Lista 2

Modelos Lineares Generalizados - 2/2023

César Augusto Galvão - 19/0011572

Laiza Mendes - 20/0067028

Table of contents

Questão 1	2
a) Proponha algum método para resolver o problema da multicolinearidade no con-	
junto de dados	2
b) Usando algum método de seleção de variáveis, obtenha o modelo final para o	
conjunto de dados	2
c) Apresente a tabela de Análise de Variância para testar a significância global dos	
coeficientes do modelo final. Apresente as hipóteses de teste e conclua	2
d) Com base no modelo obtido no item anterior, faça uma análise de resíduos e conclua.	2
Questão 2	2
a) Ajuste um modelo de regressão linear e interprete os resultados obtidos	3
b) Obtenha a tabela ANOVA para o modelo obtido no item (a) e interprete os resultado	4
c) Considere a possibilidade de incluir a interação entre as varáveis independentes .	4
Apêndice	6

Questão 1

Considere os dados sobre a qualidade do vinho tinto, apresentados no ficheiro Q01-data.txt. Ajuste o modelo de regressão linear múltipla, e faça uma análise completa desses dados. Que conclusões você tira dessa análise? (use 5% de significância durantes as análises).

- a) Proponha algum método para resolver o problema da multicolinearidade no conjunto de dados
- b) Usando algum método de seleção de variáveis, obtenha o modelo final para o conjunto de dados
- c) Apresente a tabela de Análise de Variância para testar a significância global dos coeficientes do modelo final. Apresente as hipóteses de teste e conclua.
- d) Com base no modelo obtido no item anterior, faça uma análise de resíduos e conclua.

Questão 2

Uma equipe de pesquisadores de saúde mental deseja comparar três métodos de tratamento da depressão grave (A, B e C=referência). Eles também gostariam de estudara relação entre idade e eficácia do tratamento, bem como a interação (se houver) entre idade e tratamento. Cada elemento da amostra aleatória simples de 36 pacientes, foi selecionado aleatoriamente para receber o tratamento A, B ou C. Os dados obtidos podem ser encontrados no ficheiro Q02-data.txt. A variável dependente y é a eficácia do tratamento; as variáveis independentes são: a idade do paciente no aniversário mais próximo e o tipo de tratamento administrado (use 1% de significância durantes as análises).

Uma amostra dos dados é exibida na tabela a seguir:

eficacia	idade	tratamento
56	21	A
41	23	В
40	30	В
28	19	\mathbf{C}
55	28	A
25	23	\mathbf{C}

a) Ajuste um modelo de regressão linear e interprete os resultados obtidos

Temos um potencial modelo de regressão linear que pode ou não conter interações entre as variáveis, o qual pode ser expresso em sua forma saturada, em que X_1 é a variável idade e X_2 a variável tratamento

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \varepsilon_i, \quad i = 1, 2, \dots, n$$
 (1)

ou, de forma análoga, desmembrando X_2 em variáveis $dummy\ X_A$ e X_B , indicadores da presença do tratamento A e B, ambas assumindo valor 0 quando se trata do tratamento C

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i.$$
 (2)

Se simplesmente ajustamos um modelo de regressão linear – sem os termos de interação – utilizando (2) como referência na função lm(), obtemos os seguintes resultados:

Coeficiente	Estimativa	EP	Estatística t	p-valor
(Intercept)	22.291	3.505	6.359	0.000
idade	0.664	0.070	9.522	0.000
A	10.253	2.465	4.159	0.000
В	0.445	2.464	0.181	0.858

Ou seja, se considerarmos independentemente idade, tratamento A e tratamento B, podemos considerar que:

- Há uma linha de base na eficácia de aproximadamente 22.3, i.e. sob o tratamento C;
- A eficácia base para o tratamento A é de 32.3:
- A eficácia base para o tratamento B é de 22.75 mas poderíamos desconsiderar este coeficiente, se nos guiarmos pelo p-valor;
- Cada ano a mais de vida incrementa a eficácia em 0.644.

É possível considerar que um tamanho de amostra pequeno tenha grande influência sobre a significância de $H_0: \beta_3 = 0$ do modelo. No entanto, trata-se de um fenômeno para o qual o tratamento pode estar estreitamente associado à idade, caso em que teríamos que considerar o modelo (2) por completo.

b) Obtenha a tabela ANOVA para o modelo obtido no item (a) e interprete os resultado

c) Considere a possibilidade de incluir a interação entre as varáveis independentes ${\rm Sup\~oe-se~que}~\varepsilon_i\sim N(0,\sigma^2).$

i) Lista de todos os submodelos possíveis

A partir do modelo (2), construimos todos os possíveis submodelos. Considerando que temos três covariáveis e dois termos de interação, temos $\sum_{n=1}^{5} {6 \choose n} = 62$ modelos

1.
$$y_i = \beta_0 + \varepsilon_i$$

$$2. \ y_i = \beta_1 \, x_{1i} + \varepsilon_i$$

3.
$$y_i = \beta_2 x_{Ai} + \varepsilon_i$$

4.
$$y_i = \beta_3 x_{Bi} + \varepsilon_i$$

5.
$$y_i = \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

6.
$$y_i = \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

7.
$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

8.
$$y_i = \beta_0 + \beta_2 \, x_{Ai} + \varepsilon_i$$

9.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \varepsilon_i$$

10.
$$y_i = \beta_0 + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

11.
$$y_i = \beta_0 + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

12.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \varepsilon_i$$

13.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \varepsilon_i$$

14.
$$y_i = \beta_1 x_{1i} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

15.
$$y_i = \beta_1 \, x_{1i} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

16.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

17.
$$y_i = \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

18.
$$y_i = \beta_2 x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

19.
$$y_i = \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

20.
$$y_i = \beta_3 x_{Bi} \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

21.
$$y_i = \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

22.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \varepsilon_i$$

23.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_3 x_{Bi} + \varepsilon_i$$

24.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

25.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

26.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

27.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

28.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

29.
$$y_i=\beta_0+\beta_3\,x_{Bi}+\beta_4\,x_{1i}\,x_{Ai}+\varepsilon_i$$

30.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

31.
$$y_i = \beta_0 + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

32.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

33.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

34.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

35.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

36.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

37.
$$y_i = \beta_1 x_{1i} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

38.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

39.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

40.
$$y_i = \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

41.
$$y_i = \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

42.
$$y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \varepsilon_i$$

43.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

44.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

45.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

46.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

47.
$$y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

48.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

49.
$$y_i = \beta_0 + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

50.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

51.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

52.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

53.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

54.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

55.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

56.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

57.
$$y_i = \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

$$58. \ \ y_i = \beta_0 + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

59.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

$$60. \ \ y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

61.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

62.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

ii) Interpretação de coeficientes de regressão de fatores de interação

iii) tabela ANOVA

iv) Análise completa dos resíduos do modelo

Apêndice

Todo o projeto de composição deste documento pode ser encontrado aqui: https://github.com/cesar-galvao/mlg