EECE7205: Fundamentals of Computer Engineering

Dynamic Programming

Introduction

- Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to sub-problems.
- "Programming" in this context refers to a tabular method, not to writing computer code.
- Dynamic programming applies when the sub-problems overlap—that is, when sub-problems share sub-sub-problems.
- In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common sub-sub-problems.
- A dynamic-programming algorithm solves each sub-sub-problem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time it solves each sub-sub-problem.

Optimization Problems

- We typically apply dynamic programming to optimization problems.
- Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value.
- We call such a solution an optimal solution to the problem, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value.

"n choose k" Example (1 of 3)

- **Problem**: Write an algorithm to calculate the number of combinations "n choose k", C(n, k)
- Solution 1 using factorials:

C(n, k) =
$$\frac{n!}{k! (n-k)!}$$

The problem with this approach is that the factorial of a number grows very rapidly and will exceed the range of even long integer variables.

"n choose k" Example (2 of 3)

Solution 2 - using Pascal's recursive formula for combinations:

```
C(n, 0) = 1

C(n, n) = 1

C(n, k) = C(n-1, k-1) + C(n-1, k), when 0 < k < n
```

The problem with this approach is repeating the calculations of the same sub-problems resulting in an inefficient exponential running time as shown:

"n choose k" Example (3 of 3)

Solution 3 – using dynamic programming implementation of Pascal's triangle for combinations. This approach is called Top-Down with Memoization.

allocate array C[0...n][0...k] and initialize its contents to -1

```
int CombD(int n, int k) {

if (C[n][k] != -1) return C[n][k];

if (k == 0 || k == n) C[n][k] = 1;

else C[n][k] = CombD(n-1,k-1) + CombD(n-1,k);

return C[n][k];
```

C(8,4)C(7,4)C(7,3)C(6,2)C(6,3)C(6,4)C(5,1)C(5,2)C(5,3)C(5,4)C(4,0)C(4,1)C(4,2)C(4,3)C(4,4)C(3,0)C(3,1)C(3,2)C(3,3)C(2,0)C(2,1)C(2,2)C(1,0)C(1,1)C(0,0)

- Pros: Running time: $\theta(nk)$ and $O(n^2)$ as $k \le n$
- Cons: Extra space needed also of $\theta(nk)$

The Rod Cutting Problem

 Using dynamic programming to solve a simple problem in deciding where to cut steel rods.

The Problem:

Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

■ We can cut up a rod of length n in 2^{n-1} different ways, since we have an independent option of cutting, or not cutting, at distance i inches from the left end, for i = 1, 2, ..., n - 1.

9

Rod Cutting Example

price p_i

Assume a rod of size 4 inches. The following is the given table of prices p_i $\left[\begin{array}{c|cccc} length i & 1 & 2 & 3 & 4 \end{array}\right]$

■ The following figure shows all the ways to cut up the rod and the revenue of each cut.

 We see that cutting the rod into two 2-inch pieces produces the optimal revenue of 10.

Rod Cutting Solution

■ We can frame the values of maximum revenue r_n for $n \ge 1$ in terms of optimal revenues from shorter rods:

$$r_n = \max (p_n, p_{n-1} + r_1, p_{n-2} + r_2, ..., p_1 + r_{n-1})$$

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

- p_n corresponds to making no cuts at all and selling the rod of length n as is. The other n-1 arguments correspond to the maximum revenue obtained by adding the price of a cut of size n-i to the maximum revenue of a rode of size i. for each i=1,2,...,n-1.
- In this formulation, an optimal solution embodies the solution to *one* related sub-problem—the remainder instead of comparing 2^{n-1} solutions.

Recursive Implementation

 Procedure CUT-ROD takes as input an array p[1 .. n] of prices and a rod of length n (an integer).

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

If you were to code up CUT-ROD in your favorite programming language and run it on your computer, you would find that once the input size becomes moderately large (more than 40), your program would take a long time to run.

Recursive Implementation (Cont'd)

- The problem is that the presented CUT-ROD algorithm calls itself recursively repeatedly with the same parameter values; it solves the same sub-problems repeatedly.
- When this process unfolds recursively, the amount of work done, as a function of n, grows exponentially.
- The figure shows what happens for n = 4:

Dynamic Programming for Rod Cutting

- The dynamic-programming method arranges for each sub-problem to be solved only once.
- If we need to refer to this sub-problem's solution again later, we can just look it up, rather than re-computing it.
- Dynamic programming thus uses additional memory to save computation time.
- In this approach the recursive algorithm is modified to save the result of each sub-problem (usually in an array).
- The procedure first checks to see whether it has previously solved this sub-problem. If so, it returns the saved value; if not, the procedure computes the value in the usual manner.

F

Rod Cutting Algorithm using Dynamic Programming

```
MEMOIZED-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

```
MEMOIZED-CUT-ROD-AUX(p, n, r)
  if r[n] \geq 0
2 return r[n]
3 if n == 0
4 	 q = 0
5 else q = -\infty
  for i = 1 to n
   q = \max(q, p[i] +
          MEMOIZED-CUT-ROD-AUX(p, n - i, r)
8 r[n] = q
   return q
```


Sub-problem Graphs

- The figure shows the sub-problem graph for the rodcutting problem with n = 4.
- It is a directed graph, containing one vertex for each distinct sub-problem.
- A directed edge (x, y) indicates that we need a solution to sub-problem y when solving sub-problem x.
- This graph is a reduced version of the following tree that represents the recursive implementation.

Reconstructing the Solution (1 of 2)

- The dynamic-programming solution to the rod-cutting problem return the value of an optimal solution, but it does not return an actual solution (i.e., a list of piece sizes).
- Here is an extended version of the algorithm to return not only the optimal value, val, but the actual cut solution, s, too.

```
MEMOIZED-CUT-ROD(p,n)
let r[0..n] and s[0..n] be new arrays

for i=0 to n
r[i]=-\infty
(val,s)= MEMOIZED-CUT-ROD-AUX(p,n,r,s)
print "The optimal value is " val" and the cuts are at " j=n
while j>0
print <math>s[j]
j=j-s[j]
```


Reconstructing the Solution (2 of 2)

```
MEMOIZED-CUT-ROD-AUX(p, n, r, s)
 if r[n] \geq 0
     return r[n]
 if n == 0
     q = 0
 else q = -\infty
     for i = 1 to n
          (val, s) = MEMOIZED-CUT-ROD-AUX(p, n - i, r, s)
         if q < p[i] + val
              q = p[i] + val
              s[n] = i
 r[n] = q
 return (q, s)
```

 Array entry s[n] contains the value i, which is an optimal cut for a rod of length n. The next cut is given by s[n-i], and so on.

Elements of Dynamic Programming

- When should we look for a dynamic-programming solution to an optimization problem?
- Two key ingredients that an optimization problem must have for dynamic programming to apply:
 - Optimal sub-structure
 - 2. Overlapping sub-problems.

Optimal Substructure

 A problem exhibits optimal substructure where we build an optimal solution to the problem from optimal solutions to sub-problems.

• We observed that the optimal way of cutting up a rod of length n (if we make any cuts at all) involves optimally cutting up the two pieces resulting from the first cut.

Overlapping Sub-problems

- For dynamic programming to apply, the space of sub-problems must be "small" to be able to store their solutions in a table.
- When a recursive algorithm revisits the same problem repeatedly, we say that the optimization problem has overlapping sub-problems.
- Dynamic-programming algorithms typically take advantage of overlapping sub-problems by solving each sub-problem once and then storing the solution in a table where it can be looked up when needed, using constant time per lookup.