Closures of Relations

let R be a relation on a set A.R may or may not have some property P, such as reflexivity, symmetry, or transitivity. If there is a relation S with property **P** containing R such that S is a subset of every relation with property **P** containing R, then S is called the **closure** of R with respect to P. (Note that the closure of a relation with respect to a property may not exist; see Exercises 15 and 35.) We will show how reflexive, symmetric, and transitive closures of relations can be found.

Reflexive closure of *R*.

Closures

The relation $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on the set $A = \{1,2,3\}$ is not reflexive. How can we produce a reflexive relation containing R that is as small as possible? This can be done by adding (2,2) and (3,3) to R, because these are the only pairs of the form (a,a) that are not in R. Clearly, this new relation contains R.

Furthermore, *any* reflexive relation that contains R must also contain (2, 2) and (3,3). Because this relation contains R, is reflexive, and is contained within every reflexive relation that contains R, it is called the **reflexive closure** of R. As this example illustrates, given a relation R on a set A, the reflexive closure of R can be formed by adding to R all pairs of the form (a,a) with $a \in A$, not already in R. The addition of these pairs produces a new relation that is reflexive, contains R, and is contained within any reflexive relation containing R.

We see that the reflexive closure of R equals $R \cup \Delta$, where $\Delta = \{(a, a) \mid a \in A\}$ is the **diagonal relation** on A. (The reader should verify this.)

EXAMPLE 1

What is the reflexive closure of the relation $R = \{(a, b) \mid a < b\}$ on the set of integers?

Solution:

The reflexive closure of R is

$$R \cup \Delta = \{(a,b) \mid a < b\} \cup \{(a,a) \mid a \in \mathbf{Z}\} = \{(a,b) \mid a \leq b\}$$

Symmetric closure of R

- The relation $\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$ on $\{1,2,3\}$ is not symmetric.
- How can we produce a symmetric relation that is as small as possible and contains R? To do this, we need only add (2,1) and (1,3), because these are the only pairs of the form (b,a) with $(a,b) \in R$ that are not in R.
- This new relation is symmetric and contains R. Furthermore, any symmetric relation that contains R must contain this new relation, because a symmetric relation that contains R must contain (2,1) and (1,3). Consequently, this new relation is called the **symmetric closure** of R.

The symmetric closure of a relation can be constructed by taking the union of a relation with its inverse (defined in the preamble of Exercise 26 in Section 9.1); that is, $R \cup R^{-1}$ is the symmetric closure of R, where $R^{-1} = \{(b,a) \mid (a,b) \in R\}$. The reader should verify this statement.

EXAMPLE 2

What is the symmetric closure of the relation $R = \{(a,b)|a>b\}$ on the set of positive integers?

Solution: The symmetric closure of R is the relation

$$R \cup R^{-1} = \{(a,b) \mid a > b\} \cup \{(b,a) \mid a > b\} = \{(a,b) \mid a \neq b\}.$$

This last equality follows because R contains all ordered pairs of positive integers where the first element is greater than the second element and R^{-1} contains all ordered pairs of positive integers where the first element is less than the second.

Suppose that a relation R is not transitive. How can we produce a transitive relation that contains R such that this new relation is contained within any transitive relation that contains R? Can the transitive closure of a relation R be produced by adding all the pairs of the form (a, c), where (a, b) and (b, c)are already in the relation? Consider the relation R = $\{(1,3),(1,4),(2,1),(3,2)\}$ on the set $\{1,2,3,4\}$. This relation is not transitive because it does not contain all pairs of the form (a, c) where (a, b) and (b, c)are in R. The pairs of this form not in R are (1,2), (2,3), (2,4), and (3,1). Adding these pairs does not produce a transitive relation, because the resulting relation contains (3,1) and (1,4) but does not contain (3,4). This shows that constructing the transitive closure of a relation is more complicated than constructing either the reflexive or symmetric closure. The rest of this section develops algorithms for constructing transitive closures. As will be shown later in this section, the transitive closure of a relation can be found by adding new ordered pairs that must be present and then repeating this process until no new ordered pairs are needed.

Paths in Directed Graphs

DEFINITION 1

A path from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2), (x_2, x_3), \ldots, (x_{n-1}, x_n)$ in G, where n is a nonnegative integer, and $x_0 = a$ and $x_n = b$, that is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the next edge in the path. This path is denoted by $x_0, x_1, x_2, \ldots, x_{n-1}, x_N$ and has length n. We view the empty set of edges as a path of length zero from a to a. A path of length $n \ge 1$ that begins and ends at the same vertex is called a *circuit* or *cycle*.

A path in a directed graph can pass through a vertex more than once. Moreover, an edge in a directed graph can occur more than once in a path.

Which of the following are paths in the directed graph shown in Figure 1: a, b, e, d; a, e, c, d, b; b, a, c, b, a, a, b; d, c; c, b, a; e, b, a, b, a, b, e? What are the lengths of those that are paths? Which of the paths in this list are circuits?

