

FAULTY INSPECTION DISTRIBUTIONS -- SOME GENERALIZATIONS

by

Norman L. Johnson University of North Carolina at Chapel Hill

and

Samuel Kotz University of Maryland, College Park DTIC ELECTE MAY 1 1981

Abstract

In Johnson, Kotz and Sorkin (1980), when authors derived the distribution of the number of items observed to be defective in samples from a finite population, when detection is erroneous with a nonzero probability. The present report extends the present

We extend here the above results by taking into account incorrect identification of nondefectives as well as defectives. Corresponding waiting time distributions are also derived. Furthermore, the case of a stratified finite population corresponding, for example, to defective features of differing severity is considered. Numerical values illustrating the dependence of the corresponding probabilities on the two misidentification parameters are presented.

Key Words and Phrases: binomial distribution; compound distributions; faulty identification; hypergeometric distribution; sampling inspection; waiting time; incomplete

identification.

This document has been approved for public release and sale; its distribution is unlimited.

#.

IR FILE COP

20 24

1. Introduction

Johnson et al. (1980) have discussed some problems arising when attributes inspection is "less than perfect". They considered, in effect, sampling without replacement from a lot of size N containing X defective (or nonconforming) items, when inspection detects such items with probability p. Here this is extended (i) by allowing for a probability, p', of erroneously deciding that an item is defective when really it is not and (ii) by stratifying the population so that inspection error probabilities vary from stratum to stratum.

2. Two Kinds of Inspection Error

The number of defective items, Y, in a random sample (without replacement) of size n has a hypergeometric distribution with parameters n,X,N. Conditionally on Y, the number of items correctly called "defective" is distributed as binomial (Y,p) and the number incorrectly called "defective" is distributed as binomial (n-Y, p'). Thus, the overall distribution of the total number of items called "defective", Z say, is

$$Bin(Y,p) + Bin(n-Y, p') \wedge Hypg(n,X,N)$$

(the two binomial variables being mutually independent), where ^ denotes the compounding operator (Johnson and Kotz (1969, p. 184)).

Conditional on Y, the rth factorial moment of Z is

$$\mu_{(r)}(Z|Y) = E[Z^{(r)}|Y] = \sum_{j=0}^{r} {r \choose j} Y^{(j)} p^{j} (n-Y)^{(r-j)} p^{r-j}$$
.

The unconditional rth factorial moment of Z is

$$\mu_{(\mathbf{r})}(Z) = \sum_{j=0}^{\mathbf{r}} {r \choose j} p^{j} p^{r-j} E[Y^{(j)}(n-Y)^{(r-j)}]$$

$$= \frac{n^{(\mathbf{r})}}{N^{(\mathbf{r})}} \sum_{j=0}^{\mathbf{r}} {r \choose j} p^{j} p^{r-j} X^{(j)}(N-X)^{(r-j)}. \qquad (1)$$

In particular,

$$E[Z] = {Xp + (N-X)p'}n/N = n\bar{p}$$
 (2.1)

$$Var(Z) = n\bar{p}(1-\bar{p}) - \frac{n(n-1)}{(N-1)} \frac{\chi}{N} (1-\frac{\chi}{N})(p-p')^2, \qquad (2.2)$$

where $\bar{p} = N^{-1} \{Xp + (N-X)p'\}$. The conditional probability mass function (pmf) of Z given Y is

$$Pr[Z = z|Y] = \sum_{j=0}^{z} {Y \choose j} p^{j} (1-p)^{Y-j} {n-Y \choose z-j} p^{z-j} (1-p^{z-j})^{n-Y-z+j}$$

$$(z = 0,1,...,Y),$$

where $\binom{a}{b} = 0$ if a < b.

Hence the unconditional pmf of Z is

$$\Pr[Z = z] = \binom{N}{n}^{-1} \sum_{y} \binom{X}{y} \binom{N-X}{n-y} \sum_{j=0}^{z} \binom{y}{j} \binom{n-y}{z-j} p^{j} (1-p)^{y-j} p^{z-j} (1-p^{i})^{n-y-z+j},$$
(4)

when the first $\sum is over \max(0, n-N+X) \le y \le \min(n,X)$.

