

http://www.pucrs.br/~viali/

População

Uma coleção de todos os possíveis elementos, objetos ou medidas de interesse.

Censo

Um levantamento efetuado sobre toda uma população é denominado de levantamento censitário ou simplesmente censo.

Amostra

Um subconjunto finito de uma população de interesse.

Amostragem

O processo de escolha de uma amostra da população é denominado de **amostragem**.

Método de se inferir sobre uma população a partir do conhecimento de pelo menos uma amostra dessa população.

Estudo das relações teóricas existentes entre uma população e as amostras dela extraídas.

Amostragem Probabilistica

Todos os elementos da população têm probabilidade conhecida (e diferente de zero) de fazer parte da amostra.

Métodos de Amostragem Probabilística

- Aleatória Simples
- Sistemática
- Estratificada
- Por Conglomerados

Amostragem Ao Acaso (aa) ou Aleatória Simples (aas)

Uma amostra é dita "aleatória simples" ou "ao acaso" se todos os elementos da população tiverem a mesma probabilidade de pertencer a amostra

Total de Amostras

Com Reposição

$$k = N^n$$

Não Ordenadas

$$\mathbf{k} = \begin{pmatrix} \mathbf{n} \\ \mathbf{n} \end{pmatrix}$$

Ordenadas

$$k = A_N^n$$

Reposição

Amostragem Sistemática

A unidade amostral é escolhida em intervalos pré-fixados. Assim se **N** = tamanho da população e **n** = tamanho da amostra. Então o

passo ou intervalo é k = N/n.

Exemplo

Se N = 1000 e n = 100

Então:

k = N/n = 1000/100 = 10.

Sorteia-se um número entre 1 e 10.

Digamos 7. Então a amostra será:

7, 17, 27,, 997.

Amostragem Estratificada

A população é estratificada (em mutuamente grupos exclusivos) e então uma amostra aleatória simples de cada estrato é retirada.

Amostragem por Agrupamento

Nos métodos anteriores cada observação é escolhida de forma individual. Na amostragem por de agrupamento, grupos observações são escolhidas ao acaso.

Exemplo

Considere uma população de 20 itens dividida em 5 grupos de 4 itens cada. Para escolher uma amostra de n = 8, escolhe-se 2 grupos, ao invés de 8 itens individuais.

Exemplo

Grupo

Elementos

 X_1, X_2, X_3, X_4 $X_{5}, X_{6}, X_{7}, X_{8}$ $X_9, X_{10}, X_{11}, X_{12}$ $X_{13}, X_{14}, X_{15}, X_{16}$ $X_{17}, X_{18}, X_{19}, X_{20}$

Estimador, Estimativa e Parâmetro

Uma característica da população é denominada de parâmetro.

Um estimador é uma característica da amostra.

Uma estimativa é um valor particular de um estimador.

Principais Parâmetros

A MÉDIA A VARIÂNCIA **O DESVIO PADRÃO** A PROPORÇÃO

Principais Estimadores

X

A MÉDIA

 S^2

A VARIÂNCIA

S

O DESVIO PADRÃO

P

A PROPORÇÃO

Distribuições Amostrais

Distribuições Amostrais

distribuição de probabilidade de estimador (variável aleatória) é denominada de distribuição amostral desse estimador.

Exemplo

População

$$P = \{1, 2, 3, 4\}$$

Parâmetros

$$\mu = \frac{1+2+3+4}{4} = \frac{10}{4} = 2,50$$

$$\sigma^2 = \frac{\sum X^2}{n} - \mu^2 = \frac{30}{4} - 2,50^2 = 1,25$$

$$\pi = \frac{0+1+0+1}{4} = \frac{2}{4} = 50\%$$

Distribuição da População

Amostras

Plano Amostral

aa = ao acaso

Método

s/r = sem reposição

Tamanho das Amostras

$$n = 2$$

Total de Amostras

Tem-se:

$$N = 4$$
; $n = 2$.

Então:

$$k = {N \choose n} = {4 \choose 2} = \frac{4!}{2!(4-2)!} = 6$$

	Amostras	Médias	Variâncias	Proporções
1	(1,2)	1,5	0,5	0,5
2	(1,3)	2,0	2,0	0,0
3	(1,4)	2,5	4,5	0,5
4	(2, 3)	2,5	0,5	0,5
5	(2,4)	3,0	2,0	1,0
6	(3, 4)	3,5	0,5	0,5

Distribuição Amostral da Média

X	$f(\overline{x}) = P(\overline{X} = \overline{x})$			
1,5	1/6			
2,0	1/6			
2,5	2/6			
3,0	1/6			
3,5	1/6			
Total	1,0			

Distribuição Amostral da Média

Características da Distribuição da Média

X	$f(\overline{x})$	$\overline{x}.f(\overline{x})$	$\overline{\mathbf{x}}^2.\mathbf{f}(\overline{\mathbf{x}})$
1,5	1/6	1,5/6	2,25/6
2,0	1/6	2,0/6	4,00/6
2,5	2/6	5,0/6	12,50/6
3,0	1/6	3,0/6	9,00/6
3,5	1/6	3,5/6	12,25/6
Total	1,0	15/6	40/6

Características da Distribuição da Média

$$\mu_{\overline{X}} = E(\overline{X}) = \sum \overline{x} f(\overline{x}) =$$

$$= 15/6 = 2,50$$

$$\sigma_{\overline{X}}^2 = V(\overline{X}) = E(\overline{X}^2) - E(\overline{X})^2 =$$

$$=\frac{40}{6}-2,50^2=\frac{1,25}{3}$$

Distribuição Amostral da Média Características

Média

$$\mu_{\overline{\mathbf{X}}} = \mathbf{E}(\overline{\mathbf{X}}) = \mu$$

Erro padrão COM Reposição

$$\sigma \overline{x} = \frac{\sigma}{\sqrt{n}}$$

SEM Reposição

$$\sigma \overline{X} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

Distribuição Amostral da Média

Para este exemplo, tem-se:

$$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} \frac{N-n}{N-1} = \frac{1,25}{2} \left(\frac{4-2}{4-1}\right) = \frac{1}{2} \left(\frac{4-2}{4-1}\right)$$

$$=\frac{1,25}{2}\left(\frac{2}{3}\right)=\frac{1,25}{3}$$

Forma da Distribuição Amostral da Média

Se uma amostra aleatória de tamanho "n" for retirada de uma população X com uma distribuição $N(\mu; \sigma)$, então a distribuição de \overline{X} , média da amostra, tem distribuição $N(\mu, \frac{\sigma}{\sqrt{n}})$

Distribuição Amostral da Média

Exemplo:

Uma amostra de n = 16 elementos é retirada de uma população N(80; 8). Determine:

(a)
$$P(\overline{X} < 77)$$

(b)
$$P(76 < \overline{X} < 85)$$

Solução:

Tem-se: $\mu = 80$, $\sigma = 8$

Sabe-se que:

$$\mu_{\overline{X}} = 80$$
 e

$$\sigma \overline{X} = \frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{16}} = 2$$

Então:

(a)
$$P(\overline{X} < 77) =$$

$$= P(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} < \frac{77 - 80}{2}) =$$

$$= P(Z < -1,50) = \Phi(-1,50) =$$

$$= 0.0668 = 6.68\%$$

(b)
$$P(76 < \overline{X} < 85) =$$

$$= P(\frac{76-80}{2} < \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} < \frac{85-80}{2}) =$$

$$= P(-2 < Z < 2,5) =$$

$$=\Phi(2,50)-\Phi(2,00)=$$

$$=99,38\% - 2,28\% = 97,10\%$$

Forma da Distribuição Amostral da Média Se uma amostra aleatória de

tamanho "n > 30" for retirada de uma população com qualquer distribuição de média μ e desvio padrão σ, então a distribuição de X, média da amostra, tem uma distribuição aproximadamente

$$N(\mu, \frac{\sigma}{\sqrt{n}})$$

Distribuição Amostral da Média

Exemplo:

Uma amostra de "n" elementos é retirada de uma população N(80; 4). Determine "n" de forma que:

$$P(\overline{X} < 79) = 1,50\%$$

Solução:

Tem-se: $\mu = 80$, $\sigma = 4$

Sabe-se que:

$$\mu_{\overline{X}} = 80$$
 e

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{n}}$$

Então:

$$P(\overline{X} < 79) =$$

$$= P(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} < \frac{79 - 80}{4}) =$$

$$= P(Z < -\frac{\sqrt{n}}{4}) = \Phi(-\frac{\sqrt{n}}{4}) = 1,50\%$$

$$-\frac{\sqrt{n}}{4} = -2,17$$

$$\sqrt{n} = 2,17.4 = 8,68$$

$$n \ge (8,68)^2 \cong 76$$

p	f(p)
0,0	1/6
0,5	3/6
1,0	1/6
Total	1,0

Características da Distribuição da Proporção

p	f(p)	p.f(p)	p ² .f(p)
0,0	1/6	0/6	0/6
0,5	4/6	2/6	1/6
1,0	1/6	1/6	1/6
Total	1,0	3/6	2/6

Características da Distribuição da Proporção

$$\mu_{P} = E(P) = \sum pf(p) =$$

$$= 3/6 = 0,50 = 50\%$$

$$\sigma_{P}^{2} = V(P) = E(P^{2}) - E(P)^{2} =$$

$$=\frac{2}{6} - \left(\frac{3}{6}\right)^2 = \frac{1}{12}$$

Características

Média

$$\mu_{\mathbf{P}} = \mathbf{E}(\mathbf{P}) = \pi$$

COM

Reposição

$$\sigma_{\rm P} = \sqrt{\frac{\pi(1-\pi)}{n}}$$

Erro padrão

SEM

Reposição $\sigma_P = 1$

$$\sigma_{P} = \sqrt{\frac{\pi(1-\pi)}{n}} \sqrt{\frac{N-n}{N-1}}$$

Para este exemplo, tem-se:

$$\sigma_{P}^{2} = \frac{\pi(1-\pi)}{n} \frac{N-n}{N-1} = \frac{0,5.0,5}{2} \left(\frac{4-2}{4-1}\right) =$$

$$= \frac{0,25}{2} \left(\frac{2}{3}\right) = \frac{0,25}{3} = \frac{1}{12}$$

Forma da Distribuição Amostral da Proporção Se uma amostra aleatória tamanho "n > 100" for retirada de uma população com proporção π, então a distribuição de P, proporção na amostra, tem uma distribuição aproximadamente $N(\pi, \sqrt{\frac{\pi(1-\pi)}{\pi}})$

Exemplo:

Uma amostra de n=400 eleitores é retirada da população que prefere o candidato Zigoto com $\pi=50\%$ Determine:

(a)
$$P(47\% < P < 54\%)$$

(b)
$$P(P > 56\%)$$

Solução:

Tem-se: $\pi = 50\%$

Sabe-se que: $\mu_P = \pi = 50\%$

$$\sigma_{P} = \sqrt{\frac{\pi (1 - \pi)}{n}} =$$

$$= \sqrt{\frac{0,45(1-0,45)}{400}} =$$

Então:

(a)
$$P(47 < P < 54) =$$

$$=P(\frac{47\%-50\%}{2,5\%}<\frac{P-\mu_P}{\sigma_P}<\frac{54\%-50\%}{2,5\%})=$$

$$=P(-1,20 < Z < 1,60)=$$

$$=\Phi(1,60)-\Phi(-1,20)=94,52\%-11,51\%=$$

$$=83,01\%$$

(b)
$$P(P > 56\%) =$$

$$= P(\frac{P - \mu_P}{\sigma_P} > \frac{56\% - 50\%}{2,50\%})$$

$$= P(Z > 2,40) = 1 - \Phi(2,40) =$$

$$=\Phi(-2,40)=0,82\%$$

S ²	f(s ²)
0,5	3/6
2,0	2/6
4,5	1/6
Total	1,0

s ²	f(s ²)	s ² .f(s ²)	$(s^2)^2.f(s^2)$
0,5	3/6	1,5/6	0,75/6
2,0	2/6	4,0/6	8,00/6
4,5	1/6	4,5/6	20,25/6
Total	1,0	10/6	29/6

$$\mu_{S^2} = E(S^2) = \sum_{S} {}^{2}f(S^2) =$$

$$=\frac{5}{3}=1,67$$

$$\sigma_{S^2}^2 = V(S^2) = E[(S^2)^2] - E(S^2)^2 =$$

$$=\frac{29}{6} - \left(\frac{5}{3}\right)^2 = \frac{87 - 50}{18} = \frac{37}{18} = 2,06$$

Distribuição Amostral da Variância Características

Amostragem com reposição

Erro
$$\sigma_{S^2} = \sqrt{\frac{2\sigma^4}{n-1}} = \sigma^2 \sqrt{\frac{2}{n-1}}$$

Forma da Distribuição Amostral da Variância

Se uma amostra aleatória de tamanho "n" (grande) for retirada de uma população com variância σ², então a distribuição de S², variância da amostra, tem uma distribuição aproximadamente χ^2 com "n-1" g.l., a menos de uma constante.

Isto é:

$$S^2 = \frac{\sigma^2}{n-1} \chi_{n-1}^2$$

Este resultado é conhecido como Teorema de Fisher

Exemplo:

Uma amostra de n = 81elementos é retirada de uma população com variância $\sigma^2 = 10$. Determine a probabilidade de que $P(S^2 > 15)$.

Solução:

Tem-se:

$$n = 81$$

$$\sigma^2 = 10$$

Sabe-se que:

$$S^2 = \frac{\sigma^2}{n-1} \chi_{n-1}^2$$

Então:

$$P(S^2 > 15) = P[\frac{\sigma^2}{(n-1)}\chi_{n-1}^2 > 15] =$$

=
$$P[\chi_{n-1}^2 > \frac{15 \cdot (n-1)}{\sigma^2}] =$$

=
$$P(\chi_{80}^2 > \frac{15.80)}{10}) = P(\chi_{80}^2 > \frac{15.80)}{10}) =$$

$$P(\chi_{80}^2 > 120) = 0.25 \%$$

Simulações

População Amostrada

Mí	nimo	Máximo	Média	Desvio (Erro) Padrão
0.	0005	110 2515	22 0800	25 76778
U,	0085	110,2313	22,0009	25,70776

Mínimo	Máximo	Média	Desvio (Erro) Padrão
3,54	113,22	26,80	20,37

Mínimo	Máximo	Média	Desvio (Erro) Padrão
12,94	39,90	25,66	6,28

