13: GOODNESS-OF-FIT TESTS

Larsen & Marx 10 Prof Amanda Luby

Up until now, we've learned how to *estimate* parameters and how to draw *inferences* about possible parameter values given a set of data. In all of these scenarios, we've assumed that the form of p_x or f_x is known. In many scenarios, we're instead interested in making inferences about the form of p_x or f_x instead of the value of the parameters.

In general, statistical procedures that seek to determine whether a set of data could reasonably have originated from some probability distribution (or family of probability distributions) is called a **goodness-of-fit** test.

1 The multinomial distribution

Multinomial Distribution

Let X_i denote the number of times that the outcome r_i occurs, for i=1,...,t in a series of n independent trials where $p_i=P(r_i)$. Then the vector $(X_1,X_2,...,X_t)$ has a **multinomial** distribution and

$$p_{X_1,...,X_t}(k_1,...,k_t) = \frac{n!}{k_1!k_2!...k_t!} p_1^{k_1} p_2^{k_2}....p_t^{k_t}$$

Example: Five observations are drawn at random from a continuous Uniform(0,5) distribution. What is the probability that one observation lies in the interval [0,1), none in the interval [1,2), three in the interval [2,3), one in the interval [3,4), and none in the interval [4,5)?

2 Goodness of Fit Test: All parameters known

The simplest goodness of fit test arises when we're able to *completely* specify the model that we believe our data came from. For example, whether our observed y_i 's came from a Exp(6.3) distribution, or a N(2.2,5.4) distribution.

Pearson's χ^2 test statistic

Let $r_1,...,r_t$ be the set of outcomes associated with n independent trials. Let X_i be the number of times r_i occurs. Then,

$$D = \sum_{i=1}^t \frac{(X_i - np_i)^2}{np_i}$$

Proof(t=2):

Example: From the uniform example earlier, test $H_0: p_1=1/5, p_2=1/5, p_3=1/5, p_4=1/5, p_5=1/5$ against $H_1:$ at least one different.

3 Goodness of fit tests: parameters unknown

The above test statistic assumes that we know p_i for each class i. Since p_i does not have a hat on it, it's the true population parameter for a data point falling into class i. It's rare that we would know θ for a pdf $f_y(\theta)$, but not be sure about the form of f. A more common scenario is to *estimate* all unknown parameters first, and then use a modified version of Pearson's D Statistic:

Approximate χ^2 test statistic

Suppose that a random sample of n observations is taken from $f_x(x;\theta)$ or $f_x(x;\theta)$, a probability distribution having s unknown parameters. Let $r_1,...,r_t$ be the set of outcomes associated with n independent trials. Let X_i be the number of times r_i occurs, and let \hat{p}_i be the *estimated* probability of r_i , replacing θ in $p_x(x;\theta)$ or $f_x(x;\theta)$ with $\hat{\theta}$. Then,

$$D_1 = \sum_{i=1}^t \frac{(X_i - n\hat{p}_i)^2}{n\hat{p}_i}$$

Example: The Poisson probability distribution often models rare events that occur over a period of time. Listed below are the daily numbers of death notices for women over the age of 80 that appeared in the London Times over a 3 year period. Are these fatalities occuring in a pattern consistent with the Poisson pdf?

expected	observed	n_deaths
126.53	162	0
273.18	267	1
294.88	271	2
212.21	185	3
114.53	111	4
49.45	61	5
17.79	27	6
5.49	8	7
1.48	3	8
0.36	1	9
0.08	0	10