

#### **International Olympiad in Informatics 2012**

23-30 September 2012 Sirmione - Montichiari, Italy Competition tasks, day 2: Leonardo's art and science

city

Česky — 1.2

# Ideální město

Leonardo a další italští vědci a umělci se zajímali o plánování měst. Chtěl navrhnout ideální město: pohodlné, prostorné a rozumně využívající dostupné zdroje. Zcela by se tak lišilo od běžných středověkých měst.

#### Ideální město

Město je tvořeno N bloky rozmístěnými na nekonečné čtvercové mřížce. Každé políčko mřížky je určeno souřadnicemi ve tvaru (řádek, sloupec). Políčko (i, j) sousedí s políčky (i - 1, j), (i + 1, j), (i, j - 1) a (i, j + 1). Každý blok pokrývá právě jedno políčko. Bloky mohou být pouze na políčkách se souřadnicemi (i, j) splňujícími  $1 \le i, j \le 2^{31}$  - 2. Souřadnice políček budeme používat i pro označení bloků, které jsou na nich umístěny. Dva bloky spolu sousedí, právě když sousedí políčka, na nichž jsou umístěny. V ideálním městě nejsou díry, tedy jeho bloky jsou rozmístěny tak, že platí obě následující podmínky.

- Každá dvě prázdná políčka lze propojit alespoň jednou posloupností sousedících prázdných políček.
- Každá dvě neprázdná políčka lze propojit alespoň jednou posloupností sousedících neprázdných políček.

#### Příklad 1

Města na následujícím obrázku nejsou ideální. První dvě zleva nesplňují první z podmínek. Třetí město nesplňuje druhou z podmínek. Nejpravější město nesplňuje ani jednu z podmínek.



#### Vzdálenost

Nechť vo, v1, ...,  $v_{N-1}$  jsou souřadnice všech N bloků. Vzdálenost  $d(v_i, v_j)$  mezi dvěma bloky  $v_i$  a  $v_j$  je nejmenší počet kroků potřebných pro přesun z  $v_i$  do j. Krokem rozumíme přesun na sousedící políčko obsahující blok (přes prázdná políčka nelze chodit).

#### Příklad 2

city - cs 1/3

Ideální město na následujícím obrázku se skládá z N = 11 bloků se souřadnicemi  $v_0$  = (2, 5),  $v_1$  = (2, 6),  $v_2$  = (3, 3),  $v_3$  = (3, 6),  $v_4$  = (4, 3),  $v_5$  = (4, 4),  $v_6$  = (4, 5),  $v_7$  = (4, 6),  $v_8$  = (5, 3),  $v_9$  = (5, 4) a  $v_{10}$  = (5, 6).. Vzdálenosti mezi bloky jsou například  $d(v_1, v_3)$  = 1,  $d(v_1, v_8)$  = 6,  $d(v_6, v_{10})$  = 2 a  $d(v_9, v_{10})$  = 4..



### Zadání

Napište program, který pro zadané ideální město určí součet vzdáleností mezi všemi dvojicemi bloků  $v_i$  a  $v_j$ , kde i < j. Měli byste tedy určit následující součet:

$$\sum d(v_i, v_j)$$
, kde  $0 \le i \le j \le N - 1$ 

Implementujte funkci DistanceSum(N, X, Y), kde X a Y jsou pole velikosti N určující pozice bloků. Pro  $0 \le i \le N$  - 1, blok i má souřadnice (X[i], Y[i]) splňující  $1 \le X[i]$ , Y[i]  $\le 2^{31}$  - 2. Funkce DistanceSum by měla vrátit výše specifikovaný součet pro zadané město, a to modulo 1 000 000 000 (miliarda). Skutečná hodnota součtu může být příliš velká a nemusí ji tedy být možné reprezentovat v 32 bitech.

Počet dvojic bloků v příkladu 2 je  $11 \times 10 / 2 = 55$ . Součet všech vzdáleností dvojic bloků je 174.

## Podúloha 1 [11 bodů]

Můžete předpokládat, že  $N \le 200$ .

## Podúloha 2 [21 bodů]

Můžete předpokládat, že  $N \le 2000$ .

### Podúloha 3 [23 bodů]

Můžete předpokládat, že  $N \le 100~000$ .

Dále pro libovolné dva bloky i a j platí následující podmínka. Jestliže X[i] = X[j] nebo Y[i] = Y[j], pak na každém políčku mezi těmito dvěma bloky (v příslušném řádku či sloupci) je také blok.

city - cs 2/3

# Podúloha 4 [45 bodů]

Můžete předpokládat, že  $N \le 100 000$ .

### **Implementace**

Odevzdejte jeden soubor pojmenovaný city.c, city.cpp nebo city.pas.V tomto souboru implementujte výše popsanou funkci s následující deklarací.

#### C/C++

```
int DistanceSum(int N, int *X, int *Y);
```

#### **Pascal**

```
function DistanceSum(N : LongInt; var X, Y : array of LongInt) : LongInt;
```

Můžete samozřejmě implementovat i další pomocné procedury a funkce. Váš program nesmí vypisovat na standardní výstup, číst ze standardního vstupu ani jinak pracovat se soubory.

### Ukázkový vyhodnocovač

Vyhodnocovač poskytnutý se zadáním úlohy očekává vstup v následujícím tvaru:

- řádka 1: N;
- řádky 2, ..., N + 1: X[i], Y[i].

## Omezení na čas a paměť

• Čas: 1 sekunda.

■ Paměť: 256 MiB.

city - cs 3/3