MATH 119 - Calculus 2 for Engineering

Kevin Carruthers Winter 2013

Appoximation Methods

Some methods (ie unintegratable ones) must be approximated. There are two such methods for approximation, analytic and numerical.

For analytic approximation we make a simplification, ie

$$\sin x^2 = x^2$$

for any small x.

Numerical approximation is the brute force approach. Using the midpoint rule we have

$$\int_0^4 \sin x^2 \cos(\sin x) \, dx \approx 0.52725$$

Linear Approximation

Linear approximation is also known as Tangent Line Approximation or Linearization. The definition of a derivative is

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

The linear approximation near x = a is

$$L(x) = f(a) + f'(a)(x - a)$$

Note that differentials are approximations of this.

For a pendulum we have

$$m\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = -mg\sin\theta$$

$$mL\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -mg\sin\theta$$

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -\frac{g}{L}\sin\theta$$

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -\frac{g}{L}\theta$$

$$\theta(t) = \theta_0\cos\left(t\sqrt{\frac{g}{L}}\right)$$

In general form, for

$$f(x) = ae^{b(x+c)}$$

we have

$$L(x) = a + ab(x + c)$$

Newton's Method

Find a root of $x^3 - 2x - 5 = 0$. With linear approximation we have

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

thus for

$$f(0) = -5$$

$$f(1) = -6$$

$$f(2) = -1$$

$$f(3) = 16$$

and

$$f'(x) = 3x^2 - 2$$

SO

$$L(x) = -1 + 10(x - 2) = 10x - 21$$

gives us

$$x = 2.1$$

We then take

$$f(2.1) + f'(2.1)(x - 2.1)$$

leads to

$$x = 2.09457$$

through repetition.

Formally, **Newton's Method** is defined as

- 1. Pick x_0
- 2. Do linear approximation at x_0
- 3. Set approximation to zero, solve for x
- 4. $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$

Note: If Newton's Method fails, use bisection to improve your initial guess.

Fixed Point Iteration

A simpler alternative to Newton's Method is to rewrite F(x) = 0 as x = g(x). Thus we find an approximate solution via

$$x_{n+1} = g(x_n)$$

This converges slower than Newton's Method, but is simpler to calculate.

Conditions for Convergence

A fixed point iteration scheme $x_{n+1} = g(x_n)$ will converge if |g'(x)| < 1 in an interval about the fixed point.

If the iteration scheme diverges, we can solve for x in a different way.

Polynomial Interpolation

Consider that we are given n+1 points (x,y) and we want to find a polynomial of degree n passing through them. We could either solve this with matrices, or we can use **Newton's Forward Difference Formula**

$$\Delta^m y_n = \Delta^{m-1} y_{n+1} - \Delta^{m-1} y_n$$

This will reduce the system to one of size n-1. By iterating through this method until we have an n=1 system, we can solve for each of the coefficient by substituting them into the general polynomial. This will give us a general solution which can then be used for any dataset. This solution is of the form

$$y = y_0 + x\Delta y_0 + \dots + x(x-1)\dots(x-n+1)\frac{\Delta^n y_0}{n!}$$

If we have non-unit spacing, this formula becomes

$$y = y_0 + \frac{x - x_0}{h} \Delta y_0 + \dots + \frac{(x - x_0) \dots (x - x_{n-1})}{n! h^n} \Delta^n y_0$$

Note that this is mostly a generalized version, and you may assume equal unit spacing by $x_z = z$ and h = 1. Also note theat $x_n = x_0 + nh$ where $h = \Delta x$.

If we have both non-unit and non-equal spacing, we use **Newton's Divided Differences**, which is generalized from

$$\Delta^{m} f(x)_{n} = \frac{\Delta^{m-1} f(x)_{n+1} - \Delta^{m-1} f(x)_{n}}{x_{n+1} - x_{n}}$$

Note that high-order polynomials are known to be innaccurate, and oscillate wildly at each end.

The Lagrange Linear Interpolation Formula is

$$f(x) \approx \left(\frac{x - x_1}{x_0 - x_1}\right) f(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) f(x_1)$$

Taylor Polynomials

The nth order Taylor Polynomial is

$$P_{n,x_0}(x) = f(x_0) + (x - x_0)f'(x_1) + \frac{(x - x_0)^2}{2!}f''(x_2) + \dots + \frac{(x - x_0)^n}{n!}f^{n'}(x_n)$$

Note that high order Taylor Polynomials completely break down.

More generally, we have

$$P_{n,x_0}(x) = \sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

Taylor's Theorem with Integral Remainders

If f(x) ihas n+1 derivatives at x_0 , then

$$f(x) = \sum_{k=0}^{n} f^{k}(x_{0})(x - x_{0})^{k} + R_{n,x_{0}}(x)$$

where

$$R_{n,x_0}(x) = \int_{x_0}^x \frac{(x-t)^n}{n!} f^{n+1}(t) dt$$

If we can bound

$$\left| f^{n+1}(t) \right| \le k$$

for all t between x and x_0 then

$$E = |f(t) - P_{n,x_0}(x)|$$

$$= |R_{n,x_0}(x)|$$

$$= \int_{x_0}^{x} \frac{(x-t)^n}{n!} f^{n+1}(t) dt$$

$$\leq \int_{x_0}^{x} \frac{|x-t|^n}{n!} |f^{n+1}(t)| dt$$

$$\leq \int_{x_0}^{x} \frac{|x-t|^n}{n!} |f^{n+1}(t)| dt$$

$$\leq k \int_{x_0}^{x} \frac{|x-t|^n}{n!} dt$$

$$\leq k \frac{|x-t|^{n+1}}{(n+1)!} \Big|_{x_0}^{x}$$

$$= k \frac{|x-x_0|}{(n+1)!}$$

$$\geq |R_{n,x_0}(x)|$$

$$E = |R_{n,x_0}(x)| \leq k \frac{|x-x_0|^{n+1}}{(n+1)!}$$

This is called **Taylor's Inequality**.