

Advanced Automotive Engineering

PIPE VIBRATION

Mechanical Vibration

Academic Year: 2020/2021

Prof. F. Pellicano

Prof. A. Zippo

Ass. G. larriccio

Group D:

Juan Sebastian Cepeda Munevar

Giacomo Chinni

Giovanni Coppola

Francesco Cuius Iuculano

Marco Cunaccia

Giacomo Davanzo

Edoardo d'Amicis

Denis Tonini

INTRODUCTION

- Pipe with a flowing fluid U = const.
- Transversal oscillation w

TARGETS

- 1. $f_i v.s.U, U_c$
- 2. Mode shapes and representation of one mode
- 3. Transient response when the system is excited with a point force located in mid-span

CASE OF STUDY

Ferrari LaFerrari: pipes from front radiator to rear engine

MODEL HYPOTHESIS

- 1. Euler-Bernoulli beam equation
- 2. Both supported ends
- 3. Small section compared to length (slender pipe)
- 4. Uncompressible fluid
- 5. Coriolis and centrifugal forces
- 6. Axial displacements negligible compared to the transversal ones

SYSTEM PARAMETERS

Rubber reinforced pipe with flowing water		
Fluid density (water) $[ho_f]$	$1077 kg/m^3$	
Flow rate at max rpm [Q]	4 l/s	
Length [L]	2 m	
External diameter [D _o]	19 mm	
Thickness [t]	3,9 mm	
Rubber density $[ho_p]$	$2300 kg/m^3$	
Young modulus [E]	100 Mpa	
Poisson coefficient $[\nu]$	0,49	
Viscosità cinematica $[\eta]$	$3,98 \cdot 10^{-6} m^2/s$	

SYSTEM PARAMETERS

- Internal diameter: $D_i = D_o 2t = 11.2$ [mm]
- Mean velocity: $U = \frac{Q}{2A} = 20.3 \left[\frac{m}{s} \right]$; NOTICE! 2 pipes.
- Flexural inertia moment: $I = \frac{\pi (D_0^4 D_i^4)}{64} = 5,62 \cdot 10^{-9} [m^4]$
- $\bar{p} = 2 \cdot 10^5 \, [Pa]$
- $\bar{T} = 100 [N]$
- Friction effect: $Re = \frac{UD_i}{}$

$$Re < 2300$$
 $\lambda = \frac{75}{Re}$
 $Re \ge 2300$ $\lambda = 0.3164/Re^{1/4}$

$$Re \ge 2300$$
 $\lambda = 0.3164/Re^{1/4}$

In our case, when U = const., $Re \ge 2300$, $\lambda = 0.205$.

EOM, PDE

From:

$$EI\frac{\partial^4 w}{\partial x^4} + \left\{ MU^2 \left(\frac{\lambda L}{4D_i} + 1 \right) - \bar{T} + \bar{p}A(1 - 2v) \right\} \frac{\partial^2 w}{\partial x^2} + 2MU \frac{\partial^2 w}{\partial x \partial t} + (M + m) \frac{\partial^2 w}{\partial t^2} = 0$$

Simplifications:

$$\bar{T}=0;\;\bar{p}=0;\lambda=0$$

Hence:

$$EI\frac{\partial^4 w}{\partial x^4} + MU^2\frac{\partial^2 w}{\partial x^2} + 2MU\frac{\partial^2 w}{\partial x \partial t} + (M+m)\frac{\partial^2 w}{\partial t^2} = 0$$

GALERKIN METHOD

EOM, PDE, compact form:

$$\ddot{w}(x,t) + \mathcal{L}(w(x,t)) = 0$$
where

$$\mathcal{L}(\cdot) = \frac{EI}{M+m} \frac{\partial^4 w}{\partial x^4} + \frac{1}{M+m} \left\{ MU^2 \left(\frac{\lambda L}{4D_i} + 1 \right) - \bar{T} + \bar{p}A(1-2v) \right\} \frac{\partial^2 w}{\partial x^2} + \frac{2MU}{M+m} \frac{\partial^2 w}{\partial x \partial t}$$

