Topological Approaches to Epistemic Logic: HW collection $2025~\mathrm{summer}$

1	Topological Approaches to Epistemic Logic: HW1	2
2	Topological Approaches to Epistemic Logic: HW2	4
3	Topological Approaches to Epistemic Logic: HW3	7
4	Topological Approaches to Epistemic Logic: Final Exam	10

- 1. Topological Approaches to Epistemic Logic: HW1
- 1. (30') Let (X, τ) be a topological space and $A \subseteq X$. Show that A is closed in (X, τ) iff A contains all of its limit points.

Solution. " \Rightarrow ": Suppose by contradiction that there is some x with $x \in d(A)$ and $x \notin A$. Since $X \setminus A$ is open, there is a neighborhood $x \in U \subseteq X \setminus A$, i.e. $U \cap A = \emptyset$, this is impossible since $x \in d(A)$. " \Leftarrow ": For any $x \in X \setminus A$, we know $x \notin d(A)$, so there is some neighborhood $x \in U$ with $U \cap A = \emptyset$, i.e. $U \subseteq X \setminus A$. Since x is arbitrary, $X \setminus A$ is open, which means A is closed.

- 2. Given a topological space (X, τ) and $A \subseteq X$, A is called an open domain if A = Int(Cl(A)). Show that
 - (1) (20') The interior of a closed set is an open domain.
 - (2) (20') The intersection of two open domains is an open domain.
 - **Solution.** (1) Take A = Int(B), where B is closed, then we have $Int(Cl(Int(B))) \subseteq Int(Cl(B)) = Int(B)$, on the other side, $Int(Cl(Int(B))) \supset Int(Int(B)) = Int(B)$, so A = Int(Cl(A)).
 - (2) Suppose A, B are two open domains, we have

$$Int(Cl(A \cap B)) = Int(Cl(Int(Cl(A)) \cap Int(Cl(B))))$$

$$= Int(Cl(Int(Cl(A) \cap Cl(B))))$$

$$\stackrel{*}{=} Int(Cl(A) \cap Cl(B))$$

$$= Int(Cl(A)) \cap Int(Cl(B)) = A \cap B.$$

Here that $\stackrel{*}{=}$ follows from (1), since $Int(Cl(A) \cap Cl(B))$ is the interior of a closed set.

- 3. Prove that $p \to \Box \Diamond p$ is valid on a topological space (X, τ) iff every closed set of (X, τ) is open.
 - **Solution.** $p \to \Box \Diamond p$ means that for any $p \subseteq X$, we have $p \subseteq Int(Cl(p))$. " \Rightarrow ": If U is closed, then $U \subseteq Int(Cl(U)) = Int(U) \subseteq U$, thus U is open. " \Leftarrow ": For any $p \subseteq X$, Cl(p) is closed, thus is open from the assumption, then $p \subseteq Cl(p) = Int(Cl(p))$.
- 4. (20', bonus) Prove Proposition 7 on slide 25 of Lecture 2: For all $\varphi \in \mathcal{L}_K$,

(1) for any S4-Kripke model $\mathcal{M} = (X, R, V)$ and $x \in X$,

$$\mathcal{M}, x \models \varphi \iff B(\mathcal{M}), x \models \varphi;$$

(2) for any Alexandroff model $\mathcal{X} = (X, \tau, V)$ and $x \in X$,

$$\mathcal{X}, x \models \varphi \iff A(\mathcal{X}), x \models \varphi.$$

- **Solution.** (1) $K\varphi$ is true in the S4-Kripke model \mathcal{M} iff $y \in V(\varphi)$ for all y with xRy. From the definition of τ_R , this happens iff for $x \in U = \{y | xRy\} \in \tau_R$, we have $y \in V(\varphi)$ for all $y \in U$, i.e. $K\varphi$ is true in the topo-model $B(\mathcal{M})$.
- (2) $K\varphi$ is true in the Alexandroff model \mathcal{X} iff there is a neighborhood $x \in U \in \tau$ with $y \in V(\varphi)$ for all $y \in U$. Since τ is Alexandroff, this happens iff $y \in V(\varphi)$ for all $y \in \cap_{x \in U \in \tau} U$, i.e. $x \sqsubseteq_{\tau} y$ by definition. Thus it is equivalent that $K\varphi$ is true in the S4-Kripke model $A(\mathcal{X})$.

- 2. Topological Approaches to Epistemic Logic: HW2
- 1. Given a topological space (X, τ) and any two subsets $U_1, U_2 \subseteq X$,
 - (1) (15') if U_1 is open and dense and U_2 is dense, then $U_1 \cap U_2$ is dense;
 - (2) (15') if U_1 and U_2 are nowhere-dense, then $U_1 \cup U_2$ are nowhere-dense.

