Table of Contents

Introduction	2
Part 1	5
Mode Shapes	5
Modal Masses	11
Modal Forces	12
Part 2	14
Design Procedure	20
Conclusion	31

Introduction

This report is prepared for the solutions of the assigned problems in Homework 4. A reinforced concrete building frame is given below with following properties.

- Story height is 3 meters.
- All floors have the same the architectural and structural plans.
- Building is R/C frame, with $E_c = 25x10^6 \text{ kN/m}^2$.
- Building is used as residence.
- Foundation has sufficient strength.
- Floor slabs are rigid diaphragms in their own plane.
- Beams are 25x45 cm, square columns are 40x40 cm and slab thickness is 15 cm.

Id Number	Last Name	First Name	a (m)	b (m)	CD (cmxcm)	N
1872621	ÇANDIR	ESAT	5	4	25x50	7

According to given properties and dimensions, dynamic mass calculation is made with respect to Turkish Earthquake Code (2007) below;

$$w_i = g_i + n * q_i$$

$$where \ n = 0.3 \ for \ residential \ buildings$$

$$m_{slab} = \rho * 4a * 2b * t = 4 * 4 * 5 * 2 * 4 * 0.15 = 60 \ tons$$

$$m_{beam} = \rho * 0.25 * (0.45 - 0.15) * (2 * 5b + 4 * 3a)$$

$$m_{beam} = 2.5 * 0.25 * 0.3 * (2 * 5 * 4 + 4 * 3 * 5) = 18.75 \ tons$$

$$m_{rectangular-column} = 3 * 0.25 * 0.5 * 12 * 2.5 = 11.25 \ tons$$

$$m_{square-column} = 3 * 0.4 * 0.4 * 3 * 2.5 = 3.6 \ tons$$

$$g_i = 60 + 18.75 + 11.25 + 3.6 = 93.6 \ tons \ for \ each \ middle \ storey$$

$$g_i = 60 + 18.75 + \frac{11.25}{2} + \frac{3.6}{2} = 86.175 \ tons \ for \ the last \ storey$$

$$q_i = 0.2 * 4a * 2b = 0.2 * 4 * 5 * 2 * 4 = 32 \ tons$$

$$w_i = g_i + n * q_i = 93.6 + 0.3 * 32 = 103.2 \ tons$$

Table 1: Dynamic Mass Calculation

Story #	Columns (tons)	Beams (tons)	Slabs (tons)	Dead (tons)	Live (tons)	DL+0.3LL (tons)	I _{mass} (tons.m²)
1	14.85	18.75	60	93.60	32	103.2	3990.4
2	14.85	18.75	60	93.60	32	103.2	3990.4
3	14.85	18.75	60	93.60	32	103.2	3990.4
4	14.85	18.75	60	93.60	32	103.2	3990.4
5	14.85	18.75	60	93.60	32	103.2	3990.4
6	14.85	18.75	60	93.60	32	103.2	3990.4
7	9.225	18.75	60	87.98	32	97.58	3772.9
						$\sum 716.775$	

Figure 1: Dynamic Mass insertion

Table 2: Modal Periods and Frequencies

	Period	_	6: 5	1
Mode	(sec)	Frequency	CircFrequency	Eigenvalue
1	1.01	0.99	6.21	38.51
2	0.99	1.01	6.34	40.19
3	0.87	1.15	7.20	51.91
4	0.33	3.06	19.22	369.24
5	0.32	3.13	19.67	387.10
6	0.29	3.50	22.01	484.49

Part 1

Mode Shapes

Period (sec)	Frequency (Cyc/sec)	Joint	OutputCase	CaseType	StepType	StepNum	U1	U2	U3	R1	R2	R3	Floor
		Text	Text	Text	Text	Unitless	m	m	m	Radians	Radians	Radians	#
1.012462	0.987691114						0	0	0	0	0	0	0
1.012462	0.98/691114	58	MODAL	LinModal	Mode	1	-0.00699	-3.104E-17	0	1.377E-17	-0.002087	-1.924E-18	1
		12	MODAL	LinModal	Mode	1	-0.017713	-1.377E-16	-1.95E-20	2.131E-17	-0.002299	-2.236E-18	2
CircFreqy	Eigenvalue												
(rad/sec)	(rad2/sec2)	31	MODAL	LinModal	Mode	1	-0.028161	-2.403E-16	-1.505E-20	1.871E-17	-0.002105	-2.616E-18	3
		52	MODAL	LinModal	Mode	1	-0.03734	-3.276E-16	-1.14E-20	1.748E-17	-0.001771	-5.231E-18	4
6.2058463	38.51252827	71	MODAL	LinModal	Mode	1	-0.044715	-4.123E-16	-3.476E-20	1.216E-17	-0.00134	-8.132E-19	5
0.2038403	30.31232027	92	MODAL	LinModal	Mode	1	-0.049925	-4.446E-16	-5.8E-20	5.014E-18	-0.000869	-8.674E-19	6
		111	MODAL	LinModal	Mode	1	-0.052921	-4.549E-16	-7.711E-20	2.602E-18	-0.00038	-2.114E-18	7

