Deep Learning for Natural Language Processing

Lecture 10 – Text classification 4: self-attention and BERT

Dr. Martin Tutek June 20, 2023

Ubiquitous Knowledge Processing Department of Computer Science Technical University of Darmstadt

UKP Web

Recap

In the previous lecture we:

- Introduced the Transformer architecture
- · Explained what we gain from contextualized representations
- Analyzed the Transformer attention block
- · Introduced byte-pair encodings & what we gain by them
- · Introduced positional embeddings & why we need them

Recap: the Transformer architecture

Recap: Transformer for machine translation

We studied the Transformer encoder-decoder for machine translation

Image source: <u>The illustrated Transformer</u>

The model is built of stacked encoder and decoder blocks

Recap: Transformer encoder-decoder

The encoder and decoder are made of stacked encoder and decoder blocks

Recap: Transformer encoder-decoder

Recap: Transformer encoder and decoder block

The encoder and decoder blocks are different – the decoder block has an additional **encoder-decoder attention** (cross-attention) layer

Recap: Transformer encoder block

Each Transformer encoder block consists of:

- 1. Self-attention: **contextualize** representations
- Residual connection + normalization
- 3. **Feed-forward** layer (1 hidden layer NN)
- Residual connection + normalization

Recap: Transformer encoder-decoder

Recap: Transformer decoding in practice

Transformer decoding gif

Next steps?

Next steps?

BERT

Fine-tuning BERT
Variants of pretraining tasks

Motivation

The transformer encoder-decoder model is **really** good at sequence-to-sequence tasks

- It scales well (to many layers & parameters)
- It performs well on long sequences
- It's easier to optimize (residual connections)
- It's **faster to run** (parallel processing in encoder)

However – we can **only** use it for the **task it was trained on**

Motivation

Transfer learning

... is applying knowledge gained when **solving one task** to a **related** task.

Gained knowledge \rightarrow encoded in a trained model.

Where have we seen something like this before?

Word2vec (CBOW & Skip-gram)

We **train** the word embeddings on an *auxiliary task*, then use them as input for other models Can we apply this to **Transformer** encoders to obtain pretrained **contextualized** embeddings?

BERT

Next steps?
BERT
Fine-tuning BERT
Variants of pretraining tasks

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

BERT

What we have

· A model: the Transformer

What we want

Pretrained contextualized word representations

What we need

- The auxiliary pretraining task
- · ... ideally, it should not require labeled data (expensive)

BERT: pretraining objective

Recall: what was the word2vec training objective?

CBOW: predict center word given context words

· Skip-gram: predict context words given center word

Can we use a **similar** task with Transformer models?

BERT: pretraining objective

BERT: pretraining objective

- 1. For an input sequence $\{x_i\}_{i=1}^n$, we mask an input token(s)
- 2. We encode the inputs with a Transformer encoder
- 3. We **reconstruct** the masked token(s)

What is masking?

BERT: masked language modeling (MLM)

The Transformer model contextualizes an input sequence $\{x_i\}_{i=1}^n$ of (subword) tokens into a sequence of hidden states $\{s_i\}_{i=1}^n$.

- 1. With probability p_{mlm} , mask each input token ($p_{mlm}=0.15$)
- 2. If a token is masked
 - \cdot 80% of the time, replace it with a special **<MASK>** token
 - \cdot 10% of the time, replace it with a random token
 - 10% of the time, do not mask it
- 3. **Only** for the **masked tokens**
 - · Predict which token was masked

BERT: masked language modeling (MLM) [Image source]

Dr Martin Tutek

BERT: masked language modeling (MLM)

And... it works

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GLUE Test results (GLUE benchmark). Table from BERT paper

However – we are not there yet

How do we obtain sentence representations?

BERT: next sentence prediction (NSP)

We want to have a sentence representation **out-of-the-box**

- 1. We add a special **CLS** token as the **sentence representation**
- 2. We add a special **SEP** token to separate **two input sentences**
- 3. We predict (based on the CLS token) if Sent.1 directly precedes Sent.2 in the pretraining dataset

BERT: next sentence prediction (NSP)[Image source]

BERT: pretraining

Combining the MLM and NSP objectives:

- 1. Take a **large corpus** of unstructured text (Wikipedia, BookCorpus) and retain information about position of **sentences** in each article
- 2. Create the input sequence: $\mathbf{in} = [\mathsf{CLS}] \{ m{x}_i^1 \}_{i=1}^{n_1} [\mathsf{SEP}] \{ m{x}_i^2 \}_{i=1}^{n_2}$
 - 2.1 Sample Sentence_1 from the dataset
 - 2.2 With $p_{nsp}=0.5$, take Sentence_2 as the following sentence (heads) or randomly sample it (tails)
- 3. Mask $p_{mlm}=0.15$ of **non-special** input tokens (recall: 80/10/10)
- 4. Encode inputs with transformer encoder: $\mathbf{trf}(\mathbf{in}) o \{s_i\}_{i=1}^{n_1+n_2+2}$
- 5. Pretraining tasks
 - 5.1 **MLM**: reconstruct masked tokens $s_i \rightarrow x_i \quad \forall i \in \{\text{masked}\};$
 - 5.2 **NSP**: predict if sentences are successors $s_1 \rightarrow \{0,1\}$.

