Graph Theory

Outline:

- Introduction
 - Basic terminology and concepts
 - Representations of graphs
 - Operations on Graphs
- Walks, trails, paths, circuits and cycles
 - ◆ Eulerian circuits
 - Hamiltonian cycles
- Special types of graphs
- Graph isomorphism and homeomorphism
- Trees
- Graph problems and their applications

Slide 1

Special Types of Graphs

- trivial graph ≡ one vertex + no edges.
- null graph, N_n, ≡ n vertices + no edges.
- empty graph = no vertices + no edges.
- cycle graph, C_n, ≡ n vertices + edges form a cycle of length n.
- path graph, P_n, ≡ n vertices + obtained by removing one edge from a cycle graph C_n.

Special Types of Graphs

- wheel graph, W_n, ≡ n vertices + obtained by adding a new vertex, called the hub, to a C_{n-1} cycle graph and joining that new vertex to all n-1 vertices in the C_{n-1} graph.
- **k-regular graph** ≡ *simple* graph + every vertex has a degree of k.
- complete graph K_n, ≡ simple graph + n vertices + every vertex is adjacent to every other vertex in the graph.

Special Types of Graphs

- bipartite graph

 = vertices can be partitioned into two sets so that every edge in the graph only joins one vertex in one set to a vertex in the other set.
 - A graph is bipartite if all the cycles it contains are of even length.
- complete bipartite graph, K_{m,n} = simple bipartite graph where every vertex in one set is adjacent to every vertex in the other set.

Special Types of Graphs

• **planar graph** ≡ graph which can be drawn on a plane such that its edges *do not cross* each other.

Isomorphism

- **Graph G is isomorphic to a graph H** if there exists a one-to-one correspondence ϕ between from V(G) to V (H) such that ϕ preserves adjacency, that is, if $(u,v) \in E(G)$ iff $(\phi(u), \phi(v)) \in E(H)$.
 - one-to-one and onto correspondence between V(G) and V(H) is just a re-labeling of the vertices.
 - if graph G is isomorphic to graph H, then we write $G \cong H$.

Slide 6

Isomorphism

- THEOREM. Two simple graphs G and H are isomorphic if and only if for some ordering of their respective vertices, their adjacency matrices are equal.
- If graphs G and H are not isomorphic, an **invariant** is a property of G that H does not have (or *vice versa*).
- graph G is self-complementary if it is isomorphic to its complement G^c.

Slide 7

Isomorphism

Slide 8

Homeomorphism

 Graphs G1 and G2 are homeomorphic if they can be obtained from a graph H by inserting new vertices of degree two into the edges of H.

Homeomorphism

 Graphs G1 and G2 are homeomorphic if they can be obtained from a graph H by inserting new vertices of degree two into the edges of H.

Homeomorphism

• KURATOWSKI's THEOREM.

A graph is planar if and only if it does not have a subgraph that is homeomorphic to the complete graph K_5 or to the complete bipartite graph $K_{3,3}$.

Homeomorphism

KURATOWSKI's THEOREM.

A graph is planar if and only if it does not have a subgraph that is homeomorphic to the complete graph K_5 or to the complete bipartite graph K_{33} .

Trees

- TREES are special graphs make up a subclass of graphs that are widely used.
- Some applications:
 - Linguistics:
 - used to analyze sentence structure
- Medicine:
 - decision trees are used to form a diagnosis based on a whole array of symptoms and test results.
- Computer Science:
 - data can be stored in tree data structures for easy access.
 - used to organize and relate data in a database.

Slide 13

Trees

- A tree ≡ acyclic connected graph
- A **forest** ≡ set of trees OR a graph whose components are trees
- THEOREM. In a tree, any two vertices are connected by a unique path.
- THEOREM. If graph G is a tree, then |E(G)| = |V(G)| 1.

Slide 14

Trees

- COROLLARY. Every non-trivial tree has at least two vertices of degree 1.
- THEOREM. A connected graph is a tree iff every edge is a cut edge.
- THEOREM. In a tree, a vertex v is a cut-vertex iff $\rho(v)>1$.

Trees

- **nodes** ≡ vertices in a tree
- **leaf** ≡ end vertex in a tree.
- interior node ≡ vertex in a tree that is not a leaf.
- rooted tree = tree + vertex r designated as root of tree
- level of a node v ≡ length of the path from root to node v. The level of the root is zero(0).1

Slide 16

Trees

- **height** of the tree ≡ greatest level assignment given to a node in the tree
 - height of the root ≡ height of the tree
 - height of a node v ≡ one less than its parent
- Can also define
- siblings
- parent
- child
- ancestors
- descendants

Trees

 subtree rooted at node v of a tree \equiv subgraph induced by the node v and all of its descendants (if any).

Slide 17

Trees

- subtree rooted at node v
 of a tree ≡ subgraph induced
 by the node v and all of its
 descendants (if anv).
- directed tree = tree which contains a directed path from the root to each vertex.

Slide 19

Trees

- A spanning tree of a graph G is a spanning subgraph T of G such that T is a tree.
- COROLLARY. Every connected graph contains a spanning tree.

Slide 20

Binary Trees

- binary tree = a tree where each node has either
 - no children
 - a left child
 - a right child
 - both a left and a right child

NOTE: Distinction is always made between a left child and a right child.

Slide 21

Binary Trees

Binary Tree Traversal

A systematic way of listing down the nodes of a binary tree.

Suppose T is a binary tree with root r whose left and right subtrees are T_L and T_R , respectively.

- Preorder Listing/Traversal root r
 - + nodes in T_L in preorder
 - + nodes of T_R in preorder.

Slide 22

Binary Trees

Binary Tree Traversal

A systematic way of listing down the nodes of a binary tree.

Suppose T is a binary tree with root r whose left and right subtrees are T_L and T_R , respectively.

- Postorder Listing/Traversal nodes in T_L in postorder
 - + nodes of T_R in preorder
 - + root r

Binary Trees

Binary Tree Traversal

A systematic way of listing down the nodes of a binary tree.

Suppose T is a binary tree with root r whose left and right subtrees are T_L and T_R , respectively.

- Inorder Listing/Traversal nodes in T_L in inorder
 - + root r
 - + nodes of T_R in inorder.

Slide 23

Binary Trees

Expression Trees

- ≡ *directed* binary trees where
 - each interior node contains an operator
 - each leaf contains an operand.

Examples:

Draw the expression tree representing each of the following:

- a+b
- (a+b)/(c*(d+e))

Binary Trees

Different forms of the expression

- Infix form
 - results from an inorder traversal
 - operator is written between its operands.

Prefix form

- results from a preorder traversal
- operator is written before its operands.

Postfix form

- results from a postorder traversal
- operator is written after its operands.

