

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA Departamento de Informática Integrado / Análise e Desenvolvimento de Sistemas / Licenciatura em

Computação

Modelo Conceitual

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Projeto de Banco de Dados (DB)

- Mundo observado (objeto da modelagem)
- Requisitos do sistema (funções desejadas no sistema)
- Modelo conceitual (descrição elementos do DB)
- Modelo lógico (dados armazenados e organização do DB)
- Modelo físico (armazenamento físico dos dados)

Requisitos do Sistema

- Cada sistema possui um conjunto de requisitos que precisam ser atendidos
 - Cada usuário do sistema também possui suas próprias demandas
- Como descobrir tais requisitos?
 - Entrevistas com especialistas e usuários
 - Observação das rotinas da empresa (etnografia)

Requisitos do Sistema

- Ex: Sistema bancário
 - Gerente
 - Criar conta corrente, poupança, etc
 - Realizar empréstimos
 - Cliente
 - Consulta extrato
 - Realizar saques

Projeto conceitual

- Escolha do modelo de dados para descrever o sistema e as necessidades dos usuários (requisitos)
 - Objetivo:
 - Descrever os dados (nome, CPF, conta, etc)
 - E as relações entre eles (cliente, gerente, caixa, etc)

Exemplo de Modelo Conceitual

Modelo ou Diagrama E-R

(diagrama entidade-relacionamento)

	Tabela de Gerentes					
ID	Nome	<u>CPF</u>	<u>Agência</u>			
1	Juan	111.222.333-44	3460			
2	Hebert	555.666.777-88	7410			
3	Claudia	123.456.789-00	5421			

	Tabela de Clientes					
ID Nome CPF ID Co						
1	Julia	111.222.333-44	2			
2	Carlos	555.666.777-88				
3	Amanda	123.456.789-00	3			

	Tabela de Contas						
ID	Agência Número						
1	3460	71542					
2	5421	65321					
3	7410	02145					

Exemplo de Modelo Físico

	Tabela de Gerentes					
ID Nome CPF Agênci						
1	Juan	111.222.333-44	3460			
2	Hebert	555.666.777-88	7410			
3	Claudia	123.456.789-00	5421			

	Tabela de Contas					
ID Agência Número						
1	3460	71542				
2	5421	65321				
3	7410	02145				


```
1 CREATE TABLE tabela_gerentes (
2  id INTEGER PRIMARY KEY AUTOINCREMENT,
3  nome VARCHAR(40),
4  cpf VARCHAR(14),
5  agencia INT
6 );
```

```
1 CREATE TABLE tabela_contas (
2  id INTEGER PRIMARY KEY AUTOINCREMENT,
3  agencia INTEGER,
4  numero INTEGER
5 );
```

Construção do modelo conceitual

 Para construir o modelo conceitual, geralmente usamos o modelo entidade/relacionamento

Cardinalidade em modelos E-R

Cardinalidade em modelos E-R

Entidade

- **Entidades** são substantivos que:
 - Começam com letras
 - É uma palavra no singular
 - Não tem espaços
 - Não tem caracteres especiais
 - _, \$ # são permitidos em alguns bancos de dados
 - O nome deve ser único dentro do banco de dados

Atributos

- Atributos são propriedades que descrevem uma entidade
 - O nome deve ser único dentro de cada entidade

Atributos simples: são indivisíveis

Atributos compostos: podem ser subdivididos

Atributo de valor único: contém apenas um valor em cada registro Atributos multivalorados: podem conter mais de um valor em cada registro

Atributo armazenado:

são os dados efetivamente armazenados em disco (HDD, etc)

Atributo derivado:

pode ser calculado a partir dos atributos armazenados

Atributos derivados não são armazenados no banco de dados. Eles são calculados conforme sejam necessários.

