In [2]:

```
## import dataset
import pandas as pd
data = pd.read_csv("/Users/MrMndFkr/Desktop/Monthly-Traffic-Volume-Analysis/data
_reshaped.csv")
data.head()
```

Out[2]:

	State	data_monthid	category	Million_Vehicle_Miles	area	monthid
0	alabama	200401	Rural_Arterial_200212	1298	rural	200212
1	alabama	200401	Urban_Arterial_200212	1550	urban	200212
2	alabama	200401	All_Arterial_200212	4623	all	200212
3	alaska	200401	Rural_Arterial_200212	85	rural	200212
4	alaska	200401	Urban_Arterial_200212	133	urban	200212

In [3]:

```
data.sort_values('monthid',ascending = True, inplace = True)
```

In [5]:

```
## create the maping of state to sub-region from the dataset
Northeast = list(map(lambda x:x.lower(), ['Connecticut','Maine','Massachusetts',
'New Hampshire','New Jersey','New York','Pennsylvania','Rhode Island','Vermont'
]))
Southatlantic = list(map(lambda x:x.lower(), ['Delaware','District of Columbia',
'Florida','Georgia','Maryland','North Carolina','South Carolina','Virginia','Wes
t Virginia']))
Northcentral = list(map(lambda x:x.lower(), ['Illinois','Indiana','Iowa','Kansa
s','Michigan','Minnesota','Missouri','Nebraska','North Dakota','Ohio','South Dak
ota','Wisconsin']))
Southgulf = list(map(lambda x:x.lower(), ['Alabama','Arkansas','Kentucky','Louis
iana','Mississippi','Oklahoma','Tennessee','Texas']))
West = list(map(lambda x:x.lower(), ['Alaska','Arizona','California','Colorado',
'Hawaii','Idaho','Montana','Nevada','New Mexico','Oregon','Utah','Washington','W
yoming']))
```

In [6]:

```
## apply the mapping to the dataframe
data.loc[data.State.isin(Northeast),'region'] = 'North_East'
data.loc[data.State.isin(Southatlantic),'region'] = 'South_Atlantic'
data.loc[data.State.isin(Northcentral),'region'] = 'North_Central'
data.loc[data.State.isin(Southgulf),'region'] = 'South_Gulf'
data.loc[data.State.isin(West),'region'] = 'West'
```

```
In [7]:
```

```
## check for duplicates
QC = data.groupby(['State','monthid','category']).agg({'Million_Vehicle_Miles':[
'count']}).reset_index()
QC.columns = ['State','monthid','category','value']
QC.iloc[0:10,]
QC.loc[(QC.value > 1)]
```

Out[7]:

State monthid category value

In [39]:

```
## get data at month and region level
a = data.loc[data.area == 'all'].groupby(['region','monthid']).agg({'Million_Veh
icle_Miles':['sum']}).reset_index()
a.columns = ['region','monthid','miles']
a.sort_values(['region','monthid'],ascending = True, inplace = True)
```

In [40]:

```
## get rolling 12 month sum
a['rolling_miles'] = a.groupby('region')['miles'].rolling(12).sum().values
```

In [41]:

```
## get date from monthid
a['month'] = a.monthid.astype(str)
a['date'] = pd.to_datetime(a.month, format='%Y%m')
a.head()
```

Out[41]:

	region	monthid	miles	rolling_miles	month	date
0	North_Central	200212	53701	NaN	200212	2002-12-01
1	North_Central	200301	49200	NaN	200301	2003-01-01
2	North_Central	200302	45304	NaN	200302	2003-02-01
3	North_Central	200303	53315	NaN	200303	2003-03-01
4	North_Central	200304	54650	NaN	200304	2003-04-01

In [42]:

```
## remove nans and recent months as revised data is not available
b = a.loc[(~a.rolling_miles.isna()) & (a.monthid <= 201901)]
b.rolling_miles = b.rolling_miles / 1000000
b.head()</pre>
```

/Users/MrMndFkr/anaconda3/lib/python3.7/site-packages/pandas/core/ge neric.py:5096: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self[name] = value

Out[42]:

	region	monthid	miles	rolling_miles	month	date
11	North_Central	200311	52823	0.664789	200311	2003-11-01
12	North_Central	200312	54621	0.665709	200312	2003-12-01
13	North_Central	200401	49470	0.665979	200401	2004-01-01
14	North_Central	200402	46740	0.667415	200402	2004-02-01
15	North_Central	200403	55495	0.669595	200403	2004-03-01

Load required packages

```
In [43]:
```

```
%load_ext rpy2.ipython
```

The rpy2.ipython extension is already loaded. To reload it, use: %reload ext rpy2.ipython

In [44]:

```
%R library(scales)
```

Out[44]:

In [45]:

```
%R library(ggplot2)
```

Out[45]:

Get Region level Line Graphs

```
In [60]:
%R -i b
```

In [437]:

```
%%R -w 8 -h 8 --units in -r 400
qqplot(b) +
   geom line(aes(x=date,y=rolling miles, group = region), colour = 'grey69') +
   geom text(data = subset(b, month == "201901"& (region == 'South Gulf' | regi
on == 'North_East')), aes(label = gsub("_", " ", region), colour = 'grey69', x =
as.POSIXct("2019-01-01", format = "%Y-%m-%d"), y = rolling miles), hjust = 0.8,
vjust = -0.6, colour = 'grey69') +
    geom text(data = subset(b, month == "201901" & region == 'West'), aes(label
= gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-01", format
= "%Y-%m-%d"), y = rolling miles), hjust = 0.8, vjust = -0.6, colour = 'grey69')
    geom text(data = subset(b, month == "201901" & region == 'North Central'), a
es(label = gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-0")
1", format = "%Y-%m-%d"), y = rolling miles), hjust = 0.8, vjust = 2, colour =
'grey69') +
    geom text(data = subset(b, month == "201901" & region == 'South_Atlantic'),
aes(label = gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-0")
1", format = "%Y-%m-%d"), y = rolling miles), hjust = 0.8, vjust = 3.5, colour =
'grey69') +
   theme minimal() +
   theme(panel.grid.major = element blank(),panel.grid.minor = element blank(),
axis.title.x = element_blank(), legend.position = "None") +
   annotate(geom='rect', xmin = as.POSIXct("2008-01-01", format = "%Y-%m-%d"),
xmax = as.POSIXct("2009-03-01", format = "%Y-%m-%d"), ymin = 0.4, ymax = 0.75, a
lpha = 0.1 +
   annotate(geom='text', x = as.POSIXct("2008-07-01", format = "%Y-%m-%d"), y =
0.75, label = '2008 Economic Crisis', vjust = -0.5, fontface = 'italic') +
   ylab("Trillion Vehicular Miles - 12 month moving sum\n") +
   scale y continuous(limits = c(0.4, 0.75), breaks = seq(0.4, 0.75, by = 0.05))
   scale_x_datetime(date_breaks = '2 year', labels=date format('%Y')) +
   labs( title = "Vehicle activity dropped across all regions post 2008 economi
c recession") +
   theme(plot.title = element text(size=15, face = "bold"), axis.title.y = elem
ent_text(colour = 'grey69'), axis.text = element_text(colour = 'grey69') ) +
   theme(plot.title = element text(hjust = 6))
#qqsave('/Users/MrMndFkr/Desktop/Monthly-Traffic-Volume-Analysis/Region Wise I.p
df', units = 'in', width = 8, height = 8)
```

