Predicting the missing links in an academic network——a Novel Approach

Chengyang Wu {wuchengyang@sjtu.edu.cn} School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University

Background

Knowledge Graph

Link Prediction

Terminologies

Embedding Size d: Dimension of feature vectors for each entity in the graph.

Common neighbors: A common neighbor of nodes u and \boldsymbol{v} has an edge connecting to \boldsymbol{u} and one connecting to v.

Task

Predict the missing links in an academic network.

Challenges

Various Relations: multiple categories of entities and queries. Anonymity of data: impossible to employ data mining methods for sentiment analysis.

Multiple possible answers: hard to make a rank on the

Our Approach

Deepwalk: Online Learning of Social Representations

(a) Input: Karate Graph

(b) Output: Representation

Random walks: W_{v_i} denotes a stochastic process rooted at vertex v_i . Vertices are chosen at random from the neighbors of vertex v_k . Skip Gram: Treat the generated walk as a sentence and maximize the occurrence probability among the words that appear within a

window, w, in a sentence. **Optimization:** Stochastic Gradient Descent is used to optimize these parameters. The derivatives are estimated using the backpropagation algorithm.

Zipf's law: The frequency that vertices appear in short random walks follows a similar distribution to the word frequency in natural language. The techniques used to model natural language can be re-purposed to model community structure in networks.

Language Modeling: Estimate the likelihood of a specific sequence of words appearing in a corpus.

Given $W_1^n = (\omega_0, \omega_1, \dots \omega_n)$ where $\omega_i \in \gamma$ (γ is the vocabulary), maximize the $\Pr(\omega_n | \omega_0, \omega_1, \dots, \omega_{n-1})$ over all the training corpus. Random walks can be thought of short sentences and phrases in a special language. The direct analog is to estimate the likelihood of observing vertex v_i given all the previous vertices visited so far in the random walk. $Pr(v_i|v_1, v_2, \dots, v_{i-1})$

Experiments

Setup

Dataset: Knowledge Graph from Acemap (149.6K triplets) Metrics: Mean Average Precision @3 (MAP@3):

MAP@3 =
$$\frac{1}{|U|} \sum_{u=1}^{|U|} \sum_{k=1}^{\min(3,n)} P(k)$$

where |U| is the number of queries, P(k) is the precision at cutoff k, n is the number of predicted tail.

Preprocessing: Transform the unique strings into unique numbers so as to construct edge lists and adjacent matrixes. Correspondingly, change the training dataset and test queries into triplets of numbers.

Results

0.34719 MAP@3 on the entire test dataset