Computação Científica II (EEL7031)

Resolução de Sistemas de Equações Lineares

(Métodos Diretos)

Objetivos e Tópicos Principais

Objetivos

➤ Estudar técnicas de resolução de sistemas de equações lineares algébricas, que surgem em diversas áreas do conhecimento científico

Tópicos principais

- ➤ Introdução
- ➤ Sistemas triangulares
- > Eliminação gaussiana
- > Pivotamento
- > Decomposição LU
- ➤ Conclusões

- Sistemas de equações são usados para representar problemas físicos que envolvem a interação de várias propriedades
- > As variáveis representam as propriedades sob estudo e as equações a interação entre elas
- ➤ Em geral, é mais fácil de estudar sistemas em que todas as equações são lineares
- Frequentemente, o número de equações é igual ao número de variáveis e, somente nestes casos, existe solução única
- ➤ Embora muitos problemas não possam ser representados por sistemas lineares, em diversos casos são obtidos bons resultados quando se utiliza uma representação por sistemas lineares
- Muitas vezes é necessário apenas uma representação aproximada que forneça informações qualitativas a respeito do sistema físico

Exemplo de Aplicação

Componentes de força em treliça

Junção₅
$$\begin{cases} \sum F_x = -\alpha f_5 - f_6 + \alpha f_9 + f_{10} = 0 \\ \sum F_y = \alpha f_5 + f_7 + \alpha f_9 - 15 = 0 \end{cases}$$

$$\operatorname{Junção}_{6} \left\{ \begin{aligned} \sum F_{x} &= -f_{8} - \alpha f_{9} + f_{12} + \alpha f_{13} = 0 \\ \sum F_{y} &= -\alpha f_{9} - f_{11} - \alpha f_{13} = 0 \end{aligned} \right\}$$

$$Jun \zeta \tilde{a} o_{2} \left\{ \sum_{x} F_{x} = -\alpha f_{1} + f_{4} + \alpha f_{5} = 0 \right\}$$

$$Jun \zeta \tilde{a} o_{2} \left\{ \sum_{x} F_{x} = -f_{10} + f_{14} = 0 \right\}$$

$$\sum_{x} F_{y} = -\alpha f_{1} - f_{3} - \alpha f_{5} = 0$$

$$\sum_{x} F_{y} = f_{11} = 0$$
Sistema Linear - 17 equações

$$\operatorname{Junção}_{7} \left\{ \begin{aligned} \sum F_{x} &= -f_{10} + f_{14} = 0 \\ \sum F_{y} &= f_{11} = 0 \end{aligned} \right\}$$

$$(f_1, f_2, \dots, f_{17})$$

$$onde: \alpha = \sin(45^{\circ}) = \cos(45^{\circ})$$

$$\operatorname{Junção}_{3} \left\{ \begin{aligned} \sum F_{x} &= -f_{2} + f_{6} = 0 \\ \sum F_{y} &= f_{3} - 10 = 0 \end{aligned} \right\}$$

$$\operatorname{Junção}_{4} \left\{ \begin{aligned} \sum F_{x} &= -f_{4} + f_{8} = 0 \\ \sum F_{y} &= -f_{7} = 0 \end{aligned} \right\}$$

$$\operatorname{Junção}_{8} \left\{ \begin{array}{l} \sum F_{x} = -f_{12} + \alpha f_{16} = 0 \\ \sum F_{y} = -f_{15} - \alpha f_{16} = 0 \end{array} \right\} - 17 \text{ variáveis} \\ \left(f_{1}, f_{2}, \dots, f_{17} \right)$$

$$\operatorname{Junção}_{9} \left\{ \begin{aligned} \sum F_{x} &= -\alpha f_{13} - f_{14} + f_{17} &= 0 \\ \sum F_{y} &= \alpha f_{13} + f_{15} - f_{10} &= 0 \end{aligned} \right\}$$

Junção₁₀
$$\left\{ \sum F_x = -\alpha f_{16} - f_{17} = 0 \right\}$$

Representação geral

Um sistema linear com m equações e n variáveis é escrito na forma

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$\therefore a_{ij} - \text{coeficientes} \quad 1 \le i \le m, \quad 1 \le j \le n$$

$$x_j - \text{variáveis} \quad j = 1, 2, \dots, n$$

$$b_i - \text{constantes} \quad i - 1, 2, \dots, m$$

$$a_{ij}$$
 - coefficientes $1 \le i \le m, \ 1 \le j \le n$
 x_j - variáveis $j = 1, 2, \dots, n$
 b_i - constantes $i - 1, 2, \dots, m$

O sistema pode ser escrito na seguinte notação matricial

A – matriz de coeficientes

- Classificação quanto ao número de soluções
 - Compatível
 - ✓ **Determinado** solução única (não-singular) $det(A) \neq 0$
 - ✓ Indeterminado infinitas soluções (singular)
 - Incompatível
 - ✓ Não apresenta solução
- Exemplo

$$\begin{cases} x_1 + x_2 = 0 \\ x_1 - x_2 = 0 \end{cases} \quad \bullet \quad \text{Solução } x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Sistema compatível e determinado

Outros exemplos

> Sistema com solução única

$$\begin{cases} 2x_1 + x_2 = 3 \\ x_1 - 3x_2 = -2 \end{cases}$$
 Solução $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$$\det(A) \neq 0$$

Sistema com infinitas soluções

$$\begin{cases} 2x_1 + x_2 = 3 \\ 4x_1 + 2x_2 = 6 \end{cases} \longrightarrow \det(A) = \det \begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 0$$

Solução
$$x^* = \begin{bmatrix} \alpha \\ 3 - 2\alpha \end{bmatrix}, \forall \alpha \in \Re$$

