L2 Mathématiques

Analyse dans \mathbb{R}^n

Université de Brest

Feuille 6 Accroissements finis, dérivées partielles d'ordre supérieur

Exercice 1. Soit la fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$f(x,y) = \frac{\sin(x)}{1+y^2}.$$

On munit \mathbb{R}^2 de la norme euclidienne.

- 1. f est-elle différentiable sur \mathbb{R}^2 ?
- 2. Soit $(x, y) \in \mathbb{R}^2$, calculer

$$||Df(x,y)||_{\mathscr{L}(\mathbb{R}^2,\mathbb{R})}$$
.

3. Montrer que pour tout $(x,y) \in \mathbb{R}^2$ on a

$$|f(x,y)| \le \sqrt{2} ||(x,y)||$$
.

Indication : on pourra démontrer et utiliser l'inégalité pour $y \in \mathbb{R}$

$$4y^2 \le (1+y^2)^2 \, .$$

Exercice 2. Calculer les dérivées partielles d'ordre 2 des fonctions f et g.

$$f(x,y) = x^{2}(x+y) g(x,y) = \cos(xy)$$

Exercice 3. Soit f et $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ deux applications de classe \mathscr{C}^2 et $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$F(x,y) = f(x + \varphi(y)).$$

- 1. Justifier que F est de classe \mathscr{C}^2 .
- 2. Vérifier l'égalité:

$$\frac{\partial^2 F}{\partial x^2} \cdot \frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y} \cdot \frac{\partial F}{\partial x} = 0.$$

Exercice 4. Soient $f:(x,y) \mapsto f(x,y)$ de classe \mathscr{C}^2 et $g:(r,\theta) \mapsto f(r\cos\theta,r\sin\theta)$. Justifier que g est de classe \mathscr{C}^2 et vérifier que

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 g}{\partial r^2} + \frac{1}{r} \frac{\partial g}{\partial r} + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2}.$$

Exercice 5. Écrire la formule de Taylor à l'ordre deux en (0,0) de :

$$f(x,y) = e^{xy} + \ln(1 + x^2 + y^2) + 2x^2 + y - 1.$$

Exercice 6. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

- 1. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}^2 .
- 2. Montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ existent et diffèrent. Qu'en déduire?

Exercice 7. Soit $f: \mathbb{R}^2 - \{(0,0)\} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

- 1. f admet-elle un prolongement continu à \mathbb{R}^2 ?
- 2. f admet-elle un prolongement \mathscr{C}^1 à \mathbb{R}^2 ?
- 3. f admet-elle un prolongement \mathscr{C}^2 à \mathbb{R}^2 ?

Exercice 8. Soit P un polynôme de degré $k \in \mathbb{N}$ sur \mathbb{R}^n . Donner la formule de Taylor en 0 à l'ordre k pour P. On pourra commencer par traiter le cas explicite du polynôme sur \mathbb{R}^2

$$P(x,y) = x^2 + 3xy - 2x + 4$$

Exercice 9. On cherche une solution u = u(x,y) de l'équation aux dérivées partielles suivante :

(E)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x + y.$$

- 1. Vérifier que la fonction $v(x,y) = \frac{x^3 + y^3}{6}$ est une solution particulière de (E).
- 2. Soit (EH) l'équation homogène associée. Montrer que les solutions de (EH) de la forme u(x,y) = F(x)G(y) et ne s'annulant pas sont les solutions de l'équation :

(ES)
$$\frac{F''(x)}{F(x)} = -\frac{G''(y)}{G(y)}$$
.

3. Expliquer pourquoi (ES) est équivalente au système d'équations :

$$\begin{cases} F''(x) = kF(x) \\ G''(y) = -kG(y) \\ k \in \mathbb{R} \end{cases}$$

Dans toutes la suite on suppose que k > 0, on note alors $k = w^2$.

- 4. Résoudre $G''(y) = -w^2 G(y)$.
- 5. Résoudre $F''(x) = w^2 F(x)$.
- 6. Donner une solution de l'équation (E) avec conditions aux bords :

(C)
$$\begin{cases} u(x,0) = \frac{x^3}{6} + e^x \\ u(0,y) = \frac{y^3}{6} + \cos y + \sin 2y \end{cases}$$

2