Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 8. října 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 1:

Odraz a lom světla, Fresnelovy vztahy, Snellův zákon

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$

 $\varphi = 47.7 \%$

1. Úvod

V úloze budu měřit odrazivost s a p polarizovaného světla na dielektriku v závislosti na úhlu dopadu. Odtud určím Brewsterův úhel a několika metodami dopočítám index lomu. V druhé části budu měřit index lomu planparalelní desky z posuvu paprsku.

2. Postup měření

2.1. Měření odrazivosti dielektrika

Měření bude probíhat podle uspořádání na obrázku 1. Lineárně polarizovaný laser dopadá na vzorek, odkud se odráží na detektor, který měří buzené napětí U_R úměrné jeho intenzitě I_R . Intenzitu před odrazem $I_0 \propto U_0$ zjistím na začátku, kdy vzorek odejmu a detektor umístím do polohy A.

Pro polarizace p a s změřím závislost napětí na úhlu dopadu a získané hodnoty přepočítám na odrazivost podle $R = \frac{I_R}{I_0} = \frac{U_R}{U_0}$. Pro odrazivost R_p bych měl najít tzv. Brewsterův úhel φ_B , pro který platí $R_p(\varphi_B) = 0$. V jeho okolí potom měření zopakuji s použitím zesíleného signálu a jeho hodnotu zpřesním. Podle Brewsterova zákona potom platí

$$\tan \varphi_B = n,\tag{1}$$

kde n je index lomu. Tuto hodnotu zároveň můžu spočítat ze Snellova zákona a Fresnelových vztahů buď fitem, nebo vyjádřením n.

$$n_0 \sin \varphi_0 = n \sin \varphi_1 \tag{2}$$

$$\sqrt{R_p} = \frac{n_0 \cos(\varphi_1) - n \cos(\varphi_0)}{n_0 \cos(\varphi_1) + n \cos(\varphi_0)} \qquad \sqrt{R_s} = \frac{n_0 \cos(\varphi_0) - n \cos(\varphi_1)}{n_0 \cos(\varphi_0) + n \cos(\varphi_1)}$$
(3)

Obrázek 1: Experimentální uspořádání pro měření úhlové závislosti odrazivosti dielektrika. Poloha detektoru A odpovídá referenční pozici pro měření signálu bez vzorku

2.2. Průchod světla planparalelní deskou

Obrázek 2 zobrazuje průchod světla planparalelní deskou a obrázek 3 realizaci tohoto jevu. Svazek světla dopadá na vzorek pod úhlem α , který ho tím translačně posouvá o vzdálenost x. Ze Snellova zákona potom vyplývá vztah pro výpočet indexu lomu vzorku

$$n = n_0 \sqrt{\sin^2 \alpha + (1 - \frac{x}{d \sin \alpha})^{-2} \cos^2 \alpha}$$
 (6)

Změřím velikost odchylky x pro několik úhlů α a výsledné hodnoty zprůměruju.

Obrázek 2: Průchod světla planparalelní deskou

Obrázek 3: Experimentální uspořádání pro měření průchodu světla planparalelní deskou a hranolem

3. Výsledky měření

3.1. Měření odrazivosti dielektrika

Sestavil jsem měření podle obrázku 1 a měřil intenzitu světla dopadajícího na detektor v rozmezí úhlu dopadu [25,85]° pro obě polarizace. Použité dielektrikum bylo v tomto případě sklo. Hodnoty převedené na odrazivost jsou v grafu 1, odkud je vidět, že Brewsterův úhel je někde kolem 55°. V okolí tohoto úhlu jsem měřil znovu při zesílení signálu, výsledky vynesl do grafu 2 a odečetl přesnější hodnotu $\varphi_B = 56$ °. Výsledný index lomu spočítám několika způsoby :

metoda	n
výpočet podle vztahu (1)	1.48
výpočet podle vztahů (4) a (5)	1.45 ± 0.02
fit odrazivostí v s polarizaci	1.45 ± 0.01
fit odrazivostí v p polarizaci	1.49 ± 0.03

Tabulka 1: výsledné indexy lomu vzorku

Graf 1: Závislost odrazivosti R_p a R_s na úhlu dopadu

Graf 2: Měření R_p odrazivosti v okolí φ_B

3.2. Průchod světla planparalelní deskou

Jako vzorek jsem použil sklo ze stejného materiálu jako v první části úlohy a vložil ho do aparatury z obrázku 3. Postupně jsem měnil natočení vzorku vůči laseru o úhly α v rozmezí $[5^\circ:50^\circ]$ a odečítal odchylku od původní trajektorie. Výsledné hodnoty jsou uvedené v tabulce 2 s výpočtem indexu lomu pro každé měření podle vztahu (6). Ze statistického rozboru jsem určil finální hodnotu

$$n = 1.49 \pm 0.04$$

$\varphi(^{\circ})$	x (mm)	n
5	0.27	1.440
10	0.61	1.520
15	0.97	1.557
20	1.20	1.480
25	1.56	1.490
30	1.94	1.492
35	2.36	1.497
40	2.77	1.483
45	3.21	1.466
50	3.77	1.469

Tabulka 2: měření indexu lomu z úhlu dopadu α a odchylky x

4. Závěr

Změřil jsem závislost odrazivosti s a p polarizovaného světla při dopadu na skleněný vzorek a výsledné hodnoty vynesl do grafu 1. Fit je podle teoretických vztahů (2) a (3), odkud jsem určil index lomu vzorku prvním způsobem. Odrazivost R_p bylo potom potřeba znovu zjistit citlivěji v okolí, kde $R_p \approx 0$ pro přesnější určení Brewsterova úhlu $\varphi_B = 56^\circ$. Index lomu je pak dál dopočítaný i podle vztahů (1), nebo (4) a (5). Všechny čtyři výsledné hodnoty jsou uvedené v tabulce 1.

V druhé části úlohy jsem použil planparalelní desku ze stejného materiálu jako v první čási a měřil index lomu z posunutí paprsku světla po průchodu vzorkem natočeným vůči paprsku o nějaký úhel.

Ve výsledných hodnotách ze všech metod existuje trend podle kterého je $n \approx 1.49$ a druhý, který říká, že $n \approx 1.45$. Přikláněl bych se spíš hodnotě 1.49, protože vychází z více nezávislých měření. Na druhé straně do čísla 1.45 se v obou případech nějakým způsobem míchalo měření R_s , které tím můžeme podezírat z nějaké chyby.