

Ministère de l'Education Nationale Université de Montpellier II Place Eugène Bataillon 34095 Montpellier Cedex 5

TP FMIN105 Algorithmique / Complexité / Calculabilité

RAPPORT (DÉCEMBRE 2011)

Travail préparé par :

Thibaut MARMIN Clément SIPIETER William DYCE

Table des matières

1	Par	tie thé	éorique	5
	1.1	Algori	ithmique	5
	1.2	Comp	lexité	8
		1.2.1	$SAT \propto 3-SAT$	8
		1.2.2	$3\text{-SAT} \propto 2\text{-SAT}$?	11
		1.2.3	2–SAT, un problème polynomial $\ \ldots \ \ldots \ \ldots \ \ldots$	12
	1.3	Calcul	labilité	15
2	Par	tie nra	atique	17

Chapitre 1

Partie théorique

1.1 Algorithmique

- 1. Le nombre de manières de colorier un graphe est le produit des nombres de façons de colorier chaque arc.
 - Si le graphe G est complet, on aura k couleurs possibles pour le premier sommet, (k-1) pour le deuxième, etc...(Le graphe G étant complet, la couleur du premier sommet est nécessairement exclu des autres sommets)

Le $n\hat{i}$ sommet pourra être colorié de k-(n-1) manières. D'où :

$$P_{K_n}(k) = \prod_{i=0}^{n-1} (k-i)$$

– Si G est vide, la coloration d'un sommet ne contraint pas la coloration des autres sommets. On obtient alors :

$$P_{\overline{K_n}}(k) = k^n$$

2. $\chi(G)$ étant, par définition, le nombre minimum de couleurs nécessaires pour colorier G, si $k < \chi(G)$ alors le graphe G ne peut pas être colorié par k couleurs. Si $k \ge \chi(G)$ alors il doit y avoir au moins une manière de colorier G, celui utilisant $\chi(G)$ couleurs.

On a donc:

$$P_G(k) \left\{ \begin{array}{ll} = 0 & \text{si } k < \chi(G) \\ \ge 1 & \text{sinon} \end{array} \right.$$

- 3. Montrons d'aboard que la propriété est vraie pour tout graphe complet K_n . Pour commencer on remarque que, pour tout arrête e:
 - $K_{n \setminus e}$ est exactement K_{n-1} , et donc :

$$P_{K_n \setminus e}(k) = P_{K_{n-1}} = \prod_{i=0}^{n-2} (k-i)$$

– Soit e = (a, b). On peut supposer (sans perte de généralité) que b est considéré en dernier lors de la coloration de K_n , donc qu'il lui reste k - (n - 1) couleurs. Pour colorier K_{n-e} on aura un choix de plus pour lui, à savoir la couleur de a, donc k - (n - 2) en totale. De ce fait :

$$P_{K_n-e}(k) = P_{K_{n-1}}(k)(k - (n-2)) = (\prod_{i=0}^{n-2} (k-i))(k - (n-2))$$

On a donc très clairement :

$$\begin{split} P_{K_n-e}(k) - P_{K_n \setminus e}(k) &= (\prod_{i=0}^{n-2} (k-i))(k-(n-2)) - \prod_{i=0}^{n-2} (k-i) \\ &= \prod_{i=0}^{n-2} (k-i)(k-(n-1)) \\ &= \prod_{i=0}^{n-1} (k-i) \\ &= P_{K_n}(k) \end{split}$$

Tout graphe de rang n pouvant se générer à partir de K_n (en enlevant des arrêtes) on cherchera à prouver que la suppression d'arrête conserve notre propriété. Autrement dit on aimerait montrer que pour tout graphe G et tout arrête a de celui-ci :

$$\begin{split} P_G(k) &= P_{G-e}(k) - P_{G \backslash e}(k) \\ \Rightarrow & P_{G-a}(k) = P_{G-e-a}(k) - P_{G \backslash e-a}(k) \end{split}$$

On supposera évidemment que a et e sont distinctes.

TODO FINISH

4.

