Основы алгебры и теории чисел

Задачи на зимние каникулы.

1. Найдите уравнение касательной к единичной окружности в точке α , где $|\alpha| = 1$.

Пояснение: это задача про геометрию комплексных чисел.

2. Докажите, что кольцо $\mathbb{Z}[i]$ евклидово.

Указание: возможно, тут помогут какие-то геометрические идеи.

- 3. Докажите, что в каждом коммутативном кольце с единицей всякий максимальный идеал прост.
- 4. Рассмотрим в кольце целых чисел следующее множество

$$\mathfrak{a}_{m,n} = \{ k \in \mathbb{Z} \mid mk : n \}.$$

Докажите, что $\mathfrak{a}_{m,n}$ — идеал. Каким целым числом он порожден?

- **5.** Пусть R коммутативное кольцо с 1. Paдикалом Дэсекобсона \mathfrak{R} кольца R называют пересечение всех максимальных идеалов кольца R. Докажите, что $r \in \mathfrak{R}$ тогда и только тогда, когда элемент 1-rs обратим $\forall s \in R$.
- **6.** Пусть \mathfrak{p} простой идеал в коммутативном кольце \mathfrak{R} . Докажите, что если $\mathfrak{p} = \mathfrak{a} \cap \mathfrak{b}$ для некоторых идеалов \mathfrak{a} и \mathfrak{b} , то или \mathfrak{a} , или \mathfrak{b} совпадает с \mathfrak{p} .
- 7. Пусть I идеал в кольце R. Докажите, что подмножество

$$\sqrt{I} := \{ a \in R \mid \exists n \in \mathbb{N} \colon a^n \in I \}$$

также является идеалом в кольце R. Это подмножество называют padukanom udeana I.