Knowledge Graphs for innovation

Prof. Dr. Axel Polleres, Prof. Dr. Christopher Lettl, Dr. Elmar Kiesling Dawa Chang

Dawa's research topic

Title: Knowledge Graphs (KGs) as a supporting technology for innovation

It's about studying ...

- What <u>cognitive limitations</u> & <u>innovation process</u>?
 - In the very early stages of innovation; so called <u>fuzzy front end</u>
 - with tasks such as A. ideation and B. idea selection
 - characterized by ...
 - **A.** high demands for <u>creativity</u>
 - **B.** high <u>uncertainty</u> when **making** filtering **decisions** on which ideas to pursue

Human cognitive limitation

Human cognitive limitation

Human cognitive trap:

tend to only search **locally**, focus on what they already know bounded rationality

makes innovation more likely incremental/biased

ordinary innovation
(Not substantial innovation)

Local search

Factual knowledge

Information search

VS.

VS.

Distance search

Ideation stimuli

Inspiration search

Everything that helps

distance search is useful for more substantial innovation.¹

analogy, metaphor, combination, etc.

How many calories are in Schnitzel?

The importance of distance search in innovation

I'm Innovator.

And what I'm looking for is Schnitzel... ideation Stimuli from far far away!

Is the KG able to support the <u>distance-search</u>?

What is the <u>distance</u> ("far") in KGs?

WIRTSCHAFTS
UNIVERSITÄT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

Camel & Computer

https://asknature.org/

DIS-C algorithm

To compute the conceptual distance between concepts of an ontology

Based on

- An ontology can be represented as a strongly connected graph
- Assign weight values to each relation taking into consideration the proximity between concepts

Methodology

Composed of two main steps + 1 (generality metric)

- 1. An expert of the ontology domain assigns initial weight values to each of the relations in the ontology
- 2. An automatic method for computing the conceptual relations refines the weights assigned to each relation
- 3. Introduce a metric called generality that is defined in order to evaluate the accessibility of each concept

Conclusion

- The DIS-C algorithm computes similarity between concepts in ontologies that are not necessarily represented in a hierarchical or taxonomic structure
- It's capable of incorporating a wide variety of relationships between concepts such as meronym, antonym, functionality and causality

WIRTSCHAFTS UNIVERSITÄT WEN VENNA UNIVERSITY OF ECONOMICS

"Cat is an animal."

distance(cat, animal) = 1
distance(animal, cat) = 0

- A. Camal & computer are far to each other...
- B. Well, they are both things.

It's fact.

Camel & Computer = ?