Figure 2: Mode 1

Period (sec)	Frequency												
Periou (sec)	(Cyc/sec)	Joint	OutputCase	CaseType	StepType	StepNum	U1	U2	U3	R1	R2	R3	Floor
		Text	Text	Text	Text	Unitless	m	m	m	Radians	Radians	Radians	#
0.991126	1.008953285						0	0	0	0	0	0	0
0.991126	1.006955265	58	MODAL	LinModal	Mode	2	-6.24E-17	0.006959	0	-0.001813	-1.99E-17	-1.169E-17	1
		12	MODAL	LinModal	Mode	2	-1.63E-16	0.017494	3.107E-20	-0.002075	-1.69E-17	-2.956E-17	2
CircFreqy	Eigenvalue												
(rad/sec)	(rad2/sec2)	31	MODAL	LinModal	Mode	2	-2.22E-16	0.027835	5.257E-20	-0.001946	-1.74E-17	-4.894E-17	3
		52	MODAL	LinModal	Mode	2	-3.35E-16	0.037039	4.767E-20	-0.001695	-2.47E-17	-6.035E-17	4
6.33944045	40.18850527	71	MODAL	LinModal	Mode	2	-4.28E-16	0.044575	2.914E-20	-0.001348	-5.25E-18	-7.619E-17	5
0.33344045	40.10030327	92	MODAL	LinModal	Mode	2	-4E-16	0.050064	0	-0.000958	-3.86E-18	-8.749E-17	6
		111	MODAL	LinModal	Mode	2	-4.76E-16	0.053391	-2.077E-20	-0.000537	-1.35E-17	-9.088E-17	7

Figure 3: Mode 2

Period (sec)	Frequency (Cyc/sec)	Joint	OutputCase	CaseType	StepType	StepNum	U1	U2	U3	R1	R2	R3	Floor
	(0)0,000,	Text	Text	Text	Text	Unitless	m	m	m	Radians	Radians	Radians	#
0.872103	1.146654144						0	0	0	0	0	0	0
0.872103	1.140054144	58	MODAL	LinModal	Mode	3	1.911E-17	-8.647E-17	-1.189E-20	2.027E-17	1.171E-18	-0.001238	1
		12	MODAL	LinModal	Mode	3	7.84E-18	-1.931E-16	-2.343E-20	2.038E-17	-8.62E-19	-0.00296	2
CircFreqy	Eigenvalue												
(rad/sec)	(rad2/sec2)	31	MODAL	LinModal	Mode	3	1.462E-17	-2.912E-16	-3.631E-20	1.93E-17	9.8E-19	-0.004596	3
		52	MODAL	LinModal	Mode	3	1.198E-17	-3.873E-16	-4.695E-20	1.782E-17	-2.19E-19	-0.006026	4
7.20464047	51.90684431	71	MODAL	LinModal	Mode	3	1.369E-17	-4.697E-16	-5.381E-20	1.529E-17	1.468E-19	-0.007177	5
7.20404047	31.90084431	92	MODAL	LinModal	Mode	3	1.553E-17	-5.341E-16	-5.964E-20	1.112E-17	5.421E-20	-0.00799	6
		111	MODAL	LinModal	Mode	3	1.318E-17	-5.714E-16	-6.184E-20	5.672E-18	-8.47E-19	-0.00845	7

Figure 4: Mode 3

Period (sec)	Frequency												
Period (Sec)	(Cyc/sec)	Joint	OutputCase	CaseType	StepType	StepNum	U1	U2	U3	R1	R2	R3	Floor
		Text	Text	Text	Text	Unitless	m	m	m	Radians	Radians	Radians	#
0.326982	3.0582734						0	0	0	0	0	0	0
0.320382	3.0362734	58	MODAL	LinModal	Mode	4	0.021171	3.681E-16	5.033E-20	-7.439E-17	0.005642	2.286E-17	1
		12	MODAL	LinModal	Mode	4	0.045079	7.203E-16	1.239E-19	-4.682E-17	0.003463	3.517E-17	2
CircFreqy	Eigenvalue												
(rad/sec)	(rad2/sec2)	31	MODAL	LinModal	Mode	4	0.051273	8.28E-16	8.801E-20	3.4E-17	-0.001004	2.573E-17	3
		52	MODAL	LinModal	Mode	4	0.03587	4.098E-16	1.125E-19	1.1E-16	-0.005129	2.253E-17	4
19.2156985	369.2430686	71	MODAL	LinModal	Mode	4	0.005184	-1.903E-16	1.103E-19	7.179E-17	-0.007091	2.257E-17	5
19.2130983	303.2430080	92	MODAL	LinModal	Mode	4	-0.027968	-3.05E-16	7.728E-20	3.487E-17	-0.006228	-5.07E-17	6
		111	MODAL	LinModal	Mode	4	-0.051264	-5.865E-16	6.292E-20	3.964E-17	-0.003157	-1.491E-17	7

