Developing a ChatGPT-like Vision-Language Model for Breast Cancer Malignancy Prediction

Capstone Project | DSCI 592

Team Members: Aditya Sinha, Ram Kishore, Sanskruti Chavanke, Samriddhi Singh, Sean Smyth, David Lin

Introduction

- ❖ Build a Vision-Language Model (VLM) based on the CLIP architecture tailored for breast cancer malignancy prediction.
- Integrate multimodal data (mammogram images + clinical text) into a shared latent space.
- Improve diagnostic accuracy for early detection of malignant masses.
- ❖ Develop a lightweight, deployable model for potential real-time clinical use.

Dataset Overview

- ❖ Dataset: CBIS-DDSM (Curated Breast Imaging Subset of the DDSM).
- ❖ Images: Over 3,000 mammograms with labels (Benign / Malignant).
- **Metadata:** Includes image resolution, body part examined, modality type, and clinical notes.
- ❖ Image Types: Cropped images, full mammograms, and ROI masks.
- ❖ Goal: Preprocess and balance dataset for robust model training.

Dataset Cleaning & Preprocessing

- **Loaded multiple CSVs** for mass and calcification case descriptions from train and test datasets.
- Merged datasets and identified key columns such as mass shape, assessment, pathology, abnormality type, and breast density.
- Handled missing values across columns, particularly in breast density and subtlety.
- Standardized and simplified rare or composite mass shape categories (e.g., grouping hybrid labels like ROUND-OVAL, LOBULATED-IRREGULAR).
- Generated descriptive statistics to understand distributions of assessment, subtlety, and breast density.

- Created bar plots to visualize:
 - Mass shape distribution.
 - ➤ Abnormal vs. normal case percentages (showing ~80% abnormal).
 - > Relationships between mass shape and pathology (malignant, benign).
- These insights helped **identify dominant patterns**, such as IRREGULAR,

OVAL, and LOBULATED being the most frequent mass shapes, with IRREGULAR showing higher malignancy rates.

mass shape	
IRREGULAR	464
0VAL	412
LOBULATED	384
ROUND	164
ARCHITECTURAL_DISTORTION	103
IRREGULAR-ARCHITECTURAL_DISTORTION	52
LYMPH_NODE	35
FOCAL_ASYMMETRIC_DENSITY	25
ASYMMETRIC_BREAST_TISSUE	25
LOBULATED-IRREGULAR	6
OVAL-LYMPH_NODE	6
LOBULATED-LYMPH_NODE	4
ROUND-OVAL	3
LOBULATED-ARCHITECTURAL_DISTORTION	2
IRREGULAR-FOCAL_ASYMMETRIC_DENSITY	2
LOBULATED-OVAL	1
ROUND-IRREGULAR-ARCHITECTURAL_DISTORTION	1
ROUND-LOBULATED	1
0VAL-L0BULATED	1
IRREGULAR-ASYMMETRIC_BREAST_TISSUE	1
Name: count, dtype: int64	

Assessment values (which may reflect severity or diagnostic confidence) have a **mean of 3.4**, indicating generally moderate to high suspicion levels in abnormal cases.

Subtlety scores, with a mean around 3.6, suggest that most abnormalities are **reasonably visible**, though there's a wide spread (o-5).

Breast density ranges from 1 to 4, with the median at 2 — indicating most patients fall into scattered or heterogeneously dense tissue categories.

A small number of missing values are present in breast_density, which may need imputation or filtering.

	breast density	abnormality id	assessment	subtlety	breast_density
count	1872.000000	3568.000000	3568.000000	3568.000000	1696.000000
mean	2.669338	1.252242	3.396581	3.647422	2.246462
std	0.932322	0.705416	1.314327	1.182583	0.874071
min	0.000000	1.000000	0.000000	0.000000	1.000000
25%	2.000000	1.000000	3.000000	3.000000	2.000000
50%	3.000000	1.000000	4.000000	4.000000	2.000000
75%	3.000000	1.000000	4.000000	5.000000	3.000000
max	4.000000	7.000000	5.000000	5.000000	4.000000

Image Types Analyzed: Dataset includes three major types:

- Cropped images
- ROI (Region of Interest) mask images
- Full mammogram images
 - → Cropped images are the most common , followed by ROI and full views.

Width and Height Distributions:

- Width and height values are **bimodally distributed**, suggesting distinct image types or resolutions.
- Majority of images cluster around two resolution zones.

Aspect Ratio Insights:

- Density scatter plot shows **distinct bands** in resolution clusters, indicating consistent acquisition settings for subsets of the data.
- Applied Gaussian KDE for enhanced visualization of pixel density regions.

Sample Image Visualization:

• Sampled and displayed grayscale mammogram to visually inspect image quality and tissue detail.

Preliminary Results

Mass Shape Distribution :

The majority of abnormal findings are associated with **irregular (464 cases)**, **oval (412)**, and **lobulated (384)** shapes. These categories dominate the dataset and may carry higher predictive value.

Assessment & Subtlety Scores:

The average **assessment score is ~3.4** and **subtlety ~3.6**, suggesting that most abnormalities are moderately to highly suspicious and visibly detectable.

Breast Density Patterns:

Most patients have breast densities between 2 and 3, indicating tissue that is not extremely dense but may still obscure findings in some cases.

Rare & Composite Labels:

A significant number of **low-frequency hybrid mass shapes** were observed (e.g., "ROUND-OVAL"), which may require grouping to reduce noise in predictive modeling.

How Our Analysis Supports Modeling

Mass Shape Insights

 \rightarrow Identified dominant mass shapes (irregular, oval, lobulated) to prioritize during model training and balance the dataset classes.

Label Cleaning and Standardization

ightarrow Grouped rare and hybrid labels to **reduce label noise**, helping the model learn **clearer, more generalizable patterns**.

Assessment and Subtlety Scores

→ Can be incorporated as **auxiliary features** alongside image data to **enhance malignancy prediction** accuracy.

Breast Density Information

→ Understanding tissue density helps the model account for **image quality variations** and **potential misclassifications** .

Data Quality Improvements

→ Removing missing values and normalizing image sizes creates a **clean, high-quality input pipeline** crucial for fine-tuning the Vision-Language Model (VLM).

Strategic Prompt Design

→ Clinical labels (e.g., "A photo of an irregular mass with subtle features") crafted from analysis can strengthen text encoder input during CLIP training.

Machine Learning Models Planned

- Primary Approach: Vision-Language Model based on CLIP (Contrastive Language-Image Pretraining).
- **Encoders Used:** Vision Transformer (ViT) for images and Transformer-based text encoder.

Purpose of Models:

- To fuse visual and textual clinical data for improved malignancy prediction.
- To reduce dependence on manual radiologist interpretation by automating feature extraction.

Next Steps

Model Preparation

- Load pre-trained **CLIP** model components (image encoder and text encoder).
- Freeze encoders and design new Fully Connected (FC) fusion layers
 domain-specific feature learning.

Training Pipeline Development

- Train the FC layers using mammogram-text pair similarities.
- Validate performance using metrics such as accuracy, precision, and recall.

Deployment Phase Setup

• Configure inference pipeline: **only use image encoder + trained FC layers** for malignancy prediction (benign vs. malignant).

GitHub Repository Overview

- Acepository Link: github.com/AdityaDREXEL/CLIP_for_Breast_Cancer
- The repository is public and actively maintained by the team.
- The repository will be updated with model outputs, application interface code, and final documentation.

Thank You!

We are open to questions