(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年11月27日(27.11.2003)

PCT

(10) 国際公開番号 WO 03/097598 A1

(51) 国際特許分類7:

C07D 209/14. 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K 31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P 11/06, 37/08, 43/00

(21) 国際出願番号: PCT/JP03/06076

(22) 国際出願日: 2003 年5 月15 日 (15.05.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2002-142126 2002年5月16日(16.05.2002)

- (71) 出願人 (米国を除く全ての指定国について): 塩野 義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府 大阪市中央区 道修町3丁目1番8号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 谷本 憲彦 (TAN-IMOTO, Norihiko) [JP/JP]; 〒553-0002 大阪府 大阪市 福島区 鷺洲 5 丁目 1 2 番 4 号 塩野義製薬株式会 社内 Osaka (JP). 平松 義春 (HIRAMATSU, Yoshiharu) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 12番4号 塩野義製薬株式会社内 Osaka (JP). 光森 進 (MITSUMORI, Susumu) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2 番 4 号 塩野義製薬株

式会社内 Osaka (JP). 稲垣 雅尚 (INAGAKI, Masanao) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 12番4号 塩野義製薬株式会社内 Osaka (JP).

- (74) 代理人: 山内 秀晃, 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2 番 4号 塩野義製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: COMPOUND EXHIBITING PGD 2 RECEPTOR ANTAGONISM
- (54) 発明の名称: PGD2受容体拮抗作用を有する化合物

(l)

(a)

(b)

(57) Abstract: A compound exhibiting CRTH 2 receptor antagonism, represented by the following formula (I), which compound is useful in the treatment of allergosis with which the association of eosinocytes is presumed, etc.: (I) wherein the group represented by the formula: (a) is a group of the formula: (b) or the like; R¹ represents carboxyl, etc.; R³ represents a group of the formula $-(CH_2)_n$ -N(-Y)SO₂-Ar, etc.; and the other substituents are as defined in claim 1.

- | 1881 | 1881 | 1881 | 1881 | 1882 | 1883 | 1883 | 1883 | 1883 | 1884 | 1885 |

(57) 要約:

CRTH2受容体拮抗作用を有する下記式(I)で表される新規化合物を見出した。該化合物は好酸球が関与していると考えられるアレルギー疾患等に有用である。

$$R^{13}$$
 R^{3} R^{14} R^{15} R^{1} R^{1}

(式中、

式:

で示される基は

式:

等を、R¹は、カルボキシ等を、R³は

式:-(CH2) n-N(-Y)SO2-Ar等を

その他の置換基は請求の範囲1に記載された通りを示す。)

明細書

PGD2受容体拮抗作用を有する化合物

5 技術分野

本発明は、CRTH2受容体拮抗作用を有する新規化合物に関する。

背景技術

20

25

プロスタグランジンD₂ (PGD₂) は、アラキドン酸からPGG₂、PGH₂ を経て産生される代謝産物であり、種々の強力な生理作用を有していることが知られている。例えば、中枢神経系においては睡眠、ホルモン分泌などに関与し、末梢においては血小板凝集阻害作用、気管支平滑筋の収縮、血管の拡張または収縮などに関与していることが知られている(Pharmacol. Rev. (1994) 46, 205-229)。さらに、PGD₂ は肥満細胞から産生される主要なアラキドン酸代謝産物であり、強力な気管支収縮作用、血管透過性の亢進や好酸球などの炎症細胞の遊走を惹起する事から、気管支喘息などのアレルギー性疾患の病態形成に深く関与していると考えられている。

拮抗剤がW O 98/25915 号、W O 01/66520 号、WO 01/79169 等に記載されている。しかし、D P 受容体の選択的作動薬であるB W - 2 4 5 C は、P G D 2 による好酸球浸潤作用などを再現できないことから、P G D 2 にはD P 受容体とは別の受容体が存在することが以前より示唆されていた(J. Immunol. (1992) 148, 3536-3542; Invest. Ophthalmol. Vis. Sci. (1990) 31, 138-146、Br. J. Pharmacol. (1985) 85, 367-375; J. Pharmacol. Exp. Ther. (1995) 275, 611-617等)。最近になり、C R T H 2 受容体がP G D 2 の第2 の受容体であり、P G D 2 はこの受容体でかして好酸球、好塩基球の遊走を惹起することが報告された(J. Exp. Med. (2001) 193, 255-261)。

PGD₂の受容体としては、従来DP受容体のみが知られており、その受容体

本発明化合物に類似した構造を有するトロンボキサンA₂(TXA₂) 受容体拮抗剤および血小板凝集抑制剤が特開昭 61-249960、特開昭 62-198659、特開昭 62-249969、特開平 2-193965、特開平 3-151360、特開平 4-230363、特開平 4-234846、特開平 4-257578、特開平 8-157471、特開平 8-245587、DE3909600、Eur. J. Med. Chem., (1991) 26(8), 821-827 に記載されているが、PGD₂拮抗活性については全く記載されていない。

5

10

3-(4-9 ロロフェニルスルホニルアミノ)- $9-(2-カルボキシメチル)-1,2,3,4-テトラヒドロカルバゾールおよびそのエチルエステルが、<math>TXA_2$ 拮抗作用および TXA_2 合成酵素阻害作用を有することが特開平 3-151360 に開示されているが、具体的な活性値は記載されていない。

3-(4-D ロロフェニルスルホニルアミノエチル)インドール-1-アセティックアシッドおよび 3-(4-D ロロフェニルスルホニルアミノプロピル)インドール-1-アセティックアシッドが、T X A $_2$ / P G H $_2$ 受容体拮抗作用を有することが Eur. J. Med. Chem., 1991, 26(8), 821-827 に記載されている。

15 また 3-(4-フルオロフェニルスルホンアミド)-1,2,3,4-テトラヒドロ-9-カルバゾ ールプロピオン酸が、アレルギー性皮膚炎、遅延型アレルギー反応を介する皮膚 炎、および乾癬の治療剤として有用であることが特開平 7-175991、WO97/44031、 特開平 11-106337、および特開平 11-116477に、ケモカイン産生抑制作用を有す ることが特開平 11-322600 に記載されている。さらに、該化合物がPGD。誘発 20 気管支収縮に対し抑制効果を示すことから、DP受容体を介してPGD。拮抗作 用を有する可能性のあることが J. Allergy Clin. Immunol. (1992) 89, 1119-1126 に記載されている。しかし、現在では、1) PGD2が高濃度域 (1 μ M以上) に おいてトロンボキサン受容体にも結合すること (Eur. J. Pharmacol. (1992) 226, 149-156; Br. J. Pharmacol. (1991) 103, 1883-1888 etc.) 、 2) DP 受容体に対 する親和性の弱い他のトロンボキサン受容体拮抗化合物も同様の抑制作用を示す 25こと(Int. Arch. Allergy Immunol. 1992, 98, 239-246)、 3)選択的 DP 受容体 拮抗化合物はPGD2誘発気管支収縮を抑制しないこと (Br. J. Pharmacol.

(1989) 96, 291-300) が知られており、上記の抑制作用はトロンボキサン受容体を介した反応を抑制したものであり、該化合物が直接的な D P 受容体拮抗作用を有するものではないと考えられている (Br. J. Pharmacol. (1989) 96, 291-300)。

また、DP受容体と比較して選択的にCRTH2受容体に結合する4種の化合物がEP1170594に開示されている。しかし、本発明化合物とは構造が非類似であり、結合活性等の詳細についても記載されていない。

発明の開示

5

本発明者らは、TXA₂受容体拮抗作用を有さない選択的なCRTH2受容体 10 拮抗作用を有する新規化合物を見出した。

すなわち、本発明は、

I)式(I):

$$R^{13}$$
 R^{3} R^{14} R^{15} R^{1} R^{1} R^{1}

15 (式中、

式:

20

で示される基は式:

(式中、 Z^3 は=N-または $=C(-R^7)-$; R^4 、 R^5 、 R^6 および R^7 はそれ ぞれ独立して水素、ハロゲン、ハロアルキル、カルボキシ、アルキルオキシカル ボニル、置換されていてもよいアルキル、置換されていてもよいアルケニル、置

換されていてもよいシクロアルキル、置換されていてもよいアリールまたは置換されていてもよいアラルキル、式: $-S(O)_pR^8$ (式中、pは $0\sim2$ の整数;および R^8 はアルキルまたは置換されていてもよいアリール)で示される基、式: $-NR^9R^{10}$ (式中、 R^9 および R^{10} はそれぞれ独立して水素、アルキル、置換されていてもよいアリール、置換されていてもよいアラルキルまたはアシル)で示される基、式: $-OR^{11}$ (式中、 R^{11} は水素、アルキル、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリールスルホニル、置換されていてもよいアリールスルホニル、置換されていてもよいアリールスルホニル、置換されていてもよいアリールスルホニル、のロアルキル)で示される基)で示される基;

10 R^1 はカルボキシ、アルキルオキシカルボニル、置換されていてもよいアミノカルボニルまたはテトラゾリル;

 Z^{4} d-N= $\pm cd-C(-R^{2})=$;

 R^2 は水素、アルキルまたはハロゲン;

 R^{15} は水素またはアルキル;

 R^3 は式: $-(CH_2)_n-N(-Y)-SO_2-Ar(式中、nは1~3の整数; Yは水素、アルキル、アルケニル、アルキニル、置換されていてもよいアリール、 置換されていてもよいアラルキル、置換されていてもよいヘテロアリールアルキルまたは置換されていてもよいアリールアルケニル;および<math>Ar$ は置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基、

20 式:

5

$$--(CH_2)_r$$
 $N-SO_2-E$

(式中、rは0~2の整数;xは0~3の整数;mは1~3の整数;破線は結合の存在または不存在を表わし;Eは置換されていてもよいアリール、置換されていてもよいアラルキルまたは置換されていてもよいアリールアルケニル)で示される基、

式:

25

$$O_{C} = O_{C} = O_{C$$

(式中、xは0~3の整数;mは1~3の整数;破線は結合の存在または不存在を表わし;Eは置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、置換されていてもよいアラルキルまたは置換されていてもよいアリールアルケニル)で示される基、

式: $-CR^{23}R^{24}-CR^{25}R^{26}-(CH_2)_y-N(-Y)-SO_2-Ar(式中、ArおよびYは前記と同意義;yは0または1;R^{23}およびR^{24}の一方はアルキル、他方は水素、アルキルまたはアリール;またはR^{23}およびR^{24}は一緒になって式:<math>-(CH_2)$ t-(式中、tは2~5の整数)で示される基;R^25およびR^26はそれぞれ独立して水素またはアルキルオキシアルキル)で示される基、

式:

5

10

(式中、 Y および A r は前記と同意義) で示される基、または

15 式:

(式中、YおよびArは前記と同意義; uは1または2)で示される基; または式:

$$\mathbb{R}^3$$

20 で示される基が式:

$$(CH_2)_y \longrightarrow (CH_2)_p \longrightarrow N \longrightarrow SO_2 \longrightarrow Ar$$

(yは1~3の整数;m、p、YおよびArは前記と同意義)で示される基、

: 趷

$$(CH_2)_y$$
 $N-SO_2-Ar$

(m、yおよびArは前記と同意義)で示される基、

5 または式:

(YおよびArは前記と同意義; R^{20} は水素またはアルキル; R^{21} は水素またはハロゲン)で示される基である。(但し、3-(4-クロロフェニルスルホニルアミノ)-9-(2-カルボキシメチル)-1,2,3,4-テトラヒドロカルバゾール、そのエチルエステル、3-(4-クロロフェニルスルホニルアミノエチル)インドール-1-アセティックアシッド、および 3-(4-クロロフェニルスルホニルアミノプロピル)インドール-1-アセティックアシッドを除く);

または R^{13} が水素、アルキル、アラルキル、アシルまたは式: $-OR^{16}$ (式中、 R^{16} は水素またはアルキル)で示される基であり、 R^{14} が水素またはアルキルであるか、または式:

10

15

で示される基が式:

(式中、qは $0\sim3$ の整数; R^{17} は水素またはアルキル; Z^{1} は $-CH_{2}-$ 、-20 C(=O) -、-C(=NOH) -又は-C(=NOMe) -; Z^{2} は式: -S

 $(=0)_s-($ 式中、sは $0\sim2$ の整数)で示される基、式:-N $(-R^2)^2$ - (式中、 R^2 は水素、アルキル、アルキルオキシカルボニルまたはアシル)で示される基または式: $-CR^{18}R^{19}-($ 式中、 R^{18} および R^{19} はそれぞれ独立して水素、アルキルまたはアリール;または R^{18} および R^{19} は一緒になって式: $-(CH_2)_t-($ 式中、t は $2\sim5$ の整数)で示される基である)で示される基である)で示される基である)で示される基である)で示される基であり;

 R^{1} および R^{15} は前記と同意義であり;

: 注

5

10 で示される基が式:

 $(Y \times E \times R^{20}$ および R^{21} は前記と同意義)で示される基である化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

: 左(II

15

で示される基が式:

(式中、 Z^3 は=C ($-R^7$) -であり; R^4 、 R^5 、 R^6 および R^7 は I) と同意義)で示される基であり; Z^4 が-C ($-R^2$) =であり; R^2 は I) と同意義で

あり; R^{15} が水素であり;

 R^3 が式: $-(CH_2)_n-N(-Y)-SO_2-Ar(式中、nは1~3の整数; Yは水素、アルキル、アルケニル、置換されていてもよいアリール、置換されて いてもよいアラルキル、または置換されていてもよいヘテロアリールアルキル; およびArは置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基、式:$

$$--(CH_2)_r$$
 $N-SO_2-E$

(式中、rは0~2の整数;xは0~3の整数;mは1~3の整数;破線は結合の存在または不存在を表わし;Eは置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基;

または式:

10

で示される基が式:

$$(CH_2)_y \longrightarrow (CH_2)_p \longrightarrow N \longrightarrow SO_2 \longrightarrow Ar$$

15 (yは1~3の整数; m、p、YおよびArは前記と同意義)で示される基、

式:

(m、yおよびArは前記と同意義)で示される基、

または式:

(YおよびArはI)と同意義であり; R^{20} および R^{21} は水素である)で示される基であるI)項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

5 III) Yがアルキル、アルケニル、置換されていてもよいアリールまたは置換されていてもよいアラルキルである I) または II) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

IV) R^3 が式: $-(CH_2)_n - N(-Y) - SO_2 - Ar(式中、nは2または3; Yは水素、アルキル、アルケニル、またはアラルキル; およびArは<math>I$) と同意義)で示される基であるII)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

V) R³が式:

10

$$-(CH_2)_r$$
 $N-SO_2-E$

(式中、mは1;rは0;xは2;破線は結合の不存在を表わし;およびEはII)と同意義)で示される基であるII)に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

V I) 式:

で示される基が式:

$$(CH_2)_y \qquad \qquad Y \qquad$$

(mは2;pは0;yは1;Yは水素、アルキル、アルケニルまたはアラルキル; およびArはI)と同意義)で示される基であるII)に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

5 VII) 式:

で示される基が式:

$$(CH_2)_y$$

$$V = SO_2 - Ar$$

$$(CH_2)_m$$

(mは1または2; yは1または2;およびArはII)と同意義)で示される 10 基であるII)に記載の化合物、そのプロドラッグ、それらの製薬上許容される 塩またはそれらの溶媒和物。

VIII) 式:

$$\mathbb{R}^3$$

15

で示される基が式:

(Yは水素、アルキル、アルケニルまたはアラルキル;およびR²⁰、R²¹およ

びArはI)と同意義)で示される基であるII)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

- IX) R^1 がカルボキシであるI) $\sim VIII$) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。
- 5 X) R^4 、 R^5 、 R^6 および R^7 がそれぞれ独立して水素、ハロゲン、アルキル、アルケニル、置換されていてもよいアリールまたは置換されていてもよいアラルキルである I) $\sim IX$) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。
 - XI) R²が水素またはアルキルであるI)~X)のいずれかに記載の化合物、
- 10 そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。
 - XII) I) ~XI) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分として含有する医薬組成物。
 - XIII) CRTH2受容体拮抗剤として使用するXII) 記載の医薬組成物。
- 15 X I V) I) に記載の化合物を投与することを特徴とする C R T H 2 受容体に関する疾患の治療方法。
 - XV) CRTH2受容体に関する疾患の治療剤を製造するための、I) に記載の 化合物の使用。
- 20 式(I)で示される化合物には、以下の化合物が包含される。

$$\begin{array}{c|c} R^{4} & (CH_{2})_{n} & SO_{2} \\ \hline R^{6} & Z^{3} & N & Y \\ \hline R^{15} & R^{1} & \end{array}$$

$$R^{5}$$
 R^{6}
 Z^{3}
 R^{15}
 R^{1}
 $(CH_{2})_{r}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$

$$R^{5}$$
 R^{6}
 Z^{3}
 R^{15}
 R^{1}
 R^{1}
 R^{4}
 $CH_{2})_{m}$
 N
 SO_{2}
 $CH_{2})_{m}$
 CH_{2}
 CH

$$R^{5}$$
 R^{6}
 R^{15}
 R^{15}
 R^{1}
 R^{23}
 R^{24}
 R^{25}
 R^{26}
 R^{26}
 R^{26}
 R^{26}

$$R^{5}$$
 R^{6}
 Z^{3}
 R^{15}
 R^{1}
 R^{1}
 $(CH_{2})_{u}$
 SO_{2} -Ar

(上記構造式中、各用語は I)と同意義である。)

以下に本発明を詳細に説明する。

$$R^{5}$$
 R^{6}
 Z^{3}
 N
 $(CH_{2})_{y}$
 $(CH_{2})_{\overline{p}}$
 N
 $(CH_{2})_{\overline{p}}$
 N
 $(CH_{2})_{\overline{p}}$
 N
 $(CH_{2})_{\overline{p}}$
 N

$$R^{5}$$
 R^{6}
 Z^{3}
 N
 $(CH_{2})_{y}$
 N
 SO_{2} -Ar
 $(CH_{2})_{m}$
 R^{15}
 R^{1}

$$\begin{array}{c|c}
R^5 & & & & \\
R^6 & Z^3 & & & & \\
R^{15} & R^1 & R^{21} & & \\
\end{array}$$

$$R^{17}$$
 $(CH_2)_q$
 R^{15}
 R^{21}
 R^{20}

本明細書中、「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素を意味する。ハロゲンとしては、フッ素、塩素、および臭素が好ましい。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アルキル」とは、炭素原子数 $1 \sim 8$ の直鎖または分枝鎖の 1 価の炭化水素基を包含する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s e c - ブチル、t e r t - ブチル、n - ペンチル、t + + の

5

25

10 本明細書中、単独でもしくは他の用語と組み合わせて用いられる「シクロアルキル」とは、炭素原子数が3~8個であるシクロアルキルを包含する。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルが挙げられる。好ましくはC3~C6シクロアルキルが挙げられる。

15 本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アルケニル」とは、炭素原子数が2~8個であり、1個もしくは2個以上の二重結合を有する、直鎖または分枝鎖の1価の炭化水素基を包含する。例えば、ビニル、アリル、1 ープロペニル、2ープロペニル、クロトニル、イソペンテニル、種々のブテニル 異性体等が挙げられる。好ましくは、C2~C6アルケニルが挙げられる。さら に好ましくは、C2~C4アルケニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アルキニル」とは、炭素原子数が2~8個であり、1個もしくは2個以上の三重結合を有する、直鎖または分枝鎖の1価の炭化水素基を包含する。例えば、エチニル、1ープロピニル、2ープロピニル等が挙げられる。好ましくは、C2~C6アルキニルが挙げられる。さらに好ましくは、C2~C4アルキニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アリール」とは、単環状もしくは縮合環状芳香族炭化水素を包含する。例えば、フェニル、

13

1ーナフチル、2ーナフチル、アントリル等が挙げられる。好ましくは、フェニル、1ーナフチル、2ーナフチルが挙げられる。さらに好ましくは、フェニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アラルキル」とは、前記「アルキル」に前記「アリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。例えば、ベンジル、フェニルエチル (例えば、2-フェニルエチル等)、フェニルプロピル (例えば、3-フェニルプロピル等)、ナフチルメチル (例えば、1-ナフチルメチル、2-ナフチルメチル等)、アントリルメチル (例えば、9-アントリルメチル等)等が挙げられる。好ましくは、ベンジル、2-フェニルエチル、1-ナフチルメチル、2-ナフチルメチルが挙げられる。さらに好ましくはベンジル、2-フェニルエチルが挙げられる。

5

10

本明細書中、「アラルキル」とは、前記「アルキル」に前記「アリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。

「例えば、ベンジル、フェニルエチル(例えば、2ーフェニルエチル等)、フェニルプロピル(例えば、3ーフェニルプロピル等)、ナフチルメチル(例えば、1ーナフチルメチル、2ーナフチルメチル等)、アントリルメチル(例えば、9ーアントリルメチル等)等が挙げられる。好ましくは、ベンジル、2ーフェニルエチル、1ーナフチルメチル、2ーナフチルメチルが挙げられる。さらに好ましくは、ベンジル、2ーフェニルエチルが挙げられる。

本明細書中、「アリールアルケニル」とは、前記「アルケニル」に前記「アリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。例えば、フェニルアリル、ナフチルアリル等が挙げられる。

本明細書中、「非芳香族複素環基」なる用語は、任意に選ばれる、酸素原子、 25 硫黄原子または窒素原子を環内に1個以上含む非芳香族の5~7員環またはそれ らが2個以上縮合した環を包含する。例えば、ピロリジニル(例えば、1-ピロ リジニル、2-ピロリジニル)、ピロリニル(例えば、3-ピロリニル)、イミ

14

5

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ヘテロアリ ール」とは、任意に選ばれる、酸素原子、硫黄原子または窒素原子を環内に1個 以上含む5~6員の芳香環を包含する。これは前記「シクロアルキル」、前記「ア 10 リール」、前記「非芳香族複素環基」、もしくは他のヘテロアリールと可能な全 ての位置で縮合していてもよい。ヘテロアリールが単環および縮合環のいずれで ある場合も、すべての可能な位置で結合しうる。例えば、ピロリル(例えば、1 - ピロリル、2 - ピロリル、3 - ピロリル)、フリル(例えば、2 - フリル、3 ーフリル)、チエニル(例えば、2ーチエニル、3ーチエニル)、イミダゾリル 15 (例えば、2-イミダゾリル、4-イミダゾリル)、ピラゾリル (例えば、1-ピラゾリル、3-ピラゾリル)、イソチアゾリル(例えば、3-イソチアゾリル)、 イソキサゾリル(例えば、3ーイソキサゾリル)、オキサゾリル(例えば、2ー オキサゾリル)、チアゾリル(例えば、2-チアゾリル)、ピリジル(例えば、 2-ピリジル、3-ピリジル、4-ピリジル)、ピラジニル(例えば、2-ピラ 20 ジニル)、ピリミジニル(例えば、2-ピリミジニル、4-ピリミジニル)、ピ リダジニル(例えば、3-ピリダジニル)、テトラゾリル(例えば、1H-テト ラゾリル)、オキサジアゾリル(例えば、1,3,4-オキサジアゾリル)、チ アジアゾリル(例えば、1、3、4-チアジアゾリル)、インドリジニル(例え ば、2ーインドリジニル、6ーインドリジニル)、イソインドリル(例えば、2 25 ーイソインドリル)、インドリル(例えば、1-インドリル、2-インドリル、 3-インドリル)、インダゾリル(例えば、3-インダゾリル)、プリニル(例

えば、8-プリニル)、キノリジニル(例えば、2-キノリジニル)、イソキノ リル(例えば、3ーイソキノリル)、キノリル(例えば、2ーキノリル、5ーキ ノリル)、フタラジニル(例えば、1-フタラジニル)、ナフチリジニル(例え ば、2-ナフチリジニル)、キノラニル(例えば、2-キノラニル)、キナゾリ ニル(例えば、2-キナゾリニル)、シンノリニル(例えば、3-シンノリニル)、 プテリジニル(例えば、2-プテリジニル)、カルバゾリル(例えば、2-カル バゾリル、4ーカルバゾリル)、フェナントリジニル(例えば、2-フェナント リジニル、3-フェナントリジニル)、アクリジニル(例えば、1-アクリニジ ル、2-アクリニジル)、ジベンゾフラニル(例えば、1-ジベンゾフラニル、 2-ジベンゾフラニル)、ベンゾイミダゾリル (例えば、2-ベンゾイミダゾリ ル)、ベンゾイソキサゾリル(例えば、3-ベンゾイソキサゾリル)、ベンゾオ キサゾリル(例えば、2ーベンゾオキサゾリル)、ベンゾオキサジアゾリル(例 えば、4-ベンゾオキサジアゾリル)、ベンゾイソチアゾリル(例えば、3-ベ ンゾイソチアゾリル)、ベンゾチアゾリル(例えば、2-ベンゾチアゾリル)、 ベンゾフリル(例えば、3ーベンゾフリル)、ベンゾチエニル(例えば、2ーベ ンゾチエニル)、ジベンゾチエニル(例えば、2-ジベンゾチエニル)、ベンゾ ジオキソリル(例えば、1,3-ベンゾジオキソリル)等が挙げられる。

5

10

15

Arにおける「ヘテロアリール」としては、チエニル、ベンゾチエニル、ジベンゾチエニル、ベンゾジオキソリル、オキサゾリル等が好ましい。

本明細書中、「ヘテロアリールアルキル」とは、前記「アルキル」の任意の位置に前記「ヘテロアリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。チエニルアルキル、フリルアルキル、ピロリルアルキル、イミダゾリルアルキル、ピラゾリルアルキル、チアゾリルアルキル、イソチアゾリルアルキル、イソキサゾリルアルキル、オキサゾリルアルキル、ピリジルアルキル、イソキサゾリルアルキル、オキサゾリルアルキル、ピリジルアルキル等が例示される。例えば、チエニルメチル(例えば、2ーチエニルメチル)、チエニルエチル(例えば、2ー(チオフェンー2ーイル)エチル)、フリルメチル(例えば、2ーフリルメチル)、フリルエチル(例えば2ー(フラ

ンー2ーイル)エチル)、ピロリルメチル(例えば、2ーピロリルメチル)、ピロリルエチル(例えば、2ー(ピロールー2ーイル)エチル)、イミダゾリルメチル(例えば、2ーイミダゾリルメチル、4ーイミダゾリルメチル)、イミダゾリルメチル(例えば、2ーイミダゾールー2ーイル)エチル)、ピラゾリルメチル(例えば、3ーピラゾリルメチル)、ピラゾリルエチル(例えば、2ー(ピラゾールー3ーイル)エチル)、チアゾリルメチル(例えば、2ーチアゾリルメチル)、チアゾリルエチル(例えば、2ー(チアゾールー2ーイル)エチル)、イソチアゾリルメチル(例えば、3ーイソチアゾリルメチル)、イソキサゾリルメチル(例えば、3ーイソキサゾリルメチル)、オキサゾリルメチル(例えば、2ー(オキサゾールー2ーイル)エチル)、ピリジルメチル(例えば、2ーピリジルメチル、3ーピリジルメチル、4ーピリジルメチル)、ピリジルエチル(例えば、2ーピリジルエチル)等が挙げられる。

5

10

25

Yにおける「ヘテロアリール」としては、チエニルメチル等が好ましい。

本明細書中、「アルキルオキシ」としては、メチルオキシ、エチルオキシ、 n ープロピルオキシ、イソプロピルオキシ、 n ーブチルオキシ、イソブチルオキシ、 secーブチルオキシ、 tertーブチルオキシ等が挙げられる。好ましくは、 メチルオキシ、エチルオキシ、 n ープロピルオキシ、イソプロピルオキシ、 n ーブチルオキシが挙げられる。特に好ましくは、C1~C3アルキルオキシが挙げられる。

本明細書中、「アリールオキシ」としては、フェニルオキシ、ナフチルオキシ 等が挙げられる。

本明細書中、「アリールチオ」としては、フェニルチオ、ナフチルチオ等が挙げられる。

本明細書中、「アリールアゾ」としては、フェニルアゾ、ナフチルアゾ等が挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アシル」なる用語は、アルキル部分が前記「アルキル」であるアルキルカルボニルまたはアリール部分が前記「アリール」であるアリールカルボニルを包含する。「アルキル」および「アリール」はそれぞれ後述の「置換されていてもよいアルキル」および「置換されていてもよいアリール」において例示された置換基によって置換されていてもよい。例えば、アセチル、プロピオニル、ブチロイル、ベンゾイル等が挙げられる。

15

20

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ハロアルキル」なる用語は、前記「ハロゲン」によって1~8ヶ所、好ましくは1~5ヶ所置換された前記「アルキル」を包含する。例えば、トリフルオロメチル、トリクロロメチル、ジフルオロエチル、トリフルオロエチル、ジクロロエチル、トリクロロエチル、クロロメチル等が挙げられる。好ましくは、トリフルオロメチルが挙げられる。

本明細書中、「アシルオキシ」としては、アセチルオキシ、プロピオニルオキ 25 シ、ベンゾイルオキシ等が挙げられる。

本明細書中、「アルカンスルホニル」としては、メタンスルホニル、エタンス ルホニル、n-プロパンスルホニル、イソプロパンスルホニル、n-ブタンスル

ホニル、イソブタンスルホニル、secーブタンスルホニル、tertーブタンスルホニル等が挙げられる。好ましくは、メタンスルホニル、エタンスルホニルが挙げられる。

本明細書中、「アリールスルホニル」としては、フェニルスルホニル、ナフチ 5 ルスルホニル等が挙げられる。

本明細書中、「アラルキルスルホニル」としては、ベンジルスルホニル、フェニルエチルスルホニル等が挙げられる。

本明細書中、「ヘテロアリールスルホニル」としては、ピロリルスルホニル等が挙げられる。

本明細書中、「置換されていてもよいアミノカルボニル」としては、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、エチルメチルアミノカルボニル、ジエチルアミノカルボニル、ベンジルアミノ、アセチルアミノ、メタンスルホニルアミノカルボニル等が挙げられる。好ましくは、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、メタンスルホコルアミノカルボニルが挙げられる。

ミノ、アセチルアミノ、メタンスルホニルアミノが挙げられる。

本明細書中、「置換されていてもよいウレイド」なる用語は、前記「アルキル」、 前記「アリール」、前記「アラルキル」、前記「ヘテロアリール」、前記「ヘテ

19

ロアリールアルキル」、または前記「アシル」で1または2ヶ所以上置換されいてもよいウレイドを包含する。

本明細書中、「置換されていてもよいアルキル」における置換基としては、シクロアルキル、アルケニル、アルキリデン、ヒドロキシ、アルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオキシカルボニル、ハロアルキル、ハロアルキルオキシ、置換されていてもよいアミノ、置換されていてもよいアミノカルボニル、アシル、アシルオキシ、置換されていてもよい非芳香族複素環基、アリールオキシ(例えば、フェニルオキシ)、アラルキルオキシ(例えば、ベンジルオキシ)、アルカンスルホニル、グアニジノ、アゾ基等が挙げられる。これらは、全ての可能な位置で1個以上置換しうる。R⁴、R⁵、R⁶、およびR⁷における「置換されていてもよいアルキル」の置換基としては、アルキルオキシ、ヒドロキシ、置換されていてもよいアミノ、アリールオキシ等が好ましい。

5

10

本明細書中、「置換されていてもよいシクロアルキル」における置換基としては、アルキル、シクロアルキル、アルケニル、アルキリデン、ヒドロキシ、アルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオキシカルボニル、ハロアルキル、ハロアルキルオキシ、置換されていてもよいアミノ、置換されていてもよいアミノカルボニル、アシル、アシルオキシ、アリールオキシ(例えば、フェニルオキシ)、アラルキルオキシ(例えば、ベンジルオキシ)、アルカンスルホニル、グアニジノ、アゾ基等が挙げられる。これらは、全ての可能な位置で1個以上置換しうる。

 R^4 、 R^5 、 R^6 、および R^7 における「置換されていてもよいシクロアルキル」の置換基としては、アルキル、ハロゲン等が好ましい。

本明細書中、「置換されていてもよいアルケニル」における置換基としては、
25 アルキル、シクロアルキル、アルキリデン、ヒドロキシ、アルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオキシカルボニル、ハロアルキル、ハロアルキルオキシ、置換されていてもよいアミ

20

ノ、置換されていてもよいアミノカルボニル、アシル、アシルオキシ、アリール、アリールオキシ (例えば、フェニルオキシ)、アラルキル、アラルキルオキシ (例えば、ベンジルオキシ)、アルカンスルホニル、グアニジノ、アゾ基等が挙げられる。これらは、全ての可能な位置で1個以上置換しうる。

5 R⁴、R⁵、R⁶、およびR⁷における「置換されていてもよいアルケニル」の 置換基としては、ハロゲン、アリール等が好ましい。

10

15

20

25

本明細書中、「置換されていてもよいアリール」、「置換されていてもよいア ラルキル」、「置換されていてもよいヘテロアリール」、「置換されていてもよ いアリールスルホニル」、「置換されていてもよいアラルキルスルホニル」、お よび「置換されていてもよい非芳香族複素環基」における置換基としては、アル キル、ハロアルキル、シクロアルキル、アルケニル、アルキニル、ヒドロキシ、 アルキルオキシ、ハロアルキルオキシ、アリールオキシ、アラルキルオキシ、メ ルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオ キシカルボニル、アシル、アシルオキシ、アルカンスルホニル、グアニジノ、ア ゾ基、置換されていてもよいアミノ、置換されていてもよいアミノカルボニル、 置換基群 C によって 1 または 2 ヶ所以上置換されていてもよいアリール、置換基 群Cによって1または2ヶ所以上置換されていてもよいヘテロアリール、置換基 群 C によって 1 または 2 ヶ所以上置換されていてもよい非 芳香族複素環基、置換 基群Cによって1または2ヶ所以上置換されていてもよいアラルキル、または置 換されていてもよいウレイド等が挙げられる。これらは、全ての可能な位置で1 個以上置換しうる(置換基群C:アルキル、ハロアルキル、シクロアルキル、ア ルケニル、アルキニル、ヒドロキシ、アルキルオキシ、ハロアルキルオキシ、ア リールオキシ、アラルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニト ロ、シアノ、カルボキシ、アルキルオキシカルボニル、アシル、アシルオキシ、 アルカンスルホニル、グアニジノ、アゾ基、置換されていてもよいアミノ、およ び置換されていてもよいアミノカルボニル)。

R⁴、R⁵、R⁶、およびR⁷における「置換されていてもよいアリール」の置

換基としては、アルキル、アルキルオキシ、ハロゲン等が好ましい。

R®における「置換されていてもよいアリール」の置換基としては、アルキル、 アルキルオキシ、ハロゲン等が好ましい。

 R^9 および R^{10} における「置換されていてもよいアリール」の置換基としては、 F^{10} アルキル、アルキルオキシ、ハロゲン等が好ましい。

R¹¹における「置換されていてもよいアリール」の置換基としては、アルキル、 アルキルオキシ、ハロゲン等が好ましい。

Yにおける「置換されていてもよいアリール」の置換基としては、アルキル、 アルキルオキシ、ハロゲン等が好ましい。

10 Arにおける「置換されていてもよいアリール」の置換基としては、アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ベンジル、置換基群Bで置換されていてもよいフェニル等が好ましい(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、およびベンジル)。

 R^4 、 R^5 、 R^6 、および R^7 における「置換されていてもよいアラルキル」の 15 置換基としては、アルキル、ハロゲン等が好ましい。

R⁹およびR¹⁰における「置換されていてもよいアラルキル」の置換基としては、アルキル、ハロゲン等が好ましい。

 R^{11} における「置換されていてもよいアラルキル」の置換基としては、アルキル、ハロゲン等が好ましい。

20 Yにおける「置換されていてもよいアラルキル」の置換基としては、アルキル、 アルキルオキシ、ニトロ、ハロゲン等が好ましい。

25

Arにおける「置換されていてもよいへテロアリール」の置換基としては、アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ベンジル、置換基群Bで置換されていてもよいフェニル等が好ましい(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、およびベンジル)。

R¹¹における「置換されていてもよいアリールスルホニル」の置換基としては、 アルキル等が好ましい。

 \mathbb{R}^{11} における「置換されていてもよいアラルキルスルホニル」の置換基としては、アルキル等が好ましい。

発明を実施するための最良の形態

5 式(I)で表される本発明化合物は、以下の式(IIa)~(IIk):

$$\begin{array}{c|c}
R^{5} & (CH_{2})_{r} & NH \\
R^{6} & Z^{3} & N & Z^{4}
\end{array}$$
(IIc)

$$\begin{array}{c|c}
R^{5} & & \\
\hline
R^{6} & & \\
\hline
Z^{3} & & \\
\hline
N & & \\
\hline
(CH_{2})_{y} & \\
(CH_{2})_{\overline{p}} & & \\
\hline
(CH_{2})_{\overline{p}} & & \\
\end{array}$$
(IIb)

$$\begin{array}{c|c}
R^{5} & (CH_{2})_{y} \\
R^{6} & Z^{3} & (CH_{2})_{m}
\end{array}$$
(IId)

$$\begin{array}{c|c}
R^{4} & O & (CH_{2})_{m} \\
\hline
R^{5} & (CH_{2})_{x} & (IIf)
\end{array}$$

$$\begin{array}{c|c}
R^{5} & CH_{2} & (CH_{2})_{x} & (IIf)
\end{array}$$

$$R^{13}$$
 NH-Y R^{20} (IIh)

$$Z^{2}$$
 $(CH_{2})_{q}$
 R^{15}
 R^{20}
 R^{20}
(IIj)

[式中、 R^1 はアルキルオキシカルボニル;他の記号はI)の定義と同意義] で表される化合物またはその塩を、 $1\sim5$ 当量の $Ar-SO_2-X^1$ またはE-S

 O_2-X^1 で表される化合物 [式中Ar及びEはI)の定義と同意義; X^1 はハロゲン]と、不活性溶媒中、O C から室温下、S 分から数時間反応させることにより製造することができる。I 当量からS 当量の塩基の存在下に反応を行ってもよい。塩基としては、トリエチルアミン、ピリジン、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどが好ましい。不活性溶媒としては、ピリジン、アセトニトリル、塩化メチレン、テトラヒドロフラン(THF)などが好ましく、これらを単独あるいは水との混合溶媒として用いることができる。

5

10

15

20

25

上記反応によって得られた化合物のYが水素である場合は、THF、エーテル、 アセトニトリル、アセトン、トルエン等の不活性溶媒中、水素化ナトリウム、水 素化カリウム、tーブトキシカリウム、炭酸カリウム等の塩基存在下、Y-X² (X²はハロゲン、置換されていてもよいアルカンスルホニルオキシまたは置換 されていてもよいアリールスルホニルオキシ)と、0°から80°、30分から 数時間反応させ、Yがアルキル、アルケニル、置換されていてもよいアリール又 は置換されていてもよいアラルキルである化合物を合成することができる。また、 式(IIa)、(IIb)および(IIe)で表されるYが水素である化合物を、 対応するアルデヒドまたはケトンと、THF、塩化メチレン等の溶媒中、1当量 ~5 当量の水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウムまたは水素 化トリアセトキシホウ素ナトリウムを用いて、0℃から80℃、30分から数時 間還元的アミノ化反応を行なうことによっても、Yがアルキル、アルケニル、ま たは置換されていてもよいアラルキル等である化合物を合成することができる。 0.1当量~5当量の塩酸、酢酸、パラトルエンスルホン酸等の酸触媒存在下で 反応を行ってもよい。その後上記スルホニル化反応を行ない、式(I)で表され る化合物に変換することも可能である。

式(I)で表される化合物において、 R^1 がカルボキシである化合物は、上記 反応後、通常の加水分解反応の条件にしたがってエステルを酸加水分解あるいは

アルカリ加水分解することにより得ることができる。

上記の式 (IIe) で表される化合物は、特開平8-169879等に記載の方法に従って合成することができる。

また、上記の式(IIa)~(IIk)で表される化合物は、以下に示す式(IIIa)~(IIIk)で表される化合物のいずれかを出発原料として製造することができる。

$$\begin{array}{c|c}
R^{5} & (CH_{2})_{u} \\
N-Q & (IIIk)
\end{array}$$

[式中、各記号はI) の定義と同意義; Q は水素]

すなわち、以下の1)~3)の工程を行うことにより、式(IIa)~(II

k)で表される化合物あるいは塩酸、硫酸等の無機酸、または酢酸、トリフルオ 口酢酸等の有機酸との塩として製造することができる; 1) Qが水素である式(I IIa)~(IIIk)で表される化合物のアミノ基を、PROTECTIVE GRO UP IN ORGANIC SYNTHSIS、JOHN WILEY & SONS, INC. 等に記 載の方法によりt-ブトキシカルボニル、ベンジルオキシカルボニル、アリルオ キシカルボニル等のアミノ基の保護基で保護する、2)得られた化合物を、1~ $5 \oplus \mathbb{H} \otimes X^1 - \mathbb{C} \otimes \mathbb{H}_2 \otimes \mathbb{C} \otimes \mathbb{R}^{12}$ (式中、 X^1 はハロゲン; \mathbb{R}^{12} はアルキル) で表 される化合物と、ピリジン、アセトニトリル、塩化メチレン、THF、DMF、 DMSO、アセトン、メチルエチルケトン、メチルイソブチルケトンなどの不活 性溶媒中、1当量から5当量の水素化ナトリウム、水素化カリウム、tーブトキ シカリウム、炭酸カリウム等の塩基存在下、0℃から100℃、1時間から20 時間反応することにより、インドールの窒素をアルキルオキシカルボニルメチル 化する [0.1当量から1当量の相関移動触媒、例えば、塩化テトラブチルアン モニウム、臭化化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、 塩化ベンジルトリエチルアンモニウム、塩化ベンジルトリブチルアンモニウム等 を加えてもよい]、3)通常の脱保護条件下、アミノ基の保護基であるQを除去 する。

式(IIIc)ならびに(IIId)で表される化合物、およびYが水素ではない式(IIIa)、(IIIb)、ならびに(IIIe)で表される化合物を、アミノ基を保護することなく、上記スルホニル化を行なった後、インドール窒素をアルキルオキシカルボニルメチル化し、式(I)で表される化合物へと導くことも可能である。

式(I)で表される化合物は、TXA。受容体拮抗活性を有さない選択的CR 25 TH2受容体拮抗化合物である。そのような化合物として、特に以下に示す式(I a)~式(Ie)で表される化合物が好ましい。

式(Ia):

5

10

15

20

$$\begin{array}{c} & & & \\ & &$$

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^2 は水素またはアルキル;

 R^{5} 、 R^{6} および R^{7} はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{11}$ (式中、 R^{11} はアルキル)で示される基;

Yは水素、アルキル、アルケニル、フェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいフェニルアルキル、置換基群Aにより1または2ヶ所以上置換されていてもよいナフチルアルキル、または置換基群Aにより1または2ヶ所以上置換されていてもよいチエニルアルキル(置換基群A:アルキル、アルキルオキシ、およびニトロ);

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチエニル、または置換基群Bにより1または2ヶ所以上置換されていてもよいジベンゾチエニル(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル);および

nは1、2、または3]で示される化合物、そのプロドラッグ、それらの製薬上 許容される塩またはそれらの溶媒和物。

式(Ib):

5

10

15

20

$$R^{5}$$
 $(CH_{2})_{y}$
 $(CH_{2})_{p}$
 $(CH_{2})_{p$

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{11}$ (式中、 R^{11} はアルキル)で示される基;

Yは水素、アルキル、アルケニル、フェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいフェニルアルキル、置換基群Aにより1または2ヶ所以上置換されていてもよいナフチルアルキル、または置換基群Aにより1または2ヶ所以上置換されていてもよいチエニルアルキル(置換基群A:アルキル、アルキルオキシ、およびニトロ);

Arは置換基群Aにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいチエニル、または置換基群Aにより1または2ヶ所以上置換されていてもよいジベンゾチエニル(置換基群A:ハロゲン、アルキル、アルキルオキシ、アリールオキシ、ヒドロキシ、およびベンジル);

mは1または2;

5

10

pは0または1;および

yは0、1または2]で示される化合物、そのプロドラッグ、それらの製薬上許 15 容される塩またはそれらの溶媒和物。

式(Ic):

$$R^{5}$$
 $(CH_{2})_{r}$
 $(CH_{2})_{x}$
 $N-SO_{2}-Ar$
 (Ic)

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^2 は水素またはアルキル;

20 R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{11}$ (式中、 R^{11} はアルキル)で示される基;

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチエニル、または置換基群B

により1または2ヶ所以上置換されていてもよいジベンゾチエニル (置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル);

mは1、2または3;

5 rは0または1;および

xは0、1または2]で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

式(Id):

$$R^5$$
 $(CH_2)_y$
 $N-SO_2-Ar$ (Id)

10 [式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル;

 R^{5} 、 R^{6} および R^{7} はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{11}$ (式中、 R^{11} はアルキル)で示される基;

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチェニル、または置換基群Bにより1または2ヶ所以上置換されていてもよいジベンゾチェニル(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル);

mは1または2;および

20 yは1または2]で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

式(Ie):

15

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{11}$ (式中、 R^{11} はアルキル)で示される基;

Yは水素、アルキル、アルケニル、フェニル、置換基群Aにより1または2ヶ所 以上置換されていてもよいフェニルアルキル、置換基群Aにより1または2ヶ所 以上置換されていてもよいナフチルアルキル、または置換基群Aにより1または2ヶ所以上置換されていてもよいチエニルアルキル(置換基群A:アルキル、アルキルオキシ、およびニトロ);および

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチェニル、または置換基群Bにより1または2ヶ所以上置換されていてもよいジベンゾチェニル(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル)]で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

本明細書中、「溶媒和物」とは、例えば有機溶媒との溶媒和物、水和物等を包含する。有機溶媒との溶媒和物を形成する時は、任意の数の有機溶媒分子と配位していてもよい。水和物を形成する時は、任意の数の水分子と配位していてもよい。水和物が好ましい。

20 「本発明化合物」という場合には、製薬上許容される塩、またはその溶媒和物も包含される。例えば、アルカリ金属(リチウム、ナトリウム、カリウム等)、アルカリ土類金属(マグネシウム、カルシウム等)、アンモニウム、有機塩基およびアミノ酸との塩、または無機酸(塩酸、臭化水素酸、リン酸、硫酸等)、および有機酸(酢酸、クエン酸、マレイン酸、フマル酸、ベンゼンスルホン酸、パラトルエンスルホン酸等)との塩が挙げられる。これらの塩は、通常行われる方法によって形成させることができる。

プロドラッグは、化学的または代謝的に分解できる基を有する本発明化合物の

誘導体であり、加溶媒分解によりまたは生理学的条件下でインビボにおいて薬学 的に活性な本発明化合物となる化合物である。適当なプロドラッグ誘導体を選択 する方法および製造する方法は、例えばDesign of Prodrugs, Elsevier, Amsterdam 1985に記載されている。本発明化 合物がカルボキシル基を有する場合は、もとになる酸性化合物と適当なアルコー ルを反応させることによって製造されるエステル誘導体、またはもとになる酸性 化合物と適当なアミンを反応させることによって製造されるアミド誘導体のよう なプロドラッグが例示される。プロドラッグとして特に好ましいエステルとして は、メチルエステル、エチルエステル、n-プロピルエステル、イソプロピルエ ステル、nーブチルエステル、イソブチルエステル、tertーブチルエステル、 モルホリノエチルエステル、N,N-ジエチルグリコールアミドエステル等が挙 げられる。本発明化合物がヒドロキシル基を有する場合は、例えばヒドロキシル **基を有する化合物と適当なアシルハライドまたは適当な酸無水物とを反応させる** ことに製造されるアシルオキシ誘導体のようなプロドラッグが例示される。プロ ドラッグとして特に好ましいアシルオキシとしては、一〇〇〇〇2H5、一〇〇〇 (t-Bu), $-OCOC_{15}H_{31}$, -OCO(m-COONa-Ph), -O $COCH_2CH_2COONa$, $-OCOCH(NH_2)CH_3$, $-OCOCH_2N(CC)$ H₃) 2等が挙げられる。本発明化合物がアミノ基を有する場合は、アミノ基を有 する化合物と適当な酸ハロゲン化物または適当な混合酸無水物とを反応させるこ とにより製造されるアミド誘導体のようなプロドラッグが例示される。プロドラ ッグとして特に好ましいアミドとしては、 $-NHCO(CH_2)_{20}CH_3$ 、-NHCOCH (NH2) CH3等が挙げられる。

5

10

15

20

25

また、本発明化合物は特定の異性体に限定するものではなく、全ての可能な異性体やラセミ体を含むものである。

本発明化合物は後述する実験例の記載の通り、優れたCRTH2受容体拮抗作用を示す。したがって、本発明医薬組成物は、好酸球が関与していると考えられるアレルギー性疾患、例えば喘息、アレルギー性鼻炎、アレルギー性皮膚炎、丘

疹性皮膚炎(糸状虫症など)、脈管炎、多発性動脈炎、皮膚好酸性肉芽腫、自己免疫疾患(例えば多発性硬化症、移植片拒絶など)、好酸球性肺症、組織球増殖症(Histiocytosis)、肺炎、肺払子菌(アスペルギルス)症、胸膜炎、サルコイドーシス、特発性肺線維症、好酸球増多症、フィラリア症、住血吸虫症、旋毛虫症、コクシジオイデス症、結核、気管支癌、リンパ腫、ホジキン病等の疾患の予防および/または治療剤として使用しうる。

本発明化合物を、上記の疾患の治療を目的としてヒトに投与する場合は、散剤、顆粒剤、錠剤、カプセル剤、丸剤、液剤等として経口的に、または注射剤、坐剤、経皮吸収剤、吸入剤等として非経口的に投与することができる。また、本化合物の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤等の医薬用添加剤を必要に応じて混合し、医薬製剤とすることができる。注射剤の場合には、適当な担体と共に滅菌処理を行って製剤とする。

投与量は疾患の状態、投与ルート、患者の年齢、または体重によっても異なるが、成人に経口で投与する場合、通常 $0.1\sim100\,\mathrm{mg/kg/H}$ であり、好ましくは $1\sim20\,\mathrm{mg/kg/H}$ である。

実施例

5

10

15

以下に実施例および試験例を挙げて本発明をさらに詳しく説明するが、本発明 はこれらにより限定されるものではない。

20 実施例中、以下の略号を使用する。

Me:メチル

Et:エチル

iPr:イソプロピル

Ph:フェニル

25 Boc:t-ブトキシカルボニル

THF:テトラヒドロフラン

 $MeOH: \mathcal{A}\mathcal{A}\mathcal{A}$

naphthy1: ナフチル

Benzyl:ベンジル

Thienyl: チエニル

Bipheny1: ビフェニル

5 Dibenzothiophene:ジベンゾチオフェン

実施例1 化合物 I a - 9、化合物 I a - 51

第
$$3$$
 工程
 $Y = H : Ia-9$
 $Y = CO_2H$
 $Y = CO_2H$
 $Y = CO_2H$

10 第1工程

15

20

トリプタミン(1)(20g、0.125mol)のジオキサン(160mL)ー水(80mL)溶液に、氷冷下、炭酸ナトリウム(39.7g、0.374mol)と二炭酸ジーtertーブチル(31.5mL、0.137mol)のジオキサン(20mL)溶液を加え、2.5時間攪拌した。反応混合物に2mol/上塩酸を加えた後、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄、乾燥、濃縮し、42.49gの残渣を得た。このうち7.0gをメチルエチルケトン(150mL)に溶解し、炭酸カリウム(11.15g、80.7mmol)、ブロモ酢酸メチル(10.2mL、0.108mol)を加え、48時間加熱還流した。酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、2:1)で精製し、化合物(2)(4.57g;収率51%)を得た。

第2工程

化合物(2)(1.5g、4.5mmol)の塩化メチレン(10mL)溶液に、トリフルオロ酢酸(10mL)を加え、室温で10分間攪拌した。反応混合物を減圧濃縮した後、2mol/L炭酸ナトリウム水溶液で中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、乾燥、濃縮し、983mgの残渣を得た。このうち120mgを塩化メチレン(3mL)溶液に溶解し、トリエチルアミン(0.108mL、0.775mmol)、塩化4-フルオロベンゼンスルホニル(121mg、0.622mmol)を加え、室温で2時間攪拌した。酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、3:2)で精製し、化合物(3)(99mg;収率46%)を得た。

第3工程

5

10

15

20

25

化合物(3)(99mg、0.254mmo1)のMeOH(1.5mL)-THF(1.5mL)溶液に2mo1/L水酸化ナトリウム溶液(0.76mL、1.52mmo1)を加え、室温で5.5時間攪拌した。希塩酸を加え酸性とした後、酢酸エチルで抽出し、有機層を水および飽和食塩水で洗浄、乾燥、濃縮し、化合物Ia-9(79mg;収率83%)を得た。物理恒数は表12に示す。第4工程

36

実施例2 化合物 I b - 2 0 、化合物 I b - 2 9

5 第1工程

10

15

20

特開昭 62-198659 に記載されている(3R) -3-rミノ-1,2,3,4 -テトラヒドロカルバゾール(4)(3.33g、17.9mmo1)の 1,4 -ジオキサン(33mL)溶液に二炭酸ジー tert-ブチル(4.1g、18.8mmo1)を加え室温で2時間攪拌した。減圧濃縮し得られた残渣をメチルエチルケトン(52mL)に溶解し、炭酸カリウム(4.52g、32.7mmo1)、塩化ベンジルトチエチルアンモニウム(0.74g、3.26mm o1)、ブロモ酢酸メチル(5.00g、32.7mmo1)を加え4時間加熱 還流した。不溶物を濾過し減圧濃縮、残渣を酢酸エチルで希釈し水洗、乾燥、濃縮した。残渣をヘキサンーエーテルから結晶化し、化合物(5)(4.36g;収率 68%、融点 127-130%)を得た。

