Lab 13 26-10-2022

October 26, 2022

1 Multiple Regression

```
[9]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1.1 Load Dataset

```
[5]: df = pd.read_csv('FuelConsumption.csv')
df.info
```

]: <bound r<="" td=""><td>nethod DataFram</td><td>e.info of</td><td>MODELYEAR MAKE</td><td>MODEL</td></bound>	nethod DataFram	e.info of	MODELYEAR MAKE	MODEL
VEHICLE	CLASS ENGINESI	ZE CYLINDERS	S \	
0	2014 ACURA	ILX	COMPACT	2.0 4
1	2014 ACURA	ILX	COMPACT	2.4 4
2	2014 ACURA	ILX HYBRID	COMPACT	1.5 4
3	2014 ACURA	MDX 4WD	SUV - SMALL	3.5 6
4	2014 ACURA	RDX AWD	SUV - SMALL	3.5 6
•••		•••	•••	•••
1062	2014 VOLVO	XC60 AWD	SUV - SMALL	3.0 6
1063	2014 VOLVO	XC60 AWD	SUV - SMALL	3.2 6
1064	2014 VOLVO	XC70 AWD	SUV - SMALL	3.0 6
1065	2014 VOLVO	XC70 AWD	SUV - SMALL	3.2 6
1066	2014 VOLVO	XC90 AWD	SUV - STANDARD	3.2 6
TRA	ANSMISSION FUEL	ΓΥΡΕ FUELCON	SUMPTION_CITY FUELO	CONSUMPTION HWY \
0	AS5	Z	9.9	6.7
1	M6	Z	11.2	7.7
2	AV7	Z	6.0	5.8
3	AS6	Z	12.7	9.1
4	AS6	Z	12.1	8.7
•••			***	•••
1062	AS6	X	13.4	9.8
1063	AS6	X	13.2	9.5
1064	AS6	X	13.4	9.8
1065	AS6	X	12.9	9.3

1066	AS6 X	14.9	10.2
	FUELCONSUMPTION_COMB	FUELCONSUMPTION_COMB_MPG	CO2EMISSIONS
0	8.5	33	196
1	9.6	29	221
2	5.9	48	136
3	11.1	25	255
4	10.6	27	244
•••		•••	•••
1062	11.8	24	271
1063	11.5	25	264
1064	11.8	24	271
1065	11.3	25	260
1066	12.8	22	294

[1067 rows x 13 columns]>

1.2 Feature Selection

[11]:	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HWY	\
0	2.0	4	9.9	6.7	
1	2.4	4	11.2	7.7	
2	1.5	4	6.0	5.8	
3	3.5	6	12.7	9.1	
4	3.5	6	12.1	8.7	

```
FUELCONSUMPTION_COMB CO2EMISSIONS
0
                     8.5
                                   196
                     9.6
1
                                   221
2
                     5.9
                                   136
3
                    11.1
                                   255
4
                    10.6
                                   244
```

1.3 Extraction of variables

```
[12]: x = sdf.iloc[:, :-1].values
y = sdf.iloc[:, -1].values
print(x)
print(y)
```

```
[[ 2. 4. 9.9 6.7 8.5]
[ 2.4 4. 11.2 7.7 9.6]
```

```
[ 1.5 4. 6. 5.8 5.9]
...
[ 3. 6. 13.4 9.8 11.8]
[ 3.2 6. 12.9 9.3 11.3]
[ 3.2 6. 14.9 10.2 12.8]]
[196 221 136 ... 271 260 294]
```

1.4 Correlation using heatmap

[13]: sns.heatmap(sdf.corr(),annot=True)

[13]: <AxesSubplot:>

1.5 Splitting Dataset

```
[14]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=1/3,u
arandom_state=0)
```

1.6 Training

```
[15]: from sklearn.linear_model import LinearRegression
    regression = LinearRegression()
    regression.fit(x_train, y_train)
```

[15]: LinearRegression()

1.7 Prediction

```
[16]: y_pred= regression.predict(x_test)
x_pred= regression.predict(x_train)
```

1.7.1 finding regression coefficients

```
[18]: print("Coefficient:", regression.coef_)
print("Intercept:",regression.intercept_)
```

Coefficient: [10.8547316 7.65914224 -11.21595269 -10.47231908 31.14100197] Intercept: 64.88135054065862

1.8 Visualisation

1.8.1 Regression Plot

```
[36]: sns.regplot(x=y_test, y=y_pred, ci=None, scatter_kws={"color": "g"}, ⊔

→line_kws={"color": "black"})
```

[36]: <AxesSubplot:>

1.8.2 kde plot

[27]: ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
sns.distplot(y_pred, hist=False, color="b", label="Fitted Values", ax=ax1)

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

[27]: <AxesSubplot:ylabel='Density'>

1.9 Evaluation

```
[23]: print('Residual sum squares %.2f' % np.mean((y_pred - y_test) **2 ))

Residual sum squares 617.32
[29]: print(regression.score(x_test, y_test))
```

0.8426468641660053