Logic (PHIL2080, COMP2620, COMP6262) Chapter: Introduction to Logic

Yoshihiro Maruyama

on the Legacy of John Slaney and Pascal Bercher

Motivation

Making good Arguments: What is Logic?

- Logic is the science of reasoning, i.e., making arguments.
 - Correct reasoning vs. wrong reasoning

Motivation

- Making (and reasoning about) valid arguments
- ⇒ See (famous) Monty Python sketch "argument clinic" (e.g., https://www.dailymotion.com/video/x2hwqn9)
- There are separates slides in keynote (which I will talk about if time permits)

Propositional Logic

Yoshihiro Maruyama

Basic Definitions: Generators of Formulae

Atoms (generators of logical formulae) are:

- truth (denoted by \top , T, or 1)
- falsity (denoted by \perp , F, or 0)
- propositional variables (denoted by p, q, r, ...) assertions, e.g., t is blue, if it's rain

p, q, r are varibales that can be T/F

assertions, e.g., the sky is blue, if it's raining, I'll stay at home

basic statements or

Atoms are bases or generators for more complex propositions with various connectives.

Basic Definitions: Syntax of Connectives

Which logical connectives exist in propositional logic?

e.g.,
$$(p \wedge \top)$$
 or $(p \wedge (q \wedge r))$

e.g.,
$$(\bot \lor \top)$$
 or $(p \lor (q \land r))$

• if ..., then ...:
$$\rightarrow_{\text{implication}}$$
 e.g., $(p \rightarrow q)$ or $((p \land q) \rightarrow (p \lor q))$ also: ... implies ...

• ... if and only if
$$\dots$$
; \leftrightarrow e.g., $(p \leftrightarrow q)$ or $((p \land q) \leftrightarrow (q \land p))$

e.g.,
$$((\neg p) o q)$$
 or $\neg (p o q)$

A formula (other than atoms) is generated using atoms and logical connectives.

formula = atoms + connectives

Yoshihiro Maruyama

Basic Definitions: Semantics of Connectives

What do these connectives mean?

- The semantics is defined in terms of truth tables.
- A truth table for a formula tells us for each interpretation of the propositional variables whether the formula is true or false.
- Examples:
 - $(\neg p)$ inverts p's truth value: \top is switched to \bot , and vice versa.
 - $(p \land q)$ is true if and only if both p and q are true.
 - $(p \lor q)$ is true if and only if at least one of p and q is true.

https:// en.wikipedi a.org/wiki/ Truth table

Yoshihiro Maruyama

Basic Definitions: Semantics of Connectives

What do these connectives mean?

- The semantics is defined in terms of truth tables.
- A truth table for a formula tells us for each interpretation of the propositional variables whether the formula is true or false.
- Examples: (expressed as truth tables)

р	q	\
	\perp	
\perp	Т	Т
Т	\perp	Т
Т	Т	Т

Basic Definitions: Semantics of Connectives

What do these connectives mean?

- The semantics is defined in terms of truth tables.
- A truth table for a formula tells us for each interpretation of the propositional variables whether the formula is true or false.
- Examples: (expressed as truth tables)

		р	q	\wedge	р	q	\ \
р		0	0	0	0	0	0
0	1 0	0	1	0	0	1	1
1	0	1	0	0		0	
		1	1	1	1	1	1

We will henceforth use 0/1 because its readability is so much improved!

Semantics: Semantics of \neg , \wedge , \vee , \rightarrow

- The semantics of propositional logic is given by truth tables.
 (Which you already saw.)
- Truth tables:

		р	q	\wedge	р	q	\	р	q	\rightarrow
р		0	0	0	0	0	0	0	0	1
0		0	1	0	0	1	1	0	1	1
1	0	1	0	0	1	0	1	1	0	0
	'	1	1	1	1	1	1	1	1	1

• Example implication: If the light is red (p), you must stop (q).

Semantics: Semantics of \neg , \wedge , \vee , \rightarrow

- The semantics of propositional logic is given by truth tables.
 (Which you already saw.)
- Truth tables:

		р	q	\wedge	р	q	\	р	q	\rightarrow
р		0	0	0	0	0	0	0	0	1
0		0	1	0	0	1	1	0	1	1
1	0	1	0	0	1	0	1	1	0	0
	'	1	1	1	1	1	1	1	1	1

• Example implication: If the light is red (p), you must stop (q).

Semantics: Semantics of \leftarrow , \leftrightarrow

Some "additional" truth tables:

р	q	\rightarrow	р	q	\leftarrow	р	q	\leftrightarrow
0	0	1		0			0	
	1		0	1	0		1	
1	0	0	1	0	1		0	
1	1	1	1	1	1	1	1	1

• We will not need them since we restrict to the standard connectives: \neg , \wedge , \vee , \rightarrow .

Semantics: Expressing Arbitrary Formulae with Truth Tables

Truth tables can be used to express arbitrary formulae, e.g.,

$$p \land \neg q$$

$$\neg p \lor q$$
 that's $p \to q$!

•
$$p \rightarrow (q \rightarrow p)$$

р	q	$q \rightarrow p$	ho ightarrow (q ightarrow p)
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

Such a formula, which always evaluates to true is called a tautology.

Yoshihiro Maruyama

Semantics: Interpretations and Properties of Formulae

Definition:

An Interpretation of a formula ϕ , defined over a set P of propositional variables is an assignment of truth values to variables in P.

Evample	p	q	r	$(p \land q) \rightarrow$
Example:	0	0	0	1
■ Let p = LogicIsInteresting	0	0	1	
 Let q = PascalsSlidesAreWellDesigned 	0	1	0	1
Let r = studentsUnderstandContent	0	1	1	1
• Now consider $(p \land q) \rightarrow r$	1	0	0	1
phi(p, q, e) = (p and q) -> r	1	0	1	1
Here, an interpretation could be:	1	1	0	0
I(p) = 1, $I(q) = 1$, $I(r) = 0$	1	1	1	1

This interpretation does not make the formula true! (Interpretations can be thought of as rows in the table)

an assignment of 1/0s (truth table) for the formula

Semantics: Interpretations and Properties of Formulae, cont'd

- A formula ϕ is a **tautology** (or true) if: all true ϕ is true under every interpretation.
- A formula ϕ is **satisfiable** if: any true There exists an interpretation that makes ϕ true.
- A formula ϕ is **unsatisfiable** if: all false There does not exist an interpretation that makes ϕ true. *Or equivalently:* If ϕ is false under every interpretation.

Summary

Content of this Lecture

- Organizational Matters
- Introduction to *Propositional Logic*
 - Syntax: formulae = atoms bound together by logical connectives
 - Semantics: truth tables and interpretations; specify the notion of truth
- → Logic Notes sections:
 - Complete 1. Introduction except Inference in the abstract
 - 3. More about propositional logic: Truth tables.
 - Study the following slides by the next lecture.

Syntax Simplifications: Precedence of Connectives

Our connectives use some precedence, which we exploit to eliminate parentheses! Connectives, ordered by precedence:

• Highest:
$$\neg$$
 e.g., $\neg p \rightarrow q \equiv (\neg p) \rightarrow q$

• Second-highest:
$$\land$$
 e.g., $p \land q \lor r \equiv (p \land q) \lor r$

• Mid:
$$\vee$$
 e.g., $p \rightarrow q \lor r \equiv p \rightarrow (q \lor r)$

• Second-Lowest:
$$\rightarrow$$
 e.g., $p \rightarrow \neg q \leftrightarrow r \equiv (p \rightarrow (\neg q)) \leftrightarrow r$

• Lowest:
$$\leftrightarrow$$
 e.g., $\neg p \lor q \leftrightarrow q \land r \equiv ((\neg p) \lor q) \leftrightarrow (q \land r)$

We reduce parentheses to simplify and avoid confusion by exploiting:

- precedence, e.g., we write: $\neg p \rightarrow q$ instead of $((\neg p) \rightarrow q)$
- associativity, e.g., we write:
 - $p \wedge q \wedge r$ instead of $(p \wedge (q \wedge r))$
 - $(p \land \neg q \land r) \rightarrow (p \lor \neg q \lor r)$ instead of $(((p \land (\neg q)) \land r) \rightarrow (p \lor ((\neg q) \lor r)))$

Connective Scopes and Main Connective: Connective Scopes

- Every connective has a scope.
- "[The scope of a connective] is defined to be the shortest formula or subformula in which that occurrence lies." (Logic Notes)
- Examples: In the formula $\neg(p \land q) \rightarrow ((p \lor r) \rightarrow \neg s)$
 - ... the scope of its first ¬ is (p ∧ q)
 - ... the scope of its second ¬ is s

Connective Scopes and Main Connective: Main Connective

- Every formula has a main connective:
- "[T]he main connective of any formula [...] is the one which is not inside the scope of any other. [...] The scope of the main connective is the whole formula." (Logic Notes)
- Examples: The main connective of . . .
 - $\neg(p \land q) \rightarrow ((p \lor r) \rightarrow \neg s)$ is: the first \rightarrow
 - $(p \land q) \lor r \text{ is: } \lor$
 - What's the main connective of $(p \land q) \lor r \lor (q \to r)$? Recall that " $(p \land q) \lor r \lor (q \to r)$ " is only syntactic sugar!
 - ▶ It was either $((p \land q) \lor r) \lor (q \to r)$ [then, it's the right \lor],
 - ightharpoonup or it was $(p \land q) \lor (r \lor (q \rightarrow r))$ [then, it's the left \lor]
 - Formally, assiciativity defines uniquely what a formula with missing parentheses defines. (But that's not important for this course.)
- Why is it important to identify the main connective?
 Because the main connective defines the "type" of the formula, which defines what we are allowed to do in our proofs.

Connective Scopes and Main Connective: Type of Formula

The main connective dictates the type of a formula:

- if main connective is ¬, formula is a negation
- ... \(\triangle,\) ... conjunction
- ... V, ... disjunction
- ullet ... o, ... implication
- ullet ... \leftrightarrow , ... double-implication

Substitution: Substitutions of Formulae

What is a substitution?

"Formula A is a substitution instance of formula B if and only if A results from B by substitution of formulas for sentence letters."
 (Logic Notes) – (Definition is specific to propositional logic.)

Example:

- "Original" formula: $q \vee p$
- One of its substitution instances is $(p \land q) \lor \neg r$, because:
 - q got substituted by $(p \land q)$
 - p got substituted by $\neg r$

Non-Example:

replace each occurrence of varibales with a corresponding new varibale

- "Original" formula: $q \vee q$
- The formula $(p \land q) \lor \neg r$ is *not a* substitution instance of it 'because the left part had to be the same as the right)

