ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

Задача 1

Небольшое тело, начав двигаться из состояния покоя, проходит равноускоренно расстояние s=32 м. Разделите это расстояние на четыре части h_1 , h_2 , h_3 и h_4 так, чтобы на прохождение каждой из них телу потребовалось одно и то же время. Найдите значения h_1 , h_2 , h_3 и h_4 .

Возможное решение

Пусть на прохождение расстояния h_1 телу потребовалось время τ , и $h_1 = \frac{a\tau^2}{2}$.

Тогда расстояние *s* пройдено за время 4 τ , и $s = \frac{a(4\tau)^2}{2}$. Отсюда $h_1 = \frac{s}{16} = 2$ м.

На прохождение расстояния h_1+h_2 затрачено время 2τ , т.е. $h_2=3h_1=6$ м. Рассуждая аналогично, получим $h_3=5h_1=10$ м и $h_4=14$ м.

При решении можно воспользоваться соотношением Галилея для перемещений при равноускоренном движении без начальной скорости за последовательные равные промежутки времени. Эти перемещения соотносятся как 1:3:5:7. Тогда за первый временной интервал тело проходит 1/16 полного перемещения, или 2 м, за второй 6 м и т.д.

Критерии оценивания

1.	Записано уравнение для перемещения на первом интервале 2 бал	па	
2.	Записано уравнение для всего перемещения	па	
3.	Установлена связь между первым и общим перемещением 2 бал	іла	
4.	Получено численное значение для перемещения		
	на первом интервале	IJ	
5.	Получены выражения и численные значения		
	для других интервалов	іла	
Максимум за задачу 10 баллов.			

Задача 2

Деревня находится на расстоянии L=70 км от города. Населенные пункты соединяет прямолинейный участок шоссе. Одновременно из города и деревни навстречу начинают движение легковой автомобиль и автобус. Скорость автомобиля равна v=90 км/ч. На рисунке представлен график, на котором показано, как изменялось расстояние между ними с момента

выезда до момента встречи. Найдите скорость автобуса. Какое время потребовалось автобусу на путь от места встречи до города? Считать, что автобус и автомобиль движутся с постоянными скоростями во время всего движения.

Возможное решение

Из графика следует, что скорость сближения автомобиля и автобуса 140 км/ч. Следовательно, скорость автобуса равна 140 км/ч - 90 км/ч = 50 км/ч. Расстояние от места встречи до города равно произведению скорости автомобиля на время движения до встречи, или 45 км. Тогда, оставшееся время движения автобуса до города равно отношению расстояния к скорости автобуса: 45 км/50 км/ч = 0.9 ч = 54 мин.

Критерии оценивания

Максимум за задачу 10 баллов.			
4. Найдено оставшееся время движения автобуса	2 баллб		
3. Найдено расстояние от места встречи до города	3 балла		
2. Определена скорость автобуса	3 балла		
1. Из графика найдена скорость солижения	2 балла		

Задача 3

Два кубика, связанные нитью, находятся в воде (см. рисунок). Верхний, с ребром a=60 см, плавает, погрузившись в воду на две трети объёма. Ребро нижнего кубика a/2, но его плотность в 2 раза больше, чем у верхнего. Определите плотность ρ материала верхнего кубика и найдите модуль T силы натяжения нити, связывающей кубики. Плотность воды $\rho_0 = 1000 \text{ кг/м}^3$, ускорение свободного падения принять равным $g=10 \text{ м/c}^2$.

Возможное решение

Пусть объём нижнего кубика V, тогда объём верхнего 8V, и он погружён на $\frac{16}{3}V$. Условие равновесия всей системы имеет вид:

$$8V \rho g + V \cdot 2\rho g = \left(V + \frac{16}{3}V\right) \rho_0 g$$
, откуда $\rho = \frac{19}{30} \rho_0 \approx 633 \ \kappa z \ / \ M^3$.

Из условия равновесия для нижнего кубика: $T + V \rho_0 g = V \cdot 2 \rho g$ следует,

что
$$T = \frac{4}{15}V\rho_0 g = \frac{4}{15}\frac{a^3}{8}\rho_0 g = 72 \text{ H}.$$

Критерии оценивания

Задача 4

Вася принёс домой с улицы снежок массой 200 г, слепленный из «мокрого» снега. «Мокрым» называют снег, содержащий воду. Температура снежка 0 °C. Вася поместил снежок в ведёрко, в котором было 2 л воды при температуре 25 °C. При этом температура общей массы получившейся воды стала равной 18 °C. Определить процентное содержание по массе влаги (воды), которое было в снеге. Удельная теплоемкость воды $c_{\rm B} = 4.2~{\rm кДж/(кг.°C)}$, удельная теплота плавления льда $\lambda = 330~{\rm кДж/кг}$. Потерями теплоты пренебречь.

Возможное решение

Пусть x — массовая доля воды в мокром снеге. Запишем уравнение теплового баланса:

$$(1-x)m\lambda + c_{\scriptscriptstyle \mathrm{B}}mt_1 = c_{\scriptscriptstyle \mathrm{B}}M(t_2-t_1),$$

где m — масса «мокрого» снега, $t_1=18\,^{\circ}\mathrm{C},\ t_2=25\,^{\circ}\mathrm{C},\ M=2$ кг. Отсюда получаем:

$$x = 1 - \frac{c_{\rm B}M(t_2 - t_1) - c_{\rm B}mt_1}{m\lambda} = 1 - \frac{4.2 \cdot 10^3 \cdot (2 \cdot 7 - 0.2 \cdot 18)}{0.2 \cdot 3.3 \cdot 10^5} \cong 34\%.$$

Критерии оценивания

Задача 5

Найдите показания идеального амперметра в цепи, схема которой показана на рисунке, если напряжение на батарейке $U=44~\mathrm{B}$. Значения сопротивлений резисторов указаны на рисунке.

Возможное решение

Сопротивление идеального амперметра равно нулю, поэтому можно считать, что резисторы включены попарно параллельно. Это позволяет изобразить токи

в схеме, с учётом симметрии и закона Ома, обратно пропорционально сопротивлениям параллельных ветвей. Для удобства (это делать не обязательно) можно подобрать общий ток кратным суммам сопротивлений параллельных резисторов (7 и 3), чтобы коэффициенты при токах получились целочисленными.

С учётом закона сохранения заряда для узлов ток, текущий через амперметр, равен I. Напряжение на всей схеме U = 30IR + 14IR = 44IR, где R = 1 Ом. Тогда $I = \frac{U}{44R} = 1$ А.

Критерии оценивания

 1. Эквивалентная замена амперметра перемычкой
 1 балл

 2. Расчёт общего сопротивления схемы попарно параллельных резисторов
 2 балла

 3. Нахождение общего тока
 1 балл

 4. Нахождение токов через отдельные резисторы
 4 балла

 5. Нахождение тока через амперметр
 2 балла

 Максимум за задачу 10 баллов.

Всего за работу 50 баллов.