

Computer Vision Course -A.A. 2020/2021

Lab 2:

Motion Detection

Niccolò Bisagno niccolo.bisagno@unitn.it

What's up today (and tomorrow)

- Frame differencing
- Background Subtraction
- * Adaptive Background Subtraction
- * Adaptive Background Subtraction: Mixture of Gaussians

Frame differencing

Frame Differencing: Time Scaling

$$D(N) = ||I(t) - I(t+N)||$$

Exercise: frame differencing

- Initialise a new project
- * Open a video
- Convert frames to grayscale
 frame_gray = cv2.cvtColor(frame_color, cv2.COLOR_RGB2GRAY);
- Use a list to store frames!

frames = []

NB!!!: how to append frames to array: frame.append(frame_gray);

Implement the function

result =
$$cv2.absdiff(I(t),I(t+N))$$

$$D(N) = ||I(t) - I(t+N)||$$

What's missing in the implementation?

Apply thresholding on the mask

cv2.threshold(image, double thresh, double maxval, int type)

Adaptive Background Subtraction

* Use a parameter α to weight the contributions

$$*B_t = \alpha I_t + (1 - \alpha)B_{t-1}$$

- $\alpha = 0 \rightarrow \text{bg sub, no update}$
- $*\alpha = 1 \rightarrow$ frame differencing

*NOTE: $bg = np . uint8(B_t)$

Mixture of Gaussians

$$P(x_t) = \sum_{i=1}^K \omega_{i,t} \eta(x_t, \mu_{i,t}, \Sigma_{i,t})$$

- * $\omega_{i,t}$ = weight for the current Gaussian
- * Select K
- Rank the Gaussians on the basis of
 - Peak amplitude
 - Weight
 - Standard deviation

$$\omega_{k,t} = \alpha M_{k,t} + (1 - \alpha)\omega_{k,t-1}$$

- * α is the so-called learning rate
- M is one for the matching model and 0 otherwise
 - → if it is not the matching model, the weight is decreased

Exercise

- Go to OpenCV 4 documentation
- https://docs.opencv.org/4.1.2/d6/d00/tutorial_py_root.html
- Check the parameters for the BackgroundSubtractorMOG
- * Try to change the number of Gaussians and the history (how much time you want to spend to learn the background model) used and check the results
- Change the MOG to BackgroundSubtractorMOG2
- * Use the method getBackgroundImage(); to get the background
- * Display the background and observe how it changes over time with different values of the learning rate parameter