

BAZE DE DATE

Concepte de bază

Mihaela Elena Breabăn © FII 2013-2014

Bază de date

 O colecție de date (operaționale) relaționate logic, proiectată pentru a deservi necesarul de informații al unei organizații

Sistem de gestiune a bazelor de date (SGBD)

Ansamblu:

- Hardware
- Software
- Date
- Utilizatori

pune la dispoziție metode eficiente si sigure de regasire si furnizare a datelor catre un numar mare de utilizatori

SGBD Funcții

Oferă

- Acces controlat la baza de date
- Stocarea, regăsirea, actualizarea datelor
- Securitate
- Integritate
- Suport pentru tranzacții
- Control concurent
- Recuperare a datelor
- Catalog (dicționarul de date)

SGBD Hardware

- Datele au caracter persistent
- Volumul de date este ridicat
- Accesul se realizează rapid
- ▶ Poate varia de la un simplu PC la o rețea de calculatoare

SGBD Software

- Interacțiunea dintre utilizatori si sistem se realizează prin limbaje de interogare:
 - DDL (data definition language)
 - Definirea datelor generează meta-date
 - DML (data manipulation language)
 - Regăsirea și actualizarea datelor
- abordare neprocedurală

SGBD Utilizatori

- Administratorul bazei de date
- Proiectantul bazei de date
- Utilizatorii finali
- Programatorii de aplicaţii

SGBD Arhitectura

Funcțional:

- Managerul de memorie
- Procesorul de interogări
- Managerul de tranzacții
- La nivel de aplicație
 - Client-server

SGBD Istoric

- Modelele ierarhic (IBM's IMS, sf. '60)
- Modelul rețea (CODASYL 1971)
- Modelul relațional (Codd, '70)
- Modelul obiect-relațional ('90)

Modelul ierarhic

Modelul rețea

B005	22 Deer Rd	London		SL41	Jul e	Lee	 Assistant	9000
B007	16 Argyl St	Aberdeen		SL21	John	White	 Manager	30000
B003	163 Main St	Glasgow		SA9	Mary	Howe	 Assistant	9000
B004	32 Manse Rd	Bristol		SG37	Ann	Beech	 Assistant	12000
B002	56 Clover Dr	London	\\	SG14	David	Ford	 Supervisor	18000
			\					
			\	SG5	Susan	Brand	 Manager	24000

Modelul relațional

Branch

branchNo	street	city	postCode	
B005	22 Deer Rd	London	SW1 4EH	
B007	16 Argyll St	Aberdeen	AB2 3SU	
B003	163 Main St	Glasgow	G11 9QX	
B004	32 Manse Rd	Bristol	BS99 1NZ	
B002	56 Clover Dr	London	NW10 6EU	

Staff

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	M	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Modelul relațional

Componente:

- Do clasă de structuri de date denumite tabele
- Constrângeri impuse asupra datelor din tabele
- Asocieri între tabele
- Metode pentru a construi noi tabele (operații în algebra relațională)

Baze de date relaționale Terminologie

- Relaţie = Tabel
- Atribute = Coloane = Câmpuri
- ▶ **Domeniu** mulțimea de valori permise pentru atribute
- ► Tuplu = Înregistrare o linie dintr-o relație
- ▶ Bază de date relațională o colecție de relații cu nume distincte
- ▶ Schema unei relații o relație cu nume definită de perechi atribut-domeniu
- Schema unei baze de date relaţionale mulţime de scheme de relaţii
- Instanța bazei de date conținutul bazei de date la un anumit moment

Proprietăți ale relațiilor

- Numele relațiilor sunt unice în schema relațională
- Fiecare celulă a unei relații conține exact o valoare atomică
- Fiecare atribut are nume unic
- Valorile unui atribut sunt toate din acelaşi domeniu
- Fiecare tuplu este distinct; nu există tuple duplicat
- Ordinea atributelor și a tuplelor nu are semnificație

Chei

- Supercheie un atribut sau o mulțime de atribute care identifică unic un tuplu într-o relație
- ▶ Cheie candidat o supercheie cu proprietatea că nici o submulțime proprie a sa nu este supercheie
- ▶ Cheie primară o cheie candidat selectată pentru a identifica în mod unic tuplele într-o relație
- Cheie alternativă Chei candidat care nu au fost selectate pentru a juca rolul de cheie primară
- ▶ Cheie străină un atribut sau o submulțime de atribute dintr-o relație care face referință la o cheie candidat a altei relații

Constrângeri de integritate

- Nici un atribut al cheii primare nu poate fi NULL
- Valoarea cheii străine trebuie să se potrivească cu valoarea cheii candidat pentru măcar un tuplu din relația referențiată, altfel trebuie să aibă valoarea NULL.
- Alte constrângeri...

View-uri

Relațiile de bază au tuplele stocate fizic în baza de date

View-ul este rezultatul unor operații cu tabelele existente, nu e stocat efectiv în baza de date.

Arhitectura pe 3 nivele ANSI-SPARC

Mapare nivel extern/conceptual

Mapare nivel conceptual/intern

Id	Fname	Sname	DOB	J_title	Empl_date	Scale	Tel_no
(Num)	(Text)	(Text)	(Date)	(Text)	(Date)	(Num)	(Text)

Table_Employees < implemented as>
ARRAY[n] OF struct STAFF


```
struct STAFF Table_Employees [5000];
struct STAFF {
                                        the information about staff
                ID;
      int
                                        is physically implemented
                Fname[20];
      char
                                        by means of an array
      // ...
                Tel_no[15];
      char
};
struct INDEXS {
                                        other structures, not derived
                                        from the logical level, might
      int
                ID:
                                        be used at the physical level
                Index:
      int
} Index_Employees [n];
                                        (e.g. indexes)
```

Arhitectura pe 3 nivele Scheme

SGBD – avantaje

- Consistența datelor
- Partajarea datelor
- Securitate
- Acces îmbunătățit
- Concurență crescută
- Servicii de backup şi recuperare

