

Conteúdo

Vamos aprender algo novo!

1920

Lotfi A. Zadeh (1921-2017)

A primeira publicação sobre lógica "fuzzy" data de 1965 com o trabalho de Lotfi A. Zadeh, da Universidade da Califórnia em Berkeley, publicou "Conjuntos Fuzzy"

Ele observou que **recursos tecnológicos**, baseados na lógica booleana, não eram suficientes para automatizar atividades relacionadas a problemas de natureza industrial, biológica, química ou de ciências sociais.

Por que lógica

fuzzy?

MHX 3

Por que lógica fuzzy?

Desvantagens da lógica booleana:

- É impossível descrever a realidade em sua totalidade utilizando apenas os extremos, apenas o falso ou o verdadeiro;
- Não há "meio-termo""; entretanto, nosso raciocínio e a linguagem natural usa esse "meio-termo" na tomada de decisões (lei do meio excluído);
- Não se aplica a operações com conceitos subjetivos;

Esta maçã é vermelha e é não-vermelha.

Haverá uma batalha naval amanhã

Por que lógica fuzzy?

Vantagens da lógica fuzzy:

- A lógica Fuzzy assume que todas as coisas admitem (temperatura, altura, velocidade, etc) **graus de pertinências**, assim, a lógica Fuzzy tenta modelar o senso comum de palavras, tomada de decisão ou senso comum do ser humano.
- O uso de variáveis linguísticas nos deixa mais perto do pensamento humano;

Exemplo de variável linguística

Entre 1970 e 1980 as aplicações industriais da lógica "fuzzy" aconteceram com maior importância.

Na década de 1980 a lógica "fuzzy" teve um maior destaque.

Exemplos: Tratamento de água feito pela Fuji Electric em 1983. sistema de metrô inaugurado em 1987 feito pela Hitachi.

despertou um maior interesse em empresas a partir da década de **1990**.

Aplicações da Lógica *Fuzzy*

Robótica

Lava Louças

Elevadores

Máquinas de Lavar Roupas

Câmeras Fotográficas e Processamento Digital de Imagens

Rice Cookers

∧tlântico

Reconhecimento de Padrões

Controle Remoto

Cruise Control

LOTR – A Soc. Do Anel

I, Robot

LOTR – As Duas Torres

Nárnia

Softwares que trabalham com as **interações de agentes** (comportamentos de acordo com o que está em volta).

Um pouco de teoria

Não se preocupe vai ser divertido!

∧tlântico

Conjuntos *Fuzzy*

Na teoria clássica, os conjuntos são denominados "crisp" e um dado elemento do universo em discurso (domínio) pertence ou não pertence ao referido conjunto.

Na teoria dos conjuntos "fuzzy" existe um grau de pertinência de cada elemento a um determinado conjunto.

Um elemento pode pertencer a mais de um conjunto fuzzy, com diferente grau de pertinência.

Conjunto Crisp

Conjunto Fuzzy

Conjuntos Fuzzy

São funções que mapeiam valores que podem se tornar membro de um conjunto entre um número de 0 a 1.

0 : valor não faz parte do conjunto,

1: valor faz completamente parte do conjunto

Conjunto Fuzzy

Raciocínio em Sistema Fuzzy

Variável Linguística. Termos linguisticos

Fuzificação

Máquina de inferência

Defuzificação

Sistema *Fuzzy*

Raciocínio em Sistema Fuzzy

1. Variável Linguística. Termos linguisticos

1. Fuzificação

Para cada valor de **entrada** é associado uma **função de pertinência**, que permite obter o *grau de verdade* da proposição.

- Determinar o grau de pertinência de cada conjunto (proposição);
- Limitar o valor da entrada entre 0 e 1;
- Determinar as funções de pertinências, Triangular, Trapezoidal, Gaussiana, Gbell

Variável Linguistica

Funções de pertinência

2. Máquina de inferência: Regras e inferência Fuzzy;

Regras fuzzy são **implicações** lógicas que relacionam os **conjuntos fuzzy** de entrada com os de saída.

Geralmente são fornecidas por um especialista, em forma de sentenças linguísticas, constituindo um aspecto fundamental no desempenho de um sistema de **inferência fuzzy**.

2. Máquina de inferência

Regras e inferência Fuzzy

Aplicação dos operadores fuzzy E, OR

Aplicação do operador da implicação

Combinação

Mah, então vai logo explica isso direito

2. Máquina de inferência: Aplicação dos operadores fuzzy;

Aplicar os operadores fuzzy que são AND e OR, conhecidos como operadores de relação.

