

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

ENGLISH SCHOOL-CLASSICS

EDITED BY FRANCIS STORR, M.A., CHIEF MASTER OF MODERN SUBJECTS IN MERCHANT TAYLORS' SCHOOL.

THOMSON'S SEASONS: Winter.
With an Introduction to the Series. By the Rev. J. F. BRIGHT. 12.

COWPER'S TASK.

By Francis Storr, M.A. 2s. Part I. (Book I.—The Sofa; Book II.—The Timepiece) 9d. Part II. (Book III.—The Garden; Book IV.—The Winter Evening) 9d. Part III. (Book VI.—The Winter Morning Walk; Book VI.—The Winter Walk at Noon) 9d.

SCOTT'S LAY OF THE LAST MINSTREL.

By J. SURTERS PHILLPOTTS, M.A., Head-Master of Bedford Grammar School. 2s. 6d.; or in Four Parts, 9d. each.

SCOTT'S LADY OF THE LAKE.

By R. W. TAYLOR, M.A., Head-Master of Kelly College, Tavistock. 2s.; or in Three Parts, od. each.

NOTES TO SCOTT'S WAVERLEY.

By H. W. EVE, M.A., Head-Master of University College School, London. 15.: WAVERLEY AND NOTES, 25. 6d.

TWENTY OF BACON'S ESSAYS. By FRANCIS STORR, M.A. 15.

SIMPLE POEMS.

By W. E. MULLINS, M.A., Assistant-Master at Marlborough College. &d.

SELECTIONS FROM WORDSWORTH'S POEMS.

By H. H. TURNER, B.A., late Scholar of Trinity College, Cambridge. 18. WORDSWORTH'S EXCURSION: The Wanderer. By H. H. Turner, B.A. 18.

MILTON'S PARADISE LOST.

By FRANCIS STORR, M.A. Book I. od. Book II. od.

MILTON'S L'ALLEGRO, IL PENSEROSO, AND LYCIDAS. By EDWARD STORR, M.A., late Scholar of New College, Oxford. 12.

SELECTIONS FROM THE SPECTATOR.

By OSMUND AIRY, M.A., late Assistant-Master at Wellington College. 15.

BROWNE'S RELIGIO MEDICI.

By W. P. Smith, M.A., Assistant-Master at Winchester College. 15.

GOLDSMITH'S TRAVELLER AND DESERTED VILLAGE. By C. SANKEY, M.A., Assistant-Master at Marlborough College. 15.

EXTRACTS from GOLDSMITH'S VICAR OF WAKEFIELD. By C. SANKEY, M.A. 18.

POEMS SELECTED from the WORKS OF ROBERT BURNS. By A. M. Bell, M.A., Balliol College, Oxford. 25.

MACAULAY'S ESSAYS: MOORE'S LIFE OF BYRON. By Francis Storr, M.A. 9d.
BOSWELL'S LIFE OF JOHNSON. By Francis Storr, M.A. 9d.
HALLAM'S CONSTITUTIONAL HISTORY. By H. F. Boyd, late Scholar of Bratenose College, Oxford. 15.

SOUTHEY'S LIFE OF NELSON. By W. E. MULLINS, M.A. 2s. 6d.

GRAY'S POEMS with JOHNSON'S LIFE AND SELECTIONS from GRAY'S LETTERS. By Francis Storr, M.A. 16.

Waterloo Place, Pall Mall, London,

RIVINGTONS' MATHEMATICAL SERIES

By J. HAMBLIN SMITH, M.A.,

of gonville and caius college, and late lecturer at St. Peter's college, Cambridge.

Arithmetic. 3s. 6d. A Key, 9s.

Algebra. Part I. 3s. Without Answers, 2s. 6d. A Kay, 9s.

Exercises on Algebra. Part I. 2s. 6d. [Copies may be had without the Answers.]

Elementary Trigonometry. 4s. 6d. A KEY, 7s. 6d.

Elements of Geometry.

Containing Books 1 to 5, and portions of Books 11 and 12 of EUCLID, with Exercises and Notes. 3s. 6d. A KEY, 8s. 6d. PART I., containing Books 1 and 2 of EUCLID, may be had

PART I., containing Books 1 and 2 of EUCLID, may be h separately.

Elementary Hydrostatics. 35. A Key, 65
Elementary Statics. 35.

Book of Enunciations

FOR HAMBLIN SMITH'S GROMETRY, ALGEBRA, TRIGONO-METRY, STATICS, AND HYDROSTATICS. 15.

The Study of Heat. 3s.

By E. J. GROSS, M.A.,

FELLOW OF GONVILLE AND CAIUS COLLEGE, CAMBRIDGE, AND SECRETARY TO THE OXFORD AND CAMBRIDGE SCHOOLS EXAMINATION BOARD.

Algebra, Part II. 8s. 6d.

Kinematics and Kinetics, 5s. 6d.

By G. RICHARDSON, M.A.,

ASSISTANT-MASTER AT WINCHESTER COLLEGE, AND LATE FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE.

Geometrical Conic Sections. 4s. 6d.

Waterloo Place, Pall Mall, London.

A KEY

то

ELEMENTARY TRIGONOMETRY

BY

J. HAMBLIN SMITH, M.A.

OF GONVILLE AND CAIUS COLLEGE,
AND LATE LECTURER AT ST. PETER'S COLLEGE, CAMBRIDGE

SECOND EDITION

DEC 1582

WATERLOO PLACE, LONDON

MDCCCLXXXII

183. g. 922

[c-490.]

PREFACE.

I HAVE to acknowledge most gratefully the assistance rendered me in the preparation of this book by Mr. T. H. Gascoigne, son of the Rev. T. Gascoigne, of Spondon House School, Derby. For the solutions of a few of the Problems I am indebted to Mr. Gaskin's Trigonometrical Examples, and to Mr. Hymers' Trigonometry. I shall be glad to receive corrections of errors that may be discovered in my work.

CAMBRIDGE, October 1876.

43.

i			·		1
3					
i					
			·		

ELEMENTARY TRIGONOMETRY.

KEY.

EXAMPLES-I. (pp. 1, 2).

- (1) 4 feet 6 inches = 54 inches; ∴ number is 54.
- (2) 15 feet 2 inches = 182 inches; \therefore number is 182 \div 7, or, 26.
- (3) Unit of square measurement is $(192 \div 12)$ square inches, or, 16 square inches; ... unit of linear measurement is $\sqrt{16}$ inches, or, 4 inches.
- (4) Unit of square measurement is $(1000 \div 40)$ square inches, or, 25 square inches; \therefore unit of linear measurement is $\sqrt{25}$ inches, or, 5 inches.
- (5) Unit of cubic measurement is $(216 \div 8)$ cubic inches, or, 27 cubic inches; \therefore unit of linear measurement is $\sqrt[3]{27}$ inches, or, 3 inches.
- (6) Unit of cubic measurement is $(2000 \div 16)$ cubic inches, or, 125 cubic inches; ... unit of linear measurement is $\sqrt[3]{125}$ inches, or, 5 inches.
 - (7) Measure of 1 yard is $\frac{1}{a}$;
 - .. measure of 1 foot is $\frac{1}{3a}$;
 - \therefore measure of b feet is $\frac{b}{3a}$.

- (8) Length of line is (5×6) inches, or, 30 inches; ∴ second unit is (30÷4) inches, or, 7½ inches.
- (9) Length of line is 1 yard, or, 36 inches;
 ∴ second unit is (36÷36) inches, or, 1 inch;
 and third unit is (36÷12) inches, or, 3 inches.
- (10) The ratio is $3\frac{1}{4}: 3\frac{1}{2} \times 36$, or, $3\frac{1}{4}: 126$, or, $13: 126 \times 4$, or, 13: 504.
- (11) The measure of 1 yard is $\frac{c}{m}$;
 - \therefore the measure of 1 foot is $\frac{c}{3m}$;
 - \therefore the measure of *n* feet is $\frac{nc}{3m}$.

EXAMPLES-II. (p. 3).

- (1) Length of other side = $\sqrt{(51)^2 (24)^2}$ yards = $\sqrt{2601 576}$ yards = $\sqrt{2025}$ yards = 45 yards.
- (2) Length of hypothenuse $=\sqrt{8^2+6^2}$ feet $=\sqrt{64+36}$ feet $=\sqrt{100}$ feet =10 feet.
- (3) Diagonal = $\sqrt{(225)^2 + (120)^2}$ yards = $\sqrt{65025}$ yards = 255 yards.
- (4) Diagonal = $\sqrt{\{(300)^2 + (200)^2\}}$ yards = $\sqrt{130000}$ yards = 360.5 . . . yards.
- (5) Length = $\frac{2\frac{1}{2} \times 4840}{88}$ yards = (2.5×55) yards = 137.5 yards; diagonal = $\sqrt{((137.5)^2 + (88)^2)}$ yards = $\sqrt{26650.25}$ yards = 163.25 yards, nearly.
- (6) Let x+y, x, x-y be the length of the sides in feet. Then $(x+y)^2=x^2+(x-y)^2$, or, $x^2+2xy+y^2=x^2+x^2-2xy+y^2$, or, $4xy=x^2$, and $\therefore x=4y$. Hence x+y=5y, and 5y=20 feet, and $\therefore y=4$ feet. Hence the other sides are 16 feet and 12 feet.

- (7) Proceeding as in Example (6), we get x+y=5y; x=4y; x-y=3y.

 Hence the sides are as 3y; 4y; 5y, that is, as 3; 4; 5.
- (8) Let AB=36 feet, and DE=27 feet; CA, CE being the two positions of the ladder. Then since ACE is a right angle, ∠ ACB, ECD, are together equal to a right angle.

But $\angle^a ACB$, CAB are together equal to a right angle, and \therefore \angle $ECD = \angle$ CAB. Hence in \triangle s ABC, CDE.

right $\angle ABC$ =right $\angle CDE$, and $\angle CAB = \angle ECD$, and AC = CE; $\therefore BC = ED$, and AB = CD; (Euclid, I. XXVI.) \therefore width of street = (27+36) feet = 63 feet,

and length of ladder $=\sqrt{(27)^2+(36)^2}$ feet $=\sqrt{2025}$ feet =45 feet.

- (9) Let x=length of each of the equal sides in feet. Then $x^2+x^2=(12)^2$, or, $2x^2=144$, or, $x^2=72$, or, $x=6\sqrt{2}$.
- (10) Diagonal = $\sqrt{25+25}$ inches = $\sqrt{50}$ inches = $5\sqrt{2}$ inches.
- (11) Each side of square $=\sqrt{390625}$ feet =625 feet; \therefore diagonal $=\sqrt{\{(625)^2+(625)^2\}}$ feet $=\sqrt{2\cdot(625)^2}$ feet $=625\sqrt{2}$. feet.
- .: AB=2.BD. Let x= measure of length of AD. Then $x^2=(13)^2-\left(\frac{13}{2}\right)^2$ $=(13)^2\{1-\frac{1}{4}\}=(13)^2\cdot\frac{3}{4}$. .: $x=\frac{13\sqrt{3}}{2}$.

(12) AD bisects BC.

(13) Taking the diagram in Example 12, let measure of AB be x.

Then
$$x^2 = \frac{x^2}{4} + (15)^2$$
;

$$\therefore 3x^2 = 4 \times (15)^2, \text{ or, } x^2 = \frac{4 \times (15)^2}{3} = \frac{4 \times (15)^2 \times 3}{9};$$

$$\therefore x = \frac{2 \times 15 \sqrt{3}}{3} = 10 \sqrt{3}.$$

(14) OD, a perpendicular from the centre on the chord AB, bisects AB.

Let x=measure of OD in inches.

Then
$$x^2 = (OA)^2 - (AD)^2$$

= $(37)^2 - (35)^2 = 144$:

 \therefore distance = $\sqrt{144}$ inches = 12 inches.

(15) Taking the diagram of Example (14).

Let measure of AD in inches be x. Then $x^2 = (181)^2 - (180)^2 = 361$;

 $\therefore x=19$, and $\therefore AB=(2\times 19)$ inches=38 inches.

(16) Taking the diagram of Example (14).

Let measure of AO in feet be x.

Then $x^2 = (308)^2 + (75)^2 = 100489$;

 $\therefore x=317$, and \therefore diameter= (2×317) feet=634 feet.

$$(17) (AC)^2 + (BC)^2 = (AB)^2.$$

$$\therefore 2(AC)^2 = (AB)^2$$
;

$$\therefore \frac{(AC)^2}{(AB)^2} = \frac{1}{2};$$

$$\therefore \frac{AC}{AB} = \frac{1}{\sqrt{2}}.$$

(18) Let x be the measure of EG.

Then 2x is the measure of ED; and measure of $DG = \sqrt{(4x^2 - x^2)} = \sqrt{3} \cdot x$;

 $\therefore EG:ED:DG=x:2x:\sqrt{3}.x$

 $=1:2:\sqrt{3}$.

Examples—III. (p. 9).

(1) Circumference =
$$\frac{22 \times 5}{7}$$
 feet = $\frac{110}{7}$ feet = $15\frac{5}{7}$ feet.

(2) Radius =
$$\frac{7 \times 542.5}{44}$$
 feet = $\frac{3797.5}{44}$ feet = 86.30681 feet.

(3) Train goes in a second
$$\frac{22 \times 12}{7}$$
 feet.
Rate in miles per hour $= \frac{22 \times 12 \times 60 \times 60}{7 \times 3 \times 1760} = \frac{180}{7} = 25.714285$.

(4) Diameter in miles =
$$\frac{7 \times 25000}{22}$$
 = $7954\frac{6}{11}$.

(5) Circumference in miles =
$$\frac{22 \times 883220}{7}$$
 = 2775834 $\frac{2}{7}$.

(6) Radius in miles =
$$\frac{7 \times 6850}{44} = \frac{23975}{22} = 1089\frac{17}{22}$$
.

(7) Circumference in feet=
$$\frac{22 \times 12\frac{1}{2} \times 2}{7} = \frac{22 \times 25}{7}$$
;

$$\therefore \frac{1}{12}$$
 of circumference $= \frac{22 \times 25}{12 \times 7}$ feet $= 6$ feet 6\$ inches.

(8) Circumference in feet
$$=\frac{22 \times 21}{7}$$
;

$$\therefore \$ \text{ of circumference} = \frac{22 \times 21 \times 5}{7 \times 7} \text{ feet} = 47 \frac{1}{7} \text{ feet}.$$

(9) If x be the side of the square, $(diameter)^2 = 2x^2$;

$$\therefore x = \frac{\text{diameter}}{\sqrt{2}} = \frac{7 \times 150}{22 \times \sqrt{2}} \text{ feet} = \frac{7 \times 150 \times \sqrt{2}}{22 \times \sqrt{2} \times \sqrt{2}} \text{ feet} = \frac{525\sqrt{2}}{22} \text{ feet.}$$

(10)
$$x = \frac{\text{diameter}}{\sqrt{2}} = \frac{7 \times 200}{22 \times \sqrt{2}} \text{ feet} = \frac{7 \times 200 \times \sqrt{2}}{22 \times 2} \text{ feet} = \frac{350 \sqrt{2}}{11} \text{ feet.}$$

(11) Point goes in a minute
$$\frac{22 \times 12 \times 30}{7}$$
 feet.

Rate in miles per hour =
$$\frac{22 \times 12 \times 30 \times 60}{7 \times 1760 \times 3} = \frac{90}{7} = 12$$
.

(12) End goes in a minute
$$\frac{22 \times 2 \times 15 \times 21}{7}$$
 feet.

Rate in miles per hour =
$$\frac{22 \times 2 \times 15 \times 21 \times 60}{7 \times 3 \times 1760} = \frac{45}{2} = 22\frac{1}{2}$$
.

Examples—IV. (p. 12).

 $\therefore 24^{\circ}. 16'. 5'' = 24^{\circ} \cdot 26805$

(2)
$$60 \quad \frac{43}{2.716} \quad 04527$$

 \therefore 37°. 2′. 43″=37°·04527

∴ 175°.0′. 14″=175.0038.

$$\begin{array}{c|cccc}
(4) & 60 & 28 \\
60 & 5.46 \\
\hline
& 091
\end{array}$$

.: 5'. 28"= ·091°.

 \therefore 375°. 4′=375°·06.

∴ 78°. 12′. 4″=78°·201.

EXAMPLES-V. (p. 13).

- (1) 25s. 14'. 25'' = 25s. 1425.
- (4) 15'. 7"·45 = ·150745s.
- (2) 38^{g} . 4'. $15^{m} = 38^{g} \cdot 0415$.
- (5) 425^g . 13'. 5":54= 425^g :130554.
- (3) 214^g . 3'. $7'' = 214^g \cdot 0307$.
- (6) 2^{g} . 2^{h} . 2^{h} . 2^{h} . 2^{g} . 2^{g} . 2^{g} . 2^{g} . 2^{g} . 2^{g} .

Examples-VI. (p. 19).

(1) $27^{\circ}.15'.46'' = 27^{\circ}.2627$

10 272·62**7**

30·291975 . . . 27°. 15′. 46″=30«. 29′. 19″.75 . . .

 $422^{\circ}, 7', 22'' = 469^{\circ}, 2', 53'' \cdot 086419753$

Examples—VII. (p. 20).

(3)
$$29^{g}$$
. $75^{\circ} = 29^{g} \cdot 75$

9

10 $\boxed{267 \cdot 75}$
degrees $26 \cdot 775$
 60
minutes $46 \cdot 500$
 60
seconds $30 \cdot 000$
 29^{g} . $75^{\circ} = 26^{\circ}$. 46^{\prime} . $30^{\prime\prime}$.

(4) 15^g. 0'. 15"=15^g·0015

(6)
$$43^{s}=43^{s}$$

9
10 $\boxed{387}$
degrees 38.7
 $\boxed{60}$
minutes 42.0
 $\therefore 43^{s}=38^{\circ}.42'.$

10 KEY TO ELEMENTARY TRIGONOMETRY.

```
(7) 38^{g}. 71'. 20^{\circ\circ}3 = 38^{g}. 71203
                    10 | 348.40827
       degrees
                           34.840827
                                   60
       minutes
                          50:449620
                                   60
       seconds
                          26.977200
    38^{\circ}. 71'. 20"'3 = 34°. 50'. 26"'9772.
  (8) 50°. 76'. 94"'3=50°.76943
                 10 | 456 92487
        degrees
                        45.692487
        minutes
                        41.549220
                                60
        seconds
                       32.953200
  \therefore 50°s. 76°. 94°°·3=45°. 41′. 32″·9532.
 (9) 170^{\circ}. 63'. 27'' = 170^{\circ}·6327
                10 1535.6943
       degrees
                       153:56943
       minutes
                        34.16580
                               60
       seconds
                         9:94800
  ∴ 170g. 63'. 27"=153°. 34'. 9"948.
(10) 324g. 13'. 88".7=324g.13887
                  10 2917:24983
        degrees
                        291.724983
                                  60
       minutes
                          43.498980
       seconds
                         29.938800
.. 3248. 13'. 88".7 = 291°. 43'. 29" 9388.
```

EXAMPLES-VIII. (p. 21).

(1) Circular measure is $\frac{60 \times \pi}{180} = \frac{\pi}{3}$.

(2) Circular measure is $\frac{22.5 \times \pi}{180} = \frac{\pi}{8}$.

(3) Circular measure is $\frac{11.25 \times \pi}{180} = \frac{\pi}{16}$.

(4) Circular measure is $\frac{270 \times \pi}{180} = \frac{3\pi}{2}$.

(5) Circular measure is $\frac{315 \times \pi}{180} = \frac{7\pi}{4}$.

(6) Circular measure is $\frac{24\frac{13}{60} \times \pi}{180} = \frac{1453\pi}{60 \times 180} = \frac{1453\pi}{10800}$.

(7) Circular measure is $\frac{95\frac{1}{8} \times \pi}{180} = \frac{286 \times \pi}{180 \times 3} = \frac{143\pi}{270}$.

(8) Circular measure is $\frac{12\frac{304}{3600} \times \pi}{180} = \frac{43504 \times \pi}{180 \times 3600} = \frac{2719\pi}{40500}.$

(9) Circular measure of each angle is $\frac{60 \times \pi}{180} = \frac{\pi}{3}$.

(10) The angles are 90°, 45°, 45°, and of these the circular measures are $\frac{\pi}{2}$, $\frac{\pi}{4}$, $\frac{\pi}{4}$.

EXAMPLES-IX. (p. 22).

- (1) Measure in degrees is $\frac{\pi \times 180}{2 \times \pi} = 90$.
- (2) Measure in degrees is $\frac{\pi \times 180}{3 \times \pi} = 60$.
- (3) Measure in degrees is $\frac{\pi \times 180}{4 \times \pi} = 45$.

(4) Measure in degrees is
$$\frac{\pi \times 180}{6 \times \pi} = 30$$
.

(5) Measure in degrees is
$$\frac{2\pi \times 180}{3 \times \pi} = 120$$
.

(6) Measure in degrees is
$$\frac{1 \times 180}{2 \times \pi} = \frac{90}{\pi}$$
.

(7) Measure in degrees is
$$\frac{1 \times 180}{3 \times \pi} = \frac{60}{\pi}$$
.

(8) Measure in degrees is
$$\frac{1 \times 180}{4 \times \pi} = \frac{45}{\pi}$$
.

(9) Measure in degrees is
$$\frac{1 \times 180}{6 \times \pi} = \frac{30}{\pi}$$
.

(10) Measure in degrees is
$$\frac{2 \times 180}{3 \times \pi} = \frac{120}{\pi}$$
.

Examples-X. (p. 22).

(1) Circular measure is
$$\frac{50 \times \pi}{200} = \frac{\pi}{4}$$
.

(2) Circular measure is
$$\frac{25 \times \pi}{200} = \frac{\pi}{8}$$
.

(3) Circular measure is
$$\frac{6.25 \times \pi}{200} = \frac{\pi}{32}$$
.

(4) Circular measure is
$$\frac{250 \times \pi}{200} = \frac{5\pi}{4}$$
.

(5) Circular measure is
$$\frac{500 \times \pi}{200} = \frac{5\pi}{2}$$
.

(6) Circular measure is
$$\frac{13.0505 \times \pi}{200} = 0652525\pi$$
.

(7) Circular measure is
$$\frac{24\cdot150215\times\pi}{200} = \cdot120751075\pi$$
.

(8) Circular measure is
$$\frac{125.0013 \times \pi}{200} = 6250065\pi$$
.

- (9) Circular measure is $\frac{.03 \times \pi}{200} = .00015\pi$.
- (10) Circular measure is $\frac{.0005 \times \pi}{200} = .0000025\pi$.

EXAMPLES—XI. (p. 22).

- (1) Measure in grades is $\frac{\pi \times 200}{3 \times \pi} = 66 \cdot \text{\^e}$.
- (2) Measure in grades is $\frac{\pi \times 200}{5 \times \pi} = 40$.
- (3) Measure in grades is $\frac{\pi \times 200}{6 \times \pi} = 33.3$.
- (4) Measure in grades is $\frac{2\pi \times 200}{3 \times \pi} = 133.3$.
- (5) Measure in grades is $\frac{3\pi \times 200}{5 \times \pi} = 120$.
- (6) Measure in grades is $\frac{1 \times 200}{3 \times \pi} = \frac{200}{3\pi}$.
- (7) Measure in grades is $\frac{1 \times 200}{5 \times \pi} = \frac{40}{\pi}$.
- (8) Measure in grades is $\frac{1 \times 200}{8 \times \pi} = \frac{25}{\pi}$.
- (9) Measure in grades is $\frac{3 \times 200}{5 \times \pi} = \frac{120}{\pi}$.
- (10) Measure in grades is $\frac{23 \times 200}{10 \times \pi} = \frac{460}{\pi}$.

Examples-XII. (p. 23).

- (1) Measure = $22\frac{1}{2} \div 5 = 22.5 \div 5 = 4.5$.
- (2) Unit= $42.5^{\circ} \div 10 = 4.25^{\circ}$.
- (3) Angle = $8 \times 2^{\circ}$, or, 16° ; : larger unit = $16^{\circ} \div 5 = 3\frac{1}{6}^{\circ}$.

Then, smaller unit in terms of larger is $2 \div 3\frac{1}{5}$, or, $\frac{2}{5}$, and larger unit in terms of smaller is $3\frac{1}{5} \div 2$, or, $\frac{2}{5}$.

(4) Angle= $7 \times 3^{\circ}$, or, 21° ;

∴ larger unit = 21° ÷ 6 = 3½°.
Then, smaller unit in terms of larger is 3÷3½, or, ¾, and larger unit in terms of smaller is 3½ ÷ 3, or, ¼.

- (5) Measure = $42 \div 45 = \frac{14}{2}$.
- (6) 13°.13′.48″=47628″, $14^{5}.7'=\frac{227934''}{5};$

 \therefore ratio=47628 × 5:227934=70:67.

- (7) $G: D=10: 9, ..., 9G=10D, ..., G=D+\frac{1}{9}D.$
- (8) The angles of each triangle are 90°, 60°, 30°, because the line, drawn from any angle of an equilateral triangle to bisect the base, cuts the base at right angles, and bisects the vertical angle.

Expressed in grades the angles are 100s, 662s, 333s.

- (9) Let x + y, x, x y be the angles. Then $x + y + x + x - y = 180^{\circ}$, or, $3x = 180^{\circ}$, or, $x = 60^{\circ}$.
- (11) Number of degrees in the angle = $\frac{m}{60}$.

(12) 5°.33′.20″=20000″; and 90°=324000″; $\therefore \text{ fraction} = \frac{20000}{5} \div 324000 = \frac{4000}{324000} = \frac{1}{81}$ (13) Let x be the measure of the angle in degrees.

Then $\frac{10x}{9}$ is the measure of the angle in grades,

and
$$\frac{1}{x} + \frac{9}{10x} = 1$$
, or, $10x = 19$, or, $x = 1.9$; ... unit angle is 1.9° .

(14) Let x+y, x, x-y be the angles expressed in degrees.

Then
$$\frac{10(x+y)}{9} = x + (x-y)$$
;
or, $10x + 10y = 18x - 9y$, and $\therefore x = \frac{19y}{8}$;

 $\therefore \text{ the angles are } \frac{27y}{8}, \frac{19y}{8}, \frac{11y}{8},$

and these are in the ratio 27:19:11.

(15)
$$\frac{180^{\circ}}{\sqrt{3}} = \frac{10 \times 180^{g}}{9 \times \sqrt{3}} = \frac{200^{g}}{\sqrt{3}} = \frac{200\sqrt{3}^{g}}{3} = 115_{g}.47^{\circ} \text{ nearly.}$$

(16) Let x+y, x, x-y be the angles expressed in degrees. Then $x+y+x+x-y=180^{\circ}$, or, $3x=180^{\circ}$, or, $x=60^{\circ}$.

Also
$$\frac{10}{9}(60-y):60+y=2:9$$
;

or, 600 - 10y = 120 + 2y, and $\therefore y = 40^{\circ}$.

Hence the angles are 100°, 60°, 20°.

(17) Circumference: diameter = $360:2 \times 57.29577$

$$=180:57.29577$$

 $=3.14159...:1.$

(18) The sum of the two angles is 90°, because the third angle is 90°. Hence, dividing 90° into two parts proportional to 2 and 3, we have 36° and 54° for the angles.

.. angles expressed in degrees are 90°, 54°, 36°.

", circular measure are $\frac{\pi}{2}$, $\frac{3\pi}{10}$, $\frac{\pi}{5}$.

(19) Angle: 360°=13:27;

$$\therefore$$
 angle = $\frac{360 \times 13}{27}$ degrees = $\frac{40 \times 13}{3}$ degrees = $173\frac{1}{3}$ °.

16 KEY TO ELEMENTARY TRIGONOMETRY.

- (20) Angle: $400^g = 17:54$; \therefore angle = $\frac{400 \times 17}{54}$ grades = 125.925 grades.
- (21) Angle subtended by an arc 18 inches long=unit of circular measure $=\frac{200}{2}$ grades;
- ... angle subtended by an arc 24 inches long = $\frac{24 \times 200}{18 \times \pi}$ gr. = $\frac{800}{3\pi}$ gr.
- (22) 1st angle contains $\frac{2 \times 200}{\pi}$ grades, or, $\frac{400}{\pi}$ grades.

 2d angle contains $\frac{10 \times 20}{9}$ grades, or, $\frac{200}{9}$ grades.

 3d angle contains $\left(200 \frac{400}{\pi} \frac{200}{9}\right)$ gr., or, $\frac{1600\pi 3600}{9\pi}$ gr.
- (23) Angle required $=\frac{7}{2}$ of 15°. 39′.7″ = 54°. 46′. 54″.5.
- (24) Circular measure = $\frac{11.3 \times \pi}{200} = \frac{113 \times 355}{2000 \times 113} = \frac{71}{400} = .1775$.
- (25) Measure in degrees = $\frac{180 \times \pi^2}{\pi \times 9}$ = 20π .
- (26) Larger circumference=400 times smaller circumference. Then, since \$\frac{1}{80}\$th part of smaller circumference subtends an angle of 1° at the centre, it follows that \$\frac{1}{400}\$ of \$\frac{1}{360}\$th part of the larger circumference will subtend the same angle.

$$\therefore \text{ part required} = \frac{1}{400 \times 360} = \frac{1}{144000}.$$

(27) 4 right angles= $360^{\circ}=400^{s}=2\pi^{\circ}$; .: the measure of 1° will be $\frac{1}{360}$, the measure of 1° will be $\frac{1}{400^{\circ}}$.

the measure of 1° will be $\frac{1}{2}$.

- (28) Length of whole circumference of earth = 7980π miles; \therefore length of 1 degree of meridian = $\frac{7980\pi}{360}$ miles = $\frac{133\pi}{6}$ miles.
- (29) (1) $\frac{3}{2} \times 45^{\circ} = 67\frac{1}{2}^{\circ}$; $4 \times 45^{\circ} = 180^{\circ}$; $\pi \times 45^{\circ} = 45\pi^{\circ}$; $\left(4n + \frac{1}{3}\right) \times 45^{\circ} = (n \cdot 180 + 15)^{\circ}.$ (2) $\frac{3}{2} \times \frac{\pi}{4} = \frac{3\pi}{8}$; $4 \times \frac{\pi}{4} = \pi$; $\pi \times \frac{\pi}{4} = \left(\frac{\pi}{2}\right)^{2}$;
 - (2) $\frac{3}{2} \times \frac{\pi}{4} = \frac{3\pi}{8}$; $4 \times \frac{\pi}{4} = \pi$; $\pi \times \frac{\pi}{4} = \left(\frac{\pi}{2}\right)^{-1}$; $\left(4n + \frac{1}{3}\right) \times \frac{\pi}{4} = n\pi + \frac{\pi}{12}$.
- (30) Number of degrees in the unit angle $=\frac{3 \times 180}{\pi}$; \therefore measure of an angle of $45^{\circ} = 45 \div \frac{3 \times 180}{\pi} = \frac{45 \times \pi}{3 \times 180} = \frac{\pi}{12}$.
- (31) (1) Sum of angles = (12-4) right angles = 8 right angles. (Euclid, I. xxxII., Cor. 1.) \therefore each angle = $\frac{8 \times 90}{c}$ degrees = 120° .
 - (2) Sum of angles = (10-4) right angles = 6 right angles; \therefore each angle = $\frac{6 \times 90}{5}$ degrees = 108° .
- (32) (1) Each angle = $\frac{6 \times 100}{5}$ grades = 120°.
 - (2) Each angle = $\frac{12 \times 100}{8}$ grades = 1508.
- (33) (1) Circular measure of each angle = $\frac{\pi}{3}$.
 - (2) Circular measure of each angle $=\frac{8 \times \pi}{6 \times 2} = \frac{2\pi}{3}$.
- (34) Sum of all the angles = (2n-4) right angles;
 - : circular measure of each angle $=\frac{2n-4}{n} \cdot \frac{\pi}{2} = \pi \frac{2\pi}{n}$.
- (35) Arc subtending an angle of $180^{\circ} = 18\pi$ feet.
 - \therefore arc subtending an angle of $10^{\circ} = \frac{18\pi}{18}$ feet $= \pi$ feet.

18 KEY TO ELEMENTARY TRIGONOMETRY.

(36) Let 2n and n be the number of sides in the polygons, respectively.

Each angle in first polygon contains $\frac{4n-4}{2n}$ right angles.

Each angle in second polygon contains $\frac{2n-4}{n}$ right angles.

$$\therefore \frac{4n-4}{2n}: \frac{2n-4}{n}=3:2;$$

 $\therefore 4n-4=6n-12$, or, 2n=8, or, n=4.

Hence the number of sides will be 8 and 4 respectively.

(1)
$$\sin BAD = \frac{BD}{AB}$$
; $\cos BAD = \frac{AD}{AB}$; $\tan BAD = \frac{BD}{AD}$; $\sin ABD = \frac{AD}{AB}$; $\cot ABD = \frac{BD}{AD}$; $\csc ABD = \frac{AB}{AD}$;

$$\sin BCD = \frac{BD}{BC}$$
; $\sin CBD = \frac{CD}{BC}$; $\tan BCD = \frac{DB}{DC}$

(2)
$$\frac{a}{b} = \sin A$$
, $\therefore a = b \cdot \sin A$, $\frac{a}{b} = \cos C$, $\therefore a = b \cdot \cos C$,

$$\frac{a}{c} = \tan A$$
, $\therefore a = c \cdot \tan A$,

$$\frac{a}{c} = \cot C, \ \therefore \ a = c \cdot \cot C;$$

and similarly for the rest of the Examples.

EXAMPLES-XIV. (p. 49),

(1)
$$\cos a \cdot \sin \gamma \cdot \cos \delta = \cos 0^{\circ} \cdot \sin 45^{\circ} \cdot \cos 60^{\circ} = 1 \times \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{2\sqrt{2}}.$$

(2)
$$\sin\theta \cdot \cos\frac{\pi}{4}$$
, $\csc\theta = \sin 90^{\circ}$, $\cos 45^{\circ}$, $\csc 60^{\circ}$

$$= 1 \times \frac{1}{\sqrt{2}} \times \frac{2}{\sqrt{3}} = \sqrt{\frac{2}{3}}$$

(3)
$$\sin \frac{\pi}{2} + \cos \frac{\pi}{6} - \sec \alpha = \sin 90^{\circ} + \cos 30^{\circ} - \sec 0^{\circ} = 1 + \frac{\sqrt{3}}{2} - 1 = \frac{\sqrt{3}}{2}$$

(4)
$$\sin \frac{\pi}{3}$$
. $\csc \frac{\pi}{2}$. $\sec \delta = \sin 60^{\circ}$. $\csc 60^{\circ} = \frac{\sqrt{3}}{2} \times 1 \times 2 = \sqrt{3}$.

(5)
$$(\sin\theta - \cos\theta + \csc\beta) \left(\cos\theta + \sec\frac{\pi}{4} + \cot\delta\right)$$

= $(\sin 90^{\circ} - \cos 90^{\circ} + \csc 30^{\circ}).(\cos 90^{\circ} + \sec 45^{\circ} + \cot 60^{\circ})$
= $(1 - 0 + 2).\left(0 + \sqrt{2} + \frac{1}{\sqrt{3}}\right) = 3 \times \left(\sqrt{2} + \frac{1}{\sqrt{3}}\right) = 3\sqrt{2} + \sqrt{3}.$

(6)
$$(\sin\delta - \sin\gamma)(\cos\beta + \cos\gamma) = (\sin60^{\circ} - \sin45^{\circ})(\cos30^{\circ} + \cos45^{\circ})$$

$$= \left(\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}\right) = \frac{3}{4} - \frac{1}{2} = \frac{1}{4}.$$

$$\sin^{2}\beta = \sin^{2}30^{\circ} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.$$

(7)
$$\cot^2 \frac{\pi}{4} - \cot^2 \frac{\pi}{6} = \cot^2 45^\circ - \cot^2 30^\circ = 1 - 3 = -2.$$

$$\frac{\sin^2 \frac{\pi}{6} - \sin^2 \frac{\pi}{4}}{\sin^2 \frac{\pi}{4} \cdot \sin^2 \frac{\pi}{6}} = \frac{\frac{1}{4} - \frac{1}{2}}{\frac{1}{4} \cdot \frac{1}{2}} = \frac{-2}{1} = -2.$$

20 KEY TO ELEMENTARY TRIGONOMETRY.

(8)
$$\left(\sin\frac{\pi}{6} + \cos\frac{\pi}{6}\right) \left(\sin\frac{\pi}{3} - \cos\frac{\pi}{3}\right) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)$$

$$= \frac{3}{4} - \frac{1}{4} = \frac{1}{2} = \cos\frac{\pi}{3}.$$

(9)
$$\cos \frac{\pi}{3} \cdot \cos \frac{\pi}{6} = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \cdot \frac{1}{2} \cos \left(\frac{\pi}{3} + \frac{\pi}{6}\right) + \frac{1}{2} \cos \left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \frac{1}{2} \cos \frac{\pi}{2} + \frac{1}{2} \cos \frac{\pi}{6} = \frac{1}{2} \times 0 + \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \cdot \frac{1}{2} = \frac{1}{2} \times 0 + \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} \frac$$

$$(10) \tan^{2}\frac{\pi}{3} - \tan^{2}\frac{\pi}{6} = 3 - \frac{1}{3} = \frac{8}{3}.$$

$$\frac{\sin^{2}\frac{\pi}{3} - \sin^{2}\frac{\pi}{6}}{\cos^{2}\frac{\pi}{3} \cdot \cos^{2}\frac{\pi}{6}} = \frac{\frac{3}{4} - \frac{1}{4}}{\frac{1}{4} \cdot \frac{3}{4}} = \frac{8}{3}.$$

EXAMPLES-XV. (p. 52).

(1.) Let PM be the tower; A the place of observation.

Then AM=200 feet, and $\angle PAM=60^{\circ}$.

- Now $PM = AM \cdot \tan PAM$ = $(200 \times \sqrt{3})$ feet = $346 \cdot 4101 \cdot ...$ feet.
- (2) Let ${\it RO}$ be the tower; ${\it P}$ the point of observation.

- Then AP=140 feet, and $\angle RPA=30^{\circ}$. Now RA=PA. tan 30°.
- $=\frac{140}{\sqrt{3}}$ feet $=\frac{140\sqrt{3}}{3}$ feet =80.829037... feet.
- $\therefore R0 = 80.829037...$ feet + 5 feet = 85.829037... feet.

- (3) Taking the diagram in Art. 87, $AB: BQ = \sqrt{3}:1$; \therefore tan $SQR = \sqrt{3}$, and \therefore $\angle SQR = 60^{\circ}$.
- (4) Let AB be the steeple; P the point of observation.

Then PB=300 feet, and $\angle APB=30^{\circ}$.

Then $AB = PB \cdot \tan APB$

=300
$$\cdot \frac{1}{\sqrt{3}}$$
 feet =100 $\sqrt{3}$. feet
=173.205 . . . feet,

(5) Let AP be the rock; O the position of the ship.

Then AP=245 feet; and $\angle AOP=30^{\circ}$.

Now
$$PO = AP \cdot \cot AOP$$

 $=245 \cdot \sqrt{3}$ ft. $=424.352 \cdot \cdot \cdot$ ft.

F1G. 11.

(6) Let AB be the hill; C and D the positions of the milestones.

Then DC=1 mile; $\angle ACB=45^{\circ}$;

$$\angle ADB = 30^{\circ}$$
.

Hence $\angle CAB=45^{\circ}$, and AB=BC.

Let x=height of hill in miles.

Then
$$AB=BD \cdot \tan ADB$$

= $(BC+CD) \cdot \tan 30^{\circ}$;

$$\therefore x = (x+1) \cdot \frac{1}{\sqrt{3}};$$

$$\therefore \sqrt{3} \cdot x = x + 1$$
, or, $x = \frac{1}{\sqrt{3-1}} = \frac{\sqrt{3+1}}{3-1} = \frac{\sqrt{3+1}}{2}$;

$$x = \frac{2.732...}{2}$$
 miles = 1.366... miles.

(7) Let AO be the flag-staff; PO the tower; M the point of observation.

(8) Let AP be the tower; MO the column; MD parallel to OP.

(9.) Let AP be the tower; M and O the points of observation.

Then AP = MA, $\sin AMP = 100 \cdot \frac{\sqrt{3}}{2}$ yards = 50 $\sqrt{3}$ yards.

(10) Taking the diagram in Art. 87.

$$\tan AQB = \frac{AB}{BQ} = \frac{10}{25} = .4$$
;

.. altitude of the sun is 25°.

(11) The diagram represents a vertical section of the spire and tower.

Let x represent the height of the spire in feet.

Then
$$AM = x + 35 - 23 = x + 12$$
,

$$BM = 60 + 17\frac{1}{2} = 77.5$$

and
$$\frac{x+12}{77.5} = \tan ABM = 1.5$$
;

$$\therefore x + 12 = 116.25$$
, or, $x = 104.25$ feet.

(12) Let OB be the height of the kite in yards.

Let AO be the string.

Then
$$OB = AO \cdot \sin OAB$$

$$=$$
 $\left(250 \times \frac{1}{2}\right)$ yards=125 yards.

(13) Let AC be the rope; AB the height of the house.

Then $\angle ACB = 40^{\circ} . 30'$.

And
$$AC = \frac{AB}{\sin ACB} = \frac{60}{65}$$
 feet = $92\frac{4}{13}$ feet.

24 KEY TO ELEMENTARY TRIGONOMETRY.

(14) Let AC be the tower; BC the breadth of the river.

Then $\angle ABC = 20^{\circ}$.

And
$$BC = \frac{AC}{\tan ABC}$$

= $\frac{120}{35}$ feet=342\$ feet.

(15) Taking the diagram of Art. 87.

Length of shadow=
$$QB = \frac{AB}{\tan AQB} = \frac{6}{.745}$$
 feet=8.053... feet.

EXAMPLES-XVI, (p. 57).

- (1) $\cos\theta \cdot \tan\theta = \cos\theta \cdot \frac{\sin\theta}{\cos\theta} = \sin\theta$.
- (2) $\sin\theta \cdot \cot\theta = \sin\theta \cdot \frac{\cos\theta}{\sin\theta} = \cos\theta$.
- (3) $\sin a \cdot \sec a = \sin a \cdot \frac{1}{\cos a} = \frac{\sin a}{\cos a} = \tan a$.
- (4) $\cos a \cdot \csc a = \cos a \cdot \frac{1}{\sin a} = \frac{\cos a}{\sin a} = \cot a$.
- (5) $(1 + \tan^2\theta) \cdot \cos^2\theta = \sec^2\theta \cdot \cos^2\theta = \frac{\cos^2\theta}{\cos^2\theta} = 1$.
- (6) $(1 + \cot^2\theta)$. $\sin^2\theta = \csc^2\theta$. $\sin^2\theta = \frac{\sin^2\theta}{\sin^2\theta} = 1$.
- (7) $\frac{\tan^2 a}{1 + \tan^2 a} = \frac{\tan^2 a}{\sec^2 a} = \frac{\sin^2 a}{\cos^2 a} \cdot \cos^2 a = \sin^2 a.$
- (8) $\frac{\csc^2 a 1}{\csc^2 a} = 1 \frac{1}{\csc^2 a} = 1 \sin^2 a = \cos^2 a$
- (9) $\tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\cos x \cdot \sin x} = \frac{1}{\cos x \cdot \sin x} = \sec x \cdot \csc x$

(10)
$$\frac{\cos x \cdot \csc x \cdot \tan x}{\sin x \cdot \sec x \cdot \cot x} = \frac{\cos x \cdot \frac{1}{\sin x} \cdot \frac{\sin x}{\cos x}}{\sin x \cdot \frac{1}{\cos x} \cdot \frac{\cos x}{\sin x} \cdot \frac{\cos x \cdot \sin x}{\sin x \cdot \sin x \cdot \cos x \cdot \cos x}} = 1.$$

(11)
$$\cos x + \sin x \cdot \tan x = \cos x + \frac{\sin^2 x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\cos x} = \frac{1}{\cos x} = \sec x.$$

(12)
$$\frac{\cos\theta}{\tan\theta \cdot \cot^2\theta} = \frac{\cos\theta}{\cot\theta} = \frac{\cos\theta \cdot \sin\theta}{\cos\theta} = \sin\theta.$$

(13)
$$(\cos^2\theta - 1)(\cot^2\theta + 1) = (\cos^2\theta - 1) \cdot \csc^2\theta = -\sin^2\theta \times \frac{1}{\sin^2\theta} = -1.$$

(14)
$$\cot^2 a - \cos^2 a = \frac{\cos^2 a}{\sin^2 a} - \cos^2 a = \cos^2 a \left(\frac{1}{\sin^2 a} - 1\right) = \cos^2 a \cdot \frac{1 - \sin^2 a}{\sin^2 a}$$

= $\cos^2 a \cdot \frac{\cos^2 a}{\sin^2 a} = \cot^2 a \cdot \cos^2 a$.

(15)
$$\sec^2 a$$
 . $\csc^2 a = \sec^2 a (1 + \cot^2 a) = \sec^2 a + \sec^2 a \cdot \frac{\cos^2 a}{\sin^2 a}$
= $\sec^2 a + \csc^2 a$.

(16)
$$\sin^2 \phi + \sin^2 \phi$$
. $\tan^2 \phi = \sin^2 \phi (1 + \tan^2 \phi) = \sin^2 \phi$. $\sec^2 \phi = \tan^2 \phi$.

(17)
$$\cot^2 \phi \cdot \sin^2 \phi + \sin^2 \phi = \sin^2 \phi (\cot^2 \phi + 1) = \sin^2 \phi \cdot \csc^2 \phi = 1$$
.

(18)
$$\sec^2 \phi - 1 = \tan^2 \phi = \frac{\sin^2 \phi}{\cos^2 \phi} = \sin^2 \phi \cdot \sec^2 \phi$$
.

(19)
$$2 \operatorname{versin} \phi - \operatorname{versin}^2 \phi = 2(1 - \cos \phi) - (1 - \cos \phi)^2$$

= $2 - 2\cos \phi - 1 + 2\cos \phi - \cos^2 \phi = 1 - \cos^2 \phi = \sin^2 \phi$.

(20)
$$\frac{\sec\theta - 1}{\sec\theta} = 1 - \frac{1}{\sec\theta} = 1 - \cos\theta = \text{versin}\theta$$
.

EXAMPLES—XVII. (p. 60).

(1) Let PAM be an angle whose cosine is c.

Draw PM perpendicular to AM.

Then if AP be represented by 1, AM will be represented by c, and PM will be represented by $\sqrt{1-c^2}$.

Then, denoting $\angle PAM$ by A, $\sin A = \frac{PM}{AP} = \frac{\sqrt{1-c^3}}{1} = \sqrt{1-\cos^2 A}$

$$\tan A = \frac{PM}{AM} = \frac{\sqrt{1 - c^2}}{c} = \frac{\sqrt{1 - \cos^2 A}}{\cos A}$$

$$\sec A = \frac{AP}{AM} = \frac{1}{c} = \frac{1}{\cos A}$$

$$\csc A = \frac{AP}{PM} = \frac{1}{\sqrt{1 - c^2}} = \frac{1}{\sqrt{1 - \cos^2 A}}$$

$$\cot A = \frac{AM}{PM} = \frac{c}{\sqrt{1 - c^2}} = \frac{\cos A}{\sqrt{1 - \cos^2 A}}$$

(2) Let PAM be an angle whose cosecant is c. Constructing a diagram as in Example (1), the measures of AP, PM, AM may be taken as c, 1, $\sqrt{c^2-1}$ respectively.

Then
$$\sin A = \frac{PM}{AP} = \frac{1}{c} = \frac{1}{\operatorname{cosec} A}$$

$$\cos A = \frac{AM}{AP} = \frac{\sqrt{c^2 - 1}}{c} = \frac{\sqrt{\operatorname{cosec}^2 A - 1}}{\operatorname{cosec} A}$$

$$\tan A = \frac{PM}{AM} = \frac{1}{\sqrt{c^2 - 1}} = \frac{1}{\sqrt{\operatorname{cosec}^2 A - 1}}$$

$$\sec A = \frac{AP}{AM} = \frac{c}{\sqrt{c^2 - 1}} = \frac{\operatorname{cosec} A}{\sqrt{\operatorname{cosec}^2 A - 1}}$$

$$\cot A = \frac{AM}{MP} = \frac{\sqrt{c^2 - 1}}{1} = \sqrt{\operatorname{cosec}^2 A - 1}.$$

(3) Let PAM be an angle whose secant is s. Constructing a diagram as in Example (1), the measures of AP, AM, PM, may be taken as s, 1, $\sqrt{s^2-1}$ respectively.

Then
$$\sin A = \frac{PM}{AP} = \frac{\sqrt{s^2 - 1}}{s} = \frac{\sqrt{\sec^2 A - 1}}{\sec A}$$

$$\cos A = \frac{AM}{AP} = \frac{1}{s} = \frac{1}{\sec A}$$

$$\tan A = \frac{PM}{AM} = \frac{\sqrt{s^2 - 1}}{1} = \sqrt{\sec^2 A - 1}$$

$$\csc A = \frac{AP}{PM} = \frac{s}{\sqrt{s^2 - 1}} = \frac{\sec A}{\sqrt{\sec^2 A - 1}}$$

$$\cot A = \frac{AM}{PM} = \frac{1}{\sqrt{s^2 - 1}} = \frac{1}{\sqrt{\sec^2 A - 1}}$$

(4) Let PAM be an angle whose cotangent is c.

Constructing a diagram as in Example (1), the measures of AM, PM, AP may be taken as c, 1, $\sqrt{1+c^2}$ respectively.

Then
$$\sin A = \frac{PM}{AP} = \frac{1}{\sqrt{1+c^2}} = \frac{1}{\sqrt{1+\cot^2 A}}$$

$$\cos A = \frac{AM}{AP} = \frac{c}{\sqrt{1+c^2}} = \frac{\cot A}{\sqrt{1+\cot^2 A}}$$

$$\tan A = \frac{PM}{AM} = \frac{1}{c} = \frac{1}{\cot A}$$

$$\csc A = \frac{AP}{PM} = \frac{\sqrt{1+c^2}}{1} = \sqrt{1+\cot^2 A}$$

$$\sec A = \frac{AP}{AM} = \frac{\sqrt{1+c^2}}{c} = \frac{\sqrt{1+\cot^2 A}}{\cot A}.$$

Examples—XVIII. (p. 61).

(1) Take the diagram as before; then if $\angle PAM$ be denoted by a, the measure of PM may be denoted by a, the measure of AP by a, and therefore the measure of AM by $\sqrt{9-4} = \sqrt{5}$.

Then
$$\cos a = \frac{\sqrt{5}}{3}$$
 and $\tan a = \frac{2}{\sqrt{5}}$.

(2) Let the measure of AM be 4, and that of AP be 5; then that of AM will be $\sqrt{25-16}$, or, 3.

Then
$$\sin a = \frac{3}{5}$$
, and $\tan a = \frac{3}{4}$.

(3) Let the measure of AP be 4, and that of PM be 3; then that of PM will be $\sqrt{16-9}$, or, $\sqrt{7}$.

Then
$$\cos\theta = \frac{\sqrt{7}}{4}$$
, and $\tan\theta = \frac{3}{\sqrt{7}}$.

(4) Let the measure of PM be 1, and that of AP be $\sqrt{3}$; then that of AM will be $\sqrt{3-1}$, or, $\sqrt{2}$.

Then
$$\cos\theta = \sqrt{\frac{2}{3}}$$
, and $\tan\theta = \frac{1}{\sqrt{2}}$.

28 KEY TO ELEMENTARY TRIGONOMETRY.

(5) Let the measure of PM be a^2 , and that of AM be b^2 ; then that of AP will be $\sqrt{a^4 + b^4}$.

Then
$$\csc a = \frac{\sqrt{a^4 + b^4}}{a^2}$$
, and $\sec a = \frac{\sqrt{a^4 + b^4}}{b^2}$.

(6) Let the measure of AM be a, and that of AP be b; then that of PM will be $\sqrt{b^2-a^2}$.

Then
$$\tan a = \frac{\sqrt{b^2 - a^2}}{a}$$
, and $\csc a = \frac{b}{\sqrt{b^2 - a^2}}$.

(7) Let the measure of PM be a, and that of AP be 1; then that of AM will be $\sqrt{1-a^2}$.

Then
$$\tan \theta = \frac{a}{\sqrt{1-a^2}}$$
, and $\sec \theta = \frac{1}{\sqrt{1-a^2}}$.

(8) Let the measure of AM be b, and that of AP be 1; then that of PM will be $\sqrt{1-b^2}$.

Then
$$\tan\theta = \frac{\sqrt{1-b^2}}{b}$$
, and $\csc\theta = \frac{1}{\sqrt{1-b^2}}$.

