INTRODUCTION TO EXPERIMENTAL DESIGN

Let's see if the subject responds to magnetic stimuli... ADMINISTER THE MAGNET!

Interesting...there seems to be a significant decrease in heart rate. The fish must sense the magnetic field.

From: http://www.hawaii.edu/fishlab/NearsideFrame.htm

Ronald A. Fisher(1890-1962)

"TO CONSULT THE STATISTICIAN AFTER AN EXPERIMENT IS FINISHED IS
OFTEN MERELY TO ASK HIM TO CONDUCT A POST MORTEM EXAMINATION.
HE CAN PERHAPS SAY WHAT THE EXPERIMENT DIED OF."

Crisis in Reproducible Research

Retraction notices per 100 000 publications by year of Entrez record creation

Consequences of Poor Experimental Design...

- Cost of experimentation.
- Limited & Precious material, esp. clinical samples.
- Immortalization of data sets in public databases and methods in the literature. Our bad science begets more bad science.
- Ethical concerns of experimentation: animals and clinical samples.

A Well-Designed Experiment:

Should have

- Clear objectives
- Focus and simplicity
- Sufficient power
- Randomised comparisons

And be

- Precise
- Unbiased
- Amenable to statistical analysis
- Reproducible

Experimental Factors

- Factors: aspects of experiment that change and influence the outcome of the experiment
 - e.g. time, weight, drug, gender, ethnicity, country, plate, cage etc.
- Variable type depends on type of measurement:
 - Categorical (nominal), e.g. gender
 - Categorical with ordering (ordinal), e.g. tumour grade
 - Discrete, e.g. shoe size, number of cells
 - Continuous, e.g. body weight in kg, height in cm
- Independent and Dependent variables
 - Independent variable (IV): what you change
 - Dependent variable (DV): what changes due to IV
 - "If (independent variable), then (dependent variable)"

Sources of Variation

- Biological "noise"
 - Biological processes are inherently stochastic
 - Single cells, cell populations, individuals, organs, species....
 - Timepoints, cell cycle, synchronized vs. unsynchronized
- Technical noise
 - Reagents, antibodies, temperatures, pollution
 - Platforms, runs, operators
- Consider in advance and control
- Replication required to capture variance

Types of Replication

- Biological replication:
 - In vivo:
 - Patients
 - Mice
 - In vitro:
 - Different cell lines
 - Re-growing cells (passages)
- Technical replication:
 - Experimental protocol
 - Measurement platform (i.e. sequencer)

Confounding Factors

- Also known as extraneous, hidden, lurking or masking factors, or the third variable or mediator variable.
- May mask an actual association or **falsely** demonstrate an apparent association between the independent & dependent variables.
- Hypothetical Example would be a study of coffee drinking and lung cancer.

Solutions

- Write it all down!!!!!!!!
- Controling technical effects:
 - Randomisation
 - Statistical analyses assume randomised comparisons
 - May not see issues caused by non-randomised comparisons
 - Make every decision random not arbitrary
 - Caveat: over-randomization can increase error

Blinding

- Especially important where subjective measurements are taken
- Potentially multiple degrees of blinding (eg. double-blinding)

Randomised Block Design

• **Blocking** is the arranging of *experimental units* in groups (blocks) that are similar to one another.

- Each plate contains spatially randomised equal proportions of:
 - Control
 - Treatment 1
 - Treatment 2

controlling plate effects.

Randomised Block Design

Good design example: Alzheimer's study from GlaxoSmithKline

Plate effects by *plate*

Left PCA plot show *large plate effects*. Each colour corresponds to a different plate

0.08 0.06 EV = 10.94260.04 -0.020.04 EV = 12.6483

Plate effects by <u>case/control</u>

Right PCA plot shows each plate cluster contains *equal proportions* of cases (blue) and controls (green).

Experimental Controls

Ideal: Everything is identical across conditions except the variable you are testing

- Controlling errors
 - Type I: FP
 - Negative controls: should have minimal or no effect
 - Type II: FN
 - Positive controls: known effect
- Technical controls
 - Detect/correct technical biases
 - Normalise measurements (quantification)

Examples of Experimental Controls

- Wild-type organism (knockouts)
- Inactive siRNA (silencing)
- Vehicle (treatments)
- Spike-ins (quantification/normalisation)
- "Gold standard" datapoints
- Multi-level controls
 - e.g. contrast Vehicle/Input vs. Treatment/Input

Practical time!

RNA-seq: Effects of mutant vs wildtype HHEX in liver and brain development

Paul has divided you into groups and you will be allocated to breakout rooms.

A tutor will start your group off and then disappear

You have 20 minutes to discuss!

Be ready to find Menti 31 06 96 7 when you return