Regular Article - Experimental Physics

Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV

The ALICE Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 8 May 2013 / Revised: 19 August 2013 / Published online: 9 November 2013 © CERN for the benefit of the ALICE collaboration 2013. This article is published with open access at Springerlink.com

Abstract The ALICE Collaboration at the LHC has measured the J/ψ and ψ' photoproduction at mid-rapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV.

The charmonium is identified via its leptonic decay for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 23 μb^{-1} . The cross section for coherent and incoherent J/ψ production in the rapidity interval -0.9 < y < 0.9, are $d\sigma^{\rm coh}_{J/\psi}/dy = 2.38^{+0.34}_{-0.24}({\rm sta} + {\rm sys})$ mb and $d\sigma^{\rm in}_{J/\psi}/dy = 0.98^{+0.19}_{-0.17}({\rm sta} + {\rm sys})$ mb, respectively. The results are compared to theoretical models for J/ψ production and the coherent cross section is found to be in good agreement with those models incorporating moderate nuclear gluon shadowing at Bjorken-x around 10^{-3} , such as EPS09 parametrization. In addition the cross section for the process $\gamma \gamma \to e^+ e^-$ has been measured and found to be in agreement with models implementing QED at leading order.

1 Introduction

The strong electromagnetic fields generated by heavy ions at the LHC provide an opportunity to study photonuclear interactions in ultra-peripheral collisions (UPC), where the impact parameter may be several tens of femtometres and no hadronic interactions occur. The photon flux is proportional to the square of the nucleus charge, so the photon flux in lead beams is enhanced by nearly four orders of magnitude compared to proton beams. The strong photon flux leads to large cross sections for a variety of photonuclear and two-photon interactions. The physics of ultra-peripheral collisions is described in Refs. [1, 2]. Exclusive vector meson photoproduction, where a vector meson is produced in an event with no other final state particles, is of particular

interest, since it provides a measure of the nuclear gluon distribution at low Bjorken-x.

Exclusive production of charmonium in photon-proton interactions at HERA, $\gamma + p \rightarrow J/\psi(\psi') + p$, has been successfully modelled in perturbative QCD in terms of the exchange of two gluons with no net-colour transfer [3]. Exclusive vector meson production at mid-rapidity in heavy-ion collisions has previously been studied at RHIC [4, 5]. The exclusive photoproduction can be either coherent, where the photon couples coherently to almost all the nucleons, or incoherent, where the photon couples to a single nucleon. Coherent production is characterized by low transverse momentum of vector mesons ($\langle p_{\rm T} \rangle \approx 60~{\rm MeV}/c$) where the nucleus normally does not break up by the J/ψ production. However, the exchange of additional photons may lead to the nucleus break-up, estimated by the simulation models at the level of 20-30 % of the events. Incoherent production, corresponding to quasi-elastic scattering off a single nucleon, is characterized by a somewhat higher transverse momentum $(\langle p_{\rm T}\rangle \approx 500 \ {\rm MeV}/c)$. In this case the nucleus interacting with the photon breaks up, but, apart from single nucleons or nuclear fragments in the very forward region, no other particles are produced.

Recently the ALICE Collaboration published the first results on the photoproduction of J/ψ in ultra-peripheral Pb–Pb collisions at the LHC [6]. This first measurement was performed in the rapidity region -3.6 < y < -2.6 and allows us to constrain the nuclear gluon distribution at Bjorken- $x \approx 10^{-2}$. In this paper, results from the ALICE experiment on exclusive photoproduction of J/ψ and ψ' mesons at mid-rapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV are presented. The measurement at mid-rapidity allows the exploration of the region $x = (M_{J/\psi}/\sqrt{s_{\rm NN}}) \exp(\pm y) \approx 10^{-3}$, where at present the uncertainty in the nuclear gluon shadowing distribution is rather large [7]. This analysis is focused both on coherently and incoherently produced J/ψ mesons. The measured cross section is compared to model predictions [8–13].

^{*}e-mail: Eugenio.Scapparone@bo.infn.it

Page 12 of 18 Eur. Phys. J. C (2013) 73:2617

much shadowing, respectively, to match the data. Our results are about 3 sigma higher than the RSZ-LTA model prediction, although a deviation of just 1.5 sigma is found from the model upper limit. Nevertheless the above predictions may have large uncertainties coming not only from the parametrization of the nuclear gluon distribution but also from the selection of the hard scale, the contributions from the higher-order terms and the treatment of the photon fluctuation to a quark—antiquark pair. The current measurement will contribute to resolve these uncertainties.

None of the three existing models predicts the incoherent photoproduction cross section correctly, but STARLIGHT predicts a correct incoherent-to-coherent ratio.

Finally, the measured two-photon cross section for dielectron production is consistent with the STARLIGHT model. This implies the models predicting a strong contribution of higher-order terms (not included in STARLIGHT) to the cross section are not favored.

Acknowledgements The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.

The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia,

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);

National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);

Ministry of Education and Youth of the Czech Republic;

Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;

The European Research Council under the European Community's Seventh Framework Programme;

Helsinki Institute of Physics and the Academy of Finland;

French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France;

German BMBF and the Helmholtz Association;

General Secretariat for Research and Technology, Ministry of Development, Greece;

Hungarian OTKA and National Office for Research and Technology

Department of Atomic Energy and Department of Science and Technology of the Government of India;

Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi— Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy;

MEXT Grant-in-Aid for Specially Promoted Research, Japan;

Joint Institute for Nuclear Research, Dubna;

National Research Foundation of Korea (NRF);

CONACYT, DGAPA, México, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network);

Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;

Research Council of Norway (NFR);

Polish Ministry of Science and Higher Education;

National Authority for Scientific Research—NASR (Autoritatea

Națională pentru Cercetare Științifică—ANCS);

Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research;

Ministry of Education of Slovakia;

Department of Science and Technology, South Africa;

CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency);

Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);

Ukraine Ministry of Education and Science;

