标题 title

作者 author

2023年7月31日

前言

目录

前言		i
第一部分	分 科学的逻辑	1
第一章	合情推理	2
§1.1	回顾: 命题逻辑的演绎推理	2
§1.2	合情推理的数学模型	5
	1.2.1 似然, 合情推理的原则	6
	1.2.2 似然与概率	9
§1.3	合情推理的归纳强论证	11
	1.3.1 先验与基率谬论	11
	1.3.2 归纳强论证	12
	1.3.3 有效论证和归纳强论证的比较	17
第二章	Markov 链与决策	22
§2.1	Markov 链	22
§2.2	Markov 奖励过程(MRP)	26
§2.3	Markov 决策过程(MDP)	29
§2.4	隐 Markov 模型(HMM)	33
	2.4.1 评估问题	34
	2.4.2 解释问题	35
第二部分	分 信息与数据	37
第三章	信息论基础	43

§3.1	熵	43
	3.1.1 概念的导出	43
	3.1.2 概念与性质	46
	3.1.3 熵与通信理论	51
§3.2	Kullback-Leibler 散度	54
	3.2.1 定义	54
	3.2.2 两个关于信息的不等式	56
	3.2.3 在机器学习中的应用:语言生成模型	57
§3.3	附录: Shannon 定理的证明	58
§3.4	习题	59
§3.5	章末注记	61
佐田主	Talaman Tindamatus and 21mm	60
	Johnson-Lindenstrauss 引理	63
	机器学习中的数据	63
	矩法与集中不等式	64
	J-L 引理的陈述与证明	68
	J-L 引理的应用	72
	习题	73
94.6	章末注记	73
第五章	差分隐私	74
§5.1	数据隐私问题	74
§5 . 2	差分隐私的定义与性质	76
§5. 3	差分隐私的应用	80
	5.3.1 随机反应算法	80
	5.3.2 全局灵敏度与 Laplace 机制	81
	5.3.3 DP 版本 Llyod 算法	83
§5.4	差分隐私与信息论	84
§5.5	习题	85
§5. 6	章末注记	85
	分 决策与优化	86
第六章	凸分析	87

§6 . 1	决策与优化的基本原理	87
	6.1.1 统计决策理论	87
	6.1.2 优化问题	88
	6.1.3 例子: 网格搜索算法	91
§6 . 2	凸函数	93
§6 . 3	凸集	96
	6.3.1 基本定义和性质	96
	6.3.2 分离超平面定理	98
第七章	对偶理论	100
	条件极值与 Lagrange 乘子法	101
	Karush-Kuhn-Tucker 条件	104
	Lagrange 对偶	107
Ü	7.3.1 Lagrange 定理	107
	7.3.2 弱对偶定理,强对偶定理	111
§7 . 4	应用: 支持向量机 (SVM)	115
笙八音	不动点理论	118
	Banach 不动点定理	118
	Brouwer 不动点定理	121
	不动点的一般视角	124
30.0	ALANDER CHANGE	147
第四部	分 逻辑与博弈	125
笹 九 音	动态博弈	126
	输赢博弈	126
	随机博弈(Markov 博弈)	
37.2	REPLIEST (MATION 1437)	101
	静态博弈	137
§10.	1 正则形式博弈	137
	10.1.1 生成对抗网络	138
	10.1.2 混合策略	140
§10.2	2 不完全信息博弈(Bayes 博弈)	141

第五部分 认知逻辑	146
第十一章 模态逻辑基础	147
§11.1 模态逻辑的起源	147
11.1.1 三段论	147
11.1.2 非经典逻辑	148
§11.2 模态语言	149
§11.3 Kripke 语义与框架语义	152
§11.4 模态可定义性	157
第十二章 认知逻辑与共同知识	165
§12.1 "泥泞的孩童"谜题	165
§12.2 认知逻辑的基本模型与性质	170
§12.3 对不一致达成一致	180
§12.4 Rubinstein 电子邮件博弈	186

第一部分

科学的逻辑

第二章 Markov 链与决策

§2.1 Markov 链

我们在第一次课说过,似然,或者说合情推理的合理程度,是一种概率的解释模型。 尽管概率论在数学上通常被形式化为 Kolmogorov 公理体系,但是公理体系并没有回答 "概率" 是什么. 概率的解释是一个哲学课题. 两个主要的例子:

- 频率解释: 概率是无穷次独立重复试验的频率(大数定律).
- 主观解释(Bayes 解释): 概率是对命题合理程度的信念(似然).

主观解释对推理的假设是逻辑的、静态的,时间的概念并不出现在似然里面. 例如,考虑一个罐子,里面有除颜色之外不可区分的 N 个球,有 n 个白球,剩下的是黑球. 顺序从中拿出 N 个球,第 k 次拿出的球颜色是 W_k 或 B_k .

- $Pr(W_i W_i) = Pr(W_i | W_i) Pr(W_i) = Pr(W_i | W_i) Pr(W_i)$. (i < j)
- $Pr(W_i) = Pr(W_i) = n/N \implies Pr(W_i|W_i) = Pr(W_i|W_i)$.

从似然的角度, $\Pr(W_i|W_j)$ 和 $\Pr(W_j|W_i)$ 不仅是可计算的,而且是相等的. 概率的计算告诉了我们,更早状态的信息依赖于未来的状态!逻辑上蕴含关系并不意味着实际上的因果关系,但是似然完全没有考虑这一点. 因此,我们需要引入一个带有时间的模型,这就是 Markov 链.

定义 2.1 (Markov 链) *Markov* 链(马氏链)是一个随机变量序列 $\{X_t\}_{t=0}^{\infty}$. 包含如下概念:

- 状态空间 $S: X_t$ 所有可能值构成的集合,有限或者可数.
- 转移矩阵 \mathcal{P} : 下一时刻系统状态之间转移的概率. $\mathcal{P} = (p_{ij})_{i,j \in \mathcal{S}}$, p_{ij} 是从 i 状态转移到 i 状态的概率.

• Markov 性: 对任意时刻 $t=1,\ldots,n$ 和任意状态 $j,k,j_0,\ldots,j_{t-1}\in\mathcal{S}$,如下等式成立

$$Pr(X_{t+1} = j | X_t = k, X_{t-1} = j_{t-1}, \dots, X_0 = j_0)$$

=
$$Pr(X_{t+1} = j | X_t = k) = p_{kj}.$$

有时候也会考虑带初态的 Markov 链, 此时 X_0 服从分布 $\lambda = (\lambda_s)_{s \in S}$.

我们给出的定义是简化的 Markov 链,每个时刻之间的转移都是一样的转移矩阵,这样的 Markov 链被称为时齐的.有时候也会考虑非时齐的 Markov 链,即每个时刻之间的转移矩阵不一样.

Markov 链是一种简化的带时间的概率模型,它最重要的性质是 Markov 性,即在固定现在的情况下,过去与未来相互独立.这一性质的数学表述为:

命题 2.1 (Markov 性) 条件在 $X_n = i$ 下, $\{Y_m\}_{m=0}^{\infty} := \{X_{m+n}\}_{m=0}^{\infty}$ 是一个转移矩阵为 P 的 Markov 链,并且与 (X_0, \ldots, X_{n-1}) 相互独立.

证明留做习题。

我们考虑的 Markov 链还有时齐性,即状态的转移不依赖当前时间,只和当前的状态有关. 时齐性的数学表述为:

命题 **2.2** 设 $\{X_t\}_{t=0}^{\infty}$ 是一个 *Markov* 链,那么对任意的 $t, m, n \in \mathbb{N}$ 和 $i, j, k \in \mathcal{S}$,有 $\Pr(X_{m+n} = j | X_n = k) = \Pr(X_m = j | X_0 = k)$.

我们来看一个 Markov 链的例子。

例 2.1 (赌徒模型) 考虑公平对赌. 玩家 A 和 B 抛硬币来赌钱,A 赌正面,B 赌反面. 每一轮独立地抛硬币,正面朝上的概率和反面朝上的概率相等,都是 1/2. 赢的一方给输的一方一块钱. A 输 a 块钱破产,B 输 b 块钱破产, Z_i 是第 i 轮 A 的收入. $Z_0 = X_0 = 0$ 是 A 初始的收入. $X_n = Z_0 + \cdots + Z_n$ 是 A 的累计收入. 那么, $\{X_n\}_{n>0}$ 是一个 Markov 链.

- 状态空间: $S = \{-a, -a+1, \ldots, 0, 1, \ldots, b\}$.
- ・ 转移概率: 对 -a < i < b-1, $p_{i,i+1} = p_{i+1,i} = 1/2$; $p_{-a+1,-a} = p_{b-1,b} = 1/2$, $p_{-a,-a} = p_{b,b} = 1$; 其他值为 0.

转移矩阵可以画成图 2.1 所示的形式.

在上面的赌徒模型中,A 的累计收入 $\{X_n\}_{n\geq 0}$ 形成了 Markov 链. 根据 Markov 性,未来双方的收入变化只取决于现在,而和过去运气无关. 与之相关的一个现象是赌徒谬

图 2.1: 赌徒模型的转移矩阵

误,即认为过去的运气会影响未来的运气. 例如,如果一个人连续输了很多次,那么他会认为自己未来运气会变好,赢的概率更大. 但是,根据 Markov 性,过去的运气不会影响未来的运气,因此这种想法是错误的. "风水轮流转" 在一场公平对赌中是不正确的认知.那么,如何评估赌局的公平性?

如果对赌是公平的,那么我们应该认为两个人每一轮的累计收入分布都是一样的,即

$$Pr(X_n = i | X_0 = 0) = Pr(X_n = -i | X_0 = 0).$$

因此,我们需要能够计算多步转移的概率. 设 $p_{ij}^{(k)}$ 表示从状态 i 用 k 步转移到状态 j 的概率. k 步转移概率形成了一个矩阵 $\mathcal{P}^{(k)}$. 下面的定理给出了计算多步转移概率的方法.

定理 2.1 (Kolmogorov-Chapman 方程) $P^{(k+l)} = \mathcal{P}^{(k)}\mathcal{P}^{(l)}$.

证明 由 Markov 性、时齐性和全概率公式,
$$p_{ij}^{(k+l)} = \Pr(X_{k+l} = j | X_0 = i) = \sum_{\alpha} \Pr(X_{k+l} = j | X_0 = i) = \sum_{\alpha} \Pr(X_{k+l} = j | X_0 = i) = \sum_{\alpha} \Pr(X_k = \alpha | X_0 = i) \Pr(X_{k+l} = j | X_k = \alpha) = \sum_{\alpha} p_{i\alpha}^{(k)} p_{\alpha j}^{(l)}$$
.

Kolmogorov-Chapman 方程有两个重要的特例,前向方程: $\mathcal{P}^{(k+1)} = \mathcal{P}^{(k)}\mathcal{P}$,以及后向方程: $\mathcal{P}^{(l+1)} = \mathcal{P}\mathcal{P}^{(l)}$. 见图 2.2 和图 2.3.

此外,利用归纳法,我们还有如下推论:

推论 **2.1** $\mathcal{P}^{(k)} = \mathcal{P}^k$.

若已知初始分布向量为λ,利用这一推论,我们可以计算它随时间的演化:

$$\lambda^{\mathsf{T}}, \lambda^{\mathsf{T}} \mathcal{P}, \dots, \lambda^{\mathsf{T}} \mathcal{P}^{n}, \dots$$

回到赌徒模型,如何计算公平对赌中 X_n 的概率分布? 我们先来看一个简化的例子。假设 $|p_{00} + p_{11} - 1| < 1$,考虑只有两个状态 0.1,转移矩阵为

$$\mathcal{P} = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}.$$

或者画成图 2.4 的形式.

图 2.2: 前向方程(往前一步)

图 2.3: 后向方程(往回一步)

图 2.4: 只有两个状态的 Markov 链

可以归纳证明:

$$\mathcal{P}^{n} = \frac{1}{2 - p_{00} - p_{11}} \begin{pmatrix} 1 - p_{11} & 1 - p_{00} \\ 1 - p_{11} & 1 - p_{00} \end{pmatrix} + \frac{(p_{00} + p_{11} - 1)^{n}}{2 - p_{00} - p_{11}} \begin{pmatrix} 1 - p_{00} & -(1 - p_{00}) \\ -(1 - p_{11}) & 1 - p_{11} \end{pmatrix}.$$

注意到, $\lim_{n\to\infty}p_{i0}^{(n)}=(1-p_{11})/(2-p_{00}-p_{11})$, $\lim_{n\to\infty}p_{i1}^{(n)}=(1-p_{00})/(2-p_{00}-p_{11})$.随着时间的推移,Markov 链初始状态对概率分布的影响逐渐消失.这个规律具有普遍性,这就是遍历定理.

定理 2.2 (遍历定理) 设 Markov 链的状态空间为 $S = \{1, ..., N\}$,转移矩阵为 $\mathcal{P} = (p_{ij})$. 如果对于某一个 n_0 有

$$\min_{ij} p_{ij}^{(n_0)} > 0, \tag{2.1}$$

那么存在分布 $\lambda = (\lambda_1, ..., \lambda_N)$ 使得

$$\lambda_i > 0, \quad \sum_i \lambda_i = 1,$$
 (2.2)

并且对于每一个i∈S和任意i∈S都有

$$p_{ij}^{(n)} \to \lambda_j, n \to \infty.$$
 (2.3)

反之,如果存在满足 (2.2) 和 (2.3) 的 λ ,则存在满足 (2.1) 的 n_0 . 式 (2.2) 的 λ 满足

$$\lambda^{\mathsf{T}} = \lambda^{\mathsf{T}} \mathcal{P}. \tag{2.4}$$

条件 (2.1) 表明超过某个步数 n_0 之后,从 i 出发到达 j 的概率总是正的,这个条件被称为遍历. 条件 (2.2) 表明每一个状态被访问到的概率都是正的,没有"死状态". 遍历定理表明遍历的 Markov 链从任何状态出发都是不可逆的,最终会把每个状态都走过一遍(遍历),变成一个混合均匀的状态. 这可以用来解释物理学中的扩散现象.

满足条件 (2.4) 的分布被称为平稳分布. 平稳分布为初始状态时, Markov 链的演化与时间无关:

命题 2.3 设 $\{X_n\}$ 是 *Markov* 链,如果 X_0 是平稳分布,那么 $(X_k,...,X_{k+l})$ 的联合分布不依赖于 k.

如果 Markov 链是遍历的,那么平稳分布是唯一的:

命题 2.4 设 $\{X_n\}$ 是遍历的 Markov 链,那么它有唯一平稳分布 μ 。

证明 假设 μ 是另外一个平稳分布,那么 $\mu_j = \sum_{\alpha} \mu_{\alpha} p_{\alpha j} = \cdots = \sum_{\alpha} \mu_{\alpha} p_{\alpha j}^{(n)}$. 因为 $p_{\alpha j}^{(n)} \to \lambda_j$,所以 $\mu_j = \sum_{\alpha} (\mu_{\alpha} \lambda_j) = \lambda_j$.

非遍历 Markov 链也可能存在(唯一) 平稳分布, 考虑如下转移矩阵:

$$\mathcal{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

它有唯一平稳分布 $\lambda = (1/2, 1/2)^{\mathsf{T}}$.

§2.2 Markov 奖励过程(MRP)

我们接下来的目标就是在 Markov 链上建立决策理论.每一阶段我们可以选择某个行动,这个行动在 Markov 链会产生一些奖励.我们的目标是选择恰当的行动方式是的我们的总奖励最大.首先我们定义奖励的过程.

定义 2.2 一个 *Markov* 奖励过程 (*MRP*) 是四元组 $\langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$:

- · S 是一个有穷的状态集合.
- \mathcal{P} 是一个状态转移矩阵,从 i 转移到 j 的概率记为 $\mathcal{P}_{i,i}$.
- \mathcal{R} 是一个奖励函数, $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$: 当 t 时刻位于状态 s 时下一时刻(离开)获得的奖励的期望, R_{t+1} 是下一阶段所处状态的奖励.
- γ 是一个折扣系数, $\gamma \in [0,1]$.

接下来我们看一个例子: 学生 MRP。

例 2.2 (学生 MRP) 见图 2.5.[lhy: 补全]

图 2.5: 学生 MRP

MRP 中,t 时刻以后的总回报 G_t 定义为

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}.$$

 $\gamma \in [0,1]$ 衡量了未来下一时段 1 的奖励在当前时刻的价值. 未来 k+1 时刻的奖励对当前时刻 t 的作用是 $\gamma^k R_{t+k+1}$. 若 $\gamma \to 0$,表示对奖励进行"短视"的评估;反之更"远见".

许多 MRP 和后面学习的 MDP 都有与时间无关的折扣系数 $\gamma < 1$,原因例如,对未来不确定性对冲,这直接对英语直接对应于利润率. 另外,动物和人类对即时回报具有偏

好. 有时也使用非折扣化的 MRP(即 $\gamma = 1$),例如当所有的转移序列都会有固定的终止时间.

在 MRP 中,状态价值函数v(s)表示从状态 s 出发的期望回报

$$v(s) = \mathbb{E}(G_t|S_t = s).$$

价值函数 v(s) 衡量了状态 s 的长期效益. 这一定义蕴含了 Markov 性: 只从当前起考虑未来收益,不考虑历史收益(沉没成本)的影响;也蕴含了时齐性:价值函数的定义不依赖于时刻 t (无穷阶段情形).

价值函数可以被分解为两部分:即时回报 \mathbb{R}_{t+1} 以及下一个状态开始的折扣价值 $\gamma v(S_{t+1})$,具体来说,我们有

$$v(s) = \mathbb{E}(G_t | S_t = s)$$

$$= \mathbb{E}(R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s)$$

$$= \mathbb{E}(R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s)$$

$$= \mathbb{E}(R_{t+1} + \gamma G_{t+1} | S_t = s)$$

$$= \mathbb{E}(R_{t+1} + \gamma v(S_{t+1}) | S_t = s)$$

$$= \mathbb{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{s,s'} v(s').$$

我们因此得到了 Bellman 方程:

定理 2.3 (Bellman 方程) $v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'} v(s')$.

Bellman 方程可以用矩阵形式表达:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
.

这里 v 是列向量 $v = (v(s))_{s \in \mathcal{S}}$.

Bellman 方程是一个线性方程,可以被直接解:

$$v = \mathcal{R} + \gamma \mathcal{P}v \implies (I - \gamma \mathcal{P})v = \mathcal{R} \implies v = (I - \gamma \mathcal{P})^{-1}\mathcal{R}.$$

对于 n 个状态的 Markov 链, 计算复杂度为 $\mathcal{O}(n^3)$. 对于较小的 MRP 可以直接解, 太大的 MRP 开销太大. 对于大型 MRP, 可以采用迭代算法, 例如:

- 动态规划
- · Monte-Carlo 评估
- 时序差分学习

§2.3 Markov 决策过程(MDP)

接下来我们定义 Markov 决策过程. MDP 是 MRP 的扩展,它增加了行动的概念,是一个定义了决策的 MRP. 它可以看做一个任意状态都具有 Markov 性的环境.

定义 2.3 *Markov* 决策过程 (*MDP*) 是一个 *MDP* 是五元组 $\langle S, A, P, R, \gamma \rangle$, 其中

- · S 是一个有限的状态集合.
- A 是一个有限的行动 (action) 集合.
- · P 是状态转移概率矩阵,

$$\mathcal{P}_{ss'}^{a} = \Pr(S_{t+1} = s' | S_t = s, A_t = a).$$

- \mathcal{R} 是一个奖励函数, $\mathcal{R}_s^a = \mathbb{E}(R_{t+1}|S_t=s,A_t=a)$, R_{t+1} 是进行某一行动到达某一状态后的奖励.
- γ 是一个折扣系数 $\gamma \in [0,1]$.

我们继续前面学生的例子,此时变成学生 MDP:

例 2.3 (学生 MDP) 见图 2.6.

一个策略 π 是给定状态下行动的分布,

$$\pi(a|s) = \Pr(A_t = a|S_t = s).$$

一个策略完全决定了一个智能体在 MDP 环境中的行为. 它蕴含着 Markov 性: MDP 的策略取决于当前状态,而非历史状态;也蕴含着时齐性: MDP 的策略不依赖于时刻 t.

MDP 与 Markov 链、MDP 的关系由策略给出。

命题 **2.5** 给定一个 $MDP \mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ 和一个策略 π , $\langle \mathcal{S}, \mathcal{P}^{\pi} \rangle$ 是一个 Markov 链, $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$ 是一个 MRP, 其中

$$\mathcal{P}^{\pi}_{s,s'} = \mathbb{E}_{a \sim \pi(\cdot|s)}(\mathcal{P}^a_{s,s'}) = \sum_{a \in A} \pi(a|s)\mathcal{P}^a_{s,s'}$$

$$\mathcal{R}_s^{\pi} = \mathbb{E}_{a \sim \pi(\cdot|s)}(\mathcal{R}_s^a) = \sum_{a \in \mathcal{A}} \pi(a|s)\mathcal{R}_s^a.$$

证明 利用全概率公式。

图 2.6: 学生 MDP

在 MDP 中,状态-价值函数和行动-价值函数是两个重要的价值函数,它们分别描述了从某一状态出发,遵从某一策略的期望回报。状态-价值函数 $v_{\pi}(s)$ 是从状态 s 出发,遵从策略 π 的期望回报

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s).$$

行动-价值函数 $q_{\pi}(s,a)$ 是从状态 s 出发, 采取行动 a, 遵从策略 π 的期望回报

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}(G_t | S_t = s, A_t = a).$$

注意,以上定义都具有 Markov 性和时齐性.

下面我们给出状态-价值函数和行动-价值函数的 Bellman 方程。状态-价值函数可以被分解为:即时回报加后续状态的折扣价值,

$$v_{\pi}(s) = \mathbb{E}_{\pi}(R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s).$$

行动-价值函数可以被类似地分解,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}(R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a).$$

二者之间的关系(全概率公式、一步转移概率):

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^a v_{\pi}(s').$$

$$v_{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)}(q_{\pi}(s,a)) = \sum_{a \in A} \pi(a|s)q_{\pi}(s,a),$$

因此, 我们得到 MDP 的 Bellman 期望方程:

命题 2.6 (状态-价值函数和行动-价值函数的 Bellman 方程)

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^{a} v_{\pi}(s') \right),$$
$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a').$$

状态-价值函数的 Bellman 方程可以被写成矩阵形式:

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}.$$

接下来我们讨论最优策略和最优价值函数。

定义 2.4 (最优状态-价值函数和最优行动-价值函数) 最优状态-价值函数 $v_{\star}(s)$ 是所有决策中最大的状态-价值函数

$$v_{\star}(s) = \max_{\pi} v_{\pi}(s).$$

最优行动-价值函数 $q_{\star}(s,a)$ 是所有决策中最大的行动-价值函数

$$q_{\star}(s,a) = \max_{\pi} q_{\pi}(s,a).$$

最优价值函数确定了 MDP 中的最佳收益,解 MDP 即确定达到最优价值函数的策略.

然而,每个状态取到最大价值的策略 π 可能并不是同一个. 幸运的是,确实存在一个这样的最优策略. 定义一个策略的偏序:

$$\pi \ge \pi' \iff \forall s \in \mathcal{S} \ v_{\pi}(s) \ge v_{\pi'}(s).$$

我们有如下定理:

定理 2.4 (MDP 解的存在性) 对任意 MDP,

- 存在一个最优策略 π_* 使得 $\forall \pi \pi_* \geq \pi$.
- 最优策略取得最优状态-价值函数: $v_{\pi_{\star}}(s) = v_{\star}(s)$.
- 最优策略取得最优行动-价值函数: $q_{\pi_*}(s,a) = q_{\star}(s,a)$.

证明 我们给出一个构造性证明,即找出最优决策。可以通过最大化 $q_{\star}(s,a)$ 来寻找:

- 固定 s.
- 找到一个 a_{\star} 使得 $q_{\star}(s, a_{\star}) = \max_{a} q_{\star}(s, a)$,令 $\pi_{\star}(a_{\star}|s) = 1$.
- $\forall a \neq a_{\star}, \ \pi_{\star}(a|s) = 0.$

首先,根据选法, π_{\star} 取得最优行动-价值函数.由 $v_{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)}(q_{\pi}(s,a)) \leq \mathbb{E}_{a \sim \pi(\cdot|s)}(q_{\star}(s,a)) \leq q_{\star}(s,a_{\star}) = v_{\pi_{\star}}(s)$ 知 π_{\star} 取得最优状态-价值函数.

这个证明还有一个推论:

推论 2.2 对任意 MDP, 总存在一个非随机的最优决策.

如果我们知道 $q_{\star}(s,a)$,我们就能获得最优决策. 最优价值函数由 Bellman 最优性方程联系:

$$\begin{aligned} v_{\star}(s) &= \max_{a} q_{\star}(s, a), \\ q_{\star}(s, a) &= \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s, s'}^{a} v_{\star}(s'), \\ v_{\star}(s) &= \max_{a} \left\{ \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s, s'}^{a} v_{\star}(s') \right\}, \\ q_{\star}(s, a) &= \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s, s'}^{a} \max_{a'} q_{\star}(s', a'). \end{aligned}$$

Bellman 最优性方程不是线性的. 因此没有解析形式的解. 但是 MDP 的数值解是可以多项式时间求出来的. 我们一般采用迭代算法求解:

- 价值迭代
- 策略迭代
- · Q-learning
- Sarsa

Bellman 方程是强化学习、经济学动态优化的核心. Bellman 方程的推导是 Markov 链中最为常用的技巧:考虑从当前状态转移到下一状态,利用全概率公式,一步转移会将两个状态之间的概率(期望)用递推公式联系起来. 在随机过程中,有大量这样的例子:前向方程、Wald 等式、调和函数. 后面的HMM 也是类似的例子.

§2.4 隐 Markov 模型(HMM)

我们考虑 Markov 链上的另一种应用. 在统计学和机器学习中, 我们有时候要处理一类含时间的数据. 最简单的情况是回归, 即数据完全由所处时刻决定. 但是通常, 现在的数据依赖于过去的数据. 因此, 一种最简单的考虑就是数据依赖于 Markov 链, 这就是隐 *Markov* 模型.

定义 2.5 (隐 Markov 模型) 一个隐 Markov 模型 (HMM) 是一列随机变量 X_1, X_2, \ldots, X_t , 满足:

- X_t 的分布仅依赖于隐状态 Z_t ,即 $\Pr(X_1,\ldots,X_t|Z_1,Z_2,\ldots,Z_t) = \prod_i \Pr(X_i|Z_i)$.
- $\{Z_t\}$ 构成一条 Markov 链.

示意见图 2.7.

图 2.7: 隐 Markov 模型

我们可以更具体地说写出来 HMM 的结构。一个 HMM 包含:

- · Z:有限的状态集合.
- · X: 有限的观测集合.
- $T: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_{>0}$, \mathcal{Z} 的转移概率.
- $M: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_{>0}$, 给定状态时的观测概率(条件概率).
- $\lambda: \mathcal{Z} \to \mathbb{R}_{>0}$,初始状态的先验概率分布列.