Figure 5: Mode 4

Period (sec)	Frequency												
Period (Sec)	(Cyc/sec)	Joint	OutputCase	CaseType	StepType	StepNum	U1	U2	U3	R1	R2	R3	Floor
		Text	Text	Text	Text	Unitless	m	m	m	Radians	Radians	Radians	#
0.319351	3.131355079						0	0	0	0	0	0	0
0.519551	3.1313330/3	58	MODAL	LinModal	Mode	5	3.441E-16	-0.021545	5.984E-20	0.004757	4.032E-17	3.033E-18	1
		12	MODAL	LinModal	Mode	5	3.572E-16	-0.045248	6.415E-20	0.002884	4.333E-17	3.466E-17	2
CircFreqy	Eigenvalue												
(rad/sec)	(rad2/sec2)	31	MODAL	LinModal	Mode	5	7.439E-16	-0.051301	1.79E-19	-0.001087	3.93E-17	3.317E-17	3
		52	MODAL	LinModal	Mode	5	5.924E-16	-0.03603	2.229E-19	-0.004735	-8.12E-17	1.375E-17	4
19.6748842	387.1010693	71	MODAL	LinModal	Mode	5	9.951E-17	-0.00559	2.36E-19	-0.006515	-8.95E-17	-2.766E-17	5
15.0740042	367.1010033	92	MODAL	LinModal	Mode	5	-2.56E-16	0.027542	2.445E-19	-0.005908	-1.06E-16	2.47E-17	6
		111	MODAL	LinModal	Mode	5	-8.86E-16	0.050992	2.196E-19	-0.003077	-9.46E-17	-4.306E-17	7

Figure 6: Mode 5

Period (sec)	Frequency (Cyc/sec)	Joint	OutputCase	CasaTuna	StanTuna	CtonNum	U1	U2	U3	R1	R2	R3	Floor
	(Cyc/3ec/	Joint	Outputcase		StepType		01	UZ	US				
		Text	Text	Text	Text	Unitless	m	m	m	Radians	Radians	Radians	#
0.285455	3.503184916						0	0	0	0	0	0	0
0.283433	3.303184310	58	MODAL	LinModal	Mode	6	2.175E-17	-1.222E-16	1.982E-20	2.832E-17	5.426E-17	-0.003708	1
		12	MODAL	LinModal	Mode	6	4.477E-16	-2.242E-16	2.967E-20	-2.725E-17	3.625E-17	-0.007427	2
CircFreqy	Eigenvalue												
(rad/sec)	(rad2/sec2)	31	MODAL	LinModal	Mode	6	3.004E-16	7.165E-17	8.776E-20	-1.055E-18	-5.54E-17	-0.008174	3
		52	MODAL	LinModal	Mode	6	2.992E-18	-2.157E-16	1.118E-19	2.917E-17	-5.87E-17	-0.005541	4
22.01116	484.4911643	71	MODAL	LinModal	Mode	6	-1.98E-16	-1.431E-16	1.226E-19	-5.267E-17	2.673E-18	-0.0006	5
22.01116	11116 484.4911643	92	MODAL	LinModal	Mode	6	-1.62E-17	2.309E-16	1.581E-19	-2.966E-17	1.639E-17	0.004615	6
		111	MODAL	LinModal	Mode	6	-9.82E-17	1.562E-16	1.454E-19	8.235E-18	-2.14E-17	0.008131	7

Figure 7: Mode 6

Modal Masses

```
M_{ni}^* = \frac{L_{ni}^2}{M_{ni}} Effective Modal Mass
%This script is written for CE490- Introduction to Earthquake
Engineering course Homework-4
clear all
clc
mass matrix=diag([103.2 103.2 3990.4 103.2 103.2 3990.4 103.2
103.2 3990.4 103.2 103.2 3990.4 103.2 103.2 3990.4 103.2 103.2
3990.4 103.2 103.2 3990.4 ]); %mass matrix
phi1=load('FirstMode.txt'); %Mode Shape 1st
phi2=load('SecondMode.txt'); %Mode Shape 2nd
phi3=load('ThirdMode.txt'); %Mode Shape 3rd
philTrans=transpose(phil);
phi2Trans=transpose(phi2);
phi3Trans=transpose(phi3);
LengthFactorX=load('LengthFactor-X.txt');%(1 0 0 1 0 0 1 0 0 ...)
LengthFactorY=load('LengthFactor-Y.txt');%(0 1 0 0 1 0 0 1 0 ...)
ModalMass1=phi1Trans*mass matrix*phi1; %Modal Mass 1st
ModalMass2=phi2Trans*mass matrix*phi2; %Modal Mass 2nd
ModalMass3=phi3Trans*mass matrix*phi3; %Modal Mass 3rd
ModalExcitationFactor1=phi1Trans*mass matrix*LengthFactorX;
ModalExcitationFactor2=phi2Trans*mass matrix*LengthFactorY;
ModalExcitationFactor3=phi3Trans*mass matrix*LengthFactorY;
EffectiveModalMass1=ModalExcitationFactor1*ModalExcitationFactor
1/ModalMass1;
EffectiveModalMass2=ModalExcitationFactor2*ModalExcitationFactor
2/ModalMass2;
EffectiveModalMass3=ModalExcitationFactor3*ModalExcitationFactor
3/ModalMass3;
Force1=(ModalExcitationFactor1/ModalMass1) *mass matrix*phi1;
Force2= (ModalExcitationFactor2/ModalMass2) *mass matrix*phi2;
Force3= (ModalExcitationFactor3/ModalMass3) *mass matrix*phi3;
```

 $M_n = \emptyset_n^T * m * \emptyset_n$ Modal Mass

 $L_{ni} = \emptyset_n^T * m * l_i \quad Modal \, Excitation \, Factor$

	Modal Mass	Modal Excitation Factor	Effective Modal Mass
Mode 1	1.0157	-24.5373	592.7482
Mode 2	1.0160	24.4952	590.5609
Mode 3	1.0155	0.0000	0.0000

ModalExcitationFactor3 =-2.6143e-13 ≈ 0

EffectiveModalMass3 = 6.7305e-26 ≈ 0

Modal Forces

$$F_n = \left(\frac{L_{ni}}{M_n}\right) * m * \emptyset_n * Sa_n$$
 Modal Force

	Story	F1(x)/Sa	F2(y)/Sa	F3(Ø)/Sa	
	1	17.43	0.00	0.00	
	2	44.16	0.00	0.00	
	3	70.21	0.00	0.00	
Mode1	4	93.09	0.00	0.00	=592.75
	5	111.47	0.00	0.00	
	6	124.46	0.00	0.00	
	7	131.93	0.00	0.00	
	1	0.00	17.31	0.00	
	2	0.00	43.53	0.00	
	3	0.00	69.26	0.00	
Mode 2	4	0.00	92.16	0.00	=590.56
	5	0.00	110.91	0.00	
	6	0.00	124.56	0.00	
	7	0.00	132.84	0.00	
	1	0.00	0.00	0.00	
	2	0.00	0.00	0.00	
	3	0.00	0.00	0.00	
Mode 3	4	0.00	0.00	0.00	=0.00
	5	0.00	0.00	0.00	
	6	0.00	0.00	0.00	
	7	0.00	0.00	0.00	

Modal forces are calculated via MATLAB matrix operations.

Total Mass was 716. 775 tons from the dynamic mass calculation. Modal mass participation situation;

EffectiveModalMass1/Total Mass = 0.826

EffectiveModalMass2/Total Mass = 0.823

Table 3: Mass Participation Ratios from SAP2000

Output Case	Step Type	StepNum	Period (sec)	UX	UY	UZ	Sum UX	Sum UY	Sum UZ
MODAL	Mode	1	1.012462	0.81973	0	0	0.81973	0	0
MODAL	Mode	2	0.991126	0	0.81672	0	0.81973	0.81672	0
MODAL	Mode	3	0.872103	0	0	0	0.81973	0.81672	0
MODAL	Mode	4	0.326982	0.10024	0	0	0.91997	0.81672	0
MODAL	Mode	5	0.319351	0	0.10473	0	0.91997	0.92145	0
MODAL	Mode	6	0.285455	0	0	0	0.91997	0.92145	0

According to both hand calculations and SAP2000 analysis results, mass participation ratios for the first three modes in x and y directions are about 82 %.

$$x \ direction: \sum_{n=1}^{N_{min}} M_n^* = \sum_{n=1}^{N_{min}} \frac{L_{xn}^2}{M_n} \ge 0.90 \sum_{i=1}^{N} m_i$$

y direction:
$$\sum_{1}^{N_{min}} M_n^* = \sum_{n=1}^{N_{min}} \frac{L_{yn}^2}{M_n} \ge 0.90 \sum_{1}^{N} m_i$$

Figure 8:TEC 2007

In Turkish Earthquake Code 2007, it is specified that mass participation ratio should be equal or greater than 90 %. In this part of the homework, SAP2000 model is analyzed in three modes. In order to achieve 90 % mass participation, Structural model should be analyzed with higher modes. According to SAP2000 analysis results, 6 modes analysis is sufficient for minimum 90 % mass participation.

