ISLAMIC UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering (CSE) Course Outline and Course Plan

Name of the Teacher	Md. Nazmul Haque	P	Position Assistant Professor			
Department	CSE	P	rogramme	B.Sc. Eng. SWE		
Course Code	Math 4341	C	Course Title	Linear Algeb	ra	
Academic Year	2020-21	S	emester	Winter		
Contact Hours	3.0	C	Credit Hours	3.0		
Text books and Reference books	1. Introduction to Linea Wellesley-Cambridge Pr 2016. 2. Elementary Linear Al Applications, Wiley, 11t 3. Linear Algebra, Sprin 2012	Press, 5th Edition, llgebra with th Edition, 2014	Authors of the books	1. Gilbert Strang 2. Howard Anton and Chris Rorres 3. Werner H. Greub		
Prerequisites (If any)	1. Math 4241: Into	tegral Calculus and Di	ifferential Equa	tions		
Course Homepage	Google Classroom Code	e: f4nfnf7(Section 1), l	bq232px(Section	n 2)		
Teaching Methods/	_ Lecture√ De	emonstration√	☐ Problemoly Problemoly	m		
Approaches	Others: Tutorial c	classes√				
Teaching aids		онр√	Board and	d Marker√	Video Conferencing Tool and Tablet√	

	Course Assessment Method							
Attendanc e (10%)		Quiz/Viv	out of 4)		out of 4)		Semester Final (35%)	
	1st Quiz	2 nd Quiz	3 rd Quiz 4 th Quiz Others Week/Date Week/Date Assignment Homework				Week/Date	Week/Date
	Week/Date	Week/Date	Week/Date	Week/Date	Assignment	Homework		
	4th Week	7th Week	12 th Week	16th Week	5-6 Assignment s	Will be given time to time	8-9th Week	15-16 th Week

	Grading Policy									
Marks out of	Letter Grade									
100			100							
80 - 100	A+	4.00	55 - 59	В-	2.75					
75 - 79	A	3.75	50 - 54	C+	2.50					
70 - 74	A-	3.50	45 - 49	С	2.25					

65 - 69	B+	3.25	40 – 44	D	2.00
60 - 64	В	3.00	00 - 39	F	0.00

Course Contents

Linear Algebra: Solving Ax = B for square systems by elimination (pivots, multipliers, back substitution, invertibility of A, and factorization into A = LU. Complete solution to Ax = B (column space containing b, rank of A, nullspace of A and special solutions to Ax = 0 from row reduction).

Basis and dimension (bases for the four fundamental subspaces). Least squares solutions (closest line by understanding projections). Orthogonalization by Gram-Schmidt (factorization into A = QR).

Properties of determinants (leading to the cofactor formula and the sum over all n! permutations, applications to inverse matrix calculation and volume). Eigenvalues and eigenvectors (diagonalizing A, computing powers A^k and matrix exponentials to solve difference and differential equations). Symmetric matrices and positive definite matrices (real eigenvalues and orthogonal eigenvectors, tests for x'Ax > 0, applications).

Linear transformations and change of basis (connected to the Singular Value Decomposition - orthonormal bases that diagonalize A). Linear algebra in engineering (graphs and networks, Markov matrices, Fourier matrix, Fast Fourier Transform, linear programming).

•

Course Objectives

The subject aims to equip the students such that they will be able to do the followings:

- 1. Use mathematically correct language and notation for Linear Algebra.
- 2. Develop computational proficiency involving procedures in Linear Algebra.
- 3. Understand the axiomatic structure of a modern mathematical subject and learn to construct simple proofs.
- 4. Solve problems that apply Linear Algebra to Chemistry, Economics and Engineering.
- 5. Determine and verify the accuracy of the solution.

	Mapping with CO, PO and Bloom's Taxonomy								
CO No.	Course Outcomes (CO) Statement	Levels of Bloom's Taxonomy	Matching with Program Outcome (PO)						
CO1	Determine properties of vector spaces and subspaces by means of linear transformations.	C4							
CO2	Apply principles of matrix algebra to linear transformations.	С3							
CO3	Interpret the results of linear system of equations using vectors.	С3							
CO4	Use visualization, spatial reasoning, as well as geometric properties and strategies to model and solve problems, especially in R ² and R ³ , and conceptually extend these results to higher dimensions.	C3							
CO5	Use technology, where appropriate, to help solve problems, experiment, interpret results, and verify conclusions.	С3							

	Weekly plan for course content and mapping with CO						
Weeks	Weeks Topics Tasks						
1	Introduction to Linear Algebra						
2	The Geometry of Linear Algebra						
3	Elimination with Matrices						

4	Factorization of A	Quiz 1- CO1,CO2			
5	Columnspace and Nullspace				
6 7	Solution of $Ax = B$	Quiz 2- CO3, CO4 Assignment- CO5			
8	The Four Fundamental Subspace				
10 11	Orthogonal Vectors and Subspaces				
12 13	Projection Onto Subspaces	Quiz 3- CO1, CO4			
14 15	Determinants				
16	Eigenvalues and Eigenvectors	Quiz 4- CO3			

	Program Outcomes
PO 1	Engineering Knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and system fundamentals, software development, networking & communication, and information assurance & security to the solution of complex engineering problems in computer science and engineering.
	Problem Analysis:
PO 2	Ability to identify , formulate and analyze complex Computer Science and Engineering problems in the areas of hardware, software, theoretical Computer Science and applications to reach significant conclusions by applying Mathematics, Natural sciences, Computer Science and Engineering principles.
PO 3	Design/ Development of Solutions: Design solutions for complex computer science and engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public
	health and safety, cultural, societal, and environmental considerations.
PO 4	Investigation: Ability to use research-based knowledge and research methods to perform literature survey, design experiments for complex problems in designing, developing and maintaining a computing system, collect data from the experimental outcome, analyze and interpret valid/interesting patterns and conclusions from the data points.
PO 5	Modern Tool Usage: Ability to create, select and apply state of the art tools and techniques in designing, developing and testing a computing system or its component.
PO 6	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice in system development and solutions to complex engineering problems related to system fundamentals, software development, networking & communication, and information assurance & security.
PO 7	Environment and Sustainability: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering

	practice in system development and solutions to complex engineering problems related to system fundamentals, software development, networking & communication, and information
	assurance & security.
	Ethics:
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of
	computer science and engineering practice.
	Individual Work and Teamwork:
PO 9	Ability to function as an individual and as a team player or leader in multidisciplinary teams
	and strive towards achieving a common goal.
	Communication:
PO 10	Communicate effectively on complex engineering activities with the engineering community
1010	and with society at large, such as being able to comprehend and write effective reports and
	design documentation, make effective presentations, and give and receive clear instructions.
	Project Management and Finance:
PO 11	Demonstrate knowledge and understanding of engineering management principles and
1011	economic decision making and apply these to one's own work, as a member and leader in a
	team, to manage projects and in multidisciplinary environments.
	Life-long learning:
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and
	lifelong learning in the broadest context of technological change.

	Mapping of COs and POs											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	✓											
CO2	✓	✓										
CO3		✓	✓									
CO4			1									
CO5					✓							

<u>K</u>

	Table: Knowledge Profile					
	Attribute					
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline					
К2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline					
К3	A systemic, theory-based formulation of engineering fundamentals required in the engineering discipline					
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline					
K5	Knowledge that supports engineering design in a practice area					

К6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
K7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability
К8	Engagement with selected knowledge in the research literature of the discipline

<u>P</u>

Table: Range of Complex Engineering Problem Solving		
Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7	
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6, or K8 which allows a fundamentals-based, first principles analytical approach	
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues	
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models	
Familiarity of issues	P4: Involve infrequently encountered issues	
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering	
Extent of stakeholder involvement and conflicting requirements	P6: Involve diverse groups of stakeholders with widely varying needs.	
Interdependence	P7: Are high-level problems including many component parts or subproblems	

A

Table: Range of Complex Engineering Activities		
Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:	

Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)	
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues	
Innovation	A3: Involve creative use of engineering principles and research-based knowledge in novel ways	
Consequences for society and the environment	A4: Involve creative use of engineering principles and research-based knowledge in novel ways	
Familiarity	A5: Can extend beyond previous experiences by applying principles-based approaches	

Class Schedule			
Day	Section 1	Section 2	
Tuesday	9:40 a.m.	12:00 a.m.	
Friday	12:00 p.m.	01:30 p.m.	

Student Consulting Hour:

• Wednesday, 10 a.m. - 11 a.m.

Instruction Contact Details:

Md. Nazmul Haque

Assistant Professor,

Department of Computer Science and Engineering

Islamic University of Technology, Room #: 504, 2nd Academic Building.

Phone: 01521219023

Email: nazmul.haque@iut-dhaka.edu