МФТИ, сложность вычислений, осень 2023 Семинар 02. Классы **P**, **NP**, **coNP**

Определение. Класс **NP** состоит в точности из тех языков A, для которых существует некая машина V двух аргументов, работающая за полином от длины первого из них, т.ч. $\forall x \in \Sigma^*$ выполнено $x \in A \Leftrightarrow \exists s : V(x,s) = 1$. В таком случае V называют верификатором, а подходящее s — сертификатом для данного x.

Определение. Недетерминированной машиной Тьюринга называется кортеж объектов $\langle \Sigma, \Gamma, Q, q_{start}, q_{accept}, q_{reject}, k, \delta \rangle$, такой что Σ, Γ, Q — непустые конечные множества, $\Sigma \subset \Gamma, k$ — целое положительное число, $q_{start}, q_{accept}, q_{reject}$ — три различных элемента $Q, \delta : (Q \setminus \{q_{accept}, q_{reject}\}) \times \Gamma^k \rightrightarrows Q \times \Gamma^k \times \{L, N, R\}^k$ (т.е. δ — многозначная функция). Говорим, что $x \in \Sigma^*$ принимается машиной M, если существует хотя бы одна ветвь вычислений (то есть последовательность выбора значений в δ), приводящая в q_{accept} .

Определение. Язык $L \subset \Sigma^*$ распознаётся недетерминированной машиной Тьюринга M, если для каждого $x \in \Sigma^*$ вычисление M(x) останавливается на всех ветвях, причём слово x принимается машиной M, если и только если $x \in L$.

Определение. Язык $L \subset \Sigma^*$ распознаётся недетерминированной машиной Тьюринга M за время O(T(n)) (или просто T(n)), если M распознаёт L, а также для каждого $x \in \Sigma^*$ вычисление M(x) останавливается не более чем за O(T(n)) шагов в любой ветви вычислений (при любых выборах значений δ), где n = |x|.

Определение. Если $T(n): \mathbb{N} \to \mathbb{N}$, то класс **NTIME**(T(n)) состоит в точности из тех языков, которые распознаются хоть какой-нибудь недетерминированной машиной Тьюринга за время T(n).

Теорема. $\mathbf{NP} = \bigcup_{c=1}^{\infty} \mathbf{NTIME}(n^c).$

Определение. $\mathbf{coNP} = \{A \mid \overline{A} \in \mathbf{NP}\} = \{\overline{A} \mid A \in \mathbf{NP}\}.$

Теорема. Класс **coNP** состоит в точности из языков A, для которых существует некая машина V двух аргументов, работающая за полином от длины первого из них, т.ч. $\forall x \in \Sigma^*$ выполнено $x \in A \Leftrightarrow \forall s : V(x,s) = 1$.

Утверждение. Пусть $\mathsf{PRIMES} = \{ n \mid \mathsf{число}\ n \ \mathsf{является}\ \mathsf{простым} \}.$ Тогда $\mathsf{PRIMES} \in \mathbf{NP}.$ Более того, $\mathsf{PRIMES} \in \mathbf{P}.$

Определение. Пусть G — граф. Максимальным паросочетанием в нём называется максимальное (по мощности) множество рёбер, попарно не имеющих общих концов.

Утверждение. Пусть MATCHING = $\{(G, k) \mid \text{максимальное паросочетание в графе } G$ имеет размер в точности $k\}$. Тогда MATCHING $\in \mathbf{P}$.

