诺禾致源 宏基因组交付目录说明手册 (V4.3)

2017年11月13日

目录

(注:单击即可跳转至相应文档的详细说明)

05.FUNCTIONANNOTATION——【常用功能数据库注释及丰度分析结果】	5
CAZY——【CAZY 数据库分析结果】	5
CAZY_ANNO【CAZY 注释结果统计】	5
CAZY_MAT【CAZY相对丰度和绝对丰度分析结果:EC 为酶,LEVEL1 为六大功能类,LEVEL2 为子功能】	8
GENENUMS——【注释到的基因 <mark>数目、基因 ID 统计,EC 为酶,LEVEL1 为六大功能类,LEVEL2 为子</mark> 功能】	g
GENENUMS.BETWEENSAMPLES——【各样品中基因数目统计】	10
GENENUMS.BETWEENSAMPLES.HEATMAP——【各样品注释到的基因数目的 <mark>聚类图】</mark>	11
HEATMAP【各样品中的酶的相对丰度聚类图以及作图数据】	12
METASTATS——【各样品的 METASTATS 统计结果,EC 为酶,LEVEL2 为 <mark>子</mark> 功能】	/ / / / / / / / / / / / /
` PCA ——【各样品的 PCA 分析结果,EC 为酶,LEVEL1 为六大功能类,LEVEL2 为子功能】	12
` NMDS——【各样品的 NMDS 分析结果,EC 为酶,LEVEL1 为六大功能类,LEVEL2 为子功能】	12
` ANOSIM——【各组 ANOSIM 分析结果,默认以 LEVEL2 层级丰度进行分析】	13
LDA——【基于 CAZY 功能丰度的 LDA 分析结果,默认以 LEVEL2 层级丰度进行分析】	13
EGGNOG【EGGNOG 数据库分析结果】	14
EGGNOG_ANNO【EGGNOG 注释结果统计】	14

		EGGNOG_MAT——【EGGNOG 相对丰度和绝对丰度分析结果:LEVEL1 为第一层级,LEVEL2 为第二层级,OG 为直系同源簇】	17
		GENENUMS——【注释到的基因数目、基因 ID 统计,相对丰度和绝对丰度分析结果】	18
		GENENUMS.BETWEENSAMPLES——【各样品中基因数目统计,相对丰度和绝对丰度分析结果】	19
		GENENUMS.BETWEENSAMPLES.HEATMAP——【各样品注释到的基因数目的聚类图,相对丰度和绝对丰度分析结果】	20
		HEATMAP——【各样品中的酶的相对丰度聚类图以及作图数据,相对丰度和绝对丰度分析结果】	21
		METASTATS——【各样品的 METASTATS 统计结果,LEVEL2 为第二层级,OG 为直系同源簇】	21
		` PCA ——【各样品的 PCA 分析结果】	21
1		` NMDS——【各样品的 NMDS 分析结果,og 为直系同源簇,level1 为第一层级,level2 为第二层级】	21
		` Anosim——【各组 Anosim 分 <mark>析结</mark> 果,默认以 og 层级丰度进行分析】	22
1		LDA——【基于 EGGNOG 功能丰度的 LDA 分析结果,默认以 og 层级丰度进行分析】	22
Ι,	K	IEGG ——【KEGG 数据库分析结果】	23
		GENENUMS——【注释到的基因数目、基因 ID 统计,EC 为酶,KO 为 <mark>直系</mark> 同源的功 <mark>能,</mark> LEVEL 1 为生 物代谢通路,LEVEL 2 为子功能,LEVEL3 之	为代
谢通	路	图	23
1		GENENUMS.BETWEENSAMPLES——【各样品中基因数目统计】	23
		GENENUMS.BETWEENSAMPLES.HEATMAP——【各样品注释到的基因数目的聚类图】	24
		HEATMAP——【各样品中的酶的相对丰度聚类图以及作图数据】	26
		KEGG_ANNO——【KEGG 注释结果统计】	26
		KEGG_MAT——【KEGG 相对丰度和绝对丰度分析结果: єс 为酶,ко 为直系同源的功能】	29