Sistema indeterminado – retas coincidentes

Outros exemplos

> Sistema com nenhuma solução

$$\begin{cases} 2x_1 + x_2 = 3 \\ 4x_1 + 2x_2 = 2 \end{cases}$$

Sistema incompatível – retas paralelas

Sistema triangular superior

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots & + a_{1,n-1}x_{n-1} + a_{1n}x_n = b_1 \\ a_{22}x_2 + a_{23}x_3 + \dots & + a_{2,n-1}x_{n-1} + a_{2n}x_n = b_2 \\ a_{33}x_3 + \dots & + a_{3,n-1}x_{n-1} + a_{3n}x_n = b_3 \\ \vdots & \vdots & \vdots \\ a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1} \\ a_{nn}x_n = b_n \end{cases}$$

$$a_{ij} = 0$$
, se $j < i$
para $i, j = 1, 2, \dots, n$

Algoritmo de solução

$$\begin{cases} x_n = b_n \ / \ a_{nn} \\ x_k = \left(b_k - \sum_{j=k+1}^n a_{kj} \cdot x_j\right) / \ a_{kk}, & \text{para} \quad k=n-1,\cdots,2,1 \end{cases}$$
 Substituição retroativa ou inversa

Sistema triangular inferior

$$\begin{cases} a_{11}x_1 & = b_1 \\ a_{21}x_1 + a_{22}x_2 & = b_2 \\ \vdots & \vdots & \vdots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + a_{n-1,3}x_3 + \dots + a_{n-1,n-1}x_{n-1} & = b_{n-1} \\ a_{n1}x_1 + a_{n2}x_2 & + a_{n3}x_3 & + \dots + a_{1,n-1}x_{n-1} + a_{1n}x_n & = b_n \end{cases}$$

$$a_{ij} = 0, \text{ se } j > i$$

$$a_{ij} = 0, \text{ se } j > i$$

$$a_{ij} = 1, 2, \dots, n$$

$$a_{ij} = 0$$
, se $j > i$
para $i, j = 1, 2, \dots, n$

> Algoritmo de solução

$$\begin{cases} x_1 = b_1 / a_{11} \\ x_k = \left(b_k - \sum_{j=1}^{k-1} a_{kj} \cdot x_j \right) / a_{kk}, \text{ para } k = 2, 3 \dots, n \end{cases}$$

Substituição progressiva ou direta

Exemplo 1

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + x_4 = -10 \\ x_2 + x_3 - 2x_4 = -1 \\ 4x_3 - 5x_4 = 3 \\ 2x_4 = 2 \end{cases}$$

$$\begin{cases} x_3 = \frac{3+5(1)}{4} \rightarrow x_3 = 2 \\ x_2 = -1 - 1(2) + 2(1) \rightarrow x_2 = -1 \\ x_1 = \frac{-10 - 4(-1) + 5(2) - 1(1)}{2} - \frac{-10 - 4(-1) + 5(2)}{2} - \frac{-10 - 4(-1) + 5(2)}{2}$$

$$\begin{cases} x_4 = 2/2 \to x_4 = 1 \\ x_3 = \frac{3+5(1)}{4} \to x_3 = 2 \\ x_2 = -1-1(2)+2(1) \to x_2 = -1 \\ x_1 = \frac{-10-4(-1)+5(2)-1(1)}{3} \to x_1 = 1 \end{cases}$$

Portanto, a solução é

Sistema determinado

Exemplo 2

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + x_4 = -10 \\ x_3 - 2x_4 = 0 \\ 4x_3 - 5x_4 = 3 \\ 2x_4 = 2 \end{cases}$$

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + x_4 = -10 \\ x_3 - 2x_4 = 0 \\ 4x_3 - 5x_4 = 3 \\ 2x_4 = 2 \end{cases}$$

$$\begin{cases} x_4 = 2/2 \rightarrow x_4 = 1 \\ x_3 = \frac{3+5(1)}{4} \rightarrow x_3 = 2 \\ 0x_2 + x_3 - 2x_4 = 0 \rightarrow 0x_2 = -2 + 2(1) \\ 0x_2 = 0 \rightarrow x_2 = \lambda \\ x_1 = (-4\lambda + 5(2) - (1) - 10)/3 = \frac{-4\lambda - 1}{3} \end{cases}$$

> Portanto

$$x = \begin{bmatrix} -(1+4\lambda) / 3 \\ \lambda \\ 2 \\ 1 \end{bmatrix}$$

Sistema indeterminado

Exemplo 3

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + x_4 = -10 \\ x_3 - 2x_4 = -1 \\ 4x_3 - 5x_4 = 3 \\ 2x_4 = 2 \end{cases}$$

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + x_4 = -10 \\ x_3 - 2x_4 = -1 \\ 4x_3 - 5x_4 = 3 \\ 2x_4 = 2 \end{cases}$$

$$\begin{cases} x_4 = 2/2 \rightarrow x_4 = 1 \\ x_3 = \frac{3+5(1)}{4} \rightarrow x_3 = 2 \\ 0x_2 + x_3 - 2x_4 = -1 \rightarrow 0x_2 = -1 - 2 + 2(1) \\ 0x_2 = -1 \end{cases}$$

Sistema incompatível

Sistemas Lineares Equivalentes

Teorema

- ightharpoonup Seja Ax = b um sistema linear. Aplicando-se uma sequência de operações, escolhidas entre
 - √ intercambiar a posição de duas equações
 - ✓ multiplicar uma equação por uma constante não-nula
- ✓ Adicionar um múltiplo de uma equação a uma outra equação obtém-se um novo sistema $\,\tilde{A}x=\tilde{b}\,\,$ equivalente ao sistema $\,Ax=b\,$

Sistemas Lineares Equivalentes

ightharpoonup Dois sistemas lineares, Ax=b e $\tilde{A}x=\tilde{b}$, são equivalentes se qualquer solução de um é também solução do outro

Aspectos gerais

Consiste em transformar o sistema linear original, por meio de operações elementares, num sistema triangular superior equivalente, o qual se resolve por substituição retroativa

Procedimento geral

➤ Considere o sistema linear constituído por *n* equações

$$\begin{cases}
E_{1:} & a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
E_{2:} & a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots & \vdots \\
E_{n:} & a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n
\end{cases}$$

- Procedimento geral (Cont.)
 - > Forme a matriz aumentada

$$\begin{bmatrix} A^{(0)}, b^{(0)} \end{bmatrix} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & \cdots & a_{1n}^{(0)} & b_{1}^{(0)} \\ a_{21}^{(0)} & a_{22}^{(0)} & \cdots & a_{2n}^{(0)} & b_{2}^{(0)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1}^{(0)} & a_{n2}^{(0)} & \cdots & a_{nn}^{(0)} & b_{n}^{(0)} \end{bmatrix}$$

