EE209AS Final Project

1/28/2019

- Option_1: Traditional CV based algorithm acceleration for license plate detection and recognition
- Option_2: Deep learning based algorithm acceleration for license plate detection and recognition
- Option_3: Acceleration for image registration operations

- Background
 - Surveillance video can be useful in a lot of scenarios
 - A detection + segmentation + classification problem
 - Recognize license plate from still video images of CCTV

- Dataset:
 - Application oriented license plate (AOLP) Databased by NTUST
 - http://aolpr.ntust.edu.tw/lab/index.html
 - https://drive.google.com/open?
 id=1t2zesc4jJDkhj6IF6SeyR6iMPTHTPxfn
 - Supplement dataset:
 - License plate recognition dataset
 - https://drive.google.com/open?
 id=1Na_bT2pKYdEiv0UvBPwzG0_zmi8wwCNd

License Plate Detection and Recognition (annotate of the control o

Access control camera

Road patrol camera

Traffic law enforcement camera

```
"annotation":{
"folder": "AOLP_LE_test",
   "filename":"1.jpg",
       "source":{
     "database": "AOLP",
   "annotation":"LE_test",
       "image":"AOLP"
         "size":{
        "width":"640",
        "height":"480",
         "depth":"3"
   "segmented":"1",
        "object":{
       "name":"plate",
    "platetext": "3968XJ",
       "pose": "Frontal",
       "truncated":"1",
        "difficult":"0",
          "bndbox":{
           "xmin":"173",
           "ymin":"200",
           "xmax":"316",
           "ymax":"275"
```

- Dataset:
 - Application oriented license plate (AOLP):
 - AC: 100 training + 581 testing
 - LE: 100 training + 687 testing
 - RP: 100 training + 511 testing
 - License Plate dataset:
 - 3922 images with labels
 - Not necessary to be used

- Past work
 - 1. The recognition is often done in steps. And for each step, a (deep) model is trained.
 - 2. The model can either be of traditional CV methods, or deep learning methods.
 - References see the next page

Step 1: Car detection

Step 2: License plate cropping

Step 3: number recognition

• Tradition methods for license plate recognition

K. K. Kim, K. I. Kim, J. B. Kim and H. J. Kim, "Learning-based approach for license plate recognition," Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501), Sydney, NSW, Australia, 2000, pp. 614-623 vol.2.

Zehang Sun, G. Bebis and R. Miller, "On-road vehicle detection using Gabor filters and support vector machines," 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), Santorini, Greece, 2002, pp. 1019-1022 vol.2.

Wei Zheng and Luhong Liang, "Fast car detection using image strip features," 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, 2009, pp. 2703-2710.

C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos and E. Kayafas, "A License Plate-Recognition Algorithm for Intelligent Transportation System Applications," in IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 3, pp. 377-392, Sept. 2006.

Anagnostopoulos, C., Anagnostopoulos, I., Psoroulas, I.D., Loumos, V., & Kayafas, E. (2008). License Plate Recognition From Still Images and Video Sequences: A Survey. *IEEE Trans. Intelligent Transportation Systems*, *9*, 377-391.

Deep learning methods for license plate recognition

Li, H., & Shen, C. (2016). Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs. CoRR, abs/1601.05610.

Yamwong, P., Hou, S., Wang, Z., & Zha, Z. (2018). Towards Human-Level License Plate Recognition. ECCV.

Xie, L., Ahmad, T., Jin, L., Liu, Y., & Zhang, S.X. (2018). A New CNN-Based Method for Multi-Directional Car License Plate Detection. *IEEE Transactions on Intelligent Transportation Systems*, 19, 507-517.

Laroca, R., Severo, E., Zanlorensi, L.A., Oliveira, L.E., Gonçalves, G.R., Schwartz, W.R., & Menotti, D. (2018). A Robust Real-Time Automatic License Plate Recognition Based on the YOLO Detector. 2018 International Joint Conference on Neural Networks (IJCNN), 1-10.

Option 1: Traditional CV based algorithm acceleration for license plate detection and recognition

- Task
 - 1. Review traditional CV based methods for license plate recognitions.
 - 2. Build the framework for license plate recognition. The models can be self implemented or from references.
 - 3. Analyze framework and profiles the steps.
 - 4. Select one step to accelerate by using FPGA.
 - 5. Run simulations in Verilog and analyze the acceleration.

Option 2: Deep learning based algorithm acceleration for license plate detection and recognition

Task

- 1. Review deep learning based methods for license plate recognitions.
- 2. Build the framework for license plate recognition. The models can be self implemented/trained or from references/trained models.
- 3. Analyze framework and profiles the steps.
- 4. Select one network to accelerate by network pruning and FPGA.
- 5. Run simulations in Verilog and analyze the acceleration.

- Background
 - Finding a spatial one-to-one mapping from pixels in one image to pixels in the other image
 - Useful in a lot of scenarios

By Noso1 (talk) - Own work (Original text: I created this work entirely by myself.), Attribution, https://commons.wikimedia.org/w/index.php curid=12084707

Li X, Dawant BM, Welch EB, et al. A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. *Magn Reson Imaging*. 2009;27(9):1258-70.

