

Analiza matematyczna

Stanisław Jaworski

Katedra Ekonometrii i Statystyki Zakład Statystyki definicja, przykłady

Definicja (ciąg)

Ciąg (a_n) jest odwzorowaniem $\mathbb{N} \ni n \longrightarrow a_n$, gdzie \mathbb{N} oznacza zbiór liczb naturalnych. Liczby a_1, a_2, \ldots nazywamy wyrazami tego ciągu.

Przykłady

$$ightharpoonup (n)$$
, $(3n+1)$, $\left(3\left(-\frac{1}{2}\right)^{n-1}\right)$, $((-1)^n+1)$ /nawiasy mogą być mylące/

$$\bullet$$
 $a_n = n$, $a_n = 3n + 1$, $a_n = 3\left(-\frac{1}{2}\right)^{n-1}$, $a_n = (-1)^n + 1$

- ▶ postęp arytmetyczny: $a_n = a + nq$, dla $a, q \in \mathbb{R}, \ n \in \mathbb{N}$
- ▶ postęp geometryczny: $a_n = aq^{n-1}$, dla $a \in \mathbb{R}, q \in \mathbb{R}^+, n \in \mathbb{N}$

Definicja (ciąg (a_n) ma granicę $g \in \mathbb{R}$)

$$\lim_{n\to\infty}a_n=g\Leftrightarrow \bigwedge_{\varepsilon>0}\bigvee_{N}\bigwedge_{n>N}\left|a_n-g\right|<\varepsilon$$

oznaczenia:
$$\lim_{n\to\infty} a_n = g$$
, $a_n \xrightarrow[n\to\infty]{} g$, $\lim a_n = g$, $a_n \to g$

Przykłady: ciągi zbieżne do zera

$$ightharpoonup \lim \frac{(-1)^{n+1}}{n} = 0, \quad \lim \frac{1}{n} \sin n = 0$$

Pokażemy z definicji, że $\lim_{n\to\infty} \frac{1}{n} = 0$.

Niech ε bedzie dowolną liczbą rzeczywistą dodatnią. Zachodzi $|1/n-0|<\varepsilon\iff n>1/\varepsilon$. Zatem możemy przyjąć $N=[1/\varepsilon]$ –część całkowita liczby $1/\varepsilon$. Uwaga: Możemy przyjąć $N=1/\varepsilon$, jeżeli nie zależy nam, aby N było liczbą całkowitą.

Pokażemy z definicji, że $\lim_{n\to\infty} \frac{1}{n} \sin n = 0$.

Niech ε bedzie dowolną liczbą rzeczywistą dodatnią. Zauważmy, że $|\frac{1}{n}\sin n|=\frac{1}{n}|\sin n|\leq \frac{1}{n}$ dla $n\in\mathbb{N}$. Zatem $|\frac{1}{n}\sin n-0|<\varepsilon \Leftarrow n>1/\varepsilon$ Stąd możemy przyjąć $N=[1/\varepsilon]$ jak w poprzednim dowodzie.

Przykład ciągu zbieżnego do $\frac{1}{3}$ $a_n = \frac{n^2 - n + 2}{2n^2 + 2n + 4}$

Pokażemy, że lim $a_n = \frac{1}{3}$.

Niech ε będzie dowolną liczbą rzeczywistą dodatnią. Zauważamy, że zachodzą następujące nierówności

$$|a_n - \frac{1}{3}| = \frac{5n - 10}{3(3n^2 + 2n - 5)} < \frac{5n}{3(3n^2 - 4)} < \frac{5n}{3 \cdot 2n^2} < \frac{1}{n}$$

Zatem $|a_n - \frac{1}{3}|$ jest mniejsze od ε , jeżeli $n > [1/\varepsilon]$

Twierdzenie

Jeżeli
$$\gamma > 1$$
, to $\gamma^n > 1 + n(\gamma - 1)$

Dowód.

Przyjmując $\gamma=1+\lambda$, gdzie $\lambda>0$, na podstawie wzoru na dwumian Newtona mamy

$$(1+\lambda)^n=1+n\lambda+\ldots$$

gdzie niezapisane wyrazy są dodatnie. Zatem $(1+\lambda)^n>1+n\lambda$. Podstawiając $\lambda=\gamma-1$ otrzymujemy dowód twierdzenia.

Wniosek: Przyjmując $\gamma = \alpha^{1/n}$, przy $\alpha > 1$ otrzymujemy nierówność

$$\alpha^{1/n}-1<\frac{\alpha-1}{n}$$
.

Nierówność tę wykorzystamy do udowodnienia następującego faktu:

Fakt

$$\lim_{n \to \infty} a^{1/n} = 1 \ dla \ a > 1$$

Dowód.

$$|a^{1/n} - 1| = a^{1/n} - 1 < \frac{a-1}{2} < \varepsilon$$
, o ile $n > N = \left[\frac{a-1}{2}\right]$

Twierdzenie

- ► Ciąg zbieżny jest ograniczony.

Twierdzenie

Zakładamy, że (a_n) oraz (b_n) są ciągami zbieżnymi

$$\blacktriangleright \lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

Przykład

$$\lim_{n \to \infty} \frac{n^2 - 3n^3}{n^3 + 1} = \lim_{n \to \infty} \frac{n^3 \left(\frac{1}{n} - 3\right)}{n^3 \left(1 + \frac{1}{n^3}\right)} = \frac{\lim_{n \to \infty} \left(\frac{1}{n} - 3\right)}{\lim_{n \to \infty} \left(1 + \frac{1}{n^3}\right)} = \frac{\lim_{n \to \infty} \frac{1}{n} - \lim_{n \to \infty} 3}{\lim_{n \to \infty} 1 + \left(\lim_{n \to \infty} \frac{1}{n}\right)^3} = \frac{-3}{1} = -3$$

Przykład: dlaczego ciągi muszą być zbieżne

Ciągi z tabeli spełniają: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \infty$

Definicja.
$$\lim_{n\to\infty} a_n = \infty \iff \bigwedge_{M} \bigvee_{n>N} \bigwedge_{n>N} a_n > M$$

$$\begin{array}{c|ccccc} a_n & n & n+5 & 2n & n+(-1)^n \\ \hline b_n & 2n & n & n & n \\ \hline \lim_{n\to\infty} (a_n-b_n) & -\infty & 5 & \infty & \text{nie istnieje} \end{array}$$

Przykład: dlaczego ciągi muszą być zbieżne

Ciągi z tabeli spełniają: $\lim_{n \to \infty} a_n = 1, \ \lim_{n \to \infty} b_n = \infty$

an	$\sqrt[n]{1/n}$	√ ⁿ /5	$\sqrt[n]{n}$	$\sqrt[n]{3 + (-1)^n}$
b_n	n	n	n	n
$\lim_{n\to\infty}(a_n)^{b_n}$	0	5	∞	nie istnieje

Przykład: o nieokreśloności 00

Ciągi z tabeli spełniają: $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$

a _n	$\frac{1}{n^n}$	0.5 ⁿ	$\frac{1}{n}$	$\frac{1}{5^n}$	$\frac{1}{n^n}$	$\frac{1}{[3+(-1)^n]^n}$
b _n	1 n	$\frac{1}{n}$	$\frac{1}{n}$	$-\frac{1}{n}$	$-\frac{1}{n}$	$-\frac{1}{n}$
$\lim_{n\to\infty}(a_n)^{b_n}$	0	0.5	1	5	∞	nie istnieje

Twierdzenie (o trzech ciągach)

Niech ciągi (a_n) , (b_n) oraz (c_n) spełniają:

$$\bigvee \bigwedge_{n \in \mathbb{N}} a_n \leq b_n \leq c_n$$

Wtedy
$$\lim_{n\to\infty} b_n = b$$

Przykład

$$7 = \sqrt[n]{7^n} < \sqrt[n]{3^n + 5^n + 7^n} < \sqrt[n]{3 \cdot 7^n} = 7\sqrt[n]{3}$$

$$\mathsf{Stad} \lim_{n \to \infty} 7 = 7 \leq \lim_{n \to \infty} \sqrt[n]{3^n + 5^n + 7^n} \leq 7 \lim_{n \to \infty} \sqrt[n]{3} = 7 \cdot 1$$

Zatem
$$\lim_{n\to\infty} \sqrt[n]{3^n+5^n+7^n}=7$$

Twierdzenie

Jeżeli ciąg (a_n) jest rosnący i ograniczony z góry dla $n \ge N$, to jest zbieżny do granicy $g = \sup\{a_n : n \ge N\}$

Przykład

Liczbę e definiujemy następująco: $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. Ta definicja ma sens tylko wtedy, gdy granica ta istnieje. W tym celu pokażemy, że ciąg $a_n = (1 + \frac{1}{n})^n$ jest rosnący i ograniczony.

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} \frac{1}{n^{k}} = 1 + n \frac{1}{n} + \frac{n(n-1)}{1 \cdot 2} \cdot \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \cdot \frac{1}{n^{3}} + \dots + \frac{n(n-1)\dots(n-k+1)}{1 \cdot 2 \cdot \dots \cdot k} \cdot \frac{1}{n^{k}} + \dots + \frac{n(n-1)\dots(n-n+1)}{1 \cdot 2 \cdot \dots \cdot n} \cdot \frac{1}{n^{n}} = \dots + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \dots + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right)$$

Popatrzmy! Jeżeli od a_n przejdziemy teraz do a_{n+1} , tj. zwiększymy n o jedność, to pojawi się nowy (n+2)-gi wyraz, a każdy z już napisanych wyrazów się zwiększy, bo dowolny czynnik w nawiasach postaci $1-\frac{s}{n}$ zastępujemy większym czynnikiem $1-\frac{s}{n+1}$. Wynika stąd, że $a_{n+1}>a_n$.

Ciąg (a_n) jest ograniczony z góry ponieważ, opuszczając wszystkie czynniki w nawiasach, powiększamy powyższe wyrażenie. Zatem

$$a_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{2!} \le 3$$

Wykres ciągu $a_n = (1+1/n)^n$

Fakt: Jeżeli dla pewnego N zachodzi: $a_n>0$ dla n>N oraz $\lim_{n\to\infty}a_n=\infty$, to $\lim_{n\to\infty}\left(1+\frac{1}{a_n}\right)^{a_n}=e$

Fakt: Jeżeli dla pewnego N zachodzi: $a_n < 0$ dla n > N

oraz
$$\lim_{n o \infty} a_n = -\infty$$
, to $\lim_{n o \infty} \left(1 + rac{1}{a_n}
ight)^{a_n} = \mathrm{e}$

Twierdzenie

Jeżeli

- $\lim_{n\to\infty} b_n = 0, \ \textit{gdzie} \ b_n > 0 \ \textit{dla} \ n \in \mathbb{N}$

to
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$$

Twierdzenie

Jeżeli dla pewnego N ciągi (a_n) oraz (b_n) spełniają

- $ightharpoonup a_n \leq b_n$, dla każdego $n \geq N$
- $\quad \mathsf{lim} \ \ a_n = \infty$

to
$$\lim_{n\to\infty}b_n=\infty$$

Twierdzenie

$$a + \infty = \infty \ dla \ - \infty < a \le \infty; \quad a \cdot \infty = \infty \ dla \ 0 < a \le \infty$$

$$\frac{a}{\infty} = 0 \ dla \ - \infty < a < \infty; \qquad \frac{a}{0^+} = \infty \ dla \ 0 < a \le \infty$$

$$a^{\infty} = 0 \ dla \ 0^+ \le a < 1; \qquad a^{\infty} = \infty \ dla \ 1 < a \le \infty$$

$$\infty^b = 0 \ dla \ - \infty < b < 0; \qquad \infty^b = \infty \ dla \ 0 < b < \infty$$

Definicja (wyrażenia nieoznaczone)

$$\infty - \infty$$
 $0 \cdot \infty$ $0 \cdot \infty$

Punkt skupienia

Definicja

Punkt x_0 nazwywamy punktem skupiena zbioru $X \subseteq \mathbb{R}$, jeżeli dowolnie blisko x_0 istnieją liczby $x \in X$, różne od x_0 .

Równoważnie możemy powiedzieć, że x_0 jest punktem skupienia X wtedy i tylko wtedy, gdy istnieje ciąg (x_n) taki, że $X\ni x_n\neq x_0$ dla każdego $n\in\mathbb{N}$ oraz $\lim_{n\to\infty}x_n=x_0$.

Definicja

Punkt x_0 jest prawostronnym (lewostronnym) punktem skupienia X wtedy i tylko wtedy, gdy istnieje ciąg (x_n) taki, że $X \ni x_n > x_0$ $(x_n < x_0)$ dla każdego $n \in \mathbb{N}$ oraz $\lim_{n \to \infty} x_n = x_0$.

Definicja

Mówimy, że ∞ $(-\infty)$ jest punktem skupienia zbioru $X \subset \mathbb{R}$ wtedy i tylko wtedy, gdy istnieje ciąg (x_n) taki, że $X \ni x_n$ dla każdego $n \in \mathbb{N}$ oraz $\lim_{n \to \infty} x_n = \infty$ $(-\infty)$.

Definicja (Granica funkcji)

Niech $X,Y\subset\mathbb{R}$, $f:X\to Y$, $x_0-punkt$ skupienia zbioru X. Będziemy pisali

$$\lim_{x\to x_0}f(x)=g$$

jeżeli istnieje punkt $g \in R$ o następujących własnościach:

$$\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in X} [0<|x-x_0|<\delta \Rightarrow |f(x)-g|<\varepsilon]$$

Twierdzenie (Równoważność definicji granicy funkcji)

$$\lim_{x\to x_0} f(x) = g \iff \lim_{n\to\infty} f(x_n) = g \ dla \ dowolnego \ ciągu$$
 $(x_n) \ takiego, \dot{z}e: X\ni x_n\neq x_0 \ dla \ każdego \ n\in\mathbb{N}$ oraz $\lim_{n\to\infty} x_n=x_0$

Prawa strona równoważności, to tzw. definicja Heinego granicy funkcji.

Definicia (Definicie granic funkcji)

Niech $X, Y \subset \mathbb{R}$, $f: X \to Y$ oraz $x_n \in X$ dla każdego $n \in \mathbb{N}$.

$$\lim_{x \to \infty} f(x) = g \iff \bigwedge_{x_n \to \infty} \lim_{n \to \infty} f(x_n) = g$$

$$\lim_{x \to -\infty} f(x) = g \iff \bigwedge_{x_n \to -\infty} \lim_{n \to \infty} f(x_n) = g$$

$$\lim_{x \to x_0^+} f(x) = g \iff \bigwedge_{\substack{x_n \to x_0 \\ x_n > x_0}} \lim_{n \to \infty} f(x_n) = g$$

$$\lim_{x \to x_0^-} f(x) = g \iff \bigwedge_{\substack{x_n \to x_0 \\ x_n > x_0}} \lim_{n \to \infty} f(x_n) = g$$

Uwaga: $g \in \mathbb{R} \cup \{-\infty, \infty\}$

Twierdzenie (o arytmetyce granic funkcji)

Jeżeli funkcje f, g mają granice (skończone) w punkcie x_0 , to

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)
\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)
\lim_{x \to x_0} (cf(x)) = c(\lim_{x \to x_0} f(x)), \ gdzie \ c \in \mathbb{R}
\lim_{x \to x_0} (f(x) \cdot g(x)) = (\lim_{x \to x_0} f(x)) \cdot (\lim_{x \to x_0} g(x))
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \ o \ ile \ \lim_{x \to x_0} g(x) \neq 0
\lim_{x \to x_0} f(x)^{g(x)} = (\lim_{x \to x_0} f(x))^{\lim_{x \to x_0} g(x)}$$

Uwaga: Wzory są prawdziwe, jeżeli x_0 zastąpimy przez x_0^+ , x_0^- , $-\infty$ lub ∞ . Trzeba założyć, że wyrażenia w ostatnim wzorze mają sens.

