Спецификация модуля приемника SL-канала SlReciever

Василий Мочалов Версия 1.1, 15.12.2017

Оглавление

1. Описание	1
2. Описание верхнего уровня	1
3. Программная модель	
3.1. Служебный регистр	2
3.2. Регистр полученных данных	3
4. Работа с программной моделью	3
4.1. Запись и чтение регистров	3
4.2. Прием сообщений	4
4.3. Прием сообщений с ошибкой	5
4.4. Смена конфигурации	6
4.5. Работа с прерываниями	6
4.6. Выключение модуля	6
5. Принцип работы	7
6. Алгоритм работы	7
6.1. Смена конфигурации и сброс прерываний	9
6.2. Прием сообщения	9
6.3. Устранение дребезга	9
6.4. Ошибка уровня	10
6.5. Формирование запроса на прерывание	10

1. Описание

Данный проект подразумевает реализацию RTL-описания на языке Verilog одноканального приемника SL-канала. Приемник принимает SL-сообщения. Сообщения могут содержать информацию четной разрядности от 8 до 32 разрядов. Разряд четности проверяется автоматически. Приемник способен принимать сообщения с частотой импульсов от 500кГц до 2МГц (при частоте тактового сигнала = 16МГц).

2. Описание верхнего уровня

Таблица 1. Порты цифрового модуля SlReciever

Название	Тип	Разрядност ь	Значение после сброса	Описание
rst_n	In	1	-	Асинхронный общий сигнал сброса
clk	In	1	-	Сигнал тактовой частоты
addr	In	1	-	Сигнал выбора регистра
wr_en	In	1	-	Сигнал разрешения записи
SL0	In	1	-	Сигнал нулей SL канала
D_in	In	32	-	Шина данных для записи в регистры
SL1	in	1	-	Сигнал единиц SL канала
irq	Out	1	b0	Сигнал запроса на прерывание
D_out	Out	32	h0000_0000	Шина данных для чтения регистров

1. Описание стр. 1 из 10

3. Программная модель

Пользователю для работы доступно два регистра:

- Служебный (config_status_r)
- Данных к отправке (buffered_data_r)

3.1. Служебный регистр

Служебный регистр состоит из двух частей - конфигурации и состояния. Части отвечающей за конфигурацию соответствуют младшие 16 разрядов, части состояния старшие.

Таблица 2. Назначение разрядов конфигурационной части служебного регистра (**config_status_r** [15:0])

Bit	15-13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	- IRQM[4:0]				PCE			BC[5:0]			SR	
Mode	R			R/W			R/W			R/	T A 7			R/W
	1			IC/ VV			14/ ۷۷			IX/	vv			IX/ VV

Описание разрядов регистра конфигурационной части служебного регистра (config_status_r [15:0])

- 1. **SR** (soft reset) включает (**SR** = 0) и выключает (**SR** = 1) приемник
- 2. **BC** (bit count) количество разрядов данных в принимаемом сообщении
- 3. **IRQM** (interrupt request mask) маска разрядов причин прерываний. Задает, какие именно разряды причин прерываний вызывают запрос на прерывание. Описание разрядов причин прерываний можно посмотреть в таблице назначения разрядов части состояния служебного регистра. Соответствие разрядов поля IRQM и разрядов причин прерываний можно посмотреть в соответствующей таблице
- 4. PCE (parity check enable) включение (PCE = 1) или выключение(PCE = 0) контроля четности

Таблица 3. Назначение разрядов части состояния служебного регистра (config_status_r [31:16])

Bit	31-30	29	28	27	26	25	24	23-18	17	16
Name	-	-	IRQICC	IRQLE	IRQWLC	IRQPEM	IRQRM	-	PEF	WRP
Mode	R	R	R/W0	R/W0	R/W0	R/W0	R/W0	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0

Описание разрядов части состояния служебного регистра (config_status_r [31:16])

- 1. WRP (word receiving process) разряд идущего процесса приема слова по SL-каналу.
- 2. **PEF** (parity error flag) разряд наличия ошибки четности в хранящемся в буфере сообщении.
- 3. **IRQRM** (interrupt request of recieved message) разряд запроса на прерывание успешно принятого сообщения.
- 4. **IRQPEM** (interrupt request of parity error message) разряд запроса на прерывание принятого сообщения не прошедшего проверку четности.

- 5. **IRQWLC** (interrupt request of word length check) разряд запроса на прерывание принятого сообщения неверной длинны.
- 6. **IRQLE** (interrupt request of level error on line) разряд запроса на прерывание ошибки уровня напряжения на линии SL-канала.
- 7. **IRQICC** (interrupt request of incorrect configuration change) разряд запроса на прерывание попытки установить некорректную конфигурацию.

