PROBLEM - SET 0

Problem 1. Consider the random experiment of rolling two balanced dice with six faces and sum the two numbers that appears.

- (a) Describe the probability space for this random experiment.
- (b) Compute the probability to obtain an even number.

Solution 1.

- (a) Let us start by defining the probability space of all the possible outcomes rolling two dice, i.e. $\Omega=\{(i,j):i,j\in\{1,2,3,4,5,6\}\}$ with $\mathscr{A}=2^{\Omega}$. It is reasonable to define on this space the uniform probability P, i.e. $P[\{(i,j)\}]=\frac{1}{36}$. The probability space that describe the sum of two dice is given by $\Omega_1=\{\mathbf{2},\mathbf{3},\mathbf{4},\ldots,\mathbf{10},\mathbf{11},\mathbf{12}\}$ with $\mathscr{A}=2^{\Omega_1}$. The probability P_1 will NOT be uniform and we will get $P_1[\{\mathbf{2}\}]=P[\{(1,1)\}]=\frac{1}{36},P_1[\{\mathbf{3}\}]=P[\{(1,2),(2,1)\}]=\frac{2}{36},\ldots,P_1[\{\mathbf{12}\}]=P[\{(6,6)\}]=\frac{1}{36}$.
- (b) $P_1[\{\text{even number}\}] = P_1[\{\mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{10}, \mathbf{12}\}] = \frac{1}{36} + \frac{3}{36} + \frac{5}{36} + \frac{5}{36} + \frac{3}{36} + \frac{1}{36} = \frac{18}{36} = \frac{1}{2}.$

Problem 2. Instead of rolling two dice, assume now that we extract at random two balls without replacement from a box that contains six balls numbered from 1 to 6.

- (a) Describe the probability space for this random experiment.
- (b) Compute the probability to obtain two balls with consecutive numbers.

Solution 2.

- (a) $\Omega = \{(i,j): i,j \in \{1,2,3,4,5,6\}, \mathbf{i} \neq \mathbf{j}\}, \mathscr{A} = 2^{\Omega}$ and P is the uniform probability on Ω .
- (b) $P[\{\text{consecutive numbers}\}] = P[\{(i, j) : i, j \in \{1, 2, 3, 4, 5, 6\}, |\mathbf{i} \mathbf{j}| = 1\}] = \frac{10}{30}$.

Problem 3. Let $\Omega = \mathbb{R}$ and define the following subset of 2^{Ω}

$$\mathscr{A} = \{A \subset \mathbb{R} : A \text{ is countable}\} \cup \{A \subset \mathbb{R} : A^c \text{ is countable}\}$$

- (a) Prove that \mathscr{A} is a σ -field (it is called the countable/co-countable σ -field)
- (b) Prove that $A = (-\infty, 0]$ does not belong to \mathscr{A} .

Solution 3.

- (a) $\mathscr A$ is a σ -field if the following three conditions are satisfied:
 - (i) $\Omega \in \mathscr{A}$? Yes since the complement of Ω is the empty set, which is countable.
 - (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$? Yes
 - (iii) $(A_n)_{n\in\mathbb{N}}\subset\mathscr{A}\Rightarrow \cap_{n\in\mathbb{N}}A_n\in\mathscr{A}$? Yes: if at least one among the A_n is countable, the intersection is countable. Otherwise, when all the A_n^c are countable, we have $(\cap_{n\in\mathbb{N}}A_n)^c=\cup_{n\in\mathbb{N}}A_n^c$ is countable, which implies that $\cap_{n\in\mathbb{N}}A_n\in\mathscr{A}$.

(b) Since $A = (-\infty, 0]$ and its complement $(0, +\infty)$ are both not countable, we have that $a \notin \mathcal{A}$.

Problem 4. Let $\Omega = \mathbb{N}$ and define

$$\mathscr{A} = \{A \subset \mathbb{N} : A \text{ or } A^c \text{ is finite}\}$$

Show that \mathscr{A} is a field, but not a σ -field.

Solution 4.

 \mathcal{A} is a field if the following three conditions are satisfied:

- (i) $\mathbb{N} \in \mathcal{A}$? Yes since the complement of \mathbb{N} is the empty set, which is finite.
- (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$? Yes
- (iii) $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$? Yes: if at least one among A and B is finite, the intersection is finite. Otherwise, when both A and B have the complement finite, then $(A \cap B)^c = A^c \cup B^c$ is finite, which implies that $A \cap B \in \mathcal{A}$.

 \mathscr{A} is NOT a σ -field: define $A_n = \{2n\}$ for any $n \in \mathbb{N}$. A_n belongs to \mathscr{A} , but the (countable) union $\bigcup_{n \in \mathbb{N}} A_n = \{\text{even numbers}\} \notin \mathscr{A}$, since is not countable as its complement which is the set of the odd numbers.

Problem 5. (a) Prove that the intersections of σ -fields is a σ -field.

(b) Given $\Omega = \{1, 2, 3, 4, 5, 6\}$, define the minimal σ -field containing the sets $\{1\}$ and $\{2,4\}$.

Recall that given a collection of subsets $\mathscr C$ of Ω , the σ -field generated by $\mathscr C$, denoted $\sigma(\mathscr C)$, is the σ -field satisfying:

- (i) $\sigma(\mathscr{C}) \supset \mathscr{C}$
- (ii) If \mathscr{B} is a σ -field containing \mathscr{C} , then $\mathscr{B} \supset \sigma(\mathscr{C})$.

Solution 5.

(a) Let \mathcal{A}_1 and \mathcal{A}_2 be two σ -fields. Their intersection will be the set

$$\mathscr{A}_1 \cap \mathscr{A}_2 = \{A \subset \Omega : A \in \mathscr{A}_1 \text{ and } A \in \mathscr{A}_2\}$$

It is easy to prove that this set is a σ -field: for example $\Omega \in \mathscr{A}_1 \cap \mathscr{A}_2$, since $\Omega \in \mathscr{A}_1$ and $\Omega \in \mathscr{A}_2$.

(b) Let $\mathscr{C} = \{\{1\}, \{2,4\}\}$. The minimal σ -field containing \mathscr{C} will be

$$\sigma(\mathscr{C}) = \{\emptyset, \Omega, \{1\}, \{2,4\}, \{3,5,6\}, \{2,3,4,5,6\}, \{1,3,5,6\}, \{1,2,4\}\}\}$$