MATLAB commands in numerical Python

Copyright ©2006 Vidar Bronken Gundersen

Permission is granted to copy, distribute and/or modify this document as long as the above attribution is kept and the resulting work is distributed under a license identical to this one.

Contributor: Gary Ruben

The idea of this document (and the corresponding XML instance) is to provide a quick reference of for switching to open-source mathematical computation environments for computer algebra, numeric processing and data visualisation. Examples of well known systems are MATLAB, IDL, R, SPlus, with their open-source counterparts Octave, Scilab, FreeMat, Python (NumPy and matplotlib modules), and Gnuplot. Or CAS tools like Mathematica, Maple, MuPAD, with Axiom and Maxima as open alternatives.

Where Octave and Scilab commands are omitted, expect Matlab compatibility, and similarly where non given use the generic command.

Time-stamp: 2007-11-09T16:46:36 vidar

1 Help

	Browse help interactively
MATLAB	doc
Octave Scilab	help -i % browse with Info
	help
R	help.start()
Python	help()
gnuplot	help or ?
^{IDL} Axiom	?)hd
TATOM	
	Help on using help
MATLAB	help help or doc doc
R	help()
Python	help
IDL	?help
Axiom)help ?
	Help for a function
MATLAB	help plot
R	help(plot) or ?plot
Python	help(plot) or ?plot
gnuplot	help plot or ?plot
IDL	?plot or man, 'plot
Maxima	describe(keyword)\$
Maple	?keyword
Mathematica	?keyword
MuPAD	?keyword
	Help for a toolbox/library package
MATLAB	help splines or doc splines
R	help(package='splines')
Python	help(pylab)
	Demonstration examples
MATLAB	demo
Scilab	<pre>demoplay();</pre>
R	demo()
IDL	demo
	Example using a function
R	example(plot)
Maxima	example(factor);

1.1 Searching available documentation

	Search help files
MATLAB	lookfor plot
R	help.search('plot')
	Find objects by partial name
R	apropos('plot')
Scilab	apropos plot
Axiom)what operations pattern
Maxima	describe(pattern)\$
Maple	?keyword
Mathematica	?*pattern*
MuPAD	?*pattern*

¹References: Hankin, Robin. R for Octave users (2001), available from http://cran.r-project.org/doc/contrib/R-and-octave-2.txt (accessed 2005.07.24); Martelli, Alex. Python in a Nutshell (O'Reilly, 2003); Oliphant, Travis. Guide to NumPy (Trelgol, 2006); Hunter, John. The Matplotlib User's Guide (2005), available from http://matplotlib.sf.net/ (accessed 2005.07.31); Langtangen, Hans Petter. Python Scripting for Computational Science (Springer, 2004); Ascher et al.: Numeric Python manual (2001), available from http://numeric.scipy.org/numpy.pdf (accessed 2005.06.25); Moler, Cleve. Numerical Computing with MATLAB (MathWorks, 2004), available from http://www.mathworks.com/moler/ (accessed 2005.03.10); Eaton, John W. Octave Quick Reference (1996); Merrit, Ethan. Demo scripts for gauplot version 4.0 (2004), available from http://gnuplot.sourceforge.net/demo/ (accessed 2005.07.24); Woo, Alex. Gauplot Quick Reference (2004), available from http://www.gnuplot.info/docs/gpcard.pdf (accessed 2005.07.14); Venables & Smith: An Introduction to R (2005), available from http://cran.r-project.org/doc/manuals/R-intro.pdf (accessed 2005.07.25); Short, Tom. R reference card (2005), available from http://www.rpad.org/Rpad/R-refcard.pdf (accessed 2005.07.24); Greenfield, Jedrzejewski & Laidler. Using Python for Interactive Data Analysis (2005), pp.125-134, available from http://stsdas.stsci.edu/perry/pydatatut.pdf (accessed 2005.07.29); Brisson, Eric. Using IDL to Manipulate and Visualize Scientific Data, available from http://scv.bu.edu/Tutorials/IDL/ (accessed 2005.07.31); Wester, Michael (ed). Computer Algebra Systems: A Practical Guide (1999), available from http://www.math.unm.edu/~wester/cas_review.html (accessed 2005.08.14).

	List available packages
MATLAB	help
R	library()
Python	help(); modules [Numeric]
	Locate functions
MATLAB	which plot
Scilab	whereis plot
R	find(plot)
Python	help(plot)
	List available methods for a function
R	methods(plot)

1.2 Using interactively

	Start session
Octave	octave -q
R	Rgui
Python	ipython -pylab
IDL	idlde
bc	
	bc -lq
gnuplot	pgnuplot
	Auto completion
Octave	TAB or M-?
Scilab	! // commands in history
Python	TAB
	Run code from file
MATLAB	foo(.m)
Scilab	exec('foo.sce')
R	source('foo.R')
Python	execfile('foo.py') or run foo.py
gnuplot	load 'foo.gp'
IDL	Q"foo.idlbatch" or .run 'foo.pro'
Maxima	batch("foo.mc")
Octave	Command history history
Scilab	gethistory
R	history()
Python	hist -n
IDL	help,/rec
Axiom)history)show
11110111	
	Save command history
MATLAB Scilab	diary on [] diary off
	diary('session.txt') [] diary(0)
R	savehistory(file=".Rhistory")
IDL	journal, 'IDLhistory'
Axiom)hist)write foo.input
	End session
MATLAB	exit or quit
R	q(save='no')
Python	CTRL-D
	CTRL-Z # windows
	sys.exit()
gnuplot	exit or quit
IDL	exit or CTRL-D
Axiom)quit
Maxima	quit();
Maple	quit
Mathematica	Quit[]
MuPAD	quit
Derive	[Quit]
REDUCE	quit;
bc	quit

2 Operators

	Help on operator syntax
MATLAB	help -
Scilab	help symbols
R	help(Syntax)

2.1 Arithmetic operators

	Assignment; defining a number
MATLAB	a=1; b=2;
R	a<-1; b<-2
Python	a=1; b=1
IDL	a=1 & b=1
bc	a=1; b=1

	Addition
Generic	a + b
MATLAB	a + b
R	a + b
Python gnuplot	a + b or add(a,b) a + b
IDL	a + b
bc	a + b
	Subtraction
Generic	a - b
MATLAB	a - b
R Python	a - b a - b or subtract(a,b)
gnuplot	a - b
IDL	a - b
bc	a - b
	Multiplication
Generic MATLAB	a * b a * b
R	a * b
Python	a * b or multiply(a,b)
gnuplot	a * b
IDL bc	a * b a * b
Generic	Division a / b
MATLAB	a / b
R	a / b
Python gnuplot	a / b or divide(a,b) a / b
IDL	a/b
	Power, a^b
MATLAB	a. b
R	a ^ b
Python	a ** b
	<pre>power(a,b) pow(a,b)</pre>
gnuplot	a ** b
IDL	a ^ b
Axiom	a**b
Maxima bc	a^b or a**b a ^ b
MATLAB	Remainder rem(a,b)
Scilab	modulo(a,b)
R	a
Python	a % b remainder(a,b)
	fmod(a,b)
gnuplot	a % b
IDL	a MOD b
Axiom Maxima	rem(a,b) $mod(a,b)$
Maple	a mod b
Mathematica	Mod[a,b]
MuPAD Derive	a mod b MOD(a,b)
bc	a % b
	Integer division
R	a %/% b
bc	a / b
	Increment, return new value
Octave	++a ++a on a+=1
IDL bc	++a or a+=1 ++a
	Increment, return old value
Octave	a++
IDL	a++
bc	a++
	In place operation to save array creation overhead
Python	a+=b or add(a,b,a)
Octave IDL	a+=1 a+=1
bc	a+=b
	Factorial, $n!$
MATLAB	factorial(a)
R	factorial(a)
Axiom Maxima	factorial(a)
Maxima Maple	a! a!
p10	

