# Online Variants of Value Iteration and Approximation Via State Aggregation

Daniel Russo

April 13, 2020

Columbia University

## References

These slides try to synthesize material from many papers.

## Real time value iteration and optimistic exploration

- What I call "Real-time value iteration" (RTVI) is typically called 'Real time dynamic programming, due to Barto et al. [1995].
  - The regret style analysis here appears to be new. Asymptotic convergence is due to Barto et al. [1995].
- While we won't cover it, the foundations of many optimistic exploration algorithms in RL can be understood through the lens of RTVI. Some important related papers include Kearns and Singh [2002], Brafman and Tennenholtz [2002], Strehl et al. [2006], Jaksch et al. [2010], Azar et al. [2017], Jin et al. [2018].

## References

# **State Aggregation**

- Work by Gordon [1995] and Tsitsiklis and Van Roy [1996] explains that fitted value iteration converges tp a fixed point with state-aggregation, but not in general.
- Van Roy [2006] explains the crucial performance gains due to finding a fixed point in the right state-relevance distribution.
- Li et al. [2006] formalizes the notion that our assumptions that with regard to state-aggregation are weaker than e.g. assuming the model dynamics are sufficiently smooth.
- These slides are inspired by the preprint Dong et al. [2019].

## **Table of Contents**

## Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

# Where are we heading? Value function approximation



- State  $s \in \{0,1\}^{10 \times 20}$  is a board configuration.
- One approach is to fit a linear approximation:
   J\*(s) ≈ J<sub>θ</sub>(s) := φ(s)<sup>T</sup> θ.
- $\phi(s)$  encodes features. E.g. column heights, inter-column height differences, max height etc.
- Greedy action under  $J_{\theta}$  is simple: move the piece to the position with minimal estimated cost-to-go.

# Fitted Value Iteration (FVI)

## Regression based approximation to Bellman updates.

- Define the weighted norm  $||J||_{2,\nu} = \sqrt{\mathbb{E}_{s \sim \nu}[J(s)^2]}$ .
- Fitted value iteration is the scheme: for  $k = 1, 2, \cdots$

$$\theta_{k+1} \in \operatorname*{argmin}_{\theta \in \Theta} \|J_{\theta} - TJ_{\theta_k}\|_{2,\nu}$$

Equivalently, this can be viewed as a projected value iteration:

$$J_{k+1} = \Pi_{\mathcal{F},\nu} T J_k$$

where  $\mathcal{F}=\{J_{\theta}\mid \theta\in\Theta\}$  is the space of value functions approximations and  $\Pi_{\mathcal{F},\nu}J=\mathrm{argmin}_{f\in\mathcal{F}}\|f-J\|_{2,\nu}$  projects onto  $\mathcal{F}$  in a weighted norm.

6

# Sample based approximations to FVI

# In practice, we typically approximate expectations by random sampling.

- 1. Sample *n* states  $s_1, \dots, s_n \sim \rho(\cdot)$ .
- 2. For each state  $s_i$ , and each control  $u \in U(s)$ , draw m samples of the successor states  $s_{i,u}^{(1)}, \dots, s_{i,u}^{(m)} \sim P_{s_i,\cdot}(u)$ ,
- 3. For  $k = 0, 1, 2, \cdot$

$$\theta_{k+1} \in \operatorname*{argmin}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left( J_{\theta}(s_i) - \underbrace{\left( \min_{u} g(s_i, u) + \gamma \frac{1}{m} \sum_{j=1}^{m} J_{\theta_k}(s_{i, u}^{(j)}) \right)}_{\text{sample approx. to } TJ_{\theta_k}(s_i)} \right)$$

#### Comments:

- (a) If state transitions are very sparse, TJ(s) can be computed exactly.
- (b) Statistical learning theory bounds the error from random sampling.

