Biológia pre informatikov

Broňa Brejová 25.9.2025

Walther Flemming, 1881

Hlavné postavy

Deoxyribonukleová kyselina (DNA)

Obsahuje genetickú informáciu prenášanú z generácie na generáciu.

Dlhý reťazec nukleotidov z množiny $\{A,C,G,T\}$

(adenín, cytozín, guanín, tymín).

Informácia uložená v symbolickej, digitálnej forme.

Ribonukleová kyselina (RNA)

Blízka príbuzná DNA, tymín T nahradený uracylom U

Proteíny (bielkoviny)

Katalyzujú biochemické reakcie v bunke (enzýmy),

prenášajú signály v rámci bunky/medzi bunkami,

sú dôležité pre stavbu bunky a pohyb.

Reťazec aminokyselín (20 rôznych aminokyselín).

Aká informácia je uložená v DNA?

Gény: Predpisy na tvorbu proteínov a funkčných RNA molekúl.

Riadenie ich expresie: kedy a koľko sa má tvoriť.

Centrálna dogma (Francis Crick 1958,1970)

"The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid."

DNA, chromozómy

DNA: dve komplementárne vlákna, strands (páry A-T, C-G),

v opačnej orientácii (konce sa nazývajú 5' a 3').

Napr. ACCATG je komplementárny s CATGGT.

Tvar dvojitej špirály:

Dvojvláknová štruktúra poskytuje redundanciu, možnosť opravy pri poškodení jedného vlákna.

Pri delení bunky sa dvojvláknová DNA rozdelí a ku každému vláknu sa doplní komplement (DNA replikácia).

Chromozóm: Súvislý úsek dvojvláknovej DNA a podporných proteínov.

Ľudský genóm má 22 párov chromozómov plus dva pohlavné, spolu 3GB.

Technológia: sekvenovanie DNA

- Postup na zisťovanie poradia báz v chromozómoch genómu.
- Chromozómy sa nasekajú na krátke kúsky, každý sa sekvenuje zvlášť napr. Sangerovým sekvenovaním.
 - využíva prírodné enzýmy, napr. DNA polymerázu

Sangerovo sekvenovanie (Sanger sequencing)

Sekvenujeme AGCTAGGACT (zobrazená sprava doľava)

Primer AGT + enzýmy + nukleotidy + modifikované ofarbené nukleotidy

```
Výsledky sekvenovacej reakcie:
```

```
T C A G G A T C G A A G T C C T A G C T C C T A
```

 $\begin{smallmatrix} T \end{smallmatrix} C \begin{smallmatrix} A \end{smallmatrix} G \begin{smallmatrix} G \end{smallmatrix} A \begin{smallmatrix} T \end{smallmatrix} C \begin{smallmatrix} G \end{smallmatrix} A \\ A \begin{smallmatrix} G \end{smallmatrix} T \begin{smallmatrix} C \end{smallmatrix} C \begin{smallmatrix} T \end{smallmatrix} A \begin{smallmatrix} G \end{smallmatrix} C \begin{smallmatrix} T \end{smallmatrix}$

T C A G G A T C G A
A G T C C T

A G T C C T A G

T C A G G A T C G A A G T C

Na géli zoradíme podľa dĺžky:

AGTCCTAGCT AGTCCTAGC

AGTCCTAG

AGTCCTA

 $A\ G\ T\ C\ C\ {\color{red}T}$

AGTCC

AGTC

Odčítaním farieb dostaneme komplementárne vlákno: AGTCCTAGCT

Technológia: sekvenovanie DNA

- Postup na zisťovanie poradia báz v chromozómoch genómu.
- Chromozómy sa nasekajú na krátke kúsky, každý sa sekvenuje zvlášť napr. Sangerovým sekvenovaním.
 - využíva prírodné enzýmy, napr. DNA polymerázu
 - moderná technológia Illumina založená na podobnom princípe
- Bioinformatický problém: skladanie celej sekvencie z kúskov.
- Dostupnosť genómov umožňuje katalogizovať gény a iné funkčné úseky, hľadať podobnosti a rozdiely medzi druhmi a jedincami.

PCR (polymerase chain reaction)

Zvolíme si dva krátke úseky DNA (primery)

PCR testuje, či sú v DNA blízko seba (stovky, tisíce báz)

Ak áno, namnoží úsek medzi nimi

RNA

Ako sa líši od DNA?

