Predicting User Next Action Through Site Activities

Data Scientist:

Paul Yap

Dataset:

Kaggle - Airbnb New User Bookings

Business Problem:

predicting where a new user will book for their first travel

Enrich Engagement

Through more personalized content delivery

Improve Conversion Time

Decrease average time to first booking

By better forecasting demand

turning internet activities into opportunities

16 Unique Features

360

Unique Actions

56,232,142

Hours Spent On Site

Dataset

Train Set

213,451

Unique Rows

Test Set 62,096

Unique Rows

Dataset

three main types of information

Sociodemographics

Language

Surfing Preferences

Session Logs

10.1 Million Logs

major class imbalance

not much difference between affiliate channels...

finding distinction between classes by looking into site activities

No Distinction

Avg Time Spent for the action: "search" 200000 - 150000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 1000000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10

Noticeable Distinction

finding distinction between classes by looking into site activities cont...

finding distinction between classes by looking into site activities cont...

finding distinction between classes by looking into site activities cont...

evaluation metric; NDCG (Normalized discounted cumulative gain)

$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_i} - 1}{\log_2\left(i + 1\right)},$$

$$nDCG_k = \frac{DCG_k}{IDCG_k},$$

- Allow to make up to 5 guesses
- The further the answer is away from the true value, the lower the score for that entry

summary – not all models are equal

Logistic Regression – **0.446**

Random Forest – **0.849**

Neural Network – **0.843**

XGBoost – 0.872

Stacking Results

Random Forest -0.835

XGBoost – **0.858**

Neural Network— 0.858

logistic regression

Logistic Regression – **0.446**

Why this model?

Observe how well a simple model matches up

Findings

- Relationship between features seems quite non-linear
- Model is too simplistic to pick it up
- Challenge when dealing with a multiclass problem with severe class imbalance

summary – not all models are equal

XGBoost – 0.872

Random Forest – **0.849**

Why this model?

 Learned from log reg to pick a model capable of handling non-linear features

Findings

- Tree-based models seems to work best, though interpretability is lacking
- More robust and able to generate nonzero probabilities for minority classes

stacking – too much noise

Stacking Results

Random Forest -0.835

XGBoost – **0.858**

Neural Network- 0.858

Why this model?

 Try to piggy back on superior results to further boost it

Findings

- Weights of input models are equal, creating more noise for the superior model instead
- More superior model such as XGBoost gets dampened

top 10 feature importance

Age

 People at different stages of their lives have different travel destination goals

Signup Method

• Signups through the web app using a desktop have higher chance of converting

Missing Value

 Can generally ignore targeting IDs with any missing information

putting it all together

Age: **26**

Gender: Male

Signup Method: **Basic** Signup Medium: **Web**

Time Spent: "index" 57,033 secs
Time Spent: "update" 89,270 secs

Pred Destinations	
US	50.0%
FR	2.5%
IT	2.0%

Targeting

BY AIRBNB / MAY 4 2018
COMMUNITY DESTINATIONS NO

Airbnb Unveils Top 10 Most Hospitable Cities in the U.S.

3

Airbnb anchors a customer service center in Wasquehal (Hauts-de-France) in partnership with Acticall Sitel

For the first time in its history, Airbnb announces the establishment, in Wasquehal, near Lille in the Hauts-de-France region, of its first customer service centre dedicated to the Airbnb Community in France.

Airbnb in this idyllic Italian town for 3 months for free

Catherine Clifford | 10:00 AM ET Sat, 19 Jan 2019

putting it all together

Age: **37**

Gender: -unknown-

Signup Method: **Basic** Signup Medium: **Web**

Time Spent: "create" 26,418 secs
Time Spent: "update" 10,452 secs

Pred Destinations	
No Travel	89.5%
US	5.9%
other	1.8%

Limitations

Lacks Interpretability

It is difficult to further dissect the model to gain more insights

Specificity Limit

The business still has to decide with of the 5 outputs to target market for

Limited Feature Information

Some of the information given have to be inferred. Which increased uncertainty

Limitations

possible information to improve model

Search Terms

Device Location

More Observations on Minority Classes

Thank You!

Data Scientist:

Paul Yap