2.2 Relational operators

	Equal
Generic	a == b
MATLAB	a == b
R	a == b
Python	a == b or equal(a,b)
IDL	a eq b
bc	a == b
	Less than
Generic	a < b
MATLAB	a < b
R	a < b
Python	a < b or less(a,b)
IDL	a lt b
bc	a < b
	Greater than
Generic	a > b
MATLAB	a > b
R	a > b
Python	a > b or greater(a,b)
^{IDL} bc	a gt b a > b
DC	a > b
	Less than or equal
Generic	a <= b
MATLAB	a <= b a <= b
MATLAB R	a <= b a <= b a <= b
MATLAB R Python	a <= b a <= b a <= b or less_equal(a,b)
MATLAB R Python IDL	a <= b a <= b a <= b a <= b or less_equal(a,b) a le b
MATLAB R Python	a <= b a <= b a <= b a <= b or less_equal(a,b) a le b a <= b
MATLAB R Python IDL bc	a <= b a <= b a <= b a <= b or less_equal(a,b) a le b a <= b Greater than or equal
MATLAB R Python IDL bc Generic	a <= b a <= b a <= b a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b
MATLAB R Python IDL bc Generic MATLAB	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b
MATLAB R Python IDL bc Generic MATLAB R	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b
MATLAB R Python IDL bc Generic MATLAB R Python	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b
MATLAB R Python IDL bc Generic MATLAB R Python IDL	a <= b a <= b a <= b a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b or greater_equal(a,b) a ge b
MATLAB R Python IDL bc Generic MATLAB R Python	<pre>a <= b a <= b a <= b a <= b a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b</pre>
MATLAB R Python IDL bc Generic MATLAB R Python IDL bc	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b b a >= b b a >= b Not Equal
MATLAB R Python IDL bc Generic MATLAB R Python IDL bc	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b b >= b a >= b b >= b
MATLAB R Python IDL bc Generic MATLAB R Python IDL bc	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b or greater_equal(a,b) a ge b a >= b Not Equal a ~= b a ~= b or a <> b
MATLAB R Python IDL bc Generic MATLAB R Python IDL bc MATLAB Scilab R	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b b a >= b or greater_equal(a,b) a ge b a >= b Not Equal a ~= b a ~= b or a <> b a != b
MATLAB R Python IDL bc Generic MATLAB R Python IDL bc MATLAB Scilab R Python	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b b >= b or greater_equal(a,b) a ge b a >= b Not Equal a ~= b a ~= b or a <> b a != b or not_equal(a,b)
MATLAB R Python IDL bc Generic MATLAB R Python IDL bc MATLAB Scilab R	a <= b or less_equal(a,b) a le b a <= b Greater than or equal a >= b a >= b a >= b a >= b b a >= b or greater_equal(a,b) a ge b a >= b Not Equal a ~= b a ~= b or a <> b a != b

2.3 Logical operators

	Short-circuit logical AND
MATLAB	a && b
Python	a and b
R	a && b
bc	a && b
	Short-circuit logical OR
MATLAB	a b
Python	a or b
R	a b
bc	a b
ьс	a b
	Element-wise logical AND
MATLAB	a & b or and(a,b)
R	a & b
Python	logical_and(a,b) or a and b
IDL	a and b
	Element-wise logical OR
MATLAB	a b or or(a,b)
R	a b
Python	logical_or(a,b) or a or b
IDL	a or b
	Logical EXCLUSIVE OR
MATLAB	xor(a, b)
R	xor(a, b)
Python	logical_xor(a,b)
IDL	a xor b
	Logical NOT
MATLAB	~a or not(a)
Octave	~a or !a
R	!a
Python	logical_not(a) or not a
IDL	not a
bc	!a
DC	; a
	True if any element is nonzero
MATLAB	any(a)

	True if all elements are nonzero	
MATLAB	all(a)	_
Scilab	and(a)	

2.4 root and logarithm

	Square root	
Generic	sqrt(a)	_
MATLAB	sqrt(a)	
R	sqrt(a)	
Python	math.sqrt(a)	
gnuplot	sqrt(a)	_
IDL	sqrt(a)	\sqrt{a}
Axiom	sqrt(a)	
Maxima	sqrt(a)	
Maple	sqrt(a)	
Mathematica	Sqrt[a]	
bc	sqrt(a)	
50	•	
	Logarithm, base e (natural)	_
Generic	log(a)	
MATLAB	log(a)	
R	log(a)	
Python	math.log(a)	
gnuplot	log(a)	
IDL	alog(a)	$\ln a = \log_e a$
Axiom	log(a)	
Maxima	log(a)	
Maple	log(a)	
Mathematica	Log[a]	
MuPAD	ln(a)	
bc	1(a)	
	Logarithm, base 10	
Generic	log10(a)	-
MATLAB	log10(a)	
R	log10(a)	$\log_{10} a$
Python	math.log10(a)	10810 W
gnuplot	log10(a)	
IDL	alog10(a)	
IDL	a10g10(a)	
	Logarithm, base 2 (binary)	_
MATLAB	log2(a)	$\log_2 a$
R	log2(a)	1062 4
Python	math.log(a, 2)	
	Exponential function	
Generic	exp(a)	_
MATLAB	exp(a)	
R	exp(a)	
Python	math.exp(a)	e^a
gnuplot	exp(a)	
IDL	exp(a)	
bc	e(a)	
	- \	

2.5 Round off

	Round
MATLAB	round(a)
R	round(a)
Python	around(a) or math.round(a)
IDL	round(a)
	Round up
MATLAB	ceil(a)
R	ceil(a)
Python	ceil(a)
gnuplot	ceil(a)
IDL	ceil(a)
	Round down
MATLAB	floor(a)
R	floor(a)
Python	floor(a)
gnuplot	floor(a)
IDL	floor(a)
	Round towards zero
MATLAB	fix(a)
Python	fix(a)

2.6 Mathematical constants

	$\pi = 3.141592$
MATLAB	pi
Scilab	%pi
R	pi
Python	math.pi
IDL	!pi
Axiom	%pi
Maxima	%pi
Maple	Pi
Mathematica	Pi
MuPAD	PI
	e = 2.718281
MATLAB	exp(1)
Scilab	%e
R	exp(1)
Python	math.e or math.exp(1)
gnuplot	exp(1)
IDL	exp(1)
Axiom	%e
Maxima	%e
Maple	exp(1)
Mathematica	E
MuPAD	E

2.6.1 Missing values; IEEE-754 floating point status flags

	Not a Number
MATLAB	NaN
Python	nan
Scilab	%nan
	Infinity, ∞
MATLAB	Inf
Scilab	%inf
Python	inf
	Infinity, $+\infty$
Python	plus_inf
Axiom	%plusInfinity
	Infinity, $-\infty$
Python	minus_inf
Axiom	${\tt \%minusInfinity}$
	Plus zero, +0
Python	plus_zero
	Minus zero, -0
Python	minus_zero

2.7 Complex numbers

	Imaginary unit	
MATLAB	i	_
Scilab	%i	
R	1i	
Python	z = 1j	$i = \sqrt{-1}$
gnuplot	{0,1}	
IDL	complex(0,1)	
Axiom	%i	
Maxima	%i	
	A complex number, $3+4i$	
MATLAB	z = 3+4i	_
Scilab	z = 3+4*%i	
R	z <- 3+4i	
Python	z = 3+4j or $z = complex(3,4)$	
gnuplot	{3,4}	
IDL	z = complex(3,4)	
Axiom	3+4*%i	
Maxima	3+4*%i	
	Absolute value (modulus)	
Generic	abs(z)	_
MATLAB	abs(z)	
R	abs(3+4i) or Mod(3+4i)	
Python	abs(3+4j)	
gnuplot	abs({3,4})	
IDL	abs(z)	
Maxima	abs(z);	
	Real part	_
Generic	real(z)	
MATLAB	real(z)	
R	Re(3+4i)	
Python	z.real	
gnuplot	real({3,4})	
IDL	real_part(z)	
Maxima	realpart(z)	

