PLANOS TANGENTES

- 1. Dadas las siguientes funciones, encuentre una representación explícita para el plano tangente al gráfico de f en el punto $\mathbf{x}_0 = (x_0, y_0, f(x_0, y_0))$, y una representación paramétrica para la recta normal al mismo, que pasa por el punto de tangencia.
 - (a) $f(x,y) = \sqrt{xy}$ en $\mathbf{x}_0 = (1,1,1)$.
 - (b) $f(x,y) = \dot{x}^2 + xy + 3y^2$ en $\mathbf{x}_0 = (1,1,5)$.

 - (c) $f(x,y) = x^2y^2$ en $\mathbf{x}_0 = (1,2,4)$. (d) $f(x,y) = xy + ye^x$ en $\mathbf{x}_0 = (1,1,1+e)$.
- 2. Para cada uno de los siguientes conjuntos definidos paramétricamente como $S = \operatorname{Im}(q)$, hallar el plano tangente a S en el punto **p** indicado.

(a)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = g \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2\cos(u) \\ v \\ 2\sin(u) \end{pmatrix}$$
 $\begin{cases} 0 \le u < 2\pi, \\ -\infty < v < \infty. \end{cases}$, $\mathbf{p} = g \begin{pmatrix} \frac{\pi}{4}, 2 \end{pmatrix}$.
(b) $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = g \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u\cos(v) \\ u\sin(v) \\ 2u \end{pmatrix}$ $\begin{cases} 0 \le u, \\ 0 \le v < 2\pi. \end{cases}$, $\mathbf{p} = g(1, 0)$.

(b)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = g \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \cos(v) \\ u \sin(v) \\ 2u \end{pmatrix} \qquad \begin{cases} 0 \le u, \\ 0 \le v < 2\pi. \end{cases}$$
, $\mathbf{p} = g(1, 0)$.

(c)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = g \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} a \cos(u) \sin(v) \\ b \sin(u) \sin(v) \\ c \cos(v) \end{pmatrix}$$
 $\begin{cases} 0 \le u \le 2\pi, \\ 0 \le v \le \frac{\pi}{2}, \\ a, b, c > 0 \text{ fijos.} \end{cases}$, $\mathbf{p} = g \left(\frac{\pi}{2}, \frac{\pi}{6} \right)$.

(d)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = g \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sin(v) \\ (2 + \cos(v)) \sin(u) \\ (2 + \cos(v)) \cos(u) \end{pmatrix} - \pi < u, v < \pi, \quad \mathbf{p} = g \left(\frac{\pi}{3}, \frac{\pi}{6} \right).$$

- 3. Obtener la ecuación del plano tangente a la superficie de nivel de la función f que pasa por el punto dado.
 - (a) $f(x, y, z) = z^2 x^2 y^2$ en $\mathbf{x}_0 = (\sqrt{3}, 0, -2)$.
 - (b) $f(x, y, z) = x^2y + y^2z + z^2x$ en $\mathbf{x}_0 = (1, -1, 1)$
 - (c) $f(x, y, z) = \cos(x + 2y + 3z)$ en $\mathbf{x}_0 = (\frac{\pi}{2}, \pi, \pi)$.

Polinomios de Taylor

- 4. Encuentre la mejor aproximación de segundo grado de la función $f(x,y) = \sqrt{1+x^2+y^2}$ cerca del punto $(x_0, y_0) = (0, 0)$. Lo mismo para $g(x, y, z) = (x + y)^2 e^z$ en (0, 0, 0).
- 5. Encuentre el desarrollo de Taylor de tercer grado de $(x+y)^3$, alrededor del punto $(x_0, y_0) = (0, 0)$, y alrededor de $(x_0, y_0) = (1, 2)$.
- **6.** Calcular el desarrollo de Taylor de segundo grado de xe^y en $(x_0, y_0) = (2, 0)$,
 - (a) usando la definición,
- (b) por sustitución.
- 7. Si $f(x,y) = (x^2+y^2)e^{x^2+y^2}$, usar el desarrollo de Taylor de f para calcular $\frac{\partial^3 f}{\partial x^2 \partial y}(0,0)$.
- 8. Calcular el siguiente límite empleando un polinomio de Taylor de orden adecuado. Justificar usando el resto.

$$\lim_{(x,y)\to(0,0)} \frac{e^{xy}\cos(x+y) + x^2 + y^2 - 1}{x^2 + y^2}$$

MÁXIMOS Y MÍNIMOS

- 9. Encontrar los puntos críticos de las siguientes funciones, y decidir si allí la función tiene un máximo local, un mínimo local o ninguno de los anteriores.
 - (a) $f(x,y) = e^x \operatorname{sen}(y)$.
- (b) $f(x,y) = \sqrt{x^2 + y^2 1}$.

e = will7?

