1. In Neverland, men constitute 60% of the labor force. The rates of unemployment are 6.0% and 4.5% among males and females, respectively. A person is selected at random from Neverland's labor force.

$$P(M) = 0.60,$$
 $P(U | M) = 0.06,$ $P(U | F) = 0.045.$

a) What is the probability that the person selected is a male <u>and</u> is unemployed?

$$P(M \cap U) = P(M) \times P(U \mid M) = 0.60 \times 0.06 = 0.036.$$

b) What is the probability that the person selected is a female <u>and</u> is unemployed?

$$P(F \cap U) = P(F) \times P(U|F) = 0.40 \times 0.045 = 0.018.$$

	Unemployed	Employed	Total
Male	0.036	0.564	0.60
Female	0.018	0.382	0.40
Total	0.054	0.946	1.00

c) What is the probability that the person selected is unemployed?

$$P(U) = 0.036 + 0.018 = 0.054.$$

OR

Law of Total Probability:

$$P(U) = P(M) \times P(U|M) + P(F) \times P(U|F) = 0.60 \times 0.06 + 0.40 \times 0.045 = 0.054.$$

d) Suppose the person selected is unemployed. What is the probability that a male was selected?

$$P(M \mid U) = \frac{0.036}{0.054} = \frac{2}{3}$$

OR

Bayes' Theorem:

$$P(\,M\,|\,U\,) = \frac{P(\,M\,)\times P(\,U\,|\,M\,)}{P(\,M\,)\times P(\,U\,|\,M\,) + P(\,F\,)\times P(\,U\,|\,F\,)} = \frac{0.60\times 0.06}{0.60\times 0.06 + 0.40\times 0.045} = \frac{\textbf{2}}{\textbf{3}}\,.$$

2. In a presidential race in Neverland, the incumbent Democrat (D) is running against a field of four Republicans (R_1, R_2, R_3, R_4) seeking the nomination. Political pundits estimate that the probabilities of R_1, R_2, R_3 , and R_4 winning the nomination are 0.40, 0.30, 0.20, and 0.10, respectively. Furthermore, results from a variety of polls are suggesting that D would have a 55% chance of defeating R_1 in the general election, a 70% chance of defeating R_2 , a 60% chance of defeating R_3 , and an 80% chance of defeating R_4 . Assuming all these estimates to be accurate, what are the chances that D will be a two-term president?

$$\begin{split} & \text{P(R_1) = 0.40}, & \text{P(R_2) = 0.30}, & \text{P(R_3) = 0.20}, & \text{P(R_4) = 0.10}, \\ & \text{P($W \mid R_1$) = 0.55}, & \text{P($W \mid R_2$) = 0.70}, & \text{P($W \mid R_3$) = 0.60}, & \text{P($W \mid R_4$) = 0.80}. \end{split}$$

Law of Total Probability:

$$P(W) = P(W \cap R_1) + P(W \cap R_2) + P(W \cap R_3) + P(W \cap R_4)$$

$$= P(R_1) P(W \mid R_1) + P(R_2) P(W \mid R_2)$$

$$+ P(R_3) P(W \mid R_3) + P(R_4) P(W \mid R_4)$$

$$= 0.40 \cdot 0.55 + 0.30 \cdot 0.70 + 0.20 \cdot 0.60 + 0.10 \cdot 0.80 = 0.63.$$

	R_{1}	R_2	R_3	R_4	
W	0.40 · 0.55 0.22	$0.30 \cdot 0.70$ 0.21	0.20 · 0.60 0.12	0.10 · 0.80 0.08	0.63
L	0.18	0.09	0.08	0.02	0.37
	0.40	0.30	0.20	0.10	1.00

3. In Anytown, 10% of the people leave their keys in the ignition of their cars. Anytown's police records indicate that 4.2% of the cars with keys left in the ignition are stolen. On the other hand, only 0.2% of the cars without keys left in the ignition are stolen. Suppose a car in Anytown is stolen. What is the probability that the keys were left in the ignition?

$$P(\text{ Keys }) = 0.10,$$
 $P(\text{ Keys }') = 1 - 0.10 = 0.90.$ $P(\text{ Stolen } | \text{ Keys }) = 0.042.$ $P(\text{ Stolen } | \text{ Keys }') = 0.002.$ $P(\text{ Stolen } | \text{ Keys }') = 0.002.$

Bayes' Theorem:

P(Keys | Stolen) =
$$\frac{P(Keys) \times P(Stolen | Keys)}{P(Keys) \times P(Stolen | Keys) + P(Keys') \times P(Stolen | Keys')}$$
$$= \frac{0.10 \times 0.042}{0.10 \times 0.042 + 0.90 \times 0.002} = \mathbf{0.70}.$$

OR

	Stolen	Stolen'	
Keys	0.042 · 0.10 0.0042	0.0958	0.10
Keys'	0.002 · 0.90 0.0018	0.8982	0.90
	0.0060	0.9940	1.00

P(Keys | Stolen) =
$$\frac{P(Keys \cap Stolen)}{P(Stolen)} = \frac{0.0042}{0.0060} = 0.70.$$

P(Stolen) = 0.0042 + 0.0018 = 0.0060.

P(Keys | Stolen) =
$$\frac{P(Keys \cap Stolen)}{P(Stolen)} = \frac{0.0042}{0.0060} = 0.70.$$

- **3**½. A warehouse receives widgets from three different manufacturers, A (50%), B (30%), and C (20%). Suppose that 2% of the widgets coming from A are defective, as are 4% of the widgets coming from B, and 7% coming from C.
- a) Find the probability that a widget selected at random at this warehouse is defective.

Law of Total Probability:

$$P(D) = P(A) \times P(D|A) + P(B) \times P(D|B) + P(C) \times P(D|C)$$

$$= 0.50 \times 0.02 + 0.30 \times 0.04 + 0.20 \times 0.07$$

$$= 0.010 + 0.012 + 0.014 = 0.036.$$

b) Suppose a widget that was selected at random is found to be defective. What is the probability that it came from manufacturer A? Manufacturer B? Manufacturer C?

$$P(A \mid D) = \frac{0.010}{0.036} = \frac{5}{18}.$$

$$P(B \mid D) = \frac{0.012}{0.036} = \frac{6}{18}.$$

$$P(C \mid D) = \frac{0.014}{0.036} = \frac{7}{18}.$$

3½. Seventy percent of the light aircraft that disappear while in flight in Neverland are subsequently discovered. Of the aircraft that are discovered, 60% have an emergency locator, whereas 90% of the aircraft not discovered do not have such a locator. Suppose a light aircraft that has just disappeared has an emergency locator. What is the probability that it will not be discovered?

P(Discovered) = 0.70, P(Discovered') =
$$1 - 0.70 = 0.30$$
.
P(Locator | Discovered) = 0.60. P(Locator' | Discovered') = 0.90.
Need P(Discovered' | Locator) = ?

	Locator	Locator '	
Discovered	0.60 · 0.70 0.42	0.28	0.70
Discovered '	0.03	0.90 · 0.30 0.27	0.30
	0.45	0.55	1.00

P(Discovered' | Locator) =
$$\frac{P(Discovered' \cap Locator)}{P(Locator)} = \frac{0.03}{0.45} = \frac{1}{15} \approx 0.06667$$
.

4. In a certain population, the proportion of individuals who have a particular disease is 0.025. A test for the disease is positive in 94% of the people who have the disease and in 4% of the people who do not.

$$P(D) = 0.025,$$
 $P(+|D|) = 0.94,$ $P(+|D'|) = 0.04.$

a) Find the probability of receiving a positive reaction from this test.

Need P(+) = ?

	+	_	
D	0.025 · 0.94 0.0235	0.0015	0.025
D'	0.975 · 0.04 0.0390	0.9360	0.975
	0.0625	0.9375	1.000

OR

Law of Total Probability:

$$P(+) = P(D) \times P(+|D) + P(D') \times P(+|D') = 0.025 \times 0.94 + 0.975 \times 0.04 = 0.0625.$$

b) <u>If a person received a positive reaction from this test</u>, what is the probability that he/she has the disease?

$$P(D|+) = \frac{0.0235}{0.0625} = 0.376.$$

OR

Bayes' Theorem:

$$P(D|+) = \frac{0.025 \times 0.94}{0.025 \times 0.94 + 0.975 \times 0.04} = 0.376.$$

c) <u>If a person received a negative reaction from this test</u>, what is the probability that he/she doesn't have the disease?

$$P(D'|-) = \frac{0.9360}{0.9375} = 0.9984.$$

OR

Bayes' Theorem:

$$P(D'|-) = \frac{0.975 \times 0.96}{0.025 \times 0.06 + 0.975 \times 0.96} = 0.9984.$$