© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°02

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – E3A MP Maths2 2018

Les parties sont largement indépendantes, mais le candidat pourra admettre les résultats des parties intermédiaires. Les notations sont conservées d'une partie à l'autre.

Partie I

Soient a, b deux nombres réels strictement positifs, on considère les suites (a_n) et (b_n) définies par

$$\begin{cases} a_0 = a & b_0 = b \\ \forall n \in \mathbb{N} & a_{n+1} = \sqrt{a_n b_n} \\ & b_{n+1} = \frac{a_n + b_n}{2} \end{cases}$$

- **1** Que dire des suites (a_n) et (b_n) si a = b?
- **2** Montrer que si $(x, y) \in (\mathbb{R}_+^*)^2$, on a

$$\sqrt{xy} \le \frac{x+y}{2}$$

- |3| Démontrer que les suites (a_n) et (b_n) sont monotones à partir du rang 1, puis qu'elles sont bornées.
- 4 Montrer que (a_n) et (b_n) convergent vers une même limite strictement positive.

On notera M(a, b) la limite commune aux suites (a_n) et (b_n) .

On définira la fonction f sur \mathbb{R}_+^* par f(x) = M(1, x).

| 5 | Soit $\lambda \in \mathbb{R}_+^*$, exprimer en fonction de λ et M(a, b) les quantités suivantes :

$$M(b, a)$$
 et $M(\lambda a, \lambda b)$

6 Justifier que $M(a, b) = af(\frac{b}{a})$.

Partie II

Pour a, b deux nombres réels strictement positifs, on considère les intégrales

$$I(a,b) = \int_0^{+\infty} \frac{dt}{\sqrt{(a^2 + t^2)(b^2 + t^2)}} \text{ et } J(a,b) = \int_{-\infty}^{+\infty} \frac{dt}{\sqrt{(a^2 + t^2)(b^2 + t^2)}}$$

- 7 Justifier que les intégrales I(a, b) et J(a, b) convergent, puis que J(a, b) = 2I(a, b).
- 8 En effectuant le changement de variable $t = \frac{1}{2} \left(s \frac{ab}{s} \right)$, montrer que

$$J\left(\frac{a+b}{2}, \sqrt{ab}\right) = 2I(a, b)$$

9 Montrer que

$$\forall n \in \mathbb{N}, \ \mathrm{I}(a_n, b_n) = \mathrm{I}(a, b)$$

10 Justifier que

$$I(M(a,b), M(a,b)) = I(a,b)$$

On énoncera précisément le théorème utilisé.

11 Conclure que

$$M(a,b) = \frac{\pi}{2I(a,b)}$$

Partie III

12 On fixe x > 0. En effectuant le changement de variable $t = \frac{x}{s}$, montrer que

$$I(1, x) = 2 \int_0^{\sqrt{x}} \frac{1}{\sqrt{1 + t^2} \sqrt{x^2 + t^2}} dt$$

- 13 Montrer que I(1, x) 2 $\int_0^{\sqrt{x}} \frac{1}{\sqrt{x^2 + t^2}} dt$ est négligeable devant 2 $\int_0^{\sqrt{x}} \frac{1}{\sqrt{x^2 + t^2}} dt$ quand x tend vers 0⁺.
- 14 Dériver $t \mapsto \ln(t + \sqrt{1 + t^2})$ et en déduire une expression réduite pour $\int_0^{\sqrt{x}} \frac{1}{\sqrt{x^2 + t^2}} dt$.
- 15 Déterminer un équivalent simple de I(1, x) en $x = 0^+$ et en déduire que

$$f(x) \underset{x \to 0^+}{\sim} -\frac{\pi}{2\ln(x)}$$

16 Pour x > 0, déterminer une relation simple entre x, f(x) et $f\left(\frac{1}{x}\right)$ et en déduire que

$$f(x) \underset{x \to +\infty}{\sim} \frac{\pi x}{2 \ln(x)}$$

- 17 Justifier que la fonction f est continue sur \mathbb{R}_+^* .
- Montrer que l'on peut prolonger par continuité la fonction f en 0. Que dire de la tangente à la courbe au point d'abscisse 0 de la fonction ainsi prolongée?
- 19 Que dire de la branche infinie de la courbe f en $+\infty$?
- **20** Préciser rapidement les variations de f et tracer sa courbe sur $]0, +\infty[$.

Partie IV

21 Soit x > 0, montrer que

$$I(1, x) = \frac{2}{1+x}I\left(1, \frac{2\sqrt{x}}{1+x}\right)$$

22 On définit la suite (w_n) par $w_0 = x$ et $w_{n+1} = \frac{2\sqrt{w_n}}{1 + w_n}$

22.a Montrer que la suite (w_n) converge vers 1.

22.b Montrer que

$$\forall n \in \mathbb{N}, \ \mathrm{I}(1,x) = \mathrm{I}(1,w_{n+1}) \prod_{k=0}^{n} \frac{2}{1+w_k}$$

22.c Soit la suite (p_n) définie par

$$p_n = \prod_{k=0}^n \frac{1 + w_k}{2}$$

Montrer que la suite (p_n) converge vers une limite ℓ non nulle, puis exprimer de manière simple $I(1,x)\ell$.

Partie V

On définit la fonction K par

$$K(x) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - x^2 \sin^2(t)}} dt$$

Montrer que la fonction K est bien définie sur]-1,1[.

24 En effectuant un changement de variable, montrer que

$$I(1,x) = \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{x^2 \cos^2(t) + \sin^2(t)}}$$

25 Montrer que si $x \in]0,1]$, on a

$$I(1,x) = K\left(\sqrt{1-x^2}\right)$$

 $\boxed{26}$ On définit la suite d'intégrales (W_n) par

$$W_n = \int_0^{\frac{\pi}{2}} \sin^{2n}(t) dt$$

26.a Démontrer que

$$\forall n \in \mathbb{N}, \ W_{n+1} = \frac{2n+1}{2n+2} W_n$$

On pourra considérer la quantité $W_n - W_{n+1}$.

26.b Démontrer que

$$W_n = \frac{(2n)!}{2^{2n+1}(n!)^2} \pi$$

Rappeler la valeur du rayon de convergence du développement en série entière de la fonction $t \mapsto \frac{1}{\sqrt{1-t}}$, puis justifier l'expression du terme général de la suite de ses coefficients (α_n) .

28 Démontrer que

$$\forall x \in]-1, 1[, \ \forall t \in \mathbb{R}, \ \frac{1}{\sqrt{1 - x^2 \sin^2(t)}} = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2} x^{2n} \sin^{2n}(t)$$

29 Justifier que, pour tout $x \in]-1,1[$, on a

$$K(x) = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{((2n)!)^2}{16^n (n!)^4} x^{2n}$$

 $\overline{30}$ En déduire une série numérique permettant d'obtenir la valeur de M(3, 5).