Project 5 Report

Mahmoud Essalat, Sherry He, Weitang Sun, Siqi Huang ID: 005034839, 805040110, 904946260, 504490530

Part 1.Question 1.The statistics are showing in the following table.

	Average number of	Average number of	Average number of
	tweets per hour	followers	retweets
#gohawks	292.49	2217.92	2.01
#gopatriots	40.95	1427.25	1.41
#nfl	397.02	4662.38	1.53
#patriots	750.89	3280.46	1.79
#sb49	1276.86	10374.16	2.53
#superbowl	2072.12	8814.97	2.39

Question 2. The plots are showing in the following. Number of Tweets in Hour (tweets_#nfl)

Question 3.

There are five features used in this regression exercise: x1 - number of tweets, x2 - total number of retweets, x3 – sum of the number of followers of the users posting the hashtag, x4 – maximum number of followers of the users posting the hashtag, and x5 – time of the day. We also include the constant in the regression.

#GoHawks

RMSE of #gohawks for the linear regression model is: 870.95 and R-squared is 0.476. For pvalue, we can see that the parameters of constant, x2, x3 and x4 are significant. t-test suggests that the features explains the dependent variable.

OLS Regression Results							
	======		=====				
Dep. Variable	:		У	R-squ	ared:		0.476
Model:			OLS	Adj.	R-squared:		0.472
Method:		Least Sq	uares	F-sta	atistic:		104.1
Date:		Sun, 17 Mar	2019	Prob	(F-statistic)	:	5.01e-78
Time:					Likelihood:		-4733.0
No. Observati	ons:			AIC:			9478.
Df Residuals:			572	BIC:			9504.
Df Model:			5	2201			,,,,,,
Covariance Ty	ne•	nonr	_				
	coet	gtd err		+	P> t	rn 025	0 9751
		. 500 611			1/ 0	[0.025	0.575]
const	95.0899	70.543		1.348	0.178	-43.465	233.645
x1	1.6195	5.325		0.304	0.761	-8.839	12.078
x2	1.2827	0.164		7.831	0.000	0.961	1.604
x3	-0.1364	0.043		-3.138	0.002	-0.222	-0.051
x4	-0.0002	8e-05		-2.429	0.015	-0.000	-3.72e-05
x5 6	.154e-05	0.000		0.413	0.680	-0.000	0.000
Omnibus:		91	6.585	Durbi	in-Watson:		2.216
Prob(Omnibus)	:		0.000	Jarqı	ie-Bera (JB):		783084.769
Skew:			B.690	Prob	(JB):		0.00
Kurtosis:		18	2.481	Cond	. No.		5.13e+06

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.13e+06. This might indicate that there are strong multicollinearity or other numerical problems.

#GoPatriots

RMSE of gopatriots for the linear regression model is: 166.09 and R-square is 0.629. For pvalue, we can see that only the parameter of x3 is significant. t-test suggests that the features explains the dependent variable.

		OLS R	egress	ion R	esults		
Dep. Vari	able:		у	R-sq	 uared:		0.629
Model:			OLS	Adj.	R-squared:		0.626
Method:		Least Squ	ares	F-st	atistic:		192.9
Date:		Sun, 17 Mar	2019	Prob	(F-statistic)	:	6.97e-120
Time:		17:4	6:18	Log-	Likelihood:		-3749.1
No. Obser	vations:		574	AIC:			7510.
Df Residu	als:		568	BIC:			7536.
Df Model:			5				
Covariano	e Type:	nonro	bust				
	coef	std err		-	P> t	[0.025	0.975]
const	9.2632				0.495	-17.375	35.901
x1	-0.1991	1.017	-0	.196	0.845	-2.197	1.799
x2	0.3054	0.285	1	.073	0.284	-0.254	0.865
x3	0.4947	0.191	2	.590	0.010	0.120	0.870
x4	-0.0001	0.000	-0		0.599		0.000
x5	-1.937e-05	0.000	-0	.089	0.929	-0.000	0.000
Omnibus:			.048		in-Watson:		1.909
Prob(Omni	bus):		.000		ue-Bera (JB):		291015.311
Skew:		_		Prob			0.00
Kurtosis:		113	.192	Cond	. No.		7.48e+05
=======		========	=====	=====		=======	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 7.48e+05. This might indicate that there are strong multicollinearity or other numerical problems.

