ПРОГРАММНО-АППАРАТНЫЙ КОМПЛЕКС

«ПЕШЕХОД ПРЕВЫШЕ ВСЕГО»

Александр Калинин г. Тамбов, МАОУ СОШ № 22

Идея и описание проекта

Проект «Пешеход превыше всего» – программа, которая управляет светофором для повышения безопасности на пешеходных переходах.

Система в реальном времени анализирует видеопоток с IP-камеры, используя компьютерное зрение, для детектирования пешеходов, животных, автомобилей и управления светофором.

Цель – снижение количества пострадавших пешеходов и повышение пропускной способности дорог за счёт автоматического управления светофором с учетом дорожной ситуации.

По статистике ГИБДД за 2024 год, 70% травм пешеходы получают на нерегулируемых пешеходных переходах. В 2024 году на таких переходах пострадало и погибло 10 615 человек (http://stat.gibdd.ru/).

Аналоги и оценка новизны

Существуют решения, такие как **стандартные** светофоры, светофоры с **кнопкой, умные** светофоры и системы **активной подсветки**.

Стандартные и кнопочные светофоры **гарантируют** пропуск пешехода, но **не учитывают** дорожную ситуацию и животных, **замедляют** скорость движения.

Умные светофоры обеспечивают частичную оптимизацию трафика, однако требуют **сложной** инфраструктуры (датчики в асфальте и централизованную систему управления) и **больших финансовых вложений** для установки.

Системы активной подсветки **повышают** заметность пешехода, но **не обеспечивают** переключение светофора при необходимости, что приводит к жертвам. Они выступают как **предупредительная** мера.

	Стандартн ый светофор	Светофор с кнопкой	Умный светофор	Активная подсветка пешеходно го перехода	Комплекс "Пешеход превыше всего"
Гарантиров анный пропуск пешехода	да	да	да	нет	да 🔽
Увеличение скорости автомобиль ного движения	нет	нет	да	нет	да
Пропуск животных	нет	нет	нет	нет	да
Сложность монтажа	не сложно	не сложно	сложно	не сложно	не сложно

Уникальность проекта

Разработанный цифровой продукт сочетает автоматическое **детектирование** пешеходов и животных в реальном времени с **анализом плотности** автомобильного **потока**, **освещенности** и времени **суток**.

Оптимальное использование системы на **междугородних трассах** и **городах**, без единой системы управления светофорами.

В отличие от существующих решений, система не требует **дорогостоящего** монтажа датчиков в дорожное полотно, а использует современные **алгоритмы** компьютерного зрения для оптимального соотношения точности и скорости.

Это обеспечивает более **гибкую**, **масштабируемую** и **экономичную** технологию управления светофорами для повышения безопасности и скорости дорожного движения.

Технологии и инструменты

Для реализации проекта использовались следующие технологии и программы:

Python (3.8+) – основной язык программирования

OpenCV, NumPy, Pillow – обработка изображений и видеопотока

Ultralytics и модели YOLO – детектирование объектов в реальном времени

Аппаратные средства: ІР-камера и светофор с управляющей платой

Схема работы

Комплекс работает по такому алгоритму:

- 1. на перекрестке устанавливаются 2 камеры, направленных на тротуар и 1 камера, направленная непосредственно на дорогу
- 2. видеопоток в реальном времени передается для обработки в программу
- 3. программа анализирует видеопотоки и считает:
 - количество пешеходов, стоящих перед пешеходным переходом
 - b. время ожидания пешеходов
 - с. плотность автомобильного потока
 - d. освещенность
 - е. время суток
- 4. алгоритм рассчитывает оптимальное время для переключения сигнала светофора в зависимости от данных из пункта 3 и заданных коэффициентов внутри программы

Этапы работы

погибло 10 615 человек

- 1) **Анализ проблемы:** сбор статистики (70% ДТП на нерегулируемых переходах) и обоснование необходимости решения.
- 2) Разработка алгоритма: подбор и использование нейросети для детектирования пешеходов и животных (использование библиотек OpenCV, YOLO).
- 3) **Создание опытного** образца (микроконтроллер ESP-32)
- 4) Развитие и оптимизация проекта

Планы развития

- 1. **Дообучение** нейросети на специфичных данных для **повышения** точности
- 2. Интеграция с IP-камерой и светофором (опытный образец) в пределах моего города
- 3. Тестирование в реальных условиях
- 4. Оптимизация и масштабирование системы

Спасибо за внимание! Александр Калинин +79084661118 https://t.me/sanechkatfu