Analyse en Composantes Principales

STID - 2A

Maxime FRANCOISE

2020 - 2021

Plan

- Analyse en Composantes Principales (ACP)
 - Composantes principales
 - Repère factoriel
 - Visualisation des données
 - Compression, débruitage
 - Utilisation de l'outil logiciel

Cadre d'utilisation de l'ACP

- Tableau de données brutes n x p constitué uniquement de variables quantitatives et tel que n > p.
- Individu *i* assimilé à un point de \mathbb{R}^p de coordonnées $(x_i^{(1)}, \dots, x_i^{(p)})$ (lecture du tableau en lignes).
- Variable $X^{(j)}$ assimilée à point de \mathbb{R}^n de coordonnées $(x_1^{(j)}, \dots, x_n^{(j)})$ (lecture du tableau en colonnes).

Variable Individu	X ⁽¹⁾	 $X^{(j)}$	 X ^(p)
1	$x_1^{(1)}$	 $x_1^{(j)}$	 $x_1^{(p)}$
2	$x_2^{(1)}$	 $x_{2}^{(j)}$	 $x_{2}^{(p)}$
n	$\chi_n^{(1)}$	 $x_n^{(j)}$	 $\chi_n^{(p)}$

Image d'un nuage de points dans $\mathbb{R}^{3 \, 1}$: Vol d'oiseaux

Photo = représentation en 2D d'une scène en 3D

1. Blog de Tiguert : http://taourirt-yakoub-guenzet.over-blog.fr/ () > () > () > ()

Exemple dans \mathbb{R}^3 : Représentation d'un cylindre

Exemple 1 : Représentation sur un plan (HLP ²)

Le point de vue adopté par le photographe rend-il convenablement la **forme** du nuage dans l'espace?

Husson, Lê, Pagès

Analyse de données avec R

Exemple 1 : Représentation sur un plan (HLP³)

Le point de vue adopté par le photographe rend-il convenablement la **forme** du nuage dans l'espace?

Husson, Lê, Pagès

Analyse de données avec R

Exemple 2 : Nuage de points dans \mathbb{R}^3

Forme du nuage difficilement visible.

Projections du nuage

Projections du nuage (2)

Représentation matricielle (Scatterplot): projections sur les plans définis par les axes du repère de \mathbb{R}^3 pris 2 à 2.

Visualisation et interprétation globales du nuage difficiles.

Exemples dans \mathbb{R}^3 : en résumé

- Etudier les individus du point de vue de l'ensemble des variables.
- Représentation sur un plan :
 - Trouver le meilleur point de vue afin de rendre compte au mieux de la scène photographiée.
 - Déterminer le meilleur plan sur lequel représenter les points d'un espace de dimension 3, et qui rendra au mieux la forme du nuage de départ.
- Généralisation aux espaces de dimension p > 3: projection du nuage de points dans \mathbb{R}^p sur des sous-espaces de dimensions q << p.
- Sous-espaces de dimensions q << p construits sur les données de manière à conserver au mieux la forme du nuage dans \mathbb{R}^p .

Objectifs de l'ACP

- Représenter des données de grande taille 4 pour :
 - la visualisation → description résumée
 - des individus (détection d'individus ou groupes d'individus atypiques),
 - des variables (liaisons et sélection).
 - la compression \longrightarrow réduction du nombre de variables,
 - le débruitage réduction de la variabilité.
- Citation (Lebart, Piron, Morineau, Chapitre 1)

 "Nous cherchons en fait une technique de réduction s'appliquant de façon systématique à divers types de tableaux et conduisant à une reconstitution rapide mais approximative du tableau de départ."

Outils

- Construction de **nouvelles variables** (=**facteurs**) concentrant la variance du nuage de points en un petit nombre q de facteurs.
- Représentation graphique des individus dans un sous-espace de dimension q << p minimisant les déformations du nuage de points.
- Représentation graphique des variables dans un sous-espace de faible dimension q << p explicitant les liaisons initiales entre ces variables.
- Réduction de la dimension (=compression) : approximation du tableau de données initial $n \times p$ par un tableau $n \times q$, avec q << p.

Principe et Définitions

- Effectuer un changement de repère dans \mathbb{R}^p (individus), ou \mathbb{R}^n (variables), de manière à concentrer la variabilité du nuage de points sur les premiers axes factoriels du nouveau repère.
- Construire les nouvelles variables sur les axes factoriels.
- Facteurs principaux $(F^{(k)})_{1 \le k \le a}$
 - combinaisons linéaires des variables initiales : pour $k = 1, \dots, q$

$$F^{(k)} = a_{0,k} + a_{1,k}X^{(1)} + a_{2,k}X^{(2)} + \dots + a_{p,k}X^{(p)}$$
$$= a_{0,k} + \sum_{j=1}^{p} a_{j,k}X^{(j)}$$

- 2 à 2 non-corrélés : $\forall k \neq k' \quad Cor(F_k, F_{k'}) = 0$
- Composantes principales $(c^{(1)}, \ldots, c^{(q)})$: mesures des individus sur les nouvelles variables $(F^{(1)}, \ldots, F^{(q)})$

$$\forall i \in \{1, \ldots, n\} \ \forall k \in \{1, \ldots, q\} \quad c_i^{(k)} = a_{k,0} + \sum_{i=1}^p a_{k,i} x_i^{(i)}$$

STID - 2A (Maxime FRANCOISE)

Construction des facteurs principaux

• 1^{ère} composante principale :

- Combinaison linéaire des variables expliquant le mieux la variabilité de l'échantillon.
- Déterminée par la direction dans laquelle le nuage de points a son allongement maximum.

