Fundamental Improvements to Pulsar Timing

—— 2018 EPTA Autumn Meeting in Bielefeld

Jun Wang

jun.wang.ucas@gmail.com

Supervisor: JProf. Joris Verbiest

November 13, 2018

- 1. Introduction
- 2. ToAs Bandwidth
- 3. Templates
- 4. ToA creation
- 5. Challenges
- 6. Summary

Introduction

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

- Optimal ToA bandwidth
- Different template possibilities
 - 1. Data-derived, Analytic, Data-derived and smoothed
 - 2. Frequency-resolved vs. Frequency-scrunched
 - 3. 2D approach by Pennucci
- ToA correlation methods
 - 1. FDM
 - 2. PGS
 - 3. GIS

Pulsars and Telescopes

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Pulsars

J0218+4232 J1713+0747 J1939+2134 J2145-0750

Telescope Parameters

Tel	BW	Freq	nchan	nbin
EFF	200	1347.5	128	1024->256
WSRT	160	1380	512->128	256
NANCAY	512	1484	128	2048->256
JBO	400	1532	1600(400)->100	256

Epochs of all observations

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Optimal ToA Bandwidth Analysis

The total RMS uncertainty σ^2_{total} is consisted of two components:

$$\sigma_{total}^2(T_{int},BW) = \sigma_{JN}^2(T_{int}) + \sigma_{RN}^2(T_{int},BW) \qquad \textbf{(2.1)}$$

ToA optimising pipeline

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Why

For ToAs derived from Frequency-resolved data, Residuals are scattered because of low flux, S/N and so on.

How

- 1. GOF criterion(0.5-1.5)
- 2. Median standard deviation(With Caterina's code)
- 3. Fitting the residual with Gaussian distribution model and remove non-Gaussian ToAs.
- 4. S/N criterion

ToA optimising pipeline

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Take J1713+0747 from JBO as an example:

J17/31-0747 (Wmm = 1.244 μz) post-fit ching=2.45

Figure 2.1: Before Outlier Rejection

Figure 2.2: After Outlier Rejection

Jitter Noise of J1713+0747

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summarv

Jitter Noise Level:

285 ns(eff), 230 ns(ncy), 263 ns(jbo), 166 ns(wsrt)

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Jitter Noise of J2145-0750

Introduction

ToAs Bandwidth

Universität Bielefeld

Templates

ToA creation

Challenges

Summary

Jitter Noise Level:

446 ns(eff), 950 ns(ncy), 870 ns(jbo), 0.067ns(wsrt)

Compare different template possibilities

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summarv

Frequency scrunched templates

- Data-derived
- Analytic noise-free
- Data-derived and smoothed

Frequency resolved templates

ON-GOING

- Data-derived
- Data-derived and smoothed
- Gaussian and Basic-Spline model(Timothy Pennucci)

Compare ToA creation routines

Introduction
ToAs Bandwidth

IoAs Bandwidt

Templates ToA creation

Challenges Summary

- Fourier domain with Markov chain Monte Carlo(FDM)
 FDM makes use of a Monte-Carlo approach to
 determine the uncertainties.
- Fourier Phase Gradient(PGS)(default in pat) PGS uses a linear fit to determine the uncertainties.
- Gaussian Interpolation Shift(GIS)
 TOAs can be determined to within approximately 1/10 of
 the width of an individual phase bin.

Challenges & Future considerations

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Challenges

- Residuals derived from different telescopes and pulsars vary significantly, which is harder to build a uniform fitting method
- 2. The length, Frequency and BW of observations are not uniform

Summary

Introduction

ToAs Bandwidth

Templates

ToA creation

Challenges

Summary

Optimising "simple" ToA creation algorithms: pulsarand telescope-dependent

- We have written a pipeline to deal with Residuals from Frequency-resolved templates.
- 2. Still to do: compare correlation algorithms, templates in detail.
- We had compared different ToA creation algorithm, and plan to compare them in detail at the optimal ToA bandwidth.
- 4. More data are welcome!

Thank You!

Vielen Dank!

Jun Wang