MATH 307: Individual Homework 2

Shaochen (Henry) ZHONG, sxz517@case.edu

Due and submitted on 02/10/2021 Spring 2021, Dr. Guo

Problem 1

Prove that Q(x), the set of all polynomials with rational coefficients with the regular polynomial multiplication and addition is a ring.

For the simplicity of discussion, let's assume we have $f, g, k \in Q(x)$ with $f = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$, $g = b_0 + b_1x + b_2x^2 + \dots + b_nx^n$, and $k = c_0 + c_1x + c_2x^2 + \dots + c_jx^j$. We have (Q(x), +, 0) to be an Abelian group as:

- It is a closure as for $f + g = a_0 + b_0 + a_1 x + b_1 x + ... + a_m x^m + b_n x^n$ is also a polynomial with rational coefficient and therefore also $\in Q(x)$.
- It shows associativity as for $f, g, k \in Q(x), f + (g + k) = (f + g) + k$.
- It has the (additive) identity of 0 for f + 0 = f.
- It has the inverse of -f as f + (-f) = 0.
- It also shows commutativity with f + g = g + f.

On the other hand we have $(Q(x), \times, 1)$ to be a monoid as:

- It is a closure as we have $f \cdot g = a_0b_0 + a_1b_1x^2 + ... + a_mb_nx^{mn}$ to be a polynomial with rational coefficient and therefore also $\in Q(x)$.
- It shows associativity as for $f, g, k \in Q(x), f \cdot (g \cdot k) = (f \cdot g) \cdot k$.
- It has the (multiplicative) identity of 1