Mathématiques & Abstraction

Chapitre 4 : Limites et continuité

Preuve n°1 : Suites et bornes sup

Proposition

Soit A une partie non-vide et majorée de R. Le réel s est la borne sup de A si :

- s est un majorant de A;
- il existe une suite $(u_n)_n$ d'élément de A qui converge vers s.

Nous admettrons la preuve dans le sens \Leftarrow .

 \Rightarrow : Soient s la borne sup de A et $n \in \mathbb{N}^*$.

- s est le plus petit des majorants.
- Donc, comme $s \frac{1}{n} < s$, $s \frac{1}{n}$ n'est pas un majorant de A.
- Donc il existe un élément u_n de A tel que :

$$s - \frac{1}{n} < u_n \le s$$

Cela prouve par encadrement que la suite $(u_n)_n$ tend vers s.

Preuve n°2 : Suites et bornes inf

Proposition

Soit A une partie non-vide et minorée de R. Le réel s est la borne inf de A si :

- s est un minorant de A;
- il existe une suite $(u_n)_n$ d'élément de A qui converge vers s.

La preuve est en tout point analogue à celle de la borne sup.

Preuve n°3 : Caractérisation séquentielle de la continuité

Théorème

Soit f une fonction définie sur $D \subset \mathbb{R}$ et soit $x_0 \in D$.

Alors f est continue en x_0 ssi pour toute suite $(u_n)_n$ à valeurs dans D telle que $\lim_{n\to\infty}u_n=x_0$, on a :

$$\lim_{n\to\infty} f(u_n) = f(\lim_{n\to\infty} u_n) = f(x_0)$$

Nous admettrons le sens ← de l'équivalence.

 \Rightarrow : Supposons f continue en x_0 . Soit $\varepsilon > 0$. Alors, $\exists \eta > 0$ tel que :

$$d(x,x_0) \le \eta \Rightarrow d(f(x),f(x_0)) < \varepsilon$$

Soit $(u_n)_n$ une suite à valeurs dans D telle que $\lim_{n\to\infty}u_n=x_0$.

Alors, $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$, $d(u_n, x_0) < \eta$.

Mais par continuité de f en x_0 , on a alors que, $\forall n \geq n_0$,

$$d\big(f(x),f(x_0)\big) < \varepsilon$$

Preuve n°4 : Propriétés de la continuité

Théorème

- La somme de 2 fonctions continues est continue
- Le produit de 2 fonctions continues est continue
- L'inverse, lorsqu'il est défini, d'une fonction continue est continu.

On utilise la caractérisation séquentielle de la continuité et les propriétés connues des limites des suites.

Preuve n°5 : Suites récurrentes définies par une fonction continue

Théorème

Soit $D \subset \mathbb{R}$ et $f: D \to \mathbb{R}$ une fonction. Soit la suite $(u_n)_n$ définie par récurrence par $u_0 \in D$ et $u_{n+1} = f(u_n)$. Si $(u_n)_n$ converge vers $x_0 \in D$ et f est continue en x_0 , alors $f(x_0) = x_0$. On dit que x_0 est un point fixe de f.

On a
$$f(x_0) = f(\lim_{n \to \infty} u_n)$$
 car $u_n \xrightarrow{n \to \infty} x_0$.

Or f est continue en x_0 donc $f(\lim_{n\to\infty} u_n) = \lim_{n\to\infty} f(u_n)$.

Par définition de $(u_n)_n$, on a $f(u_n) = u_{n+1}$.

Or,
$$\lim_{n\to\infty} u_{n+1} = \lim_{n\to\infty} u_n = x_0$$
.

Bilan:

$$f(x_0) = f(\lim_{n \to \infty} u_n) = \lim_{n \to \infty} f(u_n) = \lim_{n \to \infty} u_{n+1} = x_0$$