Product Machines

EECS 20
Lecture 10 (February 7, 2001)
Tom Henzinger

Composition of State Machines

Transition Diagram of the Parity System

States = Bools
Inputs = Bools
Outputs = Bools

Transition Diagram of the LastThree System


```
States = { 0, 1, 2 }
Inputs = Bools
Outputs = Bools
```

The Parity System:

```
States [ Parity] = { true, false }
initialState [ Parity ] = true
nextState [ Parity ] (q,x) = (q \neq x)
output [ Parity ] (q,x) = q
```

The LastThree System:

```
States [LastThree] = \{0, 1, 2\}
initialState [LastThree] = 0
nextState [LastThree] (q,x) = \{0, 1, 2\}
output [LastThree] (q,x) = \{0, 1, 2\}
\min_{\substack{if \ x \ output}} (q,x) = ((q = 2) \land x)
```

Block Diagram of Parity System

No path without delay from input to output.

Block Diagram of LastThree System

Path without delay from input to output!

The ParityOrLastThree System

```
Inputs [ ParityOrLastThree ] = Bools
Outputs [ParityOrLastThree] = Bools
States [ ParityOrLastThree ]
       = States [Parity] × States [LastThree]
       = \{ true, false \} \times \{ 0, 1, 2 \}
initialState [ParityOrLastThree]
       = (initialState [Parity], initialState [LastThree])
       = (true, 0)
```

The ParityOrLastThree System, continued

```
nextState [ ParityOrLastThree ] ((q1,q2),x)
= (nextState [ Parity ] (q1, x), nextState [ LastThree ] (q2, x))
output [ ParityOrLastThree ] ((q1,q2),x)
= output [ Parity ] (q1,x) v output [ LastThree ] (q2,x)
```


The ParityAndLastThree System

```
Inputs [ParityAndLastThree] = Bools
Outputs [ParityAndLastThree] = Bools
States [ Parity And Last Three ]
       = States [Parity] × States [LastThree]
       = \{ true, false \} \times \{ 0, 1, 2 \}
initialState [ParityAndLastThree]
       = (initialState [Parity], initialState [LastThree])
       = (true, 0)
```

The ParityAndLastThree System, continued

```
nextState [ ParityAndLastThree ] ((q1,q2),x)
= (nextState [ Parity ] (q1, x), nextState [ LastThree ] (q2, x))
output [ ParityAndLastThree ] ((q1,q2),x)
= output [ Parity ] (q1, x) \( \) output [ LastThree ] (q2, x)
```


The InputPairs System

```
Inputs [InputPairs] = Bools × Bools
Outputs [InputPairs] = Bools
States [InputPairs]
       = States [Parity] × States [LastThree]
       = \{ true, false \} \times \{ 0, 1, 2 \}
initialState [InputPairs]
       = (initialState [Parity], initialState [LastThree])
       = (true, 0)
```

The InputPairs System, continued

```
nextState [InputPairs] ((q1,q2), (x1,x2))

= (nextState [Parity](q1,x1), nextState [LastThree](q2,x2))

output [InputPairs]((q1,q2), (x1,x2))

= output [Parity](q1,x1) \land output [LastThree](q2,x2)
```


The OutputPairs System

```
Inputs [OutputPairs] = Bools
Outputs [OutputPairs] = Bools × Bools
States [OutputPairs]
       = States [Parity] × States [LastThree]
       = \{ true, false \} \times \{ 0, 1, 2 \}
initialState [OutputPairs]
       = (initialState [Parity], initialState [LastThree])
       = (true, 0)
```

The OutputPairs System, continued

```
nextState [ OutputPairs ] ((q1,q2), x)
= (nextState [ Parity ] (q1, x), nextState [ LastThree ] (q2, x))
output [ OutputPairs ] ((q1,q2), x)
= (output [ Parity ] (q1, x), output [ LastThree ] (q2, x))
```


Any block diagram of N state machines with the state spaces

States1, States2, ... StatesN

can be implemented by a single state machine with the state space

 $States1 \times States2 \times ... \times StatesN$.

This is called a "product machine".

This block diagram is ok, because every cycle contains a delay.

Example: Vending Machine

Coin Collector

Let Coins = { Nickel, Dime, Quarter }. Let Coins_ = Coins \cup { \bot }. (\bot stands for "no input.")

Coin Collector

Finite-State Coin Collector

Finite-State Coin Collector

Finite-State Coin Collector

Let Select = { selectCoke, selectDiet }.

Let Dispense = { dispenseCoke, dispenseDiet }.

Soda Dispenser with Change

Soda Dispenser with Change

Soda Dispenser with Change

Vending Machine

State Space of Vending Machine

 $\{0, 5, 10, 15, 20, 25, 30\} \times \{\text{none}, Coke, Diet}\}$

21 states