RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

January, 2017

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

Problem 1. Compute the fundamental group of $\mathbb{R}^3 - C$ where

$$C = \{(x, y, z) \mid x = 0, y^2 + z^2 = 2\}.$$

(Hint: Consider a tube around C whose inner hole has been filled by a disk.)

Problem 2. Let $p: X \to Y$ be a continuous closed surjection.

- (a) Let $U \subset X$ be an open set which contains $p^{-1}(\{y\})$. Prove that there is an open neighborhood W_y of y such that $p^{-1}(W_y) \subset U$. (Hint: Consider $X \setminus U$.)
- (b) Recall that X is normal if the one point sets in X are closed and, for every pair disjoint of closed sets A and B, there exists disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Show that if X is normal, then so is Y.

Problem 3. Let $p: \widetilde{X} \to X$ be the universal cover of a connected and locally-path connected space X and let $A \subset X$ be a connected and locally path-connected subspace. Let \widetilde{A} be a path component of $p^{-1}(A)$.

- (a) Show that $\widetilde{A} \to A$ is a covering space.
- (b) Prove that the image of

$$\pi_1(\widetilde{A}, \widetilde{a}_0) \to \pi_1(A, a_0)$$

coincides with the kernel of $\iota_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$, where $\widetilde{a}_0 \in \widetilde{A}$ is any basepoint, $a_0 = p(\widetilde{a}_0)$, and $\iota: A \hookrightarrow X$ is the canonical embedding.

Problem 4. (a) Show that there is no immersion $S^1 \to \mathbb{R}$.

(b) Consider the function $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x^3 z, xy + z)$. At which point is f a submersion? Determine the regular values of f.

Problem 5. Define $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + dx_5 \wedge dx_6$ as a 2-form on \mathbb{R} . Show that no diffeomorphism $\varphi : \mathbb{R}^6 \to \mathbb{R}^6$ satisfying $\varphi^* \omega = \omega$ can map the unit sphere S^5 to a sphere of radius $r \neq 1$.

Hint: consider $\omega \wedge \omega \wedge \omega$.

Problem 6. Recall that an n-dimensional manifold M is called parallelizable if its tangent bundle is trivial. Which of the following manifolds are parallelizable? Provide a short justification of your answer in a sentence.

- (i) The *n*-torus $(S^1)^n = \mathbb{R}^n/\mathbb{Z}^n$ (where \mathbb{Z}^n is the subgroup of the additive group of \mathbb{R}^n consisting of points whose coordinates are all integers);
- (ii) the sphere S^2 ;
- (iii) the real projective plane \mathbb{RP}^2 .

Space $R^3 - C$ is $R^3 - C$ i	that we can confract here 3 which can the some for a s' 152. is to let 0 represent the condition given by C.
space $R^3 - C$ is $R^3 - C$) = T , $(S'AS^2) = T$ way to do this bounded by the circles with outer in he the sets $U = int(T)$ $V = R^3 - D$	is to let 0 represent cle C. Let T be evidian given by C.
space $R^3 - C$ is $R^3 - C$) = T , $(S'AS^2) = T$ way to do this bounded by the circles with outer in he the sets $U = int(T)$ $V = R^3 - D$	is to let 0 represent cle C. Let T be evidian given by C.
bounded by the cir forus with outer in ne the sets U = int(T) $V = \mathbb{R}^3 - D$	eridian given by C.
Ne the sets $U = int(T)$ $V = R^3 - D$	
· ·	
see that It embar	es to a circle and V
a sphere. This of M.(UNV) = 1. So	by SVK we have
$ \pi_{i}(\mathbf{R}^{s}-\mathbf{C}) = \pi_{i}(\mathbf{U}) \not\approx_{i} $	$n(v) \stackrel{\mathcal{T}}{=} \mathcal{I}(v) : \mathcal{I} \times_1 1 = \mathcal{I}.$
	$ \eta_{i}(R^{2}-C) = \eta_{i}(u) *_{i}(u) $

