Università degli studi di Verona Corso di Laurea in Informatica/Tecnologie dell'Informazione

Sistemi Operativi 30 Marzo 2004

Esercizi

- Si mostri una possibile implementazione di un semaforo a valori interi che utilizzi le corrispondenti primitive di un semaforo binario, e che non faccia uso del busy waiting (o ne riduca l'uso al minimo indispensabile).
 [6 punti]
- 2. Si considerino due processi $(P_1 \ e \ P_2)$ che abbiano il seguente comportamento durante la loro esecuzione nel tempo:

P1	CPU 1	DISK 1	CPU 2	DISK 1	CPU 3	DISK 1	CPU 4
P2	CPU 8	DISK 1	CPU 7	DISK 1	CPU 6	DISK 1	CPU 5

"CPU N" significa che il processo esegue un burst di CPU da N unità di tempo in esecuzione CPU, mentre "DISK N" significa che il processo attende la risorsa disco per N unità di tempo. Si supponga che i processi arrivino contemporaneamente nel sistema.

Si assuma che il sistema utilizzi uno scheduler con code multilivello con feedback. Tale scheduler è costituito da due code Q_1 e Q_2 . Si ipotizzi che Q_1 sia gestita con una politica round-robin, con quanto di tempo pari a 4 unità di tempo, mentre Q_2 sia gestita con una politica FCFS.

Descrivere con un diagramma temporale quale processo occupa la CPU e lo stato delle due code (da quali processi sono occupate).

[7 punti]

3. Si consideri la seguente situazione, in cui due processi P_1 e P_2 devono acquisire due semafori s_1 e s_2 prima di accedere alla sezione critica \mathbf{A} .

P1	P2
P(s1)	P(s2)
P(s2)	P(s1)
${f A}$	${f A}$
V(s2)	V(s1)
V(s1)	V(s2)

Si mostri la traiettoria delle risorse relativa all'esecuzione dei due processi P_1 e P_2 , e si mostri come essa può essere usata per analizzare l'esistenza o meno di un deadlock.

[6 punti]

4. Descrivere il modello del working set, indicando dove e per quale scopo viene usato. Si indichi poi una possibile soluzione pratica per implementarlo.

[6 punti]

5. Si mostri quali strutture dati del kernel di UNIX vengono coinvolte nell'accesso ad un file (per esempio con una open()).

[5 punti]