Aula 1: Sequências numéricas

1.1 Sequências numéricas: Exemplos e definição

Uma sequência numérica, ou simplesmente, uma sequência, é uma sucessão de números. Ela pode ser pensada como uma lista de números escritos em uma ordem definida $a_1, a_2, a_3, \ldots, a_n, \ldots$

Os valores $a_1, a_2, a_3, \ldots, a_n, \ldots$ são chamados termos da sequência. O número a_1 é chamado de primeiro termo, a_2 é o segundo termo e, em geral, a_n é chamado de n-ésimo termo.

Observação: Em alguns casos é conveniente denotar o primeiro termo da sequência por a_0 . Neste caso, a sequência tem a forma: $a_0, a_1, a_2, \ldots, a_n, \ldots$

\$

Importante: A sequência $\{a_1, a_2, a_3, \ldots\}$ é também denotada por

$$(a_n)_{n\in\mathbb{N}}$$
 ou (a_1,a_2,a_3,\ldots) ou $\{a_n\}$ ou $\{a_n\}_{n=1}^{\infty}$ ou a_n

onde admitimos $n \ge 1$ quando nada for dito sobre n.

Exemplo 1.1 Nos exemplos a seguir, apresentamos três descrições distintas para a mesma sequência

$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} \qquad a_n = \frac{n}{n+1} \qquad \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$$

$$\left\{\sqrt{n-3}\right\}_{n=3}^{\infty} \qquad a_n = \sqrt{n-3}, \ n \ge 3 \qquad \left\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\right\}.$$

Exemplo 1.2 A sequência de Fibonacci é definida recursivamente pelas condições

$$f_1 = 1$$
, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$, $n \ge 3$.

Cada termo é a soma dos dois termos precedentes. Os primeiros termos são

$$\{1, 1, 2, 3, 5, 8, 13, 21, \ldots\}.$$

Exemplo 1.3 Determine uma fórmula para o termo geral, a_n , da sequência

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \dots\right\}.$$

Resolução: Sabemos que

$$a_1 = \frac{3}{5}, \ a_2 = -\frac{4}{25}, \ a_3 = \frac{5}{125}, \ a_4 = -\frac{6}{625}, \ a_5 = \frac{7}{3125}.$$

Note que os numeradores possuem sinais alternados e iniciam com o número 3 e são incrementados pelo número 1 à medida que avançamos para o próximo termo. Assim, o numerador por ser descrito por $(-1)^{n-1}(n+2)$. Os denominadores são potências de 5 e podem ser descritos por 5^n . Portanto, a fórmula para o termo geral, a_n , é dada por

$$a_n = \frac{(-1)^{n-1}(n+2)}{5^n}.$$

\$

Importante: Nem sempre é possível representar o termo geral de uma sequência por uma fórmula. Não existe uma fórmula para representar a sequência de números primos

$${2,3,5,7,11,13,17,19,23,29,31,37,\ldots}.$$

Definição 1.1. (Sequência numérica)

Uma sequência de números reais é uma função

$$f: \mathbb{N} \to \mathbb{R}$$

$$f(n) = a_n$$

qua associa a cada número narural n um número real a_n .

1.2 Gráfico de sequências

O gráfico da sequência $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ é o gráfico de

$$f(n) = \frac{1}{n}, \quad n = 1, 2, 3, \dots$$

Como o lado direito da equação está definido somente para números naturais, o gráfico consiste de pontos de isolados, isto é, distinto do gráfico de

$$f(x) = \frac{1}{x}, \quad x \ge 1$$

que é uma curva contínua.

*Gráficos em aula.

• O que acontece com a sequência quando n cresce?

1.3 Convergência de sequências numéricas

Definição 1.2. (Convergência)

Uma sequência $\{a_n\}$ converge para L se, para todo número $\epsilon>0$, existir um número inteiro positivo N tal que $|a_n-L|<\epsilon$ para $n\geq N$. Neste caso escrevemos

$$\lim_{n \to \infty} a_n = L.$$

Dizemos que a sequência **diverge** (ou é divergente) quando não convergir para algum limite finito.

Observação: Ao representar os pontos (n, a_n) no plano cartesiano, pode-se observar que a_n convergir para L significa que para todo $\epsilon > 0$, existe um ponto na sequência a partir do qual todos os termos estão entre as retas $y = L - \epsilon$ e $y = L + \epsilon$.

1.4 Calculando limites de sequências

Suponha que as sequências (a_n) e (b_n) convirjam, respectivamente, para L e M e que c seja uma constante. Então:

$$\lim_{n\to\infty} c = c$$

(b)
$$\lim_{n \to \infty} (c \cdot a_n) = c \cdot L$$

(c)
$$\lim_{n\to\infty} (a_n \pm b_n) = L \pm M$$

(d)
$$\lim_{n \to \infty} (a_n \cdot b_n) = L \cdot M$$

(e)
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{L}{M}, \quad M \neq 0$$

Teorema 1.1

Se $\lim_{x\to\infty} f(x) = L$ e $f(n) = a_n$ quando n é um inteiro, então $\lim_{n\to\infty} a_n = L$.

