Élève 1*

Exercice. Soient $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières de rayon de convergence ≥ 1 . On suppose que $b_n > 0$ pour tout n et que la série $\sum b_n$ diverge. Pour tout $n \in \mathbb{N}$, on pose $A_n = \sum_{k=0}^n a_k$ et $B_n = \sum_{k=0}^n b_k$.

1. S'il existe $\ell \in \mathbb{C}$ tel que

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \quad \text{ou} \quad \lim_{n \to +\infty} \frac{A_n}{B_n} = \ell,$$

montrer que

$$\lim_{\substack{x\to 1\\x<1}}\frac{\sum_{n=0}^\infty a_n x^n}{\sum_{n=0}^\infty b_n x^n}=\ell$$

2. Si on suppose simplement qu'il existe $\ell \in \mathbb{C}$ tel que

$$\lim_{n\to +\infty} \frac{A_0+\cdots +A_{n-1}}{n}=\ell$$

montrer que $\lim_{\substack{x\to 1\\x<1}}\sum_{n=0}^{+\infty}a_nx^n=\ell.$

3. Lorsque x tend vers 1 par valeurs inférieures, montrer les équivalents

$$\sum_{n=0}^{+\infty} x^{n^2} \sim \frac{\sqrt{\pi}}{2\sqrt{1-x}}, \quad \sum_{n=0}^{+\infty} x^{a^n} \sim \frac{\ln(1-x)}{\ln a}, \quad \sum_{n=0}^{+\infty} (-1)^n x^{4n+1} \sim \frac{1}{2}$$

Élève 2*

Exercice. Soit f la somme d'une série entière $\sum a_n z^n$ de rayon de convergence R>0.

1. Calculer pour tout $r \in [0, R[$

$$\int_0^{2\pi} |f(re^{i\theta})|^2 \,\mathrm{d}\theta$$

2. On suppose à présent que $a_n\in\mathbb{Z}$ pour tout $n\in\mathbb{N}$, que $R\geq 1$ et que f est bornée sur le disque unité ouvert. Montrer que f est une fonction polynomiale.

Éléments de réponse. Pour l'égalité de Parseval, on peut d'abord commencer par écrire

$$\int_0^{2\pi} |f(re^{i\theta})|^2 \,\mathrm{d}\theta = \int_0^{2\pi} \sum_{k=0}^\infty \overline{a_k} r^k e^{-ik\theta} f(re^{i\theta}) \,\mathrm{d}\theta$$

Mais comme $|\overline{a_k}r^ke^{-ik\theta}f(re^{i\theta})\,\mathrm{d}\theta| \leq \|f\|_{\infty}^{D_f(0,r)}|a_k|r^k$, il y a convergence normale donc uniforme sur $[0,2\pi]$ de la série dont on prend l'intégrale donc

$$\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{k=0}^{\infty} \overline{a_k} r^k \int_0^{2\pi} e^{-ik\theta} f(re^{i\theta}) d\theta$$

De la même manière, pour un certain $k \in \mathbb{N}$, on a

$$\int_0^{2\pi} e^{-ik\theta} f(re^{i\theta}) \,\mathrm{d}\theta = \int_0^{2\pi} \sum_{p=0}^\infty a_p r^p e^{i(p-k)\theta} \,\mathrm{d}\theta$$

Là, l'égalité $|a_p r^p e^{i(p-k)\theta}| = |a_p r^p|$ montre que l'on peut intervertir l'intégrale et la somme pour retrouver

$$\int_0^{2\pi} e^{-ik\theta} f(re^{i\theta}) \,\mathrm{d}\theta = \sum_{p=0}^\infty a_p r^p \underbrace{\int_0^{2\pi} e^{i(p-k)\theta} \,\mathrm{d}\theta}_{=\delta_{-k},2\pi}$$

De sorte que, finalement

$$\int_0^{2\pi} |f(re^{i\theta})|^2 \,\mathrm{d}\theta = \sum_{k=0}^\infty \overline{a_k} r^k a_k r^k 2\pi = 2\pi \sum_{k=0}^\infty |a_k|^2 r^{2k}$$

