Analisis de Pila en Assembly

```
ORG 1000H; Memoria de datos
NUM1 DW 5H
NUM2 DW 3H
RES DW ?
ORG 3000H; Subrutina MUL
MUL: PUSH BX
MOV BX, SP
PUSH CX
PUSH AX
PUSH DX
ADD BX, 6
MOV CX, [BX]
ADD BX, 2
MOV AX, [BX]
SUMA: ADD DX, AX
DEC CX
JNZ SUMA
SUB BX, 4
MOV AX, [BX]
MOV BX, AX
MOV [BX], DX
POP DX
POP AX
POP CX
POP BX
RET
ORG 2000H ; Programa principal
MOV AX, NUM1
PUSH AX
MOV AX, NUM2
PUSH AX
MOV AX, OFFSET RES
PUSH AX
MOV DX, 0
CALL MUL
POP AX
POP AX
POP AX
HLT
END
```

Respuestas:

a) ¿Cuál es el modo de direccionamiento de la instrucción MOV AX, [BX]?

El modo de direccionamiento es indirecto por registro. En este caso, AX obtiene el valor almacenado en la direccion que indica BX.

b) ¿Qué función cumple el registro temporal ri que aparece al ejecutarse una instrucción como la anterior?

El registro temporal almacena la dirección efectiva de memoria antes de recuperar el

valor.

c) ¿Qué se guarda en AX al ejecutarse MOV AX, OFFSET RES?

AX almacena la dirección de memoria donde se encuentra RES.

d) ¿Cómo se pasa la variable RES a la pila, por valor o por referencia? ¿Qué ventaja tiene esto?

Se pasa por referencia, ya que se almacena la dirección de RES. Esto permite modificar su valor directamente en la memoria.

e) ¿Cómo trabajan las instrucciones PUSH y POP?

PUSH guarda un valor en la pila y decrementa SP. POP recupera un valor de la pila y lo incrementa.