Prof. Dr. Klaus Hulek Benjamin Wieneck

ÜBUNGSBLATT 10

Aufgabe 1. Sei C eine glatte, projektive Kurve und D ein Divisor auf C.

- (i) Gilt $h^0(C, \mathcal{O}_C(D)) \neq 0$, dann ist deg $D \geq 0$.
- (ii) Gilt $h^0(C, \mathcal{O}_C(D)) \neq 0$ und deg D = 0, dann ist $D \sim 0$ d.h. $\mathcal{O}_C(D) = \mathcal{O}_C$.
- (iii) Gilt g(C) = 1, so folgt $K_C = \mathcal{O}_C$.

Aufgabe 2. Sei $d \geq 2$ und $X := V(z_0^d + z_1^d + z_2^d) \subset \mathbb{P}^2$ und $f : X \to \mathbb{P}^1$ definiert durch $(z_0 : z_1 : z_2) \mapsto (z_0 : z_1)$.

- (i) Man bestimme den Grad von f.
- (ii) Man bestimme die Verzweigungspunkte von f.
- (iii) Man berechne das Geschlecht von X mit der Hurwitzformel und verifiziere so das Ergebnis von Blatt 8, Aufgabe 2.

Aufgabe 3. Sei C eine glatte projektive Kurve und $f: C \to \mathbb{P}^1$ ein endlicher, separabler Morphismus vom Grad d mit genau zwei Verzweigungspunkten p_1 und p_2 . Man zeige $C \cong \mathbb{P}^1$.

Aufgabe 4. Sei $f: X \to Y$ endlicher, separabler Morphismus zwischen glatten, projektiven Kurven. Man zeige $g(X) \ge g(Y)$.