Programming with Math

Bartosz Milewski

@BartoszMilewski BartoszMilewski.com

Why people hate types?

- Types limit our ability to reuse code
- Generic code is hard to write in strongly typed languages
- Working with types requires learning a new language
- Type errors are cryptic
- Proof: JavaScript has many more libraries than C++

On the other hand...

- Type checker detects lots of bugs at compile time
- Types provide up-to-date documentation
- Types can drive the design of software
- Proof: JavaScript libraries are notoriously low quality

The problem

- Most strongly typed languages have ad-hoc type systems
- Generics are added as an afterthought
- There is good theory, but language designer mostly ignore it
- Without good basics, it's hard to build higher level abstractions

Systematic type theory

- Martin Löf type theory
 - Algebraic data types
 - Dependent types
- Intuitionistic logic
 - Propositions as types
- Category theory
 - Functors, monoids, monads

Per Martin-Löf

Abstracting over types

- Generic types:
 - Functions on types, Type constructors
 - Systematic construction of types = algebraic data types
 - Generic algorithms: polymorphic functions working on generic types

The power of composition

- Define primitive things
- Define ways of composing things
- The science of composition
 - Logic
 - Category theory
 - Type theory

Unit

- Logic. Truth value: T
- Unit, (), void in C++/Java
- Set theory: Singleton set
- Introduction: ()
- No elimination

Products

Logic . conjunction : $a \land b$

- Pairs, tuples, structs, records, (classes)
- Set theory: cartesian product of sets
- Introduction: a -> b -> (a, b)
- Elimination:
 - fst :: (a, b) -> a
 - snd :: (a, b) -> b

Sums

Logic. $Alternative: a \lor b$

• Either, tagged unions, class hierarchies

data Either a b =
 Left a | Right b

- Set theory: disjoint union
- Introduction:
 - Left :: a -> Either a b
 - Right :: b -> Either a b
- Elimination: Pattern matching, case statement
- Bool: 2 = 1 + 1

Exponentials

Logic . Implication : $a \Rightarrow b$

$$(a \land b) \land c \Rightarrow a \land (b \land c)$$

$$\x \rightarrow (fst x), (snd (fst x), snd x))$$

- Function types, first class functions
- Set theory: set of functions a->b, exponential b^a
- Introduction: lambda, \x -> expr x
- Elimination: evaluation, function application, **f x**

Algebraic identities

$$1 \times a \cong a$$

$$((), a) \sim a$$

$$a^{b+c} \cong a^b \times a^c$$

$$(b + c) -> a \sim (b -> a, c -> a)$$

$$a^2 \cong a^{1+1} \cong a \times a$$

Bool -> a \sim (a, a)

$$a^{b \times c} \cong (a^c)^b$$

$$(b, c) -> a \sim b -> (c -> a)$$

Type functions

$$\Lambda a.1 + a$$

Maybe a = Nothing | Just a

- Type constructor Maybe
- Data constructors
 - Nothing: no argument, singleton output
 - Just: takes a, produces a (identity)
- Elimination: function of sum = pair of functions

Infinite products

Logic . universal quantification : $\forall x . P(x)$

- Polymorphic values, infinite products
- Intro: Provide a value for every possible type
- Elimination: Project one such value (and use it)

```
id :: forall a. a -> a
id x = x
```

Infinite sums

Logic . existential quantification : $\exists x . P(x)$

- Existential types, implementation hiding, pimpl pattern
- Intro: provide a value for any of the types
- Elimination: use this value without knowing the type

```
Expr = exists a. (a, a -> Int)
```

Existential types

- Intro: provide a value for any of the types
 - Infinitely many constructors, one for every type

```
data Expr = forall a. Expr a (a -> Int)
plus :: Expr
plus = Expr (3, 7) (\( (x, y) -> x + y) \)
```

- Elimination: use this value without knowing the type
 - Use polymorphic function

```
eval :: Expr -> Int
eval (Expr x f) = f x
```

Recursion

- Advantage: Turing completeness
- Price: Non-termination
- Fixed points of algebraic equations

$$L(a) = 1 + a \times L(a)$$

List a = Nil | Cons a (List a)

Conclusions

- There is a strong foundation for types
- Generic programming is programming with types
- Generic types are functions on types
- Built from (algebraic) expressions on types
- Recursive data types are solutions to algebraic equations
- Algorithms are polymorphic functions