Durée:2H

EMD1. 03 Janvier 2010

DOCUMENTS ET CALCULATRICE INTERDITS.

Exercice 1: (5,75 points:3+2,75)

<u>Pour la partiel</u>, il est inutile de recopier les propositions sur la copie , il suffit d'écrire le numéro de la proposition accompagné par la réponse qui lui correspond.

I- Répondre par vrai ou faux, sans justifier, aux propositions suivantes:

Pour toute fonction f définie sur \mathbb{R}^2 à valeur dans \mathbb{R} et pour tout point $(a,b) \in \mathbb{R}$ on a:

- 1) $\exists l \in \mathbb{R}$ telle que $\lim_{(x,y)\to(a,b)} f(x,y) = l \in \mathbb{R} \Rightarrow f$ est continue en (a,b).
- 2) $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ existent sur $\mathbb{R}^2 \Rightarrow f$ est continue sur \mathbb{R}^2 .
- 3) f est différentiable sur $\mathbb{R}^2 \Rightarrow f$ est continue sur \mathbb{R}^2 .
- 4) f n'admet pas en (a,b) un extrémum. \Rightarrow (a,b) n'est pas un point critique de f.
- 5) $\exists (x,y) \in \mathbb{R}^2 / \frac{\partial^2 f}{\partial x \partial y}(x,y) \neq \frac{\partial^2 f}{\partial y \partial x}(x,y) \Rightarrow f \text{ n'est pas de classe } C^2 \text{ sur } \mathbb{R}^2.$
- 6) f admet en (a,b) un extréma libre vérifiant une contrainte $g \Rightarrow f$ admet en (a,b) un extréma lié à la contrainte g.

II- Compléter les propositions suivantes:

- 2) Soit une fonction f définie sur \mathbb{R}^2 à valeur dans \mathbb{R} ; considérons une fonction h définie par $h(x,y) = f(xy,e^x)$.

$$\begin{cases} \frac{\partial f}{\partial x}, & \frac{\partial f}{\partial y} \text{ existent sur } \mathbb{R}^2 \\ \text{et} & \Rightarrow \left(\frac{\partial g}{\partial x}(x, y), \frac{\partial g}{\partial y}(x, y)\right) = \left(\frac{\partial f}{\partial x}(.,.), \frac{\partial f}{\partial y}(.,.)\right) \end{cases}$$

1

Exercice 2: (7,5 points: 2,5+5)

Calculer les limites suivantes si elles existent:

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^5y^6}{x^2+y^4}$$
. b) $\lim_{(x,y)\to(0,0)} \frac{x^8y}{x+y} \log(1+xy)$.

2)Considérons la fonction f définie sur \mathbb{R}^2 par :

2009/2010

ESI. Math2. 21

$$f(x,y) = \begin{cases} \frac{1 - \cos(\sqrt{xy})}{y} & \text{si } xy > 0. \\ \frac{1}{2}x & \text{si } xy \le 0. \end{cases}$$

Posons Δ =la droite d'équation: y = 0.

Etudier la différentiabilité de f sur Δ .

Exercice 3: (3,5 points)

Déterminer les extémas libres de la fonction f définie par :

$$f(x,y) = (x+y)^2 - (x^4 + y^4).$$

Exercice 4: (4 points: 2,5+1,5)

Les questions suivantes sont indépendantes:

- 1) Déterminer la valeur maximale de la fonction f définie par : f(x,y) = xy. sur le cercle d'équation $x^2 + y^2 = 1$.
- 2) La figure suivante représente le graphe de la fonction : $f(x,y) = \frac{e^{-y^2(x^2+1)}}{x^2+1}$.

$$z = \frac{e^{-y^2(x^2+1)}}{x^2+1}$$

Compléter les phrases suivantes:

f admet en $B(\frac{1}{2},0,0)$ un maximum lié à la contrainte ...

f admet en A(1,0,0) un maximum lié à la contrainte ...

Bon courage.

ESI. Math2. 21

Un corrigé de l'EMD 1.

Exercice1:

Partiel

1) Fausse, 2) Fausse, 3) Vraie, 4) Fausse, 5) Vrai, 6) Vraie.

Partiell

1) U est un ouvert de $\mathbb{R}^2 \iff \forall X \in U, \exists r > 0$ telle que $B(X,r) \subset U$.