METASTATS——【各样品的 METASTATS 统计结果】	31
PATHWAYMAPS——【代谢通路比较结果】	31
` PCA——【各样品的 PCA 分析结果】	31
` NMDS——【各样品的 NMDS 分析结果】	32
` Anosim【各组 Anosim 分析结果,默认以 KO 层级丰度进行分析】	33
LDA【基于 KEGG 功能丰度的 LDA 分析结果,默认以 KO 层级丰度进行分析】	33
ROC【LDA 筛选的差异功能 ROC 曲线】	34
CARD——【CARD 数据库分析结果】	34
README.PDF【CARD 数据库分析结果 README 文档】	34
STAT_RESULT 【对 UNIGENES 中 ARO 预测结果的分析目录】	34
BAR【柱状图结果】	34
BOX【箱形图结果】	34
HEATMAP【TOP30 ARO 各样品中丰度热图结果目录】	36
STAT.ARO.ABSOLUTE.XLS【各样品中 ARO 的绝对丰度信息表, ARO 按最大值排序】	37
STAT.ARO.ID.XLS【各样品中 ARO 的绝对丰度信息表,含有抗性基因 ID,未排序】	37
STAT.ARO.RELATIVE.XLS【各样品中 ARO 的相对丰度信息表, ARO 按最大值排序】	37
` TWOCIRCLE	37
` MD_TAXONOMY.{PNG,SVG}【某分组中抗性基因与物种归属关系双圈图】	38

`-- 05.FUNCTIONANNOTATION --README.PDF ——【05. FUNCTIONANNOTATION 交付结果目录说明】

39

|-- 05.FunctionAnnotation——【常用功能数据库注释及丰度分析结果】

|-- CAZy——【CAZy 数据库分析结果】

| | | -- CAZy_Anno——【CAZy 注释结果统计】

| | | |-- cazy.unigenes.num.{pdf|png}——【注释到 CAZy 第一层级的基因数目统计图, pdf 及 png 格式】

对应的是结题报告中的 CAZy 注释结果统计图,图中,横轴是数据库中各功能类型的代码,代码的解释见对应的图例说明,纵轴代表注释为相应功能类的基因数目。

| |-- cazy.unigenes.num.txt ——【注释到 CAZy 第一层级的基因数目统计结果】

储存了六大功能类对应的总体注释结果,可以用 excel 打开该文件,在该文件中,各列所代表的含义如下:

列数	列标题	说明
1	Name	六大功能类的缩写
2	Discription	各功能类对应的描述
3	Unique.Genes.filter.anno	该功能类注释上的基因数目

|-- Unigenes.blast.m8.filter.anno.xls ——【过滤后的 blast 结果的注释信息】

为基于 Unique.Genes.filter 进行的 CAZy 注释结果,可以用 excel 打开。该文件共分为 4 列,各列所代表的含义如下:

列数	列标题	说明	
1	Gene id	基因的 ID 号	

	Unigenes	blast.m8.filter.xls ——	【过滤后的 blast 结果文件,Blast 软件的 m8 格式】
	4	Family_Description	该功能类的描述
	3	CAZy_Family	比对上的序列所属的子功能类
	2	Subject_id	比对上的序列在 genebank 中的 accession number

即为 blast 后的 m8 格式的文件,关于 m8 格式的详细解释可以参看结题报告中的常用数据格式说明。

| | | |-- Unigenes.level1.bar.{png|svg}——【CAZy 第一层级上的相对丰度统计图】

对应的是结题报告中的 CAZy 基因注释结果在第一层级上的统计图,纵轴表示注释到某类型的功能的相对比例;横轴表示样品名称;各颜色区块对应的功能类别见右侧图例。

| | | |-- Unigenes.level1.bar.tree.{png|svg}——【CAZy 功能聚类分析结果】

对应的是结题报告中的 CAZy 功能聚类分析图,图中心是 BC 距离聚类树结构,外圈各层是各样品在第一层级上的功能相对丰度分布,各颜色区块对应的功能类别见左上角图例。

| | |-- Unigenes.CAZY.tax.xls——【CAZY 各个层级对应的物种注释信息】

该文件为通过注释到 CAZY 不同层级的基因对应到其相关的物种注释信息,可以通过该文件筛选关注功能的物种信息。

| |-- CAZy_MAT----【CAZy 相对丰度和绝对丰度分析结果:ec 为酶,level1 为六大功能类,level2 为子功能】

| |-- Absolute ---【各样品在 ec , level1 和 level2 不同水平的绝对丰度矩阵】

在该文件夹中,一共有三个文件,可以用 excel 打开这些文件,其中 Unigenes.absolute.level1.xls 是对第一层级的六大功能类在各样品中的绝对丰度进行的统计,在该文件中,第一行为样品信息,第一列为第一层级六大功能类的代号,最后一列为代号的详细说明,其余的数字则代表某个功能类在某个样品中的绝对丰度。

在 Absolute 文件夹中,存在的另外两个文件 Unigenes.absolute.level2.xls 和 Unigenes.absolute.ec.xls 的展示形式和 Unique.Genes.level1.absolute.xls 文件的展示形式是一样的,不同的是,Unigenes.absolute.level2.xls 是对子功能类在各样品中的绝对丰度 进行的统计,而 Unigenes.absolute.ec.xls 则是对所有能够注释上 CAZy 数据库的基因所属的酶,在各样品中的绝对丰度进行的统计。

| | | |-- EvenAbsolute——【各样品在 ec , level1 和 level2 不同水平的绝对丰度均一化矩阵】

是将 Absolute 文件夹中的三个文件的结果,分别进行均一化后得到的结果。

| | `-- Relative ——【各样品在 ec , level1 和 level2 不同水平的相对丰度矩阵】

在该文件夹中,一共有三个文件,可以用 excel 打开这些文件,其中 Unigenes. relative.level1.xls 是对第一层级的六大功能类在各样品中的相对丰度进行的统计,在该文件中,第一行为样品信息,第一列为第一层级六大功能类的代号,最后一列为代号的详细说明,其余的数字则代表某个功能类在某个样品中的相对丰度。

在 Relative 文件夹中,存在的另外两个文件 Unigenes.relative.level2.xls 和 Unigenes.relative.ec.xls 的展示形式和 Unique.Genes.level1.relative.xls 文件的展示形式是一样的,不同的是,Unigenes.relative.level2.xls 是对子功能类在各样品中的相对丰度 进行的统计,而 Unigenes.absolute.ec.xls 则是对所有能够注释上 CAZy 数据库的基因所属的酶,在各样品中的相对丰度进行的统计。

| |-- GeneNums——【注释到的基因数目、基因 id 统计 , ec 为酶 , level1 为六大功能类 , level2 为子功能】

在该文件夹中有三个文件,文件展示形式类似。文件 Unigenes.absolute.level1.xls,共三列,第一列为第一层级六大功能类的代号,第二列为注释上的基因数,第三列为注释上该功能的所有基因 id。文件 Unigenes.absolute.level2.xls,共四列,第一列为子功能名称,第二列为子功能的详细描述,第三列为注释上的基因数,第四列为注释上该功能的所有基因 id。文件 Unigenes.absolute.ec.xls,共三列,第一列为酶的名称,第二列为注释上该酶的基因数,第三列为注释上该酶的所有基因 id。

|-- GeneNums.BetweenSamples——【各样品中基因数目统计】

在该文件夹中有三个文件,文件展示形式相同。文件 Unigenes.absolute.level1.xls ,Unigenes.absolute.level2.xls ,Unigenes.ab

INWOSENE SHAPE

|-- GeneNums.Betw.top10---【各样品注(组)释到的基因数目的柱状图】 | |-- ec---【各样品中的酶的丰度排名前 10 的柱状图】 | |-- level1 --- 【各样品中在 CAZy 第一层级的丰度排名前 10 的柱状图】 |-- level2 ——【各样品中在 CAZy 第二层级的丰度排名前 10 的柱状图】 |-- GeneNums.BetweenSamples.heatmap——【各样品注释到的基因数目的聚类图】 | |-- ec---【各样品中的酶的绝对丰度聚类图】 | |-- level1 --- 【各样品中在 CAZy 第一层级的绝对丰度聚类图】 | `-- level2 ——【各样品中在 CAZy 第二层级的绝对丰度聚类图】

以上ec、level1、level2 三个文件夹中的结果,是从 GeneNums.BetweenSamples 中的表格出发,进行聚类得到的热图。

```
|-- heatmap——【各样品中的酶的相对丰度聚类图以及作图数据】
   |-- MetaStats——【各样品的 MetaStats 统计结果, EC 为酶, level2 为子功能】
| | |-- EC ——【各样品在 EC 水平的 MetaStats 统计结果】
 | `-- level2 ——【各样品在 CAZy 第二层级的 MetaStats 统计结果】
  `-- PCA ——【各样品的 PCA 分析结果 , EC 为酶 , <mark>lev</mark>el1 为<mark>六</mark>大功能类 , lev<mark>e</mark>l2 为<mark>子功能</mark>】
| ||-- ec---【各样品在 EC 水平的 PCA 分析结果】
  `-- NMDS——【各样品的 NMDS 分析结果,EC 为酶,level1 为六大功能类,level2 为子功能】
```

```
||-- ec---【各样品在 EC 水平的 NMDS 分析结果】
 ||-- level1 ----【各样品在 CAZy 第一层级的 NMDS 分析结果】
| || `-- level2 ——【各样品在 CAZy 第二层级的 NMDS 分析结果】
                【各组 Anosim 分析结果,默认以 level2 层级丰度进行分析】
                 -【各个分组间 Anosim 分析箱图 , pdf 和 <mark>png</mark> 格式】
      |--.{pdf|png}-
      |--stat_anosim.txt ——【Anosim 分析的统计结果】
    |-- LDA——【基于 CAZY 功能丰度的 LDA 分析结果,默认以 level2 层级丰度进行分析]
  | |-- LDA ——【LDA 值分布柱状图结果】
  |-- heatmap----【LDA 筛选的差异功能丰度聚类热图】
    |-- ROC——【LDA 筛选的差异功能 ROC 曲线】
```

