Machine Learning

Regularization, smoothing and sparsity

Emanuele Rodolà rodola@di.uniroma1.it

2nd semester a.y. 2024/2025 · March 18, 2025

Motivation

Linear regression

We have seen fitting problems such as:

With the minimization problem:

$$\min_{a,b\in\mathbb{R}} \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Linear regression

We did polynomial fitting as well:

Because polynomials are still linear in the parameters:

$$y_i = \mathbf{b} + \sum_{j=1}^k \mathbf{a}_j x_i^j$$
 for all data points $i = 1, \dots, n$

There is a least-squares solution in closed form for any polynomial.

Quality of fitting

By the Stone-Weierstrass theorem, we can fit a polynomial in many cases:

Underfitting

Overfitting

Linear regression: Matrix notation

In matrix notation, the MSE is simply:

$$\ell(\boldsymbol{\theta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$$

Setting the gradient w.r.t. θ to zero and solving for θ :

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Linear regression: Matrix notation

In matrix notation, the MSE is simply:

$$\ell(\boldsymbol{\theta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$$

Setting the gradient w.r.t. θ to zero and solving for θ :

$$\boldsymbol{\theta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

In other words, θ approximately satisfies:

$$X\theta \approx y$$

where the residual error $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2$ is the smallest possible.

Consider the linear system:

$$Ax = b$$

If an exact solution exists, then we can write

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Consider the linear system:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

If an exact solution exists, then we can write

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

If an exact solution does not exist, we have the approximation problem:

$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$

Consider the linear system:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

If an exact solution exists, then we can write

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

If an exact solution does not exist, we have the approximation problem:

$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$

which we rewrote using the normal equations:

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

Consider the linear system:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

If an exact solution exists, then we can write

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

If an exact solution does not exist, we have the approximation problem:

$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$

which we rewrote using the normal equations:

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

and the solution is:

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}$$

Consider the linear system:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

If an exact solution exists, then we can write

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

If an exact solution does not exist, we have the approximation problem:

$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$

which we rewrote using the normal equations:

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

and the solution is:

$$\mathbf{x} = \underbrace{(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}}_{\mathrm{pseudo-inverse}\ \mathbf{A}^{\dagger}} \mathbf{b}$$

Types of linear systems

• Exact: n linearly independent equations, m=n parameters (matrix ${\bf A}$ is square)

problem : $\mathbf{A}\mathbf{x} = \mathbf{b}$ solution : $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Types of linear systems

• Exact: n linearly independent equations, m=n parameters (matrix ${\bf A}$ is square)

problem :
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 solution : $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

• Over-determined: n lin. ind. equations, m < n parameters (matrix ${\bf A}$ is tall)

problem :
$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$
 solution : $\mathbf{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$

Types of linear systems

• Exact: n linearly independent equations, m=n parameters (matrix ${\bf A}$ is square)

problem :
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 solution : $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

• Over-determined: n lin. ind. equations, m < n parameters (matrix ${\bf A}$ is tall)

problem :
$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$
 solution : $\mathbf{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$

• Under-determined: n lin. ind. equations, m > n parameters (matrix ${\bf A}$ is wide)

problem :
$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$
 solution : ???

How to solve for x when we do not have enough data?

Regularization

General idea: Make additional assumptions, and write them as new terms in the optimization.

General idea: Make additional assumptions, and write them as new terms in the optimization.

Main benefits:

• Impose a desired behavior of the solution (e.g. sparse, smooth)

General idea: Make additional assumptions, and write them as new terms in the optimization.

Main benefits:

- Impose a desired behavior of the solution (e.g. sparse, smooth)
- Reduce the amount of necessary data

General idea: Make additional assumptions, and write them as new terms in the optimization.

Main benefits:

- Impose a desired behavior of the solution (e.g. sparse, smooth)
- Reduce the amount of necessary data
- Make the optimization easier

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in ${\bf x}$.

