End-to-End Machine Learning with ML.NET and Azure

CodeCampNYC 2018
Luis Quintanilla

Marquee Sponsor

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Artificial Intelligence Consultant

Iqdev@outlook.com

http://luisquintanilla.me

@ljquintanilla

https://github.com/lqdev

Code & Slides

http://bit.ly/codecampnyc2018

Agenda

- 01 What is Machine Learning?
- O2 From Data to Machine Learning
- 03 Building a Model
- 04 Deploying a Model

What is Machine Learning?

Al vs ML

Machine Learning Tasks

Supervised Learning

Unsupervised Learning

Regression

What is the price of a home in NYC?

Classification

Is this a dog or cat?

Clustering

Customer segments in a database

Classification Example

Training Data

Species	Is Independent	Class
Canine	False	Dog
Feline	True	Cat
Feline	True	Cat
Canine	False	Dog
Canine	True	Dog

Features (input)

Label (output)

New Data

Species	Is Independent
Canine	False

Prediction

Class
Dog

From Data to Machine Learning

The Continuous Machine Learning Process

What is a model?

Building a Machine Learning Model

Machine Learning Tools

@liquintanilla

TensorFlow

Automated vs. Custom

Automated

Custom

.NET Tools

Opensource Mathematics for .NET

@ljquintanilla

ML.NET

Framework for Machine Learning

.NET Standard

Proven & Extensible

Cross Platform

ML.NET - Framework

Transformations

- Missing Values
- FeatureSelection
- Normalization

Learners

- SVM
- K-Means
- Boosted Trees

Misc

- Data Loaders
- Evaluators

Extensions

- TensorFlow
- CNTK
- ONNX
- Accord.NET

A few things you can do with ML.NET ...

Sentiment Analysis

Forecasting

Issue Classification

Predictive maintenance

Image classification

Recommendations

Object detection

Customer segmentation

And more! Samples @ https://github.com/dotnet/machinelearning-samples

Iris Classification Model

Demo: Training a Model

Consuming a Machine Learning Model

Model Consumption Methods

Deploying to the Web

Virtual Machines

Containers

Serverless

Demo: Deploying a Model to Azure Container Instances

Demo: Deploying a Model to Azure Functions

Takeaways

- ML.NET is a proven, open-source, cross-platform machine learning framework for building custom models in the .NET ecosystem.
- ML.NET is still in its early stages but is quickly maturing with strong support from open source community and Microsoft.
- Model persistence provides great flexibility in model deployment phase.
- Azure (Container Instances and Functions) reduces friction and management overhead associated with deployment of ML.NET models to the web.

Questions?

Resources

- https://docs.microsoft.com/en-us/azure/container-instances/
- https://docs.microsoft.com/en-us/azure/azure-functions/functions-runlocal
- https://blogs.msdn.microsoft.com/dotnet/2018/10/08/announcing-mlnet-0-6-machine-learning-net/
- https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/glossary
- https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/
- http://luisquintanilla.me/2018/08/21/serverless-machine-learning-mlnet-azure-functions/
- http://luisquintanilla.me/2018/05/11/deploy-netml-docker-aci/