Chapter 4.2

```
1. Project the vector b onto the line through a. Check that e is perpendicular to a.
```

a. $(a a^T) / (a^T a) b$

$$p = \begin{bmatrix} 5/3 \\ 5/3 \end{bmatrix} \\ \begin{bmatrix} 5/3 \\ 5/3 \end{bmatrix}$$

$$e = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 5/3 \\ 5/3 \end{bmatrix}$$
$$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 5/3 \end{bmatrix}$$

$$e = \begin{bmatrix} -2/3 \\ 1/3 \end{bmatrix}$$

 $\begin{bmatrix} 1/3 \end{bmatrix}$

$$e(a^T) = [-2/3, 1/3, 1/3][1, 1, 1]$$

= -2/3 + 1/3 + 1/3

$$e = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 1 & - & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = 0$$

$$e(a^T) = 0$$

3. For each of the above, find P, verify $P^2 = P$, compute p by Pb.

a. $(a a^T) / (a^T a) b$

([1, 1, 1][1 1 1] / [1 1 1][1, 1, 1])([1, 2, 2])

$$P = 1/3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$p = [5/3]$$

$$p = [5/3]$$

$$[5/3]$$

b. ([-1, -3, -1][-1 -3 -1] / [-1 -3 -1][-1, -3, -1])([1, 3, 1])

$$P = 1/11[3 9 3]$$

$$[1 3 1]$$

11. Project b onto the column space of A by solving $A^T(Ax) = A^T(b)$ and p = Ax. Find e = b - p.

a.
$$A^T(A) = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 2 \end{bmatrix}$

$$(A^T(A))^{-1} = 1/1[2 -1]$$

*
$$A^T = [2 -1][1 0 0] [-1 1][1 0 0]$$

* b =
$$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$
 $\begin{bmatrix} 4 \end{bmatrix}$

$$x^{-} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$p = [1 1][-1]$$

$$[0 1][3]$$

$$[0 0]$$

$$e = \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

b.
$$A^T(A) = \begin{bmatrix} 2 & 2 \end{bmatrix}$$

 $\begin{bmatrix} 2 & 3 \end{bmatrix}$

$$(A^T(A))^{-1} = 1/2[3 -2]$$

 $[-2 2]$

*
$$A^T = 1/2 [3 -2][1 1 0] [-2 2][1 1 1 1]$$

$$x^{-}$$
 = 1/2 [-4] = [-2] [12] [6]

$$p = [1 1][-2]$$

$$[1 1][6]$$

$$[0 1]$$

12.

21. Multiply P by itself, show that $P^2 = P$.

$$P = A(A^{T}(A))^{-1} A^{T}$$

$$P^{2} = A(A^{T}(A))^{-1} A^{T} A(A^{T}(A))^{-1} A^{T}$$

$$= A(A^{T}(A))^{-1} I A^{T}$$

$$= A(A^{T}(A))^{-1} A^{T}$$

$$= P$$

Explain why P(Pb)=Pb: The vector Pb is in the column space, so the projection is always itself.

22. Prove that P is symmetric by computing P^T.

$$P^T = (A (A^T(A))^{-1} A^T)^T$$

= $(A^T)^T ((A^T(A))^{-1})^T (A)^T$
= $A (A^T(A))^{-1} A^T$
= P

Chapter 4.3

1. With b = { 0, 8, 8, 20 } while t = { 0, 1, 3, 4 }, set up and solve the normal equations $A^T(Ax) = A^T(b).$

{
$$C + 0D = 0$$
 }
{ $C + 1D = 8$ }
{ $C + 3D = 8$ }
{ $C + 4D = 20$ }

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$$

$$x = [C]$$

$$[D]$$

$$b = [0] \\ [8] \\ [8] \\ [20]$$

$$(A^T(A)) = [4 8]$$

 $[8 26]$

1 + 4t = b is the closest approximation.

For the best straight line in figure 4.9a, find its four heights pi and four

errors ei. What is the minimum value $E = e1^2 + e2^2 + e3^2 + e4^2$?

$$p1 = 1 + 4(0) = 1$$

$$p2 = 1 + 4(1) = 5$$

$$p3 = 1 + 4(3) = 13$$

$$p4 = 1 + 4(4) = 17$$

$$e1 = 0 - 1 = -1$$

$$e2 = 8 - 5 = 3$$

$$e3 = 8 - 13 = -5$$

$$e4 = 20 - 17 = 3$$

The minimum value for E is 1 + 9 + 25 + 9 = 44.

2. With $b = \{ 0, 8, 8, 20 \}$ while $t = \{ 0, 1, 3, 4 \}$, write down the four equations Ax = b.

```
[ 1 0 ][ C ] [ 0 ]
[ 1 1 ][ D ] = [ 8 ]
[ 1 3 ] [ 8 ]
[ 1 4 ] [ 20 ]
```

Change the measurements to $p = \{ 1, 5, 13, 17 \}$ and find an exact solution.

As shown in problem 1, 1 + 4t = p is an exact solution, when C = 1 and D = 4.

3. Check that e = b - p = [-1, 3, -5, 3] is perpendicular to both columns of the same matrix A.

$$A1^T = [1 1 1 1]$$

 $A2^T = [0 1 3 4]$

$$A1^T(e) = 6 - 6 = 0$$

 $A2^T(e) = 3 - 15 + 12 = 0$

What is the shortest distance ||e|| from b to the column space of A?

```
||e|| = sqrt(1 + 9 + 25 + 9)
= sqrt(44)
```

6. Project b = [0, 8, 8, 20] onto the line through a = [1, 1, 1, 1]. Find $x = a^T(b) / a^T(a)$

and p = xa. Check that e = b - p is perpendicular to a, and find the shortest distance ||e||

from b to the line through a.

$$x = a^T(b) / a^T(a)$$

= [1111][0, 8, 8, 20] / [111][1, 1, 1, 1]
= 36 / 1
= 36