Maximum Class Separation as Inductive Bias in One Matrix

Tejaswi Kasarla, Gertjan J. Burghouts, Max van Spengler, Elise van der Pol , Rita Cucchiara, Pascal Mettes

전북대학교 IT정보공학과 202018392 박나현

Inductive bias

- Inductive bias
 - 문제를 더 잘 풀기위해 설계한 가정
 - Separation
 - SVM (margin 최대화), 알고리즘
 - 딥러닝에서 optimization
 - class 분리 위해 설계에 통합되어 unseen data 에 대한 분류 세팅 일반화 향상

- simple alternative
 - Encoding maximum separation
 as an inductive bias in the network
 by adding one fixed matrix multiplication
 before computing the softmax activation
 - Optimization 대신 closed-form으로 해결
 - Closed-form: an equation which can be solved in terms of functions and mathematical operations.

Definition 1. (Maximally separated matrix) For k+1 classes, let $P_k = [p_0, \ldots, p_k]$ denote a matrix of k+1 column vectors $\{p_i\}_{i=0}^k \subset \mathbb{S}^{k-1}$, such that $\forall_{i,j,k,i\neq j,j\neq k} \langle p_i,p_j \rangle = \langle p_i,p_k \rangle$ and $\sum_{i=0}^k p_i = 0$.

- 두가지 조건 전제 하에 모든 class vector 들이 서로 멀리 떨어짐 보장
 - 어떤 두 class vector 사이의 각도는 동일
 - 모든 class vector 의 평균은 원점

- Definition 1
 - k output 차원 사용 시, k+1 class가 최적으로 분리
 - Embedding 구성위해 pair-wise angular similarity 개념 필요

Cosine similarity

- k+1 class 의 최적 separation은 전체 공간을 사용한다고 생각 가능
 - 직교 분리만을 제공하는 one-hot encoding 과는 다르게 직교성을 넘어 클래스가 분리
- 재귀적으로 P_k 구성 가능

(a) Recursive update from 2 to 3 classes.

(b) Recursive update from 3 to 4 classes.

Theorem 1. For any $k \geq 1$, P_k is a maximally separated matrix.

- 단일 행렬 곱셈으로 network 출력 증가
- Maximum separation 위한 학습 불필요

- Classification and long-tailed recognition
 - Classification with maximum separation

	CIFAR-100				CIFAR-10					
	-	0.2	0.1	0.02	0.01	-	0.2	0.1	0.02	0.01
ConvNet	56.70	45.97	40.34	27.35	16.59	86.68	79.47	73.90	51.40	43.67
+ This paper	57.05	46.59	40.44	28.27	18.40	86.76	79.63	75.88	55.25	48.05
	+0.35	+0.62	+0.10	+0.92	+1.81	+0.08	+0.16	+1.98	+3.85	+4.38
ResNet-32	75.77	65.74	58.98	42.71	35.02	94.63	88.17	83.10	68.64	56.98
+ This paper	76.54	66.01	60.54	45.12	38.85	95.09	91.42	88.16	77.02	69.70
	+0.77	+0.27	+1.56	+2.41	+3.83	+0.46	+3.25	+5.06	+8.38	+12.72

- Classification and long-tailed recognition
 - Should maximum separation be a fixed inductive bias?

- Classification and long-tailed recognition
 - Enriching long-tailed recognition approaches
 - LDAM : 기존의 cross-entrophy loss 대신하는 label-distribution-aware margin loss를 사용한 방식
 - MiSLAS: label-aware smoothing과 shifted batch nomalization을 이용한 방식

	Imb	alance fa	ictor		Imbalance factor		
	0.1	0.02	0.01		0.1	0.02	0.01
LDAM-SGD	55.05	43.85	39.87	MiSLAS (stage 1)	58.36	44.69	40.29
+ This paper	57.72	45.14	42.02	+ This paper	59.63	45.65	40.56
	+2.67	+1.29	+2.20		+1.27	+0.96	+0.27
LDAM-DRW	57.45	47.56	42.37	MiSLAS (stage 2)	61.93	52.53	48.00
+ This paper	58.37	48.02	43.19	+ This paper	63.52	53.36	48.42
	+0.92	+0.46	+0.82		+1.59	+0.83	+0.42

- Classification and long-tailed recognition
 - ImageNet experiments
 - ImageNet: large-scale dataset (1000개 class, 백만 개 넘는 데이터)

	Resnet-50					Resnet-152			
	top 1		top 5		top 1		top 5		
	Base	+ Ours	Base	+ Ours	Base	+ Ours	Base	+ Ours	
Imagenet	73.2	74.8	92.4	94.9	77.9	78.5	94.3	95.1	
Imagenet-LT	43.8	47.3	70.4	73.6	48.3	49.7	73.9	74.8	

- Out-of-distribution detection and open-set-recognition
 - Out-of-distribution with maximum separation
 - out-of-distribution : 학습 데이터의 분포와는 다른 분포를 갖는 데이터, 학습데이터에 포함되지 않은 class를 가진 데이터 의미

	Metric	w/o m	aximum sepa	ration	w/ maximum separation		
		FPR95↓	AUROC ↑	AUPR ↑	FPR95↓	AUROC ↑	AUPR ↑
SVHN	Softmax Score	84.00	71.40	92.87	83.04	75.58	94.59
	Energy Score	85.76	73.94	93.91	78.86	85.42	96.92
	Mahalanobis	44.02	90.48	97.83	35.88	91.45	97.93
Places 365	Softmax Score	82.86	73.46	93.14	83.08	73.53	93.54
	Energy Score	80.87	75.17	93.40	81.36	76.01	93.64
	Mahalanobis	88.83	67.87	90.71	89.16	69.33	91.49

(a) SVHN as OOD.

(b) Places 365 as OOD.

- Out-of-distribution detection and open-set-recognition
 - Open-set recognition with maximum separation
 - Open-set recognition : 모델이 학습할 때 없었던 클래스가 test시 나타나 학습 클래스 중 하나가 아닌 unknown 으로 분류가 가능한 알고리즘

	SVHN	CIFAR10	CIFAR + 10	CIFAR + 50
MSP+	95.94	90.10	94.48	93.58
+ This paper	96.22	91.05	95.57	94.31
	+0.28	+0.95	+1.09	+0.73
MLS	97.10	93.82	97.94	96.48
+ This paper	97.58	95.30	98.33	96.74
	+0.48	+1.48	+0.39	+0.26

Conclusions

- Deep network 에 class 최대로 분리하는 inductive bias 포함하도록 노력
 - Separation 은 optimization 문제가 아니고 closed-form 으로 해결 가능
- Fixed matrix 가 분류에서 효과적이고 광범위하게 적용가능하고 사용 편리
- Limitation
 - Supervised setting에 적용되며 class 벡터 간의 관계 정보를 요구하는 설정에는 일반화 불가

Thank you