## Onda estacionaria y propagantes

Los ejercicios con (\*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

## Parámetros de una onda propagante

- 1. Verifique si las siguientes expresiones cumplen la ecuación de las ondas unidimensional. Grafíquelas.

- a)  $\psi(x,t) = A e^{-\lambda(x-vt)^2}$  b)  $\psi(x,t) = \beta(x+vt)$  c)  $\psi(x,t) = A \operatorname{sen} \left[k(x-vt)\right]$  d)  $\psi(x,t) = B \operatorname{sen}^2\left(kx \omega t\right)$  e)  $\psi(x,t) = C \cos\left(kx\right) \operatorname{sen}\left(\omega t\right)$  f)  $\psi(x,t) = D \operatorname{e}^{i(kx-\omega t)}$
- 2. Una onda se propaga en una cuerda produciendo una oscilación transversal que responde a

$$\psi(x,t) = 0.1 \,\mathrm{m \, sen} \left(\pi \,\mathrm{m}^{-1} x - 4\pi \,\mathrm{s}^{-1} t\right).$$

Determine:

- a) amplitud,
- c) velocidad de propagación.

- b) frecuencia de vibración, y
- d)  $x = 2 \,\mathrm{m} \,\mathrm{y} \,t = 1 \,\mathrm{s}$ , desplazamiento, velocidad y la aceleración de la cuerda.
- 3. Una onda de  $\omega = 10 \,\mathrm{s}^{-1}$  se propaga en  $\hat{x}$  con  $k = 100 \,\mathrm{m}^{-1}$ . En  $x_1 = 1 \,\mathrm{km}$  y  $t_1 = 1 \,\mathrm{s}$  tiene por fase  $\phi = \frac{3\pi}{2}$ .
  - a) ¿Cuál es la fase en ese mismo punto para t=0?
  - b) Considerando que  $\phi(x,t) = kx \omega t + \phi_0$ , ¿cuánto vale  $\phi_0$ ?
  - c) ¿A qué velocidad se propaga la onda?
  - d) ¿En qué tiempo el frente de onda arriba a un  $x_2 = 2x_1$ ?
- 4. Una cuerda de densidad lineal  $\mu=0.005\,{\rm kg\over m}$  se tensa con una fuerza de  $0.25\,{\rm N}$ . Se observa que un punto arbitrário oscila de arriba a abajo siguiendo un movimiento armónico simple de período 0,5 s y amplitud 0,2 m. Encontrar:
  - a) La velocidad de la onda generada en la cuerda, la frecuencia y la longitud de onda.
  - b) La expresión matemática para el desplazamiento:  $\psi(x,t)$ .
  - c) La energía cinética media por unidad de longitud, de una partícula del medio.
  - d) La energía potencial media por unidad de longitud, de una partícula.

## Estacionaria como superposición de propagantes

5. Una cuerda de longitud  $L = 0.6 \,\mathrm{m}$ , fija en sus dos extremos, oscila en uno de sus modos normales. La velocidad de propagación de las ondas en dicha cuerda es  $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$ . En el momento que presenta su 8mm máxima amplitud pico a pico ésta es de 8 mm.



- a) Escribir  $\psi(x,t)$ , sabiendo que  $\psi(x,0)=0 \ \forall x, y \ \text{que } \dot{\psi}(L/2,0)>0$ .
- b) Hallar ondas propagantes  $\psi_{\text{derecha}}$  y  $\psi_{\text{izquierda}}$  tales que  $\psi(x,t)$  sea una combinación lineal de éstas.
- 6. Una cuerda de longitud  $L = 1 \,\mathrm{m}$ , con un extremo fijo y uno libre, oscila en uno de sus modos normales. La velocidad de propagación de las ondas en dicha cuerda es  $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$ . En t=0 presenta su máxima 8mmamplitud pico a pico de 8 mm, siendo  $\psi(L,0) > 0$ .



- a) Resolver, para esta situación, todo lo pedido en el problema anterior.
- b) Si ahora la cuerda está oscilando en un modo normal arbitrario n, con las mismas condiciones iniciales dadas arriba, repetir (a) (expresar en función de n).