Exercise 1. Do the following:

- I) Give a simple description of the closed sets in \mathbb{A}^1 (with respect to the Zariski topology).
- II) Use your previous answer to prove that \mathbb{A}^1 is not Hausdorff.

Answer

- I) If we consider \mathbb{A}^1 over an algebraically closed field k of characteristic zero then every closed set is of the form V(I) where $I \in \operatorname{Spec}(k[x])$. Since k[x] is a PID, then $I = \operatorname{gen}(p)$ for a polynomial $p \in k[x]$. Then V(I) would be the set of roots inside k of p. Since p is arbitrary, every closed set V(I) of \mathbb{A}^1 is a finite set.
 - This means that the open sets are the complement of the finite sets. In essence, the Zariski topology coincides with the cofinite topology over \mathbb{A}^1 .
- II) The cofinite topology is not Hausdorff, so it follows that the Zariski topology isn't Hausdorff as well.

Exercise 2. Show that the Zariski topology on \mathbb{A}^2 is not the product topology on $\mathbb{A}^1 \times \mathbb{A}^1$. (Hint: Consider the diagonal.)

Answer

Recall the following topological facts:

- I) If X, Y are not Hausdorff, it follows that $X \times Y$ is not Hausdorff.
- II) *X* is Hausdorff if and only if the diagonal set is closed.

To show that the Zariski topology and the product topology are different on \mathbb{A}^2 we will show that the diagonal set D in \mathbb{A}^2 is closed. Then the argument is as follows:

(D is closed in \mathbb{A}^2 with \mathbb{Z}_2) \wedge (D is open in \mathbb{A}^2 with $\mathbb{Z}_1 \times \mathbb{Z}_1$) $\Rightarrow \mathbb{Z}_2 \neq \mathbb{Z}_1 \times \mathbb{Z}_1$.

To show that D is closed in \mathbb{A}^2 , we can see that it is the zero locus for the polynomial x - y. This is D = V(x - y).

On the other hand, the product topology $\mathfrak{Z}_1 \times \mathfrak{Z}_1$ is not Hausdorff since \mathfrak{Z}_1 is not Hausdorff. Therefore D is open in $\mathfrak{Z}_1 \times \mathfrak{Z}_1$.

We conclude that both topologies are different on \mathbb{A}^2 .

Exercise 3. Let $F: V \to W$ be a morphism of affine algebraic varieties. Prove that F is continuous in the Zariski topology.

Answer

Suppose \mathcal{Z} is the Zariski topology. Recall that

$$F$$
 is continuous $\iff \forall U \in \mathcal{Z}(F^{-1}[U \backslash W] \notin \mathcal{Z}).$

This means that F sends closed sets back to closed sets. Since a morphism is a vector of polynomials we can easily check this result.

Consider an arbitrary closed set $V_0 \subseteq W$. Then there exists an ideal $I \triangleleft k[\mathbf{x}]$ such that $V_0 = V(I)$. Now consider the following observation

$$\mathbf{x} \in V(I) \iff \forall p \in I(p(\mathbf{x}) = 0) \iff \forall p \in I(\mathbf{x} \in V(p)) \iff \mathbf{x} \in \bigcap_{p \in I} V(p).$$

Since the inverse image behaves well with intersections, it suffices to prove that for any polynomial p, $F^{-1}[V(p)]$ is also a closed set. By definition

$$F^{-1}[V(p)] = \{ \mathbf{x} \in V : F(\mathbf{x}) \in V(p) \}, \ F(\mathbf{x}) \in V(p) \iff p(F(\mathbf{x})) = 0.$$

This means that this set is precisely $V(p \circ F)$ and therefore is a closed set. Since p was arbitrary, it holds for any closed set. Therefore F is continuous in the Zariski topology.

Exercise 4. Show that the twisted cubic V of Figure 1.5 is isomorphic to the affine line by constructing an explicit isomorphism from \mathbb{A}^1 to V. (Hint: See Exercise 1.2.3)

Answer

The twisted cubic is the zero locus of the polynomials $y-x^2$ and $z-x^3$. By solving the equations, this set can be seen as $\{(x,x^2,x^3): x\in \mathbb{A}^1\}$. We can construct a function from this! Consider the following function $\mathbf{r}: \mathbb{A}^1 \to \mathbb{A}^3, \ t \mapsto (t,t^2,t^3)$. Then \mathbf{r} is an algebraic morphism since it is a vector of polynomials. We can find an inverse for \mathbf{r} to prove it is an isomorphism, consider the projection map π_1 . Then

$$\mathbf{r}(\pi_1(x,y,z)) = (x, x^2, x^3), \text{ and } \pi_1(\mathbf{r}(t)) = \pi_1(t, t^2, t^3) = t.$$

Exercise 5. Show that if $F: X \to Y$ is a surjective morphism of affine algebraic varieties, then the dimension of X is at least as large as the dimension of Y.

Answer

Recall that the dimension of an algebraic variety is the length of the longest chain of irreducible proper subvarieties. This is:

$$\dim X = \max_{n} \{ X \supseteq V_{n} \supseteq V_{n-1} \supseteq \cdots \supseteq V_{0} = \{ \mathbf{x}_{0} \} \}.$$

Suppose $d = \dim Y$, and consider a maximal proper chain of irreducible subvarieties W_i 's

$$Y \supseteq W_d \supseteq \cdots \supseteq W_1 \supseteq \{\mathbf{y}_0\}.$$

Now let us consider the morphism F. Since it is a morphism it sends varieties back into varieties. Also the inverse image preserves subsets. This means that we can find the following chain of subvarieties inside of X:

$$X \supseteq F^{-1}[W_d] \supseteq \cdots \supseteq F^{-1}[W_1] \supseteq F^{-1}[\{\mathbf{y}_0\}].$$

These subvarieties are non empty since F is surjective.^a

We are able to conclude that if at most k of those subvarieties are reducible, then $\dim(X) \geqslant d - k^b$. **FINISH**

^aIf it were the case that inverse imaging preserves irreducibilty, we are done. However continuous maps from topological spaces preserve irreducibilty in the forwards direction.

^bIt'd be lovely if k = 0.