Instructor: Dušan Djukić Date: 21.2.2022.

- 1. Find all primes p, q such that $p^2 pq q^3 = 1$. What if we do not require q to be prime?
- 2. A triple of positive integers (a, b, c) is lame if $c^2 + 1$ divides $(a^2 + 1)(b^2 + 1)$, but not $a^2 + 1$ and $b^2 + 1$. Given c, if there is a lame triple (a, b, c), prove that there is a lame triple in which $ab < c^3$.
- 3. The sequence (a_n) is defined by $a_1 = 1$, $a_2 = 2$ and $a_{n+2} = a_n(a_{n+1} + 1)$ for all $n \ge 1$. Prove that a_{a_n} is divisible by a_n^n for every $n \ge 100$.
- 4. A function $f: \mathbb{N} \to \mathbb{N}$ is such that $f(f(n)) = \tau(n)$, i.e. the number of divisors of n. Prove that if p is prime, then f(p) is prime.
- 5. Prove that there are infinitely many positive integers n such that $\lfloor \tau(n)\sqrt{3} \rfloor$ divides n.
- 6. Suppose that $1 \leq a_1, a_2, \ldots, a_n \leq 2n$ are integers such that $lcm(a_i, a_j) > 2n$ whenever i < j. Prove that $a_1 a_2 \cdots a_n$ divides $(n+1)(n+2) \cdots (2n)$.
- 7. If a positive integer n > 20 is not squarefree, prove that there exist positive integers a, b, c such that ab + bc + ca = n.
- 8. There are $n \ge 3$ integers on the board with the GCD equal to 1. In each step we are allowed to increase or decrease one of the numbers by a multiple of another number. Find the smallest k for which it is always possible to obtain number 1 by a sequence of k such steps.

Instructor: Dušan Djukić Date: 23.2.2022.

- 9. Rational numbers x, y satisfy $x^5 + y^5 = 2x^2y^2$. Prove that 1 xy is a square of a rational number. Are there infinitely many such pairs (x, y)?
- 10. Find all pairs of integers (m, n) such that $m^6 = n^{n+1} + n 1$.
- 11. Coprime positive integers a, b, c are such that $a+b-c \mid a^2+b^2-c^2, b+c-a \mid b^2+c^2-a^2$ and $c+a-b \mid c^2+a^2-b^2$. Prove that (a+b-c)(b+c-a)(c+a-b) is either a square or two times a square.
- 12. Positive integers a, b, c, d are such that a + b = c + d = ab cd. Can both ab and cd be perfect squares?
- 13. Given positive integers a, b, for a prime p not dividing any of $a, b, a \pm b$ define f(a, b) to be the number of integers x with $1 \le x \le p-1$ for which either both ax and bx leave remainders $< \frac{p}{2}$ upon division by p, or both leave remainders $> \frac{p}{2}$. Prove that for p sufficiently large and any a, b we have $\frac{p-1}{3} \le f(a, b) \le \frac{2(p-1)}{3}$.
- 14. (a) What is the largest n for which there exist 2n positive integers $a_1, \ldots, a_n, b_1, \ldots, b_n$ that satisfy $a_i b_j a_j b_i = 1$ whenever i < j?
 - (b) Same question if $1 \leq a_i b_j a_j b_i \leq 2$ whenever i < j.
- 15. If $a_1, a_2, ..., a_n \in \mathbb{N}$ are pairwise distinct, prove that $\sum_{k=1}^n \frac{1}{[a_1, ..., a_k]} < 4$. Can we improve the upper bound to 3? Or to 2?

Instructor: Dušan Djukić Date: 24.2.2022.

- 16. Let x > 1 be an integer. We are given the list of numbers $1, x + 1, 2x + 1, 3x + 1, \dots, x^{99} + 1$. In each step we erase the rightmost number existing on the board, along with all its divisors. Which number will be last deleted?
- 17. Suppose that p and $\frac{p-1}{2}$ are primes, and a,b,c integers not divisible by p. Prove that there are at most $\lceil \sqrt{2p} \rceil$ exponents n with $1 \le n \le p-1$ for which $p \mid a^n + b^n + c^n$.
- 18. We perform a sequence of operations of the following types: If the number is even, we divide it by 2, and if it is odd, we multiply it by some power of 3 (which we may choose, but it must be > 1) and add 1. Prove that, starting from any number, we can reach number 1 in finitely many such operations.
- 19. Given a squarefree integer n > 2, evaluate the sum $\sum_{k=1}^{n^2} \lfloor \sqrt[3]{kn} \rfloor$.
- 20. Let a, b, c be pairwise coprime positive integers. Denote by g(a, b, c) the largest integer not representable in the form xa + yb + zc for some $x, y, z \in \mathbb{N}$. Prove that $g(a, b, c) \geqslant \sqrt{2abc}$.

Instructor: Dušan Djukić Date: 25.2.2022.

- 18. We perform a sequence of operations of the following types: If the number is even, we divide it by 2, and if it is odd, we multiply it by some power of 3 (which we may choose, but it must be > 1) and add 1. Prove that, starting from any number, we can reach number 1 in finitely many such operations.
- 21. Find all triples of nonnegative integers a, b, c satisfying $a^2 + b^2 + c^2 = abc + 1$.
- 22. Positive integers x and y < x are such that $x^2 + y^2 2$ is divisible by $x^2 y^2$. Prove that $x^2 + y^2 2$ and $x^2 y^2$ have the same sets of prime divisors.

Instructor: Dušan Djukić Date: 26.2.2022.

- 23. Find all positive integers that can be written as $\frac{x^2+y}{xy+1}$ with $x,y\in\mathbb{N}$ in at least two ways.
- 24. Let a, b, c be positive integers. If (ab+1)(bc+1)(ca+1) is a perfect square, prove that each of the factors ab+1, bc+1, ca+1 is itself a square.
- 25. Determine all functions $f: \mathbb{N} \to \mathbb{N}$ such that $a^2 + f(a)f(b)$ is divisible by f(a) + b for all $a, b \in \mathbb{N}$.
- 26. Find all surjective functions $f: \mathbb{N} \to \mathbb{N}$ such that, for every $m, n \in \mathbb{N}$, f(m) + f(n) and f(m+n) have the same set of prime divisors.
- 27. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that $(m^2 + n)^2$ is divisible by $f(m)^2 + f(n)$ for all $m, n \in \mathbb{N}$.
- 28. Determine all $f: \mathbb{N} \to \mathbb{N}$ such that $f(m) \ge m$ and $f(m+n) \mid f(m) + f(n)$ for all $m, n \in \mathbb{N}$.

Instructor: Dušan Djukić Date: 28.2.2022.

- 29. Find all functions $f: \mathbb{N} \to \mathbb{N}$ with the property that f(m) + f(n) + 2mn is a perfect square for all $m, n \in \mathbb{N}$.
- 30. A sequence of positive integers a_1, a_2, \ldots is such that $n \leq a_n \leq n + 2021$ for all n and $gcd(a_m, a_n) = 1$ whenever gcd(m, n) = 1. If a prime p divides a_n , prove also $p \mid n$.
- 31. Prove that every integer can be uniquely written in the form $a_0 + a_1(-\frac{4}{3}) + a_2(-\frac{4}{3})^2 + \cdots + a_k(-\frac{4}{3})^k$ for some integers $k \ge 0$ and $a_0, a_1, \ldots, a_k \in \{0, 1, 2, 3\}$.

Solutions – group L4

Instructor: Dušan Djukić Feb.21-Mar.3, 2021

- 1. The discriminant of the given quadratic $p^2 q \cdot p (q^3 + 1)$ must be a square, so $d^2 = q^2 + 4(q^3 + 1)$. This leads to $(d+2)(d-2) = q^2(4q+1)$, but since only one of the factors $d \pm 2$ can be divisible by q, that one is a multiple of q^2 , while the other factor (which is less by at most 4) divides 4q + 1. It follows that $q^2 4 \le 4q + 1$ and hence $q \le 5$. Testing these values of q yields two solutions: (7,3) and (14,5).
- 2. If $c^2 + 1 = 2m$ is even, then m is odd, so m divides $(c + m)^2 + 1$, but 2m does not $(c + m)^2 + 1$ is enables us to take a = 1 and b = c + m; clearly, $ab = \frac{(c+1)^2}{2} < c^3$. Now let $c^2 + 1$ be odd. It must be composite, so let $c^2 + 1 = mn$, where m < c < n. We first choose a so that $a^2 + 1$ is divisible by m, but not by mn this can be done by simply taking a to be the remainder of c when divided by m, as then $a^2 + 1 < m^2 < mn$. It remains to choose b. The numbers $c^2 + 1$, $(n-c)^2 + 1$ and $(n+c)^2 + 1$ are all divisible by n, but not all are divisible by mn (else $mn \mid (n+c)^2 (n-c)^2 = 4cn$ and hence $mn \mid n$), so we can take b so that $b < 2n < c^2$. Then $ab < c^3$.
- 3. An easy induction yields $a_k = (a_{k-1} + 1)(a_{k-3} + 1) \cdots (a_{k-2i+1} + 1)a_{k-2i}$. We will show that $v_p(a_{a_n}) \ge nv_p(a_n)$ for every prime p.

It follows from the recurrence relation that the sequence $v_p(a_i), v_p(a_{i+2}), v_p(a_{i+4}), \ldots$ is nondecreasing. Moreover, if $p^k \mid a_i + 1$, then $p^k \mid a_{i+1}$ and $a_{i+2} = a_i(a_{i+1} + 1) \equiv -1 \pmod{p^k}$, which implies that the sequence $v_p(a_i + 1), v_p(a_{i+2} + 1), v_p(a_{i+4} + 1), \ldots$ is nondecreasing as well.

Now consider the largest ℓ for which $p \mid a_{n-2\ell}$. From $a_{n-2\ell} = a_{n-2\ell-2}(a_{n-2\ell-1}+1)$ it follows that $p \mid a_{n-2\ell-1}+1$, so $v_p(a_{n-2\ell-1}+1) \leqslant v_p(a_{n-2\ell+1}+1) \leqslant \ldots \leqslant v_p(a_{n-1}+1) \leqslant v_p(a_{n+1}+1) \leqslant \ldots$ So if $k = v_p(a_{n+1}+1)$, it follows that $v_p(a_n) \leqslant \ell k < \frac{1}{2}nk$.

On the other hand, a_n is inductively shown to have the same parity as n, so $a_{a_n} = a_n(a_{n+1}+1)(a_{n+3}+1)\cdots(a_{a_{n-1}}+1)$ and hence $v_p(a_{a_n}/a_n) \geqslant \frac{1}{2}(a_n-n)k$. It remains to show that $\frac{1}{2}(a_n-n)k \geqslant (n-1)\cdot \frac{1}{2}nk$, which reduces to $a_n \geqslant n^2$, and this holds by induction for $n \geqslant 6$.

4. Iterating one more f we obtain $f(\tau(n)) = f(f(f(n))) - \tau(f(n))$. Now setting n = p to be prime yields $\tau(f(p)) = f(\tau(p)) = f(2)$, so it is enough to prove that f(2) = 2. However, we have $\tau(f(2)) = f(\tau(2)) = f(2)$, so f(2) is either 1 or 2.

It remains to show that f(2) = 1 is impossible. Otherwise we would have f(p) = 1 for all p, so $f(1) = f(f(p)) = \tau(p) = 2$. On the other hand, then $1 = f(3) = f(\tau(25)) = \tau(f(25))$, so also f(25) = 1, contradicting f(f(25)) = 3.

- 5. Setting e.g. $\tau(n) = 8$ we find that n must be divisible by $\lfloor 8\sqrt{3} \rfloor = 13$, which is achievable by taking $n = 13p^3$ for any prime $p \neq 13$ (then indeed $\tau(n) = 8$).
- 6. Each of the numbers a_i has a multiple in the set $\{n+1,\ldots,2n\}$, but no two share this multiple (because lcm > 2n), so each number from n+1 to 2n has a unique divisor among the a_i . The statement immediately follows.
- 7. Since n = ab + bc + ca is equivalent to $n + a^2 = (a + b)(a + c)$, the problem reduces to finding a such that $n + a^2$ is a product of two integers greater than a.

Let $n = p^2 m$, where p is a prime. We first try taking a = p, so that $n + p^2 = (m+1)p^2$. This clearly works if m+1 > p, or if m+1 is composite $(m+1 = uv \Rightarrow n+p^2 = up \cdot vp)$.

It remains to deal with the case when $m+1=q \le p$ is a prime. Then $n=p^2q-p^2$, so we can take a to be the remainder of p modulo q: then $n+a^2=p^2q-(p^2-a^2)$ is divisible by q and greater than $n+a^2>n>pq$. This works unless q=p.

We are left with the case $n = p^2(p-1)$. Then a = 6 works if p > 3 (which corresponds to n > 20), because $n + a^2 = (p+3)(p^2 - 4p + 12)$.

8. We start with a lemma:

Lemma. If a, b, m are nonzero integers with (a, b) = 1, then there exists $k \in \mathbb{Z}$ such that (a + kb, m) = 1. \square

We claim that n steps always suffice. If $(a_1, \ldots, a_{n-1}) = 1$, then for some integers x_i we have $x_1a_1 + \cdots + x_{n-1}a_{n-1} = 1 - a_n$, so by adding the multiples x_ia_i to a_n we obtain 1 in n-1 steps. We proceed to the general case: $d=(a_{n-1},a_n)$ and $e=(a_1,\ldots,a_{n-2})$. Clearly, $(d,e)=(\frac{a_{n-1}}{d},\frac{a_n}{d})=1$, so by the Lemma there exists k such that $\frac{a_{n-1}+ka_n}{d}$ is coprime to e. Then we also have $(a_1,\ldots,a_{n-2},a_{n-1}+ka_n)=1$. As before, we need further n-1 steps to replace the number a_n by 1.

Let us prove that n-1 may not be enough. Suppose $p_1, \ldots, p_n > 2$ are different primes. By the Chinese remainder theorem there exist integers a_1, \ldots, a_n such that $a_i \equiv 0 \pmod{p_j}$ for $j \neq i$ and $a_i \equiv 2 \pmod{p_i}$. Suppose that we have applied n-1 steps. Then there exists i such that no multiple of a_i was ever added. Thus the given numbers did not change modulo p_i , so none of them could become 1.

- 9. If y = 0, then x = 0. Else $t = \frac{x}{y}$ yields $y = \frac{2t^2}{t^5 + 1}$, $x = \frac{2t^3}{t^5 + 1}$, so $\sqrt{1 xy} = \left| \frac{1 t^5}{1 + t^5} \right|$.
- 10. If $2 \mid n+1$ or $3 \mid n+1$, then $n^{n+1}+n-1$ falls between two consecutive squares or cubes and cannot be a sixth power. Now let n be even. Also, if $6 \mid n$, then $m^6 \equiv -1 \pmod 3$. It remains to check $n \equiv 4 \pmod 6$. Then $n+1 \mid m^6+3$ which is impossible, because -3 is not a quadratic residue modulo $n+1 \equiv 5 \pmod 6$.
- 11. Denote x = b + c a, y = c + a b and z = a + b c. Since 2a = y + z etc, the numbers x, y, z have GCD at most 2. In terms of x, y, z we have $x \mid b^2 + c^2 a^2 = \frac{1}{2}(x^2 + xy + xz yz)$, so $x \mid yz$; similarly, $y \mid zx$ and $z \mid xy$.

It suffices to prove that $v_p(x+y+z)$ is even for any odd prime p, so suppose $v_p(x)=k>0$. W.l.o.g. $v_p(z)=0$. Then from $x\mid 2yz$ we get $v_p(y)\geqslant k$, but $y\mid 2xz$ then implies $v_p(y)=k$, so $v_p(x+y+z)=2k$.

- 12. If ab and cd were of different parity, then a + b = c + d (= ab cd) would be odd, so both ab and cd would be even, a contradiction.
 - Hence ab and cd are squares of the same parity, so $ab = (x+y)^2$, $cd = (x-y)^2$ and a+b=c+d=4xy for some integers x>y>0. Since $(a-b)^2=(a+b)^2-4ab=4(4x^2y^2-(x+y)^2)$ and similarly $(c-d)^2=4(4x^2y^2-(x-y)^2)$, the product $(4x^2y^2-(x+y)^2)(4x^2y^2-(x-y)^2)=(4x^2y^2-x^2-y^2)^2-(2xy)^2$ is a square as well... although it lies strictly between $(4x^2y^2-x^2-y^2-1)^2$ and $(4x^2y^2-x^2-y^2)^2$.
- 13. By changing (a,b) to $(a \cdot b^{-1},1)$ modulo p and switching sign if needed this does not change $|f(a,b) \frac{p-1}{2}|$ we can assume that b=1 and $2 \leqslant a \leqslant \frac{p-1}{2}$. We say x is good if both residues are $<\frac{p}{2}$ or both $>\frac{p}{2}$.

If $\frac{p}{4} < a < \frac{3p}{4}$, then among any three consecutive values of x at least one is good and at least one bad, implying $\frac{p-1}{3} < f(a) < \frac{2(p-1)}{3}$.

Verifying a=2,3,p-3,p-2 is straightforward. It remains to deal with $4\leqslant a\leqslant \frac{p}{4}$. Then the difference between the good and bad values in each of the intervals $(\frac{(i-1)p}{a},\frac{ip}{a})$ is at most 1, except for the central interval that contains at most $\frac{p}{a}+1$ values. Hence the total difference is at least $a+\frac{p}{a}+1$ which is less than $\frac{p-1}{6}$ for p big enough.

14. (a) We can have three pairs, e.g. (1,1),(1,2),(2,3). We cannot have four. Indeed, first of all, we cannot have a_i, b_i both even, so if n > 3, there are two fractions with $a_i \equiv a_j$ and $b_i \equiv b_j \pmod{2}$, but then $a_j b_i - a_i b_j$ is even.

In part (b) the maximum is four: e.g. (1,1), (1,2), (2,3), (3,5).

- 15. Recall that $\tau(m) < 2\sqrt{m}$, for m can have as many divisors $< \sqrt{m}$ as those $> \sqrt{m}$. The number $[a_1, \ldots, a_n]$ has n divisors, so it is not less than $n^2/4$. Now the given sum is less than $1 + \frac{1}{2} + \frac{1}{4} + \sum_{n \geqslant 4} \frac{4}{n^2} < \frac{7}{4} + \sum_{n \geqslant 4} \frac{16}{4n^2 1} = \frac{7}{4} + \sum_{n \geqslant 4} (\frac{8}{2n 1} \frac{8}{2n + 1}) < \frac{7}{4} + \frac{8}{7} < 3$. The upper bound is greater than 2: e.g. take (a_n) to be 1, 2, 3, 6, 4, 12, 8, 24, 16, 48, ...
- 16. The last number is $y = \frac{x^{99}+1}{x+1} + x$. It does not divide any larger number on the list. Indeed, if y divides some number $z \equiv 1 \pmod{x}$, then $\frac{z}{y} \equiv 1 \pmod{x}$, so $\frac{z}{y} \geqslant x+1$ and hence $z \geqslant (x+1)y > x^{99}+1$. Thus y only gets deleted after all numbers greater than y. On the other hand, every number on the list less than y has a multiple on the list (other than y), so it will also get deleted before y.
- 17. Multiplying by $c^{-1} \pmod{p}$, we can assume w.l.o.g. that c = 1. Now if $a \equiv \pm 1$ or $b \equiv \pm 1$ or $a \equiv \pm b \pmod{p}$, the statement is trivial, so we can also assume otherwise. Then the orders of a, b and ab^{-1} modulo p divide 2q, so they are q or 2q.

Call n good if $p \mid a^n + b^n + 1$, and denote by G the set of good exponents n. Given $q \nmid r$, we claim that there are at most two pairs of good numbers differing by r. To see this, assume that $p \mid a^n + b^n + 1$ and $p \mid a^r a^n + b^r b^n + 1$; these imply that $(a^r - b^r)a^n \equiv b^r - 1 \pmod{p}$, which occurs for at most two values of n.

Since for each $n \in G$ there are |G| - 2 other elements of G not differing from n by q, so they produce |G|(|G| - 2) differences and hence $|G|(|G| - 2) \le 2(p - 2)$, leading to $|G| \le 1 + \sqrt{2p}$.

18. We can assume the initial number n_0 is odd. For $i \ge 1$, from n_{i-1} we will obtain some number n_i such that $2^{r_i}n_i = 3^{s_i}n_{i-1} + 1$ for some $r_i, s_i > 0$. Combining these equations for $1 \le i \le k$, we can write the condition $n_k = 1$ as

$$m = 2^{a_{k-1}} 3^{b_0} + 2^{a_{k-2}} 3^{b_1} + \dots + 2^{a_0} 3^{b_{k-1}}, \tag{*}$$

where $a_0 = b_0 = 0$, $a_i = r_1 + \dots + r_i$, $b_i = s_k + \dots + s_{k+1-i}$ and $m = 2^{a_k} - 3^{b_k} n$.

<u>Lemma.</u> Every positive integer m can be written in the form (*) for some integers $0 \le a_0 < a_1 < \cdots < a_{k-1}$ and $0 \le b_0 < b_1 < \cdots < b_{k-1}$.

