The Function Zoo

Square and root

functions

trig

Lecture 3: Absolute Values and the Triangle Inequality Section 1.1 of the lecture notes

VIF (Very Important Function): f(x) = |x|, the **absolute value of** x, defined by

The quantity |a-b| represents the distance between a and b, one of the most crucial concepts in calculus!

From this point onward, all material will be covered on quiz 2. The last thing you need for quiz 1 is the definition of absolute value!

Theorem (The Triangle Inequality): For all $x, y, z \in \mathbb{R}$, we have that

$$|x - y| \le |x - z| + |z - y|$$

"The shurtest distance between two points is a direct line"

Proof: Without lus of geneality, suppose X ≤ y

|x-y| \le |x-2| + |z-y| |y-x| \le |y-z| + |z-x|

> |x-y| \le |z-y| + |x-2| > |x-y| \le |x-z| + |z-y| get same equation back

con 1: Z \ x \ y

core canz con 3

car 2: $x \le z \le y$ x = z = y |x-y| = |x-z| + |z-y| $|x-y| \le |x-z| + |z-y|$

$$\frac{1}{x}$$
 $\frac{1}{y}$ $\frac{1}{z}$ $\frac{1}{x-y}$ $\frac{1}{y-y}$ $\frac{1}{z}$ $\frac{1}{z-y}$ $\frac{1}{z}$

Theorem (The Triangle Inequality II): For all $a, b \in \mathbb{R}, |a+b| \leq |a| + |b|$.

Proof: By Transle Inequality I, $|x-y| \le |x-z| + |z-y|$ for all $x, g, z \in \mathbb{R}$ in particular, it's time for x = a, y = -b, z = 0subling in, $|a+b| \le |a-0| + |0-(-b)|$ = |a| + |b| **Question:** If we replace the + with a - in the statement of The Triangle Inequality II, is it still true? In other words, is it true that $|a - b| \le |a| - |b|$ for all $a, b \in \mathbb{R}$?

NO!
$$a = 10, b = -9$$

$$|10 - (-9)| = |19| = 19$$

$$|10| - |-9| = |0-9| = 1$$

There are three main types of inequalities that we will see again and again in this course:

•
$$|x - a| < \delta$$

"x is within distance of a " (a and

$$|x-3| < 5$$
 (-2, 8)

$$\bullet |x - a| \le \delta$$

•
$$0 < |x - a| < \delta$$

$$a-\delta$$
 a $a+\sigma$
 $\chi \in (a-\delta, a) \cup (a, a+\delta)$

Let's get used to working with inequalities by solving some problems!

Example: Solve |-2x+6| < 5.

$$|-2(x-3)| < 5$$

$$\iff |-2||x-3| < 5$$

$$\iff 2|x-3| < \frac{5}{2} \qquad |x-a| < 0 \qquad x \in (a-0, a+0)$$

$$x \in (3-\frac{5}{2}, 3+\frac{5}{2}) = (\frac{1}{2}, \frac{11}{2})$$

Example: Solve $2 < |x+7| \le 3$.

" the distance from x to -7 is at least 2, and at most 3, including 3 but not 2"

Example: Solve
$$|x+2|/|x-2| > 5$$
. $-x-2$

$$|x-2| = \begin{cases} x+2 & \text{if } x \ge -2 \\ 2-x & \text{if } x < -2 \end{cases}$$

$$|x+2| = \begin{cases} x+2 & \text{if } x \ge -2 \\ -x-2 & \text{if } x < -2 \end{cases}$$

$$|x+2| = \begin{cases} x+2 & \text{if } x \ge -2 \\ -x-2 & \text{if } x < -2 \end{cases}$$

$$|x+2| = \begin{cases} x+2 & \text{if } x < -2 \end{cases}$$

$$|x+2| = \begin{cases} x+2 & \text{if } x < -2 \end{cases}$$

$$|x+z| = \begin{cases} x+2 & \text{if } x \ge -2 \\ -x-2 & \text{if } x < -2 \end{cases}$$

$$\frac{x+2}{2-x} > 5 \iff x+2 > 10 - 5x \qquad (con 3: x > 2)$$

$$\frac{x+2}{2-x} > 5 \iff x+2 > 10 - 5x \qquad \frac{x+2}{x-2} > 5$$

$$4 \qquad x \ge (\frac{4}{3}, 2)$$

$$x \in (\frac{4}{3}, 2)$$

$$x \in (\frac{4}{3}, 2)$$

$$x \in (\frac{4}{3}, 2)$$

$$x \in (\frac{4}{3}, 2)$$

:.
$$x \in (\frac{4}{3}, 2) \circ (2, 3)$$