浙江水学

本科实验报告

课程名称:	数字逻辑设计
姓 名:	
学 院:	竺可桢学院
专业:	混合班
指导教师:	董亚波
报告日期:	2025年3月12日

浙江大学实验报告

课程名称:	数字逻辑设计	实验	这类型: _	约	計合	
实验项目名称	: 常用电子仪器的	使用				
学生姓名:	学号:同组学生姓	名:	_			
立 验州占.	些全法东川 500 安	立 <u>验日期</u> . 2	2025 年	2 E	10	П

一、实验目的

- ▶ 认识常用电子器件
- 学会数字示波器、数字信号发生器(函数信号发生器)、直流稳压电源、 万用表等常用电子仪器的使用
- 掌握用数字示波器来测量脉冲波形及幅度和频率的参数
- ▶ 掌握万用表测量电压、电阻及二极管的通断的判别

二、操作方法与实验步骤

- 1. 测量实验箱中的直流电源
- ▶ 将万用表功能量程开关置于直流电压(V-)档位和合适的量程,将红表笔插入实验台 5V 插孔,黑表笔插入 GND 插孔,记录万用表显示电压
- ▶ 将示波器信号地接 GND 插孔,信号探头接 5V 插孔,测量示波器的电压波形 与 0 电平标记之间的格数,计算出测量到的电压值
- 2. 用示波器测量正弦波信号
- ▶ 频率(周期)测量:通过选择频率范围开关和频率调节旋钮使 YB1638 型函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用示波器测出上述信号的周期和频率,比较是否与刻度值相一致,并记入数据
- 3. 测量 YB1638 型函数信号发生器输出电压
- ▶ 让信号发生器输出 1KHz、1--3V 任意的正弦波信号,将信号发生器的输出接到示波器,用示波器测量峰峰值
- ▶ 将万用表功能量程开关置于交流电压档位和合适量程,测量信号发生器输出的信号的有效值
- ➤ 示波器测量的峰峰值折算成有效值,与万用表用交流档读取的有效值进行 比较
- 4. 测量二极管的单向导通特性

▶ 将万用表功能量程开关置于二极管符号位置,把红黑表笔分别接到实验台上的二极管的两极,如果显示屏上显示 0.5 - 0.7 的数字,此时二极管正向导通,显示的数字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极。如果显示屏上显示的数字是".0L",此时二极管反向截止,红表笔接的是二极管负极,黑表笔接的是正极。

三、实验结果与分析

1. 测量实验箱中的直流电源 开机后的电路如图所示:

将万用表红表笔接电源、黑表笔接地后,读数如图所示:

将示波器接入该电源, 读数如图所示:

实验数据如下:

直流稳压电源	示波器读数	灵敏度	示波器折算值	万用表读数
输出				
+5V	2.4Div	2V/Div	4.8V	4.99V

其中,万用表的测量误差较小,而示波器的误差较大,可能原因是受到噪声信号影响及读数本身具有误差。

2. 用示波器测量正弦波信号

将信号发生器的频率调至 100Hz 左右, 如图所示, 读取示波器上的图像及数值:

将频率调至 10kHz 与 100kHz, 重复上述操作:

实验数据如下:

> 47 >> 4 1 1 1	•				
	函数发生	示波器读	灵敏度	实测值	
	器输出	数			
幅度		3.1Div	0.5V/Div	3.1	5V
周期/频率	99.88Hz	2.0Div	5ms/Div	10.01ms	99.90Hz
幅度		3.1Div	0.5V/Div	3.11V	
周期/频率	10.01kHz	2.0Div	50μs/Div	99.84μs	10.02kHz
幅度		3.05Div	0.5V/Div	3.07V	
周期/频率	100kHz	2.0Div	5μs/Div	9.96µs	100.4kHz
			$\longrightarrow I \rightarrow I \rightarrow I I I I$		

电压与信号发生器的输出有一定的偏差,而频率基本一致。

3. 测量 YB1638 型函数信号发生器输出电压

让信号发生器发出 1kHz, 3V 的正弦波信号并接到示波器中,测量其峰峰值、并用万用表测量其有效值:

实验数据如下:

函数发生器输 出频率	示波器读取值		折算有效值	万用表读取值
1kHz	6.1div	0.5V/div	1.09V	1.083V

折算值与读取值有微小误差,可能是读数上的误差所致。

4. 测量二极管的单向导通特性

将二极管分别进行正接和反接,进行读数:

二极管正向导通时万用表读数	二极管反向截止时万用表读数
0.614V	.0L

四、讨论、心得

在本次实验中,我学会了示波器的使用以及读数,也对常用仪器进行了熟悉,这将为后续的数字逻辑设计实验打下良好的基础。

浙江大学实验报告

课程名称:	数字逻辑设计	实	验类型	:		综合	ĭ	
实验项目名称	:基本开关电路							
学生姓名:	学号:同组学生姓	名:						
立 验州占,	些全进车皿 500 室	立验日期,	2025	在	2	目	26	П

一、实验目的

- ▶ 掌握逻辑开关电路的基本结构
- ▶ 掌握二极管导通和截止的概念
- ▶ 用二极管、三极管构成简单逻辑门电路
- ▶ 掌握最简单的逻辑门电路构成

二、操作方法与实验步骤

- 1. 用二极管实现正逻辑"与门"
- ▶ 根据与门原理图在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确
- ▶ Vcc 接实验箱中+5V 直流电源
- ▶ 输入高低电平通过开关 S1~S6 产生。输入 A, B 的不同电平组合,用万用表或实验箱中的直流电压表测量 A, B 及对应输出 F 的电压值。最后判断逻辑 关系是否满足 F = A B
- 2. 用二极管实现正逻辑"或门"
- ▶ 根据或门原理图在实验箱中连接电路,检查二极管、电源电压和极性、电阻值等是否连接正确
- ➤ 输入高低电平通过开关 S1~S6 产生。输入 A, B 的不同电平组合,用万用表或实验箱中的直流电压表测量输入 A, B 及对应输出 F 的电压值。最后判断逻辑值是否满足 F = A + B
- 3. 三极管极性测量
- ▶ 将万用表功能量程开关置于二极管图标位置,用红黑表笔判断被测三极管 是 PNP 还是 NPN 型,确定基极 b
- ▶ 将万用表功能量程置于"hFE"位置,把三极管插入面板上三极管测试插座,基极 b 要插对,集电极 c 和发射极 e 随便插

- ▶ 从显示屏上读取 hFE 近似值,若该值较大(约 100),说明三级管 c,e 极与插座上的 c,e 极对应;若该值很小,说明这时的三极管 c,e 极插反,应把 c,e 极对调后再读取 hFE 值
- 4. 用三极管实现正逻辑"非门"
- ▶ 根据非门原理图在实验箱上连好电路,检查三极管及电源极性、电阻值是否等是否连接正确。
- ▶ 将+5V 直流电源接入 VCC 端
- ➤ 输入 A 端的高、低电平用开关 S1~S6 产生。 测量 A 和输出端 F 对应的电压值,填入表格。
- ▶ 判断逻辑关系是否满足 F = Ā
- 5. 用晶体管实现正逻辑"与非门"
- ▶ 在实验箱上连好电路,检查二极管、三极管及电源极性、电阻值等是否正确。
- ▶ 将 +5V 直流电源接入 VCC
- ▶ 输入 A, B 端的高、低电平用开关 S1~S6产生。测量 A, B 及输出端 F 对应的电压值,填入表格。
- ightharpoonup 判断逻辑关系是否满足 $F = \overline{AB}$

三、实验结果与分析

1. 用二极管实现正逻辑"与门"

搭建好的电路如图所示:

接下来测试该电路的功能,实验数据如下:

V _A /V	V _B /V	V _F /V	F 逻辑值
0.11	0.11	0.63	0
0.13	4.97	0.68	0
4.97	0.13	0.68	0
4.97	4.97	4.97	1

2. 用二极管实现正逻辑"或门"

搭建好的电路如图所示:

接下来测试该电路的功能,实验数据如下:

V _A /V	V _B /V	V _F /V	F 逻辑值
0.09	0.09	0.00	0
0.09	3.49	2.96	1
3.49	0.09	2.97	1
4.08	4.09	3.57	1

后三者虽均为高电平,但电压有明显差异,可能是由二极管的导通电压引起的。

3. 三极管极性测量

先在电路板上测量三极管的极性:

可以得出该三极管为 NPN 型 再寻找该三极管的基极、集电极和发射极:

可得该三极管针头朝上、平面朝内时,从左往右分别是 c、b、e 极。

4. 用三极管实现正逻辑"非门"

搭建好的电路如图所示:

接下来测试该电路的功能,实验数据如下:

V _A /V	V _F /V	F 逻辑值
0.09	4.98	1
2.84	0.00	0

5. 用晶体管实现正逻辑"与非门"

建好的电路如图所示:

接下来测试该电路的功能,实验数据如下:

V _A /V	V_B/V	V_F/V	F 逻辑值
0.09	0.09	4.71	1
0.10	4.97	4.28	1
4.97	0.10	4.03	1
4.97	4.97	0.02	0

前三者虽均为高电平,但和或门相同的是电压有明显差异,可能也是由二极管的导通电压引起的。

四、讨论、心得

在本次实验中,我熟悉了几种基本的门电路的作用及其内部的原理,这也能为之后的实验打下基础。在做实验的过程中,我也为一些奇怪的现象(两个开关电压不同、同样是高电平但电压不同)感到困惑,但最后还是能够对其进行合理的解释。

浙江大学实验报告

课程名称:	数字逻辑设计	实	验类型:		综合		
实验项目名称	: _ 集成逻辑门电路	的功能及参数					
学生姓名:	学号:同组学生始	生名:					
实验地点: _	紫金港东四 509 室	实验日期:	2025 年	F _ 3_	_月 <u>;</u>	<u>5</u> E]

一、实验目的

- ▶ 熟悉基本逻辑门电路的功能、外部电气特性和逻辑功能
- ▶ 熟悉 TTL 与非门和 CMOS 或非门的封装及管脚功能
- ▶ 掌握主要参数和静态特性的测试方法,加深对各参数意义的理解
- ▶ 进一步建立信号传输有时间延时的概念
- ▶ 进一步熟悉示波器仪器的使用

二、操作方法与实验步骤

- 1. 验证集成电路 74LS00"与非"门的逻辑功能
- ▶ 将芯片插入实验箱的 IC 插座中,注意芯片的方向

- ▶ 按上图连接电路, 74LS00 的 14 脚接电源+5V, 7 脚接 GND
- ▶ 高低电平通过 S1~S6 拨位开关产生

- ▶ 以真值表顺序遍历输入 A, B 所有组合,测量 A, B 及输出 F 电压并记入表格
- ▶ 重复步骤 3~4,测量其他 3 个门的逻辑关系并判断门的好坏
- 2. 验证集成电路 CD4001"或非"门的逻辑功能
- ▶ 将芯片插入实验箱的 IC 插座中

- ▶ 按上图连接电路, CD4001 的 14 脚接电源+5V, 7 脚接 GND
- ▶ 高低电平通过 S1~S6 拨位开关产生
- ▶ 以真值表顺序遍历输入 A, B 所有组合,测量 A, B 及输出 F 电压并记入表格
- ▶ 重复步骤 3~4,测量其他 3 个门的逻辑关系并判断门的好坏
- 3. 测量集成电路 74LS00 逻辑门的传输延迟时间 tpd
- ▶ 将芯片插入实验箱的 IC 插座,注意芯片方向

- ▶ 按上图连接电路, 14 脚接电源+5V, 7 脚接 GND, 用 3 个与非门构成一个振荡器
- ▶ 将示波器接到振荡器的任何一个输入或输出端
- ▶ 调节示波器时基旋钮,测量 V₀的波形,读出周期 T 并计算传输延迟时间
- 4. 测量集成电路 CD4001 逻辑门的传输延迟时间 tod
- ▶ 将芯片插入实验箱的 IC 插座,注意芯片方向

- ▶ 按图连接电路, 14 脚接电源+5V, 7 脚接 GND, 用 3 个或非门构成一个振荡器
- ▶ 将示波器接到振荡器的任何一个输入或输出端
- ▶ 调节示波器时基旋钮,测量 V₀的波形,读出周期 T 并计算传输延迟时间
- 5. 测量集成电路 74LS00 传输特性与开关门电平 Von 和 Voff 以及噪声

