Loan Default Prediction

Team 17

Xin Feng Kaimi Huang

Yuanchen Cui Boqian Wang

CONTENT

01 Project Introduction

O2 Attempts to Improve Model Performance

Gaussian Mixture
Clusters

04 Results Analysis and Conclusion

Project Introduction

03

Loan default rate prediction is a critical aspect of financial risk management for banks, credit unions, and other lending institutions.

The ability to accurately predict loan default rate can significantly impact the financial health of these institutions.

lt enables lenders to mitigate risks, set appropriate interest rates, allocate reserves for potential losses, and make informed decisions about loan approvals.

It also helps in tailoring loan products to suit different risk profiles, enhancing customer satisfaction, and fostering financial stability in the broader economy.

Data Collection and Preprocessing

Data Source:

Lending Club Loan Dataset (https://www.scaler.com/topics/datascience/loan-default-prediction/) 20000 records, 15 columns

Target:

bad_loan

Features:

id、grade、annual_income、
short_employee、emp_length_num、
home_ownership、Debt-To-Income Ratio、
purpose、term、last_deling_none、
last_major_derog_none、revol_util、
total_rec_late_fee、od_ratio、bad loan

Missing Values:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20000 entries, 0 to 19999
Data columns (total 15 columns):
    Column
                           Non-Null Count Dtype
     id
                           20000 non-null
                                           int64
    grade
                           20000 non-null
                                           object
     annual income
                           20000 non-null int64
     short employee
                           20000 non-null int64
    emp length num
                           20000 non-null int64
    home ownership
                           18509 non-null object
    Debt-To-Income Ratio
                           19846 non-null float64
                           20000 non-null object
    purpose
                           20000 non-null object
    term
    last_deling_none
                           20000 non-null int64
    last_major_derog_none
                           574 non-null
                                           float64
11 revol util
                           20000 non-null float64
    total_rec_late_fee
                           20000 non-null float64
                           20000 non-null float64
    od ratio
 14 bad loan
                           20000 non-null
                                           int64
dtypes: float64(5), int64(6), object(4)
memory usage: 2.3+ MB
```

Outlier

df.describe()

	id	annual_income	short_employee	emp_length_num	Debt-To-Income Ratio	revol_util	total_rec_late_fee	od_ratio	bad_loan
cour	t 1.837100e+04	18371.000000	18371.000000	18371.000000	18371.000000	18371.000000	18371.000000	18371.000000	18371.000000
mea	n 7.594628e+06	73421.273257	0.112297	6.827609	16.590894	56.001801	0.293404	0.504941	0.200479
st	d 1.609952e+06	45612.958798	0.315740	3.769322	7.582902	43.411698	3.140913	0.287800	0.400370
mi	n 5.860400e+05	8412.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000077	0.000000
259	6.206280e+06	47000.000000	0.000000	3.000000	10.850000	38.750000	0.000000	0.257495	0.000000
509	6 7.379923e+06	65000.000000	0.000000	7.000000	16.220000	57.100000	0.000000	0.507883	0.000000
759	6 8.776061e+06	88000.000000	0.000000	11.000000	22.060000	74.000000	0.000000	0.753875	0.000000
ma	x 1.145464e+07	1000000.000000	1.000000	11.000000	34.990000	5010.000000	96.466600	0.999894	1.000000

Feature Transformation & Engineering

1. Transform annual income to log (annual income)

2. One-Hot Encoding for Categorical Features

1	X.info()					
<cla< td=""><td colspan="6"><pre><class 'pandas.core.frame.dataframe'=""></class></pre></td></cla<>	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>					
Rang	eIndex: 18370 entries, 0 to	18369				
Data	columns (total 28 columns):					
#	Column	Non-Null Count	Dtype			
0	 short_employee	18370 non-null	int64			
1	emp_length_num	18370 non-null	int64			
2	Debt-To-Income Ratio	18370 non-null	float64			
3	revol_util	18370 non-null	float64			
4	total_rec_late_fee	18370 non-null	float64			
5	od_ratio	18370 non-null	float64			
6	annual_income_log	18370 non-null	float64			
7	grade_B	18370 non-null	uint8			
8	grade_C	18370 non-null	uint8			
9	grade_D	18370 non-null	uint8			
10	grade_E	18370 non-null	uint8			
11	grade_F	18370 non-null	uint8			
12	grade_G	18370 non-null	uint8			
13	home_ownership_OWN	18370 non-null	uint8			
14	home_ownership_RENT	18370 non-null	uint8			
15	purpose_credit_card	18370 non-null	uint8			
16	purpose_debt_consolidation	18370 non-null	uint8			
17	purpose_home_improvement	18370 non-null	uint8			
18	purpose_house	18370 non-null	uint8			
19	purpose_major_purchase	18370 non-null	uint8			
20	purpose_medical	18370 non-null	uint8			
21	purpose_moving	18370 non-null	uint8			
22	purpose_other	18370 non-null	uint8			
23	purpose_small_business	18370 non-null	uint8			
24	purpose_vacation	18370 non-null	uint8			
25	purpose_wedding	18370 non-null	uint8			
26	term_60 months	18370 non-null	uint8			
27	last_delinq_none_1	18370 non-null	uint8			
dtypes: float64(5), int64(2), uint8(21)						

Distributions of Target and Categorical Features

Distributions of Continuous Features

Training Models

- y = df['bad_loan'].astype(int) #1 represents bad loan. 0 good loan.
- StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=123)
- scaler = StandardScaler()
- X train = scaler.fit transform(X train)
- X_test = scaler.transform(X_test)
- class_weight='balanced' #hyperparameter for all classifier instances
- GridSearchCV() #used for finding optimal hyperparameters for all classifiers

1 X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18370 entries, 0 to 18369
Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	short_employee	18370 non-null	int64
1	emp_length_num	18370 non-null	int64
2	Debt-To-Income Ratio	18370 non-null	float6
3	revol_util	18370 non-null	float6
4	total_rec_late_fee	18370 non-null	float6
5	od_ratio	18370 non-null	float6
6	annual_income_log	18370 non-null	float6
7	grade_B	18370 non-null	uint8
8	grade_C	18370 non-null	uint8
9	grade_D	18370 non-null	uint8
10	grade_E	18370 non-null	uint8
11	grade_F	18370 non-null	uint8
12	grade_G	18370 non-null	uint8
13	home_ownership_OWN	18370 non-null	uint8
14	home_ownership_RENT	18370 non-null	uint8
15	purpose_credit_card	18370 non-null	uint8
16	<pre>purpose_debt_consolidation</pre>	18370 non-null	uint8
17	purpose_home_improvement	18370 non-null	uint8
18	purpose_house	18370 non-null	uint8
19	purpose_major_purchase	18370 non-null	uint8
20	purpose_medical	18370 non-null	uint8
21	purpose_moving	18370 non-null	uint8
22	purpose_other	18370 non-null	uint8
23	purpose_small_business	18370 non-null	uint8
24	purpose_vacation	18370 non-null	uint8
25	purpose_wedding	18370 non-null	uint8
26	term_60 months	18370 non-null	uint8
27	last_delinq_none_1	18370 non-null	uint8
dtyp	es: float64(5), int64(2), ui	nt8(21)	

Model Performances

Model	PR AUC	ROC AUC	Accuracy
Logistic Regression	0.39	0.71	0.66
XGBoost	0.38	0.7	0.8
Random Forest	0.33	0.66	0.8
Stochastic Gradient Descent	0.34	0.67	0.61
Mini-batch Gradient Descent	0.34	0.67	0.61
Linear Support Vector Machine	0.38	0.71	0.66
Polynomial Kernel Support Vector Classifier	0.37	0.7	0.65
Gaussian RBF Kernel Support Vector Classifier	0.36	0.69	0.72
Stacking/Stacked Generalization	0.37	0.69	0.65

Attempts to Improve Model Performance

1. Dimensionality Reduction

- Idea: reduce noise via PCA
- In order to preserve 95% of the variance,
 kept 23 of the 25 features
- pca = PCA(n_components=0.95)
- Result: PR AUCs did not improve but dropped slightly

Attempts to Improve Model Performance

2. Create new categorical features, "cluster_0" & "cluster_1", using K-means

- Idea: grouping loans based on features might add information that help classification
- pipeline = Pipeline([('kmeans', KMeans()), ('log_reg', lg_clf)])
- Grid search showed the optimal number of cluster was {'kmeans n clusters': 3}
- **Result:** PR AUCs did not improve. New feature's importance was low.

Attempts to Improve Model Performance

3. Create new categorical features, "dbscan_label_", using DBSCAN

 Idea: grouping loans based on features might add information that help classification

- dbscan = DBSCAN(eps = 6, min_samples = 3)
- X_train was clustered into 13 groups
- Result: PR AUC was worse.
 New features' importance was low

What if the target labels were wrong?

- Separate df into two datasets by target label
- Find anomalies in each set using Gaussian Mixture
 - setting n_components=2 because of the assumption that some of the observations in the good loans are mislabeled and should have been labeled as bad loans, and vice versa

```
df_good_loan = df[df.bad_loan==0]
df_bad_loan = df[df.bad_loan==1]

gm_good = GaussianMixture(n_components=2, n_init=10, random_state=123)
gm_good.fit(df_good_loan)

GaussianMixture(n_components=2, n_init=10, random_state=123)

gm_good.weights_
array([0.06910874, 0.93089126])

[gm_bad = GaussianMixture(n_components=2, n_init=20, random_state=123)
gm_bad.fit(df_bad_loan)
gm_bad.weights_
array([0.18028848, 0.81971152])
```


Gaussian Mixture Clusters

Model Performances using the bigger two sets of data

Model Performances using the smaller two sets of data

Model Performances after Flipping Labels

Model	PR AUC	ROC AUC	Accuracy
Logistic Regression	0.93	0.81	0.76
XGBoost	0.93	0.81	0.84
Random Forest	0.92	0.78	0.83
Stochastic Gradient Descent	0.92	0.8	0.75
Mini-batch Gradient Descent	0.92	0.8	0.75
Linear Support Vector Machine	0.93	0.81	0.77
Polynomial Kernel Support Vector Classifier	0.92	0.8	0.76
Gaussian RBF Kernel Support Vector Classifier	0.92	0.8	0.76
Stacking/Stacked Generalization	0.93	0.81	0.76

New Distributions of Target and Categorical Features

New Distributions of Continuous Features

Does it make sense to flip the labels of the majority of the data points?