Numerical Optimization

Lecture 9: Case Study: **Facility Location**

王浩

信息科学与技术学院

Email: wanghao1@shanghaitech.edu.cn

本节内容

建模:

- Uncapacitated fixed-charge location problem
- Capacitated fixed-charge location problem

求解:

- Heuristics
- Lagrange Relaxation
- Subproblem Solution
- Lower Bound and Upper Bound
- Termination

2

Facility Location (FL)

- ◆ Facilities: warehouses, retailers, or other physical facilities
- Determine the number and locations of facilities
- ◆ Extended to many other public-sectors: bus stations, fire courses, telecommunications hubs, satellite orbits, bank account, and other items...
- Mathematical (subproblems) formulations are common to see in many other MILP
- Versions of FL: uncapacitated fixed-charge location, capacitated, multi-echelon, multi-product

Uncapacitated fixed-charge location problem (UFLP)

- ◆ Problem Statement: choose facility locations in order to minimize the total cost of building the facilities and transporting goods from facilities to customers
 - two echelons: facility locations (warehouses/distribution centers (DC)) to serve fixed locations (customers)
 - each potential DC location has a fixed cost to open, known
 - transportation cost per unit of product from a DC to a customer, known
 - single product
 - DCs have no capacity restrictions
- ◆ **Objective**: to minimize the fixed cost and transportation costs
- ◆ Decision Variables: decide which DC serves each customers
- ◆ Constraints: every customer must be served by some open DC

Formulation

♦ Sets:

- I = set of customers
- J = set of potential facility locations

♦ Parameters:

- h_i = annual demand of customer $i \in I$
- $c_{ij}=$ cost to transport one unit of demand from facility $j\in J$ to customer $i\in I$
- f_i = fixed (annual) cost to open a facility at site $j \in J$

◆ Decision Variables:

- $x_i = 1$ if facility j is opened, 0 otherwise
- ullet $y_{ij}=$ the fraction of customer i's demand that is served by facility j

数值最优化

UFLP

$$\sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} c_{ij} h_i y_{ij}$$

→ 最优值记为z*

subject to

$$\sum y_{ij} = 1$$

$$\forall i \in I$$

assignment constraint

$$y_{ij} \le x_j$$

$$\forall i \in I, \ \forall j \in J$$

linking constraint

$$x_i \in \{0,1\}$$

$$\forall j \in J$$

$$y_{ij} \ge 0$$

$$\forall i \in I, \ \forall j \in J$$

alternative of linking constraint:

$$\sum_{i \in I} y_{ij} \le |I| x_j, \quad \forall j \in J$$

Solution Methods: heuristics

◆ Greedy-add

- Starting with all facilities closed and open the single facility that can serve all customers with the smallest objective
- At each iteration, open the facility that gives the largest decrease in objective
- When open one facility, assign the nearest open facility to each customer
- Stop when no facility can be opened that will decrease the objective

◆ Greedy drop

 Starting with all facilities open and close single facility gives the largest decrease in objective

Solution Methods: heuristics

- ◆ Improvement heuristics: "swap" or "exchange" algorithm
 - Starting with a feasible solution and attempt to improve it
 - At each iteration, find a pair (j, k) of facilities with j open and k closed such that if j closed and k opened, the objective would decrease
 - If such a pair can be found, the swap is made and the procedure continues
 - If not, attempt to open a closed facility or close a open facility to decrease the objective

◆ All heuristics are proved to perform well in practice, meaning they return good solutions and execute quickly

Solution Methods: Lagrangian Relaxation

- Lagrangian relaxation is a standard technique for integer programming
- ◆ Basic idea is to remove a set of constraints to create a problem that's easier to solve than the original
- ◆ To yield a lower bound on the optimal value
- Any feasible solutions provides an upper bound on the optimal value

Which constraint to relax?

- How easy the relaxed problem is to solve
- How tight the resulted lower bound is
- How many constraints are being relaxed

数值最优化 整数规划 ShanghaiTech-SIST-CS

Lagrangian Relaxation (UFLP-LR $_{\lambda}$)

◆ Relaxing the assignment constraint

subject to
$$\sum_{j \in J} y_{ij} = 1 \qquad \forall i \in I$$

$$y_{ij} \leq x_j \qquad \forall i \in I, \ \forall j \in J$$
 Easy to solve!
$$x_j \in \{0,1\} \qquad \forall j \in J$$

$$y_{ii} \geq 0 \qquad \forall i \in I, \ \forall j \in J$$

Subproblem solution

Relaxing the assignment constraint

$$\sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} (c_{ij} h_i - \lambda_i) y_{ij} = \sum_{j \in J} \left[f_j x_j + \sum_{i \in I} (c_{ij} h_i - \lambda_i) y_{ij} \right]$$

lacktriangle If $h_i c_{ij} - \lambda_i < 0$, set $y_{ij} = 1, \forall i \in I$, the objective decreases $\beta_j := \sum \min\{0, h_i c_{ij} - \lambda_i\}$

