Inteligência Artificial no apoio à adoção de animais: uma abordagem preditiva

Álvaro Hibide Claver¹, Matheus Marçal Ramos de Oliveira¹, Sabrina Midori Futami Teixeira de Carvalho¹

¹Faculdade de Computação e Informática – Universidade Presbiteriana Mackenzie {10368757,10409001,10410220}@mackenzista.com.br

Abstract. This project aims to apply Machine Learning techniques to predict the estimated adoption time of shelter animals. The proposal arises from the need to reduce the length of stay in shelters, thereby improving animal welfare and optimizing the use of available resources. The study seeks to identify key factors, such as age, size, breed, sex, and history, that directly influence adoption probability. Based on these predictions, managers and organizations will be able to design more strategic and personalized campaigns, fostering responsible adoption and reducing inequalities in the process. By bridging technology and social impact, this work highlights the potential of artificial intelligence as a practical tool to support causes of broad societal relevance.

Resumo. Este projeto tem como propósito usar técnicas de Machine Learning para prever em quanto tempo um animal de abrigo pode ser adotado. A ideia nasce da necessidade de reduzir o período em que esses animais permanecem nas instituições, garantindo melhores condições de bem-estar e ajudando os abrigos a lidarem melhor com seus recursos. Para isso, o estudo pretende identificar fatores que influenciam diretamente nas chances de adoção, como idade, porte, raça, sexo e histórico do animal. Com base nessas previsões, gestores e organizações poderão criar campanhas mais estratégicas e personalizadas, aumentando as oportunidades de adoção responsável e diminuindo desigualdades no processo. Ao aproximar tecnologia e impacto social, este trabalho mostra como a inteligência artificial pode ser uma aliada concreta em causas de grande relevância para a sociedade.

1. Introdução

A adoção de animais em abrigos representa um tema de grande relevância social, pois envolve não apenas o bem-estar dos animais, mas também a capacidade das instituições em lidar com limitações de espaço e recursos. O prolongado tempo de permanência em abrigos afeta diretamente a qualidade de vida dos animais e dificulta a gestão das organizações responsáveis. Nesse contexto, o uso de inteligência artificial surge como uma alternativa inovadora para enfrentar esse desafio, permitindo prever padrões e apoiar estratégias que favoreçam a adoção responsável. A seguir, são apresentadas a contextualização do problema, a justificativa que sustenta a pesquisa, os objetivos a serem alcançados e a opção metodológica adotada neste projeto.

1.1. Contextualização

O abandono de animais é um problema recorrente e de grande impacto social, resultando na superlotação de abrigos e no comprometimento do bem-estar dos animais. Embora a adoção seja a principal solução, muitos permanecem por longos períodos nessas instituições até encontrarem um lar definitivo, sobretudo aqueles com

características consideradas menos atrativas pelos adotantes. Nesse cenário, a inteligência artificial, por meio de técnicas preditivas, surge como uma alternativa promissora para auxiliar na redução do tempo de permanência em abrigos e ampliar as chances de adoção.

1.2. Justificativa

Prever o tempo de adoção com base em atributos individuais dos animais possibilita que campanhas e esforços sejam direcionados aos casos mais críticos, reduzindo desigualdades e promovendo maior eficiência no processo de adoção. Essa perspectiva não apenas contribui para o bem-estar animal, mas também favorece a sustentabilidade dos abrigos, que enfrentam limitações de recursos e precisam otimizar a utilização de suas estruturas. A relevância do projeto está justamente na união entre tecnologia e impacto social, oferecendo uma ferramenta prática para apoiar uma demanda urgente.

1.3. Objetivo

O objetivo central é desenvolver e avaliar modelos de Machine Learning capazes de prever o tempo estimado de adoção de animais em abrigos. Busca-se também identificar padrões e variáveis mais relevantes nesse processo, fornecendo suporte às decisões de ONGs e gestores e possibilitando ações mais eficazes na promoção da adoção responsável.

1.4. Opção do projeto

A proposta insere-se na área de Machine Learning, utilizando técnicas de aprendizado supervisionado para construir modelos preditivos. A escolha dessa abordagem justifica-se pela capacidade dos algoritmos de lidar com grandes volumes de dados heterogêneos e identificar relações complexas, que dificilmente seriam percebidas sem o auxílio computacional.

