

TRABAJO FIN DE GRADO INGENIERÍA INFORMÁTICA

pyMIL-BNF

Multiple Instance Learning Bag Noise Filters library in Python

Autor

Juan Carlos Orte Cardona

Director

Julián Luengo Martín

FACULTAD DE ECONOMÍA, EDUCACIÓN Y TECNOLOGÍA DE CEUTA

Ceuta, 1 de julio de 2019

pyMIL-BNF

 $\begin{array}{c} \text{Multiple Instance Learning Bag Noise Filters library in} \\ \text{Python} \end{array}$

https://github.com/jcarlosorte/TFG

Autor Juan Carlos Orte Cardona

Director Julián Luengo Martín

Título del Proyecto: Multiple Instance Learning Bag Noise Filters library in Python

Juan Carlos Orte Cardona

Palabras clave: Multiple Instance Learning, MIL, Machine Learning, Data Science, Data Mining, Noisy Filter, attribute noise, class noise.

Resumen

El auge de las técnicas de visión artificial en nuestros días está potenciando las técnicas de Ciencia de Datos relacionadas con la clasificación de objetos. Uno de los paradigmas más influyentes en la clasificación de objetos es el Multiple Instance Learning (MIL), donde se dispone de diferentes representaciones para un mismo objeto.

Sin embargo, la clasificación de objetos en MIL presenta desafíos hoy día, puesto que la identificación de objetos no es exacta y pueden recogerse representaciones erróneas (ruidosas) o incluso etiquetas incorrectas. En sistemas críticos como conducción autónoma, reconocimientos biométricos y otros, estos errores pueden ser catastróficos.

En este TFG se plantea el desarrollo de una biblioteca de técnicas de limpieza de ruido para MIL escrita en Python. No existen propuestas de esta naturaleza aún en la literatura especializada, por lo que este TFG incluye una vertiente de investigación.

Project Title: Multiple Instance Learning Bag Noise Filters library in Python

Juan Carlos Orte Cardona

Keywords: Multiple Instance Learning, MIL, Machine Learning, Data Science, Data Mining, Noisy Filter, attribute noise, class noise.

Abstract

The rise of artificial vision techniques in our days is enhancing the techniques of Data Science related to the classification of objects. One of the most influential paradigms in the objects classification is the Multiple Instance Learning (MIL), where different representations are available for the same object.

However, the classification of MIL objects presents challenges today, since the identification of objects is not exact and erroneous representations (noisy) or even incorrect labels can be collected. In critical systems such as autonomous driving, biometric surveys and others, these errors can be catastrophic.

In this project (TFG) the development of a library of noise cleaning techniques for MIL written in Python is proposed. There are no proposals of this nature even in the specialized literature, so this project (TFG) includes a research aspect.

Yo, Juan Carlos Orte Cardona, alumno de la titulación de Ingeniería Informática de la Facultad de Economía, Educación y Tecnología de Ceuta, con DNI 75135406-H, autorizo la ubicación de la siguiente copia de mi Trabajo Fin de Grado en la biblioteca del centro para que pueda ser consultada por las personas que lo deseen. Fdo: Juan Carlos Orte Cardona Ceuta a 1 de julio de 2019. D. **Julián Luengo Martín**, Profesor del Área de Ingeniería Informática del Departamento de de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada.

Informan:

Que el presente trabajo, titulado *pyMIL-BNF*, *Multiple Instance Learning Bag Noise Filters library in Python*, ha sido realizado bajo su supervisión por **Juan Carlos Orte Cardona**, y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Ceuta a 1 de julio de 2019.

El director:

Julián Luengo Martín

Agradecimientos

Al igual que un algoritmo de aprendizaje, las personas somos un cúmulo de experiencias que nos entrenan a medida que crecemos, unas aportan ruido y pueden ser filtradas y otras hacen que mejores en tu evaluación. Si has sido alguna vez una instancia que ayudó al entrenamiento de mi algoritmo, sea cual sea tu etiqueta, GRACIAS!.

Índice general

1.	Intr	oducción 1
	1.1.	Introducción
	1.2.	Definición del Problema
	1.3.	Objetivos
	1.4.	Motivación
	1.5.	Organización del documento
2.	Pla	nificación 5
	2.1.	Gestión Temporal del Proyecto
		2.1.1. Estructura de descomposición del trabajo
		2.1.2. Comparativa
	2.2.	Gestión de comunicaciones
	2.3.	Gestión de costes
	2.4.	Gestión de costes
3.	Ant	ecedentes 11
	3.1.	Ciencia de Datos
	3.2.	Minería de Datos
		3.2.1. Machine Learning
		3.2.2. Validación
		3.2.3. Medidas de evaluación
	3.3.	Aprendizaje Supervisado: Multiple-Instace Learning 17
	3.4.	Pre-procesamiento de Datos
		3.4.1. Tratamiento de Ruido
		3.4.2. Tipos de Ruido
		3.4.3. Filtrado de Ruido en Clases 20
4.	Mai	rco Tecnológico 22
	4.1.	Herramientas para la gestión del proyecto
		4.1.1. GitHub
		4.1.2. GitHub Desktop
		4.1.3. Hercules
		4.1.4. PuTTv

		4.1.5.	FileZilla	4
	4.2.	Herran	nientas para modelado del proyecto 2	25
		4.2.1.	yEd graph editor	25
	4.3.	Herran	nientas para desarrollo del proyecto 2	25
		4.3.1.	Anaconda Navigator	25
		4.3.2.	Python	25
			4.3.2.1. Justificación	25
				27
	4.4.	Herran		29
		4.4.1.	1 0	29
				29
				29
				80
		4.4.2.		31
				31
				32
			9	3
			3 / 1	5
				6
				37
	4.5.	Herran		37
		4.5.1.		37
		4.5.2.		37
5 .	pyN		F: Filtros de Ruido de Clase para MIL 3	
	5.1.		1	89
		5.1.1.	1 0	0
		5.1.2.	Análisis de requisitos	
		5.1.3.		2
		5.1.4.	1 1	2
	5.2.	Diseño	10	4
		5.2.1.	1	15
		5.2.2.	•	15
		5.2.3.		6
		5.2.4.		6
		5.2.5.	1	8
		5.2.6.	• 0	8
		5.2.7.	±	0
				0
				0
				0
				0
		5.2.8.	· ·	1
			5.2.8.1 MIL-EF 5	1

,			
IND	ICE	GENERAL	٠,

			5.2.8.2.	MIL-CVCF	. 52
			5.2.8.3.	$\label{eq:mil-ipf} \text{MIL-IPF} \ \dots \dots \dots \dots \dots \dots \dots \dots$. 53
	5.3.	Implen	nentación		. 54
6.	Esti	ıdio E	xperimer	ntal	55
	6.1.		Experime		. 56
		6.1.1.	-	dores MILpy	
			6.1.1.1.	Parámetros	
			6.1.1.2.	Medida de Evaluación	
		6.1.2.	Filtros p	yMIL-BNF	. 57
			6.1.2.1.	Parámetros	. 57
		6.1.3.			
	6.2.	Result	ados Expe	erimentales	. 58
		6.2.1.	Tablas R	esumen y análisis	. 59
			6.2.1.1.	Clasificador SimpleMIL-max	
			6.2.1.2.	Clasificador SimpleMIL-min	. 60
			6.2.1.3.	Clasificador SimpleMIL-extreme	. 61
			6.2.1.4.	Clasificador BOW	. 62
			6.2.1.5.	Clasificador CKNN	. 63
			6.2.1.6.	Clasificador maxDD	. 64
			6.2.1.7.	Clasificador EMDD	. 65
			6.2.1.8.	Clasificador MILBoost	. 66
7.	Con	clusion	nes		67
• •	7.1.				
	7.2.			ıdio	
	7.3.			los objetivos	
	7.4.			8	
	7.5.			didas y conclusiones personales	
ъ.		C.			70
Вı	_	rafía ·			73
	Reie	rencias			. 73
Ar	exos	8			77
Α.	Mar	nual de	Usuario		78
	A.1.	Librerí	ía pyMIL-	BNF	. 80
				pyMIL-BNF	
В.	Cód	igo Fu	ente de i	pyMIL-BNF	85
		_		pyMIL-BNF	
				`	
				$^{\prime}\mathrm{CF}$	
				F	

iii

C.	Resu	ıltados	3															120
	C.1.	Musk 1																121
	C.2.	Mutage	enesis	2 .														135
	C.3.	Tiger .																149
	C.4.	Fox																163
	C.5.	Elepha	nt															177
D.	Tabl	as Det	allad	as														192
	D.1.	Ruido	0%.															193
	D.2.	Ruido .	5% .															195
	D.3.	Ruido	10%															197
	D.4.	Ruido	15%															200
	D.5.	Ruido :	20%															202
	D.6.	Ruido :	25%															204
	D 7	Ruido	30 %															207

Índice de Figuras

1.1.	Paradigma Gargabe in-Garbage out
2.1.	Planificación Original
2.2.	Planificación Real
2.3.	Estructura de descomposición del trabajo
2.4.	Tiempo de ejecución en Hercules $\dots \dots \dots$
3.1.	KDD
3.2.	Pipe and Filter
3.3.	Preparación de Datos
3.4.	Pasos en Machine Learning
3.5.	k-fold
3.6.	Curva ROC
3.7.	AUC
3.8.	MIL
3.9.	Pre-procesamiento de Datos
3.10.	Tipos de Ruido
4.1.	Código QR GitHub
4.2.	Colas en Hercules
4.3.	Lenguajes de programación
4.4.	Encuesta KDnuggets
4.5.	Bibliotecas Python
4.6.	Gráfico de dispersión de Musk 1
4.7.	Gráfico de dispersión de Musk 2
4.8.	Gráfico de dispersión de Mutagenesis Easy
4.9.	Gráfico de dispersión de Mutagenesis Hard
4.10.	Gráfico de dispersión de Tiger
	Gráfico de dispersión de Fox
	Gráfico de dispersión de Elephant
	Gráfico de dispersión de Corel African
	Gráfico de dispersión de Brids BrCr
	Gráfico de dispersión de Brids WiWr
	Gráfico de dispersión de Gaussian-MI

5.1.	Bolsa de Datos	39
5.2.	Pipe and Filter de pyMIL-BNF	40
5.3.	Esquema Filtro MIL	41
5.4.	Esquema Clasificador MIL	43
5.5.	Filtro MIL	44
5.6.	Esquema Grupos Funcionales	45
5.7.	Diagrama de Casos de Uso	47
5.8.	Diagrama flujo de procesos	49
5.9.	Diagrama flujo MIL-EF	51
5.10.	Diagrama flujo MIL-CVCF	52
5.11.	Diagrama flujo MIL-IPF	53
5.12.	Interfaz Gráfica para pyMIL-BNF	54
A.1.	Ejemplo consola Python	82
A.2.	Inicio Interfaz gráfica pyMIL-BNF	82
A.3.	Interfaz parámetros Filtros	83
A 4	Interfaz con predicción	84

Índice de Tablas

2.1.	Comparación de Timelines
2.2.	Marco de costos del proyecto $\dots \dots \dots$
2.3.	Gestión de Riesgos de py MIL-BNF
4.1.	Clasificadores MIL
4.2.	Dataset MILpy
5.1.	Esquemas de Filtrado
5.2.	Requisitos Funcionales
5.3.	Roles en Casos de Uso
5.4.	Dependencia de los Casos de Uso
6.1.	Parámetros Clasificadores MIL
6.2.	Parámetros Filtros pyMIL-BNF
6.3.	Clasificadores usados por cada filtro
6.4.	Dataset usados en estudio
6.5.	Tabla Resumen Clasificador SimpleMIL-max 59
6.6.	Tabla Resumen Clasificador SimpleMIL-min 60
6.7.	Tabla Resumen Clasificador SimpleMIL-extreme 61
6.8.	Tabla Resumen Clasificador BOW 62
6.9.	Tabla Resumen Clasificador CKNN
6.10.	Tabla Resumen Clasificador maxDD 64
6.11.	Tabla Resumen Clasificador EMDD
6.12.	Tabla Resumen Clasificador MILBoost
7.1.	Tabla Resumen Completa
7.2.	Consecución de Objetivos
C.1.	Precisión MIL-EF Musk 1, Consenso, Ruido 0 % 121
C.2.	Precisión MIL-EF Musk 1, Max Votos, Ruido 0 % 122
C.3.	Precisión MIL-EF Musk 1, Consenso, Ruido 5 % 122
C.4.	Precisión MIL-EF Musk 1, Max Votos, Ruido 5 % 122
	Precisión MIL-EF Musk 1, Consenso, Ruido 10% 123
C.6.	Precisión MIL-EF Musk 1, Max Votos, Ruido 10 % 123

C.7. Precisión MIL-EF Musk 1, Consenso, Ruido 15 % 123
C.8. Precisión MIL-EF Musk 1, Max Votos, Ruido 15% 124
C.9. Precisión MIL-EF Musk 1, Consenso, Ruido 20% 124
C.10. Precisión MIL-EF Musk 1, Max Votos, Ruido 20% 124
C.11. Precisión MIL-EF Musk 1, Consenso, Ruido 25% 125
C.12. Precisión MIL-EF Musk 1, Max Votos, Ruido 25% 125
C.13. Precisión MIL-EF Musk 1, Consenso, Ruido 30 $\%$ 125
C.14. Precisión MIL-EF Musk 1, Max Votos, Ruido 30% 126
C.15. Precisión MIL-CVCF Musk 1, Consenso, Ruido 0 $\%$ 126
C.16. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 0% 126
C.17. Precisión MIL-CVCF Musk 1, Consenso, Ruido 5 $\%$ 127
C.18. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 5 $\%$ 127
C.19. Precisión MIL-CVCF Musk 1, Consenso, Ruido 10 $\%$ 127
C.20. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 10 $\%$ 128
C.21. Precisión MIL-CVCF Musk 1, Consenso, Ruido 15 $\%$ 128
C.22. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 15% 128
C.23. Precisión MIL-CVCF Musk 1, Consenso, Ruido 20% 129
C.24. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 20% 129
C.25. Precisión MIL-CVCF Musk 1, Consenso, Ruido 25% 129
C.26. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 25% 130
C.27. Precisión MIL-CVCF Musk 1, Consenso, Ruido 30% 130
C.28. Precisión MIL-CVCF Musk 1, Max Votos, Ruido 30% 130
C.29. Precisión MIL-IPF Musk 1, Consenso, Ruido 0% 131
C.30. Precisión MIL-IPF Musk 1, Max Votos, Ruido 0% 131
C.31. Precisión MIL-IPF Musk 1, Consenso, Ruido 5 $\%$ 131
C.32. Precisión MIL-IPF Musk 1, Max Votos, Ruido 5% 132
C.33. Precisión MIL-IPF Musk 1, Consenso, Ruido 10 $\%$ 132
C.34. Precisión MIL-IPF Musk 1, Max Votos, Ruido 10 $\%$
C.35. Precisión MIL-IPF Musk 1, Consenso, Ruido 15 $\%$ 133
C.36. Precisión MIL-IPF Musk 1, Max Votos, Ruido 15 $\%$ 133
C.37. Precisión MIL-IPF Musk 1, Consenso, Ruido 20% 133
C.38. Precisión MIL-IPF Musk 1, Max Votos, Ruido 20% 134
C.39. Precisión MIL-IPF Musk 1, Consenso, Ruido 25% 134
C.40. Precisión MIL-IPF Musk 1, Max Votos, Ruido 25% . 134
C.41. Precisión MIL-IPF Musk 1, Consenso, Ruido 30 $\%$ 135
C.42. Precisión MIL-IPF Musk 1, Max Votos, Ruido 30 $\%$ 135
C.43. Precisión MIL-EF Muta 2, Consenso, Ruido 0 $\%$ 135
C.44. Precisión MIL-EF Muta 2, Max Votos, Ruido 0 $\%$ 136
C.45. Precisión MIL-EF Muta 2, Consenso, Ruido 5 % 136
C.46.Precisión MIL-EF Muta 2, Max Votos, Ruido 5 % 136
C.47. Precisión MIL-EF Muta 2, Consenso, Ruido 10 % 137
C.48. Precisión MIL-EF Muta 2, Max Votos, Ruido 10% 137
C.49. Precisión MIL-EF Muta 2, Consenso, Ruido 15 % 137
C 50 Precisión MII_EE Muta 2 May Votos Ruido 15 % 138

C.51. Precisión MIL-EF Muta 2, Consenso, Ruido 20%	138
C.52. Precisión MIL-EF Muta 2, Max Votos, Ruido 20%	
C.53. Precisión MIL-EF Muta 2, Consenso, Ruido 25%	139
C.54. Precisión MIL-EF Muta 2, Max Votos, Ruido 25%	139
C.55. Precisión MIL-EF Muta 2, Consenso, Ruido 30%	
C.56. Precisión MIL-EF Muta 2, Max Votos, Ruido 30 $\%$	
C.57. Precisión MIL-CVCF Muta 2, Consenso, Ruido 0%	140
C.58. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 0%	140
C.59. Precisión MIL-CVCF Muta 2, Consenso, Ruido 5%	141
C.60. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 5%	141
C.61. Precisión MIL-CVCF Muta 2, Consenso, Ruido 10%	141
C.62. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 10%	141
C.63. Precisión MIL-CVCF Muta 2, Consenso, Ruido 15 $\%$	142
C.64. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 15%	142
C.65. Precisión MIL-CVCF Muta 2, Consenso, Ruido 20%	142
C.66. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 20 $\%$	143
C.67. Precisión MIL-CVCF Muta 2, Consenso, Ruido 25%	143
C.68. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 25%	143
C.69. Precisión MIL-CVCF Muta 2, Consenso, Ruido 30%	144
C.70. Precisión MIL-CVCF Muta 2, Max Votos, Ruido 30%	144
C.71. Precisión MIL-IPF Muta 2, Consenso, Ruido 0 $\%$	144
C.72. Precisión MIL-IPF Muta 2, Max Votos, Ruido 0 $\%$	145
C.73. Precisión MIL-IPF Muta 2, Consenso, Ruido 5 $\%$	145
C.74. Precisión MIL-IPF Muta 2, Max Votos, Ruido 5 $\%$	
C.75. Precisión MIL-IPF Muta 2, Consenso, Ruido 10 $\%$	146
C.76. Precisión MIL-IPF Muta 2, Max Votos, Ruido 10 $\%$	146
C.77. Precisión MIL-IPF Muta 2, Consenso, Ruido 15 $\%$	146
C.78. Precisión MIL-IPF Muta 2, Max Votos, Ruido 15 $\%$	147
C.79. Precisión MIL-IPF Muta 2, Consenso, Ruido 20 $\%$	147
C.80. Precisión MIL-IPF Muta 2, Max Votos, Ruido 20 $\%$	
C.81. Precisión MIL-IPF Muta 2, Consenso, Ruido 25%	148
C.82. Precisión MIL-IPF Muta 2, Max Votos, Ruido 25 $\%$	148
C.83. Precisión MIL-IPF Muta 2, Consenso, Ruido 30 $\%$	
C.84. Precisión MIL-IPF Muta 2, Max Votos, Ruido 30 $\%$	149
C.85. Precisión MIL-EF Tiger, Consenso, Ruido 0%	149
C.86. Precisión MIL-EF Tiger, Max Votos, Ruido 0%	149
C.87. Precisión MIL-EF Tiger, Consenso, Ruido 5%	150
C.88. Precisión MIL-EF Tiger, Max Votos, Ruido 5%	150
C.89. Precisión MIL-EF Tiger, Consenso, Ruido 10 $\%$	150
C.90. Precisión MIL-EF Tiger, Max Votos, Ruido 10 $\%$	151
C.91. Precisión MIL-EF Tiger, Consenso, Ruido 15 $\%$	151
C.92. Precisión MIL-EF Tiger, Max Votos, Ruido 15 $\%$	151
C.93. Precisión MIL-EF Tiger, Consenso, Ruido 20 $\%$	152
C.94. Precisión MIL-EF Tiger, Max Votos, Ruido 20%	152

C.95. Precisión MIL-EF Tiger, Consenso, Ruido 25%	52
C.96. Precisión MIL-EF Tiger, Max Votos, Ruido 25%	.53
C.97. Precisión MIL-EF Tiger, Consenso, Ruido 30 $\%$.53
C.98. Precisión MIL-EF Tiger, Max Votos, Ruido 30 $\%$.53
C.99. Precisión MIL-CVCF Tiger, Consenso, Ruido 0%	
C.100 Precisión MIL-CVCF Tiger, Max Votos, Ruido 0% 1	54
C.101 Precisión MIL-CVCF Tiger, Consenso, Ruido 5 $\%$ 1	54
C.102 Precisión MIL-CVCF Tiger, Max Votos, Ruido 5 $\%$ 1	55
C.103 Precisión MIL-CVCF Tiger, Consenso, Ruido 10% 1	
C.104 Precisión MIL-CVCF Tiger, Max Votos, Ruido 10 $\%$ 1	.55
C.105 Precisión MIL-CVCF Tiger, Consenso, Ruido 15 $\%$ 1	56
C.106 Precisión MIL-CVCF Tiger, Max Votos, Ruido 15 $\%$ 1	
C.107Precisión MIL-CVCF Tiger, Consenso, Ruido 20 % 1	
C.10&Precisión MIL-CVCF Tiger, Max Votos, Ruido 20 $\%$ 1	57
C.109 Precisión MIL-CVCF Tiger, Consenso, Ruido 25% 1	
C.11@Precisión MIL-CVCF Tiger, Max Votos, Ruido 25% 1	
C.111Precisión MIL-CVCF Tiger, Consenso, Ruido 30 % 1	
C.112Precisión MIL-CVCF Tiger, Max Votos, Ruido 30 % 1	
C.113Precisión MIL-IPF Tiger, Consenso, Ruido 0 %	
C.114 Precisión MIL-IPF Tiger, Max Votos, Ruido 0% 1	
C.115Precisión MIL-IPF Tiger, Consenso, Ruido 5 %	
C.116 Precisión MIL-IPF Tiger, Max Votos, Ruido 5 $\%$.59
C.117Precisión MIL-IPF Tiger, Consenso, Ruido 10 % 1	
C.11&Precisión MIL-IPF Tiger, Max Votos, Ruido 10 % 1	
C.119Precisión MIL-IPF Tiger, Consenso, Ruido 15 % 1	
C.120 Precisión MIL-IPF Tiger, Max Votos, Ruido 15 $\%$ 1	
C.121 Precisión MIL-IPF Tiger, Consenso, Ruido 20 $\%$	
C.122Precisión MIL-IPF Tiger, Max Votos, Ruido 20 % 1	
C.123Precisión MIL-IPF Tiger, Consenso, Ruido 25 % 1	
C.124 Precisión MIL-IPF Tiger, Max Votos, Ruido 25% 1	
C.125 Precisión MIL-IPF Tiger, Consenso, Ruido 30 $\%$	
C.126 Precisión MIL-IPF Tiger, Max Votos, Ruido 30%	
C.127Precisión MIL-EF Fox, Consenso, Ruido 0 %	
C.128Precisión MIL-EF Fox, Max Votos, Ruido 0 %	63
C.129Precisión MIL-EF Fox, Consenso, Ruido 5 %	
C.130Precisión MIL-EF Fox, Max Votos, Ruido 5 %	64
C.131 Precisión MIL-EF Fox, Consenso, Ruido 10%	
C.132Precisión MIL-EF Fox, Max Votos, Ruido 10 % 1	65
C.133 Precisión MIL-EF Fox, Consenso, Ruido 15 $\%$	65
C.134 Precisión MIL-EF Fox, Max Votos, Ruido 15 $\%$	
C.135 Precisión MIL-EF Fox, Consenso, Ruido 20%	
C.136Precisión MIL-EF Fox, Max Votos, Ruido 20 %	
C.137Precisión MIL-EF Fox, Consenso, Ruido 25 %	
, ,	67

C.139Precisión MIL-EF Fox, Consenso, Ruido 30% 167
C.14@Precisión MIL-EF Fox, Max Votos, Ruido 30 % 167
C.141Precisión MIL-CVCF Fox, Consenso, Ruido 0 % 168
C.142 Precisión MIL-CVCF Fox, Max Votos, Ruido 0 $\%$ 168
C.143Precisión MIL-CVCF Fox, Consenso, Ruido 5 % 168
C.144Precisión MIL-CVCF Fox, Max Votos, Ruido 5 % 169
C.145Precisión MIL-CVCF Fox, Consenso, Ruido 10 % 169
C.146 Precisión MIL-CVCF Fox, Max Votos, Ruido 10 $\%$ 169
C.147 Precisión MIL-CVCF Fox, Consenso, Ruido 15 $\%$ 170
C.14& Precisión MIL-CVCF Fox, Max Votos, Ruido 15 $\%$ 170
C.149 Precisión MIL-CVCF Fox, Consenso, Ruido 20% 170
C.150 Precisión MIL-CVCF Fox, Max Votos, Ruido 20% 171
C.151 Precisión MIL-CVCF Fox, Consenso, Ruido 25% 171
C.152 Precisión MIL-CVCF Fox, Max Votos, Ruido 25% 171
C.153 Precisión MIL-CVCF Fox, Consenso, Ruido 30 $\%$ 172
C.154 Precisión MIL-CVCF Fox, Max Votos, Ruido 30 $\%$ 172
C.155 Precisión MIL-IPF Fox, Consenso, Ruido 0% 172
C.156 Precisión MIL-IPF Fox, Max Votos, Ruido 0 $\%$ 173
C.157 Precisión MIL-IPF Fox, Consenso, Ruido 5 $\%$ 173
C.15& Precisión MIL-IPF Fox, Max Votos, Ruido 5% 173
C.15 Precisión MIL-IPF Fox, Consenso, Ruido 10% 174
C.160 Precisión MIL-IPF Fox, Max Votos, Ruido 10 % 174
C.161 Precisión MIL-IPF Fox, Consenso, Ruido 15 $\%$ 174
C.162 Precisión MIL-IPF Fox, Max Votos, Ruido 15% 175
C.163 Precisión MIL-IPF Fox, Consenso, Ruido 20% 175
C.164 Precisión MIL-IPF Fox, Max Votos, Ruido 20% 175
C.165 Precisión MIL-IPF Fox, Consenso, Ruido 25% 176
C.166 Precisión MIL-IPF Fox, Max Votos, Ruido 25% 176
C.167 Precisión MIL-IPF Fox, Consenso, Ruido 30% 176
C.16& Precisión MIL-IPF Fox, Max Votos, Ruido 30% 177
C.16 Precisión MIL-EF Elephant, Consenso, Ruido 0 $\%$ 177
C.170 Precisión MIL-EF Max Votos, Consenso, Ruido 0% 177
C.171 Precisión MIL-EF Elephant, Consenso, Ruido 5 $\%$ 178
C.172 Precisión MIL-EF Max Votos, Consenso, Ruido 5 $\%$ 178
C.173 Precisión MIL-EF Elephant, Consenso, Ruido 10 $\%$ 178
C.174 Precisión MIL-EF Max Votos, Consenso, Ruido 10 $\%$ 179
C.175 Precisión MIL-EF Elephant, Consenso, Ruido 15 $\%$ 179
C.176 Precisión MIL-EF Max Votos, Consenso, Ruido 15 $\%$ 179
C.177 Precisión MIL-EF Elephant, Consenso, Ruido 20% 180
C.17& Precisión MIL-EF Max Votos, Consenso, Ruido 20% 180
C.179 Precisión MIL-EF Elephant, Consenso, Ruido 25% 180
C.180 Precisión MIL-EF Max Votos, Consenso, Ruido 25% 181
C.181 Precisión MIL-EF Elephant, Consenso, Ruido 30% 181
C.182 Precisión MIL-EF Max Votos, Consenso, Ruido 30 $\%$ 181

C.183Precisión MIL-CVCF Elephant, Consenso, Ruido 0 % 182
C.184 Precisión MIL-CVCF Elephant, Max Votos, Ruido 0% 182
C.185 Precisión MIL-CVCF Elephant, Consenso, Ruido 5% 182
C.186 Precisión MIL-CVCF Elephant, Max Votos, Ruido 5 $\%$ 183
C.187Precisión MIL-CVCF Elephant, Consenso, Ruido 10 % 183
C.188 Precisión MIL-CVCF Elephant, Max Votos, Ruido 10 $\%$ 183
C.189Precisión MIL-CVCF Elephant, Consenso, Ruido 15 % 184
C.190 Precisión MIL-CVCF Elephant, Max Votos, Ruido 15 $\%$ 184
C.191 Precisión MIL-CVCF Elephant, Consenso, Ruido 20% 184
C.192 Precisión MIL-CVCF Elephant, Max Votos, Ruido 20% 185
C.193 Precisión MIL-CVCF Elephant, Consenso, Ruido 25% 185
C.194 Precisión MIL-CVCF Elephant, Max Votos, Ruido 25% 185
C.195 Precisión MIL-CVCF Elephant, Consenso, Ruido 30% 186
C.196 Precisión MIL-CVCF Elephant, Max Votos, Ruido 30% 186
C.197 Precisión MIL-IPF Elephant, Consenso, Ruido 0% 186
C.198 Precisión MIL-IPF Elephant, Max Votos, Ruido 0% 187
C.199 Precisión MIL-IPF Elephant, Consenso, Ruido 5 $\%$ 187
C.200 Precisión MIL-IPF Elephant, Max Votos, Ruido 5 $\%$ 187
C.201 Precisión MIL-IPF Elephant, Consenso, Ruido 10 $\%$ 188
C.202 Precisión MIL-IPF Elephant, Max Votos, Ruido 10 $\%$ 188
C.203 Precisión MIL-IPF Elephant, Consenso, Ruido 15 $\%$ 188
C.204 Precisión MIL-IPF Elephant, Max Votos, Ruido 15% 189
C.205 Precisión MIL-IPF Elephant, Consenso, Ruido 20% 189
C.206 Precisión MIL-IPF Elephant, Max Votos, Ruido 20% 189
C.207 Precisión MIL-IPF Elephant, Consenso, Ruido 25% 190
C.208 Precisión MIL-IPF Elephant, Max Votos, Ruido 25% 190
C.209 Precisión MIL-IPF Elephant, Consenso, Ruido 30 $\%$ 190
C.210 Precisión MIL-IPF Elephant, Max Votos, Ruido 30% 191
D.1. Detalles Ruido 0 MIL max
D.2. Detalles Ruido 0 MIL MIN
D.3. Detalles Ruido 0 MIL EXTREME
D.4. Detalles Ruido 0 BOW
D.5. Detalles Ruido 0 CKNN
D.6. Detalles Ruido 0 MAXDD
D.7. Detalles Ruido 0 EMDD
D.8. Detalles Ruido 0 BOOST
D.9. Detalles Ruido 5 MIL MAX
D.10.Detalles Ruido 5 MIL MIN
D.11.Detalles Ruido 5 MIL EXTREME
D.12 Detalles Ruido 5 BOW
D.13.Detalles Ruido 5 CKNN
D.14.Detalles Ruido 5 MAADD

D.16.Detalles Ruido 5 BOOST
D.17.Detalles Ruido 10 MIL MAX
D.18.Detalles Ruido 10 MIL MIN
D.19.Detalles Ruido 10 MIL EXTREME
D.20.Detalles Ruido 10 BOW
D.21.Detalles Ruido 10 CKNN
D.22.Detalles Ruido 10 MAXDD
D.23.Detalles Ruido 10 EMDD
D.24.Detalles Ruido 10 BOOST
D.25.Detalles Ruido 15 MIL MAX
D.26.Detalles Ruido 15 MIL MIN
D.27.Detalles Ruido 15 MIL EXTREME 200
D.28.Detalles Ruido 15 BOW
D.29.Detalles Ruido 15 CKNN
D.30.Detalles Ruido 15 MAXDD
D.31.Detalles Ruido 15 EMDD
D.32.Detalles Ruido 15 BOOST
D.33.Detalles Ruido 20 MIL MAX
D.34.Detalles Ruido 20 MIL MIN
D.35.Detalles Ruido 20 MIL EXTREME 203
D.36.Detalles Ruido 20 BOW
D.37.Detalles Ruido 20 CKNN
D.38.Detalles Ruido 20 MAXDD
D.39.Detalles Ruido 20 EMDD
D.40.Detalles Ruido 20 BOOST
D.41.Detalles Ruido 25 MIL MAX
D.42.Detalles Ruido 25 MIL MIN
D.43.Detalles Ruido 25 MIL EXTREME 205
D.44.Detalles Ruido 25 BOW
D.45.Detalles Ruido 25 CKNN
D.46.Detalles Ruido 25 MAXDD
D.47.Detalles Ruido 25 EMDD
D.48.Detalles Ruido 25 BOOST
D.49.Detalles Ruido 30 MIL MAX
D.50.Detalles Ruido 30 MIL MIN
D.51.Detalles Ruido 30 MIL EXTREME
D.52.Detalles Ruido 30 BOW
D.53.Detalles Ruido 30 CKNN
D.54.Detalles Ruido 30 MAXDD
D.55.Detalles Ruido 30 EMDD
D.56.Detalles Ruido 30 BOOST

Capítulo 1

Introducción

1.1. Introducción

Las técnicas en Ciencia de Datos están evolucionando en los últimos años a un ritmo vertiginoso gracias a auge de la Inteligencia Artificial para la clasificación de objetos. Una variante para ello es Multiple-Instace Learning (MIL) que forma parte del grupo de aprendizaje supervisado para predecir datos a través de conjuntos de entrenamiento los cuales tienen diferentes representaciones de un mismo objeto. Uno de los problemas más significativos al que se enfrenta esta arquitectura es el ruido presente en estas bolsas de datos, en la detección de objetos puede comprometer el sistema a un estado crítico, supongamos como ejemplo que no se detecta una célula cancerígena porque una bolsa de datos estaba mal etiquetada. Es por ello que técnicas de detección y limpieza de ruido en las etiquetas de las bolsas es uno de los elementos necesarios para continuar mejorando la arquitectura MIL.

1.2. Definición del Problema

Con el auge de las técnicas de Ciencia de Datos basadas en la clasificación de objetos y la continua mejora de los algoritmos para ello, uno de los paradigmas que más están influenciando en este campo es Multiple-Instance Learning ya que su esquema en bolsas de datos permite tener diferentes instanciaciones de objetos en un mismo Dataset, estas grandes cantidades de información, al igual que en las clasificaciones simples, son susceptibles a ruido en los valores de los atributos o en las etiquetas de las clases, siendo estos unos puntos críticos a tratar en el pre-procesado de los datos para la mejora en las predicciones de los clasificadores. Estas técnicas de filtrado están extendidas para la clasificación simple pero cuando entramos en el modelo de Multiple-Instace Learning observamos que no existe ninguna técnica para ello desarrollada en toda la literatura especializada.

1.3. Objetivos

Poder desarrollar el TFG desde cero sin que existan propuestas del mismo campo será uno de los puntos fuertes de este trabajo de investigación y desarrollo que, junto al auge de Python en los ámbitos de Machine Learning y Data mining, pretende desarrollar una biblioteca de técnicas de filtrado de ruido en software libre.

El presente proyecto plantea el desarrollo de tres diferentes tipos de filtros de ruido para Multiple-Instace Learning (MIL) escrito en Python, para ello nos inspiraremos en los esquemas que se usan para los actuales paradigmas de clasificación simple como son Ensemble Filter (EF) (Brodley y Friedl,

Introducción 3

1999), Iterative Partitioning Filter (IPF) (Khoshgoftaar y Rebours, 2007) y Cross-Validated Committees Filter (CVCF) (Verbaeten y Assche, 2003), los cuales pretenden, mediante limpieza y etiquetado de las bolsas de datos, mejorar la precisión de los clasificadores. Estas herramientas se desarrollarán para el entorno de Python sin que exista soporte en su librería oficial de Ciencia de Datos, scikit-learn, para Multiple-Instace Learning,por eso no contaremos con Clasificadores con versiones estables para MIL, necesitando de un toolbox externo llamado MILpy (Arrieta y Mera, 2017).

1.4. Motivación

El desarrollo de este proyecto se originó en principio por la revolución digital que hay actualmente sobre Big Data, y tras hacer una pequeña investigación sobre el tema encontramos la arquitectura de Multiple-Instance Learning y la poca cobertura de librerías estables y oficiales que existe entorno a él. Además nos llamó la atención que teniendo esta poca cobertura tuviera aplicaciones muy importantes en bioquímica o en identificación de imágenes entre otras.

Gracias al conocimiento que adquirimos sobre pre-procesado de datos en el grado sabemos que esta área es muy importante para mejorar las evaluaciones de los clasificadores ya que esto evita tener resultados de poca calidad (Garbage) al igual que tener un buen modelo para entrenamiento, si alguna de las 2 áreas, datos o modelo es deficiente, el resultado también lo será, esto es el paradigma garbage in-garbage out, sólo datos de calidad pueden producir resultados de calidad, Figura 1.1, así que proseguimos esta línea de investigación para preparar el proyecto y no encontramos nada en la literatura científica especializada sobre técnicas de filtrado de ruido en modelos Multiple-Instance Learning.

Figura 1.1: Paradigma Gargabe in-Garbage ou

Esto hace que la relevancia de este TFG empiece porque no existen propuestas de este tipo en las lineas de investigación actuales ni futuras y plantea una oportunidad única de expandir este proyecto aun más.

Cabe destacar que el objetivo de este TFG es llevar a cabe un trabajo académico, con lo que no se pretende entrar en ningún mercado.

1.5. Organización del documento

El resto del presente documento se divide en los siguientes capítulos:

- Capítulo 2: Mostraremos los Timeline Original y Real del proyecto y el por qué de los cambios entre estos.
- Capítulo 3: Abordaremos toda la terminología referente al proyecto en materia de Ciencia de Datos para tener conocimiento suficiente para tratar con el trabajo desarrollado.
- Capítulo 4: Se presentan las herramientas usadas en el desarrollo del proyecto y su justificación.
- Capítulo 5: Se desarrollará el análisis y el diseño de los Filtros de ruido.
- Capítulo 6: Se presentan los parámetros de configuración del estudio para englobar el marco completo y las tablas resumen analizadas.
- Capítulo 7: Conclusiones finales sobre la información del capítulo anterior y las posibles vertientes futuras, así como una reflexión final.
- Anexo A: Manual de Usuario de pyMIL-BNC para librería e Interfaz gráfica.
- Anexo B: Código fuente en Python de cada esquema de filtro de pyMIL-BNC así como de la interfaz gráfica.
- Anexo C: Contiene todas las tablas de resultados obtenidos de las diferentes ejecuciones de los algoritmos.
- Anexo D: Contiene las tablas detalladas de los resultados.

Capítulo 2

Planificación

2.1. Gestión Temporal del Proyecto

La pretensión y el planteamiento de trabajo original se muestra en el diagrama de la Figura 2.1 que daban como resultado la entrega del proyecto en el mes de Mayo de 2019.

Figura 2.1: Diagrama de Gantt de la Planificación Original

Las tareas desarrolladas en el timeline se enumeran a continuación:

- 1. Aprendizaje Data Science.
- 2. Aprendizaje MIL.
- 3. Aprendizaje Python.
- 4. Búsqueda herramientas MIL para Python.
- 5. Diseño Filtros MIL.
- 6. Pruebas Filtros.
- 7. Ejecución clúster Hercules.
- 8. Recogida de Datos.
- 9. Análisis de Datos.

En el siguiente diagrama, Figura 2.2, vemos el timelime real que ha conllevado retrasos en la entrega y cambio en los periodos de las tareas.

Figura 2.2: Diagrama de Gantt de la Planificación Real

Planificación 7

2.1.1. Estructura de descomposición del trabajo

Para explicar los contratiempos surgidos durante el desarrollo del TFG que han llevado al cambio del timeline presentado en el punto anterior, nos apoyaremos en el EDT (Estructura de descomposición del trabajo) del proyecto que vemos en la Figura 2.3.

Figura 2.3: Estructura de descomposición del trabajo

La EDT del Proyecto es una descomposición jerárquica del este y nos muestra los trabajos (Leyenda Figura 2.3: productos de trabajo) que hay que realizar para finalizar el proyecto, a su vez estos trabajos los divide en componentes pequeños (Leyenda Figura 2.3: paquetes de trabajo). De forma que el primer nivel lo componen las tareas principales y son secuenciales para el desarrollo del proyecto y a partir de estos en el diagrama, si las tareas están al mismo nivel no tienen dependencia, y si son descendentes, dependerán de que el nodo padre se haya completado para iniciarse.

2.1.2. Comparativa

Por lo expuesto veremos que las tareas serán más críticas a medida que afecten a más paquetes de trabajo, en nuestro caso, casi todas las fases tienen tareas descendentes, por lo que podemos deducir que cuanto antes ocurra una adversidad, más crítica será la tarea.

A continuación enumeramos cada uno de estos puntos críticos y los paquetes de trabajo (PT) afectados:

- En los PT 1.1.1. y 1.1.2., encontramos que la mayoría de la información relevante en estas áreas estaban en Inglés, un idioma que no se domina como el propio y por eso la lectura y entendimiento sobre este área presentó el retraso.
- Para PT 1.2., Python aunque es un lenguaje sencillo de aprender y así fue, no lo es tanto para sus bibliotecas científicas, para lo que al igual que pasó anteriormente la información de sus librerías está en inglés y lo que provocó de nuevo un retraso en el proyecto.
- PT 2., fue la tarea que más retraso aplicó en la planificación, al no existir nada oficial y con versiones estables, se tuvo que afrontar esta fase a base de prueba y error con los proyectos que autores propios habían desarrollado hasta dar con algo que funcionara y encajara en nuestro propio desarrollo.
- PT 3.3. El último problema que vino derivado de estos retrasos fue que el tiempo que se debía de invertir en los estudios de los casos de uso de los filtros se vio drásticamente reducido, y por ende se tuvieron que recortar los dataset que se iban a utilizar, ya que la ejecución de alguna de las tareas llevaría más de 2 semanas como se ve en la Figura 2.4 y hay límite de ejecuciones simultáneas en Hercules.

```
14132_1 muylarga filtros0 jcorte R 16-20:53:05 1 node47
14132_3 muylarga filtros0 jcorte R 16-20:53:05 1 node47
14140_0 muylarga filtros0 jcorte R 16-20:48:00 1 node55
14140_1 muylarga filtros0 jcorte R 16-20:48:00 1 node55
14140_2 muylarga filtros0 jcorte R 16-20:48:00 1 node55
14148_1 muylarga filtros5 jcorte R 16-12:51:59 1 node52
```

Figura 2.4: Ejemplo de tiempo de ejecución de alguna de las tareas mandadas a Hercules

También cabe destacar que no todo han sido retrasos, el diseño y la implementación de los filtros en Python fue más rápida de lo esperado.

Planificación 9

En la Tabla 2.1 vemos una comparación de los tiempos y fechas para tener una visión más clara de los tiempos invertidos en las tareas y sus diferencias temporales.

Tabla 2.1:	Comparación	de los	tiempos	de los	Diagramas	de (Grantt
I (()) I (() 2 · I ·	Comparación	ac ios	UICIIIPOD	ac ios		uc v	OI WII U

PT	ORIGINAL			REAL			
гт	Fecha Inicio	Fecha Fin	Dias	Fecha Inicio	Fecha Fin	Dias	
1.1.1	1-sep-18	1-oct-18	30	1-sep-18	1-nov-18	61	
1.1.2	15-sep-18	1-oct-18	16	1-oct-18	1-nov-18	31	
1.2	1-oct-18	1-dic-18	61	15-oct-18	15-ene-19	92	
2	1-dic-18	1-ene-19	31	15-ene-19	15-abr-19	90	
3.1	1-ene-19	1-feb-19	31	15-abr-19	1-may-19	16	
3.2	1-feb-19	15-feb-19	14	1-may-19	20-may-19	19	
3.3	15-feb-19	15-may-19	89	21-may-19	25-jun-19	35	
4.1	15-may-19	25-may-19	10	15-jun-19	25-jun-19	10	
4.2	25-may-19	3-jun-19	9	25-jun-19	28-jun-19	3	

La tareas en rojo han aumentado el tiempo de ejecución de la tarea, en verde han disminuido y sin color no ha variado su tiempo, por consiguiente las fechas de inicio y finalización también varían.

2.2. Gestión de comunicaciones

Las comunicaciones entre el Tutor y el alumno del TGF para informar del estado del proyecto y resolución de errores, dudas o aclaraciones que han surgido durante el desarrollo de este, se han realizado mediante reuniones bajo petición por ambas partes, correo electrónico y vía telefónica. La comunicación ha sido constante y fluida durante todo el proyecto.

2.3. Gestión de costes

Los costes derivados del desarrollo del proyecto se representan en la siguiente Tabla 2.2.

Tabla 2.2: Marco de costos del proyecto

Concepto	Taea asociada	Precio	Canidad	Subtotal
Recursos Humanos	PT 2,3 y 4	20€/hora	1464 horas	29280€
Software	PT 2, 3 y 4	0	-	0
$Hardware\ Hercules$	PT 3.3	2,78€/hora	840 horas	2335,2€
Puesto de trabajo	PT 2, 3 y 4	0,8€/hora	1464 horas	1171,2€
TOTAL				32.786,4€

2.4. Gestión de costes

La gestión de riesgos se ha basado en utilizando las propuestas de (S., Cano, y Arán, 1997) para el desarrollo de un proyecto informático. Los posibles riesgos, ocurrencias e impacto en días se muestran en la Tabla 2.3.

Tabla 2.3: Gestión de Riesgos de pyMIL-BNF

Riesgo Riesgo	Probabilidad	Impacto en días
A. Elaboración de planificación		
A2. Planificación optimista < <mejor caso="">></mejor>	20 %	15
A3. La planificación no incluye tareas necesarias	10 %	5
A11. Un retraso en una tarea produce un retraso global en el proyecto	50%	1-20
B. Organización y gestión		
B2. El proyecto languidece demasiado el inicio difuso	5 %	1
C. Ambiente de desarrollo		
C.5. Las herramientas de desarrollo		
no funcionan como se esperaba; el personal	25%	10
de desarrollo necesita tiempo para resolverlo o adaptarse.		
C.7. La curva de aprendizaje para la nueva herramienta de desarrollo es más	- 0.04	
larga de lo esperado.	10%	2
D. Usuarios finales (No se aplica)		
E. Cliente (No se aplica)		
F. Personal contratado (No se aplica)		
G. Requisitos		
G.2. Los requisitos no se han definido correctamente	04	
y su redefinición aumenta el ámbito del proyecto.	10%	2
G.3. Se añaden requisitos extra	10%	5
H. Producto		
H.3. Utilizar lo último en informática alarga la	20.64	2
planificación de forma impredecible.	20%	2
I. Fuerzas mayores (No se aplica)		
J. Persona		
J.5. La falta de motivación y de moral reduce la produ	10.07	9
ctividad	10%	2
J.6. La falta de la especialización necesaria aumenta	10.07	0
los defectos y la necesidad de repetir el trabajo.	10%	3
J.7. El personal necesita un tiempo extra para	1007	0
acostumbrarse a trabajar con herramientas o entornos nuevos.	10%	2
K. Diseño e implementación		
K.4. La utilización de metodologías desconocidas deriva en		
un periodo extra de formación y tener que volver atrás para	40%	10
corregir los errores iniciales cometidos en la metodología.		
K.7. Las bibliotecas de código o clases tienen poca calidad,		
y generan una comprobación extra, corrección de errores	50%	10
y la repetición de algunos trabajos.		
K.9. Los componentes desarrollados por separado no se		
pueden integrar de forma sencilla, teniendo que volver	25%	5
a diseñar y repetir algunos trabajos.		
L. Proceso (No se aplica)		

Capítulo 3

Antecedentes

3.1. Ciencia de Datos

Para entender el ámbito del proyecto y situarnos en contexto antes de explicar el MIL es necesario saber todos los conceptos que involucra.

La Ciencia de Datos es una disciplina que abarca los campos de la Estadistica y Machine Learning entre otros, todos ellos para extraer información útil de los datos también llamado extracción del conocimiento.

El proceso de extracción del conocimiento en bases de datos o KDD (Brachman y Anand, 1996) es un modelo para identificar patrones útiles en grandes cantidades de información, normalmente es confundido con la Minería de Datos, siendo este uno de los pasos pertenecientes al proceso KDD. El proceso completo de KDD se descompone en 6 etapas:

- 1. Comprensión del dominio.
- 2. Creación de un Dataset objetivo.
- 3. Preprocesado y transformación de Datos.
- 4. Minería de Datos.
- 5. Evaluación del conocimiento.
- 6. Uso del conocimiento descubierto.

