# APPLIED DATA SCIENCE - PHASE 3 STOCK PRICE PREDICTION

**Team Leader: Supriya . A(211521104163)** 

**Team Members:** 

<u>Priyadharshini</u>. Y(211521104119)

Srinidhi . E(211521104157)

Getsy Jacinth .S(211521104043)

Saranya . C(211521104143)

**TEAM: TG-06** 

#### **FEATURE ENGINEERING:**

It involves creating and selecting relevant features (input variables) from the available data that can be used to train the model. Effective feature engineering can significantly improve the model's predictive performance.

# **Historical Price Data:**

Close Price: The closing price of the stock on a given day.

**Open Price**: The opening price of the stock on a given day.

High and Low Prices: The highest and lowest prices of the stock during a

trading day.

#### **Time Series Features:**

**Lagged Returns:** The returns of the stock in the previous days, which can capture trends and momentum.

**Moving Averages:** Simple moving averages (SMA) or exponential moving averages (EMA) to capture short-term and long-term trends.

After selecting and creating these features, it's important to preprocess the data, handle missing values, and potentially scale or normalize the features as needed before using them to train your stock price prediction model. Additionally, feature selection techniques (e.g., feature importance analysis or correlation

analysis) can help identify the most relevant features and improve the model's efficiency and interpretability.

# **Code:**

```
import pandas as pd
data = pd.read_csv('MSFT.csv')
print(data.head())
data['Date'] = pd.to_datetime(data['Date'])
data['Day'] = data['Date'].dt.day
data['Month'] = data['Date'].dt.month
data['Year'] = data['Date'].dt.year
data['Daily_Return'] = data['Adj Close'].pct_change()
data['Lagged_Return_1'] = data['Daily_Return'].shift(1)
data['Lagged_Return_7'] = data['Daily_Return'].shift(7)
data['SMA_5'] = data['Adj Close'].rolling(window=5).mean()
data['SMA_30'] = data['Adj Close'].rolling(window=30).mean()
data['EMA_12'] = data['Adj Close'].ewm(span=12, adjust=False).mean()
data['Avg_Volume_5'] = data['Volume'].rolling(window=5).mean()
data['Volume_Change'] = data['Volume'].pct_change()
def calculate_rsi(data, window=14):
  delta = data['Adj Close'].diff(1)
  gain = delta.where(delta > 0, 0)
```

```
loss = -delta.where(delta < 0, 0)
  avg_gain = gain.rolling(window=window).mean()
  avg_loss = loss.rolling(window=window).mean()
  rs = avg\_gain / avg\_loss
  rsi = 100 - (100 / (1 + rs))
  return rsi
data['RSI_14'] = calculate_rsi(data)
print(data.head(100))
Output:
Date
       Open
               High
                       Low
                              Close Adj Close
                                                Volume \
0 1986-03-13 0.088542 0.101563 0.088542 0.097222 0.062549
1031788800
1 1986-03-14 0.097222 0.102431 0.097222 0.100694 0.064783
308160000
2 1986-03-17 0.100694 0.103299 0.100694 0.102431 0.065899
133171200
3 1986-03-18 0.102431 0.103299 0.098958 0.099826 0.064224
                                                             67766400
4 1986-03-19 0.099826 0.100694 0.097222 0.098090 0.063107
                                                             47894400
5 1986-03-20 0.098090 0.098090 0.094618 0.095486 0.061432
                                                             58435200
6 1986-03-21 0.095486 0.097222 0.091146 0.092882 0.059756
                                                             59990400
7 1986-03-24 0.092882 0.092882 0.089410 0.090278 0.058081
                                                             65289600
8 1986-03-25 0.090278 0.092014 0.089410 0.092014 0.059198
                                                             32083200
9 1986-03-26 0.092014 0.095486 0.091146 0.094618 0.060873
                                                             22752000
10 1986-03-27 0.094618 0.096354 0.094618 0.096354 0.061990
16848000
```

| 11 1986-03-31<br>12873600 | 0.096354 | 0.096354 | 0.093750 | 0.095486 | 0.061432 |         |
|---------------------------|----------|----------|----------|----------|----------|---------|
| 12 1986-04-01<br>11088000 | 0.095486 | 0.095486 | 0.094618 | 0.094618 | 0.060873 |         |
| 13 1986-04-02<br>27014400 | 0.094618 | 0.097222 | 0.094618 | 0.095486 | 0.061432 |         |
| 14 1986-04-03<br>23040000 | 0.096354 | 0.098958 | 0.096354 | 0.096354 | 0.061990 |         |
| 15 1986-04-04<br>26582400 | 0.096354 | 0.097222 | 0.096354 | 0.096354 | 0.061990 |         |
| 16 1986-04-07<br>16560000 | 0.096354 | 0.097222 | 0.092882 | 0.094618 | 0.060873 |         |
| 17 1986-04-08<br>10252800 | 0.094618 | 0.097222 | 0.094618 | 0.095486 | 0.061432 |         |
| 18 1986-04-09<br>12153600 | 0.095486 | 0.098090 | 0.095486 | 0.097222 | 0.062549 |         |
| 19 1986-04-10<br>13881600 | 0.097222 | 0.098958 | 0.095486 | 0.098090 | 0.063107 |         |
| 20 1986-04-11<br>17222400 | 0.098958 | 0.101563 | 0.098958 | 0.099826 | 0.064224 |         |
| 21 1986-04-14<br>12153600 | 0.099826 | 0.101563 | 0.099826 | 0.100694 | 0.064783 |         |
| 22 1986-04-15             | 0.100694 | 0.100694 | 0.097222 | 0.100694 | 0.064783 | 9302400 |
| 23 1986-04-16<br>31910400 | 0.100694 | 0.105035 | 0.099826 | 0.104167 | 0.067016 |         |
| 24 1986-04-17<br>22003200 | 0.104167 | 0.105035 | 0.104167 | 0.105035 | 0.067575 |         |
| 25 1986-04-18<br>21628800 | 0.105035 | 0.105035 | 0.100694 | 0.101563 | 0.065341 |         |
| 26 1986-04-21<br>22924800 | 0.101563 | 0.102431 | 0.098958 | 0.101563 | 0.065341 |         |
| 27 1986-04-22<br>15552000 | 0.101563 | 0.101563 | 0.099826 | 0.099826 | 0.064224 |         |

- 28 1986-04-23 0.099826 0.100694 0.098958 0.100260 0.064503 15609600
- 29 1986-04-24 0.100260 0.111979 0.099826 0.110243 0.070926 62352000
- 30 1986-04-25 0.111111 0.121962 0.111111 0.117188 0.075393 85795200
- 31 1986-04-28 0.117188 0.118924 0.116319 0.118056 0.075952 28886400
- 32 1986-04-29 0.118056 0.118056 0.113715 0.114583 0.073718 30326400
- 33 1986-04-30 0.114583 0.115451 0.109375 0.111979 0.072043 30902400
- 34 1986-05-01 0.111979 0.111979 0.108507 0.110243 0.070926 54345600
- 35 1986-05-02 0.110243 0.111979 0.109375 0.110243 0.070926 20246400
- 36 1986-05-05 0.110243 0.110243 0.109375 0.109375 0.070367 3254400
- 37 1986-05-06 0.110243 0.111979 0.110243 0.110243 0.070926 9734400
- 38 1986-05-07 0.110243 0.111111 0.108507 0.110243 0.070926 5155200
- 39 1986-05-08 0.110243 0.111111 0.109375 0.111111 0.071484 3542400
- 40 1986-05-09 0.111111 0.111111 0.110243 0.110243 0.070926 6076800
- $41\ 1986-05-12\ 0.110243\ 0.113715\ 0.110243\ 0.111111\ 0.071484\ 10483200$
- 42 1986-05-13 0.111111 0.112847 0.111111 0.111979 0.072043 3830400
- 43 1986-05-14 0.111979 0.111979 0.111111 0.111111 0.071484 9302400
- 44 1986-05-15 0.111111 0.112847 0.111111 0.111111 0.071484 3801600
- 45 1986-05-16 0.111111 0.114583 0.111111 0.111979 0.072043 11952000
- 46 1986-05-19 0.111979 0.111979 0.109375 0.110243 0.070926 11001600
- 47 1986-05-20 0.110243 0.110243 0.108507 0.109375 0.070367 61977600
- 48 1986-05-21 0.109375 0.110243 0.107639 0.107639 0.069250 8092800
- 49 1986-05-22 0.107639 0.108507 0.107639 0.107639 0.069250 4406400
- 50 1986-05-23 0.107639 0.109375 0.107639 0.107639 0.069250 4089600

- 51 1986-05-27 0.107639 0.111111 0.107639 0.111111 0.071484 13881600
- 52 1986-05-28 0.111111 0.114583 0.111111 0.114583 0.073718 15523200
- 53 1986-05-29 0.114583 0.118924 0.113715 0.117188 0.075393 45676800
- 54 1986-05-30 0.118056 0.123264 0.118056 0.121528 0.078186 27072000
- 55 1986-06-02 0.121528 0.121528 0.118056 0.118056 0.075952 19728000
- 56 1986-06-03 0.118056 0.118056 0.116319 0.118056 0.075952 5011200
- 57 1986-06-04 0.118056 0.118924 0.116319 0.117188 0.075393 4723200
- 58 1986-06-05 0.117188 0.118924 0.116319 0.118924 0.076510 13708800
- 59 1986-06-06 0.118924 0.118924 0.117188 0.118924 0.076510 3427200

RSI\_14 Day Month Year Daily\_Return Lagged\_Return\_1 \

| 0  | NaN      | 13   | 3 | 1986 | NaN       |    | NaN       |
|----|----------|------|---|------|-----------|----|-----------|
| 1  | NaN      | 14   | 3 | 1986 | 0.035716  |    | NaN       |
| 2  | NaN      | 17   | 3 | 1986 | 0.017227  | (  | 0.035716  |
| 3  | NaN      | 18   | 3 | 1986 | -0.025418 | (  | 0.017227  |
| 4  | NaN      | 19   | 3 | 1986 | -0.017392 | -( | 0.025418  |
| 5  | NaN      | 20   | 3 | 1986 | -0.026542 | -( | 0.017392  |
| 6  | NaN      | 21   | 3 | 1986 | -0.027282 | -( | 0.026542  |
| 7  | NaN      | 24   | 3 | 1986 | -0.028031 | -( | 0.027282  |
| 8  | NaN      | 25   | 3 | 1986 | 0.019232  | -( | 0.028031  |
| 9  | NaN      | 26   | 3 | 1986 | 0.028295  | (  | 0.019232  |
| 10 | NaN      | 27   | 3 | 1986 | 0.018350  |    | 0.028295  |
| 11 | NaN      | 31   | 3 | 1986 | -0.009001 |    | 0.018350  |
| 12 | NaN      | 1    | 4 | 1986 | -0.009099 | -( | 0.009001  |
| 13 | 46.66626 | 59 2 | 2 | 1986 | 0.009183  |    | -0.009099 |

| 14 | 48.385420 | 3  | 4 1986 | 0.009083  | 0.009183  |
|----|-----------|----|--------|-----------|-----------|
| 15 | 40.737547 | 4  | 4 1986 | 0.000000  | 0.009083  |
| 16 | 33.333333 | 7  | 4 1986 | -0.018019 | 0.000000  |
| 17 | 40.001432 | 8  | 4 1986 | 0.009183  | -0.018019 |
| 18 | 48.001719 | 9  | 4 1986 | 0.018183  | 0.009183  |
| 19 | 56.520047 | 10 | 4 1986 | 0.008921  | 0.018183  |
| 20 | 68.183298 | 11 | 4 1986 | 0.017700  | 0.008921  |
| 21 | 80.000000 | 14 | 4 1986 | 0.008704  | 0.017700  |
| 22 | 77.77778  | 15 | 4 1986 | 0.000000  | 0.008704  |
| 23 | 78.946376 | 16 | 4 1986 | 0.034469  | 0.000000  |
| 24 | 77.77778  | 17 | 4 1986 | 0.008341  | 0.034469  |
| 25 | 66.663825 | 18 | 4 1986 | -0.033060 | 0.008341  |
| 26 | 70.000000 | 21 | 4 1986 | 0.000000  | -0.033060 |
| 27 | 61.903138 | 22 | 4 1986 | -0.017095 | 0.000000  |
| 28 | 60.974758 | 23 | 4 1986 | 0.004344  | -0.017095 |
| 29 | 75.000000 | 24 | 4 1986 | 0.099577  | 0.004344  |
| 30 | 84.209782 | 25 | 4 1986 | 0.062981  | 0.099577  |
| 31 | 84.209782 | 28 | 4 1986 | 0.007414  | 0.062981  |
| 32 | 74.998881 | 29 | 4 1986 | -0.029413 | 0.007414  |
| 33 | 69.048431 | 30 | 4 1986 | -0.022722 | -0.029413 |
| 34 | 64.286323 | 1  | 5 1986 | -0.015505 | -0.022722 |
| 35 | 63.414421 | 2  | 5 1986 | 0.000000  | -0.015505 |
| 36 | 61.903138 | 5  | 5 1986 | -0.007881 | 0.000000  |
| 37 | 58.975301 | 6  | 5 1986 | 0.007944  | -0.007881 |
| 38 | 57.894737 | 7  | 5 1986 | 0.000000  | 0.007944  |
| 39 | 65.713409 | 8  | 5 1986 | 0.007867  | 0.000000  |
| 40 | 63.889580 | 9  | 5 1986 | -0.007806 | 0.007867  |
| 41 | 68.571575 | 12 | 5 1986 | 0.007867  | -0.007806 |

