6CS030 Big Data

Steps in the **Data Science Process**

- Acquiring data
- Exploring and pre-processing data
- Analyzing data
- Reporting insights and taking action

Data Science

- When handling Big Data you need "Process" or "Framework" to work with
- A data-handling lifecycle
- Various approaches exist:
 - Team Data Science Lifecycle (TDSL)
 - Cross-industry standard process for data mining (CRISP-DM)
 - Knowledge Discovery in Databases (KDD)
 - AWS Data Pipeline

Team Data Science Lifecycle

The following diagram provides a grid view of the tasks (in blue) and artifacts (in green) associated with each stage of the lifecycle (on the horizontal axis) for these roles (on the vertical axis).

Cross-industry standard process for

data mining (CRISP-DM)

Click Here

Knowledge Discovery in Database

The term **Knowledge Discovery in Databases**, or **KDD** for short, refers to the broad process of finding knowledge in data, and emphasizes the "high-level" application of particular data mining methods. It is of interest to researchers in machine learning, pattern recognition, databases, statistics, artificial intelligence, knowledge acquisition for expert systems, and data visualization.

The Data Handling Cycle - TES

What do your results show, is it what you thought would happen?

evaluate results

1.
Specifying and planning

What's your question, how will you answer it?
Write an HYPOTHESIS

4.
Interpreting and discussing

2. Collecting data

Show resworkults in a table or graph, out some averages

3.Processing and representing

Questionnaires filled in, results collected etc.

Data Handling Framework

- Many big data analytics lifecycles or workflows can be found
- The following steps are fairly typical of what is suggested:
 - Acquire data
 - Prepare or Process data
 - Analyse data
 - Report or visualise data
 - Act
- All require some sort of question/business case to be answered
- Important to track the provenance throughout the workflow
- May have to justify decisions, so need to be able to reproduce the data processes undertaken.

Step 1: Acquiring the Data

This involves:

- Identifying suitable data sets
- Where is the data?
 - Can come from many places, local and remote
 - Can be many varieties: structured and unstructured
 - Can have different velocities
- Acquire all the available data

If some left out may lead to incorrect conclusions

- Querying the data

SQL and query browsers help examine the data

Data comes from many places Every minute:

- 204 million emails are sent
- 200,000 photos are uploaded and
- 1.8 million likes are generated on Facebook.
- On YouTube, 1.3 million videos are viewed and 72 hours of video are uploaded

And many ways to access it!

Found Data Examples

Name	URL				
ONS	https://www.ons.gov.uk				
EU Stats	http://ec.europa.eu/eurostat				
European commission stats	http://ec.europa.eu/eurostat/data/statistics-a-z/abc				
UK Government	https://www.gov.uk/government/statistics				
US Government	https://www.usa.gov/statistics				
Edinburgh University data share	http://datashare.is.ed.ac.uk/				
List of high quality data sets	https://github.com/caesar0301/awesome-public-datasets				
AW public data sets	https://aws.amazon.com/datasets/				
Comparative political data set	Www.cpds-data.org House prices in the three months to October 2018				
Stanford - Computational Journalism lab	http://cjlab.stanford.edu/ were 1.5% higher than in the same three months a				
KDNuggets – data sets for mining/discovery	www.kdnuggets.com/datasets/				
UK Healthcare	http://www.hscic.gov.uk/datasets				
Halifax house prices National Parks produce 22% price premium	http://www.lloydsbankinggroup.com/media/economic-insight/halifax-house-price-index/				
Nationwide house prices	http://www.nationwide.co.uk/about/house-price-index/headlines				
Historical weather	http://www.wunderground.com/history				

