Midpoint and Trapezoidal Project

Henry Yu, Joseph Keeler, Kevin Ma

1 Table of Values

f(x)	[a,b]	N	M	Т	Е	$\frac{E-T}{E-M}$
$f(x) = 2x^3 - 5x^2 + 6$	[0,1]	20	4.83375	4.8325	$4.8\overline{3}$	-1.999976
$f(x) = 3x^4 - x^3 + 7x$	[0, 1]	20	3.849063047	3.851874375	3.85	-2.0000500559
$sin(\frac{\pi x^2}{9})$	[0, 1]	20	0.1152781773	0.115483	0.1153465199	-1.996998944
e^{2x}	[0,1]	20	3.193197384	3.197189713	3.194528049	-2.000251002
$\sqrt{x+1}$	[0, 1]	20	1.218966669	1.21892091	1.218951416	-2.0

2 Sides on the Integral

Based on your table, are the midpoint and trapezoid approximations generally on the same side of the exact value of the integral? Justify your answer.

Midpoint and Exact	Trapezoid and Exact
$4.83375 > 4.8\overline{3} \qquad (M > E)$	$4.8325 < 4.8\overline{3} \qquad (T < E)$
3.849063047 < 3.85 $(M < E)$	$3.851874375 > 3.85 \qquad (T > E)$
$0.1152781773 < 0.1153465199 \qquad (M$	(T < E) 0.115483 > 0.1153465199 $(T > E)$
3.193197384 < 3.194528049 (M	(E) 3.197189713 > 3.194528049 $(T > E)$
1.218966669 > 1.218951416 (M	> E) 1.21892091 < 1.218951416 $(T < E)$

Based on the information presented, the midpoint and trapezoidal approximations are never on the same side.

3 Approximation Accuracy

Which of the approximations, midpoint or trapezoidal, is generally closer to the exact value of the integral?

$$\delta \left(\%\right) = \frac{x_{estimate} - x_{actual}}{x_{actual}}$$

Percent Error Formula

Midpoint and Exact	Trapezoid and Exact
$\delta=0.008621\%$	$\delta=0.017241\%$
$\delta=0.024336\%$	$\delta=0.048685\%$
$\delta=0.059250\%$	$\delta=0.118322\%$
$\delta=0.041655\%$	$\delta=0.083319\%$
$\delta=0.001251\%$	$\delta=0.002503\%$
% avg = 0.0270226%	% avg = 0.054014%

The midpoint approximation and its average is closer to the exact value of the integral than the trapezoidal approximation.

4 Ratios

Interpret the ratios found in the last column of the table. Use the information found to find an expression for E in terms of M and T.

By looking at the values found in the last column, it is clear that $\frac{E-T}{E-M}$ approaches -2. By solving for E from the equation,

$$\frac{E-T}{E-M} = -2$$

$$E-T = -2E + 2M$$

$$3E = T + 2M$$

$$E = \frac{T+2M}{3}.$$

5 Geometric Argument #1

Give a geometric argument to explain why the midpoint approximation gives the exact value of the integral in the case where f(x) has the form f(x) = -mx + b.

Taking the general formula f(x) = -mx + b, we find two possible points on the graph. For this example, we take the x values from the x- and y-intercepts as our two points for the endpoints of the integral for the midpoint approximation.

Midpoint Approximation

Triangle

For n = 1, Δx

$$= \frac{\frac{b}{m} - 0}{1}$$

$$=\frac{b}{m}$$

For midpoint approximation, $\Delta x [f(\frac{x}{2})]$

$$= \frac{b}{m} \cdot \frac{b}{2}$$

$$= \ \frac{b^2}{2m} \ .$$

The area obtained from the midpoint approximation equals $\frac{b^2}{2m}$.

Area of triangle =
$$\frac{1}{2} \cdot b \cdot \frac{b}{m}$$

$$= \frac{b^2}{2m} .$$

The area of the triangle is $\frac{b^2}{2m}$.

6 Geometric Argument # 2

Give a geometric argument t to explain why the information from your table showed that $M < \int_0^2 e^{x^2} \, dx < T$.