Multiple Choice Questions: Matrices and Determinants

Exercise 3.3 (Class 11 Mathematics)

Prepared by ExpertGuy

MCQs

- **1.** Evaluate the determinant $\begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 0
- **2.** Without expansion, show that $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{vmatrix}$ equals:
 - (a) 0
 - (b) 1
 - (c) 6
 - (d) 9
- 3. If $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$, what is a possible relation among a, b, c?
 - (a) a + b + c = 0
 - **(b)** a = b = c
 - (c) $a^2 + b^2 + c^2 = 0$
 - (d) No relation exists
- 4. The determinant $\begin{vmatrix} a+l & a & a \\ a & a+l & a \\ a & a & a+l \end{vmatrix}$ equals:
 - (a) $l^2(3a+l)$
 - **(b)** $l^3(3a+l)$
 - (c) $a^2(3l+a)$
 - (d) $a^3(3l+a)$
- **5.** For a 3x3 matrix A, if |kA| = 27|A|, what is the value of k^3 ?

- (a) 9
- (b) 27
- (c) 3
- (d) 81
- **6.** The determinant $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & zx & xy \end{vmatrix}$ is equal to:
 - (a) (x-y)(y-z)(z-x)
 - **(b)** (x+y)(y+z)(z+x)
 - (c) (x-y)(y-z)(z-x)/xyz
 - (d) (x+y+z)(x-y)(y-z)
- **7.** If A is a singular matrix, what is |A|?
 - (a) 0
 - (b) 1
 - (c) -1
 - (d) Any real number
- **8.** Find λ such that $\begin{vmatrix} 1 & \lambda & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 0$.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 9. The determinant $\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$ equals:
 - (a) *abc*
 - **(b)** 2*abc*
 - (c) 3abc
 - (d) 4abc
- **10.** For matrices A and B, if $(AB)^{-1}$ exists, it equals:
 - (a) $A^{-1}B^{-1}$
 - **(b)** $B^{-1}A^{-1}$
 - (c) AB^{-1}
 - (d) BA^{-1}

- 11. The determinant $\begin{vmatrix} a & b+c & a+b \\ b & c+a & b+c \\ c & a+b & c+a \end{vmatrix}$ equals:
 - (a) $a^3 + b^3 + c^3$
 - **(b)** $a^3 + b^3 + c^3 3abc$
 - (c) $a^3 + b^3 + c^3 + 3abc$
 - (d) $a^3 + b^3 + c^3 abc$
- **12.** If $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, what is |A|?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- **13.** The determinant $\begin{vmatrix} r\cos\phi & 1 & -\sin\phi \\ 0 & 1 & 0 \\ r\sin\phi & 0 & \cos\phi \end{vmatrix}$ equals:
 - (a) r
 - (b) r^2
 - (c) $\cos \phi$
 - (d) $\sin \phi$
- **14.** If $A^t A = 0$, what can be said about *A*?
 - (a) A is non-singular
 - (b) A is singular
 - (c) A is symmetric
 - (d) A is invertible
- **15.** The determinant $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$ equals:
 - (a) (a-b)(b-c)(c-a)
 - **(b)** (a+b)(b+c)(c+a)
 - (c) (a-b)(b-c)(c-a)/abc
 - (d) (a+b+c)(a-b)(b-c)
- **16.** For a matrix A, if $(A^{-1})^t = (A^t)^{-1}$, this property holds for:
 - (a) Only 2x2 matrices
 - (b) Only singular matrices
 - (c) All square matrices

(d) Only non-singular matrices

- **17.** The determinant $\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix}$ equals:
 - (a) $\lambda^2(a+b+c+\lambda)$
 - **(b)** $\lambda^{3}(a+b+c+\lambda)$
 - (c) $\lambda(a+b+c+\lambda)$
 - (d) $\lambda^2(a+b+c)$
- **18.** If *A* is a 3x3 matrix and |A| = 4, what is |2A|?
 - (a) 8
 - (b) 16
 - (c) 32
 - (d) 64
- **19.** The determinant $\begin{vmatrix} b & -1 & a \\ a & b & 0 \\ 1 & a & b \end{vmatrix}$ equals:
 - (a) $a^3 + b^3$
 - **(b)** $a^3 b^3$
 - (c) $a^2 + b^2$
 - (d) $a^2 b^2$
- **20.** If A and B are non-singular, then $(A^{-1})^{-1}$ equals:
 - (a) A
 - (b) A^{-1}
 - (c) B
 - (d) B^{-1}

Answers and Explanations

1. Answer: b

Expand by third column: $1 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1 \cdot (2 - 1) = 1 \cdot 1 = 1$. Incorrect options miscalculate or assume zero.

2. Answer: a

Rows are proportional ($R_2 = 2R_1$, $R_3 = 3R_1$), so determinant is zero. Other options assume non-zero values.

3. Answer: a

Determinant is zero if a + b + c = 0 (sum of rows equals zero vector). Other options do not satisfy.

4. Answer: a

As per PDF Q3(iii), $\begin{vmatrix} a+l & a & a \\ a & a+l & a \\ a & a & a+l \end{vmatrix} = l^2(3a+l)$. Others are incorrect simplifications.

5. Answer: b

For 3x3 matrix, $|kA|=k^3|A|$. Given |kA|=27|A|, $k^3=27$. Other options miscalculate k.

6. Answer: a

As per PDF Q3(iv), equals $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x-y)(y-z)(z-x)$. Others are incorrect.

7. Answer: a

Singular matrix has |A| = 0. Other options apply to non-singular matrices.

8. Answer: c

Set determinant to zero: $1(3 \cdot 1 - 2 \cdot 1) - \lambda(2 \cdot 1 - 3 \cdot 1) + 2(2 \cdot 2 - 3 \cdot 3) = 1 - \lambda(-1) + 2(-5) = 0 \implies \lambda = 3$.

9. Answer: d

As per PDF Q3(v), determinant equals 4abc. Other options are incorrect reductions.

10. Answer: b

As per PDF Q17(i), $(AB)^{-1} = B^{-1}A^{-1}$. Other options reverse order or misapply.

11. Answer: b

As per PDF Q3(viii), equals $a^3 + b^3 + c^3 - 3abc$. Others include incorrect terms.

12. Answer: a

 $|A|=2\cdot 1-1\cdot 1=2-1=1.$ Others miscalculate.

13. Answer: a

As per PDF Q3(vii), equals $r(\cos^2 \phi + \sin^2 \phi) = r$. Others are incorrect.

14. Answer: b

If $A^tA=0$, $|A^tA|=|A|^2=0 \implies |A|=0$, so A is singular. Others are false.

15. Answer: a

As per PDF Q3(x), equals (a-b)(b-c)(c-a). Others include incorrect factors.

16. Answer: c

As per PDF Q16, $(A^{-1})^t=(A^t)^{-1}$ holds for all square matrices. Others are too restrictive.

17. Answer: a

As per PDF Q3(ix), equals $\lambda^2(a+b+c+\lambda)$. Others misapply λ terms.

18. Answer: d

For 3x3 matrix, $|2A| = 2^3 |A| = 8 \cdot 4 = 64$. Others miscalculate scalar factor.

19. Answer: a

As per PDF Q3(vi), equals $a^3 + b^3$. Others are incorrect identities.

20. Answer: a

As per PDF Q17(ii), $(A^{-1})^{-1} = A$. Others misapply inverse properties.