Machine Learning in Healthcare

#L17-Neural Networks III

Technion-IIT, Haifa, Israel

Asst. Prof. Joachim Behar Biomedical Engineering Faculty, Technion-IIT Artificial intelligence in medicine laboratory (AIMLab.) https://aim-lab.github.io/

Twitter: @lab_aim

Hyperparameters tuning

Hyperparameters versus parameters

- Parameters: are the parameters that define the model and that we want to learn through the training process with gradient descent.
 - $\forall l \in [1:L], W^{[l]}, b^{[l]}$
- Hyperparameters: other parameters that are set before the learning process is started but that have an influence on the classifier performances.
 - E.g. α , L
 - Need to search for these hyperparameters values to ensure a good model architecture.

Hyperparameters

- With SVM we have a few typical hyperparameters C and γ .
- However, lots of hyperparameters in deep learning models. Some examples:

Symbol		
α	Learning rate.	
β	Momentum	
p	Mini batch size	
K	Number of iterations for gradient descent.	
$n_h^{[l]}$	Number of hidden units of the l^{th} layer.	
L	Number of layers in a neural network.	
$g^{[l]}$	Activation function for layer $oldsymbol{l}$.	
k	Learning rate decay	
	Features scaling method	
	Other model specific hyperparameters (e.g. convolution kernel width in CNN.)	5

Hyperparameters

- We will denote θ the set of hyperparameters we want to optimize for.
- Our goal is to find the values of θ that gives the best performance on the validation set.
- How do we find the best configuration of these hyperparameters in such a high dimensional search space?
 - Baby sitting,
 - Grid search,
 - Random search,
 - Bayesian optimization.

Babysitting

- Also known as the "Grad Student Descent"!
 - Iterate sequentially,
 - Manual.
- Usually keep doing that until you are running out of time for your assignment!
- This is meaningful in an initial stage of development to get a feel of what hyperparameters are particularly important for example. But then you need to quickly move to some more clever search algorithms.

Grid search

- The "just try everything" approach.
- Grid-search steps:
 - Define the p hyper-parameters,
 - For each one, define the range of possible values,
 - Search all possible configurations and report the performance.

Behar, Joachim, et al. "A comparison of single channel fetal ECG extraction methods." Annals of biomedical engineering 42.6 (2014): 1340-1353.

Grid search

- Pluses:
 - Will find a good combination of hyperparameters.
 - Can perform the search in parallel.
- Minuses:
 - Does not take into account the computation history.
 - Search space increases exponentially with the number of dimension: curse of dimensionality.
 - E.g. *p* hyperparameters, search of 5 values in a given range will require 5*p* iterations.

Behar, Joachim, et al. "A comparison of single channel fetal ECG extraction methods." Annals of biomedical engineering 42.6 (2014): 1340-1353.

Random search

- Random-search steps:
 - Define the p hyper-parameters,
 - For each one, define the range of possible values,
 - Search all possible configurations sample randomly from the hyperparameters space and report the performance.

Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13.Feb (2012): 281-305.

Random search

■ Pluses:

- Explore the hyperparameters space more widely in a given number of iterations than grid search. This will help find a good configuration with fewer iteration.
- Enables the inclusion of prior knowledge by specifying the distribution from which you are sampling from.
- Can perform the search in parallel.

Minuses:

Still does not take into account the computation history.

Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13.Feb (2012): 281-305.

Hyperparameters versus parameters

Random search:

Table 1: Parameters search range and optimal parameters found for the preprocessing step and the ESN. GS: grid search. RS: random search. U: uniform distribution.

