AD-8750 125

TECHNICAL REPORT RR-83-2

WIND SPEED, STABILITY CATEGORY, AND ATMOSPHERIC TURBULENCE AT SELECTED LOCATIONS

Oskar M. Essenwanger and Dorathy A. Stewart Research Directorate US Army Missile Laboratory

May 1983

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35898

Approved for public release; distribution unlimited.

TIE FILE COPY

TF .

4.2 ag 1.8

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER					
RR-83-2	AD-A12294	7					
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED					
WIND SPEED, STABILITY CATEGORY, AND) ATMOSPHERIC						
TURBULENCE AT SELECTED LOCATIONS							
		6. PERFORMING ORG, REPORT NUMBER					
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(8)					
Oskar M. Essenwanger and Dorathy A.	. Stewart						
0.0505000005000000000000000000000000000		10 200					
9. PERFORMING ORGANIZATION NAME AND ADDRESS Commander US Army Missile Command		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
ATTN: DRSMI-RR							
Redstone Arsenal, Ala 35898							
11. CONTROLLING OFFICE NAME AND ADDRESS		12 25225 2455					
Commander		12. REPORT DATE May 1983					
US Army Missile Command ATTN: DRSMI-RPT		13. NUMBER OF PAGES					
ATIN: *DRSMI-RPT Redstone Arsenal, Ala 35898		73					
14. MONITORING AGENCY NAME & ADDRESS(II ditterer	of from Controlling Office)	15. SECURITY CLASS. (of this report)					
	••••••	Unclassified					
		onclassified					
		15a. DECLASSIFICATION/DOWNGRADING					
		SCHEDULE					
16. DISTRIBUTION STATEMENT (of this Report)	· · · · · · · · · · · · · · · · · · ·						
Approved for public release; distri	bution unlimited	d.					
17. DISTRIBUTION STATEMENT (of the ebetract entered	in Block 20, if different in	om Report)					
		*					
	· · · · · · · · · · · · · · · · · · ·						
18. SUPPLEMENTARY NOTES							
19. KEY WORDS (Continue on reverse side if necessary ar	od identify by block	1)					
CLIMATOLOGICAL	id identify by block number	'					
ATMOSPHERIC STABILITY							
TURBULENT WIND							
FLUCTUATIONS							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
20. ABSTRACT (Continue on reverse side if necessary an	d identify by block number)						
This report includes climatolog							
atmospheric stability, and turbulen	t wind fluctuati	ions. It contains					
frequency distributions of observe	d surface wind s	speeds at 35 stations					
located throughout the Northern Hem	isphere. Observ	ations from two German					
stations and one Korean station are	classified as a	function of wind speed					
and stability category. A procedur							
to prepare seasonal climatologies o							
on Pasquill category and wind speed	relationship ar	e also compared with					

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) four locations in the United states described in the literature. Finally, the United States data were also used to compute an annual climatology of turbulent wind fluctuations.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ACKNOWLEDGMENTS

The authors express appreciation to Mrs. Alexa Mims and Mr. Clarence Wood for their work on the computer program to determine joint distributions of Pasquill stability category and wind speed. Thanks also go to Mrs. Mona White for her careful typing of the manuscript.

CONTENTS

Section		Page
I	INTRODUCTION	5
11	PASQUILL STABILITY CATEGORIES	6
III	ESTIMATION OF TURBULENT FLUCTUATIONS	8
IV	CLIMATOLOGY OF TURBULENT FLUCTUATIONS	11
v	SUMMARY AND CONCLUSIONS	13
	APPENDIX	33
	REFERENCES	59

LIST OF TABLES

Table	<u>Title</u>	Page
1.	Pasquill stability category as a function of wind speed and net radiative index	14
2.	Number of observations at 0000 GMT as a function of Pasquill stability category and wind speed at Frankfurt	15
3.	Number of observations at 0600 GMT as a function of Pasquill stability category and wind speed at Frankfurt	16
4.	Number of observations at 1200 GMT as a function of Pasquill stability category and wind speed at Frankfurt	17
5.	Number of observations at 1800 GMT as a function of Pasquill stability category and wind speed at Frankfurt	18
6.	Number of observations at 0000 GMT as a function of Pasquill stability category and wind speed at Hahn	19
7.	Number of observations at 0600 GMT as a function of Pasquill stability category and wind speed at Hahn	20
8.	Number of observations at 1200 GMT as a function of Pasquill stability category and wind speed at Hahn	21
9.	Number of observations at 1800 GMT as a function of Pasquill stability category and wind speed at Hahn	22
10.	Number of observations at 0000 local time as a function of Pasquill stability category and wind speed at Osan	23
11.	Number of observations at 0600 local time as a function of Pasquill stability category and wind speed at Osan	24
12.	Number of observations at 1200 local time as a function of Pasquill stability category and wind speed at Osan	25
13.	Number of observations at 1800 local time as a function of Pasquill stability category and wind speed at Osan	26
14.	Parameters needed for the computation of u_* from wind speed at $Z = 10m$ when $Z_0 = 0.5m$	27

LIST OF TABLES

Table	Title	Page
15.	Computed estimates of the mean friction velocity as a function of wind speed and Pasquill category	28
16.	Percentage frequency of σ _u at Frankfurt as a function of time and season	29
17.	Percentage frequency of $\sigma_{_{\boldsymbol{U}}}$ at Hahn as a function of time and season	30
18.	Percentage frequency of $\sigma_{\bf u}$ at Osan as a function of time and season	31
19.	Annual percentage of standard deviations in each class estimated from Pasquill and wind data recorded by Reiguam (1980)	32
A1.	Cumulative distributions of wind speed (m/s) for January	34
A2.	Cumulative distributions of wind speed (m/s) for February	35
A3.	Cumulative distributions of wind speed (m/s) for March	36
A4.	Cumulative distributions of wind speed (m/s) for April	37
A5.	Cumulative distributions of wind speed (m/s) for May	38
A6.	Cumulative distributions of wind speed (m/s) for June	39
A7.	Cumulative distributions of wind speed (m/s) for July	40
A8.	Cumulative distributions of wind speed (m/s) for August	41
A9.	Cumulative distributions of wind speed (m/s) for September	42
A10.	Cumulative distributions of wind speed (m/s) for October	43
A11.	Cumulative distributions of wind speed (m/s) for November	44
A12.	Cumulative distributions of wind speed (m/s) for December	45
A13.	Elevation, location, and period of record for stations included in Tables 1-12	46

I. INTRODUCTION

This report contains climatological information about three atmospheric characteristics: mean wind speed, turbulent fluctuations of wind, and atmospheric stability. Wind speeds have been measured and recorded systematically at many locations throughout the world. The Richardson number, a stability parameter, can be computed from radiosonde data, but it is also possible to infer atmospheric stability from standard surface meteorological measurements by calculations of the Pasquill index. Surface data are readily available for numerous stations, but data for the calculation of the Richardson numbers are limited. When wind speed and stability are known, a good estimate of turbulent wind fluctuations, which are always present to some degree, can be made.

In order to extend the usefulness of this study, monthly frequency distributions of surface wind speeds at different locations in the Northern Hemisphere are included in the appendix.

Pasquill classes are widely used to estimate the degree of stability of the atmosphere from surface observations. The determination of these classes depends upon wind speed and heating or cooling by radiation. Heating during the day depends upon insolation which is a function of solar angle and amount and type of clouds. Cooling at night is estimated from cloud d ϵ . The analysis in Section II shows that the atmosphere is unstable or neutral during the day and is stable or neutral after sundown. Neutral conditions are normally associated with the highest wind speeds at all hours.

Stewart (1981) reviewed and summarized earlier measurements of intensity of atmospheric turbulence in the planetary boundary layer. The magnitude of turbulent fluctuations varies in space and time. Turbulence is usually more intense over land than over water, and rough land surfaces cause more turbulence than smooth terrain. Intensity of turbulence is normally greater under unstable conditions than under stable conditions. The intensity of turbulence, which is the ratio of the standard deviation to the mean wind speed, tends to decrease as mean wind speed increases. Wind speed normally increases with altitude in the atmospheric boundary layer, and intensity of turbulence typically decreases rather rapidly with altitude in the lowest 20m. Decreases are slow above this level.

As pointed out, direct measurements of atmospheric turbulence are not available from any location for a long enough period to establish a climatology. Therefore, needed climatological information must be inferred from available meteorological data. The relationship between readily available meteorological data and turbulent wind fluctuations is described in Section III. The magnitude of turbulent fluctuations which are associated with a given wind speed depends upon atmospheric stability and is larger under unstable conditions. Section IV contains climatologies of turbulent wind fluctuations. These fluctuations are represented by $\sigma_{\rm u}$ which is the standard deviation of the longitudinal component of the wind. Most $\sigma_{\rm u}$'s are less than 2 m/s except during the day in the summer.

11. PASQUILL STABILITY CATEGORIES

When detailed measurements are available from special studies of turbulence, the most commonly used stability parameter is the Richarson number, Ri. This dimensionless number is usually defined by

$$Ri = \frac{\frac{g \partial O}{\Theta \partial z}}{\left(\frac{\partial u}{\partial z}\right)^2} \tag{1}$$

where g is the acceleration due to gravity, Θ is the potential temperature, z is the altitude, and $\partial u/\partial z$ is the vertical wind shear. Richardson interpreted this as a characteristic ratio of work done against gravitational stability to energy transferred from mean to turbulent motion (Huschke, 1959). The atmosphere is gravitationally stable when the potential temperature increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between 0.25 and 2 (Huschke, 1959), and Hansen (1977) believes that it is unity. However, some evidence supports the belief that the critical Richardson number is lower. Businger (1973) suggests 0.20-0.21, and Estoque (1973) even recommends the negative value -0.03. Values of Ri below the critical value are associated with instability, i.e., turbulence increases with time. Turbulence decreases with time for larger values of Ri, and the atmosphere is stable.

Pasquill (1961) outlined a procedure by which stability can be estimated from standard surface meteorological measurements. Six stability categories are specified in terms of wind speed, insolation, and state of the sky. Surface wind speeds are measured at the standard anemometer height of 10 m, and therefore these speeds give an indication of the wind shear in the lowest 10 m of the atmosphere, because it is assumed that the wind speed at ground level is zero. Insolation heats the surface, and surface heating causes steeper lapse rates to develop. If the insolation is large enough, the potential temperature may even decrease with altitude. Cooling of the surface at night causes a less steep lapse rate to develop, and a temperature inversion often forms. The amount of heating during the day and cooling at night depends upon the amount of cloud cover.

The six Pasquill categories are designated by the indices A through F. Categories A, B, and C are very unstable, moderately unstable, and slightly unstable, respectively. A neutrally stable atmosphere is indicated by D. Category E is moderately stable, and F is very stable.

Luna and Church (1972) processed standard surface weather observations to obtain Pasquill categories for 2461 cases. For each of these cases winds at 40 m and temperatures at 3 and 40 m were used to determine stability from a finite-difference form of the Richardson number which they called S. In their discussion Luna and Church implicitly assume that the critical Richarson number is zero, and that the neutral category of S should be centered at zero. Although the categories are established in the proper sequence, Luna and Church are concerned because approximately half the observations fall in the D (neutral) Pasquill category, but fewer than 6 percent of the computed S values are between -0.01 and +0.01. For practical

purposes, it seems reasonable to allow a wider range of S values to be in the neutral category. Furthermore, if Estoque's (1973) recommended critical Richardson number of -0.03 were used, a larger percent of S values would fall between -0.02 and -0.04. If a wider range is also assumed, it is realistic to conclude that between 20 and 30 percent of the S values fall in the neutral category. Luna and Church pointed out other small discrepancies which may be important in dealing with individual cases, but which should be much less serious when dealing statistically with large data collectives.

Pasquill stability indices in this report were determined according to the procedure outlined in Chapter 15 of Duncan (1981). Information from Duncan's Table 15-9 is listed here in Table 1, which contains the Pasquill index as a function of wind speed (V) and net radiative index (NRI). The net radiative index depends upon the mean cloud cover and height in the second layer and upon the solar angle. The solar angle (a) is a function of latitude, time of day, and time of year. Details of the computational method to obtain the solar angle can be obtained from a standard reference such as the Smithsonian Meteorological Tables (List, 1958)

When a <0, NRI depends upon the mean cloud cover (C) of the second layer according to the synoptic code and the mean cloud height (H) in hundreds of feet (1 ft = 0.3048 m). If C is 9 or 10, NRI = 5. When C = 8, NRI is 5 if H < 7 and 6 if H > 7. For a C of 4-7, NRI = 6, and if C is 0-3, NRI = 7. Thus, at night NRI varies from 5 to 7.

When a > 0, NRI depends upon C, H, and a parameter s which is a function of a. Furthermore, when a > 0, NRI cannot be greater than 4. If NRI is computed to be greater than 4 when a > 0, it must be set equal to 4. The quantity s = 1 for $0 < a \le 15$, s = 2 for $15 < a \le 35$; s = 3 for $35 < a \le 60$; and s = 4 for $60 < a \le 90$. When C = 0 through 4, NRI = 5-s. NRI = 4 for C = 9-10. For C = 5-7, NRI varies as tollows: (1) if H < 7, NRI = 7 < s; (2) if H = 7-16, NRI = 6 - s; and (3) if H > 16, NRI = 5 - s. When C = 8, NRI = 4 if H < 7. For C = 8, NRI = 7 - s for H = 7-16 and NRI = 6 - s for H > 16.

Table 2 contains monthly summaries of the number of observations in various Pasquill categories as a function of wind speed at 0000 GMT in Frankfurt, West Germany. From the previous discussion it follows that only categories D, E, and F can occur at 0000 GMT at Frankfurt throughout the year. The very stable F category contains the largest number of observations throughout the year. In all months except November and December there are more observations classified as F than as D and E combined. Furthermore, wind speeds at Frankfurt are low near midnight. Annually, more than 70 percent of the wind speeds are less than 7 knots (3.6 m/s).

Observations of wind speed and Pasquill stability index at 0600 GMT at Frankfurt are shown in Table 3. Because the solar angle is negative in winter and positive in summer at this hour, all Pasquill indices had to be included in the table. In May, June, and July, the atmosphere at Frankfurt is moderately unstable at 0600 GMT more than one-third of the time, and in August more than one-fourth of the observations were made during moderately unstable conditions. During the months November through February the stability conditions at 0600 GMT are similar to those at 0000 GMT. Wind speeds are slightly higher during the early morning than near the middle of the night.

Data from Frankfurt at 1200 GMT are listed in Table 4. During the months November through February approximately one-third of the observations occurred under neutral stability, and fewer than one-third were moderately or very unstable. In June and July only a few percent were neutral, and more than 70 percent of the observations were at least moderately unstable. Wind speeds are higher in the middle of the day than at earlier hours throughout the year.

Table 5 contains Pasquill and wind speed data for 1800 GMT at Frankfurt. No observations were more than slightly unstable (C). During the summer more than two-thirds of the observations were made under neutral conditions. In winter a large majority of the observations were made under stable conditions. Wind speeds are comparable to those at 0600 GMT at Frankfurt.

Tables 6-9 consist of data for Hahn, West Germany, similar to the data for Frankfurt in Tables 2-5. Wind speeds are higher at Hahn in winter than in summer. A stable atmosphere is much more common than a neutral atmosphere at Hahn at 0000 GMT in the warmer part of the year, but in December and January neutral and stable conditions are almost equally probable. At 0600 GMT conditions are neutral approximately half the time during December through April, but during May through September about half of the observations are slightly unstable. At 1200 GMT the atmosphere is unstable more often than it is neutral throughout the year. However, the degree of instability is much greater during the warmer months. In fact, during June and July the atmosphere is in the highly unstable A category approximately one-third of the time. At 1800 GMT not one observation is more than slightly unstable in any month. Most observations are neutral during April through August, and most are very stable in March and September. In late fall and winter neither neutral nor stable observations are in an overwhelming majority.

Finally, data for Osan, Korea, are listed in Tables 10-13. Very stable conditions occur more than 85 percent of the time in every month at 0000 local Osan time. At 1200 local time unstable conditions predominate throughout the year, and during summer more than two-thirds of the observations are in the very unstable A category. At 0600 local time few observations are in the neutral D category. Most conditions are classified as very stable when the solar angle is negative, and most are classified as having some degree of instability when the solar angle is positive at 0600. Neutral stability occurs more frequently at 1800 hours. In May and in July a majority of observations are neutral at this time, and a large number are neutral in the months April through August.

The information in this section will be used later to establish a climatology by a procedure discussed in Section III.

III. ESTIMA' ION OF TURBULENT FLUCTUATIONS

In the present study the standard deviations of the u and v components of the wind are estimated from formulae recommended by Weber et al. (1982). The u component is in the direction of the mean horizontal air motion, and the v component is in the direction of the horizontal coordinate perpendicular to the mean motion. The standard deviations of the u and v components are denoted by σ_{ii} and σ_{ij} , respectively.

Under stable conditions

$$\sigma_{\rm H} = 2.0 u_{\star} (1-z/h)$$
 (2)

and

$$c_v = 1.3u_* (1-z/h)$$
 (3)

where u_{\star} is the friction velocity, z is height, and h is the scale height of the stable boundary layer. h is proportional to $(u_{\star}L/f)^2$, where L is the Monin-Obukhov length (see p. 10) and f is the Coriolis parameter (defined as $2 \le \sin \Phi$ where Ω is the angular velocity of rotation of the earth and Φ is latitude, $\Omega = 7.2921 \ (10^{-5})$ radians per second). There are several estimates of the constant of proportionality: 0.22 by Wyngaard (1975); 0.4 or greater by Nieuwstadt and Tennekes (1981); 0.6 by Mahrt et al. (1982); and 0.4 to 0.7 by Caughey et al. (1979). Apparently the constant of proportionality depends upon the state of development of the stable boundary layer. In this report h is computed by

$$h = 0.5 \left(u_{\pm}L/f\right)^{\frac{L}{2}}$$
 (4)

Under neutral conditions

$$\sigma_{u} = 2.0u_{\star} \left[\exp \left(-\frac{3}{2} fz/u_{\star} \right) \right]$$
 (5)

and

$$\sigma_{v} = 1.3 u_{\star} \left[\exp \left(-fz/u_{\star} \right) \right]$$
 (6)

Under unstable conditions

$$c_{11} = c_{12} = u_{*} (12-0.5 z_{1}/L)^{1/3}$$
 (7)

where z_i is the depth of the mixed layer. Empirical evidence indicates that z_i may vary from less than 1.0 km to more than 2.0 km (Lenschow et al., 1980; Panofsky et al., 1977; Garrett, 1981; Kaimal et al., 1982). Considerable disagreement exists concerning parameterization of the height of the unstable boundary layer (Zilitinkevich, 1972; Deardorff, 1972, 1973, 1974; Tennekes, 1973; Wyngaard, 1973; Clarke and Hess, 1973; Benkley and Schulman, 1979; Højstrup, 1982). Therefore, it was decided to use a constant value of 1500 m for z_4 .

The friction velocity u can be obtained from the equation

$$\bar{u} = \frac{u_A}{k} \left\{ \ln \frac{z}{z_0} - \psi \left(\frac{z}{L} \right) \right\}$$
 (8)

where \overline{u} is a time average of u, k is the von Karman constant, z_0 is the roughness length, and ψ is a stability parameter. If z/L is zero, $\psi=0$. Otherwise, one of the following equations is applicable:

$$\psi = -4.7 \text{ z/L for z/L} > 0$$
 (9)

or

$$\psi = 2 \ln \left[(1xX)/2 \right] + \ln \left[(1+X^2)/2 \right] - 2 \tan^{-1}(X) + \frac{\pi}{2} \text{ for } \frac{z}{L} < 0$$
 (10)

where $X = [1-15 \ (z/L)]^{1/4}$ (Businger, 1973; Paulson, 1970). Wind speeds from a standard anemometer at 10 m can be used for \overline{u} , and therefore z in (8) is 10 m. The von Karman constant is now customarily taken to be 0.4. The roughness length z_0 has somewhat arbitrarily been chosen as 0.5 m. This seemed reasonable for the environment of an airport where meteorological measurements are normally made. By comparison, a city typically has a z_0 of 1-4 m, and z_0 over ice may be a small fraction of a centimeter.

The remaining parameter which must be determined is the Monin-Obukhov length L. L is positive for stable conditions and negative for unstable conditions. The magnitude of L is seldom less than 10 m (Tennekes and Lumley, 1972), and no upper limit exists. Large magnitudes are associated with approximately neutral conditions, and L⁻¹ = 0 is the condition for complete neutrality. Weber et al. (1982) consider |z/L| < 0.05 as the criterion for a nearly neutral planetary boundary layer. According to Wyngaard and Clifford (1977) L \approx 50 m represents moderately stable conditions; L \sim -50 m is associated with a moderately unstable atmosphere; and a very unstable atmosphere has L near -13 m. According to Blackadar et al. (1974) L⁻¹ can be estimated as a function of Pasquill category and z_0 , and they provide a figure for doing this. From all of the above information, it was possible to estimate an average value of L⁻¹ for each Pasquill category. Column 2 of Table 14 lists the values which were chosen.

It is now possible to obtain u_\star from (8). Columns 3, 4, and 5 of Table 14 contain z/L, $\psi(z/L)$, and (1/k) [ln $(z/z_0) - \psi$ (z/L)] which are needed for each Pasquill category. Table 15 records the magnitudes of u_\star which are computed for each combination of wind speed and Pasquill category which is permitted according to the classification scheme used in this report. The original data were recorded to the nearest tenth of a meter per second. Therefore, the mean wind speed for each speed category is the mean of the meter-per-second values which are permitted in that category. It was assumed that all values in each category were equal to the mean value for V < 12 knots (6.1728 m/s). The category V > 12 knots is open-ended, and it is not realistic to let one value represent the whole category. It was assumed that half of the observations were represented by each of the two values of u_m for V > 12 knots.

The effect of these assumptions can be seen by making a sample calculation from Table 4 for Frankfurt at 1200 GMT. Consider the number of σ_{ij} greater than 2.0 m/s for fall (September, October, and November). All 21 observations for which the Pasquill category is B and 6 < V < 7 are classified as σ_n > 2.0 m/s because the computed $\sigma_{_{11}}$ associated with the u_{\star} from Table 15 is 2.02 m/s. No attempt is made to represent a distribution of values over the wind speed category or over the stability category. In addition, 16 other observations from category B and 13 from category C fall into the group $\sigma_{ij} > 2.0$ m/s, which is a total of 50. In category D there are 111 observations for which $12 \le V$ in fall. Half of these (rounded to 56) were counted as σ_u = 1.96 m/s and half (55) have σ_{ii} = 2.14 m/s. Thus, in our tabulation (Table 16) 105 of 601, or 17.5 percent, of the observations were placed into the group $\sigma_{\rm m} > 2.0$ m/s. If all 111 observations for $12 \le V$ had to be classified as σ_{ij} > 2.0 m/s, we would have to add 56 more into the group σ_{ij} > 2.0 m/s, which amounts to a total of 26.8 percent. It would be an extreme case, however, if all 56 observations would have to be counted into the $\sigma_{_{11}}$ > 2.0 m/s class. Thus, our estimates in the $\sigma_{11} > 2.0$ m/s class could have been somewhat higher, but others placed into the σ_u > 2.0 m/s group may be lower than 2.0 m/s. Thus, the statistical estimates by our simplified method are reasonable.

The theoretical framework developed in this section was applied to observational data in Section II to obtain frequency distributions of the standard deviation of the wind which are presented in the next section.

IV. CLIMATOLOGY OF TURBULENT FLUCTUATIONS

Stewart (1981) reviewed and summarized measurements of the intensity of turbulence in the planetary boundary layer. The intensity of turbulence is generally greater over rough surfaces than over smooth surfaces, and turbulence is normally stronger under unstable conditions than under stable conditions. Unfortunately, routine measurements of turbulence characteristics have not been made at any one location for a long enough period to establish a climatology.

Because measurements are not available, it is necessary to estimate climatological information, and the method described in Section III is used here. Seasonal frequency distributions of $\sigma_{\rm u}$ for Frankfurt are given in Table 16. More than half of the standard deviations are less than 0.5 m/s during all seasons at 0000 GMT, during fall and winter at 1800 GMT, and during winter at 0600 GMT. At 1200 GMT fewer than 15 percent of the standard deviations are below 0.5 m/s during all seasons. During summer at 1200 GMT 57.4 percent of the standard deviations are greater than 2.0 m/s, and during spring 37.1 percent of the $\sigma_{\rm u}$'s are greater than 2.0 m/s. During fall and winter at 1200 GMT the majority of the standard deviations are between 1.0 and 2.0 m/s.

Table 17 contains the seasonal frequency distributions of $\sigma_{\bf u}$ for Hahn, and they are quite similar to those at Frankfurt. Turbulence is greater at

Hahn than at Frankfurt at all hours in winter, but there is no consistent pattern to the small differences during the other seasons.

Data from Osan, Korea, are shown in Table 18. There are more values of σ_u less than 0.5 m/s at Osan than at either of the German stations at all times throughout the year. One of the biggest reasons that wind fluctuations are smaller at Osan is that wind speeds are smaller than at the German stations.

Annual frequencies of standard deviations of the u component of the wind speed at some other locations can be estimated from Reiquam's (1980) data. Categories E and F are combined in Reiquam's data, but this does not pose a serious problem. The E-F observations in the 0-3 mi/hr (0 - 1.34 m/s) speed category are F, and those in the 7-10 mi/hr (3.13 - 4.47 m/s) category are E. It was decided that observations in the E-F stability category and the 4-6 mi/hr (1.79 - 2.68 m/s) wind speed category should be equally divided between E and F.

Table 19 contains estimates of the annual percentage of the σ_u in different categories for four locations in the United States. One location is Moorcroft, Wyoming, and a second is a project site approximately 80 kilometers away. A third location is Farmington, New Mexico, and a fourth is a project site nearly 65 kilometers from Farmington. In New Mexico and in Wyoming the more rural project sites have higher σ_u 's even though neither Moorcroft nor Farmington is a large city which would be expected to alter the environment drastically. Moorcroft has an annual average similar to Frankfurt. None of the American stations is similar to Osan where nearly two-thirds of the σ_u 's are less than 0.5 m/s. It is difficult to form too many conclusions from Reiquam's data because it is for only one year and is not broken down by time of year or time of day.

V. SUMMARY AND CONCLUSIONS

This report includes climatological information about wind speed, atmospheric stability, and turbulent wind fluctuations.

The appendix contains frequency distributions of observed surface wind speeds at 35 stations located throughout the Northern Hemisphere. As expected, the frequency distributions are normally asymmetrical and skewed to the right in all seasons. The overall average mean is 10 percent greater than the median. The ratio of the standard deviation to the mean is between 0.4 and 1.0 for almost every frequency distribution. Mean wind speeds are generally larger in the cooler part of the year than in the warmer part of the year.

In Section II observations from two German stations and one Korean station are classified as a function of wind speed and stability category. The classification of atmospheric stability was made by means of the Pasquill method, which uses standard surface meteorological data. At night, conditions are stable or neutral, and in the middle of the night stable conditions predominate at all stations. In the middle of the day, the atmosphere is unstable more often than it is neutral throughout the year, and in the summer nearly all observations are unstable. The highest wind speeds occur during the day and under neutral or slightly unstable conditions.

In Section III, a procedure is outlined to estimate standard deviations of turbulent wind fluctuations from wind speed and stability, and in Section IV turbulence climatologies are estimated by this procedure. More than 90 percent of the σ_u 's are less than 2.0 m/s between sunset and sunrise throughout the year. Near the middle of the day approximately half of the σ_u 's are greater than 2.0 m/s in summer, and more than one-third are greater than 2.0 m/s in spring. It is hoped that more stations can be examined in the future.

TABLE 1. Pasquill stability category (A through F) as a function of wind speed (V) in knots (1 knot = 0.5144 m/s) and net radiative index (NRI).

WIND SPEED				NRI			
(KNOTS)	1	2	3	4	5	6	
0 < V < 2	Α	Α	В	С	D	F	F
2 < V < 4	Α	В	В	С	D	F	F
4 < V < 6	Α	В	С	D	D	Ε	F
6 < V < 7	В	В	С	D	D	Ε	F
7 < V < 8	В	В	С	D	D	D	E
8 < V < 10	В	С	С	D	D	D	Ε
10 < V < 11	С	С	D	D	D	D	Ε
11 < V < 12	С	С	D	D	D	D	D
12 < V	С	D	D	D	D	D	D

TABLE 2. Number of observations at 0000 GMT as a function of Pasquill stability category and wind speed at Frankfurt for the period 17 February 1969 through 31 March 1977. V is in knots (1 knot = 0.5144 m/s).

							MONT	Ή					
PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
D	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<<v<12 12<v< td=""><td>4 1 1 0 6 3 0 3 24 42</td><td>2 0 0 0 8 7 4 5 8 34</td><td>0 0 0 0 6 11 5 3 13</td><td>0 0 0 0 2 6 4 1 12 25</td><td>1 0 0 0 2 4 2 1 5</td><td>0 0 0 0 2 3 1 3 1</td><td>0 1 0 0 2 3 0 4 1</td><td>0 0 0 0 2 3 0 1</td><td>0 0 0 0 1 3 2 1 4</td><td>11 4 2 0 2 6 2 2 8 37</td><td>4 2 3 0 6 9 6 4 26 60</td><td>4 3 3 0 8 13 3 5 18 57</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	4 1 1 0 6 3 0 3 24 42	2 0 0 0 8 7 4 5 8 34	0 0 0 0 6 11 5 3 13	0 0 0 0 2 6 4 1 12 25	1 0 0 0 2 4 2 1 5	0 0 0 0 2 3 1 3 1	0 1 0 0 2 3 0 4 1	0 0 0 0 2 3 0 1	0 0 0 0 1 3 2 1 4	11 4 2 0 2 6 2 2 8 37	4 2 3 0 6 9 6 4 26 60	4 3 3 0 8 13 3 5 18 57
E	4 <v<6 6<v<7 7<v<8 8<v<10 10<√V<11 TÖTAL</v<10 </v<8 </v<7 </v<6 	25 5 1 9 4 44	16 7 6 7 4	17 11 0 8 3 39	3 8 5 7 2 25	13 2 3 10 1 29	5 1 2 8 1 17	7 0 2 4 1 14	1 2 4 8 1 16	11 0 0 6 1 18	11 6 5 4 2 28	14 2 5 7 4 32	16 7 8 9 3 43
F	0 <v<2 2<v<4 4<v<6 6<v<7 TOTAL</v<7 </v<6 </v<4 </v<2 	48 38 15 4 105	40 35 8 4 87	38 31 14 5 88	27 18 16 5 66	27 15 8 8 58	24 24 8 5 61	23 21 15 1 60	28 20 12 12 72	49 21 6 2 78	35 43 16 4 98	40 28 12 9 89	36 41 8 7 92

TABLE 3 . Number of observations at 0600 GMT as a function of Pasquill stability category and wind speed at Frankfurt for the period 17 February 1969 through 31 March 1977. V is in knots (1 knot = 0.5144 m/s).

PASQUI CATEGO	LL WIND RY SPEED							MONT	Н				
		JA	N FEB	MAR	APR	MĀY		JUL	AUG	SEP	ОСТ	NOV	DEC
А	0≦V<2 2≨V<4 4≦V<6 TOTAL		0 0 0 0 0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0
В	0≦V<2 2≦V<4 4≦V<6 6≦V<7 7≦V<8 8≦V<10 TOTAL	(0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0	8 10 0 0 0 0	35 27 0 0 0 0	30 28 0 0 0 0 58	37 34 0 0 0 0	23 24 0 0 0 0 0	9 1 0 0 0 0	3 3 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
С	0≦V<2 2≦V<4 4≦V<6 6≦V<7 7≦V<8 8≦V<10 10≦V<11 11≦V<12 12≦V TOTAL	0 0 0 0 0 0		42 55 1 0 0 0 0 0 0 98	29 23 5 4 5 7 0 0 0 73	2 1 31 24 16 14 0 0 0 88	2 1 36 15 12 15 0 0 81	1 0 39 19 21 11 0 0 0	17 16 18 12 6 8 0 0	62 36 0 0 0 0 0 0	13 15 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
D	0≤V<2 2≤V<4 4≤V<6 6≤V<7 7≤V<8 8≤V<10 10≤V<11 11≤V<12 12≤V TOTAL	8 3 2 0 3 7 1 4 28 56	2 1 0 2 7 4 2 19	0 0 34 15 9 20 15 7 18	0 0 16 13 9 11 13 4 17 83	0 0 3 1 1 1 6 3 9 24	0 0 0 1 0 1 5 4 11 22	0 0 0 0 0 0 0 4 6 7	0 0 19 6 6 9 4 2 1	0 0 39 12 8 12 3 4 10 88	12 6 13 4 5 5 4 3 9	0 5 6 5 0 6 16 7 9 25 79	0 5 4 5 0 10 12 5 5 21 67
E	4≤V<6 6≤V<7 7≤V<8 8≤V<10 10≤V<11 TOTAL	14 6 5 7 8 40	15 3 6 11 4 39	2 0 0 2 1 5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	9 2 8 13 4 36	7 7 4 12 1 31	17 8 8 12 5
r	0≦V<2 2≲V<4 4≦V<6 6≦V<7 TOTAL	57 45 15 6 123	41 41 24 6 112	4 5 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0			42 34 9 13 98

TABLE 4. Number of observations at 1200 GMT as a function of Pasquill stability category and wind speed at Frankfurt for the period 17 February 1969 through 31 March 1977. V is in knots (1 knot = 0.5144 m/s).

DACOUTLA							MON	TH					
PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUI.	AUG	SEP	0CT	NOV	DEC
А	0 <v<2 2<v<4 4<v<6 TOTAL</v<6 </v<4 </v<2 	3 0 0 3	0 0 0	7 0 0 7	10 0 0 10	15 3 8 26	9 26 37 72	8 7 18 33	14 0 0 14	15 0 0 15	4 0 0 4	2 0 0 2	1 0 0 1
В	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	30 28 0 0 0 0 58	20 23 1 0 1 0 45	6 33 28 10 8 0 85	0 21 23 7 10 0 61	0 19 25 13 10 7	0 0 1 19 13 22 55	1 12 23 17 15 17 85	0 21 28 19 13 0 81	0 40 32 21 15 0 108	29 28 1 0 0 0 58	20 20 2 0 1 0 43	21 24 1 0 1 0 47
С	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v TOTAL</v </v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	6 7 28 13 10 20 0 0 0	3 5 29 16 18 20 0 0	0 1 14 6 11 33 8 6 0 79	0 0 0 0 0 17 14 11 0 42	0 0 0 0 0 13 15 9 16 53	0 0 0 0 0 0 13 6 25	0 0 0 0 16 10 4 10	0 0 0 0 28 5 6 0 39	0 0 0 0 0 20 4 9 0 33	2 1 30 19 6 33 0 0 0	6 1 23 6 20 29 0 0 0	7 5 29 20 16 23 0 0
D	4 <v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v TÜTAL</v </v<12 </v<11 </v<10 </v<8 </v<7 </v<6 	9 2 4 2 11 10 35 73	7 4 1 1 12 13 35 73	1 0 1 0 5 5 48 60	0 0 0 1 0 1 59 61	0 0 0 0 0 0 19	0 0 0 0 0 0 2 2	0 0 0 0 0 0 9	0 0 0 0 0 0 26 26	0 0 0 0 0 0 32 32	4 0 1 2 5 5 29 46	0 1 2 2 15 14 50 84	7 3 5 18 10 32 78

TABLE 5 . Number of observations at 1800 GMT as a function of Pasquill stability category and wind speed at Frankfurt for the period 17 February 1969 through 31 March 1977. Y is in knots (1 knot = 0.5144 m/s).

