Homework 4 Report

學號:r06521605

系級:土木所電輔組碩一

姓名:許舜翔

A. PCA of colored faces

A.1.

以下為所有臉的圖片平均:

A.2. 以下為前四大 eigenvalues 對應之 eigenvectors 所畫出的圖像:

A.3. 以下為隨機挑選四張照片,並用前四大 eigenfaces 進行 reconstruction 的結果:

A.4. 以下依序為前四大的 eigenfaces 所佔的比重:

```
1 | ratio: 4.1%
2 | ratio: 2.9%
3 | ratio: 2.4%
4 | ratio: 2.2%
```

B. Image clustering

B.1.

降維方法	分類方式	Public score	Private score
Pca (取前五個 eigenvector 進行降 維)	Kmeans (n_cluster = 7)	0.93348	0.93332
Auto encoder (sample code)	Kmeans (n_cluster = 2)	0.97406	0.96862

Auto encoder (sample code 的架構, lr = 1e-4, epochs = 60)	Kmeans _cluster = 2)	0.69336	0.69275
--	-------------------------	---------	---------

以 row2 & row3 可以看出 learning rate 的值設定太小導致 training loss 還未下降到最低點。

以 row1 & row2 推論說 autoencoder (784->32) 比起 pca 前五個 eigenvector 所取得的 feature 要來得更佳,以下為兩種方法對同一張圖 reconstruct 的結果:

B.2. 以下為透過 kmeans 及 autoencoder 的方式預測出的結果,並以 TSNE 投影到二維平面上:

B.3. 以下為前 5000 筆跟後 5000 筆分布的結果,同樣是利用 TSNE 的方

法。可以發現給前題自行預測的結果,在邊界上會有一些混淆的部分,但也僅是少部分,與 Kaggle 上預測約 0.97 的精度相符。

C. Ensemble learning

C.1.

本題我選用 HW2 來實作 ensemble 的方法·當初模型 training 的 history 圖表如下:

可以發現 training 的準確率皆高於 validation 的準確率,故推論有 overfitting 的現象,故之後結合不同 model 結果時,選擇用 bagging 中最後將各模型結果取平均,在判斷屬於二元分類中的哪一類,這次使用了三種不同架構的模型(包含當初上傳的模型),分述如下:

1. Model_1 (當初的模型 · training histroy 如上)

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 39)	1560
dense_2 (Dense)	(None, 1)	40
Total params: 1,600 Trainable params: 1,600 Non-trainable params: 0		

2. Model_2 (原先 DNN 結構多加一層)

Layer (type)	Output	Shape	 Param #
dense_3 (Dense)	(None,	39)	1560
dense_4 (Dense)	(None,	16)	640
dense_5 (Dense)	(None,	1)	17
Total params: 2,217 Trainable params: 2,217 Non-trainable params: 0			

3. Model_3 (多加一層 BatchNormlization)

```
Layer (type) Output Shape Param #

dense_6 (Dense) (None, 39) 1560

batch_normalization_1 (Batch (None, 39) 156

dense_7 (Dense) (None, 1) 40

Total params: 1,756
Trainable params: 1,678
Non-trainable params: 78
```


最後 public/private 結果:

・ 原本的 0.85933/0.85738

• Ensemble 後的 0.86031/0.85996

有些微的精度提升,並沒有顯著的成長,推測應為模型間結構類似,故透過 average output 也較難有效地解決 overfitting 的問題。