WHAT IS CLAIMED IS:

- 1 1. A polymer electrolyte membrane comprising a quaternized
- 2 amine salt on a support matrix.

3

- 4 2. The polymer electrolyte membrane of claim 1, further
- 5 comprising a fuel cell comprising an anode and a cathode,
- 6 wherein said fuel cell is a liquid-feed fuel cell and wherein
- 7 the polymer electrolyte membrane is disposed between the anode
- 8 and cathode.

9

- 10 3. The polymer electrolyte membrane of claim 2, wherein said
- 11 fuel cell is a direct methanol fuel cell.

12

- 13 4. The polymer electrolyte membrane of claim 1, wherein the
- 14 quaternized amine salt is selected from the group consisting
- of a poly-4-vinylpyridinebisulfate, a poly-4-
- vinylpyridinebisulfate silica composite, and a combination
- 17 thereof.

18

- 19 5. The polymer electrolyte membrane of claim 1, wherein the
- 20 support matrix is selected from the group consisting of a
- 21 glass fiber matrix, a polybenzoxazole matrix, and a
- 22 polybenzimidazole matrix.

23

- 24 6. A methanol fuel cell comprising:
- 25 an anode;
- 26 a cathode;
- 27 a proton-conducting membrane comprising a quaternized amine
- 28 salt on a support matrix; and
- 29 a pump element, in fluid communication with the anode.

30

06618-920001 / CIT-3811

methanol.

31

32

33	
34	8. The fuel cell of claim 6, which is a direct methanol fuel
35	cell.
36	
37	9. The fuel cell of claim 6, wherein the quaternized amine
38	salt is selected from the group consisting of a poly-4-
39	vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica
40	composite, and a combination thereof.
41	
42	10. The fuel cell of claim 6, wherein the support matrix is
43	selected from the group consisting of a glass fiber matrix, a
44	polybenzoxazole matrix, and a polybenzimidazole matrix.
45	
46	11. A proton conducting membrane comprising a quaternized
47	polyvinylpyridine polymer or composite.
48	
49	12. The proton conducting membrane of claim 11, wherein the
50	composite comprises a nanoparticulate oxide.
51	
52	13. The proton conducting membrane of claim 12, wherein the
53	composite is a poly-4-vinylpyridine bisulfate silica.
54	
55	14. The proton conducting membrane of claim 11, wherein the
56	quaternized polyvinylpyridine is poly-4-vinylpyridine
57	bisulfate.
58	
59	15. A method of forming a proton conducting membrane
60	comprising
61	dissolving poly-4-vinylpyridine in a solvent to form a
62	mixture;

7. The fuel cell of claim 6, wherein the fuel cell uses

06618-920001 / CIT-3811

63

64	acid to obtain a precipitate;
65	recovering the precipitate;
66	mixing the precipitate with an aqueous solvent to form
67	paste; and
68	applying the paste to a support matrix.
69	
70	16. The method of claim 15, wherein the solvent is methanol
71	
72	17. The method of claim 15, wherein the precipitate is a
73	poly-4-vinylpyridine bisulfate.
74	
75	18. The method of claim 15, wherein the aqueous solvent is
76	water.
77	
78	19. The method of claim 15, wherein the support matrix is
79	sleeted from the group consisting of a glass fiber matrix, a
80	polybenzoxazole matrix, and a polybenzimidazole matrix.
81	
82	20. The method of claim 15, further comprising adding
83	nanoparticle silica to the mixture prior to adding the acid.
84	
85	21. The method of claim 20, wherein the precipitate is a
86	poly-4-vinylpyridine bisulfate silica.
87	
88	22. The method of claim 20, wherein the silica is rich in
89	surface hydroxyl groups.
90	
91	

contacting the mixture with sulfuric acid or phosphoric