Il legame chimico Eccezioni alla regola dell'ottetto

Eccezioni alla regola dell'ottetto

Ci sono vari tipi di eccezione alla regola dell'ottetto:

- 1. Molecole con un numero dispari di elettroni.
- 2. Molecole con un atomo che ha l'ottetto incompleto.
- 3. Molecole con un atomo che espande l'ottetto.
- 4. Ioni che non hanno la configurazione del gas nobile

Eccezioni alla regola dell'ottetto Numero di elettroni dispari

Esempi: ClO₂, NO, NO₂

Dato che il numero di elettroni è dispari c'è un atomo che ha 7 elettroni nel guscio di valenza (non ne può avere 9).

Queste molecole hanno un elettrone spaiato e questo conferisce loro una particolare proprietà: sono sostanze paramagnetiche.

Eccezioni alla regola dell'ottetto Proprietà magnetiche delle sostanze

Le sostanze possono essere:

- 1. diamagnetiche
- 2. paramagnetiche
- 3. ferromagnetiche
- Le sostanze diamagnetiche non hanno elettroni spaiati e se sottoposte all'azione di un campo magnetico vengono molto debolmente respinte.
- Le sostanze paramagnetiche sono attratte da un campo magnetico e spesso sono colorate.
- Le sostanze ferromagnetiche (ferro e poco altro) sono fortemente attratte da un campo magnetico.

Eccezioni alla regola dell'ottetto Proprietà magnetiche delle sostanze

L'ossigeno molecolare è una sostanza paramagnetica, in quanto ha due elettroni spaiati.

La teoria di Lewis non è in grado di rappresentare correttamente la struttura di O_2 .

In questa struttura non ci sono i due elettroni spaiati.

In questa struttura ci sono i due elettroni spaiati, ma l'ordine di legame è sbagliato.

Le due strutture non hanno lo stesso numero di doppietti e quindi non sono strutture di risonanza.

Eccezioni alla regola dell'ottetto Ottetto incompleto

Troviamo questa eccezione alla regola dell'ottetto nell'atomo centrale dei composti covalenti, quando l'atomo centrale appartiene ai gruppi 1A, 2A e 3A Esempi: LiH, BeH₂, BF₃

Eccezioni alla regola dell'ottetto Ottetto incompleto

Li-H H-Be-H

Il litio ed il berillio dovrebbero diventare cationi +1 e +2 rispettivamente e dare legami ionici.

Quando gli ioni che si formano hanno una densità di carica molto elevata (alta carica e piccole dimensioni) l'attrazione elettrostatica è molto forte.

I due atomi sono così vicini che non riescono a formare il reticolo cristallino.

Nel gruppo 1A solo il Li dà alcuni (pochi) composti covalenti, nel 2A sono covalenti quasi tutti i composti del Be, ma non quelli degli altri elementi.

Eccezioni alla regola dell'ottetto Ottetto incompleto :F-B-F:

Nel gruppo 3A, praticamente tutti i composti del B sono covalenti.

Anche Al da composti covalenti come ad esempio AlCl₃, ma AlF₃ e Al₂O₃ sono ionici.

La natura, ionica o covalente, di un composto si stabilisce sulla base delle proprietà chimico fisiche del composto e non può essere facilmente prevista in quanto dipende dall'energia di reticolo.

Composti come PCl₅ ed SF₆ possono essere spiegati solo con l'espansione dell'ottetto.

L'espansione dell'ottetto è possibile solo per elementi del terzo periodo e periodi successivi.

Questo perché in questi elementi ci sono orbitali d liberi nel guscio di valenza

Gli elementi del terzo periodo e successivi, quando è possibile, tendono ad espandere l'ottetto.

Ad esempio l'ossidicloruro di zolfo, che potrebbe essere rappresentato così:

:ĊI-S-CI:

in realtà è meglio rappresentato da una struttura con l'ottetto espanso:

Gli elementi del terzo periodo e successivi, danno legami multipli solo se espandono l'ottetto.

Il fosforo allo stato elementare è P_4 e non P_2 come l'azoto e gli ossidi sono P_4 O_6 e P_4 O_{10}

Eccezioni alla regola dell'ottetto

I composti dei gas nobili sono altri esempi di espansione dell'ottetto; He e Ne non possono dare composti.

Eccezioni alla regola dell'ottettoIoni dei metalli di transizione

Molti degli ioni dei metalli di transizione non hanno la configurazione dei gas nobili:

Sc^{+3}	[Ar]
Cr ⁺³	$[Ar]3d^3$
Mn ⁺²	[Ar]3d ⁵
Fe ⁺³	[Ar]3d ⁵
Cu ⁺	$[Ar]3d^{10}$
\mathbb{Z}^{n+2}	[Ar]3d ¹⁰

Eccezioni alla regola dell'ottetto Ioni di elementi rappresentativi

Anche alcuni elementi rappresentativi danno ioni che non hanno la configurazione dei gas nobili; si tratta di elementi ad elevato numero atomico che si comportano da metalli a numeri di ossidazioni bassi:

```
Sn<sup>+2</sup> [Kr]4d<sup>10</sup> 5s<sup>2</sup>

Sb<sup>+3</sup> [Kr]4d<sup>10</sup> 5s<sup>2</sup>

Tl<sup>+</sup> [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup>

Pb<sup>+2</sup> [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup>

Bi<sup>+3</sup> [Xe] 4f<sup>14</sup> 5d<sup>10</sup> 6s<sup>2</sup>
```

Questi elementi a numero di ossidazione più elevato si comportano da non metalli e quindi danno legami covalenti (esempio: $SnCl_{4}$ è covalente).