QUALITATIVE ANALYSIS (ANION)

CONTENTS

Particular			Page No.
Theory			01 – 15
Exercise -	1		16 – 20
Part - I	:	Subjective Questions	
Part - II	:	Only One Option Correct Type	
Part - III	:	Match the Columns	
Exercise -	2		20 – 24
Part - I	:	Only One Option Correct Type	
Part - II	:	Single or Double Digit Integer Type Questions	
Part - III	:	One or More Than One Options Correct Type	
Part – IV	:	Comprehensions	
Exercise -	3		24 – 25
Part - I	:	JEE(ADVANCED) / IIT-JEE Problems (Previous Years)	
Part - II	:	JEE(MAIN) / AIEEE Problems (Previous Years)	
Answers			26 – 28
Additiona	l Proble	ems For Self Practice (APSP)	29 – 37
Part - I	:	PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))	
Part - II	:	NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSE	EC) STAGE-I
Part - III	:	HIGH LEVEL PROBLEMS (HLP)	
Part – IV	:	PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))	
APSP Ans	swers		38
APSP Sol	utions		39 – 43

JEE(Advanced) Syllabus

Principles of Qualitative Analysis: Groups I to V (only Ag⁺, Hg²⁺, Cu²⁺, Pb²⁺, Bi³⁺, Fe³⁺, Cr³⁺, Al³⁺, Ca²⁺, Ba²⁺, Zn²⁺, Mn²⁺ and Mg²⁺); Nitrate, halides (excluding fluoride), sulphate and sulphide.

JEE(Main) Syllabus

Chemical Principle involved in the qualitative salt analysis:

Cations - Pb²⁺, Cu²⁺, Al³⁺, Fe³⁺, Zn²⁺, Ni²⁺, Ca²⁺, Ba²⁺, Mg²⁺, NH₄+. Anions - CO₃²⁻, S²⁻, SO₄²⁻, NO₃-, NO₂-, Cl-, Br-, I⁻. (Insoluble salts excluded).

© Copyright reserved.

All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to enrolled student of RESONANCE only any sale/resale of this material is punishable under law, subject to Kota Jurisdiction only.

QUALITATIVE ANALYSIS (Anion)

PART-1

Introduction:

Qualitative analysis involves the detection of cation(s) and anion(s) of a salt or a mixture of salts. The systematic procedure for qualitative analysis of an inorganic salt involves the following steps:

(a) Preliminary tests

- Physical appearance (colour and smell).
- Dry heating test.
- Flame test.
- Borax bead test.
- Charcoal cavity test.
 - Charcoal cavity and cobalt nitrate test.
- (b) Wet tests for acid radicals.
- (c) Wet tests (group analysis) for basic radicals.

Section (A): Heating in dry test tube

1. Physical appearance (smell).

Table : 1 Physical Examination

Take a pinch of the salt between your fingers and rub with a drop of water			
Smell	Inference		
Ammoniacal smell	NH ₄ +		
Vinegar like smell	CH₃COO⁻		
Smell like that of rotten eggs	S ²⁻		

2. Dry Heating Test:

This test is performed by heating a small amount of mixture in a dry test tube. Quite valuable information can be generated by carefully performing and noting the observations here. On heating some salts undergo decomposition thus evolving the gases or may undergo characteristic changes in the colour of residue. These observations are tabulated below along with the inferences that you can draw.

Table: 2

	Observation	Inference
1.	Gas evolved	
	(a) Colourless and odourless gas	
	CO ₂ gas – turns lime water milky	CO ₃ ²⁻
	(b) Colourless gas with odour	
	(i) H ₂ S gas – Smells like rotten eggs, turns lead acetate paper black.	Hydrated S ² - or S ² -
	(ii) SO ₂ gas – Characteristic suffocating smell of burning sulphur turns acidified potassium dichromate solution or paper green.	SO ₃ ²⁻
	(iii) HCl gas - Pungent smell, white fumes with ammonia, white precipitate with silver nitrate solution.	CI-
	(iv) Acetic acid vapours-Characteristic vinegar like smell.	CH₃COO⁻
	(v) NH ₃ gas- Characteristic smell, turns Nessler's solution brown.	NH ₄ +
	(c) Coloured gases – Pungent smell	
	(i) NO ₂ gas – Reddish brown, turns ferrous sulphate solution brownish black.	NO ₂ - or NO ₃ -
	(ii) Cl ₂ gas – Greenish yellow, turns starch iodide paper blue.	Cl-
	(iii) Br ₂ vapours – Reddish brown, turns starch paper orange red.	Br-
	(iv) I ₂ vapours – Dark violet, turns starch paper blue.	I-

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalav	var Road, Kota (Raj.) – 324005
Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA- 1

2.	Sublimate formed	
	(a) White sublimate	NH ₄ ⁺
	(b) Black sublimate accompanied by violet vapours.	I-
3.	Fusion	
	The mixture fuses.	Alkali metal salts or salt containing water of crystallisation.
4.	Swelling	
	The mixture swells up into voluminous mass.	PO ₄ ³⁻ , BO ₃ ³⁻ indicated
5.	Residue	
	(i) Yellow when hot, white when cold.	Zn ²⁺
	(ii) Brown when hot and yellow when cold.	Pb ²⁺
	(iii) Original salt blue becomes white on heating.	Hydrated CuSO ₄ indicated
	(iv) Coloured salt becomes brown or black on indicated.	Co ²⁺ , Fe ²⁺ , Fe ³⁺ , Cr ³⁺ , Cu ²⁺ , Ni ²⁺ , Mn ²⁺ heating.

Note:

- 0 Use a perfectly dry test-tube for performing thes test. While drying a test-tube, keeps it in slanting position with its mouth slightly downwards so that the drops of water which condense on the upper cooler parts, do not fall back on the hot bottom, as this may break the tube.
- 0 For testing a gas, a filter paper strip dipped in the appropriate reagent is brought near the mouth of the test tube or alternatively the reagent is taken in a gas-detector and the gas is passed through it.

O Do not heat the tube strongly at one point as it may break.

Section (B): Flame and borax bead test

Flame test:

The chlorides of the metals are more volatile as compared to other salts and these are prepared in situ by mixing the compounds with a little concentrated hydrochloric acid. On heating in a non-luminous Bunsen flame they are volatilized and impart a characteristic colour to the flame as these absorb energy from the flame and transmit the same as light as characteristic colour.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Table: 3

Colour of Flame	Inference
Crimson Red / Carmine Red	Lithium
Golden yellow	Sodium
Violet/Lilac	Potassium
Brick red	Calcium
Crimson	Strontium
Apple Green/Yellowish Green	Barium
Green with a Blue centre/Greenish Blue	Copper

(A) Dipping the platinum wire in the paste of salt and HCI.

(B) Introducing the wire in the flame

Figure: Flame test

4. **Borax Bead test:**

On Heating borax forms a colourless glassy bead of NaBO₂ and B₂O₃.

 $Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} 2NaBO_2 + B_2O_3$

On heating with a coloured salt, the glassy bead forms a coloured metaborate in oxidising flame.

For example, in oxidising flame copper salts give blue bead.

 $CuSO_4 \longrightarrow CuO + SO_3$ $CuO + B_2O_3 \longrightarrow Cu(BO_2)_2$ (blue bead)

However, in reducing flame the colours may be different due to different reactions.

 $\begin{array}{lll} 2Cu(BO_2)_2 & + & C & \longrightarrow 2CuBO_2 + B_2O_3 + CO \\ 2Cu(BO_2)_2 & + & 2C & \longrightarrow 2Cu \text{ (brown red/red and opaque bead)} + 2B_2O_3 + 2CO. \end{array}$

Following metals impart a characteristic colour to the Bunsen flame :

Sr, Cs, Na, Li, K, Rb, Be, Ca,

Table: 4

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Motel	Colour in oxidising flame		Colour in reducing flame		
Metal	When Hot	When Cold	When Hot	When Cold	
Copper	Green	Blue	Colourless	Brown red	
Iron	Brown yellow	Pale yellow/Yellow	Bottle green	Bottle green	
Chromium	Yellow	Green	Green	Green	
Cobalt	Blue	Blue	Blue	Blue	
Manganese	Violet/Amethyst	Red/Amethyst	Grey/Colourless	Grey/Colourless	
Nickel	Violet	Brown/Reddish brown	Grey	Grey	

Non luminous flame is called oxidising flame. Luminous flame is called reducing flame.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

All acid radicals which are in JEE syllabus are colourless and diamagnetic. Hence the colour of the salts is only due to the basic radicals.

5. Charcoal Cavity Test:

This test is based on the fact that metallic carbonates when heated in a charcoal cavity decompose to give corresponding oxides. The oxides appear as coloured incrustation or residue in the cavity. In certain cases, the oxides formed partially undergo reduction to the metallic state producing metallic beads or scales.

Example:

(a)
$$ZnSO_4 + Na_2CO_3 \longrightarrow ZnCO_3 + Na_2SO_4$$

 $ZnCO_3 \longrightarrow ZnO$ (Yellow when hot, white when cold) $+ CO_2 \uparrow$

(b)
$$CuSO_4 + Na_2CO_3 \longrightarrow CuCO_3 + Na_2SO_4$$

 $CuCO_3 \longrightarrow CuO + CO_2 \uparrow$
 $CuO + C \longrightarrow Cu \text{ (Reddish scales)} + CO \uparrow$

Table: 5

Observati	Inference	
Incrustation or Residue	Metallic bead	iniciciice
Yellow when hot, white when cold	None	Zn ²⁺
Brown when hot, yellow when cold	Grey bead which marks the paper	Pb ²⁺
No characteristic residue	Red beads or scales	Cu ²⁺
White residue which glows on heating	None	Ba ²⁺ ,Ca ²⁺ , Mg ²⁺
Black	None	Nothing definite-generally coloured salt

6. Cobalt Nitrate Test:

In case the residue is white in colour after charcoal cavity test, add a drop of cobalt nitrate in the charcoal cavity. A drop of water is then added and the mass is heated in an oxidising flame using blow pipe. It is cooled and one or two drops of cobalt nitrate solution is added and then again heated in the oxidising flame. Different metal salts give different coloured mass as given in the table. To illustrate:

$$ZnSO_4 + Na_2 CO_3 \longrightarrow ZnCO_3 + Na_2 SO_4$$
; $ZnCO_3 \longrightarrow ZnO + CO_2$
 $2Co (NO_3)_2 \longrightarrow 2CoO + 4 NO_2 + O_2$; $ZnO + CoO \longrightarrow ZnO$. CoO (or CoZnO₂) (Rinmann's green)

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Table: 6

S.No. Metal Colour of the mass		Colour of the mass		
1.	Zinc	Green		
2.	Aluminium	Blue		
3.	Magnesium	Pink		
4.	Tin	Bluish – green		

Table: 7

SOLUBILITY CHART

S.No.	Anion	Solubility / Exception	
1.	CO ₃ ²⁻	Except carbonates of alkali metals and of ammonium, all other normal carbonates are insoluble.	
2.	SO ₃ ² -	Only the sulphites of the alkali metals and of ammonium are water soluble. The sulphite of other metals are either sparingly soluble or insoluble.	
3.	S ²⁻	The acid, normal and polysulphide of alkali metals are soluble in water. The normal sulphides of most other metals are insoluble; those of the alkaline earths are sparingly soluble, but are gradually changed by contact with water into soluble hydrogen sulphides.	
4.	NO ₂ -, NO ₃ -	Almost all nitrites and nitrates are soluble in water. AgNO ₂ is sparingly soluble. Nitrates of mercury and bismuth give basic salts on treatment with water. These are soluble in dilute nitric acid.	
5.	CH₃COO-	Acetates are water soluble except Ag(I) and Hg(II) acetates which are sparingly soluble.	
6.	CI-	Most chlorides are soluble in water. PbCl ₂ (sparingly soluble in cold but readily soluble in boiling water), Hg ₂ Cl ₂ , AgCl, CuCl, BiOCl, SbOCl and Hg ₂ OCl ₂ are insoluble in water.	
7.	Br-	Silver, mercury(I) and copper(I), bromides are insoluble. Lead bromide is sparingly soluble in cold but more soluble in boiling water. All other bromides are soluble in water.	
8.	-	Silver, mercury(I), mercury(II), copper(I), lead and bismuth(III) iodides are the least soluble salts. All other iodides are water soluble.	
9.	SO ₄ ² -	The sulphates of barium, silver lead are insoluble in water, those of calcium and mercury(II) are slightly soluble. Some basic sulphates of mercury, bismuth and chromium are also insoluble, but these dissolves in dilute hydrochloric or nitric acid.	
10.	PO ₄ 3-	The phosphate of the alkali metals, with the exception of lithium and ammonium, are soluble in water; the primary phosphate of the alkaline earth metals are soluble. All the phosphates of the other metals and also the secondary and tertiary phosphate of the alkaline earth metals are sparingly soluble or insoluble in water.	

Analysis of ANIONS (Acidic Radicals):

Analysis of anions (acidic radicals) can be broadly divided in to two groups.

- (A) GROUP 'A' RADICALS: It involves those anions which are characterised by volatile products by reaction with HCl/ H₂SO₄ It is further subdivided in to two groups as given below.
 - (a) Dilute Sulphuric acid/Dilute Hydrochloric acid: The anions of this group liberate gases or acid vapours with dilute sulphuric acid/hydrochloric acid.

Table:8

Observation		Inference	
		Radical	
Effervescence with the evolution of a colourless and odourless gas which turns lime water milky.	CO ₂	CO ₃ ²⁻	
Evolution of colourless gas having smell of rotten egg which turns lead acetate paper black.	H ₂ S	S ²⁻	
Colourless gas having suffocating odour (like burning sulphur) which turns acidified K ₂ Cr ₂ O ₇ paper green.	SO ₂	SO ₃ ² -	

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

Evolution of reddish brown pungent smelling gas which turns		
(i) FeSO ₄ solution brownish-black and	NO ₂	NO ₂ -
(ii) wet starch –iodide paper blue. Colourless gas having smell of vinegar.	HAC(g)	CH₃COO-
No peculiar gas is evolved.	_	All above are absent

(b) Concentrated Sulphuric acid group : The anions of this group liberate acid vapours or gases with conc. H₂SO₄.

Table:9

Observation	Infere	nce
Observation	Gas	Radical
Colourless gas with pungent smell which gives dense white fumes with a glass rod dipped in NH ₄ OH.	HCI	CI-
Reddish brown gas with pungent smell, intensity of reddish brown fumes increases on addition of a pinch of solid MnO ₂ . Also it turns starch paper orange red.	Br ₂	Br-
Evolution of violet vapours which turns starch paper blue.	I_2	I-
Evolution of reddish brown fumes which intensifies on addition of copper turnings or bits of filter paper.	NO ₂	NO ₃ -
Starch iodide paper develops a blue-black spot due to the formation of a I ₂ -starch complex.		
(NO ₂ liberated acts as oxidising agent).		

- (B) GROUP 'B' RADICALS: Anions of this group do not give acid vapours or gases with dilute as well as concentrated H₂SO₄ but are characterised by their specific reactions in solutions. This group is further sub divided into two groups based on the type of the reactions.
 - (a) Oxidation and reduction in solutions: CrO₄²⁻, Cr₂O₇²⁻ etc.
 - (b) Precipitation reactions: These are given by SO_4^{2-} , PO_4^{3-} etc.

Table: 10

Observation	Inference
W.E. or S.E. + BaCl ₂ (aq) White precipitate insoluble in dil. HCl a	and HNO ₃ SO ₄ ²⁻
W.E or S.E + conc. HNO ₃ (1–2 mL) + ammonium molybdate and	boil PO43-
→ Canary yellow precipi	tate

- W.E. = Water extract. (Salt is dissolved in distilled water)
- S.E. = Sodium carbonate extract

Preparation of sodium carbonate extract:

Take 1-2 g of salt/salts mixture and three times the amount of pure solid sodium carbonate in a borosil conical flask. Add 20 mL of distilled water and boil the contents for 10 minutes. Cool the solution and then filter. The Filtrate is termed as "Sodium carbonate extract".

Sodium carbonate reacts with the inorganic salt to form water soluble sodium salt of the acid radical.

$$BaCl_2 + Na_2CO_3 \longrightarrow BaCO_3 \downarrow \text{ (white)} + 2NaCl \text{ (aq)}$$

 $Cd_3 (PO_4)_2 + 3Na_2CO_3 \longrightarrow 3CdCO_3 \downarrow + 2Na_3PO_4 \text{ (aq)}$

Sodium carbonate extract is used when

- (a) salt is only partially soluble in water or insoluble
- (b) cations interfere with the tests for acid radicals or the coloured salt solutions may be too intense in colour that the test results are not too clear.
- As sodium carbonate extract contains excess of sodium carbonate, it should be neutralised with a suitable acid before proceeding for analysis of an anion.