Analysed Data Examples

Website	URL
Fact checking E.g., BBC QT Under 30s special	https://fullfact.org/ https://fullfact.org/election-2019/question-time-under-30s-fact-checked/
Mapping inequalities in England	https://theconversation.com/heres-what-we-learned-from-mapping-out-englands-inequalities-48562
How to know if where you live is "up and coming"	https://medium.com/@Sam_Floy/how-to-know-if-where-you-live-is-up-and-coming-fried-chicken-vs-coffee-shops-546080119f98
Find meaning in 40 years of UK political debate	https://thestack.com/iot/2015/10/14/big-data-40-years-uk-parliament-debate-complex-politics/
Evolution of US Girls Names over 100 years	https://youtu.be/qVh2Qw5KSFg
Evolution of US Boys names	https://www.youtube.com/watch?v=WQv99sEPDsw
Popular UK baby names	http://www.babycentre.co.uk/popular-baby-names
Nuclear Detonations from 1945	https://cdn.theguardian.tv/mainwebsite/2015/08/14/150813Detonations_FromGAus-16x9.mp4
World's best footballers (2015)	http://www.theguardian.com/football/datablog/2015/dec/24/worlds-best-footballers-and-where-they-play-the-numbers-crunched

Measurement Scales

Once the data is acquired you need to know what sort of data types it contains, since this will affect what analysis you can do

For any statistical analysis it is important to know about the different scales of measurement:

- INTERVAL
 Scale with a fixed and defined interval e.g. temperature or time.
- ORDINAL
 Scale for ordering observations from low to high, so has some kind of order. E.g. a questionnaire with a scale 1-5 of how happy you are with a product.
- Might not be a standardized value for the difference from one score to another. E.g., position in a running race(1st, 2nd, 3rd etc.). The difference between 1st and 2nd may be different to the difference between 2nd and 3rd
- **NOMINAL with order**: Scale for grouping into categories with order, e.g. mild, moderate or severe. This can be difficult to separate from ordinal.
- NOMINAL without order: Scale for grouping into unique categories, e.g. eye colour, or gender.
- DICHOTOMOUS: As for nominal but two categories only, e.g. driving test has pass/fail.

Measurement Scales

It is also important to know whether the data is:

CATEGORICAL (quantitative):

- Data that represent categories, such as dichotomous (two categories) and nominal (more than two categories)
- Observations are collectively called categorical.

NUMERICAL (qualitative):

• Data that are counted or measured using a numerically defined method are called numerical.

Step 2a: Prepare the Data

Once you have the data, you need to understand it before building a model with it.

Involves two sub-steps:

- Exploring the data: The goal is to understand your data
 - What it means
 - Its quality and format
- Carry out some preliminary analysis: Look at some samples of the data to try and understand it
 - Look for
 - Trends
 - Correlations
 - Outliers
 - Carry out some statistics

Step 2a: Prepare the Data

Statistics include:

- Mean: average score of the data
- Mode: values that occur most frequently in the data set
- Median: middle value in a data set
- Range: measures the difference between the largest and smallest values
- Standard deviation: a measure used to quantify the amount of variation in a set of data values
- Count: count number of values
- Sum: sum total of values in a dataset
- Min and Max: minimum and maximum values
- ✓ These can help identify if there is something wrong in the data.
- ✓ For example, negative numbers or percentages greater than 100 for exam scores
- ✓ Will be used later too for more complex analysis.
- ✓ Initial visualisations can help.

Heat Maps/Infographics

Can quickly show where the hotspots are

E.g., English Index of Multiple Deprivation (IMD) 2015

Indices of Deprivation 2015

Wolverhampton

Indices of Deprivation 2015

% of LSOAs by Decile

1 = most deprived, 10 = least deprived

Telford and Wrekin

Histogram

Can show the distribution of the data and any skewness or unusual dispersion

Given this set of student results, can you predict their overall performance?

1	A	В
1	Student Name	Result
2	Student1	0
3	Student2	50
4	Student3	72
5	Student4	78
6	Student5	22
7	Student6	81
8	Student7	40
9	Student8	40
10	Student9	62
11	Student10	62
12	Student11	54
13	Student12	90
14	Student13	53
15	Student14	60
16	Student15	90
17	Student16	54
18	Student17	57
19	Student18	0
20	Student19	17
21	Student20	48
22	Student21	0
23	Student22	86
24	Student23	83
25	Student24	70
26	Student25	45
27	Student26	67
28	Student27	61
29	Student28	40
30	Student30	67
31	Student31	67
32	Student32	65

Does this make it easier?

Student Results

Boxplots

Another type of plot for showing data distribution
Useful for identifying outliers and comparing distributions
Excel calls these *Box and Whisker* charts

Line graphs

Useful for seeing how values in the data changes over time.

