2. BASIC CONCEPTS

WORKING FLUID: Fluid which is used thermodynamic analysis.

GAS	VAPOUR
$T_{substance} > T_{critical}$	$T_{substance} < T_{critical}$
Atmospheric Air is mixture of different gases	
Eg. O2, N2, H2, He, Ar, etc	
So each Gas will be under same surrounding condition	

Substance	ance Critical temperature		Critical pr	essure	Boiling tem (1 at	-	
	[° F]	[°C]	[psi], [lb/in ²]	[bar]	[° F]	[°C]	
Air	-220.94	-140.52	549.08	37.858	-	-	Here All gas Have less than atmospheric temperature so all will be in GAS in atmospheric condition. And Water will be in VAPOUR phase.
Argon	-188	-122	705.6	48.7	-302.5	85.8	
Hydrogen (H)	-400	-240	188.2	13.0	-423	-253	
Nitrogen (N)	-232.6	-147	492.4	34.0	-321	-195	
Oxygen (O ₂)	-181.5	-118.6	732	50.5	-297	-183	
Helium (He)		-268		2.27			
Water	705	374	3206.2	220.5	212	100	

<u>IDEAL GAS:</u> No intermolecular forces. (No Molecular Attractive Forces, Repulsive forces and other forces)

 $(F_{Intermolecular})_{Solid} >> (F_{Intermolecular})_{Liquid} >> (F_{Intermolecular})_{Gas}$

KINETIC THORY OF GAS:

- 1) $V_{GAS} \ll V_{Container}$
- 2) $F_{Intermolecular} = 0$
- 3) Collision between molecules are perfectly elastic ==> Zero Kinetic Energy loss/Gain

GAS BEHAVES AS IDEAL GAS: Pressure \lor , Volume \land , Temperature \lor And MFP \lor ($\mathbf{Z} = \mathbf{0}$)

At Atmospheric Condition, P_{atm} = 101.325 KPa, T_{atm} = 25 °C

Types of Ideal Gas		
Perfect Ideal Gas	Semi Perfect Ideal Gas	
Variation of specific heats (KJ/kg K) are not considered.	Variation of specific heats (KJ/kg K) Can't ignore. So	
OR specific heats are constant.	that Analysis at each and every temperature.	
Eg. Air $C_p = 1.005 \text{ KJ/kg K}$, $C_v = 0.718 \text{ KJ/kg K}$		

	Boyle's Law	Charles' Law	Gay-Lussac Law
For given mass	$P_{abs} \propto 1/V_{gas} (@T=C)$	$V_{gas} \propto T (@P_{abs} = C)$	$P_{abs} \propto T (@V_{gas} = C)$

PERFECT/ IDEAL GAS EQUATION:

$P_{abs}v_{gas} = RT$ Where, $P_{abs} = Absolute$ pressure of Gas (Pa)	If P (Pa), R (J/kg K).
v_{gas} = Specific Volume of Gas (m ³ /kg),	If P (KPa), R (KJ/kg K).
T = Absolute Temperature of Gas (K)	R = 287 J/kg K (for Air)
R = Characteristic Gas Constant (J/Kg K)	
$P_{abs}V_{gas} = mRT$ Where, $V = Total$ Volume of Gas (m ³)	
m = Mass of the gas (kg)	
$P_{abs} = \rho_{gas}RT$ Where, $\rho_{gas} = Density of Gas (kg/m3)$	

MOLAR ANALYSIS:

Mole(n): Amount of substance. 1 mol = $6.023 * 10^{23}$ Molecules

Molar Volume (\overline{V}): $\overline{V} = V_{gas}/n \text{ (m}^3/\text{ Kmol)}$

Molar Mass (\overline{m}) **Molar weight** (M): $M = \overline{m} = m_{gas}/n$ (kg / Kmol)

Molar Gas Constant or Universal gas constant (\bar{R}): $\bar{R} = \bar{m} R = M R \text{ (KJ/Kmol K)}$

$P_{abs}\overline{V}=\overline{m} RT$	$P_{aba}\bar{V} \equiv \bar{R}T$	$P_{abs} V_{gas} = n \bar{R} T$
	$\Gamma_{abs}V - \Lambda \Gamma$	1 abs V gas — III 1

AVOGADRO'S LAW: "Equal volume of all gases contains equal number of molecules at the same pressure and same temperature"

STP => $P_{stp} = 1$ atm = 101.325 KPa, $T_{stp} = 0$ °C = 273 K, V = 22.4 m³, n = 1Kmol => $\bar{R} = 8.314$ KJ/Kmol K Difference between Characteristic Gas constant and Universal Gas Constant:

Gas	Molar Mass (M) (kg/mol)	Universal gas constant (\overline{R}) (KJ/Kmol K)	Characteristic Gas constant (R) (KJ/kg K)
Air	28.9	8.314	0.287
O2	32	8.314	0.259
N2	28	8.314	0.296

DEAL GAS EQUATION FOR VARIOUS Reversible Constant Volume/ Isochoric Process:	$P_{abs} \propto T (@V_{gas} = C)$	A
Rigid Tank,	Gay-Lussac Law	P
$V_{gas} = Constant,$	Gay-Lussac Law	Final state
e e e e e e e e e e e e e e e e e e e		$P_{\scriptscriptstyle B}$ B
Q _{supply} / Q _{rejected} ,		
Eg. Football, Pressure Cooker, Automobile tyre,		Initial state
Automobile car, Both direction Locked Piston		P_A A
cylinder.		1 A
		o v v
Reversible Constant Pressure/ Isobaric Process:	$V_{gas} \propto T (@P_{abs} = C)$	DÅ !
Assumptions:	Charles' Law	$P \uparrow$
1) Very Slow Process		
2) Friction is neglected		
3) No effect on gas due to weight of piston. $W_P = 0$		$P \mid \cdots \stackrel{A}{\longrightarrow} \stackrel{B}{\longrightarrow} \cdots$
Rigid Tank,		
$P_{gas} = Constant,$		W
Q _{supply} / Q _{rejected} (Expansion/Contraction)		
Eg. Piston Cylinder Mechanism with weight less		$O V_A V_B V$
piston, Water heated in atmosphere,		- VA VB V
Combination of Constant Volume and Constant	Process 1:	Rectangle Triangle diagram.
Pressure Process:	$P_{abs} \propto T (@V_{gas} = C)$	
Assumptions:	Gay-Lussac Law	
1) Very Slow Process	Process 2:	
2) Friction is neglected	$V_{gas} \propto T (@P_{abs} = C)$	
3) Effect on gas due to weight of piston. $W_P \neq 0$.	Charles' Law	
Two Process happed in index mentioned below	Charles Eaw	
when heat is supplied or rejected on one side locked		
piston:		
1) Constant Volume Process		
2) Constant Pressure Process		
Reversible Constant Temperature/ Isothermal	$P_{abs} \propto 1/V_{gas} (@T = C)$	$A(P_0, V_0)$
Process:	Boyle's Law	\
In order to maintain constant temperature, Heat	Boyle's Law	P
should be supplied or reject simultaneously.		Conc. Lands and
This is not practically possible because:		1 Isothermal
1) Simultaneously Q _{supply} / Q _{rejected} is not possible.		$B(P_1, V_1)$
2) Process is very slow process.		
,		
Fo Roiling Water In atmosphere Human Rody	1	$\longrightarrow V$
Eg. Boiling Water In atmosphere, Human Body (37 °C)		(D. V.D.
Eg. Boiling Water In atmosphere, Human Body (37 °C)		(P–V Diagram)
(37 °C)	DV' - Constant	Rectangular Hyperbola
(37 °C) Reversible Adiabatic Process:	$PV^{\gamma} = Constant$ $TV^{\gamma 1} = Constant$	Rectangular Hyperbola $\gamma = 1.67$ (for mono-atomic Gas
(37 °C) Reversible Adiabatic Process: No heat Transfer (Q _{supply} / Q _{rejected} = 0)	$TV^{\gamma-1} = Constant$	
(37 °C) Reversible Adiabatic Process:		Rectangular Hyperbola $\gamma = 1.67$ (for mono-atomic Gas Eg. He, Ar) $\gamma = 1.4$ (for die-atomic Gas Eg.
(37 °C) Reversible Adiabatic Process: No heat Transfer (Q _{supply} / Q _{rejected} = 0)	$TV^{\gamma-1} = Constant$	Rectangular Hyperbola $\gamma = 1.67$ (for mono-atomic Gas Eg. He, Ar) $\gamma = 1.4$ (for die-atomic Gas Eg. H2, O2, N2)
(37 °C) Reversible Adiabatic Process: No heat Transfer (Q _{supply} / Q _{rejected} = 0)	$TV^{\gamma-1} = Constant$ $TP^{\frac{\gamma}{\gamma-1}} = Constant$	Rectangular Hyperbola $\gamma = 1.67$ (for mono-atomic Gas Eg. He, Ar) $\gamma = 1.4$ (for die-atomic Gas Eg.

Reversible Polytropic Process: Poly = many, Tropic = changes $Q_{\text{supply}} / Q_{\text{rejected}} \neq 0$ $n = \text{polytropic}$ index	$PV^{n} = Constant$ $TV^{n-1} = Constant$ $TP^{\frac{1-n}{n}} = Constant$ (because $T \propto PV$)	2.0 1.5 1.6 1.6 1.7 1.7 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
--	---	--

Adiabatic/ Polytropic index = $ln(P_1/P_2)/ln(V_2/V_1)$

Generally, $1 \le n \le \gamma$. Actually, $-\infty \le n \le \infty$

	Slope of Various Processes = dP/dV					
n = 0	n = 1	$n = \gamma$	n = n	$n = \infty$		
P = Constant	T = Constant	-	-	V = Constant		
Isobaric	Isothermal	Adiabatic	Polytropic	Isochoric		
$\left[\frac{dP}{dV}\right]_P = 0$	$\left[\frac{dP}{dV}\right]_T = -\left(\frac{P}{V}\right)$	$\left[\frac{dP}{dV}\right] = -\gamma \left(\frac{P}{V}\right) = \gamma \left[\frac{dP}{dV}\right]_{T}$	$\left[\frac{dP}{dV}\right] = -n\left(\frac{P}{V}\right) = n\left[\frac{dP}{dV}\right]_{T}$	$\left[\frac{dP}{dV}\right]_V = \infty$		

THERMODYNAMICS TERMINOLOGY:

- 1. System: Quantity of Matter concentrated or under study.
- **2. Surroundings:** Outside the system and effect on system is present.
- **3. Boundary:** Surface which separates system and surroundings.

Types of Boundary			
Fixed	Moving	Imaginary	Real

4. Universe: (System + Surroundings) put together.

FUNDAMENTAL DEFINATIONS IN THERMODYNAMICS:

- **1. State:** Condition of system. (Denotes by point in diagrams)
- 2. Process: Change in State.
- **3. Path:** Line which connects various state points.
- **4. Quasi Static Process:** (Quasi = Almost, Static = Fixed) Extremely slow Process.

Each state is in equilibrium condition. dP = dV = 0 (For each successive states)

5. Reversible Process:

It's Idealized or Hypothetical process.

When process is reversed follows same path. (Denotes by Solid/ Continuous line in diagram)

Condition for reversibility: 1) Quasi Static Process 2) Zero Friction loss 3) No effect of surrounding on system.

- 1) Integration is possible 2) Area Can be find for work obtain.
- **6. Irreversible Process:** Process Which can't reverse. System and surrounding presently affected.

(Denotes by Dotted/ Discontinuous line in diagram)

Condition for irreversibility: 1) Extremely Fast Process 2) Friction loss is present.

7. Thermodynamic Cycle: Series of processes which restores initial condition.

	Thermodynamic Cycle			
	Reversible Thermodynamic Cycle Irreversible Thermodynamic Cycle			
All process in cycle must be reversible.		reversible.	At least one process is Irreversible.	
	Thermodynamic Cycle			
	Work Producing Cycle (Clock wise)		Work Consuming Cycle (Anti-Clock wise)	

8. Thermodynamic Equilibrium:

	Thermal Equilibrium	Same Temperature throughout the system
Thermodynamic Equilibrium	Mechanical Equilibrium	Same Forces throughout the system
	Chemical Equilibrium	No Chemical Reaction

PROPERTIES:

PROPERTIES			
Extensive Property	Intensive Property		
Depending on Mass and Size	Not Depending on Mass and Size		
Mass, Volume, kinetic energy, Potential energy	Pressure, Temperature, Density, Viscosity, Thermal		
	Conductivity, Electric Conductivity		
1) Intensive Preparty - (Extensive Property/Extensive Property) 2) All Specific Property are Intensive property			

1) Intensive Property = (Extensive Property/Extensive Property) 2) All Specific Property are Intensive property

Essential Features of Properties:

1) All Properties are point function. 2) Changes in property does not depend on path. 3) Properties are exact differentials. Eg. dP, dV,...

TYPES OF SYSTEM			
Closed System	Open System	Isolated System	
No Mass Transfer Allowed Energy Transfer Allowed	Mass Transfer Allowed Energy Transfer Allowed	No Mass Transfer Allowed No Energy Transfer Allowed But Work Transfer is allowed.	
Eg. Closed Cointainer, Vessel, Balloons, Piston cylinder when valves are closed	Eg. Turbine, Compressor, Nozzle, Pipe Line.	Eg. Thermos Flask.	

Controlled Volume: Region in the space consider for study.
Controlled Surface: Separates region from surroundings.