Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de relación
- * Propiedades de relaciones
- * Representaciones de una relación

Relación binaria

Sean A y B dos conjuntos, una relación de A en B es un subconjunto de AxB

$$A \times B = \{ (1, -1), (2, -2), \dots (4, -3) \}$$

Sea $A=\{1,2,3,4\}$ y $B=\{-1,-2,-3\}$, se presentan a continuación algunas relaciones:

- $R_1 = \{(2,-1), (3,-2), (1,-1)\}$
- $R_2 = \{(1,-1), (2,-2), (3,-3)\}$
- $R_3 = \{(1,-2), (1,-3), (2,-2), (2,-3), (3,-2), (3,-3)\}$
- $R_4 = \{(3,-1)\}$

Sea $A=\{1,2,3,4\}$ y $B=\{-1,-2,-3\}$, se presentan a continuación algunas relaciones:

- $R_1 = \{(2,-1), (3,-2), (1,-1)\}$
- $R_2 = \{(1,-1), (2,-2), (3,-3)\}$
- $R_3 = \{(1,-2), (1,-3), (2,-2), (2,-3), (3,-2), (3,-3)\}$
- $R_4 = \{(3,-1)\}$

Cada relación es un subconjunto de $A \times B = \{(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3),(3,-1),(3,-2),(3,-3),(4,-1),(4,-2),(4,-3)\}$

Relación en A

Una relación definida en un conjunto A es una relación de A en A

| A×A| = |A|.|A| = 25 Relaciones de equivalencia

$$(A \times A) = \{(2,1)(1,2), \dots, (5,5)\}$$

Sea $A=\{1,2,3,4,5\}$ se presentan algunas relaciones de A en A:

•
$$R_1 = \{(4,2), (1,3), (1,5)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}$$

•
$$R_3 = \{(1,1), (3,1), (4,1), (4,2), (4,3)\}$$

•
$$R_4 = \{(2,1), (3,2), (4,3)\}$$

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\}$$

Sea
$$A = \{1,2,3,4\}$$
 muestre las siguientes relaciones: $A \in \mathbb{N}$
• $R_1 = \{(a,b)|a < b\} = \{(2,2)(1,3)(2,4)(2,3)(2,4)(3,4)\}$ $A \in \mathbb{Z}$
• $R_2 = \{(a,b)|a = b\}$ $\{(2,1)(2,2)(3,3)(4,4)\}$
• $R_3 = \{(a,b)|a = b + 1\}$ $\{(2,1)(3,2)(4,3)\}$
• $R_4 = \{(a,b)|a \text{ divide } b\}$ $\{(2,4)(2,2)(2,3)(2,3)(2,4)(2,2)(2,3)\}$
• $R_5 = \{(a,b)|a + b \le 3\}$ $\{(2,2)(2,2)(2,2)(2,2)\}$

Sea $A=\{1,2,3,4\}$ muestre las siguientes relaciones:

•
$$R_1 = \{(a,b)|a< b\}$$

•
$$R_2 = \{(a,b)|a=b\}$$

•
$$R_3 = \{(a,b) | a=b+1\}$$

•
$$R_4 = \{(a,b)|a \text{ divide }b\}$$

•
$$R_5 = \{(a,b)|a+b \le 3\}$$

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$$

Sea $A=\{1,2,3,4\}$ muestre las siguientes relaciones:

•
$$R_1 = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3), (4,4)\}$$

•
$$R_3 = \{(2,1), (3,2), (4,3)\}$$

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

•
$$R_5 = \{(1,1), (1,2), (2,1)\}$$

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$$

Sea $A=\{-2,-1,1,2,3,4\}$ muestre las siguientes relaciones:

•
$$R_1 = \{(a,b)|a>0 \land b<0\}$$
 $\{(1,-1)(1,-2)(2,-1)(2,-2), (3,-1)(3,-2)\}$
• $R_2 = \{(a,b)|a+b<2\}$
• $R_3 = \{(a,b)|a+b<2\}$
• $\{(a,b)|a+b<2\}$
• $\{(a,b)|a+b>2\}$
• $\{$

Sea $A=\{-2,-1,1,2,3,4\}$ muestre las siguientes relaciones:

•
$$R_1 = \{(1,-2),(1,-1),(2,-2),(2,-1),(3,-2),(3,-1),(4,-2),(4,-1)\}$$

•
$$R_2 = \{(-2,2),(2,-2),(-1,1),(1,-1)\}$$

•
$$R_3 = \{(-2,-2),(-2,-1),(-2,1),(-2,2),(-2,3),(-1,-2),(-1,-1),(-1,1),(-1,2),(-1,2),(1,-1),(2,-2),(2,-1),(3,-2)\}$$

Propiedades de las relaciones

- Reflexiva
- Simétrica
- Antisimétrica
- Transitiva

Reflexiva

• Una relación R sobre un conjunto A se llama reflexiva si $(a,a) \in R$ para cada elemento $a \in A$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son reflexivas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,3), (2,4), (4,4)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

•
$$R_3 = \{(2,1), (3,2), (4,3)\} \stackrel{\triangle}{=}$$

• $R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son reflexivas:

- $R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,3), (2,4), (4,4)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1), (3,2), (4,3)\}$
- $R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- $R_5 = \{(1,2)\}$
- R₁ y R₄ son reflexivas

Sea A={1,2,3} indique si las siguientes relaciones son reflexivas:

•
$$R_1 = \{(1,1), (1,2), (2,3), (2,2)\}$$
 N@

•
$$R_2 = \{(1,3), (3,1), (2,3), (2,1)\}$$

•
$$R_3 = \{(1,1), (1,3), (2,2), (2,1), (3,3)\}$$

Sea A={1,2,3} indique si las siguientes relaciones son reflexivas:

- $R_1 = \{(1,1), (1,2), (2,3), (2,2)\}$ no, falta (3,3)
- $R_2 = \{(1,3), (3,1), (2,3), (2,1)\}$ no, faltan (1,1),(2,2),(3,3)
- $R_3 = \{(1,1), (1,3), (2,2), (2,1), (3,3)\}$ si

• Sea A=Z+ indique si las relaciones son reflexivas:

¹⁾
$$R_1 = \{(a,b) | a \text{ divide b}\}$$
 S_{\pm} (a,b) $a = b$ $a = b$

2)
$$R_2 = \{(a,b) | a \le b\}$$
 $Q = \{(a,b) | a > b\}$ $Q = \{(a,b) | a > b\}$

Sea A=Z⁺ indique si las relaciones son reflexivas:

 $R_1=\{(a,b)|a \text{ divide b}\}$ si, ya que a|a

 $R_2=\{(a,b)|a\leq b\}$ si, ya que $a\leq a$

 $R_3 = \{(a,b)|a>b\}$ no, ya que no se cumple a>a

Simétrica

• Una relación R sobre un conjunto A se llama simétrica si cuando $(a,b) \in R$ entonces (b,a) también (9,9)

$$(3,7)=(7,3)$$

 $(1,1)=(1,2)$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son simétricas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,1), (2,4), (4,1), (4,2)\}$$
 § T
• $R_2 = \{(1,1), (2,2), (3,3)\}$ § T
• $R_3 = \{(2,1), (3,2), (1,2), (2,3), (4,3)\}$
• $R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3), (2,1)\}$ No

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son simétricas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,1), (2,4), (4,1), (4,2)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

•
$$R_3 = \{(2,1), (3,2), (1,2), (2,3), (4,3)\}$$

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3), (2,1)\}$$

•
$$R_5 = \{(1,2)\} \{(2,2)\}_{S+1}$$

• R₁ y R₂ son simétricas

Sea A={1,2,3} indique si las siguientes relaciones son simétricas:

•
$$R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$$

•
$$R_2 = \{(1,3), (1,2), (3,1), (2,3), (3,2)\} \rightarrow (2,3) \ \text{No}$$

•
$$R_3 = \{(1,2), (1,3), (2,2), (2,1)\}$$
 (3,1)

Sea A={1,2,3} indique si las siguientes relaciones son simétricas:

- $R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$ si
- $R_2 = \{(1,3), (1,2), (3,1), (2,3), (3,2)\}$ no, falta (2,1)
- $R_3 = \{(1,2), (1,3), (2,2), (2,1)\}$ no, falta (3,1)

• Sea A=Z+ indique si las relaciones son simétricas:

$$R_1=\{(a,b)|a \text{ divide b}\}\ (2,4) \text{ SI}\ (4,2) \text{ Wo}\ a|b$$
 $R_2=\{(a,b)|a \leq b\}\ (5,8) \text{ SI}\ (8,5) \text{ No}\ X$
 $R_3=\{(a,b)|a > b\}\ (8,1) \text{ SI}\ (2,8) \text{ No}\ X$

Sea A=Z⁺ indique si las relaciones son simétricas:

 $R_1 = \{(a,b) | a \text{ divide b} \} \text{ no}, 1 | 3 \text{ pero } 3 | 1$

 $R_2=\{(a,b)|a\leq b\}$ no, $2\leq 3$ pero no se cumple que $3\leq 2$

 $R_3=\{(a,b)|a>b\}$ no, 6>1 pero no se cumple que 1>6

Antisimétrica

- Una relación R sobre un conjunto A se llama antisimétrica si cuando (a,b) \in R entonces (b,a) no $9 \neq 6$
- No se consideran los casos (a,a) \times

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son antisimétricas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (2,4), (3,2), (3,4)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

•
$$R_3 = \{(2,1), (3,2), (1,2), (2,2), (4,4)\}$$

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3)\}$$

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son antisimétricas:

- $R_1 = \{(2,2), (1,3), (1,1), (1,4), (2,4), (3,2), (3,4)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1), (3,2), (1,2), (2,2), (4,4)\}$
- $R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3)\}$
- $R_5 = \{(1,2)\}$
- R₁, R₂, R₄ y R₅ son antisimétricas

Sea A={1,2,3} indique si las siguientes relaciones son antisimétricas:

•
$$R_1 = \{(1,1), (1,2), (1,3), (2,3)\}$$

•
$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1)\}$$

•
$$R_3 = \{(1,1), (2,2), (3,3)\}$$

Sea A={1,2,3} indique si las siguientes relaciones son antisimétricas:

- $R_1 = \{(1,1), (1,2), (1,3), (2,3)\}$ si
- $R_2 = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1)\}$ no, (1,2) y (2,1)
- $R_3 = \{(1,1), (2,2), (3,3)\}$ si

Sea A=Z⁺ indique si las relaciones son antisimétricas:

$$R_{1}=\{(a,b)|a \text{ divide b}\} \quad \begin{cases} b \\ q \end{cases} \qquad \begin{cases} 9 \neq b \end{cases} \quad \begin{cases} No(\frac{q}{b}) \\ R_{2}=\{(a,b)|a \leq b\} \end{cases} \qquad \begin{cases} (3,b) \\ (3,b) \end{cases} \qquad (3,b) \end{cases} \qquad \begin{cases} (3,b) \\ (3,b) \end{cases} \qquad (3,b) \end{cases} \qquad \begin{cases} (3,b) \\ (3,b) \end{cases} \qquad \begin{cases} (3,b) \\ (3,b) \end{cases} \qquad (3,b) \end{cases} \qquad \begin{cases} (3,b) \\ (3,b) \end{cases} \qquad (3,b) \end{cases} \qquad$$

Sea A=Z⁺ indique si las relaciones son antisimétricas:

$$R_1 = \{(a,b) | a \text{ divide b} \} si$$

$$R_2=\{(a,b)|a\leq b\}$$
 si

$$R_3 = \{(a,b)|a>b\}$$
 si

Transitiva

 Una relación R sobre un conjunto A se llama transitiva si cuando (a,b)∈R y (b,c)∈R entonces (a,c) también

$$(3,1)(1,3) \rightarrow (3,3)$$

Sea $A=\{1,2,3,4\}$ indique cuáles de las siguientes relaciones son transitivas: (9,6)(6,6) (9,6)

•
$$R_1 = \{(2,2), (1,3), (1,1), (3,1), (1,4), (1,2), (3,4), (3,2)\}$$

• $R_2 = \{(1,1), (2,2), (3,3)\}$

•
$$R_3 = \{(2,1),(3,2),(1,2),(2,2),(1,3),(2,3),(3,3),(3,1),(1,1)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son transitivas:

- $R_1 = \{(2,2), (1,3), (1,1), (3,1), (1,4), (1,2), (3,4), (3,2)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1),(3,2),(1,2),(2,2),(1,3),(2,3),(3,3),(3,1),(1,1)\}$
- R₂ y R₃

Sea $A=\{1,2,3,4\}$ indique si las siguientes relaciones son transitivas:

•
$$R_4 = \{(1,2), (2,3), (1,4), (3,3), (1,3), (4,1)\}$$

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique si las siguientes relaciones son transitivas:

- R_4 = {(1,2), (2,3), (1,4), (3,3), (1,3), (4,1)} **no**, están (1,4) y (4,1), por lo tanto, debería estar (1,1)
- $R_5 = \{(1,2)\}$ si

Sea $A=\{1,2,3,4\}$ y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$$

•
$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

•
$$R_3 = \{(2,4), (4,2)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	No	No	No	5
R ₂	SI	S:-	No	Sr
R ₃	No	SI	$N_{\rm O}$	Wo

Sea A={1,2,3,4} y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$$

•
$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

•
$$R_3 = \{(2,4), (4,2)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	70	NO	NO	SI
R ₂	SI	SI	NO	SI
R ₃	NO	SI	NO	NO

