# **SBML Model Report**

# Model name: "Walsh2014 - Inhibition kinetics of DAPT on APP Cleavage"



October 10, 2016

### 1 General Overview

This is a document in SBML Level 3 Version 1 format. This model was created by Thawfeek Varusai<sup>1</sup> at September second 2016 at 11:09 a.m. and last time modified at October tenth 2016 at 3:39 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 2        |
| species types     | 0        | species              | 1        |
| events            | 0        | constraints          | 0        |
| reactions         | 4        | function definitions | 4        |
| global parameters | 26       | unit definitions     | 5        |
| rules             | 4        | initial assignments  | 0        |

#### **Model Notes**

Walsh2014 - Inhibition kinetics of DAPT on APP Cleavage

This model is described in the article: Are improper kinetic models hampering drug development? Walsh R.PeerJ 2014; 2: e649

Abstract:

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, tvarusai@ebi.ac.uk

Reproducibility of biological data is a significant problem in research today. One potential contributor to this, which has received little attention, is the over complication of enzyme kinetic inhibition models. The over complication of inhibitory models stems from the common use of the inhibitory term (1 + [I]/Ki), an equilibrium binding term that does not distinguish between inhibitor binding and inhibitory effect. Since its initial appearance in the literature, around a century ago, the perceived mechanistic methods used in its production have spurred countless inhibitory equations. These equations are overly complex and are seldom compared to each other, which has destroyed their usefulness resulting in the proliferation and regulatory acceptance of simpler models such as IC50s for drug characterization. However, empirical analysis of inhibitory data recognizing the clear distinctions between inhibitor binding and inhibitory effect can produce simple logical inhibition models. In contrast to the common divergent practice of generating new inhibitory models for every inhibitory situation that presents itself. The empirical approach to inhibition modeling presented here is broadly applicable allowing easy comparison and rational analysis of drug interactions. To demonstrate this, a simple kinetic model of DAPT, a compound that both activates and inhibits ?-secretase is examined using excel. The empirical kinetic method described here provides an improved way of probing disease mechanisms, expanding the investigation of possible therapeutic interventions.

This model is hosted on BioModels Database and identified by: BIOMD0000000617.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

### 2 Unit Definitions

This is an overview of five unit definitions.

### 2.1 Unit volume

**Definition** ml

### 2.2 Unit substance

**Definition** mmol

### 2.3 Unit length

Name length

**Definition** m

### 2.4 Unit area

Name area

**Definition** m<sup>2</sup>

### 2.5 Unit time

Name time

**Definition** s

# 3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

| Id                                  | Name                                | SBO                | Spatial Dimensions | Size | Unit           | Constant | Outside |
|-------------------------------------|-------------------------------------|--------------------|--------------------|------|----------------|----------|---------|
| default_compartment<br>Compartment_ | default_compartment<br>Compartment_ | 0000410<br>0000410 | 3 3                | 1    | litre<br>litre | <b>1</b> |         |

### 3.1 Compartment default\_compartment

This is a three dimensional compartment with a constant size of one ml.

Name default\_compartment

SBO:0000410 implicit compartment

### 3.2 Compartment Compartment\_

This is a three dimensional compartment with a constant size of one ml.

Name Compartment\_

**SBO:0000410** implicit compartment

This model contains one species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id | Name | Compartment                  | Derived Unit                         | Constant | Boundary<br>Condi-<br>tion |
|----|------|------------------------------|--------------------------------------|----------|----------------------------|
| V  | V    | ${\tt default\_compartment}$ | $\mathrm{mmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   |                            |

### **5 Parameters**

This model contains 26 global parameters.

Table 4: Properties of each parameter.

| Id   | Name | SBO Value | Unit | Constant                    |
|------|------|-----------|------|-----------------------------|
| V1s  | V1s  | 64.681    |      |                             |
| S    | S    | 61.000    |      |                             |
| K1s  | K1s  | 37.340    |      |                             |
| V2s  | V2s  | 32.427    |      | $\Box$                      |
| H1   | H1   | 1.710     |      |                             |
| K2s  | K2s  | 126.236   |      |                             |
| H2   | H2   | 2.690     |      |                             |
| K3s  | K3s  | 605.010   |      | $ \overline{\checkmark} $   |
| V2   | V2   | 443.680   |      | $\overline{\mathbf{Z}}$     |
| V2i  | V2i  | 0.000     |      | $ \overline{\checkmark} $   |
| Ii   | Ii   | 1000.000  |      | $ \overline{\checkmark} $   |
| Hxx  | Hxx  | 0.960     |      | $ \overline{\checkmark} $   |
| Kxx1 | Kxx1 | 70.930    |      | $   \overline{\mathbf{Z}} $ |
| K2   | K2   | 225.490   |      | $   \overline{\mathbf{Z}} $ |
| K2i  | K2i  | 118.410   |      | $   \overline{\mathbf{Z}} $ |
| V1   | V1   | 20.060    |      |                             |
| V1is | V1is | 451.780   |      |                             |
| Hx1  | Hx1  | 1.020     |      |                             |
| Kx1  | Kx1  | 30.180    |      |                             |
| Hx2  | Hx2  | 2.690     |      |                             |
| Kx2  | Kx2  | 553.640   |      | $\overline{\mathbf{Z}}$     |
| V1ii | V1ii | 0.000     |      | $\overline{\mathbf{Z}}$     |
| K1   | K1   | 177.760   |      | $\overline{\mathbf{Z}}$     |
| K1is | K1is | 29.520    |      | $\overline{\mathbf{Z}}$     |
| K1ii | K1ii | 34.050    |      | $\overline{\mathbf{Z}}$     |
| V3   | V3   | 0.000     |      | $   \overline{\mathbf{Z}} $ |