第2工程

化合物(5)(4.25g、11.9mmol)の酢酸エチル(12mL)溶液に4mol/L塩酸-酢酸エチル溶液(12mL、48.0mmol)を加え、室温で2時間攪拌した。析出した結晶を濾過、酢酸エチルで洗浄し化合物(6)(3.44g、収率98%)を得た。

第3工程

化合物 (6) (295 mg、1.0 mmol) のTHF (6 mL) 溶液にトリ

エチルアミン (0.30g、3.0 m m o 1)、塩化 2- チオフェンスルホニル (296 m g、1.62 m m o 1)を加え、室温で 16時間攪拌した。反応液を水で希釈し、酢酸エチルで抽出、有機層を希塩酸、水で洗浄、硫酸マグネシウムで乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー (ヘキサンー酢酸エチル、1:1)で精製し、化合物 (7) (379 m g; 収率 94%)を得た。

第4工程

5

10

化合物 (7) (371 mg、0.917 mmol)のMeOH(1.2 mL) - THF(1.2 mL)溶液に、4 mol/L水酸化ナトリウム水溶液(0.6 mL、2.4 mmol)を加え、室温で2時間攪拌した。反応液を水で希釈し、希塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水で洗浄した。硫酸マグネシウムで乾燥、減圧濃縮し、化合物(+)-Ib-20(343 mg;収率91%)を得た。

第5工程

15 化合物(7)(243mg、0.622mmo1)のジメチルホルムアミド(2mL)溶液に、炭酸カリウム(0.26g、1.87mmo1)、ヨウ化メチル(0.27g、1.90mmo1)を加え、室温で2.5時間攪拌した。反応液を酢酸エチルで希釈し、水で洗浄、乾燥、減圧濃縮した後、MeOH(1mL)-THF(1mL)に溶解した。4mo1/L水酸化ナトリウム水溶液(0.4mu)を加え、室温で3時間攪拌した。反応液を水で希釈し、希塩酸を加え酸性とした後、酢酸エチルで抽出、抽出液を水で洗浄、乾燥、濃縮した。得られた残渣をヘキサンー酢酸エチルから結晶化し、化合物(+)-Ib-29(217mg;収率88%)を得た。物理恒数は以下の表に示す。

25 実施例 3 化合物 I c - 1 4

第1工程

5

10

15

20

化合物(8)(610mg、3.28mmo1、シンセシス,443(1997)に記載)のTHF(6mL)溶液にトリエチルアミン(0.50g、4.92mmo1)、塩化4-フルオロベンゼンスルホニル(0.70g、3.60mmo1)を加え、室温で1.5時間攪拌した。反応液を水で希釈し、酢酸エチルで抽出、有機層を希塩酸、水で順次洗浄、乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー(トルエン-酢酸エチル、5:1)で精製し、化合物(9)(856mg;収率76%)を得た。

第2工程

化合物(9)(800mg、2.32mmol)のメチルエチルケトン(8mL)溶液に、炭酸カリウム(0.96g、6.96mmol)、塩化ベンジルトチエチルアンモニウム(106mg、0.464mmol)、プロモ酢酸メチル(1.06g、6.96mmol)を加え2.5時間加熱還流した。反応液を水で希釈し、トルエンで抽出、抽出液を水で洗浄、乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー(トルエンー酢酸エチル、5:1)で精製した。生成物をMeOH(2.8ml)ーTHF(1.4ml)に溶解した。4mol/上水酸化ナトリウム水溶液(1.4ml、5.6mmol)を加え、室温で2時間攪拌した。反応液を水で希釈し希塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水で洗浄、乾燥、濃縮した。残渣をヘキサンー酢酸エチルで抽出し、抽出液を水で洗浄、乾燥、濃縮した。残渣をヘキサンー酢酸エチルから結晶化し、化合物Ic-14(717mg;収率79%)を得た。物理恒数は以下の表に示す。

25 実施例 4 化合物 I d - 2

第1工程

5

10

15

20

25

ジャーナル オブ オーガニックケミストリー 62 2676 (1997) に記載の方法に準じて調製した化合物 (10) (1.25g、4.59mmo1) のメチルエチルケトン (20mL) 溶液に、炭酸カリウム (1.9g、13.77mmo1)、ブロモ酢酸メチル (1.74mL、18.36mmo1)、塩化ベンジルトリエチルアンモニウム (209mg、0.92mmo1) を加え、20時間加熱還流した。酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、乾燥、濃縮後、残渣をシリカゲルクロマトグラフィー (ヘキサンー酢酸エチル、3:1)で精製し、化合物 (11) (1.18g; 収率75%) を得た。

第2工程

化合物(11)(355mg、1.03mmol)のエーテル(0.5mL)溶液に、4mol/L塩酸一酢酸エチル溶液(2.06mL,8.24mmol)を加え、室温で3時間攪拌した。析出した塩酸塩をろ過、エーテルで洗浄し、THF(3mL)に溶解した。この溶液にトリエチルアミン(0.37mL、2.66mmol)、塩化4-フルオロベンゼンスルホニル(365mg、1.88mmol)を加え、室温で16時間攪拌した。酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、2:1)で精製した。生成物をMeOH(8mL)-THF(4mL)に溶解した。1mol/L水酸化ナトリウム溶液(1.8mL、1.8mmol)を加え、室温で16時間攪拌した。反応混合物を水で希釈し、エーテルで洗浄した。水層に希塩酸を加え、析出した結晶をろ過、水洗、乾燥し、化合物Id-2(192mg;収率48%)を得た。物理恒数は以下の表に示す。

実施例 5 化合物 I e - 2、化合物 I e - 5

$$H_{CO_2Me}$$
 第1工程 第2工程 第2工程 第2工程 第2工程 13 第2工程 Y= Me: Ie-5

5 第1工程

特開平8-169879に記載の方法に準じて調製した化合物(12)(509mg、2mmol)のTHF(10mL)溶液に、トリエチルアミン(0.84mL、6mmol)、塩化4-フルオロベンゼンスルホニル(506mg、2.6mmol)を加え、室温で19時間攪拌した。酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(トルエン-酢酸エチル、4:1)で精製し、化合物(13)(725mg;収率88%)を得た。

第2工程

10

化合物(13)(309mg、0.75mmol)のMeOH(6mL)-T

HF(3mL)溶液に1mol/L水酸化ナトリウム溶液(1.9mL、1.9mmol)を加え、室温で21時間攪拌した。希塩酸を加え酸性とした後、酢酸エチルで抽出し、有機層を水および飽和食塩水で洗浄、乾燥、濃縮した。残渣を酢酸エチルーヘキサンより結晶化し、化合物Ie-2(287mg;収率96%)を得た。物理恒数は以下の表に示す。

20 第3工程

化合物(13)(363mg、0.88mmol)のN,N-ジメチルホルムアミド(3.6ml)溶液に、ヨウ化メチル(250mg、1.76mmol)、炭酸カリウム(182mg、1.32mmol)を加え、室温で19時間攪拌した。反応混合物を水に注ぎ、酢酸エチルーへキサン(1:2)で抽出、有機層を

飽和食塩水で洗浄、乾燥、濃縮した。残渣をMeOH-THF(2:1)に溶解し、1mol/L水酸化ナトリウム溶液(1.8mL、1.8mmol)を加え、室温で26時間攪拌した。水で希釈し、エーテルで洗浄した後、水層に希塩酸を加え酸性とし、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、乾燥、濃縮した後、残渣をヘキサンより結晶化し、化合物Ie-5(293mg;収率84%)を得た。物理恒数は以下の表に示す。

実施例 6 化合物 I h-1

第1工程

10

15

5

パラニトロフェニルヒドラジン(12)(15.0g、97.9mmol)とシクロヘキサノン(10.15ml、97.9mmol)の酢酸(45ml)混合液を60℃で20分加熱攪拌した。次に、反応混合物に濃塩酸を15ml加え、さらに、1時間30分加熱還流した。反応混合物に水を50ml加え、10分間加熱還流して、室温まで冷却した。析出した結晶をろ過、水でよく洗浄後、エタノールー水から再結晶し6-ニトロテトラヒドロカルバゾール(13)を17.0g(収率80%)を得た。

20 第2工程

化合物(13)(6.80g、31.44mmol)、ブロモ酢酸メチル(8.

93m1、94.32mmo1)、炭酸カリウム(13g、94mmo1)、塩 化ベンジルトリエチルアンモニウム(1.43g、6.28mmo1)のメチル エチルケトン(100m1)の混合液を1時間加熱還流した。減圧濃縮し得られ た残渣を酢酸エチルで希釈し水洗、乾燥、濃縮した。残渣を酢酸エチルーヘキサ ンから再結晶し、化合物(14)(7.93g;収率87%)を得た。

第3工程

5

10

化合物(14)(7.92g、27.47mmol)、水酸化パラジウム(20%wt、1.0g)のTHF(70ml)及びMeOH(14ml)の混合液を水素雰囲気下に、7時間攪拌した。触媒を除いた後、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、1:1)で精製し、化合物(15)(5.89g;収率83%)を得た。

第4工程

15 化合物 (15) (3.89g、15.0mmol)の THF (30ml)溶液にトリエチルアミン(4.18ml、30mmol)、塩化4-フルオロベンゼンスルフォニル(3.07g、15.8mmol)を加え、室温で1時間攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出、有機層を水洗、乾燥、濃縮した。得られた残渣を酢酸エチルーヘキサンから結晶化し、化合物(16)(5.93g; 20 収率95%)を得た。

第5工程

25

化合物 (16) (350 mg、0.84 mmo1)、MeOH (4 m1) - TH F (2 m1) 溶液に2 mo1/L水酸化ナトリウム水溶液 (1 mL、2 mmo1) を加え、室温で15時間攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出した。有機層を水洗、乾燥、濃縮した。得られた残渣を酢酸エチルーへキサンから結晶化し、化合物 I h-1 (268 mg;収率79%)を得た。物理恒数は以下

43

の表に示す。

実施例 $1\sim 6$ に記載の方法に従って、以下の表に示す化合物を合成することができる。

(表1)

 R^{5} R^{6} R^{6} R^{7} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15}

			, , ,					''B15	`R¹	
No	\mathbb{R}^1	R ²	\mathbb{R}^4	$ m R^5$	R^6	\mathbb{R}^7	$ m R^{15}$	n	Y	Ar
Ia-1	COOH	Н	H	Н	Н	Н	Н	1	Н	C_6H_5
Ia-2	соон	Н	Н	Н	H	Н	H	1	H	4-F-C ₆ H ₄
Ia-3	соон	Н	Н	H	Н	Н	Н	1	Me	C_6H_5
Ia-4	соон	Н	Н	H	H	Н	Н	1	Me	$4-F-C_6H_4$
Ia-5	СООН	Н	н	H	H	Н	Н	1	$\mathrm{CH_{2}C_{6}H_{5}}$	C_6H_5
Ia-6	соон	Н	Н	Н	H	H	Н	1	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-F-C_6H_4$
Ia-7	соон	Н	Н	H	H	н	H	2	H	C_6H_5
Ia-8	СООН	Н	H	H	H	H	Н	2	H	2-F-C ₆ H ₄
Ia-9	COOH	Н	H	H	H	Н	Н	2	H	$4-F-C_6H_4$
Ia-10	соон	н	Н	Н	Н	Н	Н	2	Н	$2 ext{-Me}$ - $C_6 ext{H}_4$
Ia-11	соон	н	н	Н	H	Н	H	2	H	$\begin{array}{c c} 4\text{-Me}\text{-} \\ C_6H_4 \end{array}$
Ia-12	соон	н	н	Н	Н	Н	Н	2	H	$\begin{array}{c c} 4\text{-OMe-} \\ C_6 H_4 \end{array}$
Ia-13	COOH	Н	н	Н	H	Н	H	2	H	2-thienyl
Ia-14	СООН	Н	H	Н	H	Н	Н	2	HH	3-thienyl
Ia-15	соон	н	н	Н	Н	Н	Н	2	H	4-F- biphenyl
Ia-16	соон	H	н	Н	Н	Н	Н	2	H	$C_6H_4-4-OC_6H_5$
Ia-17	соон	н	н	Н	Н	Н	Н	2	Н	dibenzoth iophene- 3-yl
Ia-18	соон	Me	Н	Н	H	Н	Н	2	H	C_6H_5
Ia-19	COOH	Me	Н	Н	H	H	Н	2	H	$2\text{-F-C}_6\mathrm{H}_4$
Ia-20	COOH	Me	H	H	H	Н	Н	2	H	4-F-C ₆ H ₄
Ia-21	СООН	Me	H	Н	Н	Н	Н	2	Н	2-thienyl
Ia-22	СООН	Me	Н	Н	Н	Н	Н	2	H	3-thienyl
Ia-23	COOH	Н	н	Н	H	Me	Н	2	H	C_6H_5
Ia-24	COOH	Н	н	Н	Н	Me	Н	2	H	$2\text{-F-C}_6\mathrm{H}_4$
Ia-25	СООН	H	H	Н	Н	Me	Н	2	H	$4-F-C_6H_4$

(表2)

 R^{5} R^{6} R^{7} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15}

	^R _B 15 ∕ R ¹											
No	\mathbb{R}^1	R ²	\mathbb{R}^4	R^5	$ m R^6$	R ⁷	\mathbb{R}^{15}	n	Y	Ar		
Ia-26	СООН	Н	H	H	H	Me	H	2	H	$^{4 ext{-}OMe}$ - $^{6} ext{H}_{4}$		
Ia-27	COOH	H	H	H	H	Me	H	2	H	3-thienyl		
Ia-28	СООН	H	Н	ОМе	H	Н	H	2	H	4-F-C ₆ H ₄		
Ia-29	СООН	H	H	ОМе	H	H	H	2	H	2-thienyl		
Ia-30	СООН	H	H	Cl	H	Н	H	2	Н	C_6H_5		
Ia-31	СООН	H	Н	Cl	H	Н	H	2	Н	2-F-C ₆ H ₄		
Ia-32	СООН	H	Н	Cl	H	Н	Н	2	Н	4-F-C ₆ H ₄		
Ia-33	соон	Н	Н	Cl	Н	Н	Н	2	Н	$\begin{array}{c} ext{4-OMe-} \\ ext{C}_6 ext{H}_4 \end{array}$		
Ia-34	СООН	H	H	F	Н	Н	Н	2	H	C_6H_5		
Ia-35	соон	Н	Н	F	н	Н	Н	2	Н	2-F-C ₆ H ₄		
Ia-36	СООН	Н	Н	F	Н	Н	Н	2	H	4-F-C ₆ H ₄		
Ia-37	СООН	Н	Н	Н	F	Н	Н	2	H	4-F-C ₆ H ₅		
Ia-38	СООН	H	Н	Н	Н	Н	Н	2	Me	C_6H_5		
Ia-39	СООН	Н	Н	Н	Н	Н	Н	2	Me	4-F-C ₆ H ₄		
Ia-40	СООН	Н	Н	Н	Н	Н	Н	2	Me	3-thienyl		
Ia-41	СООН	Me	Н	H	H	Н	Н	2	Me	4-F-C ₆ H ₄		
Ia-42	соон	Н	Н	Н	H	Me	Н	2	Me	4-F-C ₆ H ₄		
Ia-43	СООН	H	Н	ОМе	Н	Н	Н	2	Me	$4-F-C_6H_4$		
Ia-44	СООН	Н	H	Cl	Н	Н	н	2	Me	4-F-C ₆ H ₄		
Ia-45	СООН	Н	Н	F	H	${ m H}$	H	2	Me	4-F-C ₆ H ₄		
Ia-46	СООН	Н	H	H	F	Н	Н	2	Me	4-F-C ₆ H ₅		
Ia-47	СООН	Н	Н	Н	Н	Н	Н	2	$CH_2CH=CH$	4-F-C ₆ H ₄		
Ia-48	СООН	Н	н	н	Н	H	н	2	. iPr	4-F-C ₆ H ₄		
Ia-49	СООН	H	н	Н	Н	H	Н	2	$\mathrm{C_6H_5}$	4-F-C ₆ H ₄		
Ia-50	СООН	Н	Н	Н	Н	Н	н	2	$\mathrm{CH_{2}C_{6}H_{5}}$	C_6H_5		
Ia-51	COOH	H	H	Н	Н	Н	H	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄		
Ia-52	CONH Ms	Н	Н	Н	Н	Н	Н	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄		

(表3)

 R^{5} R^{6} R^{7} R^{7} R^{7} R^{2} R^{7}

	R ₁₅ ^R ¹											
No	\mathbb{R}^1	R ²	\mathbb{R}^4	\mathbb{R}^{5}	$ m R^6$	\mathbb{R}^7	R^{15}	n	Y	Ar		
Ia-53	соон	н	H	Н	Н	H	H	2	$\mathrm{CH_{2}C_{6}H_{5}}$	$\begin{array}{c} ext{4-OMe-} \\ ext{C}_6 ext{H}_4 \end{array}$		
Ia-54	СООН	H	H	H	H	H	H	2	$\mathrm{CH_{2}C_{6}H_{5}}$	3-thienyl		
Ia-55	СООН	Me	Н	Н	Н	H	Н	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄		
Ia-56	соон	H	Н	Н	H	Me	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-57	СООН	H	H	ОМе	H	H	Н	2	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-F-C_6H_4$		
Ia-58	соон	H	Н	Cl	H	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-59	соон	H	Н	F	H	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-60	соон	Н	Н	Н	\mathbf{F}	Н	H	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₅		
Ia-61	соон	н	Н	Н	Н	Н	Н	2	$\mathrm{CH_{2}C_{6}H_{4}\text{-}2\text{-}}$ Me	4-F-C ₆ H ₄		
Ia-62	соон	н	Н	Н	H	Н	Н	2	$CH_2C_6H_4$ -4- OMe	4-F-C ₆ H ₄		
Ia-63	COOH	н	H	H	H	Н	H	2	$CH_2C_6H_4$ -4- NO_2	4-F-C ₆ H ₄		
Ia-64	соон	Н	Н	Н	H	H	Н	2	CH ₂ -1- naphthyl	4-F-C ₆ H ₄		
Ia-65	соон	Н	Н	Н	H	Н	H	2	CH ₂ -2- thienyl	4-F-C ₆ H ₄		
Ia-66	соон	Н	Н	Н	Н	Н	Н	2	CH ₂ CH ₂ C ₆ H	4-F-C ₆ H ₄		
Ia-67	COOH	H	H	H	Н	H	H	3	H	C_6H_5		
Ia-68	соон	H	Н	H	H	H	H	3	H	$2 ext{-} ext{F-} ext{C}_6 ext{H}_4$		
Ia-69	COOH	H	H	H	Н	H	H	3	H	$4-F-C_6H_4$		
Ia-70	соон	Н	н	Н	Н	H	Н	3	H	$^{2 ext{-Me-}}_{ ext{C}_{6} ext{H}_{4}}$		
Ia-71	соон	Н	H	Н	Н	Н	H	3	H	$^{4 ext{-Me-}}_{ ext{C}_{6} ext{H}_{4}}$		
Ia-72	соон	Н	Н	Н	H	Н	Н	3	H	$^{4 ext{-}\mathrm{OMe} ext{-}}_{\mathrm{6H}_{4}}$		
Ia-73	COOH	Н	\mathbf{H}	H	H	H	H	3	H	2-thienyl		
Ia-74	соон	Н	H	Н	Н	Н	Н	3	Н	${ m C_6H_4 ext{-}4 ext{-}}\ { m OC_6H_5}$		
Ia-75	COOH	Me	\mathbf{H}	Н	H	H	H	3	H	$\mathrm{C_6H_5}$		
Ia-76	COOH	Me	Н	Н	Н	H	Н	3	H	4-F-C ₆ H ₄		
Ia-77	COOH	Н	Н	Cl	Н	н	Н	3	Н	C_6H_5		
Ia-78	COOH	H	Н	Cl	Н	Н	Н	3	Н	2-F-C ₆ H ₄		

(表4)

 R^{5} R^{6} R^{7} R^{7} R^{15} R^{15}

								R/ R ¹	5^R ¹	
No	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^4	R ⁵	R ⁶	\mathbb{R}^7	R^{15}	n	Y	Ar
Ia-79	СООН	H	H	Cl	Н	H	Н	3	H	4-F-C ₆ H ₄
Ia-80	соон	H	H	Н	Н	н	H	3	Me	C_6H_5
Ia-81	СООН	H	Н	Н	Н	H	H	3	Me	4-F-C ₆ H ₄
Ia-82	СООН	Н	H	Н	Н	Н	Н	3	Me	3-thienyl
Ia-83	СООН	Me	H	Н	Н	Н	Н	3	Me	4-F-C ₆ H ₄
Ia-84	соон	H	Н	H	Н	Н	Н	3	$\mathrm{CH_{2}C_{6}H_{5}}$	C_6H_5
Ia-85	COOH	H	Н	Н	Н	Н	Н	3	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ia-86	СООН	Н	H	Н	H	H	H	3	$\mathrm{CH_{2}C_{6}H_{5}}$	3-thienyl
Ia-87	соон	н	Н	Н	Н	Н	Н	2	CH ₂ CH ₂ C ₆ H	$^{4 ext{-Me-}}_{ ext{C}_{6} ext{H}_{4}}$
Ia-88	COOH	Н	H	H	Н	H	Н	2	H	4-Cl-C ₆ H ₄
Ia-89	СООН	н	Н	F	Н	Н	н	2	H	$^{ ext{4-OMe-}}_{ ext{C}_{6} ext{H}_{4}}$
Ia-90	соон	H	Н	F	Н	H	Н	2	Н	2-thienyl
Ia-91	СООН	Н	Н	Н	Н	Н	Н	2	$CH_2CH_2C_6H$	2-thienyl
Ia-92	СООН	н	н	Cl	Н	H	Н	2	$CH_2CH_2C_6H$	4-F-C ₆ H ₄
Ia-93	соон	Н	H	Н	Н	Н	Н	2	$CH_2CH=CH$ C_6H_5	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ia-94	соон	Н	Н	Н	Н	H	H	2	$\mathrm{CH_{2}CH_{2}C}$ $\mathrm{H_{2}C_{6}H_{5}}$	$4-F-C_6H_4$
Ia-95	соон	н	H	F	H	H	H	2	Н	$^{4 ext{-Me-}}_{ ext{c}_{6} ext{H}_{4}}$
Ia-96	СООН	H	H	F	H	H	H	2	H	2- naphthyl
Ia-97	соон	н	Н	F	Н	H	Н	2	H	$^{4 ext{-NO}_2 ext{-}}_{ ext{C}_6 ext{H}_4}$
Ia-98	СООН	н	Н	F	Н	H	Н	2	H	1- naphthyl
Ia-99	соон	н	Н	F	Н	Н	Н	2	Н	$^{ ext{4-CN-}}_{ ext{C}_{ ext{6}} ext{H}_{ ext{4}}}$
Ia-100	COOH	Н	H	ОН	H	H	H	2	Н	$2 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ia-101	COOH	Н	F	Н	H	H	Н	2	Н	$4-F-C_6H_4$
Ia-102	COOH	Н	F	Н	Н	Н	Н	2	Me	4-F-C ₆ H ₄
Ia-103	COOH	H	F	Н	Н	Н	Н	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ia-104	COOH	H	H	Cl	Н	Н	Me	2	Н	4-F-C ₆ H ₄

$$R^{5}$$
 R^{6}
 R^{7}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

No	R ¹	R^2	\mathbb{R}^4	\mathbb{R}^{5}	R^6	\mathbb{R}^7	$ m R^{15}$	n	Y	Ar
Ia-105	СООН	Н	H	Cl	H	Н	Me	2	Me	4-F-C ₆ H ₄
Ia-106	СООН	H	н	Cl	H	Н	Me	2	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-F-C_6H_4$

(CH₂)_y,

 R^5

(表 7)
$$\begin{array}{c} R^{5} \\ R^{6} \\ R^{7} \\ R^{1} \end{array}$$
 (CH₂)_y (CH₂)_p -N-SO₂ -Ar

No	\mathbb{R}^1	$ m R^{5}$	R ⁶	$\frac{R}{R^7}$	у	m	р	Y	Ar
Ib-21	СООН	H	H	Н	1	2	0	H	3-thienyl
Ib-22	соон	Н	H	Н	1	2	0	Н	5-benzyl-2- thienyl
Ib-23	СООН	H	H	H	1	2	0	Me	C_6H_5
Ib-24	СООН	H	H	H	1	2	0	Me	2-F-C ₆ H ₄
Ib-25	СООН	Н	H	H	1	2	0	Me	4-F-C ₆ H ₄
Ib-26	СООН	Н	Н	H	1	2	0	Me	4-Cl-C ₆ H ₄
Ib-27	соон	H	H	Н	1	2	0	Me	$4-\text{Me-C}_6\text{H}_4$
Ib-28	соон	Н	Н	H	1	2	0	Me	$^{4 ext{-OMe-}}_{ ext{C}_{6} ext{H}_{4}}$
Ib-29	соон	H	H	H	1	2	0	Me	2-thienyl
Ib-30	СООН	Н	H	H	1	2	0	Me	3-thienyl
Ib-31	соон	Н	Н	H	1	2	0	Me	5-benzyl-2- thienyl
Ib-32	соон	H	H	H	1	2	0	Et	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ib-33	соон	H	H	H	1	2	0	Εt	4-OMe - $C_6\mathrm{H}_4$
Ib-34	СООН	H	H	H	1	2	0	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-\mathrm{Me-C_6H_4}$
Ib-35	соон	Cl	H	H	1	2	0	Н	$\mathrm{C_6H_5}$
Ib-36	СООН	Cl	H	H	1	2	0	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ib-37	соон	C1	H	Н	1	2	0	Н	$4 ext{-Me-C}_6 ext{H}_4$
Ib-38	соон	Cl	Н	Н	1	2	0	Н	$^{4 ext{-}\mathrm{OMe} ext{-}}_{\mathrm{6H}_{4}}$
Ib-39	СООН	C1	H	H	1	2	0	H	3-thienyl
Ib-40	СООН	C1	H	H	1	2	0	Me	C_6H_5
Ib-41	СООН	C1	Н	H	1	2	0	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ib-42	соон	Cl	Н	Н	1	2	0	Me	$4-\mathrm{Me-C_6H_4}$
Ib-43	соон	Cl	Н	Н	1	2	0	Me	$^{4 ext{-}OMe ext{-}}_{6 ext{H}_4}$
Ib-44	СООН	Cl	H	H	1	2	0	Me	3-thienyl
Ib-45	соон	Cl	Н	Н	1	2	0	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-F-C_6H_4$
Ib-46	соон	F	Н	Н	1	2	0	Н	4-F-C ₆ H ₄
Ib-47	СООН	F	Н	Н	1	2	0	Me	4-F-C ₆ H ₄

(表 8)
$$R^{5}$$
 $(CH_{2})_{y}$ $(CH_{2})_{p}$ $(CH$

No					_ [7					
Ib-49	No	\mathbb{R}^1	$ m R^5$	R ⁶	R ⁷	у	m	p	Y	Ar
Ib-50	Ib-48	СООН	F	H	H	1	2	0	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ib-51	Ib-49	СООН	H	Н	H	2	1	0	H	C_6H_5
Ib-52	Ib-50	СООН	Н	Н	Н	2	1	0	H	$2 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ib-53	Ib-51	СООН	Н	Н	Н	2	1	0	H	4-F-C ₆ H ₄
Ib-54	Ib-52	СООН	Н	Н	Н	2	1	0	Н	4-Cl-C ₆ H ₄
Ib-54	Ib-53	соон	H	H	H	2	1	0	Н	4-Me-C ₆ H ₄
Ib-56	Ib-54	СООН	Н	Н	Н	2	1	0	Н	
Ib-57 COOH H H H 2 1 0 Me C ₆ H ₅ Ib-58 COOH H H H H 2 1 0 Me 4-F-C ₆ H ₄ Ib-59 COOH H H H 2 1 0 Me 4-Me-C ₆ H ₄ Ib-60 COOH H H H 2 1 0 Me 2-thienyl Ib-61 COOH H H H 2 1 0 CH ₂ C ₆ H ₅ 4-F-C ₆ H ₄ Ib-62 COOH H H H 2 2 0 H C ₆ H ₅ Ib-63 COOH H H H 2 2 0 H 4-F-C ₆ H ₄ Ib-64 COOH H H H 2 2 0 H 4-Me-C ₆ H ₄ Ib-65 COOH H H H 2 2 0 H 2-t	Ib-55	соон	H	H	H	2	1	0	H	2-thienyl
Ib-58 COOH H H H H 2 1 0 Me 4-F-C ₆ H ₄ Ib-59 COOH H H H H 2 1 0 Me 4-Me-C ₆ H ₄ Ib-60 COOH H H H 2 1 0 Me 2-thienyl Ib-61 COOH H H H 2 1 0 CH ₂ C ₆ H ₅ 4-F-C ₆ H ₄ Ib-62 COOH H H H 2 2 0 H C ₆ H ₅ Ib-63 COOH H H H 2 2 0 H 4-F-C ₆ H ₄ Ib-64 COOH H H H 2 2 0 H 4-Me-C ₆ H ₄ Ib-65 COOH H H H 2 2 0 H 2-thienyl Ib-66 COOH H H H 2 2 0 Me<	Ib-56	соон	H	H	Н	2	1_	0	H	3-thienyl
Ib-59 COOH H H H 2 1 0 Me 4-Me-C6H4 Ib-60 COOH H H H 2 1 0 Me 2-thienyl Ib-61 COOH H H H 2 1 0 CH2C6H5 4-F-C6H4 Ib-62 COOH H H H 2 2 0 H C6H5 Ib-63 COOH H H H 2 2 0 H 4-F-C6H4 Ib-64 COOH H H H 2 2 0 H 4-CI-C6H4 Ib-65 COOH H H H 2 2 0 H 4-Me-C6H4 Ib-66 COOH H H H 2 2 0 H 2-thienyl Ib-67 COOH H H H 2 2 0 Me 4-F-C6H4 Ib-70<	Ib-57	соон	Н	Н	Н	2	1	0	Me	$\mathrm{C_6H_5}$
Ib-60 COOH H H H 2 1 0 Me 2-thienyl Ib-61 COOH H H H H 2 1 0 CH ₂ C ₆ H ₅ 4-F-C ₆ H ₄ Ib-62 COOH H H H 2 2 0 H C ₆ H ₅ Ib-63 COOH H H H 2 2 0 H 4-F-C ₆ H ₄ Ib-64 COOH H H H 2 2 0 H 4-Cl-C ₆ H ₄ Ib-65 COOH H H H 2 2 0 H 4-Me-C ₆ H ₄ Ib-66 COOH H H H 2 2 0 H 2-thienyl Ib-67 COOH H H H 2 2 0 Me C ₆ H ₅ Ib-69 COOH H H H 2 2 0 Me 4-Cl-C	Ib-58	соон	Н	H	Н	2	1	0	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ib-61 COOH H H H 2 1 0 CH ₂ C ₆ H ₅ 4-F-C ₆ H ₄ Ib-62 COOH H H H 2 2 0 H C ₆ H ₅ Ib-63 COOH H H H 2 2 0 H 4-F-C ₆ H ₄ Ib-64 COOH H H H 2 2 0 H 4-Cl-C ₆ H ₄ Ib-65 COOH H H H 2 2 0 H 4-Me-C ₆ H ₄ Ib-66 COOH H H H 2 2 0 H 2-thienyl Ib-67 COOH H H H 2 2 0 Me C ₆ H ₄ Ib-68 COOH H H H 2 2 0 Me 4-F-C ₆ H ₄ Ib-70 COOH H H H 2 2 0 Me 4-Me-C ₆ H ₄	Ib-59	соон	Н	H	H	2	1	0	Me	$4-\mathrm{Me-C_6H_4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-60	соон	Н	Н	H	2	1	0	Me	2-thienyl
Ib-63 COOH H H H 2 2 0 H 4-F-C ₆ H ₄ Ib-64 COOH H H H 2 2 0 H 4-Cl-C ₆ H ₄ Ib-65 COOH H H H 2 2 0 H 4-Me-C ₆ H ₄ Ib-66 COOH H H H 2 2 0 H 2-thienyl Ib-67 COOH H H H 2 2 0 H 2-thienyl Ib-68 COOH H H H 2 2 0 Me C ₆ H ₅ Ib-69 COOH H H H 2 2 0 Me 4-F-C ₆ H ₄ Ib-70 COOH H H H 2 2 0 Me 4-Me-C ₆ H ₄ Ib-71 COOH H H H 2 2 0 Me 4-OMe-C ₆ H ₄	Ib-61	соон	Н	Н	Н	2	1	0	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-62	СООН	Н	н	Н	2	2	0	Н	$\mathrm{C_6H_5}$
Ib-65	Ib-63	соон	Н	Н	H	2	2	0	H	4-F-C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-64	СООН	Н	Н	Н	2	2	0	H	$4\text{-Cl-C}_6\mathrm{H}_4$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-65	СООН	H	Н	Н	2	2	0	Н	4-Me-C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-66	СООН	H	Н	Н	2	2	0	Н	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-67	СООН	Н	Н	Н	2	2	0	Н	2-thienyl
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-68	СООН	Н	Н	H	2	2	0	Me	C_6H_5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-69	соон	Н	Н	H	2	2	0	Me	4-F-C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-70	СООН	Н	Н	H	2	2	0	Me	4-Cl-C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ib-71	соон	Н	Н	H	2	2	0	Me	4-Me-C ₆ H ₄
	Ib-72	соон	Н	Н	Н	2	2	0	Me	
Ib-74 $ \text{COOH} \text{H} \text{H} \text{H} 2 2 0 \text{CH}_2\text{C}_6\text{H}_5 \text{C}_6\text{H}_5$	Ib-73	СООН	H	H	H	2	2	0	Me	2-thienyl
	Ib-74	СООН	H	Н	H	2	2	0	$\mathrm{CH_2C_6H_5}$	C_6H_5

(表 9)
$$\begin{array}{c} R^5 \\ R^6 \\ R^7 \\ R^1 \end{array}$$
 (CH₂)_y (CH₂)_p -N-SO₂ -Ar

		25	TO C	7	Γ_	r—-	Г	~~	
No	R ¹	$\mathbb{R}^{\mathfrak{b}}$	R ⁶	R ⁷	У	m	p	Y	Ar
Ib-75	СООН	H	H	H	2	2	0	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-F-C_6H_4$
Ib-76	СООН	H	H	Н	0	2	1	H	C_6H_5
Ib-77	СООН	H	H	Н	0	2	1	H	$4-F-C_6H_4$
Ib-78	СООН	H	H	Н	0	2	1	H	$4-\text{Cl-C}_6\text{H}_4$
Ib-79	СООН	H	H	H	0	2	1	H	$4 ext{-Me-C}_6 ext{H}_4$
Ib-80	СООН	Н	Н	Н	0	2	1	Н	$^{4 ext{-}\mathrm{OMe} ext{-}}_{\mathrm{6H}_{4}}$
Ib-81	СООН	H	H	Н	0	2	1	Н	2-thienyl
Ib-82	СООН	Н	H	Н	0	2	1	Me	$\mathrm{C_6H_5}$
Ib-83	СООН	H	H	Н	0	2	1	Me	$4\text{-F-C}_6\mathrm{H}_4$
Ib-84	СООН	H	Н	Н	0	2	1	Me	$4-\text{Cl-C}_6\text{H}_4$
Ib-85	СООН	H	H	H	0	2	1	Me	$4 ext{-} ext{Me-} ext{C}_6 ext{H}_4$
Ib-86	СООН	Н	H	H	0	2	1	Me	$^{4 ext{-}\mathrm{OMe} ext{-}}_{\mathrm{6H_{4}}}$
Ib-87	СООН	H	H	H	0	2	1	Me	2-thienyl
Ib-88	СООН	·H	Н	H	0	2	1	$\mathrm{CH_{2}C_{6}H_{5}}$	$\mathrm{C_6H_5}$
Ib-89	СООН	H	H	Н	0	2	1	$\mathrm{CH_{2}C_{6}H_{5}}$	$4\text{-F-C}_6\mathrm{H}_4$
Ib-90	СООН	Н	Н	H	1	1	1	Н	$\mathrm{C_6H_5}$
Ib-91	СООН	H	H	H	1	1	1	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ib-92	СООН	Н	Н	H	1	1	1	Н	$4-\mathrm{Cl-C_6H_4}$
Ib-93	СООН	H	Н	H	1	1	1	Н	$4 ext{-Me-C}_6 ext{H}_4$
Ib-94	СООН	Н	H	Н	1	1	1	Н	$^{ m 4-OMe-}_{ m 6H_4}$
Ib-95	СООН	H	H	H	1	1	1	H	2-thienyl
Ib-96	СООН	Н	Н	Н	1	1	1	Me	C_6H_5
Ib-97	СООН	H	Н	Н	1	1	1	Me	4-F-C ₆ H ₄
Ib-98	СООН	H	Н	Н	1	1	1	Me	4-Cl-C ₆ H ₄
Ib-99	СООН	Н	Н	Н	1	1	1	Me	4-Me-C ₆ H ₄
Ib-100	соон	Н	Н	Н	1	1	1	Me	$^{ ext{4-OMe-}}_{ ext{C}_6 ext{H}_4}$
Ib-101	СООН	Н	H	Н	1	1	1	Me	2-thienyl

(表 1 0)
$$R^{5}$$
 $(CH_{2})_{y}$ $(CH_{2})_{p}$ $($

No ·	\mathbb{R}^1	$ m R^5$	R^6	\mathbb{R}^7	у	m	p	Y	Ar
Ib-102	СООН	Н	н	H	1	1	1	$\mathrm{CH_{2}C_{6}H_{5}}$	C_6H_5
Ib-103	СООН	Н	Н	Н	1	1	1	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

(表 1	1)					R ⁵		N-SO ₂ —Ar
No	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^4	R ⁵	R ⁶	R^7	_Z—N—	Ar
Ic-1	СООН	Н	Н	Н	Н	Н	N. J.	C_6H_5
Ic-2	СООН	Н	Н	Н	Н	н	Ny	4-F-C ₆ H ₄
Ic-3	соон	н	Н	Н	Н	Н	N	$4-\mathrm{Me-C_6H_4}$
Ic-4	СООН	Н	H	н	Н	Н	Ny.	2-thienyl
Ic-5	соон	н	Н	$_{ m H}$	Н	H	Ny.	$\mathrm{C_6H_5}$
Ic-6	соон	н	Н	Н	Н	н	Ny.	4-F-C ₆ H ₄
Ic-7	соон	Н	Н	Н	Н	Н	N _y	4-Me-C ₆ H ₄
Ic-8	соон	н	Н	Н	Н	н	n, N,	2-thienyl
Ic-9	соон	Me	Н	Н	Н	н	n. Nyr	4-F-C ₆ H ₄
Ic-10	соон	Н	Н	CI	Н	н	N ₂	4-F-C ₆ H ₄
Ic-11	соон	Н	Н	F	Н	Н	Ny.	4-F-C ₆ H ₄

(表12)

R ⁵ Z-N-SO ₂ A	r
R^6 R^7 R^1	

		1	1	Γ			R1	
No	R ¹	\mathbb{R}^2	\mathbb{R}^4	R ⁵	R ⁶	\mathbb{R}^7	/z(N-	Ar
Ic-12	соон	Н	Н	н	Н	Н	N _y	4-F-C ₆ H ₄
Ic-13	соон	Н	H	Н	Н	H	N _y	C ₆ H ₅
Ic-14	соон	H	H	Н	Н	Н	N _y	4-F-C ₆ H ₄
Ic-15	соон	Н	H	Н	Н	н	Nyr Nyr	4-Me-C ₆ H ₄
Ic-16	соон	Н	Н	H	Н	Н	Nys.	2-thienyl
Ic-17	соон	Me	H	н	н	Н	n Ny	C_6H_5
Ic-18	соон	Me	H	H	H	H	N ₂	4-F-C ₆ H ₄
Ic-19	соон	Н	H	Cl	н	H	W. N. yr	4-F-C ₆ H ₄
Ic-20	соон	Н	H	F	н	н	n Nyr	4-F-C ₆ H ₄
Ic-21	соон	Н	Н	Н	н	Н	N 32	$\mathrm{C_6H_5}$
Ic-22	соон	Н	Н	Н	Н	Н	N 3h	4-F-C ₆ H ₄
Ic-23	соон	Н	Н	н	Н	н	N 3h	C_6H_5
Ic-24	соон	Н	Н	н	Н	Н	N 3h	4-F-C ₆ H ₄
Ic-25	соон	Н	Н	н	Н	Н	N. N.	C_6H_5
Ic-26	соон	Н	н	Н	н	н	7/2 N	4-F-C ₆ H ₄
Ic-27	соон	Н	Н	н	н	н		2-thienyl

(表14)

R⁵

N-SO₂-Ar

 R^{6} \mathbb{R}^4 R^5 R^6 \mathbb{R}^7 R^{1} \mathbb{R}^2 No \mathbf{Ar} Ic-31 COOH H \mathbf{H} C1H \mathbf{H} 2-thienyl Ic-32 COOH \mathbf{H} \mathbf{H} Me H \mathbf{H} $4-F-C_6H_4$ Ic-33 COOH H \mathbf{H} Me \mathbf{H} \mathbf{H} $4-Me-C_6H_4$ COOH H Ic-34 Η C1 \mathbf{H} Η C_6H_5 Ic-35 COOH H \mathbf{H} CIΗ H $CH_2C_6H_5$ Ic-36 COOH \mathbf{H} \mathbf{H} C1 \mathbf{H} \mathbf{H} $4-Cl-C_6H_4$ Ic-37 COOH H \mathbf{H} $4-\text{Me-C}_6\text{H}_4$ C1 \mathbf{H} H Ic-38 COOH H Η \mathbf{F} \mathbf{H} $4-F-C_6H_4$ \mathbf{H} COOH Me Ic-39 \mathbf{H} F \mathbf{H} \mathbf{H} 2-thienyl Ic-40 COOH H \mathbf{H} $4 - F - C_6 H_4$ \mathbf{H} OMe \mathbf{H} Ic-41 COOH H \mathbf{H} OMeH \mathbf{H} 2-thienyl

(表15)

R⁵्	R ⁴	_Z-	-(N	I-80 ₂	٩r
R ⁶		Ņ R		- ,	
	R ⁷	L _{D1}			

No	R ¹	\mathbb{R}^2	R^4	R ⁵	R ⁶	R^7	_ZN	Ar
Ic-42	соон	н	н	ОН	Н	Н	n N y	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ic-43	соон	н	Н	F	H	Н	N _x	nBu
Ic-44	соон	Н	Н	F	Н	Н	Z Ny	CH ₂ CH=CHC ₆ H ₅
Ic-45	соон	Н	н	F	H	Н	N. yr	$4 - C_6 H_5 - C_6 H_4$
Ic-46	соон	Н	н	F	Н	Н	N. N. Y.	Me
Ic-47	соон	Н	н	C_6H_5	Н	Н	N y	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ic-48	соон	Н	н	C_6H_5	Н	Н	N. N. y.	nBu
Ic-49	соон	Н	н	C_6H_5	Н	Н	Nys	2-thienyl
Ic-50	соон	H	н	F	Н	Н	N. N. Y.	$\mathrm{CH_{2}CH_{2}C_{6}H_{5}}$
Ic-51	соон	н	Н	Н	Cl	н	Ny.	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
c-52	соон	н	н	Н	Cl	н	N. Z.	2-thienyl
Ic-53	соон	Н	Н	Cl	Н	Н	Ny.	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ic-54	соон	н	н	Cl	Н	н	N. Z.	3-F-C ₆ H ₄
Ic-55	соон	Me	Н	Cl	Н	Н	N. Zr	4-F-C ₆ H ₄
Ic-56	соон	Me	Н	Cl	H	Н	Ny.	2-thienyl
Ic-57	соон	Н	H	CI	Н	Н	N _y	nBu
Ic-58	соон	Н	Н	C1	Н	н	n Ny	4-CF ₃ -C ₆ H ₄
Ic-59	соон	н	Н	Cl	Н	Н	Ny Ny	nBu
Ic-60	соон	Н	H	Cl	Н	н	n Ny	Octyl

(表16)

 R^{5} R^{6} R^{7} R^{1} R^{2} R^{2}

							Ŕ ⁷ ∖ _F	2 1
No	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^4	\mathbb{R}^5	R ⁶	\mathbb{R}^7	_zN-	Ar
Ic-61	соон	н	Н	Cl	н	н	N ₃ ,	1-naphthyl
Ic-62	соон	H	Н	Cl	н	Н	N _y ,	4-NO ₂ -C ₆ H ₄
Ic-63	соон	н	Н	Cl	н	н	N _y	4-CN-C ₆ H ₄
Ic-64	соон	н	CI	Н	Н	Н	N _y	4-F-C ₆ H ₄
Ic-65	соон	Н	Cl	Н	Н	Н	Z-N-yr	2-thienyl
Ic-66	соон	н	Cl	Н	Н	н	N _y t	nBu
Ic-67	СООН	H	н	Cl	н	Н	N ₂	5-benzyl-thiophen- 2-yl
Ic-68	СООН	н	н	Cl	Н	Н	n Ny	Quinolin-8-yl
Ic-69	СООН	н	н	Cl	H	Н	n _z N _y	3-thienyl
Ic-70	соон	н	н	Cl	Н	Н	372 N 753	Benzo[b]thiophen- 3-yl
Ic-71	соон	н	н	Cl	Н	Н	N _y	2,4-diF-C ₆ H ₈
Ic-72	соон	н	н	Cl	Н	Н	N _y	Me
Ic-73	соон	Н	н	Cl	Н	н	n N y	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ic-74	соон	Н	н	Cl	Н	н	Ny	CH ₂ CH=CHC ₆ H ₅
Ic-75	соон	Н	н	Cl	Н	н	Ny'	Pyridin-3-yl
Ic-76.	соон	${f Me}$	н	Н	Н	н	Ny.	2-thienyl
Ic-77	соон	Me	н	Н	H	Н	Ny.	nBu
Ic-78	соон	Н	Н	Cl	Н	н	Ny Ny	5-Cl-thiophen-2-yl
Ic-79	соон	Н	Н	Cl	Н	н	Ny Ny	4-OH-C ₆ H ₄

(表17)

Ŗ ⁴		_
R⁵	z-(N-SO _{2-Ar}
	`	
R^{6}	N \R ²	
R'	\ □1	

No	\mathbb{R}^1	R^2	\mathbb{R}^4	\mathbb{R}^5	R^6	\mathbb{R}^7	/Z(N-	Ar
Ic-80	СООН	Н	Н	Н	Н	Н	N N	$4 ext{-F-C}_6 ext{H}_4$
Ic-81	соон	Н	Н	Н	Н	Н	v _v N	$4 ext{-}\mathrm{OMe-C_6H_4}$
Ic-82	соон	Н	Н	F	Н	H	12/2 N	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ic-83	соон	Н	Н	F	H	Н	0 N	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ic-84	соон	Н	H	F	Н	Н	100 N	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ic-85	СООН	Н	Н	F	Н	Н	17.1. N	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$

(表18)

$$(CH_2)_y$$
 $N-SO_2-Ar$

No	У	m	\mathbb{R}^1	Ar
Id-1	1	2	СООН	C_6H_5
Id-2	1	2	СООН	4-F-C ₆ H ₄
Id-3	1	2	СООН	2-thienyl
Id-4	2	1	СООН	C_6H_5
Id-5	2	1	СООН	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Id-6	2	1	СООН	2-thienyl

(表19)

 R^{5} R^{6} R^{7} R^{1} R^{21} R^{20}

No	R ¹	\mathbb{R}^4	R ⁵	R ⁶	R ⁷	R20	\mathbb{R}^{21}	Y	Ar
Ie-1	СООН	H	Н	Н	H	H	Н	H	C_6H_5
Ie-2	СООН	H	Н	H	Н	H	Н	H	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-3	СООН	H	Н	H	Н	H	H	H	2-thienyl
Ie-4	СООН	Н	Н	H	H	H	H	Me	C_6H_5
Ie-5	СООН	Н	H	Н	H	Н	H	Me	4-F-C ₆ H ₄
Ie-6	СООН	Н	Н	Н	H	H	Н	Me	2-thienyl
Ie-7	СООН	Н	Н	Н	H	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	$\mathrm{C_6H_5}$
Ie-8	соон	Н	Н	H	H	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}_{.}$	4-F-C ₆ H ₄
Te-9	СООН	Н	Н	H	H	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	2-thienyl
Ie-10	соон	H	Н	F	Н	Н	Н	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-11	COOH	Н	H	Me	Н	Н	H	Н	4 -F- C_6H_4
Ie-12	СООН	Н	Н	F	Н	Н	H	Me	4-F-C ₆ H ₄
Ie-13	СООН	H	Н	F	H	Н	H	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-14	COOH	Н	H	Me	Н	Н	Н	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-15	COOH	Н	H	Н	Н	Me	H	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-16	COOH	Н	F	Н	Н	Н	Н	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-17	СООН	H	F	Н	Н	H	Н	Me	$4-F-C_6H_4$
Ie-18	COOH	Н	F	Н	H	Н	Н	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-19	СООН	F	Н	Н	Н	Н	H	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-20	СООН	F	H	Н	Н	H	Н	Me	$4 ext{-} F ext{-} C_6 H_4$
Ie-21	COOH	F	Н	Н	Н	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ie-22	COOH	Н	Н	Н	Н	Н	F	H	4-F-C ₆ H ₄
Ie-23	СООН	Н	Н	Н	Н	H	F	Me	4-F-C ₆ H ₄
Ie-24	COOH	Н	Н	Н	Н	H	F	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ie-25	СООН	Н	Н	Н	F	Н	Н	Me	4-F-C ₆ H ₄
Ie-26	СООН	H	Н	Н	F	Н	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-27	СООН	н	Br	H	Н	H	H	Н	$4-F-C_6H_4$

									'R'	
No	\mathbb{R}^{1}	\mathbb{R}^2	R^5	R ²³	\mathbb{R}^{24}	\mathbb{R}^{25}	R^{26}	Z^3	Y	Ar
If-1	СООН	Me	Н	Me	Me	Н	H	=CH-	H	$4\text{-F-C}_6\mathrm{H}_4$
If-2	СООН	Me	Н	Me	Me	H	H	=CH-	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-3	СООН	Me	Н	Me	Me	Н	Н	=CH-	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-4	СООН	Me	H	Me	H	H	H	=CH-	H	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-5	соон	Me	H	Me	н	Н	Н	=CH-	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-6	СООН	Me	H	Me	H	Н	H	=CH-	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-7	СООН	Н	H	-(CH	2)4-	Н	Н	=CH-	Me	$4\text{-F-C}_6\mathrm{H}_4$
If-8	СООН	Н	H	-(CH	2)4-	Н	H	=CH-	$\mathrm{CH_{2}C_{6}H_{5}}$	4 -F- C_6H_4
If-9	COOH	H	Н	C_6H_5	Н	H	н	=CH-	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-10	СООН	Me	H	${\rm C_6H_5}$	H	H	H	=CH-	Me	$4-F-C_6H_4$
If-11	СООН	H	H	-(CH	2)8-	Н	H	=CH-	H	$4-F-C_6H_4$
If-12	СООН	H	H	-(CH	2)3-	Н	Н	=CH-	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-13	СООН	н	H	Me	Me	Н	Н	=CH-	Н	4-F-C ₆ H ₄
If-14	СООН	\mathbf{H}	H	Me	Me	Н	H	=CH-	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
If-15	СООН	H	Н	Me	Me	H	H	=CH-	$\mathrm{CH_{2}C_{6}H_{5}}$	$4-F-C_6H_4$
If-16	соон	Н	H	Н	H	$^{ m CH_2}$ OMe	Н	=CH-	Н	4-F-C ₆ H ₄
If-17	СООН	Н	Cl	Me	Me	Н	Н	=CH-	Н	4-F-C ₆ H ₄
If-18	СООН	н	Cl	Me	Me	Н	н	=CH-	Me	4-F-C ₆ H ₄
If-19	СООН	Н	Cl	Me	Me	Н	н	=CH-	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
If-20	СООН	Н	Н	Н	н	Н	н	=N-	$CH_2C_6H_5$	4-F-C ₆ H ₄

