

Rockchip RK805 开发指南

发布版本:1.0

日期:2017.02

前言

概述

本文档主要介绍 Rockchip 的 RK805 的各个子模块。介绍相关概念、功能、dts 配置和一些常见问题的分析定位。

产品版本

芯片名称	内核版本			
RK805	3.10, 4.4			

读者对象

本文档(本指南)主要适用于以下工程师: 技术支持工程师 软件开发工程师

修订记录

日期版本		作者	修改说明		
2017.02.15	V1.0	СЈН	初稿		

目录

前言	• • • • • • • • • • • • • • • • • • • •	
目录	:	I
1	基础	1-1
	1.1	概述1-1
	1.2	功能1-1
	1.3	芯片引脚功能
	1.4	重要概念1-3
	1.5	上电条件和时序1
2	配置	2-1
	2.1	驱动和 menuconfig2-1
	2.1	.1 3.10 内核配置2-1
	2.1	.2 4.4 内核配置2-1
	2.2	DTS 配置
	2.2	.1 3.10 内核配置2-2
	2.2	.2 4.4 内核配置2
	2.3	函数接口2-7
	2.4	Debug 方式2-6
	2.4	.1 3.10 内核2-8
	2.4	.2 4.4 内核2-6

1 基础

1.1 概述

RK805 是一款高性能 PMIC,集成了 4 个大电流 DCDC, 3 个 LDO, RTC 及可调上电时序等功能。

系统中各路电源总体分为两种: DCDC、LDO。两种电源的总体特性如下,详细资料请自行搜索。

- 1. DCDC:输入输出压差大时,效率高,但是存在纹波比较大的问题,成本高,所以大压差, 大电流时使用。一般有两种工作模式: PWM:纹波瞬态响应好,效率低; PFM:效率高, 但是负载能力差。
- 2. LDO:输入输出压差大时,效率低,成本低,为了提高 LDO 的转换效率,系统上会进行相关优化如: LDO 输出电压为 1.1V,为了提高效率,其输入电压可以从 VCCIO_3.3V 的 DCDC 给出。所以电路上如果允许尽量将 LDO 接到 DCDC 输出回路,但是要注意上电时序。

1.2 功能

RK805的功能可以分为4个部分:

- 1. regulator 功能: 控制各路 DCDC、LDO 电源状态等;
- 2. rtc 功能: 为处理器提供时钟计时、定时等功能;
- 3. gpio 功能: 具备 out1、out2 两个推挽输出的引脚(只能 output),可当普通 gpio 使用, 为 AP 节省两个 GPIO;
- 4. pwrkey 功能:检测 power 按键的按下/释放,可以为 AP 节省一个 GPIO。

1.3 芯片引脚功能

Fig. 2-2 Pin Assignment

下面描述中,SLEEP 和 INT 引脚需要重点关注。

PIN NO	PIN NAME	PIN DESCRIPTION				
1	EN	Power on or power off enable pin, active high, internal 800k resistor pull low to ground				
2	SLEEP	Sleep mode control input				
3	LDO1	LDO1 output				
4	VCC5	Power supply of LDO1/2				
5	LDO2	LDO2 output				
6	INT	Interrupt request pin, open drain				
7	SCL	I2C clock input				
8	SDA	I2C data input and output				
9	RESETB	Reset pin after power on, active low				
10	FB2	Output feedback voltage of buck2				
11	SW2	Switching node of buck2				
12	VCC2	Power supply of buck2				
13	VCC1	Power supply of buck1				
14	SW1	Switching node of buck1				
15	FB1	Output feedback voltage of buck1				
16	OUT1	General digital output pin 1, CMOS level output, high level is VFB4				
17	OUT2	General digital output pin 2, CMOS level output, high level is VFB4				
18	XIN	32.768KHz crystal oscillator input				
19	XOUT	32.768KHz crystal oscillator output				
20	VREF	Internal reference voltage				
21	REFGND	Reference ground				
22	VCCA	Power supply of controller				
23	VCC6	Power supply of LDO3				

PIN NO	PIN NAME	PIN DESCRIPTION				
24	LDO3	LDO3 output				
25	CLK32K	32.768KHz clock output, open drain				
26	FB4	Output feedback voltage of buck4				
27	SW4	Switching node of buck4				
28	VCC4	Power supply of buck4				
29	VCC3	Power supply of buck3				
30	SW3	Switching node of buck3				
31	FB3	Output feedback voltage of buck3				
32	PWRON	Power on key input, active low, internal 17k resistor pull high to VCCA				
Exposed	Exposed	Ground				
pad	ground					