Note: S.E. is not used for testing CO₃²-or HCO₃-ions.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

Figure: Preparation of sodium carbonate extract

Individual tests:

Section (C): dil. HCI / dil. H2SO4 group

(A) GROUP 'A' RADICALS:

(a) DILUTE SULPHURIC ACID/DILUTE HYDROCHLORIC ACID GROUP:

- 1. CARBONATE ION (CO₃²⁻):
- Dilute H₂SO₄ test: A colourless odourless gas is evolved with brisk effervescence.

$$CaCO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2O + CO_2 \uparrow$$

• Lime water/Baryta water (Ba(OH)₂) test: The liberated gas can be identified by its property of rendering lime water (or baryta water) turbid.

$$CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow (milky) + H_2O$$

On prolonged passage of CO₂ the milkiness disappears.

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$$
 (soluble) $\stackrel{\triangle}{\longrightarrow} CaCO_3 \downarrow + H_2O + CO_2$

Magnesium sulphate test (for soluble carbonates) :

$$CO_3^{2-}$$
 (ag) + MgSO₄ (ag) \longrightarrow MgCO₃ \downarrow (white) + SO₄²⁻ (ag)

• Silver nitrate solution : White precipitate is formed

$$CO_3^{2-} + Ag^+ \longrightarrow Ag_2CO_3 \downarrow$$

White precipitate is soluble in HNO₃ and ammonia. The precipitate becomes yellow or brown upon addition of excess reagent owing to the formation of silver oxide; the same happens if the mixture is boiled.

$$Ag_2CO_3 \longrightarrow Ag_2O \downarrow + CO_2 \uparrow$$

- Phenolphthalein is turned pink by soluble carbonates and colourless by soluble hydrogen carbonates.
- Mercury(II) chloride does not form precipitate with hydrogen carbonate ions, while in a solution of normal carbonates a **reddish-brown** precipitate of basic mercury(II) carbonate (3HgO. HgCO₃=Hg₄O₃CO₃) is formed.

$$CO_3^{2-} + 4 Hg^{2+} + 3 H_2O \longrightarrow Hg_4O_3.CO_3 \downarrow + 6H^+$$

Note: Lime water milky test is also shown by SO₂ but CO₂ does not turn the filter paper soaked in acidified K₂Cr₂O₇ green.

Soluble bicarbonates give white precipitate with MgSO₄ (aq) / MgCl₂(aq) only on heating.

$$Mg^{2+} + 2HCO_3^- \longrightarrow Mg(HCO_3)_2 \stackrel{\Delta}{\longrightarrow} MgCO_3 \downarrow + H_2O + CO_2$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

Action of heat :

Bicarbonates : 2NaHCO₃ → Na₂CO₃ + H₂O + CO₂

Carbonates : Except carbonates of Na, K, Rb, Cs ; the Li₂CO₃ and all alkaline earth metals decompose as given below :

$$Li_2CO_3 \longrightarrow Li_2O + CO_2 \; ; \; MgCO_3 \longrightarrow MgO + CO_2 \; ; \; Ag_2CO_3 \longrightarrow 2Ag \; + CO_2$$

G CaCO₃ $\xrightarrow{\Delta}$ CaO + CO₂

2. SULPHITE ION (SO₃²⁻):

Dilute H₂SO₄ test: Decomposition of salt is more rapidly on warming, with the evolution of sulphur dioxide.

$$CaSO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2O + SO_2 \uparrow$$

SO₂ has suffocating odour of burning sulphur.

Acidified potassium dichromate test: The filter paper dipped in acidified K₂Cr₂O₇ turns green.

$$Cr_2O_7^{2-} + 2H^+ + 3SO_2 \longrightarrow 2Cr^{3+}$$
 (green) + $3SO_4^{2-} + H_2O$.

Barium chloride/Strontium chloride solution: White precipitate of barium (or strontium) sulphite is obtained.

$$SO_3^{2-} + Ba^{2+}/Sr^{2+} \longrightarrow BaSO_3/SrSO_3 \downarrow \text{ (white)}.$$

White precipitate dissolves in dilute HCl, when sulphur dioxide is evolved.

$$BaSO_3 \downarrow + 2H^+ \longrightarrow Ba^{2+} + SO_2 \uparrow + H_2O.$$

White precipitate (BaSO₃) on standing is slowly oxidised to sulphate which is insoluble in dilute mineral acids. This change is rapidly effected by warming with bromine water, a little concentrated nitric acid or with hydrogen peroxide.

$$2 \text{ BaSO}_3 \downarrow + O_2 \longrightarrow 2 \text{ BaSO}_4 \downarrow$$

$$BaSO_3 \downarrow + Br_2 + H_2O \longrightarrow 2 BaSO_4 \downarrow + 2 HBr$$

Hence, reddish brown colour of bromine water is decolourised.

$$3BaSO_3 \downarrow + 2 HNO_3 \longrightarrow 3 BaSO_4 \downarrow + 2NO \uparrow + H_2O$$

$$BaSO_3 \downarrow + H_2O_2 \longrightarrow BaSO_4 \downarrow + H_2O$$

- These reactions are not given by carbonates (distinction from carbonates).
- Zinc and sulphuric acid test: Hydrogen sulphide gas is evolved.

$$SO_3^{2-} + 3Zn^{2+} + 8H^+ \longrightarrow H_2S \uparrow + 3Zn^{2+} + 3H_2O$$

• **Lime water test:** A white turbidity is formed. The precipitate dissolves on prolonged passage of the gas, due to the formation of hydrogen sulphite ions.

$$Ca(OH)_2 + SO_2 \longrightarrow CaSO_3(milky) + H_2O$$

 $CaSO_3 \downarrow + SO_2 + H_2O \longrightarrow Ca(HSO_3)_2$ (soluble)

- A turbidity is also produced by carbonates; sulphur dioxide must therefore be first removed when testing for the latter. This may be affected by adding potassium dichromate solution to the test-tube before acidifying. The dichromate oxidizes and destroys the sulphur dioxide without affecting the carbon dioxide.
- Lead acetate or lead nitrate solution: White precipitate of PbSO₃ is obtained.

$$SO_3^{2-} + Pb^{2+} \longrightarrow PbSO_3 \downarrow (white)$$

White precipitate gets soluble in dil. HNO₃ on boiling. The precipitate is oxidized by atmospheric oxygen and PbSO₄ is formed.

$$2PbSO_3 \downarrow + O_2 \longrightarrow 2PbSO_4 \downarrow$$

3. SULPHIDE ION (S2-):

• Dilute H₂SO₄ test: Pungent smelling gas like that of rotten egg is obtained.

$$S^{2-} + 2H^+ \longrightarrow H_2S \uparrow$$

• Lead acetate test: Filter paper moistened with lead acetate solution turns black.

$$(CH_3COO)_2Pb + H_2S \longrightarrow PbS \downarrow (black) + 2CH_3COOH.$$

Sodium nitroprusside test : Purple coloration is obtained.

$$S^{2-}$$
 + [Fe(CN)₅(NO)]²⁻ \longrightarrow [Fe(CN)₅NOS]⁴⁻ (purple).

It is a ligand change reaction not a redox where NO+ changes to (NOS)-1.

No reaction occurs with solution of H_2S or free gas. If however, filter paper moistened with a solution of the reagent is made alkaline with NaOH or NH_3 solution, a purple colouration is produced with free H_2S also.

Note: H₂S does not provide sufficient concentration of S²⁻ ions so that it does not give sodium nitroprusside test. Solubility is low 0.1 M and K₁ is just 10⁻⁷.

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

• Cadmium carbonate suspension/ Cadmium acetate solution : Yellow precipitate is formed.

$$Na_2S + CdCO_3 \longrightarrow CdS \downarrow + Na_2CO_3$$

Filter paper moistened with cadmium acetate when brought in contact with evolving gas it turns **yellow**.

$$S^{2-} + 2H^+ \longrightarrow H_2S$$
 ; $H_2S + Cd^{2+} \longrightarrow CdS \downarrow (yellow) + 2H^+$.

• Silver nitrate solution: Black precipitate is formed which is insoluble in cold, but soluble in hot, dilute nitric acid.

$$Ag^+ + S^{2-} \longrightarrow Ag_2S \downarrow (black)$$

• **Methylene blue test**: NN–Dimethyl–p–phenylenediamine is converted by iron(III) chloride and hydrogen sulphide in strongly acid solution into the water–soluble dyestuff, methylene blue. This is a sensitive test for soluble sulphides and hydrogen sulphide.

4. NITRITE ION (NO₂⁻):

• **Dilute H₂SO₄ test**: Solid nitrite in cold produces a transient pale blue liquid (due to the presence of free nitrous acid, HNO₂ or its anhydride, N₂O₃) first and then evolution of pungent smelling reddish **brown vapours** of NO₂ takes place.

$$\begin{array}{lll} NO_2^- + H^+ & \longrightarrow HNO_2 \; ; & (2HNO_2 & \longrightarrow H_2O \; + \; N_2O_3); \\ 3HNO_2 & \longrightarrow HNO_3 \; + \; 2NO \; + \; H_2O; & 2NO \; + \; O_2 & \longrightarrow 2NO_2 \\ \end{array}$$

• Starch iodide test: The addition of a nitrite solution to a solution of potassium iodide, followed by acidification with acetic acid or with dilute sulphuric acid, results in the liberation of iodine, which may be identified by the blue colour produced with starch paste. A similar result is obtained by dipping potassium iodide—starch paper moistened with a little dilute acid into the solution.

$$2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO \uparrow + 4CH_3COO^- + 2H_2O$$

Starch + $I_3^- \longrightarrow$ Blue (starch iodine adsorption complex)

• Ferrous sulphate test (Brown ring test): When the nitrite solution is added carefully to a concentrated solution of iron(II) sulphate acidified with dilute acetic acid or dilute sulphuric acid, a brown ring appears due to the formation of [Fe(H₂O)₅NO]SO₄ at the junction of the two liquids. If the addition has not been made slowly and caustiously, a brown colouration results.

$$NO_2^- + CH_3COOH \longrightarrow HNO_2 + CH_3COO^-$$

 $3HNO_2 \longrightarrow H_2O + HNO_3 + 2NO \uparrow$
 $Fe^{2+} + SO_4^{2-} + NO \uparrow \longrightarrow [Fe(H_2O)_5 NO]SO_4 (brown ring complex)$

• Thiourea test: When a dilute acetic acid solution of a nitrite is treated with a little solid thiourea, nitrogen is evolved and thiocyanic acid is produced. The latter may be identified by the red colour produced with dilute HCl and FeCl₃ solution.

```
NaNO_2 + CH_3COOH \longrightarrow HNO_2 + CH_3COONa

HNO_2 + H_2NCSNH_2(s) (thiourea) \longrightarrow N_2 + HSCN + 2H_2O
```

$$FeCl_3 + 3HSCN \xrightarrow{dil. HCl}$$
 Fe(SCN)₃ (blood red colouration) + 3HCl

Acidified potassium permanganate solution : Pink colour of KMnO₄ is decolourised by a solution
of a nitrite, but no gas is evolved.

$$5 \text{ NO}_{2}^{-} + 2 \text{ MnO}_{4}^{-} + 6 \text{ H}^{+} \longrightarrow 5 \text{ NO}_{3}^{-} + 2 \text{ Mn}^{2+} + 3 \text{ H}_{2}\text{O}$$

• Silver nitrate solution: White crystalline precipitate of silver nitrite from concentrated solutions.

$$NO_2^- + Ag^+ \longrightarrow AgNO_2 \downarrow \text{ (white)}$$

5. ACETATE ION (CH₃COO⁻)

• With dilute H₂SO₄ a vinegar like smell is obtained.

Neutral ferric chloride test : A deep red/ blood red colouration (no precipitate) indicates the presence of acetate.

$$6CH_3COO^- + 3Fe^{3+} + 2H_2O \longrightarrow [Fe_3(OH)_2(CH_3COO)_6]^+ + 2H^+$$

When solution is diluted with water and boiled, brownish red precipitate of basic iron (III) acetate is obtained.

$$[Fe_3(OH)_2(CH_3COO)_6]^+$$
 + 4H₂O \xrightarrow{Boil} 3Fe(OH)₂CH₃COO ↓ + 3CH₃COOH + H⁺

• Silver nitrate solution test: A white crystalline precipitate is produced in concentrated solution in the cold.

$$CH_3COO^- + Ag^+ \rightleftharpoons CH_3COOAg \downarrow (white)$$

Precipitate is more soluble in boiling water and readily soluble in dilute ammonia solution.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Section (D): Conc. H₂SO₄ group

(b) CONC. H,SO, GROUP:

1. CHLORIDE ION (CIT):

• Concentrated H₂SO₄ test: Colourless pungent smelling gas (HCI) is evolved which gives fumes of NH₄CI when a glass rod dipped in aq. ammonia is brought in contact with evolving gas.

$$CI^- + H_2SO_4 \longrightarrow HCI + HSO_4^-$$

NH₄OH + HCl \longrightarrow NH₄Cl \uparrow (white fumes) + H₂O.

$$2NaCl + MnO_2 + 2H_2SO_4$$
 (conc.) $\longrightarrow Na_2SO_4 + MnSO_4 + 2H_2O + Cl_2$

Silver nitrate test :

$$Cl^- + Ag^+ \longrightarrow AgCl \downarrow (white)$$

With sodium arsenite it is converted into **yellow precipitate** (distinction from AgBr and AgI) but insoluble in dilute nitric acid.

$$3AgCI\downarrow + AsO_3^3 \longrightarrow Ag_3AsO_3\downarrow (yellow) + 3CI$$
.

White precipitate is soluble in aqueous ammonia and precipitate reappears with HNO₃.

$$[Ag(NH_3)_2]CI + 2H^+ \longrightarrow AgCI \downarrow + 2NH_4^+.$$

• Chromyl chloride test :

$$4Cl^{-}(s) + Cr_2O_7^{2-}(s) + 6H^{+} (conc.) \longrightarrow 2CrO_2Cl_2 (deep red vapours) + 3H_2O$$

When deep red vapours are passed into sodium hydroxide solution, a **yellow solution** of sodium chromate is formed, which when treated with lead acetate gives **yellow precipitate of lead chromate**.

$$CrO_2Cl_2 + 4OH^- \longrightarrow CrO_4^{2-} + 2Cl^- + 2H_2O$$

 $CrO_4^{2-} + Pb^{+2} \longrightarrow PbCrO_4 \downarrow (yellow)$

Note:

- 1. Heavy metal chlorides such as Hg₂Cl₂, HgCl₂, SnCl₂, AgCl, PbCl₂ and SbCl₃, CuCl do not respond to this test due to their high covalent character as a result of which sufficient free Cl⁻ are not available. This test is given generally by ionic chlorides.
- 2. Test should be carried out in a dry test tube otherwise chromic acid will be formed.

$$CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl_3$$

- 3. Br and I must be absent for this test because they are oxidized by Cr₂O₇²⁻ into Br₂ (brown vapours) and I₂ (violet vapours) respectively. Both Br₂ and I₂ produce colourless solution with NaOH solution.
- 4. NO₂-, NO₃- and ClO₂-radicals also interfere with this test and so should be absent.

2. BROMIDE ION (Br⁻):

• Concentrated H₂SO₄ test: First a reddish-brown solution is formed, then reddish-brown bromine vapour accompanies the hydrogen bromide (fuming in moist air) is evolved.

$$2NaBr + H_2SO_4 \longrightarrow Na_2SO_4 + 2HBr$$

$$2HBr + H_2SO_4 \longrightarrow Br_2 \uparrow + 2H_2O + SO_2$$

$$2KBr + MnO_2 + 2H_2SO_4 \longrightarrow Br_2\uparrow + K_2SO_4 + MnSO_4 + 2H_2O$$

• Silver nitrate test : Pale vellow precipitate is formed

$$NaBr + AgNO_3 \longrightarrow AgBr \downarrow + NaNO_3$$

Yellow precipitate is partially soluble in dilute aqueous ammonia but readily dissolves in concentrated ammonia solution.

$$AgBr + 2NH_4OH \longrightarrow [Ag(NH_3)_2] Br + H_2O$$

• Lead acetate test: Bromides on treatment with lead acetate solution, gives a white crystalline precipitate of lead bromide, which is soluble in boiling water giving colourless solution.

$$2Br^- + Pb^{+2} \longrightarrow PbBr_2 \downarrow \text{ (white)}$$

• Chlorine water test (organic layer test): When to a sodium carbonate extract of metal bromide containing CCl₄, CHCl₃ or CS₂, chlorine water is added and the content is shaken and then allow to settle down reddish brown colour is obtained in organic layer.

$$2Br^- + Cl_2 \longrightarrow 2Cl^- + Br_2 \uparrow$$
.

