Convex problems

Yuqian Zhang

Rutgers University yqz.zhang@rutgers.edu

February 1, 2021

Overview

- Convex optimization
- Basic properties
- Stinear optimization
- Quadratic optimization

Optimization in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i=1,\cdots,m$
 $h_j(x)=0, \quad j=1,\cdots,p$

- $x \in \mathbb{R}^n$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}$: inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$: equality constraint functions

Optimization in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i=1,\cdots,m$
 $h_j(x)=0, \quad j=1,\cdots,p$

optimal value

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, h_j(x) = 0 \}$$

- $p^* = \infty$ problem is infeasible
- $p^* = -\infty$: problem is unbounded below

Optimal and locally optimal points

- x is feasible if $x \in dom(f_1)$ and it satisfies the constraints
- a feasible x is optimal if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is locally optimal if there is an $\epsilon > 0$ such that x is optimal for

minimize
$$f_0(z)$$

subject to $f_i(z) \leq 0, \quad i=1,\cdots,m$
 $h_j(z)=0, \quad j=1,\cdots,p$
 $\|z-x\|_2 \leq \epsilon$

Examples

•
$$f_0(x) = 1/x$$
, $dom(f_0) = \mathbb{R}_{++}$

$$p^* = 0$$
, no optimal x

•
$$f_0(x) = x \log x$$
, $dom(f_0) = \mathbb{R}_{++}$

$$p^* = -1/e$$
, optimal $x = 1/e$

•
$$f_0(x) = x^3 - 3x$$

$$p^* = -\infty$$
, local optimal $x = 1$

Implicit constraints

Above standard form optimization problem has an implicit constraints

$$x \in \mathcal{D} \doteq \cap \mathsf{dom}(f_i) \cap \mathit{dom}(h_j)$$

- ullet \mathcal{D} : domain of the problem
- f_i and h_i are the explicit constraints
- a problem is unconstrained if it has no explicit constraints

minimize
$$f_0(x) = -\sum \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraint $a_i^T x \leq b_i$

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i=1,\cdots,m$ $h_i(x)=0, \quad j=1,\cdots,p$

can be considered a special case with $f_0(x) = 0$

minimize 0 subject to
$$f_i(x) \leq 0, \quad i=1,\cdots,m$$
 $h_i(x)=0, \quad j=1,\cdots,p$

- $p^* = 0$ if constraints are feasible, any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Convex optimization problem

Standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$
 $a_j^T x = b_j$, $j = 1, \dots, p$

- f_0 and f_i are convex,; equality constraints are convex
- feasible set of a convex optimization problem is convex
- equivalent form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i=1,\cdots,m$
 $Ax=b$

Example

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- f_0 is convex; f_1 is not convex, h_1 is not affine
- feasible set $\{(x_1, x_2) \mid x_1 = x_2 \le 0\}$ is convex
- equivalent convex form

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local is global

Any local optimal point of a convex problem is globally optimal.

local minimizer

$$f(x^*) \le f(y), \quad \forall y \in (x^* - \epsilon, x^* + \epsilon)$$

global minimizer

$$f(x^*) \le f(y), \quad \forall y \ne x$$

Local is global — proof

- let x be locally optimal, then there exists ϵ such that $f_0(z) \ge f_0(x)$ holds for any $||x z||_2 \le \epsilon$
- suppose there exists a feasible y with $f_0(y) < f_0(x)$
- consider $z = \alpha y + (1 \alpha)x$ with $\alpha = \frac{\epsilon}{2\|y x\|_2}$
- as $||y x||_2 > \epsilon$, then $0 < \alpha < 1/2 < 1$
- z is convex combination of two feasible points, hence feasible
- then $||z x||_2 = \alpha ||y x||_2 = \epsilon/2$ and

$$f_0(z) \le \alpha f_0(y) + (1 - \alpha)f_0(0) < f_0(x)$$

contradicts our assumption that x is locally optimal

Optimality condition for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T (y-x) \ge 0, \quad \forall \text{ feasible } y$$

First order convexity conditions

Suppose $f:\mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in dom(f)$.

Optimality condition for differentiable f_0 — Proof

We need to prove

$$f_0(x) \le f_0(y) \quad \forall y \in X \iff \nabla f_0(x)^T (y - x) \ge 0 \quad \forall y \in X$$

• \Longrightarrow : Suppose x is optimal, but there exists y with $\nabla f_0(x)^T(y-x) < 0$. Consider point $z = \alpha y + (1-\alpha)x$ with $\alpha \in \{0,1\}$ is also feasible. As

$$\lim_{\alpha \to 0} \frac{f_0(z) - f_0(x)}{t} = \nabla f_0(x)^T (y - x) < 0$$

then $f_0(z) < f_0(x)$ for sufficiently small α , hence a contradiction.

• \Leftarrow : Suppose $\nabla f_0(x)^T (y-x) \ge 0$ for all y, since f_0 is convex

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x) \ge f_0(x)$$

Examples

Unconstrained problem: x is optimal if and only if

$$x \in dom(f_0), \quad \nabla f_0(x) = 0$$

equality constrained problem

minimize
$$f_0(x)$$
 subject to $\nabla Ax = b$

x is optimal if and only if there exists a v such that

$$x \in dom(f_0), \quad Ax = b, \quad \nabla f_0(x) + Av = 0$$

Linear programming (LP)

minimize
$$c^T x$$

subject to $Gx \le h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron
- number of solutions: zero, one, infinity

Linear programming (LP) — examples

• ℓ_{∞} norm

• ℓ_1 norm

$$\begin{aligned} & \underset{x}{\min} & \|Ax + b\|_1 \\ & \Longrightarrow & \underset{x}{\min} & \sum_{i} \left| a_i^T x + b_i \right| \\ & \Longrightarrow & \underset{x,t_i}{\min} & \sum_{i} t_i \quad \text{s.t.} \quad -t_i \leq a_i^T x + b_i \leq t_i \end{aligned}$$

Quadratic programming (QP)

minimize
$$\frac{1}{2}x^T P x + q^T x + r$$

subject to $Gx \le h$
 $Ax = b$

- $P \in S_+^n$, objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Quadratic programming (QP) — examples

Least squares

Distance between two polyhedra

$$\begin{aligned} dist\left(P_{1},P_{2}\right) &= \inf\left\{\left\|x_{1}-x_{2}\right\|_{2} \mid x_{1} \in P_{1}, x_{2} \in P_{2}\right\} \\ &\Longrightarrow \quad \min_{x} \quad \left\|x_{1}-x_{2}\right\|_{2}^{2} \\ \text{s.t.} \quad A_{1}x_{1} \leq b_{1}, A_{2}x_{2} \leq b_{2} \end{aligned}$$

Quadratically constrained quadratic program (QCQP)

minimize
$$\frac{1}{2}x^T P_0 x + q_0^T x + r_0$$

subject to $\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0$
 $Ax = b$

• $P_i \in \mathbf{S}_+^n$, objective and constraints are convex quadratic

Second-order cone programming (SOCP)

minimize
$$h^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i$
 $F x = g$

with $A \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n}$

• inequalities are second-order cone (SOC) constraints:

$$\left(A_i x + b_i, c_i^T x + d_i\right) \in \text{second-order cone in } \mathbb{R}^{n_i + 1}$$

- if $n_i = 0$, reduces to an LP;
- if $c_i = 0$, reduces to a QCQP

Next Lecture

Convex problems