UNCLASSIFIED

AD NUMBER AD488904 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 01 SEP 1966. Other requests shall be referred to Army Missle Command (Army), Redstone Arsenal, AL 35898. AUTHORITY USAMC ltr, 23 Aug 1971

KINETICS OF C2F4 DISSOCIATION IN NITROGEN SHOCKS

188904

Prepared by

A. P. Modica and J. E. LaGraff

AVCO CORPORATION
AVCO SPACE SYSTEMS DIVISION
RESEARCH AND TECHNOLOGY LABORATORIES
Wilmington, Massachusetts

for

AVCO EVERETT RESEARCH LABORATORY
A DIVISION OF
AVCO CORPORATION
Everett, Massachusetts

AVSSD-0185-66-CR Contract DA-01-021-AMC-12005 (Z)

1 September 1966

Supported by

ADVANCED RESEARCH PROJECTS AGENCY
Monitored by

ARMY MISSILE COMMAND
UNITED STATES ARMY
Redstone Arsenal, Alabama
Under Contract DA-01-021-AMC-12005 (Z)
(part of Project DEFENDER)

KINETICS OF $\mathbf{C_2F_4}$ dissociation in Nitrogen shocks

Prepared by

A. P. Modica and J. E. LaGraff

AVCO CORPORATION
AVCO SPACE SYSTEMS DIVISION
RESEARCH AND TECHNOLOGY LABORATORIES
Wilmington, Massachusetts

for

AVCO EVERETT RESEARCH LABORATORY
A DIVISION OF
AVCO CORPORATION
Everett, Massachusetts

AVSSD-0185-66-CR Contract: DA-01-021-AMC-12005 (Z)

1 September 1966

Supported by

ADVANCED RESEARCH PROJECTS AGENCY
Monitored by

ARMY MISSILE COMMAND
UNITED STATES ARMY
Redstone Arsenal, Alabama
Under Contract DA-01-021-AMC-12005 (Z)
(part of Project DEFENDER)

FOREWORD

This report represents work performed by the Research and Technology Laboratories of the Avco Corporation Space Systems Division, 201 Lowell Street, Wilmington, Massachusetts, for the Avco Everett Research Laboratory, Everett, Massachusetts, supported by the Advanced Research Projects Agency monitored by the Army Missile Command, United States Army, Redstone Arsenal, Alabama, under Contract No. DA-01-021-AMC-12005 (Z) (part of Project DEFENDER).

ABSTRACT

A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction was conducted in excess nitrogen behind incident shock waves over the temperature range from 1200 to 1600° K at total gas concentration around 1.25 x 10^{-5} mole/cc. The rate of fermation of CF₂ was observed spectrophotometrically and is reproduced by the rate law:

$$\frac{1/2 d [CF_2]}{dt} = k_f [N_2] [C_2F_4] - k_r [N_2] [CF_2]$$

with

$$k_f^{N_2}$$
 = (4.08 ± 0.72) 10^{40} T $^{-5.36 \pm 0.55}$ e $\frac{-74900 \pm 3000}{RT}$

and

$$k_r^{N_2} = (2.05 \pm 0.47) \cdot 10^{38} \text{ T}^{-6.36 \pm 0.55} = \frac{-1840 \pm 263}{\text{RT}}$$

$$cc^2/\text{mole}^2 \text{ sec}$$

Comparisons between the tetrafluoroethylene-difluorocarbene thermal equilibrium constants in N_2 and Ar shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the chemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1:00 tetrafluoroethylene-nitrogen mixture is about 10 to 50 times faster than in pure nitrogen.

CONTENTS

I.	Introduction)
u.	Experimental	2
III.	N2 Vibrational Relaxation	4
IV.	C ₂ F ₄ Dissociation Kinetics	7
v.	Discussion	13
Ref	ferences	14

ILLUSTRATIONS

Figure	1	Shock Wave into 1:100 C_2F_4 - N_2 Gas Mixture. P_1 = 5.0 cm Hg. U_g = 1.472 mm/ μ sec· T_2 (unrelaxed N_2) = 1290°K. Writing Speed = 20 μ sec/cm	3
	2	C_2F_4 Thermal Equilibrium Behind N_2 Shock Waves. Δ , Vibrationally Unrelaxed N_2 . X, Relaxed N_2 Data. Solid Line is	
		Log K _c = -69432/2.303RT + 4.62 (K _c in mole/cc) From Least-Squarer Fit of C ₂ F ₄ Equilibrium Constants in Ar Shocks	5
	3	Comparison of Vibrational Relaxation Time of N ₂ in 1:100 C ₂ F ₄ -N ₂ Mixture and Pure N ₂ at a Total Pressure of One Atmosphere. O, Experimental N ₂ Vibrational Relaxation Time From C ₂ F ₄ Equilibrium Constants. [], Experimental C ₂ F ₄	
		Chemical Relaxation Times	6
	4	Detailed Analysis of C ₂ F ₄ Dissociation Behind Shock Waves. O, Experimental Points. Solid Line is Calculated Curve	8
•	5	Second-order Rate Constants for C ₂ F ₄ Dissociation in Excess N ₂ . Broken Line is	
		$k_f^{Ar} = 3.96 \times 10^{39} T^{-6.08} exp (-74900/RT)$	
		cc/mole-sec	
		From Argon Kinetic Data	9
	6 %	CF ₂ Radical Recombination Rate Constants in Excess N ₂	10
		TABLES	
Table	1	C ₂ F ₄ Dissociation in 1:100 C ₂ F ₂ -N ₂ Gas Mixtures Behind Incident Shock Waves	11
	п	C ₂ F ₄ -CF ₂ Thermal Equilibrium Behind N ₂ Shock Waves	12

I. INTRODUCTION

A shock tube kinetic study of the thermal dissociation of tetrafluorethylene in argon diluent was reported earlier. 1 Equilibrium and second-order rate constants for the reversible reaction

$$C_2F_4 \stackrel{Ar}{=} 2CF_2$$

were determined by employing a spectrophotometric technique to monitor the production of CF_2 radicals in absorption at 2536A. A similar kinetic investigation of the C_2F_4 dissociation has been carried out in excess nitrogen in order to assess its collision efficiency as a second body. It was of interest also to note the effect of C_2F_4 impurity on the vibrational relaxation of natrogen molecules. Calculations had shown that over the temperature range of this study and near one atmosphere total pressure the C_2F_4 chemical relaxation would be about 100 to 1000 times faster than vibrational relaxation of pure N_2 . Hence, the measured C_2F_4 equilibrium constant was used to obtain the temperature behind the shock wave, after a known time, to estimate the N_2 vibrational relaxation time.

II. EXPERIMENTAL

The shock-tube and optical absorption-spectroscopy apparatus used in these experiments was identical to the setup described in Reference 1. The concentration of CF₂ radicals generated behind the shock wave was determined from Beer's law according to the expression

$$I/I_0 = \exp(-\epsilon L [CF_2])$$

= $\exp(-2\epsilon L \alpha \rho_{21} [C_2F_4]_1)$ (1)

where I_0 and I are the incident and transmitted light intensity; ϵ is the molar extinction coefficient in cubic centimeter per mole-centimeter; L = 3.91 centimeters, the path length of light through the shock tube; a is the degree of C_2F_4 dissociation; ρ_{21} is the density ratio across the shock; and $[C_2F_4]_1$ is the concentration ahead of the shock front. Measurements of the CF2 radical UV absorption were made at 2536A where ϵ was taken to be $(1.25 \pm 0.10)106$ cc/mole-cm over the temperature interval 1200° to 1600°K. A general profile of the CF2 absorption behind a nitrogen shock wave is indicated by the oscillogram record in Figure 1. It is observed that after chemical relaxation, the CF2 equilibrium absorption appears to overshoot slightly at first, and then to decay gradually later on. The effect here is attributed to the C₂F₄ equilibrium following the decrease in temperature behind the shock wave as the N₂ molecules vibrationally relax. This behavior was not observed behind similar shocks in argon.

The shock conditions of temperature and density ratio were calculated from the Rankine-Hugoniot equations with the incident shock velocity and the state of the gas ahead of the shock, and as a function of the degree of C_2F_4 dissociation behind the shock wave. The dissociation energy of C_2F_4 was taken to b_1 74. 9 kcal/mole (Reference 1) so that the temperature drop behind the shock wave due to complete dissociation was 100° K for the 1:100 (mole ratio) C_2F_4 -N₂ mixtures used. For the same degree of dissociation, the difference in temperature between vibrationally unrelaxed and relaxed N₂ shocks was about 70°K. Attenuation of shock velocity under conditions of interest amounted to a decrease of 0.22 \pm 0.08 percent per 20 cm length of tube, which introducted at most a 5°K uncertainty in the analyzed data.

Figure 1 UV ABSORPTION PROFILE OF CF $_2$ RADICAL BEHIND INCIDENT SHOCK WAVE INTO 1:100 C $_2$ F $_4$ -N $_2$ GAS MIXTURE. P $_1$ = 5.0 CM HG. U $_s$ = 1.472 mm/ μ SEC. T $_2$ (UNRELAXED N $_2$) = 1290°K. WRITING SPEED = 20 μ SEC/CM

IIL N2 VIBRATIONAL RELAXATION

Vibrational relaxation of molecules in gas mixtures involves energy to be exchanged between translational-vibrational and vibrational-vibrational degrees of freedom. Most polyatomic molecules with many vibrational modes usually exhibit short relaxation times of less than one microsecond at pressures around one atmosphere. This behavior is attributed to the efficient transfer of translational energy to the low-frequency vibrational states followed by rapid internal distribution to the other modes of the molecule. For binar, gas mixtures where near-resonant and resonant vibrational-vibrational exchange occurs, it is found that the faster relaxing molecule goes first to some fraction of its final equilibrium energy and then proceeds to equilibrium at the same relaxation time with the slower relaxing molecule. 5, 6.

In reference to the vibrational relaxation of a dissociated C_2F_4 - N_2 gas mixture, the vibrational relaxation time of C_2F_4 (0.014 microsecond at 373°K and one atmosphere)⁴ is about 10^5 times smaller than that of pure nitrogen. A comparison of the vibrational frequencies of the CF_2 radical⁷ (668 1202, 1222 cm⁻¹) with that of N_2 (2330 cm⁻¹) tends to suggest a shorter relaxation time for CF_2 . If it is assumed that behind a shock wave the C_2F_4 and CF_2 molecules are in vibrational equilibrium at the local translational temperature and that N_2 is the slowest vibrationally relaxing component, the change in translational temperature due to N_2 vibrational excitation is approximately given by⁸

$$\frac{T - T_f}{T_o - T_f} = e^{-t/r} eff$$
 (2)

where subscripts o and f refer to the shocked translational temperature before vibrational relaxation and at equilibrium. $r_{\rm eff}$ is the effective N₂ relaxation time. The temperature dependences of the vibrational relaxation time of pure N₂ and the dissociation rate of C₂F₄ indicate that chemical relaxation is between two and three orders-of-magnitude faster that pure N₂ vibrational relaxation for the temperature range of this study. Thus, in calculating the effective vibrational r 'axation time, the initial and final translational temperatures are taken to be those of the chemically relaxed gas. A time corresponding to 0.98 chemical equilibrium of each run is used as a standard period at which to evaluate the equilibrium constant. With the measured C₂F₄ equilibrium constant (Figure 2) and the equilibrium data of Reference 1, the translational temperature of the gas is determined. The experimental results are plotted in Figure 3 with the respective chemical relaxation times of the C₂F₄ dissociation reaction, and are compared to N₂ relaxation times in pure nitrogen. ⁵

Figure 2 C_2F_4 THERMAL EQUILIBRIUM BEHIND N₂ SHOCK WAVES. A, VIBRATIONALLY UNRELAXED N₂. X, RELAXED N₂ DATA. SOLID LINE IS

LOG K_c = -69432/2.303RT + 4.62 (K_c IN MOLE/cc) FROM LEAST-SQUARES FIT OF C_2F_4 EQUILIBRIUM CONSTANTS IN AR SHOCKS

26-2534

Figure 3 COMPARISON OF VIBRATIONAL RELAXATION TIME OF N₂ IN 1:100 C₂F₄-N₂ MIXTURE AND PURE N₂ AT A TOTAL PRESSURE OF ONE ATMOSPHEPE. O, EXPERIMENTAL N₂ VIBRATIONAL RELAXATION TIME FROM C₂F₄ EQUILIBRIUM CONSTANTS. \square EXPERIMENTAL C₂F₄ CHEMICAL RELAXATION TIMES

IV. C₂F₄ DISSOCIATION KINETICS

The thermal dissociation of C₂F₄ in N₂ is described by the rate expression for the forward and reverse processes

$$\frac{-d \left[C_{2} F_{4}\right]}{dt} = \frac{1}{2} \frac{d \left[C F_{2}\right]}{dt} = k_{f} \left[N_{2}\right] \left[C_{2} F_{4}\right] - k_{r} \left[N_{2}\right] \left[C F_{2}\right] \left[C F_{2}\right]$$
(3)

or in terms of the degree of dissociation

$$\frac{da}{dt} = k_f [N_2] (1-a) - 4k_f / K_{eq} ([N_2] [C_2 F_4]_0 a^2)$$
(4)

where the reverse rate constant k_r has been replaced by the ratio k_f/K_{eq} and $\begin{bmatrix} C_2 & F_4 \end{bmatrix}_0$ is the concentration behind the shock wave prior to dissociation.

The experimental values of α were determined from the oscillogram records by means of Equation (1) and the shock-tube performance data. An analysis of the initial slope yielded k_f , and the CF_2 equilibrium absorption gave K_{eq} . To compute the kinetic profile of α behind the shock wave, Equation (6) was integrated and solved on an IBM 7094 machine with the empirical values of k_f and K_{eq} . The coincidence between the experimental values of α and the calculated profile (Figure 4) is considered to be further evidence in support of the proposed rate law and dissociation mechanism.

The results of the equilibrium and forward rate constants from the present experiments are compiled in Tables I and II. The forward rate constants are plotted against reciprocal temperature in Figure 5 and are least squares fitted by the function

$$k_f^{N_2} = (4.08 \pm 0.72) \ 10^{40} \ T^{-6.36} \pm 0.55 \ e^{-74900 \pm 3000} \ RT$$
 (5)

cc/mole sec,

taking the minimum dissociation energy to be 74.9 \pm 3.0 kcal/mole. The forward rate constants in N₂ are found to be about 1.3 \pm 0.1 times higher than the ones in Ar. A least-squares fit of k_f/K_{eq} = k_r (Figure 6), with the collisional temperature dependence T-6.36 \pm 0.55 of Equation (5) gives

$$k_r^{N_2} = (2.05 \pm 0.47) \cdot 10^{38} \, \text{T}^{-6.36 \pm 0.55} \, e^{\frac{-1840 \pm 263}{\text{RT}}}$$
 (6)

cc²/mole² sec

for the reverse rate constant. The standard deviation of the preterm indicates the scatter of experimental points from the fit values.

Figure 4 DETAILED ANALYSIS OF C₂F₄ DISSOCIATION BEHIND SHOCK WAVES.

O, EXPERIMENTAL POINTS. SOLID LINE IS CALCULATED CURVE

86-456

Figure 5 SECOND-ORDER RATE CONSTANTS FOR C_2F_4 DISSOCIATION IN EXCESS N_2 . BROKEN LINE IS

 $k_f^{Ar} = 3.96 \times 10^{39} \text{ T}^{-6.08} \text{ exp } (-74900/\text{RT})$ cc/mole-sec

FROM ARGON KINETIC DATA

Figure 6 CF2 RADICAL RECOMBINATION RATE CONSTANTS IN EXCESS N2

TABLE 1

C2F4 DISSOCIATION IN 1:100 C2F4-N2 GAS MIXTURES BEHIND INCIDENT SHOCK WAVES*

N ₂ k _f (cc/mole sec)	6.94×10 ⁷ 8.02×10 ⁷ 6.05×10 ⁷ 1.32×10 ⁸ 1.53×10 ⁸ 1.07×10 ⁸ 1.07×10 ⁸ 4.90×10 ⁸ 4.90×10 ⁸ 5.15×10 ⁸ 1.07×10 ⁸ 1.32×10 ⁹ 1.54×10 ⁸ 6.50×10 ⁸ 6.50×10 ⁸ 1.54×10 ⁹
Total Shocked Gas Conc'n (mole/cc)10 ⁵	1.29 1.29 1.29 1.29 1.30 1.31 1.32 1.32 1.07 1.07
P ₂₁	4.4.4.4.4.4.4.4.4.4.4.4.7. 5.50 5.
T2 (*K)	1245 1250 1250 1250 1290 1290 1300 1365 1365 1365 1365 1415 1455
U _s (mm/ µsec)	1,435 1,440 1,441 1,441 1,468 1,481 1,511 1,527 1,527 1,539 1,539 1,588
Run No.	10 9 8 10 11 13 15 16

*Vibrationally unrelaxed N2.

TABLE II

C₂F₄-CF₂ THERMAL EQUILIBRIUM
BEHIND N₂ SHOCK WAVES*

Run No.	T 2eq (°K)	^a eq	(C ₂ F ₄) ^{eq} (mole /cc)10 ⁷	K _{eq} /4 (mole/cc)
1	1225	0.193	1.30	5.96 x 10 ⁻⁹
2	1230	0.171	1. 29	4.57×10^{-9}
3	1235	0.175	1.30	4.81×10^{-9}
4	1250	0. 204	1.30	6.62×10^{-9}
5	1 270	0.220	1.30	8.10 x 10 ⁻⁹
6	1275	0.197	1.31	5.55 x 10 ⁻⁹
7	1280	0. 252	1.31	1.12 x 10 ⁻⁸
8	1315	0.349	1.34	2.54×10^{-8}
9	1325	1.352	1.34	2.63 x 10 ⁻⁸
10	1330	0.367	1.34	2.89 x 10 ⁻⁸
11	1330	0.341	1.34	2.32×10^{-8}
12	1350	0.413	1. 23	3.55 x 10 ⁻⁸
.13	1380	0.472	1.10	5.45×10^{-8}
14	1395	0. 506	1.11	5.76 x 10 ⁻⁸
15	1415	0.544	1.11	7. 20 x 10 ⁻⁸
16	1480	0. 750	0, 855	1.93 x 10 ⁻⁷
17	1485	0.804	0.855	2.82×10^{-7}

^{*}Vibrationally unrelaxed N_2 .

V. DISCUSSION

The presence of a small quantity of C2F4 in excess N2 appears to enhance the vibrational relaxation of N2 molecules. The apparent N2 vibrational relaxation time was obtained on the assumption that the C2F4 and CF2 molecules were in vibrational equilibrium with the translational gas temperature so that the measured chemical equilibrium constant could be used as a temperature indicator during N_2 vibrational relaxation. Since the vibrational histories of C2F4 and CF2 were not measured in the experiments, the present data does not permit an estimation of the relative importance of the translational-vibrational and vibrational-vibrational exchange processes between N2 molecules and C2F4 or CF2. However, it may be pointed out that near-resonance vibrationalvibrational exchange between N_2 and C_2F_4 may be possible because of the C_2F_4 vibrational frequency at 1872 c m⁻¹. This behavior suggests itself in view of the near-resonance vibrational-vibrational coupling exhibited by N2 and NO whose fundamental frequency is 1876 cm^{-1} . More importantly, it is noticed from Figure 3 that the apparent N2 relaxation time appears to have nearly the same temperature dependence as the chemical relaxation time for CF2 formation. This observation tends to suggest near-resonance vibrational coupling between CF2 and N2 in which exchange a 2-quantum jump process would be required. For the mixture, the apparent probability per collision of vibrational energy transfer between C_2F_4 (=0.5 dissociated) and N_2 is calculated to be 4.28 x 10^{-5} at 1350°K as compared to 5.86 x 10^{-8} for pure N_2 . The collision frequency of N2 with both C2F4 and CF2 was taken to be the same.

