Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №4 по «Вычислительная Математика»

Выполнил:

Студент группы Р3207 Разинкин А.В.

Преподаватели:

Рыбаков С.Д.

Оглавление

Цель лабораторной работы	3
Порядок выполнения работы	3
Рабочие формулы	4
Вычислительная реализация задачи	5
Ссылка на исходный код программы (GitHub)	7
Пример работы программы	8
Вывод	19

Цель лабораторной работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Порядок выполнения работы

Задание вычислительной части:

$$y = \frac{18x}{x^4 + 10}, x \in [0, 4] \ h = 0.4$$

- 1) Сформировать таблицу табулирования заданной функции на указанном интервале;
- 2) Построить линейное и квадратичное приближение по 11 точкам заданного интервала;
- 3) Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4) Выбрать наилучшее приближение.
- 5) Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6) Привести в отчете подробные вычисления.

Рабочие формулы

Формула критерия минимизации:

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2$$

Линейная аппроксимация:

$$\varphi(x, a, b) = ax + b$$

$$S = S(a, b) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [ax_i + b - y_i]^2$$

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

Коэффициент корреляции:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
$$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

Квадратичная аппроксимация:

$$\varphi(x, a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$$

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n [a_0 + a_1 x + a_2 x^2 - y_i]^2$$

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Коэффициент детерминации:

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \varphi_i)^2}{\sum_{i=1}^{n} (y_i - \overline{\varphi}_i)^2}$$
$$\overline{\varphi}_i = \frac{1}{n} \sum_{i=1}^{n} \varphi_i$$

Вычислительная реализация задачи

Таблица табулирования:

i	0	1	2	3	4	5	6	7	8	9	10
Xi	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
y i	0	0,718	1,383	1,789	1,740	1,385	1,001	0,705	0,501	0,364	0,271

Решение задачи линейной аппроксимации:

$$\sum_{i=0}^{10} x_i = 22$$

$$\sum_{i=0}^{10} x_i^2 = 61,6$$

$$\sum_{i=0}^{10} x_i y_i = 17,4684$$

$$\sum_{i=0}^{10} y_i = 9,857$$

Получили систему:

$$\begin{cases} 61,5a + 22b = 17,4684 \\ 22a + 11b = 9,857 \end{cases}$$

Решение системы:

$$\begin{cases} a = -0.128 \\ b = 1.153 \end{cases}$$

Получили аппроксимирующую линейную функцию:

$$\varphi(x) = -0.128x + 1.153$$

Таблица табулирования:

i	0	1	2	3	4	5	6	7	8	9	10
Xi	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
y i	0	0,718	1,383	1,789	1,740	1,385	1,001	0,705	0,501	0,364	0,271
φ_i	1,153	1,102	1.051	1.000	0.948	0.897	0.846	0.795	0.743	0.692	0.641

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{11}} \approx 0.557$$

Решение задачи квадратичной аппроксимации:

$$\sum_{i=0}^{10} x_i = 22$$

$$\sum_{i=0}^{10} x_i^2 = 61.6$$

$$\sum_{i=0}^{10} x_i^3 = 193.6$$

$$\sum_{i=0}^{10} x_i^4 = 648.525$$

$$\sum_{i=0}^{10} x_i y_i = 17.4684$$

$$\sum_{i=0}^{10} x_i^2 y_i = 39.052$$

$$\sum_{i=0}^{10} y_i = 9.857$$

Получили систему:

$$\begin{cases} 11a_0 + 22a_1 + 61,6a_2 = 9,857 \\ 22a_0 + 61,6a_1 + 193,6a_2 = 17,4684 \\ 61,6a_0 + 193,6a_1 + 648,525a_2 = 39,052 \end{cases}$$

Решение системы:

$$\begin{cases} a_0 = 0,368 \\ a_1 = 1,177 \\ a_2 = -0,326 \end{cases}$$

Получили аппроксимирующую квадратичную функцию:

$$\varphi(x) = 0.368 + 1.177x - 0.326x^2$$

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{11}} \approx 0.312$$

Таблица табулирования:

i	0	1	2	3	4	5	6	7	8	9	10
Xi	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
Уi	0	0,718	1,383	1,789	1,740	1,385	1,001	0,705	0,501	0,364	0,271
φ_i	0,368	0,787	1,101	1,311	1,417	1,418	1,315	1,108	0,796	0.380	-0,140

Ссылка на исходный код программы (GitHub)

https://github.com/DecafMangoITMO/ITMO/tree/main/ComputationalMathematics/lab_4

Пример работы программы

```
Введите 8-12 точек в формате:
```

```
x1 y1
x2 y2
```

... xn yn

Для прекращения ввода нажмите Enter. Для завершения работы программы введите exit.

- 1 1
- 2 2
- 3 3 4 4
- 44
- 5 5
- 6 6 7 7
- 88

ЛИНЕЙНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: у = 1.0х + 0.0

```
| Nº π.π. | X | Y | y=ax+b | εi |
| 1 | 1.000000 | 1.000000 | 1.000000 | 0.000000 |
```

- 2 | 2.000000 | 2.000000 | 2.000000 | 0.000000 |
- 3 | 3.000000 | 3.000000 | 3.000000 | 0.000000 |
- 4 | 4.000000 | 4.000000 | 4.000000 | 0.000000 |
- 5 | 5.000000 | 5.000000 | 5.000000 | 0.000000 |
- 6 | 6.000000 | 6.000000 | 6.000000 | 0.000000 |
- 7 | 7.000000 | 7.000000 | 7.000000 | 0.000000 |
- 8 | 8.000000 | 8.000000 | 8.000000 | 0.000000 |

Коэффициент корреляции: r = 1.0

Среднеквадратичное отклонение: δ = 0.0

Коэффициент детерминации: R^2 = 1.0 - Высокая точность аппроксимации.

КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: $y = 3.343730521224001E-15 + 0.999999999999984x + 1.5860328923216658E-16x^2$

إ	№ п.п.		X		Y y=	a0-	+a1x+a2x^2		εi	
١	1		1.000000		1.000000		1.000000		0.000000	I
ļ	2		2.000000		2.000000		2.000000		0.000000	I
١	3		3.000000		3.000000		3.000000	1	0.000000	
١	4		4.000000		4.000000		4.000000		0.000000	I
١	5		5.000000		5.000000		5.000000		-0.000000	I
١	6		6.000000		6.000000		6.000000	1	0.000000	I
ļ	7		7.000000		7.000000		7.000000		0.000000	I
	8	١	8.000000	I	8.000000		8.000000	1	0.000000	

Среднеквадратичное отклонение: δ = 1.1018648905114063E-15 Коэффициент детерминации: R^2 = 1.0 - Высокая точность аппроксимации.

СТЕПЕННАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 1.0x^1.0

	Nº	п.п. X Y y=ax^x εi
١	1	1.000000 1.000000 1.000000
١	2	2.000000 2.000000 2.000000 0.000000
ا	3	3.000000 3.000000 3.000000 0.000000
١	4	4.000000 4.000000 4.000000 0.000000
ا	5	5.000000 5.000000 5.000000 0.000000
l	6	6.000000 6.000000 6.000000 0.000000

| 7 | 7.000000 | 7.000000 | 7.000000 | 0.000000 | | 8 | 8.000000 | 8.000000 | 8.000000 | 0.000000 |

Среднеквадратичное отклонение: δ = 0.0

Коэффициент детерминации: R^2 = 1.0 - Высокая точность аппроксимации.

ЭКСПОНЕНЦИАЛЬНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 1.0907554204238947e^0.275267746752735x

	№п	.п.	X		Υ	y=	ae^bx	:	εi 		
_	1	1.0	00000	00	1.00	0000	1.43	86398	0.	436398	8
_	2	2.0	00000	00	2.00	0000	1.89	1568	-0	.10843	2
I_	3	3.0	00000	00	3.00	0000	2.49	0974	-0	.50902	6
I_	4	4.0	00000	00	4.00	0000	3.28	30322	-0	.71967	8
I_	5	5.0	00000	00	5.00	0000	4.31	9801	-0	.68019	9
I_	6	6.0	00000	00	6.00	0000	5.68	88673	-0	.31132	7
I_	7	7.0	00000	00	7.00	0000	7.49	1318	0.	.491318	8
I_	8	8.0	00000	00	8.00	0000	9.86	5191	1.	.86519 ⁻	1

Среднеквадратичное отклонение: δ = 0.8107997968581434 Коэффициент детерминации: R^2 = 0.874861922803126 - Удовлетворительная точность аппроксимации.

ЛОГАРИФМИЧЕСКАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 3.3381688220873196ln(x) + 0.07500565242988973

_	№п	.П.		X		Y	y=	aln	(x)+b	εi	.	
	1		1.0	0000	0	1.00	00000	(0.075006	6 -(0.92499	94
	2	1	2.0	0000	0	2.00	00000	2	2.388848	3 0	0.38884	8

	3	3.000000 3.000000 3.742359 0.742359
I_	4	4.000000 4.000000 4.702690 0.702690
I_	5	5.000000 5.000000 5.447581 0.447581
_	6	6.000000 6.000000 6.056201 0.056201
<u> </u>	7	7.000000 7.000000 6.570782 -0.429218
I_	8	8.000000 8.000000 7.016533 -0.983467

Среднеквадратичное отклонение: δ = 0.652553750916286 Коэффициент детерминации: R^2 = 0.9188902099362068 - Удовлетворительная точность аппроксимации.

