શાંકવો

Proof is an idol before whom the pure mathematician tortures himself.

- Arthur Stanely Eddington

In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation adds a new story to the old structure.

- Hermann Hankel

8.1 પ્રાસ્તાવિક

આ પ્રકરણમાં આપણે કેટલાક વિશેષ વક્કો જેવા કે વર્તુળ, ઉપવલય, પરવલય, અતિવલયનો અભ્યાસ કરીશું. આ વક્કો દ્વિશંકુના સમતલ સાથેના છેદ તરીકે મેળવી શકાય છે. આ વક્કો શાંકવો (Conics) તરીકે ઓળખાય છે. પરવલય, અતિવલય વગેરે નામ એપોલોનીયસે (Apollonius) આપ્યા હતા. તે ખરેખર આવા વક્કોના અભ્યાસનો પ્રશ્નેતા ગણાય છે. આ વક્કોનો ભૌતિકશાસ્ત્રમાં ધ્વનિ, પ્રકાશ વગેરે ઘણા ક્ષેત્રોમાં બહોળો ઉપયોગ થાય છે. સોળમી સદીમાં ગેલેલીયો (Galileo)એ દર્શાવ્યું કે મુક્ત રીતે પ્રક્ષિપ્ત પદાર્થનો પથ પરવલય હોય છે. આ હકીકતનો ઉપયોગ હવે તોપખાનાની રચનામાં થાય છે. સત્તરમી સદીમાં વ્યાપક અવલોકનો બાદ કેપ્લરે ગ્રહોની ગતિના નિયમ આપ્યા. તે મુજબ પૃથ્વી અને અન્ય ગ્રહોની સૂર્ય કરતે કંશા (Orbit) ઉપવલય આકારની હોય છે. ત્યારબાદ ન્યૂટને (Newton) કેપ્લર (Keplar)ના નિયમોની વ્યાપક પરિસ્થિતિમાં સૈદ્ધાંતિક સાબિતી આપી.

Apollonius (262 BC - 190 BC)

આધુનિક સમયમાં ટેલીવિઝન તેમજ સંદેશાવ્યવહારમાં વપરાતા ડિશ એન્ટેનાની રચના શાંકવોના ગુણધર્મો પરથી કરવામાં આવે છે. આમ શાંકવોનો અભ્યાસ અતિ મહત્ત્વનો છે; અને તેનો ઉપયોગ યંત્રશાસ્ત્ર, અવકાશ વિજ્ઞાન, સંદેશા વ્યવહાર, પ્રકાશશાસ્ત્ર વગેરેમાં બહોળા પ્રમાણમાં થાય છે. આ પ્રકરણમાં આપણે આ વક્રોનાં સમીકરણ અને તેમના ગુણધર્મોનો અભ્યાસ કરીશું. 8.2 વર્તળ

આપશે જાણીએ છીએ કે ચોક્કસ બિંદુથી સમાન અંતરે આવેલા સમતલનાં તમામ બિંદુઓના ગણને વર્તુળ કહેવાય છે. ચોક્કસ બિંદુને તે વર્તુળનું કેન્દ્ર (Centre) અને ચોક્કસ અંતરને વર્તુળની ત્રિજ્યા (Radius) કહેવાય છે.

160

(h, k) કેન્દ્ર અને r ત્રિજ્યા વાળા વર્તુળનું કાર્તેઝીય સમીકરણ :

ધારો કે બિંદુ C(h, k) એક વર્તુળનું કેન્દ્ર છે અને r તેની ત્રિજ્યા છે અને P(x, y) વર્તુળ પરનું કોઈ પણ બિંદુ છે. હવે, વર્તુળની ત્રિજ્યા r આપેલ હોવાથી,

$$CP = r \iff CP^2 = r^2$$
$$\iff (x - h)^2 + (y - k)^2 = r^2$$

આમ, $\mathrm{C}(h,k)$ કેન્દ્ર અને r ત્રિજ્યાવાળા વર્તુળનું કાર્તેઝીય સમીકરણ

$$(x-h)^2 + (y-k)^2 = r^2$$

વર્તુળના આ સમીકરણને વર્તુળનું કેન્દ્ર-ત્રિજ્યા સ્વરૂપનું સમીકરણ પણ કહે છે.

8.3 વર્તુળના સમીકરણનું પ્રમાણિત સ્વરૂપ

વર્તુળના સમીકરણનું પ્રમાણિત સ્વરૂપ (Standard form) વર્તુળનું કેન્દ્ર ઊગમબિંદુ લઈ મેળવવામાં આવે છે. આમ, વર્તુળના પ્રમાણિત સમીકરણમાં કેન્દ્ર ઊગમબિંદુ તેમજ ત્રિજ્યા r લેતાં, h=0, k=0 મુકવાથી વર્તુળનું સમીકરણ $x^2+y^2=r^2$ મળે છે. વર્તુળના આ સમીકરણને **વર્તુળનું પ્રમાણિત સમીકરણ** કહે છે.

વધુમાં, જો r=1 હોય તો વર્તુળના સમીકરણનું પ્રમાણિત સ્વરૂપ $x^2+y^2=1$ થાય છે. આને એકમ વર્તુળનું સમીકરણ કહે છે.

ઉદાહરણ 1:(1,-1) કેન્દ્ર અને 2 ત્રિજ્યાવાળા વર્તુળનું સમીકરણ મેળવો.

😘 : અહીં, વર્તુળનું કેન્દ્ર (1, -1) અને ત્રિજ્યા 2 હોવાથી વર્તુળનું સમીકરણ

$$(x-1)^2 + (y+1)^2 = 2^2 = 4$$

:. $x^2 + y^2 - 2x + 2y - 2 = 0$ એ માંગેલ વર્તુળનું સમીકરણ છે.

ઉદાહરણ 2 : બિંદુ ($2 \sin \alpha$, $2 \cos \alpha$); $\alpha \in \mathbb{R}$ વર્તુળ $x^2 + y^2 = 4$ ઉપર આવેલું છે તેમ દર્શાવો.

ઉકેલ: જો કોઈ બિંદુના યામ વર્તુળના સમીકરણનું સમાધાન કરે તો તે બિંદુ વર્તુળ ઉપર આવેલું હોય છે. આપેલ સમીકરણમાં $x=2\sin\alpha$, $y=2\cos\alpha$ મૂકતાં,

ડા.બા. = $(2 \sin \alpha)^2 + (2 \cos \alpha)^2 = 4 \sin^2 \alpha + 4 \cos^2 \alpha = 4 =$ જ.બા.

 \therefore (2 $sin\alpha$, 2 $cos\alpha$) એ $\alpha \in \mathbb{R}$ માટે વર્તુળ $x^2 + y^2 = 4$ પર છે.

ઉદાહરણ 3: જે વર્તુળનું કેન્દ્ર રેખાઓ x+y=1 અને 4x+3y=0નું છેદબિંદુ હોય અને જેની ત્રિજ્યા 5 હોય તેવા વર્તુળનું સમીકરણ મેળવો.

ઉકેલ : રેખાઓનું છેદબિંદુ, બંને રેખાઓ ઉપર હોય. આમ, તેના યામ સમીકરણો x+y=1 અને 4x+3y=0નું સમાધાન કરે. આ સમીકરણો ઉકેલતાં, વર્તુળનું કેન્દ્ર (-3,4) મળે.

વર્તુળની ત્રિજ્યા 5 હોવાથી માંગેલ વર્તુળનું સમીકરણ,

 $(x+3)^2+(y-4)^2=5^2$, એટલે કે $x^2+y^2+6x-8y=0$ એ માંગેલ વર્તુળનું સમીકરણ છે.

નોંધ : જો કેન્દ્ર બે રેખાઓનું છેદબિંદુ હોય, તો આ રેખાઓ વર્તુળના વ્યાસને સમાવે છે.

ઉદાહરણ 4: જો વર્તુળ $x^2 + y^2 - 2x + 448y + k = 0$ ઊગમબિંદુમાંથી પસાર થતું હોય તો k શોધો.

ઉકેલ: વર્તુળ ઊગમબિંદુ (0, 0) માંથી પસાર થતું હોવાથી (0, 0) વર્તુળના સમીકરણનું સમાધાન કરે. આથી, 0+0-0+0+k=0. આમ, k=0.

નોંધ : જો વર્તુળના સમીકરણમાં અચળ પદ શૂન્ય હોય તો અને તો જ વર્તુળ ઊગમબિંદુમાંથી પસાર થાય.

ઉદાહરણ 5 : સંકર સંખ્યા z=x+iy અને $z_1=1-2i$ માટે $\mid z-z_1\mid=5$ થાય તેવી સંકર સંખ્યાઓ zના ગણનું સમીકરણ મેળવો.

ઉકેલ : આપેલું છે કે,
$$|z - z_1| = 5$$

$$|z-z_1|^2=5^2$$

$$|(x + iy) - (1 - 2i)|^2 = 25$$

$$|(x-1) + i(y+2)|^2 = 25$$

$$(x-1)^2 + (y+2)^2 = 25$$
 (i)

$$x^2 + y^2 - 2x + 4y - 20 = 0$$

સમીકરણ (i) ઉપરથી સ્પષ્ટ છે કે આ ગણ (1, -2) કેન્દ્ર અને 5 ત્રિજ્યાવાળું વર્તુળ છે.

આકૃતિ 8.2

નોંધ : વ્યાપક રીતે, $|z-z_1|=a$, $a\in \mathbb{R}^+$ હોય તેવી તમામ સંકર સંખ્યાઓનો ગણ z_1 કેન્દ્ર અને a ત્રિજયાવાળું વર્તુળ દર્શાવે છે. આપેલ વર્તુળનો **આર્ગન્ડ (Argand)** આલેખ આકૃતિ 8.2 માં દર્શાવ્યો છે. જો આર્ગન્ડ સમતલમાં C અને P અનુક્રમે z_1 અને z દર્શાવે અને $CP=|z-z_1|=a$ હોય, તો બિંદુ P એ C કેન્દ્ર અને a ત્રિજયાવાળા વર્તુળ પર છે.

ઉદાહરણ 6: X-અક્ષને સ્પર્શતાં a ત્રિજ્યાવાળા વર્તુળનાં સમીકરણ મેળવો.

ઉકેલ : વર્તુળની ત્રિજ્યા a છે. કેન્દ્ર C ના યામ $(h, \pm a)$ અથવા $(-h, \pm a)$ થાય. (આકૃતિ 8.3).

આવાં વર્તુળોનાં સમીકરણ

$$(x - h)^2 + (y \pm a)^2 = a^2$$

અથવા

$$(x + h)^2 + (y \pm a)^2 = a^2$$

$$x^2 + y^2 - 2hx \pm 2ay + h^2 = 0$$

અથવા

$$x^2 + y^2 + 2hx \pm 2ay + h^2 = 0$$

આમ, આ ચાર સમીકરણો માંગેલ વર્તુળો દર્શાવે છે.

નોંધ: જો a ત્રિજ્યાવાળું વર્તુળ Y-અક્ષને સ્પર્શ તો તેનું કેન્દ્ર $(\pm a, k)$ અથવા $(\pm a, -k)$ થાય. (આકૃતિ 8.4) આવા વર્તુળોનાં સમીકરણ નીચે મુજબ થાય :

$$x^2 + y^2 \pm 2ax + 2ky + k^2 = 0$$

અથવા

$$x^2 + y^2 \pm 2ax - 2ky + k^2 = 0$$

ઉદાહરણ 7 : બંને અક્ષોને સ્પર્શતા અને પ્રથમ ચરણમાં આવેલ તથા *a* ત્રિજ્યાવાળા વર્તુળનું સમીકરણ મેળવો.

X' (-h, a) (h, a) (h, -a) Y' (h, -a) X

 $rac{6}{3}$ લ : બંને અક્ષોને સ્પર્શતા પ્રથમ ચરણમાં આવેલ વર્તુળનું કેન્દ્ર $\mathbf{C}(a,\ a)$ થાય. (આકૃતિ 8.5) અને ત્રિજ્યા a છે.

તેનું સમીકરણ $(x - a)^2 + (y - a)^2 = a^2$ છે.

 $x^2 + y^2 - 2ax - 2ay + a^2 = 0$ માંગેલ વર્તુળનું સમીકરણ છે.

 $\widehat{\mathbf{dit}}$: અન્ય ચરણમાં આવેલા બંને અક્ષોને સ્પર્શતા અને a ત્રિજ્યાવાળા વર્તુળના કેન્દ્રના યામ નીચે કોષ્ટકમાં દર્શાવ્યા છે. (સાથે આકૃતિ 8.5 પણ જુઓ.)

ચરણ	કેન્દ્ર
Т	(0 0)

ચરણ	केन्द्र स	
I	(a, a)	
II	(-a, a)	
Ш	(-a, -a)	
IV	(a, -a)	

स्वाध्याय 8.1

નીચેના કોષ્ટકમાં આપેલ કેન્દ્ર અને ત્રિજયાવાળા વર્તુળોનાં સમીકરણ મેળવો :

ક્રમ	કેન્દ્ર	ત્રિજ્યા
1.	(-2, 3)	5
2.	(-1, 1)	$\sqrt{2}$
3.	(−4 cosα, 4 sinα)	5
4.	$(-\sqrt{2},-\sqrt{5})$	√ 5
5.	(1, 0)	1

- 2. જેના વ્યાસને સમાવતી રેખાઓ x-y=5, 2x+y=4 હોય અને જેની ત્રિજ્યા 5 હોય તેવા વર્તુળનું સમીકરણ મેળવો.
- 3. (-2, -5) કેન્દ્રવાળા Y-અક્ષને સ્પર્શતા વર્તૂળનું સમીકરણ મેળવો.
- બંને અક્ષોને સ્પર્શતા 3 ત્રિજયાવાળા તૃતીય ચરણમાં આવેલ વર્તુળનું સમીકરણ મેળવો.
- ઉગમ બિંદુમાંથી પસાર થતું, $\sqrt{5}$ ત્રિજ્યાવાળું અને જેનું કેન્દ્ર $\overset{\longrightarrow}{\mathrm{OX}}$ પર હોય તેવા વર્તુળનું સમીકરણ મેળવો.

8.4 વર્તુળનું વ્યાપક સમીકરણ

ઉપર ચર્ચા કર્યા મુજબ પ્રત્યેક વર્તુળને અનન્ય કેન્દ્ર અને ત્રિજ્યા હોય છે. ધારો કે, એક વર્તુળનું કેન્દ્ર $(h,\,k)$ અને ત્રિજ્યા r છે. આથી વર્તુળનું સમીકરણ $(x-h)^2+(y-k)^2=r^2$ અથવા $x^2+y^2-2hx-2ky+h^2+k^2-r^2=0$ હોય. અહીં h અને k કોઈ પણ વાસ્તવિક સંખ્યાઓ છે અને r ધન સંખ્યા છે. આ સમીકરણ ઉપરથી નીચેનાં તારણો મેળવી શકાય :

- (1) કોઈ પણ વર્તુળનું સમીકરણ દ્વિચલ-દ્વિઘાત સમીકરણ હોય છે.
- (2) x^2 અને y^2 ના સહગુણકો શૂન્યેતર અને સમાન હોય છે. (આપણે આ સહગુણકો 1 લઈશું.)
- (3) સમીકરણમાં *xy*-પદ નથી એટલે કે *xy*-પદનો સહગુણક શૂન્ય છે.

આમ, વર્તુળના સમીકરણનું વ્યાપક સ્વરૂપ,

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 લઈશું.

હવે, જો વર્તુળનું સમીકરણ ઉપર દર્શાવ્યા પ્રમાણે આપ્યું હોય તો તેનાં કેન્દ્ર અને ત્રિજ્યા નક્કી કરવા જોઈએ. આ માટે પદોનું પુનર્ગઠન કરી સમીકરણને કેન્દ્ર-ત્રિજ્યા સ્વરૂપમાં ગોઠવવું પડે. આમ,

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

$$\Leftrightarrow x^2 + 2gx + g^2 + v^2 + 2fv + f^2 - g^2 - f^2 + c = 0$$

$$\iff$$
 $(x+g)^2 + (y+f)^2 = g^2 + f^2 - c$

જો $g^2 + f^2 - c > 0$, હોય તો ઉપરોક્ત સમીકરણને,

$$(x+g)^2+(y+f)^2=\left(\sqrt{g^2+f^2-c}\right)^2$$
 તરીકે લખી શકાય.

ઉપરોક્ત સમીકરણ પરથી કહી શકાય કે બિંદુ P(x, y) નું બિંદુ C(-g, -f) થી અંતર $\sqrt{g^2 + f^2 - c}$ છે.

જો અચળાંકો g, f અને c માટે $g^2+f^2-c>0$ હોય તો સમીકરણ (i) વર્તુળ દર્શાવે છે; અને તે સંજોગોમાં વર્તુળનું કેન્દ્ર C(-g,-f) છે અને ત્રિજ્યા $\sqrt{g^2+f^2-c}$ છે. સમીકરણ (i)ને વર્તુળનું વ્યાપક સમીકરણ કહે છે.

નોંધ : જો $g^2 + f^2 - c = 0$, હોય તો ફક્ત (-g, -f) સમીકરણ (i)નું સમાધાન કરે છે.

ઉદાહરણ 8 : સમીકરણ $x^2 + y^2 + 6x - 8y + 20 = 0$ વર્તુળ દર્શાવે છે ? જો હા, તો તેનું કેન્દ્ર અને ત્રિજ્યા શોધો.

ઉકેલ : આપેલ સમીકરણને વર્તુળના વ્યાપક સમીકરણ સાથે સરખાવતાં, g=3, f=-4 અને c=20. આમ, $g^2+f^2-c=3^2+(-4)^2-20=5>0$.

આમ, આપેલ સમીકરણ વર્તુળ દર્શાવે છે.