Ou bien: U est un ouvert de $\mathbb{R}^2 \Leftrightarrow U$ est un voisinage de chacun de ses points.

2) g définie par $h(x,y) = f(xy,e^x) = f \circ \varphi(x,y)$ où $\varphi: (x,y) \mapsto (u,v) = (xy,e^x)$

$$\begin{cases} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \text{ existent sur } \mathbb{R}^2 \\ f \text{ est différentiable ou bien } f \in C^1(\mathbb{R}^2) \end{cases} \Rightarrow \left(\frac{\partial h}{\partial x}(x, y), \frac{\partial h}{\partial y}(x, y)\right) = \left(\frac{\partial f}{\partial x}(u, y), \frac{\partial f}{\partial y}(x, y)\right)$$

Exercice2:

a) Calculons: $\lim_{(x,y)\to(0,0)} f(x,y) / f(x,y) = \frac{x^5y^6}{x^2+y^4}$, on a $x^2 \le x^2+y^4$ donc $\frac{x^2}{x^2+y^4}$ est bornée, de plus $\lim_{(x,y)\to(0,0)} x^3y^6 = 0$ donc $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ b) Soit $g(x,y) = \frac{x^8y}{x+y} \log(1+xy)$. Utilisons les chemins pour montrer que

 $\lim_{(x,y)\to(0,0)} g(x,y) \, \mathsf{n'} \nexists :$

posons: $y = -x + x^m$ avec $m \in \mathbb{N} / m \ge 2$ à choisir ultérieurement.

$$\lim_{x \to 0} g(x, -x + x^m) = \lim_{x \to 0} \frac{x^8(-x + x^m)}{x^m} \log[1 + x(-x + x^m)] = \lim_{x \to 0} \frac{x^8(-x + x^m)}{x^m} [x(-x + x^m)]$$

= $\lim_{x\to 0} \frac{x^{11}}{x^m}$, il suffit de choisir m=11 pour trouver la limite 1, puis m=0 pour trouver

la limite 0.

Conclusion: $\lim_{(x,y)\to(0,0)} g(x,y)$ n' \nexists

$$2)f(x,y) = \begin{cases} \frac{1 - \cos(\sqrt{xy})}{y} & \text{si } xy > 0. \\ \frac{1}{2}x & \text{si } xy \leq 0. \end{cases}, \Delta = \{(x,y) \in \mathbb{R}^2 / y = 0\}, D_f = \mathbb{R}^2.$$

Etudions la différentiabilité de f sur $\Delta = \{(a,0) \mid a \in \mathbb{R}\}$: soit $(a,0) \in \Delta$.

a) Calcul des dérivées partielles premières:

1er cas: a = 0:

$$\frac{\partial f}{\partial y}(0,0) : \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = 0 \text{ie} \left[\frac{\partial f}{\partial y}(0,0) = 0 \right].$$

2ème cas: $a \neq 0$:

ESI. Math2. 2I

$$\frac{\partial f}{\partial y}(a,0) : \lim_{y \to 0} \frac{f(a,y) - f(a,0)}{y - 0} = \begin{cases} \lim_{y \to 0} \frac{f(a,y) - f(a,0)}{y - 0} = \lim_{y \to 0} \frac{\frac{1 - \cos(\sqrt{ay})}{y} - \frac{1}{2}a}{y} \\ \lim_{y \to 0} \frac{f(a,y) - f(a,0)}{y - 0} = \lim_{y \to 0} \frac{\frac{1}{2}a - \frac{1}{2}a}{y} = 0 \end{cases} (1).$$

Calculons (1) et voyons si elle est égale à la limite (2) = 0 pour que $\frac{\partial f}{\partial y}(a,0) \exists$.

$$(1) = \lim_{y \to 0} \frac{1 - \cos(\sqrt{ay}) - \frac{1}{2}ay}{y^2} = \lim_{y \to 0} \frac{\left(\frac{1}{2}(\sqrt{ay})^2 - \frac{1}{4!}(\sqrt{ay})^4 + o((\sqrt{ay})^4)\right) - \frac{1}{2}ay}{y^2}$$

$$= \lim_{y \to 0} \frac{-\frac{1}{4!}(ay)^2 + o((ay)^2)}{y^2} = -\frac{1}{4!}a^2. \text{ Donc } \frac{\partial f}{\partial y}(a, 0) \exists \text{ ssi } -\frac{1}{4!}a^2 = 0 \text{ ie ssi}$$

$$a = 0.$$

On en déduit $\frac{\partial f}{\partial y}(a,0)$ \nexists pour tout $a \neq 0$.

