日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 1月23日

出 願 番 号
Application Number:

特願2004-015251

[ST. 10/C]:

[JP2004-015251]

出 願 人 Applicant(s):

宇部興産株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月17日

1) 11

BEST AVAILABLE COPY

【書類名】

【整理番号】 【あて先】

【国際特許分類】

特許願

TTP100836

特許庁長官殿

C08F136/06

CO8L 9/00

【発明者】

【住所又は居所】

宇部興產株式会社千葉石油化 千葉県市原市五井南海岸8番の1

学工場内 朝倉 好男

【氏名】

【発明者】

【住所又は居所】

宇部興産株式会社千葉石油化 千葉県市原市五井南海岸8番の1

学工場内

000000206

常見 和正

012254

21,000円

宇部興産株式会社

1

岡部 恭芳

【氏名】 【特許出願人】

【識別番号】

【氏名又は名称】

【代表者】

【手数料の表示】

【予納台帳番号】 【納付金額】

【提出物件の目録】

【物件名】

特許請求の範囲 明細書 1

【物件名】 【物件名】

要約書 1

【請求項1】

(1)1,3-ブタジエンと溶解度パラメーターが8.5以下である炭化水素系有機溶剤を 主成分としてなる混合物の水分の濃度を調節し、

(2)次いで、シス-1, 4 重合の触媒として、一般式A1RnX3-n(但し、Rは炭素数1 ~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、 nは1.5~2である。)で表されるハロゲン含有有機アルミニウム化合物と可溶性コバ ルト化合物とを前記混合物に添加して1,3-ブタジエンをシス-1,4 重合し、 (3)次いで、得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、 Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有 機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1,3ープタジエ ンを1,2重合させることを特徴とするビニル・シスーポリブタジエンゴムの製造方法で

あって、 該ビニル・シスーポリプタジエンゴムに含有される1,2-ポリプタジエン結晶繊維の平 均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単 分散繊維結晶数が10以上の短繊維状であり、かつ融点が170℃以上であることを特徴とす るビニル・シスーポリブタジエンゴムの製造方法。

【請求項2】

請求項1に記載のビニル・シスーポリブタジエンゴムを用いることを特徴とするタイヤ用 ポリブタジエンゴム組成物。

【書類名】明細書

【発明の名称】ポリブタジエンゴムの製造方法及びタイヤ用ゴム組成物

【技術分野】

[0001]

本発明は、特定の構造を有する短繊維状であり、かつ、融点が170℃以上である1, 2ーポリブタジエン結晶繊維とゴム分からなるビニル・シスポリブタジエンゴム組成物に 関する。

【背景技術】

[0002]

ポリプタジエンは、いわゆるミクロ構造として、1,4-位での重合で生成した結合部 分(1,4-構造)と1,2-位での重合で生成した結合部分(1,2-構造)とが分子鎖 中に共存する。1,4-構造は、更にシス構造とトランス構造の二種に分けられる。一方 、1,2-構造は、ビニル基を側鎖とする構造をとる。

[0003]

従来、ビニル・シスポリブタジエンゴム組成物の製造方法は、ベンゼン、トルエン、キ シレンなどの芳香族炭化水素系溶媒で行われてきた。これらの溶媒を用いると重合溶液の 粘度が高く撹拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必要 であった。又、前記溶媒は毒性の為、発癌作用の為に環境にとって非常に危険性のあるも のであった。

[0004]

上記の製造方法としては、前記の不活性有機溶媒中で水,可溶性コバルト化合物と一般式 AlR_nX_{3-n}(但しRは炭素数1~6のアルキル基,フェニル基又はシクロアルキル基 であり、 X はハロゲン元素であり、 n は 1. 5~2の数字)で表せる有機アルミニウムク ロライドから得られた触媒を用いて1,3ーブタジエンをシス1,4重合してBRを製造 して、次いでこの重合系に1、3ープタジエン及び/または前記溶媒を添加するか或いは 添加しないで可溶性コバルト化合物と一般式AIR3(但しRは炭素数1~6のアルキル 基、フェニル基又はシクロアルキル基である)で表せる有機アルミニウム化合物と二硫化 炭素とから得られる触媒を存在させて1,3ーブタジエンをシンジオタクチック1,2重 合(以下, 1,2重合と略す)する方法(例えば、特公昭49-17666号公報(特許 文献1),特公昭49-17667号公報(特許文献2)参照)は公知である。