	Imaginary part
Generic	imag(z)
MATLAB	imag(z)
R	Im(3+4i)
Python	z.imag
IDL	imaginary(z)
gnuplot	$imag(\{3,4\})$
Maxima	imagpart(z)
	Argument
MATLAB	arg(z)
R	Arg(3+4i)
gnuplot	arg({3,4})
	Complex conjugate
Generic	conj(z)
MATLAB	conj(z)
R	Conj(3+4i)
Python	z.conj(); z.conjugate()
IDL	conj(z)

2.8 Trigonometry

	Sine
Generic	sin(a)
	Cosine
Generic	cos(a)
	Tangent
Generic	tan(a)
	Arcsine
Generic	asin(a) or arcsin(a)
	Arccosine
Generic	acos(a) or arccos(a)
	Arctangent
Generic	atan(a) or arctan(a)
	Arctangent, $arctan(b/a)$
MATLAB	atan(a,b)
R	atan2(b,a)
Python	atan2(b,a)
	Hyperbolic sine
Generic	sinh(a)
	Hyperbolic cosine
Generic	cosh(a)
	Hyperbolic tangent
Generic	tanh(a)
	Hypotenus; Euclidean distance
Python	hypot(x,y)
· ·	

2.9 Generate random numbers

	Uniform distribution
MATLAB	rand(1,10)
Scilab	rand(1,10, 'uniform')
R	runif(10)
Python	random.random((10,))
rython	random.uniform((10,))
	Tandom.uniiotm((10,))
IDL	randomu(seed, 10)
	Uniform: Numbers between 2 and 7
MATLAB	2+5*rand(1,10)
Scilab	2+5*rand(1,10,'uniform')
R	runif(10, min=2, max=7)
Python	random.uniform(2,7,(10,))
IDL	2+5*randomu(seed, 10)
	Uniform: 6,6 array
MATLAB	rand(6)
Scilab	rand(6,6,'uniform')
R	<pre>matrix(runif(36),6)</pre>
Python	random.uniform(0,1,(6,6))
IDL	randomu(seed,[6,6])
	Normal distribution
MATLAB	randn(1,10)
Scilab	rand(1,10,'normal')
R	rnorm(10)
Python	random.standard_normal((10,))
IDL	randomn(seed, 10)

3 Vectors

	Row vector, $1 \times n$ -matrix
MATLAB	a=[2 3 4 5];
R	a <- c(2,3,4,5)
Python	a=array([2,3,4,5])
IDL	a = [2, 3, 4, 5]
	Column vector, $m \times 1$ -matrix
MATLAB	adash=[2 3 4 5]';
R	$adash \leftarrow t(c(2,3,4,5))$
Python	array([2,3,4,5])[:,NewAxis]
· ·	array([2,3,4,5]).reshape(-1,1)
	r_[1:10,'c']
IDL	transpose([2,3,4,5])

3.1 Sequences

	$1,2,3, \dots, 10$
MATLAB	1:10
R	seq(10) or 1:10
Python	arange(1,11, dtype=Float)
1 3 011011	range(1,11)
IDL	indgen(10)+1
IDL	dindgen(10)+1
	dindgen(10) i
	$0.0, 1.0, 2.0, \dots, 9.0$
MATLAB	0:9
R	seq(0,length=10)
Python	arange(10.)
IDL	dindgen(10)
	1,4,7,10
MATLAB	1:3:10
R	seq(1,10,by=3)
Python	arange(1,11,3)
IDL	indgen(4)*3+1
IDL	-
	10,9,8, ,1 10:-1:1
MATLAB	
R	seq(10,1) or 10:1
Python	arange(10,0,-1)
	10,7,4,1
MATLAB	10:-3:1
R	seq(from=10,to=1,by=-3)
Python	arange(10,0,-3)
v	Linearly spaced vector of n=7 points
MATLAB	linspace(1,10,7)
R	
	seq(1,10,1ength=7)
Python	linspace(1,10,7)
	Reverse
MATLAB	reverse(a)
Scilab	a(\$:-1:1)
R	rev(a)
Python	a[::-1] or
IDL	reverse(a)
	Set all values to same scalar value
MATLAB	a(:) = 3
Python	a.fill(3), a[:] = 3
1 9 011011	u.1111(0), u[.]

3.2 Concatenation (vectors)

	Concatenate two vectors
MATLAB	[a a]
R	c(a,a)
Python	<pre>concatenate((a,a))</pre>
IDL	[a,a] or rebin(a,2,size(a))
MATLAB	[1:4 a]
R	c(1:4,a)
Python	<pre>concatenate((range(1,5),a), axis=1)</pre>
IDL	[indgen(3)+1,a]

3.3 Repeating

	1 2 3, 1 2 3
MATLAB	[a a]
R	rep(a,times=2)
Python	concatenate((a,a))
	1 1 1, 2 2 2, 3 3 3
R	rep(a,each=3)
Python	a.repeat(3) or

	1, 22, 333	
R	rep(a,a)	
Python	a.repeat(a) or	

3.4 Miss those elements out

	miss the first element
MATLAB	a(2:end)
Scilab	a(2:\$)
R	a[-1]
Python	a[1:]
	miss the tenth element
MATLAB	a([1:9])
R	a[-10]
	miss 1,4,7,
R	a[-seq(1,50,3)]
	last element
MATLAB	a(end)
Scilab	a(\$)
Python	a[-1]
	last two elements
MATLAB	a(end-1:end)
Python	a[-2:]

3.5 Maximum and minimum

	pairwise max					
MATLAB	max(a,b)					
Python	maximum(a,b)					
R	pmax(a,b)					
	max of all values in two vectors					
MATLAB	max([a b])					
Python	<pre>concatenate((a,b)).max()</pre>					
R	max(a,b)					
MATLAB	$[v,i] = \max(a)$					
Python	v,i = a.max(0),a.argmax(0)					
R	v <- max(a); i <- which.max(a)					

3.6 Vector multiplication

	Multiply two vectors					
MATLAB	a.*a					
R	a*a					
Python	a*a					
	Vector cross product, $u \times v$					
IDL	crossp(u,v)					
Mathematica	cross(u,v)					
	Vector dot product, $u \cdot v$					
MATLAB	dot(u,v)					
Python	dot(u,v)					

4 Matrices

	Define a matrix		
MATLAB	a = [2 3;4 5]	_	
R	rbind(c(2,3),c(4,5))		
	array(c(2,3,4,5), dim=c(2,2))		
Python	a = array([[2,3],[4,5]])	Гэ	2 T
IDL	a = [[2,3],[4,5]]	4	3 5
Axiom	a := matrix [[2,3],[4,5]]	L 4	9]
Maxima	matrix([2,3],[4,5])		
Maple	matrix([[2,3],[4,5]])		
Mathematica	{{2,3},{4,5}}		
Derive	[[2.3],[4.5]]		

4.1 Concatenation (matrices); rbind and cbind

	Dilid Tows				
MATLAB	[a ; b]				
R	rbind(a,b)				
Python	<pre>concatenate((a,b), axis=0) vstack((a,b))</pre>				
	Bind columns				
MATLAB	[a , b]				
R	cbind(a,b)				
Python	<pre>concatenate((a,b), axis=1) hstack((a,b))</pre>				

