

Projeto de Circuitos Combinacionais Aritméticos

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula Anterior ...

- DLPs Ideia Geral
- Benefícios da Utilização de DLPs;
- Funcionamento geral de DLPs;
- Visão geral FPGAs;
- Introdução ao VHDL.

```
DLP Dispositivo Lógico Programável
FPGA Field Programmable Gate Array
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
```

Nesta Aula

- Circuito para o Meio Somador;
- Circuito para o Somador Completo de 1 bit;
- Circuito para o Somador Completo de 8 bits;
- Circuito para o Meio Subtrator;
- Circuito para o Subtrator Completo de 1 bit;
- Circuito para o Subtrator Completo de 8 bits.

Problema

 Construir um circuito digital capaz de somar dois números de 8 bits.

Meio Somador

a_0	b ₀	s _o	c _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$s_0 = a_0 \oplus b_0$$

 $c_{OUT} = a_0 \cdot b_0$

Somador Completo

Somador para os demais bits

a _n	b _n	C _n	s _n	c _{out}	s _n =	(ā _n ·b̄ _n ·c _n)+ (ā _n ·b _n ·c̄ _n)+
0	0	0	0	0	- n	$(a_n \cdot b_n \cdot c_n) + (a_n \cdot b_n \cdot c_n)$
0	0	1	1	0		$(\alpha_n \ \alpha_n) \cdot (\alpha_n \ \alpha_n)$
0	1	0	1	0	$s_n =$	ā _n ·[(b̄ _n ·c _n)+ (b _n ·c̄ _n)]+
0	1	1	0	1		a _n ·(b̄ _n ·c̄ _n)+ (b _n ·c _n)
1	0	0	1	0	c –	
1	0	1	0	1	s _n =	$\bar{a}_n \cdot (b_n \oplus c_n) + a_n \cdot (b_n \otimes c_n)$
1	1	0	0	1	$s_n =$	$\bar{a}_n \cdot (b_n \oplus c_n) + a_n \cdot (b_n \oplus c_n)$
1	1	1	1	1	$s_n =$	$a_n \oplus b_n \oplus c_n$

Somador Completo

a _n	b _n	c _n	s _n	c _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$c_{out} = (\bar{a}_n \cdot b_n \cdot c_n) + (a_n \cdot b_n \cdot c_n) + (a_n \cdot b_n \cdot c_n) + (a_n \cdot b_n \cdot c_n)$$

$$(\bar{a}_n \cdot b_n \cdot \bar{c}_n) + (a_n \cdot b_n \cdot c_n)$$

$$\bar{a}_n \cdot \bar{c}_n \cdot \bar{c}_n$$

$$\bar{c}_n \cdot \bar{c}_n \cdot \bar{c}_n$$

$$c_{out} = (a_n \cdot c_n) + (a_n \cdot b_n) + (b_n \cdot c_n)$$

Somador Completo

Somador de 8 bits

Meio Subtrator

a_0	b ₀	s _o	c _{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$\mathbf{s}_0 = \mathbf{a}_0 \oplus \mathbf{b}_0$$

 $\mathbf{c}_{OUT} = \bar{\mathbf{a}}_0 \cdot \mathbf{b}_0$

Subtrator Completo

Subtrator para os demais bits

a _n	b _n	c _n	s _n	c _{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$s_n = (\bar{a}_n \cdot \bar{b}_n \cdot c_n) + (\bar{a}_n \cdot b_n \cdot \bar{c}_n) + (\bar{a}_n \cdot \bar{b}_n \cdot c_n) + (\bar{a}_n \cdot b_n \cdot c_n)$$

Mesmo caso do somador completo

$$s_n = a_n \oplus b_n \oplus c_n$$

Subtrator Completo

a _n	b _n	C _n	S _n	c _{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$c_{out} = (\bar{a}_n \cdot \bar{b}_n \cdot c_n) + (\bar{a}_n \cdot b_n \cdot \bar{c}_n) + (\bar{a}_n \cdot b_n \cdot c_n)$$

$$(\bar{a}_n \cdot b_n \cdot c_n) + (\bar{a}_n \cdot b_n \cdot c_n)$$

$$\bar{a}_n \qquad \qquad \bar{b}_n \qquad b_n$$

$$\bar{a}_n \qquad \qquad \bar{b}_n \qquad b_n$$

$$\bar{a}_n \qquad \qquad \bar{b}_n \qquad \bar{b}_n$$

$$\bar{c}_n \qquad c_n \qquad \bar{c}_n$$

$$c_{out} = (\bar{a}_n \cdot c_n) + (\bar{a}_n \cdot b_n) + (b_n \cdot c_n)$$

Subtrator Completo

Subtrator de 8 bits

Pro Lar

- Leitura (Tocci): 6.9-6.11 (pp. 67-72)
- Leitura (Capuano): 5.3 5.3.9 (pp. 168-179)
- Exercícios (Tocci): E = {6.18 6.20}
- Exercícios (Capuano): E = {5.3.8}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L.
 Sistemas Digitais – Princípios e Aplicações.
 11ª Ed. Pearson Prentice Hall, São Paulo,
 S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40ª Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.