NAME:	STREAM:
DATE:	
P525/1	
CHEMISTRY	
Paper 1	
(Theory)	
Oct. / Nov. 2024	
2 ³ / ₄ hours	

CHEMISTRY DEPARTMENT UGANDA ADVANCED CERTIFICATE OF EDUCATION END OF TERM III EXAMINATIONS

S.5 CHEMISTRY
Paper 1

(Theory)

2 hours 45 minutes

Instructions:

- All questions must be answered in the spaces provided.
- Answer all questions in section A and six questions in section B.
- Silent non-programmable scientific electronic calculators may be used.
- Illustrate your answers with equations where applicable.
- Where necessary use the following:
 Universal gas constant, R = 8.314J/Kmol
 [H = 1; C = 12; O=16]

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

Section A (46 marks)

Attempt ${\bf all}$ questions in this section

		NO ₂	(@ 02 marks)
			(C 02 marns)
	a)	+CH ₃ COCl → AICI ₃	
		Name of organic reaction:	
	b)	_	
		CH ₃ C=CH ₂ + HBr	
		 CH₃	
	Nar	ne of organic reaction:	
	c)		
		HC≡CH ————Fe	
		600°C	
2.	l	Name of organic reaction:	
	1)	i. State the conditions under which phosph solution	orous reacts with sodium hydroxide (01 mark)
	i	i. Write equation for the reaction that occ	
t) Ph	osphorous forms a hydride with a formula PH	3.
		i. Comment on the solubility of the hydride	of phosphorous in water.
			(0 ½ mark)
	i	i. Give a reason for your answer in b (i) abo	ve. (02 marks)

3.	
a)	Distinguish between critical point and triple point. (02 mark)
b)	A liquid substance Y has its melting point and freezing point decreasing with increase in pressure. Draw a well labeled phase diagram for the liquid showing how pressure varies with temperature for the system. (03 marks)
	An organic compound R has a molecular formulae C_7H_7Br . 4.0g of R was divided into two portions.
a)	The first portion of R burnt with a yellow sooty flame. Write the names and structural formulae of all possible isomers of R. (02 marks)
b)	The second portion was dissolved in sodium hydroxide solution, warmed and acidified with dilute nitric acid. The resultant solution was tested with silver nitrate solution. Name the isomer present if:

		pr	tate was formed	(U1 mark)	
ii.	No obs	ervable chang	es were noticed	(01 mark)	
c) Writ	te equatio	on(s) for reac	tion(s) showing t	he formation of y	ellow precipitate. (02 mark
 The +		ahawa +ha a		do notontials of	tomo clamanta in ar
THE	able belo	w shows the s	standara electro	de potentiais of s	some elements in gr
(II) o	f periodi	c table.			
(II) o	•	c table. Mg	Ca	Sr	Ва
Elem Stan elect	ent dard trode	1	-2.87	Sr -2.89	Ba -2.91
Elem Stan elect Poter	ent dard trode ntial (V)	Mg -2.37	-2.87	-2.89	
Elem Stan elect Poter a) Stat	ent Idard trode ntial (V) Te the tre	Mg -2.37 and in standar	-2.87 d electrode pote	-2.89	-2.91
Elem Stan elect Poter a) Stat	ent Idard trode ntial (V) Te the tre	Mg -2.37	-2.87 d electrode pote	-2.89	-2.91
Elem Stan elect Poter a) Stat	ent Idard trode ntial (V) Te the tre	Mg -2.37 and in standar	-2.87 d electrode pote	-2.89	-2.91
Elem Stan elect Poter a) Stat	ent Idard trode ntial (V) Te the tre	Mg -2.37 and in standar	-2.87 d electrode pote	-2.89	-2.91
Elem Stan elect Poter a) Stat	ent Idard trode ntial (V) Te the tre	Mg -2.37 and in standar	-2.87 d electrode pote	-2.89	-2.91
Elem Stan elect Poter a) Stat	ent Idard trode ntial (V) Te the tre	Mg -2.37 and in standar	-2.87 d electrode pote	-2.89	-2.91

	b)	The time taken for 50% of Bismuth to decay is 19.7 minutes. Determine the time taken for 43% Bismuth to decay. (03 marks)
7.	S	During extraction of aluminium, Bauxite is roasted in air and dissolved in concentrated sodium hydroxide.
	a)	Write equation(s) for the reaction(s) that take place when the roasted ore is dissolved in concentrated sodium hydroxide. (03 marks)
	b)	Pure aluminium is obtained by electrolysis of aluminium oxide. Aluminium obtained can be used to manufacture utensils. Explain why it is not advised to wash aluminium utensils with soap. (02 marks)
8.	a)	Define the term relative atomic mass. (01 mark)