[0005]

また、例えば、特公昭62-171号公報(特許文献3),特公昭63-36324号公 報 (特許文献4), 特公平2-37927号公報(特許文献5), 特公平2-38081 号公報(特許文献6),特公平3-63566号公報(特許文献7)には、二硫化炭素の 存在下又は不在下に1,3-ブタジエンをシス1,4重合して製造したり,製造した後に 1,3ープタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1, 3 ープタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特 公平4-48815号公報(特許文献8)には配合物のダイスウェル比が小さく、その加 硫物がタイヤのサイドルとして好適な引張応力と耐屈曲亀裂成長性に優れたゴム組成物が 記載されている。

[0006]

また、特開2000-44633号公報(特許文献9)には、n-ブタン、シス2-ブ テン,トランス-2-ブテン,及びブテン-1などのC4留分を主成分とする不活性有機 溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有する1,2ーポ リブタジエンは短繊維結晶であり、短繊維結晶の長軸長さの分布が繊維長さの98%以上 が 0.6μ m未満であり、70%以上が 0.2μ m未満であることが記載され、得られた ゴム組成物はシス1,4ポリブタジエンゴム(以下,BRと略す)の成形性や引張応力, 引張強さ, 耐屈曲亀裂成長性などを改良されることが記載されている。

[0007]

しかしながら、用途によっては、種々の特性が改良されたゴム組成物が求められていた 出証特2005-3011506

[0008]

【特許文献1】特公昭49-17666号公報

【特許文献2】特公昭49-17667号公報

【特許文献3】特公昭62-171号公報

【特許文献4】特公昭63-36324号公報

【特許文献5】特公平2-37927号公報

【特許文献6】特公平2-38081号公報

【特許文献7】特公平3-63566号公報

【特許文献8】特公平4-48815号公報

【特許文献9】特開2000-44633号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、特定のゴム分成分と特定の1,2ーポリブタジエン結晶繊維とからなるタイ ヤ用ゴム組成物であり、特に自動車のタイヤトレッド及びサイドウォール用材料として優 れた性質を示すタイヤ用ビニル・シスポリブタジエンゴム組成物を提供することを目的と する。

【課題を解決するための手段】

[0010]

本発明は、(1)1,3ーブタジエンと溶解度パラメーターが8.5以下である炭化水素 系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、

- (2)次いで、シスー1, 4重合の触媒として、一般式A1RnX3-n(但し、Rは炭素数1 ~6のアルキル基、フェニル基又はシクロアルキル基であり、Xはハロゲン元素であり、 nは1.5~2である。)で表されるハロゲン含有有機アルミニウム化合物と可溶性コバ ルト化合物とを前記混合物に添加して1,3ープタジエンをシスー1,4重合し、
- (3)次いで、得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、 Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有 機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1,3ープタジエ ンを1,2重合させることを特徴とするビニル・シスーポリブタジエンゴムの製造方法で あって、

該ビニル・シスーポリブタジエンゴムに含有される1,2ーポリブタジエン結晶繊維の平 均の単分散繊維結晶の短軸長が0.2µm以下、アスペクト比が10以下であり、且つ平均の単 分散繊維結晶数が10以上の短繊維状であり、かつ融点が170℃以上であることを特徴とす るビニル・シスーポリブタジエンゴムの製造方法に関する。

[0011]

また、本発明は、上記のビニル・シスーポリブタジエンゴムを用いることを特徴とするタ イヤ用ポリブタジエンゴム組成物に関する。

【発明の効果】

[0012]

本発明の新規なビニル・シスポリブタジエンゴムは、溶解度パラメータが8.5以下である 炭化水素系溶媒を用いて製造される為、従来のビニル・シスポリブタジエンゴムに比べ1 ,2ーポリブタジエン結晶繊維とゴム分との界面親和性が向上し、且つ1,2ーポリプタジ エン結晶繊維の分散径が小さくなることにより、高シスポリブタジエンゴムの優れた特性 を保持し、且つ配合物のダイスウェル比(スウェル比)が小さく、その加硫物がタイヤのト レッド及びサイドとして好適な耐破壊特性及び耐摩耗性、滑り摩擦抵抗性を示す。更に加 硫物の耐屈曲亀裂成長性が非常に良好で、且つ高剛性であるため、カーボンやシリカ等の 補強材使用量の低減が容易になり、タイヤの軽量化による低燃費化が可能となる。従がっ て、本発明のビニル・シスポリプタジエンゴムをトレッド及びサイドの素材として使用し たタイヤは、優れた走行安定性・高速耐久性示し、且つ低燃費化を可能にする。また、こ