	Top / Diff Geo Prelim Exam January 2017
	10p / 101 pt GEO FICTIM CHAM TELNUARY LOT 1
7)	(a) Since U is open, then X/U is closed, and since p: x = y
	is a surjective, closed map we have that p(X(U) is closed.
	Take Wy = I \p (x(u). We obviously have that yewy
	Jake Wy = I \ p (x \ u). We obviously have that yewy since f'(y) = u. Now, if we take any x cp'(wg) then
	p(x) & Y \ p(x \ u), so x & x \ U. Thus x & u and p' (Wy) & U
	(b) Since a is all all is like
	(b) Since p is closed and surjective, we get that the one
	point sets are closed in y for free. Now suppose A, B = y are disjoint closed sets. Since p is confirmous, we then
	have that p'(A) and p'(B) are closed in X. So there
	exist upen sets U, V = x, UNV=d p-(A) & U and p-(B) & V
	Now, for each act, p'({a}) & u so by part (a) there
	is some wa = y such that p'(wa) =U. Define the sets
	WA := U Wa, WB = U Wb. Then we have that A & WA,
	BEWS and that Up and WB are open. with p'(W) EU
	and p'(WB) EV. Well then p'(WANWB) & p'(WB) & UNV20
	So Wy 1 WB = & and we have that y is normal.

