1 Variables

2 root

	var	symbol	documentation	type	units	eqs
13	$S_{I,q}$	S_Aq	selection matrix arcs to outputs	network		
4	$F^{sink}{}_{N,I}$	F_NI_sink	incidence matrix NI sink	network		
12	$S_{A,p}$	S_Ap	selection matrix interface species-related measures	network		
3	$F^{source}_{N,I}$	F_NI_source	incidence matrix NI source	network		
20	$A_{N,t,u}$	A_Ntu	mapping from input elements to outputs	network		
27	$I_{N,A}$	I_NA	$ \ identity \ mapping \ from \ < N > \ to \ < A > $	network		
19	$A_{N,p,q}$	A_Npq	mapping from inputs to outputs	network		
2	$F_{N,A}$	F	incidence matrix	network		
16	mv_I	mv_I	interface variable macro -> control	network		
22	$y_{N,t,u}$	y_Ntu	output signal in control domain	network		
7	$F^{source}{}_{N,A}$	F_NA_source	incidence matrix NA source	network		
8	$F^{sink}{}_{N,A}$	F_NA_sink	incidence matrix NA sink	network		
15	$S_{N,q,t}$	S_Nqt	selection matrix or splitter	network		
17	cz_N	cz_N	output from control	network		
14	$S_{N,p,q}$	S_Npu	selection matrix for stacker	network		
6	$F^{sink}{}_{A,I}$	F_AI_sink	incidence matrix AI sink	network		
21	$u_{N,t,u}$	u_Ntu	input signal in control domain	network		
5	$F^{source}{}_{A,I}$	F_AI_source	incidence matrix AI source	network		
11	$I_{t,u}$	I_tu	$ \ identity \ mapping \ from \ < t > \ to \ < u > $	network		
9	$S_{I,p}$	S_Ip	selection matrix interface to control input	network		
18	cz_I	cz_I	interface variable macro -> control	network		
10	$S_{I,q}$	S_Iq	selection matrix interface to control output	network		

	var	symbol	documentation	type	units	eqs
106	t^e	te	end time	frame	s	5
105	t^o	to	starting time	frame	s	4
1	t	t	time	frame	s	
107	Δt	t_interval	time interval	frame	s	6
103	1	one	numerical value one	constant		2
104	0.5	oneHalf	numerical value one half	constant		3
102	0	zero	numerical value zero	constant		1
101	#	value	numerical value	constant		

3 physical

	var	symbol	documentation	type	units	eqs
24	r_{yN}	r_y	y-coordinate	frame	m	
25	r_{zN}	r_z	z-coordinate	frame	$\mid m \mid$	
23	r_{xN}	r_x	x-coordinate	frame	$\mid m \mid$	
108	U_N	U	fundamental state – internal energy	state	$kg m^2 s^{-2} \\ kg m^2 K^{-1} s^{-2}$	
109	S_N	S	fundamental state – internal entropy	state	$kg m^2 K^{-1} s^{-2}$	
110	V_N	V	volume	state	m^3	7
137	m_N	m	mass	state	kg	30
111	$n_{N,S}$	n	fundamental state – molar mass	state	mol	93
144	C_N	C	fundamental state – charge	state	As	
123	R	R	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	17
132	λ_S	Mm	molecular masses	constant	$kg mol^{-1}$	
121	N^A	Avo	Avogadro constant	constant	mol^{-1}	
122	k^B	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	
149	A_{xzN}	Axz	cross sectional are xz	secondaryState	m^2	41
150	A_{yzN}	Ayz	cross sectional area yz	secondaryState	m^2	42
148	A_{xyN}	Axy	cross sectional area xy	secondaryState	m^2	40
143	$ ho_N$	rho	density	secondaryState	$kg m^{-3}$	36

4 macroscopic

	var	symbol	documentation	type	units	eqs
205	\dot{H}^d_{xN}	aHnd_x	accumulation of enthalpy due to diffusional mass flow in x -direction	transport	kgm^2s^{-3}	100
211	\hat{w}_A	fw	a fixed work flow to start with	transport	kgm^2s^{-3}	106
212	$\dot{n}^d_{yN,S}$	and_y	accumulation due to diffusion in y-direction	transport	$mol s^{-1}$	107
194	$\dot{n}^c_{xN,S}$	anc_x	accumulation of molar mass due to convection	transport	$mol s^{-1}$	87
159	\hat{V}_A	fV	volumetric flow in x-direction	transport	$m^3 s^{-1}$	51
151	\hat{q}_{xA}	fq_x	heat flow in x-direction	transport	$kg m^2 s^{-3}$	43
160	$\hat{n}^c_{xA,S}$	fnc_x	molar convective flow in x-direction	transport	$mol s^{-1}$	52
156	$\hat{n}^d_{zA,S}$	fnd_z	diffusion flow in z-direction	transport	$mol s^{-1}$	48 91
153	\hat{q}_{zA}	fq_z	heat flow in z-direction	transport	$kg m^2 s^{-3}$	45
152	\hat{q}_{yA}	fq_y	heat flow in y-direction	transport	$kg m^2 s^{-3}$	44
154	$\hat{n}^d_{xA,S}$	fnd_x	diffusion flow in x-direction	transport	$mol s^{-1}$	46 89
158	$c_{A,S}$	c_AS	concentration in convective event-dynamic flow	transport	$m^{-3} mol$	50
157	d_A	d	flow direction of convective flow	transport		49
213	$\dot{n}^d_{zN,S}$	and_z	accumulation due to diffusion in z-direction	transport	$mol s^{-1}$	108
214	\dot{w}_N	aw	accumulation of enthalpy due to work flow	transport	$kg m^2 s^{-3}$	109
208	\dot{q}_{xN}	aq_x	accumulation due to heat flow in x-direction	transport	$kg m^2 s^{-3}$	103
195	$\dot{n}^d_{xN,S}$	and_x	accumulation due to diffusion in x-direction	transport	$mol s^{-1}$	88
206	\dot{H}^d_{yN}	aHnd_y	accumulation of enthalpy due to diffusional mass flow in y-direction	transport	kgm^2s^{-3}	101
155	$\hat{n}^d_{yA,S}$	fnd_y	diffusion flow in y-direction	transport	$mol s^{-1}$	47 90
204	\dot{H}_{xN}^c	aHnc_x	accumulation of enthalpy due to convective mass flow in x -direction	transport	kgm^2s^{-3}	99

	var	symbol	documentation	type	units	eqs
207	\dot{H}_{zN}^{d}	aHnd_z	accumulation of enthalpy due to diffusional mass flow in z-direction	transport	kgm^2s^{-3}	102
234	$fm_{N,A}$	fm	convective mass flow	transport	$kg s^{-1}$	133
210	\dot{q}_{zN}	aq_z	accumulation due to heat flow in z-direction	transport	$kg m^2 s^{-3}$	105
209	\dot{q}_{yN}	aq_y	accumulation due to heat flow in y-direction	transport	$kg m^2 s^{-3}$	104
182	$k_{zA,S}^d$	kdA_z	diffusivity in arc and z-direction	properties	$kg^{-1} m^{-4} mol^2 s$	75
190	$\hat{k}_x^{d,Fick}{}_{A,S}$	kdAFick_x	Fick's diffusivity in arc and x-direction	properties	ms^{-1}	83
219	$R^e{}_N$	elResistant	electrical resistant	properties	$kg m^2 A^{-2} s^{-3}$	115
185	k_{zA}^{c}	kcA_z	convecive mass conductivity in arc and y-direction	properties	$m^{-1} s$	78
192	$\hat{k}_z^{d,Fick}{}_{A,S}$	kdAFick_z	Fick diffusivity in arc and z-direction	properties	ms^{-1}	85
191	$\hat{k}_y^{d,Fick}{}_{A,S}$	kdAFick_y	Fick diffusivity in arc and y-direction	properties	ms^{-1}	84
188	k_{zA}^{q}	kqA_z	thermal conductivity in arc and z-direction	properties	$kg K^{-1} s^{-3}$	81
181	$k_{yA,S}^d$	kdA_y	diffusivity in arc and y-direction	properties	$kg^{-1} m^{-4} mol^2 s$	74
193	$h_{A,S}$	hA	partial molar enthalpiies in arc	properties	$kg m^2 mol^{-1} s^{-2}$	86
180	$k_{xA,S}^d$	kdA_x	diffusivity in arc and x-direction	properties	$kg^{-1} m^{-4} mol^2 s$	73
186	k_{xA}^q	kqA_x	thermal conductivity in arc and x-direction	properties	$kg K^{-1} s^{-3}$	79
187	k_{yA}^q	kqA_y	thermal conductivity in arc and y-direction	properties	$kg K^{-1} s^{-3}$	80
189	$ ho_A$	rhoA	density in arc	properties	kgm^{-3}	82
183	k_{xA}^c	kcA_x	convective mass conductivity in arc and x diretion	properties	$m^{-1} s$	76
184	k_{yA}^c	kcA_y	convective mass conductivity in arc and y-direction	properties	$m^{-1} s$	77
115	H_N	Н	Enthalpy	state	kgm^2s^{-2}	11 112
203	$n^o{}_{N,S}$	no	initial mass	state	mol	98
117	G_N	G	Gibbs free energy	state	kgm^2s^{-2}	13
116	A_N	A	Helmholtz energy	state	kgm^2s^{-2}	12

