Long Short-Term Memory Networks for Stock Forecasting

Christal O'Connell, Eliot Liucci, Eric Folsom, Nick Clausen

Montana State University - CSCI 550

December 2024

Purpose

- Stock forecasting is infamous as being very difficult
- ► Market variability can make stock behavior unpredictable
- Day traders use pattern recognition to determine where a stock is likely to go
- Is it possible to use deep learning to mimic this strategy?

Figure: Apple stock over the last year.

Long Short-Term Memory Networks

- Originally proposed in 1997 by Hochreiter [2]
- Special type of Recurrent Neural Network
- ▶ Designed to be able to deal with long-term dependencies within sequential data

Figure: Inside of a LSTM Memory Cell. Yellow boxes use a Sigmoid activation, grey boxes use a Tanh activation.

Long Short-Term Memory Networks

Name	Equation		
Forget Gate	$f_t = \sigma[W_f(y_{t-1}, x_t) + b_f]$		
Input Gate	$i_t = \sigma[W_i(y_{t-1}, x_t) + b_i]$		
New Candidate Value	$ ilde{\mathcal{C}}_t = tanh[W_c(y_{t-1}, x_t) + b_c]$		
Updated Cell State	$C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t$		
Output Gate	$o_t = \sigma[W_o(y_{t-1}, x_t) + b_o]$		
Output Value	$y_t = o_t \cdot tanh[C_t]$		

Table: A table of equations corresponding to each gate and node.

Long Short-Term Memory Networks

- Memory cells can be used in place of typical neurons within a neural network
- Number of memory cells and number of layers can be changed

Figure: A figure showing how the memory cells are used when building LSTM networks.

Determining Model Architecture

- ► Each model is a 3-layer LSTM built in tensorflow [1]
- ▶ Hyper-parameter were tuned using Bayesian Optimization [5]
 - More efficient than randomly searching
 - Similar efficiency to using Latin Square
- ▶ Models for all stocks were tuned to have 8-8-64 nodes
- Dropout rates different

	Stock	AAPL	AMZN	CAT	NVDA
1 st Layer	Nodes	8	8	8	8
	Dropout	0.01	0.1	0.15	0.15
2 nd Layer	Nodes	8	8	8	8
	Dropout	0.05	0.01	0.15	0.15
3 rd Layer	Nodes	64	8	64	8
	Dropout	0.15	0.05	0.15	0.15

Table: A table of the architectures determined via Bayesian Optimization for each stock.

Training Process

- LSTMs need a lot of sequential data for effective model convergence
- yfinance package in Python was used to read the past 10 years of daily closing prices in-line [4]
- ► Each time series was decomposed to remove any trends, resulting in a stationary time series
 - ► This allows for optimal LSTM performance when recognizing patterns

Figure: Loss against iterations trained for each stock.

Training Process

Figure: Loss against iterations trained for each stock.

- ► The last month of closing prices was withheld from training and testing set
- LSTMs were used to forecast 31 days out
- Forecasts were then compared to actual stock performance

Figure: Blind test of 31 day forecasts for each model.

Figure: Blind test of 31 day forecasts for each model.

- Blind forecasts from LSTM (red) were compared to other popular time series models
 - ► Holt-Winters Exponential Smoothing (yellow)
 - ► Autoregressive Integrated Moving Average (green)

Figure: Comparing LSTM forecasts to other methods

Figure: Comparing LSTM forecasts to other methods

- ➤ To get measures of uncertainty for LSTM forecasts, we repeated the following 100 times for each stock;
 - ▶ Bootstrapped the training data using a Moving Block Bootstrap [3]
 - ► Trained tuned model architecture for 8,000 iterations
 - Forecasted 14 trading days out
- ▶ 95% highest density intervals were obtained from all forecasts

Figure: Prediction intervals for each stock.

Figure: Prediction intervals for each stock.

References

- [1] M. Abadi and A. Agarwal. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.
- [2] S. Hochreiter and J. Schmidhuber. Long short-term memory. *Neural computation*, 9(8):1735–1780, 1997.
- [3] S. N. Lahiri. *Resampling methods for dependent data*. Springer Science & Business Media, 2013.
- [4] T. Peters. The Zen of Python. PEP 20, 2004.
- [5] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms. *Advances in neural information processing systems*, 25, 2012.