

National University of Computer and Emerging Sciences Chiniot-Faisalabad Campus

nstructor: Muhammad Adeel Tahir	EE1005 – Digital Logic Design
	Ouiz# 1

Quiz# i										
Name:			Section:	CS - N	Roll Number			-		
Total Marks:	40 Marks	Total Time:	40 m	nins	Marking (do not fill these)					
Obtained Marks										

- Questions must be solved in the space provided for them, incase answers are not in the respective fields, they will not be
- Use extra rough sheets or spaces provided for your rough works, do not make a mess on the solution areas.
- MCQ questions must not have any cutting whatsoever, if more than one option is marked, it will be marked as incorrect.
- Only use permeant ink pen for marking your answers, answers written with pencils will not be checked.

Multiple Choice Questions: Circle the correct option or options (if more than one is correct) for the following questions. Once

marked, any	cutting will lea	ad to 0 mark	for the MCQ.					[10 mar	ks]	
1. The given a) (35.684) ₈	hexadecima	al number (1 <mark>b) (36.246)</mark> 8	•	uivalent to: c) (34.340)8	d) (35.599	9)8			
2. The octal (<mark>a) (1A9.2A)1</mark> 0		umber (651.124) ₈ is equivalent to b) (1B0.10)16			3)16	d) (1B0.B	d) (1B0.B0)16			
3. Binary sul <mark>a) 100010</mark>	otraction of	101101 – 00 1 b) 010110	c) 110101 d) 101100)				
4. The binary	number 10	00110101000	01101111 can	be written	in hexadecim	nal as				
(a) AD467 ₁₆ b) 8C46F ₁₆		c) 8D46F ₁	6	(d) AE46F	(d) AE46F ₁₆					
5. On subtracting (010110)2 from (1011001)2 using 2's complement, we get a) 0111001 b) 1100101 c) 0110110 d) 1000011										
6, On addition of +38 and -20 using 2's complemer a) 11110001 b) 100001110			ent, we get _ c) 010010		d) 110101	d) 110101011				
7. An overflo <mark>a) MSD posit</mark>		b) LSD posi	tion	c) Middle p	oosition	d) Signed	Bit (MS	D LSD , D refer	s to digit)	
8. The advantage of 2's complement system is that a) Only one arithmetic operation is required b) Two arithmetic operations are required c) No arithmetic operations are required d) Different Arithmetic operations are required										
9. For arithm a) 1's comple			2's complem	<mark>ent</mark> c) 10's compler	ment	d) 9	's complemer	ıt	
10. The exce <mark>a) 100011001</mark>			en by 10001010011	c) 0101100101	11	d) 0	10110101101		
Answer Box (mark the correct letter i.e a,b,c,d in SEQUENCE)										
b	a	а	С	d	С	a	a	b	a	
For Rough W	ork Only]					

(a) binary (b) octal (c) hexadecimal (d) base 3 (e) base 5

[1+1+1+1+1+3 = 8 marks]

Question 1: Convert the decimal number 97.710 into a number with exactly the same value rep resented in the following bases. The exact value requires an infinite repeating part in the fractional part of the number. Show the steps of your derivation.

(a) binary (b) octal (c) hexadecimal (d) base 3 (e) base 5

Solution: (a), (c)
$$16 \, \lfloor 97 \, \ldots \, 7$$
 (d) $3 \, \lfloor 97 \, \ldots \, \frac{7}{3}$ $3 \, \lfloor 32 \, \ldots \, \frac{3}{3}$ $10 \, \ldots \, \frac{3}$

Question 2: Add the following numbers in binary using both 1's and then 2's complement to represent negative numbers. Use a word length of 6 bits (including sign) and indicate if an overflow occurs

Solution:

a)
$$\frac{\text{In 2's complement}}{(-10) + (-11)} \underbrace{\begin{array}{c} \text{In 1's complement} \\ (-10) + (-11) \\ 110110 \\ 110101 \\ (1)101011 \\ (-21) \\ \end{array}}_{\begin{array}{c} 110100 \\ (-21) \\ \end{array}} \underbrace{\begin{array}{c} \text{In 1's complement} \\ (-8) + (-11) \\ 111000 \\ 110101 \\ \underline{} \\ 1101101 \\ \underline{} \\ \underline{} \\ 1101101 \\ \underline{} \\ \underline{} \\ \underline{} \\ 1101101 \\ \underline{} \\ \underline{$$

Convert (64^{1/3})5 to Hexadecimal. (if possible)

[3 marks]

$$[(4^3)^{1/3}]_5$$

$$= (4)_5 \rightarrow ?_{16}$$

Base 5 to decimal calculation:

$$(4)_5 = (4 \times 5^0) = (4)_{10}$$

Decimal to base 16 calculation:

Divide by the base to get the digits from the remainders:

Division	Quotient	Remainder (Digit)	Digit #
4/16	0	4	0
= (4) ₁₆			

Question 3: One of the following bit patterns is valid BCD (binary-coded decimal), but the other one is not, Which one is not valid? For credit to be given, you must give a correct reason. **[2 marks]**

1. 100110110100

2. 100100111000

Which one is valid? 2nd one

Why is the other one not valid:

In BCD, each 4-bit group (nibble) represents a decimal digit from 0 to 9. Each nibble must be between 0000 and 1001. Breaking down the given bit pattern into nibbles:

- 1. 1001
- 2. 1011
- 3. 0100

The second nibble, 1011, is not a valid BCD representation, as it exceeds the maximum value of 1001. Therefore, the entire bit pattern is invalid.

Question 4: Find the 9's and the 10's complement of the following decimal numbers:

[4 marks]

00,000,000 9s comp: 99,999,999 10s comp: 00,000,000

Step 1: Find the 9's Complement

We obtain the 9's complement of a decimal number by subtracting each digit from 9.

9999999 - 5274630 4725369

Step 2: Add 1 to the 9's Complement

We add 1 to the 9's complement to obtain the 10's complement.

4725369 + 1 4725370

Question 5: Add the signed numbers: 01000100, 00011011, 00001110, and 00010010 and write your final answer in the provided space. **[2 marks]**

Solution

The equivalent decimal additions are given for reference.

Final Answer:

(In Binary): 01111111

(In Decimal): 127

Question 6: Add the following BCD numbers:

[2 + 2 = 4 marks]

Question 7 Gray code conversions. Attempt the following parts carefully.

(a) Convert the binary number 11000110 to Gray code

[1+1+2 =4 marks]

(b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:

(c) The ten-bit Gray code for $(353)_{10}$ is 0111010001. Explain briefly but precisely why it cannot be true that 0111010100 is the ten-bit Gray code for $(354)_{10}$.

Also calculate gray code for 354₁₀

Gray Code for (354)₁₀:

111010011

Explanation:

(b) Gray code to binary:

In Gray code, consecutive numbers differ by only one bit.

Given that the Gray code for 353_{10} is 0111010001, the Gray code for 354_{10} must differ by **exactly one bit**

If we compare 0111010100 to 0111010001, we see that **two bits** are different (positions 8 and 2). **This** violates the fundamental property of Gray code. Therefore, 0111010100 cannot be the correct Gray code for 354_{10} .

Question 8: Construct a 6-2-2-1 weighted code for decimal digits. What are all possible combinations through which the 9823₁₀ can be constructed using the weight in 6-2-2-1?

[4 + 3 = 7 marks]

1100 0011 = 83

Different Combinations to represent 9823₁₀

Digit 9 in 6-2-2-1 weighted code: 1011
Digit 8 in 6-2-2-1 weighted code: 1010
Digit 2 in 6-2-2-1 weighted code: 0010
Digit 3 in 6-2-2-1 weighted code: 0011

there were other combinations as well one is written here for simplicity: 1101 (9) 1100 (8) 0100 (2) 0101 (3)

... and so on.

If 4 written correctly, full marks are awarded.