Unconstrained Optimization

Landon Wright

February 9, 2018

1 Program Description

1.1 Steepest Descent

The steepest descent method is the simplest of the optimization methods that are implemented here. The search direction, s, is simply

$$s = \nabla f(\mathbf{x}) \tag{1}$$

Due to this the method is exceptionally simple to implement. It is however quite inefficient. On both of the given equations it was the slowest to converge to the solution and required the highest number of function calls. As a result it is an undesirable method.

1.2 Conjugate Gradient

The conjugate gradient method requires only a slight change to the steepest descent method for a large increase in efficiency. The search direction is modified to become

$$s^{k+1} = -\nabla f^{k+1} + \beta^k s^k \tag{2}$$

where

$$\beta^k = \frac{\left(\nabla f^{k+1}\right)^T \nabla f^{k+1}}{\left(\nabla f^k\right)^T \nabla f^k} \tag{3}$$

This small change results in the method becoming one of conjugate directions which in turn makes the method significantly more powerful. This is seen in the results of testing on the two given equations. The conjugate gradient method finds the optimum in fewer iterations and with less function calls.

1.3 Quasi-Newton

In testing done the Quasi-Newton method was shown to converge with the fewest number of iterations. This is perhaps because it combines the far away efficiency of the steepest descent method with the power of conjugate gradient methods. The result is a method the outperforms either of them on their own. This power does come at the cost of additional complexity to implement. The search direction is

$$s = -\mathbf{N}\nabla f(\mathbf{x}) \tag{4}$$

Which appears to be no more complicated than the other methods, however there is considerable complexity involved in determining N (For reference see equation 3.80 in the book).

1.4 Step size

The method of determining step size is the simple parabolic line search described in the book. It is not the most efficient method, but it's simplicity is beneficial in ease of implementation.

2 Testing Results

2.1 Function 1 Results

Table 1: Steepest descent progression

	Start-value	Value	Step-direction	Step-len	Function-calls
1	(10.000000, 10.000000, 10.000000)	154.343825	(-0.994269, 0.064146, -0.085528)	7.818505	7.000000
2	(2.226306, 10.501529, 9.331295)	38.883122	(0.033560, -0.572300, -0.819357)	12.526136	13.000000
3	(2.646680, 3.332821, -0.932087)	1.547244	(-0.976543, 0.155690, -0.148744)	2.512183	17.000000
4	(0.193426, 3.723944, -1.305758)	-12.992294	(0.123689, -0.159847, -0.979362)	4.380826	22.000000
5	(0.735284, 3.023680, -5.596172)	-18.666244	(-0.981909, 0.122884, -0.144067)	0.979809	29.000000

Table 2: Conjugate gradient progression

	Start-value	Value	Step-direction	Step-len	Function-calls
1	(10.000000, 10.000000, 10.000000)	154.343825	(-0.994269, 0.064146, -0.085528)	7.818505	7.000000
2	(2.226306, 10.501529, 9.331295)	-14.399913	(-0.159337, -0.549094, -0.820431)	18.658898	14.000000
3	(-0.746744, 0.256038, -5.977048)	-22.388889	(0.056441, 0.646046, -0.761209)	3.387385	19.000000

Table 3: Quasi-Newton progression

	v					
	Start-value	Value	Step-direction	Step-len	Function-calls	l
1	(10.000000, 10.000000, 10.000000)	154.343825	(-0.994269, 0.064146, -0.085528)	7.818505	7.000000	l
2	(2.226306, 10.501529, 9.331295)	-14.399913	(-0.159337, -0.549094, -0.820431)	18.658898	14.000000	l
3	(-0.746744, 0.256038, -5.977048)	-22.388889	(0.056441, 0.646046, -0.761209)	3.387385	19.000000	

Table 4: Respective number of objective and gradient evaluations required to obtain minimum with tolerance of $1e^{-5}$ on the gradient

١.	Stations					
	Method	Objective Evaluations	Gradient Evaluations			
	Steepest descent	254	34			
	Conjugate Gradient	19	4			
	Quasi-Newton	19	4			