Figura 3.1: Proceso Knowledge Discovery in Databases (KDD)

Antecedentes 13

La ciencia de datos presenta una arquitectura de trabajo denominada 'Pipe and Filter', que se basa en un patrón que divide la tarea en pasos de procesamiento secuanciales Figura 3.2.

Figura 3.2: Pipe and Filter

3.2. Minería de Datos

Esta fase de Minería de Datos es la más conocida del proceso KDD aunque no sea la que más tiempo o esfuerzo se lleva en el proceso como vemos en la Figura 3.3.

Este proceso explora grandes cantidades de datos para obtener patrones o modelos útiles y sus relaciones y posteriormente analizar los resultados. El uso de algoritmos, supervisados o no supervisados dependiendo del objetivo del análisis, aquí es fundamental para recorrer los datos y obtener nueva información, lo que se conoce también como fase de analítica. Algunas de las técnicas usadas son: Redes Neuronales, Regresión, Agrupamiento...

Figura 3.3: Organización del tiempo en Data Science. Fuente: (Forbes, 2016)

A continuación describiremos el marco teórico de la Minería de Datos usado en el desarrollo del presente TFG, como son Machine Learning, vali-

dación y evaluación.

3.2.1. Machine Learning

Este paradigma de la Inteligencia Artificial crea sistemas que generan patrones a través de los datos de entrenamiento. Estos patrones que realmente son algoritmos auto-generados la máquina los usa para analizar datos y ser capaz de predecir comportamientos, además son capaces de seguir evolucionando a medida que analizan esos nuevos datos. Realmente esa evolución viene dada por la optimización de la función objetivo del algoritmo generado de forma que se minimice la pérdida (Función de pérdida).

"La función de pérdida es como la regla para ganar un juego de mesa, optimizarla es descubrir cómo jugar para obtener la mejor puntuación posible. Kozyrkov

Los algoritmos utilizados en Machine Learning normalmente se dividen en 2 grandes categorías, aunque hay otras intermedias, denominados «Supervisados» y « No Supervisados», en función de si se conoce o no la clase a la que pertenecen los datos que se usan para construir los modelos.

Figura 3.4: Pasos para obtener modelo de Datos. Fuente: (Kozyrkov, 2019)

Dependiendo del tipo de problemas que deseemos clasificar las mediciones varían, por ejemplo en problemas de regresión es usado el error cuadrático medio y en problemas de clasificación, como los que tenemos en este proyecto, usualmente la exactitud y la precisión.

3.2.2. Validación

La validación es una técnica para crear modelos mediante una partición de entrenamiento y evaluar con un conjunto de test externo, esto hace que podamos optimizar los parámetros a un modelo más eficiente. La evaluación de la clasificación de los resultados sigue unos protocolos de validación, el más usado es el esquema "k-fold cross validation", que consiste en dividir los datos en K particiones iguales, el clasificador se entrenará con las k-1 partes

Antecedentes 15

restantes para cada partición i, la evaluación final resultará de la media de los K resultados obtenidos.

Figura 3.5: Esquema K-Fold Cross Validation Fuente: (Raschka, 2016)

Todos los modelos de validación usan una parte de los datos para entrenar el clasificador y posteriormente son testados con datos reales para comprobar su eficacia. Esquemas de validación para MIL:

- 1. Holdout.
- 2. Repeated Holdout.
- 3. k-fold cross validation, Figura 3.5.
- 4. Repeated cross validation.
- 5. Bootstrapping.

3.2.3. Medidas de evaluación

Para poder evaluar como de bueno es el clasificador entrenado es necesario tener alguna medida para comparar su efectividad con otros o su mejora respecto a diferentes configuraciones, para ello disponemos de diferentes métricas:

1. Exactitud: Nos devuelve que fracción de está bien clasificada del conjunto de Test.

$$Acc = \frac{N \ predicciones \ correctas}{N \ total \ de \ predicciones}$$

2. Tasa de error: Nos devuelve la fracción de elementos mal clasificados del conjunto de Test.

$$Err = 1 - Acc$$

- 3. Media geométrica: Nos da el promedio de la exactitud.
- 4. Coeficiente kappa de Cohen: Es una medida estadística algo más compleja que las anteriores, puesto que incorpora un componente para ajustar el efecto del azar.

$$K = \frac{Pr(a) - Pr(e)}{(1 - Pr(e))}$$

Siendo Pr(a) el acuerdo observado relativo entre los observadores, y Pr(e) es la probabilidad hipotética de acuerdo por azar, utilizando los datos observados para calcular las probabilidades de que cada observador clasifique aleatoriamente cada categoría.

5. Curva ROC (curva de característica operativa del recepto): Muestra el rendimiento de un modelo de clasificación en todos los umbrales de clasificación representados por Tasa de verdaderos positivos y Tasa de falsos positivos Figura 3.6.

Figura 3.6: Curva de Característica Operativa del Recepto. Fuente: (Mishra, 2018)

6. AUC (Área bajo la curva ROC): mide toda el área bidimensional por debajo de la curva ROC completa Figura 3.7.

Antecedentes 17

Figura 3.7: AUC: Área bajo la curva ROC. Fuente: (Mishra, 2018)

3.3. Aprendizaje Supervisado: Multiple-Instace Learning

Como se ha comentado anteriormente en el aprendizaje supervisado hay conocimiento previo sobre la clase a la que pertenecen las instancias, estando estas pre-etiquetadas, y aprendiendo a partir de este conjunto, denominado conjunto de entrenamiento, un método o modelo para predecir las nuevas instancias que se le presenten.

Los clasificadores más comunes que pertenecen a este tipo son: Redes Neuronales (NN), Máquinas de Vectores de Soporte (SVMs), K vecinos más cercanos (K-NN), Árboles de decisión, etc.

Hasta ahora imaginamos las tablas de datos como una serie de instancias etiquetadas cada una con su clase, pero en este proyecto se va a tratar con un modelo de datos más avanzado, Multiple-Instace Learning, introducido por Dietterich (Dietterich, Lathrop, y Lozano-Pérez, 1997), el cual es un tipo de aprendizaje supervisado, en esta estructura encontramos que el objeto etiquetado ahora es una bolsa de datos, cada una de estas "bolsas. es un conjunto de instancias, cada una perteneciente a una característica, como las tradicionales estructuras, relacionadas entre ellas para crear el conjunto de cualidades del objeto etiquetado.

Sigue un esquema de clasificación binaria, una bolsa es positiva si al menos una de sus instancias lo es, y negativa si todas son clasificadas como negativas, Figura 3.8.

Figura 3.8: Esquema de Clasificación MIL.

Fuente: (Kumar y cols., 2011)

3.4. Pre-procesamiento de Datos

El Pre-procesado de los datos previo a su uso es una parte esencial en cualquier ámbito de la Ciencia de Datos, tal como se representa en la Figura 3.3 es la que más tiempo y esfuerzo requiere, normalmente nos referimos a esta parte como un conjunto de técnicas para preparar y reducir los datos para el uso adecuado en los algoritmos.

La fase preparación incluye técnicas de integración, limpieza, normalización, identificación de ruido y transformación de los datos y la fase reducción de la selección de características, selección de instancias y discretización para obtener un conjunto reducido de datos útiles. (Garcia, Luengo, y Herrera, 2014)

Figura 3.9: Esquema de Pre-procesamiento de Datos. Fuente: (Media, 2017)

Antecedentes 19

3.4.1. Tratamiento de Ruido

El tratamiento de ruido tiene conjuntas las tareas de identificación y limpieza, lo más común es encontrar más técnicas de limpieza de datos, encontrando inconsistencias y sustituyendo el valor por uno adecuado a su entorno o incluso eliminándolo, esto se debe a que en tiempos de computación es menos costoso que identificar la inconsistencia, saber a qué se debe y tratarla acorde a su procedencia.

La variedad de técnicas es muy amplia cuando hablamos de ruido en los atributos de las instancias, pero la dificultad se vuelve mayor cuanto el etiquetado de la clase a la que pertenecen es la que presenta el ruido. Estos son los 2 tipos de ruido, Figura 3.10, que nos podemos encontrar en los conjuntos de datos: Ruido de atributos y Ruido de clase (Zhu y Wu, 2004).

Figura 3.10: Tipos de Ruido. Fuente: (Morales y cols., 2017)

Cabe destacar la importancia del tratamiento de ruido, ya que éste ensucia los datos y cuando tratamos con modelos de predicción, como es el caso de este proyecto, esos atributos o clases con ruido interfieren en la creación de un buen modelo, haciendo que la precisión dependa del nivel del ruido en los datos directamente. Además es importante saber que da igual la herramienta que se use para construir el modelo, si los datos están contaminados, este nunca será lo suficientemente preciso (Ferreyra, 2007).

3.4.2. Tipos de Ruido

Como hemos visto en la Figura 3.10 existen 2 tipos de ruido dependiendo a que datos son afectados:

- Ruido en los valores de los atributos: Este ruido se presenta en la caracterización de las instancias de un Dataset y dependiendo de la forma que tenga el valor del atributo encontramos:
 - 1. Que el valor es nulo o no existe.
 - 2. Que el atributo aunque presenta un valor válido, está fuera de la escala correcta.
 - 3. Que el atributo tiene un valor no válido.
- Ruido en las etiquetas de la clase: Este ruido representa que el valor de la etiqueta de la instancia no es correcto, en ningún caso nulo. Así pues se presenta de estas formas:
 - 1. Que la etiqueta de la clase es incorrecta, es decir sabemos de está mal clasificada.
 - Que tenemos las mismas instancias con diferente etiquetado de la clase a la que pertenecen, esto hace que su clasificación sea contradictoria.

Poder filtrar estos tipos de ruido en los dataset y tratarlos de forma válida harán que nuestro clasificador mejore en su evaluación, siempre y cuando su detección sea posible.

3.4.3. Filtrado de Ruido en Clases

Puesto que el ruido de clase es el más disruptivo de las 2 tipologías presentadas, nos centraremos en esquemas de filtrado que podamos aplicar en él en este TFG.

Las técnicas más usuales de filtrado de ruido en clases usan un modelo de votación y otro de validación cruzada. A continuación trataremos las 3 técnicas en las que posteriormente nos inspiraremos para crear nuestros filtros:

- Ensemble Filter (EF) (Brodley y Friedl, 1999):
 El dataset se divide en K particiones (Cross-Validation), para cada modelo de validación, K, un conjunto de 3 Clasificadores evalúa el conjunto de entrenamiento, finalmente para eliminar las etiquetas ruidosas se aplica el esquema de consenso o mayoría de votos a la combinación
- de las K validaciones.

 2. Cross-Validated Committees Filter (CVCF) (Verbaeten y Assche, 2003):
 El dataset se divide en K particiones (Cross-Validation), para cada modelo de validación, K, un Clasificador evalúa el conjunto de entrenamiento, finalmente para eliminar las etiquetas ruidosas se aplica el

Antecedentes 21

esquema de consenso o mayoría de votos a la combinación de las K validaciones.

3. Iterative-Partitioning Filter (IPF) (Khoshgoftaar y Rebours, 2007):
Al filtro se le definen N iteraciones, para cada N, el dataset se divide en K particiones (Cross-Validation), para cada modelo de validación, K, un Clasificador evalúa el conjunto de entrenamiento, finalmente para eliminar las etiquetas ruidosas se aplica el esquema de consenso o mayoría de votos a la combinación de las K validaciones de modo que para la siguiente iteración el dataset ya ha podido ser filtrado.

Estas técnicas de filtrado de ruido son las que se desarrollan a lo largo del proyecto para adaptarlas a Multiple-Instance Learning, aunque han sido creadas para estructuras de datos tradicionales, comprobaremos su eficacia para el uso de bolsas de datos.

Capítulo 4

Marco Tecnológico

4.1. Herramientas para la gestión del proyecto

4.1.1. GitHub

GitHub (Chris Wanstrath y Chacon, 2019) es una suite para alojar y administrar proyectos en la nube utilizando el sistema de control de versiones Git. Nuestra cuenta está creada con email de la Universidad de Granada y se puede acceder a través de https://github.com/jcarlosorte/TFG.

Figura 4.1: Código QR para acceso al proyecto alojado en GitHub

4.1.2. GitHub Desktop

Es un programa Open Source para manipular los repositorios alojado en GitHub a través de una interfaz gráfica para Windows sin tener que usar el tradicional Git Bash (GitHub, 2019).

4.1.3. Hercules

Debido a la necesidad de procesamiento para obtener datos de los clasificadores, el uso de los portátiles o sobremesa personales se relegaron solo a la parte de programación y pequeñas pruebas de configuración de los algoritmos. Para este gran calculo fue necesario solicitar el uso del cluster de la Universidad de Granada "Hercules" para procesamiento de colas hercules.ugr.es.

Las tareas fueron mandadas a través de scripts configurados mediante SLURM, que son ficheros de texto plano con una serie de indicaciones que permitirán al sistema de colas conocer algunos datos sobre la ejecución.

```
1 #!/bin/bash
2 #SBATCH -J filtros30-9ArrayTFG
4 #SBATCH -p muylarga
```

```
#SBATCH -o /home/jcorte/TFG/tablas/Ruido30/slurm_output_%A_dir%a.dat
   #SBATCH -e /home/jcorte/TFG/tablas/Ruido30/slurm_err_%A_dir%a.dat
7
   #SBATCH --array=0-5
    DIR[0]=/home/jcorte/TFG/tablas/Ruido30/consenso/CVCF/
9
10
    DIR[1]=/home/jcorte/TFG/tablas/Ruido30/consenso/EF/
   DIR[2] = /home/jcorte/TFG/tablas/Ruido30/consenso/IPF/
DIR[3] = /home/jcorte/TFG/tablas/Ruido30/maxVotos/CVCF/
11
12
13
    DIR[4] = /home/jcorte/TFG/tablas/Ruido30/maxVotos/EF/
    DIR[5] = /home/jcorte/TFG/tablas/Ruido30/maxVotos/IPF/
14
15
   cd ${DIR[$SLURM_ARRAY_TASK_ID]}; python3 menu_9.py
```

En la Figura 4.2 podemos ver un ejemplo de gestión de las tareas que se mandaron, como se puede observar hay tareas que llegan a tardar 10-15 días en ejecutarse y otras algunas horas, los 4 factores que influyen en el tiempo de ejecución son:

- 1. Número de instancias del dataset.
- 2. Complejidad del Clasificador.
- 3. Complejidad del Filtro.
- 4. Valor de K en el esquema de validación cruzada.

```
ules:~$ squeue -u jcorte
JOBID PARTITION NA
                      NAME
                                 USER ST
                                                 TIME
                                                      NODES NODELIST (REASON)
14132_1 muylarga filtros0
                                       R 13-22:20:34
                                                             1 node47
14132 3 muylarga filtros0
        muylarga filtros0
                                        R 13-22:15:29
                               icorte
                                                             1 node55
         muylarga filtros0
         muylarga filtros0
                               jcorte
                                        R 13-14:19:28
         muylarga filtros1
                                          6-06:16:58
         muylarga filtros1
         muylarga filtros2
                               jcorte
                               jcorte
                   filtros3
         muylarga
                   filtros3
                                jcorte
```

Figura 4.2: Ejemplo de gestión de colas en Hercules

4.1.4. PuTTy

Es un cliente SSH de Licencia MIT (Licencia de software libre permisiva), que ejecutaremos bajo Windows y que necesitaremos para conectarnos a Hercules y usar el bash de Unix para administrar y ejecutar tareas en Python en remoto (Tatham, 2019).

4.1.5. FileZilla

Este software nos permite la descarga y envío de archivos a nuestro almacenamiento de la cuenta de Hercules a través de los protocoles de FTP (Kosse, 2019) y tiene Licencia GPLv2.

4.2. Herramientas para modelado del proyecto

4.2.1. yEd graph editor

Es una aplicación Freeware de escritorio que se usa para generar diagramas de flujo, diagramas UML o mapas conceptuales (of Tuebingen, 2001).

4.3. Herramientas para desarrollo del proyecto

4.3.1. Anaconda Navigator

Es una suite con licencia BSD (software libre permisiva) para los lenguajes Python y R, utilizada en ciencia de datos, y aprendizaje automático (machine learning). Las versiones de los paquetes se administran mediante el sistema de gestión de paquetes conda. Nosotros usaremos Spyder el cual es un entorno de desarrollo integrado (IDE) multiplataforma para Python (Anaconda, 2012).

4.3.2. Python

En los últimos años Python ha escalado puestos como lenguaje de programación para Data Science gracias a sus bibliotecas dedicadas a esta área como Pandas, Numpy, Matplotlib, SciPy, scikit-learn, etc. Además, de otras más avanzadas, como Tensorflow, Keras y Pytorch para Deep Learning. Pero no es solo esto, si no también su sencillez y ser un lenguaje de programación interpretado, no necesita compilador, lo que ha hecho que prolifere su uso en todos los entornos, haciendo que las personas que no han estudiado específicamente programación también pueda desarrollar sus propias aplicaciones (Python, 2019). Además Python opera bajo su propia licencia "Python Software Foundation License", que es un tipo de licencia de software libre permisiva.

4.3.2.1. Justificación

Como vemos en la Figura 4.3 Python está copando el mercado según la encuesta realizada por la plataforma Kaggle a 24.000 profesionales de datos. Además en esta misma encuesta, 3 de cada 4 profesionales de datos recomendaron que los aspirantes a científicos de datos aprendan primero sobre Python.

Según la encuesta anual de www.kdnuggets.com (KDnuggets, 2018) sobre herramientas Data Science y Machine Learning, vemos el avance de Pyt-

Figura 4.3: Lenguajes de programación más usados en 2018

hon en los últimos 3 años, Figura 4.4 y como desbanca a R como plataforma de programación para esta área.

Figura 4.4: Encuesta sobre herramientas más usadas en Data Science, 2016-2018

4.3.2.2. Bibliotecas

Python fue lanzado en la década de los 90 y creado por Guido van Rossum (Python, 2019), desde entonces ha sabido sacar provecho de su dinamismo, dado que soporta programación orientada a objetos, programación funcional y programación imperativa con tipado dinámico y multiplataforma. Gracias a esto el desarrollo de bibliotecas para Ciencia de Datos es muy amplia y con gran soporte y actualización, las principales que usaremos en el proyecto para crear los algoritmos de filtros de ruido son:

- NumPy. Provee un los arreglos n-dimensionales. https://www.numpy.org
- 2. SciPy. Posee gran variedad de módulos de alto nivel, como transformada discreta de Fourier, álgebre lineal, y matrices de optimización. https://www.scipy.org/
- 3. Pandas. Provee estructuras, como los son los data frames, y funciones para el tratamiento de los datos y los nulos. https://pandas.pydata.org/
- 4. Scikit-learn. Biblioteca especializada en todo el tema del Machine Learning y posee algoritmos para problemas de clasificación, regresión, clustering, procesamiento de datos, entre muchos otros. https:// scikit-learn.org
- 5. PyQt. Es una biblioteca gráfica Qt para el lenguaje de programación Python. https://riverbankcomputing.com/software/pyqt/intro

Aunque estas son solo algunas como hemos comentado existen muchas más, cada una dedicada al tratamiento de datos, análisis y visualización de forma específica Figura 4.5.

Github data Python 2018										
Library Name	Туре	Commits	Contributors	Releases	Watch	Star	Fork	Commits/ Contributors	Commits/ Releases	Star/ Contributors
matpl*tlib	Visualization	25 747	725	70	498	7 292	398	36	368	10
Bokeh	Visualization	16 983	294	58	363	7 615	2 000	58	293	26
ilii plotly	Visualization	2 906	48	8	198	3 444	850	61	363	72
Seaborn	Visualization	2 044	83	13	205	4 856	752	25	157	59
pydot	Visualization	169	12	12	17	193	80	14	14	16
learn	Machine learning	22 753	1 084	86	2 114	28 098	14 005	21	265	26
XGBoost LightGBM CatBoost	Machine learning	3277 1083 1509	280 79 61	9 14 20	868 363 157	11 991 5 488 2 780	5 425 1 467 369	12 14 25	364 77 75	43 69 46
eli5	Machine learning	922	6	22	39	672	89	154	42	112
S SciPy	Data wrangling	19 150	608	99	301	4 447	2 318	31	193	7
NumPy	Data wrangling	17 911	641	136	390	7 215	2766	28	132	11
pandas 🖳 🕍 🕍	Data wrangling	17 144	1 165	93	858	14 294	5 788	15	184	12
SM Statisticalella Statistica en Rython	Statistics	10 067	153	21	234	2 868	1 240	66	479	19
*TensorFlow	Deep learning	33 339	1 469	58	7 968	99 664	62 952	23	575	68
PYT <mark>Ó</mark> RCH	Deep learning	11 306	635	16	816	15 512	3 483	18	707	24
K Keras	Deep learning	4 539	671	41	1 673	29 444	10 964	7	1111	44
dist-keras elephas spark-deep-learning	Distributed deep learning	1125 170 67	5 13 11	7 5 3	41 97 116	431 913 920	106 189 206	225 13 6	161 34 22	86 70 84
Natural Language ToolKit	NLP	13 041	236	24	467	6 405	1 804	55	543	27
spaCy	NLP	8 623	215	56	425	9 258	1 446	40	154	43
gensim	NLP	3 603	273	52	415	6 995	2 689	13	69	26
Scrapy	Data scraping	6 625	281	81	1 723	27 277	6 469	24	82	97
Last reviewed: 13.0	02. 2018								Created by	ActiveWizards

Figura 4.5: Principales Bibliotecas para Python en Data Science

4.4. Herramientas Externas para desarrollo del proyecto

4.4.1. Multiple-Instance Learning Python Toolbox

Esta herramienta, llamada MILpy (Arrieta y Mera, 2017), contiene algoritmos para entrenar y evaluar clasificadores de Multiple-Instance Learning. Creada por Jose Arrieta (jmarrietar@unal.edu.co) y Carlos Mera (camerab@unal.edu.co) basándose en Matlab Toolbox for Multiple-Instance Learning, los autores permiten en su licencia el uso, copia y distribución para fines educativos y de investigación.

4.4.1.1. Justificación

Debido a la naturaleza del proyecto, encontrar herramientas para Multiple-Instance Learning se convirtió en una tarea que llevó más tiempo del que se creía, ya que no hay implementaciones en las bibliotecas oficiales para Python y los que se han atrevido a crear este tipo de software presentan bastantes dificultades en su uso o hay poca información.

Aunque esta herramienta no presenta todos los clasificadores o herramientas necesarias para poder decir que está completa, por lo menos sienta una base con la que poder trabajar implementando algunos de los clasificadores y medidas que existen para MIL.

4.4.1.2. Especificaciones

MILpy, desarrollado en 2016-2017 en Python V2 presenta una herramienta que convierte Dataset con extensión .mat provenientes de MatLab en estructuras de datos con las bibliotecas de Python para su uso con los algoritmos de clasificación de MIL desarrollados como funciones de entrenamiento y predicción para cada uno de estos junto con sus parámetros de ajuste. Nuestro proyecto ha sido desarrollado con las últimas versiones de las bibliotecas y con Python V3, con lo que se han tenido que re-formular los algoritmos puesto que en estos años, como se ha comentado anteriormente, Python está en auge en la Ciencia de Datos y evoluciona constantemente ofreciendo versiones mejoradas de sus funcionalidades.

No se tienen las especificaciones completas del software puesto que son proyectos personales sin soporte, así que ha sido a base de prueba y error comprender el funcionamiento completo de la herramienta, viendo que algunos fallos venían precisamente de la incompatibilidad de las versiones usadas para el proyecto y de MILpy.

4.4.1.3. Clasificadores

Aunque tiene implementados más clasificadores de los que se van a usar en el proyecto, no se usarán porque su funcionalidad no está completa y la herramienta dejó de actualizarse hace 2 años. Los que se han probado y funcionan para el proyecto se ven en la Tabla 4.1.

Tabla 4.1: Clasificadores implementados en MILpy.

Acrónimo	Nombre completo	Opciones	Variante	Referencia
MILBoost	Multiple Instance Lear-	Si	No	Viola, Platt, y Zhang
	ning Boost			
SimpleMiL	Simple Multiple Instan-	Si	Si	Pedregosa y cols.
	ce Learning			
MaxDD	Max Diverse Density	Si	No	Maron y Lozano-Pérez
EMDD	Expectation Maximiza-	Si	No	Zhang y A. Goldman
	tion Maximum Diverse			
	Density			
CKNN	Citation-KNN	Si	No	Goodwin y Garfield
BOW	Multiple Instance Lear-	Si	No	Carbonneau, Cheplygi-
	ning Bag Of Words			na, Granger, y Gagnon

Según los autores todas las implementaciones están basadas en MATLAB Udelft MIL toolbox (Tax y Cheplygina, 2016).

- Multiple Instance Learning Boost (MILBoost): Usa funciones de costo provenientes de MIL combinadas con esquemas de AnyBoost. Se adapta el criterio de selección de características de MILBoost para optimizar el rendimiento de la cascada Viola-Jones (Viola y cols., 2006).
- 2. Simple Multiple Instance Learning (SimpleMiL): Este modelo clasifica y combina los resultados usando de base el clasificador C-Support Vector Classification (SVC) de scikit-learn (Pedregosa y cols., 2011).
- 3. Max Diverse Density (MaxDD): Es un modelo de intersección de las bolsas positivas menos la unión de las bolsas negativas. Para maximizar esta medida, podemos encontrar el punto de intersección y también el conjunto de pesos de características que conducen a la mejor intersección (Maron y Lozano-Pérez, 1998).
- 4. Expectation Maximization Maximum Diverse Density (EMDD): Este método busca estimaciones máximas de parámetros del clasificador, donde el modelo depende de variables latentes no observadas (Zhang y A. Goldman, 2002).
- 5. Citation-KNN (CKNN): Adapta K-Nearest Neighbor a the Multiple-Instance Learning (Wang y Zucker, 2000) inspirándose en el concepto

çitation" de (Goodwin y Garfield, 1980) basado en métodos de indexación de librerias.

6. Multiple Instance Learning Bag Of Words (MIL-BOW): Este método crea un diccionario de palabras representativas realizando k-medias para la agrupación en todas las instancias de entrenamiento. A continuación, las instancias serán representadas por la palabra más similar contenida en el diccionario (Carbonneau y cols., 2016).

4.4.2. Dataset

Aunque existen algunos repositorios con más Dataset que los que tienen en esta herramienta, nos centraremos en los que nos proporciona MILpy incluidos en la Tabla 4.2, ya que han sido comprobados por los propios autores con sus algoritmos, para no entrar en otro tipo de fallos que se escaparían al área de este proyecto.

Dataset	Bolsas	+Bags	-Bags	Instancias	Atributos
Musk 1	92	47	45	476	166
Musk 2	102	39	63	6598	166
Mutagenesis easy	188	125	63	10486	7
Mutagenesis hard	42	13	29	2132	7
Tiger	200	100	100	1220	230
Fox	200	100	100	1320	230
Elephant	200	100	100	1391	230
Corel African	2000	100	1900	7947	9
Birds Brown Creeper	548	197	351	10232	38
Birds Winter Wren	548	109	439	10232	38
Gaussian-MI	20	10	10	133	2

A continuación se muestra una descripción sobre los dataset utilizados.

4.4.2.1. Musk

Este dataset describe si un conjunto de moléculas tiene un olor a almizcle suave o fuerte. El objetivo es aprender a predecir si las nuevas moléculas tendrán olor a almizcle o no.

Figura 4.6: Gráfico de dispersión de Musk 1

Figura 4.7: Gráfico de dispersión de Musk $2\,$

4.4.2.2. Mutagenesis

Este dataset describe un conjunto de moléculas que pueden tener o no la mutación "Salmonella typhimurium" (Srinivasan, Muggleton, y King, 1995).

Figura 4.8: Gráfico de dispersión de Mutagenesis Easy

Figura 4.9: Gráfico de dispersión de Mutagenesis Hard

4.4.2.3. Tiger, Fox y Elephant

Cada uno de estos dataset está cualificado para identificar un animal (Tigre, Zorro o Elefante) en imágenes (Andrews, Hofmann, y Tsochantaridis, 2002)

Figura 4.10: Gráfico de dispersión de Tiger

Figura 4.11: Gráfico de dispersión de Fox

Figura 4.12: Gráfico de dispersión de Elephant

4.4.2.4. Corel African

Este dataset identifica en imágenes si aparece un escenario africano (Chen, Bi, y Wang, 2006).

Figura 4.13: Gráfico de dispersión de Corel African

4.4.2.5. Birds

Estos dataset se entrenan para predecir si un tipo de ave está presente en un archivo de sonido. Una bolsa es el espectrograma de una grabación y una instancia es un segmento de ese espectrograma (Briggs y cols., 2012).

Figura 4.14: Gráfico de dispersión de Brids, clase Brown Creeper

Figura 4.15: Gráfico de dispersión de Birds, clase Winter Wren

4.4.2.6. Gaussian

Es un dataset artificial, para las bolsas positivas, las instancias se extraen de la distribución gaussiana centrado alrededor de (7,1), y un conjunto aleatorio de instancias se extrae alrededor de (0,0).

Figura 4.16: Gráfico de dispersión de Gaussian-MI

4.5. Herramientas para elaboración de la documentación

4.5.1. TeXstudio

TeXstudio es un IDE de LaTeX con licencia Pública General de GNU que proporciona un soporte moderno de escritura, como la corrección ortográfica interactiva, plegado de código y resaltado de sintaxis (van der Zander, 2009).

4.5.2. Apache OpenOffice Calc

Es una hoja de cálculo libre y de código abierto que forma parte de la suite ofimática Apache OpenOffice (Foundation, 2016) con licencia licencia Pública General Reducida de GNU (LGPL). Es una aplicación utilizada en tareas financieras y contables, con fórmulas, gráficos y un lenguaje de programación. En nuestro caso la usaremos para la planificación de tareas y gestión de las tablas de información del marco de estudio.

Capítulo 5

pyMIL-BNF: Filtros de Ruido de Clase para MIL

5.1. Análisis del problema: Limpieza de Datos en MIL

En el campo de la ciencia de datos existen herramientas para limpieza de datos con ruido, como vemos en la Tabla 5.1.

Tabla 5.1: Esquemas de Filtrado de ruido para Simple-Instance

10010 0:1: Esquellius de l'influde de l'ula	para simple mountee
Filtro	Referencia
Ensemble Filter	Brodley y Friedl
Cross-Validated Committees Filter	Verbaeten y Assche
Iterative-Partitioning Filter	Khoshgoftaar y Rebours
Automatic Noise Remover	Zeng y Martinez
Classification Filter	Gamberger, Lavrac, y Groselj
Pairwise Attribute Noise Detection Algorithm Filter	Hulse, Khoshgoftaar, y Huang
Saturation Filter	Gamberger, Lavrac, y Dzroski

El problema es que la estructura de la información para Multiple-Instance Learning difiere con la utilizada para esas técnicas de limpieza de datos por lo que el primer problema es adaptar estos esquemas a la nueva taxonomía de bolsas de datos.

Figura 5.1: Esquema Bolsa de Datos

Además el desarrollo de filtros para MIL necesitará de clasificadores específicos que funcionen con este tipo de datos y que nos proporcionará la herramienta mencionada anteriormente como MILpy.

5.1.1. Arquitectura de flujo de datos

El patrón de arquitectura que usamos en el diseño de pyMIL-BNF se llama 'Pipe and Filter',nos viene impuesto por el modelo de Ciencia de datos que construye sistemas en los que se procesa o transforma un flujo de datos de entrada, esto sería un componente llamado 'Filter', y nos aporta una salida, este paso es llamado 'Pipe', que puede conectarse a otro u otros componentes 'Filter' o finalizar. En la Figura 5.2 vemos un ejemplo de los posibles flujos de pyMIL-BNF.

Figura 5.2: Pipe and Filter de pyMIL-BNF

En nuestro caso, los mensajes están conformados por los propios datasets, que normalmente se almacenan en fichero. Estos datasets contienen la información necesaria para realizar los diferentes pasos del proceso, ya sea limpieza o tareas de aprendizaje, extracción de conocimiento o visualización.

Así pues, el resto de análisis se realizarán teniendo en cuenta esta elección de arquitectura que asegura la compatibilidad de la biblioteca desarrollada en el presente TFG con otros paquetes de aprendizaje MIL.

5.1.2. Análisis de requisitos

Figura 5.3: Esquema básico de Filtro MIL

Los componentes básicos explicados de forma general del conjunto de herramientas presentan las siguientes necesidades:

- Conjuntos de datos: Representan la colección de datos que se va a tratar y su arquitectura en forma de bolsa de datos está compuesta por:
 - Diferentes conjuntos de instancias y cada uno asociado a un identificador de bolsa.
 - Conjunto de etiquetas de clase asociadas a un Identificador de bolsa.
- Filtros MIL: Identificarán las etiquetas de las bolsas de datos que presenten ruido y se eliminarán, de forma que la entrada a nuestro algoritmo de filtrado estará compuesto por:
 - Conjunto de entrenamiento del dataset.
 - Esquema de votación.

Y la salida:

- Conjunto de entrenamiento limpio.
- Clasificador del filtro: La característica fundamental del funcionamiento de los diferentes tipos de filtros, es que internamente usan diferentes clasificadores para identificar los clases ruidosas, cada uno aportando su propio resultado, en nuestro caso la entrada de un clasificador del filtro está compuesta por:
 - Conjunto de entrenamiento.
 - Parámetros de configuración del clasificador.

Y nos devuelve:

- Tabla de bolsas etiquetadas como ruidosas.
- Esquemas de votación: Se usan para llegar a una única solución de entre todas las que aporta cada clasificador del filtro, así pues la

entrada está compuesta de:

• Una tabla de bolsas etiquetadas como ruidosas por cada Clasificador del filtro.

Y como salida nos proporciona:

• Conjunto de las bolsas etiquetadas como válidas.

5.1.3. Análisis de soluciones

El primer problema planteado sobre la necesidad de clasificadores para MIL se ha solucionado con el toolbox de MILpy que nos proporciona cierta cantidad de clasificadores específicos, las otras herramientas encontradas para Python eran bastante pobres o no cumplían con las necesidades del proyecto, en todo caso no se ha tenido un gran abanico de posibilidades.

El segundo problema era qué esquemas de limpieza de datos usar, así que tras revisar de entre todos los de la Tabla 5.1, se optó por adaptar los más usuales que son Ensemble Filter (EF), Cross-Validated Committees Filter (CVCF) e Iterative-Partitioning Filter (IPF).

En resumen:

- Biblioteca de Clasificadores:
 - MILpy.
- Esquemas base para filtros:
 - Ensemble Filter (EF).
 - Cross-Validated Committees Filter (CVCF).
 - Iterative-Partitioning Filter (IPF).

5.1.4. Solución propuesta

Debido a que el desarrollo del proyecto se basa en MILpy, una herramienta externa y sin mantenimiento desde su desarrollo en 2016, ha hecho falta ir paso a paso comprobando cada elemento que se iba a usar. Quitando las fases de aprendizaje que se señalaron en el Capítulo 2 sobre la planificación vamos a desarrollar las etapas sobre MILpy y los filtros MIL y las soluciones por las que se optaron para el avance del proyecto.

- Obtención de versión estable de MILpy:
 - Elección: No hubo mucho problema en elegir esta herramienta porque las que se encontraban desarrolladas para Python eran solo algunos algoritmos de clasificación sueltos para problemas concretos, ciertamente esta era la única que nos proveía de una variedad más amplia de Clasificadores para MIL.
 - 2. Prueba: Su funcionamiento venía determinado por unos dataset provenientes de MatLab, así que el formato de lectura de los

clasificadores era específico para ese tipo de archivos.

3. Errores:

- Sin información de las versiones usadas de las librerías.
- Incompatibilidad con las nuevas versiones de bibliotecas científicas de Python.
- No tiene bloques de detección de errores y en ocasiones al almacenar gran cantidad de datos en memoria los clasificadores fallaban en la lectura de los dataset.
- En ocasiones se producían fallos en las predicciones porque las matrices de datos estaban corruptas.
- Algunos clasificadores no funcionaban completamente.
- Variables globales configuradas para el uso en entornos concretos del autor.

4. Soluciones:

- Se actualizó todo a Python v3, reescribiendo el código para llamar a las nuevas versiones de las bibliotecas y adaptando las funciones al nuevo formato, así como las variables de entorno. El esquema de un clasificador MILpy se ve en la Figura 5.4.
- Se añadieron bloques try-catch para detectar y corregir los errores en la ejecución.
- Los clasificadores que no funcionaban correctamente no se usarán.

Figura 5.4: Esquema Avanzado Clasificador MIL

■ Desarrollo de filtros:

- 1. Estudio: Se analizaron los diferentes esquemas de limpieza de ruido (Tabla 5.1) y se escogieron 3 para implementar.
- 2. Pruebas: Se hicieron pruebas de código en Python para adaptar

la limpieza de ruido en datos MIL.

- 3. Implementaciones: Se escribió el código desde cero en Python v3.
- 4. Errores: Se detectó algún error de incompatibilidad de bibliotecas que fue solventado durante el desarrollo de los filtros.
- 5. Solución: Ya que una parte esencial del filtro es el clasificador usado y se solventaron los problemas en las etapas previas, se obtuvo rápidamente una versión final de los filtros. El esquema del resultado final se ve en la Figura 5.5.

Figura 5.5: Esquema Avanzado Filtro MIL

5.2. Diseño General de pyMIL-BNF

En este apartado vamos a presentar como se ha desarrollado la biblioteca de técnicas, dando lugar a 3 esquemas de filtros:

- 1. Ensemble MIL-Filter: Técnica basada en Ensemble Filter (MIL-EF).
- 2. Cross-Validated Committees MIL-Filter: Técnica basada en Cross-Validated Committees Filter (MIL-CVCF).
- 3. Iterative-Partitioning MIL-Filter: Técnica basada en Iterative-Partitioning Filter (MIL-IPF).

5.2.1. Grupos funcionales

Vamos a listar lo que a grandes rasgos tendrán en común los diseños de los filtros MIL:

- FIL-GF.01 Administrar conjunto de datos.
- FIL-GF.02 Administrar validación cruzada.
- FIL-GF.03 Administrar inserción de ruido artificial.
- FIL-GF.04 Administrar Clasificador MIL.
- FIL-GF.05 Administrar esquema de votación.

Figura 5.6: Esquema Grupos Funcionales

5.2.2. Requisitos funcionales

A partir de los grupos anteriormente descritos, identificaremos los requisitos asociados a cada uno. Véase Tabla 5.2.

Tabla 5.2: Identificación de requisitos funcionales para cada grupo funcional

Grupo Funcional Requisito Funcional				
FIL-GF.01	FIL-RF.01.01. Lectura conjunto de datos.			
TIL-GF.01	FIL-RF.01.02. Salida conjunto de datos.			
FIL-GF.02	FIL-RF.02.01. Selectionar K.			
F1L-GF.02	FIL-RF.02.02. Generar K particiones de datos.			
	FIL-RF.03.01. Seleccionar porcentaje de ruido.			
FIL-GF.03	FIL-RF.03.02. Lectura de conjunto de entrenamiento.			
F1L-GF.05	FIL-RF.03.03. Modificación de conjunto de datos.			
	FIL-RF.03.04. Salida de conjunto de datos modificado.			
	FIL-RF.04.01. Selección de Clasificador MIL			
	FIL-RF.04.02. Administrar validación cruzada.			
	FIL-RF.04.03. Lectura conjunto de entrenamiento.			
FIL-GF.04	FIL-RF.04.04. Lectura conjunto de test.			
	FIL-RF.04.05. Entrenar clasificador.			
	FIL-RF.04.06. Evaluar clasification.			
	FIL-RF.04.07. Generar conjunto de datos etiquetados.			
	FIL-RF.05.01. Lectura de conjunto de datos etiquetados.			
FIL-GF.05	FIL-RF.05.02. Seleccionar esquema de votación.			
1 1L-G1 .00	FIL-RF.05.03. Modificar conjunto de datos.			
	FIL-RF.05.04. Generar conjunto de datos filtrado.			

5.2.3. Roles

El uso de la biblioteca solo presenta un rol o actor, Tabla 5.3.

	Tabla 5.3: Roles en Casos de Uso
Rol	Descripción
Sistema	Un sistema/app será el encargado de ejecutar pyMIL-BNF

5.2.4. Modelo de Casos de Uso

Se utiliza una representación por colores para identificar los casos de uso asociados a cada grupo funcional, esta relación la vemos en la Tabla $5.2.4~\rm y$ el diagrama en la Figura 5.7.

Grupo funcional	Color
Administrar conjunto de datos	Azul
Administrar validación cruzada	Verde
Administrar inserción de ruido artificial	Amarillo
Administrar Clasificador MIL	Naranja
Administrar esquema de votación	Rojo

Figura 5.7: Diagrama de Casos de Uso Sistema-pyMIL-BNC

5.2.5. Dependencia de los Casos de Uso

Extraemos los casos de uso de los requisitos funcionales anteriormente descritos y mostraremos el nivel de dependencia que tienen entre ellos, para saber en que nivel ejecutar as diferentes tareas. Lo mostramos en la Tabla 5.4.

Tabla 5.4: Dependencia de los Casos de Uso

Caso de Uso	Nombre	RF	Prioridad
FIL-CDU.01	Lectura conjunto de datos.	FIL-RF.01.01.	1
FIL-CDU.02	Salida conjunto de datos.	FIL-RF.01.02.	1
FIL-CDU.03	Selectionar K.	FIL-RF.02.01.	2
FIL-CDU.04	Generar K particiones de datos.	FIL-RF.02.02.	2
FIL-CDU.05	Seleccionar porcentaje de ruido.	FIL-RF.03.01.	3
FIL-CDU.06	Lectura de conjunto de entrenamiento.	FIL-RF.03.02.	3
FIL-CDU.07	Modificación de conjunto de datos.	FIL-RF.03.03.	3
FIL-CDU.08	Salida de conjunto de datos modificado.	FIL-RF.03.04.	3
FIL-CDU.09	Selección de Clasificador MIL.	FIL-RF.04.01.	4
FIL-CDU.10	Administrar validación cruzada.	FIL-RF.04.02.	4
FIL-CDU.11	Lectura conjunto de entrenamiento.	FIL-RF.04.03.	4
FIL-CDU.12	Lectura conjunto de test.	FIL-RF.04.04.	4
FIL-CDU.13	Entrenar clasificador.	FIL-RF.04.05.	4
FIL-CDU.14	Evaluar clasificador.	FIL-RF.04.06.	4
FIL-CDU.15	Generar conjunto de datos etiquetados.	FIL-RF.04.07.	4
FIL-CDU.16	Lectura de conjunto de datos etiquetados.	FIL-RF.05.01.	5
FIL-CDU.17	Seleccionar esquema de votación.	FIL-RF.05.02.	5
FIL-CDU.18	Modificar conjunto de datos.	FIL-RF.05.03.	5
FIL-CDU.19	Generar conjunto de datos filtrado.	FIL-RF.05.04.	5

La prioridad en los casos de uso viene dada por la dependencia entre las diferentes funcionalidades y la necesidad de hacerlo todo de forma secuencial.

5.2.6. Flujo general de los filtros

En la Figura 5.8 se presenta un diagrama con la relación de entre los casos de uso y el flujo de los procesos que comparten los diferentes esquemas de los filtros, más adelante se presentarán los diagramas individuales para ver las particularidades de cada uno de los modelos que se desarrollarán.

Figura 5.8: Diagrama de flujo de procesos general

5.2.7. Descripciones

5.2.7.1. MIL-EF

El dataset se divide en K particiones (Cross-Validation), para cada modelo de validación, K, un conjunto de 3 Clasificadores de los implementados en MILpy evalúa el conjunto de entrenamiento, finalmente para eliminar las etiquetas ruidosas se aplica el esquema de consenso o mayoría de votos a la combinación de las K validaciones, Figura 5.9.

5.2.7.2. MIL-CVCF

El dataset se divide en K particiones (Cross-Validation), para cada modelo de validación, K, un Clasificador de los implementados en MILpy evalúa el conjunto de entrenamiento, finalmente para eliminar las etiquetas ruidosas se aplica el esquema de consenso o mayoría de votos a la combinación de las K validaciones, Figura 5.10.

5.2.7.3. MIL-IPF

Al filtro se le definen un máximo de N-iteraciones, N se incrementará mientras N-error (variable definida al inicio) sea mayor al porcentaje de bolsas etiquetadas como ruido, si es menor se restablece N a 0, para cada N-iteriación, el dataset se divide en K particiones (Cross-Validation), para cada modelo de validación, K, un Clasificador de los implementados en MILpy evalúa el conjunto de entrenamiento, finalmente para eliminar las etiquetas ruidosas se aplica el esquema de consenso o mayoría de votos a la combinación de las K validaciones de modo que para la siguiente iteración el dataset ya ha podido ser filtrado, Figura 5.11.

5.2.7.4. Ruido Artificial

Además se implementa la funcionalidad de insertar ruido artificial en los conjuntos de entrenamiento para comprobar la evaluación con diferentes porcentajes de ruido en las clases, se define desde 0 % (No modifica el dataset) hasta 30 % con saltos de 5 %, calculando según el tamaño del dataset a cuantas etiquetas de bolsas de datos equivale ese porcentaje y modificándo-las aleatoriamente sin repetir la bolsa en todo caso a una clase diferente a la que tiene originalmente.

5.2.8. Diagrama de flujo

5.2.8.1. MIL-EF

Figura 5.9: Diagrama flujo MIL-EF

5.2.8.2. MIL-CVCF

Figura 5.10: Diagrama flujo MIL-CVCF

5.2.8.3. MIL-IPF

Figura 5.11: Diagrama flujo MIL-IPF

5.3. Implementación

Para darle un uso más confortable para posibles presentaciones o pruebas locales a la librería pyMIL-BNF se le ha preparado una interfaz gráfica con PyQt v5, multi-hilo para soportar los tiempos de ejecución y carga de datos, en la Figura 5.12 podemos ver esta interfaz. En el Anexo A se encuentra el manual de usuario para los filtros y para la aplicación y en el Anexo B la implementación de código en Python.

Figura 5.12: Ejemplo de la Interfaz Gráfica para pyMIL-BNF

Capítulo 6

Estudio Experimental

6.1. Marco Experimental

6.1.1. Clasificadores MILpy

La forma de evaluar el impacto en los dataset de los filtros de pyMIL-BNF es a través de las métricas que nos proporcionan los Clasificadores MILpy, en nuestro caso la Exactitud (Accuracy) vista en Capitulo 3.2.3, y comparando los modelos de predicción que construyen estos.

Estos son los clasificadores para Multiple-Instance Learning proporcionados por MILpy que usaremos para obtener la evaluación después del filtrado del dataset:

- Multiple Instance Learning Boost.
- Simple Multiple Instance Learning. Versiones:
 - SimpleMIL min: Usa los índices de los valores mínimos de la bolsa.
 - SimpleMIL max: Usa los índices de los valores máximos de la bolsa.
 - SimpleMIL extreme: Usa los índices de los valores máximos y mínimos de la bolsa.
- Max Diverse Density.
- Expectation Maximization Maximum Diverse Density.
- Citation-KNN.
- Multiple Instance Learning Bag Of Words.

6.1.1.1. Parámetros

Los parámetros de configuración de los clasificadores de MILpy que vemos en la Tabla 6.1, se has establecido según la más óptima que proporciona los autores en sus casos de estudio (Arrieta y Mera, 2017).

Tabla 6.1: Parámetros de configuración para Clasificadores MIL

Clasificador	$_{ m type}$				
SimpleMiL-Max	max				
$SimpleMiL ext{-}Min$	\min				
Simple MiL-Extreme	extreme				
	k	$covar_type$	$_{ m n_iter}$		
BOW	90	diag	20		
	references	citers			
CKNN	3	5			
	spoints	epochs	tol	frac	alf
maxDD	10	[4,4]	1	[1e-5,1e-5,1e-7,1e-7]	-
EMDD	10	[3,3]	1	[1e-4, 1e-4, 1e-4, 1e-4]	10
	errtol	\mathbf{T}			
MILBoost	1e-15	100			

6.1.1.2. Medida de Evaluación

Los clasificadores de MILpy muestran la evaluación con las medidas de:

- Exactitud.
- Curva ROC.

Las tablas del estudio muestran el porcentaje de Exactitud.

6.1.2. Filtros pyMIL-BNF

Los esquemas de filtros utilizados son:

- 1. Ensemble MIL-Filter: Técnica basada en Ensemble Filter (MIL-EF).
- 2. Cross-Validated Committees MIL-Filter: Técnica basada en Cross-Validated Committees Filter (MIL-CVCF).
- 3. Iterative-Partitioning MIL-Filter: Técnica basada en Iterative-Partitioning Filter (MIL-IPF).

6.1.2.1. Parámetros

En esta primera Tabla 6.2 vemos los parámetros de configuración para los filtros nombrados anteriormente usados en la ejecución del estudio.

Tabla 6.2: Parámetros de configuración para Filtros pyMIL-BNF

Filtro	K-Folds	Ruido	Votación
MIL-EF	5	$[0,\!5,\!10,\!15,\!20,\!25,\!30]$	[consenso, maxVotos]
MIL-CVCF	5	$[0,\!5,\!10,\!15,\!20,\!25,\!30]$	[consenso, maxVotos]
MIL-IPF	5	$[0,\!5,\!10,\!15,\!20,\!25,\!30]$	[consenso, maxVotos]

La siguiente Tabla 6.3 muestra qué Clasificadores ha usado cada filtro para los que ha generado conjuntos filtrados de los dataset.

230

Tabla 6.6. Clashicadores asados por cada intro de pymili Bivi									
Clasificador		L-EF Grupo 2	MIL-CVCF	MIL-IPF					
SimpleMiL-Max	No	Si	Si	Si					
SimpleMiL-Min	No	No	Si	Si					
Simple MiL-Extreme	No	Si	Si	Si					
BOW	Si	No	Si	Si					
CKNN	Si	No	Si	Si					
$\max DD$	No	Si	Si	Si					
EMDD	Si	No	Si	Si					
MILBoost	No	No	Si	Si					

Tabla 6.3: Clasificadores usados por cada filtro de pyMIL-BNF

6.1.3.**Dataset**

Elephant

Los dataset no requieren de configuración previa, la siguiente Tabla 6.4 muestra cuales de los mostrados en la sección '4.4.2 Dataset' de este documento se han usado y las características de cada uno de ellos.

10010 011	rabia of it. Battaset asades on estadio per pyrille Bitt									
Dataset	Bolsas	+ Bags	-Bags	Instancias	Atributos					
Musk 1	92	47	45	476	166					
Mutagenesis hard	42	13	29	2132	7					
Tiger	200	100	100	1220	230					
Fox	200	100	100	1320	230					

100

1391

100

Tabla 6.4: Dataset usados en estudio por pvMIL-BNF

6.2. Resultados Experimentales

200

Debido a la gran extensión que presentan todos los resultados, las tablas completas se encuentran en el Anexo C y las tablas detalladas en el Anexo D donde desgranamos la información a varios niveles para analizarla combinando los clasificadores con el nivel de ruido y los esquemas de votación señalando los mejores y peores modelos.

En la siguiente sección se presentan los análisis de las tablas de forma simplificada en la que encontramos las 'Tablas Resumen', que son una visión general del marco de estudio, donde comparamos los esquemas de votación y el ruido imputado, para cada filtro de pyMIL-BNF sobre cada uno de los clasificadores.

D 11

6.2.1. Tablas Resumen y análisis

A continuación de cada tabla expondremos un análisis individualizado de cada clasificador en el que trataremos la degradación de la medida de Exactitud de forma general, mejor filtro pyMIL-BNF por esquema de votación, el mejor filtro por ruido y en caso necesario alguna anotación suplementaria.

6.2.1.1. Clasificador SimpleMIL-max

rabia	0.0:	Tabla Resi	ımen Cıa	sıпcador	Simplen	IIL-max	
)->	0 %	5 %	10%	15%	20%	25%	30%

Ruido->	0%	5 %	10 %	15 %	20 %	25 %	30 %		
SIN ESQUEMA DE VOTACIÓN									
SMIL max	68,93	$65,\!43$	65,05	61,47	59,97	57,99	58,84		
POR CONSENSO									
MIL-EF	75,03	73,05	70,12	69,57	70,88	67,82	60,79		
MIL-CVCF	$73,\!22$	72,04	$72,\!22$	$70,\!55$	$67,\!42$	$64,\!22$	64,93		
MIL-IPF	71,77	70,13	70,37	68,64	$67,\!42$	64,14	66,33		
POR MAX VOTOS									
MIL-EF	73,00	70,99	69,49	69,06	66,31	66,38	63,83		
MIL-CVCF	$65,\!31$	$65,\!07$	$63,\!50$	$63,\!25$	$62,\!07$	$59,\!86$	$56,\!49$		
MIL-IPF	$38,\!64$	25,72	$26,\!21$	$12,\!58$	$12,\!32$	10,46	24,14		

Análisis para SimpleMIL-max

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-EF, que aunque no sea el mayor en todos los casos es el más estable en las predicciones.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - Ruido 0 % es MIL-EF con esquema de votación por consenso.
 - Ruido 5 % es MIL-EF con esquema de votación por consenso.
 - Ruido 10 % es MIL-CVCF con esquema de votación por consenso.
 - Ruido 15 % es MIL-CVCF con esquema de votación por consenso.
 - Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - \bullet Ruido 25 % es MIL-EF con esquema de votación por consenso.
 - Ruido 30 % es MIL-IPF con esquema de votación por consenso.

 De forma general se observa que el mejor filtro para SimpleMIL-max es MIL-EF con esquema de votación por consenso, que mejora la predicción frente a no usar ninguno en todos los casos.

6.2.1.2. Clasificador SimpleMIL-min

Tabla 6.6: Tabla Resumen Clasificador SimpleMIL-min

Ruido-> 0% 5% 10% 15% 20% 25% 30%									
Ruido->	0 %	5 %	10 %	15 %	20 %	25 %	30 %		
SIN ESQUEMA DE VOTACIÓN									
SMIL min	67,83	64,84	63,16	59,00	56,75	54,41	54,30		
POR CONSENSO									
MIL-EF	73,89	71,99	68,61	67,56	68,81	65,36	58,96		
MIL-CVCF	71,49	70,05	66,90	$66,\!33$	$63,\!53$	$60,\!85$	57,18		
MIL-IPF	70,61	$71,\!59$	$67,\!66$	67,06	$63,\!26$	$59,\!55$	$58,\!35$		
POR MAX VOTOS									
MIL-EF	72,69	70,21	68,96	67,96	64,13	65,25	62,02		
MIL-CVCF	$64,\!56$	$62,\!10$	60,95	$61,\!86$	56,12	57,00	55,92		
MIL-IPF	37,70	26,76	$26,\!41$	11,26	12,67	10,28	$23,\!54$		

Análisis para SimpleMIL-min

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-EF por unanimidad.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - Ruido 0 % es MIL-EF con esquema de votación por consenso.
 - $\bullet\,$ Ruido $5\,\%$ es MIL-EF con esquema de votación por consenso.
 - Ruido 10 % es MIL-EF con esquema de votación por consenso.
 - Ruido 15 % es MIL-EF con esquema de votación por Max Votos.
 - $\bullet\,$ Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - $\bullet\,$ Ruido $25\,\%$ es MIL-EF con esquema de votación por consenso.
 - $\bullet\,$ Ruido 30 % es MIL-EF con esquema de votación por Max Votos.
- De forma general se observa que el mejor filtro para SimpleMIL-min es MIL-EF con esquema de votación por consenso, que mejora la predicción frente a no usar ninguno en todos los casos.

6.2.1.3. Clasificador SimpleMIL-extreme

	Tabla 6.7:	Tabla	Resumen	Clasificador	Sim	pleMIL-extreme
--	------------	-------	---------	--------------	-----	----------------

Ruido->	0 %	5%	10%	15%	20%	25%	30%		
SIN ESQUEMA DE VOTACIÓN									
SMIL ext	70,69	66,99	66,19	61,99	60,96	58,65	57,52		
POR CONSENSO									
MIL-EF	75,10	72,76	70,19	69,05	69,74	66,50	59,90		
MIL-CVCF	$75,\!63$	$74,\!12$	$73,\!32$	$72,\!51$	$72,\!88$	$69,\!03$	$62,\!51$		
MIL-IPF	73,73	$72,\!48$	$73,\!37$	69,73	$69,\!40$	$66,\!85$	$62,\!23$		
POR MAX VOTOS									
MIL-EF	73,33	71,40	69,90	69,10	65,23	66,15	62,81		
MIL-CVCF	$67,\!51$	$66,\!34$	$63,\!63$	64,16	$62,\!29$	57,30	$58,\!57$		
MIL-IPF	39,95	27,91	26,90	12,66	12,65	10,58	23,79		

Análisis para SimpleMIL-extreme

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-CVCF por unanimidad, la excepción tiene una diferencia imperceptible.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - $\bullet\,$ Ruido $0\,\%$ es MIL-CVCF con esquema de votación por consenso.
 - Ruido 5 % es MIL-CVCF con esquema de votación por consenso.
 - Ruido 10 % es MIL-IPF con esquema de votación por consenso.
 - $\bullet\,$ Ruido 15 % es MIL-CVCF con esquema de votación por consenso.
 - Ruido 20 % es MIL-CVCF con esquema de votación por consenso.
 - $\bullet\,$ Ruido 25 % es MIL-CVCF con esquema de votación por consenso.
 - Ruido 30 % es MIL-EF con esquema de votación por Max Votos.
- De forma general se observa que el mejor filtro para SimpleMIL-extreme es MIL-CVCF con esquema de votación por consenso, que mejora la predicción frente a no usar ninguno en todos los casos.

6.2.1.4. Clasificador BOW

	Tabla 6.8: Tabla Resumen Clasificador BOW								
Ruido->	0%	5%	10%	15%	20%	25%	30%		
SIN ESQUEMA DE VOTACIÓN									
BOW	65,45	62,78	61,76	58,94	56,11	55,15	56,47		
POR CONSENSO									
MIL-EF	73,98	71,69	69,47	68,41	68,42	65,72	59,88		
MIL-CVCF	$69,\!51$	$68,\!12$	$67,\!99$	$65,\!96$	62,95	$63,\!26$	$62,\!67$		
MIL-IPF	68,84	$67,\!69$	$67,\!66$	$67,\!58$	$64,\!26$	$63,\!07$	$61,\!69$		
POR MAX VOTOS									
MIL-EF	72,19	70,31	68,96	68,09	64,98	65,69	$62,\!73$		
MIL-CVCF	61,11	$59,\!40$	$58,\!61$	$59,\!39$	57,80	58,73	$56,\!29$		
MIL-IPF	35,24	23,89	24,05	11,93	10,86	10,38	22,46		

Análisis para BOW

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-EF casi por unanimidad, fallando en el porcentaje más alto de ruido.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - Ruido 0 % es MIL-EF con esquema de votación por consenso.
 - $\bullet\,$ Ruido $5\,\%$ es MIL-EF con esquema de votación por consenso.
 - Ruido 10 % es MIL-EF con esquema de votación por consenso.
 - Ruido 15 % es MIL-EF con esquema de votación por consenso.
 - Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - Ruido 25 % es MIL-EF con esquema de votación por consenso.
 - Ruido 30 % es MIL-EF con esquema de votación por Max Votos.
- De forma unificada se observa que el mejor filtro para BOW es MIL-EF con esquema de votación por consenso, que mejora la predicción frente a no usar ninguno en todos los casos.

6.2.1.5. Clasificador CKNN

Tabla 6.9: Tabla Resumen Clasificador CKNN									
Ruido->	0%	5%	10%	15%	20%	25%	30%		
SIN ESQUEMA DE VOTACIÓN									
CKNN	69,97	67,04	64,69	60,28	58,53	56,76	56,30		
POR CONSENSO									
MIL-EF	74,47	72,57	70,28	68,76	68,93	66,31	60,78		
MIL-CVCF	$75,\!26$	$74,\!68$	$68,\!86$	$69,\!86$	66,07	$66,\!98$	$59,\!47$		
MIL-IPF	75,05	$74,\!61$	73,00	$66,\!83$	67,93	$65,\!81$	$62,\!90$		
POR MAX VOTOS									
MIL-EF	73,07	71,19	69,95	69,14	66,22	66,60	63,57		
MIL-CVCF	76,04	$73,\!49$	$72,\!47$	$70,\!52$	$67,\!89$	$66,\!67$	65,71		
MIL-IPF	41.36	29.46	28.36	13.30	13.69	10.34	25.27		

Análisis para CKNN

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso por mayoría de casos en que mejora es MIL-CVCF, en los casos en los que no es el mejor la diferencia es muy poca.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-CVCF por unanimidad.
- El mejor Filtro MIL para:
 - $\bullet\,$ Ruido $0\,\%$ es MIL-CVCF con esquema de votación por Max Votos.
 - Ruido 5 % es MIL-CVCF con esquema de votación por consenso.
 - Ruido 10 % es MIL-IPF con esquema de votación por consenso.
 - \bullet Ruido 15 % es MIL-CVCF con esquema de votación por Max Votos.
 - Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - Ruido 25 % es MIL-CVCF con esquema de votación por consenso.
 - \bullet Ruido 30 % es MIL-CVCF con esquema de votación por Max Votos.
- De forma general se observa que el mejor filtro para CKNN es MIL-EF con esquema de votación por consenso, y que en los casos donde otros mejoran también es MIL-EF con esquema por Max Votos, además en todos los casos mejora la predicción frente a no usar ninguno.

6.2.1.6. Clasificador maxDD

	Tabla 6.1	0: Tabla	Resumer	n Clasific	ador max	kDD .			
Ruido->	0%	5%	10%	15%	20 %	25%	30%		
SIN ESQUEMA DE VOTACIÓN									
maxDD	62,37	60,15	59,22	55,66	54,88	53,66	55,05		
POR CONSENSO									
MIL-EF	73,04	$71,\!27$	69,31	67,93	68,05	$65,\!22$	60,28		
MIL-CVCF	$63,\!43$	$63,\!22$	$62,\!39$	$59,\!97$	$61,\!54$	$56,\!85$	58,03		
MIL-IPF	62,92	$61,\!46$	$61,\!87$	$61,\!63$	$61,\!26$	$58,\!03$	58,95		
POR MAX VOTOS									
MIL-EF	71,99	70,19	68,79	68,41	65,64	65,87	62,96		
MIL-CVCF	59,99	$59,\!27$	$58,\!52$	$57,\!95$	$56,\!88$	$55,\!11$	$55,\!12$		
MIL-IPF	36,93	$25,\!54$	24,24	11,60	11,57	10,73	$22,\!27$		

Análisis para maxDD

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-EF por unanimidad.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - Ruido 0 % es MIL-EF con esquema de votación por consenso.
 - Ruido 5 % es MIL-EF con esquema de votación por consenso.
 - Ruido 10 % es MIL-EF con esquema de votación por consenso.
 - Ruido 15 % es MIL-EF con esquema de votación por Max Votos.
 - Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - $\bullet\,$ Ruido 25 % es MIL-EF con esquema de votación por Max Votos.
 - Ruido 30 % es MIL-EF con esquema de votación por Max Votos.
- De forma unificada se observa que el mejor filtro para maxDD es MIL-EF y bueno con ambos esquemas de votación ya que las diferencias en sus % son muy reducidas, además se mejora la predicción frente a no usar ninguno en todos los casos.

6.2.1.7. Clasificador EMDD

Tabla 6.11: Tabla Resumen Clasificador EMDD									
Ruido->	0%	5%	10%	15%	20%	25 %	30%		
	SIN ESQUEMA DE VOTACIÓN								
EMDD	67,77	64,40	63,48	58,75	58,63	55,69	57,21		
		POF	R CON	SENSO					
MIL-EF	73,14	71,44	69,46	68,30	67,99	65,26	60,46		
MIL-CVCF	70,16	$70,\!29$	69,11	$67,\!23$	$65,\!54$	$65,\!14$	$60,\!53$		
MIL-IPF	70,07	$68,\!78$	$67,\!80$	$65,\!87$	$66,\!42$	$63,\!15$	$61,\!58$		
POR MAX VOTOS									
MIL-EF	$72,\!33$	70,50	69,16	68,93	66,33	66,36	63,33		
MIL-CVCF	$65,\!60$	$63,\!41$	$61,\!45$	$63,\!07$	61,08	$59,\!66$	57,72		
MIL-IPF	39,81	$26,\!53$	26,91	12,05	13,00	11,00	23,91		

Análisis para EMDD

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-EF casi por unanimidad, fallando en el porcentaje más alto de ruido.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - Ruido 0 % es MIL-EF con esquema de votación por consenso.
 - Ruido 5 % es MIL-EF con esquema de votación por consenso.
 - Ruido 10 % es MIL-EF con esquema de votación por consenso.
 - Ruido 15 % es MIL-EF con esquema de votación por Max Votos.
 - Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - Ruido 25 % es MIL-EF con esquema de votación por Max Votos.
 - Ruido 30 % es MIL-EF con esquema de votación por Max Votos.
- De forma unificada se observa que el mejor filtro para EMDD es MIL-EF y bueno con ambos esquemas de votación ya que las diferencias en sus % son muy reducidas, además se mejora la predicción frente a no usar ninguno en todos los casos.

6.2.1.8. Clasificador MILBoost

Tabla 6.12:	Tabla F	Resumen	Clasificador	MILBoost
Tabla 0.14.	Tabla 1	resumen	Ciasincador	MILLIPOUSU

Ruido->	0 %	5 %	10%	15%	20%	25%	30%		
SIN ESQUEMA DE VOTACIÓN									
MILBoost	51,28	49,08	48,81	46,59	46,18	45,74	46,91		
	POR CONSENSO								
MIL-EF	70,09	68,44	66,73	65,97	65,55	63,26	59,04		
MIL-CVCF	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$		
MIL-IPF	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$	$47,\!27$		
	POR MAX VOTOS								
MIL-EF	69,41	67,78	66,61	66,66	64,11	64,37	61,66		
MIL-CVCF	$38,\!10$	$37,\!85$	$39,\!13$	39,02	$38,\!87$	39,02	$39,\!89$		
MIL-IPF	28,05	18,64	18,50	9,18	8,28	9,62	$17,\!42$		

Análisis para MILBoost

- La degradación en la métrica utilizada de Exactitud se ve reducida a medida que en los conjuntos de entrenamiento se imputa mayor porcentaje de ruido en las clases en todo caso con alguna excepción.
- El mejor Filtro MIL para esquema de votación por Consenso es MIL-EF por unanimidad.
- El mejor Filtro MIL para esquema de votación por Max Votos en MIL-EF por unanimidad.
- El mejor Filtro MIL para:
 - Ruido 0 % es MIL-EF con esquema de votación por consenso.
 - Ruido 5 % es MIL-EF con esquema de votación por consenso.
 - Ruido 10 % es MIL-EF con esquema de votación por consenso.
 - Ruido 15 % es MIL-EF con esquema de votación por Max Votos.
 - Ruido 20 % es MIL-EF con esquema de votación por consenso.
 - $\bullet\,$ Ruido 25 % es MIL-EF con esquema de votación por Max Votos.
 - $\bullet\,$ Ruido 30 % es MIL-EF con esquema de votación por Max Votos.
- De forma unificada se observa que el mejor filtro para MILBoost es MIL-EF y bueno con ambos esquemas de votación ya que las diferencias en sus % son muy reducidas, además se mejora la predicción frente a no usar ninguno en todos los casos.

Capítulo 7

Conclusiones

7.1. Introducción

En este capítulo analizaremos la información del estudio individualizado por clasificadores MIL del capítulo anterior comparando información con los datos de las tablas detalladas del Anexo D y determinaremos la consecución del desarrollo del proyecto planteado en el Capítulo 2, además incluiremos algunas propuestas de trabajos futuros y como cierre, se proporciona una reflexión tras la conclusión del TFG.

7.2. Análisis del Estudio

En esta sección analizaremos los datos desde un punto de vista globalizado, ya que el capítulo anterior detallamos el análisis más en profundidad de forma individualizada por cada clasificador MIL utilizado.

En la Tabla 7.1 mostramos los mejores resultados obtenidos en la métrica de Exactitud utilizada hasta ahora para evaluar los filtros de pyMIL-BNF.

Tabla 7.1: Tabla Resumen Completa

Ruido->	0 %	5 %	10%	15%	20%	25%	30 %		
SIN ESQUEMA DE VOTACIÓN									
NONE	70,69	67,04	66,19	61,99	60,96	58,65	58,84		
NONE	MILExt	CKNN	MILExt	MILExt	MILExt	MILExt	MILmax		
	POR CONSENSO								
MIL-EF	75,10	73,05	70,28	69,57	70,88	67,82	60,79		
MIIT-EL	MILExt	MILmax	CKNN	MILmax	MILmax	MILmax	MILmax		
MIL-CVCF	$75,\!63$	74,68	73,32	$72,\!51$	72,88	69,03	$64,\!93$		
	MILExt	CKNN	MILExt	MILExt	MILExt	MILExt	MILmax		
MIL-IPF	75,05	74,61	73,37	69,73	69,40	$66,\!85$	66,33		
MILL-IPF	CKNN	CKNN	MILExt	MILExt	MILExt	MILExt	MILmax		
POR MAX VOTOS									
MIL-EF	73,33	71,40	69,95	69,14	66,33	66,60	63,83		
	MILExt	MILExt	CKNN	CKNN	EM-DD	CKNN	MILmax		
MIL-CVCF	76,04	$73,\!49$	$72,\!47$	$70,\!52$	$67,\!89$	$66,\!67$	65,71		
	CKNN	CKNN	CKNN	CKNN	CKNN	CKNN	CKNN		
MIL-IPF	41,36	29,46	28,36	13,30	13,69	11,00	25,27		
	CKNN	CKNN	CKNN	CKNN	CKNN	EM-DD	CKNN		

Cuando analizamos los clasificadores en el capítulo anterior se repetía de forma generalizada que la mejor opción era el filtro MIL-EF con esquema de votación por Consenso, pero al ver los datos generalizados los mejores resultados los ha obtenido el filtro MIL-CVCF en todo caso.

De esta tabla además sacamos que los clasificadores MIL con mejores resultados suelen ser las variantes de SimpleMIL y C-KNN.

Otra apreciación de las más importantes es que demostramos que siem-

Conclusiones 69

pre hay mejora en los resultados de la predicción cuando se usan filtros de pyMIL-BNF oscilando entre $6\,\%$ y $12\,\%$ la exactitud.

También observamos el bajo % obtenido por la combinación de MIL-IPF y esquema de votación por Max Votos, analizando la información más detallada esto se debe a que este esquema de votación llegaba a eliminar el conjunto entero de entrenamiento, haciendo que los resultados fueran nulos, cosa que no le pasaba con los demás filtros MIL.

A parte de este conocimiento extraído del análisis de las tablas, también nos planteamos 5 cuestiones previas a disponer de la información y que solo tenían respuesta una vez analizado en detenimiento toda esta gran cantidad de datos:

- ¿Hay 1 filtro mejor para todos los niveles de ruido o bien cambia el mejor filtro según aumenta/disminuye el ruido?
 Como hemos comentado antes el que ha obtenido los mejores resultados ha sido filtro MIL-CVCF en general para todos.
- 2. ¿Hay 1 filtro mejor para todos los clasificadores o bien hay filtros que van mejor según qué clasificador? ¿Podemos pensar por qué?

 Al analizar los clasificadores MIL individualmente y hemos comentado previamente, de forma general el filtro MIL-EF con esquema de votación por Consenso, podemos discernir que se debe a que presenta mayor estabilidad en los resultados de sus % de exactitud que los demás.
- 3. ¿Se pueden comparar los resultados de los dataset filtrados con los originales sin ruido? ¿Atenúan los filtros bastante la pérdida de información: el % de ruido vs. el % de precisión que se pierde?

 Aquí tenemos 2 vertientes que vemos según el esquema de votación:
 - Por consenso se pierde ruido real siempre, es decir que mejoramos de forma limpia sin perder precisión ni información útil puesto que elimina muy pocas bolsas mal etiquetadas y las que elimina es ruido de verdad.
 - Por Max Votos se pierde mucha información, elimina demasiadas bolsas que son buenas y aunque el resultado final no es malo, habría que evaluar si merece la pena perder esa información.
- 4. ¿Hay algún nivel de ruido que se pueda considerar el límite para el cual el uso de filtros arregla poco?
 En nuestro límite de 30 % del caso de estudio aun sigue siendo viable aplicarlos, puesto que llega a una mejora del 7 %.
- 5. ¿Hay conjuntos de datos que se benefician más del ruido que otros? ¿Tiene algo que ver con sus características (nº bolsas/instancias o nº de clases o nº de atributos)? ¿Hay 1 patrón aquí? El dataset que suele obtener mejores resultados es Mutagénesis hard y que por el contrario es el que menos bolsas tiene, esto puede ser causa

de que con un solo elemento que se filtre, su porcentaje de exactitud aumentará más que para los demás. Un patrón generalizado para los dataset, es que sus mejores resultados vienen de los filtros MIL-EF y MIL-CVCF con esquema Consenso y los peores resultados de el esquema de votación Max Votos y sobre todo con el filtro MIL-IPF.

7.3. Consecución de los objetivos

El objetivo principal del TFG era el desarrollo de una librería para filtro de ruido de clase en Multiple-Instance Learning. Para ello se planificaron una serie de tareas que mostramos en el Capítulo 2 y que analizamos su cumplimiento en la Tabla 7.2.

Tabla 7.2: Consecución de Objetivos

ID	Objetivo	Consecución
O.1	Aprendizaje Data Science	Si
O.2	Aprendizaje MIL	Si
O.3	Aprendizaje Python	Si
O.4	Búsqueda herramientas MIL para Python	Si
O.5	Diseño Filtros MIL	Si
O.6	Pruebas Filtros	Si
O.7	Ejecución clúster Hercules	Se redujo la muestra
O.8	Recogida de Datos	Si
0.9	Análisis de Datos	Si

7.4. Trabajos Futuros

Este trabajo aunque novedoso en su campo dista aún de ser una versión final, durante el desarrollo de este TFG has surgido ideas para posibles mejoras y ampliación de la biblioteca. A continuación listaremos las más sobresalientes:

- Referente a implementación:
 - Ampliar Filtrado basándonos en otros esquemas como Classification Filter (Gamberger, Lavrac, y Groselj, 1999b), Automatic Noise Remover (Zeng y Martinez, 2003b) o Pairwise Attribute Noise Detection Algorithm Filter (Hulse y cols., 2007).
 - Adicionalmente crear una propia biblioteca de Clasificadores MIL y ampliar la actual ya que es bastante escasa la variedad actualmente.
 - Implementar un esquema de filtrado que utilice métricas de ruido

Conclusiones 71

como INFFC (iterative class noise filter based on the fusion of classifiers) (Sáez, Galar, Luengo, y Herrera, 2016).

- Referente a robustez de la librería:
 - Reparación de etiqueta: actualmente la técnica de filtrado elimina la bolsa de datos cuando es identificada como ruidosa para el calculo de la predicción, pero sería interesante intentar encontrar el valor real de la etiqueta antes de eliminarla para que entrara como un dato bueno de entrenamiento.
 - Filtros avanzados I: Afinar el filtrado por medio de los atributos de las bolsas de datos, no solo por el etiquetado de las clases.
 - Filtros avanzados II: Combinar un esquema de filtro de clases con esquemas de filtro de instancias para eliminar datos ruidosos de las bolsas de datos también, para usarlo en combinación con el ejemplo anterior.

7.5. Lecciones Aprendidas y conclusiones personales

Este TFG presenta un gran reto personal y académico, escogido ex profeso con ilusión, primero para demostrar que las competencias específicas adquiridas de cada área de la carrera tienen cabida en una corriente única, como son matemáticas, estadística, programación orientada a objetos y programación distribuida, algorítmica, IA, Inteligencia de Negocio, bases de datos, sistemas de información, etc. intentando siempre en el desarrollo aplicar alguno de esto conocimientos aprendidos durante el grado.

En segundo lugar este proyecto puede tener continuación en El Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores http://masteres.ugr.es/datcom/ por su vertiente investigadora en el área de análisis de datos y sus herramientas.

Y por último, que estos conocimientos adquiridos sirvan como herramientas para adquirir otros nuevos, con esto quiero decir que todo lo que se ha usado en este TFG se ha tenido que aprender durante su desarrollo, desde la suite de Anaconda para escribir en Python v3, hasta LATEX para desarrollar esta misma documentación, pasando por GitHub para soporte de versiones de la aplicación, el uso de clústeres de supercomputación y una gran cantidad de conocimientos en Data Science, todo ha sido posible a la base de estudio que se tenía previamente.

Referencias

- Anaconda, I. (2012). Anaconda navigator. (https://anaconda.org/)
- Andrews, S., Hofmann, T., y Tsochantaridis, I. (2002). Multiple instance learning with generalized support vector machines. En *Eighteenth national conference on artificial intelligence* (pp. 943–944). Menlo Park, CA, USA: American Association for Artificial Intelligence. (http://dl.acm.org/citation.cfm?id=777092.777234)
- Arrieta, J., y Mera, C. (2017). Milpy: Multiple-instance learning python toolbox. (https://github.com/jmarrietar/MILpy)
- Brachman, R., y Anand, T. (1996). The process of knowledge discovery in databases: A human-centered approach, em: Usama m. fayyad, gregory piatetsky-shapiro, padhraic smyth, and ramasamy uthurusamy, advances in knowledge discovery and data mining, aaai. MIT Press.
- Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X., Raich, R., Frey, S., ... Betts, M. (2012, 06). Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. *The Journal of the Acoustical Society of America*, 131, 4640-50. doi: 10.1121/1.4707424
- Brodley, C., y Friedl, M. (1999). Identifying mislabeled training data. *Journal of Artificial Intelligence Research*, 11, 131–167.
- Carbonneau, M., Cheplygina, V., Granger, E., y Gagnon, G. (2016). Multiple instance learning: A survey of problem characteristics and applications. *CoRR*, *abs/1612.03365*. (http://arxiv.org/abs/1612.03365)
- Chen, Y., Bi, J., y Wang, J. Z. (2006, diciembre). Miles: Multiple-instance learning via embedded instance selection. *IEEE Trans. Pattern Anal. Mach. Intell.*, 28(12), 1931–1947. (http://dx.doi.org/10.1109/TPAMI.2006.248) doi: 10.1109/TPAMI.2006.248
- Chris Wanstrath, T. P.-W., P. J. Hyett, y Chacon, S. (2019). *Github*. (https://github.com/)
- Dietterich, T. G., Lathrop, R. H., y Lozano-Pérez, T. (1997). Solving the multiple instance problem with axis-parallel rectangles. *Artificial Intelligence*, 89(1), 31 71. (http://www.sciencedirect.com/science/article/pii/S0004370296000343) doi: https://doi.org/10.1016/S0004-3702(96)00034-3

74 Referencias

Ferreyra, M. R. (2007). ¿qué es el ruido? (http://powerhousedm.blogspot.com/2007/10/qu-es-el-ruido.html)

- Forbes. (2016). Cleaning big data: Most time-consuming, least enjoyable data science task, survey says. (https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/)
- Foundation, A. S. (2016). Apache openoffice. (http://www.openoffice.org/)
- Gamberger, D., Lavrac, N., y Dzroski, S. (2000). Noise detection and elimination in data preprocessing: Experiments in medical domains. *Applied Artificial Intelligence*, 14(2), 205–223.
- Gamberger, D., Lavrac, N., y Groselj, C. (1999a). Experiments with noise filtering in a medical domain. En 16th international conference on machine learning(ICML99) (pp. 143–151).
- Gamberger, D., Lavrac, N., y Groselj, C. (1999b). Experiments with noise filtering in a medical domain. En 16th international conference on machine learning(ICML99) (pp. 143–151).
- Garcia, S., Luengo, J., y Herrera, F. (2014). Data preprocessing in data mining. Springer Publishing Company, Incorporated.
- GitHub, I. (2019). Github desktop. (https://desktop.github.com/)
- Goodwin, J., y Garfield, E. (1980, 10). Citation indexing-its theory and application in science, technology, and humanities. *Technology and Culture*, 21, 714. doi: 10.2307/3104125
- Hulse, J., Khoshgoftaar, T., y Huang, H. (2007). The pairwise attribute noise detection algorithm. *Knowledge and Information Systems*, 11(2), 171–190.
- KDnuggets. (2018). Python eats away at r: Top software for analytics, data science, machine learning in 2018: Trends and analysis. (https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html)
- Khoshgoftaar, T., y Rebours, P. (2007). Improving software quality prediction by noise filtering techniques. *Journal of Computer Science and Technology*, 22, 387–396.
- Kosse, T. (2019). Filezilla. (https://filezilla-project.org/)
- Kozyrkov, C. (2019). Machine learning:secretos de magia revelados. (https://medium.com/datos-y-ciencia/machine-learning-secretos-de-magia-revelados-182fe6ae28c3)
- Kumar, J., Pillai, J., y Doermann, D. (2011, 10). Document image classification and labeling using multiple instance learning. En (p. 1059 1063). doi: 10.1109/ICDAR.2011.214
- Maron, O., y Lozano-Pérez, T. (1998). A framework for multiple-instance learning. En *Advances in neural information processing systems* (pp. 570–576).

Conclusiones 75

Media, E. (2017). What do you mean by data preprocessing and why it is needed? (https://www.electronicsmedia.info/2017/12/20/what -is-data-preprocessing/)

- Mishra, M. (2018). Understanding roc and auc curve. (https://medium.com/datadriveninvestor/understanding-roc-auc-curve -7b706fb710cb)
- Morales, P., Luengo, J., Garcia, L. P., Lorena, A. C., C.P.L.F. de Carvalho, A., y Herrera, F. (2017). Noisy data in data mining. (https://sci2s.ugr.es/noisydata)
- of Tuebingen, U. (2001). yed graph editor. (https://www.yworks.com/)
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12, 2825–2830.
- Python. (2019). *Python: History and license*. (https://docs.python.org/3/license.html)
- Raschka, S. (2016). Python model tuning methods using cross validation and grid search. (http://karlrosaen.com/ml/learning-log/2016-06-20/)
- S., M., Cano, I., y Arán, A. (1997). Desarrollo y gestión de proyectos informáticos.
- Sáez, J. A., Galar, M., Luengo, J., y Herrera, F. (2016). Inffc: An iterative class noise filter based on the fusion of classifiers with noise sensitivity control. *Information Fusion*, 27, 19 - 32. Descargado de http://www.sciencedirect.com/science/article/ pii/S156625351500038X doi: https://doi.org/10.1016/j.inffus.2015 .04.002
- Srinivasan, A., Muggleton, S., y King, R. (1995, 01). Comparing the use of background knowledge by inductive logic programming systems. Comparing the use of background knowledge by inductive logic programming systems, 99–230.
- Tatham, S. (2019). Putty. (https://www.putty.org/)
- Tax, D. M., y Cheplygina, V. (2016, Jun). MIL, a Matlab toolbox for multiple instance learning. (http://prlab.tudelft.nl/david-tax/mil.html,version 1.2.1)
- van der Zander, B. (2009). Texstudio. (http://texstudio.sourceforge.net/)
- Verbaeten, S., y Assche, A. (2003). Ensemble methods for noise elimination in classification problems. En 4th international workshop on multiple classifier systems(MCS 2003) (Vol. 2709, pp. 317–325). Springer.
- Viola, P., Platt, J., y Zhang, C. (2006, 01). Multiple instance boosting for object detection. *Proc. Adv. Neural Inf. Process. Syst.*, 18, 1417-1426.
- Wang, J., y Zucker, J.-d. (2000, 01). Solving the multiple-instance problem: A lazy learning approach. En (p. 1119-1126).

76 Referencias

Zeng, X., y Martinez, T. (2003a). A noise filtering method using neural networks. En *Ieee international workshop on soft computing techniques in instrumentation and measurement and related applications(SCIMA2003)* (pp. 26–31).

- Zeng, X., y Martinez, T. (2003b). A noise filtering method using neural networks. En *Ieee international workshop on soft computing techniques in instrumentation and measurement and related applications(SCIMA2003)* (pp. 26–31).
- Zhang, Q., y A. Goldman, S. (2002, 04). Em-dd: An improved multiple-instance learning technique. En (Vol. 14).
- Zhu, X., y Wu, X. (2004, noviembre). Class noise vs. attribute noise: A quantitative study of their impacts. Artif. Intell. Rev., 22(3), 177-210. (http://dx.doi.org/10.1007/s10462-004-0751-8) doi: 10.1007/s10462-004-0751-8

Anexos

Anexos A

Manual de Usuario

En las siguientes secciones desarrollamos un pequeño manual de uso de la librería y de la Interfaz gráfica de pyMIL-BNF. En cualquier caso lo primero es ir al sitio de descarga del proyecto que se encuentra en GitHub https://github.com/jcarlosorte/TFG y clonar o descargar el proyecto en nuestro entorno.

pyMIL-BNF: Multiple Instance Learning Bag Noise Filters library in Python

TFG Multiple-Instance Learning Python Proyect by Juan Carlos Orte (jcarlosorte@ugr.es)

Overview

The TFG proyect uses the toolbox MILpy, the toolbox contains algorithms to train and evaluate multiple instance learning classifiers.

Stage of Development:

-> Development still on process

Disclaimer

This Python proyect implementation is inspired by MILpy toolbox.

Data from http://www.miproblems.org/datasets/

Cannot guarantee any support for this software.

License

Copyright 2018-2019 by UGR - Universidad de Granada (Ceuta) Permission to use, copy, or modify these programs and their documentation for educational and research purposes only and without fee is hereby granted, provided that this copyright notice appears on all copies and supporting documentation. For any other uses of this software, in original or modified form, including but not limited to distribution in whole or in part, specific prior permission must be obtained from Universidad de Granada. These programs shall not be used, rewritten, or adapted as the basis of a commercial software or hardware product without first obtaining appropriate licenses from the Universidad de Granada. Universidad de Granada makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

A.1. Librería pyMIL-BNF

Vamos a analizar un menú simple que implementa la librería pyMIL-BNF en el código y los variables necesarias para iniciarla, así como las dependencias de otras bibliotecas o cabeceras necesarias.

```
import sys, os
1
3
   os.chdir('MILpy')
4
   sys.path.append(os.path.realpath('...'))
6
   from filters import EF
7
   from filters import CVCF
  from filters import IPF
9
10
  folds = 5
11
   votacion = 'consenso'
  DataSet = ['tiger_scaled']
13
  ruido = [0]
15 print('******* MIL-Ensemble Filter ********)
16 EF.EF(DataSet, votacion, folds, ruido)
17 print('******* MIL-CV Committees Filter ********')
18 CVCF.CVcF(DataSet, votacion, folds, ruido)
19
   20
  IPF.IPF(DataSet, votacion, folds, ruido)
```

- 1. Línea 1: Importamos las librerías sys y os que utilizaremos para renombrar las variables del entorno de trabajo.
- 2. Líneas 2 y 3: Re-nombramos a estas variables con esas carpetas de trabajo, que será necesario para poder usar MILpy.
- 3. Líneas 6, 7 y 8: Importamos con 'from' nuestra biblioteca 'filters' cada uno de los Filtros que queramos usar con 'import'.
- 4. Líneas 10, 11, 12 y 13: Aquí declararemos las variables necesarias para que los filtros trabajen con la configuración que queramos:
 - folds: Variable numérica que sirve para definir la K en la validación cruzada.
 - votacion: Variable para elegir el esquema de votación que tendrán los filtros. Opciones: 'consenso' y 'maxVotos'.
 - DataSet: Esta variable es un array que usamos para definir los dataset que queremos usar en la ejecución, permite introducir todos los dataset que queramos en él siempre y cuando se encuentren en la carpeta \MILpy\data y nombrado con el mismo nombre que tenga la propia carpeta de dataset. Ej: [tiger_scaled,corel_african original]
 - ruido: Esta variable es un array y sirve para definir el nivel o

niveles de ruido artificial con el que se imputarán las clases de entrenamiento siendo 0% el valor que no hace modificaciones. Ej: [0.5,10,15,20,25,30]

5. Líneas 16, 18 y 20: Llamadas a las funciones de los filtros pasando las variables definidas anteriormente.

Con esto tendríamos totalmente operativa la librería, esta ejecución sacará por consola los resultados de la combinación de todos clasificadores. Podemos definir que clasificadores usar para el filtro y para obtener la predicción indiferentemente de la siguiente manera:

■ Definir Clasificador MIL para predicción: dentro de cada archivo .py de los filtros (EF.py, CVCF.py e IPF.py) en la carpeta \filters\buscar la función 'clasif()' y dentro encontraremos las siguientes líneas:

```
aux.append(SMILaMax)
aux.append(SMILaMin)
aux.append(SMILaExt)
aux.append(BOW_clas)
aux.append(CKNN_cla)
aux.append(maxDD_cl)
aux.append(EMDD_cla)
aux.append(MILB_cla)
```

Basta con comentar con # delante de la línea de cada clasificador que no se quiera usar.

Definir Clasificadores MIL para Filtrar Ruido: al igual que en el anterior hay que buscar una función en los archivos nombrados, esta vez la función se llama 'cla_filter_cvcf()' para CVCF.py y IPF.py y 'cla_filter()' para EF.py donde dentro encontramos para todos las mismas líneas:

```
aux.append(SMILaMax)
aux.append(SMILaMin)
aux.append(SMILaExt)
aux.append(BOW-clas)
aux.append(CKNN_cla)
aux.append(maxDD_cl)
aux.append(EMDD_cla)
aux.append(MILB_cla)
```

Al igual que antes basta con comentar con # delante de la línea de cada clasificador que no se quiera usar para filtrar. Reacuerdo que el esquema de MIL-EF usa un mínimo de 3 clasificadores.

Estos son todas las configuraciones básicas y opcionales que se tienen que manejar, se ha tentado simplificar lo máximo posible para que su uso no sea muy complicado. Si todo va bien veremos algo como lo que se muestra en la Figura A.1

```
**********************************

DATASET: tiger_scaled

=>RUIDO : 0

=>Elementos eliminados por MIL max: 0

-->Clasificador :MIL max

-->Original

Precision: 73.5%

Roc Score: 73.5

-->Filtrado por MIL max

Precision: 73.5%

Roc Score: 73.5%

Roc Score: 73.5
```

Figura A.1: Ejecución en consola de pyMIL-BNF

A.2. Interfaz gráfica pyMIL-BNF

Para usar la interfaz gráfica basta con ejecutar el archivo 'filtroApp.py'. Así iniciaremos la aplicación como se ve en la Figura A.2.

Figura A.2: Inicio Interfaz gráfica pyMIL-BN

Los 3 parámetros iniciales son:

- Seleccionar Dataset: Listado que comprueba la carpeta donde se alojan los dataset (\MILpy\data\) y nos da un listado de todos los que podamos usar.
- Filtros: Seleccionamos el filtro que se quiere usar para el dataset de los 3 implementados para el proyecto.
- Ruido: Establecemos nivel de ruido artificial, permite los valores: 0, 5, 10, 15, 20, 25 y 30. (Con 0 % no se modifica el conjunto de entrenamiento)

Al pinchar sobre uno de los esquemas de filtro, se nos abren las características de configuración propias de cada uno como vemos en la Figura A.3.

Figura A.3: Ejemplo de interfaz para parámetros de los Filtros

Se nos abren las siguientes opciones:

- Configurador de Filtros I: Elegir el Clasificador MIL para predicción.
- Configurador de Filtros II: Seleccionar el valor de la validación cruzada, se ha establecido un rango de [2-10].
- Configurador de Filtros III: Señalar el esquema de votación.
- Configurador de Filtros IV: Elegir el Clasificador MIL para usar en el filtro (o grupo de ellos en caso de MIL-EF).

Cuando tengamos la configuración deseada y pulsemos en el botón enviar nos aparecerá una ventana de confirmación de datos Figura A.2 Izda y empezará el programa a ejecutar los filtros y cuando finalice una nueva ventana de alerta aparecerá, Figura A.2 Dcha.

Ahora se cargará la información de la predicción en la parte superior derecha de la ventana como vemos en la Figura .. y esto será todo. Podremos volver a usarla hasta que salgamos de ella.

