HW7

Solve the problem

$$4x_1 - x_2 - x_4 = 0$$

$$-x_1 + 4x_2 - x_3 - x_5 = -1$$

$$-x_2 + 4x_3 + x_5 - x_6 = 9$$

$$-x_1 + 4x_4 - x_5 - x_6 = 4$$

$$-x_2 - x_4 + 4x_5 - x_6 = 8$$

$$-x_3 - x_5 + 4x_6 = 6$$

by (a) Jacobi method, (b) Gauss-Seidel method, (c) SOR method, and (d) the conjugate gradient method.

$$\frac{1}{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$$

$$D = \begin{bmatrix}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & 0
\end{bmatrix}$$

(a) Jacobi method.

$$(D+L+U)\vec{x} = \vec{b} \rightarrow D\vec{x} = -(b+U)\vec{x} + \vec{b}$$

$$= T\vec{x} + \vec{c} \quad \text{where} \quad \vec{T} = -\vec{P}'(b+U)$$

$$\hat{\chi} = -D^{-1}(L+U)\hat{\chi} + D^{-1}\hat{b}$$

$$= T\hat{\chi} + \hat{c}, \text{ where } \{\hat{c} = D^{-1}\hat{b}\}$$

$$\hat{\chi}_{i}^{(k+1)} = -\frac{z}{j+i} \frac{a_{ij}}{a_{ii}} \hat{\chi}_{j}^{(k+1)} + \frac{b_{i}}{a_{ii}} \Rightarrow \text{用达代, 設初始值 } \hat{\chi}_{i} = 0$$

$$\chi_{1}^{(k+1)} = \frac{1}{4} \left(\chi_{2}^{(k)} + \chi_{4}^{(k)} \right)$$

$$\chi_{2}^{(k+1)} = \frac{1}{4} \left(\chi_{1}^{(k)} + \chi_{3}^{(k)} + \chi_{5}^{(k)} - 1 \right)$$

$$\chi_{3}^{(k+1)} = \frac{1}{4} \left(\chi_{2}^{(k)} - \chi_{5}^{(k)} + \chi_{6}^{(k)} + 9 \right)$$

$$\chi_{4}^{(k+1)} = \frac{1}{4} \left(\chi_{1}^{(k)} + \chi_{5}^{(k)} + \chi_{b}^{(k)} + 4 \right)$$

$$\chi_{5}^{(k+1)} = \frac{1}{4} \left(\chi_{2}^{(k)} + \chi_{4}^{(k)} + \chi_{b}^{(k)} + 8 \right)$$

$$\chi_{b}^{(k+1)} = \frac{1}{4} (\chi_{3}^{(k)} + \chi_{5}^{(k)} + b)$$

(c) SOR method:

$$\begin{array}{ll}
D\vec{\chi} + \omega(D+b+U)\vec{\chi} = D\vec{\chi} + \omega\vec{b} \\
\Rightarrow D\vec{\chi} + \omega(D+b)\vec{\chi} = D\vec{\chi} - \omega U\vec{\chi} + \omega\vec{b} \\
\Rightarrow (D+\omega b)\vec{\chi} = [1-\omega)D-\omega U]\vec{\chi} + \omega\vec{b}
\end{array}$$

$$\overrightarrow{x} = (D + \omega L)^{T} [(J - \omega) D - \omega U] \overrightarrow{x} + \omega (D + \omega L)^{T} \overrightarrow{b} = T_{\omega} \overrightarrow{x} + \overrightarrow{c}$$

$$\chi_{i}^{(k+1)} = (J - \omega) \chi_{i}^{(k)} + \frac{\omega}{a_{i}i} (b_{i} - \frac{1}{J - i} a_{ij} \chi_{j}^{(k+1)} - \frac{1}{J - i} a_{ij} \chi_{j}^{(k)}) \rightarrow \overline{\mathcal{D}} Gauss - Seidel 類 \omega,$$

$$\overrightarrow{x} = (J - \omega) \chi_{i}^{(k)} + \frac{\omega}{a_{i}i} (b_{i} - \frac{1}{J - i} a_{ij} \chi_{j}^{(k+1)} - \frac{1}{J - i} a_{ij} \chi_{j}^{(k)}) \rightarrow \overline{\mathcal{D}} Gauss - Seidel 2 (J - \omega) \chi_{i}^{(k)}$$

(d)
$$\min_{\vec{x}} g(\vec{x}) = \min_{\vec{x}} (\frac{1}{2} \vec{x}^T A \vec{x} - \vec{x}^T \vec{b}) A = AT$$

Define
$$f(t) = g(x+t^2)$$

Find the t and
$$\vec{v} \Rightarrow g(\vec{x}+t\vec{v}) \leq g(\vec{x})$$

$$F^{(0)} = b - Ax^{(0)}
 P^{(0)} = r^{(0)}
 a_k = \frac{r^{(k)T} r^{(k)}}{p^{(k)T} A p^{(k)}}
 x^{(k+1)} = x^{(k)} + a_k p^{(k)}
 r^{(k+1)} = r^{(k)} - a_k A p^{(k)}$$

$$r^{(k+1)} = r^{(k)} - a_k A p^{(k)}$$

$$\beta_k = r^{(k+1)} r^{(k+1)}$$

$$r^{(k)} r^{(k)}$$

Jacobi method:

Answer:

[1.17478856 1.64317358 2.44824809 3.05598067 3.94965767 3.09947644] Gauss-Seidel method:

[1.17478856 1.64317358 2.44824809 3.05598067 3.94965767 3.09947644] SOR method:

[1.17478856 1.64317358 2.44824809 3.05598067 3.94965767 3.09947644] Conjugate Gradient method:

[1.17462188 1.64240917 2.4472713 3.0562416 3.94977191 3.09912292]

0	Jacobi method
ョ	X1=1.17478856
	1.643 7358
	$\chi_{5=2}$ 44824809
	9494598067
	95 = 3.94965767
	X6 = 3.0994 7644

(2	Gai Seid	iss del	me	tha	d	_
ラ	Y 1	> ,	19	478	85	Ь	
					1350	_	
	23	=2	.44	82	1 84	9	
	X	<u>(= </u>	3,01	7598	106)	
	X	5=	۶. 9	49	65%	H1)	
	X	;=	3.0	994	760	14	
						•	

3	SOR method
7	X1=1.1747885b
	92=1.64317358
	23=2.44824809
	24=3.05598067
	X5= 3.94965767
	Nb=3.09947644

lacktriangle	Conjugate gradient method X1=1.17462188
7	X1=1.17462188
	X2=1.64240917
	X3=2.4492713
	24=3,0562416
	X5 = 3.94997191
	26=3.09912292