Assignment 3

(CS1.502) Information-Theoretic Methods in Computer Science, Spring 2023

Due on 9th April (Sunday).

Instructions

- Discussions with other students are not discouraged. However, all write-ups must be done individually with your own solutions.
- Any plagiarism when caught will be heavily penalised.
- Be clear and precise in your writing.

Problem 1. Consider a 4×4 matrix in which all the entries are equal to 1. Note that this has an equivalent representation in the form of a complete bipartite graph and the permutation $\sigma=(1\ 2\ 3\ 4)$ (i.e., $\sigma(i)=i$, for all $i\in[1:4]$) corresponds to a perfect matching of that graph. For an arbitrary permutation τ , define $k=\tau^{-1}(1)$ and $N_1(\sigma,\tau)=|\{1,2,3,4\}\setminus\{\sigma(\tau(1)),\sigma(\tau(2)),\ldots,\sigma(\tau(k-1))\}|$. For $j\in[1:4]$, argue that for all permutations τ such that $\tau(j)=1$, we have $N_1(\sigma,\tau)=5-j$. Finally, conclude that the number of permutations τ for which $N_1(\sigma,\tau)=j$ is equal to 6, for all $j\in[1:4]$.

(5 marks)

Problem 2. For a continuous random variable X with mean zero and variance σ^2 , show that

$$h(X) \le \frac{1}{2} \log \left(2\pi e \sigma^2 \right)$$

with equality if and only if X is a Gaussian random variable.

(4 marks)

Problem 3. For any two probability distributions P_X and Q_X , suppose $D(P_X||Q_X) \ge \frac{k}{\ln 2} TV(P_X, Q_X)^2$ holds, for a constant k. Show that $k \le 2$.

[*Hint.* Consider
$$P_X(1) = \frac{1}{2} = 1 - P_X(0)$$
 and $Q_X(1) = \frac{1}{2} + \epsilon = 1 - Q_X(0)$, for $\epsilon \in (0, \frac{1}{4})$.]

(3 marks)

Problem 4. Let P_X and Q_X be two probability distributions on \mathcal{X} and $f: \mathcal{X} \to [0, B]$, where B is a constant. Prove that $|E_{X \sim P_X}[f(X)] - E_{X \sim Q_X}[f(X)]| \leq B.TV(P_X, Q_X)$.

(3 marks)