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

$$\nabla_{\mathbf{x}}(\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \alpha \|\mathbf{x}\|_{2}^{2}) = \mathbf{0}$$

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

$$\nabla_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \alpha \nabla_{\mathbf{x}} \|\mathbf{x}\|_{2}^{2} = \mathbf{0}$$

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

$$2\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b} + 2\alpha\mathbf{x} = \mathbf{0}$$

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} + \alpha \mathbf{x} = \mathbf{0}$$

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} + \alpha \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$$

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

$$(\mathbf{A}^{\top}\mathbf{A} + \alpha \mathbf{I})\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

Let's find a solution:

$$(\mathbf{A}^{\top}\mathbf{A} + \alpha \mathbf{I})\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

In other words: just add α along the diagonal of $\mathbf{A}^{\top}\mathbf{A}$.

Add a L_2 penalty:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

with some choice of $\alpha > 0$. This penalizes large values in \mathbf{x} .

Let's find a solution:

$$(\mathbf{A}^{\top}\mathbf{A} + \alpha \mathbf{I})\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

In other words: just add α along the diagonal of $\mathbf{A}^{\top}\mathbf{A}$.

Also known as ridge regression.

Sparse problems

L_p norms

With Tikhonov regularization we had:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$$

L_p norms

With Tikhonov regularization we had:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_p^p$$

We can consider other norms for the regularizer!

L_p norms

With Tikhonov regularization we had:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \alpha \|\mathbf{x}\|_{p}^{p}$$

We can consider other norms for the regularizer!

Some special cases have convenient interpretations.

Interpretation as penalties

Recall that $\|\mathbf{x}\|_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p$.

Depending on p, the values of ${\bf x}$ are penalized differently.

Interpretation as penalties

Recall that $\|\mathbf{x}\|_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p$.

Depending on p, the values of ${\bf x}$ are penalized differently.

Roughly: the shape of the penalty function is a measure of our dislike.

Interpretation as penalties

Recall that $\|\mathbf{x}\|_p^p = |x_1|^p + |x_2|^p + \dots + |x_n|^p$.

Depending on p, the values of x are penalized differently.

Roughly: the shape of the penalty function is a measure of our dislike.

 L_1 norm favors sparse solutions.

Regularization with the \mathcal{L}_1 norm is a heuristic to find sparse solutions.

For example, consider the problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_1$$

Observe that:

Regularization with the ${\cal L}_1$ norm is a heuristic to find sparse solutions. For example, consider the problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_1$$

Observe that:

 \bullet For $\alpha\approx 0$, this is basically least squares.

Regularization with the ${\cal L}_1$ norm is a heuristic to find sparse solutions. For example, consider the problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_1$$

Observe that:

- \bullet For $\alpha\approx 0$, this is basically least squares.
- For $\alpha \gg 0$, the solution ${\bf x}$ will contain many zeros.

Regularization with the ${\cal L}_1$ norm is a heuristic to find sparse solutions. For example, consider the problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_1$$

Observe that:

- \bullet For $\alpha\approx 0$, this is basically least squares.
- For $\alpha \gg 0$, the solution ${\bf x}$ will contain many zeros.
- ullet Otherwise: trade-off between data fidelity and sparsity of ${f x}$.

Regularization with the ${\cal L}_1$ norm is a heuristic to find sparse solutions. For example, consider the problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{x}\|_1$$

Observe that:

- For $\alpha \approx 0$, this is basically least squares.
- For $\alpha \gg 0$, the solution ${\bf x}$ will contain many zeros.
- Otherwise: trade-off between data fidelity and sparsity of x.

Warning: This problem is not differentiable because of the L_1 norm!

Sparse problems

Consider now the general problem:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \alpha \rho(\mathbf{x})$$

for some $p \ge 1$, $\alpha \ge 0$, and regularization function ρ .

Sparse problems

Consider now the general problem:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \alpha \rho(\mathbf{x})$$

for some $p\geq 1$, $\alpha\geq 0$, and regularization function $\rho.$

It could happen that matrix ${\bf A}$ is sparse.

Sparse problems

Consider now the general problem:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \alpha \rho(\mathbf{x})$$

for some $p \ge 1$, $\alpha \ge 0$, and regularization function ρ .

It could happen that matrix ${\bf A}$ is sparse.