વર્તુળનું કેન્દ્ર
$$(-g, -f) = (-3, 4)$$
 અને ત્રિજયા $\sqrt{g^2 + f^2 - c} = \sqrt{5}$

બીજી રીત:

આપેલ સમીકરણને વર્ગોના સરવાળા તરીકે દર્શાવવા પદોનું પુનર્ગઠન કરતાં

$$x^2 + v^2 + 6x - 8v + 20 = 0$$

$$x^2 + 6x + 9 + y^2 - 8y + 16 - 5 = 0$$

$$(x + 3)^2 + (y - 4)^2 = 5$$

આ C(-3, 4) કેન્દ્ર અને $r = \sqrt{5}$ ત્રિજયાવાળા વર્તુળનું સમીકરણ છે.

ઉદાહરણ 9 : નીચેનાં પૈકી કયાં સમીકરણો વર્તુળ દર્શાવે છે તે નક્કી કરો. જે સમીકરણ વર્તુળ દર્શાવે તેનું કેન્દ્ર અને ત્રિજયા શોધો.

(1)
$$x^2 + 2y^2 - 2x + 6y - 8 = 0$$

(2)
$$2x^2 + 2y^2 - 2x + 6y - 8 = 0$$

(3)
$$x^2 + y^2 - 2\sqrt{2}x + y - \frac{91}{4} = 0$$

(4)
$$x^2 + y^2 - 2x \cos \beta + 2y \sin \beta = 0$$
; $\beta \in \mathbb{R}$

(5)
$$2x^2 + 2y^2 - 2xy + 6y + 22x - 1008 = 0$$

(6)
$$x^2 + y^2 - 4x - 6y + 13 = 0$$

6કેલ : (1) આ સમીકરણમાં x^2 અને y^2 ના સહગુણકો સમાન નથી માટે તે વર્તુળનું સમીકરણ નથી.

- (2) આપેલ સમીકરણને 2 વડે ભાગતાં $x^2+y^2-x+3y-4=0$ મળે. તે ઉપરથી $g=-\frac{1}{2}, f=\frac{3}{2}$ અને c=-4 મળે. હવે, $g^2+f^2-c=\left(-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2-(-4)=\frac{13}{2}>0$, માટે આ સમીકરણ $\left(\frac{1}{2},-\frac{3}{2}\right)$ કેન્દ્ર અને $\sqrt{\frac{13}{2}}$ ત્રિજ્યાવાળું વર્તુળ દર્શાવે છે.
- (3) અહીં, $g=-\sqrt{2}$, $f=\frac{1}{2}$ અને $c=-\frac{91}{4}$. હવે, $g^2+f^2-c=2+\frac{1}{4}+\frac{91}{4}=25>0$ માટે સમીકરણ $\left(\sqrt{2}\,,-\frac{1}{2}\right)$ કેન્દ્ર અને 5 ત્રિજ્યાવાળું વર્તુળ દર્શાવે છે.
- (4) અહીં, $g=-cos\beta$, $f=sin\beta$ અને c=0. હવે, $g^2+f^2-c=cos^2\beta+sin^2\beta=1>0.$ માટે, આ સમીકરણ $(cos\beta,-sin\beta)$ કેન્દ્ર અને 1 ત્રિજયાવાળું વર્તુળ દર્શાવે છે.
 - (5) આ સમીકરણમાં xy વાળું પદ હોવાથી તે વર્તૂળનું સમીકરણ નથી.
- (6) અહીં, g=-2, f=-3 અને c=13. હવે, $g^2+f^2-c=(-2)^2+(-3)^2-13=0$. માટે આપેલ સમીકરણ વર્તુળનું સમીકરણ નથી.

નોંધ : ઉપરનાં ઉદાહરણમાં સમીકરણો (2), (3), (4) અને (6)માં પદાવિલને પૂર્ણવર્ગોના સરવાળા તરીકે દર્શાવવાની પદ્ધતિનો ઉપયોગ કરી શકાય. વળી c<0 હોય, તો હંમેશાં $g^2+f^2-c>0$ હોય જ. આમ, c<0 હોય તો $x^2+y^2+2gx+2fy+c=0$ હંમેશાં વર્તુળ દર્શાવે જ.

ઉદાહરણ 10 : રેખા x + 3y - 1 = 0 ઉપર જેનું કેન્દ્ર હોય તથા જે (1, 1) અને (-5, 1) માંથી પસાર થતું હોય તેવા વર્તુળનું સમીકરણ મેળવો.

ઉકેલ : ધારો કે વર્તુળનું સમીકરણ
$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 છે.

આપેલ શરતોની મદદથી અચળાંકો g, f અને c નાં મૂલ્યો મેળવવા જોઈએ. સમીકરણ (i) માં આપેલ વર્તુળનું કેન્દ્ર (-g, -f) છે. આપેલ શરત મુજબ વર્તુળનું કેન્દ્ર રેખા x+3y-1=0 ઉપર આવેલ છે. આથી (-g, -f) આપેલ રેખાના સમીકરણનું સમાધાન કરે. આથી,

$$-g - 3f - 1 = 0$$
 એટલે કે $g + 3f + 1 = 0$ (ii)

(1, 1) અને (-5, 1) બંને માંગેલ વર્તુળ પર છે.

આપેલા બિંદુઓના યામ સમીકરણ (i) માં મૂકતાં અન્ય બે સમીકરણો નીચે મુજબ મળે,

$$2g + 2f + c + 2 = 0$$
 (iii)

$$-10g + 2f + c + 26 = 0$$

એટલે કે
$$10g - 2f - c - 26 = 0$$
 (iv)

સમીકર $\mathfrak g$ (ii), (iii) અને (iv) ત્રણ અજ્ઞાત f, g અને c માં સુરેખ સમીકર $\mathfrak g$ ોની સંહતિ આપે છે.

સમીકરણ (iii) + (iv) કરતાં, 12g - 24 = 0

$$\therefore$$
 $g=2$,

∴ g + 3f + 1 = 0 પરથી f = -1

qv(1), 2g + 2f + c + 2 = 0

$$\therefore 4 - 2 + c + 2 = 0 (g = 2 \text{ ord } f = -1 \text{ deti})$$

 \therefore c = -4.

 \therefore માંગેલ વર્તુળનું સમીકરણ $x^2 + y^2 + 4x - 2y - 4 = 0$ છે.

ઉદાહરણ $11: A(x_1, y_1)$ અને $B(x_2, y_2)$ વર્તુળનાં વ્યાસાંત બિંદુઓ હોય તો વર્તુળનું સમીકરણ મેળવો.

ઉકેલ: આકૃતિ 8.6 માં બતાવ્યા પ્રમાણે $A(x_1, y_1)$ અને $B(x_2, y_2)$ વર્તુળનાં વ્યાસાંત બિંદુઓ છે અને P(x, y) વર્તુળ ઉપર આવેલ A અને B સિવાયનું કોઈ પણ બિંદુ છે. ધોરણ 10માં શીખ્યા તે પ્રમાણે અર્ધવર્તુળમાં વ્યાસે આંતરેલો ખૂણો કાટકોણ હોય છે. આમ, ΔPAB કાટકોણ ત્રિકોણ છે અને $\angle P$ કાટખૂણો છે. પાયથાગોરસના પ્રમેય મુજબ,

$$A(x_1, y_1)$$

$$B(x_2, y_2)$$

આકૃતિ 8.6

$$PA^2 + PB^2 = AB^2.$$

$$PA^2 = (x - x_1)^2 + (y - y_1)^2$$

$$PB^2 = (x - x_2)^2 + (y - y_2)^2$$

$$AB^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$$

$$\therefore (x_1 - x_2)^2 + (y_1 - y_2)^2 = (x - x_1)^2 + (y - y_1)^2 + (x - x_2)^2 + (y - y_2)^2$$

$$\Leftrightarrow x_1^2 - 2x_1x_2 + x_2^2 + y_1^2 - 2y_1y_2 + y_2^2$$

$$= x^2 - 2xx_1 + x_1^2 + y^2 - 2yy_1 + y_1^2 + x^2 - 2xx_2 + x_2^2 + y^2 - 2yy_2 + y_2^2$$

$$\Leftrightarrow -2x_1x_2 - 2y_1y_2 = x^2 - 2xx_1 + y^2 - 2yy_1 + x^2 - 2xx_2 + y^2 - 2yy_2$$

$$\Leftrightarrow 2x^2 + 2y^2 - 2xx_1 - 2yy_1 - 2xx_2 - 2yy_2 + 2x_1x_2 + 2y_1y_2 = 0$$

$$\Leftrightarrow x^2 + y^2 - xx_1 - yy_1 - xx_2 - yy_2 + x_1x_2 + y_1y_2 = 0$$

આ સમીકરણને
$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$$
 પ્રમાણે પણ લખી શકાય.

 $A(x_1, y_1)$ અને $B(x_2, y_2)$ પણ સમીકરણ (i)નું સમાધાન કરે છે.

આમ, સમીકરણ (i) \overline{AB} વ્યાસવાળું વર્તુળ દર્શાવે છે.

બીજી રીત :

 $\overline{\mathrm{AB}}$ વ્યાસ હોવાથી કેન્દ્ર $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ છે અને

ત્રિજયા =
$$\sqrt{\left(\frac{x_1+x_2}{2}-x_1\right)^2+\left(\frac{y_1+y_2}{2}-y_1\right)^2} = \frac{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}{2}$$
 છે.

∴ વર્તુળનું સમીકરણ,

$$\left(x - \frac{x_1 + x_2}{2}\right)^2 + \left(y - \frac{y_1 + y_2}{2}\right)^2 = \frac{(x_1 - x_2)^2 + (y_1 - y_2)^2}{4}$$

$$\Leftrightarrow x^2 + y^2 - (x_1 + x_2)x - (y_1 + y_2)y + \frac{(x_1 + x_2)^2 + (y_1 + y_2)^2 - (x_1 - x_2)^2 - (y_1 - y_2)^2}{4} = 0$$

$$\Leftrightarrow x^2 + y^2 - (x_1 + x_2)x - (y_1 + y_2)y + x_1x_2 + y_1y_2 = 0$$

$$\iff$$
 $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$

વર્તુળના આ સમીકરણને વ્યાસાંત બિંદુ સ્વરૂપે વર્તુળનું સમીકરણ કહે છે.

નોંધ : રેખાખંડો \overline{AP} અને \overline{BP} પરસ્પર લંબ હોવાથી તેમના ઢાળનો ગુણાકાર -1 થાય. આ ઉપરથી પણ \overline{AB} વ્યાસવાળા વર્તુળનું સમીકરણ મેળવી શકાય.

(i)

स्वाध्याय 8.2

1. નીચેનાં સમીકરણો પૈકી કયાં સમીકરણ વર્તુળ દર્શાવે છે ? જે સમીકરણ વર્તુળ દર્શાવે છે તેનું કેન્દ્ર અને ત્રિજ્યા શોધો :

(1)
$$x - y + 4 = 0$$

$$(2) \quad x^2 + y^2 = 1$$

(3)
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

$$(4) \quad x^2 - y^2 - 2x + 2y = 1008$$

(5)
$$x^2 + 3y^2 - 6x + 8y = 0$$

(6)
$$3x^2 + 3y^2 - 5x + 6y + 8 = 0$$

(7)
$$x^2 + y^2 - x + y = 0$$

(8)
$$9x^2 - 6x + 9y - 35 = 0$$

(9)
$$x^2 + y^2 - 2x \tan \alpha + 2y \sec \alpha + 2 \tan^2 \alpha = 0; \left(\alpha \in \mathbb{R}, \alpha \neq \frac{(2n+1)\pi}{2}; n \in \mathbb{Z}\right)$$

(10)
$$x^2 + y^2 - 2xy \tan \alpha + 2y \sec \alpha + 2 \tan^2 \alpha = 0$$
; $\alpha \in \left[0, \frac{\pi}{2}\right)$

2. ઊગમબિંદુમાંથી પસાર થતા અને (3, 4) કેન્દ્રવાળા વર્તુળનું સમીકરણ મેળવો.

3. (2, -1) માંથી પસાર થતા અને જેનું કેન્દ્ર બંને રેખાઓ x + y = 5 અને 4x + y = 5 ઉપર હોય તેવા વર્તુળનું સમીકરણ મેળવો.

4. (-6, 3) માંથી પસાર થતા અને બંને અક્ષોને સ્પર્શતા વર્તુળનું સમીકરણ મેળવો.

5. સાબિત કરો કે $x^2 + y^2 - 4x - 2y + 4 = 0$, $x^2 + y^2 - 2x - 4y + 1 = 0$ અને $x^2 + y^2 + 2x - 8y + 1 = 0$ નાં કેન્દ્રો સમરેખ છે. વધુમાં સાબિત કરો કે તેમની ત્રિજ્યાઓ સમગુણોત્તર શ્રેણીમાં છે.

6. વ્યાસાંત બિંદુઓ આપેલ હોય તો તે પરથી રેખાખંડોના ઢાળની મદદથી વર્તુળનું સમીકરણ મેળવો.

*

8.5 ઉત્કેન્દ્રતા

શાંકવોની ભૌમિતિક વ્યાખ્યા : જે બિંદુના એક નિશ્ચિત બિંદુથી અંતર તથા તે નિશ્ચિત બિંદુમાંથી પસાર ન થતી હોય તેવી રેખાથી લંબઅંતરનો ગુણોત્તર અચળ હોય તેવા બિંદુઓના ગણને શાંકવ (Conic) કહે છે. નિશ્ચિત બિંદુને શાંકવની નાભિ (Focus) તથા નિશ્ચિત રેખાને શાંકવની નિયામિકા (Directrix) કહે છે. આ અચળ ગુણોત્તરને શાંકવની ઉત્કેન્દ્રતા (Eccentricity) કહે છે તથા તેને સંકેત e દ્વારા દર્શાવાય છે.

8.6 परवसय

સત્તરમી સદીમાં ગેલીલીયોએ શોધી કાઢ્યું કે, જ્યારે કોઈ વસ્તુ, ઉદાહરણ તરીકે, પથ્થરને હવામાં ફેંકવામાં આવે છે ત્યારે તેનો ગતિમાર્ગ પરવલય હોય છે. આ હકીકતના આધારે પથનું નામ parabola આપવામાં આવ્યું છે. અહીં 'para' નો અર્થ 'માટે' (for) અને 'bola' નો અર્થ 'ફેંકવું' (throwing) એવો થાય છે. આથી વક્કનું નામ પડ્યું 'parabola'. ગેલીલીયોની આ શોધથી તોપચીઓ માટે ચોક્કસ ખૂણાથી હવામાં

છોડેલા તોપગોળાના પથની ધારણા કરવાનું શક્ય બન્યું. પરવલયની વિધિવત્ વ્યાખ્યા નીચે મુજબ છે :

વ્યાખ્યા : કોઈ નિશ્ચિત રેખા અને રેખા પર ન હોય તેવા નિશ્ચિત બિંદુથી સમાન અંતરે આવેલાં સમતલનાં તમામ બિંદુઓના ગણને પરવલય (Parabola) કહે છે. (આકૃતિ 8.8). અહીં રેખાથી બિંદુનું અંતર એટલે રેખાથી બિંદુનું લંબઅંતર.

 $B_1P_1=SP_1,\ B_2P_2=SP_2,\ B_3P_3=SP_3.$ તે જ રીતે પરવલય પરનાં તમામ બિંદુઓ માટે પરિણામ સત્ય છે.

ધારો કે નિશ્ચિત બિંદુ S અને નિશ્ચિત રેખા I છે. S ને પરવલયની નાભિ તથા I ને પરવલયની નિયામિકા કહે છે. પરવલય પર કોઈ પણ

બિંદુ P હોય તથા P નું નિયામિકાથી લંબઅંતર PM હોય તો વ્યાખ્યા અનુસાર SP = PM.

$$\therefore \quad \frac{SP}{PM} = 1$$

∴ શાંકવની વ્યાખ્યા અનુસાર પરવલય જેની ઉત્કેન્દ્રતા 1 હોય તેવો શાંકવ છે.

ધારો કે નાભિ S પરથી નિયામિકા l પર દોરેલા લંબનો લંબપાદ Z છે. ધારો કે \overline{ZS} નું મધ્યબિંદુ A છે. આમ, SA = AZ તથા \overline{ZS} નિયામિકા પરનો લંબ છે. આથી A પરવલય પરનું બિંદુ છે. A ને ઊગમબિંદુ તરીકે પસંદ કરતાં AS એ X-અક્ષ અને ASની દિશાને X-અક્ષની ધન દિશા લઈએ. અંતર ZS = 2a લેતાં, S(a, 0) થશે અને Z(-a, 0) થશે. આમ નિયામિકા lનું સમીકરણ x = -a થશે. (તે શિરોલંબ રેખા થશે.)

ધારો કે P(x, y) પરવલય પરનું કોઈ પણ બિંદુ છે અને P પરથી નિયામિકા I પર દોરેલા લંબનો લંબપાદ M છે, M ના યામ (-a, y) થશે. બિંદુ P પરવલય પરનું બિંદુ હોવાથી,

$$SP = PM$$

$$\therefore$$
 SP² = PM²

$$(x-a)^2 + y^2 = (x+a)^2$$

$$v^2 = (x + a)^2 - (x - a)^2$$

$$\therefore y^2 = 4ax$$

આથી ઉલટું, જો કોઈ બિંદુ P(x, y) સમીકરણ $y^2 = 4ax$ નું સમાધાન કરે તો (ઉપરના સોપાન ઉલટા ક્રમમાં લખતાં) SP = PM થાય એટલે કે બિંદ્ P પરવલય પર હોય.

 \therefore પરવલયનું સમીકરણ $y^2 = 4ax$ થાય.

આ સમીકરણને પરવલયનું પ્રમાણિત સમીકરણ કહે છે.

ઉદાહરણ 12 : જેની નાભિ (4, 0) હોય અને જેની નિયામિકાનું સમીકરણ x+4=0 હોય તેવા પરવલયનું પ્રમાશિત સમીકરણ મેળવો.

