NLP and the Web - WS 2024/2025

Lecture 10 **Neural Language Modeling 2**

Dr. Thomas Arnold Hovhannes Tamoyan Kexin Wang

Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt

Syllabus (tentative)

<u>Nr.</u>	<u>Lecture</u>
01	Introduction / NLP basics
02	Foundations of Text Classification
03	IR – Introduction, Evaluation
04	IR – Word Representation
05	IR – Transformer/BERT
06	IR – Dense Retrieval
07	IR – Neural Re-Ranking
08	LLM – Language Modeling Foundations, Tokenization
09	LLM – Neural LLM
10	LLM - Adaptation
11	LLM – Prompting, Alignment, Instruction Tuning
12	LLM – Long Contexts, RAG
13	LLM – Scaling, Computation Cost
14	Review & Preparation for the Exam

Outline

Transformer LM (cont.)

Adaptation

Lecture Evaluation, Quiz

A Fixed-Window Neural LM

RNN Language Model

Input sequence

Word representation (lookup in embedding matrix)

Recurrent sequence encoding representation (1x RNN layer)

Sequence as the input

- Single vector (last state) as output
 - Part of a larger network

Training a Transformer Language Model

■ We need to **prevent information leakage** from future tokens! How?

How to use the model to generate text?

Use the output of previous step as input to the next step repeatedly

Encoder-decoder models

- Encoder = read or encode the input
- Decoder = generate or decode the output

An encoder-decoder architecture built with attention modules.

Computation of encoder attends to both sides.

[Attention Is All You Need, Vaswani et al. 2017]

 At any step of decoder, it attends to previous computation of encoder

Encoder-Decoder Attention

At any step of decoder, it attends to decoder's previous generations

Output

2.5

5.0 7.5

10.0

12.5 15.0

17.5

3 Shades of Attention

Variants of positional embeddings

Architectural choices

Attention Predictive Attention Transformer[143], Realformer[51], Lazyformer[159] Attention Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131] Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119] Adaptive Attention Span[126], Multi-Scale Transformer[44] - Dynamic Routing[40, 74] Module BERT[28], Wang et al. [139], FLOATER[85] Level Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24] Position Encoding TUPE[63], Roformer[124] Complex Embedding[140], R-Transformer [144], CPE[20] post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141] AdaNorm[153], scaled \(\ell_2\) normalization[93], PowerNorm[121] ReZero-Transformer[5 Activ. Func. Swish[106], GELU[14, 28], GLU[118] Product-key Memory[69], Gshard[71], Switch Transformer[36], Expert Prototyping[155], Hash Layer[110] All-Attention layer[127], Yang et al. [157] Lite Transformer[148], Funnel Transformer[23], DeLighT[91] UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79], ACT Arch. Level Transformer-XL[24], Compressive Transformer[103], Memformer[147] Yoshida et al. [160], ERNIE-Doc[30] Divide & Conquer Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145] TENER[154], TNT[48] Alt. Arch. ET[123], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167] BERT[28], RoBERTa[87], BigBird[163] Pre-Train -Enc.Dec. BART[72], T5[104], Switch Transformer[36] - NLP BERT[28],ET[123], Transformer-XL[24],Compressive Transformer[103], TENER[154] Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56] VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView[29]

Multi-modal models

Outline

Transformer LM (cont.)

Adaptation

Lecture Evaluation, Quiz

Language Models are not trained to do what you want

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

There is a mismatch between LLM pre-training and user intents.

Adapting Language Models

You have a pre-trained language model that is pre-trained on massive amounts of data. They do not necessarily do useful things—they only complete sentences.

Now how to you "adapt" them for your use-case?

Tuning: adapting (modifying) model parameters

• Prompting: adapting model inputs (language statements)

Fine-Tuning for Tasks

Pretrained models

Fine-Tuning for Tasks

Fine-Tuning for Tasks

Fine-tuning Pre-trained Models

- Whole model tuning:
 - Run an optimization defined on your task data that updates all model parameters

- Head-tuning:
 - Run an optimization defined on your task data that updates the parameters of the model "head"

[ACL 2022 Tutorial Beltagy, Cohan, Logan IV, Min and Singh]

Parameter-efficient Fine-tuning

Parameter-efficient Fine-tuning: Adding Models

- Augmenting the existing pre-trained model with extra parameters or layers and training only the new parameters
- One commonly used method:
 - Adapters

Adapters

- Idea: train small sub-networks and only tune those.
 - Adapter layer projects to a low dimensional space to reduce parameters.
- No need to store a full model for each task, only the adapter params.

Question

- Is parameter-efficient tuning more
 - (1) computationally efficient
 - (2) memory-efficient

than whole-model tuning?

Answer to (1) It is not faster!

You still need to do the entire forward and backward pass.

Answer to (2) It is more memory efficient.

You only need to keep the optimizer state for parameters that you are fine-tuning and not all the parameters.

Selective methods

- Selective methods fine-tune a subset of the existing parameters of the model.
- It could be a layer depth-based selection, layer type-based selection, or even individual parameter selection.

BitFit

- BitFit only tunes the bias terms in self-attention and MLP layers
- only updates about 0.05% of the model parameters

$$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell} \mathbf{x} + \mathbf{b}_q^{m,\ell}$$

$$\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_{k}^{m,\ell}\mathbf{x} + \mathbf{b}_{k}^{m,\ell}$$

$$\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_v^{m,\ell} \mathbf{x} + \mathbf{b}_v^{m,\ell}$$

$$\mathbf{h}_{2}^{\ell} = \text{Dropout}(\mathbf{W}_{m_{1}}^{\ell} \cdot \mathbf{h}_{1}^{\ell} + \mathbf{b}_{m_{1}}^{\ell}) \tag{1}$$

$$\mathbf{h}_3^{\ell} = \mathbf{g}_{LN_1}^{\ell} \odot \frac{(\mathbf{h}_2^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^{\ell}$$
 (2)

$$\mathbf{h}_4^{\ell} = \operatorname{GELU}(\mathbf{W}_{m_2}^{\ell} \cdot \mathbf{h}_3^{\ell} + \mathbf{b}_{m_2}^{\ell}) \quad (3)$$

$$\mathbf{h}_{5}^{\ell} = \text{Dropout}(\mathbf{W}_{m_{3}}^{\ell} \cdot \mathbf{h}_{4}^{\ell} + \mathbf{b}_{m_{3}}^{\ell}) \quad (4)$$

$$\operatorname{out}^{\ell} = \mathbf{g}_{LN_2}^{\ell} \odot \frac{(\mathbf{h}_5^{\ell} + \mathbf{h}_3^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_2}^{\ell} \quad (5)$$

Ben Zaken et al., 2021. "BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models"

BitFit

Figure 2: Comparison of BitFit and Full-FT with BERT_{BASE} exact match score on SQuAD validation set.

Limitations of Pre-training, then Fine-tuning

- Often you need a large labeled data
 - Though more pre-training can reduce the need for labeled data

"I have an extremely large collection of clean labeled data"

"I have an extremely large collection of clean labeled data"

-- No one

Outline

Transformer LM (cont.)

Adaptation

Lecture Evaluation, Quiz

Lecture and Exercise Evaluation

Lecture

Exercise

Menti time

