read_me.md 1/26/2019

DATA INPUT

Open input_data.json to start editing your input

1. Starting point

Point at which the detailing starts within the model space. Details are drawn around the starting point. By default starting is 0,0,0 for x, y and z coordinates

2. Sections data

All sections data is entered under sections section in the input_data.json file.

Section Input parameters

- **b** stands for width and "**d**" stands for depth
- **f**" stands for flange and "**w**" stands for web
- **b** total width of section //may not be applicable for end user
- **bf_top** width of flange on top
- **bf_bottom** width of flange at the bottom
- **bw** width of web
- **d** total depth of section
- **df** depth of flange
- w_offset off set of web from left starting point of section

NOTE: bf_top, bf_bottom and bf will or may mean the same thing in this document

Specification for square/rectangular sections

When no df is specified, section is assumed to be square or rectangular

read_me.md 1/26/2019

• example input for square section. See section_4 in sample_file.json

```
"section_x": {
    "bw": "200",
    "d": "450"
}
```

Specification for L Right Flange Sections

L Right secctions have no web offset (w_offset) and bw is smaller than bf

• example input for L right flanged section. See section_2 in sample_file.json

```
"section_x": {
    "bf_top": "350",
    "bw": "200",
    "d": "450",
    "df": "250"
}
```

Specification for L Left Flange Sections

L Left secctions' w_offset and bw total up to bf.

read_me.md 1/26/2019

- example input for L right flanged section. See section_3 in sample_file.json
- bw + w_offset = 350 and bf_top = 350 meaning it's an L right section

```
"section_x": {
    "bf_top": "350",
    "bw": "200",
    "d": "450",
    "df": "200",
    "w_offset": "150"
}
```

Specification for T sections

if it is not a square or L section, then it is a T section. T sections w_offset and bw do not total upto bf

• example input for T flanged section. See section_1 in sample_file.json

```
"section_x": {
    "bf_top": "500",
    "bw": "200",
```

read me.md 1/26/2019

```
"d": "450",
"df": "200",
"w_offset": "150"
}
```

NOTE: It is possible to enter values as negative or positive. Positive x is towards the right and positive y is towards the top.

3. Supports types data

Support types specify the column properties at each support point. The support point could have a column at the bottom and no column on top. The Column at the bottom could have a wider section than the column on top.

Support types specify these properties including the section properties of the column. At the this point in time, there is only consideration for *rectangular/square* column sections. Circular sections will be added as need arises.

Column Input parameters

- **column_top**: Specifications for column at the top of support. If no value this parameter is not provided, then the support type has no column on bottom.
- **column_bottom**: Specifications for column at the bottom of support. If no value this parameter is not provided, then the support type has no column on top.
- **section_d**: This stands for the section depth of a column
- section b: This stands for section width of column
- column_h_m: This is the height of the column in metres

NOTE: Only column section width (*section_b*) is being used in beam detailing the time of writing this text. Other parameters will be used when column detailing has been added to the "*adds*" project.

• example input for support type with both column on top and the bottom. See support_type_1 in sample_file.json

```
"support_type_x":{
    "column_top": {
        "section_d": "200",
        "section_b": "200",
        "column_h_m": "3"
    },
    "column_bottom": {
        "section_d": "200",
        "section_b": "200",
        "column_h_m": "3"
    }
}
```

read me.md 1/26/2019

example input for support type with only the bottom bottom column. See support_type_2 in sample_file.json

```
"support_type_x":{
     "column_bottom": {
          "section_d": "200",
          "section_b": "300",
          "column_h_m": "3"
     }
}
```

4. Beams data

Beams sections is where the beams are specified using both the **sections data** and **support types data** plus other beam parameters required to exaustively specify a beam.

Beam Input parameters

- **beam_depth**: This is the overall depth of beam. Some sections a long length of beam may be shallower.
- spans: Specifies all the spans in beam. The have their own parameter as shown below.
 - *length_m*: This is the span *centre* to *centre* length in *metres*. Or this is the distance between the centre of the of left support to the centre of the right support.
 - section_left: The is the section to the left of the span as specified in the sections section. The section is specified using the name of the section.
 - *section_right*: The is the section to the right of the span as specified in the sections section. The section is specified using the name of the section.
 - example input for span parameters. See span_1 of beam_1 in sample_file.json

```
"span_x":{
        "length_m": "4.15",
        "section_left": "section_2",
        "section_right": "section_1"
},
```

NOTE: span key words length_m, section_left and section_right can not be changed to other names

• **supports**: This is specification for the support type at each support point of the beam. A beam with with 3 spans will have 4 supports. Specifying less supports will throw an error.

Contact isaac in case of questions