ES572 - Circuitos Lógicos

Atividade Teórica

10 de setembro de 2021

1. Atividade Teórica

Apresentação Resolução das questões de Circuitos Lógicos por Guilherme Nunes Trofino, 217276, sobre Abstração Digital e Dispositivos Eletrônicos.

Questão 1

Exercício. Você recebe as Curvas Características de Transferência de dispositivos de uma entrada e uma saída, para serem utilizados em uma nova família de dispositivos lógicos:

Obtenha um conjunto único de valores de $(V_{OL},\ V_{IL},\ V_{OH},\ V_{IH})$ adequado para serem usados nestes dispositivos. Maximize a Imunidade ao Ruído, definida como a menor entre as duas margens de ruído.

Resolução. Nota-se que trata-se, provavelmente, de uma Porta Inversora, logo as seguintes condições devem ser atendidas:

- $$\begin{split} &1. \ V_{OH} V_{OL} > V_{IH} V_{IL}; \\ &2. \ V_{OH} > V_{IH} > V_{IL} > V_{OL}; \end{split}$$
- 3. $V_{OUT} \ge V_{OH}$ quando $V_{IN} \le V_{IL}$;
- 4. $V_{OUT} \leq V_{OL}$ quando $V_{IN} \geq V_{IH}$;

Desta forma, propõem-se os seguines valores:

	V_{OL}	V_{IL}	V_{IH}	V_{OH}	Erro High	Erro Low
Inversor	1.0	1.5	3.5	4.0	0.5	0.5

Implicando que a **Imunidade de Ruído** será 0.5 V

Exercício. Uma família de circuitos lógicos combinacionais possui as seguintes especificações:

- 1. Saída '0' será garantidamente representada por uma tensão de 0.4 ± 0.1 volts;
- 2. Saída '1' será garantidamente representada por uma tensão de 4.6 ± 0.2 volts;
- 3. Tensão de Threshold de 2.5 ± 0.2 volts com:
 - (a) $V_{TH} 0.5$ volts são garantidamente interpretadas como '0';
 - (b) $V_{TH} + 0.5$ volts são garantidamente interpretadas como '1';

Forneça valores adequados para $(V_{OL}, V_{IL}, V_{IH}, V_{OH})$. Forneça também as duas margens de ruído e a imunidade do ruído desta família de dispositivos.

Resolução. Analiza-se os limites estabelecidos:

- 1. Saída será '0' para valores de 0.4 ± 0.1 , implicando:
 - (a) $V_{OL_{\text{max}}} = 0.5$
 - (b) $V_{OL_{\min}} = 0.3$

Analogamente, será '1' para valores de 4.6 ± 0.2 , implicando:

- (a) $V_{OH_{\text{max}}} = 4.8$
- (b) $V_{OH_{\min}} = 4.4$

Desta forma nota-se que $V_{OL}=0.5$ e $V_{OH}=4.4$, pois a partir destes valores as saídas são

- 2. Threshold será '0' para valores de 2.0 ± 0.2 , implicando:
 - (a) $V_{TH_{\text{max}}} = 2.2$
 - (b) $V_{TH_{\min}} = 1.8$

Analogamente, será '1' para valores de 3.0 ± 0.2 , implicando:

- (a) $V_{TH_{\text{max}}} = 3.2$ (b) $V_{TH_{\text{min}}} = 2.8$

Desta forma nota-se que $V_{IL}=2.2$ e $V_{IH}=2.8$, pois a partir destes valores as entradas são

Desta forma os seguintes valores, em volts, seriam adequados:

	V_{OL}	V_{IL}	V_{IH}	V_{OH}	Erro High	Erro Low
Circuito	0.5	2.2	2.8	4.4	1.6	1.7

Implicando que a **Imunidade de Ruído** será 1.6 V

Exercício. Você recebe as Curvas Características de Transferência de um inversor NMOS como mostrado abaixo:

Considere as seguintes combinações entre $(V_{OL}, V_{IL}, V_{OH}, V_{IH})$ fornecida:

	V_{OL}	V_{IL}	V_{IH}	V_{OH}
(a)	0.1	0.4	4.6	4.9
(b)	0.6	0.9	4.1	4.4
(c)	1.1	1.4	3.6	3.9

Verifique se as regras estáticas estão satisfeitas. Em caso negativo, detalhe o motivo. Em caso positivo informe a Imunidade ao Ruído.