Solution: Because each of (a,b), (b,e), and (e,d) is an edge, a,b,e,d is a path of length three. Because (c,d) is not an edge, a,e,c,d,b is not a path. Also, b,a,c,b,a,a,b is a path of length six because (b,a), (a,c), (c,b), (b,a), (a,a), and (a,b) are all edges. We see that d,c is a path of length one, because (d,c) is an edge. Also c,b,a is a path of length two, because (c,b) and (b,a) are edges. All of (e,b), (b,a), (a,b), (b,a), (a,b), and (b,e) are edges, so e,b,a,b,a,b,e is a path of length six.

The two paths b, a, c, b, a, a, b and e, b, a, b, e are circuits because they begin and end at the same vertex. The paths a, b, e, d; c, b, a; and d, c are not circuits.

FIGURE 1 A Directed Graph.

The term *path* also applies to relations. Carrying over the definition from directed graphs to relations, there is a **path** from a to b in R if there is a sequence of elements $a, x_1, x_2, \ldots, x_{n-1}, b$ with $(a, x_1) \in R$, $(x_1, x_2) \in R$, ..., and $(x_{n-1}, b) \in R$. Theorem 1 can be obtained from the definition of a path in a relation.

THEOREM 1

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in \mathbb{R}^n$.

Transitive Closure

DEFINITION 2

Let R be a relation on a set A. The *connectivity relation* R^* consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

Because R^n consists of the pairs (a, b) such that there is a path of length n from a to b, it follows that R^* is the union of all the sets R^n . In other words,

$$R^* = \bigcup_{n=1}^{\infty} R^n.$$

The connectivity relation is useful in many models.

Let R be the relation on the set of all people in the world that contains (a, b) if a has met b.

What is \mathbb{R}^n , where n is a positive integer greater than one? What is \mathbb{R}^* ?

Solution: The relation R^2 contains (a, b) if there is a person c such that $(a, c) \in R$ and $(c, b) \in R$, that is, if there is a person c such that a has met c and c has met b. Similarly, R^n consists of those pairs (a, b) such that there are people $x_1, x_2, \ldots, x_{n-1}$ such that a has met x_1, x_1 has met x_2, \ldots , and x_{n-1} has met b.

The relation R^* contains (a, b) if there is a sequence of people, starting with a and ending with b, such that each person in the sequence has met the next person in the sequence. (There are many interesting conjectures about R^* . Do you think that this connectivity relation includes the pair with you as the first element and the president of Mongolia as the second element? We will use graphs to model this application in Chapter 10.)

3/15/2020 12

Let R be the relation on the set of all subway stops in New York City that contains (a, b) if it is possible to travel from stop a to stop b without changing trains. What is R^n when n is a positive integer? What is R^* ?

Solution: The relation R^n contains (a, b) if it is possible to travel from stop a to stop b by making at most n-1 changes of trains. The relation R^* consists of the ordered pairs (a, b) where it is possible to travel from stop a to stop b making as many changes of trains as necessary. (The reader should verify these statements.)

Let R be the relation on the set of all states in the United States that contains (a, b) if state a and state b have a common border. What is R^n , where n is a positive integer? What is R^* ?

Solution: The relation R^n consists of the pairs (a, b), where it is possible to go from state a to state b by crossing exactly n state borders. R^* consists of the ordered pairs (a, b), where it is possible to go from state a to state b crossing as many borders as necessary. (The reader should verify these statements.) The only ordered pairs not in R^* are those containing states that are not connected to the continental United States (i.e., those pairs containing Alaska or Hawaii).

THEOREM 2

The transitive closure of a relation R equals the connectivity relation R^* .

LEMMA 1

Let A be a set with n elements, and let R be a relation on A. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n - 1.

THEOREM 3

Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R^* is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \vee \mathbf{M}_R^{[n]}.$$

Find the zero—one matrix of the transitive closure of the relation R where

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Solution: By Theorem 3, it follows that the zero–one matrix of R^* is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}.$$

Because

$$\mathbf{M}_{R}^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R}^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

it follows that

$$\mathbf{M}_{R^*} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Warshall's Algorithm

Warshall's algorithm, named after Stephen Warshall, who described this algorithm in 1960, is an efficient method for computing the transitive closure of a relation. Algorithm 1 can find the transitive closure of a relation on a set with n elements using $2n^3(n-1)$ bit operations. However, the transitive closure can be found by Warshall's algorithm using only $2n^3$ bit operations.

Remark: Warshall's algorithm is sometimes called the Roy–Warshall algorithm, because Bernard Roy described this algorithm in 1959.

EXAMPLE 8

Let R be the relation with directed graph shown in Figure 3. Let a, b, c, d be a listing of the elements of the set. Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 . The matrix W_4 is the transitive closure of R.