

Chapter Contents

Analogue Modulation General Modulated Wave Formula

Digital Modulation

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

QAM Analogue QAM Digital QAM

M-ary PSK Schemes

Comparison of Digital Modulation Schemes Bit-Rate versus Bandwidth Noise Sensitivity High Power Amplifier Nonlinearities

SNR for Digital Communication

Notes

Notes

-			
-			
-			
-			

Waveform Types

-	

Modulation	Notes		
Amplitude Modulation:			
$x_m(t) = A(t)\cos(2\pi f_c t + \phi).$			
Phase Modulation (including FM):			
$x_m(t) = A\cos\left(2\pi f_c t + \phi(t)\right).$			
General Modulated Wave Formula:			
$x_m(t) = A(t)\cos\left(2\pi f_c t + \phi(t)\right),$			
QAM modulates both $A(t)$ and $\phi(t)$.			
Digital Modulation			
	Notes		
Famous digital modulation technique:			
Morse Code			
Morse code entered by keying a mechanical push button.			
Digital modulation over simplified idea:			
Standard (clocked) digital signal: $d(t) \in \{0, 1\}$.			
Digital modulation signal: $m(t) = 2d(t) - 1$.			
Then use $m(t)$ as an analogue modulating signal.			
Digital Modulation: (Shift) Keying			
2.g.tar medalation (Cinic) reging	Notes		
Electronic digital modulation techniques include: • Amplitude-Shift Keying (ASK)			
■ Frequency-Shift Keying (FSK)			
Phase-Shift Keying (PSK)			
(digital) Quadrature Amplitude Modulation (QAM)			
■ Binary Phase Shift Keying (BPSK)			
Similar to DSBSC or digital phase modulation.			

Digital Modulation: (Shift) Keying

Notes

Frequency Shift Keying (FSK)

Varies analogue carrier frequency with digital modulating signal. How to vary frequency?

Only useful for low bite rate applications, e.g. storing data on audio cassette tapes.

GOOD	
Continuous, smoo	th changes
between frequ	iencies
digital modulation \longrightarrow VCO signal $d(t)$	FSK modulated signal

Notes	5
-------	---

FSK

- \blacksquare Spacing of frequencies: $\Delta f = 2f_d.$
- \blacksquare Beneficial for receiver if $\Delta f \times T_b \in \mathbb{Z}$ (an integer)
 - Acts as modulation index.
 - lacksquare T_b one bit period

Receiver Circuit:

Integrate and Dump: effectively averages signal over one symbol duration.

Notes

Integration and Dump...

Notes

FSK

- Assume received signal should be "1"
- $lue{}$... output from upper mixer = + ve DC voltage (standard coherent demodulation)
 - Output of integrate-and-dump = +ve voltage
- lacksquare Output from lower mixer is a difference frequency $2f_d$

$$\cos((\omega_1-\omega_0)t)=\cos(2\pi(f_1-f_0)t)=\cos(4\pi f_d t)=\cos(2\pi\times 2f_d\times t).$$

- lacksquare If integration period contains whole number of cycles of $2f_d$
 - lacksquare Output of integrate-and-dump = 0.
- Subtracting 0 (bottom) from +ve voltage (top) = +ve.
- Threshold forces +ve to 1 (or suitable voltage level).

If received signal should be 0, then top = 0 and bottom = -vevoltage,

 \therefore output threshold = 0.

Notes

Phase Shift Keying (PSK)

Information in phase, not amplitude:

$$x_m(t) = A\cos(2\pi f_c + \phi(t)).$$

Most basic PSK, Binary PSK (BPSK):

- lacktriangle Phase of 0 radians = binary 1
- Phase of π radians = binary 0

Can be encoded by:

$$\phi(t) = \left\{ \begin{array}{ll} 0 & \text{if} \quad d(t) = 0 \quad \Rightarrow \quad x_m(t) = A\cos(2\pi f_c) \\ \pi & \text{if} \quad d(t) = 1 \quad \Rightarrow \quad x_m(t) = A\cos(2\pi f_c + \pi) \end{array} \right. \label{eq:phi}$$

But also $x_m(t) = A\cos(2\pi f_c + \pi) = -A\cos(2\pi f_c)$. Identical to digital DSBSC.

