

FORMELSAMMLUNG UND GLOSSAR ZUM KURS "STATISTIK" (KURS 33209) MIT KONZEPTPAPIER – STAND: 27. MAI 2011

S. 34-35: Anmerkungen und Ergänzungen für Studierende im BSc "Psychologie"

© 2011 FernUniversität in Hagen, Fakultät für Kultur- und Sozialwissenschaft

1 Inhaltsübersicht

3	Beschreibende Statistik
3	Univariate Häufigkeitsverteilungen
5	Konzentrationsmessung
6	Index- und Verhältniszahlen
6	Bivariate Häufigkeitsverteilungen
8	Zusammenhangsmessung
10	Wahrscheinlichkeitsrechnung und schließende Statistik
10	Grundbegriffe der Wahrscheinlichkeitsrechnung
12	Diskrete Zufallsvariablen
15	Stetige Zufallsvariablen
19	Bivariate Verteilungen von Zufallsvariablen
22	Schätzung von Parametern
24	Statistische Testverfahren
29	Regressionsanalyse (einfaches Regressionsmodell)
31	Regressionsanalyse (multiples Regressionsmodell)
32	Grundzüge der Varianzanalyse
34	Anmerkungen und Ergänzungen für Studierende im BSc. "Psychologie
36	Matrizen, statistische Tabellen und Konzeptpapier
36	Grundzüge der Matrizenrechnung
38	Verteilungsfunktion der Binomialverteilung
40	Verteilungsfunktion und Quantile der Standardnormalverteilung
42	Quantile der χ^2 -Verteilung
43	Quantile der t -Verteilung
44	Quantile der F-Verteilung

2 Beschreibende Statistik

Univariate Häufigkeitsverteilungen

Sei X ein diskretes Merkmal mit k Ausprägungen $a_1, a_2, ..., a_k$. Dann wird die **absolute Häufigkeit** für die Ausprägung a_i mit $h_i := h(a_i)$ und die **relative Häufigkeit** mit $f_i := f(a_i)$ bezeichnet (i = 1, 2, ..., k) und es gilt für die relativen Häufigkeiten

Häufigkeiten

$$f_i = \frac{h(a_i)}{n} \qquad i = 1, 2, \dots, k.$$

Sei X ein zumindest ordinalskaliertes Merkmal mit Ausprägungen $a_1, a_2, ..., a_k$. Liegen die Ausprägungen nach aufsteigender Größe (bzw. nach aufsteigendem Rang) geordnet vor, so ist die **absolute kumulierte Häufigkeitsverteilung** für X gegeben durch

Häufigkeitsverteilungen

$$H(x) = h(a_1) + h(a_2) + \ldots + h(a_j) = \sum_{k=1}^{j} h(x_k).$$

Dabei ist a_j die größte Ausprägung des Merkmals X, die der Bedingung $a_i \leq x$ genügt. Die **relative kumulierte Häufigkeitsverteilung** F(x) resultiert, wenn man noch durch den Umfang n des Datensatzes dividiert:

$$F(x) = \frac{H(x)}{n} = \sum_{k=1}^{J} f(x_k).$$

Für die auch als **empirische Verteilungsfunktion** bezeichnete Funktion F(x) gilt

$$F(x) = \begin{cases} 0 & \text{für } x < a_1 \\ f_1 & \text{für } a_1 \le x < a_2 \\ \vdots & \vdots \\ f_1 + f_2 + \ldots + f_{k-1} & \text{für } a_{k-1} \le x < a_k \\ 1 & \text{für } x \ge a_k. \end{cases}$$

Sie ist eine monoton steigende Treppenfunktion, die in $x = a_i \ (i = 1, 2, ..., k)$ jeweils um f_i springt.

Ein leicht zu bestimmender Lageparameter einer empirischen Verteilung ist der Modus oder Modalwert x_{mod} . Er bezeichnet die Merkmalsausprägung mit der größten Häufigkeit. Ein weiterer Lageparameter ist der Median \tilde{x} . Hat man ein zumindest ordinalskaliertes Merkmal und Daten x_1, x_2, \ldots, x_n und bezeichnet man den nach aufsteigender Größe (bei ordinalskaliertem Merkmal nach aufsteigendem Rangplatz) geordneten

Lageparameter

Datensatz mit $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$, so ist der **Median** definiert durch

$$\widetilde{x} = \begin{cases} x_{(\frac{n+1}{2})} & \text{falls } n \text{ ungerade} \\ \frac{1}{2} \cdot \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) & \text{falls } n \text{ gerade.} \end{cases}$$

Bei metrisch skalierten Merkmalen kann man auch den **Mittelwert** \overline{x} errechnen. Bei gegebenen Beobachtungswerten x_1, x_2, \dots, x_n ist er durch

$$\overline{x} := \frac{1}{n} \cdot (x_1 + x_2 + \ldots + x_n) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

erklärt. Bei mehrfach auftretenden Merkmalswerten kann man bei der Berechnung des Mittelwerts alternativ die nachstehende äquivalente Formel verwenden:

$$\overline{x} := a_1 \cdot f_1 + a_2 \cdot f_2 + \ldots + a_k \cdot f_k = \sum_{i=1}^k a_i \cdot f_i.$$

Streuungspara-

meter

Ein einfaches Streuungsmaß für metrisch skalierte Merkmale ist die **Spannweite** R eines Datensatzes. Sie ergibt sich aus dem geordneten Datensatz $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$ als Differenz aus dem größten Wert $x_{(n)}$ und dem kleinsten Wert $x_{(1)}$:

$$R := x_{(n)} - x_{(1)}.$$

Ein weiteres Maß für die Streuung eines Datensatzes ist die Varianz oder Stichprobenvarianz s^2 , die auch empirische Varianz genannt wird. Sie ist definiert durch

$$s^{2} := \frac{1}{n} \cdot \left[(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2} \right] = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

Äquivalent ist die Darstellung

$$s^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} = \overline{x^{2}} - \overline{x}^{2}.$$

Alternativ zur Varianz kann man die **Standardabweichung** oder, genauer, die **empirische Standardabweichung** verwenden. Sie ist gegeben durch

$$s := \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2} = \sqrt{\overline{x^2} - \overline{x}^2}.$$

Häufig wird für die Varianz eine Formel verwendet, bei der vor dem Summenterm anstelle von $\frac{1}{n}$ der Term $\frac{1}{n-1}$ steht. Das dann resultierende Streuungsmaß

$$s^{*2} := \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{n}{n-1} \cdot s^2$$

wird korrigierte Varianz oder korrigierte Stichprobenvarianz genannt. Durch Wurzelziehen geht aus s^{*2} die korrigierte Standardabweichung s^* hervor.

Wie bei der Berechnung des Mittelwertes \overline{x} kann man auch bei der Ermittlung der Varianz im Falle mehrfach auftretender Merkmalswerte auf relative Häufigkeiten zurückgreifen. Liegen für ein diskretes Merkmal X mit den Ausprägungen a_1, \ldots, a_k die Beobachtungswerte x_1, \ldots, x_n vor (n > k), so kann man s^2 auch wie folgt errechnen:

$$s^{2} = (a_{1} - \overline{x})^{2} \cdot f_{1} + (a_{2} - \overline{x})^{2} \cdot f_{2} + \ldots + (a_{k} - \overline{x})^{2} \cdot f_{k} = \sum_{i=1}^{k} (a_{i} - \overline{x})^{2} \cdot f_{i}$$

Das p-Quantil ist bei einem mindestens ordinalskalierten Merkmal definiert durch

Quantile

$$x_p = \begin{cases} x_{([np]+1)} & \text{falls } np \text{ nicht ganzzahlig} \\ \frac{1}{2} \cdot (x_{(np)} + x_{(np+1)}) & \text{falls } np \text{ ganzzahlig.} \end{cases}$$

Dabei bezeichnet [np] die größte ganze Zahl, die kleiner oder gleich np ist. Die Differenz $Q := x_{0,75} - x_{0,25}$ der als **oberes Quartil** und **unteres Quartil** bezeichneten beiden Quantile $x_{0,75}$ und $x_{0,25}$ heißt **Quartilsabstand**.

Konzentrationsmessung

Für die grafische Beurteilung von Konzentrationsphänomenen lässt sich die **Lorenz-kurve** verwenden. Ausgangspunkt ist eine Grundgesamtheit mit n Merkmalsträgern und nicht-negativen Merkmalsausprägungen. Die Merkmalswerte konstituieren eine Urliste x_1, \ldots, x_n , aus der man durch Sortieren nach aufsteigender Größe eine geordnete Liste $x_{(1)}, \ldots, x_{(n)}$ erhält. Die Lorenzkurve ist ein Polygonzug, der den Nullpunkt (0;0) mit den Punkten $(u_1; v_1), \ldots, (u_n; v_n)$ verbindet. Dabei sind die Abszissenwerte u_i durch $u_i := \frac{i}{n}$ und die Ordinatenwerte v_i durch

$$v_i := \frac{p_i}{p_n}$$
 mit $p_i := x_{(1)} + x_{(2)} + \ldots + x_{(i)};$ $i = 1, \ldots, n.$

Führt man noch die gewichtete Merkmalssumme

$$q_n := 1 \cdot x_{(1)} + 2 \cdot x_{(2)} + \ldots + n \cdot x_{(n)}$$

ein, so ist der Gini-Koeffizient G durch

$$G = \frac{2 \cdot q_n}{n \cdot p_n} - \frac{n+1}{n} = \frac{1}{n} \left(\frac{2 \cdot q_n}{p_n} - 1 \right) - 1$$

erklärt. Für ihn gilt $0 \le G \le \frac{n-1}{n}$, d. h. er besitzt eine von n abhängige kleinste obere Schranke $G_{max} = \frac{n-1}{n}$. Für den hier mit G^* bezeichneten **normierten Gini-Koeffizienten**

$$G^* := \frac{G}{G_{max}} = \frac{n}{n-1} \cdot G$$

gilt hingegen $0 \le G^* \le 1$. Als Alternative zum Gini-Koeffizienten findet man auch den **Herfindahl-Index** H, für den $\frac{1}{n} \le H \le 1$ gilt:

$$H := \sum_{i=1}^{n} \left(\frac{x_i}{p_n}\right)^2 = \frac{1}{p_n^2} \cdot \sum_{i=1}^{n} x_i^2.$$

Index- und Verhältniszahlen

Arten von Verhältniszahlen Wenn man zwei Maßzahlen dividiert, resultiert eine **Verhältniszahl**. Verhältniszahlen, bei denen eine Grundgesamtheit durch Anteilsbildung bezüglich eines Merkmals strukturiert wird, nennt man **Gliederungszahlen**. Sie sind dimensionslos. Eine Gliederungszahl wird meist als Prozentwert ausgewiesen. Verhältniszahlen, die durch Quotientenbildung eine Verbindung zwischen zwei unterschiedlichen Merkmalen herstellen, heißen **Beziehungszahlen**. Die Verknüpfung der beiden Merkmale muss inhaltlich Sinn geben.

In der Praxis wird oft der Quotient aus zwei Maßzahlen bestimmt, die sich zwar auf dasselbe Merkmal, aber auf Werte aus unterschiedlichen Beobachtungsperioden beziehen. Verhältniszahlen, die die Werte für ein Merkmal für zwei Zeitpunkte verknüpfen, werden einfache Indexzahlen genannt.

Bivariate Häufigkeitsverteilungen

Es seien zwei diskrete Merkmale X und Y mit beliebiger Skalierung und Ausprägungen a_1, \ldots, a_k resp. b_1, \ldots, b_m betrachtet. Die Merkmalswerte x_1, \ldots, x_n und y_1, \ldots, y_n repräsentieren eine **bivariate Urliste**. Diese lässt sich z. B. in der Form $(x_1, y_1), \ldots, (x_n, y_n)$ schreiben, wobei Merkmalspaare (x_i, y_i) mehrfach auftreten können. Die **absolute Häufigkeit** für die Ausprägungskombination (a_i, b_i) wird mit

$$h_{ij} := h(a_i, b_j)$$
 $i = 1, 2, \dots, k; \quad j = 1, 2, \dots, m$

bezeichnet und die **relative Häufigkeit** für (a_i, b_j) mit

$$f_{ij} := f(a_i, b_j)$$
 $i = 1, 2, \dots, k; \quad j = 1, 2, \dots, m.$

Die $k \cdot m$ Häufigkeiten h_{ij} und f_{ij} definieren die gemeinsame **absolute Häufigkeitsverteilung** der Merkmale X und Y. Wenn man diese in tabellarischer Form wiedergibt, resultiert eine als **Kontingenztafel** oder **Kontingenztabelle** bezeichnete Darstellung. Die Dimension einer Kontingenztafel wird durch die Anzahl k und m der Ausprägungen für X und Y bestimmt. Im Falle von $k \cdot m$ Ausprägungskombinationen spricht man von einer $(k \times m)$ -Kontingenztabelle. Ein Spezialfall einer Kontingenztabelle ist die **Vierfeldertafel**, die sich für k = m = 2 ergibt.

Kontingenztafeln werden üblicherweise noch um je eine weitere Zeile und Spalte ergänzt, wobei die zusätzliche *Spalte* bei einer Kontingenztabelle für absolute Häufigkeiten

die k Zeilensummen

$$h_{i} := h_{i1} + h_{i2} + \ldots + h_{im} = \sum_{j=1}^{m} h_{ij}$$
 $i = 1, 2, \ldots, k$

und analog bei einer Tabelle für relative Häufigkeiten die Summen

$$f_{i\cdot} := f_{i1} + f_{i2} + \ldots + f_{im} = \sum_{j=1}^{m} f_{ij}$$
 $i = 1, 2, \ldots, k$

ausweist. Die Häufigkeiten h_1, h_2, \dots, h_k bzw. f_1, f_2, \dots, f_k werden **absolute Randhäufigkeiten** resp. **relative Randhäufigkeiten** von X genannt. Sie defininieren die **Randverteilung** von X.

Die zusätzliche Zeile, um die man eine Kontingenztafel erweitert, enthält die m Spaltensummen

$$h_{\cdot j} := h_{1j} + h_{2j} + \ldots + h_{kj} = \sum_{i=1}^{k} h_{ij}$$
 $j = 1, 2, \ldots, m$

resp.

$$f_{\cdot j} := f_{1j} + f_{2j} + \ldots + f_{kj} = \sum_{i=1}^{k} f_{ij}$$
 $j = 1, 2, \ldots, m.$

Diese Häufigkeiten sind die absoluten Randhäufigkeiten bzw. die relativen Randhäufigkeiten von Y. Sie konstituieren die Randverteilung von Y.

		$\mathbf{Auspr\"{a}gungen}\ \mathbf{von}\ Y$							
		b_1	b_2		b_{j}		b_m		
×	a_1						h_{1m}		×
von	a_2	h_{21}	h_{22}		h_{2j}		h_{2m}	h_2 .	
\mathbf{gen}	÷			٠٠.			÷	:	nng
gun	a_i	h_{i1}	h_{i2}		h_{ij}		h_{im}	h_{i} .	rteil
Ausprägungen	:					٠	÷	:	Randverteilung
Αn	a_k	h_{k1}	h_{k2}		h_{kj}		h_{km}	h_k .	\mathbf{Ran}
		$h_{\cdot 1}$	$h_{\cdot 2}$		$h_{\cdot j}$		$h_{\cdot m}$	n	
	Randverteilung von Y								

Dividiert man jedes der m Elemente $h_{i1}, h_{i2}, \ldots, h_{im}$ durch die Randhäufigkeit $h_{i\cdot}$, Bedingte resultieren **bedingte relative Häufigkeiten** für Y unter der Bedingung $X = a_i$, die Häufigkeiten man mit $f_Y(b_i|a_i)$ abkürzt:

$$f_Y(b_j|a_i) := \frac{h_{ij}}{h_{i}}$$
 $j = 1, 2, \dots, m$

Die m bedingten relativen Häufigkeiten $f_Y(b_1|a_i)$, $f_Y(b_2|a_i)$, ..., $f_Y(b_m|a_i)$ definieren die **bedingte Häufigkeitsverteilung für** Y unter der Bedingung $X = a_i$.

Teilt man jedes der k Elemente $h_{1j}, h_{2j}, \ldots, h_{kj}$ durch die Randhäufigkeit $h_{\cdot j}$, so erhält man analog die relativen Häufigkeiten für a_1, a_2, \ldots, a_k unter der Bedingung $Y = b_j$. Es resultieren **bedingte relative Häufigkeiten** $f_X(a_i|b_j)$ für X unter der Bedingung $Y = b_j$:

$$f_X(a_i|b_j) := \frac{h_{ij}}{h_{\cdot j}}$$
 $i = 1, 2, \dots, k.$

Die k bedingten relativen Häufigkeiten $f_X(a_1|b_j), f_X(a_2|b_j), \ldots, f_X(a_k|b_j)$ konstituieren die **bedingte Häufigkeitsverteilung für** X unter der Bedingung $Y = b_j$.

