ETSI TS 131 131 V14.0.0 (2017-04)

Universal Mobile Telecommunications System (UMTS); LTE;

C-language binding to (U)SIM API (3GPP TS 31.131 version 14.0.0 Release 14)

Reference RTS/TSGC-0631131ve00 Keywords LTE.UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.
All rights reserved.

DECT[™], **PLUGTESTS**[™], **UMTS**[™] and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**[™] and **LTE**[™] are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M logo is protected for the benefit of its Members

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intell	lectual Property Rights	2
Forev	word	2
Moda	al verbs terminology	2
Forev	word	6
1	Scope	7
2	References	7
3	Definitions and abbreviations	8
3.1	Definitions	
3.1	Abbreviations	
4	Description	
4.1	Overview	
4.2	Design Rationale and Upward Compatibility	
4.3	Application Triggering	
4.4	Proactive command handling	
4.5	Application Loading	13
5	'C'-language binding for (U)SIM API	13
5.1	Overview	
5.2	Toolkit Application Functions	
5.2.1	main	
5.2.2		
5.2.3		
5.3	Registry	
5.3.1	CatSetMenuString	
5.3.2	· · · · · · · · · · · · · · · · · · ·	
5.3.3	·	
5.3.4	•	
5.4	Man-Machine Interface	
5.4.1	CatAddItem	
5.4.2		
5.4.3		
5.4.4		
5.4.5	± *	
5.4.6	·	
5.4.7	1	
5.4.8	•	
5.5	Timers	
5.5.1	CatGetTimer	
5.5.2		
5.5.3		
5.5.4		
5.6	Supplementary Card Reader Management	
5.6.1	CatPowerOnCard	
5.6.2		
5.6.3		
5.6.4		
5.0. 4 5.7	UICC File Store Access	
5.7.1	CatSelect	
5.7.2		
5.7.3		
5.7.4		
5.7.5	·	
5.7.6		
5.7.7		

5.7.8	CatSearch	25
5.7.9	CatIncrease	25
5.7.10	CatInvalidate	25
5.7.11	CatRehabilitate	
5.8	Miscellaneous	
5.8.1	CatGetTerminalProfile	
5.8.2	CatMoreTime	
5.8.3	CatPollingOff	
5.8.4	CatPollInterval	
5.8.5	CatRefresh	
5.8.6	CatLanguageNotification	
5.8.7	CatLaunchBrowser	
5.9	Low-level Interface	
5.9.1	CatResetBuffer	
5.9.2	CatStartProactiveCommand	
5.9.3	CatSendProactiveCommand	
5.9.4	CatOpenEnvelope	
5.9.5	CatSendEnvelopeResponse	
5.9.6	CatSendEnvelopeErrorResponse	
5.9.7	CatPutData	
5.9.8	CatPutByte	
5.9.9	CatPutTLV	
5.9.10	CatPutBytePrefixedTLV	
5.9.11	CatPutOneByteTLV	
5.9.12	CatPutTwoByteTLV	
5.9.13	CatGetByte	
5.9.14	CatGetData	
5.9.15	CatFindNthTLV	
5.9.16	CatFindNthTLVInUserBuffer	
5.10	Network Services	
5.10.1	CatGetLocationInformation	
5.10.2	CatGetTimingAdvance	
5.10.2	CatGetIMEI	
5.10.4	CatGetNetworkMeasurementResults	
5.10.5	CatGetDateTimeAndTimeZone	
5.10.6	CatGetLanguage	
5.10.7	CatSetupCall	
5.10.8	CatSendShortMessage	
5.10.9	CatSendSS	
5.10.10	CatSendUSSD	
5.10.11	CatOpenCSChannel	
5.10.12	CatOpenGPRSChannel	
5.10.13	CatCloseChannel	
5.10.14	CatReceiveData	
5.10.15	CatSendData	
5.10.16	CatGetChannelStatus	
5.10.17	CatServiceSearch	
5.10.18	CatGetServiceInformation	
5.10.19	CatDeclareService	
5.10.20	CatRunATCommand	
5.10.21	CatSendDTMFCommand	
5.11	Supporting Data Types	
5.11.1	CatRecordAccessMode	
5.11.2	CatSearchMode	
5.11.3	CatFrameworkEventType	
5.11.4	CatEnvelopeTagType	
5.11.5	CatEventType	
5.11.6	CatTextString	
5.11.7	Cat Alpha String	
5.11.8	CatIconIdentifier	
5.11.9	CatIconOption.	
5 11 10	CateConOption	

5.11.11	CatDisplayTextOptions4					
5.11.12	CatGetInKeyOptions					
5.11.13	CatGetInputOptions					
5.11.14		ptions				
5.11.15						
5.11.16						
5.11.17		ons				
5.11.18		tatusOptions				
5.11.19						
5.11.20	CatGeneralResu	ılt	46			
5.11.21						
5.11.22	CatTimeInterva	1	47			
5.11.23	CatFileStatus		47			
5.11.24	CatLanguageNo	otificationOptions	48			
5.11.25	CatLocationInfo	ormation	48			
5.11.26	CatTimingAdva	nnce	48			
5.11.27	CatLaunchBrov	vserOptions	48			
5.11.28		otions				
5.11.29	CatTypeOfNumberAndNumberingPlanIdentifier					
5.11.30	CatSendShortMessageOptions					
5.11.31	CatSendDataOp	otions	49			
5.11.32	CatMEInterface	TransportLevelType	50			
5.11.33	CatBearer		50			
5.11.34		elOptions				
5.11.35	CatAddressTyp	e	50			
5.11.36	CatFID		50			
5.11.37	CatTextFormat		51			
5.11.38	CatTextForegroundColour					
5.11.39	CatTextBackgroundColour					
Annex A	(normative):	Application executable architecture	52			
Annex B	(informative):	Example	55			
Annex C	(informative):	Change history	57			
History			58			

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

A Subscriber Identity Module Application Programming Interface (SIM API) has been defined in TS 42.019 [4] as a technology-independent API by which toolkit applications and (U)SIMs co-operate. That specification is independent of the programming language technology used to create the application, the platform used to host the application and the runtime environment used to execute the application.

The present document includes information applicable to (U)SIM toolkit application developers creating applications using the C programming language ISO/IEC 9899 [7]. The present document describes an interface between toolkit applications written in the C programming language and the (U)SIM in order to realize the co-operation set forth in TS 42.019 [4]. In particular, the API described herein provides the service of assembling proactive commands and disassembling the responses to these commands for the application programmer.

Software tools, integrated software development environments and software management systems that may be used to create application programs are explicitly out of scope of the present document.

2 References

[15]

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

	•
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 31.111: "USIM Application Toolkit (USAT)".
[3]	3GPP TS 23.048: "Security Mechanisms for the (U)SIM application toolkit; Stage 2".
[4]	3GPP TS 42.019: "Subscriber Identity Module Application Programming Interface (SIM API); Stage 1".
[5]	ISO 639 (1988): "Code for the representation of names of languages".
[6]	3GPP TS 23.038: "Alphabets and language-specific information".
[7]	ISO/IEC 9899: "Programming Languages - C".
[8]	3GPP TS 11.14: "Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM $-$ ME) interface".
[9]	Tool Interface Standard (TIS) Executable and Linking Format Specification Version 1.2.
[10]	SYSTEM V Application Binary Interface, Edition 4.1.
[11]	3GPP TS 51.011: "Specification of the Subscriber Identity Module - Mobile Equipment (SIM-ME) interface".
[12]	Void.
[13]	3GPP TS 31.115: "Secured packet structure for (U)SIM Toolkit applications".
[14]	3GPP TS 31.116: "Remote APDU Structure for (U)SIM Toolkit applications".

3GPP TS 31.102: "Characteristics of the USIM Application".

[16] 3GPP TS 31.101: "UICC-Terminal Interface, Physical and Logical Characteristics".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

application: computer program that defines and implements a useful domain-specific functionality. The term may apply to the functionality itself, to the representation of the functionality in a programming language, or to the realization of the functionality as executable code.

application executable: representation of an application as collection of executable codes

application program: representation of an application in a programming language such as assembly language, C, Java, WML or XHTML

Application Programming Interface (API): collection of entry points and data structures that an application program can access when translated into an application executable

byte code: processor-independent representation of a basic computer operation such as "increment by one" that is executed by computer program called a byte code interpreter

data structure: memory address that can be accessed by an application executable in order to read or write data

entry point: memory address that can be branched to by an application executable in order to access functionality defined by an application-programming interface

Depending on the software technology, an entry point is also called a subroutine, a function or a method.

executable code: generic term for either byte code or native code

framework: defines a set of Application Programming Interface (API) functions for developing applications and for providing system services to those applications

loadfile: representation of an application executable that is transmitted from the terminal to the smart card operating system

A loadfile typically includes information about the application executable in addition to the application executable itself.

native code: processor-dependent representation of a basic computer operation such as "increment by one" that is executed by the hardware circuitry of a computer's central processing unit

toolkit application: uses the commands described in TS 31.111 [2] and TS 11.14 [8]

3.2 Abbreviations

For the purpose of the present document, the following abbreviations apply:

APDU Application Protocol Data Unit API Application Programming Interface

CAT Card Application Toolkit

CS Circuit Switched
DCS Digital Cellular System

DF Dedicated File

DTMF Dual Tone Multiple Frequency

EF Elementary File

ELF Executable and Linkable Format

FID File Identifier

GSM Global System for Mobile communications

ME Mobile Equipment

NAA Network Access Application (SIM or USIM)

OTA	Over The Air
SIM	Subscriber Identity Module
SMS	Short Message Service
STK	SIM ToolKit
SW	Status Word
TAR	Toolkit Application Reference
TLV	Tag, Length, Value
TPDU	Transport Protocol Data Unit
UICC	(not an acronym)
URL	Uniform Resource Locator
USIM	Universal Subscriber Identity Module
USSD	Unstructured Supplementary Services Data

4 Description

The (U)SIM Application consists of the following:

- APDU handlers for communicating with the ME;
- File system and file access control;
- Toolkit Framework that provides services to Toolkit applications.

The present document describes the C programming language binding for the interface between the (U)SIM application and toolkit applications described in TS 42.019 [4]. This API allows application programmers using the C programming language to access functions and data described in TS 31.111 [2] and TS 11.14 [8], such that the (U)SIM-based applications and the services they implement can be developed and loaded onto ICCs. If required and supported by the underlying smart card technology, toolkit applications can be loaded or deleted remotely, after the card has been issued.

4.1 Overview

The 'C'-binding for (U)SIM API shall provide function calls for pro-active functions and transport functions. The figure below shows the interactions between a typical toolkit application (shown in blue) and the various functional blocks of the (U)SIM (shown in orange). The C-bindings for these APIs are presented in subclause 4.2.

Figure 1

4.2 Design Rationale and Upward Compatibility

Some functions on the C SIM API take parameters that correspond to optional TLVs in TS 31.111 [2] and TS 11.14 [8]. If the actual parameter value passed to the function is NULL, the corresponding TLV is not passed to the ME; an example of an optional parameter is CatIconIdentifier that corresponds to the ICON IDENTIFIER TLV.

Some proactive commands have a very large number of optional TLVs, such as SETUP CALL. Therefore, this API offers two variants that address this aspect, CatSetupCall and CatSetupCallEx. The first function, CatSetupCall, takes as parameters everything that is necessary to issue a successful SETUP CALL proactive command (i.e. everything required to construct the mandatory TLVs as required by TS 31.111 [2] and TS 11.14 [8]) and also includes optional user interface TLVs (title and icon) for ease of use.

The second function, CatSetupCallEx, takes a parameter block that can be extended in future versions of the present specification. The parameter block contains members that correspond to all mandatory and optional TLVs for the SETUP CALL proactive command.

The reason for introducing the "...Ex" variants is threefold:

- Rather than extend the parameter list of a function to take a large number of optional parameters for each call, it is preferable to set up the parameters using named structure members before issuing the call to the function.
- If a future version of TS 31.111 [2] or TS 11.14 [8] extends the optional parameters for a proactive command, the corresponding parameter block can be extended to encompass these parameters without changing the function prototype.
- Any source code written for an older version of this C SIM API can be recompiled with a later version without change and will remain upwardly compatible at the source as long as the suggested coding standards are adhered to

4.3 Application Triggering

The application-triggering portion of the SIM Toolkit Framework is responsible for the activation of toolkit applications, based on the APDU received by the card.

The ME shall not be adversely affected by the presence of applications on the (U)ICC card. For instance a syntactically correct Envelope shall not result in an error status word in case of a failure of an application. The only application as seen by the ME is the (U)SIM application. As a result, a toolkit application may return an error, but this error will not be sent to the ME.

The difference between an application and a toolkit application is that a toolkit application does not typically handle APDUs directly. It will handle higher-level messages. Furthermore the execution of a function could span over multiple APDUs, in particular, the proactive protocol commands.

All the applications that have registered interest in the event are triggered in order of their priority.

- The current context is switched to the toolkit application.
- A pending transaction is aborted.
- The current file context of the toolkit application is the MF.
- The current file context of the current selected application is unchanged.

On termination of a toolkit application execution of CatExit():

- The context switches back to the context of the current selected application, the NAA application.
- A pending toolkit application transaction is aborted.

Here after are the events that can trigger a toolkit application:

EVENT_PROFILE_DOWNLOAD

Upon reception of the Terminal Profile command by the (U)SIM, the Toolkit Framework stores the ME profile and then triggers the registered toolkit application that may want to change their registry. A toolkit application may not be able to issue a proactive command.

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST

A toolkit application might be activated upon selection in the ME's menu by the user, or request help on this specific menu.

In order to allow the user to choose in a menu, the Toolkit Framework shall have previously issued a SET UP MENU proactive command. When a toolkit application changes a menu entry of its registry object, the Toolkit Framework shall dynamically update the menu stored in the ME during the current card session. The SIM Toolkit Framework shall use the data of the EFsume file (TS 51.011 [11] and TS 31.102 [15]) when issuing the SET UP MENU proactive command.

The positions of the toolkit application menu entries in the item list, the requested item identifiers and the associated limits (e.g. maximum length of item text string) are defined at the loading of the toolkit application.

If at least one toolkit application registers to EVENT_MENU_SELECTION_HELP_REQUEST, the SET UP MENU proactive command sent by the Toolkit Framework shall indicate to the ME that help information is available. A toolkit application registered for one or more menu entries may be triggered by the event

EVENT_MENU_SELECTION_HELP_REQUEST, even if it is not registered to this event. A toolkit application registered for one or more menu entries should provide help information.

EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV,

EVENT FORMATTED SMS PP UPD, EVENT UNFORMATTED SMS PP UPD

A toolkit application can be activated upon the reception of a short message. There are two ways for a card to receive an SMS: via the Envelope SMS-PP Data Download or the UpdateRecord EFsms instruction.

The reception of the SMS by the toolkit application cannot be guaranteed for the Update Record EFsms instruction.

The received SMS may be:

- formatted according to TS 23.048 [3] or an other protocol to identify explicitly the toolkit application for which the message is sent;
- unformatted or using a toolkit application specific protocol the Toolkit Framework will pass this data to all registered toolkit applications.

EVENT FORMATTED SMS PP ENV

This event is triggered by an envelope APDU containing an SMS_DATADOWNLOAD BER TLV with an SMS_TPDU simple TLV according to TS 23.048 [3].

The Toolkit Framework shall:

- verify the TS 23.048 [3] security of the SMS TPDU;
- trigger the toolkit application registered with the corresponding TAR defined at application loading;
- take the optional Application Data posted by the triggered toolkit application if present;
- secure and send the response packet.

The toolkit application will only be triggered if the TAR is known and the security verified. Application data will also be deciphered.

EVENT_UNFORMATTED_SMS_PP_ENV

The registered toolkit applications will be triggered by this event and get the data transmitted in the APDU envelope SMS DATADOWNLOAD.

$EVENT_FORMATTED_SMS_PP_UPD$

This event is triggered by Update Record EFsms with an SMS TP-UD field formatted according to TS 23.048 [3].

The Toolkit Framework shall:

- update the EFsms file with the data received, it is then up to the receiving toolkit application to change the SMS stored in the file (i.e. the toolkit application need to have access to the EFsms file);
- verify the TS 23.048 [3] security of the SMS TPDU;
- convert the Update Record EFsms in a TLV List, an EnvelopeHandler;
- trigger the toolkit application registered with the corresponding TAR defined at application loading.

