Let
$$f_n(x) = \frac{1}{n^3[x-(1/n)]^2+1}$$

Let $f:R \to R$ by $f(x) = 0$

a) show that $f_n(x) \to 0$ for each xell we see that $f(0) = \frac{1}{n^3(-\frac{1}{2}n^3+1)} = \frac{1}{n+1}$

and that $[x-1]^2$ increases as $x goes$

We see that $f(0) = \frac{1}{n^3(-\frac{1}{n^2+1})} = \frac{1}{n+1}$ and that [x-1/2] increases as x goes

and that
$$[x-h]^2$$
 increases as $x goes$ from zero to minus of thus

 $f(x) \leq \frac{1}{n+1} for x>0$ so clearly $f(x) \to 0$

 $\forall x \leq 0$. We also see that $f_n(\frac{2}{n}) = \frac{1}{n+1}$

and $f_n(x) \leq \frac{1}{n+1}$, $f_n(x) \geq \frac{2}{n}$

thus for $\varepsilon > 0$, $t \times \varepsilon$ 0 let n, be s, t $\frac{2}{n} < x$ $\frac{2}{n} < x$

then fr(x) < E when n Z N m b) f_n(h)=1 + n so f_n +>0