Matrix Exponential

Baboo J. Cui, Yangang Cao July 9, 2019

Contents

1	Matrix Exponential		2
	1.1 Comp	outing Matrix Exponential Directly	2
	1.2 Comp	outing Matrix Exponential by Jordan Form	2
	1.3 Comp	outing Matrix Exponential by Matlab	2
2	Properties of Matrix Exponential Baker-Campbell-Hausdorff Formula Matrix Exponential Representation of 3D Rotations		2
3			3
4			
5	Time Inde	Time Indexed Case	
	5.1 Time	Indexed Matrix Exponential	4
	5.2 Time	Derivative of Matrix Exponential	4
		erties of Matrix Exponential with Time Index	4
	-	outing Time-Indexed Matrix Exponential	5
6	Example		5

1 Matrix Exponential

Power series converges for all $\lambda \in \mathbb{R}$ in scalar exponential function:

$$e^{\lambda} = 1 + \lambda + \frac{1}{2!}\lambda^2 + \frac{1}{3!}\lambda^3 + \cdots$$

For any matrix $A \in \mathbb{R}^{n \times n}$, **define** its matrix exponential:

$$e^A := I_n + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots \in \mathbb{R}^{n \times n}$$

and matrix power series always converges.

1.1 Computing Matrix Exponential Directly

ullet When A is nilpotent:

 $A^n = \mathbf{0}, n > N$ where N is certain number

therefore e^A only depends on the first N terms

• When A is idempotent: $A^2 = A$, there is an analytic solution:

$$e^A = I + (e - 1)A$$

 \bullet When A is of rank one, simply use Dyadic expansion:

$$A = uv^T$$

1.2 Computing Matrix Exponential by Jordan Form

Using the Jordan Canonical Form:

$$A = T \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_q \end{bmatrix} T^{-1} \Rightarrow e^A = T \begin{bmatrix} e^{J_1} & & \\ & \ddots & \\ & & e^{J_q} \end{bmatrix} T^{-1}$$

1.3 Computing Matrix Exponential by Matlab

Use Matlab command:

note there is an "m".

2 Properties of Matrix Exponential

For any $A \in \mathbb{R}^{n \times n}$

- $e^0 = I$
- invariant of eigenvalue: $Av = \lambda v \implies e^A v = e^{\lambda} v$
- $\bullet \ e^{A^T} = \left(e^A\right)^T$

- $e^{TAT^{-1}} = Te^{A}T^{-1}$ for nonsingular $T \in \mathbb{R}^{n \times n}$
- $\det\left(e^{A}\right) = e^{\operatorname{tr}A} = e^{\lambda_{1} + \lambda_{2} + \cdots}$
- If $A, B \in \mathbb{R}^{n \times n}$ commute, i.e., AB = BA, then

$$e^{A+B} = e^A e^B = e^B e^A$$

Tip: commute indicate that eigenvectors of both A and B are in the same direction

- $(e^A)^{-1} = e^{-A}$
- If A is skew symmetric $(A^T = -A)$, e^A is orthogonal: $(e^A)(e^A)^T = I$

3 Baker-Campbell-Hausdorff Formula

For $X, Y \in \mathbb{R}^{n \times n}$, we have

$$e^{X+Y} \neq e^X \cdot e^Y$$

unless X and Y commute. For any $X, Y \in \mathbb{R}^{n \times n}$, we can write

$$e^X e^Y = e^Z$$

for some $Z = \log(e^X e^Y) \in \mathbb{R}^{3 \times 3}$ given by

$$Z = X + Y + \frac{1}{2}[X,Y] + \frac{1}{12}[X,[X,Y]] - \frac{1}{12}[Y,[X,Y]] - \frac{1}{24}[Y,[X,[X,Y]]] - \cdots$$

where [X,Y] := XY - YX is the **Lie bracket** of X and Y.