2.2 Rosenbrock Function Results

Figure 1: Progression of steepest descent algorithm

Figure 2: Progression of conjugate gradient algorithm

Figure 3: Progression of quasi-Newton algorithm

Table 5: Respective number of objective and gradient evaluations required to obtain minimum with tolerance of $1e^{-3}$ on the gradient

Method	Objective Evaluations	Gradient Evaluations
Steepest descent	931	122
Conjugate Gradient	540	77
Quasi-Newton	172	28

3 Matlab Code

3.1 Fminun Routine

```
function [xopt, fopt, exitflag] = fminun(obj, gradobj, x0, stoptol, algoflag)
     % get function and gradient at starting point
     global nobj;
     [n,~] = size(x0); % get number of variables
     f = obj(x0); % get the value of the function at x0
     grad = gradobj(x0);
     x = x0;
     f0ld = inf;
     xOld = zeros(n, 1);
10
     %set starting step length
11
     alpha = 0.0005;
12
     incrementCounter = 0;
13
     gradOld = ones(n,1);
14
     sOld = zeros(n,1);
15
     N = eye(n);
     saveMat = table;
17
18
```

```
19
     while (any(abs(grad(:)) > stoptol))
20
        incrementCounter = incrementCounter + 1
21
        % kill the run if there are more than 500 objective calls
22
        if (nobj > 500)
23
         xopt = nan;
         fopt = nan;
25
         exitflag = 1
         return
27
        end
29
        if (algoflag == 1)
                                % steepest descent
30
          s = srchsd(grad);
31
          % find the proper alpha level
32
          alphaPrime = aPrime(obj, gradobj, s, f, x);
33
34
        end
36
        if (algoflag == 2)
37
          % use conjugate gradient method
38
          % check that it's not the first round / we wont divide by 0
          if (gradOld' * gradOld == 0)
40
            sMessy = -grad;
          else
42
            % calculate the beta term
            betaCorrection = (grad' * grad) / (gradOld' * gradOld);
44
            sMessy = -grad + betaCorrection * sOld;
            sOld = sMessy;
46
            % normalize the s vector
            s = sMessy / norm(sMessy);
            alphaPrime = aPrime(obj, gradobj, s, f, x);
          end
50
51
        end
52
53
        if (algoflag == 3)
          % use quasi-Newton method
55
         gammaK = grad - gradOld;
         deltaX = x - x0ld;
57
          if (incrementCounter > 1 & deltaX' * gammaK > 0)
            t1 = 1 + ((gammaK' * N * gammaK) / (deltaX' * gammaK));
            t2 = (deltaX * deltaX') / (deltaX' * gammaK);
            t3 = (deltaX * gammaK' * N + N * gammaK * deltaX') / (deltaX' * gammaK);
61
            N = N + t1 * t2 - t3
          end
63
          s = -N * grad;
          s = s / norm(s);
          alphaPrime = aPrime(obj, gradobj, s, f, x);
66
        end
68
70
        % take a step
71
        xnew = x + alphaPrime*s;
```

```
fnew = obj(xnew);
73
        % update things
74
        gradOld = grad;
75
        grad = gradobj(xnew);
        fOld = f;
77
        x01d = x;
        f = fnew:
79
        x = xnew;
        newRow = {xOld', fnew, s', alphaPrime, nobj};
81
        saveMat = [saveMat; newRow];
83
84
      end
85
86
      grad
      xopt = xnew;
      fopt = fnew;
      exitflag = 0;
      % toSave = table2array(saveMat);
90
      % fout = fopen(sprintf('output%d.csv', algoflag),'w');
      % fprintf(fout, '%s, %s, %s, %s, %s, %s, %s, %s, %s\r\n'...
92
      % , 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
      % fprintf(fout, '%8.6f, %8.6f, %8.6f, %8.6f, %8.6f, %8.6f, %8.6f, %8.6f, %8.6f
94
      % , toSave');
      % fclose(fout);
96
    end
98
    % get steepest descent search direction as a column vector
100
    function [s] = srchsd(grad)
101
      mag = sqrt(grad'*grad);
102
      s = -grad/mag;
103
    end
104
105
    function [alphaPrime] = aPrime(obj, gradobj, s, f, x)
      minVal = f;
107
      lastStepVal = f;
      alphas = [0, f];
109
      testStep = 2.1;
110
      xTest = x;
111
      incrementer = 2;
      iterTestStep = testStep;
113
      while (minVal >= lastStepVal)
        % calculate at guessed testStep
115
        xTest = x + iterTestStep * s;
        fTest = obj(xTest);
117
        % here to handle the case of a test step that is too large
        if(fTest >= f & incrementer < 3)</pre>
120
          minVal = f;
121
          lastStepVal = f;
122
          iterTestStep = iterTestStep / 10;
          alphas = [0, f];
124
          incrementer = 2;
125
          continue;
126
```

```
end
127
128
129
                  % add it to the stored list
                  alphas(incrementer,1) = iterTestStep;
131
                  alphas(incrementer,2) = fTest;
                  % increment things for the next loop
                  minVal = min(minVal, fTest);
                  lastStepVal = fTest;
                  incrementer = incrementer + 1;
                  alphaOpt = iterTestStep;
                  iterTestStep = iterTestStep * 2;
138
139
              % take the half step between the last two steps
140
              iterTestStep = (alphas(end, 1) + alphas(end-1, 1)) / 2;
              xTest = x + iterTestStep * s;
142
              fTest = obj(xTest);
              % store the values of the intermediate step
144
              alphas(end + 1, :) = alphas(end, :);
              alphas(end - 1, :) = [iterTestStep, fTest];
146
              % find the index of the minimum function value
              [minVal, minIdx] = min(alphas(:,2));
148
              % get the three alpha and function values
              alpha2 = alphas(minIdx, 1);
150
              f2 = alphas(minIdx, 2);
              alpha1 = alphas(minIdx - 1, 1);
              f1 = alphas(minIdx - 1, 2);
              alpha3 = alphas(minIdx + 1, 1);
154
              f3 = alphas(minIdx + 1, 2);
              [alpha1, alpha2, alpha3];
156
              % calculate the optimum alpha value
157
              deltaAlpha = alpha2 - alpha1;
              alphaPrime = (f1 * (alpha2^2 - alpha3^2) + f2 * (alpha3^2 - alpha1^2) ...
159
              + f3 * (alpha1^2 - alpha2^2)) / (2 * (f1 * ...
              (alpha2 - alpha3) + f2 * (alpha3 - alpha1) + ...
161
              f3 * (alpha1 - alpha2)));
163
                  Driver
     3.2
         function [] = fminunDriv()
              %----- for friends, which is a second contract the contract of the contract of
              clear;
   4
              global nobj ngrad
              nobj = 0; % counter for objective evaluations
              ngrad = 0.; % counter for gradient evaluations
              x = [1.; 1.]; % starting point, set to be column vector
              x1 = [10; 10; 10]; % starting point for function 1
              xRosen = [-1.5; 1];
 10
              algoflag = 1; % 1=steepest descent; 2=conjugate gradient; 3=BFGS quasi-Newton
 11
              stoptol = 1.e-5; % stopping tolerance, all gradient elements must be < stoptol
 12
 13
 14
```

```
% ----- call fminun-----
15
      [xopt, fopt, exitflag] = fminun(@obj1, @gradobj1, x1, stoptol, algoflag);
16
17
     xopt
     fopt
19
     nobj
21
     ngrad
   % function to be minimized
   function [f] = obj(x)
26
     global nobj
27
     %example function
28
     %min of 9.21739 as [-0.673913, 0.304348]T
     f = 12 + 6.*x(1) - 5.*x(2) + 4.*x(1).^2 -2.*x(1).*x(2) + 6.*x(2).^2;
     nobj = nobj +1;
   end
32
34
   % get gradient as a column vector
   function [grad] = gradobj(x)
     global ngrad
36
     %gradient for function above
     grad(1,1) = 6 + 8.*x(1) - 2.*x(2);
     grad(2,1) = -5 - 2.*x(1) + 12.*x(2);
     ngrad = ngrad + 1;
40
   end
   % function 1 to be optimized on the homework
43
   function [f] = obj1(x)
     global nobj
     f = 20 + 3 \cdot * x(1) - 6 \cdot * x(2) + 8 \cdot * x(3) + 6 \cdot * x(1) \cdot ^2 - 2 \cdot * x(1) \cdot * x(2) \dots
     -x(1) .*x(3) + x(2).^2 + 0.5 .*x(3).^2;
47
     nobj = nobj + 1;
49
   % gradient of function 1
   function [grad] = gradobj1(x)
     global ngrad
53
     grad(1,1) = 3 + 12 .* x(1) - 2 .* x(2) - x(3);
     grad(2,1) = -6 - 2 \cdot x(1) + 2 \cdot x(2);
     grad(3,1) = 8 - x(1) + x(3);
     ngrad = ngrad + 1;
57
   end
59
   \% function 1 to be optimized on the homework
   function [f] = objRosen(x)
62
     global nobj
     f = 100 .* (x(2) - x(1).^2).^2 + (1-x(1)).^2;
64
     nobj = nobj + 1;
66
   % gradient of function 1
```

```
function [grad] = gradobjRosen(x)
global ngrad
function [grad] = gradobjRosen(x)
grad(1,1) = 2 .* (200 .* x(1).^3 - 200 .* x(1) .* x(2) + x(1) - 1);
grad(2,1) = 200 .* (x(2) - x(1).^2);
ngrad = ngrad + 1;
end
```

