Numerical Analysis

Lusine Poghosyan

AUA

September 1, 2018

About CS 112 Numerical Analysis

Number of Credits: 3

Section A

- Class Schedule: Mondays, Wednesdays and Fridays 9:30 -10:20 in Room 208E
- Office Hours: Thursdays 12:00-14:00 in Room 335W or by an appointment (lpoghosyan@aua.am)
- TA: TBD
- Problem Solving Sessions: TBD
- Moodle Enrollment Key: NumAn18-A

Section B

- Class Schedule: Mondays, Wednesdays and Fridays 10:30 -11:20 in Room 208E
- Office Hours: Thursdays 14:00-16:00 in Room 335W or by an appointment (lpoghosyan@aua.am)
- TA: TBD
- Problem Solving Sessions: TBD
- Moodle Enrollment Key: NumAn18-B

Main Textbooks:

- 1. Ward Cheney, David Kincaid, *Numerical Mathematics and Computing*, 6th Edition, Cengage Learning, 2007
- Alfio Quarteroni, Fausto Saleri, Paola Gervasio, Scientific Computing with MATLAB and Octave, 4th Edition, Texts in Computational Science and Engineering, Springer Science & Business Media, 2014

Additional Textbooks:

- Burden, R.L.; Faires, J.D.; Reynolds, A.C. Numerical analysis. Prindle, Weber & Schmidt, Boston, Mass., 1978. ix+579 pp. ISBN: 0-87150-243-7
- Josef Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd Edition, Springer Science & Business Media, 2013
- 3. Cleve Moler, Numerical Computing with MATLAB : Revised Reprint, SIAM, 2010

Software:

MATLAB, http://www.mathworks.com/products/matlab/ (shareware)

GNU Octave, https://www.gnu.org/software/octave/ (freeware)

- Homeworks: Every week, all assignments will be posted on Moodle. No late homeworks will be accepted.
- Quizzes: The course will include 4 pop-up quizzes.
- Method of Evaluation

Midterm1 20%
Midterm2 20%
Final Exam 40%
Homeworks 10%
Quizzes 10%
Total=0.1* (HW+Q)+0.2* (M1+M2) +0.4*F

Topics

- Error Analysis
- Locating Roots of Nonlinear equations and systems
- Interpolation and Approximation of functions and data
- Numerical Integration
- Numerical Optimization
- Numerical Solution of Systems of Linear Equations

Introduction

- 1. Formulation of the problem
- 2. Mathematical model of the problem
- 3. Development of the numerical method
- 4. Construction of the algorithm
- 5. Write a program based on the algorithm
- 6. Implementation of the program

- V is the value we need to find
- v is the value corresponding to mathematical model
- \bar{v} is the value corresponding to numerical method
- v^* is the result we get after calculations by computer
- $\epsilon_1 = V v$
- $\epsilon_2 = v \bar{v}$ method error
- $\epsilon_3 = \bar{v} v^*$ calculations error

Round-off errors

We assume that machine numbers are represented in the normalized decimal floating-point form

$$\pm 0.d_1d_2...d_k \times 10^n$$
, $1 \le d_1 \le 9$, and $0 \le d_i \le 9$, $i = 2,...,k$.

Numbers of this form are called k- digit decimal machine numbers

Normalized form of number

$$y = \pm 0.d_1d_2...d_kd_{k+1}d_{k+2}...\times 10^n$$
, $1 \le d_1 \le 9$, and $0 \le d_i \le 9$, $i \ge 2$.

Example

Write $\frac{2}{30}$, $\frac{100}{3}$ and $\frac{1}{2}$ in normalized decimal form.

How do we obtain the floating-point form of y?

Chopping

$$fl(y) = \pm 0.d_1d_2...d_k \times 10^n$$
, $1 \le d_1 \le 9$, and $0 \le d_i \le 9$, $2 \le i \le k$

Rounding

$$fl(y) = \pm 0.\delta_1 \delta_2...\delta_k \times 10^n$$
, $1 \le \delta_1 \le 9$, and $0 \le \delta_i \le 9$, $2 \le i \le k$.

When $d_{k+1} \ge 5$ we add 1 to d_k to obtain f(y)

$$\delta_k = 1 + d_k$$
.

When $d_{k+1} < 5$ we simply chop off all but the first k digits

$$\delta_k = d_k$$
.

Determine the five-digit (**a**)chopping and (**b**)rounding values of the irrational number $\pi = 3.14159265...$

The error that results from replacing a number with its floating-point form is called round-off error regardless of whether the rounding or chopping method is used.

Definition

Suppose p^* is an approximation to p. The absolute error is $|p-p^*|$ and relative error is $\frac{|p-p^*|}{|p|}$ provided that $p \neq 0$.

We will write

$$abserr(p, p^*) = |p - p^*|,$$
 $relerr(p, p^*) = \frac{|p - p^*|}{|p|}.$

Determine the absolute and relative errors when approximating p by p^* when

- **a.** $p = 0.3 \times 10^1$ and $p^* = 0.31 \times 10^1$;
- **b.** $p = 0.3 \times 10^{-3}$ and $p^* = 0.31 \times 10^{-3}$.

Suppose k decimal digits and chopping (rounding) are used for the machine representation of

$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}... \times 10^n$$
.

Estimate abserr(y, fl(y)) and relerr(y, fl(y)).

Finite-Digit Arithmetic

Symbols \oplus , \ominus , \otimes and \oslash represent machine addition, subtraction, multiplication and division respectively.

$$x \oplus y = fl(fl(x) + fl(y))$$

$$x \ominus y = fl(fl(x) - fl(y))$$

$$x \otimes y = fl(fl(x) \times fl(y))$$

$$x \oslash y = fl(fl(x)/fl(y))$$

Suppose u = 0.714251 and v = 98765.9. Use five-digit chopping to calculate u + v.

Operation	Result	Actual Value	Abs. Error	Rel. Error
$u \oplus v$	0.98765×10^{5}	0.98766×10^{5}	0.161×10^{1}	0.63×10^{-4} .

Suppose $x = \frac{5}{7}$ and u = 0.714251. Use five-digit chopping to calculate x - u.

$$x = \frac{5}{7} = 0.\overline{714285}$$

Operation	Result	Actual Value	Abs. Error	Rel. Error
<i>x</i> ⊖ <i>u</i>	0.30000×10^{-4}	0.34714×10^{-4}	0.471×10^{-5}	0.136

Suppose two nearly equal numbers x and y, with x > y have k digit representations

$$fl(x) = 0.d_1 d_2...d_p \alpha_{p+1} \alpha_{p+2}...\alpha_k \times 10^n,$$

$$fl(y) = 0.d_1 d_2...d_p \beta_{p+1} \beta_{p+2}...\beta_k \times 10^n,$$

$$fl(fl(x) - fl(y)) = 0.\sigma_{p+1} \sigma_{p+2}...\sigma_k \times 10^{n-p},$$

where

$$0.\sigma_{p+1}\sigma_{p+2}...\sigma_k = 0.\alpha_{p+1}\alpha_{p+2}...\alpha_k - 0.\beta_{p+1}\beta_{p+2}...\beta_k.$$

Suppose $x = \frac{5}{7}$, u = 0.714251 and v = 98765.9. Use five-digit chopping to calculate $(x - u) \times v$.

$$x = \frac{5}{7} = 0.\overline{714285}$$

Operation	Result	Actual Value	Abs. Error	Rel. Error
<i>x</i> ⊖ <i>u</i>	0.30000×10^{-4}	0.34714×10^{-4}	0.471×10^{-5}	0.136
$(x\ominus u)\otimes v$	0.29629×10^{1}	0.34285×10^{1}	0.465	0.136