分類問題

郭耀仁

分類問題有哪些?

- 貸款顧客是否會倒帳
- 圖片辨識
- 垃圾郵件辨識
- ...etc.


```
In [1]: import pandas as pd

labeled_url = "https://storage.googleapis.com/kaggle_datasets/Titanic-Machine-Learning-from-Disaste
r/train.csv"
test_url = "https://storage.googleapis.com/kaggle_datasets/Titanic-Machine-Learning-from-Disaster/t
est.csv"
labeled_df = pd.read_csv(labeled_url)
test_df = pd.read_csv(test_url)
print(labeled_df.shape)
print(test_df.shape)
(891, 12)
(418, 11)
```


In [2]: labeled_df.head()

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A 2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	P
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	S ⁻ 3
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1
4	5	0	3	Allen, Mr. William	male	35.0	0	0	3

In [3]: labeled_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId
              891 non-null int64
Survived
              891 non-null int64
Pclass
              891 non-null int64
              891 non-null object
Name
              891 non-null object
Sex
              714 non-null float64
Age
SibSp
              891 non-null int64
              891 non-null int64
Parch
Ticket
              891 non-null object
              891 non-null float64
Fare
Cabin
              204 non-null object
Embarked
              889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
```


Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as **women**, **children**, and the **upper-class**.


```
In [4]: labeled_df = labeled_df[labeled_df["Age"].notna()]
labeled_df.describe()
```

Out[4]:

	PassengerId	Survived	Pclass	Age	SibSp	
count	714.000000	714.000000	714.000000	714.000000	714.000000	714
mean	448.582633	0.406162	2.236695	29.699118	0.512605	0.4
std	259.119524	0.491460	0.838250	14.526497	0.929783	0.8
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.0
25%	222.250000	0.000000	1.000000	20.125000	0.000000	0.0
50%	445.000000	0.000000	2.000000	28.000000	0.000000	0.0
75%	677.750000	1.000000	3.000000	38.000000	1.000000	1.00
max	891.000000	1.000000	3.000000	80.000000	5.000000	6.0

<


```
In [5]: import matplotlib.pyplot as plt

def plot_data(data, label_x, label_y, label_pos, label_neg, label_target):
    fig, ax = plt.subplots(1, 1, figsize=(16, 8))
    neg = data[label_target] = 0
    pos = data[label_target] = 1
    ax.scatter(data[pos][label_x], data[pos][label_y], marker='+', c='k', s=60, linewidth=2, label=label_pos)
    ax.scatter(data[neg][label_x], data[neg][label_y], c='y', s=10, label=label_neg, alpha = 0.5)
    ax.set_xlabel(label_x)
    ax.set_ylabel(label_y)
    ax.legend(frameon= True, fancybox = True)
```


In [6]: plot_data(labeled_df, "Fare", "Age", "Survived", "Dead", "Survived")
 plt.show()

觀察性別的影響

```
In [7]: import seaborn as sns
sns.stripplot(x="Sex", y="Age", data=labeled_df, jitter=0.4, hue="Survived", alpha=0.6, size = 6)
plt.show()
```


分類問題其實是迴歸問題的延伸

將 $h(X) = X\theta$ 的結果利用特定函數轉換為簡單分類器

• 羅吉斯迴歸利用 sigmoid 函數

羅吉斯迴歸利用 sigmoid 函數

其中,

$$g(X heta) = rac{1}{1+e^{-X heta}} \ g(z) = rac{1}{1+e^{-z}}$$

 $\hat{y} = H(g(X\theta))$


