

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

UNIDAD DE APRENDIZAJE:

Modelado y Simulación de Sistemas

NIVEL: III

Mecatrónicos

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Modela sistemas mecatrónicos con base en herramientas matemáticas y computacionales.

CONTENIDOS:

- I. Principios de Modelado
- II. Diagramas de Enlace
- III. Identificación de Sistemas Dinámicos

ORIENTACIÓN DIDÁCTICA:

Esta unidad de aprendizaje se abordará mediante la estrategia de enseñanza-aprendizaje basado en problemas, el facilitador aplicará los métodos analítico, deductivo, inductivo y analógico. Las técnicas que auxiliarán a la estrategia seleccionada serán las siguientes: definición y resolución de problemas, organizadores gráficos, simulaciones, exposición en equipo, lluvia de ideas, cuadro CQA, realización de prácticas e investigación documental.

EVALUACIÓN Y ACREDITACIÓN:

La presente Unidad de Aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación diagnóstica, evaluación formativa, sumativa y rubricas de autoevaluación, coevaluación y heteroevaluación.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los lineamientos establecidos por la academia.
- Acreditación en otra Unidad Académica del IPN u otra institución educativa externa al Instituto nacional ó internacional previo convenio establecido.

BIBLIOGRAFÍA:

- 1. Borutzky, Wolfang. (2010), Bond Graph Methodology (1ª edición), USA: Springer. ISBN 978-1-84882-881-0
- Cellier, F.E. (1991), Continuous System Modelling (1ª edición), USA: Springer. ISBN: 978-0387975023 *
- 3. Karnopp, D. C. (2006), System Dynamics: Modeling and Simulation of Mechatronic Systems, (4ª edición), USA: Wiley. ISBN: 978-0471709657
- 4. Lanczos, Cornelius (1986), The Variational Principles of Mechanics (4ª edición), UK; Dover Publications, ISBN: 978-0486650678 *
- 5. Meise, J. (1984), Principles of Electromechanical Energy Conversion (1ª edición), USA: Krieger Pub Co. ISBN: 978-0898744958 *

*Libro clásico

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA:

Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica.

SALIDA LATERAL: En Mecatrónica.

ÁREA DE FORMACIÓN: Profesional.

MODALIDAD: Presencial.

UNIDAD DE APRENDIZAJE: Modelado y Simulación

de Sistemas Mecatrónicos

TIPO DE UNIDAD DE APRENDIZAJE: Práctica.

Obligatoria.

VIGENCIA: Agosto 2011

NIVEL: III

CRÉDITOS: 3.0 Tepic 2.90 SATCA

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye a conformar el perfil de egreso del Ingeniero Mecatrónico, así como el análisis de los sistemas mecatrónicos y su simulación a través de las siguientes competencias: resolución de problemas, toma de decisiones, trabajo en equipo, desarrollo de habilidades de argumentación y presentación de la información, fomenta y desarrolla la comunicación asertiva, la creatividad y el pensamiento analítico para la solución de problemas afines al área de ingeniería.

La unidades de aprendizaje precedentes son: Mecánica de la Partícula, Ecuaciones Diferenciales y Sistemas Neurodifusos y Circuitos Eléctricos Avanzados. La procedente es: Control Clásico.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE.

Modela sistemas mecatrónicos con base en herramientas matemáticas y computacionales.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 0.0

HORAS PRÁCTICA/SEMANA: 3.0

HORAS TEORÍA/SEMESTRE: 0.0

HORAS PRÁCTICA/SEMESTRE:

54.0

HORAS TOTALES/SEMESTRE:

54.0

AUTORIZADO POR: Comisión de Programas Académicos del Consejo General Consultivo del IPN.

Ing. Rodrigo de Jesús Serrano

Domínguez

Secretario Técnico de la Comisión

de Programas Académicos

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

N° UNIDAD TEMÁTICA: I

UNIDAD DE APRENDIZAJE: Modelado y Simulación de Sistemas Mecatrónicos

HOJA: 3

DE

9

	NOM	BRE:	Princ	ipios de	e modela	ıdo

UNIDAD DE COMPETENCIA

Analiza los sistemas mecatrónicos con base en las herramientas de Mecánica Clásica

No.	CONTENIDOS	Activi	AS AD dades cencia	Activid Apren	S TAA ades de idizaje nomo	CLAVE BIBLIOGRÁFICA
		T	P	T	P	
1.1	Herramientas de Modelado de sistemas mecatrónicos		0.5		1.5	5B, 6C, 1C
1.2	Introducción al Cálculo de Variaciones		2.0		4.5	
1.2.1	Problemas de máximos y mínimos.					
1.2.2	Conceptos Variacionales					
1.2.3	Funcionales	}			1	
1.2.4	Aplicaciones del Cálculo de Variaciones					
1.2.5	Métodos numéricos de aproximación					
1.3	Ecuación de Movimiento y Dinámicas.		2.0		4.5	
1.3.1	Leyes de Newton.			•		
1.3.2	Lagrangiano	Ì				
1.3.3	Ecuación de Euler-Lagrange	j				
1.3.4	Principio de Hamilton					
1.3.5	Leyes Eléctricas.					
1.4	Modelado y Simulación de Sistemas Mecánicos y Eléctricos		1.5		2.5	
	Subtotales:		6.0		13.0	

ESTRATEGIAS DE APRENDIZAJE

Encuadre del curso y formación de equipos de trabajo.

