Sprawozdanie z ćw 53 – PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

Michał Puchyr, Dawid Chudzicki

17 kwietnia 2023

1 Cel ćwiczenia

- Wyznaczenie wartości indukcyjności cewki i pojemności kondensatora przy zastosowaniu prawa Ohma dla prądu przemiennego,
- Sprawdzenie prawa Ohma dla prądu przemiennego dla szeregowego układu złożonego z opornika, cewki indukcyjnej i kondensatora.

2 Wstęp teoretyczny

Prąd przemienny (AC) – charakterystyczny przypadek prądu elektrycznego okresowo zmiennego, w którym wartości chwilowe podlegają zmianom w powtarzalny, okresowy sposób, z określoną częstotliwością. Wartości chwilowe natężenia prądu przemiennego przyjmują naprzemiennie wartości dodatnie i ujemne.

Największe znaczenie praktyczne mają prąd i napięcie o przebiegu sinusoidalnym. W żargonie technicznym nazwa prąd przemienny często oznacza po prostu **prąd sinusoidalny**.

Kondensator – element elektroniczny bierny zbudowany z dwóch przewodników – inaczej okładek lub elektrod – rozdzielonych dielektrykiem; przechowuje on energię w postaci pola elektrycznego.

Pojemność kondensatora mierzy zdolność kondensatora do magazynowania ładunku elektrycznego.

Jednostką pojemności jest farad (F).

Kondensatory są wykorzystywane w elektronice do różnych celów, na przykład do filtrowania sygnałów, magazynowania energii, stabilizacji napięcia, generowania sygnałów i wielu innych zastosowań.

Cewka indukcyjna to element elektryczny składający się z przewijanej spirali z drutu lub taśmy ferromagnetycznej, który wykorzystuje zjawisko elektromagnetycznej indukcji do magazynowania energii w postaci pola magnetycznego.

Indukcyjność jest podstawowym parametrem elektrycznym opisującym cewkę. Prąd płynący w obwodzie wytwarza skojarzony z nim strumień magnetyczny.

Jednostką indukcyjności jest henr [H].

Indukcyjność definiuje się jako stosunek tego strumienia i prądu, który go wytworzył:

$$L = k \frac{\Phi}{i}$$

Współczynnik k zależy od geometrii układu, a więc między innymi od kształtu cewki, liczby zwojów, grubości użytego drutu. Indukcyjność cewki zależy również od przenikalności magnetycznej rdzenia.

Wykaz przyrzadów:

- Generator AG 1012F
- Woltomierz napięcia przemiennego
- Miliamperomierz prądu przemiennego
- Zestaw składający się z oporników, cewek indukcyjnych i kondensatorów

Oporność badanego opornika : $R = (157 \pm 3)\Omega$

Oporność cewki indukcyjnej : $R_{L2} = (0, 60 \pm 0, 05)\Omega$

Przedział częstotliwości pomiarowej dla pojemności C_3 : od 50 Hz do 200Hz

3 Przykładowe obliczenia

3.1 Niepewności mierników

Niepewność woltomierza Dla zakresu:

• $4V: \pm 0.8\% \text{ rdg} + 3\text{dgt}$ dgt = 1mV

• $40V : \pm 2.5\% \text{ rdg} + 5\text{dgt}$ dgt = 10mV

Np.

$$u_b(U) = \frac{0,008 \cdot 1,016 + 3 \cdot 0,001}{\sqrt{3}} = 0,00642 \approx 0,0065[V]$$

Niepewność amperomierza (dla prądu zmiennego) Dla zakresu:

• $40 \text{ mA} : \pm 1.5\% \text{ rdg} + 3 \text{dgt} \quad \text{dgt} = 10 \mu \text{A}$

• $400 \text{ mA} : \pm 1.5\% \text{ rdg} + 3 \text{dgt} \quad \text{dgt} = 100 \mu \text{A}$

Np.

$$u_b(I) = \frac{0.015 \cdot 2.090 + 3 \cdot 0.00001}{\sqrt{3}} = 0.01811 \approx 0.019[mA]$$

Niepewność ustalenia częstotliwości generatora:

• $\pm 1\%$ rdg ± 1 Hz

Np.

$$u_b(f) = \frac{0.01 \cdot 125 + 1}{\sqrt{3}} = 1.29903 \approx 1.3[Hz]$$

3.2 Wyznaczenie pojemności kondesatora

Obliczenie pojemności kondensatora:

$$C = \frac{1}{2\pi f \sqrt{Z_C^2 - R^2}} = \frac{1}{2\pi \cdot 125\sqrt{470^2 - 157^2}} = 2,874115253^{-6} \approx 2,874116^{-6}[F]$$

Wyznaczenie niepewności złożonej pojemności kondensatora:

$$u_{c}(C) = \sqrt{\left(\frac{\partial C}{\partial f}\right)^{2} \cdot u(f)^{2} + \left(\frac{\partial C}{\partial Z_{C}}\right)^{2} \cdot u(Z_{C})^{2} + \left(\frac{\partial C}{\partial R}\right)^{2} \cdot u(R)^{2}}$$

$$= \sqrt{\left(\frac{-1}{2\pi f^{2}\sqrt{Z_{C}^{2} - R^{2}}}\right)^{2} \cdot u(f)^{2} + \left(\frac{-Z_{C}}{2\pi f\left(Z_{c}^{2} - R^{2}\right)^{\frac{3}{2}}}\right)^{2} \cdot u(Z_{C})^{2} + \left(\frac{R}{2\pi f\left(Z_{C}^{2} - R^{2}\right)^{\frac{3}{2}}}\right)^{2} \cdot u(R)^{2}}$$

$$= \sqrt{\left(\frac{-1}{2\pi \cdot 125^{2}\sqrt{470^{2} - 157^{2}}}\right)^{2} \cdot 1, 3^{2} + \left(\frac{-470}{2\pi \cdot 125\left(470^{2} - 157^{2}\right)^{\frac{3}{2}}}\right)^{2} \cdot 2^{2} + \left(\frac{157}{2\pi \cdot 125\left(470^{2} - 157^{2}\right)^{\frac{3}{2}}}\right)^{2} \cdot 3^{2}}$$

$$= 3, 3624^{-8}[F]$$

3.3 Wyznaczenie indukcyjności cewki

Obliczenie indukcyjności cewki:

$$L = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f} = \frac{\sqrt{164, 64^2 - (157 + 0, 60)^2}}{2\pi \cdot 125} = 0,060644 \approx 0,061[H]$$

Wyznaczenie niepewności złożonej indukcyjności cewki

$$u_{c}(L) = \sqrt{\left(\frac{\partial L}{\partial Z_{L}}\right)^{2} \cdot u(Z_{L})^{2} + \left(\frac{\partial L}{\partial R}\right)^{2} \cdot u(R)^{2} + \left(\frac{\partial L}{\partial R_{L}}\right)^{2} \cdot u(R_{L})^{2} + \left(\frac{\partial L}{\partial f}\right)^{2} \cdot u(f)^{2}}$$

$$= u_{c}(L) = \sqrt{\left(\frac{Z_{L}}{2\pi f \sqrt{Z_{L}^{2} - (R + R_{L})^{2}}}\right)^{2} \cdot u(Z_{L})^{2} + \left(\frac{-(R + R_{L})}{2\pi f \sqrt{Z_{L}^{2} - (R + R_{L})^{2}}}\right)^{2} \cdot u(R)^{2}}$$

$$+ \left(\frac{-(R + R_{L})}{2\pi f \sqrt{Z_{L}^{2} - (R + R_{L})^{2}}}\right)^{2} \cdot u(R_{L})^{2} + \left(\frac{-\sqrt{Z_{L}^{2} - (R - R_{L})^{2}}}{2\pi f^{2}}\right)^{2} \cdot u(f)^{2}$$

$$= 0,0131514 \approx 0,014[H]$$

3.4 Sprawdzenie słuszności prawa Ohma dla prądu przemiennego

Wyznaczenie zawady nr 2 dla układu szeregowego RLC:

$$Z_2 = \sqrt{(R+R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2} = 425,625862$$

Wyznaczenie niepewności złożonej dla zawady nr 2:

$$u(Z_{2}) = \sqrt{\left(\frac{R + R_{L}}{\sqrt{(R + R_{L})^{2} + \left(2\pi f L - \frac{1}{2\pi f C}\right)^{2}}}\right)^{2} \cdot u(R)^{2} + \left(\frac{R + R_{L}}{\sqrt{(R + R_{L})^{2} + \left(2\pi f L - \frac{1}{2\pi f C}\right)^{2}}}\right)^{2} \cdot u(R_{L})^{2}}$$

$$\frac{\left(\frac{2\pi f L - \frac{1}{2\pi f C}\right) \cdot 2\pi f}{\sqrt{(R + R_{L})^{2} + \left(2\pi f L - \frac{1}{2\pi f C}\right)^{2}}}\right)^{2} \cdot u(L)^{2} + \left(\frac{\left(2\pi f L - \frac{1}{2\pi f C}\right) \cdot \left(2\pi L + \frac{1}{2\pi f C}\right)}{\sqrt{(R + R_{L})^{2} + \left(2\pi f L - \frac{1}{2\pi f C}\right)^{2}}}\right)^{2} \cdot u(f)^{2}}{\left(\frac{\left(2\pi f L - \frac{1}{2\pi f C}\right) \cdot \frac{1}{2\pi C^{2} f}}{\sqrt{(R + R_{L})^{2} + \left(2\pi f L - \frac{1}{2\pi f C}\right)^{2}}}\right)^{2} \cdot u(C)^{2}} = 11,7873$$

4 Pomiary i opracowanie wyników

4.1 Wyznaczanie pojemności kondensatora (RC)

--- Regresja liniowa: y = 469, 49x

Wykres zależności napięcia od natężenia

Tabela 1: Wyniki pomiarów i obliczeń

Lp	U[V]	$\mathrm{u}(\mathrm{U})[\mathrm{V}]$	I[mA]	u(I)[mA]	Z_{c}	$u(Z_c)$	f[Hz]	$\mathrm{u}(f)[\mathrm{Hz}]$	C[F]	u(C)[F]
1	1,0160	0,0065	2,090	0,019						
2	2,034	0,012	4,130	0,036						
3	3,046	0,016	6,420	0,056						
4	4,100	0,089	8,600	0,075						
5	5,12	0,11	10,900	0,095	470	2	125,0	1,3	$2,874116^{-6}$	3,3624-8
6	6,15	0,12	13,11	0,12						
7	7,17	0,14	14,87	0,13						
8	8,16	0,15	17,48	0,16						
9	9,18	0,17	19,75	0,18						
10	10,15	0,18	21,75	0,19						

4.2 Wyznaczenie indukcyjności cewki

Wykres zależności napięcia od natężenia

Tabela 2: Wyniki pomiarów i obliczeń dla wyznaczenia indukcyjności cewki

Lp	U[V]	$\mathrm{u}(\mathrm{U})[\mathrm{V}]$	I[mA]	u(I)[mA]	$ m Z_L$	$U(Z_L)$	f[Hz]	$\mathrm{u}(f)[\mathrm{Hz}]$	L[H]	u(L)[Hz]
1	1,0150	0,0065	5,74	0,05						
2	2,032	0,012	11,320	0,099						
3	3,043	0,016	17,55	0,16						
4	4,100	0,089	24,07	0,21						
5	5,12	0,11	30,92	0,27	164,64	0,81	125,0	1,3	0,061	0,014
6	6,15	0,12	37,24	0,33						
7	7,16	0,14	43,6	0,38						
8	8,15	0,15	49,7	0,44						
9	9,17	0,17	56	0,49						
10	10,13	0,18	62	0,54						

4.3 Sprawdzenie słuszności prawa Ohma dla prądu przemiennego

--- Regresja liniowa: y = 464, 16x

Wykres zależności napięcia od natężenia

Tabela 3: Wyniki pomiarów i obliczeń dla wyznaczenia zawady układu

Lp	U[V]	$\mathrm{u}(\mathrm{U})[\mathrm{V}]$	I[mA]	u(I)[mA]	$Z_1[\Omega]$	$\mathrm{u}(\mathrm{Z}_1)[\Omega]$	f[Hz]	$\mathrm{u}(f)[\mathrm{Hz}]$	$Z_2[\Omega]$	$\mathrm{u}(\mathrm{Z}_2)[\Omega]$
1	1,015	0,0065	2,18	0,019						
2	2,034	0,012	4,39	0,039						
3	3,046	0,016	6,6	0,058						
4	4,11	0,089	8,81	0,077	464,16	0,29		1,3	425,6258	11,7873
5	5,13	0,11	11,02	0,096			125,0			
6	6,15	0,12	13,23	0,12			120,0	1,5		
7	7,17	0,14	15,44	0,14						
8	8,16	0,15	17,59	0,16						
9	9,18	0,17	19,81	0,18						
10	10,15	0,18	21,87	0,19						

5 Wnioski

W eksperymencie udało się wyznaczyć pojemność kondensatora, która wynosi około 2,874116 $^6\pm$ 3,3624 $^{-8}$ F oraz indukcyjność cewki, która wynosi około 0,061 \pm 0,014H.

Zostało też udowodnione spełnianie prawa Ohma dla układu z prądem przemiennym. Wskazuje na to zależność liniowa pomiarów napięcia od natężenia.