C

Exemplo 1.4 Determine se a sequência $a_n = \frac{1}{n}$ converge ou diverge.

Resolução: Temos que,

$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

Então, pelo Teorema 1.1

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

\$

Importante: A recíproca do Teorema 1.1 não é verdadeira, isto é, não podemos afirmar que: Se $f(n) \to L$ quando $n \to \infty$, então $f(x) \to L$ quando $x \to \infty$. Um exemplo para este fato é dado por $\lim_{x \to \infty} \operatorname{sen}(\pi x) \quad \text{não existe} \quad (\text{oscila}).$

No entanto,

$$\lim_{n \to \infty} \operatorname{sen}(n\pi) = 0, \quad n = 1, 2, \dots$$

O teorema do confronto também pode ser adaptado para sequências numéricas.

Teorema 1.2. (Teorema do Confronto para sequências)

Se
$$a_n \le b_n \le c_n$$
 para $n \ge n_0$ e $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, então $\lim_{n \to \infty} b_n = L$.

Outros dois resultados importantes sobre limites de sequências são dados pelos seguintes teoremas.

Teorema 1.3

Se
$$\lim_{n\to\infty} |a_n| = 0$$
, então $\lim_{n\to\infty} a_n = 0$.

Teorema 1.4

Se $\lim_{n\to\infty} a_n = L$ e se a função for contínua em L, então

$$\lim_{n \to \infty} f(a_n) = f(L).$$

 \sim

1.5 Exemplo

Exemplo 1.5 Determine se as sequências convergem ou divergem.

- (a) $a_n = \sqrt[n]{n}$
- **(b)** $a_n = (-1)^n$
- (c) $a_n = \ln(\sqrt[n]{n})$
- $(\mathbf{d}) \ a_n = \frac{\cos^2 n}{2^n}$
- (e) $a_n = \frac{(-1)^n}{n}$

Resolução:

(a) Para determinar se a sequência converge, devemos calcular o seguinte limite

$$\lim_{n\to\infty} \sqrt[n]{n}.$$

Consideremos $f(x) = \sqrt[x]{x}$ e calculemos

$$\lim_{x \to \infty} \sqrt[x]{x} = \lim_{x \to \infty} e^{\ln x^{1/x}} = \lim_{x \to \infty} e^{\frac{\ln x}{x}} = e^{\lim_{x \to \infty} \frac{\ln x}{x}}, \tag{1.1}$$

onde utilizamos a continuidade da função exponencial na última igualdade. Temos uma indeterminação do tipo ∞/∞ no limite. Podemos utilizar a regra de L'Hopital de modo a obter

$$\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{\frac{1}{x}}{1}=\lim_{x\to\infty}\frac{1}{x}=0.$$

Retornando a Eq.(1.1), obtemos

$$\lim_{x \to \infty} \sqrt[x]{x} = e^0 = 1.$$

Como o $\lim_{x\to\infty} \sqrt[x]{x}=1$, então $\lim_{n\to\infty} \sqrt[n]{n}=1$ e a sequência a_n é convergente.

(b) A sequência $a_n = (-1)^n$ é dada por

$$\{-1,1,-1,1,-1,1,\dots\}.$$

Uma vez que a sequência oscila entre -1 e 1 com frequência indefinida, a sequência a_n não se aproxima de nenhum número. Portanto, a_n diverge.

(c) Como a função logaritmo natural, ln, é contínua em 1 (item (a)), pelo **Teorema 1.4**, podemos escrever

$$\lim_{n \to \infty} \ln \left(\sqrt[n]{n} \right) = \ln \left(\lim_{n \to \infty} \sqrt[n]{n} \right) = \ln(1) = 0.$$

Portanto, a sequência $a_n = \ln \left(\sqrt[n]{n} \right)$ converge para zero.

(d) Note que

$$0 \le \cos^2 n \le 1$$
$$0 \le \frac{\cos^2 n}{2^n} \le \frac{1}{2^n}$$

Como $\lim_{n\to\infty}0=\lim_{n\to\infty}\frac{1}{2^n}=0$, pelo **Teorema 1.2**, temos que

$$\lim_{n \to \infty} \frac{\cos^2 n}{2^n} = 0.$$

Portanto, $a_n = \frac{\cos^2 n}{2^n}$ converge para zero.

(e) Calculemos o limite do valor absoluto, isto é,

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Pelo Teorema 1.3,

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0,$$

logo a sequência é convergente e converge para zero.

Importante: Todos os limites que foram calculados usando-se f(n), foram aplicados à sua respectiva função f(x).