In regard to the C₂F₄ dissociation kinetics, the average of the ratio of the

forward rate constants in N_2 and Ar diluent $k_f N_2/k_f^{Ar}$ is 1.3 ± 0.1 which may be compared to the value 1.49 ± 0.07 found by Volpe and Johnston 10 for the unimolecular decomposition of NO_2Cl , and the value 1.7 given by Johnston 11 for the decomposition of N_2O_5 . The ratio of the relative velocities of approach of N_2 and Ar in the C_2F_4 dissociation is calculated to be 1.23. Analysis of the pre-exponential coefficients in terms of classical collision theory, 12 shows that

the steric factor for Ar ($P^{Ar} = 0.62$) is slightly higher than that for $N_2(PN_2 = 0.47)$. The collision diameter of C_2F_4 was taken to be 5.8Å (Reference 1) and those of N_2 and Ar, 3.75A and 3.4A respectively.

REFERENCES

- 1. Modica, A.P. and J.E. LaGraff, J. Chem. Phys. 43, 3383 (1965).
- 2. As in Reference 1, the extinction coefficient for this study was established by shocking C₂F₄ to temperatures where complete dissociation to CF₂ occurred. It is noted that the « used here is also found to be in good agreement with the one determined in the fluoroform decomposition study [Modica, A.P. and J.E. LaGraff, J. Chem. Phys. 44, 3375 (1966)].
- 3. Courant, R. and K.O. Friedrichs, Supersonic Flow and Shock Waves (Interscience, New York) (1948).
- 4. Bradley J.N., Shock Waves in Chemistry and Physics, (John Wiley & Sons, Inc., New York, pp. 339, 340 (1962).
- 5. Millikan, R.C. and D.R. White, J. Chem. Phys. 39, 98 (1963).
- 6. Taylor, R.L., M. Camac and R. M. Feinberg, "Measurements of Vibration-Vibration Coupling in Gas Mixtures," Avco Everett Report RR250, Avco Everett Research Laboratory, Everett, Massachusetts.
- 7. Milligan, D. E., D. E. Mann and M. E. Jacox, J. Chem. Phys. 41, 1199 (1964).
- A discussion pertaining to the derivation of Equation (2) is given in Reference
 4, pp. 190-191 and by K. E. Shuler, Physics of Fluids 2, 442 (1959).
- 9. Mann, D.E., N. Acquista and E.K. Pyler, J. Research Nat. Bur. Standards 52, 67 (1954).
- 10. Volpe, M. and H.S. Johnston, J. Am. Chem. Soc. 78, 3903 (1956).
- 11. Johnston, H.S. i.b.i.d., 75, 1567 (1953).
- 12. Fowler, R. and E. A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, England, (1956).

