Predicting Home Loan Approval

By: Taji Abdullah, Mark Werden, Gustavo Gyotoku, Sammy Mohn, Elza Hayyat

Why is This Topic Important?

- Real estate is socioeconomically transformative
- Property ownership is the cornerstone to economic success in the U.S
- One of the best ways to build generational wealth
- Simply put can positively change you and your family's life

Traditional Home Loan Applications

- Details of the purchase contract and the property
- Personal information, including SSN
- Employment History
- Verification of Employment (VOE)
- Information on other income
- Copies of documents showing money owed to the borrower(s)
- Information on the ethnicity, race, and gender of the applicants to comply with the Fair Housing and Equal Credit Opportunity Acts

Project steps:

- → ETL
- → ML
- → Store on SQL
- → HTML/CSS
- → Flask app
- → Web hosting

Dashboard

ETL

$$H_o = coef is 0$$

$$H_1$$
 = coef is **not 0**

- If the p-value is less than 0.05, we reject the null hypothesis
- Features with a p-value less than 0.05 are significant to the model

<u></u>							
OLS Regression Results							
Dep. Variable:	3	y R-squar	ed:		0.327		
Model:	OLS Adj. R-squared:			0.306			
Method:	Least Squares F-statistic:		16.03				
Date: Thu	, 16 Jun 2022 Prob (F-statistic):			1.94e-40			
Time:	22:03:36 Log-Likelihood:			-277.84			
No. Observations:	614 AIC:			593.7			
Df Residuals:	595 BIC:			677.7			
Df Model:	18						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
const	0.1509	0.153	0.986	0.325	-0.150	0.452	
ApplicantIncome	1.094e-06	3.29e-06	0.333	0.739	-5.36e-06	7.55e-06	
CoapplicantIncome	-9.23e-06	5.73e-06	-1.610	0.108	-2.05e-05	2.03e-06	
LoanAmount	-0.0002	0.000	-1.005	0.315	-0.001	0.000	
Loan_Amount_Term	-0.0002	0.000	-0.764	0.445	-0.001	0.000	
Credit_History	0.7033	0.045	15.527	0.000	0.614	0.792	
Gender_Female	0.0402	0.116	0.346	0.730	-0.188	0.269	
Gender_Male	0.0353	0.110	0.321	0.749	-0.181	0.252	
Married_No	-0.2120	0.252	-0.841	0.401	-0.707	0.283	
Married_Yes	-0.1178	0.251	-0.469	0.639	-0.611	0.376	
Dependents_0	0.0142	0.115	0.123	0.902	-0.211	0.240	
Dependents_1	-0.0527	0.119	-0.442	0.658	-0.287	0.181	
Dependents_2	0.0455	0.119	0.381	0.703	-0.189	0.280	
Dependents_3+	0.0104	0.126	0.083	0.934	-0.237	0.257	
Education_Graduate	0.1040	0.078	1.325	0.186	-0.050	0.258	
Education_Not Graduate	0.0469	0.079	0.589	0.556	-0.109	0.203	
Self_Employed_No	0.0139	0.071	0.195	0.846	-0.126	0.154	
Self_Employed_Yes	0.0170	0.081	0.210	0.834	-0.143	0.177	
Property_Area_Rural	-0.0060	0.057	-0.106	0.916	-0.118	0.106	
Property_Area_Semiurban	0.1225	0.055	2.220	0.027	0.014	0.231	
Property_Area_Urban	0.0344	0.055	0.625	0.533	-0.074	0.143	
 Omnibus:	91.264 Durbin-Watson: 1.944						
Prob(Omnibus):	0.000		Jarque-Bera (JB):		130.524		
Skew:	-1.112		Prob(JB):		4.54e-29		
Kurtosis:	3.39		Cond. No.		5.95e+19		

- The different MS algorithms underperformed
 - Each MS algorithm either produced overfitting or underfitting

Model: LinearRegression

Train score: 0.34508583208629606 Test Score: 0.18400955120272888

Model: KNeighborsRegressor
Train score: 0.3670644597423336
Test Score: 0.006243452755080536

Model: RandomForestRegressor Train score: 0.8963577979671551 Test Score: 0.18500993086109374

