

curve

Linear Interpolation

De Cateljau algorithm – parametric Bezier curve

Extremely high smoothness & performance

decasteljau_linear_interpolation | Processing 3.3

File Edit Sketch Debug Tools Help

float
$$x=(A.x*pow((1-t),2)) + (B.x*2*(1-t)*t) + D.x*pow(t,2);$$

float $y=(A.y*pow((1-t),2)) + (B.y*2*(1-t)*t) + D.y*pow(t,2);$

Input points: 3
Quadratic Bezier curve

float x=(A.x*pow((1-t),4)) + (B.x*4*pow((1-t),3)*t) + (C.x*6*sq(1-t)*sq(t)) + (D.x*4*(1-t)*pow(t,3)) + E.x*pow(t,4); float y=(A.y*pow((1-t),4)) + (B.y*4*pow((1-t),3)*t) + (C.y*6*sq(1-t)*sq(t)) + (D.y*4*(1-t)*pow(t,3)) + E.y*pow(t,4);

float x=(A.x*pow((1-t),3)) + (B.x*3*pow((1-t),2)*t) + (C.x*3*(1-t)*sq(t)) + D.x*pow(t,3);float y=(A.y*pow((1-t),3)) + (B.y*3*pow((1-t),2)*t) + (C.y*3*(1-t)*sq(t)) + D.y*pow(t,3);

Quintic Bezier curve

Functions Separated by tab

Angles Angle_bisector Mirror Projection

normals

Convex hull

Arcs points normals

Intersection, arc, normal

curve_skel_quad

Press 'r' or 'R' to reset

_ _

angle_bisector_subdivisions