Theoretical Computer Science Cheat Sheet						
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1 $i=1$ $i=1$ $i=1$ In general:				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$				
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$				
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $k=0$ Geometric series:				
$\sup S$	least $b \in$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$				
$\inf S$	greatest $b \in \text{ such that } b \leq s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$				
$\liminf_{n \to \infty} a_n$	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \}.$	Harmonic series: $ n $				
$\limsup_{n\to\infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$				
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$				
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$				
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $				
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$				
$\langle\!\langle {n\atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,				
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	$10. \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \qquad \qquad 11. \begin{Bmatrix} n \\ 1 \end{Bmatrix} = \begin{Bmatrix} n \\ n \end{Bmatrix} = 1,$ $12. \begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1, \qquad \qquad 13. \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix},$				
		$16. \ \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \ \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$				
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n -$	$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, 19. \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix},$					
	$22. \ \left\langle \begin{matrix} n \\ 0 \end{matrix} \right\rangle = \left\langle \begin{matrix} n \\ n-1 \end{matrix} \right\rangle = 1, \qquad 23. \ \left\langle \begin{matrix} n \\ k \end{matrix} \right\rangle = \left\langle \begin{matrix} n \\ n-1-k \end{matrix} \right\rangle, \qquad 24. \ \left\langle \begin{matrix} n \\ k \end{matrix} \right\rangle = (k+1) \left\langle \begin{matrix} n-1 \\ k \end{matrix} \right\rangle + (n-k) \left\langle \begin{matrix} n-1 \\ k-1 \end{matrix} \right\rangle,$					
25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{Bmatrix} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{Bmatrix}$ 26. $\begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ 27. $\begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$						
$28. x^n = \sum_{k=0}^n \binom{n}{k}$	$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$					
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n}$	${n \brace k}{n-k \choose m} (-1)^{n-k-m} k!,$	32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,				
$34. \left\langle\!\!\left\langle {n\atop k}\right\rangle\!\!\right\rangle = (k+1)^n$	$+1$) $\left\langle \left\langle {n-1\atop k} \right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n\atop k} \right\rangle \right\rangle$					
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} =$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \!\! \left\langle \left(\begin{array}{c} x+n-1-k \\ 2n \end{array} \right), \right.$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$				

Identities Cont.

$$\mathbf{38.} \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{m}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \rangle \binom{x+k}{2n},$$

$$\mathbf{40.} \ \left\{ \begin{array}{l} n \\ m \end{array} \right\} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k}, \qquad \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \qquad \mathbf{41.} \ \left[\begin{array}{l} n \\ m \end{array} \right] = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} \binom{n+1}{k+1} \binom{n+1}{m} \binom{n+1}{k+1} \binom{n+1}{m} \binom{n+1}$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$
 43. ${m+n+1 \brack m} = \sum_{k=0}^{m} k(n+k) {n+k \brack k},$ **44.** ${n \brack m} = \sum_{k=0}^{m} k(n+k) {n+k \brack k},$ **45.** ${n-m}! {n \brack m} = \sum_{k=0}^{m} k(n+k) {n+k \brack k},$ for $n \ge m$,

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

46.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$
47.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$
48.
$${n \choose n-m} (\ell+m) \sum_{k} {k \choose n-k} (n)$$

48.
$${n \choose \ell + m} {\ell + m \choose \ell} = \sum_{k} {k \choose \ell} {n - k \choose m} {n \choose k},$$
 49.
$${n \choose \ell + m} {\ell + m} {\ell + m \choose \ell} = \sum_{k} {k \choose \ell} {n - k \choose m} {n \choose k}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are d_1,\ldots,d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then
$$T(n) = \Theta(n^{\log_b a} \log_2 n).$$

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c=\frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^{i} = n \left(\frac{c^{m} - 1}{c - 1} \right)$$

$$= 2n(c^{\log_{2} n} - 1)$$

$$= 2n(c^{(k-1)\log_{c} n} - 1)$$

$$= 2n^{k} - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i.$$

Simplify:

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$
$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$
$$= \sum_{i > 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

