Lineare Algebra II (Vogel)

Robin Heinemann

19. April 2017

Inhaltsverzeichnis

18 Eigenwerte

18 Eigenwerte

In diesem Abschnitt sei $n\in\mathbb{N}$, V ein K-VR und $\varphi\in\operatorname{End}_K(V)$.

Frage: V endlichdim. Existiet eine Basis $\mathcal{B}=(v_1,\dots,v_n)$ von V, sodass $M_{\mathcal{B}}(\varphi)$ eine Diagonalmatrix ist, das heißt

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

 $\text{mit } \lambda_1, \dots, \lambda_n \in K?$

Für $i=1,\dots,n$ wäre dann $\varphi(v_i)=\lambda_i v_i$

Definition 18.1 $\lambda \in K, v \in V$

- λ heißt Eigenwert von $\varphi \overset{\mathrm{Def}}{\Longleftrightarrow} \exists v \in V, v \neq 0 : \varphi(v) = \lambda v$
- v heißt Eigenvektor zum Eigenwert $\lambda \overset{\mathrm{Def}}{\Longleftrightarrow} v \neq 0 \wedge \varphi(v) = \lambda v$
- φ heißt diagonalisierbar $\stackrel{\mathrm{Def}}{\Longleftrightarrow} V$ besitzt eine Basis aus EV von φ

(Falls V endlichdimensional, ist die äquivalent zu: Es gibt eine Basis $\mathcal B$ von V und $\lambda_1,\dots,\lambda_n\in K$ mit

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$$

) Eigenwerte, Eigenvektoren, Diagonalisiebarkeit einer Matrix $A\in M(n\times n,K)$ sind über den Endomorphismus $\tilde{A}:K^n\to K^n$ definiet.

Bemerkung 18.2 $A \in M(n \times n, K)$. Dann sind äquivalent:

- 1. A ist diagonalisiebar.
- 2. Es gibt eine Basis von K^n aus Eigenvektoren von A

$$\text{3. Es gibt ein } S \in \operatorname{GL}(n,K), \lambda_1, \dots, \lambda_n \in K \text{ mit } SAS^{-1} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

4. A ist ähnlich zu einer Diagonalmatrix

In diesem Fall steht in den Spalten von S^{-1} eine Basis des K^n aus EU von A, und für jede Matrix $A \in M(n \times n, K)$ mit der Eigenschaft, dass die Spalten von S^{-1} eine Basis des K^n aus EV von Abilden, dann ist SAS^{-1} eine Diagonalmatrix (mit den EW auf der Diagonalen.)

Beweis Äquivalenz: \setminus 1. \iff 2. Definition, 2. \iff 3. aus Basiswechselsatz (16.6), 3. \iff 4. aus Definition Ähnlichkeit (16.12)

$$\text{Zusatz: Sei } S \in \operatorname{GL}(n,K) \operatorname{mit} SAS^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix} \implies A \big(S^{-1} e_j \big) = S^{-1} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix} e_j.$$

Wegen $S^{-1}\in \mathrm{GL}(n,K)$ ist $S^{-1}e_j\neq 0$, das heißt S^{-1} ist EV von A zum EW λ_j Wegen $S^{-1}\in \mathrm{GL}(n,K)$ ist $\left(S^{-1}e_1,\ldots,S^{-1}e_n\right)$ eine Basis des K^n aus EV von A. Sei $S\in \mathrm{GL}(n,K)$, das heißt die Spalten von S^{-1} eine Basis des K^n aus EV von A bilden, das heißt für alle $j \in \{1,\dots,n\}$ ist $AS^{-1}e_j = \lambda_j S^{-1}e_j$ für ein $\lambda_j \in K$.