## **Fitted Q-iteration**

## It is simpler to approximate Bellman updates to Q-functions.

Define the state-action value function:

$$Q^*(s,u) = g(s,u) + \alpha \sum_{s' \in S} P_{ss'}(u) J^*(s')$$

• Obeys the Bellman  $Q^* = FQ^*$  where

$$FQ(s,u) := g(s,u) + \alpha \sum_{s' \in S} P_{ss'}(u) \min_{u'} Q(s',u')$$

• Fitted Q iteration is the scheme: for  $k = 1, 2, \cdots$ 

$$\theta_{k+1} \in \operatorname*{argmin}_{\theta \in \Theta} \|Q_{\theta} - FQ_{\theta_k}\|_{2,\nu} \tag{1}$$

where  $\nu$  is a distribution over state, control pairs.

The Q-learning algorithm essentially makes a stochastic gradient updates rather than solving (1) exactly.

## Does this work?

- 1. Convergence to a fixed point  $\widehat{J} = \prod_{\rho,\mathcal{F}} T \widehat{J}$ ?
- 2. Does it produce an accurate approximation if  $J^*$  is "close to" the function class  $\mathcal{F}$ ?
- 3. Is the resulting policy near optimal?
- 4. How should we set the state-importance-weights  $\nu$ ?

Unfortunately . . . this procedure does not converge in general. Existing guarantees on typically performance require extremely strong assumptions.

# Plan for today

- 1. State-aggregation: a simple case of value function approximation with which fitted-value-iteration is convergent.
- 2. Understanding the state-importance-weights and how this should be adapted over time.

# State-Aggregation (a.k.a state abstraction)

- We believe  $J^*(s) \approx J^*(\tilde{s})$  if s and  $\tilde{s}$  are "similar."
- More formally, take  $\phi: \mathcal{S} \to \mathcal{S}$  to a be a mapping that associates  $s \in \mathcal{S}$  with a representative state  $\phi(s) \in \mathcal{S}$ .
  - Simple case is  $\mathcal{S}=[0,1]$  and  $\phi$  maps  $s\in[0,.01)$  to  $\phi(s)=.005,\ s\in[.01,.02)$  to  $\phi(s)=.015$  and so on.
- State aggregated value functions are

$$\mathcal{F}_{\phi} = \{ f | f(s) = f(\phi(s)) \, \forall s \} 
= \{ f | f(s) = f(\tilde{s}) \text{ if } \phi(s) = \phi(\tilde{s}) \}$$

- In the simple case described above,  $J \in \mathcal{F}_{\phi}$  is defined by the 99 values  $J(.005), J(.015), \cdots, J(.995)$ .
- $\Phi = \{\phi(s) : s \in S\} = \{1, \dots, m\}. \text{ (...w.l.o.g )}$ Set  $S_i = \{s \in S : \phi(s) = i\} \text{ for } i = 1, \dots, m.$

## **Table of Contents**

Preview of value function approximation

## Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

# Convergence of FVI with state-aggregation

#### **Theorem**

Consider the iteration

$$J_{k+1} = \Pi_{\mathcal{F}_{\phi}, \nu} T J_k \quad k = 0, 1, \cdots$$

where  $\nu(s) > 0$  for all  $s \in \mathcal{S}$ . Then,

$$||J_k - \widehat{J}||_{\infty} \le \alpha^k ||J_0 - \widehat{J}||_{\infty}$$

where  $\widehat{J}$  solves the projected Bellman equation

$$\widehat{J} = \prod_{\mathcal{F}_{\phi}, \nu} T \widehat{J}.$$

# Convergence proof

<u>Crucial fact</u>:  $\Pi_{\mathcal{F}_{\phi},\nu}$  is a non-expansion in  $\|\cdot\|_{\infty}$ .

