

Mark Scheme (Results)

October 2019

Pearson Edexcel International Advanced Level In Chemistry (WCH12) Paper 01 Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Section A

Question Number	Answer	Mark
1	The only correct answer is C (1.20)	
	A is incorrect because this is the volume of 1 mol	
	B is incorrect because this is a factor of 10 out	
	D is incorrect because the inverse of the number of mols of lithium carbonate has been divided by 24.0	(1)

Question Number	Answer	Mark
2	The only correct answer is C (3)	
	A is incorrect because different isotopes of chlorine have been ignored	
	B is incorrect because different isotope combinations of chlorine have not been considered	
	D is incorrect because 35Cl/37Cl and 37Cl/35Cl give the same peak	(1)

Question Number	Answer	Mark
3	The only correct answer is D ($\Delta_f H$ (carbon monoxide) = -110.5 kJ mol ⁻¹)	
	A is incorrect because there are 2 mol of carbon in the equation and combustion is incomplete	
	B is incorrect because there are 2 mol of carbon monoxide in the equation	
	C is incorrect because the combustion is incomplete	(1)

Question Number	Answer	Mark
4	The only correct answer is D (London forces)	
	A is incorrect because covalent bonds are between atoms not molecules	
	B is incorrect because there are no hydrogen bonds as electronegativity of iodine is low	
	C is incorrect because there are no ions present	(1)

Question Number	Answer	Mark
5(a)	The only correct answer is C (Reaction 3)	
	A is incorrect because different species are oxidised and reduced	
	B is incorrect because different species are oxidised and reduced	
	D is incorrect because there is no change in oxidation state	(1)

Question	Answer	Mark
Number	The only correct answer is D (Reaction 4)	
5(b)	(Reaction 4)	
	A is incorrect because neither reactant is acting as an acid or base	
	B is incorrect because this is a redox reaction	
	C is incorrect because neither reactant is acting as an acid or base and it is a redox reaction	(1)

Question	Answer	Mark
Number		
6	The only correct answer is C (barium sulfate is less soluble in water than magnesium sulfate)	
	A is incorrect because carbonate thermal stability increases down Group 2	
	B is incorrect because hydroxide solubility increases down Group 2	
	D is incorrect because barium is more reactive than magnesium with water	(1)

Question Number	Answer	Mark
7	The only correct answer is C (chloride ions are stronger reducing agents than bromide ions)	
	A is incorrect because chlorine is more electronegative than bromine	
	B is incorrect because chlorine is more reactive than bromine	
	D is incorrect because chloride ions are stronger reducing agents than fluoride ions	(1)

Question Number	Answer	Mark
8	The only correct answer is A (SrBr ₂)	
	B is incorrect because sodium produces a yellow flame test	
	C is incorrect because although the flame test would be red the silver halide ppt would be white	
	D is incorrect because the flame test would be green and the silver halide ppt would be yellow and insoluble in concentrated ammonia	(1)

Question Number	Answer	Mark
9(a)	The only correct answer is B (0.50)	
	A is incorrect because 0.050 is the number of moles produced	
	C is incorrect because the solution concentration is assumed to be the same as the alkali	
	D is incorrect because the solution concentration is assumed to be equal to that of the acid	(1)

Question Number	Answer	Mark
9(b)	The only correct answer is B (± 0.20%)	
	A is incorrect because both solutions have been considered	
	C is incorrect because the uncertainty has not been doubled	
	D is incorrect because the volume measured has been ignored	(1)

Question Number	Answer	Mark
10	The only correct answer is A (NaCl and NaClO)	
	B is incorrect because both products are the result of oxidation	
	C is incorrect because the reaction is not heated and the solution is not concentrated	
	D is incorrect because both products are the result of oxidation	(1)

Question	Answer	Mark
Number		
11	The only correct answer is D (SO ₃)	
	A is incorrect because H₂S is a product	
	B is incorrect because I_2 is a product	
	C is incorrect because S is a product	(1)

Question Number	Answer	Mark
12	The only correct answer is B (decreasing the concentration of the hydrochloric acid)	
	A is incorrect because an increase in reactant concentration would reduce the time taken	
	C is incorrect because raising the temperature would reduce the time taken	
	D is incorrect because adding a catalyst would reduce the time taken	(1)

Question Number	Answer	Mark
13(a)	The only correct answer is A (increase rate, decrease yield)	
	B is incorrect because an increase in temperature would increase the rate	
	C is incorrect because the equilibrium would move to the left, i.e. endothermic direction	
	D is incorrect because an increase in temperature would increase the rate and the equilibrium would move to the	
	left, i.e. endothermic direction	(1)

Question	Answer	Mark
Number		
13(b)	The only correct answer is C (increase rate, increase yield)	
	A is incorrect because an increase in pressure would increase the yield	
	B is incorrect because an increase in pressure would increase the rate and yield	
	Distinguished the service and increases in pressure would increase the rote	(4)
	D is incorrect because an increase in pressure would increase the rate	(1)

Question Number	Answer	Mark
14	The only correct answer is B (2-chloro-2-methylpropane)	
	A is incorrect because a primary alcohol would be formed which would be oxidised	
	C is incorrect because a primary alcohol would be formed which would be oxidised	
	D is incorrect because a secondary alcohol would be formed which would be oxidised	
		(1)

Question	Answer	Mark
Number		
15(a)	The only correct answer is B (oxidising propan-1-ol to propanal)	
	A is incorrect because reducing an alcohol would produce an alkane	
	C is incorrect because reducing propanal would produce propan-1-ol	
	D is incorrect because oxidising propan-1-ol would produce propanal or propanoic acid	(1)

Question	Answer	Mark
Number		
15(b)	15(b) The only correct answer is A (propan-1-ol)	
	B is incorrect because propan-2-ol would not be expected to form a ⁺ CH ₂ OH fragment	
	C is incorrect because propanal would not be expected to form a ⁺ CH₂OH fragment	
	D is incorrect because propanone would not be expected to form a ⁺ CH₂OH fragment	(1)

Question	Answer	Mark
Number		
15(c)	The only correct answer is C (propanal)	
	A is incorrect because propan-1-ol would have a broad absorption at 3750-3200 cm ⁻¹ due to –OH	
	B is incorrect because propan-2-ol would have a broad absorption at 3750-3200 cm⁻¹ due to −OH	
	D is incorrect because the absorption due to C=O in propanone would be at 1720-1700 cm ⁻¹ and C-H	
	stretching vibrations at 2775-2700 cm ⁻¹ would be absent	(1)

(Total for Section A = 20 marks)

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)		Example of equation:	
	correct balanced equation	Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$ or multiples	(1)
		Allow Ca + $H_2O \rightarrow CaO + H_2$	
		Ignore state symbols even if incorrect	

Question	Answer		Additional Guidance	Mark
Number				
16(b)	An explanation that makes reference to the following points:			(2)
	concentration of hydroxide ions is greater	(1)	Allow more hydroxide ions are in solution	
	calcium hydroxide is more soluble than magnesium hydroxide	(1)	Allow the solubility of the hydroxides increases going down Group 2 reverse argument	

Question Number	Answer	Additional Guidance	Mark
16(c)(i)	 correct ionic equation 	Example of equation:	(1)
	' -	$CO_3^{2-} + 2H^+ \rightarrow CO_2 + H_2O$	
		Ignore state symbols even if incorrect	
		Do not award $H_2CO_3 / H^+ + HCO_3^-$ as final products	

Question Number	Answer		Additional Guidance	Mark
16(c)(ii)			Example of equation:	(2)
	correct balanced equation	(1)	$CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(l)$	
	• state symbols	(1)	M2 depends on M1 Allow equation near miss e.g. Ca(OH) ₂ +CO ₂ >CaCO ₂ +H ₂ O or all correct species being present	

Question Number	Answer	Answer Additional Guida		Mark
16(d)	 calculation of the amount of Mg(OH)₂ calculation of M_r Mg(OH)₂ 	(1) (1)	Example of calculation: Amount of Mg(OH) ₂ = 0.150 ÷ 2 = 0.075 (mol) M_r Mg(OH) ₂ = 58.3	(3)
	 calculation of mass Mg(OH)₂ and answer given to 2 or 3 SF 	(1)	Mass of Mg(OH) ₂ = 0.075×58.3 = 4.3725 (g) = $4.4 / 4.37$ (g)	
			Allow if Mg = 24 then M_r = 58 and mass = 4.4 / 4.35	
			Correct answer to 2 or 3 SF with no working scores (3)	

(Total for Question 16 = 9 marks)

Question Number	Answer		Additional Guidance	Mark
17(a)(i)	(2)-methylpropan-1-ol and primarybutan-2-ol and secondary	(1) (1)	All 6 correct scores 3 4 or 5 correct scores 2 2 or 3 correct scores 1	(3)
	• OH and tertiary	(1)	Ignore bond lengths and bond angles Do not award displayed formula	

