Blosum matrices

What are they?

Morten Nielsen BioSys, DTU

Outline

- Alignment scoring matrices
 - How are Blosum matrices constructed?
 - What is a BLOSUM50 matrix and how is it different from a BLOSUM80 matrix?
 - What is the difference between a Blosum scoring matrix and the Blosum frequency substitution matrix?

Sequence Alignment

1PLB._

Where is the active site?

Sequence alignment. Infer function (and functional residues) from one protein to another

Homology modeling and the human genome

BLOSUM = BLOck SUbstitution Matrices

- Focus on conserved domains, MSA's (multiple sequence alignment) are ungapped blocks.
- Compute pairwise amino acid alignment counts
 - Count amino acid replacement frequencies directly from columns in blocks
 - Sample bias:
 - Cluster sequences that are x% similar.
 - · Do not count amino acid pairs within a cluster.
 - Do count amino acid pairs across clusters, treating clusters as an "average sequence".
 - Normalize by the number of sequences in the cluster.

BLOSUMXX matrices

- Sequences that are xx% similar are clustered during the construction of the matrix.

Log-odds scores

- Log-odds scores are given by
 - Log(Observation/Expected)
- The log-odd score of matching amino acid j with amino acid i in an alignment is

$$\log(\frac{P_{ij}}{Q_i \cdot Q_j})$$

- where P_{ij} is the frequency of observing amino i aligned with j, and Q_i , Q_j are the frequencies of amino acids i and j in the data set.
- · The log-odd score is (in half bit units)

$$S_{ij} = 2 \cdot \log_2(\frac{P_{ij}}{Q_i \cdot Q_j})$$

So what does this mean? An example

$$N_{AA} = 14$$

$$N_{\Delta D} = 5$$

$$N_{\Delta V} = 5$$

$$N_{DA} = 5$$

$$N^{DD} = 8$$

$$N_{DV} = 2$$

$$N_{vx} = 5$$

$$N_{AD} = 5$$

$$N_{VV} = 2$$

$$P_{AA} = 14/48$$

$$P_{AD} = 5/48$$

$$P_{AV} = 5/48$$

$$P_{DA} = 5/48$$

$$P_{DD} = 8/48$$

$$P_{DV} = 2/48$$

$$P_{VA} = 5/48$$

$$P_{VD} = 2/48$$

$$P_{VV} = 2/48$$

$$Q_{A} = 8/16$$

$$Q_D = 5/16$$

$$Q_v = 3/16$$

So what does this mean?

$P_{AA} = 0.29$	$Q_AQ_A = 0.25$
$ P_{AD} = 0.10$	$Q_{A}Q_{D} = 0.16$
$ P_{AV} = 0.10$	$Q_AQ_V = 0.09$
$P_{DA} = 0.10$	$Q_DQ_A = 0.16$
$\left(P_{DD} = 0.17\right)$	$Q_DQ_D = 0.10$
$P_{DV} = 0.04$	$Q_D Q_V = 0.06$
$P_{VA} = 0.10$	$Q_{V}Q_{A} = 0.09$
$P_{VD} = 0.04$	$Q_{V}Q_{D} = 0.06$
$P_{VV} = 0.04$	$Q_VQ_V = 0.03$

1: VVAD 2: AAAD 3: DVAD MSA 4: DAAA

So what does this mean?

$P_{AA} = 0.29$	$Q_A Q_A = 0.25$	$S_{AA} = 0.44$
$P_{AD} = 0.10$	$Q_AQ_D = 0.16$	$S_{AD} = -1.17$
$P_{AV} = 0.10$	$Q_A Q_V = 0.09$	$S_{AV} = 0.30$
$P_{DA} = 0.10$	$Q_DQ_A = 0.16$	$S_{DA} = -1.17$
$\left(P_{DD} = 0.17\right)$	$Q_{D}Q_{D} = 0.10$	$S_{DD} = 1.54$
$P_{DV} = 0.04$	$Q_D Q_V = 0.06$	$S_{DV} = -0.98$
$P_{VA} = 0.10$	$Q_V Q_A = 0.09$	$S_{VA} = 0.30$
$ P_{VD} = 0.04$	$Q_V Q_D = 0.06$	$S_{VD} = -0.98$
$P_{VV} = 0.04$	$Q_V Q_V = 0.03$	$S_{VV} = 0.49$

•BLOSUM is a log-likelihood matrix: $S_{ij} = 2\log_2(P_{ij}/(Q_iQ_j))$

The Scoring matrix

	A	D	V
Α	0.44	-1.17	0.30
D	-1.17	1.54	-0.98
V	0.30	-0.98	0.49

1: VVAD

2: AAAD

3: DVAD MSA

4: DAAA

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

And what does the BLOSUMXX mean?

- Cluster sequence Blocks at XX% identity
- Do statistics only <u>across</u> clusters

Normalize statistics according to cluster size

And what does the BLOSUMXX mean?

$$N_{AA} = \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{16}$$

$$N_{AG} = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$$

$$N_{VA} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$

$$N_{VG} = \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{16}$$

And what does the BLOSUMXX mean?

- High Blosum values mean <u>high similarity</u> <u>between</u> clusters
 - Conserved substitution dominate
- Low Blosum values mean <u>low similarity</u> <u>between</u> clusters
 - Less conserved substitutions dominate

BLOSUM80

```
ARNDCOEGHILKMFP
A 7 -3 -3 -3 -1 -2 -2 0 -3 -3 -3 -1 -2 -4 -1 2
                1 -1 -4 0 -5 -4 3 -3 -5 -3 -2 -2 -5 -4 -4
                        1 -6 -6 0 -4 -6 -4 1
D -3 -3 2 10 -7 -1 2 -3 -2 -7 -7 -2 -6 -6 -3 -1 -2 -8 -6 -6
C -1 -6 -5 -7 13 -5 -7 -6 -7 -2 -3 -6 -3 -4 -6 -2 -2 -5 -5 -2
                   3 -4
                        1 -5 -4 2 -1 -5 -3 -1 -1 -4 -3 -4
H -3 0 1 -2 -7 1 0 -4 12 -6 -5 -1 -4 -2 -4 -2 -3 -4
I -3 -5 -6 -7 -2 -5 -6 -7 -6
L -3 -4 -6 -7 -3 -4 -6 -7 -5
                              6 -4
                            2
K -1 3 0 -2 -6 2 1 -3 -1 -5 -4 8 -3 -5 -2 -1 -1 -6 -4 -4
M - 2 - 3 - 4 - 6 - 3 - 1 - 4 - 5 - 4
                            2 3 -3 9 0 -4 -3 -1 -3 -3 1
F -4 -5 -6 -6 -4 -5 -6 -6 -2 -1
                               0 -5 0 10 -6 -4 -4
P -1 -3 -4 -3 -6 -3 -2 -5 -4 -5 -5 -2 -4 -6 12 -2 -3 -7 -6 -4
 2 -2 1 -1 -2 -1 -1 -1 -2 -4 -4 -1 -3 -4 -2
  0 -2 0 -2 -2 -1 -2 -3 -3 -2 -3 -1 -1 -4 -3 2
W -5 -5 -7 -8 -5 -4 -6 -6 -4 -5 -4 -6 -3 0 -7 -6 -5 16
Y -4 -4 -4 -6 -5 -3 -5 -6 3 -3 -2 -4 -3
V -1 -4 -5 -6 -2 -4 -4 -6 -5 4 1 -4 1 -2 -4 -3 0 -5 -3 7
```

$$\langle S_{ii} \rangle = 9.4$$

 $\langle S_{ij} \rangle = -2.9$

BLOSUM30

```
K M F
                O E
                     G H
                           I L
                                 0
                                   1 -2 -1
                     0 -2
                           0 -1
               3 -1 -2 -1 -3 -2
                                1
                                   0 -1 -1 -1 -3 0
                                 0
                   1 -4 -5 -2 0 -3 -2 -3 -3 -2 -2 -2 -6 -2
                   2 -2 0 -2 -2 0 -1 -3
                                        0 -1 0 -1 -1 -3
                         0 -3 -1
  0 -2 0 -1 -4 -2 -2 8 -3 -1 -2 -1 -2 -3 -1
               0 0 -3 14 -2 -1 -2
I 0 -3 0 -4 -2 -2 -3 -1 -2
L -1 -2 -2 -1 0 -2 -1 -2 -1
        0 0 -3 0 2 -1 -2 -2 -2 4
                                   2 -1
                                         1 0 -1 -2 -1 -2
        0 -3 -2 -1 -1 -2 2
                          1 2 2
F -2 -1 -1 -5 -3 -3 -4 -3 -3
                              2 -1 -2 10 -4 -1 -2 1
               0
                   1 -1 1 -3 -3 1 -4 -4 11 -1
                   0 0 -1 -1 -2
        1 -1 -2 0 -2 -2 -2 0
W -5 0 -7 -4 -2 -1 -1 1 -5 -3 -2 -2 -3 1 -3 -3 -5 20
     0 -4 -1 -6 -1 -2 -3 0 -1 3 -1 -1
V 1 -1 -2 -2 -2 -3 -3 -3 -3 4 1 -2 0
```

$$\langle S_{ii} \rangle = 8.3$$

 $\langle S_{ij} \rangle = -1.16$

The different Blosum matrices

 The BLOSUM alignment scoring matrix is a loglikelihood matrix

$$S_{ij} = 2 \cdot \log_2(\frac{P_{ij}}{Q_i \cdot Q_j})$$

 The Blosum frequency substitution matrix, is a conditional probability matrix of matching amino acids j given you have amino acid i

$$P(j \mid i) = \frac{P_{ij}}{Q_i}$$

· and

$$S_{ij} = 2 \cdot \log_2(\frac{P_{ij}}{Q_i \cdot Q_j}) = 2 \cdot \log_2(\frac{P(j \mid i)}{Q_j})$$

The way from frequencies to log-odds

	A	R	N	D	С	Q	E	G	Н	I	L	K	М	F	P	S	Т	W	Y	V
A	0.29	0.03	0.03	0.03	0.02	0.03	0.04	0.08	0.01	0.04	0.06	0.04	0.02	0.02	0.03	0.09	0.05	0.01	0.02	0.07
R	0.04	0.34	0.04	0.03	0.01	0.05	0.05	0.03	0.02	0.02	0.05	0.12	0.02	0.02	0.02	0.04	0.03	0.01	0.02	0.03
N	0.04	0.04	0.32	0.08	0.01	0.03	0.05	0.07	0.03	0.02	0.03	0.05	0.01	0.02	0.02	0.07	0.05	0.00	0.02	0.03
D	0.04	0.03	0.07	0.40	0.01	0.03	0.09	0.05	0.02	0.02	0.03	0.04	0.01	0.01	0.02	0.05	0.04	0.00	0.01	0.02
C	0.07	0.02	0.02	0.02	0.48	0.01	0.02	0.03	0.01	0.04	0.07	0.02	0.02	0.02	0.02	0.04	0.04	0.00	0.01	0.06
Q	0.06	0.07	0.04	0.05	0.01	0.21	0.10	0.04	0.03	0.03	0.05	0.09	0.02	0.01	0.02	0.06	0.04	0.01	0.02	0.04
Е	0.06	0.05	0.04	0.09	0.01	0.06	0.30	0.04	0.03	0.02	0.04	0.08	0.01	0.02	0.03	0.06	0.04	0.01	0.02	0.03
G	0.08	0.02	0.04	0.03	0.01	0.02	0.03	0.51	0.01	0.02	0.03	0.03	0.01	0.02	0.02	0.05	0.03	0.01	0.01	0.02
Н	0.04	0.05	0.05	0.04	0.01	0.04	0.05	0.04	0.35	0.02	0.04	0.05	0.02	0.03	0.02	0.04	0.03	0.01	0.06	0.02
I	0.05	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.27	0.17	0.02	0.04	0.04	0.01	0.03	0.04	0.01	0.02	0.18
L	0.04	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.12	0.38	0.03	0.05	0.05	0.01	0.02	0.03	0.01	0.02	0.10
K	0.06	0.11	0.04	0.04	0.01	0.05	0.07	0.04	0.02	0.03	0.04	0.28	0.02	0.02	0.03	0.05	0.04	0.01	0.02	0.03
M	0.05	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.10	0.20	0.04	0.16	0.05	0.02	0.04	0.04	0.01	0.02	0.09
F	0.03	0.02	0.02	0.02	0.01	0.01	0.02	0.03	0.02	0.06	0.11	0.02	0.03	0.39	0.01	0.03	0.03	0.02	0.09	0.06
P	0.06	0.03	0.02	0.03	0.01	0.02	0.04	0.04	0.01	0.03	0.04	0.04	0.01	0.01	0.49	0.04	0.04	0.00	0.01	0.03
S	0.11	0.04	0.05	0.05	0.02	0.03	0.05	0.07	0.02	0.03	0.04	0.05	0.02	0.02	0.03	0.22	0.08	0.01	0.02	0.04
T	0.07	0.04	0.04	0.04	0.02	0.03	0.04	0.04	0.01	0.05	0.07	0.05	0.02	0.02	0.03	0.09	0.25	0.01	0.02	0.07
W	0.03	0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.02	0.03	0.05	0.02	0.02	0.06	0.01	0.02	0.02	0.49	0.07	0.03
Y	0.04	0.03	0.02	0.02	0.01	0.02	0.03	0.02	0.05	0.04	0.07	0.03	0.02	0.13	0.02	0.03	0.03	0.03	0.32	0.05
V	0.07	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.16	0.13	0.03	0.03	0.04	0.02	0.03	0.05	0.01	0.02	0.27

A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 -2
G 0 -2 0 -1 -3 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 2 -2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -3 1 0 0 -3 0 6 -4 -2 -2 1 3 -1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 -1 -2 -2 -1 -2 -1 -1 -1 1
F -2 -3 -3 -3 -1 -1 -2 -2 -3 -3 -1 -2 -1 -1 -1 -1 -1 1
F -2 -2 -1 -1 0 1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -1 -2 -2 -3 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -3 -3 -1 -2 -2 -3 -3 -1 1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -3 -3 -1 -2 -2 -3 -3 -1 1 1 -4 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 -3 -1 -2 -1 -1 -1 -1 -2 -2 0 -3 -1 4

$$S_{AA} = 2 \cdot \log_2(\frac{P(A \mid A)}{Q_A}) = 2 \cdot \log_2(\frac{0.29}{0.074}) = 3.9$$

$$S_{AR} = 2 \cdot \log_2(\frac{P(R \mid A)}{Q_R}) = 2 \cdot \log_2(\frac{0.03}{0.052}) = -1.6$$