COG	NOMS:																				
	NOM:											DNI	/NIE:								
emp que bord de la auto	ezar el no haya les. Use os recu mática,	rE leer a examen a tachor un únicadros, to no seguen.	Escrib nes ni b to cuadi todo lo uir corre ountos	a un s orrone ro en l que l ectame	olo cai es y qu olanco haya f ente es	ráctei ue cad para uera stas ii	por r da cara separa de ell nstruc	ecua ácter ar los os e cione	dro, en quede apellic s ignor es pued	may enm los y ado. e cor	vúscu narca nom La i mpoi	ulas y lo ado de abres c identifi rtar no	o más ntro c ompu icació tene	s clai de su uesto in de r no	rame u rec os si el al ta.	ente cuadr es el lumn	posibl o sin l caso. o se r	e. Es legar No e ealiz	impo r a to scrib a de	orta ocar a fu for	nte los era ma
instr	uccione	na CPU es) en ur arda 60	n simula	dor d		-						-			_			-			
a)		a el CPI ria ideal	•	Plidea	al) y el	tiem	po de	ejec	ución e	en se	guno	dos (Te	exec)	del _I	orog	grama	P en	este	siste	ema	de
		númer 1.00 ref				-										-			la się	guie	nte
Con	una I\$ i	una D\$	reales	tenem	os un	miss i	rate er	n D\$	del 11%	6 y er	n I\$ c	del 5%.									
		icierto e n por ac									iclo.	En cas	o de	miss	en l	la I\$ d	en la	D\$ e	l tier	npo	de
		una po es neg		e escr	ritura (Сору	Back	y Wr	ite Allo	cate	, aur	nque e	en el	prog	ram	na P	el nún	nero	de b	loq	ues
b)	Calcula	el tiem	npo med	dio de	acceso	o a m	emoria	a en o	ciclos p	ara lo	os ac	cesos	a inst	rucc	ione	es (Tn	nal)				
c)	Calcula	el tiem	ipo med	dio de	acceso	o a m	emoria	a en o	ciclos p	ara lo	os ac	cesos	a dat	os (T	mal	D)					
d)	Calcula	el tiem	npo med	dio de	acceso	a m	emoria	a en o	ciclos p	ara t	odos	los ac	cesos	(Tm	ıa)						

		na P diseñamos una nueva CPU (C2) a par gundo nivel (L2\$). El tiempo de ejecución	
mis	s rate local de la L2\$ para el program	na P es del 30%. El tamaño de bloque (lín es (el tamaño de las instrucciones), los ac	ea) de todas las caches es de 64 bytes
f)		úmero de bytes que se leen y el ancho de 5, L2\$ y Memoria Principal (MP), que reali	
	Accesos	Bytes leídos	Ancho de banda
I\$			
D\$			
L2\$	5		
MP			
Un a		ámica (de conmutación) de 1 nJ, a D\$ de cia dinámica media consumida por la je	•
—— La с	ache L2\$ tiene un tiempo de servicio	en caso de acierto de 10 ciclos y una pen	alización en caso de <i>miss</i> de 100 ciclos.
h)	Calcula el mínimo hit rate local (h) la CPU C2 que en la C1	que debería tener la L2\$ para que un pro	grama se ejecute más rápidamente er

Problema 2. (3,4 puntos)

Una **CPU** está conectada a una cache de instrucciones (\$I) y una cache de datos (\$D). El conjunto formado por **CPU+\$I+\$D** esta conectado a una memoria principal formada por un único módulo DIMM estándar de 16 GBytes. Este DIMM tiene 8 chips de memoria **DDR**-SDRAM (**Double Data Rate** Synchronous DRAM) de 1 byte de ancho cada uno. El DIMM esta configurado para leer/escribir ráfagas de 64 bytes (justo el tamaño de bloque de las caches). La latencia de fila es de 4 ciclos, la latencia de columna de 3 ciclos y la latencia de precarga de 1 ciclo.

En los siguientes cronogramas, indica la ocupación de los distintos recursos de la memoria DDR: bus de datos, bus de direcciones y bus de comandos. En todos los cronogramas supondremos que no hay ninguna página de DRAM abierta.

a) Rellena el siguiente cronograma para una lectura de un bloque de 64 bytes de la DDR.

En ocasiones, es posible que el conjunto **CPU+\$I+\$D** solicite múltiples bloques a la DDR (por ejemplo porque se produzca un fallo simultáneamente en **\$I** y en **\$D**). El controlador de memoria envía los comandos necesarios a la DDR-SDRAM de forma que ambos bloques sean transferidos lo más rápidamente posible y se maximice el ancho de banda. Rellena los siguientes cronogramas para la lectura de dos bloques de 64 bytes en función de la ubicación de los dos bloques involucrados. El objetivo es minimizar el tiempo total.

b) Ambos bloques están ubicados en bancos distintos.

c) Ambos bloques están ubicados en el mismo banco pero en páginas distintas.

d) Ambos bloques están ubicados en el mismo banco y en la misma página .

El conjunto **CPU+\$I+\$D** funciona a una frecuencia interna mayor que la de la memoria SDRAM. Un ciclo de la SDRAM corresponde a múltiples ciclos del conjunto **CPU+\$I+\$D** por lo que los ciclos de los apartados siguientes no se corresponden a los cronogramas anteriores.

