Interpretable Machine Learning

GAM & Boosting

Learning goals

- Generalized additive model
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

0000

Idea of GAMs:

• Instead of linear terms $\theta_j x_j$, use flexible functions $f_j(x_j) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have a smoothness parameter to control flexibility (prevent overfitting)
 → Needs to be chosen, e.g., via cross-validation

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data \leadsto more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

- Interpretation needs to be done visually and relative to average prediction, also see PDPs
- Edf (effective degrees of freedom) represents complexity of smoothness

MODEL-BASED BOOSTING Bühlmann and Yu 2003

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, \mathbf{\theta}) + b^{[j]}(\mathbf{x}, \mathbf{\theta}^{\star}) = b^{[j]}(\mathbf{x}, \mathbf{\theta} + \mathbf{\theta}^{\star})$$

In each iteration, fit a set of BLs, add best one to model (with step-size ν):

$$\begin{split} \hat{f}^{[1]} &= \hat{f}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]}) \\ \hat{f}^{[2]} &= \hat{f}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]}) \\ \hat{f}^{[3]} &= \hat{f}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \\ &= \hat{f}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right) \\ &= \hat{f}_0 + \hat{f}_3(\mathbf{x}_3) + \hat{f}_1(\mathbf{x}_1) \end{split}$$

Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM

⇒ Converges to solution of LM

Relative frequency of selected BLs across iterations

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, heta) = x_j heta + heta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

• Early stopping allows feature selection & may prevent overfitting (regularization)

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

[⇒] Converges to solution of LM

20 iter. with $\nu=$ 0.1	Intercept	Weights
days_since_2011	-1210.27	3.3
season	0	WINTER: -276.9 SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
temp	-1118.94	73.2
offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- ullet E.g. iteration 1: days_since_2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

In-bag-risk: 434,686.0 OOB risk (10-fold CV): 446,450.0

In-bag-risk: 693,505.0 OOB risk (10-fold CV): 705,776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259,326.0

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

• Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018

BLs: linear and centered splines for numeric features, categorical for season

⇒ In-bag-risk: 250,202.0 ; OOB risk (10-fold CV): 267,497.0 (difference to lin. example: 178,953.0) ⇒ In-bag-risk: 434,686.0; OOB risk (10-fold CV): 446,450.0 (previous lin. example with 1000 iter.)

- Feature importance (risk reduction over iter.)
 - \rightarrow days since 2011 most important
- Total effect for days since 2011
 - → Combination of partial effects of linear BL and centered spline BL

