Significance of Commuting Operators

We showed in the lecture that if 2 operators shared a complete set of eigenfunctions, i.e. if every wavefunction can be written as a linear combination of functions which are eigenfunctions of both operators, then the two operators will commute:

$$\left[\hat{A},\hat{B}\right]\Psi=0$$
 for any function Ψ

The significance of the two operators sharing such a set of eigenfunctions is that it is possible to know precise values for both observables at the same time.

What we did not show was the converse: the fact that the two operators commute means that they must have a set of common eigenfunctions. The argument is slightly more subtle than the previous one

Consider two commuting operators \hat{A} and \hat{B} . Let \hat{A} have a complete set of eigenfunctions ψ_n . Now let us evaluate the commutator applied to one of these eigenfunctions:

$$\begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \psi_n = \hat{A}\hat{B}\psi_n - \hat{B}\hat{A}\psi_n = 0$$

$$\therefore \hat{A}\hat{B}\psi_n = \hat{B}\hat{A}\psi_n$$

$$\hat{A}\left(\hat{B}\psi_n\right) = a_n\hat{B}\psi_n$$

Therefore $\hat{B}\psi_n$ is an eigenfunction of \hat{A} with eigenvalue a_n . There are now 2 cases we should consider:

1. The eigenfunctions ψ_n of \hat{A} are non-degenerate, i.e. all of the eigenvalues are different. In this case it follows that since $\hat{B}\psi_n$ is an eigenfunction of \hat{A} with the same eigenvalue, a_n , as ψ_n , $\hat{B}\psi_n$ must be the same eigenfunction as ψ_n itself. However, it could be ψ_n multiplied by a constant, as that would not affect the eigenvalue equation. So in general:

$$\hat{B}\psi_n = \text{constant} \times \psi_n$$

Thus ψ_n is also an eigenfunction of \hat{B} , and so the operators \hat{A} and \hat{B} do have a set of common eigenfunctions.

2. Some of the eigenfunctions ψ_n are degenerate, i.e. have same eigenvalue.

Let us say that ψ_j and ψ_k have the same eigenvalue, a:

$$\begin{array}{rcl}
\hat{A}\psi_j & = & a\psi_j \\
\hat{A}\psi_k & = & a\psi_k
\end{array}$$

Then the statement

$$\hat{A}\left(\hat{B}\psi_{j}\right) = a\hat{B}\psi_{j}$$

does not imply that $\hat{B}\psi_j = \text{constant} \times \psi_j$, i.e. ψ_j need not be an eigenfunction of \hat{B} . What it does mean is

$$\hat{B}\psi_j = c_j\psi_j + c_k\psi_k$$

i.e. that $\hat{B}\psi_j$ must be a linear combination of the eigenfunctions of \hat{A} with this eigenvalue. However, since any linear combination of these eigenfunctions is an equally good eigenfunction of \hat{A} , we may simply find the combinations of ψ_j and ψ_k which are eigenfunctions of \hat{B} and use these as eigenfunctions of \hat{A} in place of ψ_j and ψ_k .

Hence the fact that the two operators commute does indeed mean that the eigenfunctions of one operator are eigenfunctions of the other, i.e. that they share a set of eigenfunctions.