#nfl

RMSE of #nfl for the linear regression model is: 519.58 and R-square is 0.571. For p-value, we can see that only the parameter of x2 is not significant. The parameters of other features are significant. *t*-test suggests that the features explains the dependent variable.

	OLS Regression Results								
Dep. Varia	ble:		y R-sq	uared:		0.571			
Model:			OLS Adj.	R-squared:		0.567			
Method:		Least Squa	res F-st	atistic:		154.3			
Date:	S	un, 17 Mar 2	019 Prob	(F-statistic	:):	4.56e-104			
Time:		17:46	:21 Log-	Likelihood:		-4495.8			
No. Observ	ations:		586 AIC:			9004.			
Df Residua	ls:		580 BIC:			9030.			
Df Model:			5						
Covariance	Type:	nonrob	ust						
	coef	std err	t	P> t	[0.025	0.975]			
const	122 0270	42 000	2 000	0.004	30 601	200 165			
x1				0.898					
x2				0.000					
x3		0.064			-0.291				
x4		2.5e-05				0.000			
x5		3.31e-05				-5.16e-05			
x5	-0.0001	3.31e-03	-3.324	0.000	-0.000	-3.16e-05			
Omnibus:		670.	042 Dumb	in-Watson:		2.373			
Prob(Omnib						350954.169			
Skew:	us;			ue-Bera (JB):	·	0.00			
Kurtosis:				(JB):		8.60e+06			
Kurtosis:		122.	os/ Cona	. No.		0.00e+06			

- warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 8.6e+06. This might indicate that there are strong multicollinearity or other numerical problems.

#Patriots

RMSE of #patriots for the linear regression model is: 2276.16 and R-square is 0.668. For pvalue, we can see that the parameters of constant, x2, x3 and x5 are significant. t-test suggests that the features explains the dependent variable.

	OLS Regression Results							
Dep. Var	iable:		У	R-sq	uared:		0.668	
Model:			OLS	Adj.	R-squared:		0.666	
Method:		Least Squ	ares	F-st	atistic:		233.8	
Date:	S	un, 17 Mar	2019	Prob	(F-statisti	c):	1.91e-136	
Time:		17:4	6:26	Log-	Likelihood:		-5361.4	
No. Obse	rvations:		586	AIC:			1.073e+04	
Df Resid	uals:		580	BIC:			1.076e+04	
Df Model	:		5					
Covarian	ce Type:	nonro	bust					
		std err			P> t	[0.025	0.975]	
const	180.1751					-181.066	541.416	
x1	-5.8597	13.765	-0	.426	0.670	-32.896	21.176	
x2	0.9145	0.071	12	.937	0.000	0.776	1.053	
x3	-0.0681	0.058	-1	.178	0.239	-0.181	0.045	
x4	-1.098e-05	2.63e-05	-0	.417	0.677	-6.27e-05	4.07e-05	
x5	0.0001	9.17e-05	1	.340	0.181	-5.72e-05	0.000	
Omnibus:			.682		in-Watson:		1.998	
Prob(Omn	ibus):				ue-Bera (JB)	:	690539.222	
Skew:		7	.937	Prob	(JB):		0.00	
Kurtosis	:	170	.420	Cond	. No.		1.60e+07	
				=====				

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.6e+07. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE of #sb49 for the linear regression model is: 4023.48 and R-square is 0.805. For p-value, we can see that the parameters of x2, x3, x4 and x5 are significant. t-test suggests that the features explains the dependent variable.

OLS Regression Results								
========			====	=====				
Dep. Varia	ble:		У	R-sq	uared:		0.805	
Model:			OLS	Adj.	R-squared:		0.803	
Method:		Least Squa	res	F-st	atistic:		474.3	
Date:	8	Sun, 17 Mar 2	019	Prob	(F-statist	lc):	1.66e-201	
Time:		17:46	:37	Log-	Likelihood:		-5656.4	
No. Observ	ations:		582	AIC:			1.132e+04	
Df Residua	als:		576	BIC:			1.135e+04	
Df Model:			5					
Covariance	Type:	nonrob	ust					
	coef	std err		t	P> t	[0.025	0.975]	
const	206.5402	328.558	0	.629	0.530	-438.777	851.857	
x1	-15.9597	24.434	-0	.653	0.514	-63.950	32.031	
x2	1.1363	0.087	13	.020	0.000	0.965	1.308	
x3	-0.1605	0.079	-2	.039	0.042	-0.315	-0.006	
x4	9.719e-06	1.25e-05	0	.777	0.438	-1.49e-05	3.43e-05	
x 5	9.449e-05	4.36e-05	2	.166	0.031	8.79e-06	0.000	
Omnibus:		1179.	269	Durb:	in-Watson:		1.674	
Prob(Omnib	ous):	0.	000	Jarq	ue-Bera (JB)	:	2205207.514	
Skew:		14.	582	Prob	(JB):		0.00	
Kurtosis:		303.	143	Cond	. No.		1.57e+08	

- Wallings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.57e+08. This might indicate that there are strong multicollinearity or other numerical problems.

#Superbowl

RMSE of #superbowl for the linear regression model is: 7244.55 and R-square is 0.800. For pvalue, we can see that the parameters of x2, x3, x4 and x5 are significant. t-test suggests that the features explains the dependent variable.

Dep. Varial	ble:		У	R-squ	ared:		0.800
Model:			OLS	Adj.	R-squared:		0.798
Method:		Least Sq					463.5
Date:		Sun, 17 Mar	2019	Prob	(F-statistic	:):	6.72e-200
Time:		17:	16:51	Log-L	ikelihood:		-6039.9
No. Observa			586	AIC:			1.209e+04
Df Residua	ls:		580	BIC:			1.212e+04
Df Model:			5				
Covariance	Type:	nonre	bust				
		std err			P> t	-	0.975]
const		605.382			0.805		1039.451
x1	-20.4965	43.624	-0	.470	0.639	-106.177	65.184
x2	2.2766	0.080	28	3.537	0.000	2.120	2.433
x3	-0.2543	0.046	-5	5.544	0.000	-0.344	-0.164
x4	-0.0001	2.2e-05	-6	5.265	0.000	-0.000	-9.47e-05
x5	0.0007	0.000	4	1.889	0.000	0.000	0.001
Omnibus:			3.862		n-Watson:		2.283
Prob(Omnib	us):		0.000		e-Bera (JB):	:	1787388.254
Skew:			9.272	Prob(0.00
Kurtosis:		27	2.925	Cond.	No.		2.21e+08

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 2.21e+08. This might indicate that there are strong multicollinearity or other numerical problems.

We used the following features: x1 - number of tweets, x2 - time of the day, x3 - sum of the number of followers of the users posting the hashtag, x4 – total number of retweets, x5 - number of URLs in tweets, x6 - number of mentioned users of tweets, x7 - number of favorites in tweets, x8 - the ranking score of tweets and x9 - number of hashtags in tweets. We also include the constant in the regression.

#GoHawks

RMSE of #gohawks for the linear regression model is: 727.71.

RMSE of gohawks for the linear regression model is: 727.711953678 OLS Regression Results								
	022 103100011							
Dep. Varia	ble:		y R-squa	ared:		0.635		
Model:		c	LS Adj. I	R-squared:		0.629		
Method:		Least Squar	es F-stat	tistic:		109.6		
Date:	Mo	n, 18 Mar 20	19 Prob	(F-statistic	c):	5.02e-118		
Time:		18:43:	48 Log-L:	ikelihood:	-	-4629.1		
No. Observ	ations:	5	78 AIC:			9278.		
Df Residua	ls:	5	68 BIC:			9322.		
Df Model:			9					
Covariance	Type:	nonrobu	ıst					
	coef	std err	t	P> t	[0.025	0.975]		
const	-57.4453	60.321			-175.926			
x1	1.5745	4.506	0.349		-7.276			
x2	-40.6142	4.176	-9.726	0.000				
x 3	-0.0553	0.054	-1.017	0.310	-0.162	0.052		
x4			-6.924		-0.000	-0.000		
x5	8.0273	1.499	5.354	0.000	5.082	10.972		
x6	1.6909	0.492	3.435	0.001	0.724	2.658		
x 7	0.0519	0.023	2.229	0.026	0.006	0.098		
x8	8.4778	0.870	9.747	0.000	6.769	10.186		
x9	0.7790	0.338	2.304	0.022	0.115	1.443		
Omnibus:		991.5		n-Watson:		2.213		
Prob(Omnib	us):	0.0		e-Bera (JB)	:	905698.058		
Skew:		10.2				0.00		
Kurtosis:		195.8	331 Cond.	No.		5.18e+06		

- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 5.18e+06. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE of gopatriots for the linear regression model is: 100.59.

