Let D_{θ} , $0 \le \theta \le 1$, be the discrete distribution with the following PMF:

x	0	1	2	3
f(x)	$\frac{2}{3}\theta$	$\frac{1}{3}\theta$	$\frac{2}{3}(1-\theta)$	$\frac{1}{3}(1-\theta)$

and f(x) = 0 otherwise. Let $X_1, ..., X_n$ be an i.i.d. random sample drawn from D_{θ} .

- a) Find the MLE $\hat{\theta}$ for θ based on $X_1, ..., X_n$.
- b) Find the MME $\widetilde{\theta}$ for θ based on X_1, \dots, X_n .

Ca)

$$\eta_0 + \eta_1 + \eta_2 + \eta_3 = \Lambda$$

$$L(\theta) = \frac{n}{\int_{i=1}^{n} f(x_{i} | \theta) = \left(\frac{2}{3}\theta\right)^{n_{0}} \left(\frac{1}{3}\theta\right)^{n_{1}} \left(\frac{2}{3}(1-\theta)\right)^{n_{2}} \left(\frac{1}{3}(1-\theta)\right)^{n_{3}}$$

$$= \frac{2^{n_{0}+n_{2}}}{3^{n_{0}}} \theta^{n_{0}+n_{1}} (1-\theta)^{n_{2}+n_{3}}$$

$$\ln L(\theta) = \ln \left(\frac{2^{n_0 + n_2}}{3^n} \right) + (n_0 + n_1) \ln \theta + (n_2 + n_3) \ln (1 - \theta)$$

Verity standard conditions for L(0).

- (i) L(0) > 0 for $\emptyset \in (0,1)$
- (ii) L is differentiable.
- $\lim_{\theta \to 0^+} \lim_{\theta \to 0^+} L(\theta) = 0 \text{ and } \lim_{\theta \to 1^-} L(\theta) = 1$

For
$$\theta \in (0,1)$$
, $\hat{\theta} = \operatorname{arg\,max} \ln L(\theta)$ exists.

$$\frac{d}{d\theta} \ln L(\theta) = \frac{n_0 + n_1}{\theta} - \frac{n_2 + n_3}{1 - \theta} = 0 \Rightarrow 0 = \frac{n_0 + n_1}{0 + n_1 + n_2} = \frac{n_0 + n_1}{0}$$

$$\int_{0}^{\infty} = \frac{\int_{0}^{\infty} + \eta_{1}}{\int_{0}^{\infty} + \eta_{1} + \eta_{2}} = \frac{\int_{0}^{\infty} + \eta_{1}}{\eta_{1}}$$

Case 2 : $N_0 + N_1 = 0$

$$L(\theta) = \frac{2^{n_0 + n_2}}{3^n} \theta^{n_0 + n_1} (1 - \theta)^{n_2 + n_3} = \frac{2^{n_0 + n_2}}{3^n} (1 - \theta)^{n_2 + n_3} \theta \in [0, 1]$$

L(0) is maximized when
$$0 = 0$$
 \Longrightarrow $\theta_{MLE} = 0 = \frac{n_0 + n_1}{n_1}$

$$L(\theta) = \frac{2^{n_0 + n_2}}{3^n} \theta^{n_0 + n_1}$$

$$N_0 + N_1 = N$$

Lase 3:
$$n_2 + n_3 = 0$$

$$L(\theta) = \frac{2^{n_0 + n_2}}{3^n} e^{n_0 + n_1} \qquad L(\theta) \text{ is maximized when } \theta = 1$$

$$\Rightarrow \theta_{\text{MLE}} = 1 = \frac{n_0 + n_1}{n}$$

Let X_1,\ldots,X_n be an i.i.d. sample drawn from a uniform distribution $U(0,\theta)$ distribution. It was shown in lecture that $\hat{\theta}_n=\max(X_1,\ldots,X_n)$ is the MLE for θ based on X_1,\ldots,X_n . Show that

$$P(|\hat{\theta}_n - \theta| > \varepsilon) = \left(\frac{\theta - \varepsilon}{\theta}\right)^n, \quad \text{for } 0 < \varepsilon < \theta$$

Is $\hat{\theta}_n$ a consistent estimator for θ ?

