МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Архитектура вычислительных систем тема: «Структура команд процессора»

Выполнил: ст. группы ПВ-233 Мовчан Антон Юрьевич

Проверили: ст. пр. Осипов Олег Васильевич

Лабораторная работа №2 Структура команд процессора Вариант 8

Цель работы: изучить структуру команд процессора, научиться составлять машинный код простейших команд.

Задания для выполнения к работе:

- 1. Ознакомиться с теоретическим материалом главы 2 учебника В.И. Юрова «Assembler» "Программно-аппаратная архитектура IA-32 процессоров Intel".
- 2. В соответствии с вариантом задания определить по символьному описанию команд их машинный код (для 5 команд), а также по машинному коду команд определить их символьное описание (для 2 машинных кодов).

Задание:

Символьное описание команд на языке Assembler:

```
OR AX, DX
MOV SI, 14789h
ADD AL, [ESI+8]
CMP BYTE PTR [EBP+4], 'j'
MOV AX, [EBX+EDI+17h]
BB 6400
B8 7800
```

Команда 1: OR AX, DX.

Эта инструкция выполняет побитовую операцию OR между регистрами AX и DX. Поскольку оба регистра являются 16-битными, используется префикс 66h. Для операции OR код операции равен 000010. Устанавливаем d=0, чтобы результат сохранялся в регистре, указанном в поле r/m. Так как обрабатываются данные размером 2 байта, w=1. Оба операнда адресуются как регистры, поэтому mod=11. Регистр AX имеет код 000, он помещается в поле r/m=000. Для регистра DX код соответствует reg = 010.

Префикс	КОП	d	W	mod	reg	r/m	
1100110	000010	0	1	11	010	000	
66h	09h			D0h			

Итоговая команда в машинном виде: 6609D0 и занимает 3 байта.

Команда 2: MOV SI, 14789h

Инструкция выполняет загрузку числа в регистр SI. Так как SI является 16-битным регистром, используется префикс 66h. Для MOV код операции равен 1011. Поскольку передаётся 2 байта данных, устанавливается w = 1. Регистр SI имеет код reg = 110. Значение 14789h разбивается на два байта, которые располагаются в обратном порядке: младший байт равен 89h, старший — 47h. Избыточные данные при этом отбрасываются.

Префикс	КОП	W	reg	data	reg
1100110	1011	1	110	10001001	01000111
66h	BEh		89h	47h	

Итоговая команда в машинном виде: 66ВЕ8947h и занимает 4 байта.

Kоманда 3: ADD AL, [ESI+8]

Инструкция выполняет сложение числа из памяти по адресу [ESI+8] с регистром AL. Код операции для ADD равен 000000. Устанавливаем d=1, чтобы результат сохранился в регистре reg. Так как обрабатывается 1 байт данных, w=0. Для кодирования эффективного адреса используется 1 байт, поэтому mod = 01. Регистр AL имеет код reg = 000. В поле r/m указываем 110 для ESI, после чего задаётся смещение 8 (00001000).

КОП	d	W	mod	reg	r/m	8
000000	1	10	01	000	110	00001000
02h			46h	08h		

Итоговая команда в машинном виде: 024608 и занимает 3 байта.

Kоманда 4: CMP BYTE PTR [EBP+4], 'j'

Инструкция выполняет сравнение значения в ячейке памяти [EBP+4] с константой `j`. Для CMP код операции равен 10000000/111. Так как смещение занимает 1 байт, устанавливаем mod = 01. В поле r/m указываем 101 для EBP. Смещение 4 записывается как 00000100. Значение j представлено в виде 01101010 (6Ah).

КОП	mod	КОП	r/m	4	ʻj'
10000000	01	111	101	00000100	01101010
80h	7Dh		04h	6A	

Итоговая команда в машинном виде: 807D046A и занимает 4 байта.

Kоманда 5: MOV AX, [EBX+EDI+17h]

Инструкция выполняет загрузку числа из памяти по адресу [EBX+EDI+17h] в регистр AX. Так как AX является 16-битным регистром, используется префикс 66h. Код операции для MOV равен 100010. Поскольку передаются 2 байта данных, устанавливается w=1. Результат сохраняется в регистре reg, поэтому d=1. Для смещения, занимающего 1 байт, mod=01. Регистр AX имеет код reg =000. Поле r/m=100 используется для кодирования эффективного адреса через SIB. В SIB: scale =00, base =111, index =011. Смещение 17h записывается как 00010111.

Префикс	КОП	d	W	mod	reg	r/m	scale	index	base	17h
1100110	100010	1	1	01	000	100	00	011	111	00010111
66h	8Bh		44h			1Fh			17h	

Итоговая команда в машинном виде: 668B441F17 и занимает 5 байт.

Команда 6: ВВ 6400

Код операции ВВ соответствует инструкции MOV. Установлено w = 1, следовательно передаются данные размером 16 или 32 бита. Поле reg = 011 указывает на регистр ВХ/ЕВХ. Далее идут два байта данных: 64h и 00h, что даёт число 0064h (100). Так как передаются два байта, можно сделать вывод, что используется регистр ВХ. Команде не хватает префикса 66h.

MOV BX, 100

Команда 7: В8 7800

Код операции В8 соответствует инструкции MOV. Установлено w = 1, следовательно передаются данные размером 16 или 32 бита. Поле reg = 000 указывает на регистр AX/EAX. Далее идут два байта данных: 78h и 00h, что даёт число 0078h (120). Поскольку передаются два байта, можно предположить использование регистра AX. Команде не хватает префикса 66h.

Вывод: в ходе л.р изучил структуру команд процессора, научился составлять машинный код простейших команд.