La presente unidad se abordará a partir de la estrategia de aprendizaje basado en problemas, el facilitador aplicará el método analítico y deductivo, lo que permitirá la consolidación de las siguientes técnicas de aprendizaje: elaboración de mapas conceptuales, cuadro CQA, lluvia de ideas, análisis y resolución de problemas, indagación de temas, búsqueda y manejo de información, organización y gestión de tiempo, exposición y trabajo en equipo, discusión de conceptos, elaboración de ensayos y realización de las prácticas 1 y 2.

E١	/	Α	1.	ĮΑ	C	:10	Ć	N	\Box	F	1	OS	A	PF	₹F	N	ID	12	Α.	IF.S	;

Evaluación diagnóstica Portafolio de evidencias: Problemario. 10% Reporte de prácticas. 20% Organizadores gráficos 10% Exposición en equipo 10% Evaluación escrita 40% Autoevaluación (con rúbrica) 5% Coevaluación (con rúbrica) 5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Modelado y Simulación de Sistemas Mecatrónicos

HOJA: 4

DE

9

	N° UNIDAD TEMÁTICA:			Diagramas	de Enlace	
	UNIDAD DE COMPE		-		-	
tvalua me	contenidos de los sistemas mecatrónicos con base en los Di	HORAS AD Actividades de docencia		HORA Activid Apren	S TAA ades de dizaje nomo	CLAVE BIBLIOGRÁFIC <i>I</i>
		T	P	T	Р	
2.1 2.1.1 2.1.2 2.1.3	Introducción a los diagramas de enlace. Modelado con enfoque generalizado. Variables generalizadas y elementos de los diagramas de enlace. Diagramas de enlace tipo "palabra".	0.5	0.5		1.0	2B, 3B, 4B
2.1.4	Reglas de reducción de diagramas de enlace.					
2.2	Concepto de Causalidad computacional y su uso en los diagramas de enlace.		0.5		1.0	A. C.
2.2.1 2.2.2 2.2.3	Representación de causalidad computacional. Enlaces activados. Reglas de asignación de causalidad.					
2.3	Modelado y Simulación de sistemas físicos por medio de diagramas de enlace. Análisis de casos de estudio y simulación (e.g.		1.5		3.5	
2.3.1	en el toolbox BG de Matlab).					
2.4	Obtención del modelo matemático a partir de los diagramas de enlace.		1.5		3.5	
2.4.1	Ecuaciones en espacio de estados y función de transferencia a partir de un modelo con diagramas de enlace.					
2.5	Simulación y validación				3.0	
	Subtotales:		4.0		12.0	1

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará a partir de la estrategia de aprendizaje basado en problemas, el facilitador aplicará el método analítico e inductivo, lo que permitirá la consolidación de las siguientes técnicas de aprendizaje: lluvia de ideas, análisis y resolución de problemas, indagación de temas, búsqueda y manejo de información, trabajo en equipo, discusión de conceptos y realización de la práctica 3.

EVALUACIÓN DE LOS APRENDIZAJES

Portatolio de evidencias:	
Problemario	20%
Reporte de práctica	30%
Evaluación escrita	40%
Autoevaluación (con rúbrica)	5%
Coevaluación (con rúbrica)	5%

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Modelado y Simulación de Sistemas Mecatrónicos

HOJA: 5

DE

N° UNIDAD TEMÁTICA: III

NOMBRE: Introducción a la identificación de

Sistemas Dinámicos

COMPETENCIA ESPECÍFICA

Determina el comportamiento de los sistemas mecatrónicos complejos con base en los principios y métodos de Identificación.

No.	CONTENIDOS	Activi	AS AD dades cencia	Activida Apren	S TAA ades de dizaje nomo	CLAVE BIBLIOGRÁFICA
		Т	P	Т	P	
3.1.1 3.1.2	Principios de Identificación Identificación Paramétrica Identificación no Paramétrica		2.0		4.5	3B, 4B
3.2	Métodos de identificación		4.0		8.5	
3.2.1 3.2.2	Métodos adaptables. Redes neuronales.					
	Sub	otales:	6.0		13.0	

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará a partir de la estrategia de aprendizaje basado en problemas, utilizando el método analítico y analógico lo que permitirá la consolidación de las siguientes técnicas de aprendizaje: análisis y resolución de problemas, indagación de temas, búsqueda y manejo de información, exposición y trabajo en equipo, discusión de conceptos y realización de las prácticas 4 y 5.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias: Reportes de prácticas 50% Exposición en equipo 20% Evaluación escrita 20% Autoevaluación (con rúbrica) 5% Coevaluación (con rúbrica) 5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