Part 2

- E is defined for Earthquake Region 1 and soil type Z3.
- TEC 2007 design spectrum.

 $A_0 = 0.4$ for the Earthquake Region 1

I = 1 for residence buildings

 $T_A = 0.15$ and $T_B = 0.6$ for Z3 soil type

Turkish Earthquake Code is used in order to obtain design spectrum for the structural system and following formulas are taken into consideration.

$$A(T) = A_0 I S(T)$$

$$S_{ae}(T) = A(T) g$$

$$S(T) = 1 + 1.5 \frac{T}{T_A} \qquad (0 \le T \le T_A)$$

$$S(T) = 2.5 \qquad (T_A < T \le T_B)$$

$$S(T) = 2.5 \left(\frac{T_B}{T}\right)^{0.8} \qquad (T_B < T)$$

• TEC 2007, reduced spectrum. Enhanced ductility level is used for the system.

$$S_{aR}(T_n) = \frac{S_{ae}(T_n)}{R_a(T_n)}$$

$$R_a(T) = 1.5 + (R - 1.5) \frac{T}{T_A}$$

$$(0 \le T \le T_A)$$

$$R_a(T) = R$$

$$(T_A < T)$$

• Modal spectrum analysis

In order to make response spectrum analysis, design spectrum data is imported to SAP2000 and a function is created. By using $\mathbf{1G} + \mathbf{1Q} \pm \mathbf{1E}$ combination and trapezoidal load distribution from slabs to the beams, response spectrum analysis is applied.

From first part of the homework, in dynamic mass calculation section, dead load per story is calculated as 936 kN and live load is calculated as 320 kN for each story.

Figure 9: Load distribution from slabs to beams

For outer 5m beams the distributed load is;

G = 11.7 kN/m (trapezoidal section) Q = 4 kN/m (triangular section)

For inner 5m beams the distributed load is;

G = 23.4 kN/m (trapezoidal section) Q = 8 kN/m (triangular section)

For outer 4m beams the distributed load is;

G = 5.85 kN/m (triangular section) Q = 4 kN/m (triangular section)

For inner 4m beams the distributed load is;

G = 11.7 kN/m (triangular section) Q = 8 kN/m (triangular section)

Figure 10: Inner 4m beam live load arrangement

Figure 11: Inner 5m Beams dead load arrangement

From the first part of the homework, period of the building is calculated as 1.01 sec. For this period value, Sae(T)/Ra(T) = 0.81 is obtained from reduced response spectrum. A(T)=0.66 and total mass of the building is calculated as 716.775 tons in the first part of the homework.

$$V_{\rm t} = \frac{WA(T_1)}{R_{\rm a}(T_1)} \ge 0.10 \, A_{\rm o} \, I \, W$$

 $V_t = 716.775*9.81*0.66/8 > 0.1*0.4*1*716.775*9.81$

$$V_t = 580.1 > 281.3$$

After doing modal spectrum analysis, base shear force from x-direction is 432.4 kN and from y-direction 438.4 kN. By implementing SRSS,

Figure 12: Base Reactions

 $V_1 = 432.4 \text{ kN}$

 $V_2 = 438.4 \text{ kN}$

 $V_{tB} = (432.4^2 + 438.4^2)^{0.5} = 615.8 \text{ kN}$

Modification check;

 $V_{tB} = 615.8 > 0.9*V_t = 0.8*580.1 = 464.08 \text{ kN}$, hence, no modification is needed.