- ♦ This will set $x_j = 1$, increase in the objective f_j ; so would you do this?
- ◆ Let check the overall change:

$$\beta_j + f_j$$

Subproblem solution

- If there is a decrease, $\beta_j + f_j < 0$, set $x_j = 1$; otherwise, don't do this!
- So the subproblem solution is given by:

$$x_j = \begin{cases} 1, & \text{if } \beta_j + f_j < 0 \\ 0, & \text{otherwise} \end{cases}$$

$$y_{ij} = \begin{cases} 1, & \text{if } x_j = 1 \text{ and } h_i c_{ij} - \lambda_i < 0 \\ 0, & \text{otherwise} \end{cases}$$

lacktriangle We will use z_{LR} to denote the optimal objective value of the Lagrangian relaxed problem. Then

$$z_{LR}(\lambda) = \sum_{i \in J} \min\{0, \beta_j + f_j\} + \sum_{i \in I} \lambda_i$$

Lower bound

- ullet We have now solved the Lagrangian relaxation for given λ
- It turns out that for any λ , $z_{LR}(\lambda)$ is always a lower bound on the optimal value

Theorem: For any $\lambda \in \mathbb{R}^{|I|}$, $z_{LR}(\lambda) \leq z^*$.

Proof. Let (x, y) be a feasible solution for UFLP. Clearly it is feasible for the Lagrangian relaxed problem.

$$\sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} c_{ij} h_i y_{ij} + \sum_{i \in I} \lambda_i \left(1 - \sum_{j \in J} y_{ij} \right)^{=0}$$

Maximize the lower bound

• How do we choose the "best" λ ?

maximize $z_{LR}(\lambda)$

• Let λ^* be the optimal multiplier. Let $z_{LR} = z_{LR}(\lambda^*)$

Which is the better bound?

• Let z_{LP} be the LP relaxation of UFLP; z_{LR} and z_{LP} which one is better?

Theorem: $z_{LP} \le z_{LR}$. This is a general result for MILP!!!

Primal MILP

minimize cx

subject to Ax = b

 $Dx \leq e$

 $x \ge 0$ and integer

minimize
$$cx + \lambda(Ax - b)$$

subject to $Dx \leq e$

Lagrangian Relaxation

 $x \ge 0$ and integer

$$\begin{split} z_{\text{LR}} &= \max_{\lambda} \left\{ \left. \min_{x} \; cx + \lambda (Ax - b) \right| Dx \leq e, x \geq 0 \text{ and integer} \right\} \\ &\geq \max_{\lambda} \left\{ \left. \min_{x} \; cx + \lambda (Ax - b) \right| Dx \leq e, x \geq 0 \right\} \\ &= \max_{\lambda} \left\{ \left. \min_{x} \; (c + \lambda A)x - \lambda b \right| Dx \leq e, x \geq 0 \right\} \\ &= \max_{\lambda} \left\{ \left. \max_{\mu} \; \mu e - \lambda b \right| \mu D \leq c + \lambda A, \mu \leq 0 \right\} \\ &= \max_{\lambda, \mu} \left\{ \mu e - \lambda b \right| \mu D \leq c + \lambda A, \mu \leq 0 \right\} \\ &= \max_{\lambda, \mu} \left\{ \mu e - \lambda b \right| \mu D - \lambda A \leq c, \mu \leq 0 \right\} \\ &= \min_{y} \left\{ cy \right| Ay = b, Dy \leq e, y \geq 0 \right\} \\ &= z_{\text{LP}} \end{split}$$

Which is the better lower bound?

- ullet Generally, $z_{LP} < z^*$, so where in the gap does z_{LR} fall?
- An IP is said to have the integrality property if its LP relaxation naturally has an all-integer solution

Theorem: Let (P) be an integer program and (P-LR_{λ}) its Lagrangian subproblem for a given λ . If (P-LR_{λ}) has the integrality property for all λ , then

$$z_{LP} = z_{LR}$$

 We know the Lagrangian relaxation of UFLP must have integer solutions

Corollary: For the UFLP, $z_{LP} = z_{LR}$

Upper bound

- ullet For UFLP, we have $z_{LR}(\lambda) \leq z_{LR} = z_{LP} \leq z^* \leq z(x,y)$
- ◆ How can we find a "good" upper bound? Any feasible solution yields an upper bound, but which one is good?
- ◆ Any heuristic method mentioned previously would work.
- But we would like to convert a solution to (UFLP-LR_{λ})—how?
- If the solution to (UFLP-LR_{λ}) is feasible, then we're lucky!!
- ◆ Remember it's infeasible since the linking constraint is violated.

$$\exists i \in I$$
, s.t. $\sum_{j \in J} y_{ij} \neq 1$

- lacktriangle This mean the *i*-th customer is assigned to 0 or more than 1 facility
- ◆ Remedy!