ME 575

Homework #3 Unconstrained Optimization Due Feb 7 at 2:50 p.m.

Description

Write an optimization routine in MATLAB (required) that performs unconstrained optimization. Your routine should include the ability to optimize using the methods,

- steepest descent
- conjugate gradient
- BFGS quasi-Newton

Your program should be able to work on both quadratic and non-quadratic functions of *n* variables. To determine how far to step, you may use a line search method (such as the quadratic fit given in the notes), a trust region method, or a combination of these. You will be evaluated both on how theoretically sound your program is and how well it performs.

You should use good programming style, such as selecting appropriate variable names, making the program somewhat modular (employing function routines appropriately) and documenting your code.

You will provide test results for your program on the two functions given here. In addition, you will turn in your function so we can test it on other functions or on different starting points.

Testing

1) Test your program on the following quadratic function of three variables:

$$f = 20 + 3x_1 - 6x_2 + 8x_3 + 6x_1^2 - 2x_1x_2 - x_1x_3 + x_2^2 + 0.5x_3^2$$

The conjugate gradient and quasi-Newton methods should be able to solve this problem in three iterations. Show your data for each iteration (starting point, function value, search direction, step length, number of evaluations of objective) for these two methods starting from the point $\mathbf{x}^T = [10, 10, 10]$. In addition, give data for five steps of steepest descent. At the optimum the absolute value of all elements of the gradient vector should be below 1.e-5. Indicate the total number of objective evaluations and gradient evaluations taken by each method.

2) Test your program on the following non-quadratic function (Rosenbrock's function) of two variables:

$$f = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Starting from the point $\mathbf{x}^T = [-1.5, 1]$, show the steps of the methods on a contour plot. Show 20 steps of steepest descent. Continue with the conjugate gradient and quasi-Newton methods until the optimum is reached at $\mathbf{x}^T = [1, 1]$ and the absolute value of all elements of

the gradient vector is below 1.e-3. Indicate the total number of objective evaluations and gradient evaluations taken by each method.