	var	symbol	documentation	type	units	eqs
216	$H^o{}_N$	Но	initial enthalpy	state	$kg m^2 s^{-2}$	111
217	$U^e{}_N$	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	113
161	$\mu^o{}_{N,S}$	chemPotStandard	instantiating standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	53
113	T_N	T	temperature	effort	K	9 121
112	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	8
114	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	10 54
120	v_{zN}	v_z	velocity in z-direction	secondaryState	ms^{-1}	16
141	c_{pN}	ср	specific heat capacity at constant pressure	secondaryState	$m^2 K^{-1} s^{-2}$	34 120
124	C_{pN}	Ср	total heat capacity at constant pressure	secondaryState	$kg m^2 K^{-1} s^{-2}$	18 117
118	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	14
222	$T^{ref}{}_N$	T_ref	reference temperature	${\it secondaryState}$	K	119
125	C_{VN}	CV	total heat capacity at constant volume	secondaryState	$kg m^2 K^{-1} s^{-2}$	19
136	$h_{N,S}$	h	partial molar enthalpies	secondaryState	$kg m^2 mol^{-1} s^{-2}$	29
142	c_{VN}	cV	specific heat capacity at constant volume	secondaryState	$m^2 K^{-1} s^{-2}$	35
140	$x_{N,S}$	x	mole fraction	secondaryState		33
138	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	31
119	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	15
139	$n^t{}_N$	nt	total number of moles	secondaryState	mol	32
202	$ ilde{n}_{N,S}$	np	link variable np to interface macroscopic	conversion	$m^{-3} mol s^{-1}$	97
220	$\dot{U}^e{}_A$	dUe	Kirkhoffs first law	diffState	$kg m^2 A^{-1} s^{-3}$	116
215	\dot{H}_N	dH	accumulation of enthalpy	diffState	$kg m^2 s^{-3}$	110
196	$\dot{n}_{N,S}$	an	differential mass balance without reaction	diffState	$mol s^{-1}$	92
218	$I^e{}_N$	current	current definition	${\it internal Transport}$	A	114

	var	symbol	documentation	type	units	eqs
236	$u_{N,p}$	u	link variable u to interface macroscopic	controlInput		135
224	$ar{T}_N$	T_meas	temperature measurement	observation		123
223	$T^n{}_N$	T_meas_norming	value to norm measurement of temperature	observation	K	122

5 reactions

	var	symbol	documentation	type	units	eqs
26	$N_{S,K}$	N	stoichiometric matrix	constant		
198	$K^o{}_K$	Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
197	$E^a{}_K$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	
167	$T_{N,p}$	Т	link variable T to interface reactions	effort	K	60
165	$x_{N,S,p}$	x	link variable x to interface reactions	secondaryState		58
163	$c_{N,S,p}$	С	link variable c to interface reactions	secondaryState	$m^{-3} mol$	56
169	$\xi_{N,K,p}$	probability	probability of reaction to take place	conversion		62
200	$ ilde{n}_{N,S,q}$	np	production from reaction set	conversion	$m^{-3} mol s^{-1}$	95
199	$K_{N,K,p}$	K	Arrhenius reaction "constant"	conversion	$m^{-3} mol s^{-1}$	94
168	$f_{N,S,K,p}$	factor	factor for probability computation	conversion		61

6 control

	var	symbol	documentation	type	units	eqs
230	$d^{heating}_{N,p}$	d_dir	direction of heating	algebraic		129
231	$e_{N,p}$	control_error	control error in normed temperature	algebraic		130
233	$l_{N,p}$	limit	limit	algebraic		132
226	${ar T}_{N,p}$	T_meas	link variable T meas to interface control	algebraic		125
227	$T_{setpoint N,p}$	T_setpoint	setpoint for temperatue	algebraic		126
228	p	p_gain	proportional gain	algebraic		127
229	$u_{N,p}$	u	output of straight proportional controller direction heating	algebraic		128

7 reactions-macroscopic

	var	symbol	documentation	type	${ m units}$	eqs
201	$_np_{I,S}$	_np	link variable np to interface reactions »> macroscopic with source:node	get	$m^{-3} mol s^{-1}$	96

8 macroscopic-reactions

	var	symbol	documentation	type	units	eqs
164	$_x_{I,S}$	_x	$\begin{array}{c} link\ variable\ x\ to\ interface\ macroscopic\ >>\ reactions\\ with\ source:node \end{array}$	get		57
162	$_c_{I,S}$	_c	link variable c to interface macroscopic »> reactions with source:node	get	$m^{-3} mol$	55
166	$_T_I$	_T	$\begin{array}{c} \mbox{link variable T to interface macroscopic } > \mbox{reactions} \\ \mbox{with source:node} \end{array}$	get	K	59

9 macroscopic-control

	var	symbol	documentation	type	units	eqs
225	$_T_meas_I$	_T_meas	link variable T meas to interface macroscopic »> control with source:node	get		124

$10 \quad control-macroscopic$

	var	symbol	documentation	type	units	eqs
235	$_u_{I,p}$	_u	link variable u to interface control »> macroscopic with source:node	get		134

11 Equations

12 Generic

no	equation	documentation	layer
1	$0 := \mathbf{Instantiate}(\#, \#)$	numerical value zero	root
2	$1 := \mathbf{Instantiate}(\#, \#)$	numerical value one	root
3	$0.5 := \mathbf{Instantiate}(\#, \#)$	numerical value one half	root
4	$t^o := \mathbf{Instantiate}(t, \#)$	starting time	root
5	$t^e := \mathbf{Instantiate}(t, \#)$	end time	root
6	$\Delta t := \mathbf{Instantiate}(t, \#)$	time interval	root
7	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
8	$p_N := rac{\partial U_N}{\partial V_N}$	thermodynamic pressure	physical
9	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	macroscopic
10	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$	chemical potential	macroscopic
11	$H_N := U_N - p_N \cdot V_N$	Enthalpy	macroscopic
12	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	macroscopic
13	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	macroscopic
14	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocity in x-direction	macroscopic
15	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y-direction	macroscopic
16	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	macroscopic

