ESTRUTURA ATÔMICA: modelo atômico de Bohr

NIELS BOHR:

Baseado no espectro do hidrogênio e aplicando a teoria Max Planck, propôs.

1- No estudo do átomo não se aplica a Física Clássica, mas sim a Teoria Quântica.

2- Os elétrons giram ao redor do núcleo em *órbitas* circulares estáveis e bem definidas, sem irradiar ou receber energia espontaneamente.

3- Ao absorver energia (QUANTUM), o elétron salta para outra órbita em um nível energético superior, mais afastado do núcleo. Em sua nova posição, o elétron torna-se instável, energeticamente excitado, tendendo a retornar à orbita original, liberando toda a energia na forma de FÓTON (quantum visível).

A descoberta do Nêutron

Nêutrons

Prótons

Nêutrons

Prótons

Elétrons

Partículas do átomo Os prótons têm carga elétrica positiva, os elétrons carga negativa e os nêutrons não têm carga nenhuma.

James Chadwick (1891 - 1974)

nagem: Fotografia de Bortzells Esselte/ Disponibiliz archaroth / domínio público.

Em 1932, James Chadwick descobriu a partícula do núcleo atômico responsável pela sua ESTABILIDADE, que passou a ser conhecida por NÊUTRON, devido ao fato de não ter carga elétrica. Por essa descoberta ganhou o Prêmio Nobel de Física em 1935.

Modelo Atômico de Sommerfeld

A. J. W. Sommerfeld (1868 - 1951)

Descobriu que os níveis energéticos são compostos por SUBNÍVEIS DE ENERGIA (s, p, d, f) e que os elétrons percorrem ÓRBITAS ELÍPTICAS na eletrosfera, ao invés de circulares.

m: desconhecido / domínio público.

Diagrama de Linus Pauling

Subníve	2/	.N	Número máximo de elétrons										
s	-			2									
р			4	6									
d	-	-		10	8								
				14									

Linus Pauling criou um diagrama para auxiliar na distribuição dos elétrons pelos subníveis da eletrosfera.

O que representa cada número desse?

Por exemplo:

Neste caso, o "3" representa o NÍVEL ENERGÉTICO (CAMADA ELETRÔNICA). O "s" representa o SUBNÍVEL ENERGÉTICO. O "2" representa o NÚMERO DE ELÉTRONS na camada.

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 5f^{14} 6d^{10} 7p^6 7p^6 8s^2$

Linus Pauling (1901 – 1994)

CONCEITOS SOBRE O ÁTOMO

Número Atômico (Z): quantidades de prótons.

$$\underline{\text{Atomo neutro}}$$
: $Z = p = e$

Número de Massa (A): a soma das partículas que constitui o átomo.

$$A = Z + n$$

REPRESENTAÇÃO DE UM ÁTOMO

$$_{z}^{A}$$
 ou $_{z}^{A}$

SEMELHANÇA ATÔMICA

ISÓTOPOS: mesmo número de prótons.

$$^{28}_{12}A$$
 $^{30}_{12}A$

ISÓBAROS: mesmo número de massa.

$$_{12}^{28}A$$
 $_{14}^{28}B$

ISÓTONOS: mesmo número de nêutrons.

ÍONS: são átomos que ganharam ou perderam elétrons

ISOELETRONICOS: mesmo número de elétrons.

Principais características das partículas elementares do átomo

Nome	Região do átomo	Símbolo	Carga (C)	Massa relativa ao próton				
= = =		(4)	4.0.40.40	4/4040				
Elétron	Eletrosfera	е	-1,6x10 ⁻¹⁹	1/1840				
	(B) (B) (B) (B)		el 1000 el 19	65 Se 62 (e)				
			2 107 0 0	0 5 0 0				
Próton	Núcleo	р	1,6x10 ⁻¹⁹	1 1				
			e: 34 51 15	#1 FF 1#1				
Nêutron	Núcleo	n	0	1				
				e) ie es e:				

O sal de cozinha (NaCl) emite luz de coloração amarela quando colocado numa chama.

Baseando-se na teoria atômica, é correto afirmar que:

- a) os elétrons do cátion Na+, ao receberem energia da chama, saltam de uma camada mais externa para uma mais interna, emitindo luz amarela;
- b) a luz amarela emitida nada tem a ver com o sal de cozinha, pois ele não é amarelo;
- c) a emissão de luz amarela se deve a átomos de oxigênio;
- d) os elétrons do cátion Na⁺, ao receberem energia da chama, saltam de uma camada mais interna para uma mais externa e, ao perderem a energia ganha, emitem-na sob a forma de luz amarela;
- e) qualquer outro sal também produziria a mesma coloração.

São dadas as seguintes informações relativas aos átomos X, Y e Z.

- I. X é isóbaro de Y e isótono de Z.
- II. Y tem número atômico 56, número de massa 137 e é isótopo de Z.
- III. O número de massa de Z é 138.