 $Br_2 + CHCl_3 / CCl_4 \longrightarrow Br_2$ dissolve to give reddish brown colour in organic layer.

With excess of chlorine water, the bromine is converted into yellow bromine monochloride and a **pale yellow solution** results.

$$Br_2 \uparrow + Cl_2 \uparrow \longrightarrow 2BrCl$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

 Starch paper test: When starch paper is brought in contact with evolving bromine gas orange red spots are produced.

 $Br_2 + starch \longrightarrow starch bromine adsorption complex (orange red)$

• Potassium dichromate and concentrated H₂SO₄: When a mixture of solid bromide, K₂Cr₂O₇ and concentrated H₂SO₄ is heated and evolved vapours are passed through water, a orange red solution is obtained.

$$6KBr + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3Br_2^{\uparrow} + Cr_2(SO_4)_3 + 4K_2SO_4 + 7H_2O_4$$

3. IODIDE ION (I^-) :

• Concentrated H₂SO₄ test : Pungent smelling violet vapours are evolved.

$$2NaI + H_2SO_4 \longrightarrow Na_2SO_4 + 2HI$$

$$2HI + H_2SO_4 \longrightarrow I_2 \uparrow (dark \ violet) + 2H_2O + SO_2$$

Evolution of dark violet fumes intensifies on adding a pinch of MnO₂.

$$3I^{-} + MnO_2 + 2H_2SO_4 \longrightarrow I_3^{-} \uparrow + Mn^{2+} + 2SO_4^{2-} + 2H_2S$$

• Starch paper test: lodides are readily oxidised in acid solution to free iodine; the free iodine may than be identified by deep blue colouration produced with starch solution.

$$3I^{-} + 2NO_{2}^{-} + 4H^{+} \longrightarrow I_{3}^{-} + 2NO \uparrow + 2H_{2}O.$$

• Silver nitrate test: Bright yellow precipitate is formed.

$$I^- + Ag^+ \longrightarrow AgI \downarrow \text{ (bright yellow)}$$

- Bright yellow precipitate is **insoluble** in dilute aqueous ammonia but is partially soluble in concentrated ammonia solution.
- Chlorine water test (organic layer test): When chlorine water is added to a solution of iodide, free iodine is liberated which colours the solution brown and on shaking with CS₂, CHCl₃ or CCl₄, it dissolves in organic layer forming a violet solution, which settles below the aqueous layer.

$$2NaI + CI_2 \longrightarrow 2NaCI + I_2$$

$$I_2 + CHCI_3 \longrightarrow I_2$$
 dissolves to give violet colour in organic layer.

• Lead acetate solution: A yellow precipitate is formed which is soluble in hot water forming a colourless solution and yielding golden yellow plates ('spangles') on cooling.

$$2l^{-} + Pb^{+2} \longrightarrow Pbl_{2} \downarrow (yellow)$$

• Potassium dichromate and concentrated sulphuric acid: Violet vapours are liberated, and no chromate is present in distillate.

$$6I^{-} + Cr_{2}O_{7}^{2} + 2H_{2}SO_{4} \longrightarrow 3I_{2} + Cr^{3+} + 7SO_{4}^{2-} + 7H_{2}O_{4}^{2-}$$

Action of heat: Most of halides are stable but few decompose as

$$2FeCl_3 \longrightarrow 2FeCl_2 + Cl_2$$
; MgCl₂.6H

$$MgCl_2.6H_2O \longrightarrow MgO + 2HCl + 5H_2O$$

$$Hg_2Cl_2 \longrightarrow HgCl_2 + Hg$$
; $NH_4Cl \longrightarrow NH_3 + HCl$

$$2CuI_2 \longrightarrow CuI + I_2$$
 (without heating)

Solvent	NH ₃	HNO₃	Na ₂ S ₂ O ₃	NaCN/KCN
Precipitate				
AgCl	Completely soluble	Insoluble	Soluble	Soluble
AgBr	Partially soluble	Insoluble	Soluble	Soluble
AgI	Insoluble	Insoluble	Soluble	Soluble

Note: In NH₃, Ag⁺ forms soluble complex of [Ag(NH₃)₂]⁺

In Na₃S₂O₃, Ag⁺ forms soluble complex of [Ag(S₂O₃)₂]³-

In NaCN, Ag+ forms soluble complex of [Ag(CN)₂]-

4. NITRATE ION (NO₃⁻)

Concentrated H₂SO₄ test : Pungent smelling reddish brown vapours are evolved.

$$4NO_3^- + 2H_2SO_4 \longrightarrow 4NO_2 \uparrow + O_2 + 2SO_4^{2-} + 2H_2O$$

Addition of bright copper turnings or paper pellets intensifies the evolution of reddish brown gas.

$$2NO_3^- + 4H_2SO_4 + 3Cu \longrightarrow 3Cu^{2+} + 2NO \uparrow + 4SO_4^{2-} + 4H_2O \; ; \; 2NO \uparrow + O_2 \longrightarrow 2NO_2 \uparrow + 4H_2O \; ; \; 2NO \uparrow + 4H_2O \; ;$$

4 C (paper pellet) +
$$4HNO_3 \longrightarrow 2H_2O + 4NO_2 + 4CO_2$$
.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

■ Brown ring test: When a freshly prepared saturated solution of iron (II) sulphate is added to nitrate solution and then concentrated H₂SO₄ is added slowly from the side of the test tube, a brown ring is obtained at the junction of two layers.

Figure: Brown ring test

NaNO₃ + H₂SO₄
$$\longrightarrow$$
 NaHSO₄ + HNO₃
6FeSO₄ + 2HNO₃ + 3H₂SO₄ \longrightarrow 3Fe₂(SO₄)₃ + 2NO + 4H₂O
or $2NO_3^-$ + 4H₂SO₄ + 6Fe²⁺ \longrightarrow 6Fe³⁺ + 2NO \downarrow + 4SO₄²⁻ + 4H₂O.
Fe²⁺ + NO \uparrow + 5H₂O \longrightarrow [Fe^I(H₂O)₅ NO+]²⁺ (brown ring).

Some important points related to brown ring test are :

Note:

- 1. Shaking and warming are not allowed for this test because on shaking and warming the mixture, NO escapes and a yellow solution of iron(III) ions is obtained.
- 2. Bromides and iodides interfere in brown ring test as liberated halogens obscure the brown ring. Nitrites also interfere the brown ring test and can be removed by adding a little sulphamic acid, or urea.

$$H_2NHSO_3 + NO_2^- \longrightarrow N_2 \uparrow + SO_4^{2-} + H^+ + H_2O$$

 $NO_2^- + H^+ \xrightarrow{HCI} HNO_2$
 $CO(NH_2)_2 + 2HNO_2 \longrightarrow 2N_2 \uparrow + CO_2 \uparrow + 3H_2O$

- 3. FeSO₄ solution must be freshly prepared because Fe²⁺ ion is very reactive towards aerial oxidation and gets converted to Fe³⁺, which does not give this test.
- **Diphenyl amine test : Blue ring** is formed at the junction of two liquids (reagent and nitrate salt solutions).

$$\begin{split} NaNO_3 + H_2SO_4 &\longrightarrow NaHSO_4 + HNO_3 \\ 2HNO_3 &\longrightarrow H_2O + 2NO_2 + [O] \\ 2C_6H_5NHC_6H_5 + [O] &\longrightarrow \textbf{(C}_6H_5)_2 \textbf{ N - N (C}_6H_5)_2 \textbf{(blue ring)} + H_2O. \end{split}$$

This test is also given by various oxidising agents like CrO₄²⁻, Cr₂O₇²⁻, ClO₃⁻, BrO₃⁻, IO₃⁻, NO₂⁻ etc.

To distinguish Br₂ with NO₂ (both are reddish brown gases)

- (a) Br_2 + starch-iodide paper \rightarrow Blue black colour spots do not develop immediately as Br_2 is a weaker oxidising agent whereas NO_2 being strong oxidising agent develops the blue black colour immediately.
- (b) Bromine develops orange-red colour spots on starch paper.

Section (E): Precipitation Reactions

(B) GROUP 'B' RADICALS:

Group of anions which do not give any gas with dilute as well as concentrated H_2SO_4 in cold but give precipitate with certain reagents :

These acid radicals are identified in inorganic salts by their individual tests as given below

1. SULPHATE ION (SO₄²⁻):

Barium chloride test :

W.E. or S.E. + Barium chloride (aq)
$$\longrightarrow$$
 White precipitate Na₂SO₄ + BaCl₂ \longrightarrow **BaSO₄** \downarrow (white) + 2NaCl.

White precipitate is insoluble in warm dil. HNO₃ as well as HCl but moderately soluble in boiling concentrated hydrochloric acid and conc. H₂SO₄.

$$PbSO_4 + H_2SO_4 \longrightarrow PbHSO_4(soluble)$$

• Lead acetate test :

W.E. or S.E. + Lead acetate
$$\longrightarrow$$
 white precipitate Na₂SO₄ + (CH₃COO)₂Pb \longrightarrow **PbSO₄** \downarrow (White) + 2CH₃COONa

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

White precipitate soluble in excess of hot ammonium acetate and ammonium tartrate.

PbSO₄ + 2CH₃COONH₄
$$\longrightarrow$$
 (NH₄)₂ [Pb(CH₃COO)₄] soluble. + (NH₄)₂SO₄ PbSO₄ + (NH₄)₂C₄H₄O₆ \longrightarrow (NH₄)₂SO₄ + (NH₄)₂ [Pb(C₄H₄O₆)₂]soluble

Match stick test :

(a) W.E. or S.E. + Barium chloride ----- white precipitate

$$Na_2SO_4 + BaCl_2 \longrightarrow 2NaCl + BaSO_4 \downarrow (white)$$

(b) White precipitate + Na₂ CO₃(s) mix and apply the paste on the end of the carbonized match stick or a wooden splinter. Put it in the reducing flame.

BaSO₄ (s) + Na₂CO₃(s)
$$\longrightarrow$$
 Na₂SO₄ + **BaCO₃** \downarrow (white)

$$Na_2SO_4 + 4C \longrightarrow Na_2S + 4CO$$

(c) Now dip the match stick in sodium nitroprusside solution, purple colour near the fused mass is developed.

Na₂S + Na₂ [Fe(CN)₅ NO]
$$\longrightarrow$$
 Na₄ [Fe(CN)₅ NOS] (purple)

• Silver nitrate test : White precipitate is obtained.

$$SO_4^{2-} + 2Ag^+ \longrightarrow Ag_2SO_4 \downarrow \text{ (white ppt.)}$$

2. PHOSPHATE ION (PO₄³⁻):

Ammonium molybdate test :

 $Na_2HPO_4(aq) + 12(NH_4)_2MoO_4 + 23HNO_3 \rightarrow (NH_4)_3[P(Mo_3O_{10})_4] \downarrow$ (canary yellow) + $2NaNO_3 + 21NH_4NO_3 + 12H_2O_4(aq) + 12(NH_4)_2MoO_4 + 23HNO_3 \rightarrow (NH_4)_3[P(Mo_3O_{10})_4] \downarrow$

- Some times ammonium phosphomolybdate is also represented by the formula (NH₄)₃ PO₄.12MoO₃
- Magnesium nitrate or magnesia mixture test: W.E. or S.E + Magnesium nitrate reagent (3-4 mL) and allows to stand for 4-5 minutes, white crystalline precipitate is formed.

Na₂HPO₄ (aq) + Mg(NO₃)₂ (aq) + NH₄OH(aq) \longrightarrow Mg(NH₄) PO₄ \downarrow (white) + 2NaNO₃ + H₂O Magnesia mixture is a solution containing MgCl₂, NH₄Cl and a little aqueous NH₃.

- PO₄³⁻ also gives BaCl₂ test due to the formation of white precipitate of Ba₃ (PO₄)₂. So phosphate test should be carried out first and then conclude if PO₄³⁻ is present or absent before proceeding with the test for SO₄²⁻.
- Silver nitrate solution: Yellow precipitate is formed which is soluble in dilute ammonia and in dilute nitric acid.

$$PO_4^{3-} + 3Ag^+ \longrightarrow Ag_3PO_4 \downarrow (yellow)$$

 $Ag_3PO_4 \downarrow + 6NH_3 \longrightarrow 3[Ag(NH_3)_2]^+ + PO_4^{3-};$
 $Ag_3PO_4 \downarrow + 2H^+ \longrightarrow H_2PO_4^- + 3Ag^+$

• Iron (III) chloride solution: Yellowish-white precipitate of FePO4 is obtained

HPO₄²⁻ + Fe³⁺
$$\longrightarrow$$
 FePO₄ \downarrow

3. BORATE ION (BO₃3-) :

Salt (0.2 g) + conc. H_2SO_4 (1 mL) + Ethyl alcohol (4-5 mL) mix in a test tube and then heat. Ignite the evolved vapours with the help of Bunsen flame, green edged flame is obtained.

$$3C_2H_5OH + H_3BO_3 \longrightarrow (C_2H_5)_3BO_3$$
 or $(C_2H_5O)_3B + 3H_2O$

Note:

- 1. Use of methyl alcohol is preferred due to high volatility of the product formed is B(OMe)₃
- 2. Copper and barium salts also interfere with this test because they give similar green flame and so should be absent.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

MISCELLANEOUS SOLVED PROBLEMS (MSPs)

- 1. Pink colour of acidified KMnO₄ is decolourised but there is no evolution of any gas. This may happen with the compound containing the following acid radical.
 - (A) SO_3^{2-}
- (B) NO₂
- (C) S²⁻
- (D) All of these

- Ans. (D)
- **Sol.** (A) 5SO
- (A) $5SO_3^{2-} + 2MnO_4^- + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$
 - (B) $2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$
 - (C) $2MnO_4^- + H_2S + 6H^+ \longrightarrow 2Mn^{2+} + 5S \downarrow + 8H_2O$
- 2. Which of the following gives a precipitate with Pb(NO₃)₂ but not with Ba(NO₃)₂?
 - (A) Sodium chloride

(B) Sodium acetate

(C) Sodium nitrate

(D) Disodium hydrogen phosphate

- Ans. (A)
- **Sol.** (A) $Pb^{2+} + 2Cl^{-} \longrightarrow PbCl_{2} \downarrow$ (white);

 $Ba^{2+} + 2Cl^{-} \longrightarrow BaCl_2$ (water soluble)

- (B) (CH₃COO)₂ Pb and (CH₃COO)₂Ba both are water soluble salts.
- (C) Nitrates are mostly soluble in water
- (D) $3Pb^{2+} + 2HPO_4^{2-} \longrightarrow Pb_3(PO_4)_2 \downarrow \text{ (white)} + 2H^+; Ba^{2+} + HPO_4^{2-} \longrightarrow BaHPO_4 \downarrow \text{ (white)}$
- **3.** When H₂S gas is passed through an ammonical salt solution X, a slightly white precipitate is formed. The X can be :
 - (A) a cobalt salt
- (B) a lead salt
- (C) a zinc salt
- (D) a silver salt

- Ans. (C)
- **Sol.** $Zn^{2+} + H_2S \longrightarrow ZnS \downarrow (white) + 2H^+$
- 4. Which anion does not liberate any gas with dilute as well as conc. H₂SO₄.
 - (A) NO₂-
- (B) NO₃⁻
- (C) SO_3^{2-}
- (D) SO₄²-

- Ans. (D)
- **5.** A salt having BO_3^{3-} on burning with alcohol and conc. H_2SO_4 gives, which colour edge flame.
- (A) gree
- (B) yellow
- (C) red
- (D) white

- Ans. (A)
- **Sol.** $3Na_3BO_3 + 3H_2SO_4 \longrightarrow 3Na_2SO_4 + 2H_3BO_3$

$$3C_2H_5OH + H_3BO_3 \longrightarrow (C_2H_5)_3BO_3 + 3H_2O$$
(green)

- **6.** When solution of KCl, KF and KBr are treated with I₂?
 - (A) Cl₂ and Br₂ are evolved

- (B) Cl₂ is evolved
- (C) Cl₂, F₂ and Br₂ are evolved
- (D) None of these

- Ans. (D)
- **Sol.** I_2 is weak oxidising agent.

It does not oxidise the F-, Cl-, Br-.

