CPSC 313 — Fall 2018

Assignment 2 — Context-Free Languages and Grammars

Jasmine Roebuck, 30037334, October 31, 2018

1. Non-regular languages and the Pumping Lemma

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, =\}$ and consider the language L of all strings over Σ that constitute a valid equation of the form a+b=c where a,b,c are non-negative integers represented in base 10, without leading zeros. Some elements of L include 13+17=30 and 99+0=99, but not 13+17=29 or 99+01=100. Use the Pumping Lemma to prove that L is not regular.

Solution.

By way of contradiction, assume that L is regular. Then L satisfies the Pumping Lemma. Let p be the pumping length of L, and consider the string $s='1^p+1^p=2^p$, $\in L$. Since |s|=3p+2>p, s can be written as s=xyz with strings x,y,z such that $y\neq \varepsilon, |xy|\leq p$, and $xy^iz\in L$ for all $i\geq 0$.

Since $|xy| \le p$ and s begins with p 1s, the substring xy must begin with 1s only. Then y consists of one or more 1s, since $y \ne \varepsilon$.

Consider the string $w=xyyz=xy^2z$. By the Pumping Lemma, $w\in L$. But since xy consists of 1s only, and y consists of at least one 1, w can be written as $'1^{p+a}+1^p=2^p$ ', where $a=|y|\geq 1$. Since $a\geq 1$, $p+a\neq p$, and therefore $'1^{p+a}+1^p=2^p$ ' is no longer a valid equation, since $1^{p+a}+1^p=1^a2^p\neq 2^p$. So $w\notin L$. This is a contradiction, therefore L cannot be a regular language.

2. Regular languages are context-free

Formally prove that every regular language is context-free. Use the following ingredients in your proof:

- the recursive definition of regular expressions;
- the fact that L is a regular language if and only if L = L(e) for some regular expression e;
- induction on the length of a regular expression recall that every regular expression is a string of length at least 1 consisting of elements in Σ as well as the symbols $\cup, *, (,), \varepsilon, \emptyset$;
- the fact that context-free languages are closed under the regular operations; that is, if L_1 and L_2 are context-free languages, then $L_1 \cup L_2$, L_1L_2 and L_1^* are context-free. (You may use this result without proof.)

Solution.

To prove this, we must show that if a language L is regular, then L is also context-free, i.e. that is L can be described by a context-free grammar.

Assume that L is regular. L is a regular language if and only if L = L(e) for some regular expression e, so L can therefore be represented with some regular expression e.

e is a regular expression if e is one of the following:

- (a) \emptyset ,
- (b) ε ,
- (c) a for some $a \in \Sigma$,
- (d) $e_1 \cup e_2$, where e_1 and e_2 are regular expressions,
- (e) e_1e_2 , where e_1 and e_2 are regular expressions,
- (f) e_1^* , where e_1 is a regular expression.

I will show that any language of a regular expression e can be generated by a context-free grammar by induction on the length of e. First I will show grammars for the first three cases (the base cases) of e.

If $e = \emptyset$, then the language is empty. L(e) is generated by the context-free grammar $G = (V, \Sigma, R, S)$, where $V = \{S\}, \Sigma = \{\}$, the start variable is S, and R consists of the rule $S \to S$.

If $e = \varepsilon$, L(e) is generated by the context-free grammar $G = (V, \Sigma, R, S)$, where $V = \{S\}$, $\Sigma = \{\varepsilon\}$, the start variable is S, and R consists of the rule $S \to \varepsilon$.

If e = a for some $a \in \Sigma$, e is generated by the context-free grammar $G = (V, \Sigma, R, S)$, where $V = \{S\}, \Sigma = \{a\}$, the start variable is S, and R consists of the rule $S \to a$.

In all three of these base cases, L(e) is generated by a context-free grammar, and so L(e) is a context-free language. If e is not one of the above base cases, then it must be one of d, e, or f from the above list. Assume e_1 and e_2 are regular expressions where $L(e_1)$ and $L(e_2)$ can be generated by some context-free grammar, i.e. $L(e_1)$ and $L(e_2)$ are context-free.

If $e = e_1 \cup e_2$, let S_1 be the start variable of the grammar for $L(e_1)$, and let S_2 be the start variable of the grammar for $L(e_2)$. Then $L(e) = L(e_1) \cup L(e_2)$, which can be generated by the grammar $S \to S_1 \mid S_2$. Since context-free languages are closed under union, and $L(e_1)$ and $L(e_2)$ are context-free, L(e) is also context free.

