No se permite el uso de ningún tipo de material.

Todas las respuestas deben estar justificadas.

Ejercicio 1. (2 puntos) Sean $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ y $a \in \mathbb{R}$ un punto de acumulación de A. Supongamos que se cumple la siguiente propiedad: para toda sucesión $(x_n) \subset A - \{a\}$ tal que $\lim_n x_n = a$ se verifica que $\lim_n f(x_n) = l \in \mathbb{R}$. Demostrar que $\lim_{x \to a} f(x) = l$.

Ejercicio 2. (2 puntos) Estudiar la continuidad y la derivabilidad en \mathbb{R} de la función

$$f(x) = \frac{x}{e^{|x|}}.$$

Estudiar también la continuidad de la función derivada f'(x).

Ejercicio 3. (2 puntos) Sea $f:[0,+\infty)\to[0,+\infty)$ la función definida para cada $x\geq 0$ por

$$f(x) = (e^x - 1)^{1/2}.$$

- a) ξ Es f inyectiva? ξ Es f sobreyectiva?
- b) Demostrar que f es invertible en un entorno de $x = \log 2$ y calcular la derivada de su inversa en $f(\log 2)$. ("log" es el logaritmo neperiano.)
- c) ¿Es compacto el conjunto $\{x \in [0, \log 10] : f(x) \ge 1\}$?

Ejercicio 4. (2 puntos) Encontrar los valores de k para los que la función

$$f(x) = x^3 - 3x + k$$

tiene una única raíz en el intervalo abierto (-1,1).

Ejercicio 5. (2 puntos)

- a) Definir punto de aglomeración de una sucesión de números reales.
- b) Calcular todos los puntos de aglomeración de la sucesión (a_n) definida por

$$a_n = \left(1 + \frac{1}{n}\right) + (-1)^n \left(1 - \frac{3}{n}\right)$$
 para $n \ge 1$.

c) Calcular los límites superior e inferior de la anterior sucesión (a_n) .

Tiempo: 2 horas