Day 7 Notes

Mann, J

September 17, 2015

1 Problem Set 1

- 1. Be careful with $\frac{\Delta f}{\Delta x} \approx f'$. Numerical derivatives of data can be really bad.
- 2. Think about Γ as $\Gamma[=]\frac{\text{molecules}}{(\text{nanometer})^2}$ or $\frac{1}{\Gamma}=A[=]\frac{(\text{nanometer})^2}{\text{molecules}}$, (in order to do this, you should use k_B instead of R (Boltzmann's constant instead of the ideal gas constant)
- 3. Inverting Power Series.
- 4. QUESTIONS: "Some Details on least squares?"

2 Some Details on Least Squares

2.1 General Least squares analysis

 $\Lambda_n \equiv \text{Weight factor}$. This is used to place an amount of confidence on your data.

 $y_n \equiv \text{Measured dependent variable data point}$

 $x_n \equiv$ Measured independent variable data point

$$Sum(\vec{\alpha}) = \sum_{n=1}^{N} \Lambda_n (y_n - f(\vec{\alpha}, x_n))^2$$

This was developed by Gauss, and the data is assumed to follow a Gaussian distribution function it its errors.

$$\epsilon(x) \equiv {\cal A}$$
 Gaussian distribution with mean: $\mu=0$
$$y=f(\vec{\alpha},x)+\epsilon(x)$$
 now $\Lambda_n=\left(\frac{\sigma}{\sigma_n}\right)^2$

Where σ is the standard deviation, and σ_n is the standard deviation of y_n .

The fit is done so that the variation $\delta \text{sum} = 0$. Compute on $\alpha_1, \alpha_2, \ldots$

$$0 = \delta(\operatorname{Sum}(\alpha)) = \sum_{n=1} \Lambda_n \delta(y_n - f(\vec{\alpha}, x_n))^2$$

This generates a matrix problem. Expand $f(\vec{\alpha}, x_n)$ in a Taylor's series keeping only the 1st order term in. $\Delta \vec{\alpha} = \vec{\alpha} - \alpha_0$. (Exchange \sum_n and sum over $\alpha_1, \alpha_2, \ldots$)

2.2 Suppose you plot Sum vs $\vec{\alpha}$

Figure 1: A plot of two different error functions with respect to the sum. Note that this is oversimplified. Because $\vec{\alpha}$ is a vector, this will most often be an n-dimensional plot.

If you are not careful, you may find the $\underline{\text{wrong minimum}}$ in some cases. For example, consider Figure 1

2.3 Matrix approach

The result of $\delta Sum = 0$ is a matrix problem:

$$M_{ij} = \sum_{n=1}^{N} \Lambda_n \frac{\partial f}{\partial \alpha^i} \frac{\partial f}{\partial \alpha^j} |_{x_n, \vec{\alpha_0}}$$
$$\Delta \vec{\alpha} = \vec{\alpha} - \alpha_0$$
$$\mathbf{M} \Delta \vec{\alpha} = \vec{R}$$

This is the product matrix, some people call it the Hessian matrix. *Note:* A couple of properties to remember:

$$M_{ij} = M_{ji}$$
$$\det\left(\boldsymbol{M}\right) \neq 0$$

This will be true when the ratio of $\frac{\text{maximum Eigenvalue}}{\text{minimum Eigenvalue}}$ is small enough.

$$R_{i} = \sum_{n=1}^{N} \Lambda_{n} (y_{n} - f(\vec{\alpha}, x_{n})) \frac{\partial f}{\partial \alpha_{i}} \Big|_{x,\alpha_{0}}$$
$$M\vec{\alpha} = \vec{R}$$
$$\vec{\alpha} = M^{-1}\vec{R}$$

This is a matrix problem solved iteratively until $\delta \vec{\alpha} \to 0$, so we need a good $\vec{\alpha}_0$.

For converged M,

$$(m{M}^{-1})_{ii}
ightarrow \sigma_{ii}^2$$
 e.g. $(m{M}^{-1})_{11} = \sigma_{lpha_1}^2$

Consider the Eigenvalue problem with M, this gives you a set of Eigenvalues, one of which is a maximum, you divide that by the minimum eigenvalue, and you get the condition number, c_N .

$$c_N \approx 1$$
, good fit ≈ 10 ok ≈ 100 ok $\approx 10^4$ start being nervous $> 10^5$ be very careful

Plot the data! Plot the residuals $(y_n - f(\vec{\alpha}, x_n))!$ The residuals plot should look random and centered around zero.

Figure 2: Three plots of the residuals. The first is good, the second shows correlation, and the third shows constant offset.

2.4 Summary

- 1. The fit converges and the condition number is reasonable.
- 2. Look at the residuals: Are they Gaussian? Plot them.
- 3. Are the uncertainties of the parameters reasonable?

4. The correlations are insignificant: ρ_{ij} is the correlation of parameter α_i with α_j .

$$\rho_{ij} = \frac{M^{-1}}{\sqrt{(M^{-1})_{ii}}\sqrt{(M^{-1})_{jj}}}, -1 \le \rho_{ij} \le 1$$

- $\rho_{ij} \approx 1$, α_i is a positive correlation with α_j
- $\rho_{ij} \approx -1$, α_i is a negative correlation with α_j
- $\rho_{ij} \in [-0.5, 0.5]$, probably okay.
- $\rho_{ij} \notin [-0.5, 0.5]$, be very careful.

Note: If the fit is very good, then

$$\frac{1}{N-P} \sum_{n=1}^{N} \Lambda_n (y_n - f(\vec{\alpha}, x_n))^2 \to 1$$

as the number of items, N, is large; $N \to \infty$. P is the number of parameters. N-P is the number of degrees of freedom for the fit.

Note: If the condition number is between 10 and 1000, your numerical inversion of M will be accurate. Start to be concerned if $c_N > 1000$, but M^{-1} may still be okay. $c_N > 10000$ shows that you should be concerned about the result. (This is from experience)

3 Notes about the homework

Temperature was in Kelvin. Using origin, there is a built-in algorithm for differentiation that is very nice.

 $Analysis \rightarrow Mathematice \rightarrow Differentiate \rightarrow Open Dialog$

Choose the two columns that you will be using. There is a smoothing operation (it's pretty good). Look carefully at the pattern of your data, and make sure that it's smooth if it is supposed to be smooth. $\gamma = \gamma_0 - kT\Gamma_{\rm max} \ln{(1+ac)}$ Things to look for in a good fit:

• The inverse hessian matrix (Look up the difference between Inverse Hessian and correlation matrix)

4 XRC, X-Ray Crystallography

 $1/\Gamma_{\rm Max}$ is the surface area of the molecule. NIH Has a crystallographic database that is useful in getting cross-sectional area of unit cells of a molecule, in case you need to use biological cells.

Suppose you need to know the concentration you need to put in a spray pesticide that is surface-active.

How would you get that?

Know what the molecule is, do an estimation of what the cross-sectional area of a molecule is as it goes into the interface, if it's long, get a piece of the molecule, then get geometric information about how it's going to pack.

5 Inverting power series