2. Fundamentação teórica

O uso de inteligência artificial no bem-estar animal, especialmente em abrigos, tem ganhado cada vez mais espaço, justamente por ajudar a tomar decisões melhores e aproveitar ao máximo os recursos disponíveis. Dentro desse contexto, diferentes pesquisas já mostraram que é possível prever quanto tempo um animal pode permanecer em um abrigo até ser adotado, trazendo à tona fatores importantes e testando diferentes modelos de predição.

Um exemplo disso é o trabalho de Bradley et al. (2021), que analisaram o tempo de permanência de animais em abrigos utilizando algoritmos de aprendizado de máquina. Eles observaram que características como idade, porte e até a coloração dos animais influenciam bastante nas chances de adoção. Além disso, sugeriram que, em alguns casos, transferir animais entre abrigos poderia reduzir esse tempo de espera (Bradley et al., 2021). Seguindo um caminho parecido, Sazara e Gao (2023) aplicaram o algoritmo CatBoost em dados do Austin Animal Center, nos Estados Unidos, para prever se um animal seria adotado em até quinze dias. O estudo destacou a importância

de atributos demográficos e visuais, mostrando que eles têm grande peso na decisão final dos adotantes (Sazara & Gao, 2023).

Outros trabalhos também reforçam essa tendência. Lu et al. (2025), por exemplo, compararam diferentes modelos de machine learning, como Random Forest, Decision Tree, regressão logística e redes neurais, para prever se um animal seria adotado ou não. A pesquisa mostrou que cada modelo tem pontos fortes e fracos, e que combinar abordagens pode aumentar a precisão das previsões (Lu et al., 2025). Já Foris et al. (2025) chamam a atenção para outro aspecto igualmente importante: a ética. Eles defendem que especialistas em bem-estar animal participem da construção dessas ferramentas de IA, para garantir que os indicadores usados realmente representem as necessidades dos animais e que as soluções sejam aplicadas de forma justa e responsável (Foris et al., 2025).

Há também iniciativas voltadas para a gestão prática dos abrigos. Kiv et al. (2024), por exemplo, usaram técnicas de séries temporais para prever taxas de adoção ao longo do tempo, permitindo que os abrigos planejem campanhas e recursos de forma mais eficiente. Essa visão estratégica mostra como a inteligência artificial pode ajudar não só os animais, mas também as equipes que trabalham diretamente com eles (Kiv et al., 2024).

Mesmo com esses avanços, ainda existem desafios. Muitos estudos se baseiam em dados de apenas um abrigo, o que dificulta a generalização. Outros deixam de lado informações ricas, como o comportamento ou o histórico de saúde dos animais, além de não discutirem de forma mais profunda questões de viés e impacto social. É justamente nesse ponto que o presente projeto se propõe a avançar: além de prever o tempo de adoção com maior precisão, ele busca integrar múltiplos fatores e trazer uma reflexão ética ao processo, mostrando como a tecnologia pode gerar impacto social positivo quando usada de forma consciente.

3. Descrição do problema

O abandono e a superlotação de animais em abrigos configuram um problema social de grande escala, com impactos diretos no bem-estar animal, nos custos de manutenção e na sustentabilidade das instituições responsáveis. Estudos mostram que milhões de cães e gatos são recebidos anualmente por abrigos em todo o mundo, e grande parte desses animais permanecem por longos períodos antes de encontrar um lar definitivo. Em alguns casos, essa permanência prolongada leva à eutanásia de animais saudáveis devido à falta de espaço e de recursos (Bradley et al., 2021).

A desigualdade no processo de adoção aprofunda esse cenário. Animais jovens, de pequeno porte ou de raças mais populares tendem a ser adotados rapidamente, enquanto os mais velhos, de grande porte ou com características menos desejadas ficam

esquecidos, reduzindo ainda mais suas chances de adoção (Sazara & Gao, 2023). Essa disparidade revela não apenas uma questão prática, mas também ética, já que reforça preconceitos existentes e contribui para a marginalização de determinados perfis de animais.

Além disso, a falta de planejamento estratégico agrava a situação. Muitos abrigos operam com recursos limitados e enfrentam dificuldades para prever picos de entrada de animais, organizar campanhas de adoção e realocar animais entre instituições. Como apontam Kiv et al. (2024), a ausência de modelos preditivos e de análises de séries temporais dificulta a antecipação de fluxos de entrada, a gestão de capacidade e a tomada de decisões sobre transferências, resultando em sobrecarga operacional e maior risco de eutanásia.