- obsahuje ribózu namiesto deoxyribózy
- obsahuje uracil namiesto tymínu (bázy A,C,G,U)
- jednovláknové reťazce, zvyčajne kratšie
- zložitá sekundárna štruktúra: spárované komplementárne úseky

transferová RNA (tRNA)

Translácia

Kodón (trojica nukleotidov) určuje 1 aminokyselinu

Genetický kód

Ala / A	GCT, GCC, GCA, GCG	Leu / L	TTA, TTG, CTT, CTC, CTA, CTG
Arg / R	CGT, CGC, CGA, CGG, AGA, AGG	Lys / K	AAA, AAG
Asn / N	AAT, AAC	Met / M	ATG
Asp / D	GAT, GAC	Phe / F	TTT, TTC
Cys / C	TGT, TGC	Pro / P	CCT, CCC, CCA, CCG
Gln / Q	CAA, CAG	Ser / S	TCT, TCC, TCA, TCG, AGT, AGC
Glu / E	GAA, GAG	Thr / T	ACT, ACC, ACA, ACG
Gly / G	GGT, GGC, GGA, GGG	Trp / W	TGG
His / H	CAT, CAC	Tyr / Y	TAT, TAC
Ile / I	ATT, ATC, ATA	Val / V	GTT, GTC, GTA, GTG
START	ATG	STOP	TAA, TGA, TAG

Proteiny

Reťazce 20 rôznych aminokyselín s rôznymi chemickými vlastnosťami:

Aminokyselina	Postranný reťazec	Jeho vlastnosti
Alanín (A)	-CH3	hydrofóbny
Arginín (R)	-(CH2)3NH-C(NH)NH2	bázický
Asparagín (N)	-CH2CONH2	hydrofilný
Kyselina asparágová (D)	-CH2COOH	kyslý
Cysteín (C)	-CH2SH	hydrofóbny
Kyselina glutámová (E)	-CH2CH2COOH	kyslý
Glutamín (Q)	-CH2CH2CONH2	hydrofilný
Glycín (G)	-H	hydrofilný
Histidín (H)	-CH2-C3H3N2	bázický
Izoleucín (I)	-CH(CH3)CH2CH3	hydrofóbny
Leucín (L)	-CH2CH(CH3)2	hydrofóbny
Lyzín (K)	-(CH2)4NH2	bázický
Metionín (M)	-CH2CH2SCH3	hydrofóbny
Fenylalanín (F)	-CH2C6H5	hydrofóbny
Prolín (P)	-CH2CH2CH2-	hydrofóbny
Serín (S)	-CH2OH	hydrofilný
Treonín (T)	-CH(OH)CH3	hydrofilný
Tryptofán (W)	-CH2C8H6N	hydrofóbny
Tyrozín (Y)	-CH2-C6H4OH	hydrofóbny
Valín (V)	-CH(CH3)2	hydrofóbny

Štruktúra proteínov

Myoglobín, prvý proteín so známou štruktúrou (Kendrew a kol. 1958).

Proteíny často nadobudnú určitú stabilnú štruktúru, prípadne prechádzajú medzi niekoľkými stavmi.

Hydrofóbne aminokyseliny neinteragujú s vodou, zväčša sa vyskytujú vo vnútri štrukúry.

Štruktúra proteínu určuje jeho funkciu.

Regulácia expresie

Bunky v rôznych tkanivách toho istého organizmu zdieľajú ten istý genóm, vyzerajú a fungujú však veľmi rôzne.

Niektoré proteíny sa tvoria len za určitých okolností, alebo v premenlivom množstve.

Regulácia začatia transkripcie pomocou transkripčných faktorov:

Bioinformatický problém: zisti, ktoré faktory ovplyvňujú ktorý gén, kde presne sa viažu.

Technológia: microarray

Meranie množstva mRNA prítomnej v bunke pre **veľa génov** naraz. Zopakujeme za rôznych podmienok, študujeme korelácie medzi génmi. Môžu byť dôsledkom spoločného regulátora (transkripčného faktoru).

Bioinformatický problém:

niekoľko ko-regulovaných génov, nájdi motív, ku ktorému sa môže viazať spoločný transkripčný faktor (motif finding)

Príklad dát o expresii génov

Pomer expresie génu v meranej a kontrolnej vzorke fg/bg

Červená: fg>bg

Zelená: fg<bg

517 génov

19 experimentov

Mutácie DNA

V DNA občas dochádza k zmenám, mutáciám (napr. pod vplyvom prostredia, či chybou pri replikácii).

Typy mutácií:

substitúcia, substitution (jedna báza sa zmení na inú), inzercia, insertion (vloží sa niekoľko nových báz), delécia, deletion (vynechá sa niekoľko báz), zmeny väčšieho rozsahu (napr. translokácie).

Bioinformatické problémy:

Ktoré sekvencie vznikli z spoločného predka mutovaním?
(hľadanie homológov, homology search)
Ktoré bázy v dvoch príbuzných sekvenciách si navzájom zodpovedajú?
(sequence alignment, zarovnávanie sekvencií)

Populačná genetika

Mutácie sa šíria v populácii z rodičov na potomkov.

Nebezpečné mutácie rýchlejšie vymiznú, prospešné sa rýchlejšie ujmú (prírodný výber, natural selection).

Polymorfizmus: genetický rozdiel medzi organizmami v rámci druhu.

Vedie k rozdielnosti vo fenotype, napr. výzor, dedičné choroby.

Sekvenovaním viacerých jedincov toho istého druhu získame prehľad o polymorfizme.

Bioinformatický problém:

Nájdi polymorfizmus zodpovedný za určitý znak (napr. chorobu).

Evolúcia

Vznik nových druhov (speciation):

Po rozdelení populácie na viacero oddelených častí nedochádza k výmene genetického materiálu.

Hromadia sa zmeny až kým nie je možné párenie: vznik nových druhov.

Bioinformatický problém:

Na základe dnešných sekvencií urči strom reprezentujúci vývoj druhov (fylogenetický strom, phylogenetic tree)

Prokaryotické vs. eukaryotické organizmy

Prokaryoty: baktérie, jednoduché jednobunkové organizmy.

Nemajú jadro (DNA priamo v cytoplazme),

majú kruhový chromozóm (a prípadné kratšie plasmidy),

jednoduchšia štruktúra génu atď.

Eukaryoty: živočíchy, rastliny, huby, niektoré jednobunkové organizmy.

Bunka obsahuje jadro s DNA, viacero organel.

Mitochondrie a chloroplasty sú pohltené prokaryoty, ktoré sa stali časťou eukaryotickej bunky.

Dlhší genóm v niekoľkých lineárnych chromozómoch.

Modelové organizmy

Dôležité pre biologický výskum, vieme o nich viac než o príbuzných druhoch. Poznatky širšie aplikovateľné.

Escherichia coli: baktéria žijúca v črevách. Jednoduchá manipulácia, delenie každých 20 min. Štúdium základných životných procesov: DNA replikácia, expresia génov, atď. Genóm s 4000 génmi, 4.6MB.

Saccharomyces cerevisiae: pekárske droždie. Jednoduchý eukaryotický organizmus. Genóm s 6000 génmi, 13MB. Delenie každé 2 hodiny. Štúdium špecificky eukaryotických javov.

Modelové organizmy

Arabidopsis thaliana: malá kvitnúca rastlina, 6-týždňový životný cyklus. Skúmanie javov špecifických pre rastliny.

Caenorhabditis elegans: malý červ, nematód, žijúci v pôde. Štúdium vývinu (ontogenéza, development), diferenciácie buniek.

Drosophila melanogaster: vínna muška. Štúdium genetiky, gény riadiace vývin jedinca.

Stavovce: žaba Xenopus laevis (veľké, ľahko manipuľovateľné vajíčka), akvarijná ryba Danio rerio (priehľadné embryá), myš Mus musculus (existuje veľa plemien so špeciálnymi vlastnosťami).

Dostupné dáta

- DNA sekvencie: celé genómy, ich časti
- Ich anotácia: súradnice génov a iných funkčných častí
- Sekvencie RNA, ich štruktúra
- Sekvencie proteínov, ich funkcia a štruktúra
- Merania množstva RNA/proteínu v bunke
- Merania, kde sa na DNA viaže určitý proteín

• ...

Dáta založené na experimentoch alebo výsledky výpočtových metód Veľa chýb (v oboch prípadoch)

Ďalšie informácie

- Zvelebil, Baum: Understanding Bioinformatics, kap. 1
- Vysokoškolské učebnice molekulárnej biológie
- Tutoriály na stránke predmetu
- Anglická Wikipédia