Contents

L	Hali	f Wave Rectifier	1
	1.1	Aim	1
	1.2	Software Used	1
	1.3	Theory	1
	1.4	Theoretical Calculations	1
	1.5	Single Phase Half Wave Uncontrolled Rectifier with R load	2
		1.5.1 Circuit used for simulation	2
		1.5.2 Components Required	2
		1.5.3 Observations	2
		1.5.4 Resultant Waveforms	3
	1.6	Single Phase Half Wave Uncontrolled Rectifier with RL load	4
		1.6.1 Circuit used for simulation	4
		1.6.2 Components Required	4
		1.6.3 Observations	4
		1.6.4 Resultant Waveforms	5
	1.7	Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	6
		1.7.1 Circuit used for simulation	6
		1.7.2 Components Required	6
		1.7.3 Observations	6
		1.7.4 Resultant Waveforms	7
	1.8	Single Phase Half Wave Uncontrolled Rectifier with RLE load	8
		1.8.1 Circuit used for simulation	8
		1.8.2 Components Required	8
		1.8.3 Observations	8
		1.8.4 Resultant Waveforms	9
	1.9	Single Phase Half Wave Controlled Rectifier with R load	0
		1.9.1 Circuit used for simulation	0
		1.9.2 Components Required	0
		1.9.3 Observations	0
		1.9.4 Resultant Waveforms	1
	1.10	Single Phase Half Wave Controlled Rectifier with RL load	2
		1.10.1 Circuit used for simulation	2
		1.10.2 Components Required	2
		1.10.3 Observations	2
		1.10.4 Resultant Waveforms	2
	1.11	Single Phase Half Wave Controlled Rectifier with RLE load	3
		1.11.1 Circuit used for simulation	3
		1.11.2 Components Required	3
		1.11.3 Observations	4
		1.11.4 Resultant Waveforms	4
	1 12	Conclusion	5

2	Full	l Wave Rectifier	17
	2.1	Aim	17
	2.2	Software Used	17
	2.3	Theory	17
	2.4	Theoretical Calculations	17
	2.5	Single Phase Full Wave Uncontrolled Rectifier with R load	19
		2.5.1 Circuit used for simulation	19
		2.5.2 Components Required	19
		2.5.3 Observations	19
		2.5.4 Resultant Waveforms	20
	2.6	Single Phase Full Wave Controlled Rectifier with R load	21
		2.6.1 Circuit used for simulation	21
		2.6.2 Components Required	21
		2.6.3 Observations	21
		2.6.4 Resultant Waveforms	22
	2.7	Single Phase Full Wave Controlled Rectifier with RL load	23
		2.7.1 Circuit used for simulation	23
		2.7.2 Components Required	23
		2.7.3 Observations	23
		2.7.4 Resultant Waveforms	24
	28	Conclusion	25

List of Figures

1.1	Circuit for Single Phase Half Wave Uncontrolled Rectifier with R load	2
1.2	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with R load waveforms	3
1.3	Circuit for Single Phase Half Wave Uncontrolled Rectifier with RL load	4
1.4	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load	5
1.5	Circuit for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	6
1.6	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling	
	Diode	7
1.7	Circuit for Single Phase Half Wave Uncontrolled Rectifier with RLE load	8
1.8	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RLE load waveforms \dots	9
1.9	Circuit for Single Phase Half Wave Controlled Rectifier with R load (Firing Angle = 30°)	10
1.10	Scope Waveforms for Single Phase Half Wave Controlled Rectifier with R load $\ldots \ldots \ldots$	11
1.11	Circuit for Single Phase Half Wave Controlled Rectifier with RL load (Firing Angle = 30°)	12
1.12	Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RL load	13
1.13	Circuit for Single Phase Half Wave Controlled Rectifier with RLE load (Firing Angle = 30°)	14
1.14	Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RLE load	15
2.1	Circuit used for simulation	19
2.2	Scope Waveforms for Single Phase Full Wave Uncontrolled Rectifier with R load waveforms $\dots \dots$	20
2.3	Circuit used for simulation	21
2.4	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load	22
2.5	Circuit used for simulation	23
2.6	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling	
	Diode	24