Atributo determinante:

existe apenas uma instância com o mesmo valor desse atributo

Atributo não-determinante:

pode existir mais de uma instância com o mesmo valor desse atributo

Exercício - Modelo E-R

- Construa um modelo entidade-relacionamento (E-R) para o sistema bancário, no qual temos:
 - Gerentes e Clientes
 - Contas (correntes ou poupanças)

Identifique as entidades (abstratas e concretas), os tipos de atributos e represente a cardinalidade das associações entre entidades

Relacionamentos

- Relacionamentos são associações entre entidades
- Porque precisamos de relacionamentos?
 - Os dados estão armazenados em várias entidades
 - Relacionamentos permitem obtermos dados associados a mais de uma entidade

Grau do Relacionamento

- Relacionamentos podem interligar várias entidades
 - A quantidade de entidades envolvidas indica o grau do relacionamento:
 - Unário (autorelacionamento ou recursivo)
 - Binário
 - Ternário (n-ário)

Relacionamento Unário

 Associação envolvendo instâncias de uma mesma entidade

Um relacionamento unário também pode ser chamado de autorelacionamento ou relacionamento recursivo

Relacionamento Binário

Associação entre duas entidades

Relacionamento Ternário (n-ário)

Associação entre N (ocorrências de) entidades

Generalização e Especialização

- Entidades podem possuir atributos em comum
 - Entidades específicas contém os atributos das entidades genéricas, formando hierarquias

Generalização e Especialização

Ex: sistema bancário

Tarefas para Modelagem de Banco de Dados

- Identificar tipos de entidades
- Identificar atributos
- Identificar relacionamentos
- Criar e associar chaves (diagrama lógico)
- Normalizar para evitar redundâncias (formas normais)
- Criar banco de dados (SQL)
- Criar e documentar consultas (SQL)

 É um modelo de entidade, no formato de conjunto de registros (tuplas)

Entidade

Relação

Nome	Salário	ldade
Andre	1500	29
Jose	1212	21
Claudio	2500	32

Exemplo Funcionário

atributo |

Atributo ou campo			
Nome	Salário	Idade	
Ana	1500	29	Registro ou Tupla
Jose	1212	21	
Claudio	2500	32	Valor do

Cada coluna é um **atributo** (campo)

Cada célula contém apenas um único valor

Cada linha é uma **instância** (registro ou tupla)

Relação é uma tabela, que representa um conjunto de instâncias com seus atributos

Cada célula armazena apenas um único valor por vez

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo
João	B	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М
Fernando	T	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	M
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М
Fernando	T	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F

Cada atributo (coluna) possui um domínio (tipo de dados)

Ex: caracteres, números inteiros

Cada coluna possui um nome diferente

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	M
Fernando	T	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	M
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F

Existem colunas especiais, chamadas de **chave primária.** Elas são representadas com um <u>sublinhado</u> embaixo do atributo.

FUNCIO	NARIC)	V			
Pnome	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	M
Fernando	T	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	M
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F

Como criar um bom modelo conceitual?

- Abordagem top-down (modelo -> conceitos básicos)
 - Um modelo conceitual básico é criado (entidades, atributos e relacionamentos) e detalhado sucessivas vezes até chegar no projeto conceitual final
- Abordagem bottom-up (conceitos básicos -> modelo)
 - Conceitos básicos (entidades, atributos ou relações simples) vão sendo adicionados ao modelo até chegar no projeto conceitual final

Exemplo das abordagens

Abordagem top-down

Abordagem bottom-up

Exemplo da Abordagem Top-Down

Exemplo da Abordagem Bottom-Up

Como múltiplos projetistas podem trabalhar no mesmo projeto conceitual?

Projeto de esquema centralizado (única tentativa)

 Há apenas um projeto conceitual. Projetistas trabalham em conjunto nesse mesmo projeto.

Integração de visões parciais

 Há vários projetos conceituais parciais. Projetistas consideram SOMENTE os requisitos necessários para o seu projeto. Projetos parciais são integrados para compor o esquema conceitual global.

Exemplos de projeto com visões parciais

Precisamos agora combinar essas visões em uma visão única

Exemplos de projeto com visões parciais

Exercício

- Construa um modelo conceitual para um dos projetos descritos nesse link:
 - https://github.com/andre-romano/aulas/blob/master/banc o_dados/PROJETOS.md

Referencial Bibliográfico

 KORTH, H.; SILBERSCHATZ, A.; SUDARSHAN, S.
 Sistemas de bancos de dados. 5. ed. Rio de Janeiro: Ed. Campus, 2006.

 DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Ed. Campus, 2004. Tradução da 8ª edição americana.