P / kPa	T/K	$\frac{1}{T}$ / K ⁻¹	log (P / kPa)
7.8	308	0.00325	0.89
17.0	323	0.00310	1.23
34.6	338	0.00296	1.54
66.1	353	0.00283	1.82
120.1	368	0.00272	2.08
208.1	383	0.00261	2.32

Question Number	Answer		Mark
4(a)(i)	Either		
	Repeat at different orientations (along the wire) and calculate a mean	(1)	
	To reduce the effect of <u>random</u> errors	(1)	
	Or		
	Check and correct for zero error (on micrometer screw gauge)	(1)	
	To eliminate <u>systematic</u> error	(1)	2
	MP2 dependent on MP1		
	[Allow MP2 if MP1 partially correct]		
4(-)(**)		(1)	
4(a)(ii)	Mean $d = 0.31$ (mm)	(1)	
	Calculation using half range shown Or		
	Calculation of furthest from mean shown	(1)	
	Uncertainty in $d = 0.02$ (mm) Decimal places consistent with the calculated mean	(1)	3
	MP3 dependent on MP2		
	Example of calculation		
	Mean $d = (0.31 + 0.32 + 0.31 + 0.33 + 0.30) / 5 = 1.57 / 5$		
	= 0.314 = 0.31 (mm)		
	Uncertainty = $(0.33 - 0.30) / 2 = 0.03 / 2 = 0.015 = 0.02 \text{ (mm)}$		
4(b)(i)	Use of $A = \pi d^2/4$ and $R = V/I$	(1)	
	Use of $R = \rho L/A$	(1)	
	$\rho = 4.6 \times 10^{-7} (\Omega \text{m})$	(1)	3
	Example of calculation		
	$A = \pi \times (0.22 \times 10^{-3} \text{ m})^2 / 4 = 3.80 \times 10^{-8} \text{ m}^2$		
	$R = V/I = 4.990 \text{ V} / 0.4570 \text{ A} = 10.9 \Omega$		
	$\rho = RA/L = 10.9 \ \Omega \times 3.80 \times 10^{-8} \ \text{m}^2 / 0.894 \ \text{m} = 4.6 \times 10^{-7} \ (\Omega \ \text{m})$		

4(b)(ii)	Use of $2 \times \%U$ in d shown [Accept $2 \times \Delta d/d$ if converted to $\%U$]	(1)	
	Addition of %U for all variables shown	(1)	
	%U = 9.4 (%) [Accept answers that round to 9%]	(1)	
	Example of calculation		
	%U in $d = (0.01 / 0.22) \times 100 = 4.55 \%$		
	%U in $V = (0.005 / 4.990) \times 100 = 0.10 \%$		
	%U in $L = (0.1 / 89.4) \times 100 = 0.11$ %		
	%U in $I = (0.0005 / 0.4570) \times 100 = 0.11 \%$		
	%U in $\rho = (2 \times 4.55) + 0.10 + 0.11 + 0.11 = 9.42 = 9.4\%$		
	Or		
	Use of uncertainties to calculate maximum ρ		
	Use of uncertainties to calculate minimum ρ	(1)	
	Calculation of uncertainty in ρ using maximum and minimum ρ	(1)	
	%U = 9.3 (%) [Accept answers that round to 9%]	(1)	3
	Example of calculation		
	$A_{\text{max}} = \pi \times (0.23 \times 10^{-3} \text{ m})^2 / 4 = 4.15 \times 10^{-8} \text{ m}^2$		
	$A_{\text{min}} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 = 3.16 \times 10^{-8} \text{ m}^2$		
	$R_{\text{max}} = V_{\text{max}} / I_{\text{min}} = 4.995 \text{ V} / 0.4565 \text{ A} = 10.9 \Omega$		
	$R_{\text{min}} = V_{\text{min}} / I_{\text{max}} = 4.985 \text{ V} / 0.4575 \text{ A} = 10.9 \Omega$		
	$\rho_{\text{max}} = R_{\text{max}} A_{\text{max}} / L_{\text{min}} = 10.9 \ \Omega \times 4.15 \times 10^{-8} \ \text{m}^2 / 0.893 \ \text{m}$		
	$= 5.07 \times 10^{-7} (\Omega \mathrm{m})$		
	$\rho_{\min} = R_{\min} A_{\min} / L_{\max} = 10.9 \ \Omega \times 3.46 \times 10^{-8} \ \text{m}^2 / 0.895 \ \text{m}$		
	$=4.21 \times 10^{-7} (\Omega \text{ m})$		
	U in $\rho = (5.07 \times 10^{-7} - 4.21 \times 10^{-7}) / 2 = 0.43 \times 10^{-7} (\Omega \text{ m})$		
	%U in $\rho = 0.43 \times 10^{-7} / 4.6 \times 10^{-7} \times 100 = 9.34 = 9.3 \%$		
4(c)	Use of an uncertainty of 0.05 Ω in value of R_1 or R_2	(1)	
	Use of U = $2 \times$ (U in R_2 + U in R_1) shown		
	Or Use of maximum and minimum values shown	(1)	
	%U = 1.8 (%)	(1)	3
	Example of calculation		
	$U = 2 \times (0.05 + 0.05) = 2 \times 0.1 = 0.2$		
	$%U = (0.2 / 11.4) \times 100 = 1.8 \%$		

4 (d)	Upper limit of $\rho = 5.0 \ (\times \ 10^{-7} \ \Omega \ m)$	(1)	
	Lower limit of $R_L = 11.2 (\Omega)$	(1)	
	Conclusion based on comparison of limits	(1)	
	[MP3 dependent MP1 or MP2]		
	Example of calculation		
	Upper limit $\rho = 4.6 \times 10^{-7} \times (1 + 0.09) = 5.0 \times 10^{-7} \Omega \text{ m}$		
	Lower limit $R_L = 11.4 \times (1-0.02) = 11.2 \Omega$		
	Therefore both values fall in the range (confirming metal is constantan).		
	Or		
	%D for $\rho = 6.1\%$		
	%D for $R_L = 1.8\%$	(1)	
	Conclusion based on comparison of %D and %U	(1)	
	[MP3 dependent MP1 or MP2]	(1)	3
	Example of calculation		
	%D for $\rho = (4.9 - 4.6) / 4.9 \times 100 = 6.1 \%$		
	%D for $R_L = (11.4 - 11.2) / 11.2 \times 100 = 1.8 \%$		
	Therefore both %D are less than %U (confirming metal is constantan).		
	Total for question 4		17