の配合物のダイスウェル比が低いことから、優れた押出し加工性を示し、タイヤ製造の作 業性が向上する。

【発明を実施するための最良の形態】

[0013]

本発明のゴム組成物は、(1)平均の単分散繊維結晶の短軸長が0.2μm以下、アスペク ト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融 点が170℃以上である1,2ーポリブタジエン結晶繊維1~50重量部、および、(2)ゴム 分100重量部からなる。

[0014]

上記の(1)成分の1,2ーポリブタジエン結晶繊維は、平均の単分散繊維結晶の短軸長が 0.2μ m以下、好ましくは、 0.1μ m以下であり、また、アスペクト比が10以下、好ましくは 、8以下であり、且つ平均の単分散繊維結晶数が10以上、好ましくは、15以上の短繊維状 であり、かつ、融点が170℃以上、好ましくは、190~220℃である。

[0015]

(2) ゴム分としては、下記の特性を有するシス1,4ーポリブタジエンが好ましい。 シス1,4-構造含有率が一般に90%以上,特に95%以上で,ムーニー粘度(ML 1+4 100℃,以下,MLと略す)10~130,好ましくは15~80であり,トルエン 溶液粘度(センチポイズ/25℃,以下、T-cpと略す)は30~200、好ましくは30~10 0であり、実質的にゲル分を含有しない。

[0016]

(1)成分の1,2ーポリブタジエン結晶繊維と(2)ゴム分の割合は、(2)ゴム分100 重量部に対して(1)成分の1,2-ポリブタジエン結晶繊維が1~50重量部、好ましくは 、1~30重量部である。上記範囲外であると、BR中の1,2ーポリブタジエン結晶繊維の 短繊維結晶が大きくなり、特長となる弾性率・耐屈曲亀裂成長性・酸化劣化性等が発現し 難く、また加工性の悪化などの問題がある。

[0017]

上記のゴム組成物は、以下の製造方法で好適に得られる。

溶解度パラメーター(以下、SP値と略)が8.5以下である炭化水素系溶媒を用いた重 合により製造される。溶解度パラメーターが8.5以下である炭化水素系溶媒としては,

例えば、脂肪族炭化水素、脂環族炭化水素であるn-ヘキサン(SP値:7.2)、n-ペンタン (SP値:7.0)、n-オクタン (SP値:7.5)、シクロヘキサン (SP値:8 .1)、n-プタン(SP値:6.6)等が挙げられる。中でも、シクロヘキサンなどが好ま LVia

これらの溶媒のSP値は、ゴム工業便覧(第四版、社団法人:日本ゴム協会、平成6年 1月20日発行;page721) などの文献で公知である。

[0018]

SP値が8.5よりも大きい溶媒を使用すると、BR中へのSPBの短繊維結晶の分散状 態が本発明の如く形成されないので、優れたダイスウェル特性や高引張応力、引張強さ、 高屈曲亀裂成長性能を発現しないので好ましくない。

[0019]

次に1,3ーブタジエンと前記溶媒とを混合して得られた混合媒体中の水分の濃度を調節 する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり、好ましくは0.1 ~1.0モル,特に好ましくは0.2~1.0モルの範囲である。この範囲以外では触媒 活性が低下したり、シス1、4構造含有率が低下したり、分子量が異常に低下又は高くな ったり、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付 着が起り、更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を調 節する方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特 開平4-85304号公報)も有効である。

[0020]

水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式

[0021]

次いで、有機アルミニウムクロライドを添加した混合媒体に可溶性コバルト化合物を添 加してシス1,4重合する。可溶性コバルト化合物としては、SP値が8.5以下である炭 化水素系溶媒を主成分とする不活性媒体又は液体1,3-ブタジエンに可溶なものである か又は、均一に分散できる、例えばコバルト(II)アセチルアセトナート、コバルト(II I) アセチルアセトナートなどコバルトの β ージケトン錯体,コバルトアセト酢酸エチル エステル錯体のようなコバルトの β ーケト酸エステル錯体, コバルトオクトエート, コバ ルトナフテネート, コバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバル ト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化 コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は1,3ープタ ジエンの1モル当たり0.001ミリモル以上、特に0.005ミリモル以上であること が好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(A1/Co)は10以上であり、特に50以上であることが好ましい。また、可溶性コバ ルト化合物以外にもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化 合物、ネオジウムの有機カルボン酸塩、ネオジウムの有機錯塩を使用することも可能であ る。

[0022]

シス1, 4重合する温度は0℃を超える温度~100℃, 好ましくは10~100℃、更 に好ましくは20~100℃までの温度範囲で1,3ーブタジエンをシス1,4重合する 。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。シス1,4重合後のポ リマー濃度は5~26重量%となるようにシス1,4重合を行うことが好ましい。重合槽 は1槽,又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を攪 拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽,例えば特 公昭40-2645号に記載された装置を用いることができる。

[0023]

本発明のシス1,4重合時に公知の分子量調節剤,例えばシクロオクタジエン,アレン, メチルアレン(1,2ープタジエン)などの非共役ジエン類,又はエチレン,プロピレン ,ブテンー1などの α ーオレフィン類を使用することができる。又重合時のゲルの生成を 更に抑制するために公知のゲル化防止剤を使用することができる。シス1,4一構造含有 率が一般に90%以上, 特に95%以上で, ムーニー粘度 (ML1+4, 100℃, 以下, MLと略す) 10~130, 好ましくは15~80であり, 実質的にゲル分を含有しない

[0024]

前記の如くして得られたシス1,4重合反応混合物に1,3ーブタジエンを添加しても添 加しなくてもよい。そして,一般式A1R3で表せる有機アルミニウム化合物と二硫化炭 素、必要なら前記の可溶性コバルト化合物を添加して1、3ーブタジエンを1、2重合し て沸騰 n - ヘキサン可溶分99~50重量%とH. Iが1~50重量%とからなるビニル ·シスポリブタジエンゴムを製造する。一般式A1R3で表せる有機アルミニウム化合物 としてはトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウ ム、トリnーへキシルアルミニウム、トリフェニルアルミニウムなどを好適に挙げること ができる。有機アルミニウム化合物は1,3ーブタジエン1モル当たり0.1ミリモル以 上,特に0.5~50ミリモル以上である。二硫化炭素は特に限定されないが水分を含ま ないものであることが好ましい。二硫化炭素の濃度は20ミリモル/L以下,特に好まし くは O. O 1~1 O ミリモル/Lである。二硫化炭素の代替として公知のイソチオシアン

酸フェニルやキサントゲン酸化合物を使用してもよい。

[0025]

1,2重合する温度は $0\sim100$ ℃,好ましくは $10\sim100$ ℃,更に好ましくは $20\sim100$ ℃までの温度範囲で1,3-ブタジエンを1,2重合する。1,2重合する際の重合系には前記のシス重合液100重量部当たり $1\sim50$ 重量部,好ましくは $1\sim20$ 重量部の1,3-ブタジエンを添加することで1,2重合時の1,2-ポリブタジエンの収量を増大させることができる。重合時間(平均滞留時間)は $10分\sim2$ 時間の範囲が好ましい。1,2重合後のポリマー濃度は $9\sim29$ 重量%となるように1,2重合を行うことが好ましい。重合槽は1槽,又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1,2重合に用いる重合槽としては1,2重合に更に高粘度となり,ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽,例えば特公昭 $40\sim2645$ 号公報に記載された装置を用いることができる。

[0026]

重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としてはフェノール系の2、6ージーtーブチルーpークレゾール(BHT)、リン系のトリノニルフェニルフォスファイト(TNP)、硫黄系の4.6ービス(オクチルチオメチル)ーoークレゾール、ジラウリルー3、3'ーチオジプロピオネート(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加はVCR100重量部に対して0.001~5重量部である。次に重合停止剤を重合系に加えて停止する。例えば重合反応終了後、重合停止槽に供給し、この重合溶液にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法に従い生成したビニル・シスポリブタジエンゴム組成物(以下、VCRと略)を分離、洗浄、乾燥する。

[0027]

このようにして得られたVCRは沸騰 n-ヘキサン可溶分99~50重量%とH.Iが1~50重量%とからなり、沸騰 n-ヘキサン可溶分はミクロ構造が90%以上のシス1,4ーポリブタジエンであり、H.Iの融点が170~220℃のSPBDである。MLは20~150.好ましくは25~100である。

[0028]

VCR中に分散した1,2ーポリブタジエン結晶繊維はBRマトリックス中に微細な結晶として単分散化した形態で部分的に分散し、凝集構造を有する大きな繊維結晶と共存している。そして、この単分散化した微細な繊維結晶はマトリックスゴム成分との界面親和性を向上させる。この単分散繊維結晶の平均短軸長は 0.2μ m以下、アスペクト比は10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状である。一方、従来のVCRは大きな凝集構造を有する繊維結晶が殆どで、単分散繊維結晶数は5以下であった。

[0029]

このようにして得られたVCRを分離取得した残部の未反応の1,3ーブタジエン,不活性媒体及び二硫化炭素を含有する混合物から蒸留により1,3ーブタジエン,不活性媒体として分離して,一方,二硫化炭素を吸着分離処理,あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し,二硫化炭素を実質的に含有しない1,3ーブタジエンと不活性媒体とを回収する。また,前記の混合物から蒸留によって3成分を回収して,この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても,二硫化炭素を実質的に含有しない1,3ーブタジエンと不活性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体とは新たに補充した1,3ープタジエンを混合して使用される。

[0030]

本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に有利にVCRを連続的に長時間製造することができる。特に、重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造で

きる。

[0031]

本発明により得られるVCRは単独でまたは他の合成ゴム若しくは天然ゴムとブレンドし て配合し、必要ならばプロセス油で油展し、次いでカーボンブラックなどの充填剤、加硫 剤,加硫促進剤その他通常の配合剤を加えて加硫し、タイヤ用として有用であり,サイド ル、または、トレッド、スティフナー、ビードフィラー、インナーライナー、カーカスな どに、その他、ホース、ベルトその他の各種工業用品等の機械的特性及び耐摩耗性が要求 されるゴム用途に使用される。また、プラスチックスの改質剤として使用することもでき

[0032]

本発明により得られるVCRに前記の配合剤を加えて混練した組成物は、従来のベンゼン 、トルエン、キシレン、クロルベンゼンなどの溶媒を使用した方法で得られたVCRに比 較してダイスウェル比(押出し時の配合物の径とダイオリフィス径の比)が指数換算で30 以下に低下(値が低下すると優れる)し、押出加工性に優れている。

[0033]

また、本発明により得られるVCR組成物(配合物)を加硫すると硬度や引張応力が向上 する。特に100%引張応力の向上が著しく、前記従来の方法で得られたVCRに比較し て指数換算で40前後増加(値が増加すると優れる)し、補強効果が大幅に改善される。更に 屈曲亀裂成長が著しく改善され、指数換算で30前後増加(値が増加すると優れる)し、屈曲 亀裂を抑制する効果を発現する。また、高剛性であるため、カーボンやシリカ等の補強材 使用量の低減が容易になり、タイヤの軽量化による低燃費化が可能となる。従がって、本 発明のビニル・シスーポリブタジエンゴムをトレッド及びサイドの素材として使用したタ イヤは、優れた走行安定性・高速耐久性示し、且つ低燃費化を可能にする。更にランフラ ットタイヤ等で要求される耐熱物性としては酸素等のガス透過性が、同様に従来の方法で 得られたVCRに比較して指数換算で5前後低下(値が低下すると優れる)し、酸化劣化に 伴う発熱を抑制する効果を示す。

[0034]

また、本発明により得られるVCR組成物(配合物)を加硫すると硬度や引張応力が向上 する。特に100%引張応力の向上が著しく、前記従来の方法で得られたVCRに比較し て指数換算で40前後増加(値が増加すると優れる)し、補強効果が大幅に改善される。更に 屈曲亀裂成長が著しく改善され、指数換算で30前後増加(値が増加すると優れる)し、屈曲 亀裂を抑制する効果を発現する。また、ランフラットタイヤ等で要求される耐熱物性とし ては酸素等のガス透過性が、同様に従来の方法で得られたVCRに比較して指数換算で5 前後低下(値が低下すると優れる)し、酸化劣化に伴う発熱を抑制する効果を示す。