Разряды **IRQRM**, **IRQPEM**, **IRQWL**, **IRQLE**, **IRQWCC** и **IRQICC** отражают зарегистрированные приемником события. Более подробно события описаны разделе Работа с программной моделью → Работа с прерываниями.

Таблица 4. Соответствие разрядов IRQM [4:0] и маскирования разрядов причин прерываний

Разряд поля IRQM	Маскируемый разряд
IRQM0	IRQRM
IRQM1	IRQPEM
IRQM2	IRQWLC
IRQM3	IRQLE
IRQM4	IRQICC

3.2. Регистр полученных данных

Таблица 5. Назначение разрядов регистра полученных данных (buffered_data_r)

Bit	31 - 0
Name	DATA
Mode	R
Initial	0

Описание разрядов регистра полученных данных (buffered_data_r)

DATA - полученные данные

4. Работа с программной моделью

4.1. Запись и чтение регистров

Управление модулем осуществляется путем записи или чтения регистров.

Для считывания текущего значения одного из регистров блока необходимо подать на порт addr адрес регистра, указанный в таблице, длительностью не меньше такта опорной тактовой частоты clk. Значение регистра будет сформировано на шине D_out через такт опорной частоты после фронта сигнала на шине addr.

Для записи значения в служебный регистр блока необходимо сформировать:

- на порт *addr* адрес выбранного регистра,
- на шине *D_in* записываемую информацию,
- на порт *wr_en* значение 1.

Запись в регистр полученных (buffered_data_r) данных игнорируется.

Также на на шине d_out через такт опорной частоты *clk* после фронта сигнала на шине *addr* будет сформировано значение записанного регистра. Значение шины d_out будет соответствовать значению последнего опрошенного или записанного регистра до формирования следующего запроса.

Рисунок 1. Временная диаграмма чтения и записи регистров модуля SlReciever

Таблица 6. Адреса регистров

Значение сигнала addr	Выбранный регистр
b0	регистр данных (buffered_data_r)
b1	служебный регистр (config_status_r)

4.2. Прием сообщений

Для приема сообщений с включенным контролем четности необходимо:

- 1. Записать в регистр **config_r** необходимые настройки длины слова и контроля четности (см. раздел "Смена конфигурации")
- 2. Дождавшись запроса на прерывания вызванного успешным приемом сообщения, или, работая по таймеру и периодически опрашивая регистр состояния, убедится, что сообщение было принято (**IRQRM** == 1).
- 3. Считать принятое сообщение из регистра полученных данных (buffered_data_r).
- 4. Сбросить поле причины прерывания **IRQRM**. Возможна работа без сбрасывания поля **IRQRM**, но тогда вы не сможете отличить заново принятое сообщение от принятого в прошлый раз.
- 5. Ожидать следующее сообщение.

Для приема сообщений с отключенным контролем четности необходимо:

- 1. Записать в регистр **config_r** необходимые настройки длины слова и контроля четности (см. раздел "Смена конфигурации")
- 2. Дождавшись запроса на прерывания вызванного успешным приемом сообщения или приемом сообщения с ошибкой контроля етности, или, работая по таймеру и периодически опрашивая регистр состояния, убедится, что сообщение было принято (**IRQRM** == 1 или **IRQPEM** == 1).
- 3. Считать принятое сообщение из регистра полученных данных (buffered_data_r).
- 4. Сбросить поля причин прерывания **IRQRM** и **IRQPEM**. Возможна работа без сбрасывания этих полей, но тогда вы не сможете отличить заново принятое сообщение от принятого в прошлый раз.
- 5. Ожидать следующее сообщение.

Если вы работаете с отключенным контролем четности периодически опрашивая регистр состояния по таймеру, может возникнуть следующая ситуация - между двумя опросами может прийти два сообщения, одно с ошибкой четности другое нет. В этом случае оба поля **IRQRM** и **IRQPEM** будут равны единице. В этом случае, чтобы узнать, присутствует ли ошибка четности в принятом сообщении следует воспользоваться полем **PEF**.

В случае когда поле ВС служебного регистра не равно 32, принятым сообщением являются младшие разряды регистра данных (**buffered_data_r [BC-1:0]**).

Успешным приемом сообщения называется прием сообщения с совпадающим со значением поля **BC** количеством информационных разрядов и, если включен контроль четности (**PCE** = 1), верной четностью.

В случае, если успешно принято сообщение с правильной четностью выставляются разряды **IRQRM** = 1 и **WRP** = 0. Если контроль четности отключен и принято сообщение с неправильной четностью, выставляются разряды **IRQPEM** = 1, **PEF** = 1 и **WRP** = 0.

