

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 19-10-2003		2. REPORT TYPE Technical Viewgraphs		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Design, Synthesis, and Characterization of New Ionic Liquids				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Greg Drake, Tommy Hawkins (AFRL/PRSP); Kerri Tollison, Greg Kaplan (ERC); Jerry Boatz, Leslie Hall, Ashwani Vij, Jeff Mills (AFRL/PRSP)				5d. PROJECT NUMBER 1011	
				5e. TASK NUMBER 0046	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-PR-ED-VG-2003-234	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2003-234	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES For presentation to University of Alabama and NASA/Marshall (general public audience).					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
					Leilani Richardson
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A	43	19b. TELEPHONE NUMBER (include area code) (661) 275-5015

DNC copy

Design, Synthesis and Characterization of New Ionic Liquids

Greg Drake and Tom Hawkins
AFRL/PRSP
Air Force Research Laboratory
Edwards AFB, CA 93524

Distribution Statement A: Public Release material, unrestricted release.

Ionic Liquids

Those involved in this work

Ms. Kerri Tollison
Synthesis and
Characterization

Greg Kaplan
Synthesis and
Characterization

Jerry Boatz
Theoretical
Calculations

Leslie Hall
Synthesis &
X-ray work

Ashwani Viji
X-ray
crystallography

Tommy Hawkins
6.2 Propellant
Development

Jeff Mills
Theoretical
Calculations

Greg Drake
6.1 Research
Synthesis

2

Ionic Liquids

Table salt Na^+Cl^- m.p. = 804°C Very high
Cryolite Na_3AlF_6 m.p. nearly 1000°C (Hall Process for Al production)
Eutectic of Li^+Cl^- and K^+Cl^- m.p. 355°C

Molten salts are very hot!

Not commercially viable

Corrosion and energy issues

Giant lattice of miniature magnets stuck together

Ionic Liquids

What are Ionic Liquids?

A class of salts consisting of cation/anion pair that has a very low melting point.

Definition of an ionic liquid is open to some debate amongst researchers in the area, but most in the area use one of two.

(1) An ionic compound that melts below 100 °C (b.p. of H₂O). J. Wilkes, P. Wasserscheid, K. Seddon.

(2) An ionic compound that has a melting point at or below ambient temperatures. These are often called RTILs (Room Temperature Ionic Liquids) T. Welton, R. Rogers.

But many of the salts fit both definitions and (2) is really a more specific class of (1).

Ionic Liquids

Important factors affecting the physical properties of ionic liquids

1. Asymmetry of cation as well as anion
2. Packing efficiency
3. Charge delocalization in cationic/anionic species
4. “Sheer size” differentials

Ionic Liquids

(+)

(+)

(-)

Hydroxylammonium nitrate (HAN)

$[\text{NH}_3\text{OH}^+][\text{NO}_3^-]$ m.p. 39-40 °C

Ethylammonium nitrate $[\text{CH}_3\text{CH}_2\text{NH}_3^+][\text{NO}_3^-]$ m.p. 12 °C

Serious issues...

- can be treacherous
- acidic
- very hygroscopic

62

Ionic Liquids

H-X

1,2-bis(oxyamine)ethane

Dixon, D. W.; Weiss, R. H. *J. Org. Chem.* 1984, 49, 4487

X-

1,2-bis(oxyamine)ethane mono salts

X⁻ = NO₃⁻, ClO₄⁻, C(NO₂)₃⁻, N(NO₂)₂⁻

H-X

1,3-bis(oxyamine)propane very stable, watery liquid
b.p. = 65-70 °C @ 0.3 torr; f.p. = glasses at -40 °C

X⁻ = NO₃⁻, ClO₄⁻, C(NO₂)₃⁻, N(NO₂)₂⁻

Bisoxamines are stable as neutrals but protonated versions are not (extremely friction and impact sensitive!) Direct contrast with simple mono oxyamines.

Ionic Liquids

Single crystal X-ray structure of ethylene bisoxazoline monoperchlorate. Material has unusual amount of hydrogen bonding present ($\rho = 1.83 \text{ g/cm}^3$!!!), but that doesn't explain its extreme sensitivity to impact and friction.

Ionic Liquids

Extended lattice of ethylene bisoxamide monoperchlorate.

Ionic Liquids

Since its western discovery in the late 1980's, by Jeff Bottaro, the dinitramide anion, $\text{N}(\text{NO}_2)_2^-$ has received tremendous attention as a potential new oxidizing anion for energetic materials. A closely related anion, the nitrocyanamide anion, $\text{N}(\text{NO}_2)(\text{CN})^-$, was discovered in the early 1950's by McKay, and shortly thereafter, Harris investigated many heavy metal salts, as possible replacement initiators. However, it has been virtually ignored since that time.

$\text{N}(\text{NO}_2)_2^-$ (dinitramide)

$\text{N}(\text{NO}_2)(\text{CN})^-$ (nitrocyanamide)

Bottaro, J. L. ; Penwell, P. E. ; Schmitt, R. J. Synth. Commun., 1991, 21, 945
McKay, A. F. ; Ott, W. L. ; Taylor, G. W. ; Buchanan, M. N. ; Crooker, J. F. Can. J. Chem., 1951, 28, 683 ; Harris, S. J. Amer. Chem. Soc., 1958, 80, 2302.

Ionic Liquids

$$\begin{aligned}\alpha(\text{O}_1\text{-N}_1\text{-O}_2) &= 122.6(122.7) \\ \alpha(\text{O}_1\text{-N}_1\text{-N}_2) &= 115.9(115.7) \\ \alpha(\text{O}_2\text{-N}_1\text{-N}_2) &= 121.5(121.6) \\ \alpha(\text{N}_1\text{-N}_2\text{-C}_1) &= 113.7(111.3) \\ \alpha(\text{N}_2\text{-C}_1\text{-N}_3) &= 171.0(171.2)\end{aligned}$$

Ionic Liquids

Monomethylhydrazinium nitrocyanamide

Diaminoguanidinium nitrocyanamide

Methoxyammonium nitrocyanamide

Ionic Liquids

- The syntheses of several nitrocyanamide salts were accomplished through the metathesis reactions of the appropriate halide salt with silver nitrocyanamide as Harris reported in 1958.

<u>Compound</u>	$\Delta H_f(\text{est})$ Kcal/mole	M.P. $^{\circ}\text{C}$	Density g/cm ³ (meas.)	Impact kg-cm (5neg.)	Friction (Newtons) (5 neg.)	TGA % Loss/Day @ 75° C
Hydrazinium nitrocyanamide	+14	109	1.53	10	76	>1
Guanidinium nitrocyanamide	-13	95	1.39	>200	141	0.68
Methoxyammonium nitrocyanamide	-5	99	1.51	18	149	>20
Monomethylhydrazinium nitrocyanamide	+4	57	1.44	>200	>371	1.9
Aminoguanidinium nitrocyanamide	0	94	1.50	>200	>371	0.9
Diaminoguanidinium nitrocyanamide	+10	108	1.52	>200	>371	1.6

$[\text{NH}_3\text{OH}^+]$ and $[\text{HO}-\text{CH}_2\text{CH}_2-\text{NH}_3^+]$ salts were made, but were not stable at ambient temperatures!

Ionic Liquids

1-H-1,2,4-triazole

4-amino-1,2,4-triazole

1-H-1,2,3-triazole

$$X^- = \text{NO}_3^-, \text{ClO}_4^-, \text{N}(\text{NO}_2)_2^-$$

Drake, G.W. ; Hawkins, T. ; Brand, A. ; McKay, A. ; Ismail, I. ; Hall, L. ; Vij, A. Prop. Explos. Pyrotech. 2003, 12, 1.

Ionic Liquids

X-ray single crystal diffraction study of 1,2,4-triazolium perchlorate $\rho = 1.96 \text{ g/cm}^3$
It is felt that this is probably the top of the hill density wise for simple heterocycle salts.

Ionic Liquids

Some major shapes for organic based cations

1-methyl-3-alkyl-imidazolium

1-alkylpyridinium

Tetraalkylammonium

Tetraalkylphosphonium

Ionic Liquids

Significant efforts spent on 1-ethyl-3-methyl-imidazolium based systems and aluminum trichloride systems. More complex than originally thought as AlCl_3 and Cl^- have an equilibrium based on their respective concentrations.

Wilkes, J. S. Green Chemistry 2002, 4, 3.

Ionic Liquids

Melting point of MeEtImCl and AlCl₃ mixtures

Fannin, A. ; Floreani, D. ; King, L. ; Landers, J. ; Pierson, B. ; Stretch, D. ; Vaughn, R. ; Wilkes, J. ; Williams, J. J. Phys. Chem. 1984, 88, 2614.

Ionic Liquids

Wasserscheid, P.; Keim, W. *Angew. Chem. Int. Ed. Engl.* 2000, 39, 3772. Wasserscheid, P., Welton, T. (eds.) *Ionic Liquids in Synthesis* Wiley-VCH, FRG, 2003.
 .Seddon, K.R.; Holbrey, J. D. *Clean Products and Processes* 1999, 1, 223. Rogers, R.; Seddon, K. (eds.) *Ionic Liquids A.C.S. Symp. Ser.* 818 2002 A.C.S Publ. Co.

Ionic Liquids

Substituted ammonium salts $R_4N^+X^-$ Variations in melting point based on cation structure.

Gordon, J. E. ; SubbaRao, G. N. J. Amer. Chem. Soc. 1978, 100, 7445.

Ionic Liquids

Substituted ammonium salts $[R_4N^+][X^-]$ Recently work has been done by using more desirable anions.

<u>Substituted Ammonium Salt</u>	<u>M.P. (°C)</u>	<u>Density (g/cm³)</u>	<u>Viscosity (cp)</u>	<u>Δ (Ω^{-1} cm²/mole)</u>
$[(n-C_6H_{13})(CH_3)_3N^+][N(SO_2CF_3)_2]$	-74 (g)	1.33	153	1.4
$[(n-C_7H_{15})(CH_3)_3N^+][N(SO_2CF_3)_2]$	-73 (g)	1.28	153	1.4
$[(n-C_8H_{17})(CH_3)_3N^+][N(SO_2CF_3)_2]$	-73 (g)	1.27	181	1.3
$[(n-C_6H_{13})(CH_3CH_2)_3N^+][N(SO_2CF_3)_2]$	20	1.27	167	2.5
$[(n-C_7H_{15})(CH_3CH_2)_3N^+][N(SO_2CF_3)_2]$	-79	1.26	75	1.9
$[(n-C_8H_{17})(CH_3CH_2)_3N^+][N(SO_2CF_3)_2]$	-74	1.25	202	1.3
$[(n-C_6H_{13})(n-C_4H_9)_3N^+][N(SO_2CF_3)_2]$	26	1.15	595	0.8
$[(n-C_7H_{15})(n-C_4H_9)_3N^+][N(SO_2CF_3)_2]$	-67	1.17	606	0.8
$[(n-C_8H_{17})(n-C_4H_9)_3N^+][N(SO_2CF_3)_2]$	-63	1.12	574	0.7
$[(n-C_7H_{15})(Et)_3(ipr)_2N^+][N(SO_2CF_3)_2]$	-82	1.27	362	1.2
$[(n-C_8H_{17})(n-C_4H_9)_3N^+][OSO_2CF_3]$	-57	1.02	2030	0.07

- most have very low glass points
- densities decrease as expected
- viscosity increases dramatically with increasing alkyl length
- conductivity decreases with cation size (mobility issue)

Ionic Liquids

Most ionic liquids are based upon imidazolium rings and “heavy” or “dead” anions. We felt that we could use the shape of the cation and the poor fit idea to make much more energetic salts in a simple manner.

1-n-butyl-3-methyl imidazolium cation

1-ethyl-4-amino-1,2,4-triazolium cation

These new ionic liquids have similar shapes and physical properties,
BUT higher ΔH_p , higher densities, and better oxygen balances.

Ionic Liquids

Synthesis is from commercial materials

High yield simple isolation has been known
in literature for quite some time.

1-n-propyl-4-amino-
1,2,4-triazolium bromide
(yield >95% very pure)

Scriven; Keay; Goe; Astleford J. Org. Chem. 1989, 54, 731.

Ionic Liquids

1-n-butyl-4-amino-
1,2,4-triazolium cation

1-(2-ethanol)-4-
amino-1,2,4-
triazolium cation

1-isopropyl-4-amino-
1,2,4-triazolium cation

1-methylcyclopropyl-4-amino-
1,2,4-triazolium cation

1-(2-aminoethyl)-4-amino-
1,2,4-triazolium cation

Ionic Liquids

1-ethyl-4-amino-
1,2,4-triazolium cation

1-methyl-4-amino-
1,2,4-triazolium cation

1-(2-propenyl)-4-amino-
1,2,4-triazolium cation

1-n-propyl-4-amino-
1,2,4-triazolium cation

Ionic Liquids

Physical properties of 1-n-alkyl substituted-4-amino-1,2,4-triazolium bromides.

- increasing melting points with increasing molecular weights,
- decomposition onsets that are relatively low
- densities decrease with increasing alkyl chain length.

Substituted 4AT salts	m.p. (°C)	dec. onset (°C)	density (g/cm ³)
1-ethyl	63°	110	1.69
1-n-propyl	60°	120	1.56
1-isopropyl	90°	110	1.60
1-butyl	48°	130	1.46
1-n-pentyl	54°	130	1.37
1-n-hexyl	76°	120	1.34
1-n-heptyl	94°	120	1.30
1-n-octyl	80°	135	1.27
1-n-nonyl	81°	140	1.26
1-n-decyl	90°	135	1.23

Ionic Liquids

proton of 1-n-butyl 4-amino-1,2,4-triazolium bromide solid in d6-DMSO

Current Data Parameters
NAME: 4thInfluenza
EXPNO:

Carbon of 1-*n*-butyl-4-amino-1,2,4-triazolium bromide solid in de-DMSO

carbon of 1-n-butyl-4-amino-12,4-triazolium bromide solid in D₂-DMSO

Current Data Parameters

NAME	4AminobutGrah
ENDO	1
PICNO	1

F1 - Acquisition Parameters

Date	20100726
Time	10:46
INSTRUM	Spect
PROBOD	5 mm BBO BB
PULPROG	65536Q
TD	65536
SOVTIME	1.000
SOV	32
DS	2
SWH	8278.140 Hz
FOIDRES	0.12014 Hz
SWFID	3.0564643 sec
RG	65.8
TDZ	0.0100 usec
TE	6.000 usec
DW	1.0000 sec
D1	1.000000 sec

CHANNEL 1

NUC1	¹ H
PL1	720 usec
PL1	8100 dB
SF01	400.132491 MHz

CHANNEL 2

NUC1	¹³ C
PL1	720 usec
PL1	8100 dB
SF01	400.130030 MHz
SI	32768
PC	1.00

F2 - Processing parameters

SWH	11.5 Hz
TD	2048
TE	65.5 sec
DW	10.0 sec
SWFID	0.000000 sec
RG	0.000000 sec
DW1	10.0 sec
SWFID1	0.000000 sec
TD1	2048
TE1	65.5 sec
DW2	10.0 sec
SWFID2	0.000000 sec
TD2	2048
TE2	65.5 sec
DW3	10.0 sec
SWFID3	0.000000 sec
TD3	2048
TE3	65.5 sec
DW4	10.0 sec
SWFID4	0.000000 sec
TD4	2048
TE4	65.5 sec
DW5	10.0 sec
SWFID5	0.000000 sec
TD5	2048
TE5	65.5 sec
DW6	10.0 sec
SWFID6	0.000000 sec
TD6	2048
TE6	65.5 sec
DW7	10.0 sec
SWFID7	0.000000 sec
TD7	2048
TE7	65.5 sec
DW8	10.0 sec
SWFID8	0.000000 sec
TD8	2048
TE8	65.5 sec
DW9	10.0 sec
SWFID9	0.000000 sec
TD9	2048
TE9	65.5 sec
DW10	10.0 sec
SWFID10	0.000000 sec
TD10	2048
TE10	65.5 sec
DW11	10.0 sec
SWFID11	0.000000 sec
TD11	2048
TE11	65.5 sec
DW12	10.0 sec
SWFID12	0.000000 sec
TD12	2048
TE12	65.5 sec
DW13	10.0 sec
SWFID13	0.000000 sec
TD13	2048
TE13	65.5 sec
DW14	10.0 sec
SWFID14	0.000000 sec
TD14	2048
TE14	65.5 sec
DW15	10.0 sec
SWFID15	0.000000 sec
TD15	2048
TE15	65.5 sec
DW16	10.0 sec
SWFID16	0.000000 sec
TD16	2048
TE16	65.5 sec
DW17	10.0 sec
SWFID17	0.000000 sec
TD17	2048
TE17	65.5 sec
DW18	10.0 sec
SWFID18	0.000000 sec
TD18	2048
TE18	65.5 sec
DW19	10.0 sec
SWFID19	0.000000 sec
TD19	2048
TE19	65.5 sec
DW20	10.0 sec
SWFID20	0.000000 sec
TD20	2048
TE20	65.5 sec
DW21	10.0 sec
SWFID21	0.000000 sec
TD21	2048
TE21	65.5 sec
DW22	10.0 sec
SWFID22	0.000000 sec
TD22	2048
TE22	65.5 sec
DW23	10.0 sec
SWFID23	0.000000 sec
TD23	2048
TE23	65.5 sec
DW24	10.0 sec
SWFID24	0.000000 sec
TD24	2048
TE24	65.5 sec
DW25	10.0 sec
SWFID25	0.000000 sec
TD25	2048
TE25	65.5 sec

¹H(left) and ¹³C nmr spectra of 1-butyl-4-amino-1,2,4-triazolium bromide.

Ionic Liquids

Single x-ray diffraction study of 1-ethyl-4-amino-1,2,4-triazolium bromide.

Ionic Liquids

Single crystal x-ray diffraction study of 1-n-propyl-4-amino-1,2,4-triazolium bromide showing significant hydrogen bond contacts.

