APPENDIX A AW1

In this section, we describe the results for use case AW1. First, for each problem and each time budget, we compare a pair of algorithms. Second, to compare the overall performance of the algorithms, we combine all objectives together by calculating average values of the objective functions (called *OFV*):

$$OFV = \frac{\sum_{i=1}^{n} Fitness_i}{n}$$

where n is the number of objectives for the prioritization problem, and $Fitness_i$ is the fitness value of the ith objective for the problem. Third, we used hypervolume (HV)—the most commonly used quality indicator to compare the overall performance of multi-objective search algorithms. Last, we calculated Rank and Confidence (as described in Section 4.1.5) for group comparison.

A.1 Experiment Results for RQ1

This section describes the results for Experiment Results for RQ1.

A.1.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM))

ТВ	A loo with me A	A loosith as D	P	ET	P	TR	A	UM	О	FV	H	IV
1 B	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 D020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 DU4U	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TROFO	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TDOCO	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 DU/U	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	Al	UM	О	FV	H	IV
10	Aigonuma	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p
TB090	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.1.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUS))

	lgorithmA NSGA2	AlgorithmB	110									IV
	NSGA2		A12	p	A12	p	A12	p	A12	p	A12	p
TB010		SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
1 DUIU -	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TROFO	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050 —	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TD070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070 -	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TDOOO	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080 -	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TDOOO	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090 -	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100 -	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.1.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, ANU))

тр	A 1: 11 A	A 1: (1 D	P	ET	P	TR	A	NU	О	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 6020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.1.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	Pl	UU	О	FV	Н	IV
1 D	AigontilliA	Aigontillio	A12	р	A12	р	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	О	FV	H	IV
1 D	Aigonumia	Aigoriumb	A12	р	A12	р	A12	р	A12	р	A12	p
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01

A.1.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	UM	P	US	О	FV	H	IV
1 D	AigoriumiA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A	UM	P	US	О	FV	H	IV
1 D	AigoriumA	Aigoriumib	A12	p	A12	р	A12	р	A12	р	A12	р	A12	р
TB040	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.1.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM, ANU))

			Р	ET	P'	TR	A	UM	A	NU	О	FV	I I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	UM	A	NU	О	FV	I.	IV
1 D	AigoriumA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

A.1.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM, PUU))

ТВ	A loop with me A	A loonith on D	P	ET	P	TR	A	UM	P	UU	О	FV	H	IV
ID	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	Al	UM	PU	UU	О	FV	H	IV
10	AigontiiliA	Aigonnini	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.1.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUS, ANU))

TD	A1 '11 A	A1 '(1 D	P	ET	P	TR	P	US	A	NU	О	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
TED 010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TROOO	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TROSO	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.1.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUS, PUU))

TD	A 1: 11 A	A 1: (1 D	P	ET	P	TR	P	US	P	UU	О	FV	I.	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TD010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

A.1.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	PET		PTR		A	ANU		PUU		OFV		IV
10	AigonumiA	Aigoritimi	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	A 1 A	A loo with me D	P	ET	P	TR	A	NU	P	UU	О	FV	I	IV
1 D	AlgorithmA	AlgorithmB	A12	р	A12	р								
TDOO	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100 -	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

A.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

A.2.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 11. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	3633.57	3	< 0.01
	CTR	7178.62	3	< 0.01
TB010	UM	8213.57	3	< 0.01
	OFV	2877.07	3	< 0.01
	HV	244.18	3	< 0.01
	ET	9648.1	3	< 0.01
	CTR	10499.62	3	< 0.01
TB020	UM	14862.99	3	< 0.01
	OFV	149.87	3	< 0.01
	HV	290.11	3	< 0.01
TB030	ET	10545.4	3	< 0.01
1 0000	CTR	10245.03	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	18463.03	3	< 0.01
TB030	OFV	1679.26	3	< 0.01
	HV	334.68	3	< 0.01
	ET	11026.5	3	< 0.01
	CTR	9915.98	3	< 0.01
TB040	UM	19779.01	3	< 0.01
	OFV	2933.95	3	< 0.01
	HV	347.67	3	< 0.01
	ET	14399.06	3	< 0.01
	CTR	7984.73	3	< 0.01
TB050	UM	24128.73	3	< 0.01
	OFV	13177.95	3	< 0.01
	HV	351.66	3	< 0.01
	ET	16004.56	3	< 0.01
	CTR	7923.55	3	< 0.01
TB060	UM	23752.25	3	< 0.01
	OFV	15344.04	3	< 0.01
	HV	349.22	3	< 0.01
	ET	16394.56	3	< 0.01
	CTR	6793.54	3	< 0.01
TB070	UM	24403.62	3	< 0.01
	OFV	17480.22	3	< 0.01
	HV	344.85	3	< 0.01
	ET	18019.29	3	< 0.01
	CTR	6366.13	3	< 0.01
TB080	UM	24431.76	3	< 0.01
	OFV	19297.28	3	< 0.01
	HV	345.21	3	< 0.01
	ET	18222.34	3	< 0.01
	CTR	5781.01	3	< 0.01
TB090	UM	25390.28	3	< 0.01
	OFV	19604.71	3	< 0.01
	HV	351.41	3	< 0.01
	ET	16167.22	3	< 0.01
	CTR	4808.97	3	< 0.01
TB100	UM	26966.73	3	< 0.01
	OFV	17236.93	3	< 0.01
	HV	350.52	3	< 0.01

TABLE 12. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM))

ТВ	AlgorithmA	AlgorithmB	E	ET	C	TR	U	M	OFV		HV	
1 1 1	AiguittiiiA	Aigontillio	A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01

			I	ET	С	TR	U	J M	O	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	CellDE	< 0.5	<0.01	>0.5	<0.01	<0.1	< 0.01	< 0.5	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB030	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
FD0.40	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
EDOFO.	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TDOCO	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TDOOG	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TPOOO	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 13. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM))

ТВ	Metric		Rai	nk		Confidence					
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	1	4	2	30%	10%	40%	20%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB010	UM	1	3	2	4	10%	30%	20%	40%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	3	2	3	1	33%	22%	33%	11%		

TD	Metric Rank					Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB020	UM	1	3	2	4	10%	30%	20%	40%		
	OFV	2	3	3	1	22%	33%	33%	11%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB030	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
TD040	CTR	3 2	2	4	1	30%	20%	40%	10%		
TB040	UM OFV	2	3 3	1 1	4 4	20% 20%	30% 30%	10% 10%	40% 40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB050	UM	2	3	1	4	20%	30%	10%	40%		
10000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB060	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	2	1	38%	25%	25%	12%		
TB070	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	2	1	38%	25%	25%	12%		
TB080	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
TDOO	CTR	4	3	2	1	40%	30%	20%	10%		
TB090	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20% 30%	30% 20%	10%	40%		
	HV	3	2	4	1			40%	10%		
	ET CTR	3	2	2	1	30% 33%	20% 33%	40% 22%	10% 11%		
TB100	UM	3 2	3 3	1	1 4	20%	33%	10%	40%		
1 1 1 1 0 0	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	пν	3		4	1	30%	ZU%	4 U%	10%		