Calcule o número atômico de X.

Considere as seguintes afirmativas sobre dois elementos genéricos X e Y:

- X tem número de massa igual a 40;
- X é isóbaro de Y;
- Y tem número de nêutrons igual a 20.

Assinale a alternativa que apresenta, respectivamente, o número atômico e a configuração eletrônica para o cátion bivalente de Y.

- a) 20 e 1s² 2s² 2p⁶ 3s² 3p⁶ 4s².
- b) 18 e 1s² 2s² 2p⁶ 3s² 3p⁶ 4s².
- c) 20 e 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 4p².
- d) 20 e 1s² 2s² 2p⁶ 3s² 3p⁶.
- e) 18 e 1s² 2s² 2p⁶ 3s² 3p⁶.

O modelo atômico de Bohr, apesar de ter sido considerado obsoleto em poucos anos, trouxe como principal contribuição o reconhecimento de que os elétrons ocupam diferentes níveis de energia nos átomos. O reconhecimento da existência de diferentes níveis na eletrosfera permitiu explicar, entre outros fenômenos, a periodicidade química. Modernamente, reconhece-se que cada nível, por sua vez, pode ser subdividido em diferentes subníveis.

Levando em consideração o exposto, assinale a alternativa correta.

- a) O que caracteriza os elementos de números atômicos 25 a 28 é o preenchimento sucessivo de elétrons no mesmo nível e no mesmo subnível.
- b) Os três níveis de mais baixa energia podem acomodar no máximo, respectivamente, 2, 8 e 8 elétrons.
- c) O terceiro nível de energia é composto por quatro subníveis, denominados s, p, d e f.

O modelo atômico de Bohr, apesar de ter sido considerado obsoleto em poucos anos, trouxe como principal contribuição o reconhecimento de que os elétrons ocupam diferentes níveis de energia nos átomos. O reconhecimento da existência de diferentes níveis na eletrosfera permitiu explicar, entre outros fenômenos, a periodicidade química. Modernamente, reconhece-se que cada nível, por sua vez, pode ser subdividido em diferentes subníveis.

Levando em consideração o exposto, assinale a alternativa correta.

- d) O que caracteriza os elementos de números atômicos 11 a 14 é o preenchimento sucessivo de elétrons no mesmo nível e no mesmo subnível.
- e) Os elementos de números atômicos 10, 18, 36 e 54 têm o elétron mais energético no mesmo nível, mas em diferentes subníveis.

ESTRUTURA ATÔMICA: números quânticos

Modelo Atômico do Orbital

 Princípio da Incerteza de Heisenberg: é impossível determinar com precisão a posição e a velocidade de um elétron num mesmo instante;

Imagem: Autor Desconhecido/ Disponibilizada por Quiris/ Domínio público

Modelo Atômico do Orbital

Imagem: Autor Desconhecido/ Disponibilizada por Materialscientist/ Domínio público

 Princípio da dualidade da matéria de Louis de Broglie: o elétron apresenta característica DUAL, ou seja, comporta-se como matéria e energia sendo uma partícula-onda;

Modelo Atômico do Orbital

- Erwin Schrödinger, baseado nestes dois princípios, criou o conceito de Orbital;
- Orbital é a região onde é mais provável encontrar um elétron.

Imagem: Autor Desconhecido/ Disponibilizada por Orgullomoore / Domínio público

Princípio da Exclusão de Pauli

Imagem: Nobel foundation / Disponibilizada por Pieter Kuiper / Domínio público

 Pauli deduziu que a natureza não permite que, num mesmo átomo, existam dois elétrons com a mesma energia, em estados em que coincidam os quatro números quânticos (cada elétron é caracterizado por quatro números quânticos).

Número Quântico Principal (n)

 Indica o nível de energia do elétron no átomo. Entre os átomos conhecidos em seus estados fundamentais, n varia de 1 a 7. O número máximo de elétrons em cada nível é dado por 2n².

Níveis de Energia				Camada						Nún	ner	о М	áxir	no	de I	Elét	ron	S									
			1°						K		-													2			
			2°																				2	8			
			2 °						M															18			
			J																					10			
									N.															32			
			5°						0															32			
			6°						Р															18			
			7°																					0			
									Q															8			
	10	35	8°	-	-	-	-		R		-	-	-	1.00	40	-			-	-	-			2			

Número Quântico Secundário ou Azimutal (I)

 Indica a energia do elétron no subnível. Entre os átomos conhecidos em seus estados fundamentais, I varia de 0 a 3 e esses subníveis são representados pelas letras s, p, d, f, respectivamente. O número máximo de elétrons em cada subnível é dado por 2 (2 l + 1).

Su	Subnível			ível n° quântico (€)								Má	Máximo de elétrons								- 51		-				
	-		S						0					7/	3	51	ă			2							
-	-		р	-	-			-	1	4	٠		-		10			121	- 2	6		(a)				-	
-			d						2			-								10							
*		-	f					-	3		-	101	-		1.5				-	14	-			-			

Número Quântico Magnético (m)

 O número quântico magnético especifica a orientação permitida para uma nuvem eletrônica no espaço, sendo que o número de orientações permitidas está diretamente relacionado à forma da nuvem (designada pelo valor de l). Dessa forma, este número quântico pode assumir valores inteiros de -l, passando por zero, até +l. Para os subníveis s, p d, f, temos:

Subnível	ક	Número de orbitais	Valores de m
S	0	1	0
р	1	3	-1, 0 , +1
d	2	5	-2, -1, 0, +1, +2
f	3	7	-3, -2, -1, 0, +1, +2, +3

Número Quântico Spin (s)

• O número quântico de spin indica a orientação do elétron ao redor do seu próprio eixo. Como existem apenas dois sentidos possíveis, esse número quântico assume apenas os valores -1/2 e +1/2.

É comum a convenção:

$$\downarrow = +1/2 \ e \uparrow = -1/2.$$

Regra de Hund

- Cada orbital do subnível que está sendo preenchido recebe inicialmente apenas um elétron. Somente depois do último orbital desse subnível receber o seu primeiro elétron, começa o preenchimento de cada orbital com o seu segundo elétron, que terá spin contrário ao primeiro.
- Exemplo:

onde as flechas indicam o spin do elétron

Qual a localização de um elétron que possui o seguinte conjunto de números quânticos: n = 5, $\ell = 2$, m=+1, s =+1/2 (considerar o 1° elétron a entrar no orbital com spin = -1/2).

- a) nível de energia = N, subnível p
- b) nível de energia = N, subnível d
- c) nível de energia = N, subnível f
- d) nível de energia = O, subnível p
- e) nível de energia = O, subnível d

Qual alternativa apresenta corretamente os quatro números quânticos do elétron colocado no orbital 2pz, representado no nível energético abaixo?

- a) n = 2; $\ell = 1$; m = +1; $ms = +\frac{1}{2}$.
- b) n = 2; $\ell = 2$; m = +1; $ms = + \frac{1}{2}$.
- c) n = 2; $\ell = 1$; m = +2; $ms = + \frac{1}{2}$.
- d) n = 2; $\ell = 0$; m = +1; $ms = + \frac{1}{2}$.
- e) n = 2; $\ell = 0$; m = 0; $ms = + \frac{1}{2}$.

Um átomo X é isóbaro de ₂₆Fe⁵⁶ e isótono de ₃₀Zn⁶⁵. Convencionandose que o primeiro elétron a entrar num orbital possui spin -1/2, assinale a alternativa que contém o conjunto de números quânticos do elétron mais energético do elemento X e o período em que se encontra dentro da classificação periódica dos elementos:

- a) 4, 0, 0, -1/2, 4 ° período
- b) $3, 0, 0, +1/2, 3^{\circ}$ período
- c) 4, 2, +2, -1/2, 5° período
- d) 3, 2, -2, -1/2, 4° período
- e) $3, 0, -2, +1/2, 3^{\circ}$ período

Considerando a tabela abaixo,

Números quânticos

	n	ℓ	m	S
Conjunto 1	3	2	-2	+1/2
Conjunto 2	3	3	+3	+1/2
Conjunto 3	2	0	+1	-1/2
Conjunto 4	4	3	О	+1/2
Conjunto 5	-3	2	-2	-1

Assinale a alternativa correta.

- a) Os conjuntos 1, 3 e 5 representam configurações impossíveis para um elétron em um átomo.
- b) Os conjuntos 1 e 4 representam configurações possíveis para um elétron em um átomo.

Números quânticos

	n	ℓ	m	S
Conjunto 1	3	2	-2	+1/2
Conjunto 2	3	3	+3	+1/2
Conjunto 3	2	0	+1	-1/2
Conjunto 4	4	3	О	+1/2
Conjunto 5	3	2	-2	-1

- c) Os conjuntos 2 e 4 representam configurações possíveis para um elétron em um átomo.
- d) Os conjuntos 4 e 5 representam configurações impossíveis para um elétron em um átomo.
- e) Os conjuntos 1, 2 e 3 representam configurações possíveis para um elétron em um átomo.

Com relação ao orbital esquematizado, a proposição falsa é:

- a) O seu número quântico principal é n > 1.
- b) O orbital apresenta número quântico secundário $\ell = 2$.
- c) N esse orbital pode haver no máximo dois elétrons.

- d) N o nível de número quântico principal n = 2 do átomo de sódio (Z = 11) existem três desses orbitais.
- e) O número quântico magnético desse orbital pode ter um dos valores: -1, 0, +1.