

Handling informative dropout in longitudinal analysis of health-related quality of life:

Application on data from the oesophageal cancer clinical trial PRODIGE5/ACCORD17

Benjamin Cuer

C.Mollevi, A.Anota, E.Charton, F.Bonnetain, T.Conroy, B.Juzyna, S.Gourgou, C.Touraine

ISOQOL. Dublin

26 October 2018

▶ Health-related quality of life = PROs used to measure the clinical benefits of new therapies

- ▶ Health-related quality of life = **PROs** used to measure the clinical benefits of new therapies
- ▶ In clinical trials = more and more used as a **Secondary or a Co-Primary** endpoint
 - → HRQoL assessed using questionnaires at different visit times (treatment and follow-up)

- ▶ Health-related quality of life = PROs used to measure the clinical benefits of new therapies
- In clinical trials = more and more used as a Secondary or a Co-Primary endpoint
 - → HRQoL assessed using questionnaires at different visit times (treatment and follow-up)
- ► Europe : **EORTC QLQ-C30**

- ▶ Health-related quality of life = PROs used to measure the clinical benefits of new therapies
- In clinical trials = more and more used as a **Secondary or a Co-Primary** endpoint
 - → HRQoL assessed using questionnaires at different visit times (treatment and follow-up)
- **Europe**: **EORTC QLQ-C30** = 5 functional scales + 9 symptom scales +a global health status
 - \hookrightarrow Continuous score from 0 to 100 for each scale

Longitudinal analysis of the HRQoL score in clinical trials

To compare the score evolution between 2 treatment arms:

Longitudinal analysis of the HRQoL score in clinical trials

To compare the score evolution between 2 treatment arms:

Linear Mixed Model

Introduction 0000

For patient i and observation i, the score is as follows:

$$Y_{ij} = \beta^{\mathsf{T}} X_{ij} + \mathbf{b}_{i}^{\mathsf{T}} Z_{ij} + \varepsilon_{ij}$$

= $\beta_{0} + \beta_{1} \times \mathbf{t}_{ij} + \beta_{2} \times Arm_{i} + \beta_{3} Arm_{i} \times \mathbf{t}_{ij} + \mathbf{b}_{0i} + \mathbf{b}_{1i} \times \mathbf{t}_{ij} + \varepsilon_{ij}$

where
$$egin{pmatrix} b_0 \\ b_1 \end{pmatrix} \sim \mathcal{N}(0, \Sigma) \text{ with } \Sigma egin{pmatrix} \sigma_{b_0}^2 & \sigma_{b_0} b_1 \\ \sigma_{b_0} b_1 & \sigma_{b_1}^2 \end{pmatrix} \text{ and } & \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

- Fixed effects: $\beta^T X_{ii}$ model the average trajectory
- **Random effects**: $b_i^T Z_{ii}$ represent the **individual deviation** from the average

Longitudinal analysis of the HRQoL score in clinical trials

To compare the score evolution between 2 treatment arms:

Linear Mixed Model

Introduction 0000

For patient i and observation i, the score is as follows:

$$Y_{ij} = \beta^{T} X_{ij} + \mathbf{b_{i}}^{T} Z_{ij} + \varepsilon_{ij}$$

= $\beta_{0} + \beta_{1} \times \mathbf{t}_{ij} + \beta_{2} \times Arm_{i} + \beta_{3} Arm_{i} \times \mathbf{t}_{ij} + \mathbf{b}_{0i} + \mathbf{b}_{1i} \times \mathbf{t}_{ij} + \varepsilon_{ij}$

where
$$egin{pmatrix} b_0 \\ b_1 \end{pmatrix} \sim \mathcal{N}(0, \Sigma) \text{ with } \Sigma egin{pmatrix} \sigma_{b_0}^2 & \sigma_{b_0} b_1 \\ \sigma_{b_0} b_1 & \sigma_{b_1}^2 \end{pmatrix} \text{ and } & \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

- Fixed effects: $\beta^T X_{ii}$ model the average trajectory
- **Random effects**: $b_i^T Z_{ii}$ represent the **individual deviation** from the average

Coefficients interpretation

- \triangleright β_1 : **slope** in the standard arm
- β_3 : interaction effect = difference of the score evolution in the experimental arm compared to the standard arm