Theoretical Computer Science Cheat Sheet					
	$\pi \approx 3.14159,$	$e \approx 2.71$	828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$	
i	2^i	p_i	General	Probability	
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	Continuous distributions: If	
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$	
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	then p is the probability density function of	
4	16	7	Change of base, quadratic formula:	X. If	
$\frac{5}{2}$	32	11	$\log_b x = \frac{\log_a x}{\log_b b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$	
$\frac{6}{5}$	64	13	$\log_a v$ 2 <i>a</i> Euler's number <i>e</i> :	then P is the distribution function of X . If	
7	128	17	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then	
8	256	19	2 0 24 120	$P(a) = \int_{-a}^{a} p(x) dx.$	
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J-\infty$ Expectation: If X is discrete	
$\begin{array}{c c} 10 \\ 11 \end{array}$	1,024	29 31	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	$\mathbb{E}[g(X)] = \sum_{i=1}^{n} g(x) \Pr[X = x].$	
12	2,048	$\frac{31}{37}$	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	$E[g(X)] = \sum_{x} g(x) T[X = x].$	
13	4,096 8,192	41	$(1+\frac{\pi}{n}) = \epsilon - \frac{\pi}{2n} + \frac{\pi}{24n^2} = O\left(\frac{\pi}{n^3}\right).$	If X continuous then	
14	16,384	43	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x)$	
15	32,768	47	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J_{-\infty}$ $J_{-\infty}$ Variance, standard deviation:	
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$	
17	131,072	59		$\sigma = \sqrt{\text{VAR}[X]}.$	
18	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	For events A and B :	
19	524,288	67	Factorial, Stirling's approximation:	$Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$	
20	1,048,576	71	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, \dots$	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$	
21	2,097,152	73	() " ((1))	iff A and B are independent.	
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$	
23	8,388,608	83	Ackermann's function and inverse:	1 1 [2]	
24	16,777,216	89		For random variables X and Y :	
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$ if Y and Y are independent	
26	67,108,864	101		if X and Y are independent. E[X + Y] = E[X] + E[Y],	
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X + I] = E[X] + E[I], $E[cX] = c E[X].$	
28	268,435,456	107	Binomial distribution:	Bayes' theorem:	
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	· ·	
30	1,073,741,824	113	(10)	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{j=1}^n \Pr[A_j]\Pr[B A_j]}.$	
31	2,147,483,648	127	$\mathbb{E}[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:	
32	4,294,967,296	131	k=1 Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$	
	Pascal's Triangle		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, E[X] = \lambda.$	i=1 $i=1$	
	1 1		70.	$\sum_{i=1}^{n} (-1)^{k+1} \sum_{i=1}^{n} \Pr\left[\bigwedge^{k} X_{i}\right].$	
1 2 1			Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j} \right].$	
1 3 3 1			$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:	
1 4 6 4 1			The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$	
1 5 10 10 5 1			random coupon each day, and there are n	Λ	
1 6 15 20 15 6 1		1	different types of coupons. The distribu- tion of coupons is uniform. The expected	$\Pr\left[\left X - \mathbb{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$	
1 7 21 35 35 21 7 1		1	number of days to pass before we to col-	Geometric distribution: $R_{ij} = \frac{k-1}{k}$	
$1\ 8\ 28\ 56\ 70\ 56\ 28\ 8\ 1$		8 1	lect all n types is	$\Pr[X=k] = pq^{k-1}, \qquad q = 1 - p,$	
1 9 36 84 126 126 84 36 9 1		36 9 1	$n{H}_n$.	$E[X] = \sum_{n=0}^{\infty} kpq^{k-1} = \frac{1}{n}.$	
1 10 45	5 120 210 252 210 1	120 45 10 1		k=1 p	

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2 \sin x \cos x, \qquad \sin 2x = \frac{2 \tan x}{1 + \tan^2 x},$$

$$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2 \cos^2 x - 1,$$

 $\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$ $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$ $\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

 $\cos 2x = 1 - 2\sin^2 x,$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$

 $\overline{\mathrm{v2.01~(c)1994}}$ by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: det $A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B$,

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$= \frac{aei + bfg + cdh}{ac}$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \coth x = \frac{1}{\tanh x}.$$

Identities:

Identities:
$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \mathrm{sech}^2 x = 1,$$

$$\coth^2 x - \mathrm{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
		$\sqrt{3}$	$\sqrt{3}$
$\frac{\pi}{6}$	$\frac{1}{2}$	2 . /5	3
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	1	0	∞

... in mathematics you don't understand things, you just get used to them. – J. von Neumann More Trig.

 $c^2 = a^2 + b^2 - 2ab\cos C.$

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{1 - \cos x},$$

$$= \frac{1 + \cos x}{1 - \cos x},$$

$$= \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x = \frac{\sinh ix}{i},$$

 $\cos x = \cosh ix$,

 $\tan x = \frac{\tanh ix}{i}.$

IN	umber	Theory

The Chinese remainder theorem: There exists a number C such that:

$$C \equiv r_1 \mod m_1$$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$\gcd(a, b) = \gcd(a \bmod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \mod n$$
.

Möbius inversion:

Möbius inversion:
$$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of } \\ r & \text{distinct primes.} \end{cases}$$

If

$$G(a) = \sum_{d \mid a} F(d),$$

then

$$F(a) = \sum_{d|a} \mu(d)G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n} + O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

Definitions:

LoopAn edge connecting a ver-

tex to itself.

DirectedEach edge has a direction. SimpleGraph with no loops or

multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Path $_{
m trail}$ $_{
m with}$ distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

Componentmaximal connected

subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting

each vertex exactly once. CutA set of edges whose re-

moval increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|.$

A graph where all vertices k-Regular have degree k.

k-Factor k-regular spanning subgraph.

A set of edges, no two of Matching which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar graph.

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n-m+f=2, so f < 2n - 4, m < 3n - 6.

Any planar graph has a vertex with degree < 5.

Notation:

Graph Theory

E(G)Edge set V(G)Vertex set

Number of components c(G)

G[S]Induced subgraph

Degree of vdeg(v)

 $\Delta(G)$ Maximum degree

 $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number

Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

 $r(k, \ell)$ Ramsev number

Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)y = mx + b (m, -1, b)

x = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$$

$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \left| \begin{array}{ccc} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{array} \right|.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Calculus

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

$$3. \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \textbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \textbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx},$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$14. \frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

$$15. \ \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

$$17. \ \frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

$$18. \frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 - u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

$$20. \ \frac{d(\operatorname{arccsc} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$21. \ \frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$$

$$22. \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx},$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

$$24. \ \frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1,$$

$$4. \int \frac{1}{x} dx = \ln x,$$

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x dx = e^x$,

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

$$11. \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|,$$

$$\mathbf{13.} \int \csc x \, dx = \ln|\csc x + \cot x|,$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

5.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$$

19. $\int \sec^2 x \, dx = \tan x,$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{1 + (n-1)^n} \int \sin^{n-2} x \, dx$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

$$\frac{1}{26} \int_{-csc^n} x \, dx = -\frac{\cot x \csc^{n-1} x}{\cot^{n-1} x} + \frac{n-2}{2} \int_{-csc^{n-2}} x \, dx \qquad n \neq 1$$

26.
$$\int \csc^n x \, dx = -\frac{1}{n-1} + \frac{1}{n-1} \int \csc^n x \, dx, \quad n \neq 1,$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$

34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2} x$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{1-x} = \arcsin \frac{x}{2}, \quad a > 0.$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

18.
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$\mathbf{20.} \quad \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$
 22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{-x}}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x, \quad$

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$, **33.** $\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$, **34.** $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x$,

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

37.
$$\int \operatorname{arctanh} \frac{a}{a} dx = x \operatorname{arctanh} \frac{a}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

49.
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad \textbf{63.} \int \frac{dx}{x^2\sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} \, dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2},$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum_{i=a}^{b} f(x)\delta x = F(x) + C.$$
$$\sum_{i=a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\Delta \binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\textstyle\sum cu\,\delta x=c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathop{\rm E}\nolimits v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\frac{n+m}{2}} = x^{\frac{m}{2}}(x-m)^{\frac{n}{2}}$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{0} = 1$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{-n},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$
$$= 1/(x-1)^{-\underline{n}},$$

$$n = \frac{1}{n} \left(n \right)_{k}$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brace k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^{k},$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Serie

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

passions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\ln\frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$\sin x = x - \frac{1}{3!}x^2 + \frac{1}{6!}x^5 - \frac{1}{7!}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{4!}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)^{i}},$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i!},$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} (2i+n)x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} H_{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{3}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} H_{i}x^i,$$

$$\frac{1}{1-x} - \frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{3}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} H_{i}x^i,$$

$$\frac{1}{1-x} - \frac{1}{1-x} -$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^{i} a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man.

- Leopold Kronecker

Expansions:

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{\frac{-n}{n}} = \sum_{i=0}^{\infty} \binom{1}{n} x^i, \\ x^{\overline{n}} = \sum_{i=0}^{\infty} \left[\frac{n}{i}\right] x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{1}{n} \frac{n!}{i} \frac{n!}{i}, \\ \left(\ln \frac{1}{1-x}\right)^n = \sum_{i=0}^{\infty} \left[\frac{i}{n}\right] \frac{n!x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_i}{(2i)} \frac{n!}{i!}, \\ \tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty}$$

$$\begin{pmatrix} \frac{1}{x} \end{pmatrix}^{-n} = \sum_{i=0}^{\infty} {i \brace n} x^{i},
(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} {i \brack n} \frac{n! x^{i}}{i!},
x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},
\frac{B_{2i} x^{2i-1}}{\zeta(x)}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},
\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Escher's Knot

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If $a \leq b \leq c$ then

$$\int_{a}^{c} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

If the integrals involved exis-

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. - William Blake (The Marriage of Heaven and Hell)

93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 59 96 81 33 07 48 72 60 24 15 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

 $n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$ where $k_i \geq k_{i+1} + 2$ for all i, $1 \le i < m \text{ and } k_m \ge 2.$

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{\epsilon}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$
Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$