Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Random matrices and covariance estimation

Kaveh S. Nobari

Lectures in High-Dimensional Statistics

Department of Mathematics and Statistics Lancaster University

Contents

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Motivation

The issue of covariance estimation is intertwined with random matrix theory, since sample covariance is a particular type of random matrix. These slides follow the structure of chapter 6 of Wainwright (2019) to shed light on random matrices in a non-asymptotic setting, with the aim of obtaining explicit deviation inequalities that hold for all sample sizes and matrix dimensions.

In the classical framework of covariance matrix estimation the sample size n tends to infinity while the matrix dimension d is fixed; in this setting the behaviour of sample covariance matrix is characterized by the usual limit theory. In contrast, in high-dimensional settings the data dimension is either comparable to the sample size $(d \times n)$ or possibly much larger than the sample size $d \gg n$.

Preliminaries
Wishart matrices and their behaviour
covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Motivation

We begin with the simplest case, namely ensembles of Gaussian random matrices, and we then discuss more general sub-Gaussian ensembles, before moving to milder tail conditions.

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

First, let us consider rectangular matrices, for instance matrix $A \in \mathbb{R}^{n \times m}$ with $n \geq m$, the ordered singular values are written as follows

$$\sigma_{\mathsf{max}}(A) = \sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_m(A) = \sigma_{\mathsf{min}}(A) \ge 0$$

The maximum and minimum singular values are obtained by maximizing the "blow-up factor"

$$\sigma_{\max}(A) = \max_{\forall x} \frac{\|Ax\|_2}{\|x\|_2}, \quad \sigma_{\min}(A) = \min_{\forall x} \frac{\|Ax\|_2}{\|x\|_2}$$

which is obtained when x is the largest and smallest singular vectors respectively - i.e.

$$\sigma_{\max}(A) = \max_{v \in S^{m-1}} \frac{\|Av\|_2}{\|v\|_2}, \quad \sigma_{\min}(A) = \min_{v \in S^{m-1}} \frac{\|Av\|_2}{\|v\|_2}$$

noting that $\|v\|_2=1$, since $S^{d-1}:=\{v\in\mathbb{R}^d\mid \|v\|_2=1\}$ is the Euclidean unit sphere in \mathbb{R}^d . We may denote

$$|||A|||_2 = \sigma_{\mathsf{max}}(A)$$

However, covariance matrices are square symmetric matrices, thus we must also focus on symmetric matrices in \mathbb{R}^d , denoted $S^{d\times d}:=\{Q\in\mathbb{R}^{d\times d}\mid Q=Q'\}$, as well as subset of semi-definite matrices given by

$$S_+^{d\times d}:=\{Q\in S^{d\times d}\mid Q\geq 0\}.$$

Any matrix $Q \in S^{d \times d}$ is diagonalizable via unitary transformation, and let us denote the vector of eigenvalues of Q by $\gamma(Q) \in \mathbb{R}^d$ ordered as

$$\gamma_{\sf max}(Q) = \gamma_1(Q) \geq \gamma_2(Q) \geq \cdots \geq \gamma_d(Q) = \gamma_{\sf min}(Q)$$

Note the matrix Q is semi-positive definite, which may be expressed as $Q \ge 0$, iff $\gamma_{\min}(Q) \ge 0$.

The Rayleigh-Ritz variational characterization of the minimum and maximum eigenvalues

$$\gamma_{\mathsf{max}}(Q) = \max_{v \in S^{d-1}} v' Q v \quad \mathsf{and} \quad \gamma_{\mathsf{min}}(Q) = \min_{v \in S^{d-1}} v' Q v$$

For symmetric matrix Q, the l_2 norm can be expressed as

$$\left\|\left|Q\right|\right\|_2 = \max\{\gamma_{\mathsf{max}}(Q), |\gamma_{\mathsf{min}}(Q)|\} := \max_{v \in S^{d-1}} \lvert v'Qv \rvert$$

Finally, suppose we have a rectangular matrix $A \in \mathbb{R}^{n \times m}$, with $n \geq m$. We know that any rectangular matrix can be expressed using singular value decomposition (SVD hereafter), as follows

$$A = U\Sigma V'$$

wher U is an $n \times n$ unitary matrix, Σ is an $n \times m$ rectangular diagonal matrix with non-negative real numbers on the diagonal up and V is an $n \times n$ unitary matrix. Using SVD, we can express A'A where

$$A'A = V\Sigma'U'U\Sigma V'$$

and since U is an orthogonal matrix, we know that U'U = I where I is the identity matrix.

$$A'A = V(\Sigma'\Sigma)V'$$

Therefore, as the diagonal matrix Σ contains the eigenvalues of matrix A, hence, $\Sigma'\Sigma$ contains the eigenvalues of A'A and it can be thus concluded

$$\gamma_i(A'A) = (\sigma_i(A))^2, \quad j = 1, \dots, m$$

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Let $\{x_1, \dots, x_n\}$ be a collection of n i.i.d samples from a distribution in \mathbb{R}^d with zero mean and the covariance matrix Σ . A standard estimator of sample covariance matrix is

$$\hat{\Sigma} := \frac{1}{n} \sum_{i=1}^{n} x_i x_i'.$$

Since, each x_i for $i = 1, \dots, n$ has zero mean, it is guaranteed that

$$\mathbb{E}[x_ix_i']=\Sigma$$

and the random matrix $\hat{\Sigma}$ is an unbiased estimator of the population covariance Σ . Consequently the error matrix $\hat{\Sigma} - \Sigma$ has mean zero, and goal is to obtain bounds on the error measures in l_2 -norm. We are essentially seeking a band of the form

$$\|\hat{\Sigma} - \Sigma\| \le \varepsilon,$$

where as before.

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Matrix Chernoff approach and independent decomposition Upper tail bounds for random matrices Consequences for covariance matrices

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Consequences for covariance matrices

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

References

Wainwright, M. J. (2019). *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press.