

Presentation

Medical Imaging

Oliver Díaz, <u>oliver.diaz@ub.edu</u> 29/09/2025

Medical Imaging could be fun

Objectives of the module

- Provide the foundations of the most commonly used medical imaging techniques.
- Learn basic processing methods and tools used to improve image quality.
- Basis for more advanced image processing techniques (Q2, Q3).
- Learn the basics of <u>Jupyter Notebook</u> and <u>Google Colab</u> environments.

Faculty

- Oliver Díaz (<u>oliver.diaz@ub.edu</u>) Block 1
- Roser Sala (<u>roser.sala@ub.edu</u>) Block 2
- Simone Balocco (<u>simone.balocco@ub.edu</u>) Block 3

Students

Syllabus Theory (Mon)

Block 1 (Oliver)

- Principles of medical imaging
- X-ray imaging (2D and 3D)

Block 2 (Roser)

- Magnetic resonance imaging
- Nuclear imaging

Block 3 (Simone)

- Ultrasound imaging
- Intravascular imaging
- Histological imaging
- Other medical imaging technologies

Labs (Wed)

- P0. Introduction to Jupiter Notebooks. Image manipulation.
- P1. CT image visualisation and reconstruction + noise/denoise.
- P2. Automated segmentation.
- P3. Functional brain connectivity.
- P4. Ultrasound denoise

Methodology

Theory

- Mondays (1.5 hrs) from 14:00-15:30 (CET)
- Online via TEAMS
- Synchronous (online) sessions with members of the faculty
- Cover the material via PPT presentations

Labs

- Wednesdays (1 hr) from 14:00-15:00 (CET)
- Online via TEAMS
- Synchronous (online) sessions with members of the faculty
- Description of the lab session and support

All sessions will be registered.

Evaluation

Theory (T)

- Multiple-choice tests at the end of each block (x3)
- Same weight for each tests

Labs/Practica (P)

- Delivery of each practicum (x4)
- Same weight for each practicum

Oral Presentation (OP)

Presentation of scientific publication (x1)

Final Mark = 0.3 T + 0.5 P + 0.2 OP

A student is considered passed if his final grade is greater than or equal to 5.0. Otherwise, the student will have to do additional activities defined by the professors of the module with a penalty on the final grade.

9

Planning

Week			Mon	Tues	Wed	Thur	Fri	Theory (Mon)	Lab (Wed)
1		29 Sep - 5 Oct (Week 1)	T0 . Presentation		P0 . Introduction to Jupiter Notebook + Pandas			Oliver	Simone
2	Block 1	6 Oct - 12 Oct (Week 2)	T1. Principles of medical imaging		P0. Image manipulation			Oliver	Simone
3		13 Oct - 19 Oct (Week 3)	T2. 2D x-ray imaging		P1. CT Image reconstruction +			Oliver	Oliver
4		20 Oct - 26 Oct (Week 4)	T3. 3D x-ray imaging		P1			Oliver	Oliver
5		27 Oct - 2 Nov (Week 5)	T4. Intro oral presentations + TEST 1		P1			Oliver	Oliver
6		3 Nov - 9 Nov (Week 6)	T5. MRI: Basis and acquisition	Submission P1	P2 . Automated segmentation			Roser	Roser
7		10 Nov - 16 Nov (Week 7)	T6 .Processing of diffusion MRI		P2			Roser	Roser
8		17 Nov - 23 Nov (Week 8)	T7.Functional MRI	Submission P2	P3. Functional brain connectivity			Roser	Roser
9		24 Nov - 30 Nov (Week 9)	T8. Nuclear imaging: PET & SPECT		P3			Roser	Roser
10		1 Dec - 7 Dec (Weel 10)	T9 . Nuclear Imaging: PET & SPECT		TEST 2 + P3			Roser	Roser
11		8 Dec - 14 Dec (Week 11)	Bank Holiday	Submission P3	P4. Image processing in ultrasound				Simone
12		15 Dec - 21 Dec (Week 12)	T10. Ultrasound images, Doppler		P4			Simone	Simone
		22 Dec - 28 Dec			Merry			-	-
		29 Dec - 4 Jan 5 Jan - 11 Jan			ristmas Students' oral			-	-
13		(Week 13)		Bank Holiday	presentations			-	Simone/Oliver
14		12 Jan - 18 Jan (Week 14)	students' oral presentations		students' oral presentations			Simone	Simone/Oliver
15		19 Jan - 25 Jan (Week 15)	T11. Other medical imaging technologies + TEST 3		P4	Submissio n P4		Simone	Simone

Bibliography

- González, Rafael C., Richard E. Woods, and Richard E., Digital Image Processing, 4th Edition, Pearson
- Bankman, I. N., Handbook of Medical Imaging Processing and Analysis, , Academic Press line
- Other material (books/scientific publications) provided in the slides
 - <u>Digital Library of the URV</u>
 - Google Scholar
 - Unpaywall

Any question?

Presentation

Medical Imaging

Oliver Díaz, <u>oliver.diaz@ub.edu</u> 29/09/2025