Figura A.4: Interfaz con predicción del clasificador MIL

Anexos B

Código Fuente de pyMIL-BNF

B.1. Interfaz gráfica pyMIL-BNF

```
1 import sys, os, warnings
   from os import walk
   from PyQt5.QtCore import Qt, QThread
   from PyQt5.QtWidgets import QWidget, QApplication, QVBoxLayout,
        QPushButton, QComboBox, QStyleFactory, QTableWidget, \
   QTableWidgetItem, QGroupBox, QRadioButton, \
   QSlider, QLCDNumber, QMessageBox
   warnings.filterwarnings('ignore')
9 os.chdir('MILpy')
10 sys.path.append(os.path.realpath('..'))
11 import pandas as pd
12 from filtersApp import EF
13 from filtersApp import CVCF
14 from filtersApp import IPF
15
16
   class CargaAlgoritmo(QThread):
17
       def __init__(self,ck_clasif, DataSet,votacion,folds,ruido,
       clasif,clasif_F):
           super().__init__()
18
           self._ck_clasif = ck_clasif
19
20
           self._DataSet = DataSet
21
           self._votacion = votacion
22
           self._folds = folds
23
           self._ruido = ruido
24
           self._clasif = clasif
25
           self._clasif_F = clasif_F
26
       def run(self):
27
           if self._ck_clasif == 1:
28
                print("MIL-Ensemble Filter")
               EF.EF(self._DataSet,self._votacion,self._folds,self
29
       ._ruido,self._clasif,self._clasif_F)
30
           elif self._ck_clasif == 2:
                print("MIL-Cross-Validation Committees Filter")
31
32
                CVCF.CVcF(self._DataSet,self._votacion,self._folds,
       self._ruido,self._clasif,self._clasif_F)
33
           elif self._ck_clasif == 3:
34
                print("MIL-Iterative Partitioning Filter")
35
                IPF.IPF(self._DataSet,self._votacion,self._folds,
       self._ruido,self._clasif,self._clasif_F)
36
37
   class FilterTFG(QWidget):
38
39
       def __init__(self, parent=None):
40
                super(FilterTFG, self).__init__(parent)
41
                self.initUI()
42
                QApplication.setStyle(QStyleFactory.create('Fusion'
       ))
       def initUI(self):
43
           self.addDataSet()
44
45
           self.addRadioBotonFilter()
```

```
self.addSliderRuido()
46
47
            self.addTable()
48
            self.addEnviar()
49
            self.resize(430, 450)
50
            self.setWindowTitle('TFG Filtros MIL')
51
52
       def addTable(self):
            self.gbx_t = QGroupBox('Precisión:',self)
53
54
            self.gbx_t.setGeometry(190, 10, 230, 80)
55
            self.layout_t = QVBoxLayout(self)
56
            self.layout_t.setContentsMargins(0,0,0,0)
57
            # Create table
            self.tableWidget = QTableWidget()
58
59
            self.layout_t.addWidget(self.tableWidget)
60
            self.gbx_t.setLayout(self.layout_t)
61
            self.gbx_t.hide()
62
       def addDataSet(self):
63
64
            items = self.ls(os.getcwd()+str("/data/"))
65
            self.Ldt = QComboBox(self)
66
            self.Ldt.addItems(items)
67
            self.Ldt.move(10, 35)
68
            lbl = QLabel('Selectionar DataSet:', self)
69
            lbl.move(10, 10)
70
71
       def addEnviar(self):
72
            self.label = QLabel("Cuando inicie el calculo es
       probable que tarde.", self)
73
           self.label.setGeometry(150, 420, 220, 25)
74
            self.btn1 = QPushButton("Enviar", self)
75
            self.btn1.move(40, 425)
76
            self.btn1.hide()
77
            self.btn1.pressed.connect(self.buttonClicked)
78
       def buttonClicked(self):
79
            self.file_data = '../filtersApp/tabla.csv'
80
            folds = 0
           votacion = ''
81
            DataSet = []
82
83
           ruido = []
            clasif = ""
84
            clasif_F = ""
85
86
            self.label.setText("Esto puede tardar.Calculando...")
87
            self.btn1.setEnabled(False)
            btn_txt = "\nDataSet : " + self.Ldt.currentText()
88
            DataSet.append(self.Ldt.currentText())
89
90
           ck_clasif = 0
91
            #Valor Filter
92
            for i, radio in enumerate(self.RbFilter):
93
                if radio.isChecked():
                    btn_txt = btn_txt + "\nFiltro : " + radio.text
94
       ()
95
                    if radio.text() == "MIL-Ensemble Filter":
96
                        ck_clasif = 1
```

```
97
                         for j, radio2 in enumerate(self.RbClasif_ef
        ):
98
                             if radio2.isChecked():
99
                                 btn_txt = btn_txt + "\nClasificador
         : " + radio2.text()
100
                                 clasif = radio2.text()
101
                         for p, radio4 in enumerate(self.
        RbClasif_F_ef):
102
                             if radio4.isChecked():
103
                                 btn_txt = btn_txt + "\nClasificador
         Filtro : " + radio4.text()
104
                                 clasif_F = str(p)
105
                     elif radio.text() == "MIL-Cross-Validation
        Committees Filter":
                         ck_clasif = 2
106
107
                         for j, radio2 in enumerate(self.
        RbClasif_cvcf):
108
                             if radio2.isChecked():
                                 btn_txt = btn_txt + "\nClasificador
109
         : " + radio2.text()
110
                                 clasif = radio2.text()
                         for p, radio4 in enumerate(self.
111
        RbClasif_F_cvcf):
112
                             if radio4.isChecked():
                                 btn_txt = btn_txt + "\nClasificador
113
        Filtro : " + radio4.text()
                                 clasif_F = radio4.text()
114
                     elif radio.text() == "MIL-Iterative
115
        Partitioning Filter":
116
                         ck_clasif = 3
117
                         for j, radio2 in enumerate(self.
        RbClasif_ipf):
118
                             if radio2.isChecked():
119
                                 btn_txt = btn_txt + "\nClasificador
         : " + radio2.text()
120
                                 clasif = radio2.text()
                         for p, radio4 in enumerate(self.
121
        RbClasif_F_ipf):
122
                             if radio4.isChecked():
123
                                 btn_txt = btn_txt + "\nClasificador
         Filtro : " + radio4.text()
124
                                  clasif_F = radio4.text()
            btn_txt = btn_txt + "\nRuido : " + str(int(self.num.
125
        value()))
126
            ruido.append(int(self.num.value()))
            btn_txt = btn_txt + "\nFolds : " + str(int(self.num2.
127
        value()))
128
            folds = int(self.num2.value())
            for u, radio3 in enumerate(self.RbVotacion):
129
130
                 if radio3.isChecked():
                     btn_txt = btn_txt + "\nVotacion : " + radio3.
131
        text()
132
                     if radio3.text() == "Consenso":
133
                         votacion = 'consenso'
```

```
134
                     elif radio3.text() == "Mayoria":
135
                         votacion = 'maxVotos'
136
137
            QMessageBox.information(self, 'CONFIGURACIÓN', btn_txt)
138
139
            self.cargaAlgoritmo = CargaAlgoritmo(ck_clasif,DataSet,
        votacion,folds,ruido,clasif,clasif_F)
140
            self.cargaAlgoritmo.finished.connect(self.cargaCompleta
        )
141
            self.cargaAlgoritmo.start()
142
143
        def cargaCompleta(self):
            QMessageBox.information(self, 'AVISO', "Completado")
144
145
            self.label.setText("Completado")
146
            self.loadCsv(self.file_data)
147
            self.btn1.setEnabled(True)
148
            del self.cargaAlgoritmo
149
150
        def loadCsv(self, fileName):
151
            df = pd.read_csv(filepath_or_buffer=fileName, sep=';',
        index_col=0)
152
              df.loc[:, ~df.columns.str.contains(', Unnamed')]
153
            df1 = df.columns
            self.tableWidget.setRowCount(0)
154
155
            self.tableWidget.setColumnCount(3)
156
            self.tableWidget.setHorizontalHeaderLabels([df1[0], df1
        [1], df1[2]])
157
            for i, row in enumerate(df.values):
158
                 rowPosition = self.tableWidget.rowCount()
159
                 self.tableWidget.insertRow(rowPosition)
160
                 for h, li in enumerate(row):
161
                     self.tableWidget.setItem(i, h, QTableWidgetItem
        (str(li)))
162
             self.tableWidget.resizeColumnsToContents()
163
            self.gbx_t.show()
164
165
        def addRadioBotonFilter(self):
            gbx = QGroupBox('Filtros:', self)
166
167
            gbx.setGeometry(10, 95, 235, 100)
168
             # crear tres QRadioButton
169
            self.RbFilter = []
170
            self.radio1 = QRadioButton("MIL-Ensemble Filter")
171
             self.radio2 = QRadioButton("MIL-Cross-Validation
        Committees Filter")
172
             self.radio3 = QRadioButton("MIL-Iterative Partitioning
        Filter")
173
             self.radio1.toggled.connect(lambda:self.btnstate(self.
        radio1))
174
            self.radio2.toggled.connect(lambda:self.btnstate(self.
        radio2))
            self.radio3.toggled.connect(lambda:self.btnstate(self.
175
        radio3))
176
            self.RbFilter.append(self.radio1)
177
            self.RbFilter.append(self.radio2)
```

```
178
            self.RbFilter.append(self.radio3)
            # agregar los widgets al layout vertical
179
            self.vbox = QVBoxLayout(self)
180
181
            self.vbox.addWidget(self.radio1)
182
            self.vbox.addWidget(self.radio2)
183
            self.vbox.addWidget(self.radio3)
184
185
            gbx.setLayout(self.vbox)
            #EF-----
186
187
            self.gbx2 = QGroupBox('Configuración de Filtros I:',
       self)
            self.gbx2.setGeometry(10, 200, 130, 220)
188
            self.vbox2 = QVBoxLayout(self)
189
190
            self.vbox2.addWidget(QLabel('Clasificador:', self))
            clasif_ef = EF.clasif()
191
192
            check1 = True
193
            self.RbClasif_ef = []
194
            for s,cl in enumerate(clasif_ef):
195
                if check1:
196
                    butt = QRadioButton(str(c1[2]))
197
                    butt.setChecked(True)
198
                    self.vbox2.addWidget(butt)
199
                    self.RbClasif_ef.append(butt)
200
                    check1 = False
201
                else:
202
                    butt = QRadioButton(str(cl[2]))
203
                    self.vbox2.addWidget(butt)
204
                    self.RbClasif_ef.append(butt)
205
            self.gbx2.setLayout(self.vbox2)
206
            self.gbx2.hide()
207
            #CVCF-----
208
            self.gbx3 = QGroupBox('Configuración de Filtros I:',
        self)
209
            self.gbx3.setGeometry(10, 200, 130, 220)
210
            self.vbox3 = QVBoxLayout(self)
211
            self.vbox3.addWidget(QLabel('Clasificador:', self))
            clasif_cvcf = CVCF.clasif()
212
213
            check2 = True
214
            self.RbClasif_cvcf = []
215
            for s,cl in enumerate(clasif_cvcf):
216
                if check2:
217
                    butt = QRadioButton(str(c1[2]))
218
                    butt.setChecked(True)
219
                    self.vbox3.addWidget(butt)
220
                    self.RbClasif_cvcf.append(butt)
221
                    check2 = False
222
                else:
223
                    butt = QRadioButton(str(c1[2]))
224
                    self.vbox3.addWidget(butt)
225
                    self.RbClasif_cvcf.append(butt)
226
            self.gbx3.setLayout(self.vbox3)
227
            self.gbx3.hide()
228
            #IPF-----
```

```
229
            self.gbx4 = QGroupBox('Configuración de Filtros I:',
        self)
230
            self.gbx4.setGeometry(10, 200, 130, 220)
231
            self.vbox4 = QVBoxLayout(self)
232
            self.vbox4.addWidget(QLabel('Clasificador:', self))
233
            clasif_ipf = IPF.clasif()
234
            check3 = True
235
            self.RbClasif_ipf = []
236
            for s,cl in enumerate(clasif_ipf):
237
                if check3:
238
                     butt = QRadioButton(str(c1[2]))
239
                     butt.setChecked(True)
240
                     self.vbox4.addWidget(butt)
241
                     self.RbClasif_ipf.append(butt)
242
                     check3 = False
243
                else:
244
                    butt = QRadioButton(str(c1[2]))
245
                     self.vbox4.addWidget(butt)
246
                     self.RbClasif_ipf.append(butt)
247
            self.gbx4.setLayout(self.vbox4)
248
            self.gbx4.hide()
249
250
            self.gbx6 = QGroupBox('Configuración de Filtros II:',
        self)
251
            self.gbx6.setGeometry(145, 200, 140, 115)
252
            self.vbox6 = QVBoxLayout(self)
253
            self.vbox6.addWidget(QLabel('Cross-Validation:', self))
254
            sld2 = QSlider(Qt.Horizontal, self)
255
            sld2.setMinimum(2)
256
            sld2.setMaximum(10)
257
            sld2.setValue(5)
258
            sld2.setTickPosition(QSlider.TicksBelow)
259
            sld2.setTickInterval(1)
260
            self.num2 = QLCDNumber(self)
261
            self.num2.display(sld2.value())
262
            sld2.valueChanged.connect(self.num2.display)
263
            self.vbox6.addWidget(sld2)
264
            self.vbox6.addWidget(self.num2)
265
            self.gbx6.setLayout(self.vbox6)
266
            self.gbx6.hide()
            #Votos-----
267
268
            self.gbx5 = QGroupBox('Configuración de Filtros III:',
        self)
            self.gbx5.setGeometry(145, 320, 140, 100)
269
270
            self.vbox5 = QVBoxLayout(self)
271
            self.vbox5.addWidget(QLabel('Votación:', self))
272
            self.RbVotacion = []
            butt2 = QRadioButton("Consenso")
273
274
            butt2.setChecked(True)
275
            self.vbox5.addWidget(butt2)
            butt2_b = QRadioButton("Mayoria")
276
277
            self.vbox5.addWidget(butt2_b)
278
            self.RbVotacion.append(butt2)
279
            self.RbVotacion.append(butt2_b)
```

```
280
            self.gbx5.setLayout(self.vbox5)
281
            self.gbx5.hide()
            #EF-----
282
283
            self.gbx7 = QGroupBox('Configuración de Filtros IV:',
        self)
            self.gbx7.setGeometry(290, 200, 130, 220)
284
285
            self.vbox7 = QVBoxLayout(self)
286
            self.vbox7.addWidget(QLabel('Clasificador en filtro:',
       self))
287
            cla_F_EF = EF.cla_filter()
288
            nombre1 = "\n"
289
            self.RbClasif_F_ef = []
290
            for s,cl in enumerate(cla_F_EF):
291
                nombre1 = nombre1 + str(cl[2]) + "\n"
292
            cla_F2_EF = EF.cla_filter2()
293
            nombre2 = "\n"
294
            for s,cl in enumerate(cla_F2_EF):
295
                nombre2 = nombre2 + str(cl[2]) + "\n"
296
            butt3 = QRadioButton(nombre1)
297
            butt3.setChecked(True)
298
            self.vbox7.addWidget(butt3)
299
            butt3_b = QRadioButton(nombre2)
300
            self.vbox7.addWidget(butt3_b)
301
            self.RbClasif_F_ef.append(butt3)
302
            self.RbClasif_F_ef.append(butt3_b)
303
            self.gbx7.setLayout(self.vbox7)
304
            self.gbx7.hide()
305
            #CVCF-----
306
            self.gbx8 = QGroupBox('Configuración de Filtros IV:',
       self)
307
            self.gbx8.setGeometry(290, 200, 130, 220)
308
            self.vbox8 = QVBoxLayout(self)
309
            self.vbox8.addWidget(QLabel('Clasificador en filtro:',
        self))
310
            cla_F_CVCF = CVCF.cla_filter_cvcf()
311
            check4 = True
312
            self.RbClasif_F_cvcf = []
313
            for s,cl in enumerate(cla_F_CVCF):
314
                if check4:
315
                    butt = QRadioButton(str(c1[2]))
316
                    butt.setChecked(True)
317
                    self.vbox8.addWidget(butt)
318
                    self.RbClasif_F_cvcf.append(butt)
319
                    check4 = False
320
                else:
321
                    butt = QRadioButton(str(cl[2]))
322
                    self.vbox8.addWidget(butt)
323
                    self.RbClasif_F_cvcf.append(butt)
324
            self.gbx8.setLayout(self.vbox8)
325
            self.gbx8.hide()
            #IPF-----
326
327
            self.gbx9 = QGroupBox('Configuración de Filtros IV:',
328
            self.gbx9.setGeometry(290, 200, 130, 220)
```

```
329
             self.vbox9 = QVBoxLayout(self)
330
             self.vbox9.addWidget(QLabel('Clasificador en filtro:',
        self))
331
             cla_F_IPF = IPF.cla_filter_ipf()
332
             check5 = True
333
             self.RbClasif_F_ipf = []
334
             for s,cl in enumerate(cla_F_IPF):
335
                 if check5:
336
                     butt = QRadioButton(str(c1[2]))
337
                     butt.setChecked(True)
338
                     self.vbox9.addWidget(butt)
339
                     self.RbClasif_F_ipf.append(butt)
340
                     check5 = False
341
                 else:
342
                     butt = QRadioButton(str(c1[2]))
343
                     self.vbox9.addWidget(butt)
344
                     self.RbClasif_F_ipf.append(butt)
345
             self.gbx9.setLayout(self.vbox9)
346
             self.gbx9.hide()
347
        def btnstate(self,b):
348
             if b.text() == "MIL-Ensemble Filter":
349
350
                 if b.isChecked() == True:
351
                     self.gbx2.show()
352
                     self.gbx5.show()
353
                     self.gbx6.show()
354
                     self.gbx7.show()
355
                     self.btn1.show()
                      print (b.text()+" is selected")
356
357
                 else:
358
                      print (b.text()+" is deselected")
359
                     self.gbx2.hide()
360
                     self.gbx7.hide()
             if b.text() == "MIL-Cross-Validation Committees Filter"
361
362
                 if b.isChecked() == True:
363
                     self.gbx3.show()
364
                     self.gbx5.show()
365
                     self.gbx6.show()
366
                     self.gbx8.show()
367
                     self.btn1.show()
368
                      print (b.text()+" is selected")
369
                 else:
                      print (b.text()+" is deselected")
370
371
                     self.gbx3.hide()
372
                     self.gbx8.hide()
             if b.text() == "MIL-Iterative Partitioning Filter":
373
374
                 if b.isChecked() == True:
                     self.gbx4.show()
375
376
                     self.gbx5.show()
                     self.gbx6.show()
377
378
                     self.gbx9.show()
379
                     self.btn1.show()
380 #
                      print (b.text()+" is selected")
```

```
381
                 else:
                      print (b.text()+" is deselected")
382
383
                     self.gbx4.hide()
384
                     self.gbx9.hide()
385
        def addSliderRuido(self):
386
             self.gbx10 = QGroupBox('Ruido:', self)
387
             self.gbx10.setGeometry(250, 95, 170, 100)
             self.vbox10 = QVBoxLayout(self)
388
389
             sld = QSlider(Qt.Horizontal, self)
390
             sld.setMinimum(0)
391
             sld.setMaximum(6)
392
             sld.setValue(0)
393
             sld.setSingleStep(1)
394
             sld.setPageStep(1)
395
             sld.setTickPosition(QSlider.TicksBelow)
396
             sld.setTickInterval(1)
397
             self.num = QLCDNumber(self)
             self.num.display(sld.value())
398
399
             sld.valueChanged.connect(self.valChange)
400
             self.vbox10.addWidget(sld)
401
             self.vbox10.addWidget(self.num)
402
             self.gbx10.setLayout(self.vbox10)
403
404
        def valChange(self,value):
405
             value = value * 5
406
             self.num.display(value)
407
408
        def ls(self,ruta):
409
             dir, subdirs, archivos = next(walk(ruta))
410
411
             try:
412
                 subdirs.remove("__pycache__")
413
             except:
414
                 print()
415
416
             return subdirs
417
418
    if __name__ == '__main__':
419
        app = QApplication(sys.argv)
420
        ejm = FilterTFG()
421
        ejm.show()
422
         app.aboutToQuit.connect(app.deleteLater)
423
        sys.exit(app.exec_())
```

B.2. Módulo MIL-EF

```
import warnings,copy
from MILpy.data.load_data import load_data
import random as rand
import numpy as np
import pandas as pd
```

```
6 from sklearn.utils import shuffle
7 \quad \texttt{from sklearn.model\_selection import StratifiedKFold}
8 warnings.filterwarnings('ignore')
9 \quad {\tt from \  \, sklearn.metrics \  \, import \  \, roc\_auc\_score} \;, \; \; {\tt accuracy\_score}
10 \quad \textit{\#from } functiones \text{ import } fun\_aux
11 #Import Algorithms
12 from MILpy.Algorithms.simpleMIL import simpleMIL
13 from MILpy.Algorithms.MILBoost import MILBoost
14 from MILpy.Algorithms.maxDD import maxDD
15 from MILpy.Algorithms.CKNN import CKNN
16 from MILpy.Algorithms.EMDD import EMDD
17 from MILpy.Algorithms.BOW import BOW
18
19
   def EF(b,votacion,folds,ruido,clasif_0,clasif_F):
20
        for DataSet in b:
21
            bags,labels,X = load_data(DataSet)
22
            bags,labels = shuffle(bags, labels, random_state=rand.
       randint(0, len(labels)-1))
23
            skf = StratifiedKFold(n_splits=folds)
24
             dataAcc = np.zeros((len(b),len(ruido),folds,2))
25
            print('\n\tDATASET: '+str(DataSet)+'\n')
26
            for ny,k in enumerate(ruido):
27
                print('\t\t=>RUIDO : '+str(k))
28
                file_data = '../filtersApp/tabla.csv'
29
                data = \{\}
                data['EF'] = []
30
                data['Original'] = []
31
32
                data['Filtro_1'] = []
33
                 data['Filtro_2'] = []
34
                fold = 1
                results_Fil = []
35
                 results_Fil2 = []
37
                results_Ori = []
                Clasificadores_fake = clasif()
38
39
                Clasificadores = []
40
                for s,cl in enumerate(Clasificadores_fake):
                     if str(cl[2]) == clasif_0:
41
42
                         Clasificadores.append(cl)
43
                for train_index, test_index in skf.split(bags,
       labels.reshape(len(labels))):
                     print('\t\t=>FOLD : '+str(fold))
45
                     X_train = [bags[i] for i in train_index]
46
                     Y_train = labels[train_index]
                     X_test = [bags[i] for i in test_index]
47
                     Y_test = labels[test_index]
48
49
                     LabelToChange = Porcentaje(len(train_index),k)
50
                     aleatorios = rand.sample(range(0,len(
       train_index)),int(LabelToChange))
51
                     for al in aleatorios:
                         if Y_train[al] == 0:
                             Y_train[al] = Y_train[al]+1
53
54
55
                             Y_train[al] = Y_train[al]-1
56
                     num = int(clasif_F) + 1
```

```
57
                      X_train_NoNy,Y_train_NoNy = mil_cv_filter_ef(
        X_train,Y_train,folds,votacion,num)
58
                       num = 2
    #
                       X_train_NoNy2, Y_train_NoNy2 = mil_cv_filter_ef
59
        (X_train, Y_train, folds, votacion, num)
                       print(' \setminus t \setminus t \mid t => Original')
60
61
                      results_Ori.append(filtrado_final(X_train,
        Y_train, X_test, Y_test, Clasificadores))
                       print(' \setminus t \setminus t \setminus t => Filtrado')
62
                      results_Fil.append(filtrado_final(X_train_NoNy,
63
        Y_train_NoNy, X_test, Y_test, Clasificadores))
64
                       results_Fil2.append(filtrado_final(
        X\_train\_NoNy2, Y\_train\_NoNy2, X\_test, Y\_test))
65
                      fold = fold + 1
                 Clasificadores_filtro = ""
66
67
                 if clasif_F == "0":
68
                      Clasificadores_filtro = cla_filter()
69
                 elif clasif_F == "1":
70
                      Clasificadores_filtro = cla_filter2()
71
                 results_accuracie_F = []
72
                 results_auc_F = []
73
                  results_accuracie_F2 = []
74
                  results_auc_F2 = []
75
                 results_accuracie_0 = []
76
                 results_auc_0 = []
77
                 for h in range(0,len(Clasificadores)):
                      print('\t\t\t-->Clasificador :'+str(
78
        Clasificadores[h][2]))
79
                      data['EF'].append(str(Clasificadores[h][2]))
                      for g in range(0,folds):
80
                          results_accuracie_F.append(results_Fil[g][h
81
        [0]
82
                          results_auc_F.append(results_Fil[g][h][1])
83
                           results\_accuracie\_F2. append(results\_Fil2[g
        ][h][0])
84
    #
                           results\_auc\_F2. append(results\_Fil2[g][h]
        ][1])
                          results_accuracie_0.append(results_Ori[g][h
85
        [0]
86
                          results_auc_0.append(results_Ori[g][h][1])
87
                      print('\t\t\t\t\t-->Original')
88
                      print('\t\t\t\t Precision: '+ str(np.mean())
        results_accuracie_0))+'%')
89
                      data['Original'].append(np.mean(
        results_accuracie_0))
90
                      print('\t\t\t\t Roc Score: '+ str(np.mean(
        results_auc_0)))
91
                      print('\t\t\t\t-->Filtrado por ')
92
                      for h,cl_f0 in enumerate(Clasificadores_filtro)
93
                          print('\t\t\t\t * '+str(cl_f0[2]))
94
                       print(' \setminus t \setminus t \setminus t \setminus t \setminus t --> Filtrado')
95
                      print('\t\t\t\t Precision: '+ str(np.mean())
        results_accuracie_F))+'%')
```

```
96
                     data['Filtro_1'].append(np.mean(
        results_accuracie_F))
97
                     print('\t\t\t\t Roc Score: '+ str(np.mean(
        results_auc_F)))
98
99
                      for h, cl_f0 in enumerate(
        Clasificadores\_filtro2):
100
                          print(' \setminus t \setminus t \setminus t \setminus t + '+str(cl_f0[2]))
                      print(' \setminus t \setminus t \setminus t \setminus t \setminus t --> Filtrado')
101
102
                      results_accuracie_F2))+'%')
                      data['Filtro_2'].append(np.mean(
103
        results_accuracie_F2))
                      104
        results_auc_F2)))
105
                 df = pd.DataFrame(data)
106
                 df.to_csv(file_data, sep=';')
107
    def roc_auc_score_FIXED(y_true, y_pred):
108
109
        if len(np.unique(y_true)) == 1 or len(np.unique(y_true)) ==
         0: # bug in roc_auc_score
110
             return accuracy_score(y_true, np.rint(y_pred))
111
        return roc_auc_score(y_true, y_pred)
112
113
    def Porcentaje(X,Y):
        return X*Y/100
114
115
    def clasif():
116
117
        aux = []
118
        resul1 = [[],[],[],[],[],[],[]]
        resul2 = [[],[],[],[],[],[],[]]
119
120
        resul3 = [[],[],[],[],[],[],[]]
121
        resul4 = [[],[],[],[],[],[],[]]
122
        resul5 = [[],[],[],[],[],[],[]]
123
        resul6 = [[],[],[],[],[],[],[]]
124
        resul7 = [[],[],[],[],[],[],[]]
125
        resul8 = [[],[],[],[],[],[],[]]
126
        roc_m_1 = [[],[],[],[],[],[],[]]
127
        roc_m_2 = [[],[],[],[],[],[],[]]
128
        roc_m_3 = [[],[],[],[],[],[],[]]
129
        roc_m_4 = [[],[],[],[],[],[],[]]
130
        roc_m_5 = [[],[],[],[],[],[],[]]
131
        roc_m_6 = [[],[],[],[],[],[],[]]
132
        roc_m_7 = [[],[],[],[],[],[],[]]
133
        roc_m_8 = [[],[],[],[],[],[],[]]
134
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc_m_1]
135
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
        roc_m_2]
136
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
        resul3, roc_m_3]
137
        BOW_clas = [BOW(), {'k':90, 'covar_type': 'diag', 'n_iter':20},
        'BOW', resul4, roc_m_4]
```

```
138
         CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
        resul5, roc_m_5]
139
         maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
140
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
141
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
142
         aux.append(SMILaMax)
         aux.append(SMILaMin)
143
144
         aux.append(SMILaExt)
145
         aux.append(BOW_clas)
146
         aux.append(CKNN_cla)
147
         aux.append(maxDD_cl)
148
         aux.append(EMDD_cla)
149
         aux.append(MILB_cla)
150
        return aux
151
152
    def mil_cv_filter_ef(bags_f,labels_f,folds,votacion,num):
153
         print(' \setminus t \setminus t \setminus tFiltrando...')
154
         if num == 1:
155
             Clasificadores = cla_filter()
156
         else:
157
             Clasificadores = cla_filter2()
         bags_f,labels_f = shuffle(bags_f, labels_f, random_state=
158
        rand.randint(0, 100))
         if len(labels_f) < folds:</pre>
159
160
             folds = len(labels_f)
         skf = StratifiedKFold(n_splits=folds)
161
162
         isCorrectLabel = np.ones((len(Clasificadores), len(labels_f
        )), dtype=bool)
163
        for train_index, test_index in skf.split(bags_f, labels_f.
        reshape(len(labels_f))):
             X_train = [bags_f[i] for i in train_index]
164
165
             Y_train = labels_f[train_index]
166
             X_test = [bags_f[i] for i in test_index]
167
             Y_test = labels_f[test_index]
168
             for s,cl in enumerate(Clasificadores):
169
170
                 try:
171
                     if len(Clasificadores[s][1]) > 0:
172
                          Clasificadores[s][0].fit(X_train, Y_train,
        **Clasificadores[s][1])
173
174
                          Clasificadores[s][0].fit(bags_f, labels_f)
175
                     predictions = Clasificadores[s][0].predict(
        X_test)
176
                     if (isinstance(predictions, tuple)):
177
                          predictions = predictions[0]
                 except:
178
179
                     print('Fallo, segundo intento')
180
                     try:
                          if len(Clasificadores[s][1]) > 0:
181
182
                              Clasificadores[s][0].fit(X_train,
        Y_train, **Clasificadores[s][1])
183
                          else:
```

```
184
                              Clasificadores[s][0].fit(bags_f,
        labels_f)
185
                         predictions = Clasificadores[s][0].predict(
        X_test)
186
                          if (isinstance(predictions, tuple)):
187
                              predictions = predictions[0]
188
                         print('OK')
189
                     except:
190
                         print('Posible fallo en bolsa...')
                         try:
191
192
                              if len(Clasificadores[s][1]) > 0:
193
                                  Clasificadores[s][0].fit(X_train,
        Y_train, **Clasificadores[s][1])
                              else:
194
195
                                  Clasificadores[s][0].fit(X_train,
        Y_train)
196
                              predictions = Clasificadores[s][0].
        predict(X_test)
197
                              if (isinstance(predictions, tuple)):
198
                                  predictions = predictions[0]
199
                              print('OK')
200
                          except:
201
                              try:
202
                                  print('Cambiando clasificador..')
203
                                  Cla_error = simpleMIL()
                                  par_error = {'type': 'max'}
204
205
                                  if len(par_error) > 0:
206
                                      Cla_error.fit(X_train, Y_train,
         **par_error)
207
                                  else:
208
                                      Cla_error.fit(X_train, Y_train)
209
                                  predictions = Cla_error.predict(
        X_train)
210
                                  if (isinstance(predictions, tuple))
211
                                      predictions = predictions[0]
                                  print('OK')
212
213
                              except:
214
                                  print('Fallo')
215
                 for l,p in enumerate(test_index):
216
                     try:
217
                          isCorrectLabel[s][p] = (Y_test.T[0][1] ==
        np.sign(predictions[1]))
218
                     except IndexError:
219
                         print("Fallo en ultimo indice!")
        if votacion == 'maxVotos':
220
221
             noisyBags = []
222
             for n in range(0,len(labels_f)):
223
                 aux = 0
224
                 for m in range(0,len(Clasificadores)):
225
                     if not isCorrectLabel[m][n]:
226
                         aux = aux+1
227
                 if aux > len(Clasificadores)/2:
228
                     noisyBags.append(n)
```

```
229
         if votacion == 'consenso':
230
             noisyBags = []
231
             for n in range(0,len(labels_f)):
232
                 aux = True
233
                 for m in range(0,len(Clasificadores)):
234
                     if aux:
235
                         if isCorrectLabel[m][n]:
236
                              aux = False
237
                 if aux:
                     noisyBags.append(n)
238
239
        nonNoisyBags = []
240
         cont = 0
241
        if len(noisyBags) == 0:
242
             for z in range(0,len(bags_f)):
243
                 nonNoisyBags.append(z)
244
        else:
245
             for z in range(0,len(bags_f)):
246
                 if cont < len(noisyBags) and noisyBags[cont] == z:</pre>
247
                     cont = cont + 1
248
                 else:
249
                     nonNoisyBags.append(z)
250
        print('\t\t=>Elementos eliminados con Filter '+str(num +
        1)+': '+str(len(noisyBags)))
251
        X_train_NoNy = [bags_f[i] for i in nonNoisyBags]
        Y_train_NoNy = labels_f[nonNoisyBags]
252
253
        return X_train_NoNy,Y_train_NoNy
254
255
    def filtrado_final(X_train,Y_train,X_test,Y_test,cl_fil):
256
        Clasificadores = cl_fil
257
        results = np.zeros((len(Clasificadores),2))
258
        aux_lab = True
259
        if len(np.unique(Y_train)) == 1:
260
             if Y_train[0] == 0:
261
                 for b in range(0,len(Y_test)):
262
                     if aux_lab:
263
                         if Y_test[b] == 1:
264
                              aux_Y_train = copy.copy(Y_test[b])
265
                              aux_X_train = copy.copy(X_test[b])
266
                              Y_test[b] = copy.copy(Y_train[0])
                              X_test[b] = copy.copy(X_train[0])
267
268
                              Y_train[0] = copy.copy(aux_Y_train)
269
                              X_train[0] = copy.copy(aux_X_train)
270
                              aux_lab = False
271
             else:
272
                 for b in range(0,len(Y_test)):
273
                     if aux_lab:
274
                          if Y_test[b] == 0:
275
                              aux_Y_train = copy.copy(Y_test[b])
                              aux_X_train = copy.copy(X_test[b])
276
                              Y_test[b] = copy.copy(Y_train[0])
277
                              X_test[b] = copy.copy(X_train[0])
278
279
                              Y_train[0] = copy.copy(aux_Y_train)
280
                              X_train[0] = copy.copy(aux_X_train)
281
                              aux_lab = False
```

```
282
        for s,cl in enumerate(Clasificadores):
283
             print('\t \t \t \t --> Clasificador : '+str(cl[2]))
284
            try:
285
                 if len(Clasificadores[s][1]) > 0:
                     Clasificadores[s][0].fit(X_train, Y_train, **
286
        Clasificadores[s][1])
287
                 else:
288
                     Clasificadores[s][0].fit(X_train, Y_train)
289
                predictions = Clasificadores[s][0].predict(X_test)
                if (isinstance(predictions, tuple)):
290
291
                     predictions = predictions[0]
                 accuracie = (100 * np.average(Y_test.T == np.sign(
292
        predictions)))
293
                auc_score = (100 * roc_auc_score_FIXED(Y_test,
        predictions))
294
            except:
295
                print('Fallo, segundo intento')
296
297
                 trv:
298
                     if len(Clasificadores[s][1]) > 0:
299
                         Clasificadores[s][0].fit(X_train, Y_train,
        **Clasificadores[s][1])
300
                     else:
301
                         Clasificadores[s][0].fit(X_train, Y_train)
302
                     predictions = Clasificadores[s][0].predict(
        X_test)
303
                     if (isinstance(predictions, tuple)):
304
                         predictions = predictions[0]
305
                     accuracie = (100 * np.average(Y_test.T == np.
        sign(predictions)))
306
                     auc_score = (100 * roc_auc_score_FIXED(Y_test,
        predictions))
307
                     print('OK')
308
                 except:
309
                     print('Fallo en calculo')
310
            results[s][0] = accuracie
311
            results[s][1] = auc_score
             312
        t \mid t \mid t \mid t Roc Score: '+ str(auc\_score))
313
        return results
314
315
    def cla_filter():
316
        aux = []
317
        resul1 = [[],[],[],[],[],[],[]]
        resul2 = [[],[],[],[],[],[],[]]
318
        resul3 = [[],[],[],[],[],[],[]]
319
        resul4 = [[],[],[],[],[],[],[]]
320
        resul5 = [[],[],[],[],[],[],[]]
321
322
        resul6 = [[],[],[],[],[],[],[]]
        resul7 = [[],[],[],[],[],[],[]]
323
        resul8 = [[],[],[],[],[],[],[]]
324
325
        roc_m_1 = [[],[],[],[],[],[],[]]
326
        roc_m_2 = [[],[],[],[],[],[],[]]
327
        roc_m_3 = [[],[],[],[],[],[],[]]
```

```
328
        roc_m_4 = [[],[],[],[],[],[],[]]
329
        roc_m_5 = [[],[],[],[],[],[],[]]
330
        roc_m_6 = [[],[],[],[],[],[],[]]
331
        roc_m_7 = [[],[],[],[],[],[],[]]
332
        roc_m_8 = [[],[],[],[],[],[],[]]
333
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc_m_1]
334
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
        roc_m_2]
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
335
        resul3, roc_m_3]
336
        BOW_clas = [BOW(), {'k':90, 'covar_type': 'diag', 'n_iter':20},
        'BOW', resul4, roc_m_4]
        CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
337
        resul5, roc_m_5]
        maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
338
339
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
340
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
341
          aux.append(SMILaMax)
    #
342
          aux.append(SMILaMin)
343
          aux.append(SMILaExt)
344
         aux.append(BOW_clas)
345
         aux.append(CKNN_cla)
346
          aux.append(maxDD_cl)
347
         aux.append(EMDD_cla)
348
          aux.append(MILB_cla)
349
        return aux
350
351
    def cla_filter2():
352
        aux = []
353
        resul1 = [[],[],[],[],[],[],[]]
354
        resul2 = [[],[],[],[],[],[],[]]
355
        resul3 = [[],[],[],[],[],[],[]]
356
        resul4 = [[],[],[],[],[],[],[]]
357
        resul5 = [[],[],[],[],[],[],[]]
358
        resul6 = [[],[],[],[],[],[],[]]
359
        resul7 = [[],[],[],[],[],[],[]]
360
        resul8 = [[],[],[],[],[],[],[]]
        roc_m_1 = [[],[],[],[],[],[],[]]
361
362
        roc_m_2 = [[],[],[],[],[],[],[]]
363
        roc_m_3 = [[],[],[],[],[],[],[]]
364
        roc_m_4 = [[],[],[],[],[],[],[]]
365
        roc_m_5 = [[],[],[],[],[],[],[]]
366
        roc_m_6 = [[],[],[],[],[],[],[]]
367
        roc_m_7 = [[],[],[],[],[],[],[]]
368
        roc_m_8 = [[],[],[],[],[],[],[]]
369
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc_m_1]
370
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
        roc_m_2]
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
371
        resul3, roc_m_3]
372
        BOW_clas = [BOW(), {'k':90, 'covar_type': 'diag', 'n_iter':20},
        'BOW', resul4, roc_m_4]
```

```
373
        CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
        resul5, roc_m_5]
374
        maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
375
376
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
377
        aux.append(SMILaMax)
378 #
        aux.append(SMILaMin)
379
        aux.append(SMILaExt)
380 #
        aux.append(BOW\_clas)
381 #
        aux.append(CKNN\_cla)
382
        aux.append(maxDD_cl)
383 #
        aux.append(EMDD_cla)
384 #
        aux.append(MILB\_cla)
385
        return aux
```

B.3. Módulo MIL-CVCF

```
1 import warnings, copy
   from MILpy.data.load_data import load_data
   import random as rand
   import numpy as np
   import pandas as pd
   from sklearn.utils import shuffle
   from sklearn.model_selection import StratifiedKFold
   warnings.filterwarnings('ignore')
9 from sklearn.metrics import roc_auc_score, accuracy_score
10 #from functiones import fun_aux
11 #Import Algorithms
12 from MILpy.Algorithms.simpleMIL import simpleMIL
13 from MILpy.Algorithms.MILBoost import MILBoost
14 from MILpy.Algorithms.maxDD import maxDD
15 from MILpy.Algorithms.CKNN import CKNN
16 from MILpy.Algorithms.EMDD import EMDD
17 from MILpy.Algorithms.BOW import BOW
18
19
   def CVcF(b,votacion,folds,ruido,clasif_0,clasif_F):
20
       for DataSet in b:
21
            bags,labels,X = load_data(DataSet)
22
            bags,labels = shuffle(bags, labels, random_state=rand.
       randint(0, len(labels)-1))
23
            skf = StratifiedKFold(n_splits=folds)
24
             dataAcc = np.zeros((len(b),len(ruido),folds,2))
25
            print('\n\tDATASET: '+str(DataSet)+'\n')
26
27
            for ny,k in enumerate(ruido):
28
                print('\t\t=>RUIDO : '+str(k))
29
                file_data = '../filtersApp/tabla.csv'
30
                data = \{\}
                data['CVCF'] = []
31
                data['Original'] = []
32
33
34
                Clasificadores_fake = clasif()
35
                Clasificadores = []
36
                for s,cl in enumerate(Clasificadores_fake):
37
                    if str(cl[2]) == clasif_0:
38
                        Clasificadores.append(cl)
39
40
                Clasificadores_fake2 = cla_filter_cvcf()
41
                Clasificadores_filtro = []
42
                for s,cl in enumerate(Clasificadores_fake2):
                    if str(cl[2]) == clasif_F:
43
44
                        Clasificadores_filtro.append(cl)
45
                 Clasificadores_filtro = cla_filter_cvcf()
46
                for h,cl_f0 in enumerate(Clasificadores_filtro):
47
                        data[str(cl_f0[2])] = []
48
                for s,cl in enumerate(Clasificadores):
49
                    fold = 1
50
```

```
51
                      results_Fil = np.zeros((len(
       Clasificadores_filtro), folds))
                     results_Fil = [[] for x in range(len(
52
       Clasificadores_filtro))]
53
                     results_Ori = []
                     clasificador_ = Clasificadores[s]
54
55
                     for train_index, test_index in skf.split(bags,
       labels.reshape(len(labels))):
56
                          print(' \setminus t \setminus t = FOLD : '+str(fold))
57
                         X_train = [bags[i] for i in train_index]
58
                         Y_train = labels[train_index]
59
                         X_test = [bags[i] for i in test_index]
60
                         Y_test = labels[test_index]
61
                         LabelToChange = Porcentaje(len(train_index)
       , k)
62
                         aleatorios = rand.sample(range(0,len(
       train_index)),int(LabelToChange))
63
                         for al in aleatorios:
64
                              if Y_train[al] == 0:
65
                                  Y_train[al] = Y_train[al]+1
66
                              else:
67
                                  Y_train[al] = Y_train[al]-1
68
69
                         for j,cl_f in enumerate(
       Clasificadores_filtro):
70
                              clasificador_f = Clasificadores_filtro[
       j]
71
                               \texttt{print(')} \ t \ t \ t => Filtrado \ con \ '+str(cl_f)
       [2]))
72
                              X_train_NoNy,Y_train_NoNy =
       mil_cv_filter_cvcf(X_train,Y_train,folds,votacion,
       clasificador_f)
73
                              results_Fil[j].append(filtrado_final(
       X_train_NoNy,Y_train_NoNy,X_test,Y_test,clasificador_))
74
   #
                          print(len(X_train_NoNy))
75
   #
                          print(len(X_train))
76
   #
                          print(' \setminus t \setminus t \setminus t => Original')
                         results_Ori.append(filtrado_final(X_train,
77
       Y_train, X_test, Y_test, clasificador_))
78
                         fold = fold + 1
79
                     results_accuracie_0 = []
80
                     results_auc_0 = []
81
                     print('\t\t\t-->Clasificador :'+str(
       clasificador_[2]))
82
                     data['CVCF'].append(str(clasificador_[2]))
83
                     for g in range(0,folds):
84
                         results_accuracie_0.append(results_Ori[g
       [0]
85
                         results_auc_0.append(results_Ori[g][1])
86
                     print('\t\t\t\t\t-->Original')
                     print('\t\t\t\t Precision: '+ str(np.mean(
87
       results_accuracie_0, dtype=np.float64))+'%')
88
                     data['Original'].append(np.mean(
       results_accuracie_0))
```

```
89
                     print('\t\t\t\t Roc Score: '+ str(np.mean(
        results_auc_0, dtype=np.float64)))
90
91
                     for h,cl_f0 in enumerate(Clasificadores_filtro)
92
                          results_accuracie_F = []
93
                          results_auc_F = []
                          print('\t\t\t\t-->Filtrado por '+str(
94
        cl_f0[2]))
95
                          for f in range(0, folds):
96
                              results_accuracie_F.append(results_Fil[
        h][f][0])
97
                              results_auc_F.append(results_Fil[h][f
        ][1])
                          print('\t\t\t\t Precision: '+ str(np.mean
98
        (results_accuracie_F, dtype=np.float64))+'%')
99
                          data[str(cl_f0[2])].append(np.mean(
        results_accuracie_F))
100
                         print('\t\t\t\t Roc Score: '+ str(np.mean
        (results_auc_F, dtype=np.float64)))
101
                 df = pd.DataFrame(data)
102
                 df.to_csv(file_data, sep=';')
103
    def mil_cv_filter_cvcf(bags_f,labels_f,folds,votacion,
104
        clasificador_):
         print(' \setminus t \setminus t \setminus tFiltrando...')
105
        bags_f,labels_f = shuffle(bags_f, labels_f, random_state=
106
        rand.randint(0,len(labels_f)-1))
107
        if len(labels_f) < folds:</pre>
108
             folds = len(labels_f)
109
        skf = StratifiedKFold(n_splits=folds)
110
        isCorrectLabel = np.ones((folds, len(labels_f)), dtype=bool
        )
111
        fold = 0
        for train_index, test_index in skf.split(bags_f, labels_f.
112
        reshape(len(labels_f))):
113
             X_train = [bags_f[i] for i in train_index]
114
             Y_train = labels_f[train_index]
115
116
             try:
117
                 if len(clasificador_[1]) > 0:
118
                     clasificador_[0].fit(X_train, Y_train, **
        clasificador_[1])
119
                 else:
120
                     clasificador_[0].fit(bags_f, labels_f)
121
                 predictions = clasificador_[0].predict(X_train)
122
                 if (isinstance(predictions, tuple)):
123
                     predictions = predictions[0]
124
             except:
125
                 print('Fallo, segundo intento')
126
                 try:
127
                     if len(clasificador_[1]) > 0:
128
                          clasificador_[0].fit(X_train, Y_train, **
        clasificador_[1])
```

```
129
                     else:
130
                          clasificador_[0].fit(bags_f, labels_f)
131
                     predictions = clasificador_[0].predict(X_train)
132
                     if (isinstance(predictions, tuple)):
133
                          predictions = predictions[0]
                     print('OK')
134
135
                 except:
136
                     print('Posible fallo en bolsa...')
137
                     try:
138
                          if len(clasificador_[1]) > 0:
139
                              clasificador_[0].fit(X_train, Y_train,
        **clasificador_[1])
140
                          else:
                              clasificador_[0].fit(X_train, Y_train)
141
142
                          predictions = clasificador_[0].predict(
        X_train)
143
                          if (isinstance(predictions, tuple)):
144
                              predictions = predictions[0]
145
                          print('OK')
146
                     except:
147
                          try:
                              print('Cambiando clasificador..')
148
149
                              Cla_error = simpleMIL()
                              par_error = {'type': 'max'}
150
                              if len(par_error) > 0:
151
152
                                  Cla_error.fit(X_train, Y_train, **
        par_error)
153
                              else:
154
                                  Cla_error.fit(X_train, Y_train)
155
                              predictions = Cla_error.predict(X_train
        )
156
                              if (isinstance(predictions, tuple)):
157
                                  predictions = predictions[0]
                              print('OK')
158
159
                          except:
160
                              print('Fallo')
161
             for l,p in enumerate(train_index):
162
                 try:
163
                     isCorrectLabel[fold][p] = (Y_train.T[0][1] ==
        np.sign(predictions[1]))
164
                 except IndexError:
165
                     print("Fallo en ultimo indice!")
166
             fold = fold + 1
167
168
         if votacion == 'maxVotos':
             noisyBags = []
169
170
             for n in range(0,len(labels_f)):
171
                 aux = 0
172
                 for m in range(0,folds):
173
                     if not isCorrectLabel[m][n]:
174
                         aux = aux+1
175
                 if aux > folds/2:
176
                     noisyBags.append(n)
177
        if votacion == 'consenso':
```

```
noisyBags = []
178
             for n in range(0,len(labels_f)):
179
                 aux = True
180
181
                 for m in range(0,folds):
182
                     if aux:
183
                          if isCorrectLabel[m][n]:
184
                              aux = False
185
                 if aux:
186
                     noisyBags.append(n)
187
        nonNoisyBags = []
188
        cont = 0
        if len(noisyBags) == 0:
189
             for z in range(0,len(bags_f)):
190
191
                 nonNoisyBags.append(z)
192
        6156.
193
             for z in range(0,len(bags_f)):
194
                 if cont < len(noisyBags) and noisyBags[cont] == z:</pre>
195
                     cont = cont + 1
196
                 else:
197
                     nonNoisyBags.append(z)
198
        print('\t\t=>Elementos eliminados por '+clasificador_[2]+
        ': '+str(len(noisyBags)))
        X_train_NoNy = [bags_f[i] for i in nonNoisyBags]
199
        Y_train_NoNy = labels_f[nonNoisyBags]
200
        return X_train_NoNy,Y_train_NoNy
201
202
203
    def filtrado_final(X_train,Y_train,X_test,Y_test,clasificador_)
204
        results = np.zeros((2))
205
        accuracie = 0
206
        auc_score = 0
207
        aux_lab = True
208
        if len(np.unique(Y_train)) == 1:
209
             if Y_train[0] == 0:
210
                 for b in range(0,len(Y_test)):
211
                     if aux_lab:
212
                          if Y_test[b] == 1:
213
                              aux_Y_train = copy.copy(Y_test[b])
                              aux_X_train = copy.copy(X_test[b])
214
215
                              Y_test[b] = copy.copy(Y_train[0])
                              X_test[b] = copy.copy(X_train[0])
216
217
                              Y_train[0] = copy.copy(aux_Y_train)
218
                              X_train[0] = copy.copy(aux_X_train)
219
                              aux_lab = False
220
             else:
221
                 for b in range(0,len(Y_test)):
222
                     if aux_lab:
223
                          if Y_test[b] == 0:
                              aux_Y_train = copy.copy(Y_test[b])
224
225
                              aux_X_train = copy.copy(X_test[b])
226
                              Y_test[b] = copy.copy(Y_train[0])
227
                              X_test[b] = copy.copy(X_train[0])
228
                              Y_train[0] = copy.copy(aux_Y_train)
229
                              X_train[0] = copy.copy(aux_X_train)
```

```
230
                             aux_lab = False
231
        try:
232
            if len(clasificador_[1]) > 0:
233
                clasificador_[0].fit(X_train, Y_train, **
        clasificador_[1])
234
            else.
235
                clasificador_[0].fit(X_train, Y_train)
236
            predictions = clasificador_[0].predict(X_test)
            if (isinstance(predictions, tuple)):
237
                predictions = predictions[0]
238
239
            accuracie = (100 * np.average(Y_test.T == np.sign(
       predictions)))
240
            auc_score = (100 * roc_auc_score_FIXED(Y_test,
       predictions))
241
        except:
242
            print('Fallo, segundo intento')
243
244
            try:
245
                if len(clasificador_[1]) > 0:
246
                    clasificador_[0].fit(X_train, Y_train, **
        clasificador_[1])
247
                else:
248
                    clasificador_[0].fit(X_train, Y_train)
249
                predictions = clasificador_[0].predict(X_test)
250
                if (isinstance(predictions, tuple)):
251
                    predictions = predictions[0]
                accuracie = (100 * np.average(Y_test.T == np.sign(
252
       predictions)))
253
                auc_score = (100 * roc_auc_score_FIXED(Y_test,
       predictions))
254
                print('OK')
255
            except:
256
                print('Fallo en calculo')
257
        results[0] = accuracie
258
        results[1] = auc_score
259
         t\t Roc Score: '+ str(auc_score))
260
        return results
261
    def roc_auc_score_FIXED(y_true, y_pred):
262
        if len(np.unique(y_true)) == 1 or len(np.unique(y_true)) ==
263
         0: # bug in roc_auc_score
264
            return accuracy_score(y_true, np.rint(y_pred))
265
        return roc_auc_score(y_true, y_pred)
266
267
    def Porcentaje(X,Y):
268
        return X*Y/100
269
270 def clasif():
271
        aux = []
        resul1 = [[],[],[],[],[],[],[]]
272
        resul2 = [[],[],[],[],[],[],[]]
273
274
        resul3 = [[],[],[],[],[],[],[]]
275
        resul4 = [[],[],[],[],[],[],[]]
```

```
276
        resul5 = [[],[],[],[],[],[],[]]
277
        resul6 = [[],[],[],[],[],[],[]]
        resul7 = [[],[],[],[],[],[],[]]
278
279
        resul8 = [[],[],[],[],[],[],[]]
        roc_m_1 = [[],[],[],[],[],[],[]]
280
        roc_m_2 = [[],[],[],[],[],[],[]]
281
        roc_m_3 = [[],[],[],[],[],[],[]]
282
283
        roc_m_4 = [[],[],[],[],[],[],[]]
        roc_m_5 = [[],[],[],[],[],[],[]]
284
        roc_m_6 = [[],[],[],[],[],[],[]]
285
        roc_m_7 = [[],[],[],[],[],[],[]]
286
287
        roc_m_8 = [[],[],[],[],[],[],[]]
288
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc_m_1]
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
289
        roc_m_2]
290
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
        resul3, roc_m_3]
291
        BOW_clas = [BOW(), {'k':90, 'covar_type': 'diag', 'n_iter':20},
        'BOW', resul4, roc_m_4]
292
        CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
        resul5, roc_m_5]
        maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
293
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
294
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
295
296
        aux.append(SMILaMax)
297
        aux.append(SMILaMin)
298
        aux.append(SMILaExt)
299
        aux.append(BOW_clas)
300
         aux.append(CKNN_cla)
301
         aux.append(maxDD_cl)
302
         aux.append(EMDD_cla)
303
         aux.append(MILB_cla)
304
         return aux
305
306
    def cla_filter_cvcf():
307
        aux = []
308
        resul1 = [[],[],[],[],[],[],[]]
309
        resul2 = [[],[],[],[],[],[],[]]
310
        resul3 = [[],[],[],[],[],[],[]]
311
        resul4 = [[],[],[],[],[],[],[]]
312
        resul5 = [[],[],[],[],[],[],[]]
313
        resul6 = [[],[],[],[],[],[],[]]
314
        resul7 = [[],[],[],[],[],[],[]]
        resul8 = [[],[],[],[],[],[],[]]
315
316
        roc_m_1 = [[],[],[],[],[],[],[]]
        roc_m_2 = [[],[],[],[],[],[],[]]
317
        roc_m_3 = [[],[],[],[],[],[],[]]
318
        roc_m_4 = [[],[],[],[],[],[],[]]
319
320
        roc_m_5 = [[],[],[],[],[],[],[]]
        roc_m_6 = [[],[],[],[],[],[],[]]
321
        roc_m_7 = [[],[],[],[],[],[],[]]
322
        roc_m_8 = [[],[],[],[],[],[],[]]
323
```

```
324
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc_m_1]
325
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
        roc_m_2]
326
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
        resul3, roc_m_3]
        BOW_clas = [BOW(),{'k':90,'covar_type':'diag','n_iter':20},
327
        'BOW', resul4, roc_m_4]
328
        CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
        resul5, roc_m_5]
        maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
329
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
330
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
331
332
        aux.append(SMILaMax)
333
        aux.append(SMILaMin)
334
        aux.append(SMILaExt)
335
        aux.append(BOW_clas)
336
        aux.append(CKNN_cla)
        aux.append(maxDD_c1)
337
338
        aux.append(EMDD_cla)
339
        aux.append(MILB_cla)
340
        return aux
```