Proof.

$$\Pi_{\mathcal{F}_{\phi},\nu}J\in\mathop{\rm argmin}_{\widehat{J}\in\mathcal{F}_{\phi}}\mathbb{E}_{s\sim\nu}\left[\left(\widehat{J}(s)-J(s)\right)^{2}\right]$$

It is solved by the conditional mean

$$\widehat{J}(i) = \mathbb{E}_{s \sim \nu} \left[ J(s) \mid s \in \mathcal{S}_i \right]$$

**Another fact:**  $\Pi_{\mathcal{F}_{\phi},\nu}$  is linear.

14

# Convergence proof

We show the projected Bellman update is a max-norm contraction. The convergence result follows immediately.

**<u>Lemma</u>**  $\Pi_{\mathcal{F}_{\phi},\nu}T$  is a contraction w.r.t  $\|\cdot\|_{\infty}$  with modulus of contraction  $\alpha$ .

Proof.

$$\|\Pi_{\mathcal{F}_{\phi},\nu}TJ - \Pi_{\mathcal{F}_{\phi},\nu}T\bar{J}\|_{\infty} = \|\Pi_{\mathcal{F}_{\phi},\nu}\left(TJ - T\bar{J}\right)\|_{\infty}$$

$$\leq \|TJ - T\bar{J}\|_{\infty}$$

$$\leq \alpha \|J - \bar{J}\|_{\infty}$$

# Approximation error bound

Is  $\hat{J}$  an effective approximation to  $J^*$ ? We compare its quality to the best possible approximation possible with state-aggregation.

#### **Theorem**

Set  $\epsilon = \|\Pi_{\mathcal{F}_{\phi},\nu}J^* - J^*\|_{\infty}$ . Then

$$\|\widehat{J} - J^*\|_{\infty} \le \frac{\epsilon}{1 - \alpha}$$

Proof.

$$\|\widehat{J} - J^*\|_{\infty} \leq \|\widehat{J} - \Pi_{\mathcal{F}_{\phi}, \nu} J^*\|_{\infty} + \|\Pi_{\mathcal{F}_{\phi}, \nu} J^* - J^*\|_{\infty}$$
$$= \|\Pi_{\mathcal{F}_{\phi}, \nu} T \widehat{J} - \Pi_{\mathcal{F}_{\phi}, \nu} T J^*\|_{\infty} + \epsilon$$
$$\leq \alpha \|\widehat{J} - J^*\|_{\infty} + \epsilon.$$

**Comment**: We can't directly compute the projection of  $J^*$ , since we don't know it. We instead solve a projected version of Bellman's equation, which leads the error bound to expand by  $1/(1-\alpha)$ .

## Performance loss bound

How effective is the greedy policy computed with respect to  $\widehat{J}$ ?

## **Theorem**

Let  $\mu \in G(\widehat{J})$  and  $\epsilon = \|\Pi_{\mathcal{F}_{\phi}, \nu} J^* - J^*\|_{\infty}$ . Then,

$$||J_{\mu} - J^*||_{\infty} \le \frac{\alpha ||\widehat{J} - J||_{\infty}}{1 - \alpha} \le \frac{\alpha \epsilon}{(1 - \alpha)^2}$$

## Proof.

The first inequality was shown last class.

# **Tightness of the Approximation Error Bound**

The dependence on  $1/(1-\alpha)^2$  is highly problematic. Unfortunately, it is tight due to an example discussed in detail in Van Roy (2006).



## **Table of Contents**

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

# Reducing performance loss via state-relevance weighting

Recall the discounted state occupancy measure

$$d_{\infty}^{\mu} = (1 - \alpha) \sum_{t=0}^{\infty} \alpha^t d_0 P_{\mu}^t.$$

We will show a natural online algorithm converges toward a fixed point

$$\widehat{J} = \Pi_{\mathcal{F}_{\phi}, d_{\infty}^{\mu}} T \widehat{J} \qquad \mu \in G(\widehat{J}).$$

This satisfies the performance loss bound

$$\mathbb{E}_{s \sim d_0} \left[ J_{\mu}(s) - J^*(s) \right] \leq \frac{\epsilon}{1 - \alpha}$$

#### Comments:

- Saves a factor of  $1/(1-\alpha)$  in the worst-case.
- The state-relevance-weighting is the fraction of time spent in a given state under the selected policy.
- This is a fixed point in {the space of cost-to-functions} × {the space of policies}.

