Módulo 1 - Diapositiva 7 Números Complejos

Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales

Temas

- ullet Números complejos ${\mathbb C}$
- ullet Axiomas de campo para ${\mathbb C}$
- Plano complejo y módulo
- Solución de ecuaciones lineales y cuadráticas en $\mathbb C$

Definición de Número Complejo

Un número complejo es una expresión de la forma:

$$a + bi$$

donde $a, b \in \mathbb{R}$ e $i^2 = -1$.

a: Parte Real, b: Parte Imaginaria.

$$\mathbb{C} = \left\{ a + bi : a, b \in \mathbb{R}, i^2 = -1 \right\}.$$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Raíz cuadrada principal de -1

Para cualquier número real r>0 se define la raíz cuadrada principal de -r como el número complejo $\sqrt{r}i$ y se denota por $\sqrt{-r}$:

$$\sqrt{-r} = \sqrt{r}i$$

Ejemplos

$$\sqrt{-4} = \sqrt{4} i = 2i$$
 y $\sqrt{-7} = \sqrt{7} i$

Alerta.

Para $x, y \in \mathbb{R}$

afirmar que $\sqrt{x}\sqrt{y} = \sqrt{xy}$ con x, y < 0 es falso.

Suma y multiplicación de números complejos

En los números complejos se definen dos operaciones binarias: la adición (+) y la multiplicación o producto (\cdot, \times)

Suma

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

Multiplicación

$$(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$$

Ejemplo

- (2+3i) + (7-5i) = (2+7) + (3-5)i = 9-2i
- $(2+3i)\cdot(7-5i) = [2\cdot7-3\cdot(-5)] + [2\cdot(-5)+3\cdot7]i = 29+11i$

Axiomas de Campo

Igual que los reales, los complejos también son un campo.

Los números complejos son cerrados respecto a la operación adición(+)

① A cada par de números complejos z y w le corresponde un único número complejo z+w.

Los números complejos son cerrados respecto a la operación multiplicación (\cdot)

① A cada par de números complejos z y w le corresponde un único número complejo $z \cdot w$.

Ejemplo:

$$(3+2i)+(7-4i) = 10-2i \in \mathbb{C}$$

$$(3+2i)\cdot(7-4i) = 29+2i \in \mathbb{C}$$

Propiedades de los números complejos

Propiedades de la suma o adición

- **1** La adición es conmutativa: z + w = w + z
- 2 La adición es asociativa: z + (v + w) = (z + v) + w
- **3 0** es el neutro aditivo: $z + \mathbf{0} = z$
- \bullet -z es el <u>inverso aditivo</u> o negativo de z: $z + (-z) = \mathbf{0}$

En la propiedad tres, $\mathbf{0} = 0 + 0i = 0 \in \mathbb{R}$

En la propiedad cuatro, si z = a + bi, entonces -z = -a - bi

Ejemplo:

- (1+2i) + (0+0i) = (1+0) + (2+0)i = 1+2i
- **2** $(1+2i)+(-1-2i)=(1-1)+(2-2)i=0+0i=\mathbf{0}$

Propiedades de los números complejos

Propiedades de la multiplicación

- **1** La multiplicación es conmutativa: zw = wz
- 2 La multiplicación es asociativa: v(wz) = (vw)z
- 3 1 es el neutro multiplicativo: $z \cdot 1 = a$
- ① $\frac{1}{z} = z^{-1}$ es el <u>inverso multiplicativo</u> (recíproco) de z: $z \cdot \left(\frac{1}{z}\right) = 1$, si $z \neq 0$,

En la propiedad tres, $\mathbf{1} = 1 + 0i = 1 \in \mathbb{R}$

En la propiedad cuatro, si z = a + bi, entonces quién es $z^{-1} = ?$ (en su forma estandar).

Relación entre adición y multiplicación

1 La multiplicación es distributiva sobre la adición:

$$v(w+z) = vw + vz$$
 y $(v+w)z = vz + wz$

Las once propiedades anteriores: cinco para la suma, cinco para el producto y una que relaciona la suma con el producto son los axiomas de campo que cumplen los números complejos, por esto se dice que $\mathbb C$ es un campo o se habla del campo de los números complejos.

Ejemplo:

$$(1+0i) \cdot (2+3i) = (1 \cdot 2 - 0 \cdot 3) + (1 \cdot 3 + 0 \cdot 2)i = 2+3i$$

2
$$(1+2i) \cdot (\frac{1}{5} - \frac{2}{5}i) = (\frac{1}{5} + \frac{4}{5}) + (-\frac{2}{5} + \frac{2}{5})i = 1 + 0i = 1$$

Conjugado de un Número Complejo

El conjugado de un número complejo z = a + bi denotado \bar{z} , es el número complejo a - bi. Es decir: $\bar{z} = a - bi$

Propiedades del conjugado

Si z = a + bi, entonces:

$$z + \bar{z} = 2a \in \mathbb{R}, \quad z - \bar{z} = 2bi \in \mathbb{C}, \quad z\bar{z} = a^2 + b^2 \in \mathbb{R}$$

Ejemplo

Si z = -2 - 3i, entonces: $\bar{z} = -2 + 3i$,

$$(-2-3i) + (-2+3i) = -4,$$
 $(-2-3i) - (-2+3i) = -6i$

у

$$(-2-3i)\cdot(-2+3i)=4+9=13$$

Inverso Multiplicativo

La última propiedad del conjugado permite encontrar el inverso multimplicativo del número complejo z = a + bi cuando $z \neq 0$.