|-- eggNOG---【eggNOG 数据库分析结果】

| | |-- eggNOG_Anno---【eggNOG 注释结果统计】

| | |-- eggNOG.unigenes.num.{pdf|png}----【注释到 eggNOG 第一层级的基因数目统计图, pdf 及 png 格式】

对应的是结题报告中的 eggNOG 注释结果统计图,图中,横轴是数据库中各功能类型的代码,代码的解释见对应的图例说明,纵轴代表注释为相应功能类的基因数目。

| | | |-- eggNOG.unigenes.num.txt ——【注释到 eggNOG 第一层级的基因数目统计结果】

储存了 25 大功能类对应的总体注释结果,可以用 excel 打开该文件,在该文件中,各列所代表的含义如下:

列数	列标题	说明
1	Functional_Category	25 大功能类的缩写
2	Description	各功能类对应的描述
3	Num	该功能类注释上的基因数目

| |-- Unigenes.blast.m8.filter.anno.xls ——【过滤后的 blast 结果的注释信息】

储存的是基于 blast m8 文件进行的 eggNOG 注释结果,该文件可以用 excel 打开,该文件共分为 5 列,各列所代表的含义如下:

列数	列标题	说明	
1	Query_id	基因的 ID 号	ODO
4	Subject_id	比对上的序列号	
5	Ortholog_Group	该序列所属的 Orthologous id	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
6	Functional_Category	该 Orthologous id 所属的功能类代号	冶木 蚁源
7	OG_Description	该 Orthologous id 多对应的描述	

| | - Unigenes.level1.bar.{png|svg}——【eggNOG 第一层级上的相对丰度统计图】

对应的是结题报告中的 eggNOG 基因注释结果在第一层级上的统计图,纵轴表示注释到某类型的功能的相对比例;横轴表示样品名称;各颜色区块对应的功能类别见右侧图例。

| | | |-- Unigenes.level1.bar.tree.{png|svg}----【eggNOG 功能聚类分析结果,pdf 与 png 格式】

对应的是结题报告中的 eggNOG 功能聚类分析图,图中心是欧氏<mark>距离</mark>聚类树结构,外圈各层是各样品在第一层级上的功能相对丰度分布,各颜色区块对应的功能类别见左上角图例。

| | | |-- Unigenes.eggNOG.tax.xls——【eggNOG 各个层级对应的物种注释信息】

该文件为通过注释到 eggNOG 不同层级的基因对应到其相关的物种注释信息,可以通过该文件筛选关注功能的物种信息。

| |-- eggNOG_MAT----【eggNOG 相对丰度和绝对丰度分析结果: level1 为第一层级, level2 为第二层级, og 为直系同源簇】

| | |-- Absolute ——【各样在 level1 , level2 和 og 水平注释到的绝对丰度矩阵】

在该文件夹中,一共有三个文件,可以用 excel 打开这些文件,其中 Unigenes.absolute.level1.xls 是对第一层级的 25 大功能类在各样品中的绝对丰度进行的统计,在该文件中,第一行为样品信息,第一列为第一层级 25 大功能类的代号,最后一列为代号的详细说明, 其余的数字则代表某个功能类在某个样品中的绝对丰度。

在 Absolute 文件夹中,存在的另外两个文件 Unigenes.absolute.level2.xls 和 Unigenes.absolute.og.xls 的展示形式和 Unique.Genes.level1.absolute.xls 文件的展示形式是一样的,不同的是,Unigenes.absolute.level2.xls 是对子功能类在各样品中的绝对丰度 进行的统计,而 Unigenes.absolute.og.xls 则是对所有能够注释上 eggNOG 数据库的基因所属的 Orthologous id,在各样品中的绝对丰度进行的统计。

| | | |-- EvenAbsolute——【各样在 level1 , level2 和 og 水平注释到的绝对丰度均一化矩阵】

是将 Absolute 文件夹中的三个文件的结果,分别进行均一化后得到的结果。

| | | | `-- Relative ——【各样在 level1 , level2 和 og 水平注释到的相对丰度矩阵】

在该文件夹中,一共有三个文件,可以用 excel 打开这些文件,其中 Unigenes.relative.level1.xls 是对第一层级的 25 大功能类在各样品中的绝对丰度进行的统计,在该文件中,第一行为样品信息,第一列为第一层级 25 大功能类的代号,最后一列为代号的详细说明,其余的数字则代表某个功能类在某个样品中的绝对丰度。

