## exploratory-analysis

### Rishika Cherivirala

#### 2025-04-23

#### R. Markdown

```
redwine_df <- read.csv("data/winequality-red.csv", sep = ";")
whitewine_df <- read.csv("data/winequality-white.csv", sep = ";")
names_df <- readLines("data/winequality.names")</pre>
```

### summary(redwine\_df)

```
fixed.acidity
                    volatile.acidity citric.acid
                                                       residual.sugar
           : 4.60
##
    Min.
                            :0.1200
                                              :0.000
                                                              : 0.900
                    Min.
                                      Min.
                                                       Min.
    1st Qu.: 7.10
                    1st Qu.:0.3900
                                      1st Qu.:0.090
                                                       1st Qu.: 1.900
    Median : 7.90
                    Median :0.5200
                                      Median :0.260
                                                       Median : 2.200
    Mean : 8.32
                            :0.5278
                                              :0.271
                                                              : 2.539
                    Mean
                                      Mean
                                                       Mean
##
    3rd Qu.: 9.20
                    3rd Qu.:0.6400
                                      3rd Qu.:0.420
                                                       3rd Qu.: 2.600
    Max.
           :15.90
                            :1.5800
                                              :1.000
                                                              :15.500
                                      Max.
                                                       Max.
##
      chlorides
                      free.sulfur.dioxide total.sulfur.dioxide
                                                                    density
    Min.
           :0.01200
                      Min.
                            : 1.00
                                           Min.
                                                  : 6.00
                                                                 Min.
                                                                         :0.9901
    1st Qu.:0.07000
                      1st Qu.: 7.00
                                           1st Qu.: 22.00
                                                                 1st Qu.:0.9956
   Median :0.07900
                      Median :14.00
                                           Median: 38.00
                                                                 Median :0.9968
    Mean
                      Mean :15.87
                                           Mean : 46.47
##
          :0.08747
                                                                 Mean
                                                                         :0.9967
##
    3rd Qu.:0.09000
                      3rd Qu.:21.00
                                           3rd Qu.: 62.00
                                                                 3rd Qu.:0.9978
##
    Max.
           :0.61100
                      Max.
                             :72.00
                                           Max.
                                                  :289.00
                                                                 Max.
                                                                         :1.0037
##
          рН
                       sulphates
                                         alcohol
                                                          quality
##
    Min.
           :2.740
                    Min.
                            :0.3300
                                      Min.
                                             : 8.40
                                                       Min.
                                                              :3.000
##
    1st Qu.:3.210
                    1st Qu.:0.5500
                                      1st Qu.: 9.50
                                                       1st Qu.:5.000
   Median :3.310
                    Median : 0.6200
                                      Median :10.20
                                                       Median :6.000
                            :0.6581
##
    Mean
           :3.311
                                              :10.42
                                                              :5.636
                    Mean
                                      Mean
                                                       Mean
    3rd Qu.:3.400
                    3rd Qu.:0.7300
                                      3rd Qu.:11.10
                                                       3rd Qu.:6.000
           :4.010
                                              :14.90
    Max.
                    Max.
                            :2.0000
                                      Max.
                                                       Max.
                                                              :8.000
```

#### summary(whitewine df)

```
fixed.acidity
                     volatile.acidity citric.acid
                                                        residual.sugar
           : 3.800
                            :0.0800
                                              :0.0000
                                                               : 0.600
                     Min.
                                                        Min.
                                      1st Qu.:0.2700
   1st Qu.: 6.300
                                                        1st Qu.: 1.700
                     1st Qu.:0.2100
## Median: 6.800
                     Median :0.2600
                                      Median :0.3200
                                                        Median : 5.200
          : 6.855
## Mean
                     Mean
                            :0.2782
                                      Mean
                                              :0.3342
                                                        Mean
                                                               : 6.391
   3rd Qu.: 7.300
                     3rd Qu.:0.3200
                                       3rd Qu.:0.3900
                                                        3rd Qu.: 9.900
## Max.
          :14.200
                                             :1.6600
                                                               :65.800
                     Max.
                            :1.1000
                                      Max.
                                                        Max.
```

```
##
     chlorides
                    free.sulfur.dioxide total.sulfur.dioxide
          :0.00900
                   Min. : 2.00
                                       Min. : 9.0
## Min.
                                                      Min.
                                                                  :0.9871
  1st Qu.:0.03600
                    1st Qu.: 23.00
                                       1st Qu.:108.0
                                                           1st Qu.:0.9917
                    Median : 34.00
                                       Median :134.0
## Median :0.04300
                                                           Median :0.9937
## Mean
          :0.04577
                    Mean : 35.31
                                       Mean
                                            :138.4
                                                           Mean
                                                                  :0.9940
## 3rd Qu.:0.05000
                    3rd Qu.: 46.00
                                       3rd Qu.:167.0
                                                           3rd Qu.:0.9961
                    Max. :289.00
## Max.
         :0.34600
                                       Max. :440.0
                                                           Max.
                                                                  :1.0390
##
         Нq
                    sulphates
                                     alcohol
                                                    quality
## Min.
          :2.720
                  Min.
                         :0.2200
                                  Min.
                                         : 8.00
                                                 Min.
                                                        :3.000
## 1st Qu.:3.090
                 1st Qu.:0.4100
                                  1st Qu.: 9.50
                                                 1st Qu.:5.000
## Median :3.180
                 Median :0.4700
                                  Median :10.40
                                                 Median :6.000
## Mean :3.188
                        :0.4898
                                        :10.51
                  Mean
                                  Mean
                                                 Mean
                                                        :5.878
## 3rd Qu.:3.280
                  3rd Qu.:0.5500
                                  3rd Qu.:11.40
                                                 3rd Qu.:6.000
## Max.
         :3.820
                  Max. :1.0800
                                  Max. :14.20
                                                Max. :9.000
```

### Red Wine Analysis

### Logistic Regression

```
# If the quality is greater than 7, it gets a label of 1 (good), otherwise 0 (bad)
redwine df <- redwine df %>%
  mutate(quality_label = ifelse(quality >= 7, 1, 0)) %>%
  mutate(quality_label = as.factor(quality_label))
# Split data into train and test
set.seed(2950)
train_index <- sample(1:nrow(redwine_df), 0.8 * nrow(redwine_df))</pre>
train <- redwine_df[train_index, ]</pre>
test <- redwine_df[-train_index, ]</pre>
# Fitting logistic regression model
log_model <- glm(quality_label ~ . - quality, data = train, family = "binomial")</pre>
# Summary of model
summary(log_model)
##
## Call:
## glm(formula = quality_label ~ . - quality, family = "binomial",
       data = train)
##
##
## Deviance Residuals:
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -2.9361 -0.4222 -0.2268 -0.1087
                                         3.0652
##
## Coefficients:
##
                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                         1.786e+02 1.184e+02
                                                 1.508 0.131470
## fixed.acidity
                         2.270e-01 1.378e-01
                                                 1.648 0.099414 .
                        -2.581e+00 8.775e-01 -2.941 0.003267 **
## volatile.acidity
                         6.350e-01 9.140e-01 0.695 0.487247
## citric.acid
```

```
## residual.sugar
                        2.803e-01 8.393e-02 3.340 0.000838 ***
## chlorides
                       -8.196e+00 3.339e+00 -2.455 0.014097 *
## free.sulfur.dioxide
                        2.212e-02 1.401e-02 1.578 0.114455
## total.sulfur.dioxide -2.684e-02 6.363e-03 -4.218 2.46e-05 ***
## density
                       -1.929e+02 1.210e+02 -1.594 0.111020
## pH
                        1.036e-01 1.117e+00 0.093 0.926102
## sulphates
                        3.926e+00 6.060e-01 6.478 9.32e-11 ***
                        7.692e-01 1.446e-01 5.318 1.05e-07 ***
## alcohol
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1042.92 on 1278 degrees of freedom
##
## Residual deviance: 709.27 on 1267 degrees of freedom
## AIC: 733.27
##
## Number of Fisher Scoring iterations: 6
# Predicting on test data
pred_probs <- predict(log_model, test, type = "response")</pre>
# Evaluating model
pred_labels <- ifelse(pred_probs > 0.5, 1, 0) %>% as.factor()
confusionMatrix(pred_labels, test$quality_label)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
              0 1
           0 271 23
##
           1 13 13
##
##
                 Accuracy : 0.8875
##
                   95% CI: (0.8477, 0.92)
##
      No Information Rate: 0.8875
##
      P-Value [Acc > NIR] : 0.5442
##
##
                    Kappa: 0.3589
##
##
   Mcnemar's Test P-Value: 0.1336
##
##
              Sensitivity: 0.9542
##
              Specificity: 0.3611
##
           Pos Pred Value: 0.9218
##
           Neg Pred Value: 0.5000
##
               Prevalence: 0.8875
##
           Detection Rate: 0.8469
##
     Detection Prevalence: 0.9187
##
        Balanced Accuracy: 0.6577
##
##
         'Positive' Class: 0
##
```

### Distribution of Quality Labels



Volitale acidity, residual sugar, chlorides, total sulfur dioxide, sulfates, and alcohol seem to be statistically significant since their p-values are less than 0.05. The model has an accuracy of Accuracy: 0.8589.

## White Wine Analysis

### Logistic Regression

```
# If the quality is greater than 7, it gets a label of 1 (good), otherwise 0 (bad)
whitewine_df <- whitewine_df %>%
  mutate(quality_label = ifelse(quality >= 7, 1, 0)) %>%
```

```
mutate(quality_label = as.factor(quality_label))
# Split data into train and test
set.seed(2950)
train_index <- sample(1:nrow(whitewine_df), 0.8 * nrow(whitewine_df))</pre>
train <- whitewine_df[train_index, ]</pre>
test <- whitewine_df[-train_index, ]</pre>
# Fitting logistic regression model
log_model <- glm(quality_label ~ . - quality, data = train, family = "binomial")</pre>
# Summary of model
summary(log_model)
##
## Call:
## glm(formula = quality_label ~ . - quality, family = "binomial",
       data = train)
##
## Deviance Residuals:
       Min
                1Q
                     Median
## -2.3092 -0.6701 -0.4066 -0.1772
                                        2.8297
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        6.624e+02 1.048e+02 6.320 2.62e-10 ***
                        6.133e-01 1.010e-01 6.075 1.24e-09 ***
## fixed.acidity
## fixed.acidity 6.133e-01 1.010e-01 6.075 1.24e-09 ***
## volatile.acidity -3.966e+00 5.557e-01 -7.137 9.56e-13 ***
## citric.acid
                        -7.841e-01 4.439e-01 -1.766 0.07734 .
                        3.095e-01 3.978e-02 7.780 7.27e-15 ***
## residual.sugar
## chlorides
                        -1.069e+01 4.112e+00 -2.600 0.00934 **
## free.sulfur.dioxide 8.234e-03 3.473e-03 2.371 0.01776 *
## total.sulfur.dioxide -1.845e-04 1.672e-03 -0.110 0.91211
## density
                        -6.867e+02 1.062e+02 -6.464 1.02e-10 ***
## pH
                         3.544e+00 4.760e-01 7.445 9.68e-14 ***
## sulphates
                        2.319e+00 3.872e-01 5.990 2.10e-09 ***
## alcohol
                         1.380e-01 1.271e-01 1.086 0.27741
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 4075.1 on 3917 degrees of freedom
## Residual deviance: 3293.8 on 3906 degrees of freedom
## AIC: 3317.8
## Number of Fisher Scoring iterations: 5
# Predicting on test data
pred_probs <- predict(log_model, test, type = "response")</pre>
# Evaluating model
pred_labels <- ifelse(pred_probs > 0.5, 1, 0) %>% as.factor()
```

```
confusionMatrix(pred_labels, test$quality_label)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 709 152
##
            1 52 67
##
##
                  Accuracy : 0.7918
##
##
                    95% CI: (0.765, 0.8169)
##
       No Information Rate: 0.7765
##
       P-Value [Acc > NIR] : 0.1327
##
##
                     Kappa: 0.2837
##
##
    Mcnemar's Test P-Value : 4.167e-12
##
##
               Sensitivity: 0.9317
               Specificity: 0.3059
##
            Pos Pred Value: 0.8235
##
##
            Neg Pred Value: 0.5630
##
                Prevalence: 0.7765
            Detection Rate: 0.7235
##
##
      Detection Prevalence: 0.8786
##
         Balanced Accuracy: 0.6188
##
##
          'Positive' Class: 0
##
table(whitewine_df$quality_label)
##
##
      0
## 3838 1060
ggplot(whitewine_df, aes(x = quality_label)) +
  geom_bar(fill = "steelblue") +
  labs(title = "Distribution of Quality Labels",
       x = "Quality Label (0 = Not Good, 1 = Good)",
       y = "Frequency")
```





Fixed Acidity, Volitale Acidity, Citric Acid, residual sugars, free sulfur dioxide, density, pH, sulphates, alcohol all seem to be statistically significant. The model seems to have an accuracy of 0.7819.

## Red & White Wine Analysis

```
redwine_df$wine_type <- 1
whitewine_df$wine_type <- 0

# Combine the red and white wine datasets into one
wine_df <- rbind(redwine_df, whitewine_df)

summary(wine_df)

## fixed.acidity volatile.acidity citric.acid residual.sugar</pre>
```

```
fixed.acidity
                      volatile.acidity citric.acid
                                                         residual.sugar
                                                                 : 0.600
##
    Min.
           : 3.800
                      Min.
                             :0.0800
                                       Min.
                                               :0.0000
                                                         Min.
##
    1st Qu.: 6.400
                      1st Qu.:0.2300
                                        1st Qu.:0.2500
                                                          1st Qu.: 1.800
##
    Median : 7.000
                      Median :0.2900
                                       Median :0.3100
                                                         Median : 3.000
           : 7.215
##
    Mean
                      Mean
                             :0.3397
                                       Mean
                                               :0.3186
                                                          Mean
                                                                 : 5.443
##
    3rd Qu.: 7.700
                      3rd Qu.:0.4000
                                        3rd Qu.:0.3900
                                                          3rd Qu.: 8.100
##
    Max.
           :15.900
                             :1.5800
                                       Max.
                                               :1.6600
                                                         Max.
                                                                 :65.800
                       free.sulfur.dioxide total.sulfur.dioxide
##
      chlorides
                                                                     density
##
    Min.
           :0.00900
                       Min.
                              : 1.00
                                            Min.
                                                  : 6.0
                                                                  Min.
                                                                         :0.9871
    1st Qu.:0.03800
                       1st Qu.: 17.00
                                            1st Qu.: 77.0
                                                                  1st Qu.:0.9923
```

```
## Median :0.04700 Median : 29.00
                                      Median :118.0
                                                        Median :0.9949
## Mean :0.05603 Mean : 30.53
                                     Mean :115.7
                                                        Mean :0.9947
                                      3rd Qu.:156.0
## 3rd Qu.:0.06500 3rd Qu.: 41.00
                                                         3rd Qu.:0.9970
         :0.61100 Max. :289.00
## Max.
                                     Max. :440.0
                                                        Max.
                                                               :1.0390
##
        Нq
                   sulphates
                                    alcohol
                                                  quality
                                                              quality_label
## Min.
                        :0.2200
                                 Min. : 8.00
                                                              0:5220
        :2.720 Min.
                                              Min.
                                                      :3.000
## 1st Qu.:3.110 1st Qu.:0.4300
                                 1st Qu.: 9.50
                                              1st Qu.:5.000
                                                              1:1277
## Median :3.210 Median :0.5100
                                 Median :10.30 Median :6.000
## Mean :3.219
                 Mean :0.5313
                                 Mean :10.49
                                               Mean
                                                      :5.818
## 3rd Qu.:3.320
                 3rd Qu.:0.6000
                                 3rd Qu.:11.30 3rd Qu.:6.000
## Max.
         :4.010 Max. :2.0000 Max. :14.90 Max. :9.000
##
     wine_type
## Min.
         :0.0000
## 1st Qu.:0.0000
## Median :0.0000
## Mean :0.2461
## 3rd Qu.:0.0000
## Max.
         :1.0000
```

