CSE 221: Algorithms Heapsort

Mumit Khan Fatema Tuz Zohora

Computer Science and Engineering BRAC University

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press, September 2001.

Last modified: February 12, 2013

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

Contents

- Heapsort
 - Introduction
 - Heap data structure
 - Heap algorithms
 - Heapsort algorithm
 - Priority queue
 - Conclusion

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

Heapsort

• $O(n \lg n)$ in the worst case – like merge sort.

- $O(n \lg n)$ in the worst case like merge sort.
- Sorts in place like insertion sort.

- $O(n \lg n)$ in the worst case like merge sort.
- Sorts in place like insertion sort.
- Combines the best of both algorithms.

- $O(n \lg n)$ in the worst case like merge sort.
- Sorts in place like insertion sort.
- Combines the best of both algorithms.
- Uses a data structure called the heap, which is also extensively used in other applications.

Contents

- Meapsort
 - Introduction
 - Heap data structure
 - Heap algorithms
 - Heapsort algorithm
 - Priority queue
 - Conclusion

Heap data structure

• A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.
- Priority queue is a prototypical application, where the keys are retrieved by priority.

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.
- Priority queue is a prototypical application, where the keys are retrieved by priority.
- Heapsort is an another application, where the keys can be sorted by repeatedly extracting the largest from the heap.

Heap data structure

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.
- Priority queue is a prototypical application, where the keys are retrieved by priority.
- Heapsort is an another application, where the keys can be sorted by repeatedly extracting the largest from the heap.

Max vs. Min Heap

Unless explicitly stated as max heap or min heap, heap means max heap in this course.

Definition A binary tree is heap-ordered if:

 \bullet the value at a node is \geq the value at each of its children.

Example of (max) heap

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Definition

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Definition

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Definition

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete. Height of tree is $\Theta(\lg n)$.

Definition

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete. Height of tree is $\Theta(\lg n)$. Why?

Height of a heap-ordered tree

• Height h of a tree is the maximum distance of any leaf node to the root.

Height of a heap-ordered tree

- Height h of a tree is the maximum distance of any leaf node to the root.
- A heap of height h has the most number of elements if the tree is complete, so *n* equals the sum of nodes at each level.

$$n \le 2^{0} + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{h}$$

$$= \frac{2^{h+1} - 1}{2 - 1}$$

$$= 2^{h+1} - 1.$$

Height of a heap-ordered tree

- Height h of a tree is the maximum distance of any leaf node to the root.
- A heap of height h has the most number of elements if the tree is complete, so *n* equals the sum of nodes at each level.

$$n \le 2^{0} + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{h}$$

$$= \frac{2^{h+1} - 1}{2 - 1}$$

$$= 2^{h+1} - 1.$$

 It has the least number of elements if the lowest level has a single element and all higher levels are complete, so $n > 2^h - 1 + 1 = 2^h$.

• Height h of a tree is the maximum distance of any leaf node

to the root. A heap of height h has the most number of elements if the tree is complete, so *n* equals the sum of nodes at each level.

$$n \le 2^{0} + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{h}$$

$$= \frac{2^{h+1} - 1}{2 - 1}$$

$$= 2^{h+1} - 1.$$

- It has the least number of elements if the lowest level has a single element and all higher levels are complete, so $n > 2^h - 1 + 1 = 2^h$.
- $2^h < n < 2^{h+1} 1 < 2^{h+1}$ \Rightarrow $h < \lg n < h + 1$. Since h is an integer, $h = |\lg n| = \Theta(\lg n)$.

Heap – accessing parent and children

MAXIMUM(A)return A[1]

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

Heap – accessing parent and children

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

Question

What if PARENT(i) < 1?

MAXIMUM(A)return A[1]PARENT(i)return |i/2|LEFT(i)return 2i

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

LEFT(i)return 2i

Question

What if LEFT(i) > n?


```
MAXIMUM(A)
   return A[1]
PARENT(i)
   return |i/2|
LEFT(i)
   return 2i
RIGHT(i)
   return 2i + 1
```


MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

LEFT(i)return 2i

RIGHT(i)return 2i + 1

Question

What if RIGHT(i) > n?

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

LEFT(i)return 2i

RIGHT(i)return 2i+1

Lemma

All nodes i > |length[A]/2| (or equivalently, i > |heap-size[A]/2|) are leaf nodes.

MAXIMUM(A)return A[1]PARENT(i)return |i/2|LEFT(i)return 2i RIGHT(i)

return 2i + 1

Definition (Heap property)

Heap property: For every node *i* other than the root,

$$A[PARENT(i)] \ge A[i].$$

MAXIMUM(A)return A[1]PARENT(i)return |i/2|LEFT(i)return 2i RIGHT(i)return 2i + 1

Question

Why do we insist that a heap-ordered tree be a complete binary tree? (Hint: draw the array representation of a tree that is not complete and see the gaps).

Contents

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

• MAX-HEAPIFY(A, i) – Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.

- **1** MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.
- **1** HEAPSORT(A) Sort the elements in array A using the heap operations.

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.
- **1** HEAPSORT(A) Sort the elements in array A using the heap operations.
- **1** HEAP-INCREASE-KEY(A, i, key) Increase the value of element at node i to key, and ensure the heap property of A by moving larger elements upwards. Also known as "swim" operation as it moves larger elements upwards.

Operations on heap

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.
- **1** HEAPSORT(A) Sort the elements in array A using the heap operations.
- **1** HEAP-INCREASE-KEY(A, i, key) Increase the value of element at node i to key, and ensure the heap property of A by moving larger elements upwards. Also known as "swim" operation as it moves larger elements upwards.
- heap A.

Example of MAX-HEAPIFY ("sink") operation

Example of MAX-HEAPIFY ("sink") operation

Example of MAX-HEAPIFY ("sink") operation


```
MAX-HEAPIFY (A, i)
  1 I \leftarrow left(i)
 2 r \leftarrow right(i)
 3 if l \le heap\text{-}size[A] and A[l] > A[i]
          then largest \leftarrow l
          else largest \leftarrow i
      if r \le heap\text{-}size[A] and A[r] > A[largest]
          then largest \leftarrow r
      if largest \neq i
 9
          then exchange A[i] \leftrightarrow A[largest]
10
                 MAX-HEAPIFY (A, largest)
```

MAX-HEAPIFY algorithm

```
MAX-HEAPIFY (A, i)
 1 I \leftarrow left(i)
 2 r \leftarrow right(i)
 3 if l < heap-size[A] and A[l] > A[i]
         then largest \leftarrow l
         else largest \leftarrow i
 6 if r < heap\text{-}size[A] and A[r] > A[largest]
          then largest \leftarrow r
      if largest \neq i
          then exchange A[i] \leftrightarrow A[largest]
                 MAX-HEAPIFY (A, largest)
10
```

Analysis – first way

Since the children's subtrees each have at most size of 2n/3 (when the last row is exactly half full), we have

$$T(n) \leq T(2n/3) + \Theta(1)$$
.

According to case 2 of the Master theorem, $T(n) = O(\lg n)$.

```
MAX-HEAPIFY (A, i)
  1 l \leftarrow left(i)
 2 r \leftarrow right(i)
 3 if l \le heap\text{-}size[A] and A[l] > A[i]
          then largest \leftarrow l
          else largest \leftarrow i
      if r \le heap\text{-}size[A] and A[r] > A[largest]
          then largest \leftarrow r
      if largest \neq i
          then exchange A[i] \leftrightarrow A[largest]
10
                 MAX-HEAPIFY (A, largest)
```

Analysis – second way

The running time of MAX-HEAPIFY on a node of height h is $T(n) = O(h) = O(\lg n).$

Example of HEAP-INCREASE-KEY ("swim") operation

Example of HEAP-INCREASE-KEY ("swim") operation


```
HEAP-INCREASE-KEY(A, i, key)
   if key < A[i]
       then error "new key is smaller than current key"
2
3
   A[i] \leftarrow key
    while i > 1 and A[PARENT(i)] < A[i]
4
         do exchange A[i] \leftrightarrow A[parent(i)]
5
6
              i \leftarrow PARENT(i)
```

```
HEAP-INCREASE-KEY(A, i, key)
   if key < A[i]
       then error "new key is smaller than current key"
3
   A[i] \leftarrow key
   while i > 1 and A[PARENT(i)] < A[i]
4
         do exchange A[i] \leftrightarrow A[parent(i)]
5
6
              i \leftarrow PARENT(i)
```

Analysis

A node may move all the way from a leaf node to the root because of increased value, so $T(n) = O(h) = O(\lg n)$.

