1. 有监督学习

- 1.1 介绍
- 1.2 符号和概念
- 1.3 线性模型(Linear models)
 - 1.3.1 线性回归(Linear regression)
 - 1.3.2 分类和逻辑回归
 - 1.3.3 广义线性模型(Generalized Linear Models)
- 1.4 支持向量机(Support Vector Machines)
- 1.5 生成学习(Generative Learning)
 - 1.5.1 高斯判别分析(Gaussian Discriminant Analysis)
 - 1.5.2 朴素贝叶斯(Naive Bayes)
- 1.6 基于树方法和集成方法
- 1.7 其他非参数方法
- 1.8 学习理论

1. 有监督学习

1.1 介绍

给定数据点集合 $\{x^{(1)},\dots,x^{(m)}\}$ 和输出集合 $\{y^{(1)},\dots,y^{(m)}\}$, 我们想建立一个分类器 , 让它学习如何从 x 预测 y_{\circ}

• 预测类型(Type of prediction)

不同类型的预测模型见下表:

模型	输出	例子
回归	连续	线性回归
分类器	类别	逻辑回归、支持向量机、朴素贝叶斯

• 模型类型(Type of model)

模型	目标	例子
判别式	估计 $P(y x)$	各种回归、支持向量机
生成式	预测 $P(x y)$ 用于推断 $P(y x)$	GDA,朴素贝叶斯

1.2 符号和概念

• 假设(Hypothesis)

记一个假设 h_{θ} ,是我们选择的模型。对于给定的输入 $x^{(i)}$,模型预测结果是 $h_{\theta}(x^{(i)})$ 。

• 损失函数(Loss function)

损失函数 $L:(z,y)\in\mathbb{R}\times Y\mapsto L(z,y)\in\mathbb{R}$, 把预测值 y 和真实值 z 作为输入,输出他们的差异程度。常见的损失函数见下表:

二乘法	Logistic	Hinge	交叉熵
$rac{1}{2}(y-z)^2$	$\log(1+\exp(-yz))$	$\max(0,1-yz)$	$-[y\log(z)+(1-y)\log(1-z)]$
$y\in\mathbb{R}$	y = -1 $y = 1$	y = -1 $y = 1$ $y = 1$	y = 0 $y = 0$ $y = 1$
线性回归	逻辑回归	支持向量机	神经网络

• 代价函数(Cost function)

代价函数 J 通常用于表示模型的性能,和损失函数 L 一起,定义如下:

$$oxed{J_{ heta} = \sum_{i=1}^m L(h_{ heta}(x^{(i)}, y^{(i)}))}$$

• 梯度下降法(Gradient descent)

若学习率 $\alpha \in \mathbb{R}$, 梯度下降法更新规则用学习率和代价函数 J 表示:

$$\theta \leftarrow \theta - \alpha \nabla J(\theta)$$

备注:随机梯度下降算法(Stochastic gradient descent, SGD)基于每个训练数据更新参数,而批量梯度下降法(batch gradient descent)是基于批量数据。

• 似然(Likelihood)

模型的似然 $L(\theta)$ 是 通过将其最大化找到最优的参数 θ 。 在实际过程中,我们一般用对数似然 $\ell(\theta) = \log(L(\theta))$,更容易优化,表示如下:

$$\overline{ heta^{opt} = rg \max_{ heta} L(heta)}$$

• 牛顿迭代法(Newton's algorithm)

牛顿迭代法是一种数值方法,找到一个 θ , 使 $\ell'(\theta)=0$ 。它的更新规则如下:

$$\theta \leftarrow \theta - \frac{\ell'(\theta)}{\ell''(\theta)}$$

备注:多维泛化(multidimensional generalization),也被称作牛顿-拉夫逊迭代法(Newton-Raphson method),更新规则如下:

$$\theta \leftarrow \theta - (\nabla_{\theta}^2 \ell(\theta)^{-1} \nabla_{\theta} \ell(\theta))$$

1.3 线性模型(Linear models)

1.3.1 线性回归(Linear regression)

我们假设 $y|x; \theta \sim \mathcal{N}(\mu, \sigma^2)$ 。

• 正则方程(Normal equations)

矩阵 X,代价函数最小值 θ 是一个闭式方案:

$$heta = (X^T X)^{-1} X^T y$$

• 最小二乘法(LMS algorithm)

记学习率 α , 对于 m 个数据点的训练集 , 最小二乘法更新规则 (也叫做Widrow-Hoff学习规则) , 如下 :

$$\boxed{ orall , heta_j \leftarrow + lpha \sum_{i=1}^m [y^(i) - h_ heta(x^{(i)})] x_j^{(i)} }$$

• 局部加权回归(Locally Weighted Regression)