| 42 | 69.015434 | 13 | 5   | 1986 | 0.007820  | 0.007867  |
|----|-----------|----|-----|------|-----------|-----------|
| 43 | 51.998281 | 14 | 5   | 1986 | -0.007759 | 0.007820  |
| 44 | 29.415482 | 15 | 5   | 1986 | 0.000000  | -0.007759 |
| 45 | 29.415482 | 16 | 5   | 1986 | 0.007820  | 0.000000  |
| 46 | 33.337312 | 19 | 5   | 1986 | -0.015505 | 0.007820  |
| 47 | 38.460479 | 20 | 5   | 1986 | -0.007881 | -0.015505 |
| 48 | 38.460479 | 21 | 5   | 1986 | -0.015874 | -0.007881 |
| 49 | 38.460479 | 22 | 5   | 1986 | 0.000000  | -0.015874 |
| 50 | 41.667910 | 23 | 5   | 1986 | 0.000000  | 0.000000  |
| 51 | 53.330150 | 27 | 5   | 1986 | 0.032260  | 0.000000  |
| 52 | 63.154919 | 28 | 5   | 1986 | 0.031252  | 0.032260  |
| 53 | 66.663825 | 29 | 5   | 1986 | 0.022722  | 0.031252  |
| 54 | 75.995417 | 30 | 5   | 1986 | 0.037046  | 0.022722  |
| 55 | 64.283887 | 2  | 6 1 | 986  | -0.028573 | 0.037046  |
| 56 | 62.960016 | 3  | 6 1 | 986  | 0.000000  | -0.028573 |
| 57 | 62.960016 | 4  | 6 1 | 986  | -0.007360 | 0.000000  |
| 58 | 65.514261 | 5  | 6 1 | 986  | 0.014816  | -0.007360 |
| 59 | 64.281604 | 6  | 6 1 | 986  | 0.000000  | 0.014816  |

Lagged\_Return\_7 SMA\_5 SMA\_30 EMA\_12 Avg\_Volume\_5 Volume\_Change

| 0 | NaN | NaN      | NaN 0.062549 | NaN       | NaN          |
|---|-----|----------|--------------|-----------|--------------|
| 1 | NaN | NaN      | NaN 0.062893 | NaN       | -0.701334    |
| 2 | NaN | NaN      | NaN 0.063355 | NaN       | -0.567850    |
| 3 | NaN | NaN      | NaN 0.063489 | NaN       | -0.491133    |
| 4 | NaN | 0.064112 | NaN 0.063430 | 317756160 | .0 -0.293243 |
| 5 | NaN | 0.063889 | NaN 0.063123 | 123085440 | .0 0.220084  |
| 6 | NaN | 0.062884 | NaN 0.062605 | 73451520. | 0 0.026614   |

