Strong Normalization of the Simply-Typed Lambda Calculus in Lean by Decomposition Into the Call-By-Need SK Combinators

Dowland Aiello

5/26/25

Contents

1	Abs	stract	1
2	АТ	Type Discipline for the SK Combinators	2
3	Dep	composition of the Simply-Typed Lambda Calculus into bendently Typed SK Combinators Type Expressivity & Equivalence	3
4	4.1 4.2	Comprehensiveness of the SK Mapping Strong Normalization of the Typed SK Combinators 4.2.1 Reducibility Candidates	4 4 5 5 6 8 8
5	Ref	erences	8

1 Abstract

Proofs of strong normalization of the simply-typed lambda calculus have been exhaustively enumerated in the literature. A common strategy invented by W. W. Tait known as "Tait's method," (Robert Harper, 2022) interprets types as sets of "well-behaving" terms which are known to be

strongly normalizing and composed of expressions in some such set. Strong normalization of the typed call-by-need SK combinator calculus has been comparatively under-studied. Herein, I demonstrate that the typical proof of strong normalization using Tait's method holds for the typed SK combinator calculus. I also show that decomposition of the STLC into SK combinator expressions simplifies the typical proof of strong normalization.

2 A Type Discipline for the SK Combinators

I consider the usual SK combinator calculus defined as such:

$$Kxy = x \tag{1}$$

$$Sxyz = xz(yz) \tag{2}$$

A natural interpretation of the combinators as typed functions results in the dependent typing:

$$\frac{\Gamma}{\Gamma \vdash \operatorname{Prop} : Ty_0}$$

$$\frac{\Gamma \vdash A : K \ \Gamma, x : A \vdash B : L}{\Gamma \vdash (\forall x : A.B) : L}$$

$$\frac{\Gamma \vdash T_n : T_{n+1}}{\Gamma \vdash K\alpha\beta : (\forall x, y.\alpha)}$$

$$\frac{\Gamma x : (\forall x : \alpha, y : \beta.\gamma), y : (\forall x : \alpha.\alpha), z : \alpha}{\Gamma \vdash S\alpha\beta\gamma : (\forall x, y, z.\gamma)}$$

$$\frac{\Gamma \alpha : T_n, \ e_1 : (\forall x : \alpha.\operatorname{body}), e_2 : \alpha}{\Gamma \vdash e_1e_2 : \operatorname{body}[x = b]}$$

Where body[x = b] denotes substitution within the scope of \forall .

I assume the existence of a one-step reduction function of the combinators: eval_once.

I extend the inference rules to include beta-equivalent terms:

where Expr is a typed combinator expression.

3 Decomposition of the Simply-Typed Lambda Calculus into Dependently Typed SK Combinators

I utilize an SK compilation scheme outlined in "The Implementation of Functional Programming Languages" (Peyton Jones, Simon L., 1987):

$$(\lambda x.e_1 \ e_2) \ arg = S(\lambda x.e_1)(\lambda x.e_2) \ arg \tag{3}$$

$$(\lambda x.x) = SKK \tag{4}$$

$$(\lambda x.c) = Kc \tag{5}$$

I consider a generic simply-typed lambda calculus with base types B, a type constructor \rightarrow and the type universe:

$$T = \{t \mid t \in B\} \cup \{t \mid \exists t_1 \in T, t_2 \in T, t = t_1 \to t_2\}$$

3.1 Type Expressivity & Equivalence

I define a mapping (M_t) from the \rightarrow type constructor to \forall : $(\alpha \rightarrow \beta) \mapsto \forall x$: $\alpha.\beta$. I also assume the existence of a mapping (M_c) from the base types B to arbitrary objects in my dependently-typed SK combinator calculus. Type inference is trivially derived from the above inference rules: $\forall c \in B, \exists t, t', c : t \implies t' = M_t t \implies M_c c : t$.