如果随机过程 $\{X_t\}$ 的值域是有限集,我们则可以用矩阵表达 HMM:

• $T \in \{Z_t\}$ 的转移矩阵.

- M 是观测矩阵: $M_{i,k} = \Pr(X_t = k | Z_t = i)$.
- λ 是一个概率向量.

2.4.1 评估问题

给定一个特定的 HMM,它对实际观测序列的拟合程度有多好? 为了讨论,我们引入记号随机向量 $X = (X_1, \ldots, X_t)$, $Z = (Z_1, \ldots, Z_t)$. 我们考虑 HMM 的评估问题: 给定一个 HMM \mathcal{M} ,以及它的观测历史 $x = (x_1, x_2, \ldots, x_t)$,计算 $\Pr(X = x | \mathcal{M})$. 关键困难是我们不知道状态历史 $Z = (z_1, z_2, \ldots, z_t)$.

直接使用条件概率进行推导,我们可以得到如下算法:

$$Pr(X = x | \mathcal{M}) = \sum_{Z = (z_1, ..., z_t) \in \mathcal{Z}} Pr(X = x | Z = z, \mathcal{M}) Pr(Z = z | \mathcal{M}),$$

$$Pr(X = x | Z = z, \mathcal{M}) = \prod_{i=1}^{t} Pr(X_i = x_i | Z_i = z_i) = M_{z_1, x_1} \cdot M_{z_2, x_2} \dots M_{z_t, x_t},$$

$$Pr(Z = z | \mathcal{M}) = Pr(Z_1 = z_1) \prod_{i=2}^{t} Pr(Z_i = z_i | Z_{i-1} = z_{i-1})$$

$$= \lambda_{z_1} \cdot T_{z_1, z_2} \cdot T_{z_2, z_3} \dots T_{z_{t-1}, z_t}.$$

这一方法的时间复杂度是 $\mathcal{O}(t|\mathcal{Z}|^t)$. 然而,这一算法中,t 在指数上,因此是不可接受的. 我们需要更好的算法.

接下来,我们采用前向方程的思路,从前 k 步的结果推出前 k+1 步的结果. 因此可以列出递推方程. 为了方便,引入记号: $X_{i:j}=(X_i,\ldots,X_j)$. 然后,定义 $\alpha_k(z):=\Pr(X_{1:k}=x_{1:k},Z_k=z|\mathcal{M})$,我们有递推:

•
$$\alpha_1(z) = \lambda(z) M_{z,x_1}$$
.

•
$$\alpha_{k+1}(z) = \sum_{z' \in \mathcal{Z}} \alpha_k(z') T_{z',z} M_{z,x_{k+1}}$$
.

于是,
$$\Pr(X = x | \mathcal{M}) = \sum_{z \in \mathcal{Z}} \alpha_t(z)$$
.

这一方法的时间复杂度是 $O(t|\mathcal{Z}|^2)$.

镜像地,我们可以使用后向方程的思路,从前 k+1 步的结果推出前 k 步的结果. 同样可以列出递推方程. 定义 $\beta_k(z) := \Pr(X_{k+1:t} = x_{k+1:t} | Z_k = z, \mathcal{M})$,我们有递推:

•
$$\leq k = t$$
, $\beta_k(z) = 1$.

• $\leq 1 \leq k < t$, $\beta_k(z) = \sum_{z' \in \mathcal{Z}} T_{z,z'} M_{z',x_{k+1}} \beta_{k+1}(z')$.

于是, $\Pr(X = x | \mathcal{M}) = \sum_{z \in \mathcal{Z}} \lambda(z) M_{z,x_1} \beta_1(z)$. 这一方法的时间复杂度是时间复杂度 $O(t | \mathcal{Z}|^2)$.

2.4.2 解释问题

接下来我们讨论 HMM 的解释问题. 给定一个 HMM $\mathcal{M} = (\mathcal{Z}, \mathcal{X}, T, M, \lambda)$, 一列观测历史 $x = (x_1, x_2, ..., x_t)$, 解释问题旨在寻找一个状态序列,能最好地解释这些历史观察. 具体来说我们考虑如下四个问题:

1. 过滤: 计算 $Pr(Z_k = s | X_{1:k} = x_{1:k}, \mathcal{M})$.

2. 平滑: 计算 $Pr(Z_k = s | X = x, \mathcal{M}), k < t.$

3. 预测: 计算 $Pr(Z_k = s | X = x, \mathcal{M}), k > t$.

4. 解码: 找到最有可能的状态序列 $z = (z_1, z_2, ..., z_t)$.

首先考虑过滤: $\Pr(Z_k = s | X_{1:k} = x_{1:k}, \mathcal{M})$ 。 回顾记号 $\alpha_k(s) = \Pr(X_{1:k} = x_{1:k}, Z_k = s | \mathcal{M})$,我们有

$$\Pr(Z_k = s | X_{1:k} = x_{1:k}, \mathcal{M}) = \frac{\Pr(X_{1:k} = x_{1:k}, Z_k = s | \mathcal{M})}{\Pr(X_{1:k} = x_{1:k} | \mathcal{M})}$$
$$= \frac{\alpha_k(s)}{\sum_{z \in \mathcal{Z}} \alpha_k(z)}.$$

这一推导给出了一个计算过滤的算法.

然后是平滑: $\Pr(Z_k = s | X = x, \mathcal{M}), k < t$ 。 回顾记号 $\alpha_k(s) = \Pr(X_{1:k} = x_{1:k}, Z_k = s | \mathcal{M}),$ 以及 $\beta_k(s) = \Pr(X_{k+1:t} = x_{k+1:t} | Z_k = s, \mathcal{M}).$ 可以证明:

$$\Pr(z_k = s | X = x, \mathcal{M}) = \frac{\beta_k(s)\alpha_k(s)}{\sum_{z \in \mathcal{Z}} \alpha_t(z)}.$$

这一推导给出了一个计算平滑的算法.

之后是预测: $\Pr(Z_k = s | X = x, \mathcal{M})$, k > t。首先用过滤计算 $\lambda = \Pr(Z_t = s | X = x, \mathcal{M})$. 然后用 λ 作为 Markov 的初始状态,利用 Kolmogorov-Chapman 方程向前计算 k - t 步.

最后是解码。定义

$$\delta_k(s) = \max_{Z_{1:k-1}} \Pr(Z_{1:k} = (z_{1:k-1}, s), X_{1:k} = x_{1:k} | \mathcal{M}).$$

根据一步转移, 我们有

$$\delta_{k+1}(s) = \max_{q \in \mathcal{Z}} \{\delta_k(q) T_{q,s}\} M_{s,x_{k+1}}.$$

问题转化为: 记录最高概率的路径, 这是一个动态规划问题. 我们有 Viterbi 算法, 如下:

• 初始化:

-
$$\delta_1(s) = \lambda(s) M_{s,z_1}$$
.

-
$$\operatorname{Pre}_1(s) = \varnothing$$
.

• $\forall k = 1, 2, ..., t - 1, s \in \mathcal{Z}$:

$$- \delta_{k+1}(s) = \max_{q \in \mathcal{Z}} \{\delta_k(q) T_{q,s}\} M_{s,x_{k+1}}.$$

-
$$\operatorname{Pre}_{k+1}(s) = \operatorname{argmax}_{q \in \mathcal{Z}} \{\delta_k(q) T_{q,s}\}.$$

- $z_t = \operatorname{argmax}_{s \in \mathcal{Z}} \delta_t(s)$.
- 对 $1 \le k < t$, $z_k = \text{Pre}_{k+1}(z_{k+1})$.
- ・时间复杂度: $\mathcal{O}(t|\mathcal{Z}|^2)$.

第二部分

信息与数据

第三部分 决策与优化 第四部分

逻辑与博弈

第五部分

认知逻辑

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/word/information.
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.
- [KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.
- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.

- [Rob49] Robert M. Fano. The Transmission of Information. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.
- [Tin62] Hu Kuo Ting. On the Amount of Information. *Theory of Probability & Its Applications*, 7(4):439–447, January 1962.
- [Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.
- [李10] 李贤平. 概率论基础. 高等教育出版社, 2010.

索引

Bayes 解释, 22

Bellman 方程, 28, 31 强化学习,32 HMM, 32, 33 时序差分学习,28 时齐的,23 Kolmogorov-Chapman 方程, 24 最优状态-价值函数,31 最优行动-价值函数,31 Markov 决策过程, 29 Markov 奖励过程, 26 状态-价值函数,30 Markov性, 23 状态空间,22 Markov 链, 22 策略迭代,32 MDP, 29 Monte-Carlo 评估, 28 行动-价值函数,30 MRP, 26 调和函数,32 赌徒模型,23 Q-learning, 32 赌徒谬误,24 转移矩阵,22 Sarsa, 32 遍历,26 Viterbi 算法, 36 遍历定理,25 Wald 等式, 32 隐 Markov 模型, 33 频率解释,22 主观解释,22 马氏链, 22 价值函数,28 价值迭代,32 前向方程,32 动态优化,32 动态规划,28 回报,27

平稳分布,26