

PPPPP03

Comment conçevoir un Power Delivery Network?

Par: Pascal-Emmanuel Lachance

Comment protéger une alimentation?

Quels sont les types de régulateurs?

À quoi sert le découplage?

Comment filtrer une alimentation?

Comment conçevoir un arbre d'alimentation?

Comment filtrer une alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC

Comment filtrer une alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - o Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
 - Filtration Complète

Signal Integrity

- Signaux Clean
- Marges d'opérations respectées
 - Rélections
 - Crosstalk
 - Ground Bounce
 - Filtration de Power

Electromagnetic Interference

- Passer les tests EMC
- Ne pas influencer d'autres circuits
 - Émissions
 - Immunité au bruit
 - - Layout
 - Grounding
 - Shielding
 - Filtration de Power

- Le but d'un filtre est de fournir le chemin de plus faible impédance vers le ground aux signaux haute-fréquence.
- Le but d'un filtre est de contrôler la propagation du bruit sur l'alimentation.

Filtration de Power

- Tout commence avec le power
- Le PDN devrait constituer 25% à 50% de la difficulté d'un projet
- Plein de façon de filtrer
- Réduire le bruit sur l'alimentation
- Avoir une alimentation purement DC

Filtration de Power

- Tout commence avec le power
- Le PDN devrait constituer 25% à 50% de la difficulté d'un projet
- Plein de façon de filtrer
- Réduire le bruit sur l'alimentation
- Avoir une alimentation purement DC
- Jouer avec les impédances de mon alimentation
 - Découplage
 - Rajouter des inductances
 - Faire attention à son layout
- Ajouter des composantes actives
 - Régulateurs Linéaires

D'où provient le bruit

ሇ	IC	qui	toggle
---	----	-----	--------

Longues lignes de transmission

⇄ Crosstalk

('A') Antennes

Mauvais chemins de retour

⇄ Crosstalk

Ground Bounce

(A) Antennes

Comment filtrer une alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - o Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
 - Filtration Complète

Comment filtrer une alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
 - Filtration Complète

L'entrée d'un système d'alimentation

- Long fil qui provient d'une Power Supply
- C Inductance Parasite
- Pick-Up du bruit extérieur
- Signal potentiellement bruité
- → Demande de courant au travers d'une bobine.
- **1** Demande de courant non-constante

Découplage

- $X_I \propto -X_C$
- Rajouter de la capacitance pour compenser l'inductance
- Plus ton fil est long, plus tu veux de capacitance
- Le power devrait provenir des condensateurs
- Couper le chemin d'inductance

Découplage

- $X_I \propto -X_C$
- Rajouter de la capacitance pour compenser l'inductance
- Plus ton fil est long, plus tu veux de capacitance
- Le power devrait provenir des condensateurs
- Couper le chemin d'inductance

Filtrage avancé d'une entrée d'alimentation

Découplage permet de fournir un chemin de faible impédance aux signaux haute-vitesse

Bulk permet d'emmagasiner des charges et que le power provienne des condensateurs et non du fil

Filtrage avancé d'une entrée d'alimentation

- Découplage permet de fournir un chemin de faible impédance aux signaux haute-vitesse
- Bulk permet d'emmagasiner des charges et que le power provienne des condensateurs et non du fil
- Contrôler la propagation du bruit
 - Limiter le bruit au board
 - Limiter le bruit hors du board
 - Passer FMC

Filtrage avancé d'une entrée d'alimentation

Découplage permet de fournir un chemin de faible impédance aux signaux haute-vitesse

Bulk permet d'emmagasiner des charges et que le power provienne des condensateurs et non du fil

Contrôler la propagation du bruit

- → Limiter le bruit au board
- Limiter le bruit hors du board
- Passer EMC
- Principalement lorsque premier régulateur est un switching.