Empirische Unabhängigkeit bzw. Abhängigkeit von X und Y bedeutet, dass für die Häufigkeiten h_{ij} der $(k \times m)$ -Kontingenztafel

$$h_{ij} \begin{cases} = \widetilde{h}_{ij} & \text{bei fehlendem Merkmalszusammenhang} \\ \neq \widetilde{h}_{ij} & \text{bei Abhängigkeit der Merkmale} \end{cases}$$

gilt. Dabei ist

$$\widetilde{h}_{ij} := \frac{h_{i\cdot} \cdot h_{\cdot j}}{n}.$$

Zusammenhangsmessung

 ${\bf Nominal skalierte}$ ${\bf Merkmale}$

Ein Zusammenhangsmaß für zwei nominalskalierte Merkmale X und Y mit den in einer $(k \times m)$ -Kontingenztabelle zusammengefassten gemeinsamen Häufigkeiten h_{ij} ist der χ^2 -Koeffizient

$$\chi^2 := \sum_{i=1}^k \sum_{j=1}^m \frac{(h_{ij} - \widetilde{h}_{ij})^2}{\widetilde{h}_{ij}}.$$

Für diesen gilt $0 \le \chi^2 \le \chi^2_{max} = n \cdot (M-1)$ mit $M := \min(k; m)$, wobei die untere Schranke erreicht wird, wenn die Merkmale empirisch unabhängig sind.

Ein aus dem χ^2 -Koeffizienten abgeleitetes Zusammenhangsmaß, dessen Wert nicht mehr vom Umfang n des Datensatz abhängt, ist der durch

$$\Phi := \sqrt{\frac{\chi^2}{n}}$$

definierte **Phi-Koeffizient**. Für dieses Maß gilt $0 \le \Phi \le \Phi_{max} := \sqrt{M-1}$. Die obere Schranke Φ_{max} hängt immer noch von M ab. Diesen Nachteil vermeidet das Zusammenhangsmaß

$$V := \sqrt{\frac{\chi^2}{\chi^2_{max}}} = \sqrt{\frac{\chi^2}{n \cdot (M-1)}},$$

das auch **Cramér's V** genannt wird und Werte zwischen 0 und 1 annimmt, also ein normiertes Zusammenhangsmaß darstellt. Mit dem Maß V lässt sich die Stärke von Merkmalszusammenhängen bei Kontingenztabellen beliebiger Dimension direkt vergleichen. Gilt V=1, spricht man von vollständiger Abhängigkeit der beiden Merkmale.

Im Spezialfall einer Vierfeldertafel (k = m = 2) gilt

Spezialfall: Vierfeldertafel

$$\chi^2 = \frac{n \cdot (h_{11}h_{22} - h_{12}h_{21})^2}{h_{1} \cdot h_{2} \cdot h_{\cdot 1} h_{\cdot 2}}$$

und Cramér's V stimmt hier mit dem Phi-Koeffizienten Φ überein:

$$\Phi = V = \frac{|h_{11}h_{22} - h_{12}h_{21}|}{\sqrt{h_{1.}h_{2.}h_{.1}h_{.2}}}.$$

Ein Zusammenhangsmaß für zwei metrisch skalierte Merkmale X und Y ist die Kovarianz oder empirische Kovarianz

Metrisch skalierte Merkmale

$$s_{xy} := \frac{1}{n} \cdot \left[(x_1 - \overline{x})(y_1 - \overline{y}) + \ldots + (x_n - \overline{x})(y_n - \overline{y}) \right] = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}).$$

Für diese gilt auch die Darstellung

$$s_{xy} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - \overline{x} \cdot \overline{y} = \overline{xy} - \overline{x} \cdot \overline{y}.$$

Die Kovarianz ist – wie Median, Mittelwert und Standardabweichung – maßstabsabhängig und nicht dimensionslos. Ein maßstabsunabhängiges und dimensionsloses Zusammenhangsmaß ist der Korrelationskoeffizient nach Bravais-Pearson

$$r := \frac{s_{xy}}{s_x \cdot s_y}.$$

Für r hat man auch die ausführlichere Formeldarstellung

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2} \sqrt{\overline{y^2} - \overline{y}^2}}.$$

Der Korrelationskoeffizient liegt stets zwischen -1 und +1.

Ein Zusammenhangsmaß für ordinalskalierte Merkmale X und Y ist der **Rangkorrelationskoeffizient nach Spearman** r_{SP} . Bestimmt man für jeden Wert x_i und für jeden Wert y_i die Rangposition $rg(x_i)$ bzw. $rg(y_i)$ und zusätzlich jeweils für beide Merkmale die Mittelwerte \overline{rg}_x resp. \overline{rg}_y der Rangplätze, so ist r_{SP} definiert durch

Ordinalskalierte Merkmale

$$r_{SP} = \frac{\sum_{i=1}^{n} (rg(x_i) - \overline{rg}_x)(rg(y_i) - \overline{rg}_y)}{\sqrt{\sum_{i=1}^{n} (rg(x_i) - \overline{rg}_x)^2} \cdot \sqrt{\sum_{i=1}^{n} (rg(y_i) - \overline{rg}_y)^2}}.$$

Auch für den Rangkorrelationskoeffizienten r_{SP} gilt, dass er zwischen -1 und +1 liegt.

Wenn kein Rangplatz mehrfach besetzt ist, vereinfacht sich die Formel für r_{SP} zu

$$r_{SP} = 1 - \frac{6 \cdot \sum_{i=1}^{n} d_i^2}{n \cdot (n^2 - 1)}$$
 $d_i := rg(x_i) - rg(y_i).$

•

3 Wahrscheinlichkeitsrechnung und schließende Statistik

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe

Ein **Zufallsvorgang** ist ein Prozess, der zu einem von mehreren, sich gegenseitig ausschließenden Ergebnissen ω führt. Die möglichen Ergebnisse ω heißen **Elementarereignisse** und werden in der Menge $\Omega = \{\omega : \omega \text{ ist Elementarereignis}\}$ zusammengefasst, der **Ergebnismenge**. Diese kann endlich oder auch unendlich viele Elemente enthalten. Eine Teilmenge A von Ω heißt **Ereignis**. Das **Komplementärereignis** \overline{A} zu A ist das Ereignis, das genau dann eintritt, wenn A nicht eintritt. Die Menge \overline{A} umfasst alle Elementarereignisse, die zu Ω , nicht aber zu A gehören. Da auf jeden Fall eines der Elemente der Menge Ω als Ergebnis des Zufallsvorgangs realisiert wird, ist durch Ω ein **sicheres Ereignis** definiert. Das Komplementärereignis $\overline{\Omega}$ zum sicheren Ereignis Ω ist das **unmögliche Ereignis**, das durch die leere Menge \emptyset dargestellt wird.

Zur Veranschaulichung zusammengesetzter Ereignisse werden häufig **Venn-Diagramme** verwendet. Diese bestehen aus einem Rechteck, in dem die Ausgangsereignisse (Mengen A, B, \ldots) als Kreise oder Ellipsen dargestellt sind.

Rechenregeln für Wahrscheinlichkeiten Die Bewertung der Chance für das Eintreten eines Ereignisses wird anhand einer Funktion P bewertet, die jedem Ereignis A eine als Wahrscheinlichkeit des Ereignisses A bezeichnete Zahl P(A) zuordnet, welche den Bedingungen $P(A) \geq 0$, $P(\Omega) = 1$ und $P(A \cup B) = P(A) + P(B)$ falls $A \cap B = \emptyset$ genügt (sog. Axiomensystem von Kolmogoroff). Hieraus lassen sich folgende Rechenregeln ableiten:

$$P(\overline{A}) = 1 - P(A); \ P(A \cup B) = P(A) + P(B) - P(A \cap B); \ P(A \setminus B) = P(A) - P(A \cap B).$$

Um Wahrscheinlichkeiten berechnen zu können, benötigt man Zusatzinformationen über den jeweiligen Zufallsvorgang. Eine solche Zusatzinformation kann z. B. darin bestehen, dass man weiß, dass die Ergebnismenge endlich ist, also $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$ und die Wahrscheinlichkeiten für die n Elementarereignisse alle gleich groß sind. Ein Zufallsexperiment mit diesen Eigenschaften heißt **Laplace-Experiment**. Bei einem Laplace-Experiment lässt sich die Wahrscheinlichkeit für ein Ereignis A als Quotient aus der Anzahl der für A günstigen Fälle und der Anzahl aller möglichen Ergebnisse des Zufallsexperiments errechnen:

$$P(A) = \frac{\text{Anzahl der für } A \text{ günstigen Ergebnisse}}{\text{Anzahl aller möglichen Ergebnisse}}.$$

Bei der Bestimmung dieses Quotienten bedient man sich der Methoden der Kombinatorik. Dort veranschaulicht man Ergebnisse für Zufallsvorgänge mit endlicher Ergebnismenge häufig anhand des Urnenmodells - gedanklich ein Gefäß mit N durchnummerierten Kugeln, von denen n zufällig ausgewählt werden. Die Auswahl der Kugeln ist als Ziehung einer **Zufallsstichprobe** des Umfangs n aus einer Grundgesamtheit mit N Elementen zu interpretieren. Wenn jede denkbare Stichprobe des Umfangs n mit gleicher Wahrscheinlichkeit realisiert wird, liegt eine **einfache Zufallsstichprobe** vor.

Wieviele Möglichkeiten der Auswahl der n Elemente es gibt, hängt zum einen davon ab, ob die Elemente der Stichprobe nach der Ziehung jeweils wieder zurückgelegt werden oder ob ohne Zurücklegen ausgewählt wird (**Urnenmodell bzw. Stichprobenziehung mit** / **ohne Zurücklegen**). Die Anzahl hängt auch davon ab, ob es darauf ankommt, in welcher Reihenfolge die n nummerierten Kugeln gezogen werden (**Stichprobenziehung mit** / **ohne Berücksichtigung der Anordnung**). Formeln für die Berechnung der Anzahl der Möglichkeiten der Ziehung einer Stichprobe des Umfangs n aus einer Grundgesamtheit mit N Elementen in allen 4 Fällen sind der nachstehenden Tabelle zu entnehmen:

Art der Stichprobe	Ziehen ohne Zurücklegen	Ziehen mit Zurücklegen
Ziehen mit		
Berücksichtigung der	$\frac{N!}{(N-n)!}$	N^n
Reihenfolge	(1 v - n):	
Ziehen ohne		
Berücksichtigung der	$\binom{N}{n}$	$\binom{N+n-1}{n}$
Reihenfolge		

In der Tabelle treten Binomialkoeffizienten $\binom{n}{k}$ auf, die durch

$$\binom{n}{k} := \frac{n!}{(n-k)! \cdot k!}$$

erklärt sind mit $\binom{n}{0} = 1$ und $\binom{k}{1} = k$ sowie $\binom{n}{n} = 1$. Die Fakultät $k! := 1 \cdot 2 \cdot ... \cdot k$ ist das Produkt aus allen natürlichen Zahlen von 1 bis k. Ferner ist 0! durch 0! = 1 erklärt.

Bei der Berechnung von Wahrscheinlichkeiten bei Laplace-Experimenten kann man manchmal eine gegebene Zusatzinformation B nutzen. Die mit der Vorinformation B berechnete Wahrscheinlichkeit wird **bedingte Wahrscheinlichkeit** von A unter der Bedingung B genannt und mit P(A|B) abgekürzt. Sie errechnet sich nach

Bedingte Wahrscheinlichkeiten

$$P(A|B) = \frac{\text{Anzahl der für } A \cap B \text{ günstigen Ergebnisse}}{\text{Anzahl der für } B \text{ günstigen Ergebnisse}} = \frac{P(A \cap B)}{P(B)}$$

Analog lässt sich die bedingte Wahrscheinlichkeit P(B|A) gemäß $P(B|A) = \frac{P(A \cap B)}{P(A)}$ errechnen. Zwischen den bedingten Wahrscheinlichkeiten P(A|B) und P(B|A) besteht die auch als **Satz von Bayes** bezeichnete Beziehung

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.$$

Zwei zufällige Ereignisse A und B werden als **unabhängig** oder auch als **stochastisch unabhängig** bezeichnet, wenn das Eintreten eines Ereignisses keinen Einfluss auf das andere Ereignis hat. Dies ist gewährleistet, wenn gilt:

Unabhängigkeit von Ereignissen

$$P(A \cap B) = P(A) \cdot P(B).$$

Diskrete Zufallsvariablen

Hat man eine diskrete Zufallsvariable X, die k Werte x_1, \ldots, x_k annehmen kann, so definieren diese Werte die **Trägermenge** der Zufallsvariablen X. Das Verhalten von X ist vollständig definiert, wenn für jede Realisation x_i die Eintrittswahrscheinlichkeit $p_i = P(X = x_i)$ bekannt ist; $i = 1, \ldots, k$. Die Funktion f, die jeder Ausprägung x_i eine Eintrittswahrscheinlichkeit p_i zuordnet, heißt **Wahrscheinlichkeitsfunktion** von X. Damit die Wahrscheinlichkeitsfunktion nicht nur auf der Trägermenge $\{x_1, \ldots, x_k\}$, sondern für alle reellen Zahlen x erklärt ist, setzt man sie Null für alle x mit $x \neq x_i$:

$$f(x) = \begin{cases} p_i & \text{für } x = x_i; \ i = 1, 2, \dots, k \\ 0 & \text{für alle sonstigen } x. \end{cases}$$

Wenn alle Ausprägungen x_i die gleiche Eintrittswahrscheinlichkeit $p = \frac{1}{k}$ besitzen, spricht man von einer **diskreten Gleichverteilung** mit Parameter p.

Zur Beschreibung des Verhaltens einer diskreten Zufallsvariablen X lässt sich anstelle der Wahrscheinlichkeitsfunktion auch die **Verteilungsfunktion**

$$F(x) = P(X \le x)$$

von X heranziehen, die man auch **theoretische Verteilungsfunktion** nennt. Für die Funktion F(x) gilt im Falle einer diskreten Zufallsvariablen mit der Trägermenge $\{x_1, \ldots, x_k\}$

$$F(x) = \begin{cases} 0, & \text{für } x < x_1 \\ p_1 & \text{für } x_1 \le x < x_2 \\ \vdots & \vdots \\ p_1 + p_2 + \dots + p_{k-1} & \text{für } x_{k-1} \le x < x_k \\ 1 & \text{für } x \ge x_k. \end{cases}$$

Bernoulli-Verteilung Neben der diskreten Gleichverteilung ist auch die **Bernoulli-Verteilung** ein Spezialfall einer diskreten Verteilung. Sie liegt vor, wenn eine X eine **binäre Zufallsvariable** ist, also nur zwei Ausprägungen aufweist, etwa x_1 und x_2 oder A und \overline{A} . Wenn man die Ausprägungen x_1 und x_2 zu 1 und 0 umcodiert, spricht man auch von einer **Null-Eins-Verteilung**.

Bezeichnet $p_1 = p$ bei einer Bernoulli-Verteilung die Eintrittswahrscheinlichkeit für den Fall $x = x_1$ und p_2 die für den Fall $x = x_2$, so ist $p_2 = 1 - p$. Für die Wahrscheinlichkeitsfunktion gilt dann

$$f(x) = \begin{cases} p & \text{für } x = x_1; \\ 1 - p & \text{für } x = x_2; \\ 0 & \text{für alle sonstigen } x. \end{cases}$$

Für die Verteilungsfunktion F(x) der Bernoulli-Verteilung leitet sich daraus ab:

$$F(x) = P(X \le x) = \begin{cases} 0 & \text{für } x < x_1; \\ p & \text{für } x_1 \le x < x_2; \\ 1 & \text{für } x \ge x_2. \end{cases}$$

Für eine mit dem Parameter p bernoulli-verteilte Zufallsvariable X sagt man auch, dass sie Be(p)-verteilt sei und verwendet hierfür die Notation $X \sim Be(p)$.

