Πληροφοριακά Συστήματα Οργάνωσης Παραγωγής

Χωροταξία Γραμμών Παραγωγής (Το πρόβλημα ALBP-2)

Η μέθοδος κάτω ορίου για την επίλυση του ALBP-2

- **Θέσε** το c= LB_c.
- Επανέλαβε τα πιο κάτω 2 βήματα μέχρι να βρεθεί έγκυρη λύση εξισορρόπησης
 - 1. Προσπάθησε να εντοπίσεις μια έγκυρη λύση εξισορρόπησης για το ζεύγος τιμών (m, c).
 - 2. Αν δεν υπάρχει τέτοια λύση τότε αύξησε το c κατά 1
- Επέστρεψε την τελευταία λύση εξισορρόπησης που βρέθηκε μαζί με την τιμή του c

Παράδειγμα ALBP-2

- Θεωρείστε μια γραμμή συναρμολόγησης με το πιο κάτω δίκτυο εργασιών.
- Στην γραμμή υπάρχουν 4 σταθμοί εργασίας.
- Ποιός είναι ο βέλτιστος χρόνος κύκλου εργασίας (cycle time) της γραμμής;
- Για την ανάθεση των εργασιών στους σταθμούς να εφαρμοστεί ο κανόνας SPT. Σε ισοπαλία να εφαρμόζεται ο κανόνας FCFS.

Παράδειγμα ALBP-2

- Αθροίζοντας τους χρόνους των εργασιών έχουμε: p_{sum} = 45 λεπτά
- m=4 σταθμοί. Ζητάμε τον ελάχιστο cycle time C_{min}
- Μέθοδοι υπολογισμού του c.
- Χρησιμοποιούνται συνήθως οι πιο κάτω ευρετικές μέθοδοι οι οποίες ψάχνουν με ένα επαναληπτικό τρόπο για το c_{min} στο διάστημα τιμών [LB_c, UB_c]
- 1. Μέθοδος κάτω ορίου (Lower Bound).
- 2. Μέθοδος άνω ορίου (Upper bound)
- 3. Μέθοδος δυαδικής αναζήτησης (binary search method)
- Omou, LB_c = Lower Bound (Kát ω óριο) για το c και
- UB_c= Upper Bound (Άνω όριο) για το c

Παράδειγμα ALBP-2

- Αθροίζοντας τους χρόνους των εργασιών έχουμε: p_{sum} = 45 λεπτά
- m=4 σταθμοί. Ζητάμε τον ελάχιστο cycle time C_{min}
- Μέθοδοι υπολογισμού του c.
- Χρησιμοποιούνται συνήθως οι πιο κάτω ευρετικές μέθοδοι οι οποίες ψάχνουν με ένα επαναληπτικό τρόπο για το c_{min} στο διάστημα τιμών [LB_c, UB_c]
- 1. Μέθοδος κάτω ορίου (Lower Bound).
- 2. Μέθοδος άνω ορίου (Upper bound)
- 3. Μέθοδος δυαδικής αναζήτησης (binary search method)
- Omou, LB_c = Lower Bound (Kát ω óριο) για το c και
- UB_c= Upper Bound (Aνω όριο)

3 3 5

$$LB_c = \max(p_{\max}, p_{sum}/m)$$

$$UB_c = \max(p_{\text{max}}, 2p_{\text{sum}}/m)$$

Υποψήφιες εργασίες	Επιλογή Εργασίας	Σταθμός k	S _k
1, 2	2	1	3
1, 5	5		6
1	1		11
3, 4	4	2	3
3	3		8
6, 7	6	3	5
7, 8	8		9
7	7	4	5
9	9		11
10	10	5	5
11	11		6

1η επανάληψη:

 $c = max(p_{max}; p_{sum}/m) = max(6; 45/4) = max(6; 11,25) = 12 \lambda \epsilon \pi \tau \alpha$

- Παρατηρούμε ότι η λύση δεν είναι έγκυρη γιατί αριθμός των σταθμών που προέκυψε (=5) ξεπερνά τον επιθυμητό αριθμό m=4.
- Έτσι, επαναλαμβάνουμε την ίδια διαδικασία θέτοντας το c=c+1=13.

Υποψήφιες	Επιλογή	Σταθμός	S_k
εργασίες	Εργασίας	k	
1, 2	2	1	3
1, 5	5		6
1	1		11
3, 4	4	2	3
3	3		8
6, 7	6		13
7, 8	8	3	4
7	7		9
9	9	4	6
10	10		11
11	11		12

2^η **επανάληψη**: *c*= 13 λεπτά

•Έγκυρη λύση:

BD = 2+0+4+1= 7 λεπτά

 $E=p_{sum}/(m^*c) = 45/(4^*13) = 0.865 \approx 86.5\%$

Άσκηση: Επίλυση ALBP-2: για m = 3

Για την επιλογή των εργασιών να εφαρμοστεί ο κανόνας MFT. Σε περίπτωση ισοπαλίας να εφαρμόζεται ο κανόνας SPT, σε νέα ισοπαλία ο κανόνας FCFS.

