Sistemi Informativi Evoluti e Big Data Sistemi informativi per la gestione delle operazioni industriali

MES – Manufacturing Execution Systems

Alessandro Marini

Ordine di produzione

Elemento di concentrazione informativa delle operazioni produttive

- In fase di programmazione:
 - Articoli da produrre
 - Quantità
 - Tempistiche di produzione -> per quando?
 - Operazioni da eseguire, centri di lavoro da utilizzare
 - Tempi previsti per la singola operazione

- In fase di esecuzione:
 - Raccolta della documentazione di fabbrica
 - Raccolta degli eventi
 - Rilevazione dei tempi produttivi (setup, run)
 - Rilevazione delle quantità prodotte

- In fase di chiusura ordine:
 - Consuntivazione della produzione: quantità buona, quantità scartata, eventuali coprodotti o sottoprodotti
 - Consuntivazione dei tempi produttivi: tempi attivi, tempi di fermata, tempi di setup

Dati tecnici dell'ordine di produzione

Op. 010 - Tornitura Risorsa: CDL1 Tempo ciclo: 30 sec Tempo setup: 1 h Tempo lav.: 8 h 20 min Tempo tot: 9 h 20 min Op. 020 - Lavaggio Risorsa: CDL2 Tempo ciclo: 10 min Tempo setup: 10 min Tempo lav.: 1h 40 min Tempo tot: 1h 50 min Op. 030 - Fresatura Risorsa: CDL3 Tempo ciclo: 16 sec Tempo setup: 45 min Tempo lav.: 4 h 26 min Tempo tot: 5 h 11 min Op. 040 - Lavaggio Risorsa: CDL2 Tempo ciclo: 10 min Tempo setup: 10 min Tempo lav.: 1h 40 min Tempo tot: 1h 50 min

L'ordine di produzione

Ordine di Produzione Codice parte: HH3F - flangia

Qtà da produrre: 1000

	Ordine di produzio	ne 1234	Codice Parte HH3F			Qtà da prod. 1000	
Oper.	Centro di Lav	oro Attrezzaggio h	Tempo Ciclo	h/pz Produttività	oraria Lav	orazione h	Totale h
010	CDL1	1,00	1,00 0,0083 120 pz/l		/h	8,30	9,30
020	CDL2	0,17	0,166	7 600 pz	/h	1,83	2,00
030	CDL3	0,75	0,004	4 225 pz	/h	4,43	5,18
040	CDL2	0,17	0,166	7 600 pz	/h	1,83	2,00
		2,09				16,39	18,48 €
	Lista parti	Des	crizione		Qta		U.M.
S567		Stampato per flang	ia		1000		Pezzi (pz)
	Sottoprodotto	Desc	crizione		Qta		U.M.
TOTT		Tornitura di ottone			50		kg
			_				

Diagramma entità relazioni Ordine di produzione

Sistemi Informativi Evoluti e Big Data Sistemi informativi per la gestione delle operazioni industriali

I Manufacturing Execution Systems - MES Sistemi per la gestione della produzione

Inquadramento

- Il sistema MES è un sistema dipartimentale
- E' dedicato alla gestione delle operazioni produttive in reparto
- Garantisce flessibilità operativa rispetto alla rigidità dei sistemi gestionali
- E' integrabile con macchine e impianti
- E' pensato per dialogare direttamente con gli operatori di fabbrica
- Permette ai responsabili di avere una visione integrata delle operazioni produttive

MES Sistema dipartimentale

Processo di lancio dell'OdP su MES

Ricezione ordini da gestionale

Sequenziazione su centro di lavoro

 Assegnazione della priorità

Accesso alla coda del singolo CdL e avviamento operazione

Trend

- Eliminazione totale della documentazione cartacea
- Integrazione con i sistemi logistici (AGV, LGV, ...)
- Utilizzo di sistemi automatici di riconoscimento dei materiali (Barcode, RFID)

Informazioni collegate all'ordine di produzione

Raccolta dati del MES

Funzioni complesse legate al MES

Gestione delle unità d

- Unità di carico è rappresentata da un contenitore identificato univocamente in grado di contenere un numero predefinito di pezzi
- Materiali in ingresso al CdL per unità di carico
- Pezzi produzione per unità di carico
- Integrazione con il sistema logistico della fabbrica
- Permette una migliore tracciabilità dei prodotti
- Avanzamenti parziali
- Gestione lavorazioni a ripartire

Gestione Qualità

- Tracciabilità delle problematiche qualitative
- Rompilotto e unità di carico
- Controllo in linea: integrazione dei mezzi di misura
- Gestione delle quarantene e stacco ordine per rilavorazione

Gestione manutenzione

- Gestione guasti e tempi di fermata
- Integrazione con ordini di manutenzione
- Rilevazione costi e tempi di intervento
- Gestione degli interventi di manutenzione preventiva

Funzioni complesse legate al MES

Tracciabilità

- Conservare la traccia dei materiali utilizzati (lotti) e delle lavorazioni effettuate sui prodotti
- Identificazione del lotto di produzione
- In alcuni settori la tracciabilità è uno degli elementi più critici (es. Alimentare, Farmaceutico,...)

