Synthesis of Digital Systems COL 719

Part 6: Technology Mapping

Preeti Ranjan Panda

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

Technology Mapping

- Also called Cell Library Binding
 - technology dependent
 - implement logic network using cells from a library
 - minimise area for given delay
 - minimise delay for given area

Cell Library

- Each cell consists of
 - Cell function
 - multiple i/p, single o/p
 - Cost
 - area
 - propagation delay
 - (minimum, typical, maximum)
 - worst case
 - function of fanout/load
 - power dissipation

Mapping Problem

- Find an equivalent network whose internal nodes are cell instances
 - minimising an objective function

Technology Mapping

Implement given circuit with library cells minimising cost Cell Library

Circuit - Logic Network

Technology Mapping Alternatives

Mapping Example

Discussion from: G. de Micheli, Synthesis and Optimization of Digital Circuits

Matching

Covering All Vertices

Covering v1: (m2 + m3 + m5)

Covering v2: (m1 + m2) Covering v3: (m4 + m5)

Some Covers are Not Legal

Choosing m1 and m5 covers all vertices but not legal

Input x to OR2 gate not available from AO2 gate

Connectivity Requirement

If m1 is chosen, choice of m3 (and any other match that leaves x as an available input) is implied

m1 => m3 m4 => m3

More Clauses: (m1' + m3)(m4' + m3)

Overall Requirements

- All vertices must be covered
- Connectivity requirements for each match must be satisfied

- Find solution (truth assignment to all variables) such that
 - Equation is satisfied
 - Boolean Satisfiability Problem
 - Cost is minimised

Matching Approaches

- Structural Matching
 - check for isomorphism
 - general graph isomorphism intractable
 - tree-matching easier
- Boolean Matching
 - more general
 - e.g., (a'b' + b'c + ab) matches (a'b' + ac + ab)
 - more complex

Pre-processing for Covering

Decomposition

- Decompose logic network into NANDs (and INVERTERS)
- Structural matching becomes easier

Partitioning

- Convert multi-o/p network into multiple single-o/p networks
- Cover resulting Subject Graphs in sequence
- Results in smaller graphs
- Tree covering easier

Tree Representation

Tree Matching -1

```
MATCH (u, v) {
 u - Pattern Graph node
 v - Subject Graph node
 if (u is leaf) return TRUE
 ...
}
```

Leaf of Pattern Graph reached.
Subtree rooted at v will be matched by different pattern.

Tree Matching - 2

```
MATCH (u, v) {
  if (u is leaf) return TRUE
  else {
   if (v is leaf) return FALSE
   ...
}
```

Leaf of Subject Graph reached.
Subtree rooted at u will never be matched

Tree Matching - 3

```
MATCH (u, v) {
                                               Subject Graph
                                                                      Pattern Graph
 if (u is leaf) return TRUE
 else {
  if (v is leaf) return FALSE
  if (degree (v) ≠ degree (u))
   return FALSE;
  if (degree (v) = 1) {
     return MATCH (child (u), child (v))
  } else {
     return (MATCH (left (u), left (v))
           & MATCH (right (u), right (v)))
            (MATCH (left (u), right (v))
           & MATCH (right (u), left (v)))
```

Tree Covering

- Can be solved efficiently by Dynamic Programming
- Exhibits Optimal Sub-structure
 - if optimal solution to all descendants of node n is known
 - optimal solution to node n can be efficiently computed
- Bottom-up traversal of Subject Graph
 - list all matches at current node
 - cost = cost of matching pattern + cost of subtrees corresponding to leaves

Tree Covering Example

Tree Covering Algorithm

```
TREE_COVER (V, E) {
 COST (v) = -1 \forall internal vertices v
 COST (u) = 0 ∀ leaves u
 while (∃ node with -ve cost) {
  select any v \in V whose children have COST >= 0
  M (v) = set of all matching Pattern Graphs at v
  COST(v) = min_{m \in M(v)} (COST(m) + \sum_{x \in L(m)} COST(x))
    L (m) = vertices of Subject Graph
            corresponding to leaves of m
```