5

	Chlorine has two isotopes, Chlorine-35 and Chlorine-37. Given that the atomic mass
-,	of chlorine is 35.5. Calculate the ratio of the two isotope in a natural sample.
	(03 marks)
c)	State and disadvantage of using mass spectromaton in determining stamic mass of
C)	State one disadvantage of using mass spectrometer in determining atomic mass of elements (01 mark)
ŕ	
9. a)	elements (01 mark)
9. a)	elements (01 mark) Explain the following observations. Nitrobenzene undergoes electrophilic substitution reactions in Meta position where
9. a)	elements (01 mark) Explain the following observations. Nitrobenzene undergoes electrophilic substitution reactions in Meta position where
9. a)	elements (01 mark) Explain the following observations. Nitrobenzene undergoes electrophilic substitution reactions in Meta position where
9. a)	elements (01 mark) Explain the following observations. Nitrobenzene undergoes electrophilic substitution reactions in Meta position where
9. a)	elements (01 mark) Explain the following observations. Nitrobenzene undergoes electrophilic substitution reactions in Meta position where

		Section B (56 marks)	
		Attempt only six questions in this section	n
10.	Fluori	ne, chlorine, Bromine and iodine are elements of group (VII). Briefly describe
	how		
a)			
	i.	Fluorine reacts with water	(02 marks)
	ii.	Iodine reacts with dilute sodium hydroxide.	(02 marks)

b) The hydrides of elements in (a) above boil at different temperatures as shown in table below.

Hydride	HF	HCl	HBr	HI
Boiling Point (°C)	+20	-85	-67	-35

i. Plot a graph of boiling points of hydride of group (VII) against molecular mass
 (02 marks)

ii.	Using your graph, explain the difference in boiling points of	
	(VII)	(03 marks)

11. Sulphur dioxide reacts with oxygen to establish the equilibrium below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H^{\theta} = -97 \text{KJ/mol}$$

a) Write the characteristics of the above equilibrium mixture. (01 $\frac{1}{2}$ marks)

b) State what would happen to the partial pressures of sulphur dioxide in the above equilibrium if;

0.9 moles of Helium was added at constant pressure	(01 ½ marks)

i.

	ii.	0.8 moles of sulphur trioxide formed was removed.	(01 ½ marks)
c)		quilibrium mixture of the above reaction at 700°C was four of sulphur dioxide, 0.3 moles of oxygen and 1.00 moles of s	
		Write the expression for the equilibrium constant Kp;	(01 mark)
	ii. Cald	culate the value of equilibrium constant Kp at $700^{\circ}C$. (03 $\frac{1}{2}$ m	narks)

12.	W	rite equatio	ons to show how th	ne following compound ca	n be synthesized. Indicate the
	re	agents for	the reaction.		
	a)	CH₃Cl	to	CH₃COOH	(02 marks)
	b)				(03 marks)
		ОН		C	CH ₃
			То		
				~	SO₃H

c)

CH=CH2		CH2CH (Br) 2
	То	

(04 marks)

- 13. Carbon and lead are some of the elements in group (IV) of the periodic table.
 - a) Describe the following reactions of the elements.
 - i. Lead reacts with water. (01 ½ marks)

ii. Carbon reacts with dilute hydrochloric acid. (0 $\frac{1}{2}$ mark)

ii.	Identify solids (01 ½ marks) W B Z Solid Z was dissolved in dilute nitric acid, and resultant solution	
ii.	B	
ii.	Z	
ii.		
	Solid Z was dissolved in dilute nitric acid, and resultant solution	
		on filtered.
	Write equation for reaction that occurred.	(01 ½ marks
iii.	The filtrate was divided into two portions. To first portion, po	otassium
	chromate solution was added. State what was observed.	(O1 anls)
	State what was observed.	(01 mark)
	To the second portion, concentrated hydrochloric acid was dro	op wise until
	excess. Write equation(s) for the reaction (s) that occurred.	(03 marks)