List of Tables

1.1	Components for Single Phase Half Wave Uncontrolled Rectifier with R load	2
1.2	Observations for Single Phase Half Wave Uncontrolled Rectifier with R load	3
1.3	Components for Single Phase Half Wave Uncontrolled Rectifier with RL load	4
1.4	Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load	5
1.5	Components for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	6
1.6	Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	7
1.7	Components for Single Phase Half Wave Uncontrolled Rectifier with RLE load	8
1.8	Observations for Single Phase Half Wave Uncontrolled Rectifier with RLE load	9
1.9	Components for Single Phase Half Wave Controlled Rectifier with R load $\ldots \ldots \ldots \ldots$	10
1.10	Observations for Single Phase Half Wave Controlled Rectifier with R load	11
1.11	Components for Single Phase Half Wave Controlled Rectifier with RL load	12
1.12	Observations for Single Phase Half Wave Controlled Rectifier with RL load	13
1.13	Components for Single Phase Half Wave Controlled Rectifier with RLE load	14
1.14	Observations for Single Phase Half Wave Controlled Rectifier with RLE load	15
2.1	Components for Single Phase Full Wave Uncontrolled Rectifier with R load	19
2.2	Observations for Single Phase Full Wave Uncontrolled Rectifier with R load	19
2.3	Components for Single Phase Half Wave Uncontrolled Rectifier with RL load	21
2.4	Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load	22
2.5	Components for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	23
2.6	Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	24

Experiment 1

Half Wave Rectifier

1.1 Aim

Single Phase Half Wave Uncontrolled and Controlled Rectifier

1.2 Software Used

MATLAB R2020a

1.3 Theory

A single phase half wave controlled rectifier circuit consists of an AC source, a thyristor, and a load. The thyristor conducts only when a gate pulse is applied to it, triggering it into the conducting state. The triggering angle (alpha) determines when the thyristor conducts, which allows the output voltage to be controlled. When the voltage across the thyristor becomes negative, it automatically turns off, and the circuit returns to a non-conducting state. This type of rectifier is widely used in applications that require precise control of the output voltage, such as in motor speed controllers and AC/DC converters.

1.4 Theoretical Calculations

The theoretical calculations for a half-wave rectifier with an R load are given by the formulas:

$$V_{o,avg} = V_{phase} \sqrt{2(1 + cos\alpha)2\pi} = V_m (1 + cos\alpha)2\pi$$

$$I_{o,avg} = V_o R$$

In uncontrolled rectifiers, $\alpha=0$, and the thyristor is replaced with a diode. For a single-phase half-wave uncontrolled rectifier with an RMS voltage of 230V and a resistive load of 10Ω , the output voltage is 103.53V, and the output current is 10.53A.

For a single-phase half-wave controlled rectifier with an RMS voltage of 230V and a resistive load of 10Ω and a firing angle of $\alpha = 30$ °, the output voltage is 96.6V, and the output current is 9.66A.

1.5 Single Phase Half Wave Uncontrolled Rectifier with R load

1.5.1 Circuit used for simulation

Figure 1.1: Circuit for Single Phase Half Wave Uncontrolled Rectifier with R load

1.5.2 Components Required

Sr. No	Parameters	Ratings	Quantity
1	1 AC Single Phase Voltage Source		1
2	Resistor	10Ω	1
3	Diode	-	1
4	Voltmeter	-	2
5	Ammeter	-	1

Table 1.1: Components for Single Phase Half Wave Uncontrolled Rectifier with R load

1.5.3 Observations

The simulated values accurately match the theoretical values, indicating that the circuit is functioning as expected. Since the load is resistive, the output current is in phase with the output voltage. The output voltage and current waveforms demonstrate that the diode is forward-biased during the positive half-cycle of the AC source.

we obtain an efficiency of 40.34%

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	103.1V
Output Average Current $(I_{o,avg})$	10.35A	10.31A
AC Input Power (P_{AC})	2389.5 W	2636 W
DC Input Power (P_{DC})	1071.53 W	1063 W
Efficiency (%)	44.84	40.34

Table 1.2: Observations for Single Phase Half Wave Uncontrolled Rectifier with R load

1.5.4 Resultant Waveforms

Figure 1.2: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with R load waveforms