> Estágio 1: Eliminar os elementos abaixo de $a_{11}^{(0)} \neq 0$

$$E_{1}^{(1)} = E_{1}^{(0)}$$

$$E_{2}^{(1)} = E_{2}^{(0)} - m_{21} E_{1}^{(0)}$$

$$\vdots$$

$$E_{n}^{(1)} = E_{n}^{(0)} - m_{n1} E_{1}^{(0)}$$

$$\begin{bmatrix} A^{(1)}, b^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & b_{1}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & b_{2}^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & b_{n}^{(1)} \end{bmatrix}$$

:.
$$m_{k1} = a_{k1}^{(0)} / a_{11}^{(0)}$$
, $k = 2,3,\dots,n$ O elemento $a_{11}^{(0)}$ é dito pivô do estágio 1

- Procedimento geral (Cont.)
 - > Estágio 2: Eliminar os elementos abaixo de $a_{22}^{(1)} \neq 0$

$$E_{1}^{(2)} = E_{1}^{(1)} = E_{1}^{(0)}$$

$$E_{2}^{(2)} = E_{2}^{(1)}$$

$$\vdots$$

$$E_{n}^{(2)} = E_{n}^{(1)} - m_{n2} E_{2}^{(1)}$$

$$[A^{(2)}, b^{(2)}] = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & \cdots & a_{1n}^{(2)} & b_{1}^{(2)} \\ 0 & a_{22}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ 0 & 0 & \cdots & a_{3n}^{(2)} & b_{3}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(2)} & b_{n}^{(2)} \end{bmatrix}$$

$$m_{k2} = a_{k2}^{(1)} / a_{22}^{(1)}, \quad k = 3, \dots, n$$

O elemento $a_{22}^{(1)}$ é dito pivô do estágio 2

- > Estágios subsequentes
 - ✓ O procedimento descrito é aplicado subsequentemente para as colunas i = 3,...,n-1 usando-se $m_{ki} = a_{ki}^{(i-1)} / a_{ii}^{(i-1)}$ e

$$E_k^{(i)} = E_k^{(i-1)} - m_{ki} E_i^{(i-1)}; \ k > i$$

Exemplo

> Resolver o sistema linear abaixo por eliminação Gaussiana

$$\begin{cases}
3x_1 + 2x_2 + 4x_3 = 1 \\
x_1 + x_2 + 2x_3 = 2 \\
4x_1 + 3x_2 - 2x_3 = 3
\end{cases}$$

$$\begin{bmatrix}
A^{(0)}, b^{(0)} \end{bmatrix} = \begin{bmatrix}
3 & 2 & 4 & 1 \\
1 & 1 & 2 & 2 \\
4 & 3 & -2 & 3
\end{bmatrix}$$

Estágio 1: pivô: $a_{11}^{(0)} = 3$; multiplicadores: $m_{21} = a_{21}^{(0)} / a_{11}^{(0)} = 1/3$

$$m_{31} = a_{31}^{(0)} / a_{11}^{(0)} = 4/3$$

$$E_{1}^{(1)} = E_{1}^{(0)}$$

$$E_{2}^{(1)} = E_{2}^{(0)} - m_{21}E_{1}^{(0)}$$

$$E_{3}^{(1)} = E_{3}^{(0)} - m_{31}E_{1}^{(0)}$$

$$[A^{(1)}, b^{(1)}] = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 0 & 1/3 & 2/3 & 5/3 \\ 0 & 1/3 & -22/3 & 5/3 \end{bmatrix}$$

Exemplo (Cont.)

> Estágio 2: pivô: $a_{22}^{(1)} = 1/3$ multiplicador: $m_{32} = a_{32}^{(1)} / a_{22}^{(1)} = \frac{1/3}{1/2}$

$$E_{1}^{(2)} = E_{1}^{(1)} = E_{1}^{(0)}$$

$$E_{2}^{(2)} = E_{2}^{(1)}$$

$$E_{3}^{(2)} = E_{3}^{(1)} - m_{32}E_{2}^{(1)}$$

$$[A^{(2)}, b^{(2)}] = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 0 & 1/3 & 2/3 & 5/3 \\ 0 & 0 & -8 & 0 \end{bmatrix}$$

Substituição retroativa

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ 0x_1 + (1/3)x_2 + (2/3)x_3 = 5/3 \\ 0x_1 + 0x_2 - 8x_3 = 0 \end{cases} \implies \begin{cases} x_3 = 0 \\ (1/3)x_2 = 5/3 \Rightarrow x_2 = 5 \\ 3x_1 + 2(5) = 1 \Rightarrow x_1 = -3 \end{cases}$$

Algoritmo

> Seja o sistema linear

$$Ax = b$$
, $A: n \times n$,
 $x: n \times 1$ e $b: n \times 1$

> Supor que

$$a_{kk} \neq 0, \ k = 1, 2, \dots, n-1$$

$$\begin{aligned} \text{Para} \quad k &= 1, 2, \cdots, n-1 \\ \text{Para} \quad i &= k+1, \cdots, n \\ m &= a_{ik} \ / \ a_{kk} \\ a_{ik} &= 0 \\ \text{Para} \quad j &= k+1, \cdots, n \\ a_{ij} &= a_{ij} - m \cdot a_{kj} \\ b_i &= b_i - m \cdot b_k \\ x_n &= b_n \ / \ a_{nn} \\ \text{Para} \quad l &= n-1, \cdots, 2, 1 \\ x_l &= \left(b_l - \sum_{j=l+1}^n a_{lj} \cdot x_j \right) / \ a_{ll} \end{aligned}$$

Quantidade de operações aritméticas

O número de operações aritméticas depende do tamanho n do sistema

Multiplicações/divisões:
$$\frac{n^3}{3} + n^2 - \frac{n}{3}$$
 Adições/subtrações: $\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$

- ightharpoonup Para n grande, o número total de cada classe de operações acima é aproximadamente $n^3/3$, ou seja, $O(n^3)$.
- ightharpoonup Portanto, o número de operações e o tempo computacional aumentam em proporção aproximada a $n^3/3$