Vehicle activity dropped across all regions post 2008 economic recession

In [434]:

```
%%R -w 8 -h 8 --units in -r 400
qqplot(b) +
       geom line(aes(x=date,y=rolling miles, group = region), colour = 'grey69') +
       geom line(data = subset(b, date >= '2014-01-01' & region == 'North East'), a
es(x=date,y=rolling miles), colour = 'red4') +
       geom text(data = subset(b, month == "201901" & region == 'South Gulf'), aes(
label = gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-01",
format = "Y-m-d"), y = rolling miles), hjust = 0.8, vjust = -0.6, colour =
'grey69') +
       geom text(data = subset(b, month == "201901" & region == 'South Atlantic'),
aes(label = gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-0")
1", format = "%Y-%m-%d"), y = rolling_miles), hjust = 0.8, vjust = 3.3, colour =
'grey69') +
       geom text(data = subset(b, month == "201901" & region == 'North Central'), a
es(label = gsub(" ", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-0")
1", format = "%Y-%m-%d"), y = rolling miles), hjust = 0.8, vjust = 2, colour =
'grey69') +
       geom text(data = subset(b, month == "201901" & region == 'West'), aes(label)
= gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-01", format
= "%Y-%m-%d"), y = rolling miles), hjust = 0.8, vjust = -0.6, colour = 'grey69')
       geom text(data = subset(b, month == "201901" & region == 'North East'), aes(
label = gsub("_", " ", region), colour = 'grey69', x = as.POSIXct("2019-01-01",
format = "%Y-%m-%d"), y = rolling miles), hjust = 0.8, vjust = -0.6, colour = 'r
ed4') +
       theme minimal() +
       theme(panel.grid.major = element blank(),panel.grid.minor = element blank(),
axis.title.x = element_blank(), legend.position = "None") +
       annotate(geom='rect', xmin = as.POSIXct("2014-01-01", format = "%Y-%m-%d"),
xmax = as.POSIXct("2019-01-01", format = "%Y-%m-%d"), ymin = 0.4, ymax = 0.75, a
lpha = 0.1 +
       annotate(geom='text', x = as.POSIXct("2016-07-01", format = "%Y-%m-%d"), y = as.Posixct("2016-07-01", format = as.Posixct("2016-07-01", format = as.Posixct("2016-07-07"), y = as.Posixct("2016-07-07"), y = as.Posixct("2016-07-07"), y = as.Posixct("2016-07"), y
0.75, label = 'Economic Growth Post Recession', vjust = -0.5, fontface = 'itali
       ylab("Trillion Vehicular Miles - 12 month moving sum\n") +
       scale y continuous(limits = c(0.4, 0.75), breaks = seq(0.4, 0.75, by = 0.05))
       scale x datetime(date breaks = '2 year', labels=date format('%Y')) +
       labs( title = "The Uneven Geography of U.S. Economic Growth") +
       theme(plot.title = element text(size=15, face = "bold"), axis.title.y = elem
ent text(colour = 'grey69'), axis.text = element text(colour = 'grey69') ) +
       theme(plot.title = element text(hjust = -0.25))
#qqsave('/Users/MrMndFkr/Desktop/Monthly-Traffic-Volume-Analysis/Region Wise II.
pdf', units = 'in', width = 8.5, height = 8)
```

The Uneven Geography of U.S. Economic Growth

Slope graph for disasters

We will show a slope graph for Alabama - just before and 12 months after the disaster. Hurricane Katrina happened in end of Aug 2005, so we will take Aug 2005 and Aug 2006. We will have seperate lines for urban and rural areas for comparison

In [210]:

```
## subsetting and aggregating
c = data.loc[(data.State.isin(['louisiana','alabama'])) & (data.area.isin(['rura
l','urban']))]
c.loc[:,'month'] = c.monthid.astype(str)
c.loc[:,'date'] = pd.to_datetime(c.month, format='%Y%m')
c.head()
```

Out[210]:

	State	data_monthid	category	Million_Vehicle_Miles	area	monthid	
0	alabama	200401	Rural_Arterial_200212	1298	rural	200212	Sout
1	alabama	200401	Urban_Arterial_200212	1550	urban	200212	Sout
55	Iouisiana	200401	Urban_Arterial_200212	1414	urban	200212	Sout
54	Iouisiana	200401	Rural_Arterial_200212	1010	rural	200212	Sout
154	alabama	200402	Urban_Arterial_200301	1511	urban	200301	Sout

In [211]:

```
### 12 month moving sum
c.sort_values(['State','area','monthid'],ascending = True, inplace = True)
c.loc[:,'rolling_miles'] = c.groupby(['State','area'])['Million_Vehicle_Miles'].
rolling(12).sum().values
c.head()
```

/Users/MrMndFkr/anaconda3/lib/python3.7/site-packages/ipykernel_laun cher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
"""Entry point for launching an IPython kernel.