Solution. (1) We write $\bullet^c := X \setminus \bullet$ for simplicity, then

$$X = Cl(U_2) = Cl((U_2 \cap U_1) \cup (U_2 \cap U_1^c))$$
$$= Cl(U_1 \cap U_2) \cup Cl(U_2 \cap U_1^c)$$
$$\stackrel{*}{\subseteq} Cl(U_1 \cap U_2) \cup U_1^c,$$

so $U_1 \subseteq Cl(U_1 \cap U_2)$, as a result, $X = Cl(U_1) \subseteq Cl(U_1 \cap U_2)$. Here \subseteq follows since U_1 is open, $Cl(U_2 \cap U_1^c) \subseteq Cl(U_1^c) = U_1^c$.

(2) By direct calculation,

$$Int(Cl(U_1 \cup U_2)) = Int(Cl(U_1) \cup Cl(U_2))$$

$$\stackrel{*}{=} (Cl((Cl(U_1) \cup Cl(U_2))^c))^c$$

$$\stackrel{**}{=} (Cl(Int(U_1^c) \cap Int(U_2^c)))^c$$

$$\stackrel{***}{=} X^c = \emptyset,$$

so $U_1 \cup U_2$ is nowhere-dense. Here for $\stackrel{*}{=}, \stackrel{**}{=},$ we simply use the duality: $Int(\bullet^c) = (Cl(\bullet))^c$, and for $\stackrel{***}{=},$ we use (1) since $Int(U_1^c)$ is open and dense:

$$Cl(Int(U_1^c)) = Cl((Cl(U_1))^c = (Int(Cl(U_1)))^c = X.$$

2. Let (X, τ) be a topological space and define τ_{dense} on X as follows:

$$\tau_{dense} = \{ U \in \tau \mid Cl(U) = X \} \cup \{\emptyset\}.$$

Prove that

- (1) (10') for all non-empty $U, V \in \tau_{dense}$, we have $U \cap V \neq \emptyset$;
- (2) (20') τ_{dense} is a topology;
- (3) (20') τ_{dense} is extremally disconnected.

Solution. (1) From Problem 1, $Cl(U \cap V)$ is dense, so $U \cap V \neq \emptyset$.

- (2) We verify all the axioms:
 - Cl(X) = X, so by definition, $\emptyset, X \in \tau_{dense}$;
 - For any $\mathcal{A} \neq \{\emptyset\} \subseteq \tau_{dense}$,

$$Cl(\cup A) = Cl(\cup_{U \neq \emptyset \in A} U) = \cup_{U \neq \emptyset \in A} Cl(U) = X,$$

so τ_{dense} is closed under unions.

- For $U, V \in \tau_{dense}$, $U \cap V$ is empty if one of them is empty, and is dense from Problem 1 if both are non-empty. In both cases, $U \cap V \in \tau_{dense}$.
- (3) We write $Cl_d(\bullet)$ for the closure in τ_{dense} . $Cl_d(\emptyset) = \emptyset$ is open. For $U \neq \emptyset \in \tau_{dense}$, we **claim** $X = Cl(U) \subseteq Cl_d(U)$, then of course $Cl_d(U) \in \tau_{dense}$. So it remains to show the **claim** above: By definition, for any $x \in Cl(U)$, and any $x \in V \in \tau$, we have $U \cap V \neq \emptyset$, especially, for any $x \in V \in \tau_{dense} \subseteq \tau$, we have $U \cap V \neq \emptyset$, thus $x \in Cl_d(U)$.

Remark: In general topology, τ_{dense} is coined as an irreducible space.

3. (20') As stated on slide 50 of Lecture 2, the logic $\mathsf{KD45}_B$ is sound and complete with respect to the class of extremally disconnected spaces (under the closure of interior semantics). Which axioms of $\mathsf{KD45}_B$ are invalidated by some topo-models (that are not extremally disconnected) when we interpret $B\varphi$ as $\llbracket B\varphi \rrbracket^{\mathcal{X}} = Cl(Int(\llbracket \varphi \rrbracket^{\mathcal{X}}))$? Justify your answers by giving counterexamples that invalidate these axioms and explaining why the axioms are false in these models.

