Russian patent 2024560 - Translation of paragraph (57)only

(57) Use: the production of polymer materials. The essence of the invention: composition comprising the following components, % by mass: silica 2-3, diamide of methylphosphonic acid 10-125, ammonium chloride 8-10, aliphatic polyamide or propylen as the balance with the diamide of methylphosphonic acid and ammonium chloride being used in a ratio of 1:08 respectively. 2 Tables

	•			
		(6		
			. 1	
			-8	
 a e			ů.	
. •				
			. •	
			- 1	
			•	
				4

Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

(21) 4951912/05

(22) 28.06.91

(46) 15.1294 Fior No 23

(71) Московская государственная текстильная академия имАНКосытина

(72) Зубкова Н.С.; Сукачева Э.Д.; Тюганова М.А.

(73) Московская государственная текстильная академия имАНКосыгина

(56) Shen KK zinc Gorates. Plastic Compounding.

1985, v.8, N5, p.66-80.

Халтуринский Н.А. Попова Т.В. Берлин А.А. Горение полимеров и механизм действия антилиренов— Услехи химим, 1984, т.53, N.2, с.326—346. Авторское свидетельство СССР N 1427017, кл. D 06M 13/44, onyon. 1988.

Патент США N 4879332, кл. 524-436, опубл.

(54) ОГНЕЗАЦИЩЕННАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ

(57) Использование: получение полимерных материалов. Сущность изобретения: композиция содержит спедующие компоненты, мас.%: двужний кремния 2 — 3; диамид метилфосфоновой киспоты 10 — 125; хпорид аммония 8 — 10; алифатический полимид или пропилен остальное, причем диамид метилфосфоновой киспоты и хпорид аммония используют в соотношении 1:08 соответственно. 2 табл

Изобретение относится к области высокомолекулярных соединений, в частности получению полимерных материалов с пониженной горючестью.

Огнезащитные полимерные композиции могут быть использованы в радистехнике, самолетостроении, судостроении, в также при формовании огнезащищенных волокон и получении стеклопластиков.

Известны огнезащитные полимерные 10 композиции на основе поликапроамида, включающие бораты или фосфаты металлов и оксидов металлов, в частности триоксид сурьмы и оксид алюминия.

Для повышения эффективности огнеза- 15 щитного действия в композицию дополнительно вводят полибромированные алкены, алкендиолы и т.д.

Аддитивная добавка в полимере составляет преимущественно 8,0-20% от массы 20 полимера.

Известно, что применение галогенорганических соединений приводит к повышению дымообразующей способности материала и, таким образом, ограничивает 25 области применения огнезащитных полимерных композиций.

Известно использование составов, включающих диамид метилфосфоновой кислоты и хлорид аммония, для получения огне- 30 защитных текстильных материалов из смеси целлюлозных и полиэфирных воло-KOH.

Данный состав при введении его в ПКА композиции не обеспечивает получения ог- 35 незащитных материалов.

Ближайшим по технической сущности и достигаемому эффекту является композиция, включающая до 15% синтетического силиката, содержащего до 70% SIO2 и 10- 40 45% MgO и CaO. В качестве полимерных термопластов используют, в частности, найлон-6 (поликапроамид) и полипропилен. Существенным недостатком указанной композиции является высокое содержание низкомолекулярного наполнителя, вызывающего понижение прочно-

Целью изобретения является повышение огнезащитных свойств полимерной композиции.

Представленная цель достигается тем, что в качестве неорганического соединения кремния композиция содержит SiO₂ и дополнительно диамид метилфосфоновой кислоты (ДАМФК) и хлорид аммония (NH4Cl) при соотношении ДАМФК: NH4Cl, равном 1:0,8, при следующем содержании компонентов композиции, мас. %:

2-3 Двуокись кремния Диамид метилфосфо-10-12,5 новой кислоты Хлорид аммония 8-10 Алифатический поли-

амид или пропилен Остальное В соответствии с изобретением используют: диамидметилфосфоновой кислоты структурной формулы

CH3 - P 11 0.

