Some solutions to Kreyszig's Introductory Functional Analysis with Applications

2.1.6

Show that in an *n*-dimensional vector space X, the representation of any x as a linear combination of given basis vectors e_1, \ldots, e_2 is unique.

Suppose we have two representations for x:

$$x = \alpha_1 e_1 + \dots + \alpha_n e_n$$

and
$$x = \beta_1 e_1 + \dots + \beta_n e_n$$

$$\iff 0 = x - x = (\alpha_1 - \beta_1) e_1 + \dots + (\alpha_n - \beta_n) e_n$$

Since the basis vectors must be linearly independent, this means that each $(\alpha_i - \beta_i) = 0$, i.e. $\alpha_i = \beta_i$.

2.1.10

If Y and Z are subspaces of a vector space X, show that $Y \cap Z$ is a subspace of X, but $Y \cup Z$ need not be one. Give examples.

For $Y \cap Z$, we show that this set is closed under scalar multiplication and addition. Given $x \in Y \cap Z$, we know $\alpha x \in Y$ since Y is a vector space, and $\alpha x \in Z$ since Z is a vector space, hence $\alpha x \in Y \cap Z$. Similarly, given any x and y in $Y \cap Z$, $x + y \in Y$ by definition of subspace for Y and $x + y \in Z$ by definition of subspace for Z, hence $x + y \in Y \cap Z$.

For $Y \cup Z$, we can use \mathbf{R}^2 as a counterexample. Let the "x-axis" or span $\{(1,0)\}$ act as Z and the "y-axis" or span $\{(0,1)\}$ act as Y. The union $Y \cup Z$ is not closed under vector addition (note that $(0,1) \in Y$ and $(1,0) \in Z$):

$$(1,0) + (0,1) = (1,1) \notin Y \cup Z$$

Clearly the intersection of these two sets, the zero vector, is a subspace.

2.2.11

A subset A of a vector space X is said to be *convex* if $x, y \in A$ implies

$$M = \{z \in X : z = \alpha x + (1 - \alpha)y, 0 < \alpha < 1\} \subset A$$

M is called a closed segment with boundary points x and y; any other $z \in M$ is called an interior point of M. Show that the closed unit ball

$$\tilde{B}(0;1) = \{x \in X : ||x|| \le 1\}$$

in a normed space X is convex.

We take any two points x and y in the unit ball $\tilde{B}(0;1)$ and show that any point in the segment joining x and y is also in $\tilde{B}(0;1)$. Let $z \in \tilde{B}(0;1)$. Then there exists $\alpha \in [0,1]$ such that

$$z = \alpha x + (1 - \alpha)y$$
 so $\|z\| = \|\alpha x + (1 - \alpha)y\|$ triangle inequality: $\leq \|\alpha x\| + \|(1 - \alpha)y\|$ scalar invariance of norm: $= |\alpha|\|x\| + |(1 - \alpha)|\|y\|$ $\|x\|, \|y\| \leq 1$: $\leq |\alpha| + |1 - \alpha|$ $0 \leq \alpha \leq 1$: $= \alpha + 1 - \alpha = 1$

So $||z|| \le 1$ so it must be in the unit ball $\tilde{B}(0;1)$.

This is easy enough to see for \mathbb{R}^2 but what about for more exotic spaces like C[0,1]? This means that if we combine any two continuous functions with a common bound in the manner above for z, the result will have the same bound. See jupyter notebook animation.