Lecture 2 Posterior Distributions and Inference

Fei Tan

Department of Economics Chaifetz School of Business Saint Louis University

Introduction to Bayesian Statistics January 29, 2025

Choice of Likelihood Function

- Bayesian approaches: transparent finite-sample inference but must specify likelihood function
- Such specification is part of prior information and requires justification, e.g.

$$y_i = \mu + u_i, \quad u_i \sim_{i.i.d.} t_{\nu}(0, \sigma^2), \quad i = 1, ..., n$$

- lacktriangle distributional assumption: normal $(\nu=\infty)$ vs. Student-t
- ightharpoonup posterior odds comparison w.r.t. ν
- Frequentist approaches: MLE also requires distribution; GMM is free of distribution but relies on large sample

The Road Ahead...

1 Properties of Posterior Distributions

2 Inference

Vector Case: $\theta = (\theta_1, \dots, \theta_d)$

Marginal vs. conditional posterior

$$\underline{\pi(\theta_1|y)} = \int \underbrace{\pi(\theta_1|\theta_2,\ldots,\theta_d,y)}_{\text{conditional}} \underbrace{\pi(\theta_2,\ldots,\theta_d|y)}_{\text{weight}} d\theta_2 \cdots d\theta_d$$
 where
$$\pi(\theta_1|\theta_2,\ldots,\theta_d,y) = \underbrace{\pi(\theta_1,\theta_2,\ldots,\theta_d|y)}_{\text{joint}} / \pi(\theta_2,\ldots,\theta_d|y)$$

- From joint to marginal posteriors
 - $\pi(\theta_1|y)$ accounts for uncertainty over $(\theta_2,\ldots,\theta_d)$ by averaging $\pi(\theta_1|\theta_2,\ldots,\theta_d,y)$ weighted by $\pi(\theta_2,\ldots,\theta_d|y)$
 - analytical vs. numerical integral
- ► Focus on one/two-dim marginals (readily graphed)

Die-Tossing Example

▶ Multinomial joint likelihood: $(y_1, ..., y_d) \sim \mathcal{M}_d(\theta, n)$

$$f(y_1,...,y_d|\theta_1,...,\theta_d) = \frac{n!}{\prod_{i=1}^d y_i!} \prod_{i=1}^d \theta_i^{y_i}$$

- ▶ d outcomes: probabilities $\sum \theta_i = 1$, counts $\sum y_i = n$
- ▶ Bernoulli (d = 2, n = 1), binomial (d = 2, n > 1)
- ▶ Dirichlet joint prior: $\theta \sim \mathcal{D}(\alpha_1, \dots, \alpha_d)$

$$\pi(heta) = rac{\Gamma(\sum_{i=1}^d lpha_i)}{\prod_{i=1}^d \Gamma(lpha_i)} \prod_{i=1}^d heta_i^{lpha_i-1}, \quad \sum_{i=1}^d heta_i = 1, \quad lpha_i > 0$$

- ▶ Dirichlet joint posterior: $\theta|y \sim \mathcal{D}(y_1 + \alpha_1, \dots, y_d + \alpha_d)$
- ▶ Beta marginal posterior: $\theta_i | y \sim \mathcal{B}(y_i + \alpha_i, \sum_{i \neq i} y_i + \alpha_i)$

Bayesian Updating

Bayes theorem

Old data
$$y_1$$
:
$$\underbrace{\pi(\theta|y_1)}_{\text{posterior}} \propto \underbrace{f(y_1|\theta)}_{\text{likelihood}} \underbrace{\pi(\theta)}_{\text{prior}}$$
New data y_2 :
$$\underbrace{\pi(\theta|y_1,y_2)}_{\text{posterior}} \propto \underbrace{f(y_2|y_1,\theta)}_{\text{likelihood}} \underbrace{\pi(\theta|y_1)}_{\text{prior}}$$

- ► Consider coin-tossing with prior $\theta \sim \mathbb{B}(\alpha_0, \beta_0)$
 - posterior after initial n_1 tosses: $\theta|y_1 \sim \mathcal{B}(\alpha_1, \beta_1)$, where $\alpha_1 = \alpha_0 + \sum y_{1,i}$, $\beta_1 = \beta_0 + n_1 \sum y_{1,i}$
 - **P** posterior after another n_2 tosses: $\theta|y_1, y_2 \sim \mathcal{B}(\alpha_2, \beta_2)$, where $\alpha_2 = \alpha_1 + \sum y_{2,i}$, $\beta_2 = \beta_1 + n_2 \sum y_{2,i}$
- ► For sequential data, Bayesian updates 'prior' with new information to obtain 'posterior'

Large Samples

Posterior with independent data

$$\pi(\theta|y) \propto \pi(\theta) \exp[n\overline{l}(\theta|y)], \quad \overline{l}(\theta|y) = \frac{1}{n} \sum_{i=1}^{n} \log[f(y_i|\theta)]$$

