

EST CODE MAEGT FOR OFFICE USE ONLY

Mathematics Essential General course

Externally set task 2019 Marking key

Total marks for this task: 42

Question 1

(11 marks)

(a) Determine the difference in the total length of steel required for each of the two A-frame constructions. (6 marks)

Solution

Design 1

Length of steel = $2 \times 2140 + 1500 = 5780 \text{ mm}$

Design 2

Let a be length of side A-frame

$$a^2 = 2400^2 + 750^2 \Rightarrow a \approx 2514$$
 .46 mm

Length of steel $\approx 2 \times 2514.5 + 1500 = 6529 \text{ mm}$

Therefore, the difference in the length of steel is:

6529 - 5780 = 749 mm more (accept 748 mm and 750 mm)

Specific behaviours	Marks
Correctly finds total steel for Design 1	1
Recognises use of Pythagoras to find the side length of A-frame in Design 2	1
Uses Pythagoras as sum of squares on Design 2	1
Uses square root function to determine <i>a</i>	1
Correctly finds total steel for Design 2	1
Correctly finds difference in length of steel for Designs 1 and 2	1
Total	6

(b) Determine the size of the angle at the apex of the A-frame Rob selected. (5 marks)

Tan
$$\angle c = \frac{750}{2400}$$
 or $\sin \angle c = \frac{750}{2514.46}$ or $\cos \angle c = \frac{2400}{2514.46}$
 $\angle c \approx 17.35^{\circ}$

∴Apex angle is 2 × 17.35°

Specific behaviours		Marks
Identifies Design 2 as most stable		1
Identifies use of trig ratios		1
Expresses the trig ratio correctly		1
Uses calculator (in degrees) to solve for angle in right triangle		1
Doubles angle value above to deduce angle at apex		1
	Total	5

Question 2

(15 marks)

(a) (i) How long does it take for the competitor to complete the swimming section? (1 mark)

Solution	
40 minutes	
Specific behaviours	Marks
Interprets time scale correctly, including units	1
To	tal 1

(ii) What is the average speed for this section of the triathlon?

(4 marks)

Solution	
$\frac{1500}{40}$ = 37.5 m/min (or $\frac{1.5}{40}$ × 60 = 2.25 km/hour or 2250 m/hour)	
Specific behaviours	Marks
Interprets distance scale correctly	1
Chooses the correct operation to determine rate of change (speed)	1
Determines the correct average speed	1
Includes the correct units for speed	1
Total	4

(b) Plot on Graph 2:

- the cycling section, which follows the swimming section
- the running section, which follows the cycling section to show all sections of the triathlon. (6 marks)

Total

Question 2 (continued)

(c) Compare the three sections of the triathlon to determine which section is completed at the fastest rate by the competitor. Justify your conclusion. (4 marks)

Solution	
From (a)(ii) (Swimming $\frac{1500}{40}$ = 37.5 m/min or 2.25 km/hour)	
Cycling $\frac{40\ 000}{80}$ = 500 m/min or 30 km/hour	
Running $\frac{10\ 000}{60} \approx 166.7 \text{ m/min or } 10 \text{ km/hour}$	
∴ Fastest section is cycling.	
Specific behaviours	Marks
Correctly calculates the rate of change (speed) for cycling	1
Correctly calculates the rate of change (speed) for running	1
Compares the three speeds for swimming, cycling and running to justify conclusion	1
States that cycling is completed at the fastest rate (its rate of change is the fastest)	1

Question 3 (7 marks)

(a) Determine the quantity of shampoo:

(1 mark)

(i) pumped out per action.

Solution	
20 mL	
Specific behaviours	Marks
Determines usage of 20 mL per complete pump	1
Total	1

(ii) remaining in the bottle after four complete pump actions.

(1 mark)

Solution	
1940 - 20 = 1920 mL	
Specific behaviours	Marks
Applies rate from (a)(i) to determine quantity remaining after four pumps	1
Total	1

(iii) that would have been in the bottle when it was full.

(1 mark)

Solution	
1980 + 20 = 2000 mL	
Specific behaviours	Marks
Applies rate from (a)(i) to determine quantity when bottle was full	1
Total	1

(b) Determine the linear relationship to be used to represent the quantity of shampoo (q_s) , expressed in millilitres, remaining in the bottle after n complete pumps from the bottle. (4 marks)

Solution		
$q_s = 2000 - 20 n$ or $-20 n + 2000$		
Specific behaviours		Marks
Recognises the usage as the rate of change with respect to <i>n</i>		1
Writes co-efficient as negative to show decrease		1
Uses the full value as the vertical intercept		1
Writes the rule in correct format		1
	Total	4

Question 4

(9 marks)

(a) (i) Determine the rate at which the conditioner is pumped out of the bottle with each complete pump. Show working to support your answer. (3 marks)

8

Solution	
Uses 300 mL in 40 pumps or 150 mL in 20 pumps	
$\frac{300}{40}$ or $\frac{150}{20}$ = 7.5	
Thus 7.5 mL per pump	
Specific behaviours	Marks
Determines correct usage in the correct number of pumps	1
Recognises rate as division of usage by number of pumps	1
Correctly evaluates and writes with correct units	1
Total	3

(ii) Determine the linear relationship to represent the quantity of conditioner (q_c) , expressed in millilitres, remaining in the bottle after n complete pumps from the bottle. (2 marks)

Solution	
$q_c = 1000 - 7.5n$	
Specific behaviours	Marks
Writes the rate of change as the coefficient of <i>n</i>	1
Uses the full value as the vertical intercept	1
Total	2

(b) Use graphical techniques on **Graph 3** to determine when the amount of conditioner remaining in the bottle is the same as the amount of shampoo remaining in the bottle from Question 2. State this amount. (4 marks)

