

ECE259: Electromagnetism

Term test 1 - Thursday February 8, 2018 Instructors: Profs. Micah Stickel and Piero Triverio

Last name:					 	
First name:					 	
Student nun	nber:				 	
Tutorial sec	tion number:				 	
Section	Day	Time	Room	TA name		
TUT0101	Monday	14:00-15:00	BA 3012	Shashwat		
TI ITO 102	Mondon	14.00 15.00	DC 210	Canarus (Davil)		

Section	Day	Time	Koom	TA name
TUT0101	Monday	14:00-15:00	BA 3012	Shashwat
TUT0102	Monday	14:00-15:00	RS 310	Gengyu (Paul)
TUT0103	Monday	14:00-15:00	BA 2159	Sameer
TUT0104	Monday	14:00-15:00	BA 3116	Fadime
TUT0105	Wednesday	13:00-14:00	BA 3012	Shashwat
TUT0106	Wednesday	13:00-14:00	WB 144	Gengyu (Paul)
TUT0107	Wednesday	13:00-14:00	BA 2159	Sameer
TUT0108	Wednesday	13:00-14:00	BA 3116	Fadime

Instructions

- Duration: 1 hour 30 minutes (9:10 to 10:40)
- Exam Paper Type: A. Closed book. Only the aid sheet provided at the end of this booklet is permitted.
- Calculator Type: 2. All non-programmable electronic calculators are allowed.
- Answers written in pen are typically eligible for remarking. Answers written in pencil may *not* be eligible for remarking.
- Only answers that are fully justified will be given full credit!

Marks:	Q1:	/20	Q2:	/20	Q3:	/20	TOTAL:	/60
		I			1	I		

Question 1

A line charge lies in free space along the z-axis from z=-h to z=0, and is charged with a linear charge density given by $\rho_l(z)=\rho_{l0}z$, where ρ_{l0} is a positive constant.

1. Find the electric scalar potential function at an arbitrary point in the xy-plane, i.e., find $V(r,\phi,0)$. [9 points]

2. Is the electric scalar potential at $P_1(r=h,\phi=0^\circ,z=0)$ positive or negative? Briefly explain the physical meaning of the value of $V(r=h,\phi=0^\circ,z=0)$. [3 points]

3. For the line charge described above, find the r-component of the electric field intensity at an arbitrary point in the xy-plane. [4 points]

4. An electron is introduced to the system at $P_2(r=h,\phi=0^\circ,z=-h/2)$. Briefly describe the direction of the electric force this charge would experience at P_2 . Briefly justify your answer. You do NOT need to determine the exact expression for the force at this point, and your answer can be in qualitative terms. [4 points]

Question 2

- 1. Consider the structure shown in the figure above, which is infinitely long along the z axis. The structure consists of:
 - an inner solid cylinder of radius a. This cylinder is made of a perfect electric conductor, and is positively charged. The charge per unit length is +Q';
 - a first layer of a perfect dielectric with relative permittivity $\varepsilon_{r,1}$;
 - a first layer of a perfect dielectric with relative permittivity $\varepsilon_{r,2}$;
 - an outer hollow cylinder, with inner radius c and outer radius d. This cylinder is also made of a perfect electric conductor, and is negatively charged. The charge per unit length is -Q';

Use Gauss' law to find the electric field $\mathbf{E}_1(r)$ in the first dielectric layer $(r \in [a, b])$ and the electric field $\mathbf{E}_2(r)$ in the second dielectric layer $(r \in [b, c])$. [10 points]

2. Find the voltage ΔV between the inner conductor and the outer conductor, i.e., find $\Delta V = V_{inner} - V_{outer}$. Express ΔV in terms of Q'. [4 points]

3. Now, assume that dimensions are: $a=1\,\mathrm{mm},\,b=2\,\mathrm{mm},\,c=4\,\mathrm{mm},\,d=6\,\mathrm{mm}.$ Dielectrics have the following characteristics:

- first dielectric layer: $\varepsilon_{r,1}=2$ and dielectric strength $E_{br,1}=40\,\mathrm{MV/m};$
- second dielectric layer: $\varepsilon_{r,2}=6$ and dielectric strength $E_{br,2}=20\,\mathrm{MV/m}$.

Remember that $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m. Find the maximum charge per unit length Q' that can be placed on the conductors without causing any damage to the dielectrics. Express Q' in μ C/m. [4 points]

4. Find the maximum voltage ΔV_{max} that the structure can withstand without damaging the dielectrics. Express ΔV_{max} in kV. [2 points]

Question 3.1

The electrostatic potential V in a region depends only on the x coordinate, and is given in the graph above. The electric field intensity $|\mathbf{E}|$ is:

- (a) maximal at point A, minimal at point E;
- (b) minimal at point A, maximal at point E;
- (c) minimal at points A and E, maximal at point C;
- (d) maximal at points A and E, minimal at point C;
- (e) none of the above.

Briefly justify your answer. [4 points]

Question 3.2

Consider the vector field **F** depicted in the figure above. Can **F** be the electric field produced by a static distribution of charge in vacuum (ie, there is anything else apart from the charges)?

- (a) yes;
- (b) no;
- (c) more information is needed to answer this question.

Briefly justify your answer. [2 points]

Question 3.3

A very common element in printed circuit boards is the microstrip line, which consists of a dielectric substrate with a thin rectangular conductor on top and a wide conductive plane at the bottom which serves as ground plane. Both conductors are made of a highly conductive material. The cross section is shown in the figure below.

Assuming that the top conductor is at a potential of 1 V with respect to the ground plane, sketch in the figure:

- the electric field lines, indicating their direction;
- the equipotential lines.

Briefly justify your answer. [4 points]

Question 3.4

The plane y=0 is the interface between two perfect dielectrics with $\varepsilon_{r,1}=3$ and $\varepsilon_{r,2}=6$, as shown in the figure below. Given that the field right above the interface $(y=0^+)$ is $\mathbf{E}_1=2\mathbf{a}_x+4\mathbf{a}_y$ V/m, complete the table below, and briefly explain your results. [6 points]

	Tangential component	Normal component	Unit
	(measured along $+\mathbf{a}_t$)	(measured along $+\mathbf{a}_n$)	
Electric field \mathbf{E}_1 in			
medium 1			
			V/m
Electric field \mathbf{E}_2 in			
medium 2			
Electric flux den-			
sity \mathbf{D}_1 in medium			
1			
Electric flux den-			
sity \mathbf{D}_2 in medium			
2			
Net bound surface			
charge density at			
the interface			

Question 3.5

We have two infinitely-wide charged planes, one positively charged and the other negatively charged, as shown in the figure. The gap between the planes is partially filled with a dielectric with relative permittivity $\varepsilon_r > 1$. Draw the densities of polarization charge ρ_p and $\rho_{p,s}$ that exist in the dielectric, using a "+" sign to indicate a positive charge density, a "-" sign to indicate a negative charge density, and a "0" to indicate a vanishing charge density. Justify your answer. [4 points]

1 Coordinate Systems

1.1 Cartesian coordinates

Position vector: $\mathbf{R} = x\mathbf{a}_x + y\mathbf{a}_y + z\mathbf{a}_z$

Differential length elements: $\mathbf{dl}_x = \mathbf{a}_x dx$, $\mathbf{dl}_y = \mathbf{a}_y dy$, $\mathbf{dl}_z = \mathbf{a}_z dz$ Differential surface elements: $\mathbf{dS}_x = \mathbf{a}_x dy dz$, $\mathbf{dS}_y = \mathbf{a}_y dx dz$, $\mathbf{dS}_z = \mathbf{a}_z dx dy$

Differential volume element: dV = dxdydz

1.2 Cylindrical coordinates

Winter 2017 **ECE259**

Position vector: $\mathbf{R} = r\mathbf{a}_r + z\mathbf{a}_z$

Differential length elements: $d\mathbf{l}_r = \mathbf{a}_r dr$, $d\mathbf{l}_\phi = \mathbf{a}_\phi r d\phi$, $d\mathbf{l}_z = \mathbf{a}_z dz$

Differential surface elements: $d\mathbf{S}_r = \mathbf{a}_r r d\phi dz$, $d\mathbf{S}_\phi = \mathbf{a}_\phi dr dz$, $d\mathbf{S}_z = \mathbf{a}_z r d\phi dr$

Differential volume element: $dV = rdrd\phi dz$

1.3 Spherical coordinates

Position vector: $\mathbf{R} = R\mathbf{a}_R$

Differential length elements: $\mathbf{dl}_R = \mathbf{a}_R dR$, $\mathbf{dl}_\theta = \mathbf{a}_\theta R d\theta$, $\mathbf{dl}_\phi = \mathbf{a}_\phi R \sin\theta d\phi$ Differential surface elements: $\mathbf{dS}_R = \mathbf{a}_R R^2 \sin\theta d\theta d\phi$, $\mathbf{dS}_\theta = \mathbf{a}_\theta R \sin\theta dR d\phi$, $\mathbf{dS}_\phi = \mathbf{a}_\phi R dR d\theta$ Differential volume element: $dV = R^2 \sin\theta dR d\theta d\phi$

