Networking, part 1

Модель OSI

Протоколы

- Современные сети строятся на основе протоколов
- Каждый протокол абстракция над другим протоколом (более низким) для решения какой-то проблемы
- Поэтому иногда говорят стек протоколов

Модель OSI

OSI разделяет современные протоколы на 7 уровней:

- Layer 1: Physical layer
- Layer 2: Data link layer
- Layer 3: Network layer
- Layer 4: Transport layer
- (тут немного пропустим)
- Layer 7: Application layer

Модель OSI: physical layer

Как данные будут переданы через физическую среду?

Протоколы:

- Bluetooth
- Ethernet physical layer: Ethernet over twisted pair, Fast Ethernet, Gigabit Ethernet, ...
- IEEE 802.11g/b/n

Link layer

Как копьютеры могут общаться в локальной сети?

- Обеспечивает обмен данными между узлами в одной сети LAN (local area network)
- Обычно на этом уровне протоколы оперируют пакетами (например, 1500 байт для Ether)
- На этом уровне появляется канальный адрес (link address), например, MACадрес

Network layer

Как объединить локальные сети?

- Обеспечивает связь между разными LAN
- На этом уровне появляется сетевой адрес (например, IP адрес)
- Появляется понятие маршрутизации
- Основной протокол Internet Protocol (IP)

Transport layer

Как обеспечить обмен данными между приложениями?

- Используется для передачи данных между различными приложениями на узлах сети
- Используются порты, чтобы разделять приложения на концах маршрутов
- Примеры: TCP, UDP, SCTP

Application layer

Как каждое конкретное приложение обменивается данными?

- Протоколы приложений (веб-браузеры, почтовые клиенты, игры)
- Один из самых известных HyperText Transfer Protocol (HTTP)
- Почтовые протоколы SMTP, POP3
- Secure Shell (SSH)

Ethernet

- Совокупность стандартов (IEEE 803.2), описывающих разные протоколы physical и link layer
- Передача между устройставми осуществляется с помощью фреймов
- Каждое устройство имеет свой МАС-адрес
- Ethernet это point-to-point протокол, используются коммутаторы (или свитчи) для построения full-mesh сети
- Свитч имеет таблицу всех подключённых клиентов и форвардит фреймы в соответствии с ней
- FF:FF:FF:FF:FF специальный broadcast адрес

Internet Protocol

- Протокол для объединения LAN
- Две версии: IPv4 vs IPv6
- IPv4 широко распространён, IPv6 только начинает появляться

IP адреса

- IPv4 адрес состоит из 32 бит (для IPv6 128)
- Обычно записывается в виде 4 октетов (4 байт) через точку: 8.8.8.8

Маска подсети

- Множество IP-адресов с одинаковым префиксом
- Маска подсети: 255.0.0.0
- CIDR-нотация: 10.0.0.0/8
- Private subnets: 10.0.0.0/8, 127.0.0.1/8, 192.168.0.0/16

IP: маршрутизация

- Не все узлы сети связаны напрямую \Rightarrow давайте передавать данные через другие узлы
- Передача между соседними узлами в IP-сети называется прыжком или хопом (hop)
- Каждый узел сети имеет таблицу маршрутизации
- Эта таблица содержит маски подсетей и *gateway* узел, куда нужно переслать данные

ARP

- Address Resolution Protocol
- Определяет МАС-адрес по IP
- Рассылается broacast пакет «Who has 10.0.0.2? Tell 10.0.0.1»
- Все хосты проверяют свой IP и если он совпадает, отсылают «10.0.0.2 is at XX:XX:XX:XX:XX»
- ARP spoofing

IP: маршрутизация

- AS это система IP-сетей и маршрутизаторов, управляемых одним или несколькими операторами, имеющими единую политику маршрутизации с Интернетом (© Wiki)
- Блоки подсетей выдаются автономным сетям
- Точка обмена трафиком точки обмена трафиком между разными AS
- Одна из самых крупных в Европе и России MSK-IX

IPv4: устройство пакета

IPv4 Header Format

Offsets	Octet		0									1								2							3																		
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31												
0	0	Version IHL DSCP ECN Total Length																																											
4	32	Identification Flags Fragment Offset																																											
8	64	Time To Live Protocol Header Checksum																																											
12	96	Source IP Address																																											
16	128	Destination IP Address																																											
20	160																																												
24	192												Onti	ons	(if IH	JI \	5)																												
28	224															Opti	0115	(11 11	IL /	رد																									
32	256																																												

IP: TTL

- TTL tive-to-live
- Байт, который описывает максимальное количество прыжков в сети
- Если очередной хост уменьшил TTL до нуля, то пакет просто дропается, а отправителю посылается специальное сообщение по протоколу ICMP (TTL exceeded)
- На основе этого поведения работает trecroute/tracepath

IP: проблемы

- Не гарантирует доставку данных (packet loss)
- Не гарантирует порядок доставки (packet reordering)
- Не гарантирует, что пакет будет отправлен лишь один раз (packet duplication)
- Непонятно как реализовывать multitenancy IP протокола нельзя всем приложениям рассылать все IP-пакеты

BGP

- Как операторам AS обновлять маршруты?
- Border gateway protocol
- Устанавливается между BGP-роутерами соседних AS
- Каждая AS анонсирует свои префиксы (подсети)
- Изменения распространяются по всему интернету
- Выбирается самый «короткий» маршрут
- Таблица маршрутизации Интернета очень большая: на текущий момент 900k+ префиксов

TCP

- Вводит понятие порта приложения адрес получателя на IP-узле
- Обеспечивает надёжную доставку данных (reliable delivery)
- Обеспечивает порядок доставки и дедупликацию данных
- Connection-oriented приложения должны установить полнодуплексное соединение
- Data stream данные передаются не отдельными пакетами, а непрерывным потоком
- Также обеспечивает congestion control и flow control

ТСР: устройство пакета

TCP segment header

Offsets	Octet						1				2 3			
Octet	Bit	7 6 5 4	3 2 1	0	7	6	5	4	3	2	1	0	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	
0	0	Source port Destination port												
4	32	Sequence number												
8	64	Acknowledgment number (if ACK set)												
12	96	Data offset Reserved OOO S C E C R C S S F I N N Window Size												
16	128	Checksum Urgent pointer (if URG set)												
20	160	Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)												
***	•••	•••												

TCP: 3-way handshake

Хендшейк – механизм установки соединения. Выполняется в три этапа:

- 1. Инициатор соединения (клиент) посылает пакет с флагом **SYN** серверу
- 2. Сервер посылает пакет с флагами **SYN** и **ACK** клиенту, а также *sequence number*, с которого будут нумероваться все остальные байты
- 3. Клиент посылает АСК

TCP

- Transmission Control Protocol
- Отправитель посылает пронумерованные пакеты, что позволяет реконструировать правильную последовательность при переупорядочивании
- Принимающий в ответ отправляет «одобрения»: «принято всё до номера N»
- Если пакет теряется, то acknowledgment (ACK) долго не приходит, отправитель перепосылает пакет
- Если пришёл повторный АСК, то отправитель тоже перепосылает пакет

UDP

- User Datagram Protocol
- Не даёт никаких гарантий
- Пересылка осуществляется через пакеты (UDP datagrams)
- Используется там, где неважна последовательность пакетов (например, онлайн игры или торренты)
- Или там, где потеря/переупорядочивание/дублирование не сильно сказывается (например, звонки)

DNS

- Позволяет преобразовывать человекочитаемые доменные имена в IP-адреса
- Работает поверх UDP, стандартный порт 53
- Корневые сервера обслуживают все запросы DNS в интернете
- Результат кэшируется и имеет время жизни, заданное в ответе DNS (TTL)
- Корневые сервера спускаются к более мелким DNS серверам (например, к .ru)
- Более мелкие могут спускаться дальше итд recursive resolving

DNS: виды записей

- А запись: имя -> IPv4 адрес
- AAAA запись: имя -> IPv6 адрес
- NS запись: имя -> авторитетный DNS-сервер
- CNAME запись: имя -> имя

HTTP

- HyperText Transport Protocol
- L7 протокол
- Запрос-ответ: клиент отправляет запросы, сервер возвращает ответами
- Человеко-читаемый
- Для перевода строк служит \r\n

НТТР: запрос

- Метод: GET, POST, DELETE, PUT, OPTIONS, HEAD
- Uniform Resource Identifier (URI) путь запроса
- Версия НТТР
- Заголовки
- Тело (опционально)

НТТР: запрос

```
POST /cgi-bin/process.cgi HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com
Content-Type: application/x-www-form-urlencoded
Content-Length: length
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

licenseID=string&content=string&/paramsXML=string
```

HTTP: ответ

- Версия НТТР
- Код (статус) ответа
- Расшифровка ответа (reason)

НТТР: ответ

```
HTTP/1.1 404 Not Found
Date: Sun, 18 Oct 2012 10:36:20 GMT
Server: Apache/2.2.14 (Win32)
Content-Length: 230
Connection: Closed
Content-Type: text/html; charset=iso-8859-1
```

НТТР: статус коды

- 1хх информационные
- 2хх успешные коды (например, 200 ОК)
- Зхх для перенаправлений пользователей (редиректы)
- 4хх ошибка клиента (неправильный адрес, некорретный запрос)
- 5хх ошибка сервера (внутреняя ошибка, сервис временно недоступен)

Вопросы?