A.2.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 14. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS))

TB	Metric	ChiSq	DF	p
	ET	2835.25	3	< 0.01
	CTR	46.14	3	< 0.01
TB010	USP	104.7	3	< 0.01
	OFV	55.26	3	< 0.01
	HV	109.4	3	< 0.01

TB	Metric	ChiSq	DF	р
	ET	1875.35	3	< 0.01
	CTR	79.61	3	< 0.01
TB020	USP	79.69	3	< 0.01
	OFV	357.6	3	< 0.01
	HV	209.33	3	< 0.01
	ET	1524.13	3	< 0.01
	CTR	82.42	3	< 0.01
TB030	USP	12.75	3	< 0.01
	OFV	1099.09	3	< 0.01
	HV	262.93	3	< 0.01
	ET	1545.09	3	< 0.01
	CTR	11.63	3	< 0.01
TB040	USP	8.49	3	< 0.05
	OFV	1185.06	3	< 0.01
	HV	316.73	3	< 0.01
	ET	1001.17	3	< 0.01
	CTR	124.34	3	<0.01
TB050	USP	82.89	3	< 0.01
	OFV	1006.07	3	< 0.01
	HV	349.78	3	< 0.01
	ET	833.32	3	<0.01
	CTR	152.45	3	<0.01
TB060	USP	60.97	3	< 0.01
	OFV	839.92	3	<0.01
	HV	332.55	3	< 0.01
	ET	772.57	3	< 0.01
	CTR	99.62	3	< 0.01
TB070	USP	107.65	3	< 0.01
	OFV	771.59	3	< 0.01
	HV	332.76	3	< 0.01
	ET	874.91	3	< 0.01
	CTR	170.54	3	< 0.01
TB080	USP	16.29	3	< 0.01
	OFV	882.14	3	< 0.01
	HV	317.16	3	< 0.01
	ET	729.95	3	< 0.01
	CTR	187.35	3	< 0.01
TB090	USP	35.54	3	< 0.01
	OFV	732	3	< 0.01
	HV	299.7	3	< 0.01
	ET	640.35	3	< 0.01
	CTR	79.79	3	< 0.01
TB100	USP	57.27	3	< 0.01
	OFV	645.57	3	< 0.01
	HV	300.36	3	< 0.01

TABLE 15. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV	
10	AiguitimiA		A12	р	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
1 10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
TB020	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01

TD	A1 '-1 A	A1 '41 D	I	T	С	TR	U	SP	О	FV	I	ΙV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	>0.5	>0.05	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
12010	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	<0.01
TB060	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	<0.01	<0.1	< 0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	<0.01	>0.5	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	<0.01	< 0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	=0.5	>0.05	<0.1	<0.01	>0.9	<0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	<0.01	>0.5	< 0.01	>0.5	<0.01	<0.5	<0.01
TB070	NSGA2 MoCell	CellDE SPEA2	<0.1	<0.01 <0.01	<0.5 <0.5	<0.01 <0.01	<0.5 >0.5	<0.01 <0.01	<0.1 >0.9	<0.01 <0.01	>0.9 <0.1	<0.01 <0.01
	MoCell	CellDE	>0.9	< 0.01	< 0.5	< 0.01	<0.5	<0.01	<0.1	<0.01	>0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.01	>0.5	>0.01	<0.1	<0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	<0.01	>0.5	<0.01	>0.5	< 0.01	<0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	<0.5	<0.01	>0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.5	<0.05	>0.1	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	<0.05	<0.1	< 0.01	>0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	<0.03	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	< 0.5	>0.05	<0.5	<0.01	>0.5	< 0.01
	NSGA2	SPEA2	<0.5	< 0.01	>0.5	<0.01	>0.5	<0.01	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	<0.01	>0.5	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	<0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
mp	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
							L					

TABLE 16. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUS))

	3.5.4		Ra	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	2	25%	38%	12%	25%
TB010	USP	3	2	1	2	38%	25%	12%	25%
	OFV	2	2	1	1	33%	33%	17%	17%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
TB020	USP	1	2	3	2	12%	25%	38%	25%
	OFV	1	2	2	3	12%	25%	25%	38%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB030	USP	2	2	1	2	29%	29%	14%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	1	25%	25%	25%	25%
TB040	USP	1	1	1	1	25%	25%	25%	25%
	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
TB050	USP	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB060	USP	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	2	3	14%	14%	29%	43%
TB070	USP	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB080	USP	2	2	1	2	29%	29%	14%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB090	USP	2	2	1	3	25%	25%	12%	38%
-	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB100	USP	2	3	1	3	22%	33%	11%	33%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

A.2.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 17. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	8841.65	3	< 0.01
	CTR	231.33	3	< 0.01
TB010	NU	390.04	3	< 0.01
	OFV	231.66	3	< 0.01
	HV	96.23	3	< 0.01
	ET	4576.82	3	< 0.01
	CTR	188.49	3	< 0.01
TB020	NU	648	3	< 0.01
	OFV	599.33	3	< 0.01
	HV	189.27	3	< 0.01
	ET	4314.38	3	< 0.01
	CTR	65.14	3	< 0.01
TB030	NU	365.09	3	< 0.01
	OFV	2443.95	3	< 0.01
	HV	272.22	3	< 0.01
	ET	4779.46	3	< 0.01
	CTR	307.57	3	< 0.01
TB040	NU	129.98	3	< 0.01
	OFV	3636.78	3	< 0.01
	HV	307.32	3	< 0.01
	ET	5922.72	3	< 0.01
	CTR	983.7	3	< 0.01
TB050	NU	705.31	3	< 0.01
	OFV	5931.08	3	< 0.01
	HV	331.41	3	< 0.01
	ET	7749.79	3	< 0.01
	CTR	1652.21	3	< 0.01
TB060	NU	395.12	3	< 0.01
	OFV	7813.63	3	< 0.01
	HV	319.26	3	< 0.01
	ET	5732.36	3	< 0.01
	CTR	981.83	3	< 0.01
TB070	NU	92.06	3	< 0.01
	OFV	5722	3	< 0.01
	HV	289.15	3	< 0.01
	ET	4227.93	3	< 0.01
	CTR	1304.56	3	< 0.01
TB080	NU	568.98	3	< 0.01
	OFV	4239.94	3	< 0.01
	HV	258.79	3	< 0.01
	ET	3686.56	3	< 0.01
	CTR	1146.55	3	< 0.01
TB090	NU	1126.84	3	< 0.01
	OFV	3693.9	3	< 0.01
	HV	252.71	3	< 0.01
	ET	27654.24	3	< 0.01
	CTR	6256.79	3	< 0.01
TB100	NU	19244.85	3	< 0.01
	OFV	27868.45	3	< 0.01
	HV	327.31	3	< 0.01