Der Erwartungswert E(X) einer diskreten Zufallsvariablen mit der Trägermenge Kenngrößen $\{x_1, \ldots, x_k\}$ ist gegeben durch

$$\mu := E(X) = \sum_{i=1}^{k} x_i p_i.$$

Für die mit V(X) oder σ^2 abgekürzte **Varianz** $V(X) = E[(X - \mu)^2]$ gilt, wenn X wieder als diskret spezifiziert ist mit der Trägermenge $\{x_1, \ldots, x_k\}$, die Darstellung

$$\sigma^2 := V(X) = \sum_{i=1}^k (x_i - \mu)^2 p_i.$$

Die **Standardabweichung** σ von X ist definiert durch $\sigma = \sqrt{V(X)}$. Für die Varianz ist manchmal die Darstellung $\sigma^2 = E(X^2) - \mu^2$ nützlich, die nicht nur im diskreten Fall gilt und auch als **Verschiebungssatz** angesprochen wird.

Für Erwartungswert und Varianz der Null-Eins-Verteilung gilt $\mu = 1 \cdot p + 0 \cdot (1-p) = p$ resp. $\sigma^2 = E(X^2) - \mu^2 = p - p^2 = p(1-p)$.

Unterzieht man eine Zufallsvariable X mit Erwartungswert $\mu = E(X)$ einer Lineartransformation Y = aX + b, so ergeben sich Erwartungswert und Varianz nach Operationen mit Zufallsvariablen

$$E(aX + b) = a \cdot E(X) + b; \quad V(aX + b) = a^2 \cdot V(X).$$

Für den Erwartungswert und die Varianz der Summe zweier unabhängiger Zufallsvariablen X und Y gilt ferner E(X+Y)=E(X)+E(Y) sowie V(X+Y)=V(X)+V(Y). Wie bei empirischen Verteilungen kann man auch bei theoretischen Verteilungen **Quantile** zur Charakterisierung heranziehen. Das p-Quantil einer Verteilung ist durch

Quantile als weitere Kenngrößen

$$F(x_p) = p \quad (0$$

definiert, also durch den Wert x_p der Verteilungsfunktion F(x), an dem F(x) den Wert p annimmt. Der **Median** $\tilde{x} = x_{0,5}$ sowie das **untere Quartil** $x_{0,25}$ und das **obere Quartil** $x_{0,75}$ einer theoretischen Verteilung sind spezielle Quantile, die sich bei Wahl von p = 0, 5 resp. von p = 0, 25 und p = 0, 75 ergeben.

Die Binomialverteilung Hat man ein Bernoulli-Experiment mit den möglichen Ausgängen $x_1 = A$ und $x_2 = \overline{A}$ und den Eintrittswahrscheinlichkeiten P(A) = p bzw. $P(\overline{A}) = 1 - p$ mehrfach und unabhängig voneinander durchgeführt, so interessiert man sich oft dafür, wie oft eine der beiden Realisationen auftritt, etwa A. Ist n die Anzahl der unabhängig durchgeführten Bernoulli-Experimente und bezeichnet X die Anzahl der Ausgänge A, so ist die Zählvariable X eine diskrete Zufallsvariable mit den Ausprägungen i (i = 0, 1, ..., n). Wenn man den Ausgang jedes der n Bernoulli-Experimente anhand einer Indikatorvariablen

$$X_i = \begin{cases} 1 & \text{bei Eintritt von } x_1 = A \\ 0 & \text{bei Eintritt von } x_2 = \overline{A} \end{cases}$$

beschreibt (null-eins-verteilte Zufallsvariable), so lässt sich X als Summe

$$X = \sum_{i=1}^{n} X_i$$

der n voneinander unabhängigen Indikatorvariablen schreiben. Die Verteilung der Zählvariablen X heißt **Binomialverteilung**. Die Bernoulli-Verteilung ist ein Spezialfall der Binomialverteilung (n = 1).

Für die Wahrscheinlichkeitsfunktion f(x) = P(X = x) der Binomialverteilung gilt

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{für } x = 0, 1, \dots, n \\ 0 & \text{für alle sonstigen } x. \end{cases}$$

und für ihre **Verteilungsfunktion** $F(x) = W(X \le x)$ auf der Trägermenge $\{0, 1, \dots, n\}$.

$$F(x) = \sum_{k=0}^{x} \binom{n}{k} p^{k} (1-p)^{n-k} \qquad x = 0, 1, \dots, n.$$

Für den Erwartungswert $\mu=E(X)$ und die Varianz $\sigma^2=V(X)$ einer binomialverteilten Variablen X verifiziert man die Darstellungen

$$\mu = n \cdot p; \quad \sigma^2 = n \cdot p(1-p).$$

Die Binomialverteilung beschreibt das Zufallsverhalten einer Zählvariablen X bei einem n-fach durchgeführten Bernoulli-Experiment, wobei die einzelnen Experimente voneinander unabhängig sind. Die Zählvariable weist aus, wie häufig einer der beiden möglichen Ausgänge $x_1 = A$ und $x_2 = \overline{A}$ und P(A) = p bzw. $P(\overline{A}) = 1 - p$ auftrat. Die Binomalverteilung lässt sich durch das Urnenmodell mit Zurücklegen veranschaulichen.

Die hypergeometrische Verteilung

Wenn man hingegen einer Urne mit N Kugeln, von denen M rot und die restlichen N-M schwarz sind, nacheinander n Kugeln ohne Zurücklegen entnimmt, so repräsentiert die Ziehung jeder Kugel zwar weiterhin ein Bernoulli-Experiment, die Einzelexperimente sind aber nicht mehr unabhängig. Die Eintrittswahrscheinlichkeit für das interessierende Ereignis wird jetzt nicht nur von M, sondern auch vom Umfang N der Grundgesamtheit beeinflusst. Die Verteilung der Zählvariablen X ist bei einer Stichprobenentnahme ohne Zurücklegen nicht mehr durch eine Biomialverteilung gegeben, sondern durch die **hypergeometrische Verteilung**. Letztere ist durch drei Parameter beschrieben, nämlich durch N, M und n, und man schreibt $X \sim H(n; M; N)$.

Die Wahrscheinlichkeitsfunktion f(x) = P(X = x) der hypergeometrischen Verteilung besitzt die Darstellung

$$f(x) = \begin{cases} \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} & \text{für } x \in T\\ 0 & \text{für alle sonstigen } x. \end{cases}$$

Für die Verteilungsfunktion $F(x) = P(X \le x)$ gilt dann auf der Trägermenge

$$F(x) = \sum_{k=0}^{x} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} \qquad x \in T.$$

Da die Wahrscheinlichkeitsfunktion für $x \notin T$ stets 0 ist, bleibt F(x) zwischen zwei benachbarten Elementen der Trägermenge auf dem Niveau des kleineren Werts, um dann in $x_{max} = min(n; M)$ den Endwert 1 anzunehmen (Treppenfunktion).

Erwartungswert $\mu=E(X)$ und Varianz $\sigma^2=V(X)$ der hypergeometrischen Verteilung sind gegeben durch

$$\mu = n \cdot \frac{M}{N}; \quad \sigma^2 = n \cdot \frac{M}{N} (1 - \frac{M}{N}) \cdot \frac{N - n}{N - 1}.$$

Stetige Zufallsvariablen

Diskrete Zufallsvariablen sind dadurch gekennzeichnet, dass man die Anzahl ihrer Ausprägungen abzählen kann. Das Zufallsverhalten einer diskreten Zufallsvariablen X mit k Ausprägungen x_i ($i=1,\ldots,k$) und den Eintrittswahrscheinlichkeiten $p_i=P(X=x_i)$ lässt sich vollständig durch die Wahrscheinlichkeitsfunktion f(x) oder die Verteilungsfunktion F(x) charakterisieren.

Bei stetigen Zufallsvariablen ist die Trägermenge, also die Menge der möglichen Realisationen, ein Intervall. Das Verhalten einer stetigen Zufallsvariablen X lässt sich wie im diskreten Fall durch die **Verteilungsfunktion**

$$F(x) = P(X \le x)$$

vollständig charakterisieren. Anstelle der Wahrscheinlichkeitsfunktion verwendet man hier die **Dichtefunktion**, kurz auch **Dichte** genannt. Diese Funktion f(x) nimmt nur

nicht-negative Werte an und hat die Eigenschaft, dass sich jeder Wert F(x) der Verteilungsfunktion durch Integration der Dichte bis zur Stelle x ergibt:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 für alle reellen x .

Für alle Werte x, bei denen die Dichtefunktion f(x) stetig ist, stimmt sie mit der Ableitung F'(x) der Verteilungsfunktion überein:

$$F'(x) = f(x).$$

Für die Differenz F(b) - F(a) von Werten der Verteilungsfunktion gilt

$$F(b) - F(a) = \int_{-\infty}^{b} f(t)dt - \int_{-\infty}^{a} f(t)dt = \int_{a}^{b} f(t)dt.$$

Die Gesamtfläche unter der Dichtekurve besitzt den Wert 1:

$$\int_{-\infty}^{\infty} f(x)dx = 1.$$

Eine einfache stetige Verteilung ist die **Rechteckverteilung**, auch **stetige Gleichverteilung** genannt. Man nennt eine stetige Zufallsvariable rechteckverteilt oder gleichverteilt über dem Intervall [a, b], wenn sie die Dichtefunktion

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \le x \le b\\ 0 & \text{für alle sonstigen } x \end{cases}$$

besitzt. Für die Verteilungsfunktion F(x) einer über [a,b] rechteckverteilten Zufallsvariablen X gilt

$$F(x) = \begin{cases} 0 & \text{für } x < a; \\ \frac{x-a}{b-a} & \text{für } a \le x \le b; \\ 1 & \text{für } x > b. \end{cases}$$

Kenngrößen

Der Erwartungswert E(X) einer stetigen Zufallsvariablen ist gegeben durch

$$\mu := E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

und die **Varianz** $V(X) = E[(X - \mu)^2]$ durch

$$\sigma^2 := V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

Die Standardabweichung σ (lies: sigma) ist wieder durch $\sigma = \sqrt{V(X)}$ erklärt.

Eine wichtige Lineartransformation ist die als **Standardisierung** oder auch **z-Transformation** bezeichnete Transformation einer Zufallsvariablen X in eine neue Variable aX + b mit $a = \frac{1}{\sigma}$ und $b = -\frac{\mu}{\sigma}$, die üblicherweise mit Z abgekürzt wird:

$$Z = \frac{X - \mu}{\sigma}.$$

Man verifiziert für die standardisierte Variable Z, dass E(Z) = 0 und V(Z) = 1.

Für den Erwartungswert und die Varianz der stetigen Gleichverteilung über [a, b] gilt

$$\mu = E(X) = \frac{a+b}{2}; \quad \sigma^2 = \frac{(b-a)^2}{12}.$$

Neben dem Erwartungswert und der Varianz bzw. der Standardabweichung kann man noch die **Quantile** x_p heranziehen, die durch $F(x_p) = x_p$ definiert sind.

Eine Zufallsvariable X folgt einer **Normalverteilung**, wenn ihre Dichte die Gestalt

Quantile als weitere Kenngrößen

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 für alle reellen x

besitzt. Hierfür wird oft die Notation $X \sim N(\mu; \sigma^2)$ verwendet. Die Verteilungsfunktion der Normalverteilung ist gegeben durch

Normalverteilung und Standardnormalverteilung

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{(t-\mu)^{2}}{2\sigma^{2}}\right) dt.$$

Unterzieht man eine $N(\mu; \sigma^2)$ -verteilte Zufallsvariable X einer Lineartransformation Y = aX + b, so ist auch Y normalverteilt:

$$X \sim N(\mu; \sigma^2), Y = aX + b \longrightarrow Y \sim N(a\mu + b; a^2\sigma^2)$$

Für den Erwartungswert und die Varianz der Summe zweier unabhängiger normalverteilter Zufallsvariablen X und Y gilt

$$X \sim N(\mu_X; \sigma_X^2), Y \sim N(\mu_Y; \sigma_Y^2), X \text{und } Y \text{unabhängig} \ \to X + Y \sim N(\mu_X + \mu_Y; \sigma_X^2 + \sigma_Y^2).$$

Hat man eine beliebig normalverteilte Zufallsvariable $X \sim N(\mu; \sigma^2)$, so kann man diese stets der speziellen Lineartransformation $Z := \frac{X-\mu}{\sigma}$ unterziehen. Für die resultierende Zufallsvariable Z gilt $Z \sim N(0,1)$:

Operationen mit normalverteilten Zufallsvariablen

$$X \sim N(\mu; \sigma^2)$$
 Transformation von X in $Z = (X - \mu)/\sigma$ $Z \sim N(0, 1)$

Für die Dichtefunktion der Standardnormalverteilung hat sich anstelle von f(..) eine spezielle Notation eingebürgert, nämlich $\phi(..)$:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right).$$

Für die Verteilungsfunktion der Standardnormalverteilung hat sich die Bezeichnung $\Phi(..)$ etabliert. Sie ist erklärt durch

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{t^2}{2}\right) dt.$$

Da die Dichtefunktion $\phi(z) = \Phi'(x)$ der Standardnormalverteilung symmetrisch zum Nullpunkt ist, gilt

$$\Phi(-z) = 1 - \Phi(z).$$

Mit den Werten $\Phi(z)$ kann man Werte F(x) der Verteilungsfunktion jeder beliebigen Normalverteilung bestimmen und zwar gemäß

$$F(x) = P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

Man leitet hieraus die folgenden Darstellungen ab:

$$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right); \quad P(X > a) = 1 - P\left(X \le a\right) = 1 - \Phi\left(\frac{a-\mu}{\sigma}\right);$$
$$P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

Das p-Quantil der Normalverteilung ist der eindeutig bestimmte Wert x_p , an dem die Verteilungsfunktion F(x) den Wert p erreicht. Insbesondere sind also die **p-Quantile** der Standardnormalverteilung durch $\Phi(z_p) = p$ definiert. Da die Dichte der Standardnormalverteilung symmetrisch zum Nullpunkt ist, gilt dies auch für z_p und z_{1-p} , d. h. es gilt $z_p = -z_{1-p}$.

Aus der Normalverteilung lassen sich einige Verteilungen ableiten. Es sind dies vor allem die χ^2 -Verteilung, die t-Verteilung und die F-Verteilung. Geht man von n unabhängigen standardnormalverteilten Variablen Z_1, Z_2, \ldots, Z_n aus und bildet die Summe

$$X := Z_1^2 + Z_2^2 + \dots + Z_n^2 = \sum_{i=1}^n Z_i^2$$

 χ^2 -Verteilung

der quadrierten Variablen, so sagt man, dass die Verteilung der Variablen X einer χ^2 Verteilung mit n Freiheitsgraden folgt und verwendet die Kurznotation $X \sim \chi_n^2$. Für den Erwartungswert und die Varianz einer χ_n^2 -verteilten Variablen X lässt sich ableiten:

$$E(X) = n;$$
 $V(X) = 2n.$

Die Quantile einer χ^2 -Verteilung mit n Freiheitsgraden werden mit $\chi^2_{n:n}$ abgekürzt.

Aus der Standardnormalverteilung und der χ^2 -Verteilung leitet sich die **t-Verteilung** ab. Sind X und Z unabhängige Zufallsvariablen mit $X \sim \chi_n^2$ und $Z \sim N(0;1)$, dann folgt die Zufallsvariable

$$T := \frac{Z}{\sqrt{\frac{X}{n}}}$$

einer t-Verteilung mit n Freiheitsgraden und man schreibt $T \sim t_n$. Für den Erwartungswert und die Varianz einer t_n -verteilten Variablen T lässt sich zeigen, dass

$$E(T) = 0; \quad V(T) = \frac{n}{n-2},$$

wobei die letzte Gleichung für $n \geq 3$ gilt. Die Funktionsdarstellungen für Dichte- und Verteilungsfunktion werden wie bei der χ^2 -Verteilung nicht weiter benötigt. Die Dichte der t-Verteilung ist wie die der Standardnormalverteilung symmetrisch zum Nullpunkt. Mit zunehmender Anzahl n der Freiheitsgrade nähert sich aber die Dichte der t-Verteilung der der Standardnormalverteilung an. Für die **Quantile** $t_{n;p}$ der t-Verteilung gilt die Symmetriebeziehung $t_{n;p} = -t_{n;1-p}$.

Aus der χ^2 -Verteilung leitet sich die F-Verteilung ab. Sind X_1 und X_2 zwei unabhängige Zufallsvariablen mit $X_1 \sim \chi_m^2$ und $X_2 \sim \chi_n^2$, so folgt die Zufallsvariable

$$Y := \frac{X_1/m}{X_2/n}$$

einer F-Verteilung mit m und n Freiheitsgraden und man schreibt $Y \sim F_{m;n}$. Ist $Y \sim F_{m;n}$, so folgt der Kehrwert $W := \frac{1}{Y}$ einer F-Verteilung mit n und m Freiheitsgraden, also $W \sim F_{n;m}$. Für die mit $F_{m;n;p}$ bezeichneten p-Quantile einer $F_{m;n}$ -verteilten Zufallsvariablen Y leitet sich hieraus die Beziehung $F_{m;n;p} = \frac{1}{F_{n;m;1-p}}$ ab. Bei der Tabellierung von Quantilen der F-Verteilung kann man sich daher auf Quantile $F_{m;n;p}$ mit $m \leq n$ beschränken.

Bivariate Verteilungen von Zufallsvariablen

Eine Zufallsvariable X, gleich ob diskret oder stetig, lässt sich durch die Verteilungsfunktion $F(x) = P(X \le x)$ beschreiben. Hat man zwei beliebige Zufallsvariablen X und Y, so lässt sich die gemeinsame Verteilung beider Variablen analog durch deren gemeinsame Verteilungsfunktion

$$F(x;y) := P(X \le x; Y \le y)$$

charakterisieren. Sind $F_X(x) = P(X \le x)$ und $F_Y(y) = P(Y \le y)$ die Verteilungsfunktion von X und Y, so nennt man X und Y unabhängig oder auch stochastisch unabhängig, wenn sich deren gemeinsame Verteilungsfunktion F(x;y) für alle Elemente der Trägermengen von X und Y als Produkt

$$F(x;y) = F_X(X \le x) \cdot F_Y(Y \le y)$$

der Verteilungsfunktion $F_X(x)$ und $F_Y(y)$ der Einzelvariablen darstellen lässt. Neben der Verteilungsfunktion F(x;y) lässt sich zur Charakterisierung der gemeinsamen Verteilung zweier Zufallsvariablen X und Y auch die Wahrscheinlichkeitsfunktion (diskreter Fall) resp. die Dichtefunktion (stetiger Fall) heranziehen.

Zieht man aus einer Grundgesamtheit eine n-elementige Stichprobe, so wird diese in

Wichtige Stichprobenfunktionen

t-Verteilung

der schließenden Statistik durch Zufallsvariablen $X_1, X_2, ..., X_n$ modelliert, für die man dann Realisationen $x_1, x_2, ..., x_n$ hat und verwertet. Die Zufallsvariablen $X_1, X_2, ..., X_n$ werden meist anhand einer **Stichprobenfunktion** aggregiert:

$$X_1, X_2, ..., X_n \xrightarrow{\text{Verdichtung der Stichprobeninformation}} g(X_1, X_2, ..., X_n)$$

Eine besonders wichtige Stichprobenfunktion ist der Stichprobenmittelwert

$$\overline{X} := \frac{1}{n} \cdot (X_1 + X_2 + \ldots + X_n) = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i.$$

Eine weitere Stichprobenfunktion ist die Stichprobenvarianz

$$S^2 := \frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2$$

bzw. die korrigierte Stichprobenvarianz

$$S^{*2} := \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{n}{n-1} \cdot S^2.$$

Verteilung des Stichprobenmittelwerts Wenn die Stichprobenvariablen $X_1, X_2, ..., X_n$ alle unabhängig $N(\mu; \sigma^2)$ -verteilt sind, so gilt für den Stichprobenmittelwert \overline{X}

$$\overline{X} \sim N(\mu; \sigma_{\overline{X}}^2)$$
 mit $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$.

Wenn man den Stichprobenmittelwert standardisiert, folgt

$$\frac{\overline{X} - \mu}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu}{\sigma} \cdot \sqrt{n} \sim N(0; 1).$$

Für die aus n unabhängigen $N(\mu; \sigma^2)$ -verteilten Stichprobenvariablen X_i gebildete Stichprobenvarianz lässt sich eine Beziehung zur χ^2 -Verteilung ableiten. Auch die Variablen X_i kann man zunächst standardisieren. Für die Summe der Quadrate der resultierenden standardnormalverteilten Variablen Z_i gilt, dass sie χ^2_n -verteilt ist:

$$\sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi_n^2.$$

Verteilung der StichprobenvariHieraus kann man ableiten, dass die mit dem Faktor $\frac{n}{\sigma^2}$ multiplizierte Stichprobenvarianz S^2 bzw. – äquivalent – die mit $\frac{n-1}{\sigma^2}$ multiplizierte korrigierte Stichprobenvarianz S^{*2} einer χ^2 -Verteilung mit n-1 Freiheitsgraden folgt:

$$\frac{n \cdot S^2}{\sigma^2} = \frac{(n-1) \cdot S^{*2}}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2.$$

Ferner lässt sich zeigen, dass eine Ersetzung von σ durch die als Schätzung für σ verwendete **korrigierte Stichprobenstandardabweichun**g $S^* := \sqrt{S^{*2}}$ zu einer t-Verteilung mit n-1 Freiheitsgraden führt:

$$\frac{\overline{X} - \mu}{S} \cdot \sqrt{n - 1} = \frac{\overline{X} - \mu}{S^*} \cdot \sqrt{n} \sim t_{n-1}.$$

Hat man zwei Zufallsvariablen X und Y mit Erwartungswerten $\mu_X = E(X)$ und $\mu_Y = E(Y)$ und Varianzen $\sigma_X^2 = V(X)$ und $\sigma_Y^2 = V(Y)$, so kann man einen linearen Zusammenhang zwischen X und Y anhand der mit Cov(X;Y) abgekürzten **Kovarianz** von X und Y messen (nicht-normiertes Zusammenhangsmaß). Letztere ist der Erwartungswert von $(X - \mu_X)(Y - \mu_Y)$:

Kovarianz und Korrelation

$$Cov(X; Y) := E[(X - E(X))(Y - E(Y))].$$

Äquivalent ist die Darstellung

$$Cov(X;Y) = E(XY) - E(X) \cdot E(Y).$$

Wenn X und Y unabhängig sind, hat ihre Kovarianz stets den Wert 0, d. h. es gilt

$$X$$
 und Y sind unabhängig $\rightarrow Cov(X;Y) = 0$.

Sind X und Y zwei Zufallsvariablen mit der Kovarianz Cov(X;Y), so gilt für die Varianz ihrer Summe

$$V(X + Y) = V(X) + V(Y) + 2 \cdot Cov(X; Y).$$

Wie die empirische Kovarianz ist auch die theoretische Kovarianz maßstabsabhängig. Sie hat daher keine untere oder obere Schranke. Eine Normierung wird durch Verwendung des Korrelationskoeffizienten ρ erreicht. Dieser ist definiert durch

$$\rho = \frac{Cov(X;Y)}{\sqrt{V(X)} \cdot \sqrt{V(Y)}}.$$

Der Korrelationskoeffizient ρ liegt wie sein empirisches Analogon r stets zwischen -1 und 1. Im Falle $\rho = 0$ spricht man von **Unkorreliertheit**, im Falle $\rho \neq 0$ von **Korreliertheit** der Variablen X und Y. Unabhängigkeit von X und Y impliziert stets Unkorreliertheit:

$$X$$
 und Y sind unabhängig $\rightarrow \rho = 0$.

Schätzung von Parametern

Wenn man für ein stochastisches Merkmal X ein geeignetes Verteilungsmodell spezifiziert hat, sind die Parameter der Verteilung zunächst noch unbekannt und müssen geschätzt werden. Dabei kommen die Punkt- und die Intervallschätzung in Betracht. Mit einer **Punktschätzung** will man einen unbekannten Parameter möglichst gut treffen, während eine **Intervallschätzung** einen als **Konfidenzintervall** bezeichneten Bereich

festlegt, in dem der unbekannte Parameter mit einer Wahrscheinlichkeit von mindestens $1-\alpha$ liegt, wobei α eine vorgegebene kleine Irrtumswahrscheinlichkeit ist.

Will man für einen unbekannten Parameter θ – z. B. den Erwartungswert oder die Varianz – eine Punktschätzung anhand von Stichprobendaten $x_1, x_2, ..., x_n$ gewinnen, verwendet man die Realisation einer **Stichprobenfunktion** $g(x_1, x_2, ..., x_n)$ als Schätzwert. Da die Stichprobendaten als Ausprägungen von Zufallsvariablen $X_1, X_2, ..., X_n$ interpretiert werden, ist auch der aus ihnen errechnete Schätzwert eine Realisation einer Zufallsvariablen $g(X_1, X_2, ..., X_n)$, die **Schätzstatistik**, **Schätzfunktion** oder kurz **Schätzer** genannt wird.

Eigenschaften von Schätzfunktionen Ein Gütekriterium für eine Schätzfunktion ist die **Erwartungstreue** oder **Unverzerrtheit**. Diese beinhaltet, dass der Schätzer "im Mittel" den zu schätzenden Wert θ genau trifft, d. h. $E(\widehat{\theta}) = \theta$. Wenn ein Schätzer $\widehat{\theta}$ nicht erwartungstreu ist, heißt die Differenz

$$B(\widehat{\theta}) := E(\widehat{\theta}) - \theta = E(\widehat{\theta} - \theta)$$

Verzerrung oder Bias. Ein Schätzer $\widehat{\theta}$ heißt asymptotisch erwartungstreu oder asymptotisch unverzerrt wenn er zwar verzerrt ist, die Verzerrung aber gegen Null strebt, wenn der Stichprobenumfang n gegen ∞ (unendlich) konvergiert:

$$\lim_{n\to\infty} E(\widehat{\theta}) = \theta.$$

Ein Gütemaß für Schätzer, das sowohl die Verzerrung als auch die Streuung berücksichtigt, ist der mit MSE abgekürzte mittlere quadratische Fehler

$$MSE(\widehat{\theta}) := E\left[\left(\widehat{\theta} - \theta\right)^2\right] = V(\widehat{\theta}) + B(\widehat{\theta})^2.$$

Bei erwartungstreuen Schätzern sind MSE und Varianz identisch.

Punktschätzung von Erwartungswerten Will man den Erwartungswert μ einer Zufallsvariablen anhand der Ausprägungen unabhängiger Stichprobenvariablen $X_1, X_2, ..., X_n$ schätzen, verwendet man den Stichprobenmittelwert \overline{X} . Da man die Erwartungswertbildung auf die Stichprobenvariablen einzeln anwenden kann, gilt

$$E(\overline{X}) = \frac{1}{n} \cdot [E(X_1) + E(X_2) + \ldots + E(X_n)] = \frac{1}{n} \cdot n \cdot \mu = \mu.$$

Wenn die Stichprobenvariablen $X_1,X_2,...,X_n$ die Varianz σ^2 haben, hat man für die Varianz $V(\overline{X})=\sigma^2_{\overline{X}}$ der Schätzfunktion \overline{X}

$$V(\overline{X}) = \frac{\sigma^2}{n}.$$

Punktschätzung der Varianz Verwendet man zur Schätzung der Varianz σ^2 einer Zufallsvariablen die **Stichprobenvarianz** S^2 , so ist diese Schätzung verzerrt:

$$E(S^2) = \frac{n-1}{n} \cdot \sigma^2.$$

Eine unverzerrte Schätzung für σ^2 resultiert, wenn man anstelle von S^2 zur Varianzschätzung die korrigierte Stichprobenvarianz S^{*2} heranzieht:

$$E(S^{*2}) = \frac{n}{n-1} \cdot E(S^2) = \sigma^2.$$

Wenn man ein Bernoulli-Experiment n-mal durchführt, kann man den Ausgang der n Einzelexperimente anhand einer Folge unabhängiger null-eins-verteilter Stichprobenvariablen $X_1, X_2, ..., X_n$ modellieren. Verwendet man den hieraus gebildeten Stichprobenmittelwert \overline{X} zur Schätzung des Erwartungswerts p der Null-Eins-Verteilung, so gilt

Punktschätzung von Anteilswerten

$$E(\widehat{p}) = \frac{1}{n} \cdot [E(X_1) + E(X_2) + \ldots + E(X_n)] = \frac{1}{n} \cdot n \cdot p = p.$$

Für die Varianz $V(\widehat{p})$ des Schätzers \widehat{p} erhält man

$$V(\widehat{p}) = \frac{p \cdot (1-p)}{n}.$$

Bei einer Intervallschätzung wird anhand der Daten ein Intervall bestimmt, das den zu schätzenden Parameter θ mit einer Wahrscheinlichkeit von mindestens $1-\alpha$ enthält. Das Intervall soll eine möglichst geringe Länge aufweisen.

Konfidenzintervalle für Erwartungswerte

Am einfachsten ist der Fall der Intervallschätzung des Erwartungswerts $\mu = E(X)$ eines $N(\mu; \sigma^2)$ -verteilten Merkmals X, wenn die Varianz $\sigma^2 = V(X)$ bekannt ist. Die Zufallsvariable $Z := \frac{\overline{X} - \mu}{\sigma_{\overline{X}}}$ ist dann standardnormalverteilt und liegt folglich mit Wahrscheinlichkeit $1 - \alpha$ in dem durch die Quantile $z_{\alpha/2} = -z_{1-\alpha/2}$ und $z_{1-\alpha/2}$ begrenzten Intervall $[-z_{1-\alpha/2}; z_{1-\alpha/2}]$. Hieraus leitet man ab, dass

$$P\left(\overline{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Für den unbekannten Verteilungsparameter μ hat man also die Wahrscheinlichkeitsaussage, dass dieser mit Wahrscheinlichkeit $1-\alpha$ im hier mit KI bezeichneten Intervall

$$KI = \left[\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

liegt. Dies ist das Konfidenzintervall zum Konfidenzniveau $1-\alpha$ für μ , das eine Intervallschätzung für μ repräsentiert. Die Länge des Konfidenzintervalls ist durch

$$L\ddot{a}nge(KI) = 2 \cdot z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

gegeben. Die vorstehenden Ableitungen sind leicht zu modifizieren, wenn man die Varianz σ^2 nur in Form einer Schätzung $\widehat{\sigma}^2$ kennt. Man erhält mit $\nu := n-1$

$$KI = \left[\overline{X} - t_{\nu;1-\alpha/2} \frac{S^*}{\sqrt{n}}; \overline{X} + t_{\nu;1-\alpha/2} \frac{S^*}{\sqrt{n}} \right].$$

Statistische Testverfahren

Klassifikationen für Tests

Wenn man für die Teststatistik die Kenntnis des Verteilungstyps in der Grundgesamtheit voraussetzt, liegt ein **parametrischer Test** vor, andernfalls ein **verteilungsfreier** oder **nicht-parametrischer Test**. Man kann Tests auch danach klassifizieren, worauf sich die Hypothesen beziehen. So gibt es **Tests für Erwartungswerte**, **Tests für Varianzen** oder **Tests für Anteile** von Populationen. Für die drei genannten Fälle gibt es Ein- und Mehrstichproben-Tests, d. h. die aufgeführten Testklassifikationen überschneiden sich. **Anpassungstests** zielen darauf ab, zu untersuchen, ob eine Zufallsvariable einer bestimmten Verteilung folgt, z. B. der Normalverteilung. Bei **Unabhängigkeitstests** will man eine Aussage darüber gewinnen, ob zwei Zufallsvariablen stochastisch unabhängig sind.

Häufig werden statistische Tests, deren Prüfstatistik einer bestimmten diskreten oder stetigen Verteilung folgt, zu einer Gruppe zusammengefasst. So gibt es ganz unterschiedliche Tests, die mit einer χ^2 -, t- oder F-verteilten Testgröße operieren. Diese Tests werden dann als χ^2 -Tests,t-Tests resp. als F-Tests angesprochen. Ein Test mit normalverteilter Prüfstatistik wird auch als Gauß-Test bezeichnet.

Bei der Prüfung von Hypothesen über Parameter kann es darauf ankommen, Veränderungen nach beiden Seiten zu entdecken oder auch nur in eine Richtung. Man spricht dann von einem **zweiseitigen Test** bzw. von einem **einseitigen Test**. Wenn zwei Hypothesen direkt aneinandergrenzen, wie etwa im Falle der Hypothesen $H_0: \mu = \mu_0$ und $H_1: \mu \neq \mu_0$, spricht man von einem **Signifikanztest**. Andernfalls, etwa im Falle $H_0: \mu = \mu_0$ und $H_1: \mu = \mu_1$ ($\mu_0 < \mu_1$), liegt ein **Alternativtest** vor.

Grundbegriffe und Tests für Erwartungswerte Die Fragestellung, die anhand eines Tests untersucht werden soll, wird in Form einer Nullhypothese H_0 und einer Alternativhypothese H_1 formuliert. Die **Nullhypothese** H_0 beinhaltet eine bisher als akzeptiert geltende Aussage über den Zustand des Parameters einer Grundgesamtheit. Die **Alternativhypothese** H_1 beinhaltet die eigentliche Forschungshypothese.

Ein Test basiert auf einer **Prüfvariablen**, auch **Teststatistik** genannt, deren Ausprägung sich im Ein-Stichprobenfall aus einer Stichprobe $x_1, x_2, ..., x_n$ ergibt. Letztere wird als Realisation von Stichprobenvariablen $X_1, X_2, ..., X_n$ interpretiert. Die Stichprobenvariablen werden nicht direkt verwendet; man aggregiert sie vielmehr anhand einer Stichprobenfunktion $g(X_1, X_2, ..., X_n)$, z. B. anhand des Stichprobenmittelwerts \overline{X} oder der Stichprobenvarianz S^2 bzw. S^{*2} . Da die Stichprobenvariablen Zufallsvariablen sind, gilt dies auch für die Teststatistik. Die Testentscheidung hängt also von der Ausprägung $g(x_1, x_2, ..., x_n)$ der herangezogenen Stichprobenfunktion ab.

Zweiseitiger Test für den Erwartungswert Bei einem zweiseitigen Test für den Erwartungswert μ einer normalverteilten Variablen lauten die zu testenden Hypothesen

$$H_0: \mu = \mu_0$$
 gegen $H_1: \mu \neq \mu_0$.

Wenn die Varianz σ^2 von X bekannt ist, gilt unter H_0 , also für $\mu=\mu_0$, die Aussage $\overline{X} \sim N(\mu_0; \sigma_{\overline{X}}^2)$ mit $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$. Ein mit einer normalverteilten Prüfgröße operierender Test

wird auch Gauß-Test genannt. Der mit \overline{X} bzw. mit der standardisierten Prüfvariablen

$$Z := \frac{\overline{X} - \mu_0}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu_0}{\sigma} \cdot \sqrt{n}$$

operierende Test der obigen Hypothesen ist demnach ein zweiseitiger Gauß-Test. Für diesen gilt, dass eine Ausprägung z mit Wahrscheinlichkeit $1-\alpha$ in dem durch das $\frac{\alpha}{2}$ -Quantil $z_{\alpha/2}=-z_{1-\alpha/2}$ und das $(1-\frac{\alpha}{2})$ -Quantil $z_{1-\alpha/2}$ der Standardnormalverteilung definierten Intervall liegt. Das Intervall heißt **Annahmebereich** für H_0 . Der Bereich außerhalb des genannten Intervalls definiert den **Ablehnungsbereich** für die Nullhypothese. Die Grenzen des Intervalls werden **kritische Werte** genannt. Im Falle der Verwerfung von H_0 ist die Alternativhypothese H_1 statistisch "bewiesen" in dem Sinne, dass ihre Gültigkeit mit einer Irrtumswahrscheinlichkeit α als gesichert angenommen werden kann. Die fälschliche Zurückweisung der Nullhypothese wird als **Fehler 1.** Art oder auch als α -**Fehler** bezeichnet. Die Wahrscheinlichkeit α für den Eintritt eines Fehlers 1. Art definiert das **Signifikanzniveau** des Tests.

Die Nullhypothese $H_0: \mu = \mu_0$ wird beim zweiseitigen Gauß-Test mit Irrtumswahrscheinlichkeit α verworfen, wenn sich für die aus der Stichprobenfunktion $\widehat{\mu} = \overline{X}$ durch Standardisierung hervorgegangene Variable Z eine Realisation ergibt, die außerhalb des Intervalls $[-z_{1-\alpha/2}; z_{1-\alpha/2}]$ liegt, wenn also $|z| > z_{1-\alpha/2}$ gilt.

Beim einseitigen Hypothesentest für den Erwartungswert μ besteht die Nullhypothese nicht nur aus einem einzigen Wert, sondern aus allen Werten unterhalb oder oberhalb eines bestimmten Wertes des zu testenden Parameters. Man testet nun entweder

Einseitiger Test für den Erwartungswert

$$H_0: \mu \leq \mu_0$$
 gegen $H_1: \mu > \mu_0$ (rechtsseitiger Test)

oder

$$H_0: \mu \geq \mu_0$$
 gegen $H_1: \mu < \mu_0$ (linksseitiger Test).

Die Testentscheidung beim einseitigen Hypothesentest orientiert sich allein an der Verteilung der Prüfgröße im Grenzfall $\mu=\mu_0$. Das Signifikanzniveau α ist bei einem einseitigen Test als obere Schranke für den Eintritt eines Fehlers 1. Art zu interpretieren. Beim Übergang von einem zweiseitigen zu einem einseitigen Hypothesentest bleibt die Testgröße unverändert, aber die Bedingungen für die Ablehnung der Nullhypothese ändern sich. Beim rechtsseitigen Gauß-Test wird die Nullhypothese $H_0: \mu \leq \mu_0$ verworfen, wenn die Bedingung $z > z_{1-\alpha}$ erfüllt ist. Beim linksseitigen Test mit $H_0: \mu \geq \mu_0$ lautet die entsprechende Bedingung $z < z_{\alpha}$.

Ein statistischer Test kann also zur Ablehnung der Nullhypothese H_0 führen (Entscheidung für H_1) oder zur Nicht-Verwerfung von H_0 (Beibehaltung von H_0 mangels Evidenz für H_1). Jede der beiden Testentscheidungen kann richtig oder falsch sein. Es gibt somit insgesamt vier denkbare Fälle, von denen zwei falsche Entscheidungen darstellen. Neben dem Fehler 1. Art oder α -Fehler, der fälschlichen Verwerfung der Nullhypothese, kann auch eine Nicht-Verwerfung einer nicht zutreffenden Nullhypothese eintreten. Diese Fehlentscheidung heißt Fehler 2. Art oder β -Fehler.

Fehlerarten beim Testen

Testentscheidung	tatsächlicher Zustand			
	Nullhypothese richtig	Nullhypothese falsch		
Nullhypothese nicht	richtige Entscheidung	Fehler 2. Art		
verworfen		β -Fehler)		
Nullhypothese	Fehler 1. Art	richtige Entscheidung		
verworfen	$(\alpha$ -Fehler)			

Die genannten Fehlerwahrscheinlichkeiten sind bedingte Wahrscheinlichkeiten:

$$P(\text{Fehler 1. Art}) = P(\text{Ablehnung von } H_0|H_0 \text{ ist wahr})$$

$$P(\text{Fehler 2. Art}) = P(\text{Nicht-Verwerfung von } H_0|H_1 \text{ ist wahr}).$$

Die Verwerfung der Nullhypothese kann eine richtige Entscheidung sein oder auch einen Fehler 1. Art beinhalten, je nachdem welchen Wert der Verteilungsparameter μ tatsächlich hat.

Bewertung der Leistungsfähigkeit eines

Tests

Zur Beurteilung eines Tests für den Erwartungswert μ zieht man die sog. **Gütefunktion** (engl: power)

$$G(\mu) = P(Ablehnung von H_0|\mu)$$

des Tests heran. Diese gibt für jeden möglichen Wert des Erwartungswerts μ des normalverteilten Merkmals X die Wahrscheinlichkeit für die Verwerfung der Nullhypothese an, spezifiziert also die Ablehnungswahrscheinlichkeit für H_0 als Funktion von μ .

Im Falle des zweiseitigen Gauß-Tests ist die Gütefunktion durch

$$G(\mu) = \Phi\left(-z_{1-\alpha/2} + \frac{\mu - \mu_0}{\sigma} \cdot \sqrt{n}\right) + \Phi\left(-z_{1-\alpha/2} - \frac{\mu - \mu_0}{\sigma} \cdot \sqrt{n}\right)$$

gegeben, während man für die einseitigen Testvarianten die nachstehenden Formeldarstellungen ableiten kann:

$$G(\mu) = 1 - \Phi\left(z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \cdot \sqrt{n}\right)$$
 (rechtseitiger Fall)

$$G(\mu) = \Phi\left(-z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \cdot \sqrt{n}\right)$$
 (linksseitiger Fall).

Vorgehensweise bei unbekannter Varianz Der Test für den Erwartungswert μ einer normalverteilten Variablen ist leicht zu modifizieren, wenn die Varianz σ^2 nur in Form einer Schätzung vorliegt. Die Prüfstatistik lautet nun

$$T := \frac{\overline{X} - \mu_0}{S^*} \cdot \sqrt{n}.$$

Diese Testvariable ist nicht mehr standardnormalverteilt, sondern t-verteilt mit $\nu := n-1$ Freiheitsgraden. Der Annahmebereich für den mit der obigen Prüfstatistik arbeitenden t-**Test** ist im zweiseitigen Fall durch $[-t_{\nu;1-\alpha/2};t_{\nu;1-\alpha/2}]$ gegeben. Die Nullhypothese

wird also bei Verwendung der Prüfstatistik T mit Irrtumswahrscheinlichkeit α verworfen, wenn die t_{ν} -verteilte Prüfgröße außerhalb des Intervalls $[-t_{\nu;1-\alpha/2};t_{\nu;1-\alpha/2}]$ liegt, wenn also $|t| > t_{\nu;1-\alpha/2}$ gilt. Dieses Intervall ist stets breiter als das Intervall $[-z_{1-\alpha/2};z_{1-\alpha/2}]$, das den Annahmebereich des zweiseitigen Gauß-Tests repräsentiert. Die Unterschiede nehmen aber mit zunehmendem Wert von $\nu = n-1$ ab.

Beim rechtsseitigen t-Test wird die Nullhypothese $H_0: \mu \leq \mu_0$ verworfen, wenn die Bedingung $t > t_{\nu;1-\alpha}$ gilt, beim linksseitigen t-Test mit $H_0: \mu \geq \mu_0$ für $t < t_{\nu;\alpha} = -t_{\nu;1-\alpha}$.

Es gibt noch eine Alternative für die Durchführung von Hypothesentests, bei der die Testentscheidung nicht auf dem Vergleich von Testvariablenwerten und kritischen Werten beruht, sondern auf dem Vergleich eines vorgegebenen Signifikanzniveaus α mit dem sogenannten **p-Wert** (engl: probability value), der auch als **empirisches Signifikanzniveau** bezeichnet wird. Der p-Wert gibt bei gegebenem Stichprobenbefund das Niveau α' an, bei dem die Nullhypothese bei Verwendung des jeweiligen Datensatzes gerade noch verworfen würde.

p-Wert

Die Ausführungen über das Testen zwei- und einseitiger Hypothesen für Erwartungswerte bei normalverteiltem Merkmal lassen sich auf Hypothesen für Varianzen übertragen. Die Hypothesen im zweiseitigen Fall lauten nun

Tests für Varianzen

$$H_0: \sigma^2 = \sigma_0^2$$
 gegen $H_1: \sigma^2 \neq \sigma_0^2$.

Der Test wird durchgeführt mit der Prüfstatistik

$$T := \frac{n \cdot S^2}{\sigma_0^2} = \frac{(n-1) \cdot S^{*2}}{\sigma_0^2},$$

die bei Gültigkeit von H_0 einer χ^2 -Verteilung mit $\nu = n-1$ Freiheitsgraden folgt: $T \sim \chi^2_{n-1}$. Die Nullhypothese wird bei diesem χ^2 -Test mit Irrtumswahrscheinlichkeit α verworfen, wenn die Realisation t der Prüfgröße entweder kleiner als $\chi^2_{\nu;\alpha/2}$ oder größer als $\chi^2_{\nu;1-\alpha/2}$ ist, wenn also der für die Testgröße berechnete Wert t außerhalb des Intervalls $[\chi^2_{\nu;\alpha/2};\chi^2_{\nu;1-\alpha/2}]$ liegt. Für den einseitigen Fall hat man

$$H_0: \sigma^2 \leq \sigma_0^2$$
 gegen $H_1: \sigma^2 > \sigma_0^2$ (rechtsseitiger Test)

resp.

$$H_0: \sigma^2 \ge \sigma_0^2$$
 gegen $H_1: \sigma^2 < \sigma_0^2$ (linksseitiger Test).

Beim rechtsseitigen Test wird H_0 mit einer Irrtumswahrscheinlichkeit von höchstens α verworfen, wenn für die Realisation t der Testgröße T die Bedingung $t > \chi^2_{\nu;1-\alpha}$ erfüllt ist. Die Ablehnbedingung für H_0 beim linksseitigen Test lautet entsprechend $t < \chi^2_{\nu;\alpha}$.

Oft will man anhand eines Tests klären, ob es Niveauunterschiede zwischen zwei Teilpopulationen gibt, für die man je eine Stichprobe des Umfangs n_1 resp. n_2 hat. Formal interpretiert man in solchen Fällen die Daten aus beiden Stichproben als Ausprägungen zweier Zufallsvariablen X_1 und X_2 . Letztere werden als unabhängig angenommen.

Zwei-Stichproben-Tests für Erwartungswerte Anhand eines **Zweistichproben-Tests** wird untersucht, ob sich die Erwartungswerte $\mu_1 := E(X_1)$ und $\mu_2 := E(X_2)$ beider Zufallsvariablen signifikant unterscheiden. Getestet wird hier (zweiseitiger Fall)

$$H_0: \mu_1 = \mu_2$$
 gegen $H_1: \mu_1 \neq \mu_2$.

Wie bei den Einstichproben-Tests für Erwartungswerte wird auch bei Zweistichproben-Tests i. a. Normalverteilung unterstellt, also $X_1 \sim N(\mu_1; \sigma_1^2)$ und $X_2 \sim N(\mu_2; \sigma_2^2)$. Man kann dann wieder zwischen den Fällen bekannter und geschätzter Varianzen σ_1^2 und σ_2^2 differenzieren. In beiden Fällen geht man bei der Konstruktion einer Prüfstatistik von der Differenz

Prüfvariablenkonstruktion

$$D := \overline{X}_1 - \overline{X}_2$$

der Stichprobenmittelwerte aus. Wegen $\overline{X}_1 \sim N(\mu_1; \sigma_1^2)$ und $\overline{X}_2 \sim N(\mu_2; \sigma_2^2)$ und der vorausgesetzten Unabhängigkeit von X_1 und X_2 gilt

$$D \sim N(\mu_D; \sigma_D^2)$$
 mit $\mu_D = \mu_1 - \mu_2 \text{ und } \sigma_D^2 = \sigma_{\overline{X}_1}^2 + \sigma_{\overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$.

Bei Gültigkeit von H_0 ist $\mu_D = 0$, also $D \sim N(0; \sigma_D^2)$, so dass man unter der Voraussetzung bekannter Varianzen σ_1^2 und σ_2^2 den Test anhand der standardnormalverteilten Prüfgröße

$$Z = \frac{D}{\sigma_D} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

durchführen kann. Haben die beiden Varianzen denselben Wert, etwa $\sigma^2 := \sigma_1^2 = \sigma_2^2$, vereinfacht sich die Testgröße zu

$$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sigma \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{\overline{X}_1 - \overline{X}_2}{\sigma} \cdot \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}.$$

Die Nullhypothese wird bei diesem **Zweistichproben-Gauß-Test** mit Irrtumswahrscheinlichkeit α verworfen, wenn $|z| > z_{1-\alpha/2}$ gilt. Diese Aussage gilt unabhängig davon, ob die Varianzen übereinstimmen oder nicht.

Bei unbekannten Varianzen ist σ_D^2 zu schätzen. Bezeichnet man die korrigierten Varianzen der beiden Stichproben mit S_1^{*2} resp. S_2^{*2} , so liefert

$$\widehat{\sigma}_D^2 := \frac{(n_1 - 1) \cdot S_1^{*2} + (n_2 - 1) \cdot S_2^{*2}}{(n_1 - 1) + (n_2 - 1)}$$

eine erwartungstreue Schätzung für σ_D^2 , die die beiden Stichprobenvarianzen mit dem Umfang der Stichprobenumfänge gewichtet. Dies führt zur Prüfstatistik

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{(n_1 - 1) \cdot S_1^{*2} + (n_2 - 1) \cdot S_2^{*2}}{n_1 + n_2 - 2}}}$$

des **Zweistichproben-t-Tests**. Für diese Prüfvariable kann man zeigen, dass sie bei Gleichheit der beiden Stichprobenvarianzen t-verteilt ist mit $\nu=n_1+n_2-2$ Freiheitsgraden. Man verwirft dann H_0 zum Signifikanzniveau α , falls für die Prüfgröße die Bedingung $|t|>t_{\nu;1-\alpha/2}$ zutrifft.

Regressionsanalyse (einfaches Regressionsmodell)

Das einfache lineare Regressionsmodell ist definiert durch

$$y_i = \alpha + \beta x_i + u_i \qquad i = 1, \dots, n,$$

wobei $(x_1, y_1), \ldots, (x_n, y_n)$ Datenpaare für zwei Merkmale X und Y sind und u_i die Ausprägung einer von Beobachtungsperiode zu Beobachtungsperiode variierenden Störvariablen U in der Beobachtungsperiode i. Die die Lage der Geraden $y = \alpha + \beta x$ determinierenden Parameter α und β heißen **Regressionskoeffizienten**. Für das Modell werden folgenden Annahmen getroffen:

Modellannahmen

A1: Außer X werden keine weiteren exogenen Variablen zur Erklärung von Y benötigt.

