1 Kombinatorika

- 1. Osnovna načela kombinatorike
 - Trditev. Načelo produkta.
 - Trditev. Posplošeno načelo produkta.
 - Trditev. Načelo vsote.
 - Trditev. Posplošeno načelo vsote.
 - Trditev. Načelo enakosti.
 - *Primer*. Določi moč množice $\mathcal{P}(A)$, kjer |A| = n.
 - Trditev. Načelo dvojnega preštevanja.
 - *Primer*. Eulerjeva funkcija ϕ . Določi $\sum_{d|n} \phi(d)$.
 - Trditev. Dirichletovo načelo.
 - Opomba. Kombinatorična interpretacija Dirichletovega načela.
 - Primer. Naj bo $X \subset [100], |X| = 10$. Pokaži, da X vsebuje dve disjunktni podmnožici z isto vsoto.

Izpitna vprašanja:

• Katera so osnovna načela kombinatoričnega preštevanja? Kako Dirichletovo načelo izrazimo v jeziku funkcij? Kako z enim izmed osnovnih načel dokažemo formulo $\sum_{d|n} \phi(d) = n$?

2. Število preslikav

- **Definicija.** Množica vseh preslikav iz $A \vee B$.
- **Definicija.** Padajoča potenca. Naraščajoča potenca. *n*-fakulteta.
- Trditev. Koliko je preslikav iz n-množici v k-množico? Koliko je injektivnih? Koliko je bijektivnih?

3. Binomski koeficienti in binomski izrek

- **Definicija.** Binomski koeficienti.
- Trditev. Binomska števila.
- *Opomba*. Čemu je enako $\binom{0}{0}$ in $\binom{n}{k}$ za $0 \le k \le n$?
- **Definicija.** Množica vseh k-podmnožic množice N.
- **Trditev.** Moč $\binom{N}{k}$.
- Trditev. Rekurzivna formula za binomska števila.
- **Definicija.** Paskalov trikotnik.
- Izrek. Binomski izrek.
- *Opomba*. Kaj sta a in b v binomskem izreku?

Izpitna vprašanja:

Koliko je vseh preslikav med končnima množicama, koliko je vseh injektivnih preslikav, bijektivnih preslikav in surjektivnih preslikav? Zapišite binomski izrek.

4. Izbori

Naj bo N n-množica. Opazujemo izbori k elementov.

- Koliko je urejenih izborov z ponavljanjem in brez?
- Koliko je neurejenih izborov brez ponavljanja?
- Trditev. Koliko je neurejenih izborov s ponavljanjem?

Izpitna vprašanja:

• Koliko je urejenih in neurejenih izborov z in brez ponavljanja? Utemeljite formulo za neurejene izbore s ponavljanjem.

5. Multimnožice

- **Definicija.** Permutacija množice A. Inverzija. Soda permutacija. Liha permutacija.
- Trditev. Določi $|S_n|$.
- **Definicija.** Multimnožica. Kratnost elementa. Moč multimnožice.
- *Opomba*. Kako formalno podamo multimnožico?
- Opomba. Kakšna zvezna med multimnožico in neurejenim izborom z ponavljanjem?
- **Definicija.** Permutacija multimnožice.
- Trditev. Število permutacij multimnožice.
- Definicija. Multinomski koeficient.
- Trditev. Multinomski izrek.

Izpitna vprašanja:

• Kaj je permutacija multimnožice? Definirajte multinomske koeficiente in zapišite multinomski izrek.

- 6. Kompozicije naravnega števila
 - Definicija. Kompozicija naravnega števila. Dolžina kompozicije. Velikost kompozicije. Členi kompoziciji.
 - Trditev. Število kompozicij števila $n \in \mathbb{N}$. Število kompozicij števila $n \in \mathbb{N}$ dolžine k.
 - Definicija. Šibka kompozicija naravnega števila.
 - Trditev. Število šibkih kompozicij števila $n \in \mathbb{N}$ dolžine k.

Izpitna vprašanja:

- Kaj je kompozicija naravnega števila? Koliko je vseh kompozicij števila n in koliko jih ima k členov? Kaj je šibka kompozicija naravnega števila in koliko je takih kompozicij števila n s k členi?
- 7. Razčlenitve naravnega števila
 - Definicija. Razčlenitev naravnega števila. Dolžina razčlenitve. Velikost razčlenitve. Členi razčlenitve.
 - **Definicija.** Ferrersov diagram razčlenitve. Konjugirana razčlenitev.
 - Trditev. Število razčlenitev števila $n \in \mathbb{N}$. Število razčlenitev števila $n \in \mathbb{N}$ s k členi. Število razčlenitev števila $n \in \mathbb{N}$ z največ k členi.

Izpitna vprašanja:

- Kaj je razčlenitev naravnega števila? Koliko je vseh razčlenitev števila n s k členi in koliko s kvečjemu k členi?
- 8. Stirlingova števila I. vrste
 - **Definicija.** Stirlingovo število I. vrste. C(n,0), n > 0 in C(0,0)
 - Primer. Izračunaj C(n,n), C(n,1) in C(4,2).
 - Trditev. Osnovna rekurzivna zveza za Stirlingova števila I. vrste.
 - Stirlingova matrika I. vrste.
 - Trditev. Dokaži, da $x^{\overline{n}} = \sum_{k=0}^{\infty} C(n,k) x^k$.