Example of MAX-HEAP-INSERT operation

Example of MAX-HEAP-INSERT operation

Example of MAX-HEAP-INSERT operation


```
MAX-HEAP-INSERT (A, key)
```

- heap- $size[A] \leftarrow heap$ -size[A] + 1
- $A[heap-size[A]] \leftarrow key$
- $i \leftarrow heap-size[A]$
- while i > 1 and A[PARENT(i)] < A[i]
- 5 **do** exchange $A[i] \leftrightarrow A[parent(i)]$
- 6 $i \leftarrow PARENT(i)$

MAX-HEAP-INSERT (A, key)

- heap- $size[A] \leftarrow heap$ -size[A] + 1
- $A[heap-size[A]] \leftarrow key$
- $i \leftarrow heap-size[A]$
- while i > 1 and A[PARENT(i)] < A[i]
- 5 **do** exchange $A[i] \leftrightarrow A[parent(i)]$
- 6 $i \leftarrow PARENT(i)$

Can also be done using HEAP-INCREASE-KEY.

MAX-HEAP-INSERT (A, key)

- heap- $size[A] \leftarrow heap$ -size[A] + 1
- $A[heap-size[A]] \leftarrow -\infty$
- 3 HEAP-INCREASE-KEY(A, heap-size[A], key)

MAX-HEAP-INSERT algorithm

MAX-HEAP-INSERT (A, key)

- heap- $size[A] \leftarrow heap$ -size[A] + 1
- $A[heap-size[A]] \leftarrow key$
- $i \leftarrow heap-size[A]$
- while i > 1 and A[PARENT(i)] < A[i]
- 5 **do** exchange $A[i] \leftrightarrow A[parent(i)]$
- 6 $i \leftarrow \text{PARENT}(i)$

Can also be done using HEAP-INCREASE-KEY.

MAX-HEAP-INSERT (A, key)

- heap- $size[A] \leftarrow heap$ -size[A] + 1
- $A[heap-size[A]] \leftarrow -\infty$
- 3 HEAP-INCREASE-KEY(A, heap-size[A], key)

Analysis

$$T(n) = O(h) = O(\lg n).$$

Licensed under

CSE 221: Algorithms

Simple BUILD-MAX-HEAP algorithm

```
BUILD-MAX-HEAP'(A)
   heap-size[A] \leftarrow 1
   for i \leftarrow 2 to length[A]
3
         do MAX-HEAP-INSERT(A, A[i])
```

Simple BUILD-MAX-HEAP algorithm

```
BUILD-MAX-HEAP'(A)
   heap-size[A] \leftarrow 1
   for i \leftarrow 2 to length[A]
3
         do MAX-HEAP-INSERT(A, A[i])
```

Analysis

There are n-1 calls to MAX-HEAP-INSERT, each taking $O(\lg n)$ time, so $T(n) = O(n \lg n)$.

Simple BUILD-MAX-HEAP algorithm

```
BUILD-MAX-HEAP'(A)
```

- heap- $size[A] \leftarrow 1$
- for $i \leftarrow 2$ to length[A]
- 3 **do** MAX-HEAP-INSERT(A, A[i])

Analysis

There are n-1 calls to MAX-HEAP-INSERT, each taking $O(\lg n)$ time, so $T(n) = O(n \lg n)$.

Better way?

A better way is to build up the heap from the smaller trees. See next.

