Applying Different Preprocessing Technique To Enhance Accuracy of Prediction.

Machine Learning

Project

Machine Learning Project

ID	Name	Grade
20210520	عبدالرحمن عمرو محمد محمد	
20211057	يوسف احمد عبدالرؤف احمد	
20211061	يوسف احمد محمود علي علي	
20211036	هنا محمد مصطفي	
20211077	يوسف صلاح يوسف	
20210322	رحاب ابراهيم علي	

Datasets:

Image :

https://www.kaggle.com/datasets/moltean/fruits

Numerical:

https://www.kaggle.com/competitions/house-prices-

advanced-regression-techniques

Numerical House Price Prediction

Name	House Price Prediction
Target	SalePrice
No. Samples	1460
No. Training	1168
No.Testing	292

After Applying Preprocessing Techniques (Handling Missing Values- Handling Outliers -Scaling - Encoding Categorical)
Here is The List of Features we use:

LotFrontage, LotArea, LotShape, Neighborhood, OverallQual, YearBuilt, YearRemodAdd, MasVnrType, MasVnrArea, ExterQual, Foundation, BsmtQual, BsmtExposure, BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, HeatingQC, CentralAir, Electrical, 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea, BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, KitchenAbvGr, KitchenQual, TotRmsAbvGrd, Fireplaces, GarageType, GarageYrBlt, GarageFinish, GarageCars, GarageArea, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolArea, MiscVal, SaleCondition

After Applying KNN and Linear Regression as a Regressor:

We found that Linear Regression tends to perform better than KNN in term of Accuracy of Prediction:

Knn accuracy: 84.09%

Linear Regression : 90.25%

As we can see in the given plots

In KNN we try to apply some sort of hyperparameter Tuning using cross validation to obtain the best value of k

*We use the whole dataset

Here is what we got:

The Best value of k is 6 which increase the accuracy of knn from 80% (k=3) to 84% (k=6)

Image

Fruits-360

Name	Fruits-360
Target	Classify Each fruit

*The dataset include (131) classes

Here is the 5 classes we use:

Training Set Fruit Counts: Apple Braeburn: 492 images

Banana: 490 images Strawberry: 492 images Pineapple: 490 images Mango: 490 images

Testing Set Fruit Counts:
Apple Braeburn: 164 images

Banana: 166 images Strawberry: 164 images Pineapple: 166 images

Mango: 166 images

The preprocessing Technique we use :

Applying grayscale

*It helps in simplifying algorithms and as well eliminates the complexities related to computational requirements.

Resizing The Image (64,64)

Applying HOG As a feature Extractor for The images

Logistic Regression :

We use Logistic Regression as a classifier With technique OVR and Maxt_iteration=1000

Here is the result:

Accuracy = 96.85%

*We Notice that if we pass the images to the model without applying HOG The accuracy decreases slightly to 92.37%

Here is some Random Samples :

K-Mean:

We use K-mean for Clustering

*we apply it on the whole 5 classes we use

*No. Clusters = 5

Here is an image for each cluster :

(HOG Feature Extracted)

- The dataset we use contain images with their labels
- We think that there is no need to apply clustering in that situation if we want to classify them using the provided labels