INTRO TO PANDAS LECTURE #3

data.head() [3]

data1=data[0:50] [5]

data2=data[len(data)-3:] data2

PANDAS

Copy dataframes

<New Data Frame name > = OLD Data Frame name > Independent Copies

Dependent Copies

Unit_Cost	Total_Revenue	Total_Cost	Profit
90.93	228779.10	135031.05	93748.05
56.67	471336.91	326815.89	144521.02
502.54	3586605.09	2697132.18	889472.91

```
[ ] # create a copy of the dataset
    df=data.copy()
    df2=df
    del df2['Profit']
    df
```

Unit_Cost	Total_Revenue	Total_Cost
159.42	2533654.00	1582243.50
117.11	576782.80	328376.44
524.96	1158502.59	933903.84

SET INDEX

[22]	df.set_i ✓ 0.1s	index('Orde	r_ID',inplace	e= <mark>False</mark>)
•••		Region	Country	Item_Type
	Order_ID			
	669165933	Australia and Oceania	Tuvalu	Baby Food
	963881480	Central America and the Caribbean	Grenada	Cereal
	341417157	Europe	Russia	Office Supplies
	514321792	Sub- Saharan Africa	Sao Tome and Principe	Fruits

D ~	C	lf			
[24]	✓	0.0s			
		Region	Country	Item_Type	S
	0	Australia and Oceania	Tuvalu	Baby Food	
	1	Central America and the Caribbean	Grenada	Cereal	
	2	Europe	Russia	Office Supplies	
	3	Sub- Saharan Africa	Sao Tome and Principe	Fruits	
	4	Sub- Saharan Africa	Rwanda	Office Supplies	

SET INDEX

[15]	df.set_i ✓ 0.0s	index('Orde	r_ID',inplace	e=True)
> ^	df2			
[17]	✓ 0.0s			
		Region	Country	Item_Type
	Order_ID			
	669165933	Australia and Oceania	Tuvalu	Baby Food
	963881480	Central America and the Caribbean	Grenada	Cereal
	341417157	Europe	Russia	Office Supplies
	514321792	Sub- Saharan Africa	Sao Tome and Principe	Fruits
	115456712	Sub- Saharan Africa	Rwanda	Office Supplies


```
df.loc[810711038]
 ✓ 0.0s
Region
                        Asia
                   Malaysia
Country
                      Fruits
Item_Type
Sales Channel
                     Offline
Order Priority
Order Date
                  11/11/2011
Ship_Date
                  12/28/2011
Units Sold
                        6267
Unit Price
                        9.33
Unit Cost
                        6.92
Total Revenue
                    58471.11
Total Cost
                    43367.64
Name: 810711038, dtype: object
```


LOC VS ILOC

	carbonated?	temperature	sugar(tsp)	calories
drink				
soda	True	cold	10.5	150
coffee	False	hot	3.0	31
smoothie	False	cold	6.0	85
water	False	cold	0.0	0
tea	False	hot	2.0	43
lemonade	False	cold	9.5	125

LOC VS ILOC

	function [['tea']]			Program (Outpu
	carbonated?	temperature	sugar(tsp)	calories	
drink					
tea	False	hot	2.0	43	

Indexing Using a Single Label

Indexing Using a Single Integer

ILOC

	data.iloc[0:10),2:5]	
	Item_Type	Sales_Channel	Order_Priority
0	Baby Food	Offline	Н
1	Cereal	Online	С
2	Office Supplies	Offline	L
3	Fruits	Online	С
4	Office Supplies	Offline	L
5	Baby Food	Online	С
6	Household	Offline	М
7	Vegetables	Online	Н
8	Personal Care	Offline	М
9	Cereal	Online	Н

```
region_units_sold = data.groupby('Region')['Units_Sold'].sum()
   print(region units sold)
 ✓ 0.0s
Region
Asia
                                      59967
Australia and Oceania
                                      68325
Central America and the Caribbean
                                      35771
Europe
                                      98117
Middle East and North Africa
                                      48678
North America
                                      19143
Sub-Saharan Africa
                                     182870
Name: Units_Sold, dtype: int64
```

PLOTING USING GROUBY

- 'bar' or 'barh' for bar plots
- 'hist' for histogram
- 'box' for boxplot
- 'kde' or 'density' for density plots
- 'area' for area plots
- 'scatter' for scatter plots
- 'hexbin' for hexagonal bin plots
- 'pie' for pie plots

```
grouped_data = data.groupby('Region')[['Total_Revenue', 'Total_Cost']].sum()
   print(grouped data)
 ✓ 0.0s
                                  Total Revenue
                                                  Total Cost
Region
Asia
                                    21347091.02 15233245.15
Australia and Oceania
                                    14094265.13 9372105.10
Central America and the Caribbean
                                     9170385.49
                                                  6323477.64
                                    33368932.11 22285993.48
Europe
Middle East and North Africa
                                    14052706.58 8291514.72
North America
                                     5643356.55 4185413.79
Sub-Saharan Africa
                                    39672031.43 27488820.03
```

```
grouped_data = data.groupby('Region')[['Total_Revenue', 'Total_Cost']].sum()
ax = grouped_data.plot(kind='bar', color=['skyblue', 'orange'],edgecolor='black', width=0
0.6s
   1e7
         Total_Revenue
          Total_Cost
.5
.0
.0
.5
.0
.5
                                              h Africa
                                                                  n Africa
```

```
grouped_data = data.groupby('Region')[['Total_Revenue', 'Total_Cost']].sum()
   ax = grouped data.plot(kind='bar', color=['skyblue', 'orange'],edgecolor='black', width=0.8)
  ax.set_xlabel('Country')
   ax.set_ylabel('Sum of Values')
  ax.set_title('Sum of Total Revenue and Total Cost by Country')
   ax.legend(["Total Revenue", "Total Cost"])
✓ 0.7s
<matplotlib.legend.Legend at 0x1cae48db9a0>
               Sum of Total Revenue and Total Cost by Country
        1e7
    4.0
               Total Revenue
               Total Cost
    3.5
    3.0
 Sum of Values
    1.5
    1.0
    0.5
```

TO FIND A MIN/MAX VALUE

TO FIND A MIN/MAX VALUE

MAX VS IDXMAX

1.Write a Pandas program to create a dataframe from a dictionary and display it. Sample data: {'X':[78,85,96,80,86], 'Y':[84,94,89,83,86],'Z':[86,97,96,72,83]}

```
Expected Output:

X Y Z

0 78 84 86

1 85 94 97

2 96 89 96

3 80 83 72

4 86 86 83
```

Write a Pandas program to get the first 3 rows of a given DataFrame.

WRITE A PANDAS PROGRAM TO SELECT THE 'X' AND 'Y' COLUMNS FROM THE FOLLOWING DATAFRAME.

RENAME X, Y, Z AS QUIZI, QUIZ 2 AND QUIZ 3 RESPECTIVELY

MAKE QUIZ 1 AS THE INDEX

WRITE A PANDAS PROGRAM TO COUNT THE NUMBER OF ROWS AND COLUMNS OF A DATAFRAME.

for more practice questions refer to the below given links

https://www.w3resource.com/python-exercises/pandas/index-dataframe.php

https://python4csip.com/files/download/Worksheet%20-%20Pandas.pdf

https://discovery.cs.illinois.edu/guides/DataFrame-Fundamentals/dataframe-loc-vs-iloc/