

Insertion Sort

```
public static int[] insertionSort(int[] arr, int start, int end) {
    for (int i = start + 1; i <= end; i++) {
        for (int j = i; j > start; j--) {
           keyComparisons++;
            if (arr[j] < arr[j - 1]) {
                arr[j] = arr[j - 1] + arr[j];
                arr[j-1] = arr[j] - arr[j-1];
                arr[j] = arr[j] - arr[j - 1];
            } else
               break;
   int size = end - start + 1;
    int[] sorted = new int[size];
   System.arraycopy(arr, start, sorted, 0, size);
    return sorted;
```

Merge Sort

```
public static int[] mergeSort(int[] arr, int start, int end) {
   int size = end - start + 1;
   int[] sorted = new int[end - start + 1];
   if (size <= 1) {
      sorted[0] = arr[start];
      return sorted;
   }

   int mid = (start + end) / 2;
   int s1 = mid - start + 1;
   int s2 = end - mid;
   int[] arr1 = new int[s1];
   arr1 = mergeSort(arr, start, mid);
   int[] arr2 = new int[s2];
   arr2 = mergeSort(arr, mid + 1, end);
   sorted = merge(arr1, arr2, s1, s2);
   return sorted;
}</pre>
```

```
public static int[] merge(int[] arr1, int[] arr2, int s1, int s2) {
    int[] sorted = new int[s2 + s1];
    if (s1 + s2 == 0) {
    } else if (s1 == 0) {
        return arr2;
    } else if (s2 == 0) {
        return arr1;
    int cmp, i = 0, j = 0, a = 0;
    while (i < s1 && j < s2) {
        cmp = arr1[i] - arr2[j];
        keyComparisons++;
        if (cmp < 0) {
            sorted[a++] = arr1[i++];
        } else if (cmp > 0) {
            sorted[a++] = arr2[j++];
        } else {
            sorted[a++] = arr1[i++];
            sorted[a++] = arr2[j++];
    int diff1 = s1 - i;
    int diff2 = s2 - j;
    // if there are leftovers in any, then just add to arr
    while (diff1 > 0) {
        sorted[a++] = arr1[i++];
        diff1--;
   while (diff2 > 0) {
        sorted[a++] = arr2[j++];
        diff2--;
    return sorted:
```

Hybrid Sort Algorithm Implementation

```
// PSEUDOCODE
hybridSort(arr[], start, end) {
 if (size <= 1) {
          return the array // array already sorted
  if (size <= S) {
      perform insertionSort on the array.
      return the sorted array.
  else {
      perform hybridSort on left half of array.
      perform hybridSort on right half of array.
      merge(both left and right)
      return the sorted array.
```

Hybrid Sort

```
public static int[] hybridSort(int[] arr, int start, int end) {
    int size = end - start + 1;
    if (size <= 1)
        return arr;
    int[] sorted = new int[size];
                                                           INSFRTION
    if (size <= 5) {
        System.arraycopy(arr, start, sorted, 0, size);
        insertionSort(sorted, 0, size - 1);
    } else {
        int mid = (start + end) / 2;
        int s1 = mid - start + 1;
        int s2 = end - mid;
        int[] arr1 = new int[s1];
                                                            MERGE
        arr1 = hybridSort(arr, start, mid);
        int[] arr2 = new int[s2];
        arr2 = hybridSort(arr, mid + 1, end);
        sorted = merge(arr1, arr2, s1, s2);
    return sorted;
```

Intuitive understanding of hybridSort

Then

Summary on Time Complexity of Hybrid Sort

- Best case : n+nlog(n/S)
 - Since we apply insertion sort on n/s groups of size S and the best case for insertion sort is O(n), best case for the insertion sort on n/s groups would be O[(n/s) * S] = O(n)
 - The best case for merge sort is O(n log n)
 - Hence when for Hybrid sort, the best case time complexity would be O[n + n log(n/s)]
- Worst Case : nS+ n log(n/S)
 - Since we apply insertion sort on n/s groups of size S and the worst case for insertion sort is O(n^2), worst case for the insertion sort on n/s groups would be O[(n/S)* S*2] = O(nS)
 - The worst case for merge sort is O(n log n)
 - Hence when for Hybrid sort, the worst case time complexity would be O[ns + n log(n/s)]

Summary of Time Complexity

	Merge Sort	Insertion Sort	Hybrid Sort
Best Case	nlog(n)	n	n + nlog(n/S)
Worst Case	nlog(n)	n ²	nS + nlog(n/S)
Average Case	nlog(n)	n²	nS + nlog(n/S)

Fixed "S" & Varying "n"

Legend

- Empirical
- Theoretical

Theoretical average case:
nS + nLog₂(n/S)

Fixed "S", Varying "n"

Fixed "n" & Varying "S"