(表 2 1) Z^{2-Z1} (CH₂)q N S A

					R'	· · · · · · · · · · · · · · · · · · ·
No	\mathbb{R}^1	Z^1	Z^2	q	Y	Ar
Ig-1	СООН	-CH ₂ -	-CH ₂ -	0	H	4-F-C ₆ H ₄
Ig-2	СООН	-CH ₂ -	-S-	1	H	4-F-C ₆ H ₄
Ig-3	СООН	-CH ₂ -	-S-	1	Me	4-F-C ₆ H ₄
Ig-4	СООН	-C(=O)-	-CH ₂ -	1	Me	4-F-C ₆ H ₄
Ig-5	СООН	-C(=O)-	-CH(Et)-	11	Me	4-F-C ₆ H ₄
Ig-6	СООН	-CH ₂ -	-N(COOEt)-	1	Н	4-F-C ₆ H ₄
Ig-7	СООН	-CH ₂ -	-N(COOEt)-	1	Me	4-F-C ₆ H ₄
Ig-8	СООН	-CH ₂ -	-N(COOEt)-	1	Н	$^{4 ext{-}\mathrm{OMe}}$ - $^{\mathrm{C}_{6}\mathrm{H}_{4}}$
Ig-9	СООН	-CH ₂ -	-N(COOEt)-	1	Me	4-OMe - $\mathrm{C_6H_4}$
Ig-10	СООН	-CH ₂ -	-N(COMe)-	1	Me	$^{4 ext{-}OMe ext{-}}_{c_6 ext{H}_4}$
Ig-11	СООН	-CH ₂ -	-CH ₂ -	2	·H	4-F-C ₆ H ₄
Ig-12	СООН	-CH ₂ -	-CH ₂ -	2	Me	4-F-C ₆ H ₄
Ig-13	СООН	-CH ₂ -	-CH ₂ -	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ig-14	СООН	-CH ₂ -	-CH ₂ -	2	Me	$_{ m C_6H_4}$
Ig-15	СООН	-CH ₂ -	-CH ₂ -	2	Et	4-F-C ₆ H ₄
Ig-16	СООН	-CH ₂ -	-CH ₂ -	2	Me	4-OH-C ₆ H ₄
Ig-17	СООН	-CH ₂ -	-NH-	2	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ig-18	СООН	-CH ₂ -	-CH ₂ -	3	H	4-F-C ₆ H ₄
Ig-19	СООН	-CH ₂ -	-CH ₂ -	3	Me	4-F-C ₆ H ₄
Ig-20	СООН	-CH ₂ -	-CH ₂ -	3	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ig-21	СООН	-CH ₂ -	-CH ₂ -	0	Me	4-F-C ₆ H ₄
Ig-22	СООН	-CH ₂ -	-S(=O)-	1	Н	$4-F-C_6H_4$
Ig-23	СООН	-CH ₂ -	-S(=O)-	1	Me	4-F-C ₆ H ₄
Ig-24	соон	-C(=O)-	-NH-	2	Н	4-OMe - C_6H_4
Ig-25	соон	-C(=O)-	-NH-	2	Me	$\begin{array}{c} ext{4-OMe-} \\ ext{C}_6 ext{H}_4 \end{array}$

$$Z^2$$
 $(CH_2)q$
 N
 S
 O_2
 Ar

No	\mathbb{R}^1	Z^1	Z^2	q	Y	Ar
Ig-26	соон	- C(=NOH)-	-CH ₂ -	1	Me	4-F-C ₆ H ₄
Ig-27	i	- C(=NOMe)-	$-\mathrm{CH_2}$ -	1	Me	4-F-C ₆ H ₄

(表23)

					R	1
No	\mathbb{R}^1	R17	$ m R^{18}$	R ¹⁹	Y	Ar
Ih-1	СООН	Н	Н	Н	Н	4-F-C ₆ H ₄
Ih-2	СООН	н	H	H	Me	$4\text{-F-C}_6\mathrm{H}_4$
Ih-3	СООН	Н	Н	H	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-4	СООН	H	H	Me	H	4-F-C ₆ H ₄
Ih-5	СООН	Н	Н	Me	Me	$4-F-C_6H_4$
Ih-6	СООН	Н	Н	Me	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-7	СООН	Н	Н	Н	Me	2-thienyl
Ih-8	СООН	Н	Н	H	Me	nBu
Ih-9	СООН	Н	Н	H	$\mathrm{CH_{2}C_{6}H_{5}}$	2-thienyl
Ih-10	СООН	Н	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	nBu
Ih-11	СООН	Н	Н	H	H	2-thienyl
Ih-12	СООН	H	H	H	Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-13	СООН	Н	Н	H	Н	$4\text{-OH-C}_6\mathrm{H}_4$
Ih-14	СООН	Н	Н	Н	Н	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-15	COOH	Н	Н	H	Me	$4\text{-OH-C}_6\mathrm{H}_4$
Ih-16	СООН	H	H	Et	H	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-17	СООН	H	H	Et	Н	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-18	СООН	Н	Н	Εt	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-19	СООН	H	Н	Et	Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$

(表24)

R¹⁹ N Ar

		,		,	,F	<u> </u>
No	R ¹	R^{17}	R ¹⁸	R ¹⁹	Y	Ar
Ih-20	COOH	Н	H	· H	Н	C_6H_5
Ih-21	COOH	H	H	H	H	$4-\mathrm{Me-C_6H_4}$
Ih-22	СООН	Н	H	H	Me	C_6H_5
Ih-23	COOH	Н	Н	H	Me	$4 ext{-Me-C}_6 ext{H}_4$
Ih-24	СООН	Н	H	H	Me	CH ₂ C ₆ H ₅
Ih-25	соон	Н	Н	Н	Me	CH ₂ CH=CHC ₆ H ₅
Ih-26	СООН	Н	Me	Me	Н	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-27	COOH	Н	Me	Me	H	4-F-C ₆ H ₄
Ih-28	СООН	Н	Me	Me	Н	2-thienyl
Ih-29	соон	H	H	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$
Ih-30	соон	Н	Н	Н	Н	CH ₂ CH=CHC ₆ H ₅
Ih-31	СООН	Н	Me	Me	Me	4-F-C ₆ H ₄
Ih-32	СООН	H	Me	Me	Me	4-OMe-C ₆ H ₄
Ih-33	СООН	H	Me	Me	Me	2-thienyl
Ih-34	СООН	Н	Н	C_6H_5	H	4-F-C ₆ H ₄
Ih-35	СООН	н	H	C ₆ H ₅	H	4-OMe-C ₆ H ₄
Ih-36	СООН	H	Н	C_6H_5	Me	4-F-C ₆ H ₄
Ih-37	СООН	H	H	C_6H_5	Me	4-OMe-C ₆ H ₄
Ih-38	СООН	H	Εt	Εt	H	4-OMe-C ₆ H ₄
Ih-39	СООН	H	Н	Н	Н	4-Cl-C ₆ H ₄
Ih-40	СООН	Н	Н	Н	Н	4-CF ₃ -C ₆ H ₄
Ih-41	СООН	H	H	Н	Me	4-Cl-C ₆ H ₄
Ih-42	СООН	H	H	Н	Me	4-CF ₃ -C ₆ H ₄
Ih-43	СООН	Н	H	Н	Me	3-thienyl
Ih-44	COOH	H	H	Н	Me	4-OCF ₈ -C ₆ H ₄
Ih-45	COOH	H	Et	Et	Me	4-F-C ₆ H ₄
Ih-46	COOH	H	Et	Et	Me	4-OMe-C ₆ H ₄
Ih-47	СООН	Н	-(CF	${ m H}_2)_5$ -	Н	4-F-C ₆ H ₄

(表25)

					`R	<u> </u>
No	R ¹	R^{17}	R ¹⁸	R19	Y	Ar
Ih-48	COOH	H	-(CI	$H_2)_5$ -	Н	4-OMe-C ₆ H ₄
Ih-49	COOH	H	Н	H	Н	3-thienyl
Ih-50	СООН	H	Н	Pr	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-51	COOH	Н	Н	tBu	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-52	СООН	H	H	Pr	Н	4-OMe-C ₆ H ₄
Ih-53	СООН	H	Н	tBu	Н	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-54	СООН	H	Н	Н	Н	$4\text{-}\mathrm{OCF_3}\text{-}\mathrm{C_6H_4}$
Ih-55	СООН	H	-(CI	I ₂) ₅ -	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-56	СООН	H	-(CI	I ₂) ₅ -	Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C_6H_4}$.
Ih-57	СООН	H	H	Pr	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ih-58	СООН	H	H	tBu	Me	$4\text{-F-C}_6\mathrm{H}_4$
Ih-59	СООН	H	H	\mathbf{Pr}	Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-60	СООН	H	H	tBu	Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-61	СООН	Н	Н	pent yl	Me	4-F-C ₆ H ₄
Ih-62	СООН	Н	Н	pent yl	· Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-63	СООН	H	H	Н	Et	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-64	СООН	Н	Н	Н	Pr	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-65	соон	\mathbf{H}	H	H	iBu	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-66	СООН	H	Н	Н	iPr	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-67	СООН	H	Н	Н	Et	$4\text{-F-C}_6\mathrm{H}_4$
Ih-68	СООН	\mathbf{H}	H	Н	Pr	$4-F-C_6H_4$
Ih-69	СООН	Н	Н	Н	allyl	4-F-C ₆ H ₄
Ih-70	СООН	Н	H	Н	propargyl	4-F-C ₆ H ₄
Ih-71	СООН	H	. H	Н	CH ₂ CF ₃	4-F-C ₆ H ₄
Ih-72	СООН	H	H	Н	CH ₂ CH ₂ OH	4-F-C ₆ H ₄
Ih-73	СООН	Н	H	Н	cyclopropylmet hyl	4-F-C ₆ H ₄
Ih-74	СООН	Н	Н	Н	allyl	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$

(表26)

·No	\mathbb{R}^1	R17	R ¹⁸	R ¹⁹	Y	Ar
Ih-75	соон	н	Н	Н	2- methylpropene	$4\text{-}\mathrm{OMe-C_6H_4}$
Ih-76	СООН	H	H	H	propargyl	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-77	соон	Н	Н	Н	cyclopropylmet hyl	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-78	соон	H	H	H	CH ₂ CH ₂ OH	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ih-79	соон	н	Н	Н	cyclohexylmeth yl	4-F-C ₆ H ₄
Ih-80	COOH	н	Н	H	cyclohexylmeth yl	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C_6H_4}$
Ih-81	COOH	H	H	H	$\mathrm{CH_2OMe}$	$4-F-C_6H_4$
Ih-82	СООН	Н	Н	H	CH ₂ OMe	4-OMe-C ₆ H ₄
Ih-83	СООН	Me	H	Н	Me	4-F-C ₆ H ₄
Ih-84	СООН	Me	Н	Н	Me	$4\text{-}OMe\text{-}C_6H_4$

(表27)

R⁵. ∕		O_2
		N Ar
~	1/2	Y

No	R ¹	$ m R^5$	\mathbb{Z}^4	Y	Ar
Ii-1	СООН	Me	-N=·	Н	4-F-C ₆ H ₄
Ii-2	СООН	Me	-CH=	H	4-F-C ₆ H ₄
Ii-3	СООН	Me	-CH=	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$

(表28)

No	R ¹	R ⁵	Y	Ar
Ij-1	СООН	Н	H	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ij-2	СООН	H	Me	4-F-C ₆ H ₄
Ij-3	СООН	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$

No	\mathbb{R}^1	R ¹³	Z^{14}	Y	Ar
Ik-1	СООН	Me	Me	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-2	СООН	H	Me	Me	4-F-C ₆ H ₄
Ik-3	COOH	Et	Me	H	4-F-C ₆ H ₄
Ik-4	СООН	Pr	Me	H	4-F-C ₆ H ₄
Ik-5	COOH	Et	Me	Me	$4-F-C_6H_4$
Ik-6	СООН	iPr	Me	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-7	COOH	Me	\mathbf{Pr}	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-8	СООН	Et	H	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-9	СООН	Pr	Me	Н	4-F-C ₆ H ₄
Ik-10	COOH	Pr	Me	Me	$4\text{-F-C}_6\mathrm{H}_4$
Ik-11	соон	Et	\mathbf{Pr}	Н	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-12	СООН	Et	\mathbf{Pr}	H	2-thienyl
Ik-13	СООН	Et	Pr	Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-14	СООН	Et	Pr	Me	2-thienyl
Ik-15	соон	Pr	Me	Н	$4\text{-}\mathrm{OMe-C_6H_4}$
Ik-16	СООН	Pr	Me	Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C_6H_4}$
Ik-17	СООН	Et	Pr	Н	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$

No R¹ R¹³ Z¹⁴ Y Ik-18 COOH Et Pr Me 4	Ar
Ik-18 COOH Et Pr Me	
	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ik-19 COOH CH ₂ C ₆ H ₅ Me Me	4-F-C ₆ H ₄
Ik-20 COOH $CH_2C_6H_5$ Me Me	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ik-21 COOH iBu Me Me	4-F-C ₆ H ₄
Ik-22 COOH nBu Me H	4-F-C ₆ H ₄
Ik-23 COOH nBu Me H	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ik-24 COOH nBu Me Me	4-F-C ₆ H ₄
Ik-25 COOH nBu Me Me 4	$4\text{-}\mathrm{OMe}\text{-}\mathrm{C}_6\mathrm{H}_4$
Ik-26 COOH iBu Me H 4	$4-\mathrm{OMe-C_6H_4}$
Ik-27 COOH iBu Me Me 4	$4 \cdot \mathrm{OMe} \cdot \mathrm{C}_6\mathrm{H}_4$
Ik-28 COOH Pr Me Et 4	4-OMe-C ₆ H ₄
Ik-29 COOH Pr Me Me	4-OH-C ₆ H ₄
Ik-30 COOH $CH_2C_6H_5$ Me H	4-F-C ₆ H ₄
Ik-31 COOH Pr Me Me	4-OEt-C ₆ H ₄
Ik-32 COOH Pr Me proprgyl 4	$4 - OMe - C_6H_4$
Ik-33 COOH CH ₂ C ₆ H ₅ Me proprgyl 4	4-OMe-C ₆ H ₄
Ik-34 COOH iBu Me Me	4-F-C ₆ H ₄
Ik-35 COOH OMe Me Me	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ik-36 COOH OMe Me Me 4	I-OMe-C ₆ H ₄
Ik-37 COOH C(=O)Et Me Me 4	4-OMe-C ₆ H ₄
Ik-38 COOH C(=O)Et Me Et 4	l-OMe-C ₆ H ₄
Ik-39 COOH Pr Me Me	C_6H_5
Ik-40 COOH Pr Me Me	4-Me-C ₆ H ₄
Ik-41 COOH Pr Me Me	2-F-C ₆ H ₄
Ik-42 COOH Pr Me Me	4-Cl-C ₆ H ₄
Ik-43 COOH Pr Me Me	4-Br-C ₆ H ₄

物理恒数を以下の表に示す。

(表31)

化合物	物性値
番号_	
Ia-7	¹ H-NMR (CDCl ₈) δ 2.95 (m, 2H), 3.28 (m, 2H), 4.62 (br, 1H), 4.81 (s, 2H), 6.84 (s, 1H), 7.06-7.22 (m, 3H), 7.38-7.72 (m, 4H), 7.71-7.74 (m, 2H); IR (CHCl ₃) 3480, 2953, 1731, 1603, 1469, 1447, 1409, 1329, 1162, 1093 cm ⁻¹ ;
Ia-8	$^1\text{H-NMR}$ (CDCl ₃) δ 2.95 (t, J = 6.3 Hz, 2H), 3.31 (dt, J = 5.4 and 6.3 Hz, 2H), 4.79 (t, J = 5.4 Hz, 1H), 4.84 (s, 2H), 6.90 (s, 1H), 6.99-7.22 (m, 5H), 7.41 (d, J = 7.8 Hz, 1H), 7.50 (m, 1H), 7.86 (m, 1H); IR (CHCl ₃) 3482, 3374, 2929, 1732, 1601, 1475, 1453, 1411, 1384, 1335, 1266, 1169, 1156, 1126, 1077, 1015 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₄ S·0.4H ₂ O) 計算値 (%): C, 56.36; H, 4.68; N, 7.30; F, 4.95; S, 8.36 実測値 (%): C, 56.52; H, 4.67; N, 7.10; F, 4.69; S, 8.30
Ia-9	1 H-NMR (CDCl ₈) δ 2.94 (m, 2H), 3.26 (m, 2H), 4.54 (t, J = 5.7 Hz, 1H), 6.86 (s, 1H), 6.97-7.27 (m, 6H), 7.37 (d, J = 7.8 Hz, 1H), 7.65-7.69 (m, 2H), 7.71-7.74 (m, 2H); IR (KBr) 3422, 3290, 2929, 1731, 1592, 1494, 1469, 1408, 1382, 1328, 1292, 1237, 1166, 1152, 1092, 1013 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₄ S·0.5AcOEt) 計算值 (%): C, 57.13; H, 5.03; N, 6.66; F, 4.52; S, 7.63 実測値 (%): C, 57.36; H, 5.07; N, 6.94; F, 4.58; S, 7.35
Ia-12	1 H-NMR (CDCl ₈) δ 2.92 (t, J = 6.6 Hz, 2H), 3.21-3.25 (m, 2H), 3.83 (s, 3H), 4.50 (br, 1H), 4.80 (s, 2H), 6.80-6.82 (m, 3H), 7.06 (m, 1H), 7.18-7.23 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.60-7.65 (m, 2H); IR (CHCl ₈) 3481, 2967, 2945, 2842, 1732, 1598, 1580, 1498, 1468, 1441, 1409, 1330, 1260, 1155, 1096, 1047, 1030 cm ⁻¹ ; 元素分析 (C ₁₉ H ₂₀ N ₂ O ₅ S·0.5AcOEt) 計算值 (%): C, 58.32; H, 5.59; N, 6.48; S, 7.41 実測値 (%): C, 57.95; H, 5.40; N, 6.61; S, 7.73
Ia-13	1 H-NMR (CDCl ₃) δ 2.97 (t, J = 6.3 Hz, 2H), 3.35 (m, 2H), 4.62 (t, J = 5.7 Hz, 1H), 4.82 (s, 2H), 6.86 (s, 1H), 7.00 (m, 1H), 7.11 (m, 1H), 7.19-7.26 (m, 2H), 7.43-7.51 (m, 3H); IR (CHCl ₃) 3360, 2930, 1732, 1469, 1407, 1382, 1334, 1158, 1092, 1069, 1048, 1016 cm ⁻¹ ; 元素分析 (C ₁₆ H ₁₆ N ₂ O ₄ S ₂ ·0.4AcOEt) 計算値 (%): C, 52.89; H, 4.84; N, 7.01; S, 16.05 実測値 (%): C, 52.93; H, 4.88; N, 7.04; S, 16.01
Ia-14	1 H-NMR (CDCl ₃) δ 2.94 (t, J = 6.3 Hz, 2H), 3.30 (dt, J = 6.0 and 6.3 Hz, 2H), 4.61 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.85 (s, 1H), 7.07-7.27 (m, 5H), 7.42 (d, J = 7.8 Hz, 1H), 7.84 (dd, J = 1.2 and 3.0 Hz, 1H); IR (CHCl ₃) 3481, 2930, 1732, 1469, 1410, 1331, 1157, 1101, 1076, 1015 cm ⁻¹ ; 元素分析 ($C_{16}H_{16}N_{2}O_{4}S \cdot 0.1AcOEt$) 計算値 (%): C , 52.77; H , 4.54; N , 7.51; S , 17.18 実測値 (%): C , 52.39; H , 4.57; N , 7.40; S , 17.00

(表32)

化合物	物性値
番号	
Ia-15	1 H-NMR (CDCl ₃) δ 2.96 (t, J = 6.3 Hz, 2H), 3.29 (m, 2H), 4.56 (m, 1H), 4.81 (s, 2H), 6.88 (s, 1H), 7.03 (m, 1H), 7.13-7.21 (m, 4H), 7.39 (d, J = 7.5 Hz, 1H), 7.51-7.55 (m, 4H), 7.73-7.76 (m, 2H); IR (CHCl ₃) 2930, 1732, 1604, 1519, 1469, 1408, 1331, 1160, 1096, 1047 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₁ FN ₂ O ₄ S·0.5AcOEt) 計算値 (%): C, 62.89; H, 5.07; N, 5.83; F, 3.83; S, 6.46 実測値 (%): C, 62.74; H, 4.97; N, 5.90; F, 3.82; S, 6.54
	$^{1}\text{H-NMR}$ (CDCl ₃) δ 2.94 (t, J = 6.9 Hz, 2H), 3.26 (m, 2H), 4.51 (br,
Ia-16	1H), 4.81 (s, 2H), 6.86-6.94 (m, 3H), 7.03-7.11 (m, 3H), 7.19-7.24 (m, 3H), 7.37-7.63 (m, 3H), 7.64-7.70 (m, 2H); IR (KBr) 3279, 3059, 2930, 1730, 1583, 1488, 1469, 1410, 1382, 1327, 1298, 1245, 1152, 1094, 1013 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₂ N ₂ O ₅ S·0.6AcOEt) 計算値 (%): C, 62.99; H, 5.37; N, 5.57; S, 6.37 実測値 (%): C, 62.99; H, 5.19; N, 5.77; S, 6.47
ļ	$^{1}\text{H-NMR}$ (CDCl ₃) δ 2.92 (t, J = 6.3 Hz, 2H), 3.31 (m, 2H), 4.66 (m,
 Ia-17	1H), 4.73 (s, 2H), 6.80 (s, 1H), 6.91 (m, 1H), 7.06-7.11 (m, 2H), 7.28 (m, 1H), 7.47-7.90 (m, 5H), 8.10 (dd, J = 2.7 and 6.3 Hz, 1H), 8.49 (s, 1H); IR (CHCl ₃) 3480, 2929, 1732, 1670, 1616, 1586, 1468, 1428, 1411, 1377, 1330, 1158, 1077, 1047, 1025, 1015 cm ⁻¹ ;
	$^{1}\text{H-NMR}$ (CDCl ₃) δ 2.31 (s, 3H), 2.95 (t, J = 6.0 Hz, 2H), 3.19 (dt,
Ia-20	J = 6.0 and 6.3 Hz, $2H$), 4.37 (t, $J = 6.3$ Hz, $1H$), 4.82 (s, $2H$), $6.98-7.18$ (m, $5H$), 7.30 (d, $J = 7.5$ Hz, $1H$), $7.63-7.68$ (m, $2H$); IR (CHCl ₃) 2926, 1730, 1594, 1495, 1410, 1375, 1335, 1292, 1167, 1154 , 1093 cm ⁻¹
	$^{1}\text{H-NMR}$ (CDCl ₃) δ 2.62 (s, 3H), 2.90 (t, J = 6.3 Hz, 2H), 3.22 (t, J
Ia-25	= 6.3 Hz, 2H), 4.53 (br, 1H), 5.03 (s, 2H), 6.74 (s, 1H), 6.93-7.03 (m, 4H), 7.19 (m, 1H), 7.64-7.69 (m, 2H); IR (CHCl ₃) 2940, 1729, 1594, 1495, 1465, 1438, 1408, 1373, 1329, 1292, 1167, 1154, 1093, 1074, 1046, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.5H ₂ O) 計算値 (%): C, 57.13; H, 5.05; N, 7.01; F, 4.76; S, 8.03 実測値 (%): C, 57.15; H, 4.99; N, 6.74; F, 4.42; S, 7.72
	¹ H-NMR (CDCl ₈) δ 2.87-2.92 (m, 2H), 3.19-3.24 (m, 2H), 3.79 (s, 3H), 4.59 (br, 1H), 4.77 (s, 2H), 6.78-7.11 (m, 6H), 6.63-7.68 (m, 2H)
Ia-28	2H); IR (CHCl ₈) 2942, 2837, 1731, 1622, 1594, 1492, 1455, 1409, 1333, 1292, 1167, 1153, 1093, 1051, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₅ S·0.2H ₂ O) 計算値 (%): C, 55.66; H, 4.77; N, 6.83; F, 4.63; S, 7.82 実測値 (%): C, 55.52; H, 4.87; N, 6.54; F, 4.45; S, 7.55
	$^{1}\text{H-NMR}$ (CDCl ₃) δ 2.87 (t, J = 6.3 Hz, 2H), 3.20-3.22 (m, 2H),
Ia-32	4.58 (br, 1H), 4.77 (s, 2H), 6.89 (s, 1H), 6.98-7.18 (m, 5H), 7.62-7.67 (m, 2H); IR (CHCl ₃) 3477, 2930, 1731, 1594, 1495, 1471, 1409, 1376, 1333, 1293, 1167, 1154, 1093, 1073, 1046, 1014 cm ⁻¹
	1409, 1376, 1333, 1293, 1167, 1154, 1093, 1073, 1046, 1014 cm ⁻¹

(表33)

化合物	dt. III. etc.
番号	物性値
Ia-36	1 H-NMR (CDCl ₃) δ 2.90 (t, J = 6.6 Hz, 2H), 3.23 (t, J = 6.6 Hz, 2H), 4.44 (br, 1H), 4.83 (s, 2H), 6.93-7.13 (m, 6H), 7.68-7.72 (m, 2H); IR (KBr) 3290, 2664, 2573, 1721, 1629, 1591, 1493, 1460, 1440, 1410, 1346, 1323, 1292, 1252, 1090, 1049, cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 54.80; H, 4.31; N, 6.80; F, 9.22; S, 7.78 実測値 (%): C, 54.70; H, 4.27; N, 6.68; F, 9.03; S, 7.81
Ia-39	1 H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.03 (t, J = 7.5 Hz, 2H), 3.34 (t, J = 7.5 Hz, 2H), 4.85 (s, 2H), 6.95 (s, 1H), 7.12-7.23 (m, 5H), 7.55 (d, J = 8.1 Hz, 1H), 7.74-7.79 (m, 2H); IR (CHCl ₃) 3482, 2928, 2865, 1732, 1594, 1495, 1469, 1408, 1383, 1341, 1292, 1166, 1154, 1189, 1044, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.1AcOEt) 計算値 (%): C, 58.36; H, 5.00; N, 7.02; F, 4.76; S, 8.03 実測値 (%): C, 58.64; H, 5.07; N, 6.90; F, 4.46; S, 7.90
Ia-41	¹ H-NMR (CDCl ₃) δ 2.35 (s, 3H), 2.78 (s, 3H), 3.02 (t, J = 8.4 Hz, 2H), 3.22 (t, J = 8.4 Hz, 2H), 4.83 (s, 2H), 7.09-7.17 (m, 5H), 7.47 (d, J = 7.5 Hz, 1H), 7.72-7.77 (m, 2H); IR (CHCl ₃) 2928, 2866, 1906, 1731, 1594, 1496, 1469, 1416, 1376, 1341, 1292, 1166, 1154, 1090, 1046, 1013 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 58.61; H, 5.31; N, 6.83; F, 4.64; S, 7.82 実測値 (%): C, 58.58; H, 5.11; N, 6.61; F, 4.32; S, 7.46
Ia-42	1 H-NMR (CDCl ₈) δ 2.62 (s, 3H), 2.78 (s, 3H), 2.99 (t, J = 7.8 Hz, 2H), 3.32 (t, J = 7.8 Hz, 2H), 5.06 (s, 2H), 6.83 (s, 1H), 6.95-7.17 (m, 4H), 7.37 (d, J = 7.8 Hz, 1H), 7.74-7.78 (m, 2H); IR (CHCl ₈) 2933, 2869, 1731, 1594, 1495, 1463, 1439, 1406, 1375, 1342, 1292, 1166, 1154, 1089, 1044, 1014 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S) 計算值 (%): C, 59.39; H, 5.23; N, 6.93; F, 4.70; S, 7.93 実測値 (%): C, 59.28; H, 5.26; N, 6.75; F, 4.45; S, 7.66
18-45	¹ H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.00 (t, J = 7.8 Hz, 2H), 3.33 (t, J = 7.8 Hz, 2H), 3.86 (s, 3H), 4.81 (s, 2H), 6.88-7.18 (m, 6H), 7.75-7.79 (m, 2H); IR (CHCl ₃) 2930, 1731, 1594, 1490, 1455, 1342, 1166, 1154, 1089, 1045, 1014 cm ⁻¹
	¹ H-NMR (CDCl ₃) δ 2.78 (s, 3H); 2.98 (t, J = 7.2 Hz, 2H), 3.32 (t, J = 7.2 Hz, 2H), 4.83 (s, 2H), 7.01 (s, 1H), 7.11-7.20 (m, 3H), 7.47 (s, 1H), 7.74-7.79 (m, 2H); IR (CHCl ₃) 3481, 2928, 2864, 1732, 1594, 1496, 1471, 1342, 1293, 1241, 1166, 1154, 1089, 1072, 1041, 1014 cm ⁻¹
	1 H-NMR (CDCl ₃) δ 2.78 (s, 3H), 2.97 (t, J = 6.9 Hz, 2H), 3.31 (t, J = 6.9 Hz, 2H), 4.83 (s, 2H), 6.97-7.19 (m, 6H), 7.75-7.79 (m, 2H); IR (KBr) 2927, 1730, 1626, 1592, 1489, 1458, 1338, 1293, 1236, 1153, 1087, 1039, 1013 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₈ F ₂ N ₂ O ₄ S·0.7MeOH) 計算値 (%): C, 54.92; H, 4.87; N, 6.50; F, 8.82; S, 7.44 実測値 (%): C, 55.19; H, 4.93; N, 6.33; F, 8.44; S, 7.24

(表34)

化合物	物性値
番号	ITT NTTED (CDC) > 0.00 0.00 (OTT) 0.00 0.40 (OTT) 0.04 (1
Ia-47	1 H-NMR (CDCl ₃) δ 2.98-3.03 (m, 2H), 3.38-3.43 (m, 2H), 3.84 (d, J=6.3Hz, 2H), 4.01 (s, 2H), 5.13-5.18 (m, 2H), 5.64 (m, 1H), 6.81 (s, 1H), 7.07-7.15 (m, 3H), 7.17-7.24 (m, 2H), 7.54 (d, J=7.8 Hz, 1H), 7.76-7.82 (m, 2H); IR (CHCl ₃) 3503, 2928, 2869, 2656, 2558, 1770, 1733, 1594, 1495, 1469, 1342, 1291, 1165, 1153 cm ⁻¹ ; 元素 分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 59.79; H, 5.16; F, 4.50; N, 6.64; S, 7.60 実測値 (%): C, 59.83; H, 4.91; F, 4.42; N, 6.67; S, 7.52
Ia-48	1 H-NMR (CDCl ₃) δ 1.05 (s, 3H), 1.07 (s, 3H), 3.12-3.18 (m, 2H), 3.31-3.36 (m, 2H), 4.11 (m, 1H), 4.85 (s, 2H), 6.92 (s, 1H), 7.11-7.26 (m, 5H), 7.68 (d, J = 7.5 Hz, 1H), 7.83-7.88 (m, 2H); IR (CHCl ₃) 3503, 2935, 2875, 2653, 2558, 1733, 1594, 1494, 1468, 1334, 1291, 1187, 1150 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.2H ₂ O) 計算値 (%): C, 59.76; H, 5.59; F, 4.50; N, 6.64; S, 7.60 実測値 (%): C, 59.80; H, 5.44; F, 4.48; N, 6.65; S, 7.62
Ia-51	¹ H-NMR (CDCl ₃) δ 2.82 (dd, J = 8.1 and 5.1 Hz, 2H), 3.36 (dd, J = 8.1 and 5.1 Hz, 2H), 4.37 (s, 2H), 4.77 (s, 2H), 6.69 (s, 1H), 7.05-7.30 (m, 11H), 7.79-7.84 (m, 2H); IR (CHCl ₃) 3282, 2928, 2871, 1732, 1594, 1496, 1469, 1407, 1384, 1339, 1292, 1165, 1154, 1093, 1068, 1014 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₃ FN ₂ O ₄ S·0.8H ₂ O) 計算値 (%): C, 62.43; H, 5.16; N, 5.82; F, 3.95; S, 6.67 実測値 (%): C, 62.43; H, 5.39; N, 5.64; F, 3.70; S, 6.38
Ia-52	¹ H-NMR (CDCl ₃) δ 2.65 (t, J = 7.8 Hz, 2H), 3.24-3.28 (m, 2H), 3.36 (s, 3H), 4.45 (s, 2H), 4.49 (s, 2H), 6.87-7.45 (m, 12H), 7.90-7.95 (m, 2H); IR (KBr) 3434, 2926, 1592, 1494, 1469, 1405, 1380, 1335, 1293, 1234, 1152, 1069, 1013 cm ⁻¹ ;
Ia-55	¹ H-NMR (CDCl ₃) δ 2.13 (s, 3H), 2.78 (t, J = 8.1 Hz, 2H), 3.19 (t, J = 8.1 Hz, 2H), 4.36 (s, 2H), 4.75 (s, 2H), 7.03-7.37 (m, 11H), 7.82-7.87 (m, 2H); IR (CHCl ₃) 2928, 2868, 1659, 1594, 1496, 1469, 1340, 1292, 1165, 1154, 1097, 1015 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₄ S) 計算値 (%): C, 64.98; H, 5.24; N, 5.83; F, 3.95; S, 6.67 実測値 (%): C, 65.28; H, 5.24; N, 5.59; F, 3.64; S, 6.31
Ia-56	1 H-NMR (CDCl ₃) δ 2.58 (s, 3H), 2.79 (t, J = 7.8 Hz, 2H), 3.35 (t, J = 7.8 Hz, 2H), 4.37 (s, 2H), 4.98 (s, 2H), 6.57 (s, 1H), 6.90-7.37 (m, 10H), 7.79-7.89 (m, 2H); IR (CHCl ₃) 3482, 2934, 2871, 1731, 1594, 1496, 1455, 1439, 1406, 1341, 1292, 1165, 1154, 1093, 1070, 1029, 1013 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₄ S) 計算値 (%): C, 64.98; H, 5.24; N, 5.83; F, 3.95; S, 6.67 実測値 (%): C, 64.81; H, 5.26; N, 5.60; F, 3.75; S, 6.47
la-57	¹ H-NMR (CDCl ₃) δ 2.79 (t, J = 7.5 Hz, 2H), 3.36 (t, J = 7.5 Hz, 2H), 3.79 (s, 3H), 4.37 (s, 2H), 4.73 (s, 2H), 6.66 (s, 1H), 6.78-7.38 (m, 10H), 7.80-7.84 (m, 2H); IR (CHCl ₃) 2937, 1732, 1593, 1491, 1455, 1340, 1292, 1165, 1154, 1093, 1066, 1043, 1014 cm ⁻¹ ;

(表35)

化合物	物性値
番号 Ia-58	1 H-NMR (CDCl ₃) δ 2.77 (t, J = 7.8 Hz, 2H), 3.31 (t, J = 7.8 Hz, 2H), 4.36 (s, 2H), 4.75 (s, 2H), 6.74 (s, 1H), 7.04-7.32 (m, 10H), 7.81-7.86 (m, 2H); IR (CHCl ₃) 3481, 2929, 2868, 1732, 1594, 1496, 1471, 1410, 1386, 1341, 1292, 1165, 1154, 1093, 1071, 1029, 1013 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₂ ClNF ₂ O ₄ S) 計算値 (%): C, 59.94; H, 4.43; N, 5.59; Cl, 7.08; F, 3.79; S, 6.40 実測値 (%): C, 59.65; H, 4.34; N, 5.48; Cl, 6.71; F, 3.62; S, 6.19
Ia-59	1 H-NMR (CDCl ₃) δ 2.77 (t, J = 8.1 Hz, 2H), 3.32 (t, J = 8.1 Hz, 2H), 4.36 (s, 2H), 4.76 (s, 2H), 6.76 (s, 1H), 6.80-7.37 (m, 11H), 7.81-7.86 (m, 2H); IR (KBr) 3429, 2927, 1733, 1625, 1594, 1486, 1455, 1408, 1338, 1295, 1241, 1209, 1199, 1166, 1154, 1137, 1097, 1070, 1028, 1014 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₂ F ₂ N ₂ O ₄ S·0.3AcOEt) 計算値 (%): C, 61.59; H, 4.81; N, 5.48; F, 7.44; S, 6.28 実測値 (%): C, 61.98; H, 4.83; N, 5.31; F, 7.12; S, 6.13
Ia-61	1 H-NMR (CDCl ₃) δ 2.36 (s, 3H), 2.67-2.72 (m, 2H), 3.23-3.29 (m, 2H), 4.34 (s, 2H), 4.74 (s, 2H), 5.70 (br s, 1H), 6.63 (s, 1H), 7.03 (m, 1H), 7.11-7.27 (m, 9H), 7.81-7.88 (m, 2H); IR (CHCl ₃) 3502, 2929, 2868, 2656, 2558, 1732, 1594, 1495, 1468, 1340, 1240 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) 計算値 (%): C, 64.50; H, 5.29; F, 3.92; N, 5.79; S, 6.62 実測値 (%): C, 64.50; H, 5.24; F, 3.78; N, 5.82; S, 6.61
Ia-62	mp 108-110 °C; ¹H-NMR (CDCl ₈) δ 2.75-2.80 (m, 2H), 3.28-3.34 (m, 2H), 3.77 (s, 3H), 4.27 (s, 2H), 4.64 (s, 2H), 6.13 (br s, 1H), 6.63 (s, 1H), 6.80-6.82 (m, 2H), 7.00-7.15 (m,7H), 7.24 (m, 1H), 7.75-7.80 (m, 2H); IR (Nujol) 2726, 1727, 1612, 1590, 1513, 1494, 1467, 1333, 1246, 1152 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₅ S·0.3H ₂ O) 計算値 (%): C, 62.21; H, 5.14; F, 3.78; N, 5.58; S, 6.39 実測値 (%): C, 62.26; H, 5.16; F, 3.56; N, 5.43; S, 6.21
Ia-63	¹ H-NMR (CDCl ₃) δ 2.86 (t, J = 7.4 Hz, 2H), 3.42 (t, J = 7.4 Hz, 2H), 4.34 (s, 2H), 4.80 (s, 2H), 5.35 (br s, 1H), 6.74 (s, 1H), 7.01 (m, 1H), 7.14-7.32(m, 7H), 7.83-7.87 (m, 2H), 7.98-8.01 (m, 2H); IR (Nujol) 2725, 1725, 1591, 1520, 1493, 1465, 1377, 1345, 1235, 1153 cm ⁻¹
Ia-64	mp 163-165 °C; ¹H-NMR (CDCl ₃) δ 2.50-2.56 (m, 2H), 3.24-3.30 (m, 2H), 4.64 (s, 2H), 4.75 (s, 2H), 6.48 (s, 1H), 6.95-7.07 (m, 3H), 7.11-7.22 (m, 3H), 7.32-7.40 (m, 2H), 7.49-7.59 (m, 2H), 7.81-7.93 (m, 4H), 8.29-8.32 (m, 2H); IR (Nujol) 3105, 3061, 1736, 1592, 1492, 1465, 1343, 1333, 1239, 1221, 1170, 1152 cm ⁻¹ ; 元素分析 (C ₂₉ H ₂₅ FN ₂ O ₄ S) 計算値 (%): C, 67.43; H, 4.88; F, 3.68; N, 5.42; S, 6.21 実測値 (%): C, 67.20; H, 4.71; F, 3.51; N, 5.30; S, 6.04

(表36)

化合物	
番号	物性値
Ia-65	1 H-NMR (CDCl ₃) δ 2.94-2.99 (m, 2H), 3.41-3.46 (m, 2H), 4.57 (s, 2H), 4.79 (s, 2H), 6.77-6.90 (m, 3H), 7.06-7.25 (m, 6H), 7.41 (d, J = 7.8Hz, 1H), 7.75-7.79 (m, 2H); IR (CHCl ₃) 3503, 2929, 2655, 2558, 1733, 1594, 1495, 1469, 1342 cm ⁻¹ ; 元素分析 (C ₂₃ H ₂₁ FN ₂ O ₄ S ₂ ·0.6H ₂ O) 計算値 (%): C, 57.15; H, 4.63; F, 3.93; N, 5.80; S, 13.27 実測値 (%): C, 57.04; H, 4.48; F, 3.78, N, 5.63; S, 13.44
Ia-66	1 H-NMR (CDCl ₃) δ 2.82 (t, J = 8.0Hz, 2H), 2.97-3.02 (m, 2H), 3.35-3.48 (m, 4H), 4.79 (s, 2H), 5.99 (bs, 1H), 6.83 (s, 1H), 7.05-7.28 (m, 10H), 7.54 (d, J = 7.5Hz, 1H), 7.73-7.78 (m, 2H); IR (CHCl ₃) 3503, 2932, 2869, 2655, 2558, 1733, 1594, 1496, 1468, 1334 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₄ S·0.5H ₂ O) 計算値 (%): C, 63.79; H, 5.35; F, 3.88; N, 5.72; S, 6.55 実測値 (%): C, 64.02; H, 5.29; F, 3.60, N, 5.75; S, 6.26
Ia-69	1 H-NMR (CDCl ₃) δ 1.86 (m, 2H), 2.75 (t, J = 6.3 Hz, 2H), 3.00 (m, 2H), 4.58 (t, J = 5.7 Hz, 1H), 4.83 (s, 2H), 6.83 (s, 1H), 7.06-7.24 (m, 5H), 7.45 (d, J = 7.8 Hz, 1H), 7.70-7.75 (m 2H); IR (CHCl ₃) 3780, 3369, 2936, 1732, 1594, 1495, 1468, 1410, 1381, 1334, 1292, 1240, 1167, 1154, 1093, 1046, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 58.28; H, 5.09; N, 6.87; F, 4.66; S, 7.86 実測値 (%): C, 58.39; H, 5.14; N, 6.96; F, 4.52; S, 7.72
Ia-74	1 H-NMR (CDCl ₃) δ 1.83-1.91 (m, 2H), 2.75 (t, J = 7.2 Hz, 2H), 2.97-3.04 (m, 2H), 4.56 (m, 1H), 4.82 (s, 2H), 6.82 (s, 1H), 6.95-7.12 (m, 5H), 7.19-7.25 (m, 3H), 7.34-7.49 (m, 3H), 7.67-7.75 (m, 2H); IR (CHCl ₃) 3480, 2935, 1732, 1584, 1488, 1469, 1412, 1376, 1332, 1298, 1246, 1154, 1095, 1045, 1022 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₄ N ₂ O ₅ S·0.3H ₂ O) 計算值 (%): C, 63.90; H, 5.28; N, 5.96; S, 6.82 実測値 (%): C, 63.95; H, 5.51; N, 5.72; S, 6.39
Ia-81	¹ H-NMR (CDCl ₃) δ 1.91 (m, 2H), 2.73 (s, 3H), 2.81 (t, J = 6.9 Hz, 2H), 3.60 (t, J = 7.2 Hz, 1H), 4.86 (s, 2H), 6.95 (s, 1H), 7.10-7.23 (m, 5H), 7.54 (d, J = 7.8 Hz, 1H), 7.73 (m, 2H); IR (CHCl ₃) 3481, 2932, 2868, 1731, 1615, 1594, 1494, 1468, 1407, 1378, 1342, 1292, 1166, 1154, 1090, 1014 cm ⁻¹
 Ia-85	¹ H-NMR (CDCl ₃) δ 1.68-1.77 (m, 2H), 2.56 (t, J = 6.9 Hz, 2H), 3.17 (t, J = 7.8 Hz, 2H), 4.31 (s, 2H), 4.80 (s, 2H), 6.67 (s, 1H), 7.03-7.38 (m, 11H), 7.71-7.77 (m, 2H); IR (CHCl ₃) 3481, 2931, 1732, 1594, 1495, 1468, 1339, 1292, 1165, 1154, 1095, 1013 cm ⁻¹
la-87	mp 125-126 °C; ¹H-NMR (CDCl ₃) δ 2.39 (s, 3H), 2.81 (m, 1H), 2.99 (m, 1H), 3.33-3.46 (m, 2H), 4.82 (s, 2H), 6.85 (s, 1H), 7.06-7.28 (m, 10H), 7.55 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H); IR (Nujol) 3428, 3081, 3026, 2927, 1713, 1598, 1468, 1325, 1241, 1191, 1149 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₈ N ₂ O ₄ S) 計算値 (%): C, 68.04; H, 5.92; N, 5.88; S, 6.73 実測値 (%): C, 68.07; H, 5.82; N, 5.95; S, 6.60

(表37)

化合物	物性値
番号	
la-88	1 H-NMR (CDCl ₃) δ 2.89 (t, J = 6.6 Hz, 2H), 3.21-3.27 (m, 2H), 4.53 (t, J = 6.6 Hz, 1H), 4.81 (s, 2H), 6.92-7.02 (m, 3H), 7.13 (m, 1H), 7.30-7.34 (m, 2H), 7.59-7.62 (m, 2H); IR (KBr) 3290, 3087, 2571, 1721, 1627, 1586, 1490, 1409, 1346, 1323, 1251, 1225, 1163, 1092, 1048, 1013 cm ⁻¹ ; 元素分析 (C ₁₈ H ₂₆ ClFN ₂ O ₄ S) 計算值 (%): C, 52.62; H, 3.93; N, 6.82; Cl, 8.63; F, 4.62; S, 7.80 実測値 (%): C, 52.46; H, 3.85; N, 6.62; Cl, 8.25; F, 4.34; S, 7.64
la-89	1 H-NMR (CDCl $_{8}$) δ 2.85 (t, J = 6.6 Hz, 2H), 3.19 (m, 2H), 3.84 (s, 3H), 4.56 (br, 1H), 4.77 (s, 2H), 6.80-6.98 (m, 5H), 7.10 (m, 1H), 7.58-7.64 (m, 2H); IR (CHCl $_{8}$) 2945, 2843, 1732, 1598, 1580, 1498, 1488, 1458, 1410, 1329, 1303, 1260, 1180, 1155, 1096, 1029 cm $^{-1}$; 元素分析 (C $_{19}$ H $_{19}$ FN $_{2}$ O $_{5}$ S·0.4H $_{2}$ O) 計算値 (%): C, 55.17; H, 4.82; N, 6.77; F, 4.59; S, 7.75 実測値 (%): C, 55.30; H, 4.81; N, 6.56; F, 4.33, S, 7.45
Ia-90	1 H-NMR (CDCl $_{8}$) δ 2.91 (t, J = 6.3 Hz, 2H), 3.34-3.49 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.92-7.15 (m, 5H), 7.48-7.53 (m, 2H); IR (KBr) 3269, 2655, 2565, 1728, 1626, 1584, 1488, 1459, 1433, 1324, 1241, 1096, 1073, 1017 cm $^{-1}$; 元素分析 (C $_{16}$ H $_{15}$ FN $_{2}$ O $_{4}$ S $_{2}$ ·0.3H $_{2}$ O) 計算值 (%): C, 49.55; H, 4.05; N, 7.22; F, 4.90; S, 16.54 実測値 (%): C, 49.89; H, 3.98; N, 6.98; F, 4.54; S, 16.12
la-91	mp 95-97°C; ¹ H-NMR (CDCl ₃) δ 2.84 (m, 1H), 3.02 (m, 1H), 3.34-3.49 (m, 2H), 4.83 (s, 2H), 6.88 (s, 1H), 7.04-7.29 (m, 9H), 7.52-7.59 (m, 3H); IR (Nujol) 3429, 3087, 3029, 2932, 1713, 1615, 1469, 1406, 1340, 1242, 1190, 1151 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₄ N ₂ O ₄ S ₂) 計算値 (%): C, 61.52; H, 5.16; N, 5.98; S, 13.69 実測値 (%): C, 61.39; H, 5.06; N, 5.78; S, 13.66
la-92	mp 113-114.5 °C; ¹H-NMR (CDCl ₃) δ 2.81 (m, 1H), 2.93 (m, 1H), 3.35-3.42 (m, 2H), 4.79 (s, 2H), 6.88 (s, 1H), 7.07-7.29 (m, 9H), 7.45 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 5.1, 8.7 Hz); IR (Nujol) 3423, 3028, 1720, 1591, 1494, 1470, 1405, 1336, 1293, 1226, 1147, 1094 cm⁻¹; 元素分析 (C ₂₆ H ₂₄ CIFN ₂ O ₄ S) 計算值 (%): C, 60.64; H, 4.70; N, 5.44; Cl, 6.88; F, 3.69; S, 6.23 実測値 (%): C, 60.54; H, 4.60; N, 5.29; Cl, 6.70; F, 3.56; S, 6.28
la-93	mp 103-107 °C; ¹H-NMR (CDCl ₃) δ 3.05 (m, 2H), 3.45 (m, 2H), 3.96 (d, J = 6.6 Hz, 2H), 4.77 (s, 2H), 5.94 (dt, J = 6.6, 15.6 Hz), 6.37 (d, J = 15.6 Hz, 1H), 6.84 (s, 1H), 7.01-7.33 (m, 10H), 7.49 (d, J = 8.1 Hz, 1H), 7.82 (dd, J = 4.8, 8.7 Hz, 2H); IR (Nujol) 3456, 3058, 1725, 1591, 1493, 1469, 1405, 1334, 1292, 1235, 1165, 1153, 1091 cm ⁻¹ ; 元素分析 ($C_{27}H_{25}FN_2O_4S\cdot0.3H_2O\cdot0.3MeOH$) 計算值 (%): C , 64.60; H , 5.32; N , 5.52; F , 3.74; S , 6.32 実測値 (%): C , 64.58; C , C , 64.58; C , 64.59; C , 65.53

(表38)

化合物	Han NH 石岩
番号	物性値
la-94	mp 126-129 °C; ¹H-NMR (CDCl ₃) δ 1.85 (m, 1H), 2.58 (t, J = 7.8 Hz, 2H), 2.99 (m, 2H), 3.19 (t, J = 7.8 Hz, 2H), 3.39 (m, 2H), 4.80 (s, 2H), 6.86 (s, 1H), 7.07-7.29 (m, 10H), 7.50 (d, J = 8.1 Hz, 1H), 7.75 (dd, J = 5.1, 9.0 Hz, 2H); IR (Nujol) 3404, 3056, 1724, 1591, 1492, 1471, 1413, 1340, 1290, 1232, 1154, 1095 cm ¹; 元素分析 ($C_{27}H_{27}FN_2O_4S$) 計算値 (%): C, 65.57; H, 5.50; N, 5.66; F, 3.84; S, 6.48 実測値 (%): C, 65.48; H, 5.60; N, 5.56; F, 3.77; S, 6.35
Ia-95	1 H-NMR (CD ₃ OD) δ 2.39 (s, 3H), 2.80 (t, J = 7.2 Hz, 2H), 3.10-3.16 (m, 2H), 6.89 (m, 1H), 6.98-7.29 (m, 5H), 7.63-7.66 (m, 2H); IR (KBr) 3293, 2575, 1721, 1628, 1598, 1491, 1459, 1440, 1407, 1321, 1252, 1224, 1187, 1092, 1048 cm $^{-1}$;元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.2H ₂ O) 計算値 (%): C, 57.91; H, 4.96; N, 7.11; F, 4.82; S, 8.14 実測値 (%): C, 57.87; H, 4.98; N, 6.85; F, 4.66, S, 7.93
Ia−96	1 H-NMR (CDCl ₃) δ 2.86 (t, J = 6.3 Hz, 2H), 3.25-3.32 (m, 2H), 4.64 (br, 1H), 4.74 (s, 2H), 6.85-7.09 (m, 4H), 7.57-7.66 (m, 3H), 7.81-7.89 (m, 3H), 8.33 (s, 1H); IR (KBr) 3281, 1713, 1625, 1588, 1487, 1456, 1411, 1325, 1239, 1216, 1157, 1132, 1102, 1075 cm ⁻¹ ; 元素分析 (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 61.18; H, 4.57; N, 6.49; F, 4.40; S, 7.42 実測値 (%): C, 61.08; H, 4.56; N, 6.22; F, 4.09, S, 7.14
la-97	1 H-NMR (CD ₃ OD) δ 2.82 (t, J = 6.3 Hz, 2H), 3.26-3.44 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 6.76-7.13 (m, 4H), 7.76-7.81 (m, 2H), 8.06-8.10 (m, 2H); IR (KBr) 3280, 3104, 2938, 1721, 1626, 1606, 1583, 1526, 1487, 1410, 1349, 1310, 1254, 1225, 1164, 1092, 1047 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₆ FN ₃ O ₆ S·0.2H ₂ O) 計算值 (%): C, 50.87; H, 3.89; N, 9.89; F, 4.47; S, 7.54 実測値 (%): C, 50.99; H, 3.86; N, 9.59; F, 4.19, S, 7.31
1a-98	1 H-NMR (CDCl ₃) δ 2.73 (t, J = 6.3 Hz, 2H), 3.18-3.22 (m, 2H), 4.71 (t, J = 6.0 Hz, 1H), 6.63 (s, 1H), 6.81-7.05 (m, 3H), 7.45-7.53 (m, 3H), 7.89 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 5.4 Hz, 1H), 8.40 (d, J = 5.4 Hz, 1H); IR (CDCl ₃) 1732, 1487, 1457, 1408, 1328, 1162, 1135, 1079, 1045 cm ⁻¹ ; 元素分析 (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.5H ₂ O) 計算値 (%): C, 60.68; H, 4.63; N, 6.43; F, 4.36; S, 7.36 実測値 (%): C, 60.65; H, 4.58; N, 6.26; F, 4.10, S, 7.20
la−99	1 H-NMR (CDCl $_3$) δ 2.88 (t, J = 6.0 Hz, 2H), 3.24-3.28 (m, 2H), 4.35 (br, 1H), 4.78 (s, 2H), 6.92-7.13 (m, 4H), 7.63 (d, J = 6.6 Hz, 2H), 7.79 (d, J = 6.6 Hz, 2H); IR (KBr) 3269, 2655, 2565, 1728, 1626, 1584, 1488, 1459, 1433, 1324, 1241, 1096, 1073, 1017 cm $^{-1}$; 元素分析 (C $_{19}$ H $_{16}$ FN $_3$ O $_4$ S $_2$ ·0.4H $_2$ O) 計算値 (%): C, 55.85; H, 4.14; N, 10.28; F, 4.65; S, 7.85 実測値 (%): C, 55.91; H, 4.23; N, 9.89; F, 4.33, S, 7.40

(表39)

化合物 番号	物性値
番勺 la-100	1 H-NMR (d ₆ -DMSO) δ 2.68 (t, J = 6.9 Hz, 2H), 2.93-2.98 (m, 2H), 4.09 (br, 1H), 4.81 (s, 2H), 6.59 (dd, J = 6.0 and 2.1 Hz, 1H), 6.70 (s, 1H), 7.00 (s, 1H), 7.09 (d, J = 6.0 Hz, 1H), 7.36-7.42 (m, 2H), 7.78-7.87 (m, 3H), 8.70 (s, 1H); IR (KBr) 3431, 2927, 1732, 1626, 1591, 1494, 1465, 1407, 1322, 1292, 1231, 1151, 1092, cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₅ S·H ₂ O) 計算値 (%): C, 52.68; H, 4.67; N, 6.83; F, 4.63; S, 7.81 実測値 (%): C, 52.41; H, 4.72; N, 6.58; F, 4.38, S, 7.76
	1 H-NMR (CD ₃ OD) δ 2.91 (t, J = 6.9 Hz, 2H), 3.21 (t, J = 6.9 Hz, 2H), 6.63 (m, 1H), 6.93 (s, 1H), 7.04-7.13 (m, 4H), 7.71-7.77 (m, 2H); IR (KBr) 3303, 1721, 1633, 1592, 1557, 1494, 1466, 1440, 1409, 1327, 1290, 1253, 1235, 1190, 1166, 1152, 1092, 1076, 1046 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₆ F ₂ N ₂ O ₄ S) 計算值 (%): C, 54.82; H, 4.09; N, 7.10; F, 9.63; S, 8.13 実測値 (%): C, 54.63; H, 4.05; N, 6.97; F, 9.28; S, 7.87
	1 H-NMR (CDCl ₈) δ 2.79 (s, 3H), 3.08 (t, J = 7.2 Hz, 2H), 3.35 (t, J = 7.2 Hz, 2H), 4.83 (s, 2H), 6.74 (m, 1H), 6.92-7.17 (m, 5H), 7.74-7.79 (m, 2H); IR (CHCl ₈) 2931, 1732, 1630, 1594, 1557, 1496, 1460, 1408, 1374, 1341, 1292, 1238, 1166, 1154, 1089, 1045 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₈ F ₂ N ₂ O ₄ S·0.4MeOH) 計算值 (%): C, 55.32; H, 4.69; N, 6.65; F, 9.02; S, 7.61 実測値 (%): C, 55.52; H, 4.50; N, 6.45; F, 8.70, S, 7.31
12-103	1 H-NMR (CDCl ₃) δ 2.87 (t, J = 7.8 Hz, 2H), 3.43 (t, J = 7.8 Hz, 2H), 4.40 (s, 2H), 4.60 (s, 2H), 6.62-7.36 (m, 12H), 7.77-7.81 (m, 2H); IR (CHCl ₃) 2930, 1732, 1629, 1593, 1496, 1457, 1406, 1329, 1292, 1154, 1098 cm ⁻¹ .
la-104	1 H-NMR (CDCl ₃) δ 1.83 (d, J = 7.2 Hz, 3H), 2.79-2.94 (m, 2H), 3.19-3.49 (m, 2H), 4.55 (br, 1H), 5.07 (q, J = 7.5 Hz, 1H), 6.99-7.20 (m, 5H), 7.63-7.68 (m, 2H); IR (CHCl ₃) 1725, 1594, 1495, 1466, 1409, 1331, 1292, 1167, 1153, 1092, 1062 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₈ ClFN ₂ O ₄ S·0.5H ₂ O) 計算值 (%): C, 52.60; H, 4.41; N, 6.46; Cl, 8.17; F, 4.38; S, 7.39 実測値 (%): C, 52.64; H, 4.36; N, 6.35; Cl, 7.95; F, 4.29, S, 7.42
la-105	¹ H-NMR (CDCl ₈) δ 1.84 (d, J = 7.2 Hz, 3H), 2.97 (t, J = 8.1 Hz, 2H), 3.31 (t, J = 8.1 Hz, 2H), 5.07 (q, J = 7.2 Hz, 1H), 7.13-7.19 (m, 5H), 7.46 (s, 1H), 7.75-7.80 (m, 2H); IR (CHCl ₈) 1726, 1594, 1495, 1465, 1375, 1342, 1292, 1166, 1154, 1090 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₀ ClFN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 54.07; H, 4.67; N, 6.30; Cl, 7.98; F, 4.28; S, 7.22 実測値 (%): C, 54.09; H, 4.89; N, 5.99; Cl, 7.63; F, 4.03; S, 6.86
la-106	1 H-NMR (CDCl ₃) δ 1.78 (d, J = 7.5 Hz, 3H), 2.77 (t, J = 8.4 Hz, 2H), 3.32 (d, J = 8.4 Hz, 2H), 4.71 (s, 1H), 5.01 (q, J = 7.5 Hz, 1H), 6.91 (s, 1H), 7.08-7.7.38 (m, 10H), 7.82-7.87 (m, 2H); IR (CHCl ₃) 1725, 1594, 1496, 1465, 1341, 1292, 1165, 1154, 1092, 1066 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₄ ClFN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 60.01; H,4.76; N, 5.38; Cl, 6.81; F, 3.65; S, 6.16 実測値 (%): C, 60.24; H, 4.65; N, 5.25; Cl, 6.51; F, 3.55; S, 6.04

(表40)

化合物	T
番号	物性値
Ib-2	1 H-NMR (d ₆ -DMSO) δ 2.54-2.68 (m, 2H), 2.89-3.06 (m, 2H), 3.35 (m, 1H), 4.84 (s, 2H), 6.93-7.04 (m, 2H), 7.26-7.32 (m, 2H), 7.45-7.52 (m, 2H), 7.92-7.97 (m, 2H), 8.36 (d, J = 7.8Hz, 1H), 12.96 (br, 1H); IR (KBr) 3429, 3300, 3061, 2913, 2856, 1725, 1592, 1494, 1458, 1432, 1409, 1382, 1340, 1291, 1241, 1167, 1155, 1092, 1002 cm ⁻¹ ; 元素分析 ($C_{19}H_{17}FN_2O_4S\cdot0.4H_2O$) 計算值 (%): C , 57.68; H , 4.54; N , 7.08; F , 4.80; S , 8.11 実測值 (%): C , 57.89; F , 4.36; F , 4.49; F , 7.77
Ib-6	1 H-NMR (CD ₃ OD) δ 2.56-2.65 (m, 2H), 2.71 (s, 3H), 2.95-3.04 (m, 2H), 4.75 (d, J = 18 Hz, 1H), 4.80 (d, J = 18 Hz, 1H), 5.36 (m, 1H), 6.96-7.08 (m, 2H), 7.19-7.41 (m, 4H), 7.93-7.98 (m, 2H); IR (KBr) 3413, 2925, 2653, 2551, 1719, 1706, 1616, 1592, 1493, 1461, 1404, 1378, 1335, 1291, 1234, 1151, 1087, 1012 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₅ S·0.4AcOEt) 計算値 (%): C, 59.27; H, 5.11; N, 6.40; F, 4.34; S, 7.33 実測値 (%): C, 59.03; H, 4.95; N, 6.34; F, 4.17; S, 7.29
Ib-11	¹ H-NMR (CD ₃ OD) δ 2.46-2.55 (m, 2H), 2.89-2.98 (m, 2H), 4.30 (d, J = 7.2 Hz, 1H), 4.42 (d, J = 7.2 Hz, 1H), 4.50 (d, 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 5.36 (m, 1H), 6.95-7.39 (m, 11H), 7.96-8.01 (m, 2H); IR (KBr) 3430, 2927, 2859, 1728, 1591, 1493, 1457, 1404, 1381, 1340, 1292, 1236, 1208, 1165, 1153,1092, 1052, 1012 cm ⁻¹ ;
Ib-16	mp 162-168 °C; ¹H-NMR (d ₆ -DMSO) δ 1.77 (m, 1H), 1.92 (m, 1H), 2.46-2.78 (m, 4H), 3.41 (m, 1H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.40-7.48 (m, 2H), 7.90-7.97 (m, 3H), 12.95 (br, 1H); IR (Nujol) 3261,1734,1590,1493,1469,1444,1329,1188,1168,1153 cm ⁻¹ ; [α] _D ²⁴ +60.4±1.0° (c=1.012, MeOH); 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₄ S) 計算値 (%): C, 59.69; H, 4.76; F,4.72; N, 6.96; S, 7.97 実測値 (%): C, 59.51; H, 4.68; F,4.57; N, 6.77; S, 7.78
Ib-18	¹ H-NMR (d ₆ -DMSO) δ 1.74 (m, 1H), 1.90 (m, 1H), 2.39 (s, 3H), 2.45-2.75 (m, 4H), 3.30(m, 1H), 4.79 (d, J = 19.2 Hz, 1H), 4.88 (d, J = 19.2 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.24 (d, J = 6.9 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 6.6 Hz, 1H), 12.93 (br, 1H); IR (KBr) 3272,2924,1728,1617,1598,1468,1434,1382,1319,1156 cm ⁻¹ ; [α] _D ²³ +76.2±1.2° (c=1.010, MeOH); 元素分析 (C ₂₁ H ₂₂ N ₂ O ₄ S·0.5H ₂ O) 計算値 (%): C, 61.90; H, 5.69; N, 6.87; S, 7.87 実測値 (%): C, 62.01; H, 5.45; N, 6.81; S, 7.76

(表41)

化合物	物性値
番号	¹ H-NMR (d ₆ -DMSO) δ 1.78 (m, 1H), 1.94 (m, 1H), 2.48-2.80 (m,
Ib-20	4H), 3.47 (m, $1H$), 4.81 (d, $J = 18.3$ Hz, $1H$), 4.87 (d, $J = 18.3$ Hz, $1H$), 6.97 (m, H), 7.05 (m, $1H$), 7.19 (dd, $J = 3.6$, 5.1 Hz, $1H$), $7.26-7.32$ (m, $2H$), 7.66 (dd, $J = 1.5$, 3.6 Hz, $1H$), 7.94 (dd, $J = 1.5$,
	$[5.1~{\rm Hz},~1{\rm H}),~8.12~({\rm d},~J=6.9~{\rm Hz},~1{\rm H}),~12.95~({\rm br},~1{\rm H});~{\rm IR}~({\rm KBr})]$ $[3435,3276,2925,1727,1617,1468,1433,1405,1382,1320,1227,1182]$ $[4.154~{\rm cm}^{-1};~[\alpha]_{\rm D}^{24}+70.9\pm1.1^{\circ}~({\rm c=1.010},~{\rm MeOH});~$ 元素分析 $[4.79]$
	16.05 実測値 (%): C, 54.24; H, 4.58; N, 6.90; S, 16.14
	¹ H-NMR (d ₆ -DMSO) δ 1.77 (m, 1H), 1.95 (m, 1H), 2.46-2.76 (m,
1	4H), 3.40 (m, 1H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.29 (d,
1	J = 7.8 Hz, 1H), 7.41 (d, J = 5.1 Hz, 1H), 7.78 (dd, J = 3.0, 5.1 Hz,
Ib-21	1H), 7.84 (d, J = 6.6 Hz, 1H), 8.20 (m, 1H), 12.95 (br, 1H); IR (KBr)
	3271,1728,1616,1468,1433,1382,1319,1206,1183,1153,1101,1075
	cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₈ N ₂ O ₄ S ₂ ·0.4H ₂ O) 計算值 (%): C, 54.36; H, 4.76; N, 7.04; S, 16.13 実測值 (%): C, 54.36; H, 4.75; N, 6.92; S,
į	15.96
	¹ H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 1.93 (m, 1H), 2.45-2.76 (m,
	4H), 3.41 (m, 1H), 4.22 (s, 2H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 7.48 (d, J = 18
lb-22	J = 18.6 Hz, 1H, 6.95-7.07 (m, 3H), 7.20-7.37 (m, 7H), 7.48 (d, J) = 3.6 Hz, 1H, 12.97 (br, 1H); IR (KBr)
	3431,3271,2923,1726,1486,1453,1382,1320,1153 cm ⁻¹ ; 元素分析
	$(C_{25}H_{24}FN_2O_4S_2\cdot 0.3H_2O)$ 計算值 (%): C, 61.78; H, 5.10; N, 5.76;
	S, 13.12 実測値 (%): C, 61.76; H, 5.01; N, 5.67; S, 13.12
	mp 185-196 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.53 (m, 1H), 1.88 (m, 1H), 2.48-2.85 (m, 4H), 2.83 (s, 3H), 4.12 (m, 1H), 4.85 (s, 2H), 6.98 (m, 1H), 7.06 (m, 1H), 7.28-7.32 (m, 2H), 7.45-7.51 (m, 2H), 7.91-7.98 (m, 2H), 12.95 (br, 1H); IR (Nujol)
1 10 - 75	$2683,1715,1592,1490,1465,1473,1335,1288,1167 \text{ cm}^{-1}; [\alpha]_{D}^{24}$
	+95.0±1.3° (c=1.004, MeOH); 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₄ S) 計算值
	(%): C, 60.56; H, 5.08; F, 4.56; N, 6.73; S, 7.70 実測値 (%): C,
	60.34; H, 5.15; F,4.33; N, 6.47; S, 7.43 mp 154-160°C; ¹ H-NMR (d ₆ -DMSO) δ 1.50 (m, 1H), 1.85 (m, 1H),
	2.42 (s, 3H), 2.52-2.78 (m, 4H), 2.80 (s, 3H), 4.10 (m, 1H), 4.82
	(d, J = 18.3 Hz, 1H), 4.88 (d, J = 18.3 Hz, 1H), 6.97 (m, 1H), 7.05
	(m, 1H), 7.28-7.32 (m, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 12.95 (br, 1H); IR (Nujol)
	$2658,1714,1598,1465,1335,1288,1165 \text{ cm}^{-1}; [\alpha]_{D}^{24} +119.5\pm1.6^{\circ}$
	(c=1.012, MeOH); 元素分析 (C ₂₂ H ₂₄ N ₂ O ₄ S) 計算値 (%): C, 64.06;
	H, 5.86; N, 6.79; S, 7.77 実測値 (%): C, 64.02; H, 5.78; N, 6.75;
	S, 7.68

(表42)

化合物	
番号	物性値
Ib-29	Mp 185-196 °C; ¹H-NMR (d_6 -DMSO) δ 1.52 (m, 1H), 1.88 (m, 1H), 2.53-2.82 (m, 4H), 2.86 (s, 3H), 4.11 (m, 1H), 4.82 (d, J = 18.3 Hz, 1H), 4.88 (d, J = 18.3 Hz, 1H), 6.98 (m, 1H), 7.06 (m, 1H), 7.26-7.33 (m, 3H), 7.74 (dd, J = 1.5, 3.6 Hz, 1H), 8.03 (dd, J = 1.5, 5.1 Hz, 1H), 12.93 (br, 1H); IR (Nujol) 2683,1715,1592,1490,1465,1473,1335,1288,1167 cm ⁻¹ ; [α] _D ²⁴ +95.0±1.3° (c=1.004, MeOH); 元素分析 ($C_{20}H_{19}FN_2O_4S$) 計算值 (%): C , 60.56; C , C , 60.56; C ,
	mp 175-180°C; ¹ H-NMR (d ₆ -DMSO) δ 1.36 (m, 1H), 1.88 (m, 1H),
Ib-30	2.52 (m, 1), 2.64-2.86 (m, 3H), 2.83 (s, 3H), 4.11 (m, 1H), 4.85 (s, 2H), 6.98 (m, 1H), 7.06 (m, 1H), 7.28-7.32 (m, 2H), 7.45 (dd, J = 1.2, 5.1 Hz, 1H), 7.83 (dd, J = 3.0, 5.1 Hz, 1H), 8.31 (dd, J = 1.2, 3.0 Hz, 1H), 12.93 (br, 1H); IR (Nujol) 3100,2662,1721,1468,1336,1323,1253,1201,1163,1138 cm ⁻¹ ; 元素分析 ($C_{19}H_{20}N_2O_4S_2$) 計算值 (%): C , 56.42; H , 4.98; N , 6.93; S , 15.85 実測値 (%): C , 56.34; H , 4.88; N , 6.85; S , 15.80
Ib-31	mp 138-140 °C; ¹H-NMR (d ₆ -DMSO) δ 1.49 (m, 1H), 1.86 (m, 1H), 2.49-2.77 (m, 4H), 2.81 (s, 3H), 4.02 (m, 1H), 4.25 (s, 2H), 4.85 (s, 2H), 6.96-7.08 (m, 3H), 7.22-7.38 (m, 7H), 7.56 (d, J = 3.9 Hz, 1H), 12.97(br, 1H); IR (Nujol) 1712,1468,1449,1431,1410,1380,1341,1238,1154 cm ⁻¹ ; 元素分析 ($C_{26}H_{26}N_2O_4S_2$) 計算値 (%): C, 63.13; H, 5.30; N, 5.66; S, 12.97 実測値 (%): C, 62.99; H, 5.26; N, 5.56; S, 13.00
Ib-77	mp 160-172 °C; ¹H-NMR (d_6 -DMSO) δ 2.50 (m, 1H), 2.80-3.06 (m, 6H), 4.18 (d, J = 18.0 Hz, 1H), 4.88 (d, J = 18.0 Hz, 1H), 6.94-7.04 (m, 2H), 7.27-7.31 (m, 2H), 7.41-7.48 (m, 2H), 7.85-7.91 (m, 3H), 12.95 (br, 1H); IR (Nujol) 3387,3352,2653,1722,1593,1494,1459,1402,1330,1289,1235,1156 cm ⁻¹ ; 元素分析 ($C_{20}H_{19}FN_2O_4S$) 計算値 (%): C , 59.69; H , 4.76; F ,4.72; N , 6.96; S , 7.97 実測値 (%): C , 59.40; H , 4.74; F ,4.60; N , 7.04; S , 7.91
Ic-2	mp 142-143 °C; ¹H-NMR (CDCl ₃) δ 2.42 (br s, 2H), 3.31 (t, J = 5.7 Hz, 2H), 3.97 (br s, 2H), 4.87 (s, 2H), 6.21 (br s, 1H), 7.03 (s, 1H), 7.14-7.29 (m, 5H), 7.75 (d, J = 7.8 Hz, 1H), 7.85 (dd, J = 4.8, 8.7 Hz, 2H); IR (KBr) 3348, 1770, 1590, 1491, 1466, 1347, 1331, 1167, 1156, 1095 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₉ FN ₂ O ₄ S) 計算値 (%): C, 60.86; H, 4.62; N, 6.76; F, 4.58; S, 7.74 実測値 (%): C, 60.94; H, 4.65; N, 6.65; F, 4.24; S, 7.70
Ic-6	mp 189-194 °C (dec); 1 H-NMR (CDCl ₈) δ 1.56 (m, 1H), 1.84 (m, 2H), 2.06 (m, 1H), 2.40-2,54 (m, 2H), 3.24 (m, 1H), 3.70 (m, 1H), 3.94 (dd, J = 2.1, 11.7 Hz, 1H), 4.84 (s, 2H), 6.88 (s, 1H), 7.13-7.26 (m, 5H), 7.63 (d, J = 7.8 Hz, 1H), 7.76 (dd, J = 5.1, 9.0 Hz, 2H); IR (KBr) 3423, 1706, 1590, 1492, 1468, 1405, 1332, 1288, 1240, 1148 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}FN_{2}O_{4}S$) 計算値 (%): C, 60.56; H, 5.08; N, 6.73; F, 4.56; S, 7.70 実測値 (%): C, 60.51; H, 5.12; N, 6.63; F, 4.35; S, 7.56

(表43)

化合物	
番号	物性值
Ic-8	mp 152-157 °C; ¹H-NMR (CDCl ₃) δ 1.57 (m, 1H), 1.79-1.90 (m, 2H), 2.06 (m, 1H), 2.53-2.65 (m, 2H), 3.26 (m, 1H), 3.70 (m, 1H), 3.94 (m, 1H), 4.84 (s, 2H), 6.90 (s, 1H), 7.10-7.28 (4H, m), 7.51 (m, 1H), 7.58 (m, 1H), 7.64 (d, $J = 7.8 \text{ Hz}$, 1H); IR (Nujol) 3424, 3101, 3055, 2930, 1717, 1614, 1579, 1469, 1406, 1337, 1243, 1164, 1146 cm ¹; 元素分析 (C ₁₉ H ₂₀ N ₂ O ₄ S ₂) 計算値 (%): C, 56.42; H, 4.98; N, 6.93; S, 15.85 実測値 (%): C, 56.37; H, 4.93; N, 6.83; S, 15.68
Tc-11	mp 212-214 °C; ¹H-NMR (d_6 -DMSO) δ 1.41-1.96 (m, 4H), 2.27-2.42 (m, 2H), 3.06 (m, 1H), 3.64-3.84 (m, 2H), 4.94 (s, 2H), 6.97 (td, J = 2.7, 9.0 Hz, 1H), 7.23 (s, 1H), 7.31 (dd, J = 2.7, 10.2 Hz, 1H), 7.36 (dd, J = 4.5, 9.0 Hz, 1H), 7.42-7.48 (m, 2H), 7.80-7.86 (m, 2H); IR (Nujol) 2654, 2558, 1709, 1624, 1591, 1489, 1458, 1407, 1334, 1319, 1283, 1241, 1192, 1155 cm ⁻¹ ; 元素分析 ($C_{21}H_{20}F_2N_2O_4S$ -0.2AcOEt) 計算値 (%): C , 57.92; H , 4.82; F , 8.40; N , 6.20; S , 7.09 実測値 (%): C , 58.06; H , 4.67; F , 8.24; N , 6.36; S , 7.31
Ic-14	mp 155-156°C; 1 H-NMR (d ₆ -DMSO) δ 1.86 (m, 1H), 2.21 (m, 1H), 3.13 (dd, J = 8.4, 9.6 Hz, 1H), 3.29-3.51 (m, 3H), 3.73 (dd, J = 7.2, 9.6 Hz, 1H), 4.89 (s, 2H), 6.98 (m, 1H), 7.06 (s, 1H), 7.11 (m, 1H), 7.31 (m, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.42-7.49 (m, 2H), 7.88-7.95 (m, 2H), 12.93 (br, 1H); IR (Nujol) 2662, 1732, 1712, 1587, 1490, 1469, 1341, 1333, 1241, 1198, 1162, 1095 cm ⁻¹ ; 元素分析 ($C_{20}H_{19}FN_2O_4S$) 計算値 (%): C , 59.69; C , 4.76; C ,
Ic-16	mp 126-133 °C; ¹H-NMR (d ₆ -DMSO) δ 1.84 (m, 1H), 2.22 (m, 1H), 3.17 (dd, J = 8.7, 9.9 Hz, 1H), 3.33-3.55 (m, 3H), 3.76 (dd, J = 7.5, 9.9 Hz, 1H), 4.91 (s, 2H), 7.00 (m, 1H), 7.07 (s, 1H), 7.12 (m, 1H), 7.28-7.40 (m, 3H), 7.75 (dd, J = 1.5, 3.9 Hz, 1H), 8.05 (dd, J = 1.5, 5.1 Hz, 1H), 12.92 (br, 1H); IR (Nujol) 3230, 1752, 1726, 1469, 1333, 1211, 1146, 1098, 1030 cm ⁻¹ ; 元素分析 ($C_{18}H_{18}N_2O_4S_2\cdot 0.2AcOEt$) 計算值 (%): C , 55.33; H , 4.84; N , 6.86; S , 15.71 実測值 (%): C , 55.08; H , 4.90; N , 6.83; S , 15.56
Ic-18	mp 139-140 °C; ¹ H-NMR (d_6 -DMSO) δ 1.84-2.16 (m, 2H), 2.20 (s, 3H), 3.30-3.76 (m, 5H), 4.88 (s, 2H), 6.77 (m, 2H), 7.02 (m, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.50-7.64 (m, 2H), 7.94-8.08 (m, 2H); IR (Nujol) 3075, 2925, 2736, 2656, 2561, 1725, 1590, 1468, 1375, 1351, 1291, 1241, 1152 cm ⁻¹
Ic-22	mp 185-190 °C (dec); 1 H-NMR (CDCl $_{8}$) δ 2.65 (br t, 2H), 3.36 (t, J = 5.7 Hz, 2H), 3.83 (br s, 2H), 4.78 (s, 2H), 6.10 (br s, 1H), 7.06 (s, 1H), 7.11-7.27 (m, 5H), 7.77 (d, J = 8.1 Hz, 1H), 7.87 (dd, J = 5.1, 9.0 Hz, 2H); 元素分析 ($C_{21}H_{19}FN_{2}O_{4}S$) 計算值 (%): C, 60.86; H, 4.62; N, 6.76; F, 4.58; S, 7.74 実測値 (%): C, 60.59; H, 4.68; N, 6.57; F, 4.29; S, 7.46

(表44)

化合物	ible Alla Fete
番号	物性値
Ic-24	mp 119-124 °C (dec); 1 H-NMR (CDCl $_{8}$) δ 1.86 (m, 2H), 2.11 (m, 2H), 2.45 (m, 2H), 2.77 (m, 1H), 3.93 (m, 2H), 4.84 (s, 2H), 6.81 (s, 1H), 7.10 (m, 1H), 7.21-7.27 (m, 4H), 7.51 (d, J = 8.1 Hz, 1H), 7.83 (dd, J = 5.1, 9.0 Hz, 2H); IR (KBr) 3422, 1715, 1593, 1493, 1467, 1349, 1333, 1240, 1168, 1154 cm $^{-1}$; 元素分析 (C $_{21}$ H $_{21}$ FN $_{2}$ O $_{4}$ S) 計算値 (%): C, 60.56; H, 5.08; N, 6.73; F, 4.56; S, 7.70 実測値 (%): C, 60.48; H, 4.98; N, 6.67; F, 4.35; S, 7.55
Ic-26	1 H-NMR (CDCl $_{3}$) δ 1.43-1.71 (m, 4H), 2.89 (m, 1H), 3.08 (m, 1H), 3.34-3.49 (m, 2H), 3.92 (m, 1H), 4.86 (s, 2H), 6.93 (s, 1H), 7.15-7.26 (m, 5H), 7.79 (d, $J = 7.8$ Hz, 1H), 7.87-7.91 (m, 2H); IR (KBr) 2927, 1727, 1591, 1493, 1468, 1332, 1292, 1235, 1197, 1152, 1091, 1038 cm $^{-1}$; 元素分析 ($C_{21}H_{21}FN_{2}O_{4}S\cdot0.6H_{2}O$) 計算值 (%): C, 59.03; H, 5.24; N, 6.56;F, 4.45; S, 7.50 実測値 (%): C, 59.38; H, 5.21; N, 6.42;F, 4.12, S, 7.11
Ic-29	1 H-NMR (CDCl ₈) δ 1.26-1.65 (m, 6H), 2.97-3.21 (m, 3H), 3.82 (m, 1H), 4.36 (m, 1H), 4.82 (s, 2H), 6.86 (s, 1H), 6.99-7.26 (m, 5H), 7.61 (d, J = 4.8 Hz, 1H), 7.69-7.74 (m, 2H); IR (KBr) 3426, 2936, 1728, 1591, 1494, 1468, 1330, 1289, 1232, 1149, 1091 cm ⁻¹ ; 元素 分析 (C ₂₂ H ₂₈ FN ₂ O ₄ S·0.4H ₂ O) 計算値 (%): C, 60.37; H, 5.48; N, 6.40; F, 4.34; S, 7.33 実測値 (%): C, 60.53; H, 5.49; N, 6.26; F, 3.97; S, 6.93
Ic-30	mp 205-208 °C; ¹ H-NMR (d_6 -DMSO) δ 1.46-1.97 (m, 4H), 2.16-2.37 (m, 2H), 3.07 (m, 1H), 3.64-3.83 (m, 2H), 3.84 (s, 3H), 4.93 (s, 2H), 7.05 (m, 1H), 7.10-7.15 (m, 3H), 7.34 (d, J = 8.1 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 9.0 Hz, 2H).
Ic-31	mp 155-159 °C; ¹H-NMR (d ₆ -DMSO) δ 1.80 (m, 1H), 2.23 (m, 1H), 3.16 (dd, J=8.7, 9.3 Hz, 1H), 3.34-3.56 (m, 3H), 3.74 (dd, J=7.5, 9.9 Hz, 1H), 4.93 (s, 2H), 7.12 (dd, J=2.1, 8.7 Hz, 1H), 7.16 (s, 1H), 7.28 (dd, J=3.6, 5.1 Hz, 1H), 7.38 (d, J=8.7 Hz, 1H), 7.49 (d, J=2.1 Hz, 1H), 7.74 (dd, J=1.5, 3.6 Hz, 1H), 8.03 (dd, J=1.5, 5.1 Hz, 1H), 12.99 (br, 1H); IR (Nujol) 2669, 1745, 1669, 1469, 1388, 1347, 1226, 1156, 1040 cm ·¹; 元素分析 ($C_{18}H_{17}ClN_2O_4S_2$) 計算値 (%): C , 50.88; H , 4.03; Cl , 8.34; N , 6.59; S , 15.09 実測値 (%): C , 55.86; H , 3.92; Cl , 8.04; N , 6.58; S , 15.00
lc-32	mp 169-171 °C; ¹H-NMR (d_6 -DMSO) δ 1.83 (m, 1H), 2.19 (m, 1H), 3.11 (dd , $J=8.7$, 9.3 Hz, 1H), 3.29-3.50 (m, 3H), 3.71 (dd , $J=7.5$, 9.9 Hz, 1H), 4.84 (s, 2H), 6.93 (dd , $J=1.5$, 8.4 Hz, 1H), 7.00 (s, 1H), 7.13 (d , $J=1.5$ Hz, 1H), 7.19 (d , $J=8.4$ Hz, 1H), 7.42-7.50 (m, 2H), 7.89-7.96 (m, 2H), 12.89 (br, 1H); IR (Nujol) 2663, 1730, 1708, 1588, 1492, 1463, 1342, 1243, 1198, 1160, 1096, 1025 cm²l; 元素分析($C_{21}H_{21}FN_{2}O_{4}S$)計算值(%): C , 60.56; H , 5.08; F , 4.56; N , 6.73; S , 7.70 実測値(%): C , 60.49; H , 5.08; F , 4.27; N , 6.67; S , 7.40

(表45)

化合物	物性値
番号	
lc-33	mp 145-149 °C; 1 H-NMR (d ₆ -DMSO) δ 1.83 (m, 1H), 2.20 (m, 1H), 2.36 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.34-3.54 (m, 3H), 3.74 (dd, J = 7.5, 9.6 Hz, 1H), 4.86 (s, 2H), 6.94 (dd, J = 1.5, 8.4 Hz, 1H), 7.01 (s, 1H), 7.17 (d, J = 1.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.30 (dd, J = 3.9, 5.1 Hz, 1H), 7.75 (dd, J = 1.5, 3.9 Hz, 1H), 8.05 (dd, J = 1.5, 5.1 Hz, 1H), 12.90 (br, 1H); IR (Nujol) 2662, 1705, 1484, 1463, 1348, 1246, 1156, 1034 cm $^{-1}$; 元素分析 ($C_{19}H_{20}N_2O_4S_2$) 計算値 (%): C , 56.42; H , 4.98; N , 6.93; S , 15.85 実測値 (%): C , 56.33; S , 4.85; S , 6.84; S , 15.54
lc-34	mp 145-146 °C; ¹H-NMR (d_6 -DMSO) δ 1.76 (m, 1H), 2.20 (m, 1H), 3.11 (t, J = 9.0 Hz, 1H), 3.27-3.48 (m, 3H), 3.72 (dd, J = 7.5, 9.6 Hz, 1H), 4.90 (s, 2H), 7.10 (s, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.37(d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.61-7.66 (m, 2H), 7.73 (m, 1H), 7.83-7.87 (m, 2H), 12.98 (br, 1H); IR (Nujol) 2663, 1731, 1471, 1446, 1340, 1242, 1198, 1162, 1099, 1029 cm ⁻¹ ; 元素分析($C_{20}H_{19}ClN_2O_4S$)計算值(%): C , 57.34; H , 4.57; Cl , 8.46; N , 6.69; S , 7.65 実測値(%): C , 57.00; H , 4.48; Cl , 8.13; N , 6.71; S , 7.43
lc-35	1 H-NMR (d ₆ -DMSO) δ 1.97 (m, 1H), 2.30 (m, 1H), 3.08 (t, J = 9.0 Hz, 1H), 3.29-3.59 (m, 3H), 3.68 (d, J = 8.1 Hz, 1H), 4.50 (d, J = 13.5 Hz, 1H), 4.56 (d, J = 13.5 Hz, 1H), 4.98 (s, 2H), 7.14 (dd, J = 1.8, 8.7 Hz, 1H), 7.29 (s, 1H), 7.36-7.50 (m, 6H), 7.59 (d, J = 1.8 Hz, 1H), 13.01 (br, 1H); IR (KBr) 3439, 2637, 1731, 1471, 1329, 1152 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₁ ClN ₂ O ₄ S·0.6H ₂ O) 計算値 (%): C, 56.84; H, 5.04; Cl, 7.99; N, 6.31; S, 7.23 実測値 (%): C, 56.96; H, 4.81; Cl, 7.61; N, 6.34; S, 7.17
lc-36	mp 158-159 °C; ¹ H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.22 (m, 1H), 3.13 (t, J = 9.0 Hz, 1H), 3.28-3.50 (m, 3H), 3.72 (dd, J = 7.5, 9.3 Hz, 1H), 4.91 (s, 2H), 7.13 (dd, J = 1.8, 8.7 Hz, 1H), 7.16 (s, 1H), 7.37(d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.64-7.68 (m, 2H), 7.82-7.86 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2669, 1741, 1726, 1472, 1346, 1246, 1162, 1100, 1086, 1032 cm ⁻¹ .
Ic-37	mp 195-196 °C; ¹H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 2.42 (s, 3H), 3.08 (t, J = 9.0 Hz, 1H), 3.26-3.45 (m, 3H), 3.68 (dd, J = 7.5, 9.3 Hz, 1H), 4.90 (s, 2H), 7.10 (s, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.42-7.44 (m, 4H), 7.71-7.74 (m, 2H), 12.98 (br, 1H); IR (Nujol) 2671, 1728, 1470, 1347, 1249, 1199, 1158, 1097, 1030 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}ClN_2O_4S$) 計算值 (%): C , 58.26; H , 4.89; Cl , 8.19; N , 6.47; S , 7.41 実測値 (%): C , 58.18; H , 4.87; Cl , 7.92; N , 6.40; S , 7.28

(表46)

化合物 番号	物性値
Ic-38	mp 166-168 °C; ¹H-NMR (d_6 -DMSO) δ 1.81 (m, 1H), 2.20 (m, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.27-3.50 (m, 3H), 3.72 (dd, J = 7.5, 9.3 Hz, 1H), 4.90 (s, 2H), 6.95 (m, 1H), 7.15-7.19 (m, 2H), 7.34 (dd, J = 4.5, 9.0 Hz, 1H), 7.40-7.47 (m, 2H), 7.85-7.94 (m, 2H), 12.96 (br, 1H); IR (Nujol) 2662, 1725, 1715, 1587, 1457, 1341, 1333, 1237, 1198, 1160, 1096 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}F_2N_2O_4S$) 計算値 (%): C, 57.14; H, 4.32; F, 9.04; N, 6.66; S, 7.63 実測値 (%): C, 57.15; H, 4.25; F, 8.79; N, 6.54; S, 7.57
Ic-39	1 H-NMR (1 d ₆ -DMSO) 1 8 1.80 (1 m, 1H), 2.22 (1 m, 1H), 3.15 (1 t, J = 9.0 Hz, 1H), 3.31-3.53 (1 m, 3H), 3.75 (1 dd, J = 7.5, 9.6 Hz, 1H), 4.92 (1 s, 2H), 6.96 (1 m, 1H), 7.15 (1 s, 1H), 7.21 (1 dd, J = 2.4, 9.9 Hz, 1H), 7.28 (1 dd, J = 3.9, 4.8 Hz, 1H), 7.35 (1 dd, J = 4.5, 9.0 Hz, 1H), 7.74 (1 dd, J = 1.2, 3.9 Hz, 1H), 8.03 (1 dd, J = 1.2, 4.8 Hz, 1H), 12.97 (1 tr); IR (KBr) 1729, 1626, 1580, 1486, 1457, 1403, 1344, 1225, 1155 cm $^{-1}$; 元素分析 (1 s 1 tr) 1 t
Ic-40	mp 157-160 °C; ¹H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.21 (m, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.30-3.50 (m, 3H), 3.71 (dd, J = 7.5, 9.6 Hz, 1H), 3.74 (s, 3H), 4.83 (s, 2H), 6.75 (dd, J = 2.4, 8.7 Hz, 1H), 6.88 (d, J = 2.4 Hz, 1H), 7.00 (s, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.40-7.48 (m, 2H), 7.88-7.95 (m, 2H), 12.90 (br, 1H); IR (Nujol) 3204, 1742, 1718, 1622, 1586, 1493, 1452, 1338, 1331, 1224, 1151, 1095, 1037, 1027 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}FN_2O_5S$) 計算值 (%): C , 58.32; H , 4.89; F , 4.39; N , 6.48; S , 7.41 実測値 (%): C , 58.02; H , 5.07; F , 4.22; N , 6.30; S , 7.15
Ic-41 _.	1 H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.23 (m, 1H), 3.14 (t, J = 9.0 Hz, 1H), 3.30-3.52 (m, 3H), 3.75 (m, 1H), 3.75 (s, 3H), 4.85 (s, 2H), 6.76 (dd, J = 2.4, 8.7 Hz, 1H), 6.92 (d, J = 2.4 Hz, 1H), 7.01 (s, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.29 (dd, J = 3.9, 5.1 Hz, 1H), 7.75 (dd, J = 1.2, 3.6 Hz, 1H), 8.04 (dd, J = 1.2, 5.1 Hz, 1H), 12.74 (br, 1H); IR (KBr) 1727, 1622, 1580, 1488, 1454, 1403, 1345, 1226, 1155, 1031 cm ⁻¹ ; 元素分析 ($C_{19}H_{20}N_2O_5S_2\cdot0.2H_2O$) 計算值 (%): C , 53.81; C , 4.85; C , 6.61; C , 53.81; C , 6.34; C , 7.501
lc-42	1 H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.16 (m, 1H), 3.09 (t, J = 9.0 Hz, 1H), 3.25-3.47 (m, 3H), 3.69 (dd, J = 7.5, 9.9 Hz, 1H), 4.79 (s, 2H), 6.63 (dd, J = 2.1, 9.0 Hz, 1H), 6.72 (d, J = 2.1 Hz, 1H), 6.93 (s, 1H), 7.10 (d, J = 9.0 Hz, 1H), 7.42-7.47 (m, 2H), 7.88-7.93 (m, 2H), (d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.61-7.66 (m, 2H), 7.73 (m, 1H), 8.73 (br, 1H), 12.87 (br, 1H); IR (KBr) 3436, 1730, 1625, 1590, 1492, 1466, 1332, 1293, 1226, 1153, 1096 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₅ S·0.7H ₂ O) 計算値 (%): C, 55.73; H, 4.77; F, 4.41; N, 6.50; S, 7.44 実測値 (%): C, 55.69; H, 4.68; F, 4.05; N, 6.28; S, 7.19

(表47)

化合物	物性値
番号	
Ic-43	mp 119-123 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.34-1.46 (m, 2H), 1.60-1.79 (m, 2H), 2.03 (m, 1H), 2.36 (m, 1H), 3.02-3.65 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.96 (s, 2H), 6.98 (m, 1H), 7.33-7.44 (m, 3H), 12.96 (br, 1H); IR (Nujol) 3254, 1751, 1626, 1583, 1488, 1456, 1318, 1299, 1274, 1183, 1127, 1095, 1045 cm $^{-1}$; 元素分析($C_{18}H_{28}FN_2O_4S$)計算值(%): C , 56.53; H, 6.06; F, 4.97; N, 7.32; S, 8.38 実測値(%): C , 56.46; H, 5.99; F, 4.76; N, 7.19; S, 8.20
lc-44	mp 178-182 °C; 1 H-NMR (d ₆ -DMSO) δ 1.99 (m, 1H), 2.33 (m, 1H), 3.20 (t, J = 9.0 Hz, 1H), 3.23-3.60 (m, 3H), 3.80 (dd, J = 7.5, 9.9 Hz, 1H), 4.91 (s, 2H), 6.95 (m, 1H), 7.29 (s, 1H), 7.31-7.47 (m, 7H), 7.73-7.76 (m, 2H), 12.95 (br, 1H); IR (Nujol) 1719, 1620, 1577, 1486, 1459, 1331, 1228, 1144, 1048, 1023 cm $^{-1}$; 元素分析 (C ₂₂ H ₂₁ FN ₂ O ₄ S) 計算値 (%): C, 61.67; H, 4.94; F, 4.43; N, 6.54; S, 7.48 実測値 (%): C, 61.45; H, 4.92; F, 4.27; N, 6.40; S, 7.40
lc-45	mp 205-207 °C; 1 H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.22 (m, 1H), 3.15 (t, J = 9.0 Hz, 1H), 3.34-3.54 (m, 3H), 3.76 (dd, J = 7.5, 9.3 Hz, 1H), 4.88 (s, 2H), 6.95 (m, 1H), 7.17 (s, 1H), 7.20 (dd, J = 2.4, 9.9 Hz, 1H), 7.32 (dd, J = 4.5, 9.0 Hz, 1H), 7.43-7.56 (m, 3H), 7.76-7.79 (m, 2H), 9.93 (s, 4H), 12.93 (br, 1H); IR (Nujol) 1721, 1597, 1483, 1457, 1337, 1233, 1199, 1158 cm $^{-1}$; 元素分析 ($C_{26}H_{23}FN_{2}O_{4}S$) 計算值 (%): C, 65.26; H, 4.84; F, 3.97; N, 5.85; S, 6.70 実測値 (%): C, 65.03; H, 4.85; F, 3.78; N, 5.72; S, 6.59
lc-46	mp 172-174 °C; ¹H-NMR (d_6 -DMSO) δ 2.20 (m, 1H), 2.36 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.33-3.64 (m, 3H), 3.79 (dd, J = 7.2, 9.0 Hz, 1H), 4.97 (s, 2H), 6.98 (m, 1H), 7.34 (s, 1H), 7.38 (dd, J = 4.2, 9.0 Hz, 1H), 7.44 (dd, J = 2.4, 10.2 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 1722, 1487, 1456, 1318, 1233, 1196, 1141, 1042 cm ¹; 元素分析 ($C_{15}H_{17}FN_2O_4S$) 計算值 (%): C , 52.93; H , 5.03; F , 5.58; N , 8.23; S , 9.42 実測値 (%): C , 52.76; H , 4.96; F , 5.39; S , 8.15; S , 9.20
lc-47	mp 171-173 °C; ¹H-NMR (d_6 -DMSO) δ 1.88 (m, 1H), 2.26 (m, 1H), 3.17 (t, J = 9.3 Hz, 1H), 3.34-3.57 (m, 3H), 3.76 (dd, J = 6.9, 9.3 Hz, 1H), 4.93 (s, 2H), 7.12 (s, 1H), 7.32 (m, 1H), 7.39-7.48 (m, 6H), 7.63-7.68 (m, 3H), 7.89-7.96 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2668, 1736, 1592, 1493, 1476, 1347, 1335, 1258, 1244, 1187, 1166, 1154 cm ⁻¹ ; 元素分析 ($C_{26}H_{23}FN_2O_4S$) 計算値 (%): C, 65.26; H, 4.84; F, 3.97; N, 5.85; S, 6.70 実測値 (%): C, 65.29; H, 4.84; F, 3.91; N, 5.75; S, 6.78
lc-48	mp $161-163$ °C; ¹H-NMR (d ₆ -DMSO) δ 0.89 (t, J = 7.5 Hz, 3H), 1.34-1.46 (m, 2H), 1.61-1.71 (m, 2H), 2.08 (m, 1H), 2.41 (m, 1H), 3.04-3.20 (m, 2H), 3.27-3.58 (m, 3H), 3.68-3.86 (m, 2H), 4.99 (s, 2H), 7.29-7.33 (m, 2H), 7.42-7.48 (m, 4H), 7.68-7.71 (m, 2H), 7.86 (s, 1H), 12.97 (br, 1H); IR (Nujol) 2666, 1715, 1478, 1455, 1325, 1243, 1197, 1133, 1094, 1046 cm ⁻¹ ; 元素分析 ($C_{24}H_{28}N_2O_4S$) 計算值 (%): C , 65.43; C , C , 65.41; C ,

(表48)

化合物	
番号	物性値
Ic-49	mp 174-178 °C; ¹H-NMR (d_6 -DMSO) δ 1.86 (m, 1H), 2.28 (m, 1H), 3.18-3.57 (m, 4H), 3.78 (dd, $J=6.9$, 9.3 Hz, 1H), 4.94 (s, 2H), 7.12 (s, 1H), 7.27 (dd, $J=3.9$, 5.1 Hz, 1H), 7.32 (m, 1H), 7.42-7.49 (m, 4H), 7.64-7.70 (m, 3H), 7.75 (dd, $J=1.5$, 3.9 Hz, 1H), 8.02 (dd, $J=1.5$, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 2664, 1738, 1714, 1476, 1345, 1336, 1251, 1187, 1157, 1020 cm ⁻¹ ; 元素分析 ($C_{24}H_{22}N_2O_4S$) 計算値 (%): C, 61.78; H, 4.75; N, 6.00; S, 13.74 実測値 (%): C, 61.73; H, 4.74; N, 5.90; S, 13.62
Ic-50	mp 160-170 °C; ¹H-NMR (d_6 -DMSO) δ 1.99 (m, 1H), 2.32 (m, 1H), 3.00 (t, J 8.1 Hz, 1H), 3.17 (t, J = 9.0 Hz, 1H), 3.35-3.61 (m, 5H), 3.83 (dd, J = 7.5, 9.0 Hz, 1H), 4.93 (s, 2H), 6.97 (m, 1H), 7.20-7.43 (m, 8H), 12.94 (br, 1H); IR (Nujol) 3617, 3498, 2625, 1739, 1713, 1488, 1458, 1327, 1224, 1147, 1135, 1049 cm ⁻¹ ; 元素分析 ($C_{22}H_{23}FN_2O_4S\cdot H_2O$) 計算值 (%): C, 58.91; H, 5.62; F, 4.24; N, 6.25; S, 7.15 実測値 (%): C, 59.09; H, 5.51; F, 4.17; N, 6.12; S, 7.19
Ic-51	mp 192-194 °C; ¹H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.21 (m, 1H), 3.11 (t, J = 9.0 Hz, 1H), 3.27-3.50 (m, 3H), 3.73 (dd, J = 7.5, 9.3 Hz, 1H), 4.89 (d, J = 18.3 Hz, 1H), 4.95 (d, J = 18.3 Hz, 1H), 7.00 (dd, J = 1.5, 8.4 Hz, 1H), 7.11 (s, 1H), 7.40-7.51 (m, 4H), 7.87-7.93 (m, 2H), 12.97 (br, 1H); IR (Nujol) 2641, 1736, 1529, 1492, 1470, 1414, 1335, 1241, 1227, 1178, 1168, 1159 cm ¹; 元素分析 ($C_{20}H_{18}ClFN_2O_4S$) 計算值 (%): C , 54.98; H , 4.15; Cl , 8.11; F , 4.35; N , 6.41; S , 7.34 実測値 (%): C , 54.95; H , 4.07; Cl , 7.91; F , 4.33; N , 6.40; S , 7.36
lc-52	Mp 224-226 °C; ¹H-NMR (d ₆ -DMSO) δ 1.81 (m, 1H), 2.22 (m, 1H), 3.15 (dd, J = 8.7, 9.6 Hz, 1H), 3.34-3.53 (m, 3H), 3.75 (dd, J = 7.2, 9.6 Hz, 1H), 4.90 (d, J = 18.3 Hz, 1H), 4.96 (d, J = 18.3 Hz, 1H), 7.01 (dd, J = 1.8, 8.4 Hz, 1H), 7.12 (s, 1H), 7.29 (dd, J = 3.9, 5.1 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.74 (dd, J = 1.5, 3.9 Hz, 1H), 8.04 (dd, J = 1.5, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 1729, 1472, 1341, 1327, 1236, 1200, 1157, 1032 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ ClN ₂ O ₄ S ₂ ·AcOEt) 計算値 (%): C, 51.09; H, 4.33; Cl, 7.85; N, 6.21; S, 14.21 実測値 (%): C, 50.97; H, 4.22; Cl, 7.65; N, 6.31; S,14.51
lc-53	Mp 133-136 °C; ¹H-NMR (d_6 -DMSO) δ 1.93 (m, 1H), 2.30 (m, 1H), 3.19-3.59 (m, 4H), 3.80 (m, 1H), 4.89 (d, J = 18.9 Hz, 1H), 4.95 (d, J = 18.9 Hz, 1H), 7.12 (dd, J = 2.1, 8.7 Hz, 1H), 7.19 (s, 1H), 7.36-7.50 (m, 3H), 7.53 (d, J = 2.1 Hz, 1H), 7.69-7.88 (m, 2H), 12.99 (brs, 1H); IR (Nujol) 3093, 2668, 2575, 1714, 1598, 1472, 1416, 1376, 1351, 1304, 1263, 1248, 1223, 1189, 1164, 1127, 1108 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_2O_4S$) 計算值 (%): C , 54.98; H , 4.15; Cl , 8.11; F , 4.35; N , 6.41; S , 7.34 実測値 (%): C , 54.68; H , 4.01; Cl , 7.81; F , 4.17; N , 6.38; S , 7.30

(表49)

化合物	物性値
番号_	1.00 107 00. 1T NIMD (1 DAGO) 01 00 (1T) 0 00 (1T)
Ic-54	mp 162-165 °C; ¹H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.20 (m, 1H), 3.11-3.52 (m, 4H), 3.75 (dd, J = 7.2, 9.6 Hz, 1H), 4.92 (d, J = 18.6 Hz, 1H), 4.94 (d, J = 18.6 Hz, 1H), 7.11 (dd, J = 2.1, 8.4 Hz, 1H), 7.16 (s, 1H), 7.37 (d, J = 8.4Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.53-7.73 (m, 4H), 12.99 (brs, 1H); IR (Nujol) 3084, 2667, 2573, 1710, 1590, 1472, 1415, 1390, 1378, 1345, 1304, 1267, 1249, 1221, 1197, 1162, 1106 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_2O_4S\cdot 0.1AcOEt$) 計算值 (%): C , 54.97; H , 4.25; Cl , 7.95; F , 4.26; N , 6.29; S , 7.19 実測値 (%): C , 54.97; H , 4.11; Cl , 7.74; F , 4.36; N , 6.36; S , 7.25
lc-55	mp 193-197 °C; ¹H-NMR (d_6 -DMSO) δ 1.94-2.02 (m, 2H), 2.21 (s, 3H), 3.15-3.69 (m, 5H), 4.92 (s, 2H), 6.88 (d, J = 1.5 Hz, 1H), 7.02 (dd, J = 1.5, 8.7 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.50-7.57 (m, 2H), 7.96-8.01 (m, 2H), 13.04 (br, 1H); IR (Nujol) 1734, 1592, 1494, 1469, 1338, 1169, 1159 cm $^{-1}$; 元素分析 ($C_{21}H_{20}ClFN_2O_4S$) 計算値 (%): C , 55.94; H , 4.47; Cl , 7.86; F , 4.21; N , 6.21; S , 7.11 実測値 (%): C , 55.78; H , 4.41; Cl , 7.59; F , 4.28; N , 6.25; S , 7.10
	mp 196-201 °C; 1 H-NMR (d ₆ -DMSO) δ 1.98-2.07 (m, 2H), 2.21 (s, 3H), 3.24-3.40 (m, 2H), 3.45-3.55 (m, 2H), 3.65 (m, 1H), 4.93 (s, 2H), 7.02-7.05 (m, 2H), 7.36-7.40 (m, 2H), 7.81 (dd, J = 1.5, 3.6 Hz, 1H), 8.13 (dd, J = 1.5, 5.1 Hz, 1H), 13.06 (br, 1H); IR (Nujol) 3278, 1770, 1739, 1470, 1346, 1325, 1231, 1221, 1159, 1089, 1059, 1027 cm $^{-1}$; 元素分析 ($C_{19}H_{19}ClN_2O_4S_2$) 計算値 (%): C , 51.99; C ,
Ic-57	mp 153-161 °C; ¹H-NMR (d ₆ -DMSO) δ 0.94 (t, J = 7.8 Hz, 3H), 1.39-1.52 (m, 2H), 1.67-1.77 (m, 2H), 2.13 (m, 1H), 2.31 (m, 1H), 2.31 (s, 3H), 3.20 (m, 1H), 3.33-3.43 (m, 3H), 3.54-3.76 (m, 3H), 4.96 (s, 2H), 7.07 (dd, J = 2.1, 9.0 Hz, 1H), 7.41 (d, J = 9.0 Hz, 1H), 7.56 (d, J = 2.1 Hz, 1H), 13.06 (br, 1H); IR (Nujol) 3187, 1759, 1713, 1472, 1420, 1380, 1328, 1318, 1301, 1247, 1190, 1142, 1114, 1049 cm ⁻¹ ; 元素分析 ($C_{19}H_{25}ClN_2O_4S$) 計算値 (%): C , 55.26; H , 6.10; Cl , 8.59; N , 6.78; S , 7.77 実測値 (%): C , 55.47; H , 6.10; Cl , 8.36; N , 6.77; S , 7.54
Ic-58	mp 180-183 °C; ¹H-NMR (d ₆ -DMSO) δ 1.85 (m, 1H), 2.24 (m, 1H), 3.13-3.55 (m, 4H), 3.77 (dd, J = 7.5, 9.6 Hz, 1H), 4.90(s, 2H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.19 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 12.95 (brs, 1H); IR (Nujol) 3092, 2730, 2665, 2553, 1723, 1695, 1612, 1473, 1403, 1378, 1329, 1289, 1268, 1245, 1233, 1189, 1163, 1140, 1106 cm ⁻¹ ; 元素分析($C_{21}H_{18}ClF_{8}N_{2}O_{4}S$) 計算値 (%): C , 51.80; H , 3.73; Cl , 7.28; F , 11.71; N , 5.75; S , 6.59 実測値 (%): C , 51.65; H , 3.66; Cl , 7.02; F , 11.55; N , 5.76; S , 6.72

(表50)

化合物 番号	物性値
	mp 136-142 °C; ¹H-NMR (d ₆ -DMSO) δ 0.90 (t, J = 7.2 Hz, 3H), 1.34-1.47 (m, 2H), 1.59-1.72 (m, 2H), 2.02 (m, 1H), 2.36 (m, 1H), 3.03-3.68 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.97 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 2.1Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3133, 3093, 2664, 2549, 1721, 1697, 1472, 1403, 1389, 1333, 1297, 1277, 1242, 1231, 1199, 1146, 1100 cm ⁻¹ ; 元素分析 ($C_{18}H_{23}ClN_2O_4S$) 計算値 (%): C , 54.20; H , 5.81; Cl , 8.89; N , 7.02; S , 8.04 実測値 (%): C , 54.09; H , 5.74; Cl , 8.65; N , 7.00; S , 7.93
lc-60	mp $158-162$ °C; 1 H-NMR (d_{6} -DMSO) δ $0.81-0.91$ (m, 3 H), $1.17-1.46$ (m, 10 H), $1.58-1.74$ (m, 2 H), 2.02 (m, 1 H), 2.35 (m, 1 H), $3.01-3.68$ (m, 6 H), 3.80 (dd , $J=7.5$, 9.0 Hz, 1 H), 4.97 (s, 2 H), 7.13 (dd , $J=2.1$, 8.7 Hz, 1 H), 7.34 (s, 1 H), 7.41 (d , $J=8.7$ Hz, 1 H), 7.68 (d , $J=2.1$ Hz, 1 H), 13.00 (dd) (dd) IR (Nujol) dd) dd 0, dd 1, dd 2, dd 3, dd 4, dd 4, dd 5, dd 4, dd 5, dd 6, dd 7, dd 8, dd 9, d
Ic-61	mp 220-223 °C; ¹H-NMR (d_6 -DMSO) δ 1.92 (m, 1H), 2.29 (m, 1H), 3.15-3.60 (m, 4H), 3.83 (dd, J = 7.5, 9.3 Hz, 1H), 4.86 (s, 2H), 7.09 (s, 1H), 7.10 (dd, J = 2.1, 8.7 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.63-7.77 (m, 3H), 8.11 (m, 1H), 8.16 (m, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.75 (d, J = 7.5 Hz, 1H), 12.96 (brs, 1H); IR (Nujol) 3266, 3064, 3045, 1764, 1736, 1592, 1565, 1506, 1471, 1430, 1404, 1385, 1345, 1329, 1266, 1203, 1187, 1161, 1137, 1111 cm ⁻¹ ; 元素分析 ($C_{24}H_{21}ClN_2O_4S \cdot 0.2H_2O$)計算值 (%): C, 61.00; H, 4.56; Cl, 7.50; N, 5.93; S, 6.79 実測値 (%): C, 61.11; H, 4.57; Cl, 7.33; N, 5.93; S, 6.63
	mp 195-198 °C; ¹H-NMR (d ₆ -DMSO) δ 1.88 (m, 1H), 2.24 (m, 1H), 3.13-3.59 (m, 4H), 3.77 (dd, J = 7.2, 9.3 Hz, 1H), 4.89 (s, 2H), 7.09 (dd, J = 1.8, 8.7 Hz, 1H), 7.18 (s, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.43 (d, J = 1.8 Hz, 1H), 8.06 (d, J = 9.0 Hz, 2H), 8.35 (d, J = 9.0 Hz, 2H), 12.97 (brs, 1H); IR (Nujol) 3108, 3068, 1738, 1606, 1530, 1472, 1414, 1401, 1376, 1348, 1320, 1303, 1261, 1238, 1227, 1200, 1179, 1165, 1134, 1103 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClN_3O_6S$) 計算値 (%): C , 51.78; H , 3.91; Cl , 7.64; N , 9.06; S , 6.91 実測値 (%): C , 51.59; H , 3.81; Cl , 7.34; N , 8.87; S , 6.84
Ic-63	1 H-NMR (d ₆ -DMSO) δ 1.83 (m, 1H), 2.22 (m, 1H), 3.12-3.83 (m, 5H), 4.83, 4.87 (each s, total 2H), 7.06-7.19 (m, 2H), 7.31-7.43 (m, 2H), 7.89-8.16 (m, 4H); IR (KBr) 3413, 3226, 3091, 2233, 1728, 1611, 1568, 1472, 1437, 1399, 1344, 1282, 1218, 1161, 1107 cm ⁻¹ .