Spikes in the data are also easy to spot

For example data on bats:

Species	Year	Bat	Bechstein's Bat	Brandt's Bat		Common Pipistrelle	Daubenton's Bat		Pared	Lesser Horseshoe Bat	Lesse Noctu	100	Bechstein's Bat Brandt's Bat			d roost bats 19 up 2: Myotis ge				
)	1996	NaN	NaN	1	10	28	3	NaN	NaN	149	NaN		Daubenton's Bat Natterer's Bat							
ı	1997	NaN	NaN	2	12	123	6	11	NaN	50	NaN		Whiskered Bat Whiskered/Brandt's Bat							
2	1998	1	NaN	1	9	195	5	10	NaN	63	NaN		= = Willskeledblandes bat							
1	1999	3	NaN	1	11	238	7	11	NaN	121	NaN	80								
	2000	1	1	1	14	210	7	12	NaN	105	NaN					<i>S</i> .				
	2001	2	1	1	60	158	3	17	NaN	62	NaN					$-/N_{\rm c}$		\	1	
	2002	3	NaN	2	85	257	7	20	NaN	126	NaN				78.	f = S		λ	$A(\lambda)$	
	2003	2	NaN	1	84	256	8	15	NaN	127	NaN	60			1000		18.10	A south	\	100
	2004	2	1	1	94	309	6	16	NaN	140	NaN g	-			1		•	•	``	, e e e e
	2005	2	3	2	113	316	6	27	NaN	175	NaN §									
0	2006	2	2	5	110	392	4	31	NaN	160	NaN g			- 1						
1	2007	2	2	2	124	369	9	27	NaN	167	1 adin		i.	1						
2	2008	1	2	3	146	365	13	26	NaN	151	3	40	į.	1						
13	2009	1	NaN	4	136	398	11	25	NaN	157	2		1	V = I						
4	2010	2	NaN	3	142	394	8	31	NaN	185	2		1	$\lambda = I$						
15	2011	3	NaN	4	147	368	12	28	NaN	199	3			1 1						
16	2012	6	1	NaN	109	347	5	36	NaN	175	NaN			1 1						,
7	2013	4	1	3	115	327	9	36	1	238	NaN	20		11						
8	2014	12	1	4	107	285	9	38	3	233	NaN			1.7						

Scatter plots

Can show correlation between two variables

Is there any correlation between results and a student's age?

Correlation

Beware: correlation does not always imply causation!

Letters in Winning Word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

Step 2b: Prepare Data

After the exploratory analysis you need to prepare the data The raw data acquired is not usually in the format you want Integration

You may need to merge data from multiple sources
Are they all using the same formats, naming conventions?
E.g., date formats can vary in DBMSs:
Oracle's DD-MON-YY v's MySQL YYYY-MM-DD

Two main goals in data pre-processing:

- Clean the data to address data quality issues
- Transform the raw data to make it suitable for analysis

Step 2b: Pre-process the Data

Clean the data
Garbage In Garbage Out

Real-world data is messy!

Inconsistent values

Customer with 2 different addresses

Duplicate records

Customer with more than one record

Missing values

E.g., missing a customer's age which is needed for a demographic study

Invalid data

Postcode in the wrong format

Outliers

Values that are much higher/lower than expected

Step 2b: Prepare Data

You will have to decide and document whether to:

- Remove data with missing values
- Merge duplicate records
 Need to decide what to do if they have conflicting values?
 E.g., keep the latest value
- Generate best estimates for invalid values
 E.g., estimate a missing employee's age from their length of service
- Remove outliers
 Could be real values that were just extremes on occasions

Step 2b: Cleaning Data

Common types of data errors (Kim 2003):

Dirty data error	Description
Validity	Do values match constraints? Are values in range?
Accuracy	Are values accurate, e.g., compare to reference lookup? Correct spelling? Correct capitalisation?
Completeness	Are all mandatory fields present, that is, not null?
Consistency	Are the same type values in different cells in the same column, e.g., names, numbers?
Uniformity	Are formats the same for the same fields, e.g. dates? Is white space present? Are Units of Measurement the same?

