Further Evaluation and Calibration of a Mie Scattering-based Apparatus for Portable Optical Haematological Analysis

Ourania J. Banti¹, Maro Michailidou², and Anna Dziuba³

Dept. of Industrial Engineering & Management, International Hellenic University, Greece¹, Dept. of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Greece², Faculty of Computing and Telecommunications, Poznań University of Technology, Poland³

2023-12-20

Contents

- Introduction
- 2 Data Analysis
- Conclusions and Future Plans
- 4 References

General Information

- Proof of Concept (C. losifidis, K. Katsaliaki, P. Kollensperger, M. E. Kiziroglou, Design of an embedded sensor system for measuring laser scattering on blood cells, 2017)
- Software development for the 1st sensor (E. Gkagkanis, Fabrication of a photo-diode sensor apparatus with the Beaglebone microcomputer for use in non-invasive biomedical sensors, ATEITh, 2019)
- Development and evaluation of the 1st prototype of the device (K. Karakostas, Portable system development for Mie scattering analysis, to determine the size of blood cells in in-vivo and in-vitro studies, AUTh, 2019)
- PCB design for a new sensor (I. Kavoukis, Implementation of photodiode arrays for scattering analysis in portable biomedical sensors, IHU, 2020)
- Hardware and software development; design and fabrication of a 2nd prototype, evaluations... (M. Michailidou, O. J. Banti, Scattering measurements with the Beaglebone microcomputer for portable biomedical sensors, IHU, 2022)
- Further analysis and evaluation (O. J. Banti, M. Michailidou, A. Dziuba, Further Evaluation and Calibration of a Mie Scattering-based Apparatus for Portable Optical Haematological Analysis, WoM2023)

23WOM-10

Purpose of this paper

- Further evaluate the project's previous conclusions (noticed the pattern?)
- Utilise (more) advanced methods for statistical analysis
- Experiment with the creation of "indicators" using the above
- Further automate the analysis procedure
- Investigate the feasibility of automatic data classification

What does this device actually do?

- SApPHO 1 utilises Mie scattering to detect particles (primarily 1 μ m to 15 μ m) either suspended in liquids, either in-vitro (e.g. blood sample) or in-vitro
- The basic components of such a device are a laser pointer, a microcomputer, a photodiode array (PDA) of $N\times 1$ elements, and the circuit boards required for interfacing the sensor with the microcomputer.
- Any optically-interfering object will produce a Mie scattering (brightness) pattern that will in turn be detected by the PDA
- Different particle sizes and/or shapes produce a different scattering pattern

¹Scattering-based Apparatus for Portable Haematological analysis via Optics

Hardware

Compliance: IEC 60601-1-2, RoHS (PCBs); ISO 10993-1, ISO 180:2000 (Case)

Examples of biomedical applications

Medical condition	Element examined	Diameter (μm)
Parasitaemia	Parasites (post-staining)	~10
Leucopenia	Leucocytes	12-15
Leucocytosis	Leucocytes	12-15
Crystalluria	Urinary crystals	4.2-19.8
Non-apparent haematuria	Red blood cells	7-8
Sperm-related infertility	Sperm cells	2.5-3
Macrocytic anaemia	Red blood cells	7-8
Anisocytosis	Red blood cells	7-8

GitHub

GitHub

Contents

- Introduction
- 2 Data Analysis
- Conclusions and Future Plans
- 4 References

Data Analysis - Round 1

Data Analysis - Round 1

Data Analysis - Round 2: Coherence

- 2 μm and 9.6 μm particles correctly correlate to the expected signals regardless of (small) distance variations between the sample and the sensor
- ullet In the case of 4.8 μm particles, this observation is not as strong
- Control signals may mistakenly classify as 2 μm particles (false positives)

Table: Lowest and highest coherence ranges for different particle sizes

Sim. Part.	Filter	Low Range	High Range	
2μm	Unfiltered	0.05-0.20	0.35-0.60	
2μm	2% Mov. Avg.	0.05-0.20	0.40-0.65	
4.8µm	Unfiltered	0.10-0.25	0.40-0.60	
4.8µm	2% Mov. Avg.	0.10-0.25	0.40-0.60	
9.6µm	Unfiltered	0.10-0.25	0.40-0.70	
9.6μm	2% Mov. Avg.	0.10-0.20	0.45-0.75	

Data Analysis - Round 2: K-means Clustering

Summary: split the dataset into K different clusters based on their similarities.

- Attempt 1: Use the (normalised) raw data and the naive K-means algorithm
 - Results: Only marginally better than random guessing
- Attempt 2: Use the (normalised) raw data and the *k-means++* algorithm.
 - Results: 7% better than the previous attempt's (i.e. still modest).
- Future suggestions: Instead of using the raw data, try to perform the clustering based on the indicators of other tests.

