

Avaliação sobre Aprendizado de Máquina

1 message

Google Forms <forms-receipts-noreply@google.com> To: renvmorales@gmail.com

Fri, Sep 15, 2017 at 4:59 PM

Thanks for filling out Avaliação sobre Aprendizado de Máquina

Here's what we got from you:

Avaliação sobre Aprendizado de Máquina

Observações:

- A interpretação das questões é parte integrante da avaliação.
- Sempre que julgar apropriado, você pode usar softwares (e.g., R, Python, Weka, etc.) para resolver as questões.
- O tempo de realização da prova será usado em sua avaliação. Inicie a prova imediatamente após o recebimento e envie suas respostas o mais rapidamente possível. O tempo máximo de prova é de 3 horas.

Obs: Utilizar a vírgula como separador de decimais. Ex: 0,15 ao invés de 0.15

Email address *	
renvmorales@gmail.com	
Nome Completo *	
Renzo Angelo Viloche Morales	
Email *	
renymorales@gmail.com	

Módulo 1 - Agrupamento de Dados

Levando-se em conta a matriz de distâncias entre cinco objetos abaixo, esboçar o dendrograma obtido pelo método hierárquico aglomerativo conhecido como vinculação simples (single linkage), no qual a distância entre dois clusters é dada pela menor distância entre dois objetos (um de cada cluster).

$$M_D = \begin{bmatrix} 1 & 0 & & & & \\ 2 & 2 & 0 & & & \\ 4 & 5 & 0 & 4 & 0 & \\ 5 & 9 & 8 & 5 & 3 & 0 \end{bmatrix}$$

Questão 1

Considerando o dendrograma obtido, assinale a(s) alternativa(s) correta(s):

- Inicialmente, cada objeto não forma um singleton (cluster unitário).
- Os objetos 1 e 2 formam o primeiro cluster não unitário.
- Os objetos 1 e 5 nunca pertencerão ao mesmo cluster.
- Os objetos 4 e 5 não podem pertencer ao mesmo cluster.
- O algoritmo produz uma sequência de partições aninhadas.

Questão 2

Considere que os seguintes vetores representam tuplas de um banco de dados: [1,1];[1,2];[2,1];[5,1];[6,1];[6,1];[5,2]. Simular a execução de 5 iterações do algoritmo k-means, para k=2, inicializando o algoritmo nos pontos [3,0] e [5,0]. Quais são os centróides obtidos?

Questão 3

Considere uma partição de referência formada por duas categorias P={P1,P2}, sendo P1={x1,x3,x6} e P2={x2,x4,x5,x7}, e um conjunto de grupos (clusters) obtidos por meio de um algoritmo de agrupamento C={C1,C2}, sendo C1={x1,x3,x4,x5} e C2={x2,x6,x7}. Calcular a aderência entre as categorias e os grupos usando o Rand Index.

Questão 4

Considerando que p=[p1,...,pn] e q=[q1,...,qn] são versores:

- A distância euclidiana entre p e q, dist_euclidiana(p,q), é igual ao cosseno do ângulo entre os versores.
- \bigcirc É possível demonstrar que dist euclidiana(p,q)² = 2(1 cos θ), onde θ é o ângulo entre p e q.
- Não se pode usar p e q como entradas para um algoritmo de agrupamento de documentos textuais.
- Nenhuma das alternativas está correta.

Módulo 2 – Classificação

Considere a seguinte base de dados formada por quatro atributos previsores e pelo atributo meta para a classificação (classe).

Tabela em csv: http://goo.gl/52BJpm

Aparência	Temperatura	Umidade Vento		Classe
Ensolarado	Quente	Alta	Fa1sa	Não
Ensolarado	Quente	Alta	Verdadeiro	Não
Chuvoso	Frio	Normal	Verdadeiro	Não
Ensolarado	Moma	Alta	Fa1sa	Não
Chuvoso	Moma	Alta	Alta Verdadeiro	
Nublado	Quente	Alta	Fa1sa	Sim
Chuvoso	Moma	Alta	Fa1sa	Sim
Chuvoso	oso Frio Normal		Fa1sa	Sim
Nublado	Frio	Normal	Verdadeiro	Sim
Ensolarado	Frio	Normal	Fa1sa	Sim
Chuvoso	Moma	Normal	Fa1sa	Sim
Ensolarado	Moma	Normal	Verdadeiro	Sim
Nublado	Moma	Alta Verdadeiro		Sim
Nublado	Quente	nte Normal Falsa		Sim

Questão 5

Classificar a tupla [ensolarado, quente, normal, verdadeiro, ?] pelo classificador bayesiano simples (Naive Bayes).

- Sim
- Não
- As duas classes são igualmente prováveis

Considere a seguinte base de dados, na qual o atributo meta (classe) é "Espera"

Tabela em csv: http://goo.gl/3nkfBh

Exemplo	Sexta / Sábado	Faminto	Clientes	Tipo	Espera
1	Não	Sim	Cheio	Tailandês	Não
2	Sim	Não	Cheio	Francês	Não
3	Não	Não	Nenhum	Hambúrguer	Não
4	Sim	Não	Cheio	Hambúrguer	Não
5	Sim	Sim	Cheio	Italiano	Não
6	Não	Não	Nenhum	Tailandês	Não
7	Não	Sim	Alguns	Francês	Sim
8	Não	Não	Alguns	Hambúrguer	Sim
9	Sim	Sim	Cheio	Tailandês	Sim
10	Não	Sim	Alguns	Italiano	Sim
11	Não	Sim	Alguns	Alguns Tailandês	
12	Sim	Sim	Cheio	heio Hambúrguer	

Obter a árvore de decisão, sem nenhuma poda e selecionando-se os atributos pelo critério do ganho da informação, para classificar a tupla [Sim,Sim,Cheio,Francês,?].

Questão 6B

Deseja-se classificar um novo exemplo xt=[Sim,Sim,Alguns,Italiano,?]. Considere que todos os seus atributos sejam nominais. Pede-se classificar xt de acordo com o método dos vizinhos mais próximos (k-NN, com k=3). Utilize a medida de dissimilaridade baseada no coeficiente de casamento simples para um espaço p-dimensional

$$d_{SM}(i,j) = \sum_{k=1}^{k=p} s_k \qquad s_k = \begin{cases} (x_{ik} = x_{jk}) \Rightarrow s_k = 0; \\ (x_{ik} \neq x_{jk}) \Rightarrow s_k = 1; \end{cases}$$

Módulo 3 - Regressão

Resolva as questões 7 - 9 considerando a base de dados abaixo (cujas variáveis são todas contínuas):

Tabela em csv: http://goo.gl/LTN1ca

X1 X2 X3 X4 X5 Y

180 8 3070 1300 3504 120

150 8 3500 1650 3693 115

180 8 3180 1500 3436 110

160 8 3040 1500 3433 120

170 8 3020 1400 3449 105

150 8 4290 1980 4341 100

140 8 4540 2200 4354 90

140 8 4400 2150 4312 85

140 8 4550 2250 4425 100

150 8 3900 1900 3850 85

150 8 3830 1700 3563 100

140 8 3400 1600 3609 80

150 8 4000 1500 3761 95

140 8 4550 2250 3086 100

240 4 1130 9500 2372 150

220 6 1980 9500 2833 155

180 6 1990 9700 2774 155

210 6 2000 8500 2587 160

270 4 9700 8800 2130 145

260 4 9700 4600 1835 205

Questão 7

Estime a capacidade de generalização de um regressor linear, Y=f(X1, X2, ..., X5), sem usar regularização, via validação cruzada Leave-One-Out.

Questão 8

Construa uma árvore de regressão para estimar o valor de Y na tupla [245,4,9700,4600,1835,?]. Use todos os dados disponíveis e faça com que a altura máxima da árvore seja igual a 3.

128

Questão 9

Utilizando um regressor (não paramétrico) k-NN, com k=5 vizinhos e baseado em distâncias euclidianas, obter Y para a tupla [245,4,9700,4600,1835,?].

128

Módulo 4 - Regras de Associação

Tabela em csv: http://goo.gl/GBVjhV

T	Leite	Café	Cerveja	Pão	Manteiga	Arroz	Feijão
1	N	S	N	S	S	N	N
2	S	N	S	S	S	N	N
3	N	S	N	S	S	N	N
4	S	S	N	S	S	N	N
5	N	N	S	N	N	N	N
6	N	N	N	N	S	N	N
7	N	N	N	S	N	N	N
8	N	N	N	N	N	N	S
9	N	N	N	N	N	S	S
10	N	N	N	N	N	S	N

Questão 10

Considerando a tabela acima, contendo 10 transações, para as quais S (sim) e N (não) significam respectivamente a ocorrência ou não de um determinado item numa transação, obter o suporte e a confiança da regra "Se {manteiga, pão} então {café}".

Suporte = 0,3 e Confiança = 0,75

Create your own Google Form