Data Science Ruichun Liu Problem Set 8

	beta	beta_OLS	beta_GD	beta_OLS_L	beta_OLS_NM	beta_MLE	beta_LM
X1	1.50	1.50	1.50	1.50	1.50	1.13	1.50
X2	-1.00	-0.99	-0.99	-0.99	-0.99	-1.09	-0.99
X3	-0.25	-0.25	-0.25	-0.25	-0.25	-0.30	-0.25
X4	0.75	0.74	0.74	0.74	0.74	0.76	0.74
X5	3.50	3.50	3.50	3.50	3.50	3.73	3.50
X6	-2.00	-2.00	-2.00	-2.00	-2.00	-2.18	-2.00
X7	0.50	0.50	0.50	0.50	0.50	0.47	0.50
X8	1.00	1.00	1.00	1.00	1.00	1.00	1.00
X9	1.25	1.26	1.26	1.26	1.26	1.31	1.26
X10	2.00	2.00	2.00	2.00	2.00	2.14	2.00

1. Question 5 How does your estimate compare with the true value of β in (1)?

From the column beta_OLS, we can see that my estimates are very close to the true value.

2. Question 7 Do your answers differ?

From the column beta_OLS_L and beta_OLS_NM, we can see that the results of two different methods are the exactly same.

3. Question 9 In your .tex file, tell me about how similar your estimates of β are to the "ground truth" that you used to create the data in (1).

From the table 1 on next page, we can find that each of the variables is significant under p < 0.01.

Table 1:

	Dependent variable:		
	Y		
X1	1.501***		
	(0.002)		
X2	-0.991***		
	(0.003)		
X3	-0.247^{***}		
	(0.003)		
X4	0.744***		
	(0.003)		
X5	3.504***		
	(0.003)		
X6	-1.999***		
	(0.003)		
X7	0.502***		
	(0.003)		
X8	0.997***		
	(0.003)		
X9	1.256***		
	(0.003)		
X10	1.999***		
	(0.003)		
Observations	100,000		
\mathbb{R}^2	0.971		
Adjusted \mathbb{R}^2	0.971		
Residual Std. Error	0.500 (df = 99990)		
F Statistic	$338,240.000^{***} \text{ (df} = 10; 99990)$		
Note:	*p<0.1; **p<0.05; ***p<0.01		