Ordenes parciales

Clase 13

IIC 1253

Prof. Cristian Riveros

Tipos de relaciones (resumen)

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja: $\forall a \in A$. $(a, a) \notin R$.
- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 6. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.
- 7. Conexa: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿es posible **caracterizar** cada propiedad en termino de operaciones entre relaciones?

Recordatorio: operaciones entre relaciones

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Unión: $R_1 \cup R_2$ son todos los pares (x, y) tal que $(x, y) \in R_1$ o $(x, y) \in R_2$.

$$R_1 \cup R_2 = \{(x,y) \mid (x,y) \in R_1 \text{ o } (x,y) \in R_2\}$$

Intersección: $R_1 \cap R_2$ son todos los pares (x, y) tal que $(x, y) \in R_1$ y $(x, y) \in R_2$.

$$R_1 \cap R_2 = \{(x,y) \mid (x,y) \in R_1 \text{ y } (x,y) \in R_2\}$$

Recordatorio: operaciones entre relaciones

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

■ Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

Relación identidad: I_A contiene solo los pares (x,x) para todo $x \in A$.

$$I_A = \{(x,x) \mid x \in A\}$$

Caracterización de propiedades en termino de operaciones

Teorema

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

- 1. R es refleja ssi $I_A \subseteq R$.
- 2. R es irrefleja ssi $R \cap I_A = \emptyset$.
- 3. R es simétrica ssi $R = R^{-1}$.
- 4. R es asimétrica ssi $R \cap R^{-1} = \emptyset$.
- 5. R es antisimétrica ssi $R \cap R^{-1} \subseteq I_A$.
- 6. R es transitiva ssi $R \circ R \subseteq R$.
- 7. R es conexa ssi $R \cup R^{-1} = A \times A$.

Demostración: ejercicio.

Outline

Ordenes parciales

Ejemplos

Representación

Outline

Ordenes parciales

Ejemplos

Representación

¿en qué se parecen estas relaciones?

- subconjunto: $A \subseteq B$
- menor o igual: $n \le m$
- divide a: a | b

Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Ejemplos

- subconjunto: $A \subseteq B$
- menor o igual: n ≤ m
- divide a: a | b

¿cómo comparamos el 6 con el 9 en la relación "divide a"?

Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Notación

Un orden parcial sobre A los denotaremos como (A, \leq) .

Ordenes totales

Sea A un conjunto y (A, \leq) un orden parcial.

Definición

Decimos que un orden parcial (A, \leq) es un orden total si \leq cumple ser:

Conexo: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿cuál de los ordenes parciales anteriores son totales?

Outline

Ordenes parciales

Ejemplos

Representación

Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$\left(i_1,i_2\right) \ \leq_2 \ \left(j_1,j_2\right) \quad \text{ si, y solo si, } \quad \left(i_1 \neq j_1 \rightarrow i_1 < j_1\right) \ \land \ \left(i_1 = j_1 \rightarrow i_2 \leq j_2\right)$$

Ejemplos

- $(2,100) \leq_2 (3,5)$?
- $(2,5) \leq_2 (2,100)$?
- $(2,5) \leq_2 (2,3)$?

Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$(i_1,i_2) \leq_2 (j_1,j_2) \qquad \text{si, y solo si,} \qquad (i_1\neq j_1\rightarrow i_1 < j_1) \ \land \ (i_1=j_1\rightarrow i_2 \leq j_2)$$

¿qué propiedades cumple \leq_2 ?

- 1. $es \le 2$ refleja?
- 2. $es \le 2$ antisimétrica?
- 3. $ies \le_2 transitiva$?

Por lo tanto, \leq_2 es un **orden parcial**.

Orden lexicográfico

En general, si (A, \leq) es un orden parcial, entonces siempre podemos definir un orden parcial sobre $A \times A$.

Definición

Sea (A, \leq) un orden parcial.

Se define la relación \leq_2 entre pares en $A \times A$ como:

$$(a_1, a_2) \le_2 (b_1, b_2)$$
 si, y solo si, $(a_1 \ne a_2 \rightarrow a_1 \le a_2) \land (a_1 = a_2 \rightarrow b_1 \le b_2)$

Demuestre que \leq_2 es un **orden parcial**.

- La relación \leq_2 se conoce como el **orden lexicográfico** en $A \times A$.
- Para todo k, es posible definir \leq_k sobre A^k . (¿cómo?)

Alfabetos, letras y palabras

Definiciones

- Un alfabeto Σ es un conjunto finito de elementos.
- Un elemento $a \in \Sigma$ lo llamaremos una letra o símbolo.
- Una palabra w sobre Σ es una secuencia finita de letras en Σ .

Ejemplo

- $\Sigma = \{a, b, c\}$ es un alfabeto con tres letras.
- aa, abbca, o acaabaa son palabras.

Alfabetos, letras y palabras

Definiciones

■ El largo |w| de una palabra w sobre Σ es el número de letras.

$$|w| \stackrel{\mathsf{def}}{\equiv} \# \mathsf{de} \mathsf{letras} \mathsf{en} w$$

 $lue{}$ Denotaremos ϵ como la palabra vacía de largo 0.

$$|\epsilon| \stackrel{\mathsf{def}}{\equiv} 0$$

■ Denotaremos por Σ^* como el conjunto de todas las palabras sobre Σ .

Ejemplo

- $\Sigma = \{a, b\}$ es un alfabeto con dos letras.
- $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\}$

Concatenación de palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$:

$$u \cdot v \stackrel{\text{def}}{\equiv} u \text{ concatenado con } v$$

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

Ejemplo

- aab·bab = aabbab
- bc · aabbc = bcaabbc
- $\epsilon \cdot abaca = abaca$

Concatenación de palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$:

$$u \cdot v \stackrel{\text{def}}{\equiv} u \text{ concatenado con } v$$

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

Preguntas

- ¿es la concatenación asociativa: $(u \cdot v) \cdot w = u \cdot (v \cdot w)$?
- ¿es la concatenación **conmutativa**: $u \cdot v = v \cdot u$?

¿por qué nos podría interesar trabajar con palabras?

Relaciones entre palabras

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

Ejemplos

- aaab ≤_p aaabba ? ✓
- bab ≤_s baab? X
- cba ≤i aabbcbaaa ? ✓

Relaciones entre palabras

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$u \leq_p v$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$

$$u \le_s v$$
 si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$

$$u \le_i v$$
 si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

¿qué propiedades cumple \leq_p , \leq_s o \leq_i ?

- 1. j es \leq_p , \leq_s o \leq_i refleja?
- 2. j es \leq_{p} , \leq_{s} o \leq_{i} anti-simétrica?
- 3. j es \leq_n , \leq_s o \leq_i transitiva?

Outline

Ordenes parciales

Ejemplos

Representación

¿podemos simplificar la visualización de este grafo?

Para simplificar la visualización del grafo podemos:

- Remover loops.
- Remover aristas "transitivas"

Definición

El diagrama de Hasse de (A, \leq) es el diagrama del grafo de \leq pero:

- se omiten los loops.
- $(a,b) \in \subseteq$ se omite si existe un c tal que $(a,c) \in \subseteq$ y $(c,b) \in \subseteq$.

orden < sobre \mathbb{N}

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots$$

Diagrama de Hasse de (\mathbb{N}, \leq)

Definición

El diagrama de Hasse de (A, \leq) es el diagrama del grafo de \leq pero:

- se omiten los loops.
- $(a,b) \in \Delta$ se omite si existe un c tal que $(a,c) \in \Delta$ y $(c,b) \in \Delta$.

¿cómo se ve el orden parcial ⊆?

Diagrama de Hasse de $(\mathcal{P}(\{1,2,3\}),\subseteq)$

¿cómo se ve el orden lexicográfico \leq_2 ?

Diagrama de Hasse del orden lexicográfico $(\mathbb{N} \times \mathbb{N}, \leq_2)$

¿cómo se ve el orden parcial \leq_p sobre palabras?

Diagrama de Hasse de (Σ^*, \leq_p)

¿qué tienen de parecido todos estos grafos?