Introduction 0000

4 / 15

Randomized phase II-III study comparing: RT + FOLFOX regimen (experimental arm) versus RT + 5fu-cisplatin (control arm) of first line treatment in patients with inoperable oesophageal cancer

Randomized phase II-III study comparing:

RT + FOLFOX regimen (experimental arm) versus RT + 5fu-cisplatin (control arm) of first line treatment in patients with inoperable oesophageal cancer

- ▶ Primary endpoint = **PFS** ⇒ no difference between the two treatment arms (Conroy et al., Lancet Oncology, 2014)
- Secondary endpoint = HRQoL (EORTC QLQ-C30) (Mollevi et al., EJC, 2017)

Randomized phase II-III study comparing:

RT + FOLFOX regimen (experimental arm) versus RT + 5fu-cisplatin (control arm) of first line treatment in patients with inoperable oesophageal cancer

- ▶ Primary endpoint = **PFS** ⇒ no difference between the two treatment arms (Conroy et al., Lancet Oncology, 2014)
- Secondary endpoint = HRQoL (EORTC QLQ-C30) (Mollevi et al., EJC, 2017)

Results of the Linear Mixed Model for the Global Health Status

Randomized phase II-III study comparing:

RT + FOLFOX regimen (experimental arm) versus RT + 5fu-cisplatin (control arm) of first line treatment in patients with inoperable oesophageal cancer

- \triangleright Primary endpoint = **PFS** \Rightarrow no difference between the two treatment arms (Conroy et al., Lancet Oncology, 2014)
- Secondary endpoint = HRQoL (EORTC QLQ-C30) (Mollevi et al., EJC, 2017)

Results of the Linear Mixed Model for the Global Health Status

- HRQoL improvement over time ($\beta_1 = 0.012$, p = 0.307 \hookrightarrow positive slope
- HRQoL improvement more important in the experimental arm $(\beta_3 = 0.031, p = 0.076)$ \hookrightarrow positive arm effect

PRODIGE5/ACCORD17 clinical trial: compliance

PRODIGE5/ACCORD17 clinical trial: compliance

Issue

Introduction 000

> ▶ Estimations of the Linear Mixed Model are robust only if missing data are non informative.

PRODIGE5/ACCORD17 clinical trial: compliance

Issue

- ▶ Estimations of the Linear Mixed Model are robust only if missing data are non informative
- → The **objective** was to explore two types of models accounting for potentially informative missing data.

Patterns of missing data

Two patterns of missing data:

Patient Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

Patterns of missing data

Two patterns of missing data:

▶ Intermittent missing data ⇒ score is missing but subsequent score data can be observed

Patient	Visit 1	Visit 2	Visit 3	Visit 4	Visit 5
1	66.7	×	66.7	50.0	50.0
2	33.3	41.7	×	×	33.3
3	×	75.0	×	83.3	50.0

Patterns of missing data

Two patterns of missing data:

- ▶ Intermittent missing data ⇒ score is missing but subsequent score data can be observed
- ▶ Monotone missing data = dropout ⇒ no observations are made after a certain time point
 - Generally corresponds to patient's dropout

Patient	Visit 1	Visit 2	Visit 3	Visit 4	Visit 5
1	66.7	×	66.7	50.0	50.0
2	33.3	41.7	×	×	33.3
3	×	75.0	×	83.3	50.0
4	83.3	100	66.7	66.7	×
5	91.7	25.0	25.0	×	×
6	66.7	66.7	×	×	×
7	50.0	×	×	X	×

Missing Completely at Random (MCAR)

Missing Not at Random (MNAR)

Missing at Random (MAR)

Missing Completely at Random (MCAR)

Missing Not at Random (MNAR)

 \hookrightarrow Missingness is unrelated to the score

Missing at Random (MAR)

Missing Completely at Random (MCAR)

 \hookrightarrow Missingness is unrelated to the score

Missing Not at Random (MNAR)

Missing at Random (MAR)

observed score

Missing Completely at Random (MCAR)

Missing at Random (MAR)

observed score

Missing Not at Random (MNAR)

 \hookrightarrow The missingness is likely to be related to the observed and unobserved score

Typically, if a patient does not complete a questionnaire because he/she is too tired, resulting in a missing score for the scale « fatigue », it is informative missing data.

Accounting for informative dropout in longitudinal analysis of the HRQoL score

Model jointly the score Y_i and the dropout variable D_i

Two decompositions of the joint distribution are possible according to the conditionning:

$$f_{\theta\psi}(Y_i,D_i)=\left\{
ight.$$

where θ and ψ denote the parameters vectors for the score and the missingness mechanism, respectively.

Accounting for informative dropout in longitudinal analysis of the HRQoL score

Model jointly the score Y_i and the dropout variable D_i

Two decompositions of the joint distribution are possible according to the conditionning:

$$f_{\theta\psi}(Y_i, D_i) = \begin{cases} f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i) \\ f_{\psi}(D_i \mid Y_i) \times f_{\theta}(Y_i) \end{cases}$$

where θ and ψ denote the parameters vectors for the score and the missingness mechanism, respectively.

Model jointly the score Y_i and the dropout variable D_i

Two decompositions of the joint distribution are possible according to the conditionning:

$$f_{\theta\psi}(Y_i, D_i) = \begin{cases} f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i) & \text{Pattern Mixture Model} \\ f_{\psi}(D_i \mid Y_i) \times f_{\theta}(Y_i) \end{cases}$$

where θ and ψ denote the parameters vectors for the score and the missingness mechanism, respectively.

We are interested in :

1. Distribution of the score Y_i given the dropout $D_i \times$ marginal distribution of the dropout

Accounting for informative dropout in longitudinal analysis of the HRQoL score

Model jointly the score Y_i and the dropout variable D_i

Two decompositions of the joint distribution are possible according to the conditionning:

$$f_{\theta\psi}(Y_i, D_i) = \begin{cases} f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i) & \text{Pattern Mixture Model} \\ f_{\psi}(D_i \mid Y_i) \times f_{\theta}(Y_i) & \text{Selection Model} \end{cases}$$

where θ and ψ denote the parameters vectors for the score and the missingness mechanism, respectively.

We are interested in .

- 1. Distribution of the score Y_i given the dropout $D_i \times marginal$ distribution of the dropout
 - → Pattern Mixture Model
- 2. Distribution of the **dropout** D_i given the score $Y_i \times$ marginal distribution of the score
 - → Selection Model

Definition

$$f_{\theta\psi}(Y_i, D_i) = f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i)$$

⇒ A mixture of models for the score given the dropout weighhed by the dropout distribution

Definition

$$f_{\theta\psi}(Y_i, D_i) = f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i)$$

•0000

⇒ A mixture of models for the score given the dropout weighhed by the dropout distribution

To define two models:

- ▶ Multinomial model for $f(D_i)$:
- ▶ Mixed Model for $f(Y_i | D_i)$:

Definition

$$f_{\theta\psi}(Y_i, D_i) = f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i)$$

⇒ A mixture of models for the score given the dropout weighted by the dropout distribution

To define two models:

- \blacktriangleright Multinomial model for $f(D_i)$: The probability of each dropout after time *j* is simply estimated by the **proportion** of patients which drop out after time j
- ▶ Mixed Model for $f(Y_i | D_i)$:

Definition

$$f_{\theta\psi}(Y_i, D_i) = f_{\theta}(Y_i \mid D_i) \times f_{\psi}(D_i)$$

⇒ A mixture of models for the score given the dropout weighted by the dropout distribution

To define two models:

- \blacktriangleright Multinomial model for $f(D_i)$: The probability of each dropout after time *j* is simply estimated by the **proportion** of patients which drop out after time i
- ▶ Mixed Model for $f(Y_i | D_i)$: A Mixed model is assumed for the score in each pattern

Pattern-Mixture Model: Application

First step: define 3 patterns

- ► Early dropout
- Medium dropout
- Late dropout

Pattern-Mixture Model: Application

First step: define 3 patterns Calcul of the proportion of patients in each pattern

- ► Early dropout
- Medium dropout
- ► Late dropout

$$\pi^{(1,2)} = 0.34$$

$$\pi^{(3,4)} = 0.30$$

$$\pi^{(5)} = 0.36$$

Pattern-Mixture Model: Application

B. Cuer et al. (ICM)

First step: define 3 patterns

Calcul of the proportion of patients in each pattern

- ► Early dropout $\pi^{(1,2)} = 0.34$
 - Medium dropout $\pi^{(3,4)} = 0.30$
 - Late dropout $\pi^{(5)} = 0.36$

Second step: Mixed Models We model the score in each pattern

$$(Y_{ij} \mid D = 1, 2) = X_{ij}\beta^{(1,2)} + Z_{ij}b_i + \varepsilon_{ij}$$

$$(Y_{ij} \mid D = 3, 4) = X_{ij}\beta^{(3,4)} + Z_{ij}b_i + \varepsilon_{ij}$$

$$(Y_{ij} \mid D = 5) = X_{ij}\beta^{(5)} + Z_{ij}b_i + \varepsilon_{ij}$$

10 / 15

Pattern Mixture Model: Results

Slope and interaction effect in each pattern

	D = 1,2 $D = 3,4$			D = 5		
	Est. (SE)	р	Est. (SE)		Est. (SE)	р
β_1	-0.136 (0.108)	0.182	0.017 (0.036)	0.817	0.008 (0.014)	0.545
β_3	0.032 (0.137)	0.958	-0.009 (0.054)	0.379	0.039 (0.019)	0.047

Pattern Mixture Model: Results

Slope and interaction effect in each pattern

	D = 1, 2 $D = 3, 4$		D = 5			
	Est. (SE)	р	Est. (SE)	р	Est. (SE)	р
β_1	-0.136 (0.108)	0.182	0.017 (0.036)	0.817	0.008 (0.014)	0.545
β_3	0.032 (0.137)	0.958	-0.009 (0.054)	0.379	0.039 (0.019)	0.047

Compare 2 treatments ⇒ Marginal parameters that is, irrespective of the pattern

Estimations in each pattern are weighted by the probability of dropout in each pattern:

$$\hat{\beta} = \pi^{(1,2)} \hat{\beta}^{(1,2)} + \pi^{(3,4)} \hat{\beta}^{(3,4)} + \pi^{(5)} \hat{\beta}^{(5)}$$

 \hookrightarrow **Extrapolation** = the score has the same trajectory after the dropout, that is, at times for which there is no available data.

Slope and interaction effect in each pattern

	D = 1, 2		D = 3,4		D = 5	
	Est. (SE)		Est. (SE)		Est. (SE)	р
β_1	-0.136 (0.108)	0.182	0.017 (0.036)	0.817	0.008 (0.014)	0.545
β_3	0.032 (0.137)	0.958	-0.009 (0.054)	0.379	0.039 (0.019)	0.047

Compare 2 treatments ⇒ Marginal parameters that is, irrespective of the pattern

Estimations in each pattern are weighted by the probability of dropout in each pattern:

$$\hat{\beta} = \pi^{(1,2)} \hat{\beta}^{(1,2)} + \pi^{(3,4)} \hat{\beta}^{(3,4)} + \pi^{(5)} \hat{\beta}^{(5)}$$

 \hookrightarrow **Extrapolation** = the score has the same trajectory after the dropout, that is, at times for which there is no available data.

Slope and interaction effect in each pattern

	D = 1, 2		D = 3,4		D = 5	
	Est. (SE)		Est. (SE)		Est. (SE)	р
β_1	-0.136 (0.108)	0.182	0.017 (0.036)	0.817	0.008 (0.014)	0.545
β_3	0.032 (0.137)	0.958	-0.009 (0.054)	0.379	0.039 (0.019)	0.047

Compare 2 treatments ⇒ Marginal parameters that is, irrespective of the pattern

Estimations in each pattern are weighted by the probability of dropout in each pattern:

$$\hat{\beta} = \pi^{(1,2)} \hat{\beta}^{(1,2)} + \pi^{(3,4)} \hat{\beta}^{(3,4)} + \pi^{(5)} \hat{\beta}^{(5)}$$

 \hookrightarrow **Extrapolation** = the score has the same trajectory after the dropout, that is, at times for which there is no available data.

Slope and interaction effect in each pattern

	D = 1, 2		D = 3, 4		D = 5	
	Est. (SE) p		Est. (SE)	р	Est. (SE)	р
β_1	-0.136 (0.108)	0.182	0.017 (0.036)	0.817	0.008 (0.014)	0.545
β_3	0.032 (0.137)	0.958	-0.009 (0.054)	0.379	0.039 (0.019)	0.047

Compare 2 treatments ⇒ Marginal parameters that is, irrespective of the pattern

Estimations in each pattern are weighted by the probability of dropout in each pattern:

$$\hat{\beta} = \pi^{(1,2)} \hat{\beta}^{(1,2)} + \pi^{(3,4)} \hat{\beta}^{(3,4)} + \pi^{(5)} \hat{\beta}^{(5)}$$

 \hookrightarrow **Extrapolation** = the score has the same trajectory after the dropout, that is, at times for which there is no available data.

