

Teoría de Grafos

Juan David Rojas Gacha

2020 - II

Caminatas, senderos y circuitos

Caminata

Una caminata (walk) en un grafo G es una lista

$$v_o e_1 v_1 \cdot \cdot \cdot e_k v_k$$

de vértices y aristas tal que para todo $1 \leq i \leq k$ la arista e_i tiene extremos v_{i-1} y v_i .

Caminatas, senderos y circuitos

Caminata

Una caminata (walk) en un grafo G es una lista

$$v_o e_1 v_1 \cdot \cdot \cdot e_k v_k$$

de vértices y aristas tal que para todo $1 \le i \le k$ la arista e_i tiene extremos v_{i-1} y v_i .

Sendero

Un **sendero** (trail) es una caminata sin aristas repetidas.

• $v_1 e_1 v_1 e_2 v_2 e_3 v_1 e_2 v_2 e_4 v_3$

• $v_1 e_1 v_1 e_2 v_2 e_3 v_1 e_2 v_2 e_4 v_3$ (caminata).

- $v_1e_1v_1e_2v_2e_3v_1e_2v_2e_4v_3$ (caminata).
- $V_1 \stackrel{e_2}{\sim} V_2 e_4 V_3 e_5 V_5$

- $v_1e_1v_1e_2v_2e_3v_1e_2v_2e_4v_3$ (caminata).
- $v_1 e_2 v_2 e_4 v_3 e_5 v_5$ (sendero).

- $v_1e_1v_1e_2v_2e_3v_1e_2v_2e_4v_3$ (caminata).
- $v_1 e_2 v_2 e_4 v_3 e_5 v_5$ (sendero).
- $V_1 e_3 V_2 e_4 V_3 e_5 V_5$

- $v_1e_1v_1e_2v_2e_3v_1e_2v_2e_4v_3$ (caminata).
- $v_1 e_2 v_2 e_4 v_3 e_5 v_5$ (sendero).
- $v_1 e_3 v_2 e_4 v_3 e_5 v_5$ (sendero).

u, v-caminata

Una u, v-caminata tiene primer vértice u y último vértice v, estos dos son sus **extremos**. Los otros vértices son **vértices internos**. Análogamente se define un u, v-sendero.

u, v-caminata

Una u, v-caminata tiene primer vértice u y último vértice v, estos dos son sus **extremos**. Los otros vértices son **vértices internos**. Análogamente se define un u, v-sendero.

Camino

Un camino es un sendero sin vértices repetidos. Análogamente se define un u, v-camino.

Circuito

Una caminata es **cerrada** si sus extremos son iguales. Un **circuito** es un sendero cerrado.

Circuito

Una caminata es **cerrada** si sus extremos son iguales. Un **circuito** es un sendero cerrado.

Ciclo

Un ciclo es un camino cerrado.

Circuito

Una caminata es **cerrada** si sus extremos son iguales. Un **circuito** es un sendero cerrado.

Ciclo

Un ciclo es un camino cerrado.

Longitud

La **longitud** de una caminata, sendero, circuito, camino o ciclo es el número de aristas que la conforman.

Un bucle es un ciclo de longitud 1.

Un bucle es un ciclo de longitud 1.

Nota

Un ciclo de longitud 2 genera aristas paralelas.

Un bucle es un ciclo de longitud 1.

Nota

Un ciclo de longitud 2 genera aristas paralelas.

Nota

Si G es un grafo simple la caminata, sendero, circuito, camino o ciclo únicamente enlista los vértices.

V7 V3 V9 V8 V4 V5 V9 V3

• $v_7v_3v_9v_8v_4v_5v_9v_3$ v_7 , v_3 -caminata de longitud 7.

- $v_7v_3v_9v_8v_4v_5v_9v_3$ v_7 , v_3 -caminata de longitud 7.
- No es un sendero.

V₁ V₃ V₄ V₈ V₉ V₃ V₇

• $v_1 v_3 v_4 v_8 v_9 v_3 v_7 v_1$, v_7 -sendero de longitud 6.

- $v_1v_3v_4v_8v_9v_3v_7$ v_1 , v_7 -sendero de longitud 6.
- No es un camino.

V3 V4 V8 V9

V1 V3 V7 V9 V3 V4 V5 V2 V1

• $v_1v_3v_7v_9v_3v_4v_5v_2v_1$ circuito de longitud 8.

- $v_1v_3v_7v_9v_3v_4v_5v_2v_1$ circuito de longitud 8.
- No es un ciclo.

• $V_1 V_2 V_5 V_9 V_7 V_3 V_1$

Vértices repetidos	Aristas repetidas	Cerrado	Nombre
√	✓	Х	Caminata
√	✓	✓	Caminata cerrada
√	×	X	Sendero
√	×	✓	Circuito
X	×	X	Camino
X	×	✓	Ciclo

 ξ Si se sigue un u, v-camino y un v, w-camino, el resultado es un u, w-camino?

 ξ Si se sigue un u, v-camino y un v, w-camino, el resultado es un u, w-camino?