Analogue QAM

- Analogue modulation technique: Quadrature Amplitude Modulation (QAM)
- Digital equivalent is important
- Review analogue QAM first.

QAM uses compound angle formula:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

to obtain I/Q components.

Notes

QAM

Using the compound angular formula:

$$\begin{split} x_m(t) &= A(t) \cos(2\pi f_c t + \phi(t)) \\ &= A(t) [\cos(2\pi f_c t) \cos(\phi(t)) - \sin(2\pi f_c t) \sin(\phi(t))] \\ &= A(t) \cos(\phi(t)) \cos(2\pi f_c t) - A(t) \sin(\phi(t)) \sin(2\pi f_c t) \\ &= I(t) \cos(2\pi f_c t) - Q(t) \sin(2\pi f_c t) \end{split}$$

where

- $I(t) = A(t)\cos(\phi(t)),$
- $Q(t) = A(t)\sin(\phi(t)).$

Notes

QAM

QAM modulated wave:

$$x_m(t) = I(t)\cos(2\pi f_c t) - Q(t)\sin(2\pi f_c t)$$

with

Amplitude Modulation:

$$A(t) = \sqrt{I(t)^2 + Q(t)^2}$$

■ Phase Modulation:

$$\phi(t) = \tan^{-1}\left(\frac{Q(t)}{I(t)}\right).$$

Notes			

QAM: Subcarrier Chrominance Encoding

Computer Image: often RGB

α	NA .	Subcarrior	Chrominance	Encoding

Luminance (Y)

Notes

Notes

QAM: Subcarrier Chrominance Encoding

N	otes	

Digital QAM

Simultaneously carries 2 digital signals.

Digitally amplitude modulating 2 quadrature carriers:

- $\cos(2\pi f_c t)$
- $\sin(2\pi f_c t)$

Possible states (4-QAM):

State Table

Data	I	Q
11	+1	+1
10	+1	-1
01	-1	+1
00	-1	-1

Can be drawn as constellation diagram...

Constellation Diagram (4QAM)

Notes

16QAM

- lacktriangle Two bits (4 levels) to modulate I
 - Equivalent to 2bit D/A converter
- Two bits (4 levels) to modulate Q
 - Equivalent to 2bit D/A converter

Notes		

$M\text{-}\mathrm{ary}$ PSK Schemes

To convey N bits, then $M=2^N$:

Notes			

M-ary $\operatorname{\mathbf{PSK}}$

Variables in M-ary PSK scheme:

- $\begin{tabular}{l} \blacksquare \end{tabular} A = {\it amplitude or signal strength} \\ \end{tabular}$
- $\begin{tabular}{l} \blacksquare & d = {\sf distance \ between \ states \ (state \ spacing)} \end{tabular}$

Distance between state points:

$$d = 2A \sin\left(\frac{\pi}{M}\right)$$

M-ary PSK Variables

As ${\cal M}$ increases it becomes more difficult for a receiver to distinguish (decide) between states:

- Greater A (signal strength) can help to separate state points,
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Notes

Notes

_			
_			
_			

BPSK and QPSK

QPSK uses two orthogonal modulated carriers (cos and sin). Therefore using available bandwidth more efficiently.

Notes			

Bit-Rate versus Bandwidth

In general:

 $\begin{array}{ccc} \text{channel bandwidth} & & \text{number of symbols} \\ \text{to transmit} & \propto & \text{sent per} \\ \text{digital signal} & & \text{second (Baud rate)} \end{array}$

Simple binary system (such as BPSK):

Baud rate = Bit rate.

 $\ensuremath{M\text{-}}\xspace$ are schemes need less channel bandwidth than binary schemes for same bit rate.

Relative Bandwidth

$$B_{
m rel} = rac{{
m Baud \ Rate}}{{
m Bit \ Rate}} = rac{{
m symbols/sec}}{{
m bits/sec}} \hspace{1cm} rac{{
m Scheme}}{{
m BPSK}} \hspace{1cm} rac{B_{
m rel}}{2} \ = rac{1}{{
m bits/symbol}} = rac{1}{N} \hspace{1cm} {
m QPSK} \hspace{1cm} rac{1}{2} \ = rac{1}{{
m log}_2(M)}. \hspace{1cm} {
m 16-PSK} \hspace{1cm} rac{1}{4} \ = rac{1}{16-{
m QAM}} \hspace{1cm} \hspace{1cm} rac{1}{4} \ = rac{1}{16-{
m QAM}} \hspace{1cm} \hspace{1cm} rac{1}{4} \ = rac{1}{16-{
m QAM}} \hspace{1cm} \hspace$$

lacksquare M number of states in the scheme.

Low $B_{\rm rel}$ is (usually) ${\bf Good}$ - but may become e.g. too sensitive to noise.

Noise Sensitivity

- All communication systems affected by noise
- Need to minimise Bit-Error-Ratio (BER):

$$\mathsf{BER} = \frac{\mathsf{Number\ of\ Bits\ in\ Error}}{\mathsf{Number\ of\ Bits\ Sent}}.$$

- \blacksquare Need to move states as far apart as possible: increase d
- lacktriangle Could increase transmitter power (**increase** A). However
 - Increases Costs
 - High Power Amplifier Non-linearities
- \blacksquare Alternatively reducing $B_{\rm rel}$ using higher order modulation schemes.

Notes

Notes

Root Mean Square (RMS)

RMS amplitude of a carrier can be found by:

- lacksquare Finding A^2 for each state
 - Square
- lacksquare Finding Average A^2 for all states
 - Mean
- Taking the square root
 - Root

16QAM has RMS amplitude:

$$A_{\rm rms} = d\sqrt{\frac{5}{2}}.$$

 $A_{\rm rms} = \sqrt{\frac{1}{M}} \sum_{i \text{ in all states}} A_i^2. \label{eq:arms}$

Notes

Noise Sensitivity

■ Decreasing channel bandwidth reduces noise because

noise power, $kTB \propto {\rm channel\ bandwidth}, B$

$$B \propto B_{\rm rel} = \frac{{\rm Baud\ rate}}{{\rm Bit\ rate}}$$

 \therefore noise power $\propto B_{\mathrm{rel}}$

$$\therefore$$
 noise RMS $\propto \sqrt{B_{\rm rel}}$

- Higher order systems are more sensitive to noise (for fixed transmitter power) because
 - states are closer together.
 - \blacksquare If $A_{\rm rms}$ is constant then d must get smaller.
 - Leads to more sensitivity to noise...

Notes

Noisy Constellation Example

Transmitted or Theoretical 4QAM

Signal Power

To compare modulation schemes...

- Assume transmitter power for modulation scheme selected so that d is fixed multiple of noise RMS.
- Does not guarantee exactly same Bit-Error-Ratio between modulation schemes
- Leads to Signal Power for approximate equivalence:

$$P \propto B_{\rm rel} \times \left(\frac{A}{d}\right)^2$$
.

- lacksquare $B_{
 m rel}$ depends on
 - lacksquare number of states, M
- $\left(\frac{A}{d}\right)^2$ depends on
 - Type of keying, and
 - Number of states.

Notes			

Relative Signal Power

Transmitter power P required to obtain same level of Symbol Errors (not BER) using

$$P \propto B_{
m rel} imes \left(rac{A}{d}
ight)^2$$

Scheme	$B_{\rm rel}$	$(A/d)^2$	$(A/d)^2B_{\rm rel}$	dB relative to BPSK
BPSK	1	0.25	0.250	0dB
4PSK	1/2	0.5	0.250	0dB
8PSK	1/3	1.7071	0.569	+3.57dB
16PSK	1/4	6.5685	1.642	+8.17dB
16QAM	1/4	2.5	0.625	+3.98dB

- Higher order schemes increase transmitter power need
- QAM needs less power than PSK for same channel bandwidth

Notes			

High Power Amplifier Nonlinearities

- All devices slightly nonlinear
- Very high power devices can be very nonlinear
 - \blacksquare e.g. satellite broadcasting transmitters using TWT or SSPAs
- Nonlinear effects include:
 - Generation of harmonics
 - Distortion components with same frequency band as input signal
 - Cannot be removed by filtering
- Examples:
 - Instantaneous amplitude amplifier output not a constant multiple of input amplitude
 - AM/AM conversion distortion.
 - Amplifier phase shift not constant
 - AM/PM conversion distortion

AM/AM Conversion Distortion

Characterized by nonlinearities in the input signal power versus output signal power.

Notes			

AM/AM versus AM/PM on QAM

Notes			

Combined Affect on QAM

Characterized by nonlinearities in the phase. This might be seen after simulating a Travelling Wave Tube (TWT).

Similar effects can be seen with SSPAs although less pronounced especially for phase.

Notes			

SNR for Digital Communication	Notes	
Analogue communications use Signal to Noise Ratio (SNR)		
$SNR = \frac{\text{signal power}}{\text{noise power}}$		
Digital systems use:		
$\frac{\text{bit energy}}{\text{noise power spectral density}} = \frac{\text{amount of power for each bit}}{\text{amount of noise across bandwidth}}$		
$= \frac{\text{signal power} \times \text{bit time}}{\frac{\text{noise power}}{\text{bandwidth}}}$		
SNR for Digital Communication Analogue communications use Signal to Noise Ratio (SNR)	Notes	
$SNR = \frac{\text{signal power}}{\text{poise power}}$		

Digital systems use:		
bit energy noise power spectral density	= signal power > noise power bandwid	ver
	$= \frac{\text{signal powe}}{\frac{\text{noise p}}{\text{bandw}}}$	ower
	signal power	bandwidth

noise power

bit energy	signal power \times bit time	
$\frac{\text{bit energy}}{\text{noise power spectral density}} = \frac{\text{bit energy}}{\text{noise power spectral density}}$	noise power bandwidth	
	$= \frac{\text{signal power} \times \frac{1}{\text{bit rate}}}{\frac{\text{noise power}}{\text{bandwidth}}}$	
=	$= \frac{\text{signal power}}{\text{noise power}} \times \frac{\text{bandwidth}}{\text{bit rate}}$	
	•	

SNR for Digital CommunicationAnalogue communications use Signal to Noise Ratio (SNR)

$$\mathsf{SNR} = \frac{S}{N}$$

Digital systems use:

$$\frac{E_b}{N_0} = \frac{S \times T_b}{\frac{N}{W}}$$
$$= \frac{S \times \frac{1}{R}}{\frac{N}{W}}$$
$$= \frac{S}{N} \times \left(\frac{W}{R}\right).$$

Notes			
·			

SNR for Digital Communication

$$\begin{array}{cccc} \frac{E_b}{N_0} & = & \frac{\mathcal{S}}{N} & \times & \left(\frac{W}{R}\right). \\ \downarrow & & \downarrow & & \downarrow \\ \frac{\text{bit energy}}{\text{noise power spectral density}} & = & \mathsf{SNR} & \times & \frac{\text{bandwidth}}{\text{bit rate}} \end{array}$$

SNR is normalized by: bandwidth to bit rate ratio.
Also dimensionless.

Useful for comparing performance of different digital communication processes.

Notes

BPSK and QPSK

Notes

BPSK and QPSK

BPSK	QPSK
$\times 1$ BPSK signal	$\times 2$ orthogonal BPSK signals
$\times 1~A$ amplitude signal	$ imes 2~A/\sqrt{2}$ signal amplitudes
S Average Power	S/2 Average Power
R Bit Rate	R/2 Bit Rate
$\frac{E_b}{N_0} = \frac{S}{N} \left(\frac{W}{R} \right)$	$\frac{E_b}{N_0} = \frac{S/2}{N} \left(\frac{W}{R/2} \right)$
	$=\frac{S}{N}\left(\frac{\dot{W}}{R}\right)$

Same Bit Error Probability.

Votes			

Summary

 Modulation is a way of preparing a signal for transmission

- It needs to make efficient use of available bandwidth
- Overcome problems with noise and other sources of distortion

Notes			
Notes			