will.v

2012年2月 日 二三四 五六 29 30 31 1 2 3 4 9 10 8 11 6 13 14 15 16 17 12 18 20 21 22 23 24 19 25 26 27 28 29 1 2 3 6 7 8 9 10 4 5

昵称:will.v 园龄:3年7个月 粉丝:5 关注:3 +加关注

搜索

找找看

常用链接

我的随笔

我的评论

我的参与 最新评论

我的标签

更多链接

我的标签

H.264 笔记 inter 帧间预测(1)

H.264 笔记 intra 帧内预测(1)

H.264 笔记 概要(1)

H.264 编码 Encoder 变换 量化(1)

随笔档案

2012年3月 (1)

2012年2月 (3)

阅读排行榜

- 1. H.264 学习笔记(四)(1542)
- 2. H.264 学习笔记(三)(412)
- 3. H.264 学习笔记 (一) (362)
- 4. H.264 学习笔记(二)(224)

评论排行榜

1. H.264 学习笔记(四)(3)

推荐排行榜

1. H.264 学习笔记(一)(1)

博客园 首页 新随笔 联系 管理 订阅

- 1、 H.264 帧间预测是利用已编码视频帧/场和基于块的运动补偿的预测模式。
- 2、 搜索算法用来找到合适的运动矢量。
- 3、 首先根据当前帧和参考帧求出宏快(或者子块)的MV,MV本来足够说明最佳匹配块的位置,但是对MV的编码需要较大的数据量; 根据相邻块之间的较强相关性,相邻块的MV之间的残差较小,这样,就可以利用以前块的MV来预测当前的MV,二者差值为MVD=MV-MVp,MVD相对来讲数据量较小。通过MV找到当前块的最佳匹配块,这些最佳匹配块重建成为预测帧,把当前帧和预测帧的差值进行变换和量化。

Inter Prediction

- 4、 mvA: left块; mvB: up块; mvC: up-right块; mvD: up-left块。
- 5、 参考帧的颗粒度只到 8*8.即:8*8以下的分割所用的参考帧相同。
- 6、 MV预测过程:

H.264 学习笔记(三)

1) 确定相邻块 MV: 预测以宏块分割(或亚宏块分割)如果宏块存在亚分割)为单位,同一个宏块分割(或亚宏块分割)内所有 4*4 块 MV 预测值相同。以每个宏块分割(或亚宏块分割)的左上角像素 pixel1 和右上角像素 pixel2 为参考点来确定相邻块则:

pixel1 左侧相邻像素所在 4*4 块为当前宏块分割(或亚宏块分割)的相邻块 A pixel1 上方相邻像素所在 4*4 块为当前宏块分割(或亚宏块分割)的相邻块 B pixel2 右上对角线像素所在 4*4 块为当前宏块分割(或亚宏块分割)的相邻块 C pixel1 左上对角线像素所在 4*4 块为当前宏块分割(或亚宏块分割)的相邻块 D

图2-1

以最复杂的 8*8 宏块分割类型为例(此时只存在亚宏块分割),分析如下:

假设图中黑色框表示宏块、每个绿色框表示一个 4*4 块、每个红色框表示一个 8*8 块。当前宏块的宏块分割模式为 8*8(如图中红色 线),其亚宏块分割模式分别为:第一个 8*8 块为 8*8,第二个 8*8 块为 4*4(如图中蓝色线),第三个 8*8 块为 4*8(如图中蓝色线), 第四个 8*8 块为 8*4(如图中蓝色线)。则按照上述方法来确定相邻块的方法如下:

第一个预测对象为第一个 8*8 块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 7 号 4*4 块,B 为 2 号 4*4 块,C 为 4 号 4*4 块,D 为 1 号 4*4 块。9、14、15 与 8 具有相同 MV 预测值

第二个预测对象为第二个 8*8 块的第一个 4*4 块,即 10 号块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 9 号 4*4块,B 为 4 号4*4块,C 为 5 号 4*4 块,D 为 3 号 4*4 块

第三个预测对象为第二个 8*8 块的第二个 4*4 块,即 11 号块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 10 号 4*4块,B 为 5 号4*4块,C 为 6 号 4*4 块,D 为 4 号 4*4 块

第四个预测对象为第二个 8*8 块的第三个 4*4 块,即 16 号块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 15 号 4*4块,B 为 10 号4*4块,C 为 11 号 4*4 块,D 为 9 号 4*4 块

第五个预测对象为第二个 8*8 块的第四个 4*4 块,即 17 号块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 16 号 4*4块,B 为 11 号4*4块,C 为 12 号 4*4 块,D 为 10 号 4*4 块

第六个预测对象为第三个 8*8 块的第一个 4*8 块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 19 号 4*4 块,B 为 14 号 4*4 块,C 为 15 号 4*4 块,D 为 13 号 4*4 块。26 与 20 具有相同 MV 预测值

第七个预测对象为第三个 8*8 块的第二个 4*8 块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 20 号 4*4 块,B 为 15 号 4*4 块,C 为 16 号 4*4 块,D 为 14 号 4*4 块。27 与 21 具有相同 MV 预测值

第八个预测对象为第四个 8*8 块的第一个 8*4 块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 21 号 4*4 块,B 为 16 号 4*4 块,C 为 18 号 4*4 块,D 为 15 号 4*4 块。23 与 22 具有相同 MV 预测值

第九个预测对象为第四个 8*8 块的第二个 8*4 块,以其左上角像素 pixel1 和右上角像素 pixel2 为参考点,则:A 为 27 号 4*4 块,B 为

22 号 4*4 块, C 为 24 号 4*4 块, D 为 21 号 4*4 块。29 与 28 具有相同 MV 预测值

- 2) 确定 A、B、C 的可用性:根据 A、B、C 所在宏块是否存在或者是否允许参与预测来判断。如果 C 不可用,采用 D 代替 C。
- (1)、如果 A、B、C 三个参考块中只有一个与当前预测对象为同一参考帧 , 则选取该参考块的 MV 作为最终 MV 预测值。
- (2)、当前宏块是否为 8*16 或者 16*8 分割:
- ①、如果当前宏块为 8*16 分割类型:对于左边 8*16 分割,如果 A 与当前分割为同一参考帧,则采用A的 MV 为该分割的最终 MV 预测值。对于右边 8*16 分割,如果 C 与当前分割为同一参考帧,则采用 C 的 MV 为该分割的最终 MV 预测值。
- ②、如果当前宏块为 16*8 分割类型:对于上边 16*8 分割,如果 B 与当前分割为同一参考帧,则采用 B 的 MV 为该分割的最终 MV 预测值。对于下边 16*8 分割,如果 A 与当前分割为同一参考帧,则采用 A 的 MV 为该分割的最终 MV 预测值。
- (3)、其余情况并且 B、C 中有一个可用或者两者都可用,则采用中值预测(取 A、B、C 三者中MV的中值为最终 MV 预测值)。
- (4)、其余情况并且 B、C 皆不可用,则采用 A的 MV 为最终 MV 预测值。
- 4) 注意:
- (1)、对于不可用的相邻块,其 MV 仍然可能参与 MV 预测,但其值为 0。例如:A 不可用,B、C 可用,则最终可能仍然是在 A、B、C 中取中值,但此时 A 的 MV 为 0:
- (2)、对于不可用的相邻块,其参考帧索引被设置为-1,即必然与当前预测对象非同一参考帧;
- 7、 菱形算法(DS): DS算法采用两种两种搜索模板,分别是有9个监测点的大模板和有5个监测点的小模板。大菱形搜索模式由一个中心点和它周围的8个搜索点构成,步长为2。这9个点组成一个菱形,小菱形搜索模式由5个搜索点构成,步长为1。搜索步骤:第1步,最初的大菱形搜索模式以搜索窗口中心为中心点,计算大菱形的9个搜索点的误差函数。若误差函数最小的搜索点位于中心,则跳到第3步;否则跳到第2步。第2步,以第1步搜索的9个点中最小点为大菱形的中心点,计算大菱形的9个搜索点的误差函数。若误差函数最小的搜索点位于中心,则跳到第3步;否则,跳到第2步。第3步,以上一步搜索的9个点中的最小点为中心点,计算小菱形的5个点的误差函数。误差函数最小的块为最佳匹配快。
- 8、 EPZS算法:
- ① 使用多个预测运动矢量,其中包括中值运动矢量、空域邻块运动矢量、时域(前一帧)对应块运动矢量...并记录此时的最优点和次优点。
- ② 从最优点开始,使用菱形模板反复搜索。
- ③ 如果有必要的话,在第一步中的次优点开始搜索,反复搜索。

以上每一步中都采用门限值进行判断,如果小于某门限,则停止搜索以

减小运算量。

- 9、 代码中,mv值是实际值的四倍,后两位分别用来标示是否使用1/2精度或1/4精度。
- 10、 亚像素位置的亮度和色度像素并不存在于参考图像中,需利用邻近已编码点进行内插而得。如果MV 的垂直和水平分量为整数,参考块相应像素实际存在。如果其中一个或两个为分数,预测像素通过参考帧中相应像素内插获得。

图2-2

内插像素生成:

首先生成参考图像亮度成分半像素像素。半像素点(如b,h,m)通过对相应整像素点进行6 抽头滤波得出,权重为(1/32 ,-5/32 ,5/8, 5/8, -5/32 , 1/32)。b 计算如下:

类似的,h 由A、C、G、M、R、T 滤波得出。一旦邻近(垂直或水平方向)整像素点的所有像素都计算出,剩余的半像素点便可以通过对 6 个垂直或水平方向的半像素点滤波而得。例如,j 由cc, dd, h,m,ee,ff 滤波得出。

图2-3

半像素点计算出来以后,1/4 像素点就可通过线性内插得出,如图6.23 所示。1/4 像素点(如a,c,i,k,d,f,n,q)由邻近像素内插而得,如:剩余1/4 像素点(p,r)由一对对角半像素点线性内插得出。如,e 由b 和b 获得。

11、 色度像素需要1/8 精度地MV,也同样通过整像素地线性内插得出,如图2-4所示:

图2-4

其中,

- 12、 选最佳MV时,用SAD与阈值比较,来判断是否提前退出,cost=SAD值+ m_lambda_me *mvd bits的cost;mvd为当前mv-mvp。
- 13、 选出最佳MV后,对其进行菱形搜索,此时cost算法为cost1=SAD值+ lambda*mv的cost。返回的cost2=cost1- m_lambda_me * mvd hits的cost.

Cost3=dist (预测块与原块) + m_lambda_motion * costMbMotion。最终cost取cost2与cost3中的最小值。

标签: H.264 笔记 inter 帧间预测

«上一篇:H.264 学习笔记(二) »下一篇:H.264 学习笔记(四)

posted @ 2012-02-24 20:45 will.v 阅读(413) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请 登录 或 注册, 访问网站首页。

【推荐】50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库 【推荐】免费集成极光推送SDK,让APP实现高安全、高并发的推送功能

【专享】阿里云9折优惠码:bky758