Árboles Generales

Agenda

- Definición
- Descripción y terminología
- > Ejemplos
- Representaciones
- Recorridos

Definición

- > Un árbol es una colección de nodos, tal que:
 - puede estar vacía. (Árbol vacío)
 - puede estar formada por un nodo distinguido R, llamado $\mathit{raíz}$ y un conjunto de árboles $T_1, T_2, T_k, k \ge 0$ (subárboles), donde la raíz de cada subárbol T_i está conectado a R por medio de una arista

- *Grado* de n_i es el número de hijos del nodo n_i.
 - Grado del árbol es el grado del nodo con mayor grado.
- Altura de n_i es la longitud del camino más largo desde n_i hasta una hoja.
 - Las hojas tienen altura cero.
 - La altura de un árbol es la altura del nodo raíz.
- *Profundidad / Nivel*: de n_i es la longitud del único camino desde la raíz hasta n_i.
 - La raíz tiene profundidad o nivel cero.

Árbol lleno: Dado un árbol T de grado k y altura h, diremos que T es lleno si cada nodo interno tiene grado k y todas las hojas están en el mismo nivel (h).

Es decir, recursivamente, T es *lleno* si :

- 1.- T es un nodo simple (árbol lleno de altura 0), o
- 2.- T es de altura h y todos sus sub-árboles son llenos de altura h-1.

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)$ / (k-1) ya que:

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)/(k-1)$ ya que:

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)/(k-1)$ ya que:

$$N = k^0 + k^1 + k^2 + k^3 + ... + k^h$$

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)/(k-1)$ ya que:

Nivel $0 \rightarrow k^0$ nodos

Nivel $1 \rightarrow k^1$ nodos

Nivel $2 \rightarrow k^2 \text{ nodos}$

Nivel $3 \rightarrow k^3$ nodos

$$N = k^0 + k^1 + k^2 + k^3 + ... + k^h$$

La suma de los términos de una serie geométrica de razón k es:

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)/(k-1)$ ya que:

Nivel $0 \rightarrow k^0$ nodos

Nivel $1 \rightarrow k^1 \text{ nodos}$

Nivel $2 \rightarrow k^2$ nodos

Nivel $3 \rightarrow k^3$ nodos

$$N = k^0 + k^1 + k^2 + k^3 + ... + k^h$$

La suma de los términos de una serie geométrica de razón k es:

$$(k^{h+1}-1)/(k-1)$$

• Cantidad de nodos en un árbol completo:

Sea T un árbol completo de grado k y altura h, la cantidad de nodos N varía entre $(k^h+k-2)/(k-1)$ y $(k^{h+1}-1)/(k-1)$ ya que ...

• Cantidad de nodos en un árbol completo:

Sea T un árbol completo de grado k y altura h, la cantidad de nodos N varía entre $(k^h+k-2)/(k-1)$ y $(k^{h+1}-1)/(k-1)$ ya que ...

• Cantidad de nodos en un árbol completo:

Sea T un árbol completo de grado k y altura h, la cantidad de nodos N varía entre $(k^h+k-2)/(k-1)$ y $(k^{h+1}-1)/(k-1)$ ya que ...

• Si no, el árbol es lleno en la altura h-1 y tiene por lo menos un nodo en el nivel h: $\mathbf{N} = (\mathbf{k}^{h-1+1}-1)/(\mathbf{k}-1)+1=(\mathbf{k}^h+\mathbf{k}-2)/(\mathbf{k}-1)$

Ejemplos

- ✓ Organigrama de una empresa
- ✓ Árboles genealógicos
- ✓ Taxonomía que clasifica organismos
- ✓ Sistemas de archivos
- Organización de un libro en capítulos y secciones

Ejemplo: Sistema de archivos

Representaciones

- ✓ Lista de hijos
 - Cada nodo tiene:
 - Información propia del nodo
 - Una lista de todos sus hijos
- ✓ Hijo más izquierdo y hermano derecho
 - Cada nodo tiene:
 - Información propia del nodo
 - Referencia al hijo más izquierdo
 - Referencia al hermano derecho

Representación: Lista de hijos

- ✓ La lista de hijos, puede estar implementada a través de:
 - Arreglos
 - · Desventaja: espacio ocupado
 - Listas dinámicas
 - Mayor flexibilidad en el uso

Representación: Lista de hijos

Implementada con Arreglos

Representación: Lista de hijos

Implementada con Listas enlazadas

Representación: Hijo más izquierdo y hermano derecho

Recorridos

> Preorden

Se procesa primero la raíz y luego los hijos

> Inorden

Se procesa el primer hijo, luego la raíz y por último los restantes hijos

Postorden

Se procesan primero los hijos y luego la raíz

Por niveles

Se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

Árbol General Recorrido en preorden

Ejemplo: Listado del contenido de un directorio

Árbol General Recorrido en postorden


```
public void postOrden() {
   obtener lista de hijos;
   mientras (lista tenga datos) {
       hijo  obtenerHijo;
       hijo.postOrden();
   }
  imprimir (dato);
}
```

Recorrido: Postorden

Ejemplo: Calcular el tamaño ocupado por un directorio

Árbol General Recorrido por niveles


```
public void porNiveles() {
    encolar(raíz);
    mientras cola no se vacíe {
        v 	 desencolar();
        imprimir (dato de v);
        para cada hijo de v
        encolar(hijo);
    }
}
```

Ejercicio

Dado el siguiente árbol, escriba los recorridos preorden, inorden y postorden

Ejercicio

Abeto navideño

Problem - B - Codeforces

Considere un árbol general. Recordemos que el vértice \boldsymbol{u} se llama <u>hijo</u> del vértice \boldsymbol{v} y el vértice \boldsymbol{v} se llama <u>padre</u> del vértice \boldsymbol{u} si existe una arista dirigida de \boldsymbol{v} a \boldsymbol{u} . El árbol tiene un vértice distinguido llamado **raíz**, que es el único vértice que no tiene padre. Un vértice se llama **hoja** si no tiene hijos y tiene padre.

Llamaremos <u>abeto</u> a un árbol si cada vértice no hoja tiene al menos 3 hijos hojas. Dado un árbol general, compruebe si es un abeto.

Input

La primera línea contiene un entero n: el número de vértices en el árbol ($3 \le n \le 1000$). Cada una de las siguientes n - 1 líneas contiene un entero p_i ($1 \le i \le n - 1$) — el índice del padre del i + 1-ésimo vértice ($1 \le p_i \le i$).

El vértice 1 es la raíz. Está garantizado que la raíz tiene al menos 2 hijos.

Output

Imprima "Yes" si el árbol es un abeto y "No" de lo contrario.

Ejemplo 1

Ejemplo 2

Ejemplo 3

Input

Output

Yes

Input

Input

8

Output

No