Pour faire la deuxième question, on remarque que, comme f est bornée sur le disque unité ouvert, alors pour tout $r \in [0, 1[$, en se servant de l'égalité de

Parseval.

$$\forall N \geq 0, \quad \sum_{k=0}^N |a_k|^2 r^{2k} \leq \sum_{k=0}^\infty |a_k|^2 r^{2k} \leq M, \quad \text{pour un certain } M \in \mathbb{R}$$

Autrement dit, les sommes partielles évaluées en $r \in]0,1[$ sont uniformément bornées (en r et en N). En prenant la limite à mesure que $r \to 1$ des sommes partielles pour tout N, on montre que la suite $(\sum_{k=0}^N |a_k|^2)$ est bornée, donc convergente. Autrement dit $|a_k|^2 \to 0$ ou $a_k \to 0$, mais (a_k) est une suite d'entiers, elle est donc nécessairement nulle a.p.d.c.r.

Remarques. Remarquons que cela veut dire que si une série entière à coefficients entiers a un rayon > 1, c'est forcément un polynôme.

Exercice. Rayon de convergence de $\sum e^{n \sin n} x^n$.

Éléments de réponse. Déjà,

$$e^{n \sin n} e^{-n} = e^{n(\sin n - 1)} \le 1$$
, car $n(\sin n - 1) \le 0$

Donc le rayon de convergence de la série entière étudiée est au moins égal à 1/e. On va montrer qu'il est égal à 1/e. Pour cela, on va justifier de l'existence d'une suite d'entiers (n_k) , strictement croissante et telle que $\sin n_k \to 1$ à mesure que $k \to \infty$.

On rappelle un résultat sur les sous-groues de $(\mathbb{R}, +)$: ils sont soit de la forme $\alpha \mathbb{Z}$ (on dit d'un sous-groupe de cette forme qu'il est discret), soit denses dans \mathbb{R} . On peut alors voir que dès que α et un réel incommensurable à π (c'est-à-dire dont le quotient par π ne donne pas un rationnel), le sous-groupe $\alpha \mathbb{Z} + 2\pi \mathbb{Z}$ n'est pas discret (sinon on montrerait que α est commensurable à π), donc dense dans \mathbb{R} . On peut justifier qu'il en est de même pour $\alpha \mathbb{N} + 2\pi \mathbb{Z}$ pour tout α non commensurable à π . Dès lors, $\mathbb{N} + 2\pi \mathbb{Z}$ est dense dans \mathbb{R} , et par continuité de la fonction sin, $\sin(\mathbb{N} + 2\pi \mathbb{Z}) = \sin(\mathbb{N})$ est dense dans $\sin(\mathbb{R}) = [-1, 1]$. Ce qui montre que 1 est bien valeur d'adhérence de $(\sin n)_n$.

Ceci étant, on en conclut que le rayon de convergence de notre série est bien 1/e comme suit : si r>1/e, alors

$$e^{n_k\sin(n_k)}r^{n_k}=e^{n_k(\sin(n_k)+\ln r)}$$

Comme $\ln r > -1$, $\sin(n_k) + \ln r \to 1 + \ln r > 0$, donc $e^{n_k \sin(n_k)} r^{n_k} \to +\infty$ à mesure que $k \to \infty$. Mais toute suite extraite d'une suite bornée est bornée, donc par contraposée, $(e^{n \sin n} r^n)$ n'est pas bornée. D'où le résultat.

Remarques. Le fait que comme $\alpha \mathbb{Z} + 2\pi \mathbb{Z}$ est dense pour $\alpha \notin \pi \mathbb{Q}$, $\alpha \mathbb{N} + 2\pi \mathbb{Z}$ est encore dense n'est pas tout à fait trivial. Pour le montrer, on pourra prendre a < b et choisir $x = \alpha s + 2\pi t$ vérifiant 0 < x < b - a et discriminer selon que $s \ge 0$ ou s < 0 pour construire un élément de $\alpha \mathbb{N} + 2\pi \mathbb{Z}$ qui est dans]a, b[.

Élève 3

Exercice CCP. Soit (a_n) une suite de complexes telle que $(|a_{n+1}/a_n|)$ admet une limite.

