Introduction to Machine Learning

Principal Component Analysis

Barnabás Póczos

Contents

- Motivation
- □ PCA algorithms
- □ Applications

Some of these slides are taken from

- Karl Booksh Research group
- Tom Mitchell
- Ron Parr

Motivation

PCA Applications

- Data Visualization
- Data Compression
- Noise Reduction

Example:

• Given 53 blood and urine samples (features) from 65 people.

How can we visualize the measurements?

Matrix format (65x53)

(Ŋ	
(1)	
(Ŭ	
9		
(σ	
į	ر	
(<u>ภ</u>	
9	_	
۲	-	

	H-WBC	H-RBC	H-Hgb	H-Hct	H-MCV	H-MCH	H-MCHC
A1	8.0000	4.8200	14.1000	41.0000	85.0000	29.0000	34.0000
A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
A3	4.3000	4.4800	14.1000	41.0000	91.0000	32.0000	35.0000
A4	7.5000	4.4700	14.9000	45.0000	101.0000	33.0000	33.0000
A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000

Features

Difficult to see the correlations between the features...

Spectral format (65 curves, one for each person)

Difficult to compare the different patients...

Spectral format (53 pictures, one for each feature)

Difficult to see the correlations between the features...

Tri-variate

How can we visualize the other variables???

... difficult to see in 4 or higher dimensional spaces...

- Is there a representation better than the coordinate axes?
- Is it really necessary to show all the 53 dimensions?
 - ... what if there are strong correlations between the features?
- How could we find the smallest subspace of the 53-D space that keeps the most information about the original data?
- A solution: Principal Component Analysis

PCA Algorithms

Principal Component Analysis

PCA:

- Orthogonal projection of the data onto a lower-dimension linear space that...
 - ☐ maximizes variance of projected data (purple line)
 - ☐ minimizes the mean squared distance between
 - data point and
 - projections (sum of blue lines)

Principal Component Analysis

Idea:

- ☐ Given data points in a d-dimensional space, project them into a lower dimensional space while preserving as much information as possible.
 - Find best 2D approximation of 3D data
 - Find best 12-D approximation of 10⁴-D data
- ☐ In particular, choose projection that minimizes squared error in reconstructing the original data.

Principal Component Analysis

Properties:

PCA Vectors originate from the center of mass.

□ Principal component #1: points in the direction of the **largest variance**.

- ☐ Each subsequent principal component
 - is orthogonal to the previous ones, and
 - points in the directions of the largest variance of the residual subspace

2D Gaussian dataset

1st PCA axis

2nd PCA axis

PCA algorithm I (sequential)

Given the **centered** data $\{x_1, ..., x_m\}$, compute the principal vectors:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{(\mathbf{w}^T \mathbf{x}_i)^2\} \qquad 1^{\text{st}} \text{ PCA vector}$$

To find $\mathbf{w_1}$, maximize the variance of projection of \mathbf{x}

$$\mathbf{w}_{2} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \mathbf{w}_{1} \mathbf{w}_{1}^{T} \mathbf{x}_{i})]^{2} \}$$
 2nd PCA vector
$$\mathbf{x'} \text{ PCA reconstruction}$$

To find $\mathbf{w_2}$, we maximize the **variance** of the projection in the **residual** subspace

PCA algorithm I (sequential)

Given $\mathbf{w_1}, \dots, \mathbf{w_{k-1}}$, we calculate $\mathbf{w_k}$ principal vector as before:

Maximize the variance of projection of \mathbf{x}

$$\mathbf{w}_{k} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \sum_{j=1}^{k-1} \mathbf{w}_{j} \mathbf{w}_{j}^{T} \mathbf{x}_{i})]^{2} \}$$

kth PCA vector

x' PCA reconstruction

PCA algorithm II (sample covariance matrix)

• Given data $\{x_1, ..., x_m\}$, compute covariance matrix Σ

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T \quad \text{where} \quad \overline{\overline{\mathbf{x}}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$$

$$\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$$

• **PCA** basis vectors = the eigenvectors of Σ

Larger eigenvalue ⇒ more important eigenvectors

PCA algorithm II (sample covariance matrix)

PCA algorithm(\mathbf{X} , \mathbf{k}): top \mathbf{k} eigenvalues/eigenvectors

%
$$X = N \times m$$
 data matrix,
% ... each data point $x_i = \text{column vector}$, $i=1...m$

