PME RESEARCH LABORATORY, FEBRUARY 1980

PROJECT TITLE

ANALYTICAL INVESTIGATIONS

PERIOD COVERED

JANUARY 28th - FEBRUARY 22nd

WRITTEN BY

E. LECOULTRE

GC/MS RESEARCH

Triacetin ESTROBOND B

Triacetin containing the same amount of glycerol-propionatediacetate isomer mixture as ESTROBOND B (1) was synthesized by treating glycerol with a mixture of acetic and propionic anhydride (molar ratio 100:99:1) at 1390 for 1 hour. The product will be forwarded to QC for testing as filter additive.

Glycerol-propionate-diacetate isomer synthesis

Glycerol-2-propionate-1,3-diacetate (3):

 $ClCH_2CH(OH)CH_2C1 + CH_3CH_2COC1$

reflux / 1 h

 $c1cH_2cH(00ccH_2cH_3)cH_2c1(\underline{1}) + Hc1$

- $(\underline{1}) : C_6^{H_{10}}C1_2^{O_2} (185); MS : 135(M CH_2^{C1}, 17), 75(CH_3^{CH_2^{COOH}}, 17)$
- 53), 57(CH₃CH₂CO, 100), 49(CH₂C1³⁵, 13), 29(CH₃CH₂, 24); yield
- 95 % (GC).
- $(\underline{1})$ + CH_3COOK \longrightarrow $CH_3COOCH_2CH(OOCCH_2CH_3):CH_2C1 (<math>\underline{2}$) + KC
- (2) + CH_3COOK $CH_3CH_2COOCH(CH_2OOCCH_3)$ (3) + KC1

The reaction of (1) with 2 mole of potassium acetate in refluxing ethanol/24 h gave (2) in \sim 5 % yield; (3) was not formed.

(2): $C_8H_{13}C1O_4$ (208); MS: 173(M - $C1^{35}$, 1), 159(M - CH_2C1 , 3) 57($CH_3CH_2CO^+$, 100), 43(CH_3CO , 54), 29(CH_3CH_2 , 18). $(CH_3COOCH_2)_2$ CH(OH) (4) + 2 KC1

Treatment of 1,3-dichloro-2-propanol with 2 moles of potassium acetate in refluxing ethanol yielded 80 % (GC) (4).

 $(\underline{4})$: $C_7H_{12}O_5$ (176); MS: 103(M- CH_3COOCH_2 , 33), 74($CH_3CO(OH)CH_2$,

74), 43 (CH₃CO, 100).

The reaction of (4) with propionic anhydride to (3) is in progress.

AMINO ACID ANALYSIS

Efficiency of protein hydrolysis

Six probes of pure lysozyme protein of known amino acid profile (2) were hydrolyzed under conditions applied for yeast hydrolysis (6N HCl, 110°C, 48 h) and the individual amino acids analyzed. The number of amino acids per mole lysozyme found, %-recovery and standard deviation s are summarized in Table 1. As can be seen most of the values obtained for the composition of lysozyme are in good agreement with those reported (2).

REFERENCES

- (1) E. Lecoultre, PME Research Laboratory, Monthly Progress Report, January 1980.
- (2) L.B. James, J. Chromatogr. <u>68</u> (1972) 123.

E. Lecoultre

Table 1. Amino acid composition of Lysozyme; efficiency of protein hydrolysis

Amino acid	Lysozyme				
	No. of amino acids per mole of protein (2)	No. of amino acids per mole of protein found ^{a)}	8.	s ^{b)}	!
Try	6				
Lys	6	5.8	97.3	8.0	
His	1	1.4	137.2(1)	10.1	
Arg	11	12.7	115°.1	3.7	•
Asp	21	22.6	107.6	5.7	
Thr	7.	6.9	98.2	4.3	
Ser	10	9.5	94.9	5.8	
Glu	5	5.3	106.4	4.1	
Pro	2	3.4	170.0(!)	9.6	
Gly	12	13.1	109.3	4:.3	
Ala	1/2	12.3	102.9	5.5)
វិCys	8 .	2.9	36.7(1)	1.9	,
Val	6	6.8	113.3	5.6	
Met	2	2.2	109.9	3.2	
ILe	6	5.73	95.6	3.7	
Leu	8	8.5	106.9	0.8	
Tyr	3	3.2	107.9	5.0	
Phe	3	3.1	101.9	4.6	

a) Mean value of six protein analyses

b) 18 injections