Module 1

INTRODUCTION TO NETWORKS

1.2 NETWORK HARDWARE

Broadly speaking, there are two types of transmission technology that are in widespread use: broadcast links and point-to-point links. Point-to-point links connect individual pairs of machines. To go from the source to the destination on a network made up of point-to-point links, short messages, called packets in certain contexts, may have to first visit one or more intermediate machines. Often multiple routes, of different lengths, are possible, so finding good ones is important in point-to-point networks. Point-to-point transmission with exactly one sender and exactly one receiver is sometimes called unicasting.

Packets sent by any machine are received by all the others. An address field within each packet specifies the intended recipient. Upon receiving a packet, a machine checks the address field. If the packet is intended for the receiving machine, that machine processes the packet; if the packet is intended for some other machine, it is just ignored.

A wireless network is a common example of a broadcast link, with communication shared over a coverage region that depends on the wireless channel and the transmitting machine. As an analogy, consider someone standing in a meeting room and shouting "Watson, come here. I want you." Although the packet may actually be received (heard) by many people, only Watson will respond; the others just ignore it. Broadcast systems usually also allow the possibility of addressing a packet to all destinations by using a special code in the address field. When a packet with this code is transmitted, it is received and processed by every machine on the network. This mode of operation is called broadcasting. Some broadcast systems also support transmission to a subset of the machines, which known as multicasting.

In Fig. 1-6 we classify multiple processor systems by their rough physical size. At the top are the personal area networks, networks that are meant for one person. Beyond these come longer-range networks. These can be divided into local, metropolitan, and wide area networks, each with increasing scale. Finally, the connection of two or more networks is called an internetwork. The worldwide Internet is certainly the best-known (but not the only) example of an internetwork. 18 INTRODUCTION CHAP. 1 Soon we will have even larger internetworks with the Interplanetary Internet that connects networks across space.

Figure 1-6. Classification of interconnected processors by scale.

2.1 Personal Area Networks

PANs (Personal Area Networks) let devices communicate over the range of a person. A common example is a wireless network that connects a computer with its peripherals. Almost every computer has an attached monitor, keyboard, mouse, and printer. Without using wireless, this connection must be done with cables. So many new users have a hard time finding the right cables and plugging them into the right little holes (even though they are usually color coded) that most computer vendors offer the option of sending a technician to the user's home to do it. To help these users, some companies got together to design a short-range wireless network called Bluetooth to connect these components without wires.

The idea is that if your devices have Bluetooth, then you need no cables. You just put them down, turn them on, and they work together. For many people, this ease of operation is a big plus. In the simplest form, Bluetooth networks use the master-slave paradigm of Fig. 1-7. The system unit (the PC) is normally the master, talking to the mouse, keyboard, etc., as slaves. The master tells the slaves what addresses to use, when they can broadcast, how long they can transmit, what frequencies they can use, and so on. Bluetooth can be used in other settings, too. It is often used to connect a headset to a mobile phone without cords and it can allow your digital music player to connect to your car merely being brought within range. A completely different kind of PAN is formed when an embedded medical device such as a pacemaker, insulin pump, or hearing aid talks to a user-operated remote control.

Figure 1-7. Bluetooth PAN configuration.

1.2.2 Local Area Networks

The next step up is the LAN (Local Area Network). A LAN is a privately owned network that operates within and nearby a single building like a home, office or factory. LANs are widely used to connect personal computers and consumer electronics to let them share resources (e.g., printers) and exchange information. When LANs are used by companies, they are called enterprise networks.

In these systems, every computer has a radio modem and an antenna that it uses to communicate with other computers. In most cases, each computer talks to a device in the ceiling as shown in Fig. 1-8(a). This device, called an AP (Access Point), wireless router, or base station, relays packets between the wireless computers and also between them and the Internet. Being the AP is like being the popular kid as school because everyone wants to talk to you.

Figure 1-8. Wireless and wired LANs. (a) 802.11. (b) Switched Ethernet.

There is a standard for wireless LANs called IEEE 802.11, popularly known as WiFi, which has become very widespread. It runs at speeds anywhere from 11 to hundreds of Mbps. Wired LANs

use a range of different transmission technologies. Most of them use copper wires, but some use optical fiber. LANs are restricted in size, which means that the worst-case transmission time is bounded and known in advance. Knowing these bounds helps with the task of designing network protocols. Typically, wired LANs run at speeds of 100 Mbps to 1 Gbps, have low delay (microseconds or nanoseconds), and make very few errors. Newer LANs can operate at up to 10 Gbps. Compared to wireless networks, wired LANs exceed them in all dimensions of performance. It is just easier to send signals over a wire or through a fiber than through the air

The topology of many wired LANs is built from point-to-point links. IEEE 802.3, popularly called Ethernet, is, by far, the most common type of wired LAN. Fig. 1-8(b) shows a sample topology of switched Ethernet. Each computer speaks the Ethernet protocol and connects to a box called a switch with a point-to-point link. Hence the name. A switch has multiple ports, each of which can connect to one computer. The job of the switch is to relay packets between computers that are attached to it, using the address in each packet to determine which computer to send it to.

It is also possible to divide one large physical LAN into two smaller logical LANs. You might wonder why this would be useful. Sometimes, the layout of the network equipment does not match the organization's structure. For example, the SEC. 1.2 NETWORK HARDWARE 21 engineering and finance departments of a company might have computers on the same physical LAN because they are in the same wing of the building but it might be easier to manage the system if engineering and finance logically each had its own network Virtual LAN or VLAN. In this design each port is tagged with a "color," say green for engineering and red for finance. The switch then forwards packets so that computers attached to the green ports are separated from the computers attached to the red ports. Broadcast packets sent on a red port, for example, will not be received on a green port, just as though there were two different LANs. If two or more packets collided, each computer just waited a random time and tried later. We will call that version classic Ethernet for clarity, and as you suspected

Both wireless and wired broadcast networks can be divided into static and dynamic designs, depending on how the channel is allocated. A typical static allocation would be to divide time into discrete intervals and use a round-robin algorithm, allowing each machine to broadcast only when its time slot comes up. Static allocation wastes channel capacity when a machine has nothing to say during its allocated slot, so most systems attempt to allocate the channel dynamically (i.e., on demand). Dynamic allocation methods for a common channel are either centralized or decentralized. In the centralized channel allocation method, there is a single entity, for example, the base station in cellular networks, which determines who goes next. It might do this by accepting multiple packets and prioritizing them according to some internal algorithm. In the decentralized channel allocation method, there is no central entity; each machine must decide for itself whether to transmit. You might think that this approach would lead to chaos, but it does not.

While we could think of the home network as just another LAN, it is more likely to have different properties than other networks.

- First, the networked devices have to be very easy to install.
- Second, the network and devices have to be foolproof in operation. Air conditioners used to have one knob with four settings: OFF, LOW, MEDIUM, and HIGH.
- Third, low price is essential for success.
- Fourth, it must be possible to start out with one or two devices and expand the reach of the network gradually.
- Fifth, security and reliability will be very important.

1.2.3 Metropolitan Area Networks

A MAN (Metropolitan Area Network) covers a city. The best-known examples of MANs are the cable television networks available in many cities. To a first approximation, a MAN might look something like the system shown in Fig. 1-9. In this figure we see both television signals and Internet being fed into the centralized cable headend for subsequent distribution to people's homes. Cable television is not the only MAN, though. Recent developments in highspeed wireless Internet access have resulted in another MAN, which has been standardized as IEEE 802.16 and is popularly known as WiMAX

Figure 1-9. A metropolitan area network based on cable TV.

1.2.4 Wide Area Networks

A WAN (Wide Area Network) spans a large geographical area, often a country or continent. We will begin our discussion with wired WANs, using the example of a company with branch offices

in different cities. The WAN in Fig. 1-10 is a network that connects offices in Perth, Melbourne, and Brisbane. Each of these offices contains computers intended for running user (i.e., application) programs. We will follow traditional usage and call these machines hosts. The rest of the network that connects these hosts is then called the communication subnet, or just subnet for short. The job of the subnet is to carry messages from host to host, just as the telephone system carries words (really just sounds) from speaker to listener.

In most WANs, the subnet consists of two distinct components: transmission lines and switching elements. Transmission lines move bits between machines. They can be made of copper wire, optical fiber, or even radio links. Most companies do not have transmission lines lying about, so instead they lease the lines from a telecommunications company. Switching elements, or just switches, are specialized computers that connect two or more transmission lines. When data arrive on an incoming line, the switching element must choose an outgoing line on which to forward them. These switching computers have been called by various names in the past; the name router is now most commonly used.

A short comment about the term "subnet" is in order here. Originally, its only meaning was the collection of routers and communication lines that moved packets from the source host to the destination host.

The WAN as we have described it looks similar to a large wired LAN, but there are some important differences that go beyond long wires. Usually in a WAN, the hosts and subnet are owned and operated by different people. A second difference is that the routers will usually connect different kinds of networking technology. A final difference is in what is connected to the subnet. This could be individual computers, as was the case for connecting to LANs, or it could be entire LANs.

Figure 1-10. WAN that connects three branch offices in Australia.

VPN (Virtual Private Network). Compared to the dedicated arrangement, a VPN has the usual advantage of virtualization, which is that it provides flexible reuse of a resource (Internet connectivity). Consider how easy it is to add a fourth office to see this. A VPN also has the usual disadvantage of virtualization, which is a lack of control over the underlying resources. With a dedicated line, the capacity is clear. With a VPN your mileage may vary with your Internet service.

Figure 1-11. WAN using a virtual private network.

The second variation is that the subnet may be run by a different company. The subnet operator is known as a network service provider and the offices are its customers. This structure is shown in Fig. 1-12. The subnet operator will connect to other customers too, as long as they can pay and it can provide service. Since it would be a disappointing network service if the customers could only send packets to each other, the subnet operator will also connect to other networks that are part of the Internet. Such a subnet operator is called an ISP (Internet Service Provider) and the subnet is an ISP network. Its customers who connect to the ISP receive Internet service.

Figure 1-12. WAN using an ISP network.

1.2.5 Internetworks

Many networks exist in the world, often with different hardware and software. People connected to one network often want to communicate with people attached to a different one. The fulfillment of this desire requires that different, and frequently incompatible, networks be connected. A collection of interconnected networks is called an internetwork or internet. Subnets, networks, and internetworks are often confused. The term "subnet" makes the most sense in the context of a wide area network, where it refers to the collection of routers and communication lines owned by the network operator. The general name for a machine that makes a connection between two or more networks and provides the necessary translation, both in terms of hardware and software, is a gateway. Gateways are distinguished by the layer at which they operate in the protocol hierarchy.

1.3 NETWORK SOFTWARE

1.3.1 Protocol Hierarchies

To reduce their design complexity, most networks are organized as a stack of layers or levels, each one built upon the one below it. The number of layers, the name of each layer, the contents of each layer, and the function of each layer differ from network to network.

When layer n on one machine carries on a conversation with layer n on another machine, the rules and conventions used in this conversation are collectively known as the layer n protocol. Basically,

a protocol is an agreement between the communicating parties on how communication is to proceed

A five-layer network is illustrated in Fig. 1-13. The entities comprising the corresponding layers on different machines are called peers. The peers may be software processes, hardware devices, or even human beings. In other words, it is the peers that communicate by using the protocol to talk to each others.

Figure 1-13. Layers, protocols, and interfaces.

Below layer 1 is the physical medium through which actual communication occurs. In Fig. 1-13, virtual communication is shown by dotted lines and physical communication by solid lines. Between each pair of adjacent layers is an interface. The interface defines which primitive operations and services the lower layer makes available to the upper one. A set of layers and protocols is called a network architecture. The specification of an architecture must contain enough information to allow an implementer to write the program or build the hardware for each layer so that it will correctly obey the appropriate protocol. A list of the protocols used by a certain system, one protocol per layer, is called a protocol stack.

An analogy may help explain the idea of multilayer communication. Imagine two philosophers (peer processes in layer 3), one of whom speaks Urdu and English and one of whom speaks Chinese and French. Since they have no common language, they each engage a translator (peer processes at layer 2), each of whom in turn contacts a secretary (peer processes in layer 1). Philosopher 1 wishes to convey his affection for oryctolagus cuniculus to his peer. To do so, he passes a message (in English) across the 2/3 interface to his translator, saying "I like rabbits," as illustrated in Fig. 1-14.

Figure 1-14. The philosopher-translator-secretary architecture.

Now consider a more technical example: how to provide communication to the top layer of the five-layer network in Fig. 1-15. A message, M, is produced by an application process running in layer 5 and given to layer 4 for transmission. Layer 4 puts a header in front of the message to identify the message and passes the result to layer 3. The header includes control information, such as addresses, to allow layer 4 on the destination machine to deliver the message

Figure 1-15. Example information flow supporting virtual communication in layer 5.

1.3.2 Design Issues for the Layers

Reliability is the design issue of making a network that operates correctly even though it is made up of a collection of components that are themselves unreliable. Think about the bits of a packet traveling through the network. There is a chance that some of these bits will be received damaged (inverted) due to fluke electrical noise, random wireless signals, hardware flaws, software bugs and so on.

One mechanism for finding errors in received information uses codes for error detection. Information that is incorrectly received can then be retransmitted until it is received correctly. More powerful codes allow for error correction, where the correct message is recovered from the possibly incorrect bits that were originally received. Another reliability issue is finding a working path through a network. Often there are multiple paths between a source and destination, and in a large network, there may be some links or routers that are broken. Suppose that the network is down in Germany. Packets sent from London to Rome via Germany will not get through, but we could instead send packets from London to Rome via Paris. The network should automatically make this decision. This topic is called routing. A second design issue concerns the evolution of the network. Over time, networks grow larger and new designs emerge that need to be connected to the existing network. We have recently seen the key structuring mechanism used to support change by dividing the overall problem and hiding implementation details: protocol layering. Since there are many computers on the network, every layer needs a mechanism for identifying the

senders and receivers that are involved in a particular message. This mechanism is called addressing or naming

An allocation problem that occurs at every level is how to keep a fast sender from swamping a slow receiver with data. Feedback from the receiver to the sender is often used. This subject is called flow control. Sometimes the problem is that the network is oversubscribed because too many computers want to send too much traffic, and the network cannot deliver it all. This overloading of the network is called congestion.

1.3.3 Connection-Oriented Versus Connectionless Service

Layers can offer two different types of service to the layers above them: connection-oriented and connectionless. Connection-oriented service is modeled after the telephone system. To talk to someone, you pick up the phone, dial the number, talk, and then hang up. Similarly, to use a connection-oriented network service, the service user first establishes a connection, uses the connection, and then releases the connection. The essential aspect of a connection is that it acts like a tube: the sender pushes objects (bits) in at one end, and the receiver takes them out at the other end.

connectionless service is modeled after the postal system. Each message (letter) carries the full destination address, and each one is routed through the intermediate nodes inside the system independent of all the subsequent messages. There are different names for messages in different contexts; a packet is a message at the network layer. When the intermediate nodes receive a message in full before sending it on to the next node, this is called store-and-forward switching. The alternative, in which the onward transmission of a message at a node starts before it is completely received by the node, is called cut-through switching

Reliable connection-oriented service has two minor variations: message sequences and byte streams. When two 1024-byte messages are sent, they arrive as two distinct 1024- byte messages, never as one 2048-byte message. In the latter, the connection is simply a stream of bytes, with no message boundaries. When 2048 bytes arrive at the receiver, there is no way to tell if they were sent as one 2048-byte message, two 1024-byte messages, or 2048 1-byte messages. Unreliable (meaning not acknowledged) connectionless service is often called datagram service, in analogy with telegram service, which also does not return an acknowledgement to the sender.

The acknowledged datagram service can be provided for these applications. It is like sending a registered letter and requesting a return receipt. When the receipt comes back, the sender is absolutely sure that the letter was delivered to the intended party and not lost along the way. Text messaging on mobile phones is an example. Still another service is the request-reply service. In this service the sender transmits a single datagram containing a request; the reply contains the answer. Request-reply is commonly used to implement communication in the client-server model

	Service	Example
Connection- oriented Connection- less	Reliable message stream	Sequence of pages
	Reliable byte stream	Movie download
	Unreliable connection	Voice over IP
	Unreliable datagram	Electronic junk mail
	Acknowledged datagram	Text messaging
	Request-reply	Database query

Figure 1-16. Six different types of service.

1.3.4 Service Primitives

A service is formally specified by a set of primitives (operations) available to user processes to access the service. The set of primitives available depends on the nature of the service being provided. The primitives for connection-oriented service are different from those of connectionless service. As a minimal example of the service primitives that might provide a reliable byte stream, consider the primitives listed in Fig. 1-17

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
ACCEPT	Accept an incoming connection from a peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Figure 1-17. Six service primitives that provide a simple connection-oriented service.

These primitives might be used for a request-reply interaction in a client-server environment. To illustrate how, We sketch a simple protocol that implements the service using acknowledged datagrams. First, the server executes LISTEN to indicate that it is prepared to accept incoming connections. Next, the client process executes CONNECT to establish a connection with the server. The CONNECT call needs to specify who to connect to, so it might have a parameter giving the server's address. The operating system then typically sends a packet to the peer asking it to connect, as shown by (1) in Fig. 1-18. The client process is suspended until there is a response.

Figure 1-18. A simple client-server interaction using acknowledged datagrams.

1.3.5 The Relationship of Services to Protocols

Services and protocols are distinct concepts. A service is a set of primitives (operations) that a layer provides to the layer above it. The service defines what operations the layer is prepared to perform on behalf of its users, but it says nothing at all about how these operations are implemented. A service relates to an interface between two layers, with the lower layer being the service provider and the upper layer being the service user. A protocol, in contrast, is a set of rules governing the format and meaning of the packets, or messages that are exchanged by the peer entities within a layer. Entities use protocols to implement their service definitions. They are free to change their protocols at will, provided they do not change the service visible to their users.