| 7  | NaN 0.061320       | NaN 0.061909 5    | 9875200.0  | 0.088334  |
|----|--------------------|-------------------|------------|-----------|
| 8  | 0.035716 0.060315  | NaN 0.061492      | 52738560.0 | -0.508602 |
| 9  | 0.017227 0.059868  | NaN 0.061397      | 47710080.0 | -0.290844 |
| 10 | -0.025418 0.059980 | NaN 0.061488      | 39392640.0 | -0.259494 |
| 11 | -0.017392 0.060315 | NaN 0.061479      | 29969280.0 | -0.235897 |
| 12 | -0.026542 0.060873 | NaN 0.061386      | 19128960.0 | -0.138702 |
| 13 | -0.027282 0.061320 | NaN 0.061393      | 18115200.0 | 1.436364  |
| 14 | -0.028031 0.061543 | NaN 0.061485      | 18172800.0 | -0.147122 |
| 15 | 0.019232 0.061543  | NaN 0.061563      | 20119680.0 | 0.153750  |
| 16 | 0.028295 0.061432  | NaN 0.061457      | 20856960.0 | -0.377031 |
| 17 | 0.018350 0.061543  | NaN 0.061453      | 20689920.0 | -0.380870 |
| 18 | -0.009001 0.061767 | NaN 0.061621      | 17717760.0 | 0.185393  |
| 19 | -0.009099 0.061990 | NaN 0.061850      | 15886080.0 | 0.142180  |
| 20 | 0.009183 0.062437  | NaN 0.062215      | 14014080.0 | 0.240664  |
| 21 | 0.009083 0.063219  | NaN 0.062610      | 13132800.0 | -0.294314 |
| 22 | 0.000000 0.063889  | NaN 0.062945      | 12942720.0 | -0.234597 |
| 23 | -0.018019 0.064783 | NaN 0.063571      | 16894080.0 | 2.430341  |
| 24 | 0.009183 0.065676  | NaN 0.064187      | 18518400.0 | -0.310469 |
| 25 | 0.018183 0.065900  | NaN 0.064364      | 19399680.0 | -0.017016 |
| 26 | 0.008921 0.066011  | NaN 0.064515      | 21553920.0 | 0.059920  |
| 27 | 0.017700 0.065899  | NaN 0.064470      | 22803840.0 | -0.321608 |
| 28 | 0.008704 0.065397  | NaN 0.064475      | 19543680.0 | 0.003704  |
| 29 | 0.000000 0.066067  | 0.063210 0.065468 | 27613440.0 | 2.994465  |
| 30 | 0.034469 0.068077  | 0.063638 0.066995 | 40446720.0 | 0.375982  |
| 31 | 0.008341 0.070200  | 0.064010 0.068373 | 41639040.0 | -0.663310 |
| 32 | -0.033060 0.072098 | 0.064271 0.069195 | 44593920.0 | 0.049850  |
| 33 | 0.000000 0.073606  | 0.064531 0.069633 | 47652480.0 | 0.018993  |
| 34 | -0.017095 0.073606 | 0.064792 0.069832 | 46051200.0 | 0.758621  |

| 35 | 0.004344  | 0.072713 | 0.065108 | 0.070000 | 32941440.0 | -0.627451 |
|----|-----------|----------|----------|----------|------------|-----------|
| 36 | 0.099577  | 0.071596 | 0.065462 | 0.070057 | 27815040.0 | -0.839260 |
| 37 | 0.062981  | 0.071038 | 0.065890 | 0.070190 | 23696640.0 | 1.991150  |
| 38 | 0.007414  | 0.070814 | 0.066281 | 0.070304 | 18547200.0 | -0.470414 |
| 39 | -0.029413 | 0.070926 | 0.066635 | 0.070485 | 8386560.0  | -0.312849 |
| 40 | -0.022722 | 0.070926 | 0.066933 | 0.070553 | 5552640.0  | 0.715447  |
| 41 | -0.015505 | 0.071149 | 0.067268 | 0.070696 | 6998400.0  | 0.725118  |
| 42 | 0.000000  | 0.071373 | 0.067640 | 0.070903 | 5817600.0  | -0.634615 |
| 43 | -0.007881 | 0.071484 | 0.067975 | 0.070993 | 6647040.0  | 1.428571  |
| 44 | 0.007944  | 0.071484 | 0.068292 | 0.071068 | 6698880.0  | -0.591331 |
| 45 | 0.000000  | 0.071708 | 0.068627 | 0.071218 | 7873920.0  | 2.143939  |
| 46 | 0.007867  | 0.071596 | 0.068962 | 0.071173 | 7977600.0  | -0.079518 |
| 47 | -0.007806 | 0.071261 | 0.069260 | 0.071049 | 19607040.0 | 4.633508  |
| 48 | 0.007867  | 0.070814 | 0.069483 | 0.070772 | 19365120.0 | -0.869424 |
| 49 | 0.007820  | 0.070367 | 0.069688 | 0.070538 | 19486080.0 | -0.455516 |
| 50 | -0.007759 | 0.069809 | 0.069855 | 0.070340 | 17913600.0 | -0.071895 |
| 51 | 0.000000  | 0.069920 | 0.070079 | 0.070516 | 18489600.0 | 2.394366  |
| 52 | 0.007820  | 0.070590 | 0.070377 | 0.071009 | 9198720.0  | 0.118257  |
| 53 | -0.015505 | 0.071819 | 0.070656 | 0.071683 | 16715520.0 | 1.942486  |
| 54 | -0.007881 | 0.073606 | 0.071009 | 0.072684 | 21248640.0 | -0.407314 |
| 55 | -0.015874 | 0.074947 | 0.071363 | 0.073186 | 24376320.0 | -0.271277 |
| 56 | 0.000000  | 0.075840 | 0.071717 | 0.073612 | 22602240.0 | -0.745985 |
| 57 | 0.000000  | 0.076175 | 0.072089 | 0.073886 | 20442240.0 | -0.057471 |
| 58 | 0.032260  | 0.076399 | 0.072489 | 0.074290 | 14048640.0 | 1.902439  |
| 59 | 0.031252  | 0.076063 | 0.072676 | 0.074631 | 9319680.0  | -0.750000 |
|    |           |          |          |          |            |           |

