Chapter 03. 이미지 처리 분야 딥러닝 모델 (Image Segmentation)

DeepLab v3+

Deep Lab

- 1. DeepLabv1 (2015): Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
- 2. DeepLabv2 (2017): DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
- 3. DeepLabv3 (2017): Rethinking Atrous Convolution for Semantic Image Segmentation
- 4 DeepLabv3+ (2018): Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

Astrous Convolution

Wavelet 신호 분석에서 주로 사용 Expanding Receptive Field with hole convolution

Astrous Convolution

Spatial Pyramid Pooling

DeepLab v2

다양한 Receptive Field 에 대응

Spatial Pyramid Pooling

Fig. 1. We improve DeepLabv3, which employs the spatial pyramid pooling module (a), with the encoder-decoder structure (b). The proposed model, DeepLabv3+, contains rich semantic information from the encoder module, while the detailed object boundaries are recovered by the simple yet effective decoder module. The encoder module allows us to extract features at an arbitrary resolution by applying atrous convolution.

Deep Lab v3+

Fig. 2. Our proposed DeepLabv3+ extends DeepLabv3 by employing a encoder-decoder structure. The encoder module encodes multi-scale contextual information by applying atrous convolution at multiple scales, while the simple yet effective decoder module refines the segmentation results along object boundaries.

Changed Xception Backbone

Fig. 4. We modify the Xception as follows: (1) more layers (same as MSRA's modification except the changes in Entry flow), (2) all the max pooling operations are replaced by depthwise separable convolutions with striding, and (3) extra batch normalization and ReLU are added after each 3×3 depthwise convolution, similar to MobileNet.

- 1) Atrous separable convolution을 적용하기 위해 모든 pooling operation을 depthwise separable convolution으로 대체.
- 1) 각각의 3 x 3 depthwise convolution 이후에 추가적으로 bath normalization과 ReLU 활성화 함수를 추가.

Model	Top-1 Error	Top-5 Error
Reproduced ResNet-101	22.40%	6.02%
Modified Xception	20.19%	5.17%

Table 4. Single-model error rates on ImageNet-1K validation set.

Depthwise Seperable Conv

https://www.slideshare.net/NaverEngineering/designing-more-efficient-convolution-neural-network-122869307

	Baseline Proposed (Original Convolution) (Depth-wise Separable Convolution)		
# of params.	$N(CK^2 + 1)$ $= NCK^2 + N$	$C(K^2 + 1) + N(C + 1)$ = $CK^2 + NC + C + N$	
# of operations.	CHW K ² N	$CHWK^2 + CHWN$ $= CHW(K^2 + N)$	

Decoder effect

Encoder train OS eval OS	Decoder	MS Flip SC COCO JFT	mIOU	Multiply-Adds
16 16 16 16 16 16 16 8 16 8 16 8		√ √ √ √	79.17% 80.57% 80.79% 79.64% 81.15% 81.34%	601.74B 1203.34B 240.85B 2149.91B
16 16 16 16 16 16 16 8 16 8 16 8	* * * * *	✓ ✓ ✓ ✓ ✓	79.93% 81.38% 81.44% 80.22% 81.60% 81.63%	790.12B 1580.10B 262.59B 2338.15B

mIoU(mean Intersection over union)

Thank You