\overline{n}	Multiplications/Divisions	Additions/Subtractions
3	17	11
10	430	375
50	44,150	42,875
100	343,300	338,250

Estratégias de Pivotamento

- > Evitar pivôs nulos pois inviabilizam a resolução do sistema
- > Evitar pivôs de valor próximo de zero
 - ✓ geram multiplicadores de valor elevado
 - ✓ amplificam os erros de arredondamento

Exemplo

$$\begin{bmatrix}
0.0002x_1 + 2x_2 = 5 \\
2x_1 + 2x_2 = 6
\end{bmatrix}$$

$$\begin{bmatrix}
A^{(0)}, b^{(0)}
\end{bmatrix} = \begin{bmatrix}
0.2 \cdot 10^{-3} & 0.2 \cdot 10^{1} & 0.5 \cdot 10^{1} \\
0.2 \cdot 10^{1} & 0.2 \cdot 10^{1} & 0.6 \cdot 10^{1}
\end{bmatrix}$$

Pivô:
$$a_{11}^{(0)} = 0.2 \cdot 10^{-3}$$
, multiplicador: $m_{21} = a_{21}^{(0)} / a_{11}^{(0)} = 0.1 \cdot 10^{5}$

$$[A^{(1)}, b^{(1)}] = \begin{bmatrix} 0.2 \cdot 10^{-3} & 0.2 \cdot 10^{1} & 0.5 \cdot 10^{1} \\ 0 & -0.2 \cdot 10^{5} & -0.5 \cdot 10^{5} \end{bmatrix} \longrightarrow x^{*} = \begin{bmatrix} 0.0 \\ 2.5 \end{bmatrix}$$
 equação 2

Não satisfaz a

Estratégias de Pivotamento Parcial

- Escolher para pivô, no início do estágio k, o elemento de maior módulo entre os coeficientes a_{ik}^{k-1} , i = k, k+1, ..., n
- > Trocar as linhas k e i, caso necessário

Exemplo

$$\begin{bmatrix}
0.0002x_1 + 2x_2 = 5 \\
2x_1 + 2x_2 = 6
\end{bmatrix} \Longrightarrow \begin{bmatrix}
A^{(0)}, b^{(0)} \end{bmatrix} = \begin{bmatrix}
0.2 \cdot 10^{-3} & 0.2 \cdot 10^{1} & 0.5 \cdot 10^{1} \\
0.2 \cdot 10^{1} & 0.2 \cdot 10^{1} & 0.6 \cdot 10^{1}
\end{bmatrix}$$

Matriz aumentada a partir da troca das linhas 1 e z

Maior módulo da coluna 1

$$[A^{(0)}, b^{(0)}] = \begin{bmatrix} 0.2 \cdot 10^1 & 0.2 \cdot 10^1 & 0.6 \cdot 10^1 \\ 0.2 \cdot 10^{-3} & 0.2 \cdot 10^1 & 0.5 \cdot 10^1 \end{bmatrix}$$

Pivô:
$$a_{11}^{(0)} = 0.2 \cdot 10^{1}$$
,
multiplicador: $m_{21} = a_{21}^{(0)} / a_{11}^{(0)} = 0.1 \cdot 10^{-3}$

■ Exemplo (Cont.)

SL. original:
$$\begin{cases} 0.0002x_1 + 2x_2 = 5 \\ 2x_1 + 2x_2 = 6 \end{cases}$$

Estágio 1

$$[A^{(1)}, b^{(1)}] = \begin{bmatrix} 0.2 \cdot 10^1 & 0.2 \cdot 10^1 & 0.6 \cdot 10^1 \\ 0 & 0.19998 \cdot 10^1 & 0.49995 \cdot 10^1 \end{bmatrix}$$

SL. triangular equivalente:
$$\begin{cases} 2x_1 + 2x_2 = 6 \\ 0x_1 + 1.9998x_2 = 4.9995 \end{cases}$$

Solução correta

$$x^* = \begin{bmatrix} 0.5 \\ 2.5 \end{bmatrix}$$

O uso do pivoteamento parcial faz com que os multiplicadores, em módulo, estejam no intervalo [0,1], evitando a ampliação dos erros de arredondamento

Estratégias de Pivotamento Completo

 \triangleright Pivô, no início do estágio k, é o elemento de maior módulo entre todos os coeficientes que ainda atuam no processo de eliminação

$$ext{Piv\^o} = \max_{orall i,j \geq k} \left| a_{ij}^{(k-1)}
ight|$$

Realizar as trocas de linhas e colunas necessárias

Exemplo

 \blacktriangleright Determinar, para a matriz aumentada apresentada abaixo, o pivô do estágio k=2 e realizar as trocas de linhas e colunas necessárias

 $piv\hat{o} = a_{34} = 7$

permutar linhas 3 e 2 permutar colunas 4 e 2

Realizar a eliminação p/ o estágio 2 e repetir o processo p/ o estágio 3.

Exercícios Sugeridos

Use Gaussian elimination and two-digit rounding arithmetic to solve the following linear systems. Do not reorder the equations. (The exact solution to each system is $x_1 = 1, x_2 = -1, x_3 = 3$.)

(a)
$$4x_1 - x_2 + x_3 = 8$$
,
 $2x_1 + 5x_2 + 2x_3 = 3$,
 $x_1 + 2x_2 + 4x_3 = 11$.
(b) $4x_1 + x_2 + 2x_3 = 9$,
 $2x_1 + 4x_2 - x_3 = -5$,
 $x_1 + x_2 - 3x_3 = -5$,

Use Gaussian elimination to solve the following linear systems, if possible, and determine whether row interchanges are necessary:

(a)
$$x_1 - x_2 + 3x_3 = 2$$
,
 $3x_1 - 3x_2 + x_3 = -1$,
 $x_1 + x_2 = 3$.
(b) $2x_1 - 1.5x_2 + 3x_3 = 1$,
 $-x_1 - 4.5x_2 + 5x_3 = 1$.