A2: Die Parameter α und β sind konstant.

A3a: Die Störterme u_i sind Ausprägungen von Zufallsvariablen mit Erwartungswert 0 und Varianz σ^2 .

A3b: Störvariablen aus unterschiedlichen Beobachtungsperioden sind unkorreliert.

A3c: Die Störvariablen sind normalverteilt.

A4: Die Werte der unabhängigen Variable X sind determiniert.

A5: Die Variable X ist nicht konstant für i = 1, ..., n (Ausschluss eines trivialen Falls).

Die Annahmen A3a - A3c lassen sich wie folgt zusammenfassen:

A3: Die Störterme u_i sind Ausprägungen unabhängig identisch $N(0; \sigma^2)$ -verteilter Zufallsvariablen.

Ohne den Störterm u_i würden die Beobachtungsdaten (x_i, y_i) alle auf einer Geraden $y = \alpha + \beta x$ liegen (Regressionsgerade). Diese "wahre" Gerade ist unbekannt, d. h. die sie determinierenden Regressionskoeffizienten α und β müssen anhand der Daten geschätzt werden. Für die Gleichung der geschätzten Geraden wird die Notation

Kleinst-Quadrat-Schätzung

$$\widehat{y} = \widehat{\alpha} + \widehat{\beta}x$$

verwendet. Zur Schätzung der Regressionskoeffizienten wird meist die **Methode der** kleinsten Quadrate herangezogen (KQ-Schätzung). Bei dieser greift man auf die Abweichungen

$$\widehat{u}_i = y_i - \widehat{y}_i = y_i - \widehat{\alpha} - \widehat{\beta}x_i \qquad i = 1, \dots, n$$

zwischen dem Beobachtungswert y_i und dem Wert \hat{y}_i der Regressionsgeraden in der Beobachtungsperiode i zurück. Die Differenzen \hat{u}_i werden **Residuen** genannt. Man wählt bei der KQ-Methode aus der Menge aller denkbaren Anpassungsgeraden diejenige Regressionsgerade \hat{R} aus, bei der die Summe der quadrierten Residuen \hat{u}_i^2 bezüglich der beiden Geradenparameter minimal ist:

$$\sum_{i=1}^{n} \widehat{u_i}^2 = \sum_{i=1}^{n} (y_i - \widehat{\alpha} - \widehat{\beta}x_i)^2 \to Min.$$

KQ-Schätzungen

Die KQ-Schätzungen der Regressionskoeffizienten β und α errechnen sich nach

$$\widehat{\beta} = \frac{s_{xy}}{s_x^2} = \frac{\overline{x}\overline{y} - \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2}; \quad \widehat{\alpha} = \overline{y} - \widehat{\beta} \cdot \overline{x}.$$

Die Varianz der Störvariablen lässt sich anhand der Summe der quadrierten Residuen \widehat{u}_i^2 schätzen, die man noch durch n-2 dividiert:

$$\widehat{\sigma}^2 = \frac{1}{n-2} \cdot \sum_{i=1}^n \widehat{u}_i^2 = \frac{1}{n-2} \cdot \sum_{i=1}^n (y_i - \widehat{\alpha} - \widehat{\beta}x_i)^2.$$

Für die KQ-Schätzfunktionen $\widehat{\beta}$, $\widehat{\alpha}$ und $\widehat{\sigma}^2$ lässt sich mit den getroffenen Modellannahmen ableiten, dass sie erwartungstreu sind:

$$E(\widehat{\beta}) = \beta; \quad E(\widehat{\alpha}) = \alpha; \quad E(\widehat{\sigma}^2) = \sigma^2.$$

Als Maß für die Anpassungsgüte eines bivariaten Datensatzes an eine Regressionsgerade wird das **Bestimmtheitsmaß** R^2 verwendet. Dieses Gütemaß setzt den durch die lineare Regression erklärten Varianzanteil $s_{\widehat{y}}^2$ ins Verhältnis zur Gesamtvariation s_y^2 der endogenen Variablen. Ausgangspunkt für die Herleitung von R^2 ist eine Zerlegung der Gesamtvarianz s_y^2 der abhängigen Variablen in zwei Komponenten:

$$\underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}_{s_y^2} = \underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} (\widehat{y}_i - \overline{\widehat{y}})^2}_{s_{\widehat{y}}^2} + \underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} (\widehat{u}_i - \overline{\widehat{u}})^2}_{s_{\widehat{u}}^2}.$$

Dabei beinhaltet $s_{\widehat{y}}^2$ die durch den Regressionsansatz erklärte Varianz und $s_{\widehat{u}}^2$ die durch den Ansatz nicht erklärte Restvarianz. Bei Beachtung von $\overline{\widehat{u}} = 0$ und $\overline{\widehat{y}} = \overline{y}$ sowie $\widehat{u}_i = y_i - \widehat{y}_i$ kann man die beiden Komponenten auch wie folgt schreiben:

$$\underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}_{s_y^2} = \underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2}_{s_{\widehat{y}}^2} + \underbrace{\frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}_{s_{\widehat{u}}^2}.$$

Formeln für R^2 Das Anpassungsgütemaß R^2 ist somit gegeben durch

$$R^2 = \frac{s_{\widehat{y}}^2}{s_y^2} = 1 - \frac{s_{\widehat{u}}^2}{s_y^2}.$$

Wenn man die letzte der beiden obigen Varianzzerlegungen mit n erweitert, also von einer Zerlegung in drei Summen von Abweichungsquadraten ausgeht und diese jeweils gemäß

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2.$$

$$SQ_{Total}$$

$$SQ_{Regression}$$

$$SQ_{Residual}$$

mit einem aussagekräftigen Index versieht, erhält man eine weitere Darstellung für \mathbb{R}^2 :

$$R^2 = \frac{SQ_{Regression}}{SQ_{Total}} = 1 - \frac{SQ_{Residual}}{SQ_{Total}}.$$

Aus der Nicht-Negativität aller Komponenten der Zerlegungen folgt $0 \le R^2 \le 1$. Erwähnt sei noch die für die praktische Berechnung von R^2 nützliche Formel

$$R^{2} = \frac{\widehat{\beta}s_{xy}}{s_{y}^{2}} = \frac{(s_{xy})^{2}}{s_{x}^{2}s_{y}^{2}} = r^{2}.$$

Regressionsanalyse (multiples Regressionsmodell)

Eine Verallgemeinerung des Modellansatzes mit nur *einer* erklärenden Variablen ist das **multiple lineare Regressionsmodell**

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + u_i$$
 $i = 1, \ldots, n$

mit k erklärenden Variablen. Für das Modell gelten folgende Annahmen:

Modellannahmen

MA1: Alle k erklärenden Variablen liefern einen relevanten Erklärungsbeitrag.

MA2: Die k+1 Parameter $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ sind konstant.

MA3a: Die Störterme u_i des Modells sind Realisationen von Zufallsvariablen mit Erwartungswert 0 und fester Varianz σ^2 .

MA3b: Störvariablen aus unterschiedlichen Beobachtungsperioden sind unkorreliert.

MA3c: Die Störvariablen sind normalverteilt.

MA4: Die Werte der k unabhängigen Variablen X_1, X_2, \ldots, X_k sind determiniert.

MA5: Zwischen den k Regressoren existieren keine linearen Abhängigkeiten.

Die Annahmen MA3a - MA3c lassen sich zusammenfassen zu der Aussage

MA3: Die Störterme u_1, \ldots, u_n sind Ausprägungen unabhängig identisch $N(0; \sigma^2)$ -verteilter Zufallsvariablen.

Die n Gleichungen des multiplen Regressionsmodells lassen sich auch mit Vektoren und Matrizen darstellen:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Wenn man die drei obigen Vektoren mit \mathbf{y} , $\boldsymbol{\beta}$ und \mathbf{u} bezeichnet und die Matrix mit \mathbf{X} , kann man kürzer schreiben

$$y = X\beta + u$$
.

Zur Schätzung der Regressionskoeffizienten kann erneut die **Methode der kleinsten** Quadrate eingesetzt werden, bei der hier aus der Menge aller denkbaren Anpassungshyperebenen (k > 2) – im Falle k = 2 ist dies eine Ebene – diejenige ausgewählt wird, bei der die Summe der quadrierten Residuen \hat{u}_i^2 bezüglich der Regressionskoeffizienten minimal ist. Die Minimierungsaufgabe hat hier die Gestalt

$$\sum_{i=1}^{n} \widehat{u_i}^2 = \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{i1} - \widehat{\beta}_2 x_{i2} - \dots - \widehat{\beta}_k x_{ik})^2 \to Min.$$

Bei Verwendung von Vektoren und Matrizen kann man äquivalent schreiben

$$\sum_{i=1}^{n} \widehat{u_i}^2 = \widehat{\mathbf{u}}' \widehat{\mathbf{u}} = (\mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}})' (\mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}}) \to Min.$$

Die im Sinne der KQ-Methode optimale Regressionshyperebene ist durch einen Vektor

$$\widehat{\boldsymbol{\beta}} = \begin{pmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \\ \vdots \\ \widehat{\beta}_k \end{pmatrix} = (\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \dots, \widehat{\beta}_k)'$$

definiert, der die KQ-Schätzungen $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \dots, \widehat{\beta}_k$ für die Regressionskoeffizienten zusammenfasst. Er errechnet sich aus der Datenmatrix \mathbf{X} und dem Datenvektor \mathbf{y} gemäß

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Grundzüge der Varianzanalyse

Mit der Varianzanalyse lassen sich Niveauunterschiede in mehr als zwei Teilpopulationen untersuchen. Man geht hier wieder von einem linearen Zusammenhang zwischen einer Einflussgröße X oder mehreren Einflussgrößen $X_1, X_2, ..., X_k$ (Faktoren) und einer zu erklärenden Variablen Y aus (Responsevariable). Letztere wird als stetig modelliert, während die Einflussgrößen diskret sind. Die Ausprägungen der Einflussgrößen heißen

auch Faktorstufen. Wenn die Faktorstufen von vorneherein festgelegt sind, spricht man von einem Modell der Varianzanalyse mit festen Effekten, bei einer zufälligen Auswahl von einem Modell der Varianzanalyse mit zufälligen Effekten. Es wird unterschieden zwischen einfaktorieller Varianzanalyse (eine Einflussgröße) und mehrfaktorieller Varianzanalyse (mehrere Einflussgrößen).

Beim einfaktoriellen Modell der Varianzanalyse geht man von einer Grundgesamtheit aus, für die eine Zufallsstichprobe des Umfangs n vorliegt. Die Stichprobe wird in s Teilmengen (Gruppen) des Umfangs n_i zerlegt $(i=1,2,\ldots,s;n_1+n_2+\ldots n_s=n)$, die jeweils einer anderen Intensität (Faktorstufe) eines einzigen Einflussfaktors X ausgesetzt sind. Die Responsevariable Y ist in allen Teilstichproben unabhängig $N(\mu_i, \sigma^2)$ -verteilt mit einem gruppenspezifischen Erwartungwert μ_i . Die Schwankungen der Responsevariablen innerhalb der Gruppen werden wie beim Regressionsmodell durch eine Störvariable U mit E(U)=0 repräsentiert. Das Modell lautet also, wenn man die Stichprobenwerte als Ausprägungen von Zufallsvariablen interpretiert,

Einfaktorielle Varianzanalyse

$$Y_{ik} = \mu_i + U_{ik}$$
 $i = 1, ..., s;$ $k = 1, ..., n_i.$

Zerlegt man den Erwartungswert μ_i der *i*-ten Gruppe noch in eine Basiskomponente μ und eine gruppenspezifische Komponente α_i , erhält man das Modell der einfaktoriellen Varianzanalyse in Effektdarstellung:

$$Y_{ik} = \mu + \alpha_i + U_{ik}$$
 $i = 1, ..., s;$ $k = 1, ..., n_i.$

Dabei ist $n_1 \cdot \alpha_1 + n_2 \cdot \alpha_2 + \dots n_s \cdot \alpha_s = 0$. Die einfaktorielle Varianzanalyse ermöglicht anhand eines F-Tests auch eine Entscheidung darüber, ob die Veränderung von Faktorstufen einen signifikanten Einfluss auf den Erwartungswert der Responsevariablen hat. Man testet

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_s$$
 gegen $H_1: \mu_i \neq \mu_j$ für mind. ein (i, j)

bzw. bei Zugrundelegung des Modells in Effektdarstellung

$$H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_s = 0$$
 gegen $H_1: \alpha_i \neq 0$ und $\alpha_j \neq 0$ für mind. ein (i, j) .

Bei der Konstruktion einer Teststatistik wird ausgenutzt, dass sich die Streuung der n Beobachtungen aus allen s Stichproben (Gesamtstreuung) zerlegen lässt in eine die Variabilität zwischen den Gruppen widerspiegelnde Komponente $SQ_{zwischen}$ (Behandlungseffekt) und eine die Variation innerhalb der Stichproben repräsentierende Restkomponente $SQ_{Residual}$ (Reststreuung). Es gilt also die Streuungszerlegungsformel

$$SQ_{\text{Total}} = SQ_{\text{zwischen}} + SQ_{\text{Residual}}$$
.

Die Gesamtstreuung ist gegeben durch

$$SQ_{\text{Total}} = \sum_{i=1}^{s} \sum_{k=1}^{n_i} (y_{ik} - \overline{y}_{..})^2$$

und für die beiden Komponenten gilt

$$SQ_{\text{zwischen}} := \sum_{i=1}^{s} n_i \cdot (\overline{y}_{i\cdot} - \overline{y}_{\cdot\cdot})^2; \quad SQ_{\text{Residual}} := \sum_{i=1}^{s} \sum_{k=1}^{n_i} (y_{ik} - \overline{y}_{i\cdot})^2.$$

Um zu testen, ob die Variation von Faktorstufen einen signifikanten Einfluss auf den Erwartungswert der Responsevariablen hat, verwendet man die Teststatistik

$$F := \frac{\frac{1}{s-1} \cdot SQ_{\text{zwischen}}}{\frac{1}{n-s} \cdot SQ_{\text{Residual}}} = \frac{n-s}{s-1} \cdot \frac{SQ_{\text{zwischen}}}{SQ_{\text{Residual}}}.$$

Dieser Quotient folgt unter der Nullhypothese H_0 einer **F-Verteilung** mit s-1 und n-s Freiheitsgraden, weil unter der hier getroffenen Normalverteilungsannahme $SQ_{\text{zwischen}} \sim \chi_{s-1}^2$ und $SQ_{\text{Residual}} \sim \chi_{n-s}^2$ gilt. Die Alternativhypothese H_1 wird dann als statistisch gesichert angesehen mit Irrtumswahrscheinlichkeit α , wenn der genannte Quotient das $(1-\alpha)$ -Quantil $F_{s-1;n-s;1-\alpha}$ der F-Verteilung mit s-1 und n-s Freiheitsgraden überschreitet.

Zweifaktorielle Varianzanalyse Wenn man den Einfluss von zwei Einflussgrößen X_1 und X_2 mit s resp. r Faktorstufen auf eine Responsevariable Y betrachtet, erhält man eine Modelldarstellung, die sich auf $s \cdot r$ Faktorstufenkombinationen bezieht:

$$Y_{ijk} = \mu_{ij} + U_{ijk}$$
 $i = 1, ..., s; j = 1, ..., r; k = 1, ..., n_{ij}$

wobei die Störvariablen als unabhängig identisch $N(0; \sigma^2)$ -verteilt spezifiziert sind. Zerlegt man die Erwartungswerte μ_{ij} der Responsevariablen in den $s \cdot r$ Gruppen wieder additiv in einen für alle Gruppen identischen Basisanteil μ und in faktorstufenspezifische Komponenten α_i (Effekt der *i*-ten Stufe des Faktors X_1) sowie β_j (Effekt der *j*-ten Stufe des Faktors X_2) und berücksichtigt bei der Modellformulierung noch einen mit $(\alpha\beta)_{ij}$ bezeichneten möglichen Wechselwirkungseffekt zwischen der *i*-ten Stufe von X_1 und der *j*-ten Stufe von X_2 , erhält man das Modell der zweifaktoriellen Varianzanalyse in Effektdarstellung:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + U_{ijk}$$
 $i = 1, ..., s; j = 1, ..., r; k = 1, ..., n_{ij}$

Effekte auf die Responsevariable Y, die durch die Veränderung von Stufen von Faktor X_1 oder von Faktor X_2 hervorgerufen werden, heißen **Haupteffekte**. Wirkungen auf Y, die durch Interaktion der beiden Faktoren induziert werden, nennt man **Wechselwirkungseffekte** oder **Interaktionseffekte**.