Top / Poff Gree Prelim Evan January 2017 3) (a) Let \$\bar{A}\$ be a path component of \$p^*(A)\$ and consider the costainan \$p_{\beta} : \bar{A}\$ and of the contents map \$p\$. The any \$x \times A there is some everally contents out can take some smaller path connected acquisitionhood of \$x\$. Then V is everly conceed and the path components of \$p^*(V)\$ are mapped homeomorphically onto \$V\$. Since \$A\$ is a path component of \$p^*(A)\$, the path components of \$p^*_{\beta}(V)\$ are mapped homeomorphically onto \$V\$. Thus \$p^*_{\beta} : \bar{A}\$ is a covering map and \$A^* \text{A}\$ is a covering map and \$A^* \text{A}\$ is a covering space. (b) Consider the following diagram: 1 \text{A} \$(\bar{A}, \bar{a}_0)\$ then there exists \$p(\beta(\bar{A})\$ such that \$q_{\beta}p(\bar{A})\$! (\bar{A})\$ but then we have theat this is a short exact sequence (inty) : Note, \$\frac{1}{2} = (\beta(\bar{a}_1)^2 = (\beta(\bar{a}_1)^2 + (\beta(\bar{a}_1)^2)^2) = \beta(\beta(\bar{a}_1)^2) = \beta(\bar{a}_1)^2		
(a) Let \tilde{A} be a path component of $p^{-1}(A)$ and consider the respection $p _{X}: \tilde{K} \to A$ of the converge map p . For any $x \in A$, there is some everly concerted neighborhood (I) of x . Since A is locally path connected, not can take some smaller path convected neighborhood of X relative to the topology on A . Call this set Y . Then Y is everly covered and the path components of $p^{-1}(Y)$ are mapped homeomorphically onto Y . Since \tilde{A} is a path component of $p^{-1}(A)$, the path components of $p _{T}^{-1}(Y)$ ore path components of $p^{-1}(A)$ and are hence mapped homeomorphically onto Y . Thus $p _{T}: \tilde{A} \to A$ is a covering map and $\tilde{A} \to A$, is a covering space. (b) Consider the following diagram. [
(a) Let \tilde{A} be a path component of $p^{-1}(A)$ and consider the respection $p _{X}: \tilde{K} \to A$ of the converge map p . For any $x \in A$, there is some everly concerted neighborhood (I) of x . Since A is locally path connected, not can take some smaller path convected neighborhood of X relative to the topology on A . Call this set Y . Then Y is everly covered and the path components of $p^{-1}(Y)$ are mapped homeomorphically onto Y . Since \tilde{A} is a path component of $p^{-1}(A)$, the path components of $p _{T}^{-1}(Y)$ ore path components of $p^{-1}(A)$ and are hence mapped homeomorphically onto Y . Thus $p _{T}: \tilde{A} \to A$ is a covering map and $\tilde{A} \to A$, is a covering space. (b) Consider the following diagram. [
the restriction $p _{\tilde{X}}: \tilde{X} \to t$ of the conving map p . For any $x \in A$, there is some everly covered neighborhood. If of x . Since t is locally path connected, not can take some smaller path connected neighborhood of t . The relative to the topslagy on t . Call this set t . Then V is evenly covered and the path components of $p'(V)$ are mapped homeomorphically onto t . Since \tilde{A} is a path component of $p'(A)$, the path components of $p _{T}(V)$ or path components of $p'(A)$, the path components of $p _{T}(V)$ or path components of $p'(A)$, then $p _{X}: \tilde{A} \to A$ is a covering map and $\tilde{A} \to A$ is a covering space. (b) Consider the following diagram. I $\to T(\tilde{A}, \tilde{a}_0) \to T(\tilde{A}, a_0) \to T(\tilde{A}, a_0) \to 1$ we want to show that this is a short exact sequence (inq _X): total Let $[A] \in m(q_X)$. Then there exists $[P] \in T(\tilde{A})$ such that $[P_X[A] : [P_X[A] : [P$	Top / Wiff Geo Welim Exam Ganuary 2017	