2 Relationship between coordinate variables

-	Cartesian	Cylindrical	Spherical
x	x	$r\cos\phi$	$R\sin\theta\cos\phi$
y	$\mid y$	$r\sin\phi$	$R\sin\theta\sin\phi$
z	z	z	$R\cos\theta$
r	$\tan^{-1}\frac{y}{x}$	r	$R\sin\theta$
ϕ	$\tan^{-1}\frac{y}{x}$	ϕ	ϕ
z	z	z	$R\cos\theta$
R	$\sqrt{x^2 + y^2 + z^2}$	$\frac{r}{\sin \theta}$	R
θ	$\sqrt{x^2 + y^2 + z^2}$ $\cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$	$\tan^{-1}\frac{r}{z}$	θ
ϕ		ϕ	ϕ

3 Dot products of unit vectors

	\mathbf{a}_x	\mathbf{a}_y	\mathbf{a}_z	\mathbf{a}_r	\mathbf{a}_{ϕ}	\mathbf{a}_z	\mathbf{a}_R	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}
\mathbf{a}_x	1	0	0	$\cos \phi$	$-\sin\phi$	0	$\sin \theta \cos \phi$	$\cos \theta \cos \phi$	$-\sin\phi$
\mathbf{a}_y	0	1	0	$\sin \phi$	$\cos \phi$	0	$\sin\theta\sin\phi$	$\cos\theta\sin\phi$	$\cos \phi$
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
\mathbf{a}_r	$\cos \phi$	$\sin \phi$	0	1	0	0	$\sin \theta$	$\cos \theta$	0
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
\mathbf{a}_R	$\sin \theta \cos \phi$	$\sin\theta\sin\phi$	$\cos \theta$	$\sin \theta$	0	$\cos \theta$	1	0	0
$\mathbf{a}_{ heta}$	$\cos \theta \cos \phi$	$\cos\theta\sin\phi$	$-\sin\theta$	$\cos \theta$	0	$-\sin\theta$	0	1	0
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1

4 Relationship between vector components

=	Cartesian	Cylindrical	Spherical
A_x	A_x	$A_r \cos \phi - A_\phi \sin \phi$	$A_R \sin \theta \cos \phi + A_\theta \cos \theta \cos \phi -$
			$A_{\phi}\sin\phi$
A_y	A_y	$A_r \sin \phi + A_\phi \cos \phi$	$A_R \sin \theta \sin \phi + A_\theta \cos \theta \sin \phi -$
			$A_{\phi}\cos\phi$
A_z	A_z	A_z	$A_R \cos \theta - A_\theta \sin \theta$
A_r	$A_x \cos \phi + A_y \sin \phi$	A_r	$A_R \sin \theta + A_\theta \cos \theta$
A_{ϕ}	$-A_x\sin\phi + A_y\cos\phi$	A_{ϕ}	$\mid A_{\phi} \mid$
A_z	A_z	A_z	$A_R \cos \theta - A_\theta \sin \theta$
A_R	$A_x \sin \theta \cos \phi + A_y \sin \theta \sin \phi +$	$A_r \sin \theta + A_z \cos \theta$	A_R
	$A_z \cos \theta$		
A_{θ}	$A_x \cos \theta \cos \phi + A_y \cos \theta \sin \phi -$	$A_r \cos \theta - A_z \sin \theta$	A_{θ}
	$A_z \sin \theta$		
A_{ϕ}	$-A_x\sin\phi + A_y\cos\phi$	A_{ϕ}	A_{ϕ}

5 Differential operators

5.1 Gradient

$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z = \frac{\partial V}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi + \frac{\partial V}{\partial z} \mathbf{a}_z = \frac{\partial V}{\partial R} \mathbf{a}_R + \frac{1}{R} \frac{\partial V}{\partial \theta} \mathbf{a}_\theta + \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi$$

5.2 Divergence

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} = \frac{1}{R^2} \frac{\partial (R^2 A_R)}{\partial R} + \frac{1}{R \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi} + \frac{1}$$

5.3 Laplacian

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$

5.4 Curl

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \mathbf{a}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \mathbf{a}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \mathbf{a}_z$$

$$= \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right) \mathbf{a}_r + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \mathbf{a}_\phi + \frac{1}{r} \left(\frac{\partial (rA_\phi)}{\partial r} - \frac{\partial A_r}{\partial \phi}\right) \mathbf{a}_z$$

$$= \frac{1}{R \sin \theta} \left(\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi}\right) \mathbf{a}_R + \frac{1}{R} \left(\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial (RA_\phi)}{\partial R}\right) \mathbf{a}_\theta$$

$$+ \frac{1}{R} \left(\frac{\partial (RA_\theta)}{\partial R} - \frac{\partial A_R}{\partial \theta}\right) \mathbf{a}_\phi$$

