Osnove verjetnosti in statistike Diskretne porazdelitve

Asistent dr. Kristina Veljković

BINOMSKA PORAZDELITEV

- ► Izvajamo *n* neodvisnih slučajnih poskusov.
- V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A).

BINOMSKA PORAZDELITEV

- ► Izvajamo *n* neodvisnih slučajnih poskusov.
- V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A).
- ► Slučajna spremenljivka *X* število realizacij dogodka *A* (kolikokrat se je zgodil dogodek *A* v *n* poskusih).
- ► X je binomsko porazdeljena, $X \sim \mathcal{B}(n, p)$.
- ► Verjetnostna funkcija

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, 1, \dots, n.$$

- ► E(X) = np, D(X) = np(1 p).
- ▶ Primeri:(1) število šestic v 10 metih kocke; (2) število grbov v 5 metih kovanca; (3) število okuženih učencev v razredu; (4) število levičarjev med prebivalci mesta.

Primer 1. (Zbirka) Izbruhnila je nova bolezen, za katero smo ugotovili, da je verjetnost okužbe enaka 0.15. V razredu je 20 učencev. Kolikšna je verjetnost, da

- a) se ni okužil noben učenec?
- b) so okuženi natanko 3 učenci?
- c) so okuženi manj kot 3 učenci?
- d) so okuženi vsaj 3 učenci?

GEOMETRIJSKA PORAZDELITEV

- ► Izvajamo neodvisne slučajne poskuse, dokler se ne zgodi dogodek *A*.
- ▶ V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A).

GEOMETRIJSKA PORAZDELITEV

- ► Izvajamo neodvisne slučajne poskuse, dokler se ne zgodi dogodek *A*.
- ▶ V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A).
- ► Slučajna spremenljivka *X* število poskusov, dokler se ne zgodi dogodek *A*.
- ► *X* je geometrijsko porazdeljena, $X \sim \mathcal{G}(p)$.
- ► Verjetnostna funkcija

$$P(X = k) = p(1 - p)^{k-1}, k = 1, 2, ...$$

- ► $E(X) = \frac{1}{p}$, $D(X) = \frac{1-p}{p^2}$.
- ▶ Primeri: (1) Število metov kocke, dokler ne pade šestica; (2) število metov kovanca, dokler ne pade grb; (3) število poskusov, dokler lokostrelec ne zadene sredine tarče.

Primer 2.(Zbirka) Dve kocki mečemo, dokler ne vržemo skupaj več kot 9 pik.

- a) Koliko je pričakovano število metov?
- b) Kolikšna je verjetnost, da bomo potrebovali manj metov kot je pričakovano?
- c) Kolikšna je verjetnost, da bomo kocki morali vreči vsaj dvakrat več od pričakovanega števila metov?

PASCALOVA PORAZDELITEV

- ► Izvajamo neodvisne slučajne poskuse, dokler se dogodek *A* ne zgodi *r*-krat.
- V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A).

PASCALOVA PORAZDELITEV

- ► Izvajamo neodvisne slučajne poskuse, dokler se dogodek *A* ne zgodi *r*-krat.
- V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A).
- ▶ Slučajna spremenljivka *X* število poskusov, dokler se dogodek *A* ne zgodi *r*-krat.
- ► X je Pascalovo porazdeljena, $X \sim \mathcal{P}(r, p)$.
- ► Verjetnostna funkcija

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \ k = r, r+1, \dots$$

- ► $E(X) = \frac{r}{p}$, $D(X) = \frac{r(1-p)}{p^2}$.
- ► Primeri: (1) število metov kocke, dokler šestica ne pade 4-krat; (2) število metov kovanca, dokler grb ne pade 2-krat; (3) število poskusov, dokler lokostrelec ne zadene sredine tarče 3-krat.

Primer 3.(*Z*birka) Raziskovalci so ugotovili, da je pri neki vrsti ovc verjetnost okužbe z nekim parazitom enaka 0.2. Za testiranje novega cepiva morajo iz črede poiskati 5 okuženih ovc. Kolikšna je verjetnost, da morajo pregledati vsaj 10 ovc preden najdejo 5 okuženih?

POISSONOVA PORAZDELITEV

- ► Slučajna spremenljivka *X* šteje število dogodkov, ki so se pojavili v določenem časovnem ali prostorskem intervalu, pri čemer
 - ► se dogodki pojavljajo neodvisno,
 - **•** povprečno število dogodkov λ , ki se pojavijo v določenem intervalu, je konstantno.

