诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《操作系统》试卷 B

注意事项: 1. 考前请将密封线内填写清楚;

- 2. 所有答案请答在答题纸上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共 三 大题,满分 100 分, 考试时间 120 分钟。

题 号	 =	111		总分
得 分				
评卷人				

、单	项选择是	题(20pts total, 2pts each)				
1.		What is the main advantage of				
	A. Ef	ficient use of the CPU	C.	Efficient use of	of disk	
	B. Fa	ast response	D.	Short Turnaro	und time	
2.) Mutex is used for mutual exof mutex cannot be	clusion	problem. For 2	parallel processes	s, the
	A. 1	B. 0	C.	-1	D2	
3.) It is provable that schole simultaneously.	eduling	algorithm is opt	timal if all the job	s are
		rst Come First Served (FCFS) nortest Job First (SJF)			Time Next (SRTN	()
4.	that pro	Suppose that the operating system occases p is currently running. A central process or blocks on another process enters	context s B.	witch can occur when another p	rocess unblocks	
5.	A. The page B. Ex cost C. The	Which of the following statem he use of a TLB for a paging me ge table in memory. Atternal fragmentation can be prest would be too high for most she first fit allocation algorithm core page frames always have fe	emory symmetric evented by ystems.	stem eliminates by frequent use on tes small holes	of compaction, but	
6.	A. co	The file-reference count is used unting number of bytes read frounting number of open files				

	C.	counting number	r of links poi	nting	to a file				
	D.	counting number	of process a	cces	sing a fil	e			
7.	As fo	or Unix system, th	ne attributes o	of file	e are stor	red in			
	A . 1	file B. o	directory		C. i	i-node		D. direct	ory entry
8.	() "Device inde	ependence" n	nean	s	•			
	A.	that devices are	accessed depo	ende	nt of thei	ir model a	and type	s of physic	cal device.
	B.	systems that hav	e one set of	calls	for writi	ng on a f	ile and t	the console	e (terminal)
		exhibit device in	dependence.						
	C.	that files and de	vices are acc	esse	d the sai	ne way,	indepen	dent of the	eir physical
		nature.							
	D.	none of the abov	e						
9.	() How mu	ich cylinder	ske	w is ne	eded for	a 100	00-rpm d	isk with a
	trac	ck-to-track seek t	•					-	
		es each on each tr							
	A.	24 B.	48	C.	20	D.	40		
10.	() In a system,	all resource	requ	ests mus	t be made	e in num	nerical ord	er. This is a
	met	thod for preventing	g deadlock to	atta	ick the _		conditi	ion.	
	A.	mutual exclusion	ı		C. no preemption				
	B.	hold and wait				D. circu	lar wait		
答	欠 師	į (20pts total, 5pts	anah)						
间。	口必	(20pis ioiai, 3pis	Cacii)						

- - 1. (5 pts) What is the biggest advantage of implementing threads in user space? What is the biggest disadvantage?

2.	(5pts) In a virtual memory system, does a TLB miss imply a disk operation will follow? Why or why not?
3.	(5 pts) How does MS-DOS implement random access to files?
·	(5 pts) from does this Bos implement random decess to fries.
4.	(5pts) A system has p processes each needing a maximum of m resources and a total of r resources available. What condition must hold to make the system deadlock free?

三、综合题(60pts total)

1. (10pts) Men and women share a bathroom. But when a women is in the bathroom, other women may enter, but no men, and vice versa. Please use semaphores to solve this problem.

- 2. (10 pts) Suppose two processes enter the ready queue with the following properties:
 - (1) Process 1 has a total of 8 units of work to perform, but after every 2 units of work, it must perform 1 unit of I/O (so the minimum completion time of this process is 12 units). Assume that there is no work to be done following the last I/O operation.
 - (2) Process 2 has a total of 20 units of work to perform. This process arrives just behind P1.

Show the resulting schedule for the Shortest-Job-First (preemptive) and the Round-Robin algorithms. Assume a time slice of 4 units for RR. What is the completion time of each process under each algorithm?

3. (10pts) Consider the following system snapshot using the data structures in the Banker's algorithm, with resources R_0 , R_1 , and R_2 , and processes P_0 to P_4 :

Dwagaga	Max			Allocation			Available					
Process	$R_0 R_1 R_2 R_3$				$R_0 R_1 R_2 R_3$				$R_0 R_1 R_2 R_3$			
\mathbf{P}_0	7	0	2	1	4	0	0	1	3	2	2	1
\mathbf{P}_1	1	6	5	0	1	1	0	0				
\mathbf{P}_2	3	3	4	6	1	0	4	5				
\mathbf{P}_3	1	5	6	2	0	4	2	1				
\mathbf{P}_4	2	4	3	2	0	3	1	2				

Using Banker's algorithm answer the following questions.

- (1) What are the contents of the **Need** matrix?
- (2) Is the system in a safe state? Why?
- (3) If a request from process P₂ arrives for additional resources of (0,2,0,0), can the Banker's algorithm grant the request immediately? Why? Show the new system state and other criteria.

4. (10 pts) Consider a demand paging system with three frames. And the given page reference sequence is A, D, B, E, A, E, F, G, A, G, E, F. How many page faults does each of the LRU, FIFO, and Optimal page replacement algorithms generate? (Show your work step-by-step. A simple answer will receive no credit.)

- 5. (10 pts) A certain file system uses 2-KB disk blocks. And the i-nodes contain 8 direct entries, one single and one double indirect entry each. The size of each entry is 4 B. Answer the following questions:
 - (1) What is the maximum file size of this file system?
 - (2) How much disk space a 128-MB file actually occupied? (including all the direct and indirect index blocks)

- 6. (10 pts) Disk requests come in to the disk driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in that order. Assume that initially the disk read/write arm is at cylinder 20.
 - (1) Using Shortest Seek First (SSF) algorithm, give the order in which the cylinders are serviced and the total cylinders the arm moves.
 - (2) Using elevator algorithm, give the order in which the cylinders are serviced and the total cylinders the arm moves (initially moving upward).