

Discrete Mathematics

Lecture 5

Combinatorial Probability

The Law of Large Numbers

Toss a coin n times and denote by X the number of heads. We say $X \sim B(n, 1/2)$, $P(X=k)=C(n,k)/2^n$ for $k \in [0, n]$.

Theorem 5.3.1(Bernoulli) For all $\varepsilon > 0$, $P(|X/n-0.5| < \varepsilon) \to 1$ as $n \to \infty$.

Theorem 5.3.2 If $X \sim B(2n, 1/2)$, then for all $t \in [0,n]$, $P(|X-n|>t) \le \exp\{-t^2/(n+t)\}$.

Theorem 5.3.1(Bernoulli) For all $\varepsilon > 0$, $P(|X/n-0.5| < \varepsilon) \to 1$ as $n \to \infty$. Theorem 5.3.2 If $X \sim B(2n,1/2)$, then for all $t \in [0,n]$, $P(|X-n| > t) \le \exp\{-t^2/(n+t)\}$.

Theorem $5.3.2 \Rightarrow$ Theorem 5.3.1:

For $X \sim B(2n,1/2)$, we need to prove $P(|X/2n-0.5| < \varepsilon) \rightarrow 1$ as $n \rightarrow \infty$.

$$P(|X/2n-0.5|>\varepsilon)=P(|X-n|>2\varepsilon n)$$

$$\leq \exp\{-4\varepsilon^2n^2/(n+2\varepsilon n)\}\to 0.$$

Theorem 5.3.2 If $X \sim B(2n, 1/2)$, then for all $t \in [0,n]$, $P(|X-n|>t) \le \exp\{-t^2/(n+t)\}$. **Proof.** P(|X-n|>t)=P(X< n-t or X> n+t) $=P(X=0)+\cdots+P(X=n-t-1)$ $+P(X=n+t+1)+\cdots+P(X=2n)$ $=2[P(X=0)+\cdots+P(X=n-t-1)]$ $=2[C(2n,0)+\cdots+C(2n,n-t-1)]/2^{2n}$ $< C(2n,n-t)/C(2n,n) \le \exp\{-t^2/(n+t)\}.$