Table 3.1. Computation of orographic precipitation over leg 10 of Blue Canyon, California, test area for the 6-hour period 2 p.m. – 8 p.m., 22 December 1955 (hand computation, using 3 p.m. 22 December 1955 sounding at Oakland, California, as inflow data and assuming a nodal surface of 350 hPa)

Inflow data																$\Delta \overline{w}$ LT		$\Delta \overline{m{w}}$ ит		
P	T (0.5)	RH	V	\overline{V}	$\overline{V}_{\Delta P}$	Ws (=://.=:)	WI	Pc	P_{LT}	WLT	Put	WUT	\overline{W}_{l}	\overline{W} LT	$\overline{m{W}}$ UT	$\overline{W}_I - \overline{W}_{LT}$	$\overline{V}_{\Delta P} \Delta \overline{w}_{LT}$	$\overline{W}_I - \overline{W}_{UT}$	$\overline{V}_{\Delta P}\Delta\overline{w}_{UT}$	
(hPa)	(°C)	(%)	(kn)	(kn)		(g/kg)														
500	–12.3	77	61.8	59.6	2980	2.96	2.28	475	494	2.28	495	2.28	2.70	2.70	2.70	0.00	0	0.00	0	
550	-8.1	82	57.4	62.7	3135	3.80	3.12	529	537	3.12	536	3.12		3.53		0.08	251	0.09	282	
600	-4.2	88	67.9	62.8	3140	4.65	4.09	543	575	4.09	574	3.92		4.22		0.42	1319	0.44	1382	
650	-0.6	92	57.6		2755	5.64	5.19	638	604	5.19	602	4.47		4.73		0.99	2727	1.03	2838	
700	1.6	94	52.6		2490	6.64	6.24	692	630	6.24	628	4.90		5.18		1.51	3 7 6 0	1.56	3864	
750	5.3	95	47.0		2505	7.50	7.13	742	656	7.13	654	5.36		5.51		2.04	5110	2.10	5 2 6 1	
800	7.9	95	51.1		1 285	8.38	7.96	792	672	7.96	649	5.54		5.75		2.45	3148	2.63	3180	
825	9.1	96	49.6	49.2	295	8.79	8.44	817	688	8.44	672	5.60		5.92		2.58	761	2.89	153	
831	9.4	96	48.7	47.2	897	8.92	8.56	823	693	8.56	673	5.62		6.09		2.66	2386	3.06	2745	
850	10.3	96	45.7		1105	9.30	8.93	843	703	8.93	680	5.76		6.34		2.79	3 083	3.27	3613	
875	11.4	96	42.7		1068	9.71	9.32	868	718	9.32	694	5.95		6.51		2.95	3151	3.46	3695	
900	12.5	94	42.7		1 048	10.20	9.59	888	732	9.59	705	6.05		6.59		3.10	3 2 4 9	3.63	3804	
925	13.4	93	41.1	37.6	940	10.52	9.79	911	746	9.79	717	6.07		6.64		3.17	2980	3.72	3497	
950	14.2	91	34.1	29.9	748	10.80	9.83	929	760	9.83	721	6.10		6.57		3.06	2 2 8 9	3.69	2760	
975	15.0	85	25.7	19.4	485	11.10	9.43	941	776	9.43	740	5.78		6.42		3.00	1455	3.66	1775	
1000	15.5	84	13.1	11.1	56	11.20	9.41	961	790	9.41	753	5.73		6.48		3.07	172	3.75	210	
1005	15.7	84	9.1	11.1	30	11.27	9.69	971	793	9.69	754	5.87	9.33	0.40	3.00	3.07	172	3.73	210	
Leger	d: RH	= Rel	ative h	umidity	/										<i>I</i> =	3.5	5 841	39	979	
w_S = Saturation mixing ratio w_I = Mixing ratio at inflow 6-hour volume (m													$(mm \times nmi^2) = 0.0612 \times I =$				2 193		2 447	
				io at in tion pre						Unit	-width	horizo	ntal ar	ea (nn	ni²) =	46.8		50.3		
	LT :	= Low	er pre	cipitatio	on traje	,						r avera					47	49		
	UT	= Up	per pre	ecipitati	ion traje	ectory			6-hou	ır avera			_	`	,					
									J-1100	ii aveic	ige raii	nan ov	ci iast	icg (III) –	$\frac{2\ 447 - 2\ 193}{50.3 - 46.8} = 73$				

Rain drift is used below the freezing level; snow drift, above. By coincidence, the lower trajectory (Figure 3.6) reaches the freezing level approximately where the latter intersects a streamline. The upper trajectory, however, reaches the freezing level between the 850- and 825-hPa inflow streamlines. Hence, a streamline passing through the intersection of this trajectory and the 0°C line is constructed. This streamline intersects the inflow vertical at 831 hPa. Since the snow drift in the 831- to 825-hPa layer is 0.65 nmi (Table 3.2), the total drift measured from the outflow vertical the 825-hPa streamline would be 2.95 + 0.65 = 3.60 nmi, which would take the trajectory below the freezing level. Hence, total drift was assumed to be 3.47 nmi, which means that the drift within this layer was assumed to be 0.52 nmi rather than 0.65 nmi. Since the snow in this layer is probably very wet, the falling rate is likely to be between that for snow and that for rain, and the above assumption appears warranted.

3.2.3.6 **Precipitation computation**

After constructing the precipitation trajectories, compute the total volume of precipitation under each trajectory, layer by layer. Subtract the total volume under one trajectory from the volume under the next higher one, and divide the difference by the horizontal area of the ground on which this volume falls to obtain the average depth over this area.

If Equation 3.10 for rainfall rate is multiplied by the area XY it yields the 1-hour rainfall volume. The Y in the numerator and denominator cancel one another, and if area width X is taken as 1 nmi, the 1-hour volume R(XY) or $Vol_{1 \text{ hour}}$ under a particular trajectory is approximately:

$$Vol_{1 \text{ hour}} \approx 0.0102 \overline{V}_1 \Delta P_1 (\overline{W}'_1 - \overline{W}')$$
 (3.12)

where \overline{W}' is the mean outflow mixing ratio at the trajectory (see \overline{q} in Figure 3.3).