Model Documentation of the Loading Bridge

This document was automatically generated based on the ACKREP project system model with BID9I. The Automatic Control Knowledge Repository, short ACKREP, aims to facilitate knowledge transfer of control theory and control engineering.

1 Nomenclature

1.1 Nomenclature for Model Equations

 x_m way of the load

 x_M way of the cart

 φ angle of deflection of the load in relation to the center of the cart

m mass of the load

M mass of the cart

l rope length

g acceleration due to gravitation

f force that pushes the cart

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ x_4)^T = (x_M \ \varphi \ \dot{x}_M \ \dot{\varphi})^T$$
$$u = f$$

System Equations:

$$\dot{x}_1 = x_3 \tag{1a}$$

$$\dot{x}_2 = x_4 \tag{1b}$$

$$\dot{x}_3 = \frac{u_1 + \frac{gm\sin(2x_2)}{2} + lmx_4 2\sin(x_2)}{M + m\sin^2(x_2)} \tag{1c}$$

$$\dot{x}_4 = -\frac{g(M+m)\sin(x_2) + (u_1 + lmx_4^2\sin(x_2))\cos(x_2)}{l(M+m\sin^2(x_2))}$$
(1d)

Parameters: $m \ M \ l \ g$ Outputs: $x_m \ x_M$

2.1 Assumptions

- 1. The friction is neglected
- 2. Mass of the load is a pointmass
- 3. Mass of the cart is a pointmass

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
mass of the load	m	0.25	kg
mass of the cart	M	1	$_{ m kg}$
rope length	l	1	\mathbf{m}
acceleration due to gravitation	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

 $Not\ available$

References

[1] Institut für Regelungs- und Steuerungstheorie TU Dresden: Regelungstechnik II, Übungsmaterial, published in OPAL April 2020.