- $\underline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$
- $X \leftarrow$ subtract mean \underline{x} from each column vector \mathbf{x}_i in \underline{X}
- $\Sigma \leftarrow XX^T$... covariance matrix of X
- $\{\lambda_i, \mathbf{u}_i\}_{i=1..N}$ = eigenvectors/eigenvalues of Σ ... $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_N$
- Return { λ_i, **u**_i }_{i=1..k}
 % top k PCA components

Finding Eigenvectors with Power Iteration

First eigenvector:

```
Power iteration 1: v=Sigma*v; v=v/sqrt(v'*v); \Rightarrow v_{PCA1}
```

Second eigenvector:

```
Power iteration 2: \lambda = v_{PCA1}^{T*}Sigma^*v_{PCA1}Sigma_2 = Sigma - \lambda^*v_{PCA1}^{T*}v_{PCA1}^{T};v = Sigma_2^{*}v;v = v/sqrt(v'^*v);\Rightarrow v_{PCA2}
```

PCA algorithm III (SVD of the data matrix)

Singular Value Decomposition of the **centered** data matrix **X**.

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m}$$
,

m: number of instances,

N: dimension

$$\mathbf{X}_{\text{features} \times \text{samples}} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$$

PCA algorithm III

Columns of U

- the principal vectors, { $\mathbf{u}^{(1)}$, ..., $\mathbf{u}^{(k)}$ }
- orthogonal and has unit norm so $U^TU = I$
- Can reconstruct the data using linear combinations of { u⁽¹⁾, ..., u^(k) }

Matrix S

- Diagonal
- Shows importance of each eigenvector

Columns of V^T

The coefficients for reconstructing the samples

Applications

Face Recognition

- ☐ Want to identify specific person, based on facial image
- ☐ Robust to glasses, lighting,...
 - ⇒ Using simply the 256 x 256 pixels is a bad idea

Applying PCA: Eigenfaces

Method A: Build a PCA subspace for *each person* and check which subspace can reconstruct the test image the best

Method B: Build one PCA database for the *whole dataset* and then classify based on the weights.

Applying PCA: Eigenfaces

- ☐ Example data set: Images of faces
 - Eigenface approach
 [Turk & Pentland], [Sirovich & Kirby]
- ☐ Each face x is ...
 - 256 × 256 values (luminance at location)
 - \mathbf{x} in $\Re^{256 \times 256}$ (view as 64K dim vector)
- □ Form $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_m]$ centered data mtx
- \Box Compute $\Sigma = XX^T$
- \square Problem: Σ is 64K \times 64K ... HUGE!!!

Computational Complexity

- □ Suppose m instances, each of size N
 - Eigenfaces: m=500 faces, each of size N=64K
- \square Given $\mathbb{N} \times \mathbb{N}$ covariance matrix Σ , can compute
 - all N eigenvectors/eigenvalues in O(N³)
 - first k eigenvectors/eigenvalues in O(k N²)

 \square If N=64K, this is EXPENSIVE!

A Clever Workaround

- Note that m<<64K
- Use L=X^TX instead of Σ=XX^T
- If v is eigenvector of L,
 then Xv is eigenvector of Σ

Proof:
$$\mathbf{L} \ \mathbf{v} = \gamma \ \mathbf{v}$$

$$\mathbf{X}^{T}\mathbf{X} \ \mathbf{v} = \gamma \ \mathbf{v}$$

$$\mathbf{X} \ (\mathbf{X}^{T}\mathbf{X} \ \mathbf{v}) = \mathbf{X}(\gamma \ \mathbf{v}) = \gamma \ \mathbf{X}\mathbf{v}$$

$$(\mathbf{X}\mathbf{X}^{T})\mathbf{X} \ \mathbf{v} = \gamma \ (\mathbf{X}\mathbf{v})$$

$$\mathbf{\Sigma} \ (\mathbf{X}\mathbf{v}) = \gamma \ (\mathbf{X}\mathbf{v})$$

Principle Components (Method B)

Shortcomings

- ☐ Requires carefully controlled data:
 - All faces centered in frame
 - Same size
 - Some sensitivity to angle
- ☐ Method is completely knowledge free
 - (sometimes this is good!)
 - Doesn't know that faces are wrapped around 3D objects (heads)
 - Makes no effort to preserve class distinctions

Happiness subspace

Disgust subspace

Facial Expression Recognition Movies

- 1 Surprise
- 2 Happiness
- 3 Disgust

Facial Expression Recognition Movies

Facial Expression Recognition Movies

- 1 Surprise
- 2 Happiness

Disgust

Image Compression

Original Image

- ☐ Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- ☐ Consider each as a 144-D vector

L₂ error and PCA dim

PCA compression: $144D \Rightarrow 60D$

PCA compression: $144D \Rightarrow 16D$

16 most important eigenvectors

PCA compression: 144D ⇒ 6D

6 most important eigenvectors

PCA compression: 144D ⇒ 3D

3 most important eigenvectors

PCA compression: $144D \Rightarrow 1D$

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...

