

План лекции

Обучение с учителем (с размеченными данными / метками)

термины: целевая функция, объект, метка, признак, функции ошибки, эмпирический риск, обучающая выборка, модель, алгоритм, обучение, обобщающая способность

Классификация Прогнозирование Задачи оптимизации в обучении

Обучение без учителя / с неразмеченными данными

Схема решения задачи машинного обучения

Обучение с подкреплением

Другие виды обучения: с частично размеченными данными, трансдуктивное обучение, структурный вывод, активное обучение, онлайн-обучение, Transfer Learning, Multitask Learning, Feature Learning, привилегированное обучение

Проблемы в машинном обучении

Обучение с учителем Supervised Learning, с размеченными данными / метками

Обучение с учителем

$$X_{\text{train}} = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

$$y: X \to Y$$

$$y(x_1) = y_1$$

• • •

$$y(x_m) = y_m$$

у – целевая функция (переменная)

target / response / outputs / dependent variable

 X_i – объект (наблюдение)

observation / example / instance / object

X - пространство объектов (входов)

 $\it Y$ – пространство меток / значений целевого признака (выхода)

Цели

1. Восстановление целевой зависимости

Уметь восстанавливать метки новых объектов y(x)

- найти зависимость целевой переменной от остальных
 - 2. Интерпретация

Как устроена y(x)

3. Оценка качества полученного решения

Например, на сколько ошибаемся в среднем, что ждать при использовании нашего прогноза

Типы задач обучения с учителем

Классификация (Classification)

$$|Y| = k << \infty$$

бинарная

$$Y = \{0, 1\}$$
 или $Y = \{-1, +1\}$

скоринговая бинарная

$$a(x) \in [0, 1]$$

на k непересекающихся классов

(multiclass classification)

$$Y = \{1, 2, ..., k\}$$

на k пересекающихся классов

(multi-label classification)

$$Y = \{0, 1\}^k$$

Регрессия (Regression)

$$Y = \mathbb{R}$$

Многомерная регрессия

$$Y = \mathbb{R}^n$$

Прогнозирование (Forecasting)

$$X_{\text{train}} = \{(x_1, t_1, y_1), \dots, (x_m, t_m, y_m)\}$$
$$t_1 \le t_2 \le \dots \le t_m$$

Ранжирование (Learning to Rank)

$$Y$$
 – ЧУМ

Пространство объектов

Практически какое угодно:

- медицинские истории
- тексты
- сигналы / временные ряды / последовательности
- изображения
- векторы / множества / графы
- ...

Для удобства-простоты-теории-практики:

$$X = \mathbb{R}^n$$

п-мерное признаковое пространство

$$m{\mathcal{X}}_i = (m{\mathcal{X}}_{i1}, \dots, m{\mathcal{X}}_{in})$$
 – объект в признаком описании $m{\mathcal{X}}_{ij}$ – \dot{J} -й признак

inputs / attributes / repressors / properties / covariates / features / variables

Задача в признаковой постановке

матрица «объект-признак» (data matrix)

плохой_клиент	линии	возраст	поведение_30-59_дней	Debt_Ratio	доход	число_кредитов
0	0.111673	46	0	1.329588	800.0	8
0	0.044097	69	0	0.535122	3800.0	10
0	0.047598	77	0	0.169610	3000.0	7
0	0.761149	58	1	2217.000000	NaN	4
0	0.690684	55	0	0.432552	12416.0	7

По строкам – признаковые описания объектов по столбцам – значения конкретных признаков

Признаки (features)

Задачи классификации – целевой признак категориальный Задачи регрессии – целевой признак вещественный

Вообще говоря, целевой признак тоже м.б. любым, например графом!

Замечание

Целевой признак «условен»

Часто просто дана матрица (целевой признак приходится формировать)

Генерация признаков

объект может быть не задан в признаковом пространстве или задан в «плохом» признаковом пространстве

⇒ извлечение признаков:

$$X \to \mathbb{R}^n$$

м.б. производится автоматически чем лучше генерация признаков, тем более простое ML нужно;)

mmp@cs.msu.ru →

длина = 3

доменов = 3

«1 уровень=ru» = 1

«1 уровень=com» = 0

«1 уровень=org» = 0

число вершин = 3
число рёбер = 4
число компонент связности = 1
максимальная степень = 3

Примеры

Классификация спама

X - письма

 $Y = \{ cnam, hopma \}$

признаки = длина письма, число вхождений слова, отправитель, ...

Медицинская диагностика

Х - пациенты

Y – диагнозы

признаки = результаты анализов, возраст, пол и т.п.

вариант постановки: предсказать вероятности болезней $Y = [0,1]^l$

Прогнозирование цен акций

X - ситуация на рынке

Y – цена на акцию через час

вариант постановки: множественная регрессия -

– цены нескольких акций $Y=\mathbb{R}^l$

Визуализация задач

Задача регрессии

график модели

Задача классификации

разделяющая поверхность (decision boundary)

+ м.б. линии уровня вероятностей

Что значит «восстановление целевой зависимости» (меток)

Строим «алгоритм» (гипотезу) a(x), который выдаёт предполагаемые метки

Формализация качества: L(y,a) – функция ошибки (error / loss function)

ошибка на объекте x L(y(x),a(x)) a(x) – ответ нашего алгоритма a

Примеры:

в задаче регрессии – L(y,a) = |y-a|в задаче классификации – $L(y,a) = I[y \neq a]$

Что значит «восстановление целевой зависимости» (меток)

Если объекты имеют вероятностную природу, то

$$\int_{Y \setminus Y} L(y, a(x)) \partial P(x, y) \to \min$$

теоретический риск

На практике не знаем меры можем вычислить лишь «эмпирический риск»

Обучающая выборка (обучение – не путать с процессом)

$$X_{\text{train}} = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

Ошибка на выборке (один из вариантов):

$$L(a, X_{\text{train}}) = \frac{1}{m} \sum_{i=1}^{m} L(y(x_i), a(x_i))$$
$$a^* = \arg\min L(a, X_{\text{train}})$$

На самом деле, интересна не ошибка на обучении (Training Error)!

Как минимизируется ошибка

Минимизация производится в рамках модели

Модель – параметрическое семейство алгоритмов

$$A = \{a(x; w)\}_{w \in W}$$

пример:
$$A = \{a(x; w) = w^{\mathrm{T}}x : \mathbb{R}^n \to \mathbb{R}\}_{w \in \mathbb{R}^n}$$

Обучение – определение параметров алгоритма,

как правило, производится с помощью оптимизации значения функции ошибки (функционала качества) или их модификаций на обучающей выборке

По сути, интеллектуальный перебор алгоритмов...

Как - дальше!

Обобщающая способность (Generalization)

Какое качество (ошибка) алгоритма на новых данных?

$$L(a, X_{\text{train}}) \vee L(a, X_{\text{test}})$$

Ошибка на тестовой выбороке (Generalization Error / Test Error)

более строго: матожидание ошибки на новых данных

обучение ≠ запоминание

потом: недообучение, переобучение, сложность...

потом: отложенная выборка, контроль и т.п.

Что такое алгоритм

Мы под этим понимаем функцию

$$a(x): X \to Y$$

которую можно эффективно реализовать в виде программы

- 1. Допускает вычисление за приемлемое время
 - 2. Использует ограниченный набор ресурсов
- 3. Есть специфика, связанная с вычислениями на компьютере

Требования к модели

Качество (Predictive Accuracy)

• Эффективность (Efficiency)

Робастность (Robustness)

• Масштабируемость (Scalability)

• Интерпретируемость (Interpretability)

• Компактность (Compactness)

см. выше

время обучения и использования

устойчивость к шуму/пропускам ...

использование при увеличении объёма данных

объяснение результатов модели

затраты на хранение модели

Почему МО не оптимизация

1. Не знаем меру в
$$\int_{X\times Y} l(y(x), a(x)) \partial P \to \min$$

т.е. решаем «неправильную задачу оптимизации» и правильный выбор неправильности – особое умение (регуляризация, проблемно-ориентированные модели и т.п.)

2. Оптимизация не в классе функций, а в классе алгоритмов дополнительные требования на решение

3. Есть контекст

поэтому много неоптимизационных приёмов, например, аугментация

Чем различаются алгоритмы

Кроме сложности, ресурсоёмкости, времени работы и т.п. – функциональной выразимостью и геометрией решения!

Схема решения задачи

1. Уточнение и постановка задачи (Problem Definition)

понимание бизнес-задачи

2. Сбор, подготовка и анализ данных (Data Mining)

понимание исходных данных сбор данных (Data collection)

предобработка данных (Data cleaning) / подготовка данных для модели разведочный анализ (Exploratory Data Analysis)

2. Выбор

- Алгоритма
- модели (Algorithm selection)
- о способа обучения: гиперпараметры, методы оптимизации (Parameter optimization)
- Контроля

- функции ошибки (Metric selection)
- способа контроля (разбиение train/test/valid)
- Признаков
- генерация (Data coding = feature engineering)
- о селекция
 - 3. Обучение (fit-predict)
- 4. Предсказание (м.б. Post-processing) o Проверка качества
- 5. Deploy / Release / Online evaluation / Debug / Monitoring / Maintenance (алг. переоб. на всех данных) 6. Отчётность, презентация, коммуникация (визуализация данных, модели, результатов)

Машинное

обучение

(Machine

Learning)

CRISP-DM (Cross-Industry Standard Process for Data Mining)

Схема проверки алгоритма

Пример работы в Scikit-Learn

```
# данные
from sklearn.datasets import make blobs
X, y = make blobs(centers=2, random state=0)
# разбивка: обучение - контроль
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, random state=0)
# обучение модели и предсказание
from sklearn.linear model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X train, y train)
prediction = classifier.predict(X test)
# качество
print (classifier.score(X test, y test)) # 0.8
print (classifier.score(X train, y train)) # 0.93
```

Как решаются задачи

Пусть
$$y = f(X_1, ..., X_n) + \varepsilon$$

у – продажи,

 $X_{\scriptscriptstyle 1}$ - затраты на рекламу по TV,

 $X_{\scriptscriptstyle 2}$ – затраты на рекламу в Интернете,

 X_3 – затраты на рекламу на радио, и т.д.

Надеемся

$$a(X_1,...,X_n) \approx f(X_1,...,X_n)$$

a ~ алгоритм (алгоритмически реализуемая функция)

Ищем в параметризованном семействе $a \in \{a\}$ (модели) \mathcal{E} – неустранимая ошибка (irreducible error)

Подход основанный на близости

$$a(x) = \text{mean}(y_i \mid x_i = x)$$

но если в тестовой выборке нет именно таких объектов

$$a(x) = \text{mean}(y_i \mid x_i \in N(x))$$

N(x) – окрестность (neighborhood) объекта x (похожие на него объекты)

Параметризация может определять размер окрестности

Но что такое окрестность при больших размерностях... curse of dimensionality (след. лекция)

Параметрические модели

Линейная модель

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Параметры оцениваются с помощью подгонки на данных обучения (fitting the model to training data)

$$a(x_i) = y_i, i = 1, 2, ..., m$$

 W_i – веса (weights) / параметры (parameters) модели W_0 – смещение (bias)

Линейная модель – простая, можно усложнить – полиномиальная модель.

$$a(X_1,...,X_n) = w_0 + \sum_t w_t X_t + ... + \sum_{i,j} w_{ij} X_i X_j$$

Переобучение / переподгонка

Чем сложнее модель, тем проще настроиться на данные, но возникает проблема – переобучение (overfitting) – качество на контроле существенно ниже чем на обучении

Линейная модель хорошо интерпретируемая

- легко объяснить, как работает
- легко объяснить, почему получен такой ответ

простая ⇒ надёжная

(оценка ошибки, как правило, соответствует действительности)

Пример задачи машинного обучения

	x_0	x_1	x_2	x_3	x_4	у
0	1.5	7.4	2.6	5.3	0.1	3.8
1	9.2	9.0	0.3	9.6	1.4	6.2
2	2.8	6.1	9.4	8.5	0.0	6.1
3	5.2	5.5	4.9	7.7	1.6	5.2
4	7.6	0.2	1.4	1.2	3.1	3.1
5	6.7	4.7	8.2	2.9	7.3	6.5
6	7.0	3.3	3.3	9.8	6.2	4.5
7	9.5	7.7	8.3	4.1	4.5	8.5
8	4.0	10.0	1.8	9.6	4.2	5.3
9	4.2	4.6	3.7	4.7	0.4	4.2

Как зависит целевая переменная от остальных?

Пример задачи машинного обучения

Как определяется класс?

Обучение без учителя (unsupervised Learning) с неразмеченными данными, без меток

Обучение без учителя

$$X_{\text{train}} = \{x_1, \dots, x_m\} \subseteq X$$

Понять «структуру» пространства объектов X

Как на нём распределены объекты?

Можно ли его разделить на подпространства похожих объектов? Можно ли эффективно описать объекты/пространство?

Часто нет понимания, насколько хорошо решается задача

Обучение с частично размеченными данными (Semi-Supervised Learning)

$$X_{\text{train}} = \{(x_1, y_1), \dots, (x_k, y_k), x_k, \dots, x_m\}$$

Если заранее известна контрольная выборка x'_1, \dots, x'_q , то это трансдуктивное обучение (transductive learning)

Привилегированное обучение (Learning Using Privileged Information)

$$X_{\text{train}} = \{(x_1, \tilde{x}_1, y_1), \dots, (x_m, \tilde{x}_m, y_m)\}$$

$$X_{\text{test}} = \{x'_1, \dots, x'_q\}$$

только на обучении есть дополнительные признаки

Vapnik V, Vashist A. A new learning paradigm: learning using privileged information. Neural Netw. 2009 Jul-Aug;22(5-6):544-57. https://pubmed.ncbi.nlm.nih.gov/19632812/

Обучение с подкреплением (Reinforcement Learning) обучение агента, который взаимодействует со средой и получает награду за взаимодействие

Структурный вывод (Structured output) на выходе набор значений со связями между ними, примеры:

- Грамматический разбор (parsing): текст ightarrow дерево
- Аннотирование изображений (Image Captioning): изображение ightarrow текст
 - Транскрипция (Transcription): X → текст
 - Машинный перевод (Machine translation): текст ightarrow текст
 - Синтез: выборка → выборка

Активное обучение (Active Learning) влияем на формирование обучающей выборки

Онлайн-обучение (Online Learning)

в каждый момент времени нам доступна небольшая группа объектов (м.б. один объект)

~ Инкрементное обучение (incremental learning) постоянное непрерывное обучение

Обучение с переносом опыта (Transfer Learning) решение новых задач с помощью решения старых

Multitask Learning решение одновременно несколько схожих задач

Обучение представлений (Representation Learning)

оптимальное представление объектов, в частности, выучивание признаков (Feature Learning) – автоматическое получение хороших признаков из сырых данных, обучение многообразий (Manifold Learning), матричные и тензорные разложения (Matrix and Tensor Factorization) и т.п.

Обучение глубоких сетей (Deep Learning) решение задач ML с помощью глубоких нейросетей

Мета-обучение (meta-learning)

~ обучение обучаться (например, подбор оптимальных параметров с помощью машинного обучения)

Сложности в ML

• переобучение – основная теоретическая проблема

• проблема формализации

надо переформулировать бизнес-задачу в математическую задачу выявления зависимости, выбор адекватного функционала качества

• размеры данных

много объектов (низкого уровня – транзакций, высокого – клиентов) много признаков (обработка текстов)

• качество данных

невыполнение всех свойств (полнота, корректность, правдивость, ясность и т.п.)

• несоответствие обучения и контроля

это больше, чем проблема репрезентативности выборки – это проблема прогноза / адаптации (распознавание голоса, спама)

Примеры модельных задач

Примеры модельных задач

«Классификация»

Два месяца

Ручная генерация данных

Классические датасеты

```
from sklearn.datasets import load_digits
digits = load_digits()
X_digits, y_digits = digits.data, digits.target
```

Итог

Обучение с учителем – восстановление целевой зависимости формализуется с помощью функции ошибки

Объекты произвольны, но мы дальше рассматриваем признаковые описания

Минимизируем эмпирический риск в рамках модели, необходима обобщающая способность

В отличие от оптимизации ответ – алгоритм (много дополнительных требований)

Схемы решений задач вполне естественны, алгоритмы просты, например линейный

Есть много видов машинного обучения, начнём с обучения по размеченным данным

Ссылки

Trevor Hastie, Robert Tibshirani, Jerome Friedman «The Elements of Statistical Learning: Data Mining, Inference, and Prediction», 2nd Edition, Springer, 2009 //

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Лекции К.В. Воронцова

https://www.machinelearning.ru/wiki/index.php?title=Машинное_обучение_(курс_лекций%2С_К.В.Воронцов)

Andrew Glassner «Deep Learning, Vol. 1-2: From Basics to Practice» //

http://www.glassner.com/portfolio/deep-learning-from-basics-to-practice/

использована

• лекция «Библиотека языка Питон Scikit-Learn»

https://github.com/Dyakonov/IML/blob/master/IML2018_06_scikitlearn_10.pdf