the restriction pla: A > A of the conving map p. Tor any x a A, there is some everly covered neighborhood If of x. Since A is locally path connected, not can take some smaller path unrested neighborhood of x relative to the topilagy on A. Call this set V. Then V is everly covered and the path components of p'(V) are mapped homeomorphically onto V. Since A is a path component of p'(A), the path components of ply '(V) are path components of p'(A) and are here mapped homeomorphically onto V. Thus pla: A > A is a covering map and A > A is a covering space. (b) Consider the following diagram. I - M. (A, a) - M (A, a) - M (X, a) -> 1 we want to show that this is a short exact sequence (inqu): took Let [a] & im(qu). Then there exists [p] & M. such that q. [p]:[d]. But then we have that (x[x] = lx(qx[b]) = (coq) & [b] : [pos) & [b] = phi ob] = px[cz] = [can] since X is simply connected. So im(qx) & ker(ix). Conversely, let [d] & ker((x)). Then is a loop a in X at a such that pia! = [can]. Since A is a path component and a & A, we must have [a] & M. (A, a). Therefore, q. [a] - [a]	7 () 4 / 7 / () / () / ()	-
for any x c A, there is some everly concreted neighborhood if of x. Since A is locally path connected, are can take some smaller path converted neighborhood of x relative to the topology on A. Call this set V. Then V is everly concreted and the path components of p'(V) are mapped homeomorphically onto V. Since \(\hat{A}\) is a path components of p'(V) or path components of p'(A), the path components of plot (V) or path components of p'(A) and are hence mapped homeomorphically onto V. Thus plot \(\hat{A} -> A\) is a covering map and \(\hat{A} >> A\) is a covering space. (b) Consider the following diagram. (b) Consider the following diagram. (c) Consider the following diagram. (c) Late in(q). Then there exists to a short exact sequence (inq) = took. Let [A16 in(q). Then there exists to [A16] such that q, [p1:[d]. But then we have that (Lx[A] = (4, 4[b]) = (6.00), [b] = [0.5), [b] = phisoply connected. So in(q) \(\hat{x} \) ker(i). Conversely, let [A \(\hat{x} \) ker([u). Then \(\hat{x} \) = [0.01] = [0.01]. But [Ca] \(\hat{x} \) (\(\hat{x} \		
let of x. Since A is locally path connected, are can take some smaller path connected neighborhood of x relative to the topology on A. (ah this set Y. Then Y is evenly covered and the path components of p'(V) are mapped homeomorphically onto V. Since A is a path component of p'(A), the path components of ph (V) ore path components of p'(A) and are hence mapped homeomorphically onto V. Thus ph A is a covering map and A > A is a covering space. (b) Consider the following diagram. (c) Consider the following diagram. 1-1. (A, a) - 7. (A, a) - 1. (X, a) -> 1 core want to show that this is a short exact sequence (inter-kore). Let [A1 & in(q)). Then there exists [P1 & P, [A)) such that q, [P1 & [A]]. But then we have that (y [X] = (y (y [B]) - (coq), [B] : (pos), [A] = p_{x}[sop]. So im(q) & ker(ix). Conversely, let [A] & ker (ix). Then is a loop a in X at a such that pala?: [Ca]. Since A is a path component and a c A, we must have [a] & Nince is a loop a in X at a such that pala?: [Ca]. Since A is a path component and a c A, we must have [a] & Nince A is a path component and a c A, we must have [a] & Nince A is a path component and a c A, we must have [a] & Nince A is a path component and a c A, we must have [a] & Nince A is a path component and		
take some smaller path converted neighborhood of K relative to the topology on A. (ah knis set V. Then V is evenly covered and the path components of p'(V) are mapped homeomorphically onto V. Since A is a path component of p'(A), the path components of ply (V) are path components of p'(A) and are hence mapped homeomorphically onto V. Thus ply: A > A is a covering map and A > A: a covering space. (b) Consider the following diagram. (b) Consider the following diagram. (c) Consider the following diagram. (c) Consider the following diagram. (d) Consider the following diagram. (e) Consider the following diagram. (e) Consider the following diagram. (e) Consider the following diagram. (f) Consider the following diagram. (g) Consider the following diagram. (hat [a] = [a] [a] = [a]	for any kert, friend is some every covered reignostroad	
relative to the topology on A. Call this set V. Then V is everly covered and the path components of p'(V) are mapped homeomorphically onto V. Since A is a path component of p'(A), the path components of photo(V) are path components of p'(A) and are hence mapped homeomorphically onto V. Thus photo A is a covering map and A > A is a covering space. (b) Consider the following diagram. (b) Consider the following diagram. (c) Consider the following diagram. Lat [A] & im(q_A). Thun there exists the A is a short exact sequence (inq_A) = kerle. Let [A] & im(q_A). Thun there exists the A (A) such that q_1[A] = policy = p_A (C_A) = (C_A) = (C_A) = [C_A] =	ble some smaller only connected neighborhand of	
V is evenly covered and the path components of p'(V) are mapped homeomorphically onto V. Since \(\wideha\) is a path component of p'(A), the path components of ply (V) are path components of p'(A) and are hence mapped homeomorphically onto V. Thus ply \(\wideha\) A is a covering map and \(\wideha\) A; a covering space. (b) Consider the following diagram. (b) Consider the following diagram. \[\begin{align*} & \pi(\wideha\) \approx \pi(\wideha\) \approx \(\pi(\wideha\) \approx \pi(\wideha\) \approx \(\pi(\wideha\) \approx \pi(\wideha\) \approx \approx \pi(\wideha\) \approx \pi(\wi	relative to the topping on A. Call this set V. Then	
are mapped homeomorphically onto V. Since \widetilde{A} is a path component of $p'(A)$, the path components of $p _{T}^{-1}(V)$ are path components of $p _{T}^{-1}(V)$ are path components of $p _{T}^{-1}(V)$ and are hence mapped homeomorphically onto V. Thus $p _{T}:\widetilde{A} \to A$ is a covering map and $\widetilde{A} \to A$ is a covering space. (b) Consider the following diagram. $ -T_{T}(\widetilde{A},\widetilde{a}_{0}) \to T_{T}(A,a_{0}) \to T_{T}(X,a_{0}) \to 1$ we want to show that this is a short exact sequence (in(q))= kor(L). Yet $[A] \in [M](q_{0})$. Then there exists $[A] \in T_{T}(\widetilde{A})$ such that $[A] \in [A] = [A]$	V is everly covered and the path components of o'(V)	
components of p (A), the path components of ply (V) are path components of p'(A) and are hence mapped homeomorphically onto V. Thus ply: A > A is a covering map and A > A is a covering space. (b) Consider the following diagram. I - M. (A, a) - M. (A, a) - M. (X, a) - 1 we want to show that this is a short exact sequence (inq): kor(c, Xet [a] & in(q). Then there exists [p] & M. (A) such that q. [p]: [a]. But then we have that (x[a] = (xq & [b]) = ((0q), [b] : (poi), [b] = p. [op] = p x [c] = [ca] since X is simply connected. So in(q) & ker(i). Conversely, let [a] & ker((u)). Then c = [cod] = [ca]. But [ca] & p x (M. (X a)), so there is a loop X in X at X such that p. [a] = [ca]. Since A is a path component and \[\begin{align*} \text{a} & a	are mapped homeomorphically onto V. Since A is a path	
are path components of p'(A) and are hence mapped homeomorphically onto V. Thus phi A -> A is a covering map and A >> A is a covering space. (b) Consider the following diagram. (b) Consider the following diagram. (c) Consider the following diagram. (d) Consider the following diagram. (e) Consider the following diagram. (f) Consider the following diagram. (g) Consider the following diagram. (h) Consider the	component of p'(A). the path components of pho (V)	
homeomorphically anto V. Thus place A > A is a covering map and $\widetilde{A} > A$ is a covering space. (b) Consider the following diagram. 1 - N. (\widetilde{A} , \widetilde{a}) - N. (A , a) - N. (X , a) - 1 we want to show that this is a short exact sequence (in(a): ker(a). Let [a] \in im(a). Then there exists a	are path components of p'(A) and are hence mapped	
