Quantum Computing

Summary Fabian Damken July 12, 2022

Contents

1	Prel	iminaries 7
	1.1	Complex Numbers, Vectors, and Matrices
	1.2	Continued Fraction Expansion
2	Post	tulates of Quantum Mechanics
	2.1	States
	2.2	Evolution
		2.2.1 Gates
	2.3	Measurement
	2.4	Composite Systems and Tensor Products
		2.4.1 Entanglement
		2.4.2 Multi-Qubit Gates
	2.5	Protocols
		2.5.1 No-Cloning
		2.5.2 Quantum Teleportation
		2.5.3 Dense-Coding
	2.6	Why these postulates?
3	Com	nputational Complexity 9
4	Hniv	versal Computation 10
_	4.1	Classical Analogy
	4.2	Universal Quantum Gates
	1.4	4.2.1 Proof
		4.2.2 Final Gate Count
5	_	orithms 11
	5.1	Quantum Parallelism
		5.1.1 Interference
		5.1.2 The Query Unitary
		5.1.3 Deutsch's Approach
	5.2	Deutsch-Josza Algorithm
	5.3	Bernstein-Vazirani Algorithm
	5.4	Simon's Algorithm
		5.4.1 Problem
		5.4.2 Classical Approach
		5.4.3 Quantum Approach
	5.5	Quantum Fourier Transform
		5.5.1 Binary Fraction Expansion
		5.5.2 Ouantum Circuit

		5.5.3 Remarks	2
	5.6	Shor's Algorithm	2
		5.6.1 Period Finding	2
		5.6.2 From Period Finding to Factoring	3
		5.6.3 Summary	3
	5.7	Grover's Algorithm	
		5.7.1 Classical Approach	
		5.7.2 Quantum Approach	
6	Qua	ntum Error Correction 1	4
	6.1	Tackling Bit-Flips	4
	6.2	Tackling Phase-Flips	4
	6.3	Shor's Code	
		6.3.1 Universal Error Correction	4
	6.4	Steane Code	4
	6.5	Fault-Tolerance and Transversality	4
	6.6	Threshold Theorem	4
7	Qua	ntum Nonlocality	5
	7.1	Elements of Reality	5
	7.2	CHSH Inequality	5
	7.3	Quantum Violation of the CHSH Inequality	5
	7.4	Tsirelson's Bound and Quantum Key Distribution	5
8	Mea	surement-Based Quantum Computing 1	6
	8.1	Identity	6
	8.2	Arbitrary Rotations	6
	8.3	CNOT 1	6
	8.4	Cluster States	6
	8.5	Handling Errors	6
	8.6	Important Gates	6

List of Figures

List of Tables

List of Algorithms

1 Preliminaries

- 1.1 Complex Numbers, Vectors, and Matrices
- 1.2 Continued Fraction Expansion

2 Postulates of Quantum Mechanics

2.1 States
2.2 Evolution
2.2 Evolution
2.2.1 Gates
Z.Z.1 Gates
2.3 Measurement
2.4 Composite Systems and Tensor Products
2.4.1 Entanglement
NA. daim qualita
Multipartite
Graph States
2.4.2. Multi Oubit Cataa
2.4.2 Multi-Qubit Gates
2.5 Protocols
2.5.1 No-Cloning
2.5.2 Quantum Teleportation
2.5.2 Quantum releportation
Concatenated Teleportation
2.5.3 Dense-Coding
2.6 Why these postulates?

3 Computational Complexity

4 Universal Computation

Part 3/3: Approximation of Single-Qubit Gates

4.2.2 Final Gate Count

4.1 Classical Analogy		
4.2 Universal Quantum Gates		
4.2.1 Proof		
Part 1/3: Unitaries as Two-Level Unitaries		
Part 2/3: Decomposition of Two-Level Unitaries		

5 Algorithms

5.1 Quantum Parallelism		
5.1.1 Interference		
5.1.2 The Query Unitary		
5.1.3 Deutsch's Approach		
5.1.5 Deutschs Approach		
5.2 Deutsch-Josza Algorithm		
5.3 Bernstein-Vazirani Algorithm		
E A Simon's Algorithm		
5.4 Simon's Algorithm		
5.4.1 Problem		
5.4.2 Classical Approach		
5.4.3 Quantum Approach		
Circuit		
Post-Processing		
Remarks		
5.5 Quantum Fourier Transform		
5.5.1 Binary Fraction Expansion		
5.5.2 Quantum Circuit		
5.5.3 Remarks		
5.6 Shor's Algorithm		
5.6.1 Period Finding		
Using Quantum Fourier Transform		
Post-Processing		
Maximizing the $P(y)$		

Remarks 5.6.2 From Period Finding to Factoring Remarks 5.6.3 Summary 5.7 Grover's Algorithm 5.7.1 Classical Approach 5.7.2 Quantum Approach Circuit Illustration Algebraic Proof Multiple Solutions Remarks

Recovering the Period

6 Quantum Error Correction

6.1	Tackling Bit-Flips
<u> </u>	Tackling Dhaga Elina
6. Z	Tackling Phase-Flips
6.3	Shor's Code
6.3.	1 Universal Error Correction
6.4	Steane Code
6.5	Fault-Tolerance and Transversality
6.6	Threshold Theorem

7 Quantum Nonlocality

7.1 Elements of Realit

- 7.2 CHSH Inequality
- 7.3 Quantum Violation of the CHSH Inequality
- 7.4 Tsirelson's Bound and Quantum Key Distribution

8 Measurement-Based Quantum Computing

8.1	Identity	
8.2	Arbitrary Rotations	
8.3	CNOT	
8.4	Cluster States	
2 5	Handling Errors	
5.0	Transaming Erroro	
8.6	Important Gates	