Exercise Sheet 1

Exercise 2

Let $k \in \mathbb{Z}_{>0}$.

- 1. Show that $k = a^2 + b^2$ for some $a, b \in \mathbb{Z}$ if and only if for every prime $p \equiv 3 \mod 4$, the exponent of p in the prime decomposition of k (in \mathbb{Z}) is even.
- 2. In this case, describe how to obtain all solutions $(a, b) \in \mathbb{Z}^2$.

Solution

1.

Step 1: Let $z \in \mathbb{Z}_{>0}$ such that $z \equiv 3 \mod 4$. Then, z = 3 + 4n for some $n \in \mathbb{Z}$. Consider $\alpha, \beta \in \mathbb{Z}_{>0}$ with $\alpha \equiv 1 \mod 4$ and $\beta \equiv 3 \mod 4$. For some $m_{\alpha}, m_{\beta} \in \mathbb{N}$, we have

$$z\alpha = (3+4n)(1+4m_{\alpha}) = 3+4n+12m_{\alpha}+16nm_{\alpha} \equiv 3 \mod 4$$
 (1)

$$z\beta = (3+4n)(3+4m_{\alpha}) = 9+12n+12m_{\alpha}+16nm_{\alpha} \equiv 1 \mod 4$$
 (2)

$$z2 = (3+4n)2 = 6+8n \equiv 2 \mod 4. \tag{3}$$

In short, z must be multiplied with an integer equivalent to $3 \mod 4$ if one wants to obtain an integer equivalent to $1 \mod 4$.

Step 2: Similarly as above, let $z \in \mathbb{Z}_{>0}$ such that $z \equiv 1 \mod 4$. Then, z = 1 + 4n for some $n \in \mathbb{Z}$. Consider $\alpha, \beta \in \mathbb{Z}_{>0}$ with $\alpha \equiv 1 \mod 4$ and $\beta \equiv 3 \mod 4$. For some $m_{\alpha}, m_{\beta} \in \mathbb{N}$, we have

$$z\alpha = (1+4n)(1+4m_{\alpha}) = 1+4n+4m_{\alpha}+16nm_{\alpha} \equiv 1 \mod 4$$
 (4)

$$z\beta = (1+4n)(3+4m_{\alpha}) = 3+12n+4m_{\alpha}+16nm_{\alpha} \equiv 3 \mod 4$$
 (5)

$$z2 = (1+4n)2 = 2 + 8n \equiv 2 \mod 4. \tag{6}$$

In short, any product of integers equivalent to 1 mod 4 requires even number of integers equivalent to 3 mod 4.

Step 3: Let $k=a^2+b^2$. According to Theorem 1.0.1. this is equivalent to k=2 or $k\equiv 1 \mod 4$. If k=2, then it is clear immediately. So consider the case $k\neq 2$. From step 1, we know that the prime factorization of k must contain even number of primes that are equivalent to 3 mod 4. Therefore, each exponent of such prime must also be even.

Step 2 shows that