AI・機械学習ハンズオン

~実践Kaggle 初級編~

AIや機械学習の技術をKaggleの実践を通して身につけてもらう ハンズオン型イベントです

2019年7月2日19時30分から

自己紹介

- 2018年6月財務省を退職
- kaggleへの挑戦をメインに生活している(その他研修講師なども実施)
- 2019年4月Kaggleマスターになる
 - ▶ 4/14開催の技術書典6で、kaggleのチュートリアル第3版 を公開。
- 2019年6月地震コンペで3位獲得
- youtube始めました。kaggleのことを説明するための動画を 公開しています

twitterより

カレー 専業kaggler

@currypurin

2018年6月末に公務員を退職し専業 kagglerになり、2019年4月kaggleマスターになる。今は年内にkaggleグランドマスターになることを目指して挑戦中。金メダルあと3つでグランドマスター

自己紹介2

11 自分がリツイート

カレー@kaggler @currypurin · 4月8日

#技術書典 の原稿入稿しました!

5章を全部書き直して、付録B、付録Gを追加しました。他の部分もKernelの仕様 の変更とか、サイトの変更などにあわせて更新するなど手を入れています。

1.2 Kaggleヘログイン

2.5 Leaderboard (リーダーボード)

.

.

.

.

.

.

.

.

.

.

.

後日、コードや内容の公開とか解説動画の収録など行います。 よろしくお願いします。

13 13

102

今日の内容

- ■Kaggleのチュートリアル第3版の内容をもとにしたハンズオンと解説
 - ▶ A pandas-profilingでのEDA
 - ▶5章 LightGBMでのタイタニック(ハンズオン)、B LightGBMの補足説明
 - ▶C Santander Value Prediction Callengeで金メダルを獲得しました(解説)
 - ▶E Kaggleの称号と用語集(解説)
 - ▶F データ分析の勉強方法 (解説)
 - ▶D HomeCreditコンペ 銀メダルを獲得するするために行ったこと(解説)
 - ▶HomeCreditコンペに挑戦してみる(ハンズオン)

今日説明したいこと

- ・LightGBMでのホールドアウト法と交差検証で学習・推論
- ・Kaggleのコンペに挑戦する様子
- · Kaggleのメダル獲得条件、称号獲得条件 など

1章 Kaggleについて

2章 コンペのページの翻訳など

A PandasProfilingでのEDA

- https://www.youtube.com/watch?v=8XwORj3Qsjs
- 1 行書くだけでにEDAしてくれる便利なライブラリ
- コンペが始まったらとりあえず使うのがオススメ
- ・実務でも使える
- https://www.kaggle.com/currypurin/titanic-data-pandasprofiling

A PandasProfilingでのEDA

```
import pandas as pd
import pandas_profiling as pdp
```

```
df = pd.read_csv('../input/train.csv')
```

pdp.ProfileReport(df)

B LightGBMでのタイタニック(ハンズオン)

- ・LightGBMはマイクロソフトが作成した、決定木ベースの勾配ブース ティングを行うライブラリ
- ・精度も高く、早いので、コンペでもよく使われている
- 実務でも使われている
- ・欠損値の処理やスケーリング(大きさを揃える)をしなくても良いのでとても簡単である

ハンズオンはノートブックで

- ・ノートブック
 - ・その1: https://www.kaggle.com/currypurin/titanic-lightgbm
 - ・その2: https://www.kaggle.com/currypurin/titanic-lightgbm-ex

トレーニングデータとテストデータ

トレーニングデータとテストデータ

X_train Y_train train target test

ホールドアウト法

trainとvalidを完全に分離

ホールドアウト法

ホールドアウト法は、 trainもvalidも固定され無駄がある

k分割交差検証 (k=3)

fold1			;	fold2			;	fold3		
	X_train	Y_train_		X_train		Y_train		X_train		Y_train
				train_x		train_y		valid_x		valid_y
	train_x	train_y		valid_x		valid_y		train_x		train_y
	valid_x	valid_y		train_x		train_y				

C Santander Value Prediction Callenge で金メダルを獲得しました(解説)

