DESCRIPTION OF THE WOBBLING MOTION THROUGH A BOSON METHOD

Robert Poenaru

DFT, IFIN-HH Doctoral School of Physics, UB

November 24, 2022

Scientific Coordinator: A. A. Raduta

Outline

Introduction

2 Triaxial Shapes

Nuclear Deformation

Nuclear Radius

The **shape** of the nucleus is most generally described in terms of the *nuclear radius*:

$$R(\theta, \varphi; t) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}(t) Y_{\lambda}^{\mu}(\theta, \varphi) \right)$$
 (1)

- The $\alpha_{\lambda\mu}$ are collective coordinates \Longrightarrow vibrations of the nucleus.
- Y^{μ}_{λ} are the spherical harmonics.

Nuclear shapes

Most nuclei are spherical or axially symmetric in the ground state.

Figure 1: Spherical: $\beta_2=0$; Prolate: $\beta_2>0$; Oblate: $\beta_2<0$

Quadrupole deformations

- Most relevant vibrational degrees of freedom in nuclei.
- Play a crucial role in the rotational spectra of nuclei.

Quadrupole radius

For pure quadrupole deformations:

$$R(\theta,\varphi) = R_0 \left(1 + \sum_{\mu} \alpha_{2\mu} Y_2^{\mu}(\theta,\varphi) \right) , \qquad (2)$$

Using A. Bohr's description, the coordinates $\alpha_{2\mu}$ can be reduced to only two deformation parameters: β_2 (eccentricity) and γ (triaxiality).

Nuclear triaxiality

- Besides the axially symmetric shapes (i.e., spherical, prolate, and oblate), nuclei can be **triaxial** => lack of symmetry along any of the principal axes.
- ullet The asymmetry is given by the non-zero value of γ .

Triaxial ellpsoid

Schematic example with a triaxial ellipsoid $(\gamma \neq 0)$ $\beta_2 > 0$.

Figure 2: Left: side-view. Right: top view.

Nuclear triaxiality

- Probing triaxiality experimentally is a real challenge (e.g., large and complex detector setups).
- Only two fingerprints known so far: **chiral motion** (Frauendorf, 1997) and **wobbling motion** (Bohr and Mottelson, 1975).

Wobbling Motion (WM)

- Collective effect \rightarrow unique to triaxial nuclei.
- \bullet Predicted almost 50 years ago, first experimental confirmation: in 2001 (Odegard et al.) for $^{163}{\rm Lu}.$
- In present, few wobblers are experimentally confirmed in the mass regions: $A \approx 130, 160, 180 \rightarrow \text{A}$ list of all known wobblers will be available in my PhD thesis (Chapter 3).

Wobbling motion

Triaxial nuclei

A triaxial nucleus can rotate about any of the three axes.

The rotational angular momentum (a.m.) is NOT aligned along any of the body-fixed axes \Longrightarrow precesses and wobbles around the axes with the largest MOI.

Figure 3: Schematic representation for the nuclear wobbling motion.

Wobbling Bands

Wobbling bands

Sequences of $\Delta I=2\hbar$ rotational bands that are built on different wobbling phonon excitations.

Figure 4: Rotational-band structures of the wobbling motion.

- \bullet For 163 Lu: $n_w=0,1,2,3$ wobbling phonon numbers, respectively.
- Nuclei have large quadrupole moments
- **Strong E2** character for the electro-magnetic transitions.

Even-Even vs. Even-Odd Nuclei

Theoretical frameworks for even-mass nuclei

- Harmonic Approximation(s) (Bohr and Mottelson, 1975)
- Triaxial-Rotor-Model (Davydov and Filippov, 1958)
- 3 Boson-approximations (Tanabe, 1971)

Theoretical frameworks for **odd-mass** nuclei

- Particle Rotor Model (Hamamoto, 2002)
- 2 Tilted-axis wobbling (Frauendorf and Meng, 1997)
- RPA, Mean-Field Theories, GCM+AMP...

Recent work on wobbling motion

- RPA for ¹⁶³Lu, Raduta et al (PRC, 2017)
- Tilted-axis wobbling for ¹³⁵Pr, R. Budaca (PRC, 2018)
- PRM for ¹⁶³Lu, R. Poenaru (IJMPE, 2021)

Theoretical formalism - Even-Odd Nuclei

Description of WM for an even-odd nucleus

- one single-particle (nucleon) *coupled* to an *even-even* triaxial core.
- the nucleon is moving in a quadrupole deformed mean-field generated by the core
- particle + rotor coupling drives the entire system to large (and stable) deformations ($\epsilon \sim 0.2-0.4$).

Hamiltonian:

$$\hat{H}_{\text{rot}} = \sum_{k=1}^{3} A_k \left(\hat{I}_k - \hat{j}_k \right)^2 .$$
 (3)

 $A_k \to \text{inertia parameters: } A_k = (2\mathcal{I}_k)^{-1}.$

Theoretical Formalism - Rotational Hamiltonian

Expanding \hat{I}_2 up to first order (particle is *rigidly coupled* to the core):

$$\hat{I}_2 = I \left(1 - \frac{1}{2} \frac{\hat{I}_1^2 + \hat{I}_3^2}{I^2} \right) , \tag{4}$$

can help re-write the initial Hamiltonian.

$$\hat{H}_{\text{rot}} = AH' + H_{sp} + \text{Spin-term}$$
 (5)

with:

$$\mathbf{H}' = \hat{I}_2^2 + u\hat{I}_3^2 + 2v_0\hat{I}_1 , \qquad (6)$$

$$H_{sp} = \sum_{k=1}^{3} A_k \hat{j}_k^2 , \qquad (7)$$

$$Spin-term = A_1 I^2 - A_2 j_2 I . ag{8}$$

Rotational Hamiltonian

 H^\prime looks like the Hamiltonian for a triaxial rigid rotator + constrained (cranked) to move along the 1-axis. The a.m. algebra is defined as:

$$\hat{I}_{\pm} = \hat{I}_2 \pm i\hat{I}_3 \; , \; \hat{I}_0 = \hat{I}_1 \; ,$$
 (9)

$$\left[\hat{I}_{-},\hat{I}_{+}\right] = 2\hat{I}_{0} , \left[\hat{I}_{\mp},\hat{I}_{0}\right] = \mp\hat{I}_{\mp} .$$
 (10)

With this angular momentum algebra, H' becomes:

$$H' = a\left(\hat{I}_{+}^{2} + \hat{I}_{-}^{2}\right) + b\left(\hat{I}_{+}\hat{I}_{-} + \hat{I}_{-}\hat{I}_{+}\right) + c\hat{I}_{0}.$$
 (11)