

produit scalaire dans le plan

Rroduit scalaire de deux vecteurs :

- A. Norme d'un vecteur :
 - a. Définition :

Soit \vec{u} un vecteur du plan (P), A et B deux points de (P) tel que : $\vec{u} = \overrightarrow{AB}$.

La distance entre A et B est notée par AB ou encore AB ou encore On lit la norme du vecteur u ou AB.

$$\mathbf{Donc} \ \| \overrightarrow{\mathbf{AB}} \| = \mathbf{AB}$$

- **B.** Produit scalaire de deux vecteurs :
 - a. Définition :

 \vec{u} et \vec{v} deux vecteurs du plan tel que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ le produit scalaire de \vec{u} et \vec{v} est noté \vec{u} . \vec{v} tel que :

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AH}$$
 si \overrightarrow{AB} et \overrightarrow{AH} ont même sens. (1er cas)

- $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = -\overrightarrow{AB} \times \overrightarrow{AH}$ si \overrightarrow{AB} et \overrightarrow{AH} ont les sens opposés. (2^{ième} cas)
- **b.** Remarque:
- La projection orthogonale de \mathbf{B} sur la droite (\mathbf{AB}) est \mathbf{B} d'où : $\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AB}} = \mathbf{AB} \times \mathbf{AB} = \mathbf{AB}^2 \geq \mathbf{0}$ on note $\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{u}}$ ou $\overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AB}}$ par $\overrightarrow{\mathbf{u}}^2$ ou $\overrightarrow{\mathbf{AB}}^2$ on lit le carré scalaire de est appelé le carré scalaire de $\overrightarrow{\mathbf{u}}$ ou de $\overrightarrow{\mathbf{AB}}$ est nombre positif de même $\overrightarrow{\mathbf{AB}}^2$ est nombre positif .
- On a: $\overrightarrow{AB}^2 = \overrightarrow{AB}^2 = \|\overrightarrow{AB}\|^2$ d'où $\|\overrightarrow{AB}\| = \sqrt{\overrightarrow{AB}^2}$ de même on a $\|\overrightarrow{u}\| = \sqrt{\overrightarrow{u}^2}$
- $\mathbf{u}^2 = \left\| \mathbf{u} \right\|^2$

La forme trigonométrique du produit scalaire de deux vecteurs non nuls : $(\overrightarrow{AB} \neq \overrightarrow{0} \text{ et } \overrightarrow{AC} \neq \overrightarrow{0})$

- A. La forme trigonométrique du produit scalaire de deux vecteurs non nuls :
 - a. Activité:
- \vec{u} et \vec{v} deux vecteurs non nuls du plan tel que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.
- et H la projection orthogonale du point C sur la droite (AB) $(A \neq B)$ car $\vec{u} \neq \vec{0}$.
- On considère l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ et de mesures $(\overrightarrow{\overline{AB}, \overrightarrow{AC}}) \equiv \alpha \ [2\pi]$.
 - 1. Pour chaque cas exprimer AH en fonction de AC et $\cos \alpha$.

produit scalaire dans le plan

$$\rightarrow$$
 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

$$\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AC}} = \mathbf{AB} \times \mathbf{AH}$$

 $(\overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ ont même sens})$

On a :
$$\cos \alpha = \frac{AH}{AC}$$
 d'où $AH = AC \times \cos \alpha$

Donc:
$$\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AC}}$$

$$= AB \times AH$$

=
$$AB \times AH \times \cos \alpha$$

Conclusion:

$$\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AC}} = \mathbf{AB} \times \mathbf{AH}$$

$$= AB \times AH \times \cos\left(\overline{\overrightarrow{AB}, \overrightarrow{AC}}\right)$$

$$\mathbf{u}.\mathbf{v} = \mathbf{AB}.\mathbf{AC} = -\mathbf{AB} \times \mathbf{AH}$$

($\mathbf{\overline{AB}}$ et $\mathbf{\overline{AH}}$ ont les sens opposés)

On a :
$$\cos(\pi - \alpha) = \frac{AH}{AC}$$

d'où
$$-\cos\alpha = \frac{AH}{AC} \left(\cos(\pi - x) = -\cos x \right)$$

$$AH = AC \times cos(\pi - \alpha) = AC \times (-cos \alpha)$$

Donc:
$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AH} = \overrightarrow{AB} \times \overrightarrow{AH} \times \cos \alpha$$

Conclusion:

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH = AB \times AH \times \cos\left(\overline{\overrightarrow{AB}},\overline{\overrightarrow{AC}}\right)$$

<u>**b.**</u> Propriété 1 :

- \vec{u} et \vec{v} deux vecteurs non nuls du plan tel que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ et $(\vec{u}, \vec{v}) = (\overrightarrow{AB}, \overrightarrow{AC}) \equiv \alpha$ (2 π)
- La forme trigonométrique du produit scalaire de u et v est :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \cos \alpha$$
 ou encore $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \cos \alpha$

c. Remarque:

Le produit scalaire des vecteurs $\vec{v} = \overrightarrow{CD}$ et $\vec{u} = \overrightarrow{AB}$ est :

le nombre réel $\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\overrightarrow{C'D'}$ tel que D' et C' sont respectivement les projections orthogonales de C et D sur la droite (AB).

- **B.** Orthogonalité de deux vecteurs :
 - a. Activité:

 \vec{u} et \vec{v} deux vecteurs non nuls du plan tel que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

1. Donner la forme trigonométrique de u.v.

produit scalaire dans le plan

2. Donner la condition nécessaire et suffisante pour que \vec{u} et \vec{v} sont orthogonales.

b. Propriété 2 :

Soient $\overrightarrow{\mathbf{u}}$ et $\overrightarrow{\mathbf{v}}$ et $\overrightarrow{\mathbf{w}}$ trois vecteurs du plan (\mathbf{P}) , on a :

Les vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$, on note $\vec{u} \perp \vec{v}$.

C. Propriétés du produit scalaire :

a. Propriétés:

Soient u et v et w trois vecteurs du plan (P), on a

Linéarité du produit scalaire :
$$\begin{cases} (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} \\ \vec{w} \cdot (\vec{u} + \vec{v}) = \vec{w} \cdot \vec{u} + \vec{w} \cdot \vec{v} \\ (\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha \times (\vec{u} \cdot \vec{v}) \end{cases}$$

2. Positivité du produit scalaire : $\overrightarrow{\mathbf{u}}^2 \geq \mathbf{0}$.

3. produit scalaire est non dégénéré : $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$.

<u>b.</u> conséquences :

Soient u et v deux vecteurs du plan (P), on a

3.
$$(\vec{\mathbf{u}} + \vec{\mathbf{v}})(\vec{\mathbf{u}} - \vec{\mathbf{v}}) = \vec{\mathbf{u}}^2 - \vec{\mathbf{v}}^2 = ||\vec{\mathbf{u}}||^2 - ||\vec{\mathbf{v}}||^2$$

$$4. \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \frac{1}{2} \left[\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\|^2 - \|\vec{\mathbf{u}}\|^2 - \|\vec{\mathbf{v}}\|^2 \right]$$

<u>c.</u> Démonstration (pour la 1ère propriété)

On a:
$$(\vec{\mathbf{u}} + \vec{\mathbf{v}})^2 = (\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot (\vec{\mathbf{u}} + \vec{\mathbf{v}}) = \vec{\mathbf{u}}^2 + 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{v}}^2 = ||\vec{\mathbf{u}}||^2 + 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + ||\vec{\mathbf{v}}||^2$$
; (car $\vec{\mathbf{u}}^2 = ||\vec{\mathbf{u}}||^2$)

Conclusion:
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$$

 $\underline{\underline{\mathbf{d}}}. \quad \mathbf{Exemple}: \vec{\mathbf{u}}.\vec{\mathbf{v}} = 7 \quad \text{et} \quad \left\| \vec{\mathbf{u}} \right\| = 4 \quad \text{et} \quad \left\| \vec{\mathbf{v}} \right\| = 7.$

1. Calculons:
$$(\vec{u} + \vec{v}) \cdot \vec{u}$$

On a:
$$(\vec{u} + \vec{v}) \cdot \vec{u} = \vec{u}^2 + \vec{v} \cdot \vec{u}$$

produit scalaire dans le plan

þage

$$= \|\vec{\mathbf{u}}\|^2 + \vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$$

$$= 4^2 + 7 = 23$$
Conclusion: $(\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot \vec{\mathbf{u}} = 23$

2. Calculons:
$$(\vec{u} + \vec{v})^2$$
.

On a:
$$(\vec{\mathbf{u}} + \vec{\mathbf{v}})^2 = \vec{\mathbf{u}}^2 + 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{v}}^2$$

$$= ||\vec{\mathbf{u}}||^2 + 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + ||\vec{\mathbf{v}}||^2$$

$$= 4^2 + 2 \times 7 + 7^2$$

$$= 79$$

Conclusion:
$$(\vec{u} + \vec{v})^2 = 79$$
.

