Master M1

République Française UVSQ, Paris Saclay

Calcul Haute Performance
Simulation CHPS

2021/2022

Rapport TP2: Calcul Numérique

Par:

Aicha Maaoui

Le 21/11/2021

Exercice 6:

- 1/ Vecteur x (1 ligne, 4 colonnes): x = [2, 4, 6, 8]
- 2/ Vecteur y (4 ligne, 1 colonnes): y= [7; 1; 8; 2]
- 3/ Addition: On ne peut pas additionner un vecteur $x \in R^{1\times 4}$ et une vecteur $y \in R^{4\times 1}$. Par conséquent, on utilise la transposition du vecteur y (on peut aussi faire la transposition du vecteur y et le sommer avec le vecteur y).

soit le vecteur z le résultat de la sommation des vecteurs $x \in R^{1 \times 4}$ et $y^T \in R^{1 \times 4}$: z=x+y' et z=[9, 5, 14, 10]

<u>Multiplication</u>: On peut multiplier un vecteur $x \in R^{1\times 4}$ et une vecteur $y \in R^{4\times 1}$ (nombre de colonnes du premier vecteur est celui du nombre de lignes du deuxième). Soit le vecteur s le résultat de la multiplication des vecteur s et s: s=s=s2.

4/ Calcul de taille des vecteurs x et y:

```
\rightarrowsize(x)
```

ans =

1. 4.

-->size(y)

ans =

4. 1.

5/ Norme 2 de x:

norm(x,2)

→ Le résultat est évalué à: 10.954451

6/ A = matrice à 4 lignes et 3 colonnes:

$$A = [1, 3, 7, 13; 1, 5, 9, 71; 8, 10, 50, 45]$$

Alors A s'écrit:

A =

- 1. 3. 7. 13.
- 1. 5. 9. 71.
- 8. 10. 50. 45.

7/ Transposée de A: A'

Alors A^T s'écrit:

- 1. 1. 8.
- 3. 5. 10.
- 7. 9. 50.
- 13. 71. 45.

8/ Soit A et B deux matrices carrées $\in R^{4\times4}$.

Soit les 2 matrices A et B:

Opérations de bases:

*Addition des 2 matrices A et B:

sum = A + B

Le résultat de l'addition des 2 matrices est alors stocké dans la matrice sum:

- 19. 3. 8. 26.
- 22. 50. 28. 71.
- 26. 30. 101. 90.
- 11. 14. 14. 27.

*Multiplication des 2 matrices A et B:

mul=A*B

Le résultat de la multiplication des 2 vecteurs est alors stocké dans la matrice mul:

- 246. 366. 532. 666.
- 498. 902. 1194. 2264.
- 1389. 1765. 3153. 3524.
- 384. 422. 405. 355.

* Transposée de A:

C1=A'

*Transposée de B:

C2=B'

*Multiplication de A et B par un scalaire lambda respectivement :

lambda=50

A1=lambda*A

A2=lambda*B

9/ Conditionnement de A:

cond(A)

Le conditionnement de la matrice A est évalué à 95.589276

→ Le conditionnement est bien supérieur à 1.

Exercice 7:

1/ Matrice A de taille 3×3

A=rand(3,3)

La matrice générée est alors:

 $0.7263507 \quad 0.2320748 \quad 0.8833888$

 $0.1985144 \quad 0.2312237 \quad 0.6525135$

 $0.5442573 \quad 0.2164633 \quad 0.3076091$

2/ Vecteur xex $\in R^{1\times 3}$

$$xex=rand(3,1)$$

Alors, le vecteur xex généré est:

0.9329616

0.2146008

0.312642

 \rightarrow xex est un vecteur colonne.

3/b=A*xex

Alors le vecteur b obtenu est:

1.0036452

0.4388302

0.6503959

4/ Résolution du système Ax=b, le vecteur x calculé est:

$$x=(A \setminus b)$$

0.9329616

0.2146008

0.312642

5/ On va utiliser la norme 2 dans le calcul des erreurs.

*Calcul de l'erreur avant:norm((xex-x)/xex,2)

$$err = \frac{||xex - x||}{||xex||}$$

→ L'erreur avant est alors: err=1.081D-15

*Calcul de l'erreur arrière: norm(b-A*x,2)/(norm(A,2)*norm(x,2))

$$relres = \frac{||b-A^*x||}{||A||||x||}$$

→ L'erreur arrière est donc: relres=0.

Ce résultat nul est expliqué par le fait que la taille du matrice n est faible.

6/ ** 1er essai: Des matrices A de tailles comprises entre 3 et 100:

Taille de matrice A	Erreur Avant	Erreur Arrière
3	1.081D-15	0
5	2.637D-15	1.056D-16
10	2.665D-15	1.589D-16

2.283D-14	1.889D-16
1.149D-14	1.926D-16
2.317D-14	1.813D-16
7.067D-14	1.800D-16
2.051D-14	2.031D-16
7.290D-14	2.414D-16
7.502D-14	1.625D-16
9.533D-14	1.941D-16
3.063D-13	2.407D-16
1.678D-13	3.462D-16
4.651D-13	2.066D-16
1.184D-13	2.756D-16
3.247D-13	3.360D-16
1.038D-13	2.884D-16
1.869D-13	3.339D-16
1.910D-13	2.976D-16
1.609D-13	3.865D-16
1.997D-13	3.368D-16
	1.149D-14 2.317D-14 7.067D-14 2.051D-14 7.290D-14 7.502D-14 9.533D-14 3.063D-13 1.678D-13 4.651D-13 1.184D-13 3.247D-13 1.038D-13 1.910D-13 1.609D-13

Tableau 1: Erreurs avant et arrière en fonction de la taille de matrice A.

Les courbes des erreurs avant et arrière en fonction de la taille de la matrice A sont illustrées dans les figures 1, 2 et 3.

Figure 1: Erreur Arrière et Avant vs Taille de Matrice A.

Figure 2: Erreur Arrière vs Taille de Matrice A.

Figure 3: Erreur Avant vs Taille de Matrice A.

** 2eme essai: Taille de matrices n={100, 1000, 10000}

Taille de matrice A	Erreur Avant	Erreur Arrière
100	4.253D-13	3.158D-16
1000	1.656D-10	1.079D-15
10000		

Conclusion: L'erreur avant et arrière évoluent d'une manière exponentielle.

Exercice 7:

1/ L'algorithme du produit Matrice-Matrice "ijk" à 3 boucles, illustré dans la figure 5, est créée dans une fonction matmat3b (A, B), comme illustré dans la figure 6.

Algorithm 7 Produit Matrice-Matrice "ijk"

```
Require: A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n} et C \in \mathbb{R}^{m \times n} for i = 1 : m for j = 1 : n for k = 1 : p C(i,j) = A(i,k)B(k,j) + C(i,j); end for end for end for
```

Figure 5: Produit Matrice-Matrice "ijk" avec 3 boucles.

```
1 A=-rand(10, -10);
2 B= rand(10, 5);
3
1 function[C]=matmat3b(A, B)
2 [m · p] · = · size (A)
3 [p · n] · = · size (B)
5 tic();
6 for - i - = -1: m
      --for-j-=-1:n
         ---for-k-=-1:p
                 -C(i,j)=A(i,k)*B(k,j)+C(i,j);
            -end
10
11
        -end
12 end
13 toc();
14 endfunction
18
19 c=-exec-("matmat3b(A,-B)");
```

Figure 6: Programme Scilab de Produit Matrice-Matrice "ijk" avec 3 boucles.

2/ Les algorithmes de calcul des produits Matrice-Matrice "ijk" à 2 boucles et 1 boucle sont illustrés dans les figures 7 et 8. Leurs traductions en Scilab sont illustrées dans les figures 9 et 10.

Algorithm 8 Produit Matrice-Matrice "ijk" avec 2 boucles

```
Require: A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n} et C \in \mathbb{R}^{m \times n} for i = 1 : m for j = 1 : n C(i,j) = A(i,:)B(:,j) + C(i,j); end for end for
```

Figure 7: Algorithme Produit Matrice-Matrice "ijk" avec 2 boucles.

Algorithm 9 Produit Matrice-Matrice "ijk" avec 1 boucle

```
Require: A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n} et C \in \mathbb{R}^{m \times n} for i = 1 : m C(i, :) = A(i, :)B + C(i, :); end for
```

Figure 8: Algorithme Produit Matrice-Matrice "ijk" avec 1 boucle.

```
1 A=-rand(10, -10);
2 B= rand(10, -5);
4 //Produit .Matrice-Matrice . ""ijk" " . avec . 2 . boucles . (Alg8)
function[C] = matmat2b(A, B)
   [m - p] - = - size (A)
3 [p · n] -= - size (B)
5
   tic().
   for-i-=-1:m
   ----for-j-=-1:n
              ---C(i,j)=A(i,)*B(:,j)+C(i,j);
8
9
10 end
11 toc();
12 endfunction
```

Figure 9: Programme Scilab de Produit Matrice-Matrice "ijk" avec 2 boucles.

Figure 10: Programme Scilab de Produit Matrice-Matrice "ijk" avec 1 boucle.

3/ Le temps de chacun des algorithmes pour des tailles différentes est mesuré avec les fonctions tic et toc dans scilab.