Gabriel Silva Cerveira

MUDANÇAS NO CLIMA SOBRE O NORDESTE DO BRASIL NO ANO DE 2075.

INTRODUÇÃO

O desenvolvimento tecnológico na Revolução Industrial gerou aumento considerável na emissão de gases estufa, os quais, ao reterem radiação e aumentarem a energia interna no sistema, causaram um desequilíbrio térmico no topo da atmosfera (Trenberth et al., 2014). Esse desequilíbrio resultou em um aumento da temperatura na atmosfera, o qual gera alterações nos padrões climáticos de fenômenos atmosféricos de larga escala como o El Niño, a Zona de Convergência Intertropical e a Oscilação do Atlântico Norte (Hastenrath, 1984).

As alterações no comportamento global da atmosfera causam impactos a nível regional, os mais notáveis são aqueles que afetam os recursos hídricos, a agricultura, a saúde, e os ecossistemas locais. Especificamente na América do Sul, é esperado que as mudanças climáticas aumentem a pressão sobre os recursos hídricos e diminuam as colheitas agrícolas, outro impacto esperado é uma diminuição da umidade na Amazônia, o que traria grande perda de biodiversidade (Warren *et al.*, 2006).

Devido à necessidade de prever os possíveis impactos do aquecimento global sobre regiões específicas, foi desenvolvido o projeto *Coordinated Regional Downscaling Experiment* (CORDEX), para realizar regionalizações dinâmicas de projeções futuras do projeto CMIP (Giorgi & Gutowski, 2015). Essas projeções possuem maior resolução, o que facilita o desenvolvimento de medidas de mitigação de impactos em sistemas de mesoescala. Os dados do CORDEX são disponibilizados para acesso tanto por pesquisadores quanto por empresas.

Tendo em vista a vulnerabilidade da América do Sul aos possíveis impactos do aquecimento global e a necessidade de entender e procurar formas de lidar com esses impactos, foram analisados dados de Temperatura do Ar e Precipitação, disponibilizados pelo CORDEX, para o ano de 2075, sobre a região do Nordeste do Brasil. Esses dados foram gerados sob o cenário mais pessimista de mudança climática do CMIP, chamado RCP8.5, no qual há um constante aumento nas forçantes antropogênicas ao longo do século 21.

AVALIAÇÃO DAS MUDANÇAS NO CLIMA

O cálculo da distribuição espacial média da mudança na precipitação sobre o Nordeste no ano de 2075 (Figura 1), em relação ao clima histórico, revela menor volume de chuva na maior parte da região, com os maiores extremos negativos presentes no Meio-Norte e na Zona da Mata, duas regiões dominadas por biomas fundamentais para a biodiversidade, nota-se, também, que alguns dos valores mais negativos são encontrados sobre a área dos Lençóis Maranhenses, o que pode impactar o turismo local, além de colocar em risco as cidades adjacentes, pois com menos chuva as dunas podem ser carregadas pelo vento com mais frequência e por maiores distâncias. Vale ressaltar que houve um ligeiro aumento da precipitação sobre a sub-região do Sertão, um sinal preocupante, já que chuvas mais intensas podem causar maiores danos ao atingir um solo desertificado, principalmente em um cenário de aquecimento.

Figura 1: Diferença entre média espacial de precipitação, no Nordeste, do ano de 2075 (RCP 8.5) e média espacial climatológica de 1961 a 2005.

A diferença entre a distribuição espacial média da temperatura sobre o Nordeste no ano de 2075 e no clima histórico (Figura 2) mostrou padrão diferente ao de precipitação, com valores positivos ao longo de todo o domínio, chegando a um aumento maior que 5°C em alguns locais do Meio-Norte e do Sertão. Quando comparado a essas duas sub-regiões, o aumento de temperatura no Agreste e na Zona da Mata é menor, no entanto ainda atinge valores de 3,5 a 4,5°C. Percebe-se que o padrão espacial de aumento de temperatura no sul do estado do

Maranhão coincide com o de diminuição na precipitação nessa mesma região, a alteração simultânea nessas duas variáveis pode ter forte impacto na capacidade de manutenção do bioma de Floresta Amazônica presente nesta área. Nota-se também que a área de maior aumento de temperatura sobre o Sertão também é a área onde ocorre maior aumento da precipitação, isso indica que, neste cenário futuro, as temperaturas mais altas aumentam a taxa de evaporação da água do solo, o que, por sua vez, gera pancadas de chuva mais fortes, podendo causar alagamentos, danos a plantações, e aceleração de processos de desertificação e erosão do solo.

Figura 2: Diferença entre média espacial de temperatura, no Nordeste, do ano de 2075 (RCP 8.5) e média espacial climatológica de 1961 a 2005.

A Figura 3a representa a diferença entre as séries temporais médias de precipitação para o ano de 2075 e dos anos de 1961 a 2005. Esse cálculo permitiu observar em quais períodos do ano as mudanças foram mais extremas e em quais ocorreu aumento ou diminuição do volume de chuva. Nota-se que os valores positivos mais altos foram detectados no primeiro trimestre, chegando a diferenças maiores que 10 mm/dia, isso indica a probabilidade de maior ocorrência de eventos extremos de chuva em 2075, com volumes altos de água se precipitando em um curto período de tempo, o que aumenta o risco de alagamentos e de movimentos de massa em solo desprotegido. Fora do primeiro trimestre a predominância é de valores negativos, o que indica que, em geral, a precipitação sobre o Nordeste em 2075 terá diminuído, com a maior parte das chuvas se concentrado em um curto período de tempo.

A Figura 3b representa o resultado, para a temperatura, do mesmo cálculo de diferença que foi feito para a precipitação. Assim como já havia sido observado na avaliação espacial, a temperatura do ar sofreu aumento em todos os meses do ano, com picos positivos chegando a 6°C. Existe uma clara distinção entre os dois semestres do ano, com os valores mais altos ocorrendo no segundo semestre. No primeiro semestre, o período durante o qual as anomalias positivas são mais baixas é o mesmo período no qual ocorre as maiores anomalias positivas de precipitação. Além dos impactos sobre a agricultura e o bem-estar geral, essas temperaturas mais altas aumentam o risco à saúde, ao facilitar maior disseminação de doenças.

Figura 3: a) Diferença entre série temporal de precipitação sobre o Nordeste no ano de 2075 e série temporal média entre os anos de 1961 a 2005, em frequência diária, e b) diferença entre série temporal de temperatura sobre o Nordeste no ano de 2075 e série temporal média entre os anos de 1961 a 2005, em frequência diária.

POSSÍVEIS MEDIDAS DE MITIGAÇÃO E ADAPTAÇÃO

As mudanças extremas nos padrões de temperatura e precipitação, previstas para o ano de 2075, exigem o desenvolvimento de estratégias para a adaptação à essas mudanças. No sertão nordestino, um dos setores mais vulneráveis é a agricultura, que tem seu lucro impactado pela falta de água, a qual leva a colheitas mais escassas e gado mais magro. Algumas medidas, como maior capacitação do agricultor em relação à eficiência das plantações e à alimentação dos

animais, captação de água proveniente de aquíferos, e políticas que estimulem a integração desses agricultores no mercado de consumo, podem tornar esse setor mais resiliente às mudanças (Burney *et al.*, 2014; Maia *et al.*, 2018).

Na Zona da Mata, a alta resistência da Mata Atlântica faz desse bioma uma ferramenta com grande potencial para o aumento da capacidade de adaptação dessa região às mudanças climáticas. Sendo assim, é necessário que se implemente políticas que levem a uma adaptação baseada nesse ecossistema, de forma que a preservação da Mata Atlântica reduza a vulnerabilidade da população da região à impactos como a escassez de água e a diminuição da segurança alimentar (Scarano & Ceotto, 2015).

A avaliação das mudanças em temperatura do ar e precipitação sobre a região Nordeste, no ano de 2075, levou à conclusão de que as duas variáveis sofrerão mudanças significativas em seus valores médios, além de maior intensidade de eventos extremos. Os possíveis impactos dessas mudanças vão desde maior vulnerabilidade à doenças até maior escassez de colheitas, o que exige o desenvolvimento e aplicação de métodos eficientes de adaptação. Vale ressaltar que o cenário futuro aqui avaliado (RCP 8.5) prevê forçantes atmosféricas crescentes até o ano de 2100, o que indica que as mudanças aqui observadas apresentarão intensidade ainda maior para além do ano 2075.

REFERÊNCIAS BIBLIOOGRÁFICAS

BURNEY, J. et al. Climate change adaptation strategies for smallholder farmers in the Brazilian Sertão. **Climatic Change**, v. 126, n. 1, p. 45–59, 1 set. 2014.

GIORGI, F.; GUTOWSKI, W. J. Regional Dynamical Downscaling and the CORDEX Initiative. **Annual Review of Environment and Resources**, v. 40, n. 1, p. 467–490, 4 nov. 2015.

GORI MAIA, A. et al. Climate change and farm-level adaptation: the Brazilian Sertão. **International Journal of Climate Change Strategies and Management**, v. 10, n. 5, p. 729–751, 1 jan. 2018.

HASTENRATH, S. Interannual Variability and Annual Cycle: Mechanisms of Circulation and Climate in the Tropical Atlantic Sector. **Monthly Weather Review**, v. 112, n. 6, p. 1097–1107, 1 jun. 1984.

SCARANO, F. R.; CEOTTO, P. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. **Biodiversity and Conservation**, v. 24, n. 9, p. 2319–2331, 1 set. 2015.

TRENBERTH, K. E. et al. Global warming and changes in drought. **Nature Climate Change**, v. 4, n. 1, p. 17–22, jan. 2014.

WARREN, R. et al. Understanding the regional impacts of climate change: research report prepared for the Stern review on the economics of climate change. Monograph. Disponível em: https://eprints.soton.ac.uk/53222/. Acesso em: 17 jul. 2020.