NH₂ (TY 6-02-3-322-87), двускись кремния - аэросил А-300 (ГОСТ 14922-77), хлорид аммония NH4CI (ГОСТ 3773-60),

В композицию вводят полимерное связующее:

поликапроамид - ПКА 6-210/310 (ОСГ 6-06-09-83),

мол. масса - 14500-15000, полипропилен а ПП (ТУ 6-05-1756-78 марка 21130),

молекулярная масса 400000 - 450000. Изобретение иллюстрируется следуюшими примерами.

Пример 1. Композиция, включающая 75.5 г ПКА, 2,0 г SiO₂, 12,5 г ДАМФК и 10 г NH₄Cl, подается в шнековый экструдер, состоящий из пяти зон. Формование проводится при следующих температурах по зонам: I зона - 240°, II зона - 230°, III зона – (вал смесителя) – 170°С, IV зона (загрузочный шнек) - 170°C, V зона (фильерная головка) – 250°C. Число оборотов шнека – 200–240 об/мин. Композиция подается в первую зону экструдера, продвигается по шнеку, в котором происходит плавление ПКА, смешение компонентов и их гомогенизация. Гомогенный расплав с добавками через промежуточную зону поступает в фильерную головку. Свежесформованная жилка охлаждается в ванне с водой (+18-25°C) и поступает на тянущее устройство. Толщина жилки регулируется числом оборотов тянущих валков.

Пример 2. Аналогично примеру 1, но 79 г ПКА смешивают с 30 г SIO₂, 10 г ДАМФК, 8 г NH4Cl и используют для формования пластиков или жилки.

. Пример 3. Аналогично примеру 1, по соотношению компонентов: 4,0 г SiO₂, 12.5 г ДАМФК и 10 г NH4CI смешивают с 73,5 г ПАН.

Пример 4. Аналогично примеру 1, 76,7 г ПКА смешивают с 0.8 г SIO₂ и 12,5 г ДАМФК и 10 r NH₄Cl. Формование пластиков в шнековой машине.

Пример 5. Аналогично примеру 1,70 г ПКА смешивают с 3,0 г SiO₂, 12.5 г

ДАМФК и 10 г NH4Cl и загружают в бункер шнековой машины для формования жилки.

Пример 6.74,5 гПКА смешивают с 3,0 г SIO₂, 12,4 г ДАМФК и 10 г NH₄Cl и 5 загружают в бункер шнековой машины для формования жилки.

Примет 1. Англогично примеру 1. Композицию, включающую 77,5 г ПКА. формования пластиков.

Пример 8. Аналогично примеру 1. К 75 г ПКА добавляют 25 rSIO2 и после перемешивания применяют для формования пластиков.

Пример 9. Аналогично примеру 1. 75,5 г ПП смешивают с 2,0 г SIO2, 12,5 г ДАМФК и 10 г NH4Cl и подают в экструдер шнековой машины,

Пример 10. Аналогично примеру 1 20 получают композицию, включающую 79 г ПП, 23,0 г SiO2, 10 г ДАМФК, и 8 г NH4Cl используют для формования жилки.

Пример 11. Аналогично примеру 9. 73.5 г ПП смешивают с 4,0 г SiO₂, 12,5 г 25 ДАМФК и 10 г NH4Cl и применяют для формования пластиков.

Пример 12. Аналогично примеру 9. 76.7 г ПП смешивают с 0,8 г SIO₂, 12,5 ДАМФК и 10 r NH4Cl,

Пример 13. 70 гПП крошек смешивают с 3,0 г SIO2, 15 г ДАМФК и 12 г NH4CI и используют для формования пластика.

Пример 14, 74,5 гПП смешивают с 3.0 r SIO₂, 12.5 r ДАМФК и 10 r NH₄Cl.

Пример 15. Композиция, содержащая 77,5 r ПП, 12,5 r ДАМФК и 10 r NH4Cl, применяется для формования пластика.

Пример 16. Композицию, содержа-12,5 г ДАМФК и 10 г NH4Cl применяют для 10 щую 75% ПП и 25 SIO2, перерабатывают на шнековой машине.

> Пример 17 (прототип). Композиция, содержащая 50 г ПП, 15% синтетического силиката (содержание SIO2 до 70%) и 50% NH4CI перерабатывается на шнековой ма-

> Результаты, полученные при использовании композиции, приведены в табл. 1 и 2.

Как видно из приведенных данных, получение огнезащитной полимерной композиции обеспечивается содержанием в ней SIO₂ 2-3, AAMOK 12-10, NH₄Cl 10-8%, npu этом установлен факт синергетического повышения отнезащитных свойств полимерного материала в присутствии кремний и фосфорсодержащих соединений.

Предлагаемая композиция имеет то преимущество, что введение в нее оксида кремния приводит к повышению прочности 30 изделий, в частности ПКА жилки.

Пример	Тип полимера	Co	став огнезации	ценной компози	ной композиции	
·		полимер -	SIO ₂	ДАМФК	NH4CI*	
1	ПКА	75,5	2,0	12,5	10	
2	ПКА	79	3,0	10,0	8	
3	ПКА	73,5	4,0	12,5	10	
. 4	ПКА	76,7	0,8	12,5	10	
: 5	ПКА	70	3,0	15,0	12	
6	ПКА	75				
7	ПКА			12,5	10	
8	ПКА	75	25			
9	nn	75,5	2,0	12,5	10	
10	חח	79.0	3,0	10,0	8.0.	
11	nn	73,5	4,0	12,5	10,0	
12	nn	76,7	8,0	12,5	10.0	
· 13	nn	70,0	3,0	15,0	12	
14.	nn	74,5	3.0	12,5	10	
15.	nn	77,5		12,5	10	
. 16	nn	75 .	25	[-		
Прототип		F		.]	,	
17	nn	. 50 .	3,0	5.0		

Продолжение табл. 1

Пример	Содержание в огнезащищенной композиции			ки, 00
	.21	Р	CI	%
1	0,93	2,7	6,6	28.1
2	1,40	2,3	5.9	29,3
3 ~	1,76	2,8	6,5	29,9
4	0,37	2,7	6,6	26,9
5	1,33	3,6	7,5	29,8
6		3,01	6,6	29,8
7			1	25,0
8	11,0	2,6]	18
9	0,89	2,2	6,3	
10	1,39	2,6	6,4	30,1
11	1,81	2,7	6,3	31,1
12	0,41	2,5	6.4	31,5
13	1,36	3,6	6.7	26.7
14	1,30	2,9	6,9	31,9
15			7.7	31,9
16	10,6		1	26,1
Прототип	1			19,0
17			1	29,8

* Соотношение ДАМФК: NH4CI = 1:0.8

Таблица 2

Физико-механические показатели огнезащищенной ПКА жилки

		Состав композици	Прочность на	Удлинение, %	
	SIO ₂	ДАМФК	NH4CI	разрыв, Н	
. 115	0,8 3,0 4,0	12,5 12,5 12,5 12,5 12,5	10 10 10 10	17,4 21,2 23,7 20,9	9,5 10,8 12,0 10,5

Формула изобретения

ОГНЕЗАЩИЩЕННАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ, содержащая алифатический полиамид или полипропилен и неорганическое соединение кремния, отличающаяся тем, что в качестве неорганического соединения кремния композиция содержит двускись кремния и дополнительно диамид метилфосфоно-

вой кислоты и хлорид аммония, взятые в соотношении 1: 0,8 соответственно, при следующем соотношении компонентов композиции, мас. %:

Двуокись кремния 2 - 3 Диамид метилфосфоновой кислоты 10,0 - 12,5 Хлорид аммония 8 - 10 Алифатический полиамид или полипропилен Остальное

Редактор 3, Никольская Техред М.Моргентал Корректор Е. Папп

Заказ 991 Тираж Подписное НПО "Поиск" Роспатента 113035, Москва, Ж-35, Раушская наб., 4/5

.