CECS 551 Statistical Learning Theory Exercises

Exercises

- 1. A **decision stump** is a decision tree that has a single query node. Let \mathcal{F} denote the family of all decision stumps that classify points in \mathcal{R}^2 , where a query is limited to either $x \geq a$? or $y \geq a$?, for arbitrary real number a. Determine $VC(\mathcal{F})$.
- 2. A binary tree T is said to be **full** iff every internal node of T has two children. Prove that the number of leaves of a full tree is one more than the number of internal nodes.
- 3. Consider the family \mathcal{F}_n of binary decision trees having n query nodes, and that classify one-dimensional data points. Each query node of a tree has the form $x \geq a$?, where a is a real number. Determine the $VC(\mathcal{F}_n)$. Defend your answer. How does this result carry over to higher dimensions?
- 4. A two-dimensional binary ellipse classifier e consists of a two-dimensional ellipse E. Moreover e classifies a two-dimensional vector \overline{x} as +1 iff either \overline{x} lies on the ellipse boundary or inside the ellipse. Otherwise it is classified as -1. If \mathcal{F} denotes the family of two-dimensional binary ellipse classifiers, then determine $VC(\mathcal{F})$. Defend your answer.
- 5. Prove that the set of hyperplane classifiers in \mathbb{R}^n have a VC-dimension of at least n+1. Hint: shatter the basis vectors of \mathbb{R}^n , plus one additional point.
- 6. Let \mathcal{F}_n denote the family of all neural networks with n total weight/bias parameters, and that classify points in \mathcal{R}^2 . Provide a good lower-bound for $VC(\mathcal{F}_n)$. Assume each neuron has a discrete activation function.
- 7. Assume model \hat{f} has a training accuracy of 0.12 on a data set having size 10000. Moreover, \hat{f} was selected from a family having a VC dimension that is at most 15. Provide an upper bound for the expected risk of \hat{f} that is accurate with 90% certainty.