

Lecture Schedule

Introduction

Foundations

Linguistic Concepts

Vector Space Model

Semantic Analysis

Language Modelling

Syntactic Analysis

Applications

Information Extraction & Knowledge Graphs

Opinion Mining

Summary and Q&A

Linguistic Concepts

aradigmatic cat The dog lies on the mat child

Syntagmatic Relations

Linguistic Units - Tokenization

Types vs. Tokens
Multiword Expression

Morphology – Word Formation

Inflection
Derivation
Stemming vs. Lemmatization
Decomposition

Syntax - Grammar & Lexicon

```
    S -> NP, VP
    NP -> Det, Noun
    VP -> Verb, PP
    PP -> Prep, NP
    Grammar
```

```
Noun -> cat, mat

Verb -> is ["to be ", 3<sup>rd</sup>, pres]

Preposition -> on

Determiner -> the

Lexicon
```

Syntax – Constituency/Phrase Structure

Syntax – Dependency Structure

Language Data

Corpus

General vs. Domain-Specific

Annotated vs. Unannotated ('raw data')

Monolingual vs. Bilingual, Multilingual

Parallel vs. Comparable

Multimodal

Lexicon

Vector Space Model

Co-occurrence Matrix

	a	the	on	cat	dog	child	mat	floor	mouse	sits	lies	caught	chased
а	0	0	0	5	3	3	0	0	1	0	0	1	2
the	0	0	6	0	0	0	3	3	0	0	0	0	0
on	0	6	0	0	0	0	0	0	0	3	3	0	0
cat	5	0	0	0	0	0	0	0	0	1	1	1	0
dog	3	0	0	0	0	0	0	0	0	1	1	0	1
child	3	0	0	0	0	0	0	0	0	1	1	0	1
mat	0	3	0	0	0	0	0	0	0	0	0	0	0
floor	0	3	0	0	0	0	0	0	0	0	0	0	0
mouse	1	0	0	0	0	0	0	0	0	0	0	0	0
sits	0	0	3	1	1	1	0	0	0	0	0	0	0
lies	0	0	3	1	1	1	0	0	0	0	0	0	0
caught	1	0	0	1	0	0	0	0	0	0	0	0	0
chased	2	0	0	0	1	1	0	0	0	0	0	0	0

A cat sits on the mat. A cat lies on the floor. A cat caught a mouse. A dog sits on the mat. A dog chased a cat.

A child sits on the mat. A dog lies on the floor. A child lies on the floor. CORPUS A child chased a cat.

Word Vectors - Similarity

	а	sits	lies	caught	chased
cat	5	1	1	1	0
dog	3	1	1	0	1
child	3	1	1	0	1

$$cosine(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

cos (cat, dog) =
$$15+1+1+0+0 / (\sqrt{25+1+1+1+0} * \sqrt{9+1+1+0+1})$$

= $17 / (\sqrt{28} * \sqrt{12}) = 17 / (5.29 * 3.46)$ 0.93
cos (cat, child) = $15+1+1+0+0 / (\sqrt{25+1+1+1+0} * \sqrt{9+1+1+0+1})$
= $17 / (\sqrt{28} * \sqrt{12}) = 17 / (5.29 * 3.46)$ 0.93
cos (dog, child) = $9+1+1+0+1 / (\sqrt{9+1+1+0+1} * \sqrt{9+1+1+0+1})$
= $12 / (\sqrt{12} * \sqrt{12}) = 12 / (3.46 * 3.46)$ 1.00

Pointwise Mutual Information (PMI)

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$PMI(X,Y) = log_2 \frac{P(x,y)}{P(x)P(y)}$$

PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

Semantic Analysis

Lexical Semantic Ambiguity

Homonymy

Synonymy

Antonymy

Semantic Lexicons

WordNet, organized by 'synsets' – defines meaning by a set of synonyms https://wordnet.princeton.edu/

FrameNet, organized by 'frames' – defines meaning by typical semantic roles https://framenet.icsi.berkeley.edu/fndrupal/about