BERT: summary

BERT is a pretrained language model (PLM)

- Through a language modeling pretraining task, the model has learned to recognize patterns of language and apply them for the task of text reconstruction
- · Text reconstruction is, however, rarely useful in isolation
- In practice: use the PLM as a **starting point** (a very good initialization) for **fine-tuning** (additional training) for another task

BERT: applications

Now we have the pretrained BERT – a Transformer encoder.

What's next?

How to use this model for downstream tasks?

BERT

Fine-tuning BERT

Using BERT for NLP tasks

Fine-tuning is the procedure where we start from a base **pretrained** model and adapt its internal representations to our task.

Fine-tuning variants:

- 1. Vanilla fine-tuning: add a decoder head to the model, then:
 - 1.1 Train **only** the decoder head;
 - 1.2 Train **progressively** more layers: first the decoder head, then also the last layer, then also the second to last ...;
 - 1.3 Train the **entire network** at the same time, maybe with **different learning** rates per layer.
- 2. **Adapters**: additional randomly initialized layers inserted inside the transformer layers
- 3. **Prompting** & in-context learning: future lectures

Using BERT for NLP tasks

What exactly are **decoder heads**?

Randomly initialized additional layers (usually linear) added on top of the pretrained model which perform the downstream task.

Using BERT: single sequence classification

Image from BERT paper

For single **sequence** classification:

- Add a randomly initialized task decoder head to the model
- 2. **Encode** the sequence along with the [CLS] special token
- 3. Use the [CLS] representation as input to decoder head

Alternatives to using CLS?

- Averaging over token representations
- ... from the last four layers
 29 | Dr. Martin Tutek

Using BERT: sentence pair classification

Image from BERT paper

For pair sequence classification:

- Add a randomly initialized task decoder head to the model
- Encode both sequences along with the [CLS] special token
- 3. Use the [CLS] token representation as input to decoder head

Using BERT: span extraction QA

Image from BERT paper

For **span extraction** QA:

- Add randomly initialized start-of-span and end-of-span vectors to the model.
- 2. Encode both sequences
- 3. Highest dot product of **token representation** with
 start-of-span and end-of-span is
 the predicted span
 - ... such that end-of-span > start-of-span

Using BERT: sequence labeling

Image from BERT paper

For **sequence labeling**:

- Add a randomly initialized task decoder head to the model
- 2. **Encode** the sequence along with the [CLS] special token
- 3. Use the **token representations** as inputs to decoder head

BERT

Variants of pretraining tasks

Variants of pretraining tasks

We have used **MLM** and **NSP** – are there some *better* tasks for pretraining language models?

Perhaps in an encoder-decoder setup?

Image from BART paper

Variants of pretraining tasks

- · Language modeling
- · Token masking: MLM
- Token deletion: masking, but completely removes tokens from input model needs to determine where a token is missing
- Text infilling: masking, but multiple tokens are replaced with a single [MASK] token at the same time
- Sentence permutation: input permuted sentence, reconstruct correct word order (*linearization*)
- **Document rotation**: document is rotated so that it starts from a **random token**. The model has to determine the actual start of the document.

Variants of (supervised) pretraining tasks

What if we decide to use **supervised data** – but from various datasets?

Image from T5 paper

Pretrained language model architectures

(a) BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation.

(b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.

Takeaways

- BERT is a pretrained language model which produces contextualized token representations of input TeXstudio
- It can be used as an **initialization** (starting point) for **fine-tuning** task-specific models
 - Extras: [CLS] and [SEP] tokens
 - Applications of BERT in classification, sequence labeling and span-extraction QA
- Other pretraining tasks are also viable
 - Unsupervised: sentence permutation, text iniflling
 - · Supervised: translation, summarization

Useful resources

- <u>The annotated Transformer</u> by Sasha Rush
- <u>The illustrated Transformer</u> by Jay Allamar
- The illustrated BERT by Jay Allamar

License and credits

Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Credits

Martin Tutek

Content from ACL Anthology papers licensed under CC-BY https://www.aclweb.org/anthology