[0035]

そして、上記の諸物性の発現には、VCR中に分散した1,2ーポリブタジエン結晶繊維 はBRマトリックス中に微細な結晶として単分散化した形態で部分的に分散し、凝集構造 を有する大きな繊維結晶と共存している必要がある。即ち、BRマトリックス中の単分散 化1,2ーポリプタジエン結晶繊維は、平均の単分散繊維結晶の短軸長が0.2μm以下であ り、また、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維 状であり、かつ、融点が170℃以上である必要がある。これらの範囲外では上記の特長あ る諸物性は発現されない。更にSP値が8.5以下の範囲から外れる炭化水素系重合溶媒の 使用及び(または)少なくとも1個以上の酸素結合を含有する有機化合物及び/又は高分子 化合物を使用しない場合には、BRマトリックス中に、最適に単分散化した1,2-ポリ ブタジエン結晶繊維の形態作製は困難になる。

[0036]

上記のゴム組成物を天然ゴム、合成ゴム若しくはこれらの任意の割合のブレンドゴムから なる群から選ばれたゴム100重量部に対して、1~300重量部、好ましくは50~20 0 重量部の範囲で配合することにより、ブタジエンゴム組成物を製造できる。また、上記 のビニル・シスポリブタジエンゴム及び/又はそのブタジエンゴム組成物を用いることを

特徴とするタイヤ用ブタジエンゴム組成物を製造できる。

[0037]

本発明のゴム組成物は、前記各成分を通常行われているバンバリー、オープンロール、 ニーダー、二軸混練り機などを用いて混練りすることでも得られる。

[0038]

本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロ セスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる配合剤を混練しても よい。

[0039]

加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシ ウムなどの金属酸化物などが用いられる。

[0040]

加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グ アニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサン テート類などが用いられる。

[0041]

老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫 黄系及び燐系などが挙げられる。

[0042]

充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻 土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。

[0043]

プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよ 6.7

[0044]

以下に本発明に基づく実施例について具体的に記載する。

[0045]

評価項目と実施条件

混練方法

下記手順に準じて混練する。

[一次配合]

混練装置:バンバリーミキサー(容量1.7L)

回転数: 77 r p m スタート温度:90℃

混練手順:

0分;VCR投入

0分;フィラー投入

3分;ラムを上げて掃除(15秒)

5分:ダンプ

ダンプ物は引き続き10インチロールにて1分間巻き付け、3回丸め通し後、シート出し した。コンパウンドは2時間以上冷却後、次の手順に準じて二次配合を行った。

[0046]

[二次配合]

前記一次配合終了後、下記手順に準じて二次配合を行った。

混練装置:10インチロール

ロール温度:40~50℃

ロール間隙: 2 mm

混練手順:

- 0分;ダンプ物の巻き付け及び硫黄・加硫促進剤の投入 (1)
- 2分;切り返し (2)

(3) 3分;三角取り・丸め通し後、シート出し

[0047]

加硫時間

測定装置; JSRキュラストメーター2F型

測定温度;150℃

測定時間; t 9 0 × 2, × 3 を加硫時間とした。

加硫条件

加硫装置;プレス加硫 加硫温度; 150℃

[0048]

[素ゴム物性評価]

ミクロ構造は、赤外吸収スペクトル分析によって行った。シス740cm⁻¹、トランス 967cm⁻¹、ビニル910cm⁻¹の吸収強度比からミクロ構造を算出した。

[0049]

ムーニー粘度 (M L 1+4) は、JIS K 6 3 0 0 に準拠して測定した。

[0050]

トルエン溶液粘度 (Tcp) は、ポリマー2.28gをトルエン50mlに溶解した後、 標準液として粘度計校正用標準液(JIS Z8 8 0 9)を用い、キャノンフェンスケ粘度計N o. 400を使用して、25℃で測定した。

[0051]

η s p / c: 1,2ーポリブタジエン結晶繊維の分子量の尺度 測定温度は135℃、使用溶媒はオルトジクロルベンゼン

[0052]

1,2-ポリブタジエン結晶繊維の融点は、示差走査熱量計 (DSC) の吸熱曲線のピー クポイントにより決定した。

[0053]

[配合物物性]

ダイスウェル

測定装置;モンサント社製加工性測定装置(MPT)

ダイ形状;円形

L/D; 1, 10 (D=1.5 mm)

測定温度;100℃

せん断速度; 100sec⁻¹

[0054]

[加硫物物性]

硬度及び引張強度は、JIS-K-6301に規定されている測定法に従って測定した。

[0055]

屈曲亀裂成長性は上島製作所製の亀裂試験機を用いて、ASTM D813に従い、試験 片の亀裂が15mm以上の長さに成長するまでの屈曲回数を測定した。

[0056]

ガス透過性はJISK7126に規定されている測定法に従って測定した。

[0057]

【表1】

ゴム・薬品	配合量(phr)	
VCR/NR	60/40	
HAFカーボン	50	
プロセスオイル	10	
亜鉛華1号	5	
ステアリン酸	2	
老化防止剤 AS	1	
加硫促進剤 CZ	1	
硫黄	1.5	
Total	170.5	
		-

【実施例1】

[0058]

窒素ガスで置換した内容30Lの攪拌機付ステンレス製反応槽中に、脱水シクロヘキサン /nーヘキサン(50/5018kgに1.3ーブタジエン1.6kgを溶解した溶液を入れ、コバルト オクトエート4mmol、ジエチルアルミニウムクロライド84mmol及び1.5ーシクロオク タジエン70 mmolを混入、25℃で30分間攪拌し、シス重合を行った。得られたポリマー のMLは33、T-cpは59、ミクロ構造は1,2構造0.9%、トランスー1,4構造0. 9%、シス1,4構造98.2%であった。シス重合後、直ちに重合液にトリエチルアルミニウム 90mmo1及び二硫化炭素50mmo1を加え、25℃で60分間攪拌し、1,2重合を行った。重合終了 後、重合生成液を4,6-ビス(オクチルチオメチル)-0-クレゾール1重量%を含むメ タノール18Lに加えて、ゴム状重合体を析出沈殿させ、このゴム状重合体を分離し、メタ ノールで洗浄した後、常温で真空乾燥した。この様にして得られたビニル・シスポリブタ ジエンゴムの収率は82%、 η sp/c=1.5、であり、ビニル・シスポリブタジエンゴムに 含まれる短軸長0.2μm以下の単分散1,2ーポリブタジエン結晶繊維の数は100個以上 で、アスペクト比は7、融点は202℃であった。

[0059]

表2にビニル・シスポリブタジエンゴム組成物の素ゴムデータを示した。

[0060]

			実施例		比較例				
		1	2	3	1	2	3		
重合溶媒	の種類	シクロヘキサン	シクロヘキサン/ ヘ・ンセ・ン	シクロヘキサン/ ヘ* ンセ*ン	ヘ゛ンセ゛ン	シクロヘキサン/ ヘ*ンセ*ン	シクロヘキサン/		
重合溶媒の	割合(%)	100	80/20	60/40	100	20/80	50/50		
溶媒の3		8. 1	8.3	8.5	9.1	8.9	8.6		
マトリックスト	BR (A)	33	÷-	←	33	←	<u> </u>		
T-c	р	59	←	←	59		←		
(cp T-cp		1.79	←	←	1.79	←	←	 (
[η		1.4	←	←	1.4	((-		
重盘平均 (ldw))分子量	42	←	←	42	←	←		
シュージャー・ション・ション・ション・ション・ション・ション・ション・ション・ション・ション	Cis	98. 2	←		98. 2		←		
(%)	Trans	0.9	←	÷	0.9	←	←		
(///	Vinyl	0.9		←	0.9	-	<u> </u>	_	
繊維結晶の		202	←	←	202	←	-		
7SI		1.5	←		1.5	←	←	_	
単分散機 短軸長0.2	維結晶数 μ以下の数 ² 当り	>100	>50	>20	3	6	8		
単分散缬	維結晶の	7	7	9	15	14	11		
	/(B)	88/12	←	←		-	←		
	/ (B) 考	単分散繊維結晶数多い単分散繊維					数少ない		

[0061]

表3にビニル・シスポリブタジエンゴム組成物の配合物及び加硫物データを示した。 [0062]

【表3】

									1
		実施例		比較例					
物性項	目	1	2	3	1	2	3		_
	配合物物性(指数)						_		
タ゛イスウ	ΙΝ		J/D=1			L/D=1		備考	-
)			指数小	**
100 se	c ⁻¹	77	80	83	100	98	97	が優	_{_{1}}^{1}
		加	硫物物	性(指	汝)			1:04:	_{
								指数大	
硬度	ŧ	104	104	104	100	100	100	が優	-{
M100		138	135	130	100	103	105	同上	
TB		107	107	107	100	101	102	"	*
EB		102	102	102	100	100	100	"	; ₁
TR		103	103	103	100	100	101	11	<u></u>
反撥引		105	105	104	100	100	100	n	
De la	†* laLa	1						指数小	4
 発熱物	幸作	88	89	90	100	98	97	が優	
PS		81	81	81	100	98	98	同上	
ランホ゛ーン		1						指数大	
(スリップ・ミ		109	110	108	100	101	102	が優	
(11)								指数小	}
圧縮永	久歪	88_	89	90	100	99	99	が優_	4-1
						ļ		指数大	1 1
屈曲亀	裂成長	140	139	139	100	105	107	が優	 ;
							07	指数小	
tar	ι δ	87	88	85	100	98	97	が優し	-
					100	100		指数小が優	
0 255315	N ₂	95	95	95	100	100	99	リールで	
力、ス透過	00	93	93	93	100	100	98	同上	
性	02	1 30	30	30	_11	,			

[0063]

120									_i
		実施例		比較例				_{	
物性項	目	1	2	3	1	2	3		
	配合物物性(指数)								
タ゛イスウ	- iV	L/D=1				L/D=1		備考_	
7 1/1/								指数小	
100 se	ec-1	77	80	83	100	98	97	が優	_{-
100 50		加	流物物	性(指	数)				_
								指数大	
硬度	ę l	104	104	104	100	100	100	が優	_
M100		138	135	130	100	103	105	同上	i
Тв		107	107	107	100	101	102	11	
EB		102	102	102	100	100	100	n	
TR		103	103	103	100	100	101	n	
反撥引		105	105	104	100	100	100	11	
<u> </u>	十二	100						指数小	1
発熱物	李 /	88	89	90	100	98	97	が優	
PS		81	81	81	100	98	98	同上	
ランホ゛ーン		\ <u>`</u>						指数大	
(スリップ・3		109	110	108	100	101	102	が優	
(1.77)								指数小	
圧縮永	〈 久歪	88	89	90	100	99	99	が優_	
								指数大	
屈曲亀	裂成長	140	139	139	100	105	107	が優	
								指数小	1 }
tar	ι δ	87_	88	85	100	98	97	が優	- {{
								指数小	
8 Note 114	N ₂	95	95	95	100	100	99	が優	
カン透過性	02	93	93	93	100	100	98	同上	

【要約】

【課題】自動車のタイヤトレッド及びサイドウォール用材料として優れた性質を示すタイ ヤ用ビニル・シスポリブタジエンゴム組成物を提供する。

【解決手段】(1)1,3-ブタジエンと溶解度パラメーターが8.5以下である炭化水素 系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、(2)1,3ーブタジエンを シスー1, 4重合し、(3)次いで1, 3ーブタジエンを1, 2重合させることを特徴とす るビニル・シスーポリブタジエンゴムの製造方法であって、該SPBの平均の単分散繊維 結晶の短軸長が0.2µm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数 が10以上の短繊維状であり、かつ融点が170℃以上であることを特徴とするビニル・シス -ポリブタジエンゴムの製造方法。

【選択図】 なし

認定·付加情報

特許出願の番号

特願2004-015251

受付番号

50400111110

書類名

特許願

担当官

第六担当上席

0 0 9 5

作成日

平成16年 1月26日

<認定情報・付加情報>

【提出日】

平成16年 1月23日

出願人履歴情報

識別番号

[000000206]

変更年月日
 変更理由]
 住所

氏

2001年 1月 4日

住所変更

山口県宇部市大字小串1978番地の96

名 宇部興産株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018417

International filing date: 02 December 2004 (02.12.2004)

Document type:

Certified copy of priority document

Document details:

Remark:

Country/Office: JP

Number:

2004-015251

Filing date: 23 January 2004 (23.01.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.