# **6 Function definitions**

This is an overview of four function definitions.

### **6.1 Function definition** Function\_for\_R3

Name Function for R3

Arguments vol (Compartment\_), H1, K2s, S, V1s

### **Mathematical Expression**

$$vol\left(Compartment_{-}\right)\cdot V1s\cdot\frac{S^{H1}}{S^{H1}+K2s^{H1}} \tag{1}$$

# **6.2 Function definition** Function\_for\_R4

Name Function for R4

Arguments vol (Compartment\_), H2, K3s, S, V2s

### **Mathematical Expression**

$$vol\left(Compartment_{-}\right) \cdot V2s \cdot \frac{S^{H2}}{S^{H2} + K3s^{H2}} \tag{2}$$

### **6.3 Function definition** Function\_for\_R1

Name Function for R1

Arguments vol (Compartment\_), K1s, S, V1s

### **Mathematical Expression**

$$vol\left(Compartment_{-}\right) \cdot V1s \cdot \frac{S}{S + K1s} \tag{3}$$

### **6.4 Function definition** Function\_for\_R2

Name Function for R2

Arguments vol (Compartment\_), H1, K2s, S, V2s

### **Mathematical Expression**

$$vol\left(Compartment_{-}\right) \cdot V2s \cdot \frac{S^{H1}}{S^{H1} + K2s^{H1}} \tag{4}$$

### 7 Rules

This is an overview of four rules.

### **7.1 Rule K2s**

Rule K2s is an assignment rule for parameter K2s:

$$K2s = K2 - (K2 - K2i) \cdot \frac{Ii^{Hxx}}{Ii^{Hxx} + Kxx1^{Hxx}}$$
 (5)

### **7.2 Rule V1s**

Rule V1s is an assignment rule for parameter V1s:

$$\begin{split} V1s &= V1 - (V1 - V1is) \cdot \frac{Ii^{Hx1}}{Ii^{Hx1} + Kx1^{Hx1}} + (V1 - V1is) \\ &\cdot \frac{Ii^{Hx2}}{Ii^{Hx2} + Kx2^{Hx2}} - (V1 - V1ii) \cdot \frac{Ii^{Hx2}}{Ii^{Hx2} + Kx2^{Hx2}} \end{split} \tag{6}$$

### **7.3 Rule K1s**

Rule K1s is an assignment rule for parameter K1s:

$$\begin{split} K1s &= K1 - (K1 - K1is) \cdot \frac{Ii^{Hx1}}{Ii^{Hx1} + Kx1^{Hx1}} + (K1 - K1is) \\ &\cdot \frac{Ii^{Hx2}}{Ii^{Hx2} + Kx2^{Hx2}} - (K1 - K1ii) \cdot \frac{Ii^{Hx2}}{Ii^{Hx2} + Kx2^{Hx2}} \end{split} \tag{7}$$

### **7.4 Rule V2s**

Rule V2s is an assignment rule for parameter V2s:

$$V2s = V2 - (V2 - V2i) \cdot \frac{Ii^{Hxx}}{Ii^{Hxx} + Kxx1^{Hxx}}$$
 (8)

# 8 Reactions

This model contains four reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| Nº | Id | Name | Reaction Equation                  | SBO |
|----|----|------|------------------------------------|-----|
| 1  | R1 | R1   | $\emptyset \longrightarrow v$      |     |
| 2  | R2 | R2   | $\emptyset \longrightarrow v$      |     |
| 3  | R3 | R3   | ${ m v} \longrightarrow \emptyset$ |     |
| 4  | R4 | R4   | $V \longrightarrow \emptyset$      |     |

### 8.1 Reaction R1

This is an irreversible reaction of no reactant forming one product.

### Name R1

### **Reaction equation**

$$\emptyset \longrightarrow v$$
 (9)

### **Product**

Table 6: Properties of each product.

| Id | Name | SBO |
|----|------|-----|
| v  | v    |     |

### **Kinetic Law**

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{default\_compartment}\right) \cdot \text{Function\_for\_R1}\left(\text{vol}\left(\text{Compartment}_-\right), \text{K1s}, \text{S}, \text{V1s}\right)$$
 (10)

$$Function\_for\_R1 \left( vol\left(Compartment\_\right), K1s, S, V1s \right) = vol\left(Compartment\_\right) \cdot V1s \cdot \frac{S}{S + K1s} \tag{11}$$

### 8.2 Reaction R2

This is an irreversible reaction of no reactant forming one product.