Example of BUILD-MAX-HEAP ("heapify") operation

Example of BUILD-MAX-HEAP ("heapify") operation

Example of BUILD-MAX-HEAP ("heapify") operation

BUILD-MAX-HEAP algorithm

```
BUILD-MAX-HEAP(A)
   heap-size[A]] \leftarrow length[A]
   for i \leftarrow |length[A]/2| downto 1
         do MAX-HEAPIFY (A, i)
3
```

BUILD-MAX-HEAP(A)

- heap- $size[A]] \leftarrow length[A]$
- for $i \leftarrow |length[A]/2|$ downto 1
- **do** MAX-HEAPIFY(A, i)

Analysis

$$T(n) = O(n)$$
 (see textbook for details)

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

Licensed under @@@@

CSE 221: Algorithms

Licensed under

CSE 221: Algorithms

```
times
                                                       cost
    BUILD-MAX-HEAP(A)
2
    for i \leftarrow length[A] downto 2
3
          do exchange A[1] \leftrightarrow A[i]
              heap-size[A] \leftarrow heap-size[A] - 1
4
              MAX-HEAPIFY (A, 1)
5
```

```
times
                                                        cost
    BUILD-MAX-HEAP(A)
                                                       \Theta(n)
2
    for i \leftarrow length[A] downto 2
3
          do exchange A[1] \leftrightarrow A[i]
              heap-size[A] \leftarrow heap-size[A] - 1
4
              MAX-HEAPIFY (A, 1)
5
```

```
HEAPSORT(A)
```

```
times
                                                         cost
    BUILD-MAX-HEAP(A)
                                                        \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                        \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
               heap-size[A] \leftarrow heap-size[A] - 1
4
               MAX-HEAPIFY (A, 1)
5
```

HEAPSORT algorithm

```
times
                                                        cost
    BUILD-MAX-HEAP(A)
                                                       \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                       \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
                                                       \Theta(1) n-1
              heap-size[A] \leftarrow heap-size[A] - 1
4
              MAX-HEAPIFY (A, 1)
5
```

```
HEAPSORT(A)
```

```
times
                                                        cost
    BUILD-MAX-HEAP(A)
                                                       \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                       \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
                                                       \Theta(1) n-1
              heap-size[A] \leftarrow heap-size[A] - 1 \Theta(1) n - 1
4
              MAX-HEAPIFY (A, 1)
5
```

```
times
                                                           cost
    BUILD-MAX-HEAP(A)
                                                          \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                          \Theta(1)
3
           do exchange A[1] \leftrightarrow A[i]
                                                          \Theta(1) n-1
               heap-size[A] \leftarrow heap-size[A] - 1 \quad \Theta(1) \quad n-1
4
               MAX-HEAPIFY (A, 1)
                                                       \Theta(\lg n) \quad n-1
5
```

HEAPSORT(A)

```
times
                                                         cost
    BUILD-MAX-HEAP(A)
                                                        \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                        \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
                                                        \Theta(1) n-1
               heap-size[A] \leftarrow heap-size[A] - 1 \Theta(1) n - 1
4
               MAX-HEAPIFY (A, 1)
                                                     \Theta(\lg n) \quad n-1
5
```

Worst-case analysis

$$T(n) = \Theta(n \lg n)$$

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

Definition (Priority Queue)

- **1** INSERT(S, x) inserts the element x into the set S. This operation could be written as $S \leftarrow S \cup \{x\}$.
- \bigcirc MAXIMUM(S) returns the element of S with the largest key.
- \odot EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- 4 INCREASE-KEY(S, x, k) increases the value of element x's key to k. Assume k > x's current value.

Heap use - priority queue

Definition (Priority Queue)

- **1** INSERT(S, x) inserts the element x into the set S. This operation could be written as $S \leftarrow S \cup \{x\}$.
- \bigcirc MAXIMUM(S) returns the element of S with the largest key.
- \odot EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- 4 INCREASE-KEY(S, x, k) increases the value of element x's key to k. Assume k > x's current value.
- Used in many scheduling applications where jobs or tasks are scheduled according to priority.

Definition (Priority Queue)

- **1** INSERT(S, x) inserts the element x into the set S. This operation could be written as $S \leftarrow S \cup \{x\}$.
- \bigcirc MAXIMUM(S) returns the element of S with the largest key.
- \odot EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- 4 INCREASE-KEY(S, x, k) increases the value of element x's key to k. Assume k > x's current value.
- Used in many scheduling applications where jobs or tasks are scheduled according to priority.
- A FIFO queue is a priority queue where the priority is inversely proportional to time of arrival.