MONTH

D.4.Co.1171.1	1.7410												
PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
А	0 <v<2 2₹V<4 4₹V<6 TŌTAL</v<2 	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
В	O <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
С	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11 12<v< td=""><td>0 0 0 0 0 0</td><td>0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0</td><td>8 17 0 0 0 0 0 0 0</td><td>20 24 0 0 0 0 0 0 0</td><td>15 20 0 0 0 0 0 0 0</td><td>12 20 0 0 0 0 0 0 0</td><td>19 27 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td></v<></v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	8 17 0 0 0 0 0 0 0	20 24 0 0 0 0 0 0 0	15 20 0 0 0 0 0 0 0	12 20 0 0 0 0 0 0 0	19 27 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
D	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v< td=""><td>3 0 0 0 3 10 3 8 21 48</td><td>1 0 1 0 2 6 1 6 20 37</td><td>0 0 0 1 4 7 2 12 18 44</td><td>0 0 18 18 13 16 4 8 16 93</td><td>0 0 22 12 13 16 7 8 13 91</td><td>0 0 37 10 14 13 5 10 8</td><td>0 0 24 12 11 17 7 2 9</td><td>0 0 26 8 5 13 7 3 6</td><td>0 0 0 0 3 2 0 2 3 10</td><td>4 1 1 0 1 6 1 2 14 30</td><td>4 3 0 0 6 4 1 10 27 55</td><td>2 0 4 C 6 8 4 6 20 50</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	3 0 0 0 3 10 3 8 21 48	1 0 1 0 2 6 1 6 20 37	0 0 0 1 4 7 2 12 18 44	0 0 18 18 13 16 4 8 16 93	0 0 22 12 13 16 7 8 13 91	0 0 37 10 14 13 5 10 8	0 0 24 12 11 17 7 2 9	0 0 26 8 5 13 7 3 6	0 0 0 0 3 2 0 2 3 10	4 1 1 0 1 6 1 2 14 30	4 3 0 0 6 4 1 10 27 55	2 0 4 C 6 8 4 6 20 50
E	4 <v<6 6<v<7 7<v<8 8<v<10 10 TOTAL</v<10 </v<8 </v<7 </v<6 	14 3 6 12 3 38	8 7 5 13 2 35	13 6 7 13 7	1 0 2 4 3 10	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	3 2 5 8 5 23	5 5 8 1 24	16 2 3 12 4 37	24 10 5 15 6
F	0 <v<2 2<v<4 4<v<6 6<v<7 TOTAL</v<7 </v<6 </v<4 </v<2 	48 43 16 6 113	39 47 15 7 108	28 31 18 5 82	6 9 5 3 23	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	26 18 20 11 75	38 30 16 6 90	34 29 15 3 81	36 39 9 1 85

TABLE 6 . Number of observations at 0000 GMT as a function of Pasquill stability category and wind speed at Hahn for the period 11 March 1969 through 31 December 1976. V is in knots (1 knot = 0.5144 m/s).

MONTH

PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
0	0< V <2	2	1	Δ	1	0	0	1	0		2	6	
D	2 <u><</u> V<4	3 4	1	4		0	1	1	1	3	3	6 5	0
	2 <u>~</u> V<4 4 <v<6< td=""><td>8</td><td>2 4</td><td>1 4</td><td>1 2</td><td>,</td><td></td><td>0</td><td>1</td><td>1</td><td>5 6</td><td>1</td><td>3 5</td></v<6<>	8	2 4	1 4	1 2	,		0	1	1	5 6	1	3 5
	4 <u>~</u> v<6 6 <v<7< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1 0</td><td>0</td><td>0</td><td>1 0</td><td>1</td><td>1</td><td>5</td></v<7<>	0	0	0	0	1	1 0	0	0	1 0	1	1	5
		8				12	r C		1		11	7	8
	7 <u><</u> V<8		10	6	5 7	13 6	5 3	2	3	2	11	9	22
	8₹V<10	18	9	9 2				4	3	6	5		22
	10 < V<11	1	ļ	2	3	0	1	0	1	1	3	1	0
	11 <u>₹</u> V<12	9	5	6	4	0	4	2	2	1	3	10	11
	12₹V	30	22	11	9	6	3	1	0 9	7	41	24	18
	TOTAL	81	54	43	32	27	18	10	9	22	41	64	72
E	4 <v<6< td=""><td>8</td><td>15</td><td>13</td><td>10</td><td>11</td><td>5</td><td>1</td><td>11</td><td>11</td><td>6</td><td>11</td><td>10</td></v<6<>	8	15	13	10	11	5	1	11	11	6	11	10
	6₹V<7	5	4	7	3	4	3	1	2	0	1	2	5
	7₹४<8	10	10	8	14	9	11	2	8	3	12	13	7
	8₹V<10	15	17	10	11	6	8	6	9	5	11	16	12
	10₹V<11	6	2	4	2	0	3	0	0	0	2	1	3
	TOTAL	44	48	42	40	30	30	10	30	19	32	43	37
F	0 <v<2< td=""><td>14</td><td>12</td><td>26</td><td>31</td><td>31</td><td>38</td><td>46</td><td>54</td><td>51</td><td>20</td><td>15</td><td>8</td></v<2<>	14	12	26	31	31	38	46	54	51	20	15	8
	2<<<4	10	17	27	33	34	44	49	44	33	29	17	20
	4 <v<6< td=""><td>11</td><td>10</td><td>17</td><td>23</td><td>38</td><td>30</td><td>26</td><td>34</td><td>16</td><td>11</td><td>23</td><td>18</td></v<6<>	11	10	17	23	38	30	26	34	16	11	23	18
	6 <v<7< td=""><td>6</td><td>5</td><td>11</td><td>7</td><td>12</td><td>8</td><td>11</td><td>6</td><td>7</td><td>10</td><td>9</td><td>4</td></v<7<>	6	5	11	7	12	8	11	6	7	10	9	4
	TOTAL	41	44	81	94	115	120	132	138	107	70	64	50

TABLE 7. Number of observations at 0600 GMT as a function of Pasquill stability category and wind speed at Hahn for the period 11 March 1969 through 31 December 1976. V is in knots (1 knot = 0.5144 m/s).

MONTH

DACOUTLI	WIND												
PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Α	0 <v<2 2<u><</u>V<4 4<v<6 TOTAL</v<6 </v<2 	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 1	0 0 0 0	1 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
В	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0	0 0 0 0 0	0 3 0 0 0 0 0 3	1 9 0 0 0 0	31 27 0 1 0 0 59	18 42 1 2 0 0 63	18 43 2 0 1 0 64	13 23 0 0 0 0 0 36	2 5 0 0 0 0 7	0 2 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
C	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v< td=""><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0</td><td>28 21 2 1 0 2 0 0 0 54</td><td>22 24 12 4 3 3 0 0</td><td>3 1 46 15 14 18 0 0 0</td><td>1 2 38 14 14 20 0 1 0 90</td><td>2 0 41 13 11 14 0 0 0 81</td><td>24 28 22 2 6 9 0 0</td><td>47 35 5 0 1 0 0 0 0</td><td>2 3 0 0 0 1 0 0 0</td><td>0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0 0 0	0 0 0 0 0 0	28 21 2 1 0 2 0 0 0 54	22 24 12 4 3 3 0 0	3 1 46 15 14 18 0 0 0	1 2 38 14 14 20 0 1 0 90	2 0 41 13 11 14 0 0 0 81	24 28 22 2 6 9 0 0	47 35 5 0 1 0 0 0 0	2 3 0 0 0 1 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
D	0 < V < 2 2 < V < 4 4 < V < 6 6 < V < 7 7 < V < 8 8 < V < 10 10 < V < 11 11 < V < 12 12 < V TOTAL	3 7 3 12 14 3 10 32 87	3 4 1 4 14 16 3 14 16 75	0 0 21 8 14 19 6 7 13 88	0 0 29 12 9 20 3 5 14 92	0 0 2 1 4 5 1 5 8 26	0 0 3 2 6 3 2 4 3 23	0 0 5 4 3 3 0 1 3	0 0 28 6 6 6 11 0 4 3 58	0 0 32 9 8 11 4 3 9	1 2 7 3 6 18 5 6 9 57	4 2 5 1 7 17 4 8 34 82	1 2 13 4 7 12 3 13 30 85
E	4 <v<6 6<v<7 7<v<8 8<v<10 10<√11 TOTAL</v<10 </v<8 </v<7 </v<6 	8 5 7 14 4 38	4 4 5 13 7 33	2 1 4 1 2 10	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	9 1 4 10 0 24	7 5 11 9 5 37	9 6 10 9 6 40
F	0 <v<2 2<v<4 4<v<6 6<v<7 TOTAL</v<7 </v<6 </v<4 </v<2 	7 17 9 6 39	16 16 10 3 45	10 4 5 1 20	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	20 30 16 11 77	21 22 16 7 66	19 18 14 2 53

TABLE 8 . Number of observations at 1200 GMT as a function of Pasquill stability category and wind speed at Hahn for the period 11 March 1969 through 31 December 1976. V is in knots (1 knot = 0.5144 m/s).

	_		_	
.,	Λ	N	т	11
W	()	IV		н
	v			П

PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
А	0 <v<2 2<v<4 4<v<6 TOTAL</v<6 </v<4 </v<2 	2 0 0 2	0 0 0 0	13 0 0 13	12 0 1 13	11 8 13 32	11 23 34 68	8 23 21 52	12 0 1 13	18 1 0 19	2 0 0 2	1 0 0 1	1 0 0 1
В	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	10 14 2 1 4 0 31	7 7 1 1 0 0 16	2 29 20 6 13 0 70	0 12 32 15 21 0 80	0 16 21 18 24 10 89	1 0 18 30 30 80	0 8 19 8 30 22 87	0 23 36 19 18 0 96	0 27 36 17 8 1 89	8 20 3 2 1 0 34	9 21 4 2 2 0 38	5 19 3 3 8 0 38
С	0 <v<2 2<v<4 4 6 7 7 7 8 8 10 10 10 10 TOTAL</v<4 </v<2 	2 1 11 6 13 35 2 4 0 74	1 2 20 9 9 31 0 2 0 74	0 1 14 2 7 33 6 4 1 68	0 1 2 1 0 43 8 11 0 66	1 0 1 2 0 26 8 6 6 50	0 0 0 1 1 0 6 10 12 30	1 1 2 0 0 0 11 5 6 7 33	0 1 1 0 2 28 9 14 0 55	0 0 1 1 28 5 5 0 41	0 5 34 9 19 27 0 0 0	1 4 21 10 15 26 0 0	5 4 22 10 8 24 1 0 0 74
D	4 < V < 6 6 < V < 7 7 < V < 8 8 < V < 10 10 < V < 11 11 < V < 12 12 < V TOTAL	2 5 2 4 8 18 30 69	2 4 1 6 7 9 30 59	2 1 2 1 4 26 37	0 1 1 3 0 0 28 33	0 0 1 0 1 1 8 11	0 0 0 0 0	2 0 0 0 0 0 0 2 4	1 0 0 2 0 17 21	0 0 0 0 1 0 19 20	4 2 4 3 4 10 24 51	1 2 5 3 15 43 72	4 3 5 1 8 9 38 68

TABLE 9. Number of observations at 1800 GMT as a function of Pasquill stability category and wind speed at Hahn for the period 11 March 1969 through 31 December 1976. V is in knots (1 knot = 0.5144 m/s).

DACOUTLI	VITNO												
PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	JUN	I JUL	AUG	SEP	ОСТ	NOV	DEC
А	0 <v<2 2<v<4 4<v<6 TOTAL</v<6 </v<4 </v<2 	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
В	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
C	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v< td=""><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>22 28 1 0 0 0 0 0 0 0 51</td><td>24 36 0 0 0 0 0 0</td><td>12 31 1 0 0 0 0 0 0 0</td><td>24 38 0 0 0 0 0 0 0</td><td>29 55 0 0 1 0 0 0 0 85</td><td>3 6 0 0 0 0 0 0 0 9</td><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	22 28 1 0 0 0 0 0 0 0 51	24 36 0 0 0 0 0 0	12 31 1 0 0 0 0 0 0 0	24 38 0 0 0 0 0 0 0	29 55 0 0 1 0 0 0 0 85	3 6 0 0 0 0 0 0 0 9	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
D	0 < V < 2 2 < V < 4 4 < V < 6 6 < V < 7 7 < V < 8 8 < V < 10 10 < V < 11 11 < V < 12 12 < V TOTAL	1 4 7 2 6 13 5 15 30 83	1 4 3 2 5 6 1 8 19 49	0 1 0 0 6 7 0 5 15 34	0 0 33 10 17 28 2 6 14 110	0 0 50 15 24 19 2 7 8 125	0 0 49 23 21 23 5 9 6	0 0 46 22 15 15 4 4 2	0 0 45 14 25 16 0 4 3	0 0 6 2 6 4 1 4 6 29	2 0 2 3 12 11 1 6 11 48	6 2 6 0 4 6 1 6 34 65	0 3 7 7 9 19 3 13 31
Ε	4 <v<6 6<v<7 7<v<8 8<√V<10 10<√V<11 TÖTAL</v<8 </v<7 </v<6 	14 1 8 15 5 43	6 4 12 8 3 33	11 2 15 15 2 45	3 0 0 1 0 4	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	7 2 3 8 1 21	7 1 14 16 1 39	8 3 10 19 3 43	8 5 4 20 4 41
F	0 <v<2 2<v<4 4<v<6 6<v<7 TÖTAL</v<7 </v<6 </v<4 </v<2 	18 9 11 7 45	20 19 23 11 73	28 45 22 7	5 2 5 0 12	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	46 33 25 5 109	28 31 24 5 88	12 25 16 10 63	19 9 13 6 47

TABLE 10. Number of observations at 0000 local time as a function of Pasquill stability category and wind speed at 0san for the period 1 January 1973 through 31 December 1979. V is in knots (1 knot = 0.5144 m/s).

PASQUILL	WIND						MONTH	i					
CATEGORY	SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
_	0.44.40	_	_										
D	0 <v<2< td=""><td>1</td><td>0</td><td>1</td><td>1</td><td>2</td><td>1</td><td>1</td><td>1</td><td>1</td><td>3</td><td>0</td><td>1</td></v<2<>	1	0	1	1	2	1	1	1	1	3	0	1
	2 <u><</u> V<4	0	0	0	0		0	0	0	0	0	0	0
	4₹V<6	0	0	0	0	0	0	1	0	0	0	0	0
	6 <v<7< td=""><td>0</td><td>0</td><td>0</td><td>0 3 2</td><td>0</td><td>0</td><td>0</td><td>0</td><td>O</td><td>0</td><td>0</td><td>0</td></v<7<>	0	0	0	0 3 2	0	0	0	0	O	0	0	0
	7 <v<8< td=""><td>1</td><td>2</td><td>2</td><td>3</td><td>2</td><td>4</td><td>0</td><td>3</td><td>2</td><td>1</td><td>0</td><td>3</td></v<8<>	1	2	2	3	2	4	0	3	2	1	0	3
	8₹V<10	1	2	1		2	1	0	2	1	0	5	1
	1010√1111√12	1	0	1	0	0	0	1	0	0	0	2	0
	11 <v<12< td=""><td>3</td><td>Ī</td><td>2</td><td>0</td><td>3</td><td>2 0</td><td>1</td><td>0</td><td>0</td><td>2</td><td></td><td>2</td></v<12<>	3	Ī	2	0	3	2 0	1	0	0	2		2
	TOTAL	0 7	Ţ	0 7	2 8	3	0	1	2	i 5	1	3	1
	TOTAL	,	6	/	8	15	8	5	8	5	7	13	8
E	4 <v<6< td=""><td>4</td><td>9</td><td>5</td><td>6</td><td>4</td><td>5</td><td>7</td><td>6</td><td>4</td><td>3</td><td>7</td><td>4</td></v<6<>	4	9	5	6	4	5	7	6	4	3	7	4
	6₹V<7	2	2	1	1	1	1	i	2	i	Ŏ	Ó	i
	7₹४<8	4	3	4	3	1	3	1	Ö	ī	5		ī
	8₹V<10	6	4	4	0	1	2	2	Ö	Ō	Õ	2	3
	10 <u><</u> V<11	0	1	0	1	1	0	1	1	0	0	ì	Ö
	TŌTAL	16	19	14	11	8	11	12	ς	6	8	13	9
F	0 <v<2< td=""><td>127</td><td>101</td><td>125</td><td>109</td><td>150</td><td>142</td><td>140</td><td>154</td><td>161</td><td>137</td><td>122</td><td>123</td></v<2<>	127	101	125	109	150	142	140	154	161	137	122	123
	2₹V<4	39	44	44	52	25	33	44	33	30	49	48	62
	4₹V<6	15	10	9	12	9	11	10	9	5	10	9	12
	6 <u>₹</u> ४<7	2	6	0	4	ŋ	1	3	1	ĩ	2	2	2
	TÖTAL	183	161	178	177	184	187	197	197	197	198	181	199

TABLE 11. Number of observations at 0600 local time as a function of Pasquill stability category and wind speed at Osan for the period 1 January 1973 through 31 December 1979. V is in knots (1 knot = 0.5144 m/s).

PASQUILL	WIND				•		MONTH						
CATEGORY	SPEED	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP	0CT	NOV	DEC
A	0 <v<2 2<v<4 4<v<6 TÖTAL</v<6 </v<4 </v<2 	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	2 0 0 2	1 0 0 1	2 0 0 2	3 0 0 3	0 0 0	0 0 0	0 0 0	0 0 0 0
В	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0000	0 0 0 0 0 0	1 0 0 0 0 0	0 2 0 0 0 0 2	107 36 0 0 1 0 144	122 28 1 0 0 0 151	104 51 0 0 0 0 155	28 10 0 0 0 0 38	8 1 0 0 0 0 9	7 0 0 0 0 0 7	0 0 0 0 0	0 0 0 0 0
C	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v TOTAL</v </v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0 0 0	16 2 0 0 0 0 0 0 0	135 41 0 0 0 0 0 0 0 0	113 41 0 0 0 0 0 0 0 0	18 10 12 1 5 3 0 0 0 49	20 10 14 1 2 3 0 0 0 50	7 10 27 2 3 2 0 0 0 51	112 34 3 C 1 1 0 0 0	154 26 1 0 0 0 0 0 0 0	65 11 0 0 0 0 0 0 0 76	0 0 0 0 0 0 0	0 0 0 0 0 0
D	0\V<2 2\V<4 4\V<6 6\V<7 7\V<8 5\V<10 10\V<11 11\V<12 12\V	2 0 0 0 0 2 0 2 1 7	0 0 3 0 3 1 1 1 0 9	0 0 14 1 1 6 0 2 0 24	0 0 20 7 3 4 0 1 3 38	0 0 5 0 0 2 0 0 1 8	0 0 2 0 0 1 0 0 1 4	0 0 1 1 0 1 1 1 1 1 6	0 0 12 1 0 4 1 1 1 20	0 0 5 0 3 2 0 0 3 13	7 1 1 0 2 0 0 0 0 0	5 0 0 0 3 3 1 0 1 13	6 1 0 0 2 1 0 1 2 13
E	45V<6 65V<7 75V<8 35V<10 105V<11 TOTAL	4 1 2 2 0 9	6 0 2 2 0 10	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	3 1 3 1 0 8	6 1 2 1 1 11	7 1 1 0 0 9
£	0 < V < 2 2 ₹ V < 4 4 ₹ V < 6 5 ₹ V < 7 7 0 TAL	124 47 13 1 185	102 33 9 4 148	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	85 18 10 0 113	127 43 5 2 177	132 45 13 3 193

TABLE 12. Number of observations at 1200 local time as a function of Pasquill stability category and wind speed at Osan for the period 1 January 1973 through 31 December 1979. V is in knots (1 knot = 0.5144 m/s).