Out[211]:

	State	data_monthid	category	Million_Vehicle_Miles	area	monthid	re
0	alabama	200401	Rural_Arterial_200212	1298	rural	200212	South_
153	alabama	200402	Rural_Arterial_200301	1235	rural	200301	South_
306	alabama	200403	Rural_Arterial_200302	1195	rural	200302	South_
459	alabama	200404	Rural_Arterial_200303	1441	rural	200303	South_
612	alabama	200405	Rural_Arterial_200304	1462	rural	200304	South_

In [228]:

```
## some more manipulations
d = c.loc[(~c.rolling_miles.isna()) & (c.monthid.isin([200508,200608]))]
d.rolling_miles = d.rolling_miles / 1000
d.loc[d.monthid == 200508 ,'period'] = 'Before the disaster'
d.loc[d.monthid == 200608 ,'period'] = '12 months after Hurricane Katrina'
d.head(10)
```

Out[228]:

	State	data_monthid	category	Million_Vehicle_Miles	area	monthid	
4896	alabama	200609	Rural_Arterial_200508	1521	rural	200508	Sou
6732	alabama	200709	Rural_Arterial_200608	1480	rural	200608	Sou
4897	alabama	200609	Urban_Arterial_200508	1716	urban	200508	Sou
6733	alabama	200709	Urban_Arterial_200608	1889	urban	200608	Sou
4950	louisiana	200609	Rural_Arterial_200508	1228	rural	200508	Sou
6786	louisiana	200709	Rural_Arterial_200608	1094	rural	200608	Sou
4951	louisiana	200609	Urban_Arterial_200508	1784	urban	200508	Sou
6787	louisiana	200709	Urban_Arterial_200608	2009	urban	200608	Sou

In [224]:

%**R** −i d

```
In [432]:
```

```
%%R -w 8 -h 4 --units in -r 200
ggplot(d) +
   geom line(data = subset(d,State == 'alabama'), aes(x = reorder(period,monthi
d), y = rolling miles , group = area, colour = area), alpha = 1, size = 1 ) +
    geom point(data = subset(d, State == 'alabama'), aes(x = reorder(period, monthi
d), y = rolling miles , group = State, colour = area), alpha = 1, size = 3) +
    scale x discrete(labels = c('Before Hurricane Katrina', '12 months after Hur
ricane Katrina')) +
    scale colour manual(values = c("grey69" , "dodgerblue")) +
   theme bw() +
   theme(panel.border = element_blank(), axis.line = element_blank(),legend.pos
ition = "None",axis.ticks = element blank()) +
    theme(axis.title.y = element blank(),axis.text.y = element blank(),panel.gri
d.major.y = element blank(),panel.grid.minor.y = element blank()) +
   theme(axis.title.x = element blank(),panel.grid.major.x = element blank()) +
    geom_text_repel(data = subset(d, State == 'alabama' & period == "12 months a
fter Hurricane Katrina"), aes(x = period, y = rolling miles, label = paste(toupp
er(substr(area,1,1)),substr(area,2,nchar(area)),sep="")) , fontface = "bold",hju
st = 5, vjust = 2, size = 3, colour = c("grey69", "dodgerblue"), segment.colou
r = NA) +
   geom_text_repel(data = subset(d, State == 'alabama' & period == "12 months a
fter Hurricane Katrina"), aes(x = period, y = rolling miles, label = paste(round
(rolling miles,2), 'Bn')) , fontface = "bold", hjust = -0.2, size = 3, segment.co
lour = NA, colour = c("grey69", "dodgerblue")) +
   geom text(data = subset(d, State == 'alabama' & period == "Before the disast
er"), aes(x = period, y = rolling miles, label = paste(round(rolling miles,2), 'B
n')) , fontface = "bold", hjust = 1.2, size = 3, colour = c("grey69", "dodgerb")
lue")) +
   theme(plot.title = element text(size=15, face = "bold"), plot.subtitle = ele
ment text(size = 8, colour = 'grey69')) +
   theme(axis.text = element text(colour = 'grey69') ) +
   labs( title = "Vehicular Activity in Alabama - Urban Vs Rural Areas",
         subtitle = "Hurricane Katrina lead to ~1800 casualities and $125 Bn in
damages to the United States economy. Alabama was one of the key states affecte
d.")
#ggsave('/Users/MrMndFkr/Desktop/Monthly-Traffic-Volume-Analysis/Urban Vs Rural.
pdf', units = 'in', width = 8, height = 4)
```

Vehicular Activity in Alabama - Urban Vs Rural Areas

Hurricane Katrina lead to ~1800 casualities and \$125 Bn in damages to the United States economy. Alabama was one of the key states affected.