 ξ Si se sigue un u, v-camino y un v, w-camino, el resultado es un u, w-camino?

Lema

Cada u, v-caminata contiene un u, v-camino.

Lema

Cada u, v-caminata contiene un u, v-camino.

V1 V3 V4 V8 V9 V3 V7

Cada u, v-caminata contiene un u, v-camino.

• $v_1v_3v_4v_8v_9v_3v_7$ v_1 , v_7 -caminata de longitud 6.

Cada u, v-caminata contiene un u, v-camino.

- $v_1v_3v_4v_8v_9v_3v_7$ v_1 , v_7 -caminata de longitud 6.
- V₁ V₃ V₇

Cada u, v-caminata contiene un u, v-camino.

- $v_1 v_3 v_4 v_8 v_9 v_3 v_7 v_1$, v_7 -caminata de longitud 6.
- $v_1v_3v_7$ v_1 , v_7 -camino de longitud 2.

Grafo conexo

• Un grafo G es **conexo** si existe un u, v-camino entre cada par $uv \in V(G)$. En otro caso es **disconexo**.

Grafo conexo

- Un grafo G es conexo si existe un u, v-camino entre cada par uv ∈ V(G). En otro caso es disconexo.
- Si G tiene un u, v-camino entonces u está conectado con v.

Grafo conexo

- Un grafo G es conexo si existe un u, v-camino entre cada par uv ∈ V(G). En otro caso es disconexo.
- Si G tiene un u, v-camino entonces u está conectado con v.

Relación de conexión

La **relación de conexión** en V(G) consiste en todos los pares ordenados (u, v) tales que u está conectado con v:

uRv sii existe un u, v-camino.

La relación de conexión en V(G) es una relación de equivalencia.

La relación de conexión en V(G) es una relación de equivalencia.

Componentes

• Las **componentes** de un grafo *G* son sus subgrafos conexos maximales.

La relación de conexión en V(G) es una relación de equivalencia.

Componentes

- Las **componentes** de un grafo G son sus subgrafos conexos maximales.
- Una componente es trivial si no tiene aristas, en otro caso es no trivial.

La relación de conexión en V(G) es una relación de equivalencia.

Componentes

- ullet Las **componentes** de un grafo G son sus subgrafos conexos maximales.
- Una componente es trivial si no tiene aristas, en otro caso es no trivial.
- Un vértice aislado es un vértice de grado cero.

Nota

Las clases de equivalencia de la relación de conexión en V(G) son los conjuntos de vértices de las componentes de G.

Todo grafo con n vértices y k aristas tiene al menos n-k componentes.

Todo grafo con n vértices y k aristas tiene al menos n-k componentes.

Nota

Las componentes de un grafo son disyuntas y no comparten vértices.
 Si se agrega una arista con extremos en distintas componentes, estas se combinan en una nueva componente.

Todo grafo con n vértices y k aristas tiene al menos n-k componentes.

Nota

- Las componentes de un grafo son disyuntas y no comparten vértices.
 Si se agrega una arista con extremos en distintas componentes, estas se combinan en una nueva componente.
- Agregar una arista a G disminuye el número de componentes en 1 ó 0.

Todo grafo con n vértices y k aristas tiene al menos n-k componentes.

Nota

- Las componentes de un grafo son disyuntas y no comparten vértices.
 Si se agrega una arista con extremos en distintas componentes, estas se combinan en una nueva componente.
- Agregar una arista a G disminuye el número de componentes en 1 ó 0.
- Quitar una arista a G aumenta el número de componentes en 1 ó 0.

Todo grafo con n vértices y k aristas tiene al menos n-k componentes.

Nota

- Las componentes de un grafo son disyuntas y no comparten vértices.
 Si se agrega una arista con extremos en distintas componentes, estas se combinan en una nueva componente.
- Agregar una arista a G disminuye el número de componentes en 1 ó 0.
- Quitar una arista a G aumenta el número de componentes en 1 ó 0.

Demostración

Arista de corte - vértice de corte

Una arista de corte o un vértice de corte es una arista o vértice cuya eliminación incrementa el número de componentes.

Arista de corte - vértice de corte

Una arista de corte o un vértice de corte es una arista o vértice cuya eliminación incrementa el número de componentes.

Nota

• Al eliminar un vértice se deben eliminar todas las aristas incidentes.

Arista de corte - vértice de corte

Una arista de corte o un vértice de corte es una arista o vértice cuya eliminación incrementa el número de componentes.

Nota

- Al eliminar un vértice se deben eliminar todas las aristas incidentes.
- El número de componentes podría aumentar en más de una. Observe $K_{1,m}$

ullet G-e: Subgrafo que se obtiene al eliminar la arista e.

- G e: Subgrafo que se obtiene al eliminar la arista e.
- G v: Subgrafo que se obtiene al eliminar el vértice v.

- G e: Subgrafo que se obtiene al eliminar la arista e.
- G v: Subgrafo que se obtiene al eliminar el vértice v.
- G M: Subgrafo que se obtiene al eliminar el conjunto de aristas M.

- G e: Subgrafo que se obtiene al eliminar la arista e.
- G v: Subgrafo que se obtiene al eliminar el vértice v.
- G M: Subgrafo que se obtiene al eliminar el conjunto de aristas M.
- G S: Subgrafo que se obtiene al eliminar el conjunto de vértices S.

- G e: Subgrafo que se obtiene al eliminar la arista e.
- G v: Subgrafo que se obtiene al eliminar el vértice v.
- G M: Subgrafo que se obtiene al eliminar el conjunto de aristas M.
- G S: Subgrafo que se obtiene al eliminar el conjunto de vértices S.

Subgrafo inducido

Un **subgrafo inducido** es un subgrafo que se obtiene al eliminar un conjunto de vértices. Se escribe G[T] para $G-\overline{T}$ donde $\overline{T}=V(G)-T$, este es el subgrafo inducido por T.

Calcular G[S] y G[T]:

- $S = \{a, b, c\}$
- $T = \{b, d, e\}$

Un conjunto S de vértices es independiente sii G[S] no tiene aristas.

Un conjunto S de vértices es independiente sii G[S] no tiene aristas.

Teorema

Una arista e es una arista de corte sii no pertenece a ningún ciclo.

Un conjunto S de vértices es independiente sii G[S] no tiene aristas.

Teorema

Una arista e es una arista de corte sii no pertenece a ningún ciclo.

Lema

Toda caminata cerrada impar contiene un ciclo impar.

¿Toda caminata cerrada par contiene un ciclo par?

¿Toda caminata cerrada par contiene un ciclo par?

Teorema (König)

Un grafo G es bipartito sii no tiene ciclos impares.

Unión

La **unión** de grafos G_1, G_2, \ldots, G_k notada $G_1 \cup G_2 \cup \cdots \cup G_k$ es el grafo G con conjunto de vértices

$$V(G) = \bigcup_{i=1}^k V(G_i)$$

y conjunto de aristas

$$E(G) = \bigcup_{i=1}^k E(G_i)$$

Unión

La **unión** de grafos G_1, G_2, \ldots, G_k notada $G_1 \cup G_2 \cup \cdots \cup G_k$ es el grafo G con conjunto de vértices

$$V(G) = \bigcup_{i=1}^k V(G_i)$$

y conjunto de aristas

$$E(G) = \bigcup_{i=1}^k E(G_i)$$

Ejemplo

 K_4 es la unión de dos 4-ciclos bipartitos.

Circuitos Eulerianos

Sendero Euleriano - Circuito Euleriano

 Un sendero Euleriano en un grafo G es un sendero que contiene todas las aristas de G.

Circuitos Eulerianos

Sendero Euleriano - Circuito Euleriano

- Un sendero Euleriano en un grafo G es un sendero que contiene todas las aristas de G.
- Un circuito Euleriano en un grafo G es un circuito que contiene todas las aristas de G

Circuitos Eulerianos

Sendero Euleriano - Circuito Euleriano

- Un sendero Euleriano en un grafo G es un sendero que contiene todas las aristas de G.
- Un circuito Euleriano en un grafo G es un circuito que contiene todas las aristas de G.

Grafo Euleriano

Un grafo G es Euleriano si tiene un circuito Euleriano.

• Un vértice es par si su grado es par.

- Un vértice es par si su grado es par.
- Un vértice es impar si su grado es impar.

- Un vértice es par si su grado es par.
- Un vértice es impar si su grado es impar.
- Un grafo es par si todos sus vértices tienen grado par.

- Un vértice es par si su grado es par.
- Un vértice es impar si su grado es impar.
- Un grafo es par si todos sus vértices tienen grado par.

Camino maximal

Un camino P es **maximal** en un grafo G si P no está contenido en un camino de mayor longitud.

78

Vértice par - vértice impar

- Un vértice es par si su grado es par.
- Un vértice es impar si su grado es impar.
- Un grafo es par si todos sus vértices tienen grado par.

Camino maximal

Un camino P es **maximal** en un grafo G si P no está contenido en un camino de mayor longitud.

 \star Si G es finito, existe un camino maximal en G.

79

Lema

Si todos los vértices de un grafo G tienen grado mayor o igual a 2, entonces G contiene un ciclo.

Si todos los vértices de un grafo G tienen grado mayor o igual a 2, entonces G contiene un ciclo.

Teorema

Un grafo G es Euleriano sii tiene a lo sumo una componente no trivial y todos sus vértices tienen grado par.

Si todos los vértices de un grafo G tienen grado mayor o igual a 2, entonces G contiene un ciclo.

Teorema

Un grafo G es Euleriano sii tiene a lo sumo una componente no trivial y todos sus vértices tienen grado par.

Teorema

Un grafo G tiene un u, v-sendero Euleriano sii G tiene a lo sumo una componente no trivial y u y v son los únicos vértices de grado impar.

Bibliografía

Douglas B. West Introduction to graph theory. Pearson. (2005).

Kenneth Rosen

Discrete Mathematics and its Applications McGraw Hill. (2012).

Bibliografía 83