MAT195S CALCULUS II

Midterm Test #1

12 February 2019 9:10 am - 10:55 am

Closed Book, no aid sheets, no calculators

Instructors: F. Al Faisal and J. W. Davis

Family Name:	J Davis	
Given Name:	Solutions	
Student #:		

FOR MARKER USE ONLY								
Question	Marks	Earned						
1	11							
2	9							
3	12							
4	8							
5	8							
6	12							
7	9							
8	7							
TOTAL	76	/70						

Tutorial Section:	 		
TA Name:			

1) Evaluate the following integrals.

a)
$$\int \tan x \sec^4 x \, dx$$

b)
$$\int \frac{10}{(x-1)(x^2+9)} dx$$

c)
$$\int (\arcsin x)^2 dx$$

(11 marks)

b)
$$\frac{10}{(x-1)(x^2+9)} = \frac{A}{3(x-1)} + \frac{Bx+C}{x^2+9} \Rightarrow 10 = A(x^2+9) + (Bx+C)(x-1)$$

$$= Ax^2+9A + Bx^2 + (x-Bx-C)$$

$$= Ax^2+9A + Bx^2 + (x-Bx-C)$$

$$= x^2: 1+B=0 \Rightarrow A=1$$

$$1: 10 = 9-C \Rightarrow C=-1$$

$$1: 10 = 9-C \Rightarrow C=-1$$

$$= \frac{10}{(x-1)(x^2+9)} dx = \frac{1}{x^2+9} = \frac{1}{x^2+9} dx = \frac{1}{x^2+9} = \frac{1}{x^2+9}$$

c)
$$\left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi c \sin x)^2} \right) = \frac{1}{2} \left(\frac{(\alpha \pi c \sin x)^2}{(\alpha \pi$$

2) a) Determine whether the integral
$$\int_{0}^{1} \frac{3 \sec^{2} x}{x^{3}} dx$$
 converges or diverges. If it converges, determine its value.

(4 marks)

$$\frac{35ec^2x}{x^3} > \frac{1}{x^3} \quad 04x41$$

$$= \frac{1}{\sqrt{3}} \int_{0}^{1} \frac{dx}{x^{3}} = \lim_{t \to 0^{+}} \left[\frac{-1}{3x^{2}} \right]_{t}^{1} \longrightarrow \infty$$

b) The Gamma function is defined as $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$. Show that $\Gamma(4) = 3!$.

(5 marks)
$$|f'(A)| = \int_{0}^{\infty} t^{3}e^{-t} dt \qquad \text{div} = e^{-t} dt$$

$$= \left[-t^{3}e^{-t}\right]_{0}^{\infty} + 3\int_{0}^{\infty} t^{2}e^{-t} dt \qquad \text{div} = -e^{-t}$$

$$= \lim_{t \to \infty} \left(-\frac{t^{3}}{e^{t}}\right) + 0 + 3\int_{0}^{\infty} t^{2}e^{-t} dt = 3\int_{0}^{\infty} t^{2}e^{-t} dt \qquad \text{div} = -\frac{6}{2}t \qquad$$

Page 3 of 9

- 3) Given the parametric equations for a cycloid: $x(\theta) = a(\theta \sin \theta)$; $y(\theta) = a(1 \cos \theta)$
 - a) Provide a sketch of the curve
 - b) Find the length of one arch of the cycloid.
 - c) Find the area under one arch of the cycloid
 - d) Find the surface area of revolution of one arch of the cycloid about the x-axis.

Hints: 1)
$$\sin^2 \phi = \frac{1}{2}(1 - \cos 2\phi)$$

2)
$$\int \sin^3 x \, dx = -\frac{1}{3}(2 + \sin^2 x)\cos x + C$$

- 4) Let \Re be the region that lies between the curves: $y = x^m$, $y = x^n$, $0 \le x \le 1$, where m and n are integers with $0 \le n < m$.
 - a) Sketch the region \Re .
 - b) Find the coordinates of the centroid (centre of mass) of \mathbb{R}.
 - c) Show that for n = 3 and m = 4, the centroid lies outside the region \Re .