$EVENT_UNFORMATTED_SMS_PP_UPD$

The SIM Toolkit Framework will first update the EFsms file, convert the received APDU as described above, and then trigger all the registered toolkit applications. All of them may modify the content of EFsms (i.e. the toolkit applications need to have access to the EFsms file).

EVENT_UNFORMATTED_SMS_CB

When the ME receives a new cell broadcast message, the cell broadcast page may be passed to the card using the envelope command. e.g. the application may then read the message and extract a meaningful piece of information that could be displayed to the user, for instance.

EVENT_CALL_CONTROL_BY_SIM

When the NAA is in call control mode and when the user dials a number, this number is passed to the Toolkit Framework. Only one toolkit application can handle the answer to this command: call barred, modified or accepted.

EVENT EVENT DOWNLOAD MT CALL, EVENT EVENT DOWNLOAD CALL CONNECTED,

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS,

 $EVENT_EVENT_DOWNLOAD_USER_ACTIVITY,\ EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,$

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

The toolkit application will be triggered by the registered event download trigger, upon reception of the corresponding Envelope command. In order to allow the toolkit application to be triggered by these events, the Toolkit Framework shall have previously issued a SET UP EVENT LIST proactive command. When a toolkit application changes one or more of these requested events of its registry, the Toolkit Framework shall dynamically update the event list stored in the ME during the current card session.

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Before sending an SMS MO entered by the user, the SMS is submitted to the Toolkit framework. Only one toolkit application can register to this event.

EVENT TIMER EXPIRATION

This event is registered when the application executes a successful Toolkit CatGetTimer(). The toolkit application can then manage this (these) timer(s), and it will be triggered at the reception of the APDU Envelope TIMER EXPIRATION. The Toolkit Framework shall reply busy to this Envelope APDU if it cannot guaranty to trigger the corresponding toolkit application.

EVENT UNRECOGNIZED ENVELOPE

The application registered to this event shall be triggered by the framework if the BER-TLV tag contained in the ENVELOPE APDU is not defined in the associated release of TS 31.111 [2] and TS 11.14 [8] and if no corresponding constant is defined in the list of the ToolkitConstants interface. By providing the means to transfer an arbitrary block of data, the Unrecognized Envelope Event will allow a toolkit application to handle the evolution of the specifications TS 31.111 [2] and TS 11.14 [8].

EVENT_STATUS_COMMAND

At reception of a STATUS APDU command, the SIM Toolkit Framework shall trigger the registered toolkit application.

A range of events is reserved for experimental and proprietary usage (from -128 to -1). As the definition of these events is not standardized, the use of these events may make the toolkit application behave differently on different platforms.

The toolkit application shall be triggered for the registered events upon reception, and shall be able to access to the data associated to the event using OpenEnvelope() or the low-level functions.

The order of triggering the toolkit application shall follow the priority level of each toolkit application defined at its loading. If several toolkit applications have the same priority level, the last loaded toolkit application takes precedence.

4.4 Proactive command handling

The (U)SIM application toolkit protocol (i.e. 91xx, Fetch, Terminal Response) is handled by the network access application and the Toolkit Framework. The toolkit application shall not handle those events.

The network access application and the Toolkit Framework shall handle the transmission of the proactive command to the ME, and the reception of the response. The Toolkit Framework will then return in the toolkit application just after the proactive command. It shall then provide to the toolkit application the values as indicated in the function parameters. It also provides the raw return information so that the toolkit application can analyse the response.

The proactive command is sent to the ME as defined and constructed by the toolkit library without any check of the Toolkit Framework.

The toolkit application shall not issue the following proactive commands: SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF; as those are system proactive commands that will affect the services of the Toolkit Framework.

4.5 Application Loading

Applications compliant to the present document are represented for loading as loadfiles in the Executable and Linkable Format (ELF) described in Tool Interface Standard (TIS) Executable and Linking Format Specification [9] and SYSTEM V Application Binary Interface [10]. The application executable in the ELF loadfile may be either native code or byte code that has been created through a process of compiling the representation of the application program in the C programming language.

The e_machine entry in the ELF header is set to according to the table in annex A and indicates the architecture for which the application executable in the loadfile has been prepared.

Coding for other processors, processor instruction set extensions and byte code interpreters will be defined as needed processor-specific or interpreter-specific supplements to SYSTEM V Application Binary Interface [10] may also be provided as needed.

Loadfile linkers, loaders and installers, whether on-card or off-card, return an error condition if the application representation in the loadfile cannot be accommodated or if resources requested by the application are not available.

The over-the-air application loading mechanism, protocol and application life cycle are defined in TS 23.028 [3].

5 'C'-language binding for (U)SIM API

5.1 Overview

This subclause presents the 'C'-language binding to (U)SIM API. It is divided into sections as follows:

- Toolkit application entry and exit.
- Man-Machine Interface.

- Timers.
- Supplementary card reader.
- UICC file store access.
- Registry.
- Miscellaneous.
- Low-level functions.
- Network services.
- Supporting data types.

For each function, the prototype is given followed by a table describing the parameters and whether they are input [in] or output [out] parameters. There is explanatory text which explains the function's purpose and whether it is a proactive command or not.

5.2 Toolkit Application Functions

Toolkit applications will start by executing the application-defined function *main*. There are no arguments to *main*, nor are there any return results. The application can find out why it was invoked using the *CatGetFrameworkEventt* function. The Framework events that can cause an application to be invoked can be split into the following groups:

- Command monitoring.
- ME monitor events.
- Application lifecycle change.

Command monitoring enables applications to be invoked when the framework receives commands from the ME. Currently supported commands that can be monitored are:

- TERMINAL PROFILE: monitoring this command enables an application to be invoked when the ME is powered on.
- STATUS: monitoring this command enables an application to be invoked when the ME polls for proactive commands.
- ENVELOPE: monitoring this command enables the application to be informed of specific envelope type arrival for example call control envelopes can be monitored.

ME monitor events are events that the framework can ask the ME to monitor; for example an event can be sent on call connection. ME monitored events are delivered to the application in the EVENT DOWNLOAD envelope as received from the ME.

The application lifecycle event enables the framework to invoke an application when the application status has changed. This is mainly to enable an application to be run at installation time so that it can set up its registry entries. The details of the application lifecycle events are provided in TS 31.116 [14].

5.2.1 main

```
void
main (void);
```

The main function is the application entry point. The application should not return from *main*; it must call the *CatExit* function.

An example main function is given below:

```
void main(void)
    {
      switch (CatGetFrameworkEvent())
      {
```

```
case EVENT_APPLICATION_LIFECYCLE_INSTALL:
      // set up registry for this application
      CatSetMenuString(....
      CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
      CatNotifyOnEvent(CARD_READER_STATUS,1);
    case EVENT_ENVELOPE_COMMAND:
      {
        BYTE length;
        switch (CatOpenEnvelope(&length))
            case MENU_SELECTION_TAG:
              // search for help request ....
              break;
            case SMS_PP_DOWNLOAD_TAG:
              break;
            case EVENT_DOWNLOAD_TAG:
              // search for card reader status event ....
              break;
            default:
              CatExit();
      break;
    default:
      CatExit();
      break;
CatExit();
```

5.2.2 CatGetFrameworkEvent

CatFrameworkEventType
CatGetFrameworkEvent(void);

RETURN Framework event type that caused the application to run; see CatFrameworkEventType for details.

5.2.3 CatExit

void
CatExit (void);

CatExit causes the application to terminate execution and return control to the framework. When the application is restarted, it enters at *main*.

5.3 Registry

The menu entry(ies) of the application, together with the set of framework events that the application is interested in, may be registered using the functions defined in this subclause.

5.3.1 CatSetMenuString

MenuID	[in]	The menu ID by which this entry is known.
MenuStringLength	[in]	The length, in bytes, of MenuString.
		The menu entry to be placed in the registry. If MenuString is NULL or
MenuString	[in]	MenuStringLength is zero, any existing menu entry associated with MenuID
		is removed and is not displayed by the ME.
		Optional icon identifier; see Catlconldentifier for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is
		sent to the ME.
HelpAvailable	[in]	If non zero the application can supply help.
NextAction	[in]	The (optional) next action value

CatSetMenuString allows the application to define a menu entry together with an icon. A non-zero value can be supplied if a next action indicator is required. This function will implicitly request that the application is notified of menu selection envelopes i.e. there is no requirement to call the CatNotifiyOnEnvelope function. An application can have several menu entries and must examine the menu selection envelope to decide which menu selection caused it to be invoked.

The ordering of menu entries within a menu presented by the ME is based on increasing integer values of identifiers selected by the application. Note that any application's menu item ordering may be further overridden by an external source, e.g. card issuer, via a request to the SIM Toolkit framework this mechanism is beyond the scope of the present document.

5.3.2 CatNotifyOnFrameworkEvent

void
CatNotifyOnFrameworkEvent(CatFrameworkEventType Event, BYTE Enabled);

Event	[in]	A framework event the application is interested in, see CatFrameworkEventType for details.
Enabled	[in]	If non-zero the framework event is monitored otherwise the framework event isn't monitored. By default only application lifecycle events are monitored.

CatNotifyOnFrameworkEvent enables the application to add/remove a framework event to/from the set of framework events that it is interested in.

5.3.3 CatNotifyOnEnvelope

void

CatNotifyOnEnvelope(CatEnvelopeTagType Tag, BYTE Enabled);

Tag	[in]	The particular envelope type to monitor; see CatEnvelopeTagType for details.
Enabled	[in]	If non-zero the envelope type is monitored otherwise the envelope type isn't monitored.

CatNotifyOnEnvelope enables the application to add/remove an envelope monitoring event to/from the set of the envelope monitoring events it is interested in. Note that the monitoring of MENU SELECTION, TIMER EXPIRATION and EVENT DOWNLOAD envelopes is handled by the framework.

5.3.4 CatNotifyOnEvent

void

CatNotifyOnEvent(CatEventType EventType, BYTE Enabled);

EventType	[in]	The particular event type to monitor; see CatEventType for details.
Enabled	[in]	If non-zero the event type is monitored otherwise the event isn't monitored.

CatNotifyOnEvent enables the application to add/remove an ME monitored event to/from the set of ME monitored events it is interested in.

5.4 Man-Machine Interface

5.4.1 CatAddItem

void

CatAddItem(BYTE ItemTextLength, const void *ItemText, BYTE ItemIdentifier);

ItemTextLength	[in]	The length in bytes of the following <i>ItemText</i> field.
ItemText	[in]	Text associated with item.
		Specifies a unique identifier to be associated with this selection. This value is
ItemIdentifier	[in]	returned in the SelectedItem parameter of CatSelectItem if this item is
		selected from the menu.

CatAddItem adds an item to a list for the user to select. See CatSelectItem below for details on the construction of a display list.

5.4.2 CatSelectItem

void

TitleLength	[in]	The length in bytes of Title.	l
Title	[in]	Title of the list of choices.	l
Options	[in]	Acceptable values for this parameter are listed in CatSelectItemOptions .	

CatSelectItem initiates the construction of a list of items to be displayed to the user and from which the user is expected to select exactly one entry. After CatSelectItem has been called, entries are added to the list one at a time using the CatAddItem entry point above. When all items have been added to the list, the list is sent to the ME using the CatEndSelectItem entry point below. CatEndSelectItem causes the list to be displayed and returns to the caller the item selected.

5.4.3 CatEndSelectItem

CatGeneralResult

CatEndSelectItem (BYTE *SelectedItem,

const CatIconIdentifier *IconIdentifier);

SelectedItem	[out]	Index of item selected by user.
		Optional icon identifier; see Catlconldentifier for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is
		sent to the ME.
RETURN		The GeneralResult code of the SELECT ITEM proactive command.

CatEndSelectItem issues the proactive command SELECT ITEM that displays on the ME a list of items for the user to choose from. The terminal response is parsed and if successful the SelectedItem parameter is set to the index of the item chosen. See CatSelectItem above for details on the construction of a display list.

5.4.4 CatDisplayText

CatGeneralResult

 $\textbf{CatDisplayText} \hspace{0.2cm} \textbf{(CatDCSValue} \hspace{0.2cm} \textit{TextDCS}, \hspace{0.2cm} \textbf{BYTE} \hspace{0.2cm} \textit{TextLength}, \hspace{0.2cm} \textbf{const} \hspace{0.2cm} \textbf{void} \hspace{0.2cm} \textbf{*} \textit{Text},$

CatDisplayTextOptions TextOptions,

CatTextFormat TextFormat,

CatForegroundColor ForegroundColour, CatBackgroundColour BackgroundColour,

const CatIconIdentifier *IconIdentifier,

BYTE ImmediateResponse);

ToutDCC	Fi 1	The data coding scheme for <i>Text</i> . Acceptable values for this parameter are
TextDCS	[in]	listed in CatDCSValue.
TextLength	[in]	The length in bytes of <i>Text</i> .
Text	[in]	String to display on ME.
TextOptions	[in]	Acceptable values for this parameter are listed in CatDisplayTextOptions .
TextFormat	[in]	Format of text; e.g. bold, italic, etc.
ForegroundColour	[in]	Foreground colour of text; i.e. colour of the letters.
BackgroundColour	[in]	Background colour of text; i.e. colour filled in behind the letters.
-		Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If
lconldentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier
		is sent to the ME.
		True-program continues execution as soon as ME receives instruction.
ImmediateResponse	[in]	False-program waits until text is cleared on the ME before continuing, and
		the Immediate Response TLV is not passed to the ME.
RETURN		The GeneralResult code of the DISPLAY TEXT proactive command.

5.4.5 CatGetInKey

CatGeneralResult

CatDCSValue *DCSOut, void *KeyOut);

TitleDCS	[in]	The data-coding scheme for <i>Title</i> . Acceptable values for this parameter are listed in CatDCSValue.
TitleLength	[in]	The length in bytes of <i>Title</i> .
Title	[in]	String to display on ME.
Options	[in]	Acceptable values for this parameter are listed in CatGetInKeyOptions.
,		Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is sent to the ME.
DcsOut	[out]	The packing type of the returned key. This parameter is set to one of the values listed in CatDCSValue.
KeyOut	[out]	The key pressed.
RÉTURN		The GeneralResult code of the GET INKEY proactive command.

CatGetInKey issues the proactive command GET INKEY. The terminal response is parsed and if successful the DCSOut and KeyOut parameters are updated.

5.4.6 CatGetInput

T'' 000	r	The data-coding scheme for <i>Title</i> . Acceptable values for this parameter are
TitleDCS	[in]	listed in CatDCSValue.
TitleLength	[in]	The length in bytes of <i>Title</i> .
Title	[in]	String to display on ME while waiting for the user to press a key.
Options	[in]	Acceptable values for this parameter are listed in CatGetInputOptions .
DefaultReplyDCS	[in]	The data-coding scheme for <i>DefaultReply</i> . Acceptable values for this parameter are listed in CatDCSValue.
DefaultReplyLength	[in]	The length in bytes of <i>DefaultReply</i> .
DefaultReply	[in]	Default response string; use NULL for "no reply"-no Default Reply tag length value (TLV) is sent to the ME.
MinimumResponseLength	[in]	Minimum allowed length for the response, in either characters or digits.
MaximumResponseLength	[in]	Maximum allowed length for the response, in either characters or digits.
IconIdentifier	[in]	Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If <i>IconIdentifier</i> is NULL or if <i>IconIdentifier.UseIcon</i> is zero, no icon identifier is sent to the ME.
MsgOutDCS	[out]	Packing type of the returned data. This parameter is set to one of the values listed in CatDCSValue .
MsgOutLength	[out]	Length of the returned message in bytes.
MsgOut	[out]	A pointer to where the returned string or message is placed.
RETURN		The GeneralResult code of the GET INPUT proactive command.

CatGetInput issues the proactive command GET INPUT. The terminal response is parsed and if successful MsgOutDCS, MsgOutLength, MsgOut parameters are updated.

