Guía 2: técnicas de extracción de características

Agosto 2019

1. Objetivos

Que el alumno sea capaz de:

- Afianzar los conocimientos sobre extracción y selección de características aprendidos en la instancia teórica.
- Implementar algoritmos básicos de los métodos estudiados.
- Comprender la potencialidad de cada método para el tratamiento de las señales dentro de BCI.

2. Trabajo Coloquial

 Los métodos de filtrado espacial buscan mejorar la relación-señal-ruido de las señales registradas en los electrodos. Discuta las desventajas de utilizar CAR, Laplacian y PCA como métodos de reducción de ruido.

3. Trabajo de Laboratorio

Datos: MI_EOG: correspondientes a la base de datos "BCI Competition 2008, dataset2a¹". La misma contiene señales de EEG de dos clases de MI (left and righ MI). Los segmentos de EEG fueron extraídos entre 0.5 y 2.5 s luego de aplicada la señal visual. Los datos fueron adquiridos mediante 22 canales de EEG y tres canales de EOG (electrooculograma).

3.1. Filtrado espacial mediante PCA

1. Utilice PCA como método de transformación lineal. **Grafique**, por un lado, las señales de EEG en su espacio original (raw signals), y por el otro lado en el dominio de las componentes principales. Responda, ¿qué muestran los primeros componentes principales?.

3.2. Eliminación de ruido mediante ICA

1. Utilice ICA como método de eliminación de ruido. Para ello, **analice** los componentes independientes y **reconstruya** la señal removiendo los componentes (artefactos) que considere de la señal.

3.3. Filtrado espacial mediante CSP

1. Utilice sólos los canales de EEG. Filtre cada segmento de EEG entre 8 y 30 Hz. Proyecte los datos en el espacio de CSP ($\mathbf{Z}_{csp} = \mathbf{W}_{csp}^T \mathbf{X}$). Para dos segmentos de cualesquiera EEG, pertenecientes a la clase 1 y la clase 2, elija las primeras y últimas tres épocas de EEG transformadas, \mathbf{Z}_{csp} , y grafique su evolución en el tiempo. Responda, ¿CSP es capaz que mejorar la discriminabilidad entre clases?.

¹http://www.bbci.de/competition/iv/#dataset2a

3.4. Selección de características

1. Implemente CSP en varias bandas frecuenciales. Filtre la señal de EEG entre [4-8] [8-12] y [13-30] Hz. Extraíga, en cada banda frecuencial, características spacio-frecuenciales utilizando 3 pares de filtros. Al finalizar este proceso debería contar con un vector de características de $6 \times 4 = 24$. Utilice la divergencia de Kullback-Leibler para seleccionar las K mejores características. Sugerencia: grafique el valor de la divergencia en forma decreciente, y seleccione aquellas características de mayor valor.

3.5. Visualización de características

- 1. Considere sólo los electrodos de EEG en un instante de tiempo. Realice mapas topográficos utilizando:
 - CAR,
 - el primer componente principal,
 - el primer componente independiente,
 - el primer patrón espacial.

Responda: ¿qué muestra cada mapa topográfico?.

Sugerencia: en Matlab utilice la función plotElecPotentials.m; en Python mne.viz.plot $_t$ opomap. La información tridimensional de los electrodos se encuentran en EMapAll.mat, debe seleccionar aquellos electrodos relevantes para esta base de datos.