map and A > A is a covering space. (b) Consider the following diagram. I - M (A a) - M (A, a) - M (X, a) - 1 we want to show that this is a short exact sequence (in(a) = kor(c) Yet [A] & in(q). Then there exists [p] & M (A) such that q [p] & [M] But then we have that (y [A] = (y (q y [B]) = ((o q) y [B] : (p o i) y [B] = p f o p] = p x [C_2] = [Cao] since X is simply connected. So in(qx) & ker(ix). Conversely, lef [A] & ker((x)). Then (x = [cod] = [Cao] But [Cao] & p (M (X a)), so there is a loop X in X at X such that p [X] = [Cao]. Since X is a path component and \(\tilde{a} \) & \tilde{A} we must have [X] & \tilde{A} \) Therefore, quital-[X]	homeomorphically onto V. Thus pla: A -> A is a covering	
(b) Consider the following diagram. \[\begin{align*} & \tau_{\chi}(\tilde{A}, \tilde{a}_{\chi}) & \tau_{\chi}(\theta, a_{\chi}) & \tau_{\chi}(\tilde{X}, a	map and A > A is a covering space.	
1 → π, (Ã, ão) → π, (4, ao) → π, (x, ao) → 1 we want to show that this is a short exact sequence (in(q)) = ker(c). Let [λ] ∈ in(q). Then there exists [ρ] ∈ π, (Â) such that q, [ρ] : [λ]. But then we have that (x [λ] = (γ, (q, [β]) = ((οq), [β] : (ρο)) , [β] = ρ, [ορ] = ρ × [(2]] = [(αο]) since x is simply connected. So in(q) ∈ ker(i). Conversely, let [λ] ∈ ker ((μ). Then (μ) = [(αο]) = [(αο]). But [(αο] ∈ ρ × (π, (x âo)), so there is a loop x in x at ão such that ρ, [α] = [(αο]). Since x is a path component and α ∈ Ã, we must have [α] ∈ π, (Ã, ão). Therefore, q, [α] = [α]		
1 → π, (Ã, ão) → π, (4, ao) → π, (x, ao) → 1 we want to show that this is a short exact sequence (in(q)) = ker(c). Let [λ] ∈ in(q). Then there exists [ρ] ∈ π, (Â) such that q, [ρ] : [λ]. But then we have that (x [α] = (γ (q β)) = ((ο q) , [β] : (ρ ο j) , [β] = ρ ω[ο ρ] = ρ ω [(α) = [(α)] = [(α)] since x is simply connected. So in(q) ∈ ker(i). Conversely, let [λ] ∈ ker((ω). Then ω = [(α)] = [(α)]. But [(α) ∈ ρ ω (π, (x a)), so there is a loop x in x at ao such that ρ ω[x] = [(α)]. Since x is a path component and α ∈ Ã, we must have [x] ∈ π, (Ã, ão). Therefore, q ω [x] = [α]	(b) Consider the following diagram.	
Let [A] & im(qx). Then there exists [p] & P.(A) such that q.[p]:[d]. But then we have that \[\((\pi \) [\alpha] = [\pi (\) [\beta] = (\cop) \(\pi \) [\beta] = \(\pi \) [\sigma] = \(\pi		
Let [a] & im(qx). Then there exists [p] & It. (a) such that q. [p] : [d]. But then we have that $(x [\alpha] = L_{x}(q_{x}[\beta]) = (L \circ q)_{x}[\beta] = (p \circ j)_{x}[\beta] = p_{x}[j \circ \beta]$ $= p_{x}[C_{\alpha}] = [C_{\alpha}] = [C_{\alpha}] = ince \hat{X} = simply connected.$ So $im(q_{x}) \in ker(i_{x})$. Conversely, let [d] & ker(Lx). Then $L_{x} = [L \circ d] = [C_{\alpha}]$. But $[C_{\alpha}] \in p_{x}(X_{x}(\hat{X}_{\alpha})), so there is a loop \hat{X} = n \hat{X} = a \hat{X}$ such that $p_{x}[\hat{X}] = [C_{\alpha}]$. Since \hat{X} is a path component and $\hat{X}_{\alpha} \in \hat{A}$, we must have $[\hat{X}] \in Y_{x}(\hat{A}_{\alpha})$. Therefore, $q_{x}[\hat{X}] = [\alpha]$	$1 \longrightarrow \pi_{i}(A, a_{o}) \longrightarrow \pi_{i}(A, a_{o}) \longrightarrow \pi_{i}(X, a_{o}) \longrightarrow 1$	
But then we have that $ (x [\alpha] = (x (q \times [\beta]) = (x \circ q) \times [\beta] = (x \circ \beta) \times [\beta] = p \times [x \circ \beta] $ $ = p \times [C_{\alpha}] = [C_{\alpha}] = (x \circ \beta) \times [x \circ \beta] $ So $im(q_{\alpha}) \in ker(i_{\alpha})$. Conversely, let $[\alpha] \in ker(i_{\alpha})$. Then $i_{\alpha} = (x \circ \alpha) = (x \circ \beta) \times [x \circ \beta]$. But $ [C_{\alpha}] \in p \times (\mathcal{X}_{i_{\alpha}}(\tilde{x}_{i_{\alpha}})), \text{ so there is a loop } \tilde{x} \text{ in } \tilde{x} \text{ at } \tilde{x}_{i_{\alpha}} $ such that $p \times [\tilde{x}] = [C_{\alpha}]$. Since \tilde{A} is a path component and $\tilde{a}_{\alpha} \in \tilde{A}, \text{ we must have } [\tilde{x}] \in \mathcal{X}_{i_{\alpha}}(\tilde{A}_{i_{\alpha}}). \text{ Therefore, } q \times [\tilde{x}] = [\alpha] $	we want to show that this is a short exact sequence (inq.)	= ker(i