TABLE 18. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU))

TD	A.1 '(1 A	A1 '(1 D	I	ET	С	TR	N	NU	О	FV	F	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TP010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010 -	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
[NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
į	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
								0.01		.0.01		
ļ	MoCell SPEA2	CellDE CellDE	<0.1 <0.1	<0.01 <0.01	<0.5 <0.5	<0.01 <0.01	<0.5 <0.5	<0.01 <0.01	<0.1 <0.1	<0.01 <0.01	>0.9	<0.01 <0.01

ТВ	AlgorithmA	AlgorithmB -	ET		CTR		NU		OFV		HV	
1 1	AigontilliA		A12	p								
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 19. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, ANU))

ТВ	Metric		Ra	nk			Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB010	NU	3	3	2	1	33%	33%	22%	11%		
	OFV	2	3	1	3	22%	33%	11%	33%		
	HV	2	1	3	1	29%	14%	43%	14%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	3	22%	33%	11%	33%		
TB020	NU	3	3	2	1	33%	33%	22%	11%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	3	1	33%	22%	33%	11%		
	CTR	1	4	2	3	10%	40%	20%	30%		
TB030	NU	4	3	2	1	40%	30%	20%	10%		
	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB040	NU	4	3	2	1	40%	30%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3	14%	29%	14%	43%		
TB050	NU	2	3	2	1	25%	38%	25%	12%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	3	2	4	10%	30%	20%	40%		
TB060	NU	1	2	1	1	20%	40%	20%	20%		
12000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB070	NU	2	3	2	1	25%	38%	25%	12%		
10070	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB080	NU	1	2	2	3	12%	25%	25%	38%		
1 0000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2			30%	20%	40%			
				4	1				10%		
TDOO	CTR	2	3	1	4	20%	30%	10%	40%		
TB090	NU	1	3	2	4	10%	30%	20%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		

ТВ	Metric		Rar	ık			Confic	lence	
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

A.2.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 20. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1915.44	3	< 0.01
	CTR	166.61	3	< 0.01
TB010	NUU	246.86	3	< 0.01
	OFV	200.45	3	< 0.01
	HV	151.78	3	< 0.01
	ET	2372.13	3	< 0.01
	CTR	146.9	3	< 0.01
TB020	NUU	76.83	3	< 0.01
	OFV	496.65	3	< 0.01
	HV	248.22	3	< 0.01
	ET	1860.15	3	< 0.01
	CTR	112	3	< 0.01
TB030	NUU	68.77	3	< 0.01
	OFV	1071.32	3	< 0.01
	HV	301.27	3	< 0.01
	ET	1467.08	3	< 0.01
	CTR	36.89	3	< 0.01
TB040	NUU	9.82	3	< 0.05
	OFV	894.28	3	< 0.01
	HV	308.6	3	< 0.01
	ET	760.62	3	< 0.01
	CTR	146.49	3	< 0.01
TB050	NUU	147.38	3	< 0.01
	OFV	755.59	3	< 0.01
	HV	345.68	3	< 0.01
	ET	782.76	3	< 0.01
	CTR	117.89	3	< 0.01
TB060	NUU	118.2	3	< 0.01
	OFV	778.39	3	< 0.01
	HV	338.66	3	< 0.01
	ET	663.47	3	< 0.01
	CTR	151.95	3	< 0.01
TB070	NUU	96.46	3	< 0.01
	OFV	661.02	3	< 0.01
	HV	338.08	3	< 0.01
	ET	698.56	3	< 0.01
	CTR	113.91	3	< 0.01
TB080	NUU	61.12	3	< 0.01
	OFV	697.92	3	< 0.01
	HV	319.58	3	< 0.01
	ET	759.66	3	< 0.01
	CTR	87.88	3	< 0.01
TB090	NUU	75.35	3	< 0.01
	OFV	766.26	3	< 0.01
	HV	315.82	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	ET	710.67	3	< 0.01
	CTR	128.71	3	< 0.01
TB100	NUU	55.63	3	< 0.01
	OFV	716.48	3	< 0.01
	HV	311	3	< 0.01

TABLE 21. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUU))

			I	ET	С	TR	N	NUU		OFV		HV	
TB	AlgorithmA	AlgorithmB	A12	р									
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	<0.01	< 0.5	< 0.01	>0.5	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	
TED 04.0	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	
TB010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	
	SPEA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	
TD020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
1 0030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
12000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
15070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	NUU		OFV		HV	
1 1 1	AigontilliA	Aigontillio	A12	p								
TB080	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 00 90	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 22. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUU))

TD	Matri		Ra	nk			Confic	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	2	25%	38%	12%	25%
TB010	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	1	29%	43%	14%	14%
	HV	2	1	3	1	29%	14%	43%	14%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB020	NUU	2	3	1	2	25%	38%	12%	25%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB030	NUU	2	2	1	2	29%	29%	14%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	2	29%	29%	14%	29%
TB040	NUU	2	2	1	1	33%	33%	17%	17%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB050	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
TB060	NUU	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
TB070	NUU	1	1	2	3	14%	14%	29%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB080	CTR	1	2	1	3	14%	29%	14%	43%
	NUU	1	1	1	2	20%	20%	20%	40%

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	OFV	2	3	1	4	20%	30%	10%	40%
1 0000	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
TB090	NUU	1	2	1	3	14%	29%	14%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB100	NUU	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

A.2.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 23. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUS))

