Therefore, $\tau_{v'-v,\lambda}(u) = u$, and $g = \tau_{v'-v,\lambda}$ does the job.

Case 2.
$$\varphi(v, v') = 0$$
.

First, check that (u, u + v) is a also hyperbolic basis. Furthermore,

$$\varphi(v, u + v) = \varphi(v, u) + \varphi(v, v) = \varphi(v, u) = -1 \neq 0.$$

Thus, there is a symplectic transvection τ_{v,λ_1} such that $\tau_{u,\lambda_1}(v) = u + v$ and $\tau_{u,\lambda_1}(u) = u$. We also have

$$\varphi(u+v,v') = \varphi(u,v') + \varphi(v,v') = \varphi(u,v') = 1 \neq 0,$$

so there is a symplectic transvection $\tau_{v'-u-v,\lambda_2}$ such that $\tau_{v'-u-v,\lambda_2}(u+v)=v'$. Since

$$\varphi(u, v' - u - v) = \varphi(u, v') - \varphi(u, u) - \varphi(u, v) = 1 - 0 - 1 = 0,$$

we have $\tau_{v'-u-v,\lambda_2}(u)=u$. Then, the composition $g=\tau_{v'-u-v,\lambda_2}\circ\tau_{u,\lambda_1}$ is such that g(u)=u and g(v)=v'.

We will use Proposition 29.37 in an inductive argument to prove that the symplectic transvections generate the symplectic group. First, make the following observation: If U is a nondegenerate subspace of E, so that

$$E = U \stackrel{\perp}{\oplus} U^{\perp},$$

and if τ is a transvection of H^{\perp} , then we can form the linear map $\mathrm{id}_U \stackrel{\perp}{\oplus} \tau$ whose restriction to U is the identity and whose restriction to U^{\perp} is τ , and $\mathrm{id}_U \stackrel{\perp}{\oplus} \tau$ is a transvection of E.

Theorem 29.38. The symplectic group $\mathbf{Sp}(2m, K)$ is generated by the symplectic transvections. For every transvection $f \in \mathbf{Sp}(2m, K)$, we have $\det(f) = 1$.

Proof. Let G be the subgroup of $\mathbf{Sp}(2m, K)$ generated by the transvections. We need to prove that $G = \mathbf{Sp}(2m, K)$. Let $(u_1, v_1, \ldots, u_m, v_m)$ be a symplectic basis of E, and let $f \in \mathbf{Sp}(2m, K)$ be any symplectic map. Then, f maps $(u_1, v_1, \ldots, u_m, v_m)$ to another symplectic basis $(u'_1, v'_1, \ldots, u'_m, v'_m)$. If we prove that there is some $g \in G$ such that $g(u_i) = u'_i$ and $g(v_i) = v'_i$ for $i = 1, \ldots, m$, then f = g and $G = \mathbf{Sp}(2m, K)$.

We use induction on i to prove that there is some $g_i \in G$ so that g_i maps $(u_1, v_1, \ldots, u_i, v_i)$ to $(u'_1, v'_1, \ldots, u'_i, v'_i)$.

The base case i = 1 follows from Proposition 29.37.

For the induction step, assume that we have some $g_i \in G$ mapping $(u_1, v_1, \ldots, u_i, v_i)$ to $(u'_1, v'_1, \ldots, u'_i, v'_i)$, and let $(u''_{i+1}, v''_{i+1}, \ldots, u''_m, v''_m)$ be the image of $(u_{i+1}, v_{i+1}, \ldots, u_m, v_m)$ by g_i . If U is the subspace spanned by $(u'_1, v'_1, \ldots, u'_m, v'_m)$, then each hyperbolic plane W'_{i+k} given by (u'_{i+k}, v'_{i+k}) and each hyperbolic plane W''_{i+k} given by (u''_{i+k}, v''_{i+k}) belongs to