№9. Прикладные задачи

№9.1 #83439

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a (в км/ч 2). Скорость v (в км/ч) вычисляется по формуле $v = \sqrt{2la}$, где l— пройденный автомобилем путь (в км). Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 1 км, приобрести скорость 120 км/ч. Ответ дайте в км/ч 2 .

№9.2 #17054

Расстояние от наблюдателя, находящегося на высоте h м над Землей, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле

 $l = \sqrt{\frac{Rh}{500}},$

где R=6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 24 км. К пляжу ведёт лестница, каждая ступенька которой имеет высоту 20 см.

На какое наименьшее количество ступенек надо подняться человеку, чтобы он увидел горизонт на расстоянии не менее 32 км?

№9.3 #17055

При температуре 0°C рельс имеет длину $l_0=10$ м. При возрастании температуры происходит тепловое расширение рельса и его длина, выраженная в метрах, изменяется по закону $l(t)=l_0(1+\alpha t)$, где $\alpha=1,2\cdot 10^{-5}$ (°C)⁻¹ — коэффициент теплового расширения, t — температура в градусах Цельсия. При какой температуре рельс удлинится на 6 мм? Ответ дайте в градусах Цельсия.

№9.4 #**45951**

Для сматывания кабеля на заводе используют лебёдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону $\varphi = \omega t + \frac{\beta t^2}{2}$, где t — время в минутах, $\omega = 60^\circ$ /мин — начальная угловая скорость вращения катушки, а $\beta = 6^\circ$ /мин 2 — угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки φ достигнет 3375 $^\circ$. Определите время после начала работы лебёдки, не позже которого рабочий должен проверить её работу. Ответ выразите в минутах.

№9.5 #45952

Небольшой мячик бросают под острым углом α к плоской горизонтальной поверхности земли. Максимальная высота полёта мячика H (в м) вычисляется по формуле

$$H = \frac{v_0^2}{4g}(1 - \cos 2\alpha),$$

где $v_0=12~{\rm m/c}$ — начальная скорость мячика, а g — ускорение свободного падения (считайте $g=10{\rm m/c}^2$). При каком наименьшем значении угла α мячик пролетит над стеной высотой 4,4 м на расстоянии 1 м? Ответ дайте в градусах.

№9.6 #45953

Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объём и давление связаны соотношением $p_1V_1^{1,4}=p_2V_2^{1,4}$, где p_1 и p_2 — давление газа (в атмосферах) в начальном и конечном состояниях, V_1 и V_2 — объём газа (в литрах) в начальном и конечном состояниях. Изначально объём газа равен 192 л, а давление газа равно одной атмосфере. До какого объёма нужно сжать газ, чтобы давление в сосуде стало 128 атмосфер? Ответ дайте в литрах.

№9.7 #45954

Водолазный колокол, содержаший v=5 моль воздуха объёмом $V_1=26$ л, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного объёма V_2 (в л). Работа, совершаемая водой при сжатии воздуха, вычисляется по формуле $A=\alpha v T\log_2\frac{V_1}{V_2}$, где $\alpha=8.5\frac{Дж}{моль \cdot K}$ — постоянная, $T=300~\mathrm{K}$ — температура воздуха. Найдите, какой объём V_2 будет занимать воздух в колоколе, если при сжатии воздуха была совершена работа в 25500 Дж. Ответ дайте в литрах.

№9.8 #45955

Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле

$$A(\omega) = \frac{A_0 \omega_{\rm p}^2}{\left|\omega_{\rm p}^2 - \omega^2\right|},$$

где ω — частота вынуждающей силы (в с⁻¹), A_0 — постоянный положительный параметр, $\omega_{\rm p}=345{\rm c}^{-1}$ — резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 12,5%. Ответ дайте в с⁻¹.

№9.9 #45962

Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с фокусным расстоянием f=60 см. Расстояние d_1 от линзы до лампочки может изменяться в пределах от 95 см до 115 см, а расстояние d_2 от линзы до экрана - в пределах от 140 см до 160 см. Изображение на экране будет чётким, если выполнено соотношение

$$\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}$$

На каком наименьшем расстоянии от линзы нужно поместить лампочку, чтобы её изображение на экране было чётким? Ответ дайте в сантиметрах.

№9.10 #45963

Груз массой 0,25 кг колеблется на пружине. Его скорость v меняется по закону $v=v_0\cos\frac{2\pi t}{T}$, где t — время с момента начала колебаний, T=2 с — период колебаний, $v_0=1,6$ м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле $E=\frac{mv^2}{2}$, где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 56 секунд после начала колебаний. Ответ дайте в джоулях.

№9.11 #45964

Для обогрева помещения, температура в котором поддерживается на уровне $T_{\rm n}=20^{\circ}{\rm C}$, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу радиатора воды $m=0.5~{\rm kr/c}$. Проходя по трубе расстояние x, измеряемое в метрах, вода охлаждается от начальной температуры $T_{\rm B}=72^{\circ}{\rm C}$ до температуры T, причём $x=\alpha\frac{cm}{\gamma}\log_2\frac{T_{\rm B}-T_{\rm n}}{T-T_{\rm n}}$, где $c=4200\frac{{\rm Br\cdot c}}{{\rm kr\cdot °C}}$ — теплоёмкость воды, $\gamma=63\frac{{\rm Br}}{{\rm M\cdot °C}}$ коэффициент теплообмена, а $\alpha=1.5$ — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна $100~{\rm m}$.

№9.12 #45965

Независимое агентство намерено ввести рейтинг R новостных изданий на основе показателей информативности In, оперативности Op и объективности Tr публикаций. Каждый отдельный показатель — целое число от -1 до 1. Составители рейтинга считают, что информативность публикаций ценится вчетверо, а объективность — вдвое дороже, чем оперативность, то есть

$$R = \frac{4In + Op + 2Tr}{A}$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило рейтинг 1.

№9.13 #45966

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a (в км/ч²) Скорость v (в км/ч) вычисляется по формуле $v = \sqrt{2la}$, где l— пройденный автомобилем путь (в км). Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,8 км, приобрести скорость 100 км/ч. Ответ дайте в км/ч².

SHOLKIO

shko	Jr. O.	9. Прикладные задачи. С		1/20	10.0/0
	Nº	9. Прикладные задачи. С	твет)	ГЫ	
	9.1. 72	00	9.8.	115	
online	9.2. 17	53/160/160 shkolkovo.online	9.9.	96	1
	9.3. 50	0/1/0	9.10.	0,32	shkol
	9.4. 25	17.000	9.11.	33	
	9.5. 60 9.6. 6	17/20 pg	9.12.	7	
	0.7. 0.1	5/0	9.13.	6250	
1.0	0.0	shine shine			anline
Okolke		aline	. 1501		online

month online