TB	Metric	ChiSq	DF	p
	ET	5588.83	3	< 0.01
	CTR	9667.94	3	< 0.01
TB010	UM	8372.77	3	< 0.01
10010	USP	5160.22	3	< 0.01
	OFV	6046.32	3	< 0.01
	HV	225.41	3	< 0.01
	ET	9745.54	3	< 0.01
	CTR	13233.72	3	< 0.01
TB020	UM	14419.07	3	< 0.01
1 0020	USP	9045.72	3	< 0.01
	OFV	3923.04	3	< 0.01
	HV	240.12	3	< 0.01
	ET	9018.22	3	< 0.01
	CTR	13360.69	3	< 0.01
TB030	UM	17132.87	3	< 0.01
1 0030	USP	8099.9	3	< 0.01
	OFV	193.5	3	< 0.01
	HV	284.81	3	< 0.01
	ET	12146.62	3	< 0.01
	CTR	12850.38	3	< 0.01
TD040	UM	17071.38	3	< 0.01
TB040	USP	7876.4	3	< 0.01
	OFV	525.73	3	< 0.01
	HV	296.35	3	< 0.01
	ET	13545.72	3	< 0.01
	CTR	10346.18	3	< 0.01
TB050	UM	20740.31	3	< 0.01
1 0000	USP	5989.35	3	< 0.01
	OFV	8998.3	3	< 0.01
	HV	321.77	3	< 0.01
	ET	14641.74	3	< 0.01
	CTR	10418.48	3	< 0.01
TB060	UM	21521.83	3	< 0.01
I DUOU	USP	5501.98	3	< 0.01
	OFV	11597.38	3	< 0.01
	HV	315.9	3	< 0.01
TD070	ET	15571.27	3	< 0.01
TB070	CTR	9238.82	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	21528.76	3	< 0.01
TB070	USP	6066.41	3	< 0.01
1 0070	OFV	14178.12	3	< 0.01
	HV	315.4	3	< 0.01
	ET	15246.08	3	< 0.01
	CTR	9040.51	3	< 0.01
TB080	UM	21560.56	3	< 0.01
1 0000	USP	5746.66	3	< 0.01
	OFV	15219.95	3	< 0.01
	HV	323.02	3	< 0.01
	ET	15454.15	3	< 0.01
	CTR	8955.08	3	< 0.01
TB090	UM	23581.32	3	< 0.01
1 0090	USP	6403.79	3	< 0.01
	OFV	15619.22	3	< 0.01
	HV	324.11	3	< 0.01
	ET	16574.3	3	< 0.01
	CTR	7363.56	3	< 0.01
TB100	UM	24746.64	3	< 0.01
10100	USP	5070.68	3	< 0.01
	OFV	17127.15	3	< 0.01
	HV	335.59	3	< 0.01

TABLE 24. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUS))

ТВ	A 1 A	A la a si the see D	I	ET	C	TR	U	M	U	SP	О	FV	I	IV
1 B	AlgorithmA	AlgorithmB	A12	p	A12	р	A12	p	A12	p	A12	р	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

	<u> </u>		F	ET	С	TR	I	M	I	SP	0	FV	F	IV
TB	AlgorithmA	AlgorithmB	A12	p	A12	р	A12	p	A12	р	A12	p	A12	р
	NSGA2	MoCell	< 0.5	<0.01	>0.5	<0.01	<0.5	< 0.01	>0.5	>0.05	< 0.5	<0.01	>0.9	<0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TTD0 60	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 00/0	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 1 100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 25. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	1	4	2	30%	10%	40%	20%
	CTR	3	2	4	1	30%	20%	40%	10%
TB010	UM	2	1	3	4	20%	10%	30%	40%
1 0010	USP	3	2	4	1	30%	20%	40%	10%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	2	2	1	38%	25%	25%	12%
	ET	2	1	3	1	29%	14%	43%	14%
	CTR	3	2	4	1	30%	20%	40%	10%
TB020	UM	1	1	1	2	20%	20%	20%	40%
1 0020	USP	4	2	3	1	40%	20%	30%	10%
	OFV	3	4	2	1	30%	40%	20%	10%
	HV	3	2	2	1	38%	25%	25%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
1 0000	USP	3	2	2	1	38%	25%	25%	12%
	OFV	3	4	2	1	30%	40%	20%	10%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
TB040	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%

TD	M-1		Ra	nk		Confid	lence		
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	USP	4	2	3	1	40%	20%	30%	10%
TB040	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB050	UM	2	3	1	4	20%	30%	10%	40%
1 0000	USP	3	3	2	1	33%	33%	22%	11%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB060	UM	2	3	1	4	20%	30%	10%	40%
1 0000	USP	3	3	2	1	33%	33%	22%	11%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
TB070	UM	2	3	1	4	20%	30%	10%	40%
1 D07 U	USP	3	3	2	1	33%	33%	22%	11%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
TB080	UM	2	3	1	4	20%	30%	10%	40%
1 0000	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	2	1	38%	25%	25%	12%
TB090	UM	2	3	1	4	20%	30%	10%	40%
1 0090	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
TB100	UM	2	3	1	4	20%	30%	10%	40%
1 D100	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

A.2.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 26. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, ANU))

TB	Metric	ChiSq	DF	p
	ET	1764.18	3	< 0.01
	CTR	4593.89	3	< 0.01
TB010	UM	7618.38	3	< 0.01
10010	NU	6558.01	3	< 0.01
	OFV	1245.26	3	< 0.01
	HV	311.91	3	< 0.01
	ET	1772.98	3	< 0.01
	CTR	8072.03	3	< 0.01
TB020	UM	16005.9	3	< 0.01
	NU	10881.09	3	< 0.01
	OFV	413.5	3	< 0.01

TB	Metric	ChiSq	DF	p
TB020	HV	322.55	3	< 0.01
	ET	3829	3	< 0.01
	CTR	7675.22	3	< 0.01
TD020	UM	16734.77	3	< 0.01
TB030	NU	12032.63	3	< 0.01
	OFV	3136.79	3	< 0.01
	HV	308.83	3	< 0.01
	ET	4405.2	3	< 0.01
	CTR	7720.82	3	< 0.01
TB040	UM	16936.03	3	< 0.01
1 DU4U	NU	12431.03	3	< 0.01
	OFV	3839.47	3	< 0.01
	HV	319.13	3	< 0.01
	ET	6934.64	3	< 0.01
	CTR	5512.03	3	< 0.01
TB050	UM	16632.38	3	< 0.01
1 0000	NU	14445.36	3	< 0.01
	OFV	8632	3	< 0.01
	HV	323.61	3	< 0.01
	ET	7262.75	3	< 0.01
	CTR	5149.9	3	< 0.01
TDOCO	UM	17071.86	3	< 0.01
TB060	NU	15071.38	3	< 0.01
	OFV	9182.83	3	< 0.01
	HV	326.71	3	< 0.01
	ET	7795.92	3	< 0.01
	CTR	4508.42	3	< 0.01
TB070	UM	17036.82	3	< 0.01
1 0070	NU	15833.48	3	< 0.01
	OFV	9768.75	3	< 0.01
	HV	330.08	3	< 0.01
	ET	8804.58	3	< 0.01
	CTR	3933.67	3	< 0.01
TB080	UM	17480.82	3	< 0.01
1 0000	NU	16415.63	3	< 0.01
	OFV	10778.7	3	< 0.01
	HV	347.75	3	< 0.01
	ET	7836.56	3	< 0.01
	CTR	3749.19	3	< 0.01
TB090	UM	17199.18	3	< 0.01
15070	NU	17495.25	3	< 0.01
	OFV	9361.4	3	< 0.01
	HV	343.1	3	< 0.01
	ET	8046.53	3	< 0.01
	CTR	3653.41	3	< 0.01
TB100	UM	15623.16	3	< 0.01
15100	NU	19301.74	3	< 0.01
	OFV	9051.11	3	< 0.01
	HV	353.03	3	< 0.01