```
In [8]: def sigmoid(z): return(1 / (1 + np.exp(-z)))
```


隨堂練習:描繪出 Sigmoid 函數的外觀

In [10]: plt.show()

接著決定

• g(z)輸出的機率該如何轉換至 $\hat{y} \in \{0,1\}$?

$$\hat{y} = H(z) = egin{cases} 1 & ext{if } z \geq 0.5 \ 0 & ext{otherwise} \end{cases}$$

拆解 Logistic 分類器的建立流程:

- ullet 建立迴歸模型 $\hat{oldsymbol{y}}=oldsymbol{X}oldsymbol{ heta}$
- ullet 將 h 的輸出作為 Sigmoid 函數的輸入,得到 g(X heta)
- 將 $g(X\theta)$ 作為 H 的輸入,得到 \hat{y}

那麼 Logistic 分類器的成本函數該怎麼寫呢?

• 成本函數一般式

$$J(heta) = rac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_{ heta} \left(x^{(i)}
ight)
ight) - \left(1 - y^{(i)}
ight) \log \left(1 - h_{ heta} (x^{(i)})
ight)
ight]$$

• 成本函數矩陣式 (vectorized)

$$J(heta) = -rac{1}{m}ig((oldsymbol{log}\,(g(X heta))^Ty + (oldsymbol{log}\,(1-g(X heta))^T(1-y)ig)$$

這個成本函數的含義為

• 讓錯誤分類的成本無限大

$$J(H(z),y) = egin{cases} -\log(H(z)) & ext{if } y=1 \ -\log(1-H(z)) & ext{if } y=0 \end{cases}$$

In [12]: plt.show()


```
In [13]: def cost_function(theta, X, y):
    m = y.shape[0]
    h = sigmoid(X.dot(theta))
    J = -1*(1/m)*(np.log(h).T.dot(y)+np.log(1-h).T.dot(1-y))
    if np.isnan(J[0]):
        return(np.inf)
    return(J[0])
```


利用 Gradient Descent 的方式求解 $oldsymbol{ heta}$

• 偏微分

$$rac{\delta J(heta)}{\delta heta_j} = rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

• 偏微分矩陣式

$$rac{\delta J(heta)}{\delta heta_j} = rac{1}{m} X^T (g(X heta) - y)$$


```
In [14]: def gradient_descent(theta, X, y):
    m = y.shape[0]
    h = sigmoid(X.dot(theta.reshape(-1, 1)))
    grad =(1/m)*X.T.dot(h-y)
    return(grad.ravel())
```



```
In [15]:
         from sklearn.model_selection import train_test_split
          train df, validation df = train_test_split(labeled df, test_size=0.3, random_state=123)
          X_train = train_df[["Fare", "Age"]].values
          y_train = train_df["Survived"].values.reshape(-1, 1)
          ones = np.ones(X_train.shape[0]).reshape(-1, 1)
          X_train = np.concatenate([ones, X_train], axis=1)
          initial_theta = np.zeros(X_train.shape[1])
          cost = cost_function(initial_theta, X_train, y_train)
          grad = gradient descent(initial theta, X train, y train)
          print('Cost: \n', cost)
          print('Grad: \n', grad)
          Cost:
          0.69314718056
          Grad:
          [ 0.08717435 -4.86218778 2.78531062]
```


利用 scipy 的 optimize() 函數

```
In [16]:
         from scipy.optimize import minimize
          res = minimize(cost_function, initial_theta, args=(X_train, y_train), method=None, jac=gradient_des
          cent, options={'maxiter':400})
         /Users/kuoyaojen/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:4: RuntimeWarnin
         g: divide by zero encountered in log
         /Users/kuoyaojen/anaconda3/lib/python3.6/site-packages/ipykernel/_main_.py:4: RuntimeWarnin
         g: divide by zero encountered in log
                fun: 0.6249923100906284
Out[16]:
          hess_inv: array([[ 2.57707497e+01, -9.67852173e-02, -6.39438923e-01],
                 [-9.67852173e-02, 4.31442824e-03, -1.31976410e-03],
                 [ -6.39438923e-01, -1.31976410e-03, 2.32935569e-02]])
                jac: array([ 5.79538929e-08, 3.06075254e-06, 1.65741052e-06])
            message: 'Optimization terminated successfully.'
               nfev: 23
               nit: 14
               njev: 18
             status: 0
            success: True
                  x: array([-0.62176132, 0.01692017, -0.01014703])
```



```
In [18]: #將 validation_df 中的第一個觀測值拿出來試試看
X_validation = validation_df[["Fare", "Age"]].values
ones = np.ones(X_validation.shape[0]).reshape(-1, 1)
X_validation = np.concatenate([ones, X_validation], axis=1)
x_validation_0 = X_validation[0, :].reshape(-1, 1)
print(sigmoid(np.dot(thetas.T, x_validation_0))[0, 0])
```

0.397655381805

In [19]: validation_df.head()

Out[19]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch
651	652	1	2	Doling, Miss. Elsie	female	18.0	0	1
694	695	0	1	Weir, Col. John	male	60.0	0	0
797	798	1	3	Osman, Mrs. Mara	female	31.0	0	0
875	876	1	3	Najib, Miss. Adele Kiamie "Jane"	female	15.0	0	0
505	506	0	1	Penasco y Castellana, Mr. Victor de Satode	male	18.0	1	0


```
In [20]: def predict(thetas, X, threshold=0.5):
    p = sigmoid(np.dot(X, thetas)) >= threshold
    return(p.astype(int))
```



```
In [21]: is_survived = predict(thetas, x_validation_0.ravel())[0] print("羅吉斯迴歸模型的預測是: {}".format(is_survived)) print("真實的情況是:{}".format(validation_df["Survived"].values[0]))
```

羅吉斯迴歸模型的預測是: 0

真實的情况是:1

跟標準答案比對一下


```
y hat = predict(thetas, X validation)
y validation = validation df["Survived"].values
y_{\text{hat.ravel}}() = y_{\text{validation}}
array([False, True, False, False, False, True, True, True, True,
      False, False, True, True, False, True, True, True, True,
      False, True, False, False, False, True, False, True,
      False, True, True, True, True, True, True, False,
      False, False, True, True, True, True, False, False,
       True, False, False, True, True, True, True, True, True,
      False, True, False, True, True, True, False, True,
       True, True, False, False, True, False, True, True, True,
       True, True, False, True, True, True, True, True, True,
      False, True, False, False, True, False, True, False, True,
       True, True, False, True, False, False, False, True, True,
      False, True, False, True, True, True, True, True, True,
       True, True, True, True, False, False, True, True,
       True, False, True, False, True, True, False, True, True,
       True, False, True, False, False, False, False, True, True,
       True, True, True, True, False, True, False, True,
       True, False, True, False, True, True, False, True, True,
       True, True, True, False, True, True, True, False,
       True, True, True, False, False, True, True, True, False,
      False, True, True, False, False, True, True, True,
      False, True, True, False, False, True, True, True,
      False, True, False, True, True, True, True, True, True,
       True, True, False, False, True, False, True, False,
       True, True, True, False, True, True, True], dtype=bool)
```



```
In [23]: accuracy = (y_hat.ravel() = y_validation).sum() / y_validation.size print("預測準確率為 {:.2f}%".format(accuracy * 100))
```

預測準確率為 66.05%

什麼是準確率呢?

• 要談準確率,或者說明分類模型的評估,不得不提混淆矩陣

Phew...

• 我們終於又手動做出來了羅吉斯迴歸模型!

讓 Scikit-Learn 來找 θ 吧

```
In [24]:

from sklearn.linear_model import LogisticRegression

train_df, validation_df = train_test_split(labeled_df, test_size=0.3, random_state=123)

X_train = train_df[["Fare", "Age"]].values
y_train = train_df["Survived"].values
X_validation = validation_df[["Fare", "Age"]].values
y_validation = validation_df["Survived"].values
clf = LogisticRegression()
clf.fit(X_train, y_train)
y_hat = clf.predict(X_validation)
accuracy = (y_hat = y_validation).sum() / y_hat.size
print("預測準確率為 {:.2f}%".format(accuracy * 100))
```

預測準確率為 66.05%

隨堂練習:讓 Scikit-Learn 幫我們算出來混淆矩陣

決策邊界 Decision Boundary

- 在散佈圖上將 $X\theta$ 畫出來
- 該如何解讀圖形?

利用 mlxtend 模組的 plot_decision_regions()

```
In [25]:

from mlxtend.plotting import plot_decision_regions
import matplotlib.pyplot as plt

validation_x_0 = validation_df.iloc[0, [5, 9]]
plot_decision_regions(labeled_df[["Fare", "Age"]].values, labeled_df["Survived"].values, clf = clf,
res = 0.1)
plt.scatter(validation_x_0[1], validation_x_0[0], marker="*", s=500, color="g")
plt.xlabel('Fare')
plt.ylabel('Age')
plt.xlim(0, 300)
plt.title('Logistic Regression on Titanic')
```


In [26]: plt.show()

或是自己畫