	Bind slices (three-way arrays)						
Python	Python concatenate((a,b), axis=2)						
	dstack((a,b))						
	Concatenate matrices into one vector						
MATLAB	[a(:), b(:)]						
Python	concatenate((a,b), axis=None)						
	Bind rows (from vectors)						
MATLAB	[1:4; 1:4]						
R	rbind(1:4,1:4)						
Python	$concatenate((r_[1:5],r_[1:5])).reshape(2,-1)$						
	vstack((r_[1:5],r_[1:5]))						
[,1] [,2]	[,3] [,4]						
[1,] 1 2							
[2,] 1 2	3 4						
	Bind columns (from vectors)						
MATLAB	[1:4; 1:4]'						
R	cbind(1:4,1:4)						
[,1] [,2]							
[1,] 1 1							
[2,] 2 2							
[3,] 3 3							
[4,] 4 4							

4.2 Array creation

	o filled array	_					
MATLAB	zeros(3,5)	Γ	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
R	matrix(0,3,5) or $array(0,c(3,5))$		0	0	0	0	0
Python	zeros((3,5),Float)	L	0	0	0	0	0]
IDL	dblarr(3,5)						
	o filled array of integers	_					
Python	zeros((3,5))						
IDL	intarr(3,5)						
	ı filled array						
MATLAB	ones(3,5)		1	1	1	1	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
R	matrix(1,3,5) or array(1,c(3,5))		1	1	1	1	1
Python	ones((3,5),Float)	L	1	1	1	1	1]
IDL	dblarr(3,5)+1						
	Any number filled array						
MATLAB	ones(3,5)*9	_ Г	9	9	9	9	9 9 9
R	matrix(9,3,5) or $array(9,c(3,5))$		9	9	9	9	9
Python		L	9	9	9	9	9
IDL	intarr(3,5)+9						
	Identity matrix	_					
MATLAB	eye(3)	_ г	1	0	0	٦	
Scilab	eye(3,3)		Ô	1	0 0 1		
R	diag(1,3)		0	Ô	1		
Python	identity(3)	L	•	•	-	_	
IDL	identity(3)						
	Diagonal	_					
MATLAB	diag([4 5 6])	Г	4	0	0	٦	
R	diag(c(4,5,6))		0	5	0		
Python	diag((4,5,6))		0	0	0 0 6		
IDL	diag_matrix([4,5,6])					_	
Axiom	diagonalMatrix([4,5,6])						
	Magic squares; Lo Shu	_ [8	1	6 7 2	1	
MATLAB	magic(3)		3	5	7		
Scilab	testmatrix('magi',3)	L	4	9	2]	
	Empty array	_					
Python	a = empty((3,3))						

4.3 Reshape and flatten matrices

	Reshaping (rows first)					
MATLAB	reshape(1:6,3,2);					
Scilab	matrix(1:6,3,2);	Г 1	2	2 T		
R	<pre>matrix(1:6,nrow=3,byrow=T)</pre>	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	2	3 C		
Python	arange(1,7).reshape(2,-1)	L 4	Э	0]		
	a.setshape(2,3)					
IDL	reform(a,2,3)					
	Destruction (extrusor Cost)					
	Reshaping (columns first)					
MATLAB	reshape(1:6,2,3);	г		٦.		
Scilab	matrix(1:6,2,3);	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	3	5		
R	matrix(1:6,nrow=2)	2	4	6		
	array(1:6,c(2,3))	_		_		
Python	arange(1,7).reshape(-1,2).transpose()					
	Flatten to vector (by rows, like comics)					
MATLAB	a'(:)	[1	0	3 4	-	c]
R	as.vector(t(a))	[1	2	3 4	9	0
Python	a.flatten() or					
Python	a.flatten() or					

	Flatten to vector (by columns)						
MATLAB	a(:)	-					-
R	as.vector(a)	1	4	2	5	3	6
Python	a.flatten(1)	L					J
	Flatten upper triangle (by columns)						
MATLAB	vech(a)	_					
R	a[row(a) <= col(a)]						

4.4 Shared data (slicing)

	Copy of a	
MATLAB	b = a	
R	b = a	
Python	b = a.copy()	

4.5 Indexing and accessing elements (Python: slicing)

	Input is a 3,4 array				
MATLAB	a = [11 12 13 14	_			
	21 22 23 24				
_	31 32 33 34]				
R	a <- rbind(c(11, 12, 13, 14),	г.			. 7
	c(21, 22, 23, 24), c(31, 32, 33, 34))	a ₁₁	a_{12}	a_{13}	a ₁₄
Python	a = array([[11, 12, 13, 14],	$a_{21} \\ a_{31}$	$a_{22} \\ a_{32}$	$a_{23} \\ a_{33}$	$a_{24} \\ a_{34}$
1 y thon	[21, 22, 23, 24],	L 431	432	433	α ₃₄]
	[31, 32, 33, 34]])				
IDL	a = [[11, 12, 13, 14], \$				
	[21, 22, 23, 24], \$				
	[31, 32, 33, 34]]				
	Element 2,3 (row,col)				
MATLAB	a(2,3)	_			
R	a[2,3]	a_{23}			
Python	a[1,2]				
IDL	a(2,1)				
	First row				
MATLAB	a(1,:)	- г			٦
R	a[1,]	a_{11}	a_{12}	a_{13}	a_{14}
Python IDL	a[0,] a(*,0)				
IDL					
	First column		-		
MATLAB	a(:,1)	a_{11}			
R Python	a[,1]	a ₂₁			
IDL	a[:,0] a(0,*)	a_{31}	J		
IDE					
	Array as indices	-г.	_	1	
MATLAB Python	a([1 3],[1 4]); a.take([0,2]).take([0,3], axis=1)	$a_{11} \\ a_{31}$	$a_{14} \\ a_{34}$		
1 y thon	a.vake([0,2]).vake([0,0], axis-1)	L 431	434]	
	All, except first row				
MATLAB	a(2:end,:)	_			
Scilab	a(2:\$,:)	a_{21}	a_{22}	a_{23}	a_{24}
R	a[-1,]	a ₃₁	a_{32}	a_{33}	a_{34}
Python	a[1:,]	L			_
IDL	a(*,1:*)				
	Last two rows	Γ.			. 1
MATLAB	a(end-1:end,:)	$- \begin{vmatrix} a_{21} \\ a_{31} \end{vmatrix}$	$a_{22} \\ a_{32}$	a_{23}	$a_{24} \\ a_{34}$
Python	a[-2:,]	L 431	432	a_{33}	α ₃₄]
	Strides: Every other row	г			٦
MATLAB	a(1:2:end,:)	$- \begin{vmatrix} a_{11} \\ a_{31} \end{vmatrix}$	a_{12}	a_{13}	a_{14}
Python	a[::2,:]	$\lfloor a_{31} \rfloor$	a_{32}	a_{33}	a_{34}
	Third in last dimension (axis)				
Python	a[,2]	_			
,		г			7
	All, except row,column (2,3)	$ \begin{vmatrix} a_{11} \\ a_{31} \end{vmatrix}$	a_{13}	a_{14}	
R	a[-2,-3]	a_{31}	a_{33}	a_{34}]
	Remove one column				
MATLAB	a(:,[1 3 4])	a_{11}	a_{13}	a_{14}]
R	a[,-2]	a_{21}	a_{23}	a_{24}	
Python	a.take([0,2,3],axis=1)	a_{31}	a_{33}	a_{34}]
	Diagonal	$-\begin{bmatrix} a_{11} \end{bmatrix}$	a_{22}	a_{33}	a_{44}
Python	a.diagonal(offset=0)	L "11	44		

4.6 Assignment

MATLAB	a(:,1) = 99
D	
ĸ	a[,1] <- 99
Python	a[:,0] = 99

MATLAB R Python	a(:,1) = [99 98 97], a[,1] <- c(99,98,97) a[:,0] = array([99,98,97])			
	Clipping: Replace all elements over 90			
MATLAB R.	a(a>90) = 90;			
R Python	a[a>90] <- 90 (a>90).choose(a,90)			
Fython	a.clip(min=None, max=90)			
IDL	a>90			
	Clip upper and lower values			
Python	a.clip(min=2, max=5)			
IDL	a < 2 > 5			