Displacement, Galerkin form:

$$w(x,t) = \sum_{j=1}^{N} q_j(t)\phi_j(x)$$

Substituting and projecting in Hilbert space (functions internal product thus integration):

$$\int_{0}^{L} \left[(M+m)\phi_{j}\phi_{n} \right] dx \, \ddot{q}_{n} + \int_{0}^{L} \left[2MU\phi_{j}^{I}\phi_{n} \right] dx \, \dot{q}_{n} + \int_{0}^{L} \left[\left[EI\phi_{j}^{IV} + \left(MU^{2} \left(\frac{\lambda L}{4D_{i}} + 1 \right) - \bar{T} + \bar{p}A(1-2v) \right) \phi_{j}^{II} \right] \phi_{n} \right] dx \, q_{n} = 0$$

i.e.
$$M\ddot{q} + C\dot{q} + Kq = 0$$

GALERKIN METHOD, DISPLACEMENT

$$w(x,t) = \sum_{j=1}^{N} q_j(t)\phi_j(x)$$

Trial function ϕ_j must respect boundary conditions.

Hinged trial function: $\phi_j(x) = \sin\left(\frac{j\pi x}{L}\right)$ with j = 1,...,7

CRITICAL VELOCITY

- Simple model, hinged pipe
- Dimensionless velocity: $u = \sqrt{\frac{M}{EI}}UL$
- When $u \to \pi \Rightarrow f_1 \to 0$ and buckling of beam
- $U_c = \frac{\pi}{L} \sqrt{\frac{EI}{M}}$

IMPULSE POINT LOAD

Creation impulse located in the middle.

$$F(x,t) = F_1(t)\delta(x - x_F)$$
 where $x \in (0,L)$ $t > 0$ and $x_F = \frac{L}{2}$

Galerkin's projection

$$\int_0^L F_1(t)\delta\left(x - \frac{L}{2}\right)\phi_j dx = F_1(t)\phi_j\left(\frac{L}{2}\right)$$

WHAT WE HAVE DONE

STANDARD PROJECT		
Point 1.1	simple model	$U_c < U$
Point 1.2	$ar{p}$	$U_c < U$
Point 1.3	λ	$U_c < U$
Point 1.4	$ar{T}$	$U_c > U$
Point 1.5	$\bar{p}, \bar{T}, \lambda$	
Point 2.1	$\bar{p}, \bar{T}, \lambda$	
Point 2.2	$\bar{p}, \bar{T}, \lambda$	U = 0
Point 3.1	$\bar{p}, \bar{T}, \lambda$	

FURTHER DEVELOPMENT	
Point 2	$\left \frac{dU}{dt}, \bar{p}, \bar{T}, \lambda\right $
Point 3	$\frac{\overline{dU}}{dt}, p, \overline{T}, \lambda$
Point 1	clamped, $ar{p}$, $ar{T}$, λ
Point 2	clamped, \bar{p} , \bar{T} , λ , $\frac{dU}{dt}$
Point 3	clamped, \bar{p} , \bar{T} , λ , $\frac{dU}{dt}$

All points matrices M, C, K calculated NUMERICALLY:

x discretized with 10000 points

t discretized every 1 ms, window of 10 s

Points 1.5, 2.1, 2.2, 3.1 checked calculating matrices M, C, K SIMBOLICALLY. NOTICE! Point 1.5 λ friction coefficient approximated turbolent for every U

ODEs from PDEs solved always simbolically with ode45 MATLAB function

POINT 1, CODE

- Definition of parameters
- Definition of trial function $\phi_i(x)$
- Matrices M, C, K calculation as explained before (Galerkin)
- $\lambda_i = \omega_i^2 = eigva_i\left(\frac{K}{M}\right)$
- Where K = K(U) and 0 m/s < U < 50 m/s
- Plot of $f_1(U)$
- When $U \to U_c$ (too high) buckling of the pipe, $f_1 \to 0$

POINT 2, CODE

- Definition of parameters
- Definition of trial function $\phi_i(x)$
- Matrices *M*, *C*, *K* calculation as explained before (Galerkin)
- $M\ddot{q} + C\dot{q} + Kq = 0$

$$\ddot{q} = -\frac{c}{M}\dot{q} - \frac{K}{M}q, p = [\dot{q}, q]^T, \ \dot{p} = [\ddot{q}, \dot{q}]^T$$

$$\dot{p} = \begin{bmatrix} \ddot{q} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -\frac{C}{M} & -\frac{K}{M} \\ I & 0 \end{bmatrix} \begin{bmatrix} \dot{q} \\ q \end{bmatrix} = \begin{bmatrix} -\frac{C}{M} & -\frac{K}{M} \\ I & 0 \end{bmatrix} p$$

$$A = \begin{bmatrix} -\frac{C}{M} & -\frac{K}{M} \\ I & 0 \end{bmatrix}$$

- Eigenvectors of A.
- $\dot{p} = A \cdot p$, symbolical resolution, ode45, initial conditions: eigenvectors 1st mode.
- $w(x,t) = \sum_{j=1}^{N} q_j(t)\phi_j(x)$
- Plot of 9s, every 1s.

