* 	Density Functional Theory Revisited
	8/6/03
<u> </u>	Hohenberg-Kohn Theorem
	[P. Hohenberg & W. Kohn, Phys. Rev. 136, B864 ('64)]
	Consider a system of N electrons in an external potential
	V(Ir), described by the Hamiltonian
	$\hat{H} = \hat{T} + \hat{\nabla} + \hat{\Omega} \tag{1}$
	where (in the atomic unit)
	$\hat{T} = \frac{1}{2} \int \nabla \hat{\psi}^{\dagger}(\mathbf{r}) \cdot \nabla \hat{\psi}(\mathbf{r}) d\mathbf{r} \tag{2}$
	$\hat{V} = \int v(ir) \hat{\mathcal{Y}}^{\dagger}(ir) \hat{\mathcal{Y}}(ir) dir $ (3)
0	and $\{\hat{\psi}(ir), \hat{\psi}^{\dagger}(ir)\} = S(ir-ir')$. Let $ \Psi\rangle$ be the ground
	State of this Hamiltonian and the density
	$P(ir) = \langle \overline{\Psi} \hat{P}(ir) \overline{\Psi} \rangle = \langle \overline{\Psi} \hat{\Psi}^{\dagger}(ir) \hat{\Psi}(ir) \overline{\Psi} \rangle \qquad (5)$
	(Hohenberg-Kohn Theorem) The ground-state density, P(Ir),
	and the external potential, {V(Ir)+c} (c is a constant),
	are bijective functional (or one-to-one correspondence).
	\odot $v(ir) \mapsto \overline{1}\rangle \mapsto P(ir)$ is obviously a unique functional.
	We now prove that $P(1r) \mapsto \{V(1r) + C\}$ is a unique functional
	by proof-by-contradiction.
	Assume that $P(ir) \mapsto \{V(ir) + c\}$ is not unique, thus $\exists V(ir) \neq$
	V(Ir)+C, for which P(Ir) is the ground state. Let
	$E = \langle \underline{\Psi} \hat{T} + \hat{V} + \hat{U} \underline{\Psi} \rangle = \langle \underline{\Psi} \hat{\Pi} \underline{\Psi} \rangle \tag{6}$
	is the ground-state energy in the presence of V(1r) and

E'= < \(\vec{\psi}\) + \(\Omega\) + \(\Omega\) \(\omega\) = < \(\vec{\psi}\) \(\omega\)	(Z)
is that with V(Ir). From the variational principl	e
on the ground state,	
$E' = \langle \underline{\Psi} \hat{1} \hat{T} + \hat{\nabla}' + \hat{\Omega} \hat{1} \underline{\Psi}' \rangle$	
< \\(\P \) \(\hat{\partial} + \hat{\partial} + \hat{\partial} \) \(\partial \)	~')
$= \langle \underline{\psi} \hat{\mathbf{T}} + \hat{\mathbf{V}} + \hat{\mathbf{U}} \underline{\psi} \rangle + \langle \underline{\psi} \hat{\mathbf{V}} - \hat{\mathbf{V}} \underline{\psi} \rangle$	
= E + S.[V(in) - V(ir)] P(ir) dir	(8)
By inverting the role of v(1r) and v(1r),	
$E \leftarrow E' + \int [V(ir) - V'(ir)] P(ir)$ $P(ir) (\textcircled{by assumption})$	(9)
1- (11) () by 0.55011-p.0010)	
Adding Egs. (8) and (9),	
E'+E < E+E'	
which is a contradiction.	
(Corollary 1)	
Let	
$F = \langle \underline{\psi} \hat{\Upsilon} + \hat{U} \underline{\psi} \rangle$	(10)
Then, F[P(Ir)] is a universal functional, independent	
of v(Ir) and N.	

(16)

-	Kohn-Sham Equation	
	[W. Kohn & L.J. Sham, Phys. Rev. 140, A1133 (765)]	
	(Def - Exchange-Correlation Functional)	
	Let Exc[P] be the exchange-correlation functional defin	ed
	through	
	$F[\rho] = \frac{4}{2} \iint \frac{\rho(ir) \rho(ir)}{1ir - ir'i} + T_S[\rho] + E_{xx}[\rho] $ (14)
	where the first term is the mean-field (Hartree) estimate of (III) and TS[P] is the kinetic energy (III).	>
	of the ground state of non-interacting electrons with density $P(Ir)$.	
	(Kohn-Sham Variational Theorem)	
	$E_{v}[p] = \int v(mp) dm + \frac{1}{2} \iint \frac{\rho(ir) \rho(ir)}{ ir-ir' } dirdir' + E_{xc}[p] + T_{s}[p]$	(15)
	takes its minimum at the conect ground-state density P[V] in the variational space of N electrons	

Eq. (15) is identical to Eq. (11). //

 $NEPJ = \int P(ir) dir = N$

*		
	(Euler Equation)	
	The constrained minimization is achieved by the variation of	
	$K[P] = E_{V}[P] - \mu(N[P] - N)$	(17)
	with respect to both P and M.	
	$\begin{cases} 8Kv & 8Ev \\ 8P(ir) & 8F(ir) \end{cases} - \mu = 0$	(18)
	$\frac{8kv}{8\mu} = -NEPJ + N = 0$	(19)
	More specifically, the Euler equation (18) is	
	W(Ir) + Sp(Ir) + SExc + STs SP(Ir) + SP(Ir) = M	(20)
		,
	(Kohn-Sham Equation)	
	The Euler equation (20) is equivalent to that of	
	non-interacting electrons, for which	
	$E_{v}[p] = \int v(r) p(r) dr + T_{s}[p]$	(21)
	i.e.,	
	$\frac{SKv}{SP(ir)} = v(ir) + \frac{STs}{SP(ir)} - \mu = 0$	(22)
	provided v(ir) is replaced by	
	Veff (ir) = W(ir) + Sexc Sp(ir)	(23)
11		

(Local Density Approximation)

$$= \sum_{x \in [P]} \frac{1}{2} \int dir C_{xx}(P(ir)) P(ir)$$
 (29)

$$\frac{SE_{xc}}{d\rho} = \int d\mathbf{r} \frac{d}{d\rho} (G_{xc}\rho) \Big|_{\rho=\rho(\mathbf{r}r)} = \int d\mathbf{r} \mu_{xc}(\rho(\mathbf{r}r)) SP(\mathbf{r}r)$$
(30)

$$\vdots E = \sum_{i} \Theta(\mu - \epsilon_{i}) \in \frac{1}{2} \iint \frac{\rho(n) \rho(n')}{1n - n'} dn' dn' + \int \left[\epsilon_{xc} (\rho(n)) - \mu_{xc} (\rho(n)) \right] \rho(n') dn'$$

(31)

where

$$\frac{d}{dx_{c}(p)} = \frac{d}{dp} \left[e_{xc}(p) p \right] = \frac{de_{xc}}{dp} p + e_{xc}$$
 (32)

Substituting Eq. (32) in (31),

$$E = \sum_{i} \Theta(\mu - C_{i}) \in \frac{1}{2} \iint \frac{\rho(ir)\rho(ir)}{|ir - ir|} dirdir - \int \frac{d \in \mathbb{R}}{d\rho} \frac{\rho^{2}(ir)}{\rho(ir)} dir$$
(33)