科学计算中的量子算法:量子数值线性代数基础1

安冬

北京大学北京国际数学研究中心(BICMR)

andong@bicmr.pku.edu.cn

24-25 学年第 2 学期

大纲

- ▶ 量子数值线性代数概览
- ▶ 向量的量子表示
- ▶ 矩阵的量子表示
- ▶ 构造

量子数值线性代数概览

数值线性代数:

▶ 基本运算: 矩阵/向量运算

▶ 任务:矩阵分解、线性方程组、微分方程、特征值问题等

量子数值线性代数:

▶ 期待的加速: $\mathcal{O}(\mathsf{poly}\log N)$ vs $\mathcal{O}(\mathsf{poly}N)$

▶ 运算受限: 归一化、酉变换、不可复制定理、输入输出问题等

向量的量子表示:量子态

$$n$$
 个量子比特: $|i_0i_1\cdots i_{n-1}\rangle=|i_0\rangle\otimes|i_1\rangle\otimes\cdots\otimes|i_{n-1}\rangle\in\mathbb{C}^{2^n}, i_j\in\{0,1\}$ 记
$$|k\rangle=|(k)_2\rangle\in\mathbb{C}^{2^n},\quad 0\leq k\leq 2^n-1$$

$$|\psi\rangle = \sum_{k=0}^{2^{n}-1} \alpha_{k} |k\rangle \in \mathbb{C}^{2^{n}} = (\alpha_{0}, \cdots, \alpha_{2^{n}-1})^{T}, \quad \||\psi\rangle\| = 1.$$

- ▶ $\{|k\rangle\}_{k=0}^{2^n-1}$ 表示一组正交基(计算基)
- ▶ 测量: 以概率 |α_k|² 得到 k

向量的量子表示:量子态

态制备 oracle:

$$O_{\psi}:|0\rangle\mapsto|\psi\rangle=\sum_{k=0}^{2^{n}-1}\alpha_{k}|k\rangle$$

- ▶ 构造 O_ψ 的复杂度:
 - ▶ 最坏情况复杂度: Ω(2ⁿ)
 - ▶ 某些情况下可以达到 $\mathcal{O}(\text{poly}(n))$
- lackbox 在后面的很多算法中,我们会视 O_ψ 为黑盒,并计算访问 O_ψ 的次数(query complexity)

态制备: Grover-Rudolph

目标:制备 $|\psi\rangle=\sum_{i=0}^{2^n-1}\sqrt{p_i}\,|i\rangle$,其中 $\{p_i\}$ 是可积的离散概率分布

思路: 二分法

$$\begin{aligned} |0\rangle &\to \sqrt{p_{<2^{n-1}}} \, |0\rangle + \sqrt{p_{\geq 2^{n-1}}} \, |1\rangle \\ &\to \sqrt{p_{<2^{n-1}}} \, |0\rangle \left(\sqrt{\frac{p_{<2^{n-2}}}{p_{<2^{n-1}}}} \, |0\rangle + \sqrt{\frac{p_{\geq 2^{n-2},<2^{n-1}}}{p_{<2^{n-1}}}} \, |1\rangle \right) \\ &+ \sqrt{p_{\geq 2^{n-1}}} \, |1\rangle \left(\sqrt{\frac{p_{\geq 2^{n-1},<1.5\times2^{n-1}}}{p_{\geq 2^{n-1}}}} \, |0\rangle + \sqrt{\frac{p_{\geq 1.5\times2^{n-1}}}{p_{\geq 2^{n-1}}}} \, |1\rangle \right) \\ &= \sqrt{p_{<2^{n-2}}} \, |00\rangle + \sqrt{p_{\geq 2^{n-2},<2^{n-1}}} \, |01\rangle + \sqrt{p_{\geq 2^{n-1},<1.5\times2^{n-1}}} \, |10\rangle + \sqrt{p_{\geq 1.5\times2^{n-1}}} \, |11\rangle \\ &\cdots \cdots$$

复杂度: $\mathcal{O}(n)$

态制备:已知函数

目标: 制备
$$|\psi\rangle=rac{1}{\sqrt{\sum|f(i)|^2}}\sum_{i=0}^{2^n-1}f(i)\,|i
angle$$
,其中 $f(i)$ 是一个已知的函数

Oracle:

$$O_f: |i\rangle |0\rangle \mapsto |i\rangle |f(i)\rangle$$

态制备:已知函数

$$O_f : |i\rangle |0\rangle \mapsto |i\rangle |f(i)\rangle$$
c-R: $|\theta\rangle |0\rangle \mapsto |\theta\rangle \left(\theta |0\rangle + \sqrt{1 - |\theta|^2} |1\rangle\right)$

矩阵的量子表示: 块编码 (block-encoding)

直观:用一个更大的酉矩阵 U_A 的子块表示任意矩阵 A

$$U_A pprox \left(egin{array}{cc} rac{1}{lpha}A & * \ * & * \end{array}
ight).$$

ightharpoons lpha 被称为块编码系数 (block-encoding factor), 应满足 $lpha \geq ||A||$

矩阵的量子表示: 块编码 (block-encoding)

Definition (Block-encoding)

设 A 是一个 2^n 乘 2^n 的矩阵. 定义 A 的 (α, a, ϵ) -block-encoding 为一个 2^{n+a} 乘 2^{n+a} 的酉矩阵 U_A , 使得

$$\|A - \alpha (\langle 0|^{\otimes a} \otimes I) U_A (|0\rangle^{\otimes a} \otimes I)\| \leq \epsilon.$$

- ▶ 构造 *U_A* 的复杂度通常也很高
- ▶ 在后面的很多算法中,我们会视 U_A 为黑盒,并计算访问 U_A 的次数 (query complexity)

矩阵向量乘

Input:

Block-encoding of A:

$$A \approx \alpha (\langle 0| \otimes I) U_A (|0\rangle \otimes I)$$

$$U_{\mathcal{A}} pprox \left(egin{array}{ccc} \langle 0| & \langle 1| \ & & \ \end{array}
ight) \left| 0
ight
angle \ \left| 1
ight
angle
ight.$$

or
$$U_A \approx |0\rangle \langle 0| \otimes \frac{A}{\alpha} + |0\rangle \langle 1| \otimes *$$

 $+ |1\rangle \langle 0| \otimes * + |1\rangle \langle 1| \otimes *$

Quantum state:

$$|u\rangle = \sum_{j=0}^{2^n-1} u_j |j\rangle$$

'Algorithm': applying block-encoding

$$|0\rangle$$
 U_A U_A

$$U_A\ket{0}\ket{u}pprox rac{1}{lpha}\ket{0}A\ket{u}+c\ket{1}\ket{*}$$

or
$$\begin{pmatrix} \frac{1}{\alpha}A & * \\ * & * \end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\alpha}Au \\ * \end{pmatrix}$$

Need to measure the first ancilla gubit

Success probability: $(\|A\|u\|/\alpha)^2$

Number of repeats (after amplitude amplification): $\mathcal{O}\left(\alpha/\|A\|u\rangle\|\right)$

稀疏矩阵的量子表示

设 A 是一个 2^n 乘 2^n 的稀疏矩阵,稀疏度为 s,每个矩阵元素 $|A_{ij}| \leq 1$. 其稀疏 oracle 为

$$O_r: |i\rangle |l\rangle \mapsto |i\rangle |r(i,l)\rangle$$

$$O_c: |I\rangle |j\rangle \mapsto |c(j,I)\rangle |j\rangle$$

$$O_A: |i\rangle |j\rangle |0\rangle \mapsto |i\rangle |j\rangle |A_{ij}\rangle$$

其中 r(i, l) 或 c(j, l) 分别为第 i 行或第 j 列的第 l 个非 l 元的指标

块编码: 酉矩阵

酉矩阵 U 是它自己的 (1,0,0)-block-encoding

块编码: Gram 矩阵

$$A = (A_{ij}), \quad A_{ij} = \langle \psi_i | \phi_j \rangle, \quad i, j \in [2^n]$$

其中 $|\psi_i\rangle$, $|\phi_i\rangle$ 是两组 (n+a) 比特量子态

设

$$U_L: |0\rangle |i\rangle \mapsto |\psi_i\rangle, \quad U_R: |0\rangle |j\rangle \mapsto |\phi_j\rangle,$$

则 $U = U_L^{\dagger} U_R$ 是 A 的一个 (1, a, 0)-block-encoding

块编码: 稀疏矩阵

$$\begin{aligned} &O_r: |i\rangle |i\rangle \mapsto |i\rangle |r(i, i)\rangle \\ &O_c: |i\rangle |j\rangle \mapsto |c(j, i)\rangle |j\rangle \\ &O_A: |i\rangle |j\rangle |0\rangle \mapsto |i\rangle |j\rangle |A_{ij}\rangle \\ &\text{c-R}: |\theta\rangle |0\rangle \mapsto |\theta\rangle \left(\theta |0\rangle + \sqrt{1 - |\theta|^2} |1\rangle\right) \end{aligned}$$

 \triangleright (s, n + 1, 0)-block-encoding

阅读

阅读:

LL: Chapter 6