Cobalt

From Wikipedia, the free encyclopedia

Cobalt is a chemical element with symbol **Co** and atomic number 27. Like nickel, cobalt is found in the Earth's crust only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was later thought by alchemists to be due to the known metal bismuth. Miners had long used the name *kobold ore* (German for *goblin ore*) for some of the blue-pigment producing minerals; they were so named because they were poor in known metals, and gave poisonous arsenic-containing fumes upon smelting. In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), and this was ultimately named for the *kobold*.

Today, some cobalt is produced specifically from various metallic-lustered ores, for example cobaltite (CoAsS), but the main source of the element is as a byproduct of copper and nickel mining. The copper belt in the Democratic Republic of the Congo, Central African Republic and Zambia yields most of the cobalt mined worldwide.

Cobalt is primarily used in the preparation of magnetic, wear-resistant and high-strength alloys. The compounds, cobalt silicate and cobalt(II) aluminate $(CoAl_2O_4, cobalt blue)$ give a distinctive deep blue color to glass, ceramics, inks, paints and varnishes. Cobalt occurs naturally as only one stable isotope, cobalt-59. Cobalt-60 is a commercially important radioisotope, used as a radioactive tracer and for the production of high energy gamma rays.

Cobalt is the active center of coenzymes called cobalamins, the most common example of which is vitamin B_{12} . As such, it is an essential trace dietary mineral for all animals. Cobalt in inorganic form is also a micronutrient for bacteria, algae and fungi.

Cobalt, ₂₇Co

electrolytically refined cobalt chips

General properties

Name, symbol cobalt, Co

Appearance hard lustrous bluish gray

metal

Cobalt in the periodic table

Atomic number (Z) 27

Group, block group 9, d-block

Period period 4

Element category

| transition metal

Standard atomic 58.933194(4)^[1]

weight (\pm) (A_r)

Electron [Ar] 3d⁷ 4s² configuration

per shell 2, 8, 15, 2

Physical properties

Color metallic gray

Phase solid

Melting point 1768 K (1495 °C, 2723 °F)

Characteristics

Cobalt is a ferromagnetic metal with a specific gravity of 8.9. The Curie temperature is 1,115 °C (2,039 °F)^[3] and the magnetic moment is 1.6–1.7 Bohr magnetons per atom.^[4] Cobalt has a relative permeability two-thirds that of iron.^[5] Metallic cobalt occurs as two crystallographic structures: hcp and fcc. The ideal transition temperature between the hcp and fcc structures is 450 °C (842 °F), but in practice, the energy difference is so small that random intergrowth of the two is common.^{[6][7][8]}

Cobalt is a weakly reducing metal that is protected from oxidation by a passivating oxide

film. It is attacked by halogens and sulfur. Heating in oxygen produces Co_3O_4

which loses oxygen at 900 °C (1,650 °F) to give the monoxide CoO.^[9] The metal reacts with fluorine (F_2) at 520 K to give CoF_3 ; with chlorine (Cl_2), bromine (Br_2) and iodine (I_2), producing equivalent binary halides. It does not react with hydrogen gas (H_2) or nitrogen gas (N_2) even when heated, but it does react with boron, carbon, phosphorus, arsenic and sulfur.^[10] At ordinary temperatures, it reacts slowly with mineral acids, and very slowly with moist,

but not with dry, air.

cut from a large plate

Isotopes

⁵⁹Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. There are 22 radioisotopes that have been characterized, the most stable being ⁶⁰Co with a half-life of 5.2714 years, ⁵⁷Co with a half-life of 271.8 days, ⁵⁶Co with a half-life of 77.27 days, and ⁵⁸Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are

Boiling point 3200 K (2927 °C, 5301 °F)

Density near r.t. 8.90 g/cm³

when liquid, at m.p. 8.86 g/cm³

Heat of fusion 16.06 kJ/mol
Heat of 377 kJ/mol

vaporization

Molar heat 24.81 J/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	1790	1960	2165	2423	2755	3198

Atomic properties

Oxidation states $-3, -1, +1, +2, +3, +4, +5^{[2]}$

(an amphoteric oxide)

Electronegativity Pauling scale: 1.88

Ionization 1st: 760.4 kJ/mol energies 2nd: 1648 kJ/mol 3rd: 3232 kJ/mol

(more)

Atomic radius empirical: 125 pm

Covalent radius Low spin: 126±3 pm

High spin: 150±7 pm

Miscellanea

Crystal structure hexagonal close-packed (hcp)

Speed of sound 4720 m/s (at 20 °C)

thin rod

expansion

Thermal 13.0 μ m/(m·K) (at 25 °C)

Thermal 100 conductivity

100 W/(m·K)

shorter than 18 hours, and the majority of these are shorter than 1 second. This element also has 4 meta states, all of which have half-lives shorter than 15 minutes.^[20]

The isotopes of cobalt range in atomic weight from 50 u (50 Co) to 73 u (73 Co). The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59 Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59 Co are element 26 (iron) isotopes and the primary products after are element 28 (nickel) isotopes. $^{[20]}$

Source

Wikipedia: Cobalt (https://en.wikipedia.org/wiki/Cobalt)

Electrical 62.4 n Ω ·m (at 20 °C)

resistivity

Magnetic ordering ferromagnetic

Young's modulus 209 GPa

Shear modulus 75 GPa

Bulk modulus 180 GPa

Bulk modulus 180 G
Poisson ratio 0.31

Poisson ratio 0.31
Mohs hardness 5.0

Vickers hardness 1043 MPa

Brinell hardness 470-3000 MPa

CAS Number 7440-48-4

History

Discovery Georg Brandt (1732)

Most stable isotopes of cobalt

iso	NA	half-life	DM	DE (MeV)	DP			
⁵⁶ Co	syn	77.27 d	ε	4.566	⁵⁶ Fe			
⁵⁷ Co	syn	271.79 d	ε	0.836	⁵⁷ Fe			
⁵⁸ Co	syn	70.86 d	ε	2.307	⁵⁸ Fe			
⁵⁹ Co	100%	is stable with 32 neutrons						
⁶⁰ Co	syn	5.2714 y	β-, γ	2.824	⁶⁰ Ni			