6કેલ : નાભિ (4, 0) છે અને નિયામિકા x+4=0 હોવાથી a=4 થાય. પરવલયનું સમીકરણ

$$y^2 = 4(4)x$$

$$v^2 = 16x$$

8.7 કેટલીક વ્યાખ્યાઓ અને પરવલય અંગે કેટલાંક તારણો

- (1) નાભિમાંથી પસાર થતી અને નિયામિકાને લંબ રેખા પરવલયનો અક્ષ કહેવાય છે. આમ, પરવલય $y^2 = 4ax$ નો અક્ષ X-અક્ષ થાય.
- (2) પરવલય અને તેના અક્ષનું છેદબિંદુ પરવલયનું શિરોબિંદુ (vertex) કહેવાય છે. પરવલય $y^2 = 4ax$ નું શિરોબિંદુ ઊગમબિંદુ છે.
- (3) જો ઊગમબિંદુને શિરોબિંદુ તથા Y-અક્ષને પરવલયના અક્ષ તરીકે પસંદ કરીએ, તો પરવલયનું સમીકરણ $x^2 = 4by$ સ્વરૂપમાં મળે છે. (આકૃતિ 8.10(ii)). આ કિસ્સામાં પરવલયની નાભિના યામ (0, b) થાય તથા નિયામિકાનું સમીકરણ y = -b થાય. અહીં |b| એ પરવલયના શિરોબિંદુથી નાભિનું અંતર દર્શાવે છે.

- (4) જો બિંદુ P(x, y) પરવલય $y^2 = 4ax$ પર આવેલું હોય તો P(x, -y) પણ પરવલય પર હોય. આમ પરવલય $y^2 = 4ax$, X-અક્ષ પ્રત્યે સંપિત (symmetric) હોય છે. (એટલે કે y ને સ્થાને -y લખતાં સમીકરણ બદલાતું નથી.) તે જ રીતે, પરવલય $x^2 = 4by$, Y-અક્ષ પ્રત્યે સંમિત હોય છે. (એટલે કે x ને સ્થાને -x લેતાં સમીકરણ બદલાતું નથી.)
- (5) પરવલયો $y^2 = 4ax$ અને $x^2 = 4by$ આકૃતિમાં દર્શાવ્યા છે. $(a \neq 0, b \neq 0)$.

આકૃતિ 8.10 (i)

(6) પરવલયના કોઈ પણ બે બિંદુઓને જોડતા રેખાખંડને પરવલયની જીવા (chord) કહે છે. પરવલયની નાભિમાંથી પસાર થતી જીવાને પરવલયની નાભિજીવા (focal chord) કહે છે. પરવલયના અક્ષને લંબ હોય તેવી નાભિજીવાને પરવલયનો નાભિલંબ (Latus-rectum) કહે છે.

8.8 પરવલયનો નાભિલંબ

ધારો કે પરવલય $y^2=4ax$ ના નાભિલંબના અંત્યબિંદુઓ L અને L' છે. આથી \overrightarrow{LL}' શિરોલંબ રેખા છે. આ રેખા નાભિ $(a,\ 0)$ માંથી પસાર થતી હોવાથી તેનું સમીકરણ x=a છે. હવે, બિંદુઓ L અને L' પરવલય ઉપર આવેલા હોવાથી $y^2=4ax=4a\cdot a=4a^2$. આથી $y=\pm 2a$. આમ, નાભિલંબના અંત્યબિંદુઓના યામ $L(a,\ 2\mid a\mid)$ અને $L'(a,\ -2\mid a\mid)$ થશે. નાભિલંબની લંબાઈ LL' થાય,

નાભિલંબની લંબાઈ = LL'
$$= \sqrt{(a-a)^2 + (2|a| + 2|a|)^2}$$
 = 4 | a |

નોંધ: પરવલય $x^2 = 4by$ માટે નાભિલંબના અંત્યબિંદુઓ L(2|b|, b) અને L'(-2|b|, b) થશે અને તેથી નાભિલંબની લંબાઈ 4|b| થશે.

આકૃતિ 8.11

8.9 પરવલયનાં પ્રચલ સમીકરણો

કોઈ પણ વાસ્તવિક પ્રચલ t માટે, $x=at^2$ અને y=2at, સમીકરણ $y^2=4ax$ નું સમાધાન કરે છે. ધારો કે (x_1,y_1) પરવલય $y^2=4ax$ ઉપર છે. હવે જો $t=\frac{y_1}{2a}$ લઈએ તો $x_1=at^2$. આમ, પરવલય પરના કોઈ પણ બિંદુને સંગત, $x=at^2$ અને y=2at થાય તેવી વાસ્તવિક સંખ્યા t મળે.

આમ, $(at^2, 2at)$ પરવલય $y^2 = 4ax$ ઉપર હોય અને પરવલયનું કોઈ પણ બિંદુ $(at^2, 2at)$; $t \in \mathbb{R}$ પ્રકારનું હોય.

 $x = at^2$, y = 2at ને પરવલય $y^2 = 4ax$ નાં પ્રચલ સમીકરણો કહેવાય છે. બિંદુ $P(at^2, 2at)$ ને પરવલયનું t-બિંદુ કહેવાય છે અને તે P(t) વડે દર્શાવાય છે.

ઉદાહરણ 13 : જેની નાભિ (2, 3) હોય તથા નિયામિકા 3x + 4y - 10 = 0 હોય તેવા પરવલયનું સમીકરણ મેળવો.

6કેલ : ધારો કે P(x, y) પરવલય પર કોઈ પણ બિંદુ છે. હવે પરવલયની વ્યાખ્યા અનુસાર નાભિ S હોય તથા PM એ Pનું નિયામિકાથી લંબઅંતર હોય તો,

$$SP = PM$$
 એટલે કે $SP^2 = PM^2$

$$\therefore (x-2)^2 + (y-3)^2 = \left(\frac{3x+4y-10}{\sqrt{9+16}}\right)^2 = \frac{(3x+4y-10)^2}{25}$$

$$\therefore 25(x^2 - 4x + 4 + y^2 - 6y + 9) = 9x^2 + 16y^2 + 24xy - 60x - 80y + 100$$

:.
$$16x^2 - 24xy + 9y^2 - 40x - 70y + 125 = 0$$
 એ માંગેલ પરવલયનું સમીકરણ છે.

ઉદાહરણ 14 : ઊગમબિંદુનું (4, 3) આગળ સ્થાનાંતર કરી પરવલય $(y - 3)^2 = 16(x - 4)$ ની નાભિના યામ તથા નિયામિકાનું સમીકરણ મેળવો.

634 : જો નવા ઊગમબિંદુને સાપેક્ષ P(x, y)ના યામ (x', y') હોય, તો

$$x = x' + h = x' + 4$$
, $y = y' + k = y' + 3$

 \therefore પરવલયનું સમીકરણ $(y')^2 = 16x'$ બને.

નાભિના નવા યામ (x', y') = (a, 0) = (4, 0)

$$x = x' + 4$$
, $y = y' + 3$

∴ નાભિના મૃળ યામ = (8, 3)

- .. નિયામિકાનું નવી યામ પદ્ધતિમાં સમીકરણ : x' + a = 0 એટલે કે x' + 4 = 0 થાય.
- \therefore તેનું સમીકરણ x-4+4=0
- \therefore નિયામિકાનું સમીકરણ x=0 થાય.

ચકાસણી : SP = PM પરથી $(x - 8)^2 + (y - 3)^2 = x^2$

$$\therefore (y-3)^2 = x^2 - (x^2 - 16x + 64) = 16(x-4) \text{ uzaeu-i athless} \text{ uni.}$$

ઉદાહરણ 15 : નીચેના પ્રત્યેક સમીકરણ માટે પરવલયની નાભિના યામ, નિયામિકાનું સમીકરણ, નાભિલંબની લંબાઈ તથા નાભિલંબનાં અંત્યબિંદુઓ શોધો.

(1)
$$x^2 = -8y$$
 (2) $y^2 = 8x$ (3) $x^2 = 3y$ (4) $y^2 = -10x$

ઉંકેલ: (1) $x^2 = -8y$ ને પરવલયના પ્રમાણિત સમીકરણ $x^2 = 4by$ સાથે સરખાવતાં, b = -2 મળે. અહીં પરવલયનો અક્ષ Y-અક્ષ છે. આથી નાભિના યામ (0, b) = (0, -2) થશે.

નિયામિકાનું સમીકરણ y = -b, એટલે કે y = 2 થશે.

નાભિલંબની લંબાઈ $4 \mid b \mid = 8$.

નાભિલંબના અંત્યબિંદુઓ L(2|b|, b) = L(4, -2) અને L'(-2|b|, b) = L'(-4, -2) થાય.

(2) $y^2 = 8x + y^2 = 4ax$ સાથે સરખાવતાં a = 2 મળે. પરવલયનો અક્ષ X-અક્ષ છે.

નાભિ (a, 0) = (2, 0) થાય.

નિયામિકાનું સમીકરણ x=-a હોવાથી તે x=-2 થાય. આમ x+2=0 નિયામિકાનું સમીકરણ છે.

નાભિલંબની લંબાઈ 4 |a| = 8.

નાભિલંબના અંત્યબિંદુઓ L(a, 2|a|) = L(2, 4) અને L'(a, -2|a|) = L'(2, -4) છે.

(3) સમીકરણ $x^2 = 3y$ ને $x^2 = 4by$ સાથે સરખાવતાં 4b = 3 એટલે કે $b = \frac{3}{4}$ મળે. અહીં પરવલયનો અક્ષ Y-અક્ષ છે.

નાભિ
$$(0, b) = (0, \frac{3}{4})$$
 થાય.

નિયામિકાનું સમીકરણ y=-b એટલે કે $y=-\frac{3}{4}$. આમ 4y+3=0 નિયામિકાનું સમીકરણ છે.

નાભિલંબની લંબાઈ $4 \mid b \mid = 3$.

નાભિલંબનાં અંત્યબિંદુઓ $L(2|b|,b) = L\left(\frac{3}{2},\frac{3}{4}\right)$ અને $L'(-2|b|,b) = L'\left(-\frac{3}{2},\frac{3}{4}\right)$ છે.

(4) $y^2 = -10x$ ને $y^2 = 4ax$ સાથે સરખાવતા $a = -\frac{5}{2}$ મળે. અહીં પરવલયનો અક્ષ X-અક્ષ છે.

નાભિ $(a, 0) = \left(-\frac{5}{2}, 0\right)$ થાય.

નિયામિકાનું સમીકરણ x=-a એટલે કે $x=\frac{5}{2}$. આમ 2x-5=0 નિયામિકાનું સમીકરણ થાય.

નાભિલંબની લંબાઈ $4 \mid a \mid = 10$ થાય.

નાભિલંબના અંત્યબિંદુઓ $L(a, 2|a|) = L\left(-\frac{5}{2}, 5\right)$ અને $L'(a, -2|a|) = L'\left(-\frac{5}{2}, -5\right)$ છે.

ઉદાહરણ 16 : જેનું શિરોબિંદુ ઊગમબિંદુ હોય, નાભિના યામ (0, -3) અને નિયામિકાનું સમીકરણ y = 3 હોય તેવા પરવલયનું પ્રમાણિત સમીકરણ મેળવો.

ઉકેલ: અહીં નાભિ (0, -3) Y-અક્ષ પર છે અને નિયામિકા y = 3, X-અક્ષને સમાંતર છે. આમ પરવલયનું સમીકરણ $x^2 = 4by$ પ્રકારનું હોય, જ્યાં b = -3. આમ, માગેલ પરવલયનું સમીકરણ $x^2 = -12y$ છે.

ઉદાહરણ 17 : X-અક્ષ પ્રત્યે સંમિત હોય, શિરોબિંદુ ઊગમબિંદુ હોય અને (5, -5)માંથી પસાર થતા હોય તેવા પરવલયનું પ્રમાશિત સમીકરણ મેળવો.

63લ: પરવલય X-અક્ષ પ્રત્યે સંમિત છે તેમજ શિરોબિંદુ ઊગમબિંદુ છે તેમ આપેલું છે. આથી પરવલયનું પ્રમાશિત સમીકરણ $y^2 = 4ax$ થાય. વધુમાં, પરવલય (5, -5) માંથી પસાર થાય છે.

$$(-5)^2 = 4a(5)$$

- \therefore 25 = 20a
- \therefore $a = \frac{5}{4}$. આથી પરવલયનું સમીકરણ $y^2 = 5x$ છે.

8.10 પરવલયના ગુણધર્મો

ગુણધર્મ 1 : ધારો કે $P(t_1)$ અને $Q(t_2)$ પરવલય $y^2=4ax$ પરના બિંદુઓ છે. જો \overline{PQ} નાભિજીવા હોય તો $t_1t_2=-1$.

સાબિતી : બિંદુઓ P અને Q યામ અનુક્રમે $(at_1^2, 2at_1)$ અને $(at_2^2, 2at_2)$ થાય. પરવલય $y^2 = 4ax$ ની નાભિ Sના યામ (a, 0) છે. \overline{PQ} નાભિજીવા હોવાથી બિંદુઓ P, Q અને S સમરેખ બિંદુઓ છે.

ધારો કે PO નાભિલંબ છે.

તો P(a, 2a) થાય.

$$\therefore at_1^2 = a, 2at_1 = 2a$$

$$\therefore \quad t_1 = 1$$

તે જ રીતે
$$Q(a, -2a)$$
 માટે $t_2 = -1$

$$\therefore \quad t_1 t_2 = -1$$

હવે ધારો કે \overline{PQ} નાભિલંબ નથી.

$$\therefore at_1^2 \neq a, at_2^2 \neq a.$$

હવે,
$$\overrightarrow{SP}$$
 નો ઢાળ = \overrightarrow{SQ} નો ઢાળ

$$\therefore \quad \frac{2at_1}{at_1^2 - a} = \frac{2at_2}{at_2^2 - a}$$

$$\therefore \quad \frac{t_1}{{t_1}^2-1}=\frac{t_2}{{t_2}^2-1}$$

$$\therefore t_1(t_2^2 - 1) = t_2(t_1^2 - 1)$$

$$\therefore t_1 t_2^2 - t_1 = t_2 t_1^2 - t_2$$

$$\therefore t_1 t_2^2 - t_2 t_1^2 = t_1 - t_2$$

$$\therefore t_1 t_2 (t_2 - t_1) = -(t_2 - t_1)$$

$$\therefore \quad t_1 t_2 = -1$$

ગુણધર્મ 2 : જો પરવલય $y^2 = 4ax$ (a > 0)ની નાભિ S હોય અને \overline{PQ} નાભિજીવા હોય, તો $\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a}$.

સાબિતી : ધારો કે, $\mathrm{P}(t_1)$ અને $\mathrm{Q}(t_2)$ નાભિજીવાનાં અંત્યબિંદુઓ છે. નાભિના યામ $(a,\ 0)$ છે. બિંદુઓ P અને Q ના યામ અનુક્રમે $(at_1^2, 2at_1)$ અને $(at_2^2, 2at_2)$ છે.

$$SP^{2} = (at_{1}^{2} - a)^{2} + (2at_{1})^{2}$$

$$= (at_{1}^{2} - a)^{2} + 4a^{2}t_{1}^{2}$$

$$= (at_{1}^{2} + a)^{2}$$

$$\therefore SP = a(t_{1}^{2} + 1). \ \hat{\alpha} \ \text{w. fld., } SQ = a(t_{2}^{2} + 1)$$

$$\text{edd., } \frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a(t_{1}^{2} + 1)} + \frac{1}{a(t_{2}^{2} + 1)}$$

$$= \frac{1 + t_{1}^{2} + t_{2}^{2} + t_{1}^{2}}{a(t_{1}^{2} + 1)(t_{2}^{2} + 1)}$$

$$= \frac{1 + t_{1}^{2} + t_{2}^{2} + t_{1}^{2}t_{2}^{2}}{a(t_{1}^{2} + 1)(t_{2}^{2} + 1)}$$

$$= \frac{(t_{1}^{2} + t_{1}^{2})(1 + t_{2}^{2})}{a(t_{1}^{2} + 1)(t_{2}^{2} + 1)} = \frac{1}{a}$$

$$(t_{1}t_{2} = -1)$$

ગુણધર્મ 3 : ધારો કે પરવલય $y^2=4\alpha x$ ની નાભિ S છે અને P પરવલય પરનું કોઈ પણ બિંદુ છે. ધારો કે \overrightarrow{PQ} પરવલયના અક્ષને સમાંતર છે. \angle SPQ નો દ્વિભાજક પરવલયના અક્ષને બિંદુ G. માં છેદે તો $\overline{SP}\cong\overline{SG}$.

સાબિતી : અહીં, PO પરવલયના અક્ષને સમાંતર છે એટલે કે, X-અક્ષને સમાંતર છે વધુમાં $\overrightarrow{\mathrm{PG}},$ $\angle\mathrm{SPQ}$ ને દુભાગે છે. આથી આકૃતિ 8.12 માં દર્શાવ્યા પ્રમાણે \overrightarrow{PG} સમાંતર રેખાઓ \overrightarrow{PQ} અને \overrightarrow{SG} ની છેદિકા છે. આથી *m*∠SGP = *m*∠QPG. વળી, *m*∠SPG = *m*∠QPG. આથી $m\angle SGP = m\angle SPG$. આથી, ΔSPG સમદ્ધિબાજુ ત્રિકોણ થાય અને તેથી $\overline{SP} \cong \overline{SG}$.

નોંધ : પરવલયના આ ગુણધર્મનો વ્યવહારૂ ઉપયોગ પ્રકાશશાસ્ત્રમાં અરીસાઓ તૈયાર કરવામાં થાય છે. જો પ્રકાશનો સ્ત્રોત પરવલયાકાર અરીસાની નાભિ પાસે હોય તો પ્રકાશ પરાવર્તિત થઈ અરીસાના અક્ષને સમાંતર ગતિ કરે. આ ગુણધર્મનો ઉપયોગ મોટરગાડીની હેડલાઈટમાં થાય છે. તે જ રીતે પરવલયકાર અરીસાના અક્ષને સમાંતર પ્રકાશના કિરણો નાભિ પાસે પરાવર્તિત થાય છે. આનો ઉપયોગ ટેલિવીઝન માટેના ડિશ એન્ટેનામાં થાય છે.