5.4.7 CatSetupIdleModeText

```
CatGeneralResult
```

```
CatSetupIdleModeText (CatDCSValue TextDCS, BYTE TextLength, const void *Text, const CatIconIdentifier *IconIdentifier);
```

TextDCS	[in]	The data-coding scheme for <i>Text</i> . Acceptable values for this parameter are listed in CatDCSValue.
TextLength	[in]	The length in bytes of <i>Text</i> .
Text	[in]	String to display while ME is idle.
		Optional icon identifier; see CatlconIdentifier for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is sent to the ME.
RETURN		The GeneralResult code of the SETUP IDLE MODE TEXT proactive command.

CatSetupIdleModeText issues the proactive command SET UP IDLE MODE TEXT that sets the ME's default text string.

5.4.8 CatPlayTone

TextLength	[in]	The length in bytes of the string <i>Text</i> to display on the ME.
Text	[in]	String to display on ME while sound is being played.
Tone	[in]	Specifies tone to play. Acceptable values for this parameter are listed in <u>CatTone</u> .
Units	[in]	Unit of time specified for <i>duration</i> parameter. Acceptable values for this parameter are listed in CatTimeUnit.
Duration	[in]	Amount of time to play the tone, in units specified in the <i>Units</i> parameter
IconIdentifier	[in]	Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If <i>IconIdentifier</i> is NULL or if <i>IconIdentifier.UseIcon</i> is zero, no icon identifier is sent to the ME.
RETURN		The GeneralResult code of the PLAY TONE proactive command.

CatPlayTone issues the proactive command PLAY TONE.

5.5 Timers

5.5.1 CatGetTimer

BYTE

CatGetTimer (void);

RETURN The identifier of the timer.

CatGetTimer returns the ID of a timer that is not currently in use. If no timer is available, this function returns zero. Timer identifiers are assigned by the framework.

5.5.2 CatFreeTimer

void

CatFreeTimer (BYTE TimerID);

TimerID	[in]	ID of timer to free; obtained from CatGetTimer.
		,

CatFreeTimer frees the handle to the specified timer, making it available for the next request. It is not a proactive command. No information is passed to the ME by this function.

5.5.3 CatStartTimer

void

CatStartTimer (BYTE TimerID, CatTimerValue *TimerValue);

TimerID	[in]	ID of the timer to initialize; obtained from CatGetTimer .
TimerValue	[in]	Initial value of the timer. The value is specified in a structure of type CatTimerValue.
RETURN		The GeneralResult code of the TIMER MANAGEMENT proactive command.

CatStartTimer issues a proactive TIMER MANAGEMENT command to initialize a timer to the parameter values.

5.5.4 CatGetTimerValue

void

CatGetTimerValue (BYTE TimerID, CatTimerValue);

TimerID	[in]	ID of the timer from which to obtain values; obtained from CatGetTimer
TimerValue	[out]	The time remaining to run of timer <i>TimerID</i> . The value is returned in a structure of type CatTimerValue.
RETURN		The GeneralResult code of the TIMER MANAGEMENT proactive command.

CatGetTimerValue issues a proactive TIMER MANAGEMENT command to obtain the timer's current value.

5.6 Supplementary Card Reader Management

These functions access the supplementary card-reader on a dual-slot ME.

5.6.1 CatPowerOnCard

CatGeneralResult

CatPowerOnCard (CatDevice DeviceID, BYTE *ATRLength, void *ATR);

DeviceID	[in]	The device to power on. An acceptable value for this parameter is a card reader device selected from CatDevice .
ATRLength	[in/out]	Size of the ATR buffer on input and the umber of bytes returned by the card as the ATR on output.
ATR	[out]	Pointer to where answer to reset (ATR) will be stored.
RETURN		The GeneralResult code of the POWER ON CARD proactive command.

CatPowerOnCard issues the proactive command POWER ON CARD that powers on a supplementary card reader. The terminal response is parsed and if successful the *ATR* and *ATRLength* parameters are.

5.6.2 CatPowerOffCard

 ${\tt CatGeneralResult}$

CatPowerOffCard (CatDevice DeviceID);

DeviceID	[in]	The device to power off. An acceptable value for this parameter is a card reader device selected from CatDevice.
RETURN		The GeneralResult code of the POWER OFF CARD proactive command.

CatPowerOffCard issues the proactive command POWER OFF CARD that turns off the supplementary card reader.

5.6.3 CatPerformCardAPDU

DeviceID	[in]	The device to send the command APDU (C-APDU) to. An acceptable value for this parameter is a card reader device selected from CatDevice .
CAPDU	[in]	Pointer to the command C-APDU to be sent to the additional card device.
CAPDULength	[in]	The number of bytes in the C-APDU.
		Pointer to the buffer that will contain the response APDU (R-APDU) returned
RAPDU	[out]	by the card in the additional card reader. You must allocate enough space to hold the R-APDU sent by the card.
RAPDULength	[out]	The number of bytes returned by the card in the additional card reader.
RETURN		The GeneralResult code of the PERFORM CARD APDU proactive command.

CatPerformCardAPDU issues the proactive command PERFORM CARD APDU that sends application program data units (APDU) to the supplementary card reader. The terminal response is parsed and if successful the RAPDU and RAPDULength parameters are updated.

5.6.4 CatGetReaderStatus

DeviceID	[in]	Device to detect status of. An acceptable value for this parameter is a card reader
	נייין	device selected from <u>CatDevice</u> .
Options	[in]	Selects what type of status information to return. An acceptable value for this
	[in]	parameter is selected from CatGetReaderStatusOptions.
Status	[out]	Status of additional card reader.
RETURN		The GeneralResult code of the GET READER STATUS proactive command.

CatGetReaderStatus issues the proactive command GET READER STATUS that retrieves the status of the additional card readers on the ME. The terminal response is parsed and if successful the Status parameter is updated.

5.7 UICC File Store Access

The abstract type FID is used to denote the file and a set of pre-processor macros are defined that enumerate all of the standard files of a NAA file store. A FID could be implemented as an unsigned 16-bit number as follows:

```
typedef unsigned short FID;#define FID_MF 0x3F00
```

The starting file-context of a Toolkit application is the MF. When a Toolkit application exits, the file-context is lost.

The Access Control privileges of the application are granted during installation according to the level of trust. When an application requests access to UICC or operator specific files, the Toolkit Framework checks if this access is allowed by examination of the file control information stored on the card. If access is granted the Toolkit Framework will process the access request, if access is not granted, an appropriate status word will be returned.

Contents and coding of the file(s) containing access control information are defined in 3GPP TS 31.101 [16].

All UICC functions return the status bytes according to 3GPP TS 31.101 [16], where 90 00 represents success.

5.7.1 CatSelect

UINT16

CatSelect (CatFID FileIdentifier, CatFileStatus *Status);

FileIdentifier	[in]	The file to select.
Status	[out]	Useful information about the directory or file if it is successfully selected.
RETURN		The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSelect selects the specified file as the current working file.

5.7.2 CatStatus

UINT16

CatStatus (CatFileStatus *Status);

NumBytes	[out]	The number of bytes written.
Status	[out]	The status of the currently selected file.
		The returned 16-bit unsigned value is a concatenation of the SW
RETURN		response bytes with SW1 as the high byte and SW2 as the low byte, so
		a successful execution would return 0x9000.

CatStatus returns the file status of the currently selected file as specified in 3GPP TS 31.101 [16].

5.7.3 CatGetCHVStatus

void

CatGetCHVStatus (BYTE CHVStatus[4]);

CHVStatus	[out]	Updates the CHVStatus array with the statusof CHV1, CHV2,	
	CHVStatus [out]	լսևւյ	UNBLOCKCHV1, and UNBLOCKCHV2 with CHV1 at array element zero.

CatGetCHVStatus returns the current CHV status values. The format of the returned bytes is specified in 3GPP TS 31.101 [16].

5.7.4 CatReadBinary

UINT16

Offset	[in]	The offset into the file.
NumBytes	[in/out]	The number of bytes to be read on input and the actual number read on output
Buffer	[out]	The buffer into which the data is written.
RETURN		The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadBinary reads NumBytes from position Offset in the currently selected file into Buffer.

5.7.5 CatUpdateBinary

UINT16

Offset	[in]	The offset into the file.
NumBytes	[in]	The number of bytes to write.
Buffer	[in]	The buffer containing the data to write to the file.
		The returned 16-bit unsigned value is a concatenation of the SW
RETURN		response bytes with SW1 as the high byte and SW2 as the low byte, so
		a successful execution would return 0x9000.

CatUpdateBinary writes NumBytes contained in Buffer to position Offset in the currently selected file.

5.7.6 CatReadRecord

UINT16

CatReadRecord (DWORD RecordNumber,
CatRecordAccessMode Mode,
DWORD Offset, DWORD *NumBytes,
void *Buffer);

RecordNumber	[in]	The record number from which to read when Mode is ABSOLUTE or 0 otherwise.
Mode	[in]	Indication of which record is to be read; viz. NEXT, PREVIOUS, CURRENT or ABSOLUTE.
Offset	[in]	The offset into the record.
NumBytes	[in/out]	The number of bytes to be read from the record on input and the number of bytes actually read on output
Buffer	[out]	The buffer into which the data is read.
RETURN		The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadRecord reads NumBytes from the record RecordNumber of the currently selected file into Buffer.

5.7.7 CatUpdateRecord

UINT16

CatUpdateRecord (DWORD RecordNumber, CatRecordAccessMode Mode,

DWORD Offset, DWORD NumBytes,
const void *Buffer);

The record number to which to write when Mode is ABSOLUTE or 0 RecordNumber [in] otherwise Indication of which record is to be read; viz. NEXT, PREVIOUS, CURRENT Mode [in] or ABSOLUTE. The offset into the record. Offset [in] NumBytes [in] The number of bytes to write into the record. Buffer [out] The buffer containing the data to write to the record. The returned 16-bit unsigned value is a concatenation of the SW RETURN response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateRecord writes NumBytes into the record RecordNumber of the currently selected file from Buffer.

5.7.8 CatSearch

UINT16

CatSearch (CatSearchModes Mode,
 DWORD Offset, DWORD PatternLength,
 const void *Pattern);

		Defines the seek method, One of
		SEEK FROM BEGINNING FORWARD,
Mode	[in]	SEEK FROM END BACKWARD,
	[]	SEEK FROM NEXT FORWARD,
		SEEK_FROM_PREVIOUS_BACKWARD
Offset	[in]	The offset into the record at which to being pattern matching.
PatternLength	[in]	The size in bytes of the pattern to search for.
Pattern	[in]	The buffer containing the pattern to search for.
		The returned 16-bit unsigned value is a concatenation of the SW
RETURN		response bytes with SW1 as the high byte and SW2 as the low byte, so
		a successful execution would return 0x9000.

CatSearch searches records in the currently selected file starting at Offset for the pattern of length PatternLength contained in Pattern. If the pattern is found the current record is set appropriately.

5.7.9 CatIncrease

UINT16

Increment	[in]	The value to increase by.
Value	[out]	The new value.
		The returned 16-bit unsigned value is a concatenation of the SW
RETURN		response bytes with SW1 as the high byte and SW2 as the low byte, so
		a successful execution would return 0x9000.

CatIncrease adds *Increment* to the current record of the selected cylic file and returns the new *Value*. The most significant byte of *Increment* is ignored.

5.7.10 CatInvalidate

UINT16

CatInvalidate (void);

	The returned 16-bit unsigned value is a concatenation of the SW
RETURN	response bytes with SW1 as the high byte and SW2 as the low byte, so
	a successful execution would return 0x9000.

CatInvalidate invalidates the selected file.

5.7.11 CatRehabilitate

UINT16

CatRehabilitate (void) ;

	The returned 16-bit unsigned value is a concatenation of the SW
RETURN	response bytes with SW1 as the high byte and SW2 as the low byte, so
	a successful execution would return 0x9000.

CatRehabilitate rehabilitates the selected file.

5.8 Miscellaneous

5.8.1 CatGetTerminalProfile

void

CatGetTerminalProfile (BYTE *ProfileOutLength, BYTE *Profile);

ProfileOutLength	[out]	The number of bytes written to Profile.
Profile	[out]	The address at which the terminal profile is written.

CatGetTerminalProfile returns the stored terminal profile in Profile.

5.8.2 CatMoreTime

CatGeneralResult
CatMoreTime (void);

RETURN	The GeneralResult code of the MORE TIME proactive command.
TALTOTAL	The General Result Code of the MONE Think proactive command.

CatMoreTime issues the proactive command MORE TIME to the ME that it needs more time to process an application.

5.8.3 CatPollingOff

CatGeneralResult
CatPollingOff (void);

RETURN	The GeneralResult code of the POLLING OFF proactive command.
--------	--

CatPollingOff issues the proactive command POLLING OFF that disables proactive polling; this essentially turns off CatPollInterval.

5.8.4 CatPollInterval

Unit	[in]	Desired time interval. Acceptable values for this parameter are listed in CatTimeUnit.
Interval	[in]	Interval in <i>unit</i> s.
ActualIntervalOut	[out]	Response from ME negotiating the interval. This may or may not be the same as <i>Unit</i> and <i>Interval</i> . The value returned is in a structure of type CatTimeInterval.
RETURN		The GeneralResult code of the POLL INTERVAL proactive command.

CatPollInterval issues the proactive command POLL INTERVAL that requests the ME to set a time interval between status application program data units (APDU) that the ME sends to the UICC. The ME responds with a time interval of its own that most closely matches the application programming interface (API) request.

Polling can be disabled by using CatPollingOff.

5.8.5 CatRefresh

Options	[in]	Informs the ME of what needs refreshing. Acceptable values for this parameter are listed in CatRefreshOptions.
FileListLength	[in]	The length, in bytes, of FileList.
FileList	[in]	The file identifiers of the files that have changed.
RETURN		The GeneralResult code of the REFRESH proactive command.

CatRefresh issues the proactive command REFRESH that informs ME that the NAA has changed configuration due to UICC activity (such as an application running).

5.8.6 CatLanguageNotification

void

Options	[in]	Language options. An acceptable value for this parameter is a card reader device selected from CatLanguageNotificationOptions.
Language	[in]	The 2-character language code as defined by ISO 639 [5], encoded using SMS default 7-bit coded alphabet as defined by TS 23.038 [6].
RETURN		The GeneralResult code of the LANGUAGE NOTIFICATION proactive command.

CatLanguageNotification issues the proactive command LANGUAGE NOTIFICATION that notifies the ME about the language currently used for any text string within proactive commands or envelope command responses.

5.8.7 CatLaunchBrowser

CatGeneralResult

CatLaunchBrowser (CatLaunchBrowserOptions Options,

BYTE TitleLength, const void *Title,
BYTE URLLength, const void *URL,
const CatlconIdentifier *IconIdentifier);

Options	[in]	Options used to launch the browser. Acceptable values for this parameter are listed in <u>CatLaunchBrowserOptions</u> .
TitleLength	[in]	The length in bytes of the string <i>Title</i>
Title	[in]	String to display on the ME during the user confirmation phase.
URLLength	[in]	The length in bytes of URL.
URL	[in]	The URL to open the browser at.
		Optional icon identifier; see CatlconIdentifier for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier
		is sent to the ME.
RETURN		The GeneralResult code of the LAUNCH BROWSER proactive command.

CatLaunchBrowser and CatLaunchBrowserEx issue the proactive command LAUNCH BROWSER that launches a browser on the ME.