Sea $A=\{1,2,3,4\}$ y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_4 = \{(1,2), (2,3), (3,4)\}$$

•
$$R_5 = \{(1,1), (2,2), (3,3), (4,4)\}$$

•
$$R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₄	No	No	SÍ	No
R ₅	Si	Sr	Sī	S ₁ ~
R ₆	No	No	No	No

Sea $A=\{1,2,3,4\}$ y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_4 = \{(1,2), (2,3), (3,4)\}$$

•
$$R_5 = \{(1,1), (2,2), (3,3), (4,4)\}$$

•
$$R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₄	70	NO	SI	NO
R ₅	SI	SI	SI	SI
R ₆	NO	NO	NO	NO

Dadas las siguientes relaciones definidas sobre los $A \in \mathbb{Z}$ números enteros, complete la tabla de propiedades:

$$\int \cdot R_1 = \{(a,b)|a+b=0\}$$

$$\cdot R_2 = \{(a,b)|a\neq b\}$$

$$(9,6)(6,0)$$

$$(9,6)(6,0)$$

$$(9,6)(6,0)$$

$$(9,6)(9,0)$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R_1	No	Sí	No	No
R ₂	Mo	81	No	No

Dadas las siguientes relaciones definidas sobre los números enteros, complete la tabla de propiedades:

•
$$R_1 = \{(a,b)|a+b=0\}$$

•
$$R_2 = \{(a,b) | a \neq b\}$$

(Reflexiva	Simétrica	Antisimétrica	Transitiva
	R ₁	NO	SI	NO	NO
	R ₂	NO	SI	NO	NO

Representación de relaciones

- Matricial
- Grafos

• Sean $A=\{a_1,a_2,a_3\}$ y $B=\{b_1,b_2,b_3,b_4\}$, R se define de la siguiente manera:

$$R=\{(a_1,b_3),(a_2,b_2),(a_3,b_1),(a_3,b_3),(a_3,b_4)\}$$

• Sean $A=\{a_1,a_2,a_3\}$ y $B=\{b_1,b_2,b_3,b_4\}$, R se define de la siguiente manera:

$$R=\{(a_1,b_3),(a_2,b_2),(a_3,b_1),(a_3,b_3),(a_3,b_4)\}$$

· La representación matricial de R es:

• Sean $A=\{1,2,3\}$ y $B=\{1,2\}$, R se define de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(3,1)\}$$

Muestre la representación matricial de R

• Sean $A=\{1,2,3\}$ y $B=\{1,2\}$, R se define de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(3,1)\}$$

· La representación matricial de R es:

• Sea A={1,2,3,4} y R definida de A en A de la siguiente manera:

Muestre la representación matricial de R

 Sea A={1,2,3,4} y R definida de A en A de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(2,4),(3,1),(3,2),(3,4),(4,1)\}$$

· La representación matricial de R es:

 Muestre la relación definida sobre A={1,2,3} representada por la siguiente matriz

$$\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,3)\}$$

 Muestre la relación definida sobre A={1,2,3} representada por la siguiente matriz

• R={(1,1),(1,2),(2,1),(2,2),(2,3),(3,3)}

Considere la siguiente relación definida sobre A={1,2,3}

· Indique si la relación es reflexiva

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es reflexiva

No es reflexiva porque (3,3)∉R

Considere la siguiente relación definida sobre A={1,2,3,4}

Indique si la relación es reflexiva

Considere la siguiente relación definida sobre A={1,2,3,4}

· Indique si la relación es reflexiva

La relación es reflexiva

Considere la siguiente relación definida sobre A={1,2,3,4}

Indique si la relación es reflexiva

La relación es reflexiva

Una relación R es **reflexiva** si la matriz M_R tiene solo 1's en su diagonal

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

· Indique si la relación es simétrica

La relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es simétrica

La relación no es simétrica ya que (1,3)∈R y (3,1)∉R

 $\begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$ La relación es simétrica

 0
 0
 1

 0
 1
 1

 0
 1
 1

La relación no es simétrica

Compare la matriz con su transpuesta

```
      0
      0
      1

      0
      1
      1

      0
      1
      1

La relación no es simétrica
```

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{La relación es}$$
simétrica

$$\mathbf{M}^{\mathsf{T}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} \text{La relación no} \\ \text{es simétrica} \\ \end{array}$$

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{La relación es}$$
simétrica

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad M^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

