

Лабораториска вежба 4.2 - Длабоко учење со поттикнување

Gym - Python библиотека

Gym e Python библиотека која поддржува развој и споредба на алгоритми за учење со поттикнување. Документацијата на оваа библиотека е достапна на следната страна. Инсталација на библиотеката:

pip install gym

Околина може да се креира на следниот начин:

```
env = gym.make(env_name)
```

каде env_name е името на околината. Библиотеката gym обезбедува голем број на околини кои може да се користат. Пример за околини:

- FrozenLake-v0
- MountainCar-v0

Некои атрибути на околината кои може да се користат:

- Action_space валидни акции
- Observation_space валидни состојби
- Reward_range ранг на наградата која агентот ја добива
- Env дополнителни информации за околината

Околината се ресетира со повик на функцијата reset():

```
env.reset()
```

Оваа функција ја враќа почетната состојба.

Со повик на функцијата render() може да се визуелизира тековната состојба:

```
env.render()
```

За движење низ околината се користи функцијата step:

```
state, reward, done, info = env.step(action)
```

каде action е акцијата која се презема. Оваа функција како резултат враќа 4 вредности:

- State објект кој ја претставува следната состојба на околината
- 휂 Reward награда која се добива по преземање на акцијата action
- Done информација дали епизодата е завршена (ако е завршена, околината треба да се ресетира)
- Info дополнителни информации специфични за конкретната околина

Задачи

Задача 2 (25 поени)

За околината "LunarLanderContinuous-v2" изградете и тренирајте Actor-Critic агент. Тестирајте со различни вредности за број на епизоди. Користете ја имплементацијата на DDPG достапна во библиотеката **Stable Baselines 3**. Потоа визуелизирајте го движењето на агентот низ оваа околина.

Тестирајте го тренираниот модел во 50 и 100 итерации. Колкава е просечната награда?