Введение в математический анализ

Тюленев А.И.

Конспектировал Иван-Чай Если будут ошибки дайте пизды @coolstory_bob 06.09.2023

Содержание

- 1 Верхняя и нижняя грань множества
- 2 Супремум
- 3 Теорема о существовании и единственности супремума
- 4 Инфинум
- 5 Лемма архимеда
- 6 Лемма Кантора
- 7 Стягивающяяся система вложенных отрезков
- **Def 1.** Расширенная числовая прямая $\overline{\mathbb{R}} := \mathbb{R} \cap \{+\infty\} \cap \{-\infty\}$.

1 Верхняя и нижняя грань множества

Def 2. Число M называется верхней гранью числового (непустого) множества $A \subset \mathbb{R}$, если $a \leq M \quad \forall a \in A$.

Def 3. Число M называется нижней гранью числового (непустого) множества $A \subset \mathbb{R}$, если $a \geq M \quad \forall a \in A$.

2 Супремум

- **Def 4.** Пусть $A \subset \mathbb{R}$ ограниченное сверху множество. Число $M \in \mathbb{R}$ называется супремумом A и записывается $M = \sup A$, если
 - ullet M является верхней гранью $A \Leftrightarrow \forall a \in A \hookrightarrow a \leq M$.
 - $\forall M' < M \quad \exists a(M') \in A : M' < a(M') \leq M$.

3 Теорема о существовании и единственности супремума

Th (Теорема о существовании и единственности супремума).

$$\forall A \subset \mathbb{R}, A \neq \emptyset \quad \exists! \sup A$$

Доказательство. Для неограниченного сверху $A\subset \mathbb{R}\hookrightarrow \sup A:=+\infty$

Для ограниченного сверху $A\subset \mathbb{R}\hookrightarrow \quad \exists$ верхняя грань

Пусть $B=\{M\in\mathbb{R}:M$ — верхняя грань $\},$ тогда $B\neq\varnothing$ \land A расположенно левее B

По аксиоме непрерывности $\exists c \in \mathbb{R}: a \leq c \leq M \quad \forall a \in A, \forall M \in B$ Покажем, что $c = \sup A$:

- 1. Т.к. $a \leq c \quad \forall a \in A \Rightarrow c$ верхняя грань.
- 2. Предположим, что $\exists c' < c : c'$ верхняя грань A. Тогда $c' \in B$, но c было выбрано так, что $c \leq M \quad \forall M \in B$, в частности $c \leq c'$ противоречие. $\Rightarrow \forall c' < c \hookrightarrow c' \notin B \Leftrightarrow \neg (c' \in B) \Leftrightarrow \neg (\forall a \in A \hookrightarrow a \leq c') \Leftrightarrow \exists a(c') \in A : a(c') > c'$, но т.к. $a(c') \in A$, то $a(c') \leq c$. Т.е. $\forall c' < c \quad \exists a(c') \in A : c' < a(c') \leq c$

Единственность:

Допустим $\exists M_1 \in \mathbb{R} : M_1 = \sup A \quad \land \exists M_2 \in \mathbb{R} : M_2 = \sup A$. Пусть $M_1 > M_2$, но тогда по 2 пункту определения супремума для $M_1 : \exists a(M_2) \in A : a(M_2) > M_2 \Rightarrow M_2$ - не верхняя грань, противоречие.

St.
$$M = \sup A \Leftrightarrow \begin{cases} M \in \overline{\mathbb{R}} \\ a \leq M & \forall a \in A \\ \forall M' < M \exists a(M') \in A : M' < a(M') \leq M \end{cases}$$

Инфинум 4

Def 6. $m \in \mathbb{R}$ - называется инфинумом ограниченного снизу множества, если $\begin{cases} m \le a & \forall a \in A \\ \forall m' > m & \exists a(m') \in A : m \le a(m') < m' \end{cases}$

Def 7. Ecau A - неограниченно снизу, то inf $A := -\infty$.

Th (Теорема о существовании и единственности инфинума).

$$\forall A \subset \mathbb{R}, A \neq \emptyset \quad \exists! \inf A$$

$$\forall A \subset \mathbb{R}, A \neq \varnothing \quad \exists ! \inf A$$

$$\mathbf{St.} \ m = \inf A \begin{cases} m \in \overline{\mathbb{R}} \\ \\ m \leq a \quad \forall a \in A \\ \\ \forall m' > m \quad \exists a (m') \in A : m \leq a (m') < m' \end{cases}$$

St. Аксиома непрерывности ⇔ Теорема о существовании и единственности супремума и Теорема о существовании и единственности инфинума.

Лемма архимеда 5

Th (Лемма Архимеда).

$$\forall M' \in \mathbb{R} \quad \exists N(M') \in \mathbb{N} : N(M') > M'$$

Доказательство. Предположим, что \mathbb{N} - ограниченно сверху $\Rightarrow \exists$ верхняя грань и конечный супремум $M=\sup \mathbb{N}<+\infty \Rightarrow M'=M-1:\exists N(M')\in \mathbb{N}:N(M')>$ $M-1 \Rightarrow N(M')+1 > M$ - противоречие.

Лемма Кантора

Def 8. Отображение из $\mathbb N$ в множество всех отрезков на числовой прямой $\mathbb R$ назовем последовательностью отрезков и обозначим $\{[a_n,b_n]\}_{n=1}^{+\infty}$

Def 9. *Будем говорить, что* $\{[a_n, b_n]\}_{n=1}^{+\infty}$ - последовательность вложенных отрезков, если $[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \, \forall n \in \mathbb{N}$.

Th (Лемма Кантора или принцип вложенных отрезков). \forall *последовательности* вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{+\infty} \hookrightarrow \exists x \in \bigcap_{n=1}^{+\infty} [a_n,b_n] \Leftrightarrow \bigcap_{n=1}^{+\infty} [a_n,b_n] \neq \emptyset$.

Доказательство. Справедливо неравенство $-\infty < a_n \le a_{n+1} \cdots \le b_{n+1} \le b_n < +\infty \quad \forall n \in \mathbb{N}.$

$$\forall m, n \in \mathbb{N} \hookrightarrow -\infty < a_m \le b_n < +\infty.$$

 $m \ge n \Rightarrow$ по индукции $b_m \le b_n \Rightarrow a_m \le b_m \le b_n$.

$$n < m \Rightarrow a_m \le a_n \le b_n$$
.

$$A := \{a_1, a_2, a_3 \dots \}.$$

$$B := \{b_1, b_2, b_3 \dots\}.$$

Из того, что $a_m \leq b_n \quad \forall m,n \in \mathbb{N}$ вытекает, что A расположенно левее B $\Rightarrow \exists c \in \mathbb{R} : a_n \leq c \leq b_n \quad \forall n,m \in \mathbb{N} \Rightarrow a_n \leq c \leq b_n \quad \forall n \in \mathbb{N} \Rightarrow c \in [a_n,b_n] \quad \forall \mathbb{N}$ $\Rightarrow c \in \{[a_n,b_n]\}_{n=1}^{+\infty}$.

Ex 1. Доказать лемму Кантора без аксиомы непрерывности с использованием супремума и инфинума.

7 Стягивающяяся система вложенных отрезков

Def 10. Последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{+\infty}$ называется стягивающейся, если $\forall n \in \mathbb{N} \ \exists \ ompeson \ [a_{m(n)},b_{m(n)}]: |[a_{m(n)},b_{m(n)}]| < \frac{1}{n}.$

Th. Стягивающяяся последовательность вложенных отрезков имеет единственную общую точку. $\Leftrightarrow \exists ! x \in \bigcap_{n=1}^{+\infty} \{[a_n, b_n]\}_{n=1}^{+\infty}$.

Доказательство. Предположим, что
$$\exists x_1, x_2 : \begin{cases} x_1 \in \bigcap_{n=1}^{+\infty} \left\{ [a_n, b_n] \right\}_{n=1}^{+\infty} \\ x_2 \in \bigcap_{n=1}^{+\infty} \left\{ [a_n, b_n] \right\}_{n=1}^{+\infty} \\ x_1 \neq x_2 \end{cases}$$

$$x_1 \neq x_2 \Rightarrow |x_1 - x_2| > 0.$$

 $\frac{1}{M} := |x_1 - x_2|.$

По лемме архимеда $\exists N \in \mathbb{N}: N > M \Rightarrow \frac{1}{N} < |x_1 - x_2| \Rightarrow$ в силу того, что система отрезков стягивающяяся $\exists \ \left[a_{m(n)},b_{m(n)}\right]:\left|\left[a_{m(n)},b_{m(n)}\right]\right|<\frac{1}{n}.$ В частности $x_1, x_2 \in \left[a_{m(n)}, b_{m(n)}\right] \Rightarrow |x_1 - x_2| < \frac{1}{n}$ - противоречие.

Тһ (3 принципа непрерывности числовой прямой). Следующие утверждения эквивалентны:

- Аксиома непрерывности.
- $\exists \inf A, \exists \sup A \quad \forall A \neq \emptyset.$
- Лемма Кантора и лемма Архимеда.

St. Лемма Кантора может не работать для интервалов.

St. $\Pi pumep$:

$$a_n = 0 \quad \forall n \in \mathbb{N}$$

$$b_n = \frac{1}{n} \quad \forall n \in \mathbb{N}$$

$$(a_n, b_n) = \left(0, \frac{1}{n}\right)$$

$$(a_n, b_n) = \left(0, \frac{1}{n}\right)$$

$$\bigcap_{n=1}^{+\infty} \left(0, \frac{1}{n}\right) = \varnothing$$

Доказательство. Предположим $\exists x > 0$:

$$x\in \bigcap_{n=1}^{+\infty}\left(0,\frac{1}{n}\right)\Rightarrow n<\frac{1}{x}\quad \forall n\in\mathbb{N}$$
 - противоречие с лемой архимеда.