Blockchain Technology and Applications

CS 731

Cryptographic Techniques for Blockchain Digital Signatures

Dr. Ir. Angshuman Karmakar
IIT Kanpur

Teaching assistants

- •Sumit Lahiri (sumitl@cse.iitk.ac.in)
- •Chavan Sujeet (sujeetc@cse.iitk.ac.in)
- •Indranil Thakur (indra@cse.iitk.ac.in)

• Emulates ink-paper signatures

- Each vk uniquely associates with each signing key sk
- Resistance against forgery
 - Sign(sk, m) ≠ Sign(sk, m') if m ≠ m'
 - Sign(sk, m) ≠ Sign(sk', m) if sk ≠ sk'
- Correctness
 - Verif (vk, m, Sign(sk,m))=1 except with negligible probability

Applications

- Authenticity: assures the identity of the signee
- Non-repudiation: signee cannot deny ownership later
- Integrity: Difficult to create same signature for two different messages
 - Although we use hash for this

Notions of security

- Game between challenger (user) and prover (attacker)
 - Captures different real-life scenarios
 - Stronger security notions gives more freedom to attackers
- For signatures one strong security notion is EUF-CMA
 - Existential Unforgeability under Chosen Message Attack
- Imagine a passive attacker listens to all the communication
 - It knows all message and signature pair
 - Attacker should not be able to produce a valid message-signature pair based on this

Notions of security

- Prover wins if verif(pk, m_t, sign_t)=1 with non-negligible propoerty
- Not secure under EUF-CMA

Notions of security

- SUF-CMA
 - Strong Existential Unforgeability under Chosen Message Attack
 - Stronger notion than EUF-CMA
- To prevent *malleable* signature schemes
 - For a same message, the adversary can tweak the signature to produce another valid signature
 - For example, if an attacker can re-randomize a valid signature such that the signature remains valid then it is not SUF-CMA secure
- Bitcoin uses Elliptic Curve Discrete Signature Algorithm
 - Earlier versions was malleable
- Improvements proposed in BIP 0146, BIP 0340¹

Hashing and signature

- Alice sends the message and its hash to Bob
- Eve can intercept the message and replace with m' and H(m')
- Bob has no way to realize that this happened

Hash and sign

- Or Sign and hash
 - Digital signatures have small payload
 - Signatures have small payload m--> $m_1 || m_2 || ... || m_t$
 - Sign(m₁)||Sign(m₂)||...||Sign(m_t)
 - h(Sign(m₁))||h(Sign(m₂))||...||h(Sign(m_t))
 - Adversary can create m'--> m_i||m_j||...||m_p
 - Valid signature h(Sign(m_i))||h(Sign(m_j))||...||h(Sign(m_p))
 - More bandwidth
 - More operations
 - Less secure

Hash and sign

- m--> h(m) --> sign(h(m))
- Less bandwidth
- Less signatures
- Removes some existential forgery attacks e.g. textbook RSA
- Also, assures the integrity of the message
- Extra reading: Email encryption using GNU PGP

SOME DEFINITIONS

 \mathbb{Z} : The set of integers = $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$

 \mathbb{Z}_n : $\{0, 1, 2 \dots, n-1\}$

 \mathbb{Z}_n^* : $\{a \in \mathbb{Z} : 0 < a < n \text{ and } gcd(a,n) = 1\}$

 $\phi(n)$: The number of elements in \mathbb{Z}_n^*

 $a \equiv b \mod n$: (a - b) is divisible by n

Euler's theorem: If gcd(a,n)=1, then $a^{\phi(n)}\equiv 1 \mod n$.

Fermat's Little theorem: If n is a prime number, then for any integer a, $a^n \equiv a \mod n$

If n is a prime number, then there exists an element g in \mathbb{Z}_n^* such that $\mathbb{Z}_n^* = \{g^i : i = 0, 1, 2 \dots\}$. We call this element g as generator of \mathbb{Z}_n^* .

ELLIPTIC CURVE

- Let \mathbf{F}_{p} be a field with characteristic other than 2 and 3.
- We define a elliptic curve E over F_p as follows

$$E = \{(x,y): y^2 = x^3 + ax + b\} \cup \mathcal{O}, \text{ where } a,b \text{ are constants taken from } F_p \text{ such that } 4a^3 + 27b^2 \neq 0$$

We call O as a point of infinity and the others points are called finite points.

GROUP OPERATION

- We define a group operation addition ("+") on the elliptic curve E as follows
- A + O = O + A = A for all A in **E.** (Identity property)
- For each A = (x, y) (≠ O) in E, the point -A = (x, -y) also lie in E and A + (-A) = (-A) + A = O. (Inverse property)

GROUP OPERATION

For any two distinct points $A = (x_1, y_1)$ and $B = (x_2, y_2)$ (\neq -A) in **E**, $A + B = C = (x_3, y_3)$ where

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

$$y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

• For a point $A = (x_1, y_1) (A \ne -A)$ in **E**, $2A = A + A = (x_3, y_3)$ where

$$x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1$$
$$y_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_3) - y_1$$

- For any points A, B, C in E, A + (B + C) = (A + B) + C holds. (Associativity)
- For any integer n, we define nA by nA = A + A + ... + A (n times), where A is in E.

