

Názov cvičenia:

Overovanie I. a II. Kirchhoffovho zákona

Ciel': verifikácia I. a II. Kirchhoffovho zákona výpočtom a meraním, naučiť techniku zapájania analógových alebo digitálnych meracích prístrojov do jednoduchého elektrického obvodu

Úlohy:

- **Vypočítajte** úbytky napätia na rezistoroch (sériové radenie), prúdy v jednotlivých vetvách (paralelné radenie) a výsledky zapíšte do tabuľky
- ➤ **Odmerajte** úbytky napätia na rezistoroch (sériové radenie), prúdy v jednotlivých vetvách (paralelné radenie) a výsledky zapíšte do tabuľky
- Porovnajte vypočítané a odmerané hodnoty

Schéma zapojenia: Do schém zapojenia doplňte použité prístroje

Tri rezistory sú zapojené

Tri rezistory sú zapojené

Použité prístroje:

V – voltmetre :

A – ampérmetre :

Jednosmerný zdroj typ

SPŠE

Karola Adlera č. 5, 841 02 Bratislava

PL 06/1 šk. rok: 2020/2021

Prípojné vodiče

Použité rezistory:

$$\mathbf{R}_1 = \dots \quad \Omega$$
, $\mathbf{P}_{\text{max}} = \dots \quad \mathbf{W}$, $\mathbf{I}_{\text{max}} = \dots \quad \mathbf{m}\mathbf{A}$

$$\mathbf{R}_2 = \dots \quad \Omega$$
, $\mathbf{P}_{\text{max}} = \dots \quad \mathbf{W}$, $\mathbf{I}_{\text{max}} = \dots \quad \mathbf{m}\mathbf{A}$

$$\mathbf{R}_3 = \dots \qquad \Omega$$
, $\mathbf{P}_{\text{max}} = \dots \qquad \mathbf{W}$, $\mathbf{I}_{\text{max}} = \dots \qquad \mathbf{m} \mathbf{A}$

Tabuľky nameraných a vypočítaných hodnôt:

	Vypočítané	Odmerané
I (mA)		
U (V)		
U ₁ (V)		
U ₂ (V)		
U ₃ (V)		
U ₁ + U ₂ + U ₃ -U		
$\mathbf{R}_{1}\left(\Omega\right)$		
$\mathbf{R}_{2}\left(\Omega\right)$		
$\mathbf{R}_{3}\left(\Omega\right)$		
$\mathbf{R}\left(\Omega\right)$		

	Vypočítané	Odmerané
U(V)		
I (mA)		
I ₁ (mA)		
I ₂ (mA)		
I ₃ (mA)		
I ₁ +I ₂ + I ₃ - I		
$\mathbf{R}_{1}\left(\Omega\right)$		
$\mathbf{R}_{2}\left(\Omega\right)$		
$\mathbf{R}_{3}\left(\Omega\right)$		
$\mathbf{R}\left(\Omega\right)$		

Vzorce: dosaďte konkrétne hodnoty

$$I_{max} = \sqrt{\frac{P_{max}}{R}} =$$

PreKirchhoffov zákon

$$I_1 = \frac{U}{R_1} =$$

$$I_2 = \frac{U}{R_2} = I_3 = \frac{U}{R_3} = \frac{U}$$

$$I = I_1 + I_2 + I_3 =$$

$$R = \frac{U}{I} =$$

S P Š E Karola Adlera č. 5, 841 02 Bratislava

PL 06/1 šk. rok: 2020/2021

 $\frac{1}{R} =$

+

+ =

PreKirchhoffov zákon

$$U_1 = I \cdot R_1 =$$

$$U_2 = I \cdot R_2 =$$

$$U_3 = I \cdot R_3 =$$

$$U = U_1 + U_2 + U_3 =$$

$$R = \frac{U}{I} =$$

R =

⊦

+

Postup pri meraní:	
--------------------	--

Vyhodnotenie:

- I. Kirchhoffov zákon nám hovorí o delení
- II. Kirchhoffov zákon nám hovorí o delení

Nakreslite dva rezistory zapojené do série, vyznačte všetky obvodové veličiny a do schémy vyznačte spoločný parameter pre tento obvod

Nakreslite dva rezistory zapojené paralelne, vyznačte všetky obvodové veličiny a do schémy vyznačte spoločný parameter pre tento obvod

S P Š E Karola Adlera č. 5, 841 02 Bratislava

PL 06/1 šk. rok: 2020/2021

Napíšte dva príklady využitia v praxi do série zapojené spotrebiče a uveďte nevýhody tohto zapojenia: 1.
2
Napíšte dva príklady využitia v praxi paralelne zapojené spotrebiče a uveďte výhody tohto zapojenia: 1. 2.
Podiskutujte o výsledkoch merania a výpočtoch, ak výsledky nevyšli rovnaké, uveďte dôvody a spôsoby ich riešenia
Zhodnotenie práce na hodine ZER:
Stručne zhodnoť te svoju aktívnu prácu na danej hodine, čím konkrétnym ste prispeli k výsledku merania a jeho vyhodnoteniu
Svoju aktívnu prácu na hodine sám klasifikujem známkou: