

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федерального государственного автономного образовательного учреждения

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	космический
КАФЕДРА	<u>K2</u>

ОТЧЕТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ

№ 4

по дисциплине

«Конструкторско-технологическое обеспечение производства ЭВМ»

Студент К3-66Б	(Подпись, дата)	<u>Несмеянов С.А.</u> (И.О.Фамилия)
Доцент К2, к.т.н.	(Подпись, дата)	<u>Удалов М.Е.</u> (И.О.Фамилия)

Вариант №13

Цель работы: приобрести навыки работы в EasyEDA по созданию изображений печатных плат и подготовке фотошаблонов.

Задание: создать изображение печатной платы регулируемого преобразователя напряжения с утроителем выходного напряжения в EasyEDA (Рис. №1).

Рис. №1 *Регулируемый преобразователь напряжения с утроителем выходного* напряжения

Набор элементов:

- а) R1-R4 резисторы
- б) С1-С10 конденсаторы
- в) DD1 К561ЛА7 микросхема
- г) VD1-VD6 диоды
- д) VT1-VT2 транзисторы
- e) L1 катушка индуктивности

Выполнение лабораторной работы

После преобразования схемы в печатную плату открывается окно с посадочными местами и линиями связи. Размеры печатной платы взяты из ДЗ№1 (70x70) (Рис. №2):

Рис. №2 *Начальный вид печатной платы* Добавляю крепежные отверстия (Рис. №3):

Рис. №3 Добавление крепежных отверстий

Располагаю посадочные места с наибольшим количеством контактных площадок в центральной части платы, коннектор - в боковой части платы. (Рис. №4):

Рис. №4. *Итоговое расположение посадочных мест на печатной плате* Запускаю автотрассировку на обоих слоях (Рис. №5):

Рис. №5 Запуск автотрассировки на обоих слоях

Трассировка на обоих слоях равна 100 %, прошла успешно (Рис. №6):

Рис. №6 Результаты трассировки на обоих слоях

После трассировки, печатная плата выглядит следующим образом (Рис. №7):

Рис. №7 Печатная плата с трассировкой

2) Для представления печатной платы в 3D виде выполняю команды Вид → 3D (Рис. №8):

Рис. №8 Команды Вид $\rightarrow 3D$

Ниже представлен 3D вид печатной платы (Рис. №9):

Рис. №9 3D вид печатной платы

3) Для получения файла для производства (Gerber) выполняю команды Производство → Файл для производства (Gerber) (Рис. №10):

Рис. №10 Команды Производство \rightarrow Файл для производства (Gerber) В открывшемся окне Обратите внимание выполняю команду Да, проверить DRC (Рис. №11):

Рис. №11 Команда Да, проверить DRC

Ниже представлен файл для производства (Gerber), DRC ошибок не найдено (Рис. №12):

Рис. №12 Файл для производства (Gerber)

4) Для получения файла Материалы (BOM) выполняю команды Производство → Материалы (BOM) (Рис. №13):

Рис. №13 Команды Производство \rightarrow Материалы (ВОМ)

Ниже представлен файл Материалы (ВОМ) (Рис. №14):

Рис. №14 Материалы (ВОМ)

Вывод: в работе показаны построение изображения печатной платы регулируемого преобразователя напряжения с утроителем выходного напряжения в EasyEDA, проверка изображения печатной платы на ошибки и получение фотошаблонов для производства печатной платы регулируемого преобразователя напряжения с утроителем выходного напряжения.

Список источников

1. EasyEDA v 6.4.3. Учебное пособие. PDF-документ.

URL: https://image.easyeda.com/files/EasyEDA-Tutorials_v6.4.3.ru.pdf (дата обращения: 01.05.2025).