HAUSDORFF MEASURES IN IR" (continued) Recall the definition of the Hourdonff. It is clear that $H^{\alpha}(A) = \lim_{S \to 0^{+}} H^{\alpha}_{S}(A)$ actually exists. Moneover, the Coratheodory criteriou applies, so Ha is a Borel measure. We also define the O-dim. Hausdorff measure to be the counting measure: $H^{\circ}(A) = \#(A)$ We now define the Housdonff dim. of A CIRM: $\dim_{H}(A) = \sup\{x>0: H^{\alpha}(A) = +\infty\} = \inf\{x>0: H^{\alpha}(A) = 0\}$ as & increases, $H^{\prec}(A)$ decreases Remark (Dimension of the Coutor Set): The Couton Set (C[0,1] has "fractal dimension" $0 < \frac{\log 2}{\log 3} < 1$. Indeed, assume $\exists x \text{ s.t. } 0 < H^{\alpha}(C) < +\infty$. Then: $\Rightarrow H^{\prec}(\Lambda A) = \Lambda^{\prec} H^{\prec}(A)$ $\Rightarrow H^{\alpha}(C) = 2 \left(\frac{1}{3}\right)^{\alpha} H^{\alpha}(C)$ $\Rightarrow 1 = 2 \left(\frac{1}{3}\right)^{\alpha}$ $\Rightarrow 0 = \log_{2} 2 - \alpha \log_{3} 3$ $\Rightarrow \alpha = \frac{\log_{2} 2}{\log_{3} 3}$ In the same way it is possible to show that the Housdorff dim. of the Snowflake Curve is dim, (Snowflake curve) = log 3 RADON - NIKODYM THM. Let X be a set, S a ∇ -algebra of subsets of X, $\mu: S \rightarrow [0, +\infty]$ a measure. If $f \in L^1(\mu)$, f > 0, we can define a new measure $7: S \rightarrow [0, +\infty)$ by: $V(A) := \int_A f(x) d\mu(x)$ It is then called the DENSITY FUNCTION OF V.

I is then called the DENSITY FUNCTION OF V. V is countably additive by Beppo-Zevi Thu. (Monatone convergence). But, when is it possible to write a given

measure as the f of a density function? Remark: If a measure $V: J \rightarrow [0, +\infty)$ has a density of W.R.T. μ then $\mu(A) = 0 \Rightarrow \nu(A) = 0$ Def. (Alrealute Continuity): Let $\mu, \nu: J \rightarrow [0, +\infty]$ be s.t. $\forall A \in J$ $\mu(A) = 0 \Rightarrow \nu(A) = 0$. We then say that ν is Absolutely Continuous wrt μ and we write v << m. Thu (Radon - Nikodym): Let $\mu, \nu: S \rightarrow [0, +\infty)$ be finite measures over the τ -algebra S of subsets of X. If $\nu << \mu$, then $\exists w \in L^1(\mu)$, w>o s.t. $\forall A \in \mathcal{S} \quad \mathcal{V}(A) = \int_{A} \omega(x) d\mu(x)$ Yroof (ly Von Neumann): Define $g: S \rightarrow [0, +\infty)$ as $g(A) = \mu(A) + \nu(A)$. Given $u \in L^{1}(g)$, define $T(u) = \int_{X} u(x) d\nu(x)$. Then $T: L^{1}(g) \rightarrow IR$ is linear and $T \in L^2(p)'(dival of L^2(p))$ because: $u \in L^{2}(s) \Rightarrow T(u) = \int_{X} u \, dv \leqslant \|u\|_{L^{2}(v)} \cdot \mathcal{V}(x)^{\frac{1}{2}} \leqslant \|u\|_{L^{2}(P)} \cdot s(x)^{\frac{1}{2}}$ Hölder's ineq. \Rightarrow By Riesz $\exists v \in L^2(p)$ s.t. $T(u) = \langle u, v \rangle \quad \forall u \in L^2(p)$ $\Rightarrow \int u dv = \int uv dp = \int uv du + \int uv dv$ $\Rightarrow \int_{X} (1-v)udv = \int_{X} uvdu \quad \forall u \in L^{2}(p)$ If we can choose $U(x) = 1_E(x) \cdot \frac{1}{1 - V(x)}$, $E \in S$, we get: $\int_{X} \mathcal{L}_{E}(x) u(x) dv(x) = \int_{X} \frac{v(x)}{1 - v(x)} \mathcal{L}_{E}(x) d\mu(x)$ $\Rightarrow v(E) = \int_{E} \frac{v(x)}{1 - v(x)} d\mu(x)$ Unfortunately we can't take such a u(x), because it's not certain that it would be in $L^2(s)$. Let EES, u= 1/E. Then by the identity we found earlier

we have:

$$0 \leqslant V(E) = \int_{E} V(x) d\mu(x) \leqslant g(E) \Leftrightarrow 0 \leqslant \frac{1}{g(E)} \int_{E} V(x) d\mu(x) \leqslant 1$$

Integral Average

⇒ We claim that 0 < v(x) < 1 for g-a.e. x. Indeed: fix u = 1, 2, 3, ... and consider $E_n = \{x \in X : v(x) > 1 + \frac{1}{n}\}$. If $g(E_n) > 0$ we get a contradiction because

$$\frac{1}{p(E_n)} \left\{ v(x) dg > 1 + \frac{1}{n} \right\} \left(\frac{1}{p(E)} \left\{ v(x) d\mu(x) \leqslant 1 \right\} \right)$$

 $\Rightarrow f(E_n) = 0 \text{ and we have } \{x \in X : v(x) > 1\} = \bigcup_{n=1}^{\infty} E_n$ $\Rightarrow v(x) \leqslant 1 \text{ for } g-a.e. \times, \text{ and in the same way we prove}$ that v(x) > 0

Consider now $F = \{x \in X : v(x) = 1\}$. There take $u = 1_F$ and compute:

$$O = \left(\int_{X} (1 - v)u \, dv \right) = \int_{X} u v \, d\mu = \mu(F) \implies v(F) = 0 \implies \rho(F) = 0$$

$$\int_{X} \mathcal{1}_{F} \cdot 1 \, d\mu$$

So actually we have $0 \le v(x) \le 1$ for $g-a.e. \times$, we now use the geometric series of L^2 functions to approximate the following:

$$U = 1_E \cdot \frac{1}{1-v} \notin L^2(s)$$
 in general

 $\Rightarrow U_{n}(x) = \underline{1}_{E}(x) (1 + v(x) + v^{2}(x) + \dots + v^{n}(x)) \in L^{2}(p)$

$$\Rightarrow \begin{cases} \left(1 - v(x)^{n+1}\right) dv(x) = \begin{cases} \left(v + v^2 + \dots + v^{n+1}\right) d\mu(x) \\ \frac{v(x)}{1 - v(x)} & \text{a.e.} \end{cases}$$
increasing

=> apply Beppor-Levi Thu.:

$$\underbrace{\left\{ \left(1 - v(x)^{M+1}\right) dv(x) = \int_{E} \left(v + v^{2} + \dots + v^{M+1}\right) d\mu(x) \right\}}_{E} \underbrace{\left(v + v^{2} + \dots + v^{M+1}\right) d\mu(x)}_{E} \underbrace{\left(v + v^{2} + \dots + v^{M+1}\right) d\mu(x)}$$

 $\Rightarrow \mathcal{V}(E) = \left\{ \frac{\mathcal{V}(x)}{1 - \mathcal{V}(x)} \, d\mu(x) \right\} \Rightarrow \frac{\mathcal{V}(x)}{1 - \mathcal{V}(x)} \text{ is the density function.}$

Radon-Nikodym can be extended to T-finite measures:

Def. (T-finite measure)

A measure $\mu: f \to [0, +\infty]$ is T-Finite if it's possible to decompose $X = \bigcup_{k=1}^{\infty} A_k$ s.t. $\mu(A_k) < +\infty \ \forall A_k \in J \ (w.z. o. G. we can assume that <math>A_k$ are pairwise disjoint.

L.g.:
The Lebesgue measure on IRM is T-finite, the counting, measure
on IR is NOT T-finite.

⇒ Radon-Nikodym Thur. also holds for \(\tau\)-finite measures: \(\mu, \nu: \S \rightarrow \[0, +\infty \] \(\tau\)-finite with \(\nu << \mu \rightarrow \] \(\mu: \times \rightarrow \[0, +\infty \]
\(\mu\)-measurable s.t. \(\nu(\varepsilon) \delta \rightarrow \times \times \times \times \times \[\nu(\varepsilon) \delta \rightarrow \times \]