Solutions to HW1 of Math 103A, Fall 2018

P.8 Q11

$$(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c).$$

Q12

- (a) defines a function which is neither one-to-one nor onto.
- (b) defines a function which is neither one-to-one nor onto.
- (c) does not define a function.
- (d) defines a function that is one-to-one and onto.
- (e) defines a function that is neither one-to-one nor onto.
- (f) does not define a function.

Q14

- (a) Define $f_1:[0,1]\to[0,2], f_1(x)=2x$.
- (b) Define $f_2: [1,3] \to [5,25], f_2(x) = 10x 5$.
- (c) Define $f_3:[a,b]\to[c,d],$

$$f_3(x) = c + \frac{d-c}{b-a}(x-a).$$

Of course there are some other choices for the bijections. Here we only used affine functions.

Q16

- (a) $\mathscr{P}(\emptyset) = \{\emptyset\} \text{ and } |\mathscr{P}(\emptyset)| = 1.$
- (b) $\mathscr{P}(\{a\}) = \{\emptyset, \{a\}\}, |\mathscr{P}(\{a\})| = 2.$
- (c) $\mathscr{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}, |\mathscr{P}(\{a,b\})| = 4.$
- $(\mathrm{d}) \ \mathscr{P}(\{a,b,c\}) = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\}\},|\mathscr{P}(\{a,b,c\})| = 8.$

Q17 We conjecture that

$$|\mathscr{P}(A)| = 2^s$$
.

For every subset of A, an element of A can either be in this subset or not. So the cardinality is 2^s . To be more explicit, suppose $A = \{a_1, \dots, a_s\}$ and we can construct a map f from $\mathscr{P}(A)$ to $\{0,1\}^s$ which means the s products of $\{0,1\}$ by letting the i'th component of f(S) be 1 if $a_i \in S$ and be 0 otherwise. One can easily see that f is a bijection. Thus

$$|\mathscr{P}(A)| = |\{0,1\}^s| = 2^s.$$

Q19

Suppose we have an injective $f: A \to \mathcal{P}(A)$. We can show that f cannot be onto. Define

$$S = \bigcup_{x \in A, x \notin f(x)} \{x\}.$$

If there is $y \in A$ such that f(y) = S, then either $y \in S$ or $y \notin S$. If $y \notin S$, then by the definition of S, $y \notin S = f(y)$ and thus $y \in S$, which is a contradiction. But if $y \in S$, then y is one of the elements that lie outside their image which means $y \notin f(y) = S$, which is a contradiction. Therefore, S is not in the range of f and f cannot be onto. Thus the cardinality of $\mathscr{P}(A)$ is always strictly greater than that of A.

If we do have a set S of everything, then $\mathscr{P}(S)$ is of greater cardinality and this cannot happen. Note that the argument above is just a variation of the standard proof of Russell's paradox.

Q30 \mathscr{R} is not an equivalence relation for it is not symmetric. For example, if we put x = 3, y = 1, then $x\mathscr{R}y$ but y < x so we do not have $y\mathscr{R}x$.

Q31 \mathcal{R} is an equivalence relation.

 $x\mathscr{R}x$ as |x|=|x|.

If $x\mathcal{R}y$, then |x| = |y|, |y| = |x| and thus $y\mathcal{R}x$.

If $x\mathcal{R}y, y\mathcal{R}z$, then |x| = |y|, |y| = |z|, then |x| = |z| and $x\mathcal{R}z$.

Q32 \mathscr{R} is not an equivalence relation for it is not transitive. Consider x=0,y=3,z=6. $|x-y|\leq 3, |y-z|\leq 3$ and hence $x\mathscr{R}y,y\mathscr{R}z$. But |x-z|=6>3 and we do not have $x\mathscr{R}z$.