1.4 重要概念

● I2C 地址

7位从机地址: 0x18

● PMIC 的工作模式

PMIC 有 3 种工作模式: nomal、sleep、shutdown。正常运行时,pmic_sleep 为低电平,PMIC 处于 normal 模式;系统待机时 AP 会先通过 I2C 指令把 PMIC 配置成 sleep 模式,然后拉高 pmic_sleep 让 PMIC 进入 sleep 模式;同理,系统关机时 AP 会先通过 I2C 指令把 PMIC 配置成 shutdown 模式,然后拉高 pmic_sleep 让 PMIC 进入 shutdown 模式。

(1) PMIC normal 模式

系统正常运行时 PMIC 处于 normal 模式,此时 pmic_sleep 为低电平。

(2) PMIC sleep 模式

A. sleep 模式:系统休眠时电流很小,PMIC 会配置为 sleep 模式以减低自身的功耗,一般的做法是降低某些路的输出电压,或者直接关闭输出。这个可以根据具体产品需求进行配置。

B. 如何进入 sleep 模式: 一般 pmic_sleep 会接到主控的某个 GPIO 上,在 AP 进入休眠时会先把 pmic_sleep 设置成 sleep 模式,然后 AP 拉高 pmic_sleep 让 pmic 进入休眠状态,当 SOC唤醒时 pmic_sleep 恢复为低电平,pmic 退出休眠模式。

(3) PMIC shutdown 模式

当系统进入关机流程的时候,PMIC需要完成整个系统的电源下电。和进入休眠模式类似,此时 PMIC先选择 pmic_sleep 的脚为 shutdown 模式,然后拉高 pmic_sleep 引脚进行切换。

● pmic_sleep 引脚

常态为低电平,PMIC 处于 normal 模式。当引脚拉高的时候会切换到 sleep 或者 shutdown 的模式。

● pmic_int 引脚

常态为高电平,当有中断产生的时候变为低电平。如果中断没有被处理,则会一直维持低电平。

● out1、out2 引脚

这两个引脚可以当普通的 gpio 使用(推挽输出),但是只有输出模式。

● pmic_pwron 引脚

pwrkey的功能需要硬件上将 power 按键接到这个引脚,驱动通过这个引脚来判断按下/释放。

● 各路 DCDC 的工作模式

DCDC有PWM、PFM模式,但是PMIC有一种模式会动态调整PWM、PFM,这就是我们通常所说的AUTO模式,对于PMIC来说,支持FORCEPWM、AUTOPWM/PFM两种模式,AUTO模式效率高但是纹波瞬态响应会差。出于系统稳定性考虑,运行时都是设置为FORCEPWM模式,系统进入休眠时会选择切换到AUTOPWM/PFM。

● DCDC3 电压调节

DCDC3 这路电源比较特殊,不能通过寄存器修改电压,只能通过外部电路的分压电阻进行调节,所以如果需要修改电压请修改外围硬件。在 RK 的方案上一般作为 vcc ddr 使用。

● DCDC 和 LDO 的运行时电压调节范围

(1) DCDC 电压范围不连续:

0.7125V~1.45V, step=12.5mV [0.7125, 0.725, 0.737.5,, 1.45v]

1.8V~2.2V, step=200mV [1.8, 2.0, 2.2v]

2.3V, none step [2.3v]

(2) LDO 电压连续:

 $0.8V \sim 3.4V$, step=0.1V

[0.8, 0.9, 1.0, 1.1, 1.2, 3.4v]

1.5 上电条件和时序

(1) 上电条件

满足下面任意一个条件即可以实现 pmic 上电:

- 1. EN 信号从低电平变高电平触发
- 2. EN 信号保持高电平,且 RTC 闹钟中断触发
- 3. EN 信号保持高电平,按 PWRON 键触发
- (2) 上电时序
- 每款 SOC 平台对各路电源上电时序要求可能不一样,目前上电时序有如下情况:

AP				Null RK3		3228	RK1108		
BOOT(OTP)				0			1		
			RK8	305-0	RK8	305-1	RK805-2		
	Output voltage range	Max output current	Default voltage	Power sequence	Default voltage	Power sequence	Default voltage	Power sequence	
BUCK1	0.7125V-1.45V(step 12.5mV) /1.8V/2V/2.2V/2.3V	2.5A	1.0V	2	1.1V	2	1.0V	2	
BUCK2	0.7125V-1.45V(step 12.5mV) /1.8V/2V/2.2V/2.3V	2.5A	1.0V	2	1.1V	2	1.0V	Х	
BUCK3	setting by external resistors	1.5A	Х	3	X	3	Х	3	
BUCK4	0.8V-3.5V(step=0.1V)	1.5A	3.3V	5	3.3V	5	3.3V	5	
LDO1	0.8V-3.4V(step=0.1V)	300mA	1.0V	1	1.8V	4	1.0V	1	
LDO2	0.8V-3.4V(step=0.1V)	300mA	1.8V	4	1.8V	4	1.8V	4	
LDO3	0.8V-3.4V(step=0.1V)	100mA	1.0V	1	1.0V	1	1.0V	1	
RESETB			Х	8	Х	10	Х	10	

Table 4-1 Power Start Up Sequence

2 配置

2.1 驱动和 menuconfig

2.1.1 3.10 内核配置

RK805 涉及到的驱动文件有如下几个(复用 RK816 的驱动):

drivers/mfd/rk816.c drivers/input/misc/rk816-pwrkey.c drivers/rtc/rtc-rk816.c drivers/gpio/gpio-rk816.c drivers/regulator/rk816-regulator.c

rockchip 默认的 config 都已经把上述 5 个模块配置选中,不需要再勾选 menuconfig。如果需要修改,请在 menuconfig 里分别找到如下的宏并配置:

CONFIG_MFD_RK816
CONFIG_GPIO_RK816
CONFIG_RTC_RK816
CONFIG_REGULATOR_RK816
CONFIG_INPUT_RK816 PWRKEY

2.1.2 4.4 内核配置

RK805 涉及到的驱动文件有如下几个:

drivers/mfd/rk808.c drivers/input/misc/rk8xx-pwrkey.c drivers/rtc/rtc-rk808.c drivers/gpio/gpio-rk8xx.c drivers/regulator/rk818-regulator.c

rockchip 默认的 config 都已经把上述的 mfd、regulator、rtc 模块配置选中,但是 pwrkey和 gpio 模块没有使能。如果需要修改,请在 menuconfig 里分别找到如下的宏并配置:

CONFIG_MFD_RK808
CONFIG_RTC_RK808
CONFIG_GPIO_RK8XX
CONFIG_REGULATOR_RK818
CONFIG_INPUT_RK8XX_PWRKEY

2.2 DTS 配置

2.2.1 3.10 内核配置

DTS 的配置包括: i2c 挂载部分、总体部分、regulator 部分、rtc 部分、poweroff 部分。

```
&i2c1 {
    rk805: rk805@18 {
        reg = <0x18>;
        status = "okay";
        };
};
```

```
#include "../../arm/boot/dts/rk805.dtsi"
&rk805 {
   gpios = <&gpio2 GPIO_A6 GPIO_ACTIVE_HIGH>,
            <&gpio2 GPIO_D2 GPIO_ACTIVE_LOW>;
   rk805, system-power-controller;
   gpio-controller;
   \#gpio-cells = <2>;
   rtc {
        status = "disabled";
   };
   regulators {
       rk805_dcdc1_reg: regulator@0 {
           regulator-name = "vdd_logic";
           regulator-min-microvolt = <700000>;
           regulator-max-microvolt = <1500000>;
           regulator-initial-mode = <0x1>;
           regulator-initial-state = <3>;
           regulator-boot-on;
           regulator-always-on;
           regulator-state-mem {
               regulator-state-mode = <0x2>;
               regulator-state-enabled;
               regulator-state-uv = <1000000>;
           };
       };
       rk805_dcdc2_reg: regulator@1 {
                   . . . . . . . . . . . . . . . .
       };
```

1. I2C 挂载部分

需要将 rk805 作为 slave 挂接在对应的 i2c 节点下面并使能。

2. 总体部分

(1) 不可修改部分

- rk805,system-power-controller: 声明 rk805 具备管理系统下电的功能;
- gpio-controller: 声明 rk805 具有 gpio 的功能;
- #gpio-cells: 使用者引用 rk805 的 gpio 时需要指定的参数个数;

*说明:如果某个节个需要引用 rk805 的 gpio 来使用,那么引用的格式如下:

gpios = <&rk805 0 GPIO_ACTIVE_LOW>;

第一个参数: &rk805 固定,不可改动;

第二个参数: 引用 rk805 的哪个 qpio, 只能是 0 或者 1, 其中 0: out1, 1: out2;

第三个参数: gpio 的极性。

(2) 可修改部分

● qpios: 指定 pmic int (第一个) 和 pmic sleep (第二个) 引脚;

3. regulator 部分

- regulator-name: 电源的名字,建议和硬件图上保持一致,使用 regulator_get 接口时需要匹配这个名字;
 - regulator-min-microvolt: 运行时可以调节的最小电压;
 - regulator-max-microvolt: 运行时可以调节的最大电压;
 - regulator-initial-mode:运行时 DCDC 的工作模式,一般配置为 1。1: force pwm,

2: auto pwm/pfm;

- regulator-boot-on: 当存在这个属性时,则在注册 regulator 的时候就会使能这路电源:
- regulator-always-on: 当存在这个属性时,表示运行时不允许关闭这路电源且会在注册的时候使能这路电源;
 - regulator-initial-state: suspend 时的模式,必须配置成 3;
 - regulator-state-mode: 休眠时 DCDC 的工作模式,一般配置为 2。1: force pwm,

2: auto pwm/pfm;

● regulator-state-enabled: 休眠时保持上电状态,如果想要关闭该路电源,则改成"regulator-state-disabled";

● regulator-state-uv:休眠不断电情况下的待机电压。

*说明:

- (1) 如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等,则在注册 这个 regulator 的时候系统框架默认会把这个电压设置下去并使能这路电源,不需要使用者干预。
- (2) 如果 regulator-boot-on 或者 regulator-always-on 存在,则系统框架在注册这路 regulator 的时候默认会进行 enable,此时的这路 regulator 的电压有 2 种情况:
 - A. 如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等,则系统框架会把这路电压设置为当前这个电压值;
 - B. 如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压不相等,则此时的电压是 pmic 的本身的默认上电电压。

3. rtc 部分

如果不想使能 rtc 的功能(如 box 产品上),则需要像上面那样增加节点,显式指明为 status = "disabled"。如果需要使能的的话则可以把整个 rtc 节点去掉或者设置状态为 status = "okay",这样就可以使能 rtc。

4. poweroff 部分

```
gpio_poweroff {
    compatible = "gpio-poweroff";
    gpios = <&gpio2 GPIO_D2 GPIO_ACTIVE_HIGH>;
    status = "okay";
};
```

因为 rk805 支持拉高 pmic_sleep 引脚进行整个 PMIC 的下电,所以需要在根节点下增加这个节点。其中 gpios 是可改部分,用于指明 pmic_sleep 引脚。

2.2.2 4.4 内核配置

DTS 主要包含如下几个部分: i2c 挂载部分、总体部分、rtc-pwrkey-gpio 部分、regulator部分。

```
status = "okay";
rk805: rk805@18 {
   compatible = "rockchip,rk805";
   status = "okay";
   reg = <0x18>;
   interrupt-parent = <&gpio2>;
   interrupts = <6 IRQ_TYPE_LEVEL_LOW>;
   pinctrl-names = "default";
   pinctrl-0 = <&pmic_int_l>;
   rockchip, system-power-controller;
   wakeup-source;
   gpio-controller;
   \#gpio-cells = <2>;
   rtc {
       status = "disabled";
   };
   pwrkey {
       status = "disabled";
   };
   gpio {
       status = "okay";
   };
   regulators {
       compatible = "rk805-regulator";
       status = "okay";
       \#address-cells = <1>;
       \#size-cells = <0>;
       vdd_logic: RK805_DCDC1@0 {
           regulator-compatible = "RK805_DCDC1";
           regulator-name = "vdd_logic";
           regulator-min-microvolt = <712500>;
           regulator-max-microvolt = <1450000>;
           regulator-initial-mode = <0x1>;
           regulator-ramp-delay = <12500>;
           regulator-boot-on;
           regulator-always-on;
           regulator-state-mem {
               regulator-mode = <0x2>;
               regulator-on-in-suspend;
```

1. i2c 挂载部分

整个完整的 rk805 节点挂在对应的 i2c 节点下面,并且使能 status = "okay";

2. 总体部分:

(1) 不可修改部分:

```
compatible = "rockchip,rk805";
    reg = <0x18>;
rockchip,system-power-controller;
    wakeup-source;
    gpio-controller;
    #gpio-cells = <2>;
```

(2) 可修改部分(按照 pinctrl 规则)

```
interrupt-parent: pmic_int 隶属于哪个 gpio; interrupts: pmic_int 在 interrupt-parent 的 gpio 上的引脚索引编号和极性; pinctrl-names: 不修改,固定为 "default"; pinctrl-0: 引用 pinctrl 里定义好的 pmic_int 引脚;
```

3. rtc-pwrkey-gpio 部分

如果 menuconfig 选中了这几个模块,但是实际又不需要使能这几个驱动,那么可以在 dts 里增加 rtc、pwrkey、gpio 节点,并且显式指明状态为 status = "disabled",这样子就不会使能驱动了,但是开机信息会有错误 log 报出,可以忽略。如果要使能驱动,则可以去掉相应的节点,或者设置状态为 status = "okay"。

- 4. regulator 部分
 - ▶ regulator-compatible:驱动注册时需要匹配的名字,不能改动,否则会加载失败。
 - regulator-name: 电源的名字,建议和硬件图上保持一致,使用 regulator_get 接口时需要匹配这个名字;

- regulator-min-microvolt: 运行时可以调节的最小电压;
- regulator-max-microvolt: 运行时可以调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 的工作模式,一般配置为 1。1: force pwm,
- 2: auto pwm/pfm;
- regulator-boot-on: 当存在这个属性时,则在注册 regulator 的时候就会使能这路电源:
- regulator-always-on: 当存在这个属性时,表示运行时不允许关闭这路电源且会在注册的时候使能这路电源;
 - regulator-ramp-delay: DCDC 的电压上升时间,固定配置为 12500;
 - regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-mode: 休眠时 DCDC 的工作模式,一般配置为 2。1: force pwm, 2: auto pwm/pfm;
- rregulator-on-in-suspend: 休眠时保持上电状态,如果想要关闭该路电源,则改成"regulator-off-in-suspend";
 - regulator-suspend-microvolt:休眠不断电情况下的待机电压。

2.3 函数接口

如下的几个接口一般可以满足使用。包括: 电源开关、电压设置和获取等:

- 1. struct regulator *regulator_get(struct device *dev, const char *id) 获取 regulator。dev 默认填写 NULL 即可,id 则是 dts 里的 regulator-name 属性。
- 2. void regulator_put(struct regulator *regulator) 释放 regulator。
- 3. int regulator_enable(struct regulator *regulator) 打开 regulator。
- 4. int regulator_disable(struct regulator *regulator) 运行时关闭 regulator。
- 5. int regulator_get_voltage(struct regulator *regulator) 运行时获取 regulator 当前电压。
- 6. int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 运行时设置 regulator 电压。其中传入的参数时保证 min_uV = max_uV,由调用者保证。

如果不熟悉上述接口的使用方式,可以参考 kernel 中其它驱动。

例子:

```
struct regulator *rdev_logic;

rdev_logic = regulator_get(NULL, "vdd_logic");  // 获取 vdd_logic
regulator_enable(rdev_logic);  // 使能 vdd_logic
```

```
regulator_set_voltage(rdev_logic, 1100000, 1100000); // 设置电压 1.1v
regulator_disable(rdev_logic); // 关闭 vdd_logic
regulator_put(rdev_logic); // 释放 vdd_logic
```

2.4 Debug 方式

2.4.1 3.10 内核

因为 PMIC 涉及的驱动在使用逻辑上都不复杂,重点都体现在最后的寄存器设置上。所以目前常用的方式就是直接查看 rk805 的寄存器确认状态。具体的方式是通过如下节点:

/sys/rk816/rk816_test

具体的使用格式:

```
读寄存器: echo r [addr] > /sys/rk816/rk816_test
写寄存器: echo w [addr] [value] > /sys/rk816/rk816_test
例子:
```

echo r 0x2f > /sys/rk816/rk816_test // 读取 0x2f 寄存器的值,为 0x9b

echo w 0x2f 0x9c > /sys/rk816/rk816_test // 设置 0x2f 寄存器的值为 0x9c 一般写操作执行完之后最好再读一遍确认是否写成功。

```
shell@rk3228h:/ # echo w 0x2f 0x9c > /sys/rk816/rk816_test
[ 371.974131] [3: sh: 618] -----zhangqing: get cmd = w
[ 371.974192] [3: sh: 618] get value = 9c
[ 371.974412] [3: sh: 618] 9c 9c
```

2.4.2 4.4 内核

使用方法同 3.10 内核基本一样,不同的地方在于节点路径的改变,4.4 内核上的 debug 节点路径是:

/sys/rk8xx/rk8xx_dbg

具体的使用格式请参考本文档的"2.2.1 2.4.1 内核"章节。