(表51)

化合物	16/10 A.F.I. City
番号	物性値
Ic-64	Mp 205-206 °C; ¹H-NMR (d ₆ -DMSO) δ 1.92 (m, 1H), 2.19 (m, 1H), 3.10 (m, 1H), 3.34-3.51 (m, 2H), 3.69-3.79 (m, 2H), 4.90 (d, J = 18.3 Hz, 1H), 4.96 (d, J = 18.3 Hz, 1H), 7.03 (dd, J = 1.2, 7.8 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.23 (s, 1H), 7.33 (dd, J = 1.2, 7.8 Hz, 1H), 7.39-7.45 (m, 2H), 7.85-7.91 (m, 2H), 13.03 (br, 1H); IR (Nujol) 2662, 1723, 1589, 1491, 1476, 1447, 1350, 1332, 1248, 1236, 1182, 1162, 1098, 1029 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_2O_4S$) 計算値 (%): C , 54.98; C ,
Ic-65	mp 170-171 °C; ¹H-NMR (d_6 -DMSO) δ 1.93 (m, 1H), 2.21 (m, 1H), 3.14 (m, 1H), 3.37-3.54 (m, 2H), 3.72-3.83 (m, 2H), 4.91 (d, J=18.6 Hz, 1H), 4.98 (d, J=18.6 Hz, 1H), 7.03 (dd, J=1.2, 7.8 Hz, 1H), 7.09 (t, J=7.8 Hz, 1H), 7.24 (s, 1H), 7.26 (dd, J=3.9, 5.1 Hz, 1H), 7.34 (dd, J=1.2, 8.1 Hz, 1H), 7.70 (dd, J=1.5, 3.9 Hz, 1H), 8.01 (dd, J=1.5, 5.1 Hz, 1H), 13.02 (br, 1H); IR (Nujol) 3204, 1755, 1728, 1554, 1453, 1401, 1338, 1326, 1196, 1146, 1033 cm ⁻¹ ; 元素分析 ($C_{18}H_{17}ClN_2O_4S_2$) 計算値 (%): C, 50.88; H, 4.03; Cl, 8.34; N, 6.59; S, 15.09 実測値 (%): C, 50.87; H, 3.97; Cl, 8.10; N, 6.52; S,14.89
Ic-66	mp 169-171 °C; ¹H-NMR (d_6 -DMSO) δ 0.88 (t, $J=7.2$ Hz, 3H), 1.32-1.45 (m, 2H), 1.59-1.69 (m, 2H), 2.08 (m, 1H), 2.35 (m, 1H), 2,99-3.14 (m, 2H), 3.21 (dd, $J=8.4$, 9.3 Hz, 1H), 3.38-3.54 (m, 2H), 3.88 (dd, $J=6.9$, 9.6 Hz, 1H), 4.04 (m, 2H), 5.00 (s, 2H), 7.06-7.14 (m, 2H), 7.37 (dd, $J=1.2$, 7.5 Hz, 1H), 7.44 (s, 1H), 13.06 (br, 1H); IR (Nujol) 2660, 1715, 1555, 1480, 1451, 1404, 1327, 1246, 1182, 1140, 1096, 1041 cm ¹; 元素分析 ($C_{18}H_{28}ClN_2O_4S$) 計算値 (%): C , 54.20; H , 5.81; Cl , 8.89; N , 7.02; S , 8.04 実測値 (%): C , 54.05; H , 5.76; Cl , 8.72; N , 7.00; S , 8.03
lc−67	mp 170-173 °C; ¹H-NMR (d ₆ -DMSO) δ 1.81(m, 1H), 2.23 (m, 1H), 3.11-3.49 (m, 4H), 3.70 (dd, J = 7.2, 9.6 Hz, 1H), 4.23 (s, 2H), 4.94 (s, 2H), 7.06 (d, J = 3.9 Hz, 1H), 7.13 (dd, 2.1, 8.7 Hz, 1H), 7.18 (s, 1H), 7.21-7.36 (m, 5H), 7.40 (d, J = 8.7 Hz, 1H), 7.50 (d, J = 2.1 Hz, 1H), 7.57 (d, J = 3.9 Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3084, 3027, 2665, 2570, 1731, 1601, 1571, 1554, 1527, 1494, 1472, 1442, 1415, 1380, 1344, 1244, 1198, 1156, 1113 cm ⁻¹ ; 元素分析($C_{25}H_{23}ClN_2O_4S_2$) 計算値 (%): C , 58.30; H , 4.50; Cl , 6.88; N , 5.44; S , 12.45 実測値 (%): C , 58.15; H , 4.39; Cl , 6.64; N , 5.39; S , 12.35

(表52)

化合物	物性値
番号	777 1土 1胆
lc-68	mp 207-210°C; ¹H-NMR (d ₆ -DMSO) δ 1.85 (m, 1H), 2.20 (m, 1H), 3.17-3.57 (m, 3H), 3.88 (m, 1H), 4.13 (m, 1H), 4.88 (s, 2H), 7.09 (dd, J = 1.8, 8.7 Hz, 1H), 7.14 (s, 1H), 7.31 (d, J = 1.8 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.70 (dd, J = 4.2, 8.1 Hz, 1H), 7.76 (dd, J = 7.5, 8.1 Hz, 1H), 8.31 (dd, J = 1.5, 8.1 Hz, 1H), 8.42 (dd, J = 1.5, 7.5 Hz, 1H), 8.56 (dd, J = 1.5, 8.1 Hz, 1H), 9.05 (dd, J = 1.5, 4.2 Hz, 1H), 12.94 (brs, 1H); IR (Nujol) 3539, 3214, 3032, 2725, 2614, 1768, 1747, 1726, 1611, 1596, 1561, 1493, 1470, 1419, 1378, 1362, 1338, 1265, 1223, 1211, 1198, 1159, 1140, 1131, 1101 cm ⁻¹ ; 元素分析 ($C_{23}H_{20}ClN_3O_4S\cdot0.5H_2O$) 計算値 (%): $C, 57.68$; $H, 4.42$; $Cl, 7.40$; $N, 8.77$; $S, 6.69$ 実測値 (%): $C, 57.77$; $H, 4.32$; $Cl, 7.18$; $N, 8.76$; $S, 6.70$
lc-69	mp 166-170 °C; ¹H-NMR (d ₆ -DMSO) δ 1.80 (m, 1H), 2.22 (m, 1H), 3.09-3.51 (m, 4H), 3.73 (dd, J = 7.2, 9.3Hz, 1H), 4.93 (s, 2H), 7.12 (dd, J = 1.8, 8.7 Hz, 1H), 7.16 (s, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.46 (dd, J = 1.2, 5.1 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.82 (dd, J = 3.0, 5.1 Hz, 1H), 8.33 (dd, J = 1.2, 3.0 Hz, 1H), 12.95 (brs, 1H); IR (Nujol) 3112, 3087, 2669, 1743, 1710, 1667, 1469, 1431, 1387, 1363, 1342, 1303, 1247, 1220, 1202, 1155, 1106 cm ⁻¹ ; 元素分析 ($C_{18}H_{17}ClN_2O_4S_2$) 計算値 (%): C , 50.88; H , 4.03; Cl , 8.34; N , 6.59; S , 15.09 実測値 (%): C , 50.76; H , 3.92; Cl , 8.14; N , 6.53; S , 15.08
Ic-70	mp 222-226°C; ¹H-NMR (d_6 -DMSO) δ 1.85 (m, 1H), 2.22 (m, 1H), 3.13-3.60(m, 4H), 3.82 (dd, J=7.2, 9.3 Hz, 1H), 4.85 (s, 2H), 7.06 (s, 1H), 7.09 (dd, J=2.1, 8.7 Hz, 1H), 7.33 (d, J=8.7 Hz, 1H), 7.39 (d, J=2.1 Hz, 1H), 7.47-7.58 (m, 2H), 8.15 (m, 1H), 8.27 (m, 1H), 8.63 (s, 1H), 12.86 (brs, 1H); IR (Nujol) 3275, 3079, 1764, 1734, 1485, 1471, 1454, 1421, 1405, 1386, 1342, 1320,1304,1260, 1241, 1221, 1186, 1159, 1158, 1147, 1114 cm ⁻¹ ; 元素分析 ($C_{22}H_{19}ClN_2O_4S_2$) 計算値 (%): C , 55.63; H , 4.03; Cl , 7.46; N , 5.90; S , 13.50 実測値 (%): C , 55.46; H , 4.12; Cl , 7.17; N , 5.76; S , 13.27
lc-71	mp 166.5-168°C; ¹ H-NMR (d_6 -DMSO) δ 1.95 (m, 1H), 2.30 (m, 1H), 3.10-3.61(m, 4H), 3.78 (m, 1H), 4.93 (s, 2H), 7.12 (dd, J = 1.8, 8.7 Hz, 1H), 7.19-7.32 (m, 2H), 7.38 (d, J = 8.7 Hz, 1H), 7.48-7.59 (m, 2H), 7.90 (m, 1H), 13.00 (brs, 1H); IR (Nujol) 3092, 3056, 2731, 2658, 2550, 1722, 1696, 1604, 1473, 1426, 1403, 1384, 1340, 1272, 1233, 1206, 1196, 1163, 1120, 1103 cm ⁻¹ .
Ic-72	Mp 223-225°C; ¹ H-NMR (d ₆ -DMSO) δ 1.99 (m, 1H), 2.37 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.25-3.68 (m, 3H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.98 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 13.00 (br, 1H); IR (Nujol) 3275, 1764, 1744, 1473, 1426, 1398, 1384, 1381, 1361, 1338, 1305, 1253, 1222, 1202, 1175, 1150 cm ¹ ; 元素分析 ($C_{15}H_{17}ClN_2O_4S\cdot 0.2AcOEt$) 計算値 (%): C , 50.68; H , 5.01; Cl , 9.47; N , 7.48; S , 8.56 実測値 (%): C , 50.48; H , 4.83; Cl , 9.49; N , 7.68; S , 8.52

(表53)

化合物	物性値
番号	mp 196-198°C; ¹ H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H),
Ic-73	3.07 (m, 1H), 3.15-3.48 (m, 3H), 3.67 (dd, J = 7.5, 9.3 Hz, 1H), 3.85 (s, 3H), 4.90 (s, 2H), 7.08-7.16 (m, 2H), 7.13 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 9.0 Hz, 1H), 7.44 (d, J = 1.8, 1H), 7.77 (d, J = 9.0 Hz, 2H), 12.98 (br, 1H); IR (Nujol) 3083, 3050, 2667, 2572, 1728, 1593, 1574, 1497, 1473, 1444, 1415, 1381, 1340, 1307, 1258, 1245, 1194, 1157, 1110 cm ⁻¹ .
Ic-74	mp 195-199°C; 1 H-NMR (4 G-DMSO) δ 1.98(m, 1H), 2.33 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.25-3.68 (m, 3H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.98 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3054, 3028, 2645, 2541, 1716, 1616, 1576, 1494, 1470, 1448, 1408, 1381, 1336, 1301, 1261, 1228, 1192, 1146, 1111 cm $^{-1}$; 元素分析 (2 C ₂ H ₂₂ ClN ₂ O ₄ S·0.2AcOEt) 計算値 (%): C, 59.20; H, 4.92; Cl, 7.66; N, 6.06; S, 6.93 実測値 (%): C, 59.32; H, 4.76; Cl, 7.41; N, 6.19; S, 6.94
Ic-75	mp 190-193°C; ¹H-NMR (d_6 -DMSO) δ 1.83 (m, 1H), 2.24 (m, 1H), 3.16 (m, 1H), 3.24-3.57 (m, 3H), 3.78 (dd, J = 7.2, 9.6 Hz, 1H), 4.88 (d, J = 18.2 Hz, 1H), 4.94 (d, J = 18.2 Hz, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.18 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.63 (m, 1H), 8.24 (m, 1H), 8.87 (dd, J = 1.8, 4.8 Hz, 1H), 9.00 (d, J = 1.8 Hz, 1H), 12.99 (brs, 1H); IR (Nujol) 3124, 3083, 3056, 2726, 2594, 2516, 1928, 1843, 1778, 1732, 1612, 1589, 1567, 1553, 1473, 1416, 1357, 1335, 1325, 1273, 1254, 1232, 1210, 1191,1173, 1166, 1116 cm ⁻¹ ; 元素分析 ($C_{19}H_{18}ClN_3O_4S$) 計算値 (%): C , 54.29; H , 4.31; Cl , 8.44; N , 10.01; S , 7.64 実測値 (%): C , 54.29; H , 4.31; Cl , 8.20; N , 9.95; S , 7.43
lc-76	mp 105-107 °C; ¹ H-NMR (d_6 -DMSO) δ 1.94-2.20 (m, 2H), 2.29 (s, 3H), 3.30-3.60 (m, 4H), 3.66 (m, 1H), 4.88 (s, 2H), 6.80-7.08 (m, 3H), 7.34 (d, J = 7.8 Hz, 1H), 7.38 (dd, J = 3.6, 4.8 Hz, 1H), 7.80 (dd, J = 1.2, 3.6 Hz, 1H), 8.14 (dd, J = 1.2, 5.1 Hz, 1H); IR (Nujol) 2924, 1748, 1693, 1611, 1467, 1376, 1335, 1292, 1156 cm ⁻¹ .
Ic-77	mp 125-126 °C; ¹H-NMR (d ₆ -DMSO) δ 1.07 (t, J = 7.2 Hz, 3H), 1.38-1.52 (m, 2H), 1.64 (m, 2H), 2.13 (m, 1H), 2.31 (m, 1H), 2.31 (s, 3H), 3.13-3.28 (m, 2H), 3.22-3.80 (m, 5H), 4.92 (s, 2H), 6.94 (m, 2H), 7.35 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H); IR (Nujol) 3243, 3053, 2924, 1755, 1567, 1418, 1321, 1298, 1275, 1180, 1143 cm ⁻¹ ; 元素分析 ($C_{19}H_{26}N_2O_4S$) 計算値 (%): $C_{19}G_$

(表54)

化合物	Helm Alike Italia
番号	物性値
	mp 140-142°C; 1 H-NMR (d ₆ -DMSO) δ 1.84 (m, 1H), 2.28 (m, 1H), 3.15-3.57 (m, 4H), 3.75 (m, 1H), 4.93 (s, 2H), 7.13 (dd, J = 1.8, 8.7 Hz, 1H), 7.22 (s, 1H), 7.33 (d, J = 4.2 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 4.2 Hz, 1H), 12.90 (brs, 1H); IR (Nujol) 3091, 2670, 2577, 1726, 1567, 1513, 1471, 1445, 1414, 1380, 1357, 1332, 1310, 1266, 1249, 1199, 1180, 1155, 1112 cm ⁻¹ ; 元素分析 ($C_{18}H_{16}Cl_{2}N_{2}O_{4}S_{2}\cdot0.05AcOEt$) 計算值 (%): C, 47.13; H, 3.56; Cl, 15.29; N, 6.04; S, 13.83 実測値 (%): C, 46.95; H, 3.47; Cl, 15.10; N, 6.11; S, 14.02
Ic-79	mp 220-221 °C; ¹H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 3.06 (t, J = 9.3 Hz, 1H), 3.22-3.46 (m, 3H), 3.65 (dd, J = 7.5, 9.3 Hz, 1H), 4.91 (s, 2H), 6.92-6.96 (m, 2H), 7.11 (dd, J = 2.1, 8.4 Hz, 1H), 7.13 (s, 1H), 7.37 (d, J = 8.4. Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.64-7.69 (m, 2H), 10.48 (br, 1H), 12.97 (br, 1H); IR (Nujol) 3409, 1741, 1712, 1603, 1586, 1500, 1472, 1440, 1319, 1245, 1151, 1094, 1028 cm ⁻¹ ; 元素分析 ($C_{20}H_{19}ClN_2O_5S$) 計算値 (%): C , 55.24; H , 4.40; Cl , 8.15; N , 6.44; S , 7.37 実測値 (%): C , 55.21; H , 4.52; Cl , 7.62; N , 6.20; S , 7.14
	1 H-NMR (CDCl ₃) δ 1.84-1.89 (m, 2H), 2.04-2.17 (m, 3H), 3.49-3.54 (m, 3H), 4.88 (m, 1H), 5.12 (m, 1H), 7.09-7.45 (m, 5H), 7.85-8.08 (m, 3H), 8.30 (m, 1H); IR (KBr) 3387, 1739, 1647, 1591, 1526, 1493, 1467, 1428, 1389, 1343, 1292, 1236, 1152, 1092, 1066, 1011 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₉ FN ₂ O ₅ S·1.0H ₂ O) 計算値 (%): C, 56.24; H, 4.72; N, 6.25; F, 4.24; S, 7.15 実測値 (%): C, 56.18; H, 4.56; N, 6.29; F, 4.11, S, 7.06
lc-81	¹ H-NMR (CDCl ₃) δ 1.43-1.68 (m, 4H), 2.88 (m, 1H), 3.09 (m, 1H), 3.34-3.44 (m, 2H), 3.85 (s, 3H), 3.91 (m, 1H), 4.85 (s, 2H), 6.93-6.98 (m, 3H), 720-7.26 (m, 3H), 7.80-7.83 (m, 3H); IR (KBr) 2945, 1728, 1596, 1497, 1468, 1331, 1260, 1153, 1092, 1024 cm ⁻¹ ; 元素分析 (C ₂₂ H ₂₄ N ₂ O ₅ S·0.5H ₂ O) 計算值 (%): C, 60.40; H, 5.76; N, 6.40; S, 7.33 実測値 (%): C, 60.42; H, 5.78; N, 6.27; S, 6.97
Ic-82	¹ H-NMR (CDCl ₃) δ 1.86-2.20 (m, 4H), 3.45-3.55 (m, 2H), 4.91 (s, 2H), 5.06 (m, 1H), 7.04-7.28 (m, 4H), 7.74 (m,1H), 7.88 (m, 1H), 8.00 (dd, J = 2.4, 6.9 Hz, 2H), 8.10 (s, 1H); IR (KBr) 3433, 2929, 1738, 1626, 1590, 1528, 1493, 1394, 1344, 1293, 1233, 1153, 1092, 1062, 1010 cm ⁻¹ ;
Ic-83	¹ H-NMR (CDCl ₃) δ 1.86-2.20 (m, 4H), 3.45-3.55 (m, 2H), 4.91 (s, 2H), 5.06 (m, 1H), 7.04-7.28 (m, 4H), 7.74 (m,1H), 7.88 (m, 1H), 8.00 (dd, $J = 2.4$, 6.9 Hz, 2H), 8.10 (s, 1H); IR (KBr) 3433, 2929, 1738, 1626, 1590, 1528, 1493, 1394, 1344, 1293, 1233, 1153, 1092, 1062, 1010 cm ⁻¹ ; $[\alpha]_D^{22} + 29.0 \pm 0.7^{\circ}$ (c=1.001, MeOH)
lc-84	¹ H-NMR (CDCl ₃) δ 1.433-1.72 (m, 4H), 2.89 (dd, J = 9.3 and 14.4 Hz, 1H), 3.10 (m, 1H), 3.27 (dd, J = 3.9 and 14.4 Hz, 1H), 3.41 (m, 1H), 3.87 (m, 1H), 4.84 (s, 2H), 6.95-7.02 (m, 2H), 7.11-7.26 (m, 3H), 7.40 (dd, J = 2.4 and 9.6 Hz, 1H), 7.85-7.91(m, 2H); IR (CHCl ₃) 1729, 1593, 1493, 1456, 1348, 1292, 1164, 1154, 1092 cm ⁻¹ ; $[\alpha]_D^{22} + 109.6 \pm 1.5$ (c=1.003, MeOH)

(表55)

(及)	
化合物 番号	物性值
	¹ H-NMR (CDCl ₃) δ 1.43-1.66 (m, 4H), 2.87 (dd, J = 6.0 and 14.1 Hz, 1H), 3.11 (m, 1H), 3.26 (dd, J = 3.3 and 14.1 Hz, 1), 3.82 (m, 1H), 3.86 (s, 3H), 4.83 (s, 2H), 6.95-7.01 (m, 4H), 7.11 (dd, J = 3.9 and 8.7 Hz, 1H), 7.40 (dd, J = 2.4 and 9.3 Hz, 1H), 7.73-7.83 (m, 2H); IR (CHCl ₃) 1730, 1626, 1597, 1578, 1497, 1487, 1457, 1338, 1304, 1260, 1155, 1094, 1030 cm ⁻¹ ; $[\alpha]_D^{22}$ +124.6±1.6 (c=1.002, MeOH)
Id-2	mp 220-222 °C; ¹H-NMR (CDCl ₃) δ 2.84 (t, J = 5.7 Hz, 2H), 3.57 (t, J = 5.7 Hz, 2H), 4.42 (s, 2H), 4.67 (s, 2H), 7.05-7.25 (m, 5H), 7.35-7.43 (m, 1H), 7.84-7.92 (m, 2H),; IR (CHCl ₃) 3428, 3048, 2927, 1727, 1595, 1494, 1467, 1345, 1240, 1169, 1103 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₇ FN ₂ O ₄ S) 計算值 (%): C, 58.75; H, 4.41; F, 4.89; N, 7.21; S, 8.26 実測値 (%): C, 58.58; H, 4.37; F, 4.69; N, 7.13; S, 8.08
Ie-2	mp 139-141 °C; ¹H-NMR (CDCl ₃) δ 4.95 (s, 2H), 7.02-7.11 (m, 3H), 7.18-7.25 (m,2H), 7.34 (m, 1H), 7.46 (t, J = 7.7Hz, 1H), 7.68-7.73 (m, 2H), 7.80 (d, J = 1.8 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H); IR (Nujol) 3300, 3245, 3047, 1776, 1736, 1688, 1590, 1493, 1466, 1335, 1285, 1163, 1152 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₅ FN ₂ O ₄ S·0.6CH ₈ CO ₂ C ₂ H ₅) 計算値 (%): C, 59.62; H, 4.42; F, 4.21; N, 6.21; S, 7.11 実測値 (%): C, 59.45; H, 4.19; F, 4.14; N, 6.51; S, 7.02
Ie-5	mp 188-191 °C; ¹H-NMR (CDCl ₃) δ 3.28 (d, J = 1.5 Hz, 3H), 5.02 (s,2H), 7.09-7.33 (m, 6H), 7.49 (t, J = 7.8 Hz, 1H), 7.57-7.61 (m, 2H), 7.73 (d, J = 1.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H); IR (Nujol) 3102, 3049, 2728, 1727, 1628, 1591, 1491, 1292, 1228, 1210, 1173, 1150 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₇ FN ₂ O ₄ S·0.2H ₂ O) 計算值 (%): C, 60.63; H, 4.22; F, 4.57; N, 6.73; S, 7.71 実測値 (%): C, 60.52; H, 4.13; F, 4.46; N, 6.82; S, 7.63
Ie-8	mp 212-213 °C; ¹H-NMR (d ₆ -DMSO) δ 4.89 (s, 2H), 5.16 (s, 2H), 7.06 (dd, J = 8.4, 2.1 Hz, 1H), 7.13-7.32 (m, 6H), 7.41-7.52 (m, 5H), 7.73-7.77 (m, 2H), 7.84 (d, J = 1.8 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 13.05 (br s, 1H); IR (Nujol) 3063, 3035, 2658, 1705, 1630, 1591, 1232, 1214, 1162 cm ¹; 元素分析 ($C_{27}H_{21}FN_2O_4S$) 計算値 (%): C , 66.38; C , 4.33; C , 3.89; C , 5.73; C , 6.56 実測値 (%): C , 66.33; C , 4.26; C , 7.79; C , 8.80; C , 8.53
le-10	mp 171-175 °C; ¹ H-NMR (d ₆ -DMSO) δ 5.15 (s, 2H), 6.98-7.07 (m, 2H), 7.32-7.47 (m, 4H), 7.74-7.81 (m, 3H), 8.05-8.10 (m, 2H), 10.10 (s, 1H); IR (Nujol) 3621, 3313, 3107, 3070, 2727, 1737, 1702, 1636, 1603, 1592, 1490, 1330, 1164, 1146 cm ⁻¹ .
le-11	mp 183-187 °C; ¹H-NMR (d ₆ -DMSO) δ 2.13 (s, 3H), 5.14 (s, 2H), 7.00-7.95 (m, 10H), 9.61 (s, 1H); IR (Nujol) 3517, 3236, 3105, 3068, 2732, 1735, 1635, 1607, 1591, 1494, 1408, 1335, 1270 cm ⁻¹ ; 元素分析(C ₂₁ H ₁₇ FN ₂ O ₄ S·0.4H ₂ O) 計算值 (%): C, 60.10; H, 4.28; F, 4.53; N, 6.68; S, 7.64 実測値 (%): C, 60.28; H, 4.47; F, 4.42 N, 6.54; S, 7.52

(表56)

化合物	Abo Abb Lits
番号	物性値
le-12	mp 201-203 °C; 1 H-NMR (CDCl ₃) δ 3.26 (s, 3H), 4.95 (s, 2H), 6.95-7.02 (m, 2H), 7.09-7.20 (m, 4H), 7.56-7.61 (m, 2H), 7.72 (m, 1H), 7.89 (m, 1H); IR (Nujol) 3106, 3067, 2744, 2657, 2558, 1734, 1635, 1605, 1592, 1495, 1483, 1340, 1236 cm $^{-1}$; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 58.44; H, 3.96; F, 8.48; N, 6.25; S, 7.16 実測値 (%): C, 58.49; H, 3.72; F, 8.33 N, 6.37; S, 7.16
le-13	mp 215-218 °C; ¹H-NMR (CDCl ₃ +CD ₈ OD) δ 4.82 (s, 2H), 4.86 (s, 2H), 6.92-7.02 (m, 3H), 7.14-7.24 (m, 9H), 7.60-7.86 (m, 3H); IR (Nujol) 3066, 3036, 2656, 1708, 1635, 1605, 1591, 1492, 1483, 1406, 1338, 1232 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算値 (%): C, 63.70; H, 4.15; F, 7.25; N, 5.34; S, 6.12 実測値 (%): C, 63.79; H, 4.04; F, 6.99; N, 5.31; S, 6.11
le-14	mp 219-225 °C; $^1\text{H-NMR}$ (CDCl ₃ +CD ₃ OD) δ 2.56 (s, 3H), 3.24 (s, 3H), 4.95 (s, 2H), 7.09-7.23 (m, 5H), 7.31 (m, 1H), 7.44 (m, 1H), 7.73-7.77 (m, 3H); IR (Nujol) 2742, 2656, 2560, 1727, 1711, 1632, 1605, 1590, 1495, 1483, 1412, 1339, 1275 cm ⁻¹ ; 元素分析 (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 61.67; H, 4.68; F, 4.28; N, 6.31; S, 7.22 実測値 (%): C, 61.82; H, 4.59; F, 4.00; N, 6.31; S, 7.14
le-15	mp 194-197 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 2.13 (s, 3H), 4.36 (d, J = 13.5 Hz, 1H), 4.90 (s, 2H), 5.09 (d, J = 13.5 Hz, 1H), 7.07 (s, 1H), 7.13-7.24 (m, 10H), 7.31 (m, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.73-7.78 (m, 2H); IR (Nujol) 3060, 3032, 2739, 2644, 2557, 1715, 1633, 1604, 1593, 1494, 1478, 1414, 1342, 1240 cm ¹; 元素 分析 (C ₂₈ H ₂₈ FN ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 66.50; H, 4.77; F, 3.65; N, 5.39; S, 6.16 実測値 (%): C, 66.74; H, 4.76; F, 3.39; N, 5.37; S, 6.04
le-16	mp 164-165 °C; ¹ H-NMR (d_6 -DMSO) δ 5.16 (s, 2H), 7.08 (dd, J = 1.8, 9.0 Hz, 1H), 7.52-7.45 (m, 4H), 7.54 (dd, J = 4.2, 8.7 Hz, 1H), 7.75-7.79 (m, 2H), 7.86 (d, J = 2.1 Hz, 1H), 7.95 (dd, J = 2.4, 9.3 Hz, 1H), 10.09 (s, 1H); IR (Nujol) 3301, 3191, 3108, 1778, 1691, 1590, 1496, 1474, 1337, 1286 cm ⁻¹ .
le-17	mp 187-188 °C; ¹H-NMR (CDCl ₃) δ 3.26 (s, 3H), 4.96 (s, 2H), 7.08-7.21 (m, 6H), 7.55-7.61 (m, 3H), 7.66 (d, J = 0.9 Hz, 1H); IR (Nujol) 2747, 2650, 2566, 2483, 1720, 1593, 1492, 1414, 1348, 1295, 1254 cm ¹; 元素分析 ($C_{21}H_{16}F_{2}N_{2}O_{4}S \cdot 0.2AcOEt$) 計算值 (%): C, 58.44; H, 3.96; F, 8.48; N, 6.25; S, 7.16 実測值 (%): C, 58.55; H, 3.77; F, 8.40; N, 6.23; S, 7.34
le-18	mp 189-191 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 4.82 (s, 2H), 4.89 (s, 2H), 7.01 (dd, J = 1.8, 8.7 Hz, 1H), 7.14-7.27 (m, 10H), 7.56 (dd, J = 2.4, 9.0 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.67-7.71 (m, 2H); IR (Nujol) 3089, 3074, 3033, 2742, 2653, 2558, 1710, 1591, 1343, 1296 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算値 (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 実測値 (%): C, 63.84; H, 3.95; F, 7.14; N, 5.31; S, 6.33

(表57)

(120	. ,
化合物 番号	物性值
	Mp 189-191 °C; ¹H-NMR (d_6 -DMSO) δ 5.19 (s, 2H), 6.99 (m, 1H), 7.21 (dd, $J = 2.1$, 9.0 Hz, 1H), 7.33-7.46 (m, 4H), 7.51 (d, $J = 9.0$ Hz, 1H), 7.75-7.79 (m, 3H), 10.15 (s, 1H); IR (Nujol) 3262, 3103, 3061, 2661, 2558, 1715, 1640, 1611, 1590, 1484,1406, 1331, 1294 cm¹; 元素分析 ($C_{20}H_{14}F_2N_2O_4S\cdot0.1AcOEt$) 計算値 (%): C , 57.62; H , 3.51; F , 8.94; N , 6.59; S , 7.54 実測値 (%): C , 57.43; H , 3.26; F , 8.65; N , 6.46; S , 7.34
le-20	Mp 214-217 °C; ¹H-NMR (CDCl ₈) δ 3.27 (s, 3H), 5.00 (s, 2H), 6.92 (dd, J = 8.1, 9.9 Hz, 1H), 7.06-7.17 (m, 3H), 7.23 (d, J = 8.7 Hz, 1H), 7.32 (dd, J = 2.1, 8.7 Hz, 1H), 7.39 (m, 1H), 7.56-7.63 (m, 2H), 7.70 (d, J = 1.8 Hz, 1H); IR (Nujol) 3087, 2748, 2651, 2568, 2486, 1723, 1637, 1592, 1493, 1308, 1236 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 58.52; H, 3.86; F, 8.65; N, 6.38; S, 7.30 実測値 (%): C, 58.64; H, 3.61; F, 8.37; N, 6.39; S, 7.21
	Mp 209-213 °C; ¹H-NMR (CDCl ₈ +CD ₃ OD) δ 4.82 (s, 2H), 4.91 (s, 2H), 6.90 (dd, J = 8.1, 9.9 Hz, 1H), 7.08-7.13 (m, 2H), 7.15-7.28 (m, 8H), 7.38 (m, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.68-7.73 (m, 2H); IR (Nujol) 3063, 3033, 2659, 1708, 1641, 1610, 1590, 1492, 1241 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算値 (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 実測値 (%): C, 63.77; H, 3.90; F, 7.21; N, 5.45; S, 6.18
	mp 153-156 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 5.13 (s, 2H), 6.92 (dd, J = 1.8, 10.4 Hz, 1H), 7.04-7.12 (m, 2H), 7.25 (td, J = 0.6, 15.0 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.49 (td, J = 1.2, 7.7 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.72-7.77 (m, 2H), 7.96 (d, J = 7.5 Hz, 1H); IR (Nujol) 3236, 3109, 3073, 3050, 2725, 1761, 1732, 1641, 1610, 1591, 1497, 1375,1288 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₄ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算値 (%): C, 57.56; H, 3.62; F, 8.75; N, 6.45; S, 7.39 実測値 (%): C, 57.27; H, 3.39; F, 8.82; N, 6.58; S, 7.49
le-23	1 H-NMR (CDCl ₈) δ 3.25 (s, 3H), 5.22 (s, 2H), 6.91 (dd, J = 2.1, 12.9 Hz, 1H), 7.09-7.16 (m, 2H), 7.28-7.33 (m, 2H), 7.48-7.54 (m, 2H), 7.56-7.62 (m, 2H), 7.94 (d, J = 7.8 Hz, 1H); IR (Nujol) 3505, 3103, 3052, 2729, 2648, 1728, 1639, 1589, 1494, 1297, 1238 cm - 1; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 57.87; H, 3.84; F, 8.72; N, 6.43; S, 7.36 実測値 (%): C, 57.99; H, 3.79; F, 8.55; N, 6.43; S, 7.07
le-24	mp 199-201 °C; ¹H-NMR (CDCl ₃ +CD ₈ OD) δ 4.80 (s, 2H), 5.13 (s, 2H), 6.76 (dd, J = 2.1, 13.2 Hz, 1H), 7.17-7.28 (m, 8H), 7.32 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.49 (m, 1H), 7.67-7.74 (m, 2H), 7.89 (d, J = 7.5 Hz, 1H); IR (Nujol) 3087, 3062, 3032, 2644, 2560, 2470, 1714, 1638, 1585, 1493, 1300, 1249 cm ⁻¹ ; 元素分析 ($C_{27}H_{20}F_{2}N_{2}O_{4}S\cdot 0.1AcOEt$) 計算值 (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 実測値 (%): C, 64.07; H, 3.90; F, 7.17; N, 5.52; S, 6.10

(表58)

化合物 番号	物性值
le-25	mp 204-206 °C; ¹H-NMR (CDCl ₃) δ 3.27 (s, 3H), 5.22 (s, 2H), 7.09-7.22 (m, 6H), 7.56-7.61 (m, 2H), 7.71-7.74 (m, 2H); IR (Nujol) 3327, 3085, 3046, 2680, 1774, 1637, 1592, 1578, 1339, 1242 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 58.52; H, 3.86; F, 8.65; N, 6.38; S, 7.30 実測値 (%): C, 58.60; H, 3.70; F, 8.51; N, 6.44; S, 7.46
le-26	mp 194-197 °C; ¹H-NMR (CDCl ₃) δ 4.81 (s, 2H), 5.13 (s, 2H), 7.00 (dd, J = 2.1, 8.7 Hz, 1H), 7.07-7.25 (m, 11H), 7.62-7.69 (m, 3H); IR (Nujol) 3093, 3066, 3040, 3023, 2657, 2561, 1722, 1593, 1581, 1493, 1294, 1236 cm ⁻¹ ; 元素分析 ($C_{27}H_{20}F_2N_2O_4S$) 計算値 (%): C, 64.02; H, 3.98; F, 7.50; N, 5.53; S, 6.33 実測値 (%): C, 64.00; H, 3.98; F, 7.26; N, 5.49; S, 6.13
le-27	mp 190-191 °C; ¹ H-NMR (CDCl ₃ +CD ₈ OD) δ 4.92 (s, 2H), 7.03-7.09 (m, 2H), 7.13-7.23 (m, 3H), 7.54 (dd, J = 1.8, 8.7 Hz, 1H), 7.68-7.73 (m, 3H), 8.10 (d, J = 1.8 Hz, 1H); IR (Nujol) 3263, 3102, 3060, 2657, 1715, 1591, 1487, 1406, 1335, 1286 cm ⁻¹ .
le-28	mp 200-202 °C; ¹H-NMR (CDCl ₃ +CD3OD) δ 3.28 (s, 3H), 4.95 (s, 2H), 7.11-7.29 (m, 5H), 7.54-7.61 (m, 3H), 7.69 (d, J = 1.8 Hz, 1H), 8.09 (d, J = 2.1 Hz); IR (Nujol) 3066, 2744, 2658, 2565, 1731, 1454, 1444, 1293, 1247, 1224 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ BrFN ₂ O ₄ S·0.4AcOEt) 計算值 (%): C, 51.55; H, 3.68; Br, 15.17; F, 3.61; N, 5.32; S, 6.09 実測値 (%): C, 51.74; H, 3.13; Br, 14.82; F, 3.66; N, 5.60; S, 6.28
}	1 H-NMR (CDCl ₈) δ 1.56 (s, 6H), 2.43 (s, 3H), 3.20 (d, J = 5.7 Hz, 2H), 4.21 (t, J = 5.7 Hz, 1H), 4.82 (s, 2H), 6.85-6.98 (m, 3H), 7.13-7.15 (m, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.49-7.53 (m, 2H); IR (KBr) 3505, 1728, 1594, 1495, 1478, 1468, 1406, 1340, 1292, 1166, 1154, 1092, 1076 cm $^{-1}$; 元素分析($C_{21}H_{23}FN_{2}O_{4}S\cdot 0.6H_{2}O$)計算值(%): C, 58.75; H, 5.68; N, 6.53; F, 4.43; S, 7.47 実測值(%): C, 58.83; H, 5.73; N, 6.32; F, 4.29, S, 7.24
lf−2	1 H-NMR (CDCl ₃) δ 1.68 (s, 6H), 2.28 (s, 3H), 2.52 (s, 3H), 3.40 (s, 2H), 4.83 (s, 2H), 7.05 (m, 1H), 7.13-7.18 (m, 4H), 7.71-7.77 (m, 3H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹ ; 元素分析 (C ₂₂ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) 計算值 (%): C, 60.59; H, 5.87; N, 6.42; F, 4.36; S, 7.35 実測値 (%): C, 60.57; H, 6.01; N, 6.31; F, 4.26, S, 7.15
lf−3	1 H-NMR (CDCl ₃) δ 1.58 (s, 6H), 2.10 (s, 3H), 3.71 (s, 2H), 3.96 (s, 2H), 4.56 (s, 2H), 6.47 (d, J = 7.2 Hz, 2H), 6.95-7.15 (m, 8H), 7.56 (d, J = 8.4 Hz, 1H), 7.72-7.77 (m, 2H); IR (CHCl ₃) 1729, 1594, 1495, 1479, 1467, 1342, 1292, 1239, 1165, 1154, 1091, 1056 cm ⁻¹ ; 元素分析 (C ₂₈ H ₂₉ FN ₂ O ₄ S·0.2MeOH) 計算値 (%): C, 65.77; H, 5.83; N, 5.44; F, 3.69; S, 6.23 実測値 (%): C, 66.15; H, 5.98; N, 5.23; F, 3.40, S, 5.87

(表59)

化合物	物性値
番号_	
lf-4	1 H-NMR (CDCl ₈) δ 1.38 (d, J = 6.6 Hz, 3H), 2.29 (s, 3H), 3.07-3.36 (m, 3H), 4.29 (d, J = 9.0 Hz, 1H), 4.81 (d, J = 5.1 Hz, 2H), 6.91-7.27 (m, 6H), 7.54-7.59 (m, 2H); IR (CHCl ₈) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S·1.2MeOH) 計算值 (%): C, 57.49; H, 5.87; N, 6.32; F, 4.29; S, 7.24 実測値 (%): C, 57.55; H, 5.65; N, 6.14; F, 4.22, S, 7.23
lf-5	¹ H-NMR (CDCl ₃) δ 1.48 (d, J = 6.9 Hz, 3H), 2.35 (s, 3H), 2.57 (s, 3H), 3.02 (m, 1H), 3.36 (m, 1H), 3.65 (m, 1H), 4.82 (s, 2H), 7.04-7.17 (m, 5H), 7.58 (d, J = 8.7 Hz, 1H), 7.68-7.73 (m, 2H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹
If~6	1 H-NMR (CDCl ₈) δ 1.31 (d, J = 6.6 Hz, 3H), 2.17 (s, 3H), 3.15-3.23 (m, 2H), 3.70 (q, J = 6.6 Hz, 1H), 4.17 (s, 2H), 4.76 (s, 2H), 6.96-7.23 (m, 10H), 7.40 (d, J = 7.8 Hz, 1H), 7.69-7.74 (m, 2H); IR (CHCl ₈) 2974, 2932, 2876, 1731, 1594, 1496, 1468, 1409, 1339, 1292, 1240, 1165, 1153, 1089, 1022 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₇ FN ₂ O ₄ S·1.1MeOH) 計算值 (%): C, 63.70; H, 5.97; N, 5.29; F, 3.59; S, 6.05 実測値 (%): C, 64.02; H, 5.78; N, 5.20; F, 3.42, S, 5.70
lf-7	1 H-NMR (CDCl ₃) δ 1.73-1.85 (m, 4H), 2.02-2.23 (m, 4H), 3.30 (s, 2H), 4.86 (s, 1H), 6.91 (s, 1H), 7.04-7.21 (m, 5H), 7.60 (d, J = 8.1 Hz, 1H), 7.70-7.75 (m, 2H); IR (CHCl ₃) 2961, 2874, 1594, 1494, 1468, 1340, 1292, 1240, 1155, 1089 cm ⁻¹ ; 元素分析 (C ₂₃ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) 計算值 (%): C, 61.65; H, 5.71; N, 6.25; F, 4.24; S, 7.16 実測値 (%): C, 61.74; H, 5.93; N, 5.96; F, 3.93, S, 6.95
lf-8	1 H-NMR (CDCl ₃) δ 1.65-1.80 (m, 4H), 2.00-2.09 (m, 4H), 3.64 (s, 2H), 3.80 (s, 2H), 4.58 (s, 2H), 6.47 (s, 1H), 6.54 (d, J = 7.8 Hz, 2H), 6.97-7.15 (m, 7H), 7.37-7.45 (m, 2H), 7.67-7.72 (m, 2H); IR (CHCl ₃) 2960, 2874, 1731, 1592, 1495, 1468, 1339, 1292, 1239, 1165, 1154, 1092, 1022 cm ⁻¹ .
lf−9	mp 117-120 °C; ¹H-NMR (CDCl ₈) δ 3.50-3.69 (m, 2H), 4.34 (t, J=7.5 Hz, 1H), 4.58 (br t, J = 6.0 Hz, 1H), 4.80 (d, J = 18.3 Hz, 1H), 4.81 (d, J = 18.3 Hz, 1H), 6.84 (s, 1H), 7.01 (m, 1H), 7.08 (t, J = 9.0 Hz, 2H), 7.17-7.30 (m, 8H), 7.72 (dd, J = 5.1 9.0 Hz, 2H); IR (Nujol) 3351, 3295, 3063, 1727, 1706, 1614, 1592, 1494, 1468, 1406, 1331, 1241, 1165, 1152 cm ⁻¹ ; 元素分析 ($C_{24}H_{21}FN_2O_4S\cdot 0.4AcOEt$) 計算值 (%): C , 63.04; H , 5.00; N , 5.74; F , 3.90; S , 6.57 実測値 (%): C , 62.73; H , 4.75; N , 5.77; F , 3.91; S , 6.58

(表60)

化合物	物性値
番号 If-10	mp 167-170 °C; 1 H-NMR (CDCl ₃) δ 2.61 (s, 3H), 3.36 (dd, J = 7.8, 13.5 Hz, 1H), 3.93 (dd, J = 7.8, 13.5 Hz, 1H), 4.55 (t, J = 7.8 Hz, 1H), 4.87 (s, 2H), 7.06 (m, 1H), 7.10 (s, 1H), 7.13 (t, J = 9.0 Hz, 2H), 7.20-7.31 (m, 7H), 7.43 (br d, J = 8.1 Hz, 1H), 7.70 (dd, J = 5.1, 9.0 Hz, 2H); IR (Nujol) 3429, 3030, 1722, 1704, 1592, 1493, 1469, 1406, 1332, 1237, 1150, 1087 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₃ FN ₂ O ₄ S) 計算値 (%): C, 64.36; H, 4.97; N, 6.00; F, 4.07;
lf-11	S, 6.87 実測値 (%): C, 64.28 ; H, 4.93 ; N, 5.91 ; F, 3.85 ; S, 6.73 1 H-NMR (CDCl ₈) δ 2.00-2.41 (m, 6H), 3.30 (d, $J = 6.0$ Hz, 2H), 4.21 (t, $J = 5.7$ Hz, 1H), 4.84 (s, 2H), 6.82 - 6.98 (m, 4H), 7.13 - 7.27 (m, 3H), 7.45 - 7.50 (m, 2H); IR (CHCl ₈) 2984, 2934, 2875, 1731, 1594, 1496, 1468, 1408, 1333, 1292, 1240, 1167, 1154 cm ⁻¹ ; 元素 分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.4H ₂ O) 計算値 (%): C, 59.53; H, 5.19; N, 6.61 ; F, 4.48 ; S, 7.57 実測値 (%): C, 59.49 ; H, 5.23 ; N, 6.35 ; F, 4.20 , S, 7.34
If-12	$^{1.26}$, $^{1.34}$ $^{1.91}$ - $^{1.95}$ (m, 2 H), $^{2.25}$ - $^{2.42}$ (m, 4 H), $^{3.74}$ (s, 2 H), $^{3.92}$ (s, 2 H), $^{4.70}$ (s, 2 H), $^{6.53}$ (s, 1 H), $^{6.67}$ (d, 4 J = 8.1 Hz, 2 H), $^{6.97}$ - $^{7.38}$ (m, 9 H), $^{7.62}$ - $^{7.67}$ (m, 2 H); 1 IR (CHCl ₈) 2932 , 1731 , 1593 , 1495 , 1468 , 1333 , 1292 , 1239 , 1163 , 1153 , 1089 cm $^{-1}$; 1 2 2 3 4 5 $^{$
lf-13	1 H-NMR (CDCl ₃) δ 1.43 (s, 6H), 3.17 (d, J = 5.7 Hz, 2H), 4.20 (t, J = 6.0 Hz, 1H), 4.83 (s, 2H), 6.85 (s, 1H), 6.90-6.97 (m, 3H), 7.21 (d, J = 3.6 Hz, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.49-7.54 (m, 2H); IR (CHCl ₃) 2971, 2933, 2878, 1731, 1594, 1496, 1467, 1408, 1386, 1331, 1292, 1239, 1194, 1167, 1154, 1092, 1076 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S·0.5H ₂ O) 計算値 (%): C, 58.10; H, 5.36; N, 6.78; F, 4.59; S, 7.76 実測値 (%): C, 58.05; H, 5.31; N, 6.55; F, 4.34, S, 7.58
lf-14	¹ H-NMR (CDCl ₃) δ 1.54 (s, 3H), 2.26 (s, 3H), 3.37 (s, 2H), 4.86 (s, 2H), 6.89 (s, 1H), 7.07-7.22 (m, 5H), 7.69-7.77 (m, 3H); IR (CHCl ₃) 2974, 2929, 1731, 1594, 1495, 1480, 1467, 1340, 1292, 1240, 1166, 1155, 1089, 1020 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 59.50; H, 5.61; N, 6.61; F, 4.48; S, 7.56 実測値 (%): C, 59.59; H, 5.62; N, 6.39; F, 4.26, S, 7.42
	¹ H-NMR (CDCl ₃) δ 1.47 (s, 3H), 3.67 (s, 2H), 3.96 (s, 2H), 4.61 (s, 2H), 6.51-6.54 (m, 3H), 6.95-7.15 (m, 7H), 7.37 (d, J = 4.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.71-7.76 (m, 2H); IR (CHCl ₃) 2972, 2931, 1731, 1594, 1495, 1468, 1339, 1292, 1239, 1165, 1154, 1091, 1056 cm ⁻¹ .