$(\chi[\alpha] = L_{\chi}(q_{\chi}[\beta]) = (L \circ q)_{\chi}[\beta] : (\rho \circ j)_{\chi}[\beta] = \rho_{\chi}[\circ \rho]$ $= \rho_{\chi}[C_{\alpha}] : [C_{\alpha}] : [C_{\alpha}] : \text{since } \hat{\chi} : \text{simply connected.}$ So $im(q_{\chi}) \in \ker(i_{\chi}).$ $(\text{conversely, lef } [A] \subseteq \ker(L_{\chi}). \text{ Then } L_{\chi} := [L \circ d] : [C_{\alpha}]. \text{ But}$ $[C_{\alpha}] \subseteq \rho_{\chi}(\chi_{\chi}(\tilde{\chi}_{\alpha})), \text{ so there is a loop } \tilde{\chi} : \chi_{\chi}(\tilde{\chi}_{\alpha}) : \text{such that } \rho_{\chi}[\tilde{\chi}] : [C_{\alpha}]. \text{ Since } \tilde{\chi} : \text{so } \rho_{\chi}(\tilde{\chi}_{\alpha}) : \text{Therefore, } q_{\chi}[\tilde{\chi}] : [\alpha]$ $\tilde{\chi}_{\alpha} \subseteq \tilde{\Lambda}, \text{ we must have } [\tilde{\chi}] \subseteq \chi_{\chi}(\tilde{\chi}_{\alpha}). \text{ Therefore, } q_{\chi}[\tilde{\chi}] : [\alpha]$		•
= px[Ca] = [Ca] = ince \(\tilde{x} \) is simply connected. So im(qx) \(\tilde{k} \) ker(\(\tilde{i}_x \)). Then \(\tilde{x} \) = [Ca] \(\tilde{k} \) But [Ca] \(\tilde{p} \) (\(\tilde{x} \) (\(\tilde{x} \) (\(\tilde{x} \)), so there is a loop \(\tilde{x} \) in \(\tilde{x} \) at \(\tilde{a} \) such that \(\tilde{p} \) [\(\tilde{a} \)] = [Ca]. Since \(\tilde{A} \) is a fath component \(\tilde{a} \) and \(\tilde{a} \) \(\tilde{A} \), we must have \(\tilde{a} \) \(\tilde{A} \) (\(\tilde{A} \) as \(\tilde{A} \). Therefore, \(\tilde{q} \) [\(\tilde{a} \)] = [a]	TOTAL DE TOTAL	
So $im(q_{*}) \in ker(i_{*})$. Conversely, let [d] $\in ker(l_{*})$. Then $l_{*} = \lfloor loa \rfloor = \lfloor la_{*} \rfloor$. But $\lceil la_{*} \rceil \in p_{*}(\Re(\tilde{x}_{*}a_{*}))$, so there is a loop $\tilde{\alpha}$ in \tilde{X} at \tilde{a} such that $p_{*}[\tilde{\alpha}] = \lfloor la_{*} \rceil$. Since \tilde{A} is a path component and $\tilde{a}_{*} \in \tilde{A}$, we must have $\lfloor \tilde{\alpha} \rfloor \in \Re(\tilde{A}_{*}a_{*})$. Therefore, $q_{*}[\tilde{\alpha}] = \lfloor \tilde{\alpha} \rceil$		
Conversely, let [d] & ker (ι_{x}). Then $\iota_{x} = \lfloor \iota_{od} \rfloor = \lfloor \iota_{a} \rfloor$. But $\lceil \iota_{a} \rceil = \rho_{x} (\gamma_{x} (\tilde{\chi}_{a}))$, so there is a loop $\tilde{\alpha}$ in $\tilde{\chi}$ at \tilde{a}_{o} such that $\rho_{x}[\tilde{\alpha}] = \lceil \iota_{ao} \rceil$. Since \tilde{A} is a path component and $\tilde{a}_{o} \in \tilde{A}$, we must have $\lceil \tilde{\alpha} \rceil \in \gamma_{x} (\tilde{A}_{ao})$. Therefore, $q_{x}[\tilde{\alpha}] = \lceil \tilde{\alpha} \rceil$	Harrier and the state of the st	
such that $p_{*}[\tilde{x}] = [c_{a}]$. Since \tilde{A} is a path component and $\tilde{a} \in \tilde{A}$, we must have $[\tilde{x}] \in \tilde{X}(\tilde{A}, \tilde{a})$. Therefore, $q_{*}[\tilde{x}] = [x]$	So $im(q_*) \in ker(i_*)$.	
such that $p_{*}[\tilde{\alpha}] = [c_{*}]$. Since \tilde{A} is a path component and $\tilde{\alpha}_{*} \in \tilde{A}$, we must have $[\tilde{\alpha}] \in \tilde{A}(\tilde{A}, \tilde{\alpha}_{*})$. Therefore, $q_{*}[\tilde{\alpha}] = [\alpha]$		
a & A, we must have [a] & M (A a). Therefore, que [a] = [a]	Conversely, let [d] 6 ker (Lx). Then Lx = [cod) = [Cas]. But	
such that prod = LCas . Since A is a path component and \[\tilde{a} \in \tilde{A}, \tilde{we must have } \left[\tilde{a} \right] \in \tilde{A}, \tilde{A} \tilde{a} \right]. Therefore, \[\tilde{a} \right] = [\tilde{a} \right] \] and \[\land \left[\tilde{a} \right] \[\tilde{a} \right] \tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \tilde{a} \right] \tilde{a} \right] \tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \\ \tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \\ \tilde{a} \right] \tilde{a} \right] \[\tilde{a} \right] \\	ICa G (W (x a)), so there is a loop & in X at a	
and [a] 6 in(q _A). and ker(L _X) & in(q _X).	such that pola - LCao . Since A is a path component and	
and $Lal = im(q_x)$. and $Ker(L_x) = im(q_x)$.	a & A, we must have [a & M, (A, a). Therefore, que [a] = [a]	
	and [a] 6 in (qx). and Ker (Lx) & in (qx).	
	II	

