V4A1 Sheet 5

So Murata

2024/2025 Winter Semester - Uni Bonn

26

Let $\varphi: A \to \Gamma(X, \mathscr{O}_X)$ be a homomorphism of rings.

By the definition of schemes, there exists an open covering $(U_i)_{i\in I}$ of X such that

$$\forall i \in I, \mathscr{O}(U_i) \cong (\operatorname{Spec} A_i, \mathscr{O}_{\operatorname{Spec} A-i})$$

for some ring A_i .

Let $\rho_{XU_i}^X$ be a restriction map. Then $\varphi \circ \rho_{XU_i} : \mathscr{O}_{\operatorname{Spec} A}(U_i) \to \mathscr{O}_X(U_i) = A_i$ is a ring homomorphism. Thus there exists a morphism of ringed spaces $(f_i, f_i^\#) : (\operatorname{Spec} A_i, \mathscr{O}_{\operatorname{Spec} A_i}) \to (\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A})$ corresponding to $9\varphi \circ \rho_{XU_i}$. We will show that this can be glued to a unique morphism of ringed spaces $(f, f^\#)$.

Indeed, by construction of structure sheaves and restrictions, we have that $\{(f_i, f_i^\#)\}_{i \in I}$ satisfies the sheaf condition. Thus can be glued to a unique morphism $(f, f^\#)$. The correspondence $\varphi \circ \rho_{XU_i} \leftrightarrow (f_i, f_i^\#)$ is a bijection. Therefore, $\varphi \to (f, f^\#)$ is an injection. By the same argument to the restrictions of $(f, f^\#)$ and the sheaf condition, we derive that this is a surjection.

27

(i)

Let $(U_i)_{i\in I}$ be an open cover of X such that

$$\mathscr{O}_X \cong \operatorname{Spec} A_i$$
.

Let $\iota_i:A_i\to \tilde{A}_i$ be an inclusion. Then we can define a morphism $\nu_i:\tilde{U}_i\to U_i$ by

$$\nu_i(\mathfrak{q}) = \iota_i^{-1}(\mathfrak{q}).$$

By the definition of affine schemes and its restrictions, $(\nu_i)_{i\in I}$ satisfies the sheaf condition, thus there exists \tilde{X} and $\nu: \tilde{X} \to X$ extending each ν_i .

By the construction, $\mathscr{O}_{\tilde{X}}(\tilde{U}_i) \cong \operatorname{Spec} \tilde{A}_i$. Since \tilde{A}_i is integrally closed, $\tilde{A}_{i,\mathfrak{p}}$ is also integrally closed for each $\mathfrak{p} \in \operatorname{Spec} \tilde{A}_i$. Therefore, \tilde{X} is normal.

(ii)

Let U be a neighborhood of $x \in X$ such that $\mathscr{O}_X(U) \cong \operatorname{Spec} A$. Suppose $f: Z \to X$ be a dominant morphism of schemes then f(Z) is dense in X. Let $V = f^{-1}(U)$. Since f is dominant, we have that the ring homomorphism induced by $f, \varphi: A = \mathscr{O}_X(U) \to \mathscr{O}_Z(V) = B$ is an injection. Since A is an integral domain and B is integrally closed, there is a unique homomorphism $\tilde{\varphi}$ such that

$$\varphi = \tilde{\varphi} \circ \iota$$

where $\iota:A\to \tilde{A}$ is an injection and $\tilde{\varphi}:\tilde{A}\to B$. By using the previous problem, there is a morphism of scheme $(g,g^{\#}):((V,\mathscr{O}_{Z}|_{V}),(U,\operatorname{Spec} A))\to \operatorname{corresponding}$ to $\tilde{\varphi}$ such that $\nu\circ g^{\#}=f^{\#}$.