Aspectos gerais

➤ Consiste em decompor um SL em dois sistemas lineares triangulares cujas soluções podem ser obtidas, respectivamente, por processos de substituições progressiva (forward) e retroativa (backward)

Procedimento geral

- \triangleright Seja o sistema linear Ax = b
 - ✓ Decompor A = LU onde

L: matriz triangular inferior com diagonal unitária

U: matriz triangular superior

✓ Resolver Ax = LUx = b em duas etapas

Etapa 1: supondo Ux = y, resolver Ly = b

Etapa 2: resolver Ux = y

A fatoração LU é largamente aplicada em resoluções repetitivas, ou seja, para sistemas lineares com a mesma matriz A e diferentes vetores b

- Cálculo dos fatores LU por eliminação gaussiana
 - Considere o sistema

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{13}x_3 = b_2 \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3
\end{cases}$$

$$A^{(0)} = \begin{bmatrix}
a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} \\
a_{21}^{(0)} & a_{22}^{(0)} & a_{23}^{(0)} \\
a_{31}^{(0)} & a_{32}^{(0)} & a_{33}^{(0)}
\end{bmatrix}$$

Estágio 1: pivô= $a_{11}^{(0)} \neq 0$, multiplicadores: $m_{21} = a_{21}^{(0)} / a_{11}^{(0)}$; $m_{31} = a_{31}^{(0)} / a_{11}^{(0)}$ • Novos coeficientes

$$a_{1j}^{(1)} = a_{1j}^{(0)}, \text{ p/ } j = 1,2,3$$
 $a_{ij}^{(1)} = a_{ij}^{(0)} - m_{i1} \cdot a_{ij}^{(0)}, \text{ p/ } i = 2,3 \text{ e } j = 1,2,3$

✓ Operações equivalentes a representação matricial abaixo

$$A^{(1)} = M^{(0)} \cdot A^{(0)} = \begin{bmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} \\ a_{21}^{(0)} & a_{22}^{(0)} & a_{23}^{(0)} \\ a_{31}^{(0)} & a_{32}^{(0)} & a_{33}^{(0)} \end{bmatrix} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix}$$

- Cálculo dos fatores LU (cont.)
 - **Estágio 2:** pivô= $a_{22}^{(1)} \neq 0$, multiplicadores: $m_{32} = a_{32}^{(1)} / a_{22}^{(1)}$

$$A^{(1)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix}$$

$$a_{1j}^{(2)} = a_{1j}^{(1)}, \text{ p/ } j = 1,2,3$$

$$a_{2j}^{(2)} = a_{2j}^{(1)}, \text{ p/ } j = 2,3$$

$$a_{3j}^{(2)} = a_{3j}^{(1)} - m_{32} \cdot a_{2j}^{1}, \text{ p/ } j = 2,3$$

✓ Operações equivalentes a representação matricial abaixo

$$A^{(2)} = M^{(1)} \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & a_{13}^{(2)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix}$$

✓ Portanto

$$A^{(2)} = M^{(1)} \cdot A^{(1)} = M^{(1)} \cdot M^{(0)} \cdot A^{(0)}$$
 \therefore $A^{(2)}$ é triangular superior

□ Análise do resultado $A^{(2)} = M^{(1)} \cdot A^{(1)} = M^{(1)} \cdot M^{(0)} \cdot A^{(0)}$

 \triangleright Lembrando que $A^{(0)} = A$, pode-se escrever

$$A^{(2)} = M^{(1)} \cdot M^{(0)} \cdot A$$

$$A^{(2)} = M^{(1)} \cdot M^{(0)} \cdot A$$

$$A = (M^{(1)} \cdot M^{(0)})^{-1} \cdot A^{(2)}$$

> Portanto

$$A = (M^{(0)})^{-1} \cdot (M^{(1)})^{-1} \cdot A^{(2)}$$

> Considerando que

$$(M^{(0)})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & 0 & 1 \end{bmatrix}$$

$$(M^{(0)})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & 0 & 1 \end{bmatrix}$$

$$(M^{(0)})^{(-1)} \cdot (M^{(1)})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix}$$

$$\left(M^{(1)} \right)^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{32} & 1 \end{bmatrix}$$

Portanto

$$A = (M^{(0)})^{-1} \cdot (M^{(1)})^{-1} \cdot A^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & a_{13}^{(2)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix} = LU$$

> onde

$$L = (M^{(0)})^{(-1)} \cdot (M^{(1)})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix}$$

$$U = A^{(2)} = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & a_{13}^{(2)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix}$$

Exemplo

Resolva o sistema linear abaixo usando a fatoração LU

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ x_{1+} & x_2 + 2x_3 = 2 \\ 4x_1 + 3x_2 + 2x_3 = 3 \end{cases} \qquad A^{(0)} = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & 2 \end{bmatrix}$$

$$A^{(0)} = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & 2 \end{bmatrix}$$

Estágio 1 pivô:
$$a_{11}^{(0)} = 3$$
 multiplicadores: $m_{21} = a_{21}^{(0)} / a_{11}^{(0)} = 1/3$ $m_{31} = a_{31}^{(0)} / a_{11}^{(0)} = 4/3$

Portanto

$$a_{1j}^{(1)} = a_{1j}^{(0)}, \text{ p/ } j = 1,2,3$$

$$a_{1j}^{(1)} = a_{1j}^{(0)}, \text{ p/ } j = 1,2,3$$
 $a_{ij}^{(1)} = a_{ij}^{(0)} - m_{i1} \cdot a_{1j}^{(0)}, \text{ p/ } i = 2,3 \text{ e } j = 1,2,3$

$$A^{(1)} = M^{(0)} \cdot A^{(0)} = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1 & 0 \\ -4/3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 1/3 & -10/3 \end{bmatrix}$$

Exemplo (cont.)

> Estágio 2:

Estágio 2:
$$piv\hat{o}: a_{22}^{(1)} = 1/3$$

$$A^{(1)} = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 1/3 & -10/3 \end{bmatrix} \longrightarrow \text{multiplicador} : m_{32} = a_{32}^{(1)} / a_{22}^{(1)} = \frac{1/3}{1/3} = 1$$

> Portanto: $a_{1j}^{(2)} = a_{1j}^{(1)}, p/j = 1,2,3$ $a_{2j}^{(2)} = a_{2j}^{(1)}, p/j = 2,3$ $a_{3j}^2 = a_{3j}^{(1)} - m_{32} \cdot a_{2j}^1$, p/ j = 2,3

$$A^{(2)} = M^{(1)} \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 1/3 & -10/3 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 0 & -4 \end{bmatrix}$$

■ Exemplo (cont.)

