Matrix

see math notation

definition: formally in my math notation

a <u>matrix</u> in $\mathbb{R}^{m,n}$ is a <u>set theory</u>etical <u>function</u> with domain at least $\langle x,y\rangle \to \mathbb{N} x \wedge \mathbb{N} y \wedge 0 \leq x < m \wedge 0 \leq y < n$ that takes an <u>ordered pair</u> as an index and returns the element at that index

notation:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Multiplication by a Scalar

see matrix vector space, vector space

 $\textbf{definition} \colon (kA)^{i,j} = kA^{i,j} \dashv \mathbb{N}i \wedge \mathbb{N}j \wedge \mathbb{R}k \wedge \mathbb{M}A$

property: commutativity with <u>scalars</u> kA = Ak

Matrix Addition

see matrix vector space, vector space

 $\textbf{definition} \colon (A:B)^{i,j} = A^{i,j} : B^{i,j} \dashv \mathbb{N}i \wedge \mathbb{N}j \wedge \mathbb{M}^{m,n}A \wedge \mathbb{M}^{m,n}B$

Matrix Multiplication

see dot product, vector in rn

definition: $AB \neq \emptyset \equiv \mathbb{M}^{m,n}A \wedge \mathbb{M}^{n,p}B \wedge \mathbb{M}^{m,p}AB$ (AB is defined if the number of columns in A is equal to the number of rows in B. their product will be an m by p matrix)

 $(AB)^{i,j} = A^{i,\;\;} \mid B^{,j} \dashv \mathbb{N}i \wedge \mathbb{N}j, \text{ see } \underline{\text{dot product}}$

intuitively, matrix multiplication is the <u>dot product</u> of **every row** of the first <u>matrix</u> by **every column** of the second <u>matrix</u>

notation:

 $AA = A2 = [A]2 \dashv \mathbb{M}A$

and therefore $AA \dots A = [A]n \wedge \mathbb{N}n \dashv \mathbb{M}A$

property: not commutative $AB = BA \not \cap \mathbb{M}A \land \mathbb{M}B$ or $AB \neq BA \land \mathbb{M}A \land \mathbb{M}B$

property: $AB = 0 \not\vdash A = 0 \lor B = 0$ (it can happen that AB = 0, but $A \neq 0$ and $B \neq 0$) (AB being equal to 0 does not imply that A = 0 or that B = 0)

property: $AC = BC \land C \neq 0 \nvdash A = B \ (AC = BC \text{ and } C \neq 0 \text{ does not imply that } A = B$

property: associative (AB)C = A(BC)

property: distributive A(B:C) = AB:AC

property: distributive(B:C)A = BA:CA

property: associative with <u>scalars</u> k(AB) = (kA)B = A(kB)

application:

matrix multiplication can be used to represent a <u>linear system</u> of <u>linear equations</u>:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

application: matrix multiplication can be used to represent any linear transformation

Identity Matrix

 $extbf{definition} : (I^{a,b} = 1 \wedge a = b) \lor (I^{a,b} = 0 \wedge a
eq b) \dashv \mathbb{N}a \wedge \mathbb{N}b \wedge \mathbb{M}^{n,n}I$

example: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

example: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $extbf{property}: AI = A \wedge IA = A \dashv \mathbb{M}A$

Zero Matrix

see matrix vector space, vector space

definition: $O^{a,b} = 0 \dashv \mathbb{N}a \wedge \mathbb{N}b \wedge \mathbb{M}^{n,m}O$

example: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

 $\mathbf{property} \colon A_{m,n}O_{n,p} = O_{m,p} \dashv \mathbb{M}^{n,p}O_{n,p} \wedge \mathbb{M}^{m,p}O_{m,p} \wedge \mathbb{M}^{m,n}A_{m,n}$

 $\mathbf{property} \colon O_{q,m} A_{m,n} = O_{q,n} \dashv \mathbb{M}^{q,m} O_{q,m} \wedge \mathbb{M}^{q,n} O_{q,n} \wedge \mathbb{M}^{m,n} A_{m,n}$

Rank of a Matrix

the number of pivots in any <u>REF</u> of the <u>matrix</u>

notation:

rank A, where

• A is the matrix to find the rank of

Matrix Vector Spaces

Null Space (Nullspace, Kernel), Column Space, Row Space

 $oxed{notation}$: $kernel\ Ker\ A \equiv Null\ A$

notation: column space Col A

notation: row space Row A

definition: $kernel\ (Ker\ A)\ x \equiv (Null\ A)\ x \equiv Ax = O \land \mathbb{M}^{m,n}A \land \mathbb{M}^{n,1}x$

procedure: computing the kernel of a <u>matrix</u> use <u>row reduction</u>

definition: column space $Col\ A = \operatorname{span} A^{,n} \dashv \mathbb{N} n$

definition: row space Row $A = \operatorname{span} A^{n}$, $\exists \mathbb{N} n$