	Se	Optimal parameters		
Parameter	GS (step size)	RS	GS	RS
Low pass filter cut-off, f_b	[1, 49] (3)	$U \sim [1, 50]$	20	26
High pass filter cut-off, f_h	[50, 120], (5)	$U \sim [50, 120]$	95	87
Leakage, a	[0, 1](0.1)	$\mathcal{U} \sim [0,1]$	0.4	0.974
Spectral radius of W, ρ	[0, 1](0.1)	$\mathcal{U} \sim [0,1]$	0.4	0.821
Units in the reservoir, M	[10, 250] (20)	$U \sim [10, 250]$	90	135
Scaling of W_{in} , γ	1	$\mathcal{U} \sim [0,1]$	1	0.622
Seed value, s1	-	$U \sim [0, 10000]$	-	1588

Table 2: Performance comparison of the optimal parameters obtained by grid search (GS), random search (RS, best across 32 iterations \pm 1 standard error), and template subtraction (TS).

	\mathbf{DB}_1			\mathbf{DB}_2			
Method — Statistics	ESN-GS	ESN-RS	TS	ESN-GS	ESN-RS	TS	
Se	97.1	97.3 ± 0.29	90.3	87.6	87.6 ± 0.73	86.4	
PPV	97.3	97.5 ± 0.28	90.0	86.5	85.5 ± 0.53	85.2	
F_1	97.2	97.4 ± 0.27	90.1	87.9	86.5 ± 0.62	85.8	

Bayesian optimization

- Bayesian optimization: probability model for the loss function and sequentially move in that region of better performance.
 - It is a type of sequential model-based optimization (SMBO).
- We define the performance/cost function $f(\theta)$ given a dataset D.
 - We seek $\theta^* = argmin_{\theta \in \chi}(f(\theta))$
 - We can evaluate f for any θ but we do not have an easy functional form for it or gradients.
 - We seek to use Gaussian Processes (GP) to estimate f based on the points $\theta_{1:n}$ it was explicitly evaluated for and return the marginal means and variances.

Bayesian optimization

- Bayesian optimization steps:
 - Use previous observations of the loss f to evaluate it,
 - Find the next (optimal) point to sample f for.
- In Bayesian optimization, we are building a probabilistic model for the performance metric f. Implicitly this is introducing computational overhead.
- So when does it makes sense to invest in this approach versus grid/random search?
 - The number of hyperparameters is very high.

Bayesian optimization

- Steps:
 - 1. Using the points that were evaluated $\theta_{1:n}$, compute the posterior expectation of the loss f.
 - 2. Choose new point θ_{new} to sample by maximizing some utility of the expectation of f. The utility specifies which regions of the domain of f are optimal to sample from.
 - 3. Evaluate f at a new point θ_{new} .
- Gaussian processes used to represent the loss function f and evaluate its utility.

Recommendations

- Development phase: baby sitting.
- Optimization phase:
 - Random search: If you have the computing resources train many models at the same time and look for the best (on your validation set). This will give you a good baseline of hyperparameters tuning.
 - Use Bayesian optimization or such Sequential Model Based Optimization.

Take home

- Hyperparameters versus parameters.
- Hyperparameters tuning
 - Lots of hyperparameters in NN
 - Different methods to search the hyperparameters space:
 - Babysitting,
 - Grid-search,
 - Random search,
 - Bayesian optimization.
- These exists other optimization approaches (e.g. Evolutionary optimization).

References

- [1] Andrew Ng, Coursera, Neural Networks and Deep Learning. Coursera.
- [2] Initializing neural network: https://www.deeplearning.ai/ai-notes/initialization/
- [3] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747(2016).
- [4] Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13.Feb (2012): 281-305.
- [5] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine learning research 15.1 (2014): 1929-1958.
- [6] Thomas Huijskens Bayesian optimisation with scikit-learn

https://www.youtube.com/watch?v=jtRPxRnOXnk

https://thuijskens.github.io/2016/12/29/bayesian-optimisation/

[7] Adams, Ryan P. "A tutorial on Bayesian optimization for machine learning." Harvard University (2014). https://www.cs.toronto.edu/~rgrosse/courses/csc411 f18/tutorials/tut8 adams slides.pdf