Consistent estimator,

For all
$$\varepsilon > 0$$
,

 $\lim_{n \to \infty} P(1 \hat{\theta}_n - 0 | > \varepsilon) = 0$
 $\lim_{n \to \infty} P(1 \hat{\theta}_n - 0 | > \varepsilon) = 0$

Because $\frac{\theta - \varepsilon}{\theta} < 1$
 $\forall \varepsilon > 0$
 $\forall \varepsilon > 0$
 $\exists \varepsilon \in \mathbb{R}$
 $\exists \varepsilon \in \mathbb{R$

Let X_1, \dots, X_n be an i.i.d. sample drawn from a distribution with PDF of given as

$$f(x|\theta) = \frac{\theta}{\sqrt{2\pi}} e^{-\theta^2 x^2/2}$$
 for all $x \in \mathbb{R}$

where $\theta \in (0, \infty)$ is an unknown parameter.

- a) Find the maximum likelihood estimator $\hat{\theta}$ (MLE) for θ based on X_1, \dots, X_n , under the assumption that $\sum_{i=1}^n X_i^2 > 0$.
- b) Show that no MLE exists if $\sum_{i=1}^{n} X_i^2 = 0$.

(a)
$$\lfloor (\theta) = \frac{n}{1-1} f(x_i \mid \theta) = \frac{n}{1-1} \frac{\theta}{\sqrt{2\eta}} \exp\left(-\frac{\theta^2 x_i^2}{2}\right)$$

$$= \frac{\theta^n}{(2\pi)^n 2} \exp\left(-\frac{\theta^2}{2} \sum_{i=1}^n x_i^2\right)$$

Standard conditions = L(0) >0, Lis diff.

$$\lim_{\theta\to 0^+} L(\theta) = 0$$
 and $\lim_{\theta\to 0^+} L(\theta) = 0$ (L'Hopitals Rule)

$$ln L(a) = n ln 0 - \frac{n}{2} ln (2\pi) - \frac{\beta^2}{2} \sum_{i=1}^{2} x_i^2$$

$$\frac{d}{d\theta} LN(\theta) : \frac{n}{\theta} - \theta \leq \chi_1^2 = 0 \implies \theta = \sqrt{\frac{n}{\sum \chi_1^2}}$$

(b) What if
$$\sum X_1^2 = 0$$
?

$$L(\theta) = \frac{\theta^{n}}{(2\pi)^{n/2}} \exp\left(-\frac{\theta^{2}}{2} \sum_{i} x_{i}^{2}\right) = \frac{\theta^{n}}{(2\pi)^{n/2}} \quad \theta \in (0, \infty)$$

maximum of L(0) does not exist. > ônce does not exist

Let X_1,\dots,X_n be i.i.d. $\sim D_\theta$, where θ is an unknown parameter. Let g(.) be a one-to-one function.

a) Suppose that $\hat{\theta}$ is an MLE for θ based on X_1, \dots, X_n . Show that $g(\hat{\theta})$ is an MLE for $g(\theta)$.

Let
$$g(0) = \alpha$$
, R be the range of θ .

Let
$$S = \{g(0) : 0 \in R\}$$
 be the range of d .

Since g is injective, there exists
$$g^{-1}$$
, st. $g^{-1}g(0) = 0$.

$$\hat{\theta}$$
 is MLE for $\theta \Rightarrow \hat{\theta} = \underset{\theta \in \mathbb{R}}{\operatorname{arg max}} L(\theta)$, where $L(\theta)$ is the likelihood func. in terms of θ .

$$g(0) = \lambda \Rightarrow g^{-1}g(0) = g^{-1}(x) \Rightarrow 0 = g^{-1}(x)$$

$$L(0) = L(g^{-1}(\alpha)) \longrightarrow L \circ g^{-1}$$
 is the likelihood func. in terms of $\alpha = q(0)$

MLE for
$$g(0) = \underset{\alpha \in S}{\operatorname{arg max}} L(g^{-1}(\alpha)) = g(\hat{0})$$

