પ્રશ્ન 1(અ) [3 ગુણ]

ક્લાઉડ કમ્પ્યુટિંગને વ્યાખ્યાયિત કરો અને તેની ઇચ્છનીય વિશેષતાઓ જણાવો.

જવાબ:

ક્લાઉડ કમ્પ્યુટિંગ એ એવી ટેકનોલોજી છે જે ઇન્ટરનેટ પર કમ્પ્યુટિંગ સેવાઓ જેવી કે servers, storage, databases અને software પ્રદાન કરે છે, જે વપરાશકર્તાઓને ભૌતિક infrastructure ના માલિકી વિના જરૂરિયાત મુજબ resources ઉપલબ્ધ કરાવે છે.

ઇચ્છનીય વિશેષતાઓ:

વિશેષતા	વર્ણન	
On-demand self-service	માનવી હસ્તક્ષેપ વિના તાત્કાલિક સંસાધન પ્રાપ્તિ	
Broad network access	મુખ્ય platforms દ્વારા નેટવર્ક પર સેવાઓ ઉપલબ્ધ	
Resource pooling	વિવિદ્ય વપરાશકર્તાઓ માટે computing resources નું pooling	
Rapid elasticity	ઝડપથી resources વધારવા-ઘટાડવાની સુવિધા	
Measured service	ઉપયોગની નિગરાણી અને આપોઆપ billing	

મેમરી ટ્રીક: "On-Demand Broad Resources Rapidly Measured"

પ્રશ્ન 1(બ) [4 ગુણ]

ક્લાઉડ આર્કિટેક્ચર દોરો અને સમજાવો.

જવાબ:

ક્લાઉડ આર્કિટેક્ચરના ઘટકો:

- Client Layer: અંતિમ વપરાશકર્તા devices જે ક્લાઉડ સેવાઓ access કરે છે
- Internet: નેટવર્ક કનેક્શન માધ્યમ
- **Frontend**: વપરાશકર્તા interface અને સેવા management
- Backend: મુખ્ય processing અને resource management
- Service Models: laaS, PaaS, SaaS layers
- Physical Infrastructure: Data centers ๚i hardware resources

મેમરી ટ્રીક: "Clients Connect Through Frontend Backend Services Infrastructure"

પ્રશ્ન 1(ક) [7 ગુણ]

કલાઉડ સર્વિસ મોડલ્સને વિગતવાર સમજાવો.

જવાબ:

Service Model	นญ์ฯ	ઉદાહરણો	User Control
laaS	Infrastructure as a Service - Virtual machines, storage, networks	AWS EC2, Google Compute Engine	ઉચ્ચ - OS, Runtime, Apps
PaaS	Platform as a Service - Development platform with tools	Google App Engine, Heroku	મધ્યમ - Apps and Data
SaaS	Software as a Service - Ready-to-use applications	Gmail, Office 365, Salesforce	ઓછું - ફક્ત Data

વિગતવાર સમજૂતી:

- laaS (Infrastructure as a Service): Virtualized computing resources પ્રદાન કરે છે જેમાં virtual machines, storage અને networking સામેલ છે. વપરાશકર્તાઓને operating systems અને applications પર સંપૂર્ણ નિયંત્રણ મળે છે.
- **PaaS (Platform as a Service)**: Programming tools, database management અને middleware સાથે development platform પ્રદાન કરે છે. Developers infrastructure management વિના application logic પર ધ્યાન કેન્દ્રિત કરી શકે છે.
- SaaS (Software as a Service): ઇન્ટરનેટ પર સંપૂર્ણ applications પ્રદાન કરે છે. વપરાશકર્તાઓ installation કે maintenance વિના web browsers દ્વારા software access કરે છે.

મેમરી ટ્રીક: "Infrastructure Platforms Software - Increasing Abstraction"

પ્રશ્ન 1(ક OR) [7 ગુણ]

ક્લાઉડ કમ્પ્યુટિંગમાં સર્વિસ લેવલ એગ્રીમેન્ટ (SLA) ઉદાહરણ સાથે સમજાવો.

જવાબ:

Service Level Agreement (SLA) એ ક્લાઉડ સર્વિસ પ્રદાતા અને ગ્રાહક વચ્ચેનો કરાર છે જે અપેક્ષિત સેવા સ્તર, performance metrics અને non-compliance માટે penalties વ્યાખ્યાયિત કરે છે.

મુખ્ય ઘટકો:

ยวร	વર્ણન	ઉદાહરણ
Availability	Uptime ગેરંટી	99.9% uptime
Performance	Response time metrics	<200ms response time
Security	Data protection standards	ISO 27001 compliance
Support	Help desk response time	24/7 support, 4-hour response
Penalties	Failures માટે વળતર	Downtime માટે service credits

ઉદાહરણ - AWS SLA:

• EC2 SLA: 99.99% monthly uptime

• **S3 SLA**: 99.9% availability, 99.99999999 durability

• Penalty: Availability threshold નીચે જતાં 10% service credit

ફાયદાઓ:

• Accountability: બંને પક્ષો માટે સ્પષ્ટ અપેક્ષાઓ

• Quality assurance: ગેરંટીવાળા સેવા સ્તરો

• Risk mitigation: સેવા failures માટે વળતર

મેમરી ટ્રીક: "Availability Performance Security Support Penalties"

પ્રશ્ન 2(અ) [3 ગુણ]

વર્ચ્યુઅલાઈઝેશન વ્યાખ્યાયિત કરો. વર્ચ્યુઅલાઈઝેશનની લાક્ષણિકતાઓ આપો.

