Package 'pathfindR'

May 4, 2024

Type Package

Title Enrichment Analysis Utilizing Active Subnetworks

Version 2.4.1

Maintainer Ege Ulgen <egeulgen@gmail.com>

Description Enrichment analysis enables researchers to uncover mechanisms underlying a phenotype. However, conventional methods for enrichment analysis do not take into account protein-protein interaction information, resulting in incomplete conclusions, pathfindR is a tool for enrichment analysis utilizing active subnetworks. The main function identifies active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values. It then performs enrichment analyses on the identified subnetworks, identifying enriched terms (i.e. pathways or, more broadly, gene sets) that possibly underlie the phenotype of interest. pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results. The enrichment, clustering and other methods implemented in pathfindR are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2019. pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front. Genet. <doi:10.3389/fgene.2019.00858>.

License MIT + file LICENSE

```
URL https://egeulgen.github.io/pathfindR/,
    https://github.com/egeulgen/pathfindR
```

BugReports https://github.com/egeulgen/pathfindR/issues

Encoding UTF-8

SystemRequirements Java (>= 8.0)

biocViews

Imports DBI, AnnotationDbi, doParallel, foreach, rmarkdown, org.Hs.eg.db, ggplot2, ggraph, ggupset, fpc, ggkegg, grDevices, httr, igraph, R.utils, msigdbr, knitr

Depends R (>= 4.0), pathfindR.data (>= 2.0)

Suggests testthat (>= 2.3.2), covr, mockery

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation no

Author Ege Ulgen [cre, cph] (https://orcid.org/0000-0003-2090-3621), Ozan Ozisik [aut] (https://orcid.org/0000-0001-5980-8002)

Repository CRAN

Date/Publication 2024-05-04 15:30:05 UTC

R topics documented:

active_snw_enrichment_wrapper
active_snw_search
annotate_term_genes
check_java_version
cluster_enriched_terms
cluster_graph_vis
color_kegg_pathway
combined_results_graph
$combine_pathfindR_results \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
configure_output_dir
create_HTML_report
create_kappa_matrix
enrichment
enrichment_analyses
enrichment_chart
fetch_gene_set
fetch_java_version
filterActiveSnws
fuzzy_term_clustering
get_biogrid_pin
get_gene_sets_list
get_kegg_gsets
get_mgsigdb_gsets
get_pin_file
get_reactome_gsets
gset_list_from_gmt
hierarchical_term_clustering
hyperg_test
input_processing
input_testing
isColor
pathfindR
plot_scores
process_pin
return_pin_path

```
      run_pathfindR
      35

      score_terms
      38

      single_iter_wrapper
      40

      summarize_enrichment_results
      42

      term_gene_graph
      43

      term_gene_heatmap
      44

      UpSet_plot
      46

      visualize_active_subnetworks
      47

      visualize_KEGG_diagram
      49

      visualize_terms
      50

      visualize_term_interactions
      51

      Index
      53
```

active_snw_enrichment_wrapper

Wrapper for Active Subnetwork Search + Enrichment over Single/Multiple Iteration(s)

Description

Wrapper for Active Subnetwork Search + Enrichment over Single/Multiple Iteration(s)

```
active_snw_enrichment_wrapper(
  input_processed,
  pin_path,
  gset_list,
  enrichment_threshold,
  list_active_snw_genes,
  adj_method = "bonferroni",
  search_method = "GR",
  disable_parallel = FALSE,
  use_all_positives = FALSE,
  iterations = 10,
  n_processes = NULL,
  score_quan_thr = 0.8,
  sig\_gene\_thr = 0.02,
  saTemp0 = 1,
  saTemp1 = 0.01,
  saIter = 10000,
  gaPop = 400,
  gaIter = 200,
  gaThread = 5,
  gaCrossover = 1,
  gaMut = 0,
  grMaxDepth = 1,
```

```
grSearchDepth = 1,
grOverlap = 0.5,
grSubNum = 1000,
silent_option = TRUE
)
```

Arguments

input_processed

processed input data frame

pin_path path/to/PIN/file gset_list list for gene sets enrichment_threshold

_till esiloid

adjusted-p value threshold used when filtering enrichment results (default = 0.05)

list_active_snw_genes

boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)

adj_method correction method to be used for adjusting p-values. (default = 'bonferroni')

search_method algorithm to use when performing active subnetwork search. Options are greedy search (GR), simulated annealing (SA) or genetic algorithm (GA) for the search

(default = 'GR').

disable_parallel

boolean to indicate whether to disable parallel runs via foreach (default = FALSE)

use_all_positives

if TRUE: in GA, adds an individual with all positive nodes. In SA, initializes

candidate solution with all positive nodes. (default = FALSE)

iterations number of iterations for active subnetwork search and enrichment analyses (De-

fault = 10

n_processes optional argument for specifying the number of processes used by foreach. If

not specified, the function determines this automatically (Default == NULL.

Gets set to 1 for Genetic Algorithm)

score_quan_thr active subnetwork score quantile threshold. Must be between 0 and 1 or set to

-1 for not filtering. (Default = 0.8)

sig_gene_thr threshold for the minimum proportion of significant genes in the subnetwork

(Default = 0.02) If the number of genes to use as threshold is calculated to be <

2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2

saTemp0 Initial temperature for SA (default = 1.0)
saTemp1 Final temperature for SA (default = 0.01)
saIter Iteration number for SA (default = 10000)
gaPop Population size for GA (default = 400)
gaIter Iteration number for GA (default = 200)

active_snw_search 5

gaThread Number of threads to be used in GA (default = 5)

gaCrossover Applies crossover with the given probability in GA (default = 1, i.e. always

perform crossover)

gaMut For GA, applies mutation with given mutation rate (default = 0, i.e. mutation

off)

grMaxDepth Sets max depth in greedy search, 0 for no limit (default = 1)

grSearchDepth Search depth in greedy search (default = 1)

grOverlap Overlap threshold for results of greedy search (default = 0.5)

grSubNum Number of subnetworks to be presented in the results (default = 1000)

silent_option boolean value indicating whether to print the messages to the console (FALSE)

or not (TRUE, this will print to a temp. file) during active subnetwork search (default = TRUE). This option was added because during parallel runs, the con-

sole messages get disorderly printed.

Value

Data frame of combined pathfindR enrichment results

active_snw_search

Perform Active Subnetwork Search

Description

Perform Active Subnetwork Search

```
active_snw_search(
  input_for_search,
  pin_name_path = "Biogrid",
  snws_file = "active_snws",
  dir_for_parallel_run = NULL,
  score_quan_thr = 0.8,
  sig_gene_thr = 0.02,
  search_method = "GR",
  seedForRandom = 1234,
  silent_option = TRUE,
  use_all_positives = FALSE,
  geneInitProbs = 0.1,
  saTemp0 = 1,
  saTemp1 = 0.01,
  saIter = 10000.
  gaPop = 400,
  gaIter = 10000,
  gaThread = 5,
```

6 active_snw_search

```
gaCrossover = 1,
  gaMut = 0,
  grMaxDepth = 1,
 grSearchDepth = 1,
 grOverlap = 0.5,
 grSubNum = 1000
)
```

Arguments

input_for_search

input the input data that active subnetwork search uses. The input must be a data frame containing at least these 2 columns:

GENE Gene Symbol

P VALUE p value obtained through a test, e.g. differential expression/methylation

Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one pin_name_path of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING').

If path/to/PIN.sif, the file must comply with the PIN specifications. (Default =

'Biogrid')

snws_file name for active subnetwork search output data without file extension (default

= 'active_snws')

dir_for_parallel_run

(previously created) directory for a parallel run iteration. Used in the wrapper function (see ?run_pathfindR) (Default = NULL)

score_quan_thr active subnetwork score quantile threshold. Must be between 0 and 1 or set to

-1 for not filtering. (Default = 0.8)

sig_gene_thr threshold for the minimum proportion of significant genes in the subnetwork

(Default = 0.02) If the number of genes to use as threshold is calculated to be <

2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2

search method algorithm to use when performing active subnetwork search. Options are greedy

search (GR), simulated annealing (SA) or genetic algorithm (GA) for the search

(default = 'GR').

seedForRandom seed for reproducibility while running the java modules (applies for GR and SA)

silent_option boolean value indicating whether to print the messages to the console (FALSE)

> or not (TRUE, this will print to a temp. file) during active subnetwork search (default = TRUE). This option was added because during parallel runs, the con-

sole messages get disorderly printed.

use_all_positives

if TRUE: in GA, adds an individual with all positive nodes. In SA, initializes

candidate solution with all positive nodes. (default = FALSE)

geneInitProbs For SA and GA, probability of adding a gene in initial solution (default = 0.1)

saTemp0 Initial temperature for SA (default = 1.0)

saTemp1 Final temperature for SA (default = 0.01)

saIter Iteration number for SA (default = 10000) annotate_term_genes 7

gaPop	Population size for GA (default = 400)
gaIter	Iteration number for GA (default = 200)
gaThread	Number of threads to be used in GA (default = 5)
gaCrossover	Applies crossover with the given probability in GA (default = 1, i.e. always perform crossover)
gaMut	For GA, applies mutation with given mutation rate (default = 0 , i.e. mutation off)
grMaxDepth	Sets max depth in greedy search, 0 for no limit (default = 1)
grSearchDepth	Search depth in greedy search (default = 1)
grOverlap	Overlap threshold for results of greedy search (default = 0.5)
grSubNum	Number of subnetworks to be presented in the results (default = 1000)

Value

A list of genes in every identified active subnetwork that has a score greater than the 'score_quan_thr'th quantile and that has at least 'sig_gene_thr' affected genes.

Examples

```
processed_df <- example_pathfindR_input[1:15, -2]
colnames(processed_df) <- c('GENE', 'P_VALUE')
GR_snws <- active_snw_search(
  input_for_search = processed_df,
  pin_name_path = 'KEGG',
  search_method = 'GR',
  score_quan_thr = 0.8
)
# clean-up
unlink('active_snw_search', recursive = TRUE)</pre>
```

annotate_term_genes

Annotate the Affected Genes in the Provided Enriched Terms

Description

Function to annotate the involved affected (input) genes in each term.

```
annotate_term_genes(
  result_df,
  input_processed,
  genes_by_term = pathfindR.data::kegg_genes
)
```

8 check_java_version

Arguments

```
result_df data frame of enrichment results. The only must-have column is 'ID'.

input_processed input data processed via input_processing

genes_by_term List that contains genes for each gene set. Names of this list are gene set IDs (default = kegg_genes)
```

Value

The original data frame with two additional columns:

Up_regulated the up-regulated genes in the input involved in the given term's gene set, commaseparated

Down_regulated the down-regulated genes in the input involved in the given term's gene set, comma-separated

Examples

```
example_gene_data <- example_pathfindR_input
colnames(example_gene_data) <- c('GENE', 'CHANGE', 'P_VALUE')
annotated_result <- annotate_term_genes(
  result_df = example_pathfindR_output,
  input_processed = example_gene_data
)</pre>
```

check_java_version

Check Java Version

Description

Check Java Version

Usage

```
check_java_version(version = NULL)
```

Arguments

version

character vector containing the output of 'java -version'. If NULL, result of fetch_java_version is used (default = NULL)

Details

this function was adapted from the CRAN package sparklyr

Value

only parses and checks whether the java version is ≥ 1.8

cluster_enriched_terms

cluster_enriched_terms

Cluster Enriched Terms

Description

Cluster Enriched Terms

Usage

```
cluster_enriched_terms(
  enrichment_res,
  method = "hierarchical",
  plot_clusters_graph = TRUE,
  use_description = FALSE,
  use_active_snw_genes = FALSE,
  ...
)
```

tails.

Arguments

enrichment_res data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes' must also be provided. Either 'hierarchical' or 'fuzzy'. Details of clustering are provided in the corremethod sponding functions hierarchical_term_clustering, and fuzzy_term_clustering plot_clusters_graph boolean value indicate whether or not to plot the graph diagram of clustering results (default = TRUE) use_description Boolean argument to indicate whether term descriptions (in the 'Term Description' column) should be used. (default = FALSE) use_active_snw_genes boolean to indicate whether or not to use non-input active subnetwork genes in the calculation of kappa statistics (default = FALSE, i.e. only use affected additional arguments for hierarchical_term_clustering, fuzzy_term_clustering

and cluster_graph_vis. See documentation of these functions for more de-

Value

a data frame of clustering results. For 'hierarchical', the cluster assignments (Cluster) and whether the term is representative of its cluster (Status) is added as columns. For 'fuzzy', terms that are in multiple clusters are provided for each cluster. The cluster assignments (Cluster) and whether the term is representative of its cluster (Status) is added as columns.

10 cluster_graph_vis

See Also

See hierarchical_term_clustering for hierarchical clustering of enriched terms. See fuzzy_term_clustering for fuzzy clustering of enriched terms. See cluster_graph_vis for graph visualization of clustering.

Examples

```
example_clustered <- cluster_enriched_terms(
  example_pathfindR_output[1:3, ],
  plot_clusters_graph = FALSE
)
example_clustered <- cluster_enriched_terms(
  example_pathfindR_output[1:3, ],
  method = 'fuzzy', plot_clusters_graph = FALSE
)</pre>
```

cluster_graph_vis

Graph Visualization of Clustered Enriched Terms

Description

Graph Visualization of Clustered Enriched Terms

Usage

```
cluster_graph_vis(
  clu_obj,
  kappa_mat,
  enrichment_res,
  kappa_threshold = 0.35,
  use_description = FALSE,
  vertex.label.cex = 0.7,
  vertex.size.scaling = 2.5
)
```

Arguments

clu_obj clustering result (either a matrix obtained via hierarchical_term_clustering

or fuzzy_term_clustering 'fuzzy_term_clustering' or a vector obtained via

'hierarchical_term_clustering')

kappa_mat matrix of kappa statistics (output of create_kappa_matrix)

enrichment_res data frame of pathfindR enrichment results. Must-have columns are 'Term_Description'

(if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes'

must also be provided.

kappa_threshold

threshold for kappa statistics, defining strong relation (default = 0.35)

color_kegg_pathway 11

```
use_description
```

Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

vertex.label.cex

font size for vertex labels; it is interpreted as a multiplication factor of some device-dependent base font size (default = 0.7)

vertex.size.scaling

scaling factor for the node size (default = 2.5)

Value

Plots a graph diagram of clustering results. Each node is an enriched term from 'enrichment_res'. Size of node corresponds to -log(lowest_p). Thickness of the edges between nodes correspond to the kappa statistic between the two terms. Color of each node corresponds to distinct clusters. For fuzzy clustering, if a term is in multiple clusters, multiple colors are utilized.

Examples

```
## Not run:
cluster_graph_vis(clu_obj, kappa_mat, enrichment_res)
## End(Not run)
```

color_kegg_pathway

Color hsa KEGG pathway

Description

Color hsa KEGG pathway

Usage

```
color_kegg_pathway(
  pw_id,
  change_vec,
  scale_vals = TRUE,
  node_cols = NULL,
  legend.position = "top"
)
```

```
pw_id hsa KEGG pathway id (e.g. hsa05012)

change_vec vector of change values, names should be hsa KEGG gene ids

scale_vals should change values be scaled? (default = TRUE)
```

node_cols

low, middle and high color values for coloring the pathway nodes (default = NULL). If node_cols=NULL, the low, middle and high color are set as 'green', 'gray' and 'red'. If all change values are 1e6 (in case no changes are supplied, this dummy value is assigned by input_processing), only one color ('#F38F18' if NULL) is used.

legend.position

the default position of legends ("none", "left", "right", "bottom", "top", "inside")

Value

a ggplot object containing the colored KEGG pathway diagram visualization

Examples

```
## Not run:
pw_id <- 'hsa00010'
change_vec <- c(-2, 4, 6)
names(change_vec) <- c('hsa:2821', 'hsa:226', 'hsa:229')
result <- pathfindR:::color_kegg_pathway(pw_id, change_vec)
## End(Not run)</pre>
```

combined_results_graph

Combined Results Graph

Description

Combined Results Graph

Usage

```
combined_results_graph(
  combined_df,
  selected_terms = "common",
  use_description = FALSE,
  layout = "stress",
  node_size = "num_genes"
)
```

```
combined_df Data frame of combined pathfindR enrichment results

selected_terms the vector of selected terms for creating the graph (either IDs or term descriptions). If set to 'common', all of the common terms are used. (default = 'common')
```

use_description

Boolean argument to indicate whether term descriptions (in the 'Term_Description'

column) should be used. (default = FALSE)

layout The type of layout to create (see ggraph for details. Default = 'stress')

node_size Argument to indicate whether to use number of significant genes ('num_genes')

or the -log10(lowest p value) ('p_val') for adjusting the node sizes (default =

'num_genes')

Value

a ggraph object containing the combined term-gene graph. Each node corresponds to an enriched term (orange if common, different shades of blue otherwise), an up-regulated gene (green), a down-regulated gene (red) or a conflicting (i.e. up in one analysis, down in the other or vice versa) gene (gray). An edge between a term and a gene indicates that the given term involves the gene. Size of a term node is proportional to either the number of genes (if node_size = 'num_genes') or the -log10(lowest p value) (if node_size = 'p_val').

