Differential Calculus with Applications to Life Sciences

Math 102:105

Pooya Ronagh

Agenda for today:

- Review inverse functions
- Log plots
- Decays and Growths
- More differential equations

Which of the following functions has an inverse?

- (A) x^2
- (B) x^3
- $(C) \quad x^4 x^2$
- $(D) \quad \frac{1}{x^2}$

Which of the following functions has an inverse?

- (A) x^2
- (B) x^3
- $(C) \quad x^4 x^2$
- (D) $\frac{1}{x^2}$

Which of the following functions has an inverse?

- (A) x^2
- (B) x^3
- $(C) \quad x^4 x^2$
- (D) $\frac{1}{x^2}$

Which of the following identities is correct?

$$(A) \log_2(8) = 2$$

$$(B) \quad \log_e(e^2) = 1$$

$$(C) \quad \ln(e) = 0$$

$$(D) \log_3(3) = 1$$

What is the derivative of $f(x) = 3^x$?

- $(A) \quad 3^{\alpha}$
- (B) $C_3 3^x$
- $(C) \frac{1}{3}3^{x}$
- (D) $\ln(3) 3^x$

What is the derivative of $f(x) = 3^x$?

- $(A) \quad 3^{a}$
- (B) $C_3 3^x$
- $(C) \frac{1}{3}3^{x}$
- (D) $\ln(3) 3^x$

Key step:

$$3 = e^{\ln(3)}$$

Semi-log plots

Goal: verify that some data set collected from an environment follows an exponential trend:

$$y = ae^{kx}$$

and find values of a and k.

Semi-log plots

Goal: verify that some data set collected from an environment follows an exponential trend:

$$y = ae^{kx}$$

and find values of a and k.

Idea: Instead of plotting y versus x, plot ln(y) versus x. Let's say z = ln(y).

Semi-log plots

Goal: verify that some data set collected from an environment follows an exponential trend:

$$y = ae^{kx}$$

and find values of a and k.

Idea: Instead of plotting y versus x, plot ln(y) versus x. Let's say z = ln(y).

If $y = ae^{kx}$ is the relationship expressing y in terms of x, then

$$z = \ln(a) + kx$$

is the relationship expressing z in terms of x.

Doubling time

Remember the magic drop ...

Doubling time

Remember the magic drop with volume 0.05mL.

The bowl of the Millennium Stadium with volume 1.5 million metres cubed.

Calculate the exact time at which the entire Stadium is under water.

- (A) 44.33 seconds
- (B) 44.55 seconds
- (C) 44.77 seconds
- (D) 44.99 seconds

See you next week!

Nov 3 WW 8

Nov 7 PL10.1

Nov 9 PL10.2