(表61)

化合物	Non htt fits
番号	物性値
lf-16	1 H-NMR (CDCl ₃) δ 2.91 (t, J = 6.3 Hz, 2H), 3.34-3.49 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.92-7.15 (m, 5H), 7.48-7.53 (m, 2H); IR (KBr) 3285, 2232, 1729, 1627, 1582, 1488, 1414, 1324, 1250, 1159, 1092, 1047 cm ⁻¹ ; 元素分析 (C ₁₆ H ₁₅ FN ₂ O ₄ S ₂ ·0.3H ₂ O) 計算值 (%): C, 49.55; H, 4.05; N, 7.22; F, 4.90; S, 16.54 実測値 (%): C, 49.89; H, 3.98; N, 6.98; F, 4.54, S, 16.12
If-17	¹ H-NMR (CDCl ₈) δ 1.42 (s, 6H), 3.12 (s, 3H), 3.45 (br, 1H), 4.79 (s, 2H), 6.90-7.24 (m, 6H), 7.51-7.56 (m, 2H); IR (KBr) 3283, 2966, 2926, 1736, 1590, 1494, 1474, 1409, 1337, 1320, 1293, 1242, 1167, 1153 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₀ ClFN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 54.07; H, 4.67, N, 6.30; Cl, 7.98; F, 4.28; S, 7.22 実測値 (%): C, 54.06; H, 4.65; N, 6.26; Cl, 7.79; F, 4.13, S, 7.12
If-18	1 H-NMR (CDCl ₃) δ 1.52 (s, 6H), 2.22 (s, 3H), 3.32 (s, 2H), 4.83 (s, 2H), 6.92 (s, 1H), 7.14-7.21 (m, 4H), 7.63 (s, 1H), 7.74-7.78 (m, 2H); IR (CHCl ₃) 2974, 2929, 1731, 1594, 1495, 1474, 1341, 1292, 1240, 1167, 1155, 1089, 1020 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₂ ClFN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 55.03; H, 4.97; N, 6.11; Cl, 7.74; F, 4.15; S, 7.00 実測値 (%): C, 55.36; H, 5.13; N, 5.90; Cl, 7.34; F, 3.93; S, 7.00
lf-19	¹ H-NMR (CDCl ₈) δ 1.44 (s, 6H), 3.63 (s, 2H), 3.95 (s, 2H), 4.59 (s, 2H), 6.43 (d, J = 7.8 Hz, 2H), 6.57 (s, 1H), 6.94-7.17 (m, 5H), 7.33-7.38 (m, 3H), 7.75-7.80 (m, 2H); IR (CHCl ₈) 1732, 1594, 1495, 1475, 1341, 1292, 1165, 1154, 1091, 1056 cm ⁻¹ .
If-20	¹ H-NMR (CDCl ₃) δ 3.05-3.10 (m, 2H), 3.51-3.56 (m, 2H), 4.44 (s, 2H), 5.00 (s, 2H), 7.07-7.13 (m, 3H), 7.24-7.44 (m, 8H), 7.70-7.82 (m, 2H); IR (KBr) 1736, 1622, 1589, 1509, 1492, 1455, 1320, 1230, 1162, 1148, 1096 cm ⁻¹ ;元素分析 (C ₂₄ H ₂₂ FN ₃ O ₄ S) 計算值 (%): C, 61.66; H, 4.74; N, 8.99; F, 4.06; S, 6.86 実測値 (%): C, 61.53; H, 4.72; N, 8.91; F, 3.91, S, 6.53
g−1	mp 217-219 °C; ¹H-NMR (d_6 -DMSO) δ 2.36-2.79 (m, 6H), 4.80 (s, 2H), 6.71 (dd , J = 2.1, 8.4 Hz, 1H), 7.00 (d , J = 2.1 Hz, 1H), 7.17 (d , J = 8.7 Hz, 1H), 7.31-7.37 (m, 2H), 7.69-7.74 (m, 2H), 9.83 (s, 1H), 13.00 (d , d); IR (d) 12926, 1725, 1592, 1492, 1476, 1347, 1237, 1149 d) 17; IR (d) 1807, 2925, 2853, 1738, 1587, 1464, 1150 d) 185 d (d) 185 d) 185 d (d) 185 d) 185 d 0 (d) 185 d 0 (d 0) 185 d 0, 185 d 0
lg−2	mp 223-226°C; 1 H-NMR (d ₆ -DMSO) δ 2.80-2.88 (m, 2H), 2.94-3.00 (m, 2H), 3.69 (s, 2H), 4.85 (s, 2H), 6.75 (dd, J = 1.8, 8.4 Hz, 1H), 7.12 (d, J = 1.8 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.29-7.39 (m, 2H), 7.68-7.77 (m, 2H), 9.96 (br s, 1H); IR (Nujol) 3228, 3105, 3070, 3047, 2924, 2854, 1734, 1590, 1467, 1332, 1226, 1182, 1167, 1151 cm ⁻¹ ; 元素分析($C_{19}H_{17}FN_{2}O_{4}S_{2}\cdot 0.3AcOEt$)計算值(%): C, 54.28; H, 4.18; F, 4.43; N, 6.53; S, 14.94 実測値(%): C, 54.05; H, 3.98; F, 4.29; N, 6.55; S, 14.92

(表62)

(38 0	- ,
化合物 番号	物性値
1g-3	mp 214-217°C; ¹ H-NMR (d ₆ -DMSO) δ 2.81-2.92 (m, 2H), 2.93-3.03 (m, 2H), 3.17 (s, 3H), 3.70 (s, 2H), 4.92 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 7.12 (d, J = 2.1 Hz, 1H), 7.33 (d, J = 8.7 Hz, 1H), 7.38-7.48 (m, 2H), 7.56-7.64 (m, 2H), 13.08 (br, 1H); IR (Nujol) 3103, 2923, 2742, 2656, 2554, 1724, 1591, 1478, 1342, 1239, 1169, 1147 cm ⁻¹
g−4	mp 218-220 °C; ¹H-NMR (d_6 -DMSO) δ 2.05-2.18 (m, 2H), 2.43 (t, J = 6.3 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 3.18 (s, 3H), 5.09 (s, 2H), 6.91 (dd, J = 2.1, 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.49 (d, J = 8.7 Hz, 1H), 7.57-7.62 (m, 2H), 7.66 (d, J = 2.1 Hz, 1H); IR (Nujol) 3501, 3335, 2925, 2854, 1714, 1631, 1592, 1473, 1454, 1343, 1265, 1239, 1172, 1152 cm ⁻¹ ; 元素分析 ($C_{21}H_{19}FN_2O_5S\cdot H_2O$) 計算値 (%): C , 56.24; H , 4.72; F , 4.24; N , 6.25; S , 7.15 実測値 (%): C , 56.18; E , 4.72; E , 4.14; E , 6.15; E , 7.07
lg-5	mp 220-222 °C; ¹H-NMR (d_6 -DMSO) δ 0.94 (t, J = 7.5 Hz, 2H), 1.40-1.57 (m, 1H), 1.72-2.00 (m, 2H), 2.19-2.40 (m, 2H), 2.80-3.06 (m, 2H), 3.18 (s, 3H), 5.08 (s, 2H), 6.90 (dd, J = 2.1, 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H), 7.57-7.62 (m, 2H), 7.68 (d, J = 2.1 Hz, 1H), 13.30 (br, 1H); IR (Nujol) 2924, 2854, 1733, 1593, 1534, 1477, 1464, 1353, 1206, 1172 cm ⁻¹ ; 元素分析 ($C_{23}H_{23}FN_2O_5S$) 計算値 (%): C , 60.25; C , C , 60.25; C , 60.99 実測値 (%): C , 60.04; C , 60.75; C , 60.78
lg-6	mp 128-130°C; ¹ H-NMR (d ₆ -DMSO) δ 1.22 (t, J = 6.0 Hz, 3H), 2.67 (br t, 2H), 3.72 (t, J = 6.0 Hz, 2H), 4.09 (q, J = 7.2 Hz, 2H), 4.47 (s, 2H), 4.84 (s, 2H), 6.77 (dd, J = 1.8, 8.4 Hz, 1H), 7.07 (s, 1H), 7.26 (d, J = 9.0 Hz, 1H), 7.31-7.37 (m, 2H), 7.70-7.75 (m, 2H), 9.88 (s, 1H), 13.00 (br 1H); IR (Nujol) 3187, 2925, 2854, 1764, 1678, 1585, 1468, 1448, 1269, 1235, 1171, 1158 cm ⁻¹ .
	mp 200-202°C; 1 H-NMR (d ₆ -DMSO) δ 1.22 (t, J = 7.2 Hz, 3H), 2.71 (br t, 2H), 3.18 (s, 3H), 3.74 (br t, 2H), 4.09 (q, J = 7.2 Hz, 2H), 4.49 (s, 2H), 4.92 (s, 2H), 6.79 (dd, J = 1.8, 9.0 Hz, 1H), 7.10 (br, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.39-7.45 (m, 2H), 7.56-7.62 (m, 2H), 13.00 (br 1H); IR (Nujol) 2925, 2854, 1697, 1677, 1476, 1340, 1238, 1147 cm ⁻¹ ; 元素分析 (C_{23} H ₂₄ FN ₃ O ₆ S·0.4H ₂ O) 計算值 (%): C, 55.61; H, 5.03; F, 3.82; N, 8.46; S, 6.46 実測値 (%): C, 55.58; H, 5.10; F, 3.71; N, 8.39; S, 6.41
lg-8	mp 229-232°C; ¹ H-NMR (d ₆ -DMSO) δ 1.22 (t, J = 6.9 Hz, 3H), 2.67 (br t, 2H), 3.72 (t, J = 6.0 Hz, 2H), 3.77 (s, 3H), 4.06 (q, J = 7.2 Hz, 2H), 4.47 (s, 2H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.07 (d, J = 2.1 Hz, 1H), 6.99-7.03 (m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.59-7.63 (m, 2H); IR (Nujol) 3309, 3218, 2925, 2853, 1741, 1644, 1598, 1491, 1259, 1247, 1155 cm ⁻¹ .

(表63)

化合物	物性値
番号	000 00 400 TT NIMD (1 DMOO) 2 1 00 (4 T. 0 0 II 0 II)
lg-9	mp 232-234°C; 1 H-NMR (d ₆ -DMSO) δ 1.22 (t, J = 6.9 Hz, 3H), 2.71 (br t, 2H), 3.13 (s, 3H), 3.74 (t, J = 5.7 Hz, 2H), 3.85 (s, 3H), 4.09 (q, J = 6.9 Hz, 2H), 4.49 (s, 2H), 4.92 (s, 2H), 6.79 (dd, J = 1.8, 8.7 Hz, 1H), 7.08-7.11 (m, 3H), 7.34 (d, J = 8.7 Hz, 1H), 7.43-7.47 (m, 2H); IR (Nujol) 3143, 2925, 2854, 1722, 1690, 1598, 1497, 1472, 1229, 1163 cm ⁻¹ ; 元素分析 (C_{24} H ₂₇ N ₈ O ₇ S) 計算値 (%): C, 57.47; H, 5.43; N, 8.38; S, 6.39 実測値 (%): C, 57.48; H, 5.41; N, 8.28; S, 6.23
	mp 245-250°C; ¹ H-NMR (d ₆ -DMSO at 80°C) δ 2.11 (s, 3H), 2.78
lg-10	(br, 2H), 3.14 (s, 3H), 3.80 (br, 2H), 3.85 (s, 3H), 4.55 (s, 2H), 4.85 (s, 2H), 6.80 (br d, J = 8.7 Hz, 1H), 7.05-7.08 (m, 3H), 7.28 (d, J = 8.7 Hz, 1H), 7.47-7.51 (m, 2H); IR (Nujol) 2923, 2853, 1737, 1596, 1474, 1340, 1259, 1162 cm ⁻¹ .
	mp 209-211 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.60-1.90 (m, 6H), 2.60-
Ig-11	2.76 (m, 4H), 4.87 (s, 2H), 6.69 (dd, J = 1.8, 8.7 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 7.17 (d, J = 8.7 Hz, 1H), 7.31-7.38 (m, 2H), 7.70-7.75 (m, 2H), 9.80 (s, 1H), 12.90 (br, 1H); IR (Nujol) 3220, 2922, 2854, 1733, 1593, 1482, 1323, 1194, 1149 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}FN_2O_4S$) 計算値 (%): C , 60.56; H , 5.08; F , 4.56; N , 6.73; S , 7.70 実測値 (%): C , 60.48; H , 4.92; F , 4.32; N , 6.68; S , 7.56
	mp 157-160 °C; 1 H-NMR (CDCl $_{3}$) δ 1.70-1.93 (m, 6H), 2.66-2.79 (m, 4H), 3.22 (s, 3H), 4.83 (s, 2H), 6.80 (dd, J = 1.8, 8.7 Hz, 1H), 7.03 (d, J = 8.7 Hz, 1H), 7.08-7.16 (m, 3H), 7.57-7.63 (m, 2H); IR (Nujol) 2923, 2853, 1725, 1592, 1480, 1346, 1235, 1148 cm $^{-1}$; 元素分析 (C $_{22}$ H $_{28}$ FN $_{2}$ O $_{4}$ S) 計算値 (%): C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.45 実測値 (%): C, 60.98; H, 5.42; F, 4.10; N, 6.41; S, 7.43
-	mp 155-157 °C; ¹H-NMR (CDCl ₃) δ 1.60-1.92 (m, 6H), 2.60-2.74 (m, 4H), 4.76 (s, 4H), 6.66 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.09-7.28 (m, 7H), 7.65-7.70 (m, 2H); IR (Nujol) 2923, 2854, 1726, 1593, 1479, 1346, 1241, 1167, 1153 cm ⁻¹ ; 元素分析 (C ₂₈ H ₂₇ FN ₂ O ₄ S) 計算值 (%): C, 66.39; H, 5.37; F, 3.75; N, 5.53; S, 6.33 実測値 (%): C, 66.39; H, 5.40; F, 3.53; N, 5.51; S, 6.09
lg-14	mp 144-150 °C; ¹H-NMR (d ₆ -DMSO) δ 1.61-1.76(m, 4H), 1.78-1.90 (m, 2H), 2.60-2.76 (m, 4H), 3.13 (s, 3H), 3.84 (s, 3H), 4.93 (s, 2H), 6.64 (dd, J = 1.8, 8.4 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 7.07-7.10 (m, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.45-7.49 (m, 2H); IR (Nujol) 2926, 2853, 1727, 1596, 1496, 1477, 1353, 1256, 1243, 1162, 1151 cm ⁻¹ ; 元素分析 (C ₂₈ H ₂₆ N ₂ O ₅ S) 計算値 (%): C, 62.42; H, 5.92; N, 6.33; S, 7.25 実測値 (%): C, 62.72; H, 5.83; N, 6.18; S, 7.08

(表64)

化合物 番号	物性値
Ig-15	mp 151-155 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (t, J = 6.9 Hz, 3H), 1.61-1.76 (m, 4H), 1.78-1.90 (m, 2H), 2.62-2.76 (m, 4H), 3.60 (q, J = 6.9 Hz, 2H), 4.94 (s, 2H), 6.58 (dd, J = 1.8, 8.4 Hz, 1H), 7.01 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.38-7.45 (m, 2H), 7.63-7.68 (m, 2H); IR (Nujol) 2924, 2854, 1728, 1592, 1478, 1345, 1233, 1170, 1143 cm ⁻¹ ; 元素分析 ($C_{23}H_{26}N_2O_5S$) 計算値 (%): C , 62.14; H, 5.67; F, 4.27; N, 6.30; S, 7.21 実測値 (%): C , 61.99; H, 5.39; F, 4.08; N, 6.31; S, 7.04
lg-16	mp 186-189 °C; ¹H-NMR (d_6 -DMSO) δ 1.60-1.76 (m, 4H), 1.78-1.90 (m, 2H), 2.60-2.80 (m, 4H), 3.10 (s, 3H), 4.94 (s, 2H), 6.64 (dd, J = 1.8, 8.7 Hz, 1H), 6.85-6.89 (m, 2H), 7.03 (d, J = 1.8 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.33-7.37 (m, 2H), 10.47 (br s, 1H), 12.96 (br s, 1H); IR (Nujol) 3400, 2924, 2853, 1722, 1600, 1586, 1498, 1476, 1444, 1321, 1251, 1144 cm $^{-1}$; 元素分析 ($C_{22}H_{24}N_2O_5S\cdot0.3H_2O$) 計算値 (%): C, 60.90; H, 5.71; N, 6.46; S, 7.39 実測値 (%): C, 60.85; H, 5.38; N, 6.25; S, 7.18
Ig-17	mp 264-266 °C; ¹H-NMR (d_6 -DMSO) δ 1.96-2.07 (m, 2H), 2.97 (t, J = 6.3 Hz, 2H), 3.13-3.20 (m, 2H), 3.17 (s, 3H), 5.02 (s, 2H), 6.82 (dd, J = 2.1, 8.7 Hz, 1H), 7.37-7.45 (m, 3H), 7.55-7.64 (m, 3H), 7.96 (d, J = 2.1 Hz, 1H); IR (Nujol) 3521, 3381, 2924, 2854, 1713, 1614, 1592, 1528, 1476, 1445, 1339, 1254 cm ⁻¹ ; 元素分析 ($C_{21}H_{20}FN_8O_5S\cdot H_2O$) 計算値 (%): C , 54.42; H , 4.78; F , 4.10; N , 9.07; S , 6.92 実測値 (%): C , 54.43; H , 4.82; F , 3.96; N , 8.83; S , 6.67
Ig-18	mp 193-197 °C; ¹H-NMR (d_6 -DMSO) δ 1.32-1.68 (m, 8H), 2.63-2.79 (m, 4H), 4.85 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 7.00 (d, J = 1.8 Hz, 1H), 7.17 (d, J = 8.7 Hz, 1H), 7.31-7.37 (m, 2H), 7.70-7.75 (m, 2H), 9.79 (s, 1H); IR (Nujol) 3280, 2924, 2853, 1703, 1594, 1475, 1331, 1291, 1244, 1167, 1153 cm-¹; 元素分析 ($C_{22}H_{23}FN_2O_4S$) 計算値 (%): C, 61.38; H, 5.39; F, 4.41; N, 6.51; S, 7.47 実測値 (%): C, 61.21; H, 5.31; F, 4.29; N, 6.42; S, 7.47
Ig-19	mp 175-177 °C; 1 H-NMR (d ₆ -DMSO) δ 1.35-1.71 (m, 8H), 2.66-2.82 (m, 4H), 3.18 (s, 3H), 4.92 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.37-7.43 (m, 3H), 7.57-7.62 (m, 2H); IR (Nujol) 2925, 2851, 1729, 1590, 1478, 1347, 1243, 1162, 1150 cm $^{-1}$; 元素分析 ($C_{28}H_{25}FN_{2}O_{4}S$) 計算值 (%): C , 62.14; H , 5.67; F , 4.27; N , 6.30; S , 7.21 実測値 (%): C , 62.01; H , 5.72; F , 4.01; N , 6.15; S , 7.08
lg-20	mp 188-192 °C; ¹H-NMR (d_6 -DMSO)) δ 1.32-1.70 (m, 8H), 2.60-2.78 (m, 4H), 4.81 (s, 2H), 4.86 (s, 2H), 6.66 (dd, J = 1.8, 8.7 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 7.15-7.29 (m, 6H), 7.43-7.46 (m, 2H), 7.70-7.75 (m, 2H); IR (Nujol) 2924, 2853, 1713, 1596, 1474, 1343, 1164, 1153 cm ⁻¹ ; 元素分析 ($C_{29}H_{29}FN_2O_4S$) 計算値 (%): C, 66.90; H, 5.61; F, 3.65; N, 5.38; S, 6.16 実測値 (%): C, 66.87; H, 5.59; F, 3.52; N, 5.37; S, 6.01

(表65)

化合物 番号	物性值
lg-21	mp 165-175 °C; ¹H-NMR (d ₆ -DMSO) δ 2.38-2.79 (m, 6H), 3.16 (s, 3H), 4.88 (s, 2H), 6.67 (dd, J = 2.1, 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.56-7.61 (m, 2H); IR (Nujol) 2924, 2855, 1730, 1592, 1469, 1343, 1242, 1234, 1150 cm ⁻¹ ; 元素分析 ($C_{20}H_{19}FN_2O_4S$) 計算値 (%): C , 59.69; H , 4.76; F , 4.72; N , 6.96; S , 7.97 実測値 (%): C , 59.73; H , 4.72; F , 4.69; N , 6.90; S , 7.90
Ig-22	mp 261-265°C; ¹ H-NMR (d_6 -DMSO) δ 2.80-3.15 (m, 4H), 3.88 (d, J = 15.3 Hz, 1H), 4.09 (d, J = 15.3 Hz, 1H), 4.90 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 7.15 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.29-7.39(m, 2H), 7.67-7.76 (m, 2H), 9.89 (br s, 1H), 13.04 (br, 1H); IR (Nujol) 3560, 3316, 3166, 3102, 3069, 2924, 2724, 2599, 2506, 1896, 1717, 1590, 1466, 1242, 1227, 1166, 1155 cm ⁻¹
lg-23	mp 239-244°C; 1 H-NMR (d_{6} -DMSO) δ 2.90-3.15 (m, 4H), 3.17 (s, 3H), 3.90 (d, J = 15.3 Hz, 1H), 4.10 (d, J = 15.3 Hz, 1H), 4.97 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 7.20 (d, J = 1.8 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.40-7.47 (m, 2H), 7.55-7.64 (m, 2H), 13.13 (br, 1H); IR (Nujol) 1718, 1590, 1479, 1348, 1234, 1152 cm ⁻¹ ; 元素分析($C_{20}H_{19}FN_{2}O_{5}S_{2}$) 計算值 (%): C , 53.32; H , 4.25; F , 4.22; N , 6.22; S , 14.24 実測値 (%): C , 53.15; H , 4.47; F , 4.20; N , 6.19; S , 14.23
lg−24	mp 251-254 °C; ¹H-NMR (d ₆ -DMSO) δ 1.96-2.05 (m, 2H), 2.93 (t, J=6.3 Hz, 2H), 3.11-3.20 (m, 2H), 3.76 (s, 3H), 4.94 (s, 2H), 6.92 (dd, J=2.1, 8.7 Hz, 1H), 6.98-7.03 (m, 2H), 7.27 (d, J=8.7 Hz, 1H), 7.50 (t, J=5.1 Hz, 1H), 7.58-7.63 (m, 2H), 8.00 (d, J=2.1 Hz, 1H), 9.73 (s, 1H); IR (Nujol) 3429, 3171, 2924, 2853, 1745, 1595, 1577, 1481, 1450, 1269, 1154 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}N_3O_6S\cdot H_2O$) 計算値 (%): C , 54.65; H , 5.02; N , 9.11; S , 6.95 実測値 (%): C , 54.58; S ,
1g-25	mp 251-254 °C; ¹H-NMR (d ₆ -DMSO) δ 1.96-2.05 (m, 2H), 2.97 (t, J=6.3 Hz, 2H), 3.12 (s, 3H), 3.12-3.21 (m, 2H), 3.84 (s, 3H), 5.01 (s, 2H), 6.81 (dd, J=2.1, 9.0 Hz, 1H), 7.05-7.11 (m, 2H), 7.37 (d, J=9.0 Hz, 1H), 7.44-7.49 (m, 2H), 7.57 (t, J=4.8 Hz, 1H), 7.99 (d, J=2.1 Hz, 1H), 13.2 (br, 1H); IR (Nujol) 3451, 3316, 2925, 2854, 1747, 1721, 1612, 1596, 1534, 1475, 1444, 1339, 1258 cm ⁻¹ ; 元素分析 ($C_{22}H_{23}N_3O_6S\cdot1.1H_2O$) 計算値 (%): C , 55.36; H , 5.32; N , 8.80; S , 6.72 実測値 (%): C , 55.21; H , 5.10; N , 8.85; S , 6.84
lg-26	dp 217-219 °C; ¹H-NMR (d_6 -DMSO) δ 1.84-2.00 (m, 2H), 2.64-2.81 (m, 4H), 3.16 (s, 3H), 4.98 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 7.35-7.61 (m, 5H), 7.74 (d, J = 2.1 Hz, 1H), 10.39 (s, 1H), 13.0 (br, 1H); IR (Nujol) 3400, 2925, 2854, 1705, 1605, 1590, 1476, 1459, 1418, 1377, 1316, 1231, 1170, 1157 cm ⁻¹ ; 元素分析 ($C_{21}H_{20}FN_3O_5S$) 計算値 (%): C , 56.62; H , 4.53; F , 4.26; N , 9.43; S , 7.20 実測値 (%): C , 56.59; H , 4.39; F , 4.37; N , 9.26; S , 7.12

(表 6	6)
化合物	Adm &H- C-1-
番号	物性値
lg-27	dp 203-208 °C; ¹H-NMR (d ₆ -DMSO) δ 1.84-1.97 (m, 2H), 2.60-2.78 (m, 4H), 3.18 (s, 3H), 3.76 (s, 3H), 4.99 (s, 2H), 6.85 (dd, J = 2.1, 8.7 Hz, 1H), 7.38-7.66 (m, 6H), 7.74 (d, J = 2.1 Hz, 1H), 13.0 (br, 1H); IR (Nujol) 3179, 2925, 2854, 1736, 1592, 1471, 1376, 1345, 1172, 1149 cm ¹; 元素分析 ($C_{22}H_{22}FN_3O_5S$) 計算值 (%): C , 57.51; H, 4.83; F, 4.13; N, 9.14; S, 6.98 実測値 (%): C , 57.40; H, 4.65; F, 4.18; N, 8.95; S, 7.03
lh-1	mp 218-222 °C; ¹H-NMR (d_6 -DMSO) δ 1.65-1.88 (m, 4H), 2.50-2.60 (m, 4H), 4.79 (s, 2H), 6.72 (dd, J = 1.2, 9.0 Hz, 1H), 7.03 (d, J = 1.2 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.31-7.37 (m, 2H), 7.69-7.75 (m, 2H), 9.80 (s, 1H), 12.90 (br, 1H); IR (Nujol) 3221, 2925, 2854, 1737, 1587, 1478, 1403, 1231 cm ⁻¹ .
lh−2	mp 179-182 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.50-2.64 (m, 4H), 3.17 (s, 3H), 4.86 (s, 2H), 6.69 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.39-7.49 (m, 2H), 7.58-7.63 (m, 2H); IR (Nujol) 2926, 1725, 1592, 1492, 1476, 1347, 1237, 1149 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}FN_2O_4S$) 計算值 (%): C , 60.56; H , 5.08; F , 4.56; N , 6.73; S , 7.70 実測値 (%): C , 60.38; H , 5.07; F , 4.44; N , 6.73; S , 7.71
lh−3	mp 198-202 °C; ¹H-NMR (d_6 -DMSO) δ 1.64-1.86 (m, 4H), 2.44-2.60 (m, 4H), 4.80 (s, 4H), 6.64 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 7.16-7.30 (m, 6H), 7.40-7.49 (m, 2H), 7.68-7.78 (m, 2H); IR (Nujol) 2924, 2854, 1727, 1594, 1494, 1475, 1346, 1243 cm ⁻¹ ; 元素分析 ($C_{27}H_{25}FN_2O_4S$) 計算値 (%): C , 65.84; H , 5.12; F , 3.86; N , 5.69; S , 6.51 実測値 (%): C , 65.53; H , 5.11; F , 3.73; N , 5.63; S , 6.30
lh−4	mp 180-183 °C; ¹H-NMR (d_6 -DMSO) δ 1.07 (d , J = 6.9 Hz, 3H), 1.44 (m , 1H), 1.74-1.98 (m , 2H), 2.10 (m , 1H), 2.52-2.70 (m , 3H), 4.78 (s , 2H), 6.72 (dd , J = 2.1, 8.7 Hz, 1H), 7.02 (d , J = 1.5 Hz, 1H), 7.17 (d , J = 8.4 Hz, 1H), 7.30-7.40 (m , 2H), 7.68-7.78 (m , 2H), 9.80 (d s 1H), 12.91 (d s 1H); IR (d s 1H) 3217, 2953, 2853, 2721, 1733, 1567, 1418, 1321, 1298, 1180, 1143 cm (d s d s d s d f (d s d
Ih−5	mp 100-101 °C; ¹H-NMR (d_6 -DMSO) δ 1.07 (d , J = 6.9 Hz, 3H), 1.46 (m , 1H), 1.74-1.94 (m , 2H), 2.10 (m , 1H), 2.40-2.75 (m , 3H), 3.17 (s , 3H), 4.83 (s , 2H), 6.67 (dd , J = 2.1, 8.4 Hz, 1H), 7.00 (d , J = 2.1 Hz, 1H), 7.17 (d , J = 9.0 Hz, 1H), 7.38-7.48 (m , 2H), 7.55-7.63 (m , 2H), 12.90 (d , 1H); IR (Nujol) 3103, 3068, 2854, 2726, 1726, 1619, 1475, 1346, 1293, 1235, 1171 cm ⁻¹ ; 元素分析 (d ₂₂ H ₂₃ FN ₂ O ₄ S·0.2AcOEt) 計算值 (%): d ₂ C, 61.11; H, 5.53; F, 4.24; N, 6.25; S, 7.16 実測値 (%): d ₃ C, 60.90; H, 5.44; F, 4.01; N, 6.43; S, 7.38

(表67)

化合物	
番号	物性値
Ih−6	mp 176-178 °C; ¹H-NMR (d_6 -DMSO) δ 1.06 (d , J = 6.9 Hz, 3H), 1.41 (m , 1H), 1.70-1.84 (m , 2H), 2.08 (m , 1H), 2.42-2.70 (m , 3H), 4.79 (s , 4H), 6.64 (d d, J = 2.1, 8.4 Hz, 1H), 7.00 (d , J = 2.1 Hz, 1H), 7.17 (d , J = 8.4 Hz, 1H), 7.14-7.30 (m , 5H), 7.40-7.50 (m , 2H), 7.66-7.76 (m , 2H), 12.99 (b r, 1H); IR (Nujol) 3106, 2854, 1717, 1594, 1494, 1291, 1251, 1235, 1188, 1165, 1154 cm ⁻¹ ; 元素 分析 ($C_{28}H_{27}FN_2O_4S$) 計算値 (%): C , 66.39; H , 5.37; F , 3.75; N , 5.53; S , 6.33 実測値 (%): C , 66.19; H , 5.36; F , 3.52; N , 5.43; S , 6.33
lh~7	mp 205-210 °C; 1 H-NMR (d_{6} -DMSO) δ 1.85-1.91 (m, 4H), 2.40-2.75 (m, 4H), 3.20 (s, 3H), 4.86 (s, 2H), 6.61 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.22 (dd, J = 3.6, 5.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.45 (dd, J = 1.5, 3.6 Hz, 1H), 8.00 (dd, J = 1.5, 5.1 Hz, 1H), 12.85 (br, 1H); IR (Nujol) 3099, 3085, 2924, 2741, 2653, 2552, 1722, 1578, 1476, 1348, 1310, 1240, cm $^{-1}$; 元素分析 ($C_{19}H_{20}N_{2}O_{4}S_{2}$ -0.2AcOEt) 計算値 (%): C, 56.42; H, 4.98; N, 6.93; S, 15.85 実測値 (%): C, 56.30; H, 5.24; N, 6.50; S, 14.88
lh−8	mp 134-136 °C; ¹H-NMR (d_6 -DMSO) δ 0.86 (t, J = 7.2 Hz, 3H), 1.30-1.46 (m, 2H), 1.58-1.70 (m, 2H), 1.72-1.90 (m, 4H), 2.54-2.66 (m, 4H), 3.03-3.12 (m, 2H), 3.26 (s, 3H), 4.87 (s, 2H), 7.07 (dd, J = 2.1, 8.7 Hz, 1H), 7.32 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 3042, 2923, 2739, 2650, 2549, 1723, 1583, 1411, 1385, 1323, 1234, 1213, 1136 cm ⁻¹ ; 元素分析 ($C_{19}H_{26}N_2O_4S$) 計算値 (%): C, 60.29; H, 6.92; N, 7.40; S, 8.46 実測値 (%): C, 60.41; H, 6.77; N, 7.37; S, 8.16
lh−9	mp 222-225 °C; ¹ H-NMR (d_6 -DMSO) δ 1.66-1.88 (m, 4H), 2.40-2.64 (m, 4H), 4.81 (s, 4H), 6.68 (dd, $J=2.1$, 8.7 Hz, 1H), 6.97 (d, $J=2.1$ Hz, 1H), 7.12 (m, 7H), 7.57 (dd, $J=1.2$, 3.6 Hz, 1H), 8.02 (dd, $J=1.2$, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 3122, 2923, 2737, 2652, 2558, 1722, 1584, 1403, 1349, 1155 cm ⁻¹ .
In-10	mp 143-145 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.34-1.50 (m, 2H), 1.66-1.89 (m, 6H), 2.50-2.60 (m, 4H), 3.11-3.22 (m, 2H), 4.81 (s, 2H), 4.88 (s, 2H), 6.99 (dd, J = 2.1, 8.7 Hz, 1H), 7.14-7.23 (m, 6H), 7.30 (d, J = 2.1 Hz, 1H), 12.99 (br, 1H); IR (Nujol) 3030, 2853, 2728, 2647, 1725, 1582, 1408, 1385, 1296, 1134 cm ⁻¹ ; 元素分析 ($C_{25}H_{30}N_2O_4S$) 計算値 (%): C , 66.05; H , 6.65; N , 6.16; S , 7.00 実測値 (%): C , 65.67; H , 6.40; N , 6.21; S , 6.95
Ih−11	mp 218-220 °C; ¹H-NMR (d ₆ -DMSO) δ 1.70-1.90 (m, 4H), 2.46-2.66 (m, 4H), 4.80 (s, 2H), 6.77 (dd, J = 1.8, 8.7 Hz, 1H), 7.06-7.10 (m, 2H), 7.20 (d, J = 8.7 Hz, 1H), 7.38 (dd, J = 2.1, 4.2 Hz, 1H), 7.82 (dd, J = 2.1, 5.4 Hz, 1H), 9.90 (br s, 1H), 12.96 (br, 1H); IR (Nujol) 3099, 2854, 2741, 2653, 2552, 1722, 1578, 1508, 1439, 1385, 1348, 1310, 1240, 1151 cm ⁻¹ ; 元素分析 ($C_{18}H_{18}N_2O_4S_2\cdot 0.2AcOEt$) 計算値 (%): C , 55.33; H , 4.84; N , 6.86; S , 15.71 実測値 (%): C , 55.14; H , 4.61; N , 7.05; S , 15.77

(表68)

化合物 番号	物性値
<u> </u>	mp 174-176 °C; ¹H-NMR (d ₆ -DMSO) δ 1.70-1.90 (m, 4H), 2.40-2.64 (m, 4H), 3.12 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 7.08 (d, J = 9.0 Hz, 2H),
lh-12	7.25 (d, $J = 8.7$ Hz, $1H$), 7.45 (d, $J = 9.0$ Hz, $2H$), 12.97 (br, $1H$); IR (Nujol) 2925, 2746, 2662, 2563, 1727, 1709, 1595, 1474, 1380, 1350 , 1246 , 1149 cm ⁻¹ ; 元素分析 ($C_{22}H_{23}FN_2O_4S$) 計算值 (%): $C_{22}H_{23}FN_2O_4S$)
	61.67; H, 5.65; N, 6.54; S, 7.48 実測値 (%): C, 61.40; H, 5.69; N, 6.44; S, 7.22
lh-13	mp 225-228 °C; ¹ H-NMR (d_6 -DMSO) δ 1.66-1.96 (m, 4H), 2.44-2.60 (m, 4H), 4.77 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 2.1 Hz, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 9.0 Hz, 2H), 9.51 (br s, 1H), 12.99 (br, 1H); IR (Nujol) 3456, 3289, 2924, 1720, 1590, 1284, 1260, 1145 cm ⁻¹ .
lh-14	mp 189-194 °C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.86 (m, 4H), 2.44-2.60 (m, 4H), 3.76 (s, 3H), 4.78 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 6.97 (m, 3H), 7.08 (d, J = 9.0 Hz, 2H), 7.60 (d, J = 8.7 Hz, 1H), 9.52 (br s, 1H), 12.92 (br, 1H); IR (Nujol) 3296, 3203, 2924, 1723, 1403, 1295, 1145 cm $^{-1}$; 元素分析 ($C_{21}H_{22}N_{2}O_{5}S\cdot 0.3AcOEt$) 計算値 (%): C , 60.85; H , 5.35; N , 6.76; S , 7.74 実測値 (%): C ,
	60.47; H, 5.58; N, 6.35; S, 7.27 mp 114-118 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.70-1.90 (m, 4H), 2.44-
lh-15	2.66 (m, 4H), 3.10 (s, 3H), 4.84 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 2.1 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.34 (d, J = 9.0 Hz, 2H), 12.99 (br, 1H); IR (Nujol) 3376, 2924, 1728, 1586, 1499, 1376, 1329, 1283, 1226, 1147 cm ⁻¹ .
lh-16	mp 182-185 °C; ¹H-NMR (d_6 -DMSO) δ 0.98 (t, J = 9.9 Hz, 3H), 1.35-1.64 (m, 4H), 1.90-2.18 (m, 2H), 2.50-2.70 (m, 3H), 4.80 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.32-7.38 (m, 2H), 7.70-7.75 (m, 2H), 9.83 (s, 1H); IR (Nujol) 3287, 2956, 2922, 2853, 1722, 1590, 1492, 1469, 1404, 1254, 1163, 1148 cm ⁻¹ ; 元素分析 ($C_{22}H_{23}FN_2O_4S$) 計算值 (%): C , 61.38; C , C , 61.38; C ,
lh-17	mp 186-188 °C; ¹H-NMR (d ₆ -DMSO) δ 0.98 (t, J = 6.9 Hz, 3H), 1.37-1.64 (m, 4H), 1.92-2.18 (m, 2H), 2.50-2.70 (m, 3H), 3.77 (s, 3H), 4.79 (s, 2H), 6.74 (dd, J = 1.8, 8.7 Hz, 1H), 7.00-7.17 (m, 4H), 7.59-7.63 (m, 2H), 9.65 (s, 1H); IR (Nujol) 3223, 2924, 2853, 1727, 1594, 1260, 1143 cm ¹; 元素分析 ($C_{23}H_{26}N_2O_5S$) 計算值 (%): C, 62.42; H, 5.93; N, 6.33; S, 7.11 実測値 (%): C, 62.21; H, 5.88; N,6.27; S, 7.11
lh−18	mp 153-155 °C; ¹H-NMR (d_6 -DMSO) δ 0.97 (t, J = 7.2 Hz, 3H), 1.35-1.68 (m, 4H), 1.90-2.18 (m, 2H), 2.54-2.72 (m, 3H), 3.17 (s, 3H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.4 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.38-7.45 (m, 2H), 7.57-7.62 (m, 2H); IR (Nujol) 2924, 1719, 1592, 1476, 1345, 1237, 1146 cm ⁻¹ ; 元素分析 ($C_{23}H_{25}FN_2O_4S$) 計算値 (%): C , 62.14; H , 5.67; F , 4.27; N , 6.30; S , 7.21 実測値 (%): C , 62.38; H , 5.84; F , 4.00; N ,6.10; S ,6.83

(表69)

化合物	
番号	物性值
lh-19	mp 119-122 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (t, J = 6.9 Hz, 3H), 1.37-1.70 (m, 4H), 1.92-2.18 (m, 2H), 2.50-2.74 (m, 3H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.07-7.10 (m, 2H), 7.24 (d, J = 8.4 Hz, 1H), 7.44-7.48 (m, 2H); IR (Nujol) 2925, 1719, 1597, 1579, 1476, 1342, 1245, 1150cm ⁻¹ ; 元素分析 ($C_{24}H_{28}N_2O_5S$) 計算値 (%): C, 63.14; H, 6.18; N, 6.14; S, 7.02 実測値 (%): C, 63.30; H, 6.38; N, 5.94; S, 6.61
lh-20	mp 193-200°C; 1 H-NMR (d ₆ -DMSO) δ 1.65-1.86 (m, 4H), 2.46-2.60 (m, 4H), 4.78 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.45-7.60 (m, 3H), 7.65-7.72 (m, 2H), 9.78 (s, 1H), 12.93(brs, 1H); IR (Nujol) 3206, 1765, 1735, 1584, 1478, 1459, 1448, 1435, 1398, 1366, 1349, 1334, 1309, 1282, 1265, 1236, 1204, 1147 cm ⁻¹ ; 元素分析 ($C_{20}H_{20}N_2O_4S$) 計算値 (%): C, 62.48; H, 5.24; N, 7.29; S, 8.34 実測値 (%): C, 62.29; H, 5.23; N, 7.18; S, 8.24 mp 182-190°C; 1 H-NMR (d ₆ -DMSO) δ 1.67-1.87 (m, 4H), 2.30 (s,
lh−21	$(H_1, H_2, H_3, H_4, H_4, H_4, H_4, H_4, H_4, H_4, H_4$
lh−22	mp 199-205°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.44-2.64 (m, 4H), 3.16 (s, 3H), 4.86 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.51-7.62 (m, 4H), 7.70 (m, 1H), 12.99 (br s, 1H); IR (Nujol) 3063, 2743, 2653, 2552, 2454, 1721, 1738, 1615, 1579, 1476, 1440, 1425, 1411, 1387, 1364, 1345, 1332, 1309 1290, 1266, 1240, 1213, 1190, 1173 1157 cm ⁻¹ ; 元素分析($C_{21}H_{22}N_2O_4S$)計算値(%): C, 63.30; H, 5.56; N, 7.03; S, 8.05 実測値(%): C, 63.16; H, 5.48; N, 6.95 S, 7.83
lh−23	mp 182-188°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.89 (m, 4H), 2.40 (s, 3H), 2.45-2.64 (m, 4H), 3.14 (s, 3H), 4.86 (s, 2H), 6.66 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 12.97 (br s, 1H); IR (Nujol) 2655, 2553, 1712, 1619, 1597, 1477, 1407, 1383, 1365, 1343, 1306, 1290, 1267, 1243, 1213, 1185, 1168, 1148, 1121, 1110 cm ⁻¹ ; 元素分析 ($C_{22}H_{24}N_2O_4S$) 計算値 (%): C, 64.06; H, 5.86; N, 6.79; S, 7.77 実測値 (%): C, 64.14; H, 5.84; N, 6.73; S, 7.61

(表70)

化合物	Han bit tit
番号	物性値
lh~24	Mp 240-250°C; 1 H-NMR (d ₆ -DMSO) δ 1.71-1.90 (m, 4H), 2.54-2.66 (m, 4H), 3.25 (s, 3H), 4.47 (s, 2H), 4.88 (s, 2H), 6.99 (dd, J=1.8, 8.4 Hz, 1H), 7.18 (d, J=1.8 Hz, 1H), 7.31 (d, J=8.4 Hz, 1H), 7.34-7.42 (m, 5H), 12.99 (br s, 1H); IR (Nujol) 2657, 2557, 1710, 1620, 1603, 1582, 1496, 1479, 1456, 1440, 1412, 1383, 1340, 1311, 1289, 1269, 1250, 1217, 1190, 1173, 1160, 1140 cm ⁻¹ ; 元素分析 ($C_{22}H_{24}N_2O_4S\cdot O.2AcOEt$) 計算値 (%): C , 63.67; H , 6.00; N , 6.51; S , 7.45 実測値 (%): C , 63.75; H , 5.96; N , 6.51; S , 7.38
lh−25	mp 218-226°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.90 (m, 4H), 2.50-2.65 (m, 4H), 3.25 (s, 3H), 4.86 (s, 2H), 7.02 (dd, J = 1.8, 8.4 Hz, 1H), 7.24 (d, J = 15.3 Hz, 1H), 7.29-7.47 (m, 5H), 7.37 (d, J = 15.3 Hz, 1H), 7.69-7.77 (m, 2H), 12.95 (br s, 1H); IR (Nujol) 3057, 2662, 2568, 1721, 1616, 1578, 1478, 1451, 1410, 1385, 1338, 1307, 1290, 1253, 1212, 1179, 1166, 1154, 1133 cm $^{-1}$; 元素分析 ($C_{23}H_{24}N_2O_4S\cdot 0.2AcOEt$) 計算値 (%): C , 64.65; H , 5.84; N , 6.34; S , 7.25 実測値 (%): C , 6.45; H , 5.80; N , 6.36; S , 7.26
lh-26	mp 114-118 °C; ¹ H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.44-2.66 (m, 4H), 3.10 (s, 3H), 4.84 (s, 2H), 6.68 (dd, $J=2.1$, 8.7 Hz, 1H), 6.87 (d, $J=9.0$ Hz, 2H), 6.97 (d, $J=2.1$ Hz, 1H), 7.24 (d, $J=8.7$ Hz, 1H), 7.34 (d, $J=9.0$ Hz, 2H), 12.99 (br, 1H); IR (Nujol) 3376, 2924, 1728, 1586, 1499, 1376, 1329, 1283, 1226, 1147 cm ⁻¹
Ih−27	mp 165-168 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (s, 6H), 1.52-1.62 (m, 2H), 2.31 (s, 2H), 2.50-2.60 (m, 2H), 4.80 (s, 2H), 6.71 (dd, J=1.8, 8.7 Hz, 1H), 7.00 (d, J=1.8 Hz, 1H), 7.25 (d, J=8.7 Hz, 1H), 7.30-7.39 (m, 2H), 7.68-7.76 (m, 2H), 9.82 (br s, 1H), 12.91 (br, 1H); IR (Nujol) 3252, 2925, 1752, 1590, 1467, 1291, 1233, 1146 cm ⁻¹ ; 元素分析 ($C_{22}H_{23}N_2FO_4S$) 計算值 (%): C , 61.38; H , 5.39; F , 4.41; N , 6.51; S , 7.49 実測値 (%): C , 61.42; H , 5.57; F , 4.20; N , 6.70; S , 7.17
lh−28	mp 122-125 °C; ¹H-NMR (d_6 -DMSO) δ 0.98 (s, 6H), 1.54-1.64 (m, 2H), 2.33 (s, 2H), 2.52-2.60 (m, 2H), 4.82 (s, 2H), 6.77 (dd, J = 1.8, 8.7 Hz, 1H), 7.04-7.10 (m, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.40 (dd, J = 1.5, 3.6 Hz, 1H), 7.82 (dd, J = 1.5, 4.8 Hz, 1H), 9.93 (br s, 1H), 12.90 (br, 1H); IR (Nujol) 3250, 3112, 2923, 2666, 1709, 1474, 1411, 1251, 1159 cm ⁻¹
111-29	mp 155-160°C; 1 H-NMR (d ₆ -DMSO) δ 1.72-1.93 (m, 4H), 2.54-2.66 (m, 4H), 4.30 (s, 2H), 4.86 (s, 2H), 6.96 (dd, J = 2.1, 9.0 Hz, 1H), 7.22 (d, J = 2.1 Hz, 1H), 7.25-7.40 (m, 6H), 9.40 (s, 1H), 12.95 (br s, 1H); IR (Nujol) 3568, 3438, 3349, 3195, 3060, 2728, 2537, 1728, 1713, 1625, 1583, 1469, 1456, 1438, 1427, 1411, 1378, 1350, 1318, 1279, 1257, 1243, 1217, 1192, 1172, 1146, 1130 cm ⁻¹ ; 元素分析($C_{21}H_{22}N_2O_4S$)計算值(%): C , 63.30; H , 5.56; N , 7.03; S , 8.05 実測值(%): C , 63.00; H , 5.75; N , 6.91; S , 7.88

(表71)

化合物	
番号	物性値
lh−30	Mp 208-213°C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.50-2.62 (m, 4H), 4.80 (s, 2H), 6.92 (dd, J = 1.8, 8.7 Hz, 1H), 7.15 (d, J = 15.3 Hz, 1H), 7.20 (d, J = 1.8 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.27 (d, J = 15.3 Hz, 1H), 7.33-7.42 (m, 3H), 7.58-7.66 (m, 2H), 9.53 (s, 1H), 12.92 (brs, 1H); IR (Nujol) 3279, 3259, 3241, 3044, 3023, 2652, 2550, 2362, 1729, 1713, 1618, 1589, 1576, 1490, 1469, 1449, 1430, 1412, 1403, 1384, 1351, 1318, 1308, 1275, 1260, 1237, 1214, 1198, 1175, 1136 cm ⁻¹ ; 元素分析 ($C_{22}H_{22}N_2O_4S$) 計算値 (%): C, 64.37; H, 5.40; N, 6.82; S, 7.81 実測値 (%): C, 64.28; H, 5.50; N, 6.78; S, 7.56
lh-31	mp 112-115 °C; ¹H-NMR (d ₆ -DMSO) δ 0.99 (s, 6H), 1.54-1.66 (m, 2H), 2.34 (s, 2H), 2.56-2.66 (m, 2H), 3.16 (s, 3H), 4.87 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.36-7.46 (m, 2H), 7.57-7.66 (m, 2H), 12.95 (br, 1H); IR (Nujol) 2915, 1725, 1709, 1475, 1345, 1308, 1291, 1239, 1166 cm ⁻¹ .
Ih−32	mp 180-184 °C; ¹H-NMR (d_6 -DMSO) δ 0.99 (s, 6H), 1.56-1.64 (m, 2H), 2.33 (s, 2H), 2.54-2.66 (m, 2H), 3.21 (s, 3H), 3.84 (s, 3H), 4.87 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 1.5 Hz, 1H), 7.08 (d, J = 9.0 Hz, 2H), 7.26 (d, J = 9.0 Hz, 1H), 7.46 (d, J = 9.0 Hz, 2H), 12.97 (br, 1H); IR (Nujol) 3084, 2923, 2675, 2563, 1734, 1712, 1584, 1474, 1347, 1253, 1159 cm ¹; 元素分析 ($C_{24}H_{28}N_2O_5S$) 計算値 (%): C, 63.14; H, 6.18; N, 6.14; S, 7.05 実測値 (%): C, 62.92; H, 5.98; N, 6.09; S, 6.76
in-33	mp 174-180 °C; ¹H-NMR (d ₆ -DMSO) δ 0.99 (s, 6H), 1.57-1.65 (m, 2H), 2.35 (s, 2H), 2.54-2.65 (m, 2H), 3.20 (s, 3H), 4.87 (s, 2H), 6.71 (dd, J = 2.1, 9.0 Hz, 1H), 7.03 (d, J = 2.1 Hz, 1H), 7.21-7.32 (m, 2H), 7.45 (dd, J = 1.5, 3.6 Hz, 1H), 8.00 (dd, J = 1.2, 2.1 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 2923, 2745, 2657, 2560, 1731, 1597, 1579, 1474, 1335, 1308, 1265, 1240, 1147 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₄ N ₂ O ₄ S ₂ ·0.2AcOEt) 計算値 (%): C, 58.31; H, 5.59; N, 6.48; S, 14.83 実測値 (%): C, 58.16; H, 5.73; N, 6.22; S, 14.25
Ih−34	mp 146-149 °C; 1 H-NMR (d ₆ -DMSO) δ 1.90-2.18 (m, 2H), 2.57-3.02 (m, 5H), 4.84 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 7.22-7.39 (m, 8H), 7.69-7.73 (m, 2H), 9.84 (s, 1H), 13.00 (br, 1H); IR (Nujol) 3208, 2925, 2854, 1729, 1592, 1495, 1286, 1240, 1197, 1156, 1146 cm ⁻¹ ; 元素分析 ($C_{26}H_{23}FN_{2}O_{4}S\cdot 0.3H_{2}O$) 計算值 (%): C, 64.53; H, 4.92; F, 3.93; N, 5.79; S, 6.63 実測値 (%): C, 64.52; H, 4.55; F, 3.82; N,5.75; S, 6.48
Ih−35	mp 152-155 °C; ¹H-NMR (d_6 -DMSO) δ 1.90-2.19 (m, 2H), 2.53-3.02 (m, 5H), 3.76 (s, 3H), 4.83 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.98-7.38 (m, 9H), 7.59-7.62 (m, 2H), 9.66 (s, 1H), 13.00 (br, 1H); IR (Nujol) 3305, 2924, 2853, 1716, 1594, 1474, 1258, 1152 cm ⁻¹ ; 元素分析 ($C_{27}H_{26}N_2O_5S\cdot0.3H_2O$) 計算值 (%): C, 65.53; H, 5.41; N, 5.65; S, 6.47 実測値 (%): C, 65.53; H, 5.28; N,5.38; S, 6.12

(表72)

化合物	
番号	物性値
	mp 204-206 °C; ¹H-NMR (d ₆ -DMSO) δ 1.95-2.18 (m, 2H), 2.54-3.02 (m, 5H), 3.16 (s, 3H), 4.90 (s, 2H), 6.72 (dd, J = 2.1, 9.0 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H), 7.20-7.61 (m, 10H); IR (Nujol) 2925, 2854, 1726, 1589, 1476, 1346, 1336, 1254, 1224, 1148 cm ⁻¹ ; 元素分析 ($C_{27}H_{25}FN_2O_4S$) 計算值 (%): C , 65.84; H , 5.12; F , 3.86; N , 5.69; S , 6.513 実測值 (%): C , 65.542; H , 4.94; F , 3.87; N ,5.61; S , 6.48
lh-37	mp 121-124 °C; ¹ H-NMR (d_6 -DMSO) δ 1.94-2.19 (m, 2H), 2.52-3.03 (m, 5H), 3.12 (s, 3H), 3.81 (s, 3H), 4.89 (s, 2H), 6.72 (d, J = 8.7 Hz, 1H), 6.99 (s, 1H), 7.06-7.09 (m, 2H), 7.20-7.47 (m, 8H); IR (Nujol) 2924, 2853, 1741, 1689, 1596, 1480, 1458, 1340, 1259, 1197, 1180, 1162, 1150 cm ⁻¹
lh-38	mp 168-172 °C; 1 H-NMR (d_{6} -DMSO) δ 0.81 (t, J = 7.8 Hz, 6H), 1.21-1.40 (m, 4H), 1.60 (t, J = 6.0 Hz, 2H), 2.28 (s, 2H), 2.50 (m, 2H), 3.76 (s, 3H), 4.78 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.97-7.03 (m, 3H), 7.15 (d, J = 8.7 Hz, 1H), 7.57-7.62 (m, 2H), 9.62 (s, 1H), 12.95 (br, 1H); IR (Nujol) 3303, 2924, 2853, 1719, 1598, 1498, 1486, 1469, 1404, 1254, 1155 cm $^{-1}$; 元素分析 ($C_{25}H_{30}N_{2}O_{5}S$) 計算値 (%): C, 63.81; H, 6.43; N, 5.95; S, 6.65 実測値 (%): C, 63.54; H, 6.31; N,5.90; S, 6.65
Ih−39	mp 188-197°C; 1 H-NMR (d_{6} -DMSO) δ 1.68-1.88 (m, 4H), 2.46-2.62 (m, 4H), 4.79 (s, 2H), 6.71 (dd, J = 1.8, 8.7 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 9.87 (s, 1H), 12.90 (brs, 1H); IR (Nujol) 3208, 3084, 1755, 1736, 1581, 1474, 1419, 1404, 1381, 1365, 1348, 1333, 1384, 1322, 1304, 1279, 1261, 1198, 1154 cm -1; 元素 分析 ($C_{20}H_{19}ClN_{2}O_{4}S$) 計算値 (%): C , 57.34; H , 4.57; Cl , 8.46; N , 6.69; S , 7.65 実測値 (%): C , 57.28; H , 4.75; Cl , 7.94; N , 6.86; S , 7.39
Ih−40	mp 170-175°C; ¹H-NMR (d ₆ -DMSO) δ 1.68-1.87 (m, 4H), 2.43-2.60 (m, 4H), 4.79 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 8.7 Hz, 2H), 7.92 (d, J = 8.7 Hz, 2H), 10.03 (s, 1H), 12.91 (brs, 1H); IR (Nujol) 3216, 3046, 1754, 1738, 1605, 1593, 1472, 1423, 1405, 1380, 1366, 1340, 1325, 1306, 1294, 1282, 1265, 1216, 1194, 1173, 1154, 1110 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₉ F ₃ N ₂ O ₄ S) 計算値 (%): C, 55.75; H, 4.23; F, 12.60; N, 6.19; S, 7.09 実測値 (%): C, 55.94; H, 4.46; F, 12.31; N, 6.46; S, 6.94
Ih−41	mp 162-165°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.89 (m, 4H), 2.46-2.65 (m, 4H), 3.17 (s, 3H), 4.86 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 12.90 (brs, 1H); IR (Nujol) 3095, 2743, 2656, 2556, 1729, 1711, 1584, 1476, 1444, 1427, 1411, 1385, 1346, 1310, 1280, 1267, 1242, 1213, 1189, 1173, 1156 cm $^{-1}$; 元素分析($C_{21}H_{21}ClN_{2}O_{4}S$ ·0.05AcOEt)計算值(%): C, 58.22; H, 4.93; Cl, 8.11; N, 6.41; S, 7.33 実測值(%): C, 58.32; H, 4.94; Cl, 7.85; N, 6.68; S, 7.30

	(表7	_ ,
	化合物 番号	物性値
	Ih-42	mp 181-188°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.88 (m, 4H), 2.44-2.64 (m, 4H), 3.21 (s, 3H), 4.87 (s, 2H), 6.70 (dd, J = 1.8, 8.7 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 12.99 (brs, 1H); IR (Nujol) 3111, 3085, 3053, 2739, 2653, 2552, 1733, 1712, 1609, 1582, 1477, 1447, 1426, 1408, 1386, 1366, 1348, 1327, 1311, 1281, 1267, 1239, 1214, 1191, 1174, 1158, 1128, 1110 cm $^{-1}$; 元素分析 ($C_{22}H_{21}F_{8}N_{2}O_{4}S$) 計算値 (%): C , 56.65; H , 4.54; F , 12.22; N , 6.01; S , 6.87 実測値 (%): C , 56.77; H , 4.62; F , 11.93; N , 6.30; S , 6.88
	lh-43	mp 227-232°C; 1 H-NMR (4 G-DMSO) 8 1.68-1.88 (m, 4H), 2.46-2.64 (m, 4H), 3.18 (s, 3H), 4.86 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.11 (dd, J = 1.5, 5.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.77 (dd, J = 3.0, 5.1 Hz, 1H), 8.03 (dd, J = 1.5, 3.0 Hz, 1H), 12.99 (brs, 1H); IR (Nujol) 3120, 3086, 2742, 2651, 2552, 2455, 1721, 1615, 1577, 1499, 1475, 1439, 1425, 1410, 1386, 1362, 1342, 1309, 1267, 1240, 1209, 1190, 1174, 1152, 1101 cm $^{-1}$; 元素分析 (1 G- 1 H ₂₀ N ₂ O ₄ S ₂) 計算値 (%): 1 C, 56.42 H, 4.98; N, 6.93; S, 15.85 実測値 (%): 1 C, 56.15; H, 4.93; N, 6.87; S, 15.71
	lh-44	mp $164-168$ °C; 1 H-NMR (d_{6} -DMSO) δ $1.68-1.88$ (m, 4 H), $2.44-2.64$ (m, 4 H), 3.21 (s, 3 H), 4.87 (s, 2 H), 6.70 (dd, J = 1.8 , 8.7 Hz, 1 H), 6.99 (d, J = 1.8 Hz, 1 H), 7.29 (d, J = 8.7 Hz, 1 H), 7.56 (d, J = 8.4 Hz, 2 H), 7.97 (d, J = 8.4 Hz, 2 H), 12.99 (brs, 1 H); IR (Nujol) 3016 , 2745 , 2658 , 2560 , 1721 , 1591 , 1581 , 1477 , 1446 , 1427 , 1414 , 1389 , 1351 , 1334 , 1310 , 1293 , 1264 , 1246 , 1212 , 1190 , 1162 , 1102 cm $^{-1}$; 元素分析 (C_{22} H $_{21}$ F $_{8}$ N $_{2}$ O $_{5}$ S) 計算値 (%): C, 54.77 ; H, 4.39 ; F, 11.81 ; N, 5.81 ; S, 6.65 実測値 (%): C, 54.69 ; H, 4.28 ; F, 11.56 ; N, 5.82 ; S, 6.59
	Ih-45	mp 97-100 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.5 Hz, 6H), 1.21-1.40 (m, 4H), 1.63 (t, J = 6.0 Hz, 2H), 2.31 (s, 2H), 2.55 (br t, 2H), 3.17 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.38-7.62 (m, 4H); IR (Nujol) 2956, 2854, 1738, 1699, 1591, 1495, 1475, 1331, 1236, 1196, 1151 cm ⁻¹ .
	lh-46	mp 103-105 °C; ¹H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.2 Hz, 6H), 1.20-1.40 (m, 4H), 1.63 (br t, 2H), 2.30 (s, 2H), 2.55 (br t, 2H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2:1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.07-7.10 (m, 2H), 7.24 (d, J = 8.7 Hz, 1H), 7.44-7.48 (m, 2H); IR (Nujol) 2925, 2854, 1758, 1739, 1683, 1599, 1474, 1338, 1264, 1182, 1164, 1153 cm ⁻¹ .
	Ih-47	Mp 160-163 °C; ¹H-NMR (d ₆ -DMSO) δ 1.24-1.57 (m, 10H), 1.66 (t, J = 6.0 Hz, 2H), 2.36 (s, 2H), 2.53 (br t, 2H), 4.78 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.31-7.37 (m, 2H), 7.70-7.75 (m, 2H), 9.79 (s, 1H), 12.9 (br, 1H); IR (Nujol) 3297, 3278, 2919, 2854, 1746, 1720, 1590, 1468, 1251, 1162, 1151 cm ⁻¹ .

