QBUS6840 Lecture 7

ARIMA Models

Professor Junbin Gao

The University of Sydney Business School

Outline

ARIMA Models

Box-Jenkins Method: Part I

Readings

- Online Textbook Sections 8.1-8.6 (https://otexts.com/fpp2/arima.html); and/or
- BOK Ch 9 and Ch 10

Box-Jenkins Method

- Formal statistical time series models.
- Can capture changing components.
- Heavily rely on finding a stationary data transform.
- Time Series Analysis forecasting and control (ed. Box and Jenkins), 1976.

Time Series verse Stochastic Processes

- We have discussed so many time series. Each is a sequence of numbers (sales, production, etc)
- We introduced a number of ways to treat them: Smoothing, Modelling and Forecasting
- We rely on the patterns to decide what models to use and project the patterns into future as our forecasts.
- From now on, we will move further in theory, by considering a (concrete) time series as a "product" from a "factory"
- The factory is called a P which is

$$Y_1, Y_2, Y_3, \cdots, Y_t, \cdots, \cdots$$

where each Y_t (t = 1, 2, ...) is a Random Variable.

• When we observe a (concrete) value y_t for each Y_t , we have obtained a time series.

Stationarity

Definition

A time series process is **strictly** stationary when the joint distribution (of the data) does not depend on time. That is, the joint distribution of

$$Y_t, Y_{t+1}, \ldots, Y_{t+k}$$

does not depend on t for any k.

Stationarity

Definition

A time series process is **strictly** stationary when the joint distribution (of the data) does not depend on time. That is, the joint distribution of

$$Y_t, Y_{t+1}, \ldots, Y_{t+k}$$

does not depend on t for any k.

Think about the case of k = 0: For any t, Y_t has the same distribution.

Visually Checking Stationarity

The mean of series should not be a function of time.

Picture is stolen from

http://www.blackarbs.com/blog/time-series-analysis-in-python-linear-models-to-garch/11/1/2016

Visually Checking Stationarity

The variance of the series should not be a function of time.

Picture is stolen from

http://www.blackarbs.com/blog/time-series-analysis-in-python-linear-models-to-garch/11/1/2016

Visually Checking Stationarity

The covariance of the *i*-th term and the (i + k)-th term should not be a function of time.

Picture is stolen from

http://www.blackarbs.com/blog/time-series-analysis-in-python-linear-models-to-garch/11/1/2016

Stationarity

Illustration

Non-stationarity

Illustration

Australian seasonally adjusted quarterly GDP growth (1959-2015)

Stationary or non-stationary?

S&500 returns

Stationary or non-stationary?

Weak stationarity

Definition

A process $\{Y_t\}$ is **weakly** stationary if its mean, variance and covariance functions do not change over time. That is,

$$E(Y_t) = \mu,$$

$$Var(Y_t) = \sigma^2$$
,

$$Cov(Y_t, Y_{t-k}) = Cov(Y_t, Y_{t+k}) = \gamma_k,$$

for all t and k.

Weak stationarity

Definition

A process $\{Y_t\}$ is **weakly** stationary if its mean, variance and covariance functions do not change over time. That is,

$$E(Y_t) = \mu,$$

$$Var(Y_t) = \sigma^2$$
,

$$Cov(Y_t, Y_{t-k}) = Cov(Y_t, Y_{t+k}) = \gamma_k,$$

for all t and k.

The covariance or correlation depends on the time gap, i.e.,

$$k = t - (t - k)$$

Strict and weak stationarity

- If the mean, variance and covariances are finite (which is a technical point really), then strict stationarity implies weak stationarity.
- Weak stationarity implies strict stationarity if and only if the data is normally distributed.

Stationarity

Assessing stationarity

- Box and Jenkins advocate using the ACF and PACF plots to assess stationarity and identify a suitable model.
- We may need to apply a suitable variance stabilising transform first.