TABLE 27. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, ANU))

TB AlgorithmA A		AlgorithmB	F	ET	C	TR	U	M	N	IU	0	FV	Н	IV
10	Aigonumia	Aigoritimi	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01

TB		p <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TB010		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
NSGA2 MoCell Co.5 Co.01 Co		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TB020	5	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TB020		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
MoCell CellDE <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SPEA2 CelIDE <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0.00 <0.5 <0		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
NSGA2	1 >0.5 < 1 <0.5 < 1 <0.5 < 1 <0.7 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 < 1 <0.1 <0.	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TB030		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TB030	>0.9 <	<0.01 <0.01 <0.01 <0.01 <0.01
MoCell SPEA2 So.5 Co.01 Co.5 Co.01 So.5 Co.01 So.5 Co.01 So.5 Co.01 SPEA2 CellDE Co.5 Co.01 So.5 Co.01 Co.5 Co.01	\(< 0.1 \) \(< \) \(< 0.5 \) \(< \) \(< 0.5 \) \(< 0.1 \) \(< 0.1 \) \(< 0.1 \) \(< 0.9 \) \(< 0.1 \) \(< 0.9 \) \(< 0.1 \) \(< 0.9 \) \(< 0.9 \) \(< 0.1 \)	<0.01 <0.01 <0.01 <0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 >0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1 >0.9 < 1 >0.9 < 1 >0.5 < 1 <0.1 < 1 >0.9 <	<0.01 <0.01 <0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0	1 >0.9 < 1 >0.5 < 1 <0.1 < 1 >0.9 <	<0.01 <0.01
NSGA2	1 >0.5 < 1 <0.1 < 1 >0.9 <	< 0.01
NSGA2 SPEA2 SO.5 SO.01 SO.5 SO.01 SO.5 SO.01 SO.5 SO.01 SO.5 SO.00 SO.5 SO.01 SO.5 SO.00 SO.01 SO.5 SO.00 SO.5 SO.01 SO.5 SO.	1 <0.1 <	
TB040	1 >0.9 <	
MoCell SPEA2 SO.5 SO.01 SO.5 SO.01 SO.5 SO.01 SO.5 SO.01 SO.5 SO.00 SPEA2 CellDE SPEA2 SPEA2 SO.01 SO.5		< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <	<0.1	< 0.01
TB050		<0.01 <0.01
TB050 NSGA2 NSGA2 SPEA2 SPEA2 SO.5 SO.01 SPEA2 SO.5 SPEA2 SO.01 SPEA2 SPEA2 SO.01 SO.01 SPEA2 SPEA2 SO.01 SO		< 0.01
TB050		< 0.01
TB050		< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0		< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <		< 0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.5 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00 <0.05 <0.00		< 0.01
NSGA2 MoCell <0.5 <0.01 <0.5 <0.01 >0.5 >0.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0		< 0.01
TB060		< 0.01
TB060		< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0		< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0		< 0.01
SPEA2 CelIDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.05 <0.00 NSGA2 MoCell <0.5		< 0.01
NSGA2 MoCell <0.5 <0.01 <0.5 <0.05 >0.5 <0.05 <0.01 <0.5 <0.0		< 0.01
		< 0.01
		< 0.01
NSGA2 CellDF < 0.5 < 0.01 > 0.5 < 0.01 < 0.5 < 0.01 < 0.5 < 0.01 < 0.5 < 0.01		< 0.01
TB070 MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.		< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01		< 0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.0 <0.0 <		< 0.01
NSGA2 MoCell <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01	1 >0.5 <	< 0.01
NSGA2 SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01		< 0.01
NSGA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01	1 >0.9 <	< 0.01
TB080 MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.	l <0.1 <	< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01	1 >0.9 <	< 0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	1 >0.9 <	< 0.01
NSGA2 MoCell <0.5 <0.01 >0.5 >0.05 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01	1 >0.5 <	< 0.01
NSGA2 SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.0		< 0.01
TB090 NSGA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01	1 >0.9 <	< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.0	l <0.1 <	< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	L > 0.0	< 0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.0 <0.0		< 0.01
NSGA2 MoCell <0.5 <0.01 >0.5 >0.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.00	1 >0.9 <	< 0.01
NSGA2 SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.0	1 >0.9 <	< 0.01
TB100 NSGA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	1 >0.9 < 1 >0.5 < 1 <0.1 <	
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.0	1 >0.9 < 1 >0.5 < 1 <0.1 < 1 >0.9 <	< 0.01
MoCell CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01	>0.9 <	<0.01 <0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.05 <0.00	1 >0.9 < 1 >0.5 < 1 <0.1 < 1 >0.9 < 1 <0.1 < 1 >0.9 <	< 0.01

TABLE 28. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, ANU))

			Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	1	4	2	30%	10%	40%	20%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TD010	UM	2	3	1	4	20%	30%	10%	40%			
TB010	NU	3	4	1	2	30%	40%	10%	20%			
	OFV	3	4	2	1	30%	40%	20%	10%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TD020	UM	3	2	1	4	30%	20%	10%	40%			
TB020	NU	2	4	1	3	20%	40%	10%	30%			
	OFV	1	3	1	2	14%	43%	14%	29%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TDOO	UM	2	2	1	3	25%	25%	12%	38%			
TB030	NU	2	3	1	3	22%	33%	11%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TD040	UM	2	2	1	3	25%	25%	12%	38%			
TB040	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TB050	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TB060	UM	2	2	1	3	25%	25%	12%	38%			
1 0000	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TB070	UM	3	2	1	4	30%	20%	10%	40%			
1 0070	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB080	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TPOOO	UM	2	3	1	4	20%	30%	10%	40%			
TB090	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

ТВ	Metric		Rai	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	3	1	25%	25%	38%	12%		
TB100	UM	2	3	1	4	20%	30%	10%	40%		
10100	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		

