Polaris3d Kepler ROS Guide

Polaris3d Kepler를 ROS 환경에서 사용하는 유저 가이드 문서입니다. Kepler 데이터로 ROS 기반 어플리케이션을 개 발할 때 사용할 수 있는 topic 목록과 설명 등을 제공합니다.

개요

ROS Network Configuration

Kepler IP(Default): 192.168.1.20

Kepler IP(Default): 29721

ROS topic 사용 예제

본 문서는 ROS 사용에 대한 이해가 있다는 전제 하에 작성되었습니다. ROS 사용이 익숙하지 않으시다면, 아래 가이드 문서를 참고해주세요.

- ROS Guide(Korean)

[http://wiki.ros.org/ko/ROS/Tutorials]

- ROS Guide(English)

[http://wiki.ros.org/ROS/Tutorials]

ROS Publish Topic 분류

Kepler가 게시하는 topic들의 분류는 다음과 같습니다.

Туре	Descriptions
Sensor	Kepler가 제공하는 Sensor 데이터들입니다.
Estimation	Kepler가 사용하는 센서들로부터 추정한 데이터들입니다.
Actuator	Kepler에서 동작하는 Actuator 데이터들입니다.
Envrionment	 Kepler 상태에 대한 부가 정보입니다.

ROS Subscriber Topic 분류

Kepler가 구독하는 topic들의 분류는 다음과 같습니다.

Туре	Descriptions
Control	로봇 수동 조작을 위해 구독하는 데이터들입니다.
Planning	주어진 좌표 간 로컬 경로를 생성하기 위해 구독하는 데이터들입니다.

ROS Topic 목록

Kepler가 게시 및 구독하는 topic들에 대한 정보입니다. rostopic list 명령어로 활성화된 topic 목록을 확인할 수 있습니다.

Торіс	Message type	Descriptions
/ouster/scan_cloud	sensor_msgs/PointCloud2	Ouster Lidar의 scan 데이터에서 point들 의 x,y,z 좌표를 게시합니다.
/realsense/depth_cloud	sensor_msgs/PointCloud2	RealSense Camera Depth Point들의 x,y,z 좌표를 게시합니다. 이 데이터는 480x270 해상도로 조절된 값입니다.
/imu	sensor_msgs/lmu	lmu 센서가 측정한 데이터를 게시합니다.
/sonar	sensor_msgs/Range	Sonar 센서가 측정한 거리(cm) 데이터를 게 시합니다.
/odom	nav_msgs/Odometry	Lidar, Imu, Encoder 로부터 추정한 odometry 데이터를 게시합니다.
/pose	geometry_msgs/PoseStamped	Lidar 데이터로부터 로봇의 현재 위치를 추 정해 게시합니다.
/map	sensor_msgs/PointCloud2	현재 사용자가 선택한 지도 데이터를 불러와 게시합니다.
/local_path	geometry_msgs/PoseArray	local planning의 결과 경로를 게시합니다.
/command_status	std_msgs/String	로봇이 받은 명령 상태 정보를 게시합니다.
/cmd_vel	geometry_msgs/Twist	로봇 모터로부터 얻은 현재 cmd_velocity 데이터를 발행합니다.
/marker/feedback/position	geometry_msgs/Point	Marker 인식 결과 얻은 위치 정보를 x,y,z 좌 표로 게시합니다.
/global_path	nav_msgs/Path	Local Planning을 수행하기 위한 전역 경로 좌표를 구독합니다.
/wheel/manual_ctrl	geometry_msgs/Twist	로봇 수동 조작 신호를 따르기 위해 cmd_velocity 데이터를 구독합니다.

Торіс	Message type	Descriptions
/lift/manual_ctrl	std_msgs/Float32	수동 Lift 조작 신호를 따르기 위한 거리(cm) 데이터를 구독합니다.
/linear_guide/manual_ctrl	std_msgs/Float32	수동 Linear Guide 조작 신호를 따르기 위한 거리(cm) 데이터를 구독합니다.
/suction/manual_ctrl	std_msgs/Float32	수동 Suction 조작 신호를 따르기 위한 흡입 강도 데이터를 구독합니다.

Sensor

Kepler가 사용 중인 Sensor 데이터들은 크게 Lidar, Realsense Camera, Sonar, Imu 등이 있습니다. 센서 종료는 Kepler 버전에 따라 달라질 수 있습니다.

Lidar (/ouster/scan_cloud)

Ouster Lidar에서 얻은 scan 데이터의 x,y,z 좌표 정보들을 sensor_msgs/PointCloud2 타입으로 게시합니다. Kepler 기준 좌표축으로 변환한 데이터입니다.

```
$ rostopic echo /ouster/scan_cloud
#print example
header:
  seq: 1616
  stamp:
    secs: 0
    nsecs: 0
  frame_id: "map"
height: 1
width: 2214
fields:
    name: "x"
    offset: 0
    datatype: 7
    count: 1
    name: "y"
    offset: 4
    datatype: 7
    count: 1
    name: "z"
    offset: 8
```

```
datatype: 7
count: 1
is_bigendian: False
point_step: 12
row_step: 26568
data: [16, 123, 129, ... 0, 342, 174]
is_dense: False
```

RealSense Camera (/realsense/depth_cloud)

Realsense Cameara에서 얻은 point cloud 데이터의 x,y,z 좌표 정보들을 sensor_msgs/PointCloud2 타입으로 게시합 니다. Kepler 기준 좌표축으로 변환한 데이터입니다.

Example

```
$ rostopic echo /realsense/depth_cloud
#print example
header:
  seq: 1616
  stamp:
    secs: 0
    nsecs: 0
  frame_id: "map"
height: 1
width: 5400
fields:
    name: "x"
    offset: 0
    datatype: 7
    count: 1
    name: "y"
    offset: 4
    datatype: 7
    count: 1
    name: "z"
    offset: 8
    datatype: 7
    count: 1
is_bigendian: False
point_step: 12
row_step: 26568
data: [56, 223, 13, ... 0, 0, 0]
is_dense: False
```

Imu (/imu)

Imu에서 얻은 데이터를 sensor_msgs/Imu 타입으로 게시합니다. Kepler 기준 좌표축으로 변환한 데이터입니다.

Example

```
$ rostopic echo /imu
#print example
header:
 seq: 4243
 stamp:
  secs: 527
   nsecs: 116716464
 frame_id: "map"
orientation:
 x: 0.0
 y: 0.0
 z: 0.0
 w: 0.0
orientation_covariance: [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
-1.0]
angular_velocity:
 x: -0.000956347677857
 y: -0.000509549863636
 z: -0.00109129492193
linear_acceleration:
 x: 0.00591037096456
 y: -0.231394946575
 z: 9.99276256561
0.0]
```

Sonar (/sonar)

Sonar에서 얻은 거리 데이터를 sensor_msgs/Range 타입으로 게시합니다. 단위는 cm입니다.

Example

```
blarblar...
```

Estimation

Kepler는 Sensor 데이터들로부터 추정한 유용한 데이터들을 제공합니다. 각 정보는 Odometry, Current Position 등입니다.

Odometry (/odom)

Kepler가 사용하는 각종 센서들로부터 추정한 로봇의 odometry 정보입니다. nav_msgs/Odometry 타입으로 게시합니다.

Example

```
$ rostopic echo /odom
#print example
header:
seq: 99
stamp:
 secs: 0
 nsecs: 0
frame_id: 'map'
child_frame_id: 'map'
pose:
pose:
 position:
  x: 0.0
  y: 0.0
  z: 0.0
 orientation:
  x: 0.0
  y: 0.0
  z: 0.0
  w: 0.0
twist:
twist:
 linear:
  x: 0.0
  y: 0.0
  z: 0.0
 angular:
  x: 0.0
  y: 0.0
  z: 0.0
```

Current Position (/pose)

전역 지도에서 Kepler가 추정한 로봇의 현재 위치 정보입니다. geometry_msgs/PoseStamped 타입으로 게시합니다.