- **1.** Пусть $A, B \in \mathbf{P}$. Докажите, что $\overline{A}, A \cup B, A \cap B \in \mathbf{P}$. Иными словами, класс \mathbf{P} замкнут относительно дополнений, объединений и пересечений.
- **2.** Докажите, что класс **P** замкнут относительно звезды Клини (то есть если $A \in \mathbf{P}$, то $A^* \in \mathbf{P}$, где $A^* = \{w_1 \dots w_k \mid k \geqslant 0, w_1, \dots, w_k \in A\}$).
- **3.** Покажите, что в сертификатном определении класса **NP** можно добавить требование полиномиальности длины s (т.е. $|s| \leq p(|x|)$ для некоторого полинома $p(\cdot)$). Покажите также, что можно считать, что требование можно усилить до |s| = p(|x|). Более того, в качестве p(n) достаточно брать многочлен вида n^c .
- **4.** Докажите, что функцию δ в определении недетерминированной машины можно считать двузначной (то есть воспринимать как пару функций δ_0 и δ_1) тогда время работы возрастает в константное число раз.
- **5.** Покажите, что если $A \in \mathbf{NTIME}(T(n))$, то $A \in \mathbf{DTIME}\left(2^{O(T(n))}\right)$. В частности, недетерминизм не расширяет класс разрешимых языков \mathbf{R} .
- **6.** Докажите, что класс ${\bf NP}$ замкнут относительно объединений, пересечений и звезды Клини.
- 7. Докажите также, что если \mathcal{C} произвольный сложностной класс, про который известно, что $\mathcal{C} \subset \mathbf{co}\mathcal{C}$, то $\mathcal{C} = \mathbf{co}\mathcal{C}$. Здесь, как и всюду в дальнейшем, $\mathbf{co}\mathcal{C} = \{A \mid \overline{A} \in \mathcal{C}\} = \{\overline{A} \mid A \in \mathcal{C}\}$. То же следует и из

посылки $\mathbf{co}\mathcal{C}\subset\mathcal{C}$. Выведите отсюда, что замкнутость \mathbf{NP} относительно дополнений влечёт равенство $\mathbf{NP}=\mathbf{coNP}$.

- **8.** Докажите, что класс $NP \cap coNP$ замкнут относительно дополнений.
- **9.** Покажите, что $P \subset NP \cap coNP$. Докажите, что если P совпадает хотя бы с одним из классов NP и coNP, то он совпадает и с другим.
- **10.** Докажите, что $\mathsf{GI} = \{(G_1, G_2) \mid \text{графы } G_1 \text{ и } G_2 \text{ изоморфны}\} \in \mathbf{NP}$. Неизвестно, лежит ли этот язык в \mathbf{P} . Докажите, что $\mathsf{GNI} = \{(G_1, G_2) \mid \text{графы } G_1 \text{ и } G_2 \text{ неизоморфны}\} \in \mathbf{coNP}$.
- **11.** Докажите, что TAUT = $\{\varphi \mid$ пропозициональная формула φ является тавтологией $\} \in \mathbf{coNP}$. Докажите, что SAT = $\{\varphi \mid$ пропозициональная формула φ выполнима $\} \in \mathbf{NP}$.
- **12.** Пусть SUBSETSUM = $\{(n_1, n_2, \dots, n_k, N) \mid \text{из набора чисел } n_1, \dots, n_k \text{ можно выбрать подмножество с суммой } N\}$. Пусть также UNARYSUBSETSUM = $\{(1^{n_1}, 1^{n_2}, \dots, 1^{n_k}, 1^N) \mid \text{из набора чисел } n_1, \dots, n_k \text{ можно выбрать подмножество с суммой } N\}$ (здесь под 1^x подразумевается строка из x единиц). Докажите, что SUBSETSUM $\in \mathbb{NP}$ и UNARYSUBSETSUM $\in \mathbb{P}$. Можно ли сказать, что SUBSETSUM $\in \mathbb{P}$?
- **13.** Установите принадлежность следующих языков классам P, NP, coNP:
 - а) $PATH = \{(G, s, t) \mid B \text{ графе } G \text{ есть путь из } s \text{ в } t\};$
 - б) SPATH = $\{(G, s, t, k) \mid$ в графе G есть путь из s в t длины не больше $k\}$;
 - в) LPATH = $\{(G, s, t, k) \mid$ в графе G есть простой путь из s в t хотя бы с k ребрами $\}$;
 - г) EULPATH = $\{(G, s, t) \mid$ в графе G есть эйлеров путь из s в $t\}$;
 - д) LTSP = $\{(G, l) \mid G$ взвешенный граф, кратчайший проходящий через все вершины путь в котором имеет длину хотя бы $l\}$.
- 14. Докажите, что $PRIMES \in coNP$.
- **15.** Докажите, что FACTORING = $\{(N, a, b) \mid y$ числа N существует простой делитель на отрезке $[a, b]\} \in \mathbf{NP}$. Неизвестно, лежит ли этот язык в \mathbf{P} .
- **16.** Докажите, что RELATIVELY-PRIME = $\{(x,y) \mid x$ и y взаимно просты $\} \in \mathbf{P}$.

- **1.** Если $A, B \in \mathbf{P}$, то вопрос принадлежности произвольного слова x каждому из языков A, B разрешается за полиномиальное время.
- **2.** Для входного слова x введите dp[k] логический индикатор того, лежит ли префикс слова x длины k в языке A^* .
- **3.** Во-первых, если V работает лишь полиномиально долго, то слишком много битов s прочитать она просто не успеет, и их можно игнорировать. Во-вторых, короткие сертификаты можно искусственно раздуть до длины ровно p(n) каким-нибудь незначащим мусором. В-третьих, любой многочлен p(n) меньше какого-нибудь многочлена вида n^c во всех $n \geqslant 2$ (случай n=1 можно зашить в машину и не требовать сертификата вообще).
- **4.** Для заданной недетерминированной машины множество возможных значений δ в данной конфигурации конечно. Если пронумеровать все эти элементы последовательными натуральными числами, то выбор δ_0 и δ_1 может симулировать запись такого номера.
- 5. Считаем δ двузначной. Если недетерминированная машина работает за O(T(n)), то есть за $c \cdot T(n)$, то на детерминированной машине можно смоделировать перебор всех ветвей вычислений за $2^{c \cdot T(n)}$.
- **6.** Воспользуйтесь сертификатным определением **NP**.
- 7. Если $A \in \mathbf{co}\mathcal{C}$, то $\overline{A} \in \mathcal{C}$. Но раз $\mathcal{C} \subset \mathbf{co}\mathcal{C}$, то $\overline{A} \in \mathbf{co}\mathcal{C}$. Отсюда $\overline{A} \in \mathcal{C}$, то есть $A \in \mathcal{C}$.
- 8. Если язык A лежит и в NP, и в coNP, то \overline{A} лежит и в coNP, и в NP.
- **9.** Если P = NP, то NP замкнут относительно дополнений (поскольку P замкнут), так что $NP = \mathbf{coNP}$.
- **10.** Изоморфизм графов можно задать биекцией множеств вершин, что и будет выступать сертификатом. При должном кодировании входных данных, можно считать, что $\mathsf{GNI} = \overline{\mathsf{GI}}$.
- 11. Воспользуйтесь сертификатным определением классов NP и coNP.
- **12.** UNARYSUBSETSUM \in **P**, поскольку можно ввести динамическое программирование по типу рюкзака: dp[i][k] индикатор того, можно ли набрать сумму в точности k, используя некоторые из первых i входных чисел. Такая динамика работает за время, пропорциональное N, что не является полиномом при двоичной записи чисел.

13.

- a) $PATH \in \mathbf{P}$;
- б) SPATH $\in \mathbf{P}$;
- B) LPATH \in NP:
- $_{\Gamma}$) EULPATH $\in \mathbf{P}$;
- д) LTSP \in coNP.
- **14.** В дополнении к PRIMES лежат все составные числа. Доказать, что число не является простым, можно с помощью нетривиального делителя.
- 15. Можно пользоваться без доказательства тем фактом, что простоту числа можно доказать неким сертификатом.
- 16. Воспользуйтесь алгоритмом Евклида.