## **Table of Contents**

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

## Real time value iteration

## Real Time Value Iteration

- Input  $J_0$
- For episode  $k = 0, 1, \cdots$ 
  - 1. Select greedy policy  $\mu_k \in G(J_k)$
  - 2. Draw random initial state  $s_0^{(k)} \sim d_0$ .
  - 3. Sample episode length  $\tau \sim \operatorname{Geom}(1-\alpha)$
  - 4. Sample  $(s_0^{(k)}, \dots, s_{\tau}^{(k)})$  by applying  $\mu_k$  for  $\tau$  timesteps.
  - 5. Make Bellman update at  $s_{\tau}^{(k)}$  (... Or at all visited states)

$$J_{k+1}(s) \leftarrow \begin{cases} TJ_k(s) & \text{if } s = s_{\tau}^{(k)} \\ J_k(s) & \text{if } s \neq s_{\tau}^{(k)} \end{cases}$$

## Real time value iteration with Q functions

 Closer to what is used in RL, since no knowledge of the environment is required to compute a greedy policy w.r.t Q.

## Real Time Value Iteration with Q functions

- Input Q<sub>0</sub>
- For episode  $k = 0, 1, \cdots$ 
  - 1. Select greedy policy  $\mu_k \in G(Q_k)$
  - 2. Draw random initial state  $s_0^{(k)} \sim d_0$ .
  - 3. Sample episode length  $\tau \sim \text{Geom}(1-\alpha)$
  - 4. Sample  $(s_0^{(k)}, \dots, s_{\tau}^{(k)})$  by applying  $\mu_k$  for  $\tau$  timesteps.
  - 5. Make Bellman update at  $s_{\tau}^{(k)}$  (...Or at all visited states)

$$Q_{k+1}(s,u) \leftarrow egin{cases} FQ_k(s,u) & ext{if } s = s_{ au}^{(k)}, u = \mu_k(s_{ au}^{(k)}) \\ Q_k(s,u) & ext{if otherwise} \end{cases}$$

# **Q**-learning

## Dropping the k superscripts for ease of notation

## Q-learning with greedy exploration

- Input initial Q
- For episode  $k = 0, 1, \cdots$ 
  - 1. Select greedy policy  $\mu \in G(Q)$
  - 2. Draw random initial state  $s_0 \sim d_0$ .
  - 3. Sample episode length  $\tau \sim \text{Geom}(1-\alpha)$
  - 4. Sample  $(s_0, \dots, s_{\tau}, s_{\tau+1})$  by applying  $\mu$  for  $\tau$  timesteps.
  - 5. Define  $u_t = \mu(s_t)$  for  $t = 0, \dots, \tau + 1$ .
  - 6. Make soft noisy Bellman update at  $s_{\tau}$  (... Or  $s_0 \cdots s_{\tau}$ )

$$Q(s_{\tau}, \mu(s_{\tau})) \leftarrow (1 - \beta_k) Q(s_{\tau}, \mu(s_{\tau})) + \beta_k \underbrace{\left[g(s_{\tau}, u_{\tau}) + \gamma \min_{u} Q(s_{\tau+1}, u)\right]}_{\text{Unbiased obsrvation of } FQ(s_{\tau}, u_{\tau})}$$

# Convergence of Real-time Value Iteration?



- Suppose the initial state is always L ( $d_0 = (1,0)$ ).
- Suppose  $J = (1,2)/(1-\alpha)$ ,
  - Greedy policy  $\mu \in G(J)$  satisfies  $\mu(s_L) = L$ .
  - The system always stays in state L
  - Also  $TJ(s_L) = J(s_L)$ .
- Suppose  $J(s_R) \leq 0$ . [... Optimism in the face of uncertainty]
  - If G(J) = (R, R) then the induced policy is optimal.
  - Otherwise, we must have  $J(s_L) < J^*(s_L)$ . Real-time VI increases the estimate  $J(s_L)$ .

## **Table of Contents**

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

# Error bounds depend on the state distribution

**Notation:** Define  $J(d) = \sum_{s \in \mathcal{S}} d(s)J(s)$ . **Lemma from last class.** For any  $J \in \mathbb{R}^n$  and policy  $\mu'$ ,

$$J - J_{\mu'} = (I - \alpha P_{\mu'})^{-1} (J - T_{\mu'} J)$$
$$J(d_0) - J_{\mu'}(d_0) = \frac{1}{1 - \alpha} (J - T_{\mu'} J) (d_{\infty}^{\mu'})$$

# Performance loss bounds that depend on the state distribution

**<u>Lemma:</u>** For any  $J \in \mathbb{R}^n$ ,  $\mu \in G(J)$  and optimal policy  $\mu^*$ ,

$$0 \leq J_{\mu} - J^* \leq \left[ (I - \alpha P_{\mu^*})^{-1} - (I - \alpha P_{\mu})^{-1} \right] (J - TJ)$$
$$0 \leq J_{\mu}(d_0) - J^*(d_0) \leq (J - TJ)(d_{\infty}^{\mu^*}) - (J - TJ)(d_{\infty}^{\mu})$$

## Proof.

Applying the earlier Lemma with  $\mu'=\mu^*$  gives

$$J - J^* = (I - \alpha P_{\mu^*})^{-1} (J - T_{\mu^*} J) \leq (I - \alpha P_{\mu^*})^{-1} (J - TJ)$$

Since  $\mu \in G(J)$ , we also have

$$J - J_{\mu} = (I - \alpha P_{\mu})^{-1} (J - T_{\mu} J) = (I - \alpha P_{\mu})^{-1} (J - T J)$$

Subtracting yields the result.

**Comment:** For our current purposes, the dependence on  $\mu^*$  is problematic, as it's unknown.

# Optimism to the rescue

Performance loss is bounded by on policy Bellman errors.

**<u>Lemma:</u>** If  $J \leq J^*$ ,  $\mu \in G(J)$ ,

$$0 \leq J_{\mu} - J^* \leq (I - \alpha P_{\mu})^{-1} (TJ - J)$$
$$0 \leq J_{\mu}(d_0) - J^*(d_0) \leq (TJ - J)(d_{\infty}^{\mu})$$

### Proof.

$$J_{\mu} - J^* \leq J_{\mu} - J = (I - \alpha P_{\mu})^{-1} (TJ - J).$$



# Regret Style Analysis of RTVI

Assumption: Optimistic initiation  $J_0 = \frac{-M}{1-\alpha}$ . (Recall  $M = \|g\|_{\infty}$ ) Keys to analysis:

• On policy sampling: The state  $s_{\tau}^{(k)}$  is sampled from  $d_{\infty}^{\mu_k}$ .

$$\mathbb{P}(s_{\tau}^{(k)} = s) = \mathbb{E}\left[\mathbb{P}(s_{\tau}^{(k)} = s \mid \tau)\right] = \mathbb{E}\left[(d_0 P_{\mu_k}^{\tau})(s)\right]$$
$$= (1 - \alpha) \sum_{t=0}^{\infty} \alpha^t (d_0 P_{\mu_k}^t(s)).$$

• **Monotonicity**: Since  $J_0 \leq TJ_0$ , we have

$$J_0 \leq TJ_0 \leq T^2J_0 \leq \cdots \leq J^*$$

and one can similarly show the iterates of RTVI are monotone:

$$J_0 \leq J_1 \leq J_2 \cdots$$

# Regret Style Analysis of RTVI

Set  $Sum(J) = \sum_{s \in S} J(s)$ . By our earlier Lemma,

$$(1-lpha)(J_{\mu_0}(d_0)-J^*(d_0)) \leq (TJ_0-J_0)(d_\infty^{\mu_0}) = \mathbb{E}\left[(TJ_0-J_0)(s_ au^{(0)})
ight] \ = \mathbb{E}\left[(J_1-J_0)(s_ au^{(0)})
ight]$$