જવાબ:

વર્ચ્યુઅલાઈઝેશન એ એવી ટેકનોલોજી છે જે કમ્પ્યુટિંગ resources જેવા કે servers, storage કે networks ના virtual versions બનાવે છે, જે એક જ ભૌતિક hardware પર અનેક virtual instances ચલાવવાની મંજૂરી આપે છે.

લાક્ષણિકતાઓ:

- Resource sharing: અનેક VMs ભૌતિક hardware ને કાર્યક્ષમતાથી share કરે છે
- **Isolation**: Virtual machines સ્વતંત્ર રીતે હસ્તક્ષેપ વિના કાર્ય કરે છે
- Portability: VMs ને વિવિધ ભૌતિક hosts વચ્ચે ખસેડી શકાય છે
- **Scalability**: જરૂરિયાત મુજબ resources ને dynamically allocate કરી શકાય છે
- Cost efficiency: Hardware આવશ્યકતાઓ અને operational costs ઘટાડે છે

મેમરી ટ્રીક: "Resources Isolated Portable Scalable Cost-effective"

પ્રશ્ન 2(બ) [4 ગુણ]

પેરાવર્ચ્યુઅલાઈઝેશન અને સંપૂર્ણ વર્ચ્યુઅલાઈઝેશન વચ્ચે તફાવત કરો.

જવાબ:

પાસું	Paravirtualization	Full Virtualization
Guest OS Modification	Hypervisor સાથે communicate કરવા માટે modified	કોઈ modification ની જરૂર નથી
Performance	ઉચ્ચ performance	થોડી ઓછી performance
Hardware Support	વિશેષ hardware ની જરૂર નથી	Hardware virtualization support જરૂરી
Compatibility	મર્યાદિત OS compatibility	કોઈપણ OS ને support કરે છે
ઉદાહરણો	Xen, VMware ESX	VMware Workstation, VirtualBox

મુખ્ય તફાવતો:

- **Paravirtualization** માં guest OS ને virtualization ની જાણ હોય છે અને hypervisor સાથે સહકાર કરે છે
- Full Virtualization માં hardware નું સંપૂર્ણ emulation થાય છે, જેથી guest OS ને virtualization ની જાણ ન હોય

ਮੇਮਣੀ ਟ੍ਰੀs: "Para Cooperates, Full Emulates"

પ્રશ્ન 2(ક) [7 ગુણ]

હાઈપરવાઈઝર વ્યાખ્યાયિત કરો. પ્રકાર 1 અને પ્રકાર 2 હાઈપરવાઈઝર સમજાવો.

જવાબ:

Hypervisor એ software છે જે ભૌતિક hardware ને abstract કરીને અને અનેક VMs ને resources allocate કરીને virtual machines બનાવે અને manage કરે છે.

तुसना:

વિશેષતા	Type 1 (Bare Metal)	Type 2 (Hosted)
Installation	Hardware પર સીધું	Host operating system પર
Performance	ઉચ્ચ performance	ઓછી performance
Use Case	Enterprise, data centers	Desktop virtualization, testing
ઉદાહરણો	VMware vSphere, Hyper-V	VMware Workstation, VirtualBox
Resource Overhead	ઓછું overhead	વધારે overhead

Type 1 ફાયદાઓ: બેહતર performance, સીધું hardware access, enterprise-grade security

Type 2 ફાયદાઓ: સરળ setup, host OS સાથે parallel ચાલે છે, development માટે સાર્ટ્

મેમરી ટ્રીક: "Type 1 Bare Metal, Type 2 Hosted"

પ્રશ્ન 2(અ OR) [3 ગુણ]

વર્ચ્યુઅલાઈઝેશનના પ્રકારોની યાદી બનાવો અને કોઈપણ એકને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

વર્ચ્યુઅલાઈઝેશનના પ્રકારો:

- Server Virtualization
- Storage Virtualization
- Network Virtualization
- Desktop Virtualization
- Application Virtualization
- Memory Virtualization

Server Virtualization (વિગતવાર):

Server virtualization એક જ ભૌતિક server પર અનેક virtual servers બનાવે છે. દરેક virtual server પોતાના operating system અને applications સાથે સ્વતંત્ર રીતે કાર્ય કરે છે.