Slope and interaction effect in each pattern

	D = 1, 2		D = 3, 4		D = 5		Pattern Mixture Model	
	Est. (SE)	р	Est. (SE)	р	Est. (SE)	р	Est. (SE)	р
β_1	-0.136 (0.108)	0.182	0.017 (0.036)	0.817	0.008 (0.014)	0.545	-0.038 (0.038)	0.318
β_3	0.032 (0.137)	0.958	-0.009 (0.054)	0.379	0.039 (0.019)	0.047	0.022 (0.049)	0.649

Compare 2 treatments ⇒ Marginal parameters that is, irrespective of the pattern

Estimations in each pattern are weighted by the probability of dropout in each pattern:

$$\hat{\beta} = \pi^{(1,2)} \hat{\beta}^{(1,2)} + \pi^{(3,4)} \hat{\beta}^{(3,4)} + \pi^{(5)} \hat{\beta}^{(5)}$$

 \hookrightarrow **Extrapolation** = the score has the same trajectory after the dropout, that is, at times for which there is no available data.

Pattern Mixture Model

00000

Selection Model: Definition

Definition

$$Y_i = (Y_i^{\text{mis}}, Y_i^{\text{obs}})$$

$$f_{\theta\psi}(Y_i, D_i) = f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i)$$

 \Rightarrow the dropout D_i depends directly on the score Y_i observed

→ To test the missingness mechanism

Definition

$$\begin{aligned} Y_i &= \left(Y_i^{\mathsf{mis}}, Y_i^{\mathsf{obs}}\right) \\ f_{\theta\psi}(Y_i, D_i) &= f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \\ &= \int f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \ dY_i^{\mathsf{mis}} \end{aligned}$$

 \Rightarrow the dropout D_i depends directly on the score Y_i observed and unobserved.

00000

Definition

$$\begin{aligned} Y_i &= \left(Y_i^{\mathsf{mis}}, Y_i^{\mathsf{obs}}\right) \\ f_{\theta\psi}(Y_i, D_i) &= f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \\ &= \int f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \ dY_i^{\mathsf{mis}} \end{aligned}$$

 \Rightarrow the dropout D_i depends directly on the score Y_i observed and unobserved.

00000

Model of Diggle and Kenward (Diggle & Kenward, Applied statistics, 1994):

→ To test the missingness mechanism

Definition

$$\begin{aligned} Y_i &= \left(Y_i^{\mathsf{mis}}, Y_i^{\mathsf{obs}}\right) \\ f_{\theta\psi}(Y_i, D_i) &= f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \\ &= \int f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \ dY_i^{\mathsf{mis}} \end{aligned}$$

 \Rightarrow the dropout D_i depends directly on the score Y_i observed and unobserved.

Model of Diggle and Kenward (Diggle & Kenward, Applied statistics, 1994):

 \blacktriangleright Mixed model for $f(Y_i)$:

$$Y_{ij} = \beta^T X_{ij} + b_i^T Z_{ij} + \varepsilon_{ij}$$

 \hookrightarrow **To test** the missingness mechanism

Definition

$$\begin{aligned} Y_i &= (Y_i^{\mathsf{mis}}, Y_i^{\mathsf{obs}}) \\ f_{\theta\psi}(Y_i, D_i) &= f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \\ &= \int f_{\theta}(Y_i) \times f_{\psi}(D_i \mid Y_i) \ dY_i^{\mathsf{mis}} \end{aligned}$$

 \Rightarrow the dropout D_i depends directly on the score Y_i observed and unobserved.

Model of Diggle and Kenward (Diggle & Kenward, Applied statistics, 1994):

 \blacktriangleright Mixed model for $f(Y_i)$:

$$Y_{ij} = \beta^T X_{ij} + b_i^T Z_{ij} + \varepsilon_{ij}$$

00000

▶ Logistic regression for $f(D_i | Y_i)$: The conditionnal probability for dropout at occasion *i* is:

logit
$$\mathbb{P}(D_i = j \mid D_i \geq j, Y_{ij}, Y_{ij+1}) = \psi_0 + \psi_1 Y_{ij} + \psi_2 Y_{ij+1}$$

where $Y_{i,i+1}$ is the unobserved current score

→ To test the missingness mechanism

Testing the ψ parameters ($\mathcal{H}_0: \psi = 0$)

logit
$$\mathbb{P}(D_i = j \mid D_i \ge j, Y_{ij}, Y_{ij+1}) = \psi_0 + \psi_1 Y_{ij} + \psi_2 Y_{ij+1}$$

Testing the ψ parameters ($\mathcal{H}_0: \psi = 0$)

logit
$$\mathbb{P}(D_i = j \mid D_i \geq j, Y_{ij}, Y_{ij+1}) = \psi_0 + \psi_1 Y_{ij} + \psi_2 Y_{ij+1}$$

The ψ parameters model the dropout process under a MNAR assumption

Testing the ψ parameters ($\mathcal{H}_0: \psi = 0$)

logit
$$\mathbb{P}(D_i = j \mid D_i \geq j, Y_{ij}, Y_{i,j+1}) = \psi_0 + \psi_1 Y_{ij} + \psi_2 Y_{i,j+1}$$

0000

The ψ parameters model the dropout process under a MNAR assumption MAR case if $\psi_2 = 0$: the dropout depends only on the observed score

Testing the ψ parameters ($\mathcal{H}_0: \psi = 0$)

logit
$$\mathbb{P}(D_i = j \mid D_i \geq j, Y_{ij}, Y_{ij+1}) = \psi_0 + \psi_1 Y_{ij} + \psi_2 Y_{ij+1}$$

The ψ parameters model the dropout process under a MNAR assumption MAR case if $\psi_2 = 0$: the dropout depends only on the observed score MCAR case if $\psi_2 = \psi_1 = 0$: the dropout is independent of the score

Testing the ψ parameters ($\mathcal{H}_0: \psi = 0$)

logit
$$\mathbb{P}(D_i = j \mid D_i \geq j, Y_{ij}, Y_{ij+1}) = \psi_0 + \psi_1 Y_{ij} + \psi_2 Y_{ij+1}$$

The ψ parameters model the dropout process under a MNAR assumption MAR case if $\psi_2 = 0$: the dropout depends only on the observed score MCAR case if $\psi_2 = \psi_1 = 0$: the dropout is independent of the score

	Select	ion Mode	el
	Estimation	SE	р
$\overline{\psi_0}$	-0.063	0.072	0.383
ψ_1	0.001	0.087	0.990
ψ_{2}	0.001	0.117	0.992
β_1	0.019	0.027	0.486
β_3	0.035	0.032	0.266

The assumption of **completely random dropout** is acceptable testing the ψ parameters.

Summarising the results of the 3 models

	Selection Model			Linear N	lixed Mc	del	Pattern Mixture Model		
	Estimation	SE	р	Estimation	SE	р	Estimation	SE	р
β_1	0.019	0.027	0.486	0.012	0.012	0.307	-0.038	0.038	0.318
β_3	0.035	0.032	0.266	0.031	0.017	0.076	0.022	0.049	0.649
ψ_{0}	-0.063	0.072	0.383	_	-	_	_	_	_
ψ_1	0.001	0.087	0.990	_	-	_	_	_	_
ψ_2	0.001	0.117	0.992	_	-	_	_	_	_

In comparison with the Linear Mixed Model:

- Selection Model:
 - ← Estimations of the fixed effects are similar to the Linear Mixed Model
 - \hookrightarrow Missing data are non **informative** according to the test of the ψ parameters
- Pattern Mixture Model:
 - → Differences: negative slope and a trend to a deterioration

These conclusions are valid only if the model assumptions are valid.

Conclusion

All models for non-informative data require the analyst to make strong assumptions:

Selection Model

Model directly the quantity of interest (the marginal score)

Test missingness mechanism (MNAR/MAR/MCAR)

To obtain the marginal score \Rightarrow extrapolation of linear trends

Description of the HRQoL according to the dropout pattern

Untestable = normality assumption

 \hookrightarrow score observed and *unobserved* is assumed to be normally distributed

Untestable = **extrapolation** \hookrightarrow quality of life of a patient evolves in the same way after dropout

Both of theses methods assume untestable assumptions