Model Question Paper

Subject Code: CS/IT/CM-211 (R20)

R.V.R. & J.C. College of Engineering, Guntur – 522019

(Autonomous)

B.Tech. Semester-III [Second Year] Degree Examination Probability and Statistics

Time: Three hours Max. Marks: 70

All questions carry equal marks

Answer Question No.1 compulsorily. $(14 \times 1 = 14M)$ Answer ONE Question from each unit. $(4 \times 14 = 56M)$

1.	Ansv		Blloom's	
				Taxonomy
				Level
	(a)	Write the probability distribution of getting a head in tossing of 2	CO1	II
		fair coins.		
	(b)	For Poisson variate X find P(X=3) with its mean=4.8	CO1	I
	(c)	If is a normal variate with mean 30 and standard deviation 5 then	CO1	Ι
		find P(X>25)		
	(d)	Write the mean and variance of Uniform distribution	CO1	III
	(e)	Define interval estimation	CO2	III
	(f)	Define null hypothesis	CO2	I
	(g)	Define type I error	CO2	I
	(h)	What do you mean by degrees of freedom	CO2	II
	(i)	Write test statistic for single proportion	CO3	I
	(j)	Define F-test.	CO3	Ι
	(k)	Define Run	CO3	III
	(1)	Write the test statistic for Sign-test.	CO4	I
	(m)	Define time series	CO4	I
	(n)	Define trend	CO4	I

UNIT-I

2.	(a)	The proba	The probability mass function of a random variable X is									III
		X:										
		P(X):										
		(i) Find	k (ii) Ev									
	(b)	An agricu	7M	CO1	II							
		shipped o	out are ri	pe and r	eady to	eat. Find	the prob	abilities	that			
		among 18			* *							
		(i) all 18 are ripe and ready to eat										
		(ii) at least 16 are ripe and ready to eat										
		(iii)	at mos	st 14 are	ripe and	l ready to	o eat					

(OR)

3.	(a)	The time for a super glue to set can be treated as a random	7M	CO1	III
----	-----	---	----	-----	-----

	variable having a normal distribution with mean 30 seconds. Find its standard deviation if the probability is 0.20 that it will take on a value greater than 39.2 seconds.			
(b)	If a random variable has the gamma distribution with $\alpha = 2$ and β	7M	CO1	III
	= 2, find the probability that the random variable will take on a value less than 4.			

UNIT-II

4.	(a)	A population consists of the four members 2, 3, 4, 5. Consider all	7M	CO2	II
		possible samples of size two that can be drawn with replacement			
		from this population. Find (i) The population mean.			
		(ii) The population standard deviation.			
		(iii) The mean of the sampling distribution of means.			
		and (iv) The standard deviation of the sampling distribution of			
		means.			
	(b)	A random sample of size 100 is taken from an infinite population	7M	CO2	II
		with mean $\mu = 76$ and variance $\sigma^2 = 256$. What is the probability			
		that the sample mean will lie between 75 and 78.			

(OR)

5.	(a)	The specifications for a certain kind of ribbon call for a mean breaking strength of 180 pounds. If five pieces of the	7M	CO2	V
		ribbon(randomly selected from different rolls) have a mean breaking strength of 169.5 pounds with a standard deviation of 5.7			
		pounds, test the null hypothesis $\mu = 180$ pounds against the			
		alternative hypothesis μ < 180 pounds at the 0.01 level of			
		significance. Assume normality.			
	(b)	An investigation of two kinds of photocopying equipment showed	7M	CO2	II
		that 71 failures of the first kind of equipment took on the average of			
		83.2 minutes to repair with a standard deviation of 19.3 minutes,			
		while 75 failures of the second kind of equipment took on the			
		average of 90.8 minutes to repair with a standard deviation of 21.4			
		minutes. Test the null hypothesis of equality of two means at the			
		level of significance $\alpha = 0.05$.			

UNIT-III

	6.	(a)	Use the 0.01 level of significance to test the null hypothesis that $\sigma =$	7M	CO3	II
			0.015 inch for the diameters of certain bolts against the alternative			
			hypothesis that $\sigma \neq 0.015$ inch, given that a random sample of size			
			15 yielded $S^2 = 0.00011$.			
Ī		(b)	It is desired to determine whether there is less variability in the	7M	CO3	II
			silver plating done by company 1 than in that done by company 2. If			
			independent random samples of size 12 of the two companies work			
			yield S_1 = 0.035 mil and S_2 = 0.062 mil, test the null hypothesis			

		$ \sigma_1 ^2 = \sigma_2^2$ against the alternative hypothesis $\sigma_1^2 < \sigma_2^2$ at the 0.05 level							
		of significance.							
	(OR)								
7.	(a)	An airline claims that only 6% of all lost luggage is never found. If,	7M	CO3	VI				
		in a random sample, 17 of 200 pieces of lost luggage are not found,							
		test the null hypothesis $p = 0.06$ against the alternative hypothesis							
		p > 0.06 at the 0.05 level of significance.							
	(b)	A study shows that 16 of 200 tractors produced on one assembly	7M	CO3	VI				
		line required extensive adjustments before they could be shipped,							
		while the same was true for 14 of 400 tractors on another assembly							
		line. At the 0.01 level of significance, does this support the claim							
		that the second production line does superior work?							

UNIT-IV

8.	(a)	The breaking strength (in pounds) of a random sample of 10 ropes made by a manufacturer is given by 163 165 165 160 171 158 151 162 169 172 Use the sign test to test the manufacturer's claim that the average breaking strength of a rope is greater than 160 pounds at 5% level of significance.	7M	CO4	II
	(b)	A sequence of Heads (H) and Tails (T) in tossing of a coin 16 times is given below: HTTTHTHTHTHTHHH (i) Count the number of runs. (ii) Test whether the Heads and Tails occur in random order.	7M	CO4	V

(OR)

9.	(a)	The follow	ing dat	a repres	sents the	e weigh	t in Kg	s of a p	ersonal		7M	CO4	V
		luggage carried in an aircraft by the members of two baseball clubs											
		Club A 34 39 41 28 33											
		Club B	36	40	35	31	39	36					
		Use U-test	t to test	the hyp	othesis	that th	e two c	lubs car	rry sam	e			
		amount of	the lugg	gage at	0.05 le	vel of s	ignifica	nce					
	(b)	Fit a trend	line to	the follo	owing d	lata an	d estima	ate the	sales in	the	7M	CO4	I,II
		year 2022											
		Year	2014	2015	2016	2017	2018	2019	2020	2021			
		Sales	62	64	66	63.5	67	64.5	69	67			
		(in Rs.)											

Signature of the Paper setter