

(Lu Yuan 1 Dongdong Chen¹ Yi-Ling Chen¹ Noel Codella¹ Xiyang Dai¹ Jianfeng Gao² Houdong Hu¹ Xuedong Huang¹ Boxin Li¹ Chunyuan Li² Ce Liu¹ Mengchen Liu¹ Zicheng Liu¹ Yumao Lu¹ Yu Shi¹ Lijuan Wang¹ Jianfeng Wang¹ Bin Xiao¹ Zhen Xiao¹ Jianwei Yang² Michael Zeng¹ Luowei Zhou¹ Pengchuan Zhang²)

Presenter: Kyungjin Cho

Mail: kjcho.amc@gmail.com

2022.01.12

Contents

- 1. Introduction
- 2. Related Work
- 3. Methods
- 4. Experiments
- 5. Conclusion

Related Work

Florence achieves new state-of-the-art results in majority of 44 representative benchmarks, ~

Methods

Preliminary brief

- New CV foundation model
- Expand the representations from
 - coarse(scene) to fine (object)
 - static (images) to dynamic (videos)
 - RGB to multiple modalities (caption, depth, chest X-ray)
- Incorporates universal visual-language representations from Web-scale image-text data
- Can be easily adapted for various computer vision tasks
 - o CLS, OD, VQA, Retrieval,,

Methods

Conclusions

Related Work

Introduction

The term of foundation model was first introduced in (Bommasani et al., 2021) to refer to any model that is trained from broad data at scale that is capable of being adapted (e.g. fine-tuned) to a wide range of downstream tasks.

5 https://arxiv.org/pdf/2108.07258.pdf

Visual foundation model

Introduction

BERT, GPT3

CLIP, ALIGN, Wu Dao 2.0

- Efficient transfer learning
- Zero-shot capability.

Visual foundation model

"What is the foundation model for computer vision?"

- 1) Space: from coarse (e.g. scene-level classification) to fine-grained (e.g. object detection)
- 2) Time: from static (e.g. images) to dynamic (e.g. videos)
- 3) Modality: from RGB only to multiple senses (e.g. captioning and depth)

Foundation models for computer vision to be a pre-trained model and its adapters for solving all vision tasks in this **Space-Time Modality** space.

Experiments

Conclusions

Ecosystem of constructing Visual foundation models

Related Work

Data curation

Introduction

- o Diverse, large-scale data (million) is the lifeblood of foundation models
- Model pretraining
 - two-tower architecture including an image encoder and a language encoder.
 ex) CLIP, ALIGN, (Contrastive learning)
 image encoder: Swin, CvT, Vision Longformer, Focal Transformer, and CSwin (Vision transformer)

Methods

- Task adaptations
 - extensible and transferable
 - 1. space (from scene to objects) using the dynamic head adapter (Self attention method)
 - 2. time (from static image to videos) via proposed video CoSwin adapter (Vision transformer)
 - 3. modality (from images to language) via METER adapter (Masked image modeling)
- Training infrastructure
 - o ZeRO, activation checkpointing, mixed-precision training, gradient cache (Training method)

♦ Florence

Data curation

- Construct a FLD-900M from 3 billion Internet images and their descriptions.
- Respecting legal and ethical constraints
- Short caption, non-english, overlapped image, similar image, redundant image, redundant text, etc.,
- 9.7M unique queries(1 caption, many corresponding images)

Unified Image-Text Contrastive learning

- CLIP implicitly assumes that each image-text pair has its unique caption, which allows other captions to be considered negative examples.
- However, in web-scale data, multiple images can be associated with identical captions.
- Image-text triplet (x, t, y) x: image t: language description, y: language label
- All image-text pairs mapped to the same label *y* are regarded as positive in our universal image-text contrastive learning.
- Our empirical experiments indicate that **long language descriptions** with rich content would be more beneficial for image-text representation learning than **short descriptions** (e.g., one or two words). "A photo of the [WORD]", "A cropped photo of [WORD]"