在 Relative 文件夹中,存在的另外两个文件 Unigenes.relative.level2.xls 和 Unigenes.relative.og.xls 的展示形式和 Unique.Genes.level1.relative.xls 文件的展示形式是一样的,不同的是,Unigenes.absolute.level2.xls 是对子功能类在各样品中的绝对丰度 进行的统计,而 Unigenes.relative.og.xls 则是对所有能够注释上 eggNOG 数据库的基因所属的 Orthologous id,在各样品中的绝对丰度进行的统计。

|-- GeneNums——【注释到的基因数目、基因 id 统计,相对丰度和绝对丰度分析结果】

在该文件夹中有三个文件,文件展示形式类似。文件 Unigenes.absolute.level1.xls,共三列,第一列为第一层级 25 大功能类的代号,第二列为注释上的基因数,第三列为注释上该功能的所有基因 id。文件 Unigenes.absolute.level2.xls,共四列,第一列为子功能名称,第二列为子功能的详细描述,第三列为注释上的基因数,第四列为注释上该功能的所有基因 id。文件 Unigenes.absolute.og.xls,共三列,第一列为酶的名称,第二列为注释上该 Orthologous id 的基因数,第三列为注释上该 Orthologous id 的所有基因 id。

|-- GeneNums.BetweenSamples——【各样品中基因数目统计,相对丰度和绝对丰度分析结果】

在该文件夹中有三个文件,文件展示形式相同。文件 Unigenes.absolute.level1.xls , Unigenes.absolute.level2.xls , Unigenes.absolute.og.xls , 内容为不同功能水平上在各样品中注释上的基因数目统计结果。

INWOSENE Branch

l		-	- GeneNums.Betw.top10——【各样品注(组)释到的基因数目的柱状图】
I	1	I	og ——【各样品(组)中在 og 水平的丰度前 10 的柱状图】
I		1	level1 ——【各样品(组)中在 eggNOG 第一层级的丰度前 10 的柱状图】
l		I	level2 ——【各样品(组)中在 eggNOG 第二层级的丰度前 10 的柱状图】
		-	- GeneNums.Between <mark>Samples.heatmap——【各样品注释到的基因数目的</mark> 聚类图,相对 <mark>丰度和绝</mark> 对丰度分
析	结身	【】	
I	I	I	og【各样品中在 eggNOG 第一层级的绝对丰度聚类图】
	1	I	level1——【各样品中在 eggNOG 第一层级的绝对丰度聚类图】

以上 og、levell 两个文件夹中的结果,是从 GeneNums.BetweenSamples 中的表格出发,进行聚类得到的热图。

|-- heatmap---【各样品中的酶的相对丰度聚类图以及作图数据,相对丰度和绝对丰度分析结果】 |-- MetaStats——【各样品的 MetaStats 统计结果, level2 为第二层级, og 为直系同源簇】 |-- level2 ——【各样品在 eggNOG 第二层级的 MetaStats 统计结果】 -【各样品在 og 水平的 MetaStats 统计结果】 `-- PCA —— 【各样品的 PCA 分析结果】 |-- level1 ——【各样品在 eggNOG 第一层级的 PCA 分析结果】 |-- level2 ——【各样品在 eggNOG 第二层级的 PCA 分析结果】 `-- og——【各样品在 og 水平的 PCA 分析结果】 `-- NMDS——【各样品的 NMDS 分析结果, og 为直系同源簇, level1 为第一层级, level2 为第二层级】

```
||-- og---【各样品在 og 水平的 NMDS 分析结果】
 ||-- level1 ——【各样品在 eggNOG 第一层级的 NMDS 分析结果】
| || `-- level2 ——【各样品在 eggNOG 第二层级的 NMDS 分析结果】
              -【各组 Anosim 分析结果,默认以 og 层级丰度进行分析】
                  【各个分组间 Anosim 分析箱图, pdf 和 png 格式】
    |-- *.{pdf|png}-
    |-- stat_anosim.txt ——【Anosim 分析的统计结果】
   |-- LDA——【基于 eggNOG 功能丰度的 LDA 分析结果,默认以 og 层级丰度进行分析】
 | |-- LDA ——【LDA 值分布柱状图结果】
  | |-- heatmap---【LDA 筛选的差异功能丰度聚类热图】
    |-- ROC——【LDA 筛选的差异功能 ROC 曲线】
```

`-- KEGG —— 【KEGG 数据库分析结果】

|-- GeneNums---【注释到的基因数目、基因 id 统计, ec 为酶, ko 为直系同源的功能, level1 为生物代谢通路, level2 为子功能, level3 为代谢通路图, module 为模块分析】

