Trabalho 4A - Estudo do Movimento Pendular

Sérgio Quelhas Ferreira de Sousa

Departamento de Física e Astronomia da Faculdade de Ciências da Universidade do Porto

20 de Maio de 2022

Abstract

Nesta experiência foi estudado o movimento pendular e foi determinada a aceleração da gravidade. Deste modo obtivemos um valor experimental de $9,55~m/s^2$ para a aceleração gravítica, que corresponde a um erro relativo percentual de 2,66% e a uma incerteza relativa percentual de 1,75%.

1 Introdução

Um pêndulo simples é um corpo suspenso que se encontra fixo de tal modo que o mesmo pode balançar para a frente e para trás através da influência da força da gravidade. O pêndulo de massa m deve ser fixo na extremidade de um fio de comprimento l e deve ter massa e espessura desprezável. O movimento do pêndulo é periódico e oscilatório. Aplicando a 2.ª Lei de Newton podemos assim descobrir a equação de movimento da massa do pêndulo. Considerando que as forças que atuam na massa são: a tensão provocada pelo fio $(\vec{T},$ na direção do fio) e o peso (\vec{P}) . Assim temos que o movimento do pendulo está condicionado apenas pelo comprimento do fio, pela massa do corpo m e pela aceleração gravítica.

Figure 1: Montagem Experimental

Podemos, deste modo, decompor as forças que atuam sobre o corpo nas suas componentes normal e tangencial:

$$\vec{T} + \vec{P} = 0 \tag{1}$$

Normal:

$$T - P\cos(\theta) = ma_n = m\omega^2 L \tag{2}$$

Tangecial:

$$-Psin(\theta) = ma_t = m\alpha L \tag{3}$$

Sendo $\omega=\frac{d\theta}{dt}$ a velocidade angular e $\alpha=\frac{d^2\theta}{dt^2}$ a aceleração angular.

Deste modo, podemos reescrever a segunda equação substituindos os termos conhecidos.

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin(\theta) = 0\tag{4}$$

Como não é possivel reescrever esta equação de forma usual, iremos usar uma aproximação de modo a facilitar os cálculos. Para valores de θ pequenos (inferiores a 5°) podemos considerar $sin(\theta) \approx \theta$. Consequentemente, temos que, para pequenas oscilações a equação diferencial do movimento é aproximada por:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0\tag{5}$$

Ao analisarmos a equação 5 percebemos que a mesma se assemelha a um movimento do tipo harmónico, tal como a de uma mola com massa na extermidade:

$$\theta(t) = \theta_0 \cos(\omega t + \phi)[1] \tag{6}$$

Sendo θ_0 a amplitude angular de oscilação, $\omega = \sqrt{\frac{g}{L}}$ a frequência angular da oscilação, ϕ a fase inicial e, consequentemente, $\theta t + \phi$ a fase no instante t. Sabemos ainda que ϕ e θ_0 são constantes e podem ser facilmente determinados pelas condições iniciais do movimento.

Assim, é facil perceber que este movimento apresenta um período(T) de tal modo que: $_$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}} \tag{7}$$

Assim sendo, tendo em conta que a força de atrito provocada pela resistência oferecida pelo ar á passagem da massa, podemos tirar algumas conclusões que devemos concluir experimentalmente:

- 1. O período de oscilação do pêndulo é independente da massa do mesmo;
- 2. O período de oscilação do pêndulo é independe da âmplitude para ângulos semelhantes ou inferiores a 5° ;
- 3. T^2 é linearmente dependente de L.

2 Experiência

2.1 Método Experimental

2.1.1 Estudo do efeito da massa no período do pêndulo.

Nesta fase da experiência pretendeu-se confirmar a conclusão 1. feita anteriormente na 1 Introdução. Deste modo, mantiveram-se fixos os valores de L (comprimento do fio) e os valores de θ (ângulo do fio com o equilíbrio $[\theta]$ de equilíbrio $[\theta]$ 0, fazendo variar apenas alterações nas massas.

• Foram selecionados e pesados 3 pesos de massas diferentes (m1, m2 e m3).

Figure 2: Pesos utilizados [m1, m2 e m3].

- Afastamos o peso da posição de equilíbrio e registamos o ângulo que foi usado. Usando o mesmo ângulo largamos o peso e registamos o tempo correspondente a 10 oscilações garantindo que o pêndulo estivesse paralelo ao painel do transferidor e que o fio se encontrava completamente esticado. Repitimos este ensaio mais 2 vezes.
- Repetimos o passo anterior para as outras 2 massas confirmando que o comprimento total do pendulo $(L=l(\text{fio})+\frac{Altura_m}{2})$ se manteve e que as medições começaram a ser efetuadas meio período após o pêndulo ser largado (isto permite reduzir o erro atribuido a alguma força inicial que seja aplicada sobre o peso).

