

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

/ Publications of IISER Mohali (/jspui/handle/123456789/4)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2517

/ Research Articles (/jspui/handle/123456789/9)

Title:	Analytic Theory of Multiple-Quantum NMR of Quadrupolar Nuclei
Authors:	Vinay, G. (/jspui/browse?type=author&value=Vinay%2C+G.)
	Ramachandran, Ramesh (/jspui/browse?type=author&value=Ramachandran%2C+Ramesh)
Keywords:	Contact transformation
	Effective Floquet Hamiltonians
	Irreducible spherical tensor operators
	Phase cycling
	Quadrupolar interactions
Issue	2016
Date:	
Publisher:	Elsevier Ltd
Citation:	Annual Reports on NMR Spectroscopy, 89, pp. 123-184
Abstract:	In this review, an analytic framework based on the concept of effective Floquet Hamiltonians is
	presented to describe the nuances of multiple-quantum (MQ) NMR of quadrupolar nuclei in static
	solids. Employing spin I = 3/2 as a case study, a pedagogical description of the time evolution of
	the coherences and populations in MQ experiments is presented through analytic expressions
	derived from the density operator formalism. From an experimental perspective, the conditions
	required for optimal implementation of the various stages involved in MQ experiments are identified and explained in terms of effective Floquet Hamiltonians. Additionally, the role of experimental
	parameters (such as duration of pulse, amplitude of the pulse, etc.,) in the derivation of effective
	Hamiltonians is discussed in detail. The analytic framework presented in the present study is quite
	general and is extendable to describe other quadrupolar spins in the periodic table.
URI:	https://www.sciencedirect.com/science/article/pii/S0066410316300138

Research Articles (/jspui/handle/123456789/9)

	Files in This Item:				
File		Description	Size	Format	
	Need to add pdf.odt (/jspui/bitstream/123456789/2517/1/Need%20to%20add%20pdf.odt)		7.9 kB	OpenDocument Text	View/Open (/jspui/bitstream/12345

Show full item record (/jspui/handle/123456789/2517?mode=full)

. (/jspui/handle/123456789/2517/statistics)

Appears in

Collections:

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

(https://www.sciencedirect.com/science/article/pii/S0066410316300138) http://hdl.handle.net/123456789/2517 (http://hdl.handle.net/123456789/2517)