CatGeneralResult

CatLaunchBrowserEx (const CatLaunchBrowserExParams *params);

The structure CatLaunchBrowserExParams has the following members:

```
typedef struct
  // Mandatory fields
 CatLaunchBrowserOptions Options,
 BYTE URLLength;
 const void *URL;
// Optional fields
 BYTE BrowserIdentityLength;
 const void *BrowserIdentity;
 BYTE BearerLength;
 const BYTE *Bearer;
 BYTE NumProvisioningFileReferences;
 BYTE *ProvisioningFileReferenceLengths;
 const BYTE **ProvisioningFileReferences;
 BYTE GatewayProxyIdLength;
 const void * GatewayProxyId;
 CatAlphaString Title;
 CatIconIdentifier IconIdentifier;
} CatLaunchBrowerExParams;
```

with the following members:

URLLength	[in]	The length in bytes of <i>URL</i> .
URL	[in]	The URL to open the browser at.
BrowserldentityLength	[in]	Length in bytes of Browserldentity.
BrowserIdentity	[in]	The browser identity. If BrowserIdentity is NULL, no BROWSER IDENTITY TLV is sent to the ME.
BearerLength	[in]	Length in bytes of Bearer.
Bearer	[in]	The list of bearers in order of priority requested. The type <u>CatBearer</u> defines the values acceptable. If <i>Bearer</i> is NULL, no BEARER TLV is sent to the ME.
NumProvisioningFileReferences	[in]	The number of Provisioning File References.
ProvisioningFileReferenceLengths	[in]	A pointer to the array of Provisioning File References lengths.
ProvisioningFileReferences	[in]	A pointer to the array of Provisioning File References.
GatewayProxyldLength	[in]	Length in bytes of GatewayProxyld.
GatewayProxyld	[in]	The gateway or proxy identity. If <i>GatewayProxyId</i> is NULL, no TEXT STRING TLV describing the gateway/proxy is sent to the ME.
Title	[in]	String to display on the ME; see CatAlphaString.
IconIdentifier	[in]	Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If <i>IconIdentifier.UseIcon</i> is zero, no icon identifier is sent to the ME.

5.9 Low-level Interface

This subclause presents a low-level programming interface that allows you to:

- Construct proactive commands and send them to the ME.
- Access the terminal response from the ME.
- Search the terminal response and contents of envelopes for specified TLVs.
- Unpack the contents of envelopes from the ME and send responses.

These functions are provided so that functionality that is not provided in the high level API is still accessible. All of these functions work on a single data buffer that has a single data pointer and can only be accessed sequentially. The high-level proactive functions may make use of the data buffer so consequently the high-level proactive functions should not be used whilst using the low-level functions.

5.9.1 CatResetBuffer

```
void
CatResetBuffer(void);
```

This function resets the data pointer to the beginning of the buffer.

5.9.2 CatStartProactiveCommand

void

Command	[in]	Command byte of proactive command.
Options	[in]	Command options of proactive command.
То	[in]	The destination device identity.

CatStartProactiveCommand resets the data pointer and starts the construction of a proactive command by writing the command tag, command details and device identities to the data buffer. The data pointer is left pointing after the device identities so that proactive command specific data can be written.

5.9.3 CatSendProactiveCommand

CatGeneralResult
CatSendProactiveCommand (BYTE *Length);

Length	[out]	Pointer that is updated with the length of the terminal response
RETURN		The general result byte of the terminal response

CatSendProactiveCommand sends the contents of the data buffer as a proactive command and updates the data buffer with the terminal response. The general result byte of the terminal response is returned by this function. The length of the terminal response is written to *Length. The data pointer is set to point to the additional information of the terminal response.

5.9.4 CatOpenEnvelope

CatEnvelopeTagType
CatOpenEnvelope(BYTE *Length);

Length	[out]	Pointer that is updated with the length of the envelope
RETURN		The envelope tag

CatOpenEnvelope returns the envelope tag of the data buffer and the length of the envelope data. The data pointer is set to point to the envelope data.

5.9.5 CatSendEnvelopeResponse

void

CatSendEnvelopeResponse (void);

CatSendEnvelopeResponse sends the contents of the data buffer as a successful envelope response.

5.9.6 CatSendEnvelopeErrorResponse

void

CatSendEnvelopeErrorResponse (void);

This function sends the contents of the data buffer as an unsuccessful envelope response.

5.9.7 CatPutData

void

Length	[in]	Length of Data
Data	[in]	Pointer to Data

CatPutData appends Length bytes of data to the data buffer.

5.9.8 CatPutByte

void
CatPutByte (BYTE Data);

	Data	[in]	Data byte.
--	------	------	------------

CatPutByte appends the supplied data byte to the data buffer.

5.9.9 CatPutTLV

Tag	[in]	Tag byte.
Length	[in]	Length of value.
Value	[in]	A pointer to the value.

CatPutTLV appends a general TLV to the data buffer.

5.9.10 CatPutBytePrefixedTLV

Tag	[in]	Tag byte.
Prefix	[in]	Prefix byte.
Length	[in]	Length of value.
Value	[in]	A pointer to the value.

CatPutBytePrefixedTLV appends a TLV to the data buffer with a single byte placed before the Value.

5.9.11 CatPutOneByteTLV

Tag	[in]	Tag byte.
Value	[in]	Value byte.

CatPutOneByteTLV appends a single byte valued TLV to the data buffer.

5.9.12 CatPutTwoByteTLV

Tag	[in]	Tag byte.
Value1	[in]	First Value byte.
Value2	[in]	Second Value byte.

CatPutTwoByteTLV appends a two byte valued TLV to the data buffer.

5.9.13 CatGetByte

BYTE

CatGetByte (void);

RETURN Data byte.	
-------------------	--

CatGetByte returns the byte at the current data pointer and increments the data pointer by one.

5.9.14 CatGetData

const void *
CatGetData (BYTE Length);

Length		of Data
RETURN	ETURN Pointer	to Data.

CatGetData returns the current data pointer and increments the data pointer by Length bytes.

5.9.15 CatFindNthTLV

Tag	[in]	Tag to find.
Occurrence	[in]	Occurrence of Tag to find with "1" being the first.
Length	[out]	Length of found TLV.
RETURN		Pointer to data of found TLV

CatFindNthTLV finds the nth TLV that matches Tag in the data buffer, where nth is specified by the Occurrence parameter. If a match is found the data pointer is updated to the found TLV, the function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer and the data pointer is left unchanged.

5.9.16 CatFindNthTLVInUserBuffer

BufferLen	[in]	Length of buffer
Buffer	[in]	Buffer to search
Tag	[in]	Tag to find.
Occurrence	[in]	Occurrence of Tag to find with "1" being the first.
Length	[out]	Length of found TLV.
REŤURN		Pointer to data of found TLV

CatFindNthTLVInUserBuffer finds the nth TLV that matches Tag is the supplied buffer. The function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer.

5.10 Network Services

5.10.1 CatGetLocationInformation

CatGeneralResult

CatGetLocationInformation (CatLocationInformation *LocationInformation);

LocationInformation	[out]	A pointer to where the location information from the ME is placed. Refer to the CatLocalInformation section for member details.
RETURN		The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.
		The GeneralResult code of the DISPLAY TEXT proactive command.

CatProvideLocationInformation requests the ME to send location information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.2 CatGetTimingAdvance

CatGeneralResult

CatGetTimingAdvance (CatTimingAdvance *TimingAdvance);

TimingAdvance	[out]	A pointer to where the timing advance information from the ME is placed. Refer to the CatTimingAdvance section for member details.
RETURN		The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatProvideTimingAdvance requests the ME to send timing advance information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.3 CatGetIMEI

CatGeneralResult

CatGetIMEI (BYTE IMEI[8]);

IMEI	[out]	A pointer to where the IMEI of the ME is placed.
RETURN		The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetIMEI requests the ME to send the IMEI to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.4 CatGetNetworkMeasurementResults

CatGeneralResult

 $\textbf{CatGetNetworkMeasurementResults (BYTE \textit{MeasurementResults} \textbf{[10]);} \\$

MeasurementResults	[out]	A pointer to where the network measurement results from the ME is placed.
RETURN		The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetNetworkMeasurementResults requests the ME to send the network measurement results to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.5 CatGetDateTimeAndTimeZone

CatGeneralResult

CatGetDateTimeAndTimeZone (BYTE DateTimeAndTimeZone[7]);

DateTimeAndTimeZone	[out]	A pointer to where the date, time, and time zone from the ME is placed.
RETURN		The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive
TETOTAL		command.

CatGetDateTimeAndTimeZones requests the ME to send the date, time, and time zone information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.6 CatGetLanguage

CatGeneralResult

CatGetLanguage (BYTE Language[2]);

DateTimeAndTimeZone	[out]	A pointer to where the language from the ME is placed.
RETURN		The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive
		command.

CatGetLanguage requests the ME to send the language information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.10.7 CatSetupCall

CatGeneralResult

```
CatSetupCall (BYTE CallSetupMessageLength, const void *CallSetupMessage, CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI, BYTE DiallingNumberLength, const void *DiallingNumber, CatSetupCallOptions Options, const CatIconIdentifier *UserConfirmationIconIdentifier, BYTE CallSetupMessageLength, const void *CallSetupMessage, const CatIconIdentifier *CallSeupIconIdentifier);
```

UserConfirmationMessageLength	[in]	Length in bytes of UserConfirmationMessage.
UserConfirmationMessage	[in]	Message to display for user confirmation or NULL.
OserComminationwessage	נייין	
TONandNPI	[in]	Acceptable values for this parameter are listed in
	[]	<u>CatTypeOfNumberAndNumberingPlanIdentifier</u> .
DiallingNumberLength	[in]	Length in bytes of <i>DiallingNumber</i> .
DialingNumber	[in]	Number to call is coded as binary-coded decimal.
		Acceptable values for this parameter are listed in
Options	[in]	CatSetupCallOptions.
		Optional icon identifier to use during the user confirmation phase; see
		CatlconIdentifier for member details. If
UserConfirmationIconIdentifier	[in]	UserConfirmationIconIdentifier is NULL or if
		UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation
		phase icon identifier is sent to the ME.
CallSetupMessageLength	[in]	Length in bytes of CallSetupMessage.
CallSetupMessage	[in]	Message to display for call set up or NULL.
,		Optional icon identifier to use during the call setup phase; see
CallSaturplaanIdantifiar	[in]	Catlconldentifier for member details. If CallSetupIconIdentifier is
CallSetupIconIdentifier	[in]	NULL or if CallSetupIconIdentifier.UseIcon is zero, no call setup phase
		icon identifier is sent to the ME.
RETURN		The GeneralResult code of the SET UP CALL proactive command.

CatSetupCall and CatSetupCallEx issue the SET UP CALL proactive command to the ME.

CatGeneralResult

```
CatSetupCallEx (const CatSetupCallExParams *Params);
The type CatSetupCallExParams is defined as follows:
typedef struct
  // Mandatory fields
  CatSetupCallOptions Options;
  CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI;
  BYTE DiallingNumberLength;
  const void *DialingNumber;
  // Optional fields
  CatAlphaString UserConfirmationMessage;
  BYTE CapabilityConfigParamsLength;
  const void *CapabilityConfigParams;
  BYTE CalledPartySubaddressLength;
  const void *CalledPartySubaddress;
  CatTimeInterval RedialMaximumDuration;
  CatIconOption UserConfirmationIcon;
  CatAlphaString CallSetupMessage;
  CatIconOptions CallSetupIcon;
```

With the following members:

} CatSetupCallExParams;

Options	Acceptable values for this parameter are listed in CatSetupCallOptions .
TONandNPI	Acceptable values for this parameter are listed in
	CatTypeOfNumberAndNumberingPlanIdentifier.
DiallingNumberLength	Length in bytes of <i>DiallingNumber</i> .
DialingNumber	Number to call is coded as binary-coded decimal.
	String to display during the user confirmation phase; see CatAlphaString .
UserConfirmationMessage	If this parameter is null, no user confirmation message TLV is passed to
	the ME.
CapabilityConfigParamsLength	Length in bytes of CapabilityConfigParams.
CapabilityConfigParams	A pointer to the capability configuration parameters as coded for EF _{CCP} .
CalledPartySubaddressLength	Length in bytes of CalledPartySubaddress.
CalledPartySubaddress	The called party subaddress.
RedialMaximumDuration	An optional maximum duration for the redial mechanism. If the timeInterval member of this structure is zero, no duration TLV is sent to the ME.
	The icon to display during the user confirmation phase. If the
UserConfirmationIcon	Uselcon member of this structure is zero, no user confirmation icon
	TLV is sent to the ME.
CallSetupMessage	String to display during the call set up phase; see CatAlphaString .
CallSetupIcon	The icon to display during the call setup phase.

Optional parameters are specifically chosen to use an all-zero binary representation. This means that it is simple to set up only the required members of the *SetupCallExParams* structure by zeroing the whole structure using *memset*, filling in the required members, and sending the result to *CatSetupCallEx*. As all optional parameters use a zero binary representation, the *memset* serves to *initialise* them all to the "not present" status.

5.10.8 CatSendShortMessage

TitleLength	[in]	Length in bytes of <i>Title</i> .
Title	[in]	String to display while ME is sending a message.
TONandNPI	[in]	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.
AddressLength	[in]	Length in bytes of Address.
Address	[in]	Address of the service center where message is being sent.
SmsTPDULength	[in]	Length in bytes of SmsTPDU.
SmTPDU	[in]	Formatted short message service (SMS) message to send.
Options	[in]	Specifies who packs the message. Acceptable values for this parameter are listed in <u>CatSendShortMessageOptions</u> .
IconIdentifier	[in]	Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.
RETURN		The GeneralResult code of the SEND SHORT MESSAGE proactive command.

CatSendShortMessage issues the SEND SHORT MESSAGE proactive command.

5.10.9 CatSendSS

```
CatGeneralResult
```

TitleLength	[in]	Length in bytes of <i>Title</i> .
Title	[in]	String to display while ME is sending a message.
TONandNPI	[in]	Acceptable values for this parameter are listed
	[in]	CatTypeOfNumberAndNumberingPlanIdentifier.
SSStringLength	[in]	Length in bytes of SSString.
SSString	[in]	SS string to ME.
		Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is
		sent to the ME.
RETURN		The GeneralResult code of the SEND SS proactive command.

CatSendSS issues the SEND SS proactive command to the ME.

5.10.10 CatSendUSSD

${\tt CatGeneralResult}$

TitleLength	[in]	The length in bytes of <i>Title</i> .
Title	[in]	String to display while ME is sending a message.
MessageDCS	[in]	The data-coding scheme for <i>Message</i> . Acceptable values for this parameter are listed in CatDCSValue.
MessageLength	[in]	The length in bytes of Message.
Message	[in]	Message to send.
MsgOutDCS	[out]	Identifies type of DCS for the returned message.
MsgOutLength	[out]	Length of the returned message in bytes.
MsgOut	[out]	Returned string or message.
		Optional icon identifier; see CatlconIdentifier for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is
		sent to the ME.
RETURN		The GeneralResult code of the SEND USSD proactive command.

CatSendUSSD issues the SEND USSD proactive command. The terminal response is parsed and if successful the MsgOutDCS, MsgOutLength and MsgOut parameters are updated.

5.10.11 CatOpenCSChannel

```
CatGeneralResult
CatOpenCSChannel(CatOpenChannelOptions Options,

BYTE UserConfirmationLength, const void *UserConfirmation,
const CatIconIdentifier *UserConfimationIconIdentifier,
CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
BYTE DiallingNumberLength, const void *DiallingNumber,
BYTE BearerDescription[3],
UINT16 *BufferSize,
CatDevice *ChannelIdentifier);
```

		A contable values for this parameter are listed in
Options	[in]	Acceptable values for this parameter are listed in
	[]	CatOpenChannelOptions.
UserConfirmationLength	[in]	Length in bytes of UserConfirmation.
UserConfirmation	[in]	String to display when ME alerts user that channel is to be opened.
		Optional icon identifier to use during the user confirmation phase; see
		CatlconIdentifier for member details. If
UserConfirmationIconIdentifier	[in]	UserConfirmationIconIdentifier is NULL or if
		UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation
		phase icon identifier is sent to the ME.
TON INDI	r: 1	Acceptable values for this parameter are listed in
TONandNPI	[in]	CatTypeOfNumberAndNumberingPlanIdentifier.
DiallingNumberLength	[in]	Length in bytes of <i>DiallingNumber</i> .
DialingNumber	[in]	Number to call is coded as binary-coded decimal.
		Initially contains the bearer description parameters (data rate, bearer
BearerDescription	[in/out]	service and connection element) and is modified to the actual bearer
·		description as allocated by the ME.
Duffe Cine	[:/ 4]	Initially contains the desired buffer size and is modified to the actual
BufferSize	[in/out]	buffer size as allocated by the ME.
Channelldentifier	[out]	The channel identifier that has been allocated by the ME.
DETUDN		The GeneralResult code of the OPEN CHANNEL proactive
RETURN		command.

CatGeneralResult

Params	[in]	Constant parameter set as defined below.
Channelldentifier	[out]	The channel identifier that has been allocated by the ME.
BearerDescription	[out]	An array to which the actual bearer description allocated by the ME will be written.
BufferSize	[out]	The actual buffer size allocated by the ME.
RETURN		The GeneralResult code of the OPEN CHANNEL proactive command.

