

Ano Letivo 2021/2022

6 de janeiro de 2022

Integração e Derivação Numérica

UC Tópicos de Matemática I LDC Licenciatura em Ciência dos Dados Grupo 2, CDA1

> **Docente** Abdul Kadir Suleman

André Silvestre N°104532 | Diogo Catarino N°104745 Eduardo Silva N°104943 | Francisco Gomes N°104944

Trabalho de Tópicos de Matemática I

Grupo I

$$\int_0^1 e^{-x^2} dx$$

a) Determinar o n:

•
$$f(x) = e^{-x^2}$$

•
$$f'(x) = -2xe^{-x^2} = -\frac{2x}{e^{(x^2)}}$$

•
$$f''(x) = (4x^2 - 2)e^{-x^2} = \frac{4x^2 - 2}{e^{(x^2)}}$$

Fig. 1 - 2° Derivada de f(x).

Através da realização do gráfico da segunda derivada de f(x) (**Fig. 1**) em MatLab constata-se que o $|f''(x)| \le \alpha$ no intervalo [0,1] ocorre no ponto de coordenadas (0, 2). Ou seja, f é diferenciável duas vezes e $|f''(x)| \le 2$, logo $\alpha = 2$.

$$\alpha = 2 \; ; \; [a,b] = [0,1]$$

$$\therefore \forall \; x \in [0,1], |f''(x)| \leq 2,$$

$$Logo \; \alpha = 2$$
Se $\varepsilon_{mpm} = \alpha \frac{(b-a)^3}{24n^2}, \; \text{então} \; 0,001 = \; 2 \frac{(1-0)^3}{24n^2} \Leftrightarrow$

$$n = 10$$

Utilizando o Método do Ponto Médio:

Fig.2 - Cálculo numérico do integral $\int_0^1 e^{-x^2} dx$, utilizando o *Método do Ponto Médio*, com recurso à ferramenta *MatLab*.

b)

Fórmula de MacLaurin (3^a ordem de e^{-x^2})

$$\sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^n = \frac{f(0)}{0!} x^0 + \frac{f'(0)}{1!} x^1 + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + r_3$$

•
$$f(x) = e^{-x^2}$$
 $\circ f(0) = e^{-0^2} = 1$

•
$$f'(x) = -2xe^{-x^2} = -\frac{2x}{e^{(x^2)}}$$
 $f'^{(0)} = -\frac{2*0}{e^{(0^2)}} = 0$

•
$$f''(x) = (4x^2 - 2)e^{-x^2} = \frac{4x^2 - 2}{e^{(x^2)}}$$
 $f''(0) = \frac{4x^2 - 2}{e^{(x^2)}} = -2$

•
$$f'''(x) = (-8x^3 + 12x)e^{-x^2} = \frac{12x - 8x^3}{e^{(x^2)}}$$
 $f'''(0) = \frac{12x - 8x^3}{e^{(x^2)}} = 0$

$$\therefore \frac{1}{0!} + \frac{0}{1!}x + \frac{-2}{2!}x^2 + \frac{0}{3!}x^3 = 1 - x^2 \rightarrow F\'{ormula} de MacLaurin at\'{e} aos termos de 3° ordem para a função $f(x)$$$

$$\int_0^1 \mathbf{1} - x^2 \, d(x) = \left[\int 1 \, d(x) - \int x^2 \, d(x) \right]_0^1 = \left[x - \frac{x^3}{3} \right]_0^1 = \left(1 - \frac{1^3}{3} \right) - 0 = \frac{2}{3}$$

Na alínea a) calculámos numericamente a aproximação do integral da função f(x) no intervalo [0,1], usando o **Método do Ponto Médio**, obtendo o valor de **0.7471**.

Na alínea *b*) calculámos o mesmo integral, porém, usando a **Fórmula de MacLaurin** que permite o cálculo do valor de uma função por aproximação local através de uma função polinomial, no qual obtivemos o valor de $\frac{2}{3} = 0.66(6)$.

Podemos concluir que a variação destes valores não é significativa e que os mesmos correspondem a uma aproximação da verdadeira área do integral em análise, estando, por isso, sujeitos a um certo erro.

Grupo II

$$g: \mathbb{R} \to \mathbb{R} \ tal \ que \ g(x) = \int_0^x arctan[sin(t)] \ dt$$

	g(x)	1ª Derivada (MDDSO)	2ª Derivada (MDDSO)	1° Derivada g'(x)		1ª Derivada		2ª Derivada			
x					2ª Derivada g''(x)	Erro Absoluto	Erro Relativo (%)	Erro Absoluto	Erro Relativo (%)		
0	0	0,287	0,304	0	1	0,287	NaN	0,696	69,6		
π/5	0,180	0,478	0,607	0,531	0,601	0,054	10,1	0,006	1		
2π/5	0,601	0,723	0,173	0,760	0,162	0,037	4,9	0,010	6,5		
3π/5	1,089	0,723	-0,173	0,760	-0,162	0,037	4,9	0,010	6,5		
4π/5	1,508	0,478	-0,606	0,531	-0,601	0,053	10,0	0,004	0,7		
5π/5	1,690	0	-0,916	0	-1	0	NaN	0,084	8,4		
6π/5	1,509	-0,478	-0,606	-0,531	-0,601	0,053	10,0	0,005	0,9		
7π/5	1,089	-0,723	-0,172	-0,760	-0,162	0,038	0	0,010	0		
8π/5	0,601	-0,723	0,172	-0,760	0,162	0,038	0	0,010	0		
9π/5	0,181	-0,478	0,606	-0,531	0,601	0,053	0	0,005	0		
10π/5	0	-0,288	0,303	0	1	0,288	0	0,697	0		

Fig. 3 – Resolução do Grupo II.

Legenda: MDDSO (Método das Diferenças Divididas de Segunda Ordem)

a)

Determinar o *n*:

- $g'(x) = \arctan[\sin(x)]$
- $\bullet \ g''(x) = \frac{\cos(x)}{1+\sin(x)^2}$
- $g'''(x) = \frac{-\sin(x) \sin(x)^3 \cos(x)\sin(2x)}{(1 + \sin(x)^2)^2}$

Fig. 4 - 3° Derivada de g(x).

Através da realização do gráfico da segunda derivada de f(x) (**Fig. 4**) em MatLab constata-se que o $|g'''(x)| \le \alpha$ no intervalo [0,x] ocorre nos pontos de ordenadas $y \cong \pm 0.88$. Ou seja, f é diferenciável duas vezes e $|f''(x)| \le 0.88$, logo $\alpha = 0.88$.

Como a 2^a Derivada da função f(x) é periódica, sendo que os extremos mantêm o valor, o $\alpha = 0.88$, $\forall x \in [0, x]$. Os vários n no intervalo [0, x] foram calculados e estão presentes na seguinte tabela.

x	0	$\frac{\pi}{5}$	$\frac{2\pi}{5}$	$\frac{3\pi}{5}$	$\frac{4\pi}{5}$	$\frac{5\pi}{5}$	$\frac{6\pi}{5}$	$\frac{7\pi}{5}$	$\frac{8\pi}{5}$	$\frac{9\pi}{5}$	$\frac{10\pi}{5}$
n	0	5	13	23	35	48	63	79	97	116	135

Utilizando o **Método dos Trapézios** (Anexo 1), através do *MatLab*, efetuamos o cálculo numérico da integral $\int_0^x g(t) dt$, cujos resultados são visíveis na **Fig. 3.** Para tal, utilizamos os vários valores de x e os diferentes n, uma vez que o intervalo é de [0,x].

- b) A fim de obtermos a 1ª e 2ª Derivadas pelo Método das Diferenças Divididas de 2ª Ordem, elaborámos um *script* em *MatLab* tal como visível no Anexo 2, cujos resultados estão presentes na tabela da Fig. 3.
- Pelo Primeiro Teorema Fundamental do Cálculo Integral, se f é integrável em I = [a,b] e contínua em $c \in]a,b[$ então $\varphi(x) = \int_0^x f(t) dt$ é diferenciável em c, e temses $\varphi'(c) = f(c)$. No caso de f ser contínua em [a,b], então $\varphi'(x) = f(x)$, $\forall x \in I$.

Qualquer função g(x), contínua em [a, b], é integrável neste intervalo.

$$\lim_{x \to 0+} \arctan[\sin(x)] = 0$$

$$f(0) = 0$$

$$\lim_{x \to \frac{10\pi}{5}} \arctan[\sin(x)] = 0$$

$$f\left(\frac{10\pi}{5}\right) = 0$$

Como o $\lim_{x \to \frac{10\pi}{5}} f(x) = f\left(\frac{10\pi}{5}\right)$ e $\lim_{x \to 0+} f(x) = f(0)$ então a função é contínua no intervalo $\left[0, \frac{10\pi}{5}\right]$, e integrável.

 \therefore Depois de demonstrado que a função é contínua e integrável, obtivemos os valores exatos da 1ª e 2ª derivadas da função g(x), tal como indicado no *script* do **Anexo 2**, cujos resultados estão presentes na tabela da **Fig. 3**.

Ao analisar os erros obtidos, verificámos que as disparidades entre métodos e o cálculo numérico são reduzidas, uma vez que maior parte dos erros percentuais obtidos se localizam abaixo dos 10% para a primeira derivada e para a segunda, tendo apenas sido observado um erro superior a 10% na segunda derivada.

Posto isto, concluímos que os valores obtidos utilizando o Método das Diferenças Divididas de 2ª Ordem e aplicando o Primeiro Teorema Fundamental do Cálculo Integral são similares, verificando-se então que o primeiro método é de facto válido.

Anexos

Anexo 1 – Código de *MatLab* utilizado para calcular numericamente o integral.

```
1
          x=sym('x');
 2
          g=@(x) atan(sin(x));
 3
          a=0;
4
          lista_n=[0 5 13 23 35 48 63 79 97 116 135]';
 5
          i=1;
          for B=0:pi/5:10*pi/5
 6
 7
              b=B;
 8
              s=IntTrap(g,a,b,lista_n(i,1));
9
              [B s]
10
              i=i+1;
          end
11
```

Anexo 2 – Código de *MatLab* utilizado para construir a tabela do Grupo II.

```
g=[0 0.1804 0.6005 1.0888 1.5089 1.6899 1.5092 1.0891 0.6010 0.1809 0]';
2
        inicio = 0.00;
        h = pi/5;
4
        D = Deriv2(g, inicio, h);
5
6
        % Na matriz D temos: 1ª coluna x; 2ª coluna g(x); 3ª coluna: derivada numerica;
7
        % 4ª coluna: segunda derivada numerica.
8
        V = [];
        V = horzcat(V, D);
10
                             % faz concatenação de colunas: acrescenta as colunas de D a V. à direita
11
        sym 'x';
12
        glinha = @(x)(atan(sin(x)));
13
        R = flinha(D(:, 1)); % calcula os valores da 1ª derivada nos pontos x
14
15
        V = horzcat(V, R); % a 5º coluna de V tem a primeira derivada verdadeira
16
17
        g2linhas = @(x)((cos(x)./(1+sin(x).^2)));
18
        R = f2linhas(D(:,1)); % calcula os valores da 2^{\frac{1}{2}} derivada nos pontos x
19
20
                              % a 6ª coluna de V tem a segunda derivada verdadeira
21
22
        V(:, 7) = abs(V(:,3) - V(:,5)); % a 7 coluna de V tem o erro absoluto da primeira derivada
23
24
        [row_V, col_V] = size(V); % nº de linhas e colunas de V
25
        for i = 1 : col_V
26
            if (abs(V(i,5)) < 1e-6) % um valor pequeno, em vez de zero;
27
                V(i, 8) = NaN;
28
            else
29
                V(i,8) = V(i,7) / abs(V(i,5)) * 100; % o erro relativo vem em percentagem (8ª coluna)
30
31
32
        V(:,9) = abs(V(:,4) - V(:,6)); % a 9 coluna de V tem o erro absoluto da segunda derivada for i = 1 : col_V
33
34
35
            if (abs(V(i,6)) < 1e-6) % um valor pequeno, em vez de zero;
36
                V(i, 10) = NaN;
37
38
                V(i, 10) = V(i, 9) / abs(V(i, 6)) * 100; % o erro relativo vem em percentagem (10ª coluna)
39
            end
40
        end
41
42
43
        xlswrite('Trabalho_2.xlsx',V); % pode abrir este ficheiro no excel
```