United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- 1. A.J. Baltz et al., Phys. Rep. 458, 1 (2008)
- C.A. Bertulani, S.R. Klein, J. Nystrand, Annu. Rev. Nucl. Part. Sci. 55, 271 (2005)
- 3. L. Frankfurt, W. Koepf, M. Strikman, Phys. Rev. D 57, 512 (1998)
- B.I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 034910 (2008)
- S. Afanasiev et al. (PHENIX Collaboration), Phys. Lett. B 679, 321 (2009)
- 6. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B **718**, 1273 (2013)
- K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0904, 065 (2009)
- 8. V. Rebyakova, M. Strikman, M. Zhalov, Phys. Lett. B **710**, 647
- 9. S.R. Klein, J. Nystrand, Phys. Rev. C 60, 014903 (1999)
- 10. A. Adeluyi, C.A. Bertulani, Phys. Rev. C 85, 044904 (2012)
- 11. V.P. Goncalves, M.V.T. Machado, Phys. Rev. C 84, 011902 (2011)
- A. Cisek, W. Schäfer, A. Szczurek, Phys. Rev. C 86, 014905 (2012)
- 13. T. Lappi, H. Mantysaari. arXiv:1301.4095 [nucl-th]
- 14. A.J. Baltz, Phys. Rev. C 80, 034901 (2009)
- 15. A.J. Baltz, Phys. Rev. Lett. 100, 062302 (2008)
- K. Hencken, E.A. Kuraev, V. Serbo, Phys. Rev. C 75, 034903 (2007)
- 17. K. Aamodt et al. (ALICE Collaboration), J. Instrum. 3, S08002 (2008)
- 18. J. Alme et al., Nucl. Instrum. Methods A **622**, 316 (2010)
- A. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 109, 252302 (2012)
- A. Akindinov et al. (ALICE Collaboration), Nucl. Instrum. Methods A 602, 372 (2009)
- 21. S. van der Meer. ISR-PO/68-31, KEK68-64
- K. Oyama, M. Gagliardi on behalf of the ALICE Collaboration, proceeding of the "LHC Lumi days 2012". arXiv:1305.7044v1
- A.J. Baltz, S.R. Klein, J. Nystrand, Phys. Rev. Lett. 89, 012301 (2002)
- 24. STARLIGHT website. http://starlight.hepforge.org/
- A.J. Baltz, Y. Gorbunov, S.R. Klein, J. Nystrand, Phys. Rev. C 80, 044902 (2009)

- S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 24, 345 (2002)
- 27. A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 46, 585 (2006)
- 28. J.E. Gaiser Ph.D. thesis, SLAC-R-255 (1982)
- K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 106, 032301 (2011)
- J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)
- K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B 718, 692 (2012)
- J. Adams et al. (STAR Collaboration), Phys. Rev. C 70, 031902 (2004)

The ALICE Collaboration

E. Abbas^{1,35,42,109,119}, B. Abelev⁷², J. Adam³⁸, D. Adamová⁷⁹, A.M. Adare¹³⁰, M.M. Aggarwal⁸³, G. Aglieri Rinella³⁴, M. Agnello^{100,89}, A.G. Agocs¹²⁹, A. Agostinelli²⁸, Z. Ahammed¹²⁴, N. Ahmad¹⁸, A. Ahmad Masoodi¹⁸, I. Ahmed¹⁶, S.A. Ahn⁶⁵, S.U. Ahn⁶⁵, I. Aimo^{25,100,89}, M. Ajaz¹⁶, A. Akindinov⁵¹, D. Aleksandrov⁹⁵, B. Alessandro¹⁰⁰, D. Alexandre⁹⁷, A. Alici^{102,13}, A. Alkin⁴, E. Almaráz Aviña⁶¹, J. Alme³⁶, T. Alt⁴⁰, V. Altini³², S. Altinpinar¹⁹, I. Altsybeev¹²⁶, C. Andrei⁷⁵, A. Andronic⁹², V. Anguelov⁸⁸, J. Anielski⁵⁹, C. Anson²⁰, T. Antičić⁹³, F. Antinori¹⁰¹, P. Antonioli¹⁰², L. Aphecetche¹⁰⁸, H. Appelshäuser⁵⁷, N. Arbor⁶⁸, S. Arcelli²⁸, A. Arend⁵⁷, N. Armesto¹⁷, R. Arnaldi¹⁰⁰, T. Aronsson¹³⁰, I.C. Arsene⁹², M. Arslandok⁵⁷, A. Asryan¹²⁶, A. Augustinus³⁴, R. Averbeck⁹², T.C. Awes⁸⁰, J. Äystö⁴³, M.D. Azmi^{18,85}, M. Bach⁴⁰, A. Badalà⁹⁹, Y.W. Baek^{67,41}, R. Bailhache⁵⁷, R. Bala^{86,100}, A. Baldisseri¹⁵, F. Baltasar Dos Santos Pedrosa³⁴, J. Bán⁵², R.C. Baral⁵³, R. Barbera²⁷, F. Barile³², G.G. Barnaföldi¹²⁹, L.S. Barnby⁹⁷, V. Barret⁶⁷, J. Bartke¹¹², M. Basile²⁸, N. Bastid⁶⁷, S. Basu¹²⁴, B. Bathen⁵⁹, G. Batigne¹⁰⁸, B. Batyunya⁶³, P.C. Batzing²², C. Baumann⁵⁷, I.G. Bearden⁷⁷, H. Beck⁵⁷, N.K. Behera⁴⁵, I. Belikov⁶², F. Bellini²⁸, R. Bellwied¹¹⁸, E. Belmont-Moreno⁶¹, G. Bencedi¹²⁹, S. Beole²⁵, I. Berceanu⁷⁵, A. Bercuci⁷⁵, Y. Berdnikov⁸¹, D. Berenyi¹²⁹, A.A.E. Bergognon¹⁰⁸, R.A. Bertens⁵⁰, D. Berzano^{25,100}, L. Betev³⁴, A. Bhasin⁸⁶, A.K. Bhati⁸³, J. Bhom¹²², L. Bianchi²⁵, N. Bianchi⁶⁹, C. Bianchin⁵⁰, J. Bielčíková⁷⁹, A. Bilandzic⁷⁷, S. Bjelogrlic⁵⁰, F. Blanco¹¹, F. Blanco¹¹⁸, D. Blau⁹⁵, C. Blume⁵⁷, M. Boccioli³⁴, S. Böttger⁵⁶, A. Bogdanov⁷³, H. Bøggild⁷⁷, M. Bogolyubsky⁴⁸, L. Boldizsár¹²⁹, M. Bombara³⁹, J. Book⁵⁷, H. Borel¹⁵, A. Borissov¹²⁸ F. Bossú⁸⁵, M. Botje⁷⁸, E. Botta²⁵, E. Braidot⁷¹, P. Braun-Munzinger⁹², M. Bregant¹⁰⁸, T. Breitner⁵⁶, T.A. Broker⁵⁷, T.A. Browning⁹⁰, M. Broz³⁷, R. Brun³⁴, E. Bruna^{25,100}, G.E. Bruno³², D. Budnikov⁹⁴, H. Buesching⁵⁷, S. Bufalino^{25,100}, P. Buncic³⁴, O. Busch⁸⁸, Z. Buthelezi⁸⁵, D. Caffarri^{29,101}, X. Cai⁸, H. Caines¹³⁰, E. Calvo Villar⁹⁸, P. Camerini²³, V. Canoa Roman¹², G. Cara Romeo¹⁰², W. Carena³⁴, F. Carena³⁴, N. Carlin Filho¹¹⁵, F. Carminati³⁴, A. Casanova Díaz⁶⁹, J. Castillo Castellanos¹⁵, J.F. Castillo Hernandez⁹², E.A.R. Casula²⁴, V. Catanescu⁷⁵, C. Cavicchioli³⁴, C. Ceballos Sanchez¹⁰, J. Cepila³⁸, P. Cerello¹⁰⁰, B. Chang^{43,132}, S. Chapeland³⁴, J.L. Charvet¹⁵, S. Chattopadhyay¹²⁴, S. Chattopadhyay⁹⁶, M. Cherney⁸², C. Cheshkov^{34,117}, B. Cheynis¹¹⁷, V. Chibante Barroso³⁴, D.D. Chinellato¹¹⁸, P. Chochula³⁴, M. Chojnacki⁷⁷, S. Choudhury¹²⁴, P. Christakoglou⁷⁸, C.H. Christensen⁷⁷, P. Christiansen³³, T. Chujo¹²², S.U. Chung⁹¹, C. Cicalo¹⁰³, L. Cifarelli^{28,13}, F. Cindolo¹⁰², J. Cleymans⁸⁵, F. Colamaria³², D. Colella³², A. Collu²⁴, G. Conesa Balbastre⁶⁸, Z. Conesa del Valle^{34,47}, M.E. Connors¹³⁰, G. Contin²³, J.G. Contreras¹², T.M. Cormier¹²⁸, Y. Corrales Morales²⁵, P. Cortese³¹, I. Cortés Maldonado³, M.R. Cosentino⁷¹, F. Costa³⁴, M.E. Cotallo¹¹, E. Crescio¹², P. Crochet⁶⁷, E. Cruz Alaniz⁶¹, R. Cruz Albino¹², E. Cuautle⁶⁰, L. Cunqueiro⁶⁹, A. Dainese^{29,101}, R. Dang⁸, A. Danu⁵⁵, K. Das⁹⁶, I. Das⁴⁷, S. Das⁵, D. Das⁹⁶, S. Dash⁴⁵, A. Dash¹¹⁶, S. De¹²⁴, G.O.V. de Barros¹¹⁵, A. De Caro^{30,13}, G. de Cataldo¹⁰⁵, J. de Cuveland⁴⁰, A. De Falco²⁴, D. De Gruttola^{30,13}, H. Delagrange¹⁰⁸, A. Deloff⁷⁴, N. De Marco¹⁰⁰, E. Dénes¹²⁹, S. De Pasquale³⁰, A. Deppman¹¹⁵, G. D Erasmo³², R. de Rooij⁵⁰, M.A. Diaz Corchero¹¹, D. Di Bari³², T. Dietel⁵⁹, C. Di Giglio³², S. Di Liberto¹⁰⁶, A. Di Mauro³⁴, P. Di Nezza⁶⁹, R. Divià³⁴, Ø. Djuvsland¹⁹, A. Dobrin^{128,33,50}, T. Dobrowolski⁷⁴, B. Dönigus⁹², O. Dordic²², A.K. Dubey¹²⁴, A. Dubla⁵⁰, L. Ducroux¹¹⁷, P. Dupieux⁶⁷, A.K. Dutta Majumdar⁹⁶, D. Elia¹⁰⁵, D. Emschermann⁵⁹, H. Engel⁵⁶, B. Erazmus^{34,108}, H.A. Erdal³⁶, D. Eschweiler⁴⁰, B. Espagnon⁴⁷, M. Estienne¹⁰⁸, S. Esumi¹²², D. Evans⁹⁷, S. Evdokimov⁴⁸, G. Eyyubova²², D. Fabris^{29,101}, J. Faivre⁶⁸, D. Falchieri²⁸, A. Fantoni⁶⁹, M. Fasel⁸⁸, D. Fehlker¹⁹, L. Feldkamp⁵⁹, D. Felea⁵⁵, A. Feliciello¹⁰⁰, B. Fenton-Olsen⁷¹, G. Feofilov¹²⁶, A. Fernández Téllez³, A. Fernández Téllez retti²⁵, A. Festanti²⁹, J. Figiel¹¹², M.A.S. Figueredo¹¹⁵, S. Filchagin⁹⁴, D. Finogeev⁴⁹, F.M. Fionda³², E.M. Fiore³², E. Floratos⁸⁴, M. Floris³⁴, S. Foertsch⁸⁵, P. Foka⁹², S. Fokin⁹⁵, E. Fragiacomo¹⁰⁴, A. Francescon^{34,29}, U. Frankenfeld⁹² U. Fuchs³⁴, C. Furget⁶⁸, M. Fusco Girard³⁰, J.J. Gaardhøje⁷⁷, M. Gagliardi²⁵, A. Gago⁹⁸, M. Gallio²⁵, D.R. Gangadharan²⁰, P. Ganoti⁸⁰, C. Garabatos⁹², E. Garcia-Solis¹⁴, C. Gargiulo³⁴, I. Garishvili⁷², J. Gerhard⁴⁰, M. Germain¹⁰⁸, C. Geuna¹⁵, M. Gheata^{55,34}, A. Gheata³⁴, B. Ghidini³², P. Ghosh¹²⁴, P. Gianotti⁶⁹, P. Giubellino³⁴, E. Gladysz-Dziadus¹¹², P. Glässel⁸⁸, R. Gomez^{114,12}, E.G. Ferreiro¹⁷, L.H. González-Trueba⁶¹, P. González-Zamora¹¹, S. Gorbunov⁴⁰, A. Goswami⁸⁷,

Page 14 of 18 Eur. Phys. J. C (2013) 73:2617

S. Gotovac¹¹⁰, L.K. Graczykowski¹²⁷, R. Grajcarek⁸⁸, A. Grelli⁵⁰, C. Grigoras³⁴, A. Grigoras³⁴, V. Grigoriev⁷³, A. Grigoryan², S. Grigoryan⁶³, B. Grinyov⁴, N. Grion¹⁰⁴, P. Gros³³, J.F. Grosse-Oetringhaus³⁴, J.-Y. Grossiord¹¹⁷, R. Grosso³⁴, F. Guber⁴⁹, R. Guernane⁶⁸, B. Guerzoni²⁸, M. Guilbaud¹¹⁷, K. Gulbrandsen⁷⁷, H. Gulkanyan², T. Gunji¹²¹, A. Gupta⁸⁶, R. Gupta⁸⁶, R. Haake⁵⁹, Ø. Haaland¹⁹, C. Hadjidakis⁴⁷, M. Haiduc⁵⁵, H. Hamagaki¹²¹, G. Hamar¹²⁹, B.H. Han²¹, L.D. Hanratty⁹⁷, A. Hansen⁷⁷, Z. Harmanová-Tóthová³⁹, J.W. Harris¹³⁰, M. Hartig⁵⁷, A. Harton¹⁴, D. Hatzifotiadou¹⁰², S. Hayashi¹²¹, A. Hayrapetyan^{34,2}, S.T. Heckel⁵⁷, M. Heide⁵⁹, H. Helstrup³⁶, A. Herghelegiu⁷⁵, G. Herrera Corral¹², N. Herrmann⁸⁸, B.A. Hess¹²³, K.F. Hetland³⁶, B. Hicks¹³⁰, B. Hippolyte⁶², Y. Hori¹²¹, P. Hristov³⁴, I. Hřivnáčová⁴⁷, M. Huang¹⁹, T.J. Humanic²⁰, D.S. Hwang²¹, R. Ichou⁶⁷, R. Ilkaev⁹⁴, I. Ilkiv⁷⁴, M. Inaba¹²², E. Incani²⁴, G.M. Innocenti²⁵, P.G. Innocenti³⁴, M. Ippolitov⁹⁵, M. Irfan¹⁸, C. Ivan⁹², M. Ivanov⁹², A. Ivanov¹²⁶, V. Ivanov⁸¹, O. Ivanyt-skyi⁴, A. Jachołkowski²⁷, P. M. Jacobs⁷¹, C. Jahnke¹¹⁵, H.J. Jang⁶⁵, M.A. Janik¹²⁷, P.H.S.Y. Jayarathna¹¹⁸, S. Jena⁴⁵, D.M. Jha¹²⁸, R.T. Jimenez Bustamante⁶⁰, P.G. Jones⁹⁷, H. Jung⁴¹, A. Jusko⁹⁷, A.B. Kaidalov⁵¹, S. Kalcher⁴⁰, P. Kaliňák⁵², T. Kalliokoski⁴³, A. Kalweit³⁴, J.H. Kang¹³², V. Kaplin⁷³, S. Kar¹²⁴, A. Karasu Uysal^{34,131,66}, O. Karavichev⁴⁹, T. Karavicheva⁴⁹, E. Karpechev⁴⁹, A. Kazantsev⁹⁵, U. Kebschull⁵⁶, R. Keidel¹³³, B. Ketzer^{57,111}, M.M. Khan¹⁸, P. Khan⁹⁶, S.A. Khan¹²⁴, K. H. Khan¹⁶, A. Khanzadeev⁸¹, Y. Kharlov⁴⁸, B. Kileng³⁶, M. Kim¹³², T. Kim¹³², B. Kim¹³², S. Kim²¹, M. Kim⁴¹, D.J. Kim⁴³, J.S. Kim⁴¹, J.H. Kim²¹, D.W. Kim^{41,65}, S. Kirsch⁴⁰, I. Kisel⁴⁰, S. Kiselev⁵¹, A. Kisiel¹²⁷, J.L. Klay⁷, J. Klein⁸⁸, C. Klein-Bösing⁵⁹, M. Kliemant⁵⁷, A. Kluge³⁴, M.L. Knichel⁹², A.G. Knospe¹¹³, M.K. Köhler⁹², T. Kollegger⁴⁰, A. Kolojvari¹²⁶, M. Kompaniets¹²⁶, V. Kondratiev¹²⁶, N. Kondratyeva⁷³, A. Konevskikh⁴⁹, V. Kovalenko¹²⁶, M. Kowalenko¹²⁷, M. Kowalenko¹²⁸, M. Kowalenko¹²⁹, M. Kowalenko ski¹¹², S. Kox⁶⁸, G. Koyithatta Meethaleveedu⁴⁵, J. Kral⁴³, I. Králik⁵², F. Kramer⁵⁷, A. Kravčáková³⁹, M. Krelina³⁸, M. Kretz⁴⁰, M. Krivda^{97,52}, F. Krizek⁴³, M. Krus³⁸, E. Kryshen⁸¹, M. Krzewicki⁹², V. Kucera⁷⁹, Y. Kucheriaev⁹⁵, T. Kugathasan³⁴, C. Kuhn⁶², P.G. Kuijer⁷⁸, I. Kulakov⁵⁷, J. Kumar⁴⁵, P. Kurashvili⁷⁴, A. Kurepin⁴⁹, A.B. Kurepin⁴⁹, A. Kuryakin⁹⁴, V. Kushpil⁷⁹, S. Kushpil⁷⁹, H. Kvaerno²², M.J. Kweon⁸⁸, Y. Kwon¹³², P. Ladrón de Guevara⁶⁰, C. Lagana Fernandes¹¹⁵, I. Lakomov⁴⁷, R. Langoy^{19,125}, S.L. La Pointe⁵⁰, C. Lara⁵⁶, A. Lardeux¹⁰⁸, P. La Rocca²⁷, R. Lea²³, M. Lechman³⁴, S.C. Lee⁴¹, G.R. Lee⁹⁷, I. Legrand³⁴, J. Lehnert⁵⁷, R.C. Lemmon¹⁰⁷, M. Lenhardt⁹², V. Lenti¹⁰⁵, H. León⁶¹, M. Leoncino²⁵, I. León Monzón¹¹⁴, P. Lévai¹²⁹, S. Li^{67,8}, J. Lien^{19,125}, R. Lietava⁹⁷, S. Lindal²², V. Lindenstruth⁴⁰, C. Lippmann^{92,34}, M.A. Lisa²⁰, H.M. Ljunggren³³, D.F. Lodato⁵⁰, P.I. Loenne¹⁹, V.R. Loggins¹²⁸, V. Loginov⁷³, D. Lohner⁸⁸, C. Loizides⁷¹, K.K. Loo⁴³, X. Lopez⁶⁷, E. López Torres¹⁰, G. Løvhøiden²², X.-G. Lu⁸⁸, P. Luettig⁵⁷, M. Lunardon²⁹, J. Luo⁸, G. Luparello⁵⁰, C. Luzzi³⁴, R. Ma¹³⁰, K. Ma⁸, D.M. Madagodahettige-Don¹¹⁸, A. Maevskaya⁴⁹, M. Mager^{58,34}, D.P. Mahapatra⁵³, A. Maire⁸⁸, M. Malaev⁸¹, I. Maldonado Cervantes⁶⁰, L. Malinina^{63,a}, D. Mal'Kevich⁵¹, P. Malzacher⁹², A. Mamonov⁹⁴, L. Manceau¹⁰⁰, L. Mangotra⁸⁶, V. Manko⁹⁵, F. Manso⁶⁷, V. Manzari¹⁰⁵, Y. Mao⁸, M. Marchisone^{67,25}, J. Mareš⁵⁴, G.V. Margagliotti^{23,104}, A. Margotti¹⁰², A. Marín⁹², C. Markert¹¹³, M. Marquard⁵⁷, I. Martashvili¹²⁰, N.A. Martin⁹², P. Martinengo³⁴, M.I. Martínez³, G. Martínez García¹⁰⁸, Y. Martynov⁴, A. Mas¹⁰⁸, S. Masciocchi⁹², M. Masera²⁵, A. Masoni¹⁰³, L. Massacrier¹⁰⁸, A. Mastroserio³², A. Matyja¹¹², C. Mayer¹¹², J. Mazer¹²⁰, R. Mazumder⁴⁶, M.A. Mazzoni¹⁰⁶, F. Meddi²⁶, A. Menchaca-Rocha⁶¹, J. Mercado Pérez⁸⁸, M. Meres³⁷, Y. Miake¹²², K. Mikhaylov^{63,51}, L. Milano^{34,25}, J. Milosevic^{22,b}, A. Mischke⁵⁰, A.N. Mishra^{87,46}, D. Miśkowiec⁹², C. Mitu⁵⁵, S. Mizuno¹²², J. Mlynarz¹²⁸, B. Mohanty^{124,76}, L. Molnar^{129,62}, L. Montaño Zetina¹², M. Monteno¹⁰⁰, E. Montes¹¹, T. Moon¹³², M. Morando²⁹, D.A. Morando²⁹, D eira De Godoy¹¹⁵, S. Moretto²⁹, A. Morreale⁴³, A. Morsch³⁴, V. Muccifora⁶⁹, E. Mudnic¹¹⁰, S. Muhuri¹²⁴, M. Mukherjee¹²⁴, H. Müller³⁴, M.G. Munhoz¹¹⁵, S. Murray⁸⁵, L. Musa³⁴, J. Musinsky⁵², B.K. Nandi⁴⁵, R. Nania¹⁰², E. Nappi¹⁰⁵, C. Nattrass¹²⁰, T.K. Nayak¹²⁴, S. Nazarenko⁹⁴, A. Nedosekin⁵¹, M. Nicassio^{32,92}, M. Niculescu^{55,34}, B.S. Nielsen⁷⁷, T. Niida¹²², S. Nikolaev⁹⁵, V. Nikolic⁹³, S. Nikulin⁹⁵, V. Nikulin⁸¹, B.S. Nilsen⁸², M.S. Nilsson²², F. Noferini^{102,13} P. Nomokonov⁶³, G. Nooren⁵⁰, A. Nyanin⁹⁵, A. Nyatha⁴⁵, C. Nygaard⁷⁷, J. Nystrand¹⁹, A. Ochirov¹²⁶, H. Oeschler^{58,34,88}, S. Oh¹³⁰, S.K. Oh⁴¹, J. Oleniacz¹²⁷, A.C. Oliveira Da Silva¹¹⁵, J. Onderwaater⁹², C. Oppedisano¹⁰⁰, A. Ortiz Velasquez^{33,60}, A. Oskarsson³³, P. Ostrowski¹²⁷, J. Otwinowski⁹², K. Oyama⁸⁸, K. Ozawa¹²¹, Y. Pachmayer⁸⁸, M. Pachr³⁸, F. Padilla²⁵, P. Pagano³⁰, G. Paić⁶⁰, F. Painke⁴⁰, C. Pajares¹⁷, S.K. Pal¹²⁴, A. Palaha⁹⁷, A. Palmeri⁹⁹, V. Papikyan², G.S. Pappalardo⁹⁹, W.J. Park⁹², A. Passfeld⁵⁹, D.I. Patalakha⁴⁸, V. Paticchio¹⁰⁵, B. Paul⁹⁶, A. Pavlinov¹²⁸, T. Pawlak¹²⁷, T. Peitzmann⁵⁰, H. Pereira Da Costa¹⁵, E. Pereira De Oliveira Filho¹¹⁵, D. Peresunko⁹⁵, C.E. Pérez Lara⁷⁸, D. Perrino³², W. Peryt¹²⁷, A. Pesci¹⁰², Y. Pestov⁶, V. Petráček³⁸, M. Petran³⁸, M. Petris⁷⁵, P. Petrov⁹⁷, M. Petrovici⁷⁵, C. Petta²⁷, S. Pi-F. Prino¹⁰⁰, C.A. Pruneau¹²⁸, I. Pshenichnov⁴⁹, G. Puddu²⁴, V. Punin⁹⁴, J. Putschke¹²⁸, H. Qvigstad²², A. Rachevski¹⁰⁴, A. Rademakers³⁴, T.S. Räihä⁴³, J. Rak⁴³, A. Rakotozafindrabe¹⁵, L. Ramello³¹, S. Raniwala⁸⁷, R. Raniwala⁸⁷, S.S. Räsänen⁴³, B.T. Rascanu⁵⁷, D. Rathee⁸³, W. Rauch³⁴, A.W. Rauf¹⁶, V. Razazi²⁴, K.F. Read¹²⁰, J.S. Real⁶⁸, K. Redlich^{74,c}, R.J. Reed¹³⁰, A. Rehman¹⁹, P. Reichelt⁵⁷, M. Reicher⁵⁰, R. Renfordt⁵⁷, A.R. Reolon⁶⁹, A. Reshetin⁴⁹, F. Rettig⁴⁰, J.-P. Revol³⁴, K. Reygers⁸⁸, L. Riccati¹⁰⁰, R.A. Ricci⁷⁰, T. Richert³³, M. Richter²², P. Riedler³⁴, W. Riegler³⁴, F. Riggi^{27,99},

A. Rivetti¹⁰⁰, M. Rodríguez Cahuantzi³, A. Rodriguez Manso⁷⁸, K. Røed^{19,22}, E. Rogochaya⁶³, D. Rohr⁴⁰, D. Röhrich¹⁹, R. Romita^{92,107}, F. Ronchetti⁶⁹, P. Rosnet⁶⁷, S. Rossegger³⁴, A. Rossi³⁴, P. Roy⁹⁶, C. Roy⁶², A.J. Rubio Montero¹¹, R. Rui²³, R. Russo²⁵, E. Ryabinkin⁹⁵, A. Rybicki¹¹², S. Sadovsky⁴⁸, K. Šafařík³⁴, R. Sahoo⁴⁶, P.K. Sahu⁵³, J. Saini¹²⁴, H. Sakaguchi⁴⁴, S. Sakai⁷¹, D. Sakata¹²², C.A. Salgado¹⁷, J. Salzwedel²⁰, S. Sambyal⁸⁶, V. Samsonov⁸¹, X. Sanchez Castro⁶², L. Šándor⁵², A. Sandoval⁶¹, M. Sano¹²², G. Santagati²⁷, R. Santoro^{34,13}, J. Sarkamo⁴³, D. Sarkar¹²⁴, E. Scapparone¹⁰², F. Scarlassara²⁹, R.P. Scharenberg⁹⁰, C. Schiaua⁷⁵, R. Schicker⁸⁸, H.R. Schmidt¹²³, C. Schmidt⁹², S. Schuchmann⁵⁷, J. Schukraft³⁴, T. Schuster¹³⁰, Y. Schutz^{34,108}, K. Schwarz⁹², K. Schweda⁹², G. Scioli²⁸, E. Scomparin¹⁰⁰, R. Scott¹²⁰, P.A. Scott⁹⁷, G. Segato²⁹, I. Selyuzhenkov⁹², S. Senyukov⁶², J. Seo⁹¹, S. Serci²⁴, E. Serradilla^{11,61}, A. Sevcenco⁵⁵, A. Shabetai¹⁰⁸, G. Shabratova⁶³, R. Shahoyan³⁴, S. Sharma⁸⁶, N. Sharma¹²⁰, S. Rohni⁸⁶, K. Shigaki⁴⁴, K. Shtejer¹⁰, Y. Sibiriak⁹⁵, E. Sicking⁵⁹, S. Siddhanta¹⁰³, T. Siemiarczuk⁷⁴, D. Silvermyr⁸⁰, C. Silvestre⁶⁸, G. Simatovic^{60,93}, G. Simonetti³⁴, R. Singaraju¹²⁴, R. Singh⁸⁶, S. Singha^{124,76}, V. Singhal¹²⁴, T. Sinha⁹⁶, B.C. Sinha¹²⁴, B. Sitar³⁷, M. Sitta³¹, T.B. Skaali²², K. Skjerdal¹⁹, R. Smakal³⁸, N. Smirnov¹³⁰, R.J.M. Snellings⁵⁰, C. Søgaard³³, R. Soltz⁷², M. Song¹³², J. Song⁹¹, C. Soos³⁴, F. Soramel²⁹, I. Sputowska¹¹², M. Spyropoulou-Stassinaki⁸⁴, B.K. Srivastava⁹⁰, J. Stachel⁸⁸, I. Stan⁵⁵, G. Stefanek⁷⁴, M. Steinpreis²⁰, E. Stenlund³³, G. Steyn⁸⁵, J.H. Stiller⁸⁸, D. Stocco¹⁰⁸, M. Stolpovskiy⁴⁸, P. Strmen³⁷, A.A.P. Suaide¹¹⁵, M.A. Subieta Vásquez²⁵, T. Sugitate⁴⁴, C. Suire⁴⁷, M. Suleymanov¹⁶, R. Sultanov⁵¹, M. Šumbera⁷⁹, T. Susa⁹³, T.J.M. Symons⁷¹, A. Szanto de Toledo¹¹⁵, I. Szarka³⁷, A. Szczepankiewicz³⁴, M. Szymański¹²⁷, J. Takahashi¹¹⁶, M.A. Tangaro³², J.D. Tapia Takaki⁴⁷, A. Tarantola Peloni⁵⁷, A. Tarazona Martinez³⁴, A. Tauro³⁴, G. Tejeda Muñoz³, A. Telesca³⁴, A. Ter Minasyan⁹⁵, C. Terrevoli³², J. Thäder⁹², D. Thomas⁵⁰, R. Tieulent¹¹⁷, A.R. Timmins¹¹⁸, D. Tlusty³⁸, A. Toia^{40,29,101}, H. Torii¹²¹, L. Toscano¹⁰⁰, V. Trubnikov⁴, D. Truesdale²⁰, W.H. Trzaska⁴³, T. Tsuji¹²¹, A. Tumkin⁹⁴, R. Turrisi¹⁰¹, T.S. Tveter²², J. Ulery⁵⁷, K. Ullaland¹⁹, J. Ulrich^{64,56}, A. Uras¹¹⁷, G.M. Urciuoli¹⁰⁶, G.L. Usai²⁴, M. Vajzer^{38,79}, M. Vala^{63,52}, L. Valencia Palomo⁴⁷, S. Vallero²⁵, P. Vande Vyvre³⁴, J.W. Van Hoorne³⁴, M. van Leeuwen⁵⁰, L. Vannucci⁷⁰, A. Vargas³, R. Varma⁴⁵, M. Vasileiou⁸⁴, A. Vasiliev⁹⁵, V. Vechernin¹²⁶, M. Veldhoen⁵⁰, M. Venaruzzo²³, E. Vercellin²⁵, S. Vergara³, R. Vernet⁹, M. Verweij⁵⁰, L. Vickovic¹¹⁰, G. Viesti²⁹, J. Viinikainen⁴³, Z. Vilakazi⁸⁵, O. Villalobos Baillie⁹⁷, Y. Vinogradov⁹⁴, L. Vinogradov¹²⁶, A. Vinogradov⁹⁵, T. Virgili³⁰, Y.P. Viyogi¹²⁴, A. Vodopyanov⁶³, M.A. Völkl⁸⁸, S. Voloshin¹²⁸, K. Voloshin⁵¹, G. Volpe³⁴, B. von Haller³⁴, I. Vorobyev¹²⁶, D. Vranic^{92,34}, J. Vrláková³⁹, B. Vulpescu⁶⁷, A. Vyushin⁹⁴, V. Wagner³⁸, B. Wagner¹⁹, R. Wan⁸, Y. Wang⁸, Y. Wang⁸⁸, M. Wang⁸, K. Watanabe¹²², M. Weber¹¹⁸, J.P. Wessels^{34,59}, U. Westerhoff⁵⁹, J. Wiechula¹²³, J. Wikne²², M. Wilde⁵⁹, G. Wilk⁷⁴, M.C.S. Williams¹⁰², B. Windelband⁸⁸, C.G. Yaldo¹²⁸, Y. Yamaguchi¹²¹, S. Yang¹⁹, P. Yang⁸, H. Yang^{15,50}, S. Yasnopolskiy⁹⁵, J. Yi⁹¹, Z. Yin⁸, I.-K. Yoo⁹¹, J. Yoon¹³², X. Yuan⁸, I. Yushmanov⁹⁵, V. Zaccolo⁷⁷, C. Zach³⁸, C. Zampolli¹⁰², S. Zaporozhets⁶³, A. Zarochentsev¹²⁶, P. Závada⁵⁴, N. Zaviyalov⁹⁴, H. Zbroszczyk¹²⁷, P. Zelnicek⁵⁶, I.S. Zgura⁵⁵, M. Zhalov⁸¹, Y. Zhang⁸, H. Zhang⁸, X. Zhang^{71,67,8}, D. Zhou⁸, Y. Zhou⁵⁰, F. Zhou⁸, H. Zhu⁸, J. Zhu⁸, X. Zhu⁸, J. Zhu⁸, A. Zichichi^{28,13}, A. Zimmermann⁸⁸, G. Zinovjev⁴, Y. Zoccarato¹¹⁷, M. Zynovyev⁴, M. Zyzak⁵⁷

¹Academy of Scientific Research and Technology (ASRT), Cairo, Egypt

²A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

³Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

⁴Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

⁵Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

⁶Budker Institute for Nuclear Physics, Novosibirsk, Russia

⁷California Polytechnic State University, San Luis Obispo, California, United States

⁸Central China Normal University, Wuhan, China

⁹Centre de Calcul de l'IN2P3, Villeurbanne, France

¹⁰Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

¹¹Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

¹²Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

¹³Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy

¹⁴Chicago State University, Chicago, United States

¹⁵Commissariat à l'Energie Atomique, IRFU, Saclay, France

¹⁶COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

¹⁷Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

¹⁸Department of Physics, Aligarh Muslim University, Aligarh, India

¹⁹Department of Physics and Technology, University of Bergen, Bergen, Norway

²⁰Department of Physics, Ohio State University, Columbus, Ohio, United States

Page 16 of 18 Eur. Phys. J. C (2013) 73:2617

- ²¹Department of Physics, Sejong University, Seoul, South Korea
- ²²Department of Physics, University of Oslo, Oslo, Norway
- ²³Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
- ²⁴Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
- ²⁵Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
- ²⁶Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN, Rome, Italy
- ²⁷Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
- ²⁸Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
- ²⁹Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
- ³⁰Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy
- ³¹Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
- ³²Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
- ³³Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
- ³⁴European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ³⁵Fachhochschule Köln, Köln, Germany
- ³⁶Faculty of Engineering, Bergen University College, Bergen, Norway
- ³⁷Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
- ³⁸Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- ³⁹Faculty of Science, P.J. Šafárik University, Košice, Slovakia
- ⁴⁰Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁴¹Gangneung-Wonju National University, Gangneung, South Korea
- ⁴²Gauhati University, Department of Physics, Guwahati, India
- ⁴³Helsinki Institute of Physics (HIP) and University of Jyväskylä, Jyväskylä, Finland
- ⁴⁴Hiroshima University, Hiroshima, Japan
- ⁴⁵Indian Institute of Technology Bombay (IIT), Mumbai, India
- ⁴⁶Indian Institute of Technology Indore (IITI), Indore, India
- ⁴⁷Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
- ⁴⁸Institute for High Energy Physics, Protvino, Russia
- ⁴⁹Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
- ⁵⁰Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
- ⁵¹Institute for Theoretical and Experimental Physics, Moscow, Russia
- ⁵²Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
- ⁵³Institute of Physics, Bhubaneswar, India
- ⁵⁴Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- ⁵⁵Institute of Space Sciences (ISS), Bucharest, Romania
- ⁵⁶Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁵⁷Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁵⁸Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- ⁵⁹Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
- ⁶⁰Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- 61 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶²Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
- ⁶³Joint Institute for Nuclear Research (JINR), Dubna, Russia
- ⁶⁴Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ⁶⁵Korea Institute of Science and Technology Information, Daejeon, South Korea
- ⁶⁶KTO Karatay University, Konya, Turkey
- ⁶⁷Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France
- ⁶⁸Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
- ⁶⁹Laboratori Nazionali di Frascati, INFN, Frascati, Italy

- ⁷⁰Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
- ⁷¹Lawrence Berkeley National Laboratory, Berkeley, California, United States
- ⁷²Lawrence Livermore National Laboratory, Livermore, California, United States
- ⁷³Moscow Engineering Physics Institute, Moscow, Russia
- ⁷⁴National Centre for Nuclear Studies, Warsaw, Poland
- ⁷⁵National Institute for Physics and Nuclear Engineering, Bucharest, Romania
- ⁷⁶National Institute of Science Education and Research, Bhubaneswar, India
- ⁷⁷Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- ⁷⁸Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
- ⁷⁹Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
- ⁸⁰Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- ⁸¹Petersburg Nuclear Physics Institute, Gatchina, Russia
- ⁸²Physics Department, Creighton University, Omaha, Nebraska, United States
- 83 Physics Department, Panjab University, Chandigarh, India
- ⁸⁴Physics Department, University of Athens, Athens, Greece
- 85 Physics Department, University of Cape Town and iThemba LABS, National Research Foundation, Somerset West, South Africa
- ⁸⁶Physics Department, University of Jammu, Jammu, India
- ⁸⁷Physics Department, University of Rajasthan, Jaipur, India
- ⁸⁸Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ⁸⁹Politecnico di Torino, Turin, Italy
- ⁹⁰Purdue University, West Lafayette, Indiana, United States
- ⁹¹Pusan National University, Pusan, South Korea
- ⁹²Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum f
 ür Schwerionenforschung, Darmstadt, Germany
- ⁹³Rudjer Bošković Institute, Zagreb, Croatia
- ⁹⁴Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
- 95 Russian Research Centre Kurchatov Institute, Moscow, Russia
- ⁹⁶Saha Institute of Nuclear Physics, Kolkata, India
- ⁹⁷School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ⁹⁸Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
- ⁹⁹Sezione INFN, Catania, Italy
- ¹⁰⁰Sezione INFN, Turin, Italy
- ¹⁰¹Sezione INFN, Padova, Italy
- ¹⁰²Sezione INFN, Bologna, Italy
- ¹⁰³Sezione INFN, Cagliari, Italy
- ¹⁰⁴Sezione INFN, Trieste, Italy
- ¹⁰⁵Sezione INFN, Bari, Italy
- ¹⁰⁶Sezione INFN, Rome, Italy
- ¹⁰⁷Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
- ¹⁰⁸SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
- ¹⁰⁹Suranaree University of Technology, Nakhon Ratchasima, Thailand
- ¹¹⁰Technical University of Split FESB, Split, Croatia
- ¹¹¹Technische Universität München, Munich, Germany
- ¹¹²The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
- ¹¹³The University of Texas at Austin, Physics Department, Austin, TX, United States
- ¹¹⁴Universidad Autónoma de Sinaloa, Culiacán, Mexico
- ¹¹⁵Universidade de São Paulo (USP), São Paulo, Brazil
- ¹¹⁶Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- ¹¹⁷Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
- ¹¹⁸University of Houston, Houston, Texas, United States
- ¹¹⁹University of Technology and Austrian Academy of Sciences, Vienna, Austria
- ¹²⁰University of Tennessee, Knoxville, Tennessee, United States

Page 18 of 18 Eur. Phys. J. C (2013) 73:2617

- ¹²¹University of Tokyo, Tokyo, Japan
- ¹²²University of Tsukuba, Tsukuba, Japan
- ¹²³Eberhard Karls Universität Tübingen, Tübingen, Germany
- ¹²⁴Variable Energy Cyclotron Centre, Kolkata, India
- ¹²⁵Vestfold University College, Tonsberg, Norway
- ¹²⁶V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
- ¹²⁷Warsaw University of Technology, Warsaw, Poland
- ¹²⁸Wayne State University, Detroit, Michigan, United States
- ¹²⁹Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
- ¹³⁰Yale University, New Haven, Connecticut, United States
- ¹³¹Yildiz Technical University, Istanbul, Turkey
- ¹³²Yonsei University, Seoul, South Korea
- ¹³³Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany
 - ^aAlso at M.V.Lomonosov Moscow State University, D.V.Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.
- ^bAlso at University of Belgrade, Faculty of Physics and "Vinča"; Institute of Nuclear Sciences, Belgrade, Serbia.
- ^cAlso at Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland.