$$\implies AS^{-1}e_j = S^{-1}\lambda_j e_j = S^{-1}\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j \implies SAS^{-1}e_j = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j, j = 1, \dots, n$$

$$\implies SAS^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Beispiel 18.3 $K = \mathbb{R}, V = \mathbb{R}^2$

$$\begin{array}{l} \text{1. } \varphi:\mathbb{R}^2\to\mathbb{R}^2, \begin{pmatrix} x_1\\x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2\\x_1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix} \text{ Es ist } \varphi\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix} = 1\cdot\begin{pmatrix} 1\\1 \end{pmatrix}, \\ \text{das heißt } \begin{pmatrix} 1\\1 \end{pmatrix} \text{ ist EV von } \varphi \text{ zum EW 1.} \\ \varphi\left(\begin{pmatrix} 1\\-1 \end{pmatrix}\right) = \begin{pmatrix} -1\\1 \end{pmatrix} = (-1)\begin{pmatrix} 1\\-1 \end{pmatrix}, \text{ also ist } \begin{pmatrix} 1\\-1 \end{pmatrix} \text{ EV von } \varphi \text{ zum EW -1. Somit: } \\ \begin{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \text{ ist eine Basis des } \mathbb{R}^2 \text{ aus EV von } \varphi, \text{ das heißt } \varphi \text{ ist diagonalisierbar.} \\ \text{In Termen von Matrizen: } A = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 1 & 1\\1 & -1 \end{pmatrix} \text{ ist dann ist } SAS^{-1} = \begin{pmatrix} 1 & 0\\0 & -1 \end{pmatrix} \text{ Achtung: Das } \varphi \text{ diagonalisiebar ist, heißt nicht,} \end{array}$$

dass jeder Vektor aus $V=\mathbb{R}^2$ ein EV von φ ist, zum Beispiel ist $\varphi\left(\begin{pmatrix}1\\2\end{pmatrix}\right)=\begin{pmatrix}2\\1\end{pmatrix}$ $\lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} \forall \lambda \in \mathbb{R}.$

2.
$$\varphi:\mathbb{R}^2\to\mathbb{R}^2, \begin{pmatrix} x_1\\x_2 \end{pmatrix}\mapsto \begin{pmatrix} 0 & -1\\1 & 0 \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix}=\begin{pmatrix} -x_2\\x_1 \end{pmatrix}$$
 (= Drehung um $\frac{\pi}{2}$). hat keinen EW. Beweig dafür: später.

Ziel: Suche Kriterien für Diagonalisiebarkeit.

Bemerkung 18.4 v_1,\dots,v_m EV von φ zu paarweise verschiedenen EW $\lambda_1,\dots,\lambda_m\in K$. Dann ist (v_1,\dots,v_m) linear unabhängig, insbesondere ist $m \leq \dim V$. Insbesondere gilt: ist V endlichdimesional, dann hat φ höchstens $\dim(v)$ Eigenwerte.

Beweis per Induktion nach m:

IA: $m = 1 : v_1 \neq 0$, da v_1 EV $\implies (v_1)$ linear unabhängig.

IS: sei $m \ge 2$, und die Aussage für m-1 bewiesen.

Seien $\alpha_1,\dots,\alpha_m\in K$ mit $\alpha_1\lambda_1v_1+\dots+\alpha_m\lambda_mv_m=0$ Außerdem: $\alpha_1\lambda_1v_1+\dots+\alpha_m\lambda_1v_m=0$

$$\begin{split} & \Rightarrow \ \alpha_2(\lambda_2-\lambda_1)v_2+\cdots+\alpha_m(\lambda_m-\lambda_1)v_m=0 \\ & \alpha_2\lambda_2-\lambda_1=\cdots=\alpha_m(\lambda_m-\lambda_1)=0 \\ & \Rightarrow \ \alpha_2=\cdots=\alpha_m=0 \\ & \Rightarrow \ \alpha_1v_1=0 \ \Rightarrow \ \alpha_1=0 \ \Rightarrow \ (v_1,\ldots,v_w) \ \text{linear unabhängig} \end{split}$$

Folgerung 18.5 V endlichdemensional, φ hage n paarweise verschiedene EW, wobei $n=\dim V$ Dann ist φ diagonalisiebar.

Beweis Für $i=1,\ldots,n$ sei v_i ein EV von φ zum EW $\lambda_i \implies (v_1,\ldots,v_n)$ linear unabhängig, wegen $n = \dim V$ ist (v_1, \dots, v_n) eine Basis von V aus EV von φ

Definition 18.6 $\lambda \in K$

 $\mathrm{Eig}(\varphi,\lambda):=\{v\in V\mid \varphi(v)=\lambda v\}$ heißt der Eigenraum von φ bezüglich λ . $\mu_{\textit{qeo}}(\varphi,\lambda) := \dim \mathrm{Eig}(\varphi,\lambda) \text{ heißt die geometrische Vielfachheit von } \lambda.$

Für
$$A \in M(n \times n, K)$$
 setzen vir $\mathrm{Eig}(A, \lambda) := \mathrm{Eig}\left(\tilde{A}, \lambda\right), \mu_{geo}(A, \lambda) := \mu_{geo}\left(\tilde{A}, \lambda\right).$

Bemerkung 18.7 $\lambda \in K$. Dann gilt:

- 1. $\operatorname{Eig}(\varphi, \lambda)$ ist ein UVR von V.
- 2. λ ist EW von $\varphi \iff \text{Eig}(\varphi, \lambda) \neq \{0\}$.
- 3. $\operatorname{Eig}(\varphi, \lambda)$ {0} ist die Menge der zu λ gehörenden EV von φ .

5. Sind
$$\lambda_1, \lambda_2 \in Kmit \lambda_1 \neq \lambda_2$$
, dann $\operatorname{Eig}(\varphi, \lambda_1) \cap \operatorname{Eig}(\varphi, \lambda_2) = \{0\}$

$$\begin{array}{ll} \textbf{Beweis} & \text{ } 4. \ \, \text{Es} \, \text{ist} \, v \in \text{Eig}(\varphi,\lambda) \iff \varphi(v) = \lambda v \iff \lambda v - \varphi(v) = 0 \iff (\lambda \, \text{id}_V - \varphi)(v) = 0 \\ 0 & \iff v \in \ker(\lambda \, \text{id}_V - \varphi) \, \, \text{Es} \, \text{ist} \, \text{Eig}(A,\lambda) = \ker\left(\lambda \, \text{id}_{K^n} - \tilde{A}\right) = \ker\left(\lambda E_n - A\right) = \ker(\lambda E_n - A) = \text{Lös}(\lambda E_n - A,0) \end{array}$$

- 1. aus 4.
- 2. $\lambda \text{ EW von } \varphi \Leftrightarrow \exists v \in V, v \neq 0 \text{ mit } \varphi(v) = \lambda v \Leftrightarrow \text{Eig}(\varphi, \lambda) \neq \{0\}.$
- 3. klar.

5. Sei
$$\lambda_1 \neq \lambda_2, v \in \text{Eig}(\varphi, \lambda_1) \cap \text{Eig}(\varphi, \lambda_2) \Rightarrow \lambda_1 v = \varphi(v) = \lambda_2 v \Rightarrow \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} v = 0$$

Bemerkung 18.8 V endlichdimesional, $\lambda \in K$. Dann sind äquivalent:

- 1. λ ist EW von φ
- 2. $\det(\lambda \operatorname{id}_V \varphi) = 0$

$$\begin{array}{ll} \textbf{Beweis} & 1. \Leftrightarrow \operatorname{Eig}(\varphi,\lambda) \neq \{0\} \Rightarrow \ker(\lambda\operatorname{id}_V - \varphi) \neq \{0\} \Rightarrow \lambda\operatorname{id}_V - \varphi \text{ nicht injektiv } \Rightarrow \\ & \lambda\operatorname{id}_V - \varphi \text{ kein Isomorphismus } \Rightarrow \det(\lambda\operatorname{id}_V - \varphi) = 0. \end{array}$$