DIRICHLET'S APPROXIMATION THEOREM

What we have?

- Ford circle: a circle of diameter $\frac{1}{b^2}$ atop the rational point $\frac{a}{b}$.
- Kissing fractions $(\frac{a}{b} \circ \frac{c}{d})$: $\left| \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} \right| = |ad bc| = 1.$
- Mediant: $\frac{a}{b} \vee \frac{c}{d} := \frac{a+c}{b+d}$.
- Farey sequence: repeatedly taking mediants, containing all reduced fractions.

DIRICHLET'S APPROXIMATION THEOREM

Theorem 3.7.1 (Dirichlet, 1840)

Let α be an irrational number, Then there are infinitely many fractions $\frac{a}{b}$ such that

$$\left| \frac{\alpha}{\alpha} - \frac{a}{b} \right| \leqslant \frac{1}{2b^2}.$$

To prove Dirichlet's approximation theorem, it is sufficient to show that a vertical line atop an irrational point crosses infinitely many Ford circles.

FAREY SEQUENCE

Lemma 3.7.2

The following process generates all reduced fractions (in geometric words, all Ford circles):

- 1. Start with integers, namely fractions of the form $\frac{n}{1}$ (in geometric words, Ford circles atop integer points).
- 2. Whenever you have two kissing fractions $\frac{a}{b}$ and $\frac{c}{d}$, generate their mediant $\frac{a}{b} \vee \frac{c}{d}$ (in geometric words, whenever you have two Ford circles tangent to each other, generate the third one atop the mediant).

Proof. We prove the theorem using the recursive process in the Farey sequence.

- At the base step, the vertical line $x = \alpha$ must cross one of the Ford circles atop some $\frac{n}{1}$ since α is irrational.
- Whenever the vertical line $x = \alpha$ crosses a Ford circle (saying, atop $\frac{a}{b}$) and falls into the mesh triangle below it, then it must cross another Ford circle inside the mesh triangle.
- The process will go on forever as the Farey sequence and thus produce infinitely many Ford circles crossed by the line $x = \alpha$.

The proof boils down to show the following: Suppose the vertical line $x = \alpha$ crosses the Ford circle atop $\frac{a}{b}$, then it also crosses a Ford circle inside the mesh triangle below.

Suppose the mesh triangle is given by the Ford circles atop $\frac{a}{b}$ and $\frac{c}{d}$. Then we know that α must leave between $\frac{a}{b}$ and $\frac{c}{d}$ since the vertical line $x = \alpha$ crosses the mesh triangle. We may assume $\frac{a}{b} > \alpha > \frac{c}{d}$.

Consider the following sequence of fractions:

$$\frac{a_0}{b_0} := \frac{c}{d}, \frac{a_1}{b_1} := \frac{a}{b} \vee \frac{c}{d}, \cdots, \frac{a_n}{b_n} := \frac{a}{b} \vee \frac{a_{n-1}}{b_{n-1}}, \cdots$$

Then the Ford circle atop each $\frac{a_n}{b_n}$ (n > 0) is tangent to the one atop $\frac{a}{b}$ and all of them leave inside the mesh triangle.

Note that

$$\frac{a_n}{b_n} = \frac{a \cdot n + c}{b \cdot n + d}.$$

Hence, the sequence of rational numbers $(\frac{a_n}{b_n})_{n\in\mathbb{Z}}$ is monotonously increasing and has the limit $\frac{a}{b}$. Then, since $\frac{a}{b} > \alpha > \frac{c}{d}$, there must be a positive integer n such that

$$\frac{a_n}{b_n} > \alpha > \frac{a_{n-1}}{b_{n-1}}.$$

Namely, the vertical line $x = \alpha$ crosses the strip between $\frac{a_n}{b_n}$ and $\frac{a_{n-1}}{b_{n-1}}$.

But notice that $\frac{a_n}{b_n} \heartsuit \frac{a_{n-1}}{b_{n-1}}$. Namely, the Ford circles atop $\frac{a_n}{b_n}$ and $\frac{a_{n-1}}{b_{n-1}}$ are tangent to each other. Hence, to cross the strip between $\frac{a_n}{b_n}$ and $\frac{a_{n-1}}{b_{n-1}}$, the vertical line $x = \alpha$ must cross one of the two Ford circles! Thus, we find a Ford circle inside the initial mesh triangle and is crossed by the line $x = \alpha$ as desired.