• 2^{ème} composante principale :

- Combinaison linéaire des variables expliquant le mieux la variance résiduelle.
- Orthogonale à la précédente.
- Etc...

Notations et définitions

- $X = (x_i^{(j)})_{1 \le i \le n, 1 \le j \le p}$ matrice $n \times p$ (n individus et p variables).
- g centre de gravité des n points de \mathbb{R}^p ,

$$g = (\overline{x}^{(1)}, \dots, \overline{x}^{(p)})$$

• < .,. >produit scalaire sur \mathbb{R}^p ,

$$\langle X_A, X_B \rangle = \langle \overrightarrow{OX_A}, \overrightarrow{OX_B} \rangle = \sum_{i=1}^p X_A^{(i)} X_B^{(i)}$$

• d distance euclidienne sur \mathbb{R}^p ,

$$d^{2}(X_{A}, X_{B}) = \langle X_{A} - X_{B}, X_{A} - X_{B} \rangle = \|X_{A} - X_{B}\|^{2}$$
$$= \sum_{j=1}^{p} \left(X_{A}^{(j)} - X_{B}^{(j)}\right)^{2}$$

イロト (個) (重) (重) (重) の(で

Notations et définitions (2)

• H_1 droite de vecteur directeur unitaire \vec{u} , passant par g. x'_i projection orthogonale de x_i sur H_1 est définie par

$$\langle \overrightarrow{x_i} \overrightarrow{x_i'}, \overrightarrow{u} \rangle = 0$$

 $|\langle \overrightarrow{gx_i}, \overrightarrow{u} \rangle| = d(g, x_i')$

17 / 75

Première composante principale : principe général

• H_1 sous-espace de dimension 1 (= droite) de \mathbb{R}^p passant par g. $I_{exp}(H_1)$ inertie expliquée par H_1

$$I_{exp}(H_1) = \frac{1}{n} \sum_{i=1}^{n} d^2(g, x_i')$$

où x_i' projection orthogonale de x_i sur H_1 .

- Maximiser l'inertie expliquée sur l'ensemble des droites H₁ passant par g.
- \bullet C_1 tel que

$$I_{exp}(C_1) = \max_{\{H_1 \text{ droite de } \mathbb{R}^p \text{ passant par } g\}} I_{exp}(H_1)$$

- \Longrightarrow C_1 droite obtenue comme combinaison linéaire des variables maximisant la somme des distances à la nouvelle origine g.
- C_1 est la "meilleure" droite expliquant la variance du nuage de points (droite de variance maximale).

Première composante principale (exemple en 2D)

Première composante principale (exemple en 2D)

Attention! De manière générale, lorsque p = 2, la droite de régression linéaire n'est pas égale au premier axe factoriel C_1 .

De 1 à q facteurs

- Généralisation à tout sous-espace H_q de dimension $q \leqslant p$ contenant g.
- u_1, \ldots, u_q vecteurs unitaires orthogonaux engendrant H_q . x_i' projection orthogonale de x_i sur H_q est définie par

$$\forall k = 1, \ldots, q \quad \langle \overrightarrow{x_i x_i'}, \overrightarrow{u_k} \rangle = 0$$

• Inertie expliquée du sous-espace Hq

$$I_{exp}(H_q) = \frac{1}{n} \sum_{i=1}^{n} d^2(g, x_i')$$

• Inertie résiduelle du sous-espace H_a

$$I_{res}(H_q) = \frac{1}{n} \sum_{i=1}^{n} d^2(x_i, x_i')$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Décomposition de l'inertie

• Sous-espace factoriel (C_1, \ldots, C_q) de dimension q: sous-espace E_q de dimension q tel que

$$I_{exp}(E_q) = \max_{\{H_q \text{ sous-espace de dimension } q \text{ d'origine } g\}} I_{exp}(H_q)$$

• Inertie résiduelle de *Eq*

$$I_{res}(E_q) = \frac{1}{n} \sum_{i=1}^{n} d^2(x_i, x_i')$$

où x_i' projection orthogonale de x_i sur E_q .

- Inertie totale du nuage de points $I_{tot} = \sum_{j=1}^{p} \text{Var}\left(X^{(j)}\right)$
- Théorème de Pythagore : $I_{tot} = I_{exp}(E_q) + I_{res}(E_q)$

4 D > 4 A > 4 B > 4 B > B 90 0

Construction du repère factoriel : Principe

- ullet Changement de repère : construction d'un nouveau repère de \mathbb{R}^p
 - d'origine $g = (\overline{x}^{(1)}, \dots, \overline{x}^{(p)}),$
 - concentrant la variance du nuage de points sur les premiers axes,
 - minimisant les déformations du nuage de points sur les premiers axes.
- Construction basée sur la diagonalisation de la matrice des variances/covariances (ou des corrélations)
 - Part de variance expliquée par chaque facteur donnée par les valeurs propres de la matrice des variances/covariances (ou des corrélations).
 - Nouveau repère défini par les **vecteurs propres** de la matrice des variances/covariances (ou des corrélations).

Changement de repère (exemple en 2D)

Construction du repère factoriel : définitions

Soit M matrice carrée d'ordre p.

• $\lambda \neq 0$ est une valeur propre de M s'il existe un vecteur non-nul $u = (u_1, \dots, u_p)$ tel que

$$Mu^t = \lambda u^t$$
.

- Un tel vecteur u est un **vecteur propre** de M pour la valeur propre λ .
- Le sous-espace propre E_{λ} associé à la valeur propre λ est le sous-espace de \mathbb{R}^p engendré par l'ensemble des vecteurs propres de M pour la valeur propre λ . La dimension de E_{λ} est appelée multiplicité de la valeur propre λ .
- M est dite diagonalisable si la somme de ses sous-espaces propres est égale à \mathbb{R}^p :

$$E_{\lambda_1} + E_{\lambda_2} + \ldots + E_{\lambda_r} = \mathbb{R}^p$$

Dans ce cas, il existe une base de \mathbb{R}^p constituée de vecteurs propres de M.

Résultats mathématiques

V matrice des variances/covariances et Σ des corrélations de X:

$$\forall (j,j') \in \{1;\ldots;p\}^2$$
 $V_{j,j'} = \operatorname{Cov}(X^{(j)},X^{(j')})$ (covariance) $\Sigma_{j,j'} = \operatorname{Cor}(X^{(j)},X^{(j')})$ (corrélation)

On montre que

- ullet V et Σ sont diagonalisables, de valeurs propres réelles et positives.
- les axes factoriels $C^{(1)}, \ldots, C^{(q)}$ sont engendrés par les q vecteurs propres unitaires u_1, \ldots, u_q associés aux q plus grandes valeurs propres $\lambda_1 \geqslant \ldots \geqslant \lambda_q$ de V (ou Σ) (multiplicité comprise).
- l'inertie expliquée par le sous-espace E_q est la somme des q plus grandes valeurs propres de V (ou Σ) : $I_{exp}(E_q) = \lambda_1 + \ldots + \lambda_q$.
- $E_p = \mathbb{R}^p$ (q=p): changement de repère de manière à faire porter la variance du nuage de points sur les premiers axes.

<□ > <┛ > ∢ ≧ > ∢ ≧ > □ ≥ · ♡ Q (

Résultats mathématiques : Résumé

- Pour $1 \leqslant q \leqslant p$, E_q sous-espace engendré par les q premiers axes factoriels, de repère $(g, C^{(1)}, \ldots, C^{(q)})$.
- E_q sous-espace de dimension q concentrant le plus de variabilité du nuage de points.
- L'inertie expliquée de E_q vérifie $I_{exp}(E_q) = \lambda_1 + \lambda_2 + \ldots + \lambda_q$.
- $I_{exp}(E_q)$ augmente avec q, alors que l'inertie résiduelle $I_{res}(E_q)$ diminue avec q.
- On en déduit donc : $I_{tot} = \dots$

◆ロト ◆部ト ◆注ト ◆注ト 注 ・ 夕久○

Changement de repère (exemple en 2D)

- Axe 1 : associé à la plus grande valeur propre, portant la plus grande part de variance du nuage de points.
- Axe 2 : associé à la plus petite valeur propre, portant la part de variance résiduelle du nuage de points.

4 D S 4 D S 4 D S 4 D S 6 D S

Changement d'échelle (exemple en 2D)

Rotation du repère...

... et changement d'échelle.

Facteurs et Composantes Principaux

- Facteurs principaux $(F^{(1)}, \ldots, F^{(p)})$: nouvelles variables définies par les axes factoriels, combinaisons linéaires des variables d'origine $(X^{(1)}, \ldots, X^{(p)})$. Pour $k = 1, \ldots, p$,
 - F(k) = 0
 - $Var(F^{(k)}) = \lambda_k$
 - Pour $k' \neq k$, $Cor(F^{(k)}, F^{(k')}) = 0$.
- Composantes principales $(c^{(1)}, \ldots, c^{(p)})$: mesures des individus sur les nouvelles variables $(F^{(1)}, \ldots, F^{(p)})$.

Soit $Y = (y_1, \dots, y_n)$ la table de données

- centrées si on utilise V la matrice des variances/covariances
- centrées et réduites si on utilise Σ la matrice des corrélations

Pour
$$i = 1, \ldots, n$$
 et $k = 1, \ldots, p$

$$c_i^{(k)} = < y_i, u_k >$$

• On obtient un tableau transformé $(c_i^{(k)})_{1 \le i \le n, 1 \le k \le p}$ à partir du tableau d'origine $X = (x_i^{(j)})_{1 \le i \le n, 1 \le i \le n}$

Axes factoriels : interprétations

• Part d'inertie/variance expliquée par le kème axe factoriel :

$$\frac{\lambda_k}{\sum_{k=1}^p \lambda_k}$$

• Part d'inertie/variance expliquée par les q premiers axes factoriels :

$$\frac{\sum_{k=1}^{q} \lambda_k}{\sum_{k=1}^{p} \lambda_k}$$

• Remarque : Quand on utilise Σ la matrice des corrélations de X, alors

$$\sum_{k=1}^{p} \lambda_k = Tr(\Sigma) = \dots$$

→ロト 4回ト 4 差ト 4 差ト 差 めらぐ

Notion de Contribution

• Contribution de l'individu i à l'axe k :

$$100 \frac{\left(c_i^{(k)}\right)^2}{n \times \lambda_k}$$

La contribution permet de déceler quels individus interviennent dans l'élaboration d'un axe.

Généralement, on analyse les contributions dont la valeur est supérieure à la moyenne, à savoir $\frac{1}{n}$.

Plus la contribution de l'individu i sur l'axe k est élevée, plus cet individu intervient dans la création du facteur k.

4 D > 4 A > 4 B > 4 B > B 9 Q C

Notion de Qualité de représentation

ullet Qualité de représentation de l'individu i sur le sous-espace E_q :

$$Q_{i}^{q} = \frac{\sum_{k=1}^{q} \left(c_{i}^{(k)}\right)^{2}}{\sum_{k=1}^{p} \left(c_{i}^{(k)}\right)^{2}}$$

La qualité de la représentation permet de déceler sur quels axes un individu est bien représenté.

La qualité de représentation sur le plan des axes (j,k) est donné par :

$$Q_i^{j,k} = Q_i^j + Q_i^k$$

On évite d'interpréter les individus ayant une faible qualité de représentation sur un plan.

40.40.45.45. 5 900

Exemple

• Les données (d'après P. Besse et A. Baccini) : notes (de 0 à 20) obtenues par 9 élèves dans 4 disciplines.

🖳 VIEWTABLE(Nouveau): (Enregistrer sous: Work.No							
	Nom	Maths	Phys	Fran	Angl		
1	Olivier	6	6	5	5.5		
2	Eva	8	8	8	8		
3	Mael	6	7	11	9.5		
4	Djamel	14.5	14.5	15.5	15		
5	Lise	14	14	12	12.5		
6	Farah	11	10	5.5	7		
7	Swann	5.5	7	14	11.5		
8	Salma	13	12.5	8.5	9.5		
9	Djibril	9	9.5	12.5	12		

- Tableau à 9 lignes et 4 colonnes
- Matrice X de taille 9×4

Exemple : Résultats

ullet V = Matrice des variances-covariances de X :

$$\begin{pmatrix} 12,81 & 11,16 & 2,99 & 5,43 \\ 11,16 & 10,06 & 4,64 & 6,17 \\ 2,99 & 4,64 & 13,57 & 10,45 \\ 5,43 & 6,17 & 10,45 & 8,9 \end{pmatrix}$$

• $\Sigma = \text{Matrice des corrélations de } X$:

$$\begin{pmatrix} 1 & 0,98 & 0,23 & 0,5 \\ 0,98 & 1 & 0,4 & 0,65 \\ 0,23 & 0,4 & 1 & 0,95 \\ 0,5 & 0,65 & 0,95 & 1 \end{pmatrix}$$

Exemple : Résultats (2)

- ACP réalisée sur la matrice des corrélations
- Valeurs propres obtenues : 2,876; 1,12; 0,003; 0,001
- Somme des variabilités sur facteurs : 2,876 + 1,12 + 0,003 + 0,001 = 4
- On retrouve bien que la somme des valeurs propres vaut 4, le nombre de variables.

Exemple: Lecture des valeurs propres

• Pourcentages de variance expliquée :

Valeur propre	% variance	% variance cumulé
2,876	71,89	71,89
1,12	27,99	99,88
0,003	0,09	99,97
0,001	0,03	100

ullet les 2 premiers facteurs expliquent 99,88% de la variance totale.

Exemple : Contribution et qualité de représentation

Contributions et qualité de repésentation des individus :

	Dim.1	Dim.2	Dim.3	Dim.4		Dim.1	Dim.2	Dim.3	Dim.4
Olivie	er 29.0678526	1.8126836	1.64709836	5.4220465	Olivier	0.9761627	0.02370208	6.881416e-05	6.637524e-05
Eva	5.9470877	0.2315680	0.05976426	5.2517423	Eva	0.9847410	0.01492971	1.231142e-05	3.169966e-04
Mael	4.1062383	10.9257210	10.55245441	0.1324655	Mael	0.4903855	0.50804096	1.567819e-03	5.766733e-06
Djamel	38.0502446	0.3419015	0.40431127	23.7872876	Djamel	0.9962742	0.00348560	1.317002e-05	2.270387e-04
Lise	16.2609747	3.9113513	1.87097495	37.9695950	Lise	0.9135338	0.08555789	1.307660e-04	7.775845e-04
Farah	3.6425278	22.2536569	2.12644014	19.2458911	Farah	0.2957329	0.70348268	2.147825e-04	5.695980e-04
Swann	0.4329506	37.2483418	9.46360493	0.9073247	Swann	0.0289634	0.97022686	7.876200e-04	2.212623e-05
Salma	1.4860993	16.5362345	13.62632159	1.6275229	Salma	0.1871131	0.81067773	2.134441e-03	7.469940e-05
Djibri	1.0060244	6.7385415	60.24903009	5.6561246	Djibril	0.2714009	0.70782185	2.022097e-02	5.562313e-04

Covariance ou Corrélation?

Corrélation

- revient à travailler avec les variables centrées et réduites
- les variables sont sans dimension
- les variables ont toutes la même dispersion
- on réalise ainsi une ACP normée

Covariance

- revient à travailler avec les variables centrées
- les variables sont directement analysées
- les variables ont des dispersions et des dimensions différentes
- à n'utiliser que si les données sont homogènes
- on réalise ainsi une ACP non-normée

Visualisation des données

- Premier plan factoriel
 - Meilleur plan au sens des moindres carrés.
 - Plan engendré par les 2 premiers axes factoriels $C^{(1)}$ et $C^{(2)}$.
 - Plan associé aux 2 plus grandes valeurs propres λ_1 et λ_2 de la matrice Σ .
- Autres plans factoriels : plans engendrés par les premiers axes $C^{(1)}$ et $C^{(k)}$, $2 \le k \le q$, avec q convenablement choisi en terme de variance expliquée par les q premiers facteurs.
- Visualisation simple permettant de se rendre compte de la forme du nuage dans des espaces de dimension 2.
- Remarque : On représente toujours le facteur 1 en abscises (se méfier notamment des étiquettes sous R)

4 D > 4 B > 4 B > 4 B > 9 Q Q

Exemple : représentation dans le premier plan factoriel

Individus atypiques

- Les individus atypiques sont repérés sur les axes factoriels par des contributions très élevées par rapport à celles des autres individus.
- Ces individus ont tendance à écraser les autres de part ces contributions extrêmes.
- Que faire?
 - repérer les individus atypiques, i.e. ceux ayant des contributions trop importantes par rapport à celles des autres.
 - si le nombre d'individus atypiques représente un faible pourcentage de l'échantillon, les éliminer de l'étude.
 - si ce nombre est élevé, les traiter comme un groupe à part entière.

Individus atypiques : exemple sur le premier plan factoriel

Individuals factor map (PCA)

Qualité de représentation du premier plan factoriel

- Premier plan factoriel : plan concentrant la plus grande part de variance du nuage de points.
- Toujours garder en tête la part de variance expliquée par le premier plan factoriel avant toute interprétation hâtive.
- Si la part de variance expliquée par le premier plan factoriel est faible, regarder la répartition des individus sur d'autres plans concentrant moins de variance.
- Exemple des notes : le premier plan factoriel explique 99,88% de la variance totale, sa qualité de représentation est très bonne.
- Exemple des individus atypiques : le premier plan factoriel n'explique que 34,68% de la variance totale, sa qualité de représentation est faible.

Point de vue des variables $(p \le n)$

- ullet variables regardées comme des points de \mathbb{R}^n
- d(j,j'), distance <u>dans</u> \mathbb{R}^n entre les variables $X^{(j)}$ et $X^{(j')}$.
- On diagonalise Σ^t , transposée de la matrice des corrélations de X.
- On montre que :
 - ullet la $oldsymbol{\mathsf{norme}}$ des vecteurs variables dans \mathbb{R}^n est égale à $oldsymbol{1}$
 - $d^2(j,j') = 2 (1 Cor(X^{(j)}, X^{(j')}))$
 - $Cor(X^{(j)}, X^{(j')}) = cos(X^{(j)}, X^{(j')})$
 - les variables sont décrites sur la sphère unité de $\mathbb{R}^p \subset \mathbb{R}^n$ par leurs contributions sur les facteurs-individus
- Ce qui implique :
 - ullet les vecteurs variables sont tous sur la sphère unité de \mathbb{R}^p
 - plus les variables sont corrélées positivement, et plus elles sont proches
 - moins les variables sont corrélées et plus les vecteurs variables sont orthogonaux

Sphère et cercle des corrélations (LPM ⁵)

Figure 3.2 – 5. Représentation de la sphère et du cercle des corrélations

Contribution des variables aux axes factoriels

• Coordonnée de la variable $X^{(j)}$ sur l'axe $C^{(k)}$

$$b_{j,k} = \operatorname{Cor}(F^{(k)}, X^{(j)}) = \frac{\sqrt{\lambda_k}}{\sigma(X^{(j)})} u_k^{(j)}$$

• Contribution de la variable j à l'axe k :

$$100\frac{\left(b_{j,k}\right)^2}{\lambda_k}$$

Plus sa valeur est élevée, et plus la variable contribue à la construction de l'axe.

De plus, on a :

$$cos(C^{(k)}, X^{(j)}) = Cor(F^{(k)}, X^{(j)}) = b_{j,k}$$

- $\bullet \implies$ contribution de la variable j à l'axe k interprétée en terme de proximité de la variable à l'axe en question.
- Attention : si la contribution d'une variable est faible, cela signifie qu'elle contribue à d'autres axes.

Cercle des corrélations : interprétation

- une variable est bien représentée sur le cercle des corrélations si son vecteur est proche du cercle.
- Seules les variables bien representées interviennent dans l'interprétation des axes.
- Une variable contribue **positivement** à l'axe si $b_{j,k} \ge 0$, **négativement** sinon.
- Les variables orthogonales sont non-corrélées.
- Deux variables sont corrélées si leurs vecteurs variables sont approximativement colinéaires.

4 D > 4 D > 4 E > 4 E > E = 99 C

Exemple: contributions

• Coordonnées des variables dans le repère factoriel :

⇒ les variables sont portées par les 2 premiers axes factoriels.

Exemple : cercle des corrélations

- Axe 1 : Bon/mauvais
- Axe 2 : Lettres/Sciences

Représentation simultanée individus/variables

- Représentation simultanée
 - des individus
 - des variables

dans les premiers plans factoriels.

- Permet de donner une signification aux axes (variables).
- Permet de visualiser les contributions de chaque individu sur chaque axe (individus).
- Permet de décrire les données en prenant en compte l'ensemble des p variables en croisant la représentation des individus avec celle des variables.
- Attention! Individus et variables vivent dans des espaces différents. Il est donc incorrect de les représenter sur le même graphique.

Exemple : cercle des corrélations...

... avec la représentation dans le premier plan factoriel

Effet Guttman

 S'il existe une ou plusieurs variables dans le tableau de données fortement corrélées à toutes les autres, on parle d'effet Guttman.

- Effet immédiatement visible sur le premier plan factoriel : les points sont distribués suivant une parabole.
- Effet biaisant l'analyse des données multidimensionnelles, et aboutissant à une analyse erronée.
- Dans ce cas, isoler la ou les variables fautives, et les retirer de l'étude.

Effet Guttman : Exemple

- L'axe 1 oppose les extrêmes entre eux.
- L'axe 2 oppose les extrêmes aux moyens.

Réduction de la dimension : choix du nombre de facteurs

- Pas de "recette" universelle pour choisir le nombre de facteurs à retenir.
- Choix dépendant de l'analyse :
 - Garder un petit nombre de facteurs concentrant l'essentiel de la variabilité pour représenter les données
 - Préparer les données pour une éventuelle analyse ultérieure.
 Dans ce cas, ce n'est pas un inconvénient de garder beaucoup de facteurs.

Choix du nombre de facteurs : méthodes numériques

- 1) Règle de Kaiser : garder les axes correspondant aux valeurs propres supérieures à la moyenne des valeurs propres, soit
 - supérieures à dans le cas de la matrice des covariances,
 - supérieures à dans le cas de la matrice des corrélations.
- 2) Règle empirique : garder les facteurs expliquant un pourcentage de variance cumulé satisfaisant (généralement 80%).

Choix du nombre de facteurs : méthode graphique

3) Règle de l'ébouli des valeurs propres : garder les axes correspondant aux valeurs propres situées avant le point d'inflexion sur le graphe des valeurs propres.

Exemple : choix du nombre de facteurs

- Valeurs propres de la matrice des corrélations : 2,876; 1,12; 0,003; 0,001
- Ebouli des valeurs propres :

• | Il semble judicieux de garder facteurs.

Variables illustratives

Les variables illustratives n'interviennent pas dans la création des axes.
 Mais on peut les représenter graphiquement.

Variables quantitatives

- Si on ne souhaite pas voir des variables influer sur la création des axes
- Elles sont représentées sur le cercle des corrélations.

Variables qualitatives

- Chacune des modalités est représentée dans le plan factoriel des individus
- Une modalité est localisée au barycentre des individus possédant cette modalité, et représente un individu moyen.
- Des individus peuvent également être traités comme illustratifs.

ACP : Etude de cas

Obs	country	viandr	viandb	oeuf	lait	poisson	cereals	feculent	oleagine	fruitleg
1	Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7	4.2
2		4.4	5.0	1.2	9.5	0.6	55.9	3.0	5.7	3.2
3	Romania	6.2	6.3	1.5	11.1	1.0	49.6	3.1	5.3	2.8
	Russian Federat	9.3	4.6	2.1	16.6	3.0	43.6	6.4	3.4	2.9
5	Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5	1.7
	Greece	10.2	3.0	2.8	17.6	5.9	41.7	2.2	7.8	6.5
7	Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4.0	5.4	4.2
8		9.0	5.1	2.9	13.7	3.4	36.8	2.1	4.3	6.7
9	Poland	6.9	10.2	2.7	19.3	3.0	36.1	5.9	2.0	6.6
	Czech Republic	9.7	11.4	2.8	12.5	2.0	34.3	5.0	1.1	4.0
11		7.1	3.4	3.1	8.6	7.0	29.2	5.7	5.9	7.2
	France	18.0	9.9	3.3	19.5	5.7	28.1	4.8	2.4	6.5
	Liechtenstein	8.9	14.0	4.3	19.9	2.1	28.0	3.6	1.3	4.3
	Portuga 1	6.2	3.7	1.1	4.9	14.2	27.0	5.9	4.7	7.9
	Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1	4.0
	Iceland	9.5	4.9	2.7	33.7	5.8	26.3	5.1	1.0	1.4
	Switzerland	13.1	10.1	3.1	23.8	2.3	25.6	2.8	2.4	4.9
	Ukraine	8.4	11.6		11.1	5.4	24.6	6.5	0.8	3.6
	United Kingdom	17.4	5.7	4.7	20.6	4.3	24.3	4.7	3.4	3.3
	Ireland	13.9	10.0		25.8	2.2	24.0	6.2	1.6	2.9
21	Norway	9.4	4.7		23.3	9.7	23.0	4.6	1.6	2.7
	Nether lands	9.5	13.6		23.4	2.5	22.4	4.2	1.8	3.7
	Denmark	10.6	10.8	3.7	25.0	9.9	21.9	4.8	0.7	2.4
	Sweden	9.9	7.8		24.7	7.5	19.5	3.7	1.4	2.0
	Gormanu	11 4	12.5	4 1	19 9	3 4	18 6	5.2	1.5	3 8

- Pour chaque pays
- Les consommations des 9 protéines.

ACP: Etude de cas

Questions

- Quelle est la part de variance expliquée par le premier plan factoriel?
- Combien d'axes est-il pertinent de conserver :
 - via la règle de Kaiser
 - via l'ébouli des valeurs propres?
- Quels pays contribuent le plus à la construction de l'axe 1? L'axe 2?
- Quels sont les pays les mieux représentés sur le premier plan factoriel? Et les moins bien représentés?
- Interpréter l'axe 1 en termes de variables et d'individus. Faire de même pous les autres axes conservés.

Exemple sous R : Commandes et sorties

Commandes :

- library(FactoMineR) charge le package FactoMineR.
- proteine.acp = PCA(proteine[,-1], ncp = 9, graph = T)
 effectue l'ACP sur les données avec 9 (= nombre de variables) facteurs
 principaux (défaut = 5). Trace le graphe des données dans le premier
 plan factoriel, ainsi que le cercle des corrélations (défaut = T).

Sorties principales :

- proteine.acp\$eig : tableau des valeurs propres et des pourcentages de variance expliquée pour chaque facteur.
- proteine.acp\$var : liste des coordonnées, contributions et statistiques des variables sur chaque facteur.
- proteine.acp\$ind: liste des coordonnées, contributions et statistiques des individus sur chaque facteur.

Exemple sous R : Sorties de la fonction PCA

Contribution à la variance : proteine.acp\$eig

> proteine.acp\$eig

		eigenvalue	percentage (of variance	cumulative	percentage	of	variance
comp	1	4.0064376		44.515973				44.51597
comp	2	1.6349994		18.166661				62.68263
comp	3	1.1279195		12.532439				75.21507
comp	4	0.9546640		10.607377				85.82245
comp	5	0.4638384		5.153760				90.97621
comp	6	0.3251310		3.612566				94.58878
comp	7	0.2716063		3.017848				97.60662
comp	8	0.1162919		1.292132				98.89876
comp	9	0.0991119		1.101243				100.00000

Ebouli des valeurs propres

Ebouli des valeurs propres

Calcul des contributions

```
> proteines.acpSindScontrib
                         Dim. 1
                                     Dim. 2
                                                  Dim. 3
                                                              Dim. 4
Bulgaria
                   10.21529473
                                4.31389487 8.455292e-02
                                                         0.20023233
Yugoslavia
                   13.65113880
                                2.74593330 1.568355e-01 2.94582788
Romania
                    7.90396117
                                3.18980912 1.814301e-02 1.65083779
Russian Federation 0.63695127
                                0.03126919 5.048478e-01 3.75521074
Albania
                   12.63361076
                                6.77488643 1.145894e+01
                                                         0.23019793
Greece
                    5.21687063
                                2.55382061 2.877676e+00 14.05199614
Hungary
                                1.69667813 1.353538e+01 0.20625790
                    2.20908090
Italy
                    2.44906973 0.40568488 5.873126e-02 6.52240726
                    0.01544616 0.72056470 8.034717e+00 0.91641205
Poland
Czech Republic
                    0.14273283
                                0.92560995 5.283610e+00 0.93959478
Spain
                    1.78966010 16.61694150 9.808519e-01
                                                         0.56314641
France
                    2.30263963
                                1.57186203 1.309276e-05 16.72333737
Liechtenstein
                    2.10493338
                                2.76290260 6.611433e+00 0.12332748
Portugal
                    3.02631468 46.87808620 7.032937e-03 3.48485950
                    2.73620983 0.06482887 1.732067e-01 1.18346882
Belgium
                    2.54345520
                                0.90524760 1.551707e+01 8.74259615
Iceland
Switzerland
                    0.86561150
                                1.43753641 8.789902e-02 5.97915787
Ukraine
                    2.10357670
                                0.51674548 6.267479e+00
                                                        5.63203480
United Kingdom
                    3.13194150
                                0.02250800 4.908279e+00 13.11843948
Ireland
                    7.37782674 1.48636032 1.460068e-03 0.82484732
                               1.72204731 1.072726e+01 5.64850989
Norway
                    0.98804087
Netherlands
                    2.80209770
                                2.11959139 2.170309e+00
                                                         0.06945830
Denmark
                    5.81823675
                                0.20764359 2.090502e+00 4.08411163
Sweden
                                0.10960328 6.055959e+00 2.35206994
                    2.77581758
Germany
                    4.55948085
                                0.21994428 2.387814e+00 0.05166026
```

Calcul des qualités de représentation

```
> proteines.acp$ind$cos2
                                                  Dim.3
                        Dim. 1
                                     Dim. 2
                                                              Dim. 4
Bulgaria
                   0.74064685 0.127640667 1.725872e-03 0.003459287
Yugoslavia
                   0.86059920 0.070644974 2.783531e-03 0.044251865
Romania
                   0.80125581 0.131962435 5.177922e-04 0.039877043
Russian Federation 0.12801416 0.002564647 2.856485e-02 0.179836679
Albania
                   0.61215361 0.133965871 1.563137e-01 0.002657826
Greece
                   0.42667738 0.085239161 6.625995e-02 0.273854399
Hungary
                   0.27611042 0.086542586 4.762790e-01 0.006142907
Italv
                   0.44590063 0.030142896 3.010412e-03 0.282967784
Poland
                   0.00315723 0.060106008 4.623555e-01 0.044634288
Czech Republic
                   0.04557900 0.120622457 4.749976e-01 0.071494671
Spain
                   0.17226841 0.652747776 2.658020e-02 0.012916610
France
                   0.25375856 0.070691694 4.062055e-07 0.439146914
Liechtenstein
                   0.33799259 0.181047954 2.988712e-01 0.004718683
Portugal
                   0.12733142 0.804916064 8.330632e-05 0.034938070
Belgium
                   0.70929275 0.006858099 1.264039e-02 0.073101299
Tceland.
                   0.23749029 0.034494383 4.078976e-01 0.194515555
Switzerland
                   0.20623455 0.139770809 5.895792e-03 0.339445900
Ukraine
                   0.32552406 0.032633275 2.730470e-01 0.207674046
United Kingdom
                   0.33322901 0.000977294 1.470206e-01 0.332585638
Ireland
                   0.77649844 0.063840380 4.326183e-05 0.020686063
Norway
                   0.15744344 0.111983485 4.812361e-01 0.214474524
Netherlands
                   0.53027881 0.163693855 1.156278e-01 0.003132112
Denmark
                   0.66284556 0.009653810 6.704883e-02 0.110869149
Sweden
                   0.45437109 0.007321542 2.790760e-01 0.091740721
Germany
                   0.79564030 0.015662940 1.173064e-01 0.002148078
```

Représentation sur le premier plan factoriel

Représentation sur le premier plan factoriel et cercle des corrélations

Représentation sur le deuxième plan factoriel

```
plot(proteine.acp, axes = c(1,3), choix ="ind")
plot(proteine.acp, axes = c(1,3), choix ="var")
```


Représentation sur le troisième plan factoriel

```
plot(proteine.acp, axes = c(1,4), choix ="ind")
plot(proteine.acp, axes = c(1,4), choix ="var")
```


ACP: Exemple sous SAS

Procédure princomp:

```
/********//
/* 3. ACP sur données proteines */

### proc princomp data = proteines out = proteines_ACP;
var viandr -- fruitleg;
run;
```

Table OUT : ajout à la table de données d'origine des coordonnées de chaque individu sur les facteurs principaux.

Options utiles:

- vardef=n : coefficients de la matrice Σ normalisès par n et non n-1.
- COV : utilise la matrice de covariance au lieu de la matrice de corrélation.
- STD : standardise les coefficients sur les composants principaux dans la table OUT.
- NOPRINT: n'affiche pas les sorties.

Sortie de la procédure Princomp

	Correlation Matrix												
	viandr	viandb	oeuf	lait	poisson	cereals	feculent	oleagine	fruitleg				
viandr	1.0000	0.1530	0.5856	0.5029	0.0610	4999	0.1354	3494	0742				
viandb	0.1530	1.0000	0.6204	0.2815	2340	4138	0.3138	6350	0613				
oeuf	0.5856	0.6204	1.0000	0.5755	0.0656	7124	0.4522	5598	0455				
lait	0.5029	0.2815	0.5755	1.0000	0.1379	5927	0.2224	6211	4084				
poisson	0.0610	2340	0.0656	0.1379	1.0000	5242	0.4039	1472	0.2661				
cereals	4999	4138	7124	5927	5242	1.0000	5333	0.6510	0.0465				
feculent	0.1354	0.3138	0.4522	0.2224	0.4039	5333	1.0000	4743	0.0844				
oleagine	3494	6350	5598	6211	1472	0.6510	4743	1.0000	0.3750				
fruitleg	0742	0613	0455	4084	0.2661	0.0465	0.0844	0.3750	1.0000				

72 / 75

Sortie de la procédure Princomp (2)

Eigenvectors												
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9			
viandr	0.302609	056252	297580	0.646477	0.322160	459870	0.150334	0.019858	0.246000			
viandb	0.310556	236853	0.623897	036992	300165	121007	019664	0.027876	0.592397			
oeuf	0.426679	035336	0.181528	0.313164	0.079110	0.361249	443272	0.491200	333386			
lait	0.377727	184589	385658	003318	200414	0.618438	0.462095	081422	0.178084			
poisson	0.135650	0.646820	321274	215955	290031	136791	106394	0.448732	0.312826			
cereals	437743	233485	0.095918	006204	0.238168	0.080758	0.404964	0.702995	0.152260			
feculent	0.297248	0.352826	0.242975	336685	0.735973	0.147667	0.152753	114540	0.121858			
oleagine	420334	0.143311	054388	0.330288	0.150537	0.447010	407262	183800	0.518275			
fruitleg	110420	0.536190	0.407556	0.462056	233517	0.118550	0.449978	091963	202950			

Sortie de la procédure Princomp (3)

Représentation dans le premier plan factoriel

Representation dans le premier plan factoriel

4D > 4B > 4B > 4B > 900