CONFIDENTIAL B

Introduction to Flash AWB 2.5 Tuning

2015/08

Support Chip

- MT6595
- MT6752
- MT6735
- MT6580
- MT6755

Revision

Date	version	description
2015/8/9	V1.0	First version
2015/8/26	V1.1	Modify location map UI

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

What is Flash AWB

There are two kinds of light source from this picture. If we want to do AWB in this picture, we should make the AWB gain cover environment light and flash light.

Basic Algorithenvironment color temperature : 3300K

No flash WB gain

Pure flash WB gain

Final flash WB gain

The final color temperature with flash firing is mixed by Environment light (No flash WB gain) and flash light (pure flash WB gain).

D --:-

Flash cover range

5500K

Basic Algorithm

Flash Weighting Table

Flash Gain Weighting is the combination of the following three

weightings:

Foreground Weighting

Location Weighting

Luma. Weighting

There are 3 weighting table to let tuner to customize their preference.

Detail: p12 ~ p14

Foreground Weight

Location Weight.

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

Terms

- Flash Gain Weighting
 - Definition: Ratio of Flash Gain in Final Gain
 - Usage: Calculating the ratio of Flash Gain and AWB Gain mixing together
- Flash Weighting Table
 - Definition: Weighting of each block in the 24*18 blocks of an image
 - Usage: Calculating Flash Gain Weighting by multiplying it by Flash Map

Terms

Flash Map

- Definition: Map of different flash strength corresponding to different reflection strength of a scene (24*18)
- Usage: Calculating Flash Gain Weighting by multiplying it by Flash Weighting Table
- Foreground Weighting Table
 - Definition: The weighting value of the foreground of an image
 - Usage: Calculating the weighting for balancing the foreground and background

Terms

- Location Weighting Table
 - Definition: The weighting value of the central part of an image
 - Usage: Increasing the white balance weighting of the central part
- Luma. Weighting Table
 - Definition: The weighting value of the brightness
 - Usage: Reducing the impact of relatively darker part in an image on the result (the statistic of a part that is too dark is easily affected by noise and is less accurate).

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

Calibration flow

Fill Flash
Protection
Parameter

Flash Calibration

Set protection mechanism

- The protection mechanism settings can be different based on different flash strengths.
 - para.dutyNum = 10; //total 10 duties
 - para.coolDelayPara.tabNum = 3; //number of sets
 - para.coolDelayPara.tabId[0]=0; //setting of 0th flash segment
 - para.coolDelayPara.tabId[1]=4; //setting of 4th flash segment
 - para.coolDelayPara.tabId[2]=32; //setting of 32rd flash segment
 - para.coolDelayPara.coolingTM[0]=0; //no rest after main flash
 - para.coolDelayPara.coolingTM[1]=2; //time of main flash resting for 2x
 - para.coolDelayPara.coolingTM[2]=5; //time of main flash resting for 5x
 - para.coolDelayPara.timOutMs[0]=ENUM_FLASH_TIME_NO_TIME_OUT;
 - para.coolDelayPara.timOutMs[1]=100; //flash time cannot be longer than 100ms
 - para.coolDelayPara.timOutMs[2]=500; //flash time cannot be longer than 500ms
- With interpolation

Set protection mechanism Example

Setting

```
para.coolDelayPara.tabNum = 3; //number of sets
para.coolDelayPara.tabId[0]=0; //setting of 0<sup>th</sup> flash segment
para.coolDelayPara.tabId[1]=4; //setting of 4<sup>th</sup> flash segment
para.coolDelayPara.tabId[2]=32; //setting of 32<sup>rd</sup> flash segment
para.coolDelayPara.coolingTM[0]=0; //no rest after main flash
para.coolDelayPara.coolingTM[1]=2; //time of main flash resting for 2x
para.coolDelayPara.coolingTM[2]=5; //time of main flash resting for 5x
para.coolDelayPara.timOutMs[0]=ENUM_FLASH_TIME_NO_TIME_OUT;
para.coolDelayPara.timOutMs[1]=100; //flash time cannot be longer than 100ms
para.coolDelayPara.timOutMs[2]=500; //flash time cannot be longer than 500ms
```

- Flash = 4
 - ⇒ The next flash cannot appear after the flash rests for at least "2x flash time". (Refer to settings [1] above.)
 - ⇒ The flash time cannot be longer than 100ms. (Refer to settings [1] above.)
- Flash = 2 (Interpolation will operate itself if the setting is not included in the settings above.)
 - ⇒ The next flash cannot appear after the flash rests for at least "1x flash time". (The result of 0 and 2 interpolated)
 - ⇒ The flash time cannot be longer than 50ms. (The result of 0 and 100ms interpolated)

Set protection mechanism Longest Main Flash Exposure Time is Limited

- para.maxCapExpTimeUs = 100000;
- If the main flash is longer than this time, the exposure time will be automatically adjusted to prevent the flash time from exceeding it.