4 O b 4 O b 4 O b 4 O b b

Twierdzenie (o granicy funkcji złożonej)

Jeżeli funkcje f, g spełniają warunki:

- $\lim_{x \to x_0} f(x) = y_0$
- $f(x) \neq y_0$ dla każdego $x \in S(x_0)$

$$to \lim_{x \to x_0} g(f(x)) = g$$

Uwaga: Twierdzenie jest prawdziwe dla pozostałych typów granic. Zbiór $S(x_0)$ jest postaci $(x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$ dla pewnego $\delta > 0$.

Granice podstawowych wyrażeń nieoznaczonych

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{\sin x}{\frac{x}{x}} = 1$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{a^x - 1}{\frac{x}{x}} = \ln a, \text{ gdzie } a > 0$$

$$\lim_{\substack{x \to 0 \\ x \to \pm \infty}} \left(\frac{\log_a (1+x)}{x} \right) = \log_a e, \text{ gdzie } 0 < a \neq 1$$

$$\lim_{\substack{x \to \pm \infty \\ x \to 0}} \left(1 + \frac{a}{x} \right)^x = e^a, \text{ gdzie } a \in \mathbb{R}$$

$$\begin{split} &\lim_{x\to 0} \frac{\tan x}{e^{\frac{X}{X}}} = 1\\ &\lim_{x\to 0} \frac{e^{\frac{X}{X}} - 1}{\frac{X}{X}} = 1\\ &\lim_{x\to \pm \infty} \left(1 + \frac{1}{X}\right)^x = e\\ &\lim_{x\to \pm \infty} \frac{\left(1 + x\right)^a - 1}{x} = a, \text{ gdzie } a \in \mathbb{R} \end{split}$$

Definicja (Asymptota pionowa lewostronna)

Prosta x = a jest asymptotą pionową lewostronną funkcji f jeżeli

$$\lim_{x \to a^{-}} f(x) = -\infty \text{ albo } \lim_{x \to a^{-}} f(x) = \infty$$

Definicja (Asymptota pionowa prawostronna)

Prosta x = a jest asymptotą pionową lewostronną funkcji f jeżeli

$$\lim_{x \to a^+} f(x) = -\infty \text{ albo } \lim_{x \to a^+} f(x) = \infty$$

Definicja (Asymptota pionowa)

Prosta x=a jest asymptotą pionową funkcji jeżeli jest jednocześnie asymptotą lewostronną i prawostronną

Asymptoty

Asymptoty

Definicja (Asymptota ukośna)

Prosta y=ax+b jest asymptotą ukośną funkcji f $w+\infty$ $(-\infty)$ wtedy i tylko wtedy, gdy

$$\lim_{\substack{x \to \infty \\ (x \to -\infty)}} [f(x) - (ax + b)] = 0$$

Fakt

Prosta y=ax+b jest asymptotą ukośną funkcji f $w \propto (-\infty)$ wtedy i tylko wtedy, gdy

$$a = \lim_{\substack{x \to \infty \\ (x \to -\infty)}} \frac{f(x)}{x} \text{ oraz } b = \lim_{\substack{x \to \infty \\ (x \to -\infty)}} [f(x) - ax]$$

Ciągłość funkcji

Definicja

Niech $X,Y\subset\mathbb{R}$, $f:X\to Y$, $x_0\in X$. O funkcji f powiemy, że jest ciągła w punkcie x_0 , jeżeli

$$\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in X} [|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\varepsilon]$$

Twierdzenie

W sytucji opisanej w powyższej definicji niech x_0 będzie punktem skupienia zbioru X. Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy $\lim_{x \to x_0} f(x) = f(x_0)$

Definicja

Funkcja $f: X \to Y$ jest ciągła, jeżeli jest ciągła w każdym punkcie $p \in X$.

Twierdzenie

Niech f,g będą funkcjami ciągłymi na X. Wówczas f+g, $f\cdot g$ oraz f/g są funkcjami ciągłymi. W ostatnim przypadku zakładamy, ze $g\neq 0$

Definicja

Pochodną funkcji $f: X \to Y$ w punkcie $x_0 \in X$ nazywamy liczbę

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Fakt

Jeżeli funkcja f ma pochodną w x_0 , to jest ciągła w x_0 .

Dowód.

Niech $x_n \rightarrow x_0$ oraz $h_n = x_n - x_0$

$$\lim_{x_n \to x_0} (f(x_n) - f(x_0)) = \lim_{h_n \to 0} h_n \frac{f(x_0 + h_n) - f(x_0)}{h_n} = 0 \cdot f'(x_0) = 0$$

Przykład

$$f(x) = x^n$$

$$\frac{f(x_0+h)-f(x_0)}{h}=\frac{(x_0+h)^n-x_0^n}{h}=\frac{\sum_{k=0}^n\binom{n}{k}x_0^kh^{n-k}-x_0^n}{h}=$$

Przykład, cd.

Podstawy

$$= \frac{\sum\limits_{k=0}^{n} \binom{n-1}{k} x_0^k h^{n-k}}{h} = \sum\limits_{k=0}^{n} \binom{n-1}{k} x_0^k h^{n-k-1} = \sum\limits_{k=0}^{n} \binom{n-2}{k} x_0^k h^{n-k-1} + n x_0^{n-1} =$$

$$= h \sum\limits_{k=0}^{n} \binom{n-2}{k} x_0^k h^{n-k-2} + n x_0^{n-1} \underset{h \to 0}{\longrightarrow} n_0^{\times n-1}$$

Przykład

$$f(x) = 1/x$$

$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{x - x - h}{h(x+h)x} = -\frac{1}{(x+h)x} \xrightarrow{h \to 0} -\frac{1}{x^2}$$

Przykład

$$f(x) = \sqrt{x}$$

$$\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{x+h-x}{(\sqrt{x+h} + \sqrt{x})h} = -\frac{1}{\sqrt{x+h} + \sqrt{x}} \underset{h \to 0}{\longrightarrow} \frac{1}{2\sqrt{x}}$$

Przykład $f(x) = \log_3 x$

$$\begin{split} \frac{\log_{a}(x+h) - \log_{a}x}{h} &= \log_{a}\left(\frac{x+h}{x}\right)^{\frac{1}{h}} = \frac{1}{x} \cdot \frac{\log_{a}(1+h/x)}{h/x} = \\ &= \frac{1}{x} \cdot \log_{a}(1+h/x)^{1/(h/x)} = \\ &= \frac{1}{x} \cdot \log_{a}(1+1/(x/h))^{(x/h)} \underset{h \to 0}{\longrightarrow} \frac{1}{x} \log_{a}e \end{split}$$

Przykład

$$f(x) = \sin x$$
. Skorzystam z: $\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1$, $\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$

$$\frac{\sin\left(x+h\right)-\sin x}{h}=\frac{2\cos\left(x+\frac{h}{2}\right)}{h}\sin\frac{h}{2}=\cos\left(x+h/2\right)\frac{\sin\left(h/2\right)}{h/2}\underset{h\to 0}{\longrightarrow}\cos x$$

Przykład

$$g(y) = f^{-1}(y)$$
-funkcja odwrotna do $f(x)$.
 $y_0 + h^* = f(x_0 + h) \Rightarrow h^* = f(x_0 + h) - f(x_0)$
 $y_0 = f(x_0)$
 $0 \neq f'(x_0)$ -istnieje
 $h^* \to 0 \iff h \to 0$
 $f^{-1}(y_0 + h^*) - f^{-1}y_0$ $x_0 + h - x_0$

$$\frac{f^{-1}(y_0 + h^*) - f^{-1}y_0}{h^*} = \frac{x_0 + h - x_0}{f(x_0 + h) - f(x_0)} = \frac{1}{\frac{f(x_0 + h) - f(x_0)}{h}}$$