CatOpenCSChannel and CatOpenCSChannelEx issue the proactive command OPEN CHANNEL related to a CS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type CatOpenCSChannelExParams is defined as follows:

```
typedef struct
{
    // Mandatory fields
    CatOpenChannelOptions Options;
BYTE AddressLength;
    const BYTE *Address;
BYTE BearerDescription[3];
UINT16 BufferSize;
    // Optional fields
    CatAlphaString UserConfirmationMessage;
```

```
CatIconIdentifier UserConfirmationIconIdentifier;
BYTE SubAddressLength;
const BYTE *SubAddress;
BYTE DurationIDefined;
CatTimeInterval Duration1;
BYTE Duration2Defined;
CatTimeInterval Duration2;
CatAddressType LocalAddress;
CatTextString UserLogin;
CatTextString UserPassword;
CAT_MEInterfaceTransportLevelType CAT_MEInterfaceTransportLevel;
CatAddressType DataDestinationAddress;
} CatOpenCSChannelExParams;
```

With the following members:

Acceptable values for this parameter are listed in Options CatOpenChannelOptions. This field is mandatory. Length in bytes of *Address*. This field is mandatory. AddressLength Address The address to call. This field is mandatory. The desired bearer parameters (data rate, bearer service and **BearerDescription** connection element). This field is mandatory. **BufferSize** The desired buffer size. This field is mandatory. String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationMessage is not null but **UserConfirmationMessage** UserConfirmationMessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero. The icon to display during the user confirmation phase. If the UserConfirmationIconIdentifier Uselcon member of this structure is zero, no user confirmation icon TLV is sent to the ME. SubAddressLength Length in bytes of SubAddress. The subaddress to call. SubAddress Duration1Defined Set to nonzero if Duration1 is defined. Duration1 Duration of reconnect tries; see CatTimeInterval. Duration2Defined Set to nonzero if Duration2 is defined. Duration2 Duration of timeout; see CatTimeInterval. The LocalAddress; see CatAddressType. LocalAddress UserLogin The user login string. UserPassword The user password string. CAT_MEInterfaceTransportLevel See <u>CAT_MEInterfaceTransportLevelType</u>. **DataDestinationAddress** The DataDestinationAddress; see CatAddressType.

5.10.12 CatOpenGPRSChannel

Options	[in]	Acceptable values for this parameter are listed in
'		CatOpenChannelOptions.
UserConfirmationLength	[in]	Length in bytes of <i>UserConfirmation</i> .
UserConfirmation	[in]	String to display when ME alerts user that channel is to be opened.
		Optional icon identifier to use during the user confirmation phase; see
		CatlconIdentifier for member details. If
UserConfirmationIconIdentifier	[in]	UserConfirmationIconIdentifier is NULL or if
		UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation
		phase icon identifier is sent to the ME.
BearerDescription	[in/out]	Initially contains the bearer description and is modified to the actual
BearerDescription	[III/Out]	bearer description as allocated by the ME.
BufferSize	[in/out]	Initially contains the desired buffer size and is modified to the actual
BullerSize	[in/out]	buffer size as allocated by the ME.
Channelldentifier	[out]	The channel identifier that has been allocated by the ME.
DETUDN		The GeneralResult code of the OPEN CHANNEL proactive
RETURN		command.

CatGeneralResult

Params	[in]	Constant parameter set as defined below.
Channelldentifier	[out]	The channel identifier that has been allocated by the ME.
ActualBearerDescription	[out]	An array to which the actual bearer description allocated by the ME will be written.
ActualBufferSize	[out]	The actual buffer size allocated by the ME.
RETURN		The GeneralResult code of the OPEN CHANNEL proactive command.

CatOpenGPRSChannel and CatOpenGPRSChannelEx issue the proactive command OPEN CHANNEL related to a GPRS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type CatOpenGPRSChannelExParams is defined as follows:

```
typedef struct
  // Mandatory fields
 GsmOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[8];
 UINT16 BufferSize;
 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE AccessPointNameLength;
 const BYTE *AccessPointName;
 CatAddressType LocalAddress;
 {\tt CAT\_ME\_InterfaceTransportLevelType~CAT\_ME\_InterfaceTransportLevel;}
 CatAddressType DataDestinationAddress;
} GsmOpenGPRSChannelExParams;
```

With the following members:

Options	Acceptable values for this parameter are listed in
Options	CatOpenChannelOptions. This field is mandatory.
AddressLength	Length in bytes of <i>Address</i> . This field is mandatory.
Address	The address to call. This field is mandatory.
BearerDescription	The desired bearer. This field is mandatory.
BufferSize	The desired buffer size. This field is mandatory.
	String to display during the user confirmation phase; see CatAlphaString .
	If this parameter is null, no user confirmation message TLV is passed to
UserConfirmationMessage	the ME. If UserConfirmationMessage is not null but
	UserConfirmationMessageLength is zero, a user confirmation message
	TLV is passed to the ME with the length component set to zero.
	The icon to display during the user confirmation phase. If the
UserConfirmationIconIdentifier	Uselcon member of this structure is zero, no user confirmation icon
	TLV is sent to the ME.
AccessPointNameLength	The length in bytes of AccessPoint.
AccessPointName	The Access Point Name.
LocalAddress	See <u>CatAddressType</u> .
CAT_ME_InterfaceTransportLevel	See CAT_MEInterfaceTransportLevelType.
DataDestinationAddress	See <u>CatAddressType</u> .

5.10.13 CatCloseChannel

Channelldentifier [in] The channel identifier as returned from one of the open commands

TitleLength [in] The length in bytes of Title.

Title [in] String to display while ME is closing the channel.

Optional icon identifier; see CatlconIdentifier for member details. If

IconIdentifier [in] IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

RETURN The GeneralResult code of the CLOSE CHANNEL proactive command.

CatCloseChannel issues a CLOSE CHANNEL proactive command that closes an open channel.

5.10.14 CatReceiveData

```
CatGeneralResult
CatReceiveData (CatDevice ChannelIdentifier,
BYTE TitleLength, const void *Title,
BYTE RequestedChannelDataLength,
const CatIconIdentifier *IconIdentifier,
BYTE *ChannelData,
BYTE *NumChannelBytesRead,
BYTE *NumChannelBytesLeft);
```

Channelldentifier	[in]	The channel identifier as returned from one of the open commands
TitleLength	[in]	The length in bytes of <i>Title</i> .
Title	[in]	String to display while ME is receiving data.
RequestedChannelDataLength	[in]	The number of bytes requested to be read.
		Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon
		identifier is sent to the ME.
ChannelData	[out]	Received channel data.
NumChannelBytesRead	[out]	The number of bytes received as channel data.
NumChannelBytesLeft	[out]	The number of bytes remaining to be read from the channel buffer, or
Numeralineralites	լսևւյ	255 if there are more than 255 bytes left to be read.
RETURN		The GeneralResult code of the RECEIVE DATA proactive command.

CatReceiveData issues a RECEIVE DATA proactive command that receives data from an open channel. The terminal response is parsed and if the command is successful the received data is copied into the ChannelData array and the NumChannelBytesRead and NumChannelBytesLeft parameters are updated.

5.10.15 CatSendData

Channelldentifier	[in]	The channel identifier as returned from one of the open commands
TitleLength	[in]	The length in bytes of <i>Title</i> .
Title	[in]	String to display while ME is receiving data.
Options	[in]	Specifies who packs the message. Acceptable values for this parameter are listed in CatSendDataOptions .
ChannelDataLength	[in]	The number of bytes to be sent from ChannelData.
ChannelData	[in]	The data to be sent.
IconIdentifier	[in]	Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If <i>IconIdentifier</i> is NULL or if <i>IconIdentifier.UseIcon</i> is zero, no icon identifier is sent to the ME.
ActualBytesSent	[out]	The number of bytes sent (derived from the CHANNEL DATA LENGTH TLV in the TERMINAL RESPONSE).
RETURN		The GeneralResult code of the SEND DATA proactive command.

CatSendData issues the proactive command SEND DATA that sends data to an open channel.

5.10.16 CatGetChannelStatus

CatGeneralResult

CatGetChannelStatus (CatDevice ChannelIdentifier, void *ChannelStatus);

ChannelIdentifier ChannelStatus	[in]	The channel identifier. Returned channel status bytes.
RETURN	[00.]	The GeneralResult code of the GET CHANNEL STATUS proactive command.

CatGetChannelStatus issues a proactive command GET CHANNEL STATUS. The terminal response is parsed if the command is successful to find the status of the supplied channel.

5.10.17 CatServiceSearch

CatGeneralResult

BearerId	[in]	The identifier of the bearer whose services will be searched.
AttributeLength	[in]	The length of the following attribute array.
Attributes	[in]	Attributes that describe bearer services, typically in a bearer specific format.
ServiceAvailability	[in]	List of services offered by the bearer that satisfy the attributes, typically in a bearer specific format.

CatServiceSearch searches for a particular service on a bearer.

5.10.18 CatGetServiceInformation

CatGetServiceInformation (BYTE TitleLength, const BYTE *Title, const catIconIdentifier *IconIdentifier, CatBearer BearerId. BYTE *AttributeLength, void *Attributes, void *ServiceInformation); TitleLength The length in bytes of Title. [in] Title [in] String to display acquiring service information. Optional icon identifier; see Catlconldentifier for member details. If IconIdentifier [in] IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is sent to the ME. BearerId [in] The identifier of the bearer whose service information is requested. AttributeLength [in] The number of bytes in the following attribute array. Attributes Attributes describing the service information requested. [in]

The requested information.

CatGetServiceInformation retrieves information about a particular service on a bearer.

[out]

5.10.19 CatDeclareService

${\tt CatGeneralResult}$

ServiceInformation

CatGeneralResult

Bearerld	[in]	The identifier of the bearer for which this service is being offered.
TransportProtocol	[in]	The transport protocol on which the service is provided.
PortNumber	[in]	The port on which the service is provided.
ServiceRecordLength	[in]	The number of bytes in the following service record.
ServiceRecord	[in]	The service record describing the service.

CatDeclareService describes a new service.

5.10.20 CatRunATCommand

CatGeneralResult

```
CatRunATCommand (BYTE TitleLength, const void *Title,
BYTE CommandLength, const void *Command,
const CatIconIdentifier *IconIdentifier,
void *Response, BYTE *ResponseLength);
```

TitleLength	[in]	Length in bytes of <i>Title</i> .
Title	[in]	String to display on ME while command is executing.
CommandLength	[in]	Length in bytes of Command.
Command	[in]	AT command string
		Optional icon identifier; see <u>CatlconIdentifier</u> for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier. UseIcon is zero, no icon identifier is sent to the ME.
Response	[out]	ME response string.
ResponseLength	[out]	Length in bytes of ME response string.
RETURN	- -	The GeneralResult code of the RUN AT COMMAND proactive command.

CatRunATCommand issues the proactive command RUN AT COMMAND that sends an AT command to the ME. The terminal response is parsed and if successful the parameters *Response* and *ResponseLength* are updated.

5.10.21 CatSendDTMFCommand

CatGeneralResult CatSendDTMFCommand (BYTE TitleLength, const void *Title, BYTE DTMFCodeLength, const void *DTMFCode, const CatIconIdentifier *IconIdentifier);

TitleLength	[in]	The length in bytes of <i>Title</i> .
Title	[in]	Title displayed while the DTMF string is sent to the network.
DTMFCodeLength	[in]	The length in bytes of <i>DTMFCode</i> .
DTMFCode	[in]	DTMF string sent to the network.
		Optional icon identifier; see CatlconIdentifier for member details. If
IconIdentifier	[in]	IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon
		identifier is sent to the ME.
DETUDN		The GeneralResult code of the SEND DTMF COMMAND proactive
RETURN		command.

CatSendDTMF issues the proactive command SEND DTMF COMMAND that sends a dual tone multiple frequency (DTMF) string to the network.

5.11 Supporting Data Types

```
- typedef unsigned char BYTE.
```

- typedef unsigned short WORD.
- typedef unsigned long int DWORD.

5.11.1 CatRecordAccessMode

5.11.2 CatSearchMode

```
typedef enum {
BEGINNING_FORWARD,
END_BACKWARD,
NEXT_FORWARD,
PREVIOUS_BACKWARD
} CatSearchMode;
```

5.11.3 CatFrameworkEventType

```
typedef enum
  // Command monitoring events
 EVENT_TERMINAL_PROFILE_COMMAND,
 EVENT_STATUS_COMMAND
 EVENT_ENVELOPE_COMMAND,
  // Application lifecycle events start here
 EVENT_APPLICATION_LIFECYCLE_INSTALL = 0x20
  // Framework fabricated events start here
 EVENT_UPDATE_EF_SMS = 0x40
 EVENT_PROFILE_DOWNLOAD,
 EVENT_FORMATTED_SMS_PP_UPD,
 EVENT_STATUS_COMMAND,
 EVENT_UNFORMATTED_SMS_PP_UPD,
 EVENT_MENU_SELECTION,
 EVENT_FORMATTED_SMS_PP_ENV,
 EVENT_UNFORMATTED_SMS_PP_ENV,
 EVENT_FORMATTED_SMS_PP_CB,
 EVENT_MENU_SELECTION_HELP_REQUEST,
```

```
EVENT_CALL_CONTROL_BY_SIM,
 EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM,
 EVENT_TIMER_EXPIRATION,
 EVENT_DOWNLOAD_MT_CALL_EVENT,
 EVENT_DOWNLOAD_CALL_CONNECTED_EVENT,
 EVENT_DOWNLOAD_CALL_DISCONNECTED_EVENT,
 EVENT_DOWNLOAD_LOCATION_STATUS_EVENT,
 EVENT_DOWNLOAD_USER_ACTIVITY_EVENT,
 EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE_EVENT,
 EVENT_DOWNLOAD_CARD_READER_STATUS_EVENT,
 EVENT_DOWNLOAD_LANGUAGE_SELECTION_EVENT,
 EVENT_DOWNLOAD_BROWSER_TERMINATION_EVENT,
 EVENT_DOWNLOAD_DATA_AVAILABLE_EVENT,
 EVENT_DOWNLOAD_CHANNEL_STATUS_EVENT,
 EVENT_UNRECOGNIZED_ENVELOPE,
 EVENT_TERMINAL_RESPONSE,
 EVENT_APPLICATION_INSTALL
} CatFrameworkEventType;
```

5.11.4 CatEnvelopeTagType

5.11.5 CatEventType

```
typedef enum {
  MT_CALL_EVENT
                              = 0x00,
  CALL_CONNECTED_EVENT
                             = 0x01,
                            = 0x02,
= 0x03,
  CALL_DISCONNECTED_EVENT
  LOCATION_STATUS_EVENT
                             = 0x04,
= 0x05,
  USER_ACTIVITY_EVENT
  IDLE_SCREEN_AVAILABLE
  CARD_READER_STATUS
                             = 0x06,
                             = 0x07,
  LANGUAGE_SELECTION
 BROWSER_TERMINATION
                              = 0x08,
  DATA_AVAILABLE
                              = 0x09,
  CHANNEL_STATUS
                              = 0x0A
} CatEventType;
```

5.11.6 CatTextString

```
typedef struct
{
   CatDCSValue DCSValue;
   BYTE TextStringLength;
   const void *TextString;
} CatTextString;
```

5.11.7 CatAlphaString

```
typedef struct
{
   BYTE AlphaStringLength;
   const void *AlphaString;
} CatTextString;
```

5.11.8 Catlconldentifier

```
typedef struct
{
   BYTE UseIcon;
   BYTE IconIdentifier;
   BYTE IconOptions;
```

```
} CatIconIdentifier;
```

The CatlconIdentifier structure is defined as follows:

	If zero, the icon identifier is not used in the proactive command. If non-
Uselcon	zero, the IconIdentifier and IconOption members are used in the
	proactive command.
IconIdentifier	Index of the icon to display.
	Options with which to display the icon selected from CatlconOption.
	This is specified as a BYTE rather than CatlconOptios as, in C, an
IconOptions	enumeration uses the same storage as an int which is at least 16 bits,
	whereas the proactive commands that use these identifiers use 8-bit
	quantities.

5.11.9 CatlconOption

```
typedef enum
{
   SHOW_WITHOUT_TEXT = 0x00,
   SHOW_WITH_TEXT = 0x01
} CatIconOption;
```

5.11.10 CatDCSValue

```
typedef enum
{
   DCS_SMS_PACKED = 0x00,
   DCS_SMS_UNPACKED = 0x04,
   DCS_SMS_UNICODE = 0x08
} CatDCSValue;
```

5.11.11 CatDisplayTextOptions

5.11.12 CatGetInKeyOptions

```
typedef enum
{
  YES_NO_OPTION_NO_HELP = 0x04,
  YES_NO_OPTION_WITH_HELP = 0x84,
  DIGITS_ONLY_NO_HELP = 0x00,
  DIGITS_ONLY_WITH_HELP = 0x80,
  SMS_CHARACTER_NO_HELP = 0x01,
  YES_CHARACTER_WITH_HELP = 0x81,
  UCS2_CHARACTER_NO_HELP = 0x03,
  UCS2_CHARACTER_WITH_HELP = 0x83
} CatGetInKeyOptions;
```

5.11.13 CatGetInputOptions

```
typedef enum
  PACKED_DIGITS_ONLY_NO_HELP
                                              = 0x08,
  PACKED_DIGITS_ONLY_WITH_HELP
                                             = 0x88,
  PACKED_DIGITS_ONLY_NO_ECHO_NO_HELP
                                             = 0 \times 0 C
  PACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP
                                             = 0x8C
  UNPACKED_DIGITS_ONLY_NO_HELP
                                             = 0x00,
  UNPACKED_DIGITS_ONLY_WITH_HELP
                                             = 0x80,
  UNPACKED_DIGITS_ONLY_NO_ECHO_NO_HELP
                                             = 0 \times 04
  {\tt UNPACKED\_DIGITS\_ONLY\_NO\_ECHO\_WITH\_HELP} \ = \ 0 \times 84 \,,
  PACKED_SMS_ALPHABET_NO_HELP
                                              = 0x09,
```

```
= 0x89,
= ^
  PACKED_SMS_ALPHABET_WITH_HELP
                                                 = 0x0D,= 0x8D,
  PACKED_SMS_ALPHABET_NO_ECHO_NO_HELP
  PACKED_SMS_ALPHABET_NO_ECHO_HELP
UNPACKED_SMS_ALPHABET_NO_HELP
UNPACKED_SMS_ALPHABET_WITH_HELP
                                                  = 0x01,
                                                   = 0x81,
  UNPACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x05,
  UNPACKED_SMS_ALPHABET_NO_ECHO_WITH_HELP = 0x85,
                                             = 0x03,
  UCS2_ALPHABET_NO_HELP
  UCS2_ALPHABET_WITH_HELP
                                                  = 0x83,
  UCS2_ALPHABET_NO_ECHO_NO_HELP = 0x07

UCS2_ALPHABET_NO_ECHO_WITH_HELP = 0x87
                                                   = 0x07
} CatGetInputOptions;
```

5.11.14 CatSelectItemOptions

5.11.15 CatTimeUnit

```
typedef enum
{
   GSM_MINUTES = 0x00,
   GSM_SECONDS = 0x01,
   GSM_TENTHS_OF_SECONDS = 0x02
} CatTimeUnit;
```

5.11.16 CatTone

```
typedef enum
                                       = 0x01,
  DIAL TONE
  CALLER_BUSY
                                       = 0 \times 02
  CONGESTION
                                       = 0 \times 03
 RADIO_PATH_ACKNOWLEDGE
                                      = 0x04,
 CALL_DROPPED
                                       = 0 \times 0.5
  SPECIAL_INFORMATION_OR_ERROR
                                      = 0 \times 06
  CALL_WAITING_TONE
                                      = 0x07,
  RINGING_TONE
                                       = 0x08,
  GENERAL_BEEP
                                      = 0x10,
 POSITIVE_ACKNOWLEDGE_TONE
                                       = 0x11,
  NEGATIVE_ACKNOWLEDGE_TONE
                                       = 0x12
} CatTone;
```

5.11.17 CatRefreshOptions

```
typedef enum
{
   REFRESH_SIM_INIT_AND_FULL_FILE_CHANGE_NOTIFICATION = 0x00,
   REFRESH_FILE_CHANGE_NOTIFICATION = 0x01,
   REFRESH_SIM_INIT_AND_FILE_CHANGE_NOTIFICATION = 0x02,
   REFRESH_SIM_INIT = 0x03,
   REFRESH_SIM_RESET = 0x04
} CatRefreshOptions;
```

5.11.18 CatGetReaderStatusOptions

```
typedef enum
{
   CARD_READER_STATUS = 0x00,
   CARD_READER_IDENTIFIER = 0x01
} CatGetReaderStatusOptions;
```

5.11.19 CatDevice

5.11.20 CatGeneralResult

```
typedef enum
                                                             = 0x00,
  CAT_COMMAND_SUCCESSFUL
 CAT_COMMAND_SUCCESSFUL_WITH_PARTIAL_COMPREHENSION = 0x01, CAT_COMMAND_SUCCESSFUL_WITH_MISSING_INFORMATION = 0x02, CAT_REFRESH_SUCCESSFUL_WITH_ADDITIONAL_EFS_READ = 0x03,
  CAT_COMMAND_SUCCESSFUL_BUT_ICON_NOT_FOUND
                                                            = 0x04,
  CAT_COMMAND_SUCCESSFUL_BUT_MODIFIED_BY_CALL_CONTROL = 0x05,
  CAT_COMMAND_SUCCESSFUL_BUT_LIMITED_SERVICE
                                                             = 0 \times 06
                                                             = 0x07
  CAT_COMMAND_SUCCESSFUL_WITH_MODIFICATION
  CAT_ABORTED_BY_USER
                                                             = 0x10,
                                                             = 0x11,
  CAT_BACKWARD
  CAT_NO_RESPONSE
                                                             = 0x12,
  CAT_HELP_REQUIRED
                                                             = 0x13
  CAT_USSD_ABORTED_BY_USER
                                                            = 0x14,
  CAT_ME_UNABLE_TO_PROCESS_COMMAND
                                                            = 0x20,
  CAT_NETWORK_UNABLE_TO_PROCESS_COMMAND
                                                            = 0x21,
  CAT_USER_REJECTED_SETUP_CALL
                                                            = 0x22.
                                                            = 0x23,
  CAT_USER_CLEARED_BEFORE_RELEASE
                                                            = 0x24,
  CAT_ACTION_CONTRADICT_TIMER_STATE
  CAT_TEMP_PROBLEM_IN_CALL_CONTROL
                                                            = 0x25,
  CAT_LAUNCH_BROWSER_ERROR
                                                            = 0x26,
                                                            = 0x30,
= 0x31,
  CAT_COMMAND_BEYOND_ME_CAPABILITIES
  CAT_COMMAND_TYPE_NOT_UNDERSTOOD
  CAT_COMMAND_DATA_NOT_UNDERSTOOD
                                                            = 0x32,
  CAT_COMMAND_NUMBER_NOT_KNOWN
                                                             = 0x33,
  CAT_SS_RETURN_ERROR
                                                             = 0x34
  CAT_SMS_RP_ERROR
                                                             = 0x35
  CAT_REQUIRED_VALUES_MISSING
                                                             = 0x36,
  CAT_USSD_RETURN_ERROR
                                                            = 0x37,
  CAT_MULTIPLE_CARD_COMMAND_ERROR
                                                            = 0x38
  CAT_PERMANENT_PROBLEM_IN_SMS_OR_CALL_CONTROL
                                                            = 0x39
  CAT_BEARER_INDEPENDENT_PROTOCOL_ERROR
                                                            = 0x3A
} CatGeneralResult;
```

5.11.21 CatTimerValue

```
typedef struct
{
   BYTE hour;
   BYTE minute;
   BYTE second;
} CatTimerValue;
```

The CatTimerValue data type has three one-byte values:

hour	Hours part of timer.
Minute	Minutes part of timer.
Second	Seconds part of timer.

5.11.22 CatTimeInterval

```
typedef struct
{
   BYTE timeUnit;
   BYTE timeInterval;
} CatTimeInterval;
```

The CatTimInterval data type has two one-byte values:

One of the CatTimeUnit enumeration values. This is specified as a BYTE rather than CatTimeUnit as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

TimeInterval

The number of timeUnits.

5.11.23 CatFileStatus

```
typedef struct
 WORD recordLength;
 WORD numberOfRecords;
 BYTE lengthOfTrailer;
 BYTE trailer[];
} CatEFStatus;
typedef struct
 BYTE numberOfDFs;
 BYTE number of EFs;
 BYTE CHV1Status;
 BYTE unblockCHV1Status;
 BYTE CHV2Status;
 BYTE unblockCHV2Status;
 BYTE lengthOfTrailer;
 BYTE trailer[];
} CatDFStatus;
typedef struct
```

```
DWORD totalFileSize;
UINT16 fileID;
BYTE fileDescriptorByte;
BYTE fileType; // 00=RFU, 01=MF, 02=DF, 04=EF
BYTE fileLifeCycleStatus;
union
{
    CatEFStatus ef;
    CatDFStatus df;
} u;
} CatFileStatus;
```

5.11.24 CatLanguageNotificationOptions

```
typedef enum
{
   LANGUAGE_NON_SPECIFIC_NOTIFICATION = 0x00,
   LANGUAGE_SPECIFIC_NOTIFICATION = 0x01
} CatLanguageNotificationOptions;
```

5.11.25 CatLocationInformation

```
typedef struct
{
   BYTE mobileCountryNetworkCodes[3];
  BYTE LAC[2];
  BYTE cellID[2];
} CatLocationInformation;
```

5.11.26 CatTimingAdvance

```
typedef struct
{
   BYTE MEStatus;
   BYTE timingAdvance;
} CatTimingAdvance;
```

5.11.27 CatLaunchBrowserOptions

5.11.28 CatSetupCallOptions

5.11.29 CatTypeOfNumberAndNumberingPlanIdentifier

```
typedef enum
  TON UNKNOWN AND NPI UNKNOWN
                                     = 0x80,
  TON_INTERNATIONAL_AND_NPI_UNKNOWN = 0x90,
  TON_NATIONAL_AND_NPI_UNKNOWN
                                     = 0xA0
  TON_NETWORK_AND_NPI_UNKNOWN
                                     = 0xB0
  TON_SUBSCRIBER_AND_NPI_UNKNOWN
                                    = 0xC0,
  TON_UNKNOWN_AND_NPI_TELEPHONE
                                     = 0x81,
  TON_INTERNATIONAL_AND_NPI_TELEPHONE = 0x91,
  TON_NATIONAL_AND_NPI_TELEPHONE = 0xA1,
  TON NETWORK AND NPI TELEPHONE
                                     = 0xB1
 TON_SUBSCRIBER_AND_NPI_TELEPHONE = 0xC1,
                                    = 0x83,
  TON_UNKNOWN_AND_NPI_DATA
  TON_INTERNATIONAL_AND_NPI_DATA
                                     = 0x93,
  TON_NATIONAL_AND_NPI_DATA
                                     = 0xA3.
  TON_NETWORK_AND_NPI_DATA
                                    = 0xB3
  TON_SUBSCRIBER_AND_NPI_DATA
                                     = 0xC3,
  TON_UNKNOWN_AND_NPI_TELEX
                                     = 0x84
 TON_INTERNATIONAL_AND_NPI_TELEX = 0x94,
TON_NATIONAL_AND_NPI_TELEX = 0xA4,
TON_NETWORK_AND_NPI_TELEX - 0xB4
  TON_NETWORK_AND_NPI_TELEX
                                     = 0xB4,
  TON_SUBSCRIBER_AND_NPI_TELEX
                                     = 0xC4
  TON_UNKNOWN_AND_NPI_NATIONAL
  TON_INTERNATIONAL_AND_NPI_NATIONAL = 0x98,
  TON_NATIONAL_AND_NPI_NATIONAL = 0xA8,
  TON_NETWORK_AND_NPI_NATIONAL
                                     = 0xB8.
  TON_SUBSCRIBER_AND_NPI_NATIONAL = 0xC8,
  TON_UNKNOWN_AND_NPI_PRIVATE
                                     = 0x89,
  TON_INTERNATIONAL_AND_NPI_PRIVATE = 0x99,
 TON_INTERNALIONAL_AND_NPI_PRIVATE
                                     = 0xA9
  TON_NETWORK_AND_NPI_PRIVATE
                                     = 0xB9,
  TON_SUBSCRIBER_AND_NPI_PRIVATE
                                     = 0xC9
  TON_UNKNOWN_AND_NPI_ERMES
                                     = 0x8A
  TON_INTERNATIONAL_AND_NPI_ERMES
                                    = 0x9A
  TON_NATIONAL_AND_NPI_ERMES
                                    = 0xAA,
                                   = 0xBA,
  TON_NETWORK_AND_NPI_ERMES
  TON_SUBSCRIBER_AND_NPI_ERMES
                                     = 0xCA
} CatTypeOfNumberAndNumberingPlanIdentifier;
```

5.11.30 CatSendShortMessageOptions

```
typedef enum
{
   PACKING_NOT_REQUIRED = 0x00,
   PACKING_BY_THE_ME_REQUIRED = 0x01
} CatSendShortMessageOptions;
```

5.11.31 CatSendDataOptions

```
typedef enum
{
   STORE_DATA_IN_TX_BUFFER = 0x00,
   SEND_DATA_IMMEDIATELY = 0x01
} CatSendDataOptions;
```

5.11.32 CatMEInterfaceTransportLevelType

```
typedef struct
{
   enum
   {
     UDP = 0x01,
     TCP = 0x02
   } TransportProtocolType;
   UINT16 CAT_ME_PortNumber;
} CAT_MEInterfaceTransportLevelType;
```

5.11.33 CatBearer

```
typedef enum
{
   BEARER_SMS = 0x00,
   BEARER_CSD = 0x01,
   BEARER_USSD = 0x02,
   BEARER_GPRS = 0x03
} CatBearer;
```

5.11.34 CatOpenChannelOptions

```
typedef enum
{
   ON_DEMAND_LINK_ESTABLISHMENT = 0x00,
   IMMEDIATE_LINK_ESTABLISHMENT = 0x01
} CatOpenChannelOptions;
```

5.11.35 CatAddressType

```
typedef struct
{
   enum
   {
      IPV4 = 0x21,
      IPV6 = 0x97
   } AddressType;
   BYTE AddressLength;
   const void *Address;
} CatAddressType;
```

5.11.36 CatFID

```
#define FID_DF_GRAPHICS 0x5F50
#define FID_DF_TELECOM 0x7F10
#define FID_EF_ADN 0x6F3A
#define FID_EF_ARR
                       0x2F06
#define FID EF BDN
                       0x6F4D
#define FID_EF_CCP
                       0x6F3D
#define FID_EF_DIR
                       0x2F00
#define FID_EF_EXT1
#define FID_EF_EXT2
#define FID_EF_EXT3
                       0x6F4B
                       0x6F4C
#define FID_EF_EXT4
                       0x6F4E
#define FID_EF_FDN
#define FID_EF_ICCID 0x2FE2
#define FID_EF_IMG
                       0 \times 4 = 20
#define FID_EF_LND
                       0x6F44
#define FID_EF_MSISDN 0x6F40
#define FID_EF_PL
                       0x2F05
#define FID_EF_SDN
                       0x6F49
#define FID_EF_SMS
                       0x6F3C
#define FID_EF_SMSP 0x6F42
#define FID_EF_SMSR 0x6F47
#define FID_EF_SMSS 0x6F43
```

5.11.37 CatTextFormat

#define	TEXT_FORMAT_LEFT	0x00
#define	TEXT_FORMAT_CENTER	0x01
#define	TEXT_FORMAT_RIGHT	0x02
#define	TEXT_FORMAT_LANGUAGE_DEPENDENT	0x03
#define	TEXT_FORMAT_NORMAL_SIZE	0x00
#define	TEXT_FORMAT_LARGE_SIZE	0x04
#define	TEXT_FORMAT_SMALL_SIZE	0x08
#define	TEXT_FORMAT_BOLD	0x10
#define	TEXT_FORMAT_ITALIC	0x20
#define	TEXT_FORMAT_UNDERLINED	0x40
#define	TEXT_FORMAT_STRIKETHROUGH	0x80

