<u>Lecture 4:</u> Linear transformations, Matrix algebra (book: 1.0, 1.9, 2.1).

Previous lecture: homogeneous /nonhomogeneous SUE + linear independence.

Recall the matrix-vector product:

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 13 \\ 21 \end{bmatrix}$$

$$A \qquad \underline{2} \qquad \underline{b}$$

And recall the proporties: * A(u+v) = Au+Av * A(c y) = c(Ay)

Multiplication by A transforms & ento b.

Schematic

Transformation/function/mapping

T(\approx) = y < output the cirput transformation operator.

A transformation is linear if: $*T(\underline{u}+\underline{v})=T(\underline{u})+T(\underline{v})$ $*T(\underline{c}\cdot\underline{u})=c.T(\underline{u}).$

image: T(z)
range: set of all images. $(c \cdot \underline{u} + d \cdot \underline{v}) = c \cdot T(\underline{u}) + d \cdot T(\underline{v}).$

If Tis linear, then T(0)=0.

$$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$

$$T(x) = \begin{cases} x^{2} \\ y^{2} \end{cases}.$$

$$Y = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \quad Y = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \quad T(y) = \begin{bmatrix} 6 \\ 9 \end{bmatrix} \quad T(y) = \begin{bmatrix} 16 \\ 16 \end{bmatrix} \quad T(y) + T(y) = \begin{bmatrix} 25 \\ 25 \end{bmatrix}$$

$$T(y+y) = T(\frac{77}{7}) = \begin{cases} 4 \\ 4 \end{cases} \quad \text{So, T is not } \begin{cases} 1 \\ 1 \end{cases}$$

Example: rotation about the origin through an argle ρ T(u+v)

T(u)

So, it is a linear transformation.

Example: reflection in a line through the origin, T(u+v) = T(u) + T(v).

T(u)

T(u

Example: reflection in a line not through the origin

not a linear transformation because $T(o) \neq o$.

Let's go back to the transformation of a matrix-vector product

$$Au = b$$

$$\mathbb{R}^n \to \mathbb{R}^m$$

=> Every matrix transformation is a linear transformation. The opposite is also true (at least, in the context: R^n - R^n)

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There is a unique matrix A such that for $\underline{x} \in \mathbb{R}^n$ $T(\underline{x}) = A\underline{x}$. Proof: Let $x \in \mathbb{R}^n$. $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Then, $T(\underline{x}) = T(\underline{x_1 \cdot \underline{e_1}} + \underline{x_2 \cdot \underline{e_2}} + \underline{x_3 \cdot \underline{e_3}} + \dots + \underline{x_n \cdot \underline{e_n}})$ linearity = $T(x_1e_1) + T(x_2e_2) + T(x_2e_3) + \cdots + T(x_ne_n)$ linearity = x, Te,) + x2 Te2) + x3 Te3) + + xnT(en). \Box Uniqueness of A? DIY (exc. 4, Ch.1, q). Standard matrix for the linear transformation $T: [T(e_1) - ... T \not\in N]$ Example: rotation about the origin through an argle ρ T: $\mathbb{R}^2 \to \mathbb{R}^2$

So,
$$T(\underline{e}_1) = \begin{bmatrix} \cos \varphi \end{bmatrix}$$
 So, $T(\underline{e}_2) = \begin{bmatrix} -\sin \varphi \end{bmatrix}$

So,
$$A = [T(e_1) T(e_2)] = [\cos \varphi - \sin \varphi]$$

So,
$$T(e_z) = \begin{bmatrix} -\sin \varphi \\ \cos \varphi \end{bmatrix}$$

Now it's easy to get the image of $x = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, namely $\begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 2\cos \varphi + 3\sin \varphi \\ 2\sin \varphi - 3\cos \varphi \end{bmatrix}$

Example: Suppose the standard matrix is A=50 17.

What is the geometric interpretation?

$$T(e_1) = [0 \ 1][0] = [0] = e_2$$
 $T(e_2) = [0 \ 1][0] = [1] = e_1$

Hence, the transformation is a reflection in the line y=x.

