This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) Process for the enantioselective preparation of amino alcohols of the formula I

$$R^1$$
 N R^2 I

in which

R¹ denotes a saturated, unsaturated or aromatic carbocyclic or heterocyclic radical which is unsubstituted or mono- or polysubstituted by R³ and/or R⁴,

R² denotes alkyl having 1-20 C atoms or H,

 R^3 , R^4 each, independently of one another, denote H, alkyl or alkoxy having 1-20 C atoms, aryl, aryloxy or $COOR^2$, F, Cl, Br, OH, CN, NO_2 , $N(R^2)_2$ or $NHCOR_2$

and

n denotes 0, 1, 2 or 3,

by enantioselective hydrogenation of amino ketones of the formula II

$$R^1$$
 N
 R^2
II

in which

R¹, R² and n have the meaning indicated above, in the presence of a non-racemic catalyst, characterised in that the catalyst is a transition-metal complex in which the transition metal is complexed to a chiral diphosphine ligand A

$$R^{6}$$
 R^{5}
 R^{5}
 $P(R^{10})_{2}$
 $P(R^{9})_{2}$
 R^{6}
 R^{8}
 R^{8}

in which

 R^5 , R^6 , R^7 and R^8 each, independently of one another, denote H, alkyl or alkoxy having 1-20 C atoms, aryl, aryloxy or F, Cl, Br, $N(R^2)_2$ or $NHCOR_2$

each, independently of one another, denote

R⁹ and R¹⁰

or cyclohexyl

 R^{11} denotes H, alkyl or alkoxy having 1-20 C atoms, aryl, aryloxy or SO_3Na , $COOR^{12}$, F, Cl, $N(R^{12})_2$ or $NHCOR^{12}$,

R¹² denotes alkyl having 1-20 C atoms or H

and

m denotes 0, 1, 2 or 3,

where R5 and R6, R6 and R7 and R7 and R8 together can also have the meaning

$$-(CH_2)_4$$
- , $-CH=CH-CH=CH$, or

or B

in which

Y denotes OH, P(cyclohexyl)₂, P(3,5-dimethylphenyl)₂ or P(C(CH₃)₃)₂,

Z denotes H or P(phenyl)₂

Q denotes PPh₂, P(cyclohexyl)₂, P[3,5-bis(trifluoromethyl)phenyl]₂, P(4-methoxy-3,5-dimethylphenyl)₂ or P(C(CH₃)₃)₂

and

Ph denotes phenyl, o-, m- or p-methylphenyl or dimethylphenyl.

- 2. (Original) Process according to Claim 1, in which R¹ denotes phenyl or 2-thienyl.
- 3. (Currently Amended) Process according to Claim 1 or 2, in which R² denotes methyl, ethyl, n-propyl or isopropyl.
- 4. (Currently Amended) Process according to one or more of Claims 1 to 3 Claim 1, in which n denotes 1.
- 5. (Original) Process according to Claim 1 for the preparation of (S)-3-methylamino-1-phenyl-1-propanol or (S)-3-methylamino-1-(2-thienyl)-1-propanol or acid-addition salts thereof.
- 6. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 5 Claim 1, characterised in that the chiral, non-racemic catalyst is a transition-metal complex containing one or more

metals or salts thereof selected from the group consisting of rhodium, iridium, ruthenium and palladium.

- 7. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 6 Claim 1, characterised in that the chiral, non-racemic catalyst is a transition-metal complex containing rhodium or salts thereof.
- 8. (Currently Amended) Process according to one or more of the preceding claims Claim 1, characterised in that the chiral diphosphine ligand used is a compound of the formula A1 to A5:

in which Ph has the meaning indicated in Claim 1, and X denotes H, alkyl, O(alkyl), Cl, or F, and R' denotes alkyl O(alkyl) or F.

- 9. (Currently Amended) Process according to Claim 7 or 8, characterised in that the chiral diphosphine ligand used is (S)-(-)-2,2'bis(di-p-tolylphosphino)-1,1'-binaphthyl or (S)-(-)-2,2'bis(diphenylphosphino)-1,1'-binaphthyl.
- 10. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 9 Claim 1, characterised in that the reaction temperature is between 0 and 200°C.
- 11. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 10 Claim 1, characterised in that the catalyst/ substrate ratio is between 1:5000 and 1:50.

- 12. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 11 Claim 1, characterised in that the hydrogenation is carried out under 1-200 bar of hydrogen.
- 13. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 12 Claim 1, characterised in that the hydrogenation is carried out in the presence of an alcohol.
- 14. (Currently Amended) Process for the preparation of compounds of the formula I according to one or more of the preceding claims Claim 1, characterised in that the chiral, non-racemic catalyst is a transition-metal complex containing sulfate, chloride, bromide, iodide, PF₆, BF₄, methanesulfonate, toluenesulfonate, hexachloroantimonate, hexafluoroantimonate or trifluoromethanesulfonate as anion.