Como $z \neq 0$ y $z\bar{z} = a^2 + b^2 \neq 0$, entonces

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{a^2 + b^2}$$

Es decir que la forma estandar de z^{-1} es:

$$z^{-1} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

Ejemplo

Si
$$z = -2 - 3i$$
, entonces: $z^{-1} = \frac{-2}{13} + \frac{3}{13}i$

Potenciación: Exponentes en los complejos

En particular, cuando se multiplica un número complejo z por sí mismo varias veces se está realizando un proceso de potenciación, para lo cual es necesario definir exponentes en los complejos

Sean $n \in \mathbb{Z}^+$ y $z \in \mathbb{C}$. Definimos

$$z^n = \underbrace{z \cdot z \cdot z \cdot \cdots z}_{\text{n veces}}$$

Si $z \neq 0$ entonces

$$z^0 = 1$$
 y $z^{-n} = \frac{1}{z^n}$

Ejemplo

•
$$(3-2i)^2 = (3-2i)(3-2i) = 5-12i$$

•
$$(5+2i)^0 = 1$$
 y $\left(\frac{1}{2+3i}\right)^0 = 1$

Eiemplo

•
$$(3-2i)^{-2} = \frac{1}{(3-2i)^2} = \frac{1}{5-12i} = \frac{5}{169} + \frac{12}{169}i$$

Leyes de los exponentes

Para todo $z, w \in \mathbb{C}$ y $m, n \in \mathbb{Z}$:

$$2^m z^n = z^{m+n}$$

$$(z^m)^n = z^{mn}$$

$$(zw)^n = z^n w^n$$

para $z, w \neq 0$

para $z \neq 0$

Eiemplos

$$(1+i)^3(1+i)^2 = (1+i)^5$$

$$(1+i)^5 = (1+i)(1+i)^2(1+i)^2 = (1+i)(2i)(2i) = -4-4i$$

$$(3-2i)^4 = [(3-2i)^2]^2 = (5-12i)^2 = -119-120i$$

$$(2-i)(3+i)^2 = (2-i)^2(3+i)^2 = (3-4i)(8+6i) = 48-14i$$

El plano complejo

Todo número complejo z = a + bi puede ser representado en al plano complejo, en el cual el eje x del plano se denomina **eje real** y el eje y se denomina **eje imaginario**.

El plano complejo

Los números complejos 2 + 3i y -3 - 2i pueden ser representado en el plano coordenado por los puntos (2,3) y (-3,-2) respectivamente

Módulo

Módulo

Si z = a + bi es un número complejo y P(a,b) su par ordenado asociado, entonces la distancia de P hasta el orígen está dada por $\sqrt{a^2 + b^2}$. Esta distancia se denomina **módulo** o **magnitud** de z y se denota con |z|. Así

$$|z| = \sqrt{a^2 + b^2}$$

Propiedades del módulo

Para $z, w \in \mathbb{C}$:

•
$$|z| \ge 0$$

•
$$|z| = 0 \Leftrightarrow z = 0$$

•
$$|z + w| \le |z| + |w|$$

$$\bullet$$
 $|zw| = |z||w|$

$$\bullet \ \left| \frac{z}{w} \right| = \frac{|z|}{|w|}$$

para $w \neq 0$

Ejemplos

- $|2+i| = \sqrt{4+1} = \sqrt{5} \in \mathbb{R}$ y es mayor que cero.
- ② $|(-2+i)+(3-2i)|=|1-i|=\sqrt{2}$ y de otro lado se tiene que $|-2+i|+|3-2i|=\sqrt{5}+\sqrt{13}$.
- **3** $|(-2+i)\cdot(3-2i)| = |-4+7i| = \sqrt{65}$ y de otro lado se tiene que $|-2+i||3-2i| = \sqrt{5}\sqrt{13} = \sqrt{65}$.
- **1** $(-2+i) \cdot (-2-i) = 5$ y $|-2+i|^2 = (\sqrt{5})^2 = 5$

Igualdad de números complejos

Dos números complejos son iguales si son iguales en su parte real y en su parte imaginaria. Es decir que

$$a + bi = c + di$$
, si y solo si, $a = c$ y $b = d$.

Para que los números complejos $3-yi\,$ y $\,2x+5i$ sean iguales es necesario que

$$3 = 2x \quad y \quad -y = 5,$$

es decir

$$x = \frac{3}{2} \quad y \quad y = -5$$

Ecuación Cuadrática

Discriminante

Si la ecuación cuadrática: $ax^2 + bx + c$, con $a, b, c \in \mathbb{R}$ y $a \neq 0$ tiene discriminante $\Delta = b^2 - 4ac < 0$, entonces la ecuación tiene dos soluciones complejas conjugadas.

Eiemplo

La ecuación: $2x^2 - 3x + 2 = 0$ tiene por discriminante

$$\Delta = b^2 - 4ac = 9 - 4(2)(2) = -7 < 0$$

Por tanto tiene dos soluciones complejas que son:

$$x_1 = \frac{3 + \sqrt{7}i}{4}$$
 y $x_2 = \frac{3 - \sqrt{7}i}{4}$

Referencias

Sullivan, M. Álgebra y Trigonometría, 7^a Edición. Editorial Pearson Prentice Hall, 2006.

Swokowski, E.W. Cole, J.A. Álgebra y Trigonometría con Geometría Analítica 13^a Edición. Editorial Cengage Learning, 2011

Zill, D. G. Dewar, J. M. Álgebra, Trigonometría y Geometría Analítica, 3^a Edición. Editorial McGraw-Hill, 2012.