B.4. Módulo MIL-IPF

```
1 import warnings, copy
   from MILpy.data.load_data import load_data
   import random as rand
   import numpy as np
   import pandas as pd
   from sklearn.utils import shuffle
   from sklearn.model_selection import StratifiedKFold
   warnings.filterwarnings('ignore')
9 from sklearn.metrics import roc_auc_score, accuracy_score
10 #from functiones import fun_aux
11 #Import Algorithms
12 from MILpy.Algorithms.simpleMIL import simpleMIL
13 from MILpy.Algorithms.MILBoost import MILBoost
14 from MILpy.Algorithms.maxDD import maxDD
15 from MILpy.Algorithms.CKNN import CKNN
16 from MILpy.Algorithms.EMDD import EMDD
17 from MILpy.Algorithms.MILES import MILES
18 from MILpy.Algorithms.BOW import BOW
19
20
   def IPF(b,votacion,folds,ruido,clasif_0,clasif_F):
21
       for DataSet in b:
22
           bags,labels,X = load_data(DataSet)
23
           bags,labels = shuffle(bags, labels, random_state=rand.
       randint(0, len(labels)-1))
24
           skf = StratifiedKFold(n_splits=folds)
25
             dataAcc = np.zeros((len(b),len(ruido),folds,2))
26
           print('\n\tDATASET: '+str(DataSet)+'\n')
27
28
           for ny,k in enumerate(ruido):
29
               print('\t\t=>RUIDO : '+str(k))
30
               file_data = '../filtersApp/tabla.csv'
31
               data = \{\}
                data['IPF'] = []
32
               data['Original'] = []
33
34
35
               Clasificadores_fake = clasif()
36
               Clasificadores = []
37
                for s,cl in enumerate(Clasificadores_fake):
38
                    if str(cl[2]) == clasif_0:
39
                        Clasificadores.append(cl)
40
                Clasificadores_fake2 = cla_filter_ipf()
41
42
                Clasificadores_filtro = []
                for s,cl in enumerate(Clasificadores_fake2):
43
                    if str(c1[2]) == clasif_F:
44
45
                        Clasificadores_filtro.append(cl)
46
                for h,cl_f0 in enumerate(Clasificadores_filtro):
47
                        data[str(cl_f0[2])] = []
48
49
                for s,cl in enumerate(Clasificadores):
50
                    fold = 1
```

```
51
                      results_Fil = np.zeros((len(
       Clasificadores_filtro), folds))
                     results_Fil = [[] for x in range(len(
52
       Clasificadores_filtro))]
53
                     results_Ori = []
                     clasificador_ = Clasificadores[s]
54
55
                     for train_index, test_index in skf.split(bags,
       labels.reshape(len(labels))):
56
                          print(' \setminus t \setminus t = FOLD : '+str(fold))
57
                         X_train = [bags[i] for i in train_index]
58
                         Y_train = labels[train_index]
59
                         X_test = [bags[i] for i in test_index]
60
                         Y_test = labels[test_index]
61
                         LabelToChange = Porcentaje(len(train_index)
       , k)
62
                         aleatorios = rand.sample(range(0,len(
       train_index)),int(LabelToChange))
63
                         for al in aleatorios:
64
                              if Y_train[al] == 0:
65
                                  Y_train[al] = Y_train[al]+1
66
                              else:
67
                                  Y_train[al] = Y_train[al]-1
68
69
                         for j,cl_f in enumerate(
       Clasificadores_filtro):
70
                              clasificador_f = Clasificadores_filtro[
       j]
71
                               \texttt{print(')} \ t \ t \ t => Filtrado \ con \ '+str(cl_f)
       [2]))
72
                              X_train_NoNy,Y_train_NoNy =
       mil_cv_filter_ipf(X_train,Y_train,folds,votacion,
       clasificador_f)
73
                              results_Fil[j].append(filtrado_final(
       X_train_NoNy,Y_train_NoNy,X_test,Y_test,clasificador_))
74
   #
                          print(len(X_train_NoNy))
75
   #
                          print(len(X_train))
76
   #
                          print(' \setminus t \setminus t \setminus t => Original')
                         results_Ori.append(filtrado_final(X_train,
77
       Y_train, X_test, Y_test, clasificador_))
78
                         fold = fold + 1
79
                     results_accuracie_0 = []
80
                     results_auc_0 = []
81
                     print('\t\t\t-->Clasificador :'+str(
       clasificador_[2]))
82
                     data['IPF'].append(str(clasificador_[2]))
83
                     for g in range(0,folds):
84
                         results_accuracie_0.append(results_Ori[g
       [0]
85
                         results_auc_0.append(results_Ori[g][1])
86
                     print('\t\t\t\t\t-->Original')
                     print('\t\t\t\t Precision: '+ str(np.mean(
87
       results_accuracie_0, dtype=np.float64))+'%')
88
                     data['Original'].append(np.mean(
       results_accuracie_0))
```

```
89
                      print('\t\t\t\t Roc Score: '+ str(np.mean(
        results_auc_0, dtype=np.float64)))
 90
91
                      for h,cl_f0 in enumerate(Clasificadores_filtro)
92
                          results_accuracie_F = []
93
                          results_auc_F = []
                          print('\t\t\t\t-->Filtrado por '+str(
94
        cl_f0[2]))
 95
                          for f in range(0, folds):
96
                              results_accuracie_F.append(results_Fil[
        h][f][0])
97
                              results_auc_F.append(results_Fil[h][f
        ][1])
98
                          print('\t\t\t\t Precision: '+ str(np.mean
        (results_accuracie_F, dtype=np.float64))+'%')
99
                          data[str(cl_f0[2])].append(np.mean(
        results_accuracie_F))
100
                          print('\t\t\t\t Roc Score: '+ str(np.mean
        (results_auc_F, dtype=np.float64)))
101
                 df = pd.DataFrame(data)
102
                 df.to_csv(file_data, sep=';')
103
    def mil_cv_filter_ipf(bags_f,labels_f,folds,votacion,
104
        clasificador_):
         print(' \setminus t \setminus t \setminus tFiltrando...')
105
106
         error = 0.01
         toStop = 3
107
         stop = True
108
109
         countToStop = 0
110
         vuelta = 0
111
         if len(labels_f) < folds:</pre>
112
             folds = len(labels_f)
         skf = StratifiedKFold(n_splits=folds)
113
114
115
         while stop:
116
             bags_f,labels_f = shuffle(bags_f, labels_f,
        random_state=rand.randint(0, len(labels_f)-1))
117
             isCorrectLabel = np.ones((folds, len(labels_f)), dtype=
        bool)
118
             fold = 0
119
120
             for train_index, test_index in skf.split(bags_f,
        labels_f.reshape(len(labels_f))):
121
                 X_train = [bags_f[i] for i in train_index]
                 Y_train = labels_f[train_index]
122
                  print(' \setminus t \setminus t = FOLD : '+str(fold))
123
124
                 try:
125
                      if len(clasificador_[1]) > 0:
                          clasificador_[0].fit(X_train, Y_train, **
126
        clasificador_[1])
127
                      else:
128
                          clasificador_[0].fit(bags_f, labels_f)
129
                      predictions = clasificador_[0].predict(X_train)
```

```
130
                     if (isinstance(predictions, tuple)):
131
                          predictions = predictions[0]
132
                 except:
133
                     print('Fallo, segundo intento')
134
                     try:
135
                          if len(clasificador_[1]) > 0:
136
                              clasificador_[0].fit(X_train, Y_train,
        **clasificador_[1])
137
138
                              clasificador_[0].fit(bags_f, labels_f)
139
                          predictions = clasificador_[0].predict(
        X_train)
140
                          if (isinstance(predictions, tuple)):
                              predictions = predictions[0]
141
142
                          print('OK')
143
                     except:
144
                          print('Posible fallo en bolsa...')
145
                          try:
146
                              print('Cambiando clasificador..')
147
                              Cla_error = simpleMIL()
148
                              par_error = {'type': 'max'}
                              if len(par_error) > 0:
149
150
                                  Cla_error.fit(X_train, Y_train, **
        par_error)
151
                              else:
152
                                  Cla_error.fit(X_train, Y_train)
153
                              predictions = Cla_error.predict(X_train
        )
154
                              if (isinstance(predictions, tuple)):
155
                                  predictions = predictions[0]
156
                              print('OK')
157
                          except:
158
                              print('Fallo')
159
                 for 1,p in enumerate(train_index):
160
                     try:
161
                          isCorrectLabel[fold][p] = (Y_train.T[0][1]
        == np.sign(predictions[1]))
162
                     except IndexError:
163
                         print("Fallo en ultimo indice!")
164
                 fold = fold + 1
165
             if votacion == 'maxVotos':
166
                 noisyBags = []
167
                 for n in range(0,len(labels_f)):
168
                     aux = 0
169
                     for m in range(0,folds):
170
                          if not isCorrectLabel[m][n]:
171
                              aux = aux+1
172
                     if aux > folds/2:
173
                         noisyBags.append(n)
             if votacion == 'consenso':
174
175
                 noisyBags = []
176
                 for n in range(0,len(labels_f)):
177
                     aux = True
178
                     for m in range(0, folds):
```

```
179
                          if aux:
180
                              if isCorrectLabel[m][n]:
                                  aux = False
181
182
                     if aux:
183
                          noisyBags.append(n)
184
             nonNoisyBags = []
185
             cont = 0
             if len(noisyBags) == 0:
186
187
                 for z in range(0,len(bags_f)):
188
                     nonNoisyBags.append(z)
189
             else:
190
                 for z in range(0,len(bags_f)):
191
                     if cont < len(noisyBags) and noisyBags[cont] ==</pre>
         z :
192
                          cont = cont + 1
193
                     else:
194
                          nonNoisyBags.append(z)
             if len(noisyBags) < (len(bags_f)*error):</pre>
195
196
                 countToStop = countToStop + 1
197
             else:
198
                 countToStop = 0
             if countToStop == toStop:
199
200
                 stop = False
201
             else:
202
                 bags_f = [bags_f[d] for d in nonNoisyBags]
203
                 labels_f = labels_f[nonNoisyBags]
204
             vuelta = vuelta + 1
205
206
         print('\t\t=>Elementos eliminados por '+clasificador_[2]+
        ': '+str(len(noisyBags)))
207
         X_train_NoNy = bags_f
208
         Y_train_NoNy = labels_f
209
         return X_train_NoNy,Y_train_NoNy
210
211
    def filtrado_final(X_train,Y_train,X_test,Y_test,clasificador_)
212
        results = np.zeros((2))
213
         accuracie = 0
214
         auc_score = 0
         aux_lab = True
215
216
         if len(np.unique(Y_train)) == 1:
217
             if Y_train[0] == 0:
218
                 for b in range(0,len(Y_test)):
219
                     if aux_lab:
220
                          if Y_test[b] == 1:
221
                              aux_Y_train = copy.copy(Y_test[b])
                              aux_X_train = copy.copy(X_test[b])
222
223
                              Y_test[b] = copy.copy(Y_train[0])
224
                              X_test[b] = copy.copy(X_train[0])
                              Y_train[0] = copy.copy(aux_Y_train)
225
                              X_train[0] = copy.copy(aux_X_train)
226
227
                              aux_lab = False
228
             else:
229
                 for b in range(0,len(Y_test)):
```

```
230
                    if aux_lab:
231
                        if Y_test[b] == 0:
232
                             aux_Y_train = copy.copy(Y_test[b])
                             aux_X_train = copy.copy(X_test[b])
233
                            Y_test[b] = copy.copy(Y_train[0])
234
                            X_test[b] = copy.copy(X_train[0])
235
                            Y_train[0] = copy.copy(aux_Y_train)
236
                            X_train[0] = copy.copy(aux_X_train)
237
238
                            aux_lab = False
239
        try:
240
            if len(clasificador_[1]) > 0:
241
                clasificador_[0].fit(X_train, Y_train, **
        clasificador_[1])
242
            else:
                clasificador_[0].fit(X_train, Y_train)
243
244
            predictions = clasificador_[0].predict(X_test)
245
            if (isinstance(predictions, tuple)):
246
                predictions = predictions[0]
247
            accuracie = (100 * np.average(Y_test.T == np.sign(
       predictions)))
248
            auc_score = (100 * roc_auc_score_FIXED(Y_test,
       predictions))
249
        except:
250
            print('Fallo, segundo intento')
251
252
            try:
253
                if len(clasificador_[1]) > 0:
254
                    clasificador_[0].fit(X_train, Y_train, **
        clasificador_[1])
255
                else:
256
                    clasificador_[0].fit(X_train, Y_train)
257
                predictions = clasificador_[0].predict(X_test)
258
                if (isinstance(predictions, tuple)):
259
                    predictions = predictions[0]
260
                accuracie = (100 * np.average(Y_test.T == np.sign(
       predictions)))
261
                auc_score = (100 * roc_auc_score_FIXED(Y_test,
       predictions))
                print('OK')
262
263
            except:
                print('Fallo en calculo')
264
265
        results[0] = accuracie
266
        results[1] = auc_score
         267
        t\t Roc Score: '+ str(auc_score))
268
        return results
269
270
    def roc_auc_score_FIXED(y_true, y_pred):
271
        if len(np.unique(y_true)) == 1 or len(np.unique(y_true)) ==
         0: # bug in roc_auc_score
272
            return accuracy_score(y_true, np.rint(y_pred))
273
        return roc_auc_score(y_true, y_pred)
274
275 def Porcentaje(X,Y):
```

```
276
         return X*Y/100
277
278
    def clasif():
279
        aux = []
280
        resul1 = [[],[],[],[],[],[],[]]
        resul2 = [[],[],[],[],[],[],[]]
281
        resul3 = [[],[],[],[],[],[],[]]
282
283
        resul4 = [[],[],[],[],[],[],[]]
        resul5 = [[],[],[],[],[],[],[]]
284
        resul6 = [[],[],[],[],[],[],[]]
285
286
        resul7 = [[],[],[],[],[],[],[]]
287
        resul8 = [[],[],[],[],[],[],[]]
288
        resul9 = [[],[],[],[],[],[],[]]
289
        roc_m_1 = [[],[],[],[],[],[],[]]
290
        roc_m_2 = [[],[],[],[],[],[],[]]
        roc_m_3 = [[],[],[],[],[],[],[]]
291
292
        roc_m_4 = [[],[],[],[],[],[],[]]
293
        roc_m_5 = [[],[],[],[],[],[],[]]
294
        roc_m_6 = [[],[],[],[],[],[],[]]
295
        roc_m_7 = [[],[],[],[],[],[],[]]
296
        roc_m_8 = [[],[],[],[],[],[],[]]
297
        roc_m_9 = [[],[],[],[],[],[],[]]
298
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc_m_1]
299
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
        roc_m_2
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
300
        resul3,roc_m_3]
        BOW_clas = [BOW(),{'k':90,'covar_type':'diag','n_iter':20},
301
        'BOW', resul4, roc_m_4]
        CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
302
        resul5, roc_m_5]
303
        maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
304
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
305
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
306
        MILES_c1 = [MILES(),{},'MILES',resul9,roc_m_9]
        aux.append(SMILaMax)
307
308
         aux.append(SMILaMin)
309
        aux.append(SMILaExt)
310
         aux.append(BOW_clas)
311
         aux.append(CKNN_cla)
312
         aux.append(maxDD_cl)
313
         aux.append(EMDD_cla)
314
         aux.append(MILB_cla)
315
          aux.append(MILES_cl)
316
        return aux
317
318
    def cla_filter_ipf():
319
        aux = []
320
        resul1 = [[],[],[],[],[],[],[]]
321
        resul2 = [[],[],[],[],[],[],[]]
322
        resul3 = [[],[],[],[],[],[],[]]
        resul4 = [[],[],[],[],[],[],[]]
323
324
        resul5 = [[],[],[],[],[],[],[]]
```

```
325
        resul6 = [[],[],[],[],[],[],[]]
        resul7 = [[],[],[],[],[],[],[]]
326
        resul8 = [[],[],[],[],[],[],[]]
327
        resul9 = [[],[],[],[],[],[],[]]
328
329
        roc_m_1 = [[],[],[],[],[],[],[]]
330
        roc_m_2 = [[],[],[],[],[],[],[]]
        roc_m_3 = [[],[],[],[],[],[],[]]
331
        roc_m_4 = [[],[],[],[],[],[],[]]
332
333
        roc_m_5 = [[],[],[],[],[],[],[]]
334
        roc_m_6 = [[],[],[],[],[],[],[]]
335
        roc_m_7 = [[],[],[],[],[],[],[]]
336
        roc_m_8 = [[],[],[],[],[],[],[]]
        roc_m_9 = [[],[],[],[],[],[],[]]
337
338
        SMILaMax = [simpleMIL(),{'type': 'max'},'MIL max',resul1,
        roc m 1]
        SMILaMin = [simpleMIL(),{'type': 'min'},'MIL min',resul2,
339
        roc_m_2]
340
        SMILaExt = [simpleMIL(),{'type': 'extreme'},'MIL Extreme',
        resul3, roc_m_3]
341
        BOW_clas = [BOW(),{'k':90,'covar_type':'diag','n_iter':20},
        'BOW', resul4, roc_m_4]
        CKNN_cla = [CKNN(),{'references': 3, 'citers': 5},'CKNN',
342
        resul5, roc_m_5]
343
        maxDD_cl = [maxDD(),{},'DIVERSE DENSITY',resul6,roc_m_6]
        EMDD_cla = [EMDD(),{},'EM-DD',resul7,roc_m_7]
344
        MILB_cla = [MILBoost(),{},'MILBOOST',resul8,roc_m_8]
345
        MILES_cl = [MILES(),{},'MILES',resul9,roc_m_9]
346
        aux.append(SMILaMax)
347
348
        aux.append(SMILaMin)
349
        aux.append(SMILaExt)
350
        aux.append(BOW_clas)
351
        aux.append(CKNN_cla)
352
        aux.append(maxDD_cl)
353
        aux.append(EMDD_cla)
354
        aux.append(MILB_cla)
355
         aux.append(MILES_cl)
356
        return aux
```

Anexos C

Resultados

Resultados 121

Los resultados que se muestran a continuación se dividen en primer lugar por el Dataset utilizado, y dentro de esta sección se analizaran 'los resultados para cada uno de los filtros desarrollados en pyMIL-BNF subdivididos a su vez por el esquema de votación que tienen configurado, y por último cada tabla se muetra por el porcentaje de ruido artificial imputado en las etiquetas de las clases.

Como aclarión para el esquema MIL-EF, la nomenclatura 'Filtro_1' y 'Filtro_2' pertenecen a un grupo de clasificadores ya que este modelo agrupa 3 clasificadores diferentes en su iteración, a continuación diremos cuales:

• Filtro 1:

- Clasificador 1: BOW.
- Clasificador 2: CKNN.
- Clasificador 3: EM-DD.

■ Filtro 2:

- Clasificador 1: SimpleMIL max.
- Clasificador 2: SimpleMIL extreme.
- Clasificador 3: maxDD.

C.1. Musk 1

MIL-EF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.1: Precisión MIL-EF Musk 1, Consenso, Ruido 0%

	Original	${f Filtro}_{-1}$	${ m Filtro}_{-2}$
MIL max	71.75438596491229	73.91812865497076	71.75438596491229
MIL min	77.63157894736841	78.71345029239765	77.07602339181287
MIL Ext	80.33138401559454	79.96101364522416	79.96101364522416
BOW	76.82748538011695	76.02339181286548	77.66081871345028
CKNN	78.61988304093566	78.4093567251462	79.49707602339181
\max DD	77.46588693957115	76.92007797270955	79.82456140350877
EM-DD	78.33751044277359	78.18713450292398	80.51796157059314
MILBoost	74.91305016928285	74.78147122191444	76.82094490612496

• Esquema votación por Max Votos.

122 C.1. Musk 1

Tabla C.2: Precisión MIL-EF Musk 1, Max Votos, Ruido 0 %

	Original	${f Filtro}_{-1}$	${ m Filtro}_{-2}$
MIL max	81.6374269005848	72.92397660818713	78.42105263157896
MIL min	83.18713450292398	77.2514619883041	80.000000000000001
MIL Ext	84.50292397660819	79.78557504873295	80.54580896686161
BOW	80.17543859649123	76.09649122807016	74.79532163742691
CKNN	81.74269005847952	78.05847953216374	77.23976608187135
\max DD	80.9551656920078	77.35867446393762	77.05653021442497
EM-DD	81.81286549707602	78.1203007518797	78.01169590643273
${ m MILBoost}$	77.95398584179748	74.72299168975069	74.62796244998461

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.3: Precisión MIL-EF Musk 1, Consenso, Ruido $5\,\%$

	Original	$\overline{\mathrm{Filtro}}_{-1}$	Filtro_2
MIL max	71.9298245614035	76.3157894736842	74.03508771929826
MIL min	76.2280701754386	77.86549707602339	78.39181286549709
MIL Ext	79.12280701754385	80.60428849902534	79.08382066276802
BOW	72.9093567251462	75.96491228070174	74.80994152046785
CKNN	74.65497076023392	77.53216374269006	77.05263157894737
\max DD	74.16179337231968	77.67056530214425	76.91033138401559
EM-DD	74.77861319966583	78.07852965747703	77.87802840434422
${ m MILBoost}$	71.79901508156357	74.68644198214835	74.51100338565712

• Esquema votación por Max Votos.

Tabla C.4: Precisión MIL-EF Musk 1, Max Votos, Ruido 5 %

	Original	${f Filtro}_{-1}$	Filtro_2
MIL max	71.92982456140352	75.14619883040936	69.64912280701753
MIL min	78.42105263157896	76.2280701754386	76.75438596491229
MIL Ext	81.98830409356725	78.38206627680312	79.49317738791423
BOW	77.57309941520467	74.60526315789474	74.04970760233918
CKNN	79.23976608187134	76.42105263157895	76.19883040935672
\max DD	78.17738791423001	75.45808966861597	75.32163742690058
EM-DD	79.12280701754386	76.64160401002506	76.36591478696742
MILBoost	75.60018467220684	73.42913204062788	73.18790397045244

- Ruido 10%.
 - Esquema votación por consenso.

	Original	${ m Filtro_1}$	${ m Filtro}_{-2}$
MIL max	61.988304093567265	65.3216374269006	64.21052631578947
MIL min	69.12280701754386	70.26315789473685	70.23391812865498
MIL Ext	72.98245614035089	71.16959064327486	72.61208576998051
BOW	69.15204678362574	68.02631578947368	69.67836257309942
CKNN	70.76023391812865	69.41520467836257	71.82456140350877
\max DD	70.23391812865498	68.73294346978557	71.80311890838206
EM-DD	71.55388471177945	69.34001670843776	73.0409356725146
${ m MILBoost}$	68.97737765466297	67.04024315173899	70.27854724530626

• Esquema votación por Max Votos.

Tabla C.6: Precisión MIL-EF Musk 1, Max Votos, Ruido $10\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	74.97076023391813	68.42105263157895	72.7485380116959
MIL min	78.30409356725146	73.39181286549709	76.05263157894737
MIL Ext	80.81871345029239	74.60038986354776	77.83625730994153
BOW	76.37426900584798	68.74269005847952	74.13742690058479
CKNN	77.82456140350877	70.64327485380117	75.81286549707602
\max DD	77.36842105263158	69.775828460039	74.4346978557505
EM-DD	77.31829573934837	71.13617376775272	74.5112781954887
${ m MILBoost}$	74.02123730378578	68.61188057863959	71.56509695290859

- Ruido 15 %.
 - Esquema votación por consenso.

Tabla C.7: Precisión MIL-EF Musk 1, Consenso, Ruido $15\,\%$

	Original	$\overline{\text{Filtro}}_{-1}$	Filtro_2
MIL max	67.48538011695905	66.37426900584796	64.21052631578948
MIL min	69.06432748538012	68.56725146198832	67.39766081871345
MIL Ext	71.40350877192982	71.11111111111111	69.92202729044834
BOW	69.2982456140351	69.61988304093568	67.14912280701755
CKNN	70.44444444444444	71.12280701754385	67.62573099415205
\max DD	71.41325536062378	70.89668615984404	69.03508771929823
EM-DD	73.01587301587301	72.54803675856306	70.49289891395154
${ m MILBoost}$	70.25661742074485	69.84726069559864	68.04901508156355

124 C.1. Musk 1

Tabla C.8: Precisión MIL-EF Musk 1, Max Votos, Ruido $15\,\%$

	Original	${f Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	74.03508771929823	71.87134502923975	71.87134502923978
MIL min	74.44444444444443	73.30409356725144	75.49707602339181
MIL Ext	74.97076023391813	74.58089668615983	75.71150097465888
BOW	72.28070175438597	67.86549707602339	70.90643274853801
CKNN	72.80701754385964	69.50877192982458	72.57309941520467
\max DD	72.84600389863546	69.17153996101365	73.18713450292397
EM-DD	74.70342522974101	70.48454469507101	74.53634085213032
${ m MILBoost}$	71.73322560787935	68.04170514004309	71.58702677746999

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.9: Precisión MIL-EF Musk 1, Consenso, Ruido $20\,\%$

	Original	${f Filtro_1}$	${f Filtro_2}$
MIL max	72.80701754385964	77.13450292397661	72.86549707602339
MIL min	73.8888888888889	75.52631578947368	73.94736842105263
MIL Ext	74.61988304093568	76.43274853801171	73.93762183235869
BOW	69.31286549707603	70.89181286549707	69.2982456140351
CKNN	70.69005847953217	72.80701754385964	70.66666666666666
\max DD	71.2280701754386	73.53801169590642	70.69200779727095
EM-DD	71.77109440267336	73.90142021720969	71.15288220551378
${ m MILBoost}$	69.16743613419513	71.03147122191443	68.62650046168051

Tabla C.10: Precisión MIL-EF Musk 1, Max Votos, Ruido 20 %

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	67.48538011695906	64.21052631578948	66.54970760233918
MIL min	69.70760233918129	65.90643274853802	68.09941520467837
MIL Ext	71.87134502923978	66.10136452241716	69.35672514619883
BOW	68.61111111111111	63.21637426900585	65.62865497076025
CKNN	70.54970760233918	65.40350877192982	67.73099415204678
\max DD	69.1325536062378	64.28849902534112	66.80311890838206
EM-DD	70.62656641604009	65.99832915622389	68.90559732664995
MILBoost	68.16597414589104	64.11626654355186	66.66012619267467

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.11: Precisión	MIL-EF	Musk 1,	Consenso,	Ruido	25%	%
-----------------------	--------	---------	-----------	-------	-----	---

	Original	${ m Filtro}_1$	${f Filtro}_{-2}$
MIL max	68.888888888888	74.15204678362572	70.93567251461988
MIL min	69.73684210526315	72.39766081871346	68.07017543859648
MIL Ext	71.50097465886938	73.29434697855751	70.74074074074073
BOW	68.59649122807016	70.2046783625731	68.5233918128655
CKNN	69.23976608187132	70.31578947368422	69.39181286549707
\max DD	68.74269005847951	68.0214424951267	67.5925925925926
EM-DD	69.49874686716792	68.23725981620719	68.36257309941521
$\operatorname{MILBoost}$	67.17913204062788	66.07533087103724	66.18497999384427

• Esquema votación por Max Votos.

Tabla C.12: Precisión MIL-EF Musk 1, Max Votos, Ruido $25\,\%$

	Original	${ m Filtro}_{-}1$	${ m Filtro}_{-2}$
MIL max	71.46198830409358	65.02923976608187	66.14035087719297
MIL min	69.38596491228068	65.64327485380116	66.25730994152046
MIL Ext	71.89083820662768	67.66081871345028	68.05068226120858
BOW	68.59649122807016	64.83918128654972	64.86842105263158
CKNN	69.21637426900584	66.60818713450293	66.21052631578948
\max DD	67.8167641325536	66.17933723196882	64.41520467836257
EM-DD	69.30659983291561	66.49122807017544	66.22389306599833
${ m MILBoost}$	67.01100338565712	64.54755309325947	64.31363496460449

- Ruido 30 %.
 - Esquema votación por consenso.

Tabla C.13: Precisión MIL-EF Musk 1, Consenso, Ruido $30\,\%$

	Original	${ m Filtro}_1$	${ m Filtro}_{-2}$
MIL max	58.71345029239766	58.83040935672515	57.7777777777777
MIL min	59.7953216374269	58.27485380116959	61.549707602339176
MIL Ext	61.6374269005848	59.55165692007798	63.216374269005854
BOW	60.3654970760234	57.73391812865498	61.30116959064328
CKNN	59.78947368421053	57.26315789473684	62.280701754385966
$\max DD$	61.9980506822612	57.524366471734886	62.96296296296296
EM-DD	64.18546365914786	58.63826232247285	64.55304928989139
MILBoost	62.53000923361035	57.67620806401969	62.85164666051092

126 C.1. Musk 1

Tabla C.14: Precisión MIL-EF Musk 1, Max Votos, Ruido $30\,\%$

	Original	${ m Filtro}_{-1}$	${ m Filtro}_{ m 2}$
MIL max	67.2514619883041	58.53801169590643	60.877192982456144
MIL min	66.22807017543859	56.95906432748537	63.07017543859648
MIL Ext	67.6803118908382	57.836257309941516	64.50292397660819
BOW	63.27485380116959	57.74853801169591	61.69590643274855
CKNN	62.99415204678362	59.02923976608187	62.8421052631579
\max DD	62.82651072124756	58.23586744639376	61.9785575048733
EM-DD	63.467000835421885	58.44611528822056	62.89891395154553
$\operatorname{MILBoost}$	61.9013542628501	57.646968297937825	61.527735029581756

MIL-CVCF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.15: Precisión MIL-CVCF Musk 1, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	Mext	\mathbf{BOW}	CKNN	m-DD	EMDD	MILB
Mmax	74,795	74,795	74,795	74,795	74,795	74,795	74,795	74,795	74,795
Mmin	84,678	84,678	84,678	84,678	84,678	84,678	84,678	84,678	84,678
MExt	86,842	86,842	86,842	86,842	86,842	86,842	86,842	86,842	86,842
BOW	65,263	61,988	61,871	$67,\!368$	72,749	69,708	66,199	61,988	60,877
CKNN	86,842	86,842	86,842	86,842	86,842	86,842	86,842	86,842	86,842
mDD	71,696	75,088	78,304	74,912	74,094	72,924	77,193	81,579	71,754
EMDD	88,129	83,860	87,018	82,573	88,129	85,906	84,971	82,749	85,965
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

Tabla C.16: Precisión MIL-CVCF Musk 1, Max Votos, Ruido 0 %

-	Orig	Mmax	Mmin	Mext	BOW	CKNN	m-DD	EMDD	MILB
Mmax	73,743	73,801	69,532	72,690	77,018	74,912	67,193	74,971	53,216
Mmin	83,743	83,743	82,632	82,632	82,632	82,632	83,743	83,743	53,216
MExt	85,731	83,626	76,140	$83,\!567$	$83,\!567$	85,673	74,035	$79,\!474$	54,327
BOW	63,099	59,766	56,374	67,310	64,152	66,257	60,819	$55,\!439$	$55,\!439$
CKNN	91,228	86,901	88,012	91,228	89,006	89,006	85,848	$90,\!175$	$67,\!544$
mDD	72,749	73,977	78,304	73,918	74,912	72,749	74,152	75,088	54,269
EMDD	83,626	84,795	75,965	83,684	83,626	80,351	85,848	84,795	52,164
MILB	$53,\!859$	50,942	50,942	50,942	50,942	50,942	50,942	50,942	11,413

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.17: Pr	recisión MII	-CVCF	Musk 1	Consenso	Ruido 5 %	`
$\perp a \omega a \omega \cdot 1 \cdot$	LOCIDIOH MILL	J- O V OI	TYLUDIX I.	Compenso.	Truido o 70)

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78,421	78,421	78,421	78,421	78,421	78,421	78,421	78,421	78,421
Mmin	85,848	85,848	85,848	85,848	85,848	85,848	85,848	85,848	85,848
MExt	87,135	87,135	87,135	87,135	87,135	87,135	87,135	87,135	87,135
BOW	$68,\!421$	66,082	62,982	$67,\!427$	$74,\!152$	70,468	58,713	67,310	59,474
CKNN	85,906	85,906	85,906	85,906	85,906	85,906	85,906	85,906	85,906
mDD	71,462	72,573	78,070	77,135	73,918	74,912	65,029	78,246	76,257
EMDD	82,573	87,018	84,854	85,848	86,959	83,801	82,632	83,743	84,854
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

• Esquema votación por Max Votos.

Tabla C.18: Precisión MIL-CVCF Musk 1, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	70,643	70,702	64,211	69,649	71,813	73,918	69,766	70,643	52,105
Mmin	80,702	73,099	78,480	74,211	75,205	79,591	79,474	$81,\!579$	$55,\!439$
MExt	83,918	77,368	79,532	80,702	83,918	88,187	75,088	78,480	55,439
BOW	$54,\!386$	66,082	$53,\!158$	64,327	64,152	$52,\!456$	45,497	58,713	53,216
CKNN	84,854	81,579	84,795	83,801	82,573	84,795	76,082	86,901	59,766
mDD	73,099	70,643	77,076	77,135	64,620	71,988	69,708	76,023	54,327
EMDD	82,632	79,415	77,193	77,193	75,146	85,906	72,749	77,251	53,216
MILB	$53,\!859$	50,942	50,942	50,942	50,942	50,942	50,942	50,942	21,975

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.19: Precisión MIL-CVCF Musk 1, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78,304	78,304	78,304	78,304	78,304	78,304	78,304	78,304	78,304
Mmin	74,737	74,737	74,737	74,737	74,737	74,737	74,737	74,737	74,737
MExt	84,795	84,795	84,795	84,795	84,795	84,795	84,795	84,795	84,795
BOW	58,713	63,041	$69,\!591$	$65,\!322$	60,760	61,813	53,041	64,152	$55,\!439$
CKNN	80,409	80,409	80,409	80,409	80,409	80,409	80,409	80,409	80,409
mDD	71,754	71,696	67,427	$69,\!474$	73,918	$70,\!585$	72,924	71,696	76,082
EMDD	82,690	84,854	86,959	84,854	85,906	86,959	82,749	84,854	80,643
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

128 C.1. Musk 1

Tabla C.20: Precisión MIL-CVCF Musk 1, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	73,918	71,813	67,544	$72,\!865$	73,977	74,035	69,649	68,480	54,327
Mmin	81,520	79,357	82,632	81,520	$78,\!363$	82,632	76,082	83,567	54,327
MExt	82,632	76,140	79,240	82,632	83,684	83,743	78,187	77,018	53,158
BOW	64,269	58,772	$52,\!222$	66,257	57,602	66,433	54,327	56,374	54,269
CKNN	83,626	82,573	80,234	82,515	82,573	81,520	74,737	84,678	57,661
mDD	73,801	$62,\!865$	68,304	63,918	63,099	67,135	63,977	75,906	52,164
EMDD	84,620	78,129	78,187	80,292	81,404	80,234	77,018	75,965	53,216
MILB	$53,\!859$	50,942	50,942	50,942	50,942	50,942	50,942	50,942	22,400

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.21: Precisión MIL-CVCF Musk 1, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	$\overline{\mathbf{mDD}}$	EMDD	MILB
Mmax	72,982	72,982	72,982	72,982	72,982	72,982	72,982	72,982	72,982
Mmin	78,363	78,363	78,363	78,363	78,363	$78,\!363$	$78,\!363$	78,363	$78,\!363$
MExt	83,743	83,743	83,743	83,743	83,743	83,743	83,743	83,743	83,743
BOW	67,427	63,275	$68,\!596$	65,380	60,819	65,263	62,047	63,099	59,708
CKNN	81,520	81,520	81,520	81,520	81,520	81,520	81,520	81,520	81,520
mDD	61,053	66,491	68,480	58,947	61,111	64,327	66,433	60,117	60,994
EMDD	81,579	76,257	77,193	$78,\!480$	72,924	78,421	80,468	77,368	81,637
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

• Esquema votación por Max Votos.

Tabla C.22: Precisión MIL-CVCF Musk 1, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76,023	76,023	69,532	73,860	72,865	76,082	70,585	71,637	53,216
Mmin	83,509	78,070	81,287	82,398	83,509	79,181	75,965	78,012	54,327
MExt	$82,\!573$	79,181	75,088	83,567	80,351	$82,\!573$	74,795	78,129	55,380
BOW	65,205	65,263	60,819	62,982	54,444	58,655	53,216	56,433	52,164
CKNN	81,404	82,398	82,515	82,456	73,743	78,246	86,959	87,895	62,924
mDD	$68,\!596$	72,749	$65,\!263$	71,930	$62,\!865$	70,760	71,696	$69,\!474$	52,105
EMDD	75,906	74,795	78,070	75,848	78,070	79,181	74,854	75,848	52,105
MILB	$52,\!871$	50,942	50,942	50,942	50,942	50,942	50,942	50,942	0,000

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.23: Precisión	MIL-CVCF	Musk 1,	Consenso,	Ruido	20%
-----------------------	----------	---------	-----------	-------	-----

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	68,304	68,304	68,304	68,304	68,304	68,304	68,304	68,304	68,304
Mmin	74,854	74,854	74,854	74,854	74,854	74,854	74,854	74,854	74,854
MExt	89,123	89,123	89,123	89,123	89,123	89,123	89,123	89,123	89,123
BOW	$58,\!655$	60,760	51,930	58,713	62,807	57,427	60,760	$59,\!591$	61,813
CKNN	78,070	78,070	78,070	78,070	78,070	78,070	78,070	78,070	78,070
mDD	$69,\!591$	75,965	$69,\!357$	71,637	67,368	74,912	67,310	70,702	72,749
EMDD	79,415	78,363	79,357	77,193	83,743	84,795	79,357	75,029	80,526
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

• Esquema votación por Max Votos.

Tabla C.24: Precisión MIL-CVCF Musk 1, Max Votos, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	75,146	70,760	64,269	68,596	68,713	69,825	63,275	65,380	55,380
Mmin	65,263	64,327	66,316	$66,\!374$	64,152	$68,\!538$	70,936	$67,\!485$	53,216
MExt	83,743	81,579	73,918	80,468	70,585	79,415	69,649	77,310	54,269
BOW	52,398	61,053	55,497	61,170	55,731	54,444	53,275	51,053	53,216
CKNN	72,807	80,585	$69,\!474$	81,579	68,421	69,532	71,637	84,854	$53,\!275$
mDD	62,281	58,772	$68,\!538$	$65,\!263$	63,216	59,883	64,327	75,029	$53,\!158$
EMDD	77,193	72,865	69,649	75,029	65,322	78,421	64,152	70,585	54,269
MILB	53,905	50,942	50,942	50,942	50,942	50,942	40,942	51,929	21,975

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.25: Precisión MIL-CVCF Musk 1, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	58,655	58,655	58,655	58,655	58,655	58,655	58,655	58,655	58,655
Mmin	$69,\!474$	$69,\!474$	$69,\!474$	$69,\!474$	$69,\!474$	$69,\!474$	$69,\!474$	$69,\!474$	$69,\!474$
MExt	74,854	74,854	74,854	74,854	74,854	74,854	74,854	74,854	74,854
BOW	53,099	54,444	47,953	49,006	44,327	50,994	51,228	48,889	51,930
CKNN	73,860	73,860	$73,\!860$	73,860	73,860	73,860	73,860	73,860	73,860
mDD	68,129	68,246	$59,\!532$	61,813	65,205	59,708	61,813	59,649	69,415
EMDD	$70,\!468$	77,018	74,737	$72,\!515$	73,626	74,795	74,737	$71,\!462$	$71,\!520$
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

130 C.1. Musk 1

Tabla C.26: Precisión MIL-CVCF Musk 1, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	68,596	71,813	65,205	70,643	61,871	64,152	65,146	70,585	54,269
Mmin	73,860	61,930	$71,\!579$	71,637	$68,\!538$	77,251	66,257	74,854	54,327
MExt	74,035	72,865	64,094	71,754	71,871	71,871	56,608	68,363	54,327
BOW	$58,\!655$	60,994	53,099	56,491	53,216	59,825	$53,\!158$	$55,\!497$	54,327
CKNN	$69,\!474$	68,129	73,801	70,526	63,918	71,520	61,930	76,082	60,877
mDD	69,415	65,146	$58,\!538$	60,760	62,982	$61,\!520$	58,713	68,363	53,216
EMDD	73,918	70,468	69,532	73,977	76,082	76,023	72,807	72,749	53,275
MILB	$53,\!859$	50,942	50,942	50,942	50,942	50,942	50,942	50,942	22,400

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.27: Precisión MIL-CVCF Musk 1, Consenso, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	61,871	61,871	61,871	61,871	61,871	61,871	61,871	61,871	61,871
Mmin	66,316	66,316	66,316	66,316	$66,\!316$	$66,\!316$	66,316	$66,\!316$	$66,\!316$
MExt	67,368	67,368	67,368	67,368	67,368	$67,\!368$	$67,\!368$	$67,\!368$	67,368
BOW	61,053	69,708	66,433	$58,\!655$	$57,\!544$	63,099	62,982	$65,\!439$	56,491
CKNN	$67,\!485$	$67,\!485$	$67,\!485$	$67,\!485$	$67,\!485$	$67,\!485$	$67,\!485$	$67,\!485$	$67,\!485$
mDD	59,766	56,608	58,713	57,544	51,228	$52,\!398$	58,713	$51,\!287$	48,947
EMDD	70,468	71,696	69,357	71,696	$69,\!474$	$69,\!474$	68,304	66,140	71,754
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

• Esquema votación por Max Votos.

Tabla C.28: Precisión MIL-CVCF Musk 1, Max Votos, Ruido $30\,\%$

Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
64,211	63,099	50,877	63,041	64,152	59,766	57,602	69,357	53,275
70,585	65,088	65,205	65,146	68,363	72,690	58,889	68,421	53,216
63,275	57,895	54,444	60,000	64,327	64,211	63,860	66,082	55,439
58,713	52,164	52,164	55,380	56,374	53,392	52,222	52,164	57,602
68,655	$65,\!497$	68,830	74,094	63,450	68,713	67,836	81,520	64,094
65,263	55,322	50,000	53,158	59,825	60,936	51,053	57,485	55,439
71,579	69,415	66,374	73,918	63,158	69,415	72,982	72,632	53,216
52,871	50,942	50,942	50,942	50,942	50,942	50,942	50,942	22,400
	64,211 70,585 63,275 58,713 68,655 65,263 71,579	64,211 63,099 70,585 65,088 63,275 57,895 58,713 52,164 68,655 65,497 65,263 55,322 71,579 69,415	64,211 63,099 50,877 70,585 65,088 65,205 63,275 57,895 54,444 58,713 52,164 52,164 68,655 65,497 68,830 65,263 55,322 50,000 71,579 69,415 66,374	64,211 63,099 50,877 63,041 70,585 65,088 65,205 65,146 63,275 57,895 54,444 60,000 58,713 52,164 52,164 55,380 68,655 65,497 68,830 74,094 65,263 55,322 50,000 53,158 71,579 69,415 66,374 73,918	64,211 63,099 50,877 63,041 64,152 70,585 65,088 65,205 65,146 68,363 63,275 57,895 54,444 60,000 64,327 58,713 52,164 52,164 55,380 56,374 68,655 65,497 68,830 74,094 63,450 65,263 55,322 50,000 53,158 59,825 71,579 69,415 66,374 73,918 63,158	64,211 63,099 50,877 63,041 64,152 59,766 70,585 65,088 65,205 65,146 68,363 72,690 63,275 57,895 54,444 60,000 64,327 64,211 58,713 52,164 52,164 55,380 56,374 53,392 68,655 65,497 68,830 74,094 63,450 68,713 65,263 55,322 50,000 53,158 59,825 60,936 71,579 69,415 66,374 73,918 63,158 69,415	64,211 63,099 50,877 63,041 64,152 59,766 57,602 70,585 65,088 65,205 65,146 68,363 72,690 58,889 63,275 57,895 54,444 60,000 64,327 64,211 63,860 58,713 52,164 52,164 55,380 56,374 53,392 52,222 68,655 65,497 68,830 74,094 63,450 68,713 67,836 65,263 55,322 50,000 53,158 59,825 60,936 51,053 71,579 69,415 66,374 73,918 63,158 69,415 72,982	64,211 63,099 50,877 63,041 64,152 59,766 57,602 69,357 70,585 65,088 65,205 65,146 68,363 72,690 58,889 68,421 63,275 57,895 54,444 60,000 64,327 64,211 63,860 66,082 58,713 52,164 52,164 55,380 56,374 53,392 52,222 52,164 68,655 65,497 68,830 74,094 63,450 68,713 67,836 81,520 65,263 55,322 50,000 53,158 59,825 60,936 51,053 57,485 71,579 69,415 66,374 73,918 63,158 69,415 72,982 72,632

MIL-IPF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.29: Precisión MIL-IPF Musk 1, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76,082	76,082	76,082	76,082	76,082	76,082	76,082	76,082	76,082
Mmin	82,749	82,749	82,749	82,749	82,749	82,749	82,749	82,749	82,749
MExt	84,854	84,854	84,854	84,854	84,854	84,854	84,854	84,854	84,854
BOW	59,883	65,322	$64,\!386$	61,988	66,199	61,871	62,982	68,713	64,269
CKNN	85,965	85,965	85,965	85,965	85,965	85,965	85,965	85,965	85,965
mDD	76,316	70,760	71,871	76,257	$65,\!263$	73,918	77,427	75,088	74,035
EMDD	82,573	83,743	83,684	83,743	84,737	82,573	83,743	85,789	85,789
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

• Esquema votación por Max Votos.