Izpitna vprašanja:

- Kako so definirana Stirlingova števila prve vrste in kako jih izračunamo? Zapišite začetni del Stirlingove matrike prve vrste.
- 9. Stirlingova števila II. vrste in Bellova števila
 - **Definicija.** Razdelitev množice.
 - **Definicija.** Stirlingovo število II. vrste. S(n,0), n > 0 in S(0,0)
 - Primer. Izračunaj S(n,n), S(n,1) in S(n,2).
 - Trditev. Osnovna rekurzivna zveza za Stirlingova števila II. vrste.
 - Stirlingova matrika II. vrste.
 - Trditev. Dokaži, da $x^n = \sum_{k=0}^{\infty} S(n,k) x^{\underline{k}}$.
 - **Trditev.** Število surjekcij iz *n*-množice v *k*-množico.
 - **Definicija.** Bellovo število.
 - Trditev. Osnovna rekurzivna zveza za Bellova števila.

Izpitna vprašanja:

- Kako so definirana Stirlingova števila druge vrste in kako jih izračunamo? Zapišite začetni del Stirlingove matrike druge vrste. Kakšna je povezava med temi števili in ekvivalenčnimi relacijami?
- 10. Lahova števila
 - **Definicija.** Lahovo število.
 - Trditev. Osnovna rekurzivna zveza za Lahova števila.
 - Trditev. Eksplicitna formula za Lahova števila.

Izpitna vprašanja:

- Kako so definirana Lahova števila in kako jih izračunamo kako rekurzivno in kako eksplicitno?
- 11. Dvajnastera pot
 - **Izrek.** Dvajnastera pot.

Izpitna vprašanja:

- Kaj je dvanajstera pot? Zapišite in napolnite ustrezno tabelo.
- 12. Načelo vključitev in izključitev
 - *Primer*. Koliko so števil v [30] ni tujih s 30? Koliko so tujih?
 - **Izrek.** Načelo vključitev in izključitev.
 - Primer. Na koliko načinov lahko razporedimo n označenih predmetov v k označenih predalov, če je vsaj en predal prazen?
 - Posledica. Naj bo X N-množica in so $A_1, \ldots, A_n \subseteq X$. Koliko je elementov množice X, ki niso v nobeni izmed množic A_1, \ldots, A_n ?

- **Definicija.** Premestitev množice.
- *Primer*. Izračunaj število premestitev množice [n].
- **Izrek.** Naj bo $n = p_1^{e_1} \dots p_r^{e_r}$ razcep $n \in \mathbb{N}$ na prafaktorji. Čemu je enako $\phi(n)$?

Izpitna vprašanja:

• Formulirajte in dokažite načelo vključitev in izključitev.

13. Rekurzivne enačbe

- *Primer*. Na koliko načinov lahko prehodimo n stopnic, če vsakič prehodimo 1 ali 2?
- *Primer*. Koliko je dvojiških dreves s korenom z *n* vozlišč?
- Izrek. Splošna rešitev 2-člene rekurzije. Karakteristična enačba.
- **Definicija.** d-člena linearna rekurzija s konstantnimi koeficienti. Homogena rekurzija.
- Izrek. Splošna rešitev d-člene homogene linearne rekurzije s konstantnimi koeficienti.
- Kako rešemo nehomogeno rekurzijo?

Izpitna vprašanja:

- Pojasnite pojem linearne rekurzivne enačbe s konstantnimi koeficienti. Kako lahko zapišemo splošno rešitev dvočlene rekurzije? Kako formulo dokažemo?
- Kakšna je splošna rešitev d-člene linearne rekurzivne enačbe s konstantnimi koeficienti? Opišite korake dokaza te formule.

14. Formalne potenčne vrste (Rodovne funkcije)

- **Definicija.** Formalna potenčna vrsta zaporedja $(a_n)_n$.
- Definicija. Seštevanje potenčnih vrst, množenje potenčne vrste s skalarji, množenje potenčnih vrst.
- Opomba. Kakšno strukturo ima množica formalnih potenčnih vrst?
- **Definicija.** Obrnljiva formalna potenčna vrsta.
- Trditev. Karakterizacija obrnljivosti.
- **Definicija.** Rodovna funkcija.
- Primer. Določi rodovno funkcijo Fibonaccijeva zaporedja.
- **Definicija.** Odvod formalne potenčne vrste.
- Trditev. Odvod produkta.
- Primer. Naj bo $a_0 = 2, a_1 = 3, a_n = 2a_{n-1} a_{n-2}, n \ge 2$. Določi splošno formulo za a_n .
- Koraki splošnega reševanja nekega kombinatoričnega problema.

Izpitna vprašanja:

• Kaj je formalna potenčna vrsta in kaj je rodovna funkcija? Katere formalne potenčne vrste so obrnljive? Kakšen je splošen recept za reševanje rekurzivnih enačb s pomočjo rodovnih funkcij?

15. Catalanova števila

- **Definicija.** Catalanova števila.
- Trditev. Rekurzivna zveza za Catalanova števila.
- Trditev. Eksplicitna formula za Catalanova števila.
- *Primer.* Kaj lahko preštejemo s Catalonovi števili?

Izpitna vprašanja:

• Kaj so Catalanova števila? Naštejte nekaj primerov kombinatoričnih objektov, ki jih preštejejo Catalanova števila.