no	equation	documentation	layer
17	$R := N^A \cdot k^B$	gas constant	physical
18	$C_{pN} := \frac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	macroscopic
19	$C_{VN} := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	macroscopic
29	$h_{N,S} := H_N \cdot (n_{N,S})^{-1}$	partial molar enthalpies	macroscopic
30	$m_N := \lambda_S \stackrel{S}{\star} n_{N,S}$	mass	macroscopic
31	$c_{N,S} := (V_N)^{-1} \cdot n_{N,S}$	molar concentration	macroscopic
32	$n^{t}{}_{N} := \mathbf{reduceSum}\left(n_{N,S},S ight)$	total number of moles	macroscopic
33	$x_{N,S} := \left(n^t{}_N\right)^{-1} \cdot n_{N,S}$	mole fraction	macroscopic
34	$c_{pN} := C_{pN} \cdot \left(m_N \right)^{-1}$	specific heat capacity at constant pressure	physical
35	$c_{VN} := C_{VN} \cdot \left(m_N \right)^{-1}$	specific heat capacity at constant volume	macroscopic
36	$\rho_N := \left(V_N\right)^{-1} . m_N$	density	physical
40	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy	physical
41	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional are xz	physical
42	$A_{yzN} := r_{yN} \cdot r_{zN}$	cross sectional area yz	physical
43	$\hat{q}_{xA} := k_{xA}^q \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} T_N$	heat flow in x-direction	macroscopic
44	$\hat{q}_{yA} := k_{yA}^q \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} T_N$	heat flow in y-direction	macroscopic
45	$\hat{q}_{zA} := k_{zA}^q \cdot A_{xyN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in z-direction	macroscopic

no	equation	documentation	layer
46	$\hat{n}_{xA,S}^d := \hat{k}_x^{d,Fick}{}_{A,S} \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in x-direction	macroscopic
47	$\hat{n}_{yA,S}^d := \hat{k}_y^{d,Fick}{}_{A,S} \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in y-direction	macroscopic
48	$\hat{n}_{zA,S}^d := \hat{k}_z^{d,Fick}{}_{A,S} \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} c_{N,S}$	Fick diffusion flow in z-direction	macroscopic
49	$igg d_A := \mathbf{sign} \left(F_{N,A} \stackrel{N}{\star} p_N ight)$	flow direction of convective flow	macroscopic
50	$c_{A,S} := (0.5 \cdot (F_{N,A} - d_A \cdot F_{N,A})) *^{N}_{\star} c_{N,S}$	concentration in convective event- dynamic flow	macroscopic
51	$\hat{V}_A := (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} p_N$	volumetric flow in x-direction	macroscopic
52	$\hat{n}_{xA,S}^c := \hat{V}_A \cdot c_{A,S}$	molar convective flow in x-direction	macroscopic
53	$\left egin{array}{c} \mu^o{}_{N,S} := \mathbf{Instantiate}(\mu_{N,S},\#) \end{array} ight $	instantiating standard chemical potential	macroscopic
54	$\mu_{N,S} := \mu^{o}_{N,S} + R \cdot T_{N} \cdot \ln (x_{N,S})$	chemical potential standard model with mole fraction	macroscopic
61	$f_{N,S,K,p} := x_{N,S,p}((N_{S,K}))$	factor for probability computation	reactions
62	$igg \xi_{N,K,p} := \prod_S f_{N,S,K,p}$	probability of reaction to take place	reactions
73	$k_{xA,S}^d := I_{N,A} * \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{xN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and x-direction	macroscopic
74	$k_{yA,S}^d := I_{N,A} * \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{yN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and y-direction	macroscopic
75	$k_{zA,S}^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and z-direction	macroscopic
76	$k_{xA}^c := I_{N,A} \stackrel{N}{\star} \left(\left(\lambda_S \stackrel{S}{\star} (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN} \right)$	convective mass conductivity in arc and x diretion	macroscopic
77	$k_{yA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN} \right)$	convective mass conductivity in arc and y-direction	macroscopic

