中国科学技术大学数学科学学院 2022~2023 学年第2 学期期末考试试卷

A卷■	B卷
71/77	DT

课程名称	近世代数	课程编号_	001010	
考试时间	2023年7月12日	考试形式 _	闭卷	
姓 名	学号		学 院	
如果空间不够,	可以写在试卷(也是答题纸	()的背面, 但是	请务必用醒目的形式标识.	
1. 判断题(30分	分) 如果结论正确请写"Y"	,否则请写"N'		
(1) 在一个群中两个正规子群的乘积是一个正规子群.				
	的商群还是循环群.		* 	
(3) 如果一 一定是有限		而且这些生成	元都是有限阶的, 那么这个群	
	O(n, ℝ)(实数域上n阶正交 矩阵集合)的正规子群		一般线性群 $GL(n,\mathbb{R})$ (实数域	
• •	一定是交换群	. Riemann,	Les hegne.	
	区间(0,1)上的连续可积函数 环	女集合, 这个集	合在函数的乘法和加法运算	
(7) 在一个되	不中两个理想的交是一个理	理想		
(8) 设 <i>L/K</i> 县 的代数元	是一个域扩张, $\alpha \in L$ 是 K .	上的代数元,	$f(x) \in K[x]$, 那么 $f(\alpha)$ 是 K 上	
(9) 包含无穷	3多个元素的域特征为0	N		
(10) 域的代	数扩张一定是有限扩张	N		

2. (30分) 简答题.

(1) 设R是唯一因式分解整环, 陈述判定R[x]中一个本原多项式不可约的Eisertein(爱森斯坦因)判别法.

(2) 构造有理数域Q的一个5次扩域,并简要解释其为什么符合要求.

由 Eisenstein 判别法, x5-2在D上不可约. (B Gams 31理)

进而长为见的切竹枝(下文文学水为基)

(3) 写出 S_5 中两个6阶子群, 一个是交换的, 一个是非交换的.

(4) 写出 $\sqrt{2}$ + $\sqrt{3}$ 分别在域Q上和域Q[$\sqrt{6}$]上的极小多项式.

(5) 求正整数k < 17使得 $20^{17} \equiv k \pmod{17}$, 并用群的观点简要解释.

(6) 设K是域, x是一个未定元, 视 $K(x^2+x+1)$ 为K(x)的子域. 请问 $K(x)/K(x^2+x+1)$

$$x+1$$
)是否是代数扩张?如果是,请问扩张次数次数为多少.

而后为在K(x+x+1)上无限进而不可约(梅叶算次数即可) 故 K(x)/K(x+x+1)是2次代数扩张。)

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}(x^2+x^2+1)}$

> ig P(xix+1)=满尼iff, P,Q∈KCTI互意。

 $|\nabla | \frac{P(Y)}{Q(Y)} \Rightarrow |\nabla | T^{2}T - (Y - 1) = 0$ $\Rightarrow Q(Y) | 1, |P(Y)| | Y - 1.$

- 3. (20分) 设 $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ 为3元域, \mathbb{F}_3 为取值 \mathbb{F}_3 的n元列向量. 考虑一般线性群 $GL(2,\mathbb{F}_3)(2)$ 可逆矩阵集合)和特殊线性群 $SL(2,\mathbb{F}_3)$ (行列式为1的矩阵集合)在 \mathbb{F}_3 上的左乘作 用.
 - (1) 列举 $GL(2, \mathbb{F}_3)$ 在 \mathbb{F}_3^2 上作用的轨道以及轨道长度.
 - (2) 列举 $SL(2,\mathbb{F}_3)$ 在 \mathbb{F}_3^2 上作用的轨道以及轨道长度, 计算向量 $(1,0)^T$ 在 $SL(2,\mathbb{F}_3)$ 作 用下的固定子群以及阶数.
 - (3) 计算SL(2, F₃)的阶数.
 - (4) 可以用上面的思想归纳计算 $SL(n, \mathbb{F}_3)$ 的阶数以及 $GL(n, \mathbb{F}_3)$ 的阶数, 写一个 递推公式(不需要过程).

(1) 新道: 307, 肝3~1307 长度: 1,3²-1=8

(2) FIL. Stab SL(2, 1/2,0) = } ((1,0))

渐数为3.

