

CONTROLO INTEGRADO DA PRODUÇÃO

MODELAÇÃO E CONTROLO DE SISTEMAS DE PRODUÇÃO

João Miguel da Costa Sousa

Instituto Superior Técnico, Dep. de Engenharia Mecânica Secção Sistemas Centro de Sistemas Inteligentes, Pav. Eng. Mecânica III 1049—001 Lisboa, Portugal

Tel.: +351 21 8417471, e-mail:jmsousa@ist.utl.pt

http://www.dem.ist.utl.pt/~jsousa

Programa

1. Introdução: modelos de manufactura e de serviços

Modelos de Sistemas de Manufactura. Modelos de Sistemas na Área dos

2. Planeamento e escalonamento em sistemas de manufactura

Planeamento de projectos. Escalonamento de máquinas e escalonamento job shop. Escalonamento de sistemas de montagem flexíveis. Escalonamento por lotes. Planeamento e escalonamento em cadeias de abastecimento.

3. Planeamento e escalonamento na área dos serviços

Escalonamento por intervalos, reservas e escalonamento temporal. Escalonamento temporal em desportos e lazer. Planeamento, escalonamento e horários em transportes. Escalonamento de equipas de trabalho.

4. Desenvolvimento e implementação de sistemas de produção

Desenvolvimento e implementação de sistemas. Conceitos avançados em concepção de sistemas. Futuro da área do controlo integrado da produção.

Ioža Mianal da Casta Sansa

.

Programa detalhado

1 − Introdução: modelos de manufactura e serviços □ Introdução

- Definição de controlo integrado da produção. Papel e impacto do planeamento e escalonamento em sistemas de produção. Funções do controlo integrado da produção e do planeamento e escalonamento numa
- ☐ Modelos de Sistemas de Manufactura
 - Introdução. Trabalhos, máquinas e recursos. Processamento das características e das restrições em sistemas de manufactura. Objectivos e medidas de desempenho.
- ☐ Modelos de Sistemas na Área dos Serviços
 - Introdução. Actividades e recursos em serviços. Características operacionais e restrições. Objectivos e medidas de desempenho.

João Miguel da Costa Sousa

Programa detalhado (2)

2 – Planeamento e escalonamento em sistemas de manufactura

- ☐ Planeamento de projectos
 - Método do Caminho Crítico (CPM). Avaliação do programa e técnica de revisão (PERT). Tempo vs. custo: métodos lineares e não-lineares. Escalonamento de projecto com restrições de equipas de trabalho. Exemplo: sistema de escalonamento de um projecto para a indústria nuclear.
- ☐ Escalonamento de máquinas e escalonamento job shop
 - Máquina única e modelo de máquinas paralelas. Programação matemática aplicada a job shop. Heurística shifting bottleneck para job shop. Programação com restrições aplicada a job shop. LEKIN: Exemplo de um sistema genérico para escalonamento job shop.

João Miguel da Costa Sousa

4

Programa detalhado (3)

- ☐ Escalonamento de sistemas de montagem flexíveis
 - Sequenciação de sistemas de montagem em linhas paralelas.
 Sequenciação de sistemas de montagem com estações de trabalho.
 Escalonamento de sistemas de fluxo flexível (flexible flow shop) com saltos.
 Exemplo: modelo misto de sequenciação de montagem na Toyota.
- ☐ Escalonamento por lote
 - Escalonamento com um tipo de produto. Escalonamentos rotativos com vários tipos de produtos. Escalonamentos arbitrários com vários tipos de produtos. Modelos genéricos de escalonamento por lotes. Exemplo: planeamento e escalonamento de vários produtos na Owens-Corning Elberdias.
- ☐ Planeamento e escalonamento em cadeias de abastecimento
 - Definição de cadeia de abastecimento. Configurações possíveis. Métodos de planeamento e escalonamento em cadeias de abastecimento. Modelos de planeamento a médio prazo e a curto prazo para cadeias de abastecimento. Exemplo de implementação na Carlsberg Denmark.