- Best case : n+nlog(n/S)
- Worst Case : ns+ n log(n/s)

Varying "S" & varying "n" value

Legend

Blue - 10 M Grey - 10 K Yellow - 1 K

Key Comparison fails to account number of recursion calls required for mergesort for small S

Qd) Compare with Original Mergesort

Qd) Lecture's MergeSort vs our HybridSort

```
public static int[] merge(int[] arr, int start, int end) {
   // remember that a and b will keep going right, so it doesn't make sense to
   int mid = (start + end) / 2, a = start, b = mid + 1, i, tmp, cmp;
    if (end - start <= 0)
        return arr:
   while (a <= mid && b <= end) {
        cmp = arr[a] - arr[b];
        if (cmp < 0) {
        } else if (cmp > 0) {
            tmp = arr[b++];
            // shift everything and put the first ele of right array into the merged list.
            for (i = ++mid; i > a; i--) {
                arr[i] = arr[i - 1];
            arr[a++] = tmp;
        } else {
            if (a == mid && b == end)
            a++:
            tmp = arr[b++];
            for (i = ++mid; i > a; i--) {
                arr[i] = arr[i - 1];
            arr[a++] = tmp;
    return arr;
```


Comparison continued (Lecture Merge vs Hybrid Sort)

	S = 16	Size = 1000			
	Merge		Hybrid		
	Key Comps	Run Time (ms)	Key Comps	Runtime (ms)	
	8335	2.287333	9990	1.002667	
	8323	1.332708	9909	1.212584	
	8345	0.289292	10125	0.244209	
	8346	0.238167	9960	0.135875	
	8315	0.280417	9847	0.122208	
avg	8332.8	0.8855834	9966.2	0.5435086	
					_

	S = 16	Size = 100000			
	Merge		Hybrid		
	Key Comps	Run Time (ms)	Key Comps	Runtime (ms)	
	1498766	571.459208	1601935	14.116875	
	1498348	552.889667	1602828	33.360167	
	1498221	551.867375	1600634	8.98154	
	1498614	577.32466	1602118	14.195292	
	1498441	555.4724	1600614	11.115333	
					$\overline{}$
aÇg	1498478	561.802662	1601625.8	16.3538414	
1700					

	S = 16	Size = 10000			
	Merge		Hybrid		
	Key Comps	Run Time (ms)	Key Comps	Runtime (ms)	
	116865	8.46725	122867	0.913458	
	116625	8.058458	123279	0.932208	
	116701	13.028625	123133	2.907542	
	116758	8.27875	123029	3.797083	
	116651	8.5215	123382	1.065875	
avg	116720	9.2709166	123138	1.9232332	
1					

Results: Key Comparisons: Hybrid > Lect Merge Sort

Runtime: Hybrid takes shorter Runtime than Lect MergeSort

Our Hybrid Sort's Merge()

Comparison 2.0 (Auxiliary Merge vs Hybrid Sort)

For example: n = 10000, S = 16

Auxiliary MS Key Comparisons: 116708--- time taken: 2.1405ms

HS Key Comparisons: 123421--- time taken: 1.122417ms

Results:

Key Comparisons: Hybrid > Auxiliary Merge Sort

Runtime: Hybrid takes shorter Runtime than Auxiliary MergeSort

We conclude that:

- 1. Recursion overhead will increase run time, so much so that its effects over power larger key comparisons.
- 2. For our case, we found S = 16 to be our optimal S.

What we also learnt:

- Since insertion sort will be better when arrays are small and almost sorted,
- 2. Hybrid sort will be good when the subarrays are almost sorted, this reduces the runtime of insertion sort for these subarrays.
- 3. Using insertion sort with merge sort will also greatly reduce the recursion overhead.

THANK YOU:)

References:

https://www.youtube.com/watch?v=emeME__917E

Analysis of Insertion Sort

Best Case: 1 key comparison/ iteration, total (n - 1) key comparisons

Worst Case: i key comparisons for the ith iteration

 $(1 + 2 + 3... + i-1 + i) \rightarrow total : n(n-1)/2$

```
public static int[] insertionSort(int[] arr, int start, int end) {
    int i:
    for (int i = start + 1; i <= end; i++) {
        i = i;
        while (j > start) {
            keyComparisons++;
            if (arr[i] < arr[i - 1]) {
                arr[j] = arr[j - 1] + arr[j];
                arr[j-1] = arr[j] - arr[j-1];
                arr[i] = arr[i] - arr[i - 1];
            } else {
                break;
    int size = end - start + 1;
    int[] sorted = new int[size];
   System.arraycopy(arr, start, sorted, 0, size);
    return sorted:
```

Ultimate goal: find the maximum size of Array such that

Ne maximize the height whilst keeping \bigcirc C \vee 2007 Werds CNJ G sort

Theoretical Optimal S