PASQUILL	WIND						MONTH						
CATEGORY	SPEED	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
А	0 <v<2 2<v<4 4<v<6 TOTAL</v<6 </v<4 </v<2 	0 0 0 0	34 0 0 34	33 0 0 33	32 27 15 74	43 44 39 126	53 52 47 152	38 51 45 134	53 57 37 147	55 0 0 55	65 0 0 65	15 0 0 15	0 0 0 0
В	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 TOTAL</v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	51 33 0 0 0 0 84	7 36 25 6 15 0 89	6 31 41 12 13 0 103	2 14 12 10 18 9 65	0 7 6 18 14 15 60	1 3 2 16 12 12 46	0 0 2 20 16 19 57	0 3 3 11 15 15 47	1 52 48 15 9 0 125	5 45 32 14 18 0 114	33 47 4 3 5 0 92	62 37 0 0 0 0 99
С	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v< td=""><td>11 3 31 10 9 18 0 0 0</td><td>0 1 2 4 1 26 3 8 0 45</td><td>2 1 3 2 4 19 3 8 0 42</td><td>0 0 1 0 1 5 6 13 14 40</td><td>0 0 1 0 0 1 4 6 11 23</td><td>0 0 0 0 0 0 2 2 3 7</td><td>0 0 1 0 0 1 5 4 4 15</td><td>0 0 1 0 0 2 3 4 9</td><td>1 0 0 0 0 13 2 2 0 18</td><td>0 0 0 0 1 16 4 1 0 22</td><td>8 3 27 10 7 15 0 1 0 71</td><td>14 0 27 10 15 15 0 0</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	11 3 31 10 9 18 0 0 0	0 1 2 4 1 26 3 8 0 45	2 1 3 2 4 19 3 8 0 42	0 0 1 0 1 5 6 13 14 40	0 0 1 0 0 1 4 6 11 23	0 0 0 0 0 0 2 2 3 7	0 0 1 0 0 1 5 4 4 15	0 0 1 0 0 2 3 4 9	1 0 0 0 0 13 2 2 0 18	0 0 0 0 1 16 4 1 0 22	8 3 27 10 7 15 0 1 0 71	14 0 27 10 15 15 0 0
D	4 <v<6 6<√V<7 7<√V<8 8<√V<10 10<√V<11 11<√V<12 12<√V TOTAL</v<6 	5 0 0 2 2 10 22 41	0 0 1 0 0 2 14 17	0 0 0 0 2 0 28 30	0 1 0 0 0 0 0 16 17	0 0 0 0 0 0 0	0 0 0 0 0 0 1 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 9	0 0 0 0 0 0 13 13	0 1 2 0 6 5 17 31	8 0 3 0 4 5 13

TABLE 13. Number of observations at 1800 local time as a function of Pasquill stability category and wind speed at Osan for the period 1 January 1973 through 31 December 1979. V is in knots (1 knot = 0.5144 m/s).

PASQUILL CATEGORY	WIND SPEED	JAN	FEB	MAR	APR	MAY	MONTH JUN	JUL	AUG	SEP	OCT	NOV	DEC
A	0 <v<2 2<v<4 4<v<6 TOTAL</v<6 </v<4 </v<2 	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 C 0	0 C 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
В	0 <y<2 2<v<4 4<v<6 6<v<7 7<v<8 8<√<10 TOTAL</v<8 </v<7 </v<6 </v<4 </y<2 	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
С	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v< td=""><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>23 26 1 0 0 0 0 0 0 0 50</td><td>35 53 0 0 0 0 0 0 0</td><td>60 43 0 0 0 0 0 0 0 0</td><td>45 56 0 0 0 0 0 0 0</td><td>80 60 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td>0 0 0 0 0 0</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	23 26 1 0 0 0 0 0 0 0 50	35 53 0 0 0 0 0 0 0	60 43 0 0 0 0 0 0 0 0	45 56 0 0 0 0 0 0 0	80 60 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
D	0 <v<2 2<v<4 4<v<6 6<v<7 7<v<8 8<v<10 10<v<11 11<v<12 12<v< td=""><td>0 0 0 0 0 3 0 4 1 8</td><td>1 0 0 1 2 4 0 3 3 3</td><td>0 0 0 0 3 4 0 6 6</td><td>0 0 23 8 15 10 0 6 9</td><td>0 0 58 17 17 21 1 2 4 120</td><td>0 0 51 19 13 11 0 2 2 98</td><td>0 0 62 15 17 11 2 1 2</td><td>0 0 29 4 7 4 0 1 1 1</td><td>0 0 0 0 5 1 0 0 1 7</td><td>0 0 0 0 0 1 0 0 3 4</td><td>0 0 0 0 4 5 0 1 1</td><td>1 0 0 0 3 1 0 1 3 9</td></v<></v<12 </v<11 </v<10 </v<8 </v<7 </v<6 </v<4 </v<2 	0 0 0 0 0 3 0 4 1 8	1 0 0 1 2 4 0 3 3 3	0 0 0 0 3 4 0 6 6	0 0 23 8 15 10 0 6 9	0 0 58 17 17 21 1 2 4 120	0 0 51 19 13 11 0 2 2 98	0 0 62 15 17 11 2 1 2	0 0 29 4 7 4 0 1 1 1	0 0 0 0 5 1 0 0 1 7	0 0 0 0 0 1 0 0 3 4	0 0 0 0 4 5 0 1 1	1 0 0 0 3 1 0 1 3 9
<u>נ</u>	4 <v<6 6<v<7 7<v<8 8<v<10 10<√V<11 FOTAL</v<10 </v<8 </v<7 </v<6 	7 1 4 3 1 16	9 2 5 6 0 22	11 1 13 10 4 39	7 3 4 7 0 21	0 0 0 0 0	0 0 0 0	0 0 0 0 0	4 0 0 0 0 4	3 1 2 0 0 6	1 2 1 2 0 6	5 3 2 6 2 18	2 1 3 4 2 12
F	0 <v<2 2<v<4 4<v<6 6<v<7 TŌTAL</v<7 </v<6 </v<4 </v<2 	130 33 13 5 181	77 41 26 4 148	72 36 33 7 148	16 22 15 4 57	0 0 0 0	0 0 0 0	0 0 0 0	6 10 6 1 23	130 48 17 0 195	159 32 11 2 204	131 35 9 4 179	144 37 11 2 194

TABLE 14. Parameters needed for the computation of u_{\star} from wind speed at z=10m when $z_{0}=0.5m$.

PASQUILL CATEGORY	L ⁻¹	z L	$\psi(\frac{z}{L})$	$\frac{1}{k} \left[\ln \left(\frac{z}{z_0} \right) - \psi \left(\frac{z}{L} \right) \right]$
A	-0.08	-0.8	0.98	5.0
8	-0.04	-0.4	0.68	5.8
С	-0.01	-0.1	0.27	6.8
D	0.00	0.0	0.00	7.5
E	0.01	0.1	-0.47	8.7
F	0.05	0.5	-2.35	13.4

TABLE 15. Computed estimates of the mean friction velocity u_{\star} in meters per second as a function of wind speed and Pasquill category. u_{m} is a mean speed for V<12 (see text).

WIND SPEED	, u _m ,		P	ASQUILL (ATEGORY		
(KNOTS)	(m/s)	A	В	С	D	E	F
0 < 7 < 5	.50	0.10	0.09	0.07	0.07		0.04
$2 \leq V < 4$	1.55	0.31	0.27	0.23	0.21		0.12
4 <u>< V</u> < 6	2.55	0.51	0.44	0.38	0.34	0.29	0.19
6 <u>< V < 7</u>	3.35		0.58	0.49	0.45	0.39	0.25
7 <u><</u> V < 8 8 < V < 10	3.90		0.67	0.57	0.52	0.45	
10 < V < 11	4.65		0.80	0.68	0.62	0.53	
$\frac{10 \leq V < 11}{11 < V < 12}$	5.40 5.90			0.79	0.72	0.62	
12 < V	5.90 7.00			0.87	0.79		
	8.00			1.03	0.93		
	0.00			1.18	1.07		

TABLE 16. Percentage frequency of $\sigma_{\boldsymbol{u}}$ at Frankfurt as a function of time and season.

	STANDARD DEVIATION					
GMT	CATEGORY (m/s)	WINTER	SPRING	SUMMER	FALL	
0000	0< σu< 0.5	54.8	55.6	72.7	63.4	
	 0.5< σu< 1.0	17.5	16.2	9.0	13.1	
	1.0< σu< 1.5	16.2	19.1	14.6	13.5	
		7.0	5.5	3.0	5.8	
	2.0 <u><</u> σ _u	4.6	3.7	0.7	4.2	
0600	0 <u><</u> σ u < 0.5	57.6	22.0	21.7	48.2	
	0.5 <u><</u> σu< 1.0	14.3	34.5	25.2	26.6	
	1.0 <u><</u> σu< 1.5	15.6	26.3	32.8	15.5	
	$1.5 \leq \sigma_{\mathbf{u}} \leq 2.0$	7.3	13.6	18.6	6.3	
	2.0 <u><</u> σu	5.2	3.6	1.8	3.4	
1200	0 <u><</u> σu< 0.5	13.9	6.6	6.4	13.0	
	0.5 <u><</u> σu< 1.0	19.0	13.0	6.6	15.8	
	1.0 <u><</u> σu< 1.5	29.4	5.2	6.6	17.5	
	1.5 <u><</u> σu< 2.0	29.7	38.1	23.0	36.3	
	2.0 <u><</u> o _u	8.0	37.1	57.4	17.5	
1800	0 <u><</u> σu< 0.5	54.4	29.0	12.8	60.7	
	0.5 <u>≤</u> σu< 1.0	15.2	30.8	51.1	11.1	
	1.0 <u><</u> σu< 1.5	16.4	23.8	25.6	14.6	
	1.5 <u><</u> σu< 2.0	8.9	11.4	7.5	8.7	
	2.0 <u><</u> σ _u	5.2	5.0	3.1	4.9	

TABLE 17. Percentage frequency of $\sigma_{\boldsymbol{U}}$ at Hahn as a function of time and season.

	STANDARD DEVIATION		SEA	SON	
GMT	CATEGORY (m/s)	WINTER	SPRING	SUMMER	FALL
				70.4	
0000	0 <u><</u> σu< 0.5	31.4	58.9	79.1	56.5
	0.5 <u><</u> σu< 1.0	20.4	17.3	9.3	14.9
	1.0≤ ou< 1.5	28.0	16.7	9.3	17.3
	1.5≤ σu< 2.0	12.7	4.8	1.8	6.9
	2.0 <u><</u> σ _u	7.4	2.4	0.6	4.3
0600	0< σu< 0.5	31.7	20.1	14.6	38.9
	0.5< σ _u < 1.0	17.4	31.2	35.4	26.6
	1.0≤ σu< 1.5	27.7	31.1	31.2	20.9
	1.5< σ _u < 2.0	15.4	14.0	16.9	8.4
	2.0≤ σ _u	7.9	3.6	1.9	5.2
1200	0 <u><</u> σu< 0.5	6.5	6.9	6.1	7.2
	0.5 <u><</u> σu< 1.0	13.2	11.2	7.1	16.0
	1.0 <u><</u> σu< 1.5	23.7	6.6	9.6	18.6
	1.5≤ σu< 2.0	41.7	39.5	19.7	42.2
	2.0 <u><</u> σu	14.8	35.8	57.5	16.0
1800	0 <u><</u> σu< 0.5	35.2	29.7	12.0	53.1
	0.5 <u><</u> σu< 1.0	17.8	37.4	59.6	15.6
	1.0 <u><</u> σu< 1.5	24.1	22.8	23.1	18.3
	1.5 <u><</u> σ _u < 2.0	14.8	6.6	4.2	8.0
	2.0 <u><</u> σ _u	8.1	3.5	1.1	5.1

TABLE 18. Percentage frequency of $\sigma_{\boldsymbol{u}}$ at Osan as a function of time and season.

LOCAL	STANDARD	DEVIATION			SEASON	
TIME	CATEGORY	(m/s)	WINTER	SPRING		FALL
0000	0< ou<	0.5	89.6	90.7	92.1	92.4
	0.5< ou<		4.9	4.3	4.3	3.7
	1.0< ou<		4.1	3.3	2.7	2.4
	1.5< σu<		1.2	1.2	0.6	1.0
	2.0 <u><</u> o _u		0.2	0.5	0.3	0.6
0600	0< ou<	0.5	91.7	62.9	63.1	86.8
0000	0.5< σ _u <		4.8	29.6	25.3	9.7
	1.0< σ _u <		2.3	4.8	8.7	2.9
	1.5< σ _u <		0.8	2.0	2.4	0.3
	2.0 <u>≤</u> σ _u		0.3	0.7	0.5	
1200	0< au<	0.5	29.5	19.2	23.2	29.0
	0.5≤ σu<	1.0	20.3	8.8	1.0	23.5
	1.0≤ σu<	1.5	15.8	13.0	25.9	7.1
	1.5≤ σu<	2.0	24.9	18.1	1.6	25.2
	2.0≤ σu		9.4	40.9	48.3	15.1
1800	0 <u><</u> σ u <	0.5	86.9	42.9	33.3	91.7
	0.5≤ σu<	1.0	5.8	36.5	54.9	3.2
	1.0≤ σu<	1.5	4.8	15.2	10.4	4.1
	1.5 <u><</u> σu<	2.0	1.7	3.8	1.0	0.3
	2.0 <u><</u> σu		0.8	1.6	0.5	0.6

TABLE 19. Annual percentage of standard deviations in each class estimated from Pasquill and wind data recorded by Reiquam (1980).

STANDARD DEVIATION	WYOM	ING	NEW MEXICO			
(meters per second)	Moorcroft	Project Site	Farmington	Project Site		
$0 \le \sigma_{\mathbf{u}} < 0.5$	34.3	20.5	38.5	24.3		
$0.5 \leq \sigma_{\mathbf{u}} < 1.0$	24.6	37.3	33.4	41.9		
$1.0 \leq \sigma_{\mathbf{u}} < 1.5$	18.9	19.1	16.2	16.0		
$1.5 \leq \sigma_{\mathbf{u}} < 2.0$	10.3	9.8	5.6	8.1		
2.0 ≤ σ _u	11.9	13.3	6.3	9.7		

APPENDIX

WIND SPEED DISTRIBUTIONS

In order to understand the relationship between turbulence, Pasquill index and wind speed, it may be of interest to provide a survey on wind speed distributions for a selected number of stations in the Northern Hemisphere.

The data in Tables Al-Al2 were obtained from surface winds recorded as the lowest level of radiosonde ascents. These surface winds were observed by customacy measurements with standard anemometers at each site. The standard height of an anemometer is 10 m above the ground (Haynes, 1958, see p. 120). All data have been checked according to a procedure outlined by Essenwanger (1970) to assure good quality.

For many problems of the practitioner the higher probability thresholds are particularly important, and therefore the following thresholds of the cumulative frequency are included in Tables Al-Al2: 50.0, 84.1, 90.0, 95.0, 97.7, and 99.0 percent. These tables also contain means, maxima, standard deviations, and numbers of observations. The standard deviations listed in Tables Al-Al2 are computed from the observations and should not be confused with the standard deviations of turbulent fluctuations which are discussed in previous sections. The station locations, elevations, and periods of records are listed in Table Al3.

The station called Osan-Ni here is the same station referred to as Osan, Korea, in Sections II and IV. The frequency distributions for Osan-Ni in Tables A1-A12 are for the period April 1957-April 1963. The wind data for Osan in the earlier sections are for the period January 1973-December 1979. The wind speeds are lower during the later period. This is probably an effect of urbanization. Empirical evidence cited by Landsberg (1981) shows that wind speeds become lower as a city grows. Landsberg illustrates that the mean wind speed decreased by 40 percent from 1945 to 1970 at one location. Korea has indeed been industrializing rapidly (Young, 1982), and in recent years a considerable shift from the country to metropolitan areas has been observed. Young estimates that one-half of the Koreans now live in urban areas.

As expected and known from the literature (Stewart and Essenwanger, 1978), the frequency distributions are typically asymmetrical and skewed to the right in all seasons at most stations. The annual average mean of all stations is 10 percent greater than the annual average median, and the monthly variation of the ratio of the two quantities is small. The mean wind speeds are largest in winter and smallest in summer. Most of the frequency distributions are consistent with Hennessey's (1977) suggestion that the ratio of the standard deviation to the mean should be between 0.4 and 1.0. A discussion of parameterization of wind frequency distributions is found in Stewart and Essenwanger (1978).

TABLE Al. Cumulative distributions of wind speed (m/s) for January.

STATION	MEAN	50.00	PR0BA 84.10	PROBABILITY	THRESHOLDS 95.00 97.	LDS (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	9.9	6.2	11.0	12.5	14.3	15.4	16.2	17	4.2	155
Albrook	4.3	4.2	6.5	7.2	8.3	9.1	6.6	15	2.1	425
Albuquerque	3.4	5.9	5.3	6.7	8.2	9.3	10.7	12	2.1	493
Alert	3.4	2.0	7.3	8.6	11.7	19.8	21.1	23	4.5	155
Anchorage	8.2	5.6	4.8	5.4	7.0	8.4	9.4	11	2.0	490
Bahrein	4.9	4.6	8.4	9.1	10.3	11.4	12.5	13	3.1	155
Barrow	9.6	4.9	8.7	6.6	12.3	14.3	15.4	19	3.2	474
Barter Island	7.0	9.6	11.3	13.4	15.7	20.6	24.2	56	4.7	469
Berlin	4.4	4.2	8.9	7.4	8.7	9.7	11.3	12	2.2	124
Chateauroux	4.7	4.3	7.5	8.9	10.9	14.0	16.2	18	3.1	367
Churchil?	7.9	7.7	11.7	13.3	15.5	17.6	19.1	56	4.0	461
El Paso	4.6	4.0	7.5	8.9	10.5	11.5	14.7	21	3.0	484
International Falls	4.1	4.0	6.1	7.1	8.4	9.5	10.2	18	2.2	556
Kadena	5.4	4.9	8.8	9.5	11.0	12.4	13.2	18	3.0	576
Kagoshima	3.6	3.2	9.6	9.9	7.4	9.5	12.4	14	2.2	155
Keflavik	8.4	7.4	13.7	15.3	18.7	8.02	23.9	53	5.3	676
Kwajalein	8.7	9.0	10.9	11.2	11.9	12.2	12.5	13	2.0	322
Miami	3.7	3.4	9.6	8.9	8.0	9.0	9.4	11	5.0	492
Montgomery	3.7	3.3	5.8	6.9	8.2	9.3	10.5	12	2.2	553

TABLE Al(Continued)

STATION	MEAN	50.00	PROBABILITY 84.10 90.00		THRESHOLDS (95.00 97.7	LDS (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	3.5	3.1	5.8	6.7	7.5	9.9	11.1	12	2.3	186
Munich	3.7	3.0	6.9	8.5	10.1	12.1	13.2	. 18	3.0	310
New York	5.5	5.3	9.4	10.7	12.0	13.0	13.5	18	3.1	432
Norfolk	5.4	4.9	8.8	9.6	11.1	12.5	13.7	18	3.0	558
Osan-Ni	3.1	2.8	6.0	7.1	8.5	9.4	10.9	15	2.7	735
Peoria	4.9	4.7	7.2	7.9	9.0	9.7	10.8	13	2.1	552
San Juan	3.5	3.5	5.5	6.4	7.3	8.3	9.0	10	2.1	447
Shemya	9.6	9.6	13.8	14.8	16.2	18.3	21.5	23	4.3	296
Stephenville	6.4	5.6	10.0	11.1	13.3	16.7	18.8	24	4.0	978
Swan Island	5.6	5.1	8.0	8.8	9.5	10.7	11.4	13	2.1	421
Tatoosh Island	9.0	8.3	14.1	16.1	18.8	21.0	22.6	52	5.0	553
Thule	3.0	2.5	5.0	6.9	9.5	10.9	12.5	52	5.9	955
Tripoli	5.1	4.3	7.8	9.1	11.7	13.4	16.0	22	3.3	426
Washington, D.C.	4.0	3.7	6.7	8.0	9.1	10.5	11.9	18	8.8	701
Wiesbaden	4.2	3.8	7.8	9.0	10.5	12.1	13.2	17	3.3	418
Zhana/Semey	3.9	3.2	7.1	9.5	11.6	13.1	16.8	18	3.5	137

TABLE A2. Cumulative distributions of wind speed (m/s) for February.

	STATION	MEAN	50.00	PROBAB 84.10	1LITY T 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	ns (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
	Akita	5.3	4.6	8.6	9.5	12.5	14.1	15.4	16	3.4	142
	Albrook	5.0	4.7	7.4	8.5	9.6	10.9	11.6	21	2.5	390
	Albuquerque	4.2	3,3	7.5	8.9	10.4	11.4	13.3	18	2.9	448
	Alert	3.8	2.0	8.0	12.0	16.5	22.3	24.7	59	5.6	141
	Anchorage	3.0	2.7	5.1	5.9	7.4	9.2	12.1	18	2.4	448
	Bahrein	5.0	4.7	8.4	9.5	10.7	11.3	12.1	13	3.0	142
	Barrow	5.1	4.4	8.3	9.4	11.3	13.1	14.8	20	3.0	435
	Barter Island	6.5	5.4	6.6	11.9	17.1	19.3	22.7	25	4.4	444
	Berlin	4.2	4.0	6.3	7.2	8.8	10.4	11.3	13	2.2	142
36	Chateauroux	4.6	4.0	7.5	9.5	11.6	14.4	16.6	18	3.4	390
	Churchill	7.9	7.6	11.4	12.9	15.2	18.1	19.2	21	3.7	433
	El Paso	5.3	4.6	8.7	10.0	12.6	14.6	16.6	22	3.6	447
	International Falls	3.9	3.8	5.8	7.1	8.5	9.3	10.6	13	2.3	510
	Kadena	4.8	4.5	7.9	8.8	9.7	11.0	12.1	14	5.6	509
	Kagoshima	3.4	3.0	5.2	6.1	7.5	9.0	10.1	11	2.0	142
	Keflavik	8.1	7.2	13.5	15.2	18.2	20.9	22.9	30	5.5	883
	Kwajalein	9.6	9.1	11.2	11.8	12.7	13.1	13.5	14	2.2	310
	Miami	4.3	4.0	6.4	7.4	8.5	9.5	9.5	13	5.0	449
	Montgomery	4.1	3.9	6.2	7.2	8.5	9.4	10.6	13	2.2	508

TABLE A2 (Continued)

3.8 3.5 6.3 7.0 7.8 10.1 11.1 12 13.7 16 6.0 5.0 9.5 10.7 12.5 14.2 13.7 16 6.0 5.0 9.5 10.7 12.5 14.2 15.3 31 5.6 5.3 8.7 9.3 10.9 12.7 14.3 18 3.1 2.6 6.1 7.3 9.1 10.8 12.6 15 15 3 3.4 5.5 6.3 7.4 8.0 8.5 9 9.3 9.2 13.9 15.1 17.5 19.3 21.1 27 and 8.2 7.6 8.5 9.1 10.0 11.1 12.1 12.1 15 and 8.2 7.6 12.9 14.3 16.7 18.7 20.5 28 4.4 5.7 9.0 11.2 12.9 28 4.4 3.8 7.0 8.7 10.9 13.0 15.9 21 15 17.6 18.7 8.7 9.3 11.0 12.6 16 15 17.6 18.7 18.7 20.5 28 4.4 5.7 9.0 11.2 12.9 28 4.4 5.7 9.0 11.2 12.9 28 5.7 5.3 5.6 6.8 8.0 9.2 11.5 13.2 15 2.9 5.1 7.0 9.4 11.8 12.2 15	STATION	MEAN	50.00	PROBABILITY 84.10 90.00	1LITY T 90.00	THRESHOLDS (%)	os (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSFRVATIONS
3.8 3.5 6.3 7.0 7.8 10.1 11.1 3.5 k 6.2 8.0 9.7 11.2 13.7 k 6.0 5.0 9.5 10.7 12.5 14.2 15.3 5.6 5.3 8.7 9.3 10.9 12.7 14.3 3.1 2.6 6.1 7.3 9.1 10.8 12.6 5.2 4.9 7.6 8.7 9.6 10.8 11.4 s.1 3.5 3.4 5.5 6.3 7.4 8.0 8.5 9.1 10.0 11.1 12.1 land 5.9 5.4 8.5 9.1 10.0 11.1 12.1 12.1 lsland 8.2 7.6 12.9 14.3 16.7 18.7 20.5 ton, D.C. 4.0 3.6 6.9 8.2 9.3 11.0 12.6 em 3.9 3.6 6.8 8.0 9.2 11.5 13.2 emev 2.9 3.1 3.6 6.8 8.0 9.2 11.5 13.2 emev											
k 6.0 5.0 9.5 10.7 12.5 14.2 15.3 5.6 5.3 8.7 9.3 10.9 12.7 14.3 3.1 2.6 6.1 7.3 9.1 10.8 12.6 5.2 4.9 7.6 8.7 9.6 10.8 11.4 1.4 5.2 4.9 7.6 8.7 9.6 10.8 11.4 1.4 1.4 5.8 9.2 13.9 15.1 17.5 19.3 21.1 1.4 1.4 1.4 1.5 13.4 18.4 21.1 12.1 12.1 12.1 12.1 12.1 12.1 12	Moscow	3.8	3.5	6.3	7.0	7.8	10.1	11.1	12	2.5	170
k 6.0 5.0 9.5 10.7 12.5 14.2 15.3 5.6 5.3 8.7 9.3 10.9 12.7 14.3 3.1 2.6 6.1 7.3 9.1 10.8 12.6 5.2 4.9 7.6 8.7 9.6 10.8 11.4 5.2 9.3 9.2 13.9 15.1 17.5 19.3 21.1 1and 5.9 5.4 8.5 9.1 10.0 11.1 12.1 12.1 13.1 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 ton, D.C. 4.0 3.6 6.9 8.2 9.3 11.0 12.6 em	Munich	3.5	2.8	6.2	8.0	9.7	11.2	13.7	16	3.0	231
5.6 5.3 8.7 9.3 10.9 12.7 14.3 3.1 2.6 6.1 7.3 9.1 10.8 12.6 5.2 4.9 7.6 8.7 9.6 10.8 11.4 n. 3.5 3.4 5.5 6.3 7.4 8.0 8.5 yille 5.8 4.9 10.0 11.5 13.4 18.4 21.1 Island 5.9 5.4 8.5 9.1 10.0 11.1 12.1 Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 ton, D.C. 4.0 3.6 6.9 8.2 9.3 11.0 12.6 emey 2.9 2.2 5.1 7.6 9.4 11.8 12.2 emey 2.9 2.2 5.1 7.6 9.4 11.8 12.2	New York	0.9	5.0	9.5	10.7	12.5	14.2	15.3	31	3.4	394
3.1 2.6 6.1 7.3 9.1 10.8 12.6 5.2 4.9 7.6 8.7 9.6 10.8 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11	Norfolk	9.6	5.3	8.7	9.3	10.9	12.7	14.3	18	5.9	395
5.2 4.9 7.6 8.7 9.6 10.8 11.4 n 3.5 3.4 5.5 6.3 7.4 8.0 8.5 9.3 9.2 13.9 15.1 17.5 19.3 21.1 ville 5.8 4.9 10.0 11.5 13.4 18.4 21.1 Island 5.9 5.4 8.5 9.1 10.0 11.1 12.1 Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 ton, D.C. 4.0 3.6 6.9 8.2 9.3 11.0 12.6 en 3.9 3.6 6.8 8.0 9.2 11.5 13.2 emev 2.9 2.1 7.6 9.4 11.8 12.2	Osan-Ni	3.1	2.6	6.1	7.3	9.1	10.8	12.6	15	5.9	229
n 3.5 3.4 5.5 6.3 7.4 8.0 8.5 8.5 ville 5.8 9.2 13.9 15.1 17.5 19.3 21.1 ville 5.8 4.9 10.0 11.5 13.4 18.4 21.1 land 5.9 5.4 8.5 9.1 10.0 11.1 12.1 lsland 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 4.4 3.8 7.0 8.7 10.9 13.0 15.9 ton, D.C. 4.0 3.6 6.8 8.0 9.2 11.5 13.2 emev 2.9 2.7 5.1 7.6 9.4 11.8 12.2 emev	Peoria	5.5	4.9	7.6	8.7	9.6	10.8	11.4	13	2.2	497
ville 5.8 4.9 10.0 11.5 13.4 18.4 21.1 land 5.9 5.4 8.5 9.1 10.0 11.1 12.1 Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 ton, D.C. 4.0 3.8 7.0 8.7 10.9 13.0 15.9 en 3.9 3.6 6.8 8.0 9.2 11.5 13.2 eme 2.9 2.2 5.1 7.6 9.4 11.8 12.2	San Juan	3.5	3.4	5.5	6.3	7.4	8.0	8.5	6	2.0	422
sland 5.8 4.9 10.0 11.5 13.4 18.4 21.1 sland 5.9 5.4 8.5 9.1 10.0 11.1 12.1 h Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 i 4.4 3.8 7.0 8.7 10.9 13.0 15.9 3ton, D.C. 4.0 3.6 6.9 8.2 9.3 11.0 12.6 3en 3.9 3.6 6.8 8.0 9.2 11.5 13.2 semey 2.9 2.7 5.1 7.6 9.4 11.8 12.2	Shemya	9.3	9.5	13.9	15.1	17.5	19.3	21.1	23	4.5	263
sland 5.9 5.4 8.5 9.1 10.0 11.1 12.1 n Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 14.4 5.7 9.0 11.2 12.9 14.4 5.7 9.0 11.2 12.9 14.4 3.8 7.0 8.7 10.9 13.0 15.9 15.0 15.9 15.0 15.9 15.0 15.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	Stephenville	5.8	4.9	10.0	11.5	13.4	18.4	21.1	27	4.6	855
h Island 8.2 7.6 12.9 14.3 16.7 18.7 20.5 2.7 2.3 4.4 5.7 9.0 11.2 12.9 14.0 b.C. 4.0 8.7 10.9 13.0 15.9 3.6 6.9 8.2 9.3 11.0 12.6 3.6 6.8 8.0 9.2 11.5 13.2 3.0 3.6 6.8 8.0 9.2 11.5 13.2 3.0 3.0 5.1 7.6 9.4 11.8 12.2 3.0 3.0 3.0 5.1 7.0 9.4 11.8 12.2	Swan Island	5.9	5.4	8.5	9.1	10.0	11.1	12.1	15	2.2	377
i 4.4 3.8 7.0 8.7 10.9 13.0 15.9 3ton, D.C. 4.0 3.6 6.9 8.2 9.3 11.0 12.6 3en 3.9 3.6 6.8 8.0 9.2 11.5 13.2 semey	Tatoosh Island	8.2	7.6	12.9	14.3	16.7	18.7	20.5	28	4.5	501
4.4 3.8 7.0 8.7 10.9 13.0 15.9 . 4.0 3.6 6.9 8.2 9.3 11.0 12.6 3.9 3.6 6.8 8.0 9.2 11.5 13.2 2.9 2.2 5.1 7.6 9.4 11.8 12.2	Thule	2.7	2.3	4.4	5.7	9.0	11.2	12.9	28	5.9	883
4.0 3.6 6.9 8.2 9.3 11.0 12.6 3.9 3.6 6.8 8.0 9.2 11.5 13.2 2.9 2.2 5.1 7.6 9.4 11.8 12.2	Tripoli	4.4	3.8	7.0	8.7	10.9	13.0	15.9	2.1	3.2	380
3.9 3.6 6.8 8.0 9.2 11.5 13.2 2.9 2.2 5.1 7.6 9.4 11.8 12.2	Washington, D.C.	4.0	3.6	6.9	8.2	9.3	11.0	12.6	16	8.2	621
2.9 2.2 5.1 7.6 9.4 11.8 12.2	Wiesbaden	3.9	3.6	6.8	8.0	9.5	11.5	13.2	15	3.0	394
	Zhana/Semey	5.9	2.2	5.1	7.6	9.4	11.8	12.2	12	5.9	124

TABLE A3. Cumulative distributions of wind speed (m/s) for March.

STATION	MEAN	50.00	PROBAB 84.10	1LITY T 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	35 (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	4.8	4.0	8.7	9.6	11.3	13.2	15.0	17	3.4	155
A! brook	4.8	4.4	7.4	8.6	10.6	11.6	12.4	13	2.6	433
Albuquerque	4.7	3.8	8.3	9.4	11.1	12.9	14.3	15	3.1	498
Alert	2.3	1.4	4.1	5.3	11.3	15.0	18.4	25	3.9	155
Anchorage	3.4	3.1	5.5	6.8	8.4	10.0	11.2	14	2.4	487
Bahrein	4.7	4.2	7.8	9.6	11.2	12.7	14.4	17	3.3	155
Barrow	5.4	4.8	8.4	9.4	11.0	12.7	14.6	25	3.0	482
Barter Island	8.9	5.9	10.5	12.3	15.0	18.4	19.7	53	4.2	476
8 Berlin	4.4	4.2	6.2	6.9	7.6	16.0	12.4	14	2.1	155
Chateauroux	4.2	3.7	6.5	7.5	9.1	11.3	13.4	15	5.6	423
Churchil!	7.1	6.8	10.4	11.7	13.6	15.2	18.7	25	3.6	478
El Paso	5.7	4.9	9.3	10.7	13.2	14.8	15.6	18	3.6	493
International Falls	4.1	3.9	6.2	7.3	8.6	9.4	11.0	17	2.3	558
Kadená	4.5	4.1	7.5	8.4	9.3	10.3	11.1	13	2.5	547
Kagoshima	3.2	2.8	5.3	6.5	8.0	8.8	9.4	10	2.1	154
Keflavik	8.1	7.5	12.9	14.4	16.9	18.9	20.5	56	4.5	982
Kwajalein	8.2	8.3	10.4	6.01	11.4	12.5	13.3	18	2.1	408
Miami	4.3	4.1	6.5	7.3	8.4	9.1	9.6	13	5.0	489
Montgomery	4.1	4.0	9.9	7.4	8.7	9.8	11.0	17	2.4	285

TABLE A3 (Continued)

STATION	MEAN	50.00	PROBAB 84.10	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	RESHOLI 95.00	5 (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	67 63	2.8	5.9	7.2	9.9	11.0	11.8	15	2.9	186
Munich	3.3	2.7	5.3	9.9	8.7	11.5	15.5	56	3.2	310
New York	6.4	5.5	9.7	11.0	12.5	13.4	14.5	21	3.1	433
Norfolk	5.7	5.3	8.7	9.3	10.7	12.6	14.3	35	3.0	556
Osan-Ni	3.5	3.0	6.5	7.6	9.1	11.0	13.4	16	3.0	721
Peoria	5.6	5.5	8.1	8.9	9.6	11.4	13.1	19	2.4	266
San Juan	3.4	3.4	5.3	0.9	6.9	7.3	8.1	6	1.8	429
Shemya	9.6	9.4	14.1	15.5	18.3	19.9	21.0	23	4.4	292
Stephenville	5.5	4.6	8.9	10.4	12.4	15.7	17.4	22	3.9	958
Swan Island	0.9	5.5	8.7	9.5	10.3	11.2	12.4	15	2.3	415
Tatoosh Island	7.7	7.2	11.8	13.2	15.1	17.6	19.4	21	4.1	546
Thule	2.2	2.1	3.4	4.4	5.5	8.5	10.2	13	2.0	963
Tripoli	4.7	4.0	7.3	8.8	10.8	12.7	14.4	22	3.0	420
Washington, D.C.	3.9	3.8	6.5	7.5	8.7	9.4	10.7	13	2.5	656
Wiesbaden	4.1	3.7	7.5	8.5	9.4	11.0	13.3	15	3.1	427
Zhana/Semey	2.8	1.8	5.9	7.3	11.2	14.2	15.3	16	3.5	130

TABLE A4. Cumulative distributions of wind speed (m/s) for April.