Anmerkungen und Ergänzungen für Studierende im BSc. "Psychologie"

Ergänzungen zur multiplen Regressionsanalyse Regressoren mit kategorialem Skalenniveau erfordern eine spezifische Behandlung. Kodierte Merkmalsausprägungen – z. B. 'ledig'=1, 'verheiratet'=2, 'geschieden'=3, 'verwitwet'=4 – können nicht wie reelle Zahlen in die Berechnung von Parameterschätzungen einbezogen werden, da den Kodierungen nicht notwendigerweise eine Ordnung zugrundeliegt und Abstände bei ordinalen Merkmalen nicht definiert sind. Um diesem Problem

zu begegnen, müssen kategoriale Regressoren umkodiert werden. Hierfür gibt es die Möglichkeit der Dummy- oder Effektkodierung. Bei beiden Varianten wird ein kategorialer Regressor mit k möglichen Merkmalsausprägungen in k-1 neue Regressoren (Dummys) umgewandelt. Eine der Originalkategorien (Merkmalsausprägungen) wird jeweils als sogenannte **Referenzkategorie** ausgewählt. Nach deren Wahl ergeben sich die Dummys X_i ($i=1,\ldots,k$) bei der **Dummykodierung** gemäß

$$x_i = \begin{cases} 1 & \text{falls Kategorie } i \text{ vorliegt,} \\ 0 & \text{sonst} \end{cases}$$

und bei der Effektkodierung nach

$$x_i = \begin{cases} 1 & \text{falls Kategorie } i \text{ vorliegt,} \\ -1 & \text{falls Kategorie } j \text{ vorliegt} \quad (i \neq j), \\ 0 & \text{sonst.} \end{cases}$$

Im Kurs Statistik II werden die Ausprägungen der Störvariablen bei der Regressionsund Varianzanalyse mit ϵ und nicht mit u bezeichnet (bei ansonsten unveränderten tiefgestellten Indizes für die Beobachtungsperiode bzw. Gruppe). Bei der Varianzanalyse wird für die die Variation innerhalb der Stichproben widerspiegelnde Restkomponente die Bezeichnung $SQ_{innerhalb}$ anstelle von $SQ_{Residual}$ verwendet. Ferner wird für die durch die Anzahl der Freiheitsgrade (kurz: df; degrees of freedom) dividierten Streuungskomponenten SQ die Abkürzung MQ herangezogen. Die Prüfstatistik F hat also mit den vorstehend genannten Notationen im Kurs Statistik II im Falle der einfaktoriellen Varianzanalyse die Gestalt

$$F = \frac{\frac{1}{s-1} \cdot SQ_{\text{zwischen}}}{\frac{1}{n-s} \cdot SQ_{\text{innerhalb}}} = \frac{MQ_{\text{zwischen}}}{MQ_{\text{innerhalb}}}.$$

Der Behandlungseffekt SQ_{zwischen} wird im Kurs Statistik II bei mehrfaktoriellen Designs i. a. nach dem jeweiligen Faktor benannt, also z.B. SQ_A und SQ_B bei einem zweifaktoriellen Modell mit den Faktoren A und B, und die Anzahl der Faktorstufen mit a resp. mit b. Es wird ferner im Kurs Statistik II bei der Behandlung der zweifaktoriellen Varianzanalyse angenommen, dass für jede Faktorstufenkombination (i;j) genau r Beobachtungen vorliegen. Für die Durchführung und Ergebnisdarstellung einer zweifaktoriellen Varianzanalyse wird dann das folgende Schema verwendet, bei der $N = a \cdot b \cdot r$ die Gesamtzahl der Beobachtungen bezeichnet:

Ursache	SQ	df	MQ	F
Faktor A	SQ_A	a-1	MQ_A	F_A
Faktor B	SQ_B	b-1	MQ_B	F_B
Wechselwirkung				
$A \times B$	$SQ_{A\times B}$	(a-1)(b-1)	$MQ_{A\times B}$	$F_{A \times B}$
Fehler	$SQ_{Residual}$	N-ab	$MQ_{Residual}$	
		=ab(r-1)		
Total	SQ_{Total}	N-1		

Ergänzungen zur Varianzanalyse

4 Matrizen, statistische Tabellen und Konzeptpapier

Grundzüge der Matrizenrechnung

Spalten- und Zeilenvektoren Wenn man ein *n*-Tupel von reellen Zahlen vertikal anordnet, erhält man einen **Spaltenvektor**, der i. a. mit einem fett gesetzten lateinischen oder griechischen Kleinbuchstaben abgekürzt wird. Ordnet man das *n*-Tupel horizontal an, resultiert ein **Zeilenvektor**. Die Überführung eines Spaltenvektors in einen Zeilenvektor wird auch als *Transponieren* des Vektors bezeichnet und durch einen hochgestellten Strich gekennzeichnet:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_1, x_2, \dots, x_n)' = \mathbf{x}'.$$

Spezielle Vektoren sind der nur aus Nullen bestehende **Nullvektor 0** und der nur aus Einsen bestehende **Einsvektor 1**. Will man die Anzahl n der in einem Vektor zusammengefassten Elemente betonen, spricht man genauer von einem n-Spaltenvektor oder von einem Spaltenvektor der Dimension n. Reelle Zahlen, die ja die Elemente eines Vektors konstituieren, heißen **Skalare**.

Bildung von Matrizen Hat man nicht nur einen, sondern k Datensätze $\mathbf{x}_j = (x_{1j}, ..., x_{nj})'$ (j = 1, 2, ..., k) des Umfangs n und stellt man die Elemente der k Spaltenvektoren nebeneinander, erhält man ein als **Matrix** bezeichnetes rechteckiges Schema mit Tabellenstruktur. Matrizen werden i. a. mit fetten lateinischen oder griechischen Großbuchstaben abgekürzt:

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2j} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{ik} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nj} & \dots & x_{nk} \end{pmatrix} = (x_{ij})_{i=1,\dots,n;j=1,\dots,k}.$$

Eine Matrix mit n Zeilen und k Spalten heißt $(n \times k)$ -Matrix. Man verwendet auch die kürzere Schreibweise $\mathbf{X} = (x_{ij})$, wenn sich der Laufbereich der Indizes i (Anzahl der Zeilen) und j (Anzahl der Spalten) aus dem Kontext erschließt.

Spezialfälle Vektoren lassen sich als spezielle Matrizen interpretieren – ein Zeilenvektor lässt sich

als Matrix mit nur einer Zeile und ein Spaltenvektor als Matrix mit nur einer Spalte interpretieren. Eine Matrix, deren Elemente alle Nullen sind, heißt **Nullmatrix**. Ein weiterer Spezialfall ist eine **quadratische Matrix** (gleiche Zeilen- und Spaltenzahl).

Sind bei einer quadratischen Matrix alle Elemente x_{ij} mit $i \neq j$ Null, spricht man von einer **Diagonalmatrix**. Deren Elemente $x_{11}, x_{22}, ..., x_{nn}$ konstituieren die **Haupt-diagonale**. Ein Sonderfall einer Diagonalmatrix ist die i. a. mit **I** oder – bei Ausweis der Dimension – mit **I**_n abgekürzte **Einheitsmatrix**. Für diese ist kennzeichnend, dass die Elemente auf der Hauptdiagonalen alle den Wert 1 haben.

Auch Matrizen lassen sich transponieren. Die zu einer Matrix X gehörende transponierte Matrix X' entsteht durch Vertauschen der Zeilen und Spalten von X:

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{i1} & x_{i2} & \dots & x_{ik} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix} \xrightarrow{Transponieren} \mathbf{X}' = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{i1} & \dots & x_{n1} \\ x_{12} & x_{22} & \dots & x_{i2} & \dots & x_{n2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{1k} & x_{2k} & \dots & x_{ik} & \dots & x_{nk} \end{pmatrix}.$$

Eine Matrix X mit der Eigenschaft X = X' heißt symmetrisch.

Die Multiplikation einer Matrix mit einer reellen Zahl λ (lies: lambda) erfolgt, indem man jedes Element einer Matrix $\mathbf{X} = (x_{ij})$ einzeln mit dem Skalar λ multipliziert:

$$\lambda \cdot \mathbf{X} = \lambda \cdot (x_{ij}) = (\lambda \cdot x_{ij}).$$

Bei der Addition von Matrizen $\mathbf{A} = (a_{ij})$ und $\mathbf{B} = (b_{ij})$ gleicher Dimension werden die an gleicher Position stehenden Elemente addiert, d. h. es ist

Addition von Matrizen

$$\mathbf{A} + \mathbf{B} = \mathbf{C} = (c_{ij}) \quad \text{mit} \quad c_{ij} = a_{ij} + b_{ij}.$$

Für Matrizen ungleicher Dimension ist die Addition nicht erklärt. Auch die Multiplikation von Matrizen ist nur unter bestimmten Voraussetzungen möglich. Das Produkt zweier Matrizen \mathbf{A} und \mathbf{B} ist erklärt, wenn die Anzahl der Spalten von \mathbf{A} mit der Anzahl der Zeilen von \mathbf{B} übereinstimmt. Hat etwa die Matrix \mathbf{A} die Dimension $(n \times k)$ und \mathbf{B} die Dimension $(k \times m)$, so ist die Matrix $\mathbf{C} := \mathbf{A} \cdot \mathbf{B}$ von der Dimension $(n \times m)$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1l} & \dots & b_{1m} \\ b_{21} & \dots & b_{2l} & \dots & b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{k1} & \dots & b_{kl} & \dots & b_{km} \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1l} & \dots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \dots & c_{il} & \dots & c_{im} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \dots & c_{nl} & \dots & c_{nm} \end{pmatrix}$$

Das vorstehend durch Rasterung betonte Element c_{il} der $(n \times m)$ -Produktmatrix C ergibt sich, indem man die ebenfalls in der obigen Gleichung gerastert dargestellten k

Produkt zweier Matrizen Elemente der *i*-ten Zeile von \mathbf{A} (i=1,...,n) und die k Elemente der l-ten Spalte von \mathbf{B} (l=1,...,m) gliedweise miteinander multipliziert und aufsummiert:

$$\underbrace{\mathbf{A}}_{n \times k} = (a_{ij}), \ \underbrace{\mathbf{B}}_{k \times m} = (b_{jl}) \quad \Rightarrow \quad \mathbf{A} \cdot \mathbf{B} = \underbrace{\mathbf{C}}_{n \times m} = (c_{il}) \quad \text{mit} \quad c_{il} = \sum_{j=1}^{k} a_{ij} \cdot b_{jl}.$$

Inversion von Matrizen Nicht nur bei der Addition, sondern auch bei der Multiplikation zweier quadratischer Matrizen $\bf A$ und $\bf B$ kann der Fall auftreten, dass das Ergebnis der Operation die Einheitsmatrix $\bf I$ ist. Wenn eine quadratische Matrix $\bf B$ die Eigenschaft hat, dass das Produkt $\bf A \cdot \bf B$ die Einheitsmatrix ist, nennt man sie die Inverse zur Matrix $\bf A$ und schreibt $\bf A^{-1}$ (lies: Inverse der Matrix $\bf A$). Für die Inverse $\bf A^{-1}$ einer quadratischen Matrix $\bf A$ ist neben $\bf A \cdot \bf A^{-1}$ stets auch $\bf A^{-1} \cdot \bf A$ erkärt und es gilt $\bf A \cdot \bf A^{-1} = \bf A^{-1} \cdot \bf A = \bf I$. vspace1,5cm

Verteilungsfunktion der Binomialverteilung

Es sei $X \sim B(n, p)$ eine mit Parametern n und p binomialverteilte Zufallsvariable. Deren Wahrscheinlichkeitsfunktion f(x) = P(X = x) ist durch

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 $x = 0, 1, \dots, n$

und die Verteilungsfunktion $F(x) = P(X \le x)$ durch

$$F(x) = \sum_{k=0}^{x} \binom{n}{k} p^k (1-p)^{n-k} \qquad x = 0, 1, \dots, n.$$

gegeben. Um das Verhalten von X vollständig zu charakterisieren, benötigt man nur eine der beiden obigen Funktionen; die andere lässt sich dann durch die andere ausdrücken.

In der nachstehenden Tabelle sind Werte F(x) der Verteilungsfunktion einer B(n,p)verteilten Zufallsvariablen X für $n=1,2,\ldots,8$ und $p=0,05,0,10,\ldots,0,50$ zusammengestellt. Man entnimmt der Tabelle z. B., dass F(x) im Falle n=7 und p=0,40für x=3 den Wert F(3)=0,7102 annimmt. Dieser Wert entspricht der Summe f(0), f(1), f(2), f(3) aller Werte der Wahrscheinlichkeitsfunktion bis zur Stelle x=3.
Will man also z. B. für n=7 und p=0,40 den Wert der Wahrscheinlichkeitsfunktion f(x) an der Stelle x=3 errechnen, so ergibt sich dieser als Differenz F(3)-F(2) der Werte der Verteilungsfunktion, also durch f(3)=0,7102-0,4199=0,2903.

n	х	p=0,05	p=0,10	p=0,15	p=0,20	p=0,25	p=0,30	p=0,35	p=0,40	p=0,45	p=0,50
1	0	0,9500	0,9000	0,8500	0,8000	0,7500	0,7000	0,6500	0,6000	0,5500	0,5000
1	1	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
2	0	0,9025	0,8100	0,7225	0,6400	0,5625	0,4900	0,4225	0,3600	0,3025	0,2500
2	1	0,9975	0,9900	0,9775	0,9600	0,9375	0,9100	0,8775	0,8400	0,7975	0,7500
2	2	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
3	0	0,8574	0,7290	0,6141	0,5120	0,4219	0,3430	0,2746	0,2160	0,1664	0,1250
3	1	0,9928	0,9720	0,9393	0,8960	0,8438	0,7840	0,7183	0,6480	0,5748	0,5000
3	2	0,9999	0,9990	0,9966	0,9920	0,9844	0,9730	0,9571	0,9360	0,9089	0,8750
3	3	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
4	0	0,8145	0,6561	0,5220	0,4096	0,3164	0,2401	0,1785	0,1296	0,0915	0,0625
4	1	0,9860	0,9477	0,8905	0,8192	0,7383	0,6517	0,5630	0,4752	0,3910	0,3125
4	2	0,9995	0,9963	0,9880	0,9728	0,9492	0,9163	0,8735	0,8208	0,7585	0,6875
4	3	1,0000	0,9999	0,9995	0,9984	0,9961	0,9919	0,9850	0,9744	0,9590	0,9375
4	4	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
5	0	0,7738	0,5905	0,4437	0,3277	0,2373	0,1681	0,1160	0,0778	0,0503	0,0313
5	1	0,9774	0,9185	0,8352	0,7373	0,6328	0,5282	0,4284	0,3370	0,2562	0,1875
5	2	0,9988	0,9914	0,9734	0,9421	0,8965	0,8369	0,7648	0,6826	0,5931	0,5000
5	3	1,0000	0,9995	0,9978	0,9933	0,9844	0,9692	0,9460	0,9130	0,8688	0,8125
5	4	1,0000	1,0000	0,9999	0,9997	0,9990	0,9976	0,9947	0,9898	0,9815	0,9688
5	5	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
6	0	0,7351	0,5314	0,3771	0,2621	0,1780	0,1176	0,0754	0,0467	0,0277	0,0156
6	1	0,9672	0,8857	0,7765	0,6554	0,5339	0,4202	0,3191	0,2333	0,1636	0,1094
6	2	0,9978	0,9842	0,9527	0,9011	0,8306	0,7443	0,6471	0,5443	0,4415	0,3438
6	3	0,9999	0,9987	0,9941	0,9830	0,9624	0,9295	0,8826	0,8208	0,7447	0,6563
6	4	1,0000	0,9999	0,9996	0,9984	0,9954	0,9891	0,9777	0,9590	0,9308	0,8906
6	5	1,0000	1,0000	1,0000	0,9999	0,9998	0,9993	0,9982	0,9959	0,9917	0,9844
6	6	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
7	0	0,6983	0,4783	0,3206	0,2097	0,1335	0,0824	0,0490	0,0280	0,0152	0,0078
7	1	0,9556	0,8503	0,7166	0,5767	0,4449	0,3294	0,2338	0,1586	0,1024	0,0625
7	2	0,9962	0,9743	0,9262	0,8520	0,7564	0,6471	0,5323	0,4199	0,3164	0,2266
7	3	0,9998	0,9973	0,9879	0,9667	0,9294	0,8740	0,8002	0,7102	0,6083	0,5000
7	4	1,0000	0,9998	0,9988	0,9953	0,9871	0,9712	0,9444	0,9037	0,8471	0,7734
7	5	1,0000	1,0000	0,9999	0,9996	0,9987	0,9962	0,9910	0,9812	0,9643	0,9375
7	6	1,0000	1,0000	1,0000	1,0000	0,9999	0,9998	0,9994	0,9984	0,9963	0,9922
7	7	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
8	0	0,6634	0,4305	0,2725	0,1678	0,1001	0,0576	0,0319	0,0168	0,0084	0,0039
8	1	0,9428	0,8131	0,6572	0,5033	0,3671	0,2553	0,1691	0,1064	0,0632	0,0352
8	2	0,9942	0,9619	0,8948	0,7969	0,6785	0,5518	0,4278	0,3154	0,2201	0,1445
8	3	0,9996	0,9950	0,9786	0,9437	0,8862	0,8059	0,7064	0,5941	0,4770	0,3633
8	4	1,0000	0,9996 1,0000	0,9971 0,9998	0,9896	0,9727 $0,9958$	0,9420 $0,9887$	0,8939 $0,9747$	0,8263 $0,9502$	0,7396 $0,9115$	0,6367 $0,8555$
8	5 6	1,0000	1,0000	1,0000	0,9988	0,9958	0,9887	0,9747	0,9502	0,9115	0,8555
8	7	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9998	0,9913	0,9819	0,9948
8	8	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
		1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Verteilungsfunktion F(x) der Binomialverteilung (n=1 bis n=8)

Verteilungsfunktion und Quantile der Standardnormalverteilung

Ist X eine mit Erwartungswert μ und Varianz σ^2 normalverteilte Zufallsvariable, also $X \sim N(\mu, \sigma^2)$, so lässt sie sich anhand ihrer Dichtefunktion

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

oder anhand ihrer Verteilungsfunktion $F(x) = P(X \le x)$ charakterisieren, wobei die erste Ableitung F'(x) der Verteilungsfunktion und die Dichtefunktion f(x) über die Beziehung F'(x) = f(x) verknüpft sind.

Man kann jede normalverteilte Zufallsvariable X über die Transformation $Z:=\frac{X-\mu}{\sigma}$ in die **Standardnormalverteilung** überführen (Normalverteilung mit Erwartungswert 0 und Varianz 1). Daher genügt es, Werte der Verteilungsfunktion der Standardnormalverteilung zu tabellieren. Für diese Funktion hat sich die Bezeichnung $\Phi(z)$ etabliert und für die Dichtefunktion $\Phi'(z)$ der Standardnormalverteilung die Bezeichnung $\phi(z)$. Zwischen der Verteilungsfunktion F(x) einer $N(\mu, \sigma^2)$ -verteilten Zufallsvariablen und der Verteilungsfunktion $\Phi(z)$ der standardisierten Variablen Z besteht die Beziehung

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \Phi(z).$$

In der nebenstehenden Tabelle (obere Tabelle) sind für den Bereich von z=0,00 bis z=3,99 Werte der Verteilungsfunktion $\Phi(z)$ auf vier Dezimalstellen genau wiedergegeben. Dabei ist die letzte Dezimalstelle der Werte z im Tabellenkopf ausgewiesen. Aufgrund der Symmetriebeziehung

$$\Phi(z) = 1 - \Phi(-z)$$

reicht es Werte $\Phi(z)$ für nicht-negative z zu tabellieren. Für z=-1,65 gilt z. B. $\Phi(-1,65)=1-\Phi(1,65)=0,0495$.

Ein **p-Quantil** z_p der Standardnormalverteilung ist durch $\Phi(z_p) = p$ (0 < p < 1) definiert und markiert den Punkt auf der z-Achse, bis zu dem die Fläche unter der Dichte gerade p ist. Die nebenstehende Tabelle (unten) weist einige ausgewählte p-Quantile aus. Dabei ist $p \geq 0, 5$. Quantile für p < 0, 5 erhält man über die Beziehung $z_p = -z_{1-p}$, die sich aus der Symmetrie von Dichte- und Verteilungsfunktion bezüglich z = 0 ergibt. Mit $z_{0,95} = 1,6449$ gilt also z. B. $z_{0,05} = -1,6449$.

z	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,1	0,0001	0,0001	0,0020	0,0001	0,0100	0,0100	0,0112	0,0000	0,0011	0,0010
$\parallel_{0,5}$	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8079	0,8106	0,8133
$\begin{vmatrix} 0,9 \end{vmatrix}$	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
","	0,0200	0,0200	0,0===	0,0200	0,0-0-	0,0_00	0,00-0	0,000	0,000	0,000
\parallel 1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
\parallel 1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
'	,	,	,	,	,	,	,	,	,	,
\parallel 1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
	,	,	,	,	,	,	,	,	,	,
\parallel 2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
$\parallel 2,1$	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
\parallel 2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
\parallel 2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
$\parallel 2,4$	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
$\parallel 2,5$	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
$\parallel 2,6$	0,9953	0,9956	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
\parallel 3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
\parallel 3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Werte der Verteilungsfunktion $\Phi(z)$ der Standardnormalverteilung

$\parallel p$	0,500	0,600	0,700	0,800	0,900	0,950	0,975	0,990	0,995	0,999
$ z_p $	0,0000	$0,\!2533$	$0,\!5244$	0,8416	1,2816	1,6449	1,9600	2,3263	2,5758	3,0902

Quantile z_p der Standardnormalverteilung

Quantile der χ^2 -Verteilung

In der folgenden Tabelle sind Quantile $\chi^2_{\nu;p}$ der χ^2 -Verteilung mit ν Freiheitsgraden für $\nu=1$ bis $\nu=40$ und ausgewählte Werte p zusammengestellt. Man entnimmt der Tabelle z. B., dass das 0,95-Quantil der χ^2 -Verteilung mit $\nu=8$ Freiheitsgraden den Wert $\chi^2_{8;0,95}=15,507$ besitzt.

ν	p = 0.005	p = 0.01	p = 0.025	p = 0.05	p = 0,1	p = 0.9	p = 0.95	p = 0.975	p = 0.99	p = 0.995
1	-			0,004	0,016	2,706	3,841	5,024	6,635	7,879
2	0,010	0,020	0,051	0,103	0,211	4,605	5,991	7,378	9,210	10,597
3	0,072	0,115	0,216	0,352	0,584	6,251	7,815	9,348	11,345	12,838
4	0,207	0,297	0,484	0,711	1,064	7,779	9,488	11,143	13,277	14,860
5	0,412	$0,\!554$	0,831	1,145	1,610	9,236	11,070	12,832	15,086	16,750
6	0,676	0,872	1,237	1,635	2,204	10,645	12,592	14,449	16,812	18,548
7	0,989	1,239	1,690	2,167	2,833	12,017	14,067	16,013	18,475	20,278
8	1,344	1,647	2,180	2,733	3,490	13,362	15,507	17,535	20,090	21,955
9	1,152	1,735	2,088	2,700	3,325	4,168	16,919	19,023	21,666	23,589
10	2,156	2,558	$3,\!247$	3,940	4,865	15,987	18,307	20,483	23,209	25,188
11	2,603	3,053	3,816	4,575	5,578	17,275	19,675	21,920	24,725	26,757
12	3,074	3,571	4,404	5,226	6,304	18,549	21,026	23,337	26,217	28,300
13	3,565	4,107	5,009	5,892	7,041	19,812	22,362	24,736	27,688	29,819
14	4,075	4,660	5,629	$6,\!571$	7,790	21,064	23,685	26,119	29,141	31,319
15	4,601	$5,\!229$	6,262	$7,\!261$	8,547	22,307	24,996	$27,\!488$	$30,\!578$	32,801
16	5,142	5,812	6,908	7,962	9,312	$23,\!542$	$26,\!296$	$28,\!845$	32,000	34,267
17	5,697	6,408	$7,\!564$	8,672	10,085	24,769	$27,\!587$	30,191	33,409	35,718
18	6,265	7,015	8,231	9,390	10,865	25,989	$28,\!869$	$31,\!526$	$34,\!805$	37,156
19	6,844	7,633	8,907	10,117	11,651	27,204	30,144	$32,\!852$	36,191	38,582
20	7,434	8,260	$9,\!591$	10,851	$12,\!443$	28,412	31,410	$34,\!170$	$37,\!566$	39,997
21	8,034	8,897	$10,\!283$	$11,\!591$	13,240	29,615	$32,\!671$	$35,\!479$	38,932	41,401
22	8,643	9,542	10,982	$12,\!338$	14,041	30,813	33,924	36,781	40,289	42,796
23	9,260	10,196	$11,\!689$	13,091	14,848	32,007	$35,\!172$	38,076	41,638	44,181
24	9,886	10,856	$12,\!401$	13,848	$15,\!659$	33,196	$36,\!415$	39,364	42,980	$45,\!558$
25	10,520	$11,\!524$	13,120	14,611	16,473	34,382	37,652	40,646	44,314	46,928
26	11,160	$12,\!198$	13,844	$15,\!379$	17,292	35,563	$38,\!885$	41,923	45,642	48,290
27	11,808	$12,\!878$	14,573	$16,\!151$	18,114	36,741	40,113	43,195	46,963	49,645
28	12,461	$13,\!565$	15,308	16,928	18,939	37,916	$41,\!337$	44,461	$48,\!278$	50,994
29	13,121	$14,\!256$	16,047	17,708	19,768	39,087	$42,\!557$	45,722	$49,\!588$	$52,\!335$
30	13,787	14,953	16,791	18,493	20,599	40,256	43,773	46,979	$50,\!892$	53,672
31	14,458	$15,\!655$	17,539	19,281	$21,\!434$	41,422	44,985	48,232	52,191	55,002
32	15,134	16,362	18,291	20,072	$22,\!271$	42,585	46,194	$49,\!480$	$53,\!486$	56,328
33	15,815	17,073	19,047	20,867	23,110	43,745	47,400	50,725	54,775	57,648
34	16,501	17,789	19,806	21,664	23,952	44,903	48,602	51,966	56,061	58,964
35	17,192	18,509	20,569	22,465	24,797	46,059	49,802	53,203	57,342	60,275
36	17,887	19,233	21,336	23,269	25,643	47,212	50,998	54,437	58,619	61,581
37	18,586	19,960	22,106	24,075	26,492	48,363	52,192	55,668	59,893	62,883
38	19,289	20,691	22,878	24,884	27,343	49,513	53,384	56,895	61,162	64,181
39	19,996	21,426	23,654	25,695	28,196	50,660	54,572	58,120	62,428	65,475
40	20,707	22,164	24,433	26,509	29,051	51,805	55,758	59,342	63,691	66,766

Quantile der Chi-Quadrat-Verteilung

Quantile der t-Verteilung

Bezeichnet ν die Anzahl der Freiheitsgrade der t-Verteilung, so ist die Teststatistik $T = \frac{(\overline{X} - \mu_0)}{S^*} \cdot \sqrt{n}$ des t-Tests für den Erwartungwert eines normalverteilten Merkmals t-verteilt mit $\nu = n-1$ Freiheitsgraden (n>1). Nachstehend sind **Quantile** $t_{\nu;p}$ der t-Verteilung mit $\nu = n-1$ Freiheitsgraden für $\nu = 1$ bis $\nu = 40$ und ausgewählte Werte p zusammengestellt. Aus der Tabelle geht z. B. hervor, dass das 0,975-Quantil der t-Verteilung mit $\nu = 8$ Freiheitsgraden den Wert $t_{8;0,975} = 2,306$ besitzt. Quantile der t-Verteilung lassen sich bei größeren Werten ν gut durch die entsprechenden Quantile z_p der Standardnormalverteilung approximieren.

ν	0,800	0,850	0,900	0,950	0,975	0,990	0,995
1	1,376	1,963	3,078	6,314	12,706	31,821	63,657
2	1,061	1,386	1,886	2,920	4,303	6,965	9,925
3	0,979	1,250	1,638	2,353	3,182	4,541	5,841
4	0,941	1,190	1,533	2,132	2,776	3,747	4,604
5	0,920	1,156	1,476	2,015	2,571	3,365	4,032
6	0,906	1,134	1,440	1,943	2,447	3,143	3,707
7	0,896	1,119	1,415	1,895	2,365	2,998	3,499
8	0,889	1,108	1,397	1,860	2,306	2,896	3,355
9	0,883	1,100	1,383	1,833	2,262	2,821	3,250
10	0,879	1,093	1,372	1,812	2,228	2,764	3,169
11	0,876	1,088	1,363	1,796	2,201	2,718	3,106
12	0,873	1,083	1,356	1,782	2,179	2,681	3,055
13	0,870	1,080	1,350	1,771	2,160	2,650	3,012
14	0,868	1,076	1,345	1,761	2,145	2,624	2,977
15	0,866	1,074	1,341	1,753	2,131	2,602	2,947
16	0,865	1,071	1,337	1,746	2,120	2,583	2,921
17	0,863	1,069	1,333	1,740	2,110	2,567	2,898
18	0,862	1,067	1,330	1,734	2,101	$2,\!552$	2,878
19	0,861	1,066	1,328	1,729	2,093	2,539	2,861
20	0,860	1,064	1,325	1,725	2,086	2,528	2,845
21	0,859	1,063	1,323	1,721	2,080	2,518	2,831
22	0,858	1,061	1,321	1,717	2,074	2,508	2,819
23	0,858	1,060	1,319	1,714	2,069	2,500	2,807
24	0,857	1,059	1,318	1,711	2,064	2,492	2,797
25	0,856	1,058	1,316	1,708	2,060	2,485	2,787
26	0,856	1,058	1,315	1,706	2,056	2,479	2,779
27	0,855	1,057	1,314	1,703	2,052	2,473	2,771
28	0,855	1,056	1,313	1,701	2,048	2,467	2,763
29	0,854	1,055	1,311	1,699	2,045	2,462	2,756
30	0,854	1,055	1,310	1,697	2,042	2,457	2,750
31	0,853	1,054	1,310	1,696	2,040	2,4528	2,744
32	0,853	1,054	1,309	1,694	2,074	2,4587	2,739
33	0,853	1,053	1,308	1,692	2,069	2,4448	2,733
34	0,852	1,053	1,307	1,691	2,064	2,4411	2,728
35	0,852	1,052	1,306	1,690	2,060	2,4477	2,724
36	0,852	1,052	1,306	1,688	2,056	2,4345	2,720
37	0,851	1,051	1,305	1,687	2,052	2,4314	2,715
38	0,851	1,051	1,304	1,686	2,048	2,4386	2,712
39	0,851	1,050	1,304	1,685	2,045	2,4258	2,708
40	0,851	1,050	1,303	1,684	2,021	2,4233	2,705

Quantile der t-Verteilung

Quantile der F-Verteilung

Die folgende Tabelle weist **Quantile** $F_{m;n;p}$ einer F-Verteilung mit m und n Freiheitsgraden für p=0,95 aus. Die Freiheitsgrade für m liegen im Bereich von 1 bis 10, die von n im Bereich von 1 bis 100. Der Tabelle entnimmt man z. B., dass für das 0,95-Quantil der F-Verteilung mit m=5 und n=10 Freiheitsgraden $F_{5;10;0,95}=3,33$ gilt.

	m									
n	1	2	3	4	5	6	7	8	9	10
1	161	199	216	225	230	234	237	239	241	242
2	18,5	19,0	19,2	19,2	19,3	19,3	19,4	19,4	19,4	19,4
3	10,14	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	$2,\!85$
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	$2,\!54$
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	$2,\!45$
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	$2,\!35$
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	$2,\!32$
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	$2,\!27$
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	$2,\!25$
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	$2,\!24$
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	$2,\!22$
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08
50	4,03	3,18	2,79	2,56	2,40	2,29	2,20	2,13	2,07	2,03
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99
70	3,98	3,13	2,74	2,50	2,35	2,23	2,14	2,07	2,02	1,97
80	3,96	3,11	2,72	2,49	2,33	2,21	2,13	2,06	2,00	1,95
90	3,95	3,10	2,71	2,47	2,32	2,20	2,11	2,04	1,99	1,94
100	3,94	3,09	2,70	2,46	2,31	2,19	2,10	2,03	1,97	1,93

Quantile der F-Verteilung (p = 0, 95, m = 1 bis m = 10)

Konzeptpapier (keine Bewertung), Blatt 1

Blatt 2

Blatt 3

Blatt 4

Bei weiterem Bedarf an Konzeptpapier wenden Sie sich bitte an die Klausuraufsicht.