Set protection mechanism **How to Calculate Protection Time**

Input:

- 1. The longest exposure time
- Main flash current
- 3. Datasheet

For 1A LED, ~300ms is suggested.

Example:

- Longest exposure time = $1/10 = 100 \, \text{ms}$
- Main flash current = 1A
- D = tp/T
- ⇒ Longest flash on time = longest exposure t $= 300 \text{ms} = 3*10^{(-1)} = \text{tp}$

$$\Rightarrow$$
D = tp/T \sim = 0.1

 \Rightarrow Cooling time = (T-tp)/tp $= 1/D-1^{\sim} = 9$

Permissible Pulse Handling Capability Zulässige Impulsbelastbarkeit I_F = f(t_p)

 $R_{th,JA,el} = 150K/W$, $T_A = 25^{\circ}C$, still air, FR4

Flash AE/AWB calibration

Step	Point	Description
1	Environment prepare	Setup calibration environment: In dark room, Gray card put in front of camera in 10cm ~ 15cm
2	ADB commend	Connect USB to your computer, and then send ADB commend through USB. "adb shell setprop z.flash_ratio 1"
3	Pre-check	 Lunch camera APP and press capture key in low light environment to check ADB commend work well or not. check: 1. Flash will fire several times with different duty 2. There are two files (fwb_code.txt, eng_code.txt)will save in the root folder.
4	Calibration	If pre-check ok, go to the correct environment as step 1, then Lunch camera APP and press capture key.
5	Get result	Go to root folder to get fwb_code.txt, eng_code.txt
6	Code gen	Merge fwb_code.txt into amera_flash_awb_para_[sensor].h (next page)

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

- Parameter files
 - flashawb_tuning_custom.cpp
 - Path: alps\mediatek\custom\\$project\hal\camera\camera
 - Usage: Enables/Disables Flash AWB v2.1
 - camera_flash_awb_para_\$sensor.cpp
 - Path: alps\mediatek\custom\\$project\hal\imgsensor\\$sensor
 - Usage: Flash AWB preference (NVRAM)

- Parameter file: flashawb_tuning_custom.cpp
 - // Flash AWB v2.1 flag
 - Enables/Disables Flash AWB v2.1 (True: v2.1, False: v1.0)

```
MBOOL
isFlashAWBv2Enabled()
{
    return MTRUE;
}
```


- Parameter file: camera_flash_awb_para_\$sensor.cpp
 - // Foreground / Background Percentage Ratio
 - Controls the percentage of foreground and background
 - The bigger the foreground percentage, the more part in an image judged as foreground.
 - The bigger the background percentage, the more part in an image judged as background.

•Foreground percentage + background percentage can over 100

```
// Flash AWB tuning parameter
{
    9,    //foreground percentage
    95,    //background percentage
    2,    //FgPercentage_Th1
    5,    //FgPercentage_Th2
    10,    //FgPercentage_Th3
    15,    //FgPercentage_Th4
    250,    //FgPercentage_Th1_Val
    250,    //FgPercentage_Th2_Val
    250,    //FgPercentage_Th3_Val
    250,    //FgPercentage_Th4_Val
```

0<=Foreground Percentage<50 50<Background Percentage<=100

How to Tune Parameters Foreground weighting

- Parameter file: camera_flash_awb_para_\$sensor.cpp
 - // Foreground Weighting Table
 - You can get Foreground Weighting Table by looking up the table.
 - The closer the object is to the camera, the bigger the weighting value.

FgPercentage_Th1 <= FgPercentage_Th2 <= FgPercentage_Th3 <= FgPercentage_Th4

FgPercentage Th1 Val <= FgPercentage Th2 Val <= FgPercentage Th3 Val <= FgPercentage Th4 Val

How to Tune Parameters Location weighting Parameter file: camera_flash_awb_para_\$sensor.cpp

- - // Location Weighting Table
 - You can get Location Weighting Table by looking up the table.
 - The closer to the center of the image, the bigger the weighting value.

```
Distance from center (%)
 10, //location map th1
                                              location_map_val4
 20, //location map th2
                                              location_map_val3
 40, //location map th3
 50, //location map th4
                                              location_map_val2
100, //location map val1
                                               location map val1
100, //location map val2
100, //location map val3
100, //location map val4
                                                                              location_map_th3
                                                          location_map_th1
                                                                     location map th2
                                                                                     location map th4
```

location map th1 <= location map th2 <= location map th4

location map val1<=location map val2<=location map val3<=location map val4

Parameter file: camera_flash_awb_para_\$sensor.cpp

• //Luma. Weighting Table

Reduces the weighting value of the block that i

```
5, //YPrimeWeightTh[0]
9, //YPrimeWeightTh[1]
11, //YPrimeWeightTh[2]
13, //YPrimeWeightTh[3]
15, //YPrimeWeightTh[4]
1, //YPrimeWeight[0]
3, //YPrimeWeight[1]
5, //YPrimeWeight[2]
7, //YPrimeWeight[3]
```


