Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3 - 4i + i(4 - i) = 3 - 4i + 4i - i^{2} =$	3 p
	=3+1=4	2p
2.	f(1)=2	2p
	$(f \circ f)(1) = f(f(1)) = f(2) = 0$	3 p
3.	$x^2 - 2x + 6 = 6$, deci $x^2 - 2x = 0$	2p
	x = 0 sau $x = 2$, care convin	3 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 4 numere divizibile cu 3 și cu 7, deci sunt 4 cazuri favorabile, de unde obținem $p = \frac{4}{90} = \frac{2}{45}$	3 p
5.	$A\left(\frac{a+b}{2}, \frac{b+b}{2}\right)$	3p
	a=2 şi $b=4$	2p
6.	Triunghiul ABD este dreptunghic în D și $BD = 8$	3 p
	$AD = \sqrt{100 - 64} = 6$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$B(2) = \begin{pmatrix} 3 & 5 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(B(2)) = \begin{vmatrix} 3 & 5 \\ 1 & 3 \end{vmatrix} = 3 \cdot 3 - 5 \cdot 1 =$	3р
	=9-5=4	2p
b)	$B(0) \cdot B(1) = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ -2 & -4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} = 2A$	3p
	aA = 2A, de unde obținem $a = 2$	2p
c)	$A \cdot B(x) = \begin{pmatrix} 3x - 1 & 6x - 1 \\ -3x + 1 & -6x + 1 \end{pmatrix}, \text{ pentru orice număr real } x, A \cdot (B(0) - 3I_2) = \begin{pmatrix} -4 & -7 \\ 4 & 7 \end{pmatrix}$	3p
	$\begin{pmatrix} 3x-1 & 6x-1 \\ -3x+1 & -6x+1 \end{pmatrix} = \begin{pmatrix} -4 & -7 \\ 4 & 7 \end{pmatrix}, \text{ de unde obținem } x = -1$	2p
2.a)	$f = X^3 + 2X^2 - 3 \Rightarrow f(1) = 1^3 + 2 \cdot 1^2 - 3 =$	3 p
	=1+2-3=0	2 p
b)	$f(-1) = (-1)^3 + 2(-1)^2 + m(-1) - 3 = -m - 2$	3 p
	-m-2=0, de unde obţinem $m=-2$	2p
c)	$(1-x_1)(1-x_2)(1-x_3) = f(1) = m$, pentru orice număr real m	3 p
	$x_1 x_2 x_3 = 3$, deci $m = 3$	2p

SUBIECTUL al III-lea (30 de puncte)

COLL	(So de puncto		
1.a)	$f'(x) = \frac{6x(x^2 + x - 2) - 3x^2(2x + 1)}{(x^2 + x - 2)^2} =$	3p	
	$= \frac{3x^2 - 12x}{\left(x^2 + x - 2\right)^2} = \frac{3x(x - 4)}{\left(x^2 + x - 2\right)^2}, \ x \in (1, +\infty)$	2 p	
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x^2}{x^2 + x - 2} = \lim_{x \to +\infty} \frac{3}{1 + \frac{1}{x} - \frac{2}{x^2}} = 3$	3p	
	Dreapta de ecuație $y = 3$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p	
c)	$f'(x) \le 0$, pentru orice $x \in (1,4] \Rightarrow f$ este descrescătoare pe $(1,4]$	2p	
	$1 < x \le 2 \Rightarrow 1 < x^2 \le 4$, deci $f(x) \ge f(2)$ și $f(x^2) \ge f(4)$ și, cum $f(2) = 3$ și $f(4) = \frac{8}{3}$, obținem $f(x) + f(x^2) \ge \frac{17}{3}$, pentru orice $x \in (1,2]$	3p	
2.a)	$\int_{3}^{7} \frac{f(x)}{(x-1)^{2}} dx = \int_{3}^{7} x dx = \frac{x^{2}}{2} \Big _{3}^{7} = $	3p	
	$=\frac{49}{2} - \frac{9}{2} = 20$	2p	
b)	$\int_{2}^{3} \frac{x}{f(x)} dx = \int_{2}^{3} \frac{(x-1)'}{(x-1)^{2}} dx = -\frac{1}{x-1} \Big _{2}^{3} =$	3 p	
	$=-\frac{1}{2}+1=\frac{1}{2}$	2p	
c)	$\int_{0}^{1} \frac{xf(e^{x})}{e^{x}} dx = \int_{0}^{1} x(e^{x} - 1)^{2} dx = \int_{0}^{1} x\left(\frac{e^{2x}}{2} - 2e^{x}\right)^{2} dx + \frac{x^{2}}{2} \Big _{0}^{1} =$	3p	
	$= x \left(\frac{e^{2x}}{2} - 2e^x \right) \Big _0^1 - \left(\frac{e^{2x}}{4} - 2e^x \right) \Big _0^1 + \frac{1}{2} = \frac{e^2 - 5}{4}$	2p	