1.6 Single Phase Half Wave Uncontrolled Rectifier with RL load

1.6.1 Circuit used for simulation

Figure 1.3: Circuit for Single Phase Half Wave Uncontrolled Rectifier with RL load

1.6.2 Components Required

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	10mH	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

Table 1.3: Components for Single Phase Half Wave Uncontrolled Rectifier with RL load

1.6.3 Observations

The circuit's simulated values are in good agreement with the theoretical values. Nonetheless, the load contains an inductive component that causes the output current to lag behind the output voltage. This delay results in the diode conducting until the output current reaches zero, which causes the output voltage to become negative during this period. Once the output current reaches zero, the diode stops conducting, and the output voltage returns to zero. The efficiency of uncontrolled rectifier with RL load is 41.66%.

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	100.7V
Output Average Current $(I_{o,avg})$	10.35A	10.08A
AC Input Power (P_{AC})	2389.5 (W)	2435 (W)
DC Input Power (P_{DC})	1071.53 (W)	1015 (W)
Efficiency (%)	44.84	41.66

Table 1.4: Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load

1.6.4 Resultant Waveforms

Figure 1.4: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load

1.7 Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.7.1 Circuit used for simulation

Figure 1.5: Circuit for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.7.2 Components Required

Sr. No	Parameters	Ratings	Quantity
1	1 AC Single Phase Voltage Source :		1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

Table 1.5: Components for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.7.3 Observations

Based on the comparison between simulated and calculated values, it can be observed that the simulated output voltage is similar to the calculated voltage, while the simulated output current differs from the calculated current. The integration of the freewheeling diode causes a sudden cutoff of output current in the rectifier circuit when the source AC supply reaches zero volts, as the lagging current shifts to flow through the freewheeling diode rather than the rectifier circuit. The efficiency of uncontrolled rectifier with RL load with freewheeling diode is 44.13%.

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	103V
Output Average Current $(I_{o,avg})$	10.35A	10.3A
AC Input Power (P_{AC})	2389.5 (W)	2404 (W)
DC Input Power (P_{DC})	1071.53 (W)	1061 (W)
Efficiency (%)	44.84	44.13

Table 1.6: Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.7.4 Resultant Waveforms

Figure 1.6: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.8 Single Phase Half Wave Uncontrolled Rectifier with RLE load

1.8.1 Circuit used for simulation

Figure 1.7: Circuit for Single Phase Half Wave Uncontrolled Rectifier with RLE load

1.8.2 Components Required

Sr. No	Parameters	Ratings	Quantity
1	1 AC Single Phase Voltage Source		1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	DC Source	100V	1
6	Voltmeter	-	2
7	Ammeter	-	1

Table 1.7: Components for Single Phase Half Wave Uncontrolled Rectifier with RLE load

1.8.3 Observations

The observed simulation results show that the output voltage waveform for the RL load is similar to the input voltage waveform but with a positive DC offset. The rectification process of the circuit converts the negative half cycle of the input waveform into a positive voltage. When the output current falls to zero, the diode stops conducting, and the output voltage becomes a constant 100V, which is equal to the peak value of the input AC voltage. The efficiency of uncontrolled rectifier with RLE load is 67.88

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	148V	156V
Output Average Current $(I_{o,avg})$	5.8A	5.605A
AC Input Power (P_{AC})	2389.5 (W)	1485 (W)
DC Input Power (P_{DC})	1071.53 (W)	874.4 (W)
Efficiency (%)	44.84	58.88

Table 1.8: Observations for Single Phase Half Wave Uncontrolled Rectifier with RLE load

1.8.4 Resultant Waveforms

Figure 1.8: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RLE load waveforms

1.9 Single Phase Half Wave Controlled Rectifier with R load

1.9.1 Circuit used for simulation

Figure 1.9: Circuit for Single Phase Half Wave Controlled Rectifier with R load (Firing Angle = 30°)

1.9.2 Components Required

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1
7	Thyristor	-	1

Table 1.9: Components for Single Phase Half Wave Controlled Rectifier with R load

1.9.3 Observations

he simulation results indicate that the rectifier circuit is working as expected, and the output voltage and current follow the theoretical values accurately. As the load is purely resistive, the output current is in phase with the output voltage. The rectifier circuit is uncontrolled, and the output voltage waveform contains ripples that can be reduced by using a filter circuit. The efficiency of controlled rectifier with R load is 35.95%.