2D Discrete Cosine Basis

Noise Filtering

Noise Filtering

Noisy image

Denoised image using 15 PCA components

PCA Shortcomings

Problematic Data Set for PCA

PCA doesn't know about class labels!

PCA vs Fisher Linear Discriminant

 PCA maximizes variance, independent of class

 \Rightarrow magenta

- FLD attempts to separate classes
 - ⇒ green line

Problematic Data Set for PCA

PCA cannot capture NON-LINEAR structure!

PCA Conclusions

- □ PCA
 - finds orthonormal basis for data
 - Sorts dimensions in order of "importance"
 - Discard low significance dimensions
- ☐ Applications:
 - Get compact description
 - Remove noise
 - Improve classification (hopefully)
- ☐ Not magic:
 - Doesn't know class labels
 - Can only capture linear variations
- □ One of many tricks to reduce dimensionality!

PCA Theory

Let
$$\mathbf{x} \in \mathbb{R}^N$$

Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_M] \in \mathbb{R}^{N \times M}$, m: number of instances, N: dimension

Let
$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_N^T \end{pmatrix} \in \mathbb{R}^{N \times N}$$
 orthogonal matrix, $\mathbf{U}\mathbf{U}^T = \mathbf{I}_N$

$$\mathbf{y} \doteq \mathbf{U}\mathbf{x}, \ \mathbf{x} = \mathbf{U}^T\mathbf{y} = \sum_{i=1}^N \mathbf{u}_i y_i$$

$$\widehat{\mathbf{x}} \doteq \sum\limits_{i=1}^{M} \mathbf{u}_i y_i$$
, $(M \leq N)$

 $\hat{\mathbf{x}} \doteq \sum\limits_{i=1}^{M} \mathbf{u}_i y_i$, $(M \leq N)$ approximation of \mathbf{x} using M basis vectors only.

$$\varepsilon^2 \doteq \mathbb{E}\{\|\mathbf{x} - \hat{\mathbf{x}}\|^2\} = \frac{1}{M}\sum\limits_{j=1}^{M}||\mathbf{x}_j - \hat{\mathbf{x}}_j||$$
, average error

GOAL:

arg min ε^2 , s.t $\mathbf{U}^T\mathbf{U}=\mathbf{I}_N$

$$\varepsilon^{2} = \mathbb{E}\{\|\mathbf{x} - \hat{\mathbf{x}}\|^{2}\} = \mathbb{E}\{\|\sum_{i=1}^{N} \mathbf{u}_{i} y_{i} - \sum_{i=1}^{M} \mathbf{u}_{i} y_{i}\|^{2}\}$$

$$= \mathbb{E}\{\sum_{i=M+1}^{N} y_{i} \mathbf{u}_{i}^{T} \mathbf{u}_{i} y_{i}\} = \sum_{i=M+1}^{N} \mathbb{E}\{y_{i}^{2}\}$$

$$= \sum_{i=M+1}^{N} \mathbb{E}\{(\mathbf{u}_{i}^{T} \mathbf{x})(\mathbf{x}^{T} \mathbf{u}_{i})\}$$

$$= \sum_{i=M+1}^{N} \mathbf{u}_{i}^{T} \mathbb{E}\{\mathbf{x} \mathbf{x}^{T}\} \mathbf{u}_{i} \quad \mathbf{x} \text{ is centered!}$$

$$= \sum_{i=M+1}^{N} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i}$$

GOAL:
$$\arg\min_{\mathbf{u}_{M+1},\dots,\mathbf{u}_{N}} \varepsilon^{2}$$

Use Lagrange-multipliers for the constraints.

$$L = \varepsilon^{2} - \sum_{i=M+1}^{N} \lambda_{i} (\mathbf{u}_{i}^{T} \mathbf{u}_{i} - 1)$$

$$= \sum_{i=M+1}^{N} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} - \sum_{i=M+1}^{N} \lambda_{i} (\mathbf{u}_{i}^{T} \mathbf{u}_{i} - 1)$$

$$\frac{\partial L}{\partial \mathbf{u}_{i}} = [2\mathbf{\Sigma} \mathbf{u}_{i} - 2\lambda_{i} \mathbf{u}_{i}] = 0$$

$$\frac{\partial L}{\partial \mathbf{u}_i} = [2\Sigma \mathbf{u}_i - 2\lambda_i \mathbf{u}_i] = 0 \Rightarrow \Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

