Parcial 3 de Lenguajes Formales 2005

- 1. Supongamos $\Sigma_p \subseteq \Sigma$. Pruebe que $\{\mathcal{P} \in Pro^{\Sigma} \text{ thay un } \mathcal{Q} \in Pro^{\Sigma} \text{ tal que } \Psi_{\mathcal{Q}}^{0,1,\Sigma^*}(\Psi_{\mathcal{P}}^{0,1,\Sigma^*}(\mathcal{PQ})) = \mathcal{QP}\} \text{ es } \Sigma \text{ r.e.}$
- 2. V o F, justifique.
 - a. $S \subseteq \omega$ es Σ recursivo sii $S y \omega S$ son Σ r.e.
 - b. Si $f: \omega^2 \to \omega$ una función Σ -PR cuya imágen es finita. Entences el predicado $P(x) = (\exists t \in \omega) \ f(t,t) = x \text{ es } \Sigma$ -PR.
- 3. De una máquina de Turing M tal que $L(M) = \{ !^n \&^m : n, m \in ! \cdot y \mid m \}$

Parcial 2, Lenguajes Formales 2005

- 1. V o F, justifique.
 - a. Hay un alfabeto Σ tal que: $P \leftarrow P \cap P \leftarrow P1$ y $P \leftarrow P \cap P$ pertenecen a Pro^{Σ} .
 - b. Si \mathcal{P} computa una funcion $f: D_f \subseteq \omega^2 \to \omega$, entonces \mathcal{P} computa la función $f \circ (p_1^{1,0}, C_0^{1,0})$
 - c. Si $Dom(\Psi_{\mathcal{P}}^{n,m,\omega}) = \omega^n \times \Sigma^{*\omega}$ para todo n, m, entonces \mathcal{P} se detiene partiendo de cualquier estado (\vec{x}, \vec{d}) .
 - d. $R(f,g) = R(\bar{f},\bar{g})$ implies $f = \bar{f} y g = \bar{g}$
- 2. Sea $\Sigma = \{1, \%\}$. Pruebe que el precucado $P : \omega^3 \times \Sigma^{*2} \to \omega$ dado por $P(x, y, z, \alpha, \beta) = (\exists k \in \omega)(\beta^{|z|} = \subset_{l=x}^{z=y} \%^l \wedge !^k = \alpha) \text{ es } \Sigma\text{-PR}.$
- 3. Dado $S \subseteq \omega$ definitions $\delta_S : \omega \to \omega$ por $\delta_S(k) = |\{n \in S : n \le k\}|$. Pruebe que S es #-PR sii δ_S es #-PR.