Generalization Bounds Theoretical Foundations of Deep Learning

Matteo Mazzarelli

December 17, 2024

Matteo Mazzarelli

Motivation

- ► Core Challenge: How can a model learned from *limited* training data perform well on unseen data?
- Generalization lies at the heart of the machine learning process.
- A poorly generalized model risks:
 - Overfitting: Performing well on training data but poorly on unseen data.
 - Underfitting: Failing to capture the underlying patterns of the data.

The Learning Problem

- ► Supervised Learning:
 - Goal: Learn a function $f: X \to Y$ mapping inputs X to outputs Y based on labeled training data.
- ► **Key Question**: Can the learned function perform well on unseen data?
- Generalization:
 - Ability of a model to extend its learning beyond the training data.
 - ▶ **Central Problem** in machine learning: balancing *empirical* performance with future predictions.

Why Theory Matters

▶ Significance of Theory:

- Guides algorithm design by providing a foundation for developing new methods.
- Allows **performance analysis** to identify the strengths and weaknesses of algorithms.
- Reveals **limitations** of learning systems, helping us understand their boundaries

▶ Theoretical Understanding:

Bridges the gap between empirical performance and guarantees on future behavior.

Simulating Overfitting

Objective:

Visualize the impact of model complexity on overfitting in a linear regression model.

Dataset

The experiment uses the **Boston Housing dataset**, where the target variable is medv (median value of owner-occupied homes), and the features represent housing characteristics.

Experimental Setup:

- Model Complexity:
 - Complexity is defined by the number of features included in the model.
 - Additional random features are generated to simulate increasing complexity beyond the real features in the dataset.
- ► Train-Test Split:
 - ► The dataset is split into 70% training and 30% test data.
- Range of Complexity:
 - ▶ Models are trained with 1 to 200 features. Beyond the actual features in the dataset, random noise features are added incrementally.

- ▶ **Procedure**: For each level of complexity:
 - A subset of features (real and random) is used to train a linear regression model.
 - 2. Predictions are made on both the training and test datasets.
 - 3. Mean Squared Errors (MSE) are calculated for both datasets.

► Results:

- Training error decreases consistently as model complexity increases.
- Test error initially decreases but then increases, demonstrating the overfitting phenomenon.

▶ Visualization:

A line plot shows the relationship between model complexity (number of features) and mean squared error for both the training and test datasets.

Figure 1: Overfitting Phenomenon in Linear Regression

Highlights:

- The bias-variance tradeoff.
- ► The point where overfitting begins, indicated by the divergence of training and test errors.

Key Insights

- Increasing model complexity without consideration of the underlying data structure can lead to overfitting.
- ▶ Simple models that focus on the true underlying pattern often generalize better to unseen data.

Double Descent

- ▶ However, modern machine learning introduces a fascinating twist: **Double Descent**, where increasing model complexity can sometimes lead to improved generalization after an initial overfitting phase.
- ▶ Unlike traditional models where increasing complexity leads to overfitting, further increasing the complexity (e.g., using overparameterized neural networks) can eventually reduce the generalization error after an initial peak.
- ▶ This challenges the classical view of overfitting and highlights the complex relationship between model complexity and generalization in modern machine learning.

11/18

Key Insights

▶ While simple models often underfit and overly complex models overfit, the phenomenon of **Double Descent** shows that extremely complex models can sometimes achieve superior generalization, especially in overparameterized regimes.

Introducing Generalization Bounds

▶ What Are Generalization Bounds?

- Theoretical tools offering guarantees about a model's performance on unseen data.
- ► Relate:
 - Generalization Error: How well the model performs on unseen data.
 - **Empirical Risk**: Performance observed on training data.
 - ▶ Model Complexity: How expressive the model is.
 - Approximation Limits: What kinds of functions the model class can represent, as explained by Approximation Theory.

Purpose:

- Provide insights into the trade-offs between:
 - Model Accuracy: How well the model captures the data patterns.
 - ▶ Model Complexity: The expressiveness of the model and its ability to fit intricate patterns.
 - ► Training Data Size: How much data is required to achieve reliable generalization.
- Approximation Theory informs this by helping us understand the limits of a model class:
 - Simpler models may not be able to represent complex data (high approximation error).
 - Overly complex models risk overfitting, where generalization error increases despite better fit on training data.

Hoeffding's Inequality: A Starting Point

▶ What is Hoeffding's Inequality?

- A fundamental result in probability theory used to bound the difference between the **empirical risk** and the **generalization error** for a fixed hypothesis.
- Provides a way to measure how closely a model's performance on training data reflects its performance on unseen data.

Mathematical Formulation of Hoeffding's Inequality

► Hoeffding's Inequality:

$$P(|R(h) - R_{\mathsf{emp}}(h)| > \varepsilon) \leq 2 \exp(-2m\varepsilon^2)$$

- ightharpoonup R(h): Generalization error (true performance on unseen data).
- $ightharpoonup R_{emp}(h)$: Empirical risk (error on training data).
- $ightharpoonup \epsilon$: A small positive value (tolerance).
- m: Size of the dataset.

Key Insights

- ▶ The probability that the generalization error R(h) deviates significantly from the empirical risk $R_{\rm emp}(h)$ decreases exponentially with:
 - \blacktriangleright Larger dataset size m.
 - \triangleright Smaller tolerance ϵ .

Interpretation of Hoeffding's Inequality

▶ What Does It Mean?

- As the dataset size (m) increases, the empirical risk becomes a more reliable indicator of the generalization error.
- For a fixed hypothesis, we can be confident that the performance observed on training data is close to what can be expected on unseen data.

▶ Why is it Important?

Hoeffding's inequality gives a quantitative guarantee about the relationship between training performance and unseen data performance.

Limitations of Hoeffding's Inequality

- ► The Challenge of Multiple Hypotheses:
 - In practical machine learning, we often choose the best hypothesis from a large hypothesis class \mathcal{H} .
 - ► Hoeffding's inequality applies to a **single fixed hypothesis**, not to the case where multiple hypotheses are considered.
- ► Implication:
 - lt doesn't directly address:
 - ► The **selection bias** introduced by choosing the hypothesis that minimizes the empirical risk.
 - ► The increased risk of overfitting when evaluating multiple hypotheses.
- ► Motivation for Advanced Bounds:
 - Hoeffding's inequality provides a foundation but highlights the need for bounds that account for hypothesis complexity, such as **VC** dimension or Rademacher complexity.