Overall Equipment Efficiency (OEE)

 E' il principale indicatore sintetico fornito dal sistema MES

OEE = DISPONIBILITA' x EFFICIENZA x QUALITA'

DISP = % della disponibilità std effettivamente utilizzata EFF = % della produttività (pezzi buoni nell'unità di tempo effettivamente raggiunta)

QUA = % dei pezzi buoni sul totale prodotto

Esempio:

Dettaglio avanzamento produzione

Stabilimento di assemblaggio prodotti complessi personalizzati

Funzioni di pianificazione

Pianificazione Turnistica

- Definizione degli operatori assegnati ad un CdL
- Login degli operatori sullo specifico CdL
- Supervisione del capoturno
- Permette la gestione della turnistica sulla base delle competenze (es. Attrezzisti)

Schedulazione

- Schedulazione della produzione a capacità finita
- Definita sulla base del calendario macchina
- Saturazione della disponibilità e della produttività teorica
- Può ridefinire i tempi di produzione sulla base della produttività consuntiva
- Ha come oggetto le singole operazioni
- Permette di identificare con maggiore precisione la data termine dell'ordine

Dashboard

Sistemi Informativi Evoluti e Big Data Sistemi informativi per la gestione delle operazioni industriali

Esempi applicazione di sistemi MES Fabbrica di insalate 4[^] gamma

Struttura dei dati tecnici

Reparti produttivi

Controllo avanzamento produzione: monda-lavaggio

- Punto di accumulo scarto
 Punto di rilevazione stato macchina
- Punto di rilevazione dato di processo

Controllo avanzamento produzione: Hi-care

- Punto di accumulo scarto
- Punto di rilevazione stato macchina
- Punto di rilevazione dato di processo

Controllo avanzamento produzione: area confezionamento

Indicatori di fabbrica

Livello del processo	Tipologia di indicatore	KPI
Monda	Resa MP Performance postazione di monda	$KPI1(\%): \left(\frac{kg MP \frac{mondati}{h}}{kg MP \frac{caricati}{h}} * 100\right)$ $kg MP mondati: kg pesati dopo l'asciugatura della centrifuga.$
	Scarto postazione di monda	$Scarto(\frac{\epsilon}{h}) = (\frac{kg MP caricati}{h} - \frac{kg MP mondati}{h})^* \frac{\epsilon}{kg}$
Lavaggio + Hi-Care	Efficienza della linea	KPI2 (%): $\left(\frac{kg \ processati \ in \ Multi \ Testa+kg \ semilavorato}{kg \ MP \frac{mondati}{h}}*100\right)$ $kg \ semilavorato = N^{\circ} casse \ prodotto*kg \ cassa$
		$\frac{kg\ processati\ in\ Multi\ Testa+kg\ semilavorato}{h}: \binom{kg\ processati\ in\ Multi\ Testa+\frac{kg\ semilavorato}{h}}{h} / (\frac{densit\ a\ semilavorato}{densit\ a\ MP})$
	Scarto linea di lavaggio + scarto zona Hi-Care	Waste $(\frac{\epsilon}{h}) = \left(\frac{kg mondati}{h} - \frac{kg processati in Multi Testa}{h}\right) * \frac{\epsilon}{kg}$

Tracciabilità

Fase	Calcolo	Note
Carico + Monda/cont rollo visuale	+1 — ===	La portata del nastro può variare in base alla necessità del momento ma il tempo di attraversamento (la velocità) e la lunghezza del nastro rimangono invariate.
Lavaggio	$t2 = \frac{\Delta S2}{V2}$	La portata delle vasche può variare in base alla necessità del momento ma il tempo di attraversamento e la lunghezza delle vasche rimangono invariate.
Asciugatura	$t3 = \frac{\Delta S3}{V3}$	Nella fase di asciugatura il tempo di attraversamento del tunnel potrebbe variare in base alla produttività oraria del momento, questo più modificare il tempo che il prodotto impiega ad attraversare questa fase. In questo caso viene monitorata la velocità del tunnel basandosi sui giri del motore registrati da un encoder.
Hi-Care	$t4 = \frac{\Delta S4}{V4}$	CASO1: Processo in flusso In questo caso non ho problemi per il riconoscimento del lotto in quanto non viene generato semilavorato, tutta la MP viene direttamente confezionata. CASO 2: Casse SL generate/utilizzate In questo caso (avendo la postazione di pesatura output in multitesta) per la separazione dei lotti dobbiamo conoscere la velocità di svuotamento del nastro così che il sistema possa distinguere il primo lotto dal successivo nel momento in cui l'operatore segnala la fine del lotto di lavorazione in corso. Questo implica l'utilizzo di un encoder che monitori i giri del motore del nastro, e quindi la velocità di svuotamento dello stesso.

Modello E-R

Tracciabilità: rottura di lotto

CARICO BANCALI MATERIA PRIMA

GESTIONE FERMATE

GESTIONE MANUTENZIONI

ORDINE CONFEZIONAMENTO AVANZAMENTO BANCALI

LANCIO ORDINE

SET-UP

ORDINE AVVIATO