在该文件夹中,一共有六个文件,可以用 excel 打开这些文件,其中 Unigenes.absolute.level1.xls,共三列,第一列为第一层级六大功能类的代号,第二列为注释上的基因数,第三列为注释上该功能的所有基因 id。Unigenes.absolute.level2.xls、Unigenes.absolute.level3.xls、Unigenes.absolute.ec.xls 和 Unigenes.absolute.module.xls 也是三列,第一列分别为 level2、level3、Orthologous groups 的 id、酶和 module 的名称,第二列为注释上的基因数,第三列为注释上该功能的所有基因 id。

|-- GeneNums.BetweenSamples——【各样品中基因数目统计】

在该文件夹中有六个文件,文件展示形式相同。文件 Unigenes.absolute.level1.xls , Unigenes.absolute.level2.xls , Unigenes.absolute.level3.xls , Unigenes.absolute.ec.xls , Unigenes.absolute.module.xls 内容为不同功能水平上在各样品中注释上的基因数目统计结果。

| `-- level3---【各样品(组)中在 KEGG 第三层级的丰度前 10 柱状图】

以上 ec、ko、module、level1、level2 和 level3 六个文件夹中的结果,是从 GeneNums.BetweenSamples 中的表格出发,进行聚类得到的热图。

|-- heatmap----【各样品中的酶的相对丰度聚类图以及作图数据】

|-- KEGG_Anno----【KEGG 注释结果统计】

|-- kegg.unigenes.num.{pdf|png}——【注释到 KEGG 第一层级的基因数目统计图】

对应的是结题报告中的 KEGG 注释结果统计图,图中,左侧为代谢通路的描述,图中条形图上的数字为注释为该通路的基因数目。

|-- kegg.unigenes.num.txt——【注释到 KEGG 第一层级的基因数目统计图】

该文件一共分为三列,各列所代表的含义如下:

列数	列标题	说明
1	First Level	第一层六大代谢通路的描述
2	Second Level	注释出来的属于该代谢通路的第二层子通路的描述
3	Gene of Unique.Genes.KEGG.catalog	该子通路注释上的基因数目

| |-- Unigenes.blast.m8.filter.anno.xls——【过滤后的 blast 结果的注释信息】

储存的是基于 blast m8 文件进行的 KEGG 注释结果,该文件也可以用 excel 打开,共分为 7 列,在最后一列中,不同的 pathway 之间用相应的 pathway 编号隔开,在每一个 pathway 中,都分为三个层级,第一层级为六大代谢通路,第二层级为 43 种子通路,第三层级则为具体的通路信息。在该文件中,各列所代表的含义如下:

列数	列标题	说明
1	Query_id	基因的 ID 号
2	Kegg_geneID	比对上的序列 ID 号也 <mark>即 KEGG 中的</mark> geneID 号
3	KO_ID	该序列所对应的,在 KEGG 数据库中的 Orthology ID 号
4	KO_NAME	该 Orthology ID 所对应的名称
5	KO_DEFINITION	该 Orthology ID 所对应的描述
6	KO_EC	该 Orthology ID 所对应的 EC 编号

7	Module	该 Orthologous id 所对应的 Module 信息
8	KO_PATHWAY	该 Orthologous id 所对应的 pathway 信息

| -- |-- Unigenes.blast.m8.filter.xls---【过滤后的 blast 结果文件, Blast 软件的 m8 格式】

即为 blast 后的 m8 格式的文件,关于 m8 格式的详细解释可以参看结题报告中的常用数据格式说明。

|-- Unigenes.level1.bar.{png|svg}——【KEGG 第一层级上的相对丰度统计图】

对应的是结题报告中的 KEGG 基因注释结果在第一层级上的统计图,纵轴表示注释到某类型的代谢通路的相对比例;横轴表示样品名称;各颜色区块对应的代谢通路类别见右侧图例。

|-- Unigenes.level1.bar.tree.{png|svg}——【KEGG 功能聚类分析结果】

| | | |-- Unigenes.KEGG.tax.xls——【KEGG 各个层级对应的物种注释信息】

该文件为通过注释到 KEGG 不同层级的基因对应到其相关的物种注释信息,可以通过该文件筛选关注功能的物种信息。

|-- KEGG_MAT---【KEGG 相对丰度和绝对丰度分析结果:ec 为酶 , ko 为直系同源的功能】

|-- Absolute——【各样品在 ec, ko、module、level1, level2 和 level3 绝对丰度矩阵】

在该文件夹中,一共有六个文件,可以用 excel 打开这些文件,其中 Unigenes.absolute.level1.xls 是对第一层级的六大生物代谢通路 在各样品中的绝对丰度进行的统计,在该文件中,第一行为样品信息,第一列为第一层级六大生物代谢通路的描述,其余的数字则代表某个代谢通路在某个样品中的绝对丰度。

