NSR Search Results Page 1 of 2

Visit the <u>Isotope Explorer</u> home page!

11 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ-Ray Data Evaluation of Thermal-Neutron Capture for $A = 1 \vartheta 25$

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Keynumber: 1994BE29

Reference: Acta Phys.Pol. B25, 629 (1994)

Authors: H.Beer

Title: Neutron Capture Rates of Light Isotopes for Inhomogeneous Big Bang Nucleosynthesis **Keyword abstract:** NUCLEAR REACTIONS ¹⁰⁷, ¹⁰⁹Ag, ²²Ne, ¹⁴C, ¹⁸O, ¹⁵N(n,γ),E=thermal; measured γ-spectra, σ. 194 , 196 , 198 Pt(n, γ), E=thermal; measured isomeric σ ratio. Fast cyclic activation

technique, targets of Kr, Xe also studied.

Keynumber: 1991BE36

Reference: Astrophys.J. 379, 420 (1991) **Authors:** H.Beer, G.Rupp, F.Voss, F.Kappeler

Title: A Measurement of the 22 Ne(n, γ) 23 Ne Capture Cross Section at a Stellar Temperature of kT = 25

keV

Keyword abstract: NUCLEAR REACTIONS ²²Ne(n, γ),E=low; measured capture σ ; deduced σ at kT=25 keV. Fast cyclic activation technique, neutrons from ⁷Li(p,n) reaction.

Keynumber: 1988WI14

Reference: Astrophys.J. 329, 943 (1988) **Authors:** R.R.Winters, R.L.Macklin

Title: Resonance Neutron Capture by ²⁰, ²²Ne in Stellar Environments

Keyword abstract: NUCLEAR REACTIONS 20 , 22 Ne(n, γ),E=2.5-200 keV; measured resonance capture yield vs E; deduced effective $\sigma(E)$, Maxwellian averaged σ . ²¹, ²³Ne deduced resonances, $\Gamma \gamma$, $(g\Gamma n)$.

Keynumber: 1986PR05

Reference: Z.Phys. A325, 321 (1986)

Authors: W.V.Prestwich, T.J.Kennett, J.-S.Tsai

Title: The Thermal Neutron Capture Gamma-Ray Spectrum of Neon

Keyword abstract: NUCLEAR REACTIONS 20 , 21 , 22 Ne(n, γ),E=thermal; measured E γ ,I γ . 21 , 22 , 23 Ne

deduced transitions, neutron separation energies. Natural target, pair spectrometer.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹ ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹,

NSR Search Results Page 2 of 2

 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983ALZS

Reference: NEANDC(E)-242U, Vol.V, p.1 (1983)

Authors: J.Almeida, F.Kappeler

Title: Isotopic Neon Cross Sections for a Study of Neutron Balance and Temperature During s-Process

Nucleosynthesis

Keyword abstract: NUCLEAR REACTIONS 20 , 21 , 22 Ne(n, γ),E=5-400 keV; measured capture σ

(E), σ ; deduced Maxwellian averaged σ ,s-process temperature lower limit.

Keynumber: 1982ALZU

Coden: REPT KfK-3347, Almeida

Keyword abstract: NUCLEAR REACTIONS 20 , 21 , 22 Ne(n, γ),E=5-200 keV; measured σ (capture) vs E. 20 , 21 , 22 Ne(n,X),E=5-800 keV; measured σ (total) vs E; deduced Maxwellian $<\sigma$ >average s-process

temperature.

Keynumber: 1981ALZO

Reference: NEANDC(E)-222U, Vol.V, p.1 (1981)

Authors: J.Almeida, D.Erbe, F.Kappeler

Title: Neutron Total and Capture Cross Sections of the Stable Ne Isotopes

Keyword abstract: NUCLEAR REACTIONS Ne, 21 , 22 Ne(n,n), (n, γ), E <800 keV: measured σ (total), σ

(capture) vs E. Tof, natural, enriched targets, C_6D_6 detectors.

Keynumber: 1977RI14

Reference: Nucl.Instrum.Methods 144, 323 (1977)

Authors: M.Riihonen, J.Keinonen

Title: Measurements of Absolute Resonance Strengths in (p,γ) Reactions on Rare or Gaseous Nuclei **Keyword abstract:** NUCLEAR REACTIONS ²⁰, ²¹, ²²Ne, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe (n,γ) ; measured yields. ⁵⁵, ⁵⁷, ⁵⁸Co deduced resonance strength.

, Co deduced resolia

Keynumber: 1971BE34

Reference: Atomkernenergie 17, 145 (1971)

Authors: D.Bellman

Title: Strahlungsubergange vom Stickstoff und naturlichen Neon nach Einfang thermischer Neutronen **Keyword abstract:** NUCLEAR REACTIONS ¹⁴N, ²⁰, ²¹, ²²Ne(n,γ),E=thermal; measured Εγ,Ιγ;

deduced Q. ¹⁵N, ²¹, ²², ²³Ne deduced transitions.