> Fatores LU:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 4/3 & 1 & 1 \end{bmatrix}.$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 4/3 & 1 & 1 \end{bmatrix}.$$

$$U = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 0 & -4 \end{bmatrix}$$

> Solução:

$$L \cdot y = b \Rightarrow \begin{cases} y_1 & = 1 \\ (1/3) \ y_{1+} \ y_2 & = 2 \\ (4/3) \ y_1 + y_2 + y_3 = 3 \end{cases}$$

$$L \cdot y = b \Rightarrow \begin{cases} y_1 & = 1 \\ (1/3) \ y_{1+} \ y_2 & = 2 \\ (4/3) \ y_1 + y_2 + y_3 = 3 \end{cases} \qquad U \cdot x = y \Rightarrow \begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ (1/3)x_2 + (2/3)x_3 = 5/3 \\ -4x_3 = 0 \end{cases}$$

□ Fórmulas gerais (fase de fatoração)

 \triangleright Gerar a primeira coluna de L e a primeira linha de U usando

$$l_{11}u_{11} = a_{11}$$
 e $l_{j1} = \frac{a_{j1}}{u_{11}}$ e $u_{1j} = \frac{a_{1j}}{l_{11}}$; $j = 2,3,...,n$

 \triangleright Para cada i=2,3,...,n-1 selecione os elementos diagonais u_{ii} e l_{ii} e gere os demais elementos da i-ésima coluna de L e i-ésima linha de Uusando as equações $l_{ii}u_{ii} = a_{ii} - \sum_{i=1}^{i-1} l_{ik}u_{ki}$

e
$$l_{ji} = \frac{1}{u_{ii}} \left[a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki} \right]$$
 e $u_{ij} = \frac{1}{l_{ii}} \left[a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \right]$; $j = i+1, ..., n$

Finalmente, determinar
$$l_{nn}u_{nn} = a_{nn} - \sum_{k=1}^{n-1} l_{nk}u_{kn}$$

- \Box Fórmulas gerais (fases de substituição em LUx = b)
 - \triangleright Solução de Ly = b

$$y_1 = \frac{b_1}{l_{11}}$$
 e $y_i = \frac{1}{l_{ii}} \left[b_i - \sum_{j=1}^{i-1} l_{ij} y_j \right]; i = 2,3,...,n$

ightharpoonup Solução para Ux = y

$$x_n = \frac{y_n}{u_{nn}}$$
 e $x_i = \frac{1}{u_{ii}} \left[y_i - \sum_{j=i+1}^n u_{ij} x_j \right]; i = n-1, n-2, ..., 1$

Matriz de permutação

- \triangleright É uma matriz quadrada de ordem n obtida da matriz identidade de ordem n, permutando-se suas linhas e/ou colunas
- Seja a matriz identidade

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

➤ Uma matriz de permutação das linhas 1→3, 3→2 e 2→1 é representada por

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Permutação de linhas de uma matriz A

> Pré-multiplicando A por uma matriz de permutação P, obtém-se a matriz A com as linhas permutadas, sendo esta permutação de linhas igual a permutação de linhas efetuadas na matriz identidade

Exemplo

> Seja

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad e \qquad A = \begin{bmatrix} 3 & 1 & 4 \\ 1 & 5 & 9 \\ 2 & 6 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 1 & 5 & 9 \\ 2 & 6 & 5 \end{bmatrix}$$

$$P \cdot A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 & 4 \\ 1 & 5 & 9 \\ 2 & 6 & 5 \end{bmatrix} \qquad P \cdot A = \begin{bmatrix} 1 & 5 & 9 \\ 2 & 6 & 5 \\ 3 & 1 & 4 \end{bmatrix}$$

$$P \cdot A = \begin{vmatrix} 1 & 5 & 9 \\ 2 & 6 & 5 \\ 3 & 1 & 4 \end{vmatrix}$$

Aplicação à fatoração LU

- ightharpoonup Seja o sistema Ax = b e seja L e U obtidos por eliminação gaussiana com pivoteamento parcial
- $\blacktriangleright L$ e *U* serão fatores de *A'* se e somente se $A' = P \cdot A$
- \triangleright Da mesma forma, devem ser realizadas as permutações sobre o vetor de constantes do sistema linear, ou seja, $b' = P \cdot b$
- ightharpoonup Portanto, $A'x = b' \Leftrightarrow Ax = b$
- \triangleright Tomando-se A' = LU, tem-se

$$A'x = b'$$
 $P \cdot A \cdot x = P \cdot b$ $L \cdot U \cdot x = P \cdot b$

> Finalmente, resolvem-se os sistemas triangulares

$$L \cdot y = P \cdot b$$
 e $Ux = y$

Exemplo:

Resolva o SL abaixo por fatoração LU usando pivoteamento parcial

$$\begin{cases}
3x_1 - 4x_2 + x_3 = 9 \\
x_1 + 2x_2 + 2x_3 = 3 \\
4x_1 - 3x_3 = -2
\end{cases}$$

$$P^{(0)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

> Estágio 1:

pivô:
$$a_{31}^{(0)} = 4$$

$$P^{(1)} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

pivô:
$$a_{31}^{(0)} = 4$$

permutar linhas 1 e 3

$$P^{(1)} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad e \quad A'^{(0)} = \begin{bmatrix} 4 & 0 & -3 \\ 1 & 2 & 2 \\ 3 & -4 & 1 \end{bmatrix}$$

permutar linhas 1 e 3

> Portanto: $piv\hat{o}: a_{11}^{\prime(0)} = 4$

multiplicadores :
$$m_{21} = a_{21}^{\prime(0)} / a_{11}^{\prime(0)} = 1/4$$

 $m_{31} = a_{31}^{\prime(0)} / a_{11}^{\prime(0)} = 3/4$

■ Exemplo (cont.)