Example: Projection onto the x-axis

This is a linear transformation (DIY!) with standard matrix

with standard matrix
$$A = \left[T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

So, indeed $T([2]) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Surjectivity: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is surjective/onto if each $b \in \mathbb{R}^n$ is the image of at least one $x \in \mathbb{R}^n$.

The cruity: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is injective/one-to-one if each $b \in \mathbb{R}^m$ is the image of at most one $x \in \mathbb{R}^n$.

Theorem: Let $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

T is injective $(x) \to \mathbb{R}^m$ be a linear transformation.

Hoof Assume $(x) \to \mathbb{R}^m$ be a linear transformation.

Since $(x) \to \mathbb{R}^n$ is injective.

So, $(x) \to \mathbb{R}^n$ has only the trivial solution.

(2) By contrapositive.

Assume $(x) \to \mathbb{R}^n$ that is the image of at least two vectors in $(x) \to \mathbb{R}^n$.

So, $(x) \to \mathbb{R}^n$ that is the image of at least two vectors in $(x) \to \mathbb{R}^n$.

So, $(x) \to \mathbb{R}^n$ that is the image of at least two vectors in $(x) \to \mathbb{R}^n$.

So, $(x) \to \mathbb{R}^n$ that is the image of at least two vectors in $(x) \to \mathbb{R}^n$.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A.

 \Box

Tis injective

Tis in

Hence, $T(\infty)=0$ has also a nontrivial solution.

Note u-v +0 because u+v.

T is surjective R^m , T(x) = b has a solution. \Rightarrow for each $b \in R^m$, $A_{2x} = b$ has a solution. \Rightarrow A has a pivot in every row.

Each column of AB is a linear combination of the columns of A with the entries of the corresponding column of B being the weights.

$$\begin{bmatrix} 11 \\ -1 \end{bmatrix} = 4 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 1 \cdot \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

Note: we need # columns of A = # rows of B.

A: man 3 C = AB mxp

In general AB = BA.

Transpose: $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ A matrix is symmetric if $A^T = A$ $\begin{bmatrix} 1 & 17 \\ 1 & 17 \end{bmatrix}$ $\begin{bmatrix} 145 \\ 426 \\ 563 \end{bmatrix}$ identity matrix $T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $T_4 = \begin{bmatrix} 1 & 00 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \\ 0 & 0 & 0 \end{bmatrix}$ ATy = A $T_4 = A$ The second of the second (1988) with the second (1988) w

Power of a square (nxn) matrix $A^{k} = A \cdot A \cdot A \cdot ... \cdot A$ $A^{\circ} = I_{n}$. $k \in \mathbb{N}$ Composition of linear transformation.

T: IRn -> IRm

T: IRn -> IRm

B g/x m

 $T = T_2 \circ T_1 = T_2 \left(T_1 \right)$

Then, $T: \mathbb{R}^n \to \mathbb{R}^q$ with standard matrix $\leq q \times n$ where c = BA

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A + B = B + A$$

d.
$$r(A+B) = rA + rB$$

b.
$$(A + B) + C = A + (B + C)$$

e.
$$(r+s)A = rA + sA$$

c.
$$A + 0 = A$$

f.
$$r(sA) = (rs)A$$

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$

(associative law of multiplication)

b.
$$A(B+C) = AB + AC$$

(left distributive law)

c.
$$(B+C)A = BA + CA$$

(right distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e. $I_m A = A = A I_n$

(identity for matrix multiplication)

WARNINGS:

1. In general, $AB \neq BA$.

2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C. (See Exercise 10.)

3. If a product AB is the zero matrix, you *cannot* conclude in general that either A = 0 or B = 0. (See Exercise 12.)

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^T)^T = A$$

b.
$$(A + B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$

d.
$$(AB)^T = B^T A^T$$

The transpose of a product of matrices equals the product of their transposes in the *reverse* order.