A.2.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 29. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	4733.9	3	< 0.01
	CTR	8477.29	3	< 0.01
TD010	UM	8940.23	3	< 0.01
TB010	NUU	8581.67	3	< 0.01
	OFV	6493.22	3	< 0.01
	HV	248.35	3	< 0.01
	ET	11748.7	3	< 0.01
	CTR	12328.77	3	< 0.01
TD000	UM	15417.7	3	< 0.01
TB020	NUU	12552.5	3	< 0.01
	OFV	5889.18	3	< 0.01
	HV	270.92	3	< 0.01
	ET	11479.12	3	< 0.01
	CTR	11994.87	3	< 0.01
TTD020	UM	18136.47	3	< 0.01
TB030	NUU	12337.27	3	< 0.01
	OFV	2058.67	3	< 0.01
	HV	268.29	3	< 0.01
	ET	13442.26	3	< 0.01
	CTR	11379.27	3	< 0.01
TTD0 40	UM	19658.46	3	< 0.01
TB040	NUU	11654.87	3	< 0.01
	OFV	980.37	3	< 0.01
	HV	289.48	3	< 0.01
	ET	16858.46	3	< 0.01
	CTR	9455.16	3	< 0.01
TROFO	UM	22018.79	3	< 0.01
TB050	NUU	9988.89	3	< 0.01
	OFV	2995.11	3	< 0.01
	HV	320.25	3	< 0.01
	ET	16186.81	3	< 0.01
	CTR	8439.27	3	< 0.01
TB060	UM	22504.49	3	< 0.01
1 DUOU	NUU	8859.32	3	< 0.01
	OFV	5585.71	3	< 0.01
	HV	319.11	3	< 0.01
	ET	17864.64	3	< 0.01
	CTR	7614.74	3	< 0.01
TB070	UM	22545.4	3	< 0.01
1 DU/U	NUU	8119.05	3	< 0.01
	OFV	9428.79	3	< 0.01
	HV	325.75	3	< 0.01
TB080	ET	17390.06	3	< 0.01
1 0000	CTR	7954.08	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	UM	23437.45	3	< 0.01
TB080	NUU	8444.76	3	< 0.01
1 0000	OFV	10966.55	3	< 0.01
	HV	336.57	3	< 0.01
	ET	16836.72	3	< 0.01
	CTR	7710.76	3	< 0.01
TB090	UM	23961.86	3	< 0.01
1 0090	NUU	8397.5	3	< 0.01
	OFV	12239.73	3	< 0.01
	HV	339.42	3	< 0.01
	ET	15812.23	3	< 0.01
	CTR	6755.84	3	< 0.01
TB100	UM	26878.67	3	< 0.01
10100	NUU	7129.24	3	< 0.01
	OFV	13592.67	3	< 0.01
	HV	336.74	3	< 0.01

TABLE 30. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUU))

ТВ	AlgorithmA	AlgorithmB		ET	С	TR	ι	M	N	UU	О	FV	ŀ	ΗV
1 D	AigorithmA	Aigorithmb	A12	р	A12	p	A12	p	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 DU40	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 D000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

TED	A1 '-1 A	A1 '41 D	I	ET	С	TR	U	M	N	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0070	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 1 1 1 1 0 0	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 31. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUU))

ТВ	Metric		Rai	nk		Confidence						
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	1	4	2	30%	10%	40%	20%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB010	UM	1	2	3	4	10%	20%	30%	40%			
1 10010	NUU	3	2	4	1	30%	20%	40%	10%			
	OFV	3	2	4	1	30%	20%	40%	10%			
	HV	4	3	2	1	40%	30%	20%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB020	UM	1	1	2	3	14%	14%	29%	43%			
1 0020	NUU	3	2	4	1	30%	20%	40%	10%			
	OFV	2	2	3	1	25%	25%	38%	12%			
	HV	4	3	2	1	40%	30%	20%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB030	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NUU	3	2	4	1	30%	20%	40%	10%			
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB040	UM	2	3	1	4	20%	30%	10%	40%			
1 0040	NUU	3	2	4	1	30%	20%	40%	10%			
	OFV	2	4	3	1	20%	40%	30%	10%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB050	CTR	3	2	4	1	30%	20%	40%	10%			
	UM	2	3	1	4	20%	30%	10%	40%			

TD	M-1		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	3	2	4	1	30%	20%	40%	10%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TB060	UM	2	3	1	4	20%	30%	10%	40%			
1 DUOU	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TB070	UM	2	3	1	4	20%	30%	10%	40%			
1 007 0	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TB080	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TB090	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	3	2	1	33%	33%	22%	11%			
TB100	UM	2	3	1	4	20%	30%	10%	40%			
1 D100	NUU	3	3	2	1	33%	33%	22%	11%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

A.2.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 32. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	9342.6	3	< 0.01
	CTR	121.28	3	< 0.01
TB010	USP	177.7	3	< 0.01
10010	NU	589.4	3	< 0.01
	OFV	188.03	3	< 0.01
	HV	62.37	3	< 0.01
	ET	6071.64	3	< 0.01
	CTR	711.91	3	< 0.01
TB020	USP	379.92	3	< 0.01
1 0020	NU	956.32	3	< 0.01
	OFV	1239.7	3	< 0.01
	HV	177.27	3	< 0.01
	ET	4826.36	3	< 0.01
	CTR	317.27	3	< 0.01
TB030	USP	32.59	3	< 0.01
	NU	454.12	3	< 0.01
	OFV	3253.46	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB030	HV	271.77	3	< 0.01
	ET	5872.83	3	< 0.01
	CTR	270.93	3	< 0.01
TB040	USP	146.28	3	< 0.01
1 DU4U	NU	346.89	3	< 0.01
	OFV	4448.6	3	< 0.01
	HV	279.2	3	< 0.01
	ET	9799.21	3	< 0.01
	CTR	1925.74	3	< 0.01
TB050	USP	741.81	3	< 0.01
1 0000	NU	170.49	3	< 0.01
	OFV	9919.18	3	< 0.01
	HV	317.56	3	< 0.01
	ET	8947.41	3	< 0.01
	CTR	1633.53	3	< 0.01
TB060	USP	609.2	3	< 0.01
1 0000	NU	190.16	3	< 0.01
	OFV	9037.78	3	< 0.01
	HV	292.78	3	< 0.01
	ET	5965.81	3	< 0.01
	CTR	1350.2	3	< 0.01
TB070	USP	382.73	3	< 0.01
10070	NU	258.33	3	< 0.01
	OFV	5993.69	3	< 0.01
	HV	274	3	< 0.01
	ET	4163.67	3	< 0.01
	CTR	1041.16	3	< 0.01
TB080	USP	421.73	3	< 0.01
12000	NU	772.54	3	< 0.01
	OFV	4169.51	3	< 0.01
	HV	233.34	3	< 0.01
	ET	3400.07	3	< 0.01
	CTR	1068.9	3	< 0.01
TB090	USP	275.2	3	<0.01
	NU	1048.94	3	<0.01
	OFV	3395.54	3	<0.01
	HV	225.28	3	<0.01
	ET	26330.41	3	<0.01
	CTR	6114.95	3	<0.01
TB100	USP	4379.79	3	<0.01
	NU	19146.76	3	<0.01
	OFV	26777.5	3	<0.01
	HV	311.15	3	< 0.01

TABLE 33. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, ANU))

ТВ	AlgorithmA	AlgorithmB	l I	ET	C	CTR		USP		IU	OFV		HV	
10	Aiguittilia	Aigoriumb	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

