

1 Who is Spirent?

2 TSN in Edge Computing

3 The challenges of testing TSN

4 The right toolset

Who is Spirent?

Leader in Communications Test & Assurance Solutions

Cloud & Virtualisation

Networks

Wireless | Fixed | GNSS | Automotive

High Speed Ethernet

Service Assurance

Cyber-Security

Spirent by the Numbers - 2017

TSN in Edge Computing

TSN in ECN Architecture

- Ensure determinism;
- Large bandwidth;
- Reliable data transmission;
- Unified management;

TSN Industrial Organizations and Roles

Testbed and Reference Architectures

- Testbeds to evaluate "full stack" and provide feedback to members and liaison organizations
- · Application specific architectures to aid in market adoption
- Outbound marketing to create awareness

Application Layers

- · Define data models for end-device communication
- Integration of TSN communications and configuration models into application tools
- Application flow for end-node configuration
- Conformance for data models and end node configuration

STANDARDIZATION COUNCIL INDUSTRIE 4.0

TSN Transport Interoperability and Conformance

- · Define network services needed by market
- Fill gaps in standards to provide interoperable network configuration services
- Conformance of transport and network services
- Establish certification services

Network standards

- Define standard features to provide data plane and configuration plane providing TSN capabilities
- · Assure proper operations and backwards compatibility with IT and OT

The challenges of testing TSN

IEEE 802.1 TSN Standards

AVB 802.1BA-2011 The AVB Profile

TSN

Transport

1722-2011 Media Transport Protocol

1722-2016 Adds CAN, FlexRay, LIN + more Audio/Video Transports

Time Synchronization

802.1AS-2011 gPTP

802.1AS-Rev Redundant gPTP

Stream Reservation

802.1Qat-2010 SRP

802.1Qcc-2018 Enhanced SRP

802.1Qca-2015
Path Control &
Reservation

Quality of Service

802.1Qav-2009 Credit Based Shaper

802.1Qbv-2015 Time Aware Shaper 802.1Qbu-2016 & 802.3br-2016 Frame Preemption

802.1Qch-2017 Cyclic Queue Forwarding 802.1Qcr Asynchronous Shaping

Redundancy

-

802.1CB-2017 Frame Replication & Elimination

802.1AS-Rev Redundant gPTP

Security

802.1X-2010 802.1Xbx-2014 802.1Xck

802.1Qci-2017 Filtering &

Policing

802.1AEcg-2017

(end-to-end) MACSec

TSN Testing Challenge

Traffic Shaping

Traffic Shaping provides the framework for guaranteed data transport with bounded low latency, low delay variation and extremely low loss.

- IEEE 802.1Qav Forwarding and Queuing for Time Sensitive Systems (FQTSS)
 - Works in conjunction with IEEE 802.1Qat (Stream Reservation Protocol)
 - Defines Credit Based Shaping algorithm, SRP Boundary Detection; bandwidth availability parameters used for reservations and mapping of queues to priorities
 - CBS spaces out frames and reduces bursting and bunching
- IEEE 802.1Qbv Enhancements for Scheduled Traffic
 - Introduces Time Aware Shaping algorithm via time-based control of transmission gates for the 8 bridge queues
 - · Gate states: "Open or Close"
 - Needs synchronization mechanism
 - The schedule is periodic
 - Reduces latency variation and makes latency deterministic for Constant Bit Rate (CBR) traffic

TSN Testing Challenge

Traffic Shaping(continued)

In addition to the traffic shaping standard amendments, **Frame Preemption** standard makes sure that critical time sensitive traffic is not stuck behind other interfering traffic:

- IEEE 802.3br (Interspersing express traffic) & IEEE 802.1Qbu (Frame preemption)
 - Specifies Mac Merge Sublayer for Express and Preemptable traffic
 - Exchange link partner preemption capabilities via LLDP

Test transmission gate operation

	7	6	5	4	3	2	1	0
T1 (100us)	0	С	С	С	С	С	С	С
T2 (900us)	C	0	0	0	0	0	0	0

Test gate-close operation

The frames fill completely the gate duration

Test gate-close operation

Verify the guard band is enforced

Test solution must send traffic at precise PTP time!

Cycle Time = 1ms

	7	6	5	4	3	2	1	0
T1 (100us)	0	С	С	С	С	С	С	С
T2 (900us)	С	0	0	0	0	0	0	0

Reduce guard band for cut-through

Using frame preemption (802.1Qbu-2016 & 802.3br-2016)

Look inside preemption

Verify fragment sequence/SMD/mCRC...

TSN Testing Challenge

Ensure smooth transition from design to deployment

- Ability to test against emulated real-world configurations
 - Precisely scheduled traffic
 - Mixed traffic profiles (different classes and priorities)
 - Mixed topology of TSN and non-TSN compliant elements
- Performance measurements
 - Under heavy data plane or control plane (protocol messages)
 traffic load
- Conforming to the standards
- Testing for resiliency and reliability
 - Negative testing

The Right Toolset

TSN traffic simulation

Spirent TestCenter

Wizards

TSN traffic simulation

Spirent TestCenter

	ange Counter				•			7			
Ва	sic Counters	Errors	Basic Sequ	encing	Advance	d Sequencing	Histograms (Latency)			-	
	Rx Port Name	Dest	ination MAC	Rx Strea	am Id	Stream Index	Rx Sig Rate (fps)	Short Term Avg Latency (us)	Avg Latency (us)	Min Latency (us)	Max Latency (us)
	Port //1/4	00:1	0:94:00:00	65536		7	1,000	458.35	425.2	8.13	908.25
	Port //1/4	00:1	0:94:00:00	65536		6	1,000	557.68	420.99	8.14	908.25
	Port //1/4	00:1	0:94:00:00	65536		5	1,000	657	416.69	8.13	908.24
	Port //1/4	00:1	0:94:00:00	65536		4	999	756.33	412.39	8.13	908.24
	Port //1/4	00:1	0:94:00:00	65536		3	999	855.66	408.1	8.13	908.24
	Port //1/4	00:1	0:94:00:00	65536		2	1,000	8.22	404.62	8.14	908.24
	Port //1/4	00:1	0:94:00:00	65536		1	1,000	61.04	409.41	8.13	908.22
	Port //1/4	00-1	0:94:00:00	85,5576		0	1,000	160.36	414.54	4-17	908.25
	Port //1/4	00:1	0:94:00:00	65536		9	1,000	259.69	419.66	8.13	908.24
	Port //1/4	00:1	0:94:00:00	65536		8	1,000	359.02	424.79	8.13	908.24

TSN conformance verification

TTsuite - TSN

Invalid Fragmen	t
Count	Reject a fragmented frame where the first continuation fragment has a non-zero Fragment Count
	Reject a fragmented frame where the fragments are received out of order
	Reject a fragmented frame where one fragment is missing
	Reject a fragmented frame where more than one fragment is missing (2 missing fragments)
	Reject a fragmented frame where the Fragment Count is not incremented (remains constant)
	Reject a fragmented frame where the Fragment Count has an invalid value (e.g. 0xAB)
	Reject a fragmented frame where the continuation fragments have SMD-C values different than expected based on the SMD-S value
Invalid SMD-C	from the initial fragment
	Reject a fragmented frame where the 5th continuation fragment has SMD-C values different than expected based on the SMD-S value
	from the initial fragment
	Reject a fragmented frame where a continuation fragment has an invalid SMD-C value (e.g. 0xAB)

53

Aware Shaper

Time

Filtering & Policing

100

80