YPrimeWeight[0] <= YPrimeWeight[1] <= YPrimeWeight[2] <= YPrimeWeight[3]</pre>

YPrimeWeightTH[0] <= YPrimeWeightTH[1] <= YPrimeWeightTH[2] <= YPrimeWeightTH[3] <= YPrimeWeightTH[4]

How to Tune Parameters CCT Tuning

- Front ground weighting: The more the slide, the more white balance in foreground.
- Center location weighting: The more the slide, the more white balance in center.
- Dark range TH: The block with Y < TH will have a reduced weighting value. (The more the slide, the bigger TH.)

Scene A

Scene B

Customer preference 1:

Both A & B: Foreground color balance

Customer preference 2:

Both A & B: Background color balance

Customer preference 3:

A: Foreground color balance

B: Background color balance

Check average reflection in JPEG EXIF parser "FL_T_FLAWB_REFLECTION"

FL_T_FLAWB_AVG_REFLECTION

FL_T_FLAWB_AVG_REFLECTION

[Customer preference 1]

Both A & B: Foreground color balance

• In a scene of lower reflection rate (B), tune high the weighting value of foreground (as below).

FgPercentage_Th1; = 18
FgPercentage_Th2; = 24
FgPercentage_Th3; = 30
FgPercentage_Th4; = 35
FgPercentage_Th1_Val; = 1000
FgPercentage_Th2_Val; = 900
FgPercentage_Th3_Val; = 750
FgPercentage_Th4_Val; = 500

Scene A Result

Scene B Result

[Customer preference 2]

Both A & B: Background color balance

Reduce the weighting value of foreground (as below)

Scene A Result

FgPercentage_Th1; = 18 FgPercentage_Th2; = 24 FgPercentage_Th3; = 30 FgPercentage_Th4; = 35 FgPercentage_Th1_Val; = 50 FgPercentage_Th2_Val; = 50 FgPercentage_Th3_Val; = 50 FgPercentage_Th4_Val; = 50

Scene B Result

To make A light become pure gray, disable A light preference in AWB.

[Customer preference 3]

A: Foreground color balance

B: Background color balance

• In a scene of higher reflection rate (A), tune high the weighting value of foreground (as below).

FgPercentage_Th1; = 18
FgPercentage_Th2; = 24
FgPercentage_Th3; = 30
FgPercentage_Th4; = 35
FgPercentage_Th1_Val; = 40
FgPercentage_Th2_Val; = 125
FgPercentage_Th3_Val; = 210
FgPercentage_Th4_Val; = 300

Scene A result

Scene B result

Variable location_map_th1 location_map_th2 location_map_th3 location_map_th4 location_map_val1 location_map_val2 location_map_val3 location_map_val4

Location Weighting Tuning

 If you tune high the weighting of the center of location weighting table, the center of the image will be balanced to be whiter.

Th1 = 10
Th2 = 20
Th3 = 50
Th4 = 70
Val1 = 100
Val2 = 100
Val3 = 100
Val4 = 100

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

Debug Parser Tag

Flash AWB Tuning Parameters

Foreground/Background percentage (try not to tune it)

FL_T_FLAWB_FG_PERCENTAGE
FL_T_FLAWB_BG_PERCENTAGE

Flash Weighting Table

FL_T_FGPERCENTAGE_TH1

FL_T_FGPERCENTAGE_TH2

FL_T_FGPERCENTAGE_TH3

FL_T_FGPERCENTAGE_TH4

FL_T_FGPERCENTAGE_TH1_VAL

FL_T_FGPERCENTAGE_TH2_VAL

FL_T_FGPERCENTAGE_TH3_VAL

FL_T_FGPERCENTAGE_TH4_VAL

Location Weighting Table

FL_T_LOCATION_MAP_TH1

FL_T_LOCATION_MAP_TH2

FL_T_LOCATION_MAP_TH3

FL_T_LOCATION_MAP_TH4

FL_T_LOCATION_MAP_TH1_VAL

FL_T_LOCATION_MAP_TH2_VAL

FL_T_LOCATION_MAP_TH3_VAL

FL_T_LOCATION_MAP_TH4_VAL

Luma. Weighting Table

FL_T_YPRIME_WEIGHT_THO

FL_T_YPRIME_WEIGHT_TH1

FL_T_YPRIME_WEIGHT_TH2

FL_T_YPRIME_WEIGHT_TH3

FL_T_YPRIME_WEIGHT_TH4

FL_T_YPRIME_WEIGHT_0

FL_T_YPRIME_WEIGHT_1

FL_T_YPRIME_WEIGHT_2

FL_T_YPRIME_WEIGHT_3

Debug Parser Tag

WB Gain Info (In AWB Page)

