Add a further limit rule (no. 7) to the above six:

$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}.$$

Example. Let $f(x) = \frac{\sqrt{x+3}-\sqrt{3}}{x}$. Does $\lim_{x\to 0} f(x)$ exist? If it exists, what is the limit?

Cannot apply quotient rule immediately: denominator function has limit 0 as x approaches 0.

In a quotient function like this, always check for factorizations of top and bottom.

Clue here is difference of two squares (remember $a^2 - b^2 = (a - b)(a + b)$):

$$(\sqrt{x+3} - \sqrt{3})(\sqrt{x+3} + \sqrt{3}) = (\sqrt{x+3})^2 - (\sqrt{3})^2 = x+3-3 = x.$$

Example (continued).

Thus

$$\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x} = \lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{(\sqrt{x+3} - \sqrt{3})(\sqrt{x+3} + \sqrt{3})}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x+3} + \sqrt{3}} \text{ (now can use quotient rule)}$$

$$= \frac{1}{\sqrt{3} + \sqrt{3}} \text{ (limit rule no. 7)}$$

$$= \frac{1}{2\sqrt{3}}.$$

Example. The floor function $f(x) = \lfloor x \rfloor$ rounds *down* real numbers to the nearest integer.

E.g.,
$$\lfloor 1.875 \rfloor = 1$$
, $\lfloor 12.999 \rfloor = 12$, $\lfloor -3.0001 \rfloor = -4$, etc.

Consider
$$x$$
 approaching 1. For $0 < x < 1$, $\lfloor x \rfloor = 0$. For $1 < x < 2$, $\lfloor x \rfloor = 1$.

So for x approaching a=1 from the left and the right, there is not a unique limiting value f(x): $\lim_{x\to 1} \lfloor x \rfloor$ doesn't exist. (Exercise: draw the graph.)

Continuity

Roughly speaking, a function $f: \mathbb{R} \to \mathbb{R}$ is *continuous* if its graph (in the x-y plane) has no gaps, jumps (discontinuities); we can draw the graph continuously without lifting pen from paper.

Definition. Let a be a real number in the domain of f. Then f is continuous at a if

- $\lim_{x\to a} f(x)$ exists, and
- $\bullet \lim_{x \to a} f(x) = f(a).$

Example. Since a polynomial function f has a limit at every point/real number a, and that limit is f(a), every polynomial function is continuous everywhere.

Example. $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = e^x$ are other examples of functions that are continuous everywhere.

 $f(x) = \tan x$ is not defined at odd integer multiples of $\pi/2$: hence, it is not continuous at such points.

Example. Find the points at which the following function is continuous:

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{if } x \neq -1 \\ -2 & x = -1. \end{cases}$$

Solution. If $x \neq -1$ then

$$f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} = x - 1$$

so that, as a polynomial function, f(x) is continuous at all $x \neq -1$.

Now f(-1) = -2 and

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} (x - 1) = -1 - 1 = -2.$$

Thus $\lim_{x\to -1} f(x) = f(-1)$, so this f(x) is continuous at x=-1 also: it is continuous for all $x\in \mathbb{R}$.