Tarea 3 - Métodos Computacionales 2

Juan Pablo Salas (201821908) & Daniel Dorado (201821010)

7 de febrero de 2022

1. Colisiones 2D de duración finita (juguemos billar)

1. La constante K es un análogo a la constante de fuerza de un resorte y representa la rígidez de este modelo.

2. Tiempo libre medio

3. Termodinámica

a) En este caso se puede utilizar la ley del gas ideal para comparar las presiones, que serán iguales en el equilibrio. Para el primer gas se tiene $n_1 = 1, T = 400K, w_1 = 2L/3$ mientras que para el segundo se tiene $n_2 = 1, w_2 = L/3$. Entonces

$$\begin{split} P_1 &= P_2 \\ \frac{n_1 R T_1}{V_1} &= \frac{n_2 R T_2}{V_2} \\ \frac{T_1}{A w_1} &= \frac{T_2}{A w_2} \\ T_2 &= \frac{w_2}{w_1} T_1 = \frac{L/3}{2L/3} T_1 = T_1/2 = 200 K \end{split}$$

b) La ecuación de conducción térmica (ley de transferencia de Foruier) describe la tasa de transferencia de calor en función de el gradiente de la temperatura. Esta está dada por

$$\frac{\partial Q}{\partial t} = -k \iint_{S} \nabla T \cdot d\mathbf{S} =$$

Si asumimos que la temperatura se propaga únicamente en una dimensión y que los dos puntos de la barra tienen temperatura fija, se puede simplificar a

$$\frac{\partial Q}{\partial t} = -kA \frac{\Delta T}{\Delta x}$$

Observamos que la distancia de interes es $\Delta x = l$ y que el calor se puede encontrar con el calor específico de un gas $Q = nc_v \Delta T$ con lo que se tendrá

$$nc_v \frac{dT_1}{dT} = -\frac{kA}{l}(T_1 - T_2)$$
$$\frac{dT_1}{dt} = -C(T_1 - T_2)$$

Por otro lado, tenemos el calor que ingresa al sistema del gas de la derecha, dado por:

$$nc_v \frac{dT_2}{dT} = \frac{kA}{l}(T_1 - T_2)$$
$$\frac{dT_2}{dt} = C(T_1 - T_2)$$

c) En este caso tenemos un problema de valor inicial en varias variables. Observe que definimos el vector

$$\mathbf{x} = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$$
 con $\mathbf{x}(0) = \begin{pmatrix} 400 \\ 200 \end{pmatrix}$; $\mathbf{x}'(0) = C \begin{pmatrix} -200 \\ 200 \end{pmatrix}$

para así escribir

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} -C & C \\ C & -C \end{pmatrix} \mathbf{x}$$

Lo primero será entonces encontrar los valores propios del determinante

$$\begin{vmatrix} -C - \lambda & C \\ C & -C - \lambda \end{vmatrix} = 0$$
$$(C + \lambda)^2 - C^2 = 0$$
$$\lambda(2C + \lambda) = 0$$

Para el primer valor propio $\lambda = 0$ se tiene

$$\begin{pmatrix} -C & C \\ C & -C \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\alpha_1 = \alpha_2$$
$$\mathbf{x}_1(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Para el segundo valor propio se tiene $\lambda = -2C$,

$$\begin{pmatrix} C & C \\ C & C \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\beta_1 = -\beta_2$$
$$\mathbf{x}_2(t) = c_2 e^{-2Ct} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

La solución general será entonces

$$\mathbf{x}(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-2Ct} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Utilizando las condiciones iniciales vemos que

$$\mathbf{x}'(0) = -2Cc_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = C \begin{pmatrix} -200 \\ 200 \end{pmatrix}$$
$$c_2 = 100$$

Así mismo

$$\mathbf{x}(0) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 100 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 400 \\ 200 \end{pmatrix}$$

$$c_1 = 300$$

Con lo que las soluciones analíticas del problema son

$$T_1(t) = 100e^{-2Ct} + 300$$
$$T_2(t) = -100e^{-2Ct} + 300$$

Note que la constante está dada por

$$C = \frac{kA}{nc_v l} = \frac{2kA}{3nRl} = \frac{2(389.6)(0.01)}{3(1)(8.3145)(0.30)} = 1.04$$

Figura 1: Temperatura en función de tiempo

- d) El sistema se resolvió en el GitHub del curso produciendo el siguiente resultado:
- e) Tanto en la figura como analíticamente se puede ver que en $t\to\infty$, ambas temperaturas se acercan asíntoticamente a 300K.

$$\lim_{t \to \infty} T_1(t) = 300$$

$$\lim_{t \to \infty} T_2(t) = 300$$