* K-Nearest Neighour

* Can do both Reguession as well as Classification

* No assumptions.

* Multi-class classification

* Reg -> KNN Regressor Classification -> KNN Classifier

Mathematical (classification)

Data X2 Weight (9) Size (cm)

fruit 150 Mobile Peau 180

200 Pear

* New data =
$$X_1 = 160g$$
 New = $(160, 7.5)$

point $X_2 = 7.5 \text{ cm}$

Current = $(170, 8)$

(1) Calculate Euclidean distance

formula: $-\int (X_2-X_1)^2 + (Y_2-Y_1)^2$
 $d_1 = \int (160-150)^2 + (7.5-7)^2 = [0.0]$
 $d_2 = \int (160-170)^2 + (7.5-8)^2 = 10.01$

d3 = 20.02

(2) Select à <u>K</u> value

We set <u>K=3</u> (3 nearest points) de Apple

da Reau

3) Do Voting Prediction =) Apple

Mathematical (Roguession)

Data X1

Size (m)	Bedroom	Price
50		200
60	2	220
70	2	240
80	3	260
90	3	280

* New point
$$\Rightarrow$$
 $X_1 = 65m$
 $X_2 = 2$

$$X_1 = 65m$$
 New point = (65,2)
 $X_2 = 2$ Current - (50,1)

① Calculate enclidean distance
$$d_1 = \int (c_5 - 5_0)^2 + (2 - 1)^2 = 15 \cdot 03$$

$$d_2 = 5$$

$$d_3 = 5$$

$$d_4 = 15 \cdot 03$$

$$d_5 = 25 \cdot 02$$

② Select
$$K$$
We set $K=3$
 d_1
 d_2
 d_3
 d_4
 d_5
 d_4

3) Do Average

Prediction =
$$\frac{220 + 240 + 200}{3}$$

Prodiction = $\frac{220 + 240 + 200}{3}$

metric = "minkowski"

Luphenparameters

formula = $d = \left[\frac{2|\chi_2 - \chi_1|}{2} \right]$ * metric =) "minkowski" * P => power parameter => default = 2 -> exclidean

P = 1 -> manhatan

Marhattan (P=1) $d = \leq |\chi_2 - \chi_1|$ * Better with high-D data * I/P colums are categorical or discrete * Perform Well with outliers.

Eudidean (p=2) $d = \left[2 \left(\chi_2 - \chi_1 \right)^2 \right] / 2$ $= \left| \frac{2(x_2 - x_1)^2}{2} \right|$ * Poor with high-Dolata

* I/P colum are continuou * Very Sensitive to outlier.

When to use * Simple & easy * Small or medium sized datasets * Do both neg d'classification *
tasks

When Not to Use * Large datasets * High - D dataset (curse of Dimensionality) * Data has outliers (Se visitive to outliers) Y Slow -> computationally (Stoke overall data) in your memory

* Imbalanced dataset To you have not done soling it well not perform