To repeat this crucial point, services relate to the interfaces between layers, as illustrated in Fig. 1-19. In contrast, protocols relate to the packets sent between peer entities on different machines. It is very important not to confuse the two concepts.

Figure 1-19. The relationship between a service and a protocol.

1.4 REFERENCE MODELS

1.4.1 The OSI Reference Model

The OSI model (minus the physical medium) is shown in Fig. 1-20. This model is based on a proposal developed by the International Standards Organization (ISO) as a first step toward international standardization of the protocols used in the various layers (Day and Zimmermann, 1983). It was revised in 1995 (Day, 1995). The model is called the ISO OSI (Open Systems Interconnection) Reference Model because it deals with connecting open systems—that is, systems that are open for communication with other systems. We will just call it the OSI model for short.

The OSI model has seven layers. The principles that were applied to arrive at the seven layers can be briefly summarized as follows:

- 1. A layer should be created where a different abstraction is needed.
- 2. Each layer should perform a well-defined function.
- 3. The function of each layer should be chosen with an eye toward defining internationally standardized protocols.
- 4. The layer boundaries should be chosen to minimize the information flow across the interfaces.
- 5. The number of layers should be large enough that distinct functions need not be thrown together in the same layer out of necessity and small enough that the architecture does not become unwieldy.

The Physical Layer

The physical layer is concerned with transmitting raw bits over a communication channel. The design issues have to do with making sure that when one side sends a 1 bit it is received by the other side as a 1 bit, not as a 0 bit.

The Data Link Layer

The main task of the data link layer is to transform a raw transmission facility into a line that appears free of undetected transmission errors. It does so by masking the real errors so the network layer does not see them. It accomplishes this task by having the sender break up the input data into data frames (typically a few hundred or a few thousand bytes) and transmit the frames sequentially. If the service is reliable, the receiver confirms correct receipt of each frame by sending back an acknowledgement frame.

Figure 1-20. The OSI reference model.

The Network Layer

The network layer controls the operation of the subnet. A key design issue is determining how packets are routed from source to destination. Routes can be based on static tables that are "wired into" the network and rarely changed, or more often they can be updated automatically to avoid failed components If too many packets are present in the subnet at the same time, they will get in one another's way, forming bottlenecks. Handling congestion is also a responsibility of the network layer

The Transport Layer

The basic function of the transport layer is to accept data from above it, split it up into smaller units if need be, pass these to the network layer, and ensure that the pieces all arrive correctly at the other end. The transport layer also determines what type of service to provide to the session layer, and, ultimately, to the users of the network. The most popular type of transport connection is an error-free point-to-point channel that delivers messages or bytes in the order in which they were sent.

The Session Layer

The session layer allows users on different machines to establish sessions between them. Sessions offer various services, including dialog control (keeping track of whose turn it is to transmit), token management (preventing two parties from attempting the same critical operation simultaneously), and synchronization.

The Presentation Layer

Unlike the lower layers, which are mostly concerned with moving bits around, the presentation layer is concerned with the syntax and semantics of the information transmitted. In order to make it possible for computers with different internal data representations to communicate, the data structures to be exchanged can be defined in an abstract way, along with a standard encoding to be used "on the wire." The presentation layer manages these abstract data structures and allows higher-level data structures (e.g., banking records) to be defined and exchanged.

The Application Layer

The application layer contains a variety of protocols that are commonly needed by users. One widely used application protocol is HTTP (HyperText Transfer Protocol), which is the basis for the World Wide Web. When a browser wants a Web page, it sends the name of the page it wants to the server hosting the page using HTTP. The server then sends the page back. Other application protocols are used for file transfer, electronic mail, and network news.

1.4.2 The TCP/IP Reference Model

Let us now turn from the OSI reference model to the reference model used in the grandparent of all wide area computer networks, the ARPANET, and its successor, the worldwide Internet.

The link layer

The lowest layer in the model, the link layer describes what links such as serial lines and classic Ethernet must do to meet the needs of this connectionless internet layer. It is not really a layer at all, in the normal sense of the term, but rather an interface between hosts and transmission links.

The Internet Layer

The internet layer is the linchpin that holds the whole architecture together. It is shown in Fig. 1-21 as corresponding roughly to the OSI network layer. Its job is to permit hosts to inject packets into any network and have them travel independently to the destination

Figure 1-21. The TCP/IP reference model.

The internet layer defines an official packet format and protocol called IP (Internet Protocol), plus a companion protocol called ICMP (Internet Control Message Protocol) that helps it function. The job of the internet layer is to deliver IP packets where they are supposed to go. Packet routing is clearly a major issue here, as is congestion (though IP has not proven effective at avoiding congestion).

The Transport Layer

The layer above the internet layer in the TCP/IP model is now usually called the transport layer. It is designed to allow peer entities on the source and destination hosts to carry on a conversation, just as in the OSI transport layer. Two end-to-end transport protocols have been defined here. The first one, TCP (Transmission Control Protocol), is a reliable connection-oriented protocol that allows a byte stream originating on one machine to be delivered without error on any other machine in the internet.

The second protocol in this layer, UDP (User Datagram Protocol), is an unreliable, connectionless protocol for applications that do not want TCP's sequencing or flow control and wish to provide their own. It is also widely used for one-shot, client-server-type request-reply queries and applications in which prompt delivery is more important than accurate delivery, such as transmitting speech or video.

The Application Layer

The TCP/IP model does not have session or presentation layers. No need for them was perceived. Instead, applications simply include any session and presentation functions that they require. Experience with the OSI model has proven this view correct: these layers are of little use to most applications. On top of the transport layer is the application layer. It contains all the higher-level protocols. The early ones included virtual terminal (TELNET), file transfer (FTP), and electronic mail (SMTP). Many other protocols have been added to these over the years. Some important ones that we will study, shown in Fig. 1-22

Figure 1-22. The TCP/IP model with some protocols we will study.

1.4.3 The Model Used in This Book

The strength of the OSI reference model is the model itself (minus the presentation and session layers), which has proven to be exceptionally useful for discussing computer networks. In contrast, the strength of the TCP/IP reference model is the protocols, which have been widely used for many years. Since computer scientists like to have their cake and eat it, too, we will use the hybrid model of Fig. 1-23 as the framework

Figure 1-23. The reference model used in this book.

This model has five layers, running from the physical layer up through the link, network and transport layers to the application layer. The physical layer specifies how to transmit bits across different kinds of media as electrical (or other analog) signals. The link layer is concerned with how to send finite-length messages between directly connected computers with specified levels of reliability. Ethernet and 802.11are examples of link layer protocols.

The network layer deals with how to combine multiple links into networks, and networks of networks, The transport layer strengthens the delivery guarantees of the Network layer, usually with increased reliability, and provide delivery abstractions, such as a reliable byte stream, that

match the needs of different applications. TCP is an important example of a transport layer protocol. Finally, the application layer contains programs that make use of the network. Many, but not all, networked applications have user interfaces, such as a Web browser. Our concern, however, is with the portion of the program that uses the network. This is the HTTP protocol in the case of the Web browser

1.4.4 A Comparison of the OSI and TCP/IP Reference Models

The OSI and TCP/IP reference models have much in common. Both are based on the concept of a stack of independent protocols. Also, the functionality of the layers is roughly similar. For example, in both models the layers up through and including the transport layer are there to provide an end-to-end, network-independent transport service to processes wishing to communicate.

Despite these fundamental similarities, the two models also have many differences. we will focus on the key differences between the two reference models. It is important to note that we are comparing the reference models here, not the corresponding protocol stacks

Three concepts are central to the OSI model:

- 1. Services.
- 2. Interfaces.
- 3. Protocols.

Probably the biggest contribution of the OSI model is that it makes the distinction between these three concepts explicit. Each layer performs some services for the layer above it. The service definition tells what the layer does, not how entities above it access it or how the layer works. It defines the layer's semantics. A layer's interface tells the processes above it how to access it. It specifies what the parameters are and what results to expect. It, too, says nothing about how the layer works inside. Finally, the peer protocols used in a layer are the layer's own business. It can use any protocols it wants to, as long as it gets the job done (i.e., provides the offered services). It can also change them at will without affecting software in higher layers.

The TCP/IP model did not originally clearly distinguish between services, interfaces, and protocols, although people have tried to retrofit it after the fact to make it more OSI-like. For example, the only real services offered by the internet layer are SEND IP PACKET and RECEIVE IP PACKET.

The OSI reference model was devised before the corresponding protocols were invented. This ordering meant that the model was not biased toward one particular set of protocols, a fact that made it quite general. The downside of this ordering was that the designers did not have much

experience with the subject and did not have a good idea of which functionality to put in which layer.

With TCP/IP the reverse was true: the protocols came first, and the model was really just a description of the existing protocols. There was no problem with the protocols fitting the model. They fit perfectly. The only trouble was that the model did not fit any other protocol stacks. Consequently, it was not especially useful for describing other, non-TCP/IP networks.

Turning from philosophical matters to more specific ones, an obvious difference between the two models is the number of layers: the OSI model has seven layers and the TCP/IP model has four. Both have (inter)network, transport, and application layers, but the other layers are different. Another difference is in the area of connectionless versus connection-oriented communication. The OSI model supports both connectionless and connection oriented communication in the network layer, but only connection-oriented communication in the transport layer, where it counts (because the transport service is visible to the users). The TCP/IP model supports only one mode in the network layer (connectionless) but both in the transport layer, giving the users a choice. This choice is especially important for simple request-response protocols.

1.4.5 A Critique of the OSI Model and Protocols

Neither the OSI model and its protocols nor the TCP/IP model and its protocols are perfect. it appeared to many experts in the field that the OSI model and its protocols were going to take over the world and push everything else out of their way. They can be summarized as:

- 1. Bad timing.
- 2. Bad technology.
- 3. Bad implementations.
- 4. Bad politics.

Bad Timing

First let us look at reason one: bad timing. The time at which a standard is established is absolutely critical to its success. David Clark of M.I.T. has a theory of standards that he calls the apocalypse of the two elephants, which is illustrated in Fig. 1-24. This figure shows the amount of activity surrounding a new subject. When the subject is first discovered, there is a burst of research activity in the form of discussions, papers, and meetings. After a while this activity subsides, corporations discover the subject, and the billion-dollar wave of investment hits. It is essential that the standards be written in the trough in between the two "elephants." If they are written too early the subject may still be poorly understood; the result is a bad standard.

Figure 1-24. The apocalypse of the two elephants.

Bad Technology

The second reason that OSI never caught on is that both the model and the protocols are flawed. The choice of seven layers was more political than technical, and two of the layers (session and presentation) are nearly empty, whereas two other ones (data link and network) are overfull. The OSI model, along with its associated service definitions and protocols, is extraordinarily complex. Bad Implementations Given the enormous complexity of the model and the protocols, it will come as no surprise that the initial implementations were huge, unwieldy, and slow. Everyone who tried them got burned. It did not take long for people to associate "OSI" with "poor quality." Although the products improved in the course of time, the image stuck. In contrast, one of the first implementations of TCP/IP was part of Berkeley UNIX and was quite good

Bad Politics

On account of the initial implementation, many people, especially in academia, thought of TCP/IP as part of UNIX, and UNIX in the 1980s in academia was not unlike parenthood (then incorrectly called motherhood) and apple pie. OSI, on the other hand, was widely thought to be the creature of the European telecommunication ministries, the European Community, and later the U.S. Government. This belief was only partly true, but the very idea of a bunch of government bureaucrats trying to shove a technically inferior standard down the throats of the poor researchers and programmers down in the trenches actually developing computer networks did not aid OSI's cause.

1.4.6 A Critique of the TCP/IP Reference Model

The TCP/IP model and protocols have their problems too. First, the model does not clearly distinguish the concepts of services, interfaces, and protocols. Good software engineering practice

requires differentiating between the specification and the implementation, something that OSI does very carefully, but TCP/IP does not. Consequently, the TCP/IP model is not much of a guide for designing new networks using new technologies.

Second, the TCP/IP model is not at all general and is poorly suited to describing any protocol stack other than TCP/IP. Trying to use the TCP/IP model to describe Bluetooth, for example, is completely impossible.

Third, the link layer is not really a layer at all in the normal sense of the term as used in the context of layered protocols.

Fourth, the TCP/IP model does not distinguish between the physical and data link layers. These are completely different. The physical layer has to do with the transmission characteristics of copper wire, fiber optics, and wireless communication. The data link layer's job is to delimit the start and end of frames and get them from one side to the other with the desired degree of reliability.

Finally, although the IP and TCP protocols were carefully thought out and well implemented, many of the other protocols were ad hoc, generally produced by a couple of graduate students hacking away until they got tired.

PHYSICAL LAYER

2.2 GUIDED TRANSMISSION MEDIA

The purpose of the physical layer is to transport bits from one machine to another. Various physical media can be used for the actual transmission. Each one has its own niche in terms of bandwidth, delay, cost, and ease of installation and maintenance. Media are roughly grouped into guided media, such as copper wire and fiber optics, and unguided media, such as terrestrial wireless, satellite, and lasers through the air.

2.2.1 Magnetic Media

One of the most common ways to transport data from one computer to another is to write them onto magnetic tape or removable media (e.g., recordable DVDs), physically transport the tape or disks to the destination machine, and read them back in again. it is often more cost effective, especially for applications in which high bandwidth or cost per bit transported is the key factor. A simple calculation will make this point clear. An industry-standard Ultrium tape can hold 800 gigabytes. A box $60 \times 60 \times 60$ cm can hold about 1000 of these tapes, for a total capacity of 800 terabytes, or 6400 terabits (6.4 petabits).

If we now look at cost, we get a similar picture. The cost of an Ultrium tape is around \$40 when bought in bulk. A tape can be reused at least 10 times, so the tape cost is maybe \$4000 per box per usage. Add to this another \$1000 for shipping (probably much less), and we have a cost of roughly \$5000 to ship 800 TB. This amounts to shipping a gigabyte for a little over half a cent. No network can beat that. The moral of the story is: Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway.

2.2.2 Twisted Pairs

One of the oldest and still most common transmission media is twisted pair. A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical form, just like a DNA molecule. Twisting is done because two parallel wires constitute a fine antenna. When the wires are twisted, the waves from different twists cancel out, so the wire radiates less effectively. A signal is usually carried as the difference in voltage between the two wires in the pair. This provides better immunity to external noise because the noise tends to affect both wires the same, leaving the differential unchanged. The most common application of the twisted pair is the telephone system. Nearly all telephones are connected to the telephone company (telco) office by a twisted pair. When many twisted pairs run in parallel for a substantial distance, such as all the wires coming from an apartment building to the telephone company office, they are bundled together and encased in a protective sheath. The pairs in these bundles would interfere with one another if it were not for the twisting. In parts of the world where telephone lines run on poles above ground, it is common to see bundles several centimeters in diameter.

Twisted pairs can be used for transmitting either analog or digital information. The bandwidth depends on the thickness of the wire and the distance traveled. Twisted-pair cabling comes in several varieties. The garden variety deployed in many office buildings is called Category 5

cabling, or "Cat 5." A category 5 twisted pair consists of two insulated wires gently twisted together. Four such pairs are typically grouped in a plastic sheath to protect the wires and keep them together. This arrangement is shown in Fig. 2-3.

Figure 2-3. Category 5 UTP cable with four twisted pairs.

Links that can be used in both directions at the same time, like a two-lane road, are called full-duplex links. In contrast, links that can be used in either direction, but only one way at a time, like a single-track railroad line. are called half-duplex links. A third category consists of links that allow traffic in only one direction, like a one-way street. They are called simplex links.

Returning to twisted pair, Cat 5 replaced earlier Category 3 cables with a similar cable that uses the same connector, but has more twists per meter y 100-Mbps and 1-Gbps Ethernet LANs. New wiring is more likely to be Category 6 or even Category 7. These categories has more stringent specifications to handle signals with greater bandwidths. Through Category 6, these wiring types are referred to as UTP (Unshielded Twisted Pair) as they consist simply of wires and insulators. In contrast to these, Category 7 cables have shielding on the individual twisted pairs, as well as around the entire cable

2.2.3 Coaxial Cable

Another common transmission medium is the coaxial cable (known to its many friends as just "coax" and pronounced "co-ax"). It has better shielding and greater bandwidth than unshielded twisted pairs, so it can span longer distances at higher speeds. Two kinds of coaxial cable are widely used. One kind, 50-ohm cable, is commonly used when it is intended for digital transmission from the start. The other kind, 75-ohm cable, is commonly used for analog

transmission and cable television. This distinction is based on historical, rather than technical, factors

A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is encased by a cylindrical conductor, often as a closely woven braided mesh. The outer conductor is covered in a protective plastic sheath. A cutaway view of a coaxial cable is shown in Fig. 2-4.

The construction and shielding of the coaxial cable give it a good combination of high bandwidth and excellent noise immunity. The bandwidth possible depends on the cable quality and length. Modern cables have a bandwidth of up to a few GHz. Coaxial cables used to be widely used within the telephone system for long-distance lines but have now largely been replaced by fiber optics on longhaul routes.

2.2.4 Power Lines

There is a yet more common kind of wiring: electrical power lines. Power lines deliver electrical power to houses, and electrical wiring within houses distributes the power to electrical outlets. The use of power lines for data communication is an old idea. Power lines have been used by electricity companies for low-rate communication such as remote metering for many years, as well in the home to control devices.

The convenience of using power lines for networking should be clear. Simply plug a TV and a receiver into the wall, which you must do anyway because they need power, and they can send and receive movies over the electrical wiring. This configuration is shown in Fig. 2-5. There is no other plug or radio. The data signal is superimposed on the low-frequency power signal (on the active or "hot" wire) as both signals use the wiring at the same time. The difficulty with using household electrical wiring for a network is that it was designed to distribute power signals. This task is quite different than distributing data signals, at which household wiring does a horrible job. Electrical signals are sent at 50–60 Hz and the wiring attenuates the much higher frequency (MHz) signals needed for high-rate data communication. The electrical properties of the wiring vary from one

house to the next and change as appliances are turned on and off, which causes data signals to bounce around the wiring.