 ${\bf theorem: the \ Null \ Space, \ Row \ Space \ and \ Column \ Space \ of \ a \ \underline{matrix} \ are \ always \ \underline{vector}}$

 $\underline{space}s$

the ore m: number of free variables in A: number of pivots in A = number of columns in A

theorem: $\dim Null\ A = \text{number of free variables in } A$

theorem: rank A = number of pivots in A

theorem: the nonzero rows in any <u>REF</u> of a <u>matrix</u> A forms a <u>basis</u> for Row A. therefore, dim Row A = rank A (see rank of a <u>matrix</u>)

theorem: if A and B are row-equivalent, then Row A = Row B, see <u>linear system</u>

theorem: the <u>span</u>ning <u>set</u> of $Null\ A$ obtained from applying <u>row reduction</u> on the system Ax = O is a <u>basis</u> for $Null\ A$

theorem: $Row\ A$ does not change when applying elementary operations on the rows of A, see <u>linear system</u>

property: $Col\ A = Row\ A^{\dagger} \wedge Row\ A = Col\ A^{\dagger} \dashv \mathbb{M}A$, see transpose matrix

application:

row spaces can be used to find a $\underline{\text{basis}}$ for a $\underline{\text{span}}$ ning $\underline{\text{set}}$ of vectors through $\underline{\text{row}}$ $\underline{\text{reduction}}$

the <u>basis</u> for the row space of a <u>matrix</u> can be found by applying <u>row reduction</u> and <u>span</u>ning the <u>row-reduced columns</u> in the <u>REF</u> form of the <u>matrix</u>

the <u>basis</u> for the column space of a <u>matrix</u> can be found by applying <u>row reduction</u> and <u>span</u>ning the **original columns** that became pivots in the <u>REF</u> form of the <u>matrix</u>

the same can be said for $Col\ A$

example: transforming a <u>vector space</u> into the null space of a certain <u>matrix</u>

let $W = \text{span} \langle \langle (1,0,0,1), (1,1,1,0), (2,1,1,1) \rangle \rangle$

after solving the <u>linear system</u>, we get $W(x, y, z, w) \equiv x : y : w = 0$. therefore, W is the null space of $A = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$

Transpose Matrix

the transpose of a <u>matrix</u>

flips a <u>matrix</u> around its diagonal

note: the *diagonal* of a square <u>matrix</u> goes from its top left element to its bottom right element (triplicate)

 $extbf{definition} \colon (A^\intercal)^{i,j} = (A)^{j,i} \dashv \mathbb{N}i \wedge \mathbb{N}j \wedge \mathbb{M}A$

 $\mathbf{property} \colon (A^\intercal)^\intercal = A \dashv \mathbb{M} A$

 $\mathbf{property} \colon (AB)^\intercal = B^\intercal A^\intercal \dashv \mathbb{M} A \wedge \mathbb{M} B$

representation:

Α

 $\frac{\text{https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Matrix_transpose.gif/200px-Matrix_transpose.gif/200px-Matrix_transpose.gif}$

Matrix Inverse

the inverse of a matrix

definition: $AA^- = A^-A = I \dashv MA$, where

- A is a square $\underline{\text{matrix}}$
- A^- is the *inverse matrix* of A

Invertability

definition: an *invertible matrix* has a corresponding inverse <u>matrix</u>

see theorems below for invertability criteria

let A and C be invertible <u>matrix</u>es, let $\mathbb{Z}p$ and let $\mathbb{R}k \wedge k \neq 0$. then,

 $\mathbf{property} \colon AA^- = A^-A = I$

 $\mathbf{property} \colon (A^{-})^{-} = A$

 $\mathbf{property} \colon (A^p)^- = (A^-)^p$

property: $(kA)^- = -k \mid A^-$ (restriction might not be necessary, see <u>improved expression</u> evaluation)

 $\mathbf{property} \colon (AC)^- = C^-A^-$

note: in the equation above, the order of the <u>matrix</u>es has changed. this is significant as <u>matrix</u> multiplication is not commutative

property: if AC is invertible, then A is invertible and C is invertible

procedure: computing the inverse of a matrix

let $\mathbb{M}^{n,n}A$

solve the system $AA^-=I$ by extending the <u>matrix</u> with the identity <u>matrix</u> and solve the <u>linear system</u> up to <u>RREF</u> using <u>row reduction</u>. $[A \mid I] \sim \dots [I \mid A^-]$

procedure: computing the inverse of a 2 by 2 matrix

see determinant

$$let A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

A is invertible if and only if $|A| \neq 0$

$$A^- = -|A| \mid egin{bmatrix} d & \cdot b \ \cdot c & a \end{bmatrix}$$

application: using a matrix inverse to solve a linear system

let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

then, calculate B such that $B \equiv A^-$

this can be used to solve a <u>linear system</u> such as:

$$Ax = \begin{bmatrix} \cdot 1 \\ 1 \end{bmatrix}$$

$$BAx = B egin{bmatrix} \cdot 1 \ 1 \end{bmatrix}$$

$$Ix = x = B egin{bmatrix} \cdot 1 \ 1 \end{bmatrix}$$

Triangular Matrix

note: the *diagonal* of a square <u>matrix</u> goes from its top left element to its bottom right element (triplicate)

