

IIC2413 2018-2 Bases de Datos

Ayudantía 1

Ayudantes: Isidora Vizcaya (isvizcaya@uc.cl), Romano Fenzo (rfenzo@uc.cl), Martín Alamos (malamos2@uc.cl), Thomas Reisenegger (treisenegger@uc.cl), Antonio Ossa (aaossa@uc.cl)

Recordando operadores

Proyección: $\pi_{a_i,...,a_n}(R)$

Selección: $\sigma_{cond}(R)$ $(<,>,\leq,\geq,=,\neq,\land,\lor)$

Join: $R_1 \bowtie_{cond} R_2 = \sigma_{cond}(R_1 \times R_2)$

Unión: $R_1 \cup R_2$

Diferencia: $R_1 - R_2$

Renombrar: $\rho(R^*(a_1 \to a_1^*), R)$

Problema 1

Queremos definir dentro de los operadores de álgebra relacional, el operador división de tablas: A/B. Este operador trabaja sobre relaciones de la siguiente forma:

A/B

Si A tiene atributos x e y y B es una relación unaria que sólo tiene el atributo y, entonces A/B contiene todos los valores x tal que para todo y en B, existe (x,y) en A.

Ejemplo:

A	\boldsymbol{x}	y
	a	1
	b	2
	c	3
	b	4
	a	2

B	y
	2
	4

- L / P	
A/B	x
	b

- a) ¿Cumple el operador con ser monótono?
- b) Defina el operador usando los operadores relacionales $(\pi, \sigma, \cup, \bowtie, \times)$ (puede agregar el operador "-" si es que no cumple con ser monótono)

Problema 2

Se tiene el siguiente esquema e instancia de éste de una base de datos:

- Productos(pid, descripcion, tipo, precio)
- Clientes(cid, nombre, edad)
- Pedidos(oid, cid, pid, cantidad, fecha_pedido)

Productos	pid	descripcion	tipo	precio	Clientes	cid	nombre	edad
	1	Surface Pro 4	Electronicos	1.000.000		1	Thomas	15
	2	Pack Poleras Chinas	Vestuario	32.000		2	Romano	21
	3	Set 6 Vasos	Hogar	6.000		3	Isidora	22
	4	iPad Pro	Electronicos	600.000		4	Martin	22
	5	Carcasa iPhone China	Accesorios	5.000		5	Antonio	23

Pedidos	oid	cid	pid	cantidad	${\tt fecha_pedido}$
	1	2	1	1	10/06/2016
	2	1	4	1	27/07/2016
	3	4	3	2	31/12/2015
	4	4	3	3	31/12/2015
	5	3	5	1	15/03/2016
	6	3	2	1	16/03/2016
	7	4	3	10	01/01/2016

- 1. Cargar la base de datos amazing.db
- 2. Crear la tabla Clientes (puedes ver que las tablas Productos y Pedidos están listas)
- 3. Poblar la tabla Clientes con 5 tuplas
- 4. Escribir las siguientes consultas trabajadas en la actividad en SQL:

Consultas

- a) Encuentre los nombres de los clientes que pidieron el iPad Pro.
- b) Encuentre la edad de los clientes que pidieron algo de Accesorios en marzo del 2016.
- c) Encuentre los nombres y la edad de los clientes que pidieron algo de Electronicos o Vestuario.
- d) Encuentre la descripción de los productos con precio menor a 10.000 que fueron pedidos con cantidad mayor a 1 en un pedido, junto con la fecha de éste.