Zadaci za vježbu iz Električnih krugova

20. Za mrežu prikazanu slikom odrediti nadomjesne parametre mreže po Teveninu $U_T(s)$ i $Z_T(s)$ na stezaljkama 1-1'. Zadano je R=2, r=1, C=1, $i_0(t)=S(t)$.

Rješenje:

a) Teveninov napon $U_T(s)$:

$$U_T(s) = I_0 \cdot \frac{rRsC}{(R-r)sC+1} = \frac{1}{s} \cdot \frac{2s}{s+1} = \frac{2}{s+1}$$

b) Teveninova impedancija $Z_T(s)$: $Z_T = \frac{U_2}{I}$

$$Z_T = \frac{U_2}{I} = 0$$

Sva struja teče kroz naponski izvor $r \cdot i_1(t)$ koji je ujedno i isključen jer je $i_1 = 0$ pa predstavlja kratki spoj(jer mu je potencijal na krajevima $r \cdot i_1(t) = 0$).

Struja I može biti proizvoljna velika, ovisno o pomoćnom strujnom izvoru. (Ne smije se u ovom slučaju staviti pomoćni naponski izvor).

21. Odrediti odziv $u_L(t)$ mreže prikazane slikom ako je zadano: $R_s = R_L = 1$, L = 1, C = 1, $i_L(0) = 1$, $u_C(0) = 1$ i poticaj: $u_0(t) = e^{-t} S(t)$.

1

Rješenje:

Rješenje: $u_L(t) = (3-t) \cdot e^{-t} \cdot S(t)$

22. Za mrežu na slici odrediti napon na kapacitetu $u_C(t)$. Zadano je: R=4, C=1/2, L=2, $i_L(0)=1.2$ A, $u_C(0)=2.6$ V, $u_g(t)=S(t)$.

Rješenje: Primjenom Laplaceove transformacije:

$$u_C(t) = (-1.6 \cdot e^{-t} - 4t \cdot e^{-t}) \cdot S(t) - S(t)$$

23. Za prikazani dvopol odrediti admitanciju na priključnicama 1-1'. Zadano je L=1, C=1, r=1.

Rješenje:

$$Y_{II} = \frac{3s^2 + 1}{2s} = \frac{3}{2}s + \frac{1}{2s}$$

Konačno dobiveni dvopol ima oblik:

24. Za mrežu prikazanu slikom odrediti odziv napona $U_{iz}(s)$, ako je zadan poticaj $U_{ul}(s)=1$. Zadano je $R_1=1$, $R_2=1$, $R_3=1$, $C_1=2$, $C_2=1/2$, $C_3=1$.

Rješenje:

$$U_{iz}(s) = \frac{1}{(s+1)(s^2+s+1)}$$

25. Odrediti i skicirati valni oblik napona $u_C(t)$ u prikazanoj mreži ako je zadano: R=2, C=0.5, L=1, $u_C(0)=2$, $i_L(0)=4$, $u_g(t)=2$ e^{-t} S(t).

Rješenje:

Primjenom Laplaceove transformacije i transformacija izvora:

$$u_C(t) = e^{-\frac{t}{2}} \left(3\cos\frac{\sqrt{7}}{2}t + \frac{17}{\sqrt{7}}\sin\frac{\sqrt{7}}{2}t \right) \cdot S(t) - e^{-t} \cdot S(t)$$