Demo 1 User-assisted Watershed Segmentation

Demo 1: How the segmentation works

A hierarchy of global image segmentations is generated using the watershed transform

The user picks and combines regions from the watershed hierarchy to produce a final segmentation

Demo 1: User-assisted Watersheds

How the application is constructed

ITK image processing (watersheds)

VTK visualization

Tcl/Tk scripted user interface

Watersheds GUI Design

InsightApplications/SegmentationEditor

Tk Graphical User Interface

Tcl Wrapper

vtkITK IP Pipeline

VTK Vis. Pipeline

Watersheds Interface Overview

Demo 1: User-assisted Watersheds

This demo leads you through a segmentation of a brain tumor in a 3D MRI dataset using the Watershed Segmentation Editor.

How to run the demo program

Click once on the "Demo 1" icon

Follow the instructions in the green windows

Watershed segmentation theory.

The remainder of this document outlines the theory behind the watershed segmentation algorithm and some validation work conducted at the University of Utah. This material is helpful for understanding the demo. It is not necessary for running the demo.

Morphological Watersheds Theory

- Large body of research over 20 years
 Inspired by hydrology treat image as
 landscape and look for its watershed regions
 "Watershed Transform" the algorithm that
 identifies the watershed regions
- Main Variations
 - Top-down: classify pixels by shortest topological distance to local minima
 - Bottom-up: simulated immersion algorithms
 - L. Vincent, P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion simulations, PAMI 13 (6) (1991) 583–598.

ITK Watershed Transform

Image treated as a topological relief map – intensity represents height

Gradient descent defines segmented regions

- Set of all pixels whose paths of steepest descent terminate in same local minimum
- Bounded by image features

Global – operates on entire image at once No parameters except preprocessing

The Watershed Transform Illustrated

The Oversegmentation Problem

Watershed transform produces too many regions

- One per local minimum
- Especially in noisy or highly detailed data
 To alleviate oversegmentation
 - Hierarchical approach merge adjacent regions according to increasing watershed depth
 - A. P. Mangan, R. T. Whitaker, Partitioning 3D surface meshes using watershed segmentation, IEEE Transactions on Visualization and Computer Graphics 5 (4) (1999) 308–321.

Watersheds Hierarchy

Enforce minimum watershed depths at successively higher levels.

Reducing Oversegmentation with Hierarchies

How is ITK integrated with VTK? vtklTK

InsightApplications/vtkITK

Mechanism for converting ITK filters into VTK filters

VTK wrapped for Python, Tcl, Java

Interactive Watersheds Validation: User Study

Comparison of user-assisted hierarchical watersheds with hand-contouring

Hand contouring

- De facto standard
- General and reliable(?)

Issues

- Can a general purpose segmentation algorithm compete?
- (Are our validation tools up to the task?)
 Cates, Whitaker, Jones, "Case Study: An Evaluation Of User-Assisted Hierarchical
 Watershed Segmentation", Medical Image Analysis, Under review.

User Study Overview

	Ground Truth Subjects (Slicer)	WS Segmentation Subjects
MRI Brain Tumor (4 cases)	Slice from HBW BT database (4 per case)	Radiologists (3) from Univ of Utah
VHP Cryosection (Eyeball, optic nerve, lateral rectus)	3rd-year med. students at HBW and Utah (EB-4, ON-3, LR-8)	3rd-year med. students at Utah (7)

Validation Strategy

Validation Results

Validation Results

Hand contour

Watersheds

Validation Results

Visible Human cryosections

Brain tumor MRI

Summary of Validation Results Accuracy

- Sensitivity (TPF) is generally low
- Total correct fraction generally within variation of experts (better for tumor data)
- Generally better than level-set approach

Precision

 Significantly better than both hand contouring and level-set

Efficiency

- Versus hand contouring, no comparison (30 min vs. 2-3 hours)
- Versus level-set, more preprocessing and comparable user times
- Time/expertise/to_tuneghiddeneparameters/issussisten tunnentallingung talkata tunnentallingung tunnentallingung talkata tunnentallingung talkata tunnentallingung talkata tunnentallingung talkata tunnentallingung talkata tunnentallingung talkata tunnentall

Validation Conclusions

Watershed Segmentation

- WS probably makes more sense vs hand contouring in many applications
- True positive fraction is an issue could tune for that metric

Validation

- Rich set of systematic tools
- Pixel-based shape metrics lacking
- Hand contouring for ground truth
 questionable
 questionable
 purposition of Utah

