Frequencímetro

Versão 2012

RESUMO

Esta experiência tem como objetivo a familiarização com duas classes de componentes: os contadores e os registradores. Para isto, serão apresentados alguns exemplos de componentes comerciais e será realizado o projeto de um medidor de frequências de sinais digitais periódicos.

1. INTRODUÇÃO TEÓRICA

A medida da frequência de um sinal digital periódico pode ser feita de duas formas diferentes. A primeira é baseada na contagem do número de ciclos de relógio do sistema para um período do sinal de entrada. Este método pode ser chamado como **método da contagem do relógio**. A figura 1 abaixo ilustra conceitualmente este método.

Figura 1 - Método da contagem do relógio.

Convém notar que o método não mede diretamente a frequência do sinal, mas o seu período como mostrado abaixo. Temos então que o período do sinal de entrada pode ser calculado por:

T_{ent} = período do relógio do sistema x contagem de ciclos

Desta forma, a frequência f_{ent} pode ser obtida invertendo-se o período T_{ent} :

 $f_{ent} = 1/T_{ent} = 1/(período do relógio do sistema x contagem de ciclos)$

e assim:

f_{ent} = frequência do sinal de relógio do sistema / contagem de ciclos

Contudo este método requer uma operação de divisão, que é de difícil implementação em hardware.

O segundo método envolve a contagem do número de ciclos do sinal de entrada ou do número de bordas de subida que ocorrem durante uma janela de duração pré-estabelecida (por exemplo, 1 segundo).

T_{ent} x contagem de ciclos = duração da janela

ou

T_{ent} = duração da janela/contagem de ciclos

e assim:

f_{ent} = contagem de ciclos / duração da janela

Conhecido como **método da contagem do sinal de entrada**, este método apresenta diretamente a frequência do sinal, e seu funcionamento é mostrado na figura 2. Se a duração da janela for de 1 segundo, a contagem de ciclos é numericamente igual à frequência do sinal de entrada em Hertz (Hz). Contudo esta estratégia de obtenção da frequência apresenta alguns erros inerentes ao método de contagem.

Figura 2 – Método da contagem do sinal de entrada.

As principais fontes de erro identificadas para o método da contagem do sinal de entrada são:

- o erro de precisão do sinal de relógio do sistema,
- o erro de sincronização e
- o erro de quantização.

Se a frequência do relógio do sistema apresentar um erro, isto fará com que a janela de tempo em que o sinal de entrada é analisado seja afetada. Isto pode levar a uma contagem final diferente do valor correto. O erro de sincronização ocorre do fato do início da janela não coincidir com a borda de subida do sinal de entrada. Assim, se a contagem levar em conta a ocorrência de bordas do sinal de entrada, o valor final pode não ser igual ao número de períodos contidos na janela de tempo. O erro de quantização diz respeito ao fato da janela de tempo ser finita. O erro de quantização máximo é de 1 Hz, por exemplo, para uma janela de 1 segundo. Desta forma, não é possível medir um sinal de 100,5 Hz; o valor medido poderá ser 100 Hz ou 101 Hz.

O circuito para medida de frequência pode ser projetado a partir do diagrama de blocos da figura 3.

Figura 3 - Diagrama de blocos do medidor de frequência.

O **bloco contador e registrador** é responsável pela contagem do número de pulso do sinal de entrada dentro de uma janela de tempo de 1 segundo e pelo registro da contagem final para apresentação nos displays.

O **bloco gerador de sinais de controle** é responsável pela geração dos sinais de controle do circuito. Os sinais de controle internos do circuito são:

- **controle**: define a janela de tempo para a contagem do sinal de entrada. Deve ser um sinal de 0,5Hz, gerado a partir do sinal de clock de 8 Hz (<u>Dica</u>: use um contador para fazer a divisão de frequência).
- registra: usado para armazenar o valor dos contadores nos registradores de saída;
- **reset**: usado para reiniciar o valor dos contadores para a contagem de ciclos do sinal de entrada ao final do ciclo de medida. Observar que este sinal não pode ocorrer simultaneamente com o sinal de registro do valor de saída.

A figura 4 apresenta uma carta de tempos mostrando os principais sinais do circuito do medidor de frequência.

Figura 4 - Sinais do circuito medidor de frequências.

Através da análise da figura 4, podemos definir as seguintes fases de funcionamento do circuito medidor de frequências:

- 1. reset dos contadores;
- 2. início da contagem a partir da borda do sinal de controle;
- 3. ao final da janela de tempo, com a borda de descida do sinal de controle, a contagem é interrompida e o valor dos contadores é armazenado nos registradores;
- 4. reset dos contadores, antes do início de um novo ciclo de medida.

É conveniente ressaltar que o sinal de *reset* deve ser gerado pelo menos um período de relógio após a borda de descida do sinal de controle (borda para o registro da contagem).

Uma máquina de estados pode ser elaborada para desenvolver o circuito de controle do medidor de frequências. Desta forma, pode-se aplicar o método de projeto de circuitos sequenciais apresentado em (Wakerly, 2006).

