

"CLOUD SECURITY"

OWASP Top 10 Cloud Application Vulnerabilities & Risks:

1. Injection (SQL/NoSQL/OS/LDAP)

a. Attackers inject untrusted data into interpreters → execute unintended commands or access unauthorized data.

2. Broken Authentication

a. Flaws in login/session handling \rightarrow attackers steal credentials, tokens, or impersonate users.

3. Sensitive Data Exposure

a. Weak protection of PII/financial/health data → stolen via lack of encryption (at rest/in transit).

4. XML External Entities (XXE)

a. Poorly configured XML processors allow external entities → file disclosure, SSRF, DoS, remote code execution.

5. Broken Access Control

a. Failure to enforce permissions → attackers escalate privileges, access accounts, or modify data.

6. Security Misconfiguration

a. Default/incomplete configs, open storage, misconfigured headers, verbose errors → easy exploitation.

7. Cross-Site Scripting (XSS)

a. Unvalidated input in webpages → malicious scripts run in users' browsers, session hijacking, redirects.

8. Insecure Descrialization

a. Unsafe handling of serialized objects → remote code execution, replay, injection, privilege escalation.

9. Using Components with Known Vulnerabilities

a. Exploitable libraries/frameworks run with app privileges → may lead to server takeover or data loss.

10. Insufficient Logging & Monitoring

a. Poor detection & response \rightarrow breaches go unnoticed (~200 days avg), attackers persist and escalate.

Cloud-Specific Risks:

1. Data Breaches

Unauthorized access to sensitive/confidential data (e.g., PII, financial).

2. Weak Identity, Credential & Access Management

Risks from weak passwords, missing MFA, poor key rotation \rightarrow easier compromise.

3. Insecure Interfaces & APIs

Cloud APIs (management, provisioning) can be exploited if insecure \rightarrow unauthorized control.

4. System & Application Vulnerabilities

Exploitable bugs allow data theft, system takeover, or service disruption.

5. Account Hijacking

Stolen credentials → attackers eavesdrop, manipulate data, redirect clients.

6. Malicious Insiders

Authorized employees/partners misuse access \rightarrow compromise CIA (confidentiality, integrity, availability).

7. Advanced Persistent Threats (APTs)

Long-term stealthy attacks to exfiltrate data & IP from cloud infrastructure.

8. Data Loss

Accidental deletion, disasters, or no backups \rightarrow permanent data loss risk.

9. Insufficient Due Diligence

Rushed cloud adoption without assessing legal, technical, compliance risks.

10. Abuse & Nefarious Use of Cloud Services

Free trials/fraudulent sign-ups \rightarrow attackers misuse cloud (botnets, malware hosting).

11. Denial of Service (DoS)

Flooding/overloading cloud services → downtime & disruption.

12. Shared Technology Issues

Multitenant isolation failures (IaaS, PaaS, SaaS) → data leakage, side-channel attacks.

Scope of Cloud Application Security

Developing secure cloud applications requires diverse skills and roles. The scope covers the following areas:

1. Secure Software Development Lifecycle (SSDLC)

- Integrates security assurance into all SDLC phases: architecture analysis, code review, penetration testing.
- Ensures applications are secured from design to deployment.
- Addresses cloud-specific security concerns at each stage.

2. Design and Architecture

- Focuses on designing cloud apps to mitigate known threats.
- Incorporates best practices and secure patterns to enhance app protection.

3. DevOps & CI/CD

- Continuous Integration/Continuous Deployment automates testing and integration.
- Embeds security controls in development pipelines to strengthen cloud app security.
- Supports faster, secure deployment through DevOps best practices.