- 170	op Diff Geo Prelin Exam January 2017
5) Su	ppose 4: R' -> R' is a dillement to be 5
_ h	some other sphere S. Let was dx'sdx' + dx 3 dx 4 dx 5 A
Th	en we have that
	w= dx Ndx Ndx Ndx Ndx Ndx
a	differentian is the standard volume form on go. Since 4 is
	diffeomorphism, we then get that when 4" = w
	Vol(3) = 1 5 w/w/w
	= 1 5 4 (61 (61 (6)
	= = = = = = = = = = = = = = = = = = =
	= 6 Js W1W1W
	2 Je William 2
	= Vo((5 ⁵),
-	~ 1 1 1 1 1 1
00	I must be a sphere with the same radius as Hence, the radius of 3 is 1.
	Prence, Ane radius of J. 1.
-	
-	
-	
-	
-	

To	p/ Diff Geo Pr	elim Exam	January 2017	
(a) (a) Se	We know that of smooth r T(Î) m;)	for the produce manifolds	ut space of a	ny finite
	is a paralleliza we have $T(s')$ $T((s')^n)$			
	T((s')")	$= \underbrace{\mathcal{T}(\hat{\mathfrak{G}} S')}_{= \hat{\mathfrak{G}} \mathcal{T}(S')}$ $= \hat{\mathfrak{G}}(S' \hat{\mathfrak{G}} \mathcal{R})$	J	
36	(S')" is parallel	= (S')" DR"		
(b) How	Every parallelize sever, by the Home can exist on	sable manifold lain Bull Theor	admits a smu em, we know eme, 5° is not	that no such parallelizable
	Every parallelizable ntable, so if a			
-				

OLLE