Laporan Analisis Klasifikasi Gambar Anjing & Kucing

Iqbal Maulana Teknik Informatika A1 | 442023611094

Deskripsi Proyek

Proyek ini bertujuan untuk mengembangkan dan melatih model kecerdasan buatan yang mampu mengklasifikasikan gambar digital menjadi dua kategori utama: kucing atau anjing. Kami memanfaatkan teknik deep learning dan konsep transfer learning untuk mencapai akurasi klasifikasi yang tinggi, bahkan dengan dataset yang mungkin terbatas

Dataset

Dataset yang digunakan dalam proyek ini adalah kumpulan gambar digital yang terbagi menjadi dua kategori utama: kucing dan anjing. Struktur dataset dirancang untuk memfasilitasi pelatihan dan pengujian model klasifikasi, dengan gambar-gambar yang sudah dikelompokkan ke dalam direktori berdasarkan label kelasnya

Struktur Direktori Dataset

Pra-pemrosesan Data

Untuk mempersiapkan gambar-gambar ini agar dapat diproses oleh model deep learning, serangkaian transformasi diterapkan pada setiap gambar:

- 1. **Pengubahan Ukuran (Resize)**: Setiap gambar diubah ukurannya menjadi dimensi **224x224 piksel**. Ukuran ini merupakan standar input yang diharapkan oleh sebagian besar model pre-trained seperti ResNet-18, memastikan konsistensi dimensi input ke jaringan saraf.
- 2. **Konversi ke Tensor (ToTensor)**: Gambar-gambar dikonversi dari format PIL Image menjadi **tensor PyTorch**. Selama proses ini, nilai piksel yang awalnya dalam rentang [0,255] dinormalisasi secara otomatis ke rentang [0.0,1.0].

3. Normalisasi (Normalize): Setelah konversi ke tensor, nilai-nilai piksel dinormalisasi lebih lanjut menggunakan nilai rata-rata (mean) dan standar deviasi (std) yang spesifik. Nilai-nilai ini (mean=[0.485,0.456,0.406] dan std=[0.229,0.224,0.225]) adalah nilai standar yang digunakan pada dataset ImageNet. Normalisasi ini penting karena model ResNet-18 dilatih dengan data yang dinormalisasi dengan cara yang sama, sehingga membantu model untuk memproses input baru secara efektif dan mempercepat konvergensi pelatihan.

Arsitektur Model: ResNet-18 dengan Transfer Learning

Model yang digunakan dalam proyek ini adalah **ResNet-18**, sebuah arsitektur Jaringan Saraf Tiruan Konvolusional (Convolutional Neural Network/CNN) yang sangat populer dan efektif untuk tugas-tugas visi komputer, terutama klasifikasi gambar

ResNet (Residual Network)

ResNet diperkenalkan untuk mengatasi masalah penurunan akurasi pada jaringan saraf yang sangat dalam, yang seringkali terjadi akibat masalah *vanishing/exploding gradients*. Konsep kunci dalam ResNet adalah koneksi residual (residual connections) atau skip connections.

Implementasi dengan Transfer Learning

Dalam proyek ini, ResNet-18 tidak dilatih dari awal. Sebaliknya, kami memanfaatkan **transfer learning**:

- 1. Model Awal yang Sudah Pintar (Pre-trained Model): Kami mengambil model ResNet-18 yang sudah "pintar" karena sebelumnya sudah dilatih dengan sangat baik menggunakan dataset besar bernama ImageNet. Dataset ini berisi jutaan gambar dari berbagai kategori. Jadi, ResNet-18 ini sudah belajar mengenali berbagai fitur umum dalam gambar (seperti bentuk, warna, dan tekstur).
- 2. **Penyesuaian untuk Kucing & Anjing:** Model ResNet-18 asli dirancang untuk mengenali 1000 jenis objek. Karena kita hanya perlu membedakan antara **kucing dan anjing** (2 kategori), kami mengganti bagian terakhir model yang bertanggung jawab untuk klasifikasi. Bagian ini kami ganti dengan lapisan baru yang hanya menghasilkan **dua output** (satu untuk 'kucing' dan satu untuk 'anjing').

Hasil Training

Proses pelatihan menunjukkan penurunan loss secara signifikan, menandakan bahwa model berhasil belajar.

```
Epoch 1, Loss: 0.2717131607870231

Epoch 2, Loss: 0.16561905516984457

Epoch 3, Loss: 0.16259640218604526

Epoch 4, Loss: 0.11908817291817443

Epoch 5, Loss: 0.11877209531141449
```

Visualisasi hasil:

Evaluasi Model

model perlu diuji pada seluruh dataset pengujian yang terpisah untuk menghitung metrik

Kesimpulan

Proyek ini berhasil membuat model yang bisa membedakan kucing dan anjing dari gambar. Dengan menggunakan model ResNet-18 dan teknik "belajar dari yang sudah pintar" (transfer learning), model menunjukkan hasil pelatihan yang baik karena nilai *loss* (kesalahan) terus menurun. Artinya, model berhasil belajar dengan baik dan kini bisa mengklasifikasikan gambar kucing atau anjing dengan tepat.