ABSTRACT

The management of the attendance can be a great burden on the teachers if it is done by hand. To resolve this problem, a smart and auto attendance management system is being utilized. But authentication is an important issue in this system. The smart attendance system is generally executed with the help of biometrics. Face recognition is one of the biometric methods to improve this system. Being a prime feature of biometric verification, facial recognition is being used enormously in several such applications, like video monitoring and CCTV footage system, an interaction between computer & humans and access systems presents indoors and network security. By utilizing this framework, the problem of proxies and students being marked present even though they are not physically present can easily be solved. The main implementation steps used in this type of system are face detection and recognizing the detected face.

Automatic face recognition (AFR) technologies have made many improvements in the changing world. Smart Attendance using Real-Time Face Recognition is a real-world solution which comes with day-to-day activities of handling student attendance system.

Face recognition-based attendance system is a process of recognizing the students face for taking attendance by using face biometrics based on high - definition monitor video and other information technology.

It helps in conversion of the frames of the video into images so that the face of the student can be easily recognized for their attendance so that the attendance database can be easily reflected automatically.

This paper proposes a model for implementing an automated attendance management system for students of a class by making use of face recognition technique, by using Eigenface values, Principal Component Analysis (PCA) and Local Binary Patterns Histograms (LBPH) algorithm. After these, the connection of recognized faces ought to be conceivable by comparing with the database containing student's faces. This model will be a successful technique to manage the attendance and records of students.

LIST OF FIGURES

Figure No.	Description	Page no
Fig 3.1	System Model of Face Detection & Recognition	10
Fig 4.1	System Architecture	17
Fig 4.2	Level-1 DFD Diagram	20
Fig 4.3	Level-0 DFD Diagram	21
Fig 4.4	Level-2 DFD Diagram	22
Fig 4.5	Level-3 DFD Diagram	22
Fig 4.6	Level-4 DFD Diagram	23
Fig 4.7	Use Case Diagram	24
Fig 4.8	ER Diagram	25
Fig 5.1	The 5-Haar Like Features Used	31
Fig 6.1	Test Case 1 (Admin Login)	39
Fig 6.2	Test Case 2 (Teacher Login)	39
Fig 6.3	Test Case 3(Admin Dashboard)	40
Fig 6.4	Teat Case 4(Teacher Dashboard)	40

Fig 7.1	Attendance_cam_virtual.py Module	41
Fig 7.2	Train.py Module	43
Fig 7.3	Variety of PHP Modules	45
Fig 7.4	Subjects Schema	49
Fig 7.5	Students Schema	50
Fig 7.6	Subjects Panel	51
Fig 7.7	Teachers Panel	52
Fig 7.8	Admin Panel	52
Fig 7.9	Timetable Panel	53
Fig 7.10	Classes Panel	53
Fig 7.11	Teacher Login	54
Fig 7.12	Admin Login	54
Fig 7.13	Practical Testing	55
Fig 7.14	Practical Testing 1	55

LIST OF TABLES

Table No.	Description	Page Number	
Table 7.1	Recognition Rate at Different Angles	56	

LIST OF ABBREVIATIONS

Abbreviation	Definition
CNN	Convolutional Neural Networks
CV	Computer Vision
EAR	Eye Aspect Ratio
LBPH	Local Binary Pattern Histograms
HCC A	Haar Cascade Classifier
GUI	Graphical User Interface
RFID	Radio Frequency Identification
XAMPP	X-Operating System, Apache, MySQL, Php, Perl