EEL 891: Selected Topics in Power Systems Major Exam

05th May 2009 Maximum Marks: 40

Maximum Time: 2 Hours

Note:

- 1. All questions are compulsory.
- 2. Questions 1, 2 and 3 are objective type questions. Mark all correct answers.
- 3. Question 4 is a short-answer type question.
- 4. Elaborate your view in the answer of question 5.
- 1. Locational Marginal Price (LMP) on a bus

(2 Marks)

- a. Can be lesser than the price of the cheapest generator
- b. Will always be greater than or equal to price of the cheapest generator
- c. Can be negative sometimes
- 2. For a standard two bus lossless system, the power flow is from bus 1 to bus 2 and Lagrange multiplier associated with the global load-generation balance equation (λ) is equal to 10. The Lagrange multiplier associated with inequality constraint of line flow limit is $\mu_{12} = -5$. The LMP on bus 2 is (2 Marks)
 - a. 10
 - b. 5
 - c. 15
 - d. Data insufficient or something wrong with the data
 - e. None of the above
- 3. Which of the following power flow tracing algorithms fails to converge in the presence of circular flows? (1 Mark)
 - a. Simultaneous equations approach
 - b. Graph theoretic approach
 - c. Both
 - d. None
- 4. The bus voltage angles after obtaining converged load flow solution are given as: Bus 1: -15°, Bus 2: 8°, Bus 3: 0°, Bus 4: 5°, Bus 5: -3°. Bus 3 is a reference bus. Write down an order in which you will carry out symbolic node elimination for upstream tracing. (2 Marks)
- 5. Is it possible to have 'reactive power market' operating on exactly the same principles of conventional real power exchange? Elaborate. (3 Marks)
- 6. The network data, bus data and a power flow solution for a six bus system is given in Table 1.
 - a. Indentify the pure sink and pure source bus/es
 - b. Carry out downstream power flow tracing (Generation side tracing). Evaluate contribution of each of the generators in each of the lines in tabular form.
 - c. Calculate contribution of each of the generators in each of the loads in tabular form

Table 1

Bus Data and Solution				Line Data and Solution		
Bus No.	δ (Degrees)	PG (MW)	PD(MW)	Line No.	Flow (MW)	X (pu)
1	0°	100	200	1	$\left P_{12} \right = 100$	0.005
2	0.3°	500	0	2	$\left P_{23} \right = 100$	0.025
3	-1.15°	100	0	3	$\left P_{26} \right = 300$	0.02
4	-3.5°	0	100	4	$\left P_{34}\right = 200$	0.02
5	-4.0°	0	200	5	$ P_{46} = 100$	0.005
6	-3.15°	0	200	6	$ P_{45} = 200$	0.005

(10 Marks)

7. The block bids of five generators are given as follows:

Gen A: 0-5 MW, 37 INR / MW, Pmax = 5 MW

Gen B: 0-30 MW, 25 INR / MW, Pmax = 30 MW

Gen C: 0-10 MW, 35 INR / MW, Pmax = 10 MW

Gen D: 0-25 MW, 30 INR / MW, Pmax = 25 MW

Gen E: 0-20 MW, 20 INR / MW, Pmax = 20 MW

- a. Calculate market clearing price for load of 70 MW.
- b. Which generator will be the 'marginal' generator?
- c. Suppose the marginal generator in this case is asked to provide a reserve of 10 MW, calculate new energy market clearing price
- d. What will be the opportunity cost of the marginal generator of the previous case?

(8 Marks)

8. Data for four bus system shown in Figure 1 is given in Table 2:

Table 2

Bus No.	PD (MW)	Gen Cost (INR/MW)	PGMax (MW)	PGMin(MW)
1	0	10	300	0
2	0	-	-	-
3	300	-	-	-
4	0	20	300	0

Real power carrying capacity of line 1-3 is 100 MW and other lines have infinite capacity. The loads are firm loads. Series reactance of each of the lines is 0.25 p.u. The market works on a centralized dispatch philosophy with commercial settlements done through LMPs, which are calculated using DC model. Table 3 shows three combinations of Financial Transmission Rights (FTRs).

Table 3

Combination	From bus	To bus	MW
A	1	3	100
	4	3	100
В	1 .	3	150
	3	4	100
	1	3	100
C	4	3	200
	4	2	50
	2	1	50

Determine which combination/s of FTRs satisfy the simultaneous feasibility condition from the point of view of revenue adequacy for FTRs, considering one combination at a time. (12 Marks)