Unified Image-Text Contrastive learning

$$u = \frac{f_{\theta}(x)}{\|f_{\theta}(x)\|} \quad v = \frac{f_{\phi}(x)}{\|f_{\phi}(x)\|}$$

$$\mathcal{L} = \mathcal{L}_{i2t} + \mathcal{L}_{t2i}.$$

$$\mathcal{L}_{i2t} = -\sum_{i \in \mathcal{B}} \frac{1}{|\mathcal{P}(i)|} \sum_{k \in \mathcal{P}(i)} \log \frac{\exp(\tau \boldsymbol{u}_i \boldsymbol{v}_k)}{\sum_{j \in \mathcal{B}} \exp(\tau \boldsymbol{u}_i \boldsymbol{v}_j)}, \text{ where } k \in \mathcal{P}(i) = \{k | k \in \mathcal{B}, y_k = y_i\}$$

$$\mathcal{L}_{t2i} = -\sum_{j \in \mathcal{B}} \frac{1}{|\mathcal{Q}(j)|} \sum_{k \in \mathcal{Q}(j)} \log \frac{\exp(\tau \boldsymbol{u}_k \boldsymbol{v}_j)}{\sum_{i \in \mathcal{B}} \exp(\tau \boldsymbol{u}_i \boldsymbol{v}_j)}, \text{ where } k \in \mathcal{Q}(j) = \{k | k \in \mathcal{B}, y_k = y_j\}$$

- image encoder : f_{θ} , text encoder : f_{ϕ} normalized visual feature vector: v
- Adam optimizer, weight decay, model parameter (893M)
- image size : 224 × 224 (80K iterations, fine-tuning 384 × 384), maximum language description length : 76
- Batch size 24,576 (takes 10 days to train on 512 NVIDIA-A100 GPUs.)
- CoSwin transformer was used.
- Two linear projection layers are added the dimensions of image and language features.

♦ Adaptation models (Object-level Visual Representation Learning)

Dynamic Head

- Coarse(scene) to fine (object) *level* × *space* × *channel*
- FLOD-9M (for FLorence Object detection Dataset)
 - LVIS, OpenImages, Object365, ImageNet-22K (with pseudo-labeling)
- Batch size 128 (takes 7 days)

13

♦ Adaptation models (Fine-Grained V+L Representation Learning)

METER

- Visual question answering, image captioning, fine-grained representation
- Language Encoder (RoBERTa)
- Image-text matching loss and masked-language modeling loss

Related Work

♦ Adaptation models (Adaption to Video Recognition)

Video CoSwin

2D conv → 3D conv

Introduction

- 3D convolution-based patch merging operator
- 2D shifted window design with 3D shifted local windows in self-attention layers

Introduction	Related Work	Methods	Experiments	Conclusions
--------------	--------------	---------	-------------	-------------

Image classification

Florence: A New Foundation Model for Computer Vision

	Food101	CIFAR10	CIFAR100	SUN397	Stanford Cars	FGVC Aircraft	VOC2007	DTD	Oxford Pets	Caltech101	Flowers 102	ImageNet
CLIP-ResNet-50x64	91.8	86.8	61.3	48.9	76.0	35.6	83.8	53.4	93.4	90.6	77.3	73.6
CLIP-ViT-L/14 (@336pix)	93.8	<u>95.7</u>	77.5	68.4	78.8	37.2	84.3	55.7	93.5	92.8	78.3	76.2
FLIP-ViT-L/14	92.2	95.7	75.3	73.1	70.8	60.2	-	60.7	92.0	93.0	90.1	78.3
Florence-CoSwin-H (@384pix)	95.1	94.6	<u>77.6</u>	<u>77.0</u>	93.2	55.5	<u>85.5</u>	<u>66.4</u>	<u>95.9</u>	<u>94.7</u>	86.2	<u>83.7</u>

Table 1. Zero-shot transfer of image classification comparisons on 12 datasets: CLIP-ResNet-50x64 (Radford et al., 2021), FLIP-ViT-L/14 (Yao et al., 2021).

Florence: A New Foundation Model for Computer Vision

	riorene	c. A ne	v Found	ation Mic	der for C	ompute	VISION				
	Food101	CIFAR10	CIFAR100	SUN397	Stanford Cars	FGVC Aircraft	VOC2007	DTD	Oxford Pets	Caltech101	Flowers102
SimCLRv2-ResNet-152x3	83.6	96.8	84.5	69.1	68.5	63.1	86.7	80.5	92.6	94.9	96.3
ViT-L/16 (@384pix)	87.4	97.9	89.0	74.9	62.5	52.2	86.1	75.0	92.9	94.7	99.3
EfficientNet-L2 (@800pix)	92.0	98.7	89.0	75.7	75.5	68.4	89.4	82.5	95.6	94.7	97.9
CLIP-ResNet-50x64	94.8	94.1	78.6	81.1	90.5	67.7	88.9	82.0	94.5	95.4	98.9
CLIP-ViT-L/14 (@336pix)	95.9	97.9	87.4	82.2	91.5	71.6	89.9	83.0	95.1	96.0	99.2
Florence-CoSwin-H (@384pix)	<u>96.2</u>	97.6	87.1	<u>84.2</u>	<u>95.7</u>	<u>83.9</u>	90.5	<u>86.0</u>	<u>96.4</u>	<u>96.6</u>	<u>99.7</u>

Table 2. Comparisons of image classification linear probing on 11 datasets with existing state-of-the-art models, including Sim-CLRv2 (Chen et al., 2020c), ViT (Dosovitskiy et al., 2021a), EfficientNet (Xie et al., 2020), and CLIP (Radford et al., 2021).

