

Supervised Tree-Wasserstein Distance

Yuki Takezawa¹², Ryoma Sato¹², Makoto Yamada¹²

¹Kyoto University, ²RIKEN AIP

1. Background

Wasserstein Distance

- · Powerful tool to measure the distance between distributions.
- High computational cost. (e.g., linear programing, Sinkhorn algorithm)

$$W(\mu_i, \mu_j) = \inf_{\gamma \in \Pi(\mu_i, \mu_j)} \int d(x_i, x_j) \gamma(dx, dy)$$

Tree-Wasserstein Distance

- The Wasserstein distance on a tree.
- Closed form solution, which can be computed in linear time.

$$W_{d_T}(\mu_i, \mu_j) = \sum_{v \in V} w_v \left| \sum_{x \in \Gamma(v)} \mu_i(x) - \mu_j(x) \right|_1$$

- w_v : the edge length between v and its parent node.
- $\Gamma(v)$: a set of nodes contained in the subtree rooted at v.

Methods to Construct a Tree.

- Quadtree [Indyk & Thaper 03]
- Clustering based method [Le+ 19]

These methods are unsupervised.

2. Contribution Summary

- We propose the Supervised tree-Wasserstein (STW) distance to construct a tree that can represent task-specific distances using the label information of documents.
- We propose the **Soft variant of the tree-Wasserstein distance** that is differential w.r.t. parent-child relationships in a tree.
- The STW distance outperforms other unsupervised tree-based methods in document classification tasks.
- Since the STW distance is GPU suitable, it can compute the tree-Wasserstein distance more efficiently.

3. Problem Setting

Input: • $Z = \{z_1, z_2, ..., z_{N_{leaf}}\}$: a set of words.

- μ_i : probability measure of a document i. (i.e., normalized bag-of-words)
- $y_i \in \mathbb{N}$:a label of document i.
- $D = \{(\mu_i, y_i)\}_{i=1}^M$: a training dataset.
- $N_{\rm in}$: the number of internal nodes. (hyper parameter)

Then, we denote as follows:

• $V = \{v_1, v_2, ..., v_{N_{in}+N_{leaf}}\}$: a set of nodes $(v_1 \text{ is a root})$.

Goal:

To obtain the tree metric that can represent task specific distance.

4. Soft Tree-Wasserstein Distance

Difficulty:

• Optimization w.r.t. a tree structure is discrete optimization. (e.g., $\Gamma(v)$)

Soft Tree-Wasserstein Distance:

- Differential w.r.t. parent-child relationships.
- $P_{\text{sub}}(x \mid v)$: probability that $x \in \Gamma(v)$. (i.e.,x is contained the subtree rooted at v.)

$$W_{d_T}^{\text{soft}}(\mu_i, \mu_j) = \sum_{v \in V} w_v \left| \sum_{x \in V} P_{\text{sub}}(x \mid v) \left(\mu_i(x) - \mu_j(x) \right) \right|_{\alpha}$$

Theorem 2:

If the tree metric is given and $|\cdot|_{\alpha}$ approaches $|\cdot|_{1}$, then the soft tree-Wasserstein distance converges to the tree-Wasserstein distance.

Parent-Child Relationships:

- These relationships can be represented by a directed tree.
 - i.e., an adjacency matrix \mathbf{D}_{par} .

Theorem 1: conditions of an adjacency matrix

Let $\mathbf{D}_{\mathrm{par}} \in \{0,1\}^{|V| \times |V|}$ be an adjacency matrix of the directed graph G. If $\mathbf{D}_{\mathrm{par}}$ satisfies the followings:

 $\mathbf{D}_{\mathrm{par}}$ is a strictly upper triangular matrix.

ii. $\mathbf{D}_{\text{par}}^{\mathsf{T}} \mathbf{1} = (0, 1, ..., 1) \mathsf{T}$.

Then G is a directed tree.

Formulation of $P_{\text{sub}}(x \mid v)$:

• $[\mathbf{D}_{par}^k]_{i,j}$: the probability that there exists the path from v_j to v_i with exactly k steps.

$$P_{\text{sub}}(v_j \mid v_i) = \left[\sum_{k=0}^{\infty} \mathbf{D}_{\text{par}}^k\right]_{i,j} = \left[\left(\mathbf{I} - \mathbf{D}_{\text{par}}\right)^{-1}\right]_{i,j}$$

Matrix Form Formulation:

- \mathbf{a}_i and \mathbf{a}_i are normalized bag-of-words.
- Batch processing

$$W_{d_T}(\mathbf{a}_i, \mathbf{a}_j) = \left| \mathbf{w}_v \circ (\mathbf{I} - \mathbf{D}_{par})^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{a}_i - \mathbf{a}_j \end{pmatrix} \right|_1$$

5. Supervised Tree-Wasserstein (STW) Distance

Loss Function:

$$L(\mathbf{D}_{par}, \mathbf{w}_{v}) = \frac{1}{|D_{p}|} \sum_{(i,j) \in D_{p}} W_{d_{T}}^{soft}(\mu_{i}, \mu_{j}) - \frac{1}{|D_{n}|} \sum_{(i,j) \in D_{n}} \min\{W_{d_{T}}^{soft}(\mu_{i}, \mu_{j}), m\}$$

where
$$D_p = \{(i,j) \mid y_i = y_j\}$$
, $D_n = \{(i,j) \mid y_i \neq y_j\}$ and $\mathbf{w}_v = (w_{v_1}, \dots, w_{v_N})$.

- · We can minimize the loss by using the stochastic gradient descent.
- After the optimization, we select the most probable parent node for each node, and then construct a tree.

Techniques:

- We fix the edge length w_v to 1.
- We fix the tree structure of internal nodes.

6. Experimental Results

Comparison Methods:

- Word Mover's Distance (WMD)
- Supervised WMD
- Quadtree

TSW

Flowtree

Unsupervised tree-Wasserstein

distance based methods

Document Classification Accuracy:

On four datasets, STW outperforms unsupervised tree-based methods.

Table 1: kNN test error rate.

	TWITTER	AMAZON	CLASSIC	BBCSPORT	OHSUMED	REUTERS
WMD	28.7 ± 0.6	7.4 ± 0.3	$\boldsymbol{2.8\pm0.1}$	4.6 ± 0.7	44.5	3.5
S-WMD	$\textbf{27.5}\pm\textbf{0.5}$	$\textbf{5.8}\pm\textbf{0.1}$	3.2 ± 0.2	$\boldsymbol{2.1\pm0.5}$	34.3	3.2
QUADTREE	30.4 ± 0.8	10.7 ± 0.3	4.1 ± 0.4	4.5 ± 0.5	44.0	5.2
FLOWTREE	29.8 ± 0.9	9.9 ± 0.3	5.6 ± 0.6	4.7 ± 1.1	44.4	4.7
TSW-1	30.2 ± 1.3	14.5 ± 0.6	5.5 ± 0.5	12.4 ± 1.9	58.4	7.5
TSW-5	29.5 ± 1.1	9.2 ± 0.1	4.1 ± 0.4	11.9 ± 1.3	51.7	5.8
TSW-10	29.3 ± 1.0	8.9 ± 0.5	4.1 ± 0.6	11.4 ± 0.9	51.1	5.4
STW	28.9 ± 0.7	10.1 ± 0.7	4.4 ± 0.7	3.4 ± 0.8	40.2	4.4

Running Time :

The Tree-Wasserstein distance is faster than the Wasserstein distance.

Fig.5: Average time consumption for comparing 500 documents with one document.

Since STW is suitable for batch processing, it can be computed faster.

Fig. 6 : Running time varying the batch size.

Our code is available :

https://github.com/yukiTakezawa/STW