# Midterm Exam I Introduction to Deep Learning ECE 685D Fall 2022

Instructor: Vahid Tarokh
ECE Department, Duke University
19 Oct. 2022
10:15-11:30 AM (exam duration 75 minutes)

You are not allowed to communicate with others.

| Name    |  |
|---------|--|
| Duke ID |  |

The total number of points on the exam is 110 (10 of which are **bonus** points)

| Problem 1 (30) |       | Pr     | oblem 2 ( | 40)   | Problem 3 (40) |       |       |  |
|----------------|-------|--------|-----------|-------|----------------|-------|-------|--|
| 1(15)          | 2(15) | 1(20)  | 2(5)      | 3(15) | 1(15)          | 2(10) | 3(15) |  |
|                |       |        |           |       |                |       |       |  |
| Total:         |       | Total: |           |       | Total:         |       |       |  |
| Grand Total:   |       |        |           |       |                |       |       |  |

### **Problem 1**

Consider an RGB image given by the following matrix:

$$X[:,:,0] =$$

| 10 | 0 | 0  | 0 | 0  | 0 | 20 | 0 | 0  |
|----|---|----|---|----|---|----|---|----|
| 0  | 0 | 10 | 0 | 0  | 0 | 0  | 0 | 10 |
| 0  | 0 | 0  | 0 | 10 | 0 | 20 | 0 | 20 |
| 20 | 0 | 10 | 0 | 20 | 0 | 0  | 0 | 0  |
| 0  | 0 | 0  | 0 | 10 | 0 | 20 | 0 | 10 |
| 10 | 0 | 0  | 0 | 0  | 0 | 10 | 0 | 10 |
| 0  | 0 | 20 | 0 | 10 | 0 | 10 | 0 | 10 |
| 10 | 0 | 0  | 0 | 20 | 0 | 20 | 0 | 20 |
| 20 | 0 | 0  | 0 | 0  | 0 | 0  | 0 | 0  |

$$X[:,:,1] =$$

| 0 | 0  | 0 | 20 | 0 | 0  | 0 | 10 | 0 |
|---|----|---|----|---|----|---|----|---|
| 0 | 0  | 0 | 0  | 0 | 20 | 0 | 0  | 0 |
| 0 | 20 | 0 | 10 | 0 | 20 | 0 | 0  | 0 |
| 0 | 0  | 0 | 20 | 0 | 0  | 0 | 20 | 0 |
| 0 | 10 | 0 | 0  | 0 | 0  | 0 | 0  | 0 |
| 0 | 0  | 0 | 20 | 0 | 0  | 0 | 0  | 0 |
| 0 | 10 | 0 | 0  | 0 | 0  | 0 | 0  | 0 |
| 0 | 10 | 0 | 0  | 0 | 0  | 0 | 20 | 0 |
| 0 | 0  | 0 | 20 | 0 | 10 | 0 | 10 | 0 |

$$X[:,:,2] = X[:,:,1]$$

The filter  $k_1$  is given by the following  $3 \times 3 \times 3 \times 1$  tensor:

$$k_1[0,:,:,0] = k_1[1,:,:,0] = k_1[2,:,:,0] = \begin{bmatrix} 0 & 0.1 & 0 \\ -0.1 & 0 & -0.1 \\ 0.1 & 0 & 0 \end{bmatrix}$$

The filter  $k_2$  is given by a  $1 \times 1 \times 1 \times 2$  tensor:

$$k_2[0,:,:,0] = [0.5]$$

$$k_2[0,:,:,1] = [-0.5]$$

The output of the first convolutional layer is given by  $Y_1 = \text{ReLU}(X * k_1 + \mathbb{1}_{1 \times 4 \times 4})$ , where \* is convolution with **stride being 2 in both directions**, and  $\mathbb{1}_{1 \times 4 \times 4}$  is a  $1 \times 4 \times 4$  matrix with all ones.

The output of the second convolutional layer  $Z_1 * k_2$  is performed with the **stride being 1**.

1. (15 pts) Compute the output of the first convolutional layer  $Y_1$ . Recall from the lecture notes the convolution between a 4D filter k and a 3D input w is defined as  $(w*k)_{fij} = \sum_c \sum_{p,q} w_{c,i+p,j+q} \cdot k_{c,p,q,f}$ , where c is the channel index, p, q are the location indices, f is the output channel index.

2. (15 pts) Apply maxpooling on non-overlapping  $2 \times 2$  sub-matrices of the filtered image and compute the output  $Z_1$  as  $Z_1 = \operatorname{maxpool}(Y_1)$ . Then calculate  $Y_2 = \operatorname{ReLU}(Z_1 * k_2 + 0.5 \times \mathbb{1}_{2 \times 2 \times 2})$ . Lastly, calculate the output  $Z_2 = \operatorname{maxpool}(Y_2)$ , with the maxpool applied on non-overlapping  $2 \times 2$  sub-matrices.

Solution:

### **Problem 2**

(40 pts) Consider a binary logistic regression problem as follows

$$p_i = p(y_i = 1 | \mathbf{x_i}) = \sigma(\mathbf{w}^T \mathbf{x}_i + b), \ \forall i \in \{1, \dots, 4\}$$

where  $y \in \{1, 0\}$ ,  $\mathbf{x} \in \mathbb{R}^{2 \times 1}$ ,  $\mathbf{w} \in \mathbb{R}^{2 \times 1}$ ,  $b \in \mathbb{R}$ , and  $\sigma(\cdot)$  is the sigmoid function, given as:

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

We are given a dataset with four data points  $\{\mathbf{x}_1, y_1\} = \{(1, 1)^T, 1\}, \{\mathbf{x}_2, y_2\} = \{(1, 2)^T, 1\}, \{\mathbf{x}_3, y_3\} = \{(-2, -1)^T, 0\}, \{\mathbf{x}_4, y_4\} = \{(-3, -3)^T, 0\}.$ 

The loss function is

$$\mathcal{L} = \sum_{i=1}^{4} y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$

The initial value of **w** is  $\mathbf{w}_1 = (1, 1)^T$ .

The initial value of b is  $b_1 = 0.5$ .

Perform 2 steps of Nesterov's accelerated gradient descent method with  $\beta=0.9$  on w and b using the dataset formed with four data points  $\{\mathbf{x}_i,y_i\}_{i=1}^4$ . Use the definition of Nesterov's Accelerated Gradient Descent in the lecture notes, as shown below.

## Algorithm 1 Nesterov's Accelerated Gradient Descent

First define the following sequences: 
$$\lambda_0=0,\ \lambda_k=(1+\sqrt{1+4\lambda_{k-1}^2})/2,\ \gamma_k=(1-\lambda_k)/\lambda_{k+1}$$
 for  $k=1,2,\dots$  do 
$$\mathbf{t_{k+1}}=\mathbf{w_k}-\nabla\mathcal{L}(\mathbf{w_k})/\beta$$
 
$$\mathbf{w_{k+1}}=(1-\gamma_k)\mathbf{t_{k+1}}+\gamma_k\mathbf{t_k}$$
 end for

- 1. (20 pts) Write out the gradient of the loss function  $\mathcal{L}$  with respect to the weight  $\mathbf{w}$  and bias b explicitly.
- 2. (5 pts) Write out  $\lambda_0$ ,  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  and  $\gamma_1$ ,  $\gamma_2$  explicitly.
- 3. (15 pts) Calculate  $t_2$ ,  $t_3$  and  $\mathbf{w}_2$ ,  $\mathbf{w}_3$ ,  $b_2$ , and  $b_3$ .

Solution:

### **Problem 3**

Figure 2 depicts a simple, fully connected multi-layer perceptron network with one hidden layer. The inputs to the network are  $x_1, x_2$ , the output is y. The activation functions of the neurons in the hidden layer are given as  $h_1(z)=z^2, h_2(z)=z^2$ , and the output unit activation function is  $h_3(z)=\sigma(z)$ , where  $\sigma(\cdot)$  is the sigmoid function and  $\sigma(z)=\frac{1}{1+e^{-z}}$ . The bias b is added to the output of the hidden layer before passing it to the output layer. Let  $\mathbf{w}=(W_{1,1}^{(1)},W_{1,2}^{(1)},W_{2,1}^{(1)},W_{2,2}^{(1)},W_1^{(2)})$  denote the vector of the network parameters.

- 1. (15 pts) Let  $\mathcal{D} = \{(x_{1,i}, x_{2,i}), y_i\}_{i=1}^N$  denote a training dataset of N points where  $y_n \in \{0,1\}$  are the labels of the corresponding data points. We want to estimate the network parameters  $\mathbf{w}$  using  $\mathcal{D}$  by minimizing the Mean Square Error  $E(\mathbf{w})$ . Compute the gradient with respect to the network parameters  $\mathbf{w}$ , you must use **the backpropagation algorithm**. Specifically, write out explicit formulas for  $\frac{\partial y}{\partial W_{1,1}^{(1)}}, \frac{\partial y}{\partial W_{1,2}^{(1)}}, \frac{\partial y}{\partial W_{2,1}^{(1)}}, \frac{\partial y}{\partial W_{2,1}^{(1)}}, \frac{\partial y}{\partial W_{1}^{(2)}}, \frac{\partial y}{\partial W_{2}^{(2)}}.$
- 2. (10 pts) Calculate the gradient for a initial weight vector of  $\mathbf{w}=(W_{1,1}^{(1)}=1,W_{1,2}^{(1)}=1,W_{1,2}^{(1)}=1,W_{2,1}^{(1)}=2,W_{2,2}^{(1)}=1,W_{1}^{(2)}=0.1,W_{2}^{(2)}=3),$  and with the data point  $\{(x_{1},x_{2}),y\}=\{(1,2),1\}.$
- 3. (15 pts) Update w once using the stochastic gradient descent algorithm, the gradient in the last question, the data point  $\{(x_1, x_2), y\} = \{(1, 2), 1\}$ , and a learning rate of  $\eta = 0.001$ .



Figure 1: Schematic of the MLP network.

Solution: