CPU Architecture

LAB1 preparation report

VHDL part1 – Concurrent code

Hanan Ribo

2/03/2021

Table of contents

1.	Aim of the Laboratory	. 3
	System Design definition	
	Generic Adder/Subtractor module:	
4.	Shifter Module based on Barrel-Shifter n-bit:	. 5
5.	Test and Timing:	. 6
	System Output Example (for n=8)	
	Requirements	
	Grading Policy	

1. Aim of the Laboratory

- Obtaining skills in VHDL part1 code, which contains Code Structure, Data Types,
 Operators and Attributes, Concurrent Code, Design Hierarchy, Packages and
 Components.
- Obtaining basic skills in ModelSim (multi-language HDL simulation environment).
- General knowledge rehearsal in digital systems.
- Proper analysis and understanding of architecture design.

2. System Design definition

In this laboratory you will design a module which contains the next three sub-modules:

- Generic Adder/Subtractor module between two vectors Y, X of size n-bit (the default is n=8).
- Generic Shifter module based on Barrel-Shifter n-bit size (the default is n=8).
- Boolean Logic operates bitwise.
- The generic n value can be 4,8,16,32 (set from *tb.vhd* file).
- You are required to design the whole system and make a test bench for testing.

Figure 1 : System structure

Decimal value	ALUFN	Operation	Note
0	000	Res=Y+X	
1	001	Res=Y-X	
2	010	Res=SHL Y,X(k-1 to 0)	Shift Left Y of X(k-10) times
			When $k = \log_2 n$
3	011	Res=SHR Y,X(k-1 to 0)	Shift Right Y of X(k-10) times
			When $k = \log_2 n$
4	100	Res=Y or X	
5	101	Res=Y and X	
6	110	Res=Y xor X	
7	111	Res=Y nor X	

Table 1: Selected operations

• The Top Level design must be Structural (your DUT must contain at least the next five *.vhd files).

- You are given the above two files that you must use in your project: top.vhd,
 aux_package.vhd (you must use the given Entity definitions and can only add code to these files, you are not allowed to erase anything), you can only add
 *.vhd files.
- The submitted project must be compiled using the given **tb.vhd** file (otherwise the submitted project will be considered as a failure).
- The submitted assignments get through copy checking machine, in this case, both sides' assignments will be disqualified.

3. Generic Adder/Subtractor module:

• You are required to design a Generic Adder/Subtractor between two vectors Y, X of size n-bit (the default is n=8), using the next diagram. The design must be Structural of a least two levels.

In order to do so, you are asked to use the Generic Adder code that was given in

Moodle.

Figure 2: Generic Adder/Subtractor

4. Shifter Module based on Barrel-Shifter n-bit:

Note: using sll, srl operators are forbidden and will cause to disqualification of the

assignment.

Figure 3: Example of 8-bit Barrel Shifter

5. Test and Timing:

- Design a test bench which tests all the system.
- Analyze the results by zooming on the important transactions in the waveforms.
 explain these (input/output/internal signals of the system).
- You are welcome to use the Internet also as reference.
- Good tip for beginners: Build a test bench for each module you are designing for easy debugging, otherwise you will waste a lot of time for whole system debug.
- The timing of the system will be ideal (means a functional simulation).

6. System Output Example (for n=8)

Signals are shown in binary format

Signals Y, X, ALUout are shown in HEX format (same exact example as above).

7. Requirements

- 1. The lab assignment is in pairs (as shown in the inlay file).
- 2. The design must be well commented.
- 3. **Important:** For each of two submodules:
 - Graphical description (a square with ports going in and out) and short descriptions.
- 4. Elaborated analysis and wave forms:
 - Remove irrelevant signals.
 - Zoom on regions of interest.
 - Draw clouds on the waveform with explanations of what is happening (Figure 4).
 - Change the waveform colors in ModelSim for clear documentation (Tools->Edit Preferences->Wave Windows).

5. A ZIP file in the form of **id1_id2.zip** (where id1 and id2 are the identification number of the submitters, and id1 < id2) *must be upload to Moodle only by*

student with id1 (any of these rules violation disqualify the task submission).

6. The **ZIP** file will contain (only the exact next sub folders):

Directory	Contains	Comments
DUT	Project VHDL files	Only VHDL files of DUT, excluding test bench
		Note: your project files must be well
		compiled without errors as a basic condition
		before submission
ТВ	Four VHDL files that are used for test	Adder/Subtractor, Logical, shifter, System (top)
	bench	
SIM	Four ModelSim DO files (wave, list)	Adder/Subtractor, Logical, shifter, System (top)
DOC	Project documentation	• readme.txt (list of the DUT *.vhd files with
		their brief functional description)
		• pre1.pdf (report file that includes brief
		explanation of the four modules with their
		wave diagrams as shown in figure 4)

Table 2: Directory Structure

Figure 4: Clouds over the waveform

8. Grading Policy

Weight	Task	Description
10%	Documentation	The "clear" way in which you presented the requirements and the analysis and conclusions on the work you've done
90%	Analysis and Test	The correct analysis of the system (under the requirements)

Table 1: Grading

Under the above policies you'll be also evaluated using common sense:

- Your files will be compiled and checked, the system must work.
- Your design and architecture must be intelligent, minimal, effective and well organized.

For a late submission the penalty is 2^{days}