week8-lab-homework

Haily Kil March 1, 2017

housing <- read.csv("~/Desktop/eeb-177/Lab-Work/exercise-8/Rgraphics/dataSets/landdata-states.csv")
head(housing[1:5])</pre>

##		${\tt State}$	region	Date	${\tt Home.Value}$	Structure.Cost
##	1	AK	West	2010.25	224952	160599
##	2	AK	West	2010.50	225511	160252
##	3	AK	West	2009.75	225820	163791
##	4	AK	West	2010.00	224994	161787
##	5	AK	West	2008.00	234590	155400
##	6	AK	West	2008.25	233714	157458

hist(housing\$Home.Value)

library(ggplot2)

Histogram of housing\$Home.Value

housing\$Home.Value

```
ggplot(housing, aes(x = Home.Value)) + geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
plot(Home.Value ~ Date, data=subset(housing, State == "MA"))
points(Home.Value ~ Date, col = "red", data=subset(housing, State == "TX"))
legend(1975, 400000, c("MA", "TX"), title="State", col=c("black", "red"), pch=c(1, 1))
```



```
help.search("geom_", package = "ggplot2")
hp2001Q1 <- subset(housing, Date == 2001.25)
ggplot(hp2001Q1, aes(y = Structure.Cost, x = Land.Value)) + geom_point()</pre>
```



```
hp2001Q1$pred.SC <- predict(lm(Structure.Cost ~ log(Land.Value), data = hp2001Q1))

p1 <- ggplot(hp2001Q1, aes(x = log(Land.Value), y = Structure.Cost))

p1 + geom_point(aes(color = Home.Value)) +
    geom_line(aes(y = pred.SC))</pre>
```


`geom_smooth()` using method = 'loess'

library("ggrepel")
p1 +geom_point() + geom_text_repel(aes(label=State), size = 3)

p1 + geom_point(aes(size = 2), color="red")

Warning: Removed 1 rows containing missing values (geom_point).

dat <- read.csv("~/Desktop/eeb-177/Lab-Work/exercise-8/Rgraphics/dataSets/EconomistData.csv")
head(dat)</pre>

```
Country HDI.Rank
##
     Х
                              HDI CPI
                                                 Region
## 1 1 Afghanistan
                        172 0.398 1.5
                                           Asia Pacific
## 2 2
                         70 0.739 3.1 East EU Cemt Asia
           Albania
## 3 3
                         96 0.698 2.9
                                                    MENA
           Algeria
## 4 4
            Angola
                        148 0.486 2.0
                                                     SSA
                         45 0.797 3.0
## 5 5
         Argentina
                                               Americas
                         86 0.716 2.6 East EU Cemt Asia
## 6 6
           Armenia
p2 <- ggplot(dat, aes(x = CPI, y = HDI, size = HDI.Rank)) + geom_point()
p2 + geom_point(aes(size = 2), color="blue")
```


p2 + geom_point(aes(shape = Region, color=HDI.Rank))

housing <- read.csv("~/Desktop/eeb-177/Lab-Work/exercise-8/Rgraphics/dataSets/landdata-states.csv")
p2 <- ggplot(housing, aes(x = Home.Value))
p2 + geom_histogram()</pre>

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p2 + geom_histogram(stat = "bin", binwidth=4000)

housing.sum <- aggregate(housing["Home.Value"], housing["State"], FUN=mean)
rbind(head(housing.sum), tail(housing.sum))</pre>

```
State Home. Value
##
## 1
         AK 147385.14
## 2
         AL
              92545.22
## 3
              82076.84
         AR
         AZ 140755.59
## 4
## 5
         CA 282808.08
## 6
         CO 158175.99
## 46
         VA 155391.44
## 47
         VT
            132394.60
         WA 178522.58
## 48
         WI 108359.45
## 49
              77161.71
## 50
         WV
## 51
            122897.25
         WY
ggplot(housing.sum, aes(x=State, y=Home.Value)) +
  geom_bar(stat="identity")
```



```
dat <- read.csv("~/Desktop/eeb-177/Lab-Work/exercise-8/Rgraphics/dataSets/EconomistData.csv")
p2 <- ggplot(dat, aes(x = CPI, y = HDI, size = HDI.Rank)) + geom_point()
p2 + geom_point(aes(size = 2), color="blue")</pre>
```


p2 + geom_point(aes(shape = Region, color=HDI.Rank))

`geom_smooth()` using method = 'loess'

`geom_smooth()` using method = 'loess'


```
dat$pred.SC <- predict(lm(HDI ~ log(CPI), data = dat))
p2 <- ggplot(dat, aes(x = log(CPI), y = HDI))
p2 + geom_point(aes(color = HDI.Rank)) + geom_line(aes(y = pred.SC))</pre>
```


p4 + scale_x_discrete(name="State Abbreviation") + scale_color_continuous(name="", breaks = c(1976, 19

State Abbreviation

p4 + scale_x_discrete(name="State Abbreviation") + scale_color_continuous(name="", breaks = c(1976, 1996)


```
dat <- read.csv("~/Desktop/eeb-177/Lab-Work/exercise-8/Rgraphics/dataSets/EconomistData.csv")
p2 <- ggplot(dat, aes(x = CPI, y = HDI, size = HDI.Rank)) + geom_point()
p2 + geom_point(aes(size = 2), color="blue")</pre>
```


ggplot(dat, aes(x=Region, y=HDI)) + geom_bar(stat="identity")

p3 <- ggplot(dat, aes(x = Region, y = HDI)) + theme(legend.position="top", axis.text=element_text(size = (p4 <- p3 + geom_point(aes(color = HDI.Rank), alpha = 0.5, size = 1.5, position = position_jitter(width