STATION	MEAN	50.00	PROBAB 84.10	1LITY T 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72)S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	4.9	3.5	9.5	10.6	13.0	14.4	15.4	16	3.9	150
Albrook	4.4	4.2	7.0	7.9	9.3	10.6	11.3	13	5.6	406
Albuquerque	5.3	4.3	8.8	10.2	12.5	14.3	15.2	18	3.4	482
Alert	2.2	1.3	4.5	7.5	12.5	15.2	17.3	18	3.7	150
Anchorage	3.2	3.0	5.1	5.7	7.1	8.4	9.4	27	2.2	476
Bahrein	4.2	3.5	7.2	9.3	11.6	12.8	13.4	14	3.2	150
Barrow	5.6	5.0	8.6	9.4	11.1	12.5	13.4	19	2.8	475
Barter Island	5.7	5.1	9.1	10.6	12.9	14.7	15.8	21	3.5	474
Berlin	3.7	3.6	5.4	6.3	7.2	8.1	8.9	6	1.7	150
Chateauroux	4.3	4.0	6.9	7.9	9.1	10.3	11.3	12	2.5	404
Churchill	7.7	7.6	11.5	12.8	14.7	17.4	18.8	24	3.9	461
El Paso	0.9	5.1	9.5	10.8	12.6	14.9	18.6	23	3.7	474
International Falls	4.7	4.5	7.4	8.3	9.1	9.5	11.0	13	2.3	533
Kadena	4.6	4.3	7.2	8.1	9.0	6.6	11.3	13	2.4	525
Kagoshima	3.6	3.2	0.9	7.1	8.7	10.3	11.3	12	2.3	148
Keflavik	7.4	6.7	11.5	13.3	15.1	17.9	20.1	27	4.2	953
Kwajalein	8.7	8.8	10.9	11.3	12.1	12.9	13.3	14	2.1	455
Miami	4.5	4.3	6.7	7.3	8.5	9.3	11.1	15	2.1	480
Montgomery	3.5	3.2	5.4	6.7	8.2	9.4	10.7	15	2.3	554

TABLE A4 (Continued)

STATION	MEAN	50.00	PROBAB) 84.10	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	4RESHOL 95.00	DS (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	2.3	2.0	4.6	5.4	6.6	7.2	9.9	10	2.0	180
Munich	3.5	3.0	6.1	7.2	8.5	9.3	10.5	13	2.4	300
New York	0.9	5.7	9.1	10.0	11.2	12.4	13.3	15	2.8	417
Norfolk	5.7	5.3	8.6	9.3	11.1	12.7	13.7	15	2.8	536
Osan-Ni	3.0	2.6	5.9	7.2	8.7	10.0	11.5	14	2.8	806
Peoria	5.6	5.3	8.4	9.1	10.1	11.1	12.1	14	2.4	528
San Juan	3.4	3.3	5.4	6.3	7.4	8.0	8.4	6	2.1	417
Shemya	8.8	8.5	12.5	13.8	16.0	18.4	19.1	21	3.8	596
Stephenville	4.7	4.3	8.0	9.5	11.3	13.2	16.1	23	3.6	929
Swan Island	5.7	5.2	8.1	8.8	9.7	10.1	10.5	11	1.9	414
Tatoosh Island	6.5	5.7	10.5	12.1	14.1	16.9	19.4	28	4.0	537
Thule	2.2	1.9	3.9	5.1	7.4	9.9	11.7	18	2.5	915
Tripoli	4.7	4.3	7.4	8.5	9.4	10.9	12.3	15	5.6	408
Washington, D.C.	3.8	3.8	6.1	7.0	8.1	9.5	10.2	18	2.4	644
Wiesbaden	3.9	3.9	9.9	7.5	8.8	9.4	11.4	13	2.7	418
Zhana/Semey	2.3	1.7	4.8	5.9	7.2	8.7	11.8	12	2.5	137

TABLE A5. Cumulative distributions of wind speed (m/s) for May.

	MEAN	50.00	PROBABI 84.10	LITY TI 90.00	PROBABILITY THRESHOLDS 84.10 90.00 95.00 97	15 (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	3.6	5.9	0 9	7.4	10.5	12 1	13.4	14	2.8	155
		, (•		, ,			. () (, (
Albrook	 	3.2	5.4	6.3	7.2	8.1	9.1	13	2.2	432
Albuquerque 4	4.9	4.0	8.5	9.3	10.6	11.6	13.2	Li	5.9	505
Alert 2	2.6	2.0	4.8	6.8	10.3	14.0	16.4	.02	3.5	155
Anchorage	4.0	3.9	6.4	7.3	8.6	9.4	10.7	12	2.2	434
Bahrein 4	4.8	4.4	8.7	9.8	12.1	13.4	14.4	15	3.5	155
Barrow	5.8	5.3	8.7	9.5	11.1	12.3	13.0	15	5.6	425
Barter Island	6.2	5.6	9.0	10.4	13.7	15.1	18.3	25	3.5	431
Berlin	3.7	3.5	5.5	9.9	7.6	8.6	9.0	ნ	1.8	155
Chateauroux	3.5	3.3	5.5	6.5	7.4	9.0	10.9	15	2.2	424
Churchill	7.5	7.1	11.3	12.9	15.0	17.4	19.5	31	4.1	408
El Paso	5.1	4.5	8.5	9.6	11.2	13.2	14.6	20	3.2	508
International Falls 4	4.5	4.3	6.8	7.8	9.1	10.5	11.7	15	2.4	558
Kadena (4.3	4.1	6.7	7.3	8.3	9.1	9.7	15	2.2	559
Kagoshima	3.3	3.0	5.3	6.4	8.0	8.8	9.4	10	2.2	155
Keflavi k (6.7	6.0	11.0	12.4	14.2	16.8	19.0	52	4.0	974
Kwajalein {	8.2	8.4	10.6	11.1	11.8	12.8	13.3	14	2.2	464
Miami	4.1	3.9	0.9	6.9	7.8	8.8	9.3	10	1.9	517
Montgomery	6.5	2.8	4.8	5.2	0.9	7.1	8.4	15	1.9	565

TABLE A5 (Continued)

	STATION	MEAN	50.00	PROBABILITY 84.10 90.0	1 LITY T 90.00	Y THRESHOLDS (00 95.00 97.	IS (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
	Moscow	2.1	1.7	4.3	5.2	6.4	7.2	7.6	8	2.1	186
	Munich	3.1	2.8	5.0	5.6	7.3	8.9	10.0	11	2.0	309
	New York	5.1	4.7	8.0	8.9	8.6	10.8	11.3	13	2.3	436
	Norfolk	4.6	4.5	7.3	8.5	9.0	9.5	10.9	13	2.3	556
	Osan-Ni	2.7	2.5	5.1	6.0	7.6	9.5	11.4	14	2.5	739
	Peoria	5.0	4.8	7.3	8.2	9.1	10.0	11.1	14	2.1	588
	San Juan	3.2	3.2	5.4	6.3	7.4	8.0	8.4	6	2.2	368
	Shemya	8.4	8.3	11.2	12.6	14.4	15.5	17.5	21	3.3	306
43		4.1	3.8	7.0	7.9	9.3	10.9	12.8	22	3.1	951
	Swan Island	5.1	4.9	7.0	7.5	8.5	9.1	9.3	10	1.7	426
	Tatoosh Island	5.6	5.0	8.7	9.7	11.5	13.0	14.5	19	3.0	556
	Thule	5.6	2.3	4.6	5.7	7.7	9.6	11.6	17	2.5	978
	Tripoli	4.0	3.8	6.3	7.2	8.6	9.6	11.4	13	2.3	422
	Washington, D.C.	3.2	3.2	5.1	5.5	6.7	7.4	8.8	10	2.0	683
	Wiesbaden	3.6	3.4	6.4	7.8	9.3	10.7	12.3	18	3.0	433
	Zhana/Semey	2.1	1.2	4.6	5.3	6.8	8.6	13.0	13	2.5	126

TABLE A6. Cumulative distributions of wind speed (m,) for June.

STATION	MEAN	50.00	PROBAB 84.10	1LITY T 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	DS (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	2.9	2.4	5.3	6.3	7.2	8.6	10.5	16	2.4	150
A!brook	5.6	2.4	4.8	5.4	6.9	8.2	9.3	10	2.2	418
Albuquerque	4.4	3.5	7.6	8.7	9.6	10.9	11.6	14	5.6	486
Alert	3.3	2.5	5.3	8.7	11.6	13.2	14.4	15	3.4	149
Anchorage	3.7	3.6	5.5	9.9	7.7	8.7	9.1	ტ	2.0	420
Bahrein	4.7	4.0	8.2	0.6	10.8	11.7	12.4	13	3.1	150
Barrow	5.3	4.9	7.8	8.6	9.4	10.7	11.5	18	2.2	414
Barter Island	5.1	4.8	7.9	8.7	9.3	10.3	11.3	18	2.5	419
F Berlin	3.8	3.5	5.9	6.7	7.3	8.3	9.3	11	1.9	150
Chateauroux	3.2	3.0	5.1	5.6	7.3	8.8	8.6	17	2.2	348
Churchill	5.4	6.1	9.9	11.1	12.8	13.7	14.4	15	3.3	398
El Paso	4.7	4.2	7.4	8.7	10.1	11.3	13.0	18	2.7	421
International Falls	3.7	3.6	5.4	6.3	7.5	8.7	9.3	18	2.1	480
Kadena	4.6	4.4	7.0	7.8	9.0	10.2	12.5	15	2.4	542
Kagoshima	3.1	2.7	5.5	6.2	7.8	10.7	14.5	16	5.6	150
Keflavik	5.9	5.5	9.3	10.9	13.3	15.0	17.1	50	3.7	946
Kwajalein	7.3	7.2	6.6	10.7	11.4	12.6	13.4	20	2.5	460
Miami	3.3	3.1	5.0	5.4	6.5	7.5	8.9	11	1.6	418
Montgomery	3.1	2.9	4.9	5.3	9.9	8.0	9.5	12	1.9	969

TABLE A6 (Continued)

STATION	MEAN	50.00	PROBAB 84.10	1LITY 7 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	DS (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSFRVATIONS
Moscow	2.0	1.5	3.8	4.7	5.5	6.9	7.9	11	2.0	180
Munich	3.1	2.8	5.0	5.6	6.9	8.0	9.5	13	1.9	300
New York	5.0	4.5	8.0	8.9	9.7	11.1	12.1	13	2.5	424
Norfelk	4.2	4.0	6.7	7.6	8.8	9.4	10.5	14	2.2	540
Osan-Ni	2.4	2.2	4.7	5.3	6.7	8.1	10.3	19	2.4	708
Peoria	4.3	4.3	6.3	6.9	7.5	8.6	9.1	10	1.8	503
San Juan	3.4	3.3	5.3	5.9	7.1	8.1	9.0	10	2.0	359
Shemya	6.8	6.7	6.6	10.9	12.5	14.3	16.2	18	3.2	302
Stephenville	3.6	3.3	6.4	7.3	8.6	9.4	11.7	18	2.8	954
Swan Island	5.8	5.6	8.1	8.8	9.6	10.1	10.5	11	5.0	418
Tatoosh Island	5.0	4.7	7.2	8.1	9.3	11.2	13.6	21	2.5	475
Thule	2.5	2.3	•	5.3	7.1	9.1	11.0	13	2.2	952
Tripoli	4.3	4.0	6.7	7.8	9.3	11.2	12.6	18	5.6	415
Washington, D.C.	2.8	2.7	4.8	5.5	5.6	7.2	8.9	13	1.9	601
Wiesbaden	3.1	2.7	5.7	6.9	8.3	9.0	11.1	13	2.7	418
Zhana/Semey	1.4	0.5	3.4	4.4	5.3	8.5	12.9	14	2.3	130

TABLE A7. Cumulative distributions of wind speed (m/s) for July.

STATION	MEAN	50.00	PROBABI 84.10	90.00	PROBABILITY THRESHOLDS 84.10 90.00 95.00 97	(%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	2.7	2.2	5.5	6.5	7.5	7.9	8.5	6	2.3	155
Albrook	2.9	2.8	4.8	5.5	5.9	7.2	8.3	6	1.9	424
Albuquerque	4.4	3,7	7.4	8.6	10.5	11.6	12.4	13	5.6	430
Alert	3.4	2.2	6.3	10.1	13.8	15.8	17.3	18	4.1	155
Anchorage	3.4	3.2	5.3	6.2	7.5	8.8	9.5	11	2.0	432
Bahrein	3.8	3.6	6.5	7.4	8.5	9.1	9.4	15	5.6	155
Barrow	5.3	4.9	7.7	8.6	9.4	10.7	11.5	13	2.3	393
Barter Island	4.9	4.6	7.3	8.5	9.8	11.0	12.0	15	2.5	421
Berlin	3.4	3.1	5.5	6.5	7.5	8.8	9.4	10	2.0	124
Chateauroux	3.5	3.0	5.5	6.7	8.1	10.1	12.3	18	2.5	378
Churchill	6.5	6.0	9.8	11.6	13.3	15.0	18.4	21	3.6	370
El Paso	4.6	4.3	7.2	8.4	9.8	10.9	11.4	12	2.5	432
International Falls	3.4	3.3	5.5	5.7	7,5	8.9	9.9	11	2.0	493
Kadena	4.8	4.2	7.9	9.1	10.7	12.6	14.3	22	3.0	461
Kagoshima	5.9	2.7	5.1	5.8	7.4	8.7	9.3	10	2.1	155
Keflavik	5.4	4.9	8.6	9.8	11.2	12.9	14.3	18	3.1	981
Kwajalein	5.5	5.4	8.4	9.0	9.7	10.8	11.3	14	2.5	206
Miami	3.1	3.0	5.0	5.4	6.4	7.0	7.5	œ	1.6	433
Montgomery	5.9	2.8	4.7	5.5	5.9	7.0	7.8	15	1.8	618

TABLE A7 (Continued)

STATION	MEAN	50.00	PROBAB1 84.10	1LITY TH 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72)S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	1.8	1.6	3.3	3.8	4.7	5.3	5.6	7	1.5	186
Munich	3.3	2.9	5.4	6.4	7.9	8.8	9.4	10	2.1	309
New York	4.9	4.5	7.7	8.6	9.3	10.4	11.2	15	2.3	433
Norfolk	4.0	3.8	5.9	6.9	7.9	9.0	9.5	14	2.0	555
Osan-Ni	5.6	2.4	4.9	5.7	7.2	8.7	9.7	13	2.4	731
Peoria	4.0	4.0	5.5	6.4	7.4	8.7	9.5	11	1.8	502
San Juan	3.7	3.7	5.4	6.3	7.4	8.0	8.4	6	2.0	362
Shemya	5.8	5.3	8.9	9.8	11.0	12.1	13.4	18	2.8	349
Stephenville	3.4	3.1	6.0	7.0	8.5	10.0	11.3	14	2.7	983
Swan Island	5.5	5.0	7.0	7.4	8.5	9.1	9.4	10	1.6	429
Tatoosh Island	5.2	4.9	7.7	8.7	6.6	11.3	12.4	13	5.5	492
Thule	2.7	2.2	4.7	6.5	9.0	11.2	12.7	18	2.7	978
Tripoli	3.6	3.6	5.5	6.5	7.3	8.5	9.5	10	2.1	426
Washington, D.C.	5.6	2.5	4.7	5.1	5.5	9.9	7.2	10	1.8	619
Wiesbaden	3.0	2.7	6.1	7.1	8.5	9.4	10.6	12	2.8	408
Zhana/Semey	1.4	0.5	3.3	4.3	5.5	7.3	9.1	10	2.0	139

TABLE A8. Cumulative distributions of wind speed (m/s) for August.

STATION	MEAN	50.00	PROBAB1 84.10	1LITY TH 90.00	PROBABILITY THRESHOLDS 84.10 90.00 95.00 97)S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	2.7	2.0	5.2	6.8	8.7	10.2	11.2	14	2.7	155
Albrook	3.0	3.0	5.0	5.4	6.5	7.0	7.5	œ	1.8	367
Albuquerque	3.7	3.2	5.5	6.8	8.2	8.9	9.4	10	2.0	432
Alert	2.7	2.2	4.9	8.9	9.1	12.0	14.4	16	3.0	155
Anchorage	3.0	2.8	5.0	5.6	6.9	7.8	9.2	11	1.9	434
Bahrein	3.0	2.9	5.1	5.5	7.3	10.2	11.2	12	2.5	155
Barrow	0.9	5.3	8.9	9.7	11.2	12.6	13.5	15	2.7	418
Barter Island	5.6	4.9	8.7	9.9	12.0	14.1	17.3	18	3.2	432
g Berlin	3.6	3.4	5.5	6.4	7.2	8.1	8.9	6	1.8	155
Chateauroux	3.8	3.4	6.2	7.1	8.6	10.6	12.6	15	5.6	426
Churchill	6.9	6.2	10.8	12.2	14.0	15.4	17.1	18	3.7	413
El Paso	4.3	4.0	8.9	7.6	8.8	9.5	10.9	15	2.3	431
International Falls	3.6	3.5	5.4	6.2	7.3	8.6	9.3	12	2.1	492
Kadena	4.8	4.0	8.3	9.5	12.0	14.6	18.9	23	3.7	463
Kagoshima	4.2	3.0	7.2	9.7	13.0	18.0	20.0	21	4.1	155
Keflavik	5.4	4.9	9.0	10.2	11.5	13.0	14.1	21	3.3	986
Kwajalein	4.9	4.7	7.2	8.1	9.3	9.9	10.4	11	2.2	393
Miami	3.0	2.8	4.8	5.5	5.8	6.8	7.3	8	1.5	436
Montgomery	8.8	2.8	9. _Å	5.1	5.5	7.0	8.2	12	1.7	620

TABLE A8 (Continued)

STATION	MEAN	50.00	PROBABILITY 84.10 90.00	LITY TH	THRESHOLDS (%)) 95.00 97.72)S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	1.8	1.5	3.4	4.2	5.0	5.5	6.9	8	1.7	185
Munich	3.3	2.9	5.1	6.4	8.7	10.3	12.1	15	2.4	309
New York	4.6	4.3	6.9	7.6	8.8	9.5	11.1	18	2.2	434
Norfolk	3.9	3.6	6.2	7.2	8.5	9.4	14.0	20	2.5	555
Osan-Ni	2.7	2.5	5.1	0.9	7.2	9.0	10.8	16	2.4	733
Peoria	3.8	3.7	5.3	9.3	7.1	8.1	9.0	10	1.6	506
San Juan	3.4	3.4	5.3	5.9	7.2	7.9	8.4	6	2.1	369
Shemya	6.3	5.7	9.5	10.3	11.6	13.2	18.1	50	3.1	271
Stephenville	3.8	3.4	9.9	7.7	9.5	10.7	11.6	18	5.9	982
Swan Island	4.7	4.6	6.4	7.0	7.5	8.6	9.5	10	1.5	428
Tatoosh Island	4.8	4.6	7.1	7.9	9.0	9.9	11.1	13	2.2	492
Thule	5.6	2.2	4.7	6.2	8.3	10.9	13.0	20	2.7	026
Tripoli	3.6	3.4	5.6	6.5	7.2	8.0	8.8	6	2.0	428
Washington, D.C.	2.5	2.4	4.3	4.8	5.3	5.6	6.9	80	1.6	622
Wiesbaden	3.0	2.5	6.2	7.4	9.0	10.8	12.4	15	3.1	365
Zhana/Semey	1.2	0.5	2.9	3.4	4.9	6.2	7.3	ဆ	1.6	129

TABLE A9. Cumulative distributions of wind speed (m/s) for September.