• Drift Check

$$\frac{\left(\delta_{i}\right)_{\max}}{h_{i}} \leq 0.02$$

where h=3 m

Joi	int Displacemen	ts								_	
le	View Edit	Format-Filter	-Sort Select	Options							
its:	As Noted					Jo	int Displacemer	nts			
	Joint Text	OutputCase	CaseType Text	StepType Text	U1 m	U2 m	U3 m	R1 Radians	R2 Radians	R3 Radians	
	12	Envelope	Combination	Max	0.008158	0.00784	-0.001244	0.000925	0.001054	4.981E-13	
	12	Envelope	Combination	Min	-0.008158	-0.00784	-0.001244	-0.000925	-0.001054	-4.981E-13	
	31	Envelope	Combination	Max	0.012923	0.012428	-0.001718	0.000868	0.000964	4.734E-13	
	31	Envelope	Combination	Min	-0.012923	-0.012428	-0.001718	-0.000868	-0.000964	-4.734E-13	
	52	Envelope	Combination	Max	0.017095	0.016497	-0.002096	0.000766	0.000822	5.322E-13	
	52	Envelope	Combination	Min	-0.017095	-0.016497	-0.002096	-0.000766	-0.000822	-5.322E-13	
	58	Envelope	Combination	Max	0.003229	0.003129	-0.000672	0.000813	0.000962	2.298E-13	
	58	Envelope	Combination	Min	-0.003229	-0.003129	-0.000672	-0.000813	-0.000962	-2.298E-13	
	71	Envelope	Combination	Max	0.020469	0.019852	-0.00238	0.000625	0.000642	4.152E-13	
	71	Envelope	Combination	Min	-0.020469	-0.019852	-0.00238	-0.000625	-0.000642	-4.152E-13	
	92	Envelope	Combination	Max	0.022897	0.022338	-0.002569	0.000457	0.000433	4.846E-13	
	92	Envelope	Combination	Min	-0.022897	-0.022338	-0.002569	-0.000457	-0.000433	-4.846E-13	
	111	Envelope	Combination	Max	0.024331	0.023881	-0.002665	0.000256	0.000196	5.281E-13	
•	111	Envelope	Combination	Min	-0.024331	-0.023881	-0.002665	-0.000256	-0.000196	-5.281E-13	

Figure 13: Joint Displacements

$$\delta_i = R \Delta_i$$
 $\Delta_i = d_i - d_{i-1}$

Table 4: Drift Check

	U1(x) (m)	U2(y) (m)	$(R^*\Delta_i/h_i)x$	Status (if<0.02)	$(R^*\Delta_i/h_i)y$	Status(if<0.02)
1st Story	0.00323	0.00313	0.00861	ОК	0.00834	ОК
2nd Story	0.00816	0.00784	0.01314	ОК	0.01256	ОК
3rd Story	0.01292	0.01243	0.01271	ОК	0.01223	ОК
4th Story	0.01710	0.01650	0.01113	ОК	0.01085	ОК
5th Story	0.02047	0.01985	0.00900	ОК	0.00895	ОК
6th Story	0.02290	0.02234	0.00647	ОК	0.00663	ОК
7th Story	0.02433	0.02388	0.00382	ОК	0.00411	ОК

According to drift check requirements, each story drifts within given intervals, i.e. there is no story drift problem. Since there is no drifting problem, no shear wall is needed in the structural system.

Design Procedure

Figure 14: 1st story beam labels

By doing analysis in SAP2000 with prespecified load combinations, shear forces and moments on the beam elements are found as follows;

Frame	Station	OutputCase	CaseType	StepType	P	V2	V3	T	M2	MB	FrameElem	ElemStation
Text	m	Text	Text	Text	KN.	KN	KN	KN-m	KN-m	KN-m	Text	m
Beam 116	.0	1.0G+1.0Q+1.0EY	Combination	Max	0	13.049	0	1.891E-08	0	54.5371	Beam 116-1	0
Beam 116	. 0	1.0G+1.0Q-1.0EY	Combination	Max	0	13.049	0	1.891E-08	0	54,5371	Beam 116-1	0
Beam 116	0	Envelope	Combination	Max	0	13.049	1.555E-16	1.6045	0	54.5371	Beam 116-1	0
Beam 107	4	1.0G+1.0Q+1.0EY	Combination	Max	0	53.121	0	6.926E-10	0	54,5371	Beam 107-1	- 4
Beam 107	4	1.0G+1.0Q-1.0EY	Combination	Max	0	53.121	0	6.926E-10	0	54.5371	Beam 107-1	- 4
Beam 107	4	Envelope	Combination	Max	0	53.121	1.555E-16	1.6045	6.221E-16	54,5371	Seam 107-1	4
Beam 117	0	1.0G+1.0Q+1.0EY	Combination	Max	0	12.874	0	0.0523	0	54.1948	Beam 117-1	0
Beam 117	0	1.0G+1.0Q-1.0EY	Combination	Max	0	12.874	0	0.0523	0	54.1948	8eam 117-1	0
Beam 117	0	Envelope	Combination	Max	0	12,874	1.555E-16	2,0637	0	54,1948	Beam 117-1	0
Beam 115	0	1.0G+1.0Q+1.0EY	Combination	Max	0	12.874	0	-0.0149	0	54.1948	Beam 115-1	0
Beam 115	.0	1.0G+1.0Q-1.0EY	Combination	Max	0	12.874	0	-0.0149	0	54.1948	Beam 115-1	0
Beam 115	0	Envelope	Combination	Max	0	12.874	1.555E-16	1.9966	0	54.1948	Beam 115-1	0
Beam 108	- 4	1.0G+1.0Q+1.0EY	Combination	Max	0	53.029	0	-0.0149	0	54.1948	Beam 108-1	4
Beam 108	4	1.0G+1.0Q-1.0EY	Combination	Max	0	53.029	0	-0.0149	0	54.1948	Beam 108-1	4
Beam 108	4	Envelope	Combination	Max	0	53.029	1.555E-16	1.9966	6.221E-16	54,1948	Seam 108-1	4
Beam 106	4	1.0G+1.0Q+1.0EY	Combination	Max	0	53.029	0	0.0523	0	54,1948	Beam 106-1	4
Beam 106		1 0G+1 0O-1 0EV	Combination	May		53.029	0	0.0523	n	54 1948	Beam 105-1	. 4

It is observed that middle elements take more forces than outer elements. Also, there are two critical elements in each case due to symmetry in each direction.

Figure 15: Most critical beams on the first floor

Figure 16: Most critical beam in x-direction

End Moments are -107.3 kN-m and 44.1 kN-m and span moment is 34.1 kN-m

Figure 17: Most critical beam in y-direction

End Moments are -86.8 kN-m and 54.5 kN-m and span moment is 20.7 kN-m

Since all material properties are not given, some of them are needed to be assumed certain values so as to continue the design procedure. Concrete type is assumed as C25 since it is widely used and easily accessible. Steel reinforcement is selected as S420 and clear cover is assumed as 4 cm. d=410 mm, $b_w=250 \text{ mm}$.

Hence,
$$f_{cd} = 25/1.5 = 16.67 \text{ Mpa}$$
, $f_{yd} = 420/1.15 = 365 \text{ Mpa}$

Minimum required steel area is $(A_s)_{min} = b_w d^*(0.8 f_{ctd}/f_{yd}) = 250*410*0.8*1.17/365 = 262.85 \text{ mm}^2$

Beam design in x-direction;

Since the most critical beams in x-direction are Beam 110 and Beam 113, all the beams in x-direction are going to be designed according to those beams. End Moments are -107.3 kN-m and 44.1 kN-m and span moment is 34.1 kN-m

Negative moment at support; M_d = -107.3 kN-m K=250*410*410/107.3/1000 = 391.7 mm²/kN and KI value for C25 type of concrete is 380 mm²/kN. Hence K>KI there is no need for compression steel.

 $A_s = 107.3*10^3/0.365/0.86/410 = 833.7~mm^2~60/14 = 923.6~mm^2~Hence~60/14~bars~at$ the support top

Positive moment at support; M_d = 44.1 kN-m K=250*410*410/44.1/1000 = 952.9 mm²/kN and KI value for C25 type of concrete is 380 mm²/kN. Hence K>KI there is no need for compression steel.

 $A_s = 44.1*10^3/0.365/0.86/410 = 342.66 \ mm^2 \ \ 30/14 = 461.8 \ mm^2 \ \ Hence \ \textbf{30/14 bars at}$ the support bottom

Since span moment is smaller than the support bottom moment, by continuing to use the same reinforcement in the support bottom, required reinforcement at the span is satisfied. **3Ø14** bars at the span bottom

Beam design in y-direction;

Since the most critical beams in y-direction are Beam 107 and Beam 116, all the beams in x-direction are going to be designed according to those beams. End Moments are -86.8 kN-m and 54.5 kN-m and span moment is 20.7 kN-m

Negative moment at support; M_d = -86.8 kN-m K=250*410*410/86.8/1000 = 484.16 mm²/kN and KI value for C25 type of concrete is 380 mm²/kN. Hence K>KI there is no need for compression steel.

 $A_s = 86.8*10^3/0.365/0.86/410 = 674.44~mm^2~5\text{Ø}14 = 769.7~mm^2~Hence~\text{5Ø}14~\text{bars at}$ the support top

Positive moment at support; M_d = 54.51 kN-m K=250*410*410/54.5/1000 = 771.1 mm²/kN and KI value for C25 type of concrete is 380 mm²/kN. Hence K>KI there is no need for compression steel.

 $A_s = 54.5*10^3/0.365/0.86/410 = 423.5 \ mm^2 \ \ 3\emptyset 14 = 461.8 \ mm^2 \ \ Hence \ \ \textbf{3\emptyset14 bars at the}$ support bottom

Since span moment is smaller than the support bottom moment, by continuing to use the same reinforcement in the support bottom, required reinforcement at the span is satisfied. **3Ø14** bars at the span bottom

Since there is not much differences between beams in x-direction and beams in y-direction, reinforcement detailing is chosen the same for all beams. That is; 6Ø14 bars at the support top and 3Ø14 bars at the support bottom

Plastic moment capacities of the beams at each end is calculated;

Mri,
$$j \approx As * fyd * j * d$$
 where $j = 0.86$

 $Mri = (923.6*0.86*365*410)*10^{-6} = 118.87$ kN.m for negative moment (at the support top) $Mri = (461.8*0.86*365*410)*10^{-6} = 59.4$ kN.m for positive moment (at the support bottom& span) Since all reinforcement is symetrical;

Mrj = 118.87 kN.m negative moment Mrj = 59.4 kN.m positive moment

Therefore;

Mpi = Mri * 1.4 = 166.4 kN.m negative moment at one end
= 83.2 kN.m positive moment at one end

Mpj= Mrj * 1.4 = 166.4 kN.m negative moment at the other end
= 83.2 kN.m positive moment at the other end

Shear Design of Beams

Figure 18: Shear design formulas

	Beams in x-direction	Beams in y-direction
Ln	5 m	4 m
V _{EQ} (M _{pi} + M _{pj})/Ln	49.92 kN	62.4 kN
V _{dy} (g+q)	48.37 kN	20.062 kN
V _e (V _{dy} ± V _{EQ})	98.29 kN	82.462 kN

$$V_e = 98.3 \text{ kN}$$

$$V_c = 0.8*(0.65*f_{ctd}*b_w*d*\varphi), \quad \varphi=1 \text{ since Nd=0}$$

$$\begin{aligned} \textbf{Vc} &= \textbf{62.18 kN} \\ V_r &= V_c + V_w \ge V_e \\ \frac{Asw}{s} &= \frac{Ve - Vc}{fyd*d} = 0.241mm \end{aligned}$$

If $\emptyset 8$ (Asw=2*50 =100.5 mm²) is used for stirrup reinforcement then s = 410 mm. Therefore $\emptyset 8/400$ can be used in the spans. However, according to TS500, spacing at the span can not be smaller than 20 cm and also spacing near the supports can not be smaller than 10 cm. Consequently, stirrup spacing at the span is 20 cm and at the beam ends 10 cm.

Figure 19: Beam reinforcement detailing

Column Design Beam 101 Beam 102 Beam 103 Beam 104 **C3** Beam 107 Beam 105 **C6 C7** Beam 110 Beam 111 Beam 113 Beam 112 Beam 118 Beam 114 Beam 116 Beam 117 Beam 119 Beam 120 Beam 121 Beam 122

Figure 20: Column locations

Square Column 40x40 (Column 7 in SAP2000 Model);

 $Md_{3-3} = 78.2 \text{ kN-m}$, $Md_{2-2} = 79.3 \text{ kN-m}$ and Nd = 902.94 kN

Rectangular Column 50x25 (Column 6 in SAP2000 Model);

 $Md_{3-3} = 88.4 \text{ kN-m}$, $Md_{2-2} = 29.5 \text{ kN-m}$ and Nd = 564.1 kN

Rectangular Column 25x50 (Column 3 in SAP2000 Model);

 $Md_{3-3} = 28.5 \text{ kN-m}$, $Md_{2-2} = 76.7 \text{ kN-m}$ and Nd = 658.3 kN

From the beam design part

$$(M_{ra} + M_{rii}) > 1.2*(M_{ri} + M_{rj}) = 1.2*(118.87 + 59.4) = 213.92$$

Table 5: Strong Column Weak Beam Principle Check

40*40	40*40 Column Status		50*25 Column		Status	25*50 Column		Status
Mrj	59.4		Mrj	59.4		Mrj	59.4	
Mri	118.87	ОК	Mri	118.87	ОК	Mri	118.87	ОК
Mra	179.6		Mra	193.0		Mra	197.4	
Mrü	179.6		Mrü	193.0		Mrü	197.4	

Figure 21: 40x40 Column C7 Reinforcement Detailing

Figure 22: Column 50x25 Reinforcement Detailing

Figure 23:Column C7, C3 and C6 Shear Reinforcement Detailing

Conclusion

This assignment is based on modal analysis and software SAP2000 usage. For the earthquake situation, equivalent lateral load and response spectrum analysis is performed according to previously given information. While designing the frame elements, no dimension change or shear wall addition is required. Because, all checks according to TS500 are satisfied. Story drift ratios are checked and it is seen that ratios are smaller than the critical value. The 7-story building is located on Earthquake Region 1, that means ductility level of the structural system should be high. In the design process, enhanced ductility level is selected. After making analysis with enhanced ductility level (R=8), no dimension modification is required.