GSERM 2020Regression for Publishing

June 17, 2020 (second session)

Binary Outcomes: Basics

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

$$Y_i = 0 \text{ if } Y_i^* < 0$$

 $Y_i = 1 \text{ if } Y_i^* \ge 0$

So:

$$Pr(Y_i = 1) = Pr(Y_i^* \ge 0)$$

$$= Pr(\mathbf{X}_i \boldsymbol{\beta} + u_i \ge 0)$$

$$= Pr(u_i \ge -\mathbf{X}_i \boldsymbol{\beta})$$

$$= Pr(u_i \le \mathbf{X}_i \boldsymbol{\beta})$$

$$= \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} f(u) du$$

Logit

"Standard logistic" PDF:

$$\Pr(u) \equiv \lambda(u) = \frac{\exp(u)}{[1 + \exp(u)]^2}$$

CDF:

$$\Lambda(u) = \int \lambda(u) du$$

$$= \frac{\exp(u)}{1 + \exp(u)}$$

$$= \frac{1}{1 + \exp(-u)}$$

Standard Normal and Logistic PDFs

Standard Normal and Logistic CDFs

Characteristics

•
$$\lambda(u) = 1 - \lambda(-u)$$

•
$$\Lambda(u) = 1 - \Lambda(-u)$$

•
$$Var(u) = \frac{\pi^2}{3} \approx 3.29$$

Logistic → "Logit"

$$\begin{array}{lll} \Pr(Y_i = 1) & = & \Pr(Y_i^* > 0) \\ & = & \Pr(u_i \leq \mathbf{X}_i \boldsymbol{\beta}) \\ & = & \Lambda(\mathbf{X}_i \boldsymbol{\beta}) \\ & = & \frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \end{array}$$

$$\left(\text{equivalently} \right) & = & \frac{1}{1 + \exp(-\mathbf{X}_i \boldsymbol{\beta})}$$

Likelihoods

$$L_i = \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}\right)^{Y_i} \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}\right)\right]^{1 - Y_i}$$

$$L = \prod_{i=1}^{N} \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right)^{Y_{i}} \left[1 - \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right) \right]^{1 - Y_{i}}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) + \left(1 - Y_i \right) \ln \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) \right]$$

Digression: Logit as an Odds Model

$$\begin{aligned} \mathsf{Odds}(Z) &\equiv \Omega(Z) = \frac{\mathsf{Pr}(Z)}{1 - \mathsf{Pr}(Z)}. \\ \mathsf{In}[\Omega(Z)] &= \mathsf{In}\left[\frac{\mathsf{Pr}(Z)}{1 - \mathsf{Pr}(Z)}\right] \\ \mathsf{In}[\Omega(Z_i)] &= \mathbf{X}_i \beta \\ \\ \Omega(Z_i) &= \frac{\mathsf{Pr}(Z)}{1 - \mathsf{Pr}(Z)} \\ &= \exp(\mathbf{X}_i \beta) \end{aligned}$$

$$\mathsf{Pr}(Z_i) &= \frac{\exp(\mathbf{X}_i \beta)}{1 + \exp(\mathbf{X}_i \beta)}$$

Visualizing Log-Odds

Probit: Y Be Normal?

$$\Pr(u) \equiv \phi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

$$\Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

Normal \rightarrow "Probit"

$$\begin{array}{lcl} \Pr(Y_i = 1) & = & \Phi(\mathbf{X}_i \boldsymbol{\beta}) \\ & = & \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{X}_i \boldsymbol{\beta})^2}{2}\right) d\mathbf{X}_i \boldsymbol{\beta} \end{array}$$

$$L = \prod_{i=1}^{N} \left[\Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{Y_i} \left[1 - \Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{(1-Y_i)}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \Phi(\mathbf{X}_i \boldsymbol{\beta}) + (1 - Y_i) \ln [1 - \Phi(\mathbf{X}_i \boldsymbol{\beta})]$$

Logit vs. Probit

Three things:

- Similar in many respects
- $\hat{eta}_{\text{logit}} pprox \hat{eta}_{\text{probit}}$, s.e.s are proportional
- Never use probit.

What About Linear Regression?