2.1.2 Estudo da variação do período com a amplitude de oscilação.

Nesta segunda fase, pretendemos confirmar a conclusão **2.** feita anteriormente na **1 Introdução** e estudar a variação do período com a âmplitude de oscilação para ângulos superiores a 5° . Deste modo, mantiveram-se fixos os valores de L (comprimento total do pêndulo) e foi usada a mesma massa em todas as medições (massa constante), alterando apenas os valores de θ .

- Selecionamos um dos pesos e prendemô-la na extermidade do fio, registando o valor do comprimento total do pêndulo.
- Afastamos a esfera da posição de equilíbrio até ao ângulo desejado e largamos o peso e registamos o tempo correspondente a 10 oscilações, bem como do ângulo usado em cada medição, garantindo que o pêndulo esteja paralelo ao painel do transferidor e que o fio se encontrava completamente esticado.
- Repetimos o passo anterior para diferentes valores de θ, registando sempre no minimo 3 ensaios para cada âmplitude e assegurando que as medições começaram a ser efetuadas meio período após o pêndulo ser largado.

2.1.3 Estudo da variação do período com o comprimento do pêndulo.

Nesta terceira fase, pretendemos confirmar a conclusão 3. feita anteriormente na 1 Introdução e calcularemos através dos dados obtidos a aceleração gravítica. Deste modo, manteve-se fixo o valor de $\theta \leq 5^{\circ}$ e foi usado o mesmo peso (massa constante), fazendo variar apenas o comprimento do fio (1).

- Escolhendo um qualquer valor para l, afastamos a esfera num ângulo dentro do limite escolhido em relação à posição de equilíbrio e largamos o peso, registando os valores de período para 10 oscilações e confirmando que o fio está esticado e que o pêndulo está paralelo ao painel do transferidor. Repetimos este passo mais 2 vezes de modo a obter 3 ensaios para cada l.
- Variamos o comprimento de l, registando sempre no mínimo 3 ensaios para cada l e assegurando que os valores de período começam a ser efetuados após meio período após o pêndulo ser largado.

2.2 Resultados e Análise.

2.2.1 Resultados: Estudo do efeito da massa no período do pêndulo.

Na figura 3 podemos ver uma tabela com os resultados obtidos nesta parte da experiência.

(m ± 0,01) g	Ensaio	(t _i ± 0.10) s	T _i /s	u(T _i)/s	T _i /s (médio)	u(T _i)/s (médio)	Desvio Padrão Relativo	
	1	15,42	1,542	0,001				
M1=31,34	2	15,43	1,543	0,001	1,542	0,00027		
	3	15,42	1,542	0,001				
	1	15,42	1,542	0,001				
M2=68,10	2	15,28	1,528	0,001	1,531	0,00464	0,539%	
	3	15,23	1,523	0,001				
	1	15,32	1,532	0,001				
M3=43,18	2	15,33	1,533	0,001	1,538	0,00423		
	3	15,48	1,548	0,001				

Figure 3: Valores registados

Como podemos ver através dos dados obtidos, apesar de os valores das massas se alterarem bastante (mais que duplicaram entre M1 e M2), os valores para o período de oscilação (T_i) permanecem muito semelhantes tendo se obtido um desvio padrão relativo de apenas 0,539%. É de se notar que se mantiveram constantes o comprimento total do pêndulo (L=0,59) e a âmplitude de largada ($\theta_0=10^{\rm o}$). Assim, é possivel confirmar a nossa preposição : A massa não tem influência direta sobre o período de oscilação.

2.2.2 Resultados: Estudo da variação do período com a âmplitude de oscilação.

Como vimos anteriormente nesta experiência, o período de oscilação não é influenciado pela massa. Deste modo, usaremos o corpo m2 pois este é o mais fácil de visualizar, por ser brilhante, e porque possui uma superfície do tipo esférica o que diminiu a força criada pela resistência que o ar tem a passagem da esfera. Com os dados obtidos foi construido, usando os valores obtidos, um gráfico que nos demonstra como varia o período em função da âmplitude de oscilação escolhida. A tabela com os valores obtidos pode ser encontrado no anexo.

Figure 4: Gráfico do período de oscilação em função da amplitude de oscilação.

O ponto assinalado parece desviar-se da tendência apresentada pois está muito abaixo do esperado, isto pode dever-se a erros de medição efetuados durante a realização da experiência. Deste modo, o ponto não foi considerado na análise que se segue. Para âmplitudes pequenas (entre 0 e 10º) podemos perceber que os valores para o período se mantêm aproximadamente constantes, o que vai de encontro a aproximação feita na introdução teórica. No entando, tendo em conta a totalidade do gráfico é possivel observar uma clara tendência polinomial. Esta tendência é confirmada pelo valor real de âmplitude que corresponde a[2]:

$$T = 2\pi \sqrt{\frac{L}{g}} \left[1 + \frac{1}{16}\theta^2 + \frac{11}{3072}\theta^4 \right] \tag{8}$$

Com g=9,807 m/s^2 e L=0,59 m.

No conjunto das figuras seguintes é possivel observar a comparação entre os valores experimentais e os valores calculados usando a expressão acima.

Figure 5: Gráfico do periodo de oscilação em função da âmplitude de oscilação.

	Análise de Dados Experimentais						
	Coef(x²) Coef(x) b						
	5,747E-05	-1,100E-03	1,563E+00				
u()	9,612E-06	5,830E-04	5,281E-03				
r ²	9,852E-01	7,539E-03	#N/D				

Figura 6 : Análise da regressão polinomial dos valores experimentais.

Análise de Dados usando a Expressão							
	Coef(x²) Coef(x) b						
	3,279E-05	-1,111E-04	1,542E+00				
u()	4,439E-07	2,692E-05	2,439E-04				
r ²	9,999E-01	3,482E-04	#N/D				

Figura 7 : Análise da regressão polinimial dos valores da expressão.

Como podemos ver pela figura 5.6 e 7, os valores obtidos comportam-se de forma semelhante aos valores exatos. Deste modo podemos concluir que o ajuste feito foi o mais acertado.

2.2.3 Resultados: Estudo da variação do período com o comprimento do pêndulo.

Nesta fase da experiência mantiveram-se constantes os valores de $\theta=4^{\circ}$ e foi escolhida e usada apenas uma massa (M2). Usando os valores. Deste modo a todos os valores de l (comprimento do fio) foi adicionado o valor que corresponde a "altura" da esfera M2 que corresponde a 0,023 metros. Com os dados obtidos foi contruido o gráfico do periodo de oscilação ao quadrado (T_i^2) em função do comprimento total total do pêndulo (L). A tabela com todos os valores obtidos pode ser consultada no anexo.

Figure 8: Gráfico com do quadrado do período de oscilação em função do comprimento total do pêndulo.

Análise Estatísitca						
m 4,136 0,007 b						
sm	0,072	0,032	sb			
r2	0,997	0,030	sy			

Figure 9: Análise da regressão linear efetuada com os dados experimentais.

Usando os valores obtidos foi possivel calcular o valor da aceleração gravítica:

$$g = 4\pi^2/L \tag{9}$$

Com L = $4{,}136 \ s^2/m$ (Declive da Figura 9)

Deste modo foi possivel obter um valor de gravidade $9,55~m/s^2$, isto corresponde a a um erro relativo percentual de 2,55% (valor referencia: $9,807~m/2^2$ [3]) e a uma incerteza relativa percentual de 1,75%.

Resultados Finais				
g 9,55				
u(g)	0,17			
Erro %	2,65%			
u(g) (%)	1,75%			

Figure 10: Resultados Finais.

3 Conclusões

Foram cumpridos os objetivos propostos para esta experiência. Desta forma, foi possivel observar o movimento pendular descrito pelo pêndulo e foi também possivel calcular a aceleração gravítica a que o corpo se encontrava sujeita. Obtivemos o valor de $9.55~m/s^2$ para a aceleração gravítica, que correspondem a um erro relativo percentual de 2.66% e a uma incerteza relativa percentual de 1.75%. Apesar dos valores descritos parecerem satisfatórios, podemos perceber que o erro relativo percentual é superior à sua incerteza. Isto pode dever-se a erros na medição dos valores experimentais, entre os quais se encontram:

- erros na medição dos valores experimentais;
- o tempo de reação necessário para parar o cronómetro;
- a existência da força de Coriolis que produz efeito sobre a direção do pêndulo fazendo o período variar.

References

- [1] Docentes da unidade curricular FIS1005 FCUP. Trabalho 4a estudo do movimento pendular. pages 1–6, 2022.
- [2] 2017 HyperPhysics ©C.R. Nave. Large amplitude pendulum. Consultado a 26/05/2022.
- [3] Beijing WDC for Geophysics. Standart value for gravity. Consultado a 26/05/2022.