5. Utilisons la formule trouvée au point précédent, et admettons que pour P_n une chaîne de taille n on a :

$$P_n(k) = k(k-1)^{n-1}$$

Prenons A le graphe initial :

$$\begin{split} P_A(k) &= P_B(k) - P_C(k) \\ &= \left(P_D(k) - P_E(k) \right) - \left(P_F(k) - P_{P_3}(k) \right) \\ &= \left[\left(P_{P_5}(k) - P_{P_4}(k) \right) - \left(P_{P_4}(k) - P_{P_3}(k) \right) \right] - \left[\left(P_{P_4}(k) - P_{K_3}(k) \right) - P_{P_3}(k) \right] \\ &= P_{P_5}(k) + 2P_{P_3}(k) - P_{K_3}(k) + 3P_{P_4}(k) \\ &= k(k-1)^4 + 2k(k-1)^2 + k(k-1)(k-2) - 3(k-1)^3 \\ &= k(k-1) \left[(k-1)^3 + z(k-1) + (k-z) - 3(k-1)^2 \right] \\ &= (k^2 - k) \left[(k-1)^2 \left((k-1) - 3 \right) + 3k - 4 \right] \\ &= (k^2 - k) [k^3 - 6k^2 + 12k - 8] \\ &= k^5 - 7k^4 + 18k^3 - 20k^3 + 8k \end{split}$$

$$B = A - (e, d): \qquad \text{a}$$

et
$$C = A \setminus (e, d)$$
:

et
$$C = A \setminus (e, d)$$
:

$$D = C - (a, b) :$$

et
$$E = C \backslash (e, b)$$
:

$$F = C - (b, ed)$$
:

et
$$C\setminus (b,ed)P_3$$
:

1.2 Complexité

1.2.1 SAT $\propto 3$ -SAT

(a) Énoncé de SAT :

$$\begin{array}{lll} \text{Donn\'ees}: & \mathcal{V} = \{v_1, v_2 \dots v_n\} & \textit{Ensemble de n variables} \\ & \mathcal{C} = \{c_1, c_2, c_3 \dots c_m\} & \textit{Ensemble de m clauses} \\ & \text{où} & c_i = (l_{i1} \vee l_{i2} \vee \dots \vee l_{ik}) & \textit{Clauses de k litt\'eraux} \\ & \text{avec} & l_{ij} = v \text{ ou } \neg v & \textit{avec } v \in U \end{array}$$

Problème : existe-il au moins une affectation des variables telle que chaque clause de $\mathcal C$ soit vrai.

Énoncé de 3-SAT:

3–SAT est identique au problème SAT avec k=3.

Données:
$$\mathcal{V} = \{v_1, v_2, v_3 \dots v_n\}$$

 $\mathcal{C} = \{c_1, c_2, c_3 \dots c_m\}$
où $c_i = (l_{i1} \lor l_{i2} \lor l_{i3})$
avec $l_{ij} = v$ ou $\neg v$

(b) La réduction du problème SAT peut être définit en montrant que chaque clause c de \mathcal{C} peut-être transformée en un ensemble de clauses \mathcal{C}' tel que pour toute affectation rendant vrai l'ensemble des clauses de \mathcal{C} , on peut trouver une affectation rendant vrai chaque clause de \mathcal{C}' . Chaque clause de \mathcal{C}' devant être de taille exactement 3. La réciproque doit également être montrée.

Définissons les réductions :

$$k = 1$$

Soit ci_1 une clause de taille 1, on a $ci_1=(l)$. Ajoutons deux variables $v_1,v_2\notin\mathcal{V}$ et transformons la clause c en quatre clauses. On obtient l'ensemble $\mathcal{C}_1=\{c_1,c_2,c_3,c_4\}$ avec :

$$c_1 = (l \lor v_1 \lor v_2)$$

$$c_2 = (l \lor v_1 \lor \neg v_2)$$

$$c_3 = (l \lor \neg v_1 \lor v_2)$$

$$c_4 = (l \lor \neg v_1 \lor \neg v_2)$$

k = 2

Soit ci_2 une clause de taille 2, on a $ci_2=(l_1\vee l_2)$. Ajoutons une variable $v\notin\mathcal{V}$ et transformons la clause c en deux clauses. On obtient l'ensemble $\mathcal{C}_2=\{c_1,c_2\}$ avec :

$$c_1 = (l_1 \lor l_2 \lor v)$$
$$c_2 = (l_1 \lor l_2 \lor \neg v)$$

k = 3

La clause ci_3 ne subit pas de transformation.

$$\mathcal{C}_3 = \{ci_3\}$$

k > 3

Soit la clause $ci_k = (l_1 \vee l_2 \vee \cdots \vee l_k)$. On ajoute (k-3) nouvelles variables $(v_1, v_2 \dots v_{k-3})$.

