111. Minimum Depth of Binary Tree

110 Balanced Binary Tree

- Depth-first Search + Tree
- Breath-first Search + Tree + Queue

Description

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

1. Thought line

• The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

2. Depth-first Search + Tree

```
* Definition for a binary tree node.
* struct TreeNode {
      int val;
      TreeNode *left;
      TreeNode *right;
      TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
   void depthFirstSearchMinDepth(TreeNode* node, int& res, int depOfNode){
      if (node == nullptr) return;
       ++dep0fNode;
       if (node->left==nullptr && node->right==nullptr && res>dep0fNode) res = dep0fNode;
       depthFirstSearchMinDepth(node->left, res, depOfNode);
       depthFirstSearchMinDepth(node->right, res, depOfNode);
   }
public:
   int minDepth(TreeNode* root) {
       if (root == nullptr) return 0;
       int res = INT_MAX;
       depthFirstSearchMinDepth(root, res, 0);
       return res;
}
```

3. Breadth-first Search + Tree + Queue