5.11.38 CatTextForegroundColour

```
typedef enum {
                               = 0x00,
BLACK
DARK_GREY
                               = 0x01,
DARK_RED
                               = 0 \times 02
                              = 0x03,
DARK_YELLOW
DARK_GREEN
                              = 0 \times 04,
DARK_CYAN
                              = 0x05,
DARK BLUE
                               = 0 \times 06,
                              = 0x07,
DARK_MAGENTA
                              = 0x08,
= 0x09,
GREY
WHITE
BRIGHT_RED
                              = 0x0A,
BRIGHT_KED
BRIGHT_YELLOW
BRIGHT_GREEN
                            = 0x0B,= 0x0C,
BRIGHT_CYAN
                              = 0x0D,
BRIGHT_BLUE
                               = 0x0E,
BRIGHT_MAGENTA
                               = 0 \times 0 F
} CatTextForegroundColour;
```

5.11.39 CatTextBackgroundColour

```
typedef enum {
BLACK
                           = 0x00,
DARK_GREY
                          = 0x10,
DARK_RED
                          = 0x20,
DARK_YELLOW
                          = 0x30,
DARK_GREEN
                          = 0x40,
                          = 0x50,
DARK CYAN
                          = 0x60,
DARK_BLUE
DARK_MAGENTA
                          = 0x70,
                          = 0x80,
WHITE
                          = 0x90,
                          = 0xA0,
BRIGHT_RED
BRIGHT_YELLOW
                        = 0xB0,
BRIGHT_GREEN
                          = 0xC0,= 0xD0,
BRIGHT_CYAN
BRIGHT_BLUE
                          = 0xE0.
BRIGHT_MAGENTA
                           = 0xF0
} CatTextBackgroundColour;
```

Annex A (normative): Application executable architecture

EM NONE 0 No machine EM M32 1 AT&T WE 32100 EM SPARC 2 SPARC EM SPARC 2 SPARC EM SPARC 2 SPARC EM SW 4 Motorola 88000 EM SW 5 Motorola 88000 EM SW 5 Motorola 88000 EM SSERVED 6 Reserved for future use EM SSO 7 Intel 80860 EM ST 8 MIPS I Architecture EM SSO 9 IBM System/370 Processor EM SSO 9 IBM System/370 Processor EM SSO 11-14 Reserved for future use EM PARISC 15 Hewlett-Packard PA-RISC RESERVED 16 Reserved for future use EM SPARC32PLUS 18 Enhanced instruction set SPARC EM SPO 20 PowerPC EM SPARC32PLUS 18 Enhanced instruction set SPARC EM PC64 21 64-bit PowerPC EM SPARC32PLUS 18 E	Name	Value	Meaning	
EM SPARC 2 SPARC EM 388 3 Intel 8036 EM 68K 4 Motorola 88000 EM 68K 5 Motorola 88000 EM 89K 5 Motorola 88000 EM 89K 5 Motorola 88000 EM 89C 7 Intel 8060 EM 89D 7 Intel 8060 EM 89D 8 MIPS I Architecture EM 5370 9 IBM System/370 Processor EM MIPS R3_LE 10 MIPS R 83000 Little-endian RESERVED 11-14 Reserved for future use EM PARISC 15 Hewlett-Packard PARISC RESERVED 16 Reserved for future use EM 5900 17 Fujits UPP500 EM 5900 18 Enhanced Instruction set SPARC EM 5900 19 Intel 8060 EM 5900 19 PowerPC				
EM. 386. 3 Intel 80366 EM. 88K 4 Motorola 88000 EM. 88K 5 Motorola 88000 EM. MIPS 6 MIPS 1 Architecture EM. 860 7 Intel 80860 EM. MIPS 8 MIPS 1 Architecture EM. S370 9 IBM Systemi370 Processor EM. MIPS RS3.0 E 10 IMPS RS3000 Little-endian RESERVED 11-14 Reserved for future use EM. PARISC 15 Hewlett-Packard PA-RISC EM. SESERVED 16 Reserved for future use EM. VPP500 17 Fujitsu VPP500 EM. SPARG32PLUS 18 Enhanced instruction set SPARC EM. PPC 20 PowerPC EM. PRC 21 SEC	EM_M32	1	AT&T WE 32100	
EM 68K 4 Motorola 88000 RESERVED 6 Reserved for future use EM 960 7 Intel 8080 EM 370 9 IBM 9880 EM 3770 9 IBM 98800 EM MIPS R3_LE 10 MIPS R50000 Little-endian RESERVED 11-14 Reserved for future use EM PARISC 15 Hewlett-Packard PA-RISC RESERVED 16 Reserved for future use EM_VPP500 17 Fujitsu VPP500 EM_SPARC32PLUS 18 Enhanced instruction set SPARC EM_960 19 Intel 80960 EM_PPC 20 PowerPC EM_PPC64 21 64-lb PowerPC RESERVED 22-35 Reserved for future use EM_V800 36 NEC V800 EM_FR20 37 Fujitsu FR20 EM_RF20 37 Fujitsu FR20 EM_ARCE 39 Motorola RCE EM_ARCE 39 Motorola RCE EM_ARCE 39 Motorola				
EM 88K 5 Motorola 88000 EM 860 7 Intel 80860 EM_MIPS 8 MIPS I Architecture EM_MIPS 8 MIPS I Architecture EM_MIPS RS3_LE 9 IBM System/370 Processor EM_MIPS RS3_LE 10 MIPS RS33000 Little-endian RESERVED 11-14 Reserved for future use EM PARISC 15 Hewlett-Packard PA-RISC EM PARISC 16 Reserved for future use EM_YPP500 17 Fujitsu VPP500 EM_960 19 Intel 80960 EM_960 19 Intel 80960 EM_PPC4 21 64-bit PowerPC EM_PPC64 21 <td></td> <td></td> <td colspan="2"></td>				
RESERVED 6 Reserved for future use EM MIPS 8 MIPS I Architecture EM MIPS 8 MIPS I Architecture EM MIPS R3_LE 10 MIPS R53000 Little-endian RESERVED 11-14 Reserved for future use EM PARISC 15 Hewiter Hackard PA-RISC RESERVED 16 Reserved for future use EM YPP500 17 Fujitsu VPP500 EM SPARC32PLUS 18 Echanced instruction set SPARC EM _960 19 Intel 80980 EM_PPC 20 PowerPC EM_PPC 21 64-bit PowerPC EM_PPC 20 PowerPC EM_PPC 21 64-bit PowerPC EM_PPC 20 PowerPC EM_PPC 20 PowerPC EM_PPC 21 AS PARCYBO EM_PPC 20 PowerPC EM_PPC 20 PowerPC EM_PPC 20 PowerPC EM_PPC 21 AS PARCYBO <t< td=""><td></td><td></td><td></td></t<>				
EM 860 7 Intel 80880 MMPS 8 MIPS I Architecture EM MIPS RS30 9 IBM System/370 Processor EM MIPS RS30E 10 MIPS RS3000 Little-endian RESERVED 11-14 Reserved for future use EM PARISC 15 Hewlett-Packard PA-RISC EM SPARC32PLUS 18 Enhanced instruction set SPARC EM 960 19 Intel 80980 EM PPC4 21 Benanced instruction set SPARC EM PPC54 21 Sebit PowerPC EM PPC64 21 Sebit PowerPC EM V800 36 REC V800 EM FR20 37 Fullstu FR20 EM RH32 38 TRW RH-32 EM RAD2 38 TRW RH-32 EM ARM 40 Advanced RISC Machines ARM EM ALPHA 41 Digital Alpha EM SPARCV9 43 SPARC Version 9 EM TRICORE 44 Infineon Tricore embedded processor EM H8 300 46 Hitachi H8/300				
EM MIPS 8 MIPS I Architecture EM S370 9 IBM System/370 Processor EM MIPS RS3 LE 10 MIPS RS3000 Little-endian RESERVED 11-14 Reserved for future use EM PARISC 15 Hewlett-Packard PA-RISC RESERVED 16 Reserved for future use EM YPP500 17 Fujitsu VPP500 EM SPARC32PLUS 18 Enhanced instruction set SPARC EM 960 19 Intel 80960 EM PPC 20 DewerPC EM PPC64 21 64-bit PowerPC EM ESERVED 22-35 Reserved for future use EM V800 36 NEC V800 EM FR20 37 Fujitsu FR20 EM RH32 38 TRW RH-32 EM ARDH 40 Advanced RISC Machines ARM EM ALPHA 41 Digital Alpha EM SH 42 Hitachi SH EM SPARCV9 43 SPARC Version 9 EM TRICORE 44 Inflineon Tricore embedded processor				
EM S370 9 IBM System/370 Processor EM MIPS RS3 LE 10 MIPS RS3000 Little-endian RESERVED 15 Hewlett-Packard PA-RISC EM PARISC 15 Hewlett-Packard PA-RISC EM SPARC32PLUS 16 Reserved for future use EM PPG 20 PowerPC EM PPC 20 PowerPC EM PPC64 21 64-bit PowerPC EM PPC64 21 64-bit PowerPC EM PPC64 21 64-bit PowerPC EM SPARCS2PLUS Reserved for future use EM PPC64 21 64-bit PowerPC EM PPC64 21 64-bit PowerPC EM PPC80 37 Fuiltsu FR20 EM PR20 37 Fuiltsu FR20 EM RH32 38 TRW RH-32 EM RCE 39 Motorola RCE EM ARM 40 Advanced RISC Machines ARM EM SPARCV9 43 SPARC Version 9 EM TRICORE 44 Infineon Tricore embedded processor EM H8. 300 <t< td=""><td></td><td></td><td></td></t<>				
EM MIPS RS3 LE				
RESERVED 11-14 Reserved for future use EM_PARISC 15 Hewlett-Packard PA-RISC RESERVED 16 Reserved for future use EM_VPP500 17 Fujitsu VPP500 EM_SPARC32PLUS 18 Enhanced instruction set SPARC EM_960 19 Intel 80960 EM_PPC 20 PowerPC EM_PPC84 21 64-bit PowerPC EM_PPC84 21 64-bit PowerPC EM_PS00 36 NEC V800 EM_RSERVED 22-35 Reserved for future use EM_V800 36 NEC V800 EM_RR12 33 TRW RH-32 EM_RR20 37 Fujitsu FR20 EM_RR12 38 TRW RH-32 EM_RAC 39 Motorola RCE EM_ARM 40 Advanced RISC Machines ARM EM_APM 41 Advanced RISC Machines ARM EM_APM 41 Hitachi SH EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 <				
EM_PARISC				
RESERVED 16 Reserved for future use MEM_VPPS00 17 Fujitsu VPPS00 EM_SPARC32PLUS 18 Enhanced instruction set SPARC EM_9PC 20 PowerPC EM_PPC84 21 64-bit PowerPC EM_PS00 36 NEC W800 EM_RSSEQ 37 Fujitsu FR20 EM_RR32 38 TRW RH-32 EM_RCB 39 Motorola RCE EM_ARCE 39 Motorola RCE EM_ARCH 40 Advanced RISC Machines ARM EM_SPARCY9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_HB_300H 47 Hitachi HB/300 EM_HB_500 49				
EM_VPP500 17 Fujitsu VPP500 EM_SARC32PLUS 18 Enhanced instruction set SPARC EM_960 19 Intel 80960 EM_PPC 20 PowerPC EM_PPC64 21 64-bit PowerPC EM_PPC64 21 64-bit PowerPC EM_SCE 36 NEC_VB00 EM_SCE 37 Fujitsu FR20 EM_RSQ 37 Fujitsu FR20 EM_RSQ 38 NEC_VB00 EM_RSQ 38 MSC VB00 EM_RSQ 38 MSC VB00 EM_RSQ 38 MSC VB00 EM_RSQ 38 MSC VB00 EM_RRQ 40 Advanced RISC Machines ARM EM_ARD 40 Advanced RISC Machines ARM EM_ARM 40 Advanced RISC Machines ARM EM_SHARW 41 Intel Intel Riscolar Machines ARM EM_SHARW 41 Intel Intel Riscolar Machines ARM EM_SHARW 42 Hitachi RISCOLAR Machines ARM EM_SHARW 43 SF				
EM_960 19 Intel 80960 EM_PPC 20 PowerPC EM_PPC64 21 64-bit PowerPC EM_PPC64 21 64-bit PowerPC EM_PPC80 36 NEC W800 EM_PPC80 37 Fujitsu FR20 EM_PPC80 37 Fujitsu FR20 EM_RP20 37 Fujitsu FR20 EM_RP20 37 Fujitsu FR20 EM_RP20 38 TRV RH-32 EM_RP20 38 Motorola RCE EM_RM20 40 Advanced RISC Machines ARM EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SHARO 43 SPARC Version 9 EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Intineon Tricore embedded processor EM_HB_3000 46 Hitachi H8/300 EM_HB_3000 46 Hitachi H8/300 EM_HB_300H 47 Hitachi H8/300 EM_HB_500 49 Hitachi H8/300				
EM_PPC64 21 64-bit PowerPC RESERVED 22-35 Reserved for future use EM_V800 36 NEC V800 EM_FR20 37 Fijitsu FR20 EM_RH32 38 TRW RH-32 EM_RCE 39 Motorola RCE EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SHARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_HB, 300 46 Hitachi H8/300 EM_HB, 300H 47 Hitachi H8/300 EM_HB, 500 49 Hitachi H8/500 EM_HB, 500 49 Hitachi H8/500 EM_MPS, X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_PCP 55 Siemens PCP EM_NDR1 57 Dess DNDR1 microprocessor EM_PCP 56 Sony nCPU embedded RISC processor EM_PCP 55 Siemens PCP EM_ST100	EM_SPARC32PLUS	18	Enhanced instruction set SPARC	
EM PPC64 21 64-bit PowerPC RESERVED 22-35 Reserved for future use EM Y800 36 NEC V800 EM_FR20 37 Fujitsu FR20 EM_RR2 38 TRW RH-32 EM_RCE 39 Motorola RCE EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SH 42 Hitachi SH EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Inflineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_ARC 45 Argonaut RISC Core EM_HB, 300 46 Hitachi H8/300 EM_HB, 500 49 Hitachi H8/300 EM_HB, 500 49 Hitachi H8/500 EM_MIPS_X 51 Stanford MIPS-X EM_MIPS_X 51 Stanford MIPS-X EM_SHOT(12 53 Motorola ColdFire EM_SHAC(12 53 Motorola M68HC12 EM_SHAC(12 53	EM_960	19	Intel 80960	
RESERVED		20	PowerPC	
EM V800 36 NEC V800 EM FRR20 37 Fujitsu FR20 EM RR132 38 TRW RH-32 EM RCE 39 Motorola RCE EM ARM 40 Advanced RISC Machines ARM EM ARM 41 Digital Alpha EM SPARCV9 43 SPARC Version 9 EM SPARCV9 43 SPARC Version 9 EM ARG 44 Inflineon Tricore embedded processor EM ARS 44 Inflineon Tricore embedded processor EM ARS 45 Argonaux RISC Core EM ARS 45 Argonaux RISC Core EM AB 300 46 Hitachi H8/300 EM H8 300 46 Hitachi H8/3000 EM H8 500 49 Hitachi H8/300 EM H8 50 49 Hitachi H8/300 EM BM 50 Intel IA-64 processor archit				
EM_RR32 37 Fujitsu FR20 EM_RR32 38 TRW RH-32 EM_RCE 39 Motorola RCE EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SH 42 Hitachi SH EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_H8 300 46 Hitachi H8/300 EM_H8 300 46 Hitachi H8/300H EM_H8 300 47 Hitachi H8/500 EM_H8 500 49 Hitachi H8/500 EM_H8 50 49 Hitachi H8/500 EM_MPS X 51 Stanford MIPS-X EM_MPS X 51 Stanforola MIPS-X EM_SMBEC12 53 Motorola MC				
EM_RCE 39 Motorola RCE EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_H8_300 46 Hitachi H8/300 EM_H8_300H 47 Hitachi H8/300H EM_H8_500 49 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_MIPS_X 51 Stanford MIPS_X EM_MIPS_X 51 Stanford MIPS_X EM_GOLDFIRE 52 Motorola ColdFire EM_BBHC12 53 Motorola M68HC12 EM_BMMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ME16 59 Toyota ME16 processor EM_ST100 60 STMicroelectronics ST100 processor<				
EM_RCE 39 Motorola RCE EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SH 42 Hitachi SH EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_H8 300 46 Hitachi H8/300H EM_H8 500 49 Hitachi H8/300H EM_H8 500 49 Hitachi H8/500 EM_H8 500 49 Hitachi H8/500 EM_H8 500 49 Hitachi H8/500 EM_MPS_X 51 Stanford MIPS-X EM_OCLDFIRE 52 Motorola ColdFire EM_SBEC12 53 Motorola ColdFire EM_B6HC12 53 Motorola M68HC12 EM_MCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_STARCORE 58 Motorola Star*Core processor <				
EM_ARM 40 Advanced RISC Machines ARM EM_ALPHA 41 Digital Alpha EM_SH 42 Hitachi SH EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_HB_300 46 Hitachi H8/300 EM_HB_300 47 Hitachi H8/300 EM_HB_500 49 Hitachi H8/500 EM_HB_500 49 Hitachi H8/500 EM_IA_64 50 Intel IA-64 processor architecture EM_MPS_X 51 Stanford MIPS-X EM_GBHC12 53 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_MDCP 55 Siemens PCP EM_NCPU 55 Siemens PCP EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star'Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 60 STMicroelectronics ST9*8/16 bit m				
EM_ALPHA 41 Digital Alpha EM_SH 42 Hitachi SH EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_H8_300 46 Hitachi H8/300 EM_H8_300H 47 Hitachi H8/300H EM_H8_500 49 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_IA_64 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_B8HC12 53 Motorola M68HC12 EM_BMC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 60 STMicroelectron				
EM_SPARCV9 43 SPARC Version 9 EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_H8_300 46 Hitachi H8/300 EM_H8_300H 47 Hitachi H8/300H EM_H8_500 49 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_JA_64 50 Intel IA-64 processor architecture EM_MPS_X 51 Stanford MIPS-X EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_68HC12 53 Motorola M68HC12 EM_NMA 54 Fujitsu MMA Multimedia Accelerator EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST1100 <t< td=""><td></td><td></td><td></td></t<>				
EM_SPARCV9 43 SPARC Version 9 EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_H8_300 46 Hitachi H8/300 EM_H8_300H 47 Hitachi H8/300H EM_H8_500 49 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_IA_64 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_MAD 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST17 61 Advanced Logic Corp. TinyJ embedded processor family				
EM_TRICORE 44 Infineon Tricore embedded processor EM_ARC 45 Argonaut RISC Core EM_H8_300 46 Hitachi H8/300H EM_H8_300H 47 Hitachi H8/300H EM_H8S 48 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_IBS_X 51 Istanford MIPS-X EM_OBLET 52 Motorola ColdFire EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NDR1 57 Denso NDR1 microprocessor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ME16 59 Toyota ME16 processor EM_ME16 59 Toyota ME16 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66				
EM_ARC 45 Argonaut RISC Core EM_H8_3000 46 Hitachi H8/300 EM_H8_300H 47 Hitachi H8/300H EM_H8_5 48 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_IB_S 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_ST9PLUS 67 STMicroelectronics ST19 8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST9 8/16 bit				
EM_H8_300H 46 Hitachi H8/300H EM_H8_300H 47 Hitachi H8/300H EM_H8S 48 Hitachi H8/500 EM_H8_500 49 Hitachi H8/500 EM_IA_64 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_COLDFIRE 52 Motorola ColdFire EM_G8HC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STRCORE 58 Motorola Stari*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_ST9PLUS 67 STMicroelectronics ST9+8/16 bit microco				
EM_H8_300H 47 Hitachi H8/300H EM_H8S 48 Hitachi H8S EM_H8_500 49 Hitachi H8/500 EM_IA_64 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola ColdFire EM_BMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_STARCORE 58 Motorola Star*Core processor EM_STI00 60 STMicroelectronics ST100 processor EM_STINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66 Infineon FX66 microcontroller EM_STPLUS 67 STMicroelectronics ST78-8/16 bit microcontroller EM_STT7 68 STMicroel				
EM_H8_500 49 Hitachi H8/500 EM_IA_64 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66 Infineon FX66 microcontroller EM_ST9PLUS 67 STMicroelectronics ST9 8-8/16 bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC08 Microcontroller EM_68HC05			Hitachi H8/300H	
EM_IR_64 50 Intel IA-64 processor architecture EM_MIPS_X 51 Stanford MIPS-X EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_ST9PLUS 67 STMicroelectronics ST9+8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST7 8-bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC16 Microcontroller EM_68HC05 72 Motorola MC68HC08 Microcontroller EM_STN 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_STM_STM 75 Digital VAX EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_ST19 74 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files	EM_H8S	48	Hitachi H8S	
EM_MIPS_X EM_COLDFIRE EM_68HC12 EM_68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP EM_NCPU 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST7 8-bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC06 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC08 Microcontroller EM_STY EM_STY Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC06 70 Motorola MC68HC08 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC08 Microcontroller EM_STY EM_SYX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_SYX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_JAVELIN 78 Element 14 64-bit DSP Processor EM_JAVELIN 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files		_	Hitachi H8/500	
EM_COLDFIRE 52 Motorola ColdFire EM_68HC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66 Infineon FX66 microcontroller EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST7 8-bit microcontroller EM_68HC16 69 Motorola MC68HC14 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC08 71 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx				
EM_68HC12 53 Motorola M68HC12 EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ME16 59 Toyota ME16 processor EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST9+ 8/16 bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC16 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_STY STMicroelectronics ST19 8-bit microcontroller EM_STY STMICROELECTRONICS ST19 8-bit microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SYX 73 Silicon Graphics SVX EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_STREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_MMA 54 Fujitsu MMA Multimedia Accelerator EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_STARCORE 58 Motorola Star*Core processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 60 STMicroelectronics ST100 processor EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66 Infineon FX66 microcontroller EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST9PLUS 67 STMicroelectronics ST7 8-bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC11 Microcontroller EM_68HC08 71 Motorola MC68HC05 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_SY9 74 STMicr				
EM_PCP 55 Siemens PCP EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ME16 59 Toyota ME16 processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST10YJ 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66 Infineon FX66 microcontroller EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST7 8-bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC11 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embed				
EM_NCPU 56 Sony nCPU embedded RISC processor EM_NDR1 57 Denso NDR1 microprocessor EM_STARCORE 58 Motorola Star*Core processor EM_ME16 59 Toyota ME16 processor EM_ST100 60 STMicroelectronics ST100 processor EM_ST100 61 Advanced Logic Corp. TinyJ embedded processor family Reserved 62-65 Reserved for future use EM_FX66 66 Infineon FX66 microcontroller EM_ST9PLUS 67 STMicroelectronics ST9 + 8/16 bit microcontroller EM_ST7 68 STMicroelectronics ST7 8-bit microcontroller EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC11 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Co				
EM_NDR157Denso NDR1 microprocessorEM_STARCORE58Motorola Star*Core processorEM_ME1659Toyota ME16 processorEM_ST10060STMicroelectronics ST100 processorEM_TINYJ61Advanced Logic Corp. TinyJ embedded processor familyReserved62-65Reserved for future useEM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_SVX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_JAVELIN78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files				
EM_STARCORE58Motorola Star*Core processorEM_ME1659Toyota ME16 processorEM_ST10060STMicroelectronics ST100 processorEM_TINYJ61Advanced Logic Corp. TinyJ embedded processor familyReserved62-65Reserved for future useEM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_FIREPATH78Element 14 64-bit DSP ProcessorEM_SSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files				
EM_ME1659Toyota ME16 processorEM_ST10060STMicroelectronics ST100 processorEM_TINYJ61Advanced Logic Corp. TinyJ embedded processor familyReserved62-65Reserved for future useEM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_JAVELIN78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files				
EM_ST10060STMicroelectronics ST100 processorEM_TINYJ61Advanced Logic Corp. TinyJ embedded processor familyReserved62-65Reserved for future useEM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_FIREPATH78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files				
EM_TINYJ61Advanced Logic Corp. TinyJ embedded processor familyReserved62-65Reserved for future useEM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_FIREPATH78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files				
Reserved62-65Reserved for future useEM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_FIREPATH78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files				
EM_FX6666Infineon FX66 microcontrollerEM_ST9PLUS67STMicroelectronics ST9+ 8/16 bit microcontrollerEM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_FIREPATH78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files		62-65		
EM_ST768STMicroelectronics ST7 8-bit microcontrollerEM_68HC1669Motorola MC68HC16 MicrocontrollerEM_68HC1170Motorola MC68HC11 MicrocontrollerEM_68HC0871Motorola MC68HC08 MicrocontrollerEM_68HC0572Motorola MC68HC05 MicrocontrollerEM_SVX73Silicon Graphics SVxEM_ST1974STMicroelectronics ST19 8-bit microcontrollerEM_VAX75Digital VAXEM_CRIS76Axis Communications 32-bit embedded processorEM_JAVELIN77Infineon Technologies 32-bit embedded processorEM_FIREPATH78Element 14 64-bit DSP ProcessorEM_ZSP79LSI Logic 16-bit DSP ProcessorEM_MMIX80Donald Knuth's educational 64-bit processorEM_HUANY81Harvard University machine-independent object files	EM_FX66		Infineon FX66 microcontroller	
EM_68HC16 69 Motorola MC68HC16 Microcontroller EM_68HC11 70 Motorola MC68HC11 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files		67		
EM_68HC11 70 Motorola MC68HC11 Microcontroller EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_68HC08 71 Motorola MC68HC08 Microcontroller EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_68HC05 72 Motorola MC68HC05 Microcontroller EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_SVX 73 Silicon Graphics SVx EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_VAX 75 Digital VAX EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_CRIS 76 Axis Communications 32-bit embedded processor EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_FIREPATH 78 Element 14 64-bit DSP Processor EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_ZSP 79 LSI Logic 16-bit DSP Processor EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_MMIX 80 Donald Knuth's educational 64-bit processor EM_HUANY 81 Harvard University machine-independent object files				
EM_HUANY 81 Harvard University machine-independent object files				

