ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика»

Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 116

- 1. Дайте определение случайной величины, которая имеет χ^2 -распределение с n степенями свободы. Запишите плотность χ^2 распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с n степенями свободы. Найдите a) $\mathbb{P}(\chi^2_{20}>10.9)$, где χ^2_{20} -случайная величина, которая имеет χ^2 распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;7] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,006\leqslant Z\leqslant 0,519)$.
- 3. Случайная величина Y принимает только значения из множества $\{3,4\}$, при этом P(Y=3)=0.33. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 9*y, \text{свероятностью } 0.34 \\ 7*y, \text{свероятностью } 1 - 0.34 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i=X(\omega_i)$ и $y_i=Y(\omega_i),\ i=1...25$. Все оценки известны $x_0=55,y_0=54,\ x_1=64,y_1=68,\ x_2=34,y_2=51,\ x_3=48,y_3=73,\ x_4=81,y_4=69,\ x_5=62,y_5=69,\ x_6=76,y_6=59,\ x_7=84,y_7=45,\ x_8=97,y_8=77,\ x_9=76,y_9=87,\ x_{10}=43,y_{10}=67,\ x_{11}=33,y_{11}=55,\ x_{12}=71,y_{12}=96,\ x_{13}=62,y_{13}=97,\ x_{14}=84,y_{14}=37,\ x_{15}=41,y_{15}=70,\ x_{16}=92,y_{16}=41,\ x_{17}=60,y_{17}=54,\ x_{18}=71,y_{18}=44,\ x_{19}=39,y_{19}=70,\ x_{20}=98,y_{20}=75,\ x_{21}=99,y_{21}=32,\ x_{22}=58,y_{22}=42,\ x_{23}=61,y_{23}=92,\ x_{24}=58,y_{24}=32$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant 50$ и $Y\geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

		Y=2	Y = 4	Y = 5
ĺ	X = 200	1	18	12
	X = 300	31	26	12

Из Ω случайным образом без возвращения извлекаются 12 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 6X_2 + X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{3X_1 + X_2 + 3X_3 + 3X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

P2508

П.Е. Рябов

Подготовил

Утверждаю: Первый заместитель руководителя департамента

Pexille