FL_AWB_VERSION	Flash AWB Version: should be 201	
FL_AWB_PURE_FLASH_RGAIN		
FL_AWB_PURE_FLASH_GGAIN	Pure flash gain	
FL_AWB_PURE_FLASH_BAIN	7	
FL_AWB_NO_FLASH_RGAIN		
FL_AWB_NO_FLASH_GGAIN	Preview gain	
FL_AWB_NO_FLASH_BGAIN	†	
FL_AWB_FIANL_WEIGHT	Final weight (should be the same as Strobe page	
FL_AWB_RESULT_RGAIN	"FL_T_FLAWB_FINAL_WEIGHT")	
FL_AWB_RESULT_GGAIN	Dung flock AMD rain	
FL_AWB_RESULT_BGAIN	Pure flash AWB gain	

•Error Code check provide tuner to check abnormal result of flash AWB

Flash AWB Process Info

FL_T_FLAWB_AVG_REFLECTION	Average reflection
FL_T_FLAWB_FL_STRENGH	Flash eng (Y)
FL_T_FLAWB_FG_WEIGHT	Foreground weighting
FL_T_FLAWB_FINAL_WEIGHT	Result weighting
FL_T_FLAWB_ERROR_CODE	Error code

Flash AWB Error Code

0x0000	ОК
0x0001	FG/BG percentage out of range
0x0002	Foreground weighting table error
0x0004	Location weighting table error
0x000F	Luma. weighting table error
Other	Contact MediaTek engineer.

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

Log analysis log: Flash AWB tuning parameter

- flash_awb_para for:9 bk: 95
 - ForeGroundPercentage/ BackGroundPercentage
- lash_awb_para th1,2,3,4:2 5 10 15
 - FgPercentage_Th1/FgPercentage_Th2/FgPercentage_Th3/FgPercentage_Th4

```
01-02 06:23:27.275 343 6934 D flash_mgr_m.cpp: [Flash Awb] Prepare to do flash awb init
01-02 06:23:27.276 343 6934 D nvbuf_util.cpp: nvbuf_util.cpp getBufAndRead+ In=561 ramId=1 sensorDev=1
01-02 06:23:27.276 343 6934 D flash_mgr_m.cpp: flash_awb_para for:9 bk: 95
01-02 06:23:27.276 867 867 D IAudioFlinger: queryEffect() return
01-02 06:23:27.276 343 6934 D flash_mgr_m.cpp: flash_awb_para th1,2,3,4:2 5 10 15
01-02 06:23:27.276 343 6934 D FlashAwb.cpp: [Flash Awb] In Flash_Awb_Init()
```


Log analysis Log: Flash AWB 2.1 log

- m_flashAwbWeight
 - Final weight of Flash gain/ non flash gain
- pureFlash Rgain=777, Ggain=512, Bgain=802
 - Flash calibration gain with current duty

```
01-02 06:23:28.831 343 6934 D awb_mgr : [1][flashAWB 2.1] m_flashDuty=1, m_flashAwbWeight=99
01-02 06:23:28.831 343 6934 D awb_mgr : [1][flashAWB 2.1] pureFlash Rgain=777, Ggain=512, Bgain=802
01-02 06:23:28.831 343 6934 D awb_algo: m_PureFlash Rgain=777, Ggain=512, Bgain=802
01-02 06:23:28.831 343 6934 D awb_algo: pureFlash Rgain=952, Ggain=512, Bgain=643
01-02 06:23:28.831 343 6934 D awb_mgr : [1][flashAWB 2.1] In Awb_mgr.cpp - FlashAwbOutput Rgain=778, Ggain=512, Bgain=800
01-02 06:23:28.831 343 6934 D awa_state_capture: IAwbMgr::getInstance().doCapAWB() END
```


CONFIDENTIAL B

Outline

- Introduction
 - What is Flash AWB
 - Basic algorithm
- Terms
- Flash AE/AWB Calibration
 - Set protection mechanism
 - Flash AE/AWB calibration
- How to tune parameters?
 - Foreground Weighting
 - Location Weighting
 - Luma. Weighting
 - CCT tuning
 - Advanced tuning method
- Debug Parser Tag
- Log analysis
- Issue analysis flow

Issue Analysis Flow

MEDIATEK

everyday genius