No campo científico, pesquisas mostram o potencial da inteligência artificial para apoiar esses desafios. Modelos como árvores de decisão, Random Forest, regressão logística, redes neurais já demonstraram capacidade de prever o tempo de permanência ou a probabilidade de adoção com base em atributos como idade, porte, raça, sexo e condição de saúde (Lu et al., 2025; Sazara & Gao, 2023). No entanto, apesar desses avanços, ainda persistem problemas de generalização dos modelos, carência de dados comportamentais e de saúde detalhados, além do risco de vieses que reforçam desigualdades existentes.

Dessa forma, o problema central que motiva este trabalho pode ser resumido como a ausência de mecanismos preditivos integrados e eticamente orientados que permitam reduzir a permanência prolongada de animais em abrigos, apoiar decisões de gestores e ONGs, e promover campanhas de adoção mais justas, eficazes e responsáveis.

4. Aspectos éticos do uso da IA e sua responsabilidade no desenvolvimento da solução

O uso de inteligência artificial em contextos sensíveis, como a adoção de animais, exige uma reflexão cuidadosa sobre os aspectos éticos envolvidos. Em primeiro lugar, é necessário considerar a transparência dos modelos preditivos: gestores e organizações devem compreender de forma clara como as previsões são produzidas e quais atributos mais influenciam os resultados, evitando a utilização de algoritmos como "caixas-pretas" sem interpretação.

Além das questões de transparência, viés e responsabilidade social, é importante destacar que o uso de modelos de IA em abrigos impacta não apenas os animais, mas também os profissionais envolvidos no processo. Bradley et al. (2021) evidenciam que a superlotação dos abrigos está diretamente ligada à eutanásia de animais saudáveis, prática que, além de comprometer o bem-estar animal, gera estresse psicológico significativo nos trabalhadores responsáveis por essa decisão. Assim, a utilização de modelos preditivos para estimar o tempo de permanência e antecipar casos críticos não deve ser vista apenas como um recurso tecnológico, mas como uma ferramenta ética, ao contribuir para a redução do sofrimento animal e humano.

No entanto, há também aspectos negativos e riscos éticos a considerar. Primeiro, a dependência de atributos como idade, porte e cor, identificados como fatores determinantes por Bradley et al. (2021), pode reforçar preconceitos já presentes na sociedade. Se não forem usados de forma crítica, tais modelos podem naturalizar desigualdades e priorizar apenas animais considerados "mais adotáveis", marginalizando ainda mais aqueles que já enfrentam baixas chances.

Por fim, há o risco de que a IA seja vista como uma solução técnica suficiente, quando, na verdade, decisões sobre adoção e bem-estar animal exigem sensibilidade humana e envolvimento de especialistas. Nesse ponto, a tecnologia pode ser mal utilizada para justificar práticas de eficiência em detrimento da ética, como transferências excessivas ou classificações que estigmatizam animais. Portanto, é fundamental que os modelos preditivos sejam usados como ferramentas de apoio, e não como substitutos da avaliação crítica e da responsabilidade social dos gestores e das ONGs.

5. Dataset

O trabalho faz uso de um dataset disponibilizado no Kaggle, atualizado em 2024, chamado "Predict Pet Adoption Status Dataset", que contém dados de 2007 animais provenientes de abrigos, dentre gatos, cachorros, coelhos e aves. Cada animal possui os seguintes atributos: PetID (identificador do animal), PetType (espécie do animal), Breed (raça do animal), AgeMonths (idade do animal em meses), Color (cor do animal), Size (tamanho do animal, classificado em pequeno, médio ou grande), WeightKg (peso do animal em quilogramas), Vaccinated (se o animal foi vacinado ou não), HealthCondition (estado de saúde do animal), TimeInShelterDays (tempo em que o animal esteve no abrigo), AdoptionFee (taxa de adoção do animal, em dólares), PreviousOwner (se o animal teve um tutor prévio ou não) e AdoptionLikelihood (se o animal foi adotado ou não).

O dataset foi escolhido por ter bastante visualizações, downloads e dados. Todavia, trata-se de um dataset sintético, feito com intuito educacional, particularmente para projetos de ciência de dados e Machine Learning.

Os dados do dataset foram tratados da seguinte forma: inicialmente, foram removidas as colunas referentes a dados considerados irrelevantes para a análise da questão ora estudada. Assim, foram retiradas as colunas de PetID (identificação dos pets) e WeightKg (peso dos animais). Posteriormente, averiguou-se se havia algum valor nulo no dataset. Depois, se todos os valores binários (se os animais foram ou não vacinados, se eles eram ou não saudáveis, se tinham ou não um tutor anterior e se foram ou não adotados) eram, de fato, 0 (resposta negativa) ou 1 (resposta positiva). Após, o dataset foi filtrado para que apenas gatos e cachorros fossem considerados. Por fim, foi feito o tratamento das colunas categóricas para conversão numérica, visando ao posterior processamento por Machine Learning.