Applying this for each episode k, and using the tower property:

$$\begin{aligned} \operatorname{Regret}(\mathrm{K}) &:= \mathbb{E}\left[\sum_{k=1}^{K} J_k(d_0) - J^*(d_0)\right] \\ &\leq (1 - \alpha)^{-1} \mathbb{E}\left[\sum_{k=0}^{K} \left(\operatorname{Sum}(J_k) - \operatorname{Sum}(J_{K+1})\right)\right] \end{aligned}$$

= 
$$(1 - \alpha)^{-1} \text{Sum}(J_0) - \text{Sum}(J_{k+1})$$
  
 $\leq (1 - \alpha)^{-1} \text{Sum}(J_0 - J^*)$ 

 $\leq \frac{2M|\mathcal{S}|}{(1-\alpha)^2}.$ 

31

 $= \mathbb{E} \left[ \operatorname{Sum}(J_1) - \operatorname{Sum}(J_0) \right]$ 

# Sketch of asymptotic analysis of RTVI

We converge to a cost-to-go function satisfying Bellman's equation at all states visited with positive probability.

Optimism implies optimality.

- Since  $\{J_k\}$  is a monotone sequence, it has a limit  $J_{\infty} \leq J^*$ .
- Let  $\mu_{\infty} \in G(J_{\infty})$  be the corresponding policy, and assume it's unique so  $\mu_k = \mu_{\infty}$  for sufficiently large k.
- Since the limit exists, we must have

$$||J_k - J_{k+1}||_{\infty} \to 0$$

This implies

$$J_k(s) - TJ_k(s) \rightarrow 0$$

for s visited with positive probability  $(d_{\infty}^{\mu_{\infty}}(s)>0).$  So

$$J_{\mu_{\infty}}(d_0)-J^*(d_0)\leq \left(TJ_{\infty}-J_{\infty}\right)\left(d_{\infty}^{\mu_{\infty}}\right)=0.$$

## **Table of Contents**

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

# Which algorithm attains this performance bound?

We use require  $\epsilon = \sup_{s} ||J^*(\phi(s)) - J^*(s)||$ .

# Real Time Value Iteration with State Aggregation

- Input  $J_0$  with  $J_0(s) = \frac{-M}{1-\alpha} \ \forall s$ . (... Recall  $M = \|g\|_{\infty}$ )
- For  $k = 0, 1, \cdots$ 
  - 1. Sample  $s_k \sim d_{\infty}^{\mu_k}$  where  $\mu_k \in G(J_k)$
  - 2. Make a conservative update to the representative state  $\phi(s_k)$ :

$$J_{k+1}(s) \leftarrow \begin{cases} TJ_k(s_k) - 2\epsilon & \text{if } \phi(s) = \phi(s_k) \\ J_k(s) & \text{if } \phi(s) \neq \phi(s_k) \end{cases}$$

#### Comments:

- Step 1 can be executed by simulating a state trajectory under a greedy policy with respect to  $J_k$ , as shown before.
- An efficient implementation only needs to store the value at the representative state.
- With Q-function variants it is easier to apply a greedy policy.

# Regret style analysis of RTVI with state-aggregation

**<u>Notation:</u>** Representative states:  $\Phi = \{\phi(s) : s \in \mathcal{S}\}\$  Sum $(J) := \sum_{s \in \Phi} J(s)$ .

The next result establishes optimism for the iterates  $J_k$  of RTVI.

**Lemma** (Optimism):  $J_k \leq J^*$  for each k.

### Proof.

We have  $J_0 \leq J^*$  by definition.

