Down the Rabbit Hole

Alice is feeling bored while sitting on the riverbank with her sister, when she notices a 2D White Rabbit with a 2D pocket watch run past. She follows it down a rabbit hole when suddenly she falls a long way to a curious 2D plane.

In this 2D plane she discovered she can only move using a sequence of *movements*. Those movements are limited to:

- **Scaling**, denoted as S_c (where c is a nonzero rational number). If Alice is currently at (x,y), then S_c takes her to (cx,cy).
- **Translation**, denoted as $T_{a,b}$ (where a and b are rational numbers). If Alice is currently at (x,y), then $T_{a,b}$ takes her to (a+x,b+y).
- **Rotation**, denoted as $R_{a,b}$ (where a and b are rational numbers and $a^2+b^2=1$). If Alice is currently at (x,y), then $R_{a,b}$ takes her to (ax+by,ay-bx). In other words, $R_{a,b}$ is a clockwise rotation about the origin, at an angle θ where $\cos\theta=a$ and $\sin\theta=b$.
- Flip X-axis, denoted as F_X . If Alice is currently at (x,y), then F_X takes her to (x,-y).
- ullet Flip Y-axis, denoted as F_Y . If Alice is currently at (x,y), then F_Y takes her to (-x,y).
- Inversion, denoted as I (more precisely, inversion in the unit circle). If Alice is currently at (x,y), then I takes her to $\left(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2}\right)$.

Also, Alice discovered that when she is at (0,0) before she performs an inversion, she is taken to a special place called *Wonderland*. In Wonderland, performing any of the other movements (scaling, translation, rotation or flip) will return her to Wonderland, and performing an inversion moves her back to (0,0).

Now, Alice has a sequence of N such movements to make. Moreover, she performs this sequence of N movements a total of K times. Your task is to determine her final location after her adventure.

If Alice's final location is (x_f,y_f) , it's easy to see that x_f and y_f are rational. Let $x_f=A/B$ and $y_f=C/D$ (both in lowest terms). Understandably, A, B, C and D can be really large integers, so instead of asking for x_f and y_f we will only ask for the values $AB^{-1} \mod (10^9+7)$ and $CD^{-1} \mod (10^9+7)$.

Input Format

The first input contains a single integer, T, which is the number of test cases. The next lines contain the descriptions of the T test cases.

The first line of each test case contains four values N, K, x_s and y_s . N and K are integers (described above), and (x_s, y_s) is the initial location of Alice (x_s and x_s are rational numbers).

The next N lines each contains the description of a movement in the sequence, which is one of the following:

- S c, which denotes scaling (c is a nonzero rational number),
- \bullet T a b, which denotes *translation* (a and b are rational numbers),

- ullet R $_{
 m a}$ $_{
 m b}$, which denotes $\it rotation$ ($\it a$ and $\it b$ are rational numbers and $\it a^2+b^2=1$),
- F X, which denotes flip X-axis,
- F Y, which denotes flip Y-axis, and
- I, which denotes inversion.

Output Format

If Alice's final location is Wonderland, output WONDERLAND.

If Alice's final location is (x_f,y_f) , and $x_f=A/B$ and $y_f=C/D$ in irreducible form, then output the two integers $AB^{-1} \mod (10^9+7)$ and $CD^{-1} \mod (10^9+7)$ in a line separated by a single space. However, if either B or D is not invertible, also output WONDERLAND.

Constraints

$$1 \le T \le 10^5$$
$$1 \le N \le 10^5$$

The sum of the N's in a single test file is $\leq 10^5$

$$1 \le K \le 10^{15}$$

Each rational number is expressed in irreducible form A/B with the following constraints:

$$-10^9 < A < 10^9$$

 $1 \le B < 10^9$

Sample Input

```
2
3 2 0/1 0/1
T -2/1 3/1
R 3/5 4/5
I
5 1 2/1 -2/1
F X
S 3/2
T -3/1 -3/1
I
```

Sample Output

```
881896558 492241383
WONDERLAND
```

Explanation

In the first test case, $(x_s,y_s)=(0,0)$, K=2 and the sequence of operations is $[T_{-2,3},R_{3/5,4/5},I]$.

$$T_{-2,3}\colon \qquad (0,0) \qquad o \qquad (-2,3) \ R_{3/5,4/5}\colon \qquad (-2,3) \qquad o \qquad (6/5,17/5) \ I\colon \qquad (6/5,17/5) \qquad o \qquad (6/65,17/65) \ T_{-2,3}\colon \qquad (6/65,17/65) \qquad o \qquad (-124/65,212/65) \ R_{3/5,4/5}\colon \qquad (-124/65,212/65) \qquad o \qquad (476/325,1132/325) \ I\colon \qquad (476/325,1132/325) \qquad o \qquad (119/1160,283/1160)$$

Therefore, the final location is $(x_f,y_f)=(119/1160,283/1160).$ So we print:

 $119 \cdot 1160^{-1} \bmod (10^9 + 7) = 881896558$ and:

 $283 \cdot 1160^{-1} \mod (10^9 + 7) = 492241383$.

In the second test case, $(x_s,y_s)=(2,-2)$, K=1 and the sequence of operations is $[F_X,S_{3/2},T_{-3,-3},I,F_Y]$.

$$egin{array}{lll} F_X\colon & (2,-2) &
ightarrow & (2,2) \ S_{3/2}\colon & (2,2) &
ightarrow & (3,3) \ T_{-3,-3}\colon & (3,3) &
ightarrow & (0,0) \ I\colon & (0,0) &
ightarrow & ext{Wonderland} \ F_Y\colon & ext{Wonderland} &
ightarrow & ext{Wonderland} \end{array}$$

Therefore, the final location is Wonderland.