```
In [27]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          from sklearn.model selection import train test split
          from sklearn.linear model import LogisticRegression
          def sigmoid(z):
              return 1/(1 + np.exp(-z))
          def step(g y hat, threshold=0.5):
              return np.where(g y hat >= threshold, 1, 0).reshape(-1, 1)
          labeled = pd.read csv("https://storage.googleapis.com/kaggle datasets/Titanic-Machine-Learning-from
          -Disaster/train.csv")
          # Removed observations without Age
          labeled = labeled[~labeled["Age"].isna()]
          survived = labeled[labeled["Survived"] == 1]
          dead = labeled[labeled["Survived"] == 0]
          train, validation = train test split(labeled, test size=0.3, random state=123)
          X train = train.loc[:, ["Fare", "Age"]].values
          y train = train.loc[:, "Survived"].values
          logistic clf = LogisticRegression()
          logistic clf.fit(X train, y train)
          fit_intercept = logistic_clf.intercept_.reshape(-1, 1)
          fit coef = logistic clf.coef .reshape(-1, 1)
          thetas = np.concatenate([fit_intercept, fit_coef])
          # Decision boundary plot
          fare_min, fare_max = labeled["Fare"].min(), labeled["Fare"].max()
          age_min, age_max = labeled["Age"].min(), labeled["Age"].max()
          fare\_arr = np.linspace(fare\_min - 5, fare\_max + 5, 1000)
          age_arr = np.linspace(age_min - 5, age_max + 5, 1000)
          xx, yy = np.meshgrid(fare arr, age arr)
          ones = np.ones(xx.size).reshape(-1, 1)
         X grid = np.concatenate([ones, xx.reshape(-1, 1), yy.reshape(-1, 1)], axis=1)
```


In [28]: plt.show()


```
In [29]:
         from matplotlib.colors import ListedColormap
          def decision boundary(X, labeled df, clf):
              x1_{min}, x1_{max} = X[:,0].min()-5, X[:,0].max()+5,
              x2_{min}, x2_{max} = X[:,1].min()-5, X[:,1].max()+5,
              xx1, xx2 = np.meshgrid(np.linspace(xl_min, xl_max), np.linspace(x2_min, x2_max))
              thetas = np.hstack((clf.intercept , clf.coef .ravel())).reshape(-1, 1)
              ones = np.ones(xx1.size).reshape(-1, 1)
              xx concat = np.concatenate([ones, xx1.reshape(-1, 1), xx2.reshape(-1, 1)], axis=1)
              h = sigmoid(xx concat.dot(thetas))
              h = h.reshape(xx1.shape)
              plot_data(labeled_df, "Fare", "Age", "Survived", "Dead", "Survived")
              plt.contour(xx1, xx2, h, [0.5], linewidths=3, colors='#FF69B4')
              #cmap=ListedColormap(["y", "k"])
              #plt.contourf(xx1, xx2, h, alpha=0.3, cmap=cmap, antialiased=True)
              plt.xlim(0, xl max)
              plt.ylim(0, x2_max)
```



```
In [30]: decision_boundary(labeled_df[["Fare", "Age"]].values, labeled_df, clf)
    validation_x_0 = validation_df.iloc[0, [5, 9]]
    plt.scatter(validation_x_0[1], validation_x_0[0], marker="*", s=500, color="g")
    plt.show()
```


增強決策邊界

ullet 我們可以如同在迴歸問題中增加X的次方項


```
In [31]: from sklearn.preprocessing import PolynomialFeatures

train_df, validation_df = train_test_split(labeled_df, test_size=0.3, random_state=123)

X_train = train_df[["Fare", "Age"]].values

y_train = train_df["Survived"].values

X_validation = validation_df[["Fare", "Age"]].values

y_validation = validation_df["Survived"].values

d = 6

X_train_poly = PolynomialFeatures(d).fit_transform(X_train)

