Office Action Mailed: April 29, 2009

Application No.: 10/521,281

IN THE CLAIMS:

Cancel Claims 31-33 without prejudice and amend Claims 1, 3, 4, 6, 9, 11, 12, 14-

17, 19, 20, 22, 25 and 27-30 as follows:

1. (Currently amended) Vehicle comprising

a chassis (2),

at least two first wheels (3) of a first type, which are arranged to support the chassis

when resting on the ground and which are each arranged to be rotatable relative to the

chassis not only about a first[[,]] substantially vertical axis (4), but also about a second axis

(5) that constitutes an angle greater than 0° but less than 90° relative to both the first

substantially vertical axis (4) and a horizontal axis, such that whereby each said wheel has

a contact surface against the ground that defines a so-called rolling point (6) against this,

which is laterally horizontally displaced from in the horizontal plane relative to the first

substantially vertical axis (4) and upon one revolution of each said wheel, a circle is traced

on the ground by said rolling point (6),

means (8) for to individually controlling control the alignment of said wheels relative

to the chassis

by turning about the first axis (4),

means (18) for to individually driving drive said wheels,

a regulation device (9) to regulate the movements of the vehicle in a horizontal

plane,

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

a control device (7) with a calculation unit (11) arranged to produce signals to control said control and drive means via information from the regulation device to achieve the movement as instructed by the regulation device,

wherein the regulation device is designed with the capability to, on request of a change of the vehicle's direction in a horizontal plane, order a <u>position location</u> for a turning point (B) for the vehicle located anywhere in the horizontal plane, the control device's calculation unit is designed to calculate instantaneous desired value of respective said first wheel's angular alignment relative to a lengthwise axis of the vehicle corresponding to the location of said turning point as ordered by the regulation device and send signals to the control means to achieve that alignment, and

said regulation device comprises

first means (12, 12') for displacing a steering line (S) passing through the turning point (B) of the vehicle from one location (S') to another (S") in parallel, and second means (15, 15') for simultaneously displacing said turning point (B) along said steering line (S) from one location (B₁) to another (B₂).

2. (Previously Presented) Vehicle according to claim 1, wherein the calculation unit (11) is designed to assume an alignment of said first wheels (3) about the first axis parallel to each other on calculation of the desired value for each wheel's alignment in the horizontal plane for a determined position of said turning point (B) to determine each wheel's turning about said first axis relative to said parallel alignment.

Office Action Mailed: April 29, 2009 Application No.: 10/521,281

3. (Currently Amended) Vehicle according to claim 2, wherein the calculation unit (11) is arranged to select the alignment that the vehicle's wheels (3) had as the last parallel alignment before the regulation device's ordering of said alignment change as the assumed parallel alignment in its calculations.

- 4. (Currently Amended) Vehicle according to claim 1 wherein said calculation unit (11) is designed to establish a Cartesian co-ordinate system in the horizontal plane for its calculations with the chassis' centre of rotation (C) as origin and to utilize the co-ordinates for said location of the vehicle's turning point (B) in said co-ordinate system in the calculation of said alignment of each said first wheel (3).
- 5. (Previously Presented) Vehicle according to claim 4, wherein the calculation unit (21) is arranged to designate an axis (x) in said Cartesian co-ordinate system to be directed parallel to said assumed parallel alignment.
- 6. (Currently Amended) Vehicle according to claim 1 wherein the control device (7) is arranged to control said wheels via the control means (8) according to <u>a</u> the basic principle that they should be mutually parallel-aligned on movement of the vehicle in the horizontal plane with the exception of when a change in the vehicle's direction in the horizontal plane is ordered by the regulation device.

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

7. (Currently Amended) Vehicle according to claim 2, wherein the regulation device comprises a first means (12, 12') to order a parallel displacement of <u>a</u> the vehicle's steering line (S) of the vehicle[[,]] meaning <u>an</u> the intended line that intersects said turning point (B) and extends perpendicularly to said assumed parallel alignment.

- 8. (Currently Amended) Vehicle according to claim 2, wherein the regulation device comprises a second means (15, 15') to displace the turning point (B) ordered by the regulation device along with <u>an</u> the instantaneously existing steering line (S) of the vehicle[[,]] i.e., the <u>being an</u> intended line that extends through said turning point and perpendicularly to said assumed parallel alignment.
- 9. (Currently Amended) Vehicle according to claim <u>8</u> 7, wherein said first and second means are controllable totally independently of one another.
- 10. (Previously Presented) Vehicle according to claim 1, wherein the regulation device comprises a third means (16, 16') to set said drive means' (18) direction of the respective first wheels' driving about said second axis.
- 11. (Currently Amended) Vehicle according to claim 1, wherein the regulation device comprises a fourth means (17) to set the velocity of the respective first wheels' (3) rotation about the second axis brought about by the drive means (18).

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

12. (Currently Amended) Vehicle according to claim 11, wherein the calculation unit (11) is arranged to calculate a suitable rotational velocity of the wheel about its second axis in co-operation with said fourth means (17) for each said first drivable wheel (3) from

13. (Previously Presented) Vehicle according to claim 1, wherein it comprises means (20) arranged at each of the vehicle's wheels to sense the wheels' alignment about the first axis relative to the chassis.

the wheel's distance of the wheel from said turning point (B).

