Calculus I Lecture 12 More on Derivative Formulas

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

Understanding computations with derivatives

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

We studied the basic rules of differentiation.

• f(g(x))' = f'(g(x))g'(x) (Chain rule).

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

We studied additional differentiation rules.

• $(e^x)' = e^x$ (Exponent derivative rule).

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, r-arbitrary real number (Power rule).

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, r-arbitrary real number (Power rule).
- $(\ln x)' = \frac{1}{x}$ (Logarithm derivative rule).

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, r-arbitrary real number (Power rule).
- $(\ln x)' = \frac{1}{x}$ (Logarithm derivative rule).
- $(\log_a x)' = \frac{1}{x \ln a}.$

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, r-arbitrary real number (Power rule).
- $(\ln x)' = \frac{1}{x}$ (Logarithm derivative rule).
- $\bullet (\sin X)' = \cos X, (\cos X)' = -\sin X$

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

We studied additional differentiation rules.

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, r-arbitrary real number (Power rule).
- $(\ln x)' = \frac{1}{x}$ (Logarithm derivative rule).
- $\bullet (\sin X)' = \cos X, (\cos X)' = -\sin X$

We derived the first set of rules by directly computing limits.

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

We studied additional differentiation rules.

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, r-arbitrary real number (Power rule).
- $(\ln x)' = \frac{1}{x}$ (Logarithm derivative rule).
- $\bullet (\sin x)' = \cos x, (\cos x)' = -\sin x$

We derived the first set of rules by directly computing limits. The second set of rules can be derived from the first set algebraically.

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

$$(cf)' =$$

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

using the product rule (fg)' = f'g + fg'

$$(cf)' = (c)'f + cf' =$$

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

using the product rule (fg)' = f'g + fg' and the constant derivative rule (c)' = 0.

$$(cf)' = (c)'f + cf' = 0f + cf' =$$

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

using the product rule (fg)' = f'g + fg' and the constant derivative rule (c)' = 0.

$$(cf)' = (c)'f + cf' = 0f + cf' = cf'$$

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

using the product rule (fg)' = f'g + fg' and the constant derivative rule (c)' = 0.

$$(cf)' = (c)'f + cf' = 0f + cf' = cf'$$

as desired.

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

using the rule (x)' = 1

$$(x)' = 1$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

using the rule (x)' = 1

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' =$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x$$
, $(x^3)' = 3x^2$, $(x^4)' = 4x^3$, ...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' =$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x$$
, $(x^3)' = 3x^2$, $(x^4)' = 4x^3$, ...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$
 $(x^3)' = (x \cdot x^2)' =$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$
 $(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' =$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x$$
, $(x^3)' = 3x^2$, $(x^4)' = 4x^3$, ...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$
 $(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = 2x$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$
 $(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

 $(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$
 $(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2$
 $(x^4)' = (x \cdot x^3)' =$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1 (x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x (x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2 (x^4)' = (x \cdot x^3)' = x'x^3 + x(x^3)' =$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1 (x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x (x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2 (x^4)' = (x \cdot x^3)' = x'x^3 + x(x^3)' = x^3 + x(3x^2) =$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1 (x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x (x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2 (x^4)' = (x \cdot x^3)' = x'x^3 + x(x^3)' = x^3 + x(3x^2) = x^3 + 3x^3 = 4x^3$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x')' = 1$$

$$(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2$$

$$(x^4)' = (x \cdot x^3)' = x'x^3 + x(x^3)' = x^3 + x(3x^2) = x^3 + 3x^3 = 4x^3$$

$$\vdots$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

$$(x^{2})' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^{3})' = (x \cdot x^{2})' = x'x^{2} + x(x^{2})' = x^{2} + x(2x) = x^{2} + 2x^{2} = 3x^{2}$$

$$(x^{4})' = (x \cdot x^{3})' = x'x^{3} + x(x^{3})' = x^{3} + x(3x^{2}) = x^{3} + 3x^{3} = 4x^{3}$$

$$\vdots$$

$$(x^{n})' = \cdots = nx^{n-1}$$

$$(x^{n+1})' = (x \cdot x^{n})' =$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