容限

- ▶ 将芯片插入实验箱的 IC 插座
- ▶ 按图连接电路

- ▶ 将万用表接入 A 、B 端测量 V_i,实验箱上方的直流电压表接与非门的输出 Y 端测量 V_o
- ▶ 先将电位器 W 逆时针调到底,然后顺时针缓慢调节,观察 V_i, V_o的读数, 并记录数据填入表格
- ▶ 根据表格数据画出曲线图,并求 VON 和 VOFF 和噪声容限

三、实验结果与分析

1. 验证集成电路 74LS00"与非"门的逻辑功能 搭建好的电路如图所示:

接下来测试该电路的功能,实验数据如下:

V _A /V(1 脚)	V _B /V(2 脚)	V _F /V(3 脚)
0.09	0.09	4.95
0.09	4.90	4.94
4.94	0.09	4.94
4.93	4.92	0.00

V _A /V(4 脚)	V _B /V(5 脚)	V _F /V(6 脚)
0.09	0.09	4.95
0.09	4.93	4.94
4.94	0.09	4.94
4.80	4.92	0.02

V _A /V(8 脚)	V _B /V(9 脚)	V _F /V(10 脚)
0.09	0.09	4.94
0.09	4.93	4.94
4.94	0.09	4.94
4.91	4.92	0.00

V _A /V(11 脚)	V _B /V(12 脚)	V _F /V(13 脚)
0.09	0.09	4.94
0.09	4.94	4.94
4.84	0.09	4.94
4.75	4.93	0.00

由上表可知该芯片功能正常。

2. 验证集成电路 CD4001"或非"门的逻辑功能 搭建好的电路如图所示:

接下来测试该电路的功能,实验数据如下:

V _A /V(1 脚)	V _B /V(2 脚)	V _F /V(3 脚)
0.09	0.09	4.92
0.09	4.94	0.00
4.95	0.09	0.00
4.95	4.94	0.00

V _A /V(5 脚)	V _B /V(6 脚)	V _F /V(4 脚)
0.09	0.09	4.90
0.09	4.94	0.00
4.95	0.09	0.00
4.95	4.94	0.00

V _A /V(8 脚)	V _B /V(9 脚)	V _F /V(10 脚)
0.09	0.09	4.92
0.09	4.94	0.00
4.95	0.09	0.00
4.95	4.94	0.00

V _A /V(12 脚)	V _B /V(13 脚)	V _F /V(11 脚)
0.09	0.09	4.92

0.09	4.94	0.00
4.95	0.09	0.00
4.95	4.94	0.00

由上表可知该芯片功能正常。

3. 测量集成电路 74LS00 逻辑门的传输延迟时间 t_{pd} 搭建好的电路如图所示:

将示波器接入,观察到以下波形,并进行读数:

第1个波峰对应位置约为7ns,第6个波峰对应位置约为108ns,可得:

$$t_{pd} = \frac{T}{6} = \frac{108 - 7}{6 \times 5} ns = 3.37 ns$$

4. 测量集成电路 CD4001 逻辑门的传输延迟时间 t_{pd} 搭建好的电路如图所示:

将示波器接入,观察到以下波形,并进行读数:

第1个波峰对应位置约为260ns,第6个波峰对应位置约为2040ns,可得:

$$t_{pd} = \frac{T}{6} = \frac{2040 - 260}{6 \times 5} ns = 59.33 ns$$

对比上一芯片可知, 该芯片的延迟要明显大于上一芯片。

5. 测量集成电路 74LS00 传输特性与开关门电平 Von 和 Voff 以及噪声

容限

搭建好的电路如图所示:

将记录的数据制作成图表,图表如下(共96组数据):

由原始数据可知,该集成电路的开门电平 V_{ON} =3.27V,关门电平 V_{OFF} =2.73V,噪声容限 V_{nL} =2.73V-0.004V=2.726V, V_{nH} =4.92V-3.27V=1.65V。

实际上,该数据中间部分受噪声信号干扰较严重,误差可能比较大。

四、讨论、心得

在本次实验中,我熟悉了74LS00"与非"门以及CD4001"或非"门,并对其逻辑门特性、传输门延迟以及传输特性进行了测量。其中在测量74LS00的传输特性时花费了较多的时间,也遇到了各种各样难以预测的干扰信号,但最后还是较为顺利地完成了该测量任务。