Answers - Combinations and permutations (page ??)

1.
$${}^{10}C_2 = \frac{10!}{2! \times 8!} = \frac{10 \times 9}{2} = 45$$

2. (a)
$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

(b) Visualise this with the girls effectively being a sixth member of the group. There are 6! ways of arranging them.

Then, within the girls, there are 3! ways of arranging them.

This means there are $6! \times 3! = 720 \times 6 = 4320$ possible photos.

3. (a)
$$6 \times^5 C_2 \times^3 C_3 = 6 \times 10 \times 1 = 60$$

(b)
$${}^{6}C_{2} \times {}^{4}C_{2} \times {}^{2}C_{2} = 15 \times 6 \times 1 = 90$$

4.
$${}^{20}C_3 \times {}^{30}C_2 = 1140 \times 435 = 495,900$$

5. 2 candidates:
$${}^{8}C_{2} = 28$$

1 candidate:
$${}^8C_1 = 8$$

$$0 \text{ candidates} = 1$$

$$Total = 37$$

6.
$${}^{15}C_3 \times {}^9 C_1 \times {}^7 C_1 = 28,665$$

7. Consider the two situations: first, where all 6 people are from the same college. Second, where 4 are from the same college and 2 are from the other one.

6 from same college:
$${}^8C_6 = 28$$

4 from same college:
$${}^{8}C_{4} = 70$$

Total is 98

8. Break into 3 situations:

Situation 1: all 3 sides are the same colour.

There are 5 colours, so there are 5 ways this can occur.

Situation 2: all 3 sides are different colours.

We are fitting 5 colours into 3 spots, therefore ${}^5C_3 = 10$

Situation 3: 2 sides have the same colour and one is different.

9.

$$\frac{p!}{q!(p-q)!} = \frac{p!}{r!(p-r)!}$$
$$\frac{1}{q!(p-q)!} = \frac{1}{r!(p-r)!}$$

There are 2 solutions to consider here. The first gives us the solution q = r, which we are told is not a solution.

$$\frac{r!}{(p-q)!} = \frac{q!}{(p-r)!}$$

Here we can equate the numerators and the denominators, giving us r = q. The other way is to cross-multiply different terms:

$$\frac{r!}{q!} = \frac{(p-q)!}{(p-r)!}$$

When we equate the numerators and denominators we get:

$$p - q = r$$
 and $p - r = q$

Both of which can be rearranged to give the solution p = q + r

 $\frac{n!}{r!(n-r)!} = \frac{(n+1)!}{(r-1)!((n+1)-(r-1))!}$ $\frac{n!}{r!(n-r)!} = \frac{(n+1)!}{(r-1)!(n-r+2)!}$ $\frac{n!}{r!(n-r)!} = \frac{(n+1)n!}{(r-1)!(n-r+2)(n-r+1)(n-r)!}$ $\frac{1}{r!} = \frac{n+1}{(r-1)!(n-r+2)(n-r+1)}$ $\frac{(r-1)!}{r(r-1)!} = \frac{n+1}{(n-r+2)(n-r+1)}$ $\frac{1}{r} = \frac{n+1}{(n-r+2)(n-r+1)}$ $\frac{1}{r} = \frac{n+1}{(n-r+2)(n-r+1)}$ (n-r+2)(n-r+1) = r(n+1) $n^2 - rn + n - rn + r^2 - r + 2n - 2r + 2 = rn + r$ $n^2 - 3rn + 3n + r^2 - 4r + 2 = 0$ $n^2 + (3-3r)n + (r^2 - 4r + 2) = 0$ $n = \frac{3r - 3 \pm \sqrt{(3-3r)^2 - 4(r^2 - 4r + 2)}}{2}$ $n = \frac{3r - 3 \pm \sqrt{5r^2 - 2r + 1}}{2}$

Now we try different values for r to see which gives an integer value for n.

$$r = 1; n = 1$$

$$r = 2; n = \frac{3 \pm \sqrt{17}}{2}$$

$$r = 3; n = \frac{6 \pm \sqrt{40}}{2}$$

$$r = 4; n = \frac{9 \pm \sqrt{73}}{2}$$

$$r = 5; n = \frac{12 \pm \sqrt{112}}{2}$$

$$r = 6; n = \frac{15 \pm \sqrt{169}}{2} = \frac{15 \pm 13}{2} = 1, 14$$

11.
$$k \frac{n!}{k!(n-k)!} = n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}$$

Note the following:

$$n \times (n-1)! = n!$$

$$k! = k \times (k-1)!$$

Which means we can simplify the equation as follows:

$$\begin{split} k \frac{n!}{k(k-1)!(n-k)!} &= \frac{n!}{(k-1)!(n-k)!} \\ k \frac{n!}{k(k-1)!(n-k)!} &= \frac{n!}{(k-1)!(n-k)!} \\ \frac{n!}{(k-1)!(n-k)!} &= \frac{n!}{(k-1)!(n-k)!} \end{split}$$

12. Firstly, note that from Pascal's Triangle, the sum of the numbers in the n^{th} row is 2^n .

This means that $2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$

This means the 2^{n+1} term can be written as $\binom{n+1}{0} + \binom{n+1}{1} + \binom{n+1}{2} + \cdots + \binom{n+1}{n} + \binom{n+1}{n+1}$

Since
$$\binom{n+1}{0} = 1$$
, we can write $2^{n+1} - 1 = \binom{n+1}{1} + \binom{n+1}{2} + \cdots + \binom{n+1}{n} + \binom{n+1}{n+1}$

The left-hand side of the equation refers to the n^{th} row of Pascal's Triangle whereas the right-hand side refers to the $(n+1)^{th}$ row. We can now use the proof from the previous question to rewrite the RHS in terms of the n^{th} row.

We know that $k\binom{n}{k} = n\binom{n-1}{k-1}$

This can be rearranged to $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, and since we want to link rows n and n+1 we rewrite it as $\binom{n+1}{k} = \frac{n+1}{k} \binom{n}{k-1}$

Now, each term in the expansion of $2^{n+1} - 1$ can be rewritten in terms of row n:

$$\frac{n+1}{1}\binom{n}{0} + \frac{n+1}{2}\binom{n}{1} + \frac{n+1}{3}\binom{n}{2} + \dots + \frac{n+1}{n}\binom{n}{n-1} + \frac{n+1}{n+1}\binom{n}{n}$$

Returning to the original RHS, $\frac{2^{n+1}-1}{n+1}$, we can divide out the n+1, giving us $\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n}\binom{n}{n-1}+\frac{1}{n+1}\binom{n}{n}=LHS$