

NeurIPS 2020 Workshop

- Tackling Climate Change with Machine Learning -

Towards Optimal District Heating in China with Deep Reinforcement Learning

Adrien Le Coz, Tahar Nabil, François Courtot

EDF R&D China Center

District Heating system - secondary network

Main hypotheses

- unique central heat production unit
- ► focus on secondary network
- ightharpoonup 10 measurements of T_{in} representative of the network

Approach - A reinforcement learning framework

Approach - A reinforcement learning framework

The Environment

- Architecture: stacks two LSTM layers (32 units)
- Inputs: past 5 days of weather + T_s
- Trained on simulated data from expert model in Dymola
- ► 1-step ahead MAE: 0.110 °C

Approach - A reinforcement learning framework

The Agent

- Deep Reinforcement Learning→ DQN
- State: past 24h T_{in}, T_{out}, T_s and time of the day
- Goal: minimize deviation from target temperature
- Agent 1: bounded discrete increments from last T_s
- Agent 2: bounded discrete increments from baseline T_s
- Random weather file / episode (7 locations)

	MAE	std T _{in}	Energy gain	CO₂ saved
	(°C)	(°C)	(%)	(g/m^2)
Baseline	0.599	0.755	0	0
PID	0.584	0.742	0.95	215
Agent 1	0.549	0.699	2.15	486

Main observations

- ► Baseline: $T_s^b = \alpha + \beta T_o$, $\alpha, \beta = \min \sum_t -r_t$
- ▶ Robust Baseline ↔ Environment with little flexibility
- ► Night mode: energy \(\square 6.6\%
- Future work: finetune on operation data & deploy

	MAE	std T _{in}	Energy gain	CO₂ saved
	(°C)	(°C)	(%)	(g/m^2)
Baseline	0.599	0.755	0	0
PID	0.584	0.742	0.95	215
Agent 2	0.545	0.692	2.19	495

Main observations

- Baseline: $T_s^b = \alpha + \beta T_o$, $\alpha, \beta = \min \sum_t -r_t$
- Robust Baseline ↔ Environment with little flexibility
- ► Night mode: energy \(\square\) 6.6%
- Future work: finetune on operation data & deploy

3

Thank you for watching

More questions? **∢** adrien.le-coz@edf.fr