Numerical values can be obtained expeditiously if adequate tables of hypergeometric probabilities

Av. : and/or

$$h(y; n,X,N) = {\binom{N}{n}}^{-1} {\binom{X}{y}} {\binom{N-X}{n-y}}$$

and binomial probabilities

$$b(y; n,p) = \binom{n}{y} p^y (1-p)^{n-y}$$

are available from the formula

$$\Pr[Z = z] = \sum_{y} h(y; n, X, N) \sum_{j=0}^{z} b(j; y, p)b(z-j; n-y, p') .$$
 (4)

Table 1 gives some examples of distributions, each with sample size n = 10. It is limited by space considerations, but fuller tables have been calculated (for other sample sizes as well as other values of X and N).

A

			1			l	
		0.1	. 2399 . 3698 . 2545 . 1030 . 0272 . 0049 . 0006		.1627 .3265 .2917 .1529 .0521 .0120 .0019		.0714 .2181 .2966 .1223 .0123 .0017 .0002
	10	0.075	. 5142 . 3679 . 2129 . 0684 . 0020 . 0002		. 2122 . 3591 . 2695 . 1182 . 0336 . 0064 . 0008		. 0922 . 2514 . 3043 . 2154 . 0987 . 0987 . 0005 . 0009
	- 200; X - 1	0.08	. 1087 . 3855 . 1603 . 0368 . 0006	200; X = 20	. 2749 . 3831 . 2354 . 0840 . 0030 . 0003	200; X = 40	.1183 .2856 .3051 .0762 .0005
	2	0.025	. 5280 . 3520 . 1015 . 0167 . 00017 	z	. 3537 . 3928 . 1902 . 0529 . 00011 . 0001	Z	. 1509 . 3193 . 2977 . 1609 . 0559 . 00130 . 0002
		•	. 6778 . 2736 . 0446 . 0038 . 0002		. 4524 . 3803 . 1363 . 0274 . 0003		. 1913 . 3507 . 2813 . 1299 . 0382 . 0010 . 0001
		0.1	. 2384 . 3711 . 2557 . 1028 . 0006		.1606 .3274 .2940 .1532 .0513 .0018		.0694 .2173 .2992 .2386 .1221 .0419 .0015
		0.075	. 3122 . 3901 . 2139 . 0679 . 0019 		. 2094 . 3611 . 2720 . 1180 . 0327 . 0060 . 0001		.0896 .2510 .3077 .2174 .0295 .0060 .0008
0 - 0.75	- 100; X - S	0.08	. 4060 . 3891 . 1608 . 0379 	N - 100; X - 10	. 2711 . 3867 . 2378 . 0831 . 0027 . 0003	N = 100; X = 20	
പ	2	0.025	. 5244 . 3575 . 1010 . 0015 	2	. 3488 . 3945 . 1920 . 0084 . 0001 	N - 1	. 3028 . 3028 . 3028 . 1619 . 0542 . 0017
		•	. 6731 . 2818 . 0422 . 0028 . 0001		. 4459 . 3892 . 1369 . 0027 . 0002		. 1856 . 3540 . 1299 . 0362 . 00065 . 0001
		2	•~~~~~~ *				6 ************************************

			P - 0.8							
		2	- 100; X - S			-	Z	N - 200; X - 10	•	
2	•	0.025	0.08	0.075	0.1	•	0.025	0.08	0.075	0.1
•	.6545	. S.	. 3942	3698	.2311	. 6598	.5136	3973	.3052	. 2328
~*	7.5	.1073	. 1670	2192	. 2597	.0499	.1077	1664	.2180	. 2584
n 🕶		.001	.0062		.0282	.000	0200	9900	.0153	.0287
so d	•	.000	9000.	.0021	0.00.0	•	.000	.000	2200.	.0053
o ~				7990.	000			1000	300.	200
•	•	•	•	•	•	•	٠	•	•	•
•	•		•	•	•	•		•	•	•
2	•		•	•	•	•	•	•	•	•
		2	100; X = 10				2	N = 200; X = 2	2	
۰.	907	.3285	. 2549	.1966	1505	.4276	.3339	. 2591	.1997	.1529
• ^	95	200	7474	2788	2980	00071	2014	2444	7750	200
• ••	.0297	.0575	0905	1258	1609	.0321	.0592	.0913	1260	1605
▼1	.0034	6600	.0208	.0362	.0557	.0043	0110	.0219	.0372	.0566
so e			.003	6966	9.00	7 000.		.003	9.50 4.50 4.50 5.50	.0135
•		3 .	3 .	.000	.0002	•	3.	5.	200	.000
•	•	•	•	•	,	•	•	•	•	•
o (•	•		٠		•	٠	•	•	•
2	•	•	•	•	•	•				•
		Z	N - 100; X - 20	_			• Z	N = 200; X = 4	\$	
•	. 1632	1284	1004	.0781	.0603	1691	.1330	.1039	.0807	.0623
۰,۰	2	200	5997	/557	5007	2000	9706	1907	7.544	202
~ ×	166	1775	25.5	220	2482	0167	1760	2035	2269	2455
•	.0442	2636	.0860	1098	. 1343	.0464	.0655	1780.	.1103	1343
. ,	8	2. 2.	.0237	.0349	24.66	8600.	.0163	.0251	.0362	9630
o ~	100	2000	. 000 S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00.00	1000	8700.	600	7800	200
•				1000	.0002			1000	.000	.000
- 2						• •			•	
:										

		•.1	22.58 36.66 12.62 12.621	.0303 .0057		• •			1636	200	9		.0151	8.E	} '	•	•		.0545	2841	2533	.1463	2/50.	8028	800	•	•
	•	0.075	25.55 22.50 22.50	200	28 ·	• •	• •	2	201	X 55	. 2817	1 25	8	~ E		•		\$.0706	7277	.2373	.1222	5750	9100	2000	•	•
	200; X - 10	2	3861	2.50 2.50 2.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3	100 6 .	• 1		200; X = 1	.2441	. 3747	252	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200			•	•	200; X - A	.0912	9	.2162	786	1050	6000	000	•	
	=	0.025	. 3637 . 1140	.0003 .0003 .0002	, ,	•		=	3156	. 3922	22123	3 5	.001		•	•	•	=	0.11.	2067	1905	.0758	2020.	80		•	•
		•	.6421 .2968 .0553		٠.	• •			4040	1914	1615	2500	S		•	•	•		1492	9667	. 1613	.0553	975	2000		•	•
		=				==	_	 -	_	=	=	_	_	=	=	_		-	=	=	=	_	=	=	=	=	=
		0.1	. 2240 . 3661 . 2637	. 0020 . 0020 . 0054		• 1			1410	3118	3015	960	.0145	-00. 	} .	•	•		.0522	2868	.2565	.1466	9559.	.0025	.0003	•	•
		9.078	2264	25 10: 25 10: 25 10:		• 1			1961	2	. 28 51	1070	20	9 9 9 9	3 '	•	•		.0678 .0678	3014	. 2405	6121.		200	8	•	•
- 0.85	. 100; X - S		3827	2 8 8 2 6 9	٠.	• 1		• 100; X = 10	2396	.3785	285	. 02.35 27.00	6837	8 .	•	•	•	100; X • 20	. 60% 50%	3105	.2190	.097 4	5870	200	000	•	•
~	*	0.025	. 11 %	9.88 8.89 8.19	٠,	• •		=	1697	Š	.253	1 5 6	8013		•	•		=	2211.	3127	1927	.0741				•	•
		•	200			• •			7	218	797		8		•	•			.1432	99	.1626	65.0				•	•
		?	6 =N	N d N	• ~	••	^2		•	-	~ •	• •	Š	• ^	•	•	2		•-	• •		•	v 0 •	• ^	•	• (2

