Additional Example on Solving Nonlinear System of Equations

Solve the following set of nonlinear equations using;

(i) Graphical Method, (ii) Fixed Point Iteration, and

(iii) Newton Jacobi Method,

given the tolerance = 0.005 and (x0,y0) = (0.5, 0.5)

$$x^{2} = \sin(y)$$
$$\ln(\frac{1}{x}) = e^{y}$$

(i) Graphical Method:

$$f1(x) := asin(x^2)$$

$$f2(x) := ln \left(ln \left(\frac{1}{x} \right) \right)$$

CE305 Numerical Methods for Civil Engineers

Handout #10

(ii) Fixed Point Iteration

	$x = \sqrt{\sin(y)}$		$y = \ln(\ln(1/x))$
x := 0.5	f1(x) = 0.6924	y := 0.5	f2(y) = -0.3665
x := -0.3665	f1(x) = 0.5986i	y := 0.6924	f2(y) = -1.0008
	Complex Number	y := −1.0008	f2(y) = 1.1447 + 1.5711i
			Complex Number

The solution is <u>divergent</u> when the equations are expressed using the formulas above, rewriting the same equation given below will produce:

	$x = \frac{1}{e^{e^y}}$			$y = \arcsin(x^2)$
x0 := 0.5	f1(x0) = 0	0.1923	y0 := 0.5	f2(y0) = 0.2527
x1 := 0.2527	f1(x1) = 0	0.276	y1 := 0.1923	f2(y1) = 0.037
x2 := 0.0361	f1(x2) = 0	0.3546	y2 := 0.276	f2(y2) = 0.0762
x3 := 0.0762	f1(x3) = 0	0.3399	y3 := 0.3546	f2(y3) = 0.1261
x4 := 0.1261	f1(x4) = 0	0.3216	y4 := 0.3399	f2(y4) = 0.1158
x5 := 0.1158	f1(x5) = 0	0.3254	y5 := 0.3216	f2(y5) = 0.1036
x6 := 0.1036	f1(x6) = 0	0.3298	y6 := 0.3254	f2(y6) = 0.1061
x7 := 0.1061	f1(x7) = 0	0.3289	y7 := 0.3298	f2(y6) = 0.1061
$\varepsilon_AA_x_1 := x_1 - x_2 $	- x0	$\varepsilon_{AA_y_1} := y_1 - y_0 $	$\max(\varepsilon_AA_x_1, \varepsilon_A$	A_y_1) = 0.3077
$\varepsilon_AA_x_2 := x_2 $	- x1	$\varepsilon_AA_y_2 := y_2 - y_1 $	$\max(\varepsilon_AA_x_2, \varepsilon_A$	$A_y_2 = 0.2166$
$\varepsilon_AA_x_3 := x_3 $	- x2	$\varepsilon_AA_y_3 := y_3 - y_2 $	$\max(\varepsilon_AA_x_3, \varepsilon_A$	$A_y_3 = 0.0786$
$\varepsilon_AA_x_4 := x_4 $	- x3	$\varepsilon_AA_y_4 := y_4 - y_3 $	$\max(\varepsilon_AA_x_4, \varepsilon_A$	$A_y_4) = 0.0499$
$\varepsilon_{AA_x_5} := x_5 $	- x4	$\varepsilon_AA_y_5 := y_5 - y_4 $	$max(\varepsilon_AA_x_5, \varepsilon_A$	$A_y_5) = 0.0183$
$\varepsilon_{AA_x_6} := x_6 $	- x5	$\varepsilon_AA_y_6 := y6 - y5 $	$max(\varepsilon_AA_x_6, \varepsilon_A$	$A_y_6) = 0.0122$
$\varepsilon_AA_x_7 := x7 -$	- x6	$\varepsilon_AA_y_7 := y7 - y6 $	$\max(\varepsilon_AA_x_7, \varepsilon_A$	$A_y_7) = 4.4 \times 10^{-3}$

Please note that the equations are calculated on the basis of updated guesses from the previous iteration, i.e., the updated guesses are not used until all the equations in the system are calculated. The absolute approximate error is calculated using the infinity ∞ norm.

CE305 Numerical Methods for Civil Engineers

Handout #10

(iii) Newton-Jacobi Method

$$F(x1, x2) := \begin{pmatrix} x1^2 - \sin(x2) \\ \ln\left(\frac{1}{x1}\right) - e^{x2} \end{pmatrix}$$

$$J(x1,x2) := \begin{pmatrix} \frac{d}{dx1} F(x1,x2)_1 & \frac{d}{dx2} F(x1,x2)_1 \\ \frac{d}{dx1} F(x1,x2)_2 & \frac{d}{dx2} F(x1,x2)_2 \end{pmatrix} \qquad J(x1,x2) := \begin{pmatrix} 2 \cdot x1 & -\cos(x2) \\ -\frac{1}{x1} & -e^{x2} \end{pmatrix}$$

X(x1, x2)

F(x1, x2)

J(x1, x2)

$$X_0 := \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} \qquad F(0.5, 0.5) = \begin{pmatrix} -0.2294 \\ -0.9556 \end{pmatrix} \qquad J(0.5, 0.5) = \begin{pmatrix} 1 & -0.8776 \\ -2 & -1.6487 \end{pmatrix}$$

$$J(0.5, 0.5) = \begin{pmatrix} 1 & -0.8776 \\ -2 & -1.6487 \end{pmatrix}$$

$$J(0.5, 0.5)^{-1} = \begin{pmatrix} 0.4844 & -0.2578 \\ -0.5876 & -0.2938 \end{pmatrix}$$

$$X_1 := X_0 - J(0.5, 0.5)^{-1} \cdot F(0.5, 0.5)$$

$$X_{1} := \begin{pmatrix} 0.3648 \\ 0.0845 \end{pmatrix} \qquad F(0.3648, 0.0845) = \begin{pmatrix} 0.0487 \\ -0.0798 \end{pmatrix} \qquad J(0.3648, 0.0845) = \begin{pmatrix} 0.7296 & -0.9964 \\ -2.7412 & -1.0882 \end{pmatrix}$$

$$J(0.3648, 0.0845) = \begin{pmatrix} 0.7296 & -0.9964 \\ -2.7412 & -1.0882 \end{pmatrix}$$

$$J(0.3648, 0.0845)^{-1} = \begin{pmatrix} 0.3087 & -0.2826 \\ -0.7776 & -0.207 \end{pmatrix}$$

$$X_2 := X_1 - J(0.3648, 0.0845)^{-1} \cdot F(0.3648, 0.0845)$$

$$X_2 := X_1 - J(0.3648, 0.0845)^{-1} \cdot F(0.3648, 0.0845)$$

$$X_2 := \begin{pmatrix} 0.3272 \\ 0.1058 \end{pmatrix}$$

$$X_{2} := \begin{pmatrix} 0.3272 \\ 0.1058 \end{pmatrix} \quad F(0.3272, 0.1058) = \begin{pmatrix} 1.4571 \times 10^{-3} \\ 5.5841 \times 10^{-3} \end{pmatrix} \quad J(0.3272, 0.1058) = \begin{pmatrix} 0.6544 & -0.9944 \\ -3.0562 & -1.1116 \end{pmatrix}$$

$$J(0.3272, 0.1058) = \begin{pmatrix} 0.6544 & -0.9944 \\ -3.0562 & -1.1116 \end{pmatrix}$$

$$J(0.3272, 0.1058)^{-1} = \begin{pmatrix} 0.2951 & -0.264 \\ -0.8114 & -0.1737 \end{pmatrix}$$

$$X_{3} := X_{2} - J(0.3272, 0.1058)^{-1} \cdot F(0.3272, 0.1058)$$

$$X_3 := X_2 - J(0.3272, 0.1058)^{-1} \cdot F(0.3272, 0.1058)$$