在 Absolute 文件夹中,存在的另外五个文件 Unigenes.absolute.level2.xls、Unigenes.absolute.level3.xls、Unigenes.absolute.ko.xls、Unigenes.absolute.ec.xls 和 Unigenes.absolute.module.xls 的展示形式和 Unigenes.absolute.level1.xls 文件的展示形式是一样的 不同的是,Unigenes.absolute.level2.xls 是对子通路在各样品中的绝对丰度进行的统计,Unigenes.absolute.level3.xls 是对代谢通路图在各样品中的绝对丰度进行的统计,Unigenes.absolute.ko.xls 是对 Orthologous groups 在各样品中的绝对丰度进行的统计,而 Unigenes.absolute.ec.xls 则是对所有能够注释上 KEGG 数据库的基因所属的酶,Unigenes.absolute.module.xls 是 module 在个样本种的绝对丰度进行的统计,在各样品中的绝对丰度进行的统计。

| |-- EvenAbsolute——【各样品在 ec , ko、module、level1 , level2 和 level3 水平绝对丰度均一化矩阵】

该文件中的五个文件是,将 Absolute 文件夹中的相应的文件结果进行均一化处理得到的。

| `-- Relative——【各样品在 ec , ko、module、level1 , level2 和 level3 相对丰度矩阵】

在该文件夹中,一共有六个文件,可以用 excel 打开这些文件,其中 Unigenes. relative.level1.xls 是对第一层级的六大生物代谢通路 在各样品中的相对丰度进行的统计,在该文件中,第一行为样品信息,第一列为第一层级六大生物代谢通路的描述,其余的数字则代 表某个代谢通路在某个样品中的相对丰度。

在 Absolute 文件夹中,存在的另外五个文件 Unigenes. relative.level2.xls、Unigenes. relative.level3.xls、Unigenes. relative.level3.xls、Unigenes. relative.level3.xls、Unigenes. relative.level3.xls、Unigenes. relative.level3.xls 文件的展示形式是一样的,不同的是,Unigenes. relative.level2.xls 是对子通路在各样品中的相对丰度进行的统计,Unigenes. relative.level3.xls 是对代谢通路图在各样品中的相对丰度进行的统计,Unigenes. relative.level3.xls 是对代谢通路图在各样品中的相对丰度进行的统计,Unigenes. relative.ec.xls 则是对所有能够注释上 KEGG 数据库的基因所属的酶,在各样品中的相对丰度进行的统计,Unigenes.relative.module.xls 是对 module 在各样本的相对丰度进行的统计。

|-- MetaStats——【各样品的 MetaStats 统计结果】 | |-- ec——【各样品在酶水平的 MetaStats 统计结果】 |-- ko---【各样品在 KO 水平的 MetaStats 统计结果】 【各样品在 KO 水平的 MetaStats 统计结果】 | |-- level2——【各样品在 module 水平的 MetaStats 统计结果】 `-- level3——【各样品在 KEGG 第三层级的 MetaStats 统计结果】 |-- pathwaymaps——【代谢通路比较结果】 `-- PCA——【各样品的 PCA 分析结果】

|-- ec---【各样品在酶水平的 PCA 分析结果】

```
|-- ko---【各样品在 KO 水平的 PCA 分析结果】
      |-- module——【各样品在 module 水平的 PCA 分析结果】
      |-- level1——【各样品在 KEGG 第一层级的 PCA 分析结果】
      |-- level2---【各样品在 KEGG 第二层级的 PCA 分析结果】
      `-- level3——【各样品在 KEGG 第三层级的 PCA 分析结果】
   `-- NMDS——【各样品的 NMDS 分析结果】
| | |-- ec----【各样品酶水平的 NMDS 分析结果】
 | |-- ko----【各样品 KO 水平的 NMDS 分析结果】
  | |-- module——【各样品 module 水平的 NMDS 分析结果】
```

```
||-- level1 ——【各样品在 KEGG 第一层级的 NMDS 分析结果】
| || `-- level2 ----【各样品在 KEGG 第二层级的 NMDS 分析结果】
  ||`-- level3——【各样品在 KEGG 第三层级的 NMDS 分析结果】
   |`-- Anosim——【各组 Anosim 分析结果,默认以 KO 层级丰度进行分析】
                  —【各<mark>个分</mark>组间 Anosim 分析箱图 , pdf 和 <mark>pn</mark>g 格式】
     |-- *.{pdf|png}--
     |-- stat anosim.txt ——【Anosim 分析的统计结果】
    |-- LDA---【基于 KEGG 功能丰度的 LDA 分析结果,默认以 KO 层级丰度进行
| | |-- LDA ——【LDA 值分布柱状图结果】
    |-- heatmap----【LDA 筛选的差异功能丰度聚类热图】
```

```
|-- ROC——【LDA 筛选的差异功能 ROC 曲线】
|-- CARD——【CARD 数据库分析结果】
   |-- Readme.pdf【CARD 数据库分析结果 readme 文档】
   |-- stat_result 【对 Unigenes 中 ARO 预测结果的分析目录】
     |-- bar【柱状图结果】
       |-- stat.ARO.ppm.{png,svg}【top20 的 ARO 在各样品的相对丰度柱状图】
       |-- stat.ARO.RelativePercent.{png,svg}【top20 的 ARO 在各样品的相对百分含量柱状图
       |-- stat.ARO.relative.per.xls【top20 的 ARO 在各样品的相对百分含量表格】
       `-- stat.ARO.relative.ppm.xls【top20 的 ARO 在各样品的相对丰度表格】
      |-- box【箱形图结果】
        |-- arobox【ARO 数目箱型图】
```