### Name R2

### **Reaction equation**

$$\emptyset \longrightarrow v$$
 (13)

#### **Product**

Table 7: Properties of each product.

| Id | Name | SBO |
|----|------|-----|
| v  | V    |     |

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_2 = vol\left(default\_compartment\right) \cdot Function\_for\_R2\left(vol\left(Compartment\_\right), H1, K2s, S, V2s\right) \quad (14)$$

$$\begin{aligned} & \text{Function\_for\_R2} \left( \text{vol} \left( \text{Compartment\_} \right), \text{H1}, \text{K2s}, \text{S}, \text{V2s} \right) \\ &= \text{vol} \left( \text{Compartment\_} \right) \cdot \text{V2s} \cdot \frac{\text{S}^{\text{H1}}}{\text{S}^{\text{H1}} + \text{K2s}^{\text{H1}}} \end{aligned} \tag{15}$$

$$\begin{aligned} & \text{Function\_for\_R2} \left( \text{vol} \left( \text{Compartment\_} \right), \text{H1}, \text{K2s}, \text{S}, \text{V2s} \right) \\ &= \text{vol} \left( \text{Compartment\_} \right) \cdot \text{V2s} \cdot \frac{\text{S}^{\text{H1}}}{\text{S}^{\text{H1}} + \text{K2s}^{\text{H1}}} \end{aligned} \tag{16}$$

### 8.3 Reaction R3

This is an irreversible reaction of one reactant forming no product.

### Name R3

### **Reaction equation**

$$v \longrightarrow \emptyset$$
 (17)

### Reactant

Table 8: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| v  | V    |     |

### **Kinetic Law**

Derived unit contains undeclared units

$$v_3 = vol(default\_compartment) \cdot Function\_for\_R3(vol(Compartment\_), H1, K2s, S, V1s)$$
 (18)

$$\begin{aligned} & \text{Function\_for\_R3} \left( \text{vol} \left( \text{Compartment\_} \right), \text{H1}, \text{K2s}, \text{S}, \text{V1s} \right) \\ &= \text{vol} \left( \text{Compartment\_} \right) \cdot \text{V1s} \cdot \frac{\text{S}^{\text{H1}}}{\text{S}^{\text{H1}} + \text{K2s}^{\text{H1}}} \end{aligned} \tag{19}$$

$$\begin{aligned} & Function\_for\_R3 \left( vol \left( Compartment_{-} \right), H1, K2s, S, V1s \right) \\ &= vol \left( Compartment_{-} \right) \cdot V1s \cdot \frac{S^{H1}}{S^{H1} + K2s^{H1}} \end{aligned} \tag{20}$$

### 8.4 Reaction R4

This is an irreversible reaction of one reactant forming no product.

### Name R4

### **Reaction equation**

$$\mathbf{v} \longrightarrow \mathbf{0}$$
 (21)

#### Reactant

Table 9: Properties of each reactant.

### **Kinetic Law**

Derived unit contains undeclared units

$$v_4 = \text{vol} (\text{default\_compartment}) \cdot \text{Function\_for\_R4} (\text{vol} (\text{Compartment\_}), \text{H2}, \text{K3s}, \text{S}, \text{V2s})$$
 (22)

$$\begin{aligned} & \text{Function\_for\_R4} \left( \text{vol} \left( \text{Compartment\_} \right), \text{H2}, \text{K3s}, \text{S}, \text{V2s} \right) \\ &= \text{vol} \left( \text{Compartment\_} \right) \cdot \text{V2s} \cdot \frac{\text{S}^{\text{H2}}}{\text{S}^{\text{H2}} + \text{K3s}^{\text{H2}}} \end{aligned} \tag{23}$$

$$\begin{aligned} & Function\_for\_R4 \left( vol \left( Compartment_{-} \right), H2, K3s, S, V2s \right) \\ &= vol \left( Compartment_{-} \right) \cdot V2s \cdot \frac{S^{H2}}{S^{H2} + K3s^{H2}} \end{aligned} \tag{24}$$

# 9 Derived Rate Equation

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rate of change of the following species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

### 9.1 Species v

Name v

SBO:0000268 enzymatic rate law

Notes Rate of APP cleavage in the presence of DAPT

Initial concentration  $1 \text{ mmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a reactant in R3, R4 and as a product in R1, R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{v} = |v_1| + |v_2| - |v_3| - |v_4| \tag{25}$$

# A Glossary of Systems Biology Ontology Terms

**SBO:0000268 enzymatic rate law:** Enzyme kinetics is the study of the rates of chemical reactions that are catalysed by enzymes, how this rate is controlled, and how drugs and poisons can inhibit its activity.

**SBO:0000410** implicit compartment: A compartment whose existence is inferred due to the presence of known material entities which must be bounded, allowing the creation of material entity pools

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany