Developing Low Temperature Contacts for Monolayer TMD Heterostructure Devices

Vanessa Kwong

Dr. Andrew Joe

University of California, Riverside, Department of Physics and Astronomy

Background

Semiconductor transition metal dichalcogenide (TMD) devices bring efficiency to electronics.

- Silicon-based chip
- Direct band gap in the monolayer limit, by which a photon can be emitted without the aid of a phonon

WSe₂ and device quality through Photoluminescence (PL)

Device Fabrication Method

Mechanical Exfoliation

- Scotch tape cleaves bulk material at where vdW forces < chemical bonds
- An array of replicated, sheared bulk material pressed down onto substrate.
- O₂ plasma organic materials
- Heating of tapes varied adhesion

Graphite, h-BN (illustrated), and WSe₂ onto wafer chips

 WSe_2 monolayers (Measurements scaled at 100x on 90nm SiO_2)

Dry Transfer

- Stacking of samples through picking up and dropping off with PDMS/PC stamp on microscope slide
- Heating / cooling of stamp for adhesiveness

Patterning

950 PMMA A4

+ heat

- · Alignment marks and pre-patterned contacts
- Unique pattern superimposed on alignment marks with transferred on with identical coordinates

SiO₂ substrate, ideally high R

E-beam lithography (EBL) etches design out of polymer

E-beam
evaporation
(EBE) deposits
material onto
surface

Pattern in material revealed on substrate

Single-gated device with graphite contact to prepattern

Au vs Pt

Applied voltage values ——— Wavelength and intensity of light emitted (PL)

Electron doping

Low Temperature (T = 1.7K) 600 1000 PL Intensity (a.u.) 0.5 -Voltage (V) -1 -750 800 700 Wavelength (nm)

Horizontal linecuts of PL plots

Linecut fitted to Lorentzian function

800

900

700

Wavelength (nm)

750

700

650

600

w = 8.4 meV

w = 2 - 4 meV at 4K (Zhou, et al. Nat. Nanotech.)

Conclusion

- With current data, we continue with the fabrication of a device with Hall bar patterning
- Current data determine quality of WSe₂
- Guidance for PL

Our reference brings us closer to the ultimate goal of our research of measuring charged transport in developed contacts for WSe₂

Acknowledgements

University of California, Riverside, Department of Physics and Astronomy

Prof. Andrew Joe

Zhihan Wu Hongyu Yao SM Umayer Martin Ochoa Louis Lin

Center for Nanoscale Science & Engineering

Dong Yan Mohammad Alghamdi

Jing Shi Research
Group

Jia-Mou Chen

External

National Institute for Materials Science

2D materials - hBN

Takashi Taniguchi Kenji Watanabe

References

Barbone, Matteo, et al. "Charge-tunable biexciton complexes in monolayer WSe₂." *Nature Communications*, **9**, 3721, Sept. 2018. DOI: https://doi.org/10.1038/s41467-018-05632-4

Chen, Xiaotong, et al. "Excitonic Complexes in Two-Dimensional Transition Metal Dichalcogenides." *Nature Communications*, **14**, 8233, Dec. 2023. DOI: https://doi.org/10.1038/s41467-023-44119-9

Fallahazad, Babak, et al. "Shubnikov-de Haas oscillations of high mobility holes in monolayer and bilayer WSe₂: Landau level degeneracy, effective mass, and negative compressibility." *Physical Review Letters*, **116**, Feb. 2016. DOI: https://doi.org/10.1103/PhysRevLett.116.086601.

Joe, Anderew Y., et al. "Transport Study of Charge Carrier Scattering in Monolayer WSe₂." *Physical Review Letters*, **132**, Jan 2024. DOI: https://doi.org/10.1103/PhysRevLett.132.056303.

Liu, Erfu, et al. "Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe₂." *Physical Review Research*, **1**, 3, Oct. 2019. DOI: https://doi.org/10.1103/PhysRevResearch.1.032007

Tuan, Dinh Van, et al. "Six-Body and Eight-Body Exciton States in Monolayer WSe₂." *Physical Review Letters*, **129**, Aug. 2022. DOI: https://doi.org/10.1103/PhysRevLett.129.076801

Zhou, You, et al. "Probing dark excitons in atomically thin semiconductors via near-field to surface plasmon polaritons." *Nature Nanotechnology*, **106**, Jun. 2017. DOI: https://doi.org/10.1038/nnano.2017.106