4 Matrix Exponential Representation of 3D Rotations

For $\omega = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 \end{bmatrix}^T \in \mathbb{R}^3$, define a skew-symmetric matrix Ω :

$$\Omega = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

then $\Omega_V = \omega \times v$ for $v \in \mathbb{R}^3$, where \times denotes cross product of vectors. For any nonzero vector $\omega \in \mathbb{R}^3$, $e^{\Omega} \in \mathbb{R}^{3\times 3}$ is an orthogonal matrix that represents the rotation around the axis ω by the angle $||\omega||$. More precisely,

$$e^{\Omega} = I_3 + \frac{\sin(\|\omega\|)}{\|\omega\|} \Omega + \frac{1 - \cos(\|\omega\|)}{\|\omega\|^2} (\omega \omega^T - \|\omega\|^2 I_3)$$

Here is an example:

$$A = \left[\begin{array}{cc} \sigma & -\omega \\ \omega & \sigma \end{array} \right] = \left[\begin{array}{cc} \sigma & 0 \\ 0 & \sigma \end{array} \right] + \left[\begin{array}{cc} 0 & -\omega \\ \omega & 0 \end{array} \right]$$

therefore:

$$e^{A} = \underbrace{e^{\sigma}}_{\text{magnitude change}} \underbrace{\begin{bmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{bmatrix}}_{\text{pure rotation}}$$

5 Time Indexed Case

5.1 Time Indexed Matrix Exponential

The following power series converges for all $\lambda \in \mathbb{R}$ and all $t \in \mathbb{R}$:

$$f(\lambda) := e^{\lambda t} = 1 + t\lambda + \frac{1}{2!}t^2\lambda^2 + \frac{1}{3!}t^3\lambda^3 + \cdots$$

For any square matrix $A \in \mathbb{R}^{n \times n}$, define

$$e^{At} := I_n + tA + \frac{1}{2!}t^2A^2 + \frac{1}{3!}t^3A^3 + \cdots$$

- The matrix power series converges for all $A \in \mathbb{R}^{n \times n}$ and all $t \in \mathbb{R}$
- \bullet For fixed A, e^{At} can be viewed as a matrix-valued function of time t

5.2 Time Derivative of Matrix Exponential

The scalar function $e^{\lambda t}$ as a function of $t \in \mathbb{R}$ has the derivative:

$$\frac{d}{dt}e^{\lambda t} = \lambda e^{\lambda t}$$

For fixed $A \in \mathbb{R}^{n \times n}, e^{At}$ as a matrix-valued function of $t \in \mathbb{R}$ satisfies

$$\frac{d}{dt}e^{At} = A \cdot e^{At} = e^{At} \cdot A$$

Tip: why this is commute?

5.3 Properties of Matrix Exponential with Time Index

For any $A \in \mathbb{R}^{n \times n}$ and any $t \in \mathbb{R}$:

- $\bullet \ Av = \lambda v \quad \Rightarrow \quad e^{At}v = e^{\lambda t}v$
- $\bullet \ e^{A^T t} = \left(e^{At}\right)^T$
- $\det(e^{At}) = e^{(\operatorname{tr} A)t}$
- If $A, B \in \mathbb{R}^{n \times n}$ commute, i.e., AB = BA, then

$$e^{(A+B)t} = e^{At}e^{Bt} = e^{Bt}e^{At}$$

- $e^{A(t_1+t_2)} = e^{At_1}e^{At_2} = e^{At_2}e^{At_1}, \forall t_1, t_2 \in \mathbb{R}$
- $(e^{At})^{-1} = e^{-At}$
- If A is skew symmetric, then e^{At} is orthogonal for all t

5.4 Computing Time-Indexed Matrix Exponential

Three methods can be taken:

• use the **definition**:

$$e^{At} := I_n + tA + \frac{1}{2!}t^2A^2 + \frac{1}{3!}t^3A^3 + \cdots$$

ullet use the Jordan canonical form:

$$A = T \begin{bmatrix} J_1 & & & \\ & \ddots & & \\ & & J_q \end{bmatrix} T^{-1} \quad \Rightarrow \quad e^{At} = T \begin{bmatrix} e^{J_1 t} & & & \\ & \ddots & & \\ & & e^{J_q t} \end{bmatrix} T^{-1}$$

• the Laplace transform of e^{At} as a function of time t is

$$\mathcal{L}\left[e^{At}\right] = (sI - A)^{-1} \quad \Rightarrow \quad e^{At} = \mathcal{L}^{-1}\left[(sI - A)^{-1}\right]$$

Here are two examples:

$$A_1 = \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix}, \quad e^{A_1 t} = \begin{bmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix}, (sI - A_{2})^{-1} = \begin{bmatrix} \frac{1}{s-1} & \frac{1}{(s-1)(s+2)} & \frac{1}{(s-1)(s+2)^{2}} \\ 0 & \frac{1}{s+2} & \frac{1}{(s+2)^{2}} \\ 0 & 0 & \frac{1}{s+2} \end{bmatrix}$$