(8 marks) A= / (2"-x") dx $= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $= 1 - 1 = \frac{m - N}{(N+1)(m+1)}$ b) $\overline{x}A = \int_{0}^{1} x(x^{n}-x^{m})dx = \left[\frac{x^{n+2}}{n+2} - \frac{x^{m+2}}{n+2}\right] = \frac{1}{n+2} - \frac{1}{m+2} = \frac{m-n}{(n+2)(m+2)}$ $\therefore \quad \overset{\sim}{\times} = \frac{(N+1)(M+1)}{(N+2)(M+2)}$ $\vec{y} A = \int_{0}^{1} \frac{1}{2} \left(\frac{2n}{x} - \frac{2m}{x} \right) dx = \frac{1}{2} \left[\frac{x^{2n+1}}{2n+1} - \frac{x}{2n+1} \right] = \frac{1}{2} \left(\frac{1}{2n+1} - \frac{1}{2n+1} \right) = \frac{M-M}{(2n+1)}$ = 4 = (n+1) (mut) (2mt) c) N > 3 M = 4 =) $X = \frac{4.5}{5.4} = \frac{2}{3}$ $Y = \frac{4.5}{7.9} = \frac{20}{63}$

Now
$$\left(\frac{2}{3}\right)^3 = \frac{8}{27} \angle \frac{20}{63}$$
. The centreid is above the upper curve, $y = x^n$, and there is outside the region.

5) Find the area of the region that lies inside both the circle $r = \sqrt{2} \sin \theta$ and inside the lemniscate $r^2 = \sin 2\theta$. Provide a sketch of the region.

points of intersection:
$$2 \sin^2 \theta = \sin^2 \theta = 7 \sin \theta \cos \theta$$

=> $\sin^2 \theta = \cos^2 \theta = 0$ = $\frac{\pi}{4}$

$$A = \frac{1}{2} \int_{0}^{\pi/4} (J_{2} \sin 2\theta)^{2} d\theta + \frac{1}{2} \int_{\pi/4}^{\pi/2} \sin 2\theta d\theta$$

$$= \left[\frac{Q}{2} - \frac{1}{4} \sin 2\theta \right]_{0}^{\pi/4} - \frac{1}{4} \left[\cos 2\theta \right]_{\pi/4}^{\pi/2}$$

$$= \frac{\pi}{8} - \frac{1}{4} - 0 + 0 - \frac{1}{4} \left(-1 - 0 \right)$$

$$= \frac{\pi}{8}$$

6) Determine whether the sequence converges or diverges. If it converges, find the limit:

(i)
$$a_n = \frac{(-1)^n n^2 \cos n}{n^4 + 1}$$

(ii)
$$a_n = \frac{\ln(n^{10})}{n^{1/10}}$$

(iii)
$$a_n = \sqrt{n+1} - \sqrt{n-1}$$

(iv)
$$a_n = 2^n \cdot 3^{1-n}$$

(12 marks)

$$\lim_{x\to\infty} \frac{\log \ln x}{x^{2}} = \lim_{x\to\infty} \frac{\log x}{\log x^{2}} = \lim_{x\to\infty} \log x \to 0$$

(iv)
$$\frac{z^n}{3^{n-1}} = 3\left(\frac{z}{3}\right)^n \longrightarrow 0$$
 (x^n with $x < 1$)

7) a) Prove that if $\lim_{n\to\infty} a_n = 0$ and $\{b_n\}$ is bounded, then $\lim_{n\to\infty} (a_n b_n) = 0$.

(5 marks)

Civeu $\{b_n\}$ is a bounded sequence: $|b_n| \leq M$: $|a_n| |b_n| \leq |a_n| M$

Civen 6=0, line an=0 mean that |an-0|26 for N7N similarity, |an-0| 4 for N7N

Then |and -0|= |and |= |an||bn| 6 |an| M= |an-0| M2 for M=6

for all n > N'Since this is valid for all $\epsilon > 0$, $\lim_{n \to \infty} (a_n b_n) = 0$

b) Suppose that $\sum_{n=1}^{\infty} a_n$ $(a_n \neq 0)$ is known to be a convergent series. Prove that $\sum_{n=1}^{\infty} \frac{1}{a_n}$ is a divergent series.

(4 marks)

If Ean is convergent, then line an ->0

If lim an =0 then lime I +0

... Eta diverger by the test for divergence

8) a) A series
$$\sum_{k=1}^{\infty} a_k$$
 has partial sums, s_n , given by $s_n = \frac{7n-2}{n}$

i) Is
$$\sum_{k=1}^{\infty} a_k$$
 convergent? If it is, find the sum.

ii) Find
$$\lim_{k\to\infty} a_k$$

iii) Find
$$\sum_{k=1}^{200} a_k$$

(3 marks)

3 marks)

i)
$$\lim_{n \to \infty} S_n = 7$$
 : $\underbrace{2}_{k = 1}^{k = 1}$ is convergent

$$iii)$$
 $\frac{200}{200} = \frac{1398}{200} = \frac{1398}{200}$

b) Find the value of c if:
$$\sum_{n=2}^{\infty} \left(1 - \frac{1}{c} \right)^n = \frac{1}{2}$$

(4 marks)

$$2c^{2}-5c+2=0$$

$$c = 5 + \sqrt{25-16} = 5 + 3 = 4 = 7$$