Because
$$L(g^{-1}(g(\hat{o})) = L(\hat{o}) \geq L(0) \quad \forall o \in \mathbb{R}$$

b) Suppose that $\underline{\widetilde{\theta}}$ is the method of moments estimator (MME) for θ based on $X_1, ..., X_n$. Show that $g(\widetilde{\theta})$ is an MME for $g(\theta)$.

$$0 = h(\mu_{1}, \dots, \mu_{t}) \qquad \mu_{i} = E[x^{i}]$$

$$\tilde{\theta}_{mme} = h(s_{1}, \dots, s_{t}) \qquad s_{i} = \frac{1}{n} \hat{s}_{j=1}^{2} x_{j}^{i}$$

(least t)

If goh uniquely represents g(0) in terms of $\mu_1,...,\mu_t$.,

Then by WLLN, MME for $g(0) = g(h(s_1,...,s_t)) = g(\hat{0})$

Uniqueness

Suppose $\exists k \neq goh$ that represents $g(\theta)$

$$g(\theta) = k(\mu_1, ..., \mu_t) \Rightarrow \theta = g(0) k(\mu_1, ..., \mu_t)$$

$$g(\theta) = k(\mu_1, ..., \mu_t)$$

$$g(\theta) = k(\mu_1, ..., \mu_t)$$

$$(ontradiction (: 0 = h(\mu_1, ..., \mu_t)))$$

Mininum 't'

Suppose
$$v < t$$
, such that $g(0) = g(h(\mu_1, ..., \mu_V))$

$$g^{-1}(g(0)) = g^{-1}(g(h(\mu_1, ..., \mu_V)))$$

$$0 = h(\mu_1, ..., \mu_V) = contradicts$$

MH3500 Statistics

Tutorial 7

AY2022/23 Semester 2

Problem 7.1

Let D_{θ} , $0 \le \theta \le 1$, be the discrete distribution with the following PMF:

х	0	1	2	3
f(x)	$\frac{2}{3}\theta$	$\frac{1}{3}\theta$	$\frac{2}{3}(1-\theta)$	$\frac{1}{3}(1-\theta)$

and f(x) = 0 otherwise. Let $X_1, ..., X_n$ be an i.i.d. random sample drawn from D_{θ} .

- a) Find the MLE $\hat{\theta}$ for θ based on $X_1, ..., X_n$.
- b) Find the MME $\widetilde{\theta}$ for θ based on $X_1, ..., X_n$.

Problem 7.2

Let X_1,\ldots,X_n be an i.i.d. sample drawn from a uniform distribution $U(0,\theta)$ distribution. It was shown in lecture that $\widehat{\theta}_n=\max(X_1,\ldots,X_n)$ is the MLE for θ based on X_1,\ldots,X_n . Show that

$$P(|\hat{\theta}_n - \theta| > \varepsilon) = \left(\frac{\theta - \varepsilon}{\theta}\right)^n$$
, for $0 < \varepsilon < \theta$

Is $\hat{\theta}_n$ a consistent estimator for θ ?

Problem 7.3

Let X_1,\ldots,X_n be an i.i.d. sample drawn from a distribution with PDF of given as

$$f(x|\theta) = \frac{\theta}{\sqrt{2\pi}} e^{-\theta^2 x^2/2}$$
 for all $x \in \mathbb{R}$

where $\theta \in (0, \infty)$ is an unknown parameter.

- a) Find the maximum likelihood estimator $\hat{\theta}$ (MLE) for θ based on X_1, \dots, X_n , under the assumption that $\sum_{i=1}^n X_i^2 > 0$.
- b) Show that no MLE exists if $\sum_{i=1}^{n} X_i^2 = 0$.

Problem 7.4

Let X_1, \dots, X_n be i.i.d. $\sim D_\theta$, where θ is an unknown parameter. Let g(.) be a one-to-one function.

- a) Suppose that $\hat{\theta}$ is an MLE for θ based on X_1,\dots,X_n . Show that $g(\hat{\theta})$ is an MLE for $g(\theta)$.
- b) Suppose that $\widetilde{\theta}$ is the method of moments estimator (MME) for θ based on $X_1, ..., X_n$. Show that $g(\widetilde{\theta})$ is an MME for $g(\theta)$.