Ethereum: A blockchainbased smart contract platform

Dr. Raju Halder, Dept. of Comp. Sc. & Engg., IIT Patna halder@iitp.ac.in

Ethereum: A blockchain-based smart contract platform

• Existing blockchain protocols were designed with script language

Less Expressive Not Turing Complete

• Why not make a protocols like this?

OR THIS

Ethereum

- It's the world's programmable blockchain.
- Blockchain with expressive programming language
 - Programming language makes it ideal for smart contracts
 - Smart contracts enable much more applications

Turing Complete Language (e.g., Solidity Language)

A smart contract is a computer program executed in a secure environment that directly controls digital assets

Blockchain is widely used for other applications

What you can see?

Example

```
1 contract Greetings {
2   string greeting;
3   function Greetings (string _greeting) public {
4     greeting = _greeting;
5   }
6
7   /* main function */
8   function greet() constant returns (string) {
9     return greeting;
10   }
11 }
```

What you write

What other see on the blockchain

606060405260405161 025038038061025083 3981016040528......

PUSH 60
PUSH 40
MSTORE
PUSH 0
CALLDATALOAD

What people get from the disassembler

Ethereum World State

• A blockchain is a globally shared, transactional database.

Ethereum World State

• A blockchain is a globally shared, **decentralised**, transactional database.

Ethereum World State

• Decentralised nodes constitute Ethereum P2P network.

Interface to Nodes

• External actors access the Ethereum world through Ethereum nodes.

Ethereum as State Machine

- Ethereum can be viewed as a transaction-based state machine.
- Transactions are collated into blocks. A block is a package of data.

Statechain Vs. Blockchain

• From the viewpoint of the states, Ethereum can be seen as a statechain.

• From the viewpoint of the implementation, Ethereum can also be seen as a chain of blocks, so it is `BLOCKCHAIN`.

World State

• The world state is a mapping between address and account state.

Two Types of Accounts

Account Address

Two Types of Transactions

Message is Data (as a set of bytes) and Value (specified as Ether).

Four Cases of Messages

Contract Creation Transaction

Message Call Transaction

Transaction Structure

Transaction Structure

- nonce: A count of the number of transactions sent by the sender.
- gasPrice
- gasLimit
- to: Recepient's address
- value: Amount of Wei Transferred from sender to recipient.
- v,r,s: Used to generate the signature that identifies the sender of the transaction.
- init: EVM code used to initialize the new contract account.
- data: Optional field that only exists for message calls.

Order of Transactions

Transaction order is not guaranteed

Order of Transactions

• Miner can determine the order of transactions in a block.

Order of Transactions

• The order between blocks is determined by a consensus algorithm such as PoW.

Block Header

Merkle Patricia Trie

Merkle Patricia Trie

Block Header

Ethereum's PoW

Follows Ethash hashing algorithm

Ethereum's PoW

Multilevel DAG Construction

- Light nodes only need to store the cache for verification.
- They can efficiently verify a transaction without storing the entire blockchain dataset.
- Each item in the dataset depends on only a small number of items from the cache.
- The dataset DAG grows linearly with time.
- Miners need to store this entire dataset DAG.

Ethash Hashing Algorithm

Computation Vs. Memory Access

Why is Ethash Memory Hard?

- Every mixing operation requires a 128 byte read from the DAG.
- Hashing a single nonce requires 64 mixes, resulting in (128 Bytes x 64)
 = 8 KB of memory read.
- The reads are random access, so putting a small chunk of the DAG in an L1 or L2 cache isn't going to help much.
- Fetching the DAG pages from memory is much slower than the mixing computation
- The best way to speed up the ethash hashing algorithm is to speed up the 128 byte DAG page fetches from memory.
- Thus, we consider the ethash algorithm to be memory hard.

Ethereum Blockchain

Ethereum's PoW

- Greedy Heaviest Observed Subtree (GHOST) by Yonatan and Aviv (Dec 2013)
- Fork creation is inevitable; How to deal with it?
- Bitcoin considers LONGEST CHAIN. What about Ethereum?

Ethereum's PoW

- Blockgap is 15 sec (much less than bitcoin which is 10 min) [Source: https://etherscan.io/chart/blocktime]
- More competing Blocks → More no. of orphaned blocks
- Aim to prevent orphaned blocks (blocks discovered by miners with less computing power)

Ethereum's PoW

- Uncle Blocks (or Ommer): whose parent is equal to current block's parent's parent
- Consider Tree structure instead of chain
- Choose the Heaviest path as main chain, where weight depends on how dense the subtree is

Ethereum Virtual machine (EVM) & Smart Contract Execution

Ethereum Virtual Machine (EVM)

- EVM code is executed on Ethereum Virtual Machine (EVM).
- The Ethereum Virtual Machine is the runtime environment for smart contracts in Ethreum.

EVM: Stack-based Architecture

EVM Execution Model

Gas and Fee

• All programmable computation in Ethereum is subject to fees (denominated in gas).

Operation	Gas	GasCost
PUSH1	111741	3
PUSH1	111738	3
MSTORE	111726	12
CALLDATASIZE	111724	2
ISZERO	111721	3
PUSH2	111718	3
JUMPI	111708	10

Gas and Fee

- Gas limit: Max no. of computational steps the transaction is allowed.
- Gas Price: Max fee the sender is willing to pay per computation step.

- Out of Gas Exception, revert the state as if the transaction has never happened
- Sender still pays all the gas
- Note that Block has also a GasLimit (Like Block size in Bitcoin)

EVM Codes

EVM Layers

Web3 API and Client

Ethereum clients access to Ethereum network via Web3 API.

Web3 API and Client

Ethereum clients access to Ethereum network via Web3 API.

Geth

Mist

Solc

Remix

Truffle

Thank You!