(表74)

化合物番号	物性值
由与	mp 201-204 °C; ¹H-NMR (d ₆ -DMSO) δ 1.24-1.59 (m, 10H), 1.66 (t, J = 6.0 Hz, 2H), 2.36 (s, 2H), 2.53 (br t, 2H), 3.77 (s, 3H), 4.78 (s, 2H), 6.73 (dd, J = 1.8, 8.7 Hz, 1H), 6.99-7.16 (m, 3H), 7.15 (d, J = 8.7 Hz, 1H), 7.59-7.63 (m, 2H), 9.62 (s, 1H), 12.5 (br, 1H); IR (Nujol) 3249, 2924, 2853, 1737, 1595, 1470, 1329, 1262, 1154 cm ⁻¹ .
Ih-49	mp 198-205°C; 1 H-NMR (d ₆ -DMSO) δ 1.68-1.86 (m, 4H), 2.46-2.60 (m, 4H), 4.80 (s, 2H), 6.76 (dd, J = 1.8, 8.7 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.22 (dd, J = 1.5, 5.1 Hz, 1H), 7.66 (dd, J = 3.0, 5.1 Hz, 1H), 7.96 (dd, J = 1.5, 3.0 Hz, 1H), 9.71 (s, 1H), 12.93 (brs, 1H); IR (Nujol) 3205, 3103, 1735, 1478, 1459, 1435, 1401, 1365, 1349, 1333, 1312, 1281, 1264, 1206, 1146 cm $^{-1}$; 元素分析 (C ₁₈ H ₁₈ N ₂ O ₄ S ₂) 計算値 (%): C, 55.37; H, 4.65; N, 7.17; S, 16.42 実測値 (%): C, 55.22; H, 4.56; N, 7.04; S, 16.15
lh−50	mp 177-181 °C; ¹H-NMR (d_6 -DMSO) δ 0.91 (t, J = 6.9 Hz, 3H), 1.30-1.50 (m, 6H), 1.90-2.16 (m, 2H), 2.46-2.70 (m, 3H), 4.77 (s, 2H), 6.71 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.30-7.38 (m, 2H), 7.67-7.75 (m, 2H), 9.81 (br s, 1H); IR (Nujol) 3294, 3102, 3069, 3032, 2919, 2667, 2573, 1722, 1590, 1470, 1403, 1341, 1293, 1254 cm ⁻¹
lh-51	mp 112-115 °C; ¹H-NMR (d_6 -DMSO) δ 0.96 (s, 9H), 1.21-1.48 (m, 2H), 2.02-2.30 (m, 2H), 2.42-2.78 (m, 3H), 4.77 (s, 2H), 6.70 (dd, J = 1.8, 8.7 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.30-7.40 (m, 2H), 7.68-7.77 (m, 2H), 9.80 (br s, 1H); IR (Nujol) 3249, 2923, 2662, 1711, 1591, 1495, 1477, 1414, 1339, 1295, 1241, 1194, 1156 cm ⁻¹ .
Ih−52	mp 168-171 °C; ¹ H-NMR (d_6 -DMSO) δ 0.92 (t, J = 6.6 Hz, 3H), 1.32-1.52 (m, 6H), 1.90-2.16 (m, 2H), 2.46-2.76 (m, 3H), 3.76 (s, 3H), 4.74 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 6.96-7.06 (m, 3H), 7.13 (d, J = 8.7 Hz, 1H), 7.60 (d, J = 9.0 Hz, 2H), 9.61 (s, 1H); IR (Nujol) 3302, 3017, 2923, 2669, 2563, 1720, 1594, 1471, 1402, 1336, 1253, 1193 cm ⁻¹
Ih-53	mp 179-181 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.96 (s, 9H), 1.21-1.50 (m, 2H), 2.00-2.30 (m, 2H), 2.40-2.78 (m, 3H), 3.76 (s, 3H), 4.77 (s, 2H), 6.72 (dd, J = 1.8, 8.7 Hz, 1H), 6.96-7.08 (m, 3H), 7.12 (d, J = 8.7 Hz, 1H), 7.59 (d, J = 8.7 Hz, 2H), 9.61 (br s, 1H); IR (Nujol) 3665, 3297, 2923, 2666, 2570, 1718, 1594, 1470, 1403, 1254, 1194 cm ⁻¹ .
Ih−54	mp 151-158°C; ¹ H-NMR (d ₆ -DMSO) δ 1.67-1.86 (m, 4H), 2.44-2.61 (m, 4H), 4.79 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H), 9.89 (s, 1H), 12.93 (brs, 1H); IR (Nujol) 3287, 3104, 3038, 1720, 1592, 1487, 1473, 1411, 1399, 1376, 1366, 1355, 1336, 1292, 1247, 1209, 1170, 1152 cm ⁻¹ .

(表75)

化合物	
番号	物性值
Ih-55	mp 155-158 °C; ¹H-NMR (d ₆ -DMSO) δ 1.23-1.53 (m, 10H), 1.68 (t, J = 6.0 Hz, 2H), 2.39 (s, 2H), 2.56 (br t, 2H), 3.17 (s, 3H), 4.86 (s, 2H), 6.68 (dd, J = 2.1, 9.0 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 9.0 Hz, 1H), 7.38-7.63 (m, 4H); IR (Nujol) 2917, 2854, 1725, 1590, 1478, 1342, 1233, 1146 cm ¹; 元素分析 (C ₂₆ H ₂₉ FN ₂ O ₄ S) 計算值 (%): C, 64.44; H, 6.03; F, 3.92; N, 5.78; S, 6.62 実測値 (%): C, 64.12; H, 6.16; F, 3.59; N, 5.52; S, 6.18
Ih-56	mp 132-135 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.22-1.54(m, 10H), 1.66 (t, J = 6.0 Hz, 2H), 2.38 (s, 2H), 2.56 (br t, 2H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.07-7.11 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.45-7.49 (m, 2H); IR (Nujol) 2917, 2854, 1725, 1597, 1496, 1477, 1338, 1255, 1236, 1148 cm ⁻¹
lh-57	mp 161-163 °C; ¹H-NMR (d_6 -DMSO) δ 0.92 (t, J = 6.9 Hz, 3H), 1.22-1.50 (m, 5H), 1.62-1.78 (m, 1H), 1.90-2.18 (m, 2H), 2.46-2.74 (m, 3H), 3.17 (s, 3H), 4.84 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.38-7.48 (m, 2H), 7.56-7.64 (m, 2H); IR (Nujol) 2924, 2746, 2657, 2561, 1716, 1591, 1476, 1347, 1307, 1289, 1242, 1148 cm ⁻¹ ; 元素分析 ($C_{24}H_{27}N_2FO_4S$) 計算値 (%): C, 62.86; H, 5.93; F, 4.14; N, 6.11; S, 6.99 実測値 (%): C, 62.92; H, 6.09; F, 3.93; N, 6.20; S, 6.69
Ih−58	mp 162-164 °C; ¹H-NMR (d ₆ -DMSO) δ 0.97 (s, 9H), 1.28-1.58 (m, 2H), 2.02-2.30 (m, 2H), 2.42-2.80 (m, 3H), 3.17 (s, 3H), 4.84 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.36-7.46 (m, 2H), 7.56-7.64 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3100, 3080, 3049, 2924, 2743, 2633, 1590, 1437, 1412, 1344, 1235, 1169, 1145 cm ⁻¹
Ih-59	mp 152-155 °C; ¹H-NMR (d_6 -DMSO) δ 0.92 (t, J = 6.9 Hz, 3H), 1.30-1.54 (m, 6H), 1.90-2.16 (m, 2H), 2.46-2.76 (m, 3H), 3.12 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 13.00 (br s, 1H); IR (Nujol) 2952, 2752, 2665, 2569, 1729, 1598, 1576, 1499, 1476, 1345, 1308, 1246, 1153cm ⁻¹ ; 元素分析($C_{25}H_{30}N_2O_5S$)計算值(%): C, 63.81; H, 6.43; N, 5.95; S, 6.81 実測值(%): C, 63.72; H, 6.38; N, 6.00; S, 6.68
Ih−60	mp 140-144°C; ¹H-NMR (d ₆ -DMSO) δ 0.97(s, 9H), 1.24-1.50 (m, 2H), 2.00-2.30 (m, 2H), 2.40-2.78 (m, 3H), 3.13 (s, 3H), 3.84 (s, 3H), 4.84 (s, 2H), 6.68 (dd, J = 2.1, 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 9.0 Hz, 2H), 7.22 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H), 13.00 (br, 1H); IR (Nujol) 2924, 2746, 2641, 2559, 1717, 1596, 1578, 1476, 1341, 1241, cm ¹; 元素分析 ($C_{26}H_{32}N_2O_5S$) 計算値 (%): C , 64.44 ; C ,

(表76)

化合物	
番号	物性値
Ih-61	mp 169-171 °C; ¹H-NMR (d_6 -DMSO) δ 0.89 (t, J = 6.9 Hz, 3H), 1.20-2.19 (m, 12H), 2.57-2.76 (m, 3H), 3.17 (s, 3H), 4.85 (s, 2H), 6.70 (dd, J = 2.1, 8.4 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.38-7.46 (m, 2H), 7.57-7.62 (m, 2H), 13.00 (br s, 1H); IR (Nujol) 2920, 2854, 1720, 1591, 1476, 1346, 1240, 1146 cm ⁻¹ ; 元素分析 ($C_{26}H_{31}FN_2O_4S$) 計算值 (%): C, 64.18; H, 6.42; F, 3.90; N, 5.76; S, 6.59 実測値 (%): C, 64.20; H, 6.46; F, 3.66; N, 5.80; S, 6.52
Ih-62	mp 157-160 °C; ¹H-NMR (d_6 -DMSO) δ 0.89 (t, J = 6.9 Hz, 3H), 1.26-2.19 (m, 12H), 2.54-2.76 (m, 3H), 3.13 (s, 3H), 3.84 (s, 3H), 4.85 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.06-7.12 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.43-7.48 (m, 2H), 13.00 (br s, 1H); IR (Nujol) 2924, 2854, 1721, 1597, 1496, 1476, 1338, 1256, 1242, 1149 cm ⁻¹ ; 元素分析 ($C_{27}H_{34}N_2O_5S$) 計算值 (%): C, 65.04; H, 6.87; N, 5.62; S, 6.43 実測値 (%): C, 64.92; H, 6.88; N, 5.62; S, 6.42
lh-63	mp 183-189 °C; ¹H-NMR (d ₆ -DMSO) δ 0.95 (t, J = 7.2 Hz, 3H), 1.74-1.84 (m, 4H), 2.51-2.60 (m, 4H), 3.55 (q, J = 7.2 Hz, 2H), 3.84 (s, 3H), 4.86 (s, 2H), 6.62 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.49-7.54 (m, 2H), 13.04 (br, 1H); IR (Nujol) 3201, 3114, 1767, 1748, 1593, 1579, 1493, 1477, 1458, 1427, 1377, 1324, 1308, 1257, 1189, 1154, 1084, 1065, 1057 cm ¹; 元素分析 ($C_{23}H_{26}N_2O_5S$) 計算値 (%): C , 62.42; H , 5.92; N , 6.33; S , 7.25 実測値 (%): C , 62.36; H , 5.91; N , 6.32; S , 7.07
Ih-64	1342, 1306, 1255, 1240, 1176, 1166, 1148, 1107, 1092, 1072, 1058, 1033 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₈ N ₂ O ₅ S·0.4AcOEt) 計算值 (%): C, 62.52; H, 6.39; N, 5.70; S, 6.52 実測値 (%): C, 62.58; H, 6.44; N. 5.76; S, 6.30
lh−65	mp 200-210 °C; ¹ H-NMR (d_6 -DMSO) δ 0.86 (d, J = 6.6 Hz, 6H), 1.41 (m, 1H), 1.70-1.88 (m, 4H), 2.50-2.64 (m, 4H), 3.32 (d, J = 6.6 Hz, 2H), 3.84 (s, 3H), 4.85 (s, 2H), 6.64 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.05-7.10 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7

(表77)

化合物	· 物性値
番号	
lh−66	mp 184-193 °C; ¹H-NMR (d_6 -DMSO) δ 0.97 (d, J = 6.9 Hz, 6H), 1.72-1.89 (m, 4H), 2.51-2.65 (m, 4H), 3.85 (s, 3H), 4.47 (m,1H), 4.87 (s, 2H), 6.63 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.08-7.13(m, 2H), 7.29 (d, J = 8.7 Hz, 1H), 7.62-7.67 (m, 2H); IR (Nujol) 3261, 1750, 1713, 1596, 1577, 1498, 1476, 1378, 1364, 1338, 1318, 1303, 1265, 1217, 1183, 1146, 1112, 1086 cm ⁻¹ .
Ih-67	mp 183-186 °C; ¹H-NMR (d_6 -DMSO) δ 0.97 (t, J = 7.2 Hz, 3H), 1.70-1.90 (m, 4H), 2.53-2.64 (m, 4H), 3.60 (q, J = 7.2 Hz, 2H), 4.86 (s, 2H), 6.63 (dd, J = 1.8, 8.7 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.62-7.68 (m, 2H); IR (Nujol) 2925, 2854, 1725, 1711, 1592, 1476, 1341, 1243, 1182, 1172, 1148 cm ¹; 元素分析 ($C_{22}H_{23}N_2O_4S$) 計算値 (%): C, 61.38; H, 5.39, F, 4.41; N, 6.51; S, 7.45 実測値 (%): C, 61.12; H, 5.55; F, 4.14; N, 6.33; S, 7.08
lh-68	mp 182-184 °C; ¹H-NMR (d ₆ -DMSO) δ 0.85 (t, J = 7.5 Hz, 3H), 1.24-1.41 (m, 2H), 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 3.51 (t, J = 6.3 Hz, 2H), 4.86 (s, 2H), 6.64 (dd, J = 1.8, 8.7 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.62-7.66 (m, 2H); IR (Nujol) 2925, 2854, 1727, 1709, 1592, 1492, 1475, 1341, 1291, 1241, 1172, 1146 cm ⁻¹ ; 元素分析 ($C_{23}H_{25}N_2O_4S$) 計算値 (%): C, 62.14; H, 5.67, F, 4.27; N, 6.30; S, 7.21 実測値 (%): C, 61.94; H, 5.70; F, 4.07; N, 6.32; S, 6.96
Ih-69	mp 165-168 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 4.22 (d, J = 5.7 Hz, 2H), 4.85 (s, 2H), 4.99-5.13 (m, 2H), 5.62-5.80 (m, 1H), 6.66 (dd, J = 2.1, 8.7 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.39-7.46 (m, 2H), 7.64-7.69 (m, 2H); IR (Nujol) 2925, 2853, 1727, 1709, 1592, 1493, 1477, 1344, 1243, 1166, 1154 cm ⁻¹ ; 元素分析 ($C_{23}H_{23}FN_2O_4S$) 計算値 (%): C , 62.43; H , 5.24; F , 4.29; N , 6.30; S , 7.25 実測値 (%): C , 62.22; F , 5.27; F , 4.12; F , 6.32; F , 6.99
Ih−70	mp 199-204 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 3.20 (br t, 1H), 4.49 (d, J = 2.4 Hz, 2H), 4.87 (s, 2H), 6.77 (dd, J = 1.8, 8.4 Hz, 1H), 7.08 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.39-7.46 (m, 2H), 7.68-7.73 (m, 2H); IR (Nujol) 3292, 2925, 2854, 1724, 1592, 1477, 1337, 1238, 1155 cm ⁻¹ ; 元素分析 ($C_{23}H_{21}FN_2O_4S$) 計算値 (%): C , 62.71; H , 4.81; F , 4.31; N , 6.36; S , 7.28 実測値 (%): C , 62.55; H , 4.91; F , 4.10; N , 6.32; S , 7.21
Ih-71	mp 164-167 °C; ¹H-NMR (d ₆ -DMSO) δ 1.70-1.90 (m, 4H), 2.52-2.64 (m, 4H), 4.55 (d, J = 9.0 Hz, 2H), 4.86 (s, 2H), 6.70 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.67-7.73 (m, 2H); IR (Nujol) 2920, 2854, 1724, 1710, 1593, 1495, 1478, 1344, 1240, 1167, 1155 cm ⁻¹ .

(表78)

化合物	物性値
番号	mp 143-147 °C; ¹H-NMR (d ₆ -DMSO) δ 1.70-1.90 (m, 4H), 2.52-
Ih-72	2.64 (m, 4H), 3.33-3.50 (m, 2H), 3.61 (t, J = 6.3 Hz, 2H), 4.73 (br s, 1H), 4.86 (s, 2H), 6.65 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.63-7.69 (m, 2H); IR (Nujol) 3610, 3439, 2925, 2854, 1724, 1710, 1591, 1493, 1476, 1341, 1238, 1166, 1153 cm ⁻¹
	mp 184-189 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.05-0.10 (m, 2H), 0.31-
Ih-73	0.37 (m, 2H), 1.70-1.91 (m, 4H), 2.52-2.60 (m, 4H), 3.45 (d, J = 6.9 Hz, 2H), 4.86 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.37-7.44 (m, 2H), 7.62-7.68 (m, 2H); IR (Nujol) 2923, 2854, 1725, 1712, 1592, 1492, 1470, 1343, 1241, 1164, 1151 cm ⁻¹ ; 元素分析 ($C_{24}H_{25}FN_2O_4S$) 計算值 (%): C, 63.14; H, 5.52; F, 4.16; N, 6.14; S, 7.02 実測値 (%): C, 63.05; H, 5.54; F, 3.95; N, 6.13; S, 6.88
	mp 139-144 °C; ¹H-NMR (d ₆ -DMSO) δ 1.70-1.88 (m, 4H), 2.49-
Ih-74	2.63 (m, 4H), 3.84 (s, 3H), 4.18 (d, 6.3 Hz, 2H), 4.84 (s, 2H), 4.98 (dd, J = 1.5, 10.2 Hz, 2H), 5.08 (dd, J = 1.5, 17.1 Hz, 1H), 5.70 (m, 1H), 6.63 (dd, J = 2.1, 8.7 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 7.06-7.11(m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.50-7.55 (m, 2H), 13.00 (br, 1H); IR (Nujol) 2753, 2651, 2570, 1719, 1597, 1578, 1496, 1477, 1464, 1444, 1417, 1377, 1341, 1308, 1252, 1179, 1155, 1092, 1060, 1022 cm ⁻¹ ; 元素分析 ($C_{24}H_{26}N_2O_5S$) 計算値 (%): C , 63.42; H , 5.77; N , 6.16; S , 7.05 実測値 (%): C , 63.26; H , 5.54; N , 6.19; S , 6.82
Ih-75	mp 134-138 °C; ¹H-NMR (d_6 -DMSO) δ 1.44 (s, 3H), 1.54 (s, 3H), 1.70-1.86 (m, 4H), 2.49-2.63 (m, 4H), 3.84 (s, 3H), 4.31 (d, 6.9 Hz, 2H), 4.85 (s, 2H), 5.04 (m, 1H), 6.64 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.06-7.11(m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.49-7.54 (m, 2H), 13.00 (br, 1H); IR (Nujol) 2742, 2655, 2558, 1721, 1596, 1580, 1496, 1476, 1465, 1441, 1413, 1388, 1376, 1364, 1338, 1306, 1256, 1242, 1213, 1177, 1155, 1112, 1094, 1080, 1036 cm ⁻¹ ; 元素分析 ($C_{26}H_{30}N_2O_5S$) 計算値 (%): C, 64.71; H, 6.27; N, 5.80; S, 6.64 実測値 (%): C, 64.68; H, 6.04; N, 5.82; S, 6.36
Ih-76	mp 193-202 °C; ¹H-NMR (d ₆ -DMSO) δ 1.72-1.88 (m, 4H), 2.49-2.64 (m, 4H), 3.16 (t, J = 2.4 Hz, 1H), 3.84 (s, 3H), 4.44 (d, 2.4 Hz, 2H), 4.86 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 7.07 (d, J = 2.1 Hz, 1H), 7.05-7.10(m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.53-7.58 (m, 2H), 13.02 (br, 1H); IR (Nujol) 3281, 3030, 2746, 2657, 2562, 1721, 1597, 1580, 1499, 1477, 1462, 1438, 1426, 1413, 1388, 1329, 1306, 1265, 1245, 1154, 1098, 1034 cm ⁻¹ ; 元素分析 ($C_{24}H_{24}N_2O_5S$) 計算値 (%): C, 63.70; H, 5.35; N, 6.19; S, 7.09 実測値 (%): C, 63.61; H, 5.36; N, 6.29; S, 6.89

(表79)

化合物	物性値
番号	170 100 00. HI NMD (4 DMCO) 8 0 00 0 00 (m 9H) 0 20
1h-77	mp 176-189 °C; ¹H-NMR (d_6 -DMSO) δ 0.02-0.08 (m, 2H), 0.30-0.36 (m, 2H), 0.77 (m, 1H), 1.70-1.88 (m, 4H), 2.49-2.64 (m, 4H), 3.41 (d, J = 6.9 Hz, 2H), 3.84 (s, 3H), 4.86 (s, 2H), 6.67 (dd, J = 2.1, 8.7 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.05-7.10 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.49-7.54 (m, 2H), 12.96 (br, 1H); IR (Nujol) 3146, 1739, 1594, 1579, 1496, 1477, 1442, 1426, 1397, 1377, 1339, 1319, 1303, 1263, 1216, 1187, 1146, 1089, 1065, 1047 cm ⁻¹ ; 元素分析 ($C_{25}H_{28}N_2O_5S$) 計算値 (%): C , 64.08; H , 6.02; N , 5.98; S , 6.84 実測値 (%): C , 63.97; H , 6.09; N , 6.05; S , 6.63
Ih-78	mp 167-177 °C; ¹H-NMR (d_6 -DMSO) δ 1.72-1.89 (m, 4H), 2.49-2.65 (m, 4H), 3.34 (t, J = 6.6 Hz, 2H), 3.56 (t, J = 6.6 Hz, 2H), 3.84 (s, 3H), 4.68 (br, 1H), 4.85 (s, 2H), 6.64 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.50-7.54 (m, 2H), 12.96 (br, 1H); IR (Nujol) 3554, 3230, 1770, 1747, 1593, 1578, 1495, 1478, 1458, 1396, 1377, 1325, 1301, 1261, 1221, 1185, 1156, 1088, 1060 cm ⁻¹ ; 元素分析 ($C_{23}H_{26}N_2O_6S$) 計算値 (%): C, 60.25; H, 5.72; N, 6.11; S, 6.99 実 測値 (%): C, 60.09; H, 5.60; N, 6.07; S, 6.87
Ih-79	mp 185-197 °C; ¹H-NMR (d_6 -DMSO) δ 0.85-1.25 (m, 6H), 1.52-1.90 (m, 9H), 2.49-2.63 (m, 4H), 3.38 (d, J = 7.2 Hz, 2H), 4.86 (s, 2H), 6.66 (dd, J = 2.1, 8.7 Hz, 1H), 6.93 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.36-7.43 (m, 2H), 7.57-7.63 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3110, 3052, 2735, 2656, 2548, 1734, 1710, 1593, 1492, 1472, 1423, 1407, 1384, 1343, 1289, 1234, 1169, 1153, 1099, 1091, 1063 cm ⁻¹ ; 元素分析 ($C_{27}H_{31}FN_2O_4S$) 計算值 (%): C, 65.04; H, 6.27; F, 3.81; N, 5.62; S, 6.43 実測値 (%): C, 64.81; H, 6.26; F, 3.69; N, 5.58; S, 6.32
Ih-80	mp 197-207 °C; ¹H-NMR (d_6 -DMSO) δ 0.84-1.20 (m, 6H), 1.52-1.88 (m, 9H), 2.49-2.63 (m, 4H), 3.34 (d, J = 6.9 Hz, 2H), 3.83 (s, 3H), 4.85 (s, 2H), 6.65 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 7.04-7.09 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.44-7.50 (m, 2H), 13.03 (br, 1H); IR (Nujol) 3159, 1740, 1580, 1499, 1475, 1445, 1387, 1376, 1365, 1349, 1321, 1306, 1265, 1198, 1161, 1142, 1091 cm ⁻¹ ; 元素分析 ($C_{28}H_{34}N_2O_5S$) 計算値 (%): C, 65.86; H, 6.71; N, 5.49; S, 6.28 実測値 (%): C, 65.79; H, 6.74; N, 5.52; S, 6.24
Ih-81	mp 177-180 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.88 (m, 4H), 2.49-2.63 (m, 4H), 3.82 (s, 3H), 4.85 (s, 2H), 5.02 (s, 2H), 6.70 (dd, J=2.1, 8.7 Hz, 1H), 7.02 (d, J=2.1 Hz, 1H), 7.26 (d, J=8.7 Hz, 1H), 7.35-7.43 (m, 2H), 7.68-7.75 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3059, 3012, 2741, 2654, 2550, 1726, 1707, 1593, 1496, 1478, 1444, 1426, 1410, 1387, 1338, 1296, 1235, 1213, 1179, 1156, 1110, 1099, 1082, 1033 cm $^{-1}$; 元素分析 ($C_{22}H_{23}FN_2O_5S$) 計算値 (%): C , 59.18; H , 5.19; F , 4.26; N , 6.27; S , 7.18 実測値 (%): C , 59.08; H , 5.29; F , 4.05; N , 6.19; S , 6.96

(表80)

化合物	
番号	物性値
Ih-82	mp 153-157 °C; ¹H-NMR (d_6 -DMSO) δ 1.70-1.88 (m, 4H), 2.49-2.63 (m, 4H), 3.31 (s, 3H), 3.83 (s, 3H), 4.84 (s, 2H), 4.99 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.03-7.08 (m, 2H), 7.25 (d, J = 8.7 Hz, 1H), 7.55-7.60 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2747, 2656, 2561, 1726, 1597, 1579, 1498, 1476, 1442, 1414, 1386, 1338, 1307, 1260, 1242, 1178, 1157, 1140, 1113, 1097, 1066, 1037 cm ⁻¹ ; 元素分析 ($C_{23}H_{26}N_2O_6S$) 計算值 (%): C , 60.25; H , 5.72; N , 6.11; S , 6.99 実測値 (%): C , 60.14; H , 5.82; N , 6.09; S , 6.97
Ih-83	mp 189-193 °C; ¹H-NMR (d_6 -DMSO) δ 1.09 (d , J = 6.3 Hz, 3H), 1.30-1.45 (m , 1H), 1.80-2.00 (m , 2H), 2.07-2.80 (m , 4H), 3.16 (s , 3H), 4.85 (s , 2H), 6.67 (dd , J = 2.1, 8.7 Hz, 1H), 7.01 (d , J = 2.1 Hz, 1H), 7.27 (d , J = 8.7 Hz, 1H), 7.39-7.62 (m , 4H), 12.91 (br , 1H); IR (Nujol) 2923, 2854, 1730, 1592, 1476, 1346, 1237, 1150 (cm -¹; 元素分析 ($C_{22}H_{23}FN_2O_4S$) 計算値 (%): C , 61.38; H , 5.39; F , 4.41; N , 6.51; S , 7.45 実測値 (%): C , 61.34; H , 5.42; F , 4.21; N , 6.62: S , 7.30
Ih-84	mp 157-161 °C; ¹H-NMR (d_6 -DMSO) δ 1.09 (d , J = 6.6 Hz, 3H), 1.30-1.45 (m , 1H), 1.80-2.00 (m , 2H), 2.10-2.80 (m , 4H), 3.12 (s , 3H), 3.84 (s , 3H), 4.85 (s , 2H), 6.67 (dd , J = 2.1, 9.0 Hz, 1H), 7.00 (d , J = 2.1 Hz, 1H), 7.07-7.27 (m , 2H), 7.45 (d , J = 9.0 Hz, 1H), 7.44-7.48 (m , 2H), 13.00 (d , 1H); IR (Nujol) 2924, 2853, 1724, 1595, 1475, 1341, 1248, 1151 cm ·¹; 元素分析 (d): d) 計算值 (%): d): d 0; d 1, 5.92; d 2, d 3, 7.25 実測値 (%): d 3, 7.19
li-1	1 H-NMR (CDCl ₃) δ 5.17 (s, 2H), 7.07-7.45 (m, 7H), 7.58 (t, J = 2.1 Hz, 1H), 7.70 (m, 1H), 7.81-7.91 (m, 3H); IR (KBr) 3249, 1730, 1610, 1591, 1495, 1495, 1475, 1390, 1324, 1235, 1168, 1153, 1090, 1011 cm ⁻¹ ;元素分析(C ₂₁ H ₁₆ FN ₃ O ₄ S·MeOH)計算值(%): C, 57.76; H, 4.41; N, 9.19; F, 4.15; S, 7.01 実測値(%): C, 57.72; H, 4.07; N, 8.80; F, 4.10, S, 7.06
li−2	¹ H-NMR (CDCl ₃ +CD ₃ OD) & 4.87 (s, 2H), 6.99 (m, 1H), 7.08-7.42 (m, 9H), 7.73 (d, J = 7.8 Hz, 1H), 7.82 (m, 2H); IR (KBr) 3254, 1726, 1607, 1590, 1550, 1494, 1468, 1406, 1378, 1335, 1293, 1238, 1166, 1153, 1089 cm ⁻¹ ;元素分析 (C ₂₂ H ₁₇ FN ₂ O ₄ S·0.8MeOH) 計算値 (%): C, 60.84; H, 4.52; N, 6.22; F, 4.22; S, 7.12 実測値 (%): C, 60.52; H, 4.13; N, 6.19; F, 3.85; S, 6.99
li−3	¹ H-NMR (CD ₃ OD) δ 3.33 (s, 3H), 5.08 (s, 2H), 7.02 (m, 1H), 7.17-7.51 (m, 8H), 7.64-7.76 (m, 4H); IR (CHCl ₃) 3066, 2928, 1727, 1591, 1550, 1493, 1469, 1380, 1349, 1293, 1234, 1175, 1151, 1087 cm ⁻¹ .
lj−1	1 H-NMR (CDCl ₃) δ 1.55-2.30 (m, 6H), 3.34 (m, 1H), 3.82 (m, 1H), 4.77 (br, 1H), 4.82 (s, 2H), 6.75-7.25 (m, 6H), 7.45-7.91 (m, 3H); IR (KBr) 3275, 2955, 1731, 1592, 1494, 1469, 1328, 1292, 1237, 1152, 1092, 1014 cm ⁻¹ ;元素分析(C ₂₁ H ₂₁ FN ₂ O ₄ S·1.1H ₂ O)計算值(%): C, 57.57; H, 5.38; N, 6.39; F, 4.34; S, 7.32 実測值(%): C, 57.73; H, 5.08; N, 6.11; F, 4.04, S, 6.87

(表81)

化合物 番号	物性値
日 Hj−2	¹ H-NMR (CDCl ₃) δ 1.59-2.18 (m, 6H), 2.70 (s, 3H), 3.25 (m, 1H), 4.56 (m, 1H), 4.83 (s, 2H), 6.80 (s, 1H), 7.07-7.22 (m, 6H), 7.51 (m, 1H), 7.75-7.87 (m, 2H); IR (KBr) 2952, 1729, 1591, 1493, 1469, 1335, 1292, 1233, 1152, 1087, 1013 cm ⁻¹ .
lj−3	¹ H-NMR (CDCl ₃) δ 1.43-2.18 (s, 6H), 3.17 (s, 1H), 4.26-4.82 (m, 5H), 6.59-7.44 (m, 12H), 7.75-7.87 (m, 2H); IR (KBr) 3433, 2951, 1731, 1591, 1494, 1469, 1337, 1292, 1235, 1152, 1092 cm ⁻¹ .
lk−1	mp $165-179$ °C; ¹H-NMR (d ₆ -DMSO) δ 2.09 (s, 3H), 2.23 (s, 3H), 3.17 (d, J = 0.6 Hz, 3H), 4.90 (s, 2H), 6.68 (dd, J = 2.1, 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.39-7.44 (m, 2H), 7.57-7.62 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3211, 1766, 1739, 1590, 1492, 1481, 1461, 1418, 1377, 1326, 1291, 1264, 1238, 1177, 1137, 1095, 1082, 1063 cm ⁻¹ ; 元素分析 ($C_{19}H_{19}FN_2O_4S$) 計算值 (%): C , 58.45 ; H , 4.91 ; F , 4.87 ; N , 7.18 ; S , 8.21 実測值 (%): C , 58.46 ; H , 4.76 ; F , 4.57 ; N , 7.12 ; S , 8.18
lk−2	mp 206-208 °C(dec); ¹H-NMR (d ₆ -DMSO) δ 2.31 (s, 3H), 3.16 (s, 3H), 4.93 (s, 2H), 6.72 (dd, J = 2.1, 8.4 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.38-7.44 (m, 2H), 7.55-7.60 (m, 2H); IR (Nujol) 3105, 3055, 2657, 2566, 1721, 1591, 1556, 1494, 1480, 1453, 1399, 1349, 1338, 1294, 1241, 1230, 1167, 1151, 1089, 1065 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₄ S) 計算値 (%): C, 57.44; H, 4.55; F, 5.05; N, 7.44; S, 8.52 実測値 (%): C, 57.50; H, 4.44; F, 4.99; N, 7.39; S, 8.47
lk-3	mp 172-178 °C; ¹H-NMR (d_6 -DMSO) δ 1.02 (t, J = 7.5 Hz, 3H), 2.20 (s, 3H), 2.53 (q, J = 7.5 Hz, 2H), 4.83 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.30-7.38 (m, 2H), 7.67-7.74 (m, 2H), 9.77 (s, 1H), 12.98 (br, 1H); IR (Nujol) 3254, 1726, 1589, 1487, 1410, 1377, 1333, 1289, 1246, 1233, 1167, 1088 cm ⁻¹ ; 元素分析 ($C_{19}H_{19}FN_2O_4S$) 計算值 (%): $C_{7}S_{8}S_{1}S_{1}S_{1}S_{1}S_{1}S_{1}S_{1}S_{1$
lk-4	mp 165-171 °C; ¹H-NMR (d_6 -DMSO) δ 1.19 (d , J = 6.9 Hz, 6H), 2.20 (s , 3H), 3.05 ($septet$, J = 6.9 Hz, 1H), 4.80 (s , 2H), 6.75 (dd , J = 1.8, 8.4 Hz, 1H), 7.01 (d , J = 1.8 Hz, 1H), 7.28 (d , J = 8.4 Hz, 1H), 7.31-7.39 (m , 2H), 7.67-7.73 (m , 2H), 9.72 (s , 1H), 13.00 (br , 1H); IR (Nujol) 3250, 3124, 1741, 1591, 1483, 1377, 1318, 1293, 1200, 1146, 1088 cm ⁻¹ ; 元素分析 ($C_{20}H_{21}FN_2O_4S$) 計算値 (%): C , 59.39; H, 5.23; F, 4.70; N, 6.93; S, 7.93 実測値 (%): C , 59.28; H, 5.19; F, 4.58; N, 6.93; S, 7.86
lk-5	mp 161-167 °C; ¹H-NMR (d_6 -DMSO) δ 1.02 (t, J = 7.5 Hz, 3H), 2.23 (s, 3H), 2.55 (q, J = 7.5 Hz, 2H), 3.18 (s, 3H), 4.91 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.38-7.45 (m, 2H), 7.55-7.62 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3185, 1766, 1478, 1328, 1180, 1143, 1087 cm ⁻¹ ; 元素分析 ($C_{20}H_{21}FN_2O_4S$) 計算值 (%): C , 59.39; H , 5.23; F , 4.70; N , 6.93; S , 7.93 実測値 (%): C , 59.33; S , 7.82

(表82)

化合物 番号	物性值
Ik-6	Mp 210-217 °C; ¹H-NMR (d ₆ -DMSO) δ 1.18 (d, J = 7.2 Hz, 6H), 2.24 (s, 3H), 3.07 (septet, J = 7.2 Hz, 1H), 3.19 (s, 3H), 4.89 (s, 2H), 6.77 (dd, J = 2.1, 9.0 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 9.0 Hz, 1H), 7.36-7.44 (m, 2H), 7.56-7.62 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3241, 1771, 1750, 1587, 1482, 1324, 1178, 1086 cm ⁻¹ ; 元素分析 ($C_{21}H_{23}FN_2O_4S$) 計算値 (%): C , 60.27; C ,
lk-7	Mp 121-124 °C; ¹H-NMR (d ₆ -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.43-1.55 (m, 2H), 2.10 (s, 3H), 2.64 (t, J = 7.5 Hz, 2H), 3.18 (s, 3H), 4.89 (s, 2H), 6.69 (dd, J = 2.1, 8.7 Hz, 1H), 7.05 (d, J = 2.1 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.40-7.47 (m, 2H), 7.60-7.66 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3232, 1766, 1747, 1480, 1327, 1183, 1143, 1088 cm ⁻¹ ; 元素分析 ($C_{21}H_{23}FN_2O_4S$) 計算值 (%): C , 60.27; C ,
lk−8	Mp 175-177 °C; ¹H-NMR (d ₆ -DMSO) δ 1.16 (t, J = 7.2 Hz, 3H), 2.58 (q, J = 7.2 Hz, 2H), 3.18 (s, 3H), 4.92 (s, 2H), 6.80 (dd, J = 2.1, 9.0 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.14 (s, 1H), 7.29 (d, J = 9.0 Hz, 1H), 7.39-7.45 (m, 2H), 7.57-7.63 (m, 2H), 12.95 (br, 1H); IR (Nujol) 2655, 1730, 1711, 1591, 1481, 1389, 1345, 1251, 1177, 1156 cm ⁻¹ ; 元素分析 ($C_{19}H_{19}FN_2O_4S$) 計算値 (%): C_{7} 58.45; C_{7} $C_$
Ik-9	Mp 225-240 °C; ¹H-NMR (d_6 -DMSO) δ 0.79 (t, J = 7.2 Hz, 3H), 1.34-1.46 (m, 2H), 2.18 (s, 3H), 2.48 (t, J = 7.2 Hz, 2H), 4.74 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.29-7.37 (m, 2H), 7.66-7.72 (m, 2H), 9.73 (brs, 1H); IR (Nujol) 3265, 1754, 1712, 1590, 1484, 1462, 1377, 1332, 1290, 1236, 1200, 1158, 1087 cm ⁻¹ ; 元素分析 ($C_{20}H_{21}FN_2O_4S\cdot 0.2H_2O$) 計算值 (%): C , 58.87; H , 5.29; F , 4.66; N , 6.87; S , 7.86 実測値 (%): C , 58.75; S , 7.86 実測値 (%): S , 7.82
Ik-10	Mp 160-174 °C; ¹H-NMR (d ₆ -DMSO) δ 0.81 (t, J = 7.2 Hz, 3H), 1.34-1.46 (m, 2H), 2.23 (s, 3H), 2.50 (t, J = 7.2 Hz, 2H), 3.19 (s, 3H), 4.91 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.90 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.36-7.43 (m, 2H), 7.55-7.60 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3243, 1767, 1587, 1482, 1325, 1178, 1140, 1085 cm ⁻¹ ; 元素分析 ($C_{21}H_{23}FN_2O_4S$) 計算値 (%): C , 60.27; H , 5.54; F , 4.54; N , 6.69; S , 7.66 実測値 (%): C , 60.22; H , 5.57; F , 4.32; N , 6.62; S , 7.59

(表83)

化合物 番号	物性値
	Mp 165-173 °C; ¹H-NMR (d ₆ -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.05 (t, J = 7.5 Hz, 3H), 1.39-1.49 (m, 2H), 2.53-2.62 (m, 4H), 4.81 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 7.32-7.36 (m, 2H), 7.70-7.75 (m, 2H), 9.79 (s, 1H); IR (Nujol) 3270, 2666, 1709, 1594, 1494, 1479, 1466, 1427, 1408, 1379, 1361, 1329, 1290, 1239, 1195, 1163, 1091 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₈ FN ₂ O ₄ S) 計算値 (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 実測値 (%): C, 60.10; H, 5.49; F, 4.43; N, 6.63; S, 7.63
lk-12	mp 182-190 °C; ¹H-NMR (d_6 -DMSO) δ 0.91 (t, J = 7.5 Hz, 3H), 1.09 (t, J = 7.5 Hz, 3H), 1.40-1.53 (m, 2H), 2.53-2.63 (m, 4H), 4.83 (s, 2H), 6.79 (dd, J = 2.1, 8.7 Hz, 1H), 7.05-7.08 (m, 1H), 7.12 (d, J = 2.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.39-7.41 (m, 1H), 7.82-7.84 (m, 1H), 9.90 (s, 1H); IR (Nujol) 3249, 3103, 3081, 2660, 1708, 1480, 1468, 1429, 1404, 1378, 1362, 1334, 1235, 1198, 1158, 1091, 1017 cm ⁻¹ ; 元素分析 ($C_{19}H_{22}N_2O_4S_2$) 計算值 (%): C , 56.14; H , 5.45; N , 6.89; S , 15.78 実測値 (%): C , 56.05; H , 5.45: N , 6.74; S , 15.56
lk-13	mp 134-137 °C; ¹H-NMR (d_6 -DMSO) δ 0.91 (t, J = 7.5 Hz, 3H), 1.04 (t, J = 7.5 Hz, 3H), 1.41-1.54 (m, 2H), 2.54-2.65 (m, 4H), 3.18 (s, 3H), 4.88 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.38-7.44 (m, 2H), 7.57-7.63 (m, 2H), 13.09 (br, 1H); IR (Nujol) 3063, 2659, 2558, 2464, 1706, 1592, 1493, 1476, 1430, 1418, 1378, 1343, 1322, 1291, 1234, 1194, 1168, 1149, 1085, 1064 cm ⁻¹ ; 元素分析 ($C_{22}H_{25}FN_2O_4S$) 計算值 (%): C, 61.09; H, 5.83; F, 4.39; N, 6.48; S, 7.41 実測值 (%): C, 61.05; H, 5.79; F, 4.25; N, 6.40; S, 7.45
lk-14	mp 130-132 °C; ¹H-NMR (d ₆ -DMSO) δ 0.92 (t, J = 7.5 Hz, 3H), 1.07 (t, J = 7.5 Hz, 3H), 1.42-1.54 (m, 2H), 2.54-2.66 (m, 4H), 3.21 (s, 3H), 4.89 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H), 7.22 (d, J = 2.1 Hz, 1H), 7.22-7.25 (m, 2H), 7.47 (dd, J = 1.2, 3.6 Hz, 1H), 8.00 (dd, J = 1.2, 5.1 Hz, 1H), 12.99 (br, 1H); IR (Nujol) 3102, 3075, 2654, 2554, 1723, 1477, 1422, 1405, 1379, 1350, 1236, 1227, 1194, 1149, 1085, 1061, 1015 cm ¹; 元素 分析 ($C_{20}H_{24}N_2O_4S_2$) 計算値 (%): C , 57.12; H , 5.75; N , 6.66; S , 15.25 実測値 (%): C , 56.90; H , 5.74; N , 6.60; S , 15.17
1k−15	mp 235-250 °C; ¹H-NMR (d ₆ -DMSO) δ 0.80 (t, J = 7.2 Hz, 3H), 1.34-1.47 (m, 2H), 2.18 (s, 3H), 2.48 (t, J = 7.2 Hz, 2H), 3.75 (s, 3H), 4.69 (s, 2H), 6.72 (dd, J = 2.1, 8.7 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.96-7.01 (m, 2H), 7.11 (d, J = 8.7 Hz, 1H), 7.52-7.57 (m, 2H), 9.52 (brs, 1H); IR (Nujol) 3254, 1744, 1596, 1485, 1460, 1375, 1260, 1170, 1092, 1028 cm ⁻¹ ; 元素分析 ($C_{21}H_{24}N_2O_5S\cdot0.4H_2O$) 計算値 (%): C , 59.53; H , 5.90; N , 6.61; S , 7.57 実測値 (%): C , 59.61; H , 5.69; N , 6.61; S , 7.57

(表84)

化合物 番号	物性値
据与 lk−16	mp 152-162 °C; ¹H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.2 Hz, 3H), 1.34-1.46 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 3.14 (s, 3H), 3.83 (s, 3H), 4.91 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 7.04-7.09 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.42-7.47 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3222, 1765, 1741, 1593, 1482, 1379, 1327, 1306, 1265, 1177, 1142, 1088, 1017 cm ⁻¹ ; 元素分析 ($C_{22}H_{26}N_2O_5S$) 計算値 (%): C , 61.38; H , 6.09; N , 6.51; S , 7.45 実測値 (%): C , 61.26; H , 6.12; N , 6.52; S , 7.51
lk−17	mp 173-183 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.05 (t, J = 7.5 Hz, 3H), 1.38-1.51 (m, 2H), 2.53-2.61 (m, 4H), 3.76 (s, 3H), 4.80 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 6.99-7.02 (m, 2H), 7.04 (d, J = 1.8 Hz, 1H), 7.11 (d, J = 8.7 Hz, 1H), 7.59-7.62 (m, 2H), 9.61 (s, 1H); IR (Nujol) 3241, 3170, 3013, 1759, 1732, 1597, 1577, 1498, 1478, 1466, 1383, 1355, 1321, 1263, 1190, 1146, 1090, 1028 cm ⁻¹ ; 元素分析 ($C_{22}H_{26}N_2O_5S$) 計算值 (%): C , 61.38; C , C , 61.38; C , 6.9; C , 6.51; C , 7.45 実測値 (%): C , 61.05; C , 61.05; C , 6.51; C , 7.32
lk-18	mp 114-116 °C; ¹H-NMR (d_6 -DMSO) δ 0.92 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H), 1.41-1.54 (m, 2H), 2.54-2.65 (m, 4H), 3.14 (s, 3H), 3.83 (s, 3H), 4.88 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1 Hz, 1H), 7.07-7.09 (m, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.45-7.48 (m, 2H); IR (Nujol) 3314, 3100, 3067, 1767, 1742, 1596, 1579, 1497, 1480, 1465, 1377, 1342, 1318, 1302, 1263, 1168, 1138, 1088, 1060 cm ⁻¹ ; 元素分析 ($C_{21}H_{20}F_2N_2O_4S\cdot 0.2AcOEt$) 計算値 (%): C , 61.85; H , 6.46; N , 6.06; S , 6.94 実測値 (%): C , 61.66; H , 6.47; N , 6.08; S , 6.88
lk-19	mp 162-169 °C; ¹H-NMR (d_6 -DMSO) δ 2.29 (s, 3H), 3.13 (s, 3H), 3.91 (s, 2H), 4.95 (s, 2H), 6.78 (dd, J = 2.1, 8.7 Hz, 1H), 6.94 (d, J = 2.1Hz, 1H), 7.06-7.36 (m, 8H), 7.49-7.56 (m, 2H), 13.02 (br, 1H); IR (Nujol) 3149, 1739, 1590, 1476, 1415, 1376, 1346, 1165, 1151 cm ⁻¹ ; 元素分析 ($C_{25}H_{28}FN_2O_4S$) 計算值 (%): C, 64.36; H, 4.97; F, 4.07; N, 6.00; S, 6.87 実測値 (%): C, 64.31; H, 4.88; F, 3.95; N, 5.97; S, 6.73
lk-20	mp 192-197 °C; ¹H-NMR (d_6 -DMSO) δ 2.29 (s, 3H), 3.08 (s, 3H), 3.83 (s, 3H), 3.92 (s, 2H), 4.94 (s, 2H), 6.75 (dd, J = 2.1, 8.7 Hz, 1H), 6.96-7.24 (m, 8H), 7.29 (d, J = 8.7 Hz, 1H), 7.40-7.44 (m, 2H), 13.02 (br, 1H); IR (Nujol) 1703, 1598, 1496, 1479, 1338, 1256, 1146, 1090, 1027 cm ¹; 元素分析 ($C_{26}H_{26}N_2O_5S$) 計算值 (%): C, 65.25; H, 5.48; N, 5.85; S, 6.70 実測値 (%): C, 64.95; H, 5.49; N, 5.70; S, 6.35

