Equações Diferenciais Ordinárias

INF1608 – Análise Numérica

Waldemar Celes celes@inf.puc-rio.br

Departamento de Informática, PUC-Rio

Equação Diferencial Ordinária

Equação diferencial de primeira ordem

$$y'(t) = f(t, y(t))$$

▶ Objetiva-se determinar y(t)

Equação Diferencial Ordinária

Equação diferencial de primeira ordem

$$y'(t) = f(t, y(t))$$

▶ Objetiva-se determinar y(t)

Exemplo: crescimento populacional com saturação

$$y'=cy(1-y)$$

► Define um campo direcional

Equação Diferencial Ordinária

Equação diferencial de primeira ordem

$$y'(t) = f(t, y(t))$$

▶ Objetiva-se determinar y(t)

Exemplo: crescimento populacional com saturação

$$y'=cy(1-y)$$

► Define um campo direcional

$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \in [a, b] \end{cases}$$

EDO: Métodos Numéricos

Método de Euler

► Série de Taylor

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(t) + \frac{h^3}{3!}y'''(c), \quad c \in [t, t+h]$$

Método de Euler usa apenas os 2 primeiros termos da série

$$y(t + h) = y(t) + h y'(t)$$

 $y(t + h) = y(t) + h f(t, y)$

EDO: Métodos Numéricos

Método de Euler

► Série de Taylor

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(t) + \frac{h^3}{3!}y'''(c), \quad c \in [t, t+h]$$

Método de Euler usa apenas os 2 primeiros termos da série

$$y(t+h) = y(t) + hy'(t)$$
$$y(t+h) = y(t) + hf(t,y)$$
$$y_{i+1} = y_i + hf(t_i, y_i)$$

EDO: Métodos Numéricos

Método de Euler

► Série de Taylor

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(t) + \frac{h^3}{3!}y'''(c), \quad c \in [t, t+h]$$

Método de Euler usa apenas os 2 primeiros termos da série

$$y(t + h) = y(t) + h y'(t)$$
$$y(t + h) = y(t) + h f(t, y)$$
$$y_{i+1} = y_i + h f(t_i, y_i)$$

- Características
 - Assimétrico: usa apenas derivada do início do problema
 - ► Impreciso: exige *h* muito pequeno
 - ightharpoonup Erro = $O(h^2)$
 - ► Instável: pode divergir

Método de Euler

- Dados:
 - $\rightarrow y' = f(t,y)$
 - $\rightarrow y_a = f(t_a)$
- ▶ Determinar y_b , onde $t_b > t_a$, com n passos de integração

Método de Euler

- Dados:
 - $\rightarrow y' = f(t, y)$
 - $\rightarrow y_a = f(t_a)$
- ▶ Determinar y_b , onde $t_b > t_a$, com n passos de integração

Euler
$$(t_a, t_b, f, y_a, n)$$

 $h = (t_b - t_a)/n$
 $t = t_a$
 $y = y_a$
for $i = 1, n$
 $y = y + h f(t, y)$
 $t = t + h$
return y

Método de Euler

- Dados:
 - $\rightarrow y' = f(t, y)$
 - $\rightarrow y_a = f(t_a)$
- ▶ Determinar y_b , onde $t_b > t_a$, com n passos de integração

Euler
$$(t_a, t_b, f, y_a, n)$$

 $h = (t_b - t_a)/n$
 $t = t_a$
 $y = y_a$
for $i = 1, n$
 $y = y + h f(t, y)$
 $t = t + h$
return y

Avaliação do Erro

Erro de truncamento local e global

▶ Podemos garantir erro abaixo de um limite usando *h* menores?

Avaliação do Erro

Erro de truncamento local e global

▶ Podemos garantir erro abaixo de um limite usando *h* menores?

Erro global:

$$g_i = |w_i - y_i|$$

- ▶ y_i: valor esperado
- w_i: valor após sucessivas avaliações do método

Erro local:

$$e_{i+1} = |w_{i+1} - z_{i+1}|$$

- $ightharpoonup z_{i+1}$: valor esperado a partir de w_i
- ▶ w_{i+1}: valor após uma avaliação do método

Erro local

Série de Taylor:

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(c)$$
, com $c \in [t, t+h]$

Método de Euler:

$$w_{i+1} = w_i + h f(t_i, w_i) + \frac{h^2}{2} f'(c, w(c)), \text{ com } c \in [t_i, t_{i+1}]$$

Logo, erro local:

$$e_i \leq \frac{Mh^2}{2}$$
, onde M é o limite superior de f' no intervalo

$$g_0 = 0$$

$$g_0 = 0$$

$$g_1=e_1$$

$$g_0 = 0$$
 $g_1 = e_1$ $g_2 = ?$ $|z_2 - y_2| = ?$ $e_2 = |w_2 - z_2|$

$$g_0 = 0$$
 $g_1 = e_1$
 $g_2 = ?$
 $|z_2 - y_2| = ?$
 $e_2 = |w_2 - z_2|$

Teorema: ampliação do erro

$$g_{i+1} \leq g_i e^{Lh}$$
, onde L é a constante de Lipschitz

- Diminuir o passo, diminui o erro
- Pode existir um crescimento exponencial do erro em relação ao número de passos

Método via formulação da integral

$$y(t+h) = y(t) + \int_t^{t+h} f(t,y(t))dt$$

Método via formulação da integral

$$y(t+h) = y(t) + \int_{t}^{t+h} f(t,y(t))dt$$

Aproximação por retângulo (Euler):

$$y_{i+1} = y_i + h f(t_i, y_i)$$

Método via formulação da integral

$$y(t+h) = y(t) + \int_{t}^{t+h} f(t,y(t))dt$$

Aproximação por retângulo (Euler):

$$y_{i+1} = y_i + h f(t_i, y_i)$$

Aproximação por trapézio:

$$y_{i+1} = y_i + \frac{h}{2} [f(t_i, y_i) + f(t_{i+1}, y_{i+1})]$$

Método de Euler modificado

Aproximação por trapézio

▶ Usa Euler para estimar y_{i+1}

$$\overline{y_{i+1}} = y_i + h f(t_i, y_i)$$

 $y_{i+1} = y_i + \frac{h}{2} [f(t_i, y_i) + f(t_{i+1}, \overline{y_{i+1}})]$

Método de Euler modificado

Aproximação por trapézio

▶ Usa Euler para estimar y_{i+1}

$$\overline{y_{i+1}} = y_i + h f(t_i, y_i)$$

 $y_{i+1} = y_i + \frac{h}{2} [f(t_i, y_i) + f(t_{i+1}, \overline{y_{i+1}})]$

Características:

- Exige duas avaliações de f
- ► Método de ordem 2
 - Erro = $O(h^3)$

Métodos explícitos

O Método de Euler e o Método de Euler Modificado são chamados de **métodos explícitos**

▶ Usam configuração em t para avaliar em t + h

Métodos explícitos

O Método de Euler e o Método de Euler Modificado são chamados de **métodos explícitos**

▶ Usam configuração em t para avaliar em t + h

Um método de ordem superior vale a pena?

Métodos explícitos

O Método de Euler e o Método de Euler Modificado são chamados de **métodos explícitos**

▶ Usam configuração em t para avaliar em t + h

Um método de ordem superior vale a pena?