TED	A1 '-1 A	A1 '41 D	ET		TR	U	SP	N	NU	О	FV	I	ΙV
TB	AlgorithmA	AlgorithmB	A12 p	A12	р	A12	р	A12	р	A12	р	A12	р
	MoCell	SPEA2	>0.9 < 0.0		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	MoCell	CellDE	<0.1 <0.0	1 >0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1 <0.0		< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	<0.5 <0.0		< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD020	NSGA2	CellDE	<0.1 <0.0		< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SPEA2	>0.5 < 0.0		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	<0.1 <0.0		>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1 <0.0		< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	<0.5 <0.0		< 0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05
TD040	NSGA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SPEA2	>0.9 <0.0		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	<0.1 <0.0		>0.05	>0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5 <0.0	1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TD050	NSGA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SPEA2	>0.9 <0.0		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	<0.1 <0.0		< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5 <0.0		< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD 0.60	NSGA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SPEA2	>0.9 <0.0		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	<0.1 <0.0	1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5 < 0.0		< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
ED 0 5 0	NSGA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SPEA2	>0.5 < 0.0	1 >0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5 < 0.0	1 >0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
TDOOO	NSGA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SPEA2	>0.5 < 0.0	1 >0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	>0.5 < 0.0	1 >0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TROOG	NSGA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SPEA2	>0.5 < 0.0	1 >0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5 <0.0		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD100	NSGA2	CellDE	<0.1 <0.0		< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.9 <0.0	1 >0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	<0.1 <0.0	1 >0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1 <0.0	1 < 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	1	I .	<u> </u>		1	-		1			1	1	

TABLE 34. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, ANU))

	35.1		Ra	nk		Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	1	20%	40%	20%	20%		
TB010	USP	3	4	2	1	30%	40%	20%	10%		
1 0010	NU	4	3	2	1	40%	30%	20%	10%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	2	25%	38%	12%	25%		
TB020	USP	2	3	1	1	29%	43%	14%	14%		
10020	NU	3	4	2	1	30%	40%	20%	10%		
	OFV	2	4	1	3	20%	40%	10%	30%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	2	3	1	3	22%	33%	11%	33%		
TB030	USP	1	2	1	1	20%	40%	20%	20%		
	NU	3	1	2	1	43%	14%	29%	14%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	2	3	1	3	22%	33%	11%	33%		
TB040	USP	1	4	2	3	10%	40% 25%	20%	30%		
	NU OFV	3	2 3	1	2	38% 20%	30%	12%	25%		
		2 3		1	4		22%	10%	40%		
	HV ET	3	2	3	1	33%		33%	11%		
	CTR		3	4	1	30%	20% 30%	40%	10%		
	USP	2 2	3	1 1	3	20% 22%	30%	10% 11%	40% 33%		
TB050	NU	1	3	2	1	14%	43%	29%	14%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	3	2	4	10%	30%	20%	40%		
	USP	1	3	2	4	10%	30%	20%	40%		
TB060	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
	USP	1	2	1	3	14%	29%	14%	43%		
TB070	NU	1	2	2	3	12%	25%	25%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TDOO	USP	2	3	1	4	20%	30%	10%	40%		
TB080	NU	1	2	2	3	12%	25%	25%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	2	2	3	1	25%	25%	38%	12%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3	14%	29%	14%	43%		
TB090	USP	1	2	1	3	14%	29%	14%	43%		
1 DU9U	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	2	2	2	1	29%	29%	29%	14%		

ТВ	Metric		Rai	ık		Confidence						
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	4	1	3	20%	40%	10%	30%			
TB100	USP	2	4	1	3	20%	40%	10%	30%			
10100	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

A.2.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 35. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, PUU))

TB	Metric	ChiSq	DF	p
	ET	3124.56	3	< 0.01
	CTR	303.16	3	< 0.01
TB010	USP	67.96	3	< 0.01
1 DO 10	NUU	384.57	3	< 0.01
	OFV	329.93	3	< 0.01
	HV	141.16	3	< 0.01
	ET	2680.52	3	< 0.01
	CTR	108.44	3	< 0.01
TB020	USP	38.06	3	< 0.01
10020	NUU	106.88	3	< 0.01
	OFV	370.64	3	< 0.01
	HV	180.57	3	< 0.01
	ET	2223.45	3	< 0.01
	CTR	58.31	3	< 0.01
TB030	USP	7.68	3	>0.05
10030	NUU	9.59	3	< 0.05
	OFV	1159.47	3	< 0.01
	HV	267.58	3	< 0.01
	ET	1881.93	3	< 0.01
	CTR	95.27	3	< 0.01
TB040	USP	42.58	3	< 0.01
10040	NUU	48.12	3	< 0.01
	OFV	1318.4	3	< 0.01
	HV	286.5	3	< 0.01
	ET	1129.57	3	< 0.01
	CTR	244.29	3	< 0.01
TB050	USP	32.43	3	< 0.01
10000	NUU	104.47	3	< 0.01
	OFV	1114.42	3	< 0.01
	HV	331.31	3	< 0.01
	ET	1040.51	3	< 0.01
	CTR	137.34	3	< 0.01
TB060	USP	33.73	3	< 0.01
10000	NUU	95.41	3	< 0.01
	OFV	1038.41	3	< 0.01
	HV	314.48	3	< 0.01
	ET	1030.89	3	< 0.01
	CTR	108.5	3	< 0.01
TB070	USP	26.06	3	< 0.01
120.0	NUU	84.71	3	< 0.01
	OFV	1023.51	3	< 0.01
	HV	325.98	3	< 0.01
TB080	ET	865.35	3	< 0.01
12000	CTR	148.16	3	< 0.01

TB	Metric	ChiSq	DF	p
	USP	29.9	3	< 0.01
TB080	NUU	135.9	3	< 0.01
1 0000	OFV	855.2	3	< 0.01
	HV	303.3	3	< 0.01
	ET	819.86	3	< 0.01
	CTR	174.04	3	< 0.01
TB090	USP	57.86	3	< 0.01
1 0090	NUU	133.01	3	< 0.01
	OFV	824	3	< 0.01
	HV	288.95	3	< 0.01
	ET	868.4	3	< 0.01
	CTR	100.09	3	< 0.01
TB100	USP	68.35	3	< 0.01
10100	NUU	46.54	3	< 0.01
	OFV	873.91	3	< 0.01
	HV	277.79	3	< 0.01

TABLE 36. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	Alaasith m D	I	ET	С	TR	U	SP	N	UU	0	FV	I	IV
1 D	AlgorithmA	AlgorithmB	A12	p	A12	p	A12	р	A12	p	A12	p	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

			I	ET	С	TR	U	SP	N	UU	O	FV	F	IV
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 37. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, PUU))

ТВ	Metric		Rai	nk		Confidence					
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	4	2	1	30%	40%	20%	10%		
TB010	USP	2	2	1	1	33%	33%	17%	17%		
1 0010	NUU	2	3	1	1	29%	43%	14%	14%		
	OFV	2	3	1	1	29%	43%	14%	14%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB020	USP	2	2	2	1	29%	29%	29%	14%		
1 D020	NUU	2	3	1	1	29%	43%	14%	14%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB030	USP	1	2	1	2	17%	33%	17%	33%		
1 0030	NUU	1	2	1	2	17%	33%	17%	33%		
	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB040	USP	2	2	1	2	29%	29%	14%	29%		
1 DU4U	NUU	2	3	1	3	22%	33%	11%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
TB050	CTR	2	2	1	3	25%	25%	12%	38%		
	USP	2	2	1	2	29%	29%	14%	29%		

TD	Matri		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	2	2	1	3	25%	25%	12%	38%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	3	14%	29%	14%	43%			
TB060	USP	2	2	1	3	25%	25%	12%	38%			
1 DUOU	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB070	USP	1	1	1	2	20%	20%	20%	40%			
1 D07 0	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB080	USP	1	1	1	2	20%	20%	20%	40%			
1 0000	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB090	USP	2	2	1	2	29%	29%	14%	29%			
1 D090	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB100	USP	2	2	1	3	25%	25%	12%	38%			
1 0100	NUU	1	2	1	3	14%	29%	14%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			

A.2.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 38. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU, PUU))

TB	Metric	ChiSq	DF	p
	ET	10860.38	3	< 0.01
	CTR	283.83	3	< 0.01
TB010	NU	243.01	3	< 0.01
10010	NUU	194.95	3	< 0.01
	OFV	225.93	3	< 0.01
	HV	79.74	3	< 0.01
	ET	6854.74	3	< 0.01
	CTR	98.42	3	< 0.01
TB020	NU	727.91	3	< 0.01
1 0020	NUU	313.31	3	< 0.01
	OFV	376.19	3	< 0.01
	HV	193.43	3	< 0.01
	ET	5972.91	3	< 0.01
	CTR	435.74	3	< 0.01
TB030	NU	265.06	3	< 0.01
	NUU	411.92	3	< 0.01
	OFV	3379.61	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	272.27	3	< 0.01
	ET	6258.67	3	< 0.01
	CTR	423.84	3	< 0.01
TB040	NU	190.2	3	< 0.01
1 DU4U	NUU	333.86	3	< 0.01
	OFV	4003.92	3	< 0.01
	HV	297.04	3	< 0.01
	ET	10495.55	3	< 0.01
	CTR	2581.52	3	< 0.01
TB050	NU	565.27	3	< 0.01
1 0000	NUU	1840.42	3	< 0.01
	OFV	10574.05	3	< 0.01
	HV	328.59	3	< 0.01
	ET	8683.48	3	< 0.01
	CTR	2371.61	3	< 0.01
TB060	NU	353.35	3	< 0.01
1 DUOU	NUU	1793.97	3	< 0.01
	OFV	8680.85	3	< 0.01
	HV	311.57	3	< 0.01
	ET	5346.74	3	< 0.01
	CTR	1243.37	3	< 0.01
TB070	NU	139.68	3	< 0.01
1 D07 U	NUU	1079.2	3	< 0.01
	OFV	5407.61	3	< 0.01
	HV	276.29	3	< 0.01
	ET	4583.76	3	< 0.01
	CTR	1257.47	3	< 0.01
TB080	NU	1059.68	3	< 0.01
1 0000	NUU	960.97	3	< 0.01
	OFV	4592.6	3	< 0.01
	HV	241.17	3	< 0.01
	ET	3743.28	3	< 0.01
	CTR	1204.04	3	< 0.01
TB090	NU	1239.21	3	< 0.01
10070	NUU	1187.55	3	< 0.01
	OFV	3767.03	3	< 0.01
	HV	236.65	3	< 0.01
	ET	25741.51	3	< 0.01
	CTR	7091.26	3	< 0.01
TB100	NU	18532.45	3	< 0.01
15100	NUU	6580.68	3	< 0.01
	OFV	26271.49	3	< 0.01
	HV	325.11	3	< 0.01

TABLE 39. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	F	ET	CTR		NU		NUU		OFV		HV	
10	AigoriumiA	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
	MoCell	CellDE	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

TD	A 1: 11 A	A 1: (1 D	I	ET	С	TR	N	NU	N	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р										
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TDOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TP040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 40. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, ANU, PUU))

	25.4	Rank			Confidence				
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
TB010	CTR	2	2	1	3	25%	25%	12%	38%
	NU	3	4	2	1	30%	40%	20%	10%
	NUU	3	3	1	2	33%	33%	11%	22%
	OFV	3	3	1	2	33%	33%	11%	22%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	4	2	3	10%	40%	20%	30%
TR020	NU	3	2	3	1	33%	22%	33%	11%
TB020	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
TB030	NU	4	2	3	1	40%	20%	30%	10%
1 0000	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
TB040	NU	3	2	4	1	30%	20%	40%	10%
10040	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	3	2	4	10%	30%	20%	40%
TB050	NU	3	4	1	2	30%	40%	10%	20%
12000	NUU	1	3	2	3	11%	33%	22%	33%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB060	NU	1	2	1	2	17%	33%	17%	33%
	NUU	1	2	1	3	14%	29%	14%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
TB070	NU	1	3	2	4	10%	30%	20%	40%
	NUU	1	2	1	3	14%	29%	14%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB080	CTR	1	2	1	3	14%	29%	14%	43%
	NU	1	2	2	3	12%	25%	25%	38%
	NUU	1	3	2	4	10%	30%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB090	CTR	2	3	1	4	20%	30%	10%	40%
	NU	1	2	2	3	12%	25%	25%	38%
	NUU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	2	3	1	25%	25%	38%	12%

ТВ	Metric	Rank			Confidence				
		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB100	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	NU	2	3	1	4	20%	30%	10%	40%
	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

A.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

 ${\it TABLE~41} \\ {\it Results~for~the~Kruskal-Wallis~Test~among~Test~Case~Prioritization~Problems~(AW1)} \\$

Metric	ChiSq	DF	p
ANOU	55751.20	10	< 0.01

TABLE 42. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW1)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_UM	ET_CTR_USP	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_UM_USP	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_UM	ET_CTR_USP_NU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_USP	ET_CTR_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NUU	SPEA2	SPEA2	>0.5	>0.05
ET_CTR_USP	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NUU	SPEA2	NSGA2	< 0.5	< 0.01
ET_CTR_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_USP	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_NU	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_NUU	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_USP_NUU	SPEA2	NSGA2	< 0.5	< 0.01
ET_CTR_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.5	< 0.05
ET_CTR_NUU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.5	< 0.01

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_UM_USP	ET_CTR_USP_NU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_USP	ET_CTR_NU_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_UM_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_NU_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_NU_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_USP_NUU	ET_CTR_NU_NUU	NSGA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP_NUU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01