no	equation	documentation	layer
78	$k_{zA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN} \right)$	convecive mass conductivity in arc and y-direction	macroscopic
79	$k_{xA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{xN} \right)$	thermal conductivity in arc and x-direction	macroscopic
80	$k_{yA}^{q} := I_{N,A} * \left((V_{N})^{-1} . C_{pN} . v_{yN} \right)$	thermal conductivity in arc and y-direction	macroscopic
81	$k_{zA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{zN} \right)$	thermal conductivity in arc and z-direction	macroscopic
82	$ ho_A := I_{N,A} \stackrel{N}{\star} ho_N$	density in arc	macroscopic
83	$\hat{k}_x^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction	macroscopic
84	$\hat{k}_{y}^{d,Fick}{}_{A,S} := I_{N,A} * \left(v_{yN} \cdot \frac{\partial U_{N}}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and y-direction	macroscopic
85	$\hat{k}_z^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and z-direction	macroscopic
86	$h_{A,S} := I_{N,A} \stackrel{N}{\star} h_{N,S}$	partial molar enthalpiies in arc	macroscopic
87	$\dot{n}_{xN,S}^c := F_{N,A} \stackrel{A}{\star} \hat{n}_{xA,S}^c$	accumulation of molar mass due to convection	macroscopic
88	$\dot{n}_{xN,S}^d := F_{N,A} \overset{A}{\star} \hat{n}_{xA,S}^d$	accumulation due to diffusion in x-direction	macroscopic
89	$\hat{n}_{xA,S}^d := k_{xA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \overset{N}{\star} \mu_{N,S}$	Fick diffusion flow in x-direction	macroscopic
90	$\hat{n}_{yA,S}^d := k_{yA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) *^{N}_{\star} \mu_{N,S}$	Fick diffusion flow in y-direction	macroscopic
91	$\hat{n}_{zA,S}^d := k_{zA,S}^d \cdot (A_{xyN} \cdot F_{N,A}) \overset{N}{\star} \mu_{N,S}$	mass diffusion flow in z-direction	macroscopic
92	$\dot{n}_{N,S} := \dot{n}_{xN,S}^c + \dot{n}_{xN,S}^d + V_N \cdot \tilde{n}_{N,S}$	differential mass balance without reaction	macroscopic

no	equation	documentation	layer
93	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o{}_{N,S}$	fundamental state – molar mass	macroscopic
94	$K_{N,K,p} := K^o{}_K \cdot \exp\left((-E^a{}_K) \cdot (R \cdot T_{N,p})^{-1}\right)$	Arrhenius reaction "constant"	reactions
95	$\tilde{n}_{N,S,q} := A_{N,p,q} \star \left(N_{S,K} \star \left(K_{N,K,p} \cdot \xi_{N,K,p} \right) \right)$	production from reaction set	reactions
98	$egin{aligned} n^o{}_{N,S} := \mathbf{Instantiate}(n_{N,S},\#) \end{aligned}$	initial mass	macroscopic
99	$\dot{H}_{xN}^c := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^c \stackrel{S}{\star} h_{N,S} \right)$	enthalpy accumulation due to convective flow in x-direction	macroscopic
100	$\dot{H}_{xN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in x-direction	macroscopic
101	$\dot{H}_{yN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{yA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in y-direction	macroscopic
102	$\dot{H}_{zN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{zA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in z-direction	macroscopic
103	$\dot{q}_{xN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{xA}$	accumulation due to heat flow in x-direction	macroscopic
104	$\dot{q}_{yN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{yA}$	accumulation due to heat flow in y-direction	macroscopic
105	$\dot{q}_{zN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{zA}$	accumulation due to heat flow in z-direction	macroscopic
106	$\hat{w}_A := \mathbf{Instantiate}(\hat{q}_{xA}, \#)$	a fixed work flow to start with	macroscopic
107	$\dot{n}_{yN,S}^d := F_{N,A} \star \hat{n}_{yA,S}^d$	accumulation due to diffusion in y-direction	macroscopic
108	$\dot{n}_{zN,S}^d := F_{N,A} \star \hat{n}_{zA,S}^d$	accumulation due to diffusion in z-direction	macroscopic