સ્વાધ્યાય 8.3

- નીચેનાં પરવલયો માટે નાભિના યામ તથા નિયામિકાનાં સમીકરણો મેળવો અને તેમનો સ્થળ આલેખ દોરો :
- (1) $2y^2 = x$ (2) $x^2 = -4y$ (3) $4x^2 = -y$ (4) $y^2 = 12x$

- નીચેની શરતો પ્રમાણે પરવલયનું પ્રમાણિત સમીકરણ મેળવો :
 - (1) શિરોબિંદુ (0, 0), નાભિ (0, -2)
 - (2) શિરોબિંદુ (0, 0), X-અક્ષ પરવલયના અક્ષ તરીકે તેમજ (1, -4) માંથી પસાર થાય.
- (1) જેની નાભિ (-1, 2) હોય તથા નિયામિકા x y + 1 = 0 હોય તેવા પરવલયનું સમીકરણ મેળવો.
 - (2) જેની નાભિ (-3, -4) હોય તથા નિયામિકા 3x 4y 5 = 0 હોય તેવા પરવલયનું સમીકરણ મેળવો.
- **4.** ઊગમબિંદુનું સ્થાનાંતર (-1, -2) આગળ કરી $(x + 1)^2 = 4(y + 2)$ ના નાભિલંબની લંબાઈ તથા તેની નિયામિકાનું સમીકરણ શોધો.
- પરવલય $x^2 = 12y$ નું શિરોબિંદુ અને તેના નાભિલંબના અંત્યબિંદુઓ દ્વારા રચાતાં ત્રિકોશનું ક્ષેત્રફળ મેળવો.
- પરવલય $y^2 = 4ax$ ની કોઈ નાભિજીવાનું એક અંત્યબિંદુ $(at_1^2, 2at_1)$ હોય તો તેનું બીજું અંત્યબિંદુ શોધો. આ પરથી બતાવો કે નાભિજીવાની લંબાઈ $\left(t_1 + \frac{1}{t_1}\right)^2$ છે.
- પરવલય $y^2 = 12x$ પરના કોઈ બિંદુ P નું નાભિ S થી અંતર SP = 6 એકમ હોય, તો બિંદુ P ના યામ શોધો.

8.11 ઉપવલય

કોઈ નળાકારને ત્રાંસો કાપતાં તેનો આડછેદ ઉપવલય થાય છે. આના નિદર્શન માટે પાણી ભરેલા ગ્લાસને ત્રાંસો કરતાં પ્રવાહીની ઉપરી સપાટી ઉપવલીય આકાર ધારણ કરે. (આકૃતિ 8.14) તેમજ સલાડમાં કાકડીને ત્રાંસી કાપી ઉપવલીય પતીકા મેળવવામાં આવે છે.

આકૃતિ 8.13

આકૃતિ 8.14

પ્રાચીન ગ્રીક અવકાશશાસ્ત્રીઓની માન્યતા હતી કે પૃથ્વી સ્થિર છે અને ગ્રહો તેની ફરતે વર્ત્ાળાકાર કક્ષામાં પરિભ્રમણ કરે છે; કારણ કે વર્ત્ાળ એ સૌથી સરળ વક્ર છે. 17મી સદીમાં જહૉનીસ કેપ્લરે શોધી કાઢ્યું કે ગ્રહોની કક્ષા ઉપવલીય હોય છે, જેમાં સૂર્ય એક નાભિ સ્થાને હોય છે.

ઉપવલયનું પ્રમાણિત સમીકરણ :

કહે છે.

ધારો કે કોઈ ઉપવલયની નાભિ S, નિયામિકા I અને ઉત્કેન્દ્રતા e છે. ધારો કે P એ ઉપવલય પર આવેલું કોઈ પણ બિંદુ છે. ધારો કે P પરથી રેખા / પર દોરેલ લંબનો લંબપાદ M છે.

174 ગણિત-2

ઉત્કેન્દ્રતાની વ્યાખ્યા પરથી
$$e = \frac{SP}{PM}$$

ધારો કે S થી I પર દોરેલ લંબનો લંબપાદ Z છે. ધારો કે, બિંદુ A અને A' એ \overline{SZ} નું અનુક્રમે e:1 અને -e:1 ગુણોત્તરમાં S તરફથી વિભાજન કરે છે.

$$\frac{\mathrm{SA}}{\mathrm{AZ}}=e$$
 અથવા $\mathrm{SA}=e(\mathrm{AZ})$. તેમજ $\frac{\mathrm{SA'}}{\mathrm{AZ}}=e$ આથી, $\mathrm{SA'}=e\mathrm{A'Z}$.

SA = S થી Aનું અંતર. AZ = A થી Iનું લંબઅંતર. તે જ રીતે A' માટે પણ સત્ય છે.

તથા $\frac{SA}{AZ} = \frac{SA'}{AZ} = e$. આથી, A અને A' બંને ઉપવલય પર છે. ધારો કે $\overline{AA'}$ નું મધ્યબિંદુ C છે. ધારો કે, C ઉગમબિંદુ છે અને \overrightarrow{CA} દિશા X-અક્ષની ધન દિશા છે. ધારો કે CA = a. આથી A અને A' નાં યામ અનુક્રમે $(a,\ 0)$ અને $(-a,\ 0)$ છે. ધારો કે S ના યામ $(p,\ 0)$ અને Z ના યામ $(q,\ 0)$ છે. બિંદુ $A(a,\ 0)$ એ \overline{SZ} નું S તરફથી e:1 ગુણોત્તરમાં વિભાજન કરતું હોવાથી,

$$a = \frac{eq + p}{e + 1}$$
 (ii)

$$-a = \frac{-eq + p}{-e + 1} \tag{iii}$$

(ii) અને (iii) પરથી,

eq+p=ae+a અને -eq+p=ae-a. આ સમીકરણોને p અને q માટે ઉકેલતાં, p=ae અને $q=\frac{a}{e}$ મળે.

આમ, નાભિના યામ $S(ae,\ 0)$ છે અને Z ના યામ $\left(\frac{a}{e},0\right)$ છે. નિયામિકા શિરોલંબ રેખા છે અને Z માંથી પસાર થાય છે. આથી તેનું સમીકરણ $x=\frac{a}{e}$ થાય.

હવે, P(x, y) ઉપવલય પરનું કોઈ પણ બિંદુ હોય તો (i) ઉપરથી,

$$\frac{SP}{PM} = e \iff SP = e(PM)$$

$$\Leftrightarrow SP^2 = e^2(PM^2)$$
(iv)

અહીં, PM = P(x, y)નું રેખા l થી અંતર

$$= P(x, y)$$
નું રેખા $x - \frac{a}{e} = 0$ થી અંતર

$$=rac{\left|x-rac{a}{e}
ight|}{\sqrt{1+0}}$$
 \[\left(\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right)\right] પરથી\right)\]
 $=\left|x-rac{a}{e}
ight|$

$$\therefore PM^2 = \left(x - \frac{a}{e}\right)^2$$

તેમજ
$$SP^2 = (x - ae)^2 + y^2$$
 (vi)

(v) અને (vi) નો (iv) માં ઉપયોગ કરતાં,

$$\frac{SP}{PM} = e \iff (x - ae)^2 + y^2 = e^2 \left(x - \frac{a}{e} \right)^2$$

$$\iff (x - ae)^2 + y^2 = e^2 \left(x^2 - \frac{2ax}{e} + \frac{a^2}{e^2} \right)$$

$$\iff x^2 - 2aex + y^2 + a^2e^2 = e^2x^2 - 2aex + a^2$$

$$\iff x^2(1 - e^2) + y^2 = a^2(1 - e^2)$$

$$\iff \frac{x^2}{a^2} + \frac{y^2}{a^2(1 - e^2)} = 1$$
(vii)

હવે, a>0 અને e<1. આથી $a^2(1-e^2)>0$ આમ, $a^2(1-e^2)=b^2$ થાય તેવી ધન વાસ્તવિક સંખ્યા b મળી શકે. આથી, (vii) ને

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 તરીકે લખી શકાય.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
ને ઉપવલયનું પ્રમાણિત સમીકરણ કહે છે.

કેટલાંક તારણો :

(1) ઉપવલયના સમીકરણ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, પરથી $b^2 = a^2(1 - e^2)$ (a > b) નો ઉપયોગ કરી ઉત્કેન્દ્રતા શોધી શકાય.

આકૃતિ 8.16

(2) સંમિતતા:

ઉપવલયના પ્રમાશિત સમીકરણ ઉપરથી ઉપવલય પરના કોઈ પણ બિંદુ P(x, y) માટે નીચેનાં અવલોકનો સ્પષ્ટ છે.

- (i) બિંદુ (x, -y) પણ ઉપવલય પર છે, એટલે કે ઉપવલય X-અક્ષ પ્રત્યે સંમિત છે.
- (ii) બિંદુ (-x, y) ઉપવલય પર છે, એટલે કે, ઉપવલય Y-અક્ષ પ્રત્યે સંમિત છે.
- (iii) બિંદુ (-x, -y) ઉપવલય પર છે. આમ, ઉપવલય ઊગમબિંદુ પ્રત્યે સંમિત છે તેમ કહેવાય. આ બિંદુ C(0, 0) ને ઉપવલયનું કેન્દ્ર કહેવાય છે. આમ, ઉપવલયને કેન્દ્રીય શાંકવ (Central conic) પણ કહે છે.

(3) યામાક્ષો સાથે છેદ :

ઉપવલયનું સમીકરણ મેળવવામાં આપણે બિંદુઓ A(a, 0) અને A'(-a, 0) ઉપવલય પર લીધાં છે, આમ ઉપવલય X-અક્ષને $x=\pm a$ માં છેદે છે. ઉપવલય $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ નો Y-અક્ષ સાથે છેદગણ શોધવા માટે x=0 લેતાં, $y=\pm b$ મળે, આમ ઉપવલય Y-અક્ષને બિંદુઓ B(0,b) અને B'(0,-b) માં છેદે છે. (આકૃતિ 8.18). આવી જ રીતે y=0 લેતાં ઉપવલય X-અક્ષને A અને A' બિંદુમાં છેદે છે તે જોઈ શકાય છે. આ બિંદુઓ A, A', B અને B'ને ઉપવલયના શિરોબિંદુઓ કહે છે.

આકૃતિ 8.17

176

(4) નાભિ અને નિયામિકાની બે જોડ :

$$\therefore \frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$

$$x^2(1-e^2) + v^2 = a^2(1-e^2)$$

$$\therefore x^2 - x^2e^2 + y^2 = a^2 - a^2e^2$$

$$\therefore$$
 $x^2 + 2aex + a^2e^2 + y^2 = x^2e^2 + a^2 + 2aex$

$$\therefore (x + ae)^2 + y^2 = e^2 \left(x + \frac{a}{e} \right)^2$$
 (ii)

(ii)ના અર્થઘટન માટે $S'=(-ae,\ 0)$ અને રેખા I' નું સમીકરણ $x+\frac{a}{e}=0$ લઈએ.

ધારો કે M' એ P માંથી રેખા $x + \frac{a}{e} = 0$ પરનો લંબપાદ છે.

હવે, l' થી Pનું લંબઅંતર PM' થાય છે.

$$PM' = \frac{\left| x + \frac{a}{e} \right|}{\sqrt{1+0}} = \left| x + \frac{a}{e} \right|$$

$$\therefore PM'^2 = \left(x + \frac{a}{a}\right)^2$$
 (iii)

તેમજ
$$S'P^2 = (x + ae)^2 + y^2$$
 (iv)

(iii) અને (iv) ઉપરથી (ii) દ્વારા $(S'P)^2 = e^2 (PM')^2$

$$\therefore \quad \frac{S'P}{PM'} = e$$

આકૃતિ 8.18

ઉત્કેન્દ્રતાની વ્યાખ્યા મુજબ S' ને નાભિ અને l' ને નિયામિકા તરીકે લઈ શકાય. આમ, ઉપવલયને બે નાભિઓ $(\pm ae,\ 0)$ અને તેમને અનુરૂપ બે નિયામિકાઓ $x\mp\frac{a}{e}=0$ હોય છે.

(5) આપણે જોયું કે ઉપવલય $\overline{AA'}$ અને $\overline{BB'}$ પ્રત્યે સંમિત હોય છે, આ રેખાખંડોને ઉપવલયના અક્ષો કહેવાય છે. ઉપરાંત, AA' = 2a અને BB' = 2b અને b < a, આમ, $\overline{AA'}$ ને પ્રધાન અક્ષ (major axis) અને $\overline{BB'}$ ને ગૌણ અક્ષ (minor axis) કહે છે. b ને ગૌણ અક્ષની અર્ધલંબાઈ (length of semi minor axis) તેમજ a ને પ્રધાન અક્ષની અર્ધલંબાઈ (length of semi major axis) કહે છે.

અહીં પ્રધાન અક્ષ X-અક્ષની દિશામાં છે. જો પ્રધાન અક્ષ Y-અક્ષની દિશામાં હોય તેવા સંજોગોમાં ઉપવલયની નાભિઓ Y-અક્ષ પર હોય અને નિયામિકાઓ X-અક્ષને સમાંતર હોય. આવા ઉપવલયનું સમીકરણ

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 થાય, જ્યાં $b > a$ અને $a^2 = b^2(1 - e^2)$.

નાભિઓના યામ $(0,\pm be)$ અને નિયામિકાઓનાં સમીકરણ $y\mp \frac{b}{e}=0$ થાય.

(6) ઉપવલયના બે બિંદુઓને જોડતા રેખાખંડને ઉપવલયની જીવા કહે છે. ઉપવલયની નાભિમાંથી પસાર થતી જીવાને તેની નાભિજીવા કહે છે. જો નાભિજીવા ઉપવલયના પ્રધાન અક્ષને લંબ હોય તો તેને ઉપવલયનો નાભિલંબ કહે છે. (આકૃતિ 8.20). આકૃતિમાં દર્શાવ્યા પ્રમાણે નાભિલંબોના અંત્યબિંદુઓ જુદા જુદા ચરણમાં હોય. તેમને L_1 , L_2 , L_3 અને L_4 થી દર્શાવ્યા છે, $\overline{L_1L_4}$ અને $\overline{L_2L_3}$ બે નાભિલંબો છે.

(7) નાભિલંબોની લંબાઈ :

નાભિલંબ $\overline{L_1L_4}$ નાભિ S(ae,0) માંથી પસાર થાય છે તેનો વિચાર કરીએ. $\overline{L_1L_4}$ Y-અક્ષને સમાંતર હોવાથી તેની લંબાઈ, L_1 અને L_4 ના y-યામોના તફાવત જેટલી થાય. L_1 અને L_4 ના y-યામ નક્કી કરવા માટે ઉપવલયના સમીકરણ

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ Hi } x = ae \text{ usai,}$$

$$e^2 + \frac{y^2}{b^2} = 1$$

$$\therefore y^2 = b^2(1 - e^2)$$

પરંતુ
$$1 - e^2 = \frac{b^2}{a^2}$$

$$\therefore y^2 = \frac{b^4}{a^2}$$

$$\therefore y = \pm \frac{b^2}{a}$$

 \therefore L₁ અને L₄ ના y-યામ અનુક્રમે $\frac{b^2}{a}$ અને $-\frac{b^2}{a}$ થાય. આથી,

$$L_1L_4 = \frac{b^2}{a} - \left(-\frac{b^2}{a}\right) = \frac{2b^2}{a}$$

$$\mathrm{L}_1\!\left(\!ae,\,rac{b^2}{a}
ight)$$
 અને $\mathrm{L}_4\!\left(\!ae,\,-rac{b^2}{a}
ight)$ થાય.

તે જ રીતે
$$L_2\left(-ae, \frac{b^2}{a}\right)$$
 અને $L_3\left(-ae, -\frac{b^2}{a}\right)$.

$$\therefore$$
 નાભિલંબની લંબાઈ = $\frac{2b^2}{a}$.

ઉંદાહરણ 18 : જેની એક નાભિના યામ (2, 0) હોય, સંગત નિયામિકાનું સમીકરણ x-5=0 હોય તથા ઉત્કેન્દ્રતા $\frac{1}{\sqrt{2}}$ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.

178

6કેલ : ધારો કે P(x, y) ઉપવલયનું કોઈ પણ બિંદુ છે. S નાભિ છે અને PM એ Pનું નિયામિકાથી લંબઅંતર છે.

$$\therefore$$
 SP² = e^2 PM²

$$\therefore (x-2)^2 + y^2 = \left(\frac{1}{\sqrt{2}}\right)^2 (x-5)^2$$

$$\therefore$$
 2(x² - 4x + 4 + y²) = x² - 10x + 25

∴
$$x^2 + 2y^2 + 2x - 17 = 0$$
 માંગેલ ઉપવલયનું સમીકરણ છે.

ઉદાહરણ 19 : ઊગમબિંદુનું (1, 2) આગળ સ્થાનાંતર કરી સાબિત કરો કે $\frac{(x-1)^2}{16} + \frac{(y-2)^2}{9} = 1$ ઉપવલય દર્શાવે છે. તેની નાભિના યામ તથા નિયામિકાનાં સમીકરણ શોધો.