Rajouter des inductances

- Rajouter de l'inductance permet de bien contrôler où va le bruit haute-fréquence.
- $X_L = 2\pi f L$
- Si $X_L > X_C$, le bruit va passer par X_C .
- On vient de passer tout ce temps pour compenser l'inductance du fil d'alimentation

Rajouter des inductances

- Rajouter de l'inductance permet de bien contrôler où va le bruit haute-fréquence.
- $X_L = 2\pi f L$
- Si $X_L > X_C$, le bruit va passer par X_C .
- On vient de passer tout ce temps pour compenser l'inductance du fil d'alimentation
- Maintenant, on contrôle l'inductance!
 - Les condensateurs de découplage fournissent la puissance haute fréquence
 - Les condensateurs de bulk fournissent la puissance basse fréquence
 - Les condensateurs de bulk rechargent les condensateurs de découplage
 - L'alimentation fournit du power DC pour recharger les condensateurs de bulk

Rajouter des inductances

- Rajouter de l'inductance permet de bien contrôler où va le bruit haute-fréquence.
- $X_L = 2\pi f L$
- Si $X_L > X_C$, le bruit va passer par X_C .
- On vient de passer tout ce temps pour compenser l'inductance du fil d'alimentation
- Maintenant, on contrôle l'inductance!
 - Les condensateurs de découplage fournissent la puissance haute fréquence
 - Les condensateurs de bulk fournissent la puissance basse fréquence
 - Les condensateurs de bulk rechargent les condensateurs de découplage
 - L'alimentation fournit du power DC pour recharger les condensateurs de bulk
 - O La bobine fait du bruit électromagnétique

$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$\zeta = \frac{1}{2R_{LOAD}\sqrt{LC}}$$

Common-Mode Noise

- On veut contrôler les chemins de retour de courant
- Le retour de courant est aussi important que l'aller
 - → Tous les grounds ne sont pas égaux! ←

Common-Mode Noise

- On veut contrôler les chemins de retour de courant
- Le retour de courant est aussi important que l'aller
 - → Tous les grounds ne sont pas égaux! ←
- Common-mode Noise: Une partie du retour qui revient par ailleurs
- Donc pas autant de courant qui rentre que qui sort

- Essentiellement un transformateur
- Permet d'égaler le flux qui passe à un point
- Du courant est forcé par la bonne place si les courants ne sont pas égaux
- → Fournit un chemin de plus faible impédance vers là où on veut aller!

Common mode

Flux adds to impede common-mode current

Differential mode

Flux cancels to pass differential-mode current

Comment filtrer une alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - o Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
 - Filtration Complète

Pourquoi filtrer les régulateurs?

- Un régulateur linéaire n'a pas besoin d'être filtré
- Juste du bulk capacitance

Pourquoi filtrer les régulateurs?

- Un régulateur linéaire n'a pas besoin d'être filtré
- Juste du bulk capacitance
- Un régulateur switching doit avoir du bulk et du découplage
- Il faut éliminer le bruit à la fréquence de switching
- Mettre des condensateurs dont la fréquence de résonnance est celle du switching.

Inductor Current

Ripple due to Cout ESR

Ripple due to Cout capacitance

Ripple due to Cout ESL

Total Ripple due to Cout capacitance, ESR and ESL

- Chaque condensateur a sa fréquence de résonnance
- Choisir le bon condensateur de découplage selon fréquence de résonnance du condensateur
- Il faut offrir la plus faible impédance pour la fréquence visée

Comment filtrer une alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - o Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
 - Filtration Complète

Protéger le IC du bruit

- Un IC analogique est sensible au bruit
- Un IC digital est affecté aussi!
 - **&** Communication
 - **¹** Clock
 - Stabilité

Protéger les autres IC du bruit

- Un IC génère du bruit!
 - **&** Communication
 - **1** Clock
 - Mesures

Fréquences d'opération

données

 Chaque IC a plusieurs fréquences d'opération

Fréquence des clocks
Fréquences de communication
Fréquence d'acquisition de

- Chaque fréquence d'opération fait du bruit sur le power!
- Il faut offrir le chemin de plus faible impédance au GND pour ces signaux haute-fréquence

