2012-2013 学年第二学期《高等数学(2-2)》第一阶段(第七、八章)试卷

- 一. (共3小题,每小题7分,共计21分)
- 1. 设 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 为单位向量,且满足 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 求 \overrightarrow{a} · \overrightarrow{b} + \overrightarrow{b} · \overrightarrow{c} + \overrightarrow{c} - \overrightarrow{a} .

2. 求直线 $L: \frac{x-1}{2} = \frac{y}{1} = \frac{z+3}{-1}$ 与平面 $\Pi: x+y-2z+3=0$ 的交点.

3. 求函数 $u = 2xy - z^2$ 在点P(2, -1, 1)处沿从点P(2, -1, 1)到点Q(3, 1, -1)方向的方向导数,问函数在点P(2, -1, 1)处沿哪个方向的方向导数最大?并求函数在点P(2, -1, 1)处最大的方向导数值.

- 二. (共3小题,每小题7分,共计21分)
- 1. 设一个立体由上半球面 $z = \sqrt{4 x^2 y^2}$ 和锥面 $z = \sqrt{3(x^2 + y^2)}$ 所围成,求它在 xoy 平面内的投影.

2. 已知空间三角形三个顶点 A(-1,2,3), B(1,1,1), C(0,0,5), 求此三角形的面积

3. 设函数 $z = f(x^2 + y^2)$, 其中 f 具有二阶导数, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$.

三. (共3小题,每小题7分,共计21分)

1. 证明二元函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 在点 $(0,0)$ 处不连续,但在点 $(0,0)$ 处

偏导数 $f_x'(0,0)$, $f_y'(0,0)$ 存在.

2. 求椭球面 $x^2 + 2y^2 + z^2 = 1$ 上平行于平面 x - y + 2z = 0的切平面方程.

3. 求由方程组
$$\begin{cases} x^2 + y^2 - z^2 = 0 \\ x + y + z - 1 = 0 \end{cases}$$
确定的隐函数 $y(x), z(x)$ 的导数 $\frac{dy}{dx}$ 和 $\frac{dz}{dx}$.

四.
$$(7\ \beta)$$
 证明二元函数 $f(x,y)=\begin{cases} \frac{xy}{\sqrt{x^2+y^2}}, x^2+y^2\neq 0\\ 0, x^2+y^2=0 \end{cases}$, 在点 $(0,0)$ 处偏导数

 $f'_{x}(0,0)$, $f'_{y}(0,0)$ 存在, 但不可微.

五. (共3小题,每小题5分,共计15分)

1. 要制作一个容积为V的长方体无盖水池,应如何选择水池的尺寸,才能使它的表面积最小.

2. 求点
$$M(1,2,-1)$$
 到直线 $L: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-2}{3}$ 的距离.

3. 把直线
$$L:\begin{cases} x-2y-z+4=0\\ 5x+y-2z+8=0 \end{cases}$$
 化为对称式方程和参数方程.

六. (共3小题,每小题5分,共计15分)

1. 求与已知平面8x + y + 2z + 5 = 0 平行且与三个坐标面所构成的四面体体积为1的平面方程.

2. 求直线
$$L: \begin{cases} x+2y-z+1=0 \\ x-y+z+1=0 \end{cases}$$
 在平面 $\Pi: x+y+z-2=0$ 内的投影直线的方程.

3. 求空间圆周 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$, 在点(1, -2, 1)处的切线方程和法平面方程.

2012-2013 学年第二学期《高等数学(2-2)》第二阶段(第九、十章)试卷

- 一. (共3小题,每小题7分,共21分)
- 1. 设 f(x,y) 在闭区域 D 上连续,设闭区域 D 的面积为 $\sigma \neq 0$,证明:

$$\exists (\xi, \eta) \in D$$
, $\notin \iint_D f(x, y) d\sigma = f(\xi, \eta)\sigma$.

2. 求 $\iint_{D} \frac{\sin x}{x} dx dy$ 其中 D 是由 $y = x^2$, y = x 所围成的闭区域.

3. 计算 $\iint xz^2 dy dz + (x^2y - z^3) dz dx + (2xy + y^2z) dx dy$, 其中 Σ : $z = \sqrt{a^2 - x^2 - y^2}$ $(x^2 + y^2 \le a^2)$ 取上侧.

- 二. (共3小题,每小题7分,共21分)
- 1. 计算 $\iint_{\Omega} xyzdxdydz$, 其中 Ω 为球面 $x^2+y^2+z^2=1$ 及三个坐标面所围成的位于第一卦限的立体.

2. 计算 $\iint_{\Sigma} (x+y+z)dS$, 其中 Σ 为平面 y+z=5 被柱面 $x^2+y^2=25$ 所截得的部分.

3. 计算 $\iint_{\Omega} (x^2 + y^2) dx dy dz$, 其中 Ω 为锥面 $x^2 + y^2 = z^2$ 与平面 z = a (a > 0) 所围成的立体.

- 三. (共3小题,每小题7分,共21分)
- 1. 求 $\oint_L xds$, 其中 L 是由 $y = 0, x = 1, y = x^2$ 所围区域的边界.

2. 设L为一条不经过坐标原点的分段光滑简单闭曲线,计算 $\oint_L \frac{xdy-ydx}{x^2+y^2}$,其中L取逆时针方向.

3. 设曲线积分 $\int_{L} [f(x) - e^{x}] \sin y \, dx - f(x) \cos y \, dy$ 与路径无关,其中 f(x) 具有一阶连续导数,且 f(0) = 0,求 f(x).

四. $(7\, eta)$ 设 Ω : $z \ge \sqrt{x^2 + y^2}$, $z \le \sqrt{R^2 - x^2 - y^2}$, f(x, y, z) 在 Ω 上连续,将三重积分 $\iint_{\Omega} f(x, y, z) dv$ 分别化为直角坐标系、柱面坐标系、球面坐标系下的三次积分.

五. (共3小题,每小题5分,共15分)

1. 求
$$\iint_D \arctan \frac{y}{x} dx dy$$
,其中 D 是第一象限内,边界曲线是 $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, $y = x, y = 0$ 的闭区域.

2. 计算
$$\oint_L \frac{\ln(x^2+y^2)dx+e^{y^2}dy}{x^2+y^2+2x}$$
, 其中 L 为圆周 $x^2+y^2+2x=1$ 取逆时针方向.

3. 计算
$$\iint_D x [1 + xyf(x^2 + y^2)] dx dy$$
, 其中 D 是由 $y = x^3$, $y = 1$, $x = -1$ 所围成的区域, f 为连续函数.

六. (共3小题,每小题5分,共15分)

1. 计算
$$\iint_{\Sigma} xyzdxdy$$
, 其中为球面 $x^2 + y^2 + z^2 = 1$ 的外侧, 在 $x \ge 0$, $y \ge 0$ 的部分.

2. 设有速度场 $\overrightarrow{v} = (x^3 + a) \overrightarrow{i} + (y^3 + a) \overrightarrow{j} + (z^3 + a) \overrightarrow{k}$, 求 \overrightarrow{v} 通过上半球面 Σ : $z = \sqrt{R^2 - x^2 - y^2} \quad (R > 0)$ 上侧的流量 Φ .

3. 设曲线积分 $\int_L xy^2 dx + \varphi(x)y dy$ 与路径无关,其中 $\varphi(x)$ 有连续的导数,且 $\varphi(0)=0$,计算 $\int_{(0,0)}^{(1,1)} xy^2 dx + \varphi(x)y dy$.