Linear regression w / binary Y = "Linear Probability Model" (LPM)

Various thoughts:

- Issues:
 - Model misspecification → bias, inconsistency
 - · Creates heteroscedasticity
 - · Can yield predicted values outside (0,1)
- The rehabilitation of the LPM:
 - · "Logit is hard" / "OLS is awesome" / "It doesn't matter anyway"
 - · More-or-less entirely due to (famous) economists
 - · Examples: here, here, etc.
- Takeaway: Pay attention to what people in your discipline / field are doing.

Example: House Voting on NAFTA

- vote Whether (=1) or not (=0) the House member in question voted in favor of NAFTA.
- democrat Whether the House member in question is a Democrat (=1) or a Republican (=0).
- pcthispc The percentage of the House member's district who are of Latino/hispanic origin.
- cope93 The 1993 AFL-CIO (COPE) voting score of the member in question; this variable ranges from 0 to 100, with higher scores indicating more pro-labor positions.
- DemXCOPE The multiplicative interaction of democrat and cope93.

Model & Data

$$\begin{split} \Pr(\texttt{vote}_i = 1) &= f[\beta_0 + \beta_1(\texttt{democrat}_i) + \beta_2(\texttt{pcthispc}_i) + \\ & \beta_3(\texttt{cope93}_i) + \beta_4(\texttt{democrat}_i \times \texttt{cope93}_i) + u_i] \end{split}$$

> summary(nafta)

vote		democrat	pcthispc	cope93	DemXCOPE	
	Min. :0.0000	Min. :0.0000	Min. : 0.0	Min. : 0.00	Min. : 0.00	
	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.: 1.0	1st Qu.: 17.00	1st Qu.: 0.00	
	Median :1.0000	Median :1.0000	Median : 3.0	Median : 81.00	Median : 75.00	
	Mean :0.5392	Mean :0.5853	Mean : 8.8	Mean : 60.18	Mean : 51.65	
	3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:10.0	3rd Qu.:100.00	3rd Qu.:100.00	
	Max ·1 0000	Max ·1 0000	Max .83.0	Max. :100.00	Max. :100.00	

Basic Model(s)

$$\Pr(Y_i = 1) = \frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}$$

or

$$\Pr(Y_i = 1) = \Phi(\mathbf{X}_i \boldsymbol{\beta})$$

Probit Estimates

```
> NAFTA.GLM.probit<-glm(vote~democrat+pcthispc+cope93+DemXCOPE,
  NAFTA, family=binomial(link="probit"))
> summary(NAFTA.GLM.probit)
Call:
glm(formula = vote ~ democrat + pcthispc + cope93 + DemXCOPE,
   family = binomial(link = "probit"))
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.07761 0.15339 7.03 2.1e-12 ***
democrat 3.03359 0.73884 4.11 4.0e-05 ***
pcthispc 0.01279 0.00467 2.74 0.0062 **
cope93 -0.02201 0.00440 -5.00 5.8e-07 ***
DemXCOPE -0.02888 0.00903 -3.20 0.0014 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
   Null deviance: 598.99 on 433 degrees of freedom
Residual deviance: 441.06 on 429 degrees of freedom
AIC: 451.1
```

Logit Estimates

```
> NAFTA.GLM.logit<-glm(vote~democrat+pcthispc+cope93+DemXCOPE.NAFTA.family=binomial)
> summary(NAFTA.GLM.logit)
Call:
glm(formula = vote ~ democrat + pcthispc + cope93 + DemXCOPE,
   family = binomial)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.79164 0.27544 6.50 7.8e-11 ***
democrat 6.86556 1.54729 4.44 9.1e-06 ***
pcthispc 0.02091 0.00794 2.63 0.00846 **
cope93 -0.03650 0.00760 -4.80 1.6e-06 ***
DemXCOPE -0.06705 0.01820 -3.68 0.00023 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
   Null deviance: 598.99 on 433 degrees of freedom
Residual deviance: 436.83 on 429 degrees of freedom
  (1 observation deleted due to missingness)
AIC: 446.8
```

Model Results

Table: Probit and Logit Models of the NAFTA Vote

	NAFTA Vote		
	<i>probit</i> Probit	<i>logistic</i> Logit	
	(1)	(2)	
(Constant)	1.08***	1.79***	
	(0.15)	(0.28)	
Democratic Member	3.03***	logistic Logit (2) 1.79*** (0.28) 6.87*** (1.55) 0.02*** (0.01) -0.04*** (0.01) -0.07*** (0.02) 434 -218.41 446.83	
	(0.74)	(1.55)	
Hispanic Percent	0.01***	0.02***	
	(0.005)	(0.01)	
COPE Score	-0.02***	03*** 6.87*** 0.74) (1.55) 01*** 0.02*** 0.005) (0.01) 0.02*** -0.04*** 0.004) (0.01) 0.03*** -0.07***	
	(0.004)	(0.01)	
Democratic Member x COPE Score	_0.03***	Logit (2) 1.79*** (0.28) 6.87*** (1.55) 9.002***) (0.01) -0.04*** (0.01) -0.07*** (0.02) 434 3 -218.41 446.83	
	(0.01)	(0.02)	
Observations	434	434	
Log Likelihood	-220.53	-218.41	
Akaike Inf. Crit.	451.06	446.83	
AL .	* 01 **	0.05 *** 0.01	

Note: *p<0.1; **p<0.05; ***p<0.01

Log-Likelihoods, "Deviance," etc.

- Reports "deviances":
 - · "Residual" deviance = $2(\ln L_S \ln L_M)$
 - · "Null" deviance = $2(\ln L_S \ln L_N)$
 - · stored in object\$deviance and object\$null.deviance
- So:

$$LR_{\beta=0} = 2(\ln L_M - \ln L_N)$$

= "Null" deviance – "Residual" deviance

> NAFTA.GLM.logit\$null.deviance - NAFTA.GLM.logit\$deviance [1] 162.1577

Stata Remix

. logit vote democrat pcthispc cope93 ${\tt DemXCOPE}$

J	ogistic regression og likelihood = -218.41388				Number of obs LR chi2(4) Prob > chi2 Pseudo R2		= = = =	434 162.16 0.0000 0.2707	<
	vote	Coef.	Std. Err.	z	P> z			Interval]	
	crat	6.865556	1.547357	4.44	0.000	3.832792		9.898319	
pcth	nispc	.0209106	.007941	2.63	0.008	.0053466	3	.0364747	
co	pe93	0365007	.0075976	-4.80	0.000	0513917	7	0216097	
DemX	COPE	0670544	.0182039	-3.68	0.000	1027334	1	0313754	

_cons | 1.79164 .2754383 6.50 0.000 1.251791 2.331489

Interpretation: "Signs-n-Significance"

For both logit and probit:

•
$$\hat{\beta}_k > 0 \leftrightarrow \frac{\partial \Pr(Y=1)}{\partial X_k} > 0$$

•
$$\hat{\beta}_k < 0 \leftrightarrow \frac{\partial \Pr(Y=1)}{\partial X_k} < 0$$

$$ullet rac{\hat{eta}_k}{\hat{\sigma}_k} \sim N(0,1)$$

Interactions:

$$\hat{\beta}_{\texttt{cope93}|\texttt{democrat=1}} \equiv \hat{\phi}_{\texttt{cope93}} = \hat{\beta}_3 + \hat{\beta}_4$$

$$\mathsf{s.e.}(\hat{\beta}_{\texttt{cope93}|\texttt{democrat}=1}) = \sqrt{\mathsf{Var}(\hat{\beta}_3) + (\texttt{democrat})^2 \mathsf{Var}(\hat{\beta}_4) + 2\,(\texttt{democrat})\,\mathsf{Cov}(\hat{\beta}_3,\hat{\beta}_4)}$$

Interactions

```
\hat{\phi}_{\text{cope93}} point estimate:
> NAFTA.GLM.logit$coeff[4] + NAFTA.GLM.logit$coeff[5]
      cope93
-0.1035551
z-score ("by hand"):
> (NAFTA.GLM.logit $coeff[4] + NAFTA.GLM.logit $coeff[5]) / (sqrt(vcov(NAFTA.GLM.logit)[4,4] +
 (1)^2*vcov(NAFTA.GLM.logit)[5,5] + 2*1*vcov(NAFTA.GLM.logit)[4,5]))
  cope93
-6.245699
```

(Or use car...)

```
> library(car)
> linear.hypothesis(NAFTA.GLM.logit,"cope93+DemXCOPE=0")
Linear hypothesis test
Hypothesis:
cope93 + DemXCOPE = 0
Model 1: vote ~ democrat + pcthispc + cope93 + DemXCOPE
Model 2: restricted model
 Res.Df Df Chisq Pr(>Chisq)
    429
    430 -1 39.009 4.219e-10 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Predicted Probabilities

$$\begin{split} \widehat{\Pr(Y_i = 1)} &= F(\mathbf{X}_i \hat{\boldsymbol{\beta}}) \\ &= \frac{\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})} \text{ for logit,} \\ &= \Phi(\mathbf{X}_i \hat{\boldsymbol{\beta}}) \text{ for probit.} \end{split}$$

Predicted Probabilities Illustrated

Predicted Probabilities: Standard Errors

$$\begin{aligned}
\mathsf{Var}[\mathsf{Pr}\widehat{(Y_i = 1)})] &= \left[\frac{\partial F(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}}\right]' \hat{\mathbf{V}} \left[\frac{\partial F(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}}\right] \\
&= \left[f(\mathbf{X}_i \hat{\boldsymbol{\beta}})\right]^2 \mathbf{X}_i' \hat{\mathbf{V}} \mathbf{X}_i
\end{aligned}$$

So,
$$s.e.[\Pr(\widehat{Y_i=1}))] = \sqrt{[f(\mathbf{X}_i\hat{\boldsymbol{\beta}})]^2\mathbf{X}_i'\hat{\mathbf{V}}\mathbf{X}_i}$$

Probability Changes

$$\begin{split} \hat{\Delta} \text{Pr}(Y=1)_{\mathbf{X}_A \to \mathbf{X}_B} &= \frac{\exp(\mathbf{X}_B \hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_B \hat{\boldsymbol{\beta}})} - \frac{\exp(\mathbf{X}_A \hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_A \hat{\boldsymbol{\beta}})} \\ &\text{or} \\ &= \Phi(\mathbf{X}_B \hat{\boldsymbol{\beta}}) - \Phi(\mathbf{X}_A \hat{\boldsymbol{\beta}}) \end{split}$$

Standard errors obtainable via delta method, bootstrap, etc...

In-Sample Predictions

```
> preds<-NAFTA.GLM.logit$fitted.values
> hats<-predict(NAFTA.GLM.logit,se.fit=TRUE)
> hats
$fit
 9.01267619 7.25223902 6.11013844 5.57444635 ....
 $se.fit
1.5331506 1.2531475 1.1106989 0.9894208 ....
> XBUB<-hats$fit + (1.96*hats$se.fit)
> XBLB<-hats$fit - (1.96*hats$se.fit)
> plotdata<-cbind(as.data.frame(hats),XBUB,XBLB)
> plotdata < - data.frame(lapply(plotdata,binomial(link="logit")$linkiny))
```

Plotting

```
...
> par(mfrow=c(1,2))
> library(plotrix)
> plotCI(cope93[democrat==1],plotdata$fit[democrat==1],
    ui=plotdata$XBUB[democrat==1],li=plotdata$XBLB[democrat==1],pch=20,
    xlab="COPE Score",ylab="Predicted Pr(Pro-NAFTA Vote)")
> text(locator(1),label="Democrats")
> plotCI(cope93[democrat==0],plotdata$fit[democrat==0],
    ui=plotdata$XBUB[democrat==0],li=plotdata$XBLB[democrat==0],
    xlab="COPE Score",ylab="Predicted Pr(Pro-NAFTA Vote)")
> text(locator(1),label="Republicans")
```

In-Sample Predictions

Out-of-Sample Predictions

"Fake" data:

- > sim.data<-data.frame(pcthispc=mean(nafta\$pcthispc),democrat=rep(0:1,101),
 cope93=seq(from=0,to=100,length.out=101))</pre>
- > sim.data\$DemXCOPE<-sim.data\$democrat*sim.data\$cope93

Generate predictions:

- > OutHats<-predict(NAFTA.GLM.logit,se.fit=TRUE,newdata=sim.data)
- > OutHatsUB<-OutHats\$fit+(1.96*OutHats\$se.fit)
- > OutHatsLB<-OutHats\$fit-(1.96*OutHats\$se.fit)
- > OutHats<-cbind(as.data.frame(OutHats),OutHatsUB,OutHatsLB)
- > OutHats<-data.frame(lapply(OutHats,binomial(link="logit")\$linkinv))

Plotting...

