安徽大学 2020-2021 学年第二学期数理统计期末考试试卷 (A卷)

出卷人: 王学军

填空题 (5小题×2分=10分) 1

- 2. 设随机变量 $X \sim t(10)$, 已知 $P(X^2 > x_0) = 0.05$, 则 $x_0 =$
- 3. 已知某型号的导线电阻值服从 $N(\mu, \sigma^2)$. 现测量16次,算得 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i = 10.78\Omega, S_* = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2} = 1.40\Omega,$ 则均值 μ 的置信水平 $1-\alpha=0.95$ 的置信区间为______. 其中 $t_{0.025}(15)=2.131, t_{0.05}(15)=1.753$.
- 4. 设 X_1, X_2, \dots, X_m 是来自 Bernoulli 分布总体 B(n, p) 的简单随机样本, $\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i, S_* = \sqrt{\frac{1}{m-1} \sum_{i=1}^m (X_i \bar{X})^2}$. 若 $\bar{X} + kS_*^2$ 是 np^2 的无偏估计, 则 k =_____
- 5. 设总体 X 的概率密度函数为 $f(x;\theta), X_1, X_2, \cdots, X_n$ 是来自总体的简单随机样本. 考虑假设 $H_0: \theta = \theta_0 \leftrightarrow H_1: \theta = \theta_1$ 的 UMP 检验, 利用似然比检验法, 拒绝域为_

选择题 (5小题×2分=10分) 2

6. 设 X_1, X_2, \dots, X_n 是来自总体 $U(\theta_1, \theta_2)$ 的简单随机样本, 其中 θ_1 已知, θ_2 未知, 则 是统计量.

A. $X_1 + X_n + \bar{X} - \theta_2$ **B.** $\min(X_1, X_2, X_3) + \theta_1$ **C.** $\bar{X} - \theta_1 \theta_2^2$ **D.** $S^2 - \theta_1 \theta_2^2$

- 7. 总体 $X \sim N(\mu, \sigma_0^2), \sigma_0^2$ 已知. 样本容量 n 不变时, 若置信度 1α 减小, 则 μ 的置信区间 .
 - A. 长度变小
- B. 长度变大 C. 长度不变
- **D.** 以上都有可能
- 8. 设 X_1, X_2, X_3, X_4 是来自总体 N(0,4) 的简单随机样本, 若______,则随机变量 $X = a(X_1 2X_2)^2 + b(3X_3 4X_4)^2$ 的分布为 χ^2 分布.

$$\mathbf{A.}a = \frac{1}{12}, b = \frac{1}{28}$$
 $\mathbf{B.}a = \frac{1}{20}, b = \frac{1}{100}$ $\mathbf{C.}a = \frac{1}{30}, b = \frac{1}{40}$ $\mathbf{D.}a = \frac{1}{40}, b = \frac{1}{60}$

- 9.下列说法正确的是
 - **A.** 设一个正态总体均值 μ 的 95% 置信区间是 (8.6,10.4), 这意味着 μ 有 95% 的概率落在 (8.6,10.4) 中
 - B. 未知参数的最大似然估计是唯一的
 - C. 在假设检验中, 原假设 H_0 和对立假设 H_1 的地位是平等的
 - **D.**UMP 检验是指在限制第一类错误概率不超过 α 的条件下, 犯第二类错误概率最小的检验
- 10. 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma_0^2)$ 的样本, 其中 σ_0^2 已知. 若在显著性水平 $\alpha = 0.05$ 下接受了 $H_0: \mu = \mu_0$, 则在显著性水平 $\alpha = 0.01$ 下,下面结论正确的是___
- **A.** 必接受 H_0 **B.** 必拒绝 H_0 **C.** 可能接受 H_0 , 也可能拒绝 H_0 **D.** 无法求解

3 解答题 (4小题×12分=48分)

- 11. 设 X_1, X_2, \dots, X_n 是来自总体 $U(0, \theta)$ 的简单随机样本. 考虑假设检验问题 $H_0: \theta = 3 \leftrightarrow H_1: \theta = 2$, 拒绝域 $W = \{(X_1, X_2, \dots, X_n) | \max(X_1, X_2, \dots, X_n) < 1.5\}$. 求:(1) 功效函数;(2) 第一类和第二类错误的概率和检验水平.
- 12. 设总体 X 的概率密度函数为 $f(x; \mu) = \chi_{[\mu, +\infty)}(x) e^{\mu x}$. 其中 $\mu \in \mathbb{R}$ 是未知参数, X_1, X_2, \dots, X_n 是来自总体的简单 随机样本.
 - (1) 求参数 μ 的矩估计 $\hat{\mu}_1$ 和最大似然估计 $\hat{\mu}_M$;
 - (2) 判断 $\hat{\mu}_1$ 和 $\hat{\mu}_M$ 是否是 μ 的无偏估计. 若否, 则进行修正, 并求两个无偏估计的均方误差.
- 13. 设 X_1, X_2, \dots, X_n 是来自 Poisson 分布总体 $\mathcal{P}(\lambda)$ 的简单随机样本, 其中 $\lambda > 0$ 为未知参数.
 - (1) 求未知参数 λ 的充分完全统计量; (2) 求 $g(\lambda) = \lambda$ 的 UMVUE;
 - (3) 判断 (2) 中的 UMVUE 的方差是否达到 Cramer-Rao 下界.
- 14. 设 X_1, X_2, \dots, X_n 是来自总体 $N(\mu, 3^2)$ 的简单随机样本, 其中 $\mu \in \mathbb{R}$ 为未知参数. 求检验问题 $H_0: \theta \geq 0 \leftrightarrow H_1: \theta < 0$ 的水平 α 的 UMP 检验.

4 证明题 (12分)

15. 设
$$X_1, X_2, \dots, X_n$$
 是来自正态总体 X 的简单随机样本, 且 $Y_1 = \frac{1}{6} \sum_{i=1}^6 X_i, Y_2 = \frac{1}{3} \sum_{i=7}^9 X_i, S_*^2 = \frac{1}{2} \sum_{i=7}^9 (X_i - Y_2)^2,$ $Z = \frac{Y_1 - Y_2}{S_* / \sqrt{2}}.$ 求证 $Z \sim t(2).$

5 应用题 (2小题×10分=20分)

16. 在一正 20 面体的 20 个面上, 分别标以数字 $0,1,2,\cdots,9$, 每个数字在两个面上标出. 为检验它是否质地匀称, 共做了 800 次投掷试验, 数字 $0,1,2,\cdots,9$ 朝正上方的次数如下. 问: 能否在显著性水平 $\alpha=0.05$ 下认为该 20 面体是匀称的? $\chi^2_{0.05}(10)=18.307, \chi^2_{0.05}(9)=16.919, \chi^2_{0.025}(10)=20.483, \chi^2_{0.025}(9)=19.023.$

17. 某批矿砂的 5 个样品中的 Ni 含量经测定为 3.25%,3.27%,3.24%,3.26%,3.24%. 设测定值总体服从正态分布, 但参数 均未知. 问: 在显著性水平 $\alpha=0.01$ 下能否认为这批矿砂的 Ni 含量均值为 3.25%?