WHAT IS CLAIMED IS:

1	 A method for depositing a film on a substrate in a process
2	chamber, the method comprising:
3	providing a first gaseous mixture to the process chamber;
4	generating a plasma from the first gaseous mixture with a plasma source
5	disposed within the process chamber to deposit a first portion of the film on the
6	substrate;
7	thereafter, flowing an etchant gas into the process chamber without
8	terminating the plasma to etch part of the first portion of the film; and
9	thereafter, providing a second gaseous mixture to the process chamber
10	without terminating the plasma to deposit a second portion of the film on the substrate.
1	2. The method recited in claim 1 further comprising applying an
2	electrical bias to the substrate while flowing the etchant gas.
2	electrical bias to the substrate while flowing the etchant gas.
1	3. The method recited in claim 2 wherein the bias has a power
2	density approximately between 0.9 W/cm ² and 3.2 W/cm ² .
1	The method recited in claim 1 wherein the second gaseous
2	mixture is substantially the same as the first gaseous mixture.
2	mixture is substantially the same as the msi gaseous mixture.
1	 The method recited in claim 1 wherein the first and second
2	gaseous mixtures each include a silicon-containing gas and an oxygen-containing gas,
3	and wherein the etchant gas includes a fluorine-containing gas.
1	6. A method for depositing a film on a substrate in a process
2	chamber, the method comprising:
3	providing a first gaseous mixture to the process chamber, the first
4	gaseous mixture comprising a first deposition gas and an etchant gas; and
5	generating a plasma from the first gaseous mixture with a plasma
6	coupling structure to simultaneously deposit a first portion of the film on the substrate
7	and etch the film, wherein the plasma includes poloidal ion flow along field lines
8	substantially parallel to a surface interior to the process chamber and disposed to
9	separate the plasma from the plasma coupling structure.

1	7. The method recited in claim 6 further comprising providing a
2	second gaseous mixture to the process chamber without terminating the plasma, the
3	second gaseous mixture comprising a second deposition gas, to deposit a second
4	portion of the film.
1	8. The method recited in claim 6 further comprising applying an
2	electrical bias to the substrate.
1	9. The method recited in claim 8 wherein the bias has a power
2	density approximately between 0.9 W/cm ² and 3.2 W/cm ² .
_	density approximately between 0.5 West and 3.2 West .
1	10. The method recited in claim 8 wherein the bias has a power
2	density approximately between 0.9 W/cm ² and 1.6 W/cm ² .
1	11. The method recited in claim 6 wherein the plasma is a high-
2	density plasma.
1	12. The method recited in claim 6 wherein the second deposition gas
2	is substantially the same as the first deposition gas.
	To oncommunity and country are not the original positions.
1	13. The method recited in claim 6 wherein the first deposition gas
2	includes a silicon-containing gas and an oxygen-containing gas, and wherein the
3	etchant gas includes a fluorine-containing gas.
1	14. A computer-readable storage medium having a computer-
2	readable program embodied therein for directing operation of a substrate processing
3	system including a process chamber; a plasma coupling structure; a substrate holder;
4	and a gas delivery system configured to introduce gases into the process chamber, the
5	computer-readable program including instructions for operating the substrate
5	processing system to form a film on a substrate disposed in the process chamber in
7	accordance with the following:
В	providing a first gaseous mixture to the process chamber, the first
9	gaseous mixture comprising a first deposition gas and an etching gas:

and etch the film, wherein the plasma includes poloidal ion flow along field lines

generating a plasma from the first gaseous mixture with the plasma coupling structure to simultaneously deposit a first portion of the film on the substrate

