

Lab 3

姓名:_____高茂航_____

学号:_____PB22061161____

日期:_____2024.4.28_____

1 Task1

1.1 Algorithm Description

本节主要是调用了 pandas 库,对数据进行一系列处理,包括读取数据、查看数据的前 10 行、查看数据的信息、删除缺失值、重置索引、删除 id 列、查看 diagnosis 列的值的个数、将 diagnosis 列的值转换为 0 和 1、查看 2-7 列的统计信息、查看不同 diagnosis 值的各组数据 所有特征的变异系数,详情在代码文件中显示。

1.2 Results

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean \
0	842302	М	17.99	10.38	122.80	1001.0
1	842517	М	20.57	17.77	132.90	1326.0
2	84300903	М	19.69	21.25	130.00	1203.0
3	84348301	М	11.42	20.38	77.58	386.1
4	84358402	М	20.29	14.34	135.10	1297.0
5	843786	М	12.45	15.70	82.57	477.1
6	844359	М	18.25	19.98	119.60	1040.0
7	84458202	М	13.71	20.83	90.20	577.9
8	844981	М	13.00	21.82	87.50	519.8
9	84501001	М	12.46	24.04	83.97	475.9

	cmoo.	thnas	s mean	COM	inacti	nacc	maan	con	cavi	itv r	naan	concav	/6	noi	ntc r	naan	\	
0	311100		_	COII	рассі	_	_	COII		-		Concav	<i>,</i> E	роті	_		`	
0			11840				27760				0010 0010					4710		
1		e	0.08474			0.6	97864			0.08	8690				0.07	/01/		
2		e	0.10960			0.1	L5990			0.19	9740				0.12	2790		
3		6	14250			0.2	28390			0.24	4140				0.10	ð520		
4		e	.10030			0.1	L3280			0.19	9800				0.10	9430		
5		e	12780			0.1	L7000			0.1	5780				0.08	8089		
6		e	0.09463			0.1	L0900			0.13	1270				0.07	7400		
7		e	11890			0.1	L6450			0.09	9366				0.0	5985		
8		e	.12730			0.1	L9320			0.18	8590				0.09	9353		
9		e	11860			0.2	23960			0.22	2730				0.08	8543		
		radi	lus_worst	t t	extu	re_wo	orst	peri	mete	er_wo	orst	area_w	vor	st	\			
0					0.483	1809		0.	1546	583				0	.1739	924		
1					0.25	0869		0.	2329	936				0	. 2364	436		
[2	[2 rows x 30 columns]																	
Ou	Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u> . Adjust cell output <u>settings</u>																	
-00	Output is truncated. From as a <u>serotubite element</u> of open in a <u>text editor</u> . Adjust cell output <u>settings</u>																	

限于篇幅,没将 Task1 的全部结果显示出来。

2 Task2

2.1 Algorithm Description

本节调用了 numpy 和 matplotlib 库,对数据进行一系列处理,如绘制频率分布直方图、绘制分布散点图、corr() 求 Pearson 相关系数矩阵、用 matshow(corr, cmap='coolwarm') 绘

Report 3

制相应的相关系数热力矩阵图等,由于都是固定的操作,故不再详述代码细节。

2.2 Results

3 Task3

3.1 Algorithm Description

先用 np.column_stack() 将三个一维数组堆叠成一个二维数组,每个一维数组成为新二维数组的一列,进而代入公式求最小二乘估计,再使用 numpy.polyfit() 方法做二次多项式拟合,并绘制拟合曲线,可以发现数据适合二次函数拟合,而不适合线性拟合。

Report 3

3.2 Results

```
Q1 Model parameters: [ 3.14186228 -0.44260792 -4.70867951]
Q2 Model parameters: [ 3.14186228 -0.44260792 -4.70867951]
omega - coeffs = [-2.98872038e-13 7.63683561e-12 -4.56710225e-11]
```


4 Task4

4.1 Algorithm Description

利用 numpy.cov() 和 numpy.linalg.eig() 求 X 的协方差矩阵 cor X,进而求 cor X 的特征值 eig V 与特征向量矩阵 eig Mat,通过计算验证 eig Mat 的正交性,接着对 X 进行 PCA,得到 Z,可以发现 Z 的数据的纵坐标基本在 0 附近,即 PCA 将 X 的数据映射到接近一维空间上。也能发现 cov(Z) 的对角元与 eig V 的值相等,且非对角元十分接近于 0。删除 Z 的一维数据,即可完成主成分分析降维过程。

4.2 Results

```
Eigenvalues:
                  [5.90457503e+02 5.21373729e-02]
Eigenvectors:
 [[ 0.98966947 -0.14336785]
 [ 0.14336785
                   0.98966947]]
Orthogonality check:
                            True
            Original data
            Transformed data
    25
    20
 Second Dimension
    15
    10
    5
    0
                    80
       40
             60
                          100
                                        140
                                              160
                                                     180
                            First Dimension
```

```
Covariance of Z:
[[5.90457503e+02 1.97591893e-14]
[1.97591893e-14 5.21373729e-02]]
Z_reduced : [[124.11059852]
[134.47614923]
[131.47994405]
[ 78.41581832]
[136.61327906]
  83.50193786]
[120.98093186]
  91.23375941]
  88.45986066]
  84.8889088 ]
[103.93580752]
[133.78059949]
[104.90110445]
  94.60150296]
  97.81529636]
  95.86592562]
 [109.29579312]
  88.49769253]
```

限于篇幅,没将 Z reduced 的全部结果显示出来。

Report 3

5 Task5

5.1 Algorithm Description

本情景应该进行成组检验,因为两组数据相互独立,单侧检验原假设为 Mean of group1 = Mean of group2。因为 p 值为 5.469799049160595e-56 远小于 0.05,因此很有把握否认原假设,接受备择假设,即 Mean of group1 <= Mean of group2。

5.2 Results

Mean of group1: 0.1663615971830986 Mean of group2: 0.44671356097560977

t-statistic: -19.01722049062515

p-value for one-tailed test: 5.469799049160595e-56