(9) Let the measure of PM be 6, and that of AP be 10; then that of AM will be $\sqrt{100-36}$, or, 8.

Then
$$\cos\theta = \frac{8}{10} = \frac{4}{5}$$
, and $\cot\theta = \frac{8}{6} = \frac{4}{3}$.

(10) Let the measure of AM be 5, and that of AP be 9; then that of PM will be $\sqrt{81-25}=\sqrt{56}=2\sqrt{14}$.

Then
$$\cot\theta = \frac{5}{2\sqrt{14}}$$
, and $\csc\theta = \frac{9}{2\sqrt{14}}$.

(11) Let the measure of AP be 22, and that of PM be 9; then that of AM will be $\sqrt{484-81} = \sqrt{403}$.

Then
$$\cos\theta = \frac{\sqrt{403}}{22}$$
, and $\cot\theta = \frac{\sqrt{403}}{9}$.

$$(12) \quad 1.03 = \frac{103 - 10}{90} = \frac{93}{90} = \frac{31}{30}.$$

Let the measure of AP be 31, and that of AM be 30; then that of PM will be $\sqrt{961-900}$, or, $\sqrt{61}$.

Then
$$\sin\theta = \frac{\sqrt{61}}{31}$$
, and $\tan\theta = \frac{\sqrt{61}}{30}$.

(13) Let the measure of PM be 99, and that of AP be 101; then that of AM will be $\sqrt{10201-9801}$, or, 20.

Then
$$\cos \phi = \frac{20}{101}$$
, and $\cot \phi = \frac{20}{99}$.

(14) Let the measure of AM be 20, and that of AP be 101; then that of PM will be $\sqrt{10201-400}$, or, 99.

Then
$$\sin \phi = \frac{99}{101}$$
, and $\tan \phi = \frac{99}{20}$.

(15)
$$\cos\theta = 1 - \text{versin}\theta = 1 - \frac{1}{13} = \frac{12}{13}$$

Let the measure of AM be 12, and that of AP be 13; then that of PM will be $\sqrt{169-144}$, or, 5.

Then
$$\sin\theta = \frac{5}{13}$$
, and $\sec\theta = \frac{13}{12}$.

EXAMPLES-XIX. (p. 63).

(1)
$$\sin A = \frac{1}{\csc A} = \frac{1}{\sqrt{\csc^2 A}} = \frac{1}{\sqrt{(1 + \cot^2 A)}}$$

(2)
$$\cos A = \frac{1}{\sec A} = \frac{1}{\sqrt{\sec^2 A}} = \frac{1}{\sqrt{(1 + \tan^2 A)}}$$

(3)
$$\cos x = \frac{\cot x}{\csc x} = \frac{\cot x}{\sqrt{(\csc^2 x)}} = \frac{\cot x}{\sqrt{(1 + \cot^2 x)}}$$

(4)
$$\tan x \cdot \cos x = \sin x = \sqrt{1 - \cos^2 x}$$
.

(5)
$$\cos \phi = \frac{\cot \phi}{\csc \phi} = \frac{\sqrt{(\csc^2 \phi - 1)}}{\csc \phi}$$
.

(6)
$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{\sqrt{(1 - \cos^2 \phi)}}{\cos \phi} = \sqrt{\left(\frac{1 - \cos^2 \phi}{\cos^2 \phi}\right)}$$
.

(7)
$$\sin^2 a = 1 - \cos^2 a = (1 + \cos a)(1 - \cos a) = (1 + \cos a)$$
. versina.

(8)
$$\tan^{2}a - \tan^{2}\beta = \frac{\sin^{2}a}{\cos^{2}a} - \frac{\sin^{2}\beta}{\cos^{2}\beta} = \frac{\sin^{2}a \cdot \cos^{2}\beta - \cos^{2}a \cdot \sin^{2}\beta}{\cos^{2}a \cdot \cos^{2}\beta}$$

$$= \frac{(1 - \cos^{2}a)\cos^{2}\beta - (1 - \cos^{2}\beta)\cos^{2}a}{\cos^{2}a \cdot \cos^{2}\beta} = \frac{\cos^{2}\beta - \cos^{2}a}{\cos^{2}a \cdot \cos^{2}\beta}.$$

(9)
$$\cot^{2}a - \cot^{2}\beta = \frac{\cos^{2}a}{\sin^{2}a} - \frac{\cos^{2}\beta}{\sin^{2}\beta} = \frac{\cos^{2}a \cdot \sin^{2}\beta - \cos^{2}\beta \cdot \sin^{2}a}{\sin^{2}a \cdot \sin^{2}\beta}$$

$$= \frac{(1 - \sin^{2}a)\sin^{2}\beta - (1 - \sin^{2}\beta)\sin^{2}a}{\sin^{2}a \cdot \sin^{2}\beta} = \frac{\sin^{2}\beta - \sin^{2}a}{\sin^{2}a \cdot \sin^{2}\beta}.$$

(10)
$$\sin^2\theta \cdot \tan^2\theta + \cos^2\theta \cdot \cot^2\theta = (1 - \cos^2\theta) \cdot \tan^2\theta + (1 - \sin^2\theta) \cdot \cot^2\theta$$

$$= \tan^2\theta - \sin^2\theta + \cot^2\theta - \cos^2\theta = \tan^2\theta + \cot^2\theta - (\sin^2\theta + \cos^2\theta)$$

$$= \tan^2\theta + \cot^2\theta - 1.$$

(11)
$$\sec^4\theta + \tan^4\theta = (1 + \tan^2\theta)^2 + \tan^4\theta = 1 + 2\tan^2\theta + \tan^4\theta + \tan^4\theta$$

= $1 + 2\tan^2\theta(1 + \tan^2\theta) = 1 + 2\tan^2\theta$. $\sec^2\theta$.

(12)
$$\csc\theta(\sec\theta-1) - \cot\theta(1-\cos\theta) = \frac{1}{\sin\theta.\cos\theta} - \frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta} + \frac{\cos^2\theta}{\sin\theta}$$

= $\frac{1-\cos^2\theta}{\sin\theta.\cos\theta} - \frac{1-\cos^2\theta}{\sin\theta} = \frac{\sin^2\theta}{\sin\theta.\cos\theta} - \frac{\sin^2\theta}{\sin\theta} = \tan\theta - \sin\theta$.

$$(13) \cot^{2}b + \tan^{2}b = (\csc^{2}b - 1) + (\sec^{2}b - 1) = \csc^{2}b + \sec^{2}b - 2$$

$$= \frac{1}{\sin^{2}b} + \frac{1}{\cos^{2}b} - 2 = \frac{\cos^{2}b + \sin^{2}b}{\sin^{2}b \cdot \cos^{2}b} - 2.$$

$$= \frac{1}{\sin^{2}b \cdot \cos^{2}b} - 2 = \csc^{2}b \cdot \sec^{2}b - 2.$$

(14)
$$\cot^2 A - \cos^2 A = \frac{\cos^2 A}{\sin^2 A} - \cos^2 A = \cos^2 A \left(\frac{1}{\sin^2 A} - 1\right)$$

= $\cos^2 A \left(\frac{1 - \sin^2 A}{\sin^2 A}\right) = \cos^2 A \cdot \frac{\cos^2 A}{\sin^2 A} = \cos^4 A$. $\csc^2 A$.

(15)
$$\tan^2\theta - \sin^2\theta = \frac{\sin^2\theta}{\cos^2\theta} - \sin^2\theta = \sin^2\theta \left(\frac{1}{\cos^2\theta} - 1\right)$$

= $\sin^2\theta \cdot \frac{1 - \cos^2\theta}{\cos^2\theta} = \sin^2\theta \cdot \frac{\sin^2\theta}{\cos^2\theta} = \sin^4\theta \cdot \sec^2\theta$.

$$(16) (\sec\theta - \csc\theta)(1 + \cot\theta + \tan\theta) = \left(\frac{1}{\cos\theta} - \frac{1}{\sin\theta}\right)\left(1 + \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\right)$$

$$= \frac{\sin\theta - \cos\theta}{\sin\theta \cdot \cos\theta} \cdot \frac{\sin\theta \cdot \cos\theta + 1}{\sin\theta \cdot \cos\theta} = \frac{\sin^2\theta \cdot \cos\theta + \sin\theta - \sin\theta \cdot \cos^2\theta - \cos\theta}{\sin^2\theta \cdot \cos^2\theta}$$

$$= \frac{(1 - \cos^2\theta)\cos\theta + \sin\theta - \sin\theta(1 - \sin^2\theta) - \cos\theta}{\sin^2\theta \cdot \cos^2\theta}$$

$$= \frac{\cos\theta - \cos^3\theta + \sin\theta - \sin\theta + \sin^3\theta - \cos\theta}{\sin^2\theta \cdot \cos^2\theta}$$

$$= \frac{\sin^3\theta - \cos^3\theta}{\sin^2\theta \cdot \cos^2\theta} = \frac{\sin\theta}{\cos^2\theta} - \frac{\cos\theta}{\sin^2\theta} = \frac{\sec^2\theta}{\csc\theta} - \frac{\csc^2\theta}{\sec\theta}$$

(17)
$$\frac{\csc\theta}{\sec\theta} + \frac{\sec\theta}{\csc\theta} = \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} = \frac{\cos^2\theta + \sin^2\theta}{\sin\theta \cdot \cos\theta}$$
$$= \frac{1}{\sin\theta \cdot \cos\theta} = \sec\theta \cdot \csc\theta.$$

(18)
$$\cos\theta(\tan\theta + 2)(2\tan\theta + 1) = \cos\theta(2\tan^2\theta + 5\tan\theta + 2)$$

= $2\cos\theta(\tan^2\theta + 1) + 5\cos\theta \cdot \tan\theta$
= $2\cos\theta \cdot \sec^2\theta + 5 \cdot \sin\theta = 2\sec\theta + 5\sin\theta$.

(19)
$$\cos x(2 \sec x + \tan x)(\sec x - 2 \tan x)$$

= $\cos x(2 \sec^2 x - 3 \sec x \cdot \tan x - 2 \tan^3 x)$
= $2 \cos x(\sec^2 x - \tan^2 x) - 3 \cos x \cdot \sec x \cdot \tan x$
= $2 \cos x - 3 \tan x$.

(20)
$$(\csc\theta - \cot\theta)^2 = \csc^2\theta - 2 \csc\theta \cdot \cot\theta + \cot^2\theta$$

$$= \frac{1}{\sin^2\theta} - \frac{2\cos\theta}{\sin^2\theta} + \frac{\cos^2\theta}{\sin^2\theta}$$

$$= \frac{1 - 2\cos\theta + \cos^2\theta}{\sin^2\theta} = \frac{(1 - \cos\theta)^2}{1 - \cos^2\theta}$$

$$= \frac{(1 - \cos\theta)(1 - \cos\theta)}{(1 + \cos\theta)(1 - \cos\theta)}$$

$$= \frac{1 - \cos\theta}{1 + \cos\theta}.$$

(21)
$$\frac{\sec\theta \cdot \cot\theta - \csc\theta \cdot \tan\theta}{\cos\theta - \sin\theta} = \frac{\frac{1}{\sin\theta} - \frac{1}{\cos\theta}}{\cos\theta - \sin\theta} = \frac{\cos\theta - \sin\theta}{\cos\theta - \sin\theta}$$
$$= \frac{1}{\sin\theta \cdot \cos\theta} = \csc\theta \cdot \sec\theta.$$

(22)
$$\sec\theta + \csc\theta \cdot \tan^3\theta (1 + \csc^2\theta) = \frac{1}{\cos\theta} + \frac{\sin^2\theta}{\cos^3\theta} + \frac{1}{\cos^3\theta}$$
$$= \frac{\cos^2\theta + \sin^2\theta + 1}{\cos^3\theta} = \frac{2}{\cos^3\theta} = 2\sec^3\theta.$$

(23)
$$(\sin\theta + \sec\theta)^{2} + (\cos\theta + \csc\theta)^{2}$$

$$= \sin^{2}\theta + \frac{2\sin\theta}{\cos\theta} + \frac{1}{\cos^{2}\theta} + \cos^{2}\theta + \frac{2\cos\theta}{\sin\theta} + \frac{1}{\sin^{2}\theta}$$

$$= (\sin^{2}\theta + \cos^{2}\theta) + \left(\frac{1}{\cos^{2}\theta} + \frac{1}{\sin^{2}\theta}\right) + \left(\frac{2\sin\theta}{\cos\theta} + \frac{2\cos\theta}{\sin\theta}\right)$$

$$= 1 + \frac{1}{\sin^{2}\theta \cdot \cos^{2}\theta} + \frac{2}{\sin\theta \cdot \cos\theta} = \left(1 + \frac{1}{\sin\theta \cdot \cos\theta}\right)^{2} = (1 + \sec\theta \cdot \csc\theta)^{2}.$$

$$(24) \frac{1 + (\cos \cot \cdot \tan \phi)^{2}}{1 + (\cos \cot \cdot \cot \phi)^{2}} = \frac{1 + \frac{\sin^{2}\phi}{\sin^{2}\theta \cdot \cos^{2}\phi}}{1 + \frac{\sin^{2}\phi}{\sin^{2}a \cdot \cos^{2}\phi}} = \frac{\sin^{2}\theta \cdot \cos^{2}\phi + \sin^{2}\phi}{\sin^{2}a \cdot \cos^{2}\phi + \sin^{2}\phi} \cdot \frac{\sin^{2}a}{\sin^{2}\theta}$$

$$= \frac{\sin^{2}\theta(1 - \sin^{2}\phi) + \sin^{2}\phi}{\sin^{2}a(1 - \sin^{2}\phi) + \sin^{2}\phi} \cdot \frac{\sin^{2}a}{\sin^{2}\theta} = \frac{\sin^{2}\theta - \sin^{2}\theta \cdot \sin^{2}\phi + \sin^{2}\phi}{\sin^{2}a \cdot \sin^{2}\theta + \sin^{2}\phi \cdot \cos^{2}\theta} \cdot \frac{\sin^{2}a}{\sin^{2}\theta}$$

$$= \frac{\sin^{2}\theta + \sin^{2}\phi \cdot \cos^{2}\theta}{\sin^{2}a + \sin^{2}\phi \cdot \cos^{2}\theta} \cdot \frac{\sin^{2}a}{\sin^{2}\theta}$$

$$= \frac{1 + \sin^{2}\phi \cdot \cot^{2}\theta}{1 + \sin^{2}\phi \cdot \cot^{2}\theta} = \frac{1 + (\cot\theta \cdot \sin\phi)^{2}}{1 + (\cot a \cdot \sin\phi)^{2}}.$$

$$(25) (3-4\sin^2 A)(1-3\tan^2 A) = (3-4\sin^2 A)\left(1-\frac{3\sin^2 A}{\cos^2 A}\right)$$

$$= (3-4\sin^2 A)\left(\frac{\cos^2 A - 3\sin^2 A}{\cos^2 A}\right)$$

$$= (3-4\sin^2 A)\left(\frac{\cos^2 A - 3(1-\cos^2 A)}{\cos^2 A}\right)$$

$$= \frac{3-4\sin^2 A}{\cos^2 A} \cdot (4\cos^2 A - 3)$$

$$= \frac{3\cos^2 A + 3\sin^2 A - 4\sin^2 A}{\cos^2 A}(4\cos^2 A - 3)$$

$$= \frac{3\cos^2 A - \sin^2 A}{\cos^2 A}(4\cos^2 A - 3)$$

$$= (3-\tan^2 A)(4\cos^2 A - 3).$$

EXAMPLES—XX. (p. 65).

1. (1)
$$90^{\circ} - (24^{\circ}, 14', 42'') = 65^{\circ}, 45', 18''$$
.

(2)
$$90^{\circ} - (43^{\circ}, 2', 57'') = 46^{\circ}, 57', 3''$$

(3)
$$90^{\circ} - (64^{\circ}, 0', 14'') = 25^{\circ}, 59', 46''$$
.

(4)
$$90^{\circ} - (82^{\circ}. 4'. 15'') = 7^{\circ}. 55'. 45''.$$

(5)
$$90^{\circ} - (125^{\circ}.15'.42'') = -(35^{\circ}.15'.42'')$$
.

(6)
$$90^{\circ} - (178^{\circ}. 27'. 34'') = -(88^{\circ}. 27'. 34'')$$
.

(7)
$$90^{\circ} - 195^{\circ} = -105^{\circ}$$
.

(8)
$$90^{\circ} - 254^{\circ} = -164^{\circ}$$
.

(9)
$$90^{\circ} - (-25^{\circ}) = 90^{\circ} + 25^{\circ} = 115^{\circ}$$
.

$$(10)$$
 $90^{\circ} - (-245^{\circ}) = 90^{\circ} + 245^{\circ} = 335^{\circ}$.

2. (1)
$$100^{g} - (32^{g}. 23^{\circ}. 24^{\circ}) = 67^{g}. 76^{\circ}. 76^{\circ}.$$

(2)
$$100^{\circ} - (95^{\circ}, 3^{\circ}, 75^{\circ}) = 4^{\circ}, 96^{\circ}, 25^{\circ}$$
.

(3)
$$100^g - (46^g, 0^i, 84^{ii}) = 53^g, 99^i, 16^{ii}$$
.

(4)
$$100^{g} - (2^{g}.5^{\circ}.4^{\circ}) = 97^{g}.94^{\circ}.96^{\circ}.$$

(5)
$$100^g - (135^g, 2', 5'') = -(35^g, 2', 5'')$$
.

(6)
$$100^{g} - (169^{g}, 0', 3'') = -(69^{g}, 0', 3'')$$
.

(7)
$$100^g - 243^g = -143^g$$
.

(8)
$$100^g - 357^g = -257^g$$
.

(9)
$$100^g - (-35^g) = 100^g + 35^g = 135^g$$
.

(10)
$$100^g - (-245^g) = 100^g + 245^g = 345^g$$
.

3. (1)
$$\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$
. (2) $\frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$. (3) $\frac{\pi}{2} - \frac{3\pi}{5} = -\frac{\pi}{10}$.

$$(4) \frac{\pi}{2} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}. \qquad (5) \frac{\pi}{2} - \left(-\frac{3\pi}{4}\right) = \frac{\pi}{2} + \frac{3\pi}{4} = \frac{5\pi}{4}.$$

EXAMPLES—XXI. (p. 68).

1. (1)
$$180^{\circ} - (34^{\circ}, 12', 49'') = 145^{\circ}, 47', 11''$$
.

(2)
$$180^{\circ} - (132^{\circ}. 24'. 47'') = 47^{\circ}. 35'. 13''$$
.

(3)
$$180^{\circ} - (146^{\circ}.0'.41'') = 33^{\circ}.59'.19''$$
.

(4)
$$180^{\circ} - (28^{\circ}, 15', 4'') = 151^{\circ}, 44', 56''$$
.

(5)
$$180^{\circ} - (179^{\circ}.59'.59'') = 1''$$
.

(6)
$$180^{\circ} - (100^{\circ}.49'.53'') = 79^{\circ}.10'.7''$$
.

(7)
$$180^{\circ} - 245^{\circ} = -65^{\circ}$$
.

(8)
$$180^{\circ} - (437^{\circ}. 3'. 4'') = -(257^{\circ}. 3'. 4'').$$

(9)
$$180^{\circ} - (-49^{\circ}) = 180^{\circ} + 49^{\circ} = 229^{\circ}$$
.

(10)
$$180^{\circ} - (-355^{\circ}) = 180^{\circ} + 355^{\circ} = 535^{\circ}$$
.

2. (1)
$$200^{g} - (132^{g}.32^{t}.42^{w}) = 67^{g}.67^{t}.58^{w}$$
.

(2)
$$200^{g} - (195^{g}. 2^{\circ}. 57^{\circ}) = 4^{g}. 97^{\circ}. 43^{\circ}.$$

(3)
$$200^g - (3^g, 97', 98'') = 196^g, 2', 2''$$
.

(4)
$$200^g - (65^g, 12^i, 8^{ii}) = 134^g, 87^i, 92^{ii}$$
.

(5)
$$200^g - (154^g, 3', 6'') = 45^g, 96', 94''$$
.

(6)
$$200^{s} - (174^{s}.0^{\circ}.4^{\circ}) = 25^{s}.99^{\circ}.96^{\circ}.$$

$$(7) 200^{g} - 275^{g} = -75^{g}.$$

(8)
$$200^g - (527^g, 2', 14'') = (327^g, 2', 14')$$
.

(9)
$$200^{g} - (-35^{g}) = 200^{g} + 35^{g} = 235^{g}$$
.

(10)
$$200^{g} - (-325^{g}) = 200^{g} + 325^{g} = 525^{g}$$
.

3. (1)
$$\pi - \frac{\pi}{2} = \frac{\pi}{2}$$
. (2) $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$. (3) $\pi - \frac{4\pi}{5} = \frac{\pi}{5}$.

(4)
$$\pi - \left(-\frac{\pi}{4}\right) = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$
 (5) $\pi - \left(-\frac{3\pi}{4}\right) = \pi + \frac{3\pi}{4} = \frac{7\pi}{4}$

4. Let θ be the circular measure of the angle.

Then $\frac{\pi}{2} - \theta$ is the complement of θ ;

and $\pi - \left(\frac{\pi}{2} - \theta\right)$, or, $\frac{\pi}{2} + \theta$ is the supplement of the complement of θ .

Again $\pi - \theta$ is the supplement of θ ,

and $\frac{\pi}{2} = (\pi - \theta)$, or, $\theta = \frac{\pi}{2}$ is the complement of the supplement of θ ;

$$\therefore \text{ difference} = \frac{\pi}{2} + \theta - \left(\theta - \frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

EXAMPLES-XXII. (p. 72).

- 1. (1) Take the construction and notation of Art. 101. Then $\sec(180^{\circ} - A) = \sec EOP' = \frac{OP'}{OM'} = \frac{OP}{OM'} = -\sec A$.
 - (2) Take the construction of Art. 102, and let $\angle EOP = \theta$. Then $\csc\left(\frac{\pi}{2} + \theta\right) = \frac{OP}{PM'} = \frac{OP}{OM} = \sec\theta$.
 - (3) Take the construction and notation of Art. 103. Then $\tan(180^{\circ} + A) = \frac{P'M'}{OM'} = \frac{-PM}{-OM} = \frac{PM}{OM} = \tan A$.
 - (4) Take the construction of Art. 103, and let $\angle EOP = \theta$. Then $\sec(\pi + \theta) = \frac{OP'}{OM'} = \frac{OP}{OM} = -\sec\theta$.
 - (5) Take the construction of Art. 104, and let $\angle EOP = \theta$. Then $\tan(-\theta) = \frac{MP'}{MO} = \frac{-MP}{MO} = -\tan\theta$.
 - (6) Take the construction of Art. 104, and let $\angle EOP = \theta$. Then $\cot(2\pi - \theta) = \cot EOP = \frac{OM}{MP} = \frac{OM}{-MP} = -\cot \theta$.

36 KEY TO ELEMENTARY TRIGONOMETRY.

- 2. (1) Take the construction of Art. 102, and let $\angle EOP = B$. Then $\csc(90^{\circ} + B) = \csc EOP' = \frac{OP'}{P'M'} = \frac{OP}{OM} = \sec B = \frac{\csc B}{\sqrt{\csc^{2}B - 1}}$. (Ex. xvii. 2.)
 - (2) Take the construction of Art. 103, and let $\angle EOP = \phi$. Then $\csc(\pi + \phi) = \csc EOP' = \frac{OP'}{P'M'} = \frac{OP}{-PM} = -\csc\phi$.
- 3. (1) Take the construction of Art. 102, and let $\angle EOP = A$. Then $\sec(90^\circ + A) = \sec EOP' = \frac{OP'}{OM'} = \frac{OP}{-PM} = -\csc A = -\frac{\sec A}{\sqrt{\sec^2 A - 1}}$. (Ex. xvii. 3.)
 - (2) Take the construction of Art. 99, and let $\angle EOP = \theta$. Then $\sec\left(\frac{\pi}{2} - \theta\right) = \sec EOP' = \frac{OP'}{OM'} = \frac{OP}{PM} = \csc \theta = \frac{\sec \theta}{\sqrt{\sec^2 \theta - 1}}$. (Ex. xvii. 3.)

EXAMPLES-XXIII. (p. 72).

(1)
$$\sin 120^\circ = \sin(180^\circ - 120^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$$
.

(2)
$$\cos 120^\circ = -\cos(180^\circ - 120^\circ) = -\cos 60^\circ = -\frac{1}{2}$$

(3)
$$\sin 135^\circ = \sin (180^\circ - 135^\circ) = \sin 45^\circ = \frac{1}{\sqrt{2}}$$

(4)
$$\cos 135^\circ = -\cos(180^\circ - 135^\circ) = -\cos 45^\circ = -\frac{1}{\sqrt{2}}$$

(5)
$$\sin 150^\circ = \sin (180^\circ - 150^\circ) = \sin 30^\circ = \frac{1}{2}$$

(6)
$$\cos 150^\circ = -\cos(180^\circ - 150^\circ) = -\cos 30^\circ = -\frac{\sqrt{3}}{2}$$

(7)
$$\sin 225^\circ = \sin(180^\circ + 45^\circ) = -\sin 45^\circ = -\frac{1}{\sqrt{2}}$$

(8)
$$\sin 240^\circ = \sin(180^\circ + 60^\circ) = -\sin 60^\circ = -\frac{\sqrt{3}}{2}$$

(9)
$$\tan 300^{\circ} = \tan (360^{\circ} - 60^{\circ}) = -\tan 60^{\circ} = -\sqrt{3}$$
.

(10)
$$\csc 300^{\circ} = \csc(360^{\circ} - 60^{\circ}) = -\csc 60^{\circ} = -\frac{2}{\sqrt{3}}$$

(11)
$$\sec 315^\circ = \sec (360^\circ - 45^\circ) = \sec 45^\circ = \sqrt{2}$$
.

(12)
$$\cot 330^\circ = \cot (360^\circ - 30^\circ) = -\cot 30^\circ = -\sqrt{3}$$
.

Examples—XXIV. (p. 75).

(1)
$$\sin\theta + \cos\theta = 0$$
,
 $\sin\theta = -\cos\theta$,
 $\sin^2\theta = \cos^2\theta$,
 $\sin^2\theta = 1 - \sin^2\theta$,
 $2\sin^2\theta = 1$.
Hence $\sin\theta = \pm \frac{1}{\sqrt{2}}$, and $\therefore \theta = 45^\circ$ or -45° .

The latter of these values must be taken, because $\sin\theta$ and $\cos\theta$ must have different signs to satisfy the equation.

(2)
$$\sin\theta - \cos\theta = 0$$
,
 $\sin\theta = \cos\theta$,
and, as in Example (1), $\theta = 45^{\circ}$ or -45° .

The former of these values must be taken, because $\sin\theta$ and $\cos\theta$ must have the same sign to satisfy the equation.

(3)
$$\sin\theta = \tan\theta$$
,
 $\sin\theta = \frac{\sin\theta}{\cos\theta}$, and, dividing by $\sin\theta$,
 $1 = \frac{1}{\cos\theta}$, or, $\cos\theta = 1$, and $\therefore \theta = 0^{\circ}$.

(4)
$$\cos\theta = \cot\theta$$
,
 $\cos\theta = \frac{\cos\theta}{\sin\theta}$, and, dividing by $\cos\theta$,
 $1 = \frac{1}{\sin\theta}$, or, $\sin\theta = 1$, and $\therefore \theta = 90^{\circ}$.

(5)
$$2\sin\theta = \tan\theta$$
,
 $2\sin\theta = \frac{\sin\theta}{\cos\theta}$, or, $2\cos\theta = 1$, or, $\cos\theta = \frac{1}{2}$, and, \therefore , $\theta = 60^{\circ}$.

Also, since we divided by $\sin\theta$, one value of θ to satisfy the original equation is given by $\sin\theta = 0$, or, $\theta = 0^{\circ}$.

(6)
$$3 \sin \theta = 2 \cos^{2} \theta,$$

$$3 \sin \theta = 2(1 - \sin^{2} \theta),$$

$$2 \sin^{2} \theta + 3 \sin \theta = 2,$$

$$\sin^{2} \theta + \frac{3}{2} \sin \theta = 1.$$

$$\sin^{2} \theta + \frac{3}{2} \sin \theta + \frac{9}{16} = \frac{25}{16}.$$

$$\sin \theta + \frac{3}{4} = \pm \frac{5}{4}.$$
Hence $\sin \theta = \frac{1}{2}$, or, -2 .
The second value is inadmissible

The second value is inadmissible $\therefore \sin\theta = \frac{1}{2}$, or, $\theta = 30^{\circ}$.

(7)
$$\sin\theta + \cos^2\theta \cdot \csc\theta = 2,$$

$$\sin\theta + \frac{\cos^2\theta}{\sin\theta} = 2,$$

$$\sin^2\theta + \cos^2\theta = 2\sin\theta,$$

$$1 = 2\sin\theta.$$
Hence $\sin\theta = \frac{1}{2}$, or, $\theta = 30^{\circ}$.

(8)
$$\tan\theta = 4 - 3 \cot\theta,$$
$$\tan\theta + 3 \cot\theta = 4,$$
$$\tan\theta + \frac{3}{\tan\theta} = 4,$$
$$\tan^2\theta + 3 = 4 \tan\theta,$$
$$\tan^2\theta - 4 \tan\theta = -3,$$
$$\tan^2\theta - 4 \tan\theta + 4 = 1,$$
$$\tan\theta - 2 = \pm 1.$$

Hence $\tan \theta = 3$ or 1, and the latter of these values of $\tan \theta$ enables us to say that one value of θ is 45°.

(9)
$$4 \sec^2 \theta - 7 \tan^2 \theta = 3$$
, $4(1 + \tan^2 \theta) - 7 \tan^2 \theta = 3$, $4 - 3 \tan^2 \theta = 3$, $\tan^2 \theta = \frac{1}{3}$, or, $\tan \theta = \frac{1}{\sqrt{3}}$, and $\therefore \theta = 30^\circ$.

(10)
$$\cos\theta \cdot \csc\theta + \sin\theta \cdot \sec\theta = \frac{4}{\sqrt{3}}$$
,
$$\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} = \frac{4}{\sqrt{3}}$$
,
$$\frac{\cos^2\theta + \sin^2\theta}{\sin\theta \cdot \cos\theta} = \frac{4}{\sqrt{3}}$$
,
$$\sqrt{3} = 4\sin\theta \cdot \cos\theta$$
,
$$3 = 16\sin^2\theta(1 - \sin^2\theta)$$
,
$$16\sin^4\theta - 16\sin^2\theta = -3$$
,
$$\sin^4\theta - \sin^2\theta = -\frac{3}{16}$$
.
Hence $\sin^2\theta = \frac{3}{4}$ or $\frac{1}{4}$,
and $\therefore \sin\theta = \frac{\sqrt{3}}{2}$ or $\frac{1}{2}$, and $\theta = 60^\circ$ or 30° .

(11)
$$3 \sin^2\theta - \cos^2\theta + (\sqrt{3} + 1)(1 - 2\sin\theta) = 0$$
, $3 \sin^2\theta - (1 - \sin^2\theta) + \sqrt{3} + 1 - 2\sqrt{3}\sin\theta - 2\sin\theta = 0$, $4 \sin^2\theta - 2(\sqrt{3} + 1)\sin\theta = -\sqrt{3}$, $\sin^2\theta - \frac{\sqrt{3} + 1}{2} \cdot \sin\theta = -\frac{\sqrt{3}}{4}$, $\sin^2\theta - \frac{\sqrt{3} + 1}{2} \sin\theta + \frac{4 + 2\sqrt{3}}{16} = \frac{4 + 2\sqrt{3}}{16} - \frac{\sqrt{3}}{4} = \frac{4 - 2\sqrt{3}}{16}$, $\sin\theta - \frac{\sqrt{3} + 1}{4} = \pm \frac{\sqrt{3} - 1}{4}$. Hence $\sin\theta = \frac{\sqrt{3}}{9}$ or $\frac{1}{9}$, and $\theta = 60^\circ$ or 30° .

(12)
$$3\cos^2\theta - \sin^2\theta + (\sqrt{3} + 1)(1 - 2\cos\theta) = 0$$
,
 $3\cos^2\theta - (1 - \cos^2\theta) + \sqrt{3} + 1 - 2\sqrt{3}\cos\theta - 2\cos\theta = 0$,
 $4\cos^2\theta - 2(\sqrt{3} + 1)\cos\theta = -\sqrt{3}$.
Hence, by the same process as in Example (11),
 $\cos\theta = \frac{\sqrt{3}}{2}$ or $\frac{1}{2}$, and $\theta = 30^\circ$ or 60° .

40 KEY TO ELEMENTARY TRIGONOMETRY.

(13)
$$\sec\theta \cdot \csc\theta + 2 \cot\theta = 4,$$

$$\frac{1}{\cos\theta \cdot \sin\theta} + \frac{2 \cos\theta}{\sin\theta} = 4,$$

$$1 + 2 \cos^2\theta = 4 \sin\theta \cdot \cos\theta,$$

$$1 + 4 \cos^2\theta + 4 \cos^4\theta = 16 \sin^2\theta \cdot \cos^2\theta,$$

$$1 + 4 \cos^2\theta + 4 \cos^4\theta = 16 \cos^3\theta - 16 \cos^4\theta,$$

$$20 \cos^4\theta - 12 \cos^2\theta = -1,$$

$$\cos^4\theta - \frac{3}{5} \cos^2\theta = -\frac{1}{20}.$$

$$\text{Hence } \cos^2\theta = \frac{1}{2}, \text{ and } \cos\theta = \frac{1}{\sqrt{2}}, \text{ and } \theta = 45^\circ$$
(14)
$$\sin^2\theta + 2 \sin\theta \cdot \cos\theta + \cos^2\theta = 2, \quad ... \quad$$

 $\tan^2\theta - 2\tan\theta = -1$; $\therefore \tan\theta = 1$, and $\theta = 45^\circ$.

 $-2\sin\theta.\cos\theta=1$,

 $4\sin\theta \cdot \cos\theta = -2$, and adding this to (2)

41

 $\sin^2\theta + 2\sin\theta \cdot \cos\theta + \cos^2\theta = 0$,

 $\sin\theta + \cos\theta = 0$, and adding this to (1)

$$2\sin\theta = \sqrt{2}$$
, or, $\sin\theta = \frac{1}{\sqrt{2}}$, and $\theta = 45^{\circ}$ or 135°.

Now $\cos\theta$ has to be of the same numerical value as $\sin\theta$, but with a different sign, and hence 45° is an inadmissible value of θ ;

$$\therefore \theta = 135^{\circ}$$
.

(18)
$$\sin\theta + \cos\theta = 2\sqrt{2} \cdot \sin\theta \cdot \cos\theta,$$

$$\sin^2\theta + 2\sin\theta \cdot \cos\theta + \cos^2\theta = 8\sin^2\theta \cdot \cos^2\theta,$$

$$8\sin^2\theta \cdot \cos^2\theta - 2\sin\theta \cdot \cos\theta = 1,$$

$$\sin^2\theta \cdot \cos^2\theta - \frac{1}{4} \cdot \sin\theta \cdot \cos\theta = \frac{1}{8},$$

$$\sin^2\theta \cdot \cos^2\theta - \frac{1}{4}\sin\theta \cdot \cos\theta + \frac{1}{84} = \frac{9}{84};$$

$$\therefore \sin\theta \cdot \cos\theta = \frac{1}{64} \text{ or } -\frac{1}{4}.$$

$$\therefore \sin\theta \cdot \cos\theta = \frac{1}{2} \text{ or } -\frac{1}{4}.$$

Taking the former of these values, we get

$$\sin^2\theta \ (1-\sin^2\theta) = \frac{1}{4}.$$

Whence $\sin^2\theta = \frac{1}{2}$, or, $\sin\theta = \frac{1}{\sqrt{2}}$, and $\theta = 45^\circ$.

 $\theta = 30^{\circ} \text{ or } 90^{\circ}$

(19)
$$\sqrt{3} \cdot \sin\theta = \sqrt{3} - \cos\theta,$$

$$3 \sin^2\theta = 3 - 2\sqrt{3} \cdot \cos\theta + \cos^2\theta,$$

$$3 - 3 \cos^2\theta = 3 - 2\sqrt{3} \cos\theta + \cos^2\theta,$$

$$4 \cos^2\theta = 2\sqrt{3} \cdot \cos\theta.$$
Dividing by $\cos\theta$, we get
$$4 \cos\theta = 2\sqrt{3}, \text{ or, } \cos\theta = 0.$$
Hence $\cos\theta = \frac{\sqrt{3}}{2}, \text{ or, } \cos\theta = 0;$

42 KEY TO ELEMENTARY TRIGONOMETRY.

(20)
$$\tan^{2}\theta + 4\sin^{2}\theta = 3,$$

$$\sin^{2}\theta + 4\sin^{2}\theta \cdot \cos^{2}\theta = 3\cos^{2}\theta,$$

$$1 - \cos^{2}\theta + 4\cos^{2}\theta - 4\cos^{4}\theta = 3\cos^{2}\theta,$$

$$4\cos^{4}\theta = 1;$$

$$\therefore \text{ one value of } \cos\theta \text{ is } \frac{1}{\sqrt{2}}, \text{ or } \theta = 45^{\circ}.$$

EXAMPLES—XXV. (p. 81).

(1)
$$\sin 480^\circ = \sin(360^\circ + 120^\circ) = \sin 120^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$$
.

(2)
$$\cos 480^{\circ} = \cos(360^{\circ} + 120^{\circ}) = \cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$$

(3)
$$\sin 495^\circ = \sin(360^\circ + 135^\circ) = \sin 135^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}}$$

(4)
$$\cos 495^{\circ} = \cos(360^{\circ} + 135^{\circ}) = \cos 135^{\circ} = -\cos 45^{\circ} = -\frac{1}{\sqrt{2}}$$

(5)
$$\sin 870^{\circ} = \sin(720^{\circ} + 150^{\circ}) = \sin 150^{\circ} = \sin 30^{\circ} = \frac{1}{2}$$
.

(6)
$$\cos 870^{\circ} = \cos(720^{\circ} + 150^{\circ}) = \cos 150^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

(7)
$$\sin 945^\circ = \sin (720^\circ + 225^\circ) = \sin 225^\circ = -\sin 45^\circ = -\frac{1}{\sqrt{2}}$$

(8)
$$\sin 960^{\circ} = \sin(720^{\circ} + 240^{\circ}) = \sin 240^{\circ} = -\sin 60^{\circ} = -\frac{\sqrt{3}}{2}$$

(9)
$$\tan 1020^{\circ} = \tan (720^{\circ} + 300^{\circ}) = \tan 300^{\circ} = -\tan 60^{\circ} = -\sqrt{3}$$
.

(10)
$$\cos \text{cc} 1380^\circ = \csc(1080^\circ + 300^\circ) = \csc 300^\circ = -\csc 60^\circ = -\frac{2}{\sqrt{3}}$$

(11)
$$\sec 1395^{\circ} = \sec (1080^{\circ} + 315^{\circ}) = \sec 315^{\circ} = \sec 45^{\circ} = \sqrt{2}$$
.

(12)
$$\cot 1410^{\circ} = \cot (1080^{\circ} + 330^{\circ}) = \cot 330^{\circ} = -\cot 30^{\circ} = -\sqrt{3}$$

(13)
$$\cos 420^\circ = \cos(360^\circ + 60^\circ) = \cos 60^\circ = \frac{1}{2}$$

(14)
$$\sec 750^\circ = \sec (720^\circ + 30^\circ) = \sec 30^\circ = \frac{2}{\sqrt{3}}$$
.

(15)
$$\tan 945^\circ = \tan(720^\circ + 225^\circ) = \tan 225^\circ = \tan 45^\circ = 1$$
.

(16)
$$\sin 1200^\circ = \sin(1080^\circ + 120^\circ) = \sin 120^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$$
.

(17)
$$\sin 1485^\circ = \sin(1440^\circ + 45^\circ) = \sin 45^\circ = \frac{1}{\sqrt{2}}$$
.

(18)
$$\cos 1470^{\circ} = \cos(1440^{\circ} + 30^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{9}$$
.

(19)
$$\sin 7\pi = \sin(6\pi + \pi) = \sin \pi = 0$$
.

(20)
$$\sec 8\pi = \sec 2\pi = 1$$
.

(21)
$$\csc 930^{\circ} = \csc (720^{\circ} + 210^{\circ}) = \csc 210^{\circ} = -\csc 30^{\circ} = -2$$
.

(22)
$$\cot 1140^{\circ} = \cot(1080^{\circ} + 60^{\circ}) = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$$
.

(23)
$$\tan 1305^{\circ} = \tan(1080^{\circ} + 225^{\circ}) = \tan 225^{\circ} = \tan 45^{\circ} = 1$$
.

(24)
$$\csc(1740^\circ) = \csc(1440^\circ + 300^\circ) = \csc(300^\circ) = -\csc(60^\circ) = -\frac{2}{\sqrt{3}}$$

(25)
$$\sin(-240^\circ) = -\sin 240^\circ = -\sin(-60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$$

(26)
$$\cot(-675^\circ) = \cot(720^\circ - 675^\circ) = \cot 45^\circ = 1.$$

(27)
$$\sec(-135^\circ) = -\sec(180^\circ - 135^\circ) = -\sec45^\circ = -\sqrt{2}$$
.

(28)
$$\tan(-225^\circ) = \tan(360^\circ - 225^\circ) = \tan 135^\circ = -\tan 45^\circ = -1$$
.

(29)
$$\csc(-690^\circ) = \csc(720^\circ - 690^\circ) = \csc(30^\circ) = 2.$$

(30)
$$\cos(-120^\circ) = \cos 120^\circ = -\cos 60^\circ = -\frac{1}{2}$$
.

Examples—XXVI. (p. 82).

(1)
$$\sin \theta = 1$$
; \therefore one value of θ is $\frac{\pi}{2}$;
 \therefore general value of θ is $n\pi + (-1)^n \cdot \frac{\pi}{2}$.

- (2) $\cos\theta = 1$; ... one value of θ is 0; ... general value of θ is $2n\pi$.
- (3) $\sin \theta = \frac{1}{\sqrt{2}}$; ... one value of θ is $\frac{\pi}{4}$; ... general value of θ is $n\pi + (-1)^n \cdot \frac{\pi}{4}$.
- (4) $\tan \theta = \sqrt{3}$; \therefore one value of θ is $\frac{\pi}{3}$; \therefore general value of θ is $n\pi + \frac{\pi}{3}$.
- (5) $3 \sin \theta = 2 \cos^2 \theta$ $3 \sin \theta = 2(1 \sin^2 \theta)$ $\sin^2 \theta + \frac{3}{2} \sin \theta = 1$ $\left(\sin \theta + \frac{3}{4}\right)^2 = \pm \frac{5}{4}, \text{ or, } \sin \theta = \frac{1}{2} \text{ or } -2$ $\therefore \text{ least positive value of } \theta \text{ is } \frac{\pi}{6};$ $\therefore \text{ general value of } \theta \text{ is } n\pi + (-1)^n \cdot \frac{\pi}{6}.$
- (6) $2\sin\theta = \tan\theta$, $2\sin\theta = \frac{\sin\theta}{\cos\theta}$; $\therefore \sin\theta = 0$, or, $\cos\theta = \frac{1}{2}$; $\therefore \theta = 0$, or, $\theta = \frac{\pi}{3}$; \therefore general value of θ is $n\pi$ or $2n\pi \pm \frac{\pi}{3}$.

(7)
$$\tan^2\theta + 4\sin^2\theta = 3$$
,
 $\sin^2\theta + 4\sin^2\theta \cdot \cos^2\theta = 3\cos^2\theta$,
 $\sin^2\theta + 4\sin^2\theta - 4\sin^4\theta = 3 - 3\sin^2\theta$,
 $4\sin^4\theta - 8\sin^2\theta = -3$,
 $\sin^4\theta - 2\sin^2\theta + 1 = \frac{1}{4}$,
 $\sin^2\theta - 1 = \pm \frac{1}{2}$.
Hence $\sin\theta = \pm \sqrt{\frac{3}{2}}$ or $\pm \frac{1}{\sqrt{2}}$;

- \therefore least positive value of θ is $\frac{\pi}{4}$;
- \therefore general value of θ is $n\pi + (-1)^n \cdot \frac{\pi}{4}$.
- (8) $\cos^2 = \sin^2 \theta$, $\cos^2 \theta = 1 - \cos^2 \theta$, $2 \cos^2 \theta = 1$, and $\therefore \cos \theta = \pm \frac{1}{\sqrt{2}}$;
- .: the least positive values of θ are $\frac{\pi}{4}$ and $\frac{3\pi}{4}$;
- ... the general value of θ is $2n\pi \pm \frac{\pi}{4}$ or $2n\pi \pm \frac{3\pi}{4}$.
 - (9) $\tan \theta = 4 3 \cot \theta$, $\tan \theta + \frac{3}{\tan \theta} = 4$, $\tan^2 \theta - 4 \tan \theta = -3$, $\tan \theta = 3 \text{ or } 1$; \therefore the least positive value of θ is $\frac{\pi}{4}$;
 - \therefore general value of θ is $n\pi + \frac{\pi}{4}$.

(10)
$$\sec^2\theta - \frac{5}{2}\sec\theta + 1 = 0$$
,
 $\sec^2\theta - \frac{5}{2}\sec\theta + \frac{25}{16} = \frac{9}{16}$,
 $\sec\theta - \frac{5}{4} = \pm \frac{3}{4}$;
 $\therefore \sec\theta = 2 \text{ or } \frac{1}{2}$.

Taking the value 2 for $\sec\theta$ (the other value being impossible) the general value of θ is $2n\pi \pm \frac{\pi}{3}$.

(1)

$$\sin(A + B).\sin(A - B) = (\sin A.\cos B + \cos A.\sin B).(\sin A.\cos B - \cos A.\sin B)$$

 $= \sin^2 A.\cos^2 B - \cos^2 A.\sin^2 B$
 $= \sin^2 A (1 - \sin^2 B) - (1 - \sin^2 A)\sin^2 B$
 $= \sin^2 A - \sin^2 B$

(2)

$$\sin(a+\beta) \cdot \sin(a-\beta) = \sin a \cdot \cos \beta + \cos a \cdot \sin \beta) (\sin a \cdot \cos \beta - \cos a \cdot \sin \beta)$$

$$= \sin^2 a \cdot \cos^2 \beta - \cos^2 a \cdot \sin^2 \beta$$

$$= (1 - \cos^2 a)\cos^2 \beta - \cos^2 a (1 - \cos^2 \beta)$$

$$= \cos^2 \beta - \cos^2 a,$$

(3)

$$\cos(A + B).\cos(A - B) = (\cos A.\cos B - \sin A.\sin B)(\cos B.\cos B + \sin A.\sin B)$$

$$= \cos^2 A \cdot \cos^2 B - \sin^2 A \cdot \sin^2 B$$

$$= \cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A)\sin^2 B$$

$$= \cos^2 A - \sin^2 B.$$

(4)

$$\cos(a+\beta) \cdot \cos(a-\beta) = (\cos a \cdot \cos \beta - \sin a \cdot \sin \beta) (\cos a \cdot \cos \beta + \sin a \cdot \sin \beta)$$

$$= \cos^2 a \cdot \cos^2 \beta - \sin^2 a \cdot \sin^2 \beta$$

$$= (1 - \sin^2 a) \cos^2 \beta - \sin^2 a (1 - \cos^2 \beta)$$

$$= \cos^2 \beta - \sin^2 a.$$

$$\begin{array}{l} (5) \\ 2\sin(x+y) \cdot \cos(x-y) = 2(\sin x \cdot \cos y + \cos x \cdot \sin y) \cdot (\cos x \cdot \cos y + \sin x \cdot \sin y) \\ = 2\left\{\sin x \cdot \cos x \cdot \cos^2 y + \sin^2 x \cdot \cos y \cdot \sin y + \cos^2 x \cdot \sin y \cdot \cos y + \sin x \cdot \cos x \cdot \sin^2 y\right\} \\ = 2\left\{\sin x \cdot \cos x (\cos^2 y + \sin^2 y) + \sin y \cdot \cos y (\sin^2 x + \cos^2 x)\right\} \\ = 2\left\{\sin x \cdot \cos x + \sin y \cdot \cos y\right\} \\ = (\sin x \cdot \cos x + \cos x \cdot \sin x) + (\sin y \cdot \cos y + \cos y \cdot \sin y) \\ = \sin(x+x) + \sin(y+y) \\ = \sin 2x + \sin 2y \end{array}$$

(6)
$$2\cos(x+y).\sin(x-y) = 2(\cos x.\cos y - \sin x.\sin y).(\sin x.\cos y - \cos x.\sin y)$$

$$= 2\{\sin x.\cos x.\cos^2 y - \sin y.\cos y.\cos^2 x - \sin y.\cos y.\sin^2 x + \sin x.\cos x.\sin^2 y\}$$

$$= 2\{\sin x.\cos x.(\cos^2 y + \sin^2 y) - \sin y.\cos y.(\cos^2 x + \sin^2 x)\}$$

$$= 2\{\sin x.\cos x - \sin y.\cos y\}$$

$$= (\sin x.\cos x + \cos x.\sin x) - (\sin y.\cos y + \cos y.\sin y)$$

$$= \sin 2x - \sin 2y.$$

(7)
$$\tan A + \tan B = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}$$
.

$$= \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B}$$

$$= \frac{\sin(A + B)}{\cos A \cdot \cos B}$$
.

(8)
$$\tan a - \tan \beta = \frac{\sin a}{\cos a} - \frac{\sin \beta}{\cos \beta}$$

$$= \frac{\sin a \cdot \cos \beta - \cos a \cdot \sin \beta}{\cos a \cdot \cos \beta}$$

$$= \frac{\sin(a - \beta)}{\cos a \cdot \cos \beta}.$$

EXAMPLES-XXVIII. (p. 88).

(1)
$$\sin 15^{\circ} = \sin(45^{\circ} - 30^{\circ})$$

 $= \sin 45^{\circ} \cdot \cos 30^{\circ} - \cos 45^{\circ} \cdot \sin 30^{\circ}$
 $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
 $= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}}.$

(2)
$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ})$$

 $= \cos 45^{\circ} \cdot \cos 30^{\circ} - \sin 45^{\circ} \cdot \sin 30^{\circ}$
 $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
 $= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$.

(3)
$$\tan 75^{\circ} = \tan(45^{\circ} + 30^{\circ})$$

 $= \sin(45^{\circ} + 30^{\circ}) \div \cos(45^{\circ} + 30^{\circ})$
 $= \frac{\sqrt{3} + 1}{2\sqrt{2}} \div \frac{\sqrt{3} - 1}{2\sqrt{2}}$
 $= \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} + 1)^{3}}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{4 + 2\sqrt{3}}{3 - 1} = 2 + \sqrt{3}.$

(4)
$$\cot 75^{\circ} = \cos 75^{\circ} \div \sin 75^{\circ}$$

 $= \cos (45^{\circ} + 30^{\circ}) \div \sin (45^{\circ} + 30^{\circ})$
 $= \frac{\sqrt{3} - 1}{2\sqrt{2}} \div \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$
 $= \frac{(\sqrt{3} - 1)^2}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{4 - 2\sqrt{3}}{3 - 1} = 2 - \sqrt{3}.$

(5) If
$$\sin a = \frac{1}{3}$$
, $\cos a = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}$.
If $\sin \beta = \frac{2}{3}$, $\cos \beta = \frac{\sqrt{5}}{3}$;

$$\therefore \sin(\alpha + \beta) = \frac{1}{3} \cdot \frac{\sqrt{5}}{3} + \frac{2\sqrt{2}}{3} \cdot \frac{2}{3} = \frac{\sqrt{5} + 4\sqrt{2}}{9}$$
.

(6) If
$$\cos a = \frac{3}{4}$$
, $\sin a = \frac{\sqrt{7}}{4}$.
If $\cos \beta = \frac{2}{5}$, $\sin \beta = \frac{\sqrt{21}}{5}$.

$$\therefore \sin(a - \beta) = \frac{\sqrt{7}}{4} \cdot \frac{2}{5} - \frac{3}{4} \cdot \frac{\sqrt{21}}{5} = \frac{2\sqrt{7} - 3\sqrt{21}}{20}$$
.

(7) If
$$\sin a = 5 = \frac{1}{2}$$
, $\cos a = \frac{\sqrt{3}}{2}$.
If $\cos \beta = \frac{1}{\sqrt{2}}$, $\sin \beta = \frac{1}{\sqrt{2}}$;
 $\therefore \cos(\alpha + \beta) = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$.

(8) If
$$\cos a = 03 = \frac{1}{30}$$
, $\sin a = \frac{\sqrt{899}}{30}$.
If $\sin \beta = \frac{1}{2}$, $\cos \beta = \frac{\sqrt{3}}{2}$;

$$\therefore \cos(a - \beta) = \frac{1}{30} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{899}}{30} \cdot \frac{1}{2} = \frac{\sqrt{3} + \sqrt{899}}{60}$$
.

EXAMPLES—XXIX. (p. 88).

- (1) $\cos(90^{\circ} + A) = \cos 90^{\circ} \cdot \cos A \sin 90^{\circ} \cdot \sin A$ = $0 \cdot \cos A - 1 \cdot \sin A = -\sin A$.
- (2) $\sin(180^{\circ} + A) = \sin 180^{\circ}$. $\cos A + \cos 180^{\circ}$. $\sin A = 0$. $\cos A 1$. $\sin A = -\sin A$.
- (3) $\cos(\pi + \theta) = \cos \pi \cdot \cos \theta \sin \pi \cdot \sin \theta$ = -1 \cdot \cos \theta - 0 \cdot \sin \theta = -\cos \theta.
- (4) $\sin\left(\frac{3\pi}{2} + \theta\right) = \sin\frac{3\pi}{2} \cdot \cos\theta + \cos\frac{3\pi}{2} \cdot \sin\theta$ = $-1 \cdot \cos\theta + 0 \cdot \sin\theta = -\cos\theta$.

(5)
$$\csc\left(\frac{\pi}{2} + a\right) = \frac{1}{\sin\left(\frac{\pi}{2} + a\right)}$$

$$= \frac{1}{\sin\frac{\pi}{2} \cdot \cos a + \cos\frac{\pi}{2} \cdot \sin a}$$

$$= \frac{1}{1 \cdot \cos a + 0 \cdot \sin a} = \frac{1}{\cos a} = \sec a.$$

(6)
$$\tan(\pi + a) = \frac{\sin(\pi + a)}{\cos(\pi + a)} = \frac{0 \cdot \cos a - 1 \cdot \sin a}{-1 \cdot \cos a - 0 \cdot \sin a} = \frac{-\sin a}{-\cos a} = \tan a.$$

(7)
$$\sin(2\pi - \theta) = \sin 2\pi \cdot \cos \theta - \cos 2\pi \cdot \sin \theta$$

= $0 \cdot \cos \theta - 1 \cdot \sin \theta = -\sin \theta$,

(8)
$$\tan(2\pi - \theta) = \frac{\sin(2\pi - \theta)}{\cos(2\pi - \theta)} = \frac{0 \cdot \cos\theta - 1 \cdot \sin\theta}{1 \cdot \cos\theta + 0 \cdot \sin\theta} = \frac{-\sin\theta}{\cos\theta} = -\tan\theta.$$

(9)
$$\sec(180^{\circ} - \theta) = \frac{1}{\cos(180^{\circ} - \theta)} = \frac{1}{-1 \cdot \cos\theta + 0 \cdot \sin\theta} = -\frac{1}{\cos\theta} = -\sec\theta.$$

(10)
$$\csc(\pi - \theta) = \frac{1}{\sin(\pi - \theta)} = \frac{1}{0 \cdot \cos\theta - (-1 \cdot \sin\theta)} = \frac{1}{\sin\theta} = \csc\theta.$$

Examples—XXX. (p. 89).

(1)
$$\sin \theta - \cos \theta = 0.$$

 $\sin \theta \cdot \frac{1}{\sqrt{2}} - \cos \theta \cdot \frac{1}{\sqrt{2}} = 0$
 $\sin \theta \cdot \cos 45^{\circ} - \cos \theta \cdot \sin 45^{\circ} = 0;$
 $\therefore \sin(\theta - 45^{\circ}) = 0, \therefore \theta - 45^{\circ} = 0^{\circ}, \text{ or } \theta = 45^{\circ}.$

(2)
$$\sin\theta + \cos\theta = 1$$

$$\sin\theta \cdot \frac{1}{\sqrt{2}} + \cos\theta \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}};$$

$$\sin\theta \cdot \cos45^{\circ} + \cos\theta \cdot \sin45^{\circ} = \frac{1}{\sqrt{2}};$$

$$\therefore \sin(\theta + 45^{\circ}) = \sin45^{\circ};$$

$$\therefore \theta + 45^{\circ} = 45^{\circ}, \text{ or, } \theta = 0^{\circ}.$$

(3)
$$\sin\theta - \cos\theta = \sqrt{\frac{3}{2}}$$

$$\sin\theta \cdot \frac{1}{\sqrt{2}} - \cos\theta \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2};$$

$$\therefore \sin(\theta - 45^{\circ}) = \sin60^{\circ};$$

$$\therefore \theta - 45^{\circ} = 60^{\circ}, \text{ or, } \theta = 105^{\circ}.$$

(4)
$$\sin\theta + \cos\theta = \frac{\sqrt{3} + 1}{2}$$

$$\sin\theta \cdot \frac{1}{\sqrt{2}} + \cos\theta \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

$$\sin(\theta + 45^{\circ}) = \sin75^{\circ}, \text{ whence } \theta = 30^{\circ}, \text{ or,}$$

$$\cos(\theta - 45^{\circ}) = \cos15^{\circ}, \text{ whence } \theta = 60^{\circ}, \text{ or,}$$

$$\cos(45^{\circ} - \theta) = \cos15^{\circ}, \text{ whence } \theta = -30^{\circ}.$$

(5)
$$\sin\theta + \cos\theta = \sqrt{2}$$
$$\sin\theta \cdot \frac{1}{\sqrt{2}} + \cos\theta \cdot \frac{1}{\sqrt{2}} = 1$$
$$\sin(\theta + 45^{\circ}) = \sin 90^{\circ}, \text{ or, } \theta = 45^{\circ}.$$

(6)
$$\sin\theta - \cos\theta = \frac{\sqrt{3} - 1}{2}$$
$$\sin\theta \cdot \frac{1}{\sqrt{2}} - \cos\theta \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$
$$\sin(\theta - 45^\circ) = \sin15^\circ, \text{ whence } \theta = 60^\circ.$$

EXAMPLES—XXXI. (p. 92).

(1)
$$\sin 6A + \sin 4A = 2 \sin \frac{6A + 4A}{2} \cdot \cos \frac{6A - 4A}{2} = 2 \sin 5A \cdot \cos A$$
.

(2)
$$\sin 5A - \sin 3A = 2\cos \frac{5A + 3A}{2} \cdot \sin \frac{5A - 3A}{2} = 2\cos 4A \cdot \sin A$$
.

(3)
$$\cos 7\theta + \cos 9\theta = 2\cos \frac{7\theta + 9\theta}{2} \cdot \cos \frac{9\theta - 7\theta}{2} = 2\cos 8\theta \cdot \cos \theta$$
.

(4)
$$\cos\theta - \cos\theta = 2\sin\frac{\theta + 5\theta}{2} \cdot \sin\frac{5\theta - \theta}{2} = 2\sin3\theta \cdot \sin2\theta$$
.

(5)
$$\sin a + \sin 4a = 2 \sin \frac{a+4a}{2} \cdot \cos \frac{4a-a}{2} = 2 \sin \frac{5a}{2} \cdot \cos \frac{3a}{2}$$

(6)
$$\cos 5a - \cos 8a = 2\sin \frac{5a + 8a}{2} \cdot \sin \frac{8a - 5a}{2} = 2\sin \frac{13a}{2} \cdot \sin \frac{3a}{2}$$

(7)
$$2\sin 5\theta \cdot \cos 7\theta = \sin(5\theta + 7\theta) - \sin(7\theta - 5\theta) = \sin 12\theta - \sin 2\theta$$
.

(8)
$$2\sin 3\theta$$
. $\sin 5\theta = \cos(5\theta - 3\theta) - \cos(5\theta + 3\theta) = \cos 2\theta - \cos 8\theta$.

(9)
$$2 \cos a \cdot \cos 4a = \cos(a+4a) + \cos(4a-a) = \cos 5a + \cos 3a$$
.

(10)
$$2\cos a \cdot \sin 2a = \sin(a+2a) + \sin(2a-a) = \sin 3a + \sin a$$
.

$$(11)\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{2\sin\frac{A+B}{2} \cdot \cos\frac{A-B}{2}}{2\cos\frac{A+B}{2} \cdot \cos\frac{A-B}{2}} = \frac{\sin\frac{A+B}{2}}{\cos\frac{A+B}{2}} = \tan\frac{A+B}{2}.$$

$$(12) \frac{\cos A - \cos 3A}{\sin 3A - \sin A} = \frac{2 \sin 2A \cdot \sin A}{2 \cos 2A \cdot \sin A} = \frac{\sin 2A}{\cos 2A} = \tan 2A.$$

$$(13) \frac{\sin 2A + \sin A}{\cos 2A + \cos A} = \frac{2 \sin \frac{3A}{2} \cdot \cos \frac{A}{2}}{2 \cos \frac{3A}{2} \cdot \cos \frac{A}{2}} = \frac{\sin \frac{3A}{2}}{\cos \frac{3A}{2}} = \tan \frac{3A}{2}.$$

(14)
$$\cos(30^{\circ} - \theta) - \cos(30^{\circ} + \theta) = 2 \sin 30^{\circ} \cdot \sin \theta = 2 \times \frac{1}{2} \cdot \sin \theta = \sin \theta$$
.

(15)
$$\cos\left(\frac{\pi}{3} + \theta\right) + \cos\left(\frac{\pi}{3} - \theta\right) = 2\cos\frac{\pi}{3} \cdot \cos\theta = 2 \times \frac{1}{2} \cdot \cos\theta = \cos\theta.$$

(16)
$$\sin\left(\frac{\pi}{3} + a\right) - \sin\left(\frac{\pi}{3} - a\right) = 2\cos\frac{\pi}{3} \cdot \sin a = 2 \times \frac{1}{2} \cdot \sin a = \sin a$$

$$(17) \frac{\sin a - \sin \beta}{\cos \beta - \cos a} = \frac{2 \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}}{2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}} = \frac{\cos \frac{\alpha + \beta}{2}}{\sin \frac{\alpha + \beta}{2}} = \cot \frac{\alpha + \beta}{2}.$$

$$(18) \frac{\sin a - \sin \beta}{\cos \beta + \cos a} = \frac{2 \frac{\cos \frac{a + \beta}{2} \cdot \sin \frac{a - \beta}{2}}{2 \cos \frac{a + \beta}{2} \cdot \cos \frac{a - \beta}{2}} = \frac{\sin \frac{a - \beta}{2}}{\cos \frac{a - \beta}{2}} = \tan \frac{a - \beta}{2}.$$

(19)
$$\frac{\sin 5\theta + \sin 3\theta}{\cos 3\theta - \cos 5\theta} = \frac{2\sin 4\theta \cdot \cos \theta}{2\sin 4\theta \cdot \sin \theta} = \frac{\cos \theta}{\sin \theta} = \cot \theta.$$

$$(20) \frac{\cos a + \cos \beta}{\cos \beta - \cos a} = \frac{2 \cos \frac{a + \beta}{2} \cdot \cos \frac{a - \beta}{2}}{2 \sin \frac{a + \beta}{2} \cdot \sin \frac{a - \beta}{2}} = \frac{\cos \frac{a + \beta}{2}}{\sin \frac{a + \beta}{2}} \cdot \frac{\sin \frac{a - \beta}{2}}{\cos \frac{a - \beta}{2}} = \frac{\cot \frac{a + \beta}{2}}{\tan \frac{a - \beta}{2}}.$$

EXAMPLES—XXXII. (p. 93).

(1)
$$\sin a - \cos \beta = \sin a - \sin \left(\frac{\pi}{2} - \beta\right) = 2 \cos \frac{1}{2} \left(a + \frac{\pi}{2} - \beta\right) \cdot \sin \frac{1}{2} \left(a - \frac{\pi}{2} + \beta\right)$$

(2)
$$\sin\left(\frac{\pi}{2}+a\right)+\cos\left(\frac{\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}+a\right)+\sin a=2\sin\left(\frac{\pi}{4}+a\right)\cdot\cos\frac{\pi}{4}$$

(3)
$$\sin a + \cos a = \sin a + \sin \left(\frac{\pi}{2} - a\right) = 2 \sin \frac{\pi}{4} \cdot \cos \left(a - \frac{\pi}{4}\right)$$

(4)
$$\sin a - \cos a = \sin a - \sin \left(\frac{\pi}{2} - a\right) = 2 \cos \frac{\pi}{4} \cdot \sin \left(a - \frac{\pi}{4}\right)$$

(5)
$$\sin 30^{\circ} + \cos 80^{\circ} = \sin 30^{\circ} + \sin 10^{\circ} = 2 \sin 20^{\circ}$$
. $\cos 10^{\circ}$.

(6)
$$\sin 20^{\circ} - \cos 80^{\circ} = \sin 20^{\circ} - \sin 10^{\circ} = 2 \cos 15^{\circ}$$
. $\sin 5^{\circ}$.

(7)
$$\sin\frac{\pi}{4} + \cos\frac{\pi}{6} = \sin\frac{\pi}{4} + \sin\frac{\pi}{3} = 2\sin\frac{7\pi}{24} \cdot \cos\frac{\pi}{24}$$

(8)
$$\sin \frac{\pi}{3} - \cos \frac{\pi}{5} = \sin \frac{\pi}{3} - \sin \frac{3\pi}{10} = 2 \cos \frac{19\pi}{60} \cdot \sin \frac{\pi}{60}$$

Examples—XXXIII. (p. 96).

(1)
$$\frac{\tan a + \tan \beta}{\cot a + \cot \beta} = \frac{\frac{\sin a}{\cos a} + \frac{\sin \beta}{\cos \beta}}{\frac{\cos a}{\sin a} + \frac{\cos \beta}{\sin \beta}} = \frac{\frac{\sin a \cdot \cos \beta + \cos a \cdot \sin \beta}{\cos a \cdot \cos \beta}}{\frac{\cos a \cdot \cos \beta}{\sin a \cdot \sin \beta}}$$
$$= \frac{\sin a \cdot \sin \beta}{\cos a \cdot \cos \beta} = \tan a \cdot \tan \beta.$$

(2)
$$\frac{\tan \alpha + \tan \beta}{\cot \alpha - \tan \beta} = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{\frac{\cos \alpha}{\sin \alpha} - \frac{\sin \beta}{\cos \beta}} = \frac{\frac{\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta}}{\frac{\cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta}{\sin \alpha \cdot \cos \beta}}.$$

$$= \frac{\sin(\alpha + \beta) \cdot \sin \alpha \cdot \cos \beta}{\cos(\alpha + \beta) \cdot \cos \alpha \cdot \cos \beta} = \tan(\alpha + \beta) \cdot \tan \alpha.$$

(3)
$$\frac{\tan a - \tan \beta}{\cot a + \tan \beta} = \frac{\frac{\sin a}{\cos a} - \frac{\sin \beta}{\cos \beta}}{\frac{\cos a}{\sin a} + \frac{\sin \beta}{\cos \beta}} = \frac{\frac{\sin a \cdot \cos \beta - \cos a \cdot \sin \beta}{\cos a \cdot \cos \beta}}{\frac{\cos a \cdot \cos \beta + \sin a \cdot \sin \beta}{\sin a \cdot \cos \beta}}$$
$$= \frac{\sin(a - \beta) \cdot \sin a \cdot \cos \beta}{\cos(a - \beta) \cdot \cos a \cdot \cos \beta} = \tan(a - \beta) \cdot \tan a.$$

$$(4) \tan \frac{\phi + \psi}{2} + \tan \frac{\phi - \psi}{2} = \frac{\sin \frac{\phi + \psi}{2}}{\cos \frac{\phi + \psi}{2}} + \frac{\sin \frac{\phi - \psi}{2}}{\cos \frac{\phi - \psi}{2}}$$

$$= \frac{\sin \frac{\phi + \psi}{2} \cdot \cos \frac{\phi - \psi}{2} + \cos \frac{\phi + \psi}{2} \cdot \sin \frac{\phi - \psi}{2}}{\cos \frac{\phi + \psi}{2} \cdot \cos \frac{\phi - \psi}{2}}$$

$$= \frac{\sin \left(\frac{\phi + \psi}{2} + \frac{\phi - \psi}{2}\right)}{\frac{1}{2}(\cos \phi + \cos \psi)} = \frac{\sin \phi}{\cos \phi + \cos \psi} = \frac{2 \sin \phi}{\cos \phi + \cos \psi}.$$

(5)
$$\sin \phi = \sin \{\psi + (\phi - \psi)\} = \sin \psi \cdot \cos(\phi - \psi) + \cos \psi \cdot \sin(\phi - \psi)$$
.

(6)
$$\cos\phi = \cos\{(\phi + \psi) - \psi\} = \cos(\phi + \psi) \cdot \cos\psi + \sin(\phi + \psi) \cdot \sin\psi$$

(7)
$$(\cos a + \cos \beta)\{1 - \cos(a + \beta)\} = (\cos a + \cos \beta)(1 - \cos a \cdot \cos \beta + \sin a \cdot \sin \beta)$$

 $= \cos a + \cos \beta - \cos^2 a \cdot \cos \beta - \cos a \cdot \cos^2 \beta + \sin a \cdot \sin \beta \cdot \cos a + \sin a \cdot \sin \beta \cdot \cos \beta$
 $= \cos a(1 - \cos^2 \beta) + \cos \beta(1 - \cos^2 a) + \sin a \cdot \sin \beta \cdot \cos a + \sin a \cdot \sin \beta \cdot \cos \beta$
 $= \cos a \cdot \sin^2 \beta + \cos \beta \cdot \sin^2 a + \sin a \cdot \sin \beta \cdot \cos a + \sin a \cdot \sin \beta \cdot \cos \beta$
 $= \sin \beta(\cos a \cdot \sin \beta) + \sin a(\cos \beta \cdot \sin a) + \sin a(\sin \beta \cdot \cos a) + \sin \beta \cdot (\sin a \cdot \cos \beta)$
 $= \sin \beta \cdot (\cos a \cdot \sin \beta + \sin a \cdot \cos \beta) + \sin a(\cos \beta \cdot \sin a \cdot + \sin \beta \cdot \cos a)$
 $= \sin \beta \cdot \sin(a + \beta) + \sin a \cdot \sin(a + \beta)$
 $= (\sin a + \sin \beta) \cdot \sin(a + \beta)$.

$$\frac{\sin(a+\beta)}{\sin a + \sin \beta} = \frac{\sin\left(\frac{a+\beta}{2} + \frac{a+\beta}{2}\right)}{\sin a + \sin \beta} = \frac{\sin\frac{a+\beta}{2} \cdot \cos\frac{a+\beta}{2} + \cos\frac{a+\beta}{2} \cdot \sin\frac{a+\beta}{2}}{2\sin\frac{a+\beta}{2} \cdot \cos\frac{a-\beta}{2}}$$

$$\frac{2\cos\frac{a+\beta}{2}}{2\cos\frac{a-\beta}{2}} = \frac{\cos\frac{a+\beta}{2}}{\cos\frac{a-\beta}{2}}.$$

$$\frac{\sin(\alpha+\beta)}{\sin\alpha - \sin\beta} = \frac{\sin\left(\frac{\alpha+\beta}{2} + \frac{\alpha+\beta}{2}\right)}{\sin\alpha - \sin\beta} = \frac{\sin\frac{\alpha+\beta}{2} \cdot \cos\frac{\alpha+\beta}{2} + \cos\frac{\alpha+\beta}{2} \cdot \sin\frac{\alpha+\beta}{2}}{2\cos\frac{\alpha+\beta}{2} \cdot \sin\frac{\alpha-\beta}{2}}$$

$$= \frac{2\sin\frac{\alpha+\beta}{2}}{2\sin\frac{\alpha-\beta}{2}} = \frac{\sin\frac{\alpha+\beta}{2}}{\sin\frac{\alpha-\beta}{2}}.$$

$$(10) \cot \frac{\alpha+\beta}{2} + \cot \frac{\alpha-\beta}{2} = \frac{\cos \frac{\alpha+\beta}{2}}{\sin \frac{\alpha+\beta}{2}} + \frac{\cos \frac{\alpha-\beta}{2}}{\sin \frac{\alpha-\beta}{2}}$$

$$= \frac{\cos \frac{\alpha+\beta}{2} \cdot \sin \frac{\alpha-\beta}{2} + \cos \frac{\alpha-\beta}{2} \cdot \sin \frac{\alpha+\beta}{2}}{\sin \frac{\alpha+\beta}{2} \cdot \sin \frac{\alpha-\beta}{2}}$$

$$= \frac{\sin \left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right)}{\frac{1}{2}(\cos \beta - \cos \alpha)} = \frac{\sin \alpha}{\frac{1}{2}(\cos \beta - \cos \alpha)} = \frac{2 \sin \alpha}{\cos \beta - \cos \alpha}.$$

(11)
$$\tan \frac{\alpha + \beta}{2} - \tan \frac{\alpha - \beta}{2} = \frac{\sin \frac{\alpha + \beta}{2}}{\cos \frac{\alpha + \beta}{2}} - \frac{\sin \frac{\alpha - \beta}{2}}{\cos \frac{\alpha - \beta}{2}}$$
$$= \frac{\sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2} - \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}}{\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}}$$
$$= \frac{\sin \left(\frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2}\right)}{\frac{1}{2}(\cos \alpha + \cos \beta)} = \frac{\sin \beta}{\cos \alpha + \cos \beta} = \frac{2 \sin \beta}{\cos \alpha + \cos \beta}$$

$$(12) \frac{\cos a - \cos \beta}{\sin a + \sin \beta} = \frac{2 \sin \frac{\beta + a}{2} \cdot \sin \frac{\beta - a}{2}}{2 \sin \frac{\beta + a}{2} \cdot \cos \frac{\beta - a}{2}} = \tan \frac{\beta - a}{2}.$$

(13)
$$\cot \beta - \tan \alpha = \frac{\cos \beta}{\sin \beta} - \frac{\sin \alpha}{\cos \alpha} = \frac{\cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta}{\cos \alpha \cdot \sin \beta} = \frac{\cos(\alpha + \beta)}{\cos \alpha \cdot \sin \beta}$$

(14)
$$\cot\theta + \tan\phi = \frac{\cos\theta}{\sin\theta} + \frac{\sin\phi}{\cos\phi} = \frac{\cos\theta \cdot \cos\phi + \sin\theta \cdot \sin\phi}{\sin\theta \cdot \cos\phi} = \frac{\cos(\phi - \theta)}{\sin\theta \cdot \cos\phi}$$

(15)
$$\tan^2 a - \tan^2 \beta = \frac{\sin^2 a}{\cos^3 a} - \frac{\sin^2 \beta}{\cos^2 \beta} = \frac{\sin^2 a \cdot \cos^2 \beta - \cos^2 a \cdot \sin^2 \beta}{\cos^2 a \cdot \cos^2 \beta}$$

$$= \frac{(\sin a \cdot \cos \beta + \cos a \cdot \sin \beta) (\sin a \cdot \cos \beta - \cos a \cdot \sin \beta)}{\cos^2 a \cdot \cos^2 \beta}$$

$$= \frac{\sin(a + \beta) \cdot \sin(a - \beta)}{\cos^2 a \cdot \cos^2 \beta}.$$

(16)
$$1 + \tan a \cdot \tan \beta = 1 + \frac{\sin a \cdot \sin \beta}{\cos a \cdot \cos \beta} = \frac{\cos a \cdot \cos \beta + \sin a \cdot \sin \beta}{\cos a \cdot \cos \beta} = \frac{\cos (a - \beta)}{\cos a \cdot \cos \beta}$$

(17)
$$1 - \tan \alpha \cdot \tan \beta = 1 - \frac{\sin \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta} = \frac{\cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta}$$
$$= \frac{\cos(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}.$$

(18)
$$\frac{\cot a + \tan \beta}{\tan a + \cot \beta} = \frac{\frac{\cos a}{\sin a} + \frac{\sin \beta}{\cos \beta}}{\frac{\cos a}{\cos a} + \frac{\cos \beta}{\sin \beta}} = \frac{\frac{\cos a \cdot \cos \beta + \sin a \cdot \sin \beta}{\sin a \cdot \cos \beta}}{\frac{\cos a \cdot \sin \beta}{\cos a \cdot \sin \beta}} = \cot a \cdot \tan \beta.$$

(19)
$$\frac{\tan^{2}x - \tan^{2}y}{1 - \tan^{2}x \cdot \tan^{2}y} = \frac{\frac{\sin^{2}x}{\cos^{2}x} - \frac{\sin^{2}y}{\cos^{2}y}}{1 - \frac{\sin^{2}x \cdot \sin^{2}y}{\cos^{2}x \cdot \cos^{2}y}} = \frac{\sin^{2}x \cdot \cos^{2}y - \cos^{2}x \cdot \sin^{2}y}{\cos^{2}x \cdot \cos^{2}y - \sin^{2}x \cdot \sin^{2}y}$$
$$= \frac{(\sin x \cdot \cos y + \cos x \cdot \sin y) (\sin x \cdot \cos y - \cos x \cdot \sin y)}{(\cos x \cdot \cos y + \sin x \cdot \sin y) (\cos x \cdot \cos y - \sin x \cdot \sin y)}$$
$$= \frac{\sin(x + y) \cdot \sin(x - y)}{\cos(x - y) \cdot \cos(x + y)} = \tan(x + y) \cdot \tan(x - y).$$

(20)
$$\cot(\theta + 45^{\circ}) = \frac{\cos(\theta + 45^{\circ})}{\sin(\theta + 45^{\circ})} = \frac{\cos\theta \cdot \frac{1}{\sqrt{2}} - \sin\theta \cdot \frac{1}{\sqrt{2}}}{\sin\theta \cdot \frac{1}{\sqrt{2}} + \cos\theta \cdot \frac{1}{\sqrt{2}}} = \frac{\cos\theta - \sin\theta}{\sin\theta + \cos\theta}$$
$$= \frac{\frac{\cos\theta}{\sin\theta} - 1}{1 + \frac{\cos\theta}{\sin\theta}} = \frac{\cot\theta - 1}{\cot\theta + 1}.$$

'22,
$$vab - \sin b = \sqrt{2} \ vab - \frac{1}{2} - \sin b - \frac{1}{2} = \sqrt{2} \sin \frac{\pi}{4} - b$$
.

$$(26, \cos A - B) - \sin A + B = \sin (90^{\circ} - A + B) - \sin A + B)$$

= 2 cos $(45^{\circ} + B) + \sin (45^{\circ} - A)$.

$$(27) \cos(A + B) + \sin(A - B) = \cos(A + B) + \cos(90^{\circ} - A + B)$$

$$= 2 \cos(45^{\circ} + B) \cdot \cos(45^{\circ} - A)$$

$$= 2 \cos(45^{\circ} + B) \cdot \sin(45^{\circ} + A).$$

(28)
$$\cos(A+B) - \sin(A-B) = \sin(90^{\circ} - A - B) - \sin(A-B)$$

= $2\cos(45^{\circ} - B) \cdot \sin(45^{\circ} - A)$.

$$(29) \frac{\cos a + \cos \beta}{\cos a - \cos \beta} = \frac{\cos a + \cos \beta}{-(\cos \beta - \cos a)}$$

$$= -\frac{2 \cos \frac{a + \beta}{2} \cdot \cos \frac{a - \beta}{2}}{2 \sin \frac{a + \beta}{2} \cdot \sin \frac{a - \beta}{2}} - \frac{\cot \frac{a + \beta}{2}}{\tan \frac{a - \beta}{2}}.$$

(30)
$$\sec 72^{\circ} - \sec 36^{\circ} = \frac{1}{\cos 72^{\circ}} - \frac{1}{\cos 36^{\circ}} = \frac{\cos 36^{\circ} - \cos 72^{\circ}}{\cos 72^{\circ} \cdot \cos 36^{\circ}}$$
$$= \frac{2 \sin 54^{\circ} \cdot \sin 18^{\circ}}{\sin 18^{\circ} \cdot \sin 54^{\circ}} = 2 = \sec 60^{\circ}.$$

(31)
$$(\sin 81^{\circ} + \sin 9^{\circ})(\sin 81^{\circ} - \sin 9^{\circ})$$

= $(2 \sin 45^{\circ}. \cos 36^{\circ}). (2 \cos 45^{\circ}. \sin 36^{\circ})$
= $2 \cdot \frac{1}{\sqrt{2}} \cdot \sin 54^{\circ}. 2 \cdot \frac{1}{\sqrt{2}} \cdot \cos 54^{\circ}$
= $2 \sin 54^{\circ}. \cos 54^{\circ}$
= $\sin 108^{\circ}.$

$$(32) \frac{\cos 3^{\circ} - \cos 33^{\circ}}{\sin 3^{\circ} + \sin 33^{\circ}} = \frac{2 \sin 18^{\circ} \cdot \sin 15^{\circ}}{2 \sin 18^{\circ} \cdot \cos 15^{\circ}} = \tan 15^{\circ}.$$

(33)
$$\frac{\sin 33^{\circ} + \sin 3^{\circ}}{\cos 33^{\circ} + \cos 3^{\circ}} = \frac{2 \sin 18^{\circ}, \cos 15^{\circ}}{2 \cos 18^{\circ}, \cos 15^{\circ}} = \tan 18^{\circ}.$$

$$(34) \frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} - \sin 9^{\circ}} = \frac{\sin 81^{\circ} + \sin 9^{\circ}}{\sin 81^{\circ} - \sin 9^{\circ}} = \frac{2 \sin 45^{\circ}. \cos 36^{\circ}}{2 \cos 45^{\circ}. \sin 36^{\circ}} = \cot 36^{\circ} = \tan 54^{\circ}.$$

$$(35) \frac{\cos 27^{\circ} - \sin 27^{\circ}}{\cos 27^{\circ} + \sin 27^{\circ}} = \frac{\sin 63^{\circ} - \sin 27^{\circ}}{\sin 63^{\circ} + \sin 27^{\circ}} = \frac{2 \cos 45^{\circ} \cdot \sin 18^{\circ}}{2 \sin 45^{\circ} \cdot \cos 18^{\circ}} = \tan 18^{\circ}.$$

(36)
$$\tan 50^{\circ} + \cot 50^{\circ} = \tan 50^{\circ} + \tan 40^{\circ}$$

$$= \frac{\sin 50^{\circ} \cdot \cos 40^{\circ} + \cos 50^{\circ} \cdot \sin 40^{\circ}}{\cos 50^{\circ} \cdot \cos 40^{\circ}} = \frac{\sin 90^{\circ}}{\frac{1}{2} \{\cos 90^{\circ} + \cos 10^{\circ}\}}$$

$$= \frac{2 \sin 90^{\circ}}{\cos 10^{\circ}} = \frac{2}{\cos 10^{\circ}} = 2 \sec 10^{\circ}.$$

EXAMPLES-XXXIV. (p. 100).

(1)
$$\frac{2 \cot A}{1 + \cot^2 A} = \frac{2 \cot A}{\csc^2 A} = \frac{2 \cos A}{\sin A} \cdot \sin^2 A = 2 \cos A \cdot \sin A = \sin 2A.$$

$$(2) \frac{\sin 2A}{1 + \cos 2A} \cdot \frac{\cos A}{1 + \cos A} = \frac{2\sin A \cdot \cos A}{2\cos^2 A} \cdot \frac{\cos A}{1 + \cos A} = \frac{\sin A}{1 + \cos A}$$
$$= \frac{2\sin \frac{A}{2} \cdot \cos \frac{A}{2}}{2\cos^2 \frac{A}{2}} = \tan \frac{A}{2}.$$

(3)
$$\csc A + \cot A = \frac{1}{\sin A} + \frac{\cos A}{\sin A} = \frac{1 + \cos A}{\sin A} = \frac{2 \cos^2 \frac{A}{2}}{2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}} = \cot \frac{A}{2}$$

$$\tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\sin\theta \cdot \cos\theta} = \frac{1}{\sin\theta \cdot \cos\theta} = \frac{2}{2\sin\theta \cdot \cos\theta} = \frac{2}{\sin2\theta}$$

(5)
$$\frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{2 \frac{\sin \theta}{\cos \theta}}{\frac{\cos^2 \theta}{\cos^2 \theta}} = \frac{2 \sin \theta}{\cos \theta} \cdot \cos^2 \theta = 2 \sin \theta \cdot \cos \theta = \sin 2\theta.$$

(6)
$$2 \csc 2A = \frac{2}{\sin 2A} = \frac{2}{2 \sin A \cdot \cos A} = \csc A \cdot \sec A$$
.

(7)
$$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \frac{1-\frac{\sin^2\theta}{\cos^2\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}} = \frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta+\sin^2\theta} = \cos^2\theta-\sin^2\theta = \cos2\theta.$$

(8)
$$\frac{2 \sec 2\theta}{1 + \sec 2\theta} = \frac{\frac{2}{\cos 2\theta}}{1 + \frac{1}{\cos 2\theta}} = \frac{2}{\cos 2\theta + 1} = \frac{2}{2 \cos^2 \theta} = \sec^2 \theta.$$

(9)
$$\frac{1 - \tan A}{1 + \tan A} = \frac{\cos A - \sin A}{\cos A + \sin A} = \frac{\cos^2 A - \sin^2 A}{(\cos A + \sin A)^2} = \frac{1 - 2\sin^2 A}{1 + \sin^2 A}$$

(10)
$$\cot \theta - 2 \cot 2\theta = \frac{\cos \theta}{\sin \theta} - \frac{2 \cos 2\theta}{\sin 2\theta} = \frac{\cos \theta}{\sin \theta} - \frac{\cos 2\theta}{\sin \theta \cdot \cos \theta}$$

$$= \frac{\cos^2 \theta - \cos 2\theta}{\sin \theta \cdot \cos \theta} = \frac{\cos^2 \theta - 2 \cos^2 \theta + 1}{\sin \theta \cdot \cos \theta} = \frac{\sin^2 \theta}{\sin \theta \cdot \cos \theta} = \tan \theta.$$

$$(11) \frac{1-\cos a}{\sin a} = \frac{2\sin^2\frac{a}{2}}{2\sin\frac{a}{2}\cdot\cos\frac{a}{2}} = \frac{\sin\frac{a}{2}}{\cos\frac{a}{2}} = \tan\frac{a}{2}.$$

$$(12) \frac{2\sqrt{(\csc^2\phi - 1)}}{\csc^2\phi} = \frac{2 \cdot \cot\phi}{\csc^2\phi} = \frac{2 \cdot \cos\phi \cdot \sin^2\phi}{\sin\phi} = 2\sin\phi \cdot \cos\phi = \sin2\phi.$$

(13)
$$\frac{2-\sec^2\phi}{\sec^2\phi} = 2\cos^2\phi - 1 = \cos^2\phi$$
.

$$(14) \frac{2 \cot \phi}{\cot^2 \phi - 1} = \frac{2 \cos \phi \cdot \sin \phi}{\cos^2 \phi - \sin^2 \phi} = \frac{\sin 2\phi}{\cos 2\phi} = \tan 2\phi.$$

(15)
$$\sqrt{\left(\frac{\sec 2a - 1}{2 \sec 2a}\right)} = \sqrt{\left(\frac{1 - \cos 2a}{2}\right)} = \sqrt{\left(\frac{1 - 1 + 2\sin^2 a}{2}\right)} = \sin a.$$

$$(16) \sqrt{\left(\frac{\sec 2a + 1}{2\sec 2a}\right)} = \sqrt{\left(\frac{1 + \cos 2a}{2}\right)} = \sqrt{\left(\frac{1 + 2\cos^2 a - 1}{2}\right)} = \cos a.$$

(17)
$$\csc 2a - \cot 2a = \frac{1 - \cos 2a}{\sin 2a} = \frac{2 \sin^2 a}{2 \sin a \cdot \cos a} = \tan a$$
.

(18)
$$\csc 2\beta + \cot 2\beta = \frac{1 + \cos 2\beta}{\sin 2\beta} = \frac{2 \cos^2 \beta}{2 \sin \beta \cos \beta} = \cot \beta$$
.

(19)
$$\tan(45^{\circ} + A) = \frac{\tan 45^{\circ} + \tan A}{1 - \tan 45^{\circ} \cdot \tan A} = \frac{1 + \tan A}{1 - \tan A} = \frac{\cos A + \sin A}{\cos A - \sin A}$$
$$= \frac{\cos^2 A - \sin^2 A}{(\cos A - \sin A)^2} = \frac{\cos 2A}{1 - \sin 2A}.$$

(20)
$$\cot(45^{\circ} - A) = \frac{1}{\tan(45^{\circ} - A)} = \frac{1}{\tan 45^{\circ} - \tan A} = \frac{1 + \tan A}{1 + \tan 45^{\circ} \cdot \tan A}$$

$$= \frac{\cos A + \sin A}{\cos A - \sin A} = \frac{(\cos A + \sin A)^2}{\cos^2 A - \sin^2 A} = \frac{1 + \sin 2A}{\cos^2 A} = \sec 2A + \tan 2A.$$

$$(21) \frac{1+\sin a}{1+\cos a} = \frac{\cos^2 \frac{a}{2} + \sin^2 \frac{a}{2} + 2\sin \frac{a}{2} \cdot \cos \frac{a}{2}}{2\cos^2 \frac{a}{2}} = \frac{1}{2} + \frac{1}{2}\tan^2 \frac{a}{2} + \tan \frac{a}{2}$$

$$= \frac{1}{2} \left(1 + \tan^2 \frac{a}{2} + 2 \tan \frac{a}{2} \right) = \frac{1}{2} \left(1 + \tan \frac{a}{2} \right)^2.$$

$$(22) \frac{1 - \sin a}{1 - \cos a} = \frac{\cos^2 \frac{a}{2} + \sin^2 \frac{a}{2} - 2\sin \frac{a}{2} \cdot \cos \frac{a}{2}}{2\sin^2 \frac{a}{2}} = \frac{1}{2}\cot^2 \frac{a}{2} + \frac{1}{2} - \cot \frac{a}{2}$$

$$= \frac{1}{2} \left(\cot^2 \frac{a}{2} + 1 - 2 \cot \frac{a}{2} \right) = \frac{1}{2} \left(\cot \frac{a}{2} - 1 \right)^2.$$

$$(23) \tan \frac{\theta}{2} + \frac{1}{2} \tan \theta \cdot \sec^{2} \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} + \frac{\sin \theta}{2 \cos \theta \cdot \cos^{2} \frac{\theta}{2}}$$

$$= \frac{2 \cos \theta \cdot \cos \frac{\theta}{2} \cdot \sin \frac{\theta}{2} + \sin \theta}{2 \cos \theta \cdot \cos^{2} \frac{\theta}{2}} = \frac{\cos \theta \cdot \sin \theta + \sin \theta}{2 \cos \theta \cdot \cos^{2} \frac{\theta}{2}}$$

$$= \frac{\sin \theta (\cos \theta + 1)}{2 \cos \theta \cdot \cos^{2} \frac{\theta}{2}} = \frac{\sin \theta \cdot 2 \cos^{2} \frac{\theta}{2}}{2 \cos \theta \cdot \cos^{2} \frac{\theta}{2}} = \tan \theta.$$

$$(24) \frac{1+\sin\theta}{1-\sin\theta} = \frac{(1+\sin\theta)^2}{1-\sin^2\theta} = \left(\frac{1+\sin\theta}{\cos\theta}\right)^2 = (\sec\theta + \tan\theta)^2.$$

$$(25) \frac{1 - \tan^2(45^\circ - A)}{1 + \tan^2(45^\circ - A)} = \frac{\cos^2(45^\circ - A) - \sin^2(45^\circ - A)}{\cos^2(45^\circ - A) + \sin^2(45^\circ - A)}$$
$$= \frac{\cos^2(45^\circ - A)}{1} = \cos(90^\circ - 2A) = \sin^2(2A).$$

$$(26) \frac{\tan\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} - \theta\right)}{\tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right)} = \frac{\frac{1 + \tan\theta}{1 - \tan\theta} - \frac{1 - \tan\theta}{1 + \tan\theta}}{\frac{1 + \tan\theta}{1 - \tan\theta} + \frac{1 - \tan\theta}{1 + \tan\theta}}$$
$$= \frac{\frac{1 + 2 \tan\theta + \tan^2\theta - 1 + 2 \tan\theta - \tan^2\theta}{1 + 2 \tan\theta + \tan^2\theta + 1 - 2 \tan\theta + \tan^2\theta}}{\frac{2 \tan\theta}{2 + 2 \tan^2\theta} = \frac{2 \tan\theta}{1 + \tan^2\theta} = 2 \sin\theta \cdot \cos\theta = \sin2\theta.$$

Examples—XXXV. (p. 103).

1. (1)
$$\frac{\cos 3\theta - \sin 3\theta}{\sin \theta + \cos \theta} = \frac{4 \cos^3 \theta - 3 \cos \theta - 3 \sin \theta + 4 \sin^3 \theta}{\sin \theta + \cos \theta}$$
$$= \frac{4(\sin^3 \theta + \cos^3 \theta) - 3(\sin \theta + \cos \theta)}{\sin \theta + \cos \theta}$$
$$= 4(\sin^2 \theta - \sin \theta \cdot \cos \theta + \cos^2 \theta) - 3$$
$$= 1 - 4 \sin \theta \cdot \cos \theta = 1 - 2 \sin 2\theta.$$

(2)
$$\frac{2\tan\theta + \sec\theta}{1 + \tan^2\theta} = \frac{2\tan\theta + \sec\theta}{\sec^2\theta} = 2\tan\theta \cdot \cos^2\theta + \cos\theta = \sin2\theta + \cos\theta$$

(3)
$$\tan \frac{A}{2} + 2 \sin^2 \frac{A}{2} \cot A = \sin \frac{A}{2} \left\{ \frac{1}{\cos \frac{A}{2}} + 2 \sin \frac{A}{2} \cdot \frac{\cos A}{\sin A} \right\}$$

$$=\sin\frac{A}{2}\left\{\frac{1}{\cos\frac{A}{2}} + \frac{\cos A}{\cos\frac{A}{2}}\right\} = \sin\frac{A}{2}\left(\frac{2\cos^2\frac{A}{2}}{\cos\frac{A}{2}}\right) = 2\sin\frac{A}{2}\cdot\cos\frac{A}{2} = \sin A.$$

$$(4) \frac{\cot A}{\cot A - \cot 3A} + \frac{\tan A}{\tan A - \tan 3A}$$

$$= \frac{\frac{1}{\tan A}}{\frac{1}{\tan A} - \frac{1 - 3 \tan^2 A}{\tan A(3 - \tan^3 A)}} + \frac{\tan A}{\tan A - \frac{\tan A(3 - \tan^3 A)}{1 - 3 \tan^2 A}}$$

$$= \frac{1}{\frac{3 - \tan^2 A - 1 + 3 \tan^2 A}{3 - \tan^2 A}} + \frac{1}{\frac{1 - 3 \tan^2 A - 3 + \tan^2 A}{1 - 3 \tan^2 A}}$$

$$= \frac{3 - \tan^2 A}{2(1 + \tan^2 A)} + \frac{1 - 3 \tan^2 A}{-2(1 + \tan^2 A)}$$

$$= \frac{3 - \tan^2 A - 1 + 3 \tan^2 A}{2(1 + \tan^2 A)} = \frac{2 + 2 \tan^2 A}{2(1 + \tan^2 A)} = 1.$$

(5)
$$\cos 4A + \cos 4B = 2 \cos 2(A+B) \cdot \cos 2(A-B)$$

= 2 \cdot \{1-2 \sin^2(A+B)\} \cdot \{1-2 \sin^2(A-B)\}.

$$(6) \tan(45^{\circ} + \theta) - \tan(45^{\circ} - \theta) = \frac{1 + \tan \theta}{1 - \tan \theta} - \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{4 \tan \theta}{1 - \tan^{2} \theta}$$

$$= \frac{\frac{4 \sin \theta}{\cos^{2} \theta}}{1 - \frac{\sin^{2} \theta}{\cos^{2} \theta}} = \frac{4 \sin \theta \cdot \cos \theta}{\cos^{2} \theta - \sin^{2} \theta} = \frac{2 \sin^{2} \theta}{\cos^{2} \theta} = \frac{2 \sin^{2} \theta}{\cos^{2} \theta} = \frac{2 \sin^{2} \theta}{\cos^{2} \theta} = \frac{2(1 - \cos^{2} 2\theta)}{\cos^{2} \theta \cdot \sin^{2} \theta}$$

$$= \frac{2(1 - \cos^{2} 2\theta)}{\cos^{2} \theta \cdot \sin^{2} \theta} = \frac{1 - \cos^{2} \theta}{\cos^{2} \theta} = \frac{\cos^{2} \theta}{\cos^{2} \theta} = \cos^{2} \theta$$

64 KEY TO ELEMENTARY TRIGONOMETRY.

(7)
$$\cot^{2}\theta - \tan^{2}\theta = \frac{\cos^{4}\theta - \sin^{4}\theta}{\cos^{2}\theta \cdot \sin^{2}\theta} = \frac{(\cos^{2}\theta + \sin^{2}\theta)(\cos^{2}\theta - \sin^{2}\theta)}{\cos^{2}\theta \cdot \sin^{2}\theta}$$
$$= \frac{\cos^{2}\theta - \sin^{2}\theta}{\cos^{2}\theta \cdot \sin^{2}\theta} = \frac{\cos 2\theta}{\cos^{2}\theta \cdot \sin^{2}\theta} = \frac{4\cos 2\theta}{4\cos^{2}\theta \cdot \sin^{2}\theta} = \frac{4\cos 2\theta}{\sin^{2}2\theta}$$
$$= \frac{8\cos 2\theta}{2\sin^{2}2\theta} = \frac{8\cos 2\theta}{1 - \cos 4\theta}.$$

(8) $2 \sin A \cdot \cos 2A = 2 \sin A (1 - 2 \sin^2 A) = 2 \sin A - 4 \sin^3 A = \sin^3 A - \sin A$.

(9)
$$\frac{\cos nA - \cos(n+2)A}{\sin(n+2)A - \sin nA} = \frac{2\sin(n+1)A \cdot \sin A}{2\cos(n+1)A \cdot \sin A} = \tan(n+1)A.$$

(10) $\cos 9A + 3\cos 7A + 3\cos 5A + \cos 3A = \cos 9A + \cos 3A + 3(\cos 7A + \cos 5A)$ $= 2\cos 6A \cdot \cos 3A + 6\cos 6A \cdot \cos A$ $= 2\cos 6A(\cos 3A + 3\cos A)$ $= 2\cos 6A \cdot 4\cos^3 A = 8\cos^3 A \cdot \cos 6A$.

$$(11) \frac{\csc 2A - \cot 2A}{\csc 2A + \cot 2A} = \frac{1 - \cos 2A}{1 + \cos 2A} = \frac{2 \sin^2 A}{2 \cos^2 A} = \tan^2 A.$$

$$(12) \frac{1-\sin A}{1+\cos A} = \frac{\sin^2 \frac{A}{2} + \cos^2 \frac{A}{2} - 2\sin \frac{A}{2} \cdot \cos \frac{A}{2}}{1+2\cos^2 \frac{A}{2} - 1} = \frac{\left(\cos \frac{A}{2} - \sin \frac{A}{2}\right)^2}{2\cos^2 \frac{A}{2}}$$
$$= \frac{1}{2} \left(\frac{\cos \frac{A}{2} - \sin \frac{A}{2}}{\cos \frac{A}{2}}\right)^2 = \frac{1}{2} \left(1 - \tan \frac{A}{2}\right)^2.$$

$$(13) \frac{\cos 3A - 2\cos A}{\sin 3A + 2\sin A} \cdot \tan A = \frac{4\cos^3 A - 3\cos A - 2\cos A}{3\sin A - 4\sin^3 A + 2\sin A} \cdot \frac{\sin A}{\cos A}$$
$$= \frac{4\cos^2 A - 3 - 2}{3 - 4\sin^2 A + 2} = \frac{2(2\cos^2 A - 1) - 3}{2(1 - 2\sin^2 A) + 3} = \frac{2\cos^2 A - 3}{2\cos^2 A + 3}.$$

$$(14) \tan (45^{\circ} - A) + \tan (45^{\circ} + A) = \frac{1 - \tan A}{1 + \tan A} + \frac{1 + \tan A}{1 - \tan A}$$
$$= \frac{2(1 + \tan^{2} A)}{1 - \tan^{2} A} = \frac{2 \sec^{2} A}{(\cos^{2} A - \sin^{2} A) \sec^{2} A} = \frac{2}{\cos^{2} A - \sin^{2} A} = 2 \sec^{2} A.$$

(15)
$$\cos 2a + \tan \frac{a}{2} \sin 2a = \cos 2a + \frac{\sin \frac{a}{2}}{\cos \frac{a}{2}} \cdot 2 \sin a \cdot \cos a$$

$$= \cos 2a + 4 \sin^2 \frac{a}{2} \cdot \cos a = 2 \cos^2 a - 1 + 4 \sin^2 \frac{a}{2} \cdot \cos a$$

$$= 2 \cos a \left(\cos a + 2 \sin^2 \frac{a}{2} \right) - 1 = 2 \cos a \cdot 1 - 1 = 2 \cos a - 1$$

$$= \cos a + \cos a - 1 = \cos a - 2 \sin^2 \frac{a}{2} = \cos a - \frac{2 \cdot \sin^2 \frac{a}{2} \cdot \cos \frac{a}{2}}{\cos \frac{a}{2}}$$

$$= \cos a - \tan \frac{a}{2} \cdot \sin a.$$

(16)
$$\cot^2 A - \tan^2 A = \frac{\cos^4 A - \sin^4 A}{\cos^2 A \cdot \sin^2 A} = \frac{(\cos^2 A + \sin^2 A)(\cos^2 A - \sin^2 A)}{\cos^2 A \cdot \sin^2 A}$$

= $\frac{\cos^2 A - \sin^2 A}{\cos^2 A \cdot \sin^2 A} = \frac{4(\cos^2 A - \sin^2 A)}{4\cos^2 A \cdot \sin^2 A} = \frac{4\cos^2 A}{\sin^2 2A} = 4\cot^2 A \cdot \csc^2 A.$

(17)
$$\csc a \cdot \cot a - \sec a \cdot \tan a = \frac{\cos a}{\sin^2 a} - \frac{\sin a}{\cos^2 a} = \frac{\cos^3 a - \sin^3 a}{\sin^2 a \cdot \cos^2 a}$$
$$= \frac{4(\cos^3 a - \sin^3 a)}{4\sin^2 a \cdot \cos^2 a} = \frac{4(\cos^3 a - \sin^3 a)}{\sin^2 2a} = 4 \csc^2 2a \cdot (\cos^3 a - \sin^3 a).$$

(18)
$$\cot^2 a - \tan^2 a = \frac{\cos^2 a - \sin^2 a}{\cos^2 a \cdot \sin^2 a} = \frac{4(\cos^2 a - \sin^2 a)}{4\cos^2 a \cdot \sin^2 a} = \frac{4\cos^2 a}{\sin^2 2a}$$

(19)
$$\csc^2 b - \sec^2 b = \frac{1}{\sin^2 b} - \frac{1}{\cos^2 b} = \frac{\cos^2 b - \sin^2 b}{\sin^2 b \cdot \cos^2 b} = \frac{4(\cos^2 b - \sin^2 b)}{4 \sin^2 b \cdot \cos^2 b}$$
$$= \frac{4 \cos 2b}{\sin^2 2b} = 4\cos 2b \cdot \csc^2 2b.$$

$$(20) \frac{2 \operatorname{cosec2} A - \operatorname{sec} A}{2 \operatorname{cosec2} A + \operatorname{sec} A} = \frac{2 - \operatorname{sec} A \cdot \sin 2A}{2 + \operatorname{sec} A \cdot \sin 2A} = \frac{2 - 2 \sin A}{2 + 2 \sin A} = \frac{1 - \sin A}{1 + \sin A}$$

$$= \frac{\sin^2 \frac{A}{2} + \cos^2 \frac{A}{2} - 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}}{\sin^2 \frac{A}{2} + \cos^2 \frac{A}{2} + 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}} = \left(\frac{\cos \frac{A}{2} - \sin \frac{A}{2}}{\cos \frac{A}{2} + \sin \frac{A}{2}}\right)^2$$

$$= \left(\frac{1 - \tan \frac{A}{2}}{1 + \tan \frac{A}{2}}\right)^2 = \cot^2 \left(45^\circ + \frac{A}{2}\right).$$

(21)
$$\sin\left(\frac{5\pi}{2} + \theta\right) - \sin\left(\frac{3\pi}{2} - \theta\right) = 2\cos 2\pi \cdot \sin\left(\frac{\pi}{2} + \theta\right)$$

$$= 2\cos 2\pi \cdot \cos \theta = 2\cos 2\pi \cdot \sin\left(\frac{\pi}{2} - \theta\right)$$

$$= \sin\left(\frac{5\pi}{2} - \theta\right) - \sin\left(\frac{3\pi}{2} + \theta\right) \cdot \quad \text{(Art. 122.)}$$

(22)
$$\cot\left(\frac{\pi}{2} + \theta\right) - \tan\left(\frac{\pi}{2} + \theta\right) = \frac{\cos^2\left(\frac{\pi}{2} + \theta\right) - \sin^2\left(\frac{\pi}{2} + \theta\right)}{\sin\left(\frac{\pi}{2} + \theta\right) \cdot \cos\left(\frac{\pi}{2} + \theta\right)}$$

$$= \frac{\sin^2\theta - \cos^2\theta}{-\cos\theta \cdot \sin\theta} = \frac{\cos^2\theta - \sin^2\theta}{\sin\theta \cdot \cos\theta} = \frac{2 \cdot \cos^2\theta}{\sin^2\theta} = 2 \cot^2\theta.$$

(23)
$$\frac{(\cos a + \sec a)^2}{\csc^2 a + \sec^2 a} = \frac{\frac{(\cos a + \sin a)^2}{\sin a \cdot \cos a}}{\frac{1}{\sin^2 a \cdot \cos^2 a}} = (\cos a + \sin a)^2 = 1 + 2\sin a \cdot \cos a$$

$$= 1 + \sin 2a$$

$$(24) \frac{\tan \theta}{\tan 2\theta - \tan \theta} = \frac{\tan \theta}{\frac{2\tan \theta}{1 - \tan^2 \theta} - \tan \theta} = \frac{1}{\frac{2}{1 - \tan^2 \theta} - 1} = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$
$$= \cos^2 \theta - \sin^2 \theta = \cos 2\theta.$$

$$(25) \frac{\tan 2\theta \cdot \tan \theta}{\tan 2\theta - \tan \theta} = \frac{\frac{2\tan \theta}{1 - \tan^2 \theta} \cdot \tan \theta}{\frac{2\tan \theta}{1 - \tan^2 \theta} - \tan \theta} = \frac{\frac{2\tan \theta}{1 - \tan^2 \theta}}{\frac{2}{1 - \tan^2 \theta} - 1} = \frac{2\tan \theta}{1 + \tan^2 \theta}$$
$$= \frac{2\tan \theta}{\sec^2 \theta} = 2\sin \theta \cdot \cos \theta = \sin 2\theta.$$

(26)
$$\frac{\sin^2 a - \sin^2 \beta}{\sin a \cdot \cos a - \sin \beta \cdot \cos \beta} = \frac{\sin(a+\beta) \cdot \sin(a-\beta)}{\sin a \cdot \cos a - \sin \beta \cdot \cos \beta}$$
(Ex. XXVII. 1.)
$$= \frac{2 \sin(a+\beta) \cdot \sin(a-\beta)}{2 \sin a \cdot \cos a - 2 \sin \beta \cdot \cos \beta} = \frac{2 \sin(a+\beta) \cdot \sin(a-\beta)}{\sin 2a - \sin 2\beta}$$

$$= \frac{2 \sin(a+\beta) \cdot \sin(a-\beta)}{2 \cos(a+\beta) \cdot \sin(a-\beta)} = \tan(a+\beta).$$

(27)
$$4 \sin A \cdot \sin(60^{\circ} + A) \cdot \sin(60^{\circ} - A) = 4 \sin A \cdot (\sin^{2}60^{\circ} - \sin^{2}A)$$
.
(Ex. xxvii. 1.)
$$= 4 \sin A \left(\frac{3}{4} - \sin^{2}A\right) = 3 \sin A - 4 \sin^{3}A = \sin A.$$

(28)
$$\csc 2\theta + \cot 4\theta + \csc 4\theta = \frac{1}{\sin 2\theta} + \frac{\cos 4\theta}{\sin 4\theta} + \frac{1}{\sin 4\theta}$$

$$= \frac{2 \cos 2\theta + \cos 4\theta + 1}{2 \sin 2\theta \cdot \cos 2\theta} = \frac{2 \cos 2\theta + 2 \cos^2 2\theta}{2 \sin 2\theta \cdot \cos 2\theta} = \frac{1 + \cos 2\theta}{\sin 2\theta}$$

$$= \frac{2 \cos^2 \theta}{2 \sin \theta \cdot \cos \theta} = \frac{\cos \theta}{\sin \theta} = \cot \theta.$$

2. (1)
$$\sin 2\theta + \sqrt{3} \cdot \cos 2\theta = 1$$
,
 $\sqrt{3} \cdot \cos 2\theta = 1 - \sin 2\theta$,
 $3 \cdot \cos^2 2\theta = 1 - 2 \sin 2\theta + \sin^2 2\theta$,
 $3 - 3 \sin^2 2\theta = 1 - 2 \sin 2\theta + \sin^2 2\theta$.
Solving this quadratic, we obtain $\sin 2\theta = -\frac{1}{2}$, or, 1;

∴
$$2\theta = -30^{\circ}$$
, or, 90° ;
∴ $\theta = -15^{\circ}$, or, 45° .

(2)
$$\sin^2 2\theta - \sin^2 \theta = \sin^2 \frac{\pi}{4},$$

$$4 \sin^2 \theta \cdot \cos^2 \theta - \sin^2 \theta = \frac{1}{2},$$

$$4 \sin^2 \theta - 4 \sin^4 \theta - \sin^2 \theta = \frac{1}{2}.$$

Solving this quadratic, we obtain
$$\sin^2\theta = \frac{1}{2}$$
, or, $\frac{1}{4}$;
 $\therefore \sin\theta = \frac{1}{\sqrt{2}}$, or, $\frac{1}{2}$;
 $\therefore \theta = 45^\circ$, or, 30°.

(3)
$$\sin 5x \cdot \cos 3x = \sin 9x \cdot \cos 7x;$$

$$\therefore \sin 8x + \sin 2x = \sin 16x + \sin 2x;$$

$$\therefore \sin 8x = \sin 16x,$$

$$\sin 8x = 2\sin 8x \cdot \cos 8x.$$

Hence
$$\sin 8x = 0$$
, or, $2\cos 8x = 1$,

$$\sin 8x = 0$$
, or, $\cos 8x = \frac{1}{2}$;

∴
$$x=0^{\circ}$$
, or, $8x=60^{\circ}$, and ∴ $x=7\frac{1}{2}^{\circ}$.

$$(4) \quad 2\sin^2 3\theta + \sin^2 6\theta = 2,$$

$$\sin^2 6\theta = 2(1 - \sin^2 3\theta),$$

 $4 \sin^2 3\theta \cdot \cos^2 3\theta = 2 \cos^2 3\theta,$

$$2\sin 3\theta \cdot \cos 3\theta = \sqrt{2}\cos 3\theta$$
.

Hence
$$\cos 3\theta = 0$$
, or, $\sin 3\theta = \frac{1}{\sqrt{2}}$;

$$\therefore 3\theta = 90^{\circ}$$
, or, $3\theta = 45^{\circ}$:

$$\therefore \theta = 30^{\circ}, \text{ or, } 15^{\circ}.$$

$$(5) \qquad \cos 2A + \sin^2 A = \frac{3}{4}$$

$$1 - 2\sin^2 A + \sin^2 A = \frac{3}{4}$$
,

$$\sin^2 A = \frac{1}{4}$$
, and $\sin A = \pm \frac{1}{2}$.

Hence
$$A = 30^{\circ}$$
, or, 150°.

(6)
$$\cos 3\theta - \cos 5\theta = \sin \theta$$
,

$$2 \sin 4\theta \cdot \sin \theta = \sin \theta$$
.

Hence
$$\sin\theta = 0$$
, or, $\sin 4\theta = \frac{1}{2}$;

$$\therefore \theta = 0^{\circ}$$
, or, $4\theta = 30^{\circ}$;

$$\theta = 0^{\circ}$$
, or, $\theta = 7\frac{1}{2}^{\circ}$.

(7)
$$\sin 5\theta - \cos 3\theta = \sin \theta,$$
$$\sin 5\theta - \sin \theta = \cos 3\theta,$$
$$\cos 3\theta = \sin 2\theta = \cos 3\theta$$

$$2\cos 3\theta \cdot \sin 2\theta = \cos 3\theta$$
.

Hence
$$\cos 3\theta = 0$$
, or, $\sin 2\theta = \frac{1}{2}$;

$$\therefore$$
 3 θ =90°, or, 2 θ =30°, \therefore θ =30°, or, θ =15°.

(8)
$$\tan 2a = 3 \tan a,$$

$$\frac{2\tan a}{1-\tan^2 a}=3\tan a.$$

Hence
$$\tan a = 0$$
, and $\therefore a = 0^{\circ}$,
or, $2 = 3 - 3\tan^{2}a$,

$$\tan^2 a = \frac{1}{3}$$
, or, $\tan a = \frac{1}{\sqrt{3}}$, or, $a = 30^\circ$.

(9)
$$\sin 2\theta + \sin \theta = \cos 2\theta + \cos \theta$$
,

$$2\sin\frac{3\theta}{2}\cdot\cos\frac{\theta}{2}=2\cos\frac{3\theta}{2}\cdot\cos\frac{\theta}{2}$$

$$\therefore \cos \frac{\theta}{\Omega} = 0$$
, or, $\frac{\theta}{\Omega} = 90^{\circ}$, or, $\theta = 180^{\circ}$;

or,
$$\sin \frac{3\theta}{2} = \cos \frac{3\theta}{2}$$
, or, $\tan \frac{3\theta}{2} = 1$, or, $\frac{3\theta}{2} = 45^{\circ}$, or, $\theta = 30^{\circ}$.

$$(10) \qquad \sin 7a - \sin a = \sin 3a,$$

$$2\cos 4a \cdot \sin 3a = \sin 3a$$
.

Hence
$$\sin 3a = 0$$
, or, $3a = 0^{\circ}$, or, $a = 0^{\circ}$ or, $3a = 180^{\circ}$, or, $a = 60^{\circ}$

or,
$$2\cos 4a = 1$$
, or, $4a = 60^{\circ}$, or, $a = 15^{\circ}$.

(11)
$$\csc^2\theta - \sec^2\theta = 2\csc^2\theta \div 3$$
,

$$\frac{\cos^2\theta}{3} = \sec^2\theta, \text{ or, } \cos^2\theta = 3\sin^2\theta;$$

$$\therefore 4 \sin^2 \theta = 1$$
, or, $\sin \theta = \frac{1}{2}$, and $\therefore \theta = 30^\circ$.

(12)
$$\sin 6\theta = \sin 4\theta - \sin 2\theta$$
, $\sin 6\theta + \sin 2\theta = \sin 4\theta$, $2 \sin 4\theta$. $\cos 2\theta = \sin 4\theta$. Hence $\sin 4\theta = 0$, or, $4\theta = 0^{\circ}$, or, $\theta = 0^{\circ}$, or, $2 \cos 2\theta = 1$, or, $\cos 2\theta = \frac{1}{2}$, or, $\theta = 30^{\circ}$.

EXAMPLES—XXXVI. (p. 106).

1. (1)
$$\sin 36^{\circ} = 2 \sin 18^{\circ} \cdot \cos 18^{\circ} = 2 \cdot \frac{\sqrt{5-1}}{4} \cdot \frac{\sqrt{(10+2\sqrt{5})}}{4}$$
$$= \frac{2\sqrt{(40-8\sqrt{5})}}{16} = \frac{\sqrt{(10-2\sqrt{5})}}{4}.$$

(2)
$$\cos 36^{\circ} = 1 - 2\sin^{2} 18^{\circ} = 1 - 2 \cdot \left(\frac{\sqrt{5} - 1}{4}\right)^{2} = 1 - \frac{6 - 2\sqrt{5}}{8} = \frac{1 + \sqrt{5}}{4}$$

(3)
$$\sin 54^\circ = \cos 36^\circ = \frac{1+\sqrt{5}}{4}$$
.

(4)
$$\cos 54^\circ = \sin 36^\circ = \frac{\sqrt{(10-2\sqrt{5})}}{4}$$
.

(5)
$$\sin 72^{\circ} = \cos 18^{\circ} = \sqrt{(1 - \sin^2 18^{\circ})} = \frac{\sqrt{(10 + 2\sqrt{5})}}{4}$$
.

(6)
$$\tan 72^{\circ} = \frac{\sin 72^{\circ}}{\cos 72^{\circ}} = \frac{\cos 18^{\circ}}{\sin 18^{\circ}} = \frac{\sqrt{(10 + 2\sqrt{5})}}{4} \div \frac{\sqrt{5} - 1}{4} = \frac{\sqrt{(10 + 2\sqrt{5})}}{\sqrt{5} - 1}$$

(7)
$$\sin 90^{\circ} = \sin(18^{\circ} + 72^{\circ}) = \sin 18^{\circ}$$
. $\cos 72^{\circ} + \cos 18^{\circ}$. $\sin 72$
 $= \sin 18^{\circ}$. $\sin 18^{\circ} + \cos 18^{\circ}$. $\cos 18^{\circ}$
 $= \left(\frac{\sqrt{5-1}}{4}\right)^{2} + \left(\frac{\sqrt{(10+2\sqrt{5})}}{4}\right)^{2}$
 $= \frac{6-2\sqrt{5+10+2\sqrt{5}}}{16} = \frac{16}{16} = 1$.

(8)
$$\cos 90^{\circ} = \cos (18^{\circ} + 72^{\circ}) = \cos 18^{\circ} \cdot \cos 72^{\circ} - \sin 18^{\circ} \cdot \sin 72^{\circ}$$

= $\cos 18^{\circ} \cdot \cos 72^{\circ} - \cos 72^{\circ} \cdot \cos 18^{\circ} = 0$.

2.
$$\sin(36^{\circ} + A) + \sin(72^{\circ} - A) - \sin(36^{\circ} - A) - \sin(72^{\circ} + A)$$

 $= \{\sin(36^{\circ} + A) - \sin(36^{\circ} - A)\} - \{\sin(72^{\circ} + A) - \sin(72^{\circ} - A)\}$
 $= 2\cos 36^{\circ} \cdot \sin A - 2\cos 72^{\circ} \cdot \sin A$
 $= \sin A \{2\cos 36^{\circ} - 2\cos 72^{\circ}\} = \sin A \left\{\frac{1 + \sqrt{5}}{2} - \frac{\sqrt{5} - 1}{2}\right\} = \sin A.$
Also,
 $\{\sin(54^{\circ} + A) + \sin(54^{\circ} - A)\} - \{\sin(18^{\circ} + A) + \sin(18^{\circ} - A)\}$
 $= 2\sin 54^{\circ} \cdot \cos A - 2\sin 18^{\circ} \cdot \cos A$
 $= \cos A \{2\sin 54^{\circ} - 2\sin 18^{\circ}\} = \cos A \left\{\frac{1 + \sqrt{5}}{2} - \frac{\sqrt{5} - 1}{2}\right\} = \cos A.$

EXAMPLES—XXXVII (p. 110).

(1) At $7\frac{1}{2}$ the cosine is greater than the sine, and both are positive;

$$\therefore \cos\frac{A}{2} + \sin\frac{A}{2} = +\sqrt{1 + \sin A},$$
$$\cos\frac{A}{2} - \sin\frac{A}{2} = +\sqrt{1 - \sin A}.$$

(2) At 150° the cosine (negative) is greater than the sine (positive);

$$\therefore \cos\frac{A}{2} + \sin\frac{A}{2} = -\sqrt{1 + \sin A},$$
$$\cos\frac{A}{2} - \sin\frac{A}{2} = -\sqrt{1 - \sin A}.$$

(3)
$$\cos 189^{\circ} + \sin 189^{\circ} = -\sqrt{1 + \sin 378^{\circ}},$$

 $\cos 189^{\circ} - \sin 189^{\circ} = -\sqrt{1 - \sin 378^{\circ}};$
 $\therefore \cos 189^{\circ} = -\frac{1}{2} \cdot \left\{ \sqrt{1 + \frac{\sqrt{5} - 1}{4}} + \sqrt{1 - \frac{\sqrt{5} - 1}{4}} \right\}$
 $= -\frac{1}{2} \cdot \left\{ \frac{\sqrt{3 + \sqrt{5}}}{2} + \frac{\sqrt{5} - \sqrt{5}}{2} \right\}$
 $= -\frac{1}{4} \left\{ \sqrt{3 + \sqrt{5}} + \sqrt{5 - \sqrt{5}} \right\},$

and
$$\sin 189^{\circ} = \frac{1}{2} \left\{ \sqrt{1 - \frac{\sqrt{5} - 1}{4}} - \sqrt{1 + \frac{\sqrt{5} - 1}{4}} \right\}$$

= $\frac{1}{4} \left\{ \sqrt{5 - \sqrt{5}} - \sqrt{3 + \sqrt{5}} \right\}$.

(4)
$$2 \sin 9^{\circ}. 44'. 30'' = \sqrt{1 + \frac{1}{3}} - \sqrt{1 - \frac{1}{3}}$$

$$= \sqrt{\frac{4}{3}} - \sqrt{\frac{2}{3}} = \frac{2 + \sqrt{2}}{\sqrt{3}};$$

$$\therefore \sin 9^{\circ}. 44'. 30'' = \frac{2 - \sqrt{2}}{9\sqrt{3}}.$$

(5)
$$\cos 157^{\circ}$$
. $30' = -\sqrt{\frac{1+\cos 315^{\circ}}{2}} = -\sqrt{\frac{1+\frac{1}{\sqrt{2}}}{2}} = -\sqrt{\frac{\sqrt{2+1}}{2\sqrt{2}}}$
$$= -\sqrt{\frac{2+\sqrt{2}}{4}} = -\frac{\sqrt{2+\sqrt{2}}}{2}.$$

EXAMPLES—XXXVIII. (p. 111).

(1)
$$\sin A = \frac{3}{5} \text{ and } \sin B = \frac{4}{5},$$

$$\cos A = \frac{4}{5} \text{ and } \cos B = \frac{3}{5};$$

$$\therefore \sin (A + B) = \frac{3}{5} \cdot \frac{3}{5} + \frac{4}{5} \cdot \frac{4}{5} = \frac{25}{25} = 1;$$

$$\therefore A + B = 90^{\circ}.$$

(2)
$$\tan A = \frac{1}{7}; \ \tan B = \frac{1}{3},$$

$$\tan 2B = \frac{2 \tan B}{1 - \tan^2 B} = \frac{2}{3} \div \left(1 - \frac{1}{9}\right) = \frac{2 \times 9}{3 \times 8} = \frac{3}{4};$$

$$\therefore \tan(A + 2B) = \frac{\tan A + \tan 2B}{1 - \tan A \cdot \tan 2B} = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \frac{1}{7} \cdot \frac{3}{4}} = 1;$$

 $A + 2B = 45^{\circ}$.

(3) Let
$$\sin A = \frac{1}{\sqrt{5}}$$
 and $\cot B = 3$.

Then
$$\tan A = \frac{1}{2}$$
 and $\tan B = \frac{1}{3}$;

$$\therefore \tan(A+B) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} = 1;$$

$$A + B = 45^{\circ}$$

that is $\sin^{-1}\frac{1}{\sqrt{5}} + \cot^{-1}3 = 45^\circ$.

$$\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{8}$$

Then $tan\{(A+B)+(C+D)\}$

$$= \frac{\tan(A+B) + \tan(C+D)}{1 - \tan(A+B) \cdot \tan(C+D)}$$

$$= \left(\frac{\frac{1}{3} + \frac{1}{5}}{1 - \frac{1}{15}} + \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \cdot \frac{1}{9}}\right) \div \left(1 - \frac{\frac{1}{3} + \frac{1}{5}}{1 - \frac{1}{15}} \cdot \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \cdot \frac{1}{9}}\right)$$

$$=\left(\frac{4}{7}+\frac{3}{11}\right)\div\left(1-\frac{12}{77}\right)=1$$
;

$$\therefore A + B + C + D = 45^{\circ}.$$

(5) Let
$$\cot A = \frac{3}{4}$$
 and $\cot B = \frac{1}{7}$.

Then
$$\tan A = \frac{4}{3}$$
 and $\tan B = 7$;

$$\therefore \tan (A+B) = \frac{\frac{4}{3}+7}{1-\frac{28}{3}} = -1;$$

$$A + B = 135^{\circ}$$
, or, $\cot^{-1}\frac{3}{4} + \cot^{-1}\frac{1}{7} = 135^{\circ}$.

(6) Let
$$\tan A = \frac{3}{5}$$
 and $\tan B = \frac{3}{7}$.

Then $\tan(A+B) = \frac{\frac{3}{5} + \frac{3}{7}}{1 - \frac{9}{35}} = \frac{18}{13}$;

 $\therefore \cot(A+B) = \frac{13}{18}$, or, $A+B = \cot^{-1}\frac{13}{18}$.

(7) Let
$$\tan A = x$$
 and $\tan B = y$.
Then $\tan(A - B) = \frac{x - y}{1 + xy}$;

$$\therefore \tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x - y}{1 + xy}.$$

(8) Let
$$\sin A = x$$
 and $\cos B = x$.
Then $\cos A = \sqrt{1 - x^2}$ and $\sin B = \sqrt{1 - x^2}$;
 $\therefore \sin(A + B) = x \cdot x + \sqrt{1 - x^2} \cdot \sqrt{1 - x^2}$
 $= x^2 + 1 - x^2 = 1$;
 $\therefore A + B = 90^\circ$, or, $\sin^{-1}x + \cos^{-1}x = 90^\circ$.

(9) Let
$$\sin A = \frac{4}{5}$$
, $\sin B = \frac{5}{13}$, $\sin C = \frac{16}{65}$;

$$\therefore \cos A = \frac{3}{5}$$
, $\cos B = \frac{12}{13}$, $\cos C = \frac{63}{65}$.

Then
$$\sin(A+B+C) = \sin(A+B) \cdot \cos C + \cos(A+B) \cdot \sin C$$

 $= (\sin A \cdot \cos B + \cos A \cdot \sin B) \frac{63}{65} + (\cos A \cdot \cos B - \sin A \cdot \sin B) \frac{16}{65}$
 $= \left(\frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \frac{5}{13}\right) \cdot \frac{63}{65} + \left(\frac{3}{5} \cdot \frac{12}{13} - \frac{4}{5} \cdot \frac{5}{13}\right) \frac{16}{65}$
 $= \frac{63}{65} \cdot \frac{63}{65} + \frac{16}{65} \cdot \frac{16}{65} = \frac{4225}{4225} = 1.$
 $\therefore A+B+C=90^{\circ}, \text{ or, } \sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{12} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}.$

(10) Let
$$\tan A = \frac{1}{5}$$
, and $\tan B = \frac{1}{239}$.

Then
$$\tan(4A - B) = \frac{\tan 4A - \tan B}{1 + \tan 4A \cdot \tan B}$$

$$=\frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \cdot \frac{1}{239}} = 1;$$

$$\therefore 4A - B = 45^{\circ}$$
, or, $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239} = \frac{\pi}{4}$

EXAMPLES—XXXIX. (p. 120).

$$\begin{array}{c} \textbf{(1)} \quad & \overline{\textbf{3}} \cdot 1651553 \\ & \overline{\textbf{4}} \cdot 7505855 \\ & \textbf{6} \cdot 6879746 \\ & \overline{\textbf{2}} \cdot 6150026 \\ & \overline{\textbf{1}} \cdot \textbf{2}187180 \end{array}$$

$$\begin{array}{cccc} \textbf{(2)} & \overline{\textbf{4}} \cdot \textbf{6843785} \\ & \overline{\textbf{5}} \cdot \textbf{6650657} \\ & \underline{\textbf{3}} \cdot \textbf{8905196} \\ & \overline{\textbf{3}} \cdot \textbf{4675284} \\ & \overline{\textbf{7}} \cdot \textbf{7074922} \end{array}$$

$$\begin{array}{r}
 \underline{5} \cdot 352678 \\
 \underline{5} \cdot 428619 \\
 \underline{2} \cdot 924059
\end{array}$$

(6)
$$\overline{5} \cdot 349162$$
 $\overline{3} \cdot 624329$ $\overline{3} \cdot 724833$

(9)
$$\overline{9} \cdot 2843617$$
 $\overline{62} \cdot 9905319$

(12)
$$9 \mid \overline{4} \cdot 53627188$$
 $\overline{1} \cdot 61514132$

EXAMPLES-XL. (p. 123).

1.
$$\log 128 = \log 2^7 = 7 \log 2 = 2 \cdot 1072100$$

 $\log 125 = \log \frac{1000}{8} = \log 1000 - \log 8 = 3 - \log 2^8$
 $= 3 - 3 \log 2 = 3 - 90309000 = 2 \cdot 0969100$
 $\log 2500 = \log \frac{10000}{4} = \log 10000 - \log 4 = 4 - 2 \log 2$
 $= 4 - 6020600 = 3 \cdot 3979400$.

- 2. $\log 50 = \log \frac{100}{2} = \log 100 \log 2 = 2 3010300 = 1.6989700$ $\log .005 = \log \frac{5}{1000} = \log 10 - \log 2 - 3 = -\log 2 - 2 = \overline{3}.6989700$ $\log 196 = \log (49 \times 4) = 2 \log 7 + 2 \log 2 = 2.2922560.$
- 3. $\log 6 = \log 3 + \log 2 = .7781513$ $\log 27 = 3 \log 3 = 1.4313639$ $\log 54 = \log (27 \times 2) = 3 \log 3 + \log 2 = 1.7323939$ $\log 576 = \log (9 \times 64) = 2 \log 3 + 6 \log 2 = 2.7604226$.
- 4. $\log 60 = \log (2 \times 3 \times 10) = \log 2 + \log 3 + \log 10 = 1.7781513$ $\log .03 = \log \frac{3}{100} = \log 3 2 = .4771213 2 = 2.4771213$ $\log 1.05 = \log \frac{105}{100} = \log \frac{21}{20} = \log 3 + \log 7 \log 2 1 = .0211893$ $\log .0000432 = \log \frac{16 \times 27}{10000000} = 4 \log 2 + 3 \log 3 7 = \overline{5}.6354839$
- 5. $\log 70075 = \log 75 5 = \log 3 + \log 25 5 = \log \left(\frac{18}{2}\right)^{\frac{1}{2}} + \log 25 5$ $= \frac{1}{2} \left\{ \log 18 - \log 2 \right\} + \log 100 - \log 4 - 5$ $= \frac{1}{2} \left\{ 1.2552725 - 3010300 \right\} + 2 - 6020600 - 5$ = 4771213 - 6020600 - 3 = 4.8750613.

$$\begin{aligned} & \text{Log } 31 \cdot 5 = \log (21 \times 3 \times 5) - 1 = \log 21 + \log 3 + 1 - \log 2 - 1 \\ & = \log 21 + \frac{1}{2} \left(\log 18 - \log 2 \right) - \log 2 \\ & = 1 \cdot 3222193 + 4771212 - 3010300 = 1 \cdot 4983105. \end{aligned}$$

$$\log 2 = \log \frac{10}{5} = 1 - \log 5 = 3010300.$$

$$\log 064 = \log \frac{2^{6}}{1000} = 6 \log 2 - 3 = 6 - 6 \log 5 - 3 = \overline{2} \cdot 8061800$$

$$\log \left\{ \frac{2^{60}}{5^{20}} \right\}^{\frac{1}{14}} = \frac{1}{14} \left(60 \log 2 - 20 \log 5 \right)$$

$$= \frac{1}{7} \left(30 - 30 \log 5 - 10 \log 5 \right) = \frac{1}{7} \left(30 - 27 \cdot 9588000 \right)$$

$$= \frac{1}{7} \left(2 \cdot 0412000 \right) = 2916000.$$

7.
$$\log 5 = \log \frac{10}{2} = 1 - 3010300 = 6989700,$$

$$\log \cdot 125 = \log \frac{5^3}{1000} = 3 \log 5 - 3 = 2 \cdot 0969100 - 3 = \overline{1} \cdot 0969100$$

$$\log \left(\frac{5^{90}}{2^{40}}\right)^{\frac{1}{16}} = \log 5^{\frac{90}{16}} - \log 2^{\frac{40}{16}} = \log 5^6 - \log 2^{\frac{8}{3}}$$

$$= 6 \log 5 - \frac{8}{3} \log 2 = 6 \left(\log 10 - \log 2\right) - \frac{8}{3} \log 2$$

$$= 4 \cdot 1938200 - 8027467 = 3 \cdot 3910733.$$

8.
$$01 = \frac{1}{100} = \frac{1}{10^2} = 10^{-2}$$

$$1 = 10^0$$

$$100 = 10^2$$

$$01 = (01)^1$$

$$1 = (01)^0$$

$$100 = \frac{1}{01} = (01)^{-1}$$

$$100 = \frac{1}{01} = (01)^{-1}$$

$$1 = (01)^0$$

- 1593 is greater than 10³ and less than 10⁴; characteristic 3.
 1593 is greater than 12² and less than 12³; characteristic 2.
- 10. $\frac{4^{3y}}{2^{4y}} = 8$; $\frac{2^{6y}}{2^{4y}} = 2^{8}$; $2^{3y} = 2^{8}$; 2y = 3. Hence $y = \frac{3}{2}$ and $x = \frac{9}{2}$.
- 11. (a) $\log 2 = \frac{1}{2} \log 4 = 3010300$, $\log 25 = \log 100 - \log 4 = 2 - 6020600 = 1 \cdot 3979400$ $\log 83 \cdot 2 = \log (80 \times 1 \cdot 04) = \frac{3}{2} \log 4 + \log 10 + \log 1 \cdot 04$ $= \cdot 9030900 + 1 + \cdot 0170333 = 1 \cdot 9201233$ $\log (\cdot 625)^{\frac{1}{100}} = \frac{1}{100} \left\{ \log 625 - \log 1000 \right\} = \frac{1}{100} \left\{ 2 \log 25 - 3 \right\}$ $= \frac{1}{100} \left\{ 2 \log 100 - 2 \log 4 - 3 \right\} = \frac{1}{100} \left\{ 4 - 1 \cdot 2041200 - 3 \right\}$

 $= -.0020412 = \overline{1}.9979588.$

- (b) $\log (1.04)^{6000} = 6000 \log 1.04 = 6000 \times .0170333$ = 102.1998000; ... number of digits is 103.
- 12. (a) $\log 5 = \frac{1}{2} \log 25 = .6989700$ $\log 4 = 2 - \log 25 = .6020600$ $\log 51.5 = \log 5 + \log 10.3 = .6989700 + 1.0128372 = 1.7118072$ $\log (.064)^{\frac{1}{100}} = \frac{1}{100} \left\{ \log 64 - \log 1000 \right\} = \frac{1}{100} \left\{ 3 \log 4 - 3 \right\}$ $= \frac{1}{100} \left\{ 1.8061800 - 3 \right\} = -.0119382 = \overline{1.9880618}.$
 - (b) $\log (1.03)^{600} = 600 \log 1.03 = 600 \times 0.0128372$ = 7.7023200; ... number of digits is 8.

13.
$$\log 7623 = \log (9 \times 121 \times 7) = 2 \log 3 + 2 \log 11 + \log 7$$

 $= 9542426 + 2 \cdot 0827854 + 8450980 = 3 \cdot 8821260$
 $\log \frac{77}{300} = \log 7 + \log 11 - \log 3 - \log 100$
 $= 8450980 + 1 \cdot 0413927 - 4771213 - 2 = \overline{1} \cdot 4093694$
 $\log \frac{3}{539} = \log 3 - \log 11 - 2 \log 7$
 $= 4771213 - 1 \cdot 0413927 - 1 \cdot 6901960 = \overline{3} \cdot 7455326.$

14. (1)
$$x \log 4096 = \log 8 - x \log 64$$

 $4x \log 8 = \log 8 - 2x \log 8$
 $4x = 1 - 2x$; $6x = 1$; $x = \frac{1}{8}$.

(2)
$$(2.5)^x = 6.25 = (2.5)^2$$
; $x = 2$.

(3)
$$(ab)^{x} = m ; x \log (ab) = \log m ;$$

$$\therefore x = \frac{\log m}{\log a + \log b} .$$

(4)
$$x(m \log a + 2 \log b) = \log c;$$

$$\therefore x = \frac{\log c}{m \log a + 2 \log b}.$$

(5)
$$3x \log a + (4-x)\log b = (2x-1)\log c$$

 $x(3 \log a - \log b - 2 \log c) = -4 \log b - \log c$;
 $\therefore x = \frac{4 \log b + \log c}{2 \log c + \log b - 3 \log a}$.

(6)
$$x(\log a + m \log b) = \log c - 3x \log c$$

$$x(\log a + m \log b + 3 \log c) = \log c;$$

$$\therefore x = \frac{\log a}{\log a + m \log b + 3 \log c}.$$

EXAMPLES-XLI. (p. 127).

(1) $\log 525030 = 5.7201841$ $\log 525020 = 5.7201758$

Difference for 10 = '0000083

- \therefore 10:5=0000083: what we must add;
 - .. we must add '0000041;
 - $\therefore \log 52502.5 = 4.7201799.$
- (2) log 300430=5.4777433 log 300420=5.4777288

Difference for 10= '0000145

- \therefore 10:5=0000145: what we must add;
 - .. we must add '0000072;
 - $\log 300.425 = 2.4777360$.
- (3) $\log 32026000 = 7.5055027$ $\log 32025000 = 7.5054891$

Difference for 1000 = '0000136

- \therefore 1000; 613=0000136: what we must add;
 - .. we must add '0000083;
 - .: log 32:025613=1:5054974.
 - (4) log 236610=5:3740331 log 236600=5:3740147

Difference for 10 = '0000184

- \therefore 10:1=:0000184: what we must add;
 - .. we must add '0000018;
 - $\log 236.601 = 2.3740165$.

```
(5)
              \log 675030 = 5.8293231
              \log 675020 = 5.8293166
        Difference for 10 = 0000065
     \therefore 10:1=:0000065: what we must add:
  ... we must add '0000007 (see end of Art. 162):
            \therefore \log 67.5021 = 1.8293173.
(6)
              \log 7333600 = 6.8653172
              \log 7333500 = 6.8653113
        Difference for 100 = '0000059
   \therefore 100:33=0000059: what we must add;
             .: we must add '0000019;
          \therefore \log .007333533 = \bar{3}.8653132
(7)
              \log 6593200 = 6.8190962
              \log 6593100 = 6.8190897
        Difference for 100= '0000065
\therefore 100:71=0000065: what we must add:
            .. we must add '0000046;
        \log 000006593171 = 6.8190943
(8)
              \log 340780 = 5.5324741
              \log 340770 = 5.5324614
        Difference for 10 = '0000127
     \therefore 10:8=0000127; what we must add:
             .. we must add '0000102;
            \therefore \log 3407.78 = 3.5324716.
(9)
              \log 390980 = 5.5921545
              \log 390970 = 5.5921434
        Difference for 10 = '0000111
     \therefore 10:4='0000111: what we must add:
             .. we must add '0000044;
```

(10) log 2582000=6:4119562 log 2581900=6:4119394

Difference for 100= '0000168

:. 100:26:=:0000168: what we must add;

.. we must add '0000044;

.: log 2.581926=:4119438.

EXAMPLES-XLII. (p. 129).

(1) $\log 12955 = 4.1124374$ $\log 12954 = 4.1124039$

Difference for 1 = '0000335

- - .: 4.112431 is the logarithm of 12954.8.
- (2) log 46246=4.6650742 log 46245=4.6650648

Difference for 1= '0000094

- .: 0000094: 0000009=1: what has to be added;
 .: we must add '095;
 - .: 3.6650657 is the logarithm of 4624.5095.
- (3) $\log 34573 = 4.5387371$ $\log 34572 = 4.5387245$

Difference for 1 = '0000126

- .: 0000126:0000114=1: what we must add;
 - .: we must add '9047 . . ., or, '91;
 - .: 2.5387359 is the logarithm of 345.7291.

(4) $\log 39376 = 4.5952316$ $\log 39375 = 4.5952206$

Difference for 1 = '0000110

.. 0000110:0000076=1: what we must add;

.. we must add '69;

.: 5.5952282 is the logarithm of 393756.9.

(5) log 37160=4.5700757 log 37159=4.5700640

Difference for 1 = '0000117

 \therefore '0000117: '0000062=1: what we must add;

.: we must add '529, or, '53;

.: 3.5700702 is the logarithm of 3715.953.

(6) $\log 96462 = 4.9843563$ $\log 96461 = 4.9843518$

Difference for 1= '0000045

- .: '0000045: '0000024=1: what we must add;
 - .: we must add '58:
 - \therefore $\overline{3}$ 9843542 is the logarithm of 009646153.
- (7) $\log 25726 = 4.4103723$ $\log 25725 = 4.4103554$

Difference for 1 = '0000169

- ... '0000169: '0000166=1: what must be added;
 - .. we must add '982;
- .: 7:4103720 is the logarithm of '00000025725982.
- (8) $\log 60196 = 4.7795604$ $\log 60195 = 4.7795532$

Difference for 1 = 0000072

- .: '0000072:'0000029=1: what must be added .: we must add '4027, or, '403;
 - .: 2.7795561 is the logarithm of 601.95403.

(9) log 10906=4·0376655 log 10905=4·0376257

Difference for 1= '0000398

.: 3.0376371 is the logarithm of 1090.5286.

(10) $\log 26202 = 4.4183344$ $\log 26201 = \underline{4.4183179}$

Difference for 1= '0000165

.. 2.4183314 is the logarithm of 262.01818.

EXAMPLES—XLIII. (p. 132).

(1) $\sin 42^{\circ}$. 16' = 6725821 $\sin 42^{\circ}$. 15' = 6723668

Difference for 1' = .0002153

... 60":16"=:0002153: what we must add;

.. we must add 0000574; .. sin42°. 15'. 16"= 6724242.

(2) $\sin 72^{\circ}$. 15' = .9523958 $\sin 72^{\circ}$. 14' = .9523071

Difference for 1' = .0000887

... 60": 6"= 0000887; what we must add;

.. we must add '0000088;

 $\sin 72^{\circ}$. 14', 6" = 9523159.

```
\sin 54^{\circ}, 36' = 8151278
(3)
                 \sin 54^{\circ}, 35' = .8149593
          Difference for 1'= 0001685
    ... 60": 45"= 0001685: what we must add:
             .. we must add '0001263;
            \therefore \sin 54^{\circ}, 35', 45'' = 8150856.
(4)
                 \sin 87^{\circ}, 27' = 9990098
                 \sin 87^{\circ}. 26' = 9989968
          Difference for 1'= 0000130
   \therefore 60":15"='0000130: what we must add:
              .. we must add '0000032:
            \therefore \sin 87^{\circ}, 26', 15'' = 9990000
                  \sin 43^{\circ}, 15' = 6851830
(5)
                  \sin 43^{\circ}, 14' = 6849711
           Difference for 1'='0002119
   \therefore 60": 20"= 0002119: what we must add;
              .. we must add '0000706;
            \sin 43^{\circ}. 14'. 20" = 6850417.
                  \cos 41^{\circ}, 13' = .7522233
(6)
                  \cos 41^{\circ}. 14' = .7520316
           Difference for 1'=:0001917
 ... 60": 26" = 0001917: what we must subtract:
            .. we must subtract '0000830;
             \therefore cos41°. 13′. 26″ = .7521403.
                  tan1^{\circ}, 23' = 0241484
(7)
                  \tan 1^{\circ}, 22' = 0238573
          Difference for 1' = 0002911
    ... 60": 30"= 0002911: what we must add:
              .. we must add '0001455;
```

 \therefore tan1°. 22′. 30″ = '0240028.

```
(8)
                       \cot 35^{\circ}. 6' = 1.4228561
                       \cot 35^{\circ}, 7' = 1.4219766
              Difference for 1'=.0008795
      ... 60":23"='0008795; what we must subtract:
                .. we must subtract '0003371;
                 \therefore cot35°, 6′, 23″ = 1.4225190.
                       \sin 67^{\circ}, 23' = 9230984
     (9)
                       \sin 67^{\circ}, 22' = .9229865
                Difference for 1' = 0001119
        \therefore 60":48".5 = 0001119: what we must add;
                  .. we must add '0000904:
                 \sin 67^{\circ}, 22', 48" 5 = 9230769.
                       \cos 34^{\circ}, 12' = 8270806
   (10)
                       \cos 34^{\circ}, 13' = 8269170
                Difference for 1'= 0001636
     ... 60": 19"·6= 0001636: what we must subtract;
                .. we must subtract '0000534;
                \therefore \cos 34^{\circ}, 12', 19'' \cdot 6 = 8270272.
                 EXAMPLES-XLIV. (p. 135).
     (1)
                       \sin 48^{\circ}, 47' = .7522233
                       \sin 48^{\circ}, 46' = .7520316
                Difference for 1' = .0001917
\therefore 0001917: 0001084=60": what we must add to 48°.46':
                      ... we must add 34":
```

.. the angle is 48°. 46'. 34".

```
(2)
                       \cos 2^{\circ}, 33' = 9990098
                       \cos 2^{\circ}, 34' = :9989968
               Difference for 1' = 0000130
... '0000130: '0000098=60": what we must add to 2° 33':
                     .. we must add 45";
                  ... the angle is 2°. 33', 45".
                      \sin 43^{\circ}. 15' = .6851830
     (3)
                      \sin 43^{\circ}. 14' = .6849711
               Difference for 1'= 0002119
... '0002119: '0000289=60": what we must add to 43°. 14':
                    .: we must add 8".18:
                 ... the angle is 43°. 14'. 8".18.
     (4)
                      \cos 32^{\circ}, 31' = \cdot 8432351
                      \cos 32^{\circ}, 32' = \cdot 8430787
               Difference for 1'= 0001564
... '0001564: '0000351=60": what we must add to 32°. 31':
      ... we must add 13".46, or, approximately, 13".5;
                 .: the angle is 32°. 31'. 13".5.
                      \sin 24^{\circ}, 12' = .4099230
     (5)
                      \sin 24^{\circ}. 11' = \cdot 4096577
               Difference for 1' = .0002653
... 00002653: 0000982 = 60": what we must add to 24°. 11';
                    ... we must add 22".2:
                 ... the angle is 24°. 11'. 22".2.
                      sec82°. 23'-7:552169
     (6)
                      sec82°. 22'-7.528249
               Difference for 1' = .023920
 ... '023920: '005084=60": what we must add to 82°. 22';
                ... we must add 12"8 nearly;
                 .: the angle is 82°. 22'. 12"8.
```

```
\cos 53^{\circ}, 7' = .6001876
     (7)
                    \cos 53^{\circ}, 8' = \cdot 5999549
             Difference for 1' = 0002327
 \therefore 0002327: 0001876=60": what we must add to 53°. 7':
                 .. we must add 48".4 nearly:
                  .: the angle is 53°. 7'. 48".4.
    (8)
                    cosec25^{\circ}, 3' = 2.36179
                    \cos 25^{\circ}. 4' = 2.36029
              Difference for 1'= '00150
   ... 00150: 00068=60": what we must add to 25°, 3';
                    .: we must add 27".2;
               ... the angle is 25°. 3'. 27".2.
                    \sin 73^{\circ}. 45' = 9600499
    (9)
                    \sin 73^{\circ}, 44' = 9599684
             Difference for 1'= 0000815
\therefore 0000815: 0000316=60": what we must add to 73°. 44';
                     ... we must add 23".2;
                 ∴ the angle is 73°.44′. 23" 2.
   (10)
                     \tan 77^{\circ}, 20' = 4.44942
                     \tan 77^{\circ}. 19' = 4.44338
               Difference for 1'= '00604
  ... 00604:00106=60": what we must add to 77°.19':
                    .. we must add 10".5;
                 ... the angle is 77°. 19'. 10".5.
                 EXAMPLES—XLV. (p. 138).
    (1)
                  L \sin 55^{\circ}, 34' = 9.9163406
                  L \sin 55^{\circ}, 33' = 9.9162539
              Difference for 1'= '0000867
       ... 60'': 54'' = 0000867: what we have to add;
                  .. we must add '0000780;
               L \sin 55^{\circ}, 33', 54"=9.9163319.
```

```
L \sin 29^{\circ}, 26' = 9.6914445
(2)
              L \sin 29^{\circ}, 25' = 9.6912205
         Difference for 1'= '0002240
   :. 60'': 2'' = .0002240: what we have to add;
              .: we must add '0000075;
           L \sin 29^{\circ}, 25', 2"=9.6912280.
(3)
             L\cos 37^{\circ}, 28' = 9.8996604
             L\cos 37^{\circ}, 29' = 9.8995636
         Difference for 1'= '0000968
...60'':36''=0000968; what we have to subtract:
           .. we must subtract '0000581:
          L \cos 37^{\circ}, 28', 36"=9.8996023.
             L \sin 54^{\circ}. 14' = 9.9092371
(4)
              L \sin 54^{\circ}. 13'=9.9091461
         Difference for 1' = .0000910
  ...60'':19''=.0000910: what we have to add:
              .: we must add '0000288:
           \therefore L \sin 54^{\circ}. 13'. 19"=9.9091749.
               L \tan 27^{\circ}. 43' = 9.7204759
(5)
               L \tan 27^{\circ}, 42' = 9.7201690
          Difference for 1' = .0003069
  ... 60'': 34'' = .0003069: what we have to add:
              .. we must add '0001739;
          L \tan 27'' \cdot 42' \cdot 34'' = 9.7203429
               L \tan 5^{\circ}, 14' = 8.9618659
(6)
               L \tan 5^{\circ}, 13' = 8.9604728
         Difference for 1' = .0013931
```

.. 60":23"='0013931: what we have to add; .. we must add '0005340; .. L tan5°. 13'. 23"=8'9610068.

```
L \cot 3^{\circ}. 37' = 11.1992368
 (7)
                L \cot 3^{\circ}, 38' = 11.1972347
          Difference for 1'= '0020021
  ...60'':50''=.0020021: what we have to subtract;
            .. we must subtract '0016684:
            L \cot 3^{\circ}, 37', 50"=11.1975684.
 (8)
                L \sin 39^{\circ}, 26' = 9.8028968
                L \sin 39^{\circ}, 25' = 9.8027431
           Difference for 1' = .0001537
    ...60'':10''=0001537: what we have to add;
               .: we must add '0000256:
            L \sin 39^{\circ}. 25'. 10"=9.8027687.
 (9)
                L \sin 70^{\circ}, 35' = 9.9745697
               L \sin 70^{\circ}. 34' = 9.9745252
           Difference for 1' = .0000445
      ...60'':17''=.0000445: what we must add:
               .: we must add '0000126;
            \therefore L \sin 70^{\circ}, 34', 17"=9.9745378.
(10)
               L\cos 88^{\circ}, 54' = 8.2832434
               L\cos 88^{\circ}, 55' = 8.2766136
           Difference for 1'= '0066298
   \therefore 60'': 16'' = 0066298: what we must subtract:
            .: we must subtract '0017679:
           L \cos 88^{\circ}. 54'. 16"=8.2814755.
             EXAMPLES—XLVI. (p. 140).
 (1)
            L \sin 14^{\circ}, 25' = 9.3961499
               L \sin 14^{\circ}, 24' = 9.3956581
          Difference for 1'= '0004918
\therefore 0004918: 0002868=60°: what we have to add;
             .. we must add 35" nearly:
```

.: the angle is 14°, 24', 35".

```
(2)
                 L \sin 54^{\circ}. 14' = 9.9092371
                 L \sin 54^{\circ}. 13' = 9.9091461
             Difference for 1' = 0000910
\therefore 0000910 : 0000299 = 60'': what we have to add:
                 ... we must add 19":
             ... the angle is 54°. 13'. 19".
                 L \sin 71^{\circ}. 41' = 9.9774191
(3)
                 L \sin 71^{\circ}, 40' = 9.9773772
             Difference for 1'= '0000419
\therefore '0000419: '0000125=60": what we must add:
             .. we must add 18" nearly;
             ... the angle is 71°. 40′. 18″.
                 L \cos 29^{\circ}, 25' = 9.9400535
(4)
                 L\cos 29^{\circ}, 26' = 9.9399823
             Difference for 1'= '0000712
 .: . '0000712: '0000023=60": what we must add;
             .. we must add 2" nearly;
              ... the angle is 29°. 25'. 2".
                 L \tan 30^{\circ}, 51' = 9.7761947
(6)
                 L \tan 30^{\circ}.50' = 9.7759077
             Difference for 1' = .0002870
 .: . '0002870: '0001320=60': what we must add:
            .. we must add 27".6 nearly;
            .: the angle is 30°. 50'. 27".6.
                 L \cot 86^{\circ}, 32' = 8.7823199
(6)
                 L \cot 86^{\circ}, 33' = 8.7802218
             Difference for 1'= '0020981
\therefore '0020981: '0008556=60": what we must add;
```

... we must add 24".5 nearly; ... the angle is 86°. 32'. 24".5.

(2) $\cos(A + B) = \cos(180^{\circ} - C) = -\cos C$.

(3) $\sin \frac{A+B}{2} = \sin \left(90^{\circ} - \frac{C}{2}\right) = \cos \frac{C}{2}$

(4)
$$\cos \frac{A+B}{2} = \cos \left(90^{\circ} - \frac{C}{2}\right) = \sin \frac{C}{2}$$
.

(5)
$$\tan \frac{A+B}{2} = \tan \left(90^{\circ} - \frac{C}{2}\right) = \cot \frac{C}{2}$$
.

(6)
$$\cot \frac{A+B}{2} = \cot \left(90^{\circ} - \frac{C}{2}\right) = \tan \frac{C}{2}$$

EXAMPLES—XLVIII. (p. 150).

1. (1)
$$\sin 2A + \sin 2B + \sin 2C = 2 \sin(A + B) \cdot \cos(A - B) + \sin 2C$$

 $= 2 \sin C \cdot \cos(A - B) + 2 \sin C \cdot \cos C$
 $= 2 \sin C \cdot \{\cos(A - B) + \cos C\}$
 $= 2 \sin C \cdot \{\cos(A - B) - \cos(A + B)\}$
 $= 2 \sin C \cdot (2 \sin A \cdot \sin B)$
 $= 4 \sin A \cdot \sin B \cdot \sin C$

(2)
$$\sin(-A+B+C) + \sin(A-B+C) + \sin(A+B-C)$$

= $2 \sin C \cdot \cos(A-B) + \sin(A+B) \cdot \cos C - \cos(A+B) \cdot \sin C$
= $2 \sin C \cdot \cos(A-B) + \sin C \cdot \cos C + \cos C \cdot \sin C$
= $2 \sin C \cdot \{\cos(A-B) + \cos C\}$
= $2 \sin C \cdot \{\cos(A-B) - \cos(A+B)\}$
= $4 \sin A \cdot \sin B \cdot \sin C$.

$$(3) \frac{\cot \frac{A}{2} + \cot \frac{C}{2}}{\cot \frac{B}{2} + \cot \frac{C}{2}} = \frac{\frac{\cos \frac{B}{2} \cdot \sin \frac{C}{2} + \sin \frac{C}{2} \cdot \cos \frac{C}{2}}{\sin \frac{A}{2} \cdot \sin \frac{C}{2}}}{\frac{\sin \frac{B}{2} \cdot \sin \frac{C}{2} + \sin \frac{B}{2} \cdot \cos \frac{C}{2}}{\sin \frac{B}{2} \cdot \sin \frac{C}{2}}} = \frac{\sin \left(\frac{A}{2} + \frac{C}{2}\right) \cdot \sin \frac{B}{2}}{\sin \left(\frac{B}{2} + \frac{C}{2}\right) \cdot \sin \frac{A}{2}}}$$

$$= \frac{\cos \frac{B}{2} \cdot \sin \frac{B}{2}}{\cos \frac{A}{2} \cdot \sin \frac{A}{2}} = \frac{\cos \frac{B}{2} \cdot \sin \frac{B}{2}}{\cos \frac{A}{2} \cdot \sin \frac{A}{2}} = \frac{\sin B}{\sin A}.$$

94 KEY TO ELEMENTARY TRIGONOMETRY.

(4)
$$\tan(A+B+C) = \tan 180^{\circ} = 0$$
;

$$\therefore \frac{\tan A + \tan B + \tan C - \tan A \cdot \tan B \cdot \tan C}{1 - \tan A \cdot \tan B - \tan B \cdot \tan C - \tan C \cdot \tan A} = 0$$
;

$$\therefore \tan A + \tan B + \tan C - \tan A \cdot \tan B \cdot \tan C = 0$$
;

$$\therefore \tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$$

(5) As in Example (4),

 $\tan A + \tan B + \tan C = \tan A$. $\tan B$. $\tan C$, and dividing both sides by $\tan A$. $\tan B$. $\tan C$, $\cot B$. $\cot C + \cot A$. $\cot C + \cot A$.

(6)
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{\cos \frac{A}{2} \cdot \sin \frac{B}{2} + \sin \frac{A}{2} \cdot \cos \frac{B}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2}} + \frac{\cos \frac{C}{2}}{\sin \frac{C}{2}} \cdot \frac{\cos \frac{C}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2}} + \frac{\cos \frac{C}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2}} + \frac{\cos \frac{C}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2}} \cdot \frac{\cos \frac{C}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}}$$

$$= \cos \frac{C}{2} \left\{ \frac{\sin \frac{C}{2} + \sin \frac{A}{2} \cdot \sin \frac{B}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}} \right\}$$

$$= \cos \frac{C}{2} \left\{ \frac{\cos \left(\frac{A}{2} + \frac{B}{2}\right) + \sin \frac{A}{2} \cdot \sin \frac{B}{2}}{\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}} \right\}$$

$$= \frac{\cos \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2}}{\sin \frac{A}{2} \cdot \sin \frac{C}{2}} = \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2} \cdot \cot \frac{C}{2}$$

(7)

$$1 + \cos 2A + \cos 2B + \cos 2C = 1 + (2\cos^2 A - 1) + 2\cos(B + C) \cdot \cos(B - C)$$

 $= 2\cos^2 A - 2\cos A \cdot \cos(B - C)$
 $= -2\cos A \cdot \{\cos(B + C) + \cos(B - C)\}$
 $= -2\cos A \cdot 2\cos B \cdot \cos C = -4\cos A \cdot \cos B \cdot \cos C$.

(8)
$$\cos A + \cos B + \cos C = 2 \cos \frac{A+B}{2} \cdot \cos \frac{A-B}{2} + 1 - 2 \sin^2 \frac{C}{2}$$

$$= 2 \sin \frac{C}{2} \cdot \cos \frac{A-B}{2} - 2 \sin^2 \frac{C}{2} + 1$$

$$= 2 \sin \frac{C}{2} \left\{ \cos \frac{A-B}{2} - \cos \frac{A+B}{2} \right\} + 1$$

$$= 2 \sin \frac{C}{2} \cdot 2 \sin \frac{A}{2} \cdot \sin \frac{B}{2} + 1 = 4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} + 1.$$

(9)
$$-\sin 2A + \sin 2B + \sin 2C = 2 \sin(B+C) \cdot \cos(B-C) - 2 \sin A \cdot \cos A$$

= $2 \sin A \cdot \{\cos(B-C) - \cos A\}$
= $2 \sin A \cdot \{\cos(B-C) + \cos(B+C)\}$
= $4 \sin A \cdot \cos B \cdot \cos C$.

(10)
$$\sin A + \sin B - \sin C = 2 \sin \frac{A + B}{2} \cdot \cos \frac{A - B}{2} - 2 \sin \frac{C}{2} \cdot \cos \frac{C}{2}$$

$$= 2 \cos \frac{C}{2} \cdot \left\{ \cos \frac{A - B}{2} - \sin \frac{C}{2} \right\}$$

$$= 2 \cos \frac{C}{2} \cdot \left\{ \cos \frac{A - B}{2} - \cos \frac{A + B}{2} \right\}$$

$$= 2 \cos \frac{C}{2} \cdot 2 \sin \frac{A}{2} \cdot \sin \frac{B}{2}$$

$$= 4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \cos \frac{C}{2}.$$

(11)
$$\sin 2A + \sin 2B - \sin 2C = 2 \sin(A + B) \cdot \cos(A - B) - 2 \sin C \cdot \cos C$$

= $2 \sin C \cdot \{\cos(A - B) - \cos C\}$
= $2 \sin C \cdot \{\cos(A - B) + \cos(A + B)\}$
= $4 \sin C \cdot \cos A \cdot \cos B$.

$$(12) \cos A + \cos B - \cos C = 2\cos \frac{A+B}{2} \cdot \cos \frac{A-B}{2} - \left(1 - 2\sin^2 \frac{C}{2}\right)$$

$$= 2\sin \frac{C}{2} \cdot \cos \frac{A-B}{2} + 2\sin \frac{C}{2} \cdot \cos \frac{A+B}{2} - 1$$

$$= 2\sin \frac{C}{2} \cdot \left\{\cos \frac{A-B}{2} + \cos \frac{A+B}{2}\right\} - 1$$

$$= 4\sin \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2} - 1.$$

$$(13) \cos^{2}\frac{A}{2} + \cos^{2}\frac{B}{2} + \cos^{2}\frac{C}{2} = \frac{1}{2} \left\{ \cos A + 1 + \cos B + 1 + \cos C + 1 \right\}$$

$$= \frac{1}{2} \cdot \left\{ \cos A + \cos B + \cos C + 3 \right\}$$

$$= \frac{1}{2} \cdot \left\{ 4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} + 1 + 3 \right\}, \text{ as in Ex. 8.}$$

$$= 2 + 2 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}.$$

$$(14) \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = \frac{1}{2} \cdot \left\{ 1 - \cos A + 1 - \cos B + 1 - \cos C \right\}$$

$$= \frac{1}{2} \cdot \left\{ 3 - 4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} - 1 \right\}, \text{ as in Ex. 8.}$$

$$= 1 - 2 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}.$$

2.

$$(1) \frac{b+c}{a} = \cot A + \csc A = \frac{\cos A + 1}{\sin A} = \frac{2 \cos^2 \frac{A}{2}}{2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \cot \frac{A}{2}.$$

(2)
$$2 \csc 2A \cdot \cot B = \frac{2}{\sin 2A} \cdot \frac{\cos B}{\sin B} = \frac{2 \cos B}{2 \sin A \cdot \cos A \cdot \sin B} = \frac{\cos B}{\cos B \cdot \sin B \cdot \sin B} = \frac{1}{\sin^2 B} = \frac{c^2}{b^2}$$

(3)
$$2 \sin^2 \frac{B}{2} = 1 - \cos B = 1 - \frac{a}{c} = \frac{c - a}{c};$$
$$\therefore \sin \frac{B}{2} = \sqrt{\left(\frac{c - a}{2c}\right)}.$$

(4)
$$2\cos^{2}\frac{B}{2} = 1 + \cos B = 1 + \frac{a}{c} = \frac{a+c}{c};$$

$$\therefore \cos\frac{B}{2} = \sqrt{\left(\frac{a+c}{2c}\right)}.$$

ı

(5)
$$\frac{\cos 2B - \cos 2A}{\sin 2A} = \frac{\cos^2 B - \sin^2 B - \cos^2 A + \sin^2 A}{2 \sin A \cdot \cos A}$$
$$= \frac{\sin^2 A - \sin^2 B - \sin^2 B + \sin^2 A}{2 \sin A \cdot \cos A} = \frac{2 \sin^2 A - 2 \sin^2 B}{2 \sin A \cdot \cos A}$$
$$= \frac{\sin A}{\cos A} - \frac{\sin B}{\cos B} = \tan A - \tan B.$$

(6)
$$\tan 2A - \sec 2B = \frac{2 \tan A}{1 - \tan^2 A} - \frac{1}{\cos^2 B - \sin^2 B}$$

$$= \frac{2ab}{b^2 - a^2} - \frac{c^2}{a^2 - b^2} = \frac{2ab + c^2}{b^2 - a^2}$$

$$= \frac{2ab + a^2 + b^2}{b^2 - a^2} = \frac{b + a}{b - a}.$$

(7)
$$(\sin A - \sin B)^{2} + (\cos A + \cos B)^{2}$$

 $= \sin^{2}A - 2\sin A \cdot \sin B + \sin^{2}B + \cos^{2}A + 2\cos A \cdot \cos B + \cos^{2}B$
 $= 2 + 2(\cos A \cdot \cos B - \sin A \cdot \sin B)$
 $= 2 + 2\cos(A + B) = 2 - 2\cos C = 4\sin^{2}\frac{C}{2}$.

(8)
$$\sec 2A = \frac{1}{\cos^2 A - \sin^2 A} = \frac{1}{b^2 - a^2} = \frac{c^2}{b^2 - a^2}.$$

(9)
$$a^3 \cdot \cos A + b^3 \cdot \cos B = a^3 \cdot \frac{b}{c} + b^3 \cdot \frac{a}{c} = \frac{ab(a^2 + b^2)}{c} = \frac{abc^3}{c} = abc.$$

(10)
$$\cot(B-A) + \cot(2A + \frac{C}{2}) = \frac{\cos B \cdot \cos A + \sin B \cdot \sin A}{\sin B \cdot \cos A - \cos B \cdot \sin A} + \cot(2A + 90^{\circ})$$
$$= \frac{\sin A \cdot \sin B + \sin B \cdot \sin A}{\sin B \cdot \sin B - \sin A \cdot \sin A} - \tan 2A$$
$$= \frac{2ab}{b^{2} - a^{2}} - \frac{2 \tan A}{1 - \tan^{2} A} = \frac{2ab}{b^{2} - a^{2}} - \frac{2ab}{b^{2} - a^{2}} = 0.$$

3. (1)
$$\frac{\sin A - \sin B}{a - b} = \frac{\frac{a \sin C}{c} - \frac{b \sin C}{c}}{a - b} = \frac{(a - b)\sin C}{(a - b)c} = \frac{\sin C}{c}.$$

(2)
$$\frac{\sin(A-B)}{\sin C} = \frac{\sin(A-B) \cdot \sin(A+B)}{\sin C \cdot \sin C} = \frac{\sin^2 A - \sin^2 B}{\sin^2 C} = \frac{a^2 - b^2}{c^2}$$

(3)
$$\frac{a \cdot \sin C}{b - a \cos C} = \frac{a \sin C}{a \cos C + c \cos A - a \cos C} = \frac{a \cdot \sin C}{c \cdot \cos A} = \frac{c \cdot \sin A}{c \cdot \cos A} = \tan A.$$

$$(4) \frac{c}{a} \cdot \csc B - \cot B = \frac{c}{a \cdot \sin B} - \frac{\cos B}{\sin B} = \frac{c - a \cdot \cos B}{a \cdot \sin B}$$
$$= \frac{b \cos A + a \cos B - a \cos B}{a \sin B} = \frac{b \cos A}{b \sin A} = \cot A.$$

(5)
$$a + b + c = (b \cos C + c \cos B) + (a \cos C + c \cos A) + (a \cos B + b \cos A)$$

= $(a + b)\cos C + (a + c)\cos B + (b + c)\cos A$.

(6)
$$\frac{a+b}{c} = \frac{\sin A + \sin B}{\sin C} = \frac{2 \sin \frac{A+B}{2} \cdot \cos \frac{A-B}{2}}{2 \sin \frac{C}{2} \cdot \cos \frac{C}{2}} = \frac{\cos \frac{A-B}{2}}{\sin \frac{C}{2}};$$
$$\therefore (a+b) \cdot \sin \frac{C}{2} = c \cdot \cos \frac{A-B}{2}.$$

(7)
$$\frac{a-b}{c} = \frac{\sin A - \sin B}{\sin C} = \frac{2 \cos \frac{A+B}{2} \cdot \sin \frac{A-B}{2}}{2 \sin \frac{C}{2} \cdot \cos \frac{C}{2}} = \frac{\sin \frac{A-B}{2}}{\cos \frac{C}{2}};$$
$$\therefore (a-b)\cos \frac{C}{2} = c \cdot \sin \frac{A-B}{2}.$$

(8)
$$\frac{\tan B}{\tan C} = \frac{\sin B \cdot \cos C}{\sin C \cdot \cos B} = \frac{b \cdot \left(\frac{a^2 + b^2 - c^2}{2ab}\right)}{c \cdot \left(\frac{a^2 + c^2 - b^2}{2ac}\right)} = \frac{a^2 + b^2 - c^2}{a^2 - b^2 + c^2}.$$

(9)
$$c=a\cos B+b\cos A=a\cos B+\frac{a\sin B}{\sin A}\cdot\cos A=a(\cos B+\sin B.\cot A)$$
.

(10)
$$2(ab \cdot \cos C + ac \cdot \cos B + bc \cdot \cos A)$$

= $(a^2 + b^2 - c^2) + (a^2 + c^2 - b^2) + (b^2 + c^2 - a^2) = a^2 + b^2 + c^2$.

(11)
$$\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cdot \cos B \cdot \cos C$$

$$= \frac{1}{2} \left\{ 1 + \cos 2A + 1 + \cos 2B + 1 + \cos 2C + 4 \cos A \cdot \cos B \cdot \cos C \right\}$$

$$= \frac{1}{2} \left\{ 3 + (-1 - 4 \cos A \cdot \cos B \cdot \cos C) + 4 \cos A \cdot \cos B \cdot \cos C \right\},$$
by Example XLVIII. 1. (7).
$$= \frac{1}{2} \times 2 = 1.$$

(12)

(13)

$$\frac{a-b}{c} \cdot 2\cos^2\frac{C}{2} = \frac{\sin A - \sin B}{\sin C} \cdot 2\cos^2\frac{C}{2} = \frac{2\cos\frac{A+B}{2} \cdot \sin\frac{A-B}{2}}{\sin\frac{C}{2}} \cdot \cos\frac{C}{2}$$
$$= 2\sin\frac{A-B}{2} \cdot \sin\frac{A+B}{2} = \cos B - \cos A.$$

 $\frac{a+b}{c} \cdot 2\sin^2\frac{C}{2} = \frac{\sin A + \sin B}{\sin C} \cdot 2\sin^2\frac{C}{2} = \frac{2\sin\frac{A+B}{2} \cdot \cos\frac{A-B}{2}}{\cos\frac{C}{2}} \cdot \sin\frac{C}{2}$

$$=2\cos\frac{A-B}{2}\cdot\cos\frac{A+B}{2}=\cos A+\cos B.$$

(14)
$$a^2 \cdot \sin A + ab \cdot \sin B + ac \cdot \sin C = a^2 \sin A + b \cdot b \sin A + c \cdot c \sin A$$

= $(a^2 + b^2 + c^2) \sin A$.

(15) By Art. 184, page 149,

$$\cot \frac{A}{2} = \sqrt{\frac{s \cdot (s-a)}{(s-b)(s-c)}} \text{ and } \cot \frac{B}{2} = \sqrt{\frac{s \cdot (s-b)}{(s-a)(s-c)}};$$

$$\therefore \cot \frac{A}{2} : \cot \frac{B}{2} = s - a : s - b$$

$$= b + c - a : a + c - b.$$

$$\cot \frac{A}{2} \cdot \cot \frac{B}{2} = \sqrt{\frac{s \cdot (s-a)}{(s-b)(s-c)}} \cdot \sqrt{\frac{s \cdot (s-b)}{(s-a)(s-c)}} = \frac{s}{s-c} = \frac{a+b+c}{a+b-c}$$

(17)
$$a \sin(B-C) + b \sin(C-A) + c \cdot \sin(A-B)$$

 $= a (\sin B \cdot \cos C - \cos B \cdot \sin C) + b (\sin C \cdot \cos A - \cos C \cdot \sin A)$
 $+ c (\sin A \cdot \cos B - \cos A \cdot \sin B)$
 $= \cos C(a \sin B - b \sin A) + \cos B(c \sin A - a \sin C)$
 $+ \cos A(b \sin C - c \sin B)$
 $= 0 + 0 + 0 = 0$.

4. If the sides are in arithmetical progression, so also are the sines of the angles:

$$\therefore \sin A + \sin C = 2 \sin B,$$
or $\sin A + \sin(A + B) = 2 \sin B,$
or $2 \sin \left(A + \frac{B}{2}\right) \cos \frac{B}{2} = 4 \sin \frac{B}{2} \cdot \cos \frac{B}{2};$

$$\therefore \sin \left(A + \frac{B}{2}\right) = 2 \sin \frac{B}{2}.$$

5.
$$(b+c)$$
. $AD=b$. $AD+c$. AD
= b . $b\sin C+c$. $c\sin B$
= $b^2\sin C+c^2\sin B$.

6. Let AB=4, AC=9, BC=12, and let AD be the line bisecting $\angle BAC$.

Then, by EUCLID VI. B,

$$BD \cdot DC + DA^2 = BA \cdot AC$$

$$AD \cdot \frac{\sin\frac{A}{2}}{\sin B} \times AD \cdot \frac{\sin\frac{A}{2}}{\sin C} + DA^2 = 36$$

$$AD^2\left(\frac{\sin^2\frac{A}{2}}{\sin B \cdot \sin C} + 1\right) = 36$$

$$AD^{2} \left\{ \frac{\frac{(s-b)(s-c)}{bc}}{\frac{4}{a^{2b}c} \cdot s \cdot (s-a) \cdot (s-b) \cdot (s-c)} + 1 \right\} = 36$$

$$AD^{2}\left\{\frac{a^{2}}{4.s.(s-a)}+1\right\}=36$$

$$AD^2 \times \frac{169}{25} = 36$$
, or, $AD = \frac{6 \times 5}{13} = 2\frac{4}{13}$

7. If
$$\sin A = 2 \cos B \cdot \sin C$$

$$\sin(B+C)=2\cos B \cdot \sin C$$

$$\sin B \cdot \cos C + \cos B \cdot \sin C = 2 \cos B \cdot \sin C$$

$$\sin B \cdot \cos C - \cos B \sin C = 0$$

$$\sin(B-C)=0$$
, and $\therefore B=C$.

8. If
$$\cos A \cdot \cos B \cdot \sin C = \frac{\sin A + \sin B}{\cos A + \cos B}$$

 $\cos A \cdot \cos B$

$$\sin C = \frac{\sin A + \sin B}{\cos A + \cos B} = \frac{2 \cdot \sin \frac{A + B}{2} \cdot \cos \frac{A - B}{2}}{2 \cdot \cos \frac{A + B}{2} \cdot \cos \frac{A - B}{2}};$$

$$\therefore 2\sin\frac{C}{2}\cdot\cos\frac{C}{2} = \frac{\cos\frac{C}{2}}{\sin\frac{C}{2}};$$

$$\therefore \sin^2 \frac{C}{2} = \frac{1}{2}, \text{ or, } \sin \frac{C}{2} = \frac{1}{\sqrt{2}};$$

$$\therefore \frac{C}{2} = 45^{\circ}$$
, and $\therefore C = 90^{\circ}$.

9. If
$$\sin^2 A = \sin^2 B + \sin^2 C$$

$$\sin^2 A = \frac{b^2}{3} \cdot \sin^2 A + \frac{c^3}{3} \cdot \sin^2 A ;$$

$$\therefore a^2 = b^2 + c^2, \text{ and } \therefore A = 90^\circ.$$

10. If
$$\frac{\sin A}{\sin C} = \frac{\sin C}{\sin B}$$
, then $\frac{a}{c} = \frac{c}{b}$, or, $ab = c^2$.

Then
$$\frac{a^3 + b^3 + c^3}{a + b + c} = ab$$

$$a^3 + b^3 + c^3 = ab(a+b) + abc$$

$$=ab(a+b)+c^3;$$

$$\therefore a^3+b^3=ab(a+b):$$

$$a^2 - ab + b^2 = ab$$
, or, $(a - b)^2 = 0$, or, $a = b$.

Hence a, b, c are all equal.

11.
$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$

= $a^2 + b^2 - 2ab \times \left(-\frac{1}{2}\right)$
= $a^2 + b^2 + ab$

$$12. \ \frac{\sin A}{\sin B} = \frac{a}{b} \ ;$$

$$\therefore \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{a+b}{a-b};$$

$$\therefore \frac{\sin(B+C)+\sin B}{\sin(B+C)-\sin B} = \frac{a+b}{a-b};$$

$$\frac{\sin\left(B+\frac{C}{2}\right)\cdot\cos\frac{C}{2}}{\cos\left(B+\frac{C}{2}\right)\cdot\sin\frac{C}{2}} = \frac{a+b}{a-b}.$$

Now $\angle ADC = B + \frac{C}{2}$, by Euclid I. 32

$$\therefore \tan ADC \cdot \cot \frac{C}{2} = \frac{a+b}{a-b};$$

$$\therefore \tan ADC = \frac{a+b}{a-b} \cdot \tan \frac{C}{2}.$$

(13) Draw CE perpendicular to AB.

Then by Euclid II. XII. and XIII.

$$CB^2 = CD^2 + DB^2 + 2DB, DE,$$

 $CA^2 = CD^2 + DA^2 - 2AD, DE,$

and DB = AD.

Frg. 22.

$$CB^2 + CA^2 = 2 CD^2 + DB^2 + DA^2$$
:

$$\therefore a^2 + b^2 = 2 CD^2 + \frac{c^2}{4} + \frac{c^2}{4};$$

$$\therefore CD^2 = \frac{a^2}{2} + \frac{b^2}{2} - \frac{c^2}{4}.$$

EXAMPLES—XLIX. (p. 157).

(1)
$$a = \sqrt{c^2 - b^2} = \sqrt{16} = 4$$

 $\sin A = \frac{a}{c} = \frac{4}{5} = 8.$

Hence, as in Art. 168, we find $A=53^{\circ}.7'.48''.4$; and $\therefore B=36^{\circ}.52'.11''.6$.

(2)
$$a = \sqrt{c^2 - b^2} = \sqrt{64} = 8,$$

 $\sin A = \frac{a}{c} = \frac{8}{17} = 4705882.$

Hence $A = 28^{\circ}$. 4'. 20".9, and $B = 61^{\circ}$. 55'. 39".1.

(3)
$$a = \sqrt{c^3 - b^2} = \sqrt{400} = 20,$$

 $\sin A = \frac{a}{c} = \frac{20}{29} = 6896552.$

Hence $A = 43^{\circ}$. 36'. 10"'1, and $B = 46^{\circ}$. 23'. 49"'9.

(4)
$$a = \sqrt{c^2 - b^2} = \sqrt{576} = 24,$$

 $\cos A = \frac{b}{c} = \frac{7}{25} = 28.$

Hence $A = 73^{\circ}$. 44'. 23". 3, and $B = 16^{\circ}$. 15'. 36".7.

(5)
$$a = \sqrt{c^2 - b^2} = \sqrt{3136} = 56,$$

 $\cos A = \frac{b}{c} = \frac{33}{65} = \cdot 5076923.$
 $\therefore A = 59^\circ. 29'. 23''.2, \text{ and } B = 30^\circ. 30'. 36''.8.$

- (6) a=c. $\sin A = 13 \times 9230770 = 12$ very nearly, $b = \sqrt{c^2 - a^2} = \sqrt{25} = 5$, $B = 22^\circ$. 37'. 11"'.5.
- (7) $a=c. \sin A = 41 \times 9756098 = 40$ very nearly, $b=\sqrt{c^2-a^2} = \sqrt{81} = 9$, $B=12^{\circ}. 40'. 49''. 4$.
- (8) $a=c.\cos B=73 \times 6575341=48$ very nearly, $b=\sqrt{c^3-a^3}=\sqrt{3025}=55$, $A=41^{\circ}.6'.43''.5$.
- (9) $a=c.\cos B=89 \times .4382021=39$ very nearly, $b=\sqrt{c^2-a^2}=\sqrt{6400}=80$, $A=25^{\circ}.59'.21''2$.

(10)
$$b=a \div \tan A = 40 \div 4.444442 = 9$$
 very nearly,
 $c=\sqrt{a^2+b^2}=\sqrt{1681}=41$,
 $B=12^{\circ}.40'.49''.4$.

Examples-L. (p. 159).

(1)
$$b = \sqrt{c^2 - a^2} = \sqrt{289 \times 81} = 17 \times 9 = 153,$$
$$\sin A = \frac{a}{c},$$

 $L \sin A = 10 + 2.0170333 - 2.2671717 = 9.7498616$; $\therefore A = 34^{\circ}. 12'. 19''.6$, and $B = 55^{\circ}. 47'. 40''.4$.

(2)
$$b = \sqrt{c^3 - a^3} = \sqrt{729 \times 121} = 27 \times 11 = 297,$$

$$\sin A = \frac{a}{c};$$

.: $L \sin A = 10 + 2.4828736 - 2.6283889 = 9.8544847$; .: $A = 45^{\circ}$. 40'. 2''.3, and $B = 44^{\circ}$. 19'. 57''.7.

(3)
$$b = \sqrt{c^2 - a^2} = \sqrt{1681 \times 1} = 41,$$

 $\sin A = \frac{a}{c};$

: $L \sin A = 10 + 2.9242793 - 2.9247960 = 9.9994833$; : $A = 87^{\circ}$. 12'. 20".3, and $B = 2^{\circ}$. 47'. 39".7.

(4)
$$b = \sqrt{c^3 - a^3} = \sqrt{961 \times 289} = 31 \times 17 = 527,$$

 $\sin A = \frac{a}{c};$

 $\therefore L \sin A = 10 + 2.5263393 - 2.7958800 = 9.7304593$; $\therefore A = 32^{\circ}. 31'. 13''.5, \text{ and } B = 57^{\circ}. 28'. 46''.5.$

(5)
$$b = \sqrt{c^2 - a^2} = \sqrt{2209 \times 9} = 47 \times 3 = 141,$$

 $\sin A = \frac{a}{c}$;

 $\therefore L \sin A = 10 + 3.0413927 - 3.0449315 = 9.9964612$; $\therefore A = 82^{\circ}. 41'. 44''$, and $B = 7^{\circ}. 18'. 16''$.

(6)
$$a = \sqrt{c^2 - b^2} = \sqrt{968 \times 578}$$
;
 $\therefore \log a = \frac{1}{2} \{ \log 968 + \log 578 \} = 2.8739016$;
 $\therefore a = 748$, and $\cos A = \frac{b}{c}$;

 $\therefore L \cos A = 10 + 2 \cdot 2900346 - 2 \cdot 8881795 = 9 \cdot 4018551.$ $\therefore A = 75^{\circ}. 23'. 18''.5, \text{ and } B = 14^{\circ}. 36'. 41''.5.$

(7)
$$a = \sqrt{c^2 - b^2} = \sqrt{1058 \times 512}$$
;
 $\therefore \log a = \frac{1}{2} \{ \log 1058 + 9 \log 2 \} = 2.8668778$;
 $\therefore a = 736$, and $\cos A = \frac{b}{c}$;
 $\therefore L \cos A = 10 + 2.4361626 - 2.8948697 = 9.5412929$;
 $\therefore A = 69^{\circ}.38'.56''.3$, and $B = 20^{\circ}.21'.3''.7$.

 $\therefore L \cos A = 10 + 2.7846173 - 2.8068580 = 9.9777593;$ $\therefore A = 18^{\circ}. 10'. 50'', \text{ and } B = 71^{\circ}. 49'. 10''.$

(9)
$$c = \sqrt{a^3 + b^2} = \sqrt{76176 + 243049} = 565,$$

$$\tan A = \frac{a}{b};$$

$$\therefore L \tan A = 10 + 2.4409091 - 2.6928469 = 9.7480622$$

.: $L \tan A = 10 + 2.4409091 - 2.6928469 = 9.7480622$; .: $A = 29^{\circ}$. 14'. 30"·3, and $B = 60^{\circ}$. 45'. 29"·7.

(10)
$$c = \sqrt{a^2 + b^2} = \sqrt{156816 + 162409} = 565,$$

$$\tan A = \frac{a}{b};$$

$$\therefore L \tan A = 10 + 2.5976952 - 2.6053050 = 9.9923902;$$

$$\therefore A = 44^\circ. 29'. 53'', \text{ and } B = 45^\circ. 30'. 7''.$$

Examples-LI. (p. 161).

(1) $\frac{\text{Height of steeple in feet}}{220} = \tan 46^{\circ}$. 30', and if h be put for height of steeple,

$$\begin{aligned} \log h &= \log 220 + L \tan 46^{\circ}. \ 30' - 10 \\ &= 2^{\circ}3424227 + 0227500 = 2^{\circ}3651727 \ ; \\ & \cdot \cdot \cdot h = 231^{\circ}835 \ \text{feet.} \end{aligned}$$

(2) $\frac{BC}{AC}$ = tan 25°. 10′, and if h be the height of the tower in feet,

$$\frac{h}{200} = \tan 25^{\circ}. \ 10';$$

$$\therefore \log h = \log 200 + L. \tan 25^{\circ}. \ 10' - 10$$

$$= \log 1000 - \log 5 + 9.6719628 - 10$$

$$= 3 - .6989700 + 9.6719628 - 10$$

$$= 1.9729928;$$

$$\therefore h = 93.97 \text{ feet.}$$

(3) BC=50 feet; $\angle BAC=45^{\circ}$; $\angle BDC=30^{\circ}$. Then AC=BC=50 feet.

(a)
$$AD = CD - AC$$

 $= BC \cdot \cot 30^{\circ} - 50$
 $= 50 \cdot (\cot 30^{\circ} - 1) = 50 \cdot (\sqrt{3} - 1)$
 $= 50 \times 7320508 \cdot \cdot \cdot$
 $= 36.6025 \cdot \cdot \cdot \cdot \text{ feet.}$

- (β) AB = AC. $\sec 45^\circ = 50$. $\sqrt{2} = 50 \times 1.4142$...= 70.71... feet.
- (γ) BD = BC. cosec30°=50 × 2=100 feet.

(4) If h be the measure of the height in feet,

$$\frac{h}{140} = \tan 54^{\circ}. 27'$$
;

.: $h = 140 \times 1.399364 = 195.910960$; .: height is 196 feet nearly.

(5) Let PC be the hill.

Then $\angle PAC = 32^{\circ}. 14'$, and $\angle PBC = 63^{\circ}. 26'$.

Then $PC = BC \tan PBC$, and $PC = AC. \tan PAC$. $\therefore BC. \tan PBC = AC. \tan PAC$; $\therefore BC \times 1.998 = (500 + BC) \times 63$, whence BC = 230 nearly.

Hence $PC = 230 \times 1.998 = 459.54$ = 460 yards nearly.

(6) Let θ represent the sun's altitude.

Then
$$\tan \theta = \frac{150}{75} = 2$$
;

:.
$$L \tan \theta = 10 + \log 2 = 10.3010300$$
.
Hence $\theta = 63^{\circ}$. 26'. 6".

(7) Let BC be the breadth of the river.

Then AC=BC. tan60°, and AC=CD. tan50°.

:.
$$BC \cdot \tan 60^{\circ} = (40 + BC) \tan 50^{\circ}$$
;

$$\therefore BC \times \sqrt{3} = (40 + BU) \times 1.19 ;$$

$$\therefore BC \cdot (1.73 - 1.19) = 40 \times 1.19;$$
$$\therefore .54 BC = 47.6,$$

and $\therefore BC = 88$ yards nearly.

(8) Let
$$\theta$$
 be the angle of inclination.
Then $\sin \theta = \frac{60}{109} = 55045$.
Hence $\theta = 33^{\circ}$, 23', 55".7.

(9) Let θ be the angle of inclination.

Then
$$\sin\theta = \frac{140}{221} = .6306306$$
;

 $\therefore \theta = 39^{\circ}. 5'. 47'' \cdot 9.$

(10) Let PC be the tower; $\angle PAC=55^{\circ}$; $\angle PBC=48^{\circ}$.

Then
$$\frac{PA}{AB} = \frac{\sin 48^{\circ}}{\sin BPA}$$
,
or $\frac{PA}{30} = \frac{\sin 48^{\circ}}{\sin 7^{\circ}}$;
 $\therefore PA = 30 \times \frac{\sin 48^{\circ}}{\sin 7^{\circ}}$,

and AC=PA. $\cos PAC=PA$. $\sin 35^{\circ}$. Hence if b be the breadth of the river in feet.

$$b = 30 \times \sin 35^{\circ} \times \frac{\sin 48^{\circ}}{\sin 7^{\circ}}$$

$$\therefore \log b = \log 30 + L \sin 35^{\circ} + L \sin 48^{\circ} - L \sin 7^{\circ} - 10$$
$$= 1.47712 + 9.75859 + 9.87107 - 9.08589 - 10$$
$$= 2.02089 ;$$

b = 104.93 feet.

(11) Let AB be the height of the house, BD the length, C the place of observation.

Then ABC and CBD are right angles.

Then
$$BC = BD \cdot \cot BCD$$
,

and since
$$\cos BCD = \frac{1}{\sqrt{5}}$$
, $\cot BCD = \frac{1}{2}$;

∴
$$BC = 150 \times \frac{1}{2} = 75$$
 feet.

Ftg. 28.

Again,
$$AB = BC \cdot \tan ACB$$
,
and since $\sin ACB = \frac{3}{\sqrt{34}}$, $\tan ACB = \frac{3}{5}$;
 $\therefore AB = 75 \times \frac{3}{5} = 45$ feet.

(12) Making the same construction as in Example (11), $BC = AB \cdot \cot ACB = 45 \times \frac{5}{3} = 75 \text{ feet,}$ and $BD = BC \cdot \tan BCD = 75 \times 2 = 150 \text{ feet.}$

(1)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{169 + 1600 - 1369}{1040} = \frac{5}{13}$$
;
 $\therefore \sin A = \frac{12}{13} = 9230769$.
Hence $A = 67^{\circ}, 22', 48''.5$.

(2)
$$\cos A = \frac{b^2 + c^2 - \alpha^2}{2bc} = \frac{841 + 14400 - 10201}{6960} = \frac{63}{87}$$
;
 $\therefore \sin A = \frac{60}{87} = \cdot 6896552$.
Hence $A = 43^\circ$. 36′. 10″·1.

(3)
$$s = \frac{1}{2}(37 + 13 + 30) = 40$$
;

$$\therefore \sin \frac{A}{2} = \sqrt{\frac{27 \times 10}{13 \times 30}} = \sqrt{\frac{9}{13}}$$
;

$$\therefore L \sin \frac{A}{2} = 10 + \frac{1}{2} \left\{ 9542425 - 1 \cdot 1139434 \right\}$$

$$= 10 - 0798504 = 9 \cdot 9201496$$
.
Hence $A = 112^{\circ}, 37', 11'' \cdot 5$,

(4)
$$s = \frac{1}{2}(409 + 241 + 600) = 625$$
;

$$\therefore \sin A = \frac{2}{bc} \sqrt{s \cdot (s - a)(s - b)(s - c)}$$

$$= \frac{2}{144600} \sqrt{625 \times 216 \times 384 \times 25}$$

$$= \frac{2 \times 36000}{144600} = \frac{360}{723}$$
;

 $\begin{array}{l} \therefore \ L \sin A = 10 + 2.5563025 - 2.8591383 = 9.6971642. \\ \text{Hence } A = 29^{\circ}. \ 51'. \ 46'' \cdot 1. \end{array}$

$$\frac{\tan\frac{C-A}{2}}{\tan\frac{C+A}{2}} = \frac{c-\alpha}{c+a};$$

$$\therefore \tan\frac{C-A}{2} = \frac{c-\alpha}{c+a} \cdot \cot\frac{B}{2}.$$

2

Now c-a=1859 and c+a=13419;

$$\therefore L \tan \frac{C-A}{2} = \log(c-a) - \log(c+a) + L \cot \frac{B}{2};$$

$$\therefore L \tan \frac{C-A}{2} = 3.26928 - 4.12772 + 10.40312$$
$$= 9.54468.$$

Hence
$$\frac{C-A}{2}$$
 = 19°. 18′. 50″.

Also
$$\frac{C+A}{2} = 68^{\circ}$$
. 26'. 0";
 $\therefore C = 87^{\circ}$. 44'. 50", and $A = 49^{\circ}$. 7'. 10".

3.
$$b = a \cdot \frac{\sin B}{\sin A};$$

$$\therefore \log b = \log a + L \sin B - L \sin A$$

$$= 1.7403627 + 9.9764927 - 9.8188779$$

$$= 1.8979775;$$

$$\therefore b = 79.063.$$

4.
$$b=c. \frac{\sin B}{\sin C};$$

$$\therefore \log b = \log c + L \sin B - L \sin C$$

$$= 2.1613680 + 9.9982047 - 9.8183919$$

$$= 2.3411808;$$

$$\therefore b=219.37.$$

5.
$$\sin A = \sin B \cdot \frac{a}{b};$$

$$\therefore L \sin A = L \sin B + \log a - \log b$$

$$= 9.7175280 + 2.7537623 - 2.5465269$$

$$= 9.9247634.$$

Hence one value of A is 57°, 14', 21".

And since a is greater than b, A is greater than B, and we may have the same given parts in a triangle where A is the supplement of 57°. 14′. 21″, or 122°. 45′. 39″.

6.
$$\sin B = \frac{b}{c} \cdot \sin C = \frac{16}{8} \cdot \sin 30^{\circ} = \frac{2}{1} \times \frac{1}{2} = 1;$$
$$\therefore B = 90^{\circ}, \text{ and the triangle is not ambiguous.}$$

7. In the equilateral triangle
$$a=b=c$$
;

$$\therefore \cos A = \frac{a^2 + a^2 - a^2}{2a^2} = \frac{a^2}{2a^2} = \frac{1}{2}.$$

8. Let
$$A = 60^{\circ}$$
, $\frac{b}{c} = \frac{19}{1}$, and $\therefore \frac{b-c}{b+c} = \frac{18}{20} = \frac{9}{10}$.

Now $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cdot \cot \frac{A}{2}$

$$= \frac{9}{10} \times \frac{\sqrt{3}}{1} = \frac{3^2 \times 3^{\frac{1}{2}}}{10} = \frac{3^{\frac{1}{2}}}{10};$$

$$\therefore L \tan \frac{B-C}{2} = 10 + \frac{5}{2} \log 3 - \log 10$$

$$= 10 + 1 \cdot 1928032 - 1$$

$$= 10 \cdot 1928032;$$

$$\therefore \frac{B-C}{2} = 57^{\circ} \cdot 19' \cdot 11'',$$
and $\frac{B+C}{2} = 60^{\circ} \cdot 0' \cdot 0''$.
$$\therefore B = 117^{\circ} \cdot 19' \cdot 11'',$$
 and $C = 2^{\circ} \cdot 40' \cdot 49''$.

9. Let a, b, c denote the sides in order of the given values.

Then
$$\cos A = \frac{b^3 + c^2 - a^2}{2bc} = \frac{6 + (1 + \sqrt{3})^2 - 4}{2(1 + \sqrt{3}) \cdot \sqrt{6}} = \frac{6 + 2\sqrt{3}}{2\sqrt{6} + 6\sqrt{2}} = \frac{1}{\sqrt{2}};$$

 $\therefore A = 45^\circ.$
Again, $\sin B = \frac{b}{a} \cdot \sin A = \frac{\sqrt{6}}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2};$

Again,
$$\sin B = \frac{1}{a} \cdot \sin A = \frac{1}{2} \cdot \sqrt{2} = \frac{1}{2}$$
;
 $\therefore B = 60^{\circ}$;
and $\therefore C = 180^{\circ} - (60^{\circ} + 45^{\circ}) = 180^{\circ} - 105^{\circ} = 75^{\circ}$.

10. Construct a diagram, as in Art. 213, fig. 2, but with A and B interchanged, because B is here to be the *smaller* angle.

Let $c_1 = A_2B$, and $c_2 = A_1B$. Then $c_1 = BD - A_2D = a\cos B - b \cdot \cos CA_2D$,

and
$$c_2 = BD + A_1D = a\cos B + b \cdot \cos CA_2D$$
;

$$c_1 \cdot c_2 = a^2 \cdot \cos^2 B - b^2 \cdot \cos^2 C A_2 D$$

$$= a^2 \cdot \cos^2 B - b^2 \cdot \cos^2 A \quad \cdot$$

$$= a^2 \cdot (1 - \sin^2 B) - b^2 \cdot (1 - \sin^2 A)$$

$$= a^2 - b^2 ;$$

$$c_1 \cdot c_2 + b^2 = a^2 .$$

11. Let
$$A = 64^{\circ}$$
. 12', and $\frac{b}{c} = \frac{9}{7}$

Then
$$\frac{b-c}{b+c} = \frac{9-7}{9+7} = \frac{2}{16} = \frac{1}{8}$$
.

And
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cdot \cot \frac{A}{2}$$

$$=\frac{1}{8}\cdot\cot 32^{\circ}.6'.$$

$$\therefore L \tan \frac{B-C}{2} = \log 1 - \log 8 + L \cot 32^{\circ}. 6'$$

$$= 0 - 3 \log 2 + L \tan 57^{\circ}. 54'$$

$$= -90309 + 10 \cdot 2025255$$

$$= 9 \cdot 2994355.$$

$$\text{Hence } \frac{B-C}{2} = 11^{\circ}. 16'. 10'',$$

$$\text{and } \frac{B+C}{2} = 57^{\circ}. 54'. 0'';$$

$$\therefore B = 69^{\circ}. 10'. 10'', \text{ and } C = 46^{\circ}. 37'. 50''.$$

$$12. \qquad s = \frac{15}{2}, s - a = \frac{7}{2}, s - b = \frac{5}{2}, s - c = \frac{3}{2}.$$

$$\therefore \cos \frac{B}{2} = \sqrt{\frac{15 \times 5}{2.2.4.6}} = \sqrt{\frac{25}{2^{3}}};$$

$$\therefore L \cos \frac{B}{2} = 10 + \frac{1}{2} \left\{ 2 \log 5 - 5 \log 2 \right\}$$

$$= 10 + \frac{1}{2} \left\{ 1 \cdot 3979400 - 1 \cdot 5051495 \right\}$$

$$= 9 \cdot 9463953.$$

$$\text{Hence } \frac{B}{2} = 27^{\circ}. 53'. 8'', \text{ and } B = 55^{\circ}. 46'. 16''.$$

$$13. \qquad \tan \frac{A-B}{2} = \frac{a-b}{a+b} \cdot \cot \frac{C}{2}$$

$$= \frac{70-35}{70+35} \cdot \cot \frac{C}{2}$$

$$= \frac{1}{3} \cot. 18^{\circ}. 26'. 6'';$$

$$\therefore L \tan \frac{A-B}{2} = \log 1 - \log 3 + L \cot 18^{\circ}. 26'. 6''$$

$$= 0 - 4771213 + 10 \cdot 4771213$$

$$= 10;$$

$$\therefore \frac{A-B}{2} = 45^{\circ},$$

$$\text{and } \frac{A+B}{2} = 71^{\circ}. 33'. 54'';$$

$$\therefore A = 116^{\circ}. 33'. 54'', \text{ and } B = 26^{\circ}. 33'. 54''.$$

Examples-LIII. (p. 176).

(1)
$$c = \sqrt{a^2 + b^2} = \sqrt{16 + 9} = 5,$$

 $\sin A = \frac{4}{5} = 8.$

By the tables sin53°. 7'= '7998593, sin53°. 8'= '8000338.

Hence $A = 53^{\circ}$. 7'. 48"'4, and $B = 36^{\circ}$. 52'. 11"'6.

$$a = \sqrt{c^3 - b^2} = 48,$$

 $\sin B = \frac{55}{73} = .7535068.$

By the tables $\sin 48^{\circ}$. 53' = .7533721, $\sin 48^{\circ}$. 54' = .7535634. Hence $B = 48^{\circ}$. 53'. 16''.5, and $A = 41^{\circ}$. 6'. 43''.5.

(3) $c = \sqrt{a^3 + b^2} = 353,$ $\sin A = \frac{272}{353} = .7705382.$

By the tables $\sin 50^{\circ}$. 24' = .7705132 $\sin 50^{\circ}$. 25' = .7706986.

Hence $A = 50^{\circ}$. 24'. 8"·1, and $B = 39^{\circ}$. 35'. 51"·9.

(4)
$$a = \sqrt{c^2 - b^2} = 40,$$

 $\sin A = \frac{40}{401} = .0997506.$
By the tables $\sin 5^\circ$. $43' = .0996092,$
 $\sin 5^\circ$. $44' = .0998986.$

Hence $A = 5^{\circ}$. 43'. 29"·3, and $B = 84^{\circ}$. 16'. 30"·7.

(5) $B=79^{\circ}. 7'. 9''.6.$ By the tables $\sin 10^{\circ}. 52' = 1885241$, $\sin 10^{\circ}. 53' = 1888098.$ Hence $\sin 10^{\circ}. 52'. 50''.4 = 1887639$; $\therefore a=c. \sin A = 445 \times 1887639 = 84$, and $b=\sqrt{c^2-a^2}=437.$

(6) $B=43^{\circ}$. 0'. 10"·3.

By the tables $\sin 46^{\circ}$. $59'= \cdot 7311553$, $\sin 47^{\circ}$. 0'= \cdot 7313537.

Hence $\sin 46^{\circ}$. 59'. $49''\cdot 7= \cdot 7313196$; $\therefore a=c$. $\sin A=629 \times \cdot 7313196=460$,
and $b=\sqrt{c^2-a^2}=429$.

(7) $A = 38^{\circ}. 34'. 48''.3.$ By the tables $\sin 51^{\circ}. 25' = .7817019$, $\sin 51^{\circ}. 26' = .7818833.$ Hence $\sin 51^{\circ}. 25'. 11''.7 = .7817372$; $\therefore b = c. \sin B = 449 \times .7817372 = 351$, and $a = \sqrt{c^2 - b^2} = 280.$

(8) $A = 31^{\circ} \cdot 2' \cdot 53'' \cdot 6$. By the tables $\sin 58^{\circ} \cdot 57' = \cdot 8567175$, $\sin 58^{\circ} \cdot 58' = \cdot 8568675$. Hence $\sin 58^{\circ} \cdot 57' \cdot 6'' \cdot 4 = \cdot 8567335$; $\therefore b = c \cdot \sin B = 349 \times \cdot 8567335 = 299$, and $a = \sqrt{c^2 - b^2} = 180$.

(9) $B=23^{\circ}. 57'. 8''.$ By the tables $\tan 23^{\circ}. 57'=\cdot 4441834$, $\tan 23^{\circ}. 58'=\cdot 4445318$.

Hence $\tan 23^{\circ}. 57'.8''=\cdot 4442365$; $\therefore b=a \cdot \tan B=520 \times \cdot 4442365=231$, and $c=\sqrt{a^2+b^2}=569$.

(10) $B=3^{\circ}.41'.43''.$ By the tables $\tan 86^{\circ}.18'=15\cdot 463814$, $\tan 86^{\circ}.19'=15\cdot 533981.$ Hence $\tan 86^{\circ}.18'.17''=15\cdot 483694$; $\therefore a=b.\tan A=31\times 15\cdot 483694=480$, and $c=\sqrt{a^2+b^2}=481.$

(1)
$$s=245$$
, $s-a=48$, $s-b=192$, $s-c=5$.

Then $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s \cdot (s-a)}}$;

$$\therefore L \tan \frac{A}{2} = 10 + \frac{1}{2} \left\{ \log 192 + \log 5 - \log 245 - \log 48 \right\}$$

$$= 10 + \frac{1}{2} \left\{ 2 \cdot 2833012 + \cdot 6989700 - 2 \cdot 3891661 - 1 \cdot 6812412 \right\}$$

$$= 10 + \frac{1}{2} \left\{ 2 \cdot 9822712 - 4 \cdot 0704073 \right\}$$

$$= 9 \cdot 4559320.$$
Hence $\frac{A}{2} = 15^{\circ}$. 56'. 43''.4, and $\therefore A = 31^{\circ}$. 53'. 26''.8.

By a similar method we may find $B = 8^{\circ}$. 10'. 16''.4, and $\therefore C = 139^{\circ}$. 56'. 16''.8.

(2.)
$$s=605$$
, $s-a=96$, $s-b=384$, $s-c=125$.

$$L \tan \frac{A}{2} = 10 + \frac{1}{2} \left\{ \log 384 + \log 125 - \log 605 - \log 96 \right\}$$

$$= 10 + \frac{1}{2} \left\{ 2.5843312 + 2.0969100 - 2.7817554 - 1.9822712 \right\}$$

$$= 10 + \frac{1}{2} \left\{ 4.6812412 - 4.7640266 \right\}$$

$$= 9.9586703.$$
Hence $\frac{A}{2} = 42^{\circ}.16'.25''.25$, and $\therefore A = 84^{\circ}.32'.50''.5$.

By a similar method we find $B = 25^{\circ}.36'.30''.7$, and $\therefore C = 69^{\circ}.50'.38''.8$.

(3)
$$s=680$$
, $s-a=147$, $s-b=363$, $s-c=170$.

$$L\tan\frac{A}{2}=10+\frac{1}{2}\left\{\log 363+\log 170-\log 680-\log 147\right\}$$

$$=10+\frac{1}{2}\left\{2.5599066+2.2304489-2.8325089-2.1673173\right\}$$

$$=10+\frac{1}{2}\left\{4.7903555-4.9998262\right\}$$

$$=9.8952647.$$
Hence $\frac{A}{2}=38^{\circ}.9^{\circ}.26^{\circ}$, and $\therefore A=76^{\circ}.18^{\circ}.52.^{\circ}$
By a similar method we find $B=35^{\circ}.18^{\circ}.0^{\circ}.9$, and $\therefore C=68^{\circ}.23^{\circ}.7^{\circ}.1$.

$$\begin{array}{l} (4) \quad s=808, \, s-a=243, \, s-b=363, \, s-c=202, \\ L\tan\frac{A}{2}=10+\frac{1}{2}\, \Big\{\log 363+\log 202-\log 808-\log 243\,\Big\} \\ =10+\frac{1}{2}\, \Big\{2\cdot 5599066+2\cdot 3053514-2\cdot 9074114-2\cdot 3856063\,\Big\} \\ =10+\frac{1}{2}\, \Big\{4\cdot 8652580-5\cdot 2930177\,\Big\} \\ =9\cdot 7861202. \\ \text{Hence } \frac{A}{2}=31^{\circ}.\, 25^{\prime}.\, 46^{\prime\prime\prime}.45, \, \text{and } \therefore \, A=62^{\circ}.\, 51^{\prime}.\, 32^{\prime\prime\prime}.9. \\ \text{By a similar method we find } B=44^{\circ}.\, 29^{\prime}.\, 53^{\prime\prime}, \\ \text{and } \therefore \, C=72^{\circ}.\, 38^{\prime}.\, 34^{\prime\prime\prime}.1. \end{array}$$

(5)
$$s=416, s-a=7, s-b=175, s-c=234.$$

$$L\tan\frac{A}{2}=10+\frac{1}{2}\left\{\log 175+\log 234-\log 416-\log 7\right\}$$

$$=10+\frac{1}{2}\left\{2\cdot 2430380+2\cdot 3692159-2\cdot 6190933-8450980\right\}$$

$$=10+\frac{1}{2}\left\{4\cdot 6122539-3\cdot 4641913\right\}$$

$$=10\cdot 5740313.$$
Hence $\frac{A}{2}=75^{\circ}.4^{\circ}.7^{\circ}, \text{ and } \therefore A=150^{\circ}.8^{\circ}.14^{\circ}.$
By a similar method we can find $B=17^{\circ}.3^{\circ}.4\cdot 17^{\circ}.5$.

and $C = 12^{\circ}$, 48', 4".5.

(6)
$$B = 180^{\circ} - (A + C) = 11^{\circ} \cdot 25' \cdot 16'' \cdot 3,$$

 $a = b \cdot \frac{\sin A}{\sin B} = \frac{29 \times 6896550}{1980199} = 101,$
 $c = b \cdot \frac{\sin C}{\sin B} = \frac{29 \times 8193229}{1980199} = 120.$

(7)
$$B = 180^{\circ} - (A + C) = 39^{\circ}. 18'. 27''.5,$$

$$a = b \cdot \frac{\sin A}{\sin B} = \frac{149 \times 9395972}{6338400} = 221,$$

$$c = b \cdot \frac{\sin C}{\sin B} = \frac{149 \times 9438490}{6338400} = 222.$$

(8)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \frac{72}{130} \cdot \cot 16^{\circ}. 5'. 26'' \cdot 9,$$

$$L \tan \frac{A-B}{2} = \log 72 - \log 130 + L \cot 16^{\circ}. 5'. 26'' \cdot 9$$

$$= 1.8573325 - 2.1139434 + 10.5399616$$

$$= 10.2833507.$$

$$Hence \frac{A-B}{2} = 62^{\circ}. 29'. 16'' \cdot 8,$$

$$\tan \frac{A+B}{2} = 73^{\circ}. 54'. 33'' \cdot 1;$$

$$\therefore A = 136^{\circ}. 23'. 49'' \cdot 9, \text{ and } B = 11^{\circ}. 25'. 16'' \cdot 3.$$

$$Also, c = \frac{a \cdot \sin C}{\sin A} = \frac{101 \times 5326047}{6896550} = 78.$$

(9)
$$\tan \frac{A - B}{2} = \frac{a - b}{a + b} \cot \frac{C}{2},$$

$$\tan \frac{A - B}{2} = \frac{360}{442} \cot 48^{\circ}. 28'. 40'' \cdot 05,$$

$$L \tan \frac{A - B}{2} = \log 360 - \log 442 + L \cot 48^{\circ}. 28'. 40'' \cdot 05$$

$$= 2 \cdot 5563025 - 2 \cdot 6454223 + 9 \cdot 9471473$$

$$= 9 \cdot 8580275.$$

Hence
$$\frac{A-B}{2} = 35^{\circ}. 47'. 50''.65,$$
and $\frac{A+B}{2} = 41^{\circ}. 31'. 19''.95;$

$$\therefore A = 77^{\circ}. 19'. 10''.6, \text{ and } B = 5^{\circ}. 43'. 29''.2.$$
Also, $c = \frac{a \cdot \sin C}{\sin A} = \frac{401 \times .9926403}{.9756097} = 408.$

(10)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cdot \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \log 72 - \log 370 + L \cot 15^{\circ}. 20'. 17''.5,$$

$$L \tan \frac{A-B}{2} = \log 72 - \log 370 + L \cot 15^{\circ}. 20'. 17''.5,$$

$$= 1.8573325 - 2.5682017 + 10.5617669$$

$$= 9.8508977.$$
Hence $\frac{A-B}{2} = 35^{\circ}. 21'. 15'',$

$$\tan \frac{A+B}{2} = 74^{\circ}. 39'. 42''.5;$$

$$\therefore A = 110^{\circ}. 0'. 57''.5, \text{ and } B = 39^{\circ}. 18'. 27''.5.$$
Also, $c = \frac{a \cdot \sin C}{\sin A} = \frac{221 \times .5101885}{.9395972} = 120.$

(11)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cdot \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \frac{48}{170} \cdot \cot 33^{\circ}. 29'. 42''.7,$$

$$L \tan \frac{A-B}{2} = \log 48 - \log 170 + L \cot 33^{\circ}. 29'. 42''.7$$

$$= 1.6812412 - 2.2304489 + 10.1792962$$

$$= 9.6300885.$$
Hence $\frac{A-B}{2} = 23^{\circ}. 6'. 57''.3,$

$$and_{*}^{*} \frac{A+B}{2} = 56^{\circ}. 29'. 42''.7;$$

$$\therefore A = 79^{\circ}. 36'. 40'', \text{ and } B = 33^{\circ}. 23'. 54''.6.$$
Also, $c = \frac{a \cdot \sin C}{\sin A} = \frac{109 \times .9204413}{.9838064} = 102.$

(12)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cdot \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \frac{362}{528} \cdot \cot 43^{\circ}. 57'. 30'',$$

$$L \tan \frac{A-B}{2} = \log 362 - \log 528 + L \cot 43^{\circ}. 57'. 30''$$

$$= 2.5587086 - 2.7226339 + 10.0157949$$

$$= 9.8518696.$$

$$Hence \frac{A-B}{2} = 35^{\circ}. 24'. 46'',$$

$$\text{and } \frac{A+B}{2} = 46^{\circ}. 2'. 30'';$$

$$\therefore A = 81^{\circ}. 27'. 16'', \text{ and } B = 10^{\circ}. 37'. 44''.$$

$$\text{Also, } c = \frac{b \cdot \sin C}{\sin B} = \frac{83 \times .999390}{.1844460} = 450.$$

(13)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cdot \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \frac{120}{338} \cdot \cot 65^{\circ}. 42'. 22'',$$

$$L \tan \frac{A-B}{2} = \log 120 - \log 338 + L \cot 65^{\circ}. 42'. 22''$$

$$= 2 \cdot 0791812 - 2 \cdot 5289167 + 9 \cdot 6545508$$

$$= 9 \cdot 2048153.$$

$$Hence \frac{A-B}{2} = 9^{\circ}. 6'. 16'' \cdot 6,$$

$$and \frac{A+B}{2} = 24^{\circ}. 17'. 38'';$$

$$\therefore A = 33^{\circ}. 23'. 54'' \cdot 6, \text{ and } B = 15^{\circ}. 11'. 21'' \cdot 4.$$

Also,
$$c = \frac{b \cdot \sin C}{\sin B} = \frac{109 \times .7499700}{.2620086} = 312.$$

(14)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \frac{72}{410} \cdot \cot 52^{\circ}. \ 1'. \ 55''.5,$$

$$L \tan \frac{A-B}{2} = \log 72 - \log 410 + L \cot 52^{\circ}. \ 1'. \ 55''.5$$

$$= 1.8573325 - 2.6127839 + 9.8923085$$

$$= 9.1368571.$$

$$\therefore \frac{A-B}{2} = 7^{\circ}. \ 48'. \ 12'',$$

$$\tan \frac{A+B}{2} = 37^{\circ}. \ 58'. \ 4''.5;$$

$$\therefore A = 45^{\circ}. \ 46'. \ 16''.5, \ \text{and} \ B = 30^{\circ}. \ 9'. \ 52''.5.$$

$$Also, c = \frac{b \sin C}{\sin B} = \frac{169 \times .9900242}{.5024855} = 332.97.$$

(15)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2},$$

$$\tan \frac{A-B}{2} = \frac{72}{410} \cot 7^{\circ}. 41'. 18'' \cdot 5,$$

$$L \tan \frac{A-B}{2} = \log 72 - \log 410 + L \cot 7^{\circ}. 41'. 18'' \cdot 5$$

$$= 1.8573325 - 2.6127839 + 10.8696637$$

$$= 10.1142123.$$

$$Hence \frac{A-B}{2} = 52^{\circ}. 26'. 54'' \cdot 1,$$

$$\tan \frac{A+B}{2} = 82^{\circ}. 18'. 41'' \cdot 5;$$

$$\therefore A = 134^{\circ}. 45'. 36'' \cdot 6, \text{ and } B = 29^{\circ}. 51'. 46'' \cdot 4.$$

Also, $c = \frac{b \cdot \sin C}{\sin B} = \frac{169 \times 2651681}{4982927} = 90.$

(16)
$$\sin B = \frac{b \cdot \sin A}{a} = \frac{37 \times \sin 18^{\circ} \cdot 55' \cdot 28'' \cdot 7}{13};$$

$$\therefore L \sin B = \log 37 + L \sin 18^{\circ} \cdot 55' \cdot 28'' \cdot 7 - \log 13$$

$$= 1.5682017 + 9.5109783 - 1.1139434$$

$$= 9.9652366;$$

.. $B=67^{\circ}$. 22'. 48"1, or its supplement 112°. 37'. 11"9.

(17)
$$\sin B = \frac{b \cdot \sin A}{a} = \frac{565 \times \sin 44^{\circ} \cdot 29' \cdot 53''}{445};$$

$$\therefore L \sin B = \log 565 + L \sin 44^{\circ} \cdot 29' \cdot 53'' - \log 445$$

$$= 2.7520484 + 9.8456468 - 2.6483600$$

$$= 9.9493352;$$

:. $B=62^{\circ}$. 51'. 32"'9, or its supplement 117°. 8'. 27"'1.

18)
$$\sin B = \frac{b \cdot \sin A}{a} = \frac{836.4 \times \sin 14^{\circ}. 24'. 25''}{212.5};$$

$$\therefore L \sin B = \log 836.4 + L \sin 14^{\circ}. 24'. 25'' - \log 212.5$$

$$= 2.9224140 + 9.3958630 - 2.3273589$$

$$= 9.9909181;$$

$$\therefore B = 78^{\circ}. 19'. 24'', \text{ or its supplement } 101^{\circ}. 40'. 36''.$$

(19)
$$\sin B = \frac{b \cdot \sin A}{a} = \frac{564.8 \times \sin 40^{\circ} \cdot 32' \cdot 16''}{379.5};$$

$$\therefore L \sin B = \log 564.8 + L \sin 40^{\circ} \cdot 32' \cdot 16'' - \log 379.5$$

$$= 2.7518947 + 9.8128794 - 2.5792118$$

$$= 9.9855623;$$

$$\therefore B = 75^{\circ} \cdot 18' \cdot 28'' \cdot 2, \text{ or its supplement } 104^{\circ} \cdot 41' \cdot 31'' \cdot 8.$$

(20)
$$\sin B = \frac{b \cdot \sin A}{a} = \frac{8032 \cdot 29 \times \sin 71^{\circ} \cdot 3' \cdot 34'' \cdot 7}{9459 \cdot 31};$$

$$\therefore L \sin B = \log 8032 \cdot 29 + L \sin 71^{\circ} \cdot 3' \cdot 34'' \cdot 7 - \log 9459 \cdot 31$$

$$= 3 \cdot 9048393 + 9 \cdot 9758256 - 3 \cdot 9758594$$

$$= 9 \cdot 9048055;$$

$$\therefore B = 53^{\circ} \cdot 26' \cdot 0'' \cdot 6.$$

Examples-LV. (p. 181).

(1) Let QP be the hill; $\angle QBP = 60^{\circ}$; $\angle QAP = 45^{\circ}$.

Then
$$QP = BP \cdot \tan 60^{\circ}$$

= $(AP - 100) \tan 60^{\circ}$
= $(QP - 100) \cdot \sqrt{3}$;
3 $100\sqrt{3}(\sqrt{3} + 1)$

$$\therefore QP = \frac{100\sqrt{3}}{\sqrt{3-1}} = \frac{100\sqrt{3}(\sqrt{3+1})}{3-1} = 150 + 50\sqrt{3} = 236.602\dots \text{ feet.}$$

(2) Let F be the fort; S_1 and S_2 the ships. Then $\angle FS_1S_2 = 35^{\circ}$. 14', and $\angle FS_2S_1 = 42^{\circ}$. 12', and $\angle S_1FS_2 = 180^{\circ} - 77^{\circ}$. 26'

and
$$FS_1 = S_1S_2 \cdot \frac{\sin FS_2S_1}{\sin S_1 FS_2}$$

= 1760 \cdot \frac{\sin 42^\cdot 12'}{\sin 77^\cdot \cdot 26'}
= 1760 \times \frac{671}{976} = 1210 \text{ yards,}

and
$$FS_1 = 1760 \times \frac{\sin 35^{\circ}}{\sin 77^{\circ}} \cdot \frac{14'}{20'} = 1760 \times \frac{577}{976} = 1040.5$$
 yards.

(3) With a construction similar to that in Example (2), $FS_1 = 880 \cdot \frac{\sin 85^{\circ} \cdot 15'}{\sin 11^{\circ}} = 880 \times \frac{9965}{1908} = 4596 \text{ yards nearly,}$ $FS_2 = 880 \cdot \frac{\sin 83^{\circ} \cdot 45'}{\sin 11^{\circ}} = 880 \times \frac{9940}{1908} = 4584 \cdot 48 \text{ yards.}$

(4) Let AB be the flagstaff; BP the tower; Q the place of observation.

Then
$$\tan BQA = \tan(AQP - BQP)$$

$$= \frac{\tan AQP - \tan BQP}{1 + \tan AQP \cdot \tan BQP}$$

$$= \frac{2 \cdot 05 - 2}{1 + 2 \cdot 05 \times 2} = \frac{05}{5 \cdot 1} = \frac{1}{102};$$

$$\therefore L \tan BQA = 10 + \log 1 - \log 102$$

$$=10-2.0086002$$

$$=7.9913998;$$

$$\therefore BO 4 = 33' 48''.$$

 $\therefore BOA = 33', 42''.$

(5) Let A be the top of the steeple; D the top of the tower.

$$\angle APB = 60^{\circ} \text{ and } \angle DPB = 45^{\circ}$$
.

Then
$$BA = PB \cdot \tan 60^{\circ}$$
,

and
$$BD = PB \cdot \tan 45^{\circ}$$
;

$$\therefore BA: BD = \tan 60^{\circ}: \tan 45^{\circ}$$

(6) Let PC be the river, CB the column, BA the statue

CD=6 feet; and let x= breadth of river in feet.

Then
$$\tan APB = \tan DPC = \frac{6}{x}$$
,

$$\tan APC = \frac{AC}{PC} = \frac{230}{x},$$

$$\tan BPC = \frac{200}{x}$$
.

Now
$$\tan BPC = \tan(APC - APB)$$
;

$$\therefore \frac{200}{x} = \frac{\frac{230}{x} - \frac{6}{x}}{1 + \frac{230}{x} \cdot \frac{6}{x}};$$

$$\therefore \frac{200}{x} = \frac{224x}{x^2 + 1380}, \text{ or } 24x^2 = 276000, \text{ or } x^2 = 11500 ;$$
$$\therefore x = 107.2 \dots \text{ feet.}$$

(7) Let A be the top of the pole; B the top of the mound.

$$\angle APQ = 60^{\circ}; \angle BPQ = 30^{\circ}.$$

Then
$$AQ = PQ$$
. tan60°,

$$BQ=PQ$$
. tan 30° ;

$$\therefore AQ:BQ=\tan 60^{\circ}:\tan 30^{\circ}$$

$$= \sqrt{3} : \frac{1}{\sqrt{3}}$$

$$=3:1;$$

$$\therefore AB=2BQ.$$

(8) Let A be the top of the flagstaff; B the top of the tower.

Then
$$\angle BQP = 90^{\circ} - \angle AQP$$
.
Now $AB = AP - BP$

$$= a(\tan AQP - \tan BQP)$$

$$= a \cdot (\cot a - \tan a) = a \cdot \frac{\cos^2 a - \sin^2 a}{\cos a \cdot \sin a}$$

$$=2a\cdot\frac{\cos 2a}{\sin 2a}=2a\cdot\cot 2a.$$

(9) Let T be the place of the second observation.

Then
$$a=QP$$

$$=PT-TQ$$

$$=BP \cdot \cot \frac{a}{2} - c$$

$$= a \tan a \cdot \cot \frac{a}{2} - c$$

$$\therefore c = a \left(\frac{2 \tan \frac{a}{2}}{1 - \tan^2 \frac{a}{2}} \cot \frac{a}{2} - 1 \right) = a \left(\frac{2}{1 - \tan^2 \frac{a}{2}} - 1 \right) = a \cdot \frac{1 + \tan^2 \frac{a}{2}}{1 - \tan^2 \frac{a}{2}}$$

$$= a \cdot \frac{\cos^2 \frac{a}{2} + \sin^2 \frac{a}{2}}{\cos^2 \frac{a}{2} - \sin^2 \frac{a}{2}} = \frac{a}{\cos a};$$

 $\therefore a = c \cdot \cos a$, and putting this for a in the result of Example (8),

length of flagstaff=
$$2c$$
, $\cos a$, $\cot 2a = 2c$, $\cos a \cdot \frac{\cos 2a}{\sin 2a}$

$$=2c \cdot \frac{\cos 2a}{2\sin a} = c$$
. $\csc a$. $\cos 2a$.

(10) Let K be the kite; S_1 and S_2 the places of observation.

Draw KA perpendicular to S_1S_2 .

Then, since the angles at S_1 and S_2 are equal,

$$KA$$
 bisects S_1S_2 .
Then $KA = AS_1$. $tan KS_1A$

$$= \frac{a}{9} \cdot \tan \beta$$

$$=\frac{a}{2}\cdot\sin\beta$$
 . $\sec\beta$

$$=\frac{a}{2} \cdot \sin a \cdot \sec \beta$$
, because $a=\beta$.

(11) Let AB be the smaller and PT the greater tower, and D the point midway between them.

Join TA, BP, DA, DP.

Then
$$\angle PDT = \angle DAB$$
.

Let
$$PT=x$$
 and $AB=y$.

Then
$$\frac{x}{60} = \frac{60}{y}$$
, or $x = \frac{3600}{y}$.

Also,
$$\tan PBT = \tan 2ATB$$

$$2 \tan ATB$$

and
$$\tan PBT = \frac{x}{120}$$
, and $\tan ATB = \frac{y}{120}$;

$$\therefore \frac{x}{120} = \frac{240y}{14400 - y^2};$$

$$\therefore \frac{3600}{120y} = \frac{240y}{14400 - y^2}.$$

Hence y=40 feet, and $\therefore x=90$ feet.

(12) Since $\angle ADB = \angle ACB$, a circle can be described about ADCB.

Fro. 40.

$$\therefore \angle ABD = \angle ACD = 19^{\circ}. 15',$$
and $\angle DAC = 180^{\circ} - (40^{\circ}. 45' + 19^{\circ}. 15') = 120^{\circ}.$

$$\therefore AB = \frac{AD. \sin 30^{\circ}}{\sin 19^{\circ}. 15'},$$
and $AD = \frac{DC. \sin 19^{\circ}. 15'}{\sin 120^{\circ}};$

$$\therefore \frac{AB}{DC} = \frac{\sin 30^{\circ}}{\sin 120^{\circ}} = \frac{\sin 30^{\circ}}{\sin 60^{\circ}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}.$$

(13) Let x be the length of the zigzag road in miles.

Then
$$5:12=\frac{5}{3}:x$$
;
 $\therefore 5x=20$, or $x=4$ miles.

(14) S₁ and S₂ are the two positions of the ship, A and B the two objects.

Fig. 41.

Then
$$\angle BS_1S_1 = 15^{\circ} + 45^{\circ} = 60^{\circ}$$

 $\angle BS_2S_1 = 90^{\circ} \text{(since N.W. is at right angles to N.E.)}$
 $\angle S_2AS_1 = 180^{\circ} - (45^{\circ} + 60^{\circ}) = 75^{\circ}.$

Then
$$BS_1 = S_1S_2$$
 . sec . BS_1S_2
= 5 . sec60° = 10,
and $AS_1 = \frac{S_1S_2 \cdot \sin AS_2S_1}{\sin S_2AS_1} = \frac{5 \cdot \sin 45^{\circ}}{\sin 75^{\circ}} = \frac{\frac{5 \times \frac{1}{\sqrt{2}}}{\sqrt{3+1}}}{\frac{2\sqrt{3}}{\sqrt{3}}} = \frac{10}{\sqrt{3}+1}$
 $\therefore AB = 10 - \frac{10}{\sqrt{3+1}} = \frac{10\sqrt{3}}{\sqrt{3+1}} = \frac{10\sqrt{3}(\sqrt{3}-1)}{3-1} = 5(3-\sqrt{3}).$

(15) Let PQ be the tower. Then AQP and PQB are right angles.

 $\angle PAQ=30^{\circ}$, and $\angle PBQ=18^{\circ}$.

Then
$$AQ = PQ \cdot \cot 30^{\circ} = PQ \times \sqrt{3}$$
,

 $BQ = PQ \cdot \cot 18^{\circ} = PQ \cdot \frac{\sqrt{(10 + 2\sqrt{5})}}{\sqrt{5 - 1}}$. (See Example xxxvi. 6.)

Now $BQ^{2} - AQ^{2} = a^{2}$;

 $\therefore PQ^{2} \left\{ \frac{10 + 2\sqrt{5}}{6 - 2\sqrt{5}} - 3 \right\} = a^{2}$;

 $\therefore PQ^{3} \left\{ \frac{5 + \sqrt{5}}{3 - \sqrt{5}} - 3 \right\} = a^{2}$;

 $\therefore PQ^{3} \cdot \frac{4(\sqrt{5 - 1})}{3 - \sqrt{5}} = a^{2}$;

 $\therefore PQ^{3} \cdot \frac{4 \cdot (2 + 2\sqrt{5})}{4} = a^{2}$;

 $\therefore PQ = \frac{a}{\sqrt{(2 + 2\sqrt{5})}}$.

(16) Let AB be the staff, C the centre of the ring in the vertical line ABC, D the extremity of the shadow; then if DE be drawn touching the ring in E, DE will be the direction of the sun, and CE is at right angles to DE.

Let
$$CE=r$$
, then $AB=AD=8r$, and $AC=9r$.

.:
$$CD^2 = AC^2 + AD^2 = 145r^2$$
,
and $ED^2 = CD^2 - CE^2 = 144r^2$;
.: $ED = 12r$.

Hence $\tan ADC = \frac{9}{8}$, and $\tan CDE = \frac{1}{12}$;

$$\therefore \tan ADE = \frac{\frac{9}{8} + \frac{1}{12}}{1 - \frac{9}{96}} = \frac{4}{3}.$$

 \therefore the sun's altitude = $\tan^{-1}\frac{4}{3}$.

(17) Draw DM, EN perpendicular to CB, and let AB, BC, CA be represented by c, a, b.

Then $CD^2 = CM^2 + MD^2$ $a^2 - 4b^2$

$$= \frac{a^2}{9} + \frac{4b^2}{9}$$
 (Euclid, VI. 2, Ex. 1.)

$$CE^{2} = CN^{2} + NE^{2}$$

$$= \frac{4a^{2}}{9} + \frac{b^{2}}{9}$$

$$DE^2 = \frac{c^2}{9};$$

$$\therefore CD^3 + CE^2 + DE^2 = \frac{5a^2}{9} + \frac{5b^2}{9} + \frac{a^2 + b^2}{9} = \frac{2}{3}(a^2 + b^2) = \frac{2}{3}c^2.$$

(18) Let P be the place of observation:

$$BN=x, PB=a$$

Then BA = a, because $\angle APB = 45^{\circ}$, $PN = a \cdot \cot 30^{\circ} = a \sqrt{3}$, $\angle PBN = 135^{\circ}$.

Then
$$\cos PBN = \frac{PB^2 + BN^2 - PN^2}{2PB \cdot BN}$$
,

or
$$\cos 135^{\circ} = \frac{a^2 + x^2 - 3a^2}{2ax}$$
,

$$\therefore -\frac{1}{\sqrt{2}} = \frac{x^2 - 2a^2}{2ax}$$

$$\frac{1}{\sqrt{2}} = \frac{2ax}{2ax},$$

$$\frac{1}{2} = \frac{x^4 - 4a^2x^2 + 4a^4}{4a^2x^3}.$$

Hence
$$x^4 - 6a^2x^2 = -4a^4$$
, and $x^3 - 3a^2 = \pm \sqrt{5} \cdot a^2$,
and $\therefore x = a \sqrt{3 \pm \sqrt{5}}$.

F1G. 45.

(19) Let BA be the first tower; AC the most; ED the other tower.

Draw EF parallel to DA. Let h=height of BA.

Then since $\angle BEA = \angle BCA = 45^{\circ}$, a circle can be described about ABEC, and since $\angle BAC = 90^{\circ}$, BC is the diameter of the circle, and therefore $\angle BEC = 90^{\circ}$.

Then
$$CB^2 = CA^2 + BA^2 = 2h^3$$
,
and $CB^2 = EC^2 + EB^2$
 $= a^2 + c^3 + EF^2 + FB^2$
 $= a^2 + c^2 + (c + h)^2 + (h - a)^2$.

Hence $2h^2 = a^2 + c^2 + c^2 + 2ch + h^2 + h^2 - 2ah + a^2;$ $\therefore h = \frac{a^2 + c^2}{a - c}.$

(20)
$$AC = AB \cdot \frac{\sin 15^{\circ}}{\sin 150^{\circ}} = 100 \cdot \frac{\sin 15^{\circ}}{\sin 30^{\circ}};$$

$$\therefore AC = 100 \times \frac{\sqrt{3} - 1}{2\sqrt{2}} \div \frac{1}{2} = \frac{100(\sqrt{3} - 1)}{\sqrt{2}}$$
$$= 50(\sqrt{6} - \sqrt{2}) = 51.76 \dots \text{ feet.}$$

(21) Since BC points to N.W. the $\angle ABC=45^{\circ}$; $\angle ACB=45^{\circ}$, and AC=AB=10 miles.

Also, $CB = \sqrt{AC^2 + AB^2} = \sqrt{200} = 14.14$. . . miles.

(22) Let CA be a line from the end of the shadow in direction of the sun, AB the wall, BC the shadow.

Then
$$\tan ACB = \frac{AB}{BC} = \frac{18}{16} = \frac{9}{8}$$
.

: tan ACB=1.125;

or, $ACB = \tan^{-1} 1.125$, which by the tables we find nearly equal to 48°. 22'.

(23) Let AB be the spire; BP the tower; Q the place of observation. Then $\angle BQP = 30^{\circ}$, and $\angle AQP = 32^{\circ}$.

Now AP = PQ. $\tan 32^\circ = 200 \times .6248694 = 124.97398$ BP = PQ. $\tan 30^\circ = 200 \times .5773503 = 115.47006$. \therefore height of tower = 115.47 yards nearly,

height of tower = 115.47 yards nearly.
 height of spire = 9.503 yards nearly.

(24)
$$\cos BAC = \frac{9+4-\frac{324}{100}}{12} = \frac{61}{75} = \cdot 8133333.$$

Hence, by the tables, $\angle BAC=35^{\circ}.34'.32''$, and $\therefore \angle BAD=144^{\circ}.25'.28''$.

F1G. 51.

Next,
$$BD = \frac{AB \cdot \sin 144^{\circ} \cdot 25' \cdot 28''}{\sin 17^{\circ} \cdot 47' \cdot 20''}$$

= $\frac{3 \times 5817759}{\cdot 3055106} = 5.71307 \dots$ miles.

(25)
$$\angle BAC = 17^{\circ}. 44',$$
 $AB = BC \cdot \frac{\sin 139^{\circ}. 58'}{\sin 17^{\circ}. 44'}.$
Hence, by the tables,

$$AB = \frac{840.5 \times 6432332}{3045872}$$
 yards = 1775 yards nearly;

.. AB differs from a mile by about 15 yards.

(26)
$$\angle BCA = 180^{\circ} - (50^{\circ}. 20' + 110^{\circ}. 12') = 19^{\circ}. 28';$$

 $\therefore BC = AB \cdot \frac{\sin 50^{\circ}. 20'}{\sin 19^{\circ}. 28'}.$

$$\therefore \log BC = \log 2700 + L \sin 50^{\circ}. \ 20' - L \sin 19^{\circ}. \ 28'$$
$$= 3.4313638 + 9.8863616 - 9.5227811$$
$$= 3.7949443.$$

Hence BC = 6236.549 feet.

Next, if CD be the height of the mountain, $CD = BC \sin CBD$, $=6236.549 \times \sin 10^{\circ}, 7'$ $=6236.549 \times .1756531$ = 1095.47 . . . feet.

Let EC = x feet.

Then $\tan AEB = \tan(AEC - BEC)$;

$$\therefore \tan 10^{\circ} = \frac{\tan AEC - \tan BEC}{1 + \tan AEC \cdot \tan BEC}.$$

$$\therefore 176327 = \frac{\frac{60}{x} - \frac{40}{x}}{1 + \frac{2400}{x^3}}$$

$$176327 = \frac{20x}{x^3 + 2400}$$
;

and solving this quadratic we get

$$x = 85.28$$
, or 28.14 .

(28) Let CP be the height of the hill.

F1G. 55.

Then
$$CA = AB$$
. $\frac{\sin ABC}{\sin ACB}$
= 1760 × $\frac{\sin 2^{\circ}$. 45' $\sin 9^{\circ}$. 28'
= $\frac{1760 \times .0479781}{.1644738}$
= 513'4 nearly;

$$\therefore CP = 513.4 \times \sin CAP$$

$$=513.4 \times .2116091 = 108.64 \dots$$
 yards

(29) Let AB be the tower, S the ship.

Then $BS = AB \cdot \cot ASB$ = 150 × 1.3613350 = 204.2 . . . feet.

(30)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cdot \cot \frac{C}{2}$$

 $= \frac{3225 \cdot 77}{9541 \cdot 29} \cot 18^{\circ} \cdot 43' \cdot .$
 $L \tan \frac{A-B}{2} = 3 \cdot 5086333 - 3 \cdot 9795979 + 10 \cdot 4700495$
 $= 9 \cdot 9990849 \cdot .$
Hence $\frac{A-B}{2} = 44^{\circ} \cdot 56' \cdot 20'' \cdot ,$
and $\frac{A+B}{9} = 71^{\circ} \cdot 17' \cdot ;$

.:
$$A = 116^{\circ}$$
. 13′. 20″, and $B = 26^{\circ}$. 20′. 40″.
Also $c = \frac{b \cdot \sin C}{\sin B} = 3157.76 \times \frac{.6078379}{.4437665} = 4325.26$.

(31)
$$\angle BS_1S_2 = 55^\circ$$
, and $\angle BS_2S_1 = 62^\circ$. 30';
 $\therefore \angle S_1BS_2 = 180^\circ - (55^\circ + 62^\circ.30') = 62^\circ.30'$;
 $\therefore S_1S_2 = BS_1 = 1$ mile.
Then $S_2B = \frac{S_1B \cdot \sin BS_1S_2}{\sin BS_2S_1}$
 $= \frac{1 \times \sin 55^\circ}{\sin 62^\circ.30'} = \frac{8191520}{8870108}$
 $= 923497$ miles.

(32) From E, the lower window, draw EB perpendicular to the tower AB; from D, the upper window, draw DC perpendicular to the tower.

Then
$$\angle AEB = 45^{\circ}$$
,
and $\angle ADC = 40^{\circ}$,
and $DC = EB = AB$.
 $\therefore DC = 20 + AC$,
 $= 20 + DC$. tan40°.
 $\therefore DC = \frac{20}{1 - \tan 40^{\circ}} = \frac{20}{1 - 8390996}$

 $\frac{20}{1609004}$ =124.3 ... feet.

Let CD be the perpendicular breadth of the river.

Now
$$\angle ACB = 180^{\circ} - (50^{\circ} + 65^{\circ}) = 65^{\circ}$$
.

$$\therefore AC = AB = 400$$
 yards.

Hence
$$CD = AC \cdot \sin 50^{\circ}$$

$$=400 \times .7660444 = 306.4178$$
 yards.

(34) Let AB, AC be the lines of the railways, D the point at which the train travelling 30 miles an hour is in $2\frac{1}{4}$ hours.

The other train may then be at M or N, points on AB equidistant from D, and such that MD=DN=50 miles.

Also, AD = 75 miles.

·_-

ŗ.

15

ين

j.

Then
$$\sin AND = \frac{75 \cdot \sin 35^{\circ} \cdot 20'}{50} = \frac{3}{2} \times .5783323 = .8674984.$$

Hence $\angle AND = 60^{\circ} \cdot 10'$ nearly,

$$\therefore \angle ADN = 84^{\circ} . 30',$$

and
$$AN = \frac{50 \times \sin 84^{\circ}. \ 30'}{\sin 35^{\circ}. \ 20'} = \frac{50 \times 9953962}{5783323} = \frac{49.7698100}{5783323}$$
 miles.

: rate of train = $\frac{49.7698100}{.5783323} \div 2\frac{1}{2} = 34.42284$. . . miles per hour.

Next,
$$\angle DMN = \angle AND = 60^{\circ}$$
. 10' nearly;

$$\therefore$$
 $\angle AMD = 119^{\circ}$. 50' nearly;
 $\therefore \angle ADM = 24^{\circ}$. 50' nearly.

and
$$AM = \frac{AD \cdot \sin ADM}{\sin AMD} = \frac{75 \cdot \sin 24^{\circ} \cdot 50'}{\sin 119^{\circ} \cdot 50'} = 75 \times \frac{4199801}{8674984}$$
 miles;

: rate of train =
$$75 \times \frac{4199801}{8674984} \div 2\frac{1}{2} = 14.524$$
 . . . miles per hour.

(35) Let AB be the base of 600 yards; C the tree; CD a perpendicular on AB.

Then
$$\angle ACB = 180^{\circ} - (52^{\circ}, 14' + 68^{\circ}, 32')$$

= 59°, 14'.

Frg. 61.

Now
$$CD = AC \cdot \sin CAD$$

$$= \frac{600 \cdot \sin ABO}{\sin ACB} \cdot \sin CAD$$

$$= \frac{600 \cdot \sin 68^{\circ} \cdot 32' \cdot \sin 52^{\circ} \cdot 14'}{\sin 59^{\circ} \cdot 14'}$$

$$= \frac{600 \times 9306306 \times 7905115}{8592576} = 513.7045 \text{ yards.}$$

(36) Let AB be the tower; C the first place of observation; D the second place of observation.

A Then ACD and ABD are right angles. Now AC = AB. $\csc ACB$ $= 100 \times \csc 50^{\circ} = 130 \cdot 54073$. $AD = \sqrt{(300)^{2} + (130 \cdot 54073)^{2}}$ $= \sqrt{107040 \cdot 127569}$ $= 327 \cdot 16 \dots$ $\sin \angle ADB = \frac{AB}{AD} = \frac{100}{327 \cdot 16} = \cdot 3056608$. Hence $\angle ADB = 17^{\circ}$. 47'. 50''.

(38) Let A be the object; AB a vertical line meeting the horizontal plane through C in B; D the point 300 yards up the hill,

Then $\angle BCA = 29^{\circ}$. 12'. 40" = $\angle CAD$. $\angle CDA = 16^{\circ}$.

Then
$$CA = \frac{CD \cdot \sin 16^{\circ}}{\sin 29^{\circ} \cdot 12' \cdot 40''} = \frac{300 \times 2756374}{4880290} = 169.4392$$
 yards.

(39) At the end of three hours each engine has passed over 90 miles. Let AB, AC be the distances traversed.

Draw
$$AD$$
 perpendicular to BC .

Then
$$\angle BAD = 25^{\circ}.10'$$
,

and
$$BD = AB \cdot \sin BAD$$

$$=90 \times .4252528$$
.

- $BC = 2 \times 90 \times 4252528 = 76.5455...$ miles.
 - (40) Diagram as in Example (37); and x=height of tower in feet.

$$\tan ADB = \frac{6}{150} = \frac{1}{25}$$
;

$$\frac{1}{25} = \frac{\frac{x+30}{150} - \frac{x}{150}}{1 + \frac{x(x+30)}{22500}} = \frac{4500}{x^2 + 30x + 22500}.$$

Solving this quadratic x=285 feet nearly.

EXAMPLES-LVI. (p. 199).

- 1. Area = $\frac{1}{2} \left\{ 10 \times 12 \times \sin 60^{\circ} \right\}$ square inches = $\left(60 \times \frac{\sqrt{3}}{2}\right)$ square inches = $30\sqrt{3}$ square inches.
- 2. Area = $\frac{1}{2}$ { $40 \times 60 \times \sin 30^{\circ}$ } square feet = $\left(1200 \times \frac{1}{2}\right)$ square feet = 600 square feet.
- 3. Area = $\frac{1}{2}$ $\left\{ 4 \times 3\frac{3}{4} \right\}$ square feet= $7\frac{1}{2}$ square feet.
- 4. Area = $\sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} = \sqrt{8 \times 3 \times 2 \times 3} = 4 \times 3$ = 12 square inches.
- 5. Area = $\sqrt{1017 \times 392 \times 512 \times 113} = \sqrt{9 \times 113 \times 8 \times 49 \times 8 \times 64 \times 113}$ = $(3 \times 113 \times 8 \times 7 \times 8) = 151872$.

6. Area =
$$\sqrt{544 \times 135 \times 375 \times 34}$$
 = $\sqrt{17 \times 32 \times 15 \times 9 \times 125 \times 3 \times 17 \times 2}$
= $17 \times 8 \times 9 \times 25$ = 30600.

7. Area =
$$\sqrt{585 \times 8 \times 512 \times 65}$$
 = $\sqrt{5 \times 13 \times 9 \times 8 \times 64 \times 8 \times 13 \times 5}$ = $5 \times 13 \times 3 \times 8 \times 8 = 12480$.

8.
$$s \cdot (s-c) = \frac{a+b+c}{2} \cdot \frac{a+b-c}{2}$$

$$= \frac{(a+b)^2 - c^2}{4}$$

$$= \frac{(a+b)^2 - (a^2+b^2)}{4}$$

$$= \frac{2ab}{4}$$

$$= \frac{ab}{2} = \text{area of the triangle.}$$

9. Area =
$$\sqrt{\frac{146\cdot27}{2} \times \frac{41\cdot21}{2} \times \frac{48\cdot75}{2} \times \frac{56\cdot31}{2}}$$

 $\therefore \log \operatorname{area} = \frac{1}{2} \left\{ \log 146\cdot27 + \log 41\cdot21 + \log 48\cdot75 + \log 56\cdot31 - 4\log 2 \right\}$
 $= \frac{1}{2} \left\{ 2\cdot1651553 + 1\cdot6150026 + 1\cdot6879746 + 1\cdot7505855 - 1\cdot2041200 \right\}$
 $= 3\cdot0072990$;
 $\therefore \operatorname{area} = 1016\cdot9487$.

10. Let a, b, c be in descending arithmetical progression; then a+c=2b.

Thus the perimeter is 3b, and the side of an equilateral triangle of equal perimeter is b.

Then
$$\sqrt{s \cdot (s-a)(s-b)(s-c)} = \frac{3}{5} \cdot \frac{1}{2} \cdot b^2 \cdot \sin 60^\circ$$
,
or $\frac{1}{4} \sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)} = \frac{3\sqrt{3}}{20}b^2$,

or
$$\sqrt{3b^2(b+c-a)(a+b-c)} = \frac{3\sqrt{3}}{5}b^2$$

 $\sqrt{(b+c-a)(a+b-c)} = \frac{3}{5}b$
 $\sqrt{\frac{3c-a}{2} \cdot \frac{3a-c}{2}} = \frac{3}{10}(a+c)$
 $\frac{10ac-3a^2-3c^2}{4} = \frac{9}{100}(a^2+c^2).$

Solving this quadratic we get $\frac{a}{c} = \frac{7}{3}$ or $\frac{3}{7}$.

Hence the sides are proportional to 7, 5, 3.

Then
$$\cos A = \frac{b^3 + c^3 - a^2}{2bc} = -\frac{1}{2}$$
;
and $\therefore A = 120^\circ$.

11. Let AEB be the triangular part turned down.

Then area of $AEB = \frac{1}{2}AB \cdot AE$.

But $\frac{AE}{AD} = \frac{AB}{BC}$, by similar triangles AED, BAC;

∴ area of
$$AEB = \frac{1}{2}AB \cdot \frac{AB \cdot AD}{BC}$$

$$= \frac{1}{2} \cdot \frac{AB^3}{BC} \cdot (CD - AC)$$

$$= \frac{1}{2} \cdot \frac{AB^3}{BC} \cdot \left\{ AB - \sqrt{(AB^3 - BC^2)} \right\}$$

12. Area =
$$\frac{bc \cdot \sin A}{2}$$
 = $\frac{b \sin A \cdot c \sin A}{2 \sin A}$ = $\frac{a \sin B \cdot a \sin C}{2 \sin A}$ = $\frac{a^2 \sin B \cdot \sin C}{2 \sin (B+C)}$

13.
$$\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} \left(\frac{a^2}{\sin A} + \frac{b^2}{\sin B} + \frac{c^2}{\sin C} \right)$$

$$= \sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{(s-a)(s-c)}{ac}} \cdot \sqrt{\frac{(s-a)(s-b)}{ab}} \cdot \frac{a^2bc}{28} + \frac{b^2ac}{28} + \frac{c^2ba}{28} \right)$$

$$= \frac{(s-a)(s-b)(s-c)}{abc} \cdot \frac{abc(a+b+c)}{28}$$

$$= \frac{s \cdot (s-a)(s-b)(s-c)}{8} = 8.$$

14.
$$R = \frac{abc}{4R} \text{ and } r = \frac{8}{4R};$$

$$\therefore \frac{abc}{48} = \frac{28}{3};$$

$$\therefore abc = \frac{8S^2}{s}$$

$$= 8(s-a)(s-b)(s-c)$$

$$= (b+c-a)(a+c-b)(a+b-c).$$

Squaring both sides .-

$$a^{2}b^{2}c^{2} = \{a + (b - c)\}\{a - (b - c)\} \times \{b + (a - c)\}\{b - (a - c)\} \times \{c + (a - b)\}\{c - (a - b)\}$$

$$= \{a^2 - (b-c)^2\}\{b^2 - (a-c)^2\}\{c^2 - (a-b)^2\}.$$

Now this equality can only exist when a=b=c, for in any other case each factor on the right-hand side is less than the corresponding factor on the left-hand side.

15.
$$\frac{b-c}{a} = \frac{\sin B - \sin C}{\sin A} = \frac{2\cos\frac{B+C}{2} \cdot \sin\frac{B-C}{2}}{2\sin\frac{A}{2} \cdot \cos\frac{A}{2}} = \frac{\sin\frac{B-C}{2}}{\cos\frac{A}{2}};$$
$$\therefore (b-c)\cos\frac{A}{2} = a \cdot \sin\frac{B-C}{2}.$$

16. OA bisects \(\alpha \), and \(FE \) at right angles;

$$\therefore \text{ area } FOE = FH \cdot OH$$

$$= r \cos \frac{A}{2} \cdot r \sin \frac{A}{2}$$

$$= r^3 \cdot \frac{1}{2} \sin A$$

$$= \frac{S^2}{s^2} \cdot \frac{S}{bc}$$

$$= \frac{S^3}{s^2 \cdot bc}.$$

area
$$FDE = \frac{S^3}{s^2} \left(\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} \right)$$

$$= \frac{S^3 \cdot 2s}{s^2 \cdot abc}$$

$$= \frac{2}{abc} \cdot \frac{\{s \cdot (s-a)(s-b)(s-c)\}^{\frac{s}{2}}}{s}$$

$$= \frac{2}{abc} \cdot s^{\frac{1}{2}} \left\{ (s-a)(s-b)(s-c) \right\}^{\frac{2}{3}}.$$

17. Area of quadrilateral

$$= \frac{1}{2} \left\{ EA \cdot AD + DA \cdot AC + BA \cdot AC + BA \cdot AE \right\} \sin A$$

$$= \frac{1}{2} \left\{ (EA + AC) \cdot AD + (EA + AC)BA \right\} \sin A$$

$$= \frac{1}{2} \cdot EC \cdot BD \cdot \sin A$$

$$= \frac{1}{2}ab \cdot \sin A.$$

18.
$$\frac{a^{2}-b^{2}}{2} \frac{\sin A \cdot \sin B}{\sin(A-B)} = \frac{a^{2} \sin A \cdot \sin B - b^{2} \sin A \cdot \sin B}{2 \sin(A-B)}$$

$$= \frac{ab \sin^{2} A - ab \sin^{2} B}{2 \sin(A-B)} = \frac{ab \sin(A+B) \cdot \sin(A-B)}{2 \sin(A-B)}$$

$$= \frac{ab \sin(A+B)}{2}$$

$$= \frac{ab \cdot \sin C}{2} = \text{area of triangle.}$$

 $\therefore R=r_a$

19.
$$R = \frac{a}{2 \sin A} = \frac{a}{\sqrt{2}}$$

$$r^{a} = \frac{S}{s - a} = \frac{\frac{1}{2}ab}{\frac{2a + c}{2} - a} = \frac{ab}{c} = \frac{a^{3}}{a\sqrt{2}} = \frac{a}{\sqrt{2}};$$

20.
$$\cot(B-A) + \cot(A + \frac{C}{2}) = \cot(B-A) + \cot(2A+C)$$

$$= \frac{1 + \cot B \cdot \cot A}{\cot B - \cot A} + \frac{1 - \cot 2A \cdot \cot C}{\cot 2A + \cot C}$$

$$= \frac{1+1}{\tan A - \cot A} + \frac{1-0}{\cot 2A + 0}$$

$$= \frac{2}{\tan A - \cot A} + \frac{2 \tan A}{1 - \tan^2 A}$$

$$= \frac{2 \tan A}{\tan^2 A - 1} + \frac{2 \tan A}{1 - \tan^2 A}$$

$$= 0.$$

21.
$$\frac{2abc}{a+b+c} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$$

$$= \frac{2abc}{a+b+c} \cdot \sqrt{\frac{s \cdot (s-a)}{bc}} \cdot \sqrt{\frac{s \cdot (s-b)}{ac}} \cdot \sqrt{\frac{s \cdot (s-c)}{ab}}$$

$$= \frac{2abc}{a+b+c} \cdot \frac{s}{abc} \cdot \sqrt{s \cdot (s-a)(s-b)(s-c)}$$

$$= \sqrt{s \cdot (s-a)(s-b)(s-c)}$$

$$= \text{area of triangle.}$$

22.
$$\frac{\sin 2A (2a+c)^{2}}{32 \cdot \cos^{4} \frac{A}{2}} = \frac{\sin 2A \cdot (2s)^{2}}{32 \cdot \frac{s^{2} \cdot (s-a)^{2}}{b^{2}c^{2}}}$$

$$= \frac{\sin 2A \cdot b^{2}c^{2}}{[8 \cdot (s-a)^{2}]}$$

$$= \frac{\sin 2A \cdot b^{2}c^{2}}{8(\frac{c}{2})^{2}}$$

$$= \frac{\sin 2A \cdot b^{2}c^{2}}{8(\frac{c}{2})^{2}}$$

$$= \frac{b^{2} \cdot \sin 2A}{2} = b^{2} \cdot \sin A \cdot \cos A = b^{2} \cdot \sin A \cdot \frac{c}{2b}$$

$$= \frac{1}{2}bc \cdot \sin A$$

$$= \text{area of triangle.}$$

$$\therefore \text{ area} \times 32 \cos^{4} \frac{A}{2} = \sin 2A \cdot (2a+c)^{2}.$$

23. $AD=b \cdot \sin C, \dots, AD \cdot b=b^2 \cdot \sin C.$ $AD=c \cdot \sin B, \dots, AD \cdot c=c^2 \cdot \sin B.$

$$\therefore AD(b+c) = b^2 \cdot \sin C + c^2 \cdot \sin B;$$

$$\therefore AD = \frac{b^2 \sin C + c^2 \sin B}{b+c}.$$

24. (1)
$$BD = r \cdot \cot \frac{B}{2}$$

$$CD = r \cdot \cot \frac{C}{2};$$

$$\therefore r \cdot \left(\cot \frac{B}{2} + \cot \frac{C}{2}\right) = BD + CD = a.$$

$$\therefore r = \frac{a}{\cot \frac{B}{2} + \cot \frac{C}{2}}.$$

(2) From the preceding Example-

$$r = \frac{a \sin \frac{B}{2} \cdot \sin \frac{C}{2}}{\sin \left(\frac{B+C}{2}\right)}$$

$$= \frac{2R \cdot \sin A \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}}{\cos \frac{A}{2}}, \text{ by Art. 221.}$$

(3) Let O be the centre of the escribed circle touching BC and the other sides produced, as in diagram to Art. 223.

Then
$$BD = OD \cdot \cot OBD = r_1 \cdot \tan \frac{B}{2}$$
,

and
$$CD = OD \cdot \cot OCD = r_1 \cdot \tan \frac{C}{2}$$
.

$$\therefore BD + CD = r_1 \left(\tan \frac{B}{2} + \tan \frac{C}{2} \right);$$

$$\therefore r_1 = \frac{a}{\tan \frac{B}{2} + \tan \frac{C}{2}}.$$

$$r_1 = \frac{a \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}}{\sin \frac{B+C}{2}}$$

$$= \frac{2R \cdot \sin A \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}}{\cos \frac{A}{2}}$$

$$=4R \cdot \sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2} \cdot$$

(5)
$$r_{1}=4R \cdot \sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2},$$

$$r_{3}=4R \cdot \cos \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \cos \frac{C}{2},$$

$$r_{5}=4R \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \sin \frac{C}{2};$$

$$\therefore r_{1}+r_{2}+r_{3}=4R \cdot \cos \frac{A}{2} \cdot \left(\sin \frac{B}{2} \cdot \cos \frac{C}{2} + \cos \frac{B}{2} \cdot \sin \frac{C}{2}\right) + 4R \cdot \sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$$

$$=4R \cdot \cos \frac{A}{2} \cdot \cos \frac{A}{2} + 4R \cdot \sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$$

$$=2R \cdot (\cos A + 1) + R \cdot (\cos B + \cos C - \cos A + 1)$$

$$=3R + R(\cos A + \cos B + \cos C).$$
Ex. XLVIII. 12.

(6)
$$R+r=R+\dfrac{2R\sin A\cdot\sin\dfrac{R}{2}\cdot\sin\dfrac{C}{2}}{\cos\dfrac{A}{2}}$$
 by (2)
$$=R+4R\cdot\sin\dfrac{A}{2}\cdot\sin\dfrac{B}{2}\cdot\sin\dfrac{C}{2}$$

$$=R\cdot\left(1+4\sin\dfrac{A}{2}\cdot\sin\dfrac{B}{2}\cdot\sin\dfrac{C}{2}\right)$$

$$=R(\cos A+\cos B+\cos C).$$
 Ex. XLVIII. 8.

25. Let r be the radius of the circle.

Then area of inscribed polygon of 2n sides $= nr^2 \cdot \sin \frac{\pi}{n}$,

area of inscribed polygon of n sides $=\frac{nr^2}{2} \cdot \sin \frac{2\pi}{n}$;

area of circumscribed polygon of n sides = nr^2 . $\tan \frac{\pi}{n}$.

$$\operatorname{And}\left(\frac{nr^2}{2} \cdot \sin\frac{2\pi}{n}\right) \times \left(nr^2 \cdot \tan\frac{\pi}{n}\right)$$

$$\frac{n^2 \cdot r^4}{2} \cdot 2\sin\frac{\pi}{n} \cdot \cos\frac{\pi}{n} \cdot \frac{\sin\frac{\pi}{n}}{\cos\frac{\pi}{n}}$$

$$= n^2r^4 \cdot \sin^2\frac{\pi}{n}$$

$$= \left(nr^3 \cdot \sin\frac{\pi}{n}\right)^2$$

26. Let O, M be the centres of the inscribed and escribed circles.

Then
$$MO = MA - OA$$

$$= r_1 \csc \frac{A}{2} - r \cdot \csc \frac{A}{2}$$

$$= (r_1 - r) \csc \frac{A}{2}$$

$$= \left\{ 4R \cdot \sin \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2} - 4R \cdot \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} \right\} \csc \frac{A}{2}$$

$$= 4R \left\{ \cos \frac{B}{2} \cdot \cos \frac{C}{2} - \sin \frac{B}{2} \cdot \sin \frac{C}{2} \right\}$$

$$= 4R \cdot \sin \frac{A}{2},$$
(By Ex. 24.)

and similarly for the other escribed circles.

(27) Let DEF be the triangle so formed.

Then since
$$\frac{BD}{CD} = \frac{e}{b}$$
,

segments of the other sides.

$$\frac{BD}{BC} = \frac{c}{b+c}$$
, or, $BD = \frac{ac}{b+c}$

So also, $CD = \frac{ab}{b+c}$, and similarly for the B

Then area
$$CDE = \frac{1}{2} \cdot \frac{ab}{b+c} \cdot \frac{ab}{a+c} \cdot \sin C = \frac{8 \cdot ab}{(a+c)(b+c)}$$

Similar expressions may be obtained for the areas of BFD, AFR.

$$\therefore \text{ area of } DEF = S \left\{ 1 - \frac{ab}{(a+c)(b+c)} - \frac{bc}{(b+a)(c+a)} - \frac{ca}{(c+b)(a+b)} \right\}$$

$$= \frac{2abc \cdot S}{(a+b)(b+c)(c+a)} = 2S \cdot \frac{a}{b+c} \cdot \frac{b}{c+a} \cdot \frac{c}{a+b}.$$

Now,
$$\frac{a}{b+c} = \frac{\sin A}{\sin B + \sin C} = \frac{\sin \frac{A}{2}}{\cos \frac{B-C}{2}}$$

$$\frac{b}{c+a} = \frac{\sin\frac{B}{2}}{\cos\frac{C-A}{2}}, \text{ and } \frac{c}{a+b} = \frac{\sin\frac{C}{2}}{\cos\frac{A-B}{2}}$$

$$\therefore \frac{\operatorname{area} DRF}{\operatorname{area} ABC} = \frac{2 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}}{\cos \frac{B-C}{2} \cdot \cos \frac{C-A}{2} \cdot \cos \frac{A-B}{2}}.$$

28.
$$r_1r_2 + r_2r_3 + r_2r_3 = \frac{S^2}{(s-a)(s-b)} + \frac{S^2}{(s-b)(s-c)} + \frac{S^2}{(s-c)(s-a)}$$

$$= s \cdot (s-c) + s \cdot (s-a) + s \cdot (s-b)$$

$$= s \cdot \{3s - (a+b+c)\}$$

$$= s^2.$$

$$\frac{\sin BAD}{\sin ADB} = \frac{BD}{AB}.$$
$$\sin ABC \quad AC$$

$$\frac{\sin ABC}{\sin ACB} = \frac{AC}{AB}.$$

$$\therefore \text{ since } \sin ADB = \sin ACB, \\ \frac{\sin BAD}{\sin ABC} = \frac{BD}{AC};$$

 $\therefore AC \sin A = BD \cdot \sin B$.

30. Let O, P be the centres of the inscribed and one of the escribed circles.

Then OB and PB bisect the interior and exterior angles at B; and OBP is a right angle.

Hence OBPC is a quadrilateral round which a circle may be described.

Then
$$OP = OB \cdot \sec BOP$$

$$= OB \cdot \sec BCP$$

$$= OB \cdot \operatorname{cosec} \frac{C}{2}$$

And
$$OB = \frac{c.\sin\frac{A}{2}}{\sin AOB} = \frac{c.\sin\frac{A}{2}}{\cos\frac{C}{2}}$$
;

$$\therefore OP = \frac{c \cdot \sin\frac{A}{2}}{\sin\frac{C}{2} \cdot \cos\frac{C}{2}} = \frac{2c \cdot \sin\frac{A}{2}}{\sin C} = \frac{2a \cdot \sin\frac{A}{2}}{\sin A} = \frac{a}{\cos\frac{A}{2}}$$

Similarly
$$OP = \frac{b}{\cos \frac{B}{2}} = \frac{c}{\cos \frac{C}{2}}$$

31.
$$r \cdot \cos \frac{A}{2} \cdot \csc \frac{B}{2} \cdot \csc \frac{C}{2} = \frac{r \cdot \cos \frac{A}{2}}{\sin \frac{B}{2} \cdot \sin \frac{C}{2}}$$

$$= r \cdot \frac{\sqrt{\frac{s \cdot (s-a)}{bc}}}{\sqrt{\frac{(s-a) \cdot (s-c)}{ac} \cdot \sqrt{\frac{(s-b)(s-a)}{ab}}}}$$

$$= r \cdot \frac{a \sqrt{s}}{\sqrt{(s-a)(s-b)(s-c)}}$$

$$= \frac{S}{s} \cdot \frac{a \sqrt{s}}{\sqrt{(s-a)(s-b)(s-c)}}$$

$$= a,$$

32.
$$\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2}$$

$$= \sqrt{\frac{(s-c)(s-b)}{s \cdot (s-a)}} + \sqrt{\frac{(s-a)(s-c)}{s \cdot (s-b)}} + \sqrt{\frac{(s-b)(s-a)}{s \cdot (s-c)}}$$

$$= \frac{(s-c)(s-b)}{S} + \frac{(s-a)(s-c)}{S} + \frac{(s-b)(s-a)}{S}$$

$$= \frac{1}{4S} \cdot \left\{ (a+b-c) \cdot (a+c-b) + (b+c-a) \cdot (a+b-c) + (a+c-b) \cdot (b+c-a) \right\}$$

$$= \frac{1}{4S} \left\{ 2ab + 2ac + 2bc - a^2 - b^2 - c^2 \right\}$$

$$= \frac{1}{S} \cdot \left\{ ab + ac + bc - \frac{a^2 + b^2 + c^2 + 2ab + 2ac + 2bc}{4} \right\}$$

$$= \frac{1}{S} \left\{ ab + ac + bc - s^2 \right\}$$

$$= \frac{ab + ac + bc}{S} - \frac{s^2}{S}$$

$$= \frac{4R}{abc} \cdot (ab + ac + bc) - \frac{s}{r}$$

$$= 4R \cdot \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) - \frac{s}{r}$$

33.
$$PA \cdot BC = BA \cdot PC + AC \cdot BP$$

(EUCLID, VI. D.)

and
$$\frac{\sin A}{BC} = \frac{\sin C}{BA} = \frac{\sin B}{AC}$$

 $\therefore PA \cdot \sin A = PC \cdot \sin C + PB \cdot \sin B$.

34. Each of the angles at $O=120^{\circ}$.

Let OA, OB, OC be represented by d_1 , d_2 , d_3 .

$$c^2 = d_1^2 + d_2^2 - 2d_1d_2 \cdot \cos 120^\circ$$
;

$$\therefore c = \sqrt{d_1^2 + d_2^2 + d_1 d_2}$$

Similarly for a and b.

Also, area =
$$\left(\frac{d_1d_2}{2} + \frac{d_1d_3}{2} + \frac{d_2d_3}{2}\right) \sin 120^{\circ}$$

= $\frac{\sqrt{3}}{4} \cdot (d_1d_2 + d_1d_3 + d_2d_3)$.

35. Let OA = a, OB = b, OC = c; $\angle OBA = \theta$, and let x be the side of the square ABCD.

Then
$$\angle OBC = 90^{\circ} - \theta$$
,
and $a^{2} = x^{2} + b^{2} - 2bx \cos\theta$;
 $c^{2} = x^{3} + b^{2} - 2bx \sin\theta$;
 $\therefore 2bx \cos\theta = x^{2} + b^{2} - a^{2}$,
 $2bx \sin\theta = x^{3} + b^{2} - c^{2}$.

Squaring and adding these equations,

$$4b^2x^2 = x^4 + 2(b^2 - a^2)x^3 + (b^2 - a^2)^2 + x^4 + 2(b^2 - c^2)x^2 + (b^2 - c^2)^2;$$

$$\therefore 2x^4 - 2(a^2 + c^2)x^3 + (a^2 + c^2)^2 = 2(a^2b^2 + a^2c^2 + b^2c^2 - b^4),$$
and
$$x = \sqrt{\frac{1}{2} \left\{ a^2 + c^2 \pm \sqrt{4(a^2b^2 + a^2c^2 + b^2c^2 - b^4) - (a^2 + c^2)^2}. \right\}}$$
(Gaskin's Solutions of Trigonometrical Examples.)

36. Let ABC be any triangle described about a circle.

Then area of ABC=area of AOB+ area of BOC+ area of AOC.

$$\therefore \text{ area of } ABC = \frac{1}{2} \cdot rc + \frac{1}{2}ra + \frac{1}{2}rb.$$

$$= \frac{r}{a}(a+b+c);$$

... since r is constant, area of $ABC \propto (a+b+c)$.

37.
$$a = AD = c \cdot \sin B = b \cdot \sin C,$$

$$\beta = BE = c \cdot \sin A,$$

$$\gamma = CF = b \cdot \sin A;$$

$$\therefore \frac{a^2}{\beta \gamma} = \frac{bc \cdot \sin B \cdot \sin C}{bc \cdot \sin A \cdot \sin A} = \frac{bc}{a^2}.$$

Similarly
$$\frac{\beta^2}{a\gamma} = \frac{ac}{b^2}$$
; and $\frac{\gamma^2}{a\beta} = \frac{ab}{c^2}$;

$$\therefore \frac{a^2}{\beta\gamma} + \frac{\beta^2}{a\gamma} + \frac{\gamma^2}{a\beta} = \frac{bc}{a^2} + \frac{ac}{b^2} + \frac{ab}{c^3}.$$

38. Let A be the observer on the sea-shore, O the earth's centre, BC the mountain whose height = 1284'8 yards='73 miles.

Then since C is just visible from A,

AC is a tangent at A.

Join OA and produce it to D, making AD=3 miles; then $\angle DCA$ =angle of depression of C from $D=2^{\circ}$. 15'.

Then
$$AC=3 \cdot \cot 2^{\circ} \cdot 15'$$

 $\log AC = \log 3 + L \cot 2^{\circ} \cdot 15' - 10$
 $= \cdot 4771213 + 11 \cdot 4057168 - 10$
 $= 1 \cdot 8828381 ;$
 $\therefore AC = 76 \cdot 3551.$

Fig. 82.

Let
$$OA$$
, the earth's radius, = r ;
 $\therefore AC^2 = BC(2r + BC) = .73(2r + .73)$,
and $\log (2r + .73) = 2 \log AC - \log .73 = 3.9023533$;
 $\therefore 2r + .73 = .7986.4$;
 $\therefore r = .3992.835$ miles.
(Gaskin's Solutions of Trigonometrical Examples.)

39. Let ABC be the triangle, CO=b, BO=a,

$$\angle BAD = \theta$$
, and $\therefore \angle CAD = 60^{\circ} - \theta$.
Let $AB = x$.
Then $x \cdot \sin \theta = a$,
 $x \sin(60^{\circ} - \theta) = b$;
 $\therefore \frac{\sin(60^{\circ} - \theta)}{\sin \theta} = \frac{b}{a}$.

$$\therefore \frac{\sqrt{3}}{2} \cdot \cot \theta - \frac{1}{2} = \frac{b}{a} \cdot$$

$$\therefore a \cdot \cot \theta = \frac{3b+a}{\sqrt{3}}$$
.

:.
$$x=a$$
. $\csc\theta = \sqrt{a^2 + \frac{4b^2 + 4ab + a^2}{3}} = 2\sqrt{\frac{a^2 + ab + b^2}{3}}$ (Gaskin).

$$\frac{AD}{DB} = \frac{AC}{CB} = 2 \; ; \; \therefore \; AD = 2DB,$$

$$AB = AD + DB = 3DB,$$

$$\frac{AE}{EB} = \frac{AC}{CB} = 2 \; ; \; \therefore \; AE = 2BE \; ;$$

$$\therefore \; BE = AB = 3DB \; ;$$

$$\therefore \; DE = BE + DB = 4DB.$$
Then, by Euclid, vi. i.

 $\triangle CBD : \triangle ACD : \triangle ABC : \triangle CDE$ = DB : AD : AB : DE

$$=1 : 2 : 3 : 4.$$
 (Gaskin).

41.
$$R \cdot \sin A = \frac{a}{2}$$
, by Art. 221;
 $\therefore Rr \cdot (\sin A + \sin B + \sin C)$
 $= r \cdot \left(\frac{a+b+c}{2}\right)$
 $= r \cdot s$
= area of the triangle

- 42. The circles have the same radius because $R = \frac{b}{2\sin B}$. In the example given, $\sin 50^{\circ}$. 15'='7688418; $\therefore R = \frac{564}{1.5376836} = 366.785.$
- 43. Call the angles $x, \frac{x+y}{2}, \frac{x+2y}{2}, \frac{x+3y}{3}$.

 Then $x + \frac{x+y}{2} + \frac{x+2y}{2} + \frac{x+3y}{3} = 2\pi$ and $x + \frac{x+2y}{2} = \pi$ $\therefore 14x + 15y = 12\pi$ $3x + 2y = 2\pi$ Hence $x = \frac{6\pi}{17}$ and $y = \frac{8\pi}{17}$; \therefore the angles are $\frac{6\pi}{17}, \frac{7\pi}{17}, \frac{11\pi}{17}, \frac{10\pi}{17}$

44.
$$\frac{(1 + \cot PCA)^{2}}{(1 + \cot PCB)^{2}} = \frac{\left(1 - \frac{CM}{PM}\right)}{\left(1 + \frac{CM}{PM}\right)^{2}}$$

$$= \frac{(PM - CM)^{2}}{(PM + CM)^{2}}$$

$$= \frac{CP^{2} - 2CN \cdot PN}{CP^{2} + 2CN \cdot PN}$$

$$= \frac{CN \cdot CD - 2CN \cdot PN}{CN \cdot CD + 2CN \cdot PN}$$

$$= \frac{CO - PN}{CO + PN} = \frac{CB - CM}{AC + CM} = \frac{BM}{AM} = \frac{\cot PBA}{\cot PAB}.$$

45.
$$r + r_a + r_b - r_c = \frac{S}{s} + \frac{S}{s-a} + \frac{S}{s-b} - \frac{S}{s-c}$$

$$= \frac{S(2s-a)}{s \cdot (s-a)} + \frac{S \cdot (s-c-s+b)}{(s-b)(s-c)}$$

$$= \frac{S \cdot (b+c)}{s \cdot (s-a)} + \frac{S \cdot (b-c)}{(s-b)(s-c)}$$

$$= S \cdot \left\{ \frac{b \cdot \{(s-b)(s-c) + s \cdot (s-a)\} + c\{(s-b)(s-c) - s \cdot (s-a)\}}{S^2} \right\}$$

$$= \frac{b\{2s^2 - s \cdot (a+b+c) + bc\} + c\{-s(b+c-a) + bc\}}{S}$$

$$= \frac{b^2c - \frac{c}{2}(b+c+a)(b+c-a) + bc^2}{S}$$

$$= \frac{c}{2S} \cdot \left\{ 2b^2 - (b+c)^2 + a^2 + 2bc \right\}$$

$$= \frac{c}{2S}(b^2 - c^2 + a^2) = \frac{c}{2S}2ab\cos C = \frac{abc \cdot \cos C}{S} = 4R \cdot \cos C.$$

46. Let C be the right angle; then, by Art. 223,

Using the notation of Art. 228,

$$OB = 4000$$
 miles,
 $OE = OB$. sec. 1°. 58′. 10″
 $= 4000 \times 1.005910$

$$=4002.364$$

 $\therefore AE = 2.36 \dots \text{ miles.}$

48. Using the notation of Art. 228,

$$\sec EOB = \frac{4001.25}{4000} = 1.0003125,$$

and, by the Tables, sec 1°, 26' = 1.0003130. Hence dip of horizon = 1°. 26' nearly.

49. Let A be the man's eye; B the lamp; C the centre of the earth. Then AD + DB = 52800 feet.

And, if the radius of the earth be R feet,

$$AD^2 = 6(2R+6),$$

 $BD^2 = 32(2R+32).$

Fig. 88.

Hence, approximately,
$$\sqrt{12R} + \sqrt{64R} = 52800$$
, or, $\sqrt{R} \cdot (4 + \sqrt{3}) = 26400$, or, $\sqrt{R} \times 13 = 26400(4 - \sqrt{3})$.;

$$\therefore R = \frac{26400 \times 26400 \times (19 - 8\sqrt{3})}{13 \times 13 \times 1760 \times 3} \text{miles} = 4017.79 \dots \text{miles}.$$

50. In 72 minutes the ship travels 12 miles.

Then using the notation of Art. 228,

$$BE^{2} = CE \cdot EA,$$

$$144 = \left(CA + \frac{90}{5280}\right) \cdot \frac{90}{5280}$$

$$= CA \cdot \frac{90}{5280}$$
 nearly;

$$\therefore CA = \frac{144 \times 528}{9} = 16 \times 528 = 8448.$$

.: radius=4224 miles.

51. Using the notation of Art. 228,

$$\cos EOB = \frac{OB}{OE} = \frac{3956}{3959}.$$

$$\therefore L \cos EOB = 10 + \log 3956 - \log 3959$$

$$= 10 + 3.5972563 - 3.5975855$$

$$= 9.9996708.$$

Whence, by the tables,

52. Let r be the radius of a section of the earth, made by a plane through its centre perpendicular to the line joining its centre with the sun's centre. Then if θ be the circular measure of the angle subtended by r at the sun's centre, and d be the distance between the two centres,

$$\frac{r}{d} = \tan \theta = \theta \text{ nearly, since } \theta \text{ is very small.}$$

$$\therefore \frac{r}{d} = \frac{8.868}{57.29577 \times 60 \times 60}.$$

$$\therefore d = \frac{57.29577 \times 60 \times 60 \times 4000}{8.868}$$

$$= \frac{206264772}{2.217} = 93037786.1 \dots \text{ miles}$$

53. Using the same notation as in Ex. 52,

$$\tan\theta = \frac{4000}{241118};$$

$$\therefore L \tan\theta = 10 + \log 4000 - \log 241118$$

$$= 10 + 3.6020600 - 5.3822296$$

$$= 8.2198304.$$

Hence, by the tables,

$$\theta = 57'$$
. 1"·5 = nearly.

54. Let A, B be the two points; then AB is a tangent at its middle point D to the earth's surface.

$$AD = DE$$
 nearly = 4 miles,

$$AE = 10 \text{ feet} = \frac{10}{5280} \text{miles.}$$

Let C be the earth's centre, and CD = r.

Then
$$AE(2r+AE)=AD^2$$
.

..., approximately, $AE \cdot 2r = AD^2$;

$$r = \frac{16 \times 5280}{10 \times 2} = 4224$$
 miles.

F1G. 89.

55. The limit of deviation is the angle subtended by the radius of the target at a point 600 feet distant, and if this angle be denoted by θ

$$\tan\theta = \frac{2}{600};$$

$$\therefore \theta = \tan^{-1} 003.$$

56. Regard the moon M as the base of a cone of which E, the eye of the observer is the vertex. Then S

of the observer, is the vertex. Then S, the shilling, will intercept all the rays of light from M to E, when it is so near to S that lines from E to the circumference of S do not, when produced, fall within the circumference of M.

Fra. 90.

٠			f
		ì	
	-		
•			

Educational Works

PUBLISHED BY

MESSRS. RIVINGTON

NEW BOOKS IN PREPARATION AND IN THE PRESS.

A Handbook in Outline of the Political History of England to 1881. Chronologically arranged. By ARTHUR H. D. ACLAND, M.A., Christ Church, Oxford, and Cyrll RANSOME,

M.A., Professor of Modern Literature and History, Yorkshire College, Leeds. Crown 8vo. 6s. [Just published.

This book contains a continuous Chronological Outline of English History from the fifth century to October, 1881. In the Appendix are given Lists of Ministers before Queen Anne, and Tables of the Members of the House of Lords and the House of Commons, with their numbers and distribution at various times.

It is thought that the Book may be found useful to the general reader as a companion to larger volumes of Political History and Biography, as well as to teachers of English History who need an outline or syllabus upon which to lecture.

The General Outline of the last half century contains, it is believed, a sufficiently full account of modern events and Ministries to make this portion of the book available for those who, while interested in politics, have not time to consult larger books, and often want some companion to the newspaper or magazine article to clear up points where there may be an occasional haziness, and to show the exact position and surroundings of modern historical events.

New Books in Preparation and in the Press-continued.

Essays on Philosophical Subjects. By W. L. COURTNEY, M.A., Fellow and Tutor of New College, Oxford.

CONTENTS.—Ionic Physics and Italic Metaphysics—Epicurus—A Chapter in the History of "Cause"—The Failure of Berkleiau Idealism—"Back to Kant"—Kant as Moralist and as Logician—The New Psychology—The New Ethics—The Hegelian Religion.

[In the Press.]

- Goethe's Faust. Part I. Text, with English Notes, Essays, and Verse Translations. By E. J. Turner, M.A., and E. D. A. Morshead, M.A., Assistant-Masters at Winchester College. Crown 8vo. 7s. 6d. [Just Published.]
- Bacon's Essays. Complete Edition. Edited by F. STORR, M.A., Chief-Master of Modern Subjects in Merchant Taylors' School, and late Assistant-Master in Marlborough College. [In Preparation.
- Introduction to Greek Verse Composition. By ARTHUR SIDGWICK, M.A., Tutor of Corpus Christi College, Oxford: late Assistant-Master at Rugby School, and Fellow of Trinity College, Cambridge; and F. D. MORICE, M.A., Assistant-Master at Rugby School, and Fellow of Queen's College, Oxford. [In preparation.
- The Jugurtha of Sallust. By E. P. BROOKE, M.A., Assistant-Master at Rugby School. [In preparation.
- Ecclesia Anglicana. A History of the Church of Christ in England from the earliest to the present times. By ARTHUR CHARLES JENNINGS, M.A., Jesus College, Cambridge; Vicar of Whittlesford. Crown 8vo. 7s. 6d. [Just published.
- Livy. BOOK II. Edited, chiefly from the text of MADVIG, with Notes, Translations, and Appendices. By HENRY BELCHER, M.A., Master of the Matriculation Class, King's College School, London. Small 8vo. 3s. 6d. [Just published.
- Lectures in Latin Prose, with Illustrative Exercises.

 By G. Granville Bradley, M.A., Master of University College,
 Oxford, and formerly Master of Marlborough College.

 [In preparation.
- A Progressive Latin Translation Book. By H. R. HEATLEY, M.A., and H. N. KINGDON, B.A., Assistant-Masters at Hillbrow School, Rugby. [In preparation.

New Books in Preparation and in the Press-continued.

- A Syntax of Attic Greek for the use of Students and Schools. By F. E. THOMPSON, M.A., Assistant-Master at Marlborough College. Crown 8vo. [In the Press.
- A Second Latin Reading Book. Forming a continuation of Easy Latin Stories. By G. L. BENNETT, M.A., Head-Master of the High School, Plymouth. Crown 8vo. [In preparation.
- Selections from Thucydides. An Easy Greek Reading Book.

 By E. H. Moore, M.A., Assistant-Master at the High School,

 Plymouth. [In preparation.
- Arnold's First Greek Book. By Francis David Morice, M.A., Assistant-Master at Rugby School, and Fellow of Queen's College, Oxford. A New and Revised Edition. Crown 8vo. [In the Press.
- Essays on Aristotle. Edited by EVELYN ABBOTT, M.A., LL.D., Fellow and Tutor of Balliol College, Oxford.
- A Short History of England for Schools. By F. York-Powell, M.A., Lecturer at Christ Church, Oxford. With Maps and Illustrations. Small 8vo. [In the Press.
- A Latin-English Dictionary for Junior Forms of Schools. By C. G. GEPP, M.A. 16mo. [In the Press.
- Introduction to the Study of Greek Antiquities.

 Edited by J. S. Reid, LL. M., Fellow and Assistant-Tutor of Gonville
 and Caius College, Cambridge; Classical Examiner in the University
 of London.

 [In the Press.
- History of the Romans to the Establishment of Imperialism. By J. S. Reid, LL.M. [In preparation.
- A Geography, Physical, Political, and Descriptive, for Beginners. By L. B. LANG. Edited by the Rev. M. CREIGHTON, M.A., late Fellow and Tutor of Merton College, Oxford. With Maps. Small 8vo.
 - Vol. II.—THE CONTINENT OF EUROPE. [In the Press. Vol. III.—ASIA, AFRICA, AND AMERICA. [In preparation.
- Study of the Church Catechism. Adapted for use as a Class Book. By C. J. SHERWILL DAWE, B.A., Lecturer and Assistant-Chaplain at St. Mark's College, Chelsea. Crown 8vo. 1s. Cloth limp, 1s. 6d. [Just published.

KEYS

KEYS marked A are published to the following Educational Works for the use of Tutors only. They can only be obtained by direct application to the Publishers, who will send a printed Form, to be filled up by the Tutor requiring the KEY. They cannot be supplied through Booksellers.

Second Latin Writer Easy Latin Stories for Beginners Arnold's Latin Prose Composition Arnold's Henry's First Latin Book Exercises in Latin Elegiac Verse	•			Nett Price of the Key.		
BENNETT'S First Latin Writer			_	£.	6	
Second Latin Writer Easy Latin Stories for Beginners Arnold's Latin Prose Composition Arnold's Henry's First Latin Book Exercises in Latin Elegiac Verse	-		•	5	o	
BRADLEY'S Arnold's Latin Prose Composition . GEPP'S Arnold's Henry's First Latin Book . Exercises in Latin Elegiac Verse .		_	·	2	ō	
BRADLEY'S Arnold's Latin Prose Composition . GEPP'S Arnold's Henry's First Latin Book . Exercises in Latin Elegiac Verse .	_		•	2	ŏ	
GEPP'S Arnold's Henry's First Latin Book . Exercises in Latin Elegiac Verse .		-	·	2	ō	
Exercises in Latin Elegiac Verse .				ξ	0	
		-		5 5 5 5 5	ō	
SIDGWICK'S First Greek Writer			•	5	ō	
Greek Prose Composition				Š	ō	
Arnold's Henry's First Latin Book			•	ĭ	ō	
Supplementary Exercises	-		•	Ī	6	
Second Latin Book	-	•	•	2	o	
First Verse Book			•	ī	ō	
Latin Verse Composition			·	2	ō	
Longer Latin Exercises. Part IL		•	•	2	6	
Latin Prose Composition. Part I		•	•	ī	6	
First Greek Book		•	•	ì	6	
Greek Prose Composition. Part I	•	•	•	ï	6	
SARGENT AND DALLIN'S Materials and Models Composition. Latin Version. 116 Greek Prose Composition. Greek Ve	Sele	cted P	Prose ieces	5 7	o 6	
Keys to the following are sold to the Public	with	out re	stria	tion		
				s.	d.	
ARNOLD'S First German Book			•	2	6	
Second German Book				I	0	
First French Book				2	6	
First Italian Book				1	6	
First Hebrew Book				3	6	
SMITH'S (J. HAMBLIN) Elementary Algebra .				9	0	
Arithmetic				9 9 8	0	
Exercises in Geometry				8	6	
Statics and Hydrostatics				6	0	
Trigonometry				7	6	
Latin Prose Composition	•	•	•	5	0	

ENGLISH

Select Plays of Shakspere. RUGBY EDITION.

With Introduction and Notes to each Play. Small 8vo.

As You Like It. 25.

King Lear. 2s. 6d.

Hamlet. 2s. 6d.

Macbeth. 25.

Romeo and Juliet. 2s. King Henry the Fifth. 2s.

A Midsummer Night's Dream. 2s.

Edited by the Rev. C. E. MOBERLY, M.A., formerly Scholar of Balliol College, Oxford,

Coriolanus. 2s. 6d. Edited by ROBERT WHITELAW, M.A., Assistant-Master at Rugby School.

The Tempest. 2s. Edited by J. Surtees Phillpotts, M.A., Head-Master of Bedford Grammar School.

Second Edition. Small 8vo. 2s. 6d.

The Rudiments of English Grammar and Composition. By J. Hamblin Smith, M.A., of Gonville and Caius College, and late Lecturer at St. Peter's College, Cambridge.

"This book is intended to give, first, a simple account of the elementary facts of English grammar, so far as they relate to the construction of sentences; and, secondly, a short sketch of the fundamental principles of English composition. In fixing the limits of the work, I have been guided chiefly by the requirements of the University of Cambridge in the local examinations."—Extract from the Preface.

Small 8vo. 1s. 6d.

The Beginner's Drill-book of English Grammar.

Adapted for Middle Class and Elementary Schools. By JAMES BURTON, B.A., First English Master in the High School of the Liverpool Institute.

Small 8vo. 2s. 6d.

Short Readings in English Poetry. Arranged, with occasional Notes, for the use of Schools and Classes. Edited by H. A. HERTZ.

Small 8vo. 2s. 6d.

A Practical English Grammar. For the higher forms of Schools, and for Students preparing for examinations. By the Rev. W. TIDMARSH, B.A., Head-Master of Putney School.

ENGLISH SCHOOL-CLASSICS

With Introductions, and Notes at the end of each Book.

Edited by FRANCIS STORR, M.A.,

CHIEF MASTER OF MODERN SUBJECTS AT MERCHANT TAYLORS' SCHOOL.

Small 8vo.

- Thomson's Seasons: Winter. With Introduction to the Series, by the Rev. J. Franck Bright, M.A., Fellow of University College, Oxford. 1s.
- Cowper's Task. By Francis Storr, M.A. 2s.

 Books I. and II., 9d.; Books III. and IV., 9d.; Books V. and VI., 9d.
- Cowper's Simple Poems, with Life of the Author.

 By Francis Storr, M.A. 15.
- Scott's Lay of the Last Minstrel. By J. Surtees Phillpotts, M. A., Head-Master of Bedford School. 2s. 6d. Canto I., 9d.; Cantos II. and III. 9d.; Cantos IV. and V., 9d.; Canto VI., 9d.
- Scott's Lady of the Lake. By R. W. TAYLOR, M.A., Head-Master of Kelly College, Tavistock. 2s.

 Cantos I. and II., 9d.; Cantos III. and IV., 9d.; Cantos V. and VI., 9d.
- Notes to Scott's Waverley. By H. W. Eve, M.A., Head-Master of University College School, London. 1s.; or with the Text, 2s, 6d.
- Twenty of Bacon's Essays. By Francis Storr, M.A. is.
- Simple Poems. Edited by W. E. Mullins, M.A., Assistant-Master at Marlborough College. 8d.
- Selections from Wordsworth's Poems. By H. H. Turner, B.A., late Scholar of Trinity College, Cambridge. 1s.

- Wordsworth's Excursion: The Wanderer. By H. H. Turner, B.A. 1s.
- Milton's Paradise Lost. By Francis Storr, M.A. Book I., 9d. Book II., 9d.
- Milton's L'Allegro, Il Penseroso, and Lycidas. By EDWARD STORR, M.A., late Scholar of New College, Oxford. 18.
- Selections from the Spectator. By Osmond Airy, M.A., Assistant-Master at Wellington College. 1s.
- Browne's Religio Medici. By W. P. SMITH, M.A., Assistant-Master at Winchester College. 1s.
- Goldsmith's Traveller and Deserted Village. By C. SANKEY, M.A., Head-Master of Bury St. Edmund's Grammar School. 15.
- Extracts from Goldsmith's Vicar of Wakefield. By C. SANKEY, M.A. 15.
- Poems selected from the Works of Robert Burns. By A. M. Bell, M. A., Balliol College, Oxford. 2s.
- Macaulay's Essays.
 - MOORE'S LIFE OF BYRON. By Francis Storr, M.A. 9d. BOSWELL'S LIFE OF JOHNSON. By Francis Storr, M.A. 9d.
 - HALLAM'S CONSTITUTIONAL HISTORY. By H. F. BOYD, late Scholar of Brasenose College, Oxford. 1s.
- Southey's Life of Nelson. By W. E. Mullins, M.A. 2s. 6d.
- Gray's Poems. Selection from Letters, with Life by Johnson. By Francis Storr, M.A. 15.
 - ** The General Introduction to the Series will be found in Thomson's WINTER.

HISTORY

With numerous Maps and Plans. New Edition, Revised. Crown 8vo.

A History of England. By the Rev. J. FRANCK BRIGHT, M.A., Master of University College, and Historical Lecturer at Balliol, New, and University Colleges, Oxford; late Master of the Modern School at Marlborough College.

PERIOD I.-MEDIÆVAL MONARCHY: The departure of the Romans, to Richard III. From A.D. 449 to A.D. 1485.

PERIOD II.—PERSONAL MONARCHY: Henry VII. to James II. From A.D. 1485 to A.D. 1688. 5s.

PERIOD III.—CONSTITUTIONAL MONARCHY: William and Mary, to the present time. From A.D. 1689 to A.D. 1837,

Extract from the Regulations for the Army Examinations.

"At the competitions for the Military College, Sandhurst, the Academy, Woolwich, &c., the examinations in English History will be limited to the periods A.D. 1760-1790, and 1790-1820.

"°•° The candidates reading on the period selected should include the study of that part of Bright's History which treats of the period he selects."

With Maps and Illustrations. Small 8vo.

A Short History of England for Schools. F. YORK-POWELL, M.A., Lecturer at Christ Church, Oxford. [In the Press.

With Forty Illustrations. 16mo. 2s. 6d.

A First History of England. By Louise Creighton, Author of "Life of the Black Prince," "Sir Walter Ralegh," &c.

"This is a neat, well-written little volume of about four hundred pages, in which the whole story of English history is told in a succinct but interesting way."—Athenaum.
"This is one of the most satisfactory of the many histories of England lately published

"Ins is one of the most saustactory of the many histories of England lately published for schools. Mrs. Creighton has spared no pains to make their earliest lessons in English history in every way attractive to little children."—Academy.

"This is really a charming little volume."—Journal of Education.

"The book gives a pleasing summary of the more striking events, and is written in simple and familiar language. Forty illustrations (which we are told are from 'authentic sources') brighten up the narrative and attract by their occasional quainteness. The book

sources) brighten up the narrative and attract by their occasional quaintness. The book contains 38, well-printed pages, and there is a carefully prepared index."—Scholmaster.

"The style is so simple, that the book cannot fail to be understood by any child who can read; and at the same time, the crucial and decisive events of our history are treated with an adequate appreciation of their importance, and their causes and consequences clearly set forth. The interest of the book is increased by numerous illustrations, many of which are reproductions of old designs."—Scotsmas.

"It is well and carefully written, and the illustrations are numerous and authentic."

School Guardian.

Historical Handbooks. Edited by OSCAR BROWNING, M.A., Fellow of King's College, Cambridge.

Crown 8vo.

- English History in the XIVth Century. By CHARLES H. PEARSON, M. A., late Fellow of Oriel College, Oxford. 3s. 6d.
- The Reign of Lewis XI. By P. F. WILLERT, M.A., Fellow of Exeter College, Oxford. With Map. 3s. 6d.
- The Roman Empire. A.D. 395-800. By A. M. Curteis, M.A. With Maps. 3s. 6d.
- History of the English Institutions. By PHILIP V. SMITH, M.A., Fellow of King's College, Cambridge. 3s. 6d.
- History of Modern English Law. By Sir ROLAND KNYVET WILSON, Bart., M.A., late Fellow of King's College, Cambridge. 3s. 6d.
- History of French Literature. Adapted from the French of M. Demogeot, by C. Bridge. 3s. 6d.

(Recommended by the Intermediate Education Board for Ireland.)

History of the Romans to the Establishment of

Imperialism. By J. S. Reid, LL.M., Fellow and Assistant-Tutor of Gonville and Caius College, Cambridge; Classical Examiner in the University of London.

[In preparation.

This work is intended to be used by the higher Forms in Public Schools, and by Junior Students in the Universities. It aims at exhibiting in outline the growth of the Roman national life in all departments. Military history will not be neglected, but attention will be particularly directed towards the political and social changes, and the development of law, literature, religion, art, science, and social life. Care will be taken to bring the whole narrative into accord with the present state of knowledge, and also to present the facts of Roman History in a form likely to interest the Students for whom the work is intended.

Historical Biographies. Edited by the Rev. M. CREIGHTON, M. A., late Fellow and Tutor of Merton College, Oxford.

With Maps and Plans. Small 8vo.

Simon de Montfort. By M. Creighton, M.A. 2s. 6d.

The Black Prince. By Louise Creighton, 2s. 6d.

Sir Walter Ralegh. By LOUISE CREIGHTON. With Portrait. 3s. Oliver Cromwell. By F. W. Cornish, M.A. 3s. 6d.

The Duke of Marlborough. By Louise Creighton. With Portrait. 2s. 6d.

The Duke of Wellington. By ROSAMOND WAITE. With Portrait. 3s. 6d.

Crown 8vo. 6s.

A Handbook in Outline of the Political History of England to 1881. Chronologically arranged. By Arthur H. D. Acland, M.A., Christ Church, Oxford, and Cyril Ransome, M.A., Professor of Modern Literature and History, Yorkshire College, Leeds.

Second Series. Crown 8vo. 2s. 6d.

Test Questions on Selected Portions of English Literature and History. By Thomas Miller Maguire, M.A., LL.D.

(These questions refer to the works in English Literature and the periods in English History selected by the Civil Service Commissioners for the Army Examinations to be held in the year 1881. Copies of the questions on these subjects for 1880 are still kept on sale.)

Second Edition, Revised. Crown 8vo. 7s. 6d.

History of the Church under the Roman Empire,
A.D. 30-476. By the Rev. A. D. CRAKE, B. A., Rector of Haven
Streat, Ryde.

New Edition. 18mo. 1s. 6d.

A History of England for Children. By George DAVYS, D.D., formerly Bishop of Paterborough.

SCIENCE

Crown 8vo. 2s. 6d.

Elementary Course of Practical Physics. By A. M. WORTHINGTON, M.A., F.R.A.S. Assistant-Master at Clifton College.

Second Edition. With Illustrations. Crown 8vo. 12s. 6d.

Physical Geology for Students and General Readers. By A. H. GREEN, M.A., F.G.S., Professor of Geology in the Yorkshire College of Science, Leeds.

New Edition, Revised. With Illustrations, Crown 8vo. 2s. 6d.

An Easy Introduction to Chemistru. Edited by the Rev. ARTHUR RIGG, M.A., and WALTER T. GOOLDEN, M.A., Lecturer in Natural Science at Tonbridge School.

Second Edition. With Illustrations. Crown 8vo. 5s.

A Year's Botany. Adapted to Home and School Use. By FRANCES ANNE KITCHENER. Illustrated by the Author.

Medium 8vo.

Notes on Building Construction.

Arranged to meet the requirements of the syllabus of the Science and Art Department of the Committee of Council on Education, South Kensington Museum.

PART I.—FIRST STAGE, OR ELEMENTARY COURSE. With 325 woodcuts, 10s. 6d.

PART IL - COMMENCEMENT OF SECOND STAGE, OR ADVANCED COURSE. With 277 woodcuts, 10s. 6d.

PART III.—ADVANCED COURSE. With 188 woodcuts, 21s.

REPORT ON THE EXAMINATION IN BUILDING CONSTRUCTION, HELD BY THE SCIENCE AND ART DEPARTMENT, SOUTH KENSINGTON, IN MAY, 1875.—"The want of a lextbook in this subject, arranged in accordance with the published sylladus, and therefore limiting the students and teachers to the prescribed course, has lately been well met by a work published by Messrs. Rivingtons, entitled 'Notes on Building Construction, arranged to meet the requirements of the Sylladus of the Science and Art Department of the Committee of Council on Education, South Kensington. (Signed)

H. C. SEDDON, MAJOR, R.E.

June 18, 1875.

[Instructor in Construction and Extramalia at the School of Millians Favingaring Chatten.]

School of Military Engineering, Chatham.]

MATHEMATICS

Rivington's Mathematical Series

Small 8vo. 3s. Without Answers, 2s. 6d.

Elementary Algebra. By J. Hamblin Smith, M.A., of Gonville and Caius College, and late Lecturer in Classics at St. Peter's College, Cambridge.

A KEY TO ELEMENTARY ALGEBRA. Crown 800. 95.

Small 8vo. 2s. 6d.

Exercises on Algebra. By J. Hamblin Smith, M.A. (Copies may be had without the Answers.)

Crown 8vo. 8s. 6d,

Algebra. PART II. By E. J. GROSS, M.A., Fellow of Gonville and Caius College, Cambridge, and Secretary to the Oxford and Cambridge Schools Examination Board.

Small 8vo. 3s. 6d.

A Treatise on Arithmetic. By J. Hamblin Smith, M.A. (Copies may be had without the Answers.)

A KEY TO ARITHMETIC. Crown 8vo. 9s.

Small 8vo. 4s. 6d.

Elementary Trigonometry. By J. Hamblin Smith, M.A. A Key to Elementary Trigonometry. Crown 8vo. 7s. 6d.

Crown 8vo. 5s. 6d.

Kinematics and Kinetics. By E. J. Gross, M.A.

Crown 8vo. As. 6d.

Geometrical Conic Sections. By G. Richardson, M.A.,
Assistant-Master at Winchester College, and late Fellow of St. John's
College, Cambridge.

Small 8vo. 3s.

Elementary Statics. By J. Hamblin Smith, M.A.

Small 8vo. 3s.

Elementary Hydrostatics. By J. Hamblin Smith, M.A.

Crown 8vo. 6s.

A Key to Elementary Statics and Hydrostatics.

By J. Hamblin Smith, M.A.

Small &vo. 3s. 6d.

Elements of Geometry. By J. Hamblin Smith, M.A.
Containing Books I to 6, and portions of Books II and I2, of
EUCLID, with Exercises and Notes, arranged with the Abbreviations
admitted in the Cambridge University and Local Examinations.
Books I and 2, limp cloth, Is. 6d., may be had separately.

Prescribed by the Council of Public Instruction for the use of the schools of Nova Scotia; authorized for use in the schools of Manitoba; recommended by the University of Halifax, Nova Scotia, by the Council of Public Instruction, Quebec; and authorized by the Education Department, Ontario.

Crown 8vo. 8s. 6d.

A Key to Elements of Geometry. By J. Hamblin Smith, M.A.

Small 8vo. 1s.

Book of Enunciations for Hamblin Smith's Geometry, Algebra, Trigonometry, Statics, and Hydrostatics.

Small 8vo. 3s.

An Introduction to the Study of Heat. By J. HAMBLIN SMITH, M.A.

CONTENTS.—General Effects of Heat—Thermometry—Expansion of Gases—Expansion of Solids—Expansion of Liquids—Calorimetry—Latent Heat—Measure of Heat—Diffusion of Heat: Radiation—Convection—Conduction—Formation of Vapour, Dew, &c.: Trade Winds, Ebullition, Papin's Digester, Spheroidal Condition—Congelation—Measurement of Work—Mechanical Equivalent of Heat—Miscellaneous Exercises—Appendix—Index.

Crown 8vo. 6s.

The Principles of Dynamics. An Elementary Text-book for Science Students. By R. Wormell, D.Sc., M.A., Head-Master of the City of London Middle-Class School.

Small 8vo. 3s. 6d.

Army and Civil Service Examination Papers in Arithmetic, including Mensuration and Logarithms, set in recent Examinations for the Army, Woolwich, Cooper's Hill, Home Civil Service, &c. With Arithmetical Rules, Tables, Formulæ and Answers, for the use of Students preparing for Examination. By A. DAWSON CLARKE, B.A., St. John's College, Cambridge.

New Edition, Revised. Crown 8vo. 6s. 6d.

Arithmetic, Theoretical and Practical.

GIRDLESTONE, M.A., of Christ's College, Cambridge.

Also a School Edition. Small 8vo. 3s. 6d.

LATIN

New Edition, revised. Crown 8vo. 3s. 6d.

First Latin Writer. Comprising Accidence, the Easier Rules of Syntax illustrated by copious Examples, and progressive Exercises in Elementary Latin Prose, with Vocabularies. By G. L. Bennett, M.A., Head-Master of the High School, Plymouth.

A KEY for the use of Tutors only. Crown 8vo. 5s.

CONTENTS.—PREFACE—ACCIDENCE—EXERCISES ON THE SYNTAX (270): The Simple Sentence; The Compound Sentence: Adjectival Clauses, Adverbial Clauses, Substantival Clauses—LATIN-ENGLISH VOCABULARY—ENGLISH-LATIN VOCABULARY.

Crown 8vo. 2s. 6d.

First Latin Exercises. Being the Exercises, with Syntax Rules and Vocabularies, from a "First Latin Writer." By G. L. Bennett, M.A.

Crown Svo. 1s. 6d.

Latin Accidence. From a "First Latin Writer." By G. L. BENNETT, M.A.

"The book is a perfect model of what a Latin Writer should be, and is so graduated that from the beginning of a boy's classical course it will serve him throughout till the end as a text-book for Latin prose composition. The exercises, too, are so interesting in themselves, and take up the different idiomatic peculiarities in such an easy and natural way that the pupil almost insensibly comes to be master of them, without having them glaringly thrust upon him in little detached sentences, which, when mixed up in a nar-

rative, he fails, of course, to recognise. We cannot speak too strongly of this little work, and we say to very classical teacher, if you introduce this work into your junior class, you will require no other work throughout till you come to the fifth or sixth form, and perhaps not even then. The book has our unqualified approbation. We ought to mention, for the sake of those who may think of using the work, that there are two sets of vocabularies, which obviate the necessity of having recourse to any Latin Dictionary."—Schoolmasten.

Second Edition. Crown 8vo. 3s. 6d.

Second Latin Writer. By G. L. Bennett, M.A., Head-Master of the High School, Plymouth.

This work, in continuation of the First Latin Writer, gives hints on writing Latin Prose for Boys about to commence the rendering of continuous passages from English Authors into Latin. There is a large Collection of Exercises, graduated according to their difficulty, with Notes.

A KEY for the use of Tutors only. Crown 8vo. 5s.

"This is one of the best introductions to Latin prose composition we have seen. The introductory remarks, the chapter on the analysis of the Latin sentence, the observations on style, the table of miscellaneous idioms, and the collection of exercises for practice, furnished with notes to assist the student in points which present difficulties, are all excellent. The passages used for translation into Latin are specimens of continuous narrative, and

are well adapted to be taken up by the student who has just gone through the ordinary Latin exercise books."—SCHOOLMASTER.

"Mr. Bennett's Second Latin Writer will be, or should be, of very great zervice to students who have acquired a fair mastery over the rudiments of the language. The student who honestly works through this book will have acquired a very great degree of facility in Latin prose.—Scotsman.

New Edition, revised. Crown 8vo. 2s. 6d.

Easy Latin Stories for Beginners. By G. L. Bennett, M.A., Head-Master of the High School, Plymouth. With Notes and Vocabularies. Forming a First Latin Reading Book for Junior Forms in Schools.

A KEY for the use of Tutors only. Crown 8vo. 5s.

Small 8vo. 2s.

Selections from Caesar. The Gallic War. Edited, with Preface, Life of Caesar, Text, Notes, Geographical and Biographical Index, and Map of Gaul, by G. L. BENNETT, M.A., Head-Master of the High School, Plymouth.

Crown 8vo. 1s. 6d.

First Steps in Latin. By F. RITCHIE, M.A., Assistant-Master at the High School, Plymouth.

"Thanks for Ritchie's 'First Steps in Latin.' In my judgment it is much sounder and better than anything else you have published for young children learning Latin."

J. G. CROMWELL,
St. Mark's College, Chelsea.

Small 8vo. Is. 6d.

Gradatim. An Easy Translation Book for Beginners. By H. R. HEATLEY, M.A., and H. N. KINGDON, B.A., Assistant-Masters at Hillbrow School, Rugby.

The aim of this book is to provide translation for boys immediately on beginning Latin. With this view care is taken that the beginner encounters no difficulty of Grammar or Syntax without due warning.

Crown 8vo. 1s. 6d.

The Beginner's Latin Exercise Book. Affording Practice, oral and written, on Latin Accidence. By C. J. Sherwill Dawe, B.A., Lecturer and Assistant Chaplain at St. Mark's College, Chelsea.

New Edition. Crown 8vo. 2s. 6d.

Latin Prose Exercises. For Beginners, and Junior Forms of Schools. By R. PROWDE SMITH, B.A., Assistant-Master at Cheltenham College.

Crown 8vo. On a card, 9d.

Elementary Rules of Latin Pronunciation. By ARTHUR HOLMES, M.A., late Senior Fellow and Dean of Clare College, Cambridge.

18ma.

Latin Texts. For use in schools, &c. In stitched wrapper.

THE AENEID OF VERGIL. BOOKS I. II. III. IV. V. VII. VIII. IX. 2d. each. BOOKS VI. X. XI. XII. 3d. each.

THE GEORGICS OF VERGIL. Books I.-IV. 2d. each.

THE BUCOLICS OF VERGIL. 2d.

Vergil. The Bucolics, Georgics, and Æneid in One Volume. Cloth 2s. 6d.

CAESAR DE BELLO GALLICO. BOOKS I.V. VII. VIII. 3d. each. BOOKS II. III. IV. VI. 2d. each.

Caesar De Bello Gallico. In One Volume. Cloth, 1s. 6d.

Fifth Edition, Revised. Crown 8vo. 3s. 6d.

Progressive Exercises in Latin Elegiac Verse,
By C. G. Gepp, M.A., late Head-Master of King Edward VI.
School, Stratford-upon-Avon.

A KEY for the use of Tutors only. 8vo. 5s.

Twelfth Edition. 12mo. 2s.

A First Verse Book. Being an Easy Introduction to the Mechanism of the Latin Hexameter and Pentameter. By Thomas Kerchever Arnold, M.A.

A KEY for the use of Tutors only. 12mo. 1s.

Crown 8vo. 3s. 6d.

An Elementary Latin Grammar. By J. Hamblin Smith, M.A., of Gonville and Caius College, and late Lecturer in Classics at St. Peter's College, Cambridge.

Twenty-fifth Edition. 12mo. 3s.

Henry's First Latin Book. By THOMAS KERCHEVER ARNOLD, M.A. A KEY for the use of Tutors only. 12mo. 15.

A New and Revised Edition. 12mo. 3s.

Arnold's Henry's First Latin Book. By C. G. Gepp, M.A., late Head-Master of King Edward VI. School, Stratford-upon-Avon; Author of "Progressive Exercises in Latin Elegiac Verse."

A KEY for the use of Tutors only. Crown 8vo. 5s.

Twentieth Edition, 8vo. 6s. 6d.

A Practical Introduction to Latin Prose Composition. By Thomas Kerchever Arnold, M.A.

A KEY for the use of Tutors only. 12mo. 1s. 6d.

A New and Revised Edition. Crown 8vo. 5s.

Arnold's Practical Introduction to Latin Prose Composition. By G. Granville Bradley, M.A., Master of University College, Oxford, and formerly Master of Marlborough College.

A KEY for the use of Tutors only. 5s.

"An Introduction has been prefixed containing three parts, two of which are new, the other much modified. The first of these is an explanation of the traditional terms by which we designate the different 'parts of speech' in English or Latin. The exposition is confined to the most simple and elementary points. This is followed by a few pages on the Analysis of the Simple and Compound Sentence. Such logical analysis of the language is by this time generally accepted as the only basis of intelligent grammatical teaching, whether of our own or of any other language. I have followed Mr. Arnold's example in prefixing some remarks, retaining so far as possible his own language, on the Order of Words; I have added some also on the arrangement of clauses in the Latin Sentence. The matter for translation as comprised in the various exercises has been almost entirely rewritten. I have not, after full consideration, taken what would have been the easier course, and substituted single continuous passages for a number of separate and unconnected sentences. I found that for the special purpose of the present work, dealing as it does with such manifold and various forms of expression, the employment of these latter was indispensable, and I have by long experience convinced myself of their value in teaching or studying the various turns and forms of a language which differs in such innumerable points from our own as classical Latin."

Crown 8vo.

The Eneid of Vergil. Edited, with Notes at the end, by FRANCIS STORR, M.A., Chief-Master of Modern Subjects at Merchant Taylors' School.

BOOKS I. and II. 2s. 6d. BOOKS XI. and XII. 2s. 6d.

Small 8vo. 1s. 6d.

Virgil, Georgics. BOOK IV. Edited, with Life, Notes, Vocabulary, and Index, by C. G. GEPF, M.A., late Head-Master of King Edward VI. School, Stratford-upon-Avon, and Editor of "Arnold's Henry's First Latin Book," revised edition.

Small 8vo. 1s. 6d.

Selections from the Aeneid of Vergil. With Notes. By G. L. BENNETT, M.A., Head-Master of the High School, Plymouth. New Edition, Revised, Crown 8vo. 3s. 6d.

Stories from Ovid in Elegiac Verse. With Notes for School Use and Marginal References to the PUBLIC SCHOOL LATIN PRIMER. By R. W. TAYLOR, M.A., Head-Master of Kelly College, Tavistock, and late Fellow of St. John's College, Cambridge.

New Edition, Revised. Crown 8vo. 2s. 6d.

Stories from Ovid in Hexameter Verse. morphoses. With Notes and Marginal References to the PUBLIC SCHOOL LATIN PRIMER. By R. W. TAYLOR, M.A.

New Edition, Revised. 12mo. 2s. 6d.

Eclogæ Ovidianæ. From the Elegiac Poems. With English Notes. By Thomas Kerchever Arnold, M.A.

Small 8vo. 2s.

Cicero de Amicitia. Edited, with Notes and an Introduction, by ARTHUR SIDGWICK, M.A., Tutor of Corpus Christi College, Oxford; late Assistant-Master at Rugby School, and Fellow of Trinity

Contents.—Introduction: Time and Circumstances—Dedication—Scheme of the Dialogue—Characters of the Dialogues: The Scipionic Circle—Pedigree of the Scipios—Conspectus of the Dialogue—Analysis. Laelius De Amicitiâ—Notes—Scheme of the Subjunctive—Notes on the Readings—Indices.

" No volume on our list is more valuable than Mr. Sidgwick's edition of Cicero's treatise' De Amicitia, prefaced by a re-view of the circumstances and scheme and view of the transitionies and scient must interlocutors of the dialogue, a conspectus and analysis of the same, and an excellent appendix on the scheme of the subjunctive, which cannot fail to be useful to school-

boys and students. It is just the work to boys and students. It is just the work to be placed in a young student's hands for translation and retranslation; and Mr. Sidgwick's explanatory and illustrative notes are calculated to fix its matter in the memory. We can strongly recommend this in every respect well-furnished edition."—SATURDAY REVIEW.

Crown 8vo. 3s. 6d.

Exercises on the Elementary Principles of Latin Prose Composition. With Examination Papers on the Elementary Facts of Latin Accidence and Syntax. By J. HAMBLIN SMITH, M.A., of Gonville and Caius College, and late Lecturer in Classics at St. Peter's College, Cambridge.

A KEY. Crown 8vo. 5s.

Small 8vo. 1s. 4d.

Easu Exercises in Latin Prose. By Charles Bigg, D.D., formerly Principal of Brighton College.

16mo.

A Latin-English Dictionary for Junior Forms of Schools. By C. G. Gepp, M.A. [In the Press.

This work aims at supplying in a concise form and at a low cost all the information required by boys in Middle Class Schools, or in the Junior Forms of Public Schools. Archaisms (with the exception of such as occur in the most commonly read authors), words peculiar to Plautus, and words found only in Late or Ecclesiastical Latin, have been excluded accordingly. On the other hand, Proper Names have been briefly yet adequately treated in alphabetical order in the body of the work. No effort has been spared to ensure completeness and accuracy, all references having been verified from the latest and most approved editions of modern scholars. While every legitimate aid has been given to schoolboys, with whom the looking out a meaning is often a very haphazard process, it is hoped that the volume may be found a useful and handy companion to many who seek to renew their acquaintance with the favourites of bygone days.

8vo. On a card, Is.

Outlines of Latin Sentence Construction. By E. D. MANSFIELD, M.A., Assistant-Master at Clifton College.

Second Edition. Crown 8vo. 7s. 6d.

Classical Examination Papers. Edited, with Notes and References, by P. J. F. GANTILLON, M.A., Classical Master at Cheltenham College.

Or, interleaved with writing-paper, half-bound, 10s. 6d.

New Edition, re-arranged, with fresh Pieces and additional References.

Crown 8vo. 6s. 6d.

Materials and Models for Latin Prose Composition.

Selected and arranged by J. Y. SARGENT, M.A., Fellow and Tutor of Hertford College, Oxford, and T. F. DALLIN, M.A., late Tutor and Fellow of Queen's College, Oxford.

New Edition, revised, with additional pieces. Crown 8vo. 5s.

Latin Version (116) of Selected Pieces from Materials and Models. By J. Y. SARGENT, M.A.

May be had by Tutors only, on direct application to the Publishers.

Small 8vo. 3s. 6d.

CCBAR. De Bello Gallico. BOOKS I.-III. Edited, with Preface, Introductions, Maps, Plans, Grammatical, Historical, and Geographical Notes, Indices, Grammatical Appendices, &c., by J. H. MERRYWEATHER, M.A., and C. C. TANCOCK, M.A., Assistant-Masters at Charterhouse.

BOOK I. separately. 2s.

Small 8vo. 2s.

Selections from Books VIII. and IX. of Livy. With Notes and Map. By E. CALVERT, LL.D., St. John's College, Cambridge; and R. SAWARD, M.A., Fellow of St. John's College, Cambridge; Assistant-Master at Shrewsbury School.

Fifth Edition. 12mo. 4s.

Cornelius Nepos. With Critical Questions and Answers, and an Imitative Exercise on each Chapter. By T. K. Arnold, M.A.

Crown 8vo.

Terenti Comædiæ. Edited by T. L. PAPILLON, M.A., Fellow of New College, Oxford.

ANDRIA ET EUNUCHUS. With Introduction on Prosody. 4s. 6d. Or separately, ANDRIA. With Introduction on Prosody. 3s. 6d. EUNUCHUS. 3s.

Crown 8vo. 5s.

Juvenalis Satire. THIRTEEN SATIRES. Edited by G. A. SIMCOX, M.A., Fellow of Queen's College, Oxford.

Crown 8vo. 3s. 6d.

Persii Satire. Edited by A. PRETOR, M.A., of Trinity College, Cambridge.

Crown 8vo. 7s. 6d.

Horati Opera. By J. M. Marshall, M.A., Under-Master at Dulwich College.

VOL. L.—THE ODES, CARMEN SECULARE, AND EPODES. Also separately, THE ODES. BOOKS I. to IV. 15. 6d. each.

Crown 800.

Taciti Historice. Edited by W. H. SIMCOX, M.A., Fellow of Queen's College, Oxford.

BOOKS L and IL, &. BOOKS III., IV., and V., &.

GREEK

Second Edition, Revised. Crown 8vo. 3s. 6d.

A Primer of Greek Grammar. With a Preface by John Percival, M.A., Ll.D., President of Trinity College, Oxford; late Head-Master of Clifton College.

This book is in use at Eton, Rugby, Clifton, Edinburgh, Rossall, Uppingham, Felstead, &c.

Or separately, crown 8vo. 2s. 6d.

Accidence. By Evelyn Abbott, M.A., LL.D., Fellow and Tutor of Balliol College, Oxford; and E. D. Mansfield, M.A., Assistant-Master at Clifton College.

Crown 8vo. 1s. 6d.

Syntax. By E. D. Mansfield, M.A., Assistant-Master at Clifton College.

This outline of the chief Rules of Greek Syntax, which is intended as a sequel to the "Primer of Greek Accidence," lays no claim to originality of treatment. The Editor has freely consulted the usual authorities, especially the well-known "Greek Moods and Tenses," and the later "Elementary Greek Grammar," of Professor W. W. Goodwin, and has only aimed at stating Rules simply and concisely, and so grouping them as to indicate general principles and prepare the beginner for the use of a fuller treatise. He is largely indebted in the first part of the Syntax to material kindly placed at his disposal by Mr. Evelyn Abbott, which, however, has for teaching purposes been thrown into a shape for which the Editor alone is responsible.—Extract from the Preface.

CONTENTS.—Part. I.—Agreement. The Cases. Accusative. Genitive. Dative. Prepositions. Article. Pronouns. Tenses. Notes on the Tenses. Moods. Infinitive. Participle. Verbal Adjective. Negatives of and μή. Conjunctions and Particles. Conjunctions. Participles. Part II.—The Simple Sentence. Direct Statement. Direct Command. Expression of a Wish. Direct Question. The Compound Sentence. Substantival Clauses: Indirect Statement—Indirect Command—Indirect Question. Adjective Clauses. Adverbial Clauses: Final—Consecutive—Temporal—Conditional—Concessive—Casual. Adjectival Clauses with Adverbial force. Further Rules for Indirect Speech.

Part I. Crown 8vo. 3s. 6d.

A Practical Greek Method for Beginners. Being a Graduated application of Grammar to Translation and Composition. By F. RITCHIE, M.A., and E. H. MOORE, M.A., Assistant-Masters at the High School, Plymouth.

Containing the Substantives, Adjectives, Pronouns, and Regular Pure Verbs, with exercises (English-Greek and Greek-English), introducing the main rules of Syntax of the Simple Sentence.

The aim of this book, which is at once a Grammar and Exercise Book, is to secure an uniform method of teaching Grammar, and to afford abundant practice in inflexion, &c., at the time that the Grammar is being learnt.

PART II. in preparation.

Second Edition, Revised. Crown 800. 3s. 6d.

A First Greek Writer. By ARTHUR SIDGWICK, M.A., Tutor of Corpus Christi College, Oxford, late Assistant-Master at Rugby School, and Fellow of Trinity College, Cambridge.

This book is in use at Eton, Harrow, Winchester, Rugby, Clifton, Shrewsbury, Charterhouse, Edinburgh, &c.

A KEY for the use of Tutors only. Crown 800. 5s.

GENERAL CONTENTS. Hints on Writing Greek. The Articles. Pronouns. Attraction. Adjectives. Cases. Infinitive. Participle. Tense Idioms. Adverbs. Dramatic Particles. About 120 Exercises, with special and general vocabularies.

Third Edition, Revised. Crown 800. 5s.

An Introduction to Greek Prose Composition, with Exercises. By Arthur Sidgwick, M.A.

A KEY for the use of Tutors only. 5s.

Sixth Edition, 12mo, 5s.

The First Greek Book. On the plan of Henry's First Latin Book. By THOMAS KERCHEVER ARNOLD, M.A.

A KEY for the use of Tutors only. 12mo. 1s. 6d.

New Edition, Revised. Crown &vo.

Arnold's First Greek Book. By Francis David Morice, M.A., Assistant-Master at Rugby School, and Fellow of Queen's College, Oxford. [In preparation.

Third Edition, Imperial 16mo. 8s. 6d.

Madvig's Syntax of the Greek Language, especially of the Attic Dialect. For the use of Schools.

Edited by THOMAS KERCHEVER ARNOLD, M.A.

Recommended by the Cambridge Board of Classical Studies for the

Classical Tripos.

Ninth Edition. 8vo. 5s. 6d.

A Practical Introduction to Greek Accidence.
By Thomas Kerchever Arnold, M.A.

Thirteenth Edition, 8vo. 5s. 6d.

A Practical Introduction to Greek Prose Composition. By Thomas Kerchever Arnold, M.A.

A KEY for the use of Tutors only. 12mo. 1s. 6d.

New Edition, Revised. Crown 8vo. 3s. 6d.

Arnold's Practical Introduction to Greek Prose Composition. By Evelyn Abbott, M.A., LL.D., Fellow and Tuter of Balliol College, Oxford.

A KEY for the use of Tutors only. Crown 8vo. 3s. 6d.

"I have endeavoured to keep everything that seemed of value, and often I have adhered to the words of the explanations because I wished to preserve, as far so possible, the continuity of the book. But I have added Illustrations, altered the order of the sections, and indeed rearranged the matter of the sections themselves, wherever I thought that, by doing so, I could gain in clearness or simplicity; I have also rewritten, almost entirely, the sentences in the exercises. The lists of accents, irregular verbs, &c., which Mr. Arnold prefixed to his book, I have omitted, because all that is required on these matters can be obtained from the Greek Accidence; and I have also omitted the references to grammars now no longer in general use among scholars, the list of particles, and the questions on syntax at the end of the exercises. The table of idioms is ratined, with alterations, and references to it are given in the exercises—though I would strongly recommend the student to learn this table by heart, and so render reference unnecessary. The vocabulary is, I believe, nearly complete, and the index of matters will serve as an independent table of references, whenever those given in the text are insufficient."

Extract from the Preface.

Crown 820. 4s. 6d.

Elements of Greek Accidence. By Evelyn Abbott, M.A., LL.D., Fellow and Traor of Balliol College, Oxford.

Crown 8vo. 4s. 6d.

An Elementary Greek Grammar. By J. Hamblin Smith, M.A., of Gonville and Caius College, and late Lecturer in Classics at St. Peter's College, Cambridge.

Cloth limp, 8vo. 1s.

A Table of Irregular Greek Verbs, classified according to the arrangement of Curtius's Greek Grammar. By Francis Storr, M.A., Chief-Master of Modern Subjects at Merchant Taylors' School, and late Assistant-Master at Marlborough College.

Cloth limp, 8vo. 6d.

Elementary Card on Greek Prepositions. By Rev. E. PRIESTLAND, M.A., Spondon House School, Derbyshire.

Crown 8vo. 9d.

A Short Greek Syntax. Extracted from "Xenophon's Anabasis, with Notes." By R. W. Taylor, M.A., Head-Master of Kelly College, Tavistock.

Second Edition Revised. Small 8vo. 1s. 6d.

Zeugma; or, Greek Steps from Primer to Author. By the Rev. Lancelot Sanderson, M.A., Principal of Elstree School, late Scholar of Clare College, Cambridge; and the Rev. F. B. FIRMAN, M.A., Assistant-Master at Sanroyd School, Cobham, late Scholar of Jesus College, Cambridge.

Second Edition. Crown 8vo. 7s. 6d.

Classical Examination Papers. Edited, with Notes and References, by P. J. F. GANTILLON, M.A., Classical Master at Cheltenham College.

Or interleaved with writing-paper, half-bound, 10s. 6d.

Second Edition, containing Fresh Pieces and additional References. Crown 8vo. 5s.

Materials and Models for Greek Prose Composition. Selected and arranged by J. Y. SARGENT, M.A., Fellow and Tutor of Hertford College, Oxford; and T. F. DALLIN, M.A., Tutor, late Fellow, of Queen's College, Oxford.

Crown 8vo. 7s. 6d.

Greek Version of Selected Pieces from Materials and Models. By J. Y. SARGENT, M.A.

May be had by Tutors only, on direct application to the Publishers.

Crown 8vo. 2s.

Iophon: An Introduction to the Art of Writing Greek lambic Verses. By the WRITER of "Nuces" and "Lucratitis."

Fifth Edition. Crown 8vo. 1s. 6d.

Stories from Herodotus. The Tales of Rhampsinitus and Polycrates, and the Battle of Marathon and the Alcmaeonidae. In Attic Greek. Edited by J. Surtees Phillpotts, M.A., Head-Master of Bedford Grammar School.

New Edition. Small 8vo. 3s. 6d.

Selections from Lucian. With English Notes. By EVELYN ABBOTT, M.A., LL.D., Fellow and Tutor of Balliol College, Oxford.

Small 8vo. 1s. 6d. each.

Scenes from Greek Plays. Rugby Edition.

Abridged and adapted for the use of Schools, by ARTHUR SIDGWICK, M.A., Tutor of Corpus Christi College, Oxford, late Assistant-Master at Rugby School, and Fellow of Trinity College, Cambridge.

Aristophanes.

THE CLOUDS. THE FROGS. THE KNIGHTS. PLUTUS.

Euripides.

IPHIGENIA IN TAURIS. THE CYCLOPS. ION ELECTRA. ALCESTIS. BACCHÆ. HECUBA

Third Edition. Crown 8vo. 3s. 6d.

Stories in Attic Greek. Forming a Greek Reading Book for the use of Junior Forms in Schools. With Notes and Vocabulary. By Rev. Francis David Morice, M.A., Assistant-Master at Rugby School, and Fellow of Queen's College, Oxford.

CONTENTS.—Hints to Beginners—How to look out words in a Vocabulary—Stems—Augments—Temporal Augments—Compound Verbs—Changes of Prepositions in Compound Verbs—Special Irregularities—List of Changes of Prepositions in Compound Verbs—Structure of Sentences—Conjunctions, &c.—Stops—Pronouns—Articles: (1) Marking subject. (2) Words placed between Article and Noun. (3) Repetition of Article. (4) Article with a Participle. (5) Article equivalent to a Possessive Pronoun. (6) Article with Infinitive—250 Stories—Notes—Index to Stories—Vocabulary of Proper Names—General Vocabulary.

Second Edition. Crown 8vo.

The Anabasis of Xenophon. Edited, with Preface, Introduction, Historical Sketch, Itinerary, Syntax Rules, Notes, Indices, Vocabularies, and Maps, by R. W. TAYLOR, M.A., Head-Master of Kelly College, Tavistock, and late Fellow of St. John's College, Cambridge.

BOOKS I. and II. 3s. 6d. BOOKS III. and IV. 3s. 6d. Also separately, BOOK I., 2s. 6d.; BOOK-II., 2s.

Crown 8vo. 2s. 6d.

Xenophon's Agesilaus. Edited, with Syntax Rules, and References, Notes and Indices, by R. W. TAYLOR, M.A.

Small 8vo. 2s.

Xenophon's Memorabilia. Book I., with a few omissions. Edited, with an Introduction and Notes, by the Rev. C. E. MOBERLY, M.A., formerly Scholar of Balliol College, Oxford.

Small 8vo. 2s.

Alexander the Great in the Punjaub. Adapted from Arrian, Book V. An Easy Greek Reading Book. Edited, with Notes and a Map, by the Rev. C. E. Moberly, M.A., formerly Scholar of Balliol College, Oxford.

Small 8vg.

Homer's Iliad. Edited, with Notes at the end for the Use of Junior Students, by ARTHUR SIDGWICK, M.A., Tutor of Corpus Christi College, Oxford; late Assistant-Master at Rugby School, and Fellow of Trinity College, Cambridge.

BOOKS I. and II. 2s. 6d.

CONTENTS.—Preface—Introduction—The Language of Homer—The Dialect—Forms—Syntax—General Text, Books I. and II.—Notes—Indices.

BOOK XXI. Is. 6d.

BOOK XXII. is. 6d.

Small 8vo. 2s.

Homer without a Lexicon, for Beginners. ILIAD, Book VI. Edited, with Notes giving the meanings of all the less common words, by J. Surtees Phillpotts, M.A., Head-Master of Bedford Grammar School.

Fifth Edition. 12mo. 3s. 6d.

Homer for Beginners. ILIAD, BOOKS I.-III. With English Notes. By Thomas Kerchever Arnold, M.A.

Fifth Edition. 12mo. 12s.

The Iliad of Homer. With English Notes and Grammatical References. By THOMAS KERCHEVER ARNOLD, M.A.

Crown 8vo. 6s.

The Iliad of Homer. BOOKS I.-XII. From the Text of Dindorf. With Preface and Notes. By S. H. REYNOLDS, M.A., late Fellow and Tutor of Brasenose College, Oxford.

New Edition. 12mo. 9s.

A Complete Greek and English Lexicon for the Poems of Homer and the Homeridæ. By G. Ch. Crusius. Translated from the German. Edited by T. K. Arnold, M.A.

8vo. 16s.

Hellenica. A Collection of Essaus on Greek Poetru. Philosophy, History, and Religion. Edited by EVELYN ABBOTT, M.A., LL.D., Fellow and Tutor of Balliol College, Oxford.

CONTENTS .- Aeschylus. E. Myers, M.A.-The Theology and Ethics of Sophocles. E. Abbott, M.A., LL.D.—System of Education in Plato's Republics. R. L. Nettleship, M.A.-Aristotle's Conception of the State. A. C. Bradley, M.A.-Epicurus, W. L. Courtney, M.A.—The Speeches of Thucydides. R. C. Jebb, M.A., LL.D.—Xenophon. H. G. Dakyns, M.A.—Polybius, J. L. S. Davidson, M.A.—Greek Oracles, F. W. H. Myers, M.A.

820. T&c.

The Antiquities of Greece. THE STATE. Translated from the German of G. F. SCHOEMANN. By E. G. HARDY, M.A., Head-Master of the Grammar School, Grantham, and late Fellow of Jesus College, Oxford; and J. S. MANN, M.A., Fellow of Trinity College, Oxford.

Crown 8vo.

Herodoti Historia. Edited by H. G. Woods, M.A., Fellow and Tutor of Trinity College, Oxford. BOOK I. 6s. BOOK II. 5s.

Crown 8vo. As. 6d.

Isocratis Orationes. AD DEMONICUM ET PANEGYRICUS. Edited by JOHN EDWIN SANDYS, M.A., Fellow and Tutor of St. John's College, Cambridge, and Public Orator of the University.

12mo.

Demosthenes. Edited, with English Notes and Grammatical References, by Thomas Kerchever Arnold, M.A. OLYNTHIAC ORATIONS. Third Edition. 3s. ORATION ON THE CROWN. Second Edition. 4s. 6d.

Crown 8vo. ' 5s.

Demosthenis Orationes Privatæ. DE CORONA. Edited by ARTHUR HOLMES, M.A., late Senior Fellow and Dean of Clare College, Cambridge,

Crown 8vo.

Demosthenis Orationes Publicæ. Edited by G. H. HESLOP, M.A., late Fellow and Assistant-Tutor of Queen's College, Oxford; Head-Master of St. Bees.

OLYNTHIACS, 2s. 6d. or, in One Volume, 4s. 6d. PHILIPPICS, 3s. Cor, in the DE FALSA LEGATIONE, 6s.

Second Edition, Revised and Enlarged. Crown 8vo. 10s. 6d.

An Introduction to Aristotle's Ethics. Books L.-IV. (Book X., c. vi.-ix. in an Appendix). With a Continuous Analysis and Notes. Intended for the use of Beginners and Junior Students. By the Rev. Edward Moore, B.D., Principal of St. Edmund Hall, and late Fellow and Tutor of Queen's College, Oxford.

Small 8vo. 4s. 6d.

Aristotelis Ethica Nicomachea. Edidit, emendavit, crebrisque locis parallelis e libro ipso, aliisque ejusdem Auctoris scriptis, illustravit Jacobus E. T. Rogers, M.A.

Interleaved with writing-paper, half-bound. 6s.

Second Edition. Crown 8vo. 3s. 6d.

Selections from Aristotle's Organon. Edited by John R. Magrath, D.D., Provost of Queen's College, Oxford.

I 2mo.

80phocles. Edited by T. K. Arnold, M.A., Archdeacon Paul, and Henry Brown, M.A.

AIAX. 25. PHILOCTETES. 35.

OEDIPUS TYRANNUS. 45.

Crown 8vo.

Sophoclis Tragædiæ. Edited by R. C. Jebb, M.A., Ll.D.,
Professor of Greek at the University of Glasgow, late Fellow and
Tutor of Trinity College, Cambridge.
ELECTRA. 3s. 6d. AJAX. 3s. 6d.

Crown 8vo.

Aristophanis Comædiæ. Edited by W. C. Green, M.A., late Fellow of King's College, Cambridge; Assistant-Master at Rugby School.

THE ACHARNIANS and THE KNIGHTS. 4s. THE CLOUDS. 3s. 6d. THE WASPS, 3s. 6d.

Crown 8vo. 6s.

Thucydidis Historia. Books I. and II. Edited by CHARLES BIGG, D.D., late Senior Student and Tutor of Christ Church, Oxford; formerly Principal of Brighton College.

Crown 8vo. 6s.

Thucydidis Historia. BOOKS III. and IV. Edited by G. A. SIMCOX, M.A., Fellow of Queen's College, Oxford.

Fifth Edition. 8vo. 21s.

A Copious Phraseological English-Greek Lexicon.
Founded on a work prepared by J. W. Frädersdorff, Ph.D., late
Professor of Modern Languages, Queen's College, Belfast. Revised,
Enlarged, and Improved by Thomas Kerchever Arnold, M.A.,
and Henry Browne, M.A.

Third Edition. Crown 8vo. 2s. 6d.

Short Notes on the Greek Text of the Gospel of St. Mark. By J. Hamblin Smith, M.A., of Gonville and Caius College, Cambridge.

Crown 8vo. 4s. 6d.

Notes on the Greek Text of the Acts of the Apostles. By J. Hamblin Smith, M.A., of Gonville and Caius College, Cambridge.

Crown 8vo. 6s.

Notes on the Gospel According to S. Luke. By the Rev. ARTHUR CARR, M.A., Assistant-Master at Wellington College, late Fellow of Oriel College, Oxford.

New Edition. 4 vols. 8vo. 102s.

The Greek Testament. With a Critically Revised Text; a Digest of Various Readings; Marginal References to Verbal and Idiomatic Usage; Prolegomena; and a Critical and Exegetical Commentary. For the use of Theological Students and Ministers. By HENRY ALFORD, D.D., late Dean of Canterbury.

The Volumes are sold separately, as follows:-

Vol. I.—THE FOUR GOSPELS. 28s.

Vol. II.-ACTS TO 2 CORINTHIANS. 2.

Vol. III.—GALATIANS TO PHILEMON. 18s.

Vol. IV.—HEBREWS TO REVELATION. 325.

New Edition. 2 vols. Imperial 8vo. 60s.

The Greek Testament. With Notes, Introductions, and Index. By CHR. WORDSWORTH, D.D., Bishop of Lincoln.

The Parts may be had separately, as follows:—

THE GOSPELS. 16.

THE ACTS. &s.

ST. PAUL'S EPISTLES. 23s.

GENERAL EPISTLES, REVELATION, AND INDEX. 16.

CATENA CLASSICORUM

Crown 800.

- Aristophanis Comcediæ. By W. C. GREEN, M.A.
 THE ACHARNIANS AND THE KNIGHTS. 41.
 THE WASPS. 31. 6d. THE CLOUDS. 31. 6d.
- Demosthenis Orationes Publicæ. By G. H. HESLOP, M.A.

 THE OLYNTHIACS. 2s. 6d. or, in One Volume, 4s. 6d.

 DE FALSA LEGATIONE. 6s.
- Demosthenis Orationes Privatæ. DE CORONA. By ARTHUR HOLMES, M.A. 5s.
- Herodoti Historia. By H. G. Woods, M.A. Book I., 6s. Book II., 5s.
- Homeri Ilias. By S. H. REYNOLDS, M.A. BOOKS L-XIL 6r.
- Horati Opera. By J. M. Marshall, M.A.

 THE ODES, CARMEN SECULARE, and EPODES. 7s. 6d.

 THE ODES. Books L to IV. separately, 1s. 6d. each.
- Isocratis Orationes. AD DEMONICUM ET PANEGYRICUS. By John Edwin Sandys, M.A. 41. 6d.
- Juvenalis Satiræ. By G. A. SIMCOX, M.A. 5s.
- Persii Satiræ. By A. Pretor, M.A. 3s. 6d.
- Sophoclis Tragoediæ. By R. C. Jebb, M.A.
 THE ELECTRA. 31. 6d. THE AJAX. 31. 6d.
- Taciti Historiæ. By W. H. Simcox, M.A. Books I. and II., 6s. Books III. IV. and V., 6s.
- Terenti Comcediæ. ANDRIA AND EUNUCHUS. With Introduction on Prosody. By T. L. Papillon, M.A. 45. 6d.

Or separately.

ANDRIA. With Introduction on Prosody. 3s. 6d.

EUNUCHUS. 3s.

Thucydidis Historia. Books I. and II. By Charles Bigg, D.D. 6s.
Books III. and IV. By G. A. Simcox, M.A. 6s.

DIVINITY

Small 8vo. 3s. 6d. each. Or each Book in Five Parts, Is. each Part.

Manuals of Religious Instruction. Edited by John Pilkington Norris, D.D., Archdeacon of Bristol, Canon Residentiary of Bristol Cathedral, and Examining Chaplain to the

The Old Testament. | The New Testament. The Prayer Book.

Cheap Edition, Small 8vo, 1s. 6d. each.

Keys to Christian Knowledge. By the Rev. J. H.

BLUNT, M.A., Editor of the "Annotated Book of Common Prayer."

The Holy Bible. | The Church Catechism.

The Book of Common Prayer.

Bishop of Manchester.

Church History, Ancient. Church History, Modern.

By JOHN PILKINGTON NORRIS, D.D., Archdeacon of Bristol.

The Four Gospels. | The Acts of the Apostles.

18mo. 1s. 6d.

Easy Lessons Addressed to Candidates for Confirmation. By John Pilkington Norris, D.D.

New Edition. Small 8vo. 1s. 6d.

A Manual of Confirmation. With a Pastoral Letter instructing Catechumens how to prepare themselves for their First Communion. By EDWARD MEYRICK GOULBURN, D.D., Dean of Norwick.

16mo, 1s. 6d.; Paper Covers, 1s.; or in Three Parts, 6d. each.

The Young Churchman's Companion to the Prayer

BOOK. By the Rev. J. W. GEDGE, M.A., Diocesan Inspector of Schools for the Archdeaconry of Surrey.

PART I.—MORNING AND EVENING PRAYER, AND LITANY. PART II.—BAPTISMAL AND CONFIRMATION SERVICES. PART III.—THE HOLY COMMUNION.

Crown 8vo. 7s. 6d.

Some Helps for School Life. Sermons preached at Clifton College, 1862-1879. By J. Percival, M.A., IL.D., President of Trinity College, Oxford, and late Head-Master of Cifton College. New Edition. Small 8vo. 3s. 6d.

Household Theology. A Handbook of Religious Information respecting the Holy Bible, the Prayer Book, the Church, the Ministry, Divine Worship, the Creeds, &c. &c. By the Rev. JOHN HENRY BLUNT, M.A., F.S.A., Editor of "The Annotated Book of Common Prayer," &c. &c.

Second Edition, Revised. Crown 8vo. 7s. 6d.

Rudiments of Theology. A First Book for Students. By JOHN PILKINGTON NORRIS, D.D., Archdeacon of Bristol, Canon Residentiary of Bristol Cathedral, and Examining Chaplain to the Bishop of Manchester.

The New Testament according to the Authorized Version. With Introductions and Notes by John Pilkington Norris, D.D., Archdeacon of Bristol, Canon Residentiary of Bristol Cathedral, and Examining Chaplain to the Bishop of Manchester.

Vol. I. THE FOUR GOSPELS. 10s. 6d.
Vol. II. THE ACTS, EPISTLES, AND REVELATION. 10s. 6d.

Second Edition. 18mo. 1s. 6d.

The Way of Life. A Book of Prayers and Instruction for the Young at School. With a Preparation for Holy Communion.

Compiled by a Priest. Edited by the Rev. T. T. CARTER, M.A.

Crown 16mo. Cloth limp. 1s. 6d.

A Manual of Devotion, chiefly for the Use of Schoolboys. By WILLIAM BAKER, D.D., Head-Master of Merchant Taylors' School. With Preface by J. R. WOODFORD, D.D.; Lord Bishop of Elv.

Small 8vo. 1s.

Church Principles on the Basis of the Church Catechism. For the use of Teachers and the more Advanced Classes in Sunday and other Schools. By JOHN MACBETH, LL.D., Rector of Killegney, one of the Examiners under the Board of Religious Education of the General Synod of the Church of Ireland.

Crown 8vo. Is. Cloth limp, Is. 6d.

Study of the Church Catechism. Adapted for use as a Class Book. By C. J. SHERWILL DAWE, M.A., Lecturer and Assistant-Chaplain at St. Mark's College, Chelsea.

GERMAN

New Edition, Revised. 4to. 3s. 6d.

A German Accidence for the Use of Schools. By J. W. J. VECQUERAY, Assistant-Master at Rugby School.

Crown 8vo. 2s.

First German Exercises. Adapted to Vecqueray's "German Accidence for the Use of Schools." By E. F. GRENFELL, M.A., late Assistant-Master at Rugby School.

Crown 8vo. 2s. 6d.

German Exercises. Part II. With Hints for the Translation of English Prepositions into German. Adapted to Vecqueray's "German Accidence for the Use of Schools." By E. F. GRENFELL, M.A., late Assistant-Master at Rugby School.

Crown 8vo. 4s. 6d.

Selections from Hauff's Stories. A First German Reading Book. Edited by W. E. MULLINS, M. A., Assistant-Master at Mariborough College, and F. STORR, M. A., Chief-Master of Modern Subjects in Merchant Taylors' School.

Also, separately, crown &vo. 2s.

Kalif Stork and The Phantom Crew.

Eighth Edition. 12mo. 5s. 6d.

The First German Book.
J. W. Frädersdorff, Ph.D.

By T. K. Arnold, M.A., and
Key, 12mo, 2s. 6d.

Crown 8vo. 2s. 6d.

Lessing's Fables. Arranged in order of difficulty. A First German Reading Book. By F. STORR, M.A., Chief-Master of Modern Subjects in Merchant Taylors' School, and late Assistant-Master in Marlborough College.

Crown 8vo. 7s. 6d.

Goethe's Faust. Part 1. Text, with English Notes, Essays, and Verse Translations. By E. J. TURNER, M.A., and E. D. A. MORSHEAD, M.A., Assistant-Masters at Winchester College. Crown 8vo.

FRENCH

New Edition, Small 8vo. 2s.

A Graduated French Reader. With an Introduction on the Pronunciation of Consonants and the Connection of Final Letters, a Vocabulary, and Notes, and a Table of Irregular Verbs with the Latin Infinitives. By PAUL BARBIER, one of the Modern Language Masters at the Manchester Grammar School, and Examiner to the Intermediate Education Board of Ireland, etc.

Crown 8vo.

The Campaigns of Napoleon. The Text (in French) from M. THIERS' "Histoire de la Révolution Française," and "Histoire du Consulat et de l'Empire." Edited, with English Notes and Maps, for the use of Schools, by EDWARD E. BOWEN, M.A., Master of the Modern Side, Harrow School.

ARCOLA. 4s. 6d. IENA. 2s. 6d.

MARENGO. 4s. 6d. WATERLOO. 6s.

New Editions. Crown 8vo. 3s. 6d. each.

Selections from Modern French Authors. Edited, with English Notes and Introductory Notice, by Henri Van Laun, Translator of Taine's History of English Literature.

HONORÉ DE BALZAC.

H. A. TAINE.

Small 8vo. 2s.

La Fontaine's Fables. Books I. and II. Edited, with English Notes at the end, by Rev. P. BOWDEN-SMITH, M.A., Assistant-Master at Rugby School.

Sixth Edition. 12mo. 5s. 6d.

The First French Book. By T. K. ARNOLD, M.A. KEY, 12mo, 2s. 6d,

Small 8vo. 2s. 6d.

The Bengeo French Grammar. A l'usage des Ecoles Préparatoires. Par EMILE DE TUETEY, B.S.

MISCELLANEOUS

With Maps. Small 8vo.

A Geography, Physical, Political, and Descriptive, for Beginners. By L. B. Lang. Edited by the Rev. M. CREIGHTON, M.A., late Fellow and Tutor of Merion College, Oxford.

Vol. I. THE BRITISH EMPIRE. 2s. 6d.

PART I. THE BRITISH ISLES. 1S. 6d. PART II. THE BRITISH POSSESSIONS. 1S. 6d.

VOL. II. THE CONTINENT OF EUROPE. [In the Press.

VOL. III. ASIA, AFRICA, AND AMERICA. [In preparation.

Small 8vo. 2s. 6d. each part.

Modern Geography for the Use of Schools.

By the Rev. C. E. MOBERLY, M.A., formerly Scholar of Balliol College, Oxford.

PART I. NORTHERN EUROPE.

PART II. THE MEDITERRANEAN & ITS PENINSULAS.

Crown 8vo. 3s. 6d.

At Home and Abroad; or, First Lessons in Geography. By J. K. LAUGHTON, M.A., F.R.A.S., F.R.G.S., Mathematical Instructor and Lecturer at the Royal Naval College.

Second Edition. Crown 8vo. 2s. 6d.

The Chorister's Guide. By W. A. BARRETT, Mus. Bac. Oxon., Vicar-Choral of St. Paul's Cathedral, Author of "Flowers and Festivals," &c.

Crown 8vo. 2s. 6d.

An Introduction to Form and Instrumentation, for the use of Beginners in Composition. By W. A. BARRETT, Mus. Bac. Oxon., Vicar-Choral of St. Paul's Cathedral.

Sixth Edition. 12mo. 7s. 6d.

The First Hebrew Book. By T. K. Arnold, M.A. Kry, 12mo, 3s. 6d.

BY J. HAMBLIN SMITH.

Elementary Algebra. Small 8vo, 3s. Without Answers, 2s. 6d.

Key to Elementary Algebra. Crown 8vo. 9s.

Exercises on Algebra. Small 8vo, 2s. 6d.

Arithmetic. Small 8vo, 3s. 6d.

Key to Arithmetic. Crown 8vo. 9s.

Elements of Geometry. Small 8vo, 3s. 6d. Books I. and II., limp cloth, price 1s. 6d., may be had separately.

Key to Elements of Geometry. Crown 8vo. 8s. 6d.

Trigonometry. Small 8vo, 4s. 6d.

Key to Trigonometry. Crown 8vo. 7s. 6d.

Elementary Statics. Small 8vo, 3s.

Elementary Hydrostatics. Small 8vo, 3s.

Key to Elementary Statics and Hydrostatics. Crown 8vo. 6v.

Book of Enunciations for Hamblin Smith's Geometry, Algebra, Trigonometry, Statics, and Hydrostatics. Small 8vo, 1s.

An Introduction to the Study of Heat. Small 8vo, 3s.

Latin Grammar. Crown 800, 3s. 6d.

Exercises on the Elementary Principles of Latin Prose Composition. Crown 8vo, 3s. 6d.

Key to Exercises on Latin Prose Composition.

Crown 8vo. 5s.

An Elementary Greek Grammar. Crown 800, 4s. 6d.

The Rudiments of English Grammar and Composition. Crown 8vo, 2s. 6d.

Notes on the Greek Text of the Acts of the Apostles. Crown 8vo, 4s. 6d.

Notes on the Greek Text of the Gospel of St. Mark. Crown 8vo, 2s. 6d.

RY ARTHUR SIDGWICK.

An Introduction to Greek Prose Composition.

Crown 8vo. 5s. A Key. 5s.

A First Greek Writer. Crown 8vo. 3s. 6d. A KEY. 5s. Cicero de Amicitia. Small 8vo. 2s.

Homer's Iliad. Small 8vo. BOOKS I. and II. 2s. 6d. BOOK XXI. 1s. 6d. BOOK XXII. 1s. 6d.

Scenes from Greek Plays. Small 8vo, each 1s. 6d.

ARISTOPHANES: The Clouds, The Frogs, The Knights, Plutus. EURIPIDES: Iphigenia in Tauris, The Cyclops, Ion, Electra, Alcestis, Bacchæ, Hecuba.

BY GEORGE L. BENNETT.

First Latin Writer. Crown 8vo. 3s. 6d. A Key. 5s.

First Latin Exercises. Crown 8vo. 2s. 6d.

First Latin Accidence. Crown 8vo. 1s. 6d.

Second Latin Writer. Crown 8vo. 3s. 6d. A KEY. 5s.

Easy Latin Stories for Beginners. With Vocabularies and Notes. Crown 8vo. 2s. 6d. A KEY. 5s.

A Second Latin Reading Book. Crown 8vo.

Selections from Cæsar. The Gallic War. Small 800. 25.

Selections from Vergil. Small 8vo. 1s. 6d.

BY R. W. TAYLOR.

Xenophon's Anabasis. Crown 8vo. Books I. and II., 3s. 6d.; III. and IV., 3s. 6d. Also separately, Book I., 2s. 6d. II., 2s.

Xenophon's Agesilaus. Crown 800. 2s. 6d.

A Short Greek Syntax. Crown 8vo. 9d.

Stories from Ovid in Elegiac Verse. Crown 800, 3s. 6d.

Stories from Ovid in Hexameter Verse. METAMOR-PHOSES. Crown 8vo. 2s. 6d.

Scott's Lady of the Lake. Forming a Volume of the "English School Classics." Small 8vo, 2s.; or in Three Parts, each 9d.

BY FRANCIS STORR.

Small 8vo.

Cowper's Task. 2s.; or in Three Parts, each 9d.

Cowper's Simple Poems. 1s.

Twenty of Bacon's Essays. 15.

Milton's Paradise Lost. Book I., 9d.; Book II., 9d.

Macaulay's Essays: Moore's Life of Byron, 9d.; Boswell's Life of Johnson, 9d.

Gray's Odes, and Elegy Written in a Country Church-yard. 15.

Forming Volumes of the "English School-Classics."

Crown 8vo.

The Æneid of Vergil. Books I. and II., 2s. 6d. Books XI. and XII., 2s. 6d.

Lessing's Fables. Arranged in order of difficulty. A First German Reading Book. Crown 8vo, 2s. 6d.

Selections from Hauff's Stories. Edited by W. E. Mullins, M.A., and F. Storr, M.A. Crown 8vo, 4s. 6d.

Also, separately,

Kalif Stork and the Phantom Crew. Crown 8vo, 2s.

BY C. G. GEPP.

Progressive Exercises in Latin Elegiac Verse. Crown 8vo, 3s. 6d. A KEY, 5s.

Arnold's Henry's First Latin Book. 12mo, 3s. A KEY, 5s.

Virgil, Georgics. Book IV. Small 8vo. 1s. 6d.

A Latin-English Dictionary. 16mo.

INDEX

PAGE	PAGE
ABBOTT (E.), Arnold's Greek Prose 23	Catena Classicorum 30
- Elements of Greek Accidence 23	Cicero de Amicitia
— Essays on Aristotle 3	Clarke (A. D.), Examination Papers 13
- Hellenica	Cornelius Nepos. By T. K. Arnold 20
- Selections from Lucian 24	Cornish (F. W.), Oliver Cromwell . 10 Courtney (W. L.), Philosophical Subjects 2 Corlo (A. D.) History of the Church
- and Mansfield (E.D.), Primer of Greek Grammar 21	Crake (A. D.). History of the Church
Acland (A.), Political Hist. of Eng. 10	Crake (A. D.), History of the Church Creighton (L.), First Hist. of Eng. 8
Alford (Dean) Greek Testament . 29	
Aristophanes	Crusius (G. C.), Homeric Lexicon . 26
Aminanala'a Fahina	Curteis (A. M.), The Roman Empire 9
- Organon. By J. R. Magrath . 28	DALLIN (T.), Materials and Models 19,24
- Essays on. By Abbott	Davys (Bishop), History of England 10
Arnold (T. K.) Cornelius Nepos . 20	Dawe (C. J. S.), Latin Exercise Bk. 15
- Crusius' Homeric Lexicon 26	- Study of Church Catechism . 32
— Demosthenes 27	Demosthenes
— Eclogæ Ovidianæ 18	ENGLISH School-Classics 6, 7
- Eng. Greek Lexicon 29	Euripides, Scenes from 25
- First French Book and Key . 34	
- First German Book and Key . 33 - First Greek Book and Key . 22	
- First Greek Book and Key . 22 - revised by F. D. Morice . 22	·
- First Hebrew Book and Key . 35	GANTILLON (P.J.F.), Exam. Papers. 19, 24
- First Verse Book and Key . 16	Gedge (J. W.), Com. to Prayer Book 31
- Greek Accidence 22	Gepp (C. G.), Arnold's Henry's First Latin Book
- Greek Prose Comp. and Key . 22	
- revised by E. Abbott 23	— Latin Elegiac Verse 16 — Latin-English Dictionary 19
- Henry's First Latin and Key . 16	- Virgil
- revised by C. G. Gepp 16	— Works by
- Homer's Iliad 26	Girdlestone (W. H.), Arithmetic . 13
- Latin Prose Comp. and Key . 17	Goethe's Faust
- revised by G. G. Bradley . 17	Goolden (W. T.), Intro. to Chemistry 11
- Madvig's Greek Syntax 22	Goulburn (Dean), Confirmation . 31
— Sophocles 28	Greek Antiquities, Study of 3
BACON'S Essays. By F. Storr . 2	Green (A. H.), Geology for Students
Baker (W.), Manual of Devotion . 32	- (W. C.), Aristophanes 28 Grenfell (E. F.), German Exercises 33
Barbier (P.), French Reader	Grenfell (E. F.), German Exercises 33
	Gross (E. J.), Algebra, Part II 12
Belcher (H.), Livy, Book II.	
Bennett (G. L.), Cæsar's Gallic War 15	HARDY (E. G.), Antiq. of Greece . 27
Bennett (G. L.), Cæsar's Gallic War Easy Latin Stories and Key . 15	Hauff's Stories, Selections from . 33
- First Latin Exercises 14	Heatley (H. K.), Gradatim 15
- First Latin Writer and Key . 14	- Latin Translation Book 2
— Latin Accidence 14	Hellenica, Essays
- Second Latin Writer and Key . 14	Herodotus, Stories from, Phillpotts . 24
- Second Latin Reader 3	— By H. G. Woods
- Vergil, Selections from 17	Hertz (H. A.), Short Readings 5 Heslop (G. H.), Demosthenes 27
Works by	Historical Biographies 10
Bigg (C.), Latin Prose Exercises . 18	Historical Handbooks 9
Bigg (C.), Latin Prose Exercises 18 — Thucydides, Books 1. II. 28 Blunt (J. H.), Household Theology 32 — Keys to Christian Knowledge 31	
Keys to Christian Knowledge	Holmes (A.), Demosthenes 27 — Rules of Latin Pronunciation . 15
	Homer's Iliad
Bradley (G. G.), Arnold's Latin Prose 17	Horace. By J. M. Marshall 20
	IOPHON 24
Bridge (C.), French Literature . 0	Isocrates. By J. E. Sandys 27
Bright (J. F.), History of England . 8	
Brooke (E. P.), Jugurtha of Sallust 2	JEBB (R. C.), Sophocles
building Construction, Notes on . 11	Jennings (A. C.), Ecclesia Anglicana Juvenal. By G. A. Simcox so
Burton (J.), English Grammar . 5	
CAESAR	Keys to Christian Knowledge . 31
Calvert (E.), Selections from Livy. 20	- List of

INDEX.		
	PAGE	4 PAGE
Kingdon (H. N.), Gradatim	15	Sargent (J.), Materials and Models. 19, 24 Schoemann's Antiquities of Greece 27
LATIN TEXT BOOKS	16	Shakspere's Plays
La Fontaine's Fables. By P. Smith	34	Sidgwick (A.), Cicero de Amicitia . 18 — First Greek Writer . 22
Lang (L.B), Geography for Beginners	35	- Greek Prose Composition . 22
Laughton (J.), At Home and Abroad Laun (Van, H), French Selections. Lessing's Fables. By F. Storr Livy, Selections from	35	- Greek Verse Composition 2
Presing's Wahles By F Storm	34	- Homer's Iliad 26
Livy. Selections from	33	- Scenes from Greek Plays 25
- Book II. By H. Belcher	20	— Works by
Lucian, Selections from	24	Simcox (G. A.), Juvenalis Satiræ 20 — Thucydides 28 — (W. H.), Taciti Historiæ 20 Smith (J. Hamblin), The Acts 29
MACRETH (J.), Church Principles Madvig's Greek Syntax	32	— (W. H.), Taciti Historiae 20
Madvig's Greek Syntax	23	Smith (J. Hamblin), The Acts 29
Magrath (J. R.), Aristotle's Organon Maguire (T. M.), Test Questions . Mann (J. S.), Antiquities of Greece	28	— Algebra and Key
Maguire (1. M.), Test Questions	10	- Algebra, Exercises on 12
Mann (J. S.), Antiquities of Greece	27	- Arithmetic and Key 12
Mansfield (E. D.), Latin Sentence . — Primer of Greek Syntax	19	- Book of Enunciations 13
Manuals of Religious Instruction	21	English Grammar
Marshall (I M) Horati Opera	31	- Greek Grammar
Marshall (J. M.), Horati Opera Merryweather (J. H.), Cæsar	10	- Greek Grammar
Moberly (C.E.), Alexander the Great	. 26	- Hydrostatics and Key 12
- Geography	35	- Latin Grammar
- Shakspere's Plays	5	- Prose Composition and Key . 18
Xenophon's Memorabilia	25	- Statics and Key 12
Moore (E.), Aristotle's Ethics	28	— St. Mark's Gospel 20
Moore (E. H.), Greek Method	21	- Trigonometry and Key 12
Moore (E.), Aristotle's Ethics. Moore (E. H.), Greek Method — Selections from Thucydides	3	— Works by
Morice (F. D.), Stories in Attic Greek	25	- (P. Bowden), La Fontaine's Fables 34
- Alliold's First Office Dook ,	22	- (P. V.), English Institutions
Morshead (E.D.), Goethe's Faust .	33	- (R. Prowde), Latin Prose Ex 15
Mullins (W. E.), Hauff's Stories .	33	Sophocles
NAPOLEON'S Campaigns	34	Storr (F.), Æneid of Vergil 17 — Greek Verbs 23
Norris (J. P.), New Testament .	32	
- Confirmation	31	- Haun's Stories
- Keys to Christian Knowledge .	31	— Works by
- Rudiments of Theology	32	•
OVIDIANAS Eclogae. By Arnold .	18	TACITUS. By W. H. Simcox 20 Tancock (C. C.), Cæsar 19 Taylor (R. W.), Short Greek Syntax 23
OVIDIANA Eclogae. By Arnold Ovid, Stories from. By R. W. Taylor	18	Tancock (C. C.), Caesar 19
		Taylor (R. W.), Short Greek Syntax 23
Papillon (T. L.), Terenti Comcediæ Pearson (C. H.), English History	20	— Stories from Ovid
Percipal (I.) Helps for School Life	9	- Xenophon's Agesilaus
Persine Ry A Pretor	31 20	VII. 1
Percival (J.), Helps for School Life. Persius. By A. Pretor Phillpotts (J. S.), Homer's Iliad — Shakspere's Tempest	26	Terence. By T. L. Papillon
- Shakspere's Tempest	5	Terence. By T. L. Papillon . 20 Tidmarsh (W.) English Grammar . 5
- Stories from Herodotus	24	Thompson (F. E.), Syntax of Attic Greek 3
Powell (F. York), English History .	8	Thucydides 1, 28
Pretor (A.), Persii Satiræ	20	Turner (E. J.) Goethe's Faust . 33
Priestland (E.), Greek Prepositions	- 23	
RANSOME (C.), Political Hist, of Eng.		VECQUERAY (J.), German Accidence 33
Reid (J. S.), Greek Antiquities .	10	Vergil 16, 17
- History of the Romans	3	WAITE (R.), Duke of Wellington . 20
Reynolds (S. H.), Iliad of Homer .	26	Way of Life
Richardson (G.), Conic Sections .	12	Whitelaw, Shakspere's Coriolanus . 5
Rigg (A.), Intro. to Chemistry Ritchie (F.), First Steps in Latin — Practical Greek Method	11	Whitelaw, Shakspere's Coriolanus . 5 Willert (P. F.), Reign of Lewis XI. 9
Ritchie (F.), First Steps in Latin .	15	Wilson's Modern English Law . 9
- Practical Greek Method	21	Woods (H. G.), Herodoti Historia . 27
Rivington's Mathematical Series . 1	2, 13	Wordsworth (Bp.), Greek Testament 20
Rogers (J. E. T.), Aristotle's Ethics	28	Wormell, Principles of Dynamics . 13
SANDERSON (L.), Zeugma	1	Worthington's Practical Physics . 11
Sandys (J. E.), Isocratis Orationes	24	Xenophon

•

.

RIVINGTONS' EDUCATIONAL LIST

Arnold's Latin Prose
Composition. By G. G. BRADLEY.
51.

[The original Edition is still on sale.]

Arnold's Henry's First

Latin Book. By C. G. GEPP. 3s.

[The original Edition is still on sale.]

First Latin Writer. By G. L. Bennett. 3s. 6d.

Or separately—
First Latin Exercises, 25, 6d.
Latin Accidence, 15, 6d.

Second Latin Writer.
By G. L. Bennett. 3s. 6d.

Easy Latin Stories for Beginners. By G. L. BENNETT. 25.6d.

Selections from Cæsar.
By G. L. Bennett. 25.

Selections from Vergil.
By G. L. Bennett. 25.

Virgil Georgics. Book IV. By C. G. GEPP. 18. 6d.

Cæsar de Bello Gallico.

Books I—III. By J. MerryWeather and C. Tancock. 35. 6d.

Book I. separately, 25.

The Beginner's Latin Exercise Book. By C. J. S. DAWE. 15. 6d.

First Steps in Latin. By F. Ritchib. 15. 6d.

Gradatim. An Easy Latin Translation Book. By H. HEATLEY and H. KINGDON. 15. 6d.

Arnold's Greek Prose Composition. By E. Abbott. 31.6d. [The original Edition is still on sale.]

A Primer of Greek
Grammar. By E. ABBOTT and E.
D. MANSFIELD. 3s. 6d.
Or separately—

Syntax, 1s. 6d.
Accidence. 2s. 6d.

A Practical Greek Method for Beginners. The SIMPLE SENTENCE. By F. RITCHIE and E. H. MOORE. 35.6d.

Stories in Attic Greek. By F. D. Morice, 3s. 6d.

A First Greek Writer.
By A. Sidgwick. 3s. 6d.

An Introduction to Greek

Prose Composition. By A. SIDGWICK. 55.

Homer's Iliad. By A. Sidg-WICK. Books I. and II. 2s. 6d. Book XXI. 1s. 6d. Book XXII. 1s. 6d.

The Anabasis of Xeno-

phon. By R. W. TAYLOR.
Books I. and II. 3s. 6d.
Or separately, Book I., 2s. 6d.;
Books II., 2s.
Books III. and IV. 3s. 6d.

Xenophon's Agesilaus. By R. W. Taylor. 25. 6d.

Stories from Ovid in Elegiac Verse. By R. W. TAYLOR. 3s. 6d.

Stories from Ovid in Hexameter Verse. By R. W. TAV-LOR. 25. 6d.

Waterloo Place, Pall Mall, London.

[C-503]

RIVINGTONS' EDUCATIONAL LIST

Select Plays of Shakspere.

RUGBY EDITION.

By the Rev. C. E. MOBBERLY.
AS YOU LIKE IT. 2s.
MACBETH. 2s. 6d.
KING LEAR. 2s. 6d.
ROMEO AND JULIET. 2s.
KING HENRY THE FIFTH. 2s.
MIDSUMMER NIGHT'S
DREAM. 2s.
By R. WHITELAW.
CORIOLANUS. 2s. 6d.

By J. S. PHILLPOTTS.
THE TEMPEST. 2s.

A History of England.

By the Rev. J. F. BRIGHT.

Period I.—MEDLEVAL MOMARCHY:
A.D. 449—1485. 45. 6d.

Period II.—PERSONAL MONARCHY:
A.D. 1485—1688. 52.

Period III.—CONSTITUTIONAL MONARCHY: A.D. 1689—1837. 7s. 6d.

Historical Biographies.

By the Rev. M. CREIGHTON.
SIMON DE MONTFORT. 2s. 6d.
THE BLACK PRINCE. 2s. 6d.
SIR WALTER RALEGH. 3s.
DUKE OF WELLINGTON. 3s. 6d.
DUKE OF MARLBOROUGH.
3s. 6d.
OLIVER CROMWELL. 3s. 6d.

A Handbook in Outline of English History to 1881. By ARTHUR H. D. ACLAND and CYRIL RANSOME.

A First History of England. By Louise Creighton. With Illustrations. 25, 6d.

Army and Civil Service
Examination Papers in Arithmetic.
By A. DAWSON CLARKE. 3s. 6d.

Short Readings in English Poetry. By H. A. HERTZ. 22. 6d.

Modern Geography, for the Use of Schools. By the Rev. C. E. Moberly. Part I.—Northern Europe. 2s. 6d. Part II.—Southern Europe. 2s. 6d.

A Geography for Beginners. By L. B. Lang. THE BRITISH EMPIRE. 25. 6d. Part I.—THE BRITISH ISLES. 12. 6d. Part II.—THE BRITISH POSSES-SIONS. 12. 6d.

A Practical English Grammar. By W. Tidmarsh.

A Graduated French
Reader. By Paul Barbier. 25.

La Fontaine's Fables.

Books I. and II. By the Rev. P.

BOWDEN-SMITH. 25.

Goethe's Faust. By E. J. Turner, and E. D. A. Morshead.

Lessing's Fables. By F.
Storr. 21. 6d.

Selections from Hauff's Stories. By W. E. MULLINS and F. STORR. 4s. 6d.

Also separately—
KALIF STORK AND THE
PHANTOM CREW. 25.

A German Accidence.

By J. W. J. VECQUERAY. 3s. 6d.

German Exercises. Adapted to the above. By E. F. Gren-FELL. Part I. 2s. Part II. 2s. 6d.,

Waterloo Place, Pall Mall, London.

