Viewing and Projection

Computer Graphics

Objectives

- Introduce the classical views
- Compare and contrast image formation by computer with how images have been formed by architects, artists, and engineers
- Learn the benefits and drawbacks of each type of view

Classical Viewing

- Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface
- Classical views are based on the relationship among these elements
 - The viewer picks up the object and orients it how he would like to see it
- Each object is assumed to be constructed from flat principal faces
 - Buildings, polyhedra, manufactured objects

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
 - converge at a center of projection
 - are parallel
- Such projections preserve lines
 - but not necessarily angles

Classical Projections

Front elevation

Elevation oblique

One-point perspective

Plan oblique

Three-point perspective

Perspective vs Parallel

- Computer graphics treats all projections the same and implements them with a single pipeline
- Classical viewing developed different techniques for drawing each type of projection
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

Taxonomy of Planar Geometric Projections

Perspective Projection

Parallel Projection

Orthographic Projection

Projectors are orthogonal to projection surface

Multiview Orthographic Projection

Projection plane parallel to principal face

Usually form front, top, side views

isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric

top

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of a corner of a projected cube are the same

none: trimetric θ_1 two: dimetric three: isometric θ_2

Types of Axonometric Projections

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Can see three principal faces of a box-like object
- Some optical illusions possible
 - Parallel lines appear to diverge
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side

Perspective Foreshortening

Projectors converge at center of projection

Vanishing Points

 Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the vanishing point)

Drawing simple perspectives by hand uses these vanishing point(s)

Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube

Two-Point Perspective

- One principal direction parallel to projection plane
- Two vanishing points for cube

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube

Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution)
 - Looks realistic
- Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand (perspective projection) than parallel projections (but not more difficult by computer)

Default Projection

Default projection is orthogonal

Homogeneous Coordinate Representation

default orthographic projection

$$\begin{aligned} \mathbf{x}_p &= \mathbf{x} \\ \mathbf{y}_p &= \mathbf{y} \\ \mathbf{z}_p &= 0 \\ \mathbf{w}_p &= 1 \end{aligned} \qquad \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In practice, we can let $\mathbf{M} = \mathbf{I}$ and set the z term to zero later

Simple Perspective

- Center of projection at the origin
- Projection plane z = d. d < 0

Perspective Equations

Consider top and side views

$$x_p = \frac{x}{z/d}$$

$$y_p = \frac{y}{z/d}$$

$$z_p = d$$

Homogeneous Coordinate Form

consider
$$\mathbf{q} = \mathbf{M}\mathbf{p}$$
 where $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$

$$\mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at z = -1, and a 90 degree field of view determined by the planes

Perspective Matrices

Simple projection matrix in homogeneous coordinates

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$