## Teoría de Autómatas y Lenguajes Formales

## Prueba de Evaluación de Lenguajes y Gramáticas

## **Autores:**

Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber







## UNIVERSIDAD CARLOS III DE MADRID TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. GRADO EN INGENIERÍA INFORMÁTICA. EVALUAC. CONTINUA

Tiempo de examen: 45 minutos

1. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla adecuada.

Calificación: Respuesta correcta: +0,3. Respuesta incorrecta: -0.3. Sin respuesta: 0.

Calificación máxima: 3 ptos. Calificación mínima: 0 ptos.

|    |                                                                                                                                                        | Verdadero | Falso |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| 1. | La regla de producción Ca::=aaC, donde a $\in \Sigma_T$ y $C \in \Sigma_N$ , pertenece a una gramática de tipo 2 en la jerarquía de Chomsky.           |           |       |
| 2. | $S:=\lambda$ es una regla en FNC                                                                                                                       |           |       |
| 3. | Si el axioma se sustituye por un símbolo no generativo, el lenguaje generado por la gramática es el lenguaje vacío.                                    |           |       |
| 4. | Los alfabetos de terminales y de no terminales de una gramática son disjuntos.                                                                         |           |       |
| 5. | En una forma sentencial sólo pueden aparecer símbolos no terminales.                                                                                   |           |       |
| 6. | S→A→B es una derivación de longitud 3.                                                                                                                 |           |       |
| 7. | Si una sentencia puede obtenerse en una G por medio de 2 o más árboles de derivación diferentes, la sentencia es ambigua.                              |           |       |
| 8. | Es posible que una Gramática tenga reglas superfluas que contribuyan a la formación de palabras.                                                       |           |       |
| 9. | Si no es posible encontrar ninguna gramática no ambigua<br>que genere un determinado lenguaje, entonces decimos<br>que éste es inherentemente ambiguo. |           |       |
| 10 | D 1 1 (//                                                                                                                                              |           |       |
| 10 | . Dada la gramática:                                                                                                                                   |           |       |





| G=( $\Sigma_T$ , $\Sigma_N$ , S, P), tal que $\Sigma_T$ = {1,0} $\Sigma_N$ = {S,B},      |  |
|------------------------------------------------------------------------------------------|--|
| P={ S::=1B, S::=1, B::=0S},                                                              |  |
| se puede transformar en la gramática equivalente                                         |  |
| G1 =( $\Sigma_T$ , $\Sigma_N$ , S, P1), tal que $\Sigma_T$ = {1,0} $\Sigma_N$ = {S,B,C}, |  |
| P1={S::=1B, S::=1, B::=0C, C::=1B, C::=1}                                                |  |

2. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla adecuada. Calificación: Respuesta correcta: +0,3. Respuesta incorrecta: -0.3.

Sin respuesta: 0. Calificación máxima: 3 ptos. Calificación mínima: 0 ptos.

|                                                 |                                                                                                                                                                                                                                                                                                                                       | Verdadero | Falso |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| 1.                                              | El conjunto de reglas A::=BC, B::= $\lambda$ , C::= $\lambda$ , donde A,B,C $\in \Sigma_N$ y Axioma=A, puede transformarse en el conjunto equivalente A::=B, A::=C, A::=BC                                                                                                                                                            |           |       |
| 2.                                              | La gramática cuyas reglas de producción son P={A::=BC  B a, B::=b A, C::=c} es ambigua.                                                                                                                                                                                                                                               |           |       |
| 3.                                              | A::=A es una regla de redenominación.                                                                                                                                                                                                                                                                                                 |           |       |
| 4.                                              | Dos gramáticas son equivalentes si generan el mismo lenguaje.                                                                                                                                                                                                                                                                         |           |       |
| 5.                                              | A::=aBC es una regla en FNG.                                                                                                                                                                                                                                                                                                          |           |       |
| 6.                                              | Todo lenguaje generado por una G3 puede ser generado por una G2 equivalente.                                                                                                                                                                                                                                                          |           |       |
| 7.                                              | A::= $\lambda$ es una regla No generativa si y solo si A no es el axioma de la gramática.                                                                                                                                                                                                                                             |           |       |
| 8.                                              | Toda Gramática de Tipo 1 es también una Gramática de Tipo 2.                                                                                                                                                                                                                                                                          |           |       |
| 9.                                              | Si queremos eliminar la recursividad a izquierdas de la siguiente gramática: $G = (\{a,b\},\{S\},S,P) \text{ donde } P = \{S ::= aSb \mid SS \mid \lambda\}, \\ \text{podemos obtener la siguiente gramática equivalente:} \\ G = (\{a,b\},\{S,X\},S,P) \text{ donde } P = \{S ::= aSb \mid aSbX \mid \lambda, \\ X ::= SX \mid S \}$ |           |       |
| 10. Sólo las gramáticas de tipo 2 son ambiguas. |                                                                                                                                                                                                                                                                                                                                       |           |       |





3. Obtener la gramática G' en FNC equivalente a G, explicando brevemente las transformaciones en la gramática, paso a paso:

 $G=(\{a,b,d\}, \{A,B,C,D,E,F,G,H\}, A,P)$   $P = \{A ::= aaDB \mid G \mid \lambda \mid aC$   $B ::= Bb \mid b$   $C ::= a \mid \lambda$   $D ::= b \mid D$  E ::= E  $F ::= Bb \mid D \mid \lambda$   $G ::= Ga \mid dHb$   $H ::= bbG\}$ 

<u>Recordad:</u> Antes de pasar a FNC es necesario *bien formar* G. Para ello, se deberá eliminar: 1. Reglas Innecesarias, 2. Símbolos inaccesibles, 3. Reglas superfluas y símbolos no generativos, 4. Reglas no generativas y 5. Reglas de Redenominación. Calificación máxima: <u>4 puntos</u>.