- 7. A mixture when rubbed with organic acid smells like vinegar. It contains:
 - (A) Sulphate
- (B) Nitrate
- (C) Nitrite
- (D) Acetate

- Ans. (D)
- 8. Nitrate & Nitrite both give brown ring test, can be distinguish by
 - (A) HOSO₂NH₂ (Sulphonic acid)
- (B) NH₂HgO.HgI (Million base)

(C) FeSO₄

(D) None

- Ans. (A)
- **9.** Which reagent is used to remove SO₄²⁻ or Cl⁻ from water?
 - (A) NaOH
- (B) Pb(NO₃)₂
- (C) BaSO₄
- (D) KOH

- Ans. (B)
- **Sol.** Pb²⁺ +
 - $Pb^{2+} + SO_4^{2+} \longrightarrow PbSO_4 \downarrow (ppt)$
 - $Pb^{2+} + Cl^{-} \longrightarrow PbCl_2 \downarrow (ppt)$

Others does not from precipitate with both anions.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Qualitative Analysis (Anion)

- 10.* Which of the following statements is/are correct for chromyl chloride test?
 - (A) Formation of chromyl chloride vapour
- (B) Liberation of chlorine gas
- (C) Formation of lead chromate
- (D) Formation of reddish-brown vapour

Ans. (A,C,D)

- 11.* Which of the following statements are incorrect?
 - (A) In thiourea test for nitrite, a green coloured solution is obtained.
 - (B) It is not necessary to carried out the chromyl chloride test in a dry test tube.
 - (C) Suspension of CdCO₃ gives black precipitate with Na₂S solution.
 - (D) In PbNO₃, the brown ring test can be performed with its water extract.
- Ans. (A,B,C,D)
- **Sol.** It is deep red colouration due to the formation of Fe(SCN)₃.

In presence of moisture, $CrO_2Cl_2 + H_2O \longrightarrow H_2CrO_4 + HCl$.

CdS (Yellow precipitate).

White precipitate of PbSO₄ is formed and hence brown ring is not visible.

12.* Conc. H₂SO₄ will not give any gas with:

(A) ZnSO₄

(B) Ba₃(PO₄)₂

(C) $Mg_3(BO_2)_2$

(D) NaNO₃

Ans. (A.B.C)

Sol. Only NO₃⁻ belong to conc. H₂SO₄ anion group.

- **13.** Why does only the organic layer assure colour and not the aqueous layer when the tests for halides are done?
- **Ans.** Both Br_2 and I_2 are covalent. They have preference for organic layer.
- **14.** What will happen when free bromine, iodine and chlorine separately react with a yellow dye stuff, fluorescein?
- **Ans.** With free bromine it will convert into red tetra bromo fluorescein and with iodine into the red violet coloured iodoeosin. But chlorine tends to bleach the reagent.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Exercise-1

Marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

Section (A): Heating in dry test tube

- **A-1.** What is importance of dry tests and it is applicable to which kind of substances?
- A-2. Give the observation when each of the following is heated in a dry test tube. Also give balanced equations:
 - (a) HgCO₃

(b) NH₄NO₂

(c) (NH₄Cl + NaNO₃) mixture

(d) $Pb(NO_3)_2$

Section (B): Flame and borax bead test

- B-1. Why compounds shows colours in flame test?
- B-2. Is intensity of colour in flame test, depends upon the concentration of metal present?
- **B-3.** Why is a green flame not obtained in the case of barium sulphate or barium phosphate?
- **B-4.** Colourless salt (A) $\xrightarrow{\Delta}$ (B) + (C) $\xrightarrow{Cu^{2+},\Delta}$ blue coloured bead (D) Identify the compound (A), (B), (C) and (D).

Section (C): dil. HCl / dil. H2SO4 group

- C-1. Why is sodium carbonate extract acidified before performing the confirmatory test for anions?
- C-2. Can sodium carbonate extract be used test for CO₃²⁻ions?
- **C-3.** What will happen if a solution of Ca(HCO₃)₂, formed by passing the carbon dioxide through a milky solution of CaCO₃ for a longer time if, ammonia solution is added?
- C-4. What will happen if bromine water is added in a white precipitate of BaSO₃?
- C-5. Salt (A) + lime water → white precipitate ↓ white precipitate + prolong passage of gas (B) → it forms soluble salt (C), gas (B) has burning sulphur smell Identify the anion of salt (A) and (C).
- C-6. What will happen? (Also write the chemical equations).
 - (a) When a filter paper moistened with potassium iodate and starch solution is brought in contact with sulphur dioxide gas.
 - (b) When H₂S gas is made to react with sodium tetrahydroxidoplumbate(II) solution.
 - (c) When sulphite reacts with dilute H₂SO₄ in presence of zinc
- C-7. A nitrite solution is added to a saturated solution of iron(II) acidified with dilute acetic acid or with dilute sulphuric acid. If any reactions occurs then write the name and chemical composition of the products formed. Also write the chemical equations involved.

Section (D): Conc. H₂SO₄ group

- **D-1.** Why is it necessary to test for the acid radicals first with dil. H₂SO₄ and then with conc. H₂SO₄?
- D-2.> Why chromyl chloride test is carried out in a dry test tube?
- **D-3.** Why bromides and iodides do not respond to chromyl chloride test?
- D-4. NaCl on heating with conc. H₂SO₄ gives HCl where as NaBr and NaI give Br₂ and I₂ respetively, why?
- D-5. Dilute Hydrochloric acid contains chloride ions but it doesnot give positive chromyl chloride test, why?

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

人

D-6.

Identify the gas A, B and C.

- **D-7.** Why heavy metal chlorides such as Hg₂Cl₂, AgCl, PbCl₂ etc. do not respond to chromyl chloride test.
- D-8. Why is a freshly prepared solution of FeSO₄ used for the detection of nitrate and nitrite?

Section (E): Precipitation Reactions

- **E-1.** Cu²⁺ and Ba²⁺ interfere in the flame test for borate, why?
- **E-2.** In which of the following reagents, the white precipitate of PbSO₄ is soluble? dilute HCl, hot concentrated H₂SO₄, ammonium acetate (6M), ammonium tartrate 6M in the presence of ammonia, sodium hydroxide solution.
- E-3. Mow will you distinguish between sulphite and sulphate ions?

PART - II: ONLY ONE OPTION CORRECT TYPE

Section (A): Heating in dry test tube

- **A-1.** When a metal sulphate is heated in dry test tube, the colour changes from blue to white. Then metal sulphate may be:
 - (A) BaSO₄
- (B) CuSO₄.5H₂O
- (C) Na₂SO₄
- (D) None of these
- **A-2.** Which of the following can not evolve more than one gas (vapour) if heated in dry test tube.
 - (A) NaNO₃(s)
- (B) MgCO₃(s)
- (C) FeSO₄(s)
- (D) $(NH_4)_2Cr_2O_7(s)$
- A-3. On heating, a white amorphous inorganic compound becomes yellow and on cooling, turns white again. The salt may be
 - (A) PbCO₃
- (B) MgCO₃
- (C) ZnCO₃
- (D) K₂CO₃
- **A-4.** Which of the following metal carbonates liberate. $CO_2(g)$ on heating :
 - (A) Na₂CO₃
- (B) K₂CO₃
- (C) Rb₂CO₃
- (D) Ag₂CO₃
- A-5. In which of the following reactions a brown coloured gas is evolved?
 - (A) KBr (s) + dil. $H_2SO_4 \longrightarrow$

(B) NH₄NO₂ $\xrightarrow{\Delta}$

(C) NaNO₃ $\xrightarrow{\Delta}$

(D) AgNO₃(s) + conc. H₂SO₄ \longrightarrow

Section (B): Flame and borax bead test

- B-1. Why is concentrated HCl used to dissolve the given metal salt in the flame test?
 - (A) strong acids produce better flame test.
 - (B) HCl is volatile
 - (C) Volatile metal chloride produce better flame test.
 - (D) sharper coloured are seen in the flame in presence of Cl⁻ ions.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

- B-2. The hottest part of the flame of a Bunsen burner is the
 - (A) Blue Zone

- (B) Zone of complete combustion
- (C) Zone fo partial combustion
- (D) All parts of the flame are equally hot.
- Metal (M) shows crimson red colour in flame test and its halide is deliquescent then metal (M) could be: B-3.5a
 - (A) Li
- (B) Ma
- (C) Ca
- (D) Ba
- B-4. In Borax bead test, metal oxides react with B₂O₃ and form a coloured bead. This bead contains,
 - (A) orthoborate ion
- (B) metaborate ion
- (C) double oxide
- (D) tetraborate ion
- B-5. Which one of the following ions does not give borax bead test:
 - (A) Cr3+
- (B) Cu2+
- (C) Mn2+
- (D) Zn2+
- In the Borax bead test of Co2+, the blue colour of bead is due to the formation of : B-6.
 - (A) B_2O_3
- (B) Co₃B₂
- (C) Co(BO₂)₂
- (D) CoO
- B-7. A salt gives white residue in charcoal cavity test but in cobalt nitrate test it gives pink mass. It represents:
 - (A) Zn^{+2}
- (B) Al+3
- (C) Mg+2
- (D) PO_4^{-3}

Section (C): dil. HCI / dil. H2SO4 group

- Which of the following anions are identified by dil. HCI:
- (A) NO₂-, NO₃-, CO₃²- (B) NO₂-, NO₃-, SO₃²- (C) S²-, SO₃²-, NO₂-
- (D) CH₃COO-, I-, CO₃2-
- Two inorganic compounds A and B were heated in a dry test tube. A evolved a colourless gas which turned lead acetate paper black and B evolved a gas which turned lime water milky. The anions in A and **B** respectively are:
 - (A) SO_3^{2-} , CO_3^{2-}
- (B) S^{2-} , CO_3^{2-}
- (C) PO_4^{3-} , HSO_3^{-}
- (D) S²⁻, NO₃
- C-3. № If addition of conc. H₂SO₄ is made to an unknown salt, a colourless and odourless gas is produced then which of the following can be present?
 - (A) CO_3^{2-}
- (B) S²⁻
- (C) CI
- (D) NO₃
- C-4. A gas turns lime water milky and acidified K₂Cr₂O₇ solution green then gas is :
 - (A) HCI
- (B) H₂S
- (C) SO₂
- (D) CO₂
- C-5. A gas has smell like rotten egg and turns lead acetate paper black. The gas is : (A) NO₂ (B) H₂S (C) CO₂ (D) SO₂
- C-6.39

Anion (X2-) is:

- (A) CO₃²-
- (B) SO₃²⁻
- $(C) S^{2-}$
- (D) S₂O₃²-
- C-7. The acidic solution of a salt produces blue colour with KI starch solution. The reaction indicates the presence of:
 - (A) Sulphite
- (B) Bromide
- (C) Nitrite
- (D) Chloride
- C-8. Sulphide ion reacts with Na₂[Fe(CN)₅NO] to form a purple coloured compound (X). In this reaction oxidation state of iron.
 - (A) changes from +2 to +3

(B) changes from +3 to +2

(C) changes from +2 to +4

(D) does not change.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Section (D): Conc. H₂SO₄ group

- D-1. Which of the following pair of anions are identified by conc. H₂SO₄.
 - (A) NO₃-, CO₃²-
- (B) Cl-, NO₃-
- (C) Br-, CO₃2-
- (D) CO₃²⁻, CH₃COO⁻
- D-2. Which of the following anion behaves in a different manner than other on heating with conc. H₂SO₄?
 - (A) CI

(B) I⁻

(C) Br

- (D) All behave in a similar manner
- Which of the following reagents turns white precipitate of AqCl vellow? D-3.
 - (A) NaNO₃
- (B) Na₃AsO₃
- (C) Na₃AsO₄
- (D) NaCN
- D-4.≥ A Unknown salt (S) when heated with dil. H₂SO₄ does not evolve brown vapours but with conc. H₂SO₄ brown vapours are obtained. The vapours when brought in contact with AqNO₃ solution do not give any precipitate. The salt (S) contains.
 - (A) NO₂-
- (B) NO₃-
- (C) I-
- (D) Br-
- D-5. When a mixture of solid NaCl and solid K₂Cr₂O₇ is heated with concentrated H₂SO₄, deep red vapours are obtained. This is due to the formation of :
 - (A) chromous chloride (B) chromyl chloride
- (C) chromic chloride
- (D) chromic sulphate

- **D-6.** AgCl dissolves in ammonia solution giving:
 - (A) Ag+, NH₄+ and Cl-

(B) [Ag(NH₃)]+ and Cl-

(C) $[Ag_2(NH_3)]^{2+}$ and Cl-

- (D) $[Ag(NH_3)_2]^+$ and Cl^-
- D-7. A mixture upon adding conc. H₂SO₄ gives deep red fumes. Mixture may contain the anions pair:
 - (A) $Cr_2O_7^{2-}$ and Cl^-
- (B) Br- and Cr₂O₇²-
- (C) NO₃⁻ and Cl⁻
- (D) CrO₄²⁻ and NO₃²⁻
- D-8. A solution of a salt in concentrated H₂SO₄ produced a deep blue colour with starch iodide solution. The salt may contain:
 - (A) chloride
- (B) carbonate
- (C) acetate
- (D) bromide
- D-9.2 A colourless solution of a compound gives a precipitate with AgNO3 solution but no precipitate with a solution of Na₂CO₃. The action of concentrated H₂SO₄ on the compound liberates a suffocating reddish brown gas. The compound is:
 - (A) Ba(CH₃COO)₂
- (B) CaCl₂
- (C) Nal
- (D) NaBr
- D-10. Which of the following gas turn starch iodide paper blue?
 - (A) CO₂
- (B) SO₂
- (C) NO₂
- (D) H₂S
- D-11. Nitrate is confirmed by ring test. The brown colour of the ring is due to formation of:
 - (A) ferrous nitrite

(B) nitroso ferrous sulphate

(C) ferrous nitrate

(D) FeSO₄.NO₂

Section (E): Precipitation Reactions

- E-1. ★ When a mixture containing phosphate is heated with conc. HNO₃ and ammonium molybdate solution, a canary yellow precipitate is formed. The formula of the yellow precipitate is:
 - (A) (NH₄)₃PO₄

- (B) (NH₄)₃PO₄.12MoO₄ (C) (NH₄)₃PO₄.12MoO₃ (D) (NH₄)₃PO₄.(NH₄)₂MO₄
- E-2. A metal salt solution gives a yellow precipitate with silver nitrate. The precipitate dissolves in dil. Nitric acid as well as in ammonium hydroxide. The solution contains.
 - (A) Br-
- (B) I-
- (C) PO₄3-
- (D) SO₄²⁻

PART - III: MATCH THE COLUMN

Match the anions with the changes observed on qualitative analysis : 1.29

	Column-I		Column-II
(A)	SO ₄ 2-	(p)	Canary yellow ppt. with ammonium molybdate.
(B)	NO ₃ -	(q)	Brown ring test.
(C)	NO ₂ -	(r)	White ppt. with BaCl ₂ solution.
(D)	PO ₄ 3-	(s)	Yellow ppt. with AgNO₃ solution.
		(t)	White ppt. with AgNO₃ solution.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

2.x Match the reagent which are used in qualitative analysis of given anions :

	Column-I		Column-II
(A)	AgNO₃ solution	(p)	CO ₃ 2-
(B)	BaCl ₂ solution	(q)	CI-
(C)	Pb(NO ₃) ₂ solution	(r)	S ²⁻
(D)	Acidified KMnO ₄ solution	(s)	NO ₂ -

Exercise-2

Marked questions are recommended for Revision.

PART - I: ONLY ONE OPTION CORRECT TYPE

1. The compound formed in the borax bead test of Cu²⁺ ion in oxidising flame is:

(A) Cu

(B) CuBO₂

(C) Cu(BO₂)₂

(D) None of these

2. A fire work gave bright crimson red light. It probably contained a salt of :

(A) Ca

(B) Sr

(C) Ba

(D) Ma

3. Alkali metal salt "X" gives a pale violet colour in flame test "X" is :

(A) NaCl

(B) LiCI

(C) KCI

(D) None of these

4. Borax bead is responded generally by :

(A) Alkali metal salt

(B) Alkaline earth metals

(C) p-block metal salt

(D) d-block metal salt

Shape of anion A will be:

(C) Trigonal pyramidal

(A) Tetrahedral

(B) Trigonal planer

(D) Linear

6. Which of the following anions are producing same gas on treatment with (Zn + dil. H₂SO₄).

I : SO₃2-

II: HSO₃-

III : S²-

IV : CI

(A) I and II only

(B) I, II and III only

(C) I, II, III and IV (D) I, III and IV only

- 7.3 Consider the following reaction; Nitrite + Acetic acid + Thiourea \longrightarrow N₂↑ + HSCN + 2H₂O. Formation of the product in the above reaction can be identified by :
 - (A) FeCl₃ / dilute HCl, when blood red colour appears.
 - (B) FeCl₃ / dilute HCl, when blue colour appears.
 - (C) K₂Cr₂O₇ / HCl, when green colour appears.
 - (D) KMnO₄/HCl, when colourless solution is formed.
- 8. A white sodium salt dissolves readily in water to give a solution which is neutral to litmus. When silver nitrate solution is added to the solution, a white precipitate is obtained which does not dissolve in dil. HNO₃. The anion could be:

(A) CO₃²⁻

(B) CI-

(C) SO₃²-

(D) S²⁻

9.5 A salt solution of Cd²⁺ in dilute HCl, on treatment with a solution of BaCl₂ gives a white precipitate, which is insoluble in concentrated HNO₃. Anion in the salt may be :

(A) SO_4^{2-}

(B) CO_3^{2-}

(C) NO₂-

(D) S^{2-}

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Fuse this precipitate on charcoal with Na₂CO₃ and extract the soluble substance

Na₂SO₄ + BaCl₂ \longrightarrow White precipitate

Aqueous solution.

Add dil H₂SO₄ and heat the solution

Gas 'G' is evolved

The gas 'G' will show which of the following property?

- (A) It turns lead acetate filter paper black.
- (B) It turns acidified K₂Cr₂O₇ filter paper green.
- (C) It produces purple colouration on filter paper moistened with sodium nitroprusside already made alkaline with sodium hydroxide.
- (D) All of these
- 11. Sodium borate on reaction with conc. H₂SO₄ and C₂H₅OH gives a compound (A) which burns with a green edged flame. The compound (A) is:
 - (A) H₂B₄O₇
- (B) (C₂H₅)₂B₄O₇
- (C) H₃BO₃
- (D) (C₂H₅)₃BO₃

PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1.3 How many compounds liberate NH₃ on heating from the following?
 - (i) (NH₄)₂ SO₄
- (ii) (NH₄)₂ CO₃
- (iii) NH₄Cl

- (iv) NH₄ NO₃
- (v) (NH₄)₂ Cr₂O₇
- 2. How many of following metals impart a characteristic colour to the Bunsen flame?
 - (i) Na
- (ii) Li
- (iii) K
- (iv) Ba

- (v) Sr
- (vi) Mg
- (vii) Rb
- (viii) Cs

- (ix) Be
- (x) Ca
- (xi) Cu
- 3. Number of ions which are identified by dil. HCl from the following.
 - (i) SO₄²-
- (ii) CO₃²⁻
- (iii) SO₃²⁻
- (iv) HCO₃-

- $(v) NO_2^-$
- (vi) NO₃-
- (vii) CH₃COO-
- (viii) PO₄³-
- 4. Find the total number of acidic radical which produce volatile product with dil HCI:
 - (i) SO_4^{2-}
- (ii) **I**-
- (iii) NO₂
- (iv) NO_3^-

- (v) SO_3^{2-}
- (vi) HCO₃
- 5.3 Na₂S + Na₂ [Fe(CN)₅NO] \longrightarrow "X" (Violet colour)

The total number of possible isomers for complex "X" is, provided the ambident behaviour of CN⁻ is not considered.

6. NaCl + Solid $K_2Cr_2O_7$ + Conc. $H_2SO_4 \longrightarrow "X"$ (reddish brown fumes)

How many axial-d-orbital are involved in hybridization of "X"?

7.28 Fe²⁺ + NO₃⁻ + H₂SO₄(conc.) \rightarrow 'X' (Brown ring complex)

The magnetic moment of complex 'X' to its nearest integer is :

- 8. How many anions evolve brownish gas when treated with dil./conc. HCl?
 - (i) CO₃²-
- (ii) SO₃²-
- (iii) NO₂
- (iv) CI-

- (v) Br-
- (vi) NO₃-
- (vii) CH₃COO-
- **9.** Na₂CO₃, NaCl, NaNO₂, Na₂SO₃, NaBr, CH₃COONa are separately treated with AgNO₃ solution. In How many cases white precipitate is/are obtained.
- **10.** BO₃³⁻ + conc. H₂SO₄ + CH₃CH₂-OH $\xrightarrow{\text{ignite}}$ 'A' (green flame)

What is the oxidation number of central atom in Compound 'A' that is responsible for green flame?

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

11. NaCl (s)
$$\longrightarrow$$
 NaCl (s) \longrightarrow $K_2Cr_2O_7 / Conc. H_2SO_4 \rightarrow Y (g)$

a = difference in the oxidation number of CI in the product X and product Y, respectively

b = total number of atom in X and Y

c = total number of lone pair in X

then calculate a + b + c = ?

PART - III: ONE OR MORE THAN ONE OPTION CORRECT TYPE

1. Which of the following salt liberates a colourless gas on acidification with dil. H₂SO₄?

(A) KNO₂

(B) Na₂CO₃

(C) NaNO₂

(D) NaHCO₃

2. Which of the following salts release reddish brown gas when heated in a dry test tube?

(A) LiNO₃

(B) KNO₃

(C) Pb(NO₃)₂

(D) AgNO₃

Which of the following can decompose on heating to give CO₂? 3.3

(A) Li₂CO₃

(B) Na₂CO₃

(C) KHCO₃

(D) BaCO₃

Metals which do not give flame test? 4.

(A) Be

(B) Li

(C) Mg

(D) Ba

- 5.2 In the following diagram bunsen flame the (X) represent.
 - (A) Oxidising zone
 - (B) Reducing zone
 - (C) Lower temperature zone
 - (D) Hottest portion of flame

Metal salts, which respond to Borax bead test? 6.

(A) Nickel salts

(B) Copper salts

(C) Cobalt salts

(D) Aluminium salts

Which of the following gases turn lime water milky when passed throught it. 7.

(A) SO₂

(B) CO₂

(C) HCI

(D) H₂S

8.3

Then A may have:

(A) CO₃²⁻, Br-

(B) Br-, S2-

(C) CH₃COO-, S²⁻

(D) CH₃COO-, SO₃²⁻

- 9.3 S^{2-} and SO_3^{2-} can be distinguished by :
 - (A) (CH₃COO)₂Pb
 - (B) Cr₂O₇²⁻ / H⁺
 - (C) Na₂[Fe(CN)₅NO]
 - (D) Zn + dil. H₂SO₄ followed by (CH₃COO)₂Pb
- 10. Which statements is/ are correct about **sodium nitroprusside** test?
 - (A) This test is used for detection of S²⁻ anion.
 - (B) H₂S also gives positive test.
 - (C) Formation of Na₂[Fe(H₂O)₅NOS] complex confirm the presence of S²⁻ anion.
 - (D) Iron has +2 oxidation state in sodiumthionitroprusside complex.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA- 22

- 11. Which statement(s) is/are correct about Brown ring test?
 - (A) This test is given by NO₂-, NO₃- anions.
 - (B) Brown ring test depend upon the reduction of NO₂⁻ and NO₃⁻ to Nitric oxide.
 - (C) Brown ring is formed due to formation of [Fe(H₂O)₅NO]₂(SO₄)₃
 - (D) Charge on NO in brown ring complex is +1.
- 12. Which of the following metal chloride will give chromyl chloride test?
 - (A) NaCl
- (B) KCI
- (C) AgCI
- (D) SbCl₃
- 13. Which of the following will be completely or partially dissolved in NH₄OH?
 - (A) AgCI
- (B) AaBr
- (C) Aal
- (D) BaSO₄
- 14. Reddish-brown gas is obtained when the following are treated with conc. H₂SO₄?
 - (A) Br-
- (B) NO₂
- $(C) NO_3^-$
- (D) SO₃²-
- 15. Each of these are added to a mixture of aqueous solutions of iodide and CHCl₃ separately. Which will give a positive test for iodine when the solutions are vigorously mixed?
 - (A) NaCl solution
- (B) NaBr solution
- (C) Chlorine water
- (D) Bromine water
- 16. \(\begin{array}{c} A \\ \text{(mixture of two anions)} & \frac{Cold}{excess of BaCl_o} \end{array} \) white ppt. \(\begin{array}{c} \frac{\text{filtered}}{\text{of BaCl}_o} \end{array} \) White ppt \(\psi \).

Anion of (A) could be:

- (A) SO₃²⁻, HSO₃⁻
- (B) CO₃²-, SO₃²-
- (C) SO₃²⁻, HCO₃⁻
- (D) None of these

PART - IV : COMPREHENSION

Comprehension # 1

- **1.** 'A' can be:
 - (A) PbCl₂
- (B) SbCl₃
- (C) SnCl₂
- (D) RbCl
- 2.* In step-III if Pb(CH₃COO)₂ is added without acidifying the solution with CH₃COOH then possible product may be:
 - (A) PbCrO₄
- (B) Na₂Cr₂O₇
- (C) Na₂CrO₄
- (D) Na₂PbO₂

Comprehension # 2

- **3.** Gas (B) on passing through cadmium acetate solution will give :
 - (A) Black ppt
- (B) Yellow ppt
- (C) Orange ppt
- (D) White ppt

- **4.** Gas (B) and (E) are respectively :
 - (A) H₂S, NH₃
- (B) H₂S, SO₂
- (C) SO₂, H₂S
- (D) H₂S, CO₂

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

^{*} Marked Questions may have more than one correct option. Read the following passage carefully and answer the questions.

Comprehension #3

Answer Q.5, Q.6 and Q.7 by appropriately matching the information given in the three columns of the following table.

In the following three tables, information regarding Qualitative analysis of anion is given							
Column-1			Column-2	Column-2			
(I)	SO ₃ ²⁻	(i)	Reaction with AgNO ₃	(P)	Precipitate is obtained		
(II)	Cl-	(ii)	Pungent smelling product with conc. H ₂ SO ₄	(Q)	Product is coloured gas.		
(III)	NO ₂ -	(iii)	Form X ₂ with K ₂ Cr ₂ O ₇ (s) + conc. H ₂ SO ₄	+ conc. H_2SO_4 (R) Product formed is soluble in explicitly NH_3 .			
(IV)	Br ⁻	(iv)	Reaction with Pb(NO ₃) ₂ (aq)	(S)	Product gives blue colour with starch iodide solution.		

5. Select the only correct option.

(A) (I) (i) (P)

(B) (II) (ii) (Q)

(C) (I) (ii) (S)

(D) (II) (iii) (Q)

6. Select the only incorrect option.

(A) (III) (i) (P)

(B) (I) (ii) (Q)

(C) (IV) (i) (R)

(D) (IV) (ii) (Q)

7. Select the only incorrect option.

(A) (III) (ii) (Q)

(B) (IV) (ii) (S)

(C) (II) (iv) (P)

(D) (II) (ii) (S)

Exercise-3

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. The acidic aqueous solution of Ferrous ion forms a brown complex in the presence of NO₃- by the following two steps: [JEE 1993]

 $[Fe(H_2O)_6]^{2+} + NO_3^- + H^+ \longrightarrow \dots + [Fe(H_2O)_6]^{3+} + H_2O$

 $[Fe(H_2O)_6]^{2+} + \dots + H_2O$

Complete and balance the equations.

- 2. In nitroprusside ion the iron and NO exist. They exist as Fe^{II} and NO+ rather than Fe^{III} and NO. These forms can be differentiated by: [JEE 1998]
 - (A) estimating the concentration of Iron.
 - (B) measuring the concentration of CN.
 - (C) measuring the solid state magnetic moment.
 - (D) thermally decomposing the compound.
- 3. **Assertion:** Sulphate is estimated as BaSO₄ and not as MgSO₄.

Reason: Ionic radius of Mg²⁺ is smaller than that of Ba²⁺.

[JEE 1998]

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- A gas 'X' is passed through water to form a saturated solution. The aqueous solution on treatment with 4. silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colourless gas 'Y'. Identify 'X' and 'Y'? [JEE 2002(S), 3/90]

(A)
$$X = CO_2$$
, $Y = CI_2$

(B) $X = Cl_2$, $Y = CO_2$ (C) $X = Cl_2$, $Y = H_2$

(D) $X = H_2$, $Y = Cl_2$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

^{*} Marked Questions may have more than one correct option.

5. $[X] + H_2SO_4 \longrightarrow [Y]$ a colourless gas with irritating smell;

[Y] + $K_2Cr_2O_7$ + H_2SO_4 \longrightarrow green solution.

[X] and [Y] is:

(A) SO₃²-, SO₂ (B) Cl⁻, HCl

(C) S²⁻, H₂S

[**JEE 2003(S), 3/84**] (D) CO₃²⁻, CO₂

A dilute aqueous solution of a sodium salt forms white precipitate with MgCl₂, only after boiling. The anion of the sodium salt is: [JEE 2004(S), 3/84]

(A) HCO₃-

(B) CO₃²⁻

(C) NO₃-

(D) SO₄²-

7. The species present in solution when CO₂ is dissolved in water are:

[JEE 2006, 5/184]

(A) CO₂, H₂CO₃, HCO₃⁻, CO₃²-

(B) HCO₃-, CO₃²-

(C) CO₃²⁻, HCO₃⁻

(D) CO₂, H₂CO₃

8.* The reagent(s) that can selectively precipitate S^{2-} from a mixture of S^{2-} and SO_4^{2-} in aqueous solution is(are) [JEE(Advanced) 2016, 4/120]

(A) CuCl₂

(B) BaCl₂

(C) Pb(OOCCH₃)₂

(D) Na₂[Fe(CN)₅NO]

PART - II: JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

JEE(MAIN) ONLINE PROBLEMS

1. Sodium extract is heated with concentrated HNO₃ before testing for halogens because:

[JEE(Main) 2016 Online (10-04-16), 4/120]

(1) Ag reacts faster with halides in acidic medium.

(2) Silver halides are totally insoluble in nitric acid.

(3) Ag₂S and AgCN are soluble in acidic medium.

(4) S2- and CN-, if present, are decomposed by conc. HNO3 and hence do not interfere in the test.

2. A white sodium salt dissolves readily in water to give a solution which is neutral to litmus. When silver nitrate solution is added to the aforementioned solution, a white precipitate is obtained which does not dissolve in dilute nitric acid. The anion is:

[JEE(Main) 2018 Online (15-04-18), 4/120]

(1) CO_2^{2-}

(2) SO_4^{2-}

(3) C2-

(4) CI-

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

Answers

EXERCISE - 1

PART - I

- **A-1.** The dry test give information in short time and also provides a clue about the presence or absence of certain substances so wet analysis may be modified and shortened.

 It is applicable to solid substances.
- **A-2.** (a) HgCO₃ $\xrightarrow{\Delta}$ Hg + CO₂ \uparrow + $\frac{1}{2}$ O₂ \uparrow
 - (b) NH₄NO₂ $\xrightarrow{\Delta}$ N₂↑ + 2H₂O↑ (no solid residue)
 - (c) NH₄Cl + NaNO₃ (mixture) $\xrightarrow{\Delta}$ NaCl + N₂O \uparrow + 2H₂O \uparrow
 - (d) $Pb(NO_3)_2 \xrightarrow{\Delta} PbO + 2NO_2 \uparrow + \frac{1}{2}O_2 \uparrow$
- **B-1.** When compound is heated, the electrons gain energy and can jump into the empty orbitals at higher level. Higher levels are energetically unstable so electrons tend to fall back and transmit the light as characteristic colour.
- **B-2.** Yes, because intensity of the absorbed light is proportional to the concentration of element in the flame.
- **B-3.** Both barium sulphate and barium phosphate are insoluble and cannot be easily converted into chlorides. Therefore, the green flame is either indistinct or visible with difficulty.
- **B-4.** Na₂B₄O₇ .10H₂O $\xrightarrow{\Delta}$ 2NaBO₂ + B₂O₃ $\xrightarrow{Cu^{2^+},\Delta}$ Cu (BO₂)₂ (A) (B+C) (Blue bead) (D)
- C-1. Sodium carbonate extract in addition to the sodium salts of anions contain carbonate also. On heating with the test reagent carbonates of certain metals precipitate which interfere in the detection of acid redicals. Because of this, Na₂CO₃ is decomposed by adding HCl, HNO₃, H₂SO₄, depending upon the nature of test.
- C-2. No, because it already contains CO₃²⁻ ions.
- C-3. White precipitate of CaCO₃ is formed. Ca(HCO₃)₂ + 2 NH₃ \longrightarrow (NH₄)₂CO₃ + CaCO₃ \downarrow
- **C-4.** Colour of bromine water is discharged according to the following reaction. BaSO₃ + Br₂ + H₂O \longrightarrow BaSO₄ \downarrow (white) + 2HBr
- **C-5.** (A) = SO_3^{-2} (C) = HSO_3^{-} (Lime water test)
- **C-6.** (a) Blue colouration develops due to the formation of iodine gas.

$$5 \text{ SO}_2 + 2\text{IO}_3^- + 4 \text{ H}_2\text{O} \longrightarrow \text{I}_2 + 5 \text{ SO}_4^{2-} + 2 \text{ H}^+$$

I₂ + Starch → Blue (starch iodine adsorption complex)

(b) Black precipitate is formed owing to the formation of PbS.

[Pb(OH)₄]|²⁻ + H₂S
$$\longrightarrow$$
 PbS↓ + 2OH⁻ + 2 H₂O
(c) SO₃²⁻ + 3 Zn + 8 H⁺ \longrightarrow H₂S + 3 Zn²⁺ + 3 H₂O

C-7.
$$NO_2^- + CH_3COOH \longrightarrow HNO_2 + CH_3COO^-$$

3 $HNO_2 \longrightarrow H_2O + HNO_3 + 2 NO^{\uparrow}$
 $NO \uparrow + Fe^{2+} + SO_4^{2-} \longrightarrow [FeNO]SO_4$ (Nitroso ferrous sulphate)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

D-1. There are some ions like, SO_3^{2-} , S^{2-} , NO_2^{-} and CH_3COO^{-} which can react with dilute/conc. H_2SO_4 whereas ions like CI^{-} , Br^{-} , I^{-} , NO_3^{Θ} , etc. react only with con. H_2SO_4 .

Now if conc. H₂SO₄ is used first then the anions of both the types will react. Hence, it is desired to test acid radicals first with dilute H₂SO₄ and then with conc. H₂SO₄.

D-2. Because in presence of water, chromyl chloride forms the chromic acid.

 $CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$

- **D-3.** Because chromyl bromide (CrO₂Br₂) and chromyl iodide. (CrO₂I₂) compounds are unstable and are not formed. In such case bromine and iodine are evolved
- **D-4.** HBr and HI are reducing agent where as H₂SO₄ is oxidizing agent and thus Br₂ and I₂ are formed.

NaCl + H₂SO₄ → NaHSO₄ + HCl

NaBr / NaI + H₂SO₄ → NaHSO₄ + HBr/HI

 $HBr/HI + H_2SO_4 \rightarrow Br_2/I_2 + SO_2 + 2H_2O$

- **D-5.** Because in presence of water chromic acid is obtained in place of chromyl chloride.
- **D-6.** $A = Cl_2$;
- $B = Br_2$;
- $C = I_2$
- **D-7.** Because heavy metal chlorides are partially dissociated. This test is given generally by Ionic chloride.
- **D-8.** This is because Fe²⁺ ions on long standing are oxidised to Fe³⁺ ions which are not used for the detection of nitrate and nitrite.
- **E-1.** Because they also impart green colour to flame.
- **E-2.** Not in dilute HCl but dissolves in all other reagents.

 $PbSO_4 \downarrow + H_2SO_4 \longrightarrow Pb^{2+} + 2 HSO_4^-; PbSO_4 \downarrow + 4 CH_3COO^- \longrightarrow [Pb(CH_3COO)_4]^{2-} + SO_4^{2-}$

 $PbSO_4 \downarrow + 2 C_6H_4O_6^{2-} \longrightarrow [Pb(C_6H_4O_6)_2]^{2-} + SO_4^{2-}$

 $PbSO_4 \downarrow + 4 OH^- \longrightarrow [Pb(OH)_4]^{2-} + SO_4^{2-}$

E-3. BaCl₂ gives a white precipitate. with both sulphite and sulphate ions.

BaSO₃ is soluble in conc.HCl whereas BaSO₄ is insoluble in conc.HCl.

 $SO_3^{2-} + MnO_4^- + H^+ \longrightarrow Mn^{2+}$ (colourless)

 $SO_4^{2-} + MnO_4^- + H^+ \longrightarrow (No colour change)$

PART - II

- **A-1.** (B)
- **A-2.** (B)

(B)

(C)

(B)

(A)

(A)

- (C)
- **A-4.** (D)
- **A-5.** (D)

- **B-1**. (C)
- B-2.
- **B-3.** (A)

A-3.

B-4. (B)

(B)

B-5. (D)

- **B-6.** (C)
- B-7.
- C-1.
- C-2.
- **C-3.** (A)

- **C-4**. (C)
- C-5.
- **C-6.** (C)

(C)

- **C-7.** (C)
- **C-8.** (D)

- **D-1.** (B)
- D-2. D-7.
- **D-3.** (B)
- **D-4.** (B)
- **D-5.** (B)

- **D-6.** (D)
- **D-8.** (D)
- **D-9.** (D)
- **D-10.** (C)

- **D-11.** (B)
- **E-1.** (C)
- **E-2.** (C)

PART - III

- **1.** (A) (r,t); (B) (q); (C) (q,t); (D) (p,r,s)
- **2.** (A) (p,q,r,s); (B) (p); (C) (p,q,r); (D) (q,r,s)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA-27

EXERCISE - 2

PART - I

- **1.** (C)
- **2.** (B)
- **3.** (C)
- **4.** (D)
- **5.** (C)

- **6.** (B)
- **7.** (A)
- **8.** (B)
- **9**. (A)
- **10.** (D)

11. (D)

PART - II

0

- **1.** 3 (i, ii, iii)
- 2. 9 (All, except vi and ix)
- **3.** 5 (ii, iii, iv, v, vii)

- **4.** 3 (iii, v, vi)
- 5.
- 6.
- **7.** 4

- **8.** 1 (only iii)
- **9.** 5 (All except NaBr)

10. 3

11. 14 (a = 1, b = 7, c = 6)

PART - III

- **1.** (BD)
- 2.
- (ACD)
- **3.** (ACD)
- **4.** (AC)
- **5.** (BC)

- **6.** (ABC)
- 7.
- (AB)
- **8.** (D)
- **9.** (ABC)
- **10.** (AD)

- **11.** (ABD)
- **12.** (AB)
- **13.** (ABC)
- **14.** (ABC)
- **15.** (CD)

16. (AC)

PART - IV

(B)

- **1.** (D)
- **2.** (AD)
- 3.
- 4.
- (B)
- **5.**_ (A)

- **6.**_ (B)
- **7.**_ (D)

EXERCISE - 3

PART - I

- 1. $3[Fe(H_2O)_6]^{2+} + NO_3^- + H^+ \longrightarrow NO + 3[Fe(H_2O)_6]^{3+}$ $[Fe(H_2O)_6]^{2+} + NO \longrightarrow [Fe(H_2O)_5NO]^{2+} + H_2O$
- **2.** (C)
- 3.
- (B)
- 4.
- 5.

(A)

6. (A)

- **7.** (A)
- **8.*** (A or AC)

PART - II

(C)

JEE(MAIN) ONLINE PROBLEMS

- **1.** (4)
- 2.
- (4)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA-28

Additional Problems for Self Practice (APSP)

> Marked questions are recommended for Revision.

This Section is not meant for classroom discussion. It is being given to promote selfstudy and self testing amongst the Resonance students.

PART - I : PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

Max.	Γime : 1 Hr.			Max. Marks: 120
Impo 1. 2. 3. 4.	Each question is allo Candidates will be a question. 1/4 (one for deduction from the table There is only one	r duration. nsists of 30 questions. To tted 4 (four) marks for a warded marks as state urth) marks will be dedu otal score will be made i correct response for ea ted as wrong response.	correct response. In above in Instruction In acted for indicating ince In a response is indicating ince In acted for indicating ince In acted	re 120. s No. 3 for correct response of each orrect response of each question. No ated for an item in the answer sheet. up more than one response in any esponse will be deducted accordingly
1.	When a salt is heat the salt is : (1) a sulphite	ed with dilute H ₂ SO ₄ an (2) a carbonate	d KMnO ₄ solution, the	pink colour of KMnO ₄ is discharged, (4) a bicarbonate
2.	Solution of a salt in The salt contains:	dilute H ₂ SO ₄ or acetic a	acid produces deep b	lue colour with starch iodide solution.
3.				 (4) NO₂⁻ romide and MnO₂ are treated with sed through water. The water will be (4) none of the two
4.	Which of the following (1) N ₂ O	ng combines with Fe(II) (2) NO	ions to form a brown c (3) N ₂ O ₅	omplex? (4) N ₂ O ₄
5.	Colourless salt (A) 4	- dil. H ₂ SO ₄ or CH ₃ COOI (2) Na ₂ CO ₃	$H + KI \longrightarrow blue colou$ (3) NH_4NO_2	r with starch. (A) can be (4) NH ₄ Cl
6.		t tubes containing dilut vill help in the identification (2) K ₂ CrO ₄		and KNO ₃ solutions. Which of the (4) both (2) and (3)
7.	Which one of the fol (1) Cr ³⁺	lowing ions does not giv (2) Cu ²⁺	e borax bead test ? (3) Mn ²⁺	(4) Zn ²⁺
8.	A brick red colour is (1) Ca salt	imparted to Bunsen flan (2) Sr salt	ne by a : (3) Na salt	(4) Co salt
9.	Which one of the fotest? (1) Zn ²⁺	llowing metal salts prod (2) Mg ²⁺	uces a blue coloured (3) Sn ²⁺	bead in cobalt nitrate charcoal cavity (4) Al ³⁺
10.	acid with the evoluti		nt smelling gas. The ga	which dissolves in dilute hydrochloric as as well as the salt both are used as (4) carbonate

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

11.		I KMnO ₄ is decolourised taining the following acid (2) NO ₂		n of any gas. This may happen (4) All of these		
12.	When KI is added to ac (1) NO gas is liberated	cidified solution of sodium and I_2 is set free	n nitrite : (2) N ₂ gas is liberated a	and HI is produced		
13.	(1) turn lead acetate pa	to acidified solution of SC	 (4) N₂ gas is liberated and HOI is produced O₃²⁻. Gas liberated can : (2) turn lime water milky (4) None of these 			
14.				which produces (i) turbidity with ion indicates the presence of : (4) NO ₂ -		
15.	Ammonium molybdate (1) PO ₄ ³⁻	test is used for the estim (2) NO_3^-	ation of : (3) SO_3^{2-}	(4) SO ₄ ²⁻		
16.	A colourless gas is diss been which one of the (1) HCI		esulting solution turns rea (3) SO_2	d litmus blue; the gas may have (4) NH ₃		
17.	When Ag reacts with co	onc. HCl, then products v (2) AgCl, H ₂	vill be: (3) AgCl, H ₂ , Cl ₂	(4) None of these		
18.	Which of the following when treated with dilute (1) Sodium sulphide (3) Sodium thiosulphate	e H ₂ SO ₄ ?	dioxide gas along with (2) Sodium sulphite (4) Sodium sulphate	formation of yellowish turbidity		
19.	Aqueous solution of a appears. The salt conta (1) CO_3^{2-}		\longrightarrow no precipitate in co (3) SO_3^{2-}	old $\xrightarrow{\text{Heating}}$ White precipitate (4) $C_2O_4^{2-}$		
20.	In the test for iodine, I_2 Na ₂ S ₂ O ₃ + I_2 – (1) Na ₂ S ₄ O ₆	is treated with sodium th \rightarrow NaI + (2) Na ₂ SO ₄	iosulphate (Na ₂ S ₂ O ₃) : (3) Na ₂ S	(4) Na ₃ ISO ₄		
21.	. ,	ne bead in sodium carbor (2) blue	()	(4) green		
22.	Which metal gives viole (1) Fe	et colour in oxidising flam (2) Pb	e when heated with bora (3) Co	ux ? (4) Mn		
23.	KBr, on reaction with co (1) Bromine (3) HBr	onc. H ₂ SO ₄ , gives reddis	h-brown gas : (2) Mixture of bromine a (4) NO ₂	and HBr		
24.	An inorganic salt wher gas is: (1) NO ₂	heated evolves coloure (2) SO ₂	ed gas which bleaches n $(3) N2O$	noist litmus paper. The evolved $(4) I_2$		
25.	, ,	halide is soluble in water (2) AgCl	. ,	(4) AgI		
26.	Which of the following (1) S ²⁻	radical can not be confirm (2) $S_2O_3^{2-}$	ned by using dil. HCl : (3) NO ₃ -	(4)		
27.	When K ₂ Cr ₂ O ₇ is heate (1) red vapours of CrO ₃ (3) CrCl ₃ is formed	ed with conc. H ₂ SO ₄ and s ₂ Cl ₂ are evolved	soluble chloride such as (2) Cl^- ion is oxidized to (4) $Cr_2O_7^{2-}$ ion is reduce	o Cl₂ gas		

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

28. A white solid imparts a violet colour to a Bunsen flame. On being heated with concentrated H₂SO₄, the solid gives violet vapours that turn starch paper blue. The salt may be :

(1) K

(2) NaI

(3) MgI:

(4) CaBr₂

29. NaCl, NaBr, NaI mixture on adding conc. H₂SO₄ gives gases, respectively:

(1) HCl, HBr, HI

(2) HCl, Br₂, I₂

(3) Cl₂, Br₂, I₂

(4) None of these

30. Potassium chromate solution is added to an aqueous solution of a metal chloride. The yellow precipitate thus obtained is insoluble in acetic acid. The precipitate is subjected to flame test, the colour of the flame is:

(1) lilac

(2) apple green

(3) crimson red

(4) brick red

Practice Test-1 (IIT-JEE (Main Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II: NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC) STAGE-I

1.	Which of the metal ch	loride is insoluble in cold	water but dissolves in ho	ot water ?	[NSEC-2002]
	(A) BiCl ₃	(B) SnCl ₄	(C) PbCl ₂	(D) AgCI.	

2. A colourless salt when heated imparts lilac colour to the bunsen flame. It turns red litmus blue. The salt is [NSEC-2004]

(A) Na₂CO₃

(B) KNO₃

(C) NaNO₃

(D) K₂CO₃.

3. The brown compound formed in the ring test for nitrates contains the ion

(A) $[Fe(H_2O)_5NO]^{3+}$

(B) [Fe(H₂O)₅NO]²⁺

(C) [Fe(H₂O)₅NO]⁴⁺

(D) [Fe(H₂O)₅NO]⁺.

4. Sodium nitroprusside Na₂[Fe(CN)₅NO] is used as a reagent for the detection of [NSEC-2005]

(A) sulphur

(B) nitrogen

(C) bromine

(D) iodine.

- 5. The brown ring test for NO_2^- and NO_3^- is due to formation of complex ion with formula : **[NSEC-2006]** (A) $[Fe(H_2O)_6]^{2+}$ (B) $[Fe(CN)_5(NO)]^{2-}$ (C) $[Fe(H_2O)_5(NO)]^{2+}$ (D) $[Fe(H_2O)(NO)_5]^{2+}$
- 6. Concentrated sulphuric acid on reaction with NaCl, NaBr and Nal produces HCl, bromine and iodine respectively. What order of oxidizing ability of halogens with reference to sulphuric acid can be established on the basis of this reaction?

 [NSEC-2007]

(A) $H_2SO_4 > I_2 > Br_2 > CI_2$

(B) $Cl_2 > H_2SO_4 > Br_2 > I_2$

(C) $H_2SO_4 > Cl_2 > Br_2 > l_2$

(D) $Cl_2 > Br_2 > l_2 > H_2SO_4$

- 7. Silver nitrate solution when added to a colorless aqueous solution E forms a white precipitate which dissolves in excess of E. If the white precipitate is heated with water it turns black and the supernatant solution gives a white precipitate with acidified barrum nitrate solution. Therefore, E is: [NSEC-2015]

 (A) Na₂S

 (B) Na₂S₂O₃

 (C) Na₂SO₃

 (D) Na₂SO₄
- 8. If a dilute solution of aqueous NH₃ is saturated with H₂S then the product formed is:

(A) (NH₄)₂S

(B) NH₄HS

(C) $(NH_4)_2S_x$

(D) $NH_4OH + S$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

[NSEC-2016]

[NSEC-2005]

9. A colorless water-soluble compound on strong heating liberates a brown colored gas and leaves a yellow residue that turns white on cooling. An aqueous solution of the original solid gives a white precipitate with (NH₄)₂S. The original solid is: [NSEC-2016]

(A) Zn(NO₃)₂

- (B) Ca(NO₃)₂
- (C) AI(NO₃)₃
- (D) NaNO₃

PART - III: HIGH LEVEL PROBLEMS (HLP)

ONLY ONE OPTION CORRECT TYPE

- 1. What are the products formed when an aqueous solution of magnesium bicarbonate is boiled? (A) MgCO₃, H₂O, CO₂ (B) Mg(HCO₃)₂, H₂O (C) Mg(OH)₂, H₂O (D) Mg, CO, H₂O
- 2. NaX (Sodium salt of particular anion 'X') gives brisk effervescence of Y with dilute HCl. On heating, NaX evolves gas Y which can be completely absorbed in conc. KOH solution and is colorless odourless gas. Hence X and Y respectively are:

(A) HSO₃ ,SO₂

(B) HS⁻ & H₂S

 $(C) HCO_3^-, CO_2$

(D) $HC_2O_4^-$ & $CO_2 + CO$

3. White precipitate of AqCl turns to grevish or black when:

(A) reacts with Na₃AsO₃

(B) exposed to sunlight

(C) reacts with K2CrO4

- (D) reacts with concentrated HCI
- 4. A mixture is known to contain NO_3^- and NO_2^- . Before performing ring test for NO_3^- , the aqueous solution should be made free of NO_2^- . This is done by heating aqueous extract with :

(A) conc. HNO₃

(B) dil HNO₃

(C) urea

(D) zinc dust

5. Which of the following will not react with each other when heated together?

(A) BeO + MgO

(B) Li₂CO₃ + BeO

(C) MgO + CaCO₃

(D) $MgCO_3 + Al_2O_3$

An aqueous solution of salt containing an acidic radical \mathbf{X}^- reacts with sodium hypochlorite in neutral medium. The gas evolved produces blue black colour spot on the starch paper. The anion \mathbf{X}^- is :

(A) CH₃COO-

(B) Br-

(C) I-

(D) NO₂-

7. Precipitate of PbSO₄ is soluble in :

(A) ammonium acetate (6M)

(B) dilute HCI

(C) dilute H₂SO₄

(D) none of these

8. ★ Which of the following pair of acidic radical can be distinguished by using dil H₂SO₄?

(I) $C_2O_4^{2-}$ and NO_3^{-}

(II) NO_3^- and NO_2^-

(III) Cl- and Br-

(IV) HCO₃ and CO₃²

(A) I and II

(B) II only (C) II and IV

(D) III and IV

MATCH THE COLUMN

9. CuCO₃ was strongly heated to obtain a residue A and gas B. The residue obtained was treated with a salt of sodium 'X' and oxide Y, which produced a blue colored glassy compound C on heating in oxidizing flame. The same combination of X and Y gave a green colored glassy compound D when $Cr_2(SO_4)_3$ was heated with them in oxidizing flame. Match the following accordingly:

(A)	Α	(P)	Cu(BO ₂) ₂
(B)	В	(Q)	Na ₂ CO ₃
(C)	С	(R)	CuO
(D)	Χ	(S)	CO
		(T)	Cu ₂ O
		(U)	CO ₂
		(V)	NaBO ₂
		(W)	Cr(BO ₂) ₂

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA-32

SINGLE AND DOUBLE VALUE INTEGER TYPE

- 10. A metal salt evolves the dark violet fumes of (X) with MnO₂ and this (X) gives the deep blue colouration with starch solution. Then number of lone pair on central atom in (X).
- 11. How many of the following will volatilize on heating leaving no solid residue?
 - (i) NaNO₃
- (ii) NH₄NO₃
- (iii) Ca(H₂PO₂)
- (iv) NH₄HCO₃

- (v) N₂H₅HSO₃ (vi) AlCl₃
- (vii) [Cu(NH₃)₄]SO₄
- (viii) FeSO₄.7H₂O
- 12. $Na_2S + Na_2[Fe(CN)_5NO] \rightarrow "A"$ (Violet Color)

In Complex "A", number of type of ambidentate ligand is/are "a" and number of d-orbital involved in hybridisation is/are "b" Then 7a + 8 b will be :

ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 13. Heating which of the following salts in a dry test tube may cause a change in their colour?
 - (A) ZnCO₃ (white)

(B) $Co(NO_3)_2.6H_2O$ (red)

(C) FeSO₄.6H₂O (green)

- (D) MnSO₄ (faint pink)
- 14. Which of the following combinations will give yellowish precipitate in an aqueous medium?
 - (A) AqNO₃ + NaBr

(B) (CH₃COO)₂Pb + Na₂CrO₄

(C) AgCI + Na₃AsO₃

- (D) AgNO₃ + NaNO₂
- Which of the following produce red coloured flame during flame test? 15.
 - (A) Li
- (B) Ca²⁺
- (C) Sr2+
- (D) Ba2+
- 16 When Borax is heated it forms a colourless glassy bead because of formation of:
 - (A) B₂H₆
- (B) NaBO₂
- (C) B₂O₃
- (D) Na₂B₄O₇
- 17. Which of the following anion(s) is/are easily removed from aqueous solution by precipitation?
 - (A) CI-
- (B) SO₄²⁻
- (C) NO₃-
- (D) CO₃²-

- 18. H₂S and SO₂ can be distinguished by:
 - (A) Litmus paper
- (B) MnO_4^-/H^+
- (C) (CH₃COO)₂Pb
- (D) None of these

COMPREHENSION

Read the following passage carefully and answer the questions.

Comprehension

When compound (A) is treated with conc. H₂SO₄, a reddish brown colour gas (B) is evolved. To this solution, a solution of (C) is added slowly from the side of the test tube, a blue ring is obtained at the junction of two layers due to formation of (D).

- 19. Gas (B) may be:
 - (A) Cl₂
- (B) Br₂
- (C) I₂
- (D) NO₂

- 20. Compound (D) has formula:
 - (A) C₆H₅NH-C₆H₅

(B) $(C_6H_5)_2N-N(C_6H_5)_2$

(C) C_6H_5 –NH–NH– C_6H_5

- (D) $C_6H_5 NH N C_6H_5$
- 21. Which compound gives same test as compound (A)
 - (A) NaCl
- (B) NaBr
- (C) Na₂CrO₄
- (D) Na₂S

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA- 33

PART - IV: PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))

Max. Time: 1 Hr. Max. Marks: 66

Important Instructions

A. General:

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 22 questions. The maximum marks are 66.
- B. Question Paper Format:
- 3. Each part consists of five sections.
- 4. Section-1 contains 7 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE is correct.
- 5. Section-2 contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
- 6. Section-3 contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 (both inclusive).
- 7. Section-4 contains 1 paragraphs each describing theory, experiment and data etc. 3 questions relate to paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
- 8. Section-5 contains 1 multiple choice questions. Question has two lists (list-1 : P, Q, R and S; List-2 : 1, 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.

C. Marking Scheme:

- 9. For each question in Section-1, 4 and 5 you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
- 10. For each question in Section-2, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
- 11. For each question in Section-3, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.

SECTION-1: (Only One option correct Type)

This section contains 7 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct.

1.	An inorganic salt when	heated with concentra	ited H ₂ SO ₄ evolves	a colourless pungen	t smelling gas but
	with concentrated H ₂ SC	O ₄ and MnO ₂ , evolves	a coloured punger	nt smelling gas whic	h bleaches moist
	litmus paper. The colour	red gas is :			
	(A) NO ₂	(B) Cl ₂	(C) Br ₂	(D) la	

- 2. Chromyl chloride vapours are dissolved in water and acetic acid and barium acetate solution is added, then:
 - (A) the solution will remain colourless.(B) the solution will become dark green.(C) a yellow solution will be obtained.(D) a yellow precipitate will be obtained.
- 3. When CS_2 layer containing both Br_2 and I_2 (2 : 1) is shaken with excess of chlorine (Cl_2) water, the violet colour due to I_2 disappears and a pale yellow colour appears in the solution. The disappearance of violet colour and appearance of pale yellow colour is due to the formation of :
 - (A) I₃⁻ and Br₂ respectively.
 (B) HIO₃ and BrCl respectively.
 (C) ICl and BrCl respectively.
 (D) I⁻ and Br⁻ respectively.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

4.		on gives a yellow precip dilute ammonia solution	oitate with silver nitrate. The n. The solution contains : (B) iodide ions (D) chromate ions	e precipitate dissolves in dilute nitric
5.	. ,	wing will not give positiv de, CuCl2.	ve chromyl chloride test ? (B) Mercuric chloric (D) Anilinium chloric	
6.				eutral to litmus. When silver nitrate th does not dissolve in dilute HNO $_3$.
7.		ably on adding to the fla ole		
	This section cor	ntains 5 multipole cho	ore than one options corroice questions. Each que THAN ONE are correct.	ect Type) stions has four choices (A), (B),
8.	 (A) A filter paper H₂S gas. (B) Both carbonat mercury(II) chloric (C) Sulphites in presented 	re ions as well as bicarb de. resence of zinc, reacts v	ım acetate solution turns ye	
9.	Which of the follow (A) Sodium arsen (C) Potassium cya	ite solution.	sed for making the distinction (B) Dilute ammonia (D) Dilute HNO3.	on between AgCl and AgI ? solution.
10.	(A) KBr on heating (B) KBr on heating (C) KBr forms HB	g with MnO2 and concer g with concentrated H2S r with concentrated H3P	e correct with respect to bro ntrated H ₂ SO ₄ liberates Br ₂ SO ₄ liberates Br ₂ and SO ₂ g PO ₄ . g with concentrated H ₂ SO ₄	and SO₂ gases. ases.
11.	Which of the follow (A) Calcium chloric (C) Barium chloric	ide	le green colour to the Buns (B) Volatile boron to (D) Ethoxy borate	
12.	•	` '	following series of reaction tte solution Precipita	
	(A) Ag ₃ BO ₃	(B) Ag ₂ O	(C) H₃BO₃	(D) AgBO ₂
	This section cor from 0 to 9 (both	ntains 6 questions. Ea	Integer Value Correct Ty ach question, when work	pe.) ced out will result in one integer

13. How many of following metals give Borax bead test. Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn

14. How many of the following salts impart characteristic colours to the Bunsen flame? NaCl, KCl, CuCl₂, BaCl₂, CaCl₂, SrCl₂, ZnCl₂, MgCl₂, AlCl₃

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVQUA- 35

15. How many of the following liberate coloured vapour/gas with concentrated H₂SO₄?

 $KCI(s) + K_2Cr_2O_7(s)$, $KNO_2(s)$, KI(s), KBr(s), KCI(s)

KBr(s) + MnO₂(s), KNO₃, KCI(s) + MnO₂, K₂SO₃

- **16.** Which of the following statements is/are incorrect
 - (I) Filter paper moistened with cadmium acetate and lead acetate turn black and yellow respectively, when brought in contact with H₂S gas.
 - (II) Sulphites in presence of Zinc, reacts with dilute H₂SO₄ to liberate H₂S gas.
 - (III) Stability of carbonates decrease with increasing metallic character.
 - (IV) Borax bead test is responded generally by p and d block metal salts.
 - (V) Sodium chloride on heating with aqueous solution of K₂Cr₂O₇ and concentrated H₂SO₄ produced white fumes.
- 17. How many B-O-B bond(s)(per molecule) is/are present in compound which is used in Borax bead test?
- 18. In brown ring complex, if number of ambidentate is/are "a" and oxidation state of iron is/are "b" then a + b =?

SECTION-4: Comprehension Type (Only One options correct)

This section contains 1 paragraphs, each describing theory, experiments, data etc. 3 questions relate to the paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D)

Paragraph For Questions 19 to 21

- **19.** Find the anion(s):
 - (A) SO_3^{2-}
- (B) SO_3^{2-} , S^{2-}
- (C) SO_3^{2-} , CO_3^{2-}
- (D) $S_2O_3^{2-}$

- **20.** Find out (E) :
 - (A) S²⁻
- (B) CO₃²⁻
- (C) $S_{-}O_{-}^{2}$
- (D) SO₄²⁻

- **21.** Find out (F):
 - (A) HgSO₄.2HgO
- (B) HgSO₄.3HgO
- (C) HgSO₄
- (D) Hg₂SO₄.3HgO

SECTION-5: Matching List Type (Only One options correct)

This section contains 1 questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct.

22. Match List-I with List-II and select the correct answer using the codes given below the lists:

	List-I		List-II
P.	White turbidity	1.	$IO_3^- + SO_2 + starch \longrightarrow$
Q.	Rotten egg smell	2.	$SO_2 + MnO_4^- \longrightarrow$
R.	Colourless solution	3.	$Zn + NaOH + SO_2 \longrightarrow$
S.	Blue colour	4.	$CO_2 + Ca(OH)_2 \longrightarrow$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Qualitative Analysis (Anion)

Code :

	Р	Q	R	S		Ρ	Q	R	S
(A)	1	3	2	4	(B)	3	2	4	1
					(D)				

Practice Test-2 (IIT-JEE (ADVANCED Pattern)

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22								
Ans.										

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

APSP Answers

				PA	RT - I					
1.	(1)	2.	(4)	3.	(2)	4.	(2)	5.	(3)	
6.	(2)	7.	(4)	8.	(1)	9.	(4)	10.	(1)	
11.	(4)	12.	(1)	13.	(1)	14.	(3)	15.	(1)	
16.	(4)	17.	(4)	18.	(3)	19.	(2)	20.	(1)	
21.	(4)	22.	(4)	23.	(1)	24.	(1)	25.	(1)	
26.	(3)	27.	(1)	28.	(1)	29.	(2)	30.	(2)	
				PA	RT - II					
1.	(C)	2.	(D)	3.	(B)	4.	(A)	5.	(C)	
6.	(B)	7.	(B)	8.	(B)	9.	(A)			
				PAF	RT - III					
1.	(A)	2.	(C)	3.	(B)	4.	(C)	5.	(C)	
6.	(C)	7.	(A)	8.	(B)	9.	A→R, B→U	$A\rightarrow R, B\rightarrow U, C\rightarrow P, D\rightarrow V$		
10.	3	11.	4 (ii, iv, v, vi)	12.	30	13.	(ABCD)	14.	(AB)	
15.	(ABC)	16	(BC)	17.	(ABD)	18.	(ABC)	19.	(D)	
20.	(B)	21.	(C)							
				PAF	RT - IV					
1.	(B)	2.	(D)	3.^	(B)	4.	(C)	5.	(B)	
6.	(B)	7.	(A)	8.	(BC)	9.	(AB)	10.	(BCD)	
11.	(BCD)	12.	(BC)	13.	5	14.	6	15.	7	
16.	4 (I), (III), (IV	′) & (V)		17.	5	18.	1	19.	(B)	
20.	(D)	21.	(A)	22.	(C)					

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

APSP Solutions

PART - I

1. SO₃²⁻ reduces KMnO₄ to colourless Mn²⁺

$$5SO_3^{2-} + 2MnO_4^- + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$$

2. Nitrite ion liberates l₂ from potassium iodide turning starch blue.

$$2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO^+ + 4CH_3COO^- + 2H_2O$$

 I_2 + starch \longrightarrow blue colour

- 3. NO_3^- gives NO_2 with concentrated H_2SO_4 which on passing through water form colourless $HNO_3(\ell)$ and $HNO_2(\ell)$. $Br^- + MnO_2$ on heating with concentrated H_2SO_4 gives Br_2 gas which on passing through water imparts it a reddish brown colour.
- 4. $Fe^{2+} + NO + 5H_2O \longrightarrow [Fe(H_2O)_5NO]^{2+}$ (brown complex)
- 5. $2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO \uparrow + 4CH_3COO^- + 2H_2O.$ $I_3^- + starch \longrightarrow blue colouration.$
- **6.** Ba²⁺ + CrO₄²⁻ \longrightarrow BaCrO₄ \downarrow (yellow); Ag⁺ + Cl⁻ \longrightarrow AgCl \downarrow (white).
- 7. Zn^{2+} is colourless and borax bead test is given by coloured ions such as Cu^{2+} , Mn^{2+} , Fe^{3+} etc.
- **8.** Ca salts impart brick red colour to the flame.
- **9.** Al₂O₃.CoO formed in the test is blue in colour. It is called as thenard's blue.
- 10. Ba²⁺ + SO₃²⁻ \longrightarrow BaSO₃ \downarrow (white) BaSO₃ + 2HCl \longrightarrow BaCl₂ + SO₂(colourless pungent smelling gas) + H₂O SO₃²⁻ and SO₂ both act as bleaching agent.
- 11. (1) $5SO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$
 - (2) $2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$
 - (3) $2MnO_4^- + H_2S + 6H^+ \longrightarrow 2Mn^{2+} + 5S \downarrow + 8H_2O$
- 12. $NO_2^- + 2I^- + 4CH_3COOH \longrightarrow I_2 + 2NO^+ + 4CH_3COO^- + 2H_2O$
- 13. $SO_3^{2^-} + Zn + 8H^+ \longrightarrow H_2S \uparrow + 3Zn^{2^+} + 3H_2O$ $Pb^{2^+} + S^{2^-} \longrightarrow PbS \downarrow (black)$ $Ag^+ + S^{2^-} \longrightarrow Ag_2S \downarrow (black)$
- 14. $SO_3^{2-} + Ba(OH)_2 \longrightarrow BaSO_3 \downarrow \text{ (white)} + 2OH^-.$ $3SO_2 + Cr_2O_7^{2-} + 2H^+ \longrightarrow 2Cr^{3+} \text{ (green colour solution)} + 3SO_4^{2-} + H_2O.$
- 16. NH₃ is basic.
- 17. E°_{SRP} of Ag = 0.80 V, E°_{SRP} of Cl⁻ = 1.36 V, E°_{SRP} of H⁺ = 0.00 V. So Ag can not oxidize Cl⁻ and can not reduce H⁺.
- **18.** S₂O₃²⁻ + dil.H₂SO₄ $\stackrel{\triangle}{\longrightarrow}$ SO₂ ↑ (Suffocating gas) 2Cl⁻ + S \downarrow (yellow turbidity or white turbidity) + H₂O
- 19. $HCO_{3}^{-} + Mg^{2+} \rightarrow Mg (HCO_{3})_{2} (No PPt) \xrightarrow{\Delta} Mg CO_{3} \downarrow$
- 23. KBr + $H_2SO_4 \longrightarrow KHSO_4 + HBr$, $2HBr + 9 H_2SO_4 \longrightarrow Br_2 + 2H_2O + SO_2$
- 24. Some nitrates on heating give NO₂ which bleaches moist litmus paper due to its oxidizing nature.
- **25.** Solubility order; Ag F > AgCl > AgBr > AgI

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

26. $S^{2-} + 2HCI \xrightarrow{\Delta} H_2S \downarrow + 2CI^-$

Rotten egg smell (Specific smell)

$$S_2O_3^{2-} + HCI \xrightarrow{\Delta} SO_2 \uparrow (Suffocating gas) + 2CI^- + S \downarrow (yellow turbidity or white turbidity) + H_2O NO_2^- + HCI \xrightarrow{\Delta} HNO_2 + CI^- \rightarrow NO \uparrow (colourless) \xrightarrow{atmosphericair} NO_2 \uparrow (Brown colour gas)$$

- 27. $KCl + H_2SO_4 + K_2Cr_2O_7 \longrightarrow CrO_2Cl_2$ (Chromyl Chloride test)
- 28. K \rightarrow violet colour in flame test $2I^-$ + conc. H₂SO₄ \rightarrow HI + SO₄²⁻ ; HI + H₂SO₄ \rightarrow I₂ + H₂O + SO₂ I₂ + starch \rightarrow blue colour.
- 29. HBr and HI are strong reducing agents and are oxidized by H₂SO₄ to Br₂ and I₂, respectively.
- **30.** Ba²⁺ salts gives yellow precipitate with K₂CrO₄ solution and this precipitate is not soluble in CH₃COOH. Ba²⁺ ions gives apple green colour in the flame test.

PART - III

- 1. $2Mg(HCO_3)_2 \rightarrow 2MgCO_3 + CO_2 + H_2O$
- 2. NaHCO₃ + HCI \longrightarrow NaCI + H₂O + CO₂↑ (NaX) (Y) 2NaHCO₃ $\stackrel{\Delta}{\longrightarrow}$ Na₂CO₃ + H₂O + CO₂↑ CO₂ + 2KOH \longrightarrow K₂CO₃ + H₂O CO₂ is colourless & odourless gas.
- 3. $2 \text{ AgCl} \xrightarrow{hv} 2 \text{ Ag} \downarrow (\text{black}) + \text{Cl}_2 \uparrow$.
- 4. $NO_2^- + H^+ \longrightarrow HNO_2$ $CO(NH_2)_2 + HNO_2 \longrightarrow 2N_2 \uparrow + CO_2 \uparrow + 3H_2O$
- 5. BeO + MgO $\xrightarrow{\Delta}$ MgBeO₂ $Li_2CO_3 + BeO \xrightarrow{\Delta} Li_2BeO_2 + CO_2 \uparrow$ $MgCO_3 + Al_2O_3 \xrightarrow{\Delta} Mg(AlO_2) + CO_2 \uparrow$
- 6. $OCl^- + 3l^- + H_2O \longrightarrow l_3^- + 2OH^- + Cl^$ $l_3^- + starch \longrightarrow blue$ -black spot on starch paper appears due to the formation of iodine-starch adsorption complex.
- 7. PbSO₄ + 2CH₃COONH₄ \longrightarrow (NH₄)₂SO₄ + (NH₄)₂[Pb(CH₃COO)₄]
- 8. (I) $\begin{cases} \rightarrow C_2O_4^{2^-} + 2H^+ \xrightarrow{\quad \text{dil.H}_2SO_4 \ } \quad \text{No vapours or gas is evolved} \\ \rightarrow NO_3^- : \text{No reaction with dil. H}_2SO_4 \end{cases}$

Hence, distincition is posssible.

- (III) Both CI- and Br- have no reaction with dil. H₂SO₄.
- (IV) Both HCO₃⁻ and CO₃²- produce CO₂ ↑ which evolves with efferverscences.
- 9. $CuCO_3 \xrightarrow{\Delta} CuO \downarrow + CO_2 \uparrow$ (A) (B) (X) $CuO + NaBO_2 + B_2O_2 \longrightarrow Cu(BO_2)_2 +$

 $CuO + \underbrace{NaBO_2 + B_2O_3}_{Borax bead} \longrightarrow \underbrace{Cu(BO_2)_2 + NaBO_2}_{(C) Blue bead}$

 $Cr_2(SO_4)_3 \xrightarrow{Borax} Green colored metaborate$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

- $3I^- + MnO_2 + H_2SO_4 \longrightarrow I_3^- \uparrow + Mn^{2+} + SO_4^{2-} + H_2S$ 10.
 - I_3^- + starch ightarrow Blue color due to starch lodine complex

 $NH_4NO_3 \xrightarrow{\Delta} N_2O\uparrow + 2H_2O\uparrow$ 11.

$$NH_4HCO_3 \xrightarrow{\Delta} NH_3\uparrow + H_2O\uparrow + CO_2\uparrow$$

$$N_2H_5HSO_3 \longrightarrow N_2H_4\uparrow + H_2O\uparrow + SO_2\uparrow$$

 $AICI_3 \longrightarrow AICI_3(g)$ (sublimes)

 $A = Na_4[Fe(CN)_5NOS]$ 12.

$$a = 2$$

Hybridisation
$$\Rightarrow$$
 d²sp³ \Rightarrow b =2

$$7a + 8b = 30$$

13. $ZnCO_3 \longrightarrow ZnO + CO_2 \uparrow$. ZnO is yellow when hot.

(white)

$$Co(NO_3)_2.6H_2O \xrightarrow{\Delta} CoO (black) + 2NO_2\uparrow + \frac{1}{2}O_2\uparrow + 6H_2O\uparrow$$

2FeSO₄.6H₂O
$$\xrightarrow{\Lambda}$$
 Fe₂O₃ (brown) + SO₂ \uparrow + SO₃ \uparrow + 6H₂O \uparrow

$$3MnSO_4 \longrightarrow Mn_3O_4 + 2SO_2\uparrow + SO_3\uparrow$$

(faint pink) (black)

14. $AgNO_3 + NaBr \longrightarrow AgBr \downarrow (Yellow ppt.)$

$$Pb^{2+} + CrO_4^{2-} \longrightarrow PbCrO_4 \downarrow (Yellow ppt.)$$

$$AgCl + Na_3AsO_3 \longrightarrow Ag_3AsO_3 \downarrow (Yellow ppt.)$$

$$Ag^+ + NO_2^- \longrightarrow AgNO_2 \downarrow (White ppt.)$$

 $Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} 2NaBO_2 + B_2O_3$ glassy bead 16

- 17. All nitrate are water soluble.
- H₂S, SO₂ both are acidic so turns blue litmus red but SO₂ is a bleaching agent which turns red litmus 18. colourless.

MnO₄⁻/H⁺ oxidising agent, so SO₂ is oxidised to SO₄²- & H₂S is oxidized to sulphur

$$2MnO_4^- + 5SO_2 + 2H_2O \rightarrow 2Mn^{+2} + 5SO_4^{-2} + 4H^{+1}$$

$$2MnO_4^- + 5H_2S + 6H^+ \rightarrow 2Mn^{+2} + 5\frac{S}{(vellow)} + 8H_2O$$

 $Pb^{2+} + S^{2-} \longrightarrow PbS$ - (black ppt.), SO_2 will not give black precipitate so can be distinguished.

(19-21) NaNO₃ + $H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$

$$2HNO_3 \longrightarrow H_2O + 2NO_2 \uparrow + [O]$$

 $2C_6H_5NHC_6H_5+[O] \longrightarrow (C_6H_5)_2N-N\;(C_6H_5)_2+\;H_2O$

blue ring (D)

This testing also given by various oxidizing agent like CrO₄²⁻, Cr₂O₇²⁻, ClO₃⁻ etc.

PART - IV

1. $Cl^- + H_2SO_4 \longrightarrow HCl \uparrow (colourless) + HSO_4^-$

$$MnO(OH)_2 + 2H_2SO_4 + 2CI^- \longrightarrow Mn^{2+} + CI_2 \uparrow (yellowish green) + 2SO_4^{2-} + 3H_2O$$

$$Cl_2 + H_2O \longrightarrow 2HCI + [O]$$

Litmus + [O] → colourless oxidised form

Cl₂ is a yellowish green gas which bleaches litmus paper by oxidation.

2. $CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$

3. $5Cl_2 + I_2 + 6H_2O \longrightarrow 2HIO_3 \text{ (colourless)} + 10HCl$

4. Ag₃PO₄ is yellow precipitate which is soluble in both dilute ammonia solution and dilute HNO₃.

$$\begin{array}{l} HPO_4{}^{2-} + 3Ag^+ \longrightarrow Ag_3PO_4 \downarrow + H^+ \\ Ag_3PO_4 + 2H^+ \longrightarrow H_2PO_4^- \downarrow + 3Ag^+; \end{array}$$

$$Aq_3PO_4 + 2H^+ \longrightarrow H_2PO_4^{-\downarrow} + 3Aq^+$$

$$Ag_3PO_4\downarrow + 6NH_3 \longrightarrow 3[Ag(NH_3)_2]^+ + PO_4^{3-}$$

Pale yellow precipitate of AgBr is not soluble in dilute HNO3; bright yellow precipitate of AgI is not soluble in both; Ag₂CrO₄ is obtained as red precipitate.

- HqCl₂ fails to give positive chromyl chloride test because of its covalent nature i.e., it does not 5. dissociate to give CI-.
- $NaCI + AgNO_3 \longrightarrow AgCI \downarrow (white) + NaNO_3; Ag_2S \downarrow (black).$ 6.

Ag₂CO₃ and Ag₂SO₃ dissolves in dilute HNO₃ liberating CO₂ and SO₂ respectively.

Both Ag₂CO₃ and Ag₂SO₃ are white. AgCl is white but insoluble in dilute HNO₃. NaCl solution is neutral to litmus as it is a salt of strong acid and strong base.

- 7. Marble (CaCO₃) do not react, adsorb, absorb or dissolve Br₂. As such there is no change in colour of Br₂. Remaining dissolves or absorb or adsorb bromine.
- (A) Cd^{2+} (ag) + H_2S (g) \longrightarrow $CdS \downarrow$ (yellow) + $2H^+$ (ag) 8.
 - (B) $CO_3^{2-} + 4Hq^{2+} + 3H_2O \longrightarrow HqCO_3.3HqO \downarrow (reddish-brown) + 6H^+$ HCO₃⁻ (aq) does not give precipitate.
 - (C) $SO_3^{2-} + 3Zn + 8H^+ \longrightarrow H_2S \uparrow + 3Zn^{2+} + 3H_2O$
 - (D) $5SO_2 + 2IO_3^- + 4H_2O \longrightarrow I_2 + 5SO_4^{2-} + 8H^+$
- $3AgCI \downarrow + AsO_3^{3-} \longrightarrow Ag_3AsO_3 \downarrow (yellow) + 3CI^{-}$ 9. Agl is unaffected by this treatment.
 - $AgCI + 2NH_3 \longrightarrow [Ag(NH_3)_2]CI$ (B)

Agl is not soluble in dilute ammonia solution.

- (C) Both soluble in potassium cyanide, forming soluble complexes.
- (D) Both insoluble in dilute HNO₃.
- 10. (A) $2KBr + MnO_2 + 2H_2SO_4 \longrightarrow Br_2 \uparrow + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O$
 - (B) $2KBr + 2H_2SO_4 \longrightarrow Br_2^{\uparrow} + SO_2^{\uparrow} + SO_4^{2-} + 2K^+ + 2H_2O_4^{\uparrow}$
 - $KBr + H_3PO_4 \longrightarrow HBr + H_2PO_4^- + K^+$ (C)
 - $6KBr + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3Br_2 + 2Cr^{3+} + 2K^+ + 7SO_4^{2-} + 7H_2O_4^{2-}$ (D)
- 11. BF₃ colour the flame green; B(OC₂H₅)₃ burns with green edged flame; Barium chloride (volatile) gives apple green colour to flame.
- $B_4O_7^{2-} + 4Ag^+ + H_2O \longrightarrow 4AgBO_2 \downarrow \text{ (white)} + 2H^+$ 12. $2AgBO_2\downarrow + 3H_2O \xrightarrow{Hydrolysis} Ag_2O\downarrow (brown) + 2H_3BO_3$
- 13. Cr, Mn, Fe, Co, Ni, Cu give Borax bead test.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- 14. NaCl-Golden yellow; KCl-Lilac; CuCl₂-bluish-green, BaCl₂-Apple green; SrCl₂-Crimson; CaCl₂-Brick red.
- 15. (i) $4Cl^{-} + Cr_{2}O_{7}^{2-} + 6H^{+} \longrightarrow 2CrO_{2}Cl_{2} \uparrow (deep red) + 3H_{2}O$
 - (ii) $NO_2^- + H^+ \longrightarrow HNO_2$; $3HNO_2 \longrightarrow HNO_3 + NO \uparrow + H_2O$ $2NO \uparrow + O_2 \uparrow \longrightarrow NO_2 \uparrow (brown)$
 - (iii) $3I^- + 2H_2SO_4 \longrightarrow I_3^- \uparrow \text{ (violet)} + SO_4^{2-} + 2H_2O + SO_2$
 - (iv) $2KBr + 2H_2SO_4 \longrightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2$
 - (v) $Cl^- + H_2SO_4 \longrightarrow HCl \uparrow (colourless) + HSO_4^-$
 - (vi) $2KBr + MnO_2 + 2H_2SO_4 \longrightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4 \rightarrow Br_2 \rightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4 \rightarrow Br_2 \rightarrow Br$
 - (vii) $4NO_3^- + 2H_2SO_4 \longrightarrow NO_2 \uparrow (brown)$
 - (viii) KCI + MnO(OH)₂ + 2H₂SO₄ \longrightarrow Mn²⁺ + Cl₂ \uparrow (yellowish green) + 2SO₄²⁻ + 3H₂O
 - (ix) $SO_3^{2-} + 2H^+ \longrightarrow SO_2 \uparrow \text{ (colourless)} + H_2O$
- 16. (I) $Pb^{+2} + H_2S \longrightarrow PbS \downarrow \\ black \\ Cd^{+2} + H_2S \longrightarrow CdS \downarrow \\ yellow$
 - (II) $Zn + H_2SO_4 + SO_3^- \longrightarrow H_2S^{\uparrow} + Zn^{2+}$
 - (III) Stability of carbonate ∞ metallic character
 - (IV) Borax bead test is responded by d-block metal salt.
 - (V) NaCl + K₂Cr₂O₇ + H₂SO₄ \longrightarrow CrO₂Cl₂ \uparrow + Cr³⁺ + SO₄²⁻
- **17.** Na₂B₄O₇.10H₂O contains 5 B–O–B bonds Borax
- 18. a = 0 H_2O , NO^+ are not ambidentate ligand b = 1 Fe^{+1} a + b = 1
- 22. $1 \rightarrow IO_3^- + SO_2 \longrightarrow I_2 + SO_4^{2-}$

 I_2 + Starch \longrightarrow deep blue colour

 $2 \rightarrow SO_2 + MnO_4 \longrightarrow MnSO_4 + SO_4^{2-}$

colourless

 $3 \rightarrow Zn + NaOH + SO_2 \longrightarrow H_2S^{\uparrow} + Zn^{2+}$

rotten egge smell

 $4 \rightarrow CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow (milky)$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in