# Market Segmentation of Agricultural Markets in India Using PCA and K-Means Clustering

Data Science Team
Ritesh Singh
June 23,2025

# **Table of Contents**

| 1. | Introduction                                                          | 3  |
|----|-----------------------------------------------------------------------|----|
| 2. | Data Preprocessing and Outlier Handling                               | 3  |
|    | Visualization Before Segmentation  Dimensionality Reduction Using PCA |    |
| 5. | Cluster Selection and Segmentation                                    | 7  |
| 6. | Cluster Interpretation and Characteristics                            | 8  |
| 7. | Conclusion and Future Directions                                      | 11 |

## 1. Introduction

## 1.1 Objective:

The goal of this analysis is to identify distinct market segments across Indian markets using clustering techniques. This enables a better understanding of price behaviour, commodity diversity, and regional patterns, which are crucial for policy formulation, procurement strategy, and infrastructure planning.

#### 1.2 Motivation:

Market dynamics in agriculture vary widely, from high-value niche markets to pricesensitive, broad-distribution zones. Segmentation helps decode this complexity

#### 2. Data Preprocessing and Outlier Removal

# 2.1 Dataset Summary:

Aggregated mandi-level data across Indian districts, including features such as modal price, price volatility, and commodity/variety diversity.

#### 2.2 Data Cleaning:

Removed two duplicates, removed rows which contained zero in min\_price and max\_price.

# 2.2 Grouping Data:

Grouped the cleaned data by state, district, market to get ['state', 'district', 'market', 'unique\_commodities', 'unique\_varieties', 'avg\_modal\_price', 'std\_modal\_price', 'avg\_max\_price', 'avg\_min\_price']

#### 2.3 Outlier Filtering:

Prices beyond the 1st and 99th percentiles were removed to minimize distortion caused by extreme values. Two datasets were maintained:

- market summary: Cleaned, outlier-removed data used for clustering
- market summary with outliers: Full dataset for comparison and validation

#### 3. Visualization Before Segmentation



- Nagercoil (Kannyiakumari) are Tumkur are the highest-priced markets in the snapshot, with average modal prices above ₹10500, ₹9000. These are potentially high-value markets
- Bater, Barmer and erode are at the lower end, averaging around ₹4500. These might be smaller markets.
- In our context—evaluating markets for a smart crop disease detection app—districts with higher modal prices might be more open to adopting technology, since their crops could carry more financial risk if disease strikes.

# Avg Modal Price by District



- Tamil Nadu and Panjab have lots of districts with good avg modal price
- Goa and South Andaman have top avg modal price

# 4. Dimensionality Reduction with PCA

## 4.1 Goal:

Reduce feature space to 2 principal components while preserving key variation.

# 4.2 Outcome:

PCA revealed clear separation among markets based on:

- o Pricing behaviour (avg and std of modal price)
- o Diversity in crops and varieties.



# 5. Cluster Selection and Segmentation

Methods Used:

# 5.1 Elbow Method: Inertia curve flattened after 4 clusters



# 5.2 Silhouette Analysis: Peak silhouette score at k = 4



# 6. K-Means Clustering and Interpretation

## 6.1 PCA of Market Features with K-Means Clusters (k=4):



# **6.2** Geospatial Distribution of Clusters

## • Approach:

Merged cluster labels into district-level shapefiles for mapping

# • Insights:

- o Certain high-price clusters concentrate in coastal or island regions
- o Diverse markets are spread across agriculturally active states
- O Volatile clusters show wide regional dispersion



## 6.3 Cluster vs Commodity Heatmap:



# 6.4 Profiling Clusters

| cluster | unique_co<br>mmodities | unique_v<br>arieties | avg_moda<br>l_price | std_moda<br>l_price | avg_max<br>_price | avg_min<br>_price |
|---------|------------------------|----------------------|---------------------|---------------------|-------------------|-------------------|
| 0       | 1.6                    | 1.4                  | 6013.4              | 558.8               | 6375.5            | 5570.5            |
| 1       | 8.2                    | 3.7                  | 3367.1              | 2282.6              | 3538.1            | 3163.2            |
| 2       | 19.8                   | 15.9                 | 2093.9              | 1583.5              | 2225.6            | 1933.6            |
| 3       | 3.3                    | 2.2                  | 1602.2              | 375.6               | 1735.2            | 1450.7            |

| Clusters | Profile Summary                            | Suggested Name           |  |
|----------|--------------------------------------------|--------------------------|--|
| 0        | Very low diversity, high prices, stable    | Premium, Focused         |  |
|          |                                            | Markets                  |  |
| 1        | Moderate diversity, high volatility        | Volatile Multi-Crop Hubs |  |
| 2        | High diversity, moderate pricing, moderate | Diverse & Dynamic        |  |
|          | volatility                                 | Markets                  |  |
| 3        | Low diversity, lowest prices, stable       | Affordable, Low-Variety  |  |
|          |                                            | Zones                    |  |

# 7. Conclusion and Future Scope

**Conclusion:** The clustering successfully revealed distinct market segments with actionable characteristics. These segments can guide policy, procurement, and supply chain optimization.