1. Derivazione Numerica: Confronto tra le diverse formule

X	f(x)
1.8	10.889365
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

Sono dati in tabella i valori, per i punti x elencati, della funzione $f(x) = x \cdot e^x$. Calcolare un valore approssimato per f'(2.0) usando tutte le formule disponibili (2 punti in avanti e indietro, 3 punti centrale ed estremo, 5 punti centrale). In ogni caso, valutare l'errore massimo previsto dalla formula del resto e confrontare con l'errore effettivo rispetto al valore analitico esatto.

(NB uso consigliato di MATLAB: assegnare a variabili i valori numerici ad es. F19=12.703199)

2 punti:
$$f'(x_0) = \frac{1}{h} [f(x_0 + h) - f(x_0)] - \frac{h}{2} \cdot f''(\xi), \quad \xi \in (x_0, x_0 + h)$$

3 punti centrale:
$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f'''(\xi), \quad \xi \in (x_0 - h, x_0 + h)$$

$$\text{3 punti estremo:} \quad f'(x_0) = \frac{1}{2h} \left[-3 \cdot f(x_0) + 4 \cdot f(x_0 + h) - f(x_0 + 2h) \right] + \\ \frac{h^2}{3} f'''(\xi) \,, \quad \xi \in (x_0 \,, x_0 + 2h)$$

5 punti centrale:

$$f'(x_0) = \frac{1}{12h} \left[f(x_0 - 2h) - 8 \cdot f(x_0 - h) + 8 \cdot f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^4}{30} f^{(5)}(\xi), \quad \xi \in (x_0 - 2h, x_0 + 2h)$$

formula	h	sost. valori	$f'(x_0)$	errore assoluto	max err. teorico

2. Derivazione Numerica: Variazione per h decrescente, valore ottimale di h

Sono dati in tabella i valori, per i punti x elencati, della funzione $f(x) = \sin(x)$. Calcolare un valore approssimato per f'(x) per x = 0.900 tramite la formula a 3 punti centrale, usando tutti i possibili valori di h decrescenti (h = 0.1 - 0.05 - 0.02 - 0.01 - 0.005 - 0.002 - 0.001).

Confrontare con il valore analitico esatto e con il limite massimo teorico per l'errore. Per quale valore di h si ottiene l'approssimazione migliore? Commentare. Confrontare con il valore teorico di h ottimale.

X	sin(x)	X	sin(x)
0.800	0.71736	0.901	0.78395
0.850	0.75128	0.902	0.78457
0.880	0.77074	0.905	0.78643
0.890	0.77707	0.910	0.78950
0.895	0.78021	0.920	0.79560
0.898	0.78208	0.950	0.81342
0.899	0.78270	1.000	0.84147

h	f'(0.900)	errore assoluto
0.001		
0.002		
0.005		
0.010		
0.020		
0.050		
0.100		

NB valore esatto: $cos(0.9)=0.62160997 \cong 0.62161 - (calcoli svolti a 5 cifre significative)$

3. Derivazione Numerica: Esercizio

Usare le formule appropriate per completare i valori mancanti nelle seguenti tabelle (più possibilità per ogni valore, confrontare).

Sapendo che le funzioni f(x) sono rispettivamente le seguenti:

(a):
$$f(x) = e^{x}-2x^{2}+3x-1$$
, (b): $f(x) = x \cdot \cos x - x^{2} \sin x$,

calcolare in ogni caso l'errore assoluto effettivo e confrontare con il limite massimo teorico previsto per la formula corrispondente.

(a)	X	f(x)	f'(x)
	0.0	0.00000	
	0.2	0.74140	
	0.4	1.3718	

(b)	X	f(x)	f'(x)
	2.9	-4.827866	
·	3.0	-4.240058	
	3.1	-3.496909	
	3.2	-2.596792	

4. Integrazione Numerica: Formule Base - Confronto

Valutare l'integrale definito $\int_{0}^{2} \sqrt{1+x^2} dx$ con la Regola del Trapezio e con la Regola di Simpson.

Confrontare i risultati ottenuti. Determinare in ogni caso il limite massimo teorico per l'errore. Sapendo che il valore analitico esatto è pari a 2,958, commentare sui valori ottenuti per l'errore in ogni caso.

(NB uso consigliato di MATLAB: disegnare il grafico delle funzioni derivate per controllare i valori massimi nell'intervallo)

Regola del Trapezio:
$$\int\limits_{a}^{b}f\left(x\right)dx=\frac{f\left(a\right)+f\left(b\right)}{2}\left(b-a\right)-\frac{f''\left(\xi\right)}{12}\left(b-a\right)^{3}\;\;,\quad\xi\in\left(a,b\right)$$

Regola di Simpson:
$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left[f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b) \right] - \frac{f^{(4)}(\xi)}{2880} (b-a)^{5}, \quad \xi \in (a,b)$$

$$(= \frac{f^{(4)}(\xi) \cdot h^{5}}{90}, \text{ con } h = \frac{b-a}{2})$$

5. Integrazione Numerica: Formule Base - Esercizio

Valutare l'integrale definito $\int_{0}^{1} x^{4} dx$ usando la Regola del Trapezio e la Regola di Simpson.

In ogni caso effettuare la stima del limite massimo per l'errore, e confrontare con l'errore realmente commesso rispetto al valore analitico esatto. Commentare.

6. Integrazione Numerica: Formule Composte - Confronto

Valutare l'integrale definito $\int_{0}^{4} e^{x} dx$ usando le Regole Composte di Simpson e del Trapezio, con valori

di n = 2, 4, 8, 16. Confrontare i risultati ottenuti. In ogni caso effettuare la stima del limite massimo per l'errore, e confrontare con l'errore realmente commesso rispetto al valore analitico esatto.

NB Esplicitare e svolgere i calcoli manualmente. Poi, eventualmente, script di MATLAB o routine in altro programma / linguaggio.

Formula di Simpson Composta:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 2 \cdot \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \cdot \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] - \frac{(b-a) \cdot h^4}{180} f^{(4)}(\xi) , \quad \xi \in (a,b)$$

$$\text{Formula dei Trapezi Composta: } \int\limits_{a}^{b} f\left(x\right) dx = \frac{h}{2} \Bigg[f\left(a\right) + 2 \cdot \sum_{j=1}^{n-1} f\left(x_{j}\right) + f\left(b\right) \Bigg] \\ - \frac{(b-a) \cdot h^{2}}{12} f''\left(\xi\right) \ , \quad \xi \in \left(a,b\right)$$