Ex5 – Timer I

- 1. Set up Timer B in the "up count" mode.
- 2. Configure TB1.1 to produce a 500 Hz square wave. You may need to use frequency dividers when setting up the clock and the timer. Output on P3.4. Verify using an oscilloscope. LED5 should also be lit.

Default clock, TB1CCR0 = 2000 -> 250 MHz (Mode 0)

Want 500 MHz -> TB1CCTL1 |= OUTMOD_7; TB1CCTL2 |= OUTMOD_7;

TB1CCR1 = 1000; // 50% duty cycle

TB1CCR2 = 500; // 25% duty cycle

Figure 11-12. Output Example – Timer in Up Mode

Table 11-4. TAxCTL Register Description

Bit	Field	Туре	Reset	Description	
15-10	Reserved	RW	0h	Reserved	
9-8	TASSEL	RW	0h	Timer_A clock source select 00b = TAXCLK 01b = ACLK 10b = SMCLK 11b = INCLK	
7-6	ID	RW	Oh	Input divider. These bits along with the TAIDEX bits select the divider for the input clock. 00b = /1 01b = /2 10b = /4 11b = /8	
5-4	МС	RW	0h	Mode control. Setting MC = 00h when Timer_A is not in use conserves power. 00b = Stop mode: Timer is halted 01b = Up mode: Timer counts up to TAxCCR0 10b = Continuous mode: Timer counts up to 0FFFFh 11b = Up/down mode: Timer counts up to TAxCCR0 then down to 0000h	
3	Reserved	RW	0h	Reserved	
2	TACLR	RW	0h	Timer_A clear. Setting this bit clears TAR, the clock divider logic (the divider setting remains unchanged), and the count direction. The TACLR bit is automatically reset and is always read as zero.	
1	TAIE	RW	Oh	Timer_A interrupt enable. This bit enables the TAIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled	
0	TAIFG	RW	0h	Timer_A interrupt flag 0b = No interrupt pending 1b = Interrupt pending	

Table 11-6. TAxCCTLn Register Description

Bit	Field	Туре	Reset	Description		
15-14	СМ	RW	0h	Capture mode 00b = No capture 01b = Capture on rising edge 10b = Capture on falling edge 11b = Capture on both rising and falling edges		
13-12	CCIS	RW	Oh	Capture/compare input select. These bits select the TAXCCR0 input signal. See the device-specific data sheet for specific signal connections. 00b = CCIxA 01b = CCIxB 10b = GND 11b = VCC		
11	scs	RW	Oh	Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock. 0b = Asynchronous capture 1b = Synchronous capture		
10	SCCI	RW	0h	Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can be read from this bit.		
9	Reserved	R	0h	Reserved. Reads as 0.		
8	CAP	RW	Oh	Capture mode 0b = Compare mode 1b = Capture mode		
7-5	OUTMOD	RW	Oh	Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx = EQU0. 000b = OUT bit value 001b = Set 010b = Toggle/reset 011b = Set/reset 100b = Toggle 101b = Reset 110b = Toggle/set 111b = Reset/set		
4	CCIE	RW	Oh	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. 0b = Interrupt disabled 1b = Interrupt enabled		
3	CCI	R	0h	Capture/compare input. The selected input signal can be read by this bit.		
2	OUT	RW	0h	Output. For output mode 0, this bit directly controls the state of the output. 0b = Output low 1b = Output high		

Table 6-47. Port P3 (P3.4 to P3.6) Pin Functions

PIN NAME (P3.x)		FUNCTION	CONTROL BITS OR SIGNALS		
			P3DIR.x	P3SEL1.x	P3SEL0.x
	4	P3.4 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB1.CCI1B (1)	0	0	_1_
P3.4/TB1.1/TB2CLK/SMCLK		TB1.1 (1)	1		
		TB2CLK (1)	0	1	1
		SMCLK (1)	1		

Figure 6 - device datasheet pg 73

3. Configure TB1.2 to produce a 500 Hz square wave at 25% duty cycle. Output on P3.5. Verify using an oscilloscope. LED6 should be lit. Verify that LED6 is dimmer than LED5.