OLS Regression Results									
Dep. Varia	ble:		y R-squ	ared:		0.864			
Model:			OLS Adj.	R-squared:		0.862			
Method:		Least Squa	ares F-sta	tistic:		398.3			
Date:	Mo	on, 18 Mar 2	2019 Prob	(F-statisti	.c):	7.90e-238			
Time:		20:11	1:25 Log-I	ikelihood:		-3461.2			
No. Observ	ations:		574 AIC:			6942.			
Df Residua	ls:		564 BIC:			6986.			
Df Model:			9						
Covariance	Type:	nonrok	oust						
	coef	std err	t	P> t	[0.025	0.975]			
const	-6.9374	8.265	-0.839	0.402	-23.171	9.297			
x1	0.3442	0.623	0.552	0.581	-0.880	1.568			
x2	-21.1042	1.762	-11.980	0.000	-24.564	-17.644			
x3	-1.3881	0.150	-9.278	0.000	-1.682	-1.094			
x4	1.168e-05	3.25e-05	0.360	0.719	-5.21e-05	7.55e-05			
x5	4.0166	0.640	6.274	0.000	2.759	5.274			
x 6	5.0759	0.404	12.554	0.000	4.282	5.870			
x7	-8.1721	1.067	-7.659	0.000	-10.268	-6.076			
x8	3.9893	0.318	12.540	0.000	3.364	4.614			
x9	1.4664	0.350	4.185	0.000	0.778	2.155			
Omnibus:		519.	.769 Durbi	n-Watson:		1.869			
Prob(Omnib	us):	0.	.000 Jarqu	e-Bera (JB)	:	71270.463			
Skew:		3.	352 Prob	JB):		0.00			
Kurtosis:		57.	.176 Cond.	No.		7.16e+05			

- Warnings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 7.16e+05. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE of #nfl for the linear regression model is: 402.63.

OLS Regression Results							
Dep. Varia	able:		y R-squ	ared:		0.742	
Model:			OLS Adj.	R-squared:		0.738	
Method:		Least Squa	res F-sta	tistic:		184.4	
Date:	Mo	on, 18 Mar 2	019 Prob	(F-statisti	c):	3.16e-163	
Time:		20:11	:30 Log-L	ikelihood:		-4346.3	
No. Observ	vations:		586 AIC:			8713.	
Df Residua	als:		576 BIC:			8756.	
Df Model:			9				
Covariance	e Type:	nonroh	ust				
		std err			[0.025		
const			0.589				
x1			-0.921				
x2			-1.794				
x3			-3.103				
x4	-1.132e-05						
x5			3.447				
x6	2.1597		4.063		1.116	3.204	
x7	-1.9673		-11.737			-1.638	
x8	0.3016		1.007	0.314	-0.286	0.890	
x9	0.6082	0.093	6.542	0.000	0.426	0.791	
Omnibus:		752.	560 Durbi	n-Watson:		2.617	
Prob(Omnil	ous):	0.	000 Jarqu	e-Bera (JB)	:	146029.018	
Skew:		6.	225 Prob(JB):		0.00	
Kurtosis:		79.	326 Cond.	No.		9.10e+06	

- Warnings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 9.1e+06. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE of #patriots for the linear regression model is: 1712.21.

OLS Regression Results								
Dep. Variable:		y R-squ	ared:		0.812			
Model:		OLS Adj.	R-squared:		0.809			
Method:	Least Squa	res F-sta	tistic:		277.1			
Date:	Mon, 18 Mar 2	019 Prob	(F-statistic):	8.86e-203			
Time:	20:11	:37 Log-L	ikelihood:		-5194.6			
No. Observations:		586 AIC:			1.041e+04			
Df Residuals:		576 BIC:			1.045e+04			
Df Model:		9						
Covariance Type:	nonroh	oust						
coe	f std err	t	P> t	[0.025	0.975]			
const -265.849	3 145.074	-1.833	0.067	-550.787	19.089			
x1 -0.783	10.432	-0.075	0.940	-21.274	19.707			
x2 -66.527	4.346	-15.306	0.000	-75.064	-57.990			
x3 -0.391	0.079	-4.938	0.000	-0.548	-0.236			
x4 1.2e-0	3.36e-05	0.357	0.721	-5.4e-05	7.8e-05			
x5 -3.949	7 1.577	-2.504	0.013	-7.047	-0.852			
x6 6.610	1 0.831	7.953	0.000	4.978	8.242			
x7 0.689	7 0.293	2.350	0.019	0.113	1.266			
x8 12.492	0.869	14.368	0.000	10.784	14.200			
x9 3.794	0.360	10.549	0.000	3.088	4.500			
Omnibus:	1066.	765 Durbi	n-Watson:		1.799			
Prob(Omnibus):	0.	000 Jarqu	e-Bera (JB):		1172882.536			
Skew:	11.	663 Prob(JB):		0.00			
Kurtosis:	220.	927 Cond.	No.		1.66e+07			