Question Number	Answer		Additional Guidance	Mark
17(a)(ii)	An explanation that makes reference to the following points:		Accept reverse argument (butan-1-ol has a higher boiling temperature than 2-methylpropan-2-ol because)	(2)
	Identification of (at least) one of the intermolecular forces and a comparison of its strength in the two molecules	(1)	the instantaneous dipoles-induced dipoles / London forces / dispersion forces / van der Waals forces are stronger between straight chains Allow There are more London forces OR the hydrogen bonding is stronger between straight chain molecules	
	an explanation for this difference	(1)	the straight chain molecule/ butan-1-ol has greater surface area / more points of contact OR as the -OH group is more exposed / less hindered (so less energy is needed to break the intermolecular forces) If the explanation is in terms of London forces, ignore 'hydrogen bonding is similar / same' Ignore 'references to"longer carbon chain"	
			Do not award Any reference to longer carbon bonds/breaking covalent bonds	

Question Number	Answer		Additional Guidance	Mark
17(a)(iii)			Example of diagrams:	(2)
	• OH—O	(1)		
	bond O-H-O must be shown as (approximately) linear and angle labelled as 180°	(1)	H-c-c-c-c-d H H H H H H H H H H H H H H H H H H H	
			OR H H H H H H H H H H H H H H H H H H H	
			Do not penalise omission of lone pair on the oxygen or errors in the carbon chain e.g. missing Hs	
			Do not award hydrogen bond shown as a solid line (M1) H—OH bond shown as 180° (M2) Incorrect -OH attachment to chain (M2)	
			ignore bond lengths	

Question	Answer	Additional Guidance	Mark
Number			
17(b)(i)	balanced equation	H H H H H H-C-C-C-C-O H H H H H + 6 O=O	(1)
		—▶4 O=C=O + 5 H-O-H	

Question Number	Answer		Additional Guidance	Mark
17(b)(ii)			Here, and throughout the paper do not penalise mol ⁻ for mol ⁻¹	
	 calculation or working of energy needed to break bonds 	(1)	Energy to break all bonds: (3x347) + (9x413) + 358 + 464 + (6x498) = 8568 (kJ mol ⁻¹)	
	 calculation or working of energy released when bonds are made 	(1) (1)	Energy released when all bonds made: $(10x464) + (8x805) = 11080(kJ mol^{-1})$	
	 calculation of energy change and give a sign 	(-)	$-11080 + 8568 = -2512 \text{ (kJ mol}^{-1}\text{)}$	
			Do not award incorrect units	
			TE on incorrect balancing of equation and TE at each stage of calculation	
			Ignore SF except 1SF Correct answer no working scores (3) Comment	
			Common error is the use of 6.5×498 (forgets about the alcohol oxygen). This gives -2263 kJ mol ⁻¹ scores 2.	(3)

Question	Answer	Additional Guidance	Mark
Number			
17(b)(iii)	An answer that makes reference to the following points:		(2)
	 mean bond enthalpies do not refer to specific compounds such as butan-1-ol/ mean bond enthalpies are averages/mean for different molecules/bonds in different environments/compounds	Ignore just "mean bond enthalpies are an average"	
	gases	Ignore	
	OR	references to standard conditions	
	mean bond enthalpy calculations do not include	Just 'different states'	
	changes of state (1)		

Question	Answer	Additional Guidance	Mark
Number			
17(c)(i)		Example of calculations:	(2)
	 calculation of energy produced per gram (1) 	$(-)2670 \div 74 = (-)36.081/36.1 / 36 (kJ g^{-1})$	
	• calculation of energy produced per cm ³ (1)	36.1 x 0.81= 29.226/29.2 / 29 (MJ dm ⁻³)	
	OR • calculation of moles in 1 cm ³ (1)	0.81 / 74 = 0.010946 (moles)	
	• calculation of energy produced per cm ³ (1)	0.010946 x (-)2670 = 29.226/29.2 / 29 (MJ dm ⁻³)	
		Units, if given, must be correct in MJ dm ⁻³ Correct answer with no working scores (2) Ignore sign and SF except 1SF	

Question Number	Answer	Additional Guidance	Mark
17(c)(ii)	An answer that makes reference to the following points:		(2)
	 biobutanol has a longer hydrocarbon / alkane chain/ more electrons than bioethanol (1) 	Ignore references to polarity, non-polar parts	
	 so more/stronger London forces / dispersion forces / Van der Waals forces between biobutanol and petrol (than bioethanol and petrol) (1) 	Allow London forces in biobutanol and petrol are similar Do not award just "biobutanol has stronger London forces than bioethanol"	

(Total for Question 17 = 17marks)

Question	Answer	Additional Guidance	Mark
Number			
18(a)(i)	 the arrow pointing to the C=C bond is incorrect and the arrow should be pointing away from the bond 	Ignore references to lone pairs of electrons	(2)
	 the partial charge on the C in the intermediate is incorrect and it should be a full positive charge (1) 	Either/both marks could be scored by annotations to the mechanism or using structures in the answer spaces	

Question Number	Answer	Additional Guidance	Mark
18(a)(ii)	balanced equation	$C_2H_4 + CI_2 \rightarrow C_2H_3CI + HCI$	(3)
	• (1)	Ignore state symbols (even if incorrect)	
		Mass of chloroethene = 62.5	
	 calculation of mass of chloroethene and total mass 	Total mass of reactants / products = 99	
	of reactants / products (1)		
	1.1.1.50/	% Atom economy = $\frac{62.5}{20}$ x 100	
	• calculation of % atom economy (1)	99 = 63.131(%)	
		= 63.1(%)	
		. ,	
		TE on	
		incorrect equation providing the product is	
		chloroethene incorrect molecular masses	
		no TE on incorrect atom economy expression	
		If no other mark is scored correct expression	
		for atom economy scores 1	
		Janera CF avgent 1CF	
		Ignore SF except 1SF Correct answer with no working scores M3	

Question Number	Answer		Additional Guidance	Mark
18(b)	An answer that makes reference to the following points:			(2)
	• Atom economy (of process A is < 100% but) in process B it is 100%	(1)	Allow no other product formed in process B	
			Ignore just "process B has a higher atom economy than A"	
	 in process A HCl(g) is produced which is toxic / corrosive or catalyst for process B / Mercury / Mercury(II) chloride is highly toxic 	(1)	Accept reverse arguments e.g. A does not require a toxic catalyst	
			M2 - Allow both processes use non-renewable starting material	
			Do not award Ozone depletion	
			Ignore references to energy involved in either process/ greenhouse gases / acid rain	

Question Number	Answer			Additional Guidance	Mark
*18(c)	logically structured reasoning. Marks are awarde structured and she	d answer with linkages and display the display and dis	and for how the answer is	The mark for indicative content should be added to the mark for lines of reasoning. In general it would be expected that 5 or 6 indicative points would score 2 reasoning marks, and 3 or 4 indicative points would score 1 reasoning mark. A total of 2, 1 or 0 indicative points would score 0 marks for reasoning. Reasoning marks may be subtracted for extra incorrect chemistry. If there is any incorrect Chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s).	(6)
			Number of marks awarded for structure of answer and sustained line of reasoning	mark(s).	
	Answer shows a structure with lin sustained lines o demonstrated th	f reasoning	2		
		y structured with ad lines of reasoning.	1		
	Answer has no lin	nkages between points	0		

Question	Answer	Additional Guidance	Mark
*18(c)	Indicative content The following table shows how the marks should be awarded for structure and lines of reasoning.	Vertical axis labelled fraction / proportion / percentage / number of molecules Horizontal axis labelled <i>E</i> / energy	(6)
	Indicative contentaxes labelled correctly	Both curves start at 0 and be asymptotic to the horizontal axis. The higher	
	• shape of two curves at two different temperatures	temperature curve must have a lower maximum and be moved to the right Do not award asymptotes which are higher than 30% of their peak height	
	activation energy with and without a catalyst shown	Number of wales when the state of the state	
	 molecules with E>E_a/E=E_a can react/ collisions are successful 	with Engage E	
	 increasing temperature (increases energy of all molecules so) increases molecules / collisions with E>E_a/E=E_a (so rate increases) 	$T_2 > T_1$ E_A	
	• adding a catalyst (provides an alternative pathway which) lowers E_a so more molecules / collisions have $E > E_a / E = E_a$	Energy, E E_a (catalyst)	
		Number of molecules with a given energy X Y Z Energy, E	
		All the information may be shown on one	
		axis grid and the two different	
		temperatures can be implied unless	
		incorrect. (Total for Question 18 – 1	

(Total for Question 18 = 13 marks) (TOTAL FOR SECTION B = 39 MARKS)

Question	Answer	Additional Guidance	Mark
Number			
19(a)(i)			(2)
		Allow all dots or all crosses Unbonded electron pairs may be at any position on circles or just inside the circles	
	Allow either of the diagrams above	Ignore lines for covalent bonds	
	At least one double bond correct (1)	Electrons do not have to be paired	
	All other electrons correct (1)	Bonding electrons may be in the intersection space or on the lines bounding this space	

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	bond angle 120°	Allow 117° to 123°	(1)

Question	Answer	Additional Guidance	Mark
Number			
19(b)(i)	two concordant titres had already been obtained	Allow Just 'titres are concordant' The (last two) titres are within 0.2 / 0.1 cm ³ only 10 cm ³ solution left so impossible to pipette a further sample or wtte only a limited/small amount of solution remains Do not award Three titres are concordant The (last two) titres are within ±0.2 /± 0.1 cm ³	(1)

Question Number	Answer		Additional Guidance	
19(b)(ii)			Example of calculation:	(3)
	calculation of moles NaOH in mean titre	(1)	21.10/1000 x 0.005 = 1.055x10 ⁻⁴ / 0.0001055 (mol)	
	 moles sulfuric acid in 10 cm³ sample (1/2 moles NaOH) 	(1)	5.275/5.28 x 10 ⁻⁵ / 0.00005275 (mol)	
	 moles sulfuric acid in 40 cm³ (previous answer x 4) 	(1)	2.11 x 10 ⁻⁴ / 0.000211 (mol) Ignore SF except 1 SF	
			Correct answer with no working scores 3	

Question	Answer	Additional Guidance	Mark
Number			
19(b)(iii)			(1)
	 moles SO₂ in 40 cm³ 	2.11 x 10 ⁻⁴ / 0.000211 (mol)	
	same as answer to (ii) (1)		
		TE on 19(b)(ii)	

Question	Answer		Additional Guidance	Mark
19(b)(iv)			Example of calculation:	(3)
	volume of atmospheric sample collected	(1)	$10 \times 30 = 300 (dm^3)$	
	moles of gas in atmosphere	(1)	300 = 12.5 (moles) 24	
	• concentration SO₂ in atmosphere	(1)	2.11 x 10 ⁻⁴ 12.5 = 1.688 x 10 ⁻⁵ / 1.69 x 10 ⁻⁵ / 0.00001688	
	OR		= 16.88 / 16.9/ 17 (ppm)	
	• volume SO ₂ in atmosphere	(1)	$2.11 \times 10^{-4} \times 24 = 5.064 \times 10^{-3} \text{ (dm}^3\text{)}$	
	volume of atmospheric sample collected	(1)	$10 \times 30 = 300 (dm^3)$	
	• concentration SO₂ in atmosphere	(1)	5.064 x 10 ⁻³ / 300 = 1.688 x 10 ⁻⁵ / 1.69 x 10 ⁻⁵ / 0.00001688 = 16.88 / 16.9 /17 (ppm)	
			Ignore SF except 1SF Correct answer no working scores 3	
			TE on 19(b)(ii) and (b)(iii) and at each stage in (b)(iv)	

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	correct equation	2O ₃ → 3O ₂	(1)
		Or multiples	
		Do not award equations with uncancelled species	
		Ignore state symbols even if incorrect	

Question	Answer	Additional Guidance	Mark
Number			
19(c)(ii)	An answer which makes reference to two of the following:		(2)
		Ignore	
	 the chlorine free radical is regenerated 	the chlorine free radical acts as a catalyst	
	many ozone molecules decompose for each free radical	references to increase in skin cancer	
	formed		
	 chlorine free radical causes a chain reaction 	Do not award references to global warming	

Question	Answer		Additional Guidance	Mark
Number				
19(d)(i)				(2)
	• S (+)4 \rightarrow (+)6 (oxidation)	(1)	Award 1 mark for sulfur is oxidised and oxygen is reduced	
	• O (in O ₂) 0 \rightarrow -2 (reduction)	(1)		

Question Number	Answer			Addition	al Guidance	Mark
19(d)(ii)	 Reactants energy level higher than that of products 	(1)		SO ₃ + H ₂ O		(2)
	 Enthalpy change −200 (kJ mol⁻¹) labelled (dependent on correct M1) 	(1)	Enthalpy	Reac	-200 kJ mol^{-1} $\underline{\text{H}_2\text{SO}_4}$ tion pathway	
				or –200 kJ vard just 'rea	mol ^{–1} actants & products'	
			Transition	state / inte	tates, even if incorrect ermediate hump ole headed arrows	

Question Number	Answer		Additional Guidance	Mark
19(d)(iii)	 carbon dioxide is a greenhouse gas / causes global warming / causes a rise in temperature sulfuric acid (from sulfur dioxide / trioxide) causes global cooling / causes a drop in temperature the effect from sulfur dioxide is greater than that of the carbon dioxide (because the temperatures were lower after the eruption) 	(1) (1)	Ignore references to acid rain/ ozone depletion/radiation Allow sulfur trioxide for sulfuric acid Ignore sulfur dioxide is also a greenhouse gas	(3)

(Total for Question 19 = 21 marks) TOTAL FOR SECTION C =21 MARKS TOTAL FOR PAPER =80 MARKS