Word Sense Disambiguation

function SIMPLIFIED LESK(word, sentence) returns best sense of word

```
best-sense ← most frequent sense for word

max-overlap ← 0

context ← set of words in sentence

for each sense in senses of word do

signature ← set of words in the gloss and examples of sense

overlap ← COMPUTEOVERLAP(signature, context)

if overlap > max-overlap then

max-overlap ← overlap

best-sense ← sense

end

return(best-sense)
```


Semantic Role Labeling

AGENT	The volitional causer of an event	The waiter spilled the soup.
EXPERIENCER	The experiencer of an event	John has a headache.
FORCE	The non-volitional causer of the event	The wind blows debris from the mall into our yards.
THEME	The participant most directly affected by an event	Only after Benjamin Franklin broke the ice
RESULT	The end product of an event	The city built a regulation-size baseball diamond
CONTENT	The proposition or content of a propositional event	Mona asked "You met Mary Ann at a supermarket?"
INSTRUMENT	An instrument used in an event	He poached catfish, stunning them with a shocking device
BENEFICIARY	The beneficiary of an event	Whenever Ann Callahan makes hotel reservations for her boss
SOURCE	The origin of the object of a transfer event	I flew in from Boston.
GOAL	The destination of an object of a transfer event	I drove to Portland.

Language Modelling

Language Modelling

Noisy Channel Model: $p(Y|X) \propto p(X|Y) p(Y)$

Applications to machine translation, spelling correction, etc.

Estimating probabilities by counting:

$$p(w) = \frac{c(w)}{\sum_{v \in W} c(v)}$$

$$p(w) = \frac{c(w)+1}{\sum_{v \in V} c(v)+|V|}$$

n-gram Language Models:

$$p(w_1w_2...w_n) = \prod_{k=1,...,n} p(w_k|w_{k-m+1}...w_{k-1})$$

Language Modelling

Why perform smoothing?

Back-off and Interpolation

Perplexity to evaluate language models

Syntactic Analysis

Tagging: Hidden Markov Model

Three fundamental problems for HMMs

- 1. What is the probability of a sequence given an observation and a model?
 - a. What is P(DET N VBZ DET N the cat chases the mouse, μ)?
- 2. What is the probability of an observation given the model?
 - a. What is P(the cat chases the mouse $|\mu$)?
- 3. What is the model that maximizes the likelihood of the observed data and known sequences?
 - a. What μ maximizes P(the cat chases the mouse, DET N VBZ DET N $|\mu$)?
 - b. What μ maximizes P(the cat chases the mouse $|\mu$)?

Viterbi algorithm

```
Set \pi_{s,0}=0 except for \pi_{Start,0}=1

Set y_s=[]

For i from 1 to T

For s\in S

S \not = s, i = \max_{t\in S} \pi_{t,i-1} p(s|t) p(w_i|s)

Append t to y_s

Return y_s+s where s

\max_{t\in S} \pi_{s,T}
```

Forward Algorithm also!

Supervised Learning of HMMs

$$p(s_i|s_j) = \frac{c(t_{i-1} = s_j, t_i = s_i)}{\sum_{s'} c(t_{i-1} = s_j, t_i = s')}$$

$$p(w|s) = \frac{c(w_i = w, t_i = s)}{c(t_i = s)}$$

Parsing: Ambiguity

Context-free grammars

Recall, a context-free grammar $G=(N,\Sigma,P,S)$ consists of:

- A set of non-terminal symbols N
 - e.g., 'N', 'VP', 'S'
- A set of terminal symbols Σ
 - e.g., 'cat', 'astronomer', 'the'
- A set of productions P

$$-$$
 e.g., 'S \rightarrow NP VP'

