Lecture_4

Lecture_4

Introduction

Benefits of Cams

8.1 Cam Terminology

Classifications of Cam-follower Systems

Type of Follower Motion

Type of Cam

Type of Joint Closure

Type of Follower

Type of Cam

Type of Motion Constraints

Type of Motion Constraints

8.2 S V A J Diagrams

8.3 Double-Dwell Cam Design Choosing S V A J Functions

The Fundamental Law of Cam Design

Simple Harmonic Motion (SHM)

Introduction

A **cam** is a specially shaped piece of metal arranged to move a follower in a controls fashion.

A follower is a link or linkage train that is

Benefits of Cams

- Function Generation
- A degenerate form of a pure fourbar linkage
- Effective link length

8.1 Cam Terminology

Classifications of Cam-follower Systems

Type of Follower Motion

translating

(a) An oscillating cam-follower has an effective pin-jointed fourbar equivalent

Type of Cam

- radical
- cylindrical
- three-dimensional

Type of Joint Closure

force-closed

(a) An oscillating cam-follower has an effective pin-jointed fourbar equivalent

(b) A translating cam-follower has an effective fourbar slider-crank equivalent

form closed

Type of Follower

- curved (mushroom)
- flat-faces
- roller

Type of Cam

- radial cam (the figures above are all radical cams)
- axial cam

• three-dimensional cam

Type of Motion Constraints

- critical extreme position
- critical path motion

Type of Motion Constraints

- rise-fall
- rise-fall-dwell
- rise-dwell-fall-dwell

dwell: at zero displacement for 90 degrees (low dwell)

8.2 S V A J Diagrams

Segment Number	Function Used	Start Angle	End Angle	Delta Angle
1	Cycloid rise	0	60	60
2	Dwell	60	90	30
3	ModSine fall	90	150	60
4	Dwell	150	180	30
5	ModTrap rise	180	240	60
6	Dwell	240	270	30
7	SimpHarm fall	270	330	60
8	Dwell	330	360	30

(b) Plots of cam-follower's svaj diagrams

8.3 Double-Dwell Cam Design Choosing S V A J Functions

The Fundamental Law of Cam Design

Thw cam function must be continuous through the first and second derivatives of displacement across the entire interval

The jerk function must be finite across the entire interval

Simple Harmonic Motion (SHM)

$$s = \frac{h}{2}[1 - \cos{(\pi \frac{\theta}{\beta})}]$$

$$v = rac{\pi}{eta} rac{h}{2} \mathrm{sin} \left(\pi rac{ heta}{eta}
ight)$$

$$a=rac{\pi^2}{eta^2}rac{h}{2}{
m cos}\,(\pirac{ heta}{eta})$$

$$j = -\frac{\pi^3}{\beta^3} \frac{h}{2} \sin{(\pi \frac{\theta}{\beta})}$$