Data Analysis - Round 2: Time-domain correlation tests

- Method 1: R² (coefficient of determination) test between the simulated signal and the signals derived from experiments
- Method 2: Pearson correlation coefficient (to double-check the results of the previous method
- Observations: A mostly linear relationship between the results of the time-domain correlation tests and the results of the coherence test; fewer false positives regarding control signals @ 2 μm; Pearson agrees with R²

Table: Lowest and highest R² distribution ranges for different particle sizes

Particle	Filter	Max. Rng.	Min. Rng.
2μm	Unfiltered	0.75-0.86	(-4.54)-(-3.40)
2µm	2% Mov. Avg.	0.76-0.86	(-4.52)-(-3.41)
4.8µm	Unfiltered	0.67-0.83	(-4.59)-(-3.04)
4.8µm	2% Mov. Avg.	0.67-0.84	(-4.60)-(-3.05)
9.6µm	Unfiltered	0.65-0.82	(-6.92)-(-4.98)
9.6μm	2% Mov. Avg.	0.66-0.83	(-6.92)-(-4.98)

Data Analysis - Round 2: Dynamic Time Warping

- Time-domain correlation between the simulated signal(s) and the experimentally-derived signal(s)
- Results exhibit a linear relationship with the results of R² and coherence
- Fewer false positives regarding control signals @ 2 μm

Table: Coherence and dynamic time warping data for different simulated particle sizes

Part.	Filt.	Min. Rng.	Coherence	Max. Rng.	Coherence
2µm	Unfil.	0.77-2.28	0.35-0.6	5.51-6.52	0.05-0.20
2µm	2% MA	0.75-2.24	0.40-0.60	5.52-6.52	0.05-0.20
4.8µm	Unfil.	1.58-2.64	0.40-0.60	6.33-7.49	0.10-0.30
4.8µm	2% MA	1.54-2.61	0.40-0.60	6.35-7.52	0.10-0.25
9.6µm	Unfil.	1.32-2.56	0.45-0.70	7.30-8.89	0.10-0.25
9.6µm	2% MA	1.26-2.49	0.45-0.75	7.32-8.92	0.10-0.20

Data Analysis - Round 2: Kolmogorov-Smirnov

- Final "confidence check" to cross-check all of our previous results
- Dataset contents:
 - Samples of individual calibrated solutions of fixed-diameter particles
 - Various control samples
 - Non-standardised aqueous solutions (such as solutions of soy milk, oat milk, salts, etc.)
 - In-vivo samples
 - Mixed solutions of fixed-diameter particles,
 - Other data from minor experiments
- \bullet What percentage of the dataset passes the Kolmogorov-Smirnov test with a p-value $\leqslant 0.05$
- Ideally: Approximately 38%, assuming all samples [esp. in category #1] are of equal measurement quality
- Realistically, not all of the above experiments are of equal quality
- Experimental result: 29.78%

Contents

- Introduction
- 2 Data Analysis
- Conclusions and Future Plans
- 4 References

Pitfalls in statistics (xkcd 1132 - CC BY-NC 2.5)

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE)

FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPUNG BY CHANCE IS \$\frac{1}{3c}\$-0027. SINCE P<0.05, I CONCLUDE. THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:

Conclusions & Future Plans

- Even though most of the above tests yielded promising results, there is still a requirement for further study
- Future analysis:
 - Wavelet transform (pattern extraction)
 - Fuzzy logic (data classification)
 - Machine learning (pattern extraction, data classification)
 - Further statistical analysis
- Future improvements:
 - Develop software drivers for other microcomputers and microcontrollers
 - 2 Increase portability & further increase accessibility
 - Increase compliance with biomedical standards
 - Optics-related improvements for noise reduction
 - 6 Higher quality (and larger) dataset

Contents

- Introduction
- 2 Data Analysis
- Conclusions and Future Plans
- References

References

- M. Michailidou, O. Banti, Scattering measurements with the Beaglebone microcomputer for portable biomedical sensors, International Hellenic University, 2022
- O. Banti, M. Michailidou, E. Gkagkanis, K. Karakostas and M. E. Kiziroglou, Fabrication and Development of an Optical Biomedical Sensor, International Workshop on Microsystems, 2021
- Starakostas K., "Portable system development for Mie scattering analysis, to determine the size of blood cells in in-vivo and in-vitro studies", Aristotle University of Thessaloniki, 2019
- Konstantinos Karakostas, Stratos Gkagkanis, Korina Katsaliaki, Peter Köllensperger, Alkiviadis Hatzopoulos, and Michail E. Kiziroglou, "Portable optical blood scattering sensor", Microelectronic Engineering 217 (2019) 111129, Elsevier
- Pauli Virtanen et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python., Nature Methods, 17(3), 261-272., 2020
- Simon Haykin, "Neural Networks and Learning Machines", McMaster University, Hamilton, Ontario, Canada
- Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.
- Stan Salvador and Philip Chan, FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space, Florida Institute of Technology, 2007

Thank you for your attention!

O. J. Banti, M. Michailidou, A. Dziuba

