Интеграл Лебега

Дальнейший материал будет разбираться менее детальнее, поскольку для него есть отдельный курс действительного анализа.

Опр: 1. Пусть у нас есть тройка (X, \mathcal{A}, μ) , где μ - σ -аддитивная, конечная, неотрицательная мера. Эта тройка называется измеримым пространством.

Опр: 2. Функция $f: X \to \mathbb{R}$ называется \mathcal{A} -измеримой, если: $\forall c \in \mathbb{R}, \{x: f(x) < c\} \in \mathcal{A}$.

Rm: 1. Можно показать, что это определение равносильно следующему:

$$\forall B \in \mathcal{B}(\mathbb{R}), f^{-1}(B) \in \mathcal{A}$$

Эти моменты обсуждаются на действительном анализе.

Теорема 1. (Свойства измеримых функций)

- 1) Если f,g \mathcal{A} -измеримы, тогда: f+g и $f\cdot g$ \mathcal{A} -измеримы;
- 2) Пусть $h: \mathbb{R} \to \mathbb{R}$ непрерывная функция, а f A-измерима, тогда h(f(x)) A-измерима;
- 3) Если $\forall x, \ f(x) = \lim_{n \to \infty} f_n(x), \ f_n$ $\mathcal A$ -измеримы, то f $\mathcal A$ -измерима;

Упр. 1. Если $h: \mathbb{R} \to \mathbb{R}$ - непрерывная функция, то $\forall B \in \mathcal{B}(\mathbb{R}), h^{-1}(B) \in \mathcal{B}(\mathbb{R}).$

 \square Рассмтрим все множества E, для которых $h^{-1}(E) \in \mathcal{B}(\mathbb{R})$:

$$\mathcal{A} = \{ E \mid h^{-1}(E) \in \mathcal{B}(\mathbb{R}) \}$$

Дальше легко проверяется, что \mathcal{A} это σ -алгебра, а поскольку h - непрерывная, то эта σ -алгебра содержит все открытые множества \Rightarrow поскольку борелевская минимальная, то \mathcal{A} содержит все борелевские множества \Rightarrow проверили, что прообраз борелевского - борелевский.

Rm: 2. Обычно, перед обсуждением измеримости рассматривают две ситуации:

(1) Имеется множество X с σ -алгеброй \mathcal{A} и множество Y без σ -алгебры. Пусть есть отображение: $f: X \to Y$, тогда следующее множество является σ -алгеброй:

$$\mathcal{B} = \{ E \subset Y \colon f^{-1}(E) \in \mathcal{A} \}$$

(2) Имеется множество X без σ -алгебры и множество Y с σ -алгеброй \mathcal{B} . Пусть есть отображение: $f: X \to Y$, тогда следующее множество является σ -алгеброй:

$$\mathcal{A} = \{ f^{-1}(B) \mid B \in \mathcal{B} \}$$

Полезно также доказать, что если имеется отображение $f\colon X\to Y$ и на Y есть некоторое семейство подмножеств S, тогда верно:

$$f^{-1}(\sigma(S)) = \sigma(f^{-1}(S))$$

где $\sigma(S)$ - σ -алгебра порожденная семейством S.

Важный частный случай: Пусть μ - внешняя мера и \mathcal{A}_{μ} - измеримые относительно μ множества. Тогда измеримые относительно \mathcal{A}_{μ} функции называют μ -измеримыми.

Сходимости измеримых функций

Пусть $(X, \mathcal{A}_{\mu}, \mu)$ - ИП, считаем, что μ на X - конечна и далее будем рассматривать μ -измеримые функции. Пусть имеется последовательность f_n и функция f. У нас будет 3 вида сходимостей:

- (I) Равномерная сходимость: $f_n \stackrel{E}{\rightrightarrows} f$;
- (II) Сходимость μ почти всюду (μ п.в.): $f_n \xrightarrow{\mu$ п.в. f, если: $\mu(\{x\colon f_n(x)\nrightarrow f\})=0$;
- (III) Сходимость по мере: $f_n \stackrel{\mu}{\Longrightarrow} f$, если $\forall \delta > 0$, $\mu\left(\left\{x \colon |f_n(x) f(x)| \ge \delta\right\}\right) \xrightarrow[n \to \infty]{} 0$;

Теорема 2. Пусть μ -конечная мера. Тогда:

- 1) $(I) \Rightarrow (II) \Rightarrow (III);$
- 2) (**Теорема Егорова**): Если $f_n \xrightarrow{\mu \text{ п.в.}} f$, то:

$$\forall \varepsilon > 0, \ \exists \ X_{\varepsilon} \colon f_n \overset{X_{\varepsilon}}{\Longrightarrow} f \land \mu(X \setminus X_{\varepsilon}) < \varepsilon$$

3) (**Теорема Рисса**): Если $f_n \stackrel{\mu}{\Longrightarrow} f$, то $\exists f_{n_k} \colon f_{n_k} \stackrel{\mu \text{ п.в.}}{\longleftrightarrow} f$;