Homework 4

Put your name and student ID here 2020-09-29

Q1: Let X_1, \ldots, X_n be an iid sample of $N(1, 2^2)$. Which of the following items are true? ()

A.
$$\frac{\bar{X}-1}{2/\sqrt{n}} \sim t(n)$$

B.
$$\frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim F(n, 1)$$

C.
$$\frac{\bar{X}-1}{\sqrt{2}/\sqrt{n}} \sim N(0,1)$$

D.
$$\frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim \chi^2(n)$$

Q2: Let X_1, \ldots, X_n be a simple random sample of normal population $N(\mu, \sigma^2)$.

- 1. Find the mean and variance of S_n^2 .
- 2. Show that $S_n^2 \sim Gamma((n-1)/2, n/(2\sigma^2))$.

Q3: Let X_1, \ldots, X_n be a simple random sample of a distribution with mean μ and variance σ^2 . Find the mean of S_n^2 and S_n^{*2} , respectively.

Q4: An iid sample X_1, \ldots, X_6 is taken from the density $f_X(x) = 3x^2$, 0 < x < 1. Find $P(X_{(6)} > 0.75)$.

Q5: Let X_1, \ldots, X_m be a simple random sample of $N(\mu_1, \sigma_1^2)$, and Y_1, \ldots, Y_n (n > 3) be a simple random sample of $N(\mu_2, \sigma_2^2)$, and the two samples are independent. Denote S_X^{*2} and S_Y^{*2} by the modified sample variances of X_i s and Y_i s, respectively.

- 1. Show the PDF of the ratio of the two modified sample variances S_X^{*2}/S_Y^{*2} .
- 2. Find the mean of S_X^{*2}/S_Y^{*2} , and compare it with the ratio of two population variances σ_1^2/σ_2^2 .

(Hint: the mean of F(m,n) distribution is n/(n-2) when n>2)