

# Data sampling for surrogate modeling and optimization

Tyler Chang (and others)

Argonne National Laboratory

ICIAM 2023, Tokyo, Japan Aug 23, 2023

#### Outlines

Inference problems, the curse of dimensionality, and measure collapse

Modeling for high-dimensional optimization



Want to predict unknown f(x) for observation x



- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation  $\hat{f} \sim f$  based on training data  $\mathcal{X}$
- **NA**: fit an interpolant (piecewise-linear) to f on  $\mathcal{X}$



- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation  $\hat{f} \sim f$  based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data  $\Rightarrow$  better  $\hat{f}$



- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation  $\hat{f} \sim f$  based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data  $\Rightarrow$  better  $\hat{f}$
- $lackbox{\sf Real data not perfectly balanced} \Rightarrow \hat{f} 
  ightarrow f$  non-uniformly



- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation  $\hat{f} \sim f$  based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data  $\Rightarrow$  better  $\hat{f}$
- ▶ Real data not perfectly balanced  $\Rightarrow$   $\hat{f} \rightarrow f$  non-uniformly
- ▶ If we have enough data, it doesn't matter

### Some basic numerical analysis results

When  $\hat{f}$  is a piecewise linear spline:

For h "small enough" – let q be the querry point

$$|f(q) - \hat{f}(q)| \sim \mathcal{O}(h^2)$$



- $lackbox{ iny} h$  is a "mesh fineness" parameter  $\sim$  distance between points in  ${\mathcal X}$
- ightharpoonup For irregular  $\mathcal{X}$ , h could be the distance from q to the nearest neighbor in  $\mathcal{X}$
- lacktriangle Constants proportional to the Lip constant of  $\nabla f$



### Some basic numerical analysis results

When  $\hat{f}$  is a piecewise linear spline:

For h "small enough" – let q be the querry point

$$|f(q) - \hat{f}(q)| \sim \mathcal{O}(h^2)$$



- $lackbox{ iny} h$  is a "mesh fineness" parameter  $\sim$  distance between points in  ${\mathcal X}$
- For irregular  $\mathcal{X}$ , h could be the distance from q to the nearest neighbor in  $\mathcal{X}$
- lacktriangle Constants proportional to the Lip constant of  $\nabla f$



# Some basic deep learning

- ▶ Train a fully-connected multi-layer perceptron (MLP) using X
- ► The most popular activation function is ReLU (piecewise linear)
- ► In modern ML, train as close to zero error as possible (interpolate)

# Some basic deep learning

- ► Train a fully-connected multi-layer perceptron (MLP) using X
- ► The most popular activation function is ReLU (piecewise linear)
- ► In modern ML, train as close to zero error as possible (interpolate)



### The curse of dimensionality



10 training points in 1D



10 training points in 2D



### The curse of dimensionality no data



Need data in all quadrants?

### The curse of dimensionality no data



Need data in all quadrants?

- ▶ Inference in 2D :  $2^2 = 4$
- ▶ Inference in 10D :  $2^{10} \approx 1000$
- ▶ Inference in  $100\text{D}:2^{100}\approx 10^{30}$  (orders of magnitude bigger than exascale)
- ► Many ML problems : inference in 1000+ dimensions

### Measure collapse

Can we still make good predictions where we do have data?

#### Measure collapse

Can we still make good predictions where we do have data?

No, because we have no data anywhere

We measure where we *might* have enough data to make a prediction using the "convex hull" of the training data  $CH(\mathcal{X})$ 

#### Measure collapse

Can we still make good predictions where we do have data?

#### No, because we have no data anywhere

We measure where we *might* have enough data to make a prediction using the "convex hull" of the training data  $CH(\mathcal{X})$ 

If  $\mathcal X$  are sampled from any distribution,  $\mu(\mathit{CH}(\mathcal X)) o 0$  exponentially as d grows

This is called a concentration of measure

Gorban and Tyukin, Stochastic separation theorems. Neural Networks 94, pp. 255-259 (2017).



### Example

Suppose that we uniformly sample  $x = (x_1, x_2, ..., x_d)$  from  $[0,1]^d$ 

$$\|x - \frac{1}{2}\|_2^2 = \sum_{i=1}^d (x_i - \frac{1}{2})^2.$$

$$\mathbb{E}\left[\left(x_i - \frac{1}{2}\right)^2\right] = \int_0^1 \left(u - \frac{1}{2}\right)^2 du = \frac{1}{12}$$

with finite variance v

By CLT for all  $x \in \mathcal{X}$ :  $\mathbb{E}[\|x - \frac{1}{2}\|_2^2] = \frac{d}{12}$  with variance  $\frac{v}{d} \to 0$  as  $d \to \infty$ .

### Collapse of some common distributions



Garg, Chang, and Raghavan, Stochastic optimization of Fourier coefficiencts to generate space-filling designs. To appear in Winter Sim 2023,

### Representation learning solution

"There's more to machine learning than function approximation"

### Representation learning solution

#### "There's more to machine learning than function approximation"

ightharpoonup f is often highly structured – MLPs with nothing else are from the 60s



 $28 \times 28$  pixels  $\neq 784$  dimensions...

### Modern deep learning pipeline



# Hope in context of optimization



### Global modeling is harder than optimization

For optimization, only need model accuracy near the solution...

- Global modeling is significantly harder than optimizing
- ▶ To build a *globally accurate model* over *n* variables, need  $\mathcal{O}(2^n)$  samples
- ▶ To build a *locally accurate model* over n variables, need O(n) samples

### Global optimization

In global optimization literature...

- ▶ Balance exploration vs. exploitation
- ▶ Drive *global model error* to zero
- ▶ Need exponentially many samples to guarantee global convergence

Guarantees convergence for problems with thousands of local minima





### Local optimization

- Only exploit maybe multi-start or large initial search
- Fit a model that is *locally accurate* 
  - ► Sample requirement grows only linearly with dimension
- Modification is as simple as putting a trust-region around interesting points



#### Local optimization

- Only exploit maybe multi-start or large initial search
- ► Fit a model that is *locally accurate* 
  - Sample requirement grows only linearly with dimension
- Modification is as simple as putting a trust-region around interesting points



#### **ParMOO**



Written in Python

Version 0.3.0 is now available on available on pip, conda-forge, and GitHub







https://github.com/parmoo/parmoo

https://parmoo.readthedocs.io

Chang and Wild. ParMOO: A Python library for parallel multiobjective simulation optimization. JOSS 8(82):4468 (2023).