6 Electromagnetic formulas

 Table 1
 Electrostatics

$$\mathbf{F} = \frac{1}{4\pi\varepsilon} \frac{Q_1 Q_2}{|\mathbf{R}_2 - \mathbf{R}_1|^3} (\mathbf{R}_2 - \mathbf{R}_1) \quad \mathbf{E} = \frac{1}{4\pi\varepsilon} \int_v \frac{(\mathbf{R} - \mathbf{R}')}{|\mathbf{R} - \mathbf{R}'|^3} dQ'$$

$$\nabla \times \mathbf{E} = 0 \qquad \nabla \cdot \mathbf{D} = \rho_v$$

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0 \qquad \oint_S \mathbf{D} \cdot d\mathbf{S} = Q$$

$$\mathbf{E} = -\nabla V \qquad V = \frac{1}{4\pi\varepsilon} \int_v \frac{dQ'}{|\mathbf{R} - \mathbf{R}'|}$$

$$V = V(P_2) - V(P_1) = \frac{W}{Q} = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{l}$$

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon \mathbf{E} \qquad \mathbf{P} = \chi_e \varepsilon_0 \mathbf{E}$$

$$\rho_{p,v} = -\nabla \cdot \mathbf{P} \qquad \mathbf{a}_n$$

$$\rho_{p,s} = -\mathbf{a}_n \cdot (\mathbf{P}_2 - \mathbf{P}_1)$$

$$\mathbf{a}_n \cdot (\mathbf{D}_2 - \mathbf{D}_1) = \rho_s \qquad 1$$

$$E_{1,t} = E_{2,t}$$

$$Q = CV \qquad W_e = \frac{1}{2} QV$$

$$W_e = \frac{1}{2} \int_{vol} \rho_v V dv = \frac{1}{2} \int_{vol} \mathbf{D} \cdot \mathbf{E} dv$$

$$\nabla \cdot (\varepsilon \nabla V) = -\rho_v \qquad \nabla \cdot (\varepsilon \nabla V) = 0$$

 Table 2
 Magnetostatics

$$\mathbf{F}_{m} = q\mathbf{u} \times \mathbf{B} \qquad \qquad \mathbf{F}_{m} = I\mathbf{l} \times \mathbf{B}$$

$$\nabla \times \mathbf{B} = \mu \mathbf{J} \qquad \qquad \nabla \cdot \mathbf{B} = 0$$

$$\oint_{C} \mathbf{B} \cdot d\mathbf{l} = \mu I \qquad \qquad \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\mathbf{B} = \frac{\mu I}{4\pi} \oint_{C} \frac{d\mathbf{l}' \times (\mathbf{R} - \mathbf{R}')}{|\mathbf{R} - \mathbf{R}'|^{3}} \qquad \qquad \Phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$\mathbf{B} = \mu_{0} (\mathbf{H} + \mathbf{M}) = \mu \mathbf{H} \qquad \qquad \mathbf{M} = \chi_{m} \mathbf{H}$$

$$\mathbf{J}_{m,s} = \mathbf{M} \times \mathbf{a}_{n} \qquad \qquad \mathbf{J}_{m} = \nabla \times \mathbf{M}$$

$$B_{1,n} = B_{2,n} \qquad \qquad \mathbf{a}_{n} \times (\mathbf{H}_{2} - \mathbf{H}_{1}) = \mathbf{J}_{s}$$

$$\nabla \times \mathbf{H} = \mathbf{J} \qquad \qquad \oint_{\mathbf{H}} \mathbf{H} \cdot d\mathbf{l} = I$$

$$W_{m} = \frac{1}{2} \int_{vol} \mathbf{B} \cdot \mathbf{H} dv$$

$$L = \frac{N\Phi}{I} = \frac{2W_{m}}{I^{2}} \qquad \qquad L_{12} = \frac{N_{2}\Phi_{12}}{I_{1}} = \frac{N_{2}}{I_{1}} \int_{S_{2}} \mathbf{B}_{1} \cdot d\mathbf{S}_{2}$$

$$\mathcal{R} = \frac{l}{\mu S} \qquad \qquad V_{mmf} = NI$$

Table 3 Faraday's law, Ampere-Maxwell law

$$V_{emf} = \oint_C (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l} - \int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \quad V_{emf} = \oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}$$

$$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_S \mathbf{J} \cdot d\mathbf{S} + \frac{d}{dt} \int_S \mathbf{D} \cdot d\mathbf{S} \qquad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

 Table 4
 Currents

$$I = \int_{S} \mathbf{J} \cdot \mathbf{dS} \qquad \mathbf{J} = \rho \mathbf{u} = \sigma \mathbf{E}$$

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t} \qquad \mathbf{P} = \int_{vol} (\mathbf{E} \cdot \mathbf{J}) \, dv$$

$$J_{2,n} - J_{1,n} = -\frac{\partial \rho_{s}}{\partial t} \qquad \sigma_{2} J_{1,t} = \sigma_{1} J_{2,t}$$

$$R = \frac{l}{\sigma S} \qquad \sigma = -\rho_{e} \mu_{e} = \frac{1}{\rho}$$