o i
اہ
익
•]
لم

	0.1		. 2192	.3618	7657	771		0250	9	8 000.	.000	•						.1347	3024	.3012	.1754	198	.0169	803	.0003							27	1713	09/7	2598	1582	250	1810	.0035	7	•	•
	0.075		. 2878	. 3849	2770	0287	70.00	0/10.	/700.	.0003	•	•						.1766	.3287	.2870	.1415	.0450	9600	-0014	.0001		•												.0021			
200; X = 10	0.05		.3752	.3905	1783	27.70		2000.	5	.000	•	•		•		200; X = 20		. 2298	3696	. 2609	1064	8/20.	600.	900.	•		•	•		200; X = 40	9000	36/0.	167.	1506.	6/77	1011.	5020	6,6	7100.	1000.	•	
7 Z	0.025		.4858	.3689	1203	0222	1,70	9700.	7000.	•	•	•				N .		1762.	.3904	.2227	97/0	S 150	0200.	7000.	•	•		•		N = 2		/701.	1007	2,00	. 2043	7960	0470	300	999	•	•	
	•		.6249	3074	0610	200	3		•	•		•	٠	•				.3815	. 3947	.1738	.0428	5000	9000.	•	• •	•					1111	1202	555	1766	9649	500		286	6		ı	•
=	_	_	==	_			_	=	=	_	_		_	=	=		=				_	_			_	_		_	+	_	=	=	_	=	_		=			_	-	=
	0.1		. 2170	3634	. 2675	וזוו	7110	5150	600	2000.	.000	•	•	•				.1319	.3032	.3045	79/1	1500	1910.	7200.	500			•			576	1605	2786	26.25	1588	00CT.	57.10	5.5		3	1	•
.	0.075		. 2849	.3879	.2296	0780	9160	6000	200.	7000.	•	•	•	•		•	į	.1729	3407	8062	141.	765	6.50	718.	1000	. (•		22	0587	1000	7967	1030	2	77.70	717		600	7000.		•
N = 100; X = !	0.08		3714	. 3953	.1793	85 PO	22.5	3		1000	•	•	•	•		N = 100; X = 10	,	. 2250	37.34	2648	/SOT -	2070	355	5000	, ,	. (•	•		100; X = 2	1761	233	5	2314	1001	0110	500					•
2	0.025		4808	. 3762	1201	0206	1,00	128	1	•	•	•	•	•		2	!	2907	2065	. 2263	2	200	9199	1000	• •		•	•		2		2682	2715	707	.0851	0227	000	Š		•	,	•
	•		7 69.	.3183	.0584	.0047	Š	3	•	•	•	•	•					.3733	. 4049	79/1.	3	768	55.	• 1		•	•	•			1251	7	3128	1787	9290	0140	00.50	2000		•	,	•
	2	,	•	_	~	*1	•		•	D 1	_ (-	.	9			,	٥.	۰,	2 -	,	•	^	D P	۰ •	• •	h <u>s</u>	a			•	. –	. ~	, ,-	•	•	· •		• •	•	Ş	2

		0.1	2126	80		281) Y	2 8	9	<u>.</u>				1264		25.	3:	87	75	2			_		8	69	69	<u> </u>	3 %	3 =		9000		
		Ö	2.	38.	2	= 8	9		8.8	'	•	•			ġ.	٠. -	c	9	Š	ĕ	•	•	•		5	.15	97.	97	- 6	9 6	٤٤	S	•	•
	01	0.075	.2794	. 3835	.2327	.0823	0188	500.	6	•		•	02	.1659	2166.	0167	0497	0100	.0017	.0002	•		•	6	.0535	.1858	. 2850	. 2545	1404	960.	2000	.000	•	•
	200; X = 10	0.08	3645	. 3916	. 1841	0200	200.	26	1000	•		•	200; X =	.2163	50.50 50.50 50.50	7907	1110	.0057	.0007	1000	•	•		200; X =	9690	.2174	. 2989	. 2384	1771	27.00	200	.000	•	•
	2	0.025	.4723	.3736	.1267	.0242	6700.	2000.		•	•		Z	. 2800	0/8%	7757	7710	.0025	.0002	•	,	•		z	0060	. 2510	.3072	1712.	1860	55.5			•	•
		•	0809	.3174	9990.	.007		• •	• •		•	•		3601	. 396/	1858	.0480	8000	.000			•	•		.1155	. 2858	.3086	1912	20/55	200	700		•	•
	=						=	_	_	_			+				_				_					=		_						==
		0.1	2102	3606	.2712	1180	95.5	7000	800			•		.1234	7867	. 3009	1020	0178	.0031	900	•	•	•		.0387	.1547	. 2694	2692	.1/10	27/0.	020.	.000	•	•
		0.075	.2762	.3867	. 2346	.0815	0310. 26.06	9795	6	•	•	•		. 1619	. 3551	6567	. 143/	1010	.0014	.000	•	•	•		.0507	.1838	. 2887	. 2588	/041.	97.10	5.00	.000	•	•
6 - 0.95	• 100; X • S	0.05	3603	. 3967	.1854	286	0800	8	1		•		N = 100; X = 10	.211	9/97	97/7	7070	0020	9000	•	•			N = 100; X = 20	.0659	.2157	. 3039	. 2427	91710	200	200	000	•	•
<u>a</u>	2	0.025	.4668	.3816	.1266	.0225	.00.4 20.0	7000			•		2	.2732	. 3942	6057	35.6	00.00	.000	•	•	•	•	2	.0852	. 2502	.3137	2210	926	150			•	•
		•	6009	.3291	.0642	.0055	.0002	• •		•	•			.3514	1/04	1890)	5000		•	•	•	•		.1093	. 2863	3166	.1963	5,15 5,15	2.25	200		•	•
	.·	,d\z	•	-	7	₩.	- -	n •	9	. «	.	2		•	- - (7 •	າ ◀	٠.	•		•	o (2		•	-	~	ю.	• •	٠.	۰,	•	•	2