Conclusion: f n'est pas différentiable sur $\Delta \setminus \{(0,0)\}$.

b) Etude de la différentiabilité en (0,0):

Pour cela utilisons la définition:

$$f(h_1,h_2) - f(0,0) = \frac{\partial f}{\partial x}(0,0)h_1 + \frac{\partial f}{\partial y}(0,0)h_2 + \|(h_1,h_2)\|\varepsilon(h_1,h_2)$$

ie
$$\varepsilon(h_1,h_2)=\frac{f(h_1,h_2)-\frac{1}{2}h_1}{\sqrt{h_1^2+h_2^2}}, f$$
 sera différentable en $(0,0)$ ssi

$$\lim_{(h_1,h_2)\to(0,0)} \varepsilon(h_1,h_2) = 0.$$

$$\lim_{(h_{1},h_{2})\to(0,0)} \varepsilon(h_{1},h_{2}) = \begin{cases} \lim_{(h_{1},h_{2})\to(0,0)} \frac{1-\cos\left(\sqrt{h_{1}h_{2}}\right)}{h_{2}} - \frac{1}{2}h_{1} \\ \lim_{(h_{1},h_{2})\to(0,0)} \frac{1}{\sqrt{h_{1}^{2} + h_{2}^{2}}} \end{cases} (1).$$

$$\lim_{(h_{1},h_{2})\to(0,0)} \varepsilon(h_{1},h_{2}) = \begin{cases} \lim_{(h_{1},h_{2})\to(0,0)} \frac{\frac{1}{2}h_{1} - \frac{1}{2}h_{1}}{\sqrt{h_{1}^{2} + h_{2}^{2}}} = \lim_{(h_{1},h_{2})\to(0,0)} 0 = 0 \end{cases} (2).$$

$$(1) = \lim_{(h_{1},h_{2})\to(0,0)} \frac{1-\cos\left(\sqrt{h_{1}h_{2}}\right) - \frac{1}{2}h_{1}h_{2}}{h_{2}\sqrt{h_{1}^{2} + h_{2}^{2}}} = \lim_{(h_{1},h_{2})\to(0,0)} \frac{\left(\frac{1}{2}h_{1}h_{2} + o((h_{1}h_{2}))\right) - \frac{1}{2}h_{1}h_{2}}{h_{2}\sqrt{h_{1}^{2} + h_{2}^{2}}}$$

$$= \lim_{(h_{1},h_{2})\to(0,0)} \frac{o((h_{1}h_{2}))}{h_{2}\sqrt{h_{1}^{2} + h_{2}^{2}}} = \lim_{(h_{1},h_{2})\to(0,0)} \frac{h_{2}}{\sqrt{h_{1}^{2} + h_{2}^{2}}} \underbrace{\left[o(1)\right]}_{\text{dend vers }0} = 0$$

On a donc (1) = (2) = 0 ie
$$\lim_{(h_1,h_2)\to(0,0)} \varepsilon(h_1,h_2) = 0$$
.

On en conclut que f est différentiable en (0,0).

ESI. Math2. 21

Exercice3:

$$f(x,y) = (x+y)^2 - (x^4 + y^4), f \in C^{\infty}(\mathbb{R}^2).$$

1) CN: Recherche des points critiques:

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 2(x+y) - 4x^3 = 0\\ \frac{\partial f}{\partial y}(x,y) = 2(x+y) - 4y^3 = 0 \end{cases} \Leftrightarrow \begin{cases} x+y-2x^3 = 0 & (1)\\ x+y-2y^3 = 0 & (2) \end{cases}$$

(1) – (2) donne $2x^3 = 2y^3 \iff x^3 = y^3 \iff x = y$, on remplace dans (1) :

$$2x-2x^3=0 \Leftrightarrow x(1-x^2)=0 \Leftrightarrow x=0 \text{ ou } x=1 \text{ ou } x=-1.$$

Les points critiques sont : $M_0 = (0,0)$, $M_1 = (1,1)$ et $M_2 = (-1,-1)$.