 \Rightarrow [\mathbf{u}_i, λ_i] = eigenvector/eigenvalue of Σ .

$$\varepsilon^2 = \sum_{i=M+1}^N \mathbf{u}_i^T \mathbf{\Sigma} \mathbf{u}_i = \sum_{i=M+1}^N \mathbf{u}_i^T \lambda_i \mathbf{u}_i = \sum_{i=M+1}^N \lambda_i$$

The error ε^2 is minimal if $\lambda_{M+1}, \ldots \lambda_N$ are the smallest eigenvalues of Σ , and $\mathbf{u}_{M+1}, \ldots, \mathbf{u}_N$ are the corresponding eigenvectors.

Thanks for the Attention! ©

Attic

Performing PCA in the feature space

Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m}$, m: number of instances, N: dimension

Lemma

 $|\mathbf{u}|$ is eigenvector of $\mathbf{\Sigma} \Rightarrow \mathbf{u}$ is a linear combination of the samples

Proof:

$$\lambda \mathbf{u} = \Sigma \mathbf{u} = \left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i \mathbf{x}_i^T\right) \mathbf{u} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i^T \mathbf{u}) \mathbf{x}_i$$

$$\Rightarrow \mathbf{u} = \sum_{i=1}^{m} \frac{(\mathbf{x}_i^T \mathbf{u})}{\underbrace{\lambda m}} \mathbf{x}_i = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i$$

$$\mathbf{u} = \sum_{i=1}^{m} \frac{(\mathbf{x}_i^T \mathbf{u})}{\underbrace{\lambda m}} \mathbf{x}_i = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \quad \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m},$$

Lemma

9

- just use inner products (Gram matrix): $K_{ij} = \mathbf{x}_i^T \mathbf{x}_j$
- ullet don't need the actual values of \mathbf{x}_i

Proof

$$\Sigma \mathbf{u} = \lambda \mathbf{u}, \ \mathbf{u} = \sum_{j=1}^{m} \alpha_j \mathbf{x}_j$$

$$\Rightarrow \mathbf{x}_i^T \mathbf{\Sigma} \mathbf{u} = \lambda \mathbf{x}_i^T \mathbf{u}$$

$$\Rightarrow \mathbf{x}_i^T \left(\frac{1}{m} \sum_{k=1}^m \mathbf{x}_k \mathbf{x}_k^T \right) \left(\sum_{j=1}^m \alpha_j \mathbf{x}_j \right) = \lambda \mathbf{x}_i^T \left(\sum_{j=1}^m \alpha_j \mathbf{x}_j \right)$$

$$\Rightarrow \frac{1}{m} \sum_{k=1}^{m} \sum_{j=1}^{m} (\mathbf{x}_i^T \mathbf{x}_k) (\mathbf{x}_k^T \mathbf{x}_j) \alpha_j = \lambda \sum_{j=1}^{m} (\mathbf{x}_i^T \mathbf{x}_j) \alpha_j$$

$$\Rightarrow \frac{1}{m} \mathbf{K}^2 \alpha = \lambda \mathbf{K} \alpha$$
 where $\mathbf{K} \in \mathbb{R}^{m \times m}$

$$\Rightarrow \mathbf{K}\alpha = m\lambda\alpha$$
 If **K** is invertible (strictly pos def)

 \Box How to use α to calculate the projection of a new sample t?

$$\mathbf{u}^T \mathbf{t} = (\sum_{j=1}^m \alpha_j \mathbf{x}_j)^T \mathbf{t} = \sum_{j=1}^m \alpha_j K(\mathbf{x}_j, \mathbf{t})$$

Again, we don't need values of $\mathbf{x}_j!$

Let
$$K_{i,j} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

The data should be centered in the feature space, too! But this is manageable...

$$\tilde{K}_{i,j} \doteq \left\langle \phi(\mathbf{x}_i) - \frac{1}{m} \sum_{k=1}^{m} \phi(\mathbf{x}_k), \quad \phi(\mathbf{x}_j) - \frac{1}{m} \sum_{k=1}^{m} \phi(\mathbf{x}_k) \right\rangle_{72}$$

Input points before kernel PCA

Output after kernel PCA

Reconstructing... (Method B)

- ☐ ... faster if train with...
 - only people w/out glasses
 - same lighting conditions