Anexo

θ ₀ /°	Ensaio	(t _i ± 0.1) s	n.º de oscilações	T _i /s	u(T _i) /s	T _i /s (médio)	u(T _i)/s (médio)	
	1	15,82	10	1,58	0,01			
2,0	2	15,18	10	1,52	0,01	1,56	0,018	
	3	15,86	10	1,59	0,01			
	1	15,66	10	1,57	0,01			
4,0	2	15,48	10	1,55	0,01	1,56	0,004	
	3	15,62	10	1,56	0,01			
	1	15,98	10	1,60	0,01			
6,0	2	15,20	10	1,52	0,01	1,55	0,021	
	3	15,25	10	1,53	0,01			
	1	15,56	10	1,56	0,01			
8,0	2	15,74	10	1,57	0,01	1,56	0,005	
	3	15,53	10	1,55	0,01			
	1	15,33	10	1,53	0,01		0,010	
10,0	2	15,64	10	1,56	0,01	1,56		
	3	15,74	10	1,57	0,01			
	1	15,63	10	1,56	0,01			
20,0	2	15,75	10	1,58	0,01	1,57	0,003	
	3	15,73	10	1,57	0,01			
	1	15,32	10	1,53	0,01		0,006	
30,0	2	15,27	10	1,53	0,01	1,54		
	3	15,51	10	1,55	0,01			
	1	15,99	10	1,60	0,01			
40,0	2	9,83	6	1,64	0,01	1,61	0,011	
	3	15,97	10	1,60	0,01			
	1	16,41	10	1,64	0,01			
50,0	2	16,32	10	1,63	0,01	1,64	0,002	
	3	16,36	10	1,64	0,01			
60,0	1	6,77	4	1,69	0,01	1 71	0,011	
00,0	2	10,34	6 1,72 0,01		1,/1	0,011		

Figure 11: Tabela dos valores registados referent es à parte 2.2.2

θ ₀ /°	T _i /s (experimental)	T _i /s (expressão)
2	1,562	1,541
4	1,559	1,542
6	1,548	1,542
8	1,561	1,543
10	1,560	1,544
20	1,570	1,553
40	1,611	1,589
50	1,640	1,618
60	1,710	1,654

Figure 12: Tabela dos valores utilizados para a construção do gráfico da figura $5\,$

L'/m ± 0.0005m	L/m ± 0.000500m	Ensaio	t _i /s ± 0.1s	T _i /s ± 0.01s	T _i /s	u(₹i) /s	T _i ²	u(T _i ²)
		1	16,24	1,62				
0,60	0,623020	2	16,48	1,65	1,62	0,02	2,62	0,05
		3	15,81	1,58				
		1	15,56	1,56				
0,56	0,583020	2	15,38	1,54	1,55	0,00	2,40	0,01
		3	15,54	1,55				
		1	15,03	1,50				
0,52	0,543020	2	15,05	1,51	1,51	0,00	2,28	0,01
		3	15,17	1,52				
		1	14,40	1,44				
0,48	0,503020	2	14,10	1,41	1,43	0,01	2,04	0,02
		3	14,33	1,43				
		1	13,78	1,38				
0,44	0,463020	2	13,80	1,38	1,38	0,00	1,90	0,00
		3	13,75	1,38				
		1	13,27	1,33				
0,40	0,423020	2	13,19	1,32	1,32	0,00	1,75	0,01
		3	13,17	1,32				
		1	12,86	1,29				
0,36	0,383020	2	12,76	1,28	1,28	0,00	1,64	0,01
		3	12,81	1,28				
		1	11,95	1,20				
0,32	0,343020	2	12,25	1,23	1,20	0,01	1,44	0,03
		3	11,78	1,18				
		1	11,18	1,12				
0,28	0,303020	2	11,21	1,12	1,11	0,01	1,24	0,01
		3	10,99	1,10				
		1	10,50	1,05				
0,24	0,263020	2	10,34	1,03	1,04	0,00	1,09	0,01
		3	10,50	1,05				
		1	9,80	0,98				
0,20	0,223020	2	9,45	0,95	0,97	0,01	0,94	0,02
		3	9,81	0,98				

Figure 13: Tabela dos valores registados referentes à parte $2.2.3\,$

Figure 14: Resíduos referentes à polinomearização do gráfico da figura 5

Figure 15: Resíduos referentes à linearização feita no gráfico da figura 8

