##tongue_cancer analysis

Chang Tu

```
##tongue_cancer analysis
cancerdata <- read.csv("~/workspace/Baysian-inference/PART 2/Term 4 Lecture 1 materi
als-20211023/tongue_cancer.csv", header=TRUE)
str(cancerdata)</pre>
```

```
#only a small dataset so why not just print it to have a look
```

cancerdata

Year Desc <int> <chr></chr></int>	Sex <chr></chr>	Demography <chr></chr>	Cases F <int></int>	Population <int></int>
2018 Tongue - C01-C02	AllSex	Northland	7	185800
2018 Tongue - C01-C02	AllSex	Waitemata	23	615100
2018 Tongue - C01-C02	AllSex	Auckland	14	493300
2018 Tongue - C01-C02	AllSex	Counties Manukau	12	567000
2018 Tongue - C01-C02	AllSex	Waikato	19	421000
2018 Tongue - C01-C02	AllSex	Lakes	3	113400
2018 Tongue - C01-C02	AllSex	Bay of Plenty	10	249700
2018 Tongue - C01-C02	AllSex	Tairawhiti	4	49500
2018 Tongue - C01-C02	AllSex	Hawke's Bay	6	172300
2018 Tongue - C01-C02	AllSex	Taranaki	3	121300
1-10 of 20 rows			Previous 1	2 Next

```
rates <- cancerdata$Cases / cancerdata$Population
summary(rates)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.642e-05 2.409e-05 3.524e-05 4.371e-05 4.605e-05 1.349e-04
```

#may make more sense if expressed as rate per 100000
rates100000 <- rates*100000
summary(rates100000)</pre>

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.642 2.409 3.524 4.371 4.605 13.493
```

Dhb <chr></chr>	rate_100000 <dbl></dbl>	rate <dbl></dbl>	Cases <int></int>	<int></int>
Northland	3.767492	3.767492e-05	7	185800
Waitemata	3.739229	3.739229e-05	23	615100
Auckland	2.838030	2.838030e-05	14	493300
Counties Manukau	2.116402	2.116402e-05	12	567000
Waikato	4.513064	4.513064e-05	19	421000
Lakes	2.645503	2.645503e-05	3	113400
Bay of Plenty	4.004806	4.004806e-05	10	249700
Tairawhiti	8.080808	8.080808e-05	4	49500
Hawke's Bay	3.482298	3.482298e-05	6	172300
Taranaki	2.473207	2.473207e-05	3	121300
1-10 of 20 rows		Pre	vious 1	2 Next

#What is the overall rate
rawrate <- sum(cancerdata\$Cases) /sum(cancerdata\$Population)
rawrate*100000 #3.634198</pre>

[1] 3.634198

```
## Basic analysis to estimate assumed common rate for all DHBs
##Simplistic model but but useful as base to compare against.
##Gamma prior
a < -3/100000
b <- 1
            #Like saying prior evidence is equivalent to
            #one extra tiny DHB of size 1
totcases <- sum( cancerdata$Cases)</pre>
totpop <- sum(cancerdata$Population)</pre>
##update to get parameters of the posterior, using conjugacy
apost <- a + totcases
bpost <- b + totpop</pre>
##Compute posterior summaries
postmean <- apost/bpost</pre>
post_median <- qgamma(0.5,shape=apost,rate = bpost)</pre>
postmean * 100000
## [1] 3.634198
```

```
post_median * 100000
```

[1] 3.627357

```
q025 <- qgamma(0.025,shape=apost,rate=bpost)
q975 <- qgamma(0.975,shape=apost,rate=bpost)
exact_quantiles <- 100000*c(q025,post_median,q975)
exact_quantiles</pre>
```

[1] **3.**118513 **3.**627357 **4.**188762

```
# Simulation approach - first look at modest size Monte Carlo sample
post_lambda100 <- rgamma(n=100,shape=apost,rate=bpost)

##check quantiles
post_quantiles100 <-
quantile(post_lambda100,probs=c(0.025,0.5,0.975))

post_quantiles100</pre>
```

```
## 2.5% 50% 97.5%
## 3.148095e-05 3.709534e-05 4.206509e-05
```

```
exact_quantiles
```

```
## [1] 3.118513 3.627357 4.188762

#check_mean
post_mean100 <- mean(post_lambda100)
100000*post_mean100 #3.662318

## [1] 3.680495

exact_mean <- apost / bpost
100000*exact_mean #3.634198

## [1] 3.634198

#check standard deviation
post_sd100 <- sd(post_lambda100)
```

#check standard deviation
post_sd100 <- sd(post_lambda100)

##Monte Carlo error for the posterior mean is
MCerror <- post_sd100 / sqrt(100)
MCerror #tiny</pre>

[1] 3.074952e-07

[1] 0.03074952

#MC mean is about 1 MC standard error from the exact mean

##see what happens for a bigger posterior sample
post_lambda1000 <- rgamma(n=1000,shape=apost,rate=bpost)

post_quantiles1000 <- quantile(post_lambda1000,probs=c(0.025,0.5,0.975))
##Compare true and simulation results
exact_quantiles</pre>

[1] 3.118513 3.627357 4.188762

100000*post_quantiles100

```
## 2.5% 50% 97.5%
## 3.148095 3.709534 4.206509
```

100000*post_quantiles1000

2.5% 50% 97.5% ## 3.100291 3.623775 4.222505

#tail quantiles looking pretty good by the time Monte Carlo #simulation size reaches 1000

#MC error for nsim=1000

post_sd1000 <- 100000*sd(post_lambda1000)
post_sd1000</pre>

[1] 0.2743784

MC_error1000 <- post_sd1000/sqrt(1000)
MC_error1000</pre>

[1] 0.008676607

post_mean1000 <- 100000*mean(post_lambda1000)
post_mean1000</pre>

[1] 3.635492

100000*exact_mean #So the MC mean is just over MC standard error from

[1] 3.634198

```
# the true mean
                  #The MC error is fairly trivial though and represents
                  # 1/sqrt(1000) = 3.2% of the posterior standard deviation
# Monte Carlo for a more complex estimand and model ---------
#estimand is "thing to be estimated"
#Instead of simple common rate model, let's go to the
#other extreme and let each DHB have its own parameter;
#probability that each DHB has highest rate among all DHBs.
#Then we can ask questions like "what is the probability that each DHB
#" has the highest underlying rate among all DHBs"
#" How does a particular DHB rank in a 'league table' of rates by DHB
# we will use the same prior for each DHB
\#\label{lambda} = gamma(a,b) \quad a = 3/100000; b=1
fulla_post <- a + cancerdata$Cases</pre>
fullb_post <- b + cancerdata$Population #vector</pre>
fulla_post
```

```
## [1] 7.00003 23.00003 14.00003 12.00003 19.00003 3.00003 10.00003 4.00003 ## [9] 6.00003 3.00003 9.00003 4.00003 12.00003 7.00003 1.00003 4.00003 ## [17] 3.00003 20.00003 1.00003 15.00003
```

fullb_post

```
## [1] 185801 615101 493301 567001 421001 113401 249701 49501 172301 121301 ## [11] 66701 181701 153901 315901 46801 155501 32401 560801 60901 307401
```