6કેલ : પ્રમાણિત સંકેતમાં
$$x = x' + 1$$
, $y = y' + 2$ લેતાં,

પરિવર્તિત સમીકરણ $\frac{(x)^2}{16} + \frac{(y)^2}{9} = 1$ મળે, જે એક ઉપવલય દર્શાવે છે.

$$a^2 = 16, b^2 = 9$$
, અહીં $a^2 > b^2$ હોવાથી

$$b^2 = a^2(1 - e^2)$$
 પરથી $9 = 16(1 - e^2)$

$$e^2 = 1 - \frac{9}{16} = \frac{7}{16}$$

$$\therefore \quad e = \frac{\sqrt{7}}{4}$$

નાભિના યામ ($\pm ae$, 0) = ($\pm\sqrt{7}$, 0) તથા નિયામિકાનાં સમીકરણ $x' \mp \frac{16}{\sqrt{7}} = 0$ (x' - y' યામ પદ્ધતિમાં)

$$\therefore$$
 મૂળ યામ પદ્ધતિમાં નાભિના યામ = $\left(1\pm\frac{\sqrt{7}}{4},\,2\right)$ તથા નિયામિકાનાં સમીકરણ $x-1\mp\frac{16}{\sqrt{7}}=0$ થાય.

ઉદાહરણ 20 : નીચેના ઉપવલયોની નાભિઓના યામ, નિયામિકાઓનાં સમીકરણ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધો :

(1)
$$\frac{x^2}{9} + y^2 = 1$$
 (2) $4x^2 + y^2 = 25$

ઉકેલ : (1)
$$\frac{x^2}{9} + y^2 = 1$$
 ઉપરથી $a^2 = 9$, $b^2 = 1$. આથી, $a = 3$, $b = 1$.

a > b હોવાથી પ્રધાન અક્ષ X-અક્ષ પર છે.

(i) ઉત્કેન્દ્રતા : આપણે જાણીએ છીએ કે, $b^2 = a^2(1 - e^2)$.

$$\therefore 1 = 9(1 - e^2)$$

$$\therefore \quad \frac{1}{9} = 1 - e^2$$

$$e^2 = \frac{8}{9}$$

$$\therefore e = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}$$

(ii) માબિઓ:
$$(\pm ae, 0) = \left(\pm 3\left(\frac{\sqrt{8}}{3}\right), 0\right) = (\pm 2\sqrt{2}, 0)$$

(iii) નિયામિકાઓ :
$$x = \pm \frac{a}{e}$$

$$\therefore x = \pm 3 \left(\frac{3}{\sqrt{8}} \right) = \pm \frac{9}{\sqrt{8}} = \pm \frac{9}{2\sqrt{2}}$$

નિયામિકાઓનાં સમીકરણ $x \pm \frac{9}{2\sqrt{2}} = 0$ છે.

(iv) નાભિલંબની લંબાઈ :
$$\frac{2b^2}{a} = \frac{2}{3}$$

(2) આપેલ સમીકરણ ઉપરથી
$$\frac{4x^2}{25} + \frac{y^2}{25} = 1$$
 એટલે કે $\frac{x^2}{\left(\frac{25}{4}\right)} + \frac{y^2}{25} = 1$ આમ, $a^2 = \frac{25}{4}$, $b^2 = 25$.

$$\therefore \quad a = \frac{5}{2}, \ b = 5. \text{ outl}, \ b > a$$

(i) Gright :
$$a^2 = b^2(1 - e^2)$$
.

$$\therefore \frac{25}{4} = 25(1 - e^2)$$

$$\therefore 1 - e^2 = \frac{1}{4}$$

$$\therefore e^2 = \frac{3}{4}$$

$$\therefore e = \frac{\sqrt{3}}{2}$$

(ii) નાભિઓ :
$$(0, \pm be) = \left(0, \pm 5\left(\frac{\sqrt{3}}{2}\right)\right) = \left(0, \pm \frac{5\sqrt{3}}{2}\right)$$

(iii) નિયામિકાઓ :
$$y = \pm \frac{b}{e} = \pm 5 \left(\frac{2}{\sqrt{3}} \right)$$

$$\therefore$$
 $y \pm \frac{10}{\sqrt{3}} = 0$ નિયામિકાઓનાં સમીકરણ છે.

(iv) નાભિલંબની લંબાઈ :
$$\frac{2a^2}{b} = 2(\frac{25}{4})(\frac{1}{5}) = \frac{5}{2}$$

ઉદાહરણ 21 : નીચેના પ્રત્યેક માટે ઉપવલયનું પ્રમાણિત સમીકરણ મેળવો :

(1) પ્રધાન અક્ષની લંબાઈ 6, ઉત્કેન્દ્રતા $\frac{1}{3}$ અને પ્રધાન અક્ષ X-અક્ષ ઉપર.

(2) નાભિલંબની લંબાઈ 8, ઉત્કેન્દ્રતા $\frac{1}{\sqrt{2}}$, અને પ્રધાન અક્ષ Y-અક્ષ ઉપર.

ઉકેલ : (1) અહીં પ્રધાન અક્ષ X-અક્ષ ઉપર છે અને પ્રધાન અક્ષની લંબાઈ 6 છે.

$$\therefore$$
 2 $a=6$. માટે, $a=3$

આથી
$$a^2 = 9$$
. વધુમાં $e = \frac{1}{3}$

હવે,
$$b^2 = a^2(1 - e^2)$$

$$b^2 = 9(1 - e^2) = 9(1 - \frac{1}{9}) = 9(\frac{8}{9}) = 8$$

$$\therefore \quad \text{ઉપવલયનું સમીકરણ } \frac{x^2}{9} + \frac{y^2}{8} = 1$$
મળે.

(2) અહીં પ્રધાન અક્ષ Y-અક્ષ ઉપર છે.

$$\therefore$$
 નાભિલંબની લંબાઈ $\frac{2a^2}{b} = 8$. આથી $a^2 = 4b$.

વળી, ઉત્કેન્દ્રતા $e=rac{1}{\sqrt{2}}$ અને $a^2=b^2(1-e^2)=b^2\left(1-rac{1}{2}\right)$

$$\therefore \quad a^2 = \frac{1}{2}b^2$$
 (ii)

(i) અને (ii) પરથી,

$$\frac{1}{2}b^2 = 4b$$
 એટલે કે $b^2 - 8b = 0$

$$\therefore b = 8 \text{ size } \hat{b} \neq 0.$$

:.
$$b^2 = 64$$
. Well $a^2 = \frac{b^2}{2} = \frac{64}{2} = 32$

આમ, ઉપવલયનું સમીકરણ $\frac{x^2}{32} + \frac{y^2}{64} = 1$ છે.

ઉદાહરણ 22 : પ્રધાન અક્ષ X-અક્ષ ઉપર હોય, ગૌણ અક્ષની અર્ધલંબાઈ 4 હોય અને જેની બે નાભિઓ વચ્ચે અંતર 5 હોય તેવા ઉપવલયનું સમીકરણ મેળવો.

6કેલ : અહીં, ગૌણ અક્ષની અર્ધલંબાઈ b=4.

(પ્રધાન અક્ષ X-અક્ષ પર છે.)

ધારો કે, S(ae, 0) અને S'(-ae, 0) નાભિઓ છે. તેમની વચ્ચેનું અંતર SS' = 2ae = 5.

$$\therefore ae = \frac{5}{2}$$

 $av(1, b^2 = a^2(1 - e^2) = a^2 - a^2e^2$

$$16 = a^2 - \left(\frac{5}{2}\right)^2 = a^2 - \frac{25}{4} \tag{(i) uplay}$$

$$\therefore$$
 $a^2 = 16 + \frac{25}{4} = \frac{89}{4}$

આમ, માંગેલ ઉપવલયનું સમીકરણ $\frac{x^2}{\frac{89}{4}} + \frac{y^2}{16} = 1$.

$$\therefore \frac{4x^2}{89} + \frac{y^2}{16} = 1.$$

સ્વાધ્યાય 8.4

- 1. નીચેના પ્રત્યેક માટે ઉપવલયનું પ્રમાશિત સમીકરણ શોધો :
 - (1) નાભિઓ (± 2 , 0), ઉત્કેન્દ્રતા = $\frac{1}{2}$
 - (2) નાભિઓ (±4, 0), શિરોબિંદુઓ (±5, 0)
 - (3) ગૌણ અક્ષની અર્ધ-લંબાઈ 6, ઉત્કેન્દ્રતા $\frac{4}{5}$; X-અક્ષ પર પ્રધાન અક્ષ.
 - (4) એક નાભિ (0, 4), ઉત્કેન્દ્રતા $\frac{4}{5}$
 - (5) ઉત્કેન્દ્રતા $\frac{2}{3}$, નાભિલંબની લંબાઈ 5; X-અક્ષ પર પ્રધાન અક્ષ.
 - (6) પ્રધાન અક્ષની અર્ધલંબાઈ 4, ઉત્કેન્દ્રતા $\frac{1}{2}$; X-અક્ષ પર પ્રધાન અક્ષ.
 - (7) ગૌણ અક્ષની અર્ધલંબાઈ 8, નાભિ (0, 6).
- 2. જેની નાભિઓ (±3, 0) હોય અને જે (4, 1) માંથી પસાર થતો હોય તેવા ઉપવલયનું સમીકરણ શક્ય હોય તો મેળવો.
- 3. નીચેનાં ઉપવલયો માટે નાભિના યામ, ઉત્કેન્દ્રતા, નિયામિકાઓનાં સમીકરણો અને નાભિલંબની લંબાઈ મેળવો :

(1)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$(2) \ \frac{x^2}{36} + \frac{y^2}{20} = 1$$

$$(3) \quad x^2 + 2y^2 = 100$$

$$(4) \quad \frac{x^2}{43} + \frac{7y^2}{688} = 1$$

$$(5) \ 5x^2 + 9y^2 = 81$$

- એક ઉપવલયની બે નિયામિકાઓ વચ્ચેનું અંતર તેની નાભિઓ વચ્ચેના અંતરથી ત્રણ ગણું હોય તો તેની ઉત્કેન્દ્રતા શોધો.
- 5. ઉપવલય $16x^2 + 25y^2 = 1600$ ની નિયામિકાઓનાં સમીકરણ મેળવો. સાબિત કરો કે, બિંદુ $(5\sqrt{3}, 4)$ ઉપવલય ઉપર છે. આ બિંદુના કોઈ નિયામિકાથી અંતર અને તેને સંગત નાભિથી અંતરનો ગુણોત્તર શોધો.
- **6.** સાબિત કરો કે, રેખા x + y = 3 ઉપવલય $20x^2 + 36y^2 = 405$ ની નાભિજીવાને સમાવે છે. (એટલે કે તે કોઈ નાભિમાંથી પસાર થાય છે.)
- 7. બિંદુઓ (4, 3) અને (–1, 4) માંથી પસાર થતાં ઉપવલયનું સમીકરણ મેળવો.
- **8.** જેની નાભિ (3, 2), સંગત નિયામિકાનું સમીકરણ y=5 તથા ઉત્કેન્દ્રતા $\frac{1}{2}$ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
- 9. (2, 1) આગળ ઊગમબિંદુનું સ્થાનાંતર કરી સાબિત કરો કે $\frac{(x-2)^2}{4} + \frac{(y-1)^2}{9} = 1$ ઉપવલય દર્શાવે છે તથા તેની નાભિઓના યામ તથા નિયામિકાનાં સમીકરણ શોધો.

*

8.12 ઉપવલયનાં પ્રચલ સમીકરણો

ઉપવલયનું સમીકરણ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ છે.

આથી, $\left(\frac{x}{a}, \frac{y}{b}\right)$ એકમ વર્તુળ પર છે.

$$\therefore$$
 જેથી $\exists \theta \in (-\pi, \pi]$, જેથી $\frac{x}{a} = \cos\theta$, $\frac{y}{b} = \sin\theta$

$$\therefore$$
 $x = a\cos\theta, y = b\sin\theta,$

વધુમાં $x=acos\theta$, $y=bsin\theta$ માંથી θ નો લોપ કરતાં $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ મળે. આમ, જોઈ શકાય છે કે, $x=acos\theta$, $y=bsin\theta$, $\theta\in(-\pi,\ \pi]$ ઉપવલયનાં પ્રચલ સમીકરણો છે. ઉપવલય પરના બિંદુ $(acos\theta,\ bsin\theta)$ ને θ -બિંદુ કહેવાય છે.

ઉપવલયના ગુણધર્મો :

ગુ<mark>ણધર્મ 1 :</mark> ઉપવલયની નાભિનું ગૌણ અક્ષના કોઈ પણ અંત્યબિંદુથી અંતર પ્રધાન અક્ષની અર્ધ-લંબાઈ જેટલું થાય.

સાબિતી : ઉપવલય $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ના ગૌણ અક્ષનું એક અંત્યબિંદુ B(0, b) છે. કોઈ એક નાભિ S ના યામ (ae, 0) છે.

$$\therefore$$
 SB² = $a^2e^2 + b^2 = a^2e^2 + a^2(1 - e^2) = a^2$

B(0, b)

A' S'(-ae,0) C S(ae,0) A(a, 0)

આકૃતિ 8.20

તેમજ, ગૌણ અક્ષના બીજા અંત્યબિંદુ B'(0,-b) માટે પણ SB'=a=S'B' દર્શાવી શકાય.

ગુણધર્મ 2: જો S એ નાભિ હોય અને A અને A' પ્રધાન અક્ષનાં અંત્યબિંદુઓ હોય તો $AS \cdot A'S = b^2$.

સાબિતી : અહીં નાભિ S(ae, 0), A(a, 0) અને A'(-a, 0) છે.

$$AS \cdot A'S = \sqrt{(a-ae)^2} \sqrt{(a+ae)^2}$$

$$= a(1-e) \ a(1+e)$$

$$= a^2 (1-e^2) = b^2$$
(0 < e < 1)

ગુણધર્મ 3 : ઉપવલય $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ પરના કોઈ પણ બિંદુ P(x, y) માટે, SP + S'P = 2a, જ્યાં S અને S'

નાભિઓ છે અને b < a

સાબિતી : ઉપવલયની નિયામિકાઓનાં સમીકરણ $x\pm\frac{a}{e}=0$ છે. આમ, બિંદુ P(x,y) નાં નિયામિકાઓથી અંતર અનુક્રમે, $\left|\frac{a}{e}\mp x\right|$ થાય. ઉપવલયની વ્યાખ્યા મુજબ,

$$SP = e \left| \frac{a}{e} - x \right| = |a - ex|$$

$$S'P = e \left| \frac{a}{e} + x \right| = |a + ex|$$

વળી,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. તેથી $\frac{x^2}{a^2} \le 1$

$$\therefore$$
 $|ex| < a$ અથવા $-a < ex < a$

$$\therefore$$
 SP = $a - ex$, S'P = $a + ex$

$$\therefore SP + S'P = 2a$$

ઉપરના ગુણધર્મનું પ્રતીપ પણ સાચું છે. એટલે કે, સમતલમાંના એવા બિંદુઓનો ગણ, કે જેમનાં સમતલમાંના કોઈ બે નિશ્ચિત બિંદુઓથી અંતરનો સરવાળો અચળ હોય, તે ઉપવલય હોય છે, જેના પ્રધાન અક્ષની લંબાઈ તે અચળ અંતર જેટલી છે.

આની સાબિતી નીચે મુજબ છે :

ધારો કે, S(c, 0) અને S'(-c, 0) સમતલમાંના નિશ્ચિત બિંદુઓ છે. અક્ષો એવી રીતે પસંદ કર્યા છે જેથી $\overline{SS'}$ નું મધ્યબિંદુ ઉગમબિંદુ થાય અને \overrightarrow{CS} ની દિશા X-અક્ષની ધન દિશા થાય. ધારો કે સમતલમાંનું કોઈ બિંદુ એવું P છે, જેથી SP+S'P=2a, a અચળ છે. $(a\neq c)$

$$P \notin \overline{SS'}$$
 (જો $P \in \overline{SS'}$ તો $SP + S'P = SS'$ એટલે કે $2a = 2c$) અહીં, $SP + S'P > SS'$.

$$2a > 2c$$

હવે, SP + S'P = $2a$

$$\therefore \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$\therefore \sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

$$\therefore (x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$\therefore a\sqrt{(x-c)^2+y^2} = a^2-cx$$

$$\therefore \quad \sqrt{(x-c)^2 + y^2} = a - \frac{c}{a}x$$

$$\therefore \quad \frac{c}{a} = e \text{ eldi, } \sqrt{(x-c)^2 + y^2} = a - ex$$

$$\therefore (x - ae)^2 + y^2 = (a - ex)^2$$

$$x^2 - 2aex + a^2e^2 + v^2 = a^2 - 2aex + e^2x^2$$

$$x^2(1-e^2) + y^2 = a^2(1-e^2)$$

$$\therefore \frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$

(i) પરથી
$$a > c$$
, $e = \frac{c}{a} < 1$. આથી, $a^2 (1 - e^2) > 0$.

 \therefore ધન વાસ્તવિક સંખ્યા b મળે જેથી $b^2 = a^2(1 - e^2)$

આમ,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 મળે.

ઉપવલયની અગત્યની વ્યવહારુ ઉપયોગીતા

જો ઉપવલય આકારના અરીસામાં નાભિ S એ પ્રકાશનું (ધ્વનિનું અથવા વ્યાપક રીતે, કોઈ પણ તરંગનું) ઉદ્ગમસ્થાન હોય, તો S માંથી નીકળતા પ્રકાશનાં કિરણો અરીસામાંથી પરાવર્તિત થઈ ઉપવલયની બીજી નાભિ S' માં કેન્દ્રીત થાય છે.

ઉપવલયના આ ગુણધર્મનો ઉપયોગ ભારતીય પ્રાચીન સ્થપતિઓએ વિશિષ્ટ ધ્વનિકક્ષના નિર્માણમાં કર્યો હતો. આવાં ધ્વનિકક્ષ કર્ણાટકમાં બિજાપુરમાં અને હૈદરાબાદના ગોલકોંડાના કિલ્લામાં જોવા મળે છે. ટેલિસ્કોપના નિર્માણમાં ઉપવલયના આ ગુણધર્મનો ઉપયોગ થાય છે.