- コンペ期間:

·期間:6月中旬~8月下旬

データサイズ

- ・テーブルデータのコンペです。
 - ・トレーニングデータ:4,459行×4,993列
 - ・テストデータ:49,342行×4,992列

・ 小さいのでとてもやりやすい。

評価指標

(Root Mean Squared Logarithmic Error)

$$\epsilon = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

 ϵ : スコア¶

 n_i : データ数¶

 p_i :予測值¶

a_i:実際の値¶

log(x): ログは自然対数¶

データの特徴1

・ 匿名化されている

ID	target	48df886f9	0deb4b6a8	34b15f335	a8cb14b00	2f0771a37	30347e683	d08d1fbe3	6ee66e115
000d6aaf2	38000000.0	0.0	0	0.0	0	0	0	0	0

データの特徴2

・ゼロが多い

- trainの約96.8%がゼロ
- testの約98.6%がゼロ

コンペのリーダーボードの流れ と解法

当初の1ヶ月弱くらいの間

- 全員1.3付近
- ・ 何をやってもほとんど効かないのでお手上げ状態

7月中旬 リークが疑われるようになる

#	∆1w	Team Name	Kernel	Team Members	Score @	Entries	Last
1	▲ 2108	Simo Korkolainen			0.84	4	1d
2	_	Overfitting_maniac			1.29	32	15h
3	_	No Magic No Gain			1.30	45	7h
4	▼ 3	Manel			1.36	28	9h
5	8	Marcelo Tamashiro			1.37	49	1h
6	▼ 1	Alex Caveny			1.37	40	3d
7	new	Morgan Gough			1.37	17	21h
8	4 8	Roger Fed-Error			1.37	24	9h
9	▲ 596	Mykhailo Matviiv			1.37	16	2h
10	<u>^</u> 2	Get the Magic or Die Tryin'			1.37	43	2h
11	▲ 272	SCP-055			1.37	11	15h
12	new	Vicens Gaitan			1.37	11	2d
10	0.4	Dunahant Kileani			1.07	20	4.41-

7月下旬リークの情報が共有される

赤の列がtarget

ID	target	f190486d6	58e2e02e6	eeb9cd3aa	9fd594eec	6eef030c1	15ace8c9f	fb0f5dbfe
7862786dc	3513333.3	0	1477600	1586889	75000	3147200	466461.5	1600000.0
c95732596	160000.0	310000	0	1477600	1586889	75000	3147200.0	466461.5
16a02e67a	2352551.7	3513333	310000	0	1477600	1586889	75000.0	3147200.0
ad960f947	280000.0	160000	3513333	310000	0	1477600	1586888.9	75000.0
8adafbb52	5450500.0	2352552	160000	3513333	310000	0	1477600.0	1586888.9
fd0c7cfc2	1359000.0	280000	2352552	160000	3513333	310000	0.0	1477600.0
a36b78ff7	60000.0	5450500	280000	2352552	160000	3513333	310000.0	0.0
e42aae1b8	12000000.0	1359000	5450500	280000	2352552	160000	3513333.3	310000.0
0b132f2c6	500000.0	60000	1359000	5450500	280000	2352552	160000.0	3513333.3
448efbb28	1878571.4	12000000	60000	1359000	5450500	280000	2352551.7	160000.0
ca98b17ca	814800.0	500000	12000000	60000	1359000	5450500	280000.0	2352551.7
2e57ec99f	307000.0	1878571	500000	12000000	60000	1359000	5450500.0	280000.0

7月下旬リークの情報が共有される

ID	target	f190486d6	58e2e02e6	eeb9cd3aa	9fd594eec	6eef030c1	15ace8c9f	fb0f5dbfe		
7862786dc	3513333.3	0	1477600	1586889	75000	3147200	466461.5	1600000.0		
c95732596	160000.0	310000	0	1477600	1586889	75000	3147200.0	466461.5		
16a02e67a	2352551.7	3513333	310000	0	1477600	1586889	75000.0	3147200.0		
ad960f947	280000.0	160000	3513333	310000	0	1477600	1586888.9	75000.0		
8adafbb52	5450500.0	2352552	160000	3513333	310000	0	1477600.0	1586888.9		
fd0c7cfc2	1359000.0	280000	2352552		1477600.0					
a36b78ff7	60000.0	5450500	280000	→ <u></u> → → → → → → → → → → → → →	並び替えると2つ下の					
e42aae1b8	12000000.0	1359000	5450500	AT Oxy	首んる	C Z J	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	310000.0		
0b132f2c6	500000.0	60000	1359000	行	3513333.3					
448efbb28	1878571.4	12000000	60000		160000.0					
ca98b17ca	814800.0	500000	12000000	60000	1359000	5450500	280000.0	2352551.7		
2e57ec99f	307000.0	1878571	500000	12000000	60000	1359000	5450500.0	280000.0		
((00 00		0.1.1000		=======			1050000			

7月下旬からコンペ終了まで

- ・ どのようにデータを並び替えて、
- ・リーク(データないにtargetがあること)を正確にたくさんみつけるか
- ・ということを、やる勝負に。

リークの探し方

・緑の線のように2つずらして検索。一致したら下のピンクが上の target

ID	target	f190486d6	58e2e02e6	eeb9cd3aa	9fd594eec	6eef030c1	15ace8c9f	fb0f5dbfe
7862786dc	3513333.3	0	1477600	1586889	75000	3147200	466461.5	1600000.0
c95732596	160000.0	310000	0	1477600	1586889	75000	3147200.0	466461.5
16a02e67a	2352551.7	3513333	310000	0	1477600	1586889	75000.0	3147200.0
ad960f947	280000.0	160000	3513333	310000	0	1477600	1586888.9	75000.0
8adafbb52	5450500.0	2352552	160000	3513333	310000	0	1477600.0	1586888.9
fd0c7cfc2	1359000.0	280000	2352552	160000	3513333	310000	0.0	1477600.0
a36b78ff7	60000.0	5450500	280000	2352552	160000	3513333	310000.0	0.0
e42aae1b8	12000000.0	1359000	5450500	280000	2352552	160000	3513333.3	310000.0
0b132f2c6	500000.0	60000	1359000	5450500	280000	2352552	160000.0	3513333.3
448efbb28	1878571.4	12000000	60000	1359000	5450500	280000	2352551.7	160000.0
ca98b17ca	814800.0	500000	12000000	60000	1359000	5450500	280000.0	2352551.7
2e57ec99f	307000.0	1878571	500000	12000000	60000	1359000	5450500.0	280000.0

私の最終の結果

- 37865行をリークで埋めて、
- ・ ④は、一番スコアが高い カーネルを1.1倍して提出
- (①と③の平均を比較すると、③のほうがやや大きかったので、リーダーボードを頼りに探索)

最終結果

1	8	Linear Regression Only		0.51	180	11
2	▲ 53	adilism		0.52	26	3n
3	~ 36	anatoly	9	0.52	43	11
4	1 7	chenhan zhang	9	0.52	27	12
5	107	Vladimir Larin [ods.ai]		0.52	92	20
6	~ 1	Paradox		0.52	136	2
7	▲ 36	verycourage	9	0.52	33	3
8	^ 7	currypurin		0.52	45	4n
9	▼ 4	Raymond Zeng		0.52	119	5n
10	1 9	Zuper	9 9	0.52	63	9
11	<u>21</u>	yurodiviy	A	0.52	52	5r
12	3 5	kamitsu		0.52	82	34n
13	38	Academics looking for real jobs		0.52	145	7n

まとめ

- ・ 色々なコンペがあります
- 初心者でも金メダルをとれることもあります

E.1 称号

Grand master

Master

金1、銀2

Expert

銅2

Contributor

プロフィールの完成等

Novice

Kaggleに登録

※https://www.kaggle.com/progression より

E.2 メダルの獲得条件

	0~99 チーム	100~249 チーム	250~999	1000 チーム以上
ブロンズ	上位40%	上位40%	上位100人	上位10%
シルバー	上位20%	上位20%	上位50人	上位5%
ゴールド	上位10%	上位10人	上位10人と 0.2%*1	上位10人と 0.2%*1

E.2 Kaggle用語集

- EDA(Exploratory Data Analysis)
- Kaggle api
- Kaggle learn
- kaggler-ja

- Kaggler-ja Wiki
- Kaggle Rankings
- regonn&curry.fm

Fデータ分析の勉強方法(解説)

Fデータ分析の勉強方法(解説)

- ・実践から入るのが1番だと思います
- 実践した後であれば、難しい本を読んでも、理解できることが多いです
- 自分がやりたいように学ぶのが1番だと思います

D HomeCreditコンペ銀メダルを獲得するするために行ったこと(解説)

DHomeCreditコンペ 概要

- ユーザーが契約したローンを遅延なく返せるか予測
- 評価指標はAUC (参考: http://www.randpy.tokyo/entry/roc_auc)

概要

- ・ 赤枠を当てる
- 複数テーブル (csvファイ ル) がある

Data

Data

- LightGBMに特徴を徐々に足して行って、精度を確認していく
- ・最後に特徴選択やパラメータチューニングを行う

- 4.1 重要な3特徴だけで予測
 - 1.信用スコアのような特徴がこの コンペでは提供されており、重 要な特徴であった
- 4.2 ファイル全部使って、 LightGBMにチャレンジ

購買履歴

- 4.3.1 全ファイルを機械的に 集計
 - ・1人で複数の購買履歴がある
 - ・購買履歴の平均や最大など を特徴にする

購買日(N

·Kernelが参考なる

4.3.2 複数の項目同士で 特徴を作る

・子供の数と年収から、子供の数と年収から、子供1人あたりの年収が、特徴間の関係を捉えた特徴を作る

購買						
userid	子供の数	年収				
1	2	5,000,000				
2	1	5,000,000 5,000,000				
3	4					
userid	子供1人あ たり年収					
1	2,500,000					
2	5,000,000					
3	1,250,000					

4.3.3 複数の項目同士で特徴を作る (カテゴリ変数)

・ターゲットエンコーディング

購買						
userid	持ち家	支払遅延 有無				
1	あり	1				
2	あり	0				
3	なし	0				
4	なし	0				
5	なし	1				
userid	持ち家 (encoding)					
1	0.5					
2	0.5					
3	0.33					
4	0.33					
5	0.33					

4.3.3 複数の項目同士で特徴を作る (カテゴリ変数)

・ドメイン知識による数値変換

- 4.3.4 時系列アプローチ
 - ・直近〇日という特徴を作成
 - ・直近〇日の金額
 - ・直近○日の件数

userid	履歴id	購買日(N 日前)	金額	月々支払
10	1	15	100,000	5,000
10	2	20	100,000	5,000
10	3	30	80,000	4,000
10	4	40	70,000	3,500
10	5	70	50,000	5,000
10	6	80	60,000	3,000
10	7	100	40,000	4,000
10	8	200	30,000	3,000

userid	過去30 金額	過去30 件数	過去90 金額	過去90 件数	過去365 金額	過去365 件数
10	280,000	3	460,000	6	530,000	8

4.3.4 特徵選択

- ・特徴を作ると、簡単に数千の特徴になってしまう
- ・LigihtGBMやXGboostは多くの特徴があっても、通常大きな問題はないが、有害な特徴は取り除くとスコアが改善する

- 4.3.5 パラメータチューニング
 - ·Light GBMのパラメータは多数存在
 - ・パラメータチューニングによりスコアが改善する
 - ·hyperopt
 - · 今ならoptunaが候補か

4.3.5 アンサンブル

- ·Light GBMのboostingを変え、またseedを変えてアンサンブ ルしている
- ・相関の低いアルゴリズムをアンサンブルすると、スコアが改善するため、一般に、ニューラルネットと勾配ブースティング (LightGBM等)とのアンサンブルで大きくスコアが改善する。

HomeCreditコンペに挑戦してみる (ハンズオン)

・ノートブック

https://www.kaggle.com/currypurin/simple-lightgbm