MATH 4032: HOMEWORK #2 DUE FEBRUARY 3 AT 1:59PM

You are strongly encouraged to typeset your homework solutions using LATEX.

The relevant background material for this assignment is covered in Chapters 3.4–3.8 and 7 of the Matoušek–Nešetřil book.

The following problems are optional exercises not to be turned in. Problems to be turned in for a grade begin on the next page.

Exercise 1. In class we proved that $\binom{n}{k} \leq (en/k)^k$ for every $n \in \mathbb{N}$ and $k \in [n]$. Provide alternative proofs

- (1) using induction on k and
- (2) algebraically, using the bounds $e(n/e)^n \le n! \le en(n/e)^n$.

Exercise 2. Using Stirling's formula, prove that $\binom{2m}{m} \sim 2^{2m}/\sqrt{\pi m}$.

Exercise 3. Use the Inclusion-Exclusion Principle to count the number of numbers less than 100 that are not divisible by a square of any integer greater than 1.

Exercise 4. Recall that D(n) is the number of derangements of an n-element set. Prove that the number of permutations of an n-element set with exactly k fixed points is $\binom{n}{k}D(n-k)$.

Exercise 5. Prove that

$$D(n) = n! - \sum_{k=1}^{n} \binom{n}{k} D(n-k).$$

Recall that the *n*th harmonic number is $H_n = \sum_{i=1}^n 1/i$.

Problem 1. Prove that

$$\ln n < H_n \le 1 + \ln n$$

for every $n \in \mathbb{N}$. Hint: Use induction on n. Use the fact that $e^x > 1 + x$ to prove that $\ln n + 1/n < \ln(n+1)$.

Proof. Let $H_n = \sum_{i=1}^n \frac{1}{i}$ as is defined above. Consider then,

$$\ln(n) = \int_1^n \frac{1}{x} dx$$

$$= \sum_{i=1}^{n-1} \int_i^{i+1} \frac{1}{x} dx$$

$$\leq \sum_{i=1}^{n-1} \int_i^{i+1} \frac{1}{i} dx$$

$$= H_{n-1}$$

$$< H_n.$$

Similarly, we then have that

$$\ln(n) = \int_{1}^{n} \frac{1}{x} dx$$

$$= \sum_{i=1}^{n-1} \int_{i}^{i+1} \frac{1}{x} dx$$

$$\geq \sum_{i=1}^{n-1} \int_{i}^{i+1} \frac{1}{i+1} dx$$

$$= H_{n} - 1.$$

This then implies that

$$\ln(n) < H_n \le 1 + \ln(n)$$

as desired.

Recall that $\pi(n)$ is the number of primes in the set [n]. In class, we proved $\pi(n) = O(n/\ln n)$. In the following problem, you will prove $\pi(n) = \Omega(n/\ln n)$, which completes the proof of the "Weak Prime Number Theorem".

For $n \in \mathbb{N}$ and a prime p, let $\nu_p(n)$ denote the largest integer k such that $p^k \mid n$. Equivalently, $\nu_p(n)$ is the exponent to which p appears in the prime factorization of n.

Problem 2. Prove the following, and conclude that $\pi(n) = \Omega(n/\ln n)$.

(a) Prove that every prime p and every $n \in \mathbb{N}$ satisfies

$$\nu_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Proof. Let assumptions be as in the problem statement, given that $\nu_p(n)$ denotes the largest k such that p^k divides n. By the definition n! is the product of $\{1,2,...,n\}$ so we know we will have at least one factor of p in n! for each multiple of p in $\{1,2,...,n\}$ and there will be $\lfloor \frac{n}{p} \rfloor$ is a multiple of p. Similarly, we will have a factor of p^2 which will contribute an additional factor of p and then $\lfloor \frac{n}{p^2} \rfloor$ will be a multiple of p^2 in the set $\{1,2,...,n\}$ and so on. Now, let's say that k is the largest factor of p such that $p^k \mid n!$. Then we know for j > k that p^j will not divide any $\{1,2,...,n\}$ implying that $p^j > n \forall j > k$ further implying that $\lfloor \frac{n}{p^j} \rfloor = 0 \forall j > k$. Thus, we have that $\nu_p(n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + ... + \lfloor \frac{n}{p^k} \rfloor + 0 + 0... \Rightarrow \nu_p(n!) = \sum_{k=1}^k \lfloor \frac{n}{p^k} \rfloor + \sum_{\zeta > k} \lfloor \frac{n}{p^\zeta} \rfloor \Rightarrow \nu_p(n!) = \sum_{k=1}^\infty \lfloor \frac{n}{p^k} \rfloor$ as desired.

(b) Using (a), prove that every prime p and every $n \in \mathbb{N}$ satisfies

$$\nu_p\left(\binom{2n}{n}\right) = \sum_{k=1}^{\infty} \left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2\left\lfloor \frac{n}{p^k} \right\rfloor\right)$$

Hint: Use that $\binom{2n}{n} = (2n)!/(n!)^2$.

Proof. We know that $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$. By definition of $\nu_p(n)$ we know that $p^k \mid n$. Then we have that $\nu_p(\binom{2n}{n}) = \nu_p(\frac{(2n)!}{n!^2}) = \nu_p((2n)!) - \nu_p((n!))^2 = \nu_p((2n)!) - (\nu_p(n!) + \nu_p(n!))$. Also note, $\nu_p((n!)^2) = \nu_p(n!) + \nu_p(n!)$ as the power of p will be twice in $(n!)^2$. Then, $\nu_p((2n)!) - 2(\nu_p(n!)) = \sum_{k=1}^{\infty} (\lfloor \frac{2n}{n^k} \rfloor - 2\lfloor \frac{n}{n^k} \rfloor) = \nu_p(\binom{2n}{n})$ as desired.

(c) Prove that $|2n/m| - 2|n/m| \le 1$ for every $n, m \in \mathbb{N}$.

Proof. Let assumptions be as in the problem statement. We have three cases to consider. If $2n \leq m$ then we have that both floors will be equal to 0 satisfying the inequality. If we have that 2n = m then we know that $\lfloor \frac{n}{m} \rfloor = 0$ and $\lfloor \frac{2n}{m} \rfloor = 1$ which would also satisfy the inequality. Then if we have that n > m we will let $\lfloor \frac{n}{m} = j$ which we know will be $\frac{n}{m} \leq j < \frac{n}{m} + 1$ and similarly for $\lfloor \frac{2n}{m} \rfloor \leq 2j + 1$ implying that $2j + 1 - 2(j) \leq 1$ satisfying the inequality. Then for the last case we have that if 2n > m but n < m we have that the second floor is equal to 0 and we need to show that $\lfloor \frac{2n}{m} \rfloor \leq 1$ which means that we need to then show that $\frac{2n}{m} < 2 \Rightarrow \frac{n}{m} < 1$ which we know is true since we stated that n < m meaning that the inequality is satisfied. Thus, for all cases the inequality is satisfied as desired. \square

(d) Using (b) and (c), prove that

$$\nu_p\left(\binom{2n}{n}\right) \le \log_p(2n).$$

Proof. We know from part b that $\nu_p(\binom{2n}{n}) = \sum_{k=1}^{\infty} (\lfloor \frac{2n}{p^k} \rfloor - 2\lfloor \frac{n}{p^k} \rfloor)$ and from part c we have that $\lfloor \frac{2n}{m} \rfloor - 2\lfloor \frac{n}{m} \rfloor \leq 1$. If we combine these two statements we know that $\nu_p(\binom{2n}{n}) \leq \sum_{k=1}^{\infty} 1$. We are going to analyze the elements of this sum to find when the elements are equal to 0

and when they are equal to 1. In this sum we have that for all $k \leq \nu_p(2n)$. Thus the value for this summation is the power for which p divides 2n which is $\log_p(2n)$ as desired. \square

- (e) Using (d), prove that $\binom{2n}{n} \leq (2n)^{\pi(n)}$ for every $n \in \mathbb{N}$. Proof. By using part d, we are able to rewrite the prime factorization of $\binom{2n}{n}$ as the product of 2n times itself for every prime factor from $1 \to \binom{2n}{n} \Rightarrow (2n)^{\pi(\binom{2n}{n})}$. Then if we consider $\pi(\binom{2n}{n})$, the prime factors of $\binom{2n}{n}$ will always be less than 2n which means that we could then just simply use $\pi(n)$ say that $\binom{2n}{n} \leq (2n)^{\pi(n)}$ as desired.
- (f) Using (e), prove that $\pi(n) = \Omega(n/\log n)$. Hint: Use the fact that $\binom{2n}{n} \ge 2^n/(n+1)$.

Proof. If we start with $\binom{2n}{n} \leq (2n)^{\pi(n)}$ we can take the log of both sides to arrive at $\pi(n) = \log_{2n}(\binom{2n}{n})$. Then if we use a change of base we get that $\pi(n) = \frac{\log(\binom{2n}{n})}{\log(2n)}$ and since we know that $\binom{2n}{n} = 2^n$ we can simplify this to be $\frac{\log(2^n)}{\log(2n)} = \frac{n \log(2)}{\log(2) + \log(n)} = \Omega \frac{n}{\log(n)}$ as desired.

A proper coloring of a graph is an assignment of colors to its vertices such that adjacent vertices receive different colors. A k-coloring of a graph is a proper coloring that uses at most k colors.

Problem 3. Let $k \geq 5$. How many k-colorings are there of each of the graphs below? Prove your answer is correct. Hint: Use the Inclusion-Exclusion Principle to count colorings which are NOT proper. Associate with each edge e the set A_e of colorings which assign the same color to its ends.

I am honestly kind of stumped on this one sorry.

We say a permutation σ of [2n] has property P if

$$|\sigma(i) - \sigma(i+1)| = n$$

for some $i \in [2n]$ (in this problem, addition is modulo 2n, so $\sigma(2n+1)$ is defined to be $\sigma(1)$). For example, the following permutation of [6] has property P

1	2	3	4	5	6
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2	5	4	1	2	3

because $\sigma(2) - \sigma(1) = 3$.

Problem 4. Prove that, for each $n \in \mathbb{N}$, there are more permutations with property P than without it. Hint: Use the Inclusion-Exclusion Principle. For each $i \in [2n]$, consider the set A_i of permutations σ satisfying $|\sigma(i) - \sigma(i+1)| = n$, and show that $|A_i| = 2n(2n-2)!$ and $A_i \cap A_{i+1} = \emptyset$ for all $i \in [2n]$.

Proof. Let A_k be the set of permutations with k and k+n in neighboring positions as $|\sigma(i)-\sigma(i+1)|=|k-k+n|=|k+n-k|=n$ as per the problem definition. Let A be the set of permutations with property P, so that A is the union of the A_k . Then we have that $|A|=\sum_k |A_k|-\sum_{k< l}|A_k||+\sum_{k< l< m}|A_k||A_l|+A_m|-...$, this is an alternating sequence with decreasing terms, implying that $|A| \ge \sum_k |A_k| - \sum_{k< l}|A_k||A_l|$. Then we have that $|A_k| = 2(2n-1)!$ since we have two orders for k and k+n and then (2n-1)! ways of arranging the 2n-1 items if we treat k and k+n as a single item. Similarly $|A_k||A_l| = 4(2n-2)!$ so we have that $|A| \ge 2n^2(2n-2)! > (2n)!/2$. This shows then that there are more permuations with the property P than without the property P as desired.

Problem 5. Let $\mathcal{F} = \{A_1, \dots A_m\}$ be a family of subsets of a finite set X. For $x \in X$, let $d_{\mathcal{F}}(x)$ be the number of members of \mathcal{F} containing x. Prove that

$$\sum_{i=1}^{m} \sum_{j=1}^{m} |A_i \cap A_j| = \sum_{x \in X} d_{\mathcal{F}}(x)^2.$$

Proof. Let assumptions be as in the problem statement. Define a function $d_{\mathcal{F}}(x)$ be the number of elements of \mathcal{F} containing x for any $x \in X$. Then we have that $\sum_{i,j=1}^m |A_i \cap A_j| = \sum_{i=j}^m |A_i \cap A_j| + \sum_{i\neq j}^m |A_i \cap A_j|$ when $x \in A_i$ but $x \notin A_j$ then $A_i \cap A_j = \emptyset$ but when $A_i, A_j \subseteq X \Rightarrow x \in X, x \in A_i, A_j$ except for when $A_i, A_j = \emptyset$. then we know that $\sum_{i,j=1}^m |A_i \cap A_j| = \sum_{i,j=1}^m |A_i| + \sum_{i,j=1}^m |A_i \cap A_j| = \sum_{j=1}^m |A_i \cap A_j|$ (for fixed i in the last sum) will have m^2 possibilities as A_j will have m possibilities and A_i will also have m possibilities. Therefore, $\sum_{i=1}^m \sum_{j=1}^m |A_i \cap A_j| = \sum_{x \in X} d_{\mathcal{F}}(x)^2$ as desired. \square