Examples

```
combined_results <- combine_pathfindR_results(
    example_pathfindR_output,
    example_comparison_output,
    plot_common = FALSE
)
g <- combined_results_graph(combined_results, selected_terms = sample(combined_results$ID, 3))</pre>
```

```
combine_pathfindR_results
```

Combine 2 pathfindR Results

Description

Combine 2 pathfindR Results

Usage

```
combine_pathfindR_results(result_A, result_B, plot_common = TRUE)
```

Arguments

result_A data frame of first pathfindR enrichment results
result_B data frame of second pathfindR enrichment results

plot_common boolean to indicate whether or not to plot the term-gene graph of the common

terms (default=TRUE)

Value

14

Data frame of combined pathfindR enrichment results. Columns are:

ID ID of the enriched term

Term_Description Description of the enriched term

Fold_Enrichment_A Fold enrichment value for the enriched term (Calculated using ONLY the input genes)

occurrence_A the number of iterations that the given term was found to enriched over all iterations

lowest_p_A the lowest adjusted-p value of the given term over all iterations

highest_p_A the highest adjusted-p value of the given term over all iterations

Up_regulated_A the up-regulated genes in the input involved in the given term's gene set, commaseparated

Down_regulated_A the down-regulated genes in the input involved in the given term's gene set, comma-separated

Fold_Enrichment_B Fold enrichment value for the enriched term (Calculated using ONLY the input genes)

occurrence_B the number of iterations that the given term was found to enriched over all iterations

lowest_p_B the lowest adjusted-p value of the given term over all iterations

highest p B the highest adjusted-p value of the given term over all iterations

Up_regulated_B the up-regulated genes in the input involved in the given term's gene set, commaseparated

Down_regulated_B the down-regulated genes in the input involved in the given term's gene set, comma-separated

combined_p the combined p value (via Fisher's method)

status whether the term is found in both analyses ('common'), found only in the first ('A only') or found only in the second ('B only)

By default, the function also displays the term-gene graph of the common terms

Examples

combined_results <- combine_pathfindR_results(example_pathfindR_output, example_comparison_output)</pre>

Description

Configure Output Directory Name

```
configure_output_dir(output_dir = NULL)
```

create_HTML_report 15

Arguments

output_dir

the directory to be created where the output and intermediate files are saved (default = NULL, a temporary directory is used)

Value

/path/to/output/dir

create_HTML_report

Create HTML Report of pathfindR Results

Description

Create HTML Report of pathfindR Results

Usage

```
create_HTML_report(input, input_processed, final_res, dir_for_report)
```

Arguments

input

the input data that pathfindR uses. The input must be a data frame with three columns:

- 1. Gene Symbol (Gene Symbol)
- 2. Change value, e.g. log(fold change) (OPTIONAL)
- 3. p value, e.g. adjusted p value associated with differential expression

input_processed

processed input data frame

final_res final pathfindR result data frame dir_for_report directory to render the report in

create_kappa_matrix

Create Kappa Statistics Matrix

Description

Create Kappa Statistics Matrix

```
create_kappa_matrix(
  enrichment_res,
  use_description = FALSE,
  use_active_snw_genes = FALSE
)
```

16 enrichment

Arguments

```
enrichment_res data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes' must also be provided.

use_description

Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

use_active_snw_genes

boolean to indicate whether or not to use non-input active subnetwork genes in the calculation of kappa statistics (default = FALSE, i.e. only use affected genes)
```

Value

a matrix of kappa statistics between each term in the enrichment results.

Examples

```
sub_df <- example_pathfindR_output[1:3, ]
create_kappa_matrix(sub_df)</pre>
```

enrichment

Perform Enrichment Analysis for a Single Gene Set

Description

Perform Enrichment Analysis for a Single Gene Set

Usage

```
enrichment(
  input_genes,
  genes_by_term = pathfindR.data::kegg_genes,
  term_descriptions = pathfindR.data::kegg_descriptions,
  adj_method = "bonferroni",
  enrichment_threshold = 0.05,
  sig_genes_vec,
  background_genes
)
```

Arguments

input_genes The set of gene symbols to be used for enrichment analysis. In the scope of this package, these are genes that were identified for an active subnetwork

genes_by_term List that contains genes for each gene set. Names of this list are gene set IDs

 $(default = kegg_genes)$

enrichment_analyses 17

term_descriptions

Vector that contains term descriptions for the gene sets. Names of this vector are gene set IDs (default = kegg_descriptions)

adj_method correction method to be used for adjusting p-values. (default = 'bonferroni') enrichment_threshold

adjusted-p value threshold used when filtering enrichment results (default = 0.05)

sig_genes_vec

vector of significant gene symbols. In the scope of this package, these are the input genes that were used for active subnetwork search

background_genes

vector of background genes. In the scope of this package, the background genes are taken as all genes in the PIN (see enrichment_analyses)

Value

A data frame that contains enrichment results

See Also

p.adjust for adjustment of p values. See run_pathfindR for the wrapper function of the pathfindR workflow. hyperg_test for the details on hypergeometric distribution-based hypothesis testing.

Examples

```
enrichment(
  input_genes = c('PER1', 'PER2', 'CRY1', 'CREB1'),
  sig_genes_vec = 'PER1',
  background_genes = unlist(pathfindR.data::kegg_genes)
)
```

enrichment_analyses

Perform Enrichment Analyses on the Input Subnetworks

Description

Perform Enrichment Analyses on the Input Subnetworks

```
enrichment_analyses(
    snws,
    sig_genes_vec,
    pin_name_path = "Biogrid",
    genes_by_term = pathfindR.data::kegg_genes,
    term_descriptions = pathfindR.data::kegg_descriptions,
    adj_method = "bonferroni",
    enrichment_threshold = 0.05,
    list_active_snw_genes = FALSE
)
```

enrichment_analyses

Arguments

a list of subnetwork genes (i.e., vectors of genes for each subnetwork) snws vector of significant gene symbols. In the scope of this package, these are the sig_genes_vec input genes that were used for active subnetwork search pin_name_path Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid') genes_by_term List that contains genes for each gene set. Names of this list are gene set IDs $(default = kegg_genes)$ term_descriptions Vector that contains term descriptions for the gene sets. Names of this vector are gene set IDs (default = kegg descriptions) adj_method correction method to be used for adjusting p-values. (default = 'bonferroni') enrichment_threshold adjusted-p value threshold used when filtering enrichment results (default = 0.05) list_active_snw_genes

boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)

Value

a dataframe of combined enrichment results. Columns are:

ID ID of the enriched term

Term_Description Description of the enriched term

Fold_Enrichment Fold enrichment value for the enriched term

p_value p value of enrichment

adj_p adjusted p value of enrichment

support the support (proportion of active subnetworks leading to enrichment over all subnetworks) for the gene set

non_Signif_Snw_Genes (OPTIONAL) the non-significant active subnetwork genes, comma-separated

See Also

enrichment for the enrichment analysis for a single gene set

Examples

```
enr_res <- enrichment_analyses(
   snws = example_active_snws[1:2],
   sig_genes_vec = example_pathfindR_input$Gene.symbol[1:25],
   pin_name_path = 'KEGG'
)</pre>
```

19 enrichment_chart

enrichment_chart

Create Bubble Chart of Enrichment Results

Description

This function is used to create a ggplot2 bubble chart displaying the enrichment results.

Usage

```
enrichment_chart(
  result_df,
  top\_terms = 10,
  plot_by_cluster = FALSE,
  num\_bubbles = 4,
  even_breaks = TRUE
)
```

Arguments

result_df

a data frame that must contain the following columns:

Term_Description Description of the enriched term

Fold_Enrichment Fold enrichment value for the enriched term

lowest_p the lowest adjusted-p value of the given term over all iterations

Up_regulated the up-regulated genes in the input involved in the given term's gene set, comma-separated

Down_regulated the down-regulated genes in the input involved in the given term's gene set, comma-separated

Cluster(OPTIONAL) the cluster to which the enriched term is assigned

top_terms

number of top terms (according to the 'lowest_p' column) to plot (default = 10). If plot_by_cluster = TRUE, selects the top top_terms terms per each cluster. Set top_terms = NULL to plot for all terms. If the total number of terms is less than top_terms, all terms are plotted.

plot_by_cluster

boolean value indicating whether or not to group the enriched terms by cluster (works if result_df contains a 'Cluster' column).

num_bubbles

number of sizes displayed in the legend # genes (Default = 4)

even_breaks

whether or not to set even breaks for the number of sizes displayed in the legend # genes. If TRUE (default), sets equal breaks and the number of displayed bubbles may be different than the number set by num_bubbles. If the exact number set by num_bubbles is required, set this argument to FALSE

20 fetch_gene_set

Value

a ggplot2 object containing the bubble chart. The x-axis corresponds to fold enrichment values while the y-axis indicates the enriched terms. Size of the bubble indicates the number of significant genes in the given enriched term. Color indicates the -log10(lowest-p) value. The closer the color is to red, the more significant the enrichment is. Optionally, if 'Cluster' is a column of result_df and plot_by_cluster == TRUE, the enriched terms are grouped by clusters.

Examples

```
g <- enrichment_chart(example_pathfindR_output)</pre>
```

fetch_gene_set

Fetch Gene Set Objects

Description

Function for obtaining the gene sets per term and the term descriptions to be used for enrichment analysis.