Stąd
$$g'(y_0) = \frac{1}{f'(x_0)}$$

Przykład

$$f(x) = \arcsin x$$
. Przyjmujemy, że $(y = \arcsin x \iff x = \sin y)$

$$f'(x) = \frac{1}{\sin' y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$$

Przykład f(x)g(x)

$$\frac{f(x+h)g(x+h) - f(x)g(x)}{h} =$$

$$= \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h} =$$

$$= \frac{f(x+h) - f(x)}{h}g(x+h) + f(x)\frac{g(x+h) - g(x)}{h} \xrightarrow{h \to 0} f'(x)g(x) + f(x)g'(x)$$

Przykład
$$f(x) = e^x$$
. Stąd $ln(f(x)) = x$ (In

$$(\ln(f(x)))' = x'$$

$$\frac{1}{f(x)}f'(x) = 1$$

$$f(x)' = f(x)$$

Definicja

Definicia

Niech f(x) będzie funkcją określoną w pewnym przedziale I. Każdą funkcję F(x) różniczkowalną w przedziale I i spełniającą w całym przedziale związek

$$F'(x) = f(x)$$

nazywamy funkcją pierwotną funkcji f(x) w przedziale I.

Przykłady

- funkcją pierwotną funkcji $\cos x$ w przedziale $(-\infty,\infty)$ jest $\sin x$, bo $(\sin x)' = \cos x$
- ▶ funkcją pierwotną funkcji 1 2x jest $x x^2$, bo $(x x^2)' = 1 2x$

Funkcję pierwotną nazywamy również całką nieoznaczoną i oznaczamy przez

$$\int f(x)\,dx$$

Własności

W myśl określenia całki mamy:

$$\left[\int f(x)\,dx\right]'=f(x)\quad\text{oraz}\quad\int F'(x)\,dx=F(x).$$

Obliczanie, czyli wyznaczanie całki nazywamy całkowaniem funkcji.

Przykłady

Zauważmy, że gdy F(x) jest całką funkcji f(x), to suma F(x)+c, gdzie c jest stałą dowolną, jest również całką, bo [F(x)+c]'=F'(x)=f(x). I odwrotnie: Dwie różne całki F(x) oraz G(x) tej samej funkcji f(x) różnią się w całym przdziale o stałą. Istotnie, jeżeli F'(x)=f(x) oraz G'(x)=f(x), to pochodna różnicy G(x)-F(x) równa się w całym przedziale 0, zatem

$$F(x) - G(x) = c$$

Podstawowe wzory

$$\int x^a dx = \frac{x^{1+a}}{1+a} + c, \text{ dla } a \neq -1,$$

$$\int \frac{1}{x} dx = \ln|x| + c,$$

$$\int e^x dx = e^x + c,$$

$$\int a^x dx = \frac{a^x}{\ln a} + c,$$

$$\int \frac{1}{\sin^2 x} dx = -\cos x + c$$

$$\int \frac{1}{\cos^2 x} dx = \sin x + c,$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + c,$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + c$$

$$\int \frac{1}{1+x^2} dx = \arctan x + c = -\arctan x + c = -\arctan x + c'$$

Podstawowe wzory

Niech f(x) oraz g(x) będą funkcjami mającymi całki w pewnym przedziale. Wówczas

ightharpoonup suma f+g ma w tym przedziale całkę oraz

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

▶ jeżeli a jest stałą, to

$$\int af(x) dx = a \int f(x) dx$$

ightharpoonup jeżeli dodatkowowo f, g mają ciągłe pochodne, to

$$\int f(x)g'(x) dx = f(x)g(x) - \int f(x)'g(x) dx$$

Uwaga: można spotkać się z oznaczeniem: dg(x) = g'(x) dx lub krótko dg = g' dx. Wtedy wzór ten zapisujemy w postaci $\int f dg = fg - \int g df$

Podstawowe wzory

Całkowanie przez podstawienie. Nich f(x) będzie funkcją ciągłą w przedziale (a,b) i niech $\int f(x) \, dx = F(x)$. Niech dalej $x = \phi(t)$ będzie funkcją ciągłą w przedziale (α,β) , spełniającą w nim nierówność $a < \phi(t) < b$ i mającą ciągłą pochodną $\phi'(t)$. Funkcja złożona $F[\phi(t)]$ ma wówczas w przedziale (α,β) pochodną

$$F'[\phi(t)]\phi'(t) = f[\phi(t)]\phi'(t)$$
, bo $F'(x) = f(x)$,

zatem

$$\int f[\phi(t)]\phi'(t)\,dt = F[\phi(t)].$$

Stąd otrzymujemy

$$\int f(x) dx = \int f[\phi(t)]\phi'(t) dt dla x = \phi(t)$$

Przykłady (stała będzie pomijana)

▶ $a \neq 0$, $\int \frac{dx}{ax+b}$. Przyjmujemy ax+b=t, zatem $x=\frac{t-b}{a}$, skąd $dx=\frac{dt}{a}$. Zatem

$$\int \frac{dx}{ax + b} = \int \frac{1}{t} \cdot \frac{1}{a} dt = \frac{1}{a} \int \frac{1}{t} dt = \frac{1}{a} \ln|t| = \frac{1}{a} \ln|ax + b|$$

▶ $\int x\sqrt{1+x^2} dx$. Przyjmijmy $1+x^2=t$, skąd 2x dx=dt, zatem

$$\int x \sqrt{1+x^2} \, dx = \frac{1}{2} \int \sqrt{1+x^2} \cdot 2x \, dx = \frac{1}{2} \int \sqrt{t} \, dt = \frac{1}{3} t^{\frac{3}{2}} = \frac{1}{3} (\sqrt{1+x^2})^2$$

- ► Całka ułamka $\int \frac{\phi'(x)}{\phi(x)} dx$, w którym licznik jest pochodną mianownika, przekształca się po podstawieniu $\phi(x) = t$ na całkę $\int \frac{dt}{t} = \ln |t|$.
- ► Całka iloczynu $\int [\phi(x)]^a \phi'(x) dx$, gdzie $a \neq -1$, przekształca się po podstawieniu $\phi(x) = t$ na całkę $\int t^a dt$.

Wynikają stąd następujące wzory:

$$\int \frac{\phi'(x)}{\phi(x)} dx = \ln |\phi(x)|,$$

$$\int [\phi(x)]^a \phi'(x) dx = \frac{[\phi(x)]^{a+1}}{a+1} \text{ dla } a \neq -1$$

Wzory rekurenyjne. Całki

$$I_n = \int \frac{dx}{(1+x^2)^n}, \quad J_n = \int \sin^n x \, dx, \quad \int \cos^n x \, dx$$

umiemy obliczyć dla n=1. Dla n>1 można je obliczyć stosując wzory rekurencyjne:

$$\int \frac{dx}{(1+x^2)^n} = \frac{1}{2n-2} \frac{x}{(1+x^2)^{n-1}} + \frac{2n-3}{2n-2} \int \frac{dx}{(1+x^2)^{n-1}},$$

$$\int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

$$\int \cos^n x \, dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

Pierwszy wzór rekurencyjny

$$I_n = \int \frac{1+x^2-x^2}{(1+x^2)^n} dx = \int \frac{dx}{(1+x^2)^{n-1}} - \int \frac{x}{2} \frac{2x dx}{(1+x^2)^n} =$$

$$= I_{n-1} - \int \frac{x}{2} d\left(-\frac{1}{(n-1)(1+x^2)^{n-1}}\right)$$

Całkując ostatnią całkę przez części otrzymujemy

$$I_{n} = I_{n-1} + \frac{x}{(2n-2)(1+x^{2})^{n-1}} - \int \frac{dx}{(2n-2)(1+x^{2})^{n-1}}$$

$$I_{n} = I_{n-1} + \frac{x}{(2n-2)(1+x^{2})^{n-1}} - \frac{1}{2n-2}I_{n-1}$$

$$= \frac{x}{(2n-2)(1+x^{2})^{n-1}} + \frac{2n-3}{2n-2}I_{n-1}$$

Drugi wzór rekurencyjny

Zaczynamy od postaci: $\sin^n x \, dx = \sin^{n-1} x \, d(-\cos x)$

Trzeci wzór rekurencyjny otrzymuje się podobnie do drugiego

Przykłady

ightharpoonup Przy podstawieniu sin x = t mamy

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx = \int \frac{-dt}{t} = -\ln|t| = -\ln|\cos x|$$

Najpierw przez części, potem podstawienie $1 - x^2 = t$

$$\int \arcsin x \, dx = x \arcsin x - \int \frac{x}{\sqrt{1 - x^2}} \, dx = x \arcsin x + \int \frac{dt}{2\sqrt{t}} =$$
$$= x \arcsin x + \sqrt{t} = x \arcsin x + \sqrt{1 - x^2}$$

Przykłady

▶ Podstawienie $x = \sqrt{at}$ (wtedy $dx = \sqrt{adt}$)

$$\int \frac{dx}{\sqrt{a-x^2}} = \int \frac{dt}{\sqrt{1-t^2}} = \arcsin t = \arcsin \frac{x}{\sqrt{a}}$$

Podstawienie $x + \sqrt{a + x^2} = t$. Dla tego podstawienia zachodzi

$$\left(1 + \frac{x}{\sqrt{a + x^2}}\right) dx = \frac{x + \sqrt{a + x^2}}{\sqrt{a + x^2}} dx = \frac{dx}{\sqrt{a + x^2}} t = dt$$

Zatem

$$\int \frac{dx}{\sqrt{a+x^2}} = \int \frac{dt}{t} = \ln|t| = \ln|x + \sqrt{a+x^2}|$$

$$\int \sqrt{a - x^2} \, dx = \int \frac{a - x^2}{\sqrt{a - x^2}} \, dx$$

$$= \int \frac{a}{\sqrt{a - x^2}} \, dx + \int x \frac{-x}{a - x^2} \, dx =$$

$$= a \int \frac{dx}{\sqrt{a - x^2}} + \int x d\sqrt{a - x^2} =$$

$$= a \arcsin \frac{x}{\sqrt{a}} + x\sqrt{a - x^2} - \int \sqrt{a - x^2} \, dx$$

Zatem

$$\int \sqrt{a - x^2} \, dx = \frac{1}{2} \left(a \arcsin \frac{x}{\sqrt{a}} + x \sqrt{a - x^2} \right)$$

► Wyznaczamy całkę $\int \frac{Ax+B}{x^2+px+a} dx$. Na początek zauważamy, że

$$\frac{Ax+B}{(x^2+px+q)^n} dx = \frac{A}{2} \frac{2x+p}{(x^2+px+q)^n} + \frac{C}{(x^2+px+q)^n}, \text{ gdzie } C = B - \frac{Ap}{2}$$

Zatem

$$\int \frac{Ax+B}{x^2+px+q} \, dx = \frac{A}{2} \int \frac{2x+p}{(x^2+px+q)^n} \, dx + C \int \frac{1}{(x^2+px+q)^n} \, dx$$

Pierwsza całka po prawej stronie równości jest postaci

$$\int [\phi(x)]^{-n} \phi'(x) dx \quad \text{dla } \phi(x) = x^2 + px + q$$

zatem wiadomo już, jak ją policzyć

Trzeba pokazać, jak wyznaczyć $\int \frac{1}{(x^2+px+q)^n} dx$. W tym celu podstawiamy

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} + \left(q - \frac{p^{2}}{4}\right) = at^{2} + a,$$

gdzie
$$q - \frac{p^2}{4} = a$$
 oraz $x + \frac{p}{2} = \sqrt{a}t$. Wówczas $dx = \sqrt{a} \, dt$. Zatem

$$\int \frac{1}{(x^2 + px + q)^n} dx = \int \frac{\sqrt{a} dt}{a^n (1 + t^2)^n} = \frac{1}{a^{n-1/2}} \int \frac{dt}{(1 + t^2)^n}$$

Ostatnia całka jest równa arctan t dla n=1, a dla n>1, stosujemy wzór rekurencyjny.

Do domu. Stosując opisany powyżej sposób pokazać, że

$$\int \frac{-5+2x}{5-3x+x^2} dx = \frac{-4 \arctan(\frac{-3+2x}{\sqrt{11}})}{\sqrt{11}} + \ln(5-3x+x^2)$$

$$\int \frac{3+2x}{(5+3x+x^2)^2} dx = -\left(\frac{1}{5+3x+x^2}\right)$$

Clągi nieskończone O OOOO OOOOOOO	O OOOOO OO	000000	O O O O O O O O O O O O	OO OOO O	OO OO	vvzor Taylora	00 000 000 000 000

Całki, których nie można wyrazić za pomocą funkcji elementarnych

$$\int \frac{dx}{\sqrt{1+x^2}}, \int \frac{\sin x}{x} dx, \int e^{-x^2} dx$$

000 0000 0 0000000000000 0 00 000 000	iągi nieskończone	Granica funkcji	Pochodna	Całka nieoznaczona	Całka oznaczona	Całka niewłaściwa	Wzór Taylora	Macierze 00
			0000000	ō	000			000 000 000

Definicja

- Niech f(x) oznacza funkcję ograniczoną na przedziale domkniętym
 a, b >.
- Niech $P_1, P_2, \ldots, P_m, \ldots$ będą różnym podziałami przedziału $< a, b > \ldots$ Podział P_m jest osiągnięty przy pomocy $n_m 1$ liczb $x_1, x_2, \ldots, x_{n_m 1}$, przy czym

$$a = x_0 < x_1 < x_2 < \ldots < x_{n_m-1} < x_{n_m} = b.$$

- Przedziały $< x_{i-1}, x_i >$, gdzie $i = 1, 2, \ldots, n_m$, nazywamy przedziałami cząstkowymi podziału P_m . Długości ich $x_i x_{i-1}$ będziemy oznaczali przez Δx_i
- Niech $\delta_m = \max \Delta x_i$ oraz

$$S_m = \sum_{i=1}^{n_m} f(c_i) \Delta x_i,$$

przy podziale P_m oraz dowolnie wybranych punktów $c_i \in \langle x_{i-1}, x_i \rangle$, $i = 1, 2, \ldots, n_m$.

Całka nieoznaczona	Całka oznaczona	Całka niewłaściwa	Wzór Laylora	Macierze
00 0	0	00		00
0	000	00		000
000000000000	0			000
				000
				00
	00 0	00 0	00 0 0 00 00	00 0 0 00 00

Definicja

Definicia

Jeżeli ciąg $\{S_m\}$ dla $m\to\infty$ jest zbieżny i do tej samej granicy przy każdym normalnym ciągu podziałów, niezależnie od wyboru punktów c_i , to funkcję f(x) nazywamy funkcją całkowalną w przedziale < a,b>. Granicę ciągu $\{S_m\}$ nazywamy całką oznaczoną funkcji f(x) w granicach od a do b i oznaczamy symbolem

$$\int_a^b f(x) \, dx$$

- ▶ Jeżeli przy jakimś ciągu normalnym podziałów ciąg $\{S_m\}$ ma granicę niezależną od wyboru punktów c_i , to funkcja f(x) jest całkowalna.
- Funkcja ciągła w przedziale domkniętym jest całkowalna
- Funkcja ogranicznona w przedziale domkniętym oraz ciągła w nim z wyjątkiem co najwyżej skończonej liczby liczby punktów jest całkowalna.

1. Jeżeli a < b < c, to

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{c} f(x) dx$$

2. Stały czynnik można wyłaczyć przed znak całk

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

3 Całka sumy równa się sumie całek

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

1. Jeżeli a < b < c, to

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{c} f(x) dx$$

2. Stały czynnik można wyłączyć przed znak całki

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

3. Całka sumy równa sie sumie całek

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

1. Jeżeli a < b < c, to

Własności

$$\int_{-c}^{c} f(x) dx = \int_{-c}^{b} f(x) dx + \int_{-c}^{c} f(x) dx$$

2. Stały czynnik można wyłączyć przed znak całki

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

3. Całka sumy równa się sumie całek

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

1. Jeżeli funkcja f(x) jest ciągła w przedziale $\langle a, b \rangle$, to zachodzi

$$\int_{a}^{b} f(x) dx = f(c)(b-a),$$

dla pewnego c z przedziału < a, b >

2. Jeżeli funkcja f(t) jest ciągła w przedziale $\langle a, b \rangle$, to funkcja

$$h(x) = \int_{a}^{x} f(t) dt$$

jest ciągła i różniczkowalna względem zmiennej x w przedziale < a, b > i w każdym punkcie tego przedziału zachodzi zwiazek h'(x) = f(x).

3. ZWIĄZEK MIĘDZY CAŁKĄ OZNACZONĄ A NIEOZNACZONĄ. Jeżeli przez F(x) oznaczymy funkcję pierwotną funkcji f(x), ciągłej w przedzialo $\langle a,b \rangle$, tzn. jeżeli F(x)'=f(x), to ma miejsce wzór

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Własności

1. Jeżeli funkcja f(x) jest ciągła w przedziale < a, b >, to zachodzi

$$\int_a^b f(x) dx = f(c)(b-a),$$

dla pewnego c z przedziału < a, b >

2. Jeżeli funkcja f(t) jest ciągła w przedziale $\langle a, b \rangle$, to funkcja

$$h(x) = \int_a^x f(t) dt$$

jest ciągła i różniczkowalna względem zmiennej x w przedziałe < a, b > i w każdym punkcie tego przedziału zachodzi związek h'(x) = f(x).

3. ZWIĄZEK MIĘDZY CAŁKĄ OZNACZONĄ A NIEOZNACZONĄ. Jeżeli przez F(x) oznaczymy funkcję pierwotną funkcji f(x), ciągłej w przedziale $\langle a,b \rangle$, tzn. jeżeli F(x)'=f(x), to ma miejsce wzór

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

Własności

1. Jeżeli funkcja f(x) jest ciągła w przedziale $\langle a, b \rangle$, to zachodzi

$$\int_{a}^{b} f(x) dx = f(c)(b-a),$$

dla pewnego c z przedziału < a, b >

2. Jeżeli funkcja f(t) jest ciągła w przedziale $\langle a, b \rangle$, to funkcja

$$h(x) = \int_{a}^{x} f(t) dt$$

jest ciągła i różniczkowalna względem zmiennej x w przedziałe < a, b > i w każdym punkcie tego przedziału zachodzi związek h'(x) = f(x).

3. ZWIĄZEK MIĘDZY CAŁKĄ OZNACZONĄ A NIEOZNACZONĄ. Jeżeli przez F(x) oznaczymy funkcję pierwotną funkcji f(x), ciągłej w przedziale $\langle a,b \rangle$, tzn. jeżeli F(x)'=f(x), to ma miejsce wzór

$$\int_a^b f(x) dx = F(b) - F(a)$$

1. Jeżeli u i v są funkcjami zmiennej x mającymi ciągłą pochodną, to

$$\int_a^b u \, dv = [uv]_a^b - \int_a^b v du.$$

Jest to wzór na całkowanie przez części dla całek oznczonych.

2. Jeżeli g'(x) jest funkcją ciągłą, g(x) funkcją rosnącą w przedziale < a, b>, a f(u) funkcją ciągłą w przedziale < g(a), g(b)>, to zachodzi następujący wzór:

$$\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

Własności

1. Jeżeli u i v są funkcjami zmiennej x mającymi ciągłą pochodną, to

$$\int_a^b u \, dv = [uv]_a^b - \int_a^b v du.$$

Jest to wzór na całkowanie przez części dla całek oznczonych.

2. Jeżeli g'(x) jest funkcją ciągłą, g(x) funkcją rosnącą w przedziale < a, b>, a f(u) funkcją ciągłą w przedziale < g(a), g(b)>, to zachodzi następujący wzór:

$$\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

$$\int_0^{\frac{1}{2}\pi} x \sin x \, dx = -\int_0^{\frac{1}{2}\pi} x d(\cos x) = \left[-x \cos x \right]_0^{\frac{1}{2}\pi} + \int_0^{\frac{1}{2}\pi} \cos x \, dx = \left[\sin x \right]_0^{\frac{1}{2}\pi} = 1$$

Ponieważ $\int x \sin(x^2) dx = \frac{-\cos(x^2)}{2} + C$, mamy

$$\int_0^{\pi/2} x \sin(x^2) dx = \left[\frac{-\cos(x^2)}{2} \right]_0^{\pi/2} = \left(\frac{-\cos((\pi/2)^2)}{2} \right) - \frac{-\cos(0^2)}{2}$$

Ponieważ $\int e^x x dx = e^x (-1 + x) + C$, mamy

$$\int_{0}^{3} e^{x} x \, dx = \left[e^{x} (-1 + x) \right]_{2}^{3} = e^{3} (-1 + 3) - e^{2} (-1 + 2)$$

$$\int_{2}^{5} \ln(x) dx = \int_{2}^{5} x' \ln(x) dx = \left[x \ln(x) \right]_{2}^{5} - \int_{2}^{5} x \cdot \frac{1}{x} dx =$$

$$= 5 \ln(5) - 2 \ln(2) - (5 - 2)$$

$$\int_0^{\frac{1}{2}\pi} x \sin x \, dx = -\int_0^{\frac{1}{2}\pi} x d(\cos x) = \left[-x \cos x \right]_0^{\frac{1}{2}\pi} + \int_0^{\frac{1}{2}\pi} \cos x \, dx = \int_0^{\frac{1}{2}\pi} x \sin x \, dx = -\int_0^{\frac{1}{2}\pi} x \sin x$$

Ponieważ $\int x \sin(x^2) dx = \frac{-\cos(x^2)}{2} + C$, mamy

$$\int_0^{\pi/2} x \sin(x^2) dx = \left[\frac{-\cos(x^2)}{2} \right]_0^{\pi/2} = \left(\frac{-\cos((\pi/2)^2)}{2} \right) - \frac{-\cos(0^2)}{2}$$

Ponieważ $\int e^x x \, dx = e^x (-1 + x) + C$, mamy

$$\int_{a}^{3} e^{x} \times dx = \left[e^{x} (-1 + x) \right]_{2}^{3} = e^{3} (-1 + 3) - e^{2} (-1 + 2)$$

$$\int_0^{\frac{1}{2}\pi} x \sin x \, dx = -\int_0^{\frac{1}{2}\pi} x d(\cos x) = \left[-x \cos x\right]_0^{\frac{1}{2}\pi} + \int_0^{\frac{1}{2}\pi} \cos x \, dx = \left[\sin x\right]_0^{\frac{1}{2}\pi} = 1$$

Ponieważ $\int x \sin(x^2) dx = \frac{-\cos(x^2)}{2} + C$, mamy

$$\int_0^{\pi/2} x \sin(x^2) dx = \left[\frac{-\cos(x^2)}{2} \right]_0^{\pi/2} = \left(\frac{-\cos((\pi/2)^2)}{2} \right) - \frac{-\cos(0^2)}{2}$$

Ponieważ $\int e^x x dx = e^x (-1 + x) + C$, mamy

$$\int_{2}^{3} e^{x} x \, dx = \left[e^{x} (-1 + x) \right]_{2}^{3} = e^{3} (-1 + 3) - e^{2} (-1 + 2)$$

$$\int_0^{\frac{1}{2}\pi} x \sin x \, dx = -\int_0^{\frac{1}{2}\pi} x d(\cos x) = \left[-x \cos x \right]_0^{\frac{1}{2}\pi} + \int_0^{\frac{1}{2}\pi} \cos x \, dx = \int_0^{\frac{1}{2}\pi} x \sin x \, dx = -\int_0^{\frac{1}{2}\pi} x \sin x$$