Tabla C.30: Precisión MIL-IPF Musk 1, Max Votos, Ruido 0 %

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76,257	70,702	72,982	75,146	75,088	76,257	62,047	69,591	58,655
Mmin	89,123	80,526	85,848	84,795	78,246	85,848	56,491	81,462	60,877
MExt	85,965	83,743	82,573	83,743	77,076	84,854	$65,\!380$	78,187	$58,\!596$
BOW	$63,\!158$	$67,\!251$	$55,\!322$	59,883	56,433	$63,\!158$	53,216	57,602	$58,\!655$
CKNN	90,117	82,573	89,006	89,006	80,292	89,006	76,023	87,895	64,035
mDD	75,146	77,251	72,807	73,041	70,702	71,871	59,766	71,813	57,602
EMDD	89,064	81,462	82,515	88,012	83,684	84,795	61,871	77,193	58,713
MILB	57,764	50,942	50,942	50,942	50,942	50,942	30,942	52,917	33,813

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.31: Precisión MIL-IPF Musk 1, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	72,865	72,865	72,865	72,865	72,865	72,865	72,865	72,865	72,865
Mmin	84,620	84,620	84,620	84,620	84,620	84,620	84,620	84,620	84,620
MExt	83,626	83,626	83,626	83,626	83,626	83,626	83,626	83,626	83,626
BOW	63,099	$66,\!374$	66,433	64,211	66,199	64,094	$54,\!561$	64,211	59,649
CKNN	90,234	90,234	90,234	90,234	90,234	90,234	90,234	90,234	90,234
mDD	71,813	69,474	60,819	68,421	69,591	65,146	63,099	68,480	61,053
EMDD	83,509	84,620	83,450	81,228	84,561	85,673	81,228	84,620	86,784
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

132 C.1. Musk 1

Tabla C.32: Precisión MIL-IPF Musk 1, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76,023	69,474	66,316	70,526	74,912	73,860	53,158	61,871	60,819
Mmin	85,965	$82,\!515$	73,977	86,959	$72,\!865$	84,795	$68,\!538$	77,135	59,766
MExt	86,901	81,462	73,743	83,626	79,240	83,626	56,491	73,977	59,708
BOW	66,374	56,316	56,550	58,713	60,760	70,409	$45,\!380$	55,380	56,433
CKNN	85,731	82,398	85,789	83,509	75,848	83,567	67,251	81,404	67,310
mDD	76,082	$68,\!596$	68,187	80,409	65,205	74,035	59,649	67,310	57,602
EMDD	82,573	71,754	74,912	80,351	76,199	80,351	56,433	62,924	56,608
MILB	56,730	50,942	50,942	50,942	50,942	50,942	$29,\!483$	51,884	23,388

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.33: Precisión MIL-IPF Musk 1, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	ĆKNN	mDD	EMDD	MILB
Mmax	71,579	71,579	71,579	71,579	71,579	71,579	71,579	71,579	71,579
Mmin	81,520	81,520	81,520	81,520	81,520	81,520	81,520	81,520	81,520
MExt	85,789	85,789	85,789	85,789	85,789	85,789	85,789	85,789	85,789
BOW	60,994	64,094	59,766	64,094	60,936	60,819	62,105	61,053	63,041
CKNN	83,450	83,450	83,450	83,450	83,450	83,450	83,450	83,450	83,450
mDD	$67,\!544$	76,257	$77,\!251$	67,544	71,813	70,702	$67,\!544$	$68,\!655$	78,421
EMDD	79,415	81,462	80,468	81,462	79,298	77,193	84,795	82,573	81,462
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

Tabla C.34: Precisión MIL-IPF Musk 1, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	75,848	70,526	69,357	70,468	66,082	73,684	59,825	64,035	60,819
Mmin	86,842	82,456	82,398	81,345	82,573	86,959	$54,\!386$	75,965	$55,\!497$
MExt	82,456	74,912	73,860	79,181	72,807	83,509	56,491	70,409	61,930
BOW	67,310	$54,\!386$	54,327	63,216	57,602	59,825	55,439	58,713	60,877
CKNN	86,959	80,351	82,456	85,731	71,930	82,573	66,199	80,292	60,819
mDD	$69,\!591$	73,860	$65,\!263$	65,322	$53,\!275$	63,099	57,602	74,971	50,058
EMDD	83,684	74,912	76,140	82,573	73,977	80,585	56,491	67,310	58,772
MILB	$57,\!672$	50,942	50,942	50,942	49,954	49,954	$30,\!425$	$52,\!825$	$33,\!342$

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.35: Precisión MIL-IPF Musk 1, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	71,930	71,930	71,930	71,930	71,930	71,930	71,930	71,930	71,930
Mmin	81,520	81,520	81,520	81,520	81,520	81,520	81,520	81,520	81,520
MExt	73,860	73,860	73,860	73,860	73,860	73,860	73,860	73,860	73,860
BOW	61,871	58,772	59,766	59,649	63,041	63,041	68,421	60,877	56,374
CKNN	76,082	76,082	76,082	76,082	76,082	76,082	76,082	76,082	76,082
mDD	68,713	65,439	67,544	69,532	67,602	64,386	67,602	74,971	74,035
EMDD	78,246	74,971	74,971	78,246	76,023	79,415	77,135	79,357	77,193
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

• Esquema votación por Max Votos.

Tabla C.36: Precisión MIL-IPF Musk 1, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.37: Precisión MIL-IPF Musk 1, Consenso, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	62,047	62,047	62,047	62,047	62,047	62,047	62,047	62,047	62,047
Mmin	76,023	76,023	76,023	76,023	76,023	76,023	76,023	76,023	76,023
MExt	77,193	77,193	77,193	77,193	77,193	77,193	77,193	77,193	77,193
BOW	61,871	59,766	64,094	59,766	55,380	58,830	$57,\!544$	58,830	60,643
CKNN	76,140	76,140	76,140	76,140	76,140	76,140	76,140	76,140	76,140
mDD	60,994	66,608	65,146	$65,\!205$	69,766	$67,\!544$	$65,\!439$	63,041	$67,\!544$
EMDD	78,304	79,532	81,637	82,632	78,304	81,637	79,474	81,579	82,749
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

134 C.1. Musk 1

Tabla C.38: Precisión MIL-IPF Musk 1, Max Votos, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	71,754	66,374	58,772	61,930	59,825	67,602	56,550	63,977	57,778
Mmin	77,310	65,263	59,825	$68,\!480$	64,211	74,152	$55,\!439$	$62,\!865$	$56,\!667$
MExt	72,632	64,971	66,316	69,298	56,608	70,468	56,491	72,924	48,947
BOW	$58,\!596$	54,211	56,491	53,041	48,830	54,211	58,713	54,444	54,327
CKNN	70,468	69,298	72,690	72,515	65,146	71,637	64,971	69,415	61,813
mDD	$57,\!544$	55,439	$62,\!105$	58,304	48,889	54,327	62,105	$69,\!357$	52,222
EMDD	75,906	70,526	67,310	71,520	61,637	73,801	58,480	63,801	53,041
MILB	53,905	50,942	50,942	50,942	50,000	50,000	$39,\!529$	39,012	0,000

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.39: Precisión MIL-IPF Musk 1, Consenso, Ruido $25\,\%$

-	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	71,813	71,813	71,813	71,813	71,813	71,813	71,813	71,813	71,813
Mmin	70,643	70,643	70,643	70,643	70,643	70,643	70,643	70,643	70,643
MExt	74,971	74,971	74,971	74,971	74,971	74,971	74,971	74,971	74,971
BOW	58,889	$56,\!550$	$68,\!596$	60,877	66,491	60,994	64,211	$65,\!439$	$57,\!836$
CKNN	72,924	72,924	72,924	72,924	72,924	72,924	72,924	72,924	72,924
mDD	64,094	60,994	69,766	$64,\!386$	66,491	60,994	$66,\!433$	$65,\!380$	64,327
EMDD	73,801	72,807	76,082	78,129	72,865	74,912	76,023	75,906	73,918
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

Tabla C.40: Precisión MIL-IPF Musk 1, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.41: Precisión I	MIL-IPF Musk 1.	, Consenso,	Ruido 30 %
-------------------------	-----------------	-------------	------------

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	71,871	71,871	71,871	71,871	71,871	71,871	71,871	71,871	71,871
Mmin	$67,\!368$	$67,\!368$	67,368	67,368	$67,\!368$	67,368	67,368	$67,\!368$	67,368
MExt	73,743	73,743	73,743	73,743	73,743	73,743	73,743	73,743	73,743
BOW	59,883	57,544	62,047	58,830	60,877	60,877	61,170	59,883	56,550
CKNN	65,322	65,322	65,322	65,322	65,322	65,322	65,322	65,322	65,322
mDD	66,082	63,918	50,000	64,971	59,357	60,760	60,760	64,854	53,216
EMDD	74,912	71,520	77,076	74,854	74,854	76,023	75,906	73,860	72,690
MILB	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942	50,942

 $\bullet\,$ Esquema votación por Max Votos.

Tabla C.42: Precisión MIL-IPF Musk 1, Max Votos, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	71,696	61,813	62,982	62,982	58,713	64,035	60,819	65,146	61,930
Mmin	$73,\!860$	64,094	$67,\!427$	74,795	60,936	66,316	57,602	$67,\!310$	$57,\!544$
MExt	77,135	65,146	$59,\!591$	67,193	62,924	$70,\!526$	$55,\!439$	61,754	$56,\!667$
BOW	66,491	$58,\!596$	$52,\!164$	56,491	$55,\!673$	64,327	$56,\!550$	59,766	60,936
CKNN	74,912	$69,\!532$	64,035	67,193	58,713	73,977	69,474	71,696	66,199
mDD	57,719	57,778	$53,\!333$	54,444	$54,\!386$	$56,\!433$	58,772	61,930	52,164
EMDD	67,135	67,193	$62,\!105$	61,053	59,825	68,480	56,491	$69,\!532$	$52,\!105$
MILB	56,730	50,942	50,942	50,942	$39,\!529$	50,942	20,988	$42,\!446$	11,975

C.2. Mutagenesis 2

MIL-EF

- Ruido 0 %.
 - Esquema votación por consenso.

Tabla C.43: Precisión MIL-EF Muta 2, Consenso, Ruido $0\,\%$

	Original	${ m Filtro_1}$	$\overline{ ext{Filtro}_{-2}}$
MIL max	69.28571428571429	81.30952380952382	81.30952380952382
MIL min	69.28571428571428	81.30952380952381	81.30952380952381
MIL Ext	69.28571428571426	81.30952380952382	81.30952380952382
BOW	70.95238095238093	81.30952380952382	81.30952380952382
CKNN	71.45238095238095	81.75396825396825	82.32539682539682
\max DD	71.09126984126985	81.67989417989419	82.15608465608466
EM-DD	71.15079365079366	81.62698412698413	82.03514739229026
${ m MILBoost}$	66.68331916099773	78.82212144116906	75.06950349584278

Tabla C.44: Precisión MIL-EF Muta 2, Max Votos, Ruido $0\,\%$

	Original	${f Filtro}_{-1}$	Filtro_2
MIL max	69.28571428571429	81.30952380952382	81.30952380952382
MIL min	69.28571428571428	81.30952380952381	81.30952380952381
MIL Ext	69.28571428571426	81.30952380952382	81.30952380952382
BOW	71.666666666666667	81.30952380952382	81.30952380952382
CKNN	70.36507936507937	81.75396825396825	82.76984126984127
\max DD	70.18518518518519	81.67989417989419	82.52645502645504
EM-DD	70.87301587301586	81.62698412698413	83.07823129251702
${ m MILBoost}$	66.44026360544218	79.11816578483244	75.9822019085412

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.45: Precisión MIL-EF Muta 2, Consenso, Ruido $5\,\%$

	Original	${f Filtro_1}$	${f Filtro}_{f 2}$
MIL max	69.28571428571429	81.30952380952382	81.30952380952382
MIL min	69.28571428571428	81.30952380952381	81.30952380952381
MIL Ext	69.28571428571426	81.30952380952382	81.30952380952382
BOW	71.57738095238093	81.30952380952382	81.30952380952382
CKNN	73.07936507936508	81.30952380952381	81.75396825396825
\max DD	72.44708994708996	81.30952380952382	81.67989417989419
EM-DD	71.99546485260771	81.30952380952381	81.9444444444444
${ m MILBoost}$	67.42240646258503	76.90371866339129	74.9901384164777

Tabla C.46: Precisión MIL-EF Muta 2, Max Votos, Ruido $5\,\%$

	Original	\mathbf{Filtro}_{-1}	Filtro_2
MIL max	69.28571428571429	81.30952380952382	81.30952380952382
MIL min	69.28571428571428	81.30952380952381	81.30952380952381
MIL Ext	69.28571428571426	81.30952380952382	81.30952380952382
BOW	71.666666666666667	81.30952380952382	81.30952380952382
CKNN	71.74603174603175	81.30952380952381	81.75396825396825
\max DD	71.33597883597885	81.30952380952382	81.67989417989419
EM-DD	71.04308390022675	81.30952380952381	81.9444444444443
MILBoost	66.5890731292517	78.54434366339129	74.9901384164777

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.47: Precisió	n MIL-EF	Muta 2	Consenso	Ruido 10%
	TI TATIFIED I	TVILLUOU Z.	Componibo.	Truido 10 /0

	Original	${f Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	69.28571428571429	81.30952380952382	81.30952380952382
MIL min	69.28571428571428	81.30952380952381	81.30952380952381
MIL Ext	69.28571428571426	81.30952380952382	81.30952380952382
BOW	72.22222222222221	81.30952380952382	81.30952380952382
CKNN	71.15079365079364	81.43650793650794	80.69841269841271
\max DD	70.8399470899471	81.41534391534393	80.80026455026456
EM-DD	70.30045351473923	81.40022675736962	80.87301587301587
${ m MILBoost}$	65.9392715419501	77.27912808641975	74.0526384164777

• Esquema votación por Max Votos.

Tabla C.48: Precisión MIL-EF Muta 2, Max Votos, Ruido $10\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	69.28571428571429	81.30952380952382	86.388888888888
MIL min	69.28571428571428	81.30952380952381	86.3888888888889
MIL Ext	69.28571428571426	81.30952380952382	86.388888888889
BOW	71.64682539682539	81.30952380952382	86.3888888888889
CKNN	72.95238095238093	81.30952380952381	86.833333333333333
\max DD	72.34126984126985	81.30952380952382	86.75925925925927
EM-DD	72.26190476190476	81.30952380952381	87.06349206349206
MILBoost	67.65554138321995	77.3097757621567	80.7265487213404

- Ruido 15 %.
 - Esquema votación por consenso.

Tabla C.49: Precisión MIL-EF Muta 2, Consenso, Ruido $15\,\%$

	Original	${\bf Filtro_1}$	$\bf Filtro_2$
MIL max	69.28571428571429	81.30952380952382	81.30952380952382
MIL min	69.28571428571428	81.30952380952381	81.30952380952381
MIL Ext	69.28571428571426	81.30952380952382	81.30952380952382
BOW	70.625	81.30952380952382	81.30952380952382
CKNN	70.35714285714285	80.86507936507937	80.36507936507937
\max DD	70.17857142857143	80.93915343915344	80.52248677248677
EM-DD	70.45918367346938	80.99206349206351	80.63492063492065
MILBoost	66.078160430839	77.03199798437893	76.3134408856135

Tabla C.50: Precisión MIL-EF Muta 2, Max Votos, Ruido 15%	%
---	---

	Original	${ m Filtro}_{-}1$	${ m Filtro}_{-2}$
MIL max	69.28571428571429	81.30952380952382	83.53174603174604
MIL min	68.17460317460316	81.30952380952381	83.53174603174604
MIL Ext	68.54497354497353	81.30952380952382	83.53174603174604
BOW	69.77182539682539	81.30952380952382	83.53174603174604
CKNN	72.07936507936508	81.30952380952381	84.86507936507937
\max DD	71.61375661375662	81.30952380952382	84.64285714285714
EM-DD	71.0034013605442	81.30952380952381	84.8015873015873
MILBoost	66.55435090702947	81.30952380952381	77.27408903376165

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.51: Precisión MIL-EF Muta 2, Consenso, Ruido $20\,\%$

	Original	${f Filtro_1}$	${f Filtro}_{f 2}$
MIL max	69.28571428571429	81.30952380952382	83.53174603174604
MIL min	70.7142857142857	81.30952380952381	83.53174603174604
MIL Ext	70.23809523809521	81.30952380952382	83.53174603174604
BOW	70.5555555555556	81.30952380952382	83.53174603174604
CKNN	69.15873015873015	81.30952380952381	83.53174603174602
\max DD	69.17989417989419	81.30952380952382	83.53174603174602
EM-DD	69.19501133786848	81.30952380952381	83.53174603174602
${ m MILBoost}$	64.9720096371882	78.43433090828924	76.16297792265054

Tabla C.52: Precisión MIL-EF Muta 2, Max Votos, Ruido $20\,\%$

	Original	${f Filtro_1}$	Filtro_2
MIL max	64.28571428571428	73.80952380952382	81.03174603174604
MIL min	63.45238095238095	76.30952380952381	81.03174603174604
MIL Ext	62.24867724867725	75.4761904761905	81.03174603174604
BOW	66.3888888888889	76.30952380952382	81.65674603174604
CKNN	69.5	76.30952380952381	82.54761904761905
\max DD	69.46428571428572	76.7261904761905	82.29497354497354
EM-DD	69.7562358276644	77.02380952380953	82.43197278911565
${ m MILBoost}$	65.46308106575964	73.38809366339129	76.66961923658353

- Ruido 25 %.
 - Esquema votación por consenso.

	Original	${\bf Filtro_1}$	$\bf Filtro_2$
MIL max	69.28571428571429	78.80952380952382	78.80952380952382
MIL min	68.17460317460316	78.80952380952381	78.80952380952381
MIL Ext	68.54497354497353	78.80952380952382	78.80952380952382
BOW	67.61904761904762	78.80952380952382	78.80952380952382
CKNN	69.35714285714285	78.80952380952381	78.30952380952381
\max DD	69.3452380952381	78.80952380952382	78.39285714285715
EM-DD	69.33673469387755	78.80952380952381	78.45238095238096
${ m MILBoost}$	65.09601757369614	75.24663800705467	73.69957010582011

• Esquema votación por Max Votos.

Tabla C.54: Precisión MIL-EF Muta 2, Max Votos, Ruido $25\,\%$

	Original	${f Filtro_1}$	\mathbf{Filtro}_{-2}
MIL max	62.61904761904761	70.1984126984127	84.444444444444
MIL min	65.95238095238095	74.64285714285714	84.444444444444
MIL Ext	64.84126984126983	73.16137566137566	84.444444444444
BOW	64.84126984126983	74.0873015873016	84.44444444446
CKNN	64.15873015873015	74.64285714285715	84.44444444446
\max DD	65.0132275132275	75.3835978835979	84.444444444444
EM-DD	65.62358276643991	75.9126984126984	84.444444444443
MILBoost	61.84700963718821	72.80360292265054	80.32627865961199

- Ruido 30 %.
 - Esquema votación por consenso.

Tabla C.55: Precisión MIL-EF Muta 2, Consenso, Ruido $30\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	55.3968253968254	59.84126984126984	70.95238095238096
MIL min	62.34126984126984	61.78571428571429	68.45238095238095
MIL Ext	60.02645502645502	61.13756613756615	69.28571428571428
BOW	63.70039682539683	64.28571428571429	70.32738095238095
CKNN	63.92857142857142	65.73015873015873	71.45238095238095
\max DD	64.82142857142857	65.3968253968254	70.53571428571428
EM-DD	64.74489795918367	65.15873015873018	69.88095238095238
MILBoost	61.078160430839	63.161100088183424	66.15862780297304

 $74.68149644116906 \quad 79.33358528596624$

rabia	Tabla C.50: Flecision Will-Er Muta 2, Max Votos, Ruido 50 /		
	Original	${\bf Filtro_1}$	${ m Filtro}_{-2}$
MIL max	69.28571428571429	79.0873015873016	81.30952380952382
MIL min	69.28571428571428	79.08730158730158	81.30952380952381
MIL Ext	69.28571428571426	79.0873015873016	81.30952380952382
BOW	70.625	79.0873015873016	81.30952380952382
CKNN	71.42857142857143	79.0873015873016	83.21428571428572
\max DD	71.0714285714286	79.0873015873016	82.89682539682539
EM-DD	70.81632653061223	79.08730158730158	83.30498866213152

Tabla C.56: Precisión MIL-EF Muta 2, Max Votos, Ruido 30 %

MIL-CVCF

• Ruido 0%.

MILBoost 66.390660430839

• Esquema votación por consenso.

Tabla C.57: Precisión MIL-CVCF Muta 2, Consenso, Ruido 0 %

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	$69,\!286$	69,286	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	69,286	69,286	69,286	69,286	$69,\!286$	69,286
BOW	80,397	78,175	$78,\!175$	75,952	80,397	75,952	80,397	80,397	78,175
CKNN	72,143	72,143	72,143	72,143	72,143	72,143	72,143	74,643	72,143
mDD	69,286	69,286	69,286	69,286	69,286	69,286	69,286	$69,\!286$	69,286
EMDD	69,286	69,286	71,508	69,286	71,508	67,063	66,786	67,063	69,286
MILB	35,411	35,411	35,411	35,411	35,411	35,411	35,411	35,411	35,411

Tabla C.58: Precisión MIL-CVCF Muta 2, Max Votos, Ruido 0 %

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	100,000	81,310	93,333	60,000	100,000	100,000	0,000	20,000	0,000
Mmin	97,778	81,310	93,333	60,000	100,000	100,000	0,000	40,000	2,222
MExt	97,778	81,310	93,333	60,000	100,000	100,000	0,000	20,000	2,222
BOW	92,421	81,310	93,333	60,000	100,000	100,000	0,000	0,000	7,579
CKNN	86,389	85,754	93,333	100,000	100,000	92,778	100,000	100,000	19,881
mDD	$95,\!278$	81,310	93,333	60,000	100,000	100,000	0,000	20,000	4,722
EMDD	94,921	81,310	93,333	60,000	100,000	100,000	0,000	20,000	5,079
MILB	15,481	10,054	9,308	4,444	9,802	12,024	0,000	0,000	7,901

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.59: Precisión MIL-CVCF Muta 2, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	69,286	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
BOW	76,230	$78,\!452$	$78,\!452$	76,230	$78,\!452$	76,230	76,230	74,008	76,230
CKNN	74,008	74,008	74,008	73,373	74,008	74,008	76,230	74,008	76,230
mDD	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	$69,\!286$	69,286
EMDD	69,286	69,286	69,286	69,286	69,286	71,508	71,508	71,508	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	35,411

• Esquema votación por Max Votos.

Tabla C.60: Precisión MIL-CVCF Muta 2, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	100,000	81,310	93,333	60,000	100,000	100,000	0,000	60,000	0,000
Mmin	93,056	81,310	93,333	60,000	100,000	100,000	0,000	0,000	6,944
MExt	94,643	81,310	93,333	60,000	100,000	100,000	0,000	40,000	$5,\!357$
BOW	100,000	81,310	93,333	60,000	100,000	100,000	0,000	0,000	5,079
CKNN	$95,\!278$	83,532	93,333	100,000	100,000	97,778	100,000	100,000	22,302
mDD	97,778	81,310	93,333	60,000	100,000	100,000	0,000	20,000	2,222
EMDD	97,778	81,310	93,333	60,000	100,000	100,000	0,000	0,000	2,222
MILB	12,024	14,952	10,758	2,222	12,024	12,024	0,000	2,222	0,000

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.61: Precisión MIL-CVCF Muta 2, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	$69,\!286$	69,286
MExt	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	$69,\!286$	69,286
BOW	79,087	79,087	79,087	74,008	76,230	79,087	76,230	76,230	79,087
CKNN	61,706	63,929	63,929	61,706	63,929	63,929	63,929	63,929	61,706
mDD	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	$69,\!286$	69,286
EMDD	75,952	69,008	69,286	69,286	69,286	69,286	69,286	71,508	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$

• Esquema votación por Max Votos.

Tabla C.62: Precisión MIL-CVCF Muta 2, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	97,778	81,310	91,111	57,778	77,778	97,778	20,000	40,000	2,222
Mmin	100,000	81,310	93,333	60,000	80,000	100,000	0,000	0,000	0,000
MExt	97,143	81,310	93,333	60,000	80,000	100,000	0,000	0,000	2,857
BOW	90,198	81,310	93,333	60,000	80,000	100,000	0,000	20,000	9,802
CKNN	88,611	81,310	$95,\!556$	100,000	100,000	88,611	100,000	100,000	14,524
mDD	97,778	81,310	90,833	80,000	80,000	100,000	0,000	40,000	2,222
EMDD	94,643	81,310	93,333	60,000	60,000	100,000	0,000	0,000	0,000
MILB	15,940	10,577	9,308	4,444	7,579	12,024	0,000	2,500	9,273

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.63: Precisión MIL-CVCF Muta 2, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	$69,\!286$	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	69,286	69,286	69,286	69,286	$69,\!286$	69,286
BOW	74,008	71,151	76,230	76,230	76,230	73,373	71,786	76,230	71,786
CKNN	64,881	64,881	$62,\!659$	62,659	62,659	64,881	64,881	$62,\!659$	64,881
mDD	69,286	69,286	$69,\!286$	$69,\!286$	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$
EMDD	71,786	74,008	69,286	69,286	69,286	71,786	69,286	71,786	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	35,411

• Esquema votación por Max Votos.

Tabla C.64: Precisión MIL-CVCF Muta 2, Max Votos, Ruido $15\,\%$

						,	,		
	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	92,421	78,452	90,476	80,000	100,000	100,000	0,000	40,000	7,579
Mmin	94,921	81,310	88,611	77,778	97,778	97,778	20,000	0,000	5,079
MExt	90,198	81,310	93,333	60,000	80,000	100,000	0,000	20,000	9,802
BOW	90,278	78,810	90,833	77,500	97,500	97,500	20,000	20,000	6,944
CKNN	92,421	76,310	88,611	97,778	92,421	90,198	100,000	$95,\!556$	19,683
mDD	92,698	78,810	88,611	77,778	77,778	97,778	20,000	0,000	7,302
EMDD	90,278	81,310	93,333	60,000	100,000	91,111	0,000	60,000	4,722
MILB	19,231	$16,\!827$	17,008	10,694	10,694	15,774	0,000	4,375	7,901

- Ruido 20 %.
 - Esquema votación por consenso.

Tabla C.65: Precisión MIL-CVCF Muta 2, Consenso, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	64,286	64,286	64,286	64,286	64,286	64,286	64,286	64,286	64,286
Mmin	$69,\!286$	$69,\!286$	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
BOW	68,651	68,651	68,651	71,508	71,508	68,651	68,651	70,873	65,794
CKNN	59,048	$61,\!270$	63,492	63,492	59,048	59,048	$61,\!270$	59,048	63,492
mDD	69,286	69,286	69,286	69,286	69,286	69,286	69,286	$69,\!286$	69,286
EMDD	69,286	64,286	64,286	$69,\!286$	66,786	$69,\!286$	72,143	$69,\!286$	71,508
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$

Table C 66.	Drogición	1/ITT	-CVCF Muta	2 Mar	Votos	Duida 20 %
- Tabia (7.00)	- Precision	IVIII 1:	-0,00,6,000.6	Z. Wax	VOLOS.	B.HIGO ZU 7 0

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	93,333	81,310	87,976	100,000	100,000	100,000	0,000	40,000	6,667
Mmin	94,643	81,310	93,333	60,000	60,000	100,000	0,000	0,000	$5,\!357$
MExt	87,778	$76,\!587$	86,111	68,056	70,556	$90,\!556$	32,778	25,000	9,722
BOW	$95,\!278$	78,810	90,833	77,500	97,500	97,500	15,000	17,500	$12,\!579$
CKNN	81,944	81,310	93,333	$95,\!556$	$95,\!556$	86,111	97,778	$95,\!556$	6,667
mDD	90,833	79,087	88,254	72,698	72,698	92,698	37,778	20,000	9,167
EMDD	97,778	83,810	88,333	77,500	77,500	97,500	20,000	20,000	2,222
MILB	$15,\!481$	$25,\!015$	14,005	4,375	15,133	$17,\!356$	3,951	3,951	3,951

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.67: Precisión MIL-CVCF Muta 2, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	66,429	66,429	66,429	66,429	66,429	66,429	66,429	66,429	66,429
Mmin	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	$69,\!286$	69,286
MExt	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	$69,\!286$	69,286
BOW	76,865	$76,\!865$	79,087	81,944	81,944	74,643	$76,\!865$	$74,\!643$	71,786
CKNN	69,286	71,508	73,730	71,508	71,508	71,508	71,508	71,508	73,730
mDD	59,286	$59,\!286$	$64,\!286$	$59,\!286$	$61,\!508$	$59,\!286$	59,286	$64,\!286$	59,286
EMDD	69,286	71,508	69,286	73,730	69,286	69,286	74,365	69,286	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$

Tabla C.68: Precisión MIL-CVCF Muta 2, Max Votos, Ruido $25\,\%$

						,	,		- , .
	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	92,698	74,643	86,667	51,111	35,556	95,556	35,556	35,556	18,413
Mmin	92,698	78,452	90,476	77,143	77,143	97,143	20,000	0,000	7,302
MExt	$95,\!278$	81,310	93,333	60,000	40,000	100,000	0,000	0,000	4,722
BOW	70,873	74,286	78,175	80,675	72,103	85,754	$55,\!476$	$63,\!056$	11,667
CKNN	80,754	78,452	85,119	97,143	89,286	89,563	100,000	100,000	$12,\!579$
mDD	100,000	81,310	91,111	57,778	57,778	97,778	20,000	20,000	0,000
EMDD	85,198	66,310	80,833	75,000	85,000	92,778	5,000	35,000	17,024
MILB	17,521	10,054	14,215	9,630	14,987	17,209	0,000	8,536	4,898

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.69: Precisión MIL-CVCF Muta 2, Consenso, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	61,071	61,071	61,071	61,071	61,071	61,071	61,071	61,071	61,071
MExt	58,175	58,175	$58,\!175$	58,175	$58,\!175$	58,175	$58,\!175$	58,175	58,175
BOW	76,587	76,587	74,365	76,587	76,587	76,587	74,365	72,143	72,143
CKNN	56,349	56,349	56,349	56,349	56,349	56,349	56,349	56,349	56,349
mDD	69,286	69,286	$69,\!286$	69,286	69,286	69,286	69,286	69,286	69,286
EMDD	66,786	61,071	61,071	56,071	61,071	64,286	58,929	66,786	58,571
MILB	$35,\!411$	35,411	35,411	$35,\!411$	35,411	35,411	$35,\!411$	35,411	35,411

 $\bullet\,$ Esquema votación por Max Votos.

Tabla C.70: Precisión MIL-CVCF Muta 2, Max Votos, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	97,778	78,452	88,254	77,778	57,778	97,778	20,000	40,000	2,222
Mmin	85,754	$56,\!270$	68,294	72,738	72,738	74,960	$62,\!540$	27,619	35,198
MExt	97,778	79,087	86,032	70,476	70,476	90,476	57,778	40,000	2,222
BOW	$85,\!556$	71,587	73,889	$60,\!556$	82,778	92,778	20,556	30,278	9,722
CKNN	81,349	85,754	93,333	100,000	97,143	86,429	100,000	100,000	12,381
mDD	$95,\!278$	79,087	86,032	73,333	73,333	93,333	37,778	40,000	4,722
EMDD	93,333	81,310	91,111	57,778	31,111	97,778	20,000	20,000	6,667
MILB	24,728	13,657	26,144	17,608	18,737	22,687	17,008	14,786	12,799

MIL-IPF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.71: Precisión MIL-IPF Muta 2, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	69,286	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	69,286	69,286	69,286	69,286	$69,\!286$	69,286
BOW	78,730	76,508	78,730	78,730	78,730	78,730	78,730	76,230	76,508
CKNN	75,317	75,317	75,317	73,095	75,317	75,317	75,317	73,095	75,317
mDD	69,286	69,286	$69,\!286$	69,286	69,286	69,286	69,286	$69,\!286$	69,286
EMDD	71,786	67,063	$69,\!563$	69,286	69,286	69,286	69,286	$69,\!286$	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$

Tabla	$C 72 \cdot$	Procisión	MII.	-IPF Muta	2 1	May	Votos	Ruido	0%
Tauna	V.12.	T LECISION	101111	r i iviuta	Z	viax	volues.	11.111(1()	U /0

	Orig	Mmax	Mmin	MExt	BOW	ĆKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.73: Precisión MIL-IPF Muta 2, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	69,286	$69,\!286$	$69,\!286$
MExt	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	69,286	$69,\!286$	$69,\!286$
BOW	76,230	74,008	74,008	76,230	74,008	74,008	71,786	74,008	74,008
CKNN	72,817	72,817	72,817	72,817	72,817	72,817	72,817	72,817	72,817
mDD	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	$69,\!286$	69,286
EMDD	69,286	74,008	69,286	69,286	69,286	69,286	75,952	69,286	71,508
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	35,411

Tabla C.74: Precisión MIL-IPF Muta 2, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.75: Precisión MIL-IPF Muta 2, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	69,286	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
BOW	81,587	76,508	76,508	74,008	78,730	76,587	78,810	81,587	78,730
CKNN	75,595	75,595	75,595	75,595	73,373	75,595	75,595	75,595	73,373
mDD	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
EMDD	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
MILB	$35,\!411$	35,411	35,411	$35,\!411$	35,411	35,411	$35,\!411$	35,411	35,411

• Esquema votación por Max Votos.

Tabla C.76: Precisión MIL-IPF Muta 2, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.77: Precisión MIL-IPF Muta 2, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	69,286	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
MExt	69,286	69,286	69,286	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
BOW	76,865	81,310	$83,\!532$	81,310	80,675	76,230	79,087	$78,\!452$	81,310
CKNN	$64,\!563$	$64,\!563$	$64,\!563$	$64,\!563$	$64,\!563$	$64,\!563$	$64,\!563$	$64,\!563$	$64,\!563$
mDD	$69,\!286$	69,286	$69,\!286$	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
EMDD	69,286	69,286	67,063	69,286	67,063	73,730	69,286	62,619	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	35,411

Tabla C.78: Precisión MIL-IPF Muta 2, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.79: Precisión MIL-IPF Muta 2, Consenso, Ruido $20\,\%$

_	Tabla C. 15. I Toolbion Mill II I					2, 00115	J1150, 10	ando 20 /	. 0
	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	$69,\!286$	$69,\!286$
MExt	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	$69,\!286$	$69,\!286$
BOW	71,151	64,206	71,786	74,008	73,373	74,008	70,873	66,429	73,373
CKNN	77,500	77,500	77,500	77,500	77,500	77,500	77,500	77,500	77,500
mDD	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	69,286	69,286	$69,\!286$	69,286
EMDD	74,365	69,286	72,143	69,286	69,286	72,143	69,286	72,143	69,286
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	35,411

• Esquema votación por Max Votos.

Tabla C.80: Precisión MIL-IPF Muta 2, Max Votos, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.81: Precisión MIL-IPF Muta 2, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	60,397	60,397	60,397	60,397	60,397	60,397	60,397	60,397	60,397
Mmin	62,619	62,619	$62,\!619$	62,619	62,619	62,619	62,619	62,619	62,619
MExt	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
BOW	71,508	71,508	71,508	71,508	76,587	71,508	74,365	73,730	72,143
CKNN	64,206	64,206	66,429	66,429	66,429	66,429	66,429	66,429	66,429
mDD	64,286	64,286	64,286	64,286	64,286	64,286	59,286	64,286	64,286
EMDD	62,619	62,619	62,619	72,063	62,619	62,619	62,619	62,619	62,619
MILB	$35,\!411$	35,411	35,411	$35,\!411$	35,411	35,411	$35,\!411$	35,411	$35,\!411$

• Esquema votación por Max Votos.

Tabla C.82: Precisión MIL-IPF Muta 2, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 30 %.
 - Esquema votación por consenso.

Tabla C.83: Precisión MIL-IPF Muta 2, Consenso, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286	69,286
Mmin	56,905	56,905	56,905	56,905	56,905	56,905	56,905	56,905	56,905
MExt	56,905	56,905	56,905	56,905	56,905	56,905	56,905	56,905	56,905
BOW	$62,\!421$	72,143	74,365	72,143	72,143	$64,\!643$	69,643	72,143	72,143
CKNN	57,183	$57,\!183$	$57,\!183$	57,183	57,183	57,183	57,183	57,183	57,183
mDD	$69,\!286$	69,286	$69,\!286$	69,286	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$	$69,\!286$
EMDD	64,841	64,841	62,341	66,786	62,341	$64,\!563$	69,286	$64,\!563$	67,063
MILB	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	$35,\!411$	35,411

Tabla C.84: Precisión MIL-IPF Muta 2, N	Max Votos, Ruido 30	0%
---	---------------------	----

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

C.3. Tiger

MIL-EF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.85: Precisión MIL-EF Tiger, Consenso, Ruido $0\,\%$

	Original	${f Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	75.0	75.0	78.0
MIL min	76.0	76.0	77.75
MIL Ext	76.833333333333333	76.3333333333333333	77.5
BOW	75.25	75375	76.75
CKNN	74.3	74.8	75.9
\max DD	72.8333333333333333	71.5	71.5833333333333333
EM-DD	71.21428571428571	70.57142857142857	70.35714285714286
MILBoost	68.5625	68.0	67.8125

• Esquema votación por Max Votos.

Tabla C.86: Precisión MIL-EF Tiger, Max Votos, Ruido 0 %

	Original	${f Filtro_1}$	${f Filtro}_{-2}$
MIL max	73.0	71.0	72.0
MIL min	74.5	73.75	75.25
MIL Ext	74.5	73.3333333333333333	73.833333333333333
BOW	72.625	72.75	72.25
CKNN	72.1	73.1	72.2
\max DD	69.33333333333333	70.0	68.75
EM-DD	68.57142857142857	69.5	68.28571428571429
MILBoost	66.25	67.0625	66.0
		00.0	

■ Ruido 5 %.

150 C.3. Tiger

• Esquema votación por consenso.

Tabla C.87: Precisión MIL-EF Tiger, Consenso, Ruido $5\,\%$

		0 -)	-,
	Original	${\bf Filtro_1}$	$\bf Filtro_2$
MIL max	75.0	74.0	74.5
MIL min	76.5	73.25	75.75
MIL Ext	75.833333333333333	73.666666666666667	74.833333333333333
BOW	74125	73125	74.0
CKNN	73.6	73.9	74.1
\max DD	70.916666666666667	69.83333333333333	70.083333333333333
EM-DD	69.85714285714286	68.78571428571429	68.64285714285714
$\operatorname{MILBoost}$	67375	66.4375	66.3125

• Esquema votación por Max Votos.

Tabla C.88: Precisión MIL-EF Tiger, Max Votos, Ruido 5 %

	Original	${f Filtro_1}$	${f Filtro}_{f 2}$
MIL max	70.5	67.0	68.5
MIL min	72.5	69.75	69.5
MIL Ext	72.0	69.33333333333333	69.0
BOW	70.875	68.75	68.0
CKNN	71.0	69.7	69.3
\max DD	67.75	66.91666666666667	66.083333333333333
EM-DD	66.35714285714286	66.42857142857143	65.64285714285714
${ m MILBoost}$	64.3125	64375	63.6875

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.89: Precisión MIL-EF Tiger, Consenso, Ruido $10\,\%$

	Original	${ m Filtro_1}$	${f Filtro}_{-2}$
MIL max	72.5	67.0	72.5
MIL min	71.0	61.75	69.25
MIL Ext	72.3333333333333333	63.5	70.66666666666667
BOW	71.25	64.125	69.875
CKNN	70.3	65.2	69.9
\max DD	67.41666666666667	62.916666666666664	66.833333333333333
EM-DD	66.35714285714286	63.0	65.71428571428571
$\operatorname{MILBoost}$	64.3125	61.375	63.75

Tabla C 00:	Procisión	MIL-EF Tice	er. Max Votos.	Ruido 10 %
- Tabia (7.90)	r recision	- WILL-E/E 186	ar. Max volos	. D .IIIOO IO 70

	Original	${f Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	73.5	68.0	69.0
MIL min	74.25	67.25	70.5
MIL Ext	74.166666666666667	67.5	70.3333333333333333
BOW	72.375	67.625	69.375
CKNN	71.5	68.3	69.8
\max DD	68.3333333333333333	65.16666666666667	66.66666666666667
EM-DD	67.07142857142857	65.21428571428571	65.92857142857143
${ m MILBoost}$	64.9375	63.3125	63.9375

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.91: Precisión MIL-EF Tiger, Consenso, Ruido $15\,\%$

	Original	${f Filtro_1}$	${f Filtro}_{f 2}$
MIL max	71.5	71.0	73.0
MIL min	72.25	67.75	70.75
MIL Ext	72.3333333333333333	69.66666666666667	72.3333333333333333
BOW	70.875	69.875	70.25
CKNN	70.1	69.9	70.1
\max DD	66.3333333333333333	66.333333333333333	66.833333333333333
EM-DD	65.14285714285714	65.5	65.85714285714286
${ m MILBoost}$	63.25	63.5625	63.875

Tabla C.92: Precisión MIL-EF Tiger, Max Votos, Ruido 15 %

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	71.5	62.0	69.0
MIL min	70.5	61.75	68.0
MIL Ext	70.166666666666667	62.833333333333333	68.833333333333333
BOW	70.25	63.375	68.875
CKNN	69.3	64.9	70.1
\max DD	66.5	62.25	66.66666666666667
EM-DD	65.14285714285714	62.714285714285715	66.14285714285714
MILBoost	63.25	61.125	64.125

- Ruido 20%.
 - Esquema votación por consenso.

152 C.3. Tiger

Tabla C.93: Precisión MIL-EF Tiger, Consenso, Ruido $20\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	67.0	67.5	72.0
MIL min	68.75	67.75	69.75
MIL Ext	69.16666666666667	67.833333333333333	70.16666666666667
BOW	68.625	67.25	69.0
CKNN	67.4	67.3	68.3
\max DD	64.91666666666667	64.16666666666667	65.083333333333333
EM-DD	63.642857142857146	63.57142857142857	63.642857142857146
MILBoost	61.9375	61.875	61.9375

• Esquema votación por Max Votos.

Tabla C.94: Precisión MIL-EF Tiger, Max Votos, Ruido $20\,\%$

	Original	${ m Filtro_1}$	${f Filtro}_{f 2}$
MIL max	67.5	64.5	65.5
MIL min	64.5	60.0	59.75
MIL Ext	65.833333333333333	62.0	61.5
BOW	65.875	62.0	62.0
CKNN	65.8	63.7	63.6
\max DD	63.333333333333333	61.8333333333333333	61.416666666666664
EM-DD	62.142857142857146	61.714285714285715	61.5
$\operatorname{MILBoost}$	60.625	60.25	60.0625

- Ruido 25 %.
 - $\bullet\,$ Esquema votación por consenso.

Tabla C.95: Precisión MIL-EF Tiger, Consenso, Ruido $25\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	72.5	61.5	72.0
MIL min	67.0	58.5	67.0
MIL Ext	68.333333333333333	60.166666666666664	67.833333333333333
BOW	67.625	60.125	67.0
CKNN	66.8	60.9	66.9
\max DD	65.25	59.833333333333333	63.916666666666664
EM-DD	63.857142857142854	59.214285714285715	62.92857142857143
${ m MILBoost}$	62.125	58.0625	61.3125

Tabla C 96	· Procisión	MILEF 7	Figer May	Votos	Ruido 25 %
Tabla C.90	, i recision	101117-171	riger, max	VOLOS.	N.UIOO 20 70

	Original	${ m Filtro_1}$	${\bf Filtro_2}$	
MIL max	67.0	65.5	66.5	
MIL min	65.75	65.0	63.5	
MIL Ext	66.6666666666667	65.3333333333333333	64.833333333333333	
BOW	66.5	66.5	64.375	
CKNN	66.4	67.2	65.4	
\max DD	64.25	64.25	62.75	
EM-DD	62.857142857142854	64.0	62.0	
$\operatorname{MILBoost}$	61.25	62.25	60.5	

- Ruido 30 %.
 - Esquema votación por consenso.

Tabla C.97: Precisión MIL-EF Tiger, Consenso, Ruido $30\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	59.5	55.0	62.0
MIL min	60.5	54.5	59.25
MIL Ext	60.166666666666664	54.3333333333333333	60.3333333333333333
BOW	60.0	54.25	60.25
CKNN	59.7	55.0	60.1
\max DD	58.3333333333333333	54.166666666666664	58.25
EM-DD	57.07142857142857	53.785714285714285	58.0
MILBoost	56.1875	53.3125	57.0

• Esquema votación por Max Votos.

Tabla C.98: Precisión MIL-EF Tiger, Max Votos, Ruido $30\,\%$

	Original	${ m Filtro_1}$	${ m Filtro}_2$
MIL max	64.0	60.5	63.0
MIL min	60.0	58.75	60.25
MIL Ext	60.3333333333333333	59.0	60.66666666666664
BOW	59.5	59.125	61.0
CKNN	60.2	59.7	62.1
\max DD	59.75	58.416666666666664	60.66666666666664
EM-DD	59.214285714285715	58.642857142857146	60.92857142857143
MILBoost	58.0625	57.5625	59.5625

MIL-CVCF

- Ruido 0 %.
 - Esquema votación por consenso.