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	96.6V	95.8V
Output Average Current $(I_{o,avg})$	9.66A	9.58A
AC Input Power (P_{AC})	2214.44 (W)	2553 (W)
DC Input Power (P_{DC})	926.98 (W)	917.7 (W)
Efficiency (%)	41.86	35.95

Table 1.10: Observations for Single Phase Half Wave Controlled Rectifier with R load

1.9.4 Resultant Waveforms

Figure 1.10: Scope Waveforms for Single Phase Half Wave Controlled Rectifier with R load

1.10 Single Phase Half Wave Controlled Rectifier with RL load

1.10.1 Circuit used for simulation

Figure 1.11: Circuit for Single Phase Half Wave Controlled Rectifier with RL load (Firing Angle = 30°)

1.10.2 Components Required

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1
7	Thyristor	-	1

Table 1.11: Components for Single Phase Half Wave Controlled Rectifier with RL load

1.10.3 Observations

Once the firing gate pulse is given to the thyristor, the circuit starts conducting. Due to the inductive nature of the load, the output current lags the output voltage, which causes the diode to conduct until the output current reaches zero. During this period, the output voltage becomes negative. Once the output current becomes zero, the thyristor stops conducting, and the output voltage returns to zero. This circuit is used in applications that require half-wave rectification and is known as a half-wave uncontrolled rectifier. The efficiency of controlled rectifier with RL load is 37.99%.

1.10.4 Resultant Waveforms

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	96.6V	93.36V
Output Average Current $(I_{o,avg})$	9.66A	9.343A
AC Input Power (P_{AC})	2214.44 (W)	2296 (W)
DC Input Power (P_{DC})	926.98 (W)	872.3 (W)
Efficiency (%)	41.86	37.99

Table 1.12: Observations for Single Phase Half Wave Controlled Rectifier with RL load

Figure 1.12: Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RL load

1.11 Single Phase Half Wave Controlled Rectifier with RLE load

1.11.1 Circuit used for simulation

1.11.2 Components Required

Figure 1.13: Circuit for Single Phase Half Wave Controlled Rectifier with RLE load (Firing Angle $= 30^{\circ}$)

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	Source 230V (V_{rms})	
2	Resistor	10Ω	1
3	Inductor	10mH	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1
7	Thyristor	-	1
8	DC Source	100V	1

Table 1.13: Components for Single Phase Half Wave Controlled Rectifier with RLE load

1.11.3 Observations

Once the thyristor is triggered by a firing gate pulse, the circuit behaves like an uncontrolled half wave rectifier with an RLE load. It is observed that the output voltage waveform matches the load waveform, and the output current lags the output voltage due to the inductive component of the load. The efficiency of controlled rectifier with RL load is 58.18%.

1.11.4 Resultant Waveforms

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	96.66V	154.8V
Output Average Current $(I_{o,avg})$	9.66A	5.483A
AC Input Power (P_{AC})	2214.44 (W)	1459 (W)
DC Input Power (P_{DC})	926.98 (W)	848.6 (W)
Efficiency (%)	41.86	58.18

Table 1.14: Observations for Single Phase Half Wave Controlled Rectifier with RLE load

Figure 1.14: Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RLE load

1.12 Conclusion

The present experiment effectively utilized MATLAB's Simulink to implement single-phase half-wave rectifiers both controlled and uncontrolled - with various loads including resistive, inductive, resistive-inductive, and resistive-inductive with freewheeling diode. The resulting simulation enabled the derivation of output waveforms for voltage and current, allowing for a comparative assessment of theoretical versus simulated output parameters. Additionally, efficiency measurements were conducted for half-wave uncontrolled rectifiers operating on R load, RL load, with freewheeling diode, and RLE load, resulting in respective efficiency values of 40.34%, 41.66%, 44.13%, and 58.88%. The experiment established the half-wave uncontrolled rectifier with RLE load as possessing maximum efficiency of 58.88%. The efficiency measurements were similarly conducted for half-wave controlled rectifiers operating on R load, RL load, and RLE load, resulting in efficiency values of 35.95%, 37.99%, and 58.18%, respectively. Thus, the half-wave controlled rectifier with RLE load exhibited the highest efficiency of 58.18%.