Homework #3

Raymond Deneckere

Fall 2017

- 1. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .
- 2. Let $f, g : [0, 1] \to \mathbb{R}$ be continuous functions, and suppose that f(x) > g(x) for all $x \in [0, 1]$. Prove or disprove the following statement: There exists $\Delta > 0$ such that $f(x) \ge g(x) + \Delta$ for all $x \in [0, 1]$. What if instead f and g were only left continuous?
- 3. Suppose that f'(x) exists, g'(x) exists, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}$$

- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^3/(x^2+y^2)$ for $(x,y) \neq (0,0)$, and f(0,0) = 0.
 - (a) Is f continuous in each variable separately?
 - (b) Is f a continuous function?
 - (c) Compute the directional derivative of $f(\cdot)$ in the direction of the vector v=(1,1)
 - (d) Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
 - (e) Show that f(x,y) is not differentiable at (0,0)
- 5. Sundaram, p.97, #3