4.7 Transpose and inverse

	Transpose
MATLAB	a'
R	t(a)
Python	a.conj().transpose()
IDL	transpose(a)
Maxima	transpose(a);
	Non-conjugate transpose
MATLAB	a.' or transpose(a)
Python	a.transpose()
	Determinant
MATLAB	det(a)
R	det(a)
Python	linalg.det(a) or determinant(a)
IDL	determ(a)
Axiom Maxima	determinant a
Maxima	<pre>determinant(a);</pre>
	Inverse
MATLAB	inv(a)
R Death an	solve(a)
Python IDL	linalg.inv(a) or inverse(a) invert(a)
Axiom	inverse a
Maxima	<pre>invert(a),detout;</pre>
	Pseudo-inverse
MATLAB	pinv(a)
R	ginv(a)
Python	linalg.pinv(a)
	Norms
MATLAB	norm(a)
Python	norm(a)
-	E: annual una
MATLAB	Eigenvalues eig(a)
Scilab	spec(a)
R	eigen(a)\$values
Python	linalg.eig(a)[0]
	eigenvalues(a)
IDL	hqr(elmhes(a))
Mathematica Axiom	Eigenvalues [matrix]
AXIOIII	eigenvalues a
	Singular values
MATLAB	svd(a)
R Darth an	svd(a)\$d linalg.svd(a)
Python	singular_value_decomposition(a)
IDL	svdc, A, w, U, V
Mathematica	SingularValueDecomposition[m]
MATLAB	Cholesky factorization chol(a)
Python	linalg.cholesky(a)
v	
MATLAB	Eigenvectors [v,1] = eig(a)
Scilab	[v,1] = elg(a) $[v,1] = spec(a)$
R	eigen(a)\$vectors
Python	linalg.eig(a)[1]
-	eigenvectors(a)
Axiom	eigenvectors a
	Rank
MATLAB	rank(a)
R	rank(a)
Python	rank(a)

4.8 Sum

	Sum of each column
MATLAB	sum(a)
Scilab	<pre>sum(a,'c')</pre>
R	apply(a,2,sum)
Python	a.sum(axis=0)
IDL	total(a,2)
	Sum of each row
MATLAB	sum(a')
Scilab	<pre>sum(a,'r')</pre>
R	apply(a,1,sum)
Python	a.sum(axis=1)
IDL	total(a,1)
	Sum of all elements
MATLAB	sum(sum(a))
Scilab	sum(a)
R	sum(a)
Python	a.sum()
IDL	total(a)
	Sum along diagonal
Python	a.trace(offset=0)
	Cumulative sum (columns)
MATLAB	cumsum(a)
R	apply(a,2,cumsum)
Python	a.cumsum(axis=0)

4.9 Sorting

	Example data	√ 4	3	2]
MATLAB	a = [4 3 2 ; 2 8 6 ; 1 4 7]	_ 2	8	$\begin{bmatrix} 2 \\ 6 \\ 7 \end{bmatrix}$
Python	a = array([[4,3,2],[2,8,6],[1,4,7]])	L 1	4	7]
	Flat and sorted			
MATLAB	sort(a(:))	_ [1	2	2
Scilab	s=sort(a(:)); s(\$:-1:1)	3	4	2 4 8
R	t(sort(a))	Γ 6	7	8]
Python	a.ravel().sort() or			
	Sort each column	_		
MATLAB	sort(a)	Г 1	3	2 7
Scilab	s=sort(a,'r'); s(\$:-1:1,:)	2	4	$\begin{bmatrix} 2 \\ 6 \\ 7 \end{bmatrix}$
R Python	apply(a,2,sort)	4	8	7
IDL	a.sort(axis=0) or msort(a) sort(a)	-		_
IDL				
	Sort each row			
MATLAB	sort(a')'		3	4 8 7
Scilab	s=sort(a,'c'); s(:,\$:-1:1)	2	6	8
R Python	t(apply(a,1,sort)) a.sort(axis=1)	Γı	4	,]
1 ython	d.501t(dx15-1)			
	Sort rows (by first row)	_ [1	4	7]
MATLAB	sortrows(a,1)	2	8	$\begin{bmatrix} 7 \\ 6 \\ 2 \end{bmatrix}$
Python	a[a[:,0].argsort(),]	L 4	3	2]
	Sort, return indices			
R	order(a)	_		
Python	a.ravel().argsort()			
	Sort each column, return indices			
Python	a.argsort(axis=0)	_		
	Sort each row, return indices			
Python	a.argsort(axis=1)	_		

4.10 Maximum and minimum

	max in each column
MATLAB	max(a)
Scilab	max(a,'c')
R	apply(a,2,max)
Python	a.max(0) or amax(a [,axis=0])
IDL	max(a,DIMENSION=2)
	max in each row
MATLAB	max(a')
Scilab	max(a,'r')
R	apply(a,1,max)
Python	a.max(1) or amax(a, axis=1)
IDL	max(a,DIMENSION=1)
	max in array
MATLAB	max(max(a))
Scilab	max(a)
R	max(a)
Python	a.max() or
IDL	max(a)

	return indices, i
MATLAB	[v i] = max(a)
Scilab	$[v,i] = \max(a,'c')$
R	i <- apply(a,1,which.max)
	pairwise max
MATLAB	max(b,c)
Python	maximum(b,c)
R	pmax(b,c)
MATLAB	cummax(a)
R	apply(a,2,cummax)
	max-to-min range
Python	a.ptp(); a.ptp(0)

4.11 Matrix manipulation

	Flip left-right
MATLAB	fliplr(a)
Scilab	a(:,\$:-1:1) or mtlb_fliplr(a)
R	a[,4:1]
Python	fliplr(a) or a[:,::-1] reverse(a)
IDL	reverse(a)
	Flip up-down
MATLAB	flipud(a)
Scilab	a(\$:-1:1,:)
R Python	a[3:1,] flipud(a) or a[::-1,]
IDL	reverse(a,2)
IDL	
	Rotate 90 degrees
MATLAB	rot90(a)
Scilab	 rot90(a)
Python IDL	rotate(a,1)
IDL	100000(0,1)
	Repeat matrix: [a a a ; a a a]
MATLAB	repmat(a,2,3)
Scilab	mtlb_repmat(a,2,3)
Octave	kron(ones(2,3),a) kron(ones((2,3)),a)
Python R	kronecker(matrix(1,2,3),a)
16	AT OHECKET (mattix(1,2,5/,a/
	Triangular, upper
MATLAB	triu(a)
R	a[lower.tri(a)] <- 0
Python Mathematica	triu(a)
Mathematica	UpperDiagonalMatrix[f, n]
	Triangular, lower
MATLAB	tril(a)
R	a[upper.tri(a)] <- 0
Python	tril(a)