- 1. Démontrer que les séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ ont même rayon de convergence, que l'on note R.
- 2. Démontrer que $x \mapsto \sum_{n=0}^{\infty} a_n x^n$ est \mathcal{C}^1 sur]-R, R[.

Exercice. On note $H_n = \sum_{k=1}^n \frac{1}{k}$. Déterminer le rayon de convergence et la somme de $\sum H_n x^n$.

Élève 4*

Question de cours. Justifier que $x\mapsto \frac{e^x-1}{x}$ et $x\mapsto \frac{x-\sinh(x)}{x^3}$ sont de classe \mathcal{C}^{∞}

Exercice. Soient $\alpha \in \mathbb{R} \setminus \mathbb{N}$ et, pour |x| < 1, $f(x) = (1+x)^{\alpha}$.

- 1. Donner une suite réelle (a_n) telle que $\forall x \in {]-1,1[}, \, f(x) = \sum_{n=1}^\infty a_n x^n.$
- 2. Montrer qu'il existe C > 0 tel que $|a_n| \sim \frac{C}{n^{1+\alpha}}$.
- 3. La série $\sum a_n$ converge-t-elle? Si oui, quelle est sa somme?

Éléments de réponse. Pour la deuxième question, on peut commencer par écrire

$$n^{\alpha+1}a_n=n^{\alpha+1}\frac{\alpha(\alpha-1)\dots(\alpha-(n-1))}{n!}=n^{\alpha+1}\prod_{k=1}^n\left(\frac{\alpha+1}{k}-1\right)$$

On notera p un entier tel que $\alpha+1\leq p,$ il existera alors un réel c>0 tel que

$$n^{\alpha+1}|a_n|=cn^{1+\alpha}\prod_{k=p}^n\left(1-\frac{\alpha+1}{k}\right)$$

pour tout entier $n \ge p$. On passera au l
n pour obtenir

$$v_n := \ln(n^{1+\alpha}|a_n|) = \ln(c) + (1+\alpha)\ln(n) + \sum_{k=p}^n \ln\left(1 - \frac{\alpha+1}{k}\right),$$

de sorte que

$$\begin{split} v_{n+1} - v_n &= (1+\alpha) \ln \left(1+\frac{1}{n}\right) + \ln \left(1-\frac{\alpha+1}{n+1}\right) \\ &= \frac{\alpha+1}{n} + O\left(\frac{1}{n^2}\right) - \frac{\alpha+1}{n+1} + O\left(\frac{1}{(n+1)^2}\right) \\ &= \frac{\alpha+1}{n(n+1)} + O\left(\frac{1}{n^2}\right) \end{split}$$

On en déduit que (v_n) converge, ou que $(n^{1+\alpha}|a_n|)$ converge par continuité de exp.

Élève 5

Exercice CCP.

- 1. Définition du rayon de convergence. 2. Rayon de $\sum \frac{z^{2n+1}}{\binom{2n}{2n}}, \sum n^{(-1)^n} z^n$ et $\sum \cos nz^n$.

Exercice. Soit $a_n = 2^{-n} \int_0^1 (1+t^2)^n dt$.

- 1. Montrer que (a_n) converge.
- 2. Étudier la série $\sum (-1)^n a_n$.
- 3. On considère la série entière $\sum a_n x^n$. On note R son rayon de convergence et f sa somme.
 - a) Montrer que pour tout entier $n \ge 0$, $a_n \ge 1/(2n+1)$.
 - b) En déduire R.
 - c) Montrer que f vérifie une équation différentielle d'ordre 1 à déterminer.

Élève 6

Exercice CCP.

Soit (a_n) une suite de complexes telle que $(|a_{n+1}/a_n|)$ admet une limite.

- 1. Démontrer que les séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ ont même rayon de convergence, que l'on note R
- 2. Démontrer que $x\mapsto \sum_{n=0}^\infty a_n x^n$ est \mathcal{C}^1 sur]-R,R[.

Exercice. On note $H_n = \sum_{k=1}^n \frac{1}{k}$. Déterminer le rayon de convergence et la somme de $\sum H_n x^n$.