Resolução. Considera-se a seguintes condições devem ser atendidas para funcionamento adequado de um inversor:

- $$\begin{split} &1.\ V_{OH} V_{OL} > V_{IH} V_{IL};\\ &2.\ V_{OH} > V_{IH} > V_{IL} > V_{OL};\\ &3.\ V_{OUT} \geq V_{OH} \text{ quando } V_{IN} \leq V_{IL}; \end{split}$$
- 4. $V_{OUT} \leq V_{OL}$ quando $V_{IN} \geq V_{IH}$;

Cada condição será avaliada em cada configuração proposta e os resultados são apresentados abaixo:

	(a)	(b)	(c)
(1)	ok	ok	ok
(2)	ok	ok	ok
(3)	ok	erro	ok
(4)	ok	erro	ok

Nota-se que nas configurações (a) e (c) não há erros, ambos apresentam 0.3V como Imunidade a Ruído.

Nota-se que na configuração (b) as condições de funcionamento do inversor não são atendidas, pois dentro dos intervalos determinados por V_{IH} e V_{IL} há possibilidade que V_{OUT} esteja fora dos intervalos determinados por V_{OH} e V_{OL} em virtude dos degraus presentes.

 $\textbf{Exercício.} \ \ Construa\ a\ rede\ pull-\texttt{down}\ correspondente\ \grave{a}\ rede\ de\ pull-\texttt{up}\ do\ circuito\ CMOS\ apresentado:$

Apresente a **Tabela Verdade** deste circuito.

Resolução. Nota-se que a rede de pull-down correspondente será:

Implicando a seguinte **Tabela Verdade**:

\overline{A}	B	\bar{A}	\bar{B}	pull-up	pull-down
0	0	1	1	0	1
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	0	1

Exercício. Uma única porta CMOS, que consiste de uma saída conectada a uma única rede pull-up construída por PMOS e uma única rede de pull-down construída por NMOS, calcula F(A, B, C, D).

- 1. F(0,0,1,0)
- 2. F(1,1,1,0)
- 3. F(1,1,1,1)

Observa-se que F(1,0,1,0)=1 então sobre as combinações acima, responda com 0, 1 ou não é possível saber.

Resolução. Observa-se, pelas condições impostas, que:

- 1. F(0,0,1,0) = 1;
- 2. F(1,1,1,0) = não 'e possível saber;
- 3. F(1,1,1,1) = 0;

Note que considerou-se que não há curto circuito na rede pull-up.

Em (1) a condição de pull-up se mantém, F(A, 0, C, 0), o que garante que independente das demais entradas a saída será 1.

Em (2) a condição de pull-up se altera e portanto não é possível saber qual seria o resultado de tal alteração.

Em (3) a construção de uma CMOS com redes únicas implica que quando F(1,1,1,1) deverá necessariamente haver pull-down, trazendo a saída a 0.

Exercício. Considere as funções F(A, B, C) e G(A, B, C) apresentadas na tabela a seguir:

A	В	С	F	G
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Apresente o esquemático do circuito de uma única rede de pull-up por PMOS e uma única rede de pull-down por NMOS se puder ser implementado. Caso contrário, indique que não é possível.

Resolução. Nota-se que F(A, B, C) não pode ser implementada, pois F(1, 1, 1) = 1 trata-se de uma combinação impossível.

Neste resultado obrigatoriamente algum PMOS do pull-up deveria estar ativo, entretanto PMOS só se aciona se a entrada for 0. Como não há nenhuma entrada zerada a saída não poderá ser 1.

Exercício. Considere o seguinte circuito:

Considere os seguintes atrasados para cada uma das portas lógicas apresentadas:

Porta	t_{CD}	t_{PD}
INV	$0.1 \; \mathrm{ns}$	1.0 ns
NAND2	$0.2 \mathrm{\ ns}$	1.5 ns
NAND3	$0.3 \mathrm{\ ns}$	$1.8 \mathrm{\ ns}$
XOR2	$0.6 \; \mathrm{ns}$	2.5 ns

Calcule o atraso de propagação e o atraso de contaminação do circuito completo.

Resolução. Nota-se que o t_{CD} de um conjunto de portas lógicas será o **menor** tempo possível entre as combinações, implicando em $t_{CD}=0.6$ ns obtido percorrendo as portas INV, NAND2 e NAND3.

Nota-se que o t_{PD} de um conjunto de portas lógicas será o **maior** tempo possível entre as combinações, implicando em $t_{PD}=5$ ns obtido percorrendo as portas XOR2.