- \triangleright Effects of large n on posterior
 - data/likelihood dominates prior
 - 'consistency': $\bar{l}(\theta|y) \to_{n\to\infty} \bar{l}(\theta_0|y)$ so posterior degenerates to point mass at true value of θ
 - ${}^{\blacktriangleright}$ 'asymptotic normality': take 2nd-order Taylor expansion around $\hat{\theta}_{\rm MLE}$

$$\pi(\theta|y) \propto \pi(\theta) \underbrace{\exp\left[-\frac{n}{2v}(\theta - \hat{\theta}_{\mathsf{MLE}})^2\right]}_{\mathsf{Gaussian \ kernel}}, \quad v = -\bar{l}''(\hat{\theta}|y)^{-1} > 0$$

provided $\pi(\hat{\theta}_{\mathsf{MLE}}) \neq 0$ (exercise: multiparameter case)

Identification

- Identification through data/likelihood
 - ▶ model A & model B are observationally equivalent if $f(y|\theta_A) = f(y|\theta_B)$ for all $y \Rightarrow \theta$ not identified
 - ightharpoonup no observational equivalence $\Rightarrow \theta$ identified
- ▶ Important special case: $f(y|\theta_1, \theta_2) = f(y|\theta_1)$
 - θ_2 not identified, e.g. linear regression with both constant and complete set of dummies
 - ▶ Identification through prior: if $\pi(\theta_2|\theta_1) \neq \pi(\theta_2)$

$$\pi(\theta_2|y) = \int \pi(\theta_1|y)\pi(\theta_2|\theta_1)d\theta_1 \neq \pi(\theta_2)$$

► Be cautious when interpreting difference between prior-posterior for unidentified parameters

The Road Ahead...

Properties of Posterior Distributions

2 Inference

Posterior Estimates

Bayes estimator minimizes expected loss

$$\hat{\theta} = \arg\min_{\tilde{\theta}} \mathbb{E}[L(\tilde{\theta}, \theta)] = \arg\min_{\tilde{\theta}} \int L(\tilde{\theta}, \theta) \pi(\theta|y) d\theta$$

- $lackbox{ quadratic loss } L(\tilde{ heta}, heta) = (\tilde{ heta} heta)^2 \Rightarrow \hat{ heta} = \mathbb{E}(heta|y)$
- frequentist criteria: unbiasedness, consistency, efficiency
- ightharpoonup E operator: Bayesian $f(\theta)|y$ vs. frequentist $f(y)|\theta$
- ► Credible interval: e.g. $\mathbb{P}(\theta_l \leq \theta \leq \theta_u) = 0.9$
 - ▶ $min(\theta_u \theta_l)$ ⇒ highest probability density (HPD) interval
 - frequentist confidence intervals entail all possible y

Model Comparison

Posterior odd & marginal likelihood

$$\frac{\pi(M_1|y)}{\pi(M_2|y)} = \underbrace{\frac{\pi(M_1)}{\pi(M_2)}}_{\text{prior odds Bayes factor}} \underbrace{\frac{m(y|M_1)}{m(y|M_2)}}_{\text{prior odds Bayes factor}}$$
 where
$$\underbrace{\frac{m(y|M_i)}{marginal \ \text{likelihood}}}_{\text{marginal likelihood}} = \int f(y|\theta_i, M_i) \pi(\theta_i|M_i) d\theta_i$$

 \triangleright Effects of large n on log Bayes factor

$$\log(B_{12}) \approx \underbrace{\log\left(\frac{f(\hat{\theta}_{1,\mathsf{MLE}}|y)}{f(\hat{\theta}_{2,\mathsf{MLE}}|y)}\right)}_{\text{log likelihood ratio}} - \underbrace{\frac{d_1 - d_2}{2}\log(n)}_{\text{penalty on dim}(\theta)} + \underbrace{C}_{\text{free of } n}$$

- ▶ Jeffreys guideline vs. frequentist hypothesis test
- nested vs. non-nested model comparison

Prediction

Predicting new data

$$f(y_f|y) = \int f(y_f|\theta, y) \pi(\theta|y) d\theta$$

- ► Recall coin-tossing example
 - **•** posterior: $\theta | y \sim \mathcal{B}(\alpha_1, \beta_1)$, where $\alpha_1 = \alpha_0 + \sum y_i$, $\beta_1 = \beta_0 + n \sum y_i$
 - lack exercise: verify $f(y_{n+1}=1|y)=rac{lpha_0+\sum y_i}{lpha_0+eta_0+n}=\mathbb{E}(heta|y)$
- Prediction with multiple models via model averaging

$$f(y_f|y) = \sum_{i=1}^{m} \pi(M_i|y) f(y_f|y, M_i)$$

Readings

▶ Jeffreys (1961), "Theory of Probability," Clarendon Press