Reinforcement Learning

Russell and Norvig: Chapter 21 (21.1-21.4)

CSE 240: Winter 2023

Lecture 17 (or 18?)

Announcements

- Assignment 4 is due on Friday at 5pm
- Assignment 5 posted and it is due on Wednesday: 03/22 of finals week
- Last Quiz due *next* Friday: 03/17 at 5pm
 - We will drop the lowest quiz
- Please do the course evaluations
 - We will award 1 point of extra credit if over > 80% of the course do the evaluations.
 - The evaluations matter.
- Guest speakers

Agenda and Topics

- Reinforcement Learning
 - Motivation
 - Model-base Learning
 - Model-free Learning
 - Passive RL
 - Direct Evaluation
 - Temporal Difference Learning
 - Q-Learning (if time)

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - i.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

- - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Offline (MDPs) vs. Online RL

Offline Solution

Online Learning

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of $\hat{T}(s, a, s')$
 - Discover $\hat{R}(s, a, s')$ when we experience (s,a,s')

- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} \hat{T}(s, \pi(s), s') [\hat{R}(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Analogy: Expected Age

Goal: Compute expected age of students

Known P(A)
$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Model-Free Learning

Passive Learning

- Simplified task
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You are given a policy $\pi(s)$
 - Goal: learn the state values
 - ... what policy evaluation did
- In this case:
 - Learner "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We'll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens...

Direct Evaluation

- Goal: Compute values for each state under π .
- Idea: Average together observed sample values:
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be.
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

CE 18: Calculate Output Values

For A, C, D

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values using just sample transitions
- What is bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Why Not Use Policy Evaluation?

- Simplified Bellman updates to calculate V for a fixed policy:

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right]$$

• Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s_1' + \gamma V_k^{\pi}(s_1'))$$

$$sample_2 = R(s, \pi(s), s_2' + \gamma V_k^{\pi}(s_2'))$$

. . .

$$sample_n = R(s, \pi(s), s'_n + \gamma V_k^{\pi}(s'_n))$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference Learning

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Policy still fixed!
- Move values toward value of whatever successor occurs: running average!

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Example: Temporal Difference Learning

Observed Transitions

States

Assume: $\gamma = 1$, $\alpha = 1/2$

B, east, C, -2

C, east, D, -2

$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're stuck:

$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$

Summary

- Today: Reinforcement Learning
 - Motivation
 - Model-base Learning
 - Model-free Learning
 - Passive RL
 - Direct Evaluation
 - Temporal Difference Learning
 - Q-Learning (if time)

- Next week
 - Q-Learning
 - Deep RL
 - Neural networks