Exercice

On cherche à résoudre l'équation

$$x^2 - 2 = 0$$

(dont une solution est $\sqrt{2}$) au moyen de la méthode des points fixes

$$x_{n+1}=g(x_n)=x_n-\rho(x_n^2-2)$$

où ρ est une constante.

- (a) Pour quelles valeurs de ρ cette méthode des points fixes est-elle convergente à l'ordre 1 (au moins)?
- (b) Quel est l'ordre de convergence pour $\rho = \frac{\sqrt{2}}{4}$?
- (c) Quel est l'ordre de convergence si $\rho = 3\sqrt{2}$?

Problème

On veut calculer une approximation de $r = \ln a$ pour a > 0 donné. Pour ce faire, on considère le problème équivalent $f(x) = a - e^x = 0$. On suggère d'utiliser une méthode de point fixe et on propose les 3 fonctions suivantes:

- $g_1(x) = x (e^x a)$:
- $\bullet \ g_2(x) = x \frac{(e^x a)}{a};$
- $\bullet \ g_3(x) = x \frac{(e^x a)}{e^x}.$
- (a) Pour la fonction $g_1(x)$, caractériser la nature du point fixe $r = \ln a$ (répulsif, attractif ou indeterminé).
- (b) Donner le taux et l'ordre de convergence de la méthode de point fixe associée à la fonction $g_1(x)$ pour laquelle $r = \ln a$ est attractif.

- (c) En remarquant que la fonction $g_3(x)$ est la méthode de point fixe de Newton pour le problème f(x) = 0, donner une interprétation géometrique de la méthode de point fixe appliquée à la fonction $g_2(x)$.
- (d) Compte-tenu de l'ordre de convergence et du temps de calcul nécessaire, sur quelle fonction appliquerez-vous la méthode de point fixe pour déterminer le point $r = \ln a$.
- (e) Trouver les valeurs de α et β telles que la combinaison linéaire

$$g_{\alpha,\beta}(x) = \alpha g_2(x) + \beta g_3(x),$$

possède $x = \ln a$ comme point fixe super-attractif, c'est à dire de convergence d'ordre 3.

(f) Utiliser la méthode des points fixes $g_{\alpha,\beta}(x)$, pour approximer $\ln 2$ avec 8 chiffres significatifs en partant de $x_0 = 0.5$.

<u>Réponse</u>

(a)
$$|g'(x)| = |1 - 2\rho x| < 1$$
 pour $0 < \rho < \frac{\sqrt{2}}{2}$.

- (b) $g'(\frac{\sqrt{2}}{4}) = 0$, convergence quadratique.
- (c) $g'(3\sqrt{2}) > 1$, divergence.

- (a) Le point fixe est attractif pour a dans l'intervalle]0,2[. Si a=2, c'est un cas indéterminé.
- (b) la convergence est d'ordre 1 pour a dans les intervalles 0, 1[et]1, 2[, et la convergence est d'ordre 2 pour a=1.
- (c) La fonction $g_2(x)$ correspond à une variante de la méthode de Newton appliquée à la fonction f(x). La prochaine itération x_{n+1} est obtenue en déterminant l'intersection de la droite y = 0 (l'axe des x) avec de la droite passant par le point de coordonnée $(x_n, f(x_n))$ et de pente fixée à $f'(\ln a) = a$.
- (d) On choisit la fonction $g_2(x)$ car la convergence est d'ordre 2 mais contrairement à la méthode de Newton, elle ne nécessite pas l'évaluation de la dérivée à chaque itération.
- (e) Les coefficients α et β sont les solutions des équations

$$\begin{cases} \alpha + \beta = 1; \\ \alpha - \beta = 0. \end{cases}$$

On trouve $\alpha=\beta=\frac{1}{2}$ et on note que $g_{\alpha,\beta}^{\prime\prime\prime}(\ln a)=-1\neq 0$ ce qui confirme que la méthode est d'ordre 3.