It follows that every well-typed expression in our simply-typed lambda calculus has an equivalent well-typed SK expression:

Proof. Assume (1) that for all $c \in B, \exists ! c' \in M_c, c' = M_c c$. Assume (2) that for all $\{t_1, t_2, t\} \subset T, t = (t_1 \to t_2), \exists ! t' \in M_t, t' = M_t t$. Per above and induction on (1) there exists a mapping from every lambda expression

to an SK combinator expression. It follows by induction on e:t, where e is well-typed per the inference rules that all $t \in t$ he simply-typed T are in M_t . It suffices to conclude that all well-typed expressions have well-typed counterparts in the dependently-typed SK combinator calculus.

4 Proof

In order to prove strong normalization of the STLC, it suffices to demonstrate that a) no well-typed lambda calculus expression is inexpressible in the dependently-typed SK combinator calculus; and b) all well-typed SK combinator expressions are strongly normalizing.

4.1 Comprehensiveness of the SK Mapping

Proof. Suppose (1) there exists some well-typed expression e of type $t \in T$ in the STLC which is not representible in the dependently-typed SK combinator calculus. By induction:

- If the expression is a constant, it must be contained in M_c , per the above lemma. **contradiction**
- If the expression is a well-typed expression contained in M_c which is a dependently-typed SK expression, its type is inferred per the inference rules. The expression is thus representible. **contradiction**
- If the expression is a well-typed lambda expression, its type is of the form: $\alpha \to \beta$, where $\{\alpha, \beta\} \subset T$. An image must exist in M_t per above of the form $\forall x : \alpha.\beta$.
 - Its body is also well-typed, and has a valid type. Its body is thus representible by induction.
 - The expression is thus representible, per the decomposition rules.
 contradiction

• If the expression is a well-typed application e_1e_2 , its left hand side is of type $\alpha \to \beta$, where $\{\alpha, \beta\} \subset T$. Its right hand side must be of type β . The expression is thus of type t. By induction, the expression is representible. **contradiction**

Conclusion: no expression exists which has no image in the set of well-typed dependently-typed SK combinator expressions.

4.2 Strong Normalization of the Typed SK Combinators

I define strong-normalization inductively (where e is an SK combinator expression) as:

4.2.1 Reducibility Candidates

The K combinator is trivially strongly normalizing. It invokes no function applications, although it may produce an expression which contains an application. For example:

$$K(KK)y = KK$$

Borrowing from Tait's method, I define a mapping R(t) where t is a type (expression) in our dependently-typed SK combinator calculus. The image of t is a set containing every well-typed expression of type t which is composed of expressions living in R(t') for their respective types t'. I constrain the set such that all one-step reduxes of K are in R.

$$\forall \alpha: T_n, \ \beta: T_m, \ x: \alpha, \ y: \alpha, \ R(\forall x, y. \alpha) = \\ \{K \mid K: (\forall x, y. \alpha) \land \forall arg_1: \alpha, \ arg_2: \beta, \\ \text{eval_once} \ K \ arg_1 \ arg_2 \in R(\alpha[x = arg_1])\}$$

Or, more succinctly:

$$\forall \alpha : T_n, \ \beta : T_m, \ x : \alpha, \ y : \alpha, \ R(\forall x, y . \alpha) = \{ K \mid K : (\forall x, y . \alpha) \land arg_1 \in R(\alpha[x = arg_1]) \}$$

R(t) can be similarly extended to include the S combinator.

$$\forall \alpha: T_n, \ \beta: T_m, \ \gamma: T_o,$$

$$T_x = (\forall x: \alpha, y: \beta.\gamma), \ T_y = (\forall x: \alpha.\alpha), \ T_z = \alpha,$$

$$x: T_x, \ y: T_y, \ z: T_z,$$

$$R(\forall x, y, z.\gamma) = \{S \mid S: (\forall x, y, z.\gamma), \ \forall arg_1: T_x, \ arg_2: T_z, \ arg_3: T_z,$$

$$arg_1 \in R(T_x[x = arg_1]) \land arg_2 \in R(T_y[y = arg_2]) \land arg_3 \in R(T_z[z = arg_3])\}$$

Expressions which are obviously reducible and inert are as follows:

$$R(T_{n+1}) = \{T_n\}$$
 $\forall K : T_n, \ L : T_m, \ A : K, \ B : L, \ R(L) = \{\text{fall } |, \ \text{fall} = (\forall x : A.B) \land \text{fall} : L\}$

4.2.2 Inductive Proof

It suffices in order to prove strong normalization of this system that a) all reducibility candidates in R are strongly-normalizing; and c) all well-typed expression (e:t) can be expressed using expressions in R(t).

1. Preservation

In order to execute an inductive proof leveraging our definition of R(t), it is useful to prove that evaluation maintains the typing of an expression.

Lemma 4.1. For all well-typed expressions, $e:t \implies (eval_once\ e):$

Proof. The proof is obvious for obviously reducible expressions of the form T_n and $(\forall x : A.B)$. The K : t combinator is inert (eval_once $k = k \implies t = t'$) except when it is provided two well-typed arguments: $K(x : t_1)(y : t_2)$. Per the inference rules, $(Kt_1t_2xy) : t$ is of the type $t = t_1$. Evaluation of Kt_1t_2xy is defined to be equivalent to x. Thus, preservation is trivially achieved. The same is true of the S combinator, whose inference rules trivially prove the goal. All combinations of expressions proceed by induction.

2. Proof Execution

Lemma 4.2. All expressions e which are well-typed with type t and occupy the set R(t) are strongly normalizing.

Proof. Inductively:

- All obviously reducing candidates are strongly normalizing:
 - All expressions of the form T_n are strongly normalizing, as they are inert.
 - All expressions of the form $(\forall x : A.B)$ are strongly normalizing, as they are inert.
- All K: t combinators in R(t) are strongly normalizing. K is insert, and invokes no function applications. By the definition of R(t), evaluation of $K \in R(t)$ will produce only one-step reduxes which are in R, and which are strongly normalizing by induction. Thus, the expression is **strongly normalizing**.
- All S: t combinators in R(t) are strongly normalizing. S is not inert, and invokes xz(yz). However, x, y, and z live in R, requiring that their one-step reduxes live in R and are strongly-normalizing. The expression is strongly-normalizing by induction.

Lemma 4.3. All well-typed expressions (e:t) occupy the set R(t).

Proof. The proof is trivially proven for objects of the form T_n and $(\forall x:A.B)$, as above. All well-typed $K\alpha\beta:t$ combinators are of the type $t=\forall x,y.\alpha$, where x is well-typed $(x:\alpha)$ and y is well-typed $(y:\beta)$. $x\in R(\alpha) \land y\in R(\beta)$ by induction. An expression of the form K:t is said to be in R(t) if all its possible one-step reduxes are in $R(\alpha)$. x has been shown to occupy $R(\alpha)$ and $K\alpha\beta xy=x$. Futhermore, per the inference rules, $K\alpha\beta xy:\alpha[x=x]$. $K\alpha\beta xy:\alpha[x=x]$ is thus in $R(\alpha[x=x])$, and per the definition of R, K is in R(t). The S combinator is not inert, and invokes function application. However, its arguments are in R, and only produce one-step reduxes in R. By the definition of R, the expression is in R.

All well-typed dependently-typed SK combinator expressions are well-typed, as enumerated.

4.3 Strong Normalization of the STLC

I have shown in and that every well-typed expression in our simply-typed lambda calculus has a meaningful equivalent dependently-typed SK combinator expression. I have also demonstrated that there is no well-typed expression in the STLC which cannot be described by a well-typed dependently-typed SK combinator expression. I have demonstrated above that all well-typed SK dependently-typed SK combinator expressions are strongly normalizing. It follows that all well-typed expressions in the STLC are strongly normalizing.

4.4 Encoding in Lean

I have executed this proof in Lean.

5 References

Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages (Prentice-Hall International Series in Computer Science), Prentice-Hall, Inc..

Robert Harper (2022). How to (Re)Invent Tait's Method.