

Exercise 4

About the Exercise Session

 2 weeks for each exercise + Office hours (OH) for questions in between

Deadline always 23:59 CET on due date

Going from bounding boxes to per-pixel predictions

Going from bounding boxes to per-pixel predictions

What is shown here?

Instance, Semantic, or Panoptic Segmentation?

semantic segmentation

instance segmentation

panoptic segmentation

Example:

Instance segmentation

(only if we consider only "objects" / "things")

Part segmentation (typically one object)

Semantic segmentation

Panoptic segmentation

Exercise 4

- Object Segmentation (Semantic segmentation with binary class)
- Supervision available
- Pretrained powerful image embeddings (learned with self-supervision)
- Upsampling: Learn to take advantage of pixel-adaptive convolutional neural nets

Exercise 4: Object Segmentation

Image

With Annotations

Exercise 4

- Object Segmentation (Semantic segmentation with binary class)
- Supervision available
- Pretrained powerful image embeddings (learned with self-supervision)
- Upsampling: Learning about pixel-adaptive convolutional neural nets

Classical Supervised Method

W,H,3

Badrinarayanan et al. "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

Exercise 4

- Object Segmentation (Semantic segmentation with binary class)
- Supervision available
- Pretrained powerful image embeddings (learned with self-supervision)
- Upsampling: Learn to take advantage of pixel-adaptive convolutional neural nets

DINO - Self-Distillation with no Labels

- Vision Transformer trained in a self-supervised fashion
- Student-teacher approach to train the network
- Results in powerful image representations

DINO: Self Supervised Learning

Exercise 4: Add Supervision

17

Exercise 4: Using DINO Feats

We only have to learn a small linear Layer

Exercise 4

- Object Segmentation (Semantic segmentation with binary class)
- Supervision available
- Pretrained powerful image embeddings (learned with self-supervision)
- Upsampling: Learn to take advantage of pixel-adaptive convolutional neural nets

Exercise 4: PAC-Upsample

Low Resultion (16x16) after DINO net

Exercise 4: PAC-Upsample

21

Recap: CNNs

-5	3	2	- 5	3
4	3	2	1	-3
1	0	3	3	5
-2	0	1	4	4
5	6	7	9	-1

Output 3x3

Image **5x5**

Weight 3x3

	2	4	-2
:	3	1	0
	-1	0	0

Recap: CNNs

23

Recap: CNNs

-5	3	2	-5	3
4	3	2	1	-3
1	0	3	3	5
-2	C	1	4	4
5	6	7	9	-1

12	35	

Output 3x3

Image **5x5**

Weight 3x3

2	4	-2
3	1	0
-1	0	0

CV3DST

Pixel-Adaptive CNNs

Pixel-Adaptive CNNs

-5	3	2		3
4	3	2	1	-3
1	0	3	3	5
-2	0	1	4	4
5		7	9	-1

Output 3x3

Image **5x5**

Weight 3x3

2	4	-2
3	1	0
-1	0	0

2	1	-2
0	-1	1
1	0	0

Pixel-Adaptive Kernel

3x3

CV3DST

Calculating the (gaussian) Kernel

Kernel 3x3

Image patch 3x3x3

$$K(\boldsymbol{f_i}, \boldsymbol{f_j}) = \exp\left(-\frac{1}{2}(\boldsymbol{f_i} - \boldsymbol{f_j})^{\top}(\boldsymbol{f_i} - \boldsymbol{f_j})\right)$$

CV3DST

Calculating the (gaussian) Kernel

exp(-1)	exp(-3)	

Kernel 3x3

Image patch 3x3x3

-2

$$K(\boldsymbol{f}_i, \boldsymbol{f}_j)$$

$$K(\boldsymbol{f}_i, \boldsymbol{f}_j) = \exp\left(-\frac{1}{2}(\boldsymbol{f}_i - \boldsymbol{f}_j)^{\top}(\boldsymbol{f}_i - \boldsymbol{f}_j)\right)$$

Pytorch Unfold

-5	3	2	4	3	2	1	0	3
3	2	-5	3	2	1	0	3	3
2	-5	3	2	1	-3	3	3	5
4	3	2	1	0	3	-2	0	1

Image **5x5**

Weight 3x3

2	4	-2
3	1	0
-1	0	0

2	4	-2	3	1	0	-1	0	0

CV3DST

Pytorch Unfold

- unfolding allows to rewrite the convolution operation as a matrix vector multiplication
- reshaping afterward is necessary

30

Pytorch Unfold - weighting kernel

CV3DST

Links

- Test server: <u>https://cv3dst.cvai.cit.tum.de/login</u>
- If you have trouble registering <u>https://forms.gle/yZkZiDiyHxWuNqQG7</u>
- Data for Exercise 04: <u>https://vision.in.tum.de/webshare/g/cv3dst/exercise_04.zip</u>

Links for the individual datasets

- MOT
 https://vision.in.tum.de/webshare/g/cv3dst/datasets/MO
 T16.zip
- market <u>https://vision.in.tum.de/webshare/g/cv3dst/datasets/market.zip</u>
- obj_seg
 https://vision.in.tum.de/webshare/g/cv3dst/datasets/obj_seg.zip
- reid_gnn
 https://vision.in.tum.de/webshare/g/cv3dst/datasets/reid_gnn.zip