Updating the multipliers

• What makes a good value of λ_i ? It should be chosen to entice

$$\sum_{j \in J} y_{ij} = 1 \qquad \forall i \in I$$

◆ On the objective, it appears

$$\lambda_i \left(1 - \sum_{j \in J} y_{ij} \right)$$

- If $\sum_{i \in J} y_{ij} = 0$ (< 1), then λ_i is too small; it should be increased
- If $\sum_{i \in I} y_{ij} > 1$, then λ_i is too large; it should be decreased
- If $\sum_{i \in I} y_{ij} = 1$, then λ_i is just right; it should not be changed

$$\lambda_i^{n+1} \leftarrow \lambda_i^n + t^n \left(1 - \sum_{j \in J} y_{ij}\right)$$

Initialization and Termination

- ◆ Initialization: choose λ according to
 - Set $\lambda_i = 0$, for all i
 - Set it to some random number
 - Set it according to some other ad-hoc rule

- ◆ Terminate if one of the following happens:
 - The upper bound and lower bound are less than some prespecified tolerance, say 0.1%, either in absolute or percentage terms
 - A certain number of iterations, say 1200, have passed
 - The displacement $|\lambda^{n+1} \lambda^n|$ is smaller than pre-specified tolerate

Branch and Bound

- ◆ If the Lagrangian procedure stops because the 2nd or 3rd criterion, there is no guarantee that the solution found is optimal
- ◆ If we stop and accept the best feasible solution we found without a guarantee of optimality, this means Lagrangian is treated as a heuristic
- Switching to branch and bound for an accurate solution
- ♦ At each node of the branch-and-bound tree, fixing $x_j = 1$ or 0 for branching. Then solve a Lagrangian relaxation, instead of an LP relaxation

Relaxation for Inequalities

- Generally inequality or equality constraints $c(x) \leq 1, \geq 1, = 1$
 - For \leq constraints, λ is restricted to be *non-positive*.
 - For \geq constraints, λ is restricted to be *non-negative*.
 - For = constraints, λ is unrestricted in sign.

$$\lambda_i^{n+1} \leftarrow \lambda_i^n + t^n c(x^n)$$

$$\lambda_i^{n+1} \leftarrow \lambda_i^n + t^n \max\{c(x^n), 0\}$$

$$\lambda_i^{n+1} \leftarrow \lambda_i^n + t^n \min\{c(x^n), 0\}$$

How should we update the multipliers?

Alternate Relaxation

$$\sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} h_i c_{ij} y_{ij} + \sum_{i \in I} \sum_{j \in J} \lambda_{ij} (x_j - y_{ij})$$

$$= \sum_{j \in J} \left(\sum_{i \in I} \lambda_{ij} + f_j \right) x_j + \sum_{i \in I} \sum_{j \in J} (h_i c_{ij} - \lambda_{ij}) y_{ij}$$

$$\sum_{i \in I} y_{ij} = 1 \qquad \forall i \in I$$

$$x_j \in \{0, 1\}$$
 $\forall j \in J$
 $y_{ij} \ge 0$ $\forall i \in I, \forall j \in J$

数值最优化 整数规划 ShanghaiTech-SIST-CS

23

Alternate Relaxation

(x-problem) minimize
$$\sum_{j \in J} \left(\sum_{i \in I} \lambda_{ij} + f_j \right) x_j$$

subject to
$$x_j \in \{0, 1\}$$
 $\forall j \in J$

$$(y ext{-problem})$$
 minimize $\sum_{i\in I}\sum_{j\in J}(h_ic_{ij}-\lambda_{ij})y_{ij}$

subject to
$$\sum_{j \in J} y_{ij} = 1 \quad \forall i \in I$$

$$y_{ij} \ge 0 \qquad \forall i \in I, \forall j \in J$$

Capacitated fixed-charge location problem (CFLP)

Lagrangian Relaxation (CFLP-LR $_{\lambda}$)

subject to
$$\sum_{i \in I} h_i y_{ij} \leq b_j \qquad \forall j \in J$$

$$y_{ij} \leq x_j \qquad \forall i \in I, \ \forall j \in J$$

$$x_j \in \{0,1\} \qquad \forall j \in J$$

$$y_{ii} \geq 0 \qquad \forall i \in I, \ \forall j \in J$$

Subproblem Solution

For each
$$j$$
, solve $\beta_j = \text{minimize}$ $\sum a_i z_i$

$$\beta_j =$$

$$\sum_{i \in I} a_i z_i$$

0-1 Continuous **Knapsack Problem**

subject to
$$\sum_{i \in I} h_i z_i \le b$$

$$0 \le z_i \le 1, \quad \forall i \in I$$

Here
$$a_i = h_i c_{ij} - \lambda_i$$
, $z_i = y_{ij}$, $b = b_j$

Solution: following the order
$$\frac{a_1}{h_1} \le \frac{a_2}{h_2} \le \dots \le \frac{a_{|I|}}{h_{|I|}}$$
 to set

$$z_1=1, z_2=1, \ldots$$
 until $z_m=1$ such that $\sum_{i=1}^{\infty} h_i \leq b$