Definition (Priority Queue)

- **1** INSERT(S, x) inserts the element x into the set S. This operation could be written as $S \leftarrow S \cup \{x\}$.
- \bigcirc MAXIMUM(S) returns the element of S with the largest key.
- \odot EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- 4 INCREASE-KEY(S, x, k) increases the value of element x's key to k. Assume k > x's current value.
 - Used in many scheduling applications where jobs or tasks are scheduled according to priority.
 - A FIFO queue is a priority queue where the priority is inversely proportional to time of arrival.
- A LIFO stack is a priority queue where the priority is proportional to time of arrival.

Example of HEAP-EXTRACT-MAX operation

Example of HEAP-EXTRACT-MAX operation

times

cost

```
if heap-size[A] < 1
       then error "heap underflow"
3
    max \leftarrow A[1]
   A[1] \leftarrow A[heap-size[A]]
5
   heap-size[A]] \leftarrow heap-size[A] - 1
6
   MAX-HEAPIFY (A, 1)
```

times

cost

```
if heap-size[A] < 1
                                                       \Theta(1)
       then error "heap underflow"
3
    max \leftarrow A[1]
   A[1] \leftarrow A[heap-size[A]]
5
    heap-size[A]] \leftarrow heap-size[A] - 1
6
    MAX-HEAPIFY (A, 1)
```

```
times
                                                        cost
    if heap-size[A] < 1
                                                       \Theta(1)
       then error "heap underflow"
                                                       \Theta(1) 1
3
    max \leftarrow A[1]
   A[1] \leftarrow A[heap-size[A]]
5
    heap-size[A]] \leftarrow heap-size[A] - 1
6
    MAX-HEAPIFY (A, 1)
```

times

cost

```
if heap-size[A] < 1
                                                        \Theta(1)
        then error "heap underflow"
                                                        \Theta(1) 1
3
                                                        \Theta(1)
    max \leftarrow A[1]
   A[1] \leftarrow A[heap-size[A]]
5
    heap-size[A]] \leftarrow heap-size[A] - 1
6
    MAX-HEAPIFY (A, 1)
```

```
times
                                                         cost
    if heap-size[A] < 1
                                                        \Theta(1)
        then error "heap underflow"
                                                        \Theta(1)
3
                                                        \Theta(1) 1
    max \leftarrow A[1]
   A[1] \leftarrow A[heap-size[A]]
                                                        \Theta(1) 1
5
    heap-size[A]] \leftarrow heap-size[A] - 1
6
    MAX-HEAPIFY (A, 1)
```

```
times
                                                          cost
    if heap-size[A] < 1
                                                         \Theta(1)
        then error "heap underflow"
                                                         \Theta(1)
3
                                                         \Theta(1)
    max \leftarrow A[1]
    A[1] \leftarrow A[heap-size[A]]
                                                         \Theta(1) 1
5
    heap-size[A]] \leftarrow heap-size[A] - 1
                                                         \Theta(1) 1
6
    MAX-HEAPIFY (A, 1)
```

```
times
                                                            cost
                                                           \Theta(1)
    if heap-size[A] < 1
                                                           \Theta(1)
        then error "heap underflow"
3
                                                           \Theta(1)
    max \leftarrow A[1]
   A[1] \leftarrow A[heap-size[A]]
                                                           \Theta(1)
5
   heap-size[A]] \leftarrow heap-size[A] -1
                                                           \Theta(1) 1
6
    MAX-HEAPIFY (A, 1)
                                                        \Theta(\lg n)
```

Worst-case analysis

$$T(n) = \Theta(\lg n)$$

Licensed under

- Heap plays a very important role in many algorithms, either used directly or as part of a priority queue implementation.
- If the size of a queue is known in advance, then an array representation (using a fixed size array) provides compact storage coupled with fast operations.
- Even if the size of the heap is not known in advance, "intelligent" resizing can still provide good benefits.
- Heapsort is a natural application of Heap with two very important properties $\Theta(n \lg n)$ complexity, and in-place sorting.