$$\mathcal{C}_k = \underbrace{(l_1 \vee l_2 \vee v_1)}_{c_1} \bigwedge_{i=1}^{k-4} \left[\underbrace{(\neg v_i \vee l_{i+2} \vee v_{i+1})}_{c_{i+1}} \right] \wedge \underbrace{(\neg v_{k-3} \vee l_{k-1} \vee l_k)}_{c_{k-2}}$$

Montrons que SAT est vrai si et seulement si 3-SAT est vrai :

$SAT\,\rightarrow\,3\text{--}SAT$

- Soit une interprétation I_1 qui satisfasse la clause ci_1 :

$$val(I_1, ci_1) = val(I_1, l) = vrai$$

Prenons une interprétation I_1' avec $val(I_1, l) = val(I_1', l)$, peu importe les affectations de v_1 et v_2 , l étant présent dans toutes les clauses de \mathcal{C}_1 :

$$val(I_1', \mathcal{C}) = \top$$

– Soit une interprétation I_2 qui satisfasse la clause ci_2 :

$$\exists i, val(I_2, l_i) = \top$$

Prenons une interprétation I_2' avec :

$$val(I_2, l_1) = val(I_2', l_1)$$

$$val(I_2, l_2) = val(I_2', l_2)$$

Peu importe l'affectation de v dans I'_2 , on a $val(I'_2, \mathcal{C}_2) = \top$.

– Soit une interprétation I_k qui satisfasse la clause ci_k :

$$\exists i, val(I_k, l_i) = \top$$

Prenons une interprétation I_k' telle que :

$$\begin{aligned} val(I_k,l_i) &= val(I_k',l_i) \\ \forall j \in \mathbb{N}^* \mid j \leq (i-2), val(I_k',v_j) &= \top \\ \forall j \in \mathbb{N}^* \mid (i-1) \leq j \leq (k-3), val(I_k',v_j) &= \bot \end{aligned}$$

On obtient :

$$val(I'_k, \mathcal{C}_k) = \top$$

$\textbf{3-SAT}\,\rightarrow\,\textbf{SAT}$

– Prenons une interprétation I_1 telle que $val(I_1, \mathcal{C}_1) = \top$. Sans perte de généralité, on suppose que :

$$val(I_1, v_1) = val(I_1, v_2) = \top$$

La clause c_4 de \mathcal{C}_1 ne peut être satisfaite que si $val(I_1, l) = \top$. On a donc :

$$val(I_1, ci_1) = \top$$

– Prenons une interprétation I_2 telle que $val(I_2, \mathcal{C}_2) = \top$. Sans perte de généralité on suppose que :

$$val(I_2, v) = \top$$

La clause c_2 de \mathcal{C}_2 ne peut être satisfaire que si $val(I_2,(l_1\vee l_2)) = \top$.

On a donc:

$$val(I_2, ci_2) = \top$$

– Prenons une interprétation I_k telle que $val(I_k, \mathcal{C}_k) = \top$ et montrons qu'il existe forcément un i tel que $val(I_k, l_i) = \top$. Supposons que l'interprétation I_k est modèle de \mathcal{C}_k avec

$$\forall i \in \mathbb{N}^* \mid i \le k, val(I_k, l_i) = \bot$$

$$\Rightarrow val(I_k, v_1) = \top (\text{dans } c_1)$$

Donc:

Fonc:
$$\forall i \in \mathbb{N}^* \mid i \leq (k-4), val(I_k, v_{i+1}) = \top$$

$$\Rightarrow val(I_k, v_{k-3}) = \top$$

$$\Rightarrow val(I_k, c_{k-2}) = \bot$$

$$\Rightarrow val(I_k, C_k) = \bot$$

Pour que l'interprétation I_k satisfasse C_k , il doit exister un $i \in \mathbb{N}^*$ tel que $i \leq k$ et que $val(I_k, l_i) = \top$.

On a donc:

$$val(I_k, ci_k) = \top$$

(c) Le point (b) définit la réduction de SAT vers 3–SAT. Afin de montrer la NP-Complétude de 3–SAT, montrons que la réduction s'effectue en un temps polynomial.