Após o tratamento inicial, realizou-se a análise exploratória dos dados, com o objetivo de compreender melhor as características dos animais e identificar padrões relevantes para o problema estudado. Foram gerados histogramas e boxplots, comparando gatos e cachorros em variáveis como idade, tempo de permanência no

abrigo e taxa de adoção. A distribuição de idades mostrou-se semelhante entre as espécies, com concentrações em animais jovens e adultos, mas ainda com presença significativa de idosos. No que se refere à taxa de adoção, observou-se que os cachorros apresentam maior probabilidade de serem adotados em relação aos gatos. Já a análise do tempo de permanência revelou medianas próximas para ambas as espécies, embora os gatos apresentem maior concentração de casos com longas estadias. Além disso, verificou-se que animais efetivamente adotados tendem a permanecer menos tempo nos abrigos, reforçando a importância de identificar os fatores que influenciam esse processo.

6. Metodologia e resultados esperados

Primeiramente, realizou-se o pré-processamento do dataset, com a remoção de colunas irrelevantes, verificação de valores nulos, padronização das variáveis e conversão das colunas categóricas em valores numéricos para permitir a aplicação dos algoritmos de Machine Learning. Na sequência, foi feita a análise exploratória, por meio de estatísticas descritivas e visualizações como histogramas e boxplots, que permitiram compreender melhor o perfil dos animais, comparar gatos e cachorros e identificar padrões relacionados à idade, ao tempo de permanência no abrigo e à taxa de adoção.

A etapa seguinte consiste na aplicação de algoritmos de Machine Learning para construir modelos preditivos. Serão testados alguns modelos diferentes e, em seguida, comparadas suas acurácias, de forma a identificar qual deles apresenta o melhor desempenho para prever a adoção dos animais.

Com isso, espera-se obter modelos capazes de prever de forma satisfatória a probabilidade de adoção, distinguindo casos de rápida saída do abrigo daqueles que tendem a permanecer mais tempo. Espera-se também confirmar a relevância de fatores como idade, porte e vacinação na decisão dos adotantes, oferecendo subsídios para que gestores e organizações possam direcionar campanhas mais eficazes. O resultado final deve contribuir para a redução do tempo de permanência dos animais nos abrigos, aumentando as chances de adoção responsável e promovendo melhores condições de bem-estar.

Referências

Bradley, J., Aiyer, A., Matteson, D.S., Lozier, J.D. and Macdonald, B. (2021) "Increasing adoption rates at animal shelters: a two-phase approach to predict length of stay and optimal shelter allocation", *BMC Veterinary Research*, Springer Nature. https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-020-02728-2

El Kharoua, R. Predict Pet Adoption Status Dataset. Kaggle, 2024. Disponível em: https://www.kaggle.com/datasets/rabieelkharoua/predict-pet-adoption-status-dataset DOI: 10.34740/KAGGLE/DS/5242440. Acesso em: 27 set. 2025.

Sazara, C. and Gao, X. (2023) "Predicting Animal Shelter Pet Adoption Times and Feature Importance Analysis using CatBoost", *Proceedings of the International*

Conference on Artificial Intelligence and Applications. ResearchGate. https://www.researchgate.net/publication/373805640 Predicting Animal Shelter Pet Adoption Times and Feature Importance Analysis using CatBoost

Lu, H., Li, X., Zhang, Y. and Wang, T. (2025) "Pet Adoption Status Prediction Based on Multiple Machine Learning Models", *Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024)*, SciTePress. https://www.scitepress.org/Papers/2024/133313/133313.pdf

Foris, B., Marchewka, J., Camerlink, I. and Wemelsfelder, F. (2025) "AI for One Welfare: the role of animal welfare scientists in developing valid and ethical AI-based welfare assessment tools", *Frontiers in Veterinary Science*, Frontiers Media S.A. https://pmc.ncbi.nlm.nih.gov/articles/PMC12360914/

Kiv, S.L., Harris, J. and Zhang, L. (2024) "Enhancing Animal Shelter Operations with Time Series / Predictive Analytics", *SMU Data Science Review*, Southern Methodist University. https://scholar.smu.edu/datasciencereview/vol8/iss3/2