Shortest path algorithms

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

Shortest path

- Finding shortest paths on a weighted (directed) graph is one of the most common problems in many fields
- Applications include
 - Navigation
 - Routing in computer networks
 - Optimal construction of electronic circuits, VLSI chips
 - Robotics, transportation, finance, ...

Shortest paths on unweighted graphs BFS

 A BFS search tree gives the shortest path from the source node to all other nodes

Shortest paths on unweighted graphs BFS

- A BFS search tree gives the shortest path from the source node to all other nodes
- The BFS is not enough on weighted graphs

Shortest paths on unweighted graphs BFS

- A BFS search tree gives the shortest path from the source node to all other nodes
- The BFS is not enough on weighted graphs
- Shortest-cost path may be longer in terms of nodes visited

Shortest paths on weighted graphs

variation of the problem

- Different versions of the problem:
 - Single source shortest path: find shortest path from a source node to all others
 - Single target (sometimes called sink) shortest path: find shortest path from all nodes to a target node
 - Source to target: from a particular source node to a particular target node
 - All pairs: shortest paths between all pairs of nodes
- Restrictions on weights:
 - Euclidean weights
 - Non-negative weights
 - Arbitrary weights

- Dijkstra's algorithm is a 'weighted' version of the BFS
- The algorithm finds shortest path from a single source node to all connected nodes
- Weights has to be non-negative
- It is a greedy algorithm that grows a 'cloud' of nodes for which we know the shortest paths from the source node
- The new nodes are included in the cloud in order of their shortest paths from the source node
- The algorithm is also similar to Prim-Jarník algorithm used for finding MST

the algorithm

- We maintain a list D of minimum know distances to each node
- At each step
 - we take closest node out of Q
 - update the distances of all nodes
- Can be more efficient if Q is implemented using a (adaptable) priority queue

```
1: D[s] \leftarrow 0
```

2: **for** each node $v \neq s$ **do**

3:
$$D[v] \leftarrow \infty$$

4: $Q \leftarrow nodes$

5: **while** Q is not empty **do**

6: Find the node v with min D[v]

7: **for** each edge (v, w) **do**

8: if D[v] + w[(v, w)] < D[w] then

9: $D[w] \leftarrow D[v] + w[(v, w)]$

10: D contains the shortest distances from s

Dijkstra's algorithm and negative weights

the algorithm

- In general, complexity is $O(t_{find \ min}n + t_{update \ kev}m)$
- With list-based implementation of Q: $O(m + n^2) = O(n^2)$
- With a priority queue: $O((m + n) \log n)$

```
1: D[s] \leftarrow 0
```

2: **for** each node $v \neq s$ **do**

3:
$$D[v] \leftarrow \infty$$

4: $Q \leftarrow nodes$

5: **while** Q is not empty **do**

6: Find the node ν with min $D[\nu]$

7: **for** each edge (v, w) **do**

8: if D[v] + w[(v, w)] < D[w] then

9: $D[w] \leftarrow D[v] + w[(v, w)]$

10: D contains the shortest distances from s

Shortest-path tree

- The way we introduced, the Dijkstra's algorithm does not give the shortest-path tree
- Similar to traversal algorithms, we can extract it from distances D
- Running time is $O(n^2)$ (or O(n + m))

```
1: T \leftarrow \emptyset

2: \mathbf{for} \ v \in D - \{s\} \ \mathbf{do}

3: \mathbf{for} \ \operatorname{each} \ \operatorname{edge} \ (w, v) \ \mathbf{do}

4: \mathbf{if} \ D[v] == D[u] + \operatorname{weight}(w, v) \ \mathbf{then}

5: T \leftarrow T \cup (w, v)
```

- The shortest path can be found more efficiently, if the graph is a DAG
- The algorithm is similar to Dijkstra's, but simpler and faster
- Only difference is we follow a topological order
- The algorithm will also work with negative edge weights

Shortest-paths on DAGs

Shortest-paths on DAGs

Shortest-paths on DAGs

Shortest-paths on directed graphs

with negative wights – without negative cycles

- Single-source shortest path problem can also be solved efficiently for any directed graph
 - including cycles (no DAG requirement)
 - including negative weights
 - excluding negative cycles
- The algorithms is known as Bellman-Ford algorithm
 - Similar to earlier, initialize D[s] = 0, $D[v] = \infty$
 - Make n passes over the edges
 - Update distances for each edge (relax edges)
 - Stop if there were no changes at the end of a pass

demonstration

1	$\rightarrow 2$
1	$\rightarrow 4$
2	$\rightarrow 4$
2	\rightarrow 5
3	\rightarrow 2
3	$\rightarrow 4$
5	\rightarrow 3
5	$\rightarrow 4$

demonstration

demonstration

	0	
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
ь		1

demonstration

edges $1 \rightarrow 2$ $1 \rightarrow 4$ $2 \rightarrow 4$ $2 \rightarrow 5$

demonstration

1	$\rightarrow 2$
1	$\rightarrow 4$
2	$\rightarrow 4$
2	\rightarrow 5
3	\rightarrow 2
3	$\rightarrow 4$
5	\rightarrow 3
<u></u>	\1

demonstration

		0
	1	$\rightarrow 2$
	1	$\rightarrow 4$
	2	$\rightarrow 4$
	2	$\rightarrow 5$
	3	\rightarrow 2
	3	$\rightarrow 4$
	5	\rightarrow 3
ĺ	5	$\rightarrow 4$

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
		_
3	\rightarrow	2

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	4

demonstration

demonstration

$edges \\ \hline 1 \rightarrow 2$

1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5

$$5 \rightarrow 4$$

demonstration

1	\longrightarrow	2
1	\rightarrow	$\overline{4}$
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2

demonstration

	_	
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	4

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	4

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
Е		1

demonstration

demonstration

	_	
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5		1

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	4

demonstration

	0	
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	4

demonstration

edges $1 \rightarrow 2$ $1 \rightarrow 4$ $2 \rightarrow 4$

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4

$$2 \rightarrow 5$$

$$3 \rightarrow 2$$

$$3 \rightarrow$$

$$5 \rightarrow 3$$

$$5 \rightarrow 4$$

Summary

- Shortest path algorithms are one of the most applied graph algorithms
- We revised three algorithms
 - Dijkstra's: non-negative weights, general algorithm
 - For DAGs: unrestricted weights, following topological order
 - Bellman-Ford: no negative cycles, digraphs
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)

Next:

- Maps and hashing
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 10)

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013). Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN: 9781118476734.

C. Cöltekin. SfS / University of Tübingen

blank

blank