HOJA: 6

DE

9

RELACIÓN DE PRÁCTICAS

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Simulación de Sistemas Mecánicos como: Péndulo, Masa – Resorte, Masa – Resorte – Amortiguador, Péndulo Invertido, Péndulo de Furuta, Péndulo de Kapitza, Biela-Manivela-Corredera, etc.	I	12.0	Laboratorio de Neumática y Control de Procesos.
2	Simulación de Sistemas Eléctricos: R, RL, RC, RLC y combinaciones.		7.0	
3	Simulación de un robot de 2GDL, de un Sistema de Tanques, de un Bioreactor, etc.	II	16.0	
4	Simulación de un modelo de Identificación Adaptable Directa e Indirecta de un Sistema Lineal de Primer orden. (Motor de CD)	III	9.5	
5	Simulación de una Red Neuronal Dinámica (Hopfield o Elman) para la identificación de un Sistema Lineal de Primer Orden. (Motor de CD)	III	9.5	
		TOTAL DE HORAS	54.0	

EVALUACIÓN Y ACREDITACIÓN:

Las prácticas se consideran requisito indispensable para acreditar esta unidad de aprendizaje. Las prácticas aportan el 20% de la calificación de la unidad temática I, el 30% de la unidad temática II y el 50% de la unidad temática III, el cual está considerado dentro de la evaluación continua.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Modelado y Simulación de Sistemas Mecatrónicos

HOJA: 7

9

PERÍODO	UNIDAD	PROCEDIM	IENTO DE EVALUACIÓN
1	l y II	Evaluación continua 60	%
		Evaluación escrita 40	%
2	III	Evaluación continua 60	%
		Evaluación escrita 40	%
3	IV y V	Evaluación continua 60	%
		Evaluación escrita 40	%
		final son: La unidad I aporta el 30% de la c La unidad II aporta el 30% de la c La unidad III aporta el 40% de la c Esta unidad de aprendizaje tambié • Evaluación de saberes lineamientos que establez • Acreditación en otra UA de	alificación final. alificación final. en se puede acreditar mediante: previamente adquiridos con base en los

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Modelado y Simulación de Sistemas Mecatrónicos

HOJA: 8 **DE** 9

CLAVE	В	С	BIBLIOGRAFÍA
1		X	A. S. Poznyak, Modelado Matemático de los Sistemas Mecánicos, Electricos y Electromecánicos, Pearson (2005), Contrato en trámite, Disponible en http://www.ctrl.cinvestav.mx/~coordinacion/documents/modelado_matematico.pdf
2	X		Borutzky, Wolfang. (2010), Bond Graph Methodology (1ª edición), USA: Springer. ISBN 978-1-84882-881-0
3	Х		Cellier , F.E. (1991), Continuous System Modelling (1 ª edición), USA: Springer. ISBN: 978-0387975023*
4	Х		Karnopp D. C. (2006), System Dynamics: Modeling and Simulation of Mechatronic Systems (4ª edición), USA: Wiley. ISBN: 978-0471709657
5	x		Lanczos , Cornelius. (1986), The Variational Principles of Mechanics (4ª edición), UK: Dover Publications. ISBN: 978-0486650678 *
6		×	Meisel , J. (1984), Principles of Electromechanical Energy Conversion (1ª edición), USA: Krieger Pub Co. ISBN: 978-0898744958*
			*Libro clásico

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

	_			_	_			_	_	_	_	_
1	D.	ΔΊ	ſΟ	S	G	F١	JF	R	Δ		F	ς.

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS UNIDAD ACADÉMICA:

AVANZADAS

PROGRAMA

NIVEL III ACADÉMICO: Ingeniería Mecatrónica

ÁREA DE FORMACIÓN: Científica Terminal y de Institucional **Profesional** Básica Integración

ACADEMIA: Mecatrónica UNIDAD DE APRENDIZAJE: Modelado y Simulación de

Sistemas Mecatrónicos

Maestría o Doctorado en Ciencias de la Ingeniería

2. OBJETIVO DE LA UNIDAD DE APRENDIZAJE: Modela sistemas mecatrónicos con base en herramientas matemáticas y computacionales.

3. PERFIL DOCENTE:

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES		
Formulación de Modelos Matemáticos. Cálculo Variacional. Sistemas Dinámicos y Control. Sistemas Mecatrónicos. En el Modelo Educativo Institucional (Modelo Educativo Institucional (MEI)).		Manejo de grupos. Motivación. Capacidad de análisis y reflexión. Diseño de estrategias y técnicas de enseñanza aprendizaje. Abstracción. Toma de decisiones. Dominio de la asignatura. Manejo de materiales didácticos. Organización. Creatividad. Uso de las TIC.	Vocación docente. Honestidad. Ejercicio de la crítica constructiva. Respeto. Tolerancia. Ética. Responsabilidad. Colaboración. Superación docente y profesional. Buena presencia. Compromiso social e institucional.		

EL'ABORÓ

Ing. Carlos Daniel Rico Manduiano Presidente de Academia

M. en C. Jorge Fonseca Campo Enc. de la Subdirección Académica M. en C. Axodí Rafael Carvallo Domínguez Directo de la Unidad Académica