AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 11: Householder Triangulation; Givens Rotation; Least Squares Problems

Xiangmin Jiao

Stony Brook University

Outline

1 Householder Triangularization (NLA§10)

② Givens Rotations

3 Linear Least Squares Problems (NLA§11)

Xiangmin Jiao Numerical Analysis I 2 / 18

Gram-Schmidt as Triangular Orthogonalization

 Every step of Gram-Schmidt can be viewed as multiplication with triangular matrix. For example, at first step:

$$[v_1|v_2|\cdots|v_n] \underbrace{\begin{bmatrix} \frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\ & 1 & & \\ & & 1 & \\ & & & \ddots \end{bmatrix}}_{R_1} = \begin{bmatrix} q_1|v_2^{(2)}|\cdots|v_n^{(2)} \end{bmatrix},$$

 Gram-Schmidt therefore multiplies triangular matrices to orthogonalize column vectors, and in turns can be viewed as triangular orthogonalization

$$A\underbrace{R_1R_2\cdots R_n}_{\widehat{R}^{-1}}=\widehat{Q}$$

where R_i is triangular matrix

• A "dual" approach would be *orthogonal triangularization*, i.e., multiply A by orthogonal matrices to make it triangular matrix

Xiangmin Jiao Numerical Analysis I 3 / 18

Householder Triangularization

- Method introduced by Alston Scott Householder in 1958
- It multiplies orthogonal matrices to make column triangular, e.g.

• After *n* steps, we get a product of orthogonal matrices

$$\underbrace{Q_n \cdots Q_2 Q_1}_{Q^T} A = R$$

and in turn we get full QR factorization A = QR

- Q_k introduces zeros below diagonal of kth column while preserving zeros below diagonal in preceding columns
- The key question is how to find Q_k

Householder Reflectors

- First, consider Q_1 : $Q_1a_1 = ||a_1||e_1$, where $e_1 = (1, 0, \dots, 0)^T$. Why the length is $||a_1||$?
- Q_1 reflects a_1 across hyperplane H orthogonal to $v = ||a_1||e_1 a_1$, and therefore

$$Q_1 = I - 2 \frac{vv^T}{v^T v}$$

More generally,

$$Q_k = \left[\begin{array}{cc} I & 0 \\ 0 & F \end{array} \right]$$

where I is $(k-1) \times (k-1)$ and F is $(m-k+1) \times (m-k+1)$ such that $Fx = ||x||_2 e_1$, where x is $(a_{k,k}, a_{k,k+1}, \cdots, a_{k,m})^T$

• What is F? It has similar form as Q_1 with $v = ||x||e_1 - x$.

Choice of Reflectors

- We could choose F such that $Fx = -\|x\|e_1$ instead of $Fx = \|x\|e_1$
 - ▶ More generally, $Fx = z||x||e_1$ with |z| = 1 if $z \in \mathbb{C}$
 - ► This leads to an infinite number of possible QR factorizations of A
 - ▶ If we require $z \in \mathbb{R}$, we still have two choices
- Numerically, it is undesirable for $v^T v$ to be close to zero for $v = z ||x|| e_1 x$, and ||v|| is larger if $z = -\text{sign}(x_1)$
- Therefore, $v = -\text{sign}(x_1) ||x|| e_1 x$. Since $I 2 \frac{vv^T}{v^T v}$ is independent of sign, clear out the factor -1 and obtain $v = \text{sign}(x_1) ||x|| e_1 + x$
- For completeness, if $x_1 = 0$, set z to 1 (instead of 0)
- We define $sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{otherwise} \end{cases}$

Householder QR Factorization
$$\begin{aligned} &\text{for } k = 1 \text{ to } n \\ &x = A_{k:m,k} \\ &v_k = \text{sign}(x_1) \|x\| e_1 + x \\ &v_k = v_k / \|v_k\| \\ &A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n}) \end{aligned}$$

- Leave R in place of A
- Matrix Q is not formed explicitly but reflection vector v_k is stored

Householder QR Factorization
$$\begin{aligned} & \textbf{for } k = 1 \textbf{ to } n \\ & x = A_{k:m,k} \\ & v_k = \textbf{sign}(x_1) \|x\| e_1 + x \\ & v_k = v_k / \|v_k\| \\ & A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n}) \end{aligned}$$

- Leave R in place of A
- Matrix Q is not formed explicitly but reflection vector v_k is stored
- Question: Can A be reused to store both R and v_k completely?

