Answers

Tutorial 1

Q1

(i) It is not complete in mathematics to include real numbers only. Some mathematical problems cannot be solved by using real numbers only. Complex numbers are needed to solve them.

(ii)

	Modulus	Argument	Complex conjugates
-j	1	- π/2	j
-3	3	π	-3
1 + j	$\sqrt{2}$	$\pi/4$	1 - j
$\cos \theta + j \sin \theta$	1	θ	$\cos \theta - j \sin \theta$

 $\mathbf{Q2}$

(a)
$$\frac{9}{41} + \frac{40}{41}j$$

(b)
$$\frac{2}{13} - \frac{3}{13}j$$

(d)
$$\frac{x}{x^2+y^2} + \frac{y}{x^2+y^2}j$$

Q3

(i)

$$z_1 = \frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}$$
$$z_1^2 = -j$$

(ii)

$$z_2 = \sqrt{3} \angle arctg(-\sqrt{2})$$

$$z_2^2 = 3 \angle arctg(2\sqrt{2})$$

(iii)

$$\frac{z_1}{z_2} = \left(\frac{1}{3} + \frac{\sqrt{2}}{6}\right) + j\left(\frac{1}{3} - \frac{\sqrt{2}}{6}\right)$$

Tutorial 2

Q1

(a)

$$\frac{dy}{dx} = 6x$$

At
$$x = 3$$
, $\frac{dy}{dx} = 18$

(b)

(i)

$$\frac{dy}{dx} = 2xsec^2(x^2 + 1)$$

(ii)

$$\frac{dy}{dx} = 8xsec^2(2x^2 - 1)\tan(2x^2 - 1)$$

(iii)

$$\frac{dy}{dx} = \frac{e^x - \sin x}{e^x + \cos x}$$

Q2

(a)

$$\frac{dy}{dt} = -e^{-t} + e^t$$

At t = 5,

$$\frac{dy}{dt} = -e^{-5} + e^5$$

(b)

At
$$t = 0, y' = 0$$
. : (0,0)

Q3

$$\frac{dy}{dx} = -sinxcos(cosx)$$

$$\frac{dg}{dx} = e^x [\sin(\cos x) - \sin x \cos(\cos x)]$$

Tutorial 3

Q1

- (a) $e^2 + 1$
- (b) 12.78
- (c) $2e^{tanx} + 2c$

Q2

- (a) $\frac{3}{2}sin2x + C$. This is the required general solution.
- (b) $y = \ln(x^3 + e)$
- (c) $y = xtan(\ln|Dx|)$

Q3

- (a)
- (i) $-\sin 2x$
- (ii) $\frac{1}{8} \sin 8x$
- (b) The amplitude is $2\sqrt{7}$, the frequency is $\frac{3}{2\pi}$ Hz, and the phase is 1.2373.