局部加权回归,即LWR,是线性回归的一种变体,它将每个训练样本的代价函数加权为 $\omega^{(i)}(x)$,用参数 $\tau\in\mathbb{R}$ 可定义为:

$$\omega^{(i)}(x) = \exp(-rac{(x^{(i)}-x)^2}{2 au^2})$$

1.3.2 分类和逻辑回归

• 激活函数(Sigmoid function)

激活函数 g, 即逻辑函数, 定义如下:

$$orall z \in \mathbb{R}, \ g(z) = rac{1}{1+e^{-z}} \in [0,1]$$

• 逻辑回归(Logistic regression)

假设 $y|x;\theta \in Bernoulli(\phi)$, 表示如下:

$$oxed{\phi = p(y=1|x; heta) = rac{1}{1+\exp(- heta^T x)} = g(heta^T x)}$$

备注:逻辑回归中没有闭式方案。

• SOFTMax回归(Softmax regression)

SOFTMax回归,也被称为多元逻辑回归,用于处理输出类别多于2个的多分类问题。按照惯例,设 $\theta_K=0$,每个类 i 的伯努力参数 ϕ_i :

$$\phi_i = rac{\exp(heta_i^T x)}{\sum\limits_{j=1}^K \exp(heta_j^T x)}$$

1.3.3 广义线性模型(Generalized Linear Models)

• 指数族(Exponential family)

如果一个分布可以用自然参数表示,那么这类分布可以叫做指数族,也被称为正则参数(canonical parameter)或连接函数(link function)。记 η ,素数统计量 $T(\eta)$ 和对数划分函数 $\alpha(\eta)$,表示如下:

$$p(y;\eta) = b(y) \exp(\eta T(y) - lpha(\eta))$$

备注:通常情况 T(y)=y。同样的, $\exp(-\alpha(\eta))$ 可以看作正则化参数,使得概率结果是1。

常用的指数分布见下表:

分布	η	T(y)	$lpha(\eta)$	$b(\eta)$
伯努力	$\log(rac{\phi}{1-\phi})$	y	$\log(1+\exp(\eta))$	1
高斯	μ	y	$\frac{\eta^2}{2}$	$\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right)$
泊松	$\log(\lambda)$	y	e^{η}	$\frac{1}{y!}$
几何	$\log(1-\phi)$	y	$\log(rac{e^{\eta}}{1-e^{\eta}})$	1

• 广义线性模型(Assumptions of GLMs)

广义线性模型的目标是预测一个随机变量 y, 作为 $x \in \mathbb{R}$ 的函数, 并且依赖于下面3个假设

$$(1)\left[y|x; heta\sim ExpFamily(\eta)
ight](2)\left[h_{ heta}(x)=E[y|x; heta]
ight](3)\left[\eta= heta^Tx
ight]$$

备注:普通最小二乘法和逻辑回归是GLM的特例。

1.4 支持向量机(Support Vector Machines)

支持向量机是为了找到一条线,使最小距离最大化。

• 最优间隔分类器(Optimal margin classifier)

最优间隔分类器 h 定义如下:

$$h(x) = sign(\omega^T x - b)$$

其中 $(\omega,b)\in\mathbb{R}^n imes\mathbb{R}$ 是下面两个最优问题的解:

备注:线定义 $\overline{\omega^T x - b = 0}$ 。

• Hinge损失

支持向量机的Hinge损失定义如下:

$$L(z,y) = [1-yz]_+ = \max(0,1-yz)$$

• 核(Kernel)

给定特征映射 ϕ , 核 K 定义如下:

$$K(x,z) = \phi(x^T)\phi(z)$$

在实际问题中,高斯核 $K(x,z)=\exp(-rac{\|x-z\|^2}{2\sigma^2})$ 最常用:

Non-linear separability \longrightarrow Use of a kernel mapping ϕ \longrightarrow Decision boundary in the original space

备注:我们使用"核技巧"去计算损失函数,因为我们不需要知道明确的图 ϕ , 通常非常复杂。相反的,只需要 K(x,z)的值。

• 拉格朗日(Lagrangian)

我们定义拉格朗日 $\mathcal{L}(\omega,b)$ 如下:

$$oxed{\mathcal{L}(\omega,b) = f(\omega) + \sum_{i=1}^{l} eta_i h^i(\omega)}$$

备注:系数 β_i 称为拉格朗日乘数。

1.5 生成学习(Generative Learning)

生成模型首先尝试通过估计 P(x|y) 去了解数据如何生成,而后我们可以通过贝叶斯规则估计 P(y|x)。

1.5.1 高斯判别分析(Gaussian Discriminant Analysis)

• 设置

高斯判别分析假设存在 y 并且 x|y=0 、 x|y=1 , 满足:

$$egin{aligned} egin{aligned} y \sim Bernoulli(\phi) \ & \ x|y=0 \sim \mathcal{N}(\mu_0,\sum) \ & \ x|y=1 \sim (m_1,\sum) \end{aligned}$$

估计

最大似然估计统计如下:

$\widehat{\phi}$	$\widehat{\mu_j}(j=0,1)$	\sum
$\frac{1}{m} \sum_{i=1}^m 1_{\{y^{(i)}=1\}}$	$rac{\sum_{i=1}^m 1_{\{y^{(i)}=j\}} x^{(i)}}{\sum_{(i=1)}^m 1_{\{y^{(i)}=j\}}}$	$rac{1}{m} \sum\limits_{i=1}^m (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^T$

1.5.2 朴素贝叶斯(Naive Bayes)

假设

朴素贝叶斯假设每个数据点的特征都相互独立的:

$$oxed{P(x|y)=P(x_1,x_2,\ldots|y)=P(x_1|y)P(x_2|y)\ldots=\prod_{i=1}^nP(x_i|y)}$$

求解

当 $k \in \{0,1\}, l \in [1,L]$ 时,最大似然估计给出了如下解决方案:

$$P(y=k) = \frac{1}{m} \times \#\{j|y^{(j)}=k\}$$

$$P(y=k) = rac{1}{m} imes \#\{j|y^{(j)}=k\}$$
 $P(x_i=l|y=k) = rac{\#\{j|y^{(j)=k}\ and\ x_i^{(j)}=l\}}{\#\{j|y^{(j)}=k\}}$

备注:朴素贝叶斯广泛用于文字分类。

1.6 基于树方法和集成方法

即可用于回归,又可用于分类的方法。

决策树

分类和回归树(CART),非常具有可解释性特征。

Boosting

其思想就是结合多个弱学习器,形成一个较强的学习器。

• 随机森林

在样本和所使用的特征上采用Bootstrap,与决策树不同的是,其可解释性较弱。

1.7 其他非参数方法

• k-近邻法(k-nearest neighbors)

数据点的特性由它周围 k 个邻居决定。

备注:参数k越高,偏差越大;参数k越低,变量越高。

1.8 学习理论

• 联合界(Union bound)

假设 A_1, \ldots, A_k 是 k 个事件,则有:

• Hoe - Pid不等式(Hoeffding inequality)

假设 Z_1,\ldots,Z_m 是伯努力分布 ϕ 的 m 个变量。假设 $\widehat{\phi}$ 是他们采样均值 , 并且固定 $\gamma>0$ 。我们得到 :

$$\left|P(|\phi-\widehat{\phi}|>\gamma)\leqslant 2\exp(-2\gamma^2m)
ight|$$

备注:此不等式又叫做切尔诺绑定(Chernoff bound)。

• 训练误差(Training error)

对于给定的分类器 h, 我们定义训练误差 为 $\hat{\epsilon}(h)$, 也被称作"经验风险"或"经验误差",如下所示:

$$\hat{\epsilon}(h) = rac{1}{m} \sum_{i=1}^m 1_{\{h(x^{(i)})
eq y^{(i)}\}}$$

Probably Approximately Correct (PAC)

PAC是经过无数结果在学习理论得到验证的框架,有如下假设:

- 测试和训练集合遵循相同的分布
- 训练样本是独立绘制的
- 样本打散(Shattering)

给定集合 $S=\{x^{(1)},\ldots,x^{(d)}\}$, 给定分类器 $\mathcal H$, 我们可以说 $\mathcal H$ 用标签 $\{y^{(1)},\ldots,y^{(d)}\}$ 打散 S , 我们得到:

$$oxed{\exists h \in \mathcal{H}, orall i \in [1,d], h(x^{(i)}) = y^{(i)})}$$

• 上限法(Upper bound theorem)

假设 \mathcal{H} 是一个奈特假说类 , $|\mathcal{H}|=k$, 假设 δ 和样本数量 m 是固定的。然后 , 概率至少 $1-\delta$, 我们得到 :

$$oxed{\epsilon(\widehat{h}) \leqslant \left(\min_{h \in \mathcal{H}} \in (h)
ight) + 2\sqrt{rac{1}{2m} \mathrm{log}igg(rac{2k}{\delta}igg)}}$$

• VC维(VC dimension)

给定假设类 \mathcal{H} 的VC(Vapnik-Chervonenkis)维,用 $VC(\mathcal{H})$ 表示 \mathcal{H} 打散的最大集合:

备注:如果 \mathcal{H} 是2维空间的线性分类器集合,则 \mathcal{H} 的VC维是3。

Theorem (Vapnik)

假设给定的 \mathcal{H} , 其中 $VC(\mathcal{H}) = d$, 训练样本数量 m。最小概率 $1 - \delta$, 我们得到:

$$\boxed{\epsilon(\widehat{h}) \leqslant \left(\min_{h \in \mathcal{H}} \in (h)\right) + O\sqrt{\frac{d}{m} \mathrm{log}\!\left(\frac{m}{d}\right) + \frac{1}{m} \mathrm{log}\!\left(\frac{1}{\delta}\right)}}$$