Problem Set 5

1. Let $c_1, ..., c_n$ denote final outcomes. Derive the simple lotteries induced by the following two compound lotteries.

- 2. Let n=4 and let $U(L)=\sum p_lu_l$ be a vNM utility function.
 - (a) Suppose that $u_1 u_2 > u_3 u_4$. Show that $L_1 = (\frac{1}{2}, 0, 0\frac{1}{2}) \succ (0, \frac{1}{2}, \frac{1}{2}, 0) = L_2$.
 - (b) Is vNM utility an ordinal concept?
- 3. Let $U:\mathcal{L}\to\mathbb{R}$ be a vNM utility function representing \succeq . Show that $\tilde{U}(L)=\beta U(L)+\gamma$ also is a vNM utility function representing \succeq whenever $\beta>0$ and $\gamma\in\mathbb{R}$.
- 4. Show that if the preference \succeq over $\mathfrak L$ satisfies the independence axiom, then for any $L, L', L'' \in \mathfrak L$ and any $\alpha \in (0,1)$, we have

$$L \sim L' \Longleftrightarrow \alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L''.$$

- 5. Let M=[0,1] be the money domain, and consider a strictly risk averse expected utility decision maker with Bernoulli utility $u(x)=\sqrt{x}$.
 - (a) Let L be a lottery that gives x = 2/3 with certainty. What is its corresponding distribution function F_L ? What is $U(F_L)$?
 - (b) Consider the lottery L with support M and uniform density $f_L(x)=1$. Derive $U(F_L)$.
 - (c) Derive the certainty equivalent $c(F_L, \sqrt{\cdot})$ of the last lottery.