Visual Analytics— Dealing with Big Data: Dimensionality Reduction

Dr. Ab Mosca (they/them)

Reminder

 Be prepared for prototype testing in class on Thursday!

Plan for Today

- Dimension Reduction Techniques
 - PCA
 - MDS
 - t-SNE
 - UMAP

What we've been (mostly) worried about

Channels: Expressiveness Types and Effectiveness Ranks

What if dim(data) >> #channels?

Ideas?

Dealing with Many Dimensions

• **Current situation**: our data live in *p*-dimensional space where p >> # visual channels

- Odds are not all dimensions are equally useful
- → we can reduce the number of dimensions without loosing too much valuable information

Dimension reduction

Approach #1: Feature Elimination (i.e. Subset Selection)

Throw out less useful/useless dimensions

Pros? Cons?

- Pros:
 - Relatively simple
 - Preserve interpretability
- Cons:
 - Don't gain any information from features you drop

Dimension reduction

Approach #2: Feature Extraction

 Create new features (dimensions) that are combinations of the old ones

Pros? Cons?

- Pros:
 - Since new features are all combinations of old features, we are not totally dropping data
- Cons:
 - Less interpretable, especially to non-experts

Feature Extraction

Principal Component Analysis

 Project data into a smaller space composed of most important (informative) components

Big idea: transform the data into a new space

$$\begin{bmatrix} X_1 & X_2 \end{bmatrix} \mapsto \begin{bmatrix} Z_1 \end{bmatrix}$$

Linear projection

• New features are **linear combinations** of original data:

$$Z_j = \sum_i \theta_{ij} X_i$$

• We get them by multiplying the data matrix by a projection matrix

$$[Z_1 \quad Z_2] = [X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5] \begin{bmatrix} \varphi_{1,1} & \varphi_{1,2} \\ \varphi_{2,1} & \varphi_{2,2} \\ \varphi_{3,1} & \varphi_{3,2} \\ \varphi_{4,1} & \varphi_{4,2} \\ \varphi_{5,1} & \varphi_{5,2} \end{bmatrix}$$

Why is projection helpful?

- Data can be rotated, scaled, and translated without changing the underlying relationships
- This means you're allowed to look at the data from whatever angle makes your life easier...
- Because new dimensions are combinations of old ones, we do not lose any data!

Flashback: why did we pick this line?

Explains the most **variance** in the data

Imagine this line as a new dimension...

"Principal component"

Most variance

Mathematically

• The **1**st **principal component** is the normalized* linear combination of features:

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$

that has the largest variance

• $\phi_{11}, \ldots, \phi_{p1}$: the **loadings** of the 1st principal component

* By **normalized** we mean:
$$\sum_{i=1}^{p} \phi_{j1}^2 = 1$$

Using loadings to project

Multiply by loading vector to project ("smoosh") each observation onto the line:

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{p1}x_{ip}$$

$$\longleftarrow$$

These values are called the **scores** of the 1st principal component

Additional principal components

• The 2nd principal component is the normalized linear combination of the features

$$Z_2 = \phi_{12}X_1 + \phi_{22}X_2 + \dots + \phi_{p2}X_p$$

that has maximal variance out of all linear combinations that are **uncorrelated** with Z_1

Principal components are orthogonal

Generating additional principal components

- We can think of this recursively
- To find the M^{th} principal component . . .
 - Find the first (M-1) principal components
 - Subtract the projection into that space
 - Maximize the variance in the remaining complementary space

Principal Component Analysis

 Conduct analysis using n principal components instead of the original data

How do we choose *n*?

Principal Component Analysis

• Conduct analysis using *n* principal components instead of the original data

Choosing *n*:

- Option 1: Arbitrarily choose
 - Ex. Will your audience only understand 2-d data?
- Option 2: Choose a proportion of data variance that must be captured by your principal components. Keep adding principal components until the threshold is hit.
- Option 3: Plot cumulative proportion of data variance captured by your principle components. Look for "elbow" where reduction in variance drops off.

Principal Component Analysis

• Option 3: Plot cumulative proportion of data variance captured by your principle components. Look for "elbow" where reduction in variance drops off.

• Take 10 minutes to explore using this applet:

https://setosa.io/ev/principal-component-analysis/

PCA Exploration

Example

Digits Dataset

Each datapoint is a 8x8 image of a digit.	
Classes	10
Samples per class	~180
Samples total	1797
Dimensionality	64
Features	integers 0-16

Example: 1st two PCs from PCA

https://medium.com/@conniezhou678/unveiling-dimensionality-reduction-a-comparative-analysis-of-9-methods-part-10-8594f8cd4336

Potential issues with PCA?

New idea

- Preserve high-dimensional pairwise distance in projection
 - "similar" stuff stays close together
 - "different" stuff can move apart

MDS (Multidimensional Scaling)

- 1. Choose a good distance metric
- 2. Compute a pairwise distance matrix
- 3. Find a 2D embedding that preserves those distances- (the distance matrix kind of acts like a stress tensor, so you can think of MDS kind of like a "force directed" layout but without visible edges)

Fun (but also sad) fact:

 PCA is just a special case of MDS (if we use Euclidean distance and choose the 1st two components)

Example: 1st two PCs from MDS

Example: 1st two PCs from PCA vs MDS

Potential issues with general MDS?

t-SNE (t-Distributed Stochastic Neighbor Embedding)

- Same objective: preserve pairwise distances
- Different approach:
 - Similarity of points is determined by a probability distribution (t-distribution) and the conditional probability the point A will pick point B as it's "neighbor"
 - Density of points is taken into account via "perplexity"
 - Stochastic process (element of randomness)

Example: 1st two PCs from tSNE

https://medium.com/@conniezhou678/unveiling-dimensionality-reduction-a-comparative-analysis-of-9-methods-part-10-8594f8cd4336

Potential issues with t-SNE?

LDA (Linear Discriminant Analysis)

- Prioritizes class separability
- From a dataset of d independent features, extracts k new independent features that separate the classes the most
 - Note: you need to know classes to use LDA
- Algorithm is similar to PCA, but with the added constraints of minimizing inter-class spread and maximizing intra-class spread

Example: 1st two PCs from LDA

https://medium.com/@conniezhou678/unveiling-dimensionality-reduction-a-comparative-analysis-of-9-methods-part-10-8594f8cd4336

Potential issues with LDA?

https://medium.com/@conniezhou678/unveiling-dimensionality-reduction-a-comparative-analysis-of-9-methods-part-10-8594f8cd4336

Takeaways

- There's no "one right answer"
- Each technique has benefits and drawbacks:
 - MDS (or PCA) is great if you eventually need to be able to relate the result back to the original dimensions
 - t-SNE does a great job preserving local similarity, but sometimes at the expense of global structure (and it can get really slow)
 - LDA is fast and relatively accurate