

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 9: Sistemas de Proteção Contra Descargas Atmosféricas (SPDA) — Aula 20

Instalações Elétricas I Engenharia Elétrica

9.5 – Gerenciamento de Risco

• Relembrando os tipos de riscos:

- Somente para hospitais ou outras estruturas nas quais falhas em sistemas internos colocam a vida humana diretamente em perigo.
- b Somente para propriedades onde pode haver perdas de animais.

Figura 2 – Tipos de perdas e riscos correspondentes que resultam de diferentes tipos de danos

- 1) Para cada tipo de perda (L) haverá um risco (R) a ser calculado, o qual depende de fatores que podem ser agrupados de acordo com a fonte de danos (S) e o tipo de dano (D), conforme segue:
- Componentes de risco para descarga atmosférica na estrutura (S_1) :
 - R_A: componente relativo a ferimentos aos seres vivos causados por choque elétrico devido a tensões de toque e passo dentro da estrutura e fora nas zonas até 3m ao redor dos condutores de descida.
 Perda de tipo L₁ e, no caso de estruturas contendo animais vivos as perdas do tipo L₄.
 - R_B: componente relativo a danos físicos causados por centelhamento perigosos dentro da estrutura iniciando incêndio ou explosão, os quais também podem colocar em perigo o meio ambiente. Todos os tipos de perdas (L₁, L₂, L₃ e L₄).
 - R_C: componente relativo a falhas de sistemas internos causados por LEMP (Lightning Eletromagnectic Impulse). Perdas do tipo L₂ e L₄ podem ocorrer em todos os casos junto com o tipo L₁, nos casos de estruturas com risco de explosão, e hospitais.

- 2) Componente de risco para descarga perto da estrutura (S_2):
 - $R_{\rm M}$: componente de risco relativo a falhas de sistemas internos causados por LEMP. Perdas do tipo L_2 e L_4 podem ocorrer em todos os casos junto com o tipo L_1 , nos casos de estruturas com risco de explosão e hospitais.
- 3) Componentes de risco para uma estrutura devido as descargas atmosféricas a uma linha conectada à estrutura (S_3) :
 - R_U: componente relativo a ferimentos aos seres vivos causados por choque elétrico devido às tensões de toque e passo dentro da estrutura. Perda do tipo L₁ e, no caso de propriedades agrícolas, perdas do tipo L₄ com possíveis perdas de animais também podem ocorrer;
 - R_V: componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas geralmente no ponto de entrada da linha na estrutura) devido à corrente da descarga atmosférica transmitida ou ao longo das linhas. Todos os tipos de perdas (L₁, L₂, L₃ e L₄) podem ocorrer;

- R_W: componente relativo a falhas de sistemas internos causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perdas do tipo L₂ e L₄ podem ocorrer em todos os casos, junto com o tipo L₁, nos casos de estruturas com risco de explosão, e hospitais.
- 4) Componentes de risco para uma estrutura devido às descargas atmosféricas perto de uma linha conectada à estrutura (S_4):
 - R_Z: componente relativo a falhas de sistemas internos causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perdas do tipo L₂ e L₄ podem ocorrer em todos os casos, junto com o tipo L₁, nos casos de estruturas com risco de explosão, e hospitais.
 - NOTA 1 As linhas consideradas nesta análise são somente aquelas que entram na estrutura.
 - NOTA 2 Descargas atmosféricas em, ou perto de, tubulações não são consideradas como uma fonte de danos, uma vez que existe a interligação ao barramento de equipotencialização. Se o barramento de equipotencialização não existir, recomenda-se que este tipo de ameaça também seja considerado.

• Os componentes de risco a serem considerados para tipo de perda na estrutura são listados a seguir:

a) R₁: Risco de perda de vida humana:

$$R_{1} = R_{A1} + R_{B1} + R_{C1}^{1} + R_{M1}^{1} + R_{U1} + R_{V1} + R_{W1}^{1} + R_{Z1}^{1}$$
(1)

Somente para estruturas com risco de explosão e para hospitais com equipamentos elétricos para salvar vidas ou outras estruturas quando a falha dos sistemas internos imediatamente possa por em perigo a vida humana.

b) R₂: Risco de perdas de serviço ao público:

$$R_2 = R_{B2} + R_{C2} + R_{M2} + R_{V2} + R_{W2} + R_{Z2}$$
 (2)

c) R₃: Risco de perdas de patrimônio cultural:

$$R_3 = R_{B3} + R_{V3}$$
 (3)

d) R₄: Risco de perdas de valor econômico:

$$R_{4} = R_{A4}^{2} + R_{B4} + R_{C4} + R_{M4} + R_{U4}^{2} + R_{V4} + R_{W4} + R_{Z4}$$
(4)

Somente para propriedades onde animais possam ser perdidos.

Avaliação da Necessidade de Proteção

 A Tabela 3 da norma apresenta fatores que influenciam os componentes de risco, sendo necessário o levantamento de dados a respeito destes fatores.