POINT 3, CODE

- Definition of parameters
- Definition of trial function $\phi_j(x)$
- Matrices M, C, K calculation as explained before (Galerkin)
- A like point 2
- Creation sinbump:

(duration[W], amplitude[A], time[P]) = (0,01s,10N,1s)

$$f(t) = A\left[0.5 + 0.5\cos\left(2\pi\frac{t-P}{W}\right)\right] [N] \quad t \in \left(P - \frac{W}{2}, P + \frac{W}{2}\right)$$

- $F_i = -f(t) * \phi_j\left(\frac{L}{2}\right)$ j = 1, ..., 7
- $\dot{p} = A \cdot p + F$, symbolical resolution, ode45, initial conditions: 0
- $w(x,t) = \sum_{j=1}^{N} q_j(t)\phi_j(x)$
- Animation 10s, sampled every 5 ms

RESULT: POINT 1.1, SIMPLE MODEL

Theoretical calculation corresponds to numerical result:

$$\frac{\pi}{L} \sqrt{\frac{EI}{M}} = \frac{\pi}{2[m]} \sqrt{\frac{100[MPa]*5.62*10^{-9}[m^4]}{1077[kg/m^3]*\pi*5.62*10^{-6}[mm^2]}} = 3.62 \left[\frac{m}{s}\right] = U_c < U = 20.3 \left[\frac{m}{s}\right]$$

RESULT: POINT 1.2, ONLY \bar{p}

Real $\bar{p}=2*10^5[Pa]$ but $U_c<0\Rightarrow$ Fake $\bar{p}=2*10^4[Pa]$, for didactic purpose. $0< U_c< U=20.3\left[\frac{\rm m}{\rm s}\right]$

$$0 < U_c < U = 20.3 \left[\frac{\text{m}}{\text{s}} \right]$$

RESULT: POINT 1.3, ONLY λ

RESULT: POINT 1.4, ONLY \overline{T}

Symbolic approach

Numerical approach

Natural frequencies vs. U

Natural frequencies for $U = 20.3 \left[\frac{m}{s} \right]$

i	$f_i[Hz]$
1	1.3170
2	2.9825
3	5.2304
4	8.1798
5	11.8851
6	16.3713
7	21.6502

RESULT: POINT 2.1, U = 20.3[m/s]

Symbolic approach

Numerical approach

RESULT: POINT 2.2, U = 0[m/s]

Symbolic approach

Numerical approach

RESULT: POINT 3.1, U = const.

RESULT: POINT 3.1, U = const.

RESULT: POINT 1,2,3, COMPLETE MODEL

Symbolic vs. numerical derivatives of $\phi_1(x)$

FURTHER DEVELOPMENTS

Simulation of a volumetric pump.

$$\frac{dU}{dt} \neq 0 \qquad U = 20.3 + 0.15\sin(100 \cdot 2\pi \cdot t)$$

EOM, PDE

$$EI\frac{\partial^4 w}{\partial x^4} + \left\{ MU^2 \left(\frac{\lambda L}{4D_i} + 1 \right) - \bar{T} + \bar{p}A(1 - 2v) + M\frac{dU}{dt}(L - x) \right\} \frac{\partial^2 w}{\partial x^2} + 2MU\frac{\partial^2 w}{\partial x \partial t} + (M + m)\frac{\partial^2 w}{\partial t^2} = 0$$

Projecting in Hilbert space:

$$\int_{0}^{L} \left[(M+m)\phi_{j}\phi_{n} \right] dx \, \ddot{q}_{n} + \int_{0}^{L} \left[2MU\phi_{j}^{I}\phi_{n} \right] dx \, \dot{q}_{n} + \int_{0}^{L} \left[\left[EI\phi_{j}^{IV} + \left(MU^{2}\left(\frac{\lambda L}{4D_{i}} + 1 \right) + \frac{dU}{dt}(L-x) - \bar{T} + \bar{p}A(1-2v) \right) \phi_{j}^{II} \right] \phi_{n} \right] dx \, q_{n} = 0$$

Clamped pipe, trial function:

$$\phi_{j}(x) = \sinh(\beta_{j}x) - \sin(\beta_{j}x) + \alpha_{j}[\cosh(\beta_{j}x) - \cos(\beta_{j}x)] \text{ with } j = 1,...,4$$

$$with \alpha_{j} = \frac{\left[\sinh(\beta_{j}L) - \sin(\beta_{j}L)\right]}{\left[\cos(\beta_{j}L) - \cosh(\beta_{j}L)\right]}$$

$$\beta_{j} \text{ from } B. C. w(0) = w(L) = 0, w'(0) = w'(L) = 0$$

RESULT: FURTHER DEVELOPMENT POINT 2, $U \neq const.$

RESULT: FURTHER DEVELOPMENT POINT 3, $U \neq const$.

1.8

RESULT: FURTHER DEVELOPMENT POINT 1, CLAMPED

RESULT: FURTHER DEVELOPMENT POINT 2, CLAMPED, $U \neq const.$

RESULT: FURTHER DEVELOPMENT POINT 3, CLAMPED, $U \neq const.$

CONCLUSIONS

Point 1

- Achieved $f_i v.s.U, U_c$ for our complete model.
- Not complete models respect U_c condition only with \bar{T} .
- f_i have the expected trend with increasing U, both in symbolic and in numeric approaches.
- Symbolic vs. numerical approaches have similar results, they can be considered validated.

Point 2

- Mode shapes and representation of first mode have been calculated.
- Amplitude, more than 3 times bigger with $U \neq 0$ than U = 0.
- Practically no difference between numerical and symbolic.
- Numerical and symbolic approaches can be considered validated.

CONCLUSIONS

Point 3

- Animation of transient response from pulse excitation in mid point of pipe has been achieved.
- The value of vibrations' amplitude is consistent with the length of the pipe $(6mm\ vs.\ 2m)$.
- Numerical and symbolic approach have similar amplitudes of vibration, but symbolic has lower prevalent modes; in general we can consider both approaches validated.

Symbolic vs. numeric

- For every point symbolic approach is slower than the numerical one beacuse has higher computational load.
- The slight differences between symbolic and numeric approaches are due to different approximations of derivatives (mainly the 4°) of $\phi_i(x)$ in point 1,2,3; in point 1 there is also the aforementioned approximations in λ (friction coefficient).

CONCLUSIONS

Further developments

- Point 2 with $U \neq const.$: is difficult to appreciate the difference with the case of U = const., probably this is due to the chosen U timelaw, that has slight oscillation respect to mean value and it has also high frequency.
- Point 3 with $U \neq const.$: like Point 2 with $U \neq const.$
- Clamped, Point 1: U_C slightly bigger than hinged, f_1 for U=0 slightly higher than hinged.
- Clamped, Point 2: different modal form respect hinged one because different B.C., higher max amplitude of vibrations respect hinged one.
- Clamped, Point 3: like Clamped, point 2.

Other possible improvements

- Consider gravity and dissipation effects.
- Consider nonlinear deformations.

Advanced Automotive Engineering

Any questions?

Thank you

REFERENCES

- [1] G. Catellani, M. Milani and F. Pellicano, "Dynamic Stability of a Pipe subjected to a pulsating Flow", Dip. Scienze dell'Ingegneria, Univ. Modena e Reggio Emilia, 20020
- [2] F. Pellicano, F. Vestroni, "Nonlinear Dynamics and Bifurcations of an Axially Moving Beam", Journal of Vibration and Acoustics, vol. 122 (21-30), 2000
- [3] F. S. Samani, F. Pellicano, "Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers", Journal of Sound and Vibration, vol. 325 (742–754), 2009
- [4] A. Czerwiński, J. Łuczko, "Vibrations of Steel Pipes and Steel Hoses Induced by Periodically Variable Flow", Mechanics and Control, vol. 31,2, 2012
- [5] Francesco Pellicano, Mechanical Vibrations lecture notes, 2020
- [6] M. P. Païdoussis, "Fluid-Structure Interations", vol. 1, 1998
- [7] Viscosity of Automotive antifreeze viscosity table and viscosity chart:
 Anton Paar Wiki (anton-paar.com)