Ponieważ $\int x \sin(x^2) dx = \frac{-\cos(x^2)}{2} + C$, mamy

$$\int_0^{\pi/2} x \sin(x^2) dx = \left[\frac{-\cos(x^2)}{2} \right]_0^{\pi/2} = \left(\frac{-\cos((\pi/2)^2)}{2} \right) - \frac{-\cos(0^2)}{2}$$

Ponieważ $\int e^x x dx = e^x (-1 + x) + C$, mamy

$$\int_{0}^{3} e^{x} x \, dx = \left[e^{x} (-1 + x) \right]_{0}^{3} = e^{3} (-1 + 3) - e^{2} (-1 + 2)$$

$$\int_{2}^{5} \ln(x) dx = \int_{2}^{5} x' \ln(x) dx = [x \ln(x)]_{2}^{5} - \int_{2}^{5} x \cdot \frac{1}{x} dx =$$

$$= 5 \ln(5) - 2 \ln(2) - (5 - 2)$$

Ciągi nieskończone	Granica funkcji	Pochodna	Całka nieoznaczona	Całka oznaczona	Całka niewłaściwa	Wzór Taylora	Macierze
0	0	0000000	0	00	•0		00
0000	00000		0	000	00		000
0000000	00		0000000000000	0			000
00	0						000
							00

Całki funkcii nieograniczonych

Definicja

Jeżeli funkcja f(x) jest ograniczona i całkowalna w każdym przedziale $a \le x \le c-h,\ h>0$, oraz w każdym przedziale $c+k \le x \le b,\ k>0$, i jeżeli istnieją granice

$$\lim_{h\to 0^+} \int_a^{c-h} f(x) dx \quad \text{oraz} \quad \lim_{k\to 0^+} \int_{c+k}^b f(x) dx,$$

to sumę tych granic nazywamy całką niewłaściwą funkcji f(x) w przedziale < a,b> i oznaczamy symbolem

$$\int_{a}^{b} f(x) dx$$

W podanej definicji chodzi o funkcje, które w każdym otoczeniu (c – δ, c + δ), δ > 0, są nieogranczone. W punkcie c funkcja może nawet nie być określona. Jeżeli przynajmniej jedna z granic nie istnieje, to mówimy, że całka jest rozbieżna. Całki funkcji nieograniczonych

 Jeżeli punktem nieograniczoności jest jeden z końców przedziału < a, b >, to przez całkę niewłaściwą rozumiemy odpowiednio

$$\lim_{h \to 0^+} \int_{a+h}^b f(x) \, dx \quad \text{albo} \quad \lim_{k \to 0^+} \int_a^{b-k} f(x) \, dx,$$

Przykład:

$$\int_0^3 \frac{dx}{\sqrt{x}} dx = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^3 \frac{dx}{\sqrt{x}} dx = \lim_{\varepsilon \to 0^+} \left(2\sqrt{3} - 2\sqrt{\varepsilon} \right)$$

Całki oznaczone w przedziale nieskończonym

Definicja

Jeżeli funkcja f(x) jest ograniczona i całkowalna w każdym przedziale skończonym $a \le x \le v$ (a — ustalone, v — dowolne) oraz istnieje granica

$$\lim_{v\to\infty}\int_a^v f(x)\,dx,$$

to granicę tę nazywamy całką niewłaściwą funkcji f(x) w przedziale $a \leq x < \infty$ i oznaczamy symbolem

$$\int_a^\infty f(x)\,dx.$$

Analogicznie określa się znaczenie symbolu $\int_{-\infty}^b f(x) \, dx$ jako granicę $\lim_{u\to\infty} \int_u^b f(x) \, dx$.

Całki oznaczone w przedziale nieskończonym

Przykład.

Chcemy obliczyć całkę $\int_{1}^{\infty} \left(\frac{2}{x} + \frac{1}{x^2}\right)^2 dx$.

Ponieważ
$$\int \left(\frac{2}{x} + \frac{1}{x^2}\right)^2 dx = -\frac{4}{x} - \frac{2}{x^2} - \frac{1}{3x^3}$$
,

mamy
$$\int_{1}^{\infty} \left(\frac{2}{x} + \frac{1}{x^2}\right)^2 dx = \lim_{v \to \infty} \left(-\frac{4}{v} - \frac{2}{v^2} - \frac{1}{3v^3} - (-4 - 2 - 1/3)\right)$$

Twierdzenie Taylora

Założenie: $f \in C^{n+1}(\langle a, b \rangle), a \langle x \langle b \rangle$

Teza:

$$f(x) = f(a) + \frac{x - a}{1!} f^{(1)}(a) + \frac{(x - a)^2}{2!} f^{(2)}(a) + \dots + \frac{(x - a)^n}{n!} f^{(n)}(a) + \int_a^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt$$

- ▶ Ostatni wyraz często nazywa się n—tą resztą i oznacza przez $R_n(x, a)$.
- ► Lagrange pokazał, że $\bigvee_{0 < \theta < 1} R_n(x, a) = \frac{(x a)^{n+1}}{(n+1)!} f^{(n+1)}(a + \theta(x a))$
- Szereg potęgowy $f(x) = f(a) + \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ nazywamy szeregiem Taylora.
- ▶ Dla *a* = 0 szerec Taylora nazywa się szeregiem Maclaurina.

Twierdzenie

Funkcja jest rozwijalna w szereg Taylora w przedziale $(a-\delta,a+\delta),\ \delta>0,$ jeżeli w tym przedziale:

- 1. funkcja ma pochodne każdego rzędu
- 2. $\lim_{n\to\infty} R_n(x,a) = 0$ dla x z przedziału $(a-\delta,a+\delta)$

Warunek 2. jest w szczególności spełniony, jeżeli istnieje M>0 takie, że

$$\bigwedge_{x \in (a-\delta, a+\delta)} |f^{(n)}(x)| < M$$

Przykłady.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{5^{3}}{5!} - \dots + \frac{x^{4k+1}}{(4k+1)!} - \frac{x^{4k+3}}{(4k+3)!} + \dots$$

Podstawowe definicje

MACIERZE

Macierz wymiaru $m \times n$

Macierz A wymiaru $m \times n$ jest prostokątną tablicą elementów a_{ii} , $i = 1, \dots, m$, $j = 1, \dots, n$:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right)$$

Elementami macierzy mogą być liczby rzeczywiste, zespolone i "inne jeszcze obiekty". Będziemy oznaczać w skrócie $A=(a_{ij})$

Podstawowe definicje

Macierz zerowa to macierz, której wszystkie elementy są równe zero

Transpozycją macierzy $A = (a_{ij})$ o wymiarach $m \times n$ jest macierz $A^T = (a_{ji})$ o wymiarach $n \times m$

O macierzy A wymiaru $m \times n$ powiemy, że jest **kawdratowa**, jeżeli m = n

Macierz A **jest symetryczna**, gdy jest kwadratowa oraz zachodzi warunek $A^T = A$

Macierz $A=(a_{ij})$ jest diagonalna, jeżeli jest kwadratowa oraz $a_{ij}=0$ dla $i\neq j$

Macierz identycznościowa 1: macierz diagonalna, która ma same jedynki na przekątnej

Działania na macierzach - podstawy

Sumą macierzy
$$A = (a_{ij})$$
 oraz $B = (b_{ij})$ o jednakowych wymiarach jest macierz $A + B = (a_{ij} + b_{ij})$

Różnicą macierzy
$$A = (a_{ij})$$
 oraz $B = (b_{ij})$ o jednakowych wymiarach jest macierz $A - B = (a_{ij} - b_{ij})$