Solution. (Hinted by [Baltag et al., 2019], appendix A.1, and [Stalnaker., 2006]) The following axioms are not valid if the topo-model is not extremally disconnected:

- $B(\varphi \to \psi) \to (B\varphi \to B\psi)$, equivalently, $Cl(Int(\llbracket \varphi \rrbracket^c \cup \llbracket \psi \rrbracket)) \subseteq (Cl(Int(\llbracket \varphi \rrbracket)))^c \cup Cl(Int(\llbracket \psi \rrbracket))$, or for any $A, B \subseteq X$, we have $Cl(Int(A \cup B)) \subseteq Int(Cl(A)) \cup Cl(Int(B))$.
- $B\varphi \to \neg B\neg \varphi$, equivalently, $Cl(Int(\llbracket \varphi \rrbracket)) \subseteq Int(Cl(\llbracket \varphi \rrbracket))$.

For example, take \mathbb{R} with the standard topology τ , then

$$Cl(Int((0,1) \cup \emptyset)) \not\subseteq Int(Cl((0,1))) \cup Cl(Int(\emptyset)),$$

 $Cl(Int((0,1))) \not\subseteq Int(Cl((0,1))),$

The other two axioms translate into tautologies for topological spaces.

4. (20', bonus) Let (X, R) be a total preordered set. Show that the Alexandroff topology τ_R , defined as

$$\tau_R = \{ U \subseteq X \mid U \text{ is an up-set of } (X, R) \},$$

is hereditarily extremally disconnected.

Solution. For any subspace (P, τ_P) of (X, τ_R) , we write $Cl_P(\bullet)$ for the closure in τ_P . Suppose $U \in \tau_P$, i.e. $U = P \cap V$ for some $V \in \tau_R$. So

$$Cl_P(U) \stackrel{*}{=} P \cap Cl(P \cap V)$$

$$\stackrel{**}{=} P \cap \{y \in X \mid \exists x \in P \cap V, xRy\}$$

$$= P \cap (\bigcup_{x \in P \cap V} \{y \in X \mid xRy\})$$

is open in τ_P . Hence τ_R is hereditarily extremally disconnected. Here $\stackrel{*}{=}$ follows, since in general topology, we have $Cl_P(\bullet) = P \cap Cl(\bullet)$. And $\stackrel{**}{=}$ follows from the fact that, in general, $Cl(A) = \{y \in X \mid \exists x \in A, xRy\}$, as long as R is total.

- 3. Topological Approaches to Epistemic Logic: HW3
- 1. For this exercise we work with the topological subset space semantics introduced in Lecture 4. Show that
 - (1) (20') Every φ in the language of classical propositional logic (elements of \mathcal{L}_{K} that do not have occurrences of K or \blacksquare) is persisent with respect to the subset space semantics.
 - (2) (20') Show that not every formula in $\mathcal{L}_{K\blacksquare}$ is persisent. Justify your answer by finding a counterexample and showing that it is not persisent.
 - (3) (20') Are there any persistent formulae with respect to topological subset space models in \mathcal{L}_{K} that have occurrences of K or \blacksquare ? That is, is there a formula $\psi \in \mathcal{L}_{K}$ that has some occurrences of K or \blacksquare such that for all topological models $\mathcal{X} = (X, \tau, V)$ and for all epistemic scenarios (x, U) and (x, O) of \mathcal{X} , we have $(x, U) \models \psi$ iff $(x, O) \models \psi$? Justify your answer either by given an example of such a persisent formula and proving your claim; or by proving that only the formulae in the language of classical propositional logic are persisent.

Solution. (1) This is obvious, since in classical propositional logic

- $\mathcal{X}, (x, U) \models p \text{ iff } x \in V(p),$
- $\mathcal{X}, (x, U) \models \neg \varphi \text{ iff } \mathcal{X}, (x, U) \not\models \varphi$,
- $\mathcal{X}, (x, U) \models \varphi \land \psi$ iff $\mathcal{X}, (x, U) \models \varphi$ and $\mathcal{X}, (x, U) \models \psi$ all these expressions do not concern U.
- (2) In topological subset space semantics
 - $\mathcal{X}, (x, U) \models K\varphi \text{ iff } (\forall y \in U)(\mathcal{X}, (y, U) \models \varphi), \text{ i.e. } U \subseteq \llbracket \varphi \rrbracket_U,$
 - $\mathcal{X}, (x, U) \models \blacksquare \varphi \text{ iff } \forall O \in \mathcal{O}(x \in O \subseteq U \Rightarrow \mathcal{X}, (x, O) \models \varphi), \text{ i.e. } x \in \cap_{x \in O \subseteq U} \llbracket \varphi \rrbracket_O.$

For example, Kp is not persistent for some interpretation. Consider $X = \{a, b, c\}$, \mathcal{O} the discrete topology, $A = \{a\}, B = \{a, b\}$ and V(p) = A.

- $(a, A) \models Kp$, since $A \subseteq A$.
- $(a, B) \not\models Kp$, since $B \not\subseteq A$.
- (3) As mention in [Moss and Parikh, 1992], it is shown in [Georgatos, 1994] that, ϕKp , $\blacksquare \hat{K}p$ are persistent (called "stable" in the context), where $\phi \varphi := \neg \blacksquare \neg \varphi, \hat{K}\varphi := \neg K \neg \varphi$.

We consider $\neg \blacksquare \neg Kp$ here. Suppose $(x, U) \models \neg \blacksquare \neg Kp$, i.e. $\exists O \in \tau(x \in O \subseteq U, \forall y \in O((y, O) \models p))$. Now for any $x \in V \in \tau$, write $W = V \cap O \in \tau$, we have

$$x \in W \subseteq U, \forall y \in W((y, W) \models p)$$

since $W \subseteq V$. Thus $(x, V) \models \neg \blacksquare \neg Kp$.

- 2. For this exercise we work with the topological subset space semantics introduced inn Lecture 4. Given a topo-model $\mathcal{X} = (X, \tau, V)$ and $p \in Prop$, prove the following:
 - (1) (20') V(p) is an open set of (X, τ) iff $p \to \oint Kp$ is valid in \mathcal{X} .
 - (2) (20') V(p) is a closed set of (X, τ) iff $\blacksquare \hat{K}p \to p$ is valid in \mathcal{X} .
 - **Solution.** (1) " \Leftarrow ": For any $x \in V(p)$, and any $x \in U \in \tau$, we have $(x,U) \models p$, and thus $(x,U) \models \Phi Kp$, i.e. there is some $O \in \tau$ with $x \in O \subseteq U$, and $O \subseteq V(p)$. Hence V(p) is open. " \Rightarrow ": Suppose $x \in U \in \tau$. If $x \notin V(p)$, then $(x,U) \not\models p$, thus $(x,U) \models (p \to \Phi Kp)$. If $x \in V(p)$, then there is some $x \in W \in \tau$ with $W \subseteq V(p)$. Let $O = W \cap U \in \tau$, then $x \in O \subseteq U, \forall y \in O((y,O) \models p)$. In both cases, $(x,U) \models (p \to \Phi Kp)$.
 - (2) "\(\Rightarrow\)": Suppose $x \in U \in \tau$, and assume $(x,U) \models \mathbb{L}\hat{K}p$, i.e. for all $O \in \tau$ with $x \in O \subseteq U$, there is some $y \in O$ with $y \in X \setminus V(\neg p) = V(p)$. Thus $x \in Cl(V(p)) = V(p)$, which means $(x,U) \models p$. Hence $(x,U) \models (\mathbb{L}\hat{K}p \to p)$.

 "\(\Rightarrow\)": For any $x \in U \in \tau$. If $(x,U) \models \mathbb{L}\hat{K}p$ and $(x,U) \models p$, then $x \in Cl(V(p)) \cap V(p)$. If $(x,U) \not\models \mathbb{L}\hat{K}p$, then $(x,U) \models \neg \mathbb{L}\hat{K}p = \diamondsuit K \neg p$, i.e. there is some $O \in \tau$ with $x \in O \subseteq U$, and $O \subseteq V(\neg p) = (V(p))^c$, which means $x \in Int((V(p))^c) = (Cl(V(p)))^c$. In combine, $X = (Cl(V(p)) \cap V(p)) \cup (Cl(V(p)))^c$, thus V(p) = Cl(V(p)).
- 3. (20', bonus) For this exercise, we work with topo-e-models and the corresponding semantics introduced in the slides of Lecture 3. By adding a piece of evidence $P \subseteq X$ to a topo-e-model $\mathfrak{M} = (X, \mathcal{E}_0, \tau, V)$, we can create another topo-e-model \mathfrak{M}^{+P} . Let us define $\mathfrak{M}^{+P} = (X, \mathcal{E}^{+P}, \tau^{+P}, V)$, where $\mathcal{E}_0^{+P} = \mathcal{E}_0 \cup \{P\}$ and τ^{+P} is the topology generated by \mathcal{E}_0^{+P} .

We now introduced a new modality, $[+\varphi]\psi$, into our language \mathcal{L} (on slide 51 of Lecture 3) and interpret it in a given topo-e-model $\mathfrak{M} = (X, \mathcal{E}_0, \tau, V)$ at $x \in X$ as follows:

$$\mathfrak{M}, x \in \llbracket [+\varphi]\psi \rrbracket^{\mathfrak{M}} \iff \llbracket \varphi \rrbracket^{\mathfrak{M}} \neq \emptyset \text{ implies } x \in \llbracket \psi \rrbracket^{\mathfrak{M}^{+\varphi}}.$$

Show that the following formula is valid in all topo-e-models:

$$[+\varphi]\Box\psi\leftrightarrow([\exists]\varphi\rightarrow(\Box[+\varphi]\psi\vee(\varphi\wedge\Box(\varphi\rightarrow[+\varphi]\psi)))).$$

- **Solution.** (1) " \rightarrow ": Suppose $\mathfrak{M}, x \models [+\varphi] \Box \psi$. If $\llbracket \varphi \rrbracket^{\mathfrak{M}} = \emptyset$, then φ is not valid and $[\exists] \varphi$ is not valid, thus " \rightarrow "holds. We only need to show that $\mathfrak{M}, x \models \Box(\varphi \to [+\varphi]\psi)$, in the case that $\llbracket \varphi \rrbracket^{\mathfrak{M}} \neq \emptyset$. Note by definition, $\mathfrak{M}^{+\varphi}, x \models \Box \psi$, i.e. there is some $U \in \tau^{+\varphi}$ with $x \in U$, and for all $y \in U$, $\mathfrak{M}^{+\varphi}, y \models \psi$. This means, for all $y \in U$, $\mathfrak{M}, y \in \llbracket [+\varphi]\psi \rrbracket^{\mathfrak{M}}$, i.e. $U \subseteq \llbracket [+\varphi]\psi \rrbracket^{\mathfrak{M}}$, since $\llbracket \varphi \rrbracket^{\mathfrak{M}} \neq \emptyset$. Now we have $x \in U \subseteq (\llbracket \varphi \rrbracket^{\mathfrak{M}})^c \cup \llbracket [+\varphi]\psi \rrbracket^{\mathfrak{M}}$, so $\mathfrak{M}, x \models \Box(\varphi \to [+\varphi]\psi)$.
- (2) " \leftarrow ": Suppose $\mathfrak{M}, x \models [\exists] \varphi \to (\Box[+\varphi]\psi \lor (\varphi \land \Box(\varphi \to [+\varphi]\psi))),$ and $\llbracket \varphi \rrbracket^{\mathfrak{M}} \neq \emptyset$, the goal is to show that $\mathfrak{M}^{+\varphi}, x \models \Box \psi$. The conditions infer $\mathfrak{M}, x \models \Box[+\varphi]\psi \lor (\varphi \land \Box(\varphi \to [+\varphi]\psi)).$
 - If $\mathfrak{M}, x \models \Box[+\varphi]\psi$, then there is some $U \in \tau$ with $x \in U$, and for all $y \in U$, $\mathfrak{M}, y \models [+\varphi]\psi$, i.e. $\mathfrak{M}^{+\varphi}, y \models \psi$, since $[\![\varphi]\!]^{\mathfrak{M}} \neq \emptyset$. Note that $U \in \tau \subseteq \tau^{+\varphi}$, so $\mathfrak{M}^{+\varphi}, x \models \Box \psi$.
 - If $\mathfrak{M}, x \models (\varphi \land \Box(\varphi \to [+\varphi]\psi))$, then $\mathfrak{M}, x \models \Box(\varphi \to [+\varphi]\psi)$. This means there is some $U \in \tau$ with $x \in U$, and for all $y \in U$, $\mathfrak{M}, y \models (\varphi \to [+\varphi]\psi)$, i.e. $U \subseteq (\llbracket \varphi \rrbracket^{\mathfrak{M}})^c \cup \llbracket [+\varphi]\psi \rrbracket^{\mathfrak{M}}$. Note that $x \in \llbracket \varphi \rrbracket^{\mathfrak{M}}$, so we may suppose (up to an intersection) $U \subseteq \llbracket [+\varphi]\psi \rrbracket^{\mathfrak{M}}$, i.e. for all $y \in U$, $\mathfrak{M}^{+\varphi}, y \models \psi$, since $\llbracket \varphi \rrbracket^{\mathfrak{M}} \neq \emptyset$. Note that $U \in \tau \subseteq \tau^{+\varphi}$, so $\mathfrak{M}^{+\varphi}, x \models \Box \psi$.

In both cases, $\mathfrak{M}, x \models \Box(\varphi \rightarrow [+\varphi]\psi)$.

- 4. Topological Approaches to Epistemic Logic: Final Exam
- 1. Let $\mathfrak{M} = (X, \mathcal{E}_0, \tau, V)$ be a topo-e-model and τ_{dense} be the corresponding dense topology defined as

$$\tau_{dense} = \{ U \in \tau \,|\, Cl(U) = X \} \cup \{\emptyset\}.$$

Check our definitions of justified belief B and (fallible) knowledge K given in Lecture 3: for any $P \subseteq X$, we have

$$x \in KP \iff x \in Int(P) \text{ and } Cl(Int(P)) = X,$$

 $x \in BP \iff Cl(Int(P)) = X.$

Show that

- (1) (10') $KP = Int_{dense}(P)$, and
- (2) (10') $BP = Cl_{dense}(Int_{dense}(P)).$

Solution. Before proving the statements, we shall show

- $Int_{dense}(P) \subseteq Int(P)$, (the equality holds if $Int(P) \in \tau_{dense}$) since $LHS = \bigcup_{P \subseteq U \in \tau_{dense}} U \subseteq \bigcup_{P \subseteq U \in \tau} U = RHS$;
- $Cl_{dense}(P) \supseteq Cl(P)$, since $LHS = (Int_{dense}(P^c))^c \supseteq (Int(P^c))^c = RHS$.
- (1) If $Cl(Int(P)) \neq X$, then $KP = \emptyset$. If $Int(P) = \emptyset$, then $Int_{dense}(P) = \emptyset = KP$. If $Int(P) \neq \emptyset$, then $Int(P) \notin \tau_{dense}$, and for any $\emptyset \neq U \in \tau_{dense}$, with $U \subseteq P$, we have $Cl(U) \subseteq Cl(Int(P)) \neq X$, thus $U \notin \tau_{dense}$. This tells us $Int_{dense}(P) = \emptyset = KP$.

 Now suppose Cl(Int(P)) = X, in which case $KP = Int(P) \neq \emptyset$. Then $Int_{dense}(P) = Int(P)$, since $Int(P) \in \tau_{dense}$ and $Int_{dense}(P) \subseteq Int(P)$. In both cases $Int_{dense}(P) = KP$.
- (2) If $Cl(Int(P)) \neq X$, we have $BP = \emptyset$. From the proof of (1), $Int_{dense}(P) = \emptyset = BP$. Now suppose Cl(Int(P)) = X, in which case BP = X. Note that

$$Cl_{dense}(Int_{dense}(P)) \supseteq Cl(Int_{dense}(P)) = Cl(Int(P)) = X,$$

so $Cl_{dense}(Int_{dense}(P)) = BP.$

2. For this exercise, we work with the unimodal language \mathcal{L}_B and define an alternative topological semantics for B.

Given a topo-model $\mathcal{X} = (X, \tau, V)$, the semantics of $B\varphi$ is given as

$$[\![B\varphi]\!]^{\mathcal{X}} = Int(Cl(Int([\![\varphi]\!]^{\mathcal{X}}))).$$

Definition 1. Given a Kripke frame (X, R)

	wKD45 axioms & rules	
$\overline{(K_B)}$	$B(\varphi \wedge \psi) \leftrightarrow (B\varphi \wedge B\psi)$	Closure under conjunction
(D_B)	$B\varphi \to \neg B \neg \varphi$	Consistency
	$B\varphi \to BB\varphi$	Positive Introspection
$(w5_B)$	$B\hat{B}B\varphi \to B\varphi$	weak Negative Introspection
(Nec)	from φ , infer $B\varphi$	

- a nonempty $C \subseteq X$ is called a cluster if for all $x, y \in C, xRy$.
- $C \subseteq X$ is called a maximal cluster if it is a cluster and for all $x, y \in X$, if $x \in C$ and xRy, then $y \in C$.
- (X,R) is called a rooted weak pin if there is a unique $x \in X$ and a family of disjoint maximal clusters $\{C_i\}_{i\in I}$ such that for all $y \in \bigcup_{i\in I} C_i$, $(x,y) \in R$, $(y,x) \notin R$, and $X = \bigcup_{i\in I} C_i \cup \{x\}$.

Lemma 1. wKD45 is sound and complete with respect to the class of finite rooted weak pins.

In this exercise, you are asked to show all the items below for the $wKD45_B$ given in the table.

- (1) (20') Axioms K_B and D_B are valid in all topo-models under the new semantics.
- (2) (10') Also show that the negative introspection axiom for belief, namely $\neg B\varphi \to B\neg B\varphi$, is not valid in all topo-models under the new semantics.
- (3) (30') Prove that wKD45 is complete with respect to the class of all topo-models.

Solution. (1) Let (X, τ) be a topological space, write for convenience P(U) = Int(Cl(Int(U))), for any $U \subseteq X$.

 K_B : Only need to show $P(U \cap V) = P(U) \cap P(V)$ for any $U, V \subseteq X$. We shall prove a stronger result:

$$Int(Cl(U \cap V)) = Int(Cl(U)) \cap Int(Cl(V))$$

for any $U, V \in \tau$. On the one hand, $Int(Cl(U \cap V)) \subseteq Int(Cl(U))$, similarly, $Int(Cl(U \cap V)) \subseteq Int(Cl(V))$, so $LHS \subseteq RHS$. Now consider the other part when $RHS \neq \emptyset$.

- if $U \cap V = \emptyset$, suppose by contradiction that there is some $x \in Int(Cl(U)) \cap Int(Cl(V))$, then there are $U', V' \in \tau$ with $x \in U' \subseteq Cl(U), x \in V' \subseteq Cl(V)$. Let $W = U' \cap V' \in \tau$, note that by definition of closure, $\emptyset \neq W \cap U \subseteq V' \subseteq Cl(V)$, so $\emptyset \neq (W \cap U) \cap V$, that is impossible. As a result, $Int(Cl(U \cap V)) = \emptyset = Int(Cl(U)) \cap Int(Cl(V))$.
- If $U \cap V \neq \emptyset$, for $x \in Int(Cl(U)) \cap Int(Cl(V))$, there are $U', V' \in \tau$ with $x \in U' \subseteq Cl(U), x \in V' \subseteq Cl(V)$. Let $W = U' \cap V' \in \tau$, by definition of closure, $\emptyset \neq W \cap U \subseteq Cl(V)$, and thus $\emptyset \neq W \cap U \cap V \subseteq Cl(U \cap V)$. Hence $x \in Int(Cl(U \cap V))$, as a result, $RHS \subseteq LHS$.

 D_B : Only need to show $P(U)\subseteq (P(U^c))^c$, i.e. $Int(Cl(Int(U)))\subseteq Cl(Int(Cl(U)))$ for any $U\subseteq X$. This holds since

$$Int(Cl(Int(U))) \subseteq Int(Cl(U)) \subseteq Cl(Int(Cl(U))).$$

(2) For example, consider \mathbb{R} with the standard topology, take $U = (-\infty, 0) \cup (1, \infty)$, then

$$(P(U))^c = U^c = [0, 1],$$

 $P((P(U))^c) = P([0, 1]) = (0, 1).$

Then $(P(U))^c \not\subseteq P((P(U))^c)$, i.e. $\neg B\varphi \to B\neg B\varphi$ fails.

(3) We shall mimick the proof of Theorem 7 in [Baltag et al, 2019]. **Lemma 2.** For all $\varphi \in \mathcal{L}_B$, and any Kripke model $\mathcal{M} = (X, R, V)$ based on a weak rooted pin with root denoted by \bullet ,

$$\|\varphi\|^{\mathcal{M}} = [\![\varphi]\!]^{\mathcal{M}_{\tau_R}},$$

where τ_R is the topology generated by $\{C_i\}_{i\in I}$.

Proof. There are some (easily-verified) facts about τ_R

- The opens sets of τ_R is of the forms: \emptyset, X or $\bigcup_{j \in J} C_j$ for $J \subseteq I$.
- $R(x) = \begin{cases} X & \text{, if } x \text{ is the root } \bullet \\ C_i & \text{, if } x \in C_i \end{cases}$.
- $Cl(\bigcup_{j\in J} \hat{C}_j) = \bigcup_{j\in J} C_j \cup \{\bullet\}, \text{ since } RHS = (\bigcup_{i\notin J} C_i)^c \text{ is closed.}$

The proof follows by induction on φ for sub-formula, we only need to consider the case $\varphi = B\psi$, where the result holds for ψ . " \subseteq ": If $\|\psi\|^{\mathcal{M}} = \emptyset$, then $[\![\varphi]\!]^{\mathcal{M}_{\tau_R}} = Int(Cl(Int(\emptyset))) = \emptyset$. Now suppose $\|\psi\|^{\mathcal{M}} \neq \emptyset$ and $\mathcal{M}, x \models B\psi$, i.e. $R(x) \subseteq \|\psi\|^{\mathcal{M}}$. If

 $x = \bullet$, then R(x) = X, from the hypothesis,

$$X = Int(Cl(Int(R(x)))) \subseteq Int(Cl(Int(\llbracket \psi \rrbracket^{\mathcal{M}_{\tau_R}}))).$$

If $x \in C_i$ for some i, then $R(x) = C_i$, similarly,

$$C_i = Int(Cl(Int(R(x)))) \subseteq Int(Cl(Int(\llbracket \psi \rrbracket^{\mathcal{M}_{\tau_R}}))).$$

In both cases, we have $x \in \llbracket \varphi \rrbracket^{\mathcal{M}_{\tau_R}}$.

