Assignment 1

Stable Marriable Problem using Gale-Shapley Algorithm

Team members: NAME - EMAIL - UID

- Aditya Mallakula mallakula.2@wright.edu U01093160
- Chris Davis Jaldi jaldi.2@wright.edu U01099335
- Vanaja Uppala uppala.19@wright.edu U01080568

Gale Shapley Algorithm Pseudocode:

1. Initialization:

- We begin by creating a list called "free_men", which includes all men who are not currently engaged to a woman.
- We also define a variable "proposals_count" to keep track of the number of proposals made during the algorithm.

2. Core loop:

- The algorithm continues until there are unmarried men available.
- For each available man, the algorithm chooses the next woman on his preference list to propose to.
- When a man proposes to a woman, the "proposal_count" increases.
- Proposal handling:
 - If the chosen woman is not already engaged, the man will become engaged to her.
 - If the woman is already engaged to another man, the algorithm determines whether she prefers the new man (the proposer) to her current partner.
 - If she prefers the new man, she breaks off her current engagement and becomes engaged to the new man.
 - If she prefers her current partner, the new man remains free and is added back to the list of "free_men" to propose again later.

3. Output:

- The loop continues until all men are engaged or there are no more women to propose to.
- When the loop is completed, the result is a stable matching of women and their partners, as well as the total number of proposals made by the algorithm.

Complexity Analysis:

• Time Complexity:

- The Gale-Shapley algorithm uses a loop in which every free man proposes to women on his preference list until all men are engaged.
- O Each man can make at most n proposals (where n is the number of women), resulting in a worst-case scenario of $O(n^2)$ for n men and n women.
- o In each iteration, engagements are updated based on whether a woman prefers the current proposal to her previous engagement.
- O Reading the input file to parse preferences for men and women involves iterating through each person's list, which takes $O(n^2)$.
- Writing the output involves iterating through the final matching results, which takes O(n).
- O The Gale-Shapley algorithm is the primary contributor to the time complexity, with a total time complexity of $O(n^2)$.

• Space Complexity:

- O The preference lists for men and women are stored in dictionaries, resulting in a space complexity of O(n) for both men and women's preferences, for a total of O(n).
- O Additional data structures, such as the list of free men and the dictionary of engagements (matching), require O(n) space.
- \circ The overall space complexity is O(n).