- ► Em geral, sim!
 - ► Mais precisão
 - ► Mais avaliações de f(t, y)

Método do ponto médio

Usa o valor da derivada no ponto médio do intervalo

- ▶ Avalia passo de Euler: $\Delta y = h f(t_i, y_i)$
- ▶ Avalia f no ponto médio: $f_{med} = f(t_{i+1/2}, y_i + \Delta y/2)$
- Avança usando f_{med}

$$y_{i+1} = y_i + h f_{med}$$

Características iguais ao do Euler modificado:

- Exige duas avaliações de f
- ► Método de ordem 2
 - ightharpoonup Erro = $O(h^3)$
- ► Também conhecido como Runge-Kutta de ordem 2

Runge-Kutta de ordem 3

$$k_0 = h f(t_i, y_i)$$

 $k_1 = h f(t_{i+1/2}, y_i + k_0/2)$
 $k_2 = h f(t_{i+1}, y_i + 2k_1 - k_0)$

$$y_{i+1} = y_i + \frac{1}{6}(k_0 + 4k_1 + k_2)$$

Características:

- Exige três avaliações de f
- ightharpoonup Erro = $O(h^4)$

Runge-Kutta de ordem 4

$$k_0 = h f(t_i, y_i)$$

$$k_1 = h f(t_{i+1/2}, y_i + k_0/2)$$

$$k_2 = h f(t_{i+1/2}, y_i + k_1/2)$$

$$k_3 = h f(t_{i+1}, y_i + k_2)$$

$$y_{i+1} = y_i + \frac{1}{6}(k_0 + 2k_1 + 2k_2 + k_3)$$

Características:

- Exige quatro avaliações de f
- ▶ Erro = $O(h^5)$
- Método numérico mais popular
 - ► Precisão & desempenho

Passo Adaptativo

Objetivo: assegurar precisão numérica local

- Independente do método
- Usa maior passo possível
 - ► Respeitando erro local máximo tolerado

Passo Adaptativo

Objetivo: assegurar precisão numérica local

- Independente do método
- Usa maior passo possível
 - Respeitando erro local máximo tolerado

Passo adaptativo

Se erro = $O(h^n)$, então teoricamente:

- Se passo h produz erro e
- ► Então passo h/2 produzirá erro e/2ⁿ

Passo adaptativo

Avaliação do erro associado a h

► Estratégia de dobrar o passo

Euler com passo adaptativo

Estratégia de dobrar o passo

$$y = y_1 + h^2 \phi$$

$$y = y_2 + 2 \left(\frac{h}{2}\right)^2 \phi$$

$$\Delta = y_2 - y_1$$

Então:

$$y_1 + h^2 \phi = y_2 + \frac{h^2}{2} \phi$$

 $y_2 - y_1 = h^2 \phi - \frac{h^2}{2} \phi$

 $\Delta = \frac{h^2}{2} \phi$ que representa o erro associado a y_2

Como adaptar o passo

Exemplo:

• Erro máximo permitido: $e_{max} = 10^{-4}$

Como adaptar o passo

Exemplo:

• Erro máximo permitido: $e_{max} = 10^{-4}$

Se erro obtido for $|y_2 - y_1| = 10^{-5}$

- ► Valida-se o passo
- Aumenta-se o passo

$$h_{novo} = \left(\frac{e_{max}}{e}\right)^{1/2} h = 3.16 h$$

Como adaptar o passo

Exemplo:

• Erro máximo permitido: $e_{max} = 10^{-4}$

Se erro obtido for $|y_2 - y_1| = 10^{-5}$

- ► Valida-se o passo
- ► Aumenta-se o passo

$$h_{novo} = \left(\frac{e_{max}}{e}\right)^{1/2} h = 3.16 h$$

Se erro obtido for $|y_2 - y_1| = 10^{-3}$

- Invalida-se o passo
- ► Refaz o avanço, diminuindo-se o passo

$$h_{novo} = \left(\frac{e_{max}}{e}\right)^{1/2} h = 0.316 h$$

Euler com passo adaptativo

Note que:

$$y = y_2 + 2\left(\frac{h}{2}\right)^2 \phi + O(h^3)$$

$$y = y_2 + \Delta + O(h^3)$$

Logo, pode-se pensar em avaliar a função com erro $O(h^3)$?

$$y = y_2 + \Delta$$

- ► Em geral, métodos de ordem superior são mais confiáveis
- Neste caso, no entanto, perderíamos o controle do erro

Euler com passo adaptativo

Note que:

$$y = y_2 + 2\left(\frac{h}{2}\right)^2 \phi + O(h^3)$$

$$y = y_2 + \Delta + O(h^3)$$

Logo, pode-se pensar em avaliar a função com erro $O(h^3)$?

$$y = y_2 + \Delta$$

- ► Em geral, métodos de ordem superior são mais confiáveis
- ► Neste caso, no entanto, perderíamos o controle do erro

Passo adaptativo para outros métodos

▶ Erro: $O(h^n)$

$$h_{novo} = \left(\frac{e_{max}}{e}\right)^{1/n} h$$

Euler Adaptativo

Um passo de integração

- Calcular novo y, retornando também novos t e h
 - ► Erro local máximo tolerado: e_{max}

$$\begin{aligned} \textit{OneStep}(t,y,h,f,e_{max}) \\ y_1 &= y + h \, f(t,y) \\ y_m &= y + \frac{h}{2} \, f(t,y) \\ y_2 &= y_m + \frac{h}{2} \, f(t + \frac{h}{2},y_m) \\ \delta &= |y_2 - y_1|; \quad \alpha = \sqrt{\frac{e_{max}}{\delta}} \\ &\text{if } \alpha < 1.0 \\ &\text{return } \textit{OneStep}(t,y,\alpha h,f,e_{max}) \\ &\text{else} \\ &\text{return } y_2,t+h,\alpha h \end{aligned}$$

Euler Adaptativo

Determinação de $y(t_1)$

- Dadas as condições iniciais
- ► Erro local máximo tolerado: e_{max}

$$\begin{aligned} \textit{EulerAdaptativo}(t,y,h,t_1,f,e_{\textit{max}}) \\ & \textbf{while } t < t_1 \\ & \textbf{if } t+h > t_1 \\ & h = t_1 - t \\ & y,t,h = \textit{OneStep}(t,y,h,f,e_{\textit{max}}) \end{aligned}$$

Observações

- ▶ Em geral, limita-se o aumento do passo: $\alpha \leq 1.2$
- ► Pode-se não incrementar o passo logo após uma redução
- ▶ Na prática, faz-se OneStep retornar $y_2 + \delta$

Runge-Kutta com Passo Adaptativo

Estratégias

- Dobrar o passo
 - ► Similar ao que fizemos para Euler
- Métodos acoplados
 - Provêem simultaneamente duas avaliações do avanço

Embedded Runge-Kutta

Método de ordem 5 que tem embutido a avaliação de erro do método de ordem 4

$$k_{1} = h f(t_{i}, y_{i})$$

$$k_{2} = h f(t_{i} + a_{2}h, y_{i} + b_{21}k_{1})$$

$$\vdots$$

$$k_{6} = h f(t_{i} + a_{6}h, y_{i} + b_{61}k_{1} + \dots + b_{65}k_{5})$$

$$y_{i+1} = y_{i} + \sum_{i=1}^{6} c_{i}k_{i} + O(h^{6})$$

$$y_{i+1}^{*} = y_{i} + \sum_{i=1}^{6} c_{i}^{*}k_{i} + O(h^{5})$$

$$\Delta = y_{i+1} - y_{i+1}^{*}$$

onde: a_i, b_{ij}, c_i, c_i^* são parâmetros da tabela Cash-Karp

Embedded Runge-Kutta

Tabela Cash-Karp

Cash-Karp Parameters for Embedded Runga-Kutta Method								
i	a_i			b_{ij}			c_i	c_i^*
1							$\frac{37}{378}$	$\frac{2825}{27648}$
2	$\frac{1}{5}$	$\frac{1}{5}$					0	0
3	$\frac{3}{10}$	$\frac{3}{40}$	$\frac{9}{40}$				$\frac{250}{621}$	$\frac{18575}{48384}$
4	$\frac{3}{5}$	$\frac{3}{10}$	$-\frac{9}{10}$	$\frac{6}{5}$			$\frac{125}{594}$	$\frac{13525}{55296}$
5	1	$-\frac{11}{54}$	$\frac{5}{2}$	$-\frac{70}{27}$	$\frac{35}{27}$		0	$\frac{277}{14336}$
6	$\frac{7}{8}$	$\frac{1631}{55296}$	$\frac{175}{512}$	$\frac{575}{13824}$	$\frac{44275}{110592}$	$\frac{253}{4096}$	$\frac{512}{1771}$	$\frac{1}{4}$
j =		1	2	3	4	5		