STATION	MEAN	50.00	PROBABILITY 84.10 90.0	LITY TI 90.00	THRESHOLDS (0 95.00 97.)S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	2.9	2.3	5.4	6.7	8.2	9.4	11.0	18	2.7	150
Albrook	5.6	2.6	4.6	5.1	6.3	7.0	7.4	80	1.8	391
Albuquerque	4.2	3.4	8.9	8.1	9.5	10.6	12.1	19	2.5	417
Alert .	3.4	2.5	5.8	9.5	12.1	13.1	14.0	15	3.7	150
Anchorage	3.1	2.8	5.0	5.7	7.6	8.8	9.4	10	5.0	419
Bahrein	3.6	3.3	6.2	7.3	6.7	9.9	11.2	12	5.6	150
Barrow	5.7	5.5	8.7	9.4	11.1	12.6	13.5	16	2.7	408
Barter Island	0.9	5.0	9.4	10.9	12.9	15.1	19.2	31	3.8	417
Berlin	3.4	3.4	5.4	6.1	7.1	7.9	9.5	10	1.9	150
Chateauroux	3.5	3.3	5.5	9.9	7.9	9.7	11.2	13	2.4	413
Churchill	8.5	7.9	13.1	14.8	16.5	18.4	20.1	22	4.3	384
El Paso	4.4	4.0	7.4	8.4	9.5	10.0	10.5	11	2.5	416
International Falls	3.8	3.7	5.4	6.2	7.5	8.8	9.3	11	5.0	473
Kadena	4.7	3.9	7.5	9.3	12.1	14.6	18.1	21	3.5	417
Kagoshima	4.3	3.6	7.2	8.6	10.5	13.1	18.0	19	3.2	150
Keflavik	7.1	6.5	, 11.3	13.0	15.0	17.3	19.4	52	4.2	949
Kwajalein	4.0	3.9	6.3	7.0	7.9	8.3	9.3	12	2.2	406
Miami	3.4	3.0	5.1	5.7	7.3	9.3	12.7	21	2.3	436
Montgomery	7	3.0	5.0	5.4	6.8	8.1	9.5	14	1.9	593

TABLE A9 (Continued)

STATION	MEAN	50.00	PROBAB 84.10	1LITY T 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	0S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	2.3	2.1	4.2	5.0	6.7	6 6	=	13	N C	001
Munich	3.0	2.6	2	4	7 4	ά	10.2) H	. ·	100
Now Vort	0		, ,	,	• (6.	7.01	CI	6.3	300
NO. NO.	J.	4. 3.	7.7	ж 4.	ۍ 8.	11.1	12.4	21	2.5	459
Norfolk	4.4	3.8	7.2	8.3	9.4	11.1	13.3	19	2.7	534
Osan-Ni	2.7	2.4	5.3	9.9	8.0	9.7	11.0	13	2.6	712
Peoria	4.1	3.9	6.1	7.0	8.1	9.0	9.4	11	1.9	548
San Juan	2.8	2.8	4.9	5.3	6.3	7.1	7.7	6	2.0	361
Shemya	7.5	7.2	10.8	11.7	13.4	15.2	16.6	21	3.4	270
م Stephenville	4.0	3.5	7.0	8.2	9.5	11.3	13.0	18	3.1	955
Swan Island	4.9	4.6	7.1	8.2	9.4	10.6	11.2	12	2.5	432
Tatoosh Island	5.8	5.5	9.5	10.4	11.8	13.6	16.8	50	3,4	478
Thule	3.1	2.6	5.0	6.1	8.3	10.6	13.0	50	2.7	950
Tripoli	3.8	3.7	5.9	6.8	7.5	9.0	10.1	11	2.2	0 00
Washington, D.C.	5.6	2.5	4.6	5.1	5.5	6.7	7.4	10	1.7	665
Wiesbaden	3.3	3.0	0.9	7.3	8.9	10.2	11.8	14	2.8	359
Zhana/Semey	1.3	0.5	3.1	3.9	5.5	6.5	7.3	10	1.8	131

TABLE A10. Cumulative distributions of wind speed (m/s) for October.

STATION	MEAN	50.00	PROBAB] 84.10	1LITY 1 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	15 (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	3.5	2.7	6.5	8.2	10.3	11.5	12.4	13	2.9	155
Albrook	2.4	2.3	4.5	5.3	6.4	7.2	7.9	10	2.0	424
Albuquerque	3.8	3.1	6.5	7.9	9.2	10.7	12.1	13	2.5	434
Alert	3.5	2.2	6.7	9.9	12.6	15.8	17.1	22	4.2	155
Anchorage	3.1	2.9	5.5	6.5	7.4	8.8	8.6	19	2.2	432
Bahrein	3.3	3.1	5.5	6.8	8.1	9.1	10.0	11	2.4	155
Barrow	9.9	5.9	10.0	11.1	12.6	13.8	14.9	16	3.1	409
Barter Island	7.2	6.0	11.5	13.5	16.6	19.7	21.5	23	4.6	413
Berlin	3.7	3.4	5.3	6.0	7.0	7.6	8.0	æ	1.7	154
Chateauroux	3.6	3.2	5.9	6.8	7.8	9.5	10.9	17	2.3	425
Churchili	8.5	8.0	13.0	14.5	16.8	19.3	21.1	25	4.4	425
El Paso	4.6	4.2	7.4	8.5	6.6	12.1	13.2	16	2.8	436
International Falls	4.0	3.9	6.0	7.0	8.2	9.1	9.5	13	2.2	494
Kadena	5.0	4.6	5.7	8.9	10.0	11.3	12.5	15	5.6	466
Kagoshima	4.2	3.5	6.7	8.4	11.0	12.3	13.4	77	2.8	155
Keflavik	9.7	6.2	11.9	13.6	15.8	19.0	21.6	37	4.8	. 982
Kwajalein	4.2	4.1	6.4	7.1	8.0	9.3	10.4	11	2.1	394
Miami	3.5	3.1	5.4	9.9	8.0	9.3	10.5	14	2.1	434
Montgomery	2.8	2.7	4.5	5.1	5.7	6.8	7.4	10	1.6	553

TABLE AlO(Continued)

STATION	MEAN	50.00	PROBAB 84.10	1117 TH	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	15 (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	3.1	2.7	5.3	6.4	5.5	9.4	10.9	12	2.4	186
Munich	3.0	2.5	5.3	6.9	9.1	10.8	12.0	13	2.6	310
New York	5.5	4.7	8.2	9.5	10.5	11.4	13.0	16	5.6	485
Norfolk	4.9	4.2	8.4	9.3	10.8	12.0	13.3	18	3.0	513
Osan-Ni	2.5	2.4	4.9	5.8	7.1	8.5	9.4	11	2.3	738
Peoria	4.3	4.1	6.3	7.0	8.0	9.1	10.2	15	1.9	551
San Juan	2.4	2.5	4.0	4.6	5.1	5.3	5.5	9	1.5	371
Shemya	8.8	9.9	14.3	15.2	18.5	20.3	21.1	22	4.5	278
Stephenville	4.5	4.1	7.5	9.0	10.8	12.7	14.9	22	3.4	983
Swan Island	4.4	4.3	9.9	7.2	8.3	9.5	10.4	13	2.1	416
Tatoosh Island	7.3	6.8	11.3	13.1	15.8	18.5	19.5	28	4.2	492
Thule	3.7	3.1	5.6	7.2	9.0	10.8	12.7	18	5.6	978
Tripolí	3.8	3.4	6.3	7.3	8.5	9.3	10.5	12	2.3	360
Washington, D.C.	2.8	2.6	4.9	5.4	6.9	8.2	9.1	13	2.1	559
Wiesbaden	5.9	5.6	5.5	9.9	7.6	8.8	9.4	13	2.7	369
Zhana/Semey	2.4	1.9	4.9	9.0	7.2	9.3	12.1	13	2.6	139

TABLE All.Cumulative distributions of wind speed (m/s) for November.

	STATION	MEAN	50.00	PR08AB1 84.10	1.117 T	PROBABILITY THRESHOLDS 84.10 90.00 95.00 97	0S (%) 97.72	00.96	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
	Akita	3.9	3.2	9.9	7.7	9.2	11.9	13.2	15	2.8	150
	Albrook	8.2	2.8	4.7	5.5	5.8	9.9	7.4	ω	1.8	399
	Albuquerque	3.5	2.9	5.8	7.2	8.7	6.6	11.5	18	2.4	417
	Alert	3.2	2.4	5.3	α α,	6.01	13.1	16.5	18	3.6	150
	Anchorage	3.0	2.9	5.0	5.4	8.9	8.3	9.3	10	2.0	415
	Bahrein	4.3	4.1	7.4	8.5	9.4	10.7	11.3	12	2.8	150
	Barrow	6.2	5.4	9.5	11.1	12.8	14.2	15.3	20	3.2	413
	Barter Island	6.5	5.3	11.0	12.9	14.5	15.2	16.4	21	4.0	413
ì	Berlin	3.7	3.5	5.8	9.9	7.4	8.6	9.0	6	1.9	150
54	Chateauroux	4.4	3.8	7.3	8.7	10.6	13.5	14.8	16	3.0	355
	Churchill	8.7	8.0	13.4	15.0	17.7	19.8	21.5	23	4.6	398
	El Paso	4.3	3.6	7.1	8.3	9.7	11.4	13.1	18	2.8	418
	International Falls	4.3	4.1	6.5	7.5	8.8	9.8	11.6	13	2.3	482
	Kadena	5.1	4.9	8.2	8.9	9.5	10.8	11.5	18	2.7	443
	Kagoshima	3.9	3.3	6.3	7.2	8.9	9.7	10.4	11	2.3	150
	Keflavik	7.8	7.2	12.7	14.5	16.8	19.7	21.7	30	4.8	822
	Kwajalein	6.4	6.1	9.8	10.8	11.9	12.9	13.4	19	3.0	301
	Miami	3.6	3.2	5.4	9.9	7.9	8.9	9.4	11	1.9	419
_	Montgomery	3.2	3.0	5.2	6.1	7.2	8.4	9.4	13	1.9	542

TABLE All (Continued)

STATION	MEAN	50.00		1LITY T 90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72	05 (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	3.3	3.0	5.1	5.5	7.0	10.2	11.2	12	2.3	180
Munich	8.2	2.4	4.7	5.4	7.2	9.6	11.1	14	2.2	300
New York	9.5	5.1	8.7	9.7	11.1	12.3	13.3	14	2.7	462
Norfolk	5.0	4.7	8.0	8.7	9.4	11.7	13.3	21	2.7	484
Osan-Ni	5.6	2.3	5.1	6.2	7.6	9.5	10.5	14	5.6	716
Peoria	5.1	4.8	7.8	8.7	9.4	10.8	11.7	13	2.4	543
San Juan	5.9	2.8	4.8	5.5	6.1	7.0	7.4	10	1.8	357
Shemya	9.6	9.1	13.9	15.4	18.5	19.9	21.3	24	4.5	258
Stephenville	5.1	4.5	8.4	10.0	12.0	15.4	17.7	25	3.8	936
Swan Island	5.3	4.9	7.3	8.2	9.1	10.0	10.9	12	1.8	413
Tatoosh Island	8.4	8.2	12.7	13.7	15.4	17.8	19.7	25	4.2	474
Thule	3.0	2.6	4.9	5.7	7.6	8.6	12.0	20	2.4	928
Tripoli	3.9	3.2	6.2	7.2	8.8	11.0	14.8	20	2.7	407
Washington, D.C.	3.5	3.2	5.5	7.0	8.5	9.5	12.3	91	2.5	541
Wiesbaden	3.4	3.1	6.2	7.3	8.6	9.3	11.1	18	2.8	358
Zhana/Semey	2.9	2.3	5.3	6.9	9.4	11.6	13.2	14	3.0	125

TABLE A12.Cumulative distributions of wind speed (m/s) for December.

STATION	MEAN	50.00	PR0BAB1 84.10	90.00	PROBABILITY THRESHOLDS (%) 84.10 90.00 95.00 97.72)S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Akita	5.3	4.5	9.3	10.6	12.3	14.0	16.0	17	3.7	155
Albrook	3.8	3.5	5.4	6.3	7.3	8.5	9.5	10	1.8	427
Albuquerque	3.4	2.9	5.5	6.5	8.4	9.5	11.1	18	2.3	435
Alert	2.9	1.7	5.3	8.3	11.0	15.2	20.0	21	4.0	154
Anchorage	5.6	2.5	4.6	5.3	6.5	7.4	8.8	11	1.9	434
Bahrein	4.9	4.7	8.5	9.1	9.6	11.1	12.0	13	3.1	155
Barrow	5.5	4.4	8.7	9.9	12.0	13.3	14.8	17	3.3	422
Barter Island	7.1	6.1	11.4	13.3	15.2	18.9	20.7	22	4.4	412
Berlin	4.3	4.2	9.9	7.3	8.3	9.0	9.4	13	2.0	153
Chateauroux	4.9	4.4	7.4	8.9	10.9	12.8	14.2	16	2.9	427
Churchill	8.2	7.9	12.4	13.7	15.2	16.6	17.5	21	3.8	409
El Paso	4.3	3.8	9.9	7.7	9.7	11.5	13.1	16	5.6	431
International Falls	4.0	3.9	5.5	7.1	8.6	9.5	11.0	13	2.3	496
Kadena	4.9	4.4	7.7	8.6	9.4	10.8	11.6	13	2.5	465
Kagoshima	3.9	3.3	9.9	7.6	8.8	9.4	11.0	14	2.5	155
Keflavik	8.1	6.9	13.3	15.3	18.2	20.3	22.4	28	5.1	849
Kwajalein	8.8	8.9	11.1	11.4	12.4	13.1	13.4	19	2.1	296
Míami	3.6	3.3	5.4	6.4	7.3	8.5	9.1	10	1.8	432
Montgomery	3.3	3.1	5.3	6.1	7.2	8.5	6.7	14	5.0	540

TABLE A12 (Continued)

STATION	MEAN	50.00	PROBABI 84.10	LITY TH	PROBABILITY THRESHOLDS (%) 84.10 96.00 95.00 97.72	S (%) 97.72	99.00	MAXIMUM OBSERVED	STANDARD DEVIATION	NUMBER OF OBSERVATIONS
Moscow	3.3	3.0	5.0	5.4	6.7	9.0	10.9	14	2.2	186
Munich	3.4	2,8	5.4	6.8	8.9	11.2	13.0	16	5.6	309
New York	5.7	5.0	9.0	10.2	11.6	13.2	15.1	22	3.1	495
Norfolk	5.0	4.6	8.0	8.9	8.6	11.3	12.7	17	5.6	493
Osan-Ni	5.6	2.4	5.5	6.4	7.7	9.4	11.1	16	5.6	739
Peoria	4.7	4.5	6.9	7.5	8.5	9.0	9.5	10	1.9	545
San Juan	3.4	3.0	6.0	6.8	7.5	8.6	9.5	. 11	2.3	358
Shemya	6.6	6.6	14.2	15.3	17.7	19.7	21.1	92	4.4	288
Stephenville	0.9	5.4	9.9	11.3	13.4	17.3	19.6	27	4.3	983
Swan Island	5.8	5.2	8.4	9.0	9.5	10.8	11.4	13	2.2	422
Tatoosh Island	9.5	8.6	14.5	15.9	18.2	19.9	21.3	25	4.8	494
Thule	2.7	2.5	4.5	5.5	6.9	9.1	11.0	13	2.2	948
Tripoli	4.7	4.1	7.5	9.0	10.7	12.6	14.6	20	3.0	425
Washington, D.C.	3.5	3.1	5.7	7.2	8.7	9.7	11.0	12	2.5	558
Wiesbaden	9.	3.2	6.7	7.8	9.5	11.1	13.2	15	3.1	366
Zhana/Semey	3.3	2.6	6.4	7.3	10.1	11.8	12.2	12	3.1	123

TABLE Al3. Elevation, location, and period of record for stations included in Tables 1-12.

STATION	ELEVATION (m)	LATITUDE	LONGITUDE	PERIOD OF RECORD
Akita	10	39°43'N	140°06'E	Jan 56-Dec 60
Albrook	6	8°59'N	79°34'W	Jan 56-Jul 63
Albuquerque	1619	35°03'N	106°37'W	Jan 56-Jun 63
Alert	66	82°30'N	62°20'W	Jan 56-Dec 60
Anchorage	30	61°10'N	149°59'W	Jan 56-Apr 63
Bahrein	2	26°16'N	50°37'E	Jan 56-Dec 60
Barrow	8	71°18'N	156°47'W	Jan 56-Apr 63
Barter Island	15	70°08'N	143°38'W	Jan 56-Dec 63
Berlin	48	52°29'N	13°24'E	Jan 56-Dec 60
Chateauroux	162	46°51'N	1°43'E	Jul 57-May 64
Churchill	30	58°57'N	94°11'W	Jan 56-Apr 63
El Paso	1195	31°48'N	106°24'W	Jan 56-May 63
International Falls	360	48°34'N	93°23'W	Jan 56-May 64
Kadena	49	26°21'N	127°45'E	Jan 56-Jun 63
Kagoshima	5	31°34'N	130°33'E	Jan 56-Dec 60
Keflavik	49	63°57'N	22°37'W	Jan 56-Oct 63
Kwajalein	11	8°44'N	167°43'E	Jan 56-Dec 62
Miami	4	25°49'N	80°17'W	Jan 56-Jul 63
Montgomery	61	32°18'N	86°24'W	Jun 56-May 64
Moscow	186	55°45'N	37°34'E	Jul 55-Jun 61
Munich	526	48°08'N	11°42'E	Jan 56-Dec 60
New York	5	40°40'N	73°47'W	Sep 56-Dec 62
Norfolk	9	36°53'N	76°12'W	Jan 56-Dec 62
Osan-Ni	15	37°06'N	127°02'E	Apr 57-Apr 63
Peoria	201	40°40'N	89°41'W	Sep 56-May 64
San Juan	19	18°27'N	66°06'W	Jan 56-Apr 63
Shemya	34	52°43'N	174°06'E	Jul 58-Jul 63
Stephenville	58	48°32'N	58°33'W	Jan 56-Feb 64
Swan Island	10	17°24'N	83°56'W	Jan 56-Jul 63
Tatoosh Island	31	48°23'N	124°44'W	Jan 56-May 64
Thule	39	76°33'N	68°49'W	Jan 56-Feb 64
Tripoli	11	32°54'N	13°17'E	Jan 56-Dec 62
Washington, D.C.	88	38°50'N	76°57'W	Jan 56-May 64
Wiesbaden	134	50°00'N	8°20'E	Jan 51-Dec 57
Zhana/Semey	206	50°21'N	80°15'E	Nov 58-Oct 63

REFERENCES*

- Bankley, C. W., and L. L. Schulman, 1979: Estimating hourly mixing depths from historical meteorological data. <u>J. Appl. Meteor.</u>, <u>18</u>, 772-780.
- Blackadar, A. K., H. A. Panofsky, and F. Fiedler, 1974: <u>Investigation of</u>
 the <u>Turbulent Wind Field Below 500 Feet Altitude at the Eastern Test</u>
 Range, Florida. NASA Contractor Report CR-2438, 92 pp.
- Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer.