Exercícios

- 1. O que é uma sequência convergente? Dê dois exemplos.
- 2. O que é uma sequência divergente? Dê dois exemplos.
- 3. Escreva os cinco primeiros termos de cada sequência:

(a)
$$a_n = 1 - (0,2)^n$$
,

(b)
$$a_n = \frac{n+1}{3n-1}$$
,

(c)
$$a_n = \frac{3(-1)^n}{n!}$$
,

(d)
$$\{2 \cdot 4 \cdot 6 \cdot \cdots (2n)\}$$

(e)
$$a_1 = 3$$
, $a_{n+1} = 2a_n - 1$,

(f)
$$a_1 = 4$$
, $a_{n+1} = \frac{a_n}{a_n - 1}$

4. Encontre uma fórmula para o termo geral a_n da sequência, admitindo que o padrão dos primeiros termos continua.

(a)
$$\left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots \right\}$$

(b)
$$\left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \cdots \right\}$$

(c)
$$\{2,7,12,17,\dots\}$$

(d)
$$\left\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \cdots\right\}$$

(e)
$$\left\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \cdots\right\}$$

(f)
$$\{1,5,1,5,1,5,\dots\}$$

5. Em cada item, determine duas fórmulas para o termo geral da sequência, uma começando com n=1 e a outra começando com n=0:

(a)
$$1, -r, r^2, -r^3, \dots$$

(b)
$$r, -r^2, r^3, -r^4, \dots$$

6. Determine se as sequências convergem ou divergem. Se ela convergir, determine seu limite:

(a)
$$a_n = \frac{5-2n}{3n-7}$$

(b)
$$a_n = \frac{n^2 - 4}{n + 5}$$

(c)
$$a_n = \frac{n^2}{n^3 + 1}$$

(d)
$$a_n = (-1)^n \frac{n}{n^3 + 3}$$

(e)
$$a_n = \frac{n^2 - 2\sqrt{n} + 1}{1 - n - 3n^2}$$

(f)
$$a_n = \frac{e^n - e^{-n}}{e^n + e^{-n}}$$

$$(\mathbf{g}) \ a_n = \left(\frac{n-3}{n}\right)^n$$

(h)
$$a_n = \frac{n}{\ln(n+1)}$$

(i)
$$a_n = \sqrt{n+1} - \sqrt{n}$$

(j)
$$a_n = n - \sqrt{n^2 - 4n}$$

(k)
$$a_n = \cos\left(\frac{2}{n}\right)$$

(I)
$$a_n = \frac{(2n-1)!}{(2n+1)!}$$

$$(\mathbf{m}) \ a_n = \frac{\ln n}{\ln(2n)}$$

(n)
$$a_n = n^2 e^{-n}$$

(o)
$$a_n = n \operatorname{sen}\left(\frac{1}{n}\right)$$

(p)
$$a_n = \left(1 + \frac{2}{n}\right)^{\frac{1}{n}}$$

(q)
$$a_n = n\cos(n\pi)$$

Respostas:

1.
$$\left\{\frac{1}{n}\right\}, \left\{\frac{1}{2^n}\right\}$$

2.
$$\{n\}, \{ \sin n \}$$

3. (a)
$$\{0, 8; 0, 96; 0, 992; 0, 9984; 0, 99968; \dots \}$$

(b)
$$\left\{1, \frac{3}{5}, \frac{1}{2}, \frac{5}{11}, \frac{3}{7}, \cdots \right\}$$

(c)
$$\left\{-3, \frac{3}{2}, -\frac{1}{2}, \frac{1}{8}, -\frac{1}{40}, \cdots \right\}$$

(d)
$$\{2, 8, 48, 384, 3840, \dots\}$$

(e)
$$\{3, 5, 9, 17, 33, \dots\}$$

(f)
$$\left\{4, \frac{4}{3}, 4, \frac{4}{3}, 4, \cdots\right\}$$

4. (a)
$$a_n = \frac{1}{2^n}$$

(b)
$$a_n = \frac{1}{2n}$$

(c)
$$a_n = 5n - 3$$

(d)
$$a_n = (-1)^n \frac{n}{(n+1)^2}$$

(e)
$$a_n = \left(-\frac{2}{3}\right)^{n-1}$$

(f)
$$a_n = 3 + (-1)^{n+1} \cdot 2$$

5. (a)
$$(-r)^{n-1}$$
, $n \ge 1$; $(-r)^n$, $n \ge 0$

- (b) $(-1)^{n+1}r^n$, $n \ge 1$; $(-1)^n r^{n+1}$, $n \ge 0$.
- **6.** (a) Converge. $-\frac{2}{3}$
 - (b) Diverge.
 - (c) Converge. 0
 - (d) Converge. 0
 - (e) Converge. $-\frac{1}{3}$
 - (f) Converge. 1
 - (g) Converge. e^{-3}
 - (h) Diverge.
 - (i) Converge para 0
 - (j) Converge para 2
 - (k) Converge. 1
 - (I) Converge. 0
 - (m) Converge. 1
 - (n) Converge. 0
 - (o) Converge. 1
 - (p) Converge. 1
 - (q) Diverge.