Usage

```
fetch_gene_set(
  gene_sets = "KEGG",
  min_gset_size = 10,
  max_gset_size = 300,
  custom_genes = NULL,
  custom_descriptions = NULL)
```

Arguments

gene_sets

Name of the gene sets to be used for enrichment analysis. Available gene sets are 'KEGG', 'Reactome', 'BioCarta', 'GO-All', 'GO-BP', 'GO-CC', 'GO-MF', 'cell_markers', 'mmu_KEGG' or 'Custom'. If 'Custom', the arguments custom_genes and custom_descriptions must be specified. (Default = 'KEGG')

min_gset_size

minimum number of genes a term must contain (default = 10)

max_gset_size

maximum number of genes a term must contain (default = 300)

custom_genes

a list containing the genes involved in each custom term. Each element is a vector of gene symbols located in the given custom term. Names should correspond

to the IDs of the custom terms.

custom_descriptions

A vector containing the descriptions for each custom term. Names of the vector should correspond to the IDs of the custom terms.

fetch_java_version 21

Value

```
a list containing 2 elements

genes_by_term list of vectors of genes contained in each term
term_descriptions vector of descriptions per each term
```

Examples

```
KEGG_gset <- fetch_gene_set()
GO_MF_gset <- fetch_gene_set('GO-MF', min_gset_size = 20, max_gset_size = 100)</pre>
```

fetch_java_version

Obtain Java Version

Description

Obtain Java Version

Usage

```
fetch_java_version()
```

Details

this function was adapted from the CRAN package sparklyr

Value

character vector containing the output of 'java -version'

filterActiveSnws

Parse Active Subnetwork Search Output File and Filter the Subnetworks

Description

Parse Active Subnetwork Search Output File and Filter the Subnetworks

```
filterActiveSnws(
  active_snw_path,
  sig_genes_vec,
  score_quan_thr = 0.8,
  sig_gene_thr = 0.02
)
```

Arguments

```
path to the output of an Active Subnetwork Search

sig_genes_vec vector of significant gene symbols. In the scope of this package, these are the input genes that were used for active subnetwork search

score_quan_thr active subnetwork score quantile threshold. Must be between 0 and 1 or set to -1 for not filtering. (Default = 0.8)

sig_gene_thr threshold for the minimum proportion of significant genes in the subnetwork (Default = 0.02) If the number of genes to use as threshold is calculated to be < 2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2
```

Value

A list containing subnetworks: a list of of genes in every active subnetwork that has a score greater than the score_quan_thrth quantile and that contains at least sig_gene_thr of significant genes and scores the score of each filtered active subnetwork

See Also

See run_pathfindR for the wrapper function of the pathfindR enrichment workflow

Examples

```
path2snw_list <- system.file(
  'extdata/resultActiveSubnetworkSearch.txt',
  package = 'pathfindR'
)
filtered <- filterActiveSnws(
  active_snw_path = path2snw_list,
  sig_genes_vec = example_pathfindR_input$Gene.symbol
)</pre>
```

fuzzy_term_clustering Heuristic Fuzzy Multiple-linkage Partitioning of Enriched Terms

Description

Heuristic Fuzzy Multiple-linkage Partitioning of Enriched Terms

```
fuzzy_term_clustering(
  kappa_mat,
  enrichment_res,
  kappa_threshold = 0.35,
  use_description = FALSE
)
```

get_biogrid_pin 23

Arguments

Details

The fuzzy clustering algorithm was implemented based on: Huang DW, Sherman BT, Tan Q, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.

Value

a boolean matrix of cluster assignments. Each row corresponds to an enriched term, each column corresponds to a cluster.

Examples

```
## Not run:
fuzzy_term_clustering(kappa_mat, enrichment_res)
fuzzy_term_clustering(kappa_mat, enrichment_res, kappa_threshold = 0.45)
## End(Not run)
```

column) should be used. (default = FALSE)

get_biogrid_pin

Retrieve the Requested Release of Organism-specific BioGRID PIN

Description

Retrieve the Requested Release of Organism-specific BioGRID PIN

```
get_biogrid_pin(org = "Homo_sapiens", path2pin, release = "latest")
```

24 get_gene_sets_list

Arguments

org	organism name. BioGRID naming requires underscores for spaces so 'Homo sapiens' becomes 'Homo_sapiens', 'Mus musculus' becomes 'Mus_musculus' etc. See https://wiki.thebiogrid.org/doku.php/statistics for a full list of available organisms (default = 'Homo_sapiens')
path2pin	the path of the file to save the PIN data. By default, the PIN data is saved in a temporary file
release	the requested BioGRID release (default = 'latest')

Value

the path of the file in which the PIN data was saved. If path2pin was not supplied by the user, the PIN data is saved in a temporary file

```
get_gene_sets_list Retrieve Organism-specific Gene Sets List
```

Description

Retrieve Organism-specific Gene Sets List

Usage

```
get_gene_sets_list(
  source = "KEGG",
  org_code = "hsa",
  species = "Homo sapiens",
  collection,
  subcollection = NULL
)
```

org_code (Used for 'KEGG' only) KEGG organism code for the selected organism. For a full list of all available organisms, see https://www.genome.jp/kegg/catalog/org_list.html species (Used for 'MSigDB' only) species name, such as Homo sapiens, Mus musculus, etc. See msigdbr_show_species for all the species available in the msigdbr package (default = 'Homo sapiens') collection (Used for 'MSigDB' only) collection. i.e., H, C1, C2, C3, C4, C5, C6, C7. subcollection (Used for 'MSigDB' only) sub-collection, such as CGP, MIR, BP, etc. (default = NULL, i.e. list all gene sets in collection)	source	As of this version, either 'KEGG', 'Reactome' or 'MSigDB' (default = 'KEGG')
etc. See msigdbr_show_species for all the species available in the msigdbr package (default = 'Homo sapiens') collection (Used for 'MSigDB' only) collection. i.e., H, C1, C2, C3, C4, C5, C6, C7. subcollection (Used for 'MSigDB' only) sub-collection, such as CGP, MIR, BP, etc. (default	org_code	full list of all available organisms, see https://www.genome.jp/kegg/catalog/
subcollection (Used for 'MSigDB' only) sub-collection, such as CGP, MIR, BP, etc. (default	species	etc. See msigdbr_show_species for all the species available in the msigdbr
• • • • • • • • • • • • • • • • • • • •	collection	(Used for 'MSigDB' only) collection. i.e., H, C1, C2, C3, C4, C5, C6, C7.
	subcollection	

get_kegg_gsets 25

Value

A list containing 2 elements:

- gene_sets A list containing the genes involved in each gene set
- descriptions A named vector containing the descriptions for each gene set

. For 'KEGG' and 'MSigDB', it is possible to choose a specific organism. For a full list of all available KEGG organisms, see https://www.genome.jp/kegg/catalog/org_list.html. See msigdbr_show_species for all the species available in the msigdbr package used for obtaining 'MSigDB' gene sets. For Reactome, there is only one collection of pathway gene sets.

get_kegg_gsets

Retrieve Organism-specific KEGG Pathway Gene Sets

Description

Retrieve Organism-specific KEGG Pathway Gene Sets

Usage

```
get_kegg_gsets(org_code = "hsa")
```

Arguments

org_code

KEGG organism code for the selected organism. For a full list of all available organisms, see https://www.genome.jp/kegg/catalog/org_list.html

Value

list containing 2 elements:

- gene_sets A list containing KEGG IDs for the genes involved in each KEGG pathway
- descriptions A named vector containing the descriptions for each KEGG pathway

get_mgsigdb_gsets

Retrieve Organism-specific MSigDB Gene Sets

Description

Retrieve Organism-specific MSigDB Gene Sets

```
get_mgsigdb_gsets(species = "Homo sapiens", collection, subcollection = NULL)
```

26 get_pin_file

Arguments

species species name, such as Homo sapiens, Mus musculus, etc. See msigdbr_show_species for all the species available in the msigdbr package

collection collection. i.e., H, C1, C2, C3, C4, C5, C6, C7.

subcollection sub-collection, such as CGP, BP, etc. (default = NULL, i.e. list all gene sets in

collection)

Details

this function utilizes the function msigdbr from the msigdbr package to retrieve the 'Molecular Signatures Database' (MSigDB) gene sets (Subramanian et al. 2005 <doi:10.1073/pnas.0506580102>, Liberzon et al. 2015 <doi:10.1016/j.cels.2015.12.004>). Available collections are: H: hallmark gene sets, C1: positional gene sets, C2: curated gene sets, C3: motif gene sets, C4: computational gene sets, C5: GO gene sets, C6: oncogenic signatures and C7: immunologic signatures

Value

Retrieves the MSigDB gene sets and returns a list containing 2 elements:

- gene_sets A list containing the genes involved in each of the selected MSigDB gene sets
- descriptions A named vector containing the descriptions for each selected MSigDB gene set

<pre>get_pin_file</pre>	Retrieve Organism-specific PIN data
-------------------------	-------------------------------------

Description

Retrieve Organism-specific PIN data

Usage

```
get_pin_file(source = "BioGRID", org = "Homo_sapiens", path2pin, ...)
```

source	As of this version, this function is implemented to get data from 'BioGRID' only. This argument (and this wrapper function) was implemented for future utility
org	organism name. BioGRID naming requires underscores for spaces so 'Homo sapiens' becomes 'Homo_sapiens', 'Mus musculus' becomes 'Mus_musculus' etc. See https://wiki.thebiogrid.org/doku.php/statistics for a full list of available organisms (default = 'Homo_sapiens')
path2pin	the path of the file to save the PIN data. By default, the PIN data is saved in a temporary file
	additional arguments for get_biogrid_pin

get_reactome_gsets 27

Value

the path of the file in which the PIN data was saved. If path2pin was not supplied by the user, the PIN data is saved in a temporary file

Examples

```
## Not run:
pin_path <- get_pin_file()
## End(Not run)</pre>
```

get_reactome_gsets

Retrieve Reactome Pathway Gene Sets

Description

Retrieve Reactome Pathway Gene Sets

Usage

```
get_reactome_gsets()
```

Value

Gets the latest Reactome pathways gene sets in gmt format. Parses the gmt file and returns a list containing 2 elements:

- gene_sets A list containing the genes involved in each Reactome pathway
- descriptions A named vector containing the descriptions for each Reactome pathway

gset_list_from_gmt

Retrieve Gene Sets from GMT-format File

Description

Retrieve Gene Sets from GMT-format File

Usage

```
gset_list_from_gmt(path2gmt, descriptions_idx = 2)
```

Value

list containing 2 elements:

- gene_sets A list containing the genes involved in each gene set
- descriptions A named vector containing the descriptions for each gene set

hierarchical_term_clustering

Hierarchical Clustering of Enriched Terms

Description

Hierarchical Clustering of Enriched Terms

Usage

```
hierarchical_term_clustering(
  kappa_mat,
  enrichment_res,
  num_clusters = NULL,
  use_description = FALSE,
  clu_method = "average",
  plot_hmap = FALSE,
  plot_dend = TRUE
)
```

kappa_mat	matrix of kappa statistics (output of create_kappa_matrix)	
enrichment_res	data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes' must also be provided.	
num_clusters	number of clusters to be formed (default = NULL). If NULL, the optimal number of clusters is determined as the number which yields the highest average silhouette width.	
use_description		
	Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)	
clu_method	the agglomeration method to be used (default = 'average', see hclust)	
plot_hmap	boolean to indicate whether to plot the kappa statistics clustering heatmap or not (default = FALSE)	
plot_dend	boolean to indicate whether to plot the clustering dendrogram partitioned into the optimal number of clusters (default = TRUE)	

hyperg_test 29

Details

The function initially performs hierarchical clustering of the enriched terms in enrichment_res using the kappa statistics (defining the distance as 1 - kappa_statistic). Next, the clustering dendrogram is cut into $k=2,\,3,\,...,\,n-1$ clusters (where n is the number of terms). The optimal number of clusters is determined as the k value which yields the highest average silhouette width. (if num_clusters not specified)

Value

a vector of clusters for each enriched term in the enrichment results.

Examples

```
## Not run:
hierarchical_term_clustering(kappa_mat, enrichment_res)
hierarchical_term_clustering(kappa_mat, enrichment_res, method = 'complete')
## End(Not run)
```

hyperg_test

Hypergeometric Distribution-based Hypothesis Testing

Description

Hypergeometric Distribution-based Hypothesis Testing

Usage

```
hyperg_test(term_genes, chosen_genes, background_genes)
```

Arguments

```
term_genes vector of genes in the selected term gene set

chosen_genes vector containing the set of input genes

background_genes

vector of background genes (i.e. universal set of genes in the experiment)
```

Details

To determine whether the chosen_genes are enriched (compared to a background pool of genes) in the term_genes, the hypergeometric distribution is assumed and the appropriate p value (the value under the right tail) is calculated and returned.

Value

the p-value as determined using the hypergeometric distribution.

30 input_processing

Examples

```
hyperg_test(letters[1:5], letters[2:5], letters)
hyperg_test(letters[1:5], letters[2:10], letters)
hyperg_test(letters[1:5], letters[2:13], letters)
```

input_processing

Process Input

Description

Process Input

Usage

```
input_processing(
  input,
  p_val_threshold = 0.05,
  pin_name_path = "Biogrid",
  convert2alias = TRUE
)
```

Arguments

input

the input data that pathfindR uses. The input must be a data frame with three columns:

- 1. Gene Symbol (Gene Symbol)
- 2. Change value, e.g. log(fold change) (OPTIONAL)
- 3. p value, e.g. adjusted p value associated with differential expression

p_val_threshold

the p value threshold to use when filtering the input data frame. Must a numeric value between 0 and 1. (default = 0.05)

pin_name_path

Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

convert2alias

boolean to indicate whether or not to convert gene symbols in the input that are not found in the PIN to an alias symbol found in the PIN (default = TRUE) IMPORTANT NOTE: the conversion uses human gene symbols/alias symbols.

Value

This function first filters the input so that all p values are less than or equal to the threshold. Next, gene symbols that are not found in the PIN are identified. If aliases of these gene symbols are found in the PIN, the symbols are converted to the corresponding aliases. The resulting data frame containing the original gene symbols, the updated symbols, change values and p values is then returned.

input_testing 31

See Also

See run_pathfindR for the wrapper function of the pathfindR workflow

Examples

```
processed_df <- input_processing(
  input = example_pathfindR_input[1:5, ],
  pin_name_path = 'KEGG'
)
processed_df <- input_processing(
  input = example_pathfindR_input[1:10, ],
  pin_name_path = 'KEGG',
  convert2alias = FALSE
)</pre>
```

input_testing

Input Testing

Description

Input Testing

Usage

```
input_testing(input, p_val_threshold = 0.05)
```

Arguments

input

the input data that pathfindR uses. The input must be a data frame with three columns:

- 1. Gene Symbol (Gene Symbol)
- 2. Change value, e.g. log(fold change) (OPTIONAL)
- 3. p value, e.g. adjusted p value associated with differential expression

p_val_threshold

the p value threshold to use when filtering the input data frame. Must a numeric value between 0 and 1. (default = 0.05)

Value

Only checks if the input and the threshold follows the required specifications.

See Also

See run_pathfindR for the wrapper function of the pathfindR workflow

Examples

```
input_testing(example_pathfindR_input, 0.05)
```

32 pathfindR

isColor

Check if value is a valid color

Description

Check if value is a valid color

Usage

isColor(x)

Arguments

Χ

value

Value

TRUE if x is a valid color, otherwise FALSE

pathfindR

pathfindR: A package for Enrichment Analysis Utilizing Active Subnetworks

Description

pathfindR is a tool for active-subnetwork-oriented gene set enrichment analysis. The main aim of the package is to identify active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values then performing enrichment analyses on the identified subnetworks, discovering enriched terms (i.e. pathways, gene ontology, TF target gene sets etc.) that possibly underlie the phenotype of interest.

Details

For analysis on non-Homo sapiens organisms, pathfindR offers utility functions for obtaining organism-specific PIN data and organism-specific gene sets data.

pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results.

Author(s)

Maintainer: Ege Ulgen <egeulgen@gmail.com> (ORCID) [copyright holder] Authors:

• Ozan Ozisik <ozanytu@gmail.com> (ORCID)

plot_scores 33

See Also

See run_pathfindR for details on the pathfindR active-subnetwork-oriented enrichment analysis See cluster_enriched_terms for details on methods of enriched terms clustering to define clusters of biologically-related terms See score_terms for details on agglomerated score calculation for enriched terms to investigate how a gene set is altered in a given sample (or in cases vs. controls) See term_gene_heatmap for details on visualization of the heatmap of enriched terms by involved genes See term_gene_graph for details on visualizing terms and term-related genes as a graph to determine the degree of overlap between the enriched terms by identifying shared and/or distinct significant genes See UpSet_plot for details on creating an UpSet plot of the enriched terms. See get_pin_file for obtaining organism-specific PIN data and get_gene_sets_list for obtaining organism-specific gene sets data

plot_scores

Plot the Heatmap of Score Matrix of Enriched Terms per Sample

Description

Plot the Heatmap of Score Matrix of Enriched Terms per Sample

Usage

```
plot_scores(
   score_matrix,
   cases = NULL,
   label_samples = TRUE,
   case_title = "Case",
   control_title = "Control",
   low = "green",
   mid = "black",
   high = "red"
)
```

score_matrix	Matrix of agglomerated enriched term scores per sample. Columns are samples, rows are enriched terms
cases	(Optional) A vector of sample names that are cases in the case/control experiment. (default = $NULL$)
label_samples	Boolean value to indicate whether or not to label the samples in the heatmap plot (default = $TRUE$)
case_title	Naming of the 'Case' group (as in cases) (default = 'Case')
control_title	Naming of the 'Control' group (default = 'Control')
low	a string indicating the color of 'low' values in the coloring gradient (default = 'green')

34 process_pin

a string indicating the color of 'mid' values in the coloring gradient (default = 'black')

high a string indicating the color of 'high' values in the coloring gradient (default = 'red')

Value

A 'ggplot2' object containing the heatmap plot. x-axis indicates the samples. y-axis indicates the enriched terms. 'Score' indicates the score of the term in a given sample. If cases are provided, the plot is divided into 2 facets, named by case_title and control_title.

Examples

```
score_matrix <- score_terms(
  example_pathfindR_output,
  example_experiment_matrix,
  plot_hmap = FALSE
)
hmap <- plot_scores(score_matrix)</pre>
```

process_pin

Process Data frame of Protein-protein Interactions

Description

Process Data frame of Protein-protein Interactions

Usage

```
process_pin(pin_df)
```

Arguments

pin_df data frame of protein-protein interactions with 2 columns: 'Interactor_A' and 'Interactor B'

Value

processed PIN data frame (removes self-interactions and duplicated interactions)

return_pin_path 35

Description

This function returns the absolute path/to/PIN.sif. While the default PINs are 'Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG' and 'mmu_STRING'. The user can also use any other PIN by specifying the 'path/to/PIN.sif'. All PINs to be used in this package must formatted as SIF files: i.e. have 3 columns with no header, no row names and be tab-separated. Columns 1 and 3 must be interactors' gene symbols, column 2 must be a column with all rows consisting of 'pp'.

Usage

```
return_pin_path(pin_name_path = "Biogrid")
```

Arguments

pin_name_path Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING').

If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

Value

The absolute path to chosen PIN.

