가격 변동성이 크고 거래량이 몰린 종목이 주 가가 상승한다.

```
import FinanceDataReader as fdr
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
pd.options.display.float_format = '{:,.3f}'.format
```

"가격 변동성이 크고 거래량이 몰린 종목이 주가가 상승한다"라는 가설을 증명하기 위해서는 "가격 변동성이 크다", "거래량이 몰린다" 등을 표현하는 변수가 필요합니다. 먼저 일봉데이터를 불러옵니다.

```
mdl_data = pd.read_pickle('mdl_data.pkl')
mdl_data.head().style.set_table_attributes('style="font-size: 12px"')
```

	open	high	low	close	volume	change	code	name	kosdaq_return	return	win_market	close_r1	close_r2	close_r3	close_r4	close_r5	max_close
2021- 01-05	2270	2285	2200	2250	410263	-0.004425	060310	3S	1.008326	0.995575	0	1.017778	1.017778	0.997778	0.966667	0.971111	1.017778
2021- 01-06	2225	2310	2215	2290	570349	0.017778	060310	3S	0.995567	1.017778	1	1.000000	0.980349	0.949782	0.954148	0.949782	1.000000
2021- 01-07	2290	2340	2240	2290	519777	0.000000	060310	3S	1.007612	1.000000	0	0.980349	0.949782	0.954148	0.949782	0.958515	0.980349
2021- 01-08	2300	2315	2225	2245	462568	-0.019651	060310	3S	0.998918	0.980349	0	0.968820	0.973274	0.968820	0.977728	0.973274	0.977728
2021- 01-11	2230	2275	2130	2175	409057	-0.031180	060310	3S	0.988702	0.968820	0	1.004598	1.000000	1.009195	1.004598	1.002299	1.009195

첫 번째 종목 060310 (종목이름 3S) 에 대하여 가격 변동성 변수를 만들어 보겠습니다. 전 5일 종가의 평균(price_mean), 전 5일 종가의 표준편차(price_std)를 먼저 구합니다. 그리고, 전 5일의 평균 및 표준편차 대비 당일 종가의 수준을 표준화해서 보여주는 값이 'price_z' 입니다. price_z 값이 -1.96 와 +1.96 안에 값이면 95% 신뢰구간 안에 들어갑니다. 즉 -1.96 보다 작거나, 1.96 보다 크면(100 번중 5 번 미만으로 일어날 확율) 당일의 종가는 직전 5일의 움직임에 비해 아주 특별하다고 생각할 수 있습니다.

```
df = mdl_data[mdl_data['code']=='060310'].copy() # 종목 060310 선택
df['price_mean'] = df['close'].rolling(5).mean() # 직전 5일 종가의 평균
df['price_std'] = df['close'].rolling(5).std() # 직전 5일 종가의 표준편차
df['price_z'] = (df['close'] - df['price_mean'])/df['price_std'] # 직전 5일 종가의 평균 및
표준편차 대비 오늘 종가의 위치
df[['close','price_mean','price_std','price_z']].head(10).style.set_table_attributes('st
yle="font-size: 12px"')
```

	close	price_mean	price_std	price_z
2021-01-05	2250	nan	nan	nan
2021-01-06	2290	nan	nan	nan
2021-01-07	2290	nan	nan	nan
2021-01-08	2245	nan	nan	nan
2021-01-11	2175	2250.000000	47.037219	-1.594482
2021-01-12	2185	2237.000000	55.294665	-0.940416
2021-01-13	2175	2214.000000	51.526692	-0.756889
2021-01-14	2195	2195.000000	29.154759	0.000000
2021-01-15	2185	2183.000000	8.366600	0.239046
2021-01-18	2180	2184.000000	7.416198	-0.539360

전 20일로 비교 구간을 바꾸고 전 종목에 대하여 동일한 계산을 합니다. 그리고 그 결과를 data_h1 에 담습니다.

```
kosdaq_list = pd.read_pickle('kosdaq_list.pkl')
data_h1 = pd.DataFrame()
for code in kosdaq_list['code']:
    data = mdl_data[mdl_data['code']==code].sort_index().copy()
    data['price_mean'] = data['close'].rolling(20).mean() # 전 20일 평균
    data['price_std'] = data['close'].rolling(20).std(ddof=0) # 전 20일 표준편차
    data['price_z'] = (data['close'] - data['price_mean'])/data['price_std'] # 표준화된
Z 값 생성
    data['volume_mean'] = data['volume'].rolling(20).mean() # 전 20일 평균
    data['volume_std'] = data['volume'].rolling(20).std(ddof=0) # 전 20일 표준편차
    data['volume_z'] = (data['volume'] - data['volume_mean'])/data['volume_std'] # 표준
화된 Z 값 생성
    data['max_close'] =
data[['close_r1','close_r2','close_r3','close_r4','close_r5']].max(axis=1) # 5 영업일 종
가 수익율 중 최고 값
    data.dropna(subset=
['price_z','volume_z','close_r1','close_r2','close_r3','close_r4','close_r5'],
inplace=True) # missing 이 있는 행은 제거
    data = data[(data['price_std']!=0) & (data['volume_std']!=0)] # 0 으로 나누는 상황은
없도록 함.
    data_h1 = pd.concat([data, data_h1], axis=0)
data_h1.to_pickle('data_h1.pkl')
```

```
data_h1 = pd.read_pickle('data_h1.pkl')
print(data_h1['price_z'].agg(['min','max'])) # 최소값과 최대값을 확인함
print(data_h1['volume_z'].agg(['min','max']))
```

```
min -4.359
max 4.359
Name: price_z, dtype: float64
min -2.568
max 4.359
Name: volume_z, dtype: float64
```

price_z 에 따른 종가 최고 수익률의 변화를 확인합니다. 최근 20일 종가의 평균 대비 오늘 종가가 낮거나 높은 경우 좋은 수익률을 기대할 수 있습니다.

```
rank = pd.qcut(data_h1['price_z'], q=10, labels=range(10))
data_h1.groupby(rank)['max_close'].mean().plot()
```


최근 20일 대비 거래량이 많을 수 록 더 좋은 수익률을 기대할 수 있습니다.

```
rank = pd.qcut(data_h1['volume_z'], q=10, labels=range(10))
data_h1.groupby(rank)['max_close'].mean().plot()
```

```
<AxesSubplot:xlabel='volume_z'>
```


종가의 표준화 값 price_z 와 거래량의 표준화 값 volume_z 이 서로 직교하는 테이블로 구성하고 평균수익율을 보니, 가격이 변동성이 높고, 거래량이 몰리는 종목은 평균 수익율이 더 높다는 것이 확인되었습니다.

```
rank1 = pd.qcut(data_h1['price_z'], q=5, labels=range(5))
rank2 = pd.qcut(data_h1['volume_z'], q=5, labels=range(5))

data_h1.groupby([rank1, rank2])
['max_close'].mean().unstack().style.set_table_attributes('style="font-size: 12px"')
```

volume_z	0	1	2	3	4
price_z					
0	1.031552	1.033693	1.034862	1.038177	1.039851
1	1.027750	1.029263	1.030943	1.033327	1.034607
2	1.026078	1.030034	1.029742	1.030575	1.031971
3	1.027799	1.034619	1.034718	1.035622	1.036636
4	1.029375	1.037509	1.038355	1.039061	1.043562

By KHS

© Copyright 2022.