- (a) $f(x,y) = e^x \operatorname{sen}(y)$. (c) $f(x,y) = 4 \sqrt{x^2 + y^2}$.
 - (d) $f(x,y) = x^2y^2$.

- (e) $f(x,y) = x \operatorname{sen}(y)$. (f) $f(x,y) = \frac{x}{1 + x^2 + u^2}$.
- (g) $f(x,y) = (x+y)e^{-xy}$.
- (h) $f(x,y) = (x^2 + y^2) \ln(x^2 + y^2)$.
- **10.** Probar que (0,0,0) es un punto crítico de $f(x,y,z) = \cos(x^2 + yz)$, y analizar si es extremo relativo o no.
- 11. Encuentre los máximos y mínimos absolutos de las siguientes funciones.
 - (a) $f(x,y) = e^{-xy}$ en la región $x^2 + 4y^2 \le 1$.
 - (b) $f(x,y) = \frac{1}{x^2 + y^2}$ en la región $(x-2)^2 + y^2 \le 1$.
 - $f(x,y) = x^2 + y^2 + \frac{2\sqrt{2}}{3}xy$ en la región $x^2 + 2y^2 \le 1$.
 - (d) $f(x, y, z) = y^3 + xz^2$ en la esfera $x^2 + y^2 + z^2 = 1$.
- 12. Una caja rectangular sin tapa debe tener una superficie con un área de 27 unidades cuadradas. Encuentre las dimensiones que le darán volumen máximo.
- 13. Encuentre el valor máximo de la función x(y+z) dado que $x^2+y^2=1$ y xz=1.
- 14. Obtenga los puntos de la curva de intersección del elipsoide $x^2 + 4y^2 + 4z^2 = 4$ y el plano $x - \sqrt{3}y - z = 0$ que estén más cerca del origen, y calcule la distancia mínima.

Ejercicios de repaso.

- **15.** Hallar el polinomio de Taylor de grado 2n de la función $f(x,y) = \frac{1}{1+rn}$ en el (0,0). ¿Qué ocurre con el de grado $m \in \mathbb{N}$?
- **16.** Calcular el polinomio de Taylor de orden 2 de $f(x,y) = \operatorname{sen} x \operatorname{sen} y$ centrado en (0,0). Además, mostrar que si $|x| \leq 0.1$ e $|y| \leq 0.1$ entonces el error que se comete al aproximar f por su polinomio de Taylor de orden 2 es menor que $2 \cdot 10^{-3}$.
- 17. Escribir el polinomio xy^2z^3 como un polinomio en (x-1), y+1 y z.
- 18. Encontrar los valores máximos y mínimos locales de $f(x,y) = xye^{-x^2-y^4}$.
- 19. Hallar los puntos más lejanos al origen y que están en la curva

$$(x, y, z) = (\cos(t), \sin(t), \sin(t/2)).$$

- 20. Encuentre los máximos y mínimos absolutos de las siguientes funciones.
 - (a) f(x,y) = 3x + 1, si $x^2 + y^2 = 10$, (b) $f(x,y) = e^{xy}$, si $x^3 + y^3 = 16$,

 - (c) $f(x,y) = x^2 + y^2 + 4x 4y$, si $x^2 + y^2 \le 9$, (d) $f(x,y,z) = x^2 + y^2 + z^2$, si xyz = 1.

- **21.** Los hiperplanos x + y z 2w = 1 y x y + z + w = 2 se cortan en un conjunto \mathcal{F} en \mathbb{R}^4 . Hallar el punto de \mathcal{F} más cercano al origen.
- **22.** Encuentre la distancia mínima en \mathbb{R}^2 entre la elipse $x^2 + 2y^2 = 1$ y la recta x + y = 4. Indicación: considerar el cuadrado de la distancia como función de cuatro variables.
- **23.** Este ejercicio se trata de ver que algunos hechos válidos para máximos y mínimos de funciones continuas $f: \mathbb{R} \to \mathbb{R}$ no son ciertos para funciones de varias variables:
 - (a) Demostrar que la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2$$

tiene sólo dos puntos críticos y ambos son máximos locales.

(b) Demostrar que la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = x^2 + y^2(1+x)^3$$

tiene un sólo punto crítico, que resulta ser un mínimo local pero no absoluto.

24. Sean $f, g: \mathbb{R}^2 \to \mathbb{R}$ definidas por

$$f(x,y) = x^2 + y^2$$
, $g(x,y) = (y-1)^3 - x^2$.

Hallar el valor mínimo de f sujeta a la restricción g(x,y)=0. Mostrar que no existe ninguna constante λ tal que $\nabla f=\lambda \nabla g$ para algún punto $(x,y)\in \mathbb{R}^2$. ¿Por qué el método de los multiplicadores de Lagrange falla en este ejemplo?