For example, A is tridiagonal:

$$A = \begin{pmatrix} v_1 & w_1 \\ u_2 & v_2 & w_2 \\ & u_3 & v_3 & w_3 \\ & & \ddots & \ddots & \ddots \\ & & & u_{n-1} & v_{n-1} & w_{n-1} \\ & & & & u_n & v_n \end{pmatrix}$$

Example: Graphs

A graph with n nodes can be encoded as a $n \times n$ adjacency matrix:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 1 & \cdots & \cdots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \end{pmatrix}$$

where $a_{ij}=1$ if vertex v_i is connected to v_j by an edge.

Smoothing

Derivatives as a measure of smoothness

The norm of the gradient captures the edges! Sharp images have strong gradients.

Derivatives as a measure of smoothness

The norm of the gradient captures the edges! Sharp images have strong gradients.

 $\|\nabla \mathbf{x}\|_2$ as a penalty would promote smooth solutions.

More in general, consider $\|\mathbf{D}\mathbf{x}\|$ with \mathbf{D} some differentiation operator.

More in general, consider $\|\mathbf{D}\mathbf{x}\|$ with \mathbf{D} some differentiation operator.

 $\|\mathbf{D}\mathbf{x}\|$ is a measure of the variation or smoothness of \mathbf{x} .

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \alpha \|\mathbf{D}\mathbf{x}\|_2^2$$

More in general, consider $\|\mathbf{D}\mathbf{x}\|$ with \mathbf{D} some differentiation operator.

 $\|\mathbf{D}\mathbf{x}\|$ is a measure of the variation or smoothness of \mathbf{x} .

$$\min_{\mathbf{x}} \underbrace{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2}_{\text{data term}} + \alpha \underbrace{\|\mathbf{D}\mathbf{x}\|_2^2}_{\text{smoothness}}$$

More in general, consider $\|\mathbf{D}\mathbf{x}\|$ with \mathbf{D} some differentiation operator.

 $\|\mathbf{D}\mathbf{x}\|$ is a measure of the variation or smoothness of \mathbf{x} .

$$\min_{\mathbf{x}} \underbrace{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}}_{\text{data term}} + \alpha \underbrace{\|\mathbf{D}\mathbf{x}\|_{2}^{2}}_{\text{smoothness}}$$

Example: $\mathbf{x} \in \mathbb{R}^n$ represents a function sampled at n points.

Its derivative is approximated as Δx , with Δ :

$$\begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

Example: Denoising

We are going to denoise a corrupted audio signal $\mathbf{x}_{\mathrm{cor}} :$

$$\min_{\mathbf{x}} \|\mathbf{x} - \mathbf{x}_{cor}\|_2^2 + \alpha \|\mathbf{\Delta}\mathbf{x}\|_2^2$$

with Δ defined as in the previous slide.

Now consider the noisy signal:

Smoothing will treat the jumps as noise, and attenuate them!

Now consider the noisy signal:

Smoothing will treat the jumps as noise, and attenuate them!

To preserve occasional big jumps, consider the penalty:

$$\|\mathbf{\Delta}\mathbf{x}\|_1 = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$$

with the same Δ as before.

With quadratic smoothing, this is what we get:

$$\min_{\mathbf{x}} \|\mathbf{x} - \mathbf{x}_{cor}\|_2^2 + \alpha \|\mathbf{\Delta}\mathbf{x}\|_2^2$$

Instead, the problem:

$$\min_{\mathbf{x}} \|\mathbf{x} - \mathbf{x}_{cor}\|_2^2 + \alpha \|\mathbf{\Delta}\mathbf{x}\|_1$$

uses L_1 regularization on the derivatives of the signal. It seeks a solution ${\bf x}$ with sparse discontinuities.

Instead, the problem:

$$\min_{\mathbf{x}} \|\mathbf{x} - \mathbf{x}_{cor}\|_2^2 + \alpha \|\mathbf{\Delta}\mathbf{x}\|_1$$

uses L_1 regularization on the derivatives of the signal.

It seeks a solution x with sparse discontinuities.

Suggested reading

For least squares and Tikhonov regularization, read Sections 4.1.2 and 4.1.3 of the book:

J. Solomon, "Numerical Algorithms"

For more on regularization and smoothing, read Sections 6.3.2 and 6.3.3 of the book:

Boyd and Vandenberghe, "Convex Optimization"