(表85)

(AX O	
化合物 番号	物性値
Ik-21	mp 140-147 °C; ¹H-NMR (d_6 -DMSO) δ 0.80 (d , J = 6.6 Hz, 6H), 1.60 (septet, J = 6.6 Hz, 1H), 2.22 (s , 3H), 2.38 (d , J = 6.6 Hz, 2H), 3.19 (s , 3H), 4.92 (s , 2H), 6.78 (d d, J = 2.1, 8.7 Hz, 1H), 6.85 (d , J = 2.1 Hz, 1H), 7.28 (d , J = 8.7 1H), 7.35-7.43 (m , 2H), 7.55-7.62 (m , 2H), 12.98 (d , 1H); IR (Nujol) 3253, 1766, 1587, 1481, 1324, 1177, 1139, 1085 cm ⁻¹ ; 元素分析 (d 0, d 0, d 0, d 0, d 0, d 1, d 2, d 3, d 3, d 3, d 4, d 5, d 5, d 6, d 7, d 7, d 8, d 8, d 9, d
lk-22	mp 137-142 °C; ¹H-NMR (d_6 -DMSO) δ 0.85 (t, J = 7.2 Hz, 3H), 1.14-1.40 (m, 4H), 2.19 (s, 3H), 2.50 (t-like, 2H), 4.84 (s, 2H), 6.76 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.30-7.36 (m, 2H), 7.67-7.72 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3255, 3106, 3041, 2652, 2550, 1714, 1592, 1484, 1466, 1407, 1378, 1351, 1332, 1290, 1233, 1199, 1169, 1159, 1091 cm ¹; 元素分析 ($C_{21}H_{23}FN_2O_4S$) 計算値 (%): C , 60.27; H , 5.54; F , 4.54; N , 6.69; S , 7.66 実測値 (%): C , 60.22; H , 5.52; F , 4.39; N , 6.78: S , 7.56
Ik-23	mp 130-140 °C; ¹H-NMR (d_6 -DMSO) δ 0.86 (t, J = 6.9 Hz, 3H), 1.15-1.42 (m, 4H), 2.18 (s, 3H), 2.50 (t-like, 2H), 3.76 (s, 3H), 4.82 (s, 2H), 6.75 (dd, J = 2.1, 9.0 Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 6.97-7.02 (m, 2H), 7.16 (d, J = 9.0 Hz, 1H), 7.56-7.61 (m, 2H), 9.57 (s, 1H), 12.95 (br, 1H); IR (Nujol) 3248, 3076, 2651, 2553, 1714, 1598, 1578, 1499, 1484, 1465, 1410, 1379, 1328, 1301, 1261, 1232, 1181, 1157, 1093, 1029 cm ¹; 元素分析 ($C_{22}H_{26}N_2O_5S$) 計算値 (%): C, 61.38; H, 6.09; N, 6.51; S, 7.45 実測値 (%): C, 61.21; H, 6.04; N, 6.48; S, 7.27
Ik-24	mp 125-129 °C; ¹H-NMR (d_6 -DMSO) δ 0.86 (t, J = 6.9 Hz, 3H), 1.17-1.40 (m, 4H), 2.22 (s, 3H), 2.50 (t-like, 2H), 3.19 (s, 3H), 4.90 (s, 2H), 6.78 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.36-7.43 (m, 2H), 7.55-7.61 (m, 2H), 13.03 (br, 1H); IR (Nujol) 3253, 3121, 3091, 3074, 1768, 1591, 1479, 1416, 1377, 1327, 1292, 1229, 1186, 1166, 1137, 1099, 1087, 1072, 1055 cm ⁻¹ ; 元素分析 ($C_{22}H_{25}FN_2O_4S$) 計算值 (%): C , 61.09; C , 61.09; C , 63.10; C , 61.09; C , 63.10; C , 63.10; C , 63.10; C , 64.31; C , 64.6; C , 7.39
Ik−25	mp $140-145$ °C; ¹H-NMR (d ₆ -DMSO) δ 0.86 (t, J = 7.2 Hz, 3H), 1.18-1.41 (m, 4H), 2.22 (s, 3H), 2.50 (t-like, 2H), 3.14 (s, 3H), 3.83 (s, 3H), 4.90 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 7.04-7.09 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.42-7.47 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3241, 3090, 3066, 3016, 1764, 1737, 1702, 1593, 1576, 1495, 1481, 1467, 1457, 1415, 1378, 1328, 1305, 1264, 1172, 1141, 1087, 1017 cm ⁻¹ ; 元素分析 ($C_{28}H_{28}N_2O_5S$) 計算値 (%): C , 62.14; C , C , 63.0; C , 7.21 実測値 (%): C , 62.04;

(表86)

(30,0			
化合物	物性値		
番号	100 147 CC 1H NMD (4 DMCO) 8 0 79 (4 T = 6 6 Hz 6H)		
lk-26	mp 139-147 °C; ¹H-NMR (d ₆ -DMSO) δ 0.79 (d, J = 6.6 Hz, 6H), 1.63 (m, 1H), 2.18 (s, 3H), 2.37 (d, J = 6.6 Hz, 2H), 3.76 (s, 3H), 4.84 (s, 2H), 6.75 (dd, J = 1.8, 8.7 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 6.96-7.01 (m, 2H), 7.16 (d, J = 8.7 Hz, 1H), 7.55-7.60 (m, 2H), 9.54 (s, 1H), 12.90 (br, 1H); IR (Nujol) 3325, 3254, 3098, 3077, 1748, 1595, 1578, 1484, 1464, 1436, 1418, 1378, 1333, 1317, 1304, 1291, 1260, 1203, 1166, 1141, 1112, 1091 cm ⁻¹ ; 元素分析 ($C_{22}H_{26}N_2O_5S$) 計算値 (%): C, 61.38; H, 6.09; N, 6.51; S, 7.45 実測値 (%): C, 61.13; H, 6.13; N, 6.55; S, 7.24		
	mp 148-160 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.80 (d, J = 6.6 Hz, 6H),		
Ik-27	1.61 (m, 1H), 2.22 (s, 3H), 2.37 (d, J = 6.6 Hz, 2H), 3.15 (s, 3H), 3.83 (s, 3H), 4.91 (s, 2H), 6.77 (dd, J = 2.1, 8.4 Hz, 1H), 6.84 (d, J = 2.1 Hz, 1H), 7.03-7.08 (m, 2H), 7.26 (d, J = 8.4 Hz, 1H), 7.42-7.47 (m, 2H), 12.96 (br, 1H); IR (Nujol) 3252, 3097, 3077, 3058, 3025, 1750, 1724, 1595, 1577, 1482, 1465, 1415, 1373, 1320, 1305, 1270, 1212, 1188, 1163, 1144, 1091, 1053, cm ⁻¹ ; 元素分析 ($C_{28}H_{28}N_2O_5S$) 計算値 (%): C, 62.14; H, 6.35; N, 6.30; S, 7.21 実測値 (%): C, 62.16; H, 6.39; N, 6.32; S, 7.22		
lk-28	mp 150-175 °C; ¹H-NMR (d_6 -DMSO) δ 0.82 (t, J = 7.5 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.48 (t, J = 7.5 Hz, 2H), 3.58 (q, J = 7.2 Hz, 2H), 3.83 (s, 3H), 4.91 (s, 2H), 6.71 (dd, J = 1.8, 8.7 Hz, 1H), 6.83 (d, J = 1.8 Hz, 1H), 7.04-7.09 (m, 2H), 7.27 (d, J = 8.7 Hz, 1H), 7.48-7.53 (m, 2H), 12.97 (br, 1H); IR (Nujol) 3178, 1762, 1742, 1728, 1594, 1577, 1476, 1379, 1328, 1306, 1261, 1181, 1139 cm ⁻¹ ; 元素分析 ($C_{28}H_{28}N_2O_5S$) 計算值 (%): C, 62.14; H, 6.35; N, 6.30; S, 7.21 実測値 (%): C, 61.87; H, 6.31; N, 6.33; S, 6.94		
lk−29	mp 153-165 °C; ¹H-NMR (d_6 -DMSO) δ 0.83 (t, J = 7.5 Hz, 3H), 1.36-1.48 (m, 2H), 2.23 (s, 3H), 2.50 (t, J = 7.5 Hz, 2H), 3.12 (s, 3H), 4.89 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 6.83-6.88 (m, 2H), 6.91 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.31-7.36 (m, 2H), 10.48 (br, 1H), 13.03 (br, 1H); IR (Nujol) 3177, 1719, 1586, 1479, 1442, 1377, 1335, 1241, 1222, 1152 cm ¹; 元素分析 ($C_{21}H_{24}N_2O_5S$) 計算値 (%): C, 60.56; H, 5.81; N, 6.73; S, 7.70 実測値 (%): C, 60.38; H, 5.94; N, 6.52; S, 7.32		
lk-30	mp 202-210 °C; ¹H-NMR (d ₆ -DMSO) 8 2.27 (s, 3H), 3.89 (s, 2H), 4.88 (s, 2H), 6.75 (dd, J = 2.1, 8.4 Hz, 1H), 7.01 (d, J = 2.1Hz, 1H), 7.07-7.33 (m, 8H), 7.62-7.68 (m, 2H), 7.97 (s, 1H), 12.98 (br, 2H), 7.97 (s, 2H), 22.21 (s, 3H), 3.89 (s, 2H), 4.81 (s, 2H), 7.97 (s, 2H), 12.98 (br, 2H), 7.97 (s, 2H), 12.98 (br, 2H), 7.97 (s, 2H), 22.21 (s, 3H), 3.89 (s, 2H), 4.81 (s, 2H), 7.97 (s, 2H), 4.81 (s, 2H), 4.8		

(表87)

(32 0	. ,
化合物 番号	物性值
lk-31	mp 130-155 °C; ¹H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.5 Hz, 3H), 1.33-1.45 (m, 5H), 2.23 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 3.14 (s, 3H), 4.10 (q, J = 7.2 Hz, 2H), 4.90 (s, 2H), 6.76 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 7.02-7.07 (m, 2H), 7.26 (d, J = 8.7 Hz, 1H), 7.40-7.45 (m, 2H), 12.93 (br, 1H); IR (Nujol) 3247, 1739, 1594, 1480, 1415, 1377, 1304, 1256, 1153 cm ⁻¹ .
lk-32	mp 90-96 °C; ¹H-NMR (d ₆ -DMSO) δ 0.81 (t, J = 7.5 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.48 (t, J = 7.5 Hz, 2H), 3.19 (t, J = 2.4 Hz, 1H), 3.83 (s, 3H), 4.46 (q, J = 2.4 Hz, 2H), 4.90 (s, 2H), 6.82 (dd, J = 2.1, 8.4 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.04-7.09 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 7.53-7.58 (m, 2H), 13.03 (br, 1H); IR (Nujol) 3588, 3310, 2642, 1733, 1707, 1687, 1599, 1580, 1499, 1479, 1465, 1414, 1379, 1345, 1257, 1159, 1029 cm ⁻¹ ; 元素分析 ($C_{24}H_{26}N_2O_5S\cdot0.8H_2O$) 計算値 (%): C , 61.47; H , 5.93; N , 5.97; S , 6.84 実測値 (%): C , 61.56; H , 5.69; N , 5.87; S , 6.58
lk-33	mp 144-157 °C; ¹H-NMR (d_6 -DMSO) δ 2.29 (s, 3H), 3.10 (t, J = 2.1 Hz, 1H), 3.82 (s, 2H), 3.89 (s, 2H), 4.41 (d, J = 2.1 Hz, 2H), 4.94 (s, 2H), 6.82 (dd, J = 2.1, 8.7 Hz, 1H), 7.00-7.24 (m, 8H), 7.31 (d, J = 8.7 Hz, 1H), 7.52-7.55 (m, 2H), 13.06 (br, 1H); IR (Nujol) 3291, 2644, 1933, 1716, 1598, 1579, 1498, 1475, 1346, 1335, 1262, 1240, 1158, 1095 cm ¹; 元素分析 ($C_{28}H_{26}N_2O_5S$) 計算値 (%): C, 66.91; H, 5.21; N, 5.57; S, 6.38 実測値 (%): C, 66.65; H, 5.26; N, 5.56; S, 6.14
lk-34	mp 123-130 °C; ¹H-NMR (d_6 -DMSO) δ 0.80 (d , J = 6.9 Hz, 6H), 1.59 (septet, J = 6.9 Hz, 1H), 2.22 (s , 3H), 2.37 (d , J = 6.9 Hz, 2H), 3.22 (t , J = 2.4 Hz, 1H), 4.52 (d , J = 2.4 Hz, 2H), 4.92 (s , 2H), 6.84 (dd , J = 1.8, 8.7 Hz, 1H), 6.96 (d , J = 1.8 Hz, 1H), 7.30 (d , J = 8.7 1H), 7.35-7.42 (d , 2H), 7.67-7.72 (d , 2H), 13.03 (d , 1H); IR (Nujol) 3307, 2654, 1732, 1592, 1493, 1475, 1379, 1350, 1246, 1168, 1096 cm ⁻¹ ; 元素分析 (d ₂₄ H ₂₅ FN ₂ O ₄ S) 計算値 (%): d ₃ C, 63.14; H, 5.52; F, 4.16; N, 6.14; S, 7.02 実測値 (%): d ₃ C, 62.99; H, 5.36; F, 4.25; N, 6.13; S, 7.44
lk-35	mp 157-160 °C; ¹H-NMR (d_6 -DMSO) δ 2.21 (s, 3H), 3.18 (s, 3H), 3.70 (s, 3H), 4.90 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H), 7.33 (d, J = 8.7 1H), 7.38-7.55 (m, 2H), 7.56-7.62 (m, 2H), 13.05 (br, 1H); IR (Nujol) 1741, 1592, 1485, 1469, 1385, 1343, 1298, 1292, 1267, 1240, 1204, 1171, 1090, 1059 cm ¹; 元素 分析 ($C_{19}H_{19}FN_2O_5S$) 計算值 (%): C , 56.15; H , 4.71; F , 4.67; N , 6.89; S , 7.89 実測値 (%): C , 56.28; H , 4.62; F , 4.37; N , 6.90; S , 7.70

(表88)

化合物	物性値
番号	
Ik-36	mp 170-180 °C; ¹H-NMR (d_6 -DMSO) δ 2.21 (s, 3H), 3.14 (s, 3H), 3.69 (s, 3H), 3.83 (s, 3H), 4.90 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.06-7.11 (m, 2H), 7.32 (d, J = 8.7 Hz, 1H), 7.43-7.48 (m, 2H), 13.03 (br, 1H); IR (Nujol) 1726, 1597, 1498, 1479, 1415, 1383, 1338, 1305, 1266, 1254, 1150, 1091, 1026, 1011 cm ⁻¹ ; 元素分析 ($C_{20}H_{22}N_2O_6S$) 計算値 (%): C , 57.40; H , 5.30; N , 6.69; S , 7.66 実測値 (%): C , 56.78; C , 53; C , 6.64; C , 7.30
Ik-37	mp 142-152 °C; ¹H-NMR (d_6 -DMSO) δ 1.04 (t, J = 7.2 Hz, 3H), 2.63 (s, 3H), 2.72 (q, J = 7.2 Hz, 2H), 3.17 (s, 3H), 3.84 (s, 3H), 5.11 (s, 2H), 6.93 (dd, J = 2.1, 8.7 Hz, 1H), 7.08-7.13 (m, 2H), 7.46-7.51 (m, 4H), 13.30 (br, 1H); IR (Nujol) 3544, 3355, 1734, 1693, 1598, 1577, 1513, 1498, 1477, 1459, 1412, 1378, 1341, 1262, 1208, 1161, 1149, 1107, 1092, 1066, 1034 cm ¹; 元素分析 ($C_{22}H_{24}N_2O_6S\cdot 0.4H_2O$) 計算值 (%): C, 58.50; H, 5.53; N, 6.20; S, 7.10 実測值 (%): C, 58.43; H, 5.67; N, 6.23; S, 6.88
lk-38	mp 105-115 °C; ¹H-NMR (d_6 -DMSO) δ 0.97 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H), 2.63 (s, 3H), 2.69 (q, J = 7.2 Hz, 2H), 3.61 (q, J = 7.2 Hz, 2H), 3.84 (s, 3H), 5.12 (s, 2H), 6.89 (dd, J = 1.8, 8.7 Hz, 1H), 7.08-7.13 (m, 2H), 7.41 (d, J = 1.8 Hz, 1H), 7.49-7.57 (m, 3H), 13.32 (br, 1H); IR (Nujol) 3313, 1729, 1631, 1596, 1576, 1509, 1496, 1479, 1461, 1446, 1412, 1378, 1337, 1260, 1221, 1188, 1147, 1107, 1092, 1065, 1028 cm ⁻¹ ; 元素分析 ($C_{28}H_{26}N_2O_6S\cdot 0.5H_2O$) 計算値 (%): C , 59.09; H , 5.82; N , 5.99; S , 6.86 実測値 (%): C , 59.18; H , 5.72; N , 6.11; S , 6.99
lk-39	mp 169-176 °C; ¹H-NMR (d_6 -DMSO) δ 0.81 (t, J = 7.5 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 3.18 (s, 3H), 4.90 (s, 2H), 6.73 (dd, J = 2.1, 8.7 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.51-7.59 (m, 4H), 7.70 (m, 1H), 13.00 (br, 1H); IR (Nujol) 3060, 2756, 2658, 2564, 1729, 1708, 1584, 1480, 1447, 1415, 1380, 1335, 1307, 1246, 1170, 1146, 1085, 1069, 1053 cm ⁻¹ ; 元素分析 ($C_{21}H_{24}N_2O_4S$) 計算値 (%): C , 62.98; C , 6.94; C , C , 8.99; C , 8.01 実測値 (%): C , 62.88; C , 7.95
Ik-40	mp 130-136 °C; ¹H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.39 (s, 3H), 2.50 (t, J = 7.2 Hz, 2H), 3.18 (s, 3H), 4.90 (s, 2H), 6.74 (dd, J = 2.1, 8.7 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.34-7.42 (m, 4H), 13.00 (br, 1H); IR (Nujol) 3284, 3048, 1750, 1722, 1597, 1580, 1481, 1456, 1416, 1375, 1338, 1321, 1308, 1290, 1205, 1193, 1166, 1146, 1087, 1055 cm ⁻¹ ; 元素分析 ($C_{22}H_{26}N_2O_4S$) 計算值 (%): C , 63.75; C , 63.75; C , 63.76; C , 7.74 実測値 (%): C , 63.58; C , 6.05; C , 6.73; C , 7.94

(表89)

41 A 47	
化合物 番号	物性値
	mp 152-159 °C; ¹H-NMR (d ₆ -DMSO) δ 0.79 (t, J = 7.2 Hz, 3H), 1.31-1.43 (m, 2H), 2.22 (s, 3H), 2.48 (t, J = 7.2 Hz, 2H), 3.32 (s, 3H), 4.89 (s, 2H), 6.80 (dd, J = 2.1, 8.7 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 7.25-7.31 (m, 2H), 7.46-7.53 (m, 2H), 7.73 (m, 1H), 13.01 (br, 1H); IR (Nujol) 3081, 3026, 2756, 2656, 2596, 2562, 1730, 1709, 1596, 1475, 1448, 1416, 1380, 1350, 1269, 1244, 1211, 1182, 1172, 1142, 1124, 1072, 1051 cm ⁻¹ ; 元素分析 ($C_{21}H_{28}FN_2O_4S$) 計算値 (%): C, 60.27; H, 5.54; F, 4.54; N, 6.69; S, 7.66 実測値 (%): C, 60.29; H, 5.36; F, 4.57; N, 6.63; S, 7.62
Ik-42	mp 147-154 °C; ¹H-NMR (d ₆ -DMSO) δ 0.82 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 3.19 (s, 3H), 4.91 (s, 2H), 6.77 (dd, J = 2.1, 8.7 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.49-7.53 (m, 2H), 7.61-7.65 (m, 2H), 12.99 (br, 1H); IR (Nujol) 3276, 3097, 1770, 1581, 1479, 1417, 1396, 1378, 1324, 1185, 1174, 1162, 1143, 1092, 1055, 1011 cm ⁻¹ ; 元素分析 ($C_{21}H_{28}ClN_2O_4S$) 計算値 (%): $C_{31}C_{31}C_{31}C_{32}C_{32}C_{33$
Ik-43	mp 143-150 °C; ¹H-NMR (d ₆ -DMSO) δ 0.83 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 2.23 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 3.19 (s, 3H), 4.91 (s, 2H), 6.78 (dd, J = 2.1, 8.7 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.41-7.45 (m, 2H), 7.75-7.79 (m, 2H), 12.98 (br, 1H); IR (Nujol) 3021, 2655, 1717, 1574, 1478, 1467, 1415, 1387, 1377, 1357, 1251, 1190, 1170, 1156, 1069 cm ⁻¹ ; 元素分析 ($C_{21}H_{23}BrN_2O_4S$) 計算値 (%): C , 52.61; H , 4.84; Br , 16.67; N , 5.84; S , 6.69 実測値 (%): C , 52.70; H , 4.56; Br , 16.11; N , 5.82; S , 6.67

試験例1 С R T H 2 受容体結合試験

ヒトCRTH2受容体を発現したK562細胞から細胞膜画分を調製し、結合 実験に供した。結合反応液(50 mM Tris/H Cl, pH 7.4, 10 mM Mg Cl₂)に膜画分(0.06 mg) および3 nM ³ H - P G D₂ (172 Ci/mmol)を加えて 0.1 ml とし、室温で60分間反応させた。反応終了後速やかにガラス繊維濾紙を用いて濾過し、冷生理食塩水で数回洗浄し、濾紙に残った放射活性を測定した。特異的結合は全結合量から非特異的結合量(10 μM P G D₂存在下で同様にして求めた 放射活性量)を差し引いて算出した。各化合物の結合阻害活性は、化合物非存在下での特異的結合量を 100%とし、各化合物存在下での特異的結合量(%)を求

めて置換曲線を作成することにより、50%抑制濃度(IC₅₀値)を算出した。結果 を以下の表に示す。

(表90)

(#C 0 0 7	CDETTO体入四中江州
化合物番号	CRTH2結合阻害活性 IC ₅₀ (μM)
Ia-15	0.037
Ia-20	0.022
Ia-32	0.018
Ia-36	0.015
Ia-39	0.045
Ia-41	0.034
Ia-44	0.023
Ia-45	0.019
Ia-47	0.051
Ia-48	0.057
Ia-51	0.02
Ia-52	0.024
Ia-55	0.042
Ia-57	0.057
Ia-58	0.033
Ia-59	0.023
Ia-61	0.045
Ia-62	0.049
Ia-63	0.054
Ia-65	0.027
Ia-66	0.037
Ia-85	0.08
Ib-6	0.055
(+)-Ib-16	0.0059
(+)-Ib-18	0.013
(+)-Ib-20	0.0079
Ib-21	0.012
(+)-Ib-25	0.0036

(表91)

(表91)	
化合物番号	CRTH2結合阻害活性 IC ₅₀ (μM)
(+)-Ib-27	0.0062
(+)-Ib-29	0.0049
Ib-30	0.0053
Ib-31	0.059
Ic-2	0.021
Ic-6	0.0045
Ic-14	0.0055
Ic-24	0.068
Ie-2	0.039
Ie-5	0.018
Ie-8	0.026
If-1	0.019
lf-4	0.016
If-9	0.012
Ig-3	0.0097
Ig-4	0.0078
lg-11	0.01
lg-14	0.0083
lg-15	0.0075
Ig-16	0.0036
lg-18	0.019
lh-2	0.0099
Ih−3	0.033
lh−4	0.024
lh−5	0.023
Ih-6	0.034
1i-1	0.035
li−2	0.035
li−3	0.064
lj−1	0.026
lj−2	0.053
lj−3	0.053

(表92)

5

10

化合物番号	CRTH2結合阻害活性 IC ₅₀ (μM)
1k-1	0.048
Ik-2	0.086
lk−3	0.051
lk-4	0.047
lk-5	0.019

試験例2 CRTH2 受容体に対する拮抗活性試験

CRTH2 受容体に対する拮抗活性を、化合物の PGD₂ 刺激による CRTH2 受容体を介した細胞内カルシウム濃度上昇に対する抑制作用を検討することによって行った。

ヒト CRTH2 受容体を発現した K562 細胞を 2 x 10⁶ cells/ml に調製し、細胞懸濁液 (10 mM HEPES buffer, pH 7.4, 0.1% Bovine serum albumin) に Fura-2 AM (2 μM) を加えて室温で 60 分間インキュベートした。洗浄後、再度細胞懸濁液に懸濁させ 37 度に加温後、種々の濃度に希釈した化合物を添加し、その 2 分後に PGD₂ (50 nM) を添加して反応を惹起させ、細胞内カルシウム濃度の上昇を細胞内イオン測定装置 (CAF-110) を用いて測定した。各化合物の拮抗活性は、化合物非存在下での細胞内カルシウム濃度上昇量に対する各化合物存在下 (1 μM) での抑制率を算出して評価した。結果を以下の表に示す。

(表93)

化合物番号	CRTH2 拮抗活性 (% INH)
Ia-9	94
Ia-51	91
Ib-31	96
Ib-16	100
Ib-25	100
Ic-6	100
Ib-29	100
Ia-36	89
Ic-19	91
Ic-31	98
Ic-34	94
Ic-53	60
Ic-54	85
Ic-55	100
Ic-56	100
Ic-57	100
Ih-2	91

上記の表に示した結果から、本発明化合物が優れたCRTH2受容体拮抗活性を有することがわかる。

5

15

製剤例

製剤例1

以下の成分を含有する顆粒剤を製造する。

成分 式(I)で表わされる化合物 10 mg
10 乳糖 700 mg
コーンスターチ 274 mg
HPC-L 16 mg

式(I)で表わされる化合物と乳糖を60メッシュのふるいに通す。コーンスターチを120メッシュのふるいに通す。これらをV型混合機にて混合する。混合末にHPC-L(低粘度ヒドロキシプロピルセルロース)水溶液を添加し、練合、造粒(押し出し造粒 孔径 $0.5\sim1$ mm)したのち、乾燥する。得られた

乾燥顆粒を振動ふるい(12/60メッシュ)で櫛過し顆粒剤を得る。

製剤例2

以下の成分を含有するカプセル充填用散剤を製造する。

10 mg 式(I)で表わされる化合物 成分 79 mg乳糖 5 10 mg コーンスターチ 1 mgステアリン酸<u>マグネシウム_</u> 100 mg

式(I)で表わされる化合物、乳糖を60メッシュのふるいに通す。コーンス ターチは120メッシュのふるいに通す。これらとステアリン酸マグネシウムを 10 V型混合機にて混合する。10倍散100mgを5号硬ゼラチンカプセルに充填 する。

製剤例3

以下の成分を含有するカプセル充填用顆粒剤を製造する。 15

> 15 mg 式(I)で表わされる化合物 成分 90 mg 乳糖 42 mgコーンスターチ 3 mgHPC-L

150 mg 20

式(I)で表わされる化合物、乳糖を60メッシュのふるいに通す。コーンス ターチを120メッシュのふるいに通す。これらを混合し、混合末にHPC-L 溶液を添加して練合、造粒、乾燥する。得られた乾燥顆粒を整粒後、その150 mgを4号硬ゼラチンカプセルに充填する。

製剤例4 25

以下の成分を含有する錠剤を製造する。

10 mg 式(I)で表わされる化合物 成分

乳糖90 mg微結晶セルロース30 mgCMC-Na15 mgステアリン酸マグネシウム5 mg

5

150 mg

式(I)で表わされる化合物、乳糖、微結晶セルロース、CMC-Na(カルボキシメチルセルロース ナトリウム塩)を60メッシュのふるいに通し、混合する。混合末にステアリン酸マグネシウム混合し、製錠用混合末を得る。本混合末を直打し、150mgの錠剤を得る。

10

産業上の利用可能性

本発明医薬組成物および本発明化合物は、優れたCRTH2受容体拮抗作用を示し、アレルギー性疾患の治療または予防剤等として有効に機能し得る。

請求の範囲

1. 式(I):

5 式:

10

15

20

で示される基は式:

(式中、 Z^3 は=N-または=C($-R^7$)-; R^4 、 R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、ハロアルキル、カルボキシ、アルキルオキシカルボニル、置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアラルキル、式:-S(O) $_p$ R 8 (式中、 $_p$ は0 \sim 2の整数;および $_s$ 8はアルキルまたは置換されていてもよいアリール)で示される基、式: $-NR^9R^{10}$ (式中、 $_s$ 8および $_s$ 10はそれぞれ独立して水素、アルキル、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアラルキル。置換されていてもよいアリール、置換されていてもよいアカンスルホニル、置換されていてもよいアリール、置換されていてもよいアカンスルホニル、置換されていてもよいアリールスルホニル、置換されていてもよいアカンスルホニル、置換されていてもよいアカンスルホニル、置換されていてもよいアカンスルホニル、

 R^1 はカルボキシ、アルキルオキシカルボニル、置換されていてもよいアミノカルボニルまたはテトラゾリル;

 R^2 は水素、アルキルまたはハロゲン;

 R^{15} は水素またはアルキル;

 R^3 は式: $-(CH_2)_n-N(-Y)-SO_2-Ar(式中、nは1~3の整数; Yは水素、アルキル、アルケニル、アルキニル、置換されていてもよいアリール、 置換されていてもよいアラルキル、置換されていてもよいヘテロアリールアルキルまたは置換されていてもよいアリールアルケニル;およびArは置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基、式:$

$$--(CH_2)_r$$
 $N-SO_2-E$

(式中、rは0~2の整数;xは0~3の整数;mは1~3の整数;破線は結合の存在または不存在を表わし;Eは置換されていてもよいアリール、置換されていてもよいアラルキルまたは いてもよいヘテロアリール、アルキル、置換されていてもよいアラルキルまたは 置換されていてもよいアリールアルケニル)で示される基、

15 式:

20

25

5

(式中、xは0~3の整数;mは1~3の整数;破線は結合の存在または不存在を表わし;Eは置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、置換されていてもよいアラルキルまたは置換されていてもよいアリールアルケニル)で示される基、

式: $-CR^{23}R^{24}-CR^{25}R^{26}-(CH_2)_y-N(-Y)-SO_2-Ar(式中、ArおよびYは前記と同意義;yは0または1;R^{23}およびR^{24}の一方はアルキル、他方は水素、アルキルまたはアリール;または<math>R^{23}$ および R^{24} は一緒になって式: $-(CH_2)$ t -(式中、tは2~5の整数)で示される基; R^{25} および R^{26} はそれぞれ独立して水素またはアルキルオキシアルキル)で示され

る基、

(式中、 Y および A r は前記と同意義) で示される基、または

5 式:

$$N$$
 SO_2 Ar

(式中、 Y およびArは前記と同意義; u は 1 または 2) で示される基;

または式:

10 で示される基が式:

$$(CH_2)_y \longrightarrow (CH_2)_{\overline{p}} \longrightarrow N \longrightarrow SO_2 \longrightarrow Ar$$

(yは1~3の整数;m、p、YおよびArは前記と同意義)で示される基、

: 趷

$$(CH_2)_y$$

$$N-SO_2-Ar$$

$$(CH_2)_m$$

15 (m、yおよびArは前記と同意義)で示される基、

または式:

(YおよびArは前記と同意義; R^{20} は水素またはアルキル; R^{21} は水素また

はハロゲン)で示される基である。(但し、3-(4-クロロフェニルスルホニルアミノ)-9-(2-カルボキシメチル)-1,2,3,4-テトラヒドロカルバゾール、そのエチルエステル、3-(4-クロロフェニルスルホニルアミノエチル)インドール-1-アセティックアシッド、および3-(4-クロロフェニルスルホニルアミノプロピル)インドール-1-アセティックアシッドを除く);

または R^{13} が水素、アルキル、アラルキル、アシルまたは式: $-OR^{16}$ (式中、 R^{16} は水素またはアルキル)で示される基であり、 R^{14} が水素またはアルキルであるか、または式:

5

15

10 で示される基が式:

(式中、qは $0\sim3$ の整数; R^{17} は水素またはアルキル; Z^1 は $-CH_2-$ 、-C(=O) 一、-C(=NOH) ー又は-C(=NOMe) ー; Z^2 は式:-S(=O) $_s$ 一(式中、 $_s$ は $0\sim2$ の整数)で示される基、式: $-N(-R^{22})$ ー(式中、 R^{22} は水素、アルキル、アルキルオキシカルボニルまたはアシル)で示される基または式: $-CR^{18}R^{19}$ ー(式中、 R^{18} および R^{19} はそれぞれ独立して水素、アルキルまたはアリール;または R^{18} および R^{19} は一緒になって式: $-(CH_2)_t$ 一(式中、t は $2\sim5$ の整数)で示される基である)で示される基であり;

20 R^{1} および R^{15} は前記と同意義であり;

: 定

で示される基が式:

(Y、E、R²⁰およびR²¹は前記と同意義)で示される基である化合物、その プロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

5 2.式:

15

20

で示される基が式:

(式中、Z³は=C(-R⁷)-であり; R⁴、R⁵、R⁶およびR⁷は請求の範囲
 第1項と同意義)で示される基であり; Z⁴が一C(-R²)=であり; R²は請求の範囲第1項と同意義であり; R¹⁵が水素であり;

 R^3 が式: $-(CH_2)_n - N(-Y) - SO_2 - Ar(式中、nは1~3の整数; Yは水素、アルキル、アルケニル、置換されていてもよいアリール、置換されていてもよいアラルキル、または置換されていてもよいヘテロアリールアルキル; および<math>Ar$ は置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基、式:

$$--(CH_2)_r$$
 $N-SO_2-E$

(式中、rは $0\sim2$ の整数; xは $0\sim3$ の整数; mは $1\sim3$ の整数; 破線は結合の存在または不存在を表わし; Eは置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基;

または式:

$$\mathbb{R}^3$$

$$\mathbb{Z}^4$$

で示される基が式:

$$(CH_2)_y - (CH_2)_p - N - SO_2 - AI$$

5 (yは1~3の整数; m、p、YおよびArは前記と同意義)で示される基、

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} (CH_2)_y \\ \\ \\ \end{array} N - SO_2 - Ar \end{array}$$

(m、yおよびArは前記と同意義)で示される基、

または式:

10

20

(YおよびArは請求の範囲第1項と同意義であり; R^{20} および R^{21} は水素である)で示される基である請求の範囲第1項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

3. Yがアルキル、アルケニル、置換されていてもよいアリールまたは置換されていてもよいアラルキルである請求の範囲第1項または第2項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

4. R^3 が式: $-(CH_2)_n - N(-Y) - SO_2 - Ar(式中、nは2または3; Yは水素、アルキル、アルケニル、またはアラルキル; および<math>Ar$ は請求の範囲第1項と同意義)で示される基である請求の範囲第2項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

5. R³が式:

$$--(CH2)r$$
 $N-SO2-E$

(式中、mは1; rは0; xは2; 破線は結合の不存在を表わし; および E は請求の範囲第2項と同意義)で示される基である請求の範囲第2項に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

6. 式:

5

で示される基が式:

$$\begin{array}{c|c} & & & \\ &$$

10 (mは2;pは0;yは1;Yは水素、アルキル、アルケニルまたはアラルキル; およびArは請求の範囲第1項と同意義)で示される基である請求の範囲第2項 に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれら の溶媒和物。

7. 式:

15

で示される基が式:

(mは1または2;yは1または2;およびArは請求の範囲第2項と同意義)

で示される基である請求の範囲第2項に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

8. 式:

$$\mathbb{R}^3$$
 \mathbb{R}^3

10

15

5 で示される基が式:

(Yは水素、アルキル、アルケニルまたはアラルキル;および R^{20} 、 R^{21} およびArは請求の範囲第1項と同意義)で示される基である請求の範囲第2項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

9. R^1 がカルボキシである請求の範囲第1項~第8項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。 10. R^4 、 R^5 、 R^6 および R^7 がそれぞれ独立して水素、ハロゲン、アルキル、アルケニル、置換されていてもよいアリールまたは置換されていてもよいアラルキルである請求の範囲第1項~第9項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

11. R²が水素またはアルキルである請求の範囲第1項~第10項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

20 12.請求の範囲第1項~第11項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物を有効成分として含有する医薬組成物。

13. CRTH2受容体拮抗剤として使用する請求の範囲第12項記載の医薬組成物。

- 14. 請求の範囲第1項に記載の化合物を投与することを特徴とする CRTH2 受容体に関する疾患の治療方法。
- 5 15. CRTH2受容体に関する疾患の治療剤を製造するための、請求の範囲第 1項に記載の化合物の使用。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06076

A. CLASSIFICATION OF SUBJECT MATTER			
Int.	.Cl ⁷ C07D209/14, 209/94, 209/8	6, 209/88, 401/04, 403/	04,
	409/12, 409/14, 471/04, 2	U9/I6, 4U3/U6, 4UI/U6, 1K31/4O3 31/4O5 31/4A3	401/14 , 20 31/454
487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454, According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)			
Int.	Int.Cl ⁷ C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04,		
	409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14,		
487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454,			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
CAPLUS, REGISTRY (STN)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a		D-1
		opropriate, of the relevant passages	Relevant to claim No.
Y	EP 473024 A1 (BAYER A.G.), 04 March, 1992 (04.03.92),		1-4,6,9-13,
А		4-257578 A	15 5,7,8
	& US 5223517 A	4 237370 A	3,7,0
Y	EP 451634 A2 (BAYER A.G.),	ĺ	1-4,6,9-13,
	16 October, 1991 (16.10.91),	0000070 7	15
		. 2039873 A	
	& PT 97280 A & ZA 9102609 A & JP 4-234846 A & NZ 237709 A		
		221995 A	
	& IL 97795 A		
		a .	
		•	
		·	
× Further	er documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: "		"T" later document published after the inter	national filing date or
"A" document defining the general state of the art which is not considered to be of particular relevance		priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family	
E" earlier document but published on or after the international filing			
date "L" document which may throw doubts on priority claim(s) or which is			
"O" document referring to an oral disclosure, use, exhibition or other			
means "P" document published prior to the international filing date but later			
than the	priority date claimed	a document member of the same patent is	
Date of the actual completion of the international search D		Date of mailing of the international search report	
22 July, 2003 (22.07.03)		12 August, 2003 (12	.08.03)
Name and mailing address of the ISA/		Authorized officer	
Japanese Patent Office			
Facsimile No.		Telephone No.	

International application No.
PCT/JP03/06076

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	EP 425906 A2 (BAYER A.G.), 08 May, 1991 (08.05.91), & NO 9004487 A & CA 2028621 A & FI 9005294 A & AU 9063848 A & US 5039670 A & PT 95728 A & ZA 9008637 A & CN 1051354 A & US 5096897 A & US 5374647 A & PH 27484 A	1-4,6,9-13, 15
Y	JP 11-322600 A (BAYER YAKUHIN KABUSHIKI KAISHA), 24 November, 1999 (24.11.99), (Family: none)	1-4,6,9-13,
Y	JP 11-116477 A (BAYER YAKUHIN KABUSHIKI KAISHA), 27 April, 1999 (27.04.99), (Family: none)	1-4,6,9-13, 15
Y	JP 8-175991 A (BAYER YAKUHIN KABUSHIKI KAISHA), 09 July, 1996 (09.07.96), (Family: none)	1-4,6,9-13, 15
Y	Chemical Abstracts, Vol.117, abs.No.19896	1-4,6,9-13,
A	JP 11-343279 A (SHIONOGI & CO., LTD.), 14 December, 1999 (14.12.99), (Family: none)	1
A	WO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), & EP 1211513 A1 & NO 2002000837 A	13,15
A	EP 1170594 A2 (PFIZER PROD. INC.), 09 January, 2002 (09.01.02), & US 2002/022218 A1 & JP 2002-98702 A	13,15

International application No.

PCT/JP03/06076

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 14
because they relate to subject matter not required to be searched by this Authority, namely: The invention as set forth in claim 14 pertains to method for treatment of the human body by therapy.
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest

International application No.

PCT/JP03/06076

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched (International Patent Classification (IPC))

Int.Cl⁷ 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

Minimum documentation searched (classification system followed by classification symbols)

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. $C1^7$ C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS, REGISTRY (STN)

C. 関連すると認められる文献

	<u> </u>	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	EP 473024 A1 (BAYER A. G.) 1992. 03. 04 & DE 4027278 A & JP 4-257578 A & US 5223517 A	1-4, 6, 9-13, 15
A		5, 7, 8
Y	EP 451634 A2(BAYER A.G.) 1991. 10.16 & AU 9174252 A & CA 2039873 A & PT 97280 A & ZA 9102609 A & JP 4-234846 A & NZ 237709 A & US 5204374 A & TW 221995 A & IL 97795 A	1-4, 6, 9-13, 15
,		

x C欄の続きにも文献が列挙されている。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの・
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 22.07.03 国際調査報告の発送日 12.08.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4P 9159 国永 保 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3490

C (続き).	関連すると認めたわる立体	
引用文献の	関連すると認められる文献	別声ナマ
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	EP 425906 A2 (BAYER A. G.) 1991. 05. 08 & NO 9004487 A & CA 2028621 A & FI 9005294 A & AU 9063848 A & US 5039670 A & PT 95728 A & ZA 9008637 A & CN 1051354 A & US 5096897 A & US 5374647 A & PH 27484 A	1-4, 6, 9-13, 15
Y	JP 11-322600 A(BAYER YAKUHIN K.K.) 1999.11.24 (ファミリーなし)	1-4, 6, 9-13, 15
Y	JP 11-116477 A(BAYER YAKUHIN K.K.) 1999.04.27 (ファミリーなし)	1-4, 6, 9-13, 15
Y	JP 8-175991 A(BAYER YAKUHIN K.K.) 1996.07.09 (ファミリーなし)	1-4, 6, 9-13, 15
Y	Chemical Abstracts, vol. 117, abs. no. 19896	1-4, 6, 9-13, 15
A	JP 11-343279(SHIONOGI & CO.,LTD.) 1999.12.14 (ファミリーなし)	1
A	WO 01/14882 A1(BML INC.) 2001.03.01 & EP 1211513 A1 & NO 2002000837 A	13, 15
A	EP 1170594 A2 (PFIZER PROD. INC.) 2002.01.09 & US 2002/022218 A1 & JP 2002-98702 A	13, 15

第1欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条	条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	いった。
1. x	請求の範囲 <u>14</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲14に記載された発明は、人体の治療による処置方法に該当する。
	,
2. 🗌	請求の範囲
_	ない国際出願の部分に係るものである。つまり、
	·
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
	従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に过	上べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	· ·
	•
_	
1. 📙	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
2. 🗍	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
۵٠ ا	加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
	付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
i .	, ·
	1
追加調查	手数料の異議の申立てに関する注意
	追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調査手数料の納付と共に出願人から異議申立てがなかった。

改訂版

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年11月27日(27.11.2003)

PCT

(10) 国際公開番号 WO 2003/097598 A1

(51) 国際特許分類7:

C07D 209/14. 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K 31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P 11/06, 37/08, 43/00

(21) 国際出願番号: PCT/JP2003/006076

(22) 国際出願日: 2003年5月15日(15.05.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2002-142126 2002年5月16日(16.05.2002) JР

- (71) 出願人 (米国を除く全ての指定国について): 塩野 義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府 大阪市中央区 道修町3丁目1番8号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 谷本 憲彦(TAN-IMOTO, Norihiko) [JP/JP]; 〒553-0002 大阪府 大阪市 福島区 鷺洲 5 丁目 1 2 番 4 号 塩野義製薬株式会 社内 Osaka (JP). 平松 義春 (HIRAMATSU, Yoshiharu) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 12番4号 塩野義製薬株式会社内 Osaka (JP). 光森 進 (MITSUMORI,Susumu) [JP/JP]; 〒553-0002 大阪府 大阪市福島区鷺洲5丁目12番4号塩野義製薬株 式会社内 Osaka (JP). 稲垣 雅尚 (INAGAKI, Masanao) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 12番4号塩野義製薬株式会社内 Osaka (JP).

- (74) 代理人: 山内 秀晃, 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2番 4号 塩野義製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

- (88) 改訂された国際調査報告書の公開日: 2004年7月8日
- (15) 訂正情報:

PCTガゼット セクションIIの No.28/2004 (2004 年7 月 8日)を参照

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: COMPOUND EXHIBITING PGD 2 RECEPTOR ANTAGONISM
- (54) 発明の名称: PGD2 受容体拮抗作用を有する化合物

$$R^{13}$$
 R^{3} R^{14} N^{24} R^{15} R^{1} R^{1} R^{1}

(57) Abstract: A compound exhibiting CRTH 2 receptor antagonism, represented by the following formula (I), which compound is useful in the treatment of allergosis with which the association of eosinocytes is presumed, etc.: (I) wherein the group represented by the formula: (a) is a group of the formula: (b) or the like; R¹ represents carboxyl, etc.; R³ represents a group of the formula $-(CH_2)_n$ -N(-Y)SO₂-Ar, etc.; and the other substituents are as defined in claim 1.

(57) 要約:

CRTH2受容体拮抗作用を有する下記式(I)で表される新規化合物を見出した。該化合物は好酸球が関与していると考えられるアレルギー疾患等に有用である。

$$R^{13}$$
 R^{3} R^{14} R^{15} R^{1} R^{1}

(式中、

式:

で示される基は

式:

等を、R¹は、カルボキシ等を、R³は

式: - (CH2) n-N (-Y) SO2-Ar等を

その他の置換基は請求の範囲1に記載された通りを示す。)

International application No.
PCT/JP03/06076

Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C07D209/14, 209/94, 209/86 409/12, 409/14, 471/04, 20 487/04, 231/56, 495/04, A63 o International Patent Classification (IPC) or to both na	09/16, 403/06, 401/06, 1K31/403, 31/405, 31/443	401/14,				
B. FIELD:	B. FIELDS SEARCHED						
	ocumentation searched (classification system followed	by classification symbols)					
Int.	Int.Cl ⁷ C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454,						
Documentat	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched				
	ata base consulted during the international search (namUS, REGISTRY (STN)	e of data base and, where practicable, sea	rch terms used)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
Y	EP 473024 A1 (BAYER A.G.),		1-4,6,9-13,				
Α	04 March, 1992 (04.03.92), & DE 4027278 A & JP & US 5223517 A	4-257578 A	15 5,7,8				
Y			1-4,6,9-13, 15				
× Further	er documents are listed in the continuation of Box C.	See patent family annex.					
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be date							
"L" docume cited to							
	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such					
means "P" document published prior to the international filing date but later than the priority date claimed "End to the visit of the international filing date but later than the priority date claimed "End to the visit of the visit of the same date date date and combination being obvious to a person skilled in the art document member of the same patent family							
22 J	Date of the actual completion of the international search 22 July, 2003 (22.07.03) Date of mailing of the international search report 12 August, 2003 (12.08.03)						
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer							
Ecocimile No		Telephone No					

International application No.
PCT/JP03/06076

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	EP 425906 A2 (BAYER A.G.), 08 May, 1991 (08.05.91), & NO 9004487 A	1-4,6,9-13,
Y	JP 11-322600 A (BAYER YAKUHIN KABUSHIKI KAISHA), 24 November, 1999 (24.11.99), (Family: none)	1-4,6,9-13,
Y	<pre>JP 11-116477 A (BAYER YAKUHIN KABUSHIKI KAISHA), 27 April, 1999 (27.04.99), (Family: none)</pre>	1-4,6,9-13,
Y .	JP 8-175991 A (BAYER YAKUHIN KABUSHIKI KAISHA), 09 July, 1996 (09.07.96), (Family: none)	1-4,6,9-13, 15
Y	Chemical Abstracts, Vol.117, abs.No.19896	1-4,6,9-13,
A	<pre>JP 11-343279 A (SHIONOGI & CO., LTD.), 14 December, 1999 (14.12.99), (Family: none)</pre>	1
A	WO 01/14882 A (BML INC.), 01 March, 2001 (01.03.01), & EP 1211513 A1 & NO 2002000837 A	13,15
A	EP 1170594 A2 (PFIZER PROD. INC.), 09 January, 2002 (09.01.02), & US 2002/022218 A1 & JP 2002-98702 A	13,15

International application No. PCT/JP03/06076

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 14 because they relate to subject matter not required to be searched by this Authority, namely: The invention as set forth in claim 14 pertains to method for treatment of the human body by therapy.
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/JP03/06076

Continuation	of	Α.	CLAS	SIFICAT	ION	OF	SUBJECT	MATTER
(Internatio	nal	Pa	tent	Classi	fica	tio	n (IPC))	

Int.Cl⁷ 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched (International Patent Classification (IPC))

Int.Cl⁷ 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

Minimum documentation searched (classification system followed by classification symbols)

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. C1⁷ C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P11/06, 37/08, 43/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ C07D209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P11/0 6, 37/08, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS, REGISTRY(STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	EP 473024 A1(BAYER A.G.) 1992.03.04 & DE 4027278 A & JP 4-257578 A & US 5223517 A	1-4, 6, 9-13, 15
A		5, 7, 8
Y	EP 451634 A2(BAYER A.G.) 1991.10.16 & AU 9174252 A & CA 2039873 A & PT 97280 A & ZA 9102609 A & JP 4-234846 A & NZ 237709 A & US 5204374 A & TW 221995 A & IL 97795 A	1-4, 6, 9-13, 15

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの・
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 22.07.03 国際調査報告の発送日 12.08.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 P 9159 国永 保 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3490

C (続き).	関連すると認められる文献	
引用文献の		関連する 請求の範囲の番号
<u>カテゴリー*</u> Y	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 EP 425906 A2(BAYER A. G.) 1991. 05. 08 & NO 9004487 A & CA 2028621 A & FI 9005294 A & AU 9063848 A & US 5039670 A & PT 95728 A & ZA 9008637 A & CN 1051354 A & US 5096897 A & US 5374647 A & PH 27484 A	1-4, 6, 9-13, 15
Y	JP 11-322600 A(BAYER YAKUHIN K.K.) 1999.11.24 (ファミリーなし)	1-4, 6, 9-13, 15
Y	JP 11-116477 A(BAYER YAKUHIN K.K.) 1999.04.27 (ファミリーなし)	1-4, 6, 9-13, 15
Y	JP 8-175991 A(BAYER YAKUHIN K.K.) 1996.07.09 (ファミリーなし)	1-4, 6, 9-13, 15
Y	Chemical Abstracts, vol. 117, abs. no. 19896	1-4, 6, 9-13, 15
A	JP 11-343279 A(SHIONOGI & CO., LTD.) 1999. 12. 14 (ファミリーなし)	1
A .	WO 01/14882 A1(BML INC.) 2001.03.01 & EP 1211513 A1 & NO 2002000837 A	13, 15
A	EP 1170594 A2(PFIZER PROD. INC.) 2002.01.09 & US 2002/022218 A1 & JP 2002-98702 A	13, 15

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	いった。
1. x	請求の範囲 <u>14</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲14に記載された発明は、人体の治療による処置方法に該当する。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
۷. ا	ない国際出願の部分に係るものである。つまり、
3. 📙	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
	従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に遠	述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
з. П	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
э. 📙	山嶼スが必要な追加調査子数杯を一部のみじか朔間内に納付しなかったので、この国際調査報告は、手数杯の納付のあった次の請求の範囲のみについて作成した。
	1 0 2 8 2 - 2 1 C 1 C 0 2 p 1 C 1 P
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
ie fin 細木	E手数料の異議の申立てに関する注意
たがを	追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調査手数料の納付と共に出願人から異議申立てがなかった。
	JP7/HPM/JECTTXXパイソノが打り C. グジには1がは 八 ガギワ 3単元联 中 ひ. し カバガガギつ だ。