Diagonal Matrix

definition: a $\underline{\text{matrix}}$ is said to be diagonal if every entry below its diagonal $\underline{\text{and}}$ above its diagonal is 0

note: the *diagonal* of a square <u>matrix</u> goes from its top left element to its bottom right element (triplicate)

let D be a diagonal $\underline{\text{matrix}}$

application: [D]x can be calculated by raising every entry of D to the power x

Diagonalizable Matrix

see <u>eigenvector</u>

definition: an n by n matrix A is said to be diagonalizable over the reals if there exists a basis of \mathbb{R}^n consisting entirely of eigenvectors of A

a <u>matrix</u> is *diagonalizable* if and only if the geometric <u>multiplicity</u> of an <u>eigenvalue</u> is equal to the algebraic <u>multiplicity</u> of said <u>eigenvalue</u>, for every <u>eigenvalue</u> of the <u>matrix</u> (see <u>eigenvector and eigenvalue</u>)

note: a <u>matrix</u> may also be diagonalizable over other <u>number fields</u> such as the <u>set</u> of <u>complex</u> numbers \mathbb{C}

note: some <u>matrix</u>es do not have "enough" real <u>eigenvalue</u>s or "enough" <u>eigenvector</u>s to be diagonalizable

example: the <u>matrix</u> $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ is diagonalizable over the reals as $\langle \langle (1,1), (1,\cdot 1) \rangle \rangle$ is a <u>basis</u> of \mathbb{R}^2 consisting entirely of <u>eigenvectors</u> of A

example: the matrix $A = \begin{bmatrix} 1 & 1 \\ \cdot 1 & 1 \end{bmatrix}$ is not diagonalizable over the reals as it does not have any real eigenvalues

example: the <u>matrix</u> $A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ is not diagonalizable over the reals as it only has one <u>eigenvalue</u>, and therefore only one set of <u>linearly dependent eigenvectors</u> (see <u>eigenvector and eigenvalue</u>)

example: the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is diagonalizable over the reals as, even though A has a single eigenvalue $\lambda = 1$, its eigenspace spans \mathbb{R}^2 . this is the case for both $A = I \wedge \lambda = 1$ and $A = O \wedge \lambda = 0$

proof: let
$$A = I \wedge \lambda = 1 \wedge E_1 = x$$
. we then have $O = A \cdot \lambda I \mid x = I \cdot 1I \mid E_1 = O \mid E_1$. therefore, $E_1 \equiv \mathbb{R}^2$. see eigenvector and eigenvalue

example: let $\mathbb{M}^{n,n}A \wedge \mathbb{N}n$ and suppose A has n distinct <u>eigenvalue</u>s. deduce that A is diagonalizable over the reals

proof: A has at most n <u>eigenvalue</u>s \rightarrow the algebraic <u>multiplicity</u> of every <u>eigenvalue</u> of A is 1 as they are all distinct and must be greater than 1 \rightarrow the geometric <u>multiplicity</u> of every <u>eigenvalue</u> of A is 1 as it must be greater than 1 and less than its algebraic <u>multiplicity</u> \rightarrow all algebraic <u>multiplicity</u>es and geometric <u>multiplicity</u>es are equal \rightarrow A is diagonalizable. see <u>eigenvector and eigenvalue</u>

eigenvector and eigenvalues

theorems

see <u>linear system</u>

theorem: let $\mathbb{M}^{m,n}A$ (see <u>matrix</u>). the following <u>logic statements</u> are equivalent:

- 1. every <u>variable</u> is a leading <u>variable</u>
- 2. there is a leading <u>variable</u> in every column of the <u>RREF</u> of A
- 3. the system Ax = O has a unique solution
- 4. the columns of A are <u>linearly independent</u>
- 5. $Ker\ A = \langle\langle 0 \rangle\rangle$
- 6. $\dim Ker A = 0$

7. rank A = n

see <u>linear system theorem proof</u>

theorem: let $\mathbb{M}^{n,n}A$ (see <u>matrix</u>). the following <u>logic statements</u> are equivalent:

note: all <u>logic statements</u> below are valid for both A and A^{\dagger} , see transpose <u>matrix</u>

- 1. rank A = n
- 2. every linear system of the form Ax = b has a unique solution
- 3. the RREF of A is the identity matrix
- 4. $Ker\ A = \langle\langle 0\rangle\rangle$
- 5. $Col\ A = \mathbb{R}^n$
- 6. Row $A = \mathbb{R}^n$
- 7. the columns of A are <u>linearly independent</u>
- 8. the rows of A are <u>linearly independent</u>
- 9. the columns of A form a basis for \mathbb{R}^n
- 10. the rows of A form a basis for \mathbb{R}^n
- 11. A is an invertible matrix
- 12. $\det A \neq 0$