

x - (y - kx) is at most half of x.

Every 2 recursive calls: both arguments halve in value - get shorter by one bit.

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) =$$

 $y - kx =$ _____

x - (y - kx) is at most half of x.

Every 2 recursive calls: both arguments halve in value - get shorter by one bit.

Depth is less than 2*n*

Original inputs:

Recurse on

$$y - kx =$$

y - kx is at most half of y. And x > y - kx.

Next recursion:

$$x - (y - kx) =$$

 $y - kx =$ _____

x - (y - kx) is at most half of x.

Every 2 recursive calls: both arguments halve in value - get shorter by one bit.

Depth is less than 2n where n is number of bits.

Complexity

Time is $O(L) \times O(n^2)$ where L is depth.

Complexity

Time is $O(L) \times O(n^2)$ where L is depth.

$$L = O(n)$$
.

Complexity

Time is $O(L) \times O(n^2)$ where L is depth.

L = O(n).

Time: $O(n^3)$.

Modular arithmetic operations.

Addition: O(n)

Multiplication: $O(n^2)$

Modular Exponentiation: $O(n^3)$

Modular Division: $O(n^3)$.

Recall: $x \times y \times u \times v \times w \cdots \pmod{z}$.

Recall: $x \times y \times u \times v \times w \cdots \pmod{z}$.

Reduce each intermediate result (mod z)!

Recall: $x \times y \times u \times v \times w \cdots \pmod{z}$.

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Recall: $x \times y \times u \times v \times w \cdots \pmod{z}$.

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

```
Recall: x \times y \times u \times v \times w \cdots \pmod{z}.
```

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

- (A) 2
- (B) 3
- (C) 4

```
Recall: x \times y \times u \times v \times w \cdots \pmod{z}.
```

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

What is $3^{25} \pmod{7}$?

- (A) 2
- (B) 3
- (C) 4

325

```
Recall: x \times y \times u \times v \times w \cdots \pmod{z}.
```

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

- (A) 2
- (B) 3
- (C) 4

$$3^{25} = 3 \times 3^{24}$$

Recall: $x \times y \times u \times v \times w \cdots \pmod{z}$.

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

- (A) 2
- (B) 3
- (C) 4

$$3^{25} = 3 \times 3^{24} = 3 \times (3^6)^4$$

Recall: $x \times y \times u \times v \times w \cdots \pmod{z}$.

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

- (A) 2
- (B) 3
- (C) 4

$$3^{25} = 3 \times 3^{24} = 3 \times (3^6)^4 = 3 \times (1)^4 \pmod{7}$$

```
Recall: x \times y \times u \times v \times w \cdots \pmod{z}.
```

Reduce each intermediate result \pmod{z} !

Reduce exponents?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

What is $3^{25} \pmod{7}$?

- (A) 2
- (B) 3
- (C) 4

$$3^{25} = 3 \times 3^{24} = 3 \times (3^6)^4 = 3 \times (1)^4 \pmod{7}$$

B. 3

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Idea: Multiply nonzero elements of Z_p ($\{0, ..., p-1\}$) together!

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Idea: Multiply nonzero elements of Z_p ($\{0, \ldots, p-1\}$) together! More details:

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Idea: Multiply nonzero elements of Z_p ($\{0, \ldots, p-1\}$) together! More details: Let T be $\{1, \ldots, p-1\}$.

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Idea: Multiply nonzero elements of Z_p ($\{0,...,p-1\}$) together!

More details:

Let *T* be $\{1, ..., p-1\}$.

Let *S* be $\{ax : x \in T\}$.

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Idea: Multiply nonzero elements of Z_p ($\{0, \dots, p-1\}$) together!

More details:

Let *T* be $\{1, ..., p-1\}$.

Let S be $\{ax : x \in T\}$.

How big is S?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Idea: Multiply nonzero elements of Z_p ($\{0,...,p-1\}$) together!

More details:

Let *T* be $\{1, ..., p-1\}$.

Let S be $\{ax : x \in T\}$.

How big is *S*?

Are S and T related?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Idea: Multiply nonzero elements of Z_p ($\{0,...,p-1\}$) together!

More details:

Let *T* be $\{1, ..., p-1\}$.

Let S be $\{ax : x \in T\}$.

How big is *S*?

Are S and T related?

Fermat's Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Idea: Multiply nonzero elements of Z_p ($\{0,...,p-1\}$) together!

More details:

Let *T* be $\{1, ..., p-1\}$.

Let S be $\{ax : x \in T\}$.

