Predicting accident severity: Analysis of Seattle collisions data using supervised machine learning (SML)

Sean Moffat

September 19, 2020

Case study – predicting accident severity using supervised machine learning (SML) classification models

Project background and objectives

 Seattle, WA city managers and the general public want to understand traffic collisions data in order to predict accident severity. They want to use data-driven analyses to develop policies to help mitigate accidents

Approach and methodology

- Used 16 years (2004 2019) of Seattle collisions data to train and validate SML classification models
- Across time, the general trend was a year-over-year decline in overall collisions; however, the rate of collisions with injuries held around 30%
- Used out-of-sample (OOS) test set to evaluate SML classification models

Findings

- The association between accident severity and weather at time of collision is not statistically significant
- SML logistic regression was the best classifier, with 93.47% true positives (meaning the model accurately predicted injury collision ~93% of the time)
- However, the same model also incorrectly predicted predicted injury collisions as property damage only collisions ~80% of the time

Project snapshot

Stakeholder

City managers and policy experts

Project type

Predictions using SML classification models

Delivery date

September 2020

Key outcome

Building shared understanding regarding what features are statistically significant in predicting accident severity. Also have a first SML classification model to predict accident severity

Data stage of the analysis includes making decision rules for missing data, making train / validation & OOS set and data visualization to gain better understanding

Data collection and preparation

- Once source data has been loaded into pandas dataframe, I start exploratory data analysis by checking data elements for:
 - 1. Missing data;
 - Convert date/time elements;
 - Data transformation / feature engineering; and
 - 4. Create a) train / validate and b) out-of-sample (OOS) test sets

Data understanding

- After data collection and preparation, I created a few time series charts to illustrate accidents across time
- Figure 3 show a general year-over-year decline in traffic accidents, with 2014 and 2015 as exceptions
- It's possible that the decline in accidents could be driven by increased access to public transportation; would need additional data to explore this hypothesis

Methodology section is where model is built and evaluated. Review of evaluation results are presented in the results section

Modeling

- Utilize train / validation data sets to build models
- As a base line model, ran standard logistic regression to provide additional information / perspective on the relationship between accident severity (the dependent variable) and our feature set (the independent variables)
- Supervised machine learning (SML) logistic regression and k-nearest neighbors (k-NN) classification models as the analytical approach to predict accident severity
- After initial manual SML model runs, turned to parameter estimation using grid search with cross-validation

Evaluation

 Applied SML models (with output from grid search) built in modeling phase to out-of-sample (OOS) test data

Results

 Evaluation data suggests SML logistic regression as the best classifier

Optimization terminat Current fund Iterations 7	ction value:						
Estimate of Logit mod	del, re: esti	mated coe	fficients and s	tandard e	errors		
			on Results				
Dep. Variable: SI					188061		
Model:					188050		
Method:		MIE D	F Model:		100030		
Date:	Sat. 19 Sep						
Time:	14:	34:14 T.	seudo R-squ.: og-Likelihood:		-1.0121e+05		
converged:			L-Null:		-1.1507e+05		
Covariance Type:	nonr						
	coef	std err	z	P> z	[0.025	0.975]	
const	-2.1502	0.027	-79.569	0.000	-2.203	-2.097	
const COLLISIONTYPE_TO_NUM	0.0771	0.003	27.430	0.000	0.072	0.083	
PERSONCOUNT	0.2407	0.005	49.041	0.000	0.231	0.250	
			63.971				
PEDCYLCOUNT	2.7896	0.046	60.888	0.000	2.700	2.879	
VEHCOUNT HITPARKEDCAR_TO_NUM	0.1365	0.012	11.282	0.000	0.113	0.160	
HITPARKEDCAR_TO_NUM	-1.5567	0.053	-29.399	0.000	-1.660	-1.453	
UNDERINFL_TO_NUM	0.5912	0.025	23.892	0.000	0.543	0.640	
WEATHER_TO_NUM			1.393				
ROADCOND_TO_NUM							
LIGHTCOND TO NUM	-0.0365	0.003	-14.296	0.000	-0.041	-0.031	

Table 4. Evaluation of SML models on out-of-	-sample (OOS) test set			
	Evaluation metirc	Model 1: Logistic regression	Model 2: k-nearest neighbors (k-NN)	
	Jaccard similarity coefficient score	0.343808	0.198276	
	F1 score	0.511692	0.330935	
	Log loss	0.859434	Not applicable	
	Confusion matrix from OOS test set			
	True positives	93.47%	34.67%	
	False negatives	6.53%	65.33%	
	False positive	79.81%	34.77%	
	True negatives	20.19%	65.23%	

The analysis is rarely ever done. Data Scientist evaluates own analysis and identifies possibilities for improvement

Discussion

- Possible future enhancements include:
 - 1. Use feature engineering to transform the label from a binary outcome into a multinomial, using an *ordinal* scale; this would allow me to get more severity detail
 - 2. Consider additional SML classifier models such as: Support vector machine (SVM), decision tree; and neighborhood components analysis (NCA)
 - 3. Could collect additional feature data elements and determine correlation between variables or run principal component analysis (PCA) to reduce the number of features to the most impactful set

Conclusion

- In this analysis, I started statistical modeling with a standard logistic regression to provide additional information / perspective on the relationship between accident severity (the dependent variable) and our feature set (the independent variables). I then moved to SML without and with hyper-parameter tuning to predict accident severity.
- From the standard logistic regression, I learned, somewhat surprisingly, the association between accident severity and weather is not statistically significant (p-value 0.164). Weather is only feature variable that is not statistically significant.
- In regard to SML, the logistic regression was the best performing classifier, at 93.47% true positives. However, this performance appears to come at a price, with false positives ~80%.