Poissonova porazdelitev

- ► Slučajna spremenljivka *X* šteje število dogodkov, ki so se pojavili v določenem časovnem ali prostorskem intervalu, pri čemer
 - ► se dogodki pojavljajo neodvisno,
 - ightharpoonup povprečno število dogodkov λ , ki se pojavijo v določenem intervalu, je konstantno.
- ► *X* je Poissonovo porazdeljena, $X \sim \mathcal{P}(\lambda)$.
- Verjetnostna funkcija

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0, 1, 2, \dots$$

- $ightharpoonup E(X) = D(X) = \lambda.$
- ▶ Primeri: (1) število avtomobilov, ki prevozijo cesto v 1 min; (2) število napak v 5-ih metrih žice; (3) število strank, ki vstopijo v trgovino v eni uri.

Primer 4.(Zbirka) Neka rokometna ekipa da v povprečju 30 golov na tekmo (tekma traja 60 minut).

- a) Koliko verjetno ekipa na naslednji tekmi v prvi minuti doseže vsaj en gol?
- b) Koliko verjetno ekipa v zadnjih 3min tekme doseže natanko dva gola?

HIPERGEOMETRIJSKA PORAZDELITEV

- ► V populaciji velikosti *N* imamo *K* elementov z določeno lastnostjo.
- ► Izbiramo **brez vračanja** *n* elementov.

HIPERGEOMETRIJSKA PORAZDELITEV

- ► V populaciji velikosti *N* imamo *K* elementov z določeno lastnostjo.
- ► Izbiramo **brez vračanja** *n* elementov.
- ► Slučajna spremenljivka *X* število elementov z določeno lastnostjo med izbranimi.
- ► *X* je hipergeometrijsko porazdeljena, $X \sim \mathcal{H}(K, N K, n)$.
- ► Verjetnostna funkcija

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \ k = 0, 1, 2, \dots \min\{n, K\}.$$

- ► $E(X) = \frac{nK}{N}$, $D(X) = n\frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1}$.
- ► Primeri: (1) število praznih baterij med izbranimi 4-imi baterijami; (2) število pikov med izbranimi 7-imi kartami; (3) število vegetarijancev med izbranimi 100-imi zaposlenimi (izbiranja brez vračanja).

Primer 5.(Zbirka): V nekem podjetju je zaposlenih 800 ljudi, od tega je 240 vegetarijancev. Naključno izberemo 10 ljudi (brez vračanja). Kolikšna je verjetnost, da je med njimi

- a) natanko en vegetarijanec?
- b) več kot en vegetarijanec?

Primer 6.(Zbirka) Bankomat je deloma pokvarjen, saj pravilno PIN kodo sprejme le v 80% primerov. Če kodo zavrne 3-krat, potem kartico zadrži. Bankomat na dan uporabi 100 ljudi. Koliko pritožb lahko pričakujejo na banki vsak dan?

Primer 7.(Zbirka) Na prvem tradicionalnem FRI teku sodeluje 10 žensk in 15 moških. Pred štartom študentka izbere 3 tekmovalce za intervju.

- a) Kolikšna je verjetnost, da bo izbranih več žensk kot moških?
- b) Koliko žensk pričakujemo, da bo izbranih za intervju?
- c) Kolikšna je verjetnost, da se dejansko število žensk od pričakovanega razlikuje za kvečjemu 1?

Primer 8.(Zbirka) Torpedo izstreljen iz podmornice zadene ladjo z verjetnostjo $\frac{1}{3}$. Ta se potopi že, ko jo zadene prvi torpedo. Naj bo X število torpedov, ki jih podmornica izstreli dokler ne potopi ladje (tj. število izstreljenih torpedov do vključno prvega zadetka).

- a) Določi porazdelitev slučajne spremenljivke *X*.
- b) Kako verjetno podmornica ne potopi ladje, če ima na voljo 5 torpedov?
- c) Določi pričakovano število izstreljenih torpedov, potrebnih za potopitev ladje.

Primer 9.(Zbirka) Naj bo *X* število avtomobilov, ki v nekem časovnem intervalu na prehodu prečkajo železniško progo. Progo v povprečju prečka en avto na 10 minut. Kolikšna je verjetnost, da

- a) v 10 minutah prečkajo vsaj 3 avtomobili?
- b) v 2 minutah, ko se zapornice spustijo, ne pripelje noben avtomobil?

Primer 10.(Zbirka) Nek igralec košarke zadane prosti met z verjetnostjo 0.85. Kolikšna je verjetnost, da bo na eni tekmi zadel svoj peti prosti met v sedmem poskusu?