Fréquences d'opération

- Chaque IC a plusieurs fréquences d'opération
 - **1** Fréquence des clocks
 - Fréquences de communication
 - Fréquence d'acquisition de données

- Chaque fréquence d'opération fait du bruit sur le power!
- Il faut offrir le chemin de plus faible impédance au GND pour ces signaux haute-fréquence
- Matcher la fréquence de résonnance avec la fréquence d'opération

Fréquence d'opération - Découplage

- Chaque condensateur a une fréquence de résonnance où son impédance est la plus faible
- On veut offrir l'impédance la plus faible pour les fréquences d'opération
- Il faut donc un condensateur spécifique par fréquence d'opération
- Le conseil habituel de 100 nF fonctionne parce que ça tourne autours des fréquences habituelles, mais c'est overall un mauvais conseil!

Fréquence d'opération - Harmoniques

- Un onde carrée n'opère pas qu'à une seule fréquence
- Décomposer une onde dans toutes ses harmoniques
- Les harmoniques font partie du signal
- Il faut rajouter des condensateurs pour les premières harmoniques!

Harmoniques supérieures

- Les fréquences les plus élevées (> 1 GHz) sont couvertes
- Le PCB lui-même agit comme un condensateur
- Il faut un power plane et un ground plane adjacents!

$$C(pF) \approx \frac{0.0886 \ \varepsilon_F \ A}{h}$$

h = separation between planes (cm) A = area of common planes = I*w (cm²) e_r = PCB Permeability

0.8mm (0.031") thick PCB (FR-4) has:

0.5pF per cm²32.7pF per inch²

e_r = PCB material permeability (FR-4 ~ 4.5)

29 / 37

- Le plus proche possible des pins d'alimentation du IC
- Le condensateur pour la fréquence la plus élevée le plus proche
- Briser le chemin d'inductance
- On ne veut pas que les hautes fréquences se propagent
- Faire des polygones Chaque condensateur a un via
- Offrir la plus faible impédance vers le GND pour les hautes fréquences

- Ferrite Bead
- Propriétés inductives
- Laisse passer le DC, bloque les hautes fréquences
- Contrôler le chemin des signaux haute-fréquence
- Forcer à passer par les condensateurs

Ferrite Bead - Fonctionnement

- Agit comme une résistance sur sa plage d'opération
- Utilisé comme une inductance dans un circuit
- Diffère dans sa courbe d'impédance caractéristique

- Agit comme une résistance sur sa plage d'opération
- Utilisé comme une inductance dans un circuit
- Diffère dans sa courbe d'impédance caractéristique

- Ajouter les mêmes condensateurs de chaque côté de la ferrite
- Plus de filtration

Ferrite Bead - Désavantages

Limite de courant

- Résistance $\neq 0 \Omega$
 - DC bias
 - Chauffe
- Saturation de l'inductance

Ferrite Bead - Désavantages

Limite de courant

- Résistance $\neq 0 \Omega$
 - DC bias
 - Chauffe
- Saturation de l'inductance

Impédance

- Affecte les courbes d'impédance
- Peut introduire du ringing

Ferrite Bead - Désavantages

Limite de courant

- Résistance $\neq 0 \Omega$
 - DC bias
 - Chauffe
- Saturation de l'inductance

Impédance

- Affecte les courbes d'impédance
- Peut introduire du ringing

•
$$\zeta = \frac{1}{2R_{LOAD}\sqrt{LC}}$$

Ferrite Bead - Damping

Analog Devices - Ferrite Beads Demystified

Plusieurs pins de power

- Souvent plusieurs pins de power par IC
- Chaque pin a besoin de tous les condensateurs pour supporter toutes les fréquences
- Exception: Gros condensateurs ($\geq 1 \,\mu\text{F}$)
- Besoin d'une seule ferrite bead

Filtration complète - Circuit électrique

Filtration complète - Circuit électrique

Filtration complète - Circuit électrique