4.12 Equivalents to "size"

	Matrix dimensions
MATLAB	size(a)
R	dim(a)
Python	a.shape or a.getshape()
IDL	size(a)
	Number of columns
MATLAB	size(a,2) or length(a)
R	ncol(a)
Python	a.shape[1] or size(a, axis=1)
IDL	s=size(a) & s[1]
Axiom	ncols(m)
Maxima	mat_ncols(m)
Maple	linalg[coldim](m)
Mathematica	Dimensions[m][[2]]
Derive	DIMENSION(m SUB 1)
	Number of elements
MATLAB	Number of elements length(a(:))
	Number of elements length(a(:)) length(a)
MATLAB Scilab R	Number of elements length(a(:)) length(a) prod(dim(a))
MATLAB Scilab	Number of elements length(a(:)) length(a)
MATLAB Scilab R	Number of elements length(a(:)) length(a) prod(dim(a))
MATLAB Scilab R Python	Number of elements length(a(:)) length(a) prod(dim(a)) a.size or size(a[, axis=None]) n_elements(a) Number of dimensions
MATLAB Scilab R Python	<pre>Number of elements length(a(:)) length(a) prod(dim(a)) a.size or size(a[, axis=None]) n_elements(a)</pre>
MATLAB Scilab R Python IDL	Number of elements length(a(:)) length(a) prod(dim(a)) a.size or size(a[, axis=None]) n_elements(a) Number of dimensions
MATLAB Scilab R Python IDL	Number of elements length(a(:)) length(a) prod(dim(a)) a.size or size(a[, axis=None]) n_elements(a) Number of dimensions ndims(a)
MATLAB Scilab R Python IDL	Number of elements length(a(:)) length(a) prod(dim(a)) a.size or size(a[, axis=None]) n_elements(a) Number of dimensions ndims(a) a.ndim

4.13 Matrix- and elementwise- multiplication

	Elementwise operations	
MATLAB	a .* b	$\begin{bmatrix} 1 & 5 \\ 9 & 16 \end{bmatrix}$
R	a * b	9 16
Python	a * b or multiply(a,b)	
	Matrix product (dot product)	_
MATLAB	a * b	
R	a %*% b	
Python	matrixmultiply(a,b)	7 10]
IDL	a # b or b ## a	$\left[\begin{array}{cc} 7 & 10 \\ 15 & 22 \end{array}\right]$
Axiom Maxima	a*b a.b	L
	a.b evalm(a &* b)	
Maple		
Mathematica	a.b	
	Inner matrix vector multiplication $a \cdot b'$	_ [5 11]
Python	inner(a,b) or	$ \begin{array}{c cccc} - & 5 & 11 \\ 11 & 25 \end{array} $
IDL	transpose(a) # b	
	Outer product	[1 2 3 4]
R	outer(a,b) or a %o% b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Python	outer(a,b) or	3 6 9 12
IDL	a#b	L 4 8 12 16 J
	Cross product	[10 14]
R	crossprod(a,b) or t(a) %*% b	_ [14 20]
	Kronecker product	51 0 0 47
MATLAB	kron(a,b)	$- \begin{bmatrix} 1 & 2 & 2 & 4 \\ 2 & 4 & 6 & 9 \end{bmatrix}$
Scilab	kron(a,b) or a .*. b	$\begin{bmatrix} 3 & 4 & 6 & 8 \\ 3 & 6 & 4 & 8 \end{bmatrix}$
R	kronecker(a,b)	$\begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 4 & 6 & 8 \\ 3 & 6 & 4 & 8 \\ 9 & 12 & 12 & 16 \end{bmatrix}$
Python	kron(a,b)	
	Matrix division, $b \cdot a^{-1}$	
MATLAB	a / b	
	Left matrix division, $b^{-1} \cdot a$	
	(solve linear equations)	
MATLAB	a \ b	
Scilab	linsolve(a,b)	Ax = b
R	solve(a,b)	
Python	linalg.solve(a,b)	
	solve_linear_equations(a,b)	
IDL	cramer(a,b)	
D. d	Vector dot product	_
Python	vdot(a,b)	
	Cross product	
Python	cross(a,b)	_

4.14 Find; conditional indexing

	Non-zero elements, indices
MATLAB	find(a)
R	which(a != 0)
Python	a.ravel().nonzero()
	nonzero(a.flat)
	Non-zero elements, array indices
MATLAB	[i j] = find(a)
R	which(a != 0, arr.ind=T)
Python	(i,j) = a.nonzero()
	(i,j) = where(a!=0)
	(i,j) = nonzero(a)
IDL	where(a NE 0)
	Vector of non-zero values
MATLAB	[i j v] = find(a)
R	<pre>ij <- which(a != 0, arr.ind=T); v <- a[ij]</pre>
Python	<pre>v = a.compress((a!=0).flat)</pre>
	<pre>v = extract(a!=0,a)</pre>
IDL	a(where(a NE 0))
IDL	a(where(a NE 0)) Condition, indices
IDL MATLAB	
	Condition, indices
MATLAB	Condition, indices find(a>5.5)
MATLAB R	Condition, indices find(a>5.5) which(a>5.5)
MATLAB R Python	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero()
MATLAB R Python	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero() where(a GE 5.5)
MATLAB R Python	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero() where(a GE 5.5) Return values
MATLAB R Python	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero() where(a GE 5.5) Return values ij <- which(a>5.5, arr.ind=T); v <- a[ij]
MATLAB R Python	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero() where(a GE 5.5) Return values ij <- which(a>5.5, arr.ind=T); v <- a[ij] a.compress((a>5.5).flat)
MATLAB R Python	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero() where(a GE 5.5) Return values ij <- which(a>5.5, arr.ind=T); v <- a[ij] a.compress((a>5.5).flat) a(where(a GE 5.5))
MATLAB R Python IDL R Python IDL	Condition, indices find(a>5.5) which(a>5.5) (a>5.5).nonzero() where(a GE 5.5) Return values ij <- which(a>5.5, arr.ind=T); v <- a[ij] a.compress((a>5.5).flat) a(where(a GE 5.5)) Zero out elements above 5.5

	Replace values
Python	a.put(2,indices)

5 Multi-way arrays

	Define a 3-way array
MATLAB	a = cat(3, [1 2; 1 2],[3 4; 3 4]);
Python	a = array([[[1,2],[1,2]], [[3,4],[3,4]]])
-	•
MATLAB	a(1,:,:)
Python	a[0,]

6 File input and output

	Reading from a file (2d)
MATLAB	f = load('data.txt')
R	f <- read.table("data.txt")
Python	<pre>f = fromfile("data.txt")</pre>
	f = load("data.txt")
IDL	read()
	Reading from a file (2d)
MATLAB	f = load('data.txt')
R	f <- read.table("data.txt")
Python	f = load("data.txt")
IDL	read()
	Reading fram a CSV file (2d)
MATLAB	x = dlmread('data.csv', ';')
R	f <- read.table(file="data.csv", sep=";")
Python	<pre>f = load('data.csv', delimiter=';')</pre>
gnuplot	set datafile separator ";"
IDL	<pre>x = read_ascii(data_start=1,delimiter=';')</pre>
	Writing to a file (2d)
MATLAB	save -ascii data.txt f
R	<pre>write(f,file="data.txt")</pre>
Python	<pre>save('data.csv', f, fmt='%.6f', delimiter=';')</pre>
	Writing to a file (1d)
Python	f.tofile(file='data.csv', format='%.6f', sep=';')
	Reading from a file (1d)
Python	f = fromfile(file='data.csv', sep=';')

7 Plotting

7.1 Basic x-y plots

MATLAB R Python IDL	<pre>1d line plot plot(a) plot(a, type="l") plot(a) plot, a</pre>	
MATLAB R Python IDL	2d scatter plot plot(x(:,1),x(:,2),'o') plot(x[,1],x[,2]) plot(x[:,0],x[:,1],'o') plot, x(1,*), x(2,*)	
MATLAB Python	Two graphs in one plot plot(x1,y1, x2,y2) plot(x1,y1,'bo', x2,y2,'go')	

	Overplotting: Add new plots to current
MATLAB	plot(x1,y1)
	hold on
	plot(x2,y2)
R	plot(x1,y1)
	<pre>matplot(x2,y2,add=T)</pre>
Python	plot(x1,y1,'o')
	plot(x2,y2,'o')
	show() # as normal
IDL	plot, x1, y1
	oplot, x2, y2
	subplots
MATLAB	subplot(211)
Python	subplot(211)
IDL	!p.multi(0,2,1)
	Plotting symbols and color
MATLAB	plot(x,y,'ro-')
R	plot(x,y,type="b",col="red")
Python	plot(x,y,'ro-')
IDL	plot, x,y, line=1, psym=-1

7.1.1 Axes and titles

	Turn on grid lines
MATLAB	grid on
R	grid()
Python	grid()
· ·	1:1 aspect ratio
MATLAB	*
	axis equal
Octave	axis('equal')
D	replot
R	plot(c(1:10,10:1), asp=1)
Python	figure(figsize=(6,6))
gnuplot	set size ratio -1
	Set axes manually
MATLAB	axis([0 10 0 5])
Scilab	plot('axis',[0 10 0 5])
R	plot(x,y, xlim=c(0,10), ylim=c(0,5))
gnuplot	set xrange [0:10]
9 .	set yrange [0:5]
Python	axis([0, 10, 0, 5])
IDL	plot, $x(1,*)$, $x(2,*)$,
	xran=[0,10], yran=[0,5]
	Axis labels and titles
MATLAB	title('title')
	<pre>xlabel('x-axis')</pre>
	<pre>ylabel('y-axis')</pre>
R	plot(1:10, main="title",
	xlab="x-axis", ylab="y-axis")
IDL	plot, x,y, title='title',
	xtitle='x-axis', ytitle='y-axis'
	Insert text
Python	text(2,25,'hello')
IDL	xyouts, 2,25, 'hello'

7.1.2 Log plots

	logarithmic y-axis
MATLAB R	<pre>semilogy(a) plot(x,v, log="v")</pre>
Python	semilogy(a)
IDL	plot, x,y, /YLOG or plot_io, x,y
	logarithmic x-axis
MATLAB R Python IDL	<pre>semilogx(a) plot(x,y, log="x") semilogx(a) plot, x,y, /XLOG or plot_oi, x,y</pre>
	logarithmic x and y axes
MATLAB	loglog(a)
R	plot(x,y, log="xy")
Python IDL	loglog(a) plot_oo, x,y
IDL	p10t_00, x,y

7.1.3 Filled plots and bar plots

7.1.4 Functions

7.2 Polar plots

7.3 Histogram plots

MATLAB	hist(randn(1000,1))
R	hist(rnorm(1000))
IDL	<pre>plot, histogram(randomn(5,1000))</pre>
MATLAB	hist(randn(1000,1), -4:4)
R	hist(rnorm(1000), breaks= -4:4)
R	hist(rnorm(1000), breaks=c(seq(-5,0,0.25), seq(0.5,5,0.5)), freq=F)
MATLAB	plot(sort(a))
R	plot(apply(a,1,sort),type="l")

7.4 3d data

7.4.1 Contour and image plots

	Contour plot	
MATLAB	contour(z)	
R	contour(z)	
Python	<pre>levels, colls = contour(Z, V,</pre>	
	origin='lower', extent=(-3,3,-3,3))	
	clabel(colls, levels, inline=1,	
	<pre>fmt='%1.1f', fontsize=10)</pre>	3
IDL	contour, z	.2 .1 6 1 2
	Filled contour plot	
MATLAB	<pre>contourf(z); colormap(gray)</pre>	
R	filled.contour(x,y,z,	2
	nlevels=7, color=gray.colors)	
Python	contourf(Z, V,	
	cmap=cm.gray,	
	origin='lower',	
	extent=(-3,3,-3,3))	2
IDL	contour, z, nlevels=7, /fill	-2 -1 0 1 2
	contour, z, nlevels=7, /overplot, /downhill	
	Plot image data	
MATLAB	image(z)	3
	colormap(gray)	2-
R	<pre>image(z, col=gray.colors(256))</pre>	1
Python	<pre>im = imshow(Z,</pre>	
	<pre>interpolation='bilinear',</pre>	_
	origin='lower',	
	extent=(-3,3,-3,3))	-2
IDL	tv, z	3 2 1 6 1 2
	loadct,0	
		2.
	Image with contours	
Python	# imshow() and contour() as above	
v		
		3.
		· · · · · · · · · · · · · · · · · · ·
	Direction field vectors	
MATLAB	quiver()	
Scilab	champ()	
Python	quiver()	

7.4.3 Scatter (cloud) plots

7.5 Save plot to a graphics file

	PostScript
MATLAB	plot(1:10)
	print -depsc2 foo.eps
Octave	gset output "foo.eps"
	gset terminal postscript eps
_	plot(1:10)
R	<pre>postscript(file="foo.eps")</pre>
	plot(1:10)
-	dev.off()
Python	<pre>savefig('foo.eps')</pre>
gnuplot	set terminal postscript enhanced eps color
	set output 'foo.eps'
	plot 1:10
IDL	set_plot,'PS'
	device, file='foo.eps', /land
	plot x,y
	device,/close & set_plot,'win'
	PDF
Python	<pre>savefig('foo.pdf')</pre>
R	pdf(file='foo.pdf')
MATLAB	
	SVG (vector graphics for www)
Python	savefig('foo.svg')
R	<pre>devSVG(file='foo.svg')</pre>
gnuplot	set terminal svg
	set output 'foo.svg'
MATLAB	
	PNG (raster graphics)
MATLAB	print -dpng foo.png
Python	savefig('foo.png')
R	png(filename = "Rplot%03d.png"
gnuplot	set terminal png medium
0 -1	set output 'foo.png'
A	Output TeX/LaTeX math
Axiom	outputAsTex(e)
Maxima	tex(e);
Maple	latex(e);
Mathematica	TexForm[e]
MuPAD	<pre>generate::TeX(e);</pre>

8 Data analysis

8.1 Set membership operators

	Create sets	
MATLAB	a = [1 2 2 5 2];	
	b = [2 3 4];	
R	a <- c(1,2,2,5,2)	
	b <- c(2,3,4)	
Python	a = array([1,2,2,5,2])	
	b = array([2,3,4])	
	a = set([1,2,2,5,2])	
	b = set([2,3,4])	
	a .	
	Set unique	
MATLAB	unique(a)	
R	unique(a)	г
Python	unique1d(a)	1 2 5
	unique(a)	
	set(a)	
Maxima	setify(a)	
	Set union	
MATLAB	union(a,b)	
R	union(a,b)	
Python	union1d(a,b)	
	a.union(b)	
Maxima	union(a,b)	

8.2 Statistics

	Average
MATLAB	mean(a)
R	apply(a,2,mean)
Python	a.mean(axis=0)
	mean(a [,axis=0])
IDL	mean(a)
Axiom	mean a
	Median
MATLAB	median(a)
R	apply(a,2,median)
Python	median(a) or median(a [,axis=0])
IDL	median(a)
Axiom	median(a)
	Standard deviation
MATLAB	std(a)
R	apply(a,2,sd)
Python	a.std(axis=0) or std(a [,axis=0])
IDL	stddev(a)
	Variance
MATLAB	var(a)
R	apply(a,2,var)
Python	a.var(axis=0) or var(a)
IDL	variance(a)
	Correlation coefficient
MATLAB	corr(x,y)
R	cor(x,y)
Python	<pre>correlate(x,y) or corrcoef(x,y)</pre>
IDL	correlate(x,y)
	Covariance
MATLAB	cov(x,y)
R	cov(x,y)
Python	cov(x,y)

8.3 Interpolation and regression

	Straight line fit
MATLAB	<pre>z = polyval(polyfit(x,y,1),x)</pre>
	plot(x,y,'o', x,z ,'-')
R	$z \leftarrow lm(y^x)$
	plot(x,y)
	abline(z)
Python	(a,b) = polyfit(x,y,1)
	plot(x,y,'o', x,a*x+b,'-')
IDL	poly_fit(x,y,1)
	Linear least squares $y = ax + b$
MATLAB	
MAILAD	a = x\y
R	a = x\y solve(a,b)
	•
R	solve(a,b)
R	$\operatorname{solve}(\mathbf{a},\mathbf{b})$ $\operatorname{linalg.lstsq}(\mathbf{x},\mathbf{y})$
R	<pre>solve(a,b) linalg.lstsq(x,y) (a,b) = linear_least_squares(x,y)[0]</pre>

8.4 Non-linear methods

8.4.1 Polynomials, root finding

	Polynomial	
Scilab	poly(1.,'x')	
Python	poly()	
	Find zeros of polynomial	
MATLAB	roots([1 -1 -1])	$x^2 - x - 1 = 0$
R	polyroot(c(1,-1,-1))	x = x = 1 = 0
Python	roots()	
	Find a zero near $x = 1$	
MATLAB	f = inline('1/x - (x-1)')	$f(x) = \frac{1}{x} - (x-1)$
	fzero(f,1)	E .
	Solve symbolic equations	$\frac{1}{x} = x - 1$
MATLAB	solve('1/x = x-1')	x = x - 1
	Evaluate polynomial	
MATLAB	polyval([1 2 1 2],1:10)	
Python	polyval(array([1,2,1,2]),arange(1,11))	

8.4.2 Differential equations

	Discrete difference function and approximate derivative
MATLAB	diff(a)
Python	<pre>diff(x, n=1, axis=0)</pre>
	Solve differential equations
MATLAB	

8.5 Fourier analysis

	Fast fourier transform
Generic	fft(a)
MATLAB	fft(a)
R	fft(a)
Python	fft(a) or fft(a)
IDL	fft(a)
	Inverse fourier transform
MATLAB	ifft(a)
R	fft(a, inverse=TRUE)
Python	ifft(a) or inverse_fft(a)
IDL	fft(a),/inverse
	Linear convolution
Python	convolve(x,y)
IDL	convol()

9 Symbolic algebra; calculus

	Decimal output	
Axiom	numeric %	_
Maxima	%,numer;	
	Simplification	
Axiom	simplify(e) or normalize(e)	_
Maxima	ratsimp(e) or radcan(e)	
Maple	simplify(e)	
Mathematica	Simplify[e] or FullSimplify[e]	
MuPAD	simplify(e) or normal(e)	
REDUCE	e	
Derive	e	
	Expand	_
	Rectangular form	_
Axiom	rectform e	
	Factorization	_
MATLAB	factor()	
Axiom	factor()	
	Integration of functions	
Axiom	integrate(f(x), x=01)	
Maxima	integrate(f(x), x, 0, 1)	$\int_0^1 f(x)dx$
Maple	int(f(x), x=01)	$J_0^{-j(x)ax}$
MuPAD	int(f(x), x=01)	
Mathematica	Integrate[f[x], $\{x,0,1\}$]	
	Differentiation	_
Axiom	differentiate(%,x)	
Maxima	diff(%,x)	
	Taylor/Laurent/etc. series approxmation	_
Axiom	series(%,x=0)	
	Solve equations	_
Axiom	solve(sys,vars)	

Axiom Laplace transform laplace(e,t,s)

10 Programming

	Script file extension
MATLAB	.m
Scilab	.sce
R	.R
Python	.ру
gnuplot	.gp or .plt
IDL	idlbatch
Maxima	.mc or .mac
bc	bc
	Comment symbol (rest of line)
MATLAB	%
Octave	% or #
Scilab	//
R	#
Python	#
gnuplot	#
IDL	;
Axiom	
Mathematica	(* *)
Maple	#
Maxima	/* */
MuPAD	
	/* */
	# #
Derive	""
REDUCE	%
bc	/* */
	Import library functions
MATLAB	% must be in MATLABPATH
Octave	% must be in LOADPATH
Scilab	getf('foo.sci')
R	library(RSvgDevice)
Python	
Maxima	<pre>from pylab import * load(SET);</pre>
Maxiiia	load(SEI);
	Eval
MATLAB	string='a=234';
	eval(string)
Scilab	eval()
Scilab	eval() evstr()
	eval() evstr() execstr()
Scilab R	<pre>eval() evstr() execstr() string <- "a <- 234"</pre>
R	<pre>eval() evstr() execstr() string <- "a <- 234" eval(parse(text=string))</pre>
	<pre>eval() evstr() execstr() string <- "a <- 234"</pre>

10.1 Loops

	for-statement
MATLAB	for i=1:5; disp(i); end
R	for(i in 1:5) print(i)
Python	<pre>for i in range(1,6): print(i)</pre>
IDL	for k=1,5 do print,k
	Multiline for statements
MATLAB	for i=1:5
	disp(i)
	disp(i*2)
	end
R	for(i in 1:5) {
	<pre>print(i)</pre>
	<pre>print(i*2)</pre>
	}
Python	for i in range(1,6):
	<pre>print(i)</pre>
	print(i*2)
IDL	for k=1,5 do begin \$
	print, i &\$
	print, i*2 &\$
	end

10.2 Conditionals

	if-statement
MATLAB	if 1>0 a=100; end
R	if (1>0) a <- 100
Python	if 1>0: a=100
IDL	if 1 gt 0 then a=100
	if-else-statement
MATLAB	if 1>0 a=100; else a=0; end
IDL	if 1 gt 0 then a=100 else a=0

	Ternary operator (if?true:false)	
R	ifelse(a>0,a,0)	a > 0?a:0
gnuplot	a>0?a:0	a > 0:a:0
IDL	a>0?a:0	

10.3 Debugging

	Most recent evaluated expression
MATLAB	ans
R	.Last.value
Axiom	%
Maxima	%
	List variables loaded into memory
MATLAB	whos or who
R	objects()
IDL	help
	Clear variable x from memory
MATLAB	clear x or clear [all]
R	rm(x)
Axiom)clear properties x
	Print
MATLAB	disp(a)
R	print(a)
Python	print a
IDL	print, a

10.4 Working directory and OS

	List files in directory
MATLAB	dir or ls
R	list.files() or dir()
Python IDL	os.listdir(".") dir
IDL	uii
	List script files in directory
MATLAB	what
R	list.files(pattern="\.r\$")
Python	<pre>grep.grep("*.py")</pre>
	Displays the current working directory
MATLAB	pwd
R	getwd()
Python	os.getcwd()
gnuplot IDL	pwd sd
IDL	sa
	Change working directory
MATLAB	cd foo
Scilab	chdir('foo')
R	setwd('foo')
Python	os.chdir('foo') cd 'foo'
gnuplot IDL	cd '100' cd,'foo or sd,'foo
Axiom)cd "foo"
TIXIOIII	
	Invoke a System Command
MATLAB Scilab	!notepad host('notepad')
Octave	<pre>system("notepad")</pre>
R	system("notepad")
Python	os.system('notepad')
J	os.popen('notepad')
gnuplot	!notepad
IDL	spawn, 'notepad'

 $^{^2}$ This document is still draft quality. Most 2d plot examples are made using Matplotlib, and 3d plots using R or Gnuplot.

³Version number and download URL for software used: Python 2.4.2, http://www.python.org/; NumPy 0.9.5, http://numeric.scipy.org/; Matplotlib 0.87, http://matplotlib.sf.net/; IPython 0.7.1, http://ipython.scipy.org/; R 2.1.1, http://www.r-project.org/; Octave 2.1.50, http://www.octave.org/; Scilab 4.0, http://www.scilab.org/; Gnuplot 4.0, http://www.gnuplot.info/; Maxima 5.9.1, http://maxima.sf.net/.

⁴For referencing: Gundersen, Vidar Bronken. *MATLAB commands in numerical Python* (Oslo/Norway, 2005), available from: http://mathesaurus.sf.net/

⁵Contributions are appreciated: The best way to do this is to edit the XML and submit patches to our tracker or forums.