João Miguel da Costa Sousa

Programa detalhado (4)

- 3 Planeamento e escalonamento na área dos servicos
- ☐ Escalonamento por intervalos, reservas e escalonamento temporal
 - Sistemas de reservas sem folga e com folga. Escalonamento temporal de equipas de trabalho com restrições. Escalonamento temporal com restrições de operadores ou de ferramentas. Exemplo: atribuição de disciplinas a salas na Universidade de Berkeley.
- ☐ Escalonamento temporal em desportos e lazer
 - Escalonamento temporal em competições desportivas. Escalonamento de competições com programação com restrições e por procura local.
 Escalonamento de programas televisivos por cabo. Exemplo: escalonamento de uma competição de basquetebol.

João Miguel da Costa Sousa

Programa detalhado (5)

- ☐ Planeamento, escalonamento e horários em transportes
 - Escalonamento de frotas. Escalonamento e planeamento de rotas de aeronaves. Horários de comboios. Exemplo: concepção e implementação de sistemas de transporte: Carmen Systems.
- ☐ Escalonamento de equipas de trabalho
 - Introdução. Escalonamento de dias de folga de trabalhadores. Escalonamento de turnos. Problema de turnos de trabalho cíclicos. Escalonamento de tripulações e equipas de trabalho. Exemplo: escalonamento de operadores num call center.

João Miguel da Costa Sousa

Programa detalhado (6)

- 4 Desenvolvimento e implementação de sistemas de produção
- ☐ Desenvolvimento e implementação de sistemas
 - Arquitectura de sistemas. Bases de dados, bases de objectos e bases de conhecimento. Módulos para gerar planeamentos e escalonamentos. Interfaces com o utilizador e optimização interactiva. Sistemas genéricos e sistemas específicos para uma dada aplicação. Aspectos de implementação e manutenção.
- ☐ Conceitos avançados em concepção de sistemas
 - Robustez e tomada de decisão reactiva. Mecanismos de aprendizagem. Motores de planeamento e escalonamento, e bibliotecas de algoritmos. Sistemas reconfiguráveis. Planeamento baseado na web e sistemas de escalonamento.
- ☐ Futuro da área do controlo integrado da produção
 - Futuro do planeamento e escalonamento em sistemas de manufactura.
 Futuro do planeamento e escalonamento em serviços. Métodos de optimização. Desenvolvimento de sistemas.

João Miguel da Costa Sousa

9

Bibliografia

- □ Pinedo, M., Scheduling Operations, Manufacturing and Services, Springer, 2005.
- ☐ Pinedo, M., Scheduling: Theory, Algorithms, and Systems, Prentice-Hall Inc., 2002.
- N. Viswanadham, Y. Narahari, Performance modeling of automated manufacturing systems, Prentice Hall, 1992.
- ☐ M. P. Groover, Automation, *Production Systems and Computer Integrated Manufacturing*, Prentice Hall, 2001.
- R.D. Klafter, T.A. Chmielewski & M. Negin. Robotic Engineering - An Integrated Approach. Prentice Hall International, Inc., 1989.

João Miguel da Costa Sousa

INSTITUTO SUPPRIOR TECNICO

Avaliação de conhecimentos

- ■Exame (50%) e Projecto (50%)
- ☐ Possibilidade de fazer mini-testes ao longo do semestre, dispensando-se de exame.
- Projecto: grupos de 2 alunos no máximo (apresentado oralmente).
 - Na célula flexível de produção:
 - http://193.136.103.195/view/index.shtml
 - e/ou em colaboração com indústria / serviços:
 - ➤ Planeamento optimizado de produção
 - ➤ Simulação de layout de fábrica real

João Miguel da Costa Sousa

10

INTRODUCTION

Planning and Scheduling

- Decision-making processes used in many manufacturing and service industries.
- ☐ Applied in procurement and production, transportation and distribution, information processing and communication.
- Planning and scheduling rely on mathematical techniques and heuristic methods to optimize allocation of limited resources to activities.

João Miguel da Costa Sousa

Example: system installation project

- Example: Procurement, installation and testing of a large computer system.
- ☐ Tasks: evaluation and selection of hardware, software development, recruitment and training of personnel, system testing and debugging, etc.
- ☐ Goal: complete the project in minimum time, considering the precedence between tasks.

João Miguel da Costa Sousa

13

Example: job shop manufacturing

- **Example:** semiconductor manufacturing facility.
- ☐ Tasks: wafer fabrication, wafer probe, assembly and final testing (highly specialized manufacturing).
- ☐ Goals: meet as many due dates as possible, while maximizing throughput.
- ☐ Wafer fabrication consists of several layers, requiring the repetition of operations several times.
- □ Number of orders in the system are usually hundreds and each has its own release date and due date.

João Miguel da Costa Sousa

. . .

Example: flexible assembly system

- Example: automobile assembly line.
- ☐ Tasks: producing different models, belonging to a small family of cars.
- ☐ Goals: maximizing throughput balancing the workload at each station.
- ☐ Family of cars can include two-door coupe, four-door sedan and stationwagon.
- ☐ A bottleneck is the paint shop: color changing is a time consuming process.

João Miguel da Costa Sousa

15

Example: production planning

- **Example:** production planning in a paper mill.
- ☐ Tasks: Each machine produces various types of paper, characterized by basis weight, grade and color.
- □ Goals: maximize throughput, minimizing inventory
- ☐ Input: wood fiber and pulp. Output: rolls of paper.
- □ Paper machines: 50 to 100 million euros each.
- ☐ Production plans drawn on an *annual* basis. Cycles of production of 2 weeks.

João Miguel da Costa Sousa

16

Example: supply-chain

- **Example**: planning an scheduling in a supply-chain.
- ☐ Tasks: material or goods are moved from one facility to another (in a network of facilities).
- ☐ Goals: minimize the total costs (production, transportation and inventory holding costs).
- ☐ Paper mill is included in a network of production facilities: timberland, paper mills, converting facilities, distribution centers and retailers or end-consumers.
- ☐ More value is added to the product in each stage of the supply chain.

João Miguel da Costa Sousa

17

Example: reservation system

- ☐ Scheduling problems of a manufacturer are similar to scheduling problems at services (e.g. car rental, hotels)
- **Example**: car rental agency.
- ☐ Tasks: decide to provide or not cars to clients.

 Reservations for very short periods can be denied.
- ☐ Goals: maximize number of days cars are rented out.
- ☐ Agency maintains a fleet of various types of cars.

João Miguel da Costa Sousa

Example: scheduling in sports

- **Example**: tournament of a soccer (football) league.
- ☐ Tasks: to schedule the games over a fixed set of rounds
- ☐ Goals: to create an ideal schedule that alternates between games at home and games away.
- Some possible constraints:
 - If a city has two teams, in each round one team should play at home and the other team should play away.
 - If two teams are very strong, the other teams should not face these two teams in consecutive rounds.

João Miguel da Costa Sousa

19

Example: planning in transportation

- **Example**: routing and scheduling of airplanes.
- ☐ Tasks: estimate profits of assigning a type of aircraft to a flight leg.
- ☐ Goals: combine the different flight legs into the round trips that can be assigned to airplanes.
- ☐ Flight: characterized by **origin**, **destination** and **scheduled departure time**.
- ☐ Information with costumer demand for any given flight is available.

João Miguel da Costa Sousa

Example: scheduling of personnel

- **Example**: scheduling of nurses in a hospital.
- ☐ Goal: develop shift assignments so that all daily requirement are met and the constraints satisfied at minimal cost.
- □ Number of nurses required on week days is usually more than on weekends.
- ☐ The same happens with day shifts and night shifts.
- ☐ State and federal regulations and union rules must may provide additional constraints.

João Miguel da Costa Sousa

MANUFACTURING MODELS

Manufacturing models

- ☐ In manufacturing models:
 - Resource is called a "machine"
 - Task is called as "job"
- ☐ A job may be a single operation or a collection of operations to be done in several different machines.
- ☐ There are five classes of manufacturing models, which are described in the following.

João Miguel da Costa Sousa

25

Project planning and scheduling

- ☐ Project scheduling is important for large projects
- ☐ A large project consists of a number of jobs with **precedence constraints**.
- Example: construction of an aircraft, large consulting project.
- ☐ Goal: minimize completion time of last job (makespan)
- ☐ The **critical path** (set of jobs that determine the makespan) can be identified.

João Miguel da Costa Sousa

. .

Job shop models

☐ Job shop scheduling (include single machine and parallel machine models)

Jobs	Machine Sequence
1	1, 2, 3
2	2, 1, 4, 3
3	1, 2, 4

- ☐ Minimize makespan or the number of late jobs
- Mostly for make-to-order manufacturing systems
- ☐ Also in services

João Miguel da Costa Sousa

27

Flexible Manufacturing Systems

- □ Production systems with automated material handling.
- Material handling or conveyor system controls the movement of jobs and timing of their processing.
- Mostly for mass production systems.
- ☐ Maximize throughput.
- Examples: automotive industry and consumer electronics industry.

João Miguel da Costa Sousa

28

Lot scheduling

- ☐ For medium and long term production planning.
- ☐ Processes are continuous.
- ☐ Switching between products incurs a setup cost.
- ☐ Minimize total inventory and setup costs.
- Examples: process industries, e.g. oil refineries, paper mills.

João Miguel da Costa Sousa

29

Supply-chain models

☐ In general, are an integration of job-shop and lot scheduling, including transportation costs.

João Miguel da Costa Sousa

Manufacturing models revisited

- ☐ Discrete models: project scheduling, job shop or flexible assembly systems.
- Formulated as an integer programming or disjunctive programming.
- □ Continuous models: lot scheduling.
- > Formulated as a linear or nonlinear programming

João Miguel da Costa Sousa

31

Modeling parameters

Dynamic data:

- □ Starting time S_{ij} –time when job j starts its processing on machine i
- □ Completion time C_{ij} time when job j is completed on machine i

Model representation:

machine configuration | characteristics | objectives $\alpha \mid \beta \mid \gamma$

João Miguel da Costa Sousa

33

Machine configuration

□ Single machine:

- □When there is a single **bottleneck** in a multi-machine environment, that bottleneck is scheduled first.
- ☐ Earliest Due Date (EDD) orders the jobs in increasing order of their due dates.
 - Minimize maximum lateness among all jobs
- □ Short Processing Time first (SPT) minimize the average number of jobs waiting for processing.

João Miguel da Costa Sous

Performance Measures and Objectives

- ☐ Througput is frequently determined by the bottleneck machines, for which the utilization should be maximized.
- ■Makespan

$$C_{\text{max}} = \max(C_1, C_2, \dots, C_n)$$

- where C_i is the completion time of job j.
- Minimizing makespan tends to maximize throughput and balance load.

João Miguel da Costa Sousa

43

Performance Measures and Objectives

■ Due date related objectives

Lateness

$$L_i = C_i - d_i$$

- where d_i is the due date of job j.
- Maximum lateness (minimize worst performance)

$$L_{\max} = \max(L_1, \dots, L_n)$$

João Miguel da Costa Sousa

. . .

Performance Measures and Objectives

Tardiness

$$T_j = \max(C_j - d_j, 0)$$

➤ Objective function

$$\sum_{i=1}^{n} T_{j}$$

Weighted Tardiness

$$\sum_{j=1}^{n} w_{j} T_{j}$$

João Miguel da Costa Sousa

45

Performance Measures and Objectives

■ Work-In-Process inventory costs

- Minimizing WIP also minimizes average throughput (lead) time, which is the time it takes a job to transverse the system.
- Equivalent to minimize the average number of jobs in the system.
- Minimizing average throughput time is closely related to minimize the sum of completion times:

$$\sum_{j=1}^{n} C_{j} \qquad \sum_{j=1}^{n} w_{j} C_{j}$$

João Miguel da Costa Sousa

47

Others costs and concepts

- **■**Setup costs
- ☐ Finished goods inventory costs
- Transportation costs
- ☐ In **Just-In-Time** (JIT) concepts, it is important to minimize the **total earliness**.
 - A job should be completed just before its committed shipping, avoiding inventory and handling costs.
- □ Robustness. A schedule is robust when the necessary changes in case of disruption (e.g. machine breakdown, rush order) are minimal.

João Miguel da Costa Sousa

SERVICE MODELS

Introduction

- ☐ Impossible to "store" goods
 - It is not possible to "get back" the lost time in a hotel room.
- ☐ Resource availability (e.g. people, rooms or trucks) often varies
 - May even be part of the objective function
- ☐ Saying "no" to a customer is common
 - "No available seats on that flight" (even if there are some!)
 - Try to book a restaurant for 8 or 9 PM

João Miguel da Costa Sousa

__

Reservation systems and timetabling

■ Reservation systems

- A job j has a duration p_j and the starting and completion times are usually fixed in advance.
- Example: in a car rental agency, a job is the reservation of a car for a given period.

☐ Timetabling (rostering)

A job or activity j with a duration p_j, which has to be scheduled in a time window in the interval:

[earliest possible starting time r_i , latest possible completion time d_i]

• Examples: exam scheduling, scheduling operating rooms

João Miguel da Costa Sousa

51

Service models

☐ Tournament scheduling and broadcast television models

 Tournament scheduling – parallel machine problem, where all the jobs have the same processing time.

☐ Transportation scheduling

- *Examples: airlines, railroads, shipping.
- **Job** trip or flight leg; **machine** ship, plane or vehicle.
- Trip k incurs a cost c_k and generates a profit π_k .
- Objective: minimize total cost or maximize total profit.

João Miguel da Costa Sousa

5.

Workforce scheduling

□ Shift scheduling in service facilities

- **❖ Example**: call center
 - Time interval i requires a staffing of b_i (integer).
 - Objective: minimize total cost.

□ Crew scheduling in transportation.

- Depends on the specific tasks to be done
- Crew scheduling is often intertwined with other schedules (e.g. routing and scheduling of planes or trucks).

João Miguel da Costa Sousa

53

Activities

■Examples of activities:

- meetings to be attended by certain people
- game to be played by 2 teams
- flight leg to be covered by a plane
- personnel position to be occupied in a given time period

☐Data:

- duration \rightarrow processing time p_{ii}
- lacktriangledown earliest possible start time ightarrow release time r_j
- latest possible finishing time \rightarrow due date d_i
- priority level \rightarrow weight w_j

João Miguel da Costa Sousa

Resources

- *Machines*: classroom, hotel, rental car, stadium, operating room, plane, ship, airport gate, dock, railroad track, person (nurse/pilot)
- □ Synchronization of resources may be important
 - Need a plane and a pilot
 - Classroom, video projector equipment, professor, students
- ☐ Characteristics of resources
 - Classroom: capacity, equipment, cost, accessibility.
 - Truck: capacity, refrigeration, speed
 - Person: specialist (surgeon, nurse) with skills (languages)

João Miguel da Costa Sousa

55

Operational characteristics

- **□** Operator and tooling requirements
- **■** Workforce scheduling constraints
 - · Shift patterns, break requirements
 - Union and safety rules

João Miguel da Costa Sousa

57

Computational complexity

- ☐ Easy problems:
 - Sort n numbers
 - Solve a system of linear equations
- ☐ Hard problems:
 - Schedule a factory, deliver packages, schedule buses, ...

João Miguel da Costa Sousa

59

Computational complexity

- $\Box f(n)$: the number of "basic operations" needed to solve the problem with input size n
- \square Easy: f(n) is polynomial in n
 - $\mathcal{O}(n)$, $\mathcal{O}(n \log n)$, $\mathcal{O}(n^2)$, ...
- \square Hard: f(n) is exponential in n
 - *O*(2ⁿ), ...

João Miguel da Costa Sousa

