

Supervised

Supervised

Supervised

Supervised

Supervised

Supervised

Supervised

CNN

Supervised

Types of neurons linear neumns Liens At autout layer of regression $h = b + \sum_{i} w_i x_i$ rectified linear neurons (Relu): $z = b + \sum_{i} W_{i} \chi_{i}$ (a "threshold") h = max(20) sigmoid (logistic) neurous have nice $> 2 = b + \ge w_i x_i$ id 常用在 hidden $h = \sigma(2) = \frac{e^2}{1+e^2} = \frac{1}{1+e^{-2}}$ by ess, 增加 非线性 tanh neurous (Similar to σ , $z = b + \sum W_i \lambda_i$ but larger derivative) $h = \tanh(z) = \frac{e^2 - e^{-2}}{e^2 + e^{-2}}$

* o(z)= z+ztanh(=). 目而tach neuron #fiif o neuron
(by shifting & scaling)

in the participal layer
$$z_j = b_j + \sum_i \chi_i w_i^{(i)}$$
 of dassification;

ex of multilayer NN

train NN

repeat till conv:

Vol backword propagation, EPIRA chain rule # grad $\theta \leftarrow \theta - \alpha \nabla_{\theta} L$ (6D, can be stochastic & batch)

we denote $\frac{\int X \in \mathbb{R}^{D}}{\int E \mathbb{R}^{N}}$ as autput of a layer parameter By chain rule, $\frac{\partial L}{\partial \theta_k} = \frac{\partial L}{\partial \theta_k} \frac{\partial L}{\partial \theta_k}$ 可以通过 recursion 得到结果, specially, $\frac{\partial L}{\partial \hat{y}_{i}}$ can be computed directly though the formula of $L(y,\hat{y})$, this chain the ω R. III to R. B. R.

where $\frac{\partial h}{\partial \theta}$ is the Jacobian matrix ($\frac{\partial h}{\partial \theta}$ derivative, if $\frac{\partial h}{\partial \theta}$)

where
$$\frac{\partial L}{\partial \theta}$$
 is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial \theta}$ is the Jacobian matrix (if derivative, 1) = $\frac{\partial L}{\partial$

IFAMÉS,
$$\frac{\partial L}{\partial \theta}(\alpha) \in \mathbb{R}^{N}$$
 is derivative: $\left(\frac{\partial L}{\partial \theta_{i}}(\alpha), \dots, \frac{\partial L}{\partial \theta_{m}}(\alpha)\right)$
 $\nabla_{\theta}L(\alpha) \in \mathbb{R}^{M}$ is gradient: $\left(\frac{\partial L}{\partial \theta_{i}}(\alpha), \dots, \frac{\partial L}{\partial \theta_{m}}(\alpha)\right)$
 $\frac{\partial L}{\partial \theta_{i}}(\alpha)$
 $\frac{\partial L}{\partial \theta_{i}}(\alpha)$

Jacobian $J_{\theta}(\alpha) := \frac{\partial h}{\partial \theta}(\alpha) \in \mathbb{R}^{N \times M}$ with derivative $Dh(\alpha) = J_{\theta}(\alpha)$ if Dh exists at α

 $\frac{\partial L}{\partial \theta}(\alpha) = \frac{\partial L}{\partial h}(h(\alpha)) \frac{\partial h}{\partial \theta}(\alpha)$ (chain rule)

$$\frac{\partial F(\alpha)}{\partial F} = \frac{\partial F}{\partial F}$$

gradient derivative 更知 gnss 的是,对于RM->RM的现象。 数对里有时会用 Voh 来获 Jacobian.

即对于RM-> R的函数, 是知 Vol都表示 gradient 对于RM-> RM函数, 是知 Vol都表示 derivative/

ex 3-layers NN (i.e. 1 hidden layer)

input:
$$x \in \mathbb{R}^3$$

output: $\hat{y} \in \mathbb{R}$

loss: $L(y; \hat{y}) = (\hat{y}-y)^2$

$$\lambda_j = f(\sum_i W_j i \lambda_i + b_j)$$

bi

$$\lambda_j = f(\sum_i W_j i \lambda_i + b_j)$$

bi

$$\lambda_j = f(\sum_i W_j i \lambda_i + b_j)$$

bi

$$\lambda_j = f(\sum_i W_j i \lambda_i + b_j)$$

Sol
$$\frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial \theta_{i}} = \frac{\partial \hat{y}}{\partial \theta_{i}} \frac{\partial L}{\partial \hat{y}} = \frac{\partial \hat{y}}{\partial \theta_{i}} \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial h_{i}} = \frac{\partial \hat{y}}{\partial h_{i}} \frac{\partial L}{\partial \hat{y}} = \frac{\partial \hat{y}}{\partial \theta_{i}} \frac{\partial L}{\partial h_{i}} = \frac{\partial \hat{y}}{\partial h_{i}} \frac{\partial L}{\partial h_{i}}$$

$$= \chi_{i} f'(...) \theta_{i} \frac{\partial L}{\partial \hat{y}}$$

Here each sample
$$\chi$$
,..., χ

$$D \in \mathbb{R}^{N}, C \in \mathbb{R}$$

output: $\hat{y} \in \mathbb{R}^{N}$

Sol we have $H = f(\chi w^{T} + b)$ (f element value)
$$\hat{y} = H\theta + C$$

$$L = (\hat{y} - y)^{T}(\hat{y} - y)$$

$$\nabla_{\theta} L = 2(\hat{y} - y) \in \mathbb{R}^{N}$$

$$\nabla_{\theta} L = (\frac{\partial \hat{y}}{\partial y})^{T}\nabla_{\theta} L = H^{T}\nabla_{\theta} L = 2H^{T}(\hat{y} - y)$$

$$S = H^{T} \text{ since } \partial_{\theta} \hat{y} = H$$

$$\nabla_{\theta} L = \sum_{i=0}^{N} \frac{\partial L}{\partial i} = 1_{N}\nabla_{\theta} L = 2 \cdot 1_{N}(\hat{y} - y)$$

$$Since \frac{\partial L}{\partial H_{ij}} = \theta_{i} \frac{\partial L}{\partial y}(i) \implies \nabla_{H} L = \begin{bmatrix} \theta_{i} \frac{\partial L}{\partial y} ... \theta_{M} \frac{\partial L}{\partial y} \\ \frac{\partial L}{\partial y} = 2(\hat{y} - y) \cdot \theta^{T} \end{bmatrix}$$

$$= \frac{\partial L}{\partial y} \theta^{T} = 2(\hat{y} - y) \cdot \theta^{T}$$
...

input : XERNXE (N sample, each of dim d)

WERMXE (for each dim, get M neights

for h1,..., hm)

hidden: $H \in \mathbb{R}^{l \times M}$ (M hidden nearons for each sample $\chi^{(l)}, \chi^{(l)}$)

vectorization form: y, ŷ ∈ RN