Note that for p' = 0, the same distribution is obtained if the values of n and X are interchanged.

As N and X are increased proportionately to each other with $X/N = \omega$, say, the other parameters (n,p,p') remaining constant, the distribution of Z tends to a binomial with parameters n, $XN^{-1}p + (1 - XN^{-1})p'$.

Another simple special case is p = p', leading to a binomial distribution with parameters n,p (whatever the values of X and N). However, this is a most unlikely situation -- it would correspond to completely useless inspection, unable to differentiate between satisfactory and nonsatisfactory items.

The distributions shown are quite sensitive to the value of p' (false condemnation) because the ratio X/N is relatively small. When the proportion of nondefectives (1-X/N) is lower, p' has less effect.

3. Stratified Populations

More generally, we can suppose the lot divided into k strata $\pi_1, \pi_2, \ldots, \pi_k$ of sizes N_1, N_2, \ldots, N_k ($\sum_{j=1}^k N_j = N$) such that for any chosen individual in π_j , the probability of "detection as defective" (whether this is really so or not) is p_j . The different strata may, for example, correspond to actual defects of differing degrees of visibility. The case considered in Section 2 corresponds to k = 2, $p_1 = p$, $p_2 = p'$, $N_1 = X$, $N_2 = N - X$.

The number observed as ''defective'' in a random sample of size n is then distributed as

$$Z \sim \sum_{j=1}^{k} Bin(Y_j, p_j) \wedge Mult Hypg_k(n; N_1, ..., N_k; N) .$$
 (5)

The binomials are mutually independent, conditional on \underline{Y} ; for the multivariate hypergeometric, $\Pr[\underline{Y} = \underline{Y}] = \binom{N}{n}^{-1} \prod_{j=1}^{k} \binom{N}{y_j} (\sum_{j=1}^{k} y_j = n)$. Then

$$E[Z^{(r)}|Y] = \sum_{j=1}^{r} \frac{r!}{k} \prod_{j=1}^{k} (p_{j}^{r_{j}} Y_{j}^{(r_{j})}), \qquad (6)$$

where $\sum_{r=1}^{k}$ denotes summation over nonnegative integers r_1, \ldots, r_k such that $\sum_{j=1}^{k} r_j = r$. Taking expectations with respect to \underline{Y} ,

$$E[Z^{(r)}] = \sum_{r}' \frac{r!}{\prod_{j=1}^{r} r_{j}!} \prod_{j=1}^{k} p_{j}^{r_{j}} \frac{n^{(r)}}{N^{(r)}} N_{j}^{(r_{j})}$$

$$= \frac{n^{(r)} r!}{N^{(r)}} \sum_{r}' \prod_{j=1}^{k} \left(\frac{N_{j}^{(r_{j})} p_{j}^{r_{j}}}{r_{j}!} \right). \tag{7}$$

In particular,

$$E[Z] = \frac{n}{N} \sum_{j=1}^{k} N_{j} p_{j} = n\bar{p}$$
 (8.1)

and

$$E[Z(Z-1)] = \frac{n(n-1)}{N(N-1)} \left[\sum_{j=1}^{k} N_{j}(N_{j}-1)p_{j}^{2} + 2 \sum_{j \leq j}^{k} N_{j}N_{j}, p_{j}p_{j}, \right]$$

$$\vdots$$

$$= \frac{n(n-1)}{N(N-1)} \left[\left(\sum_{j=1}^{k} N_{j}p_{j} \right)^{2} - \sum_{j=1}^{k} N_{j}p_{j}^{2} \right], \qquad (8.2)$$

whence

$$Var(Z) = n\bar{p}(1-\bar{p}) - \frac{n(n-1)}{N(N-1)} \sum_{j=1}^{k} N_{j} (p_{j} - \bar{p})^{2}$$
 (8.3)

where $\bar{p} = N^{-1} \sum_{j=1}^{k} N_{j} p_{j}$.