#### Random Forest

```
wine_df$quality_numeric <- as.numeric(as.character(wine_df$quality))</pre>
wine_df <- wine_df %>%
  filter(!is.na(quality_numeric))
# If quality is greater than 7, label as 1 (good), otherwise 0 (bad)
wine_df <- wine_df %>%
  mutate(quality_label = ifelse(quality_numeric >= 7, 1, 0)) %>%
  mutate(quality_label = as.factor(quality_label))
# Convert quality column to factor for classification
wine df$quality <- as.factor(wine df$quality)</pre>
# Split the data into training and testing sets
set.seed(2950)
train index <- sample(1:nrow(wine df), 0.8 * nrow(wine df))
train data <- wine df[train index, ]
test_data <- wine_df[-train_index, ]</pre>
# Train a random forest model
rf_model <- randomForest(quality ~ . - quality_label - quality_numeric, data = train_data)
print(rf_model)
##
## randomForest(formula = quality ~ . - quality_label - quality_numeric,
                                                                              data = train_data)
                  Type of random forest: classification
##
                        Number of trees: 500
##
## No. of variables tried at each split: 3
##
##
           OOB estimate of error rate: 30.52%
## Confusion matrix:
```

```
3 4
             5
                  6
                      7
                         8 9 class.error
## 3 0 1
            12
                      0
                         0 0
                               1.0000000
                 12
## 4 1 22
            95
                 51
                      2
                         0 0
                               0.8713450
                    13
                         0 0
## 5 0
       6 1269 450
                               0.2698504
## 6 0
       3
           325 1814 121
                         2 0
                               0.1991170
## 7 0
       0
            21
                362 450
                         7 0
                               0.4642857
## 8 0
             0
                     36 56 0
                               0.6363636
       0
                 62
## 9 0 0
                      3 0 0
             0
                  1
                               1.0000000
# Predict on the test data
predictions <- predict(rf_model, test_data)</pre>
# Evaluating model
confusion_matrix <- confusionMatrix(predictions, test_data$quality)</pre>
print(confusion_matrix)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                3
                    4
                        5
                            6
            3
                    0
##
                0
                        0
                            0
                                0
##
            4
                0
                    4
                                    0
                                        0
                        0
                            1
                                0
##
            5
                3
                   25 286 88
                                6
                                    1
                                        0
            6
                2
##
                   15 113 454
                               95
                                   16
                                        1
            7
##
                0
                    1
                        1
                           27 134
                                    8
                                        0
##
            8
                0
                    0
                        0
                            1
                                4
                                   14
                                        0
##
            9
                    0
                        0
                            0
                                0
                                    0
                                         0
##
## Overall Statistics
##
##
                  Accuracy : 0.6862
##
                    95% CI: (0.6601, 0.7113)
##
       No Information Rate: 0.4392
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.5121
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: 3 Class: 4 Class: 5 Class: 6 Class: 7 Class: 8
## Sensitivity
                        0.000000 0.088889
                                            0.7150
                                                      0.7951
                                                               0.5607 0.35897
## Specificity
                        1.000000 0.999203
                                            0.8633
                                                      0.6680
                                                               0.9651 0.99603
## Pos Pred Value
                             NaN 0.800000
                                           0.6993
                                                      0.6523
                                                               0.7836 0.73684
## Neg Pred Value
                        0.996154 0.968340
                                           0.8721
                                                      0.8063
                                                               0.9070 0.98048
## Prevalence
                        0.003846 0.034615
                                            0.3077
                                                      0.4392
                                                               0.1838 0.03000
## Detection Rate
                        0.000000 0.003077
                                            0.2200
                                                      0.3492
                                                               0.1031 0.01077
## Detection Prevalence 0.000000 0.003846
                                            0.3146
                                                      0.5354
                                                               0.1315 0.01462
                        0.500000 0.544046
                                            0.7892
                                                      0.7316
                                                               0.7629 0.67750
## Balanced Accuracy
##
                         Class: 9
## Sensitivity
                        0.0000000
## Specificity
                        1.0000000
## Pos Pred Value
                              NaN
```

```
## Neg Pred Value     0.9992308
## Prevalence     0.0007692
## Detection Rate     0.0000000
## Detection Prevalence     0.0000000
## Balanced Accuracy     0.5000000

plot(rf_model, main = "Random Forest Model Error Rate")
```

### **Random Forest Model Error Rate**



```
importance_rf <- randomForest::importance(rf_model)
varImpPlot(rf_model, main = "Feature Importance in Random Forest")</pre>
```

# **Feature Importance in Random Forest**



vip(rf\_model, num\_features = 10)

