Dynamics 2

Fixed Axis Rotation & Moment of Inertia Theorems (Dynamics of Systems of Bodies)

Transformation Theorems for MMI

- Parallel Axis Theorem
 - applies to all rigid bodies
- Perpendicular Axis Theorem
 - applies only to thin bodies (plates/laminae)

Parallel Axis Theorem

- I_G is the moment of inertia of a body about an axis through G
- I_C is the moment of inertia about a parallel axis through some other point C of the body

$$I_C = I_G + Md^2$$

where M is the body mass and d is perpendicular distance between the parallel axes

 note that I_C ≥ I_G ie smallest moment of inertia is about G

Perpendicular Axis Theorem

- if O is any point
 - OX and OY are a pair of rectangular axes in the plane of the body
 - OZ is an axis perpendicular to the body
- then for O

$$I_Z = I_X + I_Y$$

what is the MMI of this bar about the axis through G

$$I_A = \frac{ML^2}{3}$$
 [about end A - derived previously]
$$I_A = I_G + M \left(\frac{L}{2}\right)^2$$

$$I_G = I_A - \frac{ML^2}{4} = \frac{ML^2}{12}$$

MMI of disc about a diameter

$$I_Z = \frac{1}{2}MR^2$$
 (about centre of disc – as proved)

$$I_Z = I_X + I_Y$$
 (\perp axes theorem)

MMI of disc about a diameter

$$I_Z = \frac{1}{2}MR^2$$
 (about centre of disc – as proved)

$$I_Z = I_X + I_Y$$
 (\perp axes theorem)

• then $I_X = I_Y$

MMI of disc about a diameter

$$I_Z = \frac{1}{2}MR^2$$
 (about centre of disc – as proved)

$$I_Z = I_X + I_Y$$
 (\perp axes theorem)

- then $I_X = I_Y$
- and hence $I_X = \frac{I_Z}{2} = \frac{1}{4}MR^2$

Radius of Gyration

- a frequently used concept
 - related to Moment of Inertia
- any Moment of Inertia can be written
 - (Mass of the Body) \times K^2
 - $I_0 = MK^2$
- K is an equivalent length quantity Radius of Gyration

Radius of Gyration - Disc

uniform disc of radius R about centre:

$$I_O = \frac{1}{2}MR^2$$

• The equivalent Radius of Gyration is then:

$$K = \frac{R}{\sqrt{2}}$$

- can be thought of as a concentrated mass M located distance K from axis
- K may often be given in data

Summary

- Parallel Axis Theorem
- Perpendicular Axis Theorem
- Radius of Gyration

Dynamics 2

Fixed Axis Rotation & Moment of Inertia Theorems:
Worked Examples
(Dynamics of Systems of Bodies)

Example 2.8

- find I_B and I_G for axes perpendicular to the plane for the fabricated steel bar shown
 - Total mass = 45 kg
 - Total length = 0.65 m; Mass/Length = 69.23 kg/m