કાયદાઓ:

• Resource optimization: હાર્ડવેરનો બેહતર ઉપયોગ

• Cost reduction: ઓછા ભૌતિક servers ની જરૂર

• Flexibility: સરળ VM migration અને scaling

મેમરી ટ્રીક: "Server Storage Network Desktop Application Memory"

પ્રશ્ન 2(બ OR) [4 ગુણ]

હાર્ડવેર અને સોફ્ટવેર વર્ચ્યુઅલાઈઝેશનનું વર્ણન કરો.

જવાબ:

язіг	Hardware Virtualization	Software Virtualization	
પદ્ધતિ	CPU virtualization features ઉપયોગ કરે છે	Pure software emulation	
Performance	Native performance ની નજીક	Emulation ને કારણે ધીમું	
CPU Support	Intel VT-x કે AMD-V જરૂરી	કોઈપણ CPU પર કાર્ય કરે છે	
Guest OS	Unmodified OS ચાલી શકે છે	OS modifications ની જરૂર પડી શકે છે	
ઉદાહરણો	VMware vSphere, KVM	QEMU, VMware Workstation (software mode)	

Hardware Virtualization: CPU virtualization extensions નો લાભ લઈને guest instructions ને સીઘા execute કરે છે, જે બેહતર performance અને security isolation પ્રદાન કરે છે.

Software Virtualization: Binary translation ઉપયોગ કરીને guest instructions ને host-compatible instructions માં convert કરે છે, જે વધુ compatibility પરંતુ performance overhead સાથે પ્રદાન કરે છે.

મેમરી ટ્રીક: "Hardware Fast, Software Compatible"

પ્રશ્ન 2(ક OR) [7 ગુણ]

વર્ચ્યુઅલ મશીન બનાવવા અને મેનેજ કરવાની પ્રક્રિયા સમજાવો.

જવાબ:

VM Creation Process:

વિગતવાર પગલાં:

- 1. **Planning**: CPU cores, RAM, storage અને network requirements નક્કી કરવું
- 2. **Resource Allocation**: Virtual machine ને ભૌતિક resources assign કરવા
- 3. Storage Setup: Virtual disks બનાવવા (VMDK, VHD, QCOW2 formats)
- 4. **Network Configuration**: Virtual network adapters અને connectivity setup કરવા
- 5. **OS Installation**: ISO કે network boot ઉપયોગ કરીને operating system install કરવું
- 6. **Tools Installation**: બેહતર integration માટે hypervisor-specific tools install કરવા
- 7. **Management Tasks**: Performance monitor કરવું, snapshots બનાવવા, VMs નું backup કરવું

VM Management Operations:

- Start/Stop/Restart: Power operations
- Snapshot Management: Snapshots બનાવવા, restore કરવા, delete કરવા

• Migration: Hosts વચ્ચે VMs ખસેડવા

• Backup/Recovery: Data protection strategies

મેમરી ટ્રીક: "Plan Select Allocate Create Configure Install Manage"

પ્રશ્ન 3(અ) [3 ગુણ]

ડેટા સેન્ટર વ્યાખ્યાયિત કરો. કોઈપણ બે પ્રકારના ડેટા સેન્ટરનું વર્ણન કરો.

જવાબ:

ડેટા સેન્ટર એ એવી સુવિધા છે જે કમ્પ્યુટર સિસ્ટમ્સ, નેટવર્કિંગ સાધનો અને સ્ટોરેજ સિસ્ટમ્સ તથા power, cooling અને security systems જેવા supporting infrastructure સાથે રાખે છે.

ડેટા સેન્ટરના પ્રકારો:

увіг	વર્ણન	લાક્ષણિકતાઓ
Enterprise Data Center	એક જ સંસ્થાની માલિકીનું અને સંચાલિત	Private, customized, ઉચ્ચ security
Colocation Data Center	અનેક clients ને space ભાડે આપતી shared facility	Shared infrastructure, cost- effective

Enterprise Data Center:

- સંસ્થા દ્વારા આંતરિક ઉપયોગ માટે બનાવેલું અને manage કરેલું
- Infrastructure અને security પર સંપૂર્ણ નિયંત્રણ
- વધુ પ્રારંભિક રોકાણ પરંતુ customized solutions

Colocation Data Center:

- Third-party facility જે space, power અને cooling પ્રદાન કરે છે
- અનેક સંસ્થાઓ સામાન્ય infrastructure share કરે છે
- ઓછા costs અને professional management

મેમરી ટ્રીક: "Enterprise Private, Colocation Shared"

પ્રશ્ન 3(બ) [4 ગુણ]

ક્લાઉડ ડેટા સેન્ટરમાં સ્કેલેબિલિટી અને ઇલાસ્ટિસિટી વચ્ચે તફાવત કરો.

