$\overline{\mathcal{R}}$ OBERT \mathcal{S} TAŃCZY

http://www.math.uni.wroc.pl/~stanczr/A/03.pdf

Zadanie 23. Rozwiązać równania zupełne:

a)
$$2xy dx + (x^2 - y^2) dy = 0$$
, b) $e^{-y} dx - (2y + xe^{-y}) dy = 0$, c) $ye^{xy} dx + (\cos(y) + xe^{xy}) dy = 0$.

Zadanie 24. W podanych równaniach dobrać stałą a tak, aby były one zupełne, a następnie rozwiązać je: a) $x+ye^{2xy}+axe^{2xy}y'=0$, b) $\frac{1}{x^2}+\frac{1}{y^2}+\frac{(ax+1)}{y^3}y'=0$, c) ((2+a)y+2xy'(x)=0.

Zadanie 25. Znaleźć wszystkie funkcje f(x), dla których równanie $y^2 \sin x + y f(x) y' = 0$ jest zupełne. Rozwiązać równanie dla tych f.

Zadanie 26. Znaleźć współczynnik f = f(x) w równaniu $f(x)y' + x^2 + y = 0$, jeżeli wiadomo, że ma ono czynnik całkujący postaci L(x) = x.

Zadanie 27. Sprawdzić, że podana funkcja L(x,y) jest czynnikiem całkującym danego równania, a następnie je rozwiązać.

- $6xy dx + (4y + 9x^2) dy = 0$, $L(x, y) = y^2$,
- $-y^2 dx + (x^2 + xy) dy = 0$, $L(x,y) = 1/(x^2y)$
- y(x+y+1) dx + (x+2y) dy = 0, $L(x,y) = e^x$.

Zadanie 28. Równanie różniczkowe może mieć więcej niż jeden czynnik całkujący. Udowodnić, że $L_1(x,y)=1/(xy), L_2(x,y)=1/y^2, L_3(x,y)=1/(x^2+y^2)$ są czynnikami całkującymi równania y dx - x dy = 0. Uzasadnić, że tak otrzymane rozwiązania są równoważne.

Zadanie 29. Scałkować równania metodą czynnika całkującego:

a)
$$\left(\frac{x}{y}+1\right) dx + \left(\frac{x}{y}-1\right) dy = 0$$
, b) $(x^2+y) dx - x dy = 0$, c) $(y+x^2) dy + (x-xy) dx = 0$.

Zadanie 30. Scałkować nasępujące równania: a)
$$xdx + ydy = 0$$
, b) $\frac{1}{x}dx - \frac{y}{x^2}dy = 0$, c) $\frac{1}{y}dx - \frac{x}{y^2}dy = 0$, d) $\frac{xdy - ydx}{x^2 + y^2} = 0$, e) $(2x - y + 1)dx + (2y - x - 1)dy = 0$, f) $xdx + ydy + \frac{ydx - xdy}{x^2 + y^2} = 0$.

Zadanie 31. Scałkować: a)
$$\frac{xdx+ydy}{\sqrt{1+x^2+y^2}} + \frac{xdy-ydx}{x^2+y^2} = 0$$
, b) $\left(\frac{x}{\sqrt{x^2-y^2}} - 1\right)dx - \frac{ydy}{\sqrt{x^2-y^2}} = 0$,

c)
$$\left(\frac{x}{\sqrt{x^2 - y^2 + 2}}\right) dx - \left(\frac{y}{\sqrt{x^2 - y^2}} - 2\right) dy = 0.$$

Zadanie 32. Znaleźć rozwiązania z danymi początkowymi x_0, y_0 (tzn. $y(x_0) = y_0$):

- a) $\frac{(x+2y)dx+ydy}{(x+y)^2} = 0$ oraz $x_0 = 1, y_0 = 0,$
- b) (x+y)dx + (x-y)dy = 0 oraz $x_0 = 0$, $y_0 = 0$, lub $(x_0, y_0) = (1, 1)$ np. scalkować od (1, 1) do (x, y) krzywoliniowo)
- c) (x-y)dx + (2y-x)dy = 0 oraz $x_0 = 0$, $y_0 = 0$.

Zadanie 33. Scałkować równanie ydx + xdy = 0 jak równanie różniczkowe zupełne i jak równanie o rozdzielonych zmiennych. Określić zależność między otrzymanymi całkami.

Zadanie 34. Scałkować używając czynnika całkującego postaci L = L(x) lub L = L(y):

a)
$$\left(\frac{x}{y}+1\right)dx + \left(\frac{x}{y}-1\right)dy = 0$$
, b) $(x^2+y)dx - xdy = 0$, c) $(2xy^2-y)dx + (y^2+x+y)dy = 0$,

d) $(xy^2 + y)dx - xdy = 0$.

Zadanie 35. Scałkować metodą czynnika całkującego: a) $(1-x^2y)dx + x^2(y-x)dy = 0$,

b)
$$(\sqrt{x^2 - y} + 2x)dx - dy = 0$$
, c) $y(1 + xy)dx + (\frac{1}{2}x^2y + y + 1)dy = 0$.

Zadanie 36. Rozwiązać następujące równania za pomocą jednego z czynników całkujących postaci: $L = L(x+y), L = L(xy), L = L(x^2-y^2), L = L(x^2+y^2)$: a) $\left(2y + \frac{1}{(x+y)^2}\right)dx + \left(3y + x + \frac{1}{(x+y)^2}\right)dy = 0$

b)
$$x^2y^3 + y + (x^3y^2 - x)y' = 0$$
, c) $x\left(4 + \frac{1}{x^2 - y^2}\right)dx - y\left(4 - \frac{1}{x^2 - y^2}\right)dy = 0$, d) $(y + x^2)dy + (x - xy)dx = 0$.

Zadanie 37. Co trzeba założyć o funkcji g aby funkcja $f(x) = \int_a^b g(x,y)dy$ była: a) ciągła i różniczkowalna jeśli $[a,b] \subset (-\infty,\infty)$, b) ciągła i różniczkowalna jeśli a=0 a $b=\infty$, c) całkowalna na przedziale ograniczonym $[c,d] \subset (-\infty,\infty)$ bądź nieograniczonym.

Zadanie 38. Czy z warunku $\frac{\partial M}{\partial x}(x,y)=0$ dla $(x,y)\in U$ wynika, że M nie zależy od x dla U: a) pierścienia o promieniach 1 i 2, b) koła o promieniu 1, c) $(a,b) \times (c,d)$, d) pierścienia z punktu a) przeciętego z x > 0, e) pierścienia z punktu a) przeciętego z y > 0, f) sumy dwóch rozłącznych kół?