Alternative and instructive formulae for the variance are

$$Var(Z) = \frac{n(N-n)}{N-1} \bar{p}(1-\bar{p}) + \frac{n(n-1)}{N(N-1)} (\bar{p} - N^{-1}) \sum_{j=1}^{k} N_j p_j^2$$
 (8.3)

$$Var(Z) = \frac{n(N-n)}{N-1} \bar{p}(1-\bar{p}) + \frac{n(n-1)}{N^2(N-1)} \sum_{j=1}^{k} N_j p_j (1-p_j) . \qquad (8.3)$$

The first term in (8.3)' and (8.3)" corresponds to the variance of the (actual) number of defectives in a random sample (without replacement) of size n from a population of size N containing $N\bar{p}$ defectives. It follows that the variance of Z is not less than this, while from (8.3) it cannot exceed $n\bar{p}(1-\bar{p})$ — the value it would have in sampling with replacement from the same population (when the distribution of Z would be binomial with parameters n,\bar{p}). This will, of course, also be a good approximation when N is large.

As a limiting case, we might have $N_j = 1$ and k = N--that is, each item in the lot would have its own probability (p_j) of being declared defective.

Note that this differs from a model in which there is supposed to be a prior distribution of the probability of being declared defective, and the p_j 's are regarded as realized values from this distribution. For this latter model, we reach, in effect, a "with replacement" situation, as distinguished from the "without replacement" model we have considered, with the distribution of 2 depending on the specific values of the p_i 's.

The 'with replacement' model can be regarded as a mixture of 'without replacement' models -- the latter being conditional on the specific sets of values p_1, p_2, \ldots, p_N . The average variance of the number of items declared defective for the 'without replacement' will, in general, be smaller than that for the 'with replacement' -- because the latter is increased by variation among the p's. Formally,

$$Var(Z) = E_{p}[Var(Z)p] + Var_{p}(E[Z|p]) . \qquad (9)$$

4. A Waiting Time Distribution

Suppose now that, under the conditions of Section 3, items are inspected one at a time (without replacement) until a predetermined number a of items have been assessed as "defective". Denoting by M the number of items needed to attain this goal, we have (cf. Section 4 of Johnson *et al.* (1980))

$$Pr(M>m) = Pr(Z < a)$$
 $m = 1, 2, ..., N-1$ $(a \le N)$, (10)

where Z has the distribution (5) with n replaced by m. Note that in this case \underline{a} can exceed the actual number of defectives in the lot because an item can be assessed as defective even though it is not.

The distribution of M is not proper because there is a positive probability that even when all N items in the lot have been inspected, fewer than \underline{a} items will be declared "defective".

In order to derive the distribution of M, we first consider the possible sets of decisions for the N items. The distribution of the number (D) of those which will be "defective" is that of the sum of independent binomial variables B_1, B_2, \ldots, B_k with parameters

 $(N_1,p_1),(N_2,p_2),\ldots,(N_k,p_k)$ respectively. Given D, each of the $\binom{N}{D}$ possible orderings of the D "defective" and (N-D) "not defective" decisions is equally likely, and the number of items up to and including the a^{th} defective (M) has the negative hypergeometric distribution

$$Pr(M=m) = {N \choose D}^{-1} {m-1 \choose a-1} {N-m \choose D-a}$$
 (m = a, a+1,..., N-D+a), (11)

provided D ≥ a.

The conditional expected value of M given D (\geq a) is

$$E[M|D] = a(N+1)/(D+1)$$
 (12)

If we neglect the possibility that D is less than a, the overall expected value of M is approximately

$$a(N+1)E[(D+1)^{-1}] \stackrel{!}{=} [\{E[D] + 1\}^{-1} + \{E[D] + 1\}^{-3} Var(D)](N+1)a$$

$$= a(N+1) \left(\sum_{j=1}^{k} N_{j}p_{j} + 1\right)^{-1} \left[1 + \left(\sum_{j=1}^{k} N_{j}p_{j} + 1\right)^{-2} \sum_{j=1}^{k} N_{j}p_{j}(1-p_{j})\right]$$

$$\stackrel{!}{=} a\bar{p}^{-1} \left[1 + \frac{1}{N} \left\{1 + \frac{1}{\bar{p}} + \frac{1}{\bar{p}^{2}} \sum_{j=1}^{k} \omega_{j}p_{j}(1-p_{j})\right\}\right], \qquad (13)$$

where $\omega_i = N_i/N$ (the proportion in the jth stratum).

We evaluate the overall variance of M as

$$Var(M) = Var(E[M|D]) + E[Var(M|D)] (cf. (9))$$

$$= a^{2}(N+1)^{2} Var((D+1)^{-2}) + a(N+1)E\left[\frac{(N-D)(D+1-a)}{(D+1)^{2}(D+2)}\right].$$

After straightforward though quite tedious calculations, we find

$$Var(M) \stackrel{:}{=} \frac{a^2}{N\bar{p}^4} \sum_{j=1}^{k} \omega_j p_j (1-p_j)$$

$$+ \frac{a(1-\bar{p})}{\bar{p}^2} [1 + \frac{1}{N} + \frac{1}{N\bar{p}} \left\{ \frac{3-\bar{p}}{\bar{p}(1-\bar{p})} \sum_{j=1}^{k} \omega_j p_j (1-p_j) - (3+a) \right\}]$$

$$\stackrel{:}{=} \frac{a(1-\bar{p})}{\bar{p}^2} [1 + \frac{1}{N} - \frac{3+a}{N\bar{p}} + \frac{3+a-(a+1)\bar{p}}{N\bar{p}^2(1-\bar{p})} \sum_{j=1}^{k} \omega_j p_j (1-p_j)] . \quad (14)$$

As $N \to \infty$, the expected value of M tends to $a\bar{p}^{-1}$ and the variance tends to $a\bar{p}^{-2}(1-\bar{p})$. These are the mean and variance, respectively, of the (negative binomial) waiting time distribution for occurrence of a "successes" in independent trials with probability of success equal to \bar{p} at each trial.

(14) can be written

$$\operatorname{Var}(M) \ \stackrel{\bullet}{=} \ \frac{a(1-\bar{p})}{\bar{p}^2} \left[1 \ + \ \frac{1}{N} \ - \ \frac{3+a}{N\bar{p}} \left\{ 1 \ - \ \frac{\sum \omega_j p_j (1-p_j)}{\bar{p}(1-\bar{p})} \right\} \ - \ \frac{a+1}{N} \ \cdot \ \frac{\sum \omega_j p_j (1-p_j)}{\bar{p}(1-\bar{p})} \right] \ .$$

Since $\sum_{j=1}^k \omega_j p_j (1-p_j) = \bar{p} - \sum_{j=1}^k \omega_j p_j^2 \le \bar{p} - \bar{p}^2 = \bar{p}(1-\bar{p})$ and $\frac{a+3}{\bar{p}} > a+1$, it follows that

$$\frac{a(1-\bar{p})}{\bar{p}^2} \left[1 + \frac{1}{N} - \frac{3+a}{N\bar{p}} \right] \le Var(M) \le \frac{a(1-\bar{p})}{\bar{p}^2} (1 + \frac{1}{N}) .$$

Acknowledgement

Samuel Kotz's work was supported by the U.S. Office of Naval Research under Contract N00014-81-K-0301.

References

- Johnson, N.L. and Kotz, S. (1969). Distributions in Statistics -- Discrete Distributions. New York: John Wiley and Sons.
- Johnson, N.L., Kotz, S. and Sorkin, H.L. (1980). Faulty inspection distributions. Comm. Statist. A9, 917-922.
- Sorkin, H.L. (1977). An Empirical Study of Three Confirmation Techniques: Desirability of Expanding the Respondent's Decision Field. Ph.D. Thesis, University of Minnesota.

In Johnson, Kotz and Sorkin (1980), the authors derived the distribution of the number of items observed to be defective in samples from a finite population, when detection is erroneous with a nonzero probability.

We extend here the above results by taking into account incorrect identification of nondefectives as well as defectives. Corresponding waiting time distributions are also derived. Furthermore, the case of a stratified finite population corresponding, for example, to defective

DD 144 22 1473 EDITION OF 1 HOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PASE (Shen Bate Entered

257500

UNCLASSIFIED

BECURITY CLASHFICATION OF THE PAGE(When Best Bristoch

DATE ILMED