Similarly, if $e = e_1e_2$, let S_1 be the start variable of the grammar for $L(e_1)$, and let S_2 be the start variable of the grammar for $L(e_2)$. Then $L(e) = L(e_1e_2)$, which can be generated by the grammar $S \to S_1S_2$. Since context-free languages are closed under concatenation, and $L(e_1)$ and $L(e_2)$ are context-free, L(e) is also context free.

If $e = e_1^*$, let S_1 be the start variable of the grammar for $L(e_1)$. Then L(e) can be generated by the grammar $S \to SS_1 \mid \varepsilon$. Since context-free languages are closed under the Kleene closure, and $L(e_1)$ is context-free, L(e) is also context free.

Therefore, since L is regular and is represented by some regular expression e, a context-free grammar can always be constructed for L(e). Hence L is also context-free.

3. Designing context-free grammars and languages

(a) Design a context-free grammar for the language

$$L = \left\{ a^{2i}b^{j}vc^{j}(ac)^{i} \mid i, j \ge 0, v \in \{a, b\}^{*} \right\}$$

over the alphabet $\Sigma = \{a, b, c, \}$. Your grammar must have at most 3 variables and at most 7 rules. Clearly state the variables, the terminals, the rules, and the start variable for your grammar. You need *not* formally prove your grammar correct, but you should give a brief, coherent, convincing explanation of its correctness (in case of errors, such an explanation may also secure you partial credit).

Solution.

L can be described by the below grammar $G = (V, \Sigma, R, S)$, where $V = \{S, A, B\}$, $\Sigma = \{a, b, c\}$, the start variable S is S, and R consists of the rules

$$\begin{split} S &\to aaSac \mid A \\ A &\to bAc \mid B \\ B &\to aB \mid bB \mid \varepsilon \end{split}$$

Any string $w \in L$ begins with 2i a's and ends with i (ac)'s, where $i \geq 0$. We can also write that w must begin with i (aa)'s and end with i (ac)'s. The number of occurrences of 'aa' at the start of w must match with the number of occurrences of 'ac' at the end of w, so we start with a rule $S \to aaSac$ which will guarantee this. We also include a rule $S \to A$ for when we are finished with the first rule, and to account for the cases where i = 0.

The inner substring of w is handled similarly. Let u be the substring b^jvc^j , where $j \geq 0$, and $v \in \{a,b\}^*$. We start producing this substring when we take the rule $S \to A$. The number of b's at the start of u must be equal to the number of c's at the end, so we add the rule $A \to bAc$ to guarantee this. Then we add the rule $A \to B$ for when we are finished with the previous rule, and to account for the cases where j = 0.

The only substring left to generate is v in the middle of w. The only restriction on v is that $v \in \{a,b\}^*$, which is to say that v is any substring made of symbols from the alphabet. We add the rules $B \to aB$ and $B \to bB$ to allow us to generate any substring of these symbols. Then we add the rule $B \to \varepsilon$, both to allow the string derivation to terminate and to allow for the cases where $v = \varepsilon$.

(b) Consider the context-free grammar $G = (V, \Sigma, R, S)$ where $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$ and R consists of the rules

$$S \rightarrow ASA \mid B$$

$$A \rightarrow a \mid b$$

$$B \rightarrow BC \mid \varepsilon$$

$$C \rightarrow a \mid b \mid c$$

Describe L(G). You need not formally prove your answer correct, but you should again give a brief, coherent, convincing explanation of how you obtained you answer (in case of errors, such an explanation may also secure you partial credit).

Solution.

$$L(G) = \{uvw, | u, w \in \{a, b\}^*, |u| = |w|, \text{ and } v \in \{a, b, c\}^*\}$$

The rule $S \to B$ can only be taken once as there is no way to return to S after taking this rule. Before this, the rule $S \to ASA$ can be taken any number of times, including zero. Taking this rule some n number of times followed by taking $S \to B$ once produces the string of variables $x = A^n B A^n$.

The only rules for A are $A \to a$ and $A \to b$, so A can only produce exactly one terminal. Therefore the length of the string is unchanged, and the string becomes uBw, where $u, w \in \{a, b\}^*$, and |u| = |w| = n.

The rule $B \to \varepsilon$ can only be taken once as it produces no more variables. So the rule $B \to BC$ can be taken some m number of times, including zero, followed by taking the rule $B \to \varepsilon$ once. Each iteration of the first rule adds one C to the string and leaves the number of Bs unchanged. Taking the second rule eliminates the B. Thus the string x becomes uC^mw .

Similar to A, the variable C can only produce exactly one terminal, so C^m in x must produce some m number of terminals from the alphabet. Therefore the string x becomes uvw, where $v \in \{a, b, c\}^*$, and the previous conditions on u and w still hold.