Moving Image $I_{M}(x)$ $\Omega_{\scriptscriptstyle M} \subset R^d$

Fixed Image $I_F(x)$ $\Omega_{\scriptscriptstyle E} \subset R^d$ Finding $T_u: \Omega_F \to \Omega_M$ such that $I_M(T_u(x))$ aligns with $I_F(x)$

Solving $\hat{u} = \arg\min_{u} C(u; I_F; I_M)$

s.t.
$$C(u; I_F, I_M) = -S(u; I_F, I_M) + \gamma P(u)$$

Rigid models

Translation $T_u(x) = x + t$

3

Rigid $T_u(x) = R(x-c)+t+c$

9

Affine $T_u(x) = A(x-c) + t + c$

12

Non-Rigid (deformable)

models

B-spline $f_u(x) = x + \sum_{x_k \in N} p_k(\frac{x - x_k}{\sigma})$

N*P

Non-parametric

models

Thin-plate splints $(x - x_k) = x + Ax + t + \sum_{x_k \in N} c_k G(x - x_k)$

N*C

Non-parametric models

- Source code in Python
 - https://github.com/pyimreg/imreg
 - Modified and uploaded on google drive:
 - https://drive.google.com/file/d/1jECiAbWrnxTPVhlousloYQvbnOx2YxvW/view?usp=sharing
 - We will work with rigid registration, bilinear interpolation, and intensity difference as cost function. See code for more information.
 - To learn more about the code, see references we recommend as below:
 - Code implementation: S. Baker and I. Matthews. Equivalence and efficiency of image alignment algorithms. In Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition, Volume 1, Pages 1090 – 1097, December 2001.
 - General registration: https://www.creatis.insa-lyon.fr/~srit/tete/2012_master_eeap_si_m5.pdf

$$T_{u}(x) = A(x-c) + t + c$$

6 parameters in total for rotation, scaling, and transportation.

Ordered by: cumulative time

ncalls	tottime	percall	cumtime	percall filename:	lineno(function)					
1	0.011	0.011	4.038	4.038 engine_ru	n.py:1(<module>)</module>					
1	0.000	0.000	2.137	2.137 pyplot.py	:236(show)					
1	0.000	0.000	2.137	2.137 backend_bases.py:178(show)						
1	0.000	0.000	1.483	1.483 backend_macosx.py:208(mainloop)						
1	1.482	1.482	1.483		ib.backendsmac	•				
1	0.210	0.210	0.654		show' of '_macos:		' objects}			
1	0.001	0.001	0.530	0.530 common.py			_		名称	
1	0.000	0.000	0.518	0.518 pickle.py						
1	0.117	0.117	0.518	0.518 pickle.py					🦸initpy	
1	0.037	0.037	0.464	-	py:101(<module>)</module>				engine_run	.pv
2	0.000	0.000	0.442		acosx.py:79(_drav	w)				.69
340/2	0.003	0.000	0.416		:47(draw_wrapper				metric.py	
2	0.002	0.001	0.416	0.208 figure.py		•		ł	model.py	
8/2	0.000	0.000	0.408		123(_draw_list_c	ompositina imag	es)		register.py	
6	0.000	0.000	0.407	0.068 _base.py:		<u>9_</u> 9	,			
1	0.008	0.008	0.400	0.400 pyplot.py					sampler.py	
15	0.066	0.004	0.335	0.022init					setup.py	
1	0.002	0.002	0.309	0.309 register.						
1	0.007	0.007	0.306	0.306 metric.py						
1	0.004	0.004	0.286		py:127(<module>)</module>					
2	0.010	0.005	0.274	0.137init						
1	0.005	0.005	0.273	0.273 filters.p						
262144	0.157	0.000	0.267		:935(load_binint:	1)				
1	0.002	0.002	0.263		rings.py:1(<modu< td=""><td></td><td></td><td></td><td></td><td></td></modu<>					
1	0.005	0.005	0.255		py:172(<module>)</module>	207 /				
1	0.022	0.022	0.250		te.py:2(<module></module>)				
12	0.000	0.000	0.209	0.017 axis.py:1		<u>, </u>				
3	0.017	0.006	0.201	0.067init						
6	0.000	0.000	0.167	0.028 image.py:	_					
1	0.013	0.013	0.166		py:106(<module>)</module>					
526858	0.163	0.000	0.163		read' of 'file'	ohiectel				
6	0.004	0.001	0.160	0.027 image.py	.eau or rile (00)6663				
6	0.015	0.003	0.155	0.026 image.py						
295	0.013	0.000	0.153	0.001 {impor						
1	0.003	0.008	0.148	0.148 colorbai	Read fixed/ —	▲ Interpolations	Calculate Cos	_	→ Calculate —	Transform and
1	0.003	0.003	0.119	0.119 add_newc	moving images	Intorpolations	Calculate Cos		derivatives and update parameters	Interpolation
24	0.003	0.000	0.109	0.005 axis.py:					upuate parameters	
216	0.001	0.000	0.094	0.000 axis.py:						
78	0.001	0.000	0.093	0.000 axis.py:		Spline,	Intensity differer	ice		Spline,
1	0.002	0.000	0.093	0.001 axis.py.		Nearest neighbor,	Mutual Informat	ion	Gradient decent	Nearest neighbor,
13	0.000	0.000	0.089	0.007 six.py:9						
13	0.000	0.000	0.009	0.00/ SIX.PY:5						••••
						4			,	,

Option 3: Acceleration for image registration operations

- Task
 - 1. Review the code we release, and understand how it works.
 - 2. Select one function to accelerate by FPGA.
 - 3. Run simulations in Verilog and analyze the acceleration.

Grade Metric

- Algorithm accuracy run with PC: 30%
- FPGA acceleration design (and network pruning): 40%
- Acceleration results with simulations: 30%