

Correlation Ratio for Unsupervised Learning of Multi-modal Deformable Registration

Xiaojian Chen¹, Yihao Liu², Shuwen Wei³, Aaron Carass³, Yong Du⁴, Junyu Chen⁴

¹Dept. of Computer Science, Johns Hopkins University, MD 21218, USA; ²Dept. of Electrical and Computer Engineering, Vanderbilt University, TN 37240, USA; ³Dept. of Electrical and Computer Engineering, Johns Hopkins University, MD 21218, USA; ⁴Dept. of Radiology and Radiological Science, Johns Hopkins School of Medicine, MD 21205, USA

Check out the source : code on GitHub

INTRODUCTION

Background:

- Deep learning (DL) has shown promise in multimodal image registration, where mutual information (MI) or modality-independent descriptors (MIND) are often used as the similarity measure.
- Correlation ratio (CR) [1], though historically effective, is underexplored in DL due to nondifferentiability.

Objective:

Investigating the CR as an alternative to MI for multi-modal deformable registration.

Key Challenge:

 The original implementation of CR involves discretely iterating through intensity ranges, making it non-differentiable for DL training.

Fig. 1 Illustration of Parzen-window approximation used to estimate a discrete histogram.

Our Contribution:

- A differentiable CR using Parzen windowing for DL-based registration.
- Extensive experiments to find the optimal regularization hyperparameter when using CR.

METHODS

Overall Loss Function:

Regularization hyperparameter

$$\mathcal{L}(I_f, I_m \circ \phi) = \mathcal{L}_{CR}(I_f, I_m \circ \phi) + \lambda \mathcal{L}_{Reg}(\phi)$$

Correlation Ratio (CR):
$$\eta(Y|X) = \frac{Var(E(Y|X))}{Var(X)}$$

- E(Y|X): Conditional expectation of Y given X
- $Var(\cdot)$: Variance

Approximating the Probability Density Function of X:

The PDF is approximated using Parzen-window (Gaussian *kernels)* applied to the histogram of *X*:

•
$$\omega_{ik}(X; h, bin) = \frac{1}{h\sqrt{2\pi}} \exp(-\frac{(x_i - bin_k)^2}{2h^2})$$

- ω_{ik} : Contribution to the k-th intensity bin from the ith voxel
- h: Standard deviation of the Gaussian kernel

Conditional expectation:
$$E(Y|X) = \overline{y}_k = \frac{\sum_i \omega_{ik} y_i}{\sum_i \omega_{ik}}$$

Variance Components:

- Conditional variance:
 - $Var(E(Y|X)) = \sum_k n_k (\bar{y}_k \bar{y})^2$
- Overall Variance:

•
$$Var(X) = \frac{1}{|\Omega|} \sum_{i} (x_i - \bar{x})^2$$

where n_k : normalization factor; \bar{x} , \bar{y} : the mean intensity of X and Y, respectively

CR loss for DL-based registration:

•
$$\mathcal{L}_{CR}(I_f, I_m \circ \phi) = -\frac{1}{2}(\eta(I_f|I_m \circ \phi) + \eta(I_m \circ \phi|I_f))$$

Task: T1w to T2w registration using IXI dataset

Comparative models:

- VoxelMorph [2] and TransMorph [3] trained using MI and CR.
- SyN [4] using MI.

Hyperparameter Optimization:

 The hyperparameter
\(\lambda \) was optimized over 20 trials for each model using the Optuna package.

RESULTS

Fig. 2 Quantitative and qualitative results comparing different deformable registration methods. (a) Hyperparameter optimization results for λ . (b) and (c) Objective value versus translation (b) and rotation (c) between the images shown on top. (d) Example MR coronal slices extracted from input pairs (I_f, I_m) , and the resulting $(I_m \circ \phi)$ for different methods with optimal λ .

Table. 1 Quantitative results on the brain registration task.

Method	λ	DSC ↑	%NDV↓	% of $ J(\phi) $ < 0 ↓
ANTs SyN (MI)	_	0.636 ± 0.048	< 0.0001	< 0.0001
VoxelMorph (MI)	4.5	0.594 ± 0.071	0.004 ± 0.004	0.063 ± 0.051
TransMorph (MI)	1.7	0.713 ± 0.028	0.009 ± 0.005	0.108 ± 0.063
VoxelMorph (CR)	7.7	0.594 ± 0.063	0.002 ± 0.004	0.006 ± 0.009
TransMorph (CR)	4.2	0.691 ± 0.031	0.014 ± 0.009	0.119 ± 0.056

Metrics: DSC; the percentage of NDV [5]; the percentage of voxels with $|J(\phi)| < 0$.

CONCLUSIONS

Accuracy: Comparable DSC between CR and MI (VM: 0.59 vs. 0.59; TM: 0.71 vs. 0.69)

Speed: CR is ~6x faster than MI to compute (good for instance optimization)

Stability: CR shows **smoother optimization landscapes** Additional Read: See [6], where CR outperforms MI for DL-

based affine registration

REFERENCES

- [1] Roche, Alexis, et al. MICCAI'98. Springer Berlin Heidelberg, 1998.
- [2] Balakrishnan, Guha, et al. IEEE TMI 38.8 (2019): 1788-1800.
- [3] Chen, Junyu, et al. MedIA 82 (2022): 102615.
- [4] Avants, Brian B., et al. MedIA 12.1 (2008): 26-41.
- [5] Liu, Yihao, et al. IJCV (2024): 1-11.
- [6] Chen, Junyu, et al. 2024 IEEE NSS, MIC, and RTSD. IEEE, 2024.