3. Calculons
$$(2\vec{u})(-4\vec{v})$$

On a:
$$(2\vec{u})(-4\vec{v}) = 2 \times (-4) \times \vec{u} \cdot \vec{v}$$

= -8×7
= -56

Conclusion:
$$(2\vec{u})(-4\vec{v}) = -56$$

Applications du produit scalaire :

- **<u>A.</u>** Les relations métriques dans un triangle rectangle :
 - a. Activité:

ABC est un triangle rectangle en A; le point H est la projection orthogonale de A sur la droite (BC).

- 1. Calculer cos B en utilise les deux triangles ABC et ABH.
- 2. Montrer que : $BA^2 = BH \times BC$.
- 3. Montrer que :

$$AH^2 = AB^2 - HB^2$$
 puis $AH^2 = AC^2 - HC^2$.

- 4. En déduit que : $2AH^2 = BC^2 (HB^2 + HC^2)$.
- 5. On remarque que : $(HB+HC)^2 2HB \times HC = BC^2 2HB \times HC$. On déduit $AH^2 = HB \times HC$
- <u>b.</u> Propriété :

ABC est un triangle rectangle en A; le point H est la projection orthogonale de A sur la droite (BC)

On a:

- $BA^2 = BH \times BC$ et $CA^2 = CH \times CB$.
- $AH^2 = HB \times HC$.

On les appelle les relations métriques dans un triangle rectangle.

produit scalaire dans le plan

- B. Théorème d' El Kashi : (غيات الدين الحمشى الكاشي) :
 - a. Théorème d' El Kashi:

Dans tout triangle ABC on pose AB=c et AC=b et BC=a on a:

$$BC^2 = BA^2 + AC^2 - 2AB \times AC\cos A$$
 ou encore $a^2 = c^2 + b^2 - 2c \times b\cos A$.

$$AC^2 = AB^2 + BC^2 - 2AB \times BC \cos B$$
 ou encore $b^2 = c^2 + a^2 - 2c \times a \cos B$.

$$AB^2 = AC^2 + CB^2 - 2AC \times CB \cos C$$
 ou encore $c^2 = b^2 + a^2 - 2b \times a \cos C$.

b. Démonstration :

On a:
$$BC^{2} = (\overrightarrow{BC} + \overrightarrow{CA})^{2}$$
$$= BA^{2} + AC^{2} + 2\overrightarrow{BC}.\overrightarrow{CA}$$
$$= BA^{2} + AC^{2} - 2AB \times AC\cos A$$

Conclusion: $BC^2 = BA^2 + AC^2 - 2AB \times AC\cos A$.

c. Exemple:

On calcule AC sachant que: BA =
$$\sqrt{2}$$
 et BC = 5 et ABC = $\frac{\pi}{4}$.

On a:

$$AC^{2} = AB^{2} + BC^{2} - 2AB \times BC \cos B$$
$$= \sqrt{2}^{2} + 5^{2} - 2\sqrt{2} \times 5 \cos \frac{\pi}{4}$$
$$= 19$$

Conclusion: AC = 19.

- C. Théorème de la médiane :
 - a. Théorème:

Soit un segment [AB] du plan (P), le point I est son milieu.

Pour tout point M du plan (P) on a: $MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$.

b. Démonstration :

On a:
$$MA^2 + MB^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2$$

$$= \overrightarrow{MI}^2 + 2\overrightarrow{MI}.\overrightarrow{IA} + \overrightarrow{IA}^2 + \overrightarrow{MI}^2 + 2\overrightarrow{MI}.\overrightarrow{IB} + \overrightarrow{IB}^2$$

$$= 2\overrightarrow{MI}^2 + 2\overrightarrow{MI}.(\overrightarrow{IA} + \overrightarrow{IB}) + 2\overrightarrow{IA}^2$$

$$= 2MI^2 + 2IA$$

$$= 2MI^2 + \frac{1}{2}AB^2$$

