PROJECT_CUBE Abschlusspräsentation

Lehrstuhl Programmierparadigmen - IPD Snelting Prof. Dr.-Ing. Gregor Snelting KIT

15. September 2011

Gruppenmitglieder und Betreuer

- Anne Catherine Jäger
- Andreas Weinberger
- Dan Lorel Miclea
- Mathias Lutsch
- Urs Kummer
- Martin Hecker und Denis Lohner
- Prof. Dr.-Ing. Gregor Snelting

Das Projekt

• Unser Ziel war es, eine Rubik's-Cube-App für Android-basierte Smartphones zu schreiben.

Das Projekt

• Unser Ziel war es, eine Rubik's-Cube-App für Android-basierte Smartphones zu schreiben.

 Der Rubik's Cube ist ein weltbekanntes Geduldsspiel, bei dem durch Rotationen einzelner Elemente alle Seiten des Würfels eine einheitliche Farbe erhalten sollen.

Unsere Vision

Besonders geachtet wurde auf:

- Eine leichte und intuitive Bedienung
- Ein benutzerfreundliches Interface
- Angemessene Grafikqualität
- Anpassbarkeit

PROJECT_CUBE: Features

Warum Sie sich für PROJECT_CUBE entscheiden sollten:

PROJECT_CUBE: Features - Grafik

- Attraktive 3D-Grafik
- Powered by OpenGL

PROJECT_CUBE: Features - Bedienung

- Leicht verständliche Touchscreen-Bedienung
- Einfache und schnelle Menuführung

PROJECT_CUBE: Features - Weiteres

- Kompetitiv: Tournament-Modus und Key-System zum Austausch von Würfelkonfigurationen
- Multilingual: Deutsch, Englisch, Französisch, Russisch
- Freie Wahl: Eigene Farben, Schrift, ...

PROJECT_CUBE: Features - Solver

• Leicht verständlicher Lösungsalgorithmus

PROJECT_CUBE: Features - Solver

• Leicht verständlicher Lösungsalgorithmus

 Farb-neutral: Der Algorithmus sucht sich den besten Start dynamisch aus.

PROJECT_CUBE: Features - Solver

• Leicht verständlicher Lösungsalgorithmus

- Farb-neutral: Der Algorithmus sucht sich den besten Start dynamisch aus.
- Braucht durschnittlich 150 Züge

Erfahrungen während der Umsetzung unserer Vision

Während der Entwicklung von PROJECT_CUBE haben wir folgendes gelernt:

Zusammenarbeit im Team

Erfahrungen während der Umsetzung unserer Vision

Während der Entwicklung von PROJECT_CUBE haben wir folgendes gelernt:

- 7usammenarbeit im Team
- Den Wert eines strukturierten und früh-startenden Arbeitsablaufs zu schätzen

Erfahrungen während der Umsetzung unserer Vision

Während der Entwicklung von PROJECT_CUBE haben wir folgendes gelernt:

- Zusammenarbeit im Team
- Den Wert eines strukturierten und früh-startenden Arbeitsablaufs zu schätzen
- Den Umgang mit erstmals fremdem Tools, wie das Android-SDK

Verwendete Programme

- Allgemein: Tortoise SVN, Skype, GIMP, LocMetrics, TeXMaker
- Planung: StarUML, Gantt Project, Skype
- Implementierung:
 Eclipse mit Android SDK, OpenGL
- Validierung: Eclipse mit Android SDK, JUnit, Ant Coverage, Robotiumund Monkey-Tests

Struktur von Project_Cube 1

Das $Project_Cube$ wurde in der Model-View-Controller Struktur entworfen.

Struktur von Project_Cube 2

Code-Coverage unserer automatisierten Tests

Coverage-Statistiken erstellt mit Ant-Coverage

Code-Coverage unserer automatisierten Tests

Coverage-Statistiken erstellt mit Ant-Coverage

- Hauptprojekt: 9857 physical executable LoC
- Testprojekt: 3435 physical executable LoC

Beide Werte wurden durch Verwendung von LocMetrics ermittelt.

Demonstration des Programms

LIVEDEMO

Ende

Vielen Dank für Ihre Aufmerksamkeit!

 $\label{eq:Gibt} \mbox{Gibt es noch etwas,} \\ \mbox{was Sie "uber P_{ROJECT_CUBE} erfahren m\"{o}chten?}$