2. PARTE EXPERIMENTAL

2.1. Familiarização com os Contadores Integrados

Será realizada aqui uma familiarização com circuitos integrados contadores, usando o software Altera Quartus II.

- a) Consulte os datasheets dos circuitos integrados 74160, 74161, 74162 e 74163 e responda:
 - Faça uma comparação entre estes componentes e mostre quais as principais diferenças entre eles.
 - 2. Qual(is) componente(s) pode(m) ser usado(s) no circuito do item (b) abaixo. Justifique sua resposta.
 - 3. Além do 74163, outro contador poderia ser usado para o circuito divisor de frequências da figura 1.18 do apêndice teórico sobre contadores e registradores? Justifique sua resposta.
- b) Usando um contador integrado, projetar um contador crescente de 6 até 11. Explique o funcionamento do circuito através de uma carta de tempo gerada pelo Altera Quartus II. (Obs.: este circuito não será montado no laboratório. Faça os comentários com base nas simulações no Quartus II.)

2.2. Medidor de Frequências

c) Projetar um circuito medidor de frequências de um sinal digital periódico de 1 a 99 Hz. O valor da frequência medida deve ser mostrado em dois displays de sete segmentos do painel de montagens (figura 5). O sinal de entrada deve ser originado a partir de um gerador de pulsos e monitorado através do osciloscópio. Um sinal de relógio externo de 8 Hz deve ser usado para gerar os sinais internos de controle do circuito.

Figura 5 - Esquema do medidor de frequências.

- d) Montar o circuito medidor de frequências, respeitando uma sequência adequada de montagem e testes.
 - DICA: faça um teste inicial do circuito com o uso dos botões do painel no lugar dos sinais provenientes dos geradores.
- e) Testar o circuito para vários valores de frequências. Elabore uma tabela mostrando os valores de frequência do sinal de entrada, da frequência medida e também os erros de medida do circuito projetado.
- f) Modifique o valor do sinal de relógio (CLOCK) para um valor diferente de 8Hz (por exemplo, 7Hz). Refaça algumas medidas de frequência e anote os valores de saída. Explique eventuais diferenças nos valores obtidos.

Perguntas

Depois de terminados estes itens da parte experimental, responda as seguintes perguntas.

- 4. O que acontece quando o valor da frequência do sinal de entrada excede a faixa de frequências especificada?
- 5. Como o circuito pode indicar que a frequência do sinal de entrada excedeu o valor máximo da escala de medidas?
- Como o circuito projetado pode ser modificado para poder medir frequências entre 1KHz e 99KHz?

2.3. Teste do Frequencímetro

- g) Modifique o circuito para medir frequências no intervalo de 1 KHz a 99 KHz.
- h) Teste a nova faixa de frequências.
- i) Montar o circuito oscilador de relaxação da figura 6, usando R5=1KΩ e C5=10nF (para mais detalhes veja a apostila "Circuitos com Componentes Discretos" disponível na página web da disciplina). Usando o osciloscópio, anote as formas de onda da saída do oscilador e do ponto A e o valor da frequência de oscilação.

Figura 6 - Oscilador de relaxação.

j) Use a saída do circuito oscilador como sinal de entrada do frequencímetro. Qual é o valor de frequência apresentado pelo circuito? Analise o valor obtido.

Perguntas

Depois de terminada a parte experimental, responda as seguintes perguntas:

- 7. Qual é a influência do erro de quantização na medida correta da frequência?
- 8. Qual é a influência da precisão do sinal externo de relógio na medida correta da frequência?
- 9. Como o projeto do frequencímetro poderia ser adaptado para fornecer a facilidade de seleção da escala de frequências (1-99Hz, 100-990Hz, 1K-99KHz, etc)? DICA: Descreva o funcionamento do circuito com diagrama de blocos.
- Apresente um esboço de como o frequencimetro poderia ser projetado com o método da contagem do relógio. Apresente um diagrama de blocos com os principais módulos do circuito.

3. BIBLIOGRAFIA

- FREGNI, Edson e SARAIVA, Antonio M. **Engenharia do Projeto Lógico Digital: Conceitos e Prática**. Editora Edgard Blücher Ltda, 1995.
- MANO, M. M.; KIME, C. R. Logic and Computer Design Fundamentals. 3rd ed., Prentice-Hall, 2004.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Digital Systems: principles and applications. 11th ed., Prentice-Hall, 2011.
- WAKERLY, John F. Digital Design Principles & Practices. 4th edition, Prentice Hall, 2006.

4. MATERIAL DISPONÍVEL

• Circuitos Integrados TTL:

7400, 7404, 7408, 7432, 7474, 7486, 74160, 74161, 74162, 74163, 74175.

5. EQUIPAMENTOS NECESSÁRIOS

- 1 painel de montagens experimentais.
- 1 fonte de alimentação fixa, $5V \pm 5\%$, 4A.
- 1 osciloscópio digital.
- 1 multímetro digital.
- 2 geradores de pulsos.

Histórico de Revisões

E.T.M./2005

E.T.M./2006 - revisão

E.T.M./2011 - revisão

E.T.M./2012 - revisão.