I	ı	aro.xis 【合件品 ARO 数目表情】
		` group.ARObox.{png,pdf}【组间 ARO 数目箱型图】
		` genebox【基因数目箱型图】
		gene.xls【各样品基因数目表格】
		` group.genebox.{png,pdf}【组间各样品抗性基因数目箱型图】
		circos【各样品中 ARO 丰度圈图结果目录】
I	1	circos.overview.{png,svg}【各样品中 top10ARO 丰度圈图】
		` stat.ARO.relative.circos.xls【top10 的 ARO 在各样品中相对丰度表 , 单位为 ppm】
巻	图分	〉为两个部分,右侧为样品信息,左侧为 ARO。内圈不同颜色表 <mark>示</mark> 不同的样品和 ARO,刻度为相对丰度,单位为 ppm,左

圈图分为两个部分,右侧为样品信息,左侧为 ARO。内圈不同颜色表示不同的样品和 ARO,刻度为相对丰度,单位为 ppm,左侧为样品中ARO的相对丰度之和,右侧为各ARO在样本中的相对丰度之和;外圈左侧为各个ARO中各样本所占的相对百分含量,外圈右侧为各样本中各个ARO的相对百分含量。

| |-- getARO.xls【各样品中抗性基因的丰度及 ARO 归属信息表】

Venn_flower【样品(组)抗性基因韦恩(花瓣)图】					
venn_flowe{pdf.png}【样品韦恩(花瓣)图】					
venn_flowe_G{pdf.png}【组韦恩(花瓣)图】					
当样本(组)数小于 5 时,展示韦恩图,当样本(组)数超过 5 个时,展示花瓣图;图中,每个圈代表一个样品;圈和圈重叠部					
分的数字代表样品之间共有的抗性基因个数;没有重叠部分的数字代表样品的特有抗性基因个数。					
bw.{pdf,png}【各样品中 top30 ARO 黑白热图】					
` stat.ARO.relative.bw.xls【各样品中 top30 ARO 丰 <mark>度表】</mark>					
横轴为样品名称,右侧纵轴为 ARO 名称,上方颜色为样本所在分组的信息;黑白热图中黑色表示样品中含有 ARO,白色表示样品中没有该 ARO。(如果该 top30ARO 在所有样本中均含有则不展示该图片)					
heat.{pdf,png}【各样品中 top30 ARO 丰度聚类热图】					

	I	` stat.ARO.relative.heat.xls【各样品中 top30 ARO 丰度表】					
	横	轴为样品名称,右侧纵轴为 ARO 名称,上方颜色为样本所在分组的信息,中间热图对应的值为每一行 ARO 相对丰度经过标准					
化处理后得到的 Z 值。							
1	I	stat.ARO.absolute.xls【各样品中 ARO 的绝对丰度信息表, ARO 按最大值排序】					
1	I	stat.ARO.id.xls【各样品中 ARO 的绝对丰度信息表,含有抗性基因 ID , 未排序】					
	I	stat.ARO.relative.xls【各样品中 ARO 的相对丰度信息表,ARO 按最大值排序】					
		` twocircle					
I	1	card.gene.absolute.total.tax.xls【各样本中抗性基因的丰 <mark>度及物种归属信息表</mark> 】					

`-- MD_taxonomy.{png,svg}【某分组中抗性基因与物种归属关系双圈图】

`-- Unigenes.protein.rgi.del.txt【RGI 软件预测的结果文件】

列标题	
ORF_ID	基因 ID
CUT_OFF	比对模式(默认严格筛选,strict)。
PASS_EVALUE	该 AROblast 比对时筛选 e-value 阈值。
Best_Hit_evalue	比对实际得到的 e-value 值
Best_Hit_ARO	比对得到的最佳 ARO
Best_Identities	序列与 ARO 序列相似度得分
ARO	该基因 ID 可以比对出的全部 ARO 编号
ARO_name	该基因 ID 可以比对出的全部 ARO 名称
Model_type	RGI 软件分析 ARO 时采用的计算模型

SNP SNP 模型

ARO_category ARO 种类描述信息

bit_score ARO 的打分值

Predicted_Protein 某基因中预测出的蛋白序列

CARD_Protein_Sequence CARD 数据库中 ARO 的蛋白序列。

LABEL 基因 ID

ID ARO 的 ID 信息

`-- 05.FunctionAnnotation -- ReadMe.pdf ——【05. FunctionAnnotation 交付结果目录说明】