- A start symbol
 - Normally 'S'
- (PCFG) A probability function *D*

$$\sum_{\{\beta: A \to \beta \in P\}} D(A \to \beta) = 1 \quad \forall A \in N$$

CYK Algorithm

```
Set t_{i,i,a} = -\infty for all values
For i = 1, ...., n
  For A \rightarrow W_i \in P
    t_{i,i+1,A} = D(A \rightarrow w_i)
For k = 1, ..., n; i = 1, ..., n - k + 1; j = i + k
  For A \rightarrow \beta \in P
     If \beta matches between i and j
       S = D(A \rightarrow \beta) \times \prod_{i',i',A'} t_{i',i',A'} \text{ where } \{i',j',A\} \text{ are the matches}
       If s > t_{i,j,A}
          t_{i,i,A} = s
```


Chomsky Normal Form

CYK is only polynomial if all rules are of the form

• A \rightarrow BC or A \rightarrow a

Any PCFG can be easily transformed to Chomsky Normal Form

Problems of PCFGs

Lexical Dependencies
Lexical Attachment
Parse ambiguity not distinguished

Solutions

Lexicalized PCFGs
Dependency Grammars

Information Extraction & Knowledge Graphs

IE Approaches

Lexical lookup

Rules

Machine learning

Supervised Learning

IOB sequence annotation

Words	IOB Label	IO Label
American	B-ORG	I-ORG
Airlines	I-ORG	I-ORG
,	O	O
a	0	0
unit	0	O
of	0	O
AMR	B-ORG	I-ORG
Corp.	I-ORG	I-ORG
,	O	O
immediately	O	0
matched	0	0
the	0	О
move	0	O
,	O	0
spokesman	O	О
Tim	B-PER	I-PER
Wagner	I-PER	I-PER
said	0	0
	0	0

Inter-Annotator Agreement

Cohen's kappa coefficient

$$\kappa = \frac{Pr(a) - Pr(e)}{1 - Pr(e)}$$

Semi-Supervised - Distant Learning

Wikipedia

Info-box provides seeds

Corresponding text can serve as 'annotation' for training purposes

Rex Wayne Tillerson (born March 23, 1952) is an American former government official and former energy executive who served as the 69th United States Secretary of State from February 1, 2017, to March 31, 2018, under President Donald Trump. [1][2][3] Originally a civil engineer, Tillerson joined Exxon in 1975. He rose to become chairman and chief executive officer of ExxonMobil, holding that position from 2006 until 2017, when he left to join the Trump administration.

Unsupervised - Open IE Architecture

IE Evaluation

$$P = \frac{\text{\# correctly extracted items}}{\text{Total \# of extracted items}}$$

$$R = \frac{\text{\# correctly extracted items}}{\text{Total \# of gold items}}$$

F-Score (weighted harmonic mean)

$$F = \frac{2 \times P \times R}{P + R}$$

Knowledge Graph – Elements

EDUCATED-AT Relations UNIVERSITY TAOISEACH Classes (Terms) **COLLEGE** National Trinity College **Entities** University Ireland Leo Varadkar Enda Kenny Dublin Galway

Entity Linking – Disambiguation Features

Disambiguation according to

Contextual information around the entity

Popularity of the entity

Coherence across different entities

Disambiguation features can be

Text-based

Graph-based

Term Extraction – Unsupervised Learning

Extract, rank and filter NPs and/or apply Hearst patterns

Taxonomy Extraction - Unsupervised

Substrings

Hearst patterns

Distributional models

Taxonomy Extraction – Supervised

Training over pairs of sub/super classes

Opinion Mining

What is Sentiment Analysis?

f(text) = +1 or - 1

Features from a sentiment lexicon

The camera's focus was bad, but has a great size and is easy-to-use

Sentiment Lexicon

Negation Feature Examples

I do not NOT_like NOT_this NOT_new NOT_Nokia NOT_model

Bag-of-words vector

```
not
like
NOT_like
```


Aspect-based Sentiment Analysis

The staff was very friendly and informative. The bus stop, restaurants and railway station are at a walking distance. The breakfast did not have much variety but everything was fresh and tasted very good. The room was comfortable, but the bathroom was very small.

Identify aspect term/mention

Aspect	Sentiment
Staff	positive
Location	positive
Breakfast	conflict
Room	positive
Bathroom	negative

Identify sentiments towards the aspect term.

Emotion Analysis