La relación no es simétrica

Una relación R es simétrica si la matriz M es igual a M^T

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

· Indique si la relación es antisimétrica

Considere la siguiente relación definida sobre A={1,2,3}

· Indique si la relación es antisimétrica

La relación es antisimétrica

Considere la siguiente relación definida sobre A={1,2,3,4}

• Indique si la relación es antisimétrica

Considere la siguiente relación definida sobre A={1,2,3,4}

Indique si la relación es antisimétrica

La relación no es antisimétrica ya que (2,4)∈R y (4,2)∉R

Considere la siguiente relación definida sobre A={1,2,3,4}

• Indique si la relación es antisimétrica

La relación no es antisimétrica ya que (2,4)∈R y (4,2)∉R

Una relación R es **antisimétrica** si en la matriz M se cumple que si m_{ij}=1 entonces m_{ji}=0

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es transitiva

Considere la siguiente relación definida sobre A={1,2,3}

•
$$R=\{(1,2),(2,2),(2,3),(3,1)\}$$
, no es transitiva ya que: $(1,2)\in R$ y $(2,3)\in R$ pero $(1,3)\notin R$ (2,3) $\in R$ y $(3,1)\in R$ pero $(2,1)\notin R$

$$(3,1) \in R y (1,2) \in R \text{ pero } (3,2) \notin R$$

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es reflexiva, simétrica, antisimétrica o transitiva

SI

- · Es reflexiva ya que en su diagonal hay solo 1's
- No es simétrica ya que M≠M^T

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- No es antisimétrica ya que $(1,3) \in R$ y $(3,1) \in R$
- Es transitiva

> Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es reflexiva, simétrica, antisimétrica o transitiva

NO

- · Es reflexiva ya que en su diagonal hay solo 1's
- No es simétrica ya que M≠M^T

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- Es antisimétrica ya que si (a,b)∈R entonces (b,a)∉R
- No es transitiva. $(1,2)\in M$ y $(2,3)\in M$ pero $(1,3)\notin M$

Representación de relaciones

- Matricial
- Grafos

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

Nodos

→ Aristas

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

Nodos

→ Aristas

Cada elemento de A es un nodo Cada elemento de R es una arista

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

a •

• b

C

• d

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1)\}$ definida sobre A= $\{1,2,3\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1)\}$ definida sobre A= $\{1,2,3\}$

1 •

•2

2

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1)\}$ definida sobre A= $\{1,2,3\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,4)\}$ definida sobre A= $\{1,2,3,4\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,4)\}$ definida sobre A= $\{1,2,3,4\}$

•

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,4)\}$ definida sobre $A=\{1,2,3,4\}$

Muestre la relación que representa el siguiente grafo:

Muestre la relación que representa el siguiente grafo:

$$R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)\}$$

Indique cuáles de las siguientes relaciones son reflexivas:

Indique cuáles de las siguientes relaciones son reflexivas:

Una relación es **reflexiva** si cada nodo tiene una arista que sale y llega al mismo nodo

Indique cuáles de las siguientes relaciones son reflexivas:

Las relaciones representadas en b y c son reflexivas

Indique cuáles de las siguientes relaciones son simétricas:

Indique cuáles de las siguientes relaciones son simétricas:

Una relación es simétrica si por cada arista del nodo i al j, hay otra de j a i

Indique cuáles de las siguientes relaciones son simétricas:

La relación representada en c es simétrica

Indique cuáles de las siguientes relaciones son antisimétricas:

Indique cuáles de las siguientes relaciones son antisimétricas:

Indique cuáles de las siguientes relaciones son antisimétricas:

La relación representada en b es antisimétrica

Indique cuáles de las siguientes relaciones son transitivas:

Indique cuáles de las siguientes relaciones son transitivas:

Una relación es transitiva si cuando hay una arista del nodo i al j, otra de j a k, entonces hay una arista de i a k

Indique cuáles de las siguientes relaciones son transitivas:

Las relaciones representadas en a y b son transitivas

Considere la siguiente relación definida sobre A={1,2,3,4}

Complete la siguiente tabla de propiedades:

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	8I	MO	No	No

· Represéntela en forma matricial

Considere la siguiente relación definida sobre A={1,2,3,4}

Complete la siguiente tabla de propiedades:

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	SI	NO	NO	NO

Represéntela en forma matricial

Considere la siguiente relación definida sobre A={1,2,3,4}

Representación matricial:

1	1	1	0
1	1	0	0
1	0	1	1
0	0	0	1

>> Considere la siguiente relación definida sobre A={1,2,3,4}

Complete la siguiente tabla de propiedades:

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	No	No	SŁ	SI

· Represéntela en forma matricial