June 2006 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Mai	rks
1.	Use of $(\pi) \int y^2 dx \times \overline{x} = (\pi) \int xy^2 dx$ $\int x dx \times \overline{x} = \int x^2 dx$	M1	
	$\left[\frac{1}{2}x^2\right]_{\dots}^{\dots} \times \overline{x} = \left[\frac{1}{3}x^3\right]_{\dots}^{\dots}$	A1 = A1	
	Using limits 0 and 4 $\frac{16}{2} \times \overline{x} = \frac{64}{3}$	M1	
	$\overline{x} = \frac{8}{3}$	A1	(5) [5]
2.	(a) Small Hemisphere Bowl Large Hemisphere Mass ratios $\frac{2}{3}\pi\left(\frac{a}{2}\right)^3 = \frac{2}{3}\pi\frac{7a^3}{8} = \frac{2}{3}\pi a^3$ Anything in the ratio 1:7:8	B1	
	\overline{x} $\frac{3}{16}a$ \overline{x} $\frac{3}{8}a$	B1	
	$1 \times \frac{3}{16}a + 7 \times \overline{x} = 8 \times \frac{3}{8}a$	M1 A1	
	Leading to $\overline{x} = \frac{45}{112}a$ * cso	A1	(5)
	(b) Bowl Liquid Bowl and Liquid Mass Ratios $M kM (k+1)M$	B1	
	$\overline{x} \qquad \qquad \frac{45}{112}a \qquad \frac{3}{16}a \qquad \qquad \frac{17}{48}a$	B1	
	$M \times \frac{45}{112} a + kM \times \frac{3}{16} a = (k+1)M \times \frac{17}{48} a$	M1 A1	
	Leading to $k = \frac{2}{7}$	A1	(5) [10]

Question Number	Scheme	Marks
3.	(a) $a = 0.1$	B1
	$\frac{2\pi}{\omega} = \frac{1}{5} \implies \omega = 10\pi$	M1 A1
	$\omega = 5$ $F_{\text{max}} = ma\omega^2$	M1
	$=0.2\times0.1\times\left(10\pi\right)^2$	M1
	$\approx 19.7 \text{ (N)}$	A1
	cao	(6)
	(b) $a' = 0.2, \omega' = 10\pi$	B1ft, B1ft
	$v^2 = \omega^2 (a^2 - x^2) = 100\pi^2 (0.2^2 - 0.1^2) (= 3\pi^2 \approx 29.6 \dots)$	M1 A1
	$v \approx 5.44 \left(\text{m s}^{-1}\right)$	A1
	cao	(5)
	If answers are given to more than 3 significant figures a maximum of one A mark is lost in the question.	[11]
4.	$\tan \alpha = \frac{3}{4}$ or equivalent	B1
	$\tan \alpha = \frac{r}{h}$ or $\frac{r}{h} = \frac{3a}{4a}$	B1
	$R(\uparrow) R\sin\alpha = mg$ $\left(R = \frac{5}{3}mg\right)$	M1 A1
	$h mg R(\leftarrow) R\cos\alpha = mr\omega^2$	M1 A1
	$= mr \times \frac{8g}{9a} \left(R = \frac{10mrg}{9a} \right)$	A1
	$\tan \alpha = \frac{9a}{8r} \left(\frac{5}{3}mg = \frac{10mrg}{9a}\right)$ Eliminating <i>R</i>	M1 A1
	$\left(\frac{3}{4} = \frac{9a}{8r} \implies r = \frac{3}{2}a\right)$	M1 A1
	$h = \frac{r}{\tan \alpha} = \frac{3a}{2} \times \frac{4}{3} = 2a$	(11)

	1	[11]

Question Number	Scheme	Marks
5.	(a) A 0.75 m B	
	$AP = \sqrt{\left(0.75^2 + 1^2\right)} = 1.25$	M1 A1
	Conservation of energy $\frac{1}{2} \times 2 \times v^2 + 2 \times \frac{49 \times 0.5^2}{2 \times 0.75} = 2g \times 1 \qquad -1$ for each incorrect term $\text{Leading to } v \approx 1.8 \left(\text{m s}^{-1}\right)$	M1 A2 (1, 0)
	accept 1.81	A1 (6)
	(b) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$R(\uparrow) \qquad 2T\cos\alpha = 2g$ $y = \frac{0.75}{\sin\alpha}$	M1 A1
	Hooke's Law $T = \frac{49}{0.75} \left(\frac{0.75}{\sin \alpha} - 0.75 \right)$ $= 49 \left(\frac{1}{\sin \alpha} - 1 \right)$	M1 A1
	$\frac{9.8}{\cos \alpha} = 49 \left(\frac{1}{\sin \alpha} - 1 \right)$ Eliminating T	M1
	$\tan \alpha = 5(1 - \sin \alpha)$ $5 = \tan \alpha + 5\sin \alpha \bigstar$ cso	A1 (6) [12]

Question Number	Scheme	Marks
6.	Parabola Hyperbola Points 7.5 0 4 5 10 t	B1 B1 B1 (3)
	 (b) Identifying the minimum point of the parabola and 5 as the end points. 2 < t < 5 (c) Splitting the integral into two part, with limits 0 and 4, and 4 and 5, and evaluating both integrals. ∫₀⁴ 3t (t-4) dt = [t³ - 6t²]₀⁴ = -32 and ∫₄⁵ 3t (t-4) dt = [t³ - 6t²]₄⁵ = 7 Both 	M1 A1 (2) M1 A1
	Total distance = 39 (m) \bigstar cso $\int_{5}^{t_1} \frac{75}{t} dt = 32 - 7$	A1 (3) M1 A1
	$ \begin{array}{ccc} \mathbf{J}_5 & t \\ 75 \left[\ln t\right]_5^{t_1} = 25 \\ \ln \frac{t_1}{5} = \frac{1}{3} & \Rightarrow t_1 = 5e^{\frac{1}{3}} \\ \approx 6.98 \end{array} $	A1 M1 A1 (5) [13]

ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			

Question Number	Scheme	Mark	s
7.	(a) $A \longrightarrow \uparrow u$ $V \longrightarrow \sqrt{\left(\frac{5gl}{2}\right)}$ Conservation of Energy $\frac{1}{2}m\left(\frac{5gl}{2}-u^2\right)=mgl$ Leading to $u=\sqrt{\left(\frac{gl}{2}\right)}$	M1 A1= A	A1 (4)
	(b) $\begin{array}{c} V \\ V \\ T \\ Mg \\ A \\ B \\ r \end{array}$	1	
	Conservation of Energy $\frac{1}{2}m(u^2 - v^2) = mgr$ $v^2 = u^2 - 2gr$	M1 A1	
	$R(\downarrow) \qquad T + mg = \frac{mv^2}{r}$	M1 A1	
	$T = \frac{m}{r} \left(u^2 - 2gr \right) - mg$	M1	
	$=\frac{mu^2}{r}-3mg$	A1	
	$=\frac{mgl}{2r}-3mg$	M1	
	$T \ge 0 \Rightarrow \frac{mgl}{2r} \ge 3mg$ $\Rightarrow \frac{1}{6} \ge r$	M1	
	$AB_{\text{MIN}} = \frac{5l}{6}$	A1	(9)
			[13]