Lab 4

1. Using the data from the following table

x	1	1.5	2	3	4
$\frac{1}{\log x}$	0	0.17609	0.30103	0.47712	0.60206

approximate $\lg 2.5$ and $\lg 3.25$ using the Newton interpolation polynomial. Estimate the maximum interpolation error $E = max|f(y_i) - (N_4 f)(y_i)|$, with $y_i = \frac{i}{10}$, for $i = \overline{10}, \overline{35}$.

 $y_i = \frac{i}{10}$, for $i = \overline{10,35}$. 2. To investigate the relationship between yield of potatoes, y, and level of fertilizer, x, an experimenter divided a field into 5 plots of equal size and applied differing amounts of fertilizer to each. The recorded data are given in the table (in pounds).

- a) According to Newton interpolation polynomial, approximate how many pounds of potatoes are expected from a plot to which 2.5 pounds of fertilizer had been applied.
- b) Plot the data given in the table and the corresponding Newton interpolation polynomial.
- **3.** Consider the function $f:[0,6] \to \mathbb{R}$, $f(x) = e^{\sin x}$ and 13 equidistant interpolation points. Plot the interpolation points, the function f and the Newton interpolation polynomial $N_{12}f$.
 - **4.** Approximate $\sqrt{115}$ with precision $\varepsilon = 10^{-3}$, using Aitken's algorithm.

Facultative:

- 1. Consider the function $f: [-5,5] \to \mathbb{R}$, $f(x) = \sin x$ and 20 equidistant interpolation points. Plot the interpolation points, the function f and the Lagrange interpolation polynomial obtained using Aitken's algorithm with precision $\varepsilon = 10^{-3}$.
- **2.** Consider the function $f:[-1,1]\to\mathbb{R}$ and n=10 nodes in the inteval [-1,1].
- a) Compute the Lebesque function $g(x) = \sum_{i=1}^{n} |l_i(x)|$ at a given point x, where $l_i(x)$, i = 1, ..., n are the fundamental Lagrange polynomials.

- b) Plot the function g for n equidistant nodes in [-1,1].
- c) Plot the function g for n Chebyshev nodes of the first kind, $x_i = \cos(\frac{(2i-1)\pi}{2n}) \in [-1,1], i=1,...,n$.
- d) Plot the function g for n Chebyshev nodes of the second kind, $x_i = \cos(\frac{i\pi}{n}) \in [-1, 1], i = 0, ..., n 1.$