

InVEST: Intelligent Visual Email Search and Triage

Jay Koven, Enrico Bertini, Luke Dubois and Nasir Memon

NYU TANDON SCHOOL OF ENGINEERING CSE Department

Presentation Outline

- Motivation
- Related Work
- New Methodology
- Initial Results
- Future Research

Motivation

Email account have grown drastically

- Free Gmail accounts are now 15GB
- Average Gmail account has >10,000 emails

Investigative datasets are even bigger

Millions of emails

Users and Investigators are becoming overwhelmed

- Finding specific information requires persistence
- Finding a "Evidence" much worse

Motivation

Email search methods haven't changed in 30 Years

- Grep / REGEX search still the core
- Long lists of results or worse no results

Machine learning is not the complete answer

- Emails are short and can be cryptic
- Techniques tend to work only on limited problems
- No clues to what was not found

Investigation Not Search!

- Starts with some knowledge but incomplete
- Must find all emails related to investigation
 - Need to know more than just content
 - Fill in the "blanks"
 - Relationships between corresponders
 - Who or what were they talking about
 - When were they talking about it
 - Need to find hidden connections

Related Research

- Machine learning analysis of text and email data
 - Unsupervised (LDA)
 - Supervised (sLDA)
- Forensic Visualizations
 - Mostly work on static data (Tableau)
- Visual Analytics
 - Overview, Zoom, Filter (Wrong direction)

Related Work

Jigsaw - Stasko et al

What is Intelligent Visual Email Search and Triage

A Methodology to investigate email data sets

- Combine different types of information into clear results
 - Content (Subjects, Body Content and Entities)
 - Social Network (Corresponders)
 - Relationships between all of the above
- Find important entities and keywords
 - Ranking
 - Guidance

How?

- Create and effective visual analytic pipeline
 - Allow the analyst to explore the data interactively
 - Immediate feedback
 - Separate corresponders from Entities
 - Show relationships between keywords, entities and corresponders
 - Give intelligent guidance through ranking

Preprocessing: Index and De-Junk

Visual Analytic Pipeline

- The starting point
- Filter and Expand
- Interacting with the results
- Cross Links between displays

Entity Extraction and Separation

- Entity Integration
 - Why separate entities from corresponders?
 - Entity Extraction Methodology (Stanford NER)
 - Entity Identification (When is Tom also Thomas?)

Intelligent Guidance

- Ranking of terms (Finding "Important")
 - For guiding analysts with list
 - Graph expansion
 - TF-IDF
 - Works (Sort of)
 - Problems
 - Should term frequency be measured by email or by returned set?
 - What makes a term important in Investigation?

InVEST Views

InVEST Views

InVEST Future Research

- User experiments
 - HCI usability testing
 - Understand the users mental models
- Improve Ranking algorithms
 - Probabilistic approach using priors?
 - Interactively Driven Clustered (Faceted) Search
- User Defined Entities

Acknowledgements

- My advisors and co-authors
- Anonymous Reviewers
- My Shepard Timothy Leschke
- NSF