Homework 5 **CSCI4100**

Han Hai Rin:661534083 haih2@rpi.edu

October 9th 2018

1. [200 points] Exercise 2.8

- (a) Show that if H is closed under linear combination (any linear combination of hypothesess in H is also a hypothesis in H), then g^- is in set H.
 - $g^-(x) = \frac{1}{K} \sum_{k=1}^K gk(x)$ this function is a linear combination, so if H is closed under linear combination, then $g^- \in H$
- (b) Give a model for which the average function g^- is not in the model's hypothesis set. [Hint: Use a very simple model.

Let the hypothesis H contains two hypothesis, H_1 and H_2

Let H_1 be $g_1(x) = 0$ for any x, and let H_2 be $g_2(x) = 1$ for any x, $g^-(x) = \frac{1}{2}(g_1(x) + g_2(x)) = 0.5$. $g^{-}(x)$ is not in the hypothesis set

- (c) For binary classification, do you expect $g^{-}(x)$ to be a binary function? No, because if it's a binary function, it will only produce +1, or -1 which is not the case for $q^-(x)$.
- 2. [200 points] Problem 2.14 Let $H_1, H_2...H_K$ be K hypothesis sets (K>1), each with the same finite VC dimension d_{vc} . Let $H = H_1 \cup H_2 \cup ... \cup H_K$ be the union of these models.
 - (a) Show that $d_{vc}(H) < K(d_{vc} + 1)$.

Let's try to find a bound described in problem 2.13

I made a guess from other people's comments on the forum $d_{vc}(\cup_{k=1}^K H_K) \leq K - 1 + \sum_{k=1}^K d_{vc}(H_K)$ Let's prove this inequality

$$d_{vc}(\bigcup_{i=1}^{K} H_{K}) \leq K - 1 + \sum_{i=1}^{K} d_{vc}(H_{K})$$

First, $m_{H1\cup H2} \le m_{h1} + m_{h2}$

Because for every dicatomny in $m_{H_1 \cup H_2}$ it's either part of m_{h_1} or m_{h_2} , thus the inequality holds

$$m_{H_1 \cup H_2} \le \sum_{i=0}^{d_1} NC_i + \sum_{i=0}^{d_2} NC_i$$

Using Sauer's Lemma
$$m_{H1 \cup H2} \leq \sum_{i=0}^{d_1} NCi + \sum_{i=0}^{d_2} NCi$$

$$\leq \sum_{i=0}^{d_1} NCi + \sum_{i=0}^{d_2} NC(N-i)$$

$$= 2^k$$

for all n such that $d1 + 1 \le N - D2 - 1$ implies $N \ge d1 + d2 + 1$

Therefore, we can conclude that $d_{vc}(H1 \cup H2) \leq d_1 + d_2 + 1$ Now prove h(K): $d_{vc}(\cup_k = 1^K) \leq K - 1 + \sum_{k=1}^K d_{vc}(H_K)$ by induction

Base case: K=2

$$d_v c H_1 \cup H_2 \le 1 + \sum_{k=1}^2 d_v c H_k$$

which is ture

Induction step:

Assume K-1 is correct for original hypothesis

Assume K-1 is correct for original hypersuper
$$d_{vc}(\bigcup_{k=1}^{K} H_K) = d_{vc}((\bigcup_{k=1}^{K-1} H_K) \cup H_K)$$

 $\leq 1 + d_{vc}((\bigcup_{k=1}^{K-1} H_K) \cup d_{vc}H_K)$

$$\leq 1 + d_{vc}((\bigcup_{k=1}^{K-1} H_K) \cup d_{vc} H_K)$$

$$\leq 1 + K - 2 + \sum_{k=1}^{K-1} d_v c H_k + d_{vc} H_K$$

$$\leq K - 1 + \sum_{k=1}^{K} d_{vc} (H_K)$$

Now we prove the bound by induction

Since every element in the set has the same dvc, we can further derive the bound $d_{vc}(H) \leq K - 1 + Kd_{vc}$ $< K(d_{vc}+1)$

- (b) Suppose that l satisfies $2^{l} > 2Kl^{d_{vc}}$. Show that $d_{vc}(H) \leq l$. E2,10 states that $m_H(N) \leq N^{d_{vc}} + 1$ so $m_H(l) \leq l^{d_{vc}} + 1$ for every element k in Hypothesis set, we have $H_k(l) \leq l^{d_{vc}} + 1$ As we proved in part a $m_{H^{1}\cup H^{2}} \leq m_{h1} + m_{h2}$ So we can extend that $\sum_{k=1}^{K} mH_{k}(l) \leq K(l^{d_{vc}} + 1)$ which $\leq 2Kl^{d_{vc}}$ since $l^{d_{vc}} > 1$ therefore $m_{H}(l) \leq 2Kl^{d_{vc}} < 2^{l}$
 - so H cannot shatter l points

therefore, $d_{vc} < l$

(c) Hence show that $d_{vc}(H) \leq min(K(d_{vc}+1), 7(d_{vc}+K)log_2(d_{vc}K))$

we already proved $d_{vc}(H) \leq K(d_{vc} + 1)$

if we want to prove $d_{vc}(H) \leq 7(d_{vc} + K)log_2(d_{vc}K) = n$ for convenient, we need to prove $2^n > 2Kn^{d_{vc}}$ from conclusion of part b

take log both sides

 $n > 1 + log_2 K + d_{vc} log_2 n$

Let x be d_{vc} and y be K

LHS becomes $7(x+y)log_2(xy)$

RHS becomes $1 + log_2y + xlog_2(7(x+y)log_2(xy))$

 $\leq log_2(2y) + xlog_2(7(x+y)) + xlog_2log_2(xy)$

 $< log 2(xy) + xlog_2(7(x+y)) + xlog_2(xy)$ for x > 2

 $\leq log2(xy) + 6xlog_2(xy) + xlog_2(xy)$

since $7(x+y) < (xy)^6 when xy \ge 2$

 $\leq 7ylog2(xy) + 7x(log2(xy)) = LHS$

thus we prove that n is a qualified l from part b, $d_{vc}(H) \leq 7(d_{vc} + K)log_2(d_{vc}K)$, and the claim holds

3. [200 points] Problem 2.15 The monotonically increasing hypothesis set is

$$H = \{h | x_1 \ge x_2 \to h(x_1) \ge h(x_2)\}\$$

where $x_1 \geq x_2$ if and only if the inequality is satisfied for every component.

(a) Give an example of a monotonic classifier in two dimensions, clearly showing the +1 and -1 re-

The below graph is a monotonic classifier in 2d with +1 above the classifier and -1 below.

(b) Compute $m_H(N)$ and hence the VC dimension.

The above graph is an example of 10 randomly generated points and a random dichotomy as hinted in the book, we can use a monotonic classifier like this green line to shatter them. We can see that a similar classifier can always shatter any dichotomy of 10 such points, thus $m_H(N) = 2^N$ and thus $d_{vc}(H) = \infty$

- 4. [400 points] Problem 2.24 Consider a simplified learning scenario. Assume that the input dimension is one. Assume that the input variable x is uniformly distributed in the interval [-1,1]. The data set consists of 2 points x1,x2 and assume that the target function is $f(x)=x^2$. Thus the full data set is $D = \{(x_1, x_1^2), (x_2, x_2^2)\}$. The learning algorithm returns the line fitting these two points as g. We are interested in the test performance $(E[E_{out}])$ of our learning system with respect to the squared error measure, the bias and the var.
 - (a) Give the analytic expression for the average function $g^{-}(x)$.

$$g(x) = ax + b$$

$$x_1^2 = ax_1 + b$$

$$x_2^2 = ax_2 + b$$

$$a = \frac{x_2^2 - x_1^2}{x_2 - x_1} = x_1 + x_2$$

$$b = x_1^2 - x_1 \frac{x_2^2 - x_1^2}{x_2 - x_1} = -x_1 x_2$$
thus $g(x) = (x_1 + x_2)x - x_1 x_2$

$$g^-(x) = E_D[g(x)] = \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 ((x_1 + x_2)x - x_1 x_2) dx_1 dx_2 dx = 0$$

(b) Describe an experiment that you could run to determine (numerically) g(x), $E[E_{out}]$, biasandvariance

We can pick two random points between [-1,1] to be x_1, x_2 , and pick the line which go through these two points to be the g for this experiment, repeat the experiment many times (K times) to obtain a hypothesis set H of size K and then calculate $q^-(x)$ using $q^-(x)$ ammorphisms $q^-(x)$ in this case, y=ax+b a we

and then calculate $g^-(x)$ using $g^-(x)$ approximately $=\frac{1}{K}\sum_{k=1}^K g_k(x)$, in this case, y=ax+b a we can take the average of each x1+x2 and b to be the average of x1x2

we can then calculate Eout using $E_{out} = E_D[E_x[(g^{(D)}(x) - f(x))^2]]$ and bias(x) using bias(x)= $(g^-(x) - f(x))^2$

and bias= $E_x[bias(x)]$

var(x)to be $E_D[(g^{(D)}(x) - g^-(x))^2]$ and variance to be $E_x[var(x)]$

and finally $E[E_{out}] = bias + variance$

(c) Run you experiment and report the results. Compare $E[E_{out}]$ with bias +variance. Provide a plot of your $g^-(x)$ and f(x)

I ran the experiment in python I chose K=100000, and got the g-x to be $g - (x) = 4.23 * 10^{-4}x + 8.73 * 10^{-5}$ However, as the K grows even larger this should approach zero.

estimation of g-x comparing to target after 100000 experiments

I then calculated E_{out} using the method described in part b and got around 0.53 bias using the method described in part b and got around 0.2 and variance to be 0.33 we can see that bias+varaince=Eout 0.33+0.2=0.53 in this case

(d) Compute analytically what $E[E_{out}]$, bias and var should be $E[E_{out}] = E_D[E_x[(g^{(D)}(x) - f(x))^2]]$ $= \frac{1}{8} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} ((x_1 + x_2)x - x_1x_2 - x^2)^2 dx_1 dx_2 dx$ omitted long steps to solve this integral...

$$=\frac{1}{2}+\frac{1}{5}\approx 0.53$$

 $=\frac{1}{3}+\frac{1}{5}\approx 0.53$ for bias we have solved that the expected value for g-(x) is zero in part a, therefore, bias= $E_x[g-(x)-f(x)]^2=E_x[(0-x^2)^2]$ = $E_x[x^4]=\frac{1}{2}\int_{-1}^1 x^4=0.2$ variance= $\frac{1}{8}\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 [(x_1+x_2)x-x_1x_2]^2 dx_1 dx_2 dx$ omitted long steps to solve this integral... = $\frac{1}{3}\approx 0.33$ We can see that analytically the result is consistent with our experiment

bias=
$$E_x[g - (x) - f(x)]^2 = E_x[(0 - x^2)^2]$$

$$=E_x[x^4] = \frac{1}{2} \int_{-1}^1 x^4 = 0.2$$

$$=\frac{1}{3}\approx 0.33$$