$$(x^{2})' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^{3})' = (x \cdot x^{2})' = x'x^{2} + x(x^{2})' = x^{2} + x(2x) = x^{2} + 2x^{2} = 3x^{2}$$

$$(x^{4})' = (x \cdot x^{3})' = x'x^{3} + x(x^{3})' = x^{3} + x(3x^{2}) = x^{3} + 3x^{3} = 4x^{3}$$

$$\vdots$$

$$(x^{n})' = \cdots = nx^{n-1}$$

$$(x^{n+1})' = (x \cdot x^{n})' = x'x^{n} + x(x^{n})' = x^{n}$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

$$(x^{2})' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^{3})' = (x \cdot x^{2})' = x'x^{2} + x(x^{2})' = x^{2} + x(2x) = x^{2} + 2x^{2} = 3x^{2}$$

$$(x^{4})' = (x \cdot x^{3})' = x'x^{3} + x(x^{3})' = x^{3} + x(3x^{2}) = x^{3} + 3x^{3} = 4x^{3}$$

$$\vdots$$

$$(x^{n})' = \cdots = nx^{n-1}$$

$$(x^{n+1})' = (x \cdot x^{n})' = x'x^{n} + x(x^{n})' = x^{n} + x(nx^{n-1}) =$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

$$(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2$$

$$(x^4)' = (x \cdot x^3)' = x'x^3 + x(x^3)' = x^3 + x(3x^2) = x^3 + 3x^3 = 4x^3$$

$$\vdots$$

$$(x^n)' = \cdots = nx^{n-1}$$

$$(x^{n+1})' = (x \cdot x^n)' = x'x^n + x(x^n)' = x^n + x(nx^{n-1}) = (n+1)x^n$$

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

$$(x)' = 1$$

$$(x^2)' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^3)' = (x \cdot x^2)' = x'x^2 + x(x^2)' = x^2 + x(2x) = x^2 + 2x^2 = 3x^2$$

$$(x^4)' = (x \cdot x^3)' = x'x^3 + x(x^3)' = x^3 + x(3x^2) = x^3 + 3x^3 = 4x^3$$

$$\vdots$$

$$(x^n)' = \cdots = nx^{n-1}$$

$$(x^{n+1})' = (x \cdot x^n)' = x'x^n + x(x^n)' = x^n + x(nx^{n-1}) = (n+1)x^n$$

$$\vdots$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

$$x^n x^{-n} = 1$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

$$\begin{array}{rcl} x^n x^{-n} & = & 1 & & \left| \begin{array}{ccc} \frac{d}{dx} \end{array} \right. \\ (x^n x^{-n})' & = & (1)' \end{array}$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

using the product rule,

$$x^{n}x^{-n} = 1$$
 $\left(x^{n}x^{-n}\right)' = (1)'$ $\left(x^{n}\right)'x^{-n} + x^{n}(x^{-n})' = 0$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

using the product rule, the constant derivative rule

$$x^{n}x^{-n} = 1$$
 $\left(x^{n}x^{-n}\right)' = (1)'$ $(x^{n})'x^{-n} + x^{n}(x^{-n})' = 0$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

$$\begin{array}{rcl}
 x^n x^{-n} &=& 1 \\
 (x^n x^{-n})' &=& (1)' \\
 (x^n)' x^{-n} + x^n (x^{-n})' &=& 0 \\
 nx^{n-1} x^{-n} + x^n (x^{-n})' &=& 0
 \end{array}$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

$$x^{n}x^{-n} = 1 \qquad \left| \frac{d}{dx} (x^{n}x^{-n})' = (1)' (x^{n})'x^{-n} + x^{n}(x^{-n})' = 0 \\ nx^{n-1}x^{-n} + x^{n}(x^{-n})' = 0 \\ \frac{n}{x} + x^{n}(x^{-n})' = 0 \\ x^{n}(x^{-n})' = -\frac{n}{x} \qquad \left| \frac{1}{x^{n}} (x^{-n})' - \frac{1}{x^{n}} (x^{-n})' - \frac{1}{x^{n}} (x^{-n})' - \frac{1}{x^{n}} (x^{-n})' - \frac{1}{x^{n}} \right|$$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$

