

RC

Respuesta temporal

Introducción a la Ingeniería Electrónica (86.02)

Repaso

$$C = \frac{Q}{V_c}$$

$$[F] = \frac{[C]}{[V]}$$

$$i(t) = C \frac{dv_c(t)}{dt}$$

Relación entre tensión y corriente en un Capacitor

Respuesta transitoria

Habíamos dejado planteado el siguiente circuito:

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

Preguntas...

¿Qué forma de onda está excitando al circuito?

¿Cuál será la solución de la ecuación diferencial?

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

¿Qué forma de onda está excitando al circuito?

Respuesta transitoria

¿Por qué usamos una fuente con un interruptor para excitar el circuito?

Respuesta transitoria

¿Por qué usamos una fuente con un interruptor para excitar el circuito?

Nos interesa estudiar la respuesta transitoria del circuito RC.

Respuesta transitoria

Para analizar fenómenos transitorios, es muy común utilizar una entrada del tipo función **ESCALÓN**.

Función **ESCALÓN** genérica

$$v(t) = \begin{cases} V_1 & t < 0 \\ V_2 & t \ge 0 \end{cases}$$

¿Cuál será la solución de la ecuación diferencial?

Respuesta transitoria

Primero analicemos el comportamiento cualitativamente

¿Cuánto vale la tensión en el capacitor antes de t=0?

Respuesta transitoria

¿Cuánto vale la tensión en el capacitor antes de t=0?

Respuesta transitoria

Respuesta transitoria

¿Cuánto vale la tensión en el capacitor mucho tiempo después de t=0?

Respuesta transitoria

¿Cuánto vale la tensión en el capacitor mucho tiempo después de t=0?

Respuesta transitoria

Respuesta transitoria

¿Cuánto vale la tensión en el capacitor durante la transición?

Veamos la solución de la ecuación diferencial ...

Respuesta transitoria

Solución de la ecuación diferencial para un escalón de entrada

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

Respuesta transitoria

Solución de la ecuación diferencial para un escalón de entrada

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

$$v_C(t) = V_f + (V_i - V_f)e^{-t/RC}$$

$$V_i = v_C(0) V_f = v_C(\infty)$$

Condición inicial

Respuesta transitoria

Solución de la ecuación diferencial para un escalón de entrada

$$v_C(t) = V_f + (V_i - V_f)e^{-t/RC}$$

Volvamos al ejemplo...

Respuesta transitoria

¿Cuánto vale la tensión en el capacitor durante la transición?

Respuesta transitoria

Primero analicemos el comportamiento cualitativamente

¿Cuánto vale la tensión en t=0? (condición inicial)

 V_i

Respuesta transitoria

Primero analicemos el comportamiento cualitativamente

¿Cuánto vale la tensión en t=0? (condición inicial)

$$V_i = 0 V$$

Respuesta transitoria

Primero analicemos el comportamiento cualitativamente

¿Cuánto vale la tensión en t=infinito? (condición final) V_f

Respuesta transitoria

¿Cuánto vale la tensión en
$$t$$
=infinito? (condición final) $V_f = V_0$

Respuesta transitoria

$$0 \lor t = 0$$

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right) \quad t \ge 0$$

Respuesta transitoria

¿Cuánto vale la corriente i(t)?

Respuesta transitoria

¿Cuánto vale la corriente i(t)?

Sabemos que:

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right)$$

Respuesta transitoria

¿Cuánto vale la corriente i(t)?

Sabemos que:

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right)$$

$$i(t) = C \frac{dv_C(t)}{dt}$$

Respuesta transitoria

¿Cuánto vale la corriente i(t)?

Corriente sobre el capacitor en función del tiempo

Sabemos que:

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right)$$

$$i(t) = C \frac{dv_C(t)}{dt}$$

$$i(t) = \frac{V_0}{R}e^{-t/RC}$$

Respuesta transitoria

¿Cuánto vale la corriente i(t)?

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right)$$

$$i(t) = \frac{V_0}{R}e^{-t/RC}$$

Constante de tiempo

Constante de tiempo

¿Cómo caracterizar el tiempo de respuesta a un escalón?

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right)$$

- La constante RC tiene un nombre especial: "constante de tiempo".
- Tiene unidades de segundos [s].
- Se suele representar con la letra griega τ (tau).

Constante de tiempo

¿Cómo caracterizar el tiempo de respuesta a un escalón?

$$v_C(t) = V_0 \left(1 - e^{-t/RC} \right)$$

- La constante RC tiene un nombre especial: "constante de tiempo".
- Tiene unidades de segundos [s].
- Se suele representar con la letra griega τ (tau).

$$\tau = RC$$

Constante de tiempo

¿Cómo caracterizar el tiempo de respuesta a un escalón?

$$v_C(t) = V_0 \left(1 - e^{-t/\tau} \right)$$

- La constante RC tiene un nombre especial: "constante de tiempo".
- Tiene unidades de segundos [s].
- Se suele representar con la letra griega τ (tau).

$$\tau = RC$$

Constante de tiempo

¿Cuánto vale la tensión en t=\(tau^2\)?

Constante de tiempo

¿Cuánto vale la tensión en t=r?

$$v_C(\tau) = V_0(1 - e^{-\tau/\tau}) = V_0(1 - e^{-1}) \simeq 0,63 V_0$$

Constante de tiempo

¿Cuánto vale la tensión en $t=\tau$?

$$v_C(\tau) = V_0(1 - e^{-\tau/\tau}) = V_0(1 - e^{-1}) \simeq 0,63 V_0$$

Constante de tiempo

¿Cuánto vale la tensión en t=\(tau^2\)?

$$v_C(\tau) = V_0(1 - e^{-\tau/\tau}) = V_0(1 - e^{-1}) \simeq 0,63 V_0$$

Tiempo de crecimiento

Tiempo de crecimiento

$$t_r = t_2 - t_1$$

Se define el **tiempo de crecimiento** (rise time) como el intervalo de tiempo que tarda la tensión en pasar del 10% al 90% del máximo valor.

$$t_r = \ln(9)RC \simeq 2, 2RC$$

$$t_r \simeq 2, 2\tau$$

Videos

Capacitor

Experimento

Experimento 2

Circuito:

- 1. Se carga el capacitor (se cierra la llave)
- 2. Se abre la llave y se observa la descarga
- 3. Se vuelve a repetir 1 y 2.

https://youtu.be/YN5o7mNd79c

Capacitor

Experimento

Experimento 3

Circuito:

- 1. Se carga el capacitor (se cierra la llave)
- Se descarga el capacitor (se abre la llave) mientras se mide la tensión en el resistor

https://youtu.be/rseZStMPG9o

Capacitores equivalentes

$$C_{\rm eq} = C_1 + C_2 + \dots + C_n$$

$$C_1$$
 C_2 C_n

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

Kahoot!