23. Нечеткие множества и нечеткие отношения. Метод нечетких множеств. Нечеткое отношение предпочтения на множестве экспертов. Оценка согласованности в методе нечетких множеств.

Нечеткое множество $A \subseteq X$ представляет собой набор

 $\left\{\left(x,\mu^{A}\left(x\right)\right)\right\}_{,\text{ где}}x\in X\ \mathsf{и}\ \mu^{A}:X\rightarrow\left[\mathbf{0},\mathbf{1}\right]_{-\Phi}$ ункция принадлежности, которая представляет собой некоторую субъективную меру соответствия элемента х нечеткому множеству А.

 $\mu^{A}\left(x
ight)$ может принимать значения от нуля, который обозначает абсолютную не принадлежность, до единицы, которая, наоборот, говорит об абсолютной принадлежности элемента х нечеткому множеству А.

Иногда удобно рассматривать значение $\mu^{A}\left(x\right)$ как степень совместимости элемента х с размытым понятием, представленным нечетким множеством А.

Над нечёткими множествами определены некоторые операции Следующие операции определяются с помощью обобщения операций над обычными множествами.

- 1) Объединение
 - $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$
- Пересечение
 - $\mu_{A\cap B}(x)=\min(\,\mu_A(x),\mu_B(x))$
- 3) Дополнение
 - $\mu_{\overline{A}}(x) = 1 \mu_A(x)$
- Разность

$$\mu_{A \setminus B}(x) = \max(\mu_A(x) - \mu_B(x), 0)$$

Нечетким отношением R называется нечеткое множество, определенное на декартовом произведении $X \times Y$, которому соответствует функция

, которому соответствует функция
$$\mu^R: X \times Y \rightarrow [0,1]$$
.

$$\mu^{R}(x,y)$$
 отражает силу зависимости между $x \in X$ и $y \in Y$

Отметим некоторые свойства нечётких отношений. Неч отношение R называется рефлексивным, если для любого $\mu_R(x,x)=1$.

Нечёткое отношение R называется антирефлексивным, если любого $x \in X$ $\mu_{\mathbb{R}}(x,x) = 0$.

Примеры. "<" , ">" – антирефлексивные отношения, "
$$\leq$$
" , " $=$ " – нет.

Нечёткое отношение может не быть ни рефлексивным, антирефлексивным.

Нечёткое отношение R называется симметричным, если для любых $x, y \in X$, $\mu_{R}(x, y) = \mu_{R}(y, x)$.

Нечёткое отношение R называется антисимметричным, если Iлюбых $x, y \in X$ из условия $\mu_R(x, y) > 0$ следует $\mu_R(y, x) = 0$.

Нечёткое отношение может не быть ни симметричным, г антисимметричным.

Нечёткое отношение R называется транзитивным, если , любых $x, y, z \in X$, $\mu_R(x, y) \ge \min(\mu_R(x, z), \mu_R(z, y))$.

Метод нечётких множеств

Задача теории принятия решений может быть пост следующим образом. Пусть $X = \{x_1, x_2, ..., x_n\}$ — мнс альтернативных решений некоторой задачи. Известны кр выбора альтернативы и требуется найти оптимальную альтерн

Рассмотрим постановку задач для метода нечетких мни Для этого необходимо, чтобы на множестве альтернатив было нечеткое отношение предпочтения (н.о.п.) $\mu(x_i, x_j)$.

Здесь числа $\mu(x_i,x_j)$ выражают степень того, нас альтернатива x_i не хуже альтернативы x_j .

Нечеткое отношение предпочтения является рефлек (любая альтернатива не хуже самой себя). $(\forall i \ \mu(x_i,x_i)=1)$.

Н.о.п. $\mu(x_i,x_j)$ обычно задаются таблицей или ма следующего вида.

R	x_1	x_2		x_n
x_1	1	$\mu(x_1,x_2)$		$\mu(x_1,x_n)$
x_2	$\mu(x_2, x_1)$	1		$\mu(x_2,x_n)$
			1	
x_n	$\mu(x_n, x_1)$	$\mu(x_n,x_2)$		1

Важную роль в методе нечетких множеств играет недоминируемости альтернативности $\mu_{n,\pm}(x_i)$. Число $\mu_{n,\pm}(x_i)$ і степень того, насколько альтернатива x_i не хуже любо альтернативы. Множество всех степеней недоминируемости нечетким множеством на множестве альтернатив.

Степени недоминируемости альтернатив может быть по формуле : $\mu_{uz}(x_i) = 1 - \max(\mu^i(x_i, x_i))$

Оптимальными альтернативами в методе нечетких являются те альтернативы, у которых степени недомини максимальны.

Н.о.п. на множестве экспертов

Рассмотрим следующую задачу. Имеется множество ал $X=\{x_1,x_2,....,x_n\}$, которые оцениваются несколькими эг $e_1,\,e_2,...,\,e_m$. Каждый эксперт составляет свое н.о.п. R_i . Кри известно н.о.п. на множестве экспертов, которое задается

матрицей
$$E=egin{pmatrix} e_{11} & e_{12} & & e_{1m} \\ e_{21} & e_{22} & & e_{2m} \\ e_{-1} & e_{-2} & & e_{-m} \end{pmatrix}$$

Элемент матрицы e_{ij} , выражает степень того, насколь эксперта e_i не менее важно, чем мнение эксперта e_j . является н.о.п., поэтому $0 \le e_{ij} \le 1$, для любых i,j и любого i, то есть мнение эксперта e_i не менее важн само.

Алгоритм решения задачи теории принятия реше методом нечетких множеств в случае нечеткого отношения предпочтения на множестве э

- 1) Для каждого н.о.п. R_i , i=1,2,...,m находим степень недоминируемости $\mu_{\text{н.п.R.}}(x_j)$, j=1,2,...,n .
- 2) Составляем матрицу $B_{m \bowtie n}$ записывая в неё $\mu_{\text{м.а.R}_i}(x_j)$ г строкам.
- 3) Находим максминное произведение $C = B^* \circ E \circ B$, так к E_{moon} , B_{moon} , B_{moon} , размер матрицы C_{moon} .
- 4) Для матрицы C, как для н.о.п., находим степени недоминируемости $\mu_{\text{н.в.}C}(x_j)$. Заметим, что C не является как c_{ij} может быть меньше 1.
- 5) Окончательные степени недоминируемости определяем $\mu_{_{\mathrm{R.I.}}}(x_j) = \min(\mu_{_{\mathrm{R.I.}}}(x_j), c_{jj})$. Оптимальные альтернативы те которых $\mu_{_{\mathrm{R.I.}}}(x_j)$ максимальна.

Определим максминное произведение матриц. Пусть матрицы $A_{m > k}$ и $B_{k > n}$, максминным произведениє называется матрица $C_{m > n} = A \circ B$, элементы которой нах формуле: $c_{ij} = \max(\min(a_{i1},b_{1j}),\min(a_{i2},b_{2j}),....,\min(a_{ik},b_{kj}))$.

Оценка согласованности в методе нечетких мно

В методе нечетких множеств оценки согласованности применяется транзитивность. Транзитивность для отношения R определяется так: если x и y состоят в отношении z состоят в отношении z состоят в отношений z состоят z сост

Другими словами, для любых x,y,z из того, что $\chi_{\mathbb{R}}(x,\chi_{\mathbb{R}}(y,z))=1$, следует $\chi_{\mathbb{R}}(x,z)=1$.

Для нечетких отношений транзитивность опроследующим образом: $\forall x,y,z$ $\mu_{\mathbb{R}}(x,z) \geq \min(\mu_{\mathbb{R}}(x,y),\mu_{\mathbb{R}}(y,z))$ аналогично тому, что $\forall x,z$ выполнено $\mu_{\mathbb{R}}(x,z) \geq \max\left(\min(\mu_{\mathbb{R}}(x,y),\mu_{\mathbb{R}}(y,z))\right)$.

Таким образом, если н.о.п. транзитивно, то $R \geq R \circ R$ или