How big is *S*?

Are S and T related?

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let *T* be $\{1, ..., p-1\}$. (Nonzero elements of \mathbb{Z}_p .)

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, ..., p-1\}$. (Nonzero elements of \mathbb{Z}_p .) Let S be $\{ax \pmod{p} : x \in T\}$.

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, \dots, p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod{p} : x \in T\}$. How big is S?

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, \dots, p-1\}$. (Nonzero elements of Z_p .)

Let *S* be $\{ax \pmod{p} : x \in T\}$. How big is *S*?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Proof:

Let T be $\{1,...,p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod{p}: x \in T\}$.

How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$?

Thm: For a prime *p* and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod{p}: x \in T\}$.

How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$? Yes?

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Proof:

Let T be $\{1, ..., p-1\}$. (Nonzero elements of \mathbb{Z}_p .) Let S be $\{ax \pmod{p} : x \in T\}$.

How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$? Yes? No?

Thm: For a prime *p* and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Proof:

Let T be $\{1, ..., p-1\}$. (Nonzero elements of \mathbb{Z}_p .) Let S be $\{ax \pmod{p} : x \in T\}$.

How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$? Yes? No?

Recall a has multiplicative inverse. (gcd(a, p) = 1)

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, ..., p-1\}$. (Nonzero elements of \mathbb{Z}_p .) Let S be $\{ax \pmod{p} : x \in T\}$.

How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$?

Yes? No?

Recall a has multiplicative inverse. (gcd(a,p) = 1)

$$ax = ay \pmod{z}$$

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, \dots, p-1\}$. (Nonzero elements of \mathbb{Z}_p .)

Let *S* be $\{ax \pmod{p} : x \in T\}$. How big is *S*?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$?

Yes? No?

Recall a has multiplicative inverse. (gcd(a, p) = 1)

$$ax = ay \pmod{z}$$
$$a^{-1}ax = a^{-1}ay \pmod{z}$$

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod p: x\in T\}$.

- How big is S?
- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$? Yes? No?

Recall a has multiplicative inverse. (gcd(a, p) = 1)

$$ax = ay \pmod{z}$$

$$a^{-1}ax = a^{-1}ay \pmod{z}$$

$$x = y \pmod{z}$$

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod{p} : x \in T\}$. How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$? Yes? No?

Recall a has multiplicative inverse. (gcd(a, p) = 1)

$$ax = ay \pmod{z}$$

 $a^{-1}ax = a^{-1}ay \pmod{z}$
 $x = y \pmod{z}$

Thus, $ax = ay \pmod{z} \implies x = y \pmod{z}$.

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, ..., p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod{p} : x \in T\}$.

How big is S?

- (A) Exactly p-1.
- (B) Possibly less than p-1.

Are there different x and y where $ax = ay \pmod{z}$? Yes? No?

Recall a has multiplicative inverse. (gcd(a, p) = 1)

$$ax = ay \pmod{z}$$

$$a^{-1}ax = a^{-1}ay \pmod{z}$$

$$x = y \pmod{z}$$

Thus, $ax = ay \pmod{z} \implies x = y \pmod{z}$.

Thus, mutliply by a is 1-to-1,

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$.

Proof:

Let T be $\{1, \dots, p-1\}$. (Nonzero elements of Z_p .) Let S be $\{ax \pmod{p} : x \in T\}$.

How big is S? (A) Exactly p-1.

(B) Possibly less than p-1.

Yes? No?

Recall a has multiplicative inverse. (gcd(a, p) = 1)

Are there different x and y where $ax = ay \pmod{z}$?

$$ax = ay \pmod{z}$$
$$a^{-1}ax = a^{-1}ay \pmod{z}$$

$$x = y \pmod{z}$$

Thus, $ax = ay \pmod{z} \implies x = y \pmod{z}$.

Thus, mutliply by a is 1-to-1, and |S| = p - 1.

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, \ldots, p-1\}$. (Nonzero elements of \mathbb{Z}_p .)

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, ..., p-1\}$. (Nonzero elements of Z_p .) Consider the set $S = \{ax \pmod{p} : x \in T\}$.

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod p:x\in T\}$. How big is S?

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1, \ldots, p-1\}$. (Nonzero elements of \mathbb{Z}_p .) Consider the set $S = \{ax \pmod{p} : x \in T\}$. How big is S? p-1 since a has an inverse

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod p:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T?

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod p:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ...

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod p:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are \ldots the same!

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod{p}:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod{p}:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Multiply elements of *T*:

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod{p}:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Multiply elements of T: $\pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}$

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod{p}:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Multiply elements of T: $\pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}$ Multiply elements of S:

```
Thm: For a prime p and 0 < a < p, a^{p-1} = 1 \pmod{p}. Proof:
```

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod p:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Multiply elements of T: $\pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}$ Multiply elements of S: $\pi_S = 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \cdot a \pmod{p}$

Thm: For a prime p and 0 < a < p, $a^{p-1} = 1 \pmod{p}$. Proof:

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod{p}:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Multiply elements of T: $\pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}$ Multiply elements of S: $\pi_S = 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \cdot a \pmod{p}$

$$\pi_{\mathcal{S}} = a^{p-1}\pi_{\mathcal{T}}$$

```
Thm: For a prime p and 0 < a < p, a^{p-1} = 1 \pmod{p}. Proof:
```

Let T be $\{1,\ldots,p-1\}$. (Nonzero elements of Z_p .) Consider the set $S=\{ax\pmod p:x\in T\}$. How big is S? p-1 since a has an inverse Relationship between S and T? They are ... the same! Elts of S are in $T=\{1,\ldots,p-1\}$ and set size p-1.

Multiply elements of $T: \pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}$ Multiply elements of $S: \pi_S = 1a \cdot 2a \cdot 3a \cdots (p-1)a \pmod{p}$

$$\pi_{\mathcal{S}} = \mathbf{a}^{p-1}\pi_{\mathcal{T}} = \pi_{\mathcal{T}} \pmod{p}.$$

```
Thm: For a prime p and 0 < a < p, a^{p-1} = 1 \pmod{p}.
Proof:
Let T be \{1, \dots, p-1\}. (Nonzero elements of Z_p.)
Consider the set S = \{ax \pmod{p} : x \in T\}.
How big is S? p-1 since a has an inverse
Relationship between S and T? They are ... the same!
    Elts of S are in T = \{1, \dots, p-1\} and set size p-1.
Multiply elements of T: \pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}
Multiply elements of S: \pi_S = 1a \cdot 2a \cdot 3a \cdots (p-1)a \pmod{p}
      \pi_{S} = a^{p-1}\pi_{T} = \pi_{T} \pmod{p}.
So a^{p-1} = 1 \pmod{p}.
```

```
Thm: For a prime p and 0 < a < p, a^{p-1} = 1 \pmod{p}.
Proof:
Let T be \{1, \dots, p-1\}. (Nonzero elements of Z_p.)
Consider the set S = \{ax \pmod{p} : x \in T\}.
How big is S? p-1 since a has an inverse
Relationship between S and T? They are ... the same!
    Elts of S are in T = \{1, ..., p-1\} and set size p-1.
Multiply elements of T: \pi_T = 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}
Multiply elements of S: \pi_S = 1a \cdot 2a \cdot 3a \cdots (p-1)a \pmod{p}
      \pi_{S} = a^{p-1}\pi_{T} = \pi_{T} \pmod{p}.
So a^{p-1} = 1 \pmod{p}.
```

Arithmetic modulo a prime is so nice!

Arithmetic modulo a prime is so nice! I want some primes! Big ones.

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number,

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in ln10¹⁰⁰,

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in ln 10¹⁰⁰, around 1 in 200.

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in $ln 10^{100}$, around 1 in 200.

Demo.

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in In 10¹⁰⁰, around 1 in 200.

Demo.

Why was the demo, so fast?

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in In 10¹⁰⁰, around 1 in 200.

Demo.

Why was the demo, so fast?

How could it tell whether a number was prime?

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in In 10¹⁰⁰, around 1 in 200.

Demo.

Why was the demo, so fast?

How could it tell whether a number was prime?

Obvious method: check for factors up to \sqrt{N} .

Arithmetic modulo a prime is so nice!

I want some primes! Big ones. Big is good.

How do I find one?

Are there even any big primes?

There are lots!

Around $\frac{1}{\ln N}$ for numbers with value *N*.

For 100 digit number, one in In 10¹⁰⁰, around 1 in 200.

Demo.

Why was the demo, so fast?

How could it tell whether a number was prime?

Obvious method: check for factors up to \sqrt{N} . should take around 10⁵⁰ steps.

What is your favorite prime?

What is your favorite prime? 7

What is your favorite prime? 7 ...of course! What is

 $2^6 \mod 7$?

- (a) 1
- (b) 2
- (c) 3

$$2^6 \mod 7$$
?

- (a) 1
- (b) 2
- (c) 3

$$2^6 = 64$$

$$2^6 \mod 7$$
?

- (a) 1
- (b) 2
- (c) 3

$$2^6 = 64 = 7 * 9 + 1$$

$$2^6 \mod 7$$
?

- (a) 1
- (b) 2
- (c) 3

$$2^6 = 64 = 7 * 9 + 1 \equiv 1 \pmod{7}$$

$$2^6 \mod 7$$
?

- (a) 1
- (b) 2
- (c) 3

$$2^6 = 64 = 7 * 9 + 1 \equiv 1 \pmod{7}$$

What about 36 mod 7?

What about 3⁶ mod 7?

- (a) 1
- (b) 2
- (c) 3

What about 3⁶ mod 7?

- (a) 1
- (b) 2
- (c) 3

Fermat's Theorem:

If p is prime, and any 0 < a < p, $a^{p-1} \equiv 1 \pmod{p}$.

What about 3⁶ mod 7?

- (a) 1
- (b) 2
- (c) 3

Fermat's Theorem:

If p is prime, and any 0 < a < p, $a^{p-1} \equiv 1 \pmod{p}$.

Answer is A or 1.

What about 3⁵ mod 6?

What about 3⁵ mod 6?

- (a) 1
- (b) 2
- (c) 3

What about 3⁵ mod 6?

- (a) 1
- (b) 2
- (c) 3

I don't know.

What about 3⁵ mod 6?

- (a) 1
- (b) 2
- (c) 3

I don't know. Fermat's Theorem doesn't tell us!

What about 3⁵ mod 6?

- (a) 1
- (b) 2
- (c) 3

I don't know. Fermat's Theorem doesn't tell us! ...with some work...

What about 3⁵ mod 6?

- (a) 1
- (b) 2
- (c) 3

I don't know. Fermat's Theorem doesn't tell us! ...with some work...it's 3!

What about 3⁵ mod 6?

- (a) 1
- (b) 2
- (c) 3

I don't know. Fermat's Theorem doesn't tell us! ...with some work...it's 3! not 1!

Theorem: For any non prime N, except for "Carmichael" numbers (ridiculously rare), for at least half the 0 < a < N,

 $a^{N-1} \not\equiv 1 \pmod{N}$.

Theorem: For any non prime N, except for "Carmichael" numbers (ridiculously rare), for at least half the 0 < a < N,

$$a^{N-1} \not\equiv 1 \pmod{N}$$
.

Fermat's Theorem:

If p is prime, and any $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Theorem: For any non prime N, except for "Carmichael" numbers (ridiculously rare), for at least half the 0 < a < N,

$$a^{N-1} \not\equiv 1 \pmod{N}$$
.

Fermat's Theorem:

If p is prime, and any $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Approximate converse of Fermat's Theorem.

Theorem: For any non prime N, except for "Carmichael" numbers (ridiculously rare), for at least half the 0 < a < N,

$$a^{N-1} \not\equiv 1 \pmod{N}$$
.

Fermat's Theorem:

If p is prime, and any $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Approximate converse of Fermat's Theorem.

Not exact

Theorem: For any non prime N, except for "Carmichael" numbers (ridiculously rare), for at least half the 0 < a < N,

$$a^{N-1} \not\equiv 1 \pmod{N}$$
.

Fermat's Theorem:

If p is prime, and any $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Approximate converse of Fermat's Theorem.

Not exact

because "test" fails for only half the a's.

Theorem: For any non prime N, except for "Carmichael" numbers (ridiculously rare), for at least half the 0 < a < N,

$$a^{N-1} \not\equiv 1 \pmod{N}$$
.

Fermat's Theorem:

If p is prime, and any $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Approximate converse of Fermat's Theorem.

Not exact

because "test" fails for only half the a's. and rare exceptions.

Some questions....

Given N, and a, where $a^{N-1} = 1 \pmod{N}$, is N prime?

Some questions....

Given N, and a, where $a^{N-1} = 1 \pmod{N}$, is N prime?

- 1. Yes. Prime!
- 2. No. Not prime!
- 3. It could be prime or composite.

Some questions....

Given N, and a, where $a^{N-1} = 1 \pmod{N}$, is N prime?

- 1. Yes. Prime!
- 2. No. Not prime!
- 3. It could be prime or composite.

C. It could be prime or composite.

Questions.

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

B. No. Not Prime!

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

B. No. Not Prime!

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

B. No. Not Prime!

- (A) Yes.
- (B) No.

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

B. No. Not Prime!

- (A) Yes.
- (B) No.
- (C) We rely on not knowing how!

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

B. No. Not Prime!

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, it is easy to factor N.

- (A) Yes.
- (B) No.
- (C) We rely on not knowing how!

C.

Given N, and a, where $a^{N-1} \not\equiv 1 \pmod{N}$, is N prime?

- (A) Yes. It is prime.
- (B) No. It is not prime.
- (C) It could be prime or composite.

B. No. Not Prime!

- (A) Yes.
- (B) No.
- (C) We rely on not knowing how!
- C. RSA cryptosystem.

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

В

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

B (and A).

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

B (and A).

Primality Testing Algorithm?

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

B (and A).

Primality Testing Algorithm?
Repeat 100 times:

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

B (and A).

Primality Testing Algorithm?
Repeat 100 times:

Choose a at random and test

Given N is not prime (and not a Carmichael number), how many 0 < a < N, where $a^{N-1} \not\equiv 1 \pmod{N}$?

- (A) at least one of them.
- (B) at least half of them.
- (C) all of them.

B (and A).

Primality Testing Algorithm?
Repeat 100 times:
Choose a at random and test

 $a^{N-1} \equiv 1 \mod N$.

Primality Testing

```
def primalityOrCarmichael(N):
    for i in xrange(100):
        a = random_int(1,N-1)
        if not(exp(a,N-1,N) == 1):
        return False
    return True
```

Primality Testing

```
def primalityOrCarmichael(N):
    for i in xrange(100):
        a = random_int(1,N-1)
        if not(exp(a,N-1,N) == 1):
            return False
    return True
```

Use modular exponentiation.

Primality Testing

```
def primalityOrCarmichael(N):
    for i in xrange(100):
        a = random_int(1,N-1)
        if not(exp(a,N-1,N) == 1):
            return False
    return True
Use modular exponentiation.
```

Use modular exponentiation.

If not prime or Carmichael,
passes test once
with probability at most 1/2.

If return False:

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

Probability of passing test 100 times is

(A) 1/2

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

Probability of passing test 100 times is

- (A) 1/2
- (B) 1/100

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

Probability of passing test 100 times is

- (A) 1/2
- (B) 1/100
- (C) $1/(100)^2$

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

Probability of passing test 100 times is

- (A) 1/2
- (B) 1/100
- (C) $1/(100)^2$
- (D) $1/2^{100}$

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

Probability of passing test 100 times is

- (A) 1/2
- (B) 1/100
- (C) $1/(100)^2$
- (D) $1/2^{100}$

D. $1/2^{100}$.

If return False:

N not prime by Fermat's Theorem ($a^{N-1} \neq 1 \mod N$).

If return True:

It passes the test 100 times.

N is "prime or Carmichael", then the algorithm is correct.

N is "not prime (or Carmichael)":

Probability of passing test 100 times is

- (A) 1/2
- (B) 1/100
- $(C) 1/(100)^2$
- (D) $1/2^{100}$
- D. $1/2^{100}$.

The probability that the algorithm fails is at most $1/2^{100}$.

Probability of t heads in a row, if heads probability is p?

Probability of *t* heads in a row, if heads probability is *p*? Assume each coin toss is independent.

р

$$p \times p$$

$$p \times p \times p \cdots$$

$$p \times p \times p \cdots = (p)^{100}$$
.

Probability of t heads in a row, if heads probability is p?

Assume each coin toss is independent.

$$p \times p \times p \cdots = (p)^{100}$$
.

For algorithm, test fails on nonprime/nonCarmichael with $p \le 1/2$.

Probability of t heads in a row, if heads probability is p?

Assume each coin toss is independent.

$$p \times p \times p \cdots = (p)^{100}$$
.

For algorithm, test fails on nonprime/nonCarmichael with $p \le 1/2$.

So, probability of failing $p^{100} \le \left(\frac{1}{2}\right)^{100}$

Probability of *t* heads in a row, if heads probability is *p*?

Assume each coin toss is independent.

$$p \times p \times p \cdots = (p)^{100}$$
.

For algorithm, test fails on nonprime/nonCarmichael with $p \le 1/2$.

So, probability of failing $p^{100} \le \left(\frac{1}{2}\right)^{100}$

Tune algorithm: for t tests, probability fails on nonprime/nonCarmichael is $\leq \left(\frac{1}{2}\right)^t$

...finish lemma Monday.