For every s with  $\phi(s)=\phi(s_0)$  (...the states we update ...),

$$J_1(s) = TJ_0(s_0) - 2\epsilon \le TJ^*(s_0) - 2\epsilon \le J^*(s)$$

where the inequality used that

$$TJ^*(s) = J^*(s) \le J^*(s_0) + |J^*(s) - J^*(\phi(s_k))| + |J^*(s_0) - J^*(\phi(s_k))|.$$

# Regret style analysis of RTVI with state-aggregation (continued)

As before, we have the bound in each episode:

$$(1 - \alpha) [J_{\mu_0}(d_0) - J^*(d_0)] \leq (TJ_0 - J_0) (d_{\infty}^{\mu_0})$$

$$= \mathbb{E} [(TJ_0 - J_0) (s_0)]$$

$$\stackrel{(*)}{=} \mathbb{E} [(J_1 - J_0) (\phi(s_0))] + 2\epsilon$$

$$= \mathbb{E} [\operatorname{Sum}(J_1) - \operatorname{Sum}(J_0)] + 2\epsilon$$

The equality (\*) uses that by the definition of the algorithm

$$J_1(\phi(s_0)) = TJ_0(s_0) - 2\epsilon.$$

# Regret style analysis sof RTVI (continued)

Applying this for each episode k, and using the tower property:

$$\operatorname{Regret}(K) := \mathbb{E}\left[\sum_{k=1}^{K} J_{\mu_{k}}(d_{0}) - J^{*}(d_{0})\right]$$

$$\leq \frac{1}{1-\alpha} \mathbb{E}\left[\sum_{k=0}^{K} \left(\operatorname{Sum}(J_{k+1}) - \operatorname{Sum}(J_{K})\right)\right] + \frac{2K\epsilon}{1-\alpha}$$

$$= \frac{\operatorname{Sum}(J_{k+1}) - \operatorname{Sum}(J_{0})}{1-\alpha} + \frac{2K\epsilon}{1-\alpha}$$

$$\leq \frac{\operatorname{Sum}(J^{*} - J_{0})}{1-\alpha} + \frac{2K\epsilon}{1-\alpha}$$

$$\leq \frac{2M|\Phi|}{(1-\alpha)^{2}} + \frac{2K\epsilon}{1-\alpha}.$$

We see that average regret scales as

$$\limsup_{K \to \infty} \frac{\operatorname{Regret}(K)}{K} \leq \frac{2\epsilon}{1-\alpha}$$

- Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos.

  Minimax regret bounds for reinforcement learning. In

  Proceedings of the 34th International Conference on Machine

  Learning-Volume 70, pages 263–272. JMLR. org, 2017.
- Andrew G Barto, Steven J Bradtke, and Satinder P Singh.

  Learning to act using real-time dynamic programming. *Artificial intelligence*, 72(1-2):81–138, 1995.
- Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal reinforcement learning. *Journal of Machine Learning Research*, 3(Oct): 213–231, 2002.
- Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Provably efficient reinforcement learning with aggregated states. *arXiv* preprint arXiv:1912.06366, 2019.

- Geoffrey J Gordon. Stable function approximation in dynamic programming. In *Machine Learning Proceedings 1995*, pages 261–268. Elsevier, 1995.
- Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(Apr):1563–1600, 2010.
- Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? In *Advances in Neural Information Processing Systems*, pages 4863–4873, 2018.
- Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. *Machine learning*, 49(2-3):209–232, 2002.
- Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a

- unified theory of state abstraction for mdps. In *In Proceedings* of the Ninth International Symposium on Artificial Intelligence and Mathematics. Citeseer, 2006.
- Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-free reinforcement learning. In *Proceedings of the 23rd international conference on Machine learning*, pages 881–888, 2006.
- John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic programming. *Machine Learning*, 22 (1-3):59–94, 1996.
- Benjamin Van Roy. Performance loss bounds for approximate value iteration with state aggregation. *Mathematics of Operations Research*, 31(2):234–244, 2006.