

Silicon Institute of Technology

Silicon Hills, Bhubaneswar | An Autonomous Institute |

2nd Semester B.Tech. Mid Term Examination 2019-2020 ENGINEERING MATHEMATICS-II(18BS1T02)

Duration: 01:30 Full Marks: 25 1 Answer All Find $L^{-1}\left\{\frac{s^2+2}{s^2+9}\right\}$. 1 b State the existence theorem for Laplace transforms. 1 Find $L(e^{2t} u(t - 3))$. d Find $L\{u(t-3)^*\delta(t-4)\}.$ e Find L{ cosh at * sinh at} 1 2 Answer any Two Find $L^{-1}\left\{\frac{3}{S^2+6s+18}\right\}$. 2 Find L(f(t)) where $f\left(t\right) = \begin{cases} t^2, & 0 \le t \le 1\\ 2t, & 1 \le t \le 3 \end{cases}$. 2 Find the inverse Laplace transform of $\frac{s^3+6s^2+14s}{(s+2)^4}$ d Find L (t² sin wt). 2 3 Answer any Two Solve y''+y=t, y(0)=y'(0)=0. 2 b Find $L^{-1}\left(\frac{5s}{(s^2+4)(s^2+25)}\right)$. 2 Using Laplace transform solve y''+4y=1, y(0)=0, y'(0)=0. 2 Find $L^{-1} \left\{ \frac{1}{s^3(s-5)} \right\}$. 2 4 Answer any Two Using Laplace transform solve $y'' - 8y' + 15y = 9 + e^{2t}$, y(0) = 5, y'(0) = 10. 3

Prove that $\frac{1}{2w}L\{\sin wt + wt \cos wt\} = \frac{s^2}{(s^2+w^2)^2}$.

3

^c Using The Laplace Transform, find the current i(t) in the RL circuit with R=4 Ohms and L=2 Henry, Assuming

Henry, Assuming i(0)=0 and v(t)=t if $0 < t < 4\pi$ and 0 if $t > 4\pi$

d Solve
$$y''+2y'-3y=6e^{-2t}$$
, $y(0)=2$, $y'(0)=-14$.

3

3

3

5 Answer any Two

a Find
$$L^{-1}\left\{\ln\left(1+\frac{1}{s^2}\right)\right\}$$

b Solve
$$y(t) = \sin 2t + \int_0^t y(\tau) \sin 2(t-\tau) d\tau$$
.

Solve
$$y^{//} + y = 5 \cos 2t$$
, $y(0) = 0$, $y^{/}(0) = 0$.

d Solve the simultaneous differential equations using Laplace transform
$$y_1'-y_2=0$$
, $y_1(0)=1$

$$y_2'+y_1=2\cos t, y_2(0)=0$$
