

Structured Pruning Learns Compact and Accurate Models

ACL 2022

Mengzhou Xia

Zexuan Zhong

Danqi Chen

Language models are known to be overparameterized

FFN: Feed-forward network

MHA: Multi-head attention

 $1.0 \times \text{speedup}$

MNLI acc: 84.8

Distillation: transfers knowledge from a teacher model to a fixed student model

84M parameters

 $1.0 \times \text{speedup}$

MNLI acc: 84.8

4.7M parameters 11.4 × speedup

MNLI acc: 78.7

Knowledge distillation can:

• achieve over 10× speedups

Disadvantages of knowledge distillation:

- Pre-specified student model architecture
- Trained from scratch with unlabeled data and computationally expensive e.g.,
 350 hours for TinyBERT

Unstructured pruning: Prunes individual parameters (Frankle and Carbin, 2019)

Hard to achieve inference speedup!

Structured pruning: Prunes groups of parameters, e.g., heads, FFNs, leads to actual speedups unlike unstructured pruning

84M parameters 1.0 × speedup MNLI acc: 84.8

25M parameters 2.7 × speedup

MNLI acc: 83.7

Why is structured pruning appealing:

- Flexible model structure with different sparsities
- Can achieve competitive results without unlabeled data
- Can be combined with task-specific distillation objectives

Hard to achieves a large speedup e.g., 10 ×, without a significant performance drop.

Motivation

Why can't structured pruning approaches achieve a large speedup?

$$\mathrm{MHA}(X) = \sum_{i=1}^{N_h} \mathbf{z}_{\mathrm{head}}^{(i)} \mathrm{Att}(W_Q^{(i)}, W_K^{(i)}, W_V^{(i)}, W_O^{(i)}, X)$$

Solution 2

all heads are pruned in a layer

Difficult to optimize in practice

Pruning layers leads to significant speedup gains!

Motivation

Layer-wise distillation could possibly improve pruning performance

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Achieves **10**× speedup

Preserves 90% accuracy

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Fine-grained units:

Heads

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Fine-grained units:

Heads

Coarse units:

• MHA layers

$$\mathrm{MHA}(X) = z_{\mathrm{MHA}} \cdot \sum_{i=1}^{N_h} (\mathbf{z}_{\mathrm{head}}^{(i)} \cdot \mathrm{Att}(W_Q^{(i)}, W_K^{(i)}, W_V^{(i)}, W_O^{(i)}, X))$$

$$z \in \{0,1\}$$

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Fine-grained units:

- Heads
- Intermediate dimensions

Coarse units:

MHA layers

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Fine-grained units:

- Heads
- Intermediate dimensions

Coarse units:

- MHA layers
- FFN layers

$$FFN(X) = z_{FFN} \cdot gelu(XW_U) \cdot diag(\mathbf{z}_{int}) \cdot W_D$$

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Fine-grained units:

- Heads
- Intermediate dimensions
- Hidden dimension

Coarse units:

- MHA layers
- FFN layers

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective Naive Approach

Suboptimal when upper layers are pruned.

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Select 4 teacher layers \mathcal{T} , following Jiao et al. 2020

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

Calculate the **L2 distance** using the **training batch**

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

A low L2 distance \longrightarrow A good approximation

- Jointly prune coarse- and fine-grained units
- A layerwise distillation objective

How to control the sparsity of the final model?

Adapted the Lagrangian loss from Wang et al. 2020.

- How to model z:
 - hard-concrete distribution (Loizos et al. 2018)
- Expected sparsity: f: function to calculate the sparsity $\hat{s} = f(\mathbf{z}_{ ext{int}}, \mathbf{z}_{ ext{head}}, \mathbf{z}_{ ext{hidden}}, z_{ ext{FFN}}, z_{ ext{MHA}}, M)$
- Lagrangian loss: s^* : target sparsity $\mathcal{L}_{\mathrm{lag}}(\lambda_1,\lambda_2,\hat{s})=\lambda_1(s^*-\hat{s})+\lambda_2(s^*-\hat{s})^2$

Final Objective

$$\max_{\lambda_{1},\lambda_{2}} \min_{\theta,\hat{s}} \underline{\lambda \mathcal{L}_{pred}(\theta)} + \underline{(1-\lambda)\mathcal{L}_{layer}(\theta)} + \underline{\lambda_{1}(s^{*}-\hat{s}) + \lambda_{2}(s^{*}-\hat{s})^{2}}$$
Prediction layer Layerwise Target sparsity Expected sparsity distillation loss

Experiment Results - GLUE and SQuAD 1.1

- GLUE: sentence classification tasks
- SQuAD 1.1: extractive question answering task

Baseline Results - GLUE and SQuAD 1.1

Speedup v.s. Performance

Baseline Results - GLUE and SQuAD 1.1

Speedup v.s. Performance and Model-size v.s. Performance

Baseline Results - GLUE and SQuAD 1.1

Pruning falls behind distillation approaches on high sparsity levels.

Experiment Results - GLUE and SQuAD 1.1

CoFi Pruning outperforms all distillation and pruning baselines **comparing under the same speedup and model size**

Models with 10 × speedups

Models with 10 × speedups

Models with 10 × speedups

General distillation is essential but time consuming!

Models with 10 × speedups

CoFi achieves comparable or better performance and speedup with much less computation time

Ablation - Distillation Loss on 95% Models

	SST-2	QNLI	MNLI	SQuAD	Avg.
No distillation	86.6	84.2	78.2	75.8	81.2

Ablation - Distillation Loss on 95% Models

	SST-2	QNLI	MNLI	SQuAD	Avg.
No distillation	86.6	84.2	78.2	75.8	81.2
$+\mathcal{L}_{ t pred}$	91.1	85.1	79.7	82.5	84.6

Prediction layer distillation brings a large gain

Ablation - Distillation Loss on 95% Models

	SST-2	QNLI	MNLI	SQuAD	Avg.
No distillation	86.6	84.2	78.2	75.8	81.2
$+\mathcal{L}_{ t pred}$	91.1	85.1	79.7	82.5	84.6
$+\mathcal{L}_{ exttt{layer}}, \mathcal{L}_{ exttt{pred}}$	90.6	86.1	80.6	82.6	85.0

- Our proposed layer distillation loss brings additional gains
- The improvements on smaller sparsities are much larger

Model Structures with 95% Sparsity

Coarse-grained units:

- First and last FFN layers are largely retained
- Middle layers are more likely to be pruned

Model Structures with 95% Sparsity

Fine-grained Units:

Heads and intermediate dimensions from the top-layers are more likely to be pruned

Summary

CoFi Pruning

- Jointly prune coarse- and fine-grained units
- An additional layerwise distillation loss to guide pruning

Compressed models

- Over 10 × speedups while maintaining 90% accuracy
- Closes the gap between structured pruning and knowledge distillation with much less computation

Q & A

Codebase: https://github.com/princeton-nlp/CoFiPruning

Contact: mengzhou@princeton.edu