Example Epsilon-Delta Proof - Anatoly Zavyalov

Suppose we want to prove the statement, for some $a \in \mathbb{R}$,

$$\lim_{x \to a} x^2 = a^2.$$

Equivalently, we want to show that

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in \mathbb{R}, |x - a| < \delta \implies |x^2 - a^2| < \epsilon.$$

Proof. Let $\epsilon > 0$ be given. Let $\delta = \min\left\{1, \frac{\epsilon}{2|a|+1}\right\}$. Let $x \in \mathbb{R}$, and suppose that $|x-a| < \delta$. We know that |x|-|a| < |x-a| by the triangle inequality, so

$$|x| - |a| < |x - a| < \delta$$

$$\implies |x| < |a| + \delta$$

$$\implies |x| < |a| + \delta < |a| + 1$$
 as $\delta < 1$

$$\implies |x| < |a| + 1$$
.

Next, we know

$$\delta < \frac{\epsilon}{2|a|+1}$$

$$\Longrightarrow \delta(2|a|+1) = \delta(|a|+|a|+1) < \epsilon$$

$$\Longrightarrow \delta(|x|+|a|) < \delta(|a|+|a|+1) < \epsilon$$

$$\Longrightarrow \delta(|x+a|) < \delta(|x|+|a|) < \epsilon$$

$$\Longrightarrow |x-a||x+a| < \epsilon$$

$$\Longrightarrow |x^2-a^2| < \epsilon,$$

by the triangle inequality

as
$$|x - a| < \delta$$

as desired. Since $x \in \mathbb{R}$ was chosen arbitrarily, we know that

$$\forall x \in \mathbb{R}, |x-a| < \delta \implies |x^2 - a^2| < \epsilon.$$

Hence,

$$\exists \delta > 0: \forall x \in \mathbb{R}, |x - a| < \delta \implies \left| x^2 - a^2 \right| < \epsilon.$$

Since $\epsilon > 0$ was also chosen arbitrarily, we know that

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in \mathbb{R}, |x - a| < \delta \implies |x^2 - a^2| < \epsilon,$$

which is what we wanted to show.