Ionic Liquids

Hydrogen bond contacts in solid 1-n-propyl-4-amino-1,2,4-triazolium bromide

Ionic Liquids

Single crystal x-ray diffraction structure of 1-isopropyl-4-amino-1,2,4-triazolium bromide.

Ionic Liquids

Single crystal x-ray diffraction study of 1-hexyl-4-amino-1,2,4-triazolium bromide.

Ionic Liquids

Br⁻

Single crystal x-ray diffraction study of 1-heptyl-4-amino-1,2,4-triazolium bromide.

Ionic Liquids

Hydrogen bond contacts in 1-heptyl-4-amino-1,2,4-triazolium bromide

Ionic Liquids

1-dodecyl-3-methylimidazolium hexafluorophosphate* **1-hexyl-4-amino-1,2,4-triazolium bromide[#]**

*Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. *J. Mater. Chem.* **1998**, *8*, 2627. [#]Drake, G. W.; Tollison, K.; Hall, L.; Vij, A. 2003 manuscript in progress.

Ionic Liquids

But halides are only the start...

Nitrates were best made through silver nitrate metathesis in methanol.

This route led to the best materials as the silver bromide was easily removed.

Ionic Liquids

1-substituted-4-amino-1,2,4-triazolium nitrate salts are more stable.

<u>Salt</u>	<u>melting point(°C)</u>	<u>decomp onset(°C)</u>	<u>ρ(g/cm³, est.)</u>
1-methyl	54	185	1.57
1-ethyl	5	185	1.39 (1.38)
1-n-propyl	34	190	1.35
1-isopropyl	53	175	1.37 (1.43)
1-n-buty	-25 (g)	190	1.31
1-(2-ethanol)	-50 (g)	180	1.48
1-methylcyclopropyl	56	190	1.36 (1.44)
1-(2-propenyl)	10	165	1.23
1-n-pentyl	26	170	1.29
1-n-hexyl	-2	160	1.26
1-n-heptyl	31	160	1.24
1-n-octyl	29	170	1.22
1-n-nonyl	53	175	1.20
1-n-decyl	49	185	1.18

Ionic Liquids

Sample: 1-PROPYL-4-AT NITRATE
Size: 1.9000 mg
Method: greg
Comment: 10C/min/10ml/min/hermeticalpans

DSC

File: C:\...\files from old DSC\4at propyl no3
Operator: DRAKE
Run Date: 16-Jan-02 23:04

DSC of 1-n-propyl-4-amino-1,2,4-triazolium nitrate

Universal V3.3B TA Instruments

Ionic Liquids

Single crystal x-ray diffraction study of 1-methyleclopolypropyl-4-amino-1,2,4-triazolium nitrate.

Ionic Liquids

Single crystal x-ray diffraction structure of 1-isopropyl-4-amino-1,2,4-triazolium nitrate

Ionic Liquids

The new energetic cations are weakly acidic in nature, aqueous solutions have a pH of around 4 which suggests the equilibrium involving a zwitterionic 1-alkyl-4-amido-1,2,4-triazolium species. This equilibrium could be one possible way for the ionic liquids to “come apart”.

Ionic Liquids

Summary and Conclusions

Oxyamines and nitrocyanamide ions make for low melting and energetic salts, however both are plagued by poor thermal behavior and impact/friction sensitivity.

A large new class of low melting salts which should be considered as new members of the well known class of materials referred to as ionic liquids has been synthesized and well characterized.

Using asymmetric cation shapes and poor cation-anion fit, an analogue system to the well known 1,3-dialkylsubstituted imidazolium cation family, based upon 1-substituted-4-amino-1,2,4-triazolium cations paired with the bromide and nitrate ions has been explored.

Facile synthesis routes from commercially available materials coupled with high yield and purity reactions make these new materials very exciting.

Several single crystal x-ray diffraction studies of several structures have been carried out proving the expected structure as well as revealing extensive hydrogen bonding in the solid state.

Physical properties of 1-substituted-4-amino-1,2,4-triazolium salts included much higher viscosities, higher densities, and much more polar behavior than that of imidazolium ionic liquids.

Ionic Liquids

ACKNOWLEDGEMENTS

- MIKE BERMAN (AFOSR)
- WAYNE KALLIOMAA; RONALD CHANNELL(AFRL/PRSP)
- JOHN WILKES (USAFA)
- JEFF SHEEHY(NASA/MARSHALL AND UA/HUNTSVILLE)
- CLAUDE MERRILL
- TOMMY HIGHSMITH
- JEFF BOTTAZO, MARK PETRIE (SRI, INT.)
- MIKE HUGGINS (AFRL SUPPORT)