Quantum search

Marten Teitsma

April 1, 2024

Contents

Assignments

2 Context

- ullet basis encoding: one number o several qubits needed
- ullet angle encoding: one number o one qubit
- amplitude encoding: n numbers $log_2(n)$ qubits needed

3 / 10

- Quantum Fourier Transform function generalised
- Inverse QFT

- \bullet Making the T-gate $\frac{1}{3} \rightarrow \frac{3}{11}$
- Making it more precise by adding two qubits $\rightarrow \frac{11}{32}$
- \bullet Experiment with CNOT \to 0 and 1

- Make a graph
- Make a max-cut \rightarrow 01101 or 10010 NB: node numbers 4, 3, 2, 1, 0
- ullet Make a max-cut ightarrow 01101 or 10010 NB: node numbers 4, 3, 2, 1, 0
- Optimise:
 - method='Nelder-Mead'
 - •

Markov chains

Transition matrix:

$$P = \begin{pmatrix} 0.1 & 0.3 & 0.3 \\ 0.1 & 0.1 & 0.2 \\ 0.8 & 0.6 & 0.5 \end{pmatrix} \tag{1}$$

Marten Teitsma Quantum search April 1, 2024 7/10

States and operators

Two states:

- ℍ₁: state which represents the position of 'the walker'
- ullet \mathbb{H} : state which represents the coin and where 'the walker' should move next

$$\mathbb{H} = \mathbb{H}_{\scriptscriptstyle |} \otimes \mathbb{H} \tag{2}$$

8/10

States and operators

Two states:

- ℍ_|: state which represents the position of 'the walker'
- II: state which represents the coin and where 'the walker' should move next

$$\mathbb{H} = \mathbb{H}_{\scriptscriptstyle 1} \otimes \mathbb{H} \tag{2}$$

Two operators:

- coin operator C: acts on \mathbb{H}_1 and puts 'the walker' in superposition so it walks all possible paths simultaneously
- ullet shift or step operator S: acts on $\mathbb H$ and moves 'the walker' to the next position

One step of the walker then becomes: U = SC.

The algorithm

We have good and bad states:

$$|G\rangle = \frac{1}{\sqrt{|M|}} \sum_{x \in M} |x\rangle |p_x\rangle, |B\rangle = \frac{1}{\sqrt{N - |M|}} \sum_{x \notin M} |x\rangle |p_x\rangle \tag{3}$$

Other parameters:

$$\epsilon = |M|/N \text{ and } \theta = \arcsin(\sqrt{\epsilon})$$
 (4)

 Set up the initial state, a uniform superposition over all edges, with Hadamard gates

$$|U\rangle = \frac{1}{\sqrt{N}} \sum_{x} |x\rangle |p_{x}\rangle = \sin\theta |G\rangle + \cos\theta |B\rangle$$
 (5)

- **2** Repeat $\mathbb{O}(\frac{1}{\sqrt{\epsilon}})$ times:
 - **1** Reflect through $|B\rangle$, by using a phase oracle
 - 2 Reflect through $|U\rangle$, by using Quantum Phase Estimation
 - Do a measurement in the computational basis

Marten Teitsma Quantum search April 1, 2024 9 / 10

Diagram of algorithm