Mnożenie macierzy $A = (a_{ij})$ przez liczbę α :

$$\alpha A = (\alpha \cdot a_{ij})$$

Przemienność, łączność oraz rozdzielność mnożenia macierzy przez liczbę $(\alpha, \beta \in R)$:

$$\alpha A = A\alpha$$
, $\alpha(\beta A) = (\alpha \beta)A$, $(\alpha \pm \beta)A = \alpha A \pm \beta B$, $\alpha(A \pm B) = \alpha A \pm \alpha B$

Działania na macierzach - podstawy

Mnożenie macierzy $A = (a_{ij})$ wymiaru $m \times n$ przez wektor $v = [v_1, \dots, v_n]^T$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \dots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \dots + a_{mn}v_n \end{pmatrix}$$

Działania na macierzach - podstawy

Mnożenie macierzy $A = (a_{ij})$ wymiaru $m \times n$ przez macierz $B = (b_1, b_2, \dots, b_k)$ wymiaru $n \times k$:

$$AB = (Ab_1, Ab_2, \ldots, Ab_k)$$

Transpozycja a mnożenie macierzy: $(AB)^T = B^T A^T$

Rząd macierzy

Dla każdej macierzy A maksymalna liczba r liniowo niezależnych kolumn jest równa maksymalnej liczbie liniowo niezależnych wierszy. Liczbę r nazywamy **rzędem macierzy**, symbolicznie oznczanym przez R(A)

Macierz nieosobliwa: Macierz kwadratowa A wymiaru $n \times n$, dla której R(A)=n.

Macierz odwrotna A^{-1} do macierzy kwadratowej A:

$$A^{-1}A = I = AA^{-1}$$

Wyznacznik macierzy

Wyznacznik macierzy A wymiaru $n \times n$ (kwadratowej)

Wyznacznik to funkcja (oznaczona przez det)

 $det: \{ \text{ zbi\'or macierzy kwadratowych} \} \rightarrow R$

o własnościach:

- b det(I) = 1
- ightharpoonup det(A) = 0 jeżeli A ma dwa sąsiednie wiersze równe
- det jest funkcją liniową względem dowolnego wiersza

Uwaga: istnieje tylko jedna taka funkcja

Uwaga: Na nstępnych slajdach A(ij) oznacza macierz powstałą z macierzy A poprzez usunięcie z niej i-tego wiersza oraz j-tej kolumny.

Wyznacznik macierzy

Własności wyznaczników:

► Twierdzenie Laplace'a dla kolumn:

$$det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} det(A(i,j))$$

dla $i = 1, \ldots, n$

- $ightharpoonup det(A) = 0 \Leftrightarrow R(A) < n$
- det(A) = -det(B), jeżeli B powstaje z A przez zamianę miejscami dwóch wierszy macierzy A
- det(A) = det(B), jeżeli B powstaje z A przez dodanie/odjęcie od danego wiersza innego wiersza przemnożonego przez dowolną liczbę
- ► Twierdzenie Cauchy'ego: det(AB) = det(A)det(B)
- ▶ Jeżeli R(A) = n (macierz A jest pełnego rzędu), to $det(A^{-1}) = (det(A))^{-1}$

Wyznacznik macierzy

Własności wyznaczników:

► Twierdzenie Laplace'a dla wierszy:

$$det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} det(A(i,j))$$

dla
$$i = 1, \ldots, n$$

- det(A) = -det(B), jeżeli B powstaje z A przez zamianę miejscami dwóch kolumn macierzy A
- det(A) = det(B), jeżeli B powstaje z A przez dodanie/odjęcie od danej kolumny innej kolumny przemnożonej przez dowolną liczbę
- det(A) jest funkcją liniową dowolnej kolumny
- $ightharpoonup det(A^T) = det(A)$

Układ równań liniowych

Niech $A = (a_{ij})$ macierz wymiaru $n \times n$, $c = [c_1, \ldots, c_n]^T$ oraz $x = [x_1, \ldots, x_n]^T$. Macierz A oraz wektor c traktujemy jako znane, a wektor x jako nieznany (wektor niewiadomych). Interesuje nas rozwiązanie układu równań Ax = c, tzn.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = c_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = c_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = c_n \end{cases}$$

Twierdzenie. Jeżeli $det(A) \neq 0$, to powyższy układ równań liniowych ma dokładnie jedno rozwiązanie. Rozwiązanie to można uzyskać za pomocą wzorów Cramera:

$$x_i = \frac{\text{det}(a_1, a_2, \ldots, a_{i-1}, c, a_{i+1}, \ldots a_n)}{\text{det}(A)}, \quad i = 1, 2, \ldots, n,$$

gdzie a_i oznacza i—tą kolumnę macierzy A

Układ równań liniowych

Niech $A = (a_{ij})$ macierz wymiaru $m \times n$, $c = [c_1, \ldots, c_m]^T$ oraz $x = [x_1, \ldots, x_n]^T$. Interesuje nas rozwiązanie układu równań Ax = c, tzn.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = c_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = c_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = c_m \end{cases}$$

Niech

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & c_1 \\ a_{21} & a_{22} & \dots & a_{2n} & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & c_m \end{pmatrix}$$

Twierdzenie Kroneckera-Capellego. Powyższy układ równań liniowych ma rozwiązanie wtedy i tylko wtedy, gdy R(A) = R(B) = r, przy tym

- 1) jeżeli r = n, to układ ma jedno rozwiązanie,
- 2) jeżeli r < n, to układ ma nieskończenie wiele rozwiązań i są one zależne od n-r parametrów.

Układ równań liniowych

Niech $A=(a_1,\ldots,a_n)$ będzie macierzą wymiaru $n\times n$. Wektory a_1,\ldots,a_n są jej kolumnami. Oznaczmy przez dA_{ij} wyznacznik z macierzy $(a_1,\ldots,a_{i-1},e_i,a_{i+1},\ldots,a_n)$, która powstała z A poprzez zamianę kolumny a_j na wektor $e_i=[0,\ldots,0,1,0,\ldots,0]^T$ (który na i-tym miejscu ma jedynkę, a poza tym same zera).

Macierz stowarzyszona AdjA do macierzy A:

$$AdjA = \begin{pmatrix} dA_{11} & dA_{12} & \dots & dA_{1n} \\ dA_{21} & dA_{22} & \dots & dA_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ dA_{n1} & dA_{n2} & \dots & dA_{nn} \end{pmatrix}$$

Twierdzenie: Macierz odwrotną do macierzy *A* można wyznaczyć według wzoru:

$$A^{-1} = AdjA \cdot (\frac{1}{det(A)})$$

Formy kwadratowe i ich określoność

Forma kwadratowa

Niech $x = [x_1, \dots, x_n]^T$ będzie wektorem n wymiarowym oraz niech $A = (a_{ij})$ będzie macierzą symetryczną stopnia n (wymiaru $n \times n$). Odwzorowanie $x \to x^T A x = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ nazywamy formą kwadratową

Macierz symetryczna A jest

dodatnio określona: $x^TAx > 0$ dla każdego $x \neq 0$ (piszemy A > 0) ujemnie określona: $x^TAx < 0$ dla każdego $x \neq 0$ (piszemy A < 0) niedodatnio określona: $x^TAx \leq 0$ dla każdego $x \neq 0$ (piszemy $A \leq 0$) nieujemnie określona: $x^TAx \geq 0$ dla każdego $x \neq 0$ (piszemy $A \geq 0$)

Formy kwadratowe i ich określoność

Kryterium Sylvestera

Macierz symetryczna $A = (a_{ij})$ stopnia n jest dodatnio określona wtedy i tylko wtedy, gdy wszystkie jej wiodące minory główne są dodatnie:

$$a_{11} > 0$$

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{pmatrix} > 0, \text{ dla } k = 2, \dots, n$$

Uwaga: Jeżeli chcemy sprawdzić, czy macierz jest ujemnie określona, należy sprawdzić, czy macierz "-A" jest określona dodatnio