# Soft Inverted Pendulum Robot - Modelling, Simulation and Control

Aditya Varadaraj, Lasitha Weerakoon

Dr. Nikhil Chopra's Lab, University of Maryland - College Park, MD

#### Model used and Parameters

Modelling scheme: Cosserat Rod Theory

Numerical Solver / Software Used: PyElastica (Python)

Initial Length of rod (L) = 0.13 mts.

Initial radius of the rod (R) = 0.01416 mts.

**Density,**  $\rho$  = 1180 kg/m<sup>3</sup>

Poisson Ratio,  $\gamma = 0.5$ 

Young's Modulus, E = 3.79 MPa

Energy Dissipation, v = 10

**Simulation Time,**  $t_f = 10 \text{ secs}$ 

Shear Modulus,  $G = E / (2*(1+\gamma))$ 

### Hinged Planar Case: Stiffness (k) and Damping (β) Experimental Computation

$$\begin{bmatrix} q_0(t_0) & \dot{q}_0(t_0) \\ \vdots & \vdots \\ q_0(t_f) & \dot{q}_0(t_f) \end{bmatrix} \begin{bmatrix} k \\ \beta \end{bmatrix} = \begin{bmatrix} RHS(t_0) \\ \vdots \\ RHS(t_f) \end{bmatrix}$$

$$q = \begin{bmatrix} q_0 \\ \theta \end{bmatrix}$$

$$RHS(t_i) = \tau - (M(q)q(t_i) + C(q, \dot{q})\dot{q}(t_i))[0]$$

$$\begin{bmatrix} k \\ \beta \end{bmatrix} = \begin{bmatrix} q_0(t_0) & \dot{q}_0(t_0) \\ \vdots & \vdots \\ q_0(t_f) & \dot{q}_0(t_f) \end{bmatrix}^{\dagger} \begin{bmatrix} RHS(t_0) \\ \vdots \\ RHS(t_f) \end{bmatrix}$$

, where,  $A^{\dagger}$  means pseudo-inverse of A

### Why v = 10 ?

As we can see from the figure, the damping seems to be enough to have a smooth convergence towards steady-state



### Hinged Planar Case: Stiffness (k) and Damping (β) Experimental Computation

| Input Torque (τ) (Nm) | Stiffness (k) (Nm/rad) | Damping (β)<br>(Nsm/rad) | Final Bending Angle (q <sub>0</sub> ) (rad) |
|-----------------------|------------------------|--------------------------|---------------------------------------------|
| 0.3125                | 0.942                  | 0.07                     | 0.33                                        |
| 0.625                 | 0.942                  | 0.07                     | 0.67                                        |
| 0.9205                | 0.942                  | 0.07                     | 0.98                                        |
| 1.25                  | 0.942                  | 0.07                     | 1.34                                        |
| 1.5                   | 0.942                  | 0.07                     | 1.60                                        |
| 1.75                  | 0.942                  | 0.07                     | 1.86                                        |

Thus, the obtained values for v = 10 and E = 3.79 MPa conditions are:

k = 0.942 Nm/rad and  $\beta = 0.07 \text{ Nsm/rad}$ 

### Fixed End 3-segment case PD Joint-Space Kinematic Control:

$$q_{des1} = q_{des2} = q_{des3} = \pi/4$$
 , Kp = 1.7275, Kd = 0.0075



Fixed End 3-segment case PD Joint-Space Control:  $q_{des1} = q_{des2} = q_{des3} = \pi/4$ , Kp = 1.7275, Kd = 0.0075 (contd.)



Fixed End 3-segment case PD Joint-Space Control:  $q_{des1} = q_{des2} = q_{des3} = \pi/4$ , Kp = 1.7275, Kd = 0.0075 (contd.)



Fixed End 3-segment case PD Joint-Space Control:  $q_{des1} = \pi/8$ ,  $q_{des2} = \pi/4$ ,  $q_{des3} = \pi/2$ , Kp = 1.7275, Kd = 0.0075







## Fixed End 3-segment case PD Joint-Space Control: Time-varying $q_{des}$ , Kp = 3.3275, Kd = 0.0075

$$q_{des1} = \frac{\pi}{8} \sin\left(\frac{2\pi t}{2.5}\right)$$

$$q_{des2} = \frac{\pi}{4} \cos\left(\frac{2\pi t}{5}\right)$$

$$q_{des3} = \frac{\pi}{2} \sin\left(\frac{2\pi t}{4} + \frac{\pi}{9}\right)$$

Torque =  $Kp^*(q_{des} - q) - Kd^*q_{dot} + k^*q$ 



We can see that the max. error is around .0265 radians, i.e., around 1.50 which is acceptable.





### (contd.) Positions



### Task Space Control

$$F = Kp^*(X_{des} - X) + Kd^*(X_{des}\_dot- X\_dot)$$

$$Torque = J^TF$$

### Task Space Control (Kp = 3.3275 and Kd = 0.075, nu=7): Case 1 (Constant torque when q1, q2 or q3 =0)











### Case 2: Using Margin of 2 degrees

When q is inside the margin, skip to torque at one of the boundaries/margins as per direction of q\_dot.

### Task Space Control: Case 2 (Using Margin of 2 degrees)











#### Conclusion

- Joint Space PD Control for Fixed planar case works well with reasonable accuracy.
- Task Space PD Control is not working too well. Giving "Nan", i.e., "not defined" angle values after a specific amount of time.
- As we can see, around 18 secs, the system goes haywire. Not able to solve this problem yet.
- From q graphs, we can clearly see the skip when in margin of 2 degree around 0. Thus, that logic is working.