Noncommutative algebra

Luka Horjak (luka1.horjak@gmail.com)

October 6, 2023

Contents Luka Horjak

Contents

Introduction	
1 Fi	inite-dimensional algebras, Wedderburn's structure theory
1.3	1 Free algebras
1.5	2 Chain conditions
Inde	v.

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Noncommutative algebra in the year 2023/24. The lecturer that year was prof. dr. Igor Klep.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Finite-dimensional algebras, Wedderburn's structure theory

1.1 Free algebras

Definition 1.1.1. Let $R = K\langle x, y \rangle$ be a free algebra and $F = \{xy - yx - 1\}$. The quotient

 $\mathcal{A}_1(K) = R/(F)$

is called the first Weyl algebra.

Remark 1.1.1.1. The first Weyl algebra is generated by elements \overline{x} and \overline{y} that satisfy $\overline{x} \cdot \overline{y} - \overline{y} \cdot \overline{x} - 1$.

Remark 1.1.1.2. The first Weyl algebra is the algebra of differential operators – for $D, L: K[y] \to K[y]$, defined as $D(p) = \frac{\partial p}{\partial y}$ and L(p) = yp, we have DL - LD = I.

Definition 1.1.2. Let R be a ring and $\sigma \in \text{End}(R)$. The skew polynomial ring is the set

$$R[x,\sigma] = \left\{ \sum_{i=0}^{n} b_i x^i \mid n \in \mathbb{N} \land b_i \in R \right\}$$

in which for all $b \in R$ the equality in $xb = \sigma(b)x$ holds.

Definition 1.1.3. Let R be a ring and σ a derivation on R. The skew polynomial ring is the set

$$R[x,\sigma] = \left\{ \sum_{i=0}^{n} b_i x^i \mid n \in \mathbb{N} \land b_i \in R \right\}$$

in which for all $b \in R$ the equality in $xb = bx + \sigma(b)$ holds.

 $[\]overline{1 \sigma(a+b) = \sigma(a) + \sigma(b)}, \ \sigma(ab) = a\sigma(b) + \sigma(a)b.$

1.2 Chain conditions

Definition 1.2.1. Let C be a set and $\{C_i \mid i \in I\}$ a set of subsets of C. The set $\{C_i \mid i \in I\}$ satisfies the ascending chain condition if there does not exist an infinite strictly increasing chain

$$C_{i_1} \subset C_{i_2} \subset C_{i_3} \subset \dots$$

The descending chain condition is defined analogously.

Definition 1.2.2. Let R be a ring and M an R-module.

- i) M is noetherian if the set of submodules of M satisfies the ascending chain condition.
- ii) M is artinian if the set of submodules of M satisfies the descending chain condition.

Proposition 1.2.3. The following statements are true:

- i) A module M is noetherian if and only if each submodule of M is finitely generated.
- ii) Let $N \leq M$ be a submodule. Then M is noetherian if and only if both N and M/N are noetherian.
- iii) Let $N \leq M$ be a submodule. Then M is artinian if and only if both N and M/N are artinian.

Proof.

i) Suppose that each submodule of M is finitely generated and $M_1 \leq M_2 \leq \cdots \leq M$. Define the submodule

$$N = \bigcup_{j \in \mathbb{N}} M_j.$$

By assumption, N is finitely generated. But then there exists some $j \in \mathbb{N}$ such that M_j contains all generators of N, so $M_j = N$. Therefore, the chain cannot be strictly increasing.

Now assume that M is noetherian and let $N \leq M$ be a submodule. Define

$$C = \{ S \le N \mid S \text{ is finitely generated} \}.$$

This set must have some maximal element $N_0 \leq N$. Suppose $N_0 < N$ and consider some element $b \in N \setminus N_0$. The module N + Rb is also finitely generated and contained in N, which is a contradiction as N_0 was maximal. Therefore we must have $N = N_0$ and N is finitely generated.

ii) Suppose that M is noetherian. Consider the following short exact sequence:

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M/N \longrightarrow 0.$$

It is easy to see that N is also noetherian, as the inclusion of a chain in N is also a chain in M. As preimages of submodules are also submodules, the same conclusion follows for M/N.

Now suppose that both N and M/N are noetherian and consider a chain $M_1 \leq M_2 \leq \cdots \leq M$ of submodules. As $f^{-1}(M_i)$ and $g(M_i)$ form increasing chains in

their respective modules, it follows that there exists some $n \in \mathbb{N}$ such that both $f^{-1}(M_i)$ and $g(M_i)$ are constant for all $i \geq n$. Now consider the following diagram:

$$0 \longrightarrow f^{-1}(M_n) \xrightarrow{f} M_n \xrightarrow{g} g(M_n) \longrightarrow 0$$

$$\downarrow \operatorname{id} \qquad \qquad \downarrow \operatorname{id} \qquad \qquad \downarrow \operatorname{id}$$

$$0 \longrightarrow f^{-1}(M_i) \xrightarrow{f} M_i \xrightarrow{g} g(M_i) \longrightarrow 0.$$

By the short five lemma, i is an isomorphism, so $M_n = M_i$.

iii) Same as ii). \Box

Index

A artinian module, 5 ascending chain condition, 5 D descending chain condition, 5 F first Weyl algebra, 4 N neotherian module, 5 S skew polynomial ring, 4