- Warnings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.66e+07. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE of #sb49 for the linear regression model is: 3598.65.

OLS Regression Results							
========				=======			
Dep. Varia	able:		y R-squa			0.844	
Model:		(-squared:		0.841	
Method:		Least Squar	res F-stat	istic:		343.0	
Date:	Me	on, 18 Mar 2	019 Prob (F-statisti	c):	5.97e-224	
Time:		20:11	:53 Log-Li	kelihood:		-5591.4	
No. Observ	ations:	1	582 AIC:			1.120e+04	
Df Residua	als:	!	572 BIC:			1.125e+04	
Df Model:			9				
Covariance	Type:	nonrob	ust				
	coef	std err	t	P> t	[0.025	0.975]	
const	-156.6960	297.448	-0.527	0.599	-740.920	427.528	
x1	-16.6172	21.985	-0.756	0.450	-59.799	26.564	
x2	-50.6916	8.128	-6.237	0.000	-66.656	-34.727	
x3	0.4060	0.109	3.732	0.000	0.192	0.620	
x4	6.705e-05	1.44e-05	4.664	0.000	3.88e-05	9.53e-05	
x5	-1.3470	1.365	-0.987	0.324	-4.028	1.334	
x6	4.8624	0.638	7.627	0.000	3.610	6.115	
x 7	-0.2548	0.096	-2.657	0.008	-0.443	-0.066	
x8	9.4073	1.688	5.574	0.000	6.092	12.722	
x9	2.0936	0.322	6.510	0.000	1.462	2.725	
Omnibus:		1153.	188 Durbin	-Watson:		2.007	
Prob(Omnik	ous):	0.4	000 Jarque	-Bera (JB)	:	1766217.304	
Skew:		13.9	951 Prob(J	B):		0.00	
Kurtosis:		271.				1.58e+08	

- Warnings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 1.58e+08. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE of #superbowl for the linear regression model is: 5386.49.

OLS Regression Results						
=======						
Dep. Varia	able:		y R-squa			0.844
Model:		•	OLS Adj. R	-squared:		0.841
Method:		Least Squa	res F-stat	istic:		343.0
Date:	M	on, 18 Mar 2	019 Prob (F-statistic	c):	5.97e-224
Time:		20:11	:53 Log-Li	kelihood:		-5591.4
No. Observ	vations:		582 AIC:			1.120e+04
Df Residua	als:		572 BIC:			1.125e+04
Df Model:			9			
Covariance	e Type:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]
const	-156.6960	297.448	-0.527	0.599	-740.920	427.528
x1	-16.6172	21.985	-0.756	0.450	-59.799	26.564
x2	-50.6916	8.128	-6.237	0.000	-66.656	-34.727
x3	0.4060	0.109	3.732	0.000	0.192	0.620
x4	6.705e-05	1.44e-05	4.664	0.000	3.88e-05	9.53e-05
x 5	-1.3470	1.365	-0.987	0.324	-4.028	1.334
x6	4.8624	0.638	7.627	0.000	3.610	6.115
x 7	-0.2548	0.096	-2.657	0.008	-0.443	-0.066
x8	9.4073	1.688	5.574	0.000	6.092	12.722
x9	2.0936	0.322	6.510	0.000	1.462	2.725
Omnibus:		1153.	188 Durbin	-Watson:		2.007
Prob(Omnil	bus):	0.	000 Jarque	-Bera (JB):	:	1766217.304
Skew:		13.	951 Prob(J	B):		0.00
Kurtosis:		271.	431 Cond.	No.		1.58e+08

The scatter plots of top 3 features are shown in the following.