#### **Evaluation:**

In stock price prediction, the evaluation of a model's performance is crucial to assess its accuracy and effectiveness. Common evaluation metrics include:

Mean Squared Error (MSE): Measures the average squared difference between predicted and actual stock prices. Lower MSE indicates better accuracy.

Mean Absolute Error (MAE): Calculates the average absolute difference between predicted and actual prices. It provides a straightforward measure of prediction error.

Root Mean Squared Error (RMSE): RMSE is the square root of MSE, providing a measure in the same unit as the target variable. Lower RMSE suggests better predictive performance.

#### Code:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

# Load the stock price data
data = pd.read_csv('MSFT.csv') # Replace 'stock_data.csv' with your dataset

# Select the 'Close' prices as the target variable
prices = data['Close'].values.reshape(-1, 1)

# Normalize the data
scaler = MinMaxScaler(feature_range=(0, 1))
prices_scaled = scaler.fit_transform(prices)
```

```
# Split the data into training and test sets
train_size = int(len(prices_scaled) * 0.8)
train_data = prices_scaled[:train_size]
test_data = prices_scaled[train_size:]
# Create sequences of data for training
def create_sequences(data, sequence_length):
  X, y = [], []
  for i in range(len(data) - sequence_length):
    X.append(data[i:i+sequence_length])
    y.append(data[i+sequence_length])
  return np.array(X), np.array(y)
sequence_length = 10 # You can adjust this value
X_train, y_train = create_sequences(train_data, sequence_length)
X_test, y_test = create_sequences(test_data, sequence_length)
# Build the LSTM model
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,
input_shape=(X_train.shape[1], 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean_squared_error')
# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32)
```

```
# Evaluate the model
train_loss = model.evaluate(X_train, y_train, verbose=0)
test_loss = model.evaluate(X_test, y_test, verbose=0)
print(f"Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
# Make predictions
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)
# Inverse transform the predictions to the original scale
train_predictions = scaler.inverse_transform(train_predictions)
test_predictions = scaler.inverse_transform(test_predictions)
# Plot the results
plt.figure(figsize=(12, 6))
plt.plot(prices, label='Actual Prices', color='b')
plt.plot(range(sequence_length, train_size), train_predictions, label='Train
Predictions', color='g')
plt.plot(range(train_size + sequence_length, len(prices)), test_predictions,
label='Test Predictions', color='r')
plt.legend()
plt.show()
Output:
Epoch 1/10
5.6418e-04
Epoch 2/10
```

```
4.2065e-05
Epoch 3/10
4.1125e-05
Epoch 4/10
4.0485e-05
Epoch 5/10
4.4396e-05
Epoch 6/10
3.7652e-05
Epoch 7/10
3.3948e-05
Epoch 8/10
3.4644e-05
Epoch 9/10
3.2606e-05
Epoch 10/10
2.8910e-05
Train Loss: 0.0000, Test Loss: 0.0008
53/53 [=======] - 0s 5ms/step
```



#### **MODEL SELECTION:**

The LSTM model provides better results when the data set is large and has fewer Nan values.

Whereas, despite providing better accuracy than LSTM, the ARIMA model requires more time in terms of processing and works well when all the attributes of the data set provide legitimate values.

Different LSTM variants (e.g., Bidirectional LSTM, stacked LSTM). Attention mechanisms to focus on important time steps or features.

Incorporating other types of neural networks like CNNs for feature extraction.

Hybrid models that combine LSTMs with other architectures like Transformer models.

Reinforcement Learning for dynamic trading strategies.

#### **Activation Functions:**

Consider using appropriate activation functions for LSTM units. Common choices are 'tanh' for the recurrent activation and 'sigmoid' for the input and output gates.

Loss Function and Optimization Algorithm:

For regression tasks like stock price prediction, use a loss function like Mean Squared Error (MSE) to measure the model's prediction error.

Choose an optimization algorithm, such as Adam, RMSprop, or stochastic gradient descent (SGD), and experiment with different learning rates.

# **CODE FOR LSTM:**

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
# Load historical stock price data (e.g., CSV file with 'Date'
and 'Close' columns)
data = pd.read_csv('MSFT.csv')
# Extract the 'Close' prices as the target variable
prices = data*'Close'+.values.reshape(-1, 1)
# Normalize the data using Min-Max scaling
scaler = MinMaxScaler(feature_range=(0, 1))
prices_scaled = scaler.fit_transform(prices)
# Define a function to create sequences of data for training
the LSTM model
def create_sequences(data, seq_length):
X, y = *+, *+
for i in range(len(data) - seq_length):
X.append(data*i:i+seq_length+)
y.append(data*i+seq_length+)
```

```
return np.array(X), np.array(y)
# Set the sequence length and split the data into training and
testing sets
sequence_length = 10
X, y = create_sequences(prices_scaled, sequence_length)
train\_size = int(len(X) * 0.8)
X_train, X_test = X*:train_size+, X*train_size:+
y_train, y_test = y*:train_size+, y*train_size:+
# Create an LSTM model
model = Sequential()
model.add(LSTM(units=50, return_sequences=True,
input_shape=(X_train.shape*1+, 1)))
model.add(LSTM(units=50))
model.add(Dense(1))
# Compile the model
model.compile(optimizer='adam',
loss='mean_squared_error')
# Train the model
model.fit(X_train, y_train, epochs=50, batch_size=64)
# Make predictions on the test set
predictions = model.predict(X_test)
# Inverse transform the predictions to get actual price values
predictions_actual = scaler.inverse_transform(predictions)
y_test_actual = scaler.inverse_transform(y_test)
# Plot the actual vs. predicted prices
plt.figure(figsize=(12, 6))
plt.plot(predictions_actual, label='Predicted Prices',
color='red')
```

```
plt.plot(y_test_actual, label='Actual Prices', color='blue')
plt.title('Stock Price Prediction with LSTM')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
Output:
Epoch 1/50
107/107 *======+ - 7s
20ms/step - loss: 0.0011
Epoch 2/50
107/107 *======+ - 2s
19ms/step - loss: 3.8592e-05
Epoch 3/50
107/107 *======+ - 2s
20ms/step - loss: 3.8419e-05
Epoch 4/50
107/107 *=======+ - 2s
14ms/step - loss: 3.7421e-05
Epoch 5/50
107/107 *=======+ - 1s
13ms/step - loss: 3.6841e-05
Epoch 6/50
107/107 *=======+ - 2s
15ms/step - loss: 3.6274e-05
Epoch 7/50
107/107 *======+ - 2s
22ms/step - loss: 3.6100e-05
```

| Epoch 8/50                   |
|------------------------------|
| 107/107 *======+ - 2s        |
| 15ms/step - loss: 3.6038e-05 |
| Epoch 9/50                   |
| 107/107 *======+ - 2s        |
| 21ms/step - loss: 3.4980e-05 |
| Epoch 10/50                  |
| 107/107 *======+ - 2s        |
| 21ms/step - loss: 3.3884e-05 |
| Epoch 11/50                  |
| 107/107 *=====+ - 2s         |
| 21ms/step - loss: 3.1855e-05 |
| Epoch 12/50                  |
| 107/107 *=====+ - 2s         |
| 21ms/step - loss: 3.1442e-05 |
| Epoch 13/50                  |
| 107/107 *======+ - 2s        |
| 16ms/step - loss: 3.2507e-05 |
| Epoch 14/50                  |
| 107/107 *=====+ - 2s         |
| 18ms/step - loss: 3.1582e-05 |
| Epoch 15/50                  |
| 107/107 *=====+ - 2s         |
| 14ms/step - loss: 2.8938e-05 |
| Epoch 16/50                  |
| 107/107 *======+ - 2s        |
| 23ms/step - loss: 2.6421e-05 |
| Epoch 17/50                  |

| 107/107 *==================================== | ====+ - 2s |
|-----------------------------------------------|------------|
| 22ms/step - loss: 2.6747e-05                  |            |
| Epoch 18/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 19ms/step - loss: 2.4096e-05                  |            |
| Epoch 19/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 18ms/step - loss: 2.5314e-05                  |            |
| Epoch 20/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 20ms/step - loss: 2.5337e-05                  |            |
| Epoch 21/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 23ms/step - loss: 2.2405e-05                  |            |
| Epoch 22/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 22ms/step - loss: 2.4915e-05                  |            |
| Epoch 23/50                                   |            |
| 107/107 *==================================== | ====+ - 1s |
| 14ms/step - loss: 2.1624e-05                  |            |
| Epoch 24/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 19ms/step - loss: 2.1545e-05                  |            |
| Epoch 25/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |
| 22ms/step - loss: 2.2694e-05                  |            |
| Epoch 26/50                                   |            |
| 107/107 *==================================== | ====+ - 2s |

| 22ms/step - loss: 2.0566e-05 |
|------------------------------|
| Epoch 27/50                  |
| 107/107 *======+ - 2s        |
| 19ms/step - loss: 2.2009e-05 |
| Epoch 28/50                  |
| 107/107 *======+ - 2s        |
| 18ms/step - loss: 2.2940e-05 |
| Epoch 29/50                  |
| 107/107 *======+ - 2s        |
| 15ms/step - loss: 2.0115e-05 |
| Epoch 30/50                  |
| 107/107 *======+ - 2s        |
| 22ms/step - loss: 1.8910e-05 |
| Epoch 31/50                  |
| 107/107 *======+ - 2s        |
| 23ms/step - loss: 2.3294e-05 |
| Epoch 32/50                  |
| 107/107 *======+ - 2s        |
| 19ms/step - loss: 1.8463e-05 |
| Epoch 33/50                  |
| 107/107 *======+ - 2s        |
| 19ms/step - loss: 2.0214e-05 |
| Epoch 34/50                  |
| 107/107 *======+ - 2s        |
| 22ms/step - loss: 1.8284e-05 |
| Epoch 35/50                  |
| 107/107 *======+ - 2s        |
| 23ms/step - loss: 1.7490e-05 |

| Epoch 36/50                  |
|------------------------------|
| 107/107 *======+ - 2s        |
| 21ms/step - loss: 1.8360e-05 |
| Epoch 37/50                  |
| 107/107 *======+ - 2s        |
| 19ms/step - loss: 1.7240e-05 |
| Epoch 38/50                  |
| 107/107 *======+ - 2s        |
| 21ms/step - loss: 1.6853e-05 |
| Epoch 39/50                  |
| 107/107 *=====+ - 3s         |
| 24ms/step - loss: 1.5736e-05 |
| Epoch 40/50                  |
| 107/107 *=====+ - 2s         |
| 22ms/step - loss: 1.5684e-05 |
| Epoch 41/50                  |
| 107/107 *=====+ - 2s         |
| 15ms/step - loss: 1.7331e-05 |
| Epoch 42/50                  |
| 107/107 *=====+ - 2s         |
| 23ms/step - loss: 1.6515e-05 |
| Epoch 43/50                  |
| 107/107 *=====+ - 2s         |
| 21ms/step - loss: 1.6822e-05 |
| Epoch 44/50                  |
| 107/107 *=====+ - 2s         |
| 16ms/step - loss: 1.4114e-05 |
| Epoch 45/50                  |

| 107/107 *======+ - 2s        |
|------------------------------|
| 23ms/step - loss: 1.4346e-05 |
| Epoch 46/50                  |
| 107/107 *======+ - 2s        |
| 21ms/step - loss: 1.5537e-05 |
| Epoch 47/50                  |
| 107/107 *======+ - 2s        |
| 19ms/step - loss: 1.4485e-05 |
| Epoch 48/50                  |
| 107/107 *=====+ - 2s         |
| 23ms/step - loss: 1.4945e-05 |
| Epoch 49/50                  |
| 107/107 *=====+ - 2s         |
| 22ms/step - loss: 1.3325e-05 |
| Epoch 50/50                  |
| 107/107 *=====+ - 2s         |
| 19ms/step - loss: 1.2995e-05 |
| 54/54 *======+ - 1s 3ms/step |

Process finished with exit code 0

# Output:

