Stokes' Flow Analytic Solution:

Basic Equations:

The equations governing Stokes' (creeping) flow for an incompressible fluid are given by three sets of equations: The first are Cauchy's equations of motion with no inertial terms:

$$\nabla \cdot \boldsymbol{\tau} + \boldsymbol{f} = 0, \tag{1}$$

where τ is the fluid total stress tensor and f is the body force on the fluid. The second is the continuity equation for an incompressible fluid:

$$\nabla \cdot \boldsymbol{v} = 0, \tag{2}$$

where v is the fluid velocity. The third is the constitutive law for the stress tensor:

$$\tau = -p\delta + 2\eta\epsilon,\tag{3}$$

where p is the total pressure, δ is the Kronecker delta tensor, η is the viscosity and ϵ is the rate of strain tensor. We take the body force, f, to act only in the z coordinate direction and is given by

$$\mathbf{f} = (0, 0, -\rho). \tag{4}$$

Stokes' Flow Analytic Solution: (solA)

Description:

solA is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is constant. The flow is driven by a temperature field represented by the density, ρ , as follows:

$$\rho = -\sigma \sin(k_m z) \cos(k_n x). \tag{5}$$

Parameters:

The variable parameters of this solution are:

- density/temperature parameter: σ .
- wave number in z domain: $k_m = m\pi z$. (m may be non-integral)
- wave number in x domain: $k_n = n\pi x$. (n must be integral)
- constant viscosity: η .

 $\rho = -\sigma \sin(k_m z) \cos(k_n x)$

Figure 1: Solution (SolA): This solution has a box of density $\rho = -\sigma \sin(k_m z) \cos(k_n x)$. It is isoviscous. The Boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solB)

Description:

solB is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is constant. The flow is driven by a temperature field represented by the density, ρ , as follows:

$$\rho = -\sigma \sinh(k_m z) \cos(k_n x). \tag{6}$$

Parameters:

The variable parameters of this solution are:

- density/temperature parameter: σ .
- wave number in z domain: $k_m = m\pi z$. (m may be non-integral)
- wave number in x domain: $k_n = n\pi x$. (n must be integral and not equal to m)
- constant viscosity: η .

 $\rho = -\sigma \sinh(k_m z) \cos(k_n x)$

Figure 2: Solution (**SolB**): This solution has a box of density $\rho = -\sigma \sinh(k_m z) \cos(k_n x)$. It is isoviscous. The Boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solC)

Description:

solC is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is constant. The flow is driven by a density jump in the x direction.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• constant viscosity: η .

• width of dense column: x_c .

Figure 3: Solution (**SolC**): This solution has a column of density $\rho = \sigma$ from $0 < x < x_c$. It is isoviscous. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solCA)

Description:

solCA is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is constant. The flow is driven by a dense column centred at $x = x_0$ of width dx.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• constant viscosity: η .

• width of dense column: dx.

• centre of dense column: x_0 .

Figure 4: Solution (SolCA): This solution has a column of density $\rho = \sigma$ from $x_0 - dx/2 < x < x_0 + dx/2$. It is isoviscous. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solCx)

Description:

solCx is a 2-dimensional analytical solution to the Stokes' flow equations. The boundary conditions are free-slip everywhere on a unit domain. There is a viscosity jump in the x direction at $x = x_c$. The flow is driven by a temperature field represented by the density, ρ , as follows:

$$\rho = -\sigma \sin(n_z \pi z) \cos(n_x \pi x). \tag{7}$$

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosities: η_A and η_B .

• viscosity jump location: x_c .

• wave number in z domain: n_z . (n_z may be non-integral)

• wave number in x domain: n_x . (n_x must be integral)

 $\rho = -\sigma \sin(n_z \pi z) \cos(n_x \pi x)$

Figure 5: Solution (solCx): This solution has a box of density $\rho = -\sigma \sin(n_z \pi z) \cos(n_x \pi x)$. It is has a viscosity jump at $x = x_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solD)

Description:

solDA is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by a dense column centred at $x = x_0$ of width dx.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosities: η_A and η_B .

• viscosity jump location: z_c .

• width of dense column: dx.

• centre of dense column: x_0 .

Figure 6: Solution (SolDA): This solution has a column of density $\rho = \sigma$ from $x_0 - dx/2 < x < x_0 + dx/2$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solDA)

Description:

solDA is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by a dense column centred at $x = x_0$ of width dx.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosities: η_A and η_B .

• viscosity jump location: z_c .

• width of dense column: dx.

• centre of dense column: x_0 .

Figure 7: Solution (SolDA): This solution has a column of density $\rho = \sigma$ from $x_0 - dx/2 < x < x_0 + dx/2$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solE)

Description:

solE is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by a temperature field represented by the density, ρ , as follows:

$$\rho = -\sigma \sin(k_m z) \cos(k_n x). \tag{8}$$

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosities: η_A and η_B .

• viscosity jump location: z_c .

• wave number in z domain: $k_m = m\pi z$. (m may be non-integral)

• wave number in x domain: $k_n = n\pi x$. (n must be integral)

$$\rho = -\sigma \sin(k_m z) \cos(k_n x)$$

Figure 8: Solution (**SolE**): This solution has a column of density $\rho = -\sigma \sin(k_m z) \cos(k_n x)$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solF)

Description:

solF is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by a dense block.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosities: η_A and η_B .

• width of dense block: x_c .

• bottom of dense block: z_c .

Figure 9: Solution (SolF): This solution has a block of density $\rho = \sigma$ from $0 < x < x_c$ above $z = z_c$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solG)

Description:

solG is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by a dense block.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosities: η_A and η_B .

• width of dense block: dx.

• centre of dense block: x_0 .

• bottom of dense block: z_c .

Figure 10: Solution (**SolG**): This solution has a block of density $\rho = \sigma$ from $x_0 - dx/2 < x < x_0 + dx/2$ above $z = z_c$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solH)

Description:

solH is a 3-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The flow is driven by a dense column in one corner. The output from the code is a two-dimensional slice at a given height z.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosity: η .

• x width of dense block: dx.

• y width of dense block: dy.

• z height of 2D slice: z.

Figure 11: Solution (**SolH**): This solution has a block of density $\rho = \sigma$ from 0 < x < dx and 0 < y < dy extending in the z direction. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solHA)

Description:

solHA is a 3-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The flow is driven by a dense column in the interior. The output from the code is a two-dimensional slice at the given height z.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosity: η .

• x width of dense column: dx.

• y width of dense column: dy.

• x centre of dense column: x0.

• y centre of dense column: y0.

• z height of 2D slice: z.

Figure 12: Solution (SolHA): This solution has a block of density $\rho = \sigma$ of width $dx \times dy$ centred at x = x0 and y = y0 extending in the z direction. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solHAy)

Description:

solHAy is a 3-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The flow is driven by a dense column in the interior. The output from the code is a two-dimensional slice in the z-x plane at a given coordinate y.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosity: η .

• x width of dense column: dx.

• y width of dense column: dy.

• x centre of dense column: x0.

• y centre of dense column: y0.

• y coordinate of 2D slice: y.

Figure 13: Solution (SolHAy): This solution has a block of density $\rho = \sigma$ of width $dx \times dy$ centred at x = x0 and y = y0 extending in the z direction. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solHy)

Description:

solHy is a 3-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The flow is driven by a dense column in one corner. The output from the code is a two-dimensional slice in the z-x plane at a given coordinate y.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosity: η .

• x width of dense block: dx.

• y width of dense block: dy.

• y coordinate of 2D slice: y.

Figure 14: Solution (**SolHy**): This solution has a block of density $\rho = \sigma$ from 0 < x < dx and 0 < y < dy extending in the z direction. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solI)

Description:

solI is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity varies exponentially in the z direction. The flow is driven by a density jump in the x direction.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosity parameter: B.

• width of dense column: x_c .

Figure 15: Solution (**SolI**): This solution has a column of density $\rho = \sigma$ from $0 < x < x_c$. The viscosity varies exponentially in the z direction and is given by $\eta = \exp(2Bz)$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solIA)

Description:

solIA is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity varies exponentially in the z direction. The flow is driven by a dense column centred at $x = x_0$ of width dx.

Parameters:

The variable parameters of this solution are:

• density parameter: σ .

• viscosity parameter: B.

• width of dense column: dx.

• centre of dense column: x_0 .

Figure 16: Solution (SolIA): This solution has a column of density $\rho = \sigma$ from $x_0 - dx/2 < x < x_0 + dx/2$. The viscosity varies exponentially in the z direction and is given by $\eta = \exp(2Bz)$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solJ)

Description:

solJ is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by two dense blocks in different layers.

Parameters:

The variable parameters of this solution are:

• density parameters: σ_B and σ_A .

• viscosities: η_A and η_B .

• width of upper dense block: dx_B .

• width of lower dense block: dx_A .

• centre of upper dense block: x_{0B} .

• centre of lower dense block: x_{0A} .

• bottom of upper dense block: z_c .

Figure 17: Solution (**SolJ**): This solution has a block of density $\rho = \sigma_B$ from $x_{0B} - dx_B/2 < x < x_{0B} + dx_B/2$ above $z = z_c$ and a block of density $\rho = \sigma_A$ from $x_{0A} - dx_A/2 < x < x_{0A} + dx_A/2$ below $z = z_c$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solJA)

Description:

solJ is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity is layered with a jump at $z = z_c$. The flow is driven by a dense block in the upper layer.

Parameters:

The variable parameters of this solution are:

• density parameters: σ .

• viscosities: η_A and η_B .

• width of upper dense block: dx.

• centre of upper dense block: x_0 .

• bottom of upper dense block: z_c .

Figure 18: Solution (SolJA): This solution has a block of density $\rho = \sigma$ from $x_0 - dx/2 < x < x_0 + dx/2$ above $z = z_c$. The viscosity is layered with a jump at $z = z_c$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solKx)

Description:

solKx is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity varies exponentially in the x direction and is given by $\eta = \exp(2Bx)$. The flow is driven by a temperature field represented by the density, ρ , as follows:

$$\rho = -\sigma \sin(k_m z) \cos(k_n x). \tag{9}$$

Parameters:

The variable parameters of this solution are:

• density/temperature parameter: σ .

• wave number in z domain: $k_m = m\pi z$. (m may be non-integral)

• wave number in x domain: $k_n = n\pi x$. (n must be integral)

 \bullet viscosity parameter: B.

$$\rho = -\sigma \sin(k_m z) \cos(k_n x)$$
$$\eta = \exp(2Bx)$$

Figure 19: Solution (SolKx): This solution has a box of density $\rho = -\sigma \sin(k_m z) \cos(k_n x)$. The viscosity varies exponentially in the x direction and is given by $\eta = \exp(2Bx)$. The Boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solKz)

Description:

solKz is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. The viscosity varies exponentially in the z direction and is given by $\eta = \exp(2Bz)$. The flow is driven by a temperature field represented by the density, ρ , as follows:

$$\rho = -\sigma \sin(k_m z) \cos(k_n x). \tag{10}$$

Parameters:

The variable parameters of this solution are:

• density/temperature parameter: σ .

• wave number in z domain: $k_m = m\pi z$. (m may be non-integral)

• wave number in x domain: $k_n = n\pi x$. (n must be integral)

 \bullet viscosity parameter: B.

$$\rho = -\sigma \sin(k_m z) \cos(k_n x)$$
$$\eta = \exp(2Bz)$$

Figure 20: Solution (SolKz): This solution has a box of density $\rho = -\sigma \sin(k_m z) \cos(k_n x)$. The viscosity varies exponentially in the z direction and is given by $\eta = \exp(2Bz)$. The Boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solL)

Description:

solL is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The boundary conditions are free-slip everywhere on a unit domain. This solution has an upper triangular block of density $\rho = \sigma_B$ above a lower block of density $\rho = \sigma_A$.

Parameters:

The variable parameters of this solution are:

• density parameters: σ_B and σ_A .

• viscosity: η .

Figure 21: Solution (**SolL**): This solution has an upper triangular block of density $\rho = \sigma_B$ above a lower block of density $\rho = \sigma_A$. The boundary conditions are free slip everywhere on the surfaces of the unit box.

Stokes' Flow Analytic Solution: (solS)

Description:

solS is a 2-dimensional analytical solution to the Cauchy equations with the acceleration term set to zero to represent creeping flow. The domain is given by $\Omega = [0, 1] \times [0, 1]$. The flow is driven by the velocity field

$$\mathbf{v} = \sin(n\pi x)\mathbf{i}, \qquad \text{on } y = 1. \tag{11}$$

applied on the upper horizontal boundary. No body forces are present so f = 0. The boundary conditions on the remaining walls are free-slip on the vertical sides and no slip on the lower horizontal boundary. The viscosity is set to 1.0.

Parameters:

The variable parameters of this solution are:

• wave number in x domain: $n \in \mathbb{Z} \setminus \{0\}$.

Solution: This problem has a simple analytic solution and is thus provided here:

$$v_x = \sin(n\pi x)\Big((An\pi + C + Cn\pi y)\exp(n\pi y) - (Bn\pi - D + Dn\pi y)\exp(-n\pi y)\Big)$$
(12)

$$v_y = -n\pi\cos(n\pi x)\Big((A + Cy)\exp(n\pi y) + (B + Dy)\exp(-n\pi y)\Big)$$
(13)

$$p = -2n\pi\cos(n\pi x)\Big(C\exp(n\pi y) + D\exp(-n\pi y)\Big)$$
(14)

The strain rate and deviatoric stress can be assembled from the velocity gradients given below;

$$\frac{\partial v_x}{\partial x} = n\pi \cos(n\pi x) \Big((An\pi + C + Cn\pi y) \exp(n\pi y) - (Bn\pi - D + Dn\pi y) \exp(-n\pi y) \Big)$$
(15)

$$\frac{\partial v_y}{\partial x} = n^2 \pi^2 \sin(n\pi x) \Big((A + Cy) \exp(n\pi y) + (B + Dy) \exp(-n\pi y) \Big)$$
(16)

$$\frac{\partial v_x}{\partial y} = \sin(n\pi x) \Big((An^2\pi^2 + 2Cn\pi + Cn^2\pi^2 y) \exp(n\pi y) + (Bn^2\pi^2 - 2Dn\pi + Dn^2\pi^2 y) \exp(-n\pi y) \Big)$$
(17)

$$\frac{\partial v_y}{\partial y} = -n\pi \cos(n\pi x) \Big((An\pi + C + Cn\pi y) \exp(n\pi y) + (-Bn\pi + D - Dn\pi y) \exp(-n\pi y) \Big)$$
(18)

(19)

The constants A, B, C, D and E are given by

$$E = (4n^2\pi^2 + 2)\exp^2(n\pi) - \exp^4(n\pi) - 1$$
(20)

$$A = \frac{1}{E}(\exp^2(n\pi) - 1)\exp(n\pi)$$
 (21)

$$B = -A \tag{22}$$

$$C = \frac{1}{E} \left(2n\pi - \exp^2(n\pi) + 1 \right) \exp(n\pi) \tag{23}$$

$$D = -\frac{1}{E} \left(2n\pi \exp^2(n\pi) - \exp^2(n\pi) + 1 \right) \exp(n\pi)$$
 (24)