Title: IMPROVED BOLOMETER OPERATION USING FAST SCANNING

Dkt: H0001512 (256.087US1)

applying two or more bias pulses substantially sequentially during a frame time to each of the microbolometers in the array;

measuring [the] two or more resulting signals corresponding to the bias pulses;

computing an average signal value from the resulting signals corresponding to each of the microbolometers in the array during the frame time; and

producing an output signal based on the computed average signal value for each of the microbolometers in the array during the frame time.

- 2. (Once Amended) The method of claim 1, further comprising:
- repeating the applying, measuring, computing, and producing steps to [produce] compute output signals during each frame time.
- 3. (Once Amended) The method of claim 2, further comprising:

applying a corrective electrical signal to the <u>output signal</u> [microbolometer signals] to correct for resistance non-uniformity between the one or more microbolometers in the array to obtain <u>a</u> substantially uniform <u>output</u> signal [values] <u>value</u>.

- 4. (Once Amended) The method of claim 3, further comprising:
- converting the <u>substantially uniform output</u> signal [values] <u>value</u> associated with each of the microbolometers in the array to a digital signal [values] <u>value</u>.
- 5. (Once Amended) The method of claim 4, further comprising:

passing the digital signal [values] <u>value</u> associated with each of the microbolometers in the array <u>through</u> [to] a digital image processor to <u>correct for</u> [perform computations and substantially remove] image defects.

6. (Once Amended) The method of claim 5, wherein the image defects comprises:

AMENDMENT AND RESPONSE UNDER 37 C.F.R. 1.111

Serial Number: 09/800,366 Filing Date: March 6, 2001

Title: IMPROVED BOLOMETER OPERATION USING FAST SCANNING

Dkt: H0001512 (256.087US1)

image defects selected from the group consisting of fine offsets, gain non-uniformity, and dead pixels.

(Once Amended) The method of claim 1, wherein the two or more [applied electrical] 9. bias pulses comprise:

two or more voltage bias pulses.

(Once Amended) The method of claim 1, wherein the resulting [electrical] signals 10. comprise:

two or more bias current signals.

(Once Amended) An infrared radiation detector apparatus, comprising: 14. microbolometers in an array;

a timing circuit coupled to the array to apply two or more bias pulses substantially sequentially to each of the microbolometers in the array [in each] during a frame time;

a measuring circuit coupled to the array to measure two or more resulting signals associated with each of the applied two or more bias pulses during the frame time;

a computing circuit coupled to the measuring circuit to compute an average signal value for each of the microbolometers in the array from the measured two or more resulting signals during the frame time; and [.]

an output circuit coupled to the computing circuit to produce an output signal based on the computed average signal value for each of the microbolometers in the array during the frame time.

(Once Amended) The apparatus of claim 14, wherein the output [measuring] circuit 15. further comprises:

an integrator and an A/D converter to convert the output signal [values] value to a digital

AMENDMENT AND RESPONSE UNDER 37 C.F.R. 1.111

Serial Number: 09/800,366 Filing Date: March 6, 2001

Title: IMPROVED BOLOMETER OPERATION USING FAST SCANNING

signal [values] value for each of the microbolometers in the array.

16. (Once Amended) The apparatus of claim [14] <u>15</u>, wherein the measuring circuit further comprises:

a digital image processor, coupled to the output circuit to receive the digital signal value associated with each of [a correction circuit to apply a corrective electrical signal to the signals to correct for resistance non-uniformity between] the microbolometers of the array and correct the received digital [to obtain a substantially uniform output] signal [values] value for image defects.

17. (Once Amended) The apparatus of claim 16, wherein the digital image processor [14, wherein the computing circuit] further comprises:

a correction circuit, to apply a corrective electrical signal based on a correction value to the output signal to correct for resistance non-uniformity in [computing means to produce output signals based on the computed average signal value for] each of the microbolometers of [in] the array to obtain a uniform output signal value [during the frame time].

- 18. (Once Amended) The apparatus of claim 17, wherein the [computing] <u>correction</u> circuit further corrects the <u>uniform</u> output signal [values] <u>value</u> for fine offsets, gain non-uniformity, or dead pixels.
- 19. (Once Amended) The apparatus of claim 18, wherein the <u>digital image processor</u> [computing circuit] further comprises:

digital memories to store correction values for each of the microbolometers in the array.

27. (New) A signal processing electronics circuit for an array including one or more microbolometers, comprising:

Filing Date: March 6, 2001

Title: IMPROVED BOLOMETER OPERATION USING FAST SCANNING

Dkt: H0001512 (256.087US1)

a timing circuit coupled to the array to apply two or more bias pulses substantially sequentially to each of the microbolometers in the array such that the resulting temperature in each of the microbolometers in the array due to the application of the bias pulses is substantially uniform during a frame time;

a measuring circuit coupled to the array to measure two or more resulting signals, respectively associated with each of the applied bias pulses during the frame time;

a computing circuit coupled to the measuring circuit to compute an average signal value for each of the microbolometers in the array from the measured resulting signals during the frame time; and

an output circuit coupled to the computing circuit to produce an output signal based on the computed average signal value for each of the microbolometers in the array during the frame time.

28. (New) The circuit of claim 27, wherein the output circuit further comprises:

a correction circuit to apply a corrective electrical signal to the output signal to correct for resistance non-uniformity in each of the microbolometers of the array to a obtain a uniform output signal value.

(New) The circuit of claim 28, wherein the output circuit further comprises: 29.

an integrator and an A/D converter to convert the uniform output signal value to a digital signal value for each of the microbolometers in the array.

(New) The circuit of claim 29, further comprising: 30.

a digital image processor coupled to the output circuit to receive the digital signal value associated with each of the microbolometers of the array to correct for image defects such as fine offsets, gain non-uniformity or dead pixels.

31. (New) The circuit of claim 30, wherein the digital image processor further comprises: Serial Number: 09/800,366 Filing Date: March 6, 2001

Title: IMPROVED BOLOMETER OPERATION USING FAST SCANNING

a correction circuit to apply a corrective electrical signal based on a correction value to the output signal to correct for any resistance non-uniformity in each of the microbolometers of the array to a obtain a uniform output signal value.

- 32. (New) The circuit of claim 31, further comprising:
 a memory to store the correction value associated with each microbolometer in the array.
- 33. (New) The circuit of claim 27, wherein the two or more bias pulses are substantially equal in magnitude.
- 34. (New) The circuit of claim 33, wherein the two or more pulses are substantially equally spaced in time.
- 35. (New) The circuit of claim 27, wherein the two or more bias pulses are voltage bias pulses.
- 36. (New) The circuit of claim 35, wherein the resulting signals are current signals.
- 37. (New) The circuit of claim 27, wherein the two or more bias pulses are in the range of about 2 to 100 bias pulses.
- 38. (New) The circuit of claim 37, wherein the two or more bias pulses have time duration in the range of about 0.1 to 20 microseconds.
- 39. (New) The circuit of claim 27, wherein the frame time is the time it takes for the array to produce a complete image of an object being viewed by the array.