Model	Params	Data	Accuracy			
Wiodei	Fatallis	Data	Top-1	Top-5		
BiT-L-ResNet152x4	928M	300M	87.54	98.46		
ALIGN-Efficient-L2	480M	1800M	88.64	98.67		
ViT-G/14	1843M	3000M	90.45	=		
CoAtNet-7	2440M	3000M	90.88	-		
Florence-CoSwin-H	637M	900M	90.05	99.02		

Table 3. Classification fine tuning on ImageNet-1K. Florence is compared with: BiT-L-ResNet152x4 (Kolesnikov et al., 2020), ALIGN-Efficient-L2 (Jia et al., 2021), ViT-G/14 (Zhai et al., 2021), CoAtNet-7 (Dai et al., 2021c) in terms of model scale, data scale and Top-1/Top-5 accuracy.

♦ Few-shot Cross-domain Classification

		F	Flickr30K (1K test se	t)	N	ASCOCO	(5K test se)	et)
	R R R	Image	\rightarrow Text	$Text \rightarrow Image$		Image → Text		$Text \rightarrow Image$	
		R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
	ImageBERT (Qi et al., 2020)	70.7	90.2	54.3	79.6	44.0	71.2	32.3	59.0
	UNITER (Chen et al., 2020d)	83.6	95.7	68.7	89.2	-	-	-	-
Zero-shot	CLIP (Radford et al., 2021)	88.0	98.7	68.7	90.6	58.4	81.5	37.8	62.4
	ALIGN (Jia et al., 2021)	88.6	98.7	75.7	93.8	58.6	83.0	45.6	69.8
	FLIP (Yao et al., 2021)	89.8	99.2	75.0	93.4	61.3	84.3	45.9	70.6
	Florence	90.9	99.1	76.7	93.6	64.7	85.9	47.2	71.4
	GPO (Chen et al., 2020a)	88.7	98.9	76.1	94.5	68.1	90.2	52.7	80.2
	UNITER (Chen et al., 2020d)	87.3	98.0	75.6	94.1	65.7	88.6	52.9	79.9
	ERNIE-ViL (Yu et al., 2020)	88.1	98.0	76.7	93.6	-	-	-	-
Fine-tuned	VILLA (Gan et al., 2020)	87.9	97.5	76.3	94.2	-	-	@5 R@1 1.2 32.3	-
	Oscar (Li et al., 2020)	-	-	-		73.5	92.2	57.5	82.8
	ALIGN (Jia et al., 2021)	95.3	99.8	84.9	97.4	77.0	93.5	59.9	83.3
	FLIP (Yao et al., 2021)	96.6	100.0	87.1	97.7	78.9	94.4	61.2	84.3
	Florence	97.2	99.9	87.9	98.1	81.8	95.2	63.2	85.7

ISIC **EuroSAT** CropDisease ChestX ISIC EuroSAT CropD ChestX mean Model CW 57.4 88.1 29.7 96.6 68.0 5-shot Florence 57.1 90.0 97.7 29.3 **68.5** CW 68.1 94.7 99.2 38.3 75.1 20-shot Florence 72.9 37.5 95.8 99.3 76.4 CW 74.1 96.9 99.7 44.4 78.8 50-shot Florence 78.3 97.1 99.6 42.8 79.5

Table 4. Comparison with CW (Liu et al., 2020) (CD-FSL Challenge 2020 Winner) on CD-FSL benchmark. The average result comparison is 74.8 (Florence) vs. 73.9 (CW).

Table 5. Image-text retrieval comparisons on Flickr30K and MSCOCO datasets (zero-shot and fine-tuned).

For zero-shot retrieval, we feed the input text (or image) to the language (or image) encoder of Florence to get the feature embeddings, and also compute the feature embeddings of the set of possible images (or texts) by the image (or language) encoder.

Object Detection and Zero-shot Transfer

Benchmark	Model	AP
	DyHead	60.3
COCO miniVal	Soft Teacher	60.7
	Florence	62.0
	DyHead	60.6
COCO test-Dev	Soft Teacher	61.3
	Florence	60.0 62.0 62.0 62.0 33.0 39.0 13.0
Obi+265	Multi-dataset Detection	33.7
Object365	Florence	39.3
Visual Genome	VinVL	13.8
visuai Genome	Florence	16.2

Table 6. Object detection fine tuning comparisons with state-of-the-art methods, including DyHead (Dai et al., 2021a), Soft Teacher (Xu et al., 2021b), Multi-dataset Detection (Zhou et al., 2021), VinVL (Zhang et al., 2021b).

Florence: A New Foundation Model for Computer Vision

		Aquarium	BCCD	Chess Pieces	Mask Wearing	Oxford Pets	Packages	Pistols	PKLot	Pothole	Thermal	Wildfire Smoke
	Images	638	364	292	149	3680	26	2986	12416	665	203	737
	Categories	7	3	12	2	37	1	1	2	1	2	1
Fine-tuned	DyHead-Swin-L (full)	53.1	62.6	80.7	52.0	85.9	52.0	74.4	98.0	61.8	75.9	58.7
ғ іне-іинеа	DyHead-Swin-L (5-shot)	39.0	40.6	57.3	26.8	47.5	32.8	20.0	22.1	10.8	54.9	14.2
Zero-shot	ZSD	16.0	1.2	0.1	0.6	0.3	58.3	31.5	0.2	2.4	37.4	0.002
	Florence	43.1	15.3	13.4	15.0	68.9	79.6	41.4	31.4	53.3	46.9	48.7

Table 7. Zero-shot transfer in object detection, in comparison with previous state-of-the-art model DyHead (Dai et al., 2021a) (on COCO) fine tuning results on full-set or 5-shot respectively and zero-shot detection baseline model ZSD (Bansal et al., 2018).

♦ Image-text retrieval comparisons

		I	Flickr30K (1K test se	t)	N	ASCOCO ((5K test se)	et)
	ImageBERT (Qi et al., 2020) UNITER (Chen et al., 2020d) CLIP (Radford et al., 2021) ALIGN (Jia et al., 2021) FLIP (Yao et al., 2021) Florence GPO (Chen et al., 2020a) UNITER (Chen et al., 2020d) ERNIE-VIL (Yu et al., 2020)	Image	$Image \rightarrow Text$		$Text \rightarrow Image$		\rightarrow Text	Text -	Image
		R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
	ImageBERT (Qi et al., 2020)	70.7	90.2	54.3	79.6	44.0	71.2	32.3	59.0
	UNITER (Chen et al., 2020d)	83.6	95.7	68.7	89.2	-	-	-	-
Zero-shot	CLIP (Radford et al., 2021)	88.0	98.7	68.7	90.6	58.4	81.5	37.8	62.4
	ALIGN (Jia et al., 2021)	88.6	98.7	75.7	93.8	58.6	83.0	45.6	69.8
	FLIP (Yao et al., 2021)	89.8	99.2	75.0	93.4	61.3	84.3	45.9	70.6
	Florence	90.9	99.1	76.7	93.6	64.7	85.9	47.2	71.4
	GPO (Chen et al., 2020a)	88.7	98.9	76.1	94.5	68.1	90.2	52.7	80.2
	UNITER (Chen et al., 2020d)	87.3	98.0	75.6	94.1	65.7	88.6	52.9	79.9
	ERNIE-ViL (Yu et al., 2020)	88.1	98.0	76.7	93.6	-	-	π.	-
Fine-tuned	VILLA (Gan et al., 2020)	87.9	97.5	76.3	94.2	-	-	=	-
	Oscar (Li et al., 2020)	-	-	-	-	73.5	92.2	57.5	82.8
	ALIGN (Jia et al., 2021)	95.3	99.8	84.9	97.4	77.0	93.5	59.9	83.3
	FLIP (Yao et al., 2021)	96.6	100.0	87.1	97.7	78.9	94.4	61.2	84.3
	Florence	97.2	99.9	87.9	98.1	81.8	95.2	63.2	85.7

Table 5. Image-text retrieval comparisons on Flickr30K and MSCOCO datasets (zero-shot and fine-tuned).

For zero-shot retrieval, we feed the input text (or image) to the language (or image) encoder of Florence to get the feature embeddings, and also compute the feature embeddings of the set of possible images (or texts) by the image (or language) encoder.

♦ Take home message