154 C.3. Tiger

Tabla C.99: Precisión MIL-CVCF Tiger, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5
Mmin	78	78	78	78	78	78	78	78	78
MExt	75	75	75	75	75	75	75	75	75
BOW	73,5	71	69,5	72,5	67,5	69,5	70	71,5	67
CKNN	75,5	75,5	75,5	75,5	75,5	75,5	75,5	75,5	75,5
mDD	59,5	50,5	54	47,5	56,5	51	57	56,5	53
EMDD	62	61,5	64,5	64,5	60,5	60	61,5	64,5	64
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.100: Precisión MIL-CVCF Tiger, Max Votos, Ruido $0\,\%$

-	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	72	75	71	72,5	72	72,5	59,5	70,5	51,5
Mmin	77	75,5	74	75	74,5	77,5	63	59,5	51
MExt	78,5	76	71,5	75	72,5	76	70	70	52
BOW	68,5	71,5	68,5	70	68,5	71,5	66	64,5	52
CKNN	72,5	77	72,5	76	76	73	69	74,5	54
mDD	55	54,5	52	54,5	52	54,5	50,5	49	51
EMDD	65	64,5	69,5	64,5	64,5	67,5	61	58,5	52
MILB	51,9	50	50	50	50	50	50	50	41,9

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.101: Precisión MIL-CVCF Tiger, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	73	73	73	73	73	73	73	73	73
Mmin	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5
MExt	68	67,5	68	68	68	68	68	67,5	68
BOW	73	72	70	70	68,5	70,5	72	72,5	67
CKNN	74	74	74	74	74	74	74	74	74
mDD	51,5	51	54	52	56	55,5	58	55	51,5
EMDD	62	62,5	61	62,5	66,5	66,5	60	62	61,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.102: Precisión MIL-CVCF Tiger, Max Votos, Ruido $5\,\%$

						<i>)</i> /			
	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	\mathbf{EMDD}	MILB
Mmax	71,5	67,5	69	70	70	68	62	66,5	51
Mmin	76,5	75	70,5	75	71,5	72,5	54,5	57	50,5
MExt	72,5	71,5	70,5	72	74	72,5	50,5	65	51,5
BOW	71	69	67	70,5	68	68,5	58,5	63,5	51,5
CKNN	72,5	75,5	73,5	76,5	74,5	70,5	61,5	73	55
mDD	48,5	59	50,5	53	51,5	58,5	52	48	50,5
EMDD	59	64,5	67	65,5	62	60	56	57,5	51,5
MILB	50,95	50	50	50	50	50	50	50	$10,\!475$

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.103: Precisión MIL-CVCF Tiger, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	73	73	73	73	73	73	73	73	73
Mmin	72,5	72,5	72,5	72,5	72,5	72,5	72,5	72,5	72,5
MExt	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5
BOW	65,5	69	73,5	67,5	69	66,5	67,5	68	67,5
CKNN	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5
mDD	51	50	56	54	55	50,5	50	56	50
EMDD	57,5	59,5	60	57,5	59,5	62	60	60	59
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.104: Precisión MIL-CVCF Tiger, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	ĆKNN	mDD	EMDD	MILB
Mmax	71	69,5	64,5	68,5	68,5	66,5	53	66	51
Mmin	73	72,5	62,5	73	70	69	53,5	55	52
MExt	71,5	72	64	72	68,5	70,5	50,5	65	52
BOW	64	67	62,5	69	61	74,5	55,5	62,5	51,5
CKNN	66,5	73	75,5	73	73,5	69,5	61,5	70,5	57
mDD	48,5	52,5	54	51,5	53	52,5	49	52,5	52
EMDD	59,5	63	63,5	64,5	59,5	60,5	54	60	50,5
MILB	$52,\!375$	50	50	50	50	50	50	50	$31,\!425$

- Ruido 15%.
 - Esquema votación por consenso.

156 C.3. Tiger

Tabla C.105: Precisión MIL-CVCF Tiger, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	70	70	70	70	70	70	70	70	70
Mmin	68	68	68	68	68	68	68	68	68
MExt	70,5	70,5	70,5	70,5	70,5	70,5	70,5	70,5	70,5
BOW	70	69,5	68	69	67	72,5	66	66	69,5
CKNN	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5
mDD	58	52,5	53,5	51	47	54,5	52,5	49	48
EMDD	55,5	56	60	59	60,5	60,5	57	59	61
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.106: Precisión MIL-CVCF Tiger, Max Votos, Ruido $15\,\%$

						, ,	,		
	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	73	71	58,5	70,5	71,5	71	56	60	50
Mmin	76,5	74	64	73,5	72,5	73,5	53,5	51,5	51,5
MExt	75,5	71,5	69,5	71	71	71,5	51,5	58,5	51
BOW	67,5	69	63	72,5	70,5	65	52,5	59,5	51,5
CKNN	69	73	67,5	71	72	69,5	57	62,5	51,5
mDD	53,5	58,5	51	49,5	54,5	54,5	48	49,5	49
EMDD	60	63	58,5	59	61	61	50,5	56	52
MILB	51,9	50	50	50	50	50	$50,\!475$	$50,\!475$	20,95

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.107: Precisión MIL-CVCF Tiger, Consenso, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	67,5	67,5	67,5	67,5	67,5	67,5	67,5	67,5	67,5
Mmin	63	63	63	63	63	63	63	63	63
MExt	73	73	73	73	73	73	73	73	73
BOW	63	66,5	64	67,5	66,5	69	64,5	64	62,5
CKNN	66	66	66	66	66	66	66	66	66
mDD	57	57	53	52	57	48	51	51	54,5
EMDD	53	55,5	55	50	51	53	56	57,5	55,5
MILB	50	50	50	50	50	50	50	50	50

Table C 109	Drocisión	1 / ITT	CVCF Timer	Mar Vot	os. Ruido 20 %
Tadia C. 1083	: Precision	IVIII 1-	-C, V C, F - 1 19er	. WIAX VOL	DS. B.HIGO ZU 70

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	68	67	55	64	63	63	55	58	51
Mmin	64	64	58	63,5	62	65	55,5	52	51,5
MExt	70,5	69	64,5	72	70	71	56,5	53,5	51
BOW	63	65	55	64	67	62	56	57	52
CKNN	62,5	69	61,5	69,5	69	64	56	61,5	53
mDD	61	49	50	48,5	51	48,5	52,5	49,5	50,5
EMDD	59,5	62,5	61	67,5	64,5	62	57,5	59	50
MILB	$51,\!425$	50	50	50	50	50	50	50	31,425

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.109: Precisión MIL-CVCF Tiger, Consenso, Ruido $25\,\%$

	Orig		Mmin			CKNN	mDD	EMDD	MILB
Mmax	66	66	66	66	66	66	66	66	66
Mmin	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5
MExt	66	66	66	66	66	66	66	66	66
BOW	67,5	65,5	72	68,5	67	65,5	67	66	64
CKNN	67	67	67	67	67	67	67	67	67
mDD	51,5	52,5	55,5	51	52,5	51,5	53	50,5	56
EMDD	55,5	54,5	56,5	53,5	56,5	55	51,5	55	53,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.110: Precisión MIL-CVCF Tiger, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69	68,5	58	69,5	70	67	53	54	51
Mmin	55,5	55,5	51,5	55	60	58	50,5	51	51
MExt	67	63,5	50	64	64	66	51	51,5	50,5
BOW	65,5	64,5	51	62	66	65,5	51	55	50,5
CKNN	64,5	67,5	63,5	67,5	70,5	65,5	56	59	50,5
mDD	52	51	50	48,5	48,5	53	55,5	51	52
EMDD	55	59,5	58,5	61,5	60	55	53	51,5	40
MILB	51,9	50	50	50	50	50	$50,\!475$	$50,\!475$	31,9

- Ruido 30%.
 - Esquema votación por consenso.

158 C.3. Tiger

Tabla C.111: Precisión MIL-CVCF Tiger, Consenso, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69,5	69,5	69,5	69,5	69,5	69,5	69,5	69,5	69,5
Mmin	56	56	56	56	56	56	56	56	56
MExt	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5
BOW	63,5	61,5	63,5	61,5	62	61,5	60	60,5	58
CKNN	60	60	60	60	60	60	60	60	60
mDD	56	55	56	55,5	53,5	50,5	52	50,5	52,5
EMDD	47,5	52	54,5	47	45	37	53	45	48
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.112: Precisión MIL-CVCF Tiger, Max Votos, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69	63	50	59	65,5	64	49,5	51	52,5
Mmin	54,5	50,5	50,5	50,5	52	51	52,5	56	49,5
MExt	63	63	56	62,5	62,5	64,5	52,5	52	50,5
BOW	64,5	66	56	62	64,5	62	56	53,5	51,5
CKNN	62,5	65	55	66	68,5	61	51,5	59,5	56
mDD	51,5	50	50	50	54,5	51	50	51	51
EMDD	52,5	56,5	55	60,5	59,5	57	51,5	57	49,5
MILB	50,95	50	50	50	50	50	50	50	20,95

MIL-IPF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.113: Precisión MIL-IPF Tiger, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	73	73	73	73	73	73	73	73	73
Mmin	76	76	76	76	76	76	76	76	76
MExt	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5
BOW	68,5	70	70,5	72,5	68,5	69,5	67,5	64	72,5
CKNN	70	70	70	70	70	70	70	70	70
mDD	55,5	52	56	52,5	56	54,5	56,5	50,5	55
EMDD	64	63,5	61	59	59	63	61,5	61	63,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.114: Precisión MIL-IPF Tiger, Max Votos, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.115: Precisión MIL-IPF Tiger, Consenso, Ruido $5\,\%$

	10010							tarao o /t	
	\mathbf{Orig}	Mmax	Mmin	\mathbf{MExt}	\mathbf{BOW}	\mathbf{CKNN}	mDD	\mathbf{EMDD}	MILB
Mmax	68	68	68	68	68	68	68	68	68
Mmin	77	77	77	77	77	77	77	77	77
MExt	70	70	70	70	70	70	70	70	70
BOW	69	72,5	71	64,5	70,5	71,5	70	66,5	71,5
CKNN	71	71	71	71	71	71	71	71	71
mDD	56,5	54	53,5	51	60	53	61,5	59	53
EMDD	60	61,5	57	58	63,5	47	59	59,5	55,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.116: Precisión MIL-IPF Tiger, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 10%.
 - Esquema votación por consenso.

160 C.3. Tiger

Tabla C.117: Precisión MIL-IPF Tiger, Consenso, Ruido $10\,\%$

						O	,	,		-
		Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mn	ıax	71	71	71	71	71	71	71	71	71
Mn	nin	75	75	75	75	75	75	75	75	75
ME	ext	73,5	73,5	73,5	73,5	73,5	73,5	73,5	73,5	73,5
BO	W	67	69,5	72	68,5	72,5	70	66,5	66,5	65,5
CK	NN	70	70	70	70	70	70	70	70	70
mD	$^{\mathrm{D}}$	52,5	56,5	51	51	52,5	48	54,5	53	48,5
EM	DD	63,5	58	65,5	60,5	59,5	61,5	61	60	58,5
MII	LB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.118: Precisión MIL-IPF Tiger, Max Votos, Ruido $10\,\%$

-	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 15%.
 - $\bullet\,$ Esquema votación por consenso.

Tabla C.119: Precisión MIL-IPF Tiger, Consenso, Ruido $15\,\%$

-	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	65	65	65	65	65	65	65	65	65
Mmin	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5
MExt	73	73	73	73	73	73	73	73	73
BOW	69	69	65,5	63	65,5	72	71,5	68,5	70,5
CKNN	64,5	64,5	64,5	64,5	64,5	64,5	64,5	64,5	64,5
mDD	51,5	54	50	55	56,5	54	53	51	53
EMDD	55	56,5	54	58	56,5	55,5	56,5	56,5	50,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.120: Precisión MIL-IPF Tiger, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.121: Precisión MIL-IPF Tiger, Consenso, Ruido 20 %

	Orig Mmax Mmin MExt BOW CKNN mDD EMDD MILB										
	\mathbf{Orig}	Mmax	Mmin	\mathbf{MExt}	\mathbf{BOW}	\mathbf{CKNN}	mDD	\mathbf{EMDD}	MILB		
Mmax	70	69,5	70	69,5	70	69,5	69,5	70	70		
Mmin	61	61	61	61	61	61	61	61	61		
MExt	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5		
BOW	64,5	68	65,5	64,5	62,5	66,5	65	69,5	67		
CKNN	61	61	61	61	61	61	61	61	61		
mDD	47,5	55,5	49	57	55	57	51,5	55,5	52,5		
EMDD	56	55,5	58,5	56	55	56	50,5	55	55,5		
MILB	50	50	50	50	50	50	50	50	50		

• Esquema votación por Max Votos.

Tabla C.122: Precisión MIL-IPF Tiger, Max Votos, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 25%.
 - Esquema votación por consenso.

162 C.3. Tiger

Tabla C.123: Precisión MIL-IPF Tiger, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	66,5	66,5	66,5	66,5	66,5	66,5	66,5	66,5	66,5
Mmin	60,5	60,5	60,5	60,5	60,5	60,5	60,5	60,5	60,5
MExt	60,5	60,5	60,5	60,5	60,5	60,5	60,5	60,5	60,5
BOW	62	58	64,5	66,5	56	62,5	64,5	65	62
CKNN	68	68	68	68	68	68	68	68	68
mDD	53	52	50	53	53	49	55	56,5	54,5
EMDD	56,5	58,5	58,5	61	56	55,5	53	57,5	51
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.124: Precisión MIL-IPF Tiger, Max Votos, Ruido $25\,\%$

-	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.125: Precisión MIL-IPF Tiger, Consenso, Ruido $30\,\%$

						,			
	\mathbf{Orig}	Mmax	Mmin	\mathbf{MExt}	\mathbf{BOW}	CKNN	mDD	\mathbf{EMDD}	MILB
Mmax	64	64	64	64	64	64	64	64	64
Mmin	66,5	66,5	66,5	66,5	66,5	66,5	66,5	66,5	66,5
MExt	66	66	66	66	66	66	66	66	66
BOW	59,5	60	64,5	60	61,5	62,5	59,5	60	59
CKNN	61	61	61	61	61	61	61	61	61
mDD	55,5	58,5	52	54,5	53,5	54,5	53	52,5	57
EMDD	49,5	51,5	50	51,5	49,5	49,5	49,5	49,5	53
MILB	50	50	50	50	50	50	50	50	50

Tabla C.126:	Precisión	MIL-IPF	Tiger, Max	Votos,	Ruido 30'	%
--------------	-----------	---------	------------	--------	-----------	---

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

C.4. Fox

MIL-EF

- Ruido 0 %.
 - Esquema votación por consenso.

Tabla C.127: Precisión MIL-EF Fox, Consenso, Ruido $0\,\%$

	Original	${ m Filtro}_1$	${ m Filtro}_2$
MIL max	67.5	64.0	66.0
MIL min	61.75	60.0	59.75
MIL Ext	62.5	61.0	60.5
BOW	62.25	59.5	60.0
CKNN	62.4	59.6	60.5
\max DD	60.75	58.166666666666664	59.833333333333333
EM-DD	60.785714285714285	58.714285714285715	59.714285714285715
${ m MILBoost}$	59.4375	57.625	58.5

• Esquema votación por Max Votos.

Tabla C.128: Precisión MIL-EF Fox, Max Votos, Ruido $0\,\%$

	Original	${ m Filtro}_{-1}$	${ m Filtro}_{-2}$
MIL max	64.5	62.0	62.0
MIL min	60.5	57.75	57.25
MIL Ext	61.166666666666664	58.666666666666664	58.333333333333333
BOW	60.125	58.25	58.375
CKNN	60.3	58.8	59.3
\max DD	59.833333333333333	59.0	58.416666666666664
EM-DD	59.785714285714285	59.07142857142857	59.0
MILBoost	58.5625	57.9375	57.875

■ Ruido 5 %.

164 C.4. Fox

• Esquema votación por consenso.

Tabla C.129: Precisión MIL-EF Fox, Consenso, Ruido $5\,\%$

	Original	${ m Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	65.5	59.0	61.0
MIL min	59.0	55.0	56.25
MIL Ext	59.833333333333333	54.833333333333333	56.5
BOW	59.375	55.125	56.0
CKNN	60.2	56.0	57.3
\max DD	58.833333333333333	54.916666666666664	55.916666666666664
EM-DD	59.142857142857146	55.285714285714285	56.92857142857143
MILBoost	58.0	54.625	56.0625

• Esquema votación por Max Votos.

Tabla C.130: Precisión MIL-EF Fox, Max Votos, Ruido 5 %

		, , , , , , , , , , , , , , , , , , , ,		
	Original	${ m Filtro}_{-1}$	${ m Filtro}_{-2}$	
MIL max	63.0	55.5	57.5	
MIL min	57.75	53.75	54.25	
MIL Ext	58.166666666666664	54.0	56.3333333333333333	
BOW	56.5	54.5	55.875	
CKNN	57.6	54.4	56.2	
$\max DD$	56.833333333333333	54.833333333333333	55.916666666666664	
EM-DD	57.357142857142854	55.42857142857143	56.42857142857143	
${\rm MILBoost}$	56.4375	54.75	55.625	

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.131: Precisión MIL-EF Fox, Consenso, Ruido $10\,\%$

	Original	${ m Filtro_1}$	${f Filtro}_{f 2}$
MIL max	62.0	58.5	61.5
MIL min	56.5	55.25	57.25
MIL Ext	58.5	55.666666666666664	59.5
BOW	56.75	55.625	59.5
CKNN	58.0	56.9	60.4
$\max DD$	57.416666666666664	56.083333333333333	58.916666666666664
EM-DD	57.214285714285715	56.357142857142854	58.857142857142854
${ m MILBoost}$	56.3125	55.5625	57.75

Tabla (1122.	Procisión	MIL-EF Fox.	May Votos	Ruido 10%
Tabla (J. I.) Z.	T recision	TVITI - I'II' I'OX.	. IVIAX VULUS.	. N .UIOO 10 70

	Original	${ m Filtro}_{-1}$	${ m Filtro}_2$
MIL max	58.0	52.5	55.0
MIL min	55.5	53.0	54.0
MIL Ext	56.16666666666664	53.166666666666664	53.833333333333333
BOW	56.25	53.125	53.75
CKNN	57.4	54.1	54.5
\max DD	56.666666666666664	53.916666666666664	53.833333333333333
EM-DD	56.642857142857146	53.92857142857143	54.57142857142857
$\operatorname{MILBoost}$	55.8125	53.4375	54.0

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.133: Precisión MIL-EF Fox, Consenso, Ruido $15\,\%$

	Original	${f Filtro}_{-1}$	Filtro_2
MIL max	57.5	56.0	58.0
MIL min	54.25	53.0	54.5
MIL Ext	55.0	54.0	55.0
BOW	55.5	53.875	54.75
CKNN	56.5	54.6	56.1
$\max DD$	54.75	54.583333333333333	55.5
EM-DD	55.0	55.07142857142857	55.5
MILBoost	54.375	54.4375	54.8125

Tabla C.134: Precisión MIL-EF Fox, Max Votos, Ruido $15\,\%$

	Original	${f Filtro}_{-1}$	${ m Filtro}_{-2}$
MIL max	60.0	55.0	57.0
MIL min	56.0	53.0	54.75
MIL Ext	56.3333333333333333	54.666666666666664	55.5
BOW	55.875	54.25	54.25
CKNN	56.2	54.4	54.6
\max DD	55.5	54.916666666666664	54.25
EM-DD	55.785714285714285	55.357142857142854	54.857142857142854
MILBoost	55.0625	54.6875	54.25

- Ruido 20%.
 - Esquema votación por consenso.

166 C.4. Fox

Tabla C.135: Precisión MIL-EF Fox, Consenso, Ruido $20\,\%$

	Original	${ m Filtro}_{-1}$	${ m Filtro}_2$
MIL max	64.0	54.0	60.5
MIL min	57.25	53.5	56.0
MIL Ext	59.166666666666664	54.5	58.0
BOW	57.75	53.375	57.75
CKNN	58.0	54.5	57.9
$\max DD$	56.916666666666664	54.0	56.75
EM-DD	56.714285714285715	54.357142857142854	56.357142857142854
MILBoost	55.875	53.8125	55.5625

• Esquema votación por Max Votos.

Tabla C.136: Precisión MIL-EF Fox, Max Votos, Ruido $20\,\%$

	Original	${ m Filtro}_1$	${f Filtro}_{-2}$
MIL max	64.5	56.5	56.0
MIL min	58.5	53.25	53.5
MIL Ext	59.0	54.3333333333333333	54.3333333333333333
BOW	58.5	53.5	55.0
CKNN	59.5	54.0	55.8
\max DD	59.333333333333333	53.916666666666664	56.083333333333333
EM-DD	60.0	54.57142857142857	56.857142857142854
MILBoost	58.75	54.0	56.0

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.137: Precisión MIL-EF Fox, Consenso, Ruido $25\,\%$

	Original	${ m Filtro}_1$	${ m Filtro}_{ m 2}$
MIL max	58.0	52.0	54.0
MIL min	54.0	51.25	52.75
MIL Ext	55.3333333333333333	51.3333333333333333	53.3333333333333333
BOW	55.25	50.75	53.125
CKNN	56.1	52.3	54.0
\max DD	55.3333333333333333	51.75	53.166666666666664
EM-DD	55.57142857142857	52.07142857142857	53.642857142857146
$\operatorname{MILBoost}$	54.875	51.8125	53.1875

Tabla	C 138.	Precisión	MIL-EF Fox	May Votos	Ruido 25 %
Launa	(/. I •)().			. IVIAX VUIDO.	11.111111111111111111111111111111111111

	Original	${ m Filtro}_{-1}$	${f Filtro}_{-2}$		
MIL max	60.5	56.0	60.0		
MIL min	57.0	54.25	55.5		
MIL Ext	56.66666666666664	55.0	56.66666666666664		
BOW	56.125	55.625	56.625		
CKNN	56.0	55.8	57.2		
\max DD	54.5	55.416666666666664	57.25		
EM-DD	55.142857142857146	55.714285714285715	57.857142857142854		
${ m MILBoost}$	54.5	55.0	56.875		

- Ruido 30 %.
 - Esquema votación por consenso.

Tabla C.139: Precisión MIL-EF Fox, Consenso, Ruido $30\,\%$

	Original	${ m Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	53.0	53.5	54.5
MIL min	51.75	52.25	53.75
MIL Ext	52.5	52.5	53.3333333333333333
BOW	51.75	51.875	52.625
CKNN	52.7	51.7	54.3
$\max DD$	52.5833333333333333	51.416666666666664	54.25
EM-DD	53.357142857142854	51.57142857142857	54.357142857142854
${ m MILBoost}$	52.9375	51.375	53.8125

• Esquema votación por Max Votos.

Tabla C.140: Precisión MIL-EF Fox, Max Votos, Ruido $30\,\%$

	Original	${ m Filtro}_{-1}$	${ m Filtro}_{-2}$
MIL max	54.0	50.5	54.5
MIL min	51.5	50.25	52.25
MIL Ext	51.666666666666664	50.5	52.666666666666664
BOW	51.25	51.25	52.75
CKNN	53.1	51.4	53.6
\max DD	52.416666666666664	51.0833333333333333	53.25
EM-DD	52.857142857142854	51.07142857142857	53.214285714285715
${ m MILBoost}$	52.5	50.9375	52.8125

MIL-CVCF

- Ruido 0 %.
 - Esquema votación por consenso.

168 C.4. Fox

Tabla C.141: Precisión MIL-CVCF Fox, Consenso, Ruido 0 %

						,	,		-
	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	67	67	67	67	67	67	67	67	67
Mmin	57	57	57	57	57	57	57	57	57
MExt	64	64	64	64	64	64	64	64	64
BOW	60,5	62	58,5	65	61,5	56	57,5	57	65,5
CKNN	62	62	62	62	62	62	62	62	62
mDD	52,5	50,5	54	47	51,5	54	50	51,5	54,5
EMDD	59	61	58	61,5	59,5	61,5	61	59,5	60
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.142: Precisión MIL-CVCF Fox, Max Votos, Ruido $0\,\%$

-	Orig	Mmax	Mmin	MExt	BOW	ĆKNN	mDD	EMDD	MILB
Mmax	64,5	61	50	58	63,5	65,5	57,5	59	52,5
Mmin	56	51	51	51,5	54,5	53,5	56,5	51,5	51,5
MExt	62	60	50	59	60,5	60,5	58,5	60	51,5
BOW	59	57,5	48,5	61	56	57,5	57	58,5	52
CKNN	64,5	61	57,5	59	66	64	61,5	63	53,5
mDD	51	57,5	51,5	57	54	51	52,5	56	52
EMDD	62	61	53,5	57	60	60,5	56	58	51,5
MILB	50	50	50	50	50	50	50	50	0

- Ruido 5%.
 - Esquema votación por consenso.

Tabla C.143: Precisión MIL-CVCF Fox, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	66	66	66	66	66	66	66	66	66
Mmin	53	53	53	53	53	53	53	53	53
MExt	65	65	65	65	65	65	65	65	65
BOW	54,5	54	54	58,5	55	64	61,5	56,5	59,5
CKNN	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5
mDD	55	54	48	53,5	56,5	56,5	54	55	56,5
EMDD	59,5	57	59	57,5	59,5	54,5	58	57,5	60,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.144: Precisión MIL-CVCF Fox, Max Votos, Ruido	5'	, %	%
---	----	-----	---

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	62,5	61,5	50	63,5	66	62,5	60,5	60,5	51
Mmin	52	51,5	49,5	51	53,5	50	53,5	52	51
MExt	60,5	61,5	51,5	58	58	61	51,5	57	50,5
BOW	58,5	58	51	54	55,5	54	49,5	51,5	51
CKNN	61,5	60,5	51,5	59,5	60,5	61	58,5	62,5	55
mDD	51	54,5	53,5	55,5	55,5	55	56	55,5	51
EMDD	62,5	58,5	53,5	58,5	59	58	56	58	50,5
MILB	50,95	50	50	50	50	50	50	50	10,475

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.145: Precisión MIL-CVCF Fox, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	62,5	62,5	62,5	62,5	62,5	62,5	62,5	62,5	62,5
Mmin	54	54	54	54	54	54	54	54	54
MExt	59,5	59,5	59,5	59,5	59,5	59,5	59,5	59,5	59,5
BOW	59	63	59,5	55	53	62	59	57,5	53,5
CKNN	59,5	59,5	59,5	59,5	59,5	59,5	59,5	59,5	59,5
mDD	50	54	54	53,5	54	52	53,5	56,5	59,5
EMDD	56,5	57	58,5	58,5	61	61,5	63	60	60
MILB	50	50	50	50	50	50	50	50	50

Tabla C.146: Precisión MIL-CVCF Fox, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	$\overline{\mathbf{mDD}}$	EMDD	MILB
Mmax	65,5	61,5	50	59	60,5	62	54,5	53	51
Mmin	53,5	50,5	50	51	52,5	53	50,5	51,5	52
MExt	53	54	50	52,5	53,5	55	51	58	51
BOW	56,5	56	50	53,5	55	52,5	49	54	51,5
CKNN	61	57,5	54,5	58,5	60	60	63,5	57	52,5
mDD	53	55	52,5	51,5	53,5	53,5	50,5	55,5	51
EMDD	60	59,5	53	57	59	55,5	52	57,5	52
MILB	$50,\!475$	50	49,525	$49,\!525$	$49,\!525$	49,525	49,525	$49,\!525$	10

- Ruido 15%.
 - Esquema votación por consenso.

170 C.4. Fox

Tabla C.147: Precisión MIL-CVCF Fox, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5
Mmin	53	53	53	53	53	53	53	53	53
MExt	62	62	62	62	62	62	62	62	62
BOW	56	50,5	51	43,5	56	54	53,5	52	52,5
CKNN	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5
mDD	51	51,5	51	53	47,5	50	53,5	49,5	53,5
EMDD	58	59	56,5	59,5	56,5	61,5	58	58	57,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.148: Precisión MIL-CVCF Fox, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	61,5	58	50,5	56,5	59	58	52	52	50,5
Mmin	51,5	53	50	51	51	53	51	51	49,5
MExt	60,5	56	49,5	55,5	60,5	56,5	56,5	57,5	51
BOW	52,5	51	49	58	49,5	48,5	50	55	52,5
CKNN	57,5	57	52,5	58	59	56	50	53,5	51
mDD	53,5	51,5	50,5	54,5	56	51,5	56	57	52
EMDD	56	59,5	53,5	60	58,5	61	53,5	59	50,5
MILB	50,475	50	39,525	49,525	49,525	49,525	49,05	49,05	20,95

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.149: Precisión MIL-CVCF Fox, Consenso, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	63	63	63	63	63	63	63	63	63
Mmin	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5
MExt	58,5	58,5	58,5	58,5	58,5	58,5	58,5	58,5	58,5
BOW	50,5	48	52	45	54	54,5	53	58,5	53
CKNN	57	57	57	57	57	57	57	57	57
mDD	50,5	50	47,5	52	52	53,5	51,5	54,5	52,5
EMDD	56,5	57,5	59	54	58	57	58	56	57
MILB	50	50	50	50	50	50	50	50	50

Tabla	C 150:	Precisión	MIL.	CVCF	Fox	May	Votos	Ruido	20 %
Tabia	\circ	T LCCISION	TATTE-		T UA.	waa	vouos.	ruuuo	40 70

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	60,5	61	52,5	55,5	58	57,5	52	54,5	51,5
Mmin	51	50,5	50,5	51	52	53,5	49,5	52	51
MExt	60	57,5	50,5	58	54,5	54	51,5	55	52
BOW	53	58	51,5	50	50,5	53	52,5	51,5	50,5
CKNN	61	56	53	58	58	59,5	53,5	55,5	52,5
mDD	53,5	55	50,5	54,5	48,5	48	52	54,5	52
EMDD	57,5	58	51,5	55	58	58	52,5	58	51,5
MILB	50	50	$39,\!525$	49,05	49,05	49,05	49,05	49,05	20,95

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.151: Precisión MIL-CVCF Fox, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	60	60	60	60	60	60	60	60	60
Mmin	50,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5
MExt	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5
BOW	55,5	57	61	58,5	53,5	55,5	57,5	54,5	56,5
CKNN	57	57	57	57	57	57	57	57	57
mDD	49,5	48,5	52	49	46,5	47,5	47	51	54
EMDD	56	56,5	58,5	58	56	57,5	62	59,5	59,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.152: Precisión MIL-CVCF Fox, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	58,5	57,5	50	55	53,5	54,5	55,5	53,5	51
Mmin	52,5	54	51	55,5	52,5	50,5	51,5	50	50,5
MExt	56,5	53,5	50,5	50,5	49	52	51,5	51	51,5
BOW	58	52,5	50	54,5	58,5	54,5	53,5	51,5	52
CKNN	60,5	58	50,5	58	58,5	60,5	55,5	58,5	53,5
mDD	56	54	50,5	51	54,5	51	54,5	55,5	51,5
EMDD	57	54,5	52	55,5	54,5	57	51,5	55,5	51
MILB	50	50	40	50	50	50	49,05	49,05	$20,\!475$

- Ruido 30%.
 - Esquema votación por consenso.

172 C.4. Fox

Tabla C.153:	Precisión	MII.	-CVCF Fox	Consenso	Ruido 30 %
1 4 0 1 4 (7, 1, 1, 1),	T LECISION	IVIIII	-() (() () () () () () () ()	COUSCUSO.	. 11.111(1() .)() /()

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	55	55	55	55	55	55	55	55	55
Mmin	50,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5
MExt	56,5	56,5	56,5	56,5	56,5	56,5	56,5	56,5	56,5
BOW	56	51,5	57	54,5	51	56	55	56	54
CKNN	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5
mDD	51	50,5	56	51	51,5	54,5	48	53,5	58,5
EMDD	55,5	56	55,5	56	51,5	56	51,5	54	53,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.154: Precisión MIL-CVCF Fox, Max Votos, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	54,5	54	50	55	51,5	55	54	53	52
Mmin	52,5	50,5	50,5	50,5	50,5	50,5	52	50,5	52
MExt	58	51	51,5	51	58	57,5	53,5	58	49,5
BOW	55,5	52	50,5	53	54,5	54	52,5	52,5	50,5
CKNN	55	56,5	49	58	56,5	53	55,5	58	50,5
mDD	55,5	53	51	53,5	53,5	52,5	55	55	48,5
EMDD	57	55,5	51,5	53	56	53	55,5	53,5	52
MILB	$48,\!575$	50	$49,\!525$	49,525	$49,\!525$	49,525	$48,\!575$	$48,\!575$	0

MIL-IPF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.155: Precisión MIL-IPF Fox, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	62	62	62	62	62	62	62	62	62
Mmin	56,5	56,5	56,5	56,5	56,5	56,5	56,5	56,5	56,5
MExt	59,5	59,5	59,5	59,5	59,5	59,5	59,5	59,5	59,5
BOW	56,5	57	58,5	62,5	60	59,5	55	56	59,5
CKNN	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5	63,5
mDD	53	52	51,5	49,5	54	50,5	51	55	53
EMDD	62	60,5	60,5	61	58,5	61,5	60,5	58,5	58
MILB	50	50	50	50	50	50	50	50	50

Tabla C.100. I iccibion with it I on, was voice, italao o	recisión MIL-IPF Fox, Max Voto	os, Ruido 0%
---	--------------------------------	-----------------

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	65,5	56,5	50	55	64,5	66,5	55,5	50	51,5
Mmin	59	51,5	50,5	50,5	52	52,5	52,5	51	53
MExt	64	55	50	54,5	57,5	64,5	53	50,5	51,5
BOW	58	52,5	50	56	56,5	56	51,5	50	51,5
CKNN	61	58,5	51,5	58,5	60,5	59,5	53,5	52,5	53,5
mDD	52,5	57,5	50,5	54,5	55	53,5	53,5	52	52,5
EMDD	60	58,5	51	56,5	61,5	56	54,5	52,5	52
MILB	50,95	50	40	50	$49,\!525$	$49,\!525$	48,575	$48,\!575$	50,95

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.157: Precisión MIL-IPF Fox, Consenso, Ruido $5\,\%$

	Table C.15 I Teelsleif MIL II I CM, Componed, Italia C.70											
	\mathbf{Orig}	Mmax	Mmin	\mathbf{MExt}	\mathbf{BOW}	CKNN	mDD	\mathbf{EMDD}	MILB			
Mmax	61	61	61	61	61	61	61	61	61			
Mmin	53,5	53,5	53,5	53,5	53,5	54	53,5	53,5	53,5			
MExt	59	59	59	59	59	59	59	59	59			
BOW	53	59,5	56	55,5	61	56	54,5	59	55			
CKNN	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5			
mDD	50,5	51,5	51,5	50,5	49	54	55,5	51,5	50			
EMDD	60	60,5	59	58	60,5	59	58	57,5	60,5			
MILB	50	50	50	50	50	50	50	50	50			

Tabla C.158: Precisión MIL-IPF Fox, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 10%.
 - Esquema votación por consenso.

174 C.4. Fox

Tabla C.159: Precisión MIL-IPF Fox, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	64	64	64	64	64	64	64	64	64
Mmin	51	51	51	51	51	51	51	51	51
MExt	60,5	60,5	60,5	60,5	61	60,5	60,5	60,5	60,5
BOW	56,5	59	56	61	62	56,5	58	59,5	54,5
CKNN	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5	65,5
mDD	54,5	49,5	53	53,5	51,5	50,5	52	52	49
EMDD	57	56,5	56	56	57,5	58,5	57	57,5	58,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.160: Precisión MIL-IPF Fox, Max Votos, Ruido $10\,\%$

-	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.161: Precisión MIL-IPF Fox, Consenso, Ruido 15 %

	Tabla C.101. I recision with 11 Tox, Consenso, Ituido 1970												
	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB				
Mmax	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5				
Mmin	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5				
MExt	54	54	54	54	54	54	54	54	54				
BOW	63	59,5	60,5	55,5	58	64	60	57,5	59				
CKNN	56	56	56	56	56	56	56	56	56				
mDD	55	51,5	54,5	54,5	54	52	48,5	51,5	52				
EMDD	56,5	55	57,5	53,5	57,5	54,5	56	53,5	54,5				
MILB	50	50	50	50	50	50	50	50	50				

Tabla C.162: Precisión MIL-IPF Fox, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.163: Precisión MIL-IPF Fox, Consenso, Ruido 20 %

	Orig					CKNN	mDD	EMDD	MILB
Mmax	58	58	58	58	58	58	58	58	58
Mmin	51	51	51	51	51	51	51	51	51
MExt	59	59	59	59	59	59	59	59	59
BOW	54	55	53,5	50	54	52	55,5	56	51,5
CKNN	59	59	59	59	59	59	59	59	59
mDD	54,5	56,5	57,5	51,5	51	55,5	53	51	56,5
EMDD	58	53,5	53,5	52	56	55	60	55	55,5
MILB	50	50	50	50	50	50	50	50	50

 $\bullet\,$ Esquema votación por Max Votos.

Tabla C.164: Precisión MIL-IPF Fox, Max Votos, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 25%.
 - Esquema votación por consenso.

176 C.4. Fox

Tabla C.165: Precisión MIL-IPF Fox, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	53	53	53	53	53	53	53	53	53
Mmin	50,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5
MExt	60,5	60,5	60,5	60,5	60,5	60,5	60,5	60,5	60,5
BOW	48,5	58	55,5	55	53,5	55,5	56,5	52	52
CKNN	55,5	55,5	55,5	55,5	55,5	55,5	55,5	55,5	55,5
mDD	48,5	50,5	48,5	45,5	48	51,5	45,5	51	47,5
EMDD	56	55	54	53	54	56	58,5	54,5	54,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.166: Precisión MIL-IPF Fox, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	65	52	51,5	51,5	53,5	56	56	48	50
Mmin	54	50	51	51,5	$53,\!5$	52	54	48,5	50,5
MExt	58	51	50	51,5	52,5	52,5	57,5	55	53
BOW	61	51	51	50,5	54,5	53	55,5	48,5	51
CKNN	53	49,5	50,5	48	54,5	54	51,5	51	54,5
mDD	56,5	53,5	50,5	52,5	52,5	54	55	55,5	55,5
EMDD	59,5	55	51,5	53	54,5	61	54,5	54,5	56
MILB	53,325	50	40	50	$50,\!475$	$50,\!475$	50,95	50,95	41,9

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.167: Precisión MIL-IPF Fox, Consenso, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	56	56	56	56	56	56	56	56	56
Mmin	49,5	49,5	49,5	49,5	49,5	49,5	49,5	49,5	49,5
MExt	52,5	52,5	52,5	52,5	52,5	52,5	52,5	52,5	52,5
BOW	51	49	53	51,5	54,5	54,5	54	55,5	49,5
CKNN	62,5	62,5	62,5	62,5	62,5	62,5	62,5	62,5	62,5
mDD	50	50,5	49,5	52,5	46	47,5	49,5	51,5	49
EMDD	55	52	54	52	54	52,5	54	50,5	51,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.168: Precisión MIL-IPI	Fox	, Max	Votos,	Ruido	30 %
--------------------------------	-----	-------	--------	-------	------

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

C.5. Elephant

MIL-EF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.169: Precisión MIL-EF Elephant, Consenso, Ruido $0\,\%$

	Original	${f Filtro_1}$	${f Filtro}_{-2}$
MIL max	79.0	78.5	80.5
MIL min	74.5	73.25	73.75
MIL Ext	77.66666666666667	76.0	77.166666666666667
BOW	76.625	75.875	76.0
CKNN	76.7	75.8	76.1
\max DD	74.666666666666667	73.833333333333333	74.916666666666667
EM-DD	74.92857142857143	74.35714285714286	75.28571428571429
MILBoost	71.8125	71.3125	72.125

• Esquema votación por Max Votos.

Tabla C.170: Precisión MIL-EF Max Votos, Consenso, Ruido $0\,\%$

	Original	${\bf Filtro_1}$	$\bf Filtro_2$
MIL max	79.5	72.5	76.5
MIL min	75.75	74.75	68.25
MIL Ext	77.3333333333333333	74.833333333333333	71.3333333333333333
BOW	76.625	75.5	71.25
CKNN	76.5	75.3	72.2
\max DD	75.583333333333333	74.5	70.583333333333333
EM-DD	75.85714285714286	75.14285714285714	71.5
MILBoost	72.625	72.0	68.8125

■ Ruido 5 %.

178 C.5. Elephant

• Esquema votación por consenso.

Tabla C.171: Precisión MIL-EF Elephant, Consenso, Ruido $5\,\%$

	Original	$\overline{\mathrm{Filtro}}_{-1}$	\mathbf{Filtro}_{-2}
MIL max	79.0	73.0	76.0
MIL min	74.0	71.0	69.75
MIL Ext	75.3333333333333333	72.3333333333333333	73.166666666666667
BOW	75.0	73.125	72.125
CKNN	75.2	73.7	73.1
\max DD	73.666666666666667	72.5	71.833333333333333
EM-DD	73.92857142857143	72.64285714285714	72.92857142857143
${ m MILBoost}$	70.9375	69.8125	70.0625

• Esquema votación por Max Votos.

Tabla C.172: Precisión MIL-EF Max Votos, Consenso, Ruido $5\,\%$

	Original	${f Filtro_1}$	${f Filtro}_{f 2}$
MIL max	80.0	74.5	79.5
MIL min	75.5	69.75	69.5
MIL Ext	77.666666666666667	72.3333333333333333	72.5
BOW	77.5	73.125	71.625
CKNN	77.6	73.5	73.1
\max DD	76.16666666666667	72.666666666666667	71.75
EM-DD	76.21428571428571	73.14285714285714	71.71428571428571
${ m MILBoost}$	72.9375	70.25	69.0

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.173: Precisión MIL-EF Elephant, Consenso, Ruido $10\,\%$

	Original	${f Filtro_1}$	${f Filtro}_{f 2}$
MIL max	78.5	73.5	76.0
MIL min	72.5	70.5	69.0
MIL Ext	75.0	73.3333333333333333	72.833333333333333
BOW	73.75	73.0	72.25
CKNN	73.8	73.9	73.1
\max DD	72.75	73.166666666666667	72.416666666666667
EM-DD	72.78571428571429	73.5	72.5
${\rm MILBoost}$	69.9375	70.5625	69.6875

Tabla C 174:	Procisión	MIL_EF	May Votos	Concenso	Ruido 10 %
1 a Dia (), 1 (4)	- recision	IVIII /- F/F	VIAX VOLOS.	COUSEUSO.	. D .HIGO 10 70

	Original	${f Filtro_1}$	${f Filtro}_{-2}$
MIL max	79.0	70.0	71.5
MIL min	71.25	61.5	66.25
MIL Ext	74.166666666666667	65.0	69.0
BOW	74.25	65.875	69.25
CKNN	75.3	67.6	70.6
\max DD	73.166666666666667	66.25	69.833333333333333
EM-DD	73.0	67.35714285714286	70.57142857142857
${ m MILBoost}$	70.125	65.1875	68.0

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.175: Precisión MIL-EF Elephant, Consenso, Ruido $15\,\%$

	Original	${f Filtro_1}$	${f Filtro_2}$
MIL max	74.5	71.5	73.0
MIL min	66.5	67.0	64.0
MIL Ext	69.33333333333333	68.333333333333333	67.5
BOW	69.875	68.0	68.0
CKNN	68.8	68.2	68.7
\max DD	67.41666666666667	66.583333333333333	68.083333333333333
EM-DD	68.14285714285714	67.64285714285714	68.71428571428571
${ m MILBoost}$	65.875	65.4375	66.375

Tabla C.176: Precisión MIL-EF Max Votos, Consenso, Ruido 15 %

	Original	Filtro_1	${ m Filtro}_2$
MIL max	75.0	69.5	69.5
MIL min	68.5	62.0	66.5
MIL Ext	70.0	65.0	69.0
BOW	71.25	66.5	70.0
CKNN	72.4	67.6	71.5
\max DD	71.166666666666667	66.91666666666667	70.75
EM-DD	71.64285714285714	68.0	71.07142857142857
MILBoost	68.9375	65.75	68.4375

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.177: Precisión MIL-EF Elephant, Consenso, Ruido 20 %

	Original	${ m Filtro}_1$	${f Filtro}_{-2}$
MIL max	70.5	68.5	71.5
MIL min	65.25	62.5	64.25
MIL Ext	68.5	65.16666666666667	66.5
BOW	68.875	65.625	66.125
CKNN	69.1	66.2	66.8
\max DD	67.75	65.583333333333333	65.833333333333333
EM-DD	67.85714285714286	66.07142857142857	66.0
${ m MILBoost}$	65.625	64.0625	64.0

• Esquema votación por Max Votos.

Tabla C.178: Precisión MIL-EF Max Votos, Consenso, Ruido $20\,\%$

	Original	$\widetilde{\mathrm{Filtro}}_{-1}$	${ m Filtro}_{-2}$
MIL max	72.5	64.5	70.5
MIL min	67.25	60.75	62.75
MIL Ext	70.166666666666667	63.166666666666664	65.0
BOW	70.625	64.125	66.375
CKNN	70.6	65.3	67.8
\max DD	69.33333333333333	66.0	67.08333333333333
EM-DD	69.5	66.85714285714286	67.42857142857143
${ m MILBoost}$	67.0625	64.75	65.25

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.179: Precisión MIL-EF Elephant, Consenso, Ruido $25\,\%$

	Original	$\widetilde{\mathrm{Filtro}}_{-1}$	\mathbf{Filtro}_{-2}
MIL max	72.0	66.5	69.5
MIL min	65.5	62.5	63.5
MIL Ext	68.16666666666667	64.66666666666667	66.0
BOW	67.5	65.0	64.875
CKNN	67.4	66.2	66.0
\max DD	66.41666666666667	65.41666666666667	65.3333333333333333
EM-DD	66.35714285714286	65.28571428571429	65.57142857142857
${ m MILBoost}$	64.3125	63.375	63.625

Tabla C.180:	Precisión	MIL_EF Max	Votos	Consenso	Ruido 25 %
Table V. Lou.	1 160121011	- IVI I I I - I ' I I V I di 2	C VULUS.	COHECHEO	. 11.1111111 2,7 7()

	Original	${ m Filtro}_1$	${f Filtro}_{f 2}$
MIL max	69.0	61.5	68.5
MIL min	61.75	58.0	65.25
MIL Ext	64.833333333333333	59.333333333333333	67.0
BOW	63.875	59.625	65.875
CKNN	64.7	61.0	67.5
\max DD	64.41666666666667	60.916666666666664	67.66666666666667
EM-DD	65.0	62.642857142857146	68.28571428571429
${ m MILBoost}$	63.125	61.0625	66.0

- Ruido 30 %.
 - Esquema votación por consenso.

Tabla C.181: Precisión MIL-EF Elephant, Consenso, Ruido $30\,\%$

	Original	${ m Filtro}_{-1}$	${f Filtro}_{-2}$
MIL max	61.5	65.5	70.0
MIL min	57.75	58.75	61.0
MIL Ext	61.166666666666664	61.3333333333333333	64.0
BOW	62.25	61.625	64.5
CKNN	64.1	63.1	66.9
\max DD	62.8333333333333333	62.3333333333333333	66.0
EM-DD	63.92857142857143	62.57142857142857	66.07142857142857
${ m MILBoost}$	62.1875	61.0	64.0625

• Esquema votación por Max Votos.

Tabla C.182: Precisión MIL-EF Max Votos, Consenso, Ruido $30\,\%$

	Original	${ m Filtro}_{-1}$	${ m Filtro}_2$
MIL max	71.5	62.0	68.0
MIL min	61.5	56.0	62.25
MIL Ext	64.16666666666667	58.166666666666664	64.333333333333333
BOW	66.125	58.875	64.5
CKNN	65.9	59.6	65.1
\max DD	65.16666666666667	59.166666666666664	64.833333333333333
EM-DD	65.21428571428571	60.642857142857146	65.07142857142857
MILBoost	63.3125	59.3125	63.1875

MIL-CVCF

- Ruido 0 %.
 - Esquema votación por consenso.

Tabla C.183: Precisión MIL-CVCF Elephant, Consenso, Ruido 0 %

						. ,		,	
	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	80,5	80,5	80,5	80,5	80,5	80,5	80,5	80,5	80,5
Mmin	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5
MExt	83	83	83	83	83	83	83	83	83
BOW	71,5	73,5	72,5	76	73,5	75	74,5	70,5	73
CKNN	79,5	79,5	79,5	79,5	79,5	79,5	79,5	79,5	79,5
mDD	62,5	65	69	70	70	64	65,5	65,5	69
EMDD	76,5	77,5	60	75	75,5	75	75	76	76,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.184: Precisión MIL-CVCF Elephant, Max Votos, Ruido 0 %

-	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	80	79	65,5	80	78	79,5	72,5	77	51,5
Mmin	70	68	57,5	65	63	72,5	62	60,5	51
MExt	82,5	81,5	67,5	83	82	81,5	75,5	78	51
BOW	70	72,5	61	69	70,5	72	73	67,5	50,5
CKNN	80	79,5	74,5	81,5	77	80	75,5	81,5	55
mDD	63	68,5	62	68,5	64,5	70	66,5	61,5	52
EMDD	75,5	76	68,5	74	76,5	76,5	74	75,5	52,5
MILB	50,95	50	50	50	50	50	50	50	$10,\!475$

- Ruido 5%.
 - Esquema votación por consenso.

Tabla C.185: Precisión MIL-CVCF Elephant, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	\mathbf{BOW}	CKNN	mDD	EMDD	MILB
Mmax	73,5	73,5	73,5	73,5	73,5	73,5	73,5	73,5	73,5
Mmin	68	67,5	67,5	67,5	68	67,5	68	67,5	67,5
MExt	81	81,5	81,5	81,5	81	81	81,5	81	81,5
BOW	68	71,5	71	69,5	69,5	68	67,5	69,5	72
CKNN	77,5	77,5	77,5	77,5	77,5	77,5	77,5	77,5	77,5
mDD	67,5	60	66,5	64	59	66,5	66,5	66,5	62,5
EMDD	74	74	76	74	75,5	74	76,5	76	79
MILB	50	50	50	50	50	50	50	50	50

Tabla	C 196.	Drogición	N/ITT	CMCE	Elephant.	Moss	Votos	Duido	5 07
Tabia	Catob:	- Precision	IVIII /-	-C/VC/F	-глерпань.	IVI a.x	VOLOS.	ъщао	() 70

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78	77	61,5	77,5	75,5	79,5	71,5	72	51,5
Mmin	73	69,5	59,5	69,5	66	71,5	60	59	52
MExt	79	79	62,5	80	78,5	78,5	73	76,5	50,5
BOW	75,5	71,5	60	71,5	72	75	65,5	70	52
CKNN	75,5	76,5	70,5	77	76	74	68	74,5	57
mDD	69	64	58,5	63	64	62	65,5	64,5	51,5
EMDD	76,5	74,5	64	77,5	74	77,5	74,5	72,5	51
MILB	51,9	50	50	50	50	50	50	50	$10,\!475$

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.187: Precisión MIL-CVCF Elephant, Consenso, Ruido $10\,\%$

	Orig					CKNN	mDD	EMDD	MILB
Mmax	78	78	78	78	78	78	78	78	78
Mmin	64	64	64	64	64	64	64	64	64
MExt	78,5	78,5	78,5	78,5	78,5	78,5	78,5	78,5	78,5
BOW	74,5	77	76	75	72	71	76,5	76	73
CKNN	72,5	72,5	72,5	72,5	72,5	72,5	72,5	72,5	72,5
mDD	67	66,5	64,5	66	66,5	65	61	60,5	59
EMDD	72	70	74	71	70	71,5	72	72	73
MILB	50	50	50	50	50	50	50	50	50

Tabla C.188: Precisión MIL-CVCF Elephant, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	79	78	57	76,5	77	76,5	72	72	51,5
Mmin	72	69	56,5	67,5	66	64,5	54	57,5	51,5
MExt	82,5	79,5	56,5	79,5	80,5	82	71,5	73	52
BOW	74	69,5	51,5	71,5	67,5	75,5	60,5	62,5	50
CKNN	74	74	70	77	76,5	74	74,5	74	55,5
mDD	59	66,5	58,5	71,5	70	68	61	62	51,5
EMDD	74	72,5	57	72,5	71,5	74,5	70	68,5	51,5
MILB	51,9	50	50	50	50	50	50	50	41,9

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.189: Precisión MIL-CVCF Elephant, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	77	77	77	77	77	77	77	77	77
Mmin	63	63	63	63	63	63	63	63	63
MExt	77	77	77	77	77	77	77	77	77
BOW	71,5	72	71	72	68	74,5	72,5	73,5	73
CKNN	73	73	73	73	73	73	73	73	73
mDD	62	62,5	67,5	61	65	65,5	66,5	65,5	66,5
EMDD	71	68,5	70	71	73,5	71	69	70	70
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.190: Precisión MIL-CVCF Elephant, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78	70	53	70	67	78	69	66	51,5
Mmin	63,5	66	52	63	61	61,5	57	57,5	52
MExt	81	80,5	56	79	76	78,5	68,5	64,5	51,5
BOW	68	67	58,5	70	65,5	69,5	59,5	66	49,5
CKNN	71	75	68	73	72	71	73,5	73	56,5
mDD	61	67,5	56	70	62	62	59	62	51
EMDD	66	69	60	72	70,5	71	65	67	52,5
MILB	51,9	50	50	50	50	50	50	50	41,9

• Ruido 20%.

184

• Esquema votación por consenso.

Tabla C.191: Precisión MIL-CVCF Elephant, Consenso, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	74	74	74	74	74	74	74	74	74
Mmin	59	59	59	59	59	59	59	59	59
MExt	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5	74,5
BOW	69,5	71,5	62,5	70	67	66,5	69	70,5	70,5
CKNN	68	68	68	68	68	68	68	68	68
mDD	53,5	60,5	65	63	66	60	59,5	60	66,5
EMDD	72	69,5	67	67,5	67,5	69	71,5	69	65,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.192: Precisión M	11L-CVCF Elepha	ant, Max Votos,	Ruido 20 %
--------------------------	-----------------	-----------------	------------

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76	74	50	72	71	76	63,5	64,5	51
Mmin	57	57,5	53	53,5	60	55,5	51	60	51,5
MExt	72	71,5	50	71,5	69,5	71	56,5	63,5	51
BOW	64	68	52,5	68,5	65	65,5	57,5	56,5	50,5
CKNN	69	73,5	58	76	70	70	69,5	64	54
mDD	61,5	64,5	55,5	63,5	63	62	61,5	59	51
EMDD	65,5	69,5	52	66,5	68	73	58	61	51,5
MILB	$50,\!475$	50	50	50	50	50	50	50	10,475

- Ruido 25 %.
 - Esquema votación por consenso.

Tabla C.193: Precisión MIL-CVCF Elephant, Consenso, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	70	70	70	70	70	70	70	70	70
Mmin	53,5	53,5	53,5	53,5	53,5	53,5	53,5	$53,\!5$	53,5
MExt	71,5	71,5	71,5	71,5	71,5	71,5	71,5	71,5	71,5
BOW	65,5	64	66	65	63	67,5	68	65,5	65,5
CKNN	65	65	65	65	65	65	65	65	65
mDD	63	58	58,5	62	54,5	56,5	59	59	56,5
EMDD	67	68	65,5	67	67,5	71,5	68,5	70,5	67
MILB	50	50	50	50	50	50	50	50	50

Tabla C.194: Precisión MIL-CVCF Elephant, Max Votos, Ruido $25\,\%$

				1 / /					
	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	73	71,5	50	70,5	69,5	70,5	66,5	65,5	52
Mmin	57,5	56,5	51	53,5	53	64,5	56	52,5	51
MExt	72,5	67	51	67	74	73,5	61	67,5	50
BOW	68	72,5	51,5	61,5	71	67	57	58	50,5
CKNN	66	65	56,5	66,5	69	69	64,5	67,5	57
mDD	52	59	52	59,5	53,5	61,5	58	64,5	49,5
EMDD	66,5	67,5	52	71,5	66	69	54	61,5	52,5
MILB	51,425	50	40	50	50	50	50	50	20,95

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.195: Precisión MIL-CVCF Elephant, Consenso, Ruido $30\,\%$

						,		,	
	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	69	69	69	69	69	69	69	69	69
Mmin	52	52	52	52	52	52	52	52	52
MExt	67	67	67	67	67	67	67	67	67
BOW	61	58	60,5	59	61	61	64,5	59	60,5
CKNN	62	62	62	62	62	62	62	62	62
mDD	60	60,5	62,5	58	61,5	59,5	60	58,5	62
EMDD	74	73,5	70,5	69	72	69,5	68	67	70,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.196: Precisión MIL-CVCF Elephant, Max Votos, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	61	56	50	54	56	60,5	54,5	55,5	50,5
Mmin	56,5	57,5	50	57,5	54,5	53,5	52,5	$53,\!5$	51
MExt	63	62,5	50,5	62	64	63,5	58	55	51
BOW	69,5	67,5	50,5	65	69,5	68	59,5	55,5	51,5
CKNN	59	62,5	54	61,5	62	60	59,5	67,5	53
mDD	59,5	60,5	50	56,5	57	50	57	61,5	52
EMDD	65	60	51,5	61	64	68	59,5	70	51,5
MILB	$50,\!475$	50	49,525	$49,\!525$	$49,\!525$	$49,\!525$	$49,\!525$	49,525	10

MIL-IPF

- Ruido 0%.
 - Esquema votación por consenso.

Tabla C.197: Precisión MIL-IPF Elephant, Consenso, Ruido $0\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78,5	78,5	78,5	78,5	78,5	78,5	78,5	78,5	78,5
Mmin	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5
MExt	80,5	80,5	80,5	80,5	80,5	80,5	80,5	80,5	80,5
BOW	73,5	75,5	73	74	73	78	74,5	70,5	73,5
CKNN	81	81	81	81	81	81	81	81	81
mDD	63,5	67,5	64,5	66,5	65	70	61,5	66,5	67
EMDD	76,5	71,5	76,5	76	77	79	73	78	75
MILB	50	50	50	50	50	50	50	50	50

Tabla C.198	R. Precisión	MIL-IPF	Elephant	May Votos	Ruido 0%
- Taula ().190	s. i recision		глеональ.	MAX VOLUS.	11.111CO O 70

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	80,5	80,5	50	81	60,5	80	62	69	52,5
Mmin	69,5	67	50,5	66,5	54	72,5	60	57	53
MExt	84	83,5	50	84	52,5	83,5	67	72,5	54,5
BOW	78	77	50	72	52,5	80	62	66	54,5
CKNN	77	78,5	59	77	67	75	59,5	73	59,5
mDD	60,5	66,5	50	73,5	57	64	62,5	67,5	52,5
EMDD	78	75,5	51,5	76,5	57,5	75,5	67	74,5	53,5
MILB	$51,\!425$	50	50	50	50,95	50,95	$39,\!525$	49,525	$21,\!425$

- Ruido 5 %.
 - Esquema votación por consenso.

Tabla C.199: Precisión MIL-IPF Elephant, Consenso, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	79,5	79,5	79,5	79,5	79,5	79,5	79,5	79,5	79,5
Mmin	73,5	73,5	73,5	73,5	73,5	73,5	73,5	73,5	73,5
MExt	80,5	80,5	80,5	80,5	80,5	80,5	80,5	80,5	80,5
BOW	77	72,5	75	73	74	73	74	77	77
CKNN	77,5	77,5	77,5	77,5	77,5	77,5	77,5	77,5	77,5
mDD	57,5	70	64,5	70,5	62	65	64	60	63,5
EMDD	74	72,5	75	72	68,5	72	72,5	73,5	71
MILB	50	50	50	50	50	50	50	50	50

Tabla C.200: Precisión MIL-IPF Elephant, Max Votos, Ruido $5\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78	73	50	68	58	79	51	66	53
Mmin	67	61,5	51	62,5	57,5	66	56	56,5	53
MExt	81	79	51	76	64	78,5	53,5	72,5	50
BOW	72	73	50	72	55	72	59,5	61	53
CKNN	76	80	57,5	78	69,5	75	59,5	74,5	57,5
mDD	68,5	66,5	51	68,5	54,5	65,5	55	66,5	53
EMDD	77	75,5	51,5	73,5	55,5	73,5	55	64	53
MILB	51,9	50	50	50	51,9	51,9	$40,\!475$	50	41,9

- Ruido 10%.
 - Esquema votación por consenso.

Tabla C.201: Precisión MIL-IPF Elephant, Consenso, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76	76	76	76	76	76	76	76	76
Mmin	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5	61,5
MExt	78	77,5	78	77,5	78	77,5	77,5	78	77,5
BOW	68	68,5	69	73,5	72,5	72	67,5	71	77,5
CKNN	71	71	71	71	71	71	71	71	71
mDD	66,5	62,5	64,5	71,5	59	63	62	66,5	67,5
EMDD	71	69	71	72,5	72	71	70	70,5	71
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.202: Precisión MIL-IPF Elephant, Max Votos, Ruido $10\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76,5	74,5	50	70,5	66,5	79,5	58,5	61,5	52,5
Mmin	68	60,5	51	59	52,5	69	55,5	54,5	53
MExt	80	74	50	74	56	78	59,5	57	54,5
BOW	71,5	72	51	71	59,5	78,5	56,5	57,5	51,5
CKNN	73	73,5	57,5	73	59,5	71,5	60	73	56
mDD	69	64,5	51	64	55,5	66	56	58	51
EMDD	78,5	73	52	74	54	76,5	60	62,5	53,5
MILB	51,425	50	39,525	49,525	40,475	50,95	39,525	49,05	51,425

- Ruido 15%.
 - Esquema votación por consenso.

Tabla C.203: Precisión MIL-IPF Elephant, Consenso, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	75,5	75,5	75,5	75,5	75,5	75,5	75,5	75,5	75,5
Mmin	58,5	58,5	58,5	58,5	58,5	58,5	58,5	58,5	58,5
MExt	78,5	78,5	78,5	78,5	78,5	78,5	78,5	78,5	78,5
BOW	69,5	70,5	69,5	67	71	65,5	72,5	65	71
CKNN	73	73	73	73	73	73	73	73	73
mDD	65	61,5	65,5	64,5	63	69,5	65,5	67	58,5
EMDD	73,5	73,5	71,5	73,5	74,5	72,5	71,5	74	73
MILB	50	50	50	50	50	50	50	50	50

Tabla C.204: Precisión MIL-IPF Elephant, Max Votos, Ruido $15\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	77	76	50,5	76,5	53	78	54,5	58,5	56
Mmin	64	60,5	51	58,5	53,5	64,5	56	53,5	53
MExt	81,5	74,5	51	72,5	54	80	55	67,5	52
BOW	70	71,5	50,5	69,5	52	71	55	53,5	54
CKNN	73,5	76	57,5	75	63	72,5	63,5	67,5	57
mDD	62	61,5	52	60	62,5	57,5	56,5	63	51
EMDD	74	71	52	68,5	53,5	68,5	54,5	59,5	54,5
MILB	$53,\!325$	50	29,525	50	41,425	51,9	50,95	50,95	42,375

- Ruido 20%.
 - Esquema votación por consenso.

Tabla C.205: Precisión MIL-IPF Elephant, Consenso, Ruido 20 %

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	78	78	78	78	78	78	78	78	78
Mmin	59	59	59	59	59	59	59	59	59
MExt	73	73	73	73	73	73	73	73	73
BOW	70	73	72,5	71	74	74	70	68,5	68,5
CKNN	66	66	66	66	66	66	66	66	66
mDD	67	60	59	65	61,5	62,5	64,5	61	67
EMDD	67,5	72	68	70,5	71,5	72,5	72	67	70,5
MILB	50	50	50	50	50	50	50	50	50

• Esquema votación por Max Votos.

Tabla C.206: Precisión MIL-IPF Elephant, Max Votos, Ruido $20\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 25%.
 - Esquema votación por consenso.

Tabla C.207: Precisión MIL-IPF Elephant, Consenso, Ruido $25\,\%$

\mathbf{Orig}	Mmax	Mmin	\mathbf{MExt}	\mathbf{BOW}	CKNN	mDD	\mathbf{EMDD}	\mathbf{MILB}
69	69	69	69	69	69	69	69	69
53,5	53,5	53,5	53,5	53,5	$53,\!5$	53,5	$53,\!5$	53,5
69	69	69	69	69	69	69	69	69
66,5	69,5	66	59,5	61,5	63	56,5	62,5	63,5
66,5	66,5	66,5	66,5	66,5	66,5	66,5	66,5	66,5
61,5	57	63	64,5	63,5	55	65	58,5	55,5
64	67	64	66	65,5	65	67,5	63,5	66
50	50	50	50	50	50	50	50	50
	53,5 69 66,5 66,5 61,5 64	69 69 53,5 53,5 69 69 66,5 69,5 66,5 66,5 61,5 57 64 67	69 69 69 53,5 53,5 53,5 69 69 69 66,5 69,5 66 66,5 66,5 66,5 61,5 57 63 64 67 64	69 69 69 69 53,5 53,5 53,5 53,5 69 69 69 69 66,5 69,5 66 59,5 66,5 66,5 66,5 66,5 61,5 57 63 64,5 64 67 64 66	69 69 69 69 53,5 53,5 53,5 53,5 69 69 69 69 66,5 69,5 66 59,5 61,5 66,5 66,5 66,5 66,5 66,5 61,5 57 63 64,5 63,5 64 67 64 66 65,5	69 69 69 69 69 53,5 53,5 53,5 53,5 53,5 69 69 69 69 69 66,5 69,5 66 59,5 61,5 63 66,5 66,5 66,5 66,5 66,5 66,5 61,5 57 63 64,5 63,5 55 64 67 64 66 65,5 65	69 69 69 69 69 69 69 53,5 53,5 53,5 53,5 53,5 53,5 53,5 69 69 69 69 69 69 69 66,5 69,5 66 59,5 61,5 63 56,5 66,5 66,5 66,5 66,5 66,5 66,5 66,5 61,5 57 63 64,5 63,5 55 65 64 67 64 66 65,5 65 67,5	69 60 69 69 69 69<

• Esquema votación por Max Votos.

Tabla C.208: Precisión MIL-IPF Elephant, Max Votos, Ruido $25\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	0	0	0	0	0	0	0	0	0
Mmin	0	0	0	0	0	0	0	0	0
MExt	0	0	0	0	0	0	0	0	0
BOW	0	0	0	0	0	0	0	0	0
CKNN	0	0	0	0	0	0	0	0	0
mDD	0	0	0	0	0	0	0	0	0
EMDD	0	0	0	0	0	0	0	0	0
MILB	0	0	0	0	0	0	0	0	0

- Ruido 30%.
 - Esquema votación por consenso.

Tabla C.209: Precisión MIL-IPF Elephant, Consenso, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	70,5	70,5	70,5	70,5	70,5	70,5	70,5	70,5	70,5
Mmin	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5	51,5
MExt	62	62	62	62	62	62	62	62	62
BOW	66,5	64,5	64	64	65	63,5	63,5	63,5	64
CKNN	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5	68,5
mDD	59	57	66	58	60	64,5	62,5	62,5	64
EMDD	65	63,5	63,5	63,5	64,5	68	66,5	65	65,5
MILB	50	50	50	50	50	50	50	50	50

Tabla C.210: Precisión MIL-IPF Elephant, Max Votos, Ruido $30\,\%$

	Orig	Mmax	Mmin	MExt	BOW	CKNN	mDD	EMDD	MILB
Mmax	76,5	69,5	51	56,5	58	71	56,5	55	49,5
Mmin	57	50,5	51,5	51,5	54,5	55,5	55,5	53	53,5
MExt	71	61	51	54	53,5	63,5	57	57,5	55
BOW	67,5	57,5	51	55,5	53	61,5	56,5	49	50
CKNN	62	61	52,5	59	62,5	67	55,5	57,5	55
mDD	59	55	50	56,5	52,5	60	56	56,5	55
EMDD	71,5	59,5	51,5	60	61,5	64	54	58	51
MILB	53,325	50	30	50	51,425	$51,\!425$	$51,\!425$	$51,\!425$	$42,\!375$

Anexos D

Tablas Detalladas

A continuación se muestra la información combinando los clasificadores con el nivel de ruido y los esquemas de votación, de forma que señalaremos el mejor y peor resultado en cada caso.

D.1. Ruido 0 %

${\bf Clasificador~Simple MIL-max}$

Tabla D.1: Detalles Ruido 0 MIL max								
Dataset		CONSENSO		MAX VOTOS				
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	72,84	74,80	76,08	75,67	70,42	70,06		
Muta 2	81,31	69,29	69,29	81,31	56,83	0,00		
Tiger	76,50	74,50	73,00	71,50	68,06	0,00		
Fox	65,00	67,00	62,00	62,00	58,38	56,19		
Elephant	79,50	80,50	78,50	74,50	72,88	66,94		

Clasificador SimpleMIL-min

Tabla D.2: Detalles Ruido 0 MIL MIN								
Dataset		CONSENSO		MAX VOTOS				
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	77,89	84,68	82,75	78,63	79,37	76,76		
Muta 2	81,31	69,29	69,29	81,31	59,61	0,00		
Tiger	76,88	78,00	76,00	74,50	68,75	0,00		
Fox	59,88	57,00	56,50	57,50	52,63	51,69		
Elephant	73,50	68,50	$68,\!50$	71,50	$62,\!44$	60,06		

${\bf Clasificador~Simple MIL\text{-}extreme}$

Tabla D.3: Detalles Ruido 0 MIL EXTREME								
Dataset		CONSENSO		MAX VOTOS				
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	79,96	86,84	84,85	80,17	77,55	76,77		
Muta 2	81,31	69,29	69,29	81,31	57,11	0,00		
Tiger	76,92	75,00	74,50	73,58	70,38	0,00		
Fox	60,75	64,00	$59,\!50$	58,50	57,50	54,56		
Elephant	$76,\!58$	83,00	80,50	73,08	75,00	68,44		

194 D.1. Ruido 0 %

Clasificador BOW

Tabla D.4: Detalles Ruido 0 BOW								
Detect		CONSENSO		MAX VOTOS				
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	76,84	65,34	64,47	75,45	60,69	58,94		
Muta 2	81,31	78,45	77,86	81,31	$55,\!28$	0,00		
Tiger	76,06	69,81	$69,\!38$	72,50	66,56	0,00		
Fox	59,75	60,38	$58,\!50$	58,31	56,00	53,00		
Elephant	75,94	73,56	74,00	73,38	67,00	$64,\!25$		

Clasificador CKNN

Tabla D.5: Detalles Ruido 0 CKNN								
Dataset		CONSENSO		MAX VOTOS				
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	78,95	86,84	85,96	77,65	85,96	82,23		
Muta 2	82,04	72,46	74,76	82,26	86,47	0,00		
Tiger	$75,\!35$	75,50	70,00	$72,\!65$	71,50	0,00		
Fox	60,05	62,00	63,50	$59,\!05$	60,69	56,00		
Elephant	75,95	79,50	81,00	73,75	$75,\!56$	68,56		

Clasificador maxDD

Tabla D.6: Detalles Ruido 0 MAXDD								
Dataset		CONSENSO			MAX VOTOS			
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	78,37	75,73	73,08	77,21	72,17	69,36		
Muta 2	81,92	69,29	$69,\!29$	82,10	57,42	0,00		
Tiger	71,54	$53,\!25$	$54,\!13$	69,38	$52,\!25$	0,00		
Fox	59,00	51,63	52,06	58,71	53,94	53,63		
Elephant	74,38	67,25	66,06	72,54	64,19	61,69		

Clasificador EMDD

Tabla D.7: Detalles Ruido 0 EMDD								
Dataset		CONSENSO		MAX VOTOS				
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	79,35	85,15	84,23	78,07	78,90	77,28		
Muta 2	81,83	68,97	69,04	82,35	57,47	0,00		
Tiger	70,46	62,63	61,44	68,89	62,75	0,00		
Fox	59,21	60,25	59,88	59,04	57,19	55,31		
Elephant	$74,\!82$	73,81	75,75	73,32	71,69	66,44		

Tabla D.8: Detalles Ruido 0 BOOST							
Dataset	CONSENSO			MAX VOTOS			
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	75,80	50,94	50,94	74,68	46,00	46,55	
Muta 2	76,95	35,41	$35,\!41$	77,55	6,69	0,00	
Tiger	67,91	50,00	50,00	66,53	48,99	0,00	
Fox	58,06	50,00	50,00	57,91	43,75	48,39	
Elephant	71,72	50,00	50,00	$70,\!41$	45,06	$45,\!30$	

Clasificador MILBoost

D.2. Ruido 5%

${\bf Clasificador~Simple MIL-max}$

Tabla D.9: Detalles Ruido 5 MIL MAX							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	75,18	78,42	72,87	72,40	67,85	66,37	
Muta 2	81,31	69,29	69,29	81,31	61,83	0,00	
Tiger	$74,\!25$	73,00	68,00	67,75	65,50	0,00	
Fox	60,00	66,00	61,00	$56,\!50$	59,44	0,00	
Elephant	$74,\!50$	73,50	79,50	77,00	70,75	62,25	

${\bf Clasificador~Simple MIL-min}$

Tabla D.10: Detalles Ruido 5 MIL MIN							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	78,13	85,85	84,62	76,49	74,63	75,82	
Muta 2	81,31	69,29	69,29	81,31	55,20	0,00	
Tiger	74,50	74,50	77,00	69,63	65,81	0,00	
Fox	55,63	53,00	53,56	54,00	51,50	0,00	
Elephant	70,38	67,63	73,50	$69,\!63$	63,38	58,00	

196 D.2. Ruido 5 %

Clasificador SimpleMIL-extreme

Tabla D.11: Detalles Ruido 5 MIL EXTREME
CONSENSO MAX VOTOS ${\bf Dataset}$ MIL-EF $\mathbf{MIL\text{-}CVCF}$ $\mathbf{MIL}\text{-}\mathbf{IPF}$ $\mathbf{MIL}\text{-}\mathbf{EF}$ MIL-CVCF MIL-IPF Musk 1 79,84 83,63 78,94 77,34 87,13 Muta 2 81,31 69,29 69,29 81,31 60,00 0,00 Tiger 74,25 67,88 70,00 69,17 65,94 0,00 Fox 55,67 $65,\!00$ 59,00 55,17 56,13 0,00 81,31 80,50 65,56 Elephant 72,75 72,4272,31

Clasificador BOW

Tabla D.12: Detalles Ruido 5 BOW							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	$75,\!39$	65,83	63,22	74,33	57,20	57,49	
Muta 2	81,31	76,79	74,01	81,31	54,97	0,00	
Tiger	73,56	70,31	69,75	68,38	$64,\!56$	0,00	
Fox	55,56	57,88	57,06	$55,\!19$	53,06	0,00	
Elephant	72,63	69,81	74,44	$72,\!38$	67,19	61,94	

Clasificador CKNN

Tabla D.13: Detalles Ruido 5 CKNN							
Dataset		CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	77,29	85,91	90,23	76,31	80,04	78,38	
Muta 2	81,53	74,48	72,82	81,53	87,12	0,00	
Tiger	74,00	74,00	71,00	$69,\!50$	70,00	0,00	
Fox	56,65	61,50	61,50	$55,\!30$	58,63	0,00	
Elephant	73,40	77,50	77,50	73,30	71,69	68,94	

Clasificador maxDD

Tabla D.14: Detalles Ruido 5 MAXDD							
Dataset		CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	77,29	74,52	65,76	75,39	70,19	67,62	
Muta 2	81,49	69,29	69,29	81,49	57,11	0,00	
Tiger	69,96	54,13	$55,\!63$	66,50	52,88	0,00	
Fox	55,42	$54,\!25$	51,69	55,38	$54,\!56$	0,00	
Elephant	72,17	63,94	64,94	72,21	61,63	60,06	

Clasificador EMDD

Tabla	D 15	· Dei	talles	Ruido	-5	EMDD

Dataset	CONSENSO			MAX VOTOS			
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	77,98	84,96	84,02	76,50	74,76	69,94	
Muta 2	81,63	70,12	70,99	81,63	$54,\!61$	0,00	
Tiger	68,71	62,81	57,63	66,04	60,50	0,00	
Fox	56,11	57,94	59,13	55,93	56,50	0,00	
Elephant	72,79	75,63	72,13	$72,\!43$	70,69	62,69	

Clasificador MILBoost

Tabla D.16: Detalles Ruido 5 BOOST

Dataset	CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF
Musk 1	74,60	50,94	50,94	73,31	47,32	44,93
Muta 2	75,95	35,41	35,41	76,77	6,78	0,00
Tiger	66,38	50,00	50,00	64,03	45,06	0,00
Fox	55,34	50,00	50,00	55,19	45,06	0,00
Elephant	69,94	50,00	50,00	69,63	45,06	48,27

D.3. Ruido 10%

${\bf Clasificador~Simple MIL-max}$

Tabla D.17: Detalles Ruido 10 MIL MAX

Dataset	CONSENSO			MAX VOTOS			
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	64,77	78,30	71,58	70,58	69,09	66,85	
Muta 2	81,31	69,29	69,29	83,85	58,50	0,00	
Tiger	69,75	73,00	71,00	68,50	63,44	0,00	
Fox	60,00	62,50	64,00	53,75	56,44	0,00	
Elephant	74,75	78,00	76,00	70,75	70,06	64,19	

198 D.3. Ruido $10\,\%$

${\bf Clasificador~Simple MIL-min}$

Tabla D.18: Detalles Ruido 10 MIL MIN							
Detect		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	70,25	74,74	81,52	74,72	77,31	75,20	
Muta 2	81,31	69,29	69,29	83,85	51,83	0,00	
Tiger	65,50	72,50	75,00	68,88	63,44	0,00	
Fox	56,25	54,00	51,00	$53,\!50$	51,38	0,00	
Elephant	69,75	64,00	61,50	63,88	60,81	56,88	

${\bf Clasificador~Simple MIL\text{-}extreme}$

Tabla D.19: Detalles Ruido 10 MIL EXTREME							
Dataset	CONSENSO				MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	71,89	84,80	85,79	76,22	76,73	71,64	
Muta 2	81,31	69,29	69,29	83,85	52,19	0,00	
Tiger	67,08	74,50	73,50	68,92	64,31	0,00	
Fox	57,58	59,50	60,56	$53,\!50$	53,13	0,00	
Elephant	73,08	78,50	77,69	67,00	71,81	62,88	

Clasificador BOW

	Tabla D.20: Detalles Ruido 10 BOW							
Dataset		CONSENSO			MAX VOTO	S		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	68,85	61,64	61,99	71,44	58,28	58,05		
Muta 2	81,31	77,38	77,68	83,85	$55,\!56$	0,00		
Tiger	67,00	68,56	68,88	68,50	62,94	0,00		
Fox	57,56	57,81	58,31	$53,\!44$	52,69	0,00		
Elephant	72,63	74,56	71,44	$67,\!56$	63,56	62,19		

Clasificador CKNN

Tabla D.21: Detalles Ruido 10 CKNN							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	70,62	80,41	83,45	73,23	78,31	76,29	
Muta 2	81,07	63,37	75,04	84,07	85,00	0,00	
Tiger	$67,\!55$	68,50	70,00	69,05	69,19	0,00	
Fox	58,65	59,50	$65,\!50$	$54,\!30$	57,94	0,00	
Elephant	73,50	72,50	71,00	69,10	71,94	65,50	

Clasificador maxDD

	Tabla D.22: Detalles Ruido 10 MAXDD							
Dataset		CONSENSO)		MAX VOTOS			
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	70,27	71,73	72,27	72,11	64,67	62,93		
Muta 2	81,11	69,29	69,29	84,03	59,30	0,00		
Tiger	64,88	52,69	51,88	65,92	$52,\!13$	0,00		
Fox	57,50	54,63	51,38	53,88	52,88	0,00		
Elephant	72,79	$63,\!63$	$64,\!56$	68,04	63,63	58,25		

Clasificador EMDD

Tabla D.23: Detalles Ruido 10 EMDD							
Dataset		CONSENSO			MAX VOTO	S	
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	71,19	84,72	81,09	72,82	75,56	71,35	
Muta 2	81,14	69,53	69,29	84,19	49,33	0,00	
Tiger	$64,\!36$	59,69	$60,\!56$	65,57	59,44	0,00	
Fox	57,61	59,94	57,19	$54,\!25$	55,69	0,00	
Elephant	73,00	71,69	70,88	68,96	67,25	63,19	

Clasificador MILBoost

Tabla D.24: Detalles Ruido 10 BOOST							
Dataset		CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	68,66	50,94	50,94	70,09	47,37	46,17	
Muta 2	75,67	35,41	35,41	79,02	6,96	0,00	
Tiger	$62,\!56$	50,00	50,00	63,63	47,68	0,00	
Fox	56,66	50,00	50,00	53,72	44,64	0,00	
Elephant	70,13	50,00	50,00	66,59	48,99	46,31	

200 D.4. Ruido 15 %

D.4. Ruido 15%

${\bf Clasificador~Simple MIL-max}$

Tabla D.25: Detalles Ruido 15 MIL MAX							
Dataset		CONSENSO		MAX VOTOS			
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	65,29	72,98	71,93	71,87	70,48	0,00	
Muta 2	81,31	69,29	69,29	82,42	62,06	0,00	
Tiger	72,00	70,00	$65,\!00$	65,50	$63,\!56$	0,00	
Fox	57,00	63,50	$61,\!50$	56,00	54,56	0,00	
Elephant	$72,\!25$	77,00	$75,\!50$	69,50	$65,\!56$	62,88	

Clasificador SimpleMIL-min

	Tabla D.26: Detalles Ruido 15 MIL MIN							
Dataset		CONSENSO			MAX VOTOS	S		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	67,98	78,36	81,52	74,40	76,59	0,00		
Muta 2	81,31	69,29	69,29	82,42	58,54	0,00		
Tiger	$69,\!25$	68,00	74,50	64,88	$64,\!25$	0,00		
Fox	53,75	53,00	51,50	53,88	51,19	0,00		
Elephant	65,50	63,00	58,50	$64,\!25$	58,75	56,31		

${\bf Clasificador~Simple MIL\text{-}extreme}$

Tabla D.27: Detalles Ruido 15 MIL EXTREME							
D-44		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	70,52	83,74	73,86	75,15	76,13	0,00	
Muta 2	81,31	69,29	69,29	82,42	$55,\!56$	0,00	
Tiger	71,00	70,50	73,00	65,83	64,44	0,00	
Fox	54,50	62,00	54,00	55,08	55,38	0,00	
Elephant	67,92	77,00	78,50	67,00	69,31	63,31	

Clasificador BOW

Tabla D.28: Detalles Ruido 15 BOW							
D / /	CONSENSO				MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	68,38	63,52	61,24	69,39	58,00	0,00	
Muta 2	81,31	74,13	80,24	82,42	$61,\!14$	0,00	
Tiger	70,06	68,44	68,19	66,13	62,94	0,00	
Fox	54,31	51,63	59,25	$54,\!25$	51,69	0,00	
Elephant	68,00	72,06	69,00	$68,\!25$	63,19	59,63	

Clasificador CKNN

Tabla D.29: Detalles Ruido 15 CKNN							
Dataset	CONSENSO				MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	69,37	81,52	76,08	71,04	79,64	0,00	
Muta 2	80,62	63,77	$64,\!56$	83,09	82,57	0,00	
Tiger	70,00	65,50	64,50	67,50	$65,\!50$	0,00	
Fox	$55,\!35$	65,50	56,00	$54,\!50$	54,63	0,00	
Elephant	68,45	73,00	73,00	$69,\!55$	$70,\!25$	66,50	

Clasificador maxDD

	Tabla D.30: Detalles Ruido 15 MAXDD							
Dataset		CONSENSO			MAX VOTO	S		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	69,97	63,36	68,89	71,18	67,11	0,00		
Muta 2	80,73	69,29	$69,\!29$	82,98	56,01	0,00		
Tiger	66,58	51,00	53,31	64,46	51,81	0,00		
Fox	55,04	51,19	52,31	$54,\!58$	53,63	0,00		
Elephant	67,33	65,00	64,38	68,83	61,19	58,00		

Clasificador EMDD

Tabla D.31: Detalles Ruido 15 EMDD							
Dataset		CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	71,52	77,84	77,16	72,51	73,60	0,00	
Muta 2	80,81	70,50	68,45	83,06	61,31	0,00	
Tiger	65,68	59,13	$55,\!50$	64,43	57,63	0,00	
Fox	55,29	58,31	$55,\!25$	$55,\!11$	56,94	0,00	
Elephant	68,18	70,38	73,00	$69,\!54$	65,88	60,25	

202 D.5. Ruido $20\,\%$

Clasificador MILBoost

Tabla D.32: Detalles Ruido 15 BOOST								
Detect		CONSENSO			MAX VOTOS	S		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	68,95	50,94	50,94	69,81	44,57	0,00		
Muta 2	76,67	35,41	35,41	79,29	10,41	0,00		
Tiger	63,72	50,00	50,00	62,63	46,49	0,00		
Fox	54,63	50,00	50,00	$54,\!47$	44,64	0,00		
Elephant	65,91	50,00	50,00	67,09	48,99	45,89		

D.5. Ruido 20 %

${\bf Clasificador~Simple MIL-max}$

Tabla D.33: Detalles Ruido 20 MIL MAX

Dataset	CONSENSO			MAX VOTOS			
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	75,00	68,30	68,30	65,38	65,77	61,60	
Muta 2	82,42	64,29	64,29	$77,\!42$	64,49	0,00	
Tiger	69,75	67,50	$67,\!50$	65,00	59,50	0,00	
Fox	$57,\!25$	63,00	63,00	$56,\!25$	55,31	0,00	
Elephant	70,00	74,00	74,00	67,50	$65,\!25$	0,00	

Clasificador SimpleMIL-min

Tabla D.34: Detalles Ruido 20 MIL MIN

Dataset	CONSENSO			MAX VOTOS			
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	74,74	74,85	74,85	67,00	65,17	63,36	
Muta 2	82,42	69,29	69,29	78,67	50,00	0,00	
Tiger	68,75	63,00	63,00	59,88	58,94	0,00	
Fox	54,75	51,50	$51,\!50$	$53,\!38$	51,25	0,00	
Elephant	63,38	59,00	59,00	61,75	55,25	0,00	

${\bf Clasificador~Simple MIL\text{-}extreme}$

Tabla D.35: Detalles Ruido 20 MIL EXTREME							
Dataset		CONSENSO			MAX VOTO	S	
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	75,19	89,12	89,12	67,73	73,40	63,25	
Muta 2	82,42	69,29	69,29	$78,\!25$	57,42	0,00	
Tiger	69,00	73,00	73,00	61,75	63,44	0,00	
Fox	$56,\!25$	58,50	58,50	$54,\!33$	54,13	0,00	
Elephant	$65,\!83$	74,50	74,50	64,08	63,06	0,00	

Clasificador BOW

Tabla D.36: Detalles Ruido 20 BOW							
Dataset		CONSENSO			MAX VOTO	S	
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	70,10	59,23	59,23	64,42	55,68	54,28	
Muta 2	82,42	$69,\!29$	69,29	78,98	60,90	0,00	
Tiger	68,13	$65,\!56$	$65,\!56$	62,00	59,75	0,00	
Fox	55,56	$52,\!25$	$52,\!25$	$54,\!25$	52,19	0,00	
Elephant	65,88	68,44	68,44	$65,\!25$	60,50	0,00	

Clasificador CKNN

Tabla D.37: Detalles Ruido 20 CKNN							
Dataset		CONSENSO			MAX VOTO	S	
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	71,74	78,07	78,07	66,57	72,42	68,44	
Muta 2	82,42	61,27	$61,\!27$	79,43	81,48	0,00	
Tiger	67,80	66,00	66,00	$63,\!65$	62,94	0,00	
Fox	56,20	57,00	57,00	54,90	55,75	0,00	
Elephant	66,50	68,00	68,00	$66,\!55$	66,88	0,00	

Clasificador maxDD

Tabla D.38: Detalles Ruido 20 MAXDD							
Dataset		CONSENSO			MAX VOTO	S	
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	72,12	71,25	71,25	65,55	63,52	57,84	
Muta 2	82,42	69,29	69,29	79,51	59,05	0,00	
Tiger	64,63	52,94	52,94	61,63	49,94	0,00	
Fox	55,38	$51,\!69$	51,69	55,00	51,88	0,00	
Elephant	65,71	62,56	$62,\!56$	66,54	60,00	0,00	

204 D.6. Ruido $25\,\%$

Clasificador EMDD

Tabla D.39: Detalles Ruido 20 EMDD

Detect		CONSENSO		MAX VOTOS			
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	72,53	79,80	79,80	67,45	68,79	65,01	
Muta 2	82,42	68,36	$68,\!36$	79,73	58,36	0,00	
Tiger	63,61	54,19	54,19	61,61	60,50	0,00	
Fox	55,36	57,06	57,06	55,71	$55,\!31$	0,00	
Elephant	66,04	68,31	68,31	$67,\!14$	62,44	0,00	

Clasificador MILBoost

Tabla D.40: Detalles Ruido 20 BOOST

Dataset	CONSENSO			MAX VOTOS			
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	69,83	50,94	50,94	65,39	46,19	41,42	
Muta 2	77,30	35,41	$35,\!41$	75,03	10,97	0,00	
Tiger	61,91	50,00	50,00	60,16	47,68	0,00	
Fox	54,69	50,00	50,00	55,00	$44,\!47$	0,00	
Elephant	64,03	50,00	50,00	65,00	45,06	0,00	

D.6. Ruido 25 %

${\bf Clasificador~Simple MIL-max}$

Tabla D.41: Detalles Ruido 25 MIL MAX

Dataset	CONSENSO			MAX VOTOS			
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	$72,\!54$	58,65	71,81	65,58	65,46	0,00	
Muta 2	78,81	66,43	60,40	77,32	54,13	0,00	
Tiger	66,75	66,00	$66,\!50$	66,00	61,38	0,00	
Fox	53,00	60,00	53,00	58,00	53,81	52,31	
Elephant	68,00	70,00	69,00	65,00	64,50	0,00	

${\bf Clasificador~Simple MIL-min}$

Tabla D.42: Detalles Ruido 25 MIL MIN							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	70,23	69,47	70,64	65,95	68,30	0,00	
Muta 2	78,81	69,29	62,62	79,54	55,96	0,00	
Tiger	62,75	61,50	$60,\!50$	$64,\!25$	54,06	0,00	
Fox	52,00	50,50	50,50	54,88	51,94	51,38	
Elephant	63,00	53,50	53,50	61,63	54,75	0,00	

${\bf Clasificador~Simple MIL\text{-}extreme}$

Tabla D.43: Detalles Ruido 25 MIL EXTREME							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	72,02	74,85	74,97	67,86	66,47	0,00	
Muta 2	78,81	$69,\!29$	69,29	78,80	47,42	0,00	
Tiger	64,00	66,00	$60,\!50$	65,08	57,56	0,00	
Fox	52,33	63,50	$60,\!50$	$55,\!83$	51,19	52,88	
Elephant	$65,\!33$	71,50	69,00	63,17	63,88	0,00	

Clasificador BOW

Tabla D.44: Detalles Ruido 25 BOW							
Dataset		CONSENSO			MAX VOTOS	S	
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	69,36	49,85	62,62	64,85	55,83	0,00	
Muta 2	78,81	77,22	72,86	79,27	$65,\!15$	0,00	
Tiger	63,56	66,94	$62,\!38$	65,44	58,19	0,00	
Fox	51,94	56,75	54,75	56,13	53,38	51,88	
Elephant	64,94	65,56	62,75	62,75	61,13	0,00	

Clasificador CKNN

Tabla D.45: Detalles Ruido 25 CKNN							
Dataset		CONSENSO	ı		MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	69,85	73,86	72,92	66,41	68,35	0,00	
Muta 2	78,56	72,06	$66,\!15$	79,54	81,52	0,00	
Tiger	63,90	67,00	68,00	$66,\!30$	62,50	0,00	
Fox	$53,\!15$	57,00	$55,\!50$	$56,\!50$	56,63	51,69	
Elephant	66,10	65,00	66,50	$64,\!25$	64,38	0,00	

206 D.6. Ruido $25\,\%$

Clasificador maxDD

Tabla D.46: Detalles Ruido 25 MAXDD							
Dataset		CONSENSO		MAX VOTOS			
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	67,81	63,17	64,85	65,30	61,15	0,00	
Muta 2	78,60	60,81	63,66	79,91	$53,\!22$	0,00	
Tiger	61,88	52,81	52,88	63,50	51,19	0,00	
Fox	$52,\!46$	49,44	48,50	56,33	52,81	53,63	
Elephant	$65,\!38$	58,00	60,25	64,29	57,19	0,00	

Clasificador EMDD

	Tabla D.47: Detalles Ruido 25 EMDD							
Dataset		CONSENSO			MAX VOTO	\mathbf{S}		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	68,30	73,80	75,08	66,36	70,61	0,00		
Muta 2	78,63	70,75	63,80	80,18	57,12	0,00		
Tiger	61,07	54,50	56,38	63,00	54,88	0,00		
Fox	52,86	58,44	54,94	56,79	53,94	55,00		
Elephant	$65,\!43$	68,19	$65,\!56$	$65,\!46$	61,75	0,00		

Clasificador MILBoost

Tabla D.48: Detalles Ruido 25 BOOST							
Dataset		CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	66,13	50,94	50,94	64,43	47,37	0,00	
Muta 2	74,47	35,41	35,41	76,56	9,94	0,00	
Tiger	59,69	50,00	50,00	61,38	47,86	0,00	
Fox	52,50	50,00	50,00	55,94	44,82	48,09	
Elephant	63,50	50,00	50,00	63,53	45,12	0,00	

D.7. Ruido 30%

${\bf Clasificador~Simple MIL-max}$

	Tabla D.49: Detalles Ruido 30 MIL MAX							
Dataset		CONSENSO			MAX VOTO	\mathbf{S}		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	58,30	61,87	71,87	59,71	60,15	62,30		
Muta 2	65,40	69,29	69,29	80,20	57,78	0,00		
Tiger	58,50	69,50	64,00	61,75	56,81	0,00		
Fox	54,00	55,00	56,00	$52,\!50$	53,06	0,00		
Elephant	67,75	69,00	70,50	$65,\!00$	54,63	58,38		

${\bf Clasificador~Simple MIL-min}$

	Tabla D.50: Detalles Ruido 30 MIL MIN							
Dataset		CONSENSO			MAX VOTO	S		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF		
Musk 1	59,91	66,32	67,37	60,01	64,63	64,50		
Muta 2	65,12	61,07	56,90	80,20	58,79	0,00		
Tiger	56,88	56,00	66,50	59,50	51,56	0,00		
Fox	53,00	50,50	49,50	$51,\!25$	50,88	0,00		
Elephant	59,88	52,00	51,50	59,13	53,75	53,19		

${\bf Clasificador~Simple MIL\text{-}extreme}$

Tabla D.51: Detalles Ruido 30 MIL EXTREME							
Dataset		CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	61,38	67,37	73,74	61,17	60,78	62,40	
Muta 2	$65,\!21$	58,17	56,90	80,20	62,07	0,00	
Tiger	57,33	63,50	66,00	59,83	57,94	0,00	
Fox	52,92	56,50	52,50	51,58	53,75	0,00	
Elephant	$62,\!67$	67,00	62,00	$61,\!25$	58,31	56,56	

208 D.7. Ruido $30\,\%$

Clasificador BOW

Tabla D.52: Detalles Ruido 30 BOW							
Dataset	CONSENSO				MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	59,52	62,54	59,72	59,72	53,93	58,06	
Muta 2	67,31	74,92	$71,\!17$	80,20	$55,\!27$	0,00	
Tiger	$57,\!25$	61,06	60,88	60,06	58,94	0,00	
Fox	$52,\!25$	54,38	$52,\!69$	52,00	52,44	0,00	
Elephant	63,06	60,44	64,00	$61,\!69$	60,88	54,25	

Clasificador CKNN

Tabla D.53: Detalles Ruido 30 CKNN							
Dataset		CONSENSO			MAX VOTOS		
Dataset	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	59,77	67,49	65,32	60,94	69,25	67,60	
Muta 2	68,59	$56,\!35$	57,18	81,15	84,38	0,00	
Tiger	$57,\!55$	60,00	61,00	60,90	60,31	0,00	
Fox	53,00	51,50	62,50	$52,\!50$	54,63	0,00	
Elephant	65,00	62,00	68,50	$62,\!35$	60,00	58,75	

Clasificador maxDD

Tabla D.54: Detalles Ruido 30 MAXDD							
Dataset		CONSENSO			MAX VOTOS	S	
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	60,24	54,43	59,73	60,11	55,40	56,15	
Muta 2	67,97	69,29	69,29	80,99	60,95	0,00	
Tiger	56,21	53,19	54,44	59,54	50,94	0,00	
Fox	52,83	52,94	$49,\!50$	52,17	52,75	0,00	
Elephant	64,17	60,31	61,81	62,00	55,56	55,19	

Clasificador EMDD

Tabla D.55: Detalles Ruido 30 EMDD							
Dataset		CONSENSO			MAX VOTO	S	
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF	
Musk 1	61,60	69,74	74,60	60,67	67,64	62,10	
Muta 2	67,52	60,98	65,22	81,20	50,72	0,00	
Tiger	55,89	47,69	50,50	59,79	$55,\!81$	0,00	
Fox	52,96	54,25	$52,\!56$	52,14	53,75	0,00	
Elephant	$64,\!32$	70,00	65,00	$62,\!86$	60,69	57,44	

Clasificador MILBoost

|--|

Dataset	CONSENSO			MAX VOTOS		
	MIL-EF	MIL-CVCF	MIL-IPF	MIL-EF	MIL-CVCF	MIL-IPF
Musk 1	60,26	50,94	50,94	59,59	47,37	39,84
Muta 2	64,66	35,41	$35,\!41$	77,01	17,93	0,00
Tiger	$55,\!16$	50,00	50,00	58,56	$46,\!37$	0,00
Fox	52,59	50,00	50,00	51,88	43,16	0,00
Elephant	$62,\!53$	50,00	50,00	$61,\!25$	44,64	47,26