Name	Value	Meaning
EM_MEL	83	Multos Executable Language (MEL) byte codes
EM_RTE	84	Microsoft Smart Card for Windows Runtime Environment byte codes

Annex B (informative): Example

```
** Example of Toolkit Application written for the C SIM API
#pragma AID A000000090001
#include <stdlib.h>
#include "application.h"
#include "cat.h"
#include "catlow.h"
#define DF_GSM 0x7F20
#define EF_PUCT 0x6F41
const BYTE SERVER_OPERATION = 0x0F;
const BYTE EXIT_REQUESTED_BY_USER = 0x10;
static const char menuEntry[] = "Service1";
static const char menuTitle[]= "MyMenu";
static char item1[] = "ITEM1";
static char item2[] = "ITEM2";
static char item3[] = "ITEM3";
static char item4[] = "ITEM4";
static char textDText[] = "Hello, world";
static char textGInput[] = "Your name?";
BYTE ItemIdentifier;
static BYTE * byteptr;
static void * bufptr;
static BYTE buffer[10];
static BYTE itemId;
static BYTE result;
static BYTE repeat;
void main(void)
{
    switch (CatGetFrameworkEvent())
            case EVENT_APPLICATION_LIFECYCLE_INSTALL:
        // Define the application Menu Entry and register to the EVENT_MENU_SELECTION
        CatSetMenuString (1,sizeof(menuEntry),(const void *)MenuEntry,NULL,0,0);
        // register to the EVENT_UNFORMATTED_SMS_PP_ENV
            CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
                break;
             case EVENT_ENVELOPE_COMMAND:
                BYTE length;
                switch (CatOpenEnvelope(&length))
                     case MENU_SELECTION_TAG:
                          // Prepare the Select Item proactive command
                          // Append the Menu Title
                          CatSelectItem (sizeof(MenuTitle),
(const void *)MenuTitle,
DEFAULT_STYLE_NO_HELP);
                          // add all the Item
                          CatSelectAddItem(sizeof(item1),(const void *)item1,1);
                          CatSelectAddItem(sizeof(item2),(const void *)item2,2);
                          CatSelectAddItem(sizeof(item3),(const void *)item3,3);
                          CatSelectAddItem(sizeof(item4),(const void *)item4,4);
                          // ask the CAT Toolkit Framework to send
 //the proactive command and check the result
                          if (!CatEndSelectItem(&ItemId,NULL))
                              switch(ItemId)
                              case 1:
                              case 2:
                                      // DisplayText
                              case 3:
                                  CatDisplayText (DCS_SMS_UNPACKED,
                                                                                   sizeof(textDText),
(const void *) textDText,
                                                  NORMAL_PRIORITY_USER_CLEAR, NULL, 0);
                                  break;
```

```
case 4: // Ask the user to enter data and display it
                                  repeat=0;
                                  do
                                  {
                                      if (CatGetInput(DCS_SMS_UNPACKED,
                                               sizeof(textGInput),
                                               (const void *) textGInput,
                                              UNPACKED_SMS_ALPHABET_NO_HELP,
                                              DCS_SMS_UNPACKED, 0, NULL,
                                              0, sizeof(buffer), NULL,
                                              (CatDCSValue *)&result,
                                              &repeat,
                                              (void *)buffer)==EXIT_REQUESTED_BY_USER)
                                         break;
                                      // display the entered text
                                      CatDisplayText ((CatDCSValue )result,
                                              repeat, (const void *) buffer,
                                              {\tt NORMAL\_PRIORITY\_USER\_CLEAR}\,,\ {\tt NULL}\,,\ {\tt 0}\,)\,;\\
                                      } while (repeat);
                      break;
                  case EVENT_UNFORMATTED_SMS_PP_ENV:
                      CatOpenEnvelope(&result);
                                     byteptr=(BYTE *)catGetData(1); /* go to numberlength */
                                     result=(*byteptr)>>1;
                      /* calculate numberlength, rounded up */
                                     if ((*byteptr)&1)result++;
                                                       /* move to the beginning of the data */
                            catGetData(result+12);
                       // get the offset of the instruction in the TP-UD field
                      CatGetData(SERVER_OPERATION);
                      result=CatGetBYTE();
                                switch(result)
                       case 0x41 : // Update of a gsm file
                            bufptr=CatGetData(3);
                            // write these data in the Efpuct
                            CatSelect(FID_DF_GSM);
                            CatSelect(FID_EF_PUCT);
                            CatUpdateBinary(0,3,bufptr);
                            break;
                       case 0x36 : // change the MenuTitle for the SelectItem
bufptr=CatGetData(sizeof(menuTitle));
                          memcpy(bufptr,memuTitle,sizeof(menuTitle));
                       }
              break;
            default:
              CatExit();
              break;
        CatExit();
   }
```

Annex C (informative): Change history

	Change history							
Date	TSG#	TSG Doc	CR	Re	Cat	Subject/Comment	Old	New
				٧				
2003-03	TP-19	TP-030023	001		D	Editorial Corrrections	6.0.0	6.1.0
2007-06	-	-	-	-	-	Update to Rel-7 version (MCC)	6.1.0	7.0.0
2009-03	ı	-	-	-	-	Update to Rel-8 version (MCC)	7.1.0	8.0.0
2009-12	CT-46	CP-091011	002	1	F	References update	8.0.0	8.1.0
2009-12	CT-46	-	-	-	-	Upgrade of the specification to Rel-9	8.1.0	9.0.0
2011-03	SP-51	-		-	•	Upgrade of the specification to Rel-10	9.0.0	10.0.0
2012-09	SP-57	-	-	-	-	Upgrade of the specification to Rel-11	10.0.0	11.0.0
2014-10	SP-65	-		-	-	Upgrade of the specification to Rel-12	11.0.0	12.0.0
2015-12	SP-70	-	-	-	-	Upgrade of the specification to Rel-13	12.0.0	13.0.0
2017-03	SA-75	-	-	-	-	Update to Rel-14 version (MCC)	13.0.0	14.0.0

History

Document history					
V14.0.0	April 2017	Publication			