МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МИЭТ»

Институт системной и программной инженерии и информационных технологий (Институт СПИНТех)

Научная статья Дифференциальный усилитель

Трусов Михаил Павлович Лабораторная работа 4, 1 курс, группа ПИН-12

Ha	учный руково	дитель
		_ И.И. Иванов
« <u></u>	»	_ 2022 г.
Πр	еподаватель п	грактикума _ А.С. Пушкин
«	»	- 2022 г

Москва, 2022 г.

- 1. Теория
- 2. Применение
- 3. Список литературы

Теория

Дифференциальный усилитель - это тип электронного усилителя, который усиливает разницу между двумя входными напряжениями, но подавляет любое напряжение, общее для двух входов. Это аналоговая схема с двумя входами V_{in}^- ; V_{in}^+ и одним выходом V_{out} , в которой выходной сигнал идеально пропорционален разнице между двумя напряжениями.

Выход идеального дифференциального усилителя определяется выражением

$$V_{out} = A_d(V_{in}^+ - V_{in}^-),$$

где A_d - дифференциальный коэффициент усиления усилителя.

На практике, однако, коэффициент усиления не совсем одинаков для двух входов. Это означает, например, что если V_{in}^- и V_{in}^+ равны, то выходной сигнал не будет равен нулю, как это было бы в идеальном случае. Таким образом, более реалистичное выражение для выходного сигнала дифференциального усилителя включает в себя второй член:

$$V_{out} = A_d(V_{in}^+ - V_{in}^-) + A_c \frac{V_{in}^+ + V_{in}^-}{2},$$

где A_c называется синфазным коэффициентом усиления усилителя.

$N_{\overline{0}}$	Смещение	Общий режим	Дифференциальный режим
1	15	45	17
2	75	56	28
3	54	48	21

Коэффициент подавления синфазного сигнала (*CMRR*), обычно определяемый как отношение между коэффициентом усиления в дифференциальном режиме и коэффициентом усиления в синфазном режиме, указывает на способность усилителя точно подавлять напряжения, которые являются общими для обоих входов.

Коэффициент подавления синфазного сигнала определяется как

$$CMRR = 10 \log_{10} \left(\frac{A_d}{A_c}\right)^2 = 20 \log_{10} \frac{A_d}{|A_c|}$$

В идеально симметричном дифференциальном усилителе A_c равен нулю, а CMRR бесконечен. Обратите внимание, что дифференциальный усилитель является более общей формой усилителя, чем усилитель с одним входом; заземляя один вход дифференциального усилителя, получается однотактный усилитель.

Применение

Рис. 1. Символ операционного усилителя

Список литературы

- [1] Дифференциальный усилитель ВЈТ. А.С. Пушкин
- [2] Испытательный стенд для дифференциальных схем.