(3) |SL(2, F3) = 1Stab SL(2, F1) ((1.0, T) | x 8

(4). IGL(n. Ff3) 1. 3n-1 = 3n-1

OG[(n, 15,)在 E"\{0)上作用传递

(i) 的 国定子群 $\{(\frac{1}{3}, \frac{a_2 - a_n}{B}) \mid B \in GLIN, F_3\}$

K LX + X+1]

ア(メネメリ) な(と)+(の)をりまりかり次(或の次)、不可能等う

- 4. (25分) 设 $R=\mathbb{Z}[\sqrt{2}i]=\{a+b\sqrt{2}i|a,b\in\mathbb{Z}\}$ 复数域C的子环, 并视 \mathbb{Z} 为 \mathbb{R} 的子环, 以下设p是一个素数,记有限域 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
 - (1) 证明环同构 $R \cong \mathbb{Z}[x]/(x^2+2)$ 和

 $R/(p) \cong \mathbb{Z}[x]/(p, x^2 + 2) \cong \mathbb{F}_p[x]/(x^2 + \bar{2}).$

- (2) 证明R为欧氏整环
- (3) 列举 $\mathbb{Z}[\sqrt{2i}]$ 中的单位、判断9和7是否是可约的(需要说明理由),如果可约对 其做一个不可约分解(只需结果即可).
- (4) 在环 $x \in \mathbb{Z}[\sqrt{2}i]$ 中,判断同余方程 $x \equiv \sqrt{2}i \pmod{9}, x \equiv 1 \pmod{7}$ 是否可解, 如果可解请列举所有满足上述同余方程的解
- (5) 证明存在整数a,b使得 $p=a^2+2b^2$ 当且仅当在环 $\mathbb{F}_p[x]$ 中多项式 $x^2+\bar{2}$ 可约.
- (6) 由前面的结论已知理想(7)是 $R = \mathbb{Z}[\sqrt{2}i]$ 的极大理想. 记商域L = R/(7), 视 $K = \mathbb{F}_7$ 为L 的子域,
- (6.1) 求元素 $2\sqrt{2i}$ 在K上的极小多项式。
- (6.2) 证明K[x]上的一个三次不可约多项式f(x)在L[x]上也是不可约的.

(5). tota -b ∈ Z to P=a+2b2

(=) 中在中旬约.

("=)": 12 to ; " (=" to p = a.B., a. PAPX M b= MM/N(B) => b= o+2p) => M(0)= = b= N(B)

<=> P/(P) 不見整环 小いものを注 若、千在L上可知。(二) FPLXI/(X子以不是整环 MARRUEL. (二) メネン在れり目的: い在ときか。はい、由かれるなか、メキン 数 25m 和小乳红为 X子1

16.21.18设于在LL面约,取午的石的国子午。ELIXI,加

(1) 岛和文主是 Jul 的零化多项式,且在图上不可约(Einemtein) to 9: Z(X)-> R 的 Kernel か (x子は 易知 9満, 由同志基本定理和 R全型(以子2) $K^{(b)} = \frac{(b^{1} \times \frac{1}{2} M)(x_{2}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{\sum (x_{3}^{2} M)(x_{3}^{2} M)} \stackrel{\sim}{=} \frac{(b^{1} \times \frac{1}{2} M)(x_{3}^{2} M)}{$ (2) 发需证明以上的一一一一个是好民赋值。 島和 YYEC, ISER 使得 18-5/<1 进而 ∀以,及∈尺, 事 S∈尺使得 120-S/<1, 定七= ×-58 m/ 1t/= 181.123-s/ </81. 进而 N(·)=1、12集政氏四位 a+b5i E Rx (=> N(a+b5i)=1 <=> a2+22=1 (=) a+bJn = ±1 易得り=(1+5が)で(1-5が)では高めまり 而 R/(7) 完 册(x3)(x3) 由于(音)=(音)(音) たある発环、なフモアである.

(4). 影響 28=1 [9] · 36=0 [9] 36=1 [7] な d= 2852+36 も一解 若perもか解

(=> ~- P = 0 [9], [7] (3) ~-B = 0 Eb3]. R4970757.