તબીબીશાસ્ત્રમાં મૂત્રપિંડ તેમજ મૂત્રાશયની પથરી તોડવા લિથોટ્રીપર (Lithotripper) મશીનનો ઉપયોગ કરવામાં આવે છે. આમાં પણ ઉપવલયનો આ ગુણધર્મ વપરાય છે. અહીં લિથોટ્રીપરને ઉપવલયની એક નાભિ પાસે મૂકવામાં આવે છે અને ઉપવલયની બીજી નાભિ પાસે ઉચ્ચ આવૃત્તિવાળા આઘાતી તરંગો આપાત કરવામાં આવે છે પરાવર્તિત થઈ મૂત્રપિંડની પથરી તોડી નાખે છે.

ઉદાહરણ 23 : ઉપવલય $3x^2 + 5y^2 = 15$ નાં પ્રચલ સમીકરણો મેળવો.

ઉકેલ : સમીકરણને 15 વડે ભાગતાં,
$$\frac{x^2}{5} + \frac{y^2}{3} = 1$$

આમ, $a=\sqrt{5}$ અને $b=\sqrt{3}$. આથી ઉપવલયનાં પ્રચલ સમીકરણો $x=\sqrt{5}\cos\theta,\,y=\sqrt{3}\sin\theta.$ $\theta\in(-\pi,\,\pi].$

ઉદાહરણ 24 : ઉપવલય $x=2cos\theta$, $y=5sin\theta$ ની ઉત્કેન્દ્રતા, નાભિના યામ તથા નિયામિકાનાં સમીકરણ શોધો.

6કેલ : અહીં, $a=2,\ b=5$. વળી, b>a હોવાથી પ્રધાન અક્ષ Y-અક્ષનો ઉપગણ હોય.

(1) ઉત્કેન્દ્રતા : અહીં
$$a^2 = b^2(1 - e^2)$$

$$\therefore$$
 4 = 25(1 - e^2)

આકૃતિ 8.21

$$\therefore \frac{4}{25} = 1 - e^2$$

$$\therefore e^2 = 1 - \frac{4}{25} = \frac{21}{25} \text{ and } e = \frac{\sqrt{21}}{5}$$

(2) નાભિઓના યામ :
$$(0, \pm be)$$
 = $\left(0, \pm 5\frac{\sqrt{21}}{5}\right)$ = $(0, \pm \sqrt{21})$

(3) નિયામિકાઓનાં સમીકરણ :
$$y = \pm \frac{b}{e} = \pm 5 \times \frac{5}{\sqrt{21}} = \pm \frac{25}{\sqrt{21}}$$

સ્વાધ્યાય 8.5

નીચે ઉપવલયોનાં પ્રચલ સમીકરણો મેળવો :

(1)
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

(2)
$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$

(3)
$$3x^2 + 4y^2 - 12 = 0$$
 (4) $\frac{x^2}{16} + \frac{y^2}{7} = 1$ (5) $x^2 + 2y^2 - 18 = 0$

(4)
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

$$(5) x^2 + 2y^2 - 18 = 0$$

2. નીચેના ઉપવલયોની ઉત્કેન્દ્રતા તેમજ નાભિઓ મેળવો :

(1)
$$x = 2\cos\theta, y = 3\sin\theta$$
 $\theta \in (-\pi, \pi]$

$$\theta \in (-\pi, \pi]$$

(2)
$$3x = 5\cos\theta$$
, $5y = 7\sin\theta$ $\theta \in (-\pi, \pi]$

$$\theta \in (-\pi, \pi]$$

(3)
$$x = 4\cos\theta, y = 3\sin\theta$$

$$\theta \in (-\pi, \pi]$$

જો બે બિંદુ S(1, 0) તથા S'(-1, 0) થી ચલ બિંદુ P નાં અંતરોનો સરવાળો અચળ 8 હોય તો P બિંદુગણ શોધો.

8.13 અતિવલય

અતિવલય યુદ્ધવિદ્યામાં ઉપયોગી એક અગત્યનો વક્ર છે. ઉદાહરણ તરીકે ગોળીબારનું ઉદ્ભવસ્થાન અતિવલયના ગુણધર્મ અને ધ્વનિની તિવ્રતા ઉપરથી નક્કી કરી શકાય છે.

જેની ઉત્કેન્દ્રતા e > 1 હોય તેવો શાંકવ અતિવલય (hyperbola) કહેવાય છે.

અતિવલયનું પ્રમાશિત સમીકરણ :

ધારો કે, બિંદુ S અતિવલયની નાભિ, રેખા I નિયામિકા અને e એ અતિવલયની ઉત્કેન્દ્રતા દર્શાવે છે. બિંદુ S માંથી નિયામિકા 1 પરનો લંબપાદ Z લો. હવે, \overline{SZ} નું S તરફથી e:1 અને -e:1 ના ગુણોત્તરમાં વિભાજન કરતાં બિંદુઓ અનુક્રમે A અને A' લો. $\frac{SA}{AZ}=e$ તથા $\frac{SA'}{A'Z}=e$ હોવાથી A અને A' અતિવલય પર છે.

આકૃતિ 8.22

ધારો કે, AA' = 2a અને C એ $\overline{AA'}$ નું મધ્યબિંદુ છે. CA = CA' = a.

ધારો કે, C ઉગમબિંદુ છે તથા \overrightarrow{CA} ની દિશા એ X-અક્ષની ધન દિશા તરીકે લેતાં, $A=(a,\,0)$ અને $A'=(-a,\,0)$. ધારો કે, S તથા Z ના યામ અનુક્રમે $(p,\ 0)$ તથા $(q,\ 0)$ છે. A તથા A' એ \overline{SZ} નું S તરફથી e તથા -e ગુણોત્તરમાં વિભાજન કરતાં હોવાથી,

$$\frac{eq+p}{e+1} = a$$
 तथा $\frac{-eq+p}{-e+1} = -a$

$$\therefore eq + p = ae + a \text{ dul } -eq + p = ae - a$$

$$\therefore p = ae \text{ det } q = \frac{a}{e}$$

.. નાભિ S ના યામ (ae, 0) છે તથા નિયામિકા lનું સમીકરણ $x = \frac{a}{e}$ છે.

ધારો કે, P(x, y) એ અતિવલય પરનું કોઈ બિંદુ છે તથા P માંથી નિયામિકા I પરનો લંબપાદ M છે. આથી M ના યામ $\left(\frac{a}{a}, y\right)$ થાય.

અહીં $a^2 > 0$ તથા e > 1 હોવાથી $e^2 - 1 > 0$

 $a^2(e^2-1)>0$ થાય. આથી ધન વાસ્તવિક સંખ્યા b મળે કે જેથી $a^2(e^2-1)=b^2$.

$$\therefore \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 એ અતિવલયનું પ્રમાણિત સમીકરણ છે.$$

અતિવલયના પ્રમાણિત સમીકરણ પરથી નીચે મુજબનાં તારણો મેળવી શકાય :

(1) સંમિતતા:

અતિવલય બંને અક્ષો પ્રત્યે તેમજ ઊગમબિંદુ પ્રત્યે સંમિત છે. ઉપરાંત, ઊગમબિંદુ કેન્દ્ર છે. આમ અતિવલય પણ કેન્દ્રીય શાંકવ છે.

(2) યામાક્ષો સાથે છેદ :

અતિવલયનો યામાક્ષો સાથે છેદ મેળવવા y = 0 લેતાં,

$$\frac{x^2}{a^2} = 1$$
. આમ $x = \pm a$ મળે.

આમ, અતિવલય X-અક્ષને બિંદુઓ A(a, 0) અને A'(-a, 0)માં છેદે છે. A અને A'ને અતિવલયનાં શિરોબિંદુઓ કહેવાય છે.

હવે અતિવલયના સમીકરણમાં x=0 મૂકતાં, $y^2=-b^2$ મળે, $b\neq 0$ હોવાથી, y ના કોઈ પણ વાસ્તવિક મૂલ્ય માટે $y^2=-b^2$ ન થાય. આમ અતિવલય Y-અક્ષને છેદે નહીં. ઉપવલયની માફક બિંદુઓ B(0,b) અને B'(0,-b) ને પણ અતિવલયનાં શિરોબિંદુઓ કહેવાય છે, અહીં નોંધીએ કે આ બિંદુઓ અતિવલય પર આવેલા નથી. અતિવલય માટે $\overline{AA'}$ અને $\overline{BB'}$ ને અનુક્રમે **મુખ્ય અક્ષ** (Transverse axis) અને અનુબદ્ધ અક્ષ (Conjugate axis) કહેવાય છે.

અતિવલય $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, Y-અક્ષને છેદે નહીં પરંતુ તે Y-અક્ષની બંને બાજુ આવેલ હોય છે. અતિવલયના આ બંને ભાગોને કોઈ સામાન્ય બિંદુ હોતું નથી અને તેમને અતિવલયની **શાખાઓ (Branches)** કહેવાય છે.

(3) નાભિ અને નિયામિકાની બીજી જોડ :

અતિવલયનું સમીકરણ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ છે.

$$\therefore \frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1$$

$$\therefore (e^2 - 1)x^2 - y^2 = a^2(e^2 - 1)$$

$$\therefore$$
 $x^2 + 2aex + a^2e^2 + y^2 = a^2 + 2aex + e^2x^2$

$$\therefore (x + ae)^2 + y^2 = e^2(x + \frac{a}{e})^2$$

ધારો કે, S'(
$$-ae$$
 , 0) છે, તથા રેખા $l': x + \frac{a}{e} = 0$

P(x, y) માંથી l' પરનો લંબપાદ M' છે.

$$\therefore (S'P)^2 = e^2(P'M)^2$$

 \therefore અતિવલય માટે બીજી નિયામિકા $x+\frac{a}{e}=0$ મળે તથા બીજી નાભિ $(-ae,\ 0)$ છે.

આમ, અતિવલય $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ને બે નાભિ ($\pm ae$, 0) તથા અનુરૂપ બે નિયામિકાઓ $x \mp \frac{a}{e} = 0$ છે.

(4) જીવાઓ, નાભિજીવાઓ અને નાભિલંબો

અતિવલયના બે બિંદુઓને જોડતા રેખાખંડને અતિવલયની **જવા** કહે છે. જો આ જીવા અતિવલયની નાભિમાંથી પસાર થાય તો તેને અતિવલયની **નાભિજીવા** કહે છે. અતિવલયના મુખ્ય અક્ષને લંબ નાભિજીવાને અતિવલયનો **નાભિલંબ** કહે છે.

(5) નાભિલંબની લંબાઈ :

ધારો કે, $\overline{L_1L_4}$ નાભિ $S(ae,\ 0)$ માંથી પસાર થતો નાભિલંબ છે. (આકૃતિ 8.24). આ નાભિલંબને સમાવતી રેખાનું સમીકરણ x=ae છે. આમ, $\overset{\longleftrightarrow}{L_1L_4}$ બંનેના x-યામ ae છે.

આમ, અતિવલયના સમીકરણ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ માં x = ae મૂકતાં,

$$\frac{(ae)^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\therefore \quad \frac{y^2}{h^2} = e^2 - 1$$

$$y^2 = b^2(e^2 - 1)$$

$$= b^2 \cdot \frac{b^2}{a^2}$$

$$= \frac{b^4}{a^2}$$

$$\therefore y = \pm \frac{b^2}{a}$$

$$\therefore \quad \mathbf{L_1} \mathbf{L_4} = \frac{2b^2}{a}$$

આકૃતિ 8.23

(6) અતિવલયના સમીકરણનું અન્ય સ્વરૂપ :

ઉપવલયની માફક અતિવલય માટે મુખ્ય અક્ષ Y-અક્ષના ઉપગણ તરીકે લઈએ તો તેનું પ્રમાશિત સમીકરણ $\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1.$

આ અતિવલયને અતિવલય $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ ને અનુબદ્ધ અતિવલય (conjugate hyperbola) કહેવાય.

અતિવલયનાં પ્રચલ સમીકરણ :

સમીકરણ $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ ને ત્રિકોણમિતીય નિત્યસમ $sec^2\theta-tan^2\theta=1$ સાથે સરખાવતાં,

અતિવલય પરના કોઈ પણ બિંદુ (x,y) માટે $-\pi < \theta \le \pi$ હોય અને $\theta \ne \frac{\pi}{2}, -\frac{\pi}{2}$ એવો θ મળે કે જેથી, $x = a \sec \theta$, $y = b \tan \theta$.

આથી ઉલટું, કોઈ પણ $\theta \in (-\pi, \pi] - \left\{\frac{\pi}{2}, -\frac{\pi}{2}\right\}$ માટે $x = a \sec \theta$, $y = b \tan \theta$, લઈએ તો બિંદુ (x, y), અતિવલય $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ પર આવે. અહીં θ એ પ્રચલ છે. અગાઉ જણાવ્યા મુજબ બિંદુ $(a \sec \theta, b \tan \theta)$ ને અતિવલયનું θ -બિંદુ કહેવાય છે.

આ જ રીતે $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ નાં પ્રચલ સમીકરણો $x = a \tan \theta$, $y = b \sec \theta$, $\theta \in (-\pi, \pi] - \left\{\frac{\pi}{2}, -\frac{\pi}{2}\right\}$ છે. લંબાતિવલય :

અતિવલય $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ માટે જો $a^2 = b^2$ હોય તો તે અતિવલયને **લંબાતિવલય (Rectangular hyperbola)** કહેવાય છે. આમ લંબાતિવલયનું સમીકરણ

$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$
 અથવા $x^2 - y^2 = a^2$ થાય.

ઉત્કેન્દ્રતા : અતિવલયની ઉત્કેન્દ્રતા મેળવવા માટે $b^2=a^2(e^2-1)$ વપરાય છે. લંબાતિવલય માટે $a^2=b^2$ છે.

$$\therefore a^2 = a^2(e^2 - 1)$$

$$e^2 = 2$$

$$\therefore e = \sqrt{2}$$
 (51291 § $e > 1$)

 θ -બિંદુ : લંબાતિવલય માટે θ -બિંદુ ($a \sec \theta$, $a \tan \theta$) છે.

નાભિલંબની લંબાઈ : અતિવલય માટે નાભિલંબની લંબાઈ $\frac{2b^2}{a}$ છે. અહીં $b^2=a^2$ હોવાથી નાભિલંબની લંબાઈ 2a થશે.

અતિવલયના ગુણધર્મો :

જો S અને S' અતિવલય $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ની નાભિઓ હોય અને બિંદુ P અતિવલયનું કોઈ પણ બિંદુ હોય તો | SP - S'P | અચળ હોય છે.

સાબિતી : S(ae, 0) અને S(-ae, 0) નાભિઓ છે. હવે, SP = ePM

$$= e \left| x - \frac{a}{e} \right|$$

आर्टात 8.24

અહીં, $\overline{\mathrm{PM}}$ એ બિંદુ $\mathrm{P}(x,\ y)$ થી નિયામિકા $x=\frac{a}{e}$ પરનો લંબ છે.

$$\therefore SP = ePM = e \left| x - \frac{a}{e} \right| = |ex - a|$$

$$(SP - S'P)^{2} = SP^{2} + S'P^{2} - SP \cdot S'P$$

$$= (ex - a)^{2} + (ex + a)^{2} - 2 | e^{2}x^{2} - a^{2} |$$

$$= (ex - a)^{2} + (ex + a)^{2} - 2(e^{2}x^{2} - a^{2})$$

$$= 4a^{2}$$

$$(e^{2} > 1, x^{2} \ge a^{2} \Rightarrow e^{2}x^{2} > a^{2})$$

$$= 4a^{2}$$

$$\therefore$$
 | SP - S'P | = 2a

ઉપરોક્ત વિધાનનું પ્રતીપ પણ સત્ય છે. આમ, 'અતિવલય એટલે (સમતલમાંના) એવા બિંદુઓનો ગણ કે જેના બે નિશ્ચિત બિંદુઓથી અંતરનો તફાવત અચળ હોય' તેવી વ્યાખ્યા મળે.

અતિવલયની આ વ્યાખ્યાની મદદથી પણ અતિવલયનું સમીકરણ મેળવી શકાય.

ધારો કે S અને S' એ નિશ્ચિત બિંદુ છે તથા P સમતલનું એવું બિંદુ છે કે, જેથી |SP-S'P|=2a. ધારો કે S તથા S' ના યામ અનુક્રમે $(c,\ 0)$ તથા $(-c,\ 0)$ છે અને $\overline{SS'}$ નું મધ્યબિંદુ C ઉગમબિંદુ છે.

$$\therefore \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a$$

$$\therefore \sqrt{(x+c)^2+y^2} = \sqrt{(x-c)^2+y^2} \pm 2a$$

$$\therefore (x+c)^2 + y^2 = (x-c)^2 + y^2 \pm 4a\sqrt{(x-c)^2 + y^2} + 4a^2$$

(i)

$$\therefore cx - a^2 = \pm a\sqrt{(x-c)^2 + y^2}$$

$$\therefore \left(\frac{c}{a}x-a\right)^2=(x-c)^2+y^2$$

$$\frac{c}{a} = e$$
 enti $c = ae$

$$\therefore (ex - a)^2 = (x - ae)^2 + y^2$$

$$\therefore (x - ae)^2 + y^2 = e^2 \left(x - \frac{a}{e}\right)^2$$

ધારો કે $l:x-\frac{a}{e}=0$ રેખા દર્શાવે છે.

M એ P માં / પરનો લંબપાદ છે.

$$\therefore (SP)^2 = e^2(PM)^2$$

$$\therefore \frac{SP}{PM} = e$$

તદ્ઉપરાંત | SP
$$-$$
 S'P | = $2a$ $<$ SS' = $2c$

$$\therefore e > 1$$

Pનો બિંદુગણ ઉત્કેન્દ્રતા e વાળો એક અતિવલય છે.

ઉદાહરણ 25 : જેની નાભિ (0, 1) હોય, નિયામિકાનું સમીકરણ x + 3 = 0 હોય તથા ઉત્કેન્દ્રતા $\sqrt{2}$ હોય તેવા અતિવલયનું સમીકરણ મેળવો.

 $(P \notin \overrightarrow{SS}, -\overrightarrow{SS},)$

ઉકેલ : $SP^2 = e^2 PM^2$ પરથી,

$$\therefore$$
 $x^2 + (y - 1)^2 = 2(x + 3)^2$

$$\therefore$$
 $x^2 + y^2 - 2y + 1 = 2(x^2 + 6x + 9)$

 $x^2 - y^2 + 12x + 2y + 17 = 0$ માંગેલ અતિવલયનું સમીકરણ છે.

ઉદાહરણ 26 : ઊગમબિંદુનું (-1, -2) આગળ સ્થાનાંતર કરી સાબિત કરો કે સમીકરણ $(x+1)^2 - (y+2)^2 = 16$ અતિવલય દર્શાવે છે. તેની ઉત્કેન્દ્રતા, નાભિઓનાં યામ તથા નિયામિકાઓનાં સમીકરણ શોધો.

ઉકેલ: પ્રમાશિત સંકેતમાં
$$x = x' - 1$$
, $y = y' - 2$ લેતાં, $(x')^2 - (y')^2 = 16$

આ સમીકરણ લંબાતિવલય દર્શાવે છે. a=b=4 તથા $e=\sqrt{2}$.

∴ નાભિનાં યામ ($\pm 4\sqrt{2}$, 0) તથા નિયામિકાનાં સમીકરણ $x' \mp 2\sqrt{2} = 0$ (x' - y' પદ્ધતિમાં)

∴ મૂળ યામ પદ્ધતિમાં નાભિનાં યામ ($\pm 4\sqrt{2} - 1, -2$) છે.

અને નિયામિકાનાં સમીકરણ $x + 1 \pm 2\sqrt{2} = 0$ છે.

ઉદાહરણ 27 : P એવું ચલબિંદુ છે કે તેના એકબીજાથી 12 જેટલા અંતરે આવેલા નિશ્ચિત બિંદુઓ S તથા S' થી અંતરોનો તફાવત અચળ છે અને 8 જેટલો છે તો P નો બિંદુગણ મેળવો.

$$634: |SP - SP| = 2a = 8$$

∴
$$a = 4$$
, SS' = $2c = 12$. આથી $c = 6$

$$e = \frac{c}{a} = \frac{6}{4} = \frac{3}{2}$$

હવે,
$$b^2 = a^2(e^2 - 1) = 16(\frac{9}{4} - 1) = 36 - 16 = 20$$

$$\therefore$$
 અતિવલયનું સમીકરણ $\frac{x^2}{16} - \frac{y^2}{20} = 1$ છે.

ઉદાહરણ 28 : નીચેના અતિવલય માટે નાભિઓના યામ, નિયામિકાઓનાં સમીકરણ, ઉત્કેન્દ્રતા, નાભિલંબની લંબાઈ અને મુખ્ય અક્ષ તેમજ અનુબદ્ધ અક્ષની લંબાઈ શોધો :

$$(1) \quad x^2 - 16y^2 = 16$$

(2)
$$\frac{x^2}{25} - \frac{y^2}{24} = 1$$

$$(3) \quad \frac{y^2}{25} - \frac{x^2}{9} = 1$$

$$(4) \quad x^2 - y^2 = 4$$

ઉકેલ : (1) સમીકરણને $\frac{x^2}{16} - \frac{y^2}{1} = 1$ તરીકે લખતાં, a = 4, b = 1

હવે,
$$b^2 = a^2(e^2 - 1)$$
, $1 = 16(e^2 - 1)$

$$e^2 - 1 = \frac{1}{16}$$
 અથવા $e^2 = \frac{17}{16}$

$$\therefore e = \frac{\sqrt{17}}{4}$$

નાભિઓ :
$$(\pm ae, 0) = \left(\pm 4\left(\frac{\sqrt{17}}{4}\right), 0\right) = (\pm \sqrt{17}, 0)$$

નિયામિકાઓ :
$$x = \pm \frac{a}{e}$$
 i.e. $x = \pm 4 \left(\frac{4}{\sqrt{17}} \right)$

$$\therefore$$
 $x = \pm \frac{16}{\sqrt{17}}$ નિયામિકાઓનાં સમીકરણ છે.

નાભિલંબની લંબાઈ =
$$\frac{2b^2}{a}$$
 = $\frac{2}{4}$ = $\frac{1}{2}$

મુખ્ય અક્ષની લંબાઈ = 2a = 8, અનુબદ્ધ અક્ષની લંબાઈ = 2b = 2

(2) અહીં,
$$a^2 = 25$$
, $b^2 = 24$

$$b^2 = a^2(e^2 - 1)$$

$$\therefore$$
 24 = 25 ($e^2 - 1$)

$$e^2 - 1 = \frac{24}{25}$$

$$e^2 = \frac{49}{25}$$

$$\therefore e = \frac{7}{5}$$

નાભિઓ :
$$(\pm ae, 0) = (\pm 5(\frac{7}{5}), 0) = (\pm 7, 0)$$

નિયામિકાઓ :
$$x = \pm \frac{a}{e} = \pm \frac{5}{\binom{7}{5}} = \pm \frac{25}{7}$$

 \therefore નિયામિકાઓનાં સમીકરણ $x=\pm \frac{25}{7}$ છે.

નાભિલંબની લંબાઈ =
$$\frac{2b^2}{a}$$
 = $\frac{2(24)}{5}$ = $\frac{48}{5}$

મુખ્ય અક્ષની લંબાઈ = 2a = 10

અનુબદ્ધ અક્ષની લંબાઈ =
$$2b = 2\sqrt{24} = 4\sqrt{6}$$

(3) આ અતિવલયની નિયામિકાઓ X-અક્ષને સમાંતર છે. અહીં, $a^2 = 9$, $b^2 = 25$ $a^2 = b^2(e^2 - 1)$

$$\therefore$$
 9 = 25 ($e^2 - 1$)

$$e^2 = 1 + \frac{9}{25} = \frac{34}{25}$$
. $e^2 = \frac{\sqrt{34}}{5}$

નાભિઓ :
$$(0, \pm be) = \left(0, \pm 5\left(\frac{\sqrt{34}}{5}\right)\right) = (0, \pm \sqrt{34})$$

નિયામિકાઓ :
$$y = \pm \frac{b}{e} = \pm 5 \left(\frac{5}{\sqrt{34}} \right) = \pm \frac{25}{\sqrt{34}}$$

 \therefore $y=\pm \frac{25}{\sqrt{34}}$ અતિવલયની નિયામિકાઓનાં સમીકરણ છે.

નાભિલંબની લંબાઈ =
$$\frac{2a^2}{b}$$
 = $\frac{2\cdot 9}{5}$ = $\frac{18}{5}$

મુખ્ય અક્ષની લંબાઈ = 2b = 10, અનુબદ્ધ અક્ષની લંબાઈ = 2a = 6

(4) સમીકરણને $\frac{x^2}{4} - \frac{y^2}{4} = 1$ તરીકે લખી શકાય. આ લંબાતિવલય છે. $a^2 = b^2 = 4$

ઉત્કેન્દ્રતા : $e=\sqrt{2}$. નાભિઓના યામ ($\pm 2\sqrt{2}$, 0). નિયામિકાઓનાં સમીકરણ $x=\pm\sqrt{2}$

નાભિલંબની લંબાઈ 2a = 4

મુખ્ય અક્ષની લંબાઈ 2a = 4, અનુબદ્ધ અક્ષની લંબાઈ 2b = 4

ઉદાહરણ 29 : નીચે આપેલ શરતો પ્રમાણે અતિવલયનાં પ્રમાણિત સમીકરણો મેળવો :

- (1) નાભિઓ (±7, 0), શિરોબિંદુઓ (±5, 0)
- (2) નાભિઓ $(0, \pm 3)$, ઉત્કેન્દ્રતા = 2
- (3) નાભિઓ વચ્ચેનું અંતર 16 (નાભિઓ X-અક્ષ પર છે), ઉત્કેન્દ્રતા = $\sqrt{2}$

ઉકેલ : (1) નાભિઓ ($\pm ae$, 0) = (± 7 , 0)

$$\therefore \quad ae = 7$$

શિરોબિંદુઓ
$$(\pm 5, 0)$$
 હોવાથી, $a = 5$

$$\therefore ae = 5e = 7$$

$$\therefore e = \frac{7}{5}$$

હવે,
$$b^2 = a^2(e^2 - 1) = 25(\frac{49}{25} - 1) = 24$$

- \therefore અતિવલયનું સમીકરણ $\frac{x^2}{25} \frac{y^2}{24} = 1$ મળે.
- (2) નાભિઓ (0, ±3). નાભિઓ Y-અક્ષ પર છે. આમ નિયામિકાઓ X-અક્ષને સમાંતર થાય. વળી, e = 2 આપેલું છે.

$$\therefore$$
 2b = 3

$$\therefore b = \frac{3}{2}$$

$$d^2$$
, $a^2 = b^2(e^2 - 1) = \frac{9}{4}(4 - 1) = \frac{9}{4} \cdot 3 = \frac{27}{4}$

- \therefore અતિવલયનું સમીકરણ $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$ પ્રમાણે $\frac{y^2}{\frac{9}{2}} \frac{x^2}{\frac{27}{2}} = 1$ થાય.
- ∴ $\frac{4y^2}{9} \frac{4x^2}{27} = 1$ માંગેલ અતિવલયનું સમીકરણ છે.
- (3) નાભિઓ વચ્ચેનું અંતર = 2ae = 16. આથી ae = 8(i) $e = \sqrt{2}$. આથી લંબાતિવલય છે.

$$\therefore a\sqrt{2} = 8$$

$$a = \frac{8}{\sqrt{2}} = 4\sqrt{2} = b$$

$$x^2 - \frac{y^2}{32} = 1$$
 અથવા $x^2 - y^2 = 32$ થાય. સ્વાધ્યાય 8.6

- નીચે આપેલ અતિવલયોની નાભિઓના યામ, નિયામિકાનાં સમીકરણો, નાભિલંબની લંબાઈ, મુખ્ય અક્ષ તેમજ અનુબદ્ધ અક્ષની લંબાઈ શોધો.
 - (1) $\frac{x^2}{100} \frac{y^2}{25} = 1$
- (2) $x^2 y^2 = 64$ (3) $2x^2 3y^2 = 5$
- (4) $9y^2 16x^2 = 144$ (5) $\frac{y^2}{25} \frac{x^2}{39} = 1$

- 2. નીચેના પ્રત્યેક કિસ્સામાં અતિવલયનું પ્રમાણિત સમીકરણ મેળવો તેમજ તેનાં પ્રચલ સમીકરણો લખો ઃ
 - (1) ઉત્કેન્દ્રતા $e = \frac{4}{3}$, શિરોબિંદુઓ $(0, \pm 7)$
 - (2) નાભિઓ ($\pm\sqrt{13}$, 0), ઉત્કેન્દ્રતા $\frac{\sqrt{13}}{3}$
 - (3) નાભિઓ ($\pm 3\sqrt{5}$, 0), નાભિલંબની લંબાઈ = 8
 - (4) નાભિઓ (0, ± 8), ઉત્કેન્દ્રતા $\sqrt{2}$
 - (5) Y-અક્ષ પરની નાભિઓ વચ્ચેનું અંતર = 10, ઉત્કેન્દ્રતા = $\frac{5}{4}$
- 3. જો e_1 અને e_2 અનુક્રમે $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ અને $\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$ ની ઉત્કેન્દ્રતા હોય તો સાબિત કરો કે, $e_1^2+e_2^2=e_1^2\,e_2^2.$
- 4. અતિવલયના શિરોબિંદુનું નાભિઓથી અંતર 9 અને 1 હોય તો અતિવલયનું સમીકરણ મેળવો.
- 5. અતિવલય $\frac{y^2}{9} \frac{x^2}{16} = 1$ નાં પ્રચલ સમીકરણ લખો.

*

પ્રકીર્ણ ઉદાહરણો :

ઉદાહરણ 30 : પરવલયાકારના ઝૂલતા પુલના બે આધાર સ્તંભો 30 મીટર ઊંચા અને 200 મીટરના અંતરે આવેલા છે. પુલ તેની મધ્યમાં જમીનથી 5 મીટર ઊંચો છે. પુલના એક આધાર સ્તંભની ઊંચાઈ 11.25 મીટર હોય તો તેનું કેન્દ્રથી અંતર શોધો.

6કેલ : આકૃતિ 8.26માં દર્શાવ્યા પ્રમાણે CAB પરવલયાકારનો ઝૂલતો પુલ છે. તેનું કેન્દ્ર પરવલયનું શિરોબિંદુ છે. તેની ઊંચાઈ 5 મીટર છે. A ને ઉગમબિંદુ તરીકે લઈએ અને \overrightarrow{OA} ને Y-અક્ષ તરીકે લઈએ તો પરવલયનું સમીકરણ $x^2 = 4ay$ થાય. હવે, Oના યામ (0, -5), આમ, ઉગમબિંદુનું સ્થાનાંતર O પર કરવાથી પરવલયનું સમીકરણ,

$$(x')^2 = 4a(y' - 5)$$

(i)

આધાર સ્તંભ C અને B માટે, તેમના યામો અનુક્રમે (-100, 30) અને (100, 30) આપેલા છે. આનો ઉપયોગ (i) માં કરતાં,

$$(100)^2 = 4a(30 - 5)$$

- 10000 = 100a
- $\therefore a = 100$

આમ, (i) પરથી પરવલયનું સમીકરણ $x^2 = 400(y-5)$ છે.

હવે, 11.25 મીટર ઊંચાઈના આધાર સ્તંભનું અંતર શોધવા માટે સમીકરણ (ii)માં y=11.25 મૂકતાં,

$$x^2 = 400(11.25 - 5) = 400(6.25) = 2500$$

 \therefore $x = \pm 50$

આમ, કેન્દ્રની બંને બાજુ, કેન્દ્રથી 50 મીટર અંતરે 11.25 મીટર ઊંચાઈના આધાર સ્તંભ આવેલા હોય.

ઉદાહરણ 31 : 12 મી લંબાઈનો એક સળિયો એવી રીતે ખસે છે, કે જેથી તેનાં અંત્યબિંદુઓ યામાક્ષો પર રહે. X-અક્ષ પરના અંત્યબિંદુથી 3 મી અંતરે આવેલા સળિયા પરના બિંદુનો બિંદુગણ શોધો.

63લ : ધારો કે, 12 મી લંબાઈના સળિયા \overline{AB} નાં અંત્યબિંદુઓ A(a, 0) અને B(0, b) છે. બિંદુ A થી 3 મી અંતરે આવેલું સળિયા પરનું બિંદુ P(h, k) છે.

∴ બિંદુ P એ AB નું A તરફથી 1 : 3ના ગુણોત્તરમાં વિભાજન કરે.

$$\therefore \quad h = \frac{3a}{4} \text{ and } k = \frac{b}{4}$$

$$\therefore \quad a = \frac{4h}{3} \text{ and } b = 4k$$

હવે કાટકોણ $\triangle AOBમાં OA^2 + OB^2 = AB^2$. આથી, $a^2 + b^2 = 144$

$$\therefore \quad \frac{16h^2}{9} + \frac{16k^2}{1} = 144$$

$$\therefore \quad \frac{h^2}{81} + \frac{k^2}{9} = 1.$$

∴ આમ, બિંદુ P નો બિંદુગણ
$$\frac{x^2}{81} + \frac{y^2}{9} = 1$$
 છે. અને તે એક ઉપવલય છે.

ઉદાહરણ 32 : પૃથ્વીનો સૂર્યની આસપાસનો ગતિમાર્ગ એક ઉપવલય છે. સૂર્ય આ ઉપવલયની એક નાભિ છે. જો આ ઉપવલયના પ્રધાન અક્ષની લંબાઈ 300 મિલિયન કિમી હોય અને ગતિમાર્ગની ઉત્કેન્દ્રતા 0.0167 હોય, તો પૃથ્વીનું સૂર્યથી ન્યૂનતમ અને મહત્તમ અંતર શોધો.

ઉકેલ : અહીં સૂર્ય ઉપવલયની નાભિ S છે તથા પૃથ્વી ઉપવલય પરનું બિંદુ P છે. $SP = a(1 - ecos\theta)$ થાય.

વળી,
$$2a = 3 \times 10^8$$
 કિમી

$$\therefore \quad a = 1.5 \times 10^8 \text{ GeV}$$

∴ SP =
$$1.5 \times 10^{8}$$
 કિમી (1 $- 0.0167 \cos \theta$) કિમી

અહીં $cos\theta = 1$ ત્યારે અંતર SP ન્યુનતમ થાય અને $cos\theta = -1$ ત્યારે અંતર SP મહત્તમ થાય.

(પૃથ્વી મુખ્ય અક્ષના બીજા અંત્યબિંદુ આગળ હોય ત્યારે પૃથ્વીનું સૂર્યથી અંતર મહત્તમ થાય.) પૃથ્વીનું સૂર્યથી મહત્તમ અંતર

$$1.5 \times 10^{8} (1 + 0.0167)$$
 કિમી = 152,505,000 કિમી

સ્વાધ્યાય 8

- જેનાં વ્યાસાંત બિંદુઓ (1, 2), (2, –3) હોય તેવા વર્તુળનું સમીકરણ મેળવો.
- બિંદુઓ (4, 0), (-4, 0) અને (0, 8) માંથી પસાર થતા વર્તુળનું સમીકરણ મેળવો. 2.
- વર્ત્ $0 + y^2 4x 6y 5 = 0$ ને સમકેન્દ્રી હોય અને X-અક્ષને સ્પર્શતું હોય તેવા વર્ત્તુળનું સમીકરણ મેળવો.
- પરવલય $y^2 = x$ ની નાભિ અને નાભિલંબની લંબાઈ શોધો. 4.
- જેની નાભિઓ X-અક્ષ પર હોય અને એકબીજાથી 8 અંતરે હોય તથા જેની ઉત્કેન્દ્રતા $\frac{1}{3}$ હોય તેવા ઉપવલયનું પ્રમાણિત 5. સમીકરણ મેળવો.
- જેની નિયામિકા X-અક્ષને સમાંતર હોય તેવા અતિવલયનું પ્રમાણિત સમીકરણ મેળવો. 6.
- જેની નાભિ $(-4,\ 0)$ હોય અને નિયામિકા x=2 હોય તેવા પરવલયનું સમીકરણ વ્યાખ્યાની મદદથી મેળવો.
- એક પરવલયાકાર પરાવર્તકનો આડછેદ આકૃતિમાં દર્શાવ્યો છે. નાભિ પાસે મુખ \overline{AB} ની પહોળાઈ 10 સેમી છે. પરવલયનું સમીકરણ શોધો. શિરોબિંદુથી 11 સેમી દૂર આવેલ મુખ \overline{PO} ની પહોળાઈ શોધો. (આકૃતિ 8.30 જુઓ.)

આકૃતિ 8.29

- 9. એક પરવલયાકાર પરાવર્તકનો વ્યાસ 24 સેમી છે અને ઊંડાઈ 6 સેમી છે. તેની નાભિના યામ શોધો. તે કયા સ્થાને છે ?
- 10. એક અર્ધ-ઉપવલયાકારની કમાન 10 મી પહોળી અને તેની કેન્દ્ર પાસે ઊંચાઈ 4 મી છે. આ કમાનની તેના એક છેડેથી 2 મી અંતરે ઊંચાઈ શોધો.
- 11. ૨મકડાની એક ટ્રેન, એવી રીતે ફરે છે કે જેથી તેના બે સિગ્નલોથી અંતરનો સરવાળો અચળ રહે અને 10 મી જેટલો થાય. બે સિગ્નલો વચ્ચેનું અંતર 8 મી હોય તો તે ટ્રેનનો ગતિપથ મેળવો.
- 12. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને 🔙 માં લખો :
 - (1) $a_0(y) x^2 + y^2 + 6x 14y = 1$ અને $x^2 + y^2 4x + 10y = 2$ ના કેન્દ્રો જેનાં વ્યાસાંત બિંદુઓ હોય તેવા વર્તળનં સમીકરણ...

 - (a) $x^2 + y^2 + x 2y 41 = 0$ (b) $x^2 + y^2 + x + 2y 41 = 0$
 - (c) $x^2 + y^2 + x + 2y + 41 = 0$
 - (d) $x^2 + y^2 x 2y 41 = 0$
 - (2) વર્ત્ $(x^2 + y^2 8x 4y + 5 = 0$ ના વ્યાસનું એક અંત્યબિંદુ (-3, 2), હોય તો બીજા અંત્યબિંદુના યામ થાય.
 - (a) (5, 3)
- (b) (6, 2)
- (c) (1, -8)
- (d) (11, 2)
- (3) જેનું કેન્દ્ર X-અક્ષ પર, ત્રિજ્યા 5 હોય અને જે (2, 3) માંથી પસાર થતું હોય તેવા વર્તુળનું સમીકરણ...
 - (a) $x^2 + y^2 12x + 11 = 0$
- (b) $x^2 + y^2 12y + 11 = 0$
- (c) $x^2 + y^2 12x 11 = 0$
- (d) $x^2 + y^2 4x + 12y = 0$
- (4) (4, 5) કેન્દ્રવાળા અને વર્તૂળ $x^2 + y^2 + 4x 6y = 12$ ના કેન્દ્રમાંથી પસાર થતા વર્તૂળનું સમીકરણ \Box
 - (a) $x^2 + y^2 + 8x 10y + 1 = 0$
- (b) $x^2 + y^2 8x 10y + 1 = 0$
- (c) $x^2 + y^2 8x + 10y 1 = 0$
- (d) $x^2 + y^2 8x 10y 1 = 0$

(5)	(1, 2) કેન્દ્રવાળા અને	બિંદુ (4, 6) માંથી પસાર	થતા વર્તુળનું ક્ષેત્રફળ	થાય.			
	(a) 30π ચો એકમ	(b) 5π ચો એકમ	(c) 15π ચો એકમ	(d) 25π ચો એકમ			
(6)	બિંદુઓ (0, 0), (a, 0)), (0, <i>b</i>) માંથી પસાર થ	તા વર્તુળના કેન્દ્રના યામ	થાય.			
	(a) $\left(\frac{b}{2}, \frac{a}{2}\right)$	(b) $\left(\frac{a}{2}, \frac{b}{2}\right)$	(c) (b, a)	(d) (a, b)			
(7)	સમીકરણ પરવલય x^2	= 4 <i>ay</i> નાં પ્રચલ સમીક	રણ છે.				
	(a) $x = at^2$, $y = at^2$ (b) $x = 2at$, $y = 2at$ (c) $x = 2at$, $y = at^2$ (d) $x = 2at^2$, $y = at$						
(8)	રેખા $2x - 3y + 8 =$	0 પરવલય $y^2 = 8x$ ને 1	P અને Q માં છેદે છે. PC	_ 2 ના મધ્યબિંદુના યામ	થાય.		
	(a) (2, 4)	(b) (8, 8)	(c) (5, 6)	(d) (6, 5)			
(9)	જેના નાભિલંબની લંબ	ાઈ ગૌણ અક્ષ કરતાં અડ	ધી હોય તેવા ઉપવલયની	ઉત્કેન્દ્રતા થાય.			
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{\sqrt{3}}{2}$	(c) $\frac{1}{2}$	(d) $\sqrt{2}$			
(10)	જેના ગૌણ અક્ષની લંબ	ાઈ નાભિઓ વચ્ચેના અંત	ાર જેટલી હોય તેવા ઉપવ	ાલયની ઉત્કેન્દ્રતા થાય.			
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{\sqrt{2}}{3}$	(c) $\frac{\sqrt{3}}{2}$	(d) $\frac{2}{\sqrt{3}}$			
(11)	ઉપવલય $9x^2 + 25y^2$	= 225 ની ઉત્કેન્દ્રતા					
	(a) $\frac{2}{5}$	(b) $\frac{4}{5}$	(c) $\frac{3}{5}$	(d) ⁰			
(12)	ઉપવલય $4x^2 + 9y^2 =$	= 1 ના નાભિલંબની લંબા	હ				
	(a) $\frac{4}{9}$	(b) $\frac{9}{4}$	(c) $\frac{2}{9}$	(d) $\frac{2}{3}$			
(13)	ઉપવલય $9x^2 + 4y^2 =$	= 36 ની એક નાભિ	. છે.				
	(a) $(\sqrt{5}, 0)$	(b) $(0, \sqrt{5})$	(c) $(3\sqrt{5}, 0)$	(d) $(0, 3\sqrt{5})$			
(14)	ઉપવલય $25x^2 + 9y^2$	= 1 ના પ્રધાન અક્ષની વ	લંબાઈ છે.				
	(a) $\frac{2}{5}$	(b) $\frac{2}{3}$	(c) $\frac{1}{5}$	(d) $\frac{1}{9}$			
(15)	અતિવલય 9 <i>x</i> ² – 16 <i>y</i>	² = 144 ની નાભિઓ	છે.				
	(a) (±4, 0)	(b) (0, ±4)	(c) (±5, 0)	(d) (0, ±5)			
(16)	અતિવલય 16x² — 9y	² = 144 ના નાભિલંબની	લંબાઈ છે.				
	(a) $\frac{32}{3}$	(b) $\frac{16}{3}$	(c) $\frac{8}{3}$	(d) $\frac{4}{3}$			
(17)	અતિવલય 16y² — 9x	² = 144 ની ઉત્કેન્દ્રતા	છે.				
	(a) $\frac{5}{3}$	(b) $\frac{3}{5}$	(c) $\frac{5}{4}$	(d) $\frac{4}{5}$			

(18) અતિવલય $x^2 - 4y^2 = 1$ ની ઉત્કેન્દ્રતા છે.

(a) $\frac{\sqrt{3}}{2}$

(b) $\frac{\sqrt{5}}{2}$

(c) $\frac{2}{\sqrt{3}}$

(d) $\frac{2}{\sqrt{5}}$

(19) જો પરવલય $y^2 = 4\alpha x$ બિંદુ (2, -6) માંથી પસાર થતો હોય તો નાભિલંબની લંબાઈ થાય.

(a) 9

(b) 16

(c) 18

(d) 8

(20) ઉપવલય $5x^2 + 9y^2 = 45$ ના નાભિલંબની લંબાઈ છે.

(a) $\frac{5\sqrt{5}}{3}$

(b) $\frac{5}{3}$

(c) $\frac{2\sqrt{5}}{3}$

(d) $\frac{10}{3}$

*

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓનો અભ્યાસ કર્યો :

1. વર્તુળનું પ્રમાશિત સમીકરણ $x^2 + y^2 = r^2$ છે. વર્તુળનું વ્યાપક સમીકરણ $(x - h)^2 + (y - k)^2 = r^2$ છે.

- 2. સમીકરણ $x^2+y^2+2gx+2fy+c=0$ માટે જો $g^2+f^2-c>0$ થાય તો તે વર્તુળ દર્શાવે છે, અન્યથા નહીં. જો તે વર્તુળ દર્શાવે તો તેનું કેન્દ્ર (-g,-f) અને ત્રિજયા $\sqrt{g^2+f^2-c}$ થાય.
- 3. પરવલયનું પ્રમાશિત સમીકરણ $y^2=4ax$. આ પરવલયનાં પ્રચલ સમીકરણ $x=at^2,\ y=2at,\ t\in\mathbb{R}$. નાભિલંબની લંબાઈ 4|a|
- **4.** પરવલયની નાભિજીવા માટે $t_1t_2 = -1$
- 5. પરવલયનો અગત્યનો ગુણધર્મ $\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{|a|}$

6. ઉપવલયનું પ્રમાશિત સમીકરણ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ (a > b)

તેની નાભિઓ ($\pm ae$, 0) અને તેમને અનુરૂપ નિયામિકાઓનાં સમીકરણ $x \mp \frac{a}{e} = 0$. આ ઉપવલયનાં પ્રચલ સમીકરણ $x = acos\theta$, $y = bsin\theta$; $\theta \in (-\pi, \pi]$, નાભિલંબની લંબાઈ $\frac{2b^2}{a}$, પ્રધાન અક્ષની લંબાઈ 2a; ગૌણ અક્ષની લંબાઈ 2b.

- 7. ઉપવલયની નાભિઓ S અને S' હોય અને P ઉપવલય પરનું કોઈ પણ બિંદુ હોય તો SP + S'P = 2a
- **8.** અતિવલયનું પ્રમાણિત સમીકરણ $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.

નાભિઓ ($\pm ae$, 0), તેમને અનુરૂપ નિયામિકાઓ $x\mp \frac{a}{e}=0$

પ્રચલ સમીકરણ $x = asec\theta$, $y = btan\theta$, $\theta \in (-\pi, \pi] - \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$.

નાભિલંબની લંબાઈ $\frac{2b^2}{a}$

9. અતિવલયનો અગત્યનો ગુણધર્મ : | SP — S'P| = 2*a*

પરિશિષ્ટ

દ્વિશંકુ અને સમતલનો છેદ :

ધારો કે l એક નિશ્ચિત શિરોલંબ રેખા છે અને m એ અન્ય કોઈ રેખા છે. તે l ને નિશ્ચિત બિંદુ V માં છેદે છે. ધારો કે l અને m વચ્ચેના ખૂણાનું માપ α (0 < α < $\frac{\pi}{2}$) છે. તે આકૃતિ A.1માં દર્શાવેલ છે. ધારો કે રેખા m ને l આસપાસ એવી રીતે પરિભ્રમણ આપવામાં આવે છે કે જેથી ખૂણો α અચળ રહે છે. આ રીતે સર્જાતી સપાટીને શંકુ કહેવાય છે. રેખાઓનું છેદબિંદુ V શંકુને બે ભાગમાં વહેંચે છે. આથી આવા શંકુને દ્વિશંકુ કહે છે, સરળતા ખાતર આપણે તેને શંકુ કહીશું.

શંકુનો વ્યાપ બંને દિશામાં અનંત હોય છે. (આકૃતિ A.2). બિંદુ V ને શંકુનું શિરોબિંદુ (Vertex) કહે છે. રેખા I ને શંકુનો અક્ષ કહે છે અને રેખા m ની કોઈ પણ સ્થિતિમાં તેને શંકુની સર્જક રેખા (Generator) કહે છે. જ્યારે શંકુના ભાગને ફલક (Lateral surface) કહે છે. અહીં જુઓ કે શંકુને જોઈને રેખા m નિશ્ચિત કરી શકાય નહીં. ખરેખર તો શંકુની સપાટી પરની કોઈ પણ રેખાને સર્જક રેખા તરીકે લઈ શકાય.

હવે શંકુના કોઈ સમતલ સાથેના છેદનો વિચાર કરીએ, આવા છેદને શાંકવ (Conic) કહે છે. અહીં શંકુનો છેદ લેવાનો હોવાથી નામ શાંકવ આપવામાં આવ્યું છે.

જયારે શંકુનો સમતલ સાથે છેદ લેવાનો હોય ત્યારે, સમતલનું સ્થાન તેણે શંકુના અક્ષ સાથે બનાવેલ ખૂણા વગેરેના આધારે, ઘણી બધી શક્યતાઓ રહેલી છે. આકૃતિ A.3 માં દર્શાવ્યા મુજબ ધારો કે, સમતલ શંકુના શિરોલંબ અક્ષ સાથે $\beta \ (0 < \beta < \frac{\pi}{2})$ માપનો ખૂણો રચે છે. હવે બે શક્યતાઓ જોઈએ : (1) સમતલ શંકુના શિરોબિંદુમાંથી પસાર થાય છે. અથવા (2) સમતલના શંકુના શિરોબિંદુમાંથી પસાર થતું નથી. આ શક્યતાઓ મુજબ છેદ શિરોબિંદુ બને અથવા શંકુના શિરોબિંદુથી ઉપરના અથવા નીચેના ફલકમાં છેદગણ મળે.

હવે આપણે છેદની વિવિધ પરિસ્થિતિનો અભ્યાસ કરીશું, દરેક પરિસ્થિતિમાં ઉપરોક્ત બંને શક્યતાઓની ચર્ચા કરીશું.

ધારો કે સમતલ શંકુના અક્ષ સાથે કાટકોણ બનાવે છે. એટલે કે, $\beta = \frac{\pi}{2}$. જો સમતલ શિરોબિંદુમાંથી પસાર થાય, તો બંનેના છેદ શિરોબિંદુ મળે. (આકૃતિ A.4 (a)) અને જો સમતલ શિરોબિંદુમાંથી પસાર ન થાય તો તેમનો છેદ વર્તુળ થાય.

સમતલના સ્થાન પ્રમાણે વર્તુળ શંકુના ઉપરી ફલક અથવા નિમ્ન ફલકમાં મળે. (આકૃતિ A.4 (b)) પ્રથમ કિસ્સામાં છેદ એક બિંદુ મળે છે જે વર્તુળનું વિસર્જીત રૂપ છે.

ધારો કે, $0 < \alpha < \beta < \frac{\pi}{2}$. જો સમતલ શંકુના શિરોબિંદુમાંથી પસાર થાય તો છેદ ફરી એક વખત શિરોબિંદુ જ મળે. જો આમ ન હોય તો છેદ ઉપવલય મળે. અહીં પણ બિંદુ એ ઉપવલયનું વિસર્જીત રૂપ છે. (આને સાદેશ કરવાનો પ્રયત્ન

કરો.) (આકૃતિ A.5(a)).

આકૃતિ A.5(a)

આકૃતિ A.5(b)

આકૃતિ A.5(c)

આકૃતિ A.6

હવે જો $\alpha = \beta$ નો વિચાર કરીએ. આ કિસ્સામાં સમતલ સર્જક રેખાને સમાંતર હોય. જો સમતલ શિરોબિંદુમાંથી પસાર થાય તો છેદ સુરેખા મળે. (આકૃતિ A.6). જુઓ કે છેદમાં મળેલ સુરેખા શંકુની એક સર્જક રેખા જ છે. જો શિરોબિંદુ સમતલમાં ન હોય, તો આકૃતિ A.5(c) માં દર્શાવ્યા મુજબ છેદ પરવલય મળે. પ્રથમ કિસ્સામાં મળેલી રેખા પરવલયનું વિસર્જીત રૂપ છે.

અંતમાં, $\beta < \alpha$ નો વિચાર કરીએ. આ કિસ્સામાં સમતલ બંને ફલકને છેદે છે, જે આગળના બંને કિસ્સામાં બન્યું ન હતું. આ છેદ ગણ અતિવલય છે અને તેને બે શાખાઓ છે, જે આકૃતિ A.6 માં દર્શાવેલ છે. અહીં પણ વિસર્જીત કિસ્સો $\beta = 0$ માં મળે છે, આમાં સમતલ શંકુના શિરોબિંદુમાંથી પસાર થાય છે અને છેદ, રેખાયુગ્મ મળે છે.

- & -

Some of Bhaskara's contributions to mathematics include the following:

- A proof of the Pythagorean theorem by calculating the same area in two different ways and then cancelling out terms to get $a^2 + b^2 = c^2$.
- In Lilavati, solutions of quadratic, cubic and quartic indeterminate equations are explained.
- Solutions of indeterminate quadratic equations (of the type $ax^2 + b = y^2$).
- A cyclic Chakravala method for solving indeterminate equations of the form $ax^2 + bx + c = y$. The solution to this equation was traditionally attributed to William Brouncker in 1657, though his method was more difficult than the chakravala method.
- The first general method for finding the solutions of the problem $x^2 ny^2 = 1$ (so-called "Pell's equation") was given by Bhaskara II.