```
## rgamma is partially vectorised; Easiest to loop
## over simulations and on each iteration generate the vector of lambda
##lambda values for the 20 DHBs
## also need to work out the maximum and rank for each set of lambdas
##generated
M <- 1000 ##number of draws from the posterior
n <- length(rates) #number of groups - DHBs in this case</pre>
##Set-up structures for storing output
post_fullambda <- matrix(nrow=M,ncol=n )</pre>
post_max <- matrix(nrow=M,ncol=n)</pre>
post_rank <- matrix(nrow=M,ncol=n)</pre>
for (i in 1:M ) {
  ##can probably draw gammas for all DHBs in one-hit
  fullambda <- rgamma(n,shape=fulla_post,rate=fullb_post)</pre>
  ranks <- rank(fullambda)</pre>
  ismax <- (ranks == max(ranks) )</pre>
  post fullambda[i,] <- fullambda</pre>
  post_rank[i,] <- ranks</pre>
  post_max[i,] <- ismax</pre>
  }
##check results
##posterior quantiles for each DHB
fullpost_quantiles <- apply(post_fullambda,MARGIN=2,FUN=quantile,</pre>
                                probs=c(0.025,0.5,0.975))
fullpost_quantiles.df <- data.frame(rates.df$Dhb,t(100000*fullpost_quantiles))</pre>
fullpost_quantiles.df <-
cbind(fullpost_quantiles.df,rates.df$Cases)
names(fullpost_quantiles.df) <- c("DHB", "q025", "q50", "q975", "cases")</pre>
fullpost_quantiles.df
```

DHB <chr></chr>	q025 <dbl></dbl>	q50 <dbl></dbl>	q975 <dbl></dbl>	cases <int></int>
Northland	1.52771418	3.665952	6.814496	7
Waitemata	2.43392728	3.664628	5.399270	23
Auckland	1.60349855	2.751969	4.525735	14
Counties Manukau	1.10817269	2.053547	3.519880	12
Waikato	2.82912502	4.413380	6.801002	19

DHB <chr></chr>	q025 <dbl></dbl>	q50 <dbl></dbl>	q975 <dbl></dbl>	cases <int></int>
Lakes	0.55107164	2.268146	6.241065	3
Bay of Plenty	1.82512512	3.868801	6.898003	10
Tairawhiti	2.14642621	7.164522	17.600046	4
Hawke's Bay	1.31000363	3.344196	7.013541	6
Taranaki	0.58137076	2.224773	5.619313	3
1-10 of 20 rows			Previous 1	2 Next

X2.5. <dbl></dbl>	X50. <dbl></dbl>	X97.5. <dbl></dbl>	Dhb <chr></chr>
3.000	12	18	Northland
6.000	11	16	Waitemata
3.000	8	14	Auckland
1.975	5	11	Counties Manukau
8.000	14	18	Waikato
1.000	6	17	Lakes
4.000	12	18	Bay of Plenty
6.000	18	20	Tairawhiti
2.000	10	17	Hawke's Bay
1.000	6	16	Taranaki
1-10 of 20 rows			Previous 1 2 Next

```
names(fullpost_ranks_quantiles.df)[1:3] <- c("q025","q50","q975")
fullpost_ranks_quantiles.df</pre>
```

hb chr>	
------------	--

q025 <dbl></dbl>	q50 <dbl></dbl>	q975 <dbl></dbl>	Dhb <chr></chr>	
3.000	12	18	Northland	
6.000	11	16	Waitemata	
3.000	8	14	Auckland	
1.975	5	11	Counties Manukau	
8.000	14	18	Waikato	
1.000	6	17	Lakes	
4.000	12	18	Bay of Plenty	
6.000	18	20	Tairawhiti	
2.000	10	17	Hawke's Bay	
1.000	6	16	Taranaki	
1-10 of 20 rows				Previous 1 2 Next

```
##posterior probability that rate in each DHB is the maximum

fullpost_max <- colMeans(post_max)
fullpost_max.df <- data.frame(rates.df$Dhb,fullpost_max)
names(fullpost_max.df) <- c("Dhb","prob")

##What about probability in the top 5

intop5 <- (post_rank >= 16)

Prtop5 <- colMeans((intop5) )

Prtop5.df <- data.frame(rates.df$Dhb,Prtop5)
Prtop5.df</pre>
```

rates.df.Dhb <chr></chr>	Prtop5 <dbl></dbl>
Northland	0.159
Waitemata	0.064
Auckland	0.007
Counties Manukau	0.001
Waikato	0.242
Lakes	0.064
Bay of Plenty	0.174
Tairawhiti	0.760
Hawke's Bay	0.134
Taranaki	0.045

1-10 of 20 rows Previous 1 2 Next