Soit:

k la taille de la clause initiale,

 v_k le nombre de variables à ajouter pour obtenir des clauses de taille 3, w_k le nombre de clauses de taille 3 obtenues à partir de la clause initiale.

$$v_3 = 0$$
 $w_3 = 1$
 $v_4 = 1$ $w_4 = 2$
 $v_5 = 2$ $w_5 = 3$
: :

Pour tout k > 3:

$$v_k = v_{\lceil \frac{k}{2} \rceil + 1} + v_{\lfloor \frac{k}{2} \rfloor + 1} + 1$$
$$w_k = w_{\lceil \frac{k}{2} \rceil + 1} + w_{\lfloor \frac{k}{2} \rfloor + 1}$$

 $v_k = \theta(k)$, donc borné par la taille de F. La réduction s'effectue donc en un temps polynomial.

Il est possible de réduire le problème SAT à 3–SAT en un temps polynomial, SAT étant NP-complet, 3–SAT l'est aussi.

(d) Soit C un ensemble de clause à n_v variables avec n_1 clauses de taille 1, n_2 clauses de taille 2, n_3 clauses de taille 3, n_4 clauses de taille 4 et n_5 clauses de taille 5. Calculons le nombre de variables et le nombre de clauses obtenues après réduction (respectivement n'_v et n'_c).

Les points (b) et (c) permettent de déterminer pour une clause de taille k, le nombre de clause obtenues et le nombre de variables ajoutées après réduction. On peut donc en déduire la tableau suivant :

Taille de la clause dans \mathcal{C}	1	2	3	4	5
Nombre de clauses	n_1	n_2	n_3	n_4	n_5
Nombre de variables ajoutées par clause	2	1	0	1	2
Nombre de variables ajoutées au total	$2n_1$	n_2	0	n_4	$2n_5$
Nombre de clauses obtenues par clause	4	2	1	2	3
Nombre de clauses obtenues au total	$4n_1$	$2n_2$	n_3	$2n_4$	$3n_5$

On a donc:

$$n'_v = n_v + 2n_1 + n_2 + n_4 + 2n_5$$

 $n'_c = 4n_1 + 2n_2 + n_3 + 2n_4 + 3n_5$

1.2.2 $3-SAT \propto 2-SAT$?

Cette réduction repose sur un principe qui consiste à décomposer une clause de taille k en plusieurs clauses de tailles inférieures.

Soit une clause $c = (l_1 \vee l_2 \vee l_3)$ une clause de taille 3 et I une interprétation qui satisfait c.

Cas 1 : décomposons cette clause en deux clauses c_1 et c_2 de tailles 1 et 2 :

$$c_1 = (l_1)$$

$$c_2 = (l_2 \lor l_3)$$

Pour montrer l'équivalence 3–SAT \leftrightarrow 2–SAT, il faut ajouter une variable v aux deux clauses créées :

$$c_1 = (l_1 \lor v)$$

$$c_2 = (l_2 \lor l_3 \lor \neg v)$$

On a donc la clause c_2 de taille 3.

Cas 2 : décomposons cette clause en trois clauses $c_1,\,c_2$ et c_3 de taille 1 :

$$c_1 = (l_1)$$

 $c_2 = (l_2)$
 $c_3 = (l_3)$

Pour montrer l'équivalence 3–SAT \leftrightarrow 2–SAT, il faut ajouter deux variables v_1 et v_2 aux trois clauses créées :

$$c_1 = (l_1 \lor v_1 \lor \neg v_2)$$

$$c_2 = (l_2 \lor \neg v_1 \lor v_2)$$

$$c_3 = (l_3 \lor v_1 \lor v_2)$$

On a donc également des clauses de taille 3. La réduction définie ci-avant ne permet donc pas la réduction de 3–SAT vers 2–SAT.

1.2.3 2-SAT, un problème polynomial

(a) Systèmes de deux clauses à deux littéraux :

Contingent : $(x \lor x) \land (x \lor x)$

Insaisissabilité du premier ensemble de clauses est clairement visible sur le graphe car les sommets x et $\neg x$ sont dans la même composante fortement connexe.

Le deux autres ensembles sont satisfiables, les deux sommets ne sont pas dans la même composante fortement connexe.

