Deduplication using machine learning

February 6, 2018

1 Example of Deduplication

```
In [30]: import deduplication as dep
    reload(dep);
```

1.1 1. Loading Data

1.1.1 Loading sample data

```
In [31]: df_input_records = pd.read_csv('df_impairs.csv',index_col=0,dtype={'duns':str,'postal.
         df_target_records = pd.read_csv('df_pairs.csv',index_col=0,dtype={'duns':str,'postalcol=0})
         df_input_records.sample(3)
Out [31]:
                                                                               duns \
                                                                    name
         661a0913-d82f-4186-b191-58a93c06ba0c phoenix contact hmi-ipc
                                                                                \mathtt{NaN}
         774bcf85-7a03-4a6d-9ec3-f5474b5e996d
                                                           aviasport sa 464418029
         efb815f9-ea51-4728-babb-fdd9c294981d
                                                    pro-idee gmbh co kg 312865546
                                                       city postalcode \
         gid
         661a0913-d82f-4186-b191-58a93c06ba0c filderstadt
                                                                  70794
         774bcf85-7a03-4a6d-9ec3-f5474b5e996d tres cantos
                                                                  28760
         efb815f9-ea51-4728-babb-fdd9c294981d
                                                                  52070
                                                     aachen
                                                           street country_code
         gid
         661a0913-d82f-4186-b191-58a93c06ba0c
                                                     29 kurze str
                                                                             DE
         774bcf85-7a03-4a6d-9ec3-f5474b5e996d 11 calle almazara
                                                                             ES
         efb815f9-ea51-4728-babb-fdd9c294981d
                                                     gut-dmme-str
                                                                             DE
```

1.1.2 Cleaning that data

Out[32]:			name	duns	\
	gid b537e8e0-1a92-4694-8ef7-c43c4b7a208f	jamara mode]	lltochnik	322899675	
	e8695ac0-8ef8-4bd1-bbfb-36009497d10a	cadilac la		None	
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	airtanker serv	_	None	
	01200200 0000 0000000000000000000000000			1.0120	
		city po	stalcode	\	
	gid				
	b537e8e0-1a92-4694-8ef7-c43c4b7a208f	aichstetten	88317		
	e8695ac0-8ef8-4bd1-bbfb-36009497d10a	albstadt	72459		
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	carterton	ox18		
	mi d			street \	
	gid b537e8e0-1a92-4694-8ef7-c43c4b7a208f		5 am 1	auerbhl	
	e8695ac0-8ef8-4bd1-bbfb-36009497d10a			rderstr	
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	airtanker hub			
		country_code	name_w	ostopwords	\
	gid	200	. ,		
	b537e8e0-1a92-4694-8ef7-c43c4b7a208f e8695ac0-8ef8-4bd1-bbfb-36009497d10a	ŭ .			
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	DE GB	Cau	ilac laser airtanker	
	Jireciab Obii iaoo abao Obeeauiobica	QD.		alltanker	
		st	reet_wost	opwords \	
	gid				
	b537e8e0-1a92-4694-8ef7-c43c4b7a208f		lauerb	hl 5 am	
	e8695ac0-8ef8-4bd1-bbfb-36009497d10a	c ·		herder	
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	rai airtanker	nub norto	n brize	
	mi d	name_acronym po	ostalcode_	1stdigit	\
	gid b537e8e0-1a92-4694-8ef7-c43c4b7a208f	jm		8	
	e8695ac0-8ef8-4bd1-bbfb-36009497d10a	clg		7	
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	asl		0	
		postalcode_2dig	gits name	len \	
	gid			<u> </u>	
	b537e8e0-1a92-4694-8ef7-c43c4b7a208f		88	20	
	e8695ac0-8ef8-4bd1-bbfb-36009497d10a		72	18	
	941ec1ab-0b44-4a66-abd6-69eead48b1ca		OX	22	
		hasairbusname	isbigcit	у	
	gid h527a9a0-1a02-4604-9af7-c42a4b7a209f	0		^	
	b537e8e0-1a92-4694-8ef7-c43c4b7a208f e8695ac0-8ef8-4bd1-bbfb-36009497d10a	0))	
	941ec1ab-0b44-4a66-abd6-69eead48b1ca	0		0	
	JIIOGIAD ODII TAOO ADAO OJEEAUTODICA	U	,	•	

2 Machine Learning - based deduplication

2.1 Creating a training table for the decision model

2.1.1 Creating a side-by-side comparison table for manual labelling

using results from a rule-based decision model, for example (see below)

2.1.2 Loading a supervised learning table

2.1.3 Creating the training table

```
In [34]: dummymodel=dep.TrainerModel(scoredict={'fuzzy':['name','name_wostopwords',
                                                          'street','street_wostopwords',
                                                          'city'],
                                                 'exact':['duns','country_code'],
                                                 'token':['name','name_wostopwords',
                                                          'street','street_wostopwords'],
                                                 'acronym':['name','name wostopwords']})
         sur=dep.Suricate(input_records=df_input_records,
                         target_records=df_target_records,
                         model=dummymodel)
         training_table=sur.build_training_table(inputs=s_inputs, targets=s_targets,y_true=s_tr
         #x2=sur.chain_build_labelled_table(inputs=s_inputs, targets=s_targets)
         print(training_table['y_true'].value_counts())
         training_table.sample(3)
0
     916
      84
Name: y_true, dtype: int64
Out [34]:
              city_fuzzyscore
                                country_code_exactscore
                                                         duns_exactscore
         565
                         0.12
                                                      1
         209
                         0.31
                                                      1
                                                                       -1
         188
                         0.00
                                                      1
                                                                       -1
              name_acronymscore name_fuzzyscore name_tokenscore \
         565
                             0.0
                                             0.41
                                                           0.333333
                             0.0
                                             0.49
                                                           0.333333
         209
         188
                             0.0
                                             0.50
                                                           0.333333
```

name_wostopwords_acronymscore name_wostopwords_fuzzyscore \

565	-1.0)	0.24	
209	-1.0)	0.32	
188	-1.0)	0.11	
	name_wostopwords_tokenscore	street_fuzzyscore	street_tokens	core \
565	0.0	0.45		0.0
209	0.0	0.52		0.0
188	0.0	0.44		0.0
	street_wostopwords_fuzzyscore	e street_wostopwor	ds_tokenscore	y_true
565	0.39)	0.0	0
209	0.38	3	0.0	0
188	0.32	2	0.0	0

2.1.4 Train the decision model

2.1.5 Adding filtering rules to speed up the process (Optional)

filter on records that match exactly the country code, or that match the duns number

from those filtered records, filter on records who have a roughly similar name or address, or share the same duns

```
In [38]: intermediate_thresholds={'name_wostopwords_fuzzyscore':0.6,'street_wostopwords_fuzzys
```

2.2 Launching the deduplication

2.2.1 Possibility 1: return only good matches (for run mode)

```
In [40]: res=sur.start_linkage()
         df=sur.format_results(res,display=['name','street','duns','country_code'],fuzzyscorec
         df.sample(5)
starting deduplication at 2018-02-06 09:41:13.010887
1 of 10 inputs records deduplicated | found 0 of 1 max possible matches | time elapsed 0.25316
2 of 10 inputs records deduplicated | found 0 of 1 max possible matches | time elapsed 0.23138
3 of 10 inputs records deduplicated | found 0 of 1 max possible matches | time elapsed 0.25035
4 of 10 inputs records deduplicated | found 1 of 1 max possible matches | time elapsed 0.24468
5 of 10 inputs records deduplicated | found 1 of 1 max possible matches | time elapsed 0.22009
6 of 10 inputs records deduplicated | found 1 of 1 max possible matches | time elapsed 0.24675
7 of 10 inputs records deduplicated | found 1 of 1 max possible matches | time elapsed 0.25994
8 of 10 inputs records deduplicated | found 0 of 1 max possible matches | time elapsed 0.23812
9 of 10 inputs records deduplicated | found 1 of 1 max possible matches | time elapsed 0.19817
10 of 10 inputs records deduplicated | found 1 of 1 max possible matches | time elapsed 0.2640
finished work at 2018-02-06 09:41:15.419575
Out [40]:
                                        ix source
                                                                               ix_target
         1 ff973ba5-ab42-42e0-8244-6aa82de46691
                                                   c3200b89-b646-4b61-affb-76023e5915ef
         3 e2a2da69-3aa4-44e2-ae5b-4bbd2cbdc238
                                                   c906f2e3-bd4c-4785-9d60-95f19579a04c
         2 6097f4c6-8515-41fb-b5e5-549c81140848
                                                   f704e1f0-b240-4461-a741-b41b5c30b476
         4 21c09dde-cff3-4c45-a2f1-46a99e6e1587
                                                   1b932c6a-3719-4f78-ba6e-c4ffdf0cc344
         0 5ff704ee-399e-4fbd-b604-51b6ced944dd
                                                   af8133f8-361f-494e-92dc-ab3c72637d56
                                                                          name_target
                                     name_source
         1
                                                                                   acm
                                             acm
         3
                          botschaft afghanistan
                                                                botschaft afghanistan
            bildungswerk der wirtschaft hamburg
                                                  bildungswerk der wirtschaft hamburg
         2
                 hatfield and dawson consulting
                                                       hatfield and dawson consulting
         4
         0
                                 berlinzeppelin
                                                                       berlinzeppelin
           country_code_source country_code_target
                                                                          street_target
                                                        street_source
         1
                            FR
                                                     9 rue de la gare
                                                                       9 rue de la gare
         3
                            DE
                                                 DE
                                                      3 taunusstraaye
                                                                             3 taunusstr
         2
                            DE
                                                      10 kapstadtring
                                                                        10 kapstadtring
                                                 DΕ
                                                      greenwood ave n
                                                                        greenwood ave n
         4
                            US
                                                 US
                            DE
                                                     4 rottweiler str
                                                                      4 rottweiler str
           duns_source duns_target
                                    name_fuzzyscore
                                                      street_fuzzyscore
                                                                         avg_fuzzyscore
             380071407
                              None
                                                 1.0
                                                                   1.00
                                                                                   1.000
         1
         3
                                                                   0.85
                  None
                              None
                                                 1.0
                                                                                   0.925
         2
                  None
                              None
                                                 1.0
                                                                   1.00
                                                                                   1.000
             099615556
                                                                   1.00
         4
                              None
                                                 1.0
                                                                                   1.000
                                                 1.0
                                                                   1.00
                                                                                   1.000
                  None
                              None
```

1	None	0
3	None	0
2	None	0
4	None	0
0	None	0

2.2.2 Possibility 2: return a probability vector to build a supervised learning table

```
In [41]: # return the 5 most probable matches of the query and the associated probabilities
                 res=sur.start_linkage(n_matches_max=5,with_proba=True)
                 df=sur.format_results(res,with_proba=True,display=['name','street','duns','country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_country_cou
                 df.sample(3)
starting deduplication at 2018-02-06 09:41:15.472593
1 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 0.30197
2 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 0.50133
3 of 10 inputs records deduplicated | found 2 of 5 max possible matches | time elapsed 0.72946
4 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 0.94446
5 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 1.16089
6 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 1.37602
7 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 1.66245
8 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 1.98779
9 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 2.21332
10 of 10 inputs records deduplicated | found 1 of 5 max possible matches | time elapsed 2.4639
finished work at 2018-02-06 09:41:17.937386
Out [41]:
                                                                               ix_source \
                 10 31ea5edd-2c80-40ca-85ca-b6768a941d1e
                 0
                         c204c7b7-66fd-4e55-99a4-abf647dd6b3c
                         ff973ba5-ab42-42e0-8244-6aa82de46691
                 5
                                                                               ix_target y_proba
                                                                                                                                              name_source \
                 10 7ff2b1d2-bf47-4b26-849a-0d150fca7b66
                                                                                                         1.000
                                                                                                                                                      h media
                 0
                         7a17d0c9-5992-43db-9580-c1c6cf16cdbc
                                                                                                         0.187 l amphitryon restaurant
                         c3200b89-b646-4b61-affb-76023e5915ef
                                                                                                         1.000
                                                                                                                                                              acm
                           name_target country_code_source country_code_target
                                                                                                                                            street_source
                 10
                                   h media
                                                                                     ΒE
                                                                                                                            ΒE
                                                                                                                                             329 heistraat
                 0
                         alter ego 31
                                                                                     FR
                                                                                                                            FR chemin de gramont
                 5
                                                                                     FR.
                                                                                                                            FR
                                                                                                                                       9 rue de la gare
                                           acm
                                  street_target duns_source duns_target
                                                                                                             name_fuzzyscore
                 10
                                  329 heistraat
                                                                                                                                    1.00
                                                                 372377817
                                                                                                   None
                         chemin de gramont
                                                                 779097252
                                                                                         779097252
                                                                                                                                    0.29
                 0
                           9 rue de la gare
                                                                 380071407
                                                                                                                                    1.00
                                                                                                   None
                         street_fuzzyscore avg_fuzzyscore duns_exactscore n_exactmatches
```

10	1.0	1.000	NaN	0.0
0	1.0	0.645	1.0	1.0
5	1.0	1.000	NaN	0.0

In [42]: df.to_excel('supervised2.xlsx')

3 Rule-based deduplication

it works the same as above, but instead of having to train a model, you hard-code some rules

```
In [43]: hard_threshold = {'name_tokenscore': 0.7,
                           'street_tokenscore': 0.7}
         hard_cols = list(hard_threshold.keys())
         def hardcodedfunc(r):
             r = r.fillna(0)
             for k in hard_cols:
                 if r[k] > hard_threshold[k]:
                     return 1
             else:
                 return 1
         rule_based_model = dep.FuncEvaluationModel(used_cols=hard_cols,
                                 eval_func=hardcodedfunc)
         sur=dep.Suricate(input_records=df_input_records,
                         target_records=df_target_records,
                          filterdict=filterdict,
                          intermediate_thresholds=intermediate_thresholds,
                         model=rule_based_model)
```