no	equation	documentation	layer
109	$\dot{w}_N := F_{N,A} \overset{A}{\star} \hat{w}_A$	accumulation of enthalpy due to work flow	macroscopic
110	$\dot{H}_N := \dot{H}^c_{xN} + \dot{H}^d_{xN} + \dot{H}^d_{yN} + \dot{H}^d_{zN} + \dot{q}_{xN} + \dot{q}_{yN} + \dot{q}_{zN} + \dot{w}_N$	accumulation of enthalpy	macroscopic
111	$H^o{}_N := \mathbf{Instantiate}(H_N, \#)$	initial enthalpy	macroscopic
112	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt + H^o{}_N$	Enthalpy	macroscopic
113	$U^e{}_N := (C_N)^{-1} \cdot U_N$	electrical potential – voltage	macroscopic
114	$I^e{}_N := \frac{dC_N}{dt}$	current definition	macroscopic
115	$R^{e}{}_{N} := (I^{e}{}_{N})^{-1} . U^{e}{}_{N}$	electrical resistant	macroscopic
116	$\dot{U}^e{}_A := F_{N,A} \stackrel{A}{\star} (R^e{}_N . I^e{}_N)$	Kirkhoffs first law	macroscopic
117	$C_{pN} := m_N \cdot c_{pN}$	total heat capacity at constant pressure	macroscopic
119	$T^{ref}{}_N := \mathbf{Instantiate}(T_N, \#)$	reference temperature	macroscopic
120	$c_{pN} := \mathbf{Instantiate}(c_{pN}, \#)$	constant specific heat capacity at constant pressure	macroscopic
121	$T_N := H_N \cdot (C_{pN})^{-1} + T^{ref}{}_N$	temperature from constant heat capacity	macroscopic
122	$T^n{}_N := \mathbf{Instantiate}(T_N, \#)$	value to norm measurement of temperature	macroscopic
123	$\bar{T}_N := T_N \cdot \left(T^n{}_N\right)^{-1}$	temperature measurement	macroscopic
126	$T_{setpointN,p} := \mathbf{Instantiate}(\bar{T}_{N,p}, \#)$	setpoint for temperatue	control
127	$p := \mathbf{Instantiate}(\#, \#)$	proportional gain	control

no	equation	documentation	layer
128	$u_{N,p} := (-p) \cdot e_{N,p}$	output of straight proportional temperature controller	control
129	$\left d^{heating}_{N,p} := \mathbf{sign}\left(u_{N,p} ight)$	direction of heating	control
130	$e_{N,p} := T_{setpointN,p} - \bar{T}_{N,p}$	control error in normed temperature	$\operatorname{control}$
132	$egin{aligned} l_{N,p} := \mathbf{Instantiate}(u_{N,p}, \#) \end{aligned}$	maximum limit	control
133	$fm_{N,A} := \hat{V}_A . ho_N$	convective mass flow	macroscopic

13 Interface Link Equation

no	equation	documentation	layer
55	$_c_{I,S} := F^{source}{}_{N,I} \overset{N}{\star} c_{N,S}$	interface equation	macroscopic -> reactions
56	$c_{N,S,p} := \left(F^{sink}_{N,I} \cdot _c_{I,S}\right) \stackrel{I}{\star} S_{I,p}$	interface equation	reactions
57	$_x_{I,S} := F^{source}_{N,I} \overset{N}{\star} x_{N,S}$	interface equation	macroscopic -> re- actions
58	$x_{N,S,p} := (F^{sink}_{N,I} \cdot _x_{I,S}) \overset{I}{\star} S_{I,p}$	interface equation	reactions
59	$_T_I := F^{source}{}_{N,I} \stackrel{N}{\star} T_N$	interface equation	macroscopic -> re- actions
60	$T_{N,p} := (F^{sink}_{N,I} \cdot _T_I) \overset{I}{\star} S_{I,p}$	interface equation	reactions
96	$_np_{I,S} := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} \stackrel{N}{\star} \tilde{n}_{N,S,q}\right).S_{I,q}\right),q\right)$	interface equation	reactions -> macroscopic
97	$\tilde{n}_{N,S} := F^{source}{}_{N,I} \stackrel{I}{\star} {}_{_} n p_{I,S}$	interface equation	macroscopic
124		interface equation	macroscopic -> control
125	$egin{aligned} ar{T}_{N,p} \coloneqq \left(F^{sink}{}_{N,I} \cdot _T_{meas}_{I} ight) \stackrel{I}{\star} S_{I,p} \end{aligned}$	interface equation	control
134	$_u_{I,p} := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} \overset{N}{\star} u_{N,p}\right) . S_{I,q}\right), q\right)$	interface equation	control -> macro- scopic
135	$u_{N,p} := F^{source}{}_{N,I} \stackrel{I}{\star} {}_{_} u_{I,p}$	interface equation	macroscopic