(b) L'algorithme suivant permet la génération du graphe correspondant à l'ensemble de clauses passé en paramètres, que nous appellerons graphe de satisfaction :

Algorithme 1: GrapheSatisfaction(C, V)

```
Données:
    \mathcal{C} // Ensemble de clauses
    \mathcal{V} // Ensemble des variables
 1 début
        Graphe. S = \emptyset; // Ensemble des sommets du graphe
 3
        Graphe.\mathcal{A} = \emptyset; // Ensemble des arcs du graphe
        // Initialisation des sommets
 4
        pour tous les v \in \mathcal{V} faire
 5
            ajouter(Graphe.\mathcal{S}, v);
 6
            ajouter(Graphe.S, \neg v);
 7
 8
        // Parcours des clauses
        pour tous les c \in \mathcal{C} faire
 9
            ajouter(Graphe.\mathcal{A},(\neg c.x, c.y));
10
            ajouter(Graphe.\mathcal{A},(\neg c.y, c.x));
11
        retourner Graphe;
12
```

Cet algorithme effectue un parcours de \mathcal{V} et un parcours de \mathcal{C} , sa complexité est donc $O(|\mathcal{C}| + |\mathcal{V}|)$.

(d) Les composantes fortement connexes du graphe de satisfaction généré, ainsi

que leur ordre topologique, peuvent être calculées par l'algorithme de Tarjan.

Algorithme 2: $Tarjan_Main(G)$

```
Données : G // Le graphe
   début
 1
 2
       date \leftarrow 0;
       pour tous les s \in G.S faire
 3
            DEBUT[s] \leftarrow 0;
 4
           CFC[s] \leftarrow 0;
 5
       Pile \leftarrow \emptyset;
 6
       numCFC \leftarrow 0;
 7
       pour tous les s \in G.S faire
 8
            \mathbf{si} \ DEBUT/s/=0 \ \mathbf{alors}
 9
                Tarjan_Rec(s, date, DEBUT, Pile, numCFC, CFC);
10
       retourner Comp;
11
```

Algorithme 3: Tarjan_Rec(s,date,DEBUT,Pile,numCFC,CFC)

```
Données :
   s // Le sommet
   date // Date de visite du sommet courant
   DEBUT // Tableau de dates de visites pour chaque sommet
   Pile // Pile de sommets
   numCFC // Numéro de la CFC
   CFC // Liste des CFC
1 début
       date \leftarrow date+1;
\mathbf{2}
3
       DEBUT[s] \leftarrow date;
       \min \leftarrow \text{DEBUT}[s];
4
       Empiler(Pile,s);
5
       pour tous les v \in Adj/s/ faire
6
           si DEBUT/v = 0 alors
               \min \leftarrow
8
              MIN(min, Tarjan\_Rec(v, date, DEBUT, Pile, numCFC, CFC)));
           sinon si CFC/v = 0 alors
9
            \min \leftarrow \text{MIN}(\min, \text{DEBUT}[v]);
10
       si min=DEBUT/s/ alors
11
          Ncfc \leftarrow numCFC + 1;
12
       répéter
13
           k \leftarrow \text{Depiler(Pile)};
14
           CFC[k] \leftarrow numCFC;
15
       jusqu'à k \neq s;
16
       retourner Comp;
17
```

L'algorithme Tarjan_Main initialise la date de visite de chaque sommet à zéro. On constate que les deux algorithmes exécutent Tarjan_Rec uniquement sur des sommet dont la date de première visite est nulle. Or chaque

appel à Tarjan_Rec affecte une date de visite supérieure à zéro au sommet courant. Tarjan_Rec est donc appelé exactement une fois par sommet.

De même, un sommet n'est empilé qu'à l'exécution de Tarjan_Rec, donc chaque sommet ne sera empilé (et donc dépilé) qu'une seule fois. La boucle de l'algorithme Tarjan_Rec (ligne 13) a une complexité globale en $O(|\mathcal{V}|)$. En revanche, la bouche ligne 6 est effectuée une fois pour chaque voisin du sommet courant, donc $|\mathcal{V}|$ fois au pire pour chaque appelle. Tarjan_Rec n'étant appelée que $|\mathcal{V}|$ fois en totale on arrive donc à une complexité de $O(|\mathcal{V}|^2)$.

Dans le pire des cas le nombre de variables d'une instance de 2–SAT est égale à deux fois le nombre de clauses (chaque clause comportant dans ce cas deux variables uniques). Or notre conversion génère deux sommets par variable. La complexité de l'algorithme en fonction du nombre de clauses est donc de $O(|\mathcal{C}|^2)$.

(e) Nous passerons par la double-implication pour montrer l'équivalence entre le problème 2–SAT et le tri topologique dans notre graphe de satisfaction. Avant de commencer, notons que les arcs dans le graphe de satisfaction correspondent à des implications. En effet on ajoute un arc de x vers!x ... blah blah

– Tri topologique \Rightarrow 2–SAT

Étant donnée les composantes fortement connexes (CFC) du graphe étiqueté on peut vérifier linéairement en le nombre de sommets du graphe qu'on a une variable ensemble avec sa négation.

Dans un tel cas

donc un instance 2–SAT insatisfiable. Si par contre n'a pas de variables ensembles avec leurs négative dans le même CFC il suffit de prendre l'ordre topologique calculée dans l'ordre inverse et d'affecter les variables de chaque composant comme précisée dans l'article. Nous finissions alors ou une affection modèle, ou l'affirmation de l'insatisfiabilité de la forme normale conjonctive. Un tri topologique de notre graphe étiqueté permet donc de résoudre le problème 2–SAT.

$-2-SAT \Rightarrow Tri topologique$

1.3 Calculabilité

1. La stratégie d'énumération des couples d'entier peut être visualisée sur un graphique en suivant les diagonales successives comme sur l'image 1 suivante :

FIGURE 1.1 – La fonction de couplage de Cantor établit une bijection de $\mathbb{N}*\mathbb{N}$ dans $\mathbb{N}.$

Soit $(x,y) \in \mathbb{N} * \mathbb{N}$ un couple. On trie par ordre lexicographique (x+y). Ainsi on obtient le tableau suivant :

(x,y)	(0,0)	(1,0)	(0,1)	(2,0)	(1,1)	(0,2)	(3,0)	(2,1)	(1,2)	(0,3)	
(x+y)	0	1	1	2	2	2	3	3	3	3	
$c_2(x+y)$	0	1	2	3	4	5	6	7	8	9	

2. Fonction de codage

$$c_2(x,y) = \frac{(x+y)(x+y+1)}{2} + y$$

Fonctions de décodage Les fonctions de décodage ne peuvent pas être décrites sous la forme de formules arithmétiques. Elles nécessitent

 $^{1.\ {\}rm Image}$ provenant de Wikipedia, ce fichier est disponible selon les termes de la licence Creative Commons.

l'algorithme suivant :

Algorithme 4: CalculXY(z)

```
Données : z // Rang du couple (x,y)
 1 début
          s \leftarrow 0;
 \mathbf{2}
          t \leftarrow 0:
 3
          tant que s\leqslant z faire
 4
              s \leftarrow \frac{t*(t+1)}{2};
 5
          t \leftarrow t - 2;
          s \leftarrow \frac{t*(t+1)}{2};
 8
          x \leftarrow t - y;
10
          retourner Couple(x,y);
```

3. Codage des triplets : il peut avoir lieu de manière récursive :

$$c_3(x, y, z) = c_2(x, c_2(y, z))$$

Généralisation au codage des k-uplets :

$$c_k(x_1, x_2, \dots, x_k) = c_2(x_1, c_{k-1}(x_2, \dots, x_k))$$
 Avec :
$$c_2(x, y) = \frac{(x+y)(x+y+1)}{2} + y$$

4. Prenons une suite $r=(r_1,r_2,r_3,\ldots)$ qui énumère les réels de l'intervalle [0;1], puis créons un réel x compris dans cet intervalle, tel que si la n^{ième} décimale de r_n est égale à 1, la n^{ième} décimale de x est égale à 2. Dans la cas contraire, la n^{ième} décimale de x est égale à 1.

On obtient sur cet exemple :

```
4
                              6
                                 1
             2
                    3
                       2
                           9
                                 0
                              4
             6
                4
r_3
             3
                0 \quad 5
       0
                      9
   = 0 , 9
                1 3 3 1
r_6
r_7
             1
                 1
                              1
                                 1
```

Le réel x ne peut pas être énuméré par la suite r car il diffère de sa première décimale dans r_1 , de sa deuxième décimale dans r_2 , ... de sa n^{ième} décimale dans r_n . Pourtant le réel x est clairement dans l'intervalle [0;1].

L'ensemble des éléments de l'intervalle [0; 1] n'est donc pas dénombrable, donc pas énumérable. On ne peut donc pas trouver de fonction de codage pour cet ensemble.

On peu généraliser à l'ensemble $\mathbb{R}:[0;1]$ étant inclus dans \mathbb{R} , et [0;1] n'étant pas dénombrable, l'ensemble \mathbb{R} n'est pas dénombrable.

Chapitre 2

Partie pratique