Наиболее точной аппроксимацией обладают модели:

- -> ЛИНЕЙНАЯ АППРОКСИМАЦИЯ
- -> КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ
- -> СТЕПЕННАЯ АППРОКСИМАЦИЯ

Красная линия - линейная функция Желтая линия - квадратичная функция Зеленая линия - степенная функция Синяя линия - экспоненциальная функция


```
Введите 8-12 точек в формате:
```

x1 y1

x2 y2

•••

xn yn

Для прекращения ввода нажмите Enter.

Для завершения работы программы введите exit.

- -4 16
- -3 9
- -2 4
- -1 1
- 0 0
- 11
- 24
- 3 9
- 4 16

ЛИНЕЙНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: у = 0.0х + 6.66666666666667

	Nº	п.п.		X		Υ		у=а	x+b		εi	_			
١	1		-4.	0000	00	16.00	000	00	6.6	666	67	-9. -	3333	33	I
١	2		-3.	0000	00	9.00	000	0	6.66	6666	67	-2.3 -	3333	33	
١	3		-2.	0000	00	4.00	000	0	6.66	6666	67	2.6	6666	67	
١	4		-1.	0000	00	1.00	000	0	6.66	6666	67	5.6	6666	67	l
١	5		0.0	0000	00	0.00	000	0	6.66	6666	7	6.6	6666	67	
١	6		1.0	0000	00	1.00	000	0	6.66	6666	57	5.6	6666	67	
١	7		2.0	0000	00	4.00	000	0	6.66	6666	7	2.6	6666	67	
	8		3.0	0000	00	9.00	000	0	6.66	6666	7	-2.3	3333	33	

9 | 4.000000 | 16.000000 | 6.666667 | -9.333333 |

Коэффициент корреляции: r = 0.0

Среднеквадратичное отклонение: δ = 5.849976258261415

Коэффициент детерминации: R^2 = 2.220446049250313E-16 - Недостаточная

точность аппроксимации.

КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: $y = 0.0 + 0.0x + 1.0x^2$

	№ п.п.			X		Y y=	a0-	+a1x+a2x^2		εi 	
	1	l	-4.	.000000		16.000000		16.000000	1	0.000000	
I_	2		-3.	.000000		9.000000	l	9.000000		0.000000	
	3		-2.	.000000	1	4.000000	I	4.000000		0.000000	
I_	4		-1.	.000000		1.000000		1.000000		0.000000	I
	5	l	0.	000000	I	0.000000	1	0.000000	l	0.000000	l
	6	l	1.	000000	I	1.000000	1	1.000000	l	0.000000	l
I	7	l	2.	000000	I	4.000000	1	4.000000	l	0.000000	
	8		3.	000000	I	9.000000	1	9.000000	I	0.000000	I
 	9		4.	000000		16.000000		16.000000		0.000000	

Среднеквадратичное отклонение: δ = 0.0

Коэффициент детерминации: R^2 = 1.0 - Высокая точность аппроксимации.

СТЕПЕННАЯ АППРОКСИМАЦИЯ:

На основе введенных данных не удалось построить степенную аппроксимацию.

ЭКСПОНЕНЦИАЛЬНАЯ АППРОКСИМАЦИЯ:

На основе введенных данных не удалось построить экспоненциальную аппроксимацию.

ЛОГАРИФМИЧЕСКАЯ АППРОКСИМАЦИЯ:

На основе введенных данных не удалось построить логарифмическую аппроксимацию.

Наиболее точной аппроксимацией обладают модели:

-> КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ

Красная линия - линейная функция Желтая линия - квадратичная функция

Введите 8-12 точек в формате:

x1 y1

x2 y2

...

xn yn

Для прекращения ввода нажмите Enter. Для завершения работы программы введите exit.

11

23

3 5

44

5 7

63

7 9

8 1

ЛИНЕЙНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 0.3214285714285715x + 2.6785714285714284

	Nº	п.п.		X		Υ		y=a	ax+b		εi	_		
١	1		1.	0000	00	1.00	0000	00	3.00	0000	0	2.00	0000)
١	2		2.	0000	00	3.00	0000	00	3.32	2142	9	0.32	21429)
١	3		3.	0000	00	5.00	0000	00	3.64	1285	7 -	-1.3	57143	3
١	4	I	4.	0000	00	4.00	0000	00	3.96	6428	6 -	.0.0 -	35714	4
١	5	I	5.	0000	00	7.00	0000	00	4.28	3571	4 -	-2.7	14286	3
١	6	I	6.	0000	00	3.00	0000	00	4.60)714	3	1.60)7143	3
١	7	I	7.	0000	00	9.00	0000	00	4.92	2857	1 -	-4.0 ⁷	71429	9
I	8	1	8.	0000	00	1.00	0000	00	5.25	5000	0	4.25	50000)

Коэффициент корреляции: r = 0.2812042348056526 Среднеквадратичное отклонение: $\delta = 2.513357174321685$ Коэффициент детерминации: $R^2 = 0.07907582167263272$ - Недостаточная точность аппроксимации.

КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = -2.053571428571476 + 3.1607142857143096x + -0.31547619047619296x^2

| № п.п. | X | Y |y=a0+a1x+a2x^2 | εi |

3
52
4
7
)5
1
)5
7
)

Среднеквадратичное отклонение: δ = 2.0559510022881193 Коэффициент детерминации: R^2 = 0.3837726434537371 - Недостаточная точность аппроксимации.

СТЕПЕННАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 1.8430199604935267x^0.41914322917370933

	№ п.	п.	Χ		Υ	Ιу	=a:	Υ^X		εi	_		
ا	1	1.0	0000	0	1.00	0000		1.84	1302	20	0.8	34302	.0
١	2	2.0	0000	0	3.00	0000		2.46	6436	3	-0.	53563	37
١	3	3.0	0000	0	5.00	0000		2.92	2087	70	-2.0	07913	80
ا	4	4.0	0000	0	4.00	0000		3.29	9518	32	-0.7	70481	8
١	5	5.0	0000	0	7.00	0000		3.61	825	50	-3.3	38175	50
١	6	6.0	0000	0	3.00	0000	1	3.90)559	92	0.9	90559	2

7	7.000000 9.000000 4.166268 -4.833732
8	8.000000 1.000000 4.406097 3.406097

Среднеквадратичное отклонение: δ = 2.5748771373702235 Коэффициент детерминации: R^2 = 0.11546472365978944 - Недостаточная точность аппроксимации.

ЭКСПОНЕНЦИАЛЬНАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 2.5215098185194047e^0.05381190904735709x

	Nº	п.п.		X		Υ	y=	=ae	^bx		εi 			
١	1	I	1.	00000	00	1.00	0000		2.66	0914	. 1	.660	0914	
	2	I	2.	00000	00	3.00	0000		2.80	8026	i -0).19 ¹	1974	I
١	3	I	3.	00000	00	5.00	0000		2.96	3271	-2	2.03	6729	l
١	4	l	4.	00000	00	4.00	0000		3.12	7098	3 -0).87	2902	I
	5	- 1	5.	00000	00	7.00	0000		3.29	9983	3 -3	3.70	0017	I
١	6	I	6.	00000	00	3.00	0000		3.48	2426	5 C	.482	2426	
١	7	I	7.	00000	00	9.00	0000		3.67	4956	5 -5	5.32	5044	l
	8	1	8.	00000	00	1.00	0000		3.87	8130) 2	2.878	3130	

Среднеквадратичное отклонение: δ = 2.6988029326084093 Коэффициент детерминации: R^2 = 0.04767759566716223 - Недостаточная точность аппроксимации.

ЛОГАРИФМИЧЕСКАЯ АППРОКСИМАЦИЯ:

Полученная аппроксимирующая функция: y = 1.619146468715862ln(x) + 1.9786993322357558

```
| № п.п. | Х | Ү
                         | y=aln(x)+b | εί | | |
       | 1.000000 | 1.000000 | 1.978699 | 0.978699 |
       | 2.000000 | 3.000000 | 3.101006 | 0.101006 |
   2
       | 3.000000 | 5.000000 | 3.757514 | -1.242486 |
   3
       | 4.000000 | 4.000000 | 4.223313 | 0.223313 |
   4
       | 5.000000 | 7.000000 | 4.584615 | -2.415385 |
   5
   6
       | 6.000000 | 3.000000 | 4.879820 | 1.879820 |
       | 7.000000 | 9.000000 | 5.129413 | -3.870587 |
   7
   8
       | 8.000000 | 1.000000 | 5.345620 | 4.345620 |
```

Среднеквадратичное отклонение: δ = 2.392576036030425 Коэффициент детерминации: R^2 = 0.16546039716635086 - Недостаточная точность аппроксимации.

Наиболее точной аппроксимацией обладают модели: -> КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ

Красная линия - линейная функция Желтая линия - квадратичная функция Зеленая линия - степенная функция Синяя линия - экспоненциальная функция Розовая лииня - логарифмичекская функция

Вывод

Я научился аппроксимировать различными функциями. Я молодец.