

SDS 384 11: Theoretical Statistics

Lecture 12: Uniform Law of Large Numbers-

Rademacher Complexity

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

Proof of the GC theorem

- We will work on a proof that can handle general function classes F
 with bounded functions. WLOG let |f(X_i)| ≤ 1 for f ∈ F.
- Recall that we want to bound $\|\hat{P}_n P\|_{\mathcal{F}}$ $\left(:= \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} f(X_i) - E[f] \right| \right)$
- The proof has three components:
 - Concentration inequality to bound $\|\hat{P}_n P\|_{\mathcal{F}} E[\|\hat{P}_n P\|_{\mathcal{F}}]$

Proof of the GC theorem

- We will work on a proof that can handle general function classes F
 with bounded functions. WLOG let |f(X_i)| ≤ 1 for f ∈ F.
- Recall that we want to bound $\|\hat{P}_n P\|_{\mathcal{F}}$ $\left(:= \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} f(X_i) - E[f] \right| \right)$
- The proof has three components:
 - Concentration inequality to bound $\|\hat{P}_n P\|_{\mathcal{F}} E[\|\hat{P}_n P\|_{\mathcal{F}}]$
 - ullet Symmetrization to relate $E[\|\hat{P}_n-P\|_{\mathcal{F}}]$ to Rademacher complexity

Proof of the GC theorem

- We will work on a proof that can handle general function classes F
 with bounded functions. WLOG let |f(X_i)| ≤ 1 for f ∈ F.
- Recall that we want to bound $\|\hat{P}_n P\|_{\mathcal{F}}$ $\left(:= \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} f(X_i) - E[f] \right| \right)$
- The proof has three components:
 - Concentration inequality to bound $\|\hat{P}_n P\|_{\mathcal{F}} E[\|\hat{P}_n P\|_{\mathcal{F}}]$
 - ullet Symmetrization to relate $E[\|\hat{P}_n-P\|_{\mathcal{F}}]$ to Rademacher complexity
 - Bound this complexity using the effective "size" of the function class.

Concentration

- First note that we cannot apply Hoeffding/Chernoff here.
- Let $X := \{X_1, \dots, X_n\}$
- Let $g(X) = \|\hat{P}_n P\|_{\mathcal{F}}$. Let Y be another sample $\{Y_1, \dots, Y_n\}$, where $Y_i = X_i, \forall i \neq 1$.

Concentration

- First note that we cannot apply Hoeffding/Chernoff here.
- Let $X := \{X_1, \dots, X_n\}$
- Let $g(X) = \|\hat{P}_n P\|_{\mathcal{F}}$. Let Y be another sample $\{Y_1, \dots, Y_n\}$, where $Y_i = X_i, \forall i \neq 1$.
- Let f_1 maximize g(X), and f_2 maximize g(Y)

•

$$g(X) - g(Y) = \left| \frac{\sum_{i} f_{1}(X_{i})}{n} - Ef_{1}[X_{1}] \right| - \left| \frac{\sum_{i} f_{2}(Y_{i})}{n} - Ef_{2}[X_{1}] \right|$$

$$\leq \left| \frac{\sum_{i} f_{1}(X_{i})}{n} - Ef_{1}[X_{1}] \right| - \left| \frac{\sum_{i} f_{1}(Y_{i})}{n} - Ef_{1}[X_{1}] \right|$$

$$\leq \frac{2}{n}$$

Concentration

• Using McDiarmid's inequality, we get:

$$P(g(X) - E[g(X)] \ge \epsilon) \le \exp(-\epsilon^2 n/2)$$

• So, with probability $1 - \exp(-\epsilon^2 n/2)$,

$$\|\hat{P}_n - P\|_{\mathcal{F}} \le E[\|\hat{P}_n - P\|_{\mathcal{F}}] + \epsilon.$$

• So, we need to bound $E[\|\hat{P}_n - P\|_{\mathcal{F}}]$.

Symmetrization

• Consider an iid copy of X' of X

$$E\|\hat{P}_{n} - P\|_{\mathcal{F}} = E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - E[f(X_{i})]) \right|$$

$$= E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - E[f(X_{i}')]) \right|$$

$$= E_{X} \sup_{f \in \mathcal{F}} \left| E_{X'} \left[\frac{1}{n} \sum_{i} (f(X_{i}) - f(X_{i}')) \right] \right|$$

$$\leq E_{X,X'} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - f(X_{i}')) \right|$$

$$= E_{X,X'} \|\hat{P}_{n} - \hat{P}'_{n}\|_{\mathcal{F}}$$

Symmetrization

• Consider an iid copy of X' of X

$$E\|\hat{P}_{n} - P\|_{\mathcal{F}} = E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - E[f(X_{i})]) \right|$$

$$= E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - E[f(X_{i}')]) \right|$$

$$= E_{X} \sup_{f \in \mathcal{F}} \left| E_{X'} \left[\frac{1}{n} \sum_{i} (f(X_{i}) - f(X_{i}')) \right] \right|$$

$$\leq E_{X,X'} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - f(X_{i}')) \right|$$

$$= E_{X,X'} \|\hat{P}_{n} - \hat{P}'_{n}\|_{\mathcal{F}}$$

4

Symmetrize again

- Let $\epsilon_i \in \{1, -1\}$.
- Note that $f(X_i) f(X_i')$ is symmetric
- For a symmetric random variable R, and a random variable $\epsilon \in \{-1, 1\}$ (independent of R)

$$P(\epsilon R \le t) = P(R \le t)P(\epsilon = 1) + P(R \ge -t)P(\epsilon = -1)$$
$$= P(R \le t)$$

- Hence $\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_i) f(X_i')) \right|$ and $\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_i (f(X_i) f(X_i')) \right|$ have the same distribution, and expectation
- We will choose ϵ_i 's uniformly, i.e. we will consider Rademacher random variables.

Rademacher complexity

$$E\|\hat{P}_{n} - P\|_{\mathcal{F}} \leq E_{X,X'} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_{i}) - f(X'_{i})) \right|$$

$$= E_{X,X',\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} (f(X_{i}) - f(X'_{i})) \right|$$

$$\leq E_{X,\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X_{i}) \right| + E_{X',\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X'_{i}) \right|$$

$$= 2E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X_{i}) \right| =: 2\mathcal{R}_{\mathcal{F}}$$

ullet $\mathcal{R}_{\mathcal{F}}$ is also called the Rademacher complexity of the function class.

Why the Rademacher complexity?

- We have now shown that $\|\hat{P}_n P\|_{\mathcal{F}} \le 2\mathcal{R}_{\mathcal{F}} + \epsilon$ with prob. $1 e^{-n\epsilon^2/2}$.
- $\mathcal{R}_{\mathcal{F}}$ measures the maximum possible correlation (over all $f \in \mathcal{F}$) between the vector $(f(X_1), \ldots, f(X_n))$ and the "noise vector" $(\epsilon_1, \ldots, \epsilon_n)$.
- If a function class has some function which has a high correlation with a random noise vector, then we should not expect concentration.
- If $\mathcal{R}_{\mathcal{F}}$ is o(1) then the Borel Cantelli lemma gives $\|\hat{P}_n P\|_{\mathcal{F}} \stackrel{a.s.}{\to} 0$.

- Let $\mathcal{F}(X) = \{ (f(X_1), \dots, f(X_n)) : f \in \mathcal{F} \}$
- $\mathcal{R}_{\mathcal{F}} = E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X_{i}) \right| = E \left[E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X_{i}) \right| \right| X_{1}, \dots, X_{n} \right]$
- In the next slide we will bound this using the cardinality of $\mathcal{F}(X)$

- Let $\mathcal{F}(X) = \{ (f(X_1), \dots, f(X_n)) : f \in \mathcal{F} \}$
- $\mathcal{R}_{\mathcal{F}} = E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X_{i}) \right| = E \left[E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_{i} f(X_{i}) \right| \right| X_{1}, \dots, X_{n} \right]$
- In the next slide we will bound this using the cardinality of $\mathcal{F}(X)$

Theorem

Let
$$A \subseteq \mathbb{R}^n$$
, $R = \max_{a \in A} ||a||$,

$$E \sup_{a \in A} \langle \epsilon, a \rangle \le \sqrt{2R^2 \log |A|}.$$

And,

$$E \sup_{a \in A} |\langle \epsilon, a \rangle| \le \sqrt{2R^2 \log |2A|}.$$

Proof

Proof.

$$\exp\left(\lambda E \sup_{a \in A} \langle \epsilon, a \rangle\right) \leq E \exp\left(\lambda \sup_{a \in A} \langle \epsilon, a \rangle\right)$$

$$= E \sup_{a \in A} \exp\left(\lambda \langle \epsilon, a \rangle\right)$$

$$\leq \sum_{a \in A} E \exp\left(\lambda \langle \epsilon, a \rangle\right)$$

$$\left(\langle \epsilon, a \rangle \sim \text{Subgaussian}(\|a\|_2^2)\right) \leq \sum_{a \in A} \exp\left(\frac{\lambda^2 \|a\|_2^2}{2}\right)$$

$$\leq |A| \exp\left(\frac{\lambda^2 R^2}{2}\right)$$

Take
$$\lambda^2 = 2 \log |A|/R^2$$
.

- Note that in this case \mathcal{A} contains of vectors $(f(X_1)/n, \ldots, f(X_n)/n)$, where f is a indicator function, i.e. $f(X_i) = 1(X_i \le t)$.
- So $R^2 = 1/n$.

- Note that in this case \mathcal{A} contains of vectors $(f(X_1)/n, \dots, f(X_n)/n)$, where f is a indicator function, i.e. $f(X_i) = 1(X_i \le t)$.
- So $R^2 = 1/n$.
- The question is for a given dataset $X_1, ... X_n$, how many distinct points are there in A?

$$\begin{aligned} |\mathcal{A}| &= |\mathcal{F}(X)| = |\{(f(X_{(1)}), \dots, f(X_{(n)})) : f \in \mathcal{F}\}| \\ &= |\{(1(X_{(1)} \le t), \dots, 1(X_{(n)} \le t)) : t \in \mathbb{R}\}| \\ &\le n + 1 \qquad (\mathsf{HUH!!}) \end{aligned}$$

Glivenko Cantelli

Proof.

If \mathcal{F} is the set of one sided indicator functions, then

$$\begin{split} \|\hat{P}_n - P\|_{\mathcal{F}} &\leq 2\mathcal{R}_{\mathcal{F}} + \epsilon = 2E[E[\sup_{f \in \mathcal{F}} \sum_i \epsilon_i f(X_i)/n]|X] + \epsilon \\ &\leq \sqrt{8R^2 \log(n+1)} + \epsilon \\ &\leq \sqrt{\frac{8\log(n+1)}{n}} + \epsilon \end{split}$$

By Borel Cantelli,
$$\|\hat{P}_n - P\|_{\mathcal{F}} \overset{a.s.}{\to} 0$$