Householder QR Factorization
$$\begin{aligned} & \text{for } k = 1 \text{ to } n \\ & x = A_{k:m,k} \\ & v_k = \text{sign}(x_1) \|x\| e_1 + x \\ & v_k = v_k / \|v_k\| \\ & A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n}) \end{aligned}$$

- Leave R in place of A
- Matrix Q is not formed explicitly but reflection vector v_k is stored
- Question: Can A be reused to store both R and v_k completely?
- Answer: We can use lower triangular portion of A to store all but one entry in each v_k . An additional array of size n may be needed, or take advantage of $||v_k|| = 1$

Householder QR Factorization
$$\begin{aligned} & \text{for } k = 1 \text{ to } n \\ & x = A_{k:m,k} \\ & v_k = \text{sign}(x_1) \|x\| e_1 + x \\ & v_k = v_k / \|v_k\| \\ & A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n}) \end{aligned}$$

- Leave R in place of A
- Matrix Q is not formed explicitly but reflection vector v_k is stored
- Question: Can A be reused to store both R and v_k completely?
- Answer: We can use lower triangular portion of A to store all but one entry in each v_k . An additional array of size n may be needed, or take advantage of $||v_k|| = 1$
- Question: What happens if v_k is 0 in line 3 of the loop?

Householder QR Factorization
$$\begin{aligned} & \text{for } k = 1 \text{ to } n \\ & x = A_{k:m,k} \\ & v_k = \text{sign}(x_1) \|x\| e_1 + x \\ & v_k = v_k / \|v_k\| \\ & A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n}) \end{aligned}$$

- Leave R in place of A
- Matrix Q is not formed explicitly but reflection vector v_k is stored
- Question: Can A be reused to store both R and v_k completely?
- Answer: We can use lower triangular portion of A to store all but one entry in each v_k . An additional array of size n may be needed, or take advantage of $||v_k|| = 1$
- Question: What happens if v_k is 0 in line 3 of the loop?
- Answer: $r_{kk} = 0$

Applying or Forming Q

• Compute $Q^Tb = Q_n \cdots Q_1b$

Implicit calculation of
$$Q^T b$$

for $k = 1$ to n
 $b_{k:m} = b_{k:m} - 2v_k(v_k^T b_{k:m})$

Applying or Forming Q

• Compute $Q^Tb = Q_n \cdots Q_1b$

Implicit calculation of
$$Q^T b$$

for $k = 1$ to n
 $b_{k:m} = b_{k:m} - 2v_k(v_k^T b_{k:m})$

• Compute $Qx = Q_1Q_2\cdots Q_nx$

Implicit calculation of
$$Qx$$

for $k = n$ downto 1
 $x_{k:m} = x_{k:m} - 2v_k(v_k^T x_{k:m})$

• Question: How to form Q and \hat{Q} , respectively?

Applying or Forming Q

• Compute $Q^Tb = Q_n \cdots Q_1b$

Implicit calculation of
$$Q^T b$$

for $k = 1$ to n
 $b_{k:m} = b_{k:m} - 2v_k(v_k^T b_{k:m})$

• Compute $Qx = Q_1Q_2\cdots Q_nx$

Implicit calculation of
$$Qx$$

for $k = n$ downto 1
 $x_{k:m} = x_{k:m} - 2v_k(v_k^T x_{k:m})$

- Question: How to form Q and \hat{Q} , respectively?
- Answer: Apply $x = I_{m \times m}$ or first n columns of I, respectively

Operation Count

- Most work done at step $A_{k:m,k:n} = A_{k:m,k:n} 2v_k(v_k^T A_{k:m,k:n})$
- Flops per iteration:
 - ▶ $\sim 2(m-k)(n-k)$ for dot products $v_k^T A_{k:m,k:n}$
 - $\sim (m-k)(n-k)$ for outer product $2v_k(\cdots)$
 - $\sim (m-k)(n-k)$ for subtraction
 - $ightharpoonup \sim 4(m-k)(n-k)$ total
- Including outer loop, total flops is

$$\sum_{k=1}^{n} 4(m-k)(n-k) = 4\sum_{k=1}^{n} (mn-km-kn+k^2)$$
$$\sim 4mn^2 - 4(m+n)n^2/2 + 4n^3/3$$
$$= 2mn^2 - \frac{2}{3}n^3$$

If $m \approx n$, it is more efficient than Gram-Schmidt method, but is similar to Gram-Schmidt if $m \gg n$

Outline

Householder Triangularization (NLA§10)

② Givens Rotations

3 Linear Least Squares Problems (NLA§11)

Xiangmin Jiao Numerical Analysis I 10 / 18

Givens Rotations

- Instead of using reflection, we can rotate x to obtain $||x||e_1$
- A Given rotation $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates $x \in \mathbb{R}^2$ counterclockwise by θ
- Choose θ to be angle between $(x_i, x_j)^T$ and $(1, 0)^T$, and we have

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i \\ x_j \end{bmatrix} = \begin{bmatrix} \sqrt{x_i^2 + x_j^2} \\ 0 \end{bmatrix}$$

where

$$\cos\theta = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \ \sin\theta = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}$$

Givens QR

Introduce zeros in column bottom-up, one zero at a time

- To zero a_{ii} , left-multiply matrix F with $F_{i:i+1,i:i+1}$ being rotation matrix and $F_{kk} = 1$ for $k \neq i, i + 1$
- Flop count of Givens QR is $3mn^2 n^3$, which is about 50% more expensive than Householder triangularization

Adding a Row

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, and A has full rank
- Let $\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix}$, where $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and z^T is a new row inserted
- Obtain $\tilde{A} = \tilde{Q}\tilde{R}$ from A = QR efficiently using Givens rotation:
 - ► Suppose $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R$.
 - ► Then $\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix} = \begin{bmatrix} 0 & Q_1 \\ 1 & 0^T \\ 0 & Q_2 \end{bmatrix} \begin{bmatrix} z^T \\ R \end{bmatrix}$
 - ▶ Perform series of Givens rotation $\tilde{R} = U_n^T \dots U_2^T U_1^T \begin{bmatrix} z^T \\ R \end{bmatrix}$, and then $\tilde{Q} = \begin{bmatrix} 0 & Q_1 \\ 1 & 0^T \\ 0 & Q_1 \end{bmatrix} U_1 U_2 \dots U_n$
 - Updating \tilde{R} costs $3n^2$ flops, and updating \tilde{Q} costs 6mn flops

Adding a Column

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, and A has full rank
- ullet Let $ilde{A}=\left[egin{array}{cccc} A_1 & z & A_2 \end{array}
 ight]$, where $A=\left[egin{array}{cccc} A_1 & A_2 \end{array}
 ight]$ and z is new column
- Obtain $\tilde{A} = \tilde{Q}\tilde{R}$ from A = QR efficiently using Givens rotation:
 - ▶ Suppose $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix} = Q \begin{bmatrix} R_1 & R_2 \end{bmatrix}$
 - ▶ Then $\tilde{A} = \begin{bmatrix} A_1 & z & A_2 \end{bmatrix} = Q \begin{bmatrix} R_1 & w & R_2 \end{bmatrix}$, where $w = Q^T z$
 - ▶ Perform series of Givens rotation $\tilde{R} = U_{k+1} \cdots U_n \begin{bmatrix} R_1 & w & R_2 \end{bmatrix}$, where U_n performs on rows n and n-1, U_{n-1} performs on rows n-1 and n-2, etc.
 - $\tilde{Q} = QU_n^T \cdots U_{k+1}^T$
 - ▶ It takes O(mn) time overall

Outline

3 Linear Least Squares Problems (NLA§11)

Linear Least Squares Problems

- Overdetermined system of equations $Ax \approx b$, where A has more rows than columns and has full rank, in general has no solutions
- Example application: Polynomial least squares fitting
- In general, minimize the residual r = b Ax
- In terms of 2-norm, we obtain linear least squares problem: Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ such that $\|b Ax\|_2$ is minimized
- If A has full rank, the minimizer x is the solution to the normal equation

$$A^T A x = A^T b$$

or in terms of the pseudoinverse A^+ ,

$$x = A^+b$$
, where $A^+ = (A^TA)^{-1}A^T \in \mathbb{R}^{n \times m}$

Geometric Interpretation

- Ax is in range(A), and the point in range(A) closest to b is its orthogonal projection onto range(A)
- Residual r is then orthogonal to range(A), and hence $A^T r = A^T (b Ax) = 0$
- Ax is orthogonal projection of b, where $x = A^+b$, so $P = AA^+ = A(A^TA)^{-1}A^T$ is orthogonal projection

Solution of Lease Squares Problems

- One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization
 - ▶ Is unstable, but is very efficient if $m \gg n \left(mn^2 + \frac{1}{3}n^3\right)$
- ullet More robust approach is to use QR factorization $A=\hat{Q}\hat{R}$
 - ▶ b can be projected onto range(A) by $P = \hat{Q}\hat{Q}^T$, and therefore $\hat{Q}\hat{R}x = \hat{Q}\hat{Q}^Tb$
 - ▶ Left-multiply by \hat{Q}^T and we get $\hat{R}x = \hat{Q}^Tb$ (note $A^+ = \hat{R}^{-1}\hat{Q}^T$)

Least squares via QR Factorization

Compute reduced QR factorization $A = \hat{Q}\hat{R}$

Compute vector $c = \hat{Q}^T b$

Solve upper-triangular system $\hat{R}x = c$ for x

- Computation is dominated by QR factorization $(2mn^2 \frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{Q}^T b$?

Solution of Lease Squares Problems

- One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization
 - ▶ Is unstable, but is very efficient if $m \gg n \ (mn^2 + \frac{1}{3}n^3)$
- ullet More robust approach is to use QR factorization $A=\hat{Q}\hat{R}$
 - ▶ b can be projected onto range(A) by $P = \hat{Q}\hat{Q}^T$, and therefore $\hat{Q}\hat{R}x = \hat{Q}\hat{Q}^Tb$
 - ▶ Left-multiply by \hat{Q}^T and we get $\hat{R}x = \hat{Q}^Tb$ (note $A^+ = \hat{R}^{-1}\hat{Q}^T$)

Least squares via QR Factorization

Compute reduced QR factorization $A = \hat{Q}\hat{R}$

Compute vector $c = \hat{Q}^T b$

Solve upper-triangular system $\hat{R}x = c$ for x

- Computation is dominated by QR factorization $(2mn^2 \frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{Q}^T b$?
- Answer: Compute Q^Tb (where Q is from full QR factorization) and then take first n entries of resulting Q^Tb