$\bigcirc 2^{31}$

1.	Classificar 🗹
Qual o maior número inteiro, sem sinal, representável num registo de 32 bits?	
$\bigcirc \ 2^{32}$	
$\bigcirc \ 2^{32}+1$	
$\bigcirc \ 2^{31}+1$	
$\bigcirc \ 2^{32}-1$	
$\bigcirc \ 2^{31}-1$	

(Cotação: 1.0 pontos)

2. Classificar

Represente o número -48 em binário (complemento para 2) num registo de 8 bits. (Represente o resultado com o prefixo ∅b , por exemplo ∅b00000000)

(Cotação: 1.0 pontos)

3. Classificar ✓

O número de 32 bits 0x12345678 representado como uma sequência de bytes com ordenação **little** endian é

- 0x87654321
- 0x78, 0x56, 0x34, 0x12
- 0x12, 0x34, 0x56, 0x78
- 0x21, 0x43, 0x65, 0x87
- 0x87, 0x65, 0x43, 0x21

(Cotação: 1.0 pontos)

http://146.193.57.27:8080/test 1/9

4.

Classificar 🗹

Sabe-se que estão presentes em memória, a partir do endereço 0x10008000, a seguinte sequência de bytes 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff Sabendo que este conjunto bytes representa uma sequência de números inteiros de 32 bits, com sinal e ordenação big endian, indique qual das seguintes opções é a sequência correcta (as respostas estão em décimal)

- Os números são inválidos
- 16777215. -16777214
- 15, 15, 15, 0, 0, 0, 0, 15
- -256, 255
- 0 15. -15

(Cotação: 1.0 pontos)

5.

Classificar 🗹

Num processador MIPS, suponha que o registo \$t0 contém o valor 1 quando se executam as instruções

sll \$t1, \$t0, 3 add \$t1, \$t1, \$t0

Qual o valor do registo \$t1 após a execução destas instruções?

- **8-** O
- Infinito
- 7
- 9
- 8

(Cotação: 1.0 pontos)

6.

Classificar

Suponha que 0x41840000 representa um número em vírgula flutuante no formato IEEE 754, precisão simples. Represente este número em vírgula flutuante, em decimal. Um exemplo de uma resposta válida é 4.5e-1 . Note que 0.13 ou 15.78 não são números em vírgula flutuante regulares, pois à esquerda da vírgula tem de estar um único algarismo e ser diferente de zero.

(Cotação: 1.0 pontos)

Classificar 🗹

7.

Considerando que 0x00000000 representa um número em vírgula flutuante no formato IEEE754, precisão simples, indique que número é este.
○ Inf
O -0.0
O.0
○ -Nan
○ Nan
○ -Inf
○ Não é um número válido no formato IEEE754
(Cotação: 1.0 pontos)
8. Classificar ✓
de uma resposta válida é 0x12345678 . Não se esqueça de incluir o prefixo 0x . (Cotação: 1.0 pontos)
9. Classificar €
Considere o seguinte ciclo:
float x = 0.0; while (x < 0.9) x = x + 0.3;
O número 0.3 tem dizima infinita quando convertido para binário.
■ Se a representação dos números fosse exacta, o ciclo iria executar 2 vezes.
Como o número 0.3 não tem representação exacta em binário, o número de vezes que o ciclo é executado pode não coincidir com a solução exacta.
O número 0.9 não é representável exactamente em binário.

http://146.193.57.27:8080/test 3/9

■ Se a representação dos números fosse exacta, o ciclo iria executar 3 vezes.	
■ Se a representação dos números fosse exacta, o ciclo iria executar 4 vezes.	
	(Cotação: 1.0 pontos)

10. Classificar ♥

Qual das opções implementa a pseudo-instrução ble \$t0, \$t1, L?

- slt \$at, \$t1, \$t0 bne \$at, \$zero, L
- slt \$at, \$t1, \$t0 beq \$at, \$zero, L
- slt \$at, \$t0, \$t1 beq \$at, \$zero, L
- slt \$at, \$t0, \$t1 bne \$at, \$zero, L

(Cotação: 1.0 pontos)

11. Classificar ⊌

Considere o troço de código

```
li $t0, 0x000100ff
L: bge $t0, $zero, L
addi $t0, $t0, -1
```

Indique quais das seguintes afirmações são verdadeiras (podem existir várias).

- O ciclo é executado menos de dez mil vezes.
- O código acima contém 2 pseudo-instruções e 1 instrução real.
- A pseudo-instrução 1i pode ser traduzida numa única instrução real.
- A instrução addi é sempre executada independentemente do branch ser tomado ou não.
- O códido termina com t0 igual a -2.
- O códido termina com t0 igual a -1.

http://146.193.57.27:8080/test 4/9

O programa não termina pois tem um ciclo infinito.
O código máquina ocupa 12 bytes.
O ciclo é executado mais de vinte mil vezes.
A tradução deste código em instruções reais produz 5 instruções.
(Cotação: 1.0 pontos)
12. Classificar ✓
Durante a execução de uma função, esta pode modificar livremente a maior parte dos registos. No entanto, a função terá de repor os valores originais de alguns dos registos antes de terminar (registos preservados). Indique quais são os registos que não têm de ser preservados por uma função.
□ v0-v1
■ s0-s7
□ t0-t9
■ a0-a3
■ sp
■ gp
at
(Cotação: 1.0 pontos)
13. Classificar ☑
Para guardar a string "hello" na pilha é necessário
○ Decrementar o registo \$sp de 8 bytes.
○ A string não cabe na pilha pois o registo \$sp só tem 32 bits.
Decrementar o registo \$sp de 6 bytes.
○ Decrementar o registo \$sp de 5 bytes.
Ajuda
(Cotação: 1.0 pontos)

14. Missão (quase) Impossível - T01E01

Classificar 🗹

Bom dia Jim. Uma equipa de dois programadores trabalharam num projecto para converter uma string arbitrária para maiúsculas. Um dos programadores implementou uma função "converte_char" que recebe como argumento um carácter e devolve-o convertido para maiúsculas (números, símbolos e letras maiúsculas ficam inalterados). O segundo programador ficou incumbido de fazer a função principal "converte_string". Esta recebe uma string como argumento e usa a função "converte_char" para converter cada um dos carácteres originais para maiúsculas. Infelizmente, o segundo programador desapareceu misteriosamente e o projecto não ficou terminado. O código seguinte foi tudo o que se encontrou no seu portátil:

```
converte_string:
    move $s0, $a0
L1:
    lb $a0, 0($s0)
    jal converte_char
    nop
    sb $v0, 0($s0)
    bne $v0, $zero, L1
    addi $s0, $s0, 1
    jr $ra
    nop
```

Jim, a sua missão, caso decida aceitá-la, é terminar o código e pô-lo a funcionar. Introduza esta função completa no espaço em baixo (não inclua a outra função "converte_char"). Como habitual, esta mensagem irá autodestruir-se assim que submeter o teste. Boa sorte.

Ajuda

(Cotação: 1.0 pontos)

```
Considere a função foo em assembly MIPS

foo:
    addi $v0, $a0, 0
L: lb $t0, 0($a0)
    bne $t0, $zero, L
    addi $a0, $a0, 1
    jr $ra
    sub $v0, $a0, $v0

O que faz esta função?
```

http://146.193.57.27:8080/test 6/9

|--|

- O Converte uma string de minúsculas para maiúsculas.
- Calcula o espaço ocupado por uma string, sem contar com o carácter nulo.
- Converte uma string de maiúsculas para minúsculas.
- Calcula o espaço ocupado por uma string, contando com o carácter nulo.

(Cotação: 1.0 pontos)

16. Classificar €

Considere a função foo em assembly MIPS

```
foo:
L: lb $t0, 0($a0)
bne $t0, $zero, L
addi $a0, $a0, 1
jr $ra
addi $v0, $a0, -1
```

O que faz esta função?

- Procura o carácter nulo numa string e devolve o seu endereço.
- Converte uma string de minúsculas para maiúsculas.
- Calcula o espaço ocupado por uma string, sem contar com o carácter nulo.
- Converte uma string de maiúsculas para minúsculas.
- Calcula o espaço ocupado por uma string, contando com o carácter nulo.

(Cotação: 1.0 pontos)

17. Classificar €

Tendo em consideração que o código seguinte é executado sequencialmente em modo não privilegiado (*user mode*), indique quais as instruções que produzem excepções.

```
lui $a0, 0x8000
addi $a0, $a0, -1
lw $t0, 2($zero)
lb $t0, 2($zero)
lui $t1, 0xffff
ori $t1, $t1, 0xffff
addi $t1, $t1, 1
```

http://146.193.57.27:8080/test 7/9

- lui \$a0, 0x8000
- □ addi \$a0, \$a0, -1
- lw \$t0, 2(\$zero)
- 1b \$t0, 2(\$zero)
- lui \$t1, 0xffff
- ori \$t1, \$t1, 0xffff
- addi \$t1, \$t1, 1

Ajuda

(Cotação: 1.0 pontos)

Código máquina de algumas instruções MIPS:

Opcode	Rs	Rt	Rd SA Funct A		Assembly	
000000	Rs	Rt	Rd	Rd 00000 100000		add Rd, Rs, Rt
000000	Rs	Rt	Rd	Rd 00000 100010		sub Rd, Rs, Rt
000000	00000	Rt	Rd	amount	000000	sll Rd, Rt, 31
000000	Rs	00000	00000	00000 00000 001000 jr Rs		
001000	Rs	Rt	16 bit sign-extend			addi Rt, Rs, -32768
001101	Rs	Rt	16 bit zero-extend			ori Rt, Rs, 0x1234
000100	Rs	Rt	16 bit sign-extend		beq Rt, Rs, -32768	
000101	Rs	Rt	16 bit sign-extend		bne Rt, Rs, -32768	
100011	Rs	Rt	16 bit sign	-extend	lw Rt, -32768(Rs)	
101011	Rs	Rt	16 bit sign-extend			sw Rt, -32768(Rs)
000010	26 bit					j address
000011	26 bit					jal address

Numeração dos registos:

http://146.193.57.27:8080/test

zero	at	v0 - v1	a0 - a3	t0 - t7	s0 - s7	t8 - t9	k0 - k1	gp	sp	fp	ra	
0	1	2 - 3	4 - 7	8 - 15	16 - 23	24 - 25	26 - 27	28	29	30	31	

20.	Classificar 🗹
Descodifique o código máquina 0x2108ffff .	
<pre>add \$t0, \$t0, \$at</pre>	
○ lw \$t0, -1(\$t0)	
○ addi \$t0, \$t0, -1	
○ ori \$t0, \$zero, 0xffff	
	(Cotação: 1.0 pontos)
21.	Classificar 🗹
Determine o código máquina da instrução add \$t0, \$t1, \$t2 . Reesqueça do prefixo 0x .	presente em hexadecimal e não se

(Cotação: 1.0 pontos)
22. Classificar ✓
Determine o código máquina da instrução 1w \$t0, 4(\$t1) . Represente em hexadecimal e não se esqueça do prefixo 0x .
(Cotação: 1.0 pontos)

Submeter teste

http://146.193.57.27:8080/test 9/9