Geometria e Algebra - MIS-Z

Terzo appello - Settembre

05/09/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti (di cui 2 punti sono attribuiti in base alla qualità della redazione). Il punteggio ottenuto x sarà convertito in 30 esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Le risposte devono inoltre essere inserite negli appositi spazi bianchi e si potranno allegare fogli supplementari solo previa autorizzazione della docente.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	
Redazione	

TOTALE			

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

- (a) Il sottoinsieme $W=\{(1,y):y\in\mathbb{R}\}$ è un sottospazio vettoriale di $\mathbb{R}^2.$
 - \square VERO
 - \square FALSO

(b) Per ogni $k \in \mathbb{R}$, la matrice

$$A_k = \begin{pmatrix} -1 & 1 & 0 \\ 0 & k & 1 \\ -1 & 0 & k \end{pmatrix}$$

è invertibile.

- \square VERO
- \square FALSO

(c)	Sia $f: \mathbb{R}^{2023} \to \mathbb{R}^{2022}$ un'applicazione lineare suriettiva, allora $\ker(f)$ ha dimensione 1.
	□ VERO □ FALSO
(d)	L'intersezione di tre piani nello spazio \mathbb{E}^3 a due a due non coincidenti è sempre l'insieme vuoto.
	□ VERO □ FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\left\{ \begin{array}{l} X-Y+kZ=1\\ -X+kY-Z=-1\\ kX-Y+Z=1 \end{array} \right.$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [7 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

(a) Siano V e W due spazi vettoriali su un campo k. Si definisca quando una funzione $f:V\to W$ è un'applicazione lineare.

(b) Sia $f:V\to W$ un'applicazione lineare. Si definisca il nucleo di f e si dimostri che esso è un sottospazio vettoriale di V.

(c) Per $h \in \mathbb{R}$ si consideri l'endomorfismo

$$f_h: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (3x + 2y + hz, hx + 2z, -7x - 3y - 2hz).$$

(c1) Si determinino i valori di htali che f_h non è suriettivo.

(c2) Per h=3, si determini se f_3 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

ESERCIZIO 4 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e cartesiane della retta $r\subseteq\mathbb{E}^3$ passante per i punti A(0,-2,0) e B(1,-4,1).

(b) Al variare di h in $\mathbb R$ si consideri la retta s_h descritta dalle equazioni cartesiane

$$s_h: \left\{ \begin{array}{l} X + (h+1)Z = 0 \\ X + 2Y - 2hZ = -h \end{array} \right.$$

e si determini la posizione reciproca di r e s_h . Inoltre, quando r e s_h sono incidenti, se ne determini il punto di intersezione.

(c) Per uno dei valori trovati in (b) per cui r e s_h sono incidenti, si determinino le equazioni parametriche e un'equazione cartesiana del piano che le contiene entrambe.

ESERCIZIO 5 [6 punti]. Sottospazi vettoriali.

(a) Sia W il sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$ definito da

$$W = Span \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \right\}.$$

Si determini la dimensione e una base di W.

(b) Sia Uil sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$ definito da

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a + b + c + d = 0 \right\}.$$

Si determini la dimensione e una base di U.

(c) Si determini la dimensione e una base del sottospazio vettoriale $U\cap W.$

(d) È vero che $U + W = \mathcal{M}_2(\mathbb{R})$?