14.

a) Draw the structures and name the shapes for the following species, identifying the oxidation state of the central atom. (06 marks)

Species	Structure	Name	Oxidation state
(i) SO ₃ ² -			
(ii) H ₂ S			
(iii) 504 ²⁻			

o) Name the reagent which can be used to distinguish between t a (iii) above. In each case state what would be observed if the	, , , , , , , , , , , , , , , , , , , ,
separately with species.	(03 marks)

В	romome	thlybenze	_	•	substitution Pheny	reaction t Ubromometho	
a`) State	conditions	under which	n methylbenze	ne reacts to fo	rm	
	i.		methylbenze	•			(01 mark)
	ii.	Phenylbr	omomethane				
b			and indicate	mechanism f	or formation o		
	from B	senzene.					(03 marks)
c)		ut using e		scribe how Pho	enylbromometh		
						••••••	••••••
				••••••		• • • • • • • • • • • • • • • • • • • •	••••••

potassium hydroxide Potassium hydroxide	•	•	reacts with concentr
Hydrochloric acid	(02 marl		
			: dea :
The table shows the Hydroxide Solubility (g/100g at 20°C)	solubility of son Be(OH)2 insoluble	ne group (II) hydrox Ca(OH)2 0.15	Ba(OH) ₂ 40
Hydroxide Solubility (g/100g at 20°C)	Be(OH) ₂ insoluble	Ca(OH) ₂ 0.15	Ba(OH) ₂ 40
Hydroxide Solubility (g/100g at 20°C) i. State and expl	Be(OH) ₂ insoluble	Ca(OH) ₂ 0.15 solubility of hydroxi	Ba(OH)2

ii.	shaken with an equal volume of water at $25^{\circ}C$. W solution of the hydroxide with a lower pH	ith a reason, identify the								
the anh 4.0g of dropped	hydrous salt was added to 50g of water and the temped the hydrated salt; XSO4.nH2O was added to 50g of the hydrated salt; \times 504.nH2O was added to 50g of the hydrated salt; \times 50g of	crature rose by 8.0°C. where of water, the temperature								
	The anhydrous salt	(02 marks)								
		o determine enthalpy of hydration of an ionic salt XSO4, 4.0g of is added to 50g of water and the temperature rose by 8.0°C. wher is salt;XSO4.nH2O was added to 50g of water, the temperature to 23.7°C. (Specific heat capacity of solution is 4.2J/g/°C). alpy of solution of; us salt (02 marks)								
ii.	Hydrated XSO4.nH2O marks)									

b)	Comment on the solubility of the salts in water at $25^{\circ}C$	(01 mark)
c)	Construct a born harber cycle for the more soluble and use it to deter of hydration. (04 marks)	rmine its heat
		••••••
		••••••

"Luke 2:11"

KRISMASI NJEMA.

END.

THE PERIODIC TABLE

1	2							Bri			T	3 .	4 5	6	7	8		
1 H															1			
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 10 P N 19.0 20		
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	CI	18 Ar 40.0	
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zu 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8	
37 Rb 35.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 103	The same			1	Te		54 Xe 131	
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt	A	1	g T	i P	b 1	3 84 Bi P 09 (20		Rn	
87 Fr (223)	88 Ra (226)	89 Ac (227)	la l															-
			57 La 139	58 Ce 140	P	r Nd	Pn	n S	52 50 52	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227	TI	h P	1 92 Pa U 31 23	N	3 p	94 Pu 244)	95 Am (243)	96 Cm (247)	97 Bk (247		99 Es (254)	100 Fm (257	Mv	102 No (254)	10 L

1. Indicates atomic number.

2. H Indicates relative atomic mass.