Handling dirty data:

Approach	Outcome
Fix it	Replace incorrect value with correct value Insert missing values
Remove it	Delete value or group of values => impact?
Replace it	Put marker in dataset indicating it is an inappropriate value
Leave it	Note and accept any dirty data

Don't forget to document what has been added/deleted/changed

Step 2b: Cleaning Data

Below is a sample student data set for the fictitious Borchester University.

What issues are there with this data?

studentNo	studentName	Gender	DOB	avgMark
1234	Johnny Rick Philips	b	12-Jan-08	59
2345	Sheila Hebden Lloyd	f	22/04/1957	85
3355	Perks, Jamie	m	09/25/05	
4455	will grundy	m	23-Feb-81	105
6541	Madikane, Kate	F	02/08/1978	-55
		1		

Mixed case, inconsistent first and surname order

Inconsistent case, b = boy?

Inconsistent date formats

Percentages? Minus or >100 ok?

Step 2b: Prepare Data

- Knowledge about the application the data came from is important
 - How the data was collected; intended use
 - Called the domain knowledge
- The domain knowledge helps make informed decisions on how to handle incomplete or incorrect data
- For example, if there were no integrity checks, there is more likely to be rogue data
- Getting data into shape is called many things:
 - Data munging
 - Data wrangling
 - Data pre-processing
 - Data manipulation

Step 2b: Prepare Data – Operations

Types of operations include:

Dimensionality reduction E.g., change 3D model to 2D

Data manipulation

Shaping the data to fit new requirements

Filtering the data - may not need everything

Transformation

To reduce noise and variability

One example is aggregation.

This generally results in data with less variability.

For example, daily sales figures may have many peaks and troughs. Aggregating values to weekly or monthly sales figures will result in similar data

Step 2b: Prepare Data - Operations

Feature selection

- Remove redundant or unnecessary features
 Two features may be correlated, so one could be removed, such as VAT paid
- Combine features, such as adding salary and commission to create a total salary
- Creating new features, such as adding an applicant's education level to a loan approval

Scaling

- Involves changing the range of values to be between a specified range
- Done to avoid large values dominating the results

Step 3: Analyse the Data

Involves several steps

- Select analytical techniques
- Build models
 - This may need several iterations and involve going back to Steps 1 and 2
 - E.g., if need further data or need to package the data using a specific format
 - This involves taking the input data from the previous steps and generating an output model
- Validate Model

Step 3: Analyse the Data

Categories of Analysis Techniques

Classification

Goal: predict category

E.g., predict weather as sunny, rainy or cloudy

Regression

Goal: predict numerical value

E.g., predict price of a stock

Clustering

Goal: organise similar items into groups

E.g., organise customers to seniors, adults and teenagers

Association Analysis

Goal: find rules to capture associations between items

E.g., if you buy one item, what else might you buy

Graph Analytics

Goal: Use graph structures to find connections between entities

E.g., explore spread of a disease by analysing hospital records

Step 3: Analyse the Data

Before moving on you need to evaluate the results

For example,

- For classification and regression you could compare the predicted values against some correct values.
- For clustering do the groups make sense for the application?
- For association analysis and graph analysis, further investigation is needed to check whether the results are correct. E.g., does what your model predict actually happen?

Step 4: Communicate Results

- Evaluation of the analytical results
- Usually involves Visualisation techniques A picture is worth a 1000 words!
- Involves interpreting the results, summarising or visualising
- May need to acknowledge the source of data if the licence agreement requires this.

Various tools exists to help with the visualisation:

- Power BI
- Tableau
- Google Charts
- R and Python
- Many others.....

Step 5: Apply Results

There should be some purpose to the exercise

The main reason why data science is needed:

- Involves reporting insights from the analysis and determining actions
- May involve helping business needs
- Need to determine next steps:
 - Is extra analysis needed to yield better results?
 - Any data needs revisiting?
 - Any further opportunities to explore?

Remember: big data and data science are only useful if the insights can be turned into actions and the actions are carefully defined and evaluated.

Summary

This lecture has looked at a variety of techniques in the data science process:

Note: these steps should be an iterative process!