4.3. Прием сообщений с ошибкой

В случае приема сообщения с ошибкой выставляются следующие разряды:

- Если контроль четности включен и принято сообщение с ошибкой четности IRQPEM = 1
- Принято сообщение с несовпадающим с конфигурацией количеством разрядов IRQWLC = 1

Регистр данных при этом не обновляется и продолжает хранить последнее успешно принятое сообщение.

В случае, если во время приема произошла ошибка уровня, выставляется флаг **IRQLEF** = 1. Модуль вернется в режим ожидания сообщения только когда уровень на линиях будет восстановлен. До этого момента попытка сброса разряда причины прерывания **IRQLEF** будет игнорирована.

4.4. Смена конфигурации

В конфигурационной части служебного регистра могут быть установлены контроль четности, длина слова, маскировка причин запроса прерывания или осуществлен сброс модуля к исходным настройкам.

Для изменения конфигурации приемник необходимо записать новые параметры в служебный регистр. Если изменение конфигурации происходит во время приема сообщения, то прием не прерывается, при поступлении синхроимпульса корректность принятого.

В случае, если во время приема произошла попытка изменить поля **PCE** и **BC** и новая конфигурация неверна, выставляется разряды **IRQICC**, поля **PCE** и **BC** остаются неизменными.

Некорректной считается конфигурация с нечетными длинами слова или длиной слова лежащей вне промежутка от 8 до 32 разрядов. При попытке записать подобную конфигурацию будет выставлен разряд **IRQICC** = 1, а поля **BC** и **PCE** останутся неизменными.

4.5. Работа с прерываниями

Запрос прерывания происходит, когда произошло одно из событий и разряд причины прерываний соответствующий этому событию не замаскирован. Узнать какое именно событие вызвало запрос на прерывание можно в полях причин прерываний служебного регистра.

События соответствующие разрядам причин прерываний

- IRQRM Было принято полностью корректное сообщение
- IRQPEM Было принято сообщение с верной длинной и ошибкой четности
- IRQWLC Было принято сообщение не прошедшее проверку длины полученного слова.
- IRQLE Во время приема сообщения произошла ошибка уровня на линии (равенство полю BC)
- IRQICC Была предпринята попытка записать некорректную конфигурацию в конфигурационный регистр

Для сброса прерывания необходимо записать 0 в разряды причин прерываний, которые необходимо сбросить.

Более подробно работа прерываний рассмотрена в разделе Алгоритм работы.

4.6. Выключение модуля

Чтобы выключить модуль необходимо записать 1 в разряд **SR** служебного регистра.

Если сделать это во время отправки сообщения, прием прекращается. Служебный регистр возвращается в начальное состояние, регистр данных сбрасывается.

5. Принцип работы

На каждом такте значение со входов записывается в сдвиговые регистры линий SLO или SL1.

Прием сообщения обеспечивается двумя состояниями: ожидания импульса и приема импульса. Переход между состояниями происходит когда содержимое сдвиговых регистров линий соотвествует маске, таким образом устраняется дребезг сигнала.

В состоянии обработки импульса используется счетчик количества циклов. По нему проверяется длинна импульса - если импульс слишком короткий или слишком длинный, выставляется поле ошибки уровня, а следующий импульс воспринимается как импульс нового сообщения.

Импульс обрабатывается через определенное количество тактов с момента зафиксированного начала импульса. Если импульс является импульсом разряда, то разряд добавляется в сдвиговый регистр сообщения и регистр сдвигается, новый разряд учитывается в проверке четности. Если импульс является синхроимпульсом, то содержимое сдвигового регистра сообщения и счетчика количества разрядов проверяются на соответствие подсчитанный четности и сконфигурированному количеству разрядов. Если проверка прошла успешно, содержимое сдвигового регистра, кроме разряда четности переписывается в регистр данных.

6. Алгоритм работы

Название	Тип	Разрядност ь	Значение после сброса	Описание
new_conf_is_ corr	сигнал	1	b0	Сигнал корректности разрядов шины <i>D_in</i> соответствующих полю ВС
level_error	сигнал	1	b0	Сигнал присутствия ошибки уровня на линии (импульс слишком короткий или слишком длинный)
shift_r	регистр	1	b0	Сдвиговый регистр с отправляемым сообщением
par0	регистр	1	b0	Регистр подсчета четности на линии нулей
par1	регистр	1	b1	Регистр подсчета четности на линии единиц
cycle_count er_r	регистр	5	b0_0000	Регистр счетчика циклов
bit_counter _r	регистр	7	b000_0000	Регистр счетчика количества импульсов
sl0_temp_r	регистр	12	hFFF	Регистр счетчика количества импульсов
sl1_temp_r	регистр	12	hFFF	Регистр счетчика количества импульсов

5. Принцип работы стр. 7 из 10

Рисунок 2. Алгоритм работы приема сообщения модуля SlReciever

6. Алгоритм работы стр. 8 из 10

Модуль может находиться в двух режимах: режим приема бита и режим ожидания бита. После включения модуля, все разряды части состояния служебного регистра устанавливаются в 0, модуль находится в режиме ожидания бита.

6.1. Смена конфигурации и сброс прерываний

При записи служебного регистра в режиме ожидания происходит проверка разрядов прерываний:

- 1. Если значения разрядов шины D_i соответствующие разрядам полей причин прерываний служебного регистра, равны 0, то они записываются в служебный регистр.
- 2. Обновляется поле **IRQM** служебного регистра
- 3. Если значение разрядов шины D_i соответствующие полю **BC** корректно, поля **BC** и **PCE** обновляются. Если значение некорректно, выставляется **IRQICC** = 1, поля **BC** и **PCE** не изменяются.

Корректным значением поля BC называется четное число в интервале от 6'd8 до 6'd32.

6.2. Прием сообщения

Каждый при принятии импульса на одной из линий, значение соответствующее биту записывается в сдвиговый регистр **shift_r**, и инвертируется соответствующий регистр подсчета четности (**par0**, если зарегистрирован импульс на линии нулей и **par1**, если на линии единиц), счетчик количества разрядов **bit_counter_r** увеличивается на единицу.

При принятии импульса на обоих линиях (синхроимпульса), сравнивается значение **bit_counter_r** и поля **BC**. Если они неравны выставляется поле **IRQWLC** = 1. Если они равны, проверяется значение регистров **par0** и **par1**:

- Если **par0** и **par1** равны нулю выставляется поле **IRQRM** = 1, содержимое регистра **shift_r**, кроме разряда **shift_r**[**BC**] переписывается в регистр **buffered_data_r**.
- Если любой из регистров **par0** или **par1** не равен нулю выставляется поле **IRQPEM** = 1. Если отключен контроль четности (PCE = 0), содержимое регистра **shift_r**, кроме разряда **shift_r[BC]** переписывается в регистр **buffered_data_r**, устанавливается поле **PEF** = 1.

При принятии синхроимпульса или возникновения ошибки уровня на линии регистры **par0**, **par1**, **shift_r** и **bit_counter_r** устанавливаются в начальные значения.

6.3. Устранение дребезга

Для устранения дребезга используются два сдвиговых регистра - sl0_tmp_r и sl1_tmp_r. Переход из состояния ожидания бита в состояние обработки бита и обратно производится путем сравнения содержимого этих регистров с масками. Условия переходов приведены в таблице.

Таблица 7. Условия переходов из состояния ожидания импульса в состояние обработки импульса и обратно

Обозначение	Выражение
bit_started	(sl0_tmp_r == 12'hF??0) (sl1_tmp_r == 12'hF??0)
bit_ended	(sl0_tmp_r = =12'h???F) \&\& (sl1_tmp_r == 12'h???F)

6.4. Ошибка уровня

Для определения ошибки уровня используется счетчик **cycle_counter_r**. Когда модуль находится в режиме обработки бита счетчик переключается от значения CYCLE_MAX до 0.

Обработка бита производится, когда счетчик **cycle_counter_r** равен CYCLE_MAX - CYCLE_MIN. На какой именно линии импульс определяется по разрядам **sl0_tmp_r [POS]** и **sl1_tmp_r [POS]**.

Если сигнал *bit_ended* устанавливается в единицу, когда счетчик больше числа CYCLE_MAX - CYCLE_MIN, импульс считается помехой, и устанавливается бит **IRQLE** = 1. Регистры **par0**, **par1**, **shift_r** и **bit_counter_r** устанавливаются в начальные значения. Модуль переходит в режим ожидания бита.

Если на сигнал *bit_ended* не установился в единицу, до того момента, когда счетчик досчитал до нуля, считается что произошел обрыв линии, и устанавливается поле **IRQLE** = 1. Модуль ожидает конца импульса, каждый такт обновляя поле **IRQLE** = 1. Когда сигнал *bit_ended* устанавливается в единицу, регистры **par0**, **par1**, **shift_r** и **bit_counter_r** устанавливаются в начальные значения, модуль переходит в режим ожидания бита.

Таблица 8. Значения констант счетчика cycle counter r

Обозначение	Значение
CYCLE_MAX	32
CYCLE_MIN	8
POS	0

6.5. Формирование запроса на прерывание

Запрос на прерывание формируется на выходе *irq*, через один такт после возникновения причины прерывания, если причина этого прерывания не замаскирована в поле **IRQM [4:0]**.