

Universidad Nacional del Oeste

TRABAJO FINAL ARDUINO

Utilizacion de sensores.

Carrera: Licenciatura en Informatica Materia: Programacion con Objetos III

Docentes: Cabrera, Jose Luis

Año: 2017

Comision: 34TN

Autores:

- Mendoza, DanteOvola, Buth
- Oyola, Ruth
- Heredia, Fernando

	UNO Universidad Nacional del Oeste							
Materia: P Objetos	Alumno Mendoza							
Proyecto	Trabajo Final	Arduino.				Oyola Heredia		
Sede:	Cordoba 1055	Comisión:	34TN	Turno:	Noche	Página		
	Utilizacion de sensores							

Índice

Introduccion	03
Un poco de historia	04
Materiales utilizados	05
¿Que problema resolveremos?	09
Diagramas de conexion	09
Funcionamiento	13
Conclusion	17
Bibliografia y bibliografia Web	18

UNO:
POLONAL DEL OSS

	UNO Universidad Nacional del Oeste							
	Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis							
Proyecto								
Sede:	Cordoba 1055	Comisión:	34TN	Turno:	Noche	Página		
	Uti	lizacion d	e sensore	es		3 de 18		

Introduccion

En este trabajo presentaremos como medir la temperatura y humedad del ambiente haciendo uso de sensores. Para llevar a cabo dicha labor se requirio de la utilizacion de una placa microcontroladora llamada Arduino Uno para realizar las labores de ejecucion, control, conexión y alojamiento del codigo utilizado.

Cabe destacar que el trabajo realizado no solo se basa en medir la temperatura y humedad. Sino que se decidio agregar el uso de un modulo bluetooth para solicitar desde una terminal movil los datos sensados, de esta manera se puede visualizar de forma remota los datos obtenidos, lo cual es mucho mas practico y versatil al usuario.

	UNO Universidad Nacional del Oeste						
Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis							Alumno
Proyecto	Trabajo Final	Arduino.	i				Mendoza Oyola Heredia
Sede:	Cordoba 1055	Comisió	n:	34TN	Turno:	Noche	Página
	Utilizacion de sensores						

Un poco de historia

Arduino se inició en el año 2005 como un proyecto para estudiantes en el Instituto IVREA, en Italia. En ese tiempo, los estudiantes usaban el microcontrolador BASIC Stamp, cuyo costo era de 100 dólares, el cual era bastante elevado.

El nombre del proyecto viene del nombre del Bar di Re Arduino (Bar del Rey Arduino) donde Massimo Banzi (fundador de Arduino) pasaba algunas horas en el. El rey Arduino fue rey de Italia entre los años 1002 y 1014. En la creación del proyecto contribuyó el estudiante colombiano Hernando Barragán, quien desarrolló la tarjeta electrónica Wiring, el lenguaje de programación y la plataforma de desarrollo. Una vez concluida dicha plataforma, los investigadores trabajaron para hacerlo más ligero, más económico y disponible para la comunidad como open hardware. El instituto finalmente cerró sus puertas, así que los investigadores, entre ellos el español David Cuartielles, promovieron la idea. Banzi afirmo años más tarde, que el proyecto nunca surgió como una idea de negocio, sino como una necesidad de subsistir ante el inminente cierre del Instituto de diseño Interactivo IVREA. Es decir, que al crear un producto de hardware abierto, éste no podría ser embargado.

Posteriormente, Google colaboró en el desarrollo del Kit Android ADK (Accesory Development Kit), una placa Arduino capaz de comunicarse directamente con teléfonos móviles inteligentes bajo el sistema operativo Android para que el teléfono controle luces, motores y sensores conectados de Arduino.

Para la producción en serie de la primera versión se tomó en cuenta que el coste no fuera mayor de 30 euros, que fuera ensamblado en una placa de color azul, debía ser Plug and Play y que trabajara con todas las plataformas informáticas tales como MacOSX, Windows y GNU/Linux.

En el año 2006, se incorporó al equipo el profesor Tom Igoe que había trabajado en computación física. Igoe ofreció su apoyo para desarrollar el proyecto a gran escala y hacer los contactos para distribuir las tarjetas en territorio estadounidense.

	UNO Universidad Nacional del Oeste							
Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis							Alumno	
Proyecto	Trabajo Final	Arduino.	i				Mendoza Oyola Heredia	
Sede:	Cordoba 1055	Comisió	n:	34TN	Turno:	Noche	Página	
	Utilizacion de sensores							

Materiales utilizados

Sensor DHT11

El DHT11 es un sensor, que permite realizar la medición simultánea de temperatura y humedad. Este sensor dispone de un procesador interno que realiza todo el trabajo de cálculos, proporcionando la medición mediante una señal digital, por lo que resulta muy sencillo obtener la medición desde una placa micro controladora como Arduino.

