

Substitute Specification

CLAIMS

We claim:

1. (Currently amended) A system to provide performance control of a radioisotope generator, said system comprising:
 - a radioisotope generator;
 - an electronic sensor of elution;
 - an eluted activity measurement sensor;
 - means for measuring nuclear quality of the eluted radioisotope;
 - an electronic memory with information for a user;
 - a communication interface; and
 - an user interface software.
2. (Original) A system according to claim 1, wherein said radioisotope generator is a Mo-99 / Tc-99m generator.
3. (Original) A system according to claim 1, wherein the electronic sensor of elution measures changes in high frequency conductometry.
4. (Currently amended) A system according to claim 1, wherein the eluted activity sensor is comprised of a Geiger Müller tube, a micro ionization chamber or a solid state detector.
5. (Currently amended) A system according to claim 1, wherein the electronic memory with information is comprised of Lot No., Generator No., activity, calibration date and expiration dates.
6. (Original) A system according to claim 1, wherein the communication interface uses one or more of the following ports of a PC: RS232, USB, or parallel port.

Substitute Specification

7. (Currently amended) A system according to claim 2, wherein the means for measuring is comprised of a radioactivity sensor protected by a 3 mm lead shield.

8. (Currently amended) A system according to claim 1, wherein the electronic sensor of elution measures changes in photon intensity passing through a portion of elution tubing being transparent to photons.

9. (Currently amended) A system according to claim 1, wherein the electronic sensor of elution measures changes in electrical impedance of a portion of elution tubing.

10. (Currently amended) A system according to claim 1, wherein the electronic sensor of elution measures changes in dielectric capacity of a portion of elution tubing.

11. (Currently amended) A method to detect and measure passage of elution in a radioisotope generator, said method comprising a step from a group consisting of:

using High-frequency conductometry; using Photometry; using Impedanceometry;
using Electrical capacitometry; using Emitted radiation detection; and using Magnet-hydrodynamic.

12. (Currently amended) A method according to claim 11, wherein using high frequency conductometry is comprised of measuring changes in electrical resistance of a portion of elution tubing of the generator.

13. (Currently amended) A method according to claim 11, wherein using photometry is comprised of measuring changes in intensity of a light beam going through a translucent portion of elution tubing, a high intensity light emitter being pointed to the translucent portion of the elution tubing, a phototube/photomultiplier being placed on an other side of the translucent portion of said elution tubing of said radioisotope generator, being directly opposite to the light emitter.

Substitute Specification

14. (Currently amended) A method according to claim 11, wherein using impedanceometry is comprised of measuring changes in frequency of a free oscillator or rod-capacitor, a coil surrounding a portion of the elution tubing and a free oscillator being connected to the coil; wherein a frequency counter detects impedance changes of the coil if liquid passes through.

15. (Currently amended) A method according to claim 11, wherein using capacitometry is comprised of measuring changes in dielectric capacity, two electrodes being placed externally on both sides of a portion of the elution tubing, the tubing being non-metallic with an external diameter of not more than 2 mm, liquid changing an internal dielectric constant of a capacitor formed by the electrodes and the tubing, a capacitometer being connected to the electrodes measuring changes of capacity when liquid passes through the tubing.

16. (Currently amended) A method according to claim 11, wherein using emitted radiation detection is comprised of measuring changes in a radiation field generated by the eluted radioisotope passing through the elution tubing of said radioisotope generator, a properly-shielded-from-other-sources-of-radiation radiation detector being placed against said elution tubing of said radioisotope generator.

17. (Currently amended) A method according to claim 11, wherein using magnet-hydrodynamic is comprised of changes to an orthogonal electric field generated by a magnetic field applied to elution tubing, a magnetic field being applied on a portion of the elution tubing, two electrodes orthogonal to the magnetic field measuring a low electric field that is a function of the liquid flow, and when the liquid passes through the tubing, the electric field increasing and indicating elution.

Substitute Specification

18. (Currently amended) A method to measure the dryness of a "dry" Mo-99 / Tc-99m generator, said method comprising the steps of:

using high frequency conductometry to measure changes in electrical resistance through a column, electrodes being placed on the IN and on the OUT metal tubing or needles of the generator.

19. (Currently amended) A method to detect and measure the radionucleidic purity of the Tc-99m as eluted from a Mo-99 / Tc-99m generator, said method comprising the steps of:

measuring changes in a radiation field generated by eluted radioisotope passing through elution tubing of the radioisotope generator, a second properly-shielded-from-other-sources-of-radiation radiation detector being placed against a 3mm thick lead shield, in direct contact with said elution tubing of said radioisotope generator.

20. (Currently amended) A method to transmit the data generated according to Claim 11, further comprising:

transmitting data to a PC or data processor through a RS232 or USB or a parallel port or any other input-output port of a PC.

21. (Currently amended) A system according to claim 5, wherein the electronic memory is comprised of a non-volatile memory such as EEPROM, the memory, upon connecting to a PC , transferring information stored by a manufacturer specific to a particular generator.

22. (Currently amended) A system according to claim 1, wherein user interface software is able to process and log all data introduced from the generator.