Características da estrutura ou dos sistemas internos (medidas de proteção)	R _A	R _B	Rc	R _M	Ru	R _V	R _W	Rz
Área de exposição equivalente	Х	х	Х	х	х	Х	Х	Х
Resistividade da superfície do solo	X							
Resistividade do piso	Х				X			
Restrições físicas, isolamento, avisos visíveis, equipotencialização do solo	X				х			
SPDA	Х	X	X	Ха	Xp	Xp		
Ligação ao DPS	Х	Х			Х	Х		
Interfaces isolantes			Xc	Xc	Х	Х	×	Х
Sistema coordenado de DPS			Х	х			×	Х

- Os seguintes itens devem ser considerados para a análise de risco:
 - A própria estrutura;
 - As instalações na estrutura;
 - O conteúdo da estrutura;
 - As pessoas na estrutura ou nas zonas até 3m para fora desta;
 - O meio ambiente afetado por danos na estrutura.
- A norma estabelece limites para o risco, denominado Risco Tolerável (R_T) , dependendo da perda envolvida, conforme a tabela abaixo:

	R _T (y ⁻¹)	
L1	Perda de vida humana ou ferimentos permanentes	10-5
L2	Perda de serviço ao público	10-3
L3	Perda de patrimônio cultural	10-4

Obs: Para a perda de valor econômico (L₄), os cálculos são definidos no Anexo D da norma, e segue uma análise custo/benefício. Sem dados disponíveis para análise, deve ser utilizado o valor de R_T para L₂.

• Para avaliar a necessidade de proteção os riscos R₁, R₂ e R₃ devem ser calculados e comparados com os valores da Tabela anterior e então:

- Se $R \le R_T$, não é necessária a proteção contras descargas atmosféricas;
- Se R > R_T , então medidas devem ser tomadas para se obter R ≤ R_T .

• Conforme mencionado anteriormente, tem-se os seguintes componentes de riscos: R_A, R_B, R_C, R_M, R_U, R_V, R_W, R_Z, os quais deverão ser calculados e utilizados, para o cálculo dos riscos R₁, R₂, R₃, R₄. Para tanto, há uma fórmula genérica para o cálculo das componentes, conforme segue:

A probabilidade de dano P_X é afetada pelas características da estrutura a ser protegida, das linhas conectadas e das medidas de proteção existentes.

A perda consequente L_X é afetada pelo uso para o qual a estrutura foi projetada, a frequência das pessoas, o tipo de serviço fornecido ao público, o valor dos bens afetados pelos danos e as medidas providenciadas para limitar a quantidade de perdas.

• De uma forma compacta, a Tabela 6 da norma, apresenta as fórmulas específicas para cada componentes de risco.

Tabela 6 – Componentes de risco para diferentes tipos de danos e fontes de danos

Danos	Fonte de danos						
	S1 Descarga atmosférica na estrutura	S2 Descarga atmosférica perto da estrutura	S3 Descarga atmosférica na linha conectada	S4 Descarga atmosférica perto da linha conectada			
D1 Ferimentos a seres vivos devido a choque elétrico	R _A = N _D × P _A × L _A		$R_{\text{U}} = (N_{\text{L}} + N_{\text{DJ}})$ × $P_{\text{U}} \times L_{\text{U}}$				
D2 Danos físicos	$R_{\rm B} = N_{\rm D} \times P_{\rm B} \times L_{\rm B}$		$R_V = (N_L + N_{DJ})$ $\times P_V \times L_V$	(
D3 Falha de sistemas eletroeletrônicos	R _C = N _D × P _C × L _C	$R_{M} = N_{M} \times P_{M} \times L_{M}$	$R_{W} = (N_{L} + N_{DJ})$ $\times P_{W} \times L_{W}$	$R_Z = N_1 \times P_Z \times L_Z$			

• Os parâmetros N são obtidos no Anexo A, os parâmetros P no Anexo B e os parâmetros L no Anexo C, da norma NBR 5419-3/2015. Nesses Anexos, se obtêm as fórmulas para os cálculos dos parâmetros e tabelas com valores a serem utilizados.

Exemplo de Cálculo para R_A

• A componente R_A está relacionado a ferimentos a seres vivos por choque elétrico (D_1) :

$$R_A = N_D x P_A x L_A$$

Determinação de ND

• A_D: Estrutura retangurar

• Obs: Estruturas com $A_D = L \times W + 2 \times (3 \times H) \times (L + W) + \pi \times (3 \times H)^2$ a.

Exemplo de Cálculo para R_A

- N_G: densidade de descargas atmosféricas para a terra. É o número de descargas atmosféricas por km² por ano.
- Pode ser obtido por:
 - Mapas impressos: Brasil e as cinco regiões brasileiras (ver Anexo F)
 - Pelo link: http://www.inpe.br/webelat/ABNT_NBR5419_Ng/
 - Se um mapa N_G não estiver disponível:

$$N_G \approx 0.1 \times T_D$$
 (raios por Km² por ano)

- Onde:
 - T_D: é o número de dias de trovoadas por ano, obtido por mapas isocerâunicos.

Densidade de Descargas Atmosféricas (N_G)

Mapa de Curvas Isocerâunicas (Brasil)

Mapa de Curvas Isocerâunicas

Exemplo de cálculo para R_A

• Determinação de P_A:

• Determinação de L_A:

Fluxograma de Avaliação de Risco

Exemplo 1 - Cálculo de Risco

Exemplo) Seja um edifício com 32 unidades residenciais, com total de pessoas na estrutura igual a 120, localizado em Joinville/SC, em território plano com estruturas de mesma altura na redondeza. O edifício possui altura total (H_m) de 26 m, comprimento (L) de 22,5 m e largura (W) de 23 m. As linhas de energia e telefonia são aéreas e sem blindagem, com comprimento de 200 m e 100 m respectivamente.

Considerações: calcular somente o risco R_1 para perda de vidas humanas (L_1) com componentes R_A , R_B , R_U e R_V . Adotar $R_T = 10^{-5}$.