Autocorrelation function (ACF)

Definitions

ACF:

$$\rho_k = \frac{E\left[(Y_t - \mu)(Y_{t+(\text{or } -)k} - \mu) \right]}{\sqrt{\text{Var}(Y_t)\text{Var}(Y_{t+(\text{or } -)k})}} = \text{Corr}(Y_t, Y_{t+(\text{or } -)k}).$$

Sample ACF:

$$r_{k} = \frac{\sum_{t=1}^{N-k} (y_{t+k} - \overline{y})(y_{t} - \overline{y})}{\sum_{t=1}^{N} (y_{t} - \overline{y})^{2}}.$$

What we have done is to compare, e.g., when k = 2,

the curve $\{y_1, y_2, y_3, ..., y_{N-2}\}$ with the curve $\{y_3, y_4, y_5, ..., y_N\}$

For k = 5: (see Lecture 07_Example 00.py)

the curve $\{y_1, y_2, y_3, ..., y_{N-5}\}$ with the curve $\{y_6, y_7, y_8, ..., y_N\}$

Sample ACF

Regression Explanation

• Given a time series $\{y_1, y_2, ..., y_N\}$ and a lag k, consider the following linear regression

$$y_{t+k} - \overline{y} = \gamma(y_t - \overline{y})$$
 think of it as $Y = \gamma X$

Consider data set

Then according to the least square regression solution

$$\gamma = \frac{\sum_{t=1}^{N-k} (y_t - \overline{y})(y_{t+k} - \overline{y})}{\sum_{t=1}^{N-k} (y_t - \overline{y})^2}$$

which is close to r_k .

Autocorrelation function (ACF)

Standard errors 标准差

Define the following standard errors:

If k = 1,

$$s_{r_k}=\frac{1}{\sqrt{N}}.$$

If k > 1,

$$s_{r_k} = \frac{\sqrt{1 + 2\sum_{j=1}^{k-1} r_j^2}}{\sqrt{N}}.$$

For a Gaussian uncorrelated series (white noise),

$$s_{r_k} \sim N(0, 1/N)$$

The t-statistic is defined as

$$t_{r_k} = \frac{r_k}{s_{r_k}}$$

(Sample) ACF Plots

- What is the value of r_0 ?
- In theory we can calculate r_k for all k = 0, 1, 2, 3, ..., i.e.,

$$r_0, r_1, r_2, r_3, r_4, \cdots$$

• If the length of time series $\{y_t\}$ is N, we can only calculate (at most)

$$r_0, r_1, r_2, r_3, r_4, \cdots, r_{N-1}$$

- An ACF Plot is a bar plot, such that the height of bar at lag k is r_k .
- We can assess the stationarity of $\{y_t\}$ by assessing the (sample) ACF plot

Stationarity and Autocorrelations

Assessing stationarity

In general, it can be shown that for nonseasonal time series

- If the Sample ACF of a nonseasonal time series "dies down" or "cuts off" reasonably quickly, then the time series should be considered stationary.
- If the Sample ACF of a nonseasonal time series "dies down" extremely slowly or not at all, then the time series should be considered nonstationary.

Autocorrelations:

Behaviour of ACFs

FIGURE 9.5 Examples of behavior for the SAC

S&P 500 index ACF

Visitor arrivals in Australia

Alcohol related assaults in NSW ACF

Tranforming

- If the ACF of a time series dies down extremely slowly, data transformation is necessary
- Trying first order differencing is always a good way. See example Lecture07_Example01.py
- If the ACF for the transformed data dies down extremely slowly, the transformed time series should be considered nonstationary. More transformations needed
- For nonseasonal data, first or second differencing will generally produce stationary time series values.

Partial ACF

 Partial autocorrelations measure the linear dependence of one variable after removing the effect of other variable(s) that affect to both variables.

$$\begin{aligned} Y_t &= \rho_{10} + \rho_{11} Y_{t-1} + \varepsilon_t \\ Y_t &= \rho_{20} + \rho_{21} Y_{t-1} + \rho_{22} Y_{t-2} + \varepsilon_t \\ Y_t &= \rho_{k0} + \rho_{k1} Y_{t-1} + \rho_{k2} Y_{t-2} + \dots + \rho_{kk} Y_{t-k} + \varepsilon_t \end{aligned}$$

- ρ_{kk} is the correlation between y_t and y_{t-k} net of effects at times $t-1, t-2, \ldots, t-k+1$.
- ρ_{pp} is ϕ_p in an AR(p) model (see this soon)

Partial ACF: Calculation Examples

- For example, the partial autocorrelation of 2nd order measures the effect (linear dependence) of Y_{t-2} on Y_t after removing the effect of Y_{t-1} on both Y_t and Y_{t-2}
- Each partial autocorrelation could be obtained as a series of regressions of the form:

$$Y_{t} \approx \rho_{10} + \rho_{11}Y_{t-1}$$

$$Y_{t} \approx \rho_{20} + \rho_{21}Y_{t-1} + \rho_{22}Y_{t-2}$$

$$\vdots$$

$$Y_{t} \approx \rho_{k0} + \rho_{k1}Y_{t-1} + \rho_{k2}Y_{t-2} + \dots + \rho_{kk}Y_{t-k}$$

- The estimate r_{kk} of ρ_{kk} will give the value of the partial autocorrelation of order k.
- The meaning of ACF coefficient ρ_k is

$$Y_t = \rho_0 + \rho_k Y_{t-k} + \varepsilon_t$$

without considering other $Y_{t-k+1}, ..., Y_{t-1}$.

Partial ACF: The Formula

• The Sample Partial ACF at lag k is

$$r_{kk} = \begin{cases} r_1 & \text{if } k = 1\\ \frac{r_k - \sum_{j=1}^{k-1} r_{k-1,j} r_{k-j}}{1 - \sum_{j=1}^{k-1} r_{k-1,j} r_j} & \text{if } k = 2, 3, \dots \end{cases}$$

where

$$r_{k,j} = r_{k-1,j} - r_{kk}r_{k-1,k-j}$$
 for $j = 1, 2, ..., k-1$

• The standard error of r_{kk} is

$$s_{r_{kk}} = \frac{1}{\sqrt{N}}$$

First Simple Process: White noise processes

- A sequence of independently and identically distributed random variables with mean 0 and finite variance σ^2 .
- Model

$$y_t = \varepsilon_t$$
 with $\varepsilon_t \sim N(0, \sigma^2)$

- What we hope and plan for which component in a times series model?
- What would the ACF plot look like for a white noise process?
 See Lecture07_Example02.py

Autoregressive (AR) processes

AR(p) process:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t,$$

where ε_t is i.i.d. with mean zero and variance σ^2 .

Example: AR(1) process

Properties

$$Y_t = c + \phi_1 Y_{t-1} + \varepsilon_t,$$

where ε_t is i.i.d. with mean zero and variance σ^2 . Unconditional:

$$E(Y_t) = c + \phi_1 E(Y_{t-1}),$$

Under the assumption of stationarity $E(Y_t) = E(Y_{t-1})$, so

$$E(Y_t) = \frac{c}{1 - \phi_1}.$$

AR(1) process Properties

$$Y_t = c + \phi_1 Y_{t-1} + \varepsilon_t,$$

$$Var(Y_t) = \phi_1^2 Var(Y_{t-1}) + \sigma^2,$$

Under the assumption of stationarity $Var(Y_t) = Var(Y_{t-1})$, so

$$\mathsf{Var}(Y_t) = \frac{\sigma^2}{1 - \phi_1^2}.$$

In general, we have

$$\mathsf{Cov}(Y_t, Y_{t-k}) = \phi_1^k \frac{\sigma^2}{1 - \phi_1^2}$$

Properties

$$\begin{aligned} \mathsf{Cov}(Y_t, Y_{t-1}) &= \mathsf{Cov}(c + \phi_1 Y_{t-1} + \varepsilon_t, Y_{t-1}) \\ &= \mathsf{Cov}(c, Y_{t-1}) + \mathsf{Cov}(\phi_1 Y_{t-1}, Y_{t-1}) + \mathsf{Cov}(\varepsilon_t, Y_{t-1}) \\ &= 0 + \phi_1 \mathsf{Var}(Y_{t-1}) + 0 = \phi_1 \mathsf{Var}(Y_{t-1}). \quad & \mathsf{Why?} \end{aligned}$$

$$\rho_1 = \frac{\mathsf{Cov}\big(Y_t, Y_{t-1}\big)}{\sqrt{\mathsf{Var}\big(Y_t)\mathsf{Var}\big(Y_{t-1}\big)}} \, \underline{\frac{\mathit{Why?}}{}} \, \frac{\mathsf{Cov}\big(Y_t, Y_{t-1}\big)}{\mathsf{Var}\big(Y_{t-1}\big)} = \phi_1.$$

Example: AR(1) process

Properties

$$\begin{aligned} \mathsf{Cov}(Y_t, Y_{t-2}) &= \mathsf{Cov}(c + \phi_1 Y_{t-1} + \varepsilon_t, Y_{t-2}) \\ &= \mathsf{Cov}(\phi_1(c + \phi_1 Y_{t-2} + \varepsilon_{t-1}), Y_{t-2}) \\ &= \phi_1^2 \mathsf{Var}(Y_{t-2}). \end{aligned}$$

Thus, noting that $Var(Y_{t-2}) = Var(Y_{t-1}) = Var(Y_t)$,

$$\rho_2 = \frac{\mathsf{Cov}(Y_t, Y_{t-2})}{\mathsf{Var}(Y_t)} = \phi_1^2,$$

$$\rho_k = \frac{\mathsf{Cov}(Y_t, Y_{t-k})}{\mathsf{Var}(Y_t)} = \phi_1^k.$$

- What happens to the ACF when $-1 < \phi_1 < 1$ and k increases?
- ullet What happens when $\phi_1=1$?
- Lecture07_Example03.py

 $\phi = 0.7$

 $\phi = -0.7$

 $\phi = 1$

 $\phi = 0.98$

 $\phi =$ 0.7 ACF (left) and Partial ACF (right)

Stationarity

ullet When $|\phi_1|<1$, the AR(1) process is weakly stationary

Conditional Expectation and Variance

$$Y_{t+1} = c + \phi_1 Y_t + \varepsilon_{t+1},$$

where ε_t is i.i.d. with mean zero and variance σ^2 . Conditional:

$$E(Y_{t+1}|y_{1:t}) = E(Y_{t+1}|y_1, \dots, y_t)$$

$$= E(Y_{t+1}|y_t) = E(c + \phi_1 y_t + \varepsilon_{t+1}|y_t)$$

$$= c + \phi_1 y_t + E(\varepsilon_{t+1}) = c + \phi_1 y_t$$

$$Var(Y_{t+1}|y_{1:t}) = Var(Y_{t+1}|y_1, \dots, y_t) = Var(Y_{t+1}|y_t)$$
$$= Var(c + \phi_1 y_t + \varepsilon_{t+1}|y_t)$$
$$= 0 + Var(\varepsilon_{t+1}) = \sigma^2$$

$$E(Y_{t+h}|y_{1:t}) = E(c + \phi_1 Y_{t+h-1} + \varepsilon_{t+h}|y_{1:t})$$

$$= c + \phi_1 E(Y_{t+h-1}|y_{1:t}) + 0$$

$$= c + \phi_1 (c + \phi_1 E(Y_{t+h-2}|y_{1:t}))$$

$$= \dots$$

Until we know

$$\widehat{Y}_{t+1} := E(Y_{t+1}|y_{1:t}) = c + \phi_1 y_t,$$

$$Var(Y_{t+1}|y_{1:t}) = Var(c + \phi_1 y_t + \varepsilon_{t+1}|y_{1:t}) = 0 + Var(\varepsilon_{t+1}) = \sigma^2.$$

Denote by $\widehat{Y}_{t+h} = E(Y_{t+h}|y_{1:t})$, then the above equation (second) says

$$\widehat{Y}_{t+h} = c + \phi_1 \widehat{Y}_{t+h-1}$$

Forecasting

$$\widehat{Y}_{t+2} := c + \phi_1 \widehat{Y}_{t+1} = c + \phi_1 (c + \phi_1 y_t)$$

= $c(1 + \phi_1) + \phi_1^2 y_t$.

$$\begin{aligned} \mathsf{Var}(Y_{t+2}|y_{1:t}) &= \mathsf{Var}(\phi_1 Y_{t+1} + \varepsilon_{t+2}|y_{1:t}) \\ &= \phi_1^2 \mathsf{Var}(Y_{t+1}|y_{1:t}) + \sigma^2 \\ &= (1 + \phi_1^2)\sigma^2 \end{aligned}$$

Forecasting

$$|\widehat{Y}_{t+h} = c + \phi_1 \widehat{Y}_{t+h-1}| = c(1 + \phi_1 + \phi_1^2 + \dots + \phi_1^{h-1}) + \phi_1^h y_t|$$

$$Var(Y_{t+h}|y_{1:t}) = \phi_1^2 Var(Y_{t+h-1}|y_{1:t}) + \sigma^2$$

= $\sigma^2 (1 + \phi_1^2 + \ldots + \phi_1^{2(h-1)}).$

What happens as h gets larger?

In-sample fit illustration

Forecasting illustration

$$Y_t = c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t,$$

$$E(Y_t) = c + \phi_1 E(Y_{t-1}) + \ldots + \phi_p E(Y_{t-p})$$

Suppose it is stationary, then

$$E(Y_t) = \frac{c}{1 - \phi_1 - \phi_2 - \dots - \phi_p}$$
$$= \frac{c}{1 - \sum_{i=1}^p \phi_i}$$

AR(p) processes Properties

$$\begin{aligned} Y_t &= c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t, \\ \text{Var}(Y_t) &= \text{Var}(c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t) \end{aligned}$$

$$\begin{aligned} Y_t &= c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t, \\ \text{Var}(Y_t) &= \text{Var}(c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t) \end{aligned}$$

Can we continue like this?

$$\mathsf{Var}(Y_t) = \mathsf{Var}(c) + \mathsf{Var}(\phi_1 Y_{t-1}) + \ldots + \mathsf{Var}(\phi_p Y_{t-p}) + \mathsf{Var}(\varepsilon_t)$$

$$\begin{aligned} Y_t &= c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t, \\ \text{Var}(Y_t) &= \text{Var}(c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t) \end{aligned}$$

Can we continue like this?

$$\mathsf{Var}(Y_t) = \mathsf{Var}(c) + \mathsf{Var}(\phi_1 Y_{t-1}) + \ldots + \mathsf{Var}(\phi_p Y_{t-p}) + \mathsf{Var}(\varepsilon_t)$$

NO! because all

$$\mathsf{Cov}(Y_{t-1},Y_{t-2})\neq 0$$

$$\begin{aligned} Y_t &= c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t, \\ \text{Var}(Y_t) &= \text{Var}(c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \varepsilon_t) \end{aligned}$$

Can we continue like this?

$$\mathsf{Var}(Y_t) = \mathsf{Var}(c) + \mathsf{Var}(\phi_1 Y_{t-1}) + \ldots + \mathsf{Var}(\phi_p Y_{t-p}) + \mathsf{Var}(\varepsilon_t)$$

NO! because all

$$\mathsf{Cov}(Y_{t-1},Y_{t-2}) \neq 0$$

Under the stationary condition, it can be proved that

$$\mathsf{Var}(Y_t) = rac{\sigma^2}{(1 -
ho_{11}^2)(1 -
ho_{22}^2)\dots(1 -
ho_{pp}^2)}$$

$$Cov(Y_t, Y_{t-1}) = Cov(c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t, Y_{t-1})$$

= $\phi_1 Var(Y_{t-1}) + \phi_2 Cov(Y_{t-2}, Y_{t-1})$

Under the stationary condition we have

$$\mathsf{Cov}(Y_t, Y_{t-1}) = \mathsf{Cov}(Y_{t-2}, Y_{t-1}) = \frac{\phi_1}{1 - \phi_2} \mathsf{Var}(Y_{t-1}).$$

$$\rho_1 = \frac{\mathsf{Cov}(Y_t, Y_{t-1})}{\sqrt{\mathsf{Var}(Y_t)\mathsf{Var}(Y_{t-1})}} = \frac{\phi_1}{1 - \phi_2}.$$

where we have used $Var(Y_t) = Var(Y_{t-1})$.

$$\begin{aligned} \mathsf{Cov}(Y_t, Y_{t-2}) &= \mathsf{Cov}(c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t, Y_{t-2}) \\ &= \phi_2 \mathsf{Var}(Y_{t-2}) + \phi_1 \mathsf{Cov}(Y_{t-1}, Y_{t-2}) \\ &= \left(\phi_2 + \frac{\phi_1^2}{1 - \phi_2}\right) \mathsf{Var}(Y_{t-2}). \end{aligned}$$

$$\rho_2 = \frac{\mathsf{Cov}(Y_t, Y_{t-2})}{\sqrt{\mathsf{Var}(Y_t)\mathsf{Var}(Y_{t-2})}} = \phi_2 + \frac{\phi_1^2}{1 - \phi_2}.$$

where we have used $Var(Y_t) = Var(Y_{t-2})$.

Properties

$$\begin{split} \mathsf{Cov}(Y_t,Y_{t-3}) &= \mathsf{Cov}(c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t, Y_{t-3}) \\ &= \phi_1 \mathsf{Cov}(Y_{t-1},Y_{t-3}) + \phi_2 \mathsf{Cov}(Y_{t-2},Y_{t-3}) \\ &= \phi_1 \rho_2 \mathsf{Var}(Y_{t-3}) + \phi_2 \rho_1 \mathsf{Var}(Y_{t-3}). \end{split}$$

where we have used $\rho_2 = \frac{\mathsf{Cov}(Y_{t-1}, Y_{t-3})}{\mathsf{Var}(Y_{t-3})}$ and $\rho_1 = \frac{\mathsf{Cov}(Y_{t-2}, Y_{t-3})}{\mathsf{Var}(Y_{t-3})}$.

$$\rho_3 = \phi_1 \rho_2 + \phi_2 \rho_1$$

$$\rho_{k} = \phi_{1} \rho_{k-1} + \phi_{2} \rho_{k-2},$$

k > 2.

- ρ_k dies down exponentially. (ACF)
- ρ_{kk} cuts off to zero after lag p. (PACF)
- This can be theoretically approved.

$$\widehat{y}_{t+h} = E(Y_{t+h}|y_{1:t}) = c + \phi_1 E(Y_{t+h-1}|y_{1:t}) + \ldots + \phi_p E(Y_{t+h-p}|y_{1:t}),$$

where

$$E(Y_{t+h-i}|y_{1:t}) = \begin{cases} \widehat{y}_{t+h-i} & \text{if } h > i \\ y_{t+h-i} & \text{if } h \leq i. \end{cases}$$

For example, consider AR(3),

$$Y_{t+1} = c + \phi_1 Y_t + \phi_2 Y_{t-1} + \phi_3 Y_{t-2} + \varepsilon_{t+1}$$

then

$$\widehat{y}_{t+1} = c + \phi_1 y_t + \phi_2 y_{t-1} + \phi_3 y_{t-2}$$

$$\widehat{y}_{t+2} = c + \phi_1 \widehat{y}_{t+1} + \phi_2 y_t + \phi_3 y_{t-1}$$

$$\widehat{y}_{t+3} = c + \phi_1 \widehat{y}_{t+2} + \phi_2 \widehat{y}_{t+1} + \phi_3 y_t$$

Hence

$$\widehat{y}_{t+1} = c + \phi_1 y_t + \phi_2 y_{t-1} + \phi_3 y_{t-2}
\widehat{y}_{t+2} = c + \phi_1 \widehat{y}_{t+1} + \phi_2 y_t + \phi_3 y_{t-1}
= c + \phi_1 (c + \phi_1 y_t + \phi_2 y_{t-1} + \phi_3 y_{t-2}) + \phi_2 y_t + \phi_3 y_{t-1}
= c(1 + \phi_1) + (\phi_1^2 + \phi_2) y_t + (\phi_1 \phi_2 + \phi_3) y_{t-1} + \phi_1 \phi_3 y_{t-2}
\widehat{y}_{t+3} = c + \phi_1 \widehat{y}_{t+2} + \phi_2 \widehat{y}_{t+1} + \phi_3 y_t
= \cdots \cdots$$

Finally what about the variance?