> Estágio 2

$$A^{(1)} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & 2 & 11/4 \\ 0 & -4 & 13/4 \end{bmatrix} \implies \text{pivô}: a_{32}^{(1)} = -4 \implies \text{permutar linhas 2 e 3}$$

$$P^{(2)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ e } A'^{(1)} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & 13/4 \\ 0 & 2 & 11/4 \end{bmatrix}$$

pivô:
$$a_{32}^{(1)} = -4$$

$$P^{(2)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A^{\prime(1)} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & 13/4 \\ 0 & 2 & 11/4 \end{bmatrix}$$

> Portanto

pivô:
$$a_{22}^{\prime(1)} = -4$$

$$m_{32} = a_{32}^{\prime(1)} / a_{22}^{\prime(1)} = 2/(-4) = -1/2$$

multiplicador:

$$m_{32} = a_{32}^{\prime(1)} / a_{22}^{\prime(1)} = 2/(-4) = -1/2$$

$$A^{(2)} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & 13/4 \\ 0 & 0 & 35/8 \end{bmatrix}$$

Exemplo (cont.)
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1/4 & 1 & 0 \\ 3/4 & -1/2 & 1 \end{bmatrix}$$
 e $U = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & 13/4 \\ 0 & 0 & 35/8 \end{bmatrix}$

Resolução dos sistemas triangulares

$$L \cdot y = P \cdot b$$

$$P \cdot b = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 9 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ 9 \\ 3 \end{bmatrix} \qquad \Longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 1/4 & 1 & 0 \\ 3/4 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 9 \\ 3 \end{bmatrix} \qquad \Longrightarrow y = \begin{bmatrix} -2 \\ 19/2 \\ 37/4 \end{bmatrix}$$

> Portanto:

Matriz de diagonal estritamente dominante

 \triangleright A matriz $A, n \times n$, é dita ser de diagonal estritamente dominante quando

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$
, para $i = 1, 2, ..., n$

> Exemplo - Considere as matrizes

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix} \qquad \therefore \qquad \begin{aligned} d_1 : |7| > |2| + |0| \\ d_2 : |5| > |3| + |-1| \\ d_3 : |-6| > |0| + |5| \end{aligned}$$

$$B = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix} \quad \therefore \quad \mathbf{d}_1 : |6| < |4| + |-3|$$

$$d_1: |7| > |2| + |0|$$

$$d_2: |5| > |3| + |-1|$$

$$d_3: |-6| > |0| + |5|$$

$$d_1: |6| < |4| + |-3|$$

A Matriz A é nãosimétrica e de diagonal estritamente dominante

A Matriz *B* é simétrica, porém não diagonal estritamente dominante

Matriz de diagonal estritamente dominante

- Uma matriz A de diagonal estritamente dominante tem inversa
- Para uma matriz A de diagonal estritamente dominante, a eliminação gaussiana pode ser realizada em qualquer Ax=b para obter a sua solução única, sem a necessidade do intercâmbio de linhas e colunas
- Neste caso, a computação é estável em relação ao crescimento dos erros de arredondamento

Matriz positiva definida

- > Uma matriz A é **positiva definida** se for simétrica e se $x^t Ax > 0$ para qualquer vetor coluna n-dimensional $x \neq 0$
- Propriedades de uma matriz positiva definida
 - \triangleright Se $A, n \times n$, é uma matriz positiva definida, então
 - √ A tem inversa
 - ✓ $a_{ii} > 0$ para cada i = 1, 2, ..., n
 - $\checkmark \max_{1 \le k, j \le n} |a_{kj}| \le \max_{1 \le i \le n} |a_{ii}|$
 - $\checkmark (a_{ij})^2 < a_{ii}a_{jj}$ para cada $i \neq j$

Nota: Alguns autores definem matriz positiva definida sem a exigência de que ela seja simétrica

- Equivalências para uma matriz positiva definida
 - A é positiva definida
 - A eliminação gaussiana pode ser realizada com todos os elementos pivôs positivos no sistema linear *Ax=b*
 - A condição anterior também assegura que a computação será estável em relação ao crescimento dos erros de arredondamento
 - IV. A matriz A pode ser fatorada na forma LL^t , onde L é triangular inferior com elementos da diagonal positivos
 - V. A matriz A pode ser fatorada na forma LDL^t , onde L é triangular inferior com elementos da diagonal iguais a 1 e D é uma matriz diagonal com elementos positivos
 - VI. Para cada i = 1, 2, ..., n, tem-se: $\det \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1i} \\ a_{21} & a_{22} & \cdots & a_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} > 0$

Fatoração de Choleski

- A fatoração da matriz A na forma LL^t pode ser realizada pelo método denominado de fatoração de Choleski
- Faça $l_{11} = \sqrt{a_{11}}$ e gere o restante da primeira coluna de L usando a equação

$$l_{j1} = a_{j1} / l_{11}$$
 para cada $j = 2,3,...,n$

Para cada i = 2,3,...,n-1 determine a i-ésima coluna de L por

$$l_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2\right)^{1/2}$$

e para cada j = i + 1, i + 2, ..., n por:

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik} \right)$$

Finalmente, determine:
$$l_{nn} = \left(a_{nn} - \sum_{k=1}^{n-1} l_{nk}^2\right)^{1/2}$$

□ Fatoração *LDL*^t

- Faça $d_1 = a_{11}$ e $l_{j1} = a_{j1} / d_{11}$ para cada j = 2,3,...,n
- Para cada i = 2,3,...,n-1 determine a i-ésima coluna de L como segue:

$$d_{i} = a_{ii} - \sum_{j=1}^{i-1} l_{ij}^{2} d_{j} \quad e \quad l_{ji} = \frac{1}{d_{i}} \left[a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik} d_{k} \right] \quad j = i+1, i+2, \dots, n$$

Finalmente, determine

$$d_n = a_{nn} - \sum_{j=1}^{n-1} l_{nj}^2 d_j$$

Exemplo:

A matriz
$$A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix}$$
 é positiva definida

A fatoração LDL^t de A é

$$A = LDL^{t} = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0.25 & 0.75 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -0.25 & 0.25 \\ 0 & 1 & 0.75 \\ 0 & 0 & 1 \end{bmatrix}$$

A fatoração de Choleski de A é

$$A = LL^{t} = \begin{bmatrix} 2 & 0 & 0 \\ -0.5 & 2 & 0 \\ 0.5 & 1.5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -0.5 & 0.5 \\ 0 & 2 & 1.5 \\ 0 & 0 & 1 \end{bmatrix}$$

