Camila Pereira Sales

CAP-241 / 2019 Segunda Lista de Exercícios de Arquiteturas/PAD Data de Entrega:

2/5/2019, 8:00hs (Entregas com atraso terão a nota descontada de 10 pontos por dia de atraso)

 Sabe-se que um programa, ao ser executado num certo sistema, apresentou a seguinte sequência de endereços hexadecimais nos seus acessos à memória:

022, 014, 035, 105, 034, 034, 035, 100, 053, 035, 014, 047, 008, 105, 014, 100, 035, 003, 008, 020

Supondo que o sistema contenha uma cache de 16 entradas, utilizando mapeamento direto, e que a cache estava inicialmente vazia, determine o resultado (isto é, M: miss ou H: hit) para cada acesso da sequência mostrada. Determine também a taxa total de acerto (*hit-ratio*) na cache. Sugestão: monte um diagrama com o estado da cache após cada acesso.

Número Entrada	Entrada Hexa	Entrada Binário	Últimos 4 Dígitos				
1	022	100010	0010				
2	014	10100	0100				
3	035	110101	0101				
4	105	100000101	0101				
5	034	110100	0100				
6	034	110100	0100				
7	035	110101	0101				
8	100	100000000	0000				
9	53	1010011	0011				
10	35	110101	0101				
11	14	10100	0100				
12	47	1000111	0111				
13	8	1000	1000				
14	105	100000101	0101				
15	14	10100	0100				
16	100	100000000	0000				
17	35	110101	0101				
18	3	0011	0011				
19	8	1000	1000				
20	20	100000	0000				

Input	22	14	35	105	34	34	35	100	53	35	14	47	8	105	14	100	35	3	8	20
ult. 4 dig	0010	0100	0101	0101	0100	0100	0101	0000	0011	1010	0100	0111	1000	0101	0100	0000	0101	0011	1000	0000
Cache																				
0000								100								100				20
0001																				
0010	22																			
0011									53									3		
0100		14			34	34					14				14					
0101			35	105			35			35				105			35			
0110																				
0111												47								
1000													8						8	
1001																				
1010																				
1011																				
1100																				
1101																				
1110																				
1111																				

Cache-hit: 5

Cache-miss: 15

Taxa de acerto = 5/20 = 0.25 = 25%

- 2. Considere o programa prog.f e a subrotina contida no arquivo mysecond.c, disponíveis na home-page do curso. Pede-se o seguinte:
 - a. Compile este programa em qualquer sistema (por exemplo com gcc e gfortran), execute-o e informe os resultados, incluindo o tempo de execução obtido.

```
gfortran mysecond.c prog.f -o myprog
./myprog
soma= 0.00000000000000000000 Tempo=
0.41305589675903320
```

b. Altere o segundo loop duplo do programa, invertendo tais loops (isto é, inverta os loops i e j). Compile e execute esta versão modificada, e informe os resultados da execução.

```
gfortran mysecond.c prog.f -o myprog
./myprog
soma= 0.00000000000000000000 Tempo=
6.0600996017456055E-002
```

c. Qual das versões acima do programa (isto é, com loops i/j ou j/i) roda mais rapidamente? Explique a razão para que isto ocorra.

O programa tem tempo de execução menor, com 0.3524549007415771484375 à menos, é o que os loops são invertidos, pois isto possibilita a melhor utilização dos dados armazenados na cache, uma vez que as matrizes, no fortran, são armazenadas por colunas na cache, e não por linhas como por exemplo na linguagem c++.