3

4

13	substantially parallel to a surface interior to the process chamber and disposed to
14	separate the plasma from the plasma coupling structure.
1	15. The computer-readable storage medium recited in claim 14, the
2	computer-readable program further including instructions for applying an electrical bias
3	to the substrate.
,	to the substrate.
1	16. The computer-readable storage medium recited in claim 14, the
2	computer-readable program further including instructions for providing a second
3	gaseous mixture to the process chamber without terminating the plasma, the second
4	gaseous mixture comprising a second deposition gas, to deposit a second portion of the
5	film.
,	17. A computer-readable storage medium having a computer-
1	
2	readable program embodied therein for directing operation of a substrate processing
3	system including a process chamber; a plasma generation system having a plasma
4	source disposed within the process chamber; a substrate holder; and a gas delivery
5	system configured to introduce gases into the process chamber, the computer-readable
6	program including instructions for operating the substrate processing system to form a
7	film on a substrate disposed in the process chamber in accordance with the following:
8	providing a first gaseous mixture to the process chamber;
9	generating a plasma from the first gaseous mixture with the plasma
10	source;
11	thereafter, flowing an etchant gas into the process chamber without
12	terminating the plasma to etch part of the first portion of the film; and
13	thereafter, providing a second gaseous mixture to the process chamber
14	without terminating the plasma to deposit a second portion of the film on the substrate.
1	18. The computer-readable storage medium recited in claim 17, the
2	computer-readable program further including instructions for applying an electrical bias
3	to the substrate while flowing the etchant gas.
1	19. A substrate processing system comprising:
2	a housing defining a process chamber;

and includeding a plasma coupling structure disposed within the process chamber;

a plasma generating system operatively coupled to the process chamber

5	a substrate holder configured to hold a substrate during substrate
6	processing;
7	a gas-delivery system configured to introduce gases into the process
8	chamber, including sources for a silicon-containing gas, a fluorine-containing gas, and
9	an oxygen-containing gas;
10	a pressure-control system for maintaining a selected pressure within the
11	process chamber;
12	a controller for controlling the plasma generating system, the gas-
13	delivery system, and the pressure-control system; and
14	a memory coupled to the controller, the memory comprising a computer-
15	readable medium having a computer-readable program embodied therein for directing
16	operation of the substrate processing system, the computer-readable program including
17	instructions to control the gas-delivery system to provide a first
18	gaseous mixture to the process chamber, the first gaseous mixture comprising a first
19	deposition gas that includes the silicon-containing gas and the oxygen-containing gas
20	and an etchant gas that includes the fluorine-containing gas; and
21	instructions to control the plasma generating system to generate a
22	plasma from the first gaseous mixture to simultaneously deposit a first portion of the
23	film on the substrate and etch the film, wherein the plasma includes poloidal ion flow
24	along field lines substantially parallel to a surface interior to the process chamber and
25	disposed to separate the plasma from the plasma coupling structure.
1	20. The substrate processing system recited in claim 19, the
2	computer-readable program further including instructions for applying an electrical bias
3	to the substrate.
-	to the bubblence.
1	21. The substrate processing system recited in claim 19, the
2	computer-readable program further including instructions for providing a second
3	gaseous mixture to the process chamber without terminating the plasma, the second
4	gaseous mixture comprising a second deposition gas, to deposit a second portion of the
5	film.
1	22. A substrate processing system comprising:
2	a housing defining a process chamber.

a plasma generating system operatively coupled to the process chamber,		
the plasma generating system including a plasma source disposed within the process		
chamber;		
a substrate holder configured to hold a substrate during substrate		
processing;		
a gas-delivery system configured to introduce gases into the process		
chamber, including sources for a silicon-containing gas, a fluorine-containing gas, and		
an oxygen-containing gas;		
a pressure-control system for maintaining a selected pressure within the		
process chamber;		
a controller for controlling the plasma generating system, the gas-		
delivery system, and the pressure-control system; and		
a memory coupled to the controller, the memory comprising a computer-		
readable medium having a computer-readable program embodied therein for directing		
operation of the substrate processing system, the computer-readable program including		
instructions to control the gas-delivery system to provide a first		
gaseous mixture to the process chamber;		
instructions to control the plasma generating system to generate a		
plasma from the first gaseous mixture with the plasma source to deposit a first portion		
of the film on the substrate;		
instructions to control the gas-delivery system to flow, thereafter,		
an etchant gas into the process chamber without terminating the plasma to etch part of		
the first portion of the film; and		
instructions to control the gas-delivery system to provide,		
thereafter, a second gaseous mixture to the process chamber without terminating the		
plasma to deposit a second portion of the film on the substrate.		
23. The substrate processing system recited in claim 22, the		
computer-readable program further including instructions for applying an electrical bias		
to the substrate while flowing the etchant gas.		