"\(\to\)": Consider only the case when $\|\psi\|^{\mathcal{M}} \neq \emptyset$. Suppose by contradiction that there is some $x \in Int(Cl(Int(\|\psi\|^{\mathcal{M}})))$ with $x \notin \|\varphi\|^{\mathcal{M}}$, i.e. $R(x) \not\subseteq \|\psi\|^{\mathcal{M}}$. If $x = \bullet$, then R(x) = X, and thus $Int(\|\psi\|)^{\mathcal{M}} = \bigcup_{j \in J} C_j$ for some $J \subseteq I$. But

$$x \notin \bigcup_{j \in J} C_j = Int((\bigcup_{j \in J} C_j) \cup \{\bullet\}) = Int(Cl(\bigcup_{j \in J} C_j)).$$

So it is impossible. If $x \in C_i$ for some i, then $R(x) = C_i \nsubseteq ||\psi||^{\mathcal{M}}$. Thus $C_i \cap Int(||\psi||^{\mathcal{M}}) = \emptyset$, since there are no other open sets contained in C_i . Then $Int(||\psi||^{\mathcal{M}}) \subseteq \bigcup_{j \neq i} C_j$,

$$Int(Cl(Int(\|\psi\|^{\mathcal{M}}))) \subseteq Int(Cl(Int(\bigcup_{j\neq i}C_j))) = \bigcup_{j\neq i}C_j \not\ni x.$$

This is also impossible. In conclusion, $\|\psi\|^{\mathcal{M}} \supseteq \llbracket\varphi\rrbracket^{\mathcal{M}_{\tau_R}}$. \square

Now back to the original problem. Let $\varphi \in \mathcal{L}_B$ such that $\varphi \notin \mathsf{wKD45}_B$. Then by Lemma 1, there exists a relational model $\mathcal{M} = (X, R, V)$ where (X, R) is a weak rooted pin, and $x \in X$ such that $\mathcal{M}, x \not\models \varphi$. Therefore, by Lemma 2, we obtain $\mathcal{M}_{\tau_R}, x \not\models \varphi$, so φ is not valid. This shows the completeness.

3. For this exercise we work with the subset space semantics introduced in Lecture 4. Recall the axiom (AP) on slide 23 of Lecture 4:

(AP)
$$(p \to \blacksquare p) \land (\neg p \to \blacksquare \neg p)$$
 for all $p \in Prop$.

(1) (10') Show that for every φ in the language of classical propositional logic (elements of $\mathcal{L}_{K\blacksquare}$ that do not have occurrences of K or \blacksquare),

$$(\varphi \to \blacksquare \varphi) \land (\neg \varphi \to \blacksquare \neg \varphi)$$

is valid in all subset space models.

(2) (10') Show that the validity in (1) does not hold for all $\psi \in \mathcal{L}_{K\blacksquare}$. That is, find a $\psi \in \mathcal{L}_{K\blacksquare}$ such that $(\psi \to \blacksquare \psi) \land (\neg \psi \to \blacksquare \neg \psi)$ is not valid and justify your answer.

- **Solution.** (1) For any subset space model $\mathcal{X} = (X, \mathcal{O}, V)$, and epistemic scenario (x, U), we only need to show $(x, U) \models (\varphi \to \blacksquare \varphi)$, if there is no occurrence of K, \blacksquare in φ (thus also, $\neg \varphi$). Suppose $(x, U) \models \varphi$, i.e. $x \in V(\varphi)$. Then for any $O \in \mathcal{O}$ with $x \in O \subseteq U$, we have $x \in V(\varphi)$, so $(x, O) \models \varphi$. Thus $(x, U) \models \blacksquare \varphi$.
- (2) For example, consider $X = \{a, b\}$, \mathcal{O} the discrete topology, p with $V(p) = \{a\}$. Then since $\{a, b\} \not\subseteq V(p)$, we have $(a, \{a, b\}) \not\models Kp$, i.e. $(a, \{a, b\}) \models \neg Kp$. However, for $O = \{a\} \in \mathcal{O}$, we have $a \in O \subseteq \{a, b\}$, and $(x, O) \models Kp$, i.e. $(x, O) \not\models \neg Kp$. By definition, $(a, \{a, b\}) \not\models \blacksquare \neg Kp$. As a result, $(a, \{a, b\}) \not\models (\neg Kp \to \blacksquare \neg Kp)$.