- 14. (Currently Amended) Vehicle according to claim 1, wherein it comprises means (19) arranged at each of the vehicle's drivable wheels (3) to sense the rotational velocity and direction of rotation about said second axis of the wheel.
- 15. (Currently Amended) Vehicle according to claim 13, wherein the control device comprises means (21) arranged to compare the result of said sensing with the corresponding desired values ordered via the calculation units calculations, and to correct the control signals to the control means/drive means (8/18) on deviation between said result and desired value.
- 16. (Currently Amended) Vehicle according to claim 1, wherein the control device(7) comprises comprise a programmable computer.

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

17. (Currently Amended) Vehicle according to claim 1, wherein apart from the two

said first wheels (3) it said vehicle comprises at least one further part (3) arranged to

support the chassis and form a third support point for the chassis it on the ground, and

said part is formed from a link-wheel or another part with at least the corresponding

mobility as said wheels (3).

18. (Previously Presented) Vehicle according to claim 17, wherein said further part

is said first wheel (3).

19. (Currently Amended) Vehicle according to claim 17, wherein it comprises two

said further parts[[,]] both constituted of said first wheel (3) which are wheels.

20. (Currently Amended) Vehicle according to claim 19, wherein the four first

wheels (3) are attached to the chassis (2) substantially in each corner of a rectangle in the

horizontal plane.

21. (Previously Presented) Vehicle according to claim 19, wherein the two said first

wheels (3) are individually drivable and controllable, and the other two first wheels are

individually controllable.

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

22. (Currently Amended) Method for controlling the movements of a vehicle (1) over the ground on which the vehicles resides, whereby the vehicle comprises a chassis (2), at least two first wheels (3) of a first type, which are arranged to support the chassis when resting on the ground and comprising the steps of

arranging which are each said first wheels arranged to be rotatable relative to the chassis not only about a first, substantially vertical axis (4), but also about a second axis (5) that constitutes an angle greater than 0° but less than 90° relative to both the first substantially vertical axis (4) and a horizontal axis, whereby each said wheel has a contact surface against the ground that defines a so called rolling point (6) against this, which is laterally horizontally displaced from in the horizontal plane relative to the first substantially vertical axis (4) and upon one revolution of each said wheel, traces a circle on the ground, and

controlling, with a regulation device (9), to control the movements of the vehicle in a horizontal plane, where the alignment of said wheels relative to the chassis is controlled individually by turning the wheel about the first <u>substantially vertical</u> axis (4), each said wheel is driven individually and, via information from the regulation device, signals are produced by calculation to achieve the movement as instructed by the regulation device,

wherein on request of a change of the vehicle's direction in <u>a</u> the horizontal plane, ordering a position location for a turning point (B) is ordered via the regulation device for the vehicle <u>anywhere</u> with optional location in the horizontal plane, and

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

calculating for such an ordered location of said turning point (B) for the vehicle, the instantaneous desired value corresponding to the location of said turning point is calculated for the respective first wheel's angular alignment relative to a lengthwise axis of the vehicle.

displacing, with said regulation device, a steering line (S) passing through the turning point (B) of the vehicle from one location (S') to another (S") in parallel.

simultaneously displacing said turning point (B) along said steering line (S) from one location (B₁) to another (B₂), and

controlling the wheels are controlled on the basis thereof.

- 23. (Previously Presented) Method according to claim 22, wherein the calculation of said desired value for each wheel's (3) alignment in the horizontal axis for a determined location of said turning point (B) assumes an alignment of each said first wheel about the first axis parallel to each other to determine a desired value for each wheel's turning about said first axis relative to said parallel alignment.
- 24. (Previously Presented) Method according to claim 23, wherein on said calculation the alignment that the vehicle's wheels (3) had as the last parallel alignment before the ordering of an alignment change of the vehicle is chosen as said assumed parallel alignment.

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

25. (Currently Amended) Method according to claim 22, wherein on calculation a

Cartesian co-ordinate system is established in the horizontal plane with the chassis' centre

of rotation (C) as origin and the co-ordinates for said location of the vehicle's turning point

(B) in said co-ordinate system is used on calculation of said alignment of each said first

wheel.

26. (Previously Presented) Method according to claim 25, wherein on calculation

an axis (x) is designated to be directed parallel to said assumed parallel alignment in said

Cartesian co-ordinate system.

27. (Currently Amended) Method according to claim 22, wherein said wheels (3)

are controlled according to a the basic principal that they should be mutually parallel-

aligned on movement of the vehicle in the horizontal plane with an the exception of when a

change in the vehicles direction in the horizontal plane is ordered by the regulation device.

28. (Currently Amended) Method according to claim 23, wherein the vehicle is

controlled by carrying out a parallel displacement of <u>a</u> the vehicle's steering line (S) of the

vehicle, meaning the an intended line that intersects said turning point (B) and extends

perpendicularly to said assumed parallel alignment.

Office Action Mailed: April 29, 2009

Application No.: 10/521,281

29. (Currently Amended) Method according to claim 23, wherein the vehicle is

controlled by displacement of the vehicle's turning point along with an the instantaneous

existing steering line (S) of the vehicles, i.e., the vehicle being an intended line that

intersects said turning point (B) and extends perpendicularly to said assumed parallel

alignment.

30. (Currently Amended) Method according to claim 22, wherein the alignment

relative to the chassis (2) of each said wheel (3) is sensed and/or the rotational velocity

and the direction of rotation about said second axis of each drivable wheel of the vehicle is

sensed, and the results of said sensing is compared with the corresponding desired values

produced via said calculation, and on deviation between said results and desired values a

control is carried out achieve agreement between the results and the desired values, to

correct the control signals to the control means/drive means (8/18).

Claim 31-33. Canceled