ECDSA signature

ECDSA Keygen

- 1. G <-- Generator of the elliptic-curve group
- 2. n <-- Order of the group i.e. n*G--> 0 (identity)
- 3. q <-- private key
- 4. R=q*G <-- public-key
- 5. m <-- message to send

ECDSA Verification

- 1. u_1<-- z*s^1
- 2. v_1 <-- r*s^1
- 3. $x \leftarrow u_1 * G + u_2 * R$
- 4. Accept if r equals x

ECDSA Signature

- 1. $z \leftarrow Hash(m)$ take z = m for simplicity
- 2. k <-- random [1,n]
- 3. r <-- k*G
- 4. $s \leftarrow k^1 (z + r^*q)$
- 5. $(x_1, y_1) = (r,s)$ is a signature of m

ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

Correctness:

$$S = u_1G + u_2R$$

$$= u_1G + u_2 \cdot qG$$

$$= (u_1 + u_2 \cdot q)G$$

$$= (z \cdot s^{-1} + r \cdot s^{-1} \cdot q)G$$

$$= (z + r \cdot q) \cdot s^{-1}G$$

$$= (z + r \cdot q) \cdot (k \cdot (z + r \cdot q)^{-1})G$$

$$= kG$$

If, $S = (x_1, y_1)$, r should be x_1 .

Examples

- Sony's PS3 hack
 - https://medium.com/asecuritysite-when-bob-met-alice/not-playing-randomly-the-sony-ps3-and-bitcoin-crypto-hacks-c1fe92bea9bc
- K is not only secret but chosen randomly for each signature
- Keeping k constant leaks the long-term signing-key
- Should be chosen from a good-quality RNG
- After seeing some signatures secret-key can be leaked
- Bitcoin wallets on Android OS
 - https://bitcoin.org/en/alert/2013-08-11-android,
 - https://par.nsf.gov/servlets/purl/10174436
- Deterministic ECDSA: k is derived from the message and private-key

- Lamport one time signature scheme
- KeyGen :

$$\mathsf{sk} = \left(\begin{array}{c} \mathsf{x_1}^0 \,, \mathsf{x_2}^0 \,, \mathsf{x_3}^0, \dots, \mathsf{x_n}^0 \\ \\ \mathsf{x_1}^1 \,, \mathsf{x_2}^1 \,, \mathsf{x_3}^1, \dots, \mathsf{x_n}^1 \end{array} \right) \, x_i^j \in_{\$} \{0, 1\}^n$$

$$\mathsf{pk} = \left(\begin{array}{c} \mathsf{y_1}^0 \,,\, \mathsf{y_2}^0 \,\,,\, \mathsf{y_3}^0, \dots \dots \,,\, \mathsf{y_n}^0 \\ \\ \mathsf{y_1}^1 \,,\, \mathsf{y_2}^1 \,\,,\, \mathsf{y_3}^1, \dots \dots \,,\, \mathsf{y_n}^1 \end{array}\right) \, y_i^j = h(x_i^j), \,\, j = \{0,1\}, i = [1,n]$$

- Sizes:
 - sk: 256 x 256 x 2 = 128 Kbits
 - pk : 256 x 256 x 2 = 128 Kbits

- Signing:
 - Hash message $h(m)=b_1b_2b_3....b_n$
 - Output signature as: x_1^{b1} , x_2^{b2} , x_3^{b3} , ..., x_n^{bn}
 - Shows part of the secret key
 - Example for h(m) = 0100.....1

signature =
$$\begin{bmatrix} x_1^0, x_2^0 & x_3^0, \dots, x_n^0 \\ x_1^1, x_2^1, x_3^1, \dots, x_n^1 \end{bmatrix}$$

- Sizes:
 - signature : 256 x 256 = 64 Kbits

- Verification
 - Hash message $h(m)=b_1b_2b_3....b_n$
 - For i= 1 to n check
 - $h(Signature_{bi}) \stackrel{?}{=} y_i^{bi}$

- Security is guaranteed by the security of the hash function
- Forgery or secret-key recovery both requires inverting the hash function

- Huge key-sizes
- Can be used only once
- Post-quantum secure
 - RSA and ECDSA are not
- Improvement (extra reading):
 - Merkle-Lamport signatures (Merkle, Ralph (1979). Secrecy, authentication and public key systems)
 - SPHINCS signature (https://sphincs.org/resources.html)

Further reading

- 1. Cryptography: An Introduction. Nigel P Smart
- 2. Cryptography: Theory and practice. Douglas R Stinson

The end!!