

HEXFET® Power MOSFET

V _{DS}	30	V
V _{GS}	±12	٧
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	15.5	$\mathbf{m}\Omega$
Q _{g (typical)}	11	nC
I _D (@T _{C (Bottom)} = 25°C)	12⑦	Α

Applications

- Charge and discharge switch for battery application
- System/Load Switch

Features and Benefits

Features

Low R_{DSon} ($\leq 15.5m\Omega$)	
Low Thermal Resistance to PCB (≤ 13°C/W)	
Low Profile (≤ 0.9 mm)	
Compatible with Existing Surface Mount Techniques	
RoHS Compliant Containing no Lead, no Bromide and no Halogen	
MSL1, Industrial Qualification	

results in

Resulting Benefits
Lower Conduction Losses
Enable better thermal dissipation
Increased Power Density
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Orderable part number	Dookogo Typo	Standard	Pack	Note	
Orderable part number	Package Type	Form	Quantity	Note	
IRLHS6342TRPbF	PQFN 2mm x 2mm	Tape and Reel	4000		
IRLHS6342TR2PbF	PQFN 2mm x 2mm	Tape and Reel	400	EOL notice # 259	

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	±12	☐
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	8.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	6.9	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	19®⑦	
I _D @ T _{C(Bottom)} = 70°C	Continuous Drain Current, V _{GS} @ 10V	15®⑦	A
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wirebond Limited)	12⑦	
I _{DM}	Pulsed Drain Current ①	76	
P _D @T _A = 25°C	Power Dissipation ®	2.1	10/
P _D @T _A = 70°C	Power Dissipation ®	1.3	W
	Linear Derating Factor ®	0.02	W/°C
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Notes ① through ② are on page 2

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		22		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12.0	15.5	mΩ	V _{GS} = 4.5V, I _D = 8.5A ③
			15.0	19.5	11152	V _{GS} = 2.5V, I _D = 8.5A ^③
$V_{GS(th)}$	Gate Threshold Voltage	0.5		1.1	V	$V_{DS} = V_{GS}, I_D = 10\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-4.2		mV/°C	V _{DS} = V _{GS} , I _D = IOµA
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 24V, V_{GS} = 0V$
				150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	II/A	V _{GS} = -12V
gfs	Forward Transconductance	39			S	$V_{DS} = 10V, I_D = 8.5A$
Q_g	Total Gate Charge		11			$V_{DS} = 15V$
Q_{gs}	Gate-to-Source Charge		0.5		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		4.6			I _D = 8.5A (See Fig. 6 & 17)
R _G	Gate Resistance		2.1		Ω	
t _{d(on)}	Turn-On Delay Time		4.9			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		13]	$I_{D} = 8.5A$
t _{d(off)}	Turn-Off Delay Time	_	19		ns	$R_G=1.8\Omega$
t _f	Fall Time		13	_		See Fig.18
C _{iss}	Input Capacitance		1019			$V_{GS} = 0V$
C _{oss}	Output Capacitance		97	_	pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		70			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		14	mJ
I _{AR}	Avalanche Current ①		8.5	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			12⑦		MOSFET symbol
	(Body Diode)			120	A	showing the
I _{SM}	Pulsed Source Current			76	Ι ^	integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 8.5A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		11	17	ns	$T_J = 25$ °C, $I_F = 8.5$ A, $V_{DD} = 15$ V
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 300 A/µs ③
t _{on}	Forward Turn-On Time	Time is	Time is dominated by parasitic Inductance			

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case ©		13	
R _{θJC} (Top)	Junction-to-Case ©		90	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		60	
$R_{\theta JA}$	Junction-to-Ambient (<10s) ⊕		42	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.39mH, $R_G = 50\Omega$, $I_{AS} = 8.5$ A.
- $\center{3}$ Pulse width $\le 400 \mu s$; duty cycle $\le 2\%$.
- $\ \, \mbox{\it \textcircled{4}} \,\, \mbox{\it R}_{\theta}$ is measured at T_J of approximately 90°C.
- © When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- © Calculated continuous current based on maximum allowable junction temperature.
- ② Package is limited to 12A by die-source to lead-frame bonding technology

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)

 $\rm V_{GS,}$ Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 13. Typical On-Resistance vs. Drain Current

Fig 15. Typical Power vs. Time

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17a. Gate Charge Test Circuit

Fig 18a. Unclamped Inductive Test Circuit

Fig 19a. Switching Time Test Circuit

Fig 17b. Gate Charge Waveform

Fig 18b. Unclamped Inductive Waveforms

Fig 19b. Switching Time Waveforms

PQFN 2x2 Outline Package Details

For footprint and stencil design recommendations, please refer to application note AN-1154 at $\underline{\text{http://www.irf.com/technical-info/appnotes/an-}1154.pdf}$

PQFN 2x2 Outline Part Marking

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

PQFN 2x2 Outline Tape and Reel

NOTE: The Surface Resistivity is $10^4 - 10^8$ OHM/SQ

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Ovalification lavel	Industria [†]			
Qualification level	(per JEDEC JESD47F ^{††} guidelines)			
Moioturo Consitiuity Loyel	PQFN 2mm x 2mm	MSL1		
Moisture Sensitivity Level	PQFN ZIIIII X ZIIIII	(per JEDECJ-STD-020D ^{††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Revision ni	Story
Date	Comments
	• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259)
12/17/2013	• Updated Qual level from "Consumer" to "Industrial" on page 1, 9
	Updated data sheet with new IR corporate template

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.