1 Approximate Retrieval

Dataset $S \subset \mathbb{R}^D$, distance function $d: \mathbb{R}^D \times \mathbb{R}^D \leftarrow \mathbb{R}$

Nearest neighbour $s^* = \arg\min_{x \in S} d(q, s)$ for query q

Near duplicate detection: find all s,s' in S with distance at most ϵ

1.1 Distance Function $d: S \times S \to \mathbb{R}$

 $\forall s, t \in S : d(s, t) \ge 0$

 $\forall s: d(s,s) = 0$

 $\forall s, t : d(s, t) = d(t, s)$

 $\forall s, t, r : d(s, t) + d(t, r) \ge d(s, r)$

Cosine Distance: $d(x,y) = arccos \frac{x^T y}{||x||_2||y||_2}$

2 Linear Algebra

2.1 Vector Norms

are positive scalable, full-fill the triangular inequality, norm of 0 is 0

2.1.1 p-Norm

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

2.1.2 Euclidean Norm

p-Norm where p=2

2.1.3 1-Norm

Manhattan-Norm $||x||_1 = \sum_{i=1}^n |x_i|$

2.1.4 Zero-Norm

counts the number of non-zero entries.

2.2 Matrix Norms

2.2.1 Nuclear Norm

 $||.||_*$ sum of singular values

2.2.2 Frobenious-Norm

 $sqrt(sum(sum(A.^2)))$

2.2.3 Spectral Norm

Largest singular value if square

 $||A||_2 = \sigma_{max}(A)$ Is equals to the 2-Norm

2.2.4 Induced Matrix Norms

$$||A|| = max\left(\frac{||Ax||}{||x||}\right)$$

2.3 Orthogonality

2.3.1 Vectors

inner (scalar) product $\langle ., . \rangle = 0$

2.3.2 Matrices

quadratic, values are in \mathbb{R} , $Q^T = Q^{-1}$

2.3.3 Functions

f(x) orth. to g(x) if $0 = \int f(x)g(x)dx$

2.3.4 Coherence

 $m(U) = \max_{i,j:i \neq j} |u_i^T u_j|$

2.3.5 Convexity

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$