Model: ExtraTreesRegressor

Train score: 1.0

Test Score: -0.07290861093651779

Model: AdaBoostRegressor

Train score: 0.349653915530037 Test Score: 0.1767992812257505

Model: SVR

Train score: 0.4055056910364776 Test Score: 0.2103514652214652

- To get above the 77% accuracy requirement, we decided to try other classification models
- The final model we utilized was the XGB classifier as it reduces the residuals

```
expected y = y test
y pred = model.predict(X test)
print(metrics.classification report(expected y, y pred))
             precision recall f1-score
                                             support
                  0.78
                            0.51
                                      0.62
                                                  49
                  0.80
                            0.93
                                      0.86
                                                 105
                                      0.80
                                                 154
    accuracy
                  0.79
                            0.72
                                      0.74
                                                 154
   macro avq
                  0.80
                            0.80
                                      0.79
                                                 154
weighted avg
```


SQL Storage

- We used Postgres to store our transformed data in a relational database.
- → We did that so that when the data is updated/more entries are added to further train the model, the new data is easily incorporated.
- → Data movement is expensive.

HTML/CSS Process

- Code was surprisingly straightforward
- Use of "Form" functions consisting of single-option and user-input cells for a user to make their choices and input their own data
- The only CSS that was used was for a custom template that is used for the site itself

```
<h4><i>>Please enter your information below to see if you can be approved for a home loan!</i></h4>
Select an option for Gender:
  orm method = "post" id = "myform"
   <input type="radio" id="male" name="gender" value="Male">
   <label for="male">Male</label><br
   <input type="radio" id="female" name="gender" value="Female">
   <label for="male">Female</label><br>
sp>Select an option for Married:
   <input type="radio" id="yes" name="married" value="Yes">
   <label for="yes">Yes</label><br>
   <input type="radio" id="no" name="married" value="No";</pre>
   <label for="no">No</label><br>
Select an option for number of dependents:
<input type="radio" id="0" name="dependents" value="0";</pre>
clabel for="0">0</label><br>
<input type="radio" id="1" name="dependents" value="1">
clabel for="1">1</label><br>
<input type="radio" id="2" name="dependents" value="2">
<input type="radio" id="3+" name="dependents" value="3+">
 p>Please select educational level:
   <input type="radio" id="graduate" name="education" value="Graduate";</pre>
   <label for="education">Graduate</label><br>
   <input type="radio" id="non-graduate" name="education" value="Non-Graduate")</pre>
   <label for="education">Non-Graduate</label><br>
       Please indicate whether you are self-employed:
        <label for="ves">Yes</label><br>
        cinput type="radio" id="no" name="employment" value="No"
```


Flask

```
from binascii import Incomplete
from flask import Flask, request, render_template
import pickle
import numpy as np

app = Flask(_name__)

app.route('/')
def hello():
    return render_template('index.html')

app.route('/', methods =["POST"])
def gfg():
    if request.method == "POST":
        # getting input with name = fname in HTML form
        gender = request.form.get("gender")
        print(gender)
        married = request.form.get("married")
```

```
data = []
data.append(int(income_applicant))
data.append(int(income_coapplicant))
data.append(int(loan))
data.append(int(credit))
if gender == "Male":
   data.append(0)
   data.append(1)
else:
   data.append(1)
   data.append(0)
if married == "Yes":
   data.append(0)
   data.append(1)
else:
   data.append(1)
    data.append(0)
```

Important Notes:

- We used Flask to develop our web app
- Got all the user inputs and printed them
- Next step we appended the inputs to an empty list called data
- Finally we used pickle to load the ML model saved in a say format
 - Pickle is great for serialization
 - \circ Very quick \rightarrow fast execution time
- Used the model to predict the result which was either Loan Approved or Loan Not Approved

```
print(data)
loaded_model = pickle.load(open("finalized_model.sav", 'rb'))
result = loaded_model.predict(np.array(data, dtype=np.int32).reshape(1,-1))
print(f"result = {result}")
if result[0] == 0:
    output = "Not Approved"
else:
    output = "Approved"
```

Website run through

_

Future considerations

Questions?