Exercice sheet 1

Balint Gersey

1 Exercice 1

This is an alternative solution to exercise 1 part a) from problem sheet 1. The official solution is available on the course website.

Recall that the σ -algebra generated by a random variable $X:\Omega\to\mathbb{R}$ is the σ -algebra generated by the collection of sets of the form $X^{-1}(B):=\{X\in B\}$, for B in the Borel sigma algebra $\mathcal{B}(\mathbb{R})$. In other words the σ -algebra generated by the random variable X is the smallest σ -algebra containing the sets of the form $X^{-1}(B)$, for B in the Borel sigma algebra $\mathcal{B}(\mathbb{R})$.

To solve the exercise, we will first calculate the sets of the form $\{X \in B\}$, for B in the Borel sigma algebra $\mathcal{B}(\mathbb{R})$ and then find the smallest σ -algebra containing those sets.

• $\mathcal{F}_0 := \sigma(X_0)$ We have assumed that $X_0 = 8$ is constant, i.e. $X_0(\omega) = 8 \ \forall \omega \in \Omega$. We therefore have that

$$X_0^{-1}(B) := \{X_0 \in B\} := \{\omega \in \Omega | X_0(\omega) \in B\} = \begin{cases} \Omega, & \text{if } 8 \in B \\ \emptyset, & \text{otherwise} \end{cases}$$

The smallest σ -algebra containing \emptyset and Ω is $\{\emptyset, \Omega\}$ since it is easy the verify that $\{\emptyset, \Omega\}$ is a σ -algebra (just need to show the three properties defining a σ -algebra).

Hence $\mathcal{F}_0 := \sigma(X_0) = \{\emptyset, \Omega\}$

• $\mathcal{G}_1 := \sigma(X_1)$ By definition $X_1(\omega) = X_0(\omega)Y_1(\omega) = 8Y_1(\omega)$. Using that the random variable Y_1 takes the following values:

$$Y_1(\omega) := \begin{cases} 2, & \text{if } \omega \in \{UU, UD\} \\ \frac{1}{2}, & \text{if } \omega \in \{DD, DU\} \end{cases}$$

we get that the random variable X_1 can take the following values:

$$X_1(\omega) := \begin{cases} 8*2 = 16, & \text{if } \omega \in \{UU, UD\} \\ 8*\frac{1}{2} = 4, & \text{if } \omega \in \{DD, DU\} \end{cases}$$

The sets of the form $X_1^{-1}(B)$, for B in the Borel sigma algebra $\mathcal{B}(\mathbb{R})$ are thus:

$$X_1^{-1}(B) := \{X_1 \in B\} := \{\omega \in \Omega | X_1(\omega) \in B\} = \begin{cases} \Omega, & \text{if } 4 \in B \text{ and } 16 \in B \\ \{UU, UD\}, & \text{if } 16 \in B \text{ and } 4 \notin B \\ \{DD, DU\}, & \text{if } 4 \in B \text{ and } 16 \notin B \\ \emptyset, & \text{if } 4 \notin B \text{ and } 4 \notin B \end{cases}$$

Again it is easy to check that $\{\emptyset, \Omega, \{UU, UD\}, \{DD, DU\}\}\$ is a σ algebra and hence the smallest σ algebra containing the sets of the form $X_1^{-1}(B)$ is $\{\emptyset, \Omega, \{UU, UD\}, \{DD, DU\}\}\$. Hence $\mathcal{G}_1 := \sigma(X_1) = \{\emptyset, \Omega, \{UU, UD\}, \{DD, DU\}\}\$

• $\mathcal{F}_1 := \sigma(X_0, X_1)$ We have calculated above that

$$X_0^{-1}(B) := \{X_0 \in B\} := \{\omega \in \Omega | X_0(\omega) \in B\} = \begin{cases} \Omega, & \text{if } 8 \in B \\ \emptyset, & \text{otherwise} \end{cases}$$

 $X_1^{-1}(B) := \{X_1 \in B\} := \{\omega \in \Omega | X_1(\omega) \in B\} = \begin{cases} \Omega, & \text{if } 4 \in B \text{ and } 16 \in B \\ \{UU, UD\}, & \text{if } 16 \in B \text{ and } 4 \notin B \\ \{DD, DU\}, & \text{if } 4 \in B \text{ and } 16 \notin B \\ \emptyset, & \text{if } 4 \notin B \text{ and } 4 \notin B \end{cases}$

Morever we have seen that $\{\emptyset, \Omega, \{UU, UD\}, \{DD, DU\}\}\$ is a σ -algebra. Hence the smallest σ algebra containing the sets of the form $X_0^{-1}(B)$ and $X_1^{-1}(B)$ is $\{\emptyset, \Omega, \{UU, UD\}, \{DD, DU\}\}\$. Hence $\mathcal{F}_1 := \sigma(X_0, X_1) = \{\emptyset, \Omega, \{UU, UD\}, \{DD, DU\}\}\$

A similar argument can be used to find \mathcal{F}_2 and \mathcal{G}_2 . This is left as an exercise.