The regression coefficients do not always agree with the trend in the plots. The correlation between features might be positive and the corresponding coefficients could be positive or negative.

Wallings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.58e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Question 6-7.

	Window 1 MSE	Window 1 R ² score	Window 2 MSE	Window 2 R ² score	Window 3 MSE	Window 3 R ² score
Gohawks	2911	-0.82	16.43	0.90	1282	0.77
Gopatriots	183.9	-0.16	3.05	0.85	819.2	0.50
Nfl	256.3	0.49	9.38	0.88	1176	0.46
Patriots	1731	-0.18	381.2	0.88	3504	0.80
Sb49	59.08	0.85	848.3	0.87	3546	0.93
Superbowl	1409	-0.66	34.56	0.94	28771	0.78
Aggregate	1191	-0.29	87.40	0.84	31466	0.75

If we use MSE as the measurement, the aggregate model performs moderately compared with the individual models, for both Window 1 and Window 2, and the aggregate model perform the worst. If we use R square score as the measurement, the aggregate model performs moderate for Window 1 and bad for Window 2 and Windom 3. We think it is because the tweets from different hashtags have systematic difference and thus it is easier to model some hashtags than others. In addition, the time windows correspond to the sports event and people share different tweets with different predictable levels under different hashtags.

Question 8.The optimal parameters for Random Forest Regressors are reported in the following:

	Max Depth	Max Features	Min samples leaf	Min samples split	N estimators	Negated MSE
Random	80	Sqrt	1	5	200	-1.8e+8
Forest Gradient Boosting	None	Sqrt	2	5	1600	-3.3e+8
Regressor OLS	None	Sqrt	1	10	200	-5.0e+5

The errors from random forest and gradient boosting look really bad. There might be a few reasons contributing to that. The data is time varying, and as a result, in each time period, the distribution changes according to the sports events. The errors may indicate that the data varies in a huge range.

Question 9.

	Max Depth	Max Features	Min samples leaf	Min samples split	N estimators	Negated MSE
OLS	None	Sqrt	1	10	200	-5.0e+5

When nonlinear estimators can be flexible and fit the training data well, they risk overfitting. Therefore, random forest and gradient boosting work worse than OLS.

Question 10.

	Max Depth	Max	Min samples	Min samples	N estimators	Negated
		Features	leaf	split		MSE
Window1	40	Sqrt	4	2	400	-8.3e+5
Window2	20	Sqrt	4	2	200	-7.2e+6
Window3	20	Auto	2	2	200	-2.8e+5

They mostly do not agree with the best parameters for aggregated data. The reason might be that the sport events have fluid time dynamics and thus each time period needs different set of parameters to fit well.

Question 11.

MSE for different hidden layer number and different hidden layer size are reported as follows:

	1 hidden layer	2 hidden layers	3 hidden layers	4 hidden layers
Hidden layer size 5	128835.719	128883.142	128882.808	126990.467
Hidden layer size 50	128883.493	128363.165	127049.786	128776
Hidden layer size 100	128874	128846	127334	127361
Hidden layer size 200	119621	128883	127807	128083

Question 12.

We use one hidden layer and 200 hidden units. The MSE is 0.43. The performance improves dramatically.

Question 13.

```
The parameters we used are in the following:
```

```
Neural_grid={
    'hidden_layer_sizes':[(100,),(100,100),(100,100),(200,),(200,200),
(200,200,200)],'learning_rate':['adaptive'],'max_iter':[200],'learning_rate':[init':[0.01],'alpha':[0.0001],'verbose':[10]}
```

The results are reported in the following:

```
window1 MSE for Neural network -0.58
window1 best parameter for Neural Network {'alpha': 0.0001, 'hidden_layer_
sizes': (100,), 'learning_rate': 'adaptive', 'learning_rate_init': 0.01, '
max_iter': 200, 'verbose': 10}

window2 error -0.14
window2 best parameter {'alpha': 0.0001, 'hidden_layer_sizes': (200, 200, 200), 'learning_rate': 'adaptive', 'learning_rate_init': 0.01, 'max_iter': 200, 'verbose': 10}

window3 error -0.33
window3 best parameter {'alpha': 0.0001, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.01, 'max_iter': 200, 'verbose': 10}
```

Question 14.

In this exercise, we used three models: linear regression, MLP Regression and random forest regression, as used before. We report the cross validation errors for each file to compare the model performance in the following. We conclude that the random forest model performs the best. Therefore, we report the predicted value from random forest model.

