() maginary (Real (3 = (31+132 6.00.5 in Xc = Sin b= 1 (b VC= 2in H= 3 in Position 00 + F32 + F4 - 5 - 0F = 0 xc + l32. cos 08 + ly cos 00 - 5 = 0 (1) (21 ye + lassinde + ly sindo - H = O F1+F2+F31-00=0 1,000 0 x 12 com 0 x + l31.000 0 - x c = 0 (3) 11 sin + 12 sin 0 + 131 sin 0 B - ye > 0 (4) unknowns: As Oo, S, OA

 $|e^{i\theta + i\theta}|^{2} + |e^{i\theta}|^{2} + |e^{i(\theta_{A} + i\theta)}| + |e^{i(\theta$

$$\overrightarrow{V}_{A} = l_{1} e^{i\theta} / J_{1}$$

$$\overrightarrow{V}_{A} = l_{1} e^{i(\theta + \frac{1}{2})}$$

$$x \cdot v_{Ax} = l_{1} e^{i(\theta + \frac{1}{2})}$$

$$y \cdot v_{Ay} = l_{1} e^{i(\theta + \frac{1}{2})}$$

$$\overrightarrow{V}_{A} = l_{1} e^{i(\theta + \frac{1}$$

Mount 1

Tem, 1 =
$$\frac{l_1}{2}$$
 e i $\frac{l_2}{2}$

Tem, 1 = $\frac{l_3}{2}$ de i $\frac{(l_2 + \frac{1}{2})}{2}$

Tem, 2 = $\frac{l_4}{2}$ de $\frac{l_2}{2}$ de i $\frac{(l_2 + \frac{1}{2})}{2}$

Tem, 2 = $\frac{l_4}{2}$ de $\frac{l_2}{2}$ de i $\frac{(l_2 + \frac{1}{2})}{2}$

Tem, 3 = $\frac{l_4}{2}$ de e i $\frac{l_4}{2}$ de i \frac

elowent 1 TX=0 Foix + Frix = m, d cm, 1x Fory + Fzry = M, Ocm, 1 y 0=11 (2)

[Mcm]= 0 M, + Roix Fory - Roig Forx + R21x F21y - R21y F21x = 0 (3)

clement 2 - FZIX + F32x = M2 Ocm,2X (4) IX=0 - Frig + F32 y = M2 Oci, 2 y (5) J y = 0 - R12x F21y + R12y F21y + R82x F32y - R32y F32x= I2 &2 I M=0 Clement 3 - F32x + Fu3x + F03x=0 (7) [X=0 - F32y + Fuzy + Fozy = 0 (8) 27=0 - R23x F32y + R23y F32x + R43x F43y - R43y F43x + 63 + R03x F03y - R03y F03x = I3E3 IM=0 element F_{54x} - F_{43x} = ony ocm4, x (10) 1 X=0 F54y - Fusy = M4 Ocm4, y (11) 1/=0 - P34x F43y + R34y F43x + R54x F54y - R54y F54x = I4 E4 (12) 2M=0 element - Fs4x + Fosx = Ms95,x => fs4x = Fosx - Msas,x 1.X -Fs4y + Fosy = 0 => Fosy = Fs4y 2 y

12 63 MOY 50 MD

unknowns: Forx, Fory, Frix, Fry, M, Frx, Frzy, Fuzx, Fazy, Fuzx, Fuzy, Forx, Fory

Shear force, axial force and bending noment diagrams For Jan A る、= {cos 0 | ; 卡, = {cos (み+生) } Fora = For a, Fort = For E Min. 1 = - J, E, = 0 Fin, 2 } - Midew, 1x } $A_1 = \begin{cases} -fa_1 \alpha & \times 1 \leq \frac{1}{2} \\ F_{21} \alpha & \times 1 > \frac{1}{2} \end{cases}$ Fork Finit Fort $V_{1} = \begin{cases} F_{01} \in \mathbb{R} & \text{if } \frac{1}{2} \\ -F_{21} & \text{if } \frac{1}{2} \end{cases}$ $M_1 = \begin{cases} F_{01} + X_1 + M_1 \times X_1 < \frac{l_1}{2} \\ F_{21} + (l_1 - X_1) \times X_1 > \frac{l_1}{2} \end{cases}$

2. Fin.2. Fin.2. Min.2. 7.2 < R2 $A_{2} = \begin{cases} -F_{120} & x_{2} < \frac{x_{2}^{2}}{2} \\ F_{320} & x_{2} > \frac{l_{2}}{2} \end{cases}$ $V_{1} \times \begin{cases} F_{121} & x_{2} < \frac{l_{2}^{2}}{2} \\ F_{324} & x_{2} > \frac{l_{2}^{2}}{2} \end{cases}$ $M_{2} = \begin{cases} F_{12} + X_{2} & X_{2} < \frac{1}{2} \\ F_{32} + (l_{2} - X_{2}) & X_{2} > \frac{l_{2}}{2} \end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\sin(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\sin(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x}
\end{cases}$ $\frac{\partial_{2}}{\partial x} = \begin{cases}
\cos(\theta_{A} + 1) & \frac{\partial}{\partial x} \\
\cos(\theta_{A} + 1) & \frac{\partial}{\partial$

 $A_{3} = \begin{cases} -F_{32}\alpha & \chi_{3} < l_{31} \\ -F_{32}\alpha - F_{03}\alpha & l_{34} < \chi_{3} < \frac{l_{31} + l_{32}}{2} \end{cases}$ $F_{43}\alpha \qquad \chi_{3} > \frac{l_{31} + l_{32}}{2}$ F32+= - F32 · +3 affect there grophs. Loughha la and laz $V_3 = \begin{cases} f_{32} + x_3 \\ f_{32} + f_{02} + x_3 \\ f_{33} + f_{02} + x_3 \end{cases} = \begin{cases} f_{31} + f_{32} \\ f_{32} + f_{33} + f_{34} \end{cases}$ $N_{3} = \begin{cases} F_{32}(-x_{3}) & x_{5} < l_{31} \\ F_{32}(-x_{3}) + F_{63}(-x_{5} - l_{31}) \end{cases} \qquad l_{31} < x_{3} < \frac{l_{31} + l_{32}}{2} \\ F_{63}(-l_{31} + l_{32} - x_{3}) & x_{3} > \frac{l_{31} + l_{32}}{2} \end{cases}$

 $\overline{O}_{u} = \begin{cases} -\cos\theta \circ i \\ -\sin\theta \circ i \end{cases}$ $\begin{cases} -\cos(\theta \circ t \cdot \frac{\pi}{2}) \\ -\sin(\theta \circ t \cdot \frac{\pi}{2}) \end{cases}$ The Minh of Find Of Fund of Fu F340 = F43. 0.4 ; F540 = F54.00 F34+ = - F43. tu ; F34 = F54 t4 x4 < 2 A3 = { +54a X4 = 2 ×4 = 2 V3 = (-54+ × 9 = 2

c)

d)

e)

f)

h)

i)

j)

Proposed lengths of elements:

Link	AB	ВС	CD	DE
Length (in)	4.50	1.81	1.88	3.61

Range of bending moments (and corresponding axial forces):

Link	M _{min} (lbf in)	M _{max} (lbf in)	P _{ax} @M _{min} (lbf)	P _{ax} @M _{max} (lbf)
AB	0	0	-1.49	-0.53
BD	-2.67	-0.72	0.37 (-0.06)	0.37 (-0.36)
DE	0	0	-1.50	-0.54

Maximum transverse force in BD (at point C) is equal to 2.94 lbf and is acting at the center of BD (approximately). This is used to estimate deflections in BD.

Maximum compressive force in each link (to analyze buckling):

Link	P _c (lbf)
AB	1.49
BD (BC region)	0.46
DE	1.50

Maximum force acting in each pin:

Pin	P _{max} (lbf)
Α	1.49
В	1.49
D	1.50
Е	1.50

Proposed lengths of elements:

Link	AB	ВС	CD	DE
Length (m)	0.114	0.046	0.048	0.092

Range of bending moments (and corresponding axial forces):

Link	M _{min} (N m)	M _{max} (N m)	P _{ax} @M _{min} (N)	P _{ax} @M _{max} (N)
AB	0	0	-6.628	-2.358
BD	-0.302	-0.081	1.646 (-0.267)	1.646 (-1.601)
DE	0	0	-6.672	-2.402

Maximum transverse force in BD (at point C) is equal to 13.078 N and is acting at the center of BD (approximately). This is used to estimate deflections in BD.

Maximum compressive force in each link (to analyze buckling):

Link	P _c (N)
AB	6.628
BD (BC region)	2.046
DE	6.672

Maximum force acting in each pin:

Pin	P _{max} (N)
Α	6.628
В	6.628
D	6.672
E	6.672