QSS20: Modern Statistical Computing

Unit 05: Merging (exact)

Goal for next few sessions

- ► Today: Exact merging: types of joins
 - ► Inner joins
 - Outer joins
 - ► Left joins
 - ► Right joins
- ► Wednesday: basic regex for two purposes:
 - 1. Clean join fields for exact matching/merges
 - 2. Clean join fields for fuzzy/probabilistic matching/merges
- Next week: fuzzy/probabilistic merging/record linkage

Summary of problem set 1 difficulty feedback

$$\frac{39 \text{ respondents}}{55 \text{ students}} = 71\% \text{ response rate}$$

3

Summary of problem set 1 topics feedback

Data science careers

Goals for today

- ► Practice git/GitHub from last week and review pset2 submission instructions
- ► Exact merging lecture
- ► Exact merging activity- see 03_merging_exact_blank.ipynb

Goals for today

- ► Practice git/GitHub from last week and review pset2 submission instructions
- ► Exact merging lecture
- ► Exact merging activity- see 03_merging_exact_blank.ipynb

Working example: have dataset on Dartmouth students and want to merge in background information about their district

► Main or "left" dataset

Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

► Auxiliary or "right" dataset

District	NCES ID	% FRPL	
New Trier HS	1728200	X%	
Hanover HS	3302670	Y%	
Lebanon HS	4107380	Z%	
:			

Possible join keys

- ► Unique identifier: used for "exact matching" or a Yes/No match on that basis
 - E.g., is the NCES ID of New Trier found in the dataset of demographics?
- ► Other identifiers: can be used for either "exact match" or for "probabilistic/fuzzy matching"
 - ► **Probabilistic:** what's the likelihood that "New Trier district" and "New Trier HS" are the same entity?

Conceptual overview of four types of joins

Source: Trifacta

Inner join in this context

In words: "drop all students whose districts don't appear in the demographics data; drop all districts that don't appear in the Dartmouth student data"

► Main or "left" dataset

	aacasci	•	
Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

Outer join in this context

In words: "keep all students from the student-level data; keep all schools from the school-level data; even if there's not an overlap"

Student	Year	District	NCES ID	% FRPL
Rebecca	2021	New Trier High School	1728200	X%
Jennifer	2022	Hanover High	3302670	Y%
Jason	2022	Homeschool	NA	NA
NA	NA	NA	4107380	Z%
:				
•				

12

Left join in this context

In words: "keep all students from the student-level data; drop any school from the school-level data that doesn't merge onto a student"

► Main or "left" dataset

Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

Right join in this context

In words: "drop students who don't have a school in the school-level data; keep all schools from the student-level data even those that don't merge onto any student"

Main or "left" dataset

•	0	aataset		
	Student	Year	District	NCES ID
	Rebecca	2021	New Trier High School	1728200
	Jennifer	2022	Hanover High	3302670
	Jason	2022	Homeschool	NA
ı	:			

► Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

DataCamp versus slide syntax

▶ DataCamp modules generally used this syntax for merges:

Slides/solution code will tend to use this syntax:

- ► They produce identical answers so use whichever comes more naturally (I use latter because it's more similar to base R syntax)
- ► In addition, feel free to use self joins if useful but we won't be focusing a lot on those

How do we code these different types of joins in practice? Example with left join and join key has same colname in both

```
## perform a left join on the student data
## and schools data
stud_wschool = pd.merge(students,
schools,
how = "left",
on = "NCES ID",
indicator = "student_mergestatus")
```

- ► how: argument to tell it inner, left, right, outer, or cross; defaults to inner
- ▶ on: name of join key (in this case single key)
- indicator: optional arg to add a col to the resulting data (string is what to call it) that helps diagnose merge status; good for post-merge dx

Example with inner join and join key has different name

```
## perform a left join on the student data
## and schools data

stud_wschool = pd.merge(students,

schools,

how = "inner",

left_on = "NCES ID",

right_on = "ncesnumeric")
```

Example with left join and multiple join keys

```
## perform a left join on the student data
## and schools data

stud_wschool = pd.merge(students,
schools,
how = "left",
left_on = ["NCES ID",
"Dist name"],
right_on = ["ncesnumeric",
"distnamechar"],
indicator = "student_mergestatus")
```

Example with left join, multiple join keys, and some overlapping, non-join columns that we want to differentiate

```
2 ## perform a left join on the student data
3 ### and schools data
4 stud_wschool = pd.merge(students,
                  schools,
                  how = "left"
                  left_on = ["NCES ID"]
                  "Dist name"],
                  right_on = ["ncesnumeric",
                  "distnamechar"],
                  indicator = "student_mergestatus",
                  suffixes = ["_students",
                              "_schools"])
```

Non-exhaustive checklist of merge diagnostics

- 1. How many rows were in each data before the merge? What about after?
- 2. If doing a left join, did we properly retain all left-hand side rows?
- 3. For strings as join keys: if a lot of rows were lost in a merge, could that be due to spelling/punctuation variations in a character join key?
- 4. For numeric identifiers as join keys: if a lot of rows were lost in a merge, could that be due to things like the id having leading or lagging zeros and those being stripped at some stage? (e.g., one dataset identifies an entity as 002548; another as 2548)

Next up: basic regex to improve match rates for strings as join keys

► In example below, what if we didn't have the NCES ID numeric identifier? Ways to improve match rates for spelling variations (sometimes called entity resolution)

Student	Year	District
Rebecca	2021	New Trier High School
Jennifer	2022	Hanover High
Jason	2022	Homeschool
:		
Jason		•

District	% FRPL
New Trier HS	X%
Hanover HS	Y%
Lebanon HS	Z%
:	

Goals for today

- ► Practice git/GitHub from last week and review pset2 submission instructions
- ► Exact merging lecture
- ► Exact merging activity- see 03_merging_exact_blank.ipynb

public_data/sd_df.csv: sample of business tax certificates for San Diego-based businesses— each row represents one unique business; cols for industry (6-digit NAICS code)

	account_key	dba_name	council_district	naics_code	naics_description	naics
,	1974000448	ERNST & YOUNG LLP	cd_1	541211	OFFICES OF CERTIFIED PUBLIC ACCOUNTANTS	
	1974011093	HECHT SOLBERG ROBINSON GOLDBERG & BAGLEY LLP	cd_3	5411	LEGAL SERVICES	
!	1978039819	RSM US LLP	cd_1	541211	OFFICES OF CERTIFIED PUBLIC ACCOUNTANTS	
ì	1978042092	THORSNES BARTOLOTTA MCGUIRE LLP	cd_3	5411	LEGAL SERVICES	
ı	1979046817	KORENIC & WOJDOWSKI LLP	cd_7	5412	ACCOUNTING/TAX PREP/BOOKKEEP/PAYROLL SERVICES	

public_data/naics_df.csv: exhaustive listing of all 6-digit NAICS codes from the Census Bureau with added information

naics	naics_description
111140	Wheat Farming
111160	Rice Farming
111150	Corn Farming
111110	Soybean Farming
111120	Oilseed (except Soybean) Farming

► **General goal:** match the two to investigate things like which industries are not represented in the San Diego small businesses

Outline of notebooks

- ► Blank notebook to work on with partners/small group: 03_merging_exact_blank.ipynb
- ▶ Input data: public_data/sd_df.csv and public_data/naics_df.csv
- Solutions notebook to review after class (better to avoid looking during activity!): 03_merging_exact_solutions.ipynb
- ► In case of interest, notebook where I cleaned/prepped the data to make easier to analyze: 03helper_merging_dataprep.ipynb