Camanaldan	Class	: 61 A!
Security	CIES	micenor

(Jamenty classification of titls, body of abstract and foreign generation must be netured when the overall report is classific. 1. Obtionative classification of titls, body of abstract and foreign generation must be netured when the overall report is classification. Avec Oppace Systems Division Avec Oppace Systems Division Avec Space Systems Division Research and Technology Laboratories Wilmington, Massachusetts 3. REPORT INTEL Kinetics of C2F4 Dissociation in Nitrogen Shocks 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Research Report 5. AUTHOR(3) (Less tomas, first name, initial) Modica, A, P. LaGraff, J, E. 6. REPORT DATE 1. Sequember 1966 2. CONTRACT OR SHATE NO. DEFENDER 6. DEFENDER 6. DEFENDER 6. DEFENDER 7. TOTAL NO. OF PASES 21. NO. OF REFS 12. NO. OF REFS	Se	curity Classification					
1. ORIGINATIVE ACTIVITY (Cuprents number) Avco Copporation Avco Space Systems Division Research and Technology Laboratories Wilmington. Massachusetts 1. REPORT PITE Kinetics of C ₂ F ₄ Dissociation in Nitrogen Shocks 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Research Report 1. AUTHOR(5) (Lest news. Intrinses. Intitial) Modica, A. P. LaGraff, J. E. 4. REPORT DATE 1. Geytember 1966 1. Geytember 1966 1. Geytember 1966 1. Geytember 1966 1. APRORET ATE 1. Geytember 1966 1. APRORET ATE 1. Geytember 1966 1. APRORET NOTES 1. APRORET NOTES 1. APRORET NOTES 2. ONLINATOR'S REPORT NUMBER(5) AVSSD-0185-66-CR 1. APRORET NOTES 2. ONLINATOR'S REPORT NUMBER(7) AVSSD-0185-66-CR 1. APRORET NOTES 2. ONLINATOR'S REPORT NUMBER(7) AVSSD-0185-66-CR 1. APPLEMENTARY NOTES 2. APPLEMENTARY NOTES 2. APPLEMENTARY NOTES 2. APPLEMENTARY NOTES 3. APPLEMENTARY NOTES 4.	/ C				#a amount amount to a tea-stille.		
Avco Corporation Avco Space Systems Division Research and Technology Laboratories Wilmington. Massachusetts Before title Kinetics of C2F4 Dissociation in Nitrogen Shocks DESCRIPTIVE NOTES (Type of report and inclusive daise) Research Report			indexing annotation must be				
Avoidability/Listration notices Defended requesters may obtain copies of this report from DDC 1. Supplementary notes A Pinetic study of the tetrafluoroethylene-diffuorocarbene radical reaction was conducted in excess introgen behind incident shock waves over the temper range from 12 of 1. Supplementary of the tetrafluoroethylene-diffuorocarbene thermal equilibrium constants in Note that have been and constants in Note that not that have constants in Note that not that not to reach to 1. Supplementary designed from the hermal equilibrium constants in Note that are used to calculate that Note that not the hermal equilibrium constants in Note that are used to calculate that Note that not that Note that not that not to reach to 1. Supplementary dequilibrium constants in Note that are used to calculate that Note that not that Note t							
REPORT TITLE Kinetics of C ₂ F ₄ Dissociation in Nitrogen Shocks DESCRIPTIVE NOTES (Type of report and inclusive dates) Research Report AUTHOR(3) (Lest name, first name, initial) Modica, A. P. LaGraff, J. E. REPORT DATE 1 September 1966 2 Compact no. DEFENDER 2 DA-01-021-AMC-12005 (Z) A PROJECT NO. A Finetic study of the tetrafluoroethylene-diffuorocarbene radical reaction "48 conducted in excess nitrogen behind incident shock waves over the temper range from 1200 to 16.0° K at total gas concentration around 1, 25 x 10° mole/cc. The rate of fermation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: 12 d(c F ₂) with A Finetic study of the tetrafluoroethylene-diffuorocarbene thermal equilibrium constants in N ₂ = N ₁ N ₂ 1 (c F ₂ 1 (c F ₂) with A Finetic study of the tetrafluoroethylene-diffuorocarbene thermal equilibrium constants in N ₂ = N ₁ N ₂ 1 (c F ₂ 1 (c F ₂) With A Finetic study of the tetrafluoroethylene-diffuorocarbene thermal equilibrium constants in N ₂ = N ₁ N ₂ 1 (c F ₂ 1 (c F ₂) 1 (c F ₂ 1 (c F ₂)	Avco S	pace Systems Division					
REPORT VITE Kinetics of C2F4 Dissociation in Nitrogen Shocks	Resear	ch and Technology Labora	tories		•		
Research Report AUTHOR(3) (Lest name, first name, initial) Modica, A. P. LaGraff, J. E. REPORT DATE 1 September 1966 2 12 12 12 13 AVSSD-0185-66-CR DEFENDER 2				ــــــــــــــــــــــــــــــــــــــ			
Research Report Research Report A PUTRORS (Jear name, Ret name, mittal) Modica, A. P. LaGraff, J. E. REPORT DATE 1 September 1966 12 CONTRACT OR SHAWL NO. DA-01-021-AMC-12005 (Z) A PROJECT NO. DEFENDER 2 DAVAILABILITY/LINITATION NOTICES Qualified requesters may obtain copies of this report from DDC 1 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY ARPA 13 ABSTRACT A kinetic study of the tetrafluoroethylene-diffuorocarbene radical reaction "As conducted in excess introgen behind incident shock waves over the temper arange from 1200 to 160." K at total gas concentration around 1, 25 x 10.5 mole/cc. The rate of farmation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: 1 2 d (F ₂) with $k_1^{N_2} = (4.08 \pm 0.72) 10^{10} T^{-0.46} \pm 0.75 r^{-1000} \pm 0.000 RT$ with $k_1^{N_2} = (4.08 \pm 0.72) 10^{10} T^{-0.46} \pm 0.75 r^{-1000} \pm 0.000 RT$ Comparisons between the tetrafluoroethylene-diffuorocarbene thermal equilibrium constants in Normal Art shocks indicate that No 18 substationally unrelaxed during themical equilibrium constants in Normal Art shocks indicate that No 18 substationally unrelaxed during themical equilibrium constants and the time to reach 0.98 chemical equilibrium aiter shock compression are used to calculate the Normal requilibrium carbotylene-intro- The results show that No yotherical relaxation. The temperature determined from the results show that No yothericanal relaxation in the 1.00 tetrafluorotylene-intro-			Nitragen Shacks				
Research Report Author(5) (Leat name, first name, institut) Modica, A. P. LaGraff, J. E. BREPORT DATE 1 September 1966 12 12 13	Kinetic	s of O2r 4 Dissociation in	Mitrogen Shocks				
Research Report Author(5) (Leat name, first name, institut) Modica, A. P. LaGraff, J. E. BREPORT DATE 1 September 1966 12 12 13							
AUTHON(3) (Lest name. first name, initial) Modica, A. P. LaGraff, J. E. REPORT DATE 1 Geptember 1966 2 1 12 12 13 RODA-01-021-AMC-12005 (Z) PROJECT NO. DEFENDER 2	. DESCRIPTIV	E NOTES (Type of report and inclusive date	ie)				
Modica, A. P. LaGraff, J. E. REPORT DATE 1 September 1966 1 September 1966 DA-01-021-AMC-12005 (Z) A PROJECT NO. DDFENDER DEFENDER 2 DA-01-085-66-CR DEFENDER	Resear	ch Report					
Lagraff, J. E. B. REPORT DATE 1 September 1966 12 CONTACT ON SANT NO. DA-01-021-AMC-12005 (Z) A PROJECT NO. DEFENDER 4. 10 AVAILABILITY/LIBITATION NOTICES Qualified requesters may obtain copies of this report from DDC 11. SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY ARPA 13. ABSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction mass conducted in excess introgen behind incident shock waves over the temper of range from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of furmation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: 12 d (c F ₂) 3 with 13. ABSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction mass conducted in excess introgen behind incident shock waves over the temper of range from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of furmation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: 12 d (c F ₂) 3 with 13. ABSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene thermal equilibrium constants in N ₂ at a Kr shocks indicate that N ₂ is vibrationally unrelaxed during observation are used to calculate the N ₂ relaxation time. The results shock compression are used to calculate the N ₂ relaxation time. The results shock that N ₂ vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-	S. AUTHOR(S) (Leet name, first name, initial)					
Lagraff, J. E. B. REPORT DATE 1 September 1966 12 CONTACT ON SANT NO. DA-01-021-AMC-12005 (Z) A PROJECT NO. DEFENDER 4. 10 AVAILABILITY/LIBITATION NOTICES Qualified requesters may obtain copies of this report from DDC 11. SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY ARPA 13. ABSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction mass conducted in excess introgen behind incident shock waves over the temper of range from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of furmation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: 12 d (c F ₂) 3 with 13. ABSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction mass conducted in excess introgen behind incident shock waves over the temper of range from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of furmation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: 12 d (c F ₂) 3 with 13. ABSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene thermal equilibrium constants in N ₂ at a Kr shocks indicate that N ₂ is vibrationally unrelaxed during observation are used to calculate the N ₂ relaxation time. The results shock compression are used to calculate the N ₂ relaxation time. The results shock that N ₂ vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-	Modica	. A. P.					
1 September 1966 2 Sept		, , = ,					
1. September 1966 1. CONTRACT OR BRANT NO. DA-01-021-AMC-12005 (Z) A PROJECT NO. DEFENDER 2. ONLINATOR'S REPORT NUMBER(S) AVSSD-0185-66-CR PROJECT NO. DEFENDER 3. OTHER REPORT NO(S) (Any other numbers that may be allowed by the september of the septemb	Dadiai	1, 5, 12.					
DA-01-021-AMC-12005 (Z) A PROJECT NO. DEFENDER DEFENDER DA-ANILABILITY/LIMITATION NOTICES Qualified requesters may obtain copies of this report from DDC DEFENDER DEFENDE	REPORT DA	TE	76. TOTAL NO. OF	PAGES	75. NO. OF REFS		
DA-01-021-AMC-12005 (Z) A PROJECT NO. DEFENDER DEFENDER DA-ANILABILITY/LIMITATION NOTICES Qualified requesters may obtain copies of this report from DDC DEFENDER DEFENDE	1 Septe	mber 1966					
DEFENDER 6. DAVAIL ABILITY/LIBITATION NOTICES Qualified requesters may obtain copies of this report from DDC 1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY ARPA 14. APSTRACT A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction was conducted in excess nitrogen behind incident shock waves over the temper erange from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of fermation of CF ₂ was observed spectrophotometrically and is reprodued by the rate law: 1.2 d (cF ₂)/dt - k ₁ N ₂ 1 C ₂ F ₄ - k ₁ N ₂ 1 C ₃ F ₂ CF ₂ 1 C ₃ F ₃ with k ₁ ^{N₂} - (4.08 ± 0.72) 10 ⁴⁰ T - 6.46 ± 0.75	. CONTRACT	OR SRANT NO.	Se. ORI JINATOR'S	REPORT NUN	49 ER(\$)		
DEFENDER 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	DA-01-	021-AMC-12005 (Z)	AVSSD-018	5-66-C1	R		
B. APSTRACT A Finetic study of the tetrafluoroethylene-difluorocarbene radical reaction was conducted in excess nitrogen behind incident shock waves over the temper erange from 1200 to 160° K at total gas concentration around 1, 25 x 10°5 mole/cc. The rate of fermation of GF ₂ was observed spectrophotometrically and is reprode. a by the rate law: \[\frac{1.2 \dileft{ (F_2)^1}}{dt} + k_t N_2 C_2 F_4 = k_t N_2 C_2 F_2 C_2	& PROJECT	10.			-		
Qualified requesters may obtain copies of this report from DDC 11. SUPPLEMENTARY HOTES 12. SPONSORING MILITARY ACTIVITY ARPA 13. ABSTRACT A Finetic study of the tetrafluoroethylene-diffuorocarbene radical reaction "as conducted in excess nitrogen behind incident shock waves over the temper erange from 1200 to 1600° K at total gas concentration around 1, 25 x 10° 5 mole/cc. The rate of fermation of CF2 was observed spectrophotometrically and is reproduced by the rate law: 1.2 d [CF2]	DEFE	NDER			<u> </u>		
Qualified requesters may obtain copies of this report from DDC 11. SUPPLEMENTARY HOTES 12. SPONSORING MILITARY ACTIVITY ARPA 13. ABSTRACT A Finetic study of the tetrafluoroethylene-diffuorocarbene radical reaction "as conducted in excess nitrogen behind incident shock waves over the temper erange from 1200 to 1600° K at total gas concentration around 1, 25 x 10° 5 mole/cc. The rate of fermation of CF2 was observed spectrophotometrically and is reproduced by the rate law: 1.2 d [CF2]	o.		SA. OTHER REPORT	NO(\$) (Any	other numbers that may be entitled		
Qualified requesters may obtain copies of this report from DDC 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY ARPA A Finetic study of the tetrafluoroethylene-diffuorocarbene radical reaction was conducted in excess nitrogen behind incident shock waves over the temper erange from 1200 to 160° K at total gas concentration around 1, 25 x 10° 5 mole/cc. The rate of formation of CF2 was observed spectrophotometrically and is reproduced by the rate law: \[\frac{1-2 \text{d} \cdot \text{F}_2^1}{ \text{d}} = \frac{1}{\text{k}_1 \left \text{N}_2 \left \cdot \text{F}_2^1 \right = \frac{1}{\text{k}_1 \left \text{N}_2 \right \cdot \text{F}_2^1 \right \cdot \text{k}_1 \right \text{N}_2 \right \text{if} \text{F}_2 \right \cdot \text{k}_1 \right \text{N}_2 \right \text{if} \text{F}_2 \right \text{C}_2 \right \text{N}_2 \right \text{N}_							