See Also

See run_pathfindR for the wrapper function of the pathfindR workflow

Examples

```
## Not run:
pin_path <- return_pin_path('GeneMania')
## End(Not run)</pre>
```

run_pathfindR

Wrapper Function for pathfindR - Active-Subnetwork-Oriented Enrichment Workflow

Description

run_pathfindR is the wrapper function for the pathfindR workflow

36 run_pathfindR

Usage

```
run_pathfindR(
  input,
  gene_sets = "KEGG",
  min_gset_size = 10,
  max_gset_size = 300,
  custom_genes = NULL,
  custom_descriptions = NULL,
  pin_name_path = "Biogrid",
  p_val_threshold = 0.05,
  enrichment_threshold = 0.05,
  convert2alias = TRUE,
  plot_enrichment_chart = TRUE,
  output_dir = NULL,
  list_active_snw_genes = FALSE,
  ...
)
```

Arguments

input

the input data that pathfindR uses. The input must be a data frame with three columns:

- 1. Gene Symbol (Gene Symbol)
- 2. Change value, e.g. log(fold change) (OPTIONAL)
- 3. p value, e.g. adjusted p value associated with differential expression

gene_sets

Name of the gene sets to be used for enrichment analysis. Available gene sets are 'KEGG', 'Reactome', 'BioCarta', 'GO-All', 'GO-BP', 'GO-CC', 'GO-MF', 'cell_markers', 'mmu_KEGG' or 'Custom'. If 'Custom', the arguments custom_genes and custom_descriptions must be specified. (Default = 'KEGG')

min_gset_size

minimum number of genes a term must contain (default = 10)

max_gset_size

maximum number of genes a term must contain (default = 300)

custom_genes

a list containing the genes involved in each custom term. Each element is a vector of gene symbols located in the given custom term. Names should correspond to the IDs of the custom terms.

custom_descriptions

A vector containing the descriptions for each custom term. Names of the vector should correspond to the IDs of the custom terms.

pin_name_path

Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

p_val_threshold

the p value threshold to use when filtering the input data frame. Must a numeric value between 0 and 1. (default = 0.05)

enrichment_threshold

adjusted-p value threshold used when filtering enrichment results (default = 0.05)

run_pathfindR 37

convert2alias boolean to indicate whether or not to convert gene symbols in the input that are

not found in the PIN to an alias symbol found in the PIN (default = TRUE) IMPORTANT NOTE: the conversion uses human gene symbols/alias symbols.

plot_enrichment_chart

boolean value. If TRUE, a bubble chart displaying the enrichment results is

plotted. (default = TRUE)

output_dir the directory to be created where the output and intermediate files are saved

(default = NULL, a temporary directory is used)

list_active_snw_genes

boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term

with the lowest p value (default = FALSE)

... additional arguments for active_snw_enrichment_wrapper

Details

This function takes in a data frame consisting of Gene Symbol, log-fold-change and adjusted-p values. After input testing, any gene symbols that are not in the PIN are converted to alias symbols if the alias is in the PIN. Next, active subnetwork search is performed. Enrichment analysis is performed using the genes in each of the active subnetworks. Terms with adjusted-p values lower than enrichment_threshold are discarded. The lowest adjusted-p value (over all subnetworks) for each term is kept. This process of active subnetwork search and enrichment is repeated for a selected number of iterations, which is done in parallel. Over all iterations, the lowest and the highest adjusted-p values, as well as number of occurrences are reported for each enriched term.

Value

Data frame of pathfindR enrichment results. Columns are:

ID ID of the enriched term

Term_Description Description of the enriched term

Fold_Enrichment Fold enrichment value for the enriched term (Calculated using ONLY the input genes)

occurrence the number of iterations that the given term was found to enriched over all iterations

support the median support (proportion of active subnetworks leading to enrichment within an iteration) over all iterations

lowest_p the lowest adjusted-p value of the given term over all iterations

highest_p the highest adjusted-p value of the given term over all iterations

non_Signif_Snw_Genes (OPTIONAL) the non-significant active subnetwork genes, comma-separated

Up_regulated the up-regulated genes (as determined by 'change value' > 0, if the 'change column' was provided) in the input involved in the given term's gene set, comma-separated. If change column not provided, all affected are listed here.

Down_regulated the down-regulated genes (as determined by 'change value' < 0, if the 'change column' was provided) in the input involved in the given term's gene set, comma-separated

38 score_terms

The function also creates an HTML report with the pathfindR enrichment results linked to the visualizations of the enriched terms in addition to the table of converted gene symbols. This report can be found in 'output_dir/results.html' under the current working directory.

By default, a bubble chart of top 10 enrichment results are plotted. The x-axis corresponds to fold enrichment values while the y-axis indicates the enriched terms. Sizes of the bubbles indicate the number of significant genes in the given terms. Color indicates the -log10(lowest-p) value; the more red it is, the more significant the enriched term is. See enrichment_chart.

Warning

Especially depending on the protein interaction network, the algorithm and the number of iterations you choose, 'active subnetwork search + enrichment' component of run_pathfindR may take a long time to finish.

See Also

input_testing for input testing, input_processing for input processing, active_snw_search for active subnetwork search and subnetwork filtering, enrichment_analyses for enrichment analysis (using the active subnetworks), summarize_enrichment_results for summarizing the active-subnetwork-oriented enrichment results, annotate_term_genes for annotation of affected genes in the given gene sets, visualize_terms for visualization of enriched terms, enrichment_chart for a visual summary of the pathfindR enrichment results, foreach for details on parallel execution of looping constructs, cluster_enriched_terms for clustering the resulting enriched terms and partitioning into clusters.

Examples

```
## Not run:
run_pathfindR(example_pathfindR_input)
## End(Not run)
```

score_terms

Calculate Agglomerated Scores of Enriched Terms for Each Subject

Description

Calculate Agglomerated Scores of Enriched Terms for Each Subject

```
score_terms(
  enrichment_table,
  exp_mat,
  cases = NULL,
  use_description = FALSE,
  plot_hmap = TRUE,
  ...
)
```

score_terms 39

Arguments

enrichment_table

a data frame that must contain the 3 columns below:

Term_Description Description of the enriched term (necessary if use_description = TRUE)

ID ID of the enriched term (necessary if use_description = FALSE)

Up_regulated the up-regulated genes in the input involved in the given term's gene set, comma-separated

Down_regulated the down-regulated genes in the input involved in the given term's gene set, comma-separated

exp_mat the experiment (e.g., gene expression/methylation) matrix. Columns are sam-

ples and rows are genes. Column names must contain sample names and row

names must contain the gene symbols.

cases (Optional) A vector of sample names that are cases in the case/control experi-

ment. (default = NULL)

use_description

Boolean argument to indicate whether term descriptions (in the 'Term_Description'

column) should be used. (default = FALSE)

plot_hmap Boolean value to indicate whether or not to draw the heatmap plot of the scores.

(default = TRUE)

... Additional arguments for plot_scores for aesthetics of the heatmap plot

Value

Matrix of agglomerated scores of each enriched term per sample. Columns are samples, rows are enriched terms. Optionally, displays a heatmap of this matrix.

Conceptual Background

For an experiment matrix (containing expression, methylation, etc. values), the rows of which are genes and the columns of which are samples, we denote:

- E as a matrix of size $m \times n$
- G as the set of all genes in the experiment $G = E_{i}$, $i \in [1, m]$
- S as the set of all samples in the experiment $S = E_{j}$, $\in [1, n]$

We next define the gene score matrix GS (the standardized experiment matrix, also of size $m \times n$) as:

$$GS_{gs} = \frac{E_{gs} - \bar{e_g}}{s_g}$$

where $g \in G$, $s \in S$, $\bar{e_g}$ is the mean of all values for gene g and $\bar{s_g}$ is the standard deviation of all values for gene g.

We next denote T to be a set of terms (where each $t \in T$ is a set of term-related genes, i.e., $t = \{g_x, ..., g_y\} \subset G$) and finally define the agglomerated term scores matrix TS (where rows correspond to genes and columns corresponds to samples s.t. the matrix has size $|T| \times n$) as:

$$TS_{ts} = \frac{1}{|t|} \sum_{g \in t} GS_{gs}$$
, where $t \in T$ and $s \in S$.

