Indian Institute of Science Education and Research, Mohali

Integrated MSc, Semester: IV
Probability and Statistics: MTH 202
Tutorial 7(March 01, 2023)

Summary:

Consider a continuous random variable $X: \Omega \to (a,b)$ with Probability Density Function f_X . The state space of X is S = (a,b).

Theorem: For any continuous function $g: \mathbb{R} \to \mathbb{R}$ such that $\int_{-\infty}^{\infty} |g(t)| f_X(t) dt < \infty$,

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(t) f_X(t) dt.$$

The state space of g(X) is $\{g(x) : x \in (a,b)\}.$

Theorem. For any continuously differentiable function $h:(a,b)\to(c,d)$ with $h'(x)\neq 0$ (h is either strictly increasing or decreasing), the Probability Density Function of the random variable Z=h(X): $f_Z(t)=\chi_{(c,d)}(t)$ $f_X(\alpha(t))$ $|\alpha'(t)|$. Here $\alpha=h^{-1}$ and $\chi_{(c,d)}$ is the indicator function of the interval (c,d).

Integration by parts: Let f, g be two differentiable functions of an interval [a, b] and $G(x) = \int_a^x g(t)dt$. Then $\int_a^b f(t)g(t)dt = [fG]_a^b - \int_a^b f'(t)G(t)dt$.

Conditional Probablity: $P(A|B) = \frac{P(A \cap B)}{P(B)}$. Question

- 1. Suppose we pick a point x randomly from the interval (0,1). Let X be the first digit in the decimal expansion of x. Find Probability Mass Function P_X and the probability distribution function $F_X(t)$.
- 2. Let X denote the annual rainfall (in centimeters) here. Suppose X follows the NORMAL distribution with avarage $\mu=110$ and standard Deviation $\sigma=10$. What is the probability that rainfall in this year will be above 100 Centimeter? You may use the approximate value of $\Phi(1)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^1 e^{-\frac{1}{2}x^2}dx=0.8413$. Find the Probability Density Function of random variable $Y=e^X$. Describe the state space $S\subseteq\mathbb{R}$ of possible values of Y.
- 3. Let X be a random variable with Cauchy distribution. Suppose X is having Probability Density Function $f_X(x) = \frac{1}{\pi(1+x^2)}, \forall x \in \mathbb{R}$. Find the probability $P(-1 \le X \le 1)$ and $P(X \ge 1)$.
- 4. Let X be the random variable which describes the life span (in years) of an electronic device. Suppose its probability density function $f_X(x) = 5e^{-5x}$ for $x \ge 0$ (zero for other $x \in \mathbb{R}$). Find the probability that the a 9 years old device will work for at least 2 more years. Also compute $P(X \ge 2)$.
- 5. Let X be uniformly distributed over (-1,1). Find $P(|X| \ge \frac{1}{2})$ and compute the density functions of the random variables W = 2X + 5, Y = |X| and $Z = X^2$. For all these random variables describe the state space $S \subseteq \mathbb{R}$ of possible values.