Qualified requesters may obtain copies of this report from DDC 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY ARPA A Finetic study of the tetrafluoroethylene-diffuorocarbene radical reaction was conducted in excess nitrogen behind incident shock waves over the temper erange from 1200 to 1610° K at total gas concentration around 1, 25 x 10° 5 mole/cc. The rate of formation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: \[\frac{1 \cdot 2 \delta \left{ [6 \cdot 2]}}{dt} = \frac{1}{4} \left{ [N_2] \left{ [6 \cdot 2] \left{ [6 \cdot 2]}}}{cc \text{ mole/sec}} \] with \[\frac{1}{k_1^N} = (2.08 \cdot 0.87) \left{ [0.40] \cdot 0.55}}{cc \text{ mole/sec}} \] Comparisons between the tetral indoorethylene-priluorocarbene thermal equilibrium constants in \(\frac{N_1}{N_1} \cdot 0.87 \) in the temperature determined from the hermical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the \(\frac{N_1}{N_2} \) relaxation time. The results show that \(\frac{N_2}{N_1} \) vibrational relaxation in the \(\frac{1}{N_2} \) controlled to calculate the \(\frac{N_2}{N_1} \) relaxation or they described to calculate the \(\frac{N_1}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_1} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate the \(\frac{N_2}{N_2} \) relaxation or they described to calculate	d						
A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction has conducted in excess nitrogen behind incident shock waves over the temper ange from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of fermation of CF ₂ was observed spectrophotometrically and is reprodue a by the rate law: $\frac{1\cdot 2 \cdot d\left\{c \cdot F_2\right\}}{dt} = k_f \left[N_2 l\left(F_2 F_4\right) - k_f \left[N_2 l\left(F_2\right) l\left(F_2\right)\right]\right]$ with $k_f^{N_2} = (4.08 \pm 0.72) \cdot 10^{40} \cdot l^{-6.40} \pm 0.55 \cdot e^{-14000 \pm 3000} \frac{1000}{RT}$ and $k_f^{N_2} = (2.05 \pm 0.47) \cdot 10^{48} \cdot l^{-6.40} \pm 0.35 \cdot e^{-1840 \pm 363} \frac{1000}{RT}$ and $k_f^{N_2} = (2.05 \pm 0.47) \cdot 10^{48} \cdot l^{-6.40} \pm 0.35 \cdot e^{-1840 \pm 363} \frac{1000}{RT}$ Comparisons between the tetrafluoroethylene-difluorocarbene thermal equilibrium constants in N_2 at the shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-	II. SUPPLEME	NTARY NOTES		ITARY ACT	IVITY		
A kinetic study of the tetrafluoroethylene-difluorocarbene radical reaction has conducted in excess nitrogen behind incident shock waves over the temper ange from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of formation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: $\frac{1\cdot 2 \cdot d\left\{c \cdot F_{2}\right\}}{dt} = k_{f} \left[N_{2} l\left(F_{2}F_{4}\right)\right] = k_{f} \left[N_{2} l\left(F_{2} l\left(F_{2}\right)\right]\right]$ with $k_{f}^{N_{2}} = (4.08 \pm 0.72) \cdot 10^{40} \cdot T^{-6.40} \pm 0.55 \cdot e^{-74000 \pm 3000} \frac{1000}{RT}$ and $k_{f}^{N_{2}} = (2.03 \pm 0.47) \cdot 10^{48} \cdot T^{-6.40 \pm 0.35} = \frac{-1840 \pm 263}{RT}$ and $k_{f}^{N_{2}} = (2.03 \pm 0.47) \cdot 10^{48} \cdot T^{-6.40 \pm 0.35} = \frac{-1840 \pm 263}{RT}$ Comparisons between the tetrafluoroethylene-difluorocarbene thermal equilibrium constants in N_{2} at an shock sindicate that N_{2} is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_{2} relaxation time. The results show that N_{2} vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-							
A Finetic study of the tetrafluoroethylene-difluorocarbene radical reaction has conducted in excess nitrogen behind incident shock waves over the temper of range from 1200 to 1600° K at total gas concentration around 1, 25 x 10 ⁻⁵ mole/cc. The rate of fermation of CF ₂ was observed spectrophotometrically and is reproduced by the rate law: $\frac{1\cdot 2d\{cF_2\}}{dt} = k_f[N_2][F_2F_4] = k_f[N_2][CF_2][CF_2]$ with $k_f^{N_2} = (4.08\pm0.72)10^{40}T^{-6.46}\pm0.55e^{-7400}\pm0.000e^{-8T}$ and $k_f^{N_3} = (2.03\pm0.47)10^{48}T^{-6.46\pm0.35}e^{-7400\pm0.000}e^{-74000\pm0.000}e^{-74000\pm0.00$	S. ABSTRACT		ABSTRACT				
conducted in excess nitrogen behind incident shock waves over the temper range from 1200 to 1600° K at total gas concentration around 1, 25 x 10° 5 mole/cc. The rate of formation of CF2 was observed spectrophotometrically and is reproduced by the rate law: $\frac{1\cdot 2d\{cF_2\}}{dt} = k_f[N_2][F_2F_4] = k_f[N_2][cF_2][cF_2]$ with $k_f^{N_2} = (4.08\pm0.72)10^{40}T^{-6.46\pm0.55}e^{-74000\pm000}\frac{1000}{RT}$ and $k_f^{N_2} = (2.03\pm0.47)10^{40}T^{-6.46\pm0.55}e^{-74000\pm000}\frac{1000}{RT}$ and $k_f^{N_2} = (2.03\pm0.47)10^{40}T^{-6.46\pm0.55}e^{-1840\pm263}\frac{1000}{RT}$ comparisons between the tetrifluoroethylene-hilluorocarbene thermal equilibrium constants in N_2 at an shock sindicate that N_2 is vibrationally unrelaxed distring chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluoroethylene-hitro-		A kinetic study of the tetrafluoroe		ne radical	reaction " 4s		
mole/cc. The rate of fermation of \overline{CF}_2 was observed spectrophotometrically and is reproduced by the rate law: $\frac{1\cdot 2 \text{ d} \{C F_2\}}{\text{d} t} = k_t N_2 C F_2 C F_2 C F_2 $ with $k_t^{N_2} = (4.08 \pm 0.72) 10^{40} T^{-6.46} \pm 0.55 = \frac{-74000 \pm 3000}{\text{RT}}$ and $k_t^{N_2} = (2.05 \pm 0.47) 10^{48} T^{-6.46} \pm 0.55 = \frac{-74000 \pm 3000}{\text{RT}}$ and $k_t^{N_2} = (2.05 \pm 0.47) 10^{48} T^{-6.46} \pm 0.55 = \frac{-1840 \pm 263}{\text{RT}}$ is comparisons between the tetration rottly lene-diffuor ocarbene thermal equilibrium constants in N_2 at all shocks indicate that N_2 is vibrationally unrelaxed during chemical relixation. The temperature determined from the hermical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluor octylene-nitro-							
and is reprodue to by the rate law: $\frac{1\cdot 2\mathrm{d} \left(cF_2\right)^2}{\mathrm{d} t} \sim k_f N_2 C_2F_4 = k_f N_2 C_2 C_2 C_2 $ with $k_f^{N_2} \sim (4.08\pm0.72)10^{40}\mathrm{T}^{-6.46\pm0.55} = \frac{-74000\pm1000}{\mathrm{RT}}$ and $k_f^{N_2} \sim (2.05\pm0.47)10^{48}\mathrm{T}^{-6.46\pm0.55} = \frac{-1840\pm263}{\mathrm{RT}}$ and $\frac{k_f^{N_2}}{k_f} \sim (2.05\pm0.47)10^{48}\mathrm{T}^{-6.46\pm0.55} = \frac{-1840\pm263}{\mathrm{RT}}$ Comparisons between the tetration or or thylene-diffuor ocarbene thermal equilibrium constants in N_2 at Ar shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluor oethylene-nitro-							
with $k_f^{N_2} = (4.08 \pm 0.72) 10^{40} T^{-6.46 \pm 0.55} = \frac{-74000 \pm 3000}{RT}$ and $k_f^{N_2} = (2.05 \pm 0.47) 10^{48} T^{-6.46 \pm 0.55} = \frac{-1840 \pm 263}{RT}$ and $k_f^{N_2} = (2.05 \pm 0.47) 10^{48} T^{-6.46 \pm 0.55} = \frac{-1840 \pm 263}{RT}$ $cc^2 \text{molesses}$ Comparisons between the tetritiuoroethylene-diffuorocarbene thermal equilibrium constants in N_2 at a shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constants and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-		mole/cc. The rate of termation	of CF ₂ was observed is	pectrophot	ometrically		
with $k_f^{N_2} = (4.08 \pm 0.72) 10^{40} T^{-6.46 \pm 0.55} e^{-74000 \pm 1000} RT$ and $k_f^{N_2} = (2.05 \pm 0.47) 10^{48} T^{-6.46 \pm 0.55} e^{-1840 \pm 263} RT^{-6.46 \pm 0.55} e^{-1840 \pm 263} e^{-1840 \pm 263} $							
with $k_f^{N_2} = (4.08 \pm 0.72) 10^{40} T^{-6.36 \pm 0.55} = \frac{-74000 \pm 1000}{RT}$ and $k_f^{N_2} = (2.03 \pm 0.47) 10^{48} T^{-6.36 \pm 0.55} = \frac{-1840 \pm 263}{RT}$ and $k_f^{N_2} = (2.03 \pm 0.47) 10^{48} T^{-6.36 \pm 0.55} = \frac{-1840 \pm 263}{RT}$ Comparisons between the tetration or or thylene-diffuor ocarbene thermal equilibrium constants in N_2 at t An shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluor oethylene-nitro-		1-2 d {C F ₂ }	n 1(a = 1), e 1				
$k_f^{N_2} = (4.08 \pm 0.72) \cdot 10^{40} \cdot T^{-6.46 \pm 0.55} e^{-74000 \pm 4000} \frac{1000}{RT}$ and $k_f^{N_2} = (2.03 \pm 0.47) \cdot 10^{48} \cdot T^{-6.46 \pm 0.15} = -1840 \pm 263 \frac{1000}{RT}$ Comparisons between the tetrifluoroethylene-diffuorocarbene thermal equilibrium constants in N_2 at the Architecture of that N_2 is vibrationally unrelated during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-		$\frac{1}{dt} = k_f \left(N_2\right) \left(r_2 F_4\right) = k_f \left(r_2 F_4\right)$	Nglic Fglic Fgi				
$k_f^{N_2} = (4.08 \pm 0.72) \cdot 10^{40} \cdot T^{-6.46 \pm 0.55} e^{-74000 \pm 4000} \frac{1000}{RT}$ and $k_f^{N_2} = (2.03 \pm 0.47) \cdot 10^{48} \cdot T^{-6.46 \pm 0.15} = -1840 \pm 263 \frac{1000}{RT}$ Comparisons between the tetrifluoroethylene-diffuorocarbene thermal equilibrium constants in N_2 at the Architecture of that N_2 is vibrationally unrelated during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-							
and $k_{f}^{N_{2}} = (2.05 \pm 0.47) \ln^{18} j^{-6.46 \pm 0.55} e^{-1840 \pm 263} $	•	with					
and $k_{f}^{N_{2}} = (2.05 \pm 0.47) \ln^{18} j^{-6.46 \pm 0.55} e^{-1840 \pm 263} $		K ^N 2 (4.08) + 0.23 10 ⁴⁰ T ^{-6,36} ± 0	0.55 - "4900 - 5000				
and $k_f^{N_2} = (2.05 \pm 0.47) n^{48} ^{-6.46 \pm 0.15} e^{-1840 \pm 263} e^{-18$			RT				
Comparisons between the tetralisoroethylene-pifluorocarbene thermal equilibrium constants in N ₂ are Ar shocks indicate that N ₂ is vibrationally unrelaxed during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0,98 chemical equilibrium after shock compression are used to calculate the N ₂ relaxation time. The results show that N ₂ vibrational relaxation in the 1,30 tetrafluoroethylene-nitro-			100116-46				
Comparisons between the tetration roothylene-pifluorocarbene thermal equilibrium constants in N ₂ at a Knocks indicate that N ₂ is vibrationally unrelaxed during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0, 98 chemical equilibrium after shock compression are used to calculate the N ₂ relaxation time. The results show that N ₂ vibrational relaxation in the 1,30 tetrafluoroethylene-nitro-							
Comparisons between the tetralisoroethylene-difluorocarbene thermal equilibrium constants in N ₂ at the Art shocks indicate that N ₂ is vibrationally unrelaxed during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0, 98 chemical equilibrium after shock compression are used to calculate the N ₂ relaxation time. The results show that N ₂ vibrational relaxation in the 1,00 tetrafluoroethylene-nitro-		$k_L^{N_2} \sim (2.05 \pm 0.47) \ln^{48} \eta^{-6.46 \pm 0}$	0.55 -1840 - 263				
Comparisons between the tetritiouroethylene-diffuorocarbene thermal equilibrium constants in N ₁ at : Ar shocks indicate that N ₂ is vibrationally unrelaxed during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0, 98 chemical equilibrium after shock compression are used to calculate the N ₂ relaxation time. The results show that N ₂ vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-			· W.T				
equilibrium constants in N_2 at the Art shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.30 tetrafluoroethylene-nitro-		· · ·	" mole" sec				
equilibrium constants in N_2 at the Art shocks indicate that N_2 is vibrationally unrelaxed during chemical relaxation. The temperature determined from the hemical equilibrium constant and the time to reach 0.98 chemical equilibrium after shock compression are used to calculate the N_2 relaxation time. The results show that N_2 vibrational relaxation in the 1.30 tetrafluoroethylene-nitro-		Comparisons between the tetralia	oroethylene-nifluoroca	rbene ther	mal		
unrelaxed during chemical relixation. The temperature determined from the hemical equilibrium constant and the time to reach 0, 98 chemical equilibrium after shock compression are used to calculate the N ₂ relaxation time. The results show that N ₂ vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-		equilibrium constants in Noar : A	ir shocks indicate that	No 18 vibr	ationally		
after shock compression are used to calculate the N ₂ relaxation time. The results show that N ₂ vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-		unrelaxed during chemical relaxa	tion. The temperature	determin	ed from the		
results show that N_2 vibrational relaxation in the 1.00 tetrafluoroethylene-nitro-		hemical equilibrium constant and	u the time to reach 0, 9	8 chemica	l equilibrium		
gen mixture is about 10 to 50 times feater than to mixe nitro-		results show that No subsequent	to calculate the N ₂ re	taxation ti	me. The		
a		gen mixture is about 10 to 50 time	es faster than in nurs r	iranuorne iirosen	nnyiene-nitro-		
D Form 1473	TO FORM						

Unclassified
Security Classification

Unclassified

	KEY WORDS	LIN	LINKA		(0	LINK C	
		ROLE	WT	TOLE	WT	ROLE	WT
I.	Kinetics of C ₂ F ₄						
Ħ.	Nitrogen Shocks						
IIÎ.	N ₂ Vibrational Relaxation						
						1	

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordence with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the typo of report, e.g., interim, progress, summery, annual, or final. Give the anclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter test name, first name, middle initial. If military, show rank-and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 75. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 86, &c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such sa project number, aubproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number mest be unique to this report.
- 96. OTHER REPORT NUMBER(3): if the report has been susigned any other report numbers (either by the originator or by the aponeor), also enter this number(s).
- io. AVAILABILITY/LIMITATION NOTICER: Enter may limitations on further dissemination of the report, other than those

imposed by security classification, using etandard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or leboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shail be attached.

It is highly desirable that the obstract of classified reports be unclassified. Each paragraph of the obstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WCNDS: Key words are technically meaningful terms or short phrases that characterize a report sud may be used as index entries for cataloging the report. Key words must be selected -0 that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified