# KLASIFIKASI MENGGUNAKAN NAÏVE BAYES

Margaretha Sulistyoningsih, Ph.D

Diadaptasi dari : Jiawei Han, UIUC CS412, Fall 2017 dan Huan Sun, CSE 5243 Intro to Data Mining, Classifiaction (Basic Conepts & Advanced Methods0, Ohio State University, undated.

### **BAYESIAN CLASSIFICATION: WHY?**

- Masih ingat klasifikasi jenis ikan?
- Ikan yang warnanya hitam, tidak bersisik, berkumis adalah lele. Pasti.
- Yang memiliki ciri : bersisik, warna merah, lebar, tidak berkumis adalah ikan nila. Pasti, bukan kadang nila kadang lele.





#### **BAYESIAN CLASSIFICATION: WHY?**

- Sekarang bagaimana dengan klasifikasi yang perlu menggunakan probabilitas karena jawabannya tidak pasti? Misalnya:
- 1. Seorang mahasiswa bisa saja mau membeli komputer yang anda jual. Sementara mahasiswa lainnya belum tentu mau membeli komputer anda.
- 2. Seorang wanita berusia 30an bisa saja menyukai busana casual, tetapi seorang wanita yang lain lagi menyukai busana resmi atau ada yang menyukai kebaya.

#### **BAYES' THEOREM**

Diberikan data testing X, maka probabilitas (posteriori probability) dari sebuah hipotesa H, P(H|X) adalah:

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

Secara informal dapat ditulis:

posteriori = likelihood x prior/evidence

#### **BAYES' THEOREM: BASICS**

- X adalah data ("evidence") yang klasifikasinya tidak diketahui.
- H adalah hipotesa bahwa X masuk klasifikasi C.
- Klasifikasi adalah menentukan P(H|X) atau yang disebut dengan posteriori probability yaitu probabilitas dari sebuah hipotesa diberikan data X.
- P(H) (prior probability), adalah probabilitas awal
- Contoh: X akan membeli komputer, terlepas dari umur, income, dst...
- P(X): Probabilitas dari data yang akan dicari klasifikasinya.
- P(X|H) (likelihood), the probabilitas data X jika diberikan given that the hipotesa H
- Contoh., Diberikan Hipotesa "Yes", X akan membeli komputer, Probabilitas bahwa X berusia 31..40, medium income, dst...

WAINE BAYES

## **NAÏVE BAYES**

Rumus Bayes adalah:

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Karena P(X) konstan untuk semua kasus, maka yang perlu dimaksimalkan adalah:

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$
 Inilah yang menjadi rumus Naïve Bayes.

Mari belajar sambil mengerjakan contoh soal di slide selanjutnya! ©

#### **CONTOH SOAL:**

#### NAÏVE BAYES CLASSIFIER: TRAINING DATASET [1]

Ada 2 Klasifikasi:

C1:buys\_computer = 'yes'

C2:buys\_computer = 'no'

#### Soal:

Jika ada seseorang bernama Mr.X:

Umur = age <=30,

Income = medium,

Student = yes

Credit\_rating = Fair,

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

Tentukan apakah yang bersangkutan akan membeli komputer atau tidak!

#### CARA PENGERJAAN DAN RUMUS

Rumus Naïve Bayes Classifier:

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

- Yang kita akan hitung adalah P(Ci | X), yaitu Probabilitas klasifikasi Ci, (buys\_computer="yes" dan buys\_computer="no") jika diketahui ciri-ciri X seperti pada soal, yaitu ciri-ciri X : age<=30, income =medium, dst.</p>
- P(Ci) adalah Probabilitas Klasifikasi dalam hal ini: Probabilitas dari buys\_computer=
   "yes" dan probabilitas buys computer = "no".
- P(X|Ci), yaitu Probabilitas Ciri X jika diketahui Klasifikasi Ci.
   P(X|Ci) dapat dihitung sebagai perkalian dari probabilitas dari setiap ciri X yang klasifikasinya Ci. seperti yang tertera pada rumus di bawah:

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

Inilah yang mengakibatkan metode ini disebut Naïve. Karena dalam perkalian, kita menganggap bahwa tiap ciri terlepas (independen/bebas/tidak terikat) satu sama lain. Maka, ketika kita menghitung probabilitas suatu ciri terhadap klasifikasi Ci, kita tidak memperhatikan ciri lainnya.

# NAÏVE BAYES CLASSIFIER: JAWABAN

Rumus Naïve Bayes Classifier:

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

 $P(C_i)$ : Probabilitas dari membeli/tidak membeli komputer =  $P(buys\_computer = "yes") = 9/14 = 0.643$   $P(buys\_computer = "no") = 5/14 = 0.357$ 

Hitung  $P(X \mid C_i)$  untuk setiap kelas:

P(age = "<= 30" | buys\_computer = "no") = 3/5 = 0.6, mengikuti cara diatas.

Penyebutnya 5 dari jumlah "no" pada klasifikasi (buys\_computer = "no" ada 5).

```
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

## LANJUTAN JAWABAN SOAL NAÏVE BAYES CLASSIFIER

Karena probabilitas **"buys\_computer = yes"** lebih besar yaitu 0.028, dibanding probabilitas, P(X|buys\_computer = "no") yaitu 0.007, maka, Mr.X masuk klasifikasi akan membeli komputer.

# NAÏVE BAYES CLASSIFIER:

- Keuntungan
  - Mudah diimplementasikan.
  - Akurasi bagus dalam banyak kasus.
- Kerugian:
  - Asumsi bahwa: Masing-masing ciri tidak saling tergantung (independent) satu sama lain, sehingga tidak cocok untuk kasus kasus tertentu yang membutuhkan kebergantungan antar ciri dan kelas.
    - Contoh: hospitals: patients: Profile: age, family history, etc.
    - Gejala demam, batuk, dll, klasifikasi penyakit: kanker paru-paru, diabetes, dll.
       Kebergantungan seperti ini tidak dapat dimodelkan dengan Naïve Bayes. Metode yang cocok adalah: Bayesian Belief Network.

### **LATIHAN MANDIRI:**

Soal akan diberikan di kelas, dikumpulkan di SCE. Untuk nilai tugas semua mahasiswa.

#### SOAL:

Data testing: Mr.X dengan ciri-ciri:

Age: >40

Income: High

Student: No

Credit\_rating: Excellent

Tentukan apakah Mr.X akan membeli komputer atau tidak!

## **REFERENCES**

- Jiawei Han, UIUC CS412, Fall 2017
- 2. Huan Sun, CSE 5243 Intro to Data Mining, Classifiaction (Basic Conepts & Advanced Methods0, Ohio State University, undated.