જવાબ:

પાસું	Scalability	Elasticity
લ્યાખ્યા	વધેલા workload હેન્ડલ કરવાની ક્ષમતા	Demand આધારિત automatic scaling
Response	Manual કે આયોજિત scaling	Automatic અને ઝડપી response
દિશા	સામાન્ય રીતે upward scaling	Up અને down બંને scaling
Time Frame	લાંબા ગાળાની capacity planning	Real-time demand response
Resource Usage	અનુપયોગી resources હોઈ શકે છે	Optimal resource utilization

મુખ્ય તફાવતો:

- Scalability વિકાસની ક્ષમતા પર ધ્યાન કેન્દ્રિત કરે છે, જ્યારે Elasticity automatic adjustment પર ભાર મૂકે છે
- Scalability માં માનવી હસ્તક્ષેપ જરૂરી, Elasticity automated છે
- Scalability રણનીતિક આયોજન છે, Elasticity operational કાર્યક્ષમતા છે

ઉદાહરણો:

- Scalability: અપેક્ષિત traffic વધારા દરમિયાન વધુ servers ઉમેરવા
- **Elasticity**: CPU usage આધારિત Auto-scaling groups જે instances ઉમેરે/દૂર કરે છે

મેમરી ટ્રીક: "Scalability Plans, Elasticity Adapts"

પ્રશ્ન 3(ક) [7 ગુણ]

ડાયાગ્રામ સાથે ડેટા સેન્ટરમાં SDN (સોફ્ટવેર-ડિફાઈન્ડ નેટવર્કિંગ) સમજાવો.

જવાબ:

SDN ઘટકો:

Layer	รเช้	ઉદાહરણો
Application Layer	Network applications અને services	Load balancers, firewalls, monitoring
Control Layer	Centralized network control અને management	OpenDaylight, ONOS, Floodlight
Infrastructure Layer	Controller દ્વારા controlled forwarding devices	OpenFlow switches, routers

મુખ્ય વિશેષતાઓ:

- Centralized Control: Network management નું એક જ કેન્દ્ર
- Programmability: Software દ્વારા વ્યાખ્યાયિત network behavior
- Abstraction: Control અને data planes નો વિભાજન
- **Dynamic Configuration**: Real-time network policy changes

ડેટા સેન્ટરમાં ફાયદાઓ:

- Flexibility: સરળ network configuration changes
- Automation: Programmable network management
- Cost Reduction: Commodity hardware નો ઉપયોગ
- Innovation: નવી સેવાઓની ઝડપી deployment

મેમરી ટ્રીક: "Applications Control Infrastructure - Programmable Networks"

પ્રશ્ન 3(અ OR) [3 ગુણ]

ડેટા સેન્ટરના મુખ્ય ઘટકોને ઓળખો અને તેનું વર્ણન કરો.

જવાબ:

મુખ્ય ડેટા સેન્ટર ઘટકો:

- Servers: Applications અને services ચલાવતા computing resources
- Storage Systems: Data storage arrays (SAN, NAS, DAS)
- Network Equipment: Connectivity भा2 switches, routers, load balancers
- Power Infrastructure: વિશ્વસનીય power માટે UPS, generators, PDUs
- Cooling Systems: યોગ્ય તાપમાન જાળવતા HVAC systems
- Security Systems: ભૌતિક અને logical access controls

Critical Infrastructure:

દરેક ઘટક ડેટા સેન્ટરના સંચાલન માટે આવશ્યક છે, high availability અને disaster recovery માટે redundancy સાથે.

મેમરી ટ્રીક: "Servers Store Network Power Cool Secure"

પ્રશ્ન 3(બ OR) [4 ગુણ]

ડેટા સેન્ટર નેટવર્ક ટોપોલોજીઓની યાદી બનાવો અને તેમાંથી કોઈ એકને સમજાવો.

જવાબ:

ડેટા સેન્ટર નેટવર્ક ટોપોલોજીઓ:

- Three-tier Architecture
- Spine-Leaf Architecture

- Fat Tree Topology
- Mesh Topology

Spine-Leaf Architecture (વિગતવાર):

લાક્ષણિકતાઓ:

- Leaf switches servers અને storage સાથે connect થાય છે
- Spine switches inter-leaf connectivity มะเศ ระ ชั่
- **કોઈ leaf-to-leaf connections નથી** બધો traffic spine મારફતે જાય છે
- સમાન path lengths કોઈપણ બે endpoints વચ્ચે
- High bandwidth ਅਜੇ low latency design

મેમરી ટ્રીક: "Three Spine Fat Mesh"

પ્રશ્ન 3(ક OR) [7 ગુણ]

ઈન્ફ્રાસ્ટ્રક્ચર એઝ કોડ (IaC) ને તેના લોકપ્રિય ઓટોમેશન ટ્રલ્સ સાથે સમજાવો.

જવાબ:

Infrastructure as Code (IaC) એ manual processes ને બદલે machine-readable definition files દ્વારા computing infrastructure ને manage અને provision કરવાની પ્રથા છે.

મુખ્ય સિદ્ધાંતો:

સિદ્ધાંત	นต์า	ફાયદાઓ
Declarative	પગલાં નહીં, પરંતુ desired state વ્યાખ્યાયિત કરવું	Predictable outcomes
Version Control	Git मां infrastructure definitions	Change tracking, rollback
Automation	Automated deployment અને updates	માનવી ભૂલો ઘટાડવી
Consistency	Environments વચ્ચે સમાન configuration	વિશ્વસનીય deployments

લોકપ્રિય IaC ટૂલ્સ:

ŠС	уѕіғ	વર્ણન	ઉપયોગ
Terraform	Declarative	Multi-cloud infrastructure provisioning	Cross-platform deployments
Ansible	Imperative	Configuration management અને automation	Server configuration
CloudFormation	Declarative	AWS-specific infrastructure templates	AWS resource management
Puppet	Declarative	Configuration management	Enterprise automation
Chef	Imperative	Infrastructure automation platform	જટિલ deployments

laC ફાયદાઓ:

• Speed: ઝડપી deployment અને scaling

• Consistency: Stages વચ્ચે સમાન environments

• Cost Control: Resource optimization અને tracking

• Reliability: Configuration drift ยะเร่า

• Collaboration: Shared infrastructure definitions


```
# Terraform GELECUI
resource "aws_instance" "web_server" {
  ami = "ami-12345678"
  instance_type = "t2.micro"
  tags = {
   Name = "WebServer"
  }
}
```

મેમરી ટ્રીક: "Terraform Ansible CloudFormation Puppet Chef"

પ્રશ્ન 4(અ) [3 ગુણ]

ક્લાઉડ સ્ટોરેજ વ્યાખ્યાયિત કરો. ક્લાઉડ સ્ટોરેજ સેવાઓનું ઉદાહરણ લખો.

જવાબ:

કલાઉડ સ્ટોરેજ એ એવી સેવા છે જે વપરાશકર્તાઓને local storage devices ને બદલે ઇન્ટરનેટ પર remote servers પર data store, access અને manage કરવાની મંજૂરી આપે છે.

ક્લાઉડ સ્ટોરેજ સેવાઓના ઉદાહરણો:

પ્રદાતા	સેવા	язіг	ઉપયોગ
Amazon	S3 (Simple Storage Service)	Object Storage	Web applications, backup
Google	Google Drive	File Storage	Personal, collaboration
Microsoft	Azure Blob Storage	Object Storage	Enterprise applications
Dropbox	Dropbox	File Sync	File sharing, sync
iCloud	Apple iCloud	Personal Cloud	iOS device backup

મુખ્ય ફાયદાઓ: Accessibility, scalability, cost-effectiveness, automatic backup

મેમરી ટ્રીક: "Amazon Google Microsoft Dropbox Apple"

પ્રશ્ન 4(બ) [4 ગુણ]

ડેટા કોન્સિસ્ટન્સી અને દૂરબીલિટી વચ્ચે તફાવત કરો.

જવાબ:

પાસું	Data Consistency	Data Durability
વ્યાખ્યા	બધા nodes એક સાથે સમાન data જુએ છે	System failures છતાં data ટકી રહે છે
ફોકસ	Data accuracy અને synchronization	Data preservation અને recovery
પડકાર	Concurrent access conflicts	Hardware failures, disasters
ઉકેલો	ACID properties, eventual consistency	Replication, backups, redundancy
ઉદાહરણો	Bank transactions, inventory updates	File backups, disaster recovery

Data Consistency: ખાતરી કરે છે કે બધા database nodes માં કોઈપણ સમયે સમાન data હોય છે, real-time accuracy જરૂરી applications માટે મહત્વપૂર્ણ.

Data Durability: ખાતરી આપે છે કે committed data system crashes, power failures કે hardware malfunctions પછી પણ ઉપલબ્ધ રહે છે.

Trade-offs: Strong consistency performance ને અસર કરી શકે છે, જ્યારે high durability માટે વધારાના storage costs જરૂરી.

મેમરી ટ્રીક: "Consistency Synchronizes, Durability Survives"

પ્રશ્ન 4(ક) [7 ગુણ]

કલાઉડ સ્ટોરેજના પ્રકારો વિગતવાર સમજાવો.

જવાબ:

Storage Type	વર્ણન	ઉપયોગ	ઉદાહરણો
Object	Metadata સાથે objects તરીકે	Web apps, content distribution	Amazon S3, Google
Storage	files store કરે છે		Cloud Storage
Block	Databases માટે raw block-level	High-performance	Amazon EBS, Azure Disk
Storage	storage	databases	
File Storage	પરંપરાગત hierarchical file system	File sharing, content management	Amazon EFS, Azure Files

વિગતવાર સમજૂતી:

Object Storage:

• **Structure**: Unique object identifiers સાથે flat namespace

• Scalability: લગભગ અમર્યાદિત capacity

• Access: REST APIs, web interfaces

• ફાયદાઓ: Cost-effective, વૈશ્વિક રીતે accessible, metadata support

Block Storage:

• Structure: Compute instances સાથે attached raw storage blocks

• Performance: High IOPS, low latency

• Access: Direct block-level access

• **ธุเขยเฟ**้า: High performance, database optimization

File Storage:

• **Structure**: น่ะนะเวเส directory/folder hierarchy

• Sharing: Multi-user concurrent access

• Access: Standard file system protocols (NFS, SMB)

• ફાયદાઓ: પરિચિત interface, application compatibility

પસંદગીના માપદંડો:

• Performance જરૂરિયાતો: Databases માટે Block, web માટે Object

• Access patterns: Shared access หาว File, web apps หาว Object

• Cost considerations: Object સૌથી સસ્તું, Block સૌથી મોંઘું

મેમરી ટ્રીક: "Objects Scale, Blocks Perform, Files Share"

પ્રશ્ન 4(અ OR) [3 ગુણ]

ક્લાઉડ ડેટાબેસેસ વ્યાખ્યાયિત કરો. ક્લાઉડ ડેટાબેઝ સેવાઓનું ઉદાહરણ લખો.

જવાબ:

ક્લાઉડ ડેટાબેસેસ એ ક્લાઉડ પ્રદાતાઓ દ્વારા hosted અને managed database services છે, જે scalability, high availability અને ઓછા administration overhead પ્રદાન કરે છે.

ક્લાઉડ ડેટાબેઝ સેવાઓના ઉદાહરણો:

પ્રદાતા	સેવા	หรเร	વિશેષતાઓ
Amazon	RDS (Relational Database Service)	SQL	MySQL, PostgreSQL, Oracle
Google	Cloud SQL	SQL	Managed MySQL, PostgreSQL
Microsoft	Azure SQL Database	SQL	Cloud માં SQL Server
MongoDB	Atlas	NoSQL	Managed MongoDB
Amazon	DynamoDB	NoSQL	Key-value, document store

ફાયદાઓ: Automatic scaling, backup management, security updates, global availability

મેમરી ટ્રીક: "Amazon Google Microsoft MongoDB"

પ્રશ્ન 4(બ OR) [4 ગુણ]

ડેટા સ્કેલિંગ અને રેપ્લિકેશનનું વર્ણન કરો.

જવાબ:

ડેટા સ્કેલિંગ:

Scaling Type	વર્ણન	પદ્ધતિ	ફાયદાઓ
Vertical Scaling	Server capacity વધારવી	CPU, RAM, storage ઉમેરવું	સરળ, કોઈ code changes નથી
Horizontal Scaling	વધુ servers ઉમેરવા	Nodes વચ્ચે distribute કરવું	બેહતર fault tolerance

ડેટા રેપ્લિકેશન:

Replication Type	વર્ણન	ઉપયોગ	Consistency
Master-Slave	એક write node, અનેક read nodes	Read-heavy workloads	Eventual consistency
Master-Master	અનેક write nodes	High availability	Conflict resolution જરૂરી
Peer-to-Peer	બદ્યા nodes સમાન	Distributed systems	જટિલ consistency

મુખ્ય ફાયદાઓ:

• Scaling: વધેલા load અને data volume handle કરવા

• **Replication**: Availability અને disaster recovery સુધારવા

• Performance: અનેક systems વચ્ચે load વહેંચવું

• Fault Tolerance: Failures છતાં operations ચાલુ રાખવા

મેમરી ટ્રીક: "Vertical Horizontal, Master Slave Peer"

પ્રશ્ન 4(ક OR) [7 ગુણ]

ક્લાઉડ ડેટાબેઝના પ્રકારો સમજાવો.

જવાબ:

Database Type	વર્ણન	ઉદાહરણો	ઉપયોગ
Relational (SQL)	ACID properties સાથે structured data	MySQL, PostgreSQL, Oracle	Financial systems, ERP
Document	JSON-like document storage	MongoDB, CouchDB	Content management, catalogs
Key-Value	સરળ key-value pairs	Redis, DynamoDB	Caching, session storage
Column- Family	Wide-column storage	Cassandra, HBase	Time-series, loT data
Graph	Nodes અને relationships	Neo4j, Amazon Neptune	Social networks, recommendations

SQL vs NoSQL તુલના:

પાસું	SQL Databases	NoSQL Databases
Schema	Fixed schema	Flexible schema
Scaling	Vertical scaling	Horizontal scaling
ACID	સંપૂર્ણ ACID compliance	BASE properties
Queries	SQL language	વિવિધ query methods
Consistency	Strong consistency	Eventual consistency

પસંદગીના માપદંડો:

• **Data Structure**: Structured data \rightarrow SQL, Unstructured \rightarrow NoSQL

• **Scalability**: Horizontal scaling → NoSQL

• **Consistency**: Strong consistency → SQL

• **Complexity**: જટિલ queries → SQL, સરળ access → NoSQL

ક્લાઉડ ડેટાબેઝ સેવાઓ:

• Amazon: RDS (SQL), DynamoDB (NoSQL), DocumentDB (Document)

• Google: Cloud SQL, Firestore, BigTable

• Microsoft: Azure SQL, Cosmos DB

મેમરી ટ્રીક: "Relational Document Key Column Graph"

પ્રશ્ન 5(અ) [3 ગુણ]

ક્લાઉડ સુરક્ષા વ્યાખ્યાયિત કરો. ક્લાઉડ સુરક્ષા માટે વિવિધ પડકારોની યાદી બનાવો.

જવાબ:

ક્લાઉડ સુરક્ષા એ policies, technologies, applications અને controls નો સંદર્ભ આપે છે જેનો ઉપયોગ ક્લાઉડ કમ્પ્યુટિંગ સાથે સંકળાયેલ virtualized IP, data, applications, services અને infrastructure ને સુરક્ષિત કરવા માટે થાય છે.

ક્લાઉડ સુરક્ષાના પડકારો:

- Data breaches અને privacy concerns
- Identity અને access management ની જટિલતા
- Insider threats અને privileged user access
- Compliance અને regulatory requirements
- Shared responsibility model ની મૂંઝવણ
- API security vulnerabilities

મુખ્ય પડકારના ક્ષેત્રો:

દરેક પડકાર માટે ક્લાઉડ environments માં જોખમોને ઘટાડવા અને data protection સુનિશ્ચિત કરવા માટે વિશિષ્ટ security strategies અને tools ની જરૂર છે.

મેમરી ટ્રીક: "Data Identity Insider Compliance Shared API"

પ્રશ્ન 5(બ) [4 ગુણ]

આઇડેન્ટિટી મેનેજમેન્ટ અને એક્સેસ કંટ્રોલ પર ટૂંકી નોંધ લખો.

જવાબ:

Identity and Access Management (IAM):

ยรร	นญ์า	รเช้
Authentication	User identity verify કરવું	Username/password, MFA, biometrics
Authorization	યોગ્ય permissions આપવી	Role-based access control (RBAC)
Accounting	User activities track કરવી	Audit logs, compliance reporting

Access Control Models:

- Role-Based Access Control (RBAC): વિશિષ્ટ permissions સાથે users ને roles assign કરવા
- Attribute-Based Access Control (ABAC): Attributes આધારિત dynamic permissions
- Mandatory Access Control (MAC): System-enforced security policies

Best Practices:

- Principle of least privilege: લઘુત્તમ જરૂરી access
- Multi-factor authentication: વધારેલી security verification
- Regular access reviews: સમયાંતરે permissions ની audit
- Zero trust model: દરેક access request ને verify કરવી

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Authenticate Authorize Account"

પ્રશ્ન 5(ક) [7 ગુણ]

ક્લાઉડમાં ડેટા સુરક્ષા માટે ઉપયોગમાં લેવાતી ટેકનોલોજીઓ સમજાવો.

જવાબ:

ટેકનોલોજી	હેતુ	વર્ણન	અમલીકરણ
Encryption	Data protection	Data ને અવાયનીય format માં convert કરે છે	AES-256, RSA encryption
Key Management	Secure key storage	Centralized key lifecycle management	AWS KMS, Azure Key Vault
Digital Signatures	Data integrity	Data authenticity verify કરે છે	PKI certificates
Access Controls	Permission management	Role-based access restrictions	IAM policies, RBAC
Network Security	Traffic protection	Secure data transmission	VPN, TLS/SSL, firewalls
Data Loss Prevention	Data leaks અટકાવવા	Data movement monitor અને control કરે છે	DLP tools, content inspection
Backup & Recovery	Data availability	Disaster recovery planning	Automated backups, replication

Security Implementation Layers:

મુખ્ય Security Practices:

- Data at Rest: મજબૂત encryption algorithms ઉપયોગ કરીને stored data ને encrypt કરવું
- Data in Transit: TLS/SSL protocols ઉપયોગ કરીને secure transmission
- Data in Use: Secure enclaves સાથે processing દરમિયાન data ને protect કરવું
- Key Rotation: નિયમિત cryptographic key updates
- Compliance: Regulatory requirements (GDPR, HIPAA, SOX) ને પૂરી કરવી

Emerging Technologies:

- Homomorphic Encryption: Encrypted data પર compute કરવું
- Zero-Knowledge Proofs: Data પ્રગટ કર્યા વિના verify કરવું
- Confidential Computing: Processing દરમિયાન data ને protect કરવું

મેમરી ટ્રીક: "Encrypt Keys Sign Control Network Prevent Backup"

પ્રશ્ન 5(અ OR) [3 ગુણ]

સર્વરલેસ કમ્પ્યુટિંગ વ્યાખ્યાયિત કરો. સર્વરલેસ કમ્પ્યુટિંગના ફાયદાઓની યાદી આપો.

જવાબ:

Serverless Computing એ ક્લાઉડ execution model છે જેમાં ક્લાઉડ પ્રદાતાઓ server allocation અને scaling ને dynamically manage કરે છે, જે developers ને server management વિના ફક્ત code પર ધ્યાન કેન્દ્રિત કરવાની મંજૂરી આપે છે.

Serverless Computing ના ફાયદાઓ:

- **કોઈ server management નથી**: ક્લાઉડ પ્રદાતા infrastructure handle કરે છે
- Automatic scaling: જરૂરિયાત મુજબ આપોઆપ scale up/down થાય છે
- Pay-per-use pricing: ફક્ત વાસ્તવિક execution time માટે ચૂકવણી
- **ઝડપી development**: Infrastructure નહીં, business logic પર ધ્યાન
- **High availability**: Built-in fault tolerance અને redundancy
- ઓછું operational overhead: Servers ને patch કે monitor કરવાની જરૂર નથી

ตโรโหล GEเษลยโ: AWS Lambda, Azure Functions, Google Cloud Functions

મેમરી ટ્રીક: "No Automatic Pay Faster High Reduced"

પ્રશ્ન 5(બ OR) [4 ગુણ]

એજ અને ફોગ કમ્પ્યુટિંગ વચ્ચે તફાવત કરો.

જવાબ:

પાસું	Edge Computing	Fog Computing
સ્થાન	Network edge પર, devices ની નજીક	Cloud અને edge devices વચ્ચે
Processing	Edge devices પર local processing	Nodes વચ્ચે distributed processing
Latency	Ultra-low latency	Low થી medium latency
Connectivity	Direct device connection	Hierarchical network structure
ઉપયોગ	loT sensors, autonomous vehicles	Smart cities, industrial automation
ઉદાહરણો	Smartphone apps, smart cameras	Router-based processing, gateways

મુખ્ય તફાવતો:

- Edge data source ની સીધે નજીક compute લાવે છે
- Fog distributed computing layer બનાવે છે
- Edge તાત્કાલિક response માટે optimize કરે છે
- Fog વ્યાપક વિસ્તારને coverage પ્રદાન કરે છે

બંનેના કાયદાઓ:

- ક્લાઉડ સુધી bandwidth usage ઘટાડે છે
- Response times સુધારે છે

- વધારેલી privacy અને security
- Critical applications માટે વધુ સારી reliability

ਮੇਮਣੀ ਟ੍ਰੀs: "Edge Direct, Fog Distributed"

પ્રશ્ન 5(ક OR) [7 ગુણ]

કન્ટેનર વ્યાખ્યાચિત કરો. ઉદાહરણ સાથે image બનાવવા અને ડોકર કન્ટેનર ચલાવવાના પગલાં સમજાવો.

જવાબ:

Containers એ lightweight, portable packages છે જેમાં application code, runtime, system tools, libraries અને settings સામેલ છે જે વિવિધ environments વચ્ચે applications ને સતત ચલાવવા માટે જરૂરી છે.

Docker Container Creation Steps:

પગલાબદ્ધ પ્રક્રિયા:

1. Dockerfile બનાવો:

```
# Base image
FROM node:14-alpine

# Working directory set St)
WORKDIR /app

# Package files copy St)
COPY package*.json ./

# Dependencies install St)
RUN npm install

# Application code copy St)
COPY . .

# Port expose St)
EXPOSE 3000

# Start command
CMD ["npm", "start"]
```

2. Docker Image Build કરો:

```
# Dockerfile માંથી image build Sti
docker build -t my-web-app:latest .
# Images list Sti
docker images
```

3. Docker Container Run કરો:

```
# Port mapping સાથે container run કરો

docker run -d -p 8080:3000 --name web-app my-web-app:latest

# Running containers check કરો

docker ps
```

4. Container Management:

Command	હેતુ	ઉદાહરણ
docker ps	Running containers list કरवा	docker ps -a
docker stop	Container stop sरवा	docker stop web-app
docker start	Stopped container start કरवा	docker start web-app
docker logs	Container logs	docker logs web-app
docker exec	Container માં command execute કરવા	docker exec -it web-app /bin/sh

Container ફાયદાઓ:

- **Portability**: Docker install થયેલ કોઈપણ જગ્યાએ run થાય છે
- **Consistency**: Development/production વચ્ચે સમાન environment
- Isolation: Applications સ્વતંત્ર રીતે run થાય છે
- **Efficiency**: OS kernel share કરે છે, VMs કરતાં lightweight
- Scalability: Orchestration સાથે સરળ horizontal scaling

Docker vs VM तुलनाः

Docker Containers	Virtual Machines
++ App A App B Runtime Runtime +	++ App A App B OS A OS B +
Docker Engine	Hypervisor
++	++
Host OS	Host OS
++	++
Hardware	Hardware
++	++

સામાન્ય Docker Commands:

- Image Management: docker pull, docker push, docker rmi
- Container Operations: docker create, docker kill, docker rm
- System Info: docker info, docker version, docker system df

ઉદાહરણ ઉપયોગ:

Node.js backend સાથેનું web application containerize કરી શકાય છે જેથી development, testing અને production environments વચ્ચે સતત deployment સુનિશ્ચિત થાય છે, "works on my machine" સમસ્યાઓને દૂર કરે છે.

Container Orchestration:

Production deployments માટે, orchestration tools નો ઉપયોગ કરો:

- **Kubernetes**: Advanced container orchestration
- Docker Swarm: Native Docker clustering
- Amazon ECS: AWS container service

મેમરી ટ્રીક: "Create Build Run Manage - Dockerfile Commands Lifecycle"