Sus características son:

- Medición de temperatura entre 0 a 50, con una precisión de 2ºC
- Medición de humedad entre 20 a 80%, con precisión del 5%.
- Frecuencia de muestreo de 1 muestras por segundo (1 Hz)

En cada envío de medición el sensor envía un total de 40bits, en 4ms. Estos 40 bits corresponden con 2 Bytes para la medición de humedad, 2 Bytes para la medición de temperatura, más un Byte final para la comprobación de errores (8bit integral RH data + 8bit decimal RH data + 8bit check sum)

		Univ	U ersidad Na	NO ciona	l del Oe	este		Año 2017
VER510		Materia: Programacion con Docente: Cabrera, Jose Luis Dipietos III						
UNO	Proyecto	Trabajo Fin	al Arduino					Mendoza Oyola Heredia
ONAL DEL OF	Sede:	Cordoba 1055						
	Utilizacion de sensores						6 de 18	

Modulo bluetooth HC-06

El módulo bluetooth HC-06 es un dispositivo muy fácil de usar para aplicaciones con micro controladores como PIC y Arduino. Se trata de un dispositivo relativamente económico y que habitualmente se vende en un formato que permite insertarlos en un protoboard y cablearlo directamente a cualquier micro controlador, incluso sin realizar soldaduras.

Sus características son:

- Especificación bluetooth v2.0 + EDR (Enhanced Data Rate)
- Modo esclavo (Solo puede operar en este modo)
- Puede configurarse mediante comandos AT (Deben escribirse en mayúscula)
- Chip de radio: CSR BC417143
- Frecuencia: 2.4 GHz, banda ISM
- Modulación: GFSK (Gaussian Frequency Shift Keying)
- Antena de PCB incorporada
- Potencia de emisión: ≤ 6 dBm, Clase 2
- Alcance 5 m a 10 m
- Sensibilidad: ≤ -80 dBm a 0.1% BER
- Velocidad: Asincrónica: 2 Mbps (max.)/160 kbps, sincrónica: 1 Mbps/1 Mbps
- Seguridad: Autenticación y encriptación (Password por defecto: 1234)
- Perfiles: Puerto serial Bluetooth
- Módulo montado en tarjeta con regulador de voltaje y 4 pines suministrando acceso a VCC, GND, TXD, y RXD
- Consumo de corriente: 30 mA a 40 mA
- Voltaje de operación: 3.6 V a 6 V
- Dimensiones totales: 1.7 cm x 4 cm aprox.
- Temperatura de operación: -25 °C a +75 °C

		Año 2017						
IVERS/O	Materia: Pobjetos 1	Alumno						
UNO	Proyecto	Trabajo Fin	rabajo Final Arduino.					
ONAL DEL OF	Sede:	Cordoba 1055						
	Utilizacion de sensores						7 de 18	

Algunas de sus aplicaciones posibles son:

- Comunicación inalámbrica entre microcontroladores
- Comunicación inalámbrica entre computadoras y microcontroladores
- Comunicación inalámbrica entre teléfonos móviles o tabletas y microcontroladores

Arduino Uno R3

El micro controlador Arduino es una plataforma open-hardware basada en una sencilla placa con entradas y salidas (E/S), analógicas y digitales.

Car

ıract	erísticas técnicas:	
•	Microcontrolador	ATmega328P
•	Tensión de funcionamiento	5V
•	Voltaje de entrada (recomendado)	7-12V
•	Voltaje de entrada (límite)	6-20V
•	Digital pines I/O PWM)	14 (de los cuales 6 proporcionan una salida
•	PWM digital pines I/O	6
•	Pines de entrada analógica	6
•	Corriente DC por Pin I/O	20mA
•	Corriente DC para Pin 3.3V	60mA
•	Memoria flash	32KB ATmega328P de los que 0,5 KB son
	utilizados por el gestor de arranque	<u>.</u>
•	SRAM	2KB ATmega328P
•	EEPROM	1KB ATmega328P
•	Velocidad de reloj	16 MHz
•	Longitud	68,6 mm
•	Anchura	53,4 mm
•	Peso	25 g

VERS 10			Año 2017					
		Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis						
UNO	Proyecto	Trabajo Fin	nal Arduino	•				Mendoza Oyola Heredia
ONAL DEL OF	Sede:	Cordoba 1055						
	Utilizacion de sensores						8 de 18	

IDE de desarrollo

Para llevar a cabo todo el desarrollo de codificación, depuración y subida del código a la placa, se requirió del IDE de desarrollo oficial del sitio web de arduino.

Download the Arduino IDE


```
Archivo Editar Programa Herramientas Ayuda

Sketch_nov24a

void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}
```

		UNO Universidad Nacional del Oeste							
IN ERSIO		Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis							
UNO	Proyecto	Trabajo Fin	Trabajo Final Arduino.						
ONAL DEL OF	Sede:	Cordoba 1055	Comisió	n:	34TN	Turno:	Noche	Página	
	Utilizacion de sensores								

¿Que problema resolveremos?

Lo que proponemos es simular un caso en donde nos importe la temperatura y humedad de un ambiente determinado. Así que para facilitar esta labor al usuario, permitiremos que este a través de su teléfono móvil pueda verificar dichos datos usando una simple aplicación. Esta utilizara la función bluetooth del teléfono para comunicarse directamente con el módulo HC-06 para verificar la temperatura y humedad.

El proceso continua con la petición recibida y ejecutada en el Arduino, este a su vez solicita los datos censados por el módulo DHT11. Cuando se recibe la respuesta por este módulo, inmediatamente se devuelve esta información al usuario.

Diagramas de conexion

	UNO Universidad Nacional del Oeste							
	Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis							
Proyecto								
Sede:	Cordoba 1055	Comisión:	: 34TN	Turno:	Noche	Página		
	Uti	lizacion d	e sensore	s		11 de 18		

	UNO Universidad Nacional del Oeste						
	Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis						
Proyecto	Proyecto Trabajo Final Arduino.						
Sede:	Cordoba 1055	Comisión:	34TN	Turno:	Noche	Página	
	12 de 18						

		Unive
IVERS/O	Materia: P Objetos	rogramacion III
UNO	Proyecto	Trabajo Fina
ONAL DEL OF	Sede:	Cordoba 1055

UNO Universidad Nacional del Oeste							Año 2017
Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis							Alumno
Proyecto Trabajo Final Arduino.							Mendoza Oyola Heredia
Sede:	Cordoba 1055	Comisiór	ո։ 34	TN	Turno:	Noche	Página
Utilizacion de sensores							13 de 18

Funcionamiento

Luego de realizar todas las conexiones pertinentes, se procede a realizar las pruebas de funcionamiento. Para llevar a cabo esta labor se requiere de un telefono movil Smartphone con Android 4.1 en adelante. Tambien se requiere de la instalación de una aplicación llamada "ArduDroid" la cual se la puede conseguir de forma gratuita en Google Play.

ArduDroid: Un controlador de Android basados en Bluetooth sencilla de 2 vías para Arduino UNO

	UNO Universidad Nacional del Oeste						Año 2017
Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis						Alumno	
Proyecto	Proyecto Trabajo Final Arduino.						
Sede:	Sede: Cordoba Comisión: 34TN Turno: Noche 1055						Página
Utilizacion de sensores							14 de 18

Luego iniciaremos nuestra aplicación para visualizar los dispositivos bluetooth disponibles para conectarnos.

En este caso nos conectaremos con el modulo HC-06 para luego solicitar los datos de humedad y temperatura.

	UNO Universidad Nacional del Oeste						Año 2017	
IN ERSIO	Materia: Programacion con Objetos III Docente: Cabrera, Jose Luis						Alumno	
UNO	Proyecto	Trabajo Fina	al Arduino	•		Mendoza Oyola Heredia		
ONAL DEL OF	Sede:	Cordoba Comisión: 34TN Turno: Noche 1055						Página
	Utilizacion de sensores					15 de 18		

Una ves que la conexión entre modulos bluetooth se concreto satisfactoriamente, entonces podemos iniciar la solicitud de los datos censados con pulsar en el Pin 2 del digital write.

Como se puede apreciar en la imagen, nos informa la temperatura y humedad del lugar donde se encuentre colocado nuestro sensor DHT11.

Toda la informacion que es captada a traves del sensor de humedad tambien puede ser visualizada a traves del monitor serie del IDE de desarrollo.

	V E R S	10
12	UNC	
	AL DE	

	UNO Universidad Nacional del Oeste						
Materia: P Objetos	Alumno						
Proyecto	Proyecto Trabajo Final Arduino.						
Sede:	Cordoba 1055	Comisión	: 34TN	Turno:	Noche	Página	
	17 de 18						

Conclusion

La placa micro controladora Arduino Uno R3 fue la pieza clave y fundamental para llevar a cabo este trabajo. Sus capacidades de conexión con diferentes modulos de diversos tipos lo convirtieron en la plataforma ideal de trabajo.

Los sensores HC-06 y el DHT11 permitieron la comunicación y entrega de la informacion requerida por el usuario, lo cual sumado al facil desarrollo y codificacion con el IDE de Arduino, se logro alcanzar con satisfaccion los objetivos planteados.

Ademas todo el trabajo realizado tambien se lo podria utilizar para tomar muestras de temperatura y humedad de algun lugar de importancia donde este factor sea determinente para tomar una decisión. Este tipo de mecanismo son los que se utilizan ampliamente en los sistemas de tiempo real, donde estos interactuan con su entorno físico y responden a los estímulos del entorno dentro de un plazo de tiempo determinado.

19	UNO
	CIONAL DEL OF

UNO Universidad Nacional del Oeste						Año 2017	
Materia: P Objetos	Alumno						
Proyecto	Proyecto Trabajo Final Arduino.						
Sede:	Sede: Cordoba Comisión: 34TN Turno: Noche 1055						
	18 de 18						

<u>Bibliografia y Bibliografia Web</u>

https://www.arduino.cc/en/main/software

http://arduino.cl/arduino-uno/

https://www.infootec.net/arduino/

http://fritzing.org/home/

https://circuits.io/

https://easyeda.com/es