MATLAB Stuff

Your function will be called fminun. It will receive and pass back the following arguments:

```
[xopt, fopt, exitflag] = fminun(@obj, @gradobj, x0, stoptol, algoflag);
Inputs:
@obj = function handle for the objective we are minimizing (we will use
obj) The calling statement for obj looks like,
f = obj(x);
@gradobj = function handle for the function that evaluates gradients of
the objective (we will use gradobj, see example) The calling statement for
gradobj looks like,
grad = gradobj(x);
Note that grad is passed back as a column vector.
x0 = starting point (column vector)
stoptol = stopping tolerance. I will set this to 1.e-3, unless this proves
too restrictive. The absolute value of all elements of your gradient
vector should be less than this value at the optimum.
algoflag = 1 for steepest descent, =2 for conjugate gradient, =3 for
quasi-Newton.
Outputs:
xopt = optimal value of x (column vector)
fopt = optimal value of the objective
exitflag = 0 if algorithm terminated successfully; otherwise =1. Your
algorithm should exit (=1) if it has exceeded more than 500 evaluations of
the objective.
```

Attached is an example "driver" routine and example fminun routine to get you started. You can copy these from Learning Suite > Content > MATLAB Examples.

Grading

Grading: Your routine will be graded based on two criteria: 1) Soundness of your methodology and implementation as evidenced by your write-up and code (50%), and performance on test functions (50%). The performance score will be based 70% on accuracy (identifying the optimum) and 30% on efficiency (number of objective evaluations plus n*number of gradient evaluations).

Turn in, in one report through Learning Suite:

- 1. A brief written description of your program, including discussion of each of the three methods. This should not be longer than a page (single-spaced). You may include equations if you wish. Discuss how you implemented the methods.
- 2. The requested results from testing on the two functions.

3. Hardcopy of your MATLAB code.

In addition, email your MATLAB code to Jacob Greenwood (jacobgwood@gmail.com) . Additional information about this will be provided.

Suggestions:

Get started now! Start with a relatively simple routine and work forward, always having a working program. I would suggest you start off with a relatively straight-forward step length approach (such as the quadratic fit given in class) and then you can get more fancy after you have a program working for all three methods, if you want to. A working, straightforward program is much better than a non-working, fancy program.

Rosenbrock's function. The optimum is at $(\mathbf{x}^*)^T = [1, 1]$ where $f^* = 0$. Start at the point, $(\mathbf{x}^0)^T = [-1.5, 1]$

12

Driver Routine:

```
-Example Driver program for fminun-----
     clear;
     global nobj ngrad
     nobj = 0; % counter for objective evaluations
     ngrad = 0.; % counter for gradient evaluations
     x0 = [1.; 1.]; % starting point, set to be column vector
     algoflag = 1; % 1=steepest descent; 2=conjugate gradient; 3=BFGS quasi-Newton
     stoptol = 1.e-3; % stopping tolerance, all gradient elements must be < stoptol</pre>
     % ----- call fminun-----
     [xopt, fopt, exitflag] = fminun(@obj, @gradobj, x0, stoptol, algoflag);
     xopt
     fopt
      nobi
     ngrad
      % function to be minimized
      function [f] = obj(x)
        global nobj
         %example function
        f = 12 + 6*x(1) - 5*x(2) + 4*x(1)^2 - 2*x(1)*x(2) + 6*x(2)^2;
        nobj = nobj + 1;
      end
     % get gradient as a column vector
      function [grad] = gradobj(x)
         global ngrad
         %gradient for function above
         grad(1,1) = 6 + 8*x(1) - 2*x(2);
        grad(2,1) = -5 - 2*x(1) + 12*x(2);
        ngrad = ngrad + 1;
      end
Evample frigur function.
```

```
function [xopt, fopt, exitflag] = fminun(obj, gradobj, x0, stoptol, algoflag)
   % get function and gradient at starting point
   [n, \sim] = size(x0); % get number of variables
  f = obj(x0);
  grad = gradobj(x0);
  x = x0;
   %set starting step length
  alpha = 0.5;
   if (algoflag == 1)
                          % steepest descent
     s = srchsd(grad)
   end
  % take a step
  xnew = x + alpha*s;
  fnew = obj(xnew);
  xopt = xnew;
   fopt = fnew;
  exitflag = 0;
% get steepest descent search direction as a column vector
function [s] = srchsd(grad)
  mag = sqrt(grad'*grad);
  s = -grad/mag;
```

13

4