To secure the conditions $a_{k-1} < a_k$ and $b_{k-1} < b_k$, it is enough to choose a_k and b_k so that $0 < m = 2^{a_k} - 3^{b_k}n < 3^{b_k}$, i.e. $b_k + \log_3 n < a_k \log_3 2 < b_k + \log_3 (n+1)$. This choice is possible because $\log_3 2$ is irrational: Indeed, for some a_k we have $\{\log_3 n\} < \{a_k \log_3 2\} < \{\log_3 (n+1)\}$.

Finally, having chosen a_k and b_k , we find a_i and b_i $(0 \le i < k)$ by the Lemma for $m = 2^{a_k} - 3^{b_k}n$ and take $r_i = a_i - a_{i-1}$ and $s_i = b_{k+1-i} - b_{k-i}$.

19. Let A be the set of lattice points (x, y) with $1 \le x \le n^2$, $1 \le y \le n$. Our sum is the number T of points in A below the curve $y^3 = nx$.

Let us count points in A above the curve: given y, there are $\left[\frac{y^3}{n}\right]$ such points, for the total of $S = \sum_{y=1}^n \left[\frac{y^3}{n}\right]$. Since n is squarefree, no points from A other than (n^2, n) lie on the curve, so $S+T=n^3+1$. We have $\left[\frac{y^3}{n}\right]+\left[\frac{(n-y)^3}{n}\right]=\frac{y^3}{n}+\frac{(n-y)^3}{n}-1=n^2-3ny+3y^2-1$ for $1 \le y \le n-1$, so summing over all y yields $2S = \sum_{y=0}^n (n^2-3ny+3y^2)-(n-1)=n^2(n+1)-\frac{3n^2(n+1)}{2}+\frac{n(n+1)(2n+1)}{2}-(n-1)=\frac{(n+2)(n^2-1)}{2}+2$.

The required sum is $T = n^3 + 1 - S = \frac{(n-1)(3n^2 + n + 2)}{4}$.

- 20. Let us count the numbers of the form xa + yb $(x, y \in \mathbb{N})$ that do not exceed $2\sqrt{abc}$. It is (at most) the number of lattice points in the triangle in the first quadrant below the line $ax + by \leq 2\sqrt{abc}$, which is less than its area, and this area is $\frac{1}{2}\frac{\sqrt{2abc}}{a}\frac{\sqrt{2abc}}{b} = c$. Thus ax + by cannot collect all residue classes modulo c, so ax + by + cz cannot cover all integers $> \sqrt{2abc}$.
- 21. Assume $a \leqslant b \leqslant c$. Since $c^2 ab \cdot c + (a^2 + b^2 1) = 0$, we can switch c to ab c, thus obtaining a smaller solution, unless $a^2 + b^2 1 < 0$ (i.e. a = b = 0) or $c \leqslant \frac{ab}{2}$. If $a \leqslant b \leqslant c \leqslant \frac{ab}{2}$, then $0 = c^2 ab \cdot c + a^2 + b^2 1 \leqslant b^2 ab \cdot b + a^2 + b^2 1 = a^2 (a-2)b^2 1$, which is possible only for a < 2. But then $c \leqslant \frac{ab}{2} < b \leqslant c$, a contradiction. Therefore the only solution is (0,0,1).
- 22. We have $x^2 + y^2 2 = n(x^2 y^2)$, i.e. $(n+1)y^2 (n-1)x^2 = 2.$ (*)

It suffices to prove that n divides $x^2 - y^2$.

Suppose to the contrary that (x,y) is the solution of (*) with |y| minimal for which $n \nmid x^2 - y^2$. Then (nx - (n+1)y, ny - (n-1)x) is also a solution, and moreover, $n \nmid (nx - (n+1)y)^2 - (ny - (n-1)x)^2 \equiv y^2 - x^2 \pmod{n}$. Hence this is a larger solution: $|ny - (n-1)x| \geqslant |y|$, i.e. $x \leqslant y$ or $x \geqslant \frac{n+1}{n-1}y$. Substituting in (*) yields $|y| \leqslant 1$, so it would force (x,y) = (1,1). However, $n \mid 1^2 - 1^2$, which is a contradiction.

- 23. Let $x^2 + y = n(xy + 1)$. Then $x^2 ny \cdot x + y n = 0$ with the discriminant $D^2 = n^2y^2 + 4(n-y)$, but $4(1-ny) \leqslant 4(n-y) < 4(ny+1)$, so $ny 2 \leqslant D < ny + 2$. Since D is of the same parity as ny, we have either D = ny (leading to $(x,y) = (n^2,n)$) or D = ny 2 (leading to n = 1 and $x \in \{1, y 1\}$). Only for n = 1 we have multiple solutions.
- 24. Write $4(ab+1)(ac+1)(bc+1) = (2abc+a+b+c-d)^2$. This reduces to the symmetric equation $a^2 + b^2 + c^2 + d^2 2ab 2ac 2bc 2ad 2bd 2cd 4abcd 4 = 0$. We also observe that $4(ab+1)(cd+1) = (a+b-c-d)^2$ etc... so ab+1, ac+1, bc+1 are squares if and only if so are ad+1, bd+1, cd+1.
 - We are now ready for Vieta jumping: if (a, b, c, d) is a solution, then so is (a, b, c, d') with d' = 4abc + 2(a + b + c) d. Suppose (a, b, c, d) is a solution $(a \le b \le c \le d)$ with the smallest a + b + c + d for which not all six products plus 1 are squares. The same applies for the solution (a, b, c, d'), so by minimality we must have $d' \ge d$ or $d \le 0$. However, if d = 0 then trivially $4(ab + 1) = (a + b c)^2$ etc, and if d < 0, then from $cd + 1 \ge 0$ we deduce c = 1, d = -1 and a + b = 0 which is impossible. Therefore $d' \ge d$, i.e. $c \le d \le 2abc + a + b + c$, so $4(ab + 1)(bc + 1)(ca + 1) \le (2abc + a + b)^2$. But this expands into $4abc^2 + 4c(a + b) + 4 \le (a b)^2$, which is impossible (note that $2c \ge a + b$).
- 25. Plugging in (a,b)=(1,1) we find that f(1)=1. Next, for a prime p, setting (a,b)=(p,p) we get $f(p)+p\mid 2p^2$, so $f(p)\in\{p,p^2-p,2p^2-p\}$, but for (a,b)=(p,1) we get $f(p)+1\mid p^2-1$, so for $p\geqslant 3$ only f(p)=p is possible. Now for an arbitrary n and prime $p\geqslant 3$ we have $f(n)+p\mid n^2+pf(n)$ and hence $f(n)+p\mid n^2-f(n)^2$, and if p is big enough, we must have f(n)=n.
- 26. Fix a prime p and consider the smallest a with $p \mid f(a)$. By induction, $p \mid f(x)$ whenever $a \mid x$. On the other hand, if $a \nmid x$, i.e. $x \equiv k \pmod{p}$ with 0 < k < p, then $p \mid f(a-x) + f(x)$, so $p \mid f(x)$, a contradiction. Hence $p \mid f(x)$ if and only if $a \mid x$. Next, $x \equiv -z \pmod{a}$ is equivalent to $p \mid f(x+z)$, i.e. $f(x) \equiv -f(z) \pmod{p}$. This implies that $x \equiv y \pmod{a}$ if and only $f(x) \equiv f(y) \pmod{p}$. By surjectivity, $f(1), f(2), \ldots, f(a)$ form a complete residue system modulo p, so d = p. Thus $p \mid f(x) \Leftrightarrow p \mid x$, and $p \mid f(x) f(y) \Leftrightarrow p \mid x y$. Hence f is also injective. Since no prime divides 1, we must have f(1) = 1. Next, if f(x) = x for all x < n, then f(n) f(n-1) and n (n-1) = 1 have the same prime divisors, so $f(n) f(n-1) = \pm 1$. Now an easy induction together with injectivity leads to f(n) = n for all n.
- 27. Setting m = n = 1 gives $f(1)^2 + f(1) \mid 4$, so f(1) = 1. Next, if p is a prime, we have $f(1)^2 + f(p-1) \mid p^2$, so $f(p-1) \in \{p-1, p^2-1\}$. However, if $f(p-1) = p^2-1$, then setting (m,n) = (p-1,1) yields $(p^2-1)^2+1 \mid ((p-1)^2+1)^2$, which is impossible. Hence f(p-1) = p-1. Now, given $n \in \mathbb{N}$, $(p-1)^2 + f(n)$ divides $((p-1)^2 + n)^2 \equiv (n-f(n))^2$ (mod $(p-1)^2 + f(n)$) for every prime p, i.e. $(n-f(n))^2$ has infinitely many divisors, so f(n) = n.
- 28. Let f(1) = c. Then $f(n+1) \leq f(n) + c$ implies $f(n) \leq cn$. Next, $f(2^k)$ divides $2f(2^{k-1}) = c_k f(2^k)$ for some integer c_k . Then $2^k f(1) = c_1 \cdots c_k f(2^k) \geq 2^k c_1 \cdots c_k$, so $c_1 \cdots c_k \leq c$. Thus $c_k = 1$ for all big enough k.

Now fix n and take k big enough, so that $f(2^{k+2}) = 2f(2^{k+1}) = 4f(2^k)$. We have $2f(2^k) \mid f(2^k+n) + f(2^k-n)$ and $f(2^k) \mid f(2^k-n) + f(n)$, so $f(2^k) \mid f(2^k+n) - f(n)$ and hence $f(2^k+n) \mid f(2^k) + f(n) \le f(2^k+n)$, which is possible only if $f(2^k+n) = f(2^k) + f(n)$. Similarly, $f(2^k+1) = f(2^k) + c$. Now $f(2^{k+1}+n+1) = 2f(2^k) + f(n+1)$ divides $f(2^k+n) + f(2^k+1) = 2f(2^k) + f(n) + f(1)$, and for big k this implies f(n+1) = f(n) + c. Therefore f(n) = cn for all n.

29. Fix n and let f(n+1) - f(n) = k. Now for any m, if $f(m) + 2mn + f(n) = x^2$ and $f(m) + 2m(n+1) + f(n+1) = y^2$, we have $y^2 - x^2 = 2m + k$. Since a difference of two squares cannot be 2 (mod 4), we cannot have k even. But now as k is odd, we can take m so that 2m + k = p is a prime - then $y^2 - x^2 = p$, and this is only possible if $x = \frac{p-1}{2}$ and $y = \frac{p+1}{2}$.

Next, consider $f(m) + 2m(n+2) + f(n+2) = z^2$. Then $z^2 - \left(\frac{p+1}{2}\right)^2 = 2m + (f(n+2) - f(n+1)) = p + c$, where c = f(n+2) - 2f(n+1) + f(n). But if p is big enough, this will imply $\left(\frac{p+1}{2}\right)^2 < z < \left(\frac{p+5}{2}\right)^2$ and thus force $z = \frac{p+3}{2}$. Consequently, f(n+2) - 2f(n+1) + f(n) = c = 2 is constant, so $f(n) = n^2 + An + B$ is a quadratic function.

Now $f(n) + f(n) + 2n^2 = 4n^2 + 2An + 2B$ is a square for all n, so it must be $(2n+2a)^2$ and hence A = 4a, $B = 2a^2$. Therefore $f(n) = n^2 + 4an + 2a^2$.

30. Denote by g(n) the smallest prime divisor of a_n , and by P_n the set of primes not exceeding n. Consider any N such that $1000! \mid N-1$. Since $a_p \leq p+1000 \leq N+1000$ for $p \in P_N$, we have $g(p) \in P_{N+1000} = P_N$. Moreover, by the problem condition, $g(p) \neq g(q)$ whenever p and q are different primes, so g is a bijection on P_N . Since this holds for all N, g is a bijection on the set of all primes.

Let q be a prime divisor of a_{p^k} , where p is a prime and $k \in \mathbb{N}$. Since g is a bijection, g(r) = q for some prime r, so $q \mid (a_r, a_{p^k})$, and this implies $(r, p^k) > 1$, i.e. r = p. Hence a_{p^k} is a power of the prime g(p) = q. Assume now that $q \neq p$ and take $k, n \in \mathbb{N}$ so that $p^n > q^k > 2017$ and $\varphi(q^k) \mid n$. Then $p^n \equiv 1 \pmod{q^k}$, which secures that none of $p^n, p^n + 1, \ldots, p^n + 2016$ is a multiple of q^k . Thus $q^k \nmid a_{p^n}$, so a_{p^n} is not a power of q, a contradiction. Therefore f(p) is in fact a power of p,

Now if $p \mid a_n$, then $(a_n, a_p) > 1$ and hence (p, n) > 1, i.e. $p \mid n$.

31. Since all summands except a_0 are divisible by 4, a_0 is uniquely determined modulo 4. Subtract a_0 , multiply by $-\frac{3}{4}$ (this should decrease its absolute value, except in very small cases) and continue.