40 single_iter_wrapper

Examples

```
score_matrix <- score_terms(
  example_pathfindR_output,
  example_experiment_matrix,
  plot_hmap = FALSE
)</pre>
```

single_iter_wrapper

Active Subnetwork Search + Enrichment Analysis Wrapper for a Single Iteration

Description

Active Subnetwork Search + Enrichment Analysis Wrapper for a Single Iteration

```
single_iter_wrapper(
  i = NULL,
  dirs,
  input_processed,
  pin_path,
  score_quan_thr,
  sig_gene_thr,
  search_method,
  silent_option,
  use_all_positives,
  geneInitProbs,
  saTemp0,
  saTemp1,
  saIter,
  gaPop,
  gaIter,
  gaThread,
  gaCrossover,
  gaMut,
  grMaxDepth,
  grSearchDepth,
  grOverlap,
  grSubNum,
  gset_list,
  adj_method,
  enrichment_threshold,
  list_active_snw_genes
)
```

single_iter_wrapper 41

Arguments

i current iteration index (default = NULL)
dirs vector of directories for parallel runs

input_processed

processed input data frame

pin_path path/to/PIN/file

score_quan_thr active subnetwork score quantile threshold. Must be between 0 and 1 or set to

-1 for not filtering. (Default = 0.8)

sig_gene_thr threshold for the minimum proportion of significant genes in the subnetwork

(Default = 0.02) If the number of genes to use as threshold is calculated to be <

2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2

search_method algorithm to use when performing active subnetwork search. Options are greedy

search (GR), simulated annealing (SA) or genetic algorithm (GA) for the search

(default = 'GR').

silent_option boolean value indicating whether to print the messages to the console (FALSE)

or not (TRUE, this will print to a temp. file) during active subnetwork search (default = TRUE). This option was added because during parallel runs, the con-

sole messages get disorderly printed.

use_all_positives

if TRUE: in GA, adds an individual with all positive nodes. In SA, initializes

candidate solution with all positive nodes. (default = FALSE)

geneInitProbs For SA and GA, probability of adding a gene in initial solution (default = 0.1)

saTemp0 Initial temperature for SA (default = 1.0)
saTemp1 Final temperature for SA (default = 0.01)
saIter Iteration number for SA (default = 10000)
gaPop Population size for GA (default = 400)
gaIter Iteration number for GA (default = 200)

gaThread Number of threads to be used in GA (default = 5)

gaCrossover Applies crossover with the given probability in GA (default = 1, i.e. always

perform crossover)

gaMut For GA, applies mutation with given mutation rate (default = 0, i.e. mutation

off)

grMaxDepth Sets max depth in greedy search, 0 for no limit (default = 1)

grSearchDepth Search depth in greedy search (default = 1)

groverlap Overlap threshold for results of greedy search (default = 0.5)

grSubNum Number of subnetworks to be presented in the results (default = 1000)

gset_list list for gene sets

adj_method correction method to be used for adjusting p-values. (default = 'bonferroni')

enrichment_threshold

adjusted-p value threshold used when filtering enrichment results (default =

0.05)

list_active_snw_genes

boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)

Value

Data frame of enrichment results using active subnetwork search results

summarize_enrichment_results

Summarize Enrichment Results

Description

Summarize Enrichment Results

Usage

summarize_enrichment_results(enrichment_res, list_active_snw_genes = FALSE)

Arguments

enrichment_res a dataframe of combined enrichment results. Columns are:

ID ID of the enriched term

Term_Description Description of the enriched term

Fold_Enrichment Fold enrichment value for the enriched term

p_value p value of enrichment

adj_p adjusted p value of enrichment

non_Signif_Snw_Genes (OPTIONAL) the non-significant active subnetwork genes, comma-separated

list_active_snw_genes

boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)

Value

a dataframe of summarized enrichment results (over multiple iterations). Columns are:

ID ID of the enriched term

Term_Description Description of the enriched term

Fold_Enrichment Fold enrichment value for the enriched term

occurrence the number of iterations that the given term was found to enriched over all iterations **support** the median support (proportion of active subnetworks leading to enrichment within an

iteration) over all iterations

term_gene_graph 43

lowest_p the lowest adjusted-p value of the given term over all iterations

highest_p the highest adjusted-p value of the given term over all iterations

non_Signif_Snw_Genes (OPTIONAL) the non-significant active subnetwork genes, comma-separated

Examples

```
## Not run:
summarize_enrichment_results(enrichment_res)
## End(Not run)
```

term_gene_graph

Create Term-Gene Graph

Description

Create Term-Gene Graph

Usage

```
term_gene_graph(
  result_df,
  num_terms = 10,
  layout = "stress",
  use_description = FALSE,
  node_size = "num_genes",
  node_colors = c("#E5D7BF", "green", "red")
)
```

Arguments

result_df

A dataframe of pathfindR results that must contain the following columns:

Term_Description Description of the enriched term (necessary if use_description = TRUE)

ID ID of the enriched term (necessary if use_description = FALSE)

lowest_p the lowest adjusted-p value of the given term over all iterations

Up_regulated the up-regulated genes in the input involved in the given term's gene set, comma-separated

Down_regulated the down-regulated genes in the input involved in the given term's gene set, comma-separated

num_terms

Number of top enriched terms to use while creating the graph. Set to NULL to use all enriched terms (default = 10, i.e. top 10 terms)

layout

The type of layout to create (see ggraph for details. Default = 'stress')

use_description

Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

44 term_gene_heatmap

node_size	Argument to indicate whether to use number of significant genes ('num_genes') or the -log10(lowest p value) ('p_val') for adjusting the node sizes (default = 'num_genes')
node_colors	vector of 3 colors to be used for coloring nodes (colors for term nodes, up, and down, respectively)

Details

This function (adapted from the Gene-Concept network visualization by the R package enrichplot) can be utilized to visualize which input genes are involved in the enriched terms as a graph. The term-gene graph shows the links between genes and biological terms and allows for the investigation of multiple terms to which significant genes are related. The graph also enables determination of the overlap between the enriched terms by identifying shared and distinct significant term-related genes.

Value

a ggraph object containing the term-gene graph. Each node corresponds to an enriched term (beige), an up-regulated gene (green) or a down-regulated gene (red). An edge between a term and a gene indicates that the given term involves the gene. Size of a term node is proportional to either the number of genes (if node_size = 'num_genes') or the -log10(lowest p value) (if node_size = 'p_val').

Examples

```
p <- term_gene_graph(example_pathfindR_output)
p <- term_gene_graph(example_pathfindR_output, num_terms = 5)
p <- term_gene_graph(example_pathfindR_output, node_size = 'p_val')</pre>
```

term_gene_heatmap

Create Terms by Genes Heatmap

Description

Create Terms by Genes Heatmap

```
term_gene_heatmap(
  result_df,
  genes_df,
  num_terms = 10,
  use_description = FALSE,
  low = "red",
  mid = "black",
  high = "green",
  legend_title = "change",
```

45 term_gene_heatmap

```
sort_terms_by_p = FALSE,
)
```

Arguments

result_df

A dataframe of pathfindR results that must contain the following columns:

Term Description Description of the enriched term (necessary if use_description = TRUE)

ID ID of the enriched term (necessary if use_description = FALSE)

lowest_p the highest adjusted-p value of the given term over all iterations

Up regulated the up-regulated genes in the input involved in the given term's gene set, comma-separated

Down regulated the down-regulated genes in the input involved in the given term's gene set, comma-separated

genes_df

the input data that was used with run_pathfindR. It must be a data frame with 3 columns:

- 1. Gene Symbol (Gene Symbol)
- 2. Change value, e.g. log(fold change) (optional)
- 3. p value, e.g. adjusted p value associated with differential expression

The change values in this data frame are used to color the affected genes

num_terms

Number of top enriched terms to use while creating the plot. Set to NULL to use all enriched terms (default = 10)

use_description

Boolean argument to indicate whether term descriptions (in the 'Term_Description'

column) should be used. (default = FALSE)

a string indicating the color of 'low' values in the coloring gradient (default = low

'green')

mid a string indicating the color of 'mid' values in the coloring gradient (default =

high a string indicating the color of 'high' values in the coloring gradient (default =

'red')

legend_title legend title (default = 'change')

sort_terms_by_p

boolean to indicate whether to sort terms by 'lowest_p' (TRUE) or by number of

genes (FALSE) (default = FALSE)

additional arguments for input_processing (used if genes_df is provided)

Value

a ggplot2 object of a heatmap where rows are enriched terms and columns are involved input genes. If genes_df is provided, colors of the tiles indicate the change values.

Examples

```
term_gene_heatmap(example_pathfindR_output, num_terms = 3)
```

46 UpSet_plot

UpSet_plot

Create UpSet Plot of Enriched Terms

Description

Create UpSet Plot of Enriched Terms

Usage

```
UpSet_plot(
  result_df,
  genes_df,
  num_terms = 10,
  method = "heatmap",
  use_description = FALSE,
  low = "red",
  mid = "black",
  high = "green",
  ...
)
```

Arguments

result_df

A dataframe of pathfindR results that must contain the following columns:

Term_Description Description of the enriched term (necessary if use_description = TRUE)

ID ID of the enriched term (necessary if use_description = FALSE)

lowest_p the highest adjusted-p value of the given term over all iterations

Up_regulated the up-regulated genes in the input involved in the given term's gene set, comma-separated

Down_regulated the down-regulated genes in the input involved in the given term's gene set, comma-separated

genes_df

the input data that was used with run_pathfindR. It must be a data frame with 3 columns:

- 1. Gene Symbol (Gene Symbol)
- 2. Change value, e.g. log(fold change) (optional)
- 3. p value, e.g. adjusted p value associated with differential expression

The change values in this data frame are used to color the affected genes

num_terms

Number of top enriched terms to use while creating the plot. Set to NULL to use all enriched terms (default = 10)

method

the option for producing the plot. Options include 'heatmap', 'boxplot' and 'barplot'. (default = 'heatmap')

use_description

Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

low	a string indicating the color of 'low' values in the coloring gradient (default = 'green')
mid	a string indicating the color of 'mid' values in the coloring gradient (default = 'black')
high	a string indicating the color of 'high' values in the coloring gradient (default = 'red')
	additional arguments for input_processing (used if genes_df is provided)

Value

UpSet plots are plots of the intersections of sets as a matrix. This function creates a ggplot object of an UpSet plot where the x-axis is the UpSet plot of intersections of enriched terms. By default (i.e. method = 'heatmap') the main plot is a heatmap of genes at the corresponding intersections, colored by up/down regulation (if genes_df is provided, colored by change values). If method = 'barplot', the main plot is bar plots of the number of genes at the corresponding intersections. Finally, if method = 'boxplot' and if genes_df is provided, then the main plot displays the boxplots of change values of the genes at the corresponding intersections.

Examples

```
UpSet_plot(example_pathfindR_output)
```

```
visualize_active_subnetworks
```

Visualize Active Subnetworks

Description

Visualize Active Subnetworks

```
visualize_active_subnetworks(
  active_snw_path,
  genes_df,
  pin_name_path = "Biogrid",
  num_snws,
  layout = "stress",
  score_quan_thr = 0.8,
  sig_gene_thr = 0.02,
  ...
)
```

Arguments

```
active_snw_path
                  path to the output of an Active Subnetwork Search
                  the input data that was used with run_pathfindR. It must be a data frame with
genes_df
                  3 columns:
                    1. Gene Symbol (Gene Symbol)
                    2. Change value, e.g. log(fold change) (optional)
                    3. p value, e.g. adjusted p value associated with differential expression
                  The change values in this data frame are used to color the affected genes
                  Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one
pin_name_path
                  of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING').
                  If path/to/PIN.sif, the file must comply with the PIN specifications. (Default =
                   'Biogrid')
                  number of top subnetworks to be visualized (leave blank if you want to visualize
num_snws
                  all subnetworks)
layout
                  The type of layout to create (see ggraph for details. Default = 'stress')
                  active subnetwork score quantile threshold. Must be between 0 and 1 or set to
score_quan_thr
                  -1 for not filtering. (Default = 0.8)
sig_gene_thr
                  threshold for the minimum proportion of significant genes in the subnetwork
                  (Default = 0.02) If the number of genes to use as threshold is calculated to be <
                  2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2
                  additional arguments for input_processing
```

Value

a list of ggplot objects of graph visualizations of identified active subnetworks. Green nodes are down-regulated genes, reds are up-regulated genes and yellows are non-input genes

Examples

```
path2snw_list <- system.file(
  'extdata/resultActiveSubnetworkSearch.txt',
  package = 'pathfindR'
)
# visualize top 2 active subnetworks
g_list <- visualize_active_subnetworks(
  active_snw_path = path2snw_list,
  genes_df = example_pathfindR_input[1:10, ],
  pin_name_path = 'KEGG',
  num_snws = 2
)</pre>
```

```
visualize_KEGG_diagram
```

Visualize Human KEGG Pathways

Description

Visualize Human KEGG Pathways

Usage

```
visualize_KEGG_diagram(
  kegg_pw_ids,
  input_processed,
  scale_vals = TRUE,
  node_cols = NULL,
  legend.position = "top"
)
```

Arguments

```
kegg_pw_ids KEGG ids of pathways to be colored and visualized

input_processed

input data processed via input_processing

scale_vals should change values be scaled? (default = TRUE)

node_cols low, middle and high color values for coloring the pathway nodes (default = NULL). If node_cols=NULL, the low, middle and high color are set as 'green', 'gray' and 'red'. If all change values are 1e6 (in case no changes are supplied, this dummy value is assigned by input_processing), only one color ('#F38F18' if NULL) is used.

legend.position

the default position of legends ("none", "left", "right", "bottom", "top", "inside")
```

Value

Creates colored visualizations of the enriched human KEGG pathways and returns them as a list of ggplot objects, named by Term ID.

See Also

See visualize_terms for the wrapper function for creating enriched term diagrams. See run_pathfindR for the wrapper function of the pathfindR enrichment workflow.

50 visualize_terms

Examples

```
## Not run:
input_processed <- data.frame(</pre>
  GENE = c("PKLR", "GPI", "CREB1", "INS"),
  CHANGE = c(1.5, -2, 3, 5)
gg_list <- visualize_KEGG_diagram(c("hsa00010", "hsa04911"), input_processed)</pre>
## End(Not run)
```

visualize_terms

Create Diagrams for Enriched Terms

Description

Create Diagrams for Enriched Terms

Usage

```
visualize_terms(
  result_df,
  input_processed = NULL,
  is_KEGG_result = TRUE,
 pin_name_path = "Biogrid",
)
```

Arguments

result_df

Data frame of enrichment results. Must-have columns for KEGG human pathway diagrams (is_KEGG_result = TRUE) are: 'ID' and 'Term_Description'. Musthave columns for the rest are: 'Term_Description', 'Up_regulated' and 'Down_regulated'

input_processed

input data processed via input_processing, not necessary when is_KEGG_result = FALSE

is_KEGG_result boolean to indicate whether KEGG gene sets were used for enrichment analysis

or not (default = TRUE)

Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one pin_name_path

of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default =

'Biogrid')

additional arguments for visualize_KEGG_diagram (used when is_KEGG_result = TRUE) or visualize_term_interactions (used when is_KEGG_result = FALSE)

Details

For is_KEGG_result = TRUE, KEGG pathway diagrams are created, affected nodes colored by up/down regulation status. For other gene sets, interactions of affected genes are determined (via a shortest-path algorithm) and are visualized (colored by change status) using igraph.

Value

Depending on the argument is_KEGG_result, creates visualization of interactions of genes involved in the list of enriched terms in result_df. Returns a list of ggplot objects named by Term ID.

See Also

See visualize_KEGG_diagram for the visualization function of KEGG diagrams. See visualize_term_interactions for the visualization function that generates diagrams showing the interactions of input genes in the PIN. See run_pathfindR for the wrapper function of the pathfindR workflow.

Examples

```
## Not run:
input_processed <- data.frame(
    GENE = c("PARP1", "NDUFA1", "STX6", "SNAP23"),
    CHANGE = c(1.5, -2, 3, 5)
)
result_df <- example_pathfindR_output[1:2, ]

gg_list <- visualize_terms(result_df, input_processed)
gg_list2 <- visualize_terms(result_df, is_KEGG_result = FALSE, pin_name_path = 'IntAct')
## End(Not run)</pre>
```

visualize_term_interactions

Visualize Interactions of Genes Involved in the Given Enriched Terms

Description

Visualize Interactions of Genes Involved in the Given Enriched Terms

```
visualize_term_interactions(result_df, pin_name_path, show_legend = TRUE)
```

Arguments

result_df	Data frame of enrichment results. Must-have columns are: 'Term_Description', 'Up_regulated' and 'Down_regulated'
pin_name_path	Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')
show_legend	Boolean to indicate whether to display the legend (TRUE) or not (FALSE) (default: TRUE)

Details

The following steps are performed for the visualization of interactions of genes involved for each enriched term:

- 1. shortest paths between all affected genes are determined (via igraph)
- 2. the nodes of all shortest paths are merged
- 3. the PIN is subsetted using the merged nodes (genes)
- 4. using the PIN subset, the graph showing the interactions is generated
- 5. the final graph is visualized using igraph, colored by changed status (if provided)

Value

list of ggplot objects (named by Term ID) visualizing the interactions of genes involved in the given enriched terms (annotated in the result_df) in the PIN used for enrichment analysis (specified by pin_name_path).

See Also

See visualize_terms for the wrapper function for creating enriched term diagrams. See run_pathfindR for the wrapper function of the pathfindR enrichment workflow.

Examples

```
## Not run:
result_df <- example_pathfindR_output[1:2, ]
gg_list <- visualize_term_interactions(result_df, pin_name_path = 'IntAct')
## End(Not run)</pre>
```

Index

active_snw_enrichment_wrapper, 3, 37 active_snw_search, 5, 38	isColor, 32
annotate_term_genes, 7, 38	<pre>msigdbr, 26 msigdbr_show_species, 24-26</pre>
check_java_version, 8 cluster_enriched_terms, 9, 33, 38 cluster_graph_vis, 9, 10, 10 color_kegg_pathway, 11 combine_pathfindR_results, 13 combined_results_graph, 12 configure_output_dir, 14 create_HTML_report, 15	<pre>p.adjust, 17 pathfindR, 32 pathfindR-package (pathfindR), 32 plot_scores, 33, 39 process_pin, 34 return_pin_path, 35</pre>
create_kappa_matrix, 10, 15, 23, 28	run_pathfindR, 17, 22, 31, 33, 35, 35, 45, 46 48, 49, 51, 52
enrichment, 16, 18 enrichment_analyses, 17, 17, 38 enrichment_chart, 19, 38	score_terms, 33, 38 single_iter_wrapper, 40 summarize_enrichment_results, 38, 42
fetch_gene_set, 20 fetch_java_version, 8, 21 filterActiveSnws, 21 foreach, 38 fuzzy_term_clustering, 9, 10, 22	term_gene_graph, 33, 43 term_gene_heatmap, 33, 44 UpSet_plot, 33, 46
get_biogrid_pin, 23, 26 get_gene_sets_list, 24, 33 get_kegg_gsets, 25 get_mgsigdb_gsets, 25 get_pin_file, 26, 33 get_reactome_gsets, 27 ggplot2, 20 ggraph, 13, 43, 44, 48 gset_list_from_gmt, 27	visualize_active_subnetworks, 47 visualize_KEGG_diagram, 49, 50, 51 visualize_term_interactions, 50, 51, 51 visualize_terms, 38, 49, 50, 52
hclust, 28 hierarchical_term_clustering, 9, 10, 28 hyperg_test, 17, 29	
igraph, 52 input_processing, 8, 12, 30, 38, 45, 47–50 input_testing, 31, 38	