Un programa P realiza $5x10^9$ accesos a datos, todos de 4 bytes. Sabemos que **\$D** tiene bloques de 64 bytes y políticas de escritura **copy back** + **write allocate**. Hemos medido que, durante la ejecución de P, **\$D** tiene una tasa de fallos del 10% y que el 25% de los bloques reemplazados tenían el *dirty bit* a 1.

e)	Calcula cuantos bytes lee \$D desde la DDR y cuantos bytes escribe \$D en la DDR.
Dac	do el siguiente fragmento de código:
	for (i=0; i <n; i++)<="" th=""></n;>
	suma = suma + v[i]; // v[i] es un vector de floats (4 bytes)
	ódigo está almacenado en \$I, las variables i, N y suma están en registros y \$D está inicialmente vacía. Los elementos vector v son de 4 bytes y los bloques de \$D son de 64 bytes. La capacidad de \$D es de 8 Kbytes.
	un programa de prueba hemos ejecutado 2 veces consecutivas el mismo fragmento de código (para N = 2000) y nos medido los ciclos de CPU de ambas ejecuciones:
•	En la 1a ejecución el bucle tarda 70.000 ciclos.
	En la 2a ejecución el bucle tarda 40.000 ciclos.
f)	Calcula el tiempo de penalización medio (en ciclos) en caso de fallo en \$D.
	Cartain C. Schripe de penanzasion modific (en ciales) en caso de lanc en 42.
	seamos ejecutar una sola copia del mismo fragmento de código para N muy grande (el vector recorrido es mucho yor que el tamaño de cache).
g)	Calcula en función de N los ciclos que tarda el fragmento de código anterior.
6,	Canada di Tanada da Mara da Canada di Maginiana da Sasaiga di Canada di Maginiana da Canada da Can
del	cache \$D le añadimos un mecanismo de <i>prefetch</i> hardware. Cuando se accede un bloque (i) se desencadena <i>prefetch</i> bloque siguiente (i+1) siempre que el bloque (i+1) no se encuentre ya en la cache o no haya un <i>prefecth</i> previo del que (i+1) pendiente de completar (en ambos casos es innecesario hacer prefecth de nuevo).
h)	Calcula el número máximo de ciclos que puede durar un prefetch para que el bucle se ejecute en 25*N ciclos.
i)	¿Es posible ejecutar el bucle en menos de 25*N haciendo el <i>prefetch</i> más rápido? (justifica la respuesta)
1	

COGNOMS:																											
NOM:]	DNI/NIE:	/NIE:									
																J											
Problema	3. (3	3,2 p	ounto	os)																							
Disponemo informació mismas) de disco almae	n de :50 រុ	2 cı um.	m po El tot	r su _l :al d	perf e in	ficie fori	e. El maci	bra ón '	zo ι "brι	nóv uta"	il pe que	ermi e pu	ite ι ede	ına alm	dista acer	an na	icia e r una	ntre pist	pist a es	as (i de s	inclu 942	ıyer 48 b	ido its.	el g	roso sect	r de	las del
velocidad c			-					-			-																
a) Calcu l en Mi						y po	or pis	ta.	Cal	cula	tam	ıbiéı	n la (capa	acida	ad	"net	a" de	el dis	co e	n by	tes.	Esc	ribe	el re	esult	tado
b) Calcul	a la	velo	cidac	l má	xim	na d	le tra	anst	fere	ncia	a de	info	orma	ació	n "h	ru	ıta" (lel d	isco	Cal	cula	tai	mhie	án e	l tie	mno	n de
transf																											
_			-																								
Sea una por El tiempo in una configu del disco av	nvert iracio	ido ón R	en ca AID 5	mbia el si	ar u	n di	isco	ave	riad	о у	reco	nsti	ruir	la in	forn	na	ción	(MT	ΓR)	s de	30	hor	as. F	Recu	erda	qu	e en
c) Escrib los da													llos	para	el F	RA	ID 5 a	antei	ior (MTI	F _{RA}	_{ID}) y	cal	cula	su v	alor	con

De acuerdo a un estudio realizado sobre el uso de este dispositivo en un procesador Intel CISC x86 que traduce internamente las instrucciones x86 a microoperaciones (uops), se ha determinado que la rutina de servicio que se ejecuta en cada interrupción de este dispositivo precisa de 3600 uops. Sabemos que cada instrucción dinámica de lenguaje máquina x86 de la rutina se traduce en una uop y que cada 520 instrucciones CISC se necesitan en media 200 uops adicionales. El procesador funciona a una frecuencia de 2 GHz.

d)	Calcula el CPI y el tiempo de ejecución de la rutina de servicio de interrupciones para un valor de UPC (uops por ciclo) de 1,1.
Disi	ponemos de un programa P que consta de dos fases de ejecución (una de lectura de disco que supone el 30% de
tier pro mu tard din	npo de ejecución y otra de cálculo la cual es totalmente paralelizable). Cuando P se ejecuta en un sistema con un solo cesador y un solo disco (en un PC de sobremesa) tarda un tiempo de 200 horas. Cuando P se ejecuta en un sistema ltiprocesador con 13 procesadores y un RAID 5 de 10 discos (cada procesador y cada disco son iguales a los del PC) da un tiempo de 40 horas. Sabemos que el programa P realiza 1 operación de coma flotante por cada 3 instrucciones ámicas de coma flotante, y que el procesador tiene un rendimiento promedio, para este programa, de 1000 MFLOPS ndo se ejecuta en el PC de sobremesa.
e)	Calcula cuantas instrucciones dinámicas de coma flotante realiza el programa P en el multiprocesador. Calcula también a cuantos MFLOPS se ejecuta el programa P en el multiprocesador.
Sab	emos que la potencia consumida por cada procesador es de 90W, y la potencia consumida por cada disco es de 30W.
-	oner que estos son los únicos elementos con consumo significativo. Durante la fase de E/S se necesita un único cesador activo para controlar la actividad de los discos.
f)	Calcula los MFLOPS/W del multiprocesador cuando se consigue apagar completamente los elementos (procesadores y/o discos) que no se utilizan en cada fase.