```
> par(mfrow=c(1,2))
> both<-cbind(sim.data,OutHats)
> both<-both[order(both$cope93,both$democrat),]
> plot(both$cope93[democrat==1],both$fit[democrat==1],t="1",lwd=2,ylim=c(0,1),
 xlab="COPE Score", ylab="Predicted Pr(Pro-NAFTA Vote)")
> lines(both$cope93[democrat==1],both$OutHatsUB[democrat==1],lty=2)
> lines(both$cope93[democrat==1],both$OutHatsLB[democrat==1],lty=2)
> text(locator(1),label="Democrats")
> plot(both$cope93[democrat==0],both$fit[democrat==0],t="1",lwd=2,ylim=c(0,1),
 xlab="COPE Score",ylab="Predicted Pr(Pro-NAFTA Vote)")
> lines(both$cope93[democrat==0],both$OutHatsUB[democrat==0],lty=2)
> lines(both$cope93[democrat==0],both$OutHatsLB[democrat==0],lty=2)
> text(locator(1),label="Republicans")
```

Out-of-Sample Predictions

Odds Ratios

$$\ln \Omega(\mathbf{X}) = \ln \left[rac{rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})}}{1-rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})}}
ight] = \mathbf{X}oldsymbol{eta}$$

$$\frac{\partial \ln \Omega}{\partial \boldsymbol{X}} = \boldsymbol{\beta}$$

Odds Ratios

Means:

$$\frac{\Omega(X_k+1)}{\Omega(X_k)}=\exp(\hat{\beta}_k)$$

More generally,

$$rac{\Omega(X_k+\delta)}{\Omega(X_k)}=\exp(\hat{eta}_k\delta)$$

Percentage Change =
$$100[\exp(\hat{\beta}_k \delta) - 1]$$

Odds Ratios Implemented

```
> lreg.or <- function(model)
            coeffs <- coef(summarv(NAFTA.GLM.logit))</pre>
            lci \leftarrow exp(coeffs[.1] - 1.96 * coeffs[.2])
            or <- exp(coeffs[ .1])
            uci <- exp(coeffs[ ,1] + 1.96 * coeffs[ ,2])
            lreg.or <- cbind(lci, or, uci)</pre>
            lreg.or
> lreg.or(NAFTA.GLM.fit)
                lci
                          or
                                   nci
(Intercept) 3.4966 5.9993 1.029e+01
democrat
            46.1944 958.6783 1.990e+04
pcthispc 1.0054 1.0211 1.037e+00
соре93
         0.9499 0.9642 9.786e-01
DemXCOPE
           0.9024 0.9351 9.691e-01
```

Example text:

- · "A one percent increase in the percent Hispanic in a district is associated with a $\{[\exp(1\times 0.021)=1.0054-1]\times 100=\}\ 0.5$ percent *increase* in the odds of that member's support for NAFTA."
- · "A ten percent increase in the percent Hispanic in a district is associated with a $\{[\exp(10\times0.021)=1.234-1]\times100=\}$ 23.4 percent *increase* in the odds of that member's support for NAFTA."
- · "Among Republicans, one percent increase in a member's COPE score is associated with a $\{[\exp(1\times-0.036)=0.965-1]\times 100=\}$ 3.5 percent *decrease* in the odds of that member's support for NAFTA."

Goodness-of-Fit

- Proportional reduction in error (PRE)
- Pseudo- R^2 ,
- ROC curves.
- Cross-validation, etc.

Proportional Reduction in Error

PRE:

$$PRE = \frac{N_{MC} - N_{NC}}{N - N_{NC}}$$

- N_{NC} = number correct under the "null model,"
- N_{MC} = number correct under the estimated model,
- *N* = total number of observations.

PRE: Example

> table(NAFTA\$vote)

0 1 200 234

> table(NAFTA.GLM.logit\$fitted.values>0.5,nafta\$vote==1)

FALSE TRUE FALSE 148 49 TRUE 52 185

PRE =
$$\frac{N_{MC} - N_{NC}}{N - N_{NC}}$$

= $\frac{(148 + 185) - 234}{434 - 234}$
= $\frac{99}{200}$
= **0.495**

Example text:

"The model yielded a 49.5 percent proportional reduction in in-sample prediction error."