Exemplo:

$$f(t,y) = 10(1-y)$$

► Solução analítica

$$y(t)=1-\frac{e^{-10t}}{2}$$

Método de Euler:

$$y_{i+1} = y_i + h f(t_i, y_i)$$

= $y_i + 10h(1 - y_i)$
= $y_i(1 - 10h) + 10h$

Neste caso, Euler pode ser visto como Iteração de Ponto Fixo

► Solução converge para *y* = 1

$$g(x) = x(1 - 10h) + 10h$$

▶ Converge em x = 1 se |g'(1)| = |1 - 10h| < 1

1 − 10*h* < 1 e 1 − 10*h* < −1
∴ *h* > 0 ∴
$$h < \frac{2}{10} = 0.2$$

► Logo, converge se:

De fato, considerando $y_0 = 0$:

$$y_{i+1} = y_i(1-10h) + 10h$$

▶ Para h = 0.15

0

1.5

0.75

1.125

0.9375

1.03125

0.984375

).984375

1.0078125

0.99609375

1.001953125

0.9990234375

1.00048828125

0.999755859375

1.0001220703125

0.99993896484375

1.0000305175781

De fato, considerando $y_0 = 0$:

$$y_{i+1} = y_i(1 - 10h) + 10h$$

▶ Para h = 0.15

1.5

0.75 1.125

0.9375

1.03125

0.984375

1.0078125

0.99609375

1.001953125

0.9990234375

1.00048828125

0.999755859375

1.0001220703125

0.99993896484375

1.0000305175781

▶ Para h = 0.25

2.5

-1.254.375

-4.0625

8.59375

-10.390625

18.0859375

-24.62890625

39.443359375

-56.6650390625

87.49755859375

-128.74633789062 195.61950683594

-290.92926025391

438.89389038086

$$y_{i+1} = y_i + h \underbrace{f(t_{i+1}, y_{i+1})}_{}$$

avaliado no final do intervalo

$$y_{i+1} = y_i + h \underbrace{f(t_{i+1}, y_{i+1})}$$

avaliado no final do intervalo

No exemplo:

$$y_{i+1} = y_i + 10h(1 - y_{i+1})$$
$$y_{i+1} = \frac{y_i + 10h}{1 + 10h}$$

$$y_{i+1} = y_i + h \underbrace{f(t_{i+1}, y_{i+1})}_{}$$

avaliado no final do intervalo

No exemplo:

$$y_{i+1} = y_i + 10h(1 - y_{i+1})$$
$$y_{i+1} = \frac{y_i + 10h}{1 + 10h}$$

▶ Para h = 0.3:

$$y_{i+1} = \frac{y_i + 3}{4}$$

Vendo como Iteração de Ponto Fixo:

$$g(x) = \frac{x+3}{4}$$
 : $g'(1) = \frac{1}{4} < 1 \Rightarrow \text{converge}$

Método implícito

► Sempre converge!

Método implícito

Sempre converge!

Problema:

- Em geral, não se consegue expressar a equação implícita original em uma solução explícita
 - ► Recai em sistemas lineares

Exercícios propostos

1. Considere o Método do Ponto Médio para resolução de Equações Diferenciais Ordinárias. Considere a equação $y'=1+y^2$, com $y_0=0$. Usando a estratégia de dobrar o passo, calcule o valor de y(t) com passo t=0.1. Qual o erro reportado pelo próprio método? Considerando uma tolerância igual a 10^{-2} para o erro local do método, qual seria o valor do passo h ideal para esse avanço?

