Learning Curves

Training an algorithm on a very few number of data points (such as 1, 2 or 3) will easily have 0 errors because we can always find a quadratic curve that touches exactly those number of points. Hence:

- As the training set gets larger, the error for a quadratic function increases.
- The error value will plateau out after a certain m, or training set size.

Experiencing high bias:

Low training set size: causes $J_{train}(\Theta)$ to be low and JCV(Θ) to be high.

Large training set size: causes both J_{train} (Θ) and J_{CV} (Θ) to be high with $J_{train}(\Theta) \approx J_{CV}(\Theta)$.

If a learning algorithm is suffering from **high bias**, getting more training data will not (**by itself**) help much.

Experiencing high variance:

Low training set size: $\mathbf{J}_{\text{train}}(\mathbf{\Theta})$ will be low and JCV($\mathbf{\Theta}$) will be high.

Large training set size: $J_{train}(\Theta)$ increases with training set size and $J_{CV}(\Theta)$ continues to decrease without leveling off. Also, $J_{train}(\Theta) < J_{CV}(\Theta)$ but the difference between them remains significant.

If a learning algorithm is suffering from **high variance**, getting more training data is likely to help.

More on Bias vs. Variance

Typical learning curve for high variance(at fixed model complexity):