Figure 2-5. A network that uses household electrical wiring.

2.2.5 Fiber Optics

Fiber optics are used for long-haul transmission in network backbones, high peed LANs (although so far, copper has always managed catch up eventually), and high-speed Internet access such as FttH (Fiber to the Home). An optical transmission system has three key components: the light source, the transmission medium, and the detector. Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. The transmission medium is an ultra-thin fiber of glass. The detector generates an electrical pulse when light falls on it. By attaching a light source to one end of an optical fiber and a detector to the other, we have a unidirectional data transmission system that accepts an electrical signal, converts and transmits it by light pulses, and then reconverts the output to an electrical signal at the receiving end.

When a light ray passes from one medium to another—for example, from fused silica to air—the ray is refracted (bent) at the silica/air boundary, as shown in Fig. 2-6(a). Here we see a light ray incident on the boundary at an angle α 1 emerging at an angle β 1. The amount of refraction depends on the properties of the two media (in particular, their indices of refraction). For angles of incidence above a certain critical value, the light is refracted back into the silica; none of it escapes into the air. Thus, a light ray incident at or above the critical angle is trapped inside the fiber, as shown in Fig. 2-6(b), and can propagate for many kilometers with virtually no loss. Each ray is said to have a different mode, so a fiber having this property is called a multimode fiber. However, if the fiber's diameter is reduced to a few wavelengths of light the fiber acts like a wave guide and the light can propagate only in a straight line, without bouncing, yielding a single-mode fiber. Single-mode fibers are more expensive but are widely used for longer distances

Figure 2-6. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.

Transmission of Light Through Fiber

Optical fibers are made of glass, which, in turn, is made from sand, an inexpensive raw material available in unlimited amounts. Glassmaking was known to the ancient Egyptians, but their glass had to be no more than 1 mm thick or the light could not shine through. The attenuation of light through glass depends on the wavelength of the light (as well as on some physical properties of the glass). It is defined as the ratio of input to output signal power. For the kind of glass used in fibers, the attenuation is shown in Fig. 2-7 in units of decibels per linear kilometer of fiber

For example, a factor of two loss of signal power gives an attenuation of $10 \log 10 2 = 3$ dB. The figure shows the near-infrared part of the spectrum, which is what is used in practice. Visible light has slightly shorter wavelengths, from 0.4 to 0.7 microns. (1 micron is 10-6 meters.) The true metric purist would refer to these wavelengths as 400 nm to 700 nm, but we will stick with traditional usage.

Figure 2-7. Attenuation of light through fiber in the infrared region.

Light pulses sent down a fiber spread out in length as they propagate. This spreading is called chromatic dispersion. The amount of it is wavelength dependent. One way to keep these spreadout pulses from overlapping is to increase the distance between them, but this can be done only by reducing the signaling rate.

Fiber Cables

Fiber optic cables are similar to coax, except without the braid. Figure 2-8(a) shows a single fiber viewed from the side. At the center is the glass core through which the light propagates. In multimode fibers, the core is typically 50 microns in diameter, about the thickness of a human hair. In single-mode fibers, the core is 8 to 10 microns.

Figure 2-8. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

The core is surrounded by a glass cladding with a lower index of refraction than the core, to keep all the light in the core. Next comes a thin plastic jacket to protect the cladding. Fibers are typically grouped in bundles, protected by an outer sheath. Figure 2-8(b) shows a sheath with three fibers.

Fibers can be connected in three different ways. First, they can terminate in connectors and be plugged into fiber sockets.

Second, they can be spliced mechanically. Mechanical splices just lay the two carefully cut ends next to each other in a special sleeve and clamp them in place

Third, two pieces of fiber can be fused (melted) to form a solid connection. A fusion splice is almost as good as a single drawn fiber, but even here, a small amount of attenuation occurs. For all three kinds of splices, reflections can occur at the point of the splice, and the reflected energy can interfere with the signal.

Two kinds of light sources are typically used to do the signaling. These are LEDs (Light Emitting Diodes) and semiconductor lasers. They have different properties, as shown in Fig. 2-9.

Item	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multi-mode	Multi-mode or single-mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

Figure 2-9. A comparison of semiconductor diodes and LEDs as light sources.

Comparison of Fiber Optics and Copper Wire It is instructive to compare fiber to copper. Fiber has many advantages. To start with, it can handle much higher bandwidths than copper. This alone would require its use in high-end networks. Due to the low attenuation, repeaters are needed only about every 50 km on long lines, versus about every 5 km for copper, resulting in a big cost saving. Fiber also has the advantage of not being affected by power surges, electromagnetic interference, or power failures. Nor is it affected by corrosive chemicals in the air, important for harsh factory environments.

Removing all the copper and replacing it with fiber empties the ducts, and the copper has excellent resale value to copper refiners who see it as very high-grade ore. Also, fiber is much lighter than copper. One thousand twisted pairs 1 km long weigh 8000 kg. Two fibers have more capacity and weigh only 100 kg, which reduces the need for expensive mechanical support systems that must be maintained. For new routes, fiber wins hands down due to its much lower installation cost. Finally, fibers do not leak light and are difficult to tap. These properties give fiber good security against potential wire tappers.

fiber is a less familiar technology requiring skills not all engineers have, and fibers can be damaged easily by being bent too much

2.3 WIRELESS TRANSMISSION

Wireless has advantages for even fixed devices in some circumstances. For example, if running a fiber to a building is difficult due to the terrain (mountains, jungles, swamps, etc.), wireless may be better. It is noteworthy that modern wireless digital communication began in the Hawaiian Islands, where large chunks of Pacific Ocean separated the users from their computer center and the telephone system was inadequate.

