EXAMPLE SOLUTION σ

$$\sigma := \left[\begin{array}{ccccc} a \rightarrow a & / & b \\ (a \rightarrow a) \rightarrow a \rightarrow a & / & c \\ & a \rightarrow a & / & d \\ & a \rightarrow a & / & e \\ & & a & / & f \end{array} \right]$$

EXAMPLE SOLUTION au

$$\tau := \left[\begin{array}{c} b \rightarrow b & / & a \\ (b \rightarrow b) \rightarrow b \rightarrow b & / & b \\ ((b \rightarrow b) \rightarrow b \rightarrow b & / & c \\ (b \rightarrow b) \rightarrow b \rightarrow b & / & c \\ (b \rightarrow b) \rightarrow b \rightarrow b & / & d \\ (b \rightarrow b) \rightarrow b \rightarrow b & / & e \\ b \rightarrow b & / & f \end{array} \right]$$

MOST GENERAL UNIFIER

Let $\mathscr C$ be a set of type constraints. Then we say that σ is a **most general unifier** (mgu) of $\mathscr C$ just if:

- (i) σ is a unifier of $\mathscr C$
- (ii) and every unifier σ' of $\mathscr C$ is of shape $\sigma\sigma''$ for some σ''

HINDLEY-MILNER TYPE INFERENCE

On input closed term M:

- 1. Generate constraints \mathscr{C} and type variable a using $\mathsf{CGen}(\emptyset, M)$.
- 2. Solve $\mathscr C$ using Robinson's algorithm to obtain mgu σ or deduce unsolvability.
- 3. If \mathscr{C} has no solution then M is untypable. Otherwise return $\sigma(a)$.

PRINCIPALITY

Theorem (Principal Type Scheme Theorem)If closed term M is typable, then Hindley-Milner type inference returns a type A that is **principal** in the sense that:

- ⊢ M : A is derivable
- and, if some other ⊢ M : B is derivable, then there is a choice of monotypes C₁,..., C_k such that B = A[C₁/a₁,...,C_k/a_k].