X_validation_poly = PolynomialFeatures(d).fit_transform(X_validation)
```



```
In [32]: clf_poly = LogisticRegression()
clf_poly.fit(X_train_poly, y_train)
y_hat = clf_poly.predict(X_validation_poly)
accuracy = (y_hat = y_validation).sum() / y_hat.size
print("預測準確率為 {:.2f}%".format(accuracy * 100))
```

預測準確率為 69.30%

```
In [33]:
         def decision boundary(X, labeled df, clf):
             x1 \min, x1 \max = X[:,0].\min()-5, X[:,0].\max()+5,
             x2_{min}, x2_{max} = X[:,1].min()-5, X[:,1].max()+5,
              xx1, xx2 = np.meshgrid(np.linspace(x1 min, x1 max), np.linspace(x2 min, x2 max))
              thetas = np.hstack((clf.intercept , clf.coef .ravel())).reshape(-1, 1)
              xx = np.concatenate([xx1.reshape(-1, 1), xx2.reshape(-1, 1)], axis=1)
              d = 6
              xx concat poly = PolynomialFeatures(d).fit transform(xx concat)
             ones = np.ones(xx1.size).reshape(-1, 1)
              xx_concat_poly = np.concatenate([ones, xx_concat_poly], axis=1)
              h = sigmoid(xx concat poly.dot(thetas))
              h = h.reshape(xx1.shape)
             plot_data(labeled_df, "Fare", "Age", "Survived", "Dead", "Survived")
             plt.contour(xx1, xx2, h, [0.5], linewidths=3, colors='#FF69B4')
              #cmap=ListedColormap(["y", "k"])
              #plt.contourf(xx1, xx2, h, alpha=0.2, cmap=cmap, antialiased=True)
             plt.xlim(0, x1 max)
              plt.ylim(0, x2 max)
```


In [34]: decision_boundary(labeled_df[["Fare", "Age"]].values, labeled_df, clf_poly)
 plt.show()

延伸二元分類到多元分類問題:One-vs-all

$$egin{aligned} y \in \{0,1,2\} \ h^0(x) &= P(y=0 \mid x; heta) \ h^1(x) &= P(y=1 \mid x; heta) \ h^2(x) &= P(y=2 \mid x; heta) \ \end{aligned}$$
 prediction: $max(h^0(x), h^1(x), h^2(x))$

In [36]: plt.show()

In [38]: plt.tight_layout()
 plt.show()

手寫數字圖片辨識


```
In [39]: import pandas as pd

labeled_df_url = "https://storage.googleapis.com/kaggle_datasets/Digit-Recognizer/train.csv"
test_df_url = "https://storage.googleapis.com/kaggle_datasets/Digit-Recognizer/test.csv"

labeled_df = pd.read_csv(labeled_df_url)
test_df = pd.read_csv(test_df_url)
```



```
In [40]: print(labeled_df.shape)
print(test_df.shape)

(42000, 785)
(28000, 784)
```


In [41]: labeled_df.head()

Out[41]:

	label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8
0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0

5 rows × 785 columns

In [42]: test_df.head()

Out[42]:

	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixe
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0

 $5 \text{ rows} \times 784 \text{ columns}$


```
In [43]: X_train_arr = labeled_df.iloc[:, 1:].values.astype(float)
    y_train_arr = labeled_df.iloc[:, 0].values.astype(float)
    X_test_arr = test_df.values.astype(float)
```



```
In [44]: def plot_first_10(arr_set):
    for i, k in enumerate(range(1, 11)):
        plt.subplot(2, 5, k)
        plt.imshow(arr_set.reshape(arr_set.shape[0], 28, 28)[i], cmap = "gray")
        plt.xticks([]), plt.yticks([])

    plt.tight_layout()
    plt.show()
```


In [45]: plot_first_10(X_train_arr)

In [46]: plot_first_10(X_test_arr)


```
In [47]: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score

clf = LogisticRegression(C=100000)
acc = np.mean(cross_val_score(clf, X_train_arr[:3000, :], y_train_arr[:3000], cv = 10, scoring = 'a ccuracy')) # not to takes too long...

In [48]: print("準確率: {:.2f}%".format(acc*100))

準確率: 81.43%
```