2.3.1 The Electromagnetic Spectrum

When electrons move, they create electromagnetic waves that can propagate through space. The number of oscillations per second of a wave is called its frequency, f, and is measured in Hz (in honor of Heinrich Hertz). The distance between two consecutive maxima (or minima) is called the

wavelength, which is universally designated by the Greek letter λ (lambda). all electromagnetic waves travel at the same speed, no matter what their frequency. This speed, usually called the speed of light, c, is approximately 3×108 m/sec, or about 1 foot (30 cm) per nanosecond. In copper or fiber the speed slows to about 2/3 of this value and becomes slightly frequency dependent. The speed of light is the ultimate speed limit. No object or signal can ever move faster than it.

The fundamental relation between f, λ , and c (in a vacuum) is

 $\lambda f = c$

Since c is a constant, if we know f, we can find λ , and vice versa. As a rule of thumb, when λ is in meters and f is in MHz, $\lambda f \sim 300$. The electromagnetic spectrum is shown in Fig. 2-10. The radio, microwave, infrared, and visible light portions of the spectrum can all be used for transmitting information by modulating the amplitude, frequency, or phase of the waves. Ultraviolet light, X-rays, and gamma rays would be even better, due to their higher frequencies, but they are hard to produce and modulate, do not propagate well through buildings, and are dangerous to living things. The bands listed at the bottom of Fig. 2-10 are the official ITU (International Telecommunication Union) names and are based on the wavelengths, so the LF band goes from 1 km to 10 km (approximately 30 kHz to 300 kHz). The terms LF, MF, and HF refer to Low, Medium, and High Frequency, respectively. Clearly, when the names were assigned nobody expected to go above 10 MHz, so the higher bands were later named the Very, Ultra, Super, Extremely, and Tremendously High Frequency bands. Beyond that there are no names, but Incredibly, Astonishingly, and Prodigiously High Frequency (IHF, AHF, and PHF) would sound nice.

Figure 2-10. The electromagnetic spectrum and its uses for communication.

A second form of spread spectrum, direct sequence spread spectrum, uses a code sequence to spread the data signal over a wider frequency band. It is widely used commercially as a spectrally efficient way to let multiple signals share the same frequency band. These signals can be given different codes, a method called CDMA (Code Division Multiple Access) This method is shown in contrast with frequency hopping in Fig. 2-11. It forms the basis of 3G mobile phone networks and is also used in GPS (Global Positioning System). Even without different codes, direct sequence spread spectrum, like frequency hopping spread spectrum, can tolerate narrowband interference and multipath fading because only a fraction of the desired signal is lost.

Figure 2-11. Spread spectrum and ultra-wideband (UWB) communication.

A third method of communication with a wider band is UWB (UltraWideBand) communication. UWB sends a series of rapid pulses, varying their positions to communicate information. The rapid transitions lead to a signal that is spread thinly over a very wide frequency band. UWB is defined as signals that have a bandwidth of at least 500 MHz or at least 20% of the center frequency of their frequency band.

2.3.2 Radio Transmission

Radio frequency (RF) waves are easy to generate, can travel long distances, and can penetrate buildings easily, so they are widely used for communication, both indoors and outdoors. Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned physically.

The properties of radio waves are frequency dependent. At low frequencies, radio waves pass through obstacles well, but the power falls off sharply with distance from the source—at least as fast as 1/r 2 in air—as the signal energy is spread more thinly over a larger surface. This attenuation is called path loss. At high frequencies, radio waves tend to travel in straight lines and bounce off obstacles. Path loss still reduces power, though the received signal can depend strongly on reflections as well. High-frequency radio waves are also absorbed by rain and other obstacles to a larger extent than are low-frequency ones. At all frequencies, radio waves are subject to interference from motors and other electrical equipment.

In the VLF, LF, and MF bands, radio waves follow the ground, as illustrated in Fig. 2-12(a). These waves can be detected for perhaps 1000 km at the lower frequencies, less at the higher ones. In the HF and VHF bands, the ground waves tend to be absorbed by the earth. However, the waves that reach the ionosphere, a layer of charged particles circling the earth at a height of 100 to 500 km, are refracted by it and sent back to earth, as shown in Fig. 2-12(b).

Figure 2-12. (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF band, they bounce off the ionosphere.

2.3.4 Infrared Transmission

Unguided infrared waves are widely used for short-range communication. They are relatively directional, cheap, and easy to build but have a major drawback: they do not pass through solid objects. the fact that infrared waves do not pass through solid walls well is also a plus. It means that an infrared system in one room of a building will not interfere with a similar system in adjacent rooms or buildings: you cannot control your neighbor's television with your remote control. Infrared communication has a limited use on the desktop, for example, to connect notebook computers and printers with the IrDA (Infrared Data Association) standard, but it is not a major player in the communication game.

2.3.5 Light Transmission

Unguided optical signaling or free-space optics has been in use for centuries. A more modern application is to connect the LANs in two buildings via lasers mounted on their rooftops. Optical signaling using lasers is inherently unidirectional, so each end needs its own laser and its own photodetector. This scheme offers very high bandwidth at very low cost and is relatively secure because it is difficult to tap a narrow laser beam. The laser's strength, a very narrow beam, is also its weakness here. Aiming a laser beam 1 mm wide at a target the size of a pin head 500 meters away requires the marksmanship.

A modern hotel in Europe at which the conference organizers thoughtfully provided a room full of terminals to allow the attendees to read their email during boring presentations. Since the local PTT was unwilling to install a large number of telephone lines for just 3 days, the organizers put

a laser on the roof and aimed it at their university's computer science building a few kilometers away. They tested it the night before the conference and it worked perfectly. At 9 A.M. on a bright, sunny day, the link failed completely and stayed down all day. The pattern repeated itself the next two days. heat from the sun during the daytime caused convection currents to rise up from the roof of the building, as shown in Fig. 2-14. This turbulent air diverted the beam and made it dance around the detector, much like a shimmering road on a hot day. The lesson here is that to work well in difficult conditions as well as good conditions, unguided optical links need to be engineered with a sufficient margin of error.

Figure 2-14. Convection currents can interfere with laser communication systems. A bidirectional system with two lasers is pictured here.