 Workshop on Micrometeorology (D. A. Haugen, Ed.), American Meteorological Society, Boston, 67-100.
- Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 1041-1052.
- Clarke, R. H., and G. D. Hess, 1973: On the appropriate scaling for velocity and temperature in the planetary boundary layer. <u>J. Atmos. Sci.</u>, <u>30</u>, 1346-1353.
- Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. <u>J. Atmos. Sci.</u>, <u>29</u>, 91-115.
- Deardorff, J W., 1973: Three-dimensional numerical modeling of the planetary boundary layer. <u>Workshop on Micrometeorology</u> (D. A. Haugen, Ed.),

 American Meteorological Society, Boston, 271-311.
- Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. <u>Bound.-Layer</u>

 <u>Meteor.</u>, 7, 81-106.
- *NOTE: These references are in the format used by journals published by the American Meteorological Society.

- Duncan, L. D., 1981: <u>Technical Documentation, EOSAEL 80, Volume I.</u> Atmospheric Sciences Laboratory Report ASL-TR-0072 (Limited distribution), 292 pp.
- Essenwanger, O. M., 1970: Analytical procedures for the quality control of meteorological data. <u>Meteorological Observations and Instrumentation</u>, Meteor. Monogr., No. 33, 141-147.
- Estoque, M. A., 1973: Numerical modeling of the planetary boundary layer.

 <u>Workshop on Micrometeorology</u> (D. A. Haugen, Ed.), American Meteorological
 Society, Boston, 217-270.
- Garrett, A. J., 1981: Comparison of observed mixed-layer depths to model estimates using observed temperatures and winds and MOS forecasts.

 J. Appl. Meteor., 20, 1277-1283.
- Hansen, F. V., 1977: <u>The Critical Richardson Number</u>. Atmospheric Sciences Laboratory Technical Report ECOM-5829, 27 pp.
- Haynes, B. C., 1958: <u>Techniques of Observing the Weather</u>. John Wiley and Sons, New York, 272 pp.
- Hennessey, J. P., 1977: Some aspects of wind power statistics. <u>J. Appl.</u>
 Meteor., 16, 119-128.
- Højstrup, J., 1982: Velocity spectra in the unstable planetary boundary layer. J. Atmos. Sci., 39, 2239-2248.
- Huschke, R. E., 1959: Glossary of Meteorology. American Meteorological Society, Boston, 638 pp.
- Kaimal, J. C., R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. H. Kahn, and J. A. Businer, 1982: Spectral characteristics of the convective boundary layer over uneven terrain. <u>J. Atmos. Sci.</u>, 39, 1098-1114.

- Landsberg, H. E., 1981: <u>The Urban Climate</u>. Academic Press, New York, 277 pp.
- Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic convective boundary layer.

 J. Atmos. Sci., 37, 1313-1326.
- List, R. J., 1958: <u>Smithsonian Meteorological Tables.</u> Smithsonian Institute, Washington, 527 pp.
- Luna, R. E., and H. W. Church, 1972: A comparison of turbulence intensity and stability ratio measurements to Pasquill stability classes. <u>J. Appl.</u>
 Meteor., 11, 663-669.
- Mahrt, L., J. C. André, and R. C. Heald, 1982: On the depth of the nocturnal boundary layer. J. Appl. Meteor., 21, 90-92.
- Nieuwstadt, F. T. M., and H. Tennekes, 1981: A rate equation for the nocturnal boundary layer height. J. Atmos. Sci., 38, 1418-1428.
- Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977:

 The characteristics of turbulent velocity components under convective conditions. <u>Bound.-Layer Meteor.</u>, <u>11</u>, 355-361.
- Pasquill, F., 1961: The estimation of the dispersion of windborne material.

 Meteor. Mag., 90, 33-49.
- Paulson, C. A., 1970: A mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.

 J. Appl. Meteor., 9, 857-861.
- Reiquam, H., 1980: Stability climatology from on-site wind data. <u>Second</u>

 <u>Joint Conference on Applications of Air Pollution Meteorology,</u> American

 Meteorological Society and Air Pollution Control Association, 24-27

 March 1980, New Orleans, 803-808.

- Stewart, D. A., 1981: A Survey of Atmospheric Turbulence Characteristics.

 U. S. Army Missile Command Technical Report RR-81-6, 34 pp.
- Stewart, D. A., and O. M. Essenwanger, 1978: Frequency distribution of wind speed near the surface. J. Appl. Meteor., 17, 1633-1642.
- Tennekes, H., 1973: Similarity laws and scale relations in planetary boundary layers. Workshop on Micrometeorology (D. A. Haugen, Ed.), American Meteorological Society, Boston, 177-216.
- Tennekes, H., and J. L. Lumley, 1972: <u>A First Course in Turbulence</u>. MIT Press, Cambridge, 300 pp.
- Weber, A. H., J. S. Irwin, W. B. Petersen, J. J. Mathis, and J. P. Kahler, 1982: Spectral scales in the atmospheric boundary layer. <u>J. Appl.</u>
 Meteor., 21, 1622-1632.
- Wyngaard, J. C., 1973: On surface-layer turbulence. <u>Workshop on Micro-meteorology</u> (D. A. Haugen, Ed.), American Meteorological Society, Boston, 101-149.
- Wyngaard, J. C., 1975: Modeling the planetary boundary layer--extension to the stable case. Bound.-Layer Meteor., 9, 441-460.
- Wyngaard, J. C., and S. F. Clifford, 1977: Taylor's hypothesis and high-frequency turbulence spectra. <u>J. Atmos. Sci.</u>, <u>34</u>, 922-929.
- Young, M. W., Ed., 1982: <u>Cities of the World</u>. Gale Research Co., Detroit, 300 pp.
- Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141-145.

DISTRIBUTION

	No. cf <u>Copies</u>
Office of Naval Research/Code 221 ATTN: D. C. Lewis 800 N. Quincy Street Arlington, VA 22217	1
Pacific Missile Test Center Code 3253 ATTN: Charles Phillips Point Mugu, CA 93042	1
Commander US Army Test and Evaluation Command ATTN: NBC Directorate	1 1 1
Commander US Army Cold Regions Research and Engineering Laboratories ATTN: Environmental Research Branch Mr. Roger H. Berger, CRREL-RP Hanover, NH 03755	1
Commander US Army Ballistics Research Laboratories ATTN: AMXBR-B -LA Ken Richer Aberdeen Proving Ground, MD 21005	1 1 1
Commander US Army Edgewood Arsenal ATTN: SMUEA-CS-0 Operations Research Group Edgewood Arsenal, MD 21010	1 1
Commander US Army Frankford Arsenal ATTN: SMUFA-1140 Philadelphia, PA 19137	1

	No. of Copies
Commander US Army Picatinny Arsenal ATTN: SMUPS-TV-3 Dover, NJ 07801	1
US Army Armament R&D Command ATTN: Murray Rosenbluth DRDAR-SCF-DD, 65S Dover, NJ 07801	1
Commander US Armament Development & Test Center ATTN: MAJ Francis Lomax CPT Edward H. Kelly Det 10, 2 Weather Sq. Eglin AFB, FL 32542	1 1
ADTC/XRCE ATTN: D. Dingus Eglin AFB, FL 32542	1
Commander AFATL/LMT Eglin AFB, FL 32544	1
Commander US Army Dugway Proving Ground ATTN: Meteorology Division Dugway, UT 84022	1
Commander US Army Artillery Combat Developments Agency Fort Sill, OK 73504	1
Commander US Army Artillery & Missile School ATTN: Target Acquisition Department Fort Sill, OK 73504	1
Commander US Army Communications-Electronics Combat Development Agency Fort Huachuca, AZ 85613	1
Commander Desert Test Center Fort Douglas, UT 84113	1
Commander US Army CBR School Micrometeorological Section Fort McClellan, AL 36205	1

	No. of <u>Copies</u>
Commander USAF Air Weather Service (MATS) ATTN: Ms. Hilda Snelling MAJ Kit G. Cottrell/AWS/DNP CPT William S. Weaving (7WW/LN) Scott AFB, IL 62225	1 1 1
Commander US Army Combined Arms Combat Development Activity Fort Leavenworth, KS 66027	1
Chief of Naval Operations ATTN: Code 427 Department of the Navy Washington, DC 20350	1
Chief US Weather Bureau ATTN: Librarian Washington, DC 20235	1
Commander US Army Armament Command Rock Island, IL 61202	1
Commander US Army Foreign Science and Technology Center Federal Office Bldg 220 7th Street, NE Charlottesville, VA 22901	1
Commander US Army Training & Doctrine Command ATTN: ATORI Fort Monroe, VA 23351	1
Director Ballistic Missile Defense Advanced Technology Center ATTN: ATC-D -0 -R -T P. 0. Box 1500	1 1 1 1
Huntsville, AL 35807	

	No. of Copies
Commander US Naval Air Systems Command Washington, DC 20360	1
Chief of Naval Research Department of the Navy Washington, DC 20360	1
Commander US Naval Air Development Center Warminster, PA 18974	1
Commander US Naval Electronics Lab Center San Diego, CA 92152	1
Commander US Naval Surface Weapons Center Dahlgran, VA 22448	1
US Army Materiel Systems Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005	1
Commander US Air Force, AFOSR/NP ATTN: LTC Gordon Wepfer Bolling AFB Washington, DC 20332	1
Naval Surface Weapons Center ATTN: Mary Tobin, WR42 White Oak, MD 20910	1
HQS, Department of the Army ATTN: DAEN-RDM/Dr. F. dePercin Washington, DC 20314	1
HQS, Department of the Army Directorate of Army Research ATTN: DAMA-ARZ -ARZ-D Dr. Frank D. Verderame Washington, DC20310	2 1 1

	No. of Copies
Director US Army Night Vision Laboratory ATTN: Mr. John Johnson Mr. Joseph R. Moulton Dr. Richard R. Shurtz Dr. C. Ward Trussell, Jr. Fort Belvoir, VA 22060	1 1 1
Director Naval Research Laboratory ATTN: Code 5300, Radar Division Code 5370, Radar Geophysics Br. Code 5460, Electromagnetic Propagation Br. Washington, DC 20390	1 1
Deputy for Science and Technology Director of Defense Research and Engineering ATTN: Military Asst for Environmental Sciences Pentagon, Washington, DC 20301	1
LTC Robert E. Johnson TRADOC ATTN: ATFE-LO-MI, Bldg 4505, Rm B-200 Redstone Arsenal, AL 35898	1
Commander USA OTEA ATTN: CSTE-STS-I/F. G. Lee 5600 Columbia Pk Falls Church, VA 22041	1
Commander/Director Corps of Engineers Waterways Experiment Station ATTN: WESEN/Mr. Jerry Lundien P. O. Box 631 Vicksburg, MS 39180	1
Director Atmospheric Sciences Program National Sciences Foundation Washington, DC 20550	1
Director Bureau of Research and Development Federal Aviation Agency Washington, DC 20553	1
Commander US Army Aviation R&D Command ATTN: Dr. Gene Marner P. O. Box 209 St. Louis, MO 63166	1

	No. of Copies
Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1
Director of Meteorological Systems Office of Applications (FM) National Aeronautics & Space Admin. Washington, DC 20546	1
Commander Center for Naval Analyses ATTN: Document Control 1401 Wilson Blvd Arlington, VA 22209	1
National Bureau of Standards Boulder Laboratories ATTN: Library Boulder, CO 80302	1
Navy Representative National Climatic Center Arcade Bldg Asheville, NC 28801	1
National Oceanic & Atmospheric Admin. National Climatic Center ATTN: Technical Library Arcade Bldg Asheville, NC 28801	1
Director Defense Advanced Research Projects Agency 1400 Wilson Blvd Arlington, VA 22209	1
Commander ARRADCOM ATTN: DRDAR-SCF-IM Mr. J. Heberley Dover, NJ 07801	1
National Aeronautics & Space Admin. ATTN: R-AERO-Y Marshall Space Flight Center, AL 35812	1

	No. of Copies
Director of Defense Research and Engineering Engineering Technology ATTN: Mr. L. Weisberg Washington, DC 20301	. 1
Office of Chief Communications-Electronics, DA ATTN: Electronics Systems Directorate Washington, DC 20315	1
Office, Asst Chief of Staff for Intelligence, DA ATTN: ACSI-DSRSI Washington, DC 20310	1
Office of US Naval Weather Service US Naval Air Station Washington, DC 20390	1
Office, Asst Secretary of Defense Research and Engineering ATTN: Technical Library Washington, DC 20301	1
Commander US Air Force Avionics Laboratory ATTN: MAJ Winston Crandall, ASD/WE CPT J. D. Pryce, AFAL/WE Dr. B. L. Sowers, AFAL/RWI Mr. Roger T. Winn, AFAL/WE CPT William C. Smith, AFAL/RWI-3(WE) Mr. Raymond Wasky Mr. D. Rees Wright-Patterson AFB, OH 45433	1 1 1 1 1 1
DA, ODCSLOG US Army Logistics Evaluation Agency New Cumberland Army Depot New Cumberland, PA 17070	1
US Army Engineering Topographic Laboratories Earth Sciences Division ATTN: ETL-GS-ES, Dr. W. B. Brierly Fort Belvoir, VA 22060	1
Commander US Army Research Office ATTN: Dr. R. Lontz Dr. Frank DeLucia Dr. James Mink Dr. Hermann Robl P. O. Box 12211 Research Triangle Park, NC 27709	1 1 1 1

	No. of Copies
US Army Research & Standardization Group (Europe) ATTN: DRXSN-E-RX, Dr. A. K. Nedol Box 65, FPO New York 90510	2
US Army Materiel Development and Readiness Command ATTN: Dr. Gordon Bushy Dr. James Bender Dr. Edward Sedlak 5001 Eisenhower Avenue Alexandria, VA 22333	1 1 1
Commander US Army Tank Automotive R&D Command ATTN: DRDTA-RCAF RCAF, Mr. Eugene Spratke Warren, MI 48090	1
Commander USA Mobility Equipment R&D Command ATTN: DRDME-ZK, Dr. Karl H. Steinbach Fort Belvoir, VA 22060	1
Mr. Joseph Egger Technology Deputy Engr. Sys. Branch US Army Combat Development Experimentation Command Fort Hunter-Liggett, CA 93928	1
Commander HQ Rome Air Development Center (AFSC) ATTN: Mr. Larry Telford Mr. Edward E. Altshuler Hanscom AFB, MA 01731	1
Air Force Geophysics Laboratories ATTN: OPI, Mr. John Selby Mr. V. Falcone OPA, Dr. R. Fenn CRXL LKI, Mr. Lund Mr. Gringorten Mr. Lenhard Mr. Grantham LYS, Mr. R. S. Hawkins LYW, Mrs. R. M. Dyer Mr. R. J. Donaldson LUP, Mr. B. A. Kunkel Hanscom AFB, MA 01731	1 1 1 1 1 1 1 1

	No. of Copies
Commander US Army Electronics R&D Command AlTN: DRSEL-RD-SM, Mr. M. Lowenthal DELET-MJ, Dr. H. Jacobs Dr. Lothar Wandinger DELCS-TA, Mr. Allan Tarbell -R-M, Dr. B. Gelernter DELCT, Dr. R. Buser Mr. R. S. Rohde Fort Monmouth, NJ 07703	1 1 1 1 1 1
Commander Naval Weapons Center ATTN: Code 3173, Dr. Alexis Shlanta Mr. Robert Moore China Lake, CA 93555	1
Commander Atmospheric Sciences Laboratory US Army Electronics Command ATTN: DELAS-AS, Dr. E. H. Holt -DD, Mr. Rachele Mr. James D. Lindberg -E0-ME, Dr. D. R. Brown Dr. Donald Snider -AS-T, Mr. Robert Rubio -AS-P, Mr. John Hines Dr. Kenneth White Mr. H. Kobaylshi -E0-S, Dr. Richard Gomez Dr. Louis Duncan -BE, Mr. Fred Horning White Sands Missile Range, NM 88002	1 1 1 1 1 1 1 1 1
Commander/Director Office, Missile Electronic Warfare ATTN: DELEW-M-STO, Mr. Larsen -TAS, Mr. R. Stocklos Mr. R. Lee White Sands Missile Range, NM 88002	1 1 1
DRSM1-R, Dr. McCorkle Dr. Rhoades -RO, COL Hayton Dr. Fowler Mr. Evans Mr. Jackson Mr. Lang	1 1 1 1 1 1
-RP, Mr. Bledsoe -RPR -RN, Mr. Leonard -RA, Mr. Fronefield	1

			No. of Copies
-RH,	COL	DeLeuil	1
-RX,	COL	Hildreth	1
-RXB,		Booker Thurman	1
-RL,	Mr.	Cobb	1
-RLA,	Ms. Mr.	Richardson Pangarova Harwell Green	1 1 1
-RLH,	Mr. Mr.	Christensen Dillon Neblett Williams	1 1 1
-RLM,	Mr.	Campbel!	1
-RK,		Stephens Smith	1
-RT,	Mr.	Storey	1
-RTP,	Mr.	Bissinger	1
-RTF,		Rubert Smith	1
-RD,	Mr.	Powe!1	1
-RDD,	Dr. Mr.	Dickson Gibbons Waite Combs	1 1 1
-RDK,		Deep Vahlke	1
-RE,	Mr.	Lindberg	1
-REL,	Mr.	Barley	1
-REM,	Mr.	Anderson	1
-RES,	Mr.	Buie	1
-RS,	Mr.	Harris	1
-RSP,	Mr. Mr.	Forgey Lee	1
-RG,		Yates Alongi	1 1

		No. of Copies
-RR,	Dr. Hartman Dr. Bennett Ms. Romine	1 1 1
-RRA,	Dr. Essenwanger Mr. Dudel Dr. Stewart Mr. Levitt Mr. Betts Mrs. Mims	25 1 25 1 1
-RRD,	Dr. Merritt	1
-RRO,	Dr. Duthie	1
RPT,	(Record Copy) (Reference Copy)	1