Example

```
$ rostopic echo /pose
#print example
header:
  seq: 41
  stamp:
    secs: 0
    nsecs: 0
  frame_id: "map"
pose:
  position:
    x: 0.0
    y: 0.0
    z: 0.0
  orientation:
    x: -0.0121852047741
    y: -0.00152712513227
    z: -0.00302079459652
    w: 0.999920010567
```

map (/map)

사용자가 선택한 전역 지도 정보입니다. sensor_msgs/PointCloud2 타입으로 게시합니다.

```
name: "y"
    offset: 4
    datatype: 7
    count: 1
-
    name: "z"
    offset: 8
    datatype: 7
    count: 1
is_bigendian: False
point_step: 12
row_step: 26568
data: [456, 344, 229, ... 323, 222, 113]
is_dense: False
```

Local path (/local_path)

Kepler가 현재 지도를 바탕으로 path planning해 구한 local planning의 결과를 경로로 나타낸 정보입니다. geometry_msgs/PoseArray 타입으로 게시합니다.

```
$ rostopic echo /local_path
#print example
header:
 seq: 194
  stamp:
    secs: 0
    nsecs: 0
 frame_id: ''
poses:
    position:
     x: -0.0619981922209
      y: -0.211999684572
      z: 0.0
    orientation:
      x: -37.4119987488
      y: 5.63800048828
      z: -0.687827169895
      w: 0.72587454319
    position:
      x: -0.0619981922209
      y: -0.211999684572
      z: 0.0
    orientation:
      x: -37.4119987488
```

```
y: 5.63800048828
z: 0.930579006672
w: -0.366091132164
```

Actuator

Kepler Actuator들은 cmd_velocity, Marker 인식 feedback 정보들을 제공합니다.

Command Velocity (/cmd_vel)

로봇 모터로부터 얻은 선속도와 각속도 정보입니다. geometry_msgs/Twist 타입으로 게시합니다.

Example

```
$ rostopic echo /cmd_vel

#print example
linear:
    x: 0.300000011921
    y: -0.089333333075
    z: 0.0
angular:
    x: 0.0
y: 0.0
z: -0.0
```

Marker Feedback (/marker/feedback/position)

Marker 인식 결과 얻은 feedback 데이터들 중 marker position에 대한 정보입니다. geometry_msgs/Point 타입으로 게시합니다.

```
$ rostopic echo /marker/feedback/position

#print example
x: 0.2
y: 2.2
z: 0.0
```

Environment

Kepler의 명령 입력 상태 등을 제공합니다.

Command Status (/command_status)

각종 명령 입력 상태에 대한 정보를 게시합니다.

Example

data: "Status: AUTO_DRIVING"

Control

사용자가 수동 조작으로 로봇 및 각종 Acutuator를 제어할 수 있도록 관련 데이터를 구독합니다.

Manual Wheel Control (/wheel/manual_ctrl)

로봇 수동 조작을 위한 선속도, 각속도 값을 구독합니다. 메세지 타입은 geometry_msgs/Twist입니다.

Example

blarblar...

Manual Lift Control (/lift/manual_ctrl)

Lift 수동 조작을 위한 이동 거리 값을 구독합니다. 단위는 cm이며, 메세지 타입은 std_msgs/Float32입니다.

Example

blarblar...

Manual Linear Guide Control (/linear_guide/manual_ctrl)

Linear Guide 수동 조작을 위한 이동 거리 값을 구독합니다. 단위는 cm이며, 메세지 타입은 std msgs/Float32입니다.

Example

```
blarblar...
```

Manual Suction Control (/suction/manual_ctrl)

Suction 수동 조작을 위한 흡입 강도 값을 구독합니다. 메세지 타입은 std_msgs/Float32입니다.

Example

```
blarblar...
```

Planning

사용자가 수동 조작으로 로봇 및 각종 Acutuator를 제어할 수 있도록 관련 데이터를 구독합니다.

Global Path (/global_path)

로봇 전역 경로 데이터를 구독합니다. 구독한 전역 경로로부터 자율 주행 경로를 로컬 경로로 생성합니다. 데이터 타입은 nav_msgs/Path입니다.