$$\left(X^{\frac{1}{q}}\right)^{q} = X$$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$

$$\left(x^{\frac{1}{q}}\right)^{q} = x$$

$$\left(\left(x^{\frac{1}{q}}\right)^{q}\right)' = (x)'$$

 $\frac{d}{dx}$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$ using the rule (x)' = 1,

$$\frac{d}{dx}$$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$ using the rule (x)' = 1,

$$\begin{cases} \frac{d}{dx} \\ \text{Set } u = x^{\frac{1}{q}} \end{cases}$$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$ using the rule (x)' = 1, the chain rule

$$\int_{0}^{\frac{d}{dx}} \operatorname{Set} u = x^{\frac{1}{q}}$$

$$\int_{0}^{\frac{d}{dx}} \operatorname{Set} u = x^{\frac{1}{q}}$$

$$\int_{0}^{\frac{d}{dx}} \operatorname{Set} u = x^{\frac{1}{q}}$$

$$\begin{cases} \frac{d}{dx} \\ \text{Set } u = x^{\frac{1}{q}} \end{cases}$$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$ using the rule (x)' = 1, the chain rule and the integer power rule $\frac{d}{du}(u^q) = qu^{q-1}$.

$$\begin{cases} \frac{d}{dx} \\ \text{Set } u = x^{\frac{1}{q}} \end{cases}$$

divide by $qx^{\frac{q-1}{q}}$

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$ using the rule (x)' = 1, the chain rule and the integer power rule $\frac{d}{du}(u^q) = qu^{q-1}$.

$$\frac{d}{dx}$$
Set $u = x^{\frac{1}{q}}$

divide by $qx^{\frac{q-1}{q}}$ as desired

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$\left(\frac{1}{g}\right)' =$$

10/15

Example

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule,

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' =$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

$$\left(\frac{f}{g}\right)'$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule

$$\left(\frac{1}{g}\right)' \ = \ \frac{\mathrm{d}}{\mathrm{d}g}\left(\frac{1}{g}\right)g' = \ -\frac{1}{g^2}g'$$

$$\left(\frac{f}{a}\right)' = \left(f\frac{1}{a}\right)' =$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule and the product rule.

$$\left(\frac{1}{g}\right)' \ = \ \frac{\mathrm{d}}{\mathrm{d}g}\left(\frac{1}{g}\right)g' = \ -\frac{1}{g^2}g'$$

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = f'\frac{1}{g}$$

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule and the product rule.

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = \frac{f'}{g} + f\left(-\frac{g'}{g^2}\right)$$

as desired

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule and the product rule.

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = \frac{f'}{g} + f\left(-\frac{g'}{g^2}\right)$$

$$= \frac{f'g - fg'}{g^2}$$

as desired

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule and the product rule.

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = \frac{f'}{g} + f\left(-\frac{g'}{g^2}\right)$$

$$= \frac{f'g - fg'}{g^2}$$

as desired

as desired

You will not be tested on the material in the following slide.

Derive the exponent rule $(e^x)' = e^x$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

$$(e^x)' = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots\right)'$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

$$\frac{n}{n!} =$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

$$\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} =$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

$$\tfrac{n}{n!} = \tfrac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} = \tfrac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} =$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

$$\tfrac{n}{n!} = \tfrac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} = \tfrac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} = \tfrac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

$$\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n} = \frac{1}{1 \cdot 2 \cdot \dots \cdot (n-1)} = \frac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots =$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. We have that $n = \frac{n}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n}$

$$\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} = \frac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} = \frac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots = e^{x}$$

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. We have that

$$\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n} = \frac{1}{1 \cdot 2 \cdot \dots \cdot (n-1)} = \frac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots = e^{x}$$

as desired.

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$
 $e^{u} = x$

set
$$u = \ln x$$

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$

 $e^u = x$

set
$$u = \ln x$$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

using the chain rule,

$$e^{\ln x} = x$$

 $e^{u} = x$
 $\frac{d}{u}(e^{u})u' = (x)'$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

using the chain rule, the exponent derivative rule $(e^x)' = e^x$,

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$\begin{vmatrix} \sec & u = \ln x \\ \frac{d}{dx} \end{vmatrix}$$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$
 $e^{u} = x$
 $\frac{d}{du}(e^{u})u' = (x)'$
 $e^{u}u' = 1$
 $x(\ln x)' = 1$

$$\begin{vmatrix} \sec & u = \ln x \\ \frac{d}{dx} \end{vmatrix}$$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x \\ e^{u} = x \\ \frac{d}{du}(e^{u})u' = (x)' \\ e^{u}u' = 1 \\ e^{\ln x}(\ln x)' = 1 \\ x(\ln x)' = 1 \\ (\ln x)' = \frac{1}{x}$$

$$\begin{vmatrix} \sec & u = \ln x \\ \frac{d}{dx} \end{vmatrix}$$

Derive the logarithm derivative rules

$$\frac{(\ln x)'}{(\log_a x)'} = \frac{\frac{1}{x}}{\frac{1}{x \ln a}}$$

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$\begin{vmatrix} \sec & u = \ln x \\ \frac{d}{dx} \end{vmatrix}$$

$$\frac{1}{x}$$
 as desired

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_{a} x)' =$$

$$| \text{set } u = \ln x$$

$$\frac{d}{dx}$$

$$| \frac{1}{dx}$$

$$| \frac{1}{x}$$
as desired

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x}$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$x(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_{a} x)' = (\frac{\ln x}{\ln a})' =$$

$$| \text{set } u = \ln x$$

$$\frac{d}{dx}$$

$$| \frac{d}{dx}$$

$$| \frac{1}{dx}$$

$$| \frac{1}{x}$$
as desired

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

using the chain rule, the exponent derivative rule $(e^x)' = e^x$, the rule (x)' = 1 and the constant multiple rule (cf)' = cf'.

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$x(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_{a} x)' = (\frac{\ln x}{\ln a})' = \frac{(\ln x)'}{\ln a} = \frac{1}{x \ln a}$$

$$| \text{set } u = \ln x$$

$$\frac{d}{dx}$$

$$| \frac{d}{dx}$$

$$| \frac{1}{dx}$$

Derive the logarithm derivative rules

$$\frac{(\ln x)'}{(\log_a x)'} = \frac{\frac{1}{x}}{\frac{1}{x \ln a}}$$

using the chain rule, the exponent derivative rule $(e^x)' = e^x$, the rule (x)' = 1 and the constant multiple rule (cf)' = cf'.

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$\chi(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_{a} x)' = (\frac{\ln x}{\ln a})' = \frac{(\ln x)'}{\ln a} = \frac{1}{x \ln a}$$

$$| \text{set } u = \ln x$$

$$\frac{d}{dx}$$

$$| \frac{d}{dx}$$

$$| \frac{d}{dx}$$

$$| \frac{1}{dx}$$

$$| \frac{1}{x}$$

$$| \text{as desired}$$

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x}$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

using the chain rule, the exponent derivative rule $(e^x)' = e^x$, the rule (x)' = 1 and the constant multiple rule (cf)' = cf'.

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_{a} x)' = (\frac{\ln x}{\ln a})' = \frac{(\ln x)'}{\ln a} = \frac{1}{x \ln a}$$
as desired

$$(x^r)'=rx^{r-1}, \qquad x>0$$

$$(x^r)'=rx^{r-1}, \qquad x>0$$

$$(x^r)' =$$

$$(x^r)' = rx^{r-1}, \qquad x > 0$$

$$(x^r)' = ((e^{\ln x})^r)' =$$

$$(x^r)'=rx^{r-1}, x>0$$

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$(x^r)'=rx^{r-1}, \qquad x>0$$

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$= (e^u)' =$$
Set $u = r \ln x$

Derive the power rule

$$(x^r)'=rx^{r-1}, \qquad x>0$$

using the chain rule,

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$= (e^u)' = \frac{d}{du}(e^u)u' =$$
Set $u = r \ln x$

Derive the power rule

$$(x^r)' = rx^{r-1}, \qquad x > 0$$

using the chain rule, the the rule $(e^x)' = e^x$,

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$= (e^u)' = \frac{d}{du}(e^u)u' = e^uu' =$$
Set $u = r \ln x$

Derive the power rule

$$(x^r)'=rx^{r-1}, \qquad x>0$$

using the chain rule, the the rule $(e^x)' = e^x$,

$$(x^r)' = \left((e^{\ln x})^r \right)' = \left(e^{r \ln x} \right)'$$

$$= (e^u)' = \frac{d}{du} (e^u) u' = e^u u' =$$

$$= e^{r \ln x} (r \ln x)' =$$

Derive the power rule

$$(x^r)'=rx^{r-1}, x>0$$

using the chain rule, the the rule $(e^x)' = e^x$,

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$= (e^u)' = \frac{d}{du}(e^u)u' = e^uu' =$$

$$= e^{r \ln x}(r \ln x)' = (e^{\ln x})^r r(\ln x)'$$

Derive the power rule

$$(x^r)'=rx^{r-1}, x>0$$

using the chain rule, the the rule $(e^x)' = e^x$, the constant multiple derivative rule

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$= (e^u)' = \frac{d}{du}(e^u)u' = e^uu' =$$

$$= e^{r \ln x}(r \ln x)' = (e^{\ln x})^r r(\ln x)'$$

Derive the power rule

$$(x^r)'=rx^{r-1}, \qquad x>0$$

using the chain rule, the the rule $(e^x)' = e^x$, the constant multiple derivative rule

$$(x^{r})' = \left((e^{\ln x})^{r} \right)' = \left(e^{r \ln x} \right)'$$

$$= (e^{u})' = \frac{d}{du} (e^{u}) u' = e^{u} u' =$$

$$= e^{r \ln x} (r \ln x)' = \left(e^{\ln x} \right)^{r} r (\ln x)'$$

$$= x^{r} r \frac{1}{x} =$$

Derive the power rule

$$(x^r)'=rx^{r-1}, \qquad x>0$$

using the chain rule, the the rule $(e^x)' = e^x$, the constant multiple derivative rule and the logarithm derivative rule $(\ln x)' = \frac{1}{x}$.

$$(x^{r})' = \left((e^{\ln x})^{r} \right)' = \left(e^{r \ln x} \right)'$$

$$= (e^{u})' = \frac{d}{du} (e^{u}) u' = e^{u} u' =$$

$$= e^{r \ln x} (r \ln x)' = \left(e^{\ln x} \right)^{r} r (\ln x)'$$

$$= x^{r} r \frac{1}{x} =$$

Derive the power rule

$$(x^r)' = rx^{r-1}, \qquad x > 0$$

using the chain rule, the the rule $(e^x)' = e^x$, the constant multiple derivative rule and the logarithm derivative rule $(\ln x)' = \frac{1}{x}$.

$$(x^r)' = \left((e^{\ln x})^r \right)' = \left(e^{r \ln x} \right)'$$

$$= (e^u)' = \frac{d}{du} (e^u) u' = e^u u' =$$

$$= e^{r \ln x} (r \ln x)' = \left(e^{\ln x} \right)^r r (\ln x)'$$

$$= x^r r \frac{1}{x} = r x^{r-1}$$

Derive the power rule

$$(x^r)' = rx^{r-1}, \qquad x > 0$$

using the chain rule, the the rule $(e^x)' = e^x$, the constant multiple derivative rule and the logarithm derivative rule $(\ln x)' = \frac{1}{x}$.

$$(x^r)' = ((e^{\ln x})^r)' = (e^{r \ln x})'$$

$$= (e^u)' = \frac{d}{du}(e^u)u' = e^uu' =$$

$$= e^{r \ln x}(r \ln x)' = (e^{\ln x})^r r(\ln x)'$$

$$= x^r r \frac{1}{x} = rx^{r-1}$$
 | as desired

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula,

$$e^{ix} = \cos x + i \sin x$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula,

$$e^{ix} = \cos x + i \sin x$$

 $\frac{d}{dx} (e^{ix}) = \frac{d}{dx} (\cos x + i \sin x)$

 $\frac{d}{dx}$

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule,

$$\begin{array}{rcl} e^{ix} & = & \cos x + i \sin x & \left| \frac{d}{dx} \left(e^{ix} \right) \right| & = & \frac{d}{dx} \left(\cos x + i \sin x \right) \\ e^{ix} (ix)' & = & \end{array}$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule,

Assume all rules are valid over

the complex numbers \mathbb{C} .

$$e^{ix} = \cos x + i \sin x \qquad \left| \frac{d}{dx} \left(e^{ix} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)$$

$$e^{ix} (ix)' =$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers \mathbb{C} .

$$e^{ix} = \cos x + i \sin x \qquad \left| \frac{d}{dx} (e^{ix}) \right| = \frac{d}{dx} (\cos x + i \sin x)$$

$$e^{ix} (ix)' = (\cos x)' + i (\sin x)'$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers \mathbb{C} .

$$\begin{array}{rcl} e^{ix} & = & \cos x + i \sin x & \left| \frac{d}{dx} (e^{ix}) \right| & = & \frac{d}{dx} (\cos x + i \sin x) \\ e^{ix} (ix)' & = & (\cos x)' + i (\sin x)' \\ i e^{ix} & = & (\cos x)' + i (\sin x)' \end{array}$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers \mathbb{C} .

$$\frac{e^{ix}}{\frac{d}{dx}} = \frac{\cos x + i \sin x}{\cos x + i \sin x} \qquad \left| \frac{d}{dx} \left(e^{ix} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)
e^{ix} (ix)' = (\cos x)' + i (\sin x)'
i e^{ix} = (\cos x)' + i (\sin x)'
i (\cos x + i \sin x) = (\cos x)' + i (\sin x)'$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers $\mathbb C$.

$$e^{ix} = \cos x + i \sin x \qquad \left| \frac{d}{dx} \left(e^{ix} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)$$

$$e^{ix} (ix)' = (\cos x)' + i (\sin x)'$$

$$ie^{ix} = (\cos x)' + i (\sin x)'$$

$$i^2 \sin x + i \cos x = i (\cos x + i \sin x) = (\cos x)' + i (\sin x)'$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers $\mathbb C$.

$$e^{iX} = \cos x + i \sin x \qquad \left| \frac{d}{dx} \left(e^{iX} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)$$

$$e^{iX} (ix)' = (\cos x)' + i (\sin x)'$$

$$ie^{iX} = (\cos x)' + i (\sin x)'$$

$$i^2 \sin x + i \cos x = i (\cos x + i \sin x) = (\cos x)' + i (\sin x)'$$

$$-\sin x + i \cos x = (\cos x)' + i (\sin x)'$$

Derive the sine and cosine rules

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers $\mathbb C$.

$$e^{ix} = \cos x + i \sin x \qquad \left| \frac{d}{dx} \left(e^{ix} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)$$

$$e^{ix} (ix)' = (\cos x)' + i (\sin x)'$$

$$ie^{ix} = (\cos x)' + i (\sin x)'$$

$$i^2 \sin x + i \cos x = i (\cos x + i \sin x) = (\cos x)' + i (\sin x)'$$

$$-\sin x + i \cos x = (\cos x)' + i (\sin x)'$$

Compare real part

to get the desired equalities.

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers $\mathbb C$.

$$e^{iX} = \cos x + i \sin x \qquad \left| \frac{d}{dx} \left(e^{iX} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)$$

$$e^{iX} (ix)' = (\cos x)' + i (\sin x)'$$

$$ie^{iX} = (\cos x)' + i (\sin x)'$$

$$i^2 \sin x + i \cos x = i (\cos x + i \sin x) = (\cos x)' + i (\sin x)'$$

$$- \sin x + i \cos x = (\cos x)' + i (\sin x)'$$

Compare real part and coefficients of i to get the desired equalities.