2) CS: Nature des points critiques:Calculons d'abord les dérivées partielles de f :

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 2 - 12x^2, \ \frac{\partial^2 f}{\partial x \partial y}(x,y) = 2, \ \frac{\partial^2 f}{\partial y^2}(x,y) = 2 - 12y^2$$

<u>Le point M_1 </u>: utilisons le discriminant $\Delta = r_1 t_1 - s_1^2$ où $r_1 = -10 = t_1$ et $s_1 = 2$ $\Rightarrow \Delta = 100 - 4 > 0$ et comme $r_1 < 0$ alors $(M_1, f(M_1))$ est un maximum pour f.

Le point M_2 : même travail, on trouve que $(M_2, f(M_2))$ est aussi un maximum pour f.

<u>Le point M_0 </u>: si on calcul le discriminant on obtient $\Delta = r_0 t_0 - s_0^2 = 0$ d'où RAD (où $r_0 = t_0 = s_0 = 2$), alors changeons de méthode, utilisons la définition Voyons le signe de $f(x,y) - f(0,0) = (x+y)^2 - (x^4 + y^4)$:

Si
$$y = 0$$
: $f(x,0) - f(0,0) = x^2 - x^4 \sim x^2 > 0$ au $v(\widehat{0,0})$.

Si
$$y = -x : f(x, -x) - f(0, 0) = -2x^4 < 0$$
 au $v(0, 0)$.

ie f(x,y) - f(0,0) change de signe au v(0,0). Donc $(M_0,f(M_0))$ n'est pas un extrémum pour f.

Exercice4:

$$f(x,y) = xy, f \in C^{\infty}(\mathbb{R}).$$

1) Soit
$$g(x,y) = x^2 + y^2 - 1$$
, $g \in C^{\infty}(\mathbb{R})$.

Remarque:

Calculons les points critiques de g :

$$\begin{cases} \frac{\partial g}{\partial x}(x,y) = 2x = 0\\ \frac{\partial g}{\partial y}(x,y) = 2y = 0 \end{cases}$$
 ie $x = y = 0$ or $g(0,0) = -1$ donc $(0,0)$ ne vérifie pas la

contrainte, par conséquent: Si f admet en (x,y) un extrémum lié à la contrainte g alors $\exists \lambda \in$ telle que λ, x, y sont solutions du systéme de Lagrange (S), on posera $F = f + \lambda g$, c'est la méthode indirecte:

ESI. Math2. 2I

$$(S) \begin{cases} \nabla_{(x,y)}(f+\lambda g) = 0 \\ g(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{\partial F}{\partial x}(x,y) = 0 \\ \frac{\partial F}{\partial y}(x,y) = 0 \\ x^2 + y^2 - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} y + 2\lambda x = 0 & (1) \\ x + 2\lambda y = 0 & (2) \\ x^2 + y^2 - 1 = 0 & (3) \end{cases}$$

(1) $\Leftrightarrow y = -2\lambda x$ on remplace dans (2) : $x + 2\lambda(-2\lambda x) = 0 \Leftrightarrow x(1 - 4\lambda^2) = 0$.

 \rightsquigarrow Si $x = 0 \Rightarrow y = 0$ dans (3) impossible.

$$\rightarrow$$
 Si $\lambda = \frac{1}{2} \Rightarrow y = -x \Rightarrow 2x^2 = 1$. On obtient $x = \pm \frac{1}{\sqrt{2}}$.

$$\rightarrow$$
 Si $\lambda = -\frac{1}{2} \Rightarrow y = x \Rightarrow 2x^2 = 1$. On obtient $x = \pm \frac{1}{\sqrt{2}}$.

Les solutions de (S) sont :

$$A = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), B = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), C = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), D = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
On a que $f(A) = f(B) = -\frac{1}{2}$ et $f(C) = f(D) = \frac{1}{2} > -\frac{1}{2}$.

Comme f est continue sur $C(0_{\mathbb{R}^2},1)$ et que $C(0_{\mathbb{R}^2},1)$ est un férmé alors f est bornée et atteint ses bornes, donc Max(f) et Min(f) existent. D'où $Max(f) = \frac{1}{2}$ et

$$Min(f) = -\frac{1}{2}.$$

La valeur maximum de f sur $C(0_{\mathbb{R}^2}, 1)$ est donc $\frac{1}{2}$.

2) *B* est un maximum lié à la contrainte $x = \frac{1}{2}$ *A* est un maximum lié à la contrainte x = 1