- \blacksquare Resolução do sistema linear Ax=b quando A é positiva definida
 - \triangleright Usando fatoração de Choleski $Ax = b \Rightarrow LL^{t}x = b$

$$Ax = b \Rightarrow LL^{t}x = b$$

> Define-se, então:
$$\begin{cases} L^t x = y \\ L y = b \end{cases}$$

> Assim, por substituição progressiva: $y_1 = \frac{b_1}{l_1}$ e

$$y_1 = \frac{b_1}{l_{11}} \qquad \epsilon$$

$$y_i = \frac{1}{l_{ii}} \left[b_i - \sum_{j=1}^{i-1} l_{ij} y_j \right]; i = 2,3,...,n$$

Por substituição retroativa, obtém-se:

$$x_n = \frac{y_n}{l_{nn}}$$

$$x_n = \frac{y_n}{l_{nn}}$$
 e $x_i = \frac{1}{l_{ii}} \left[y_i - \sum_{j=i+1}^n l_{ji} x_j \right]; i = n-1, n-2, ..., 1$

- \blacksquare Resolução do sistema linear Ax=b quando A é positiva definida
 - > Usando fatoração LDL^t : $Ax = b \Rightarrow LDL^t x = b$

$$y_1 = b_1$$
 e $y_i = b_i - \sum_{j=1}^{i-1} l_{ij} y_j; i = 2,3,...,n$ $z_i = y_i / d_i; i = 1,2,3,...,n$

> Por substituição retroativa, obtém-se

$$x_n = z_n$$
 e $x_i = z_i - \sum_{j=i+1}^n l_{ji} x_j; \quad i = n-1, n-2, ..., 1$

Qualquer matriz simétrica para a qual a eliminação gaussiana possa ser usada sem intercambiar linhas e colunas pode ser fatorada na forma *LDL*^t

Matrizes de banda

- ➤ Uma matriz $A, n \times n$, é denominada matriz de banda se existirem números inteiros p e q, 1 < p, q < n , tais que $a_{ij} = 0$ sempre que $p \le j i$ ou $q \le i j$
- ➢ O número p descreve o número de diagonais acima, incluindo a diagonal principal e o número q descreve o número de diagonais abaixo, incluindo a diagonal principal
- ightharpoonup A largura de banda da matriz w = p + q 1 indica o número de diagonais que podem conter elementos não-nulos
- > Exemplo

- \square Matrizes de banda tridiagonais (p = q = 2)
 - > Exemplo:

Pode-se fatorar a matriz como segue:

$$L = \begin{bmatrix} l_1 & 0 & 0 & 0 \\ \beta_2 & l_2 & 0 \\ 0 & \beta_3 & l_3 & 0 \\ & & 0 \\ 0 & 0 & \beta_n & l_n \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & u_1 & 0 & & 0 \\ 0 & 1 & u_2 & & 0 \\ 0 & & 1 & & 0 \\ & & & u_{n-1} \\ 0 & & & 1 \end{bmatrix}$$

Conhecida como forma de Crout.

- Resolução de sistemas tridiagonal
 - > Fatoração na forma de Crout

$$l_1 = \alpha_1$$
 e $u_1 = \frac{\gamma_1}{l_1}$

$$l_i = \alpha_i - \beta_i u_{n-1}$$
 e $u_1 = \frac{\gamma_i}{l_i}$; $i = 2, 3, ..., n-1$ e $l_n = \alpha_n - \beta_n u_{n-1}$

ightharpoonup O sistema Ax = LUx = b é resolvido como segue

Para
$$Ly = b$$

$$y_1 = \frac{b_1}{l_1}$$

Para
$$Ly = b$$
 $y_1 = \frac{b_1}{l_1}$ e $y_i = \frac{1}{l_i}[b_i - \beta_i y_{i-1}]; i = 2,3,...,n$

Para
$$Ux = y$$

$$x_n = y_n$$

Para
$$Ux = y$$
 $x_n = y_n$ e $x_i = y_i - u_i x_{i+1}$

Resolução de sistemas tridiagonal

Exemplo:
$$\begin{cases} 2x_1 - x_2 & = 1 \\ -x_1 + 2x_2 - x_3 & = 0 \\ -x_2 + 2x_3 - x_4 & = 0 \\ -x_3 + 2x_4 & = 1 \end{cases} \rightarrow A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

$$A = \begin{vmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{vmatrix}$$

$$A = LU = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3/2 & 0 & 0 \\ 0 & -1 & 4/3 & 0 \\ 0 & 0 & -1 & 5/4 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1/2 & 0 & 0 \\ 0 & 1 & -2/3 & 0 \\ 0 & 0 & 1 & -3/4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Em muitas aplicações as matrizes de banda são também positiva definida ou de diagonal estritamente dominante.

Exercícios Sugeridos

Determine which of the following matrices are (i) symmetric, (ii) singular, (iii) strictly diagonally dominant, (iv) positive definite.

(a)
$$\left[\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right]$$

(b)
$$\begin{bmatrix} -2 & 1 \\ 1 & -3 \end{bmatrix}$$

$$\begin{array}{ccccc}
(c) & \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}
\end{array}$$

2. Find a factorization of the form $A = LDL^t$ for the following symmetric matrices:

(a)
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}$

3. Find a factorization of the form $A = LL^t$ for the matrices in Exercise 2.

Conclusões

- A resolução de sistemas algébricos lineares produz solução exata se todos os cálculos forem feitos usando aritmética exata
- O sistema linear Ax = b tem solução única se e somente se existe A^{-1} , o que é equivalente a $\det A \neq 0$
- São empregadas técnicas de pivoteamento para minimizar os erros de arredondamento, os quais podem dominar a solução quando são utilizados métodos diretos
- Recomenda-se, na maioria dos casos, o uso de pivoteamento parcial, visto que decresce o efeito dos erros de arredondamento sem adicionar elevado esforço computacional
- O emprego da fatoração LU é vantajoso computacionalmente quando é necessário resolver sistemas lineares com a mesma matriz de coeficientes e diferentes vetores independentes
- Em matrizes positiva definidas podem ser utilizados esquemas de fatoração mais simples tais como a fatoração de Choleski