	Linear	MLP	Random Forest	Predicted Value from Random Forest Model
Preactive0	-3964	-11098357515	-307	117
Preactive1	-789	-728848	-40	846
Preactive2	-27	-6394958	-12	98
Active0	-77	-294826	-16	1145
Active1	-335	-7270613	-14	924
Active2	-119	-435	-3.26	212
Postactive0	-55260	-4962846	-15	77
Postactive1	-34	-72584825	-1.26	36
Postactive2	-1.39	-13624441	0.29	33

Part 2 Question 15.

- 1. Explain the method you use to determine whether the location is in Washington, Massachusetts or neither: I set up the flags for these two locations. For Massachusetts, the flags are "Massachusetts", "Boston", "MA", and for Washington, the flags are "Washington", "Seattle", "WA". We process each tweets, if the location fits the flags exactly, we mark it as what we need for the next part.
- 2. The three methods we used are Logistic Regression Classifier, Random Forest Classifier and Gaussian Naïve Bayes Classifier. The ROC curve, confusion matrix, accuracy, recall and precision are presented in the following.

Among all the classifiers, we can see that logistic regression and random forest classifiers perform similarly and better than Gaussian Naïve Bayes Classifier.

Part 3 Question 16. Define Your Own Project

In Super Bowl, fans of the final two teams are region-based: Patriots is a team from New England. Naturally, most of Patriot fans are likely to live in New England area. Similarly, Hawks is a team based in Seattle, Washington. Most of Hawks fan are likely to live in Seattle, Washington. However, there might be some Patriot fans live in Washington and Hawks fan live in New England. We think it would be interesting to see that, as a minority, whether these people will post more negative and subjective tweets online. Another pattern we predict is that, different fans in the same region will display the opposite sentiment in their tweets – imagine there is a good news for the Hawks, when Hawks fans in Seattle post positively and celebrate on Twitter, Patriots fans in Seattle are probably bitter about it and post negatively. We aim to discover some pattern about this sentiment analysis and provide insight in the future prediction exercise.

We study two sentiment dimensions – polarity and subjectivity. We predict that, fans of the opposite team will display more negativity and subjectivity in their tweets. The locations to identify for Hawks are Washington, Seattle and WA. As Patriots is based on New England, the locations we selected include six states, Massachusetts, Rhode Island, Connecticut, New Hampshire, Maine, Vermont, MA, VT, NH, RI, CT, ME, and major cities in these states, Worcester, Providence, Springfield, New Haven, Hartford, Stamford and Boston. After we clean up the tweets, the number of #goPatriots tweets is 1270 and the number of #goHawks tweets is 39308. The number of #goPatriots tweets with location Washington is 92 (7.2%) and the numbers of #goHawks tweets with location New England is 820 (2.1%). The distributions of polarity and subjectivity from two hashtags are shown in the following. We can see that, the distributions for two hashtags are similar, even the numbers of tweets are different. It means the samples are comparable. From the above numbers, we can also infer that there are indeed fans of the opposite teams in both New England and Washington.

We first plot a few histograms to obtain model free evidence. It is clear that fans of patriots in different locations behave differently in terms of both polarity and subjectivity. However, Hawks fans in different locations behave similarly, in terms of both polarity and subjectivity. In addition, Patriots fans in Washington posted more negative tweets. Subjectivity might not be a good measure of sports tweets in general.

Then the most interesting question would be: can tweets sentiment of the fans in one location predict the fans for the same team in the other location? How about the tweets sentiment for the fans of the opposite team?

We average the tweet sentiments by team, location and dates. For the missing data points, we use zeros and then we plot the four lines for each sentiment measure. In general, the polarities from opposite teams moves oppositely. The subjectivity measurement tends to co-move together. Again, it shows that subjectivity measurement might not be a good measurement for sports tweets.

Not surprisingly, in New England, fans of opposite teams have opposite polarity measure. There might not be enough tweets posted by patriots fans in Washington and thus it is hard to spot the pattern. However, we can see that Hawks fans tend to have similar polarity in both locations. Subjectivity-wise, all of the lines seem to co-move together. Therefore, polarity of tweets from one team one location could probably be predicted by polarity of tweets from the opposite team or another location. The future research could combine multiple sources of data and predict the sentiment of tweets during the sports event.