Na lógica fuzzy são utilizados para definir o **grau máximo** e **mínimo** de pertinência do conjunto.

Se Serviço é excelente **OU** atendimento é rápido **ENTÃO** pagamento é alto.

3. Máquina de inferência: Aplicação do operador da implicação;

Aplicar o operador de implicação, usado para definir o peso no resultado e remodelar a função, ou seja, criar a hipótese de implicação.

Se variável é propriedade ENTÃO ação.

Se Serviço é excelente OU atendimento é rápido ENTÃO pagamento é alto.

3. Máquina de inferência: Combinação;

Ocorre a combinação de todas as saídas em um único conjunto fuzzy, algo semelhante ao processo de união e intersecção, na teoria dos **conjuntos Crisp**.

2. Máquina de inferência

Regras e inferência Fuzzy

Aplicação dos operadores fuzzy E, OR

Aplicação do operador da implicação

Combinação

∧tlântico

Problema: Trasladar uma carga utilizando um guindaste desde um navio até uma seção de armazenamento

Problema: Trasladar uma carga utilizando um guindaste desde um navio até uma seção de armazenamento

Variáveis de Entrada: Ângulo, Distância

Variável de Saída: Potência

∧tlântico

Regras: Um motorista pode seguir os seguintes critérios como entrada:

A distância pode ser longe, médio ou perto.

O ângulo pode negativo, zero ou positivo

A saída é definida por:

A potência pode ser baixa, média ou alta

Uma regra pode ser dada por:

if distância is longe or ângulo is negative then potência is alta

Fuzificação de Entradas

Aplicando-se o operador OR (max)

Aplicando-se o operador de Implicação (min)

4. Defuzzificação;

Interpretação de conjuntos *Fuzzy* em valores numéricos.

O **defuzificador** é que pesa as diversas respostas fornecidas pelas regras lógicas e atribui à saída um número

Modelos de Regressão Fuzzy

Vamos aprender algo novo!

λ

Modelos de Regressão *Fuzzy*

Mamdani

Tsukamoto

Sugeno

Modelos de Regressão *Fuzzy*

Ferramentas para gerar modelos Fuzzy

Vamos aprender algo novo!

Ferramentas Pagas

```
Fuzzy Logic ToolBoxTM ( Matlab® )
FIDETM (Aptronix)
TILShell 3.0 (Togai InfraLogic)
FuzzyTECH® (INFORM GmbH)
Mathematica® Fuzzy Logic (Wolfram Research)
```

Ferramentas Gratuitas

```
RockOn Fuzzy Tool (Florian Backmann, Stefan Stützer e Stafan Lind )
SciLab Fuzzy Tool (consórcio SciLab )
UNFYZZY (professor Óscar Germán Duarte Velasco)
Xfuzzy (desenvolvedores e ao IMSE-CNM)
FuzzyF – Fuzzy Logic Framework (João Ricardo Bittencourt - UNISINOS)
```


scikit-fuzzy 0.3.1

pip install scikit-fuzzy

Fuzzy 1.22

pip install Fuzzy

Exemplo Prático

Vamos aprender algo novo!

Referências

- https://www.pucsp.br/~logica/Fuzzy.htm
- http://www.soukalfi.edu.sk/01_NeuroFuzzyApproach.pdf
- http://www.inf.ufsc.br/~luis.alvares/INE5633/Fuzzy.pdf
- https://giphy.com/gifs/leroypatterson-cat-glasses-CjmvTCZf2U3p09Cn0h
- http://aquilesburlamaqui.wdfiles.com/local--files/logica-aplicada-a-computacao/texto_fuzzy.pdf
- https://www.ime.usp.br/~tonelli/verao-fuzzy/neli/principal.pdf
- http://www.cear.ufpb.br/juan/wp-content/uploads/2016/08/Aula-1-L%C3%B3gica-Fuzzy.pdf
- https://www.samsung.com/in/support/home-appliances/what-is-fuzzy-logic-in-awashing-machine/
- https://pypi.org/project/scikit-fuzzy/
- https://pypi.org/project/Fuzzy/

The harder you work for something, the greater you'll feel when you achieve it.

THANK YOU!

WhatsApp

+55 88 99733 5880

Email

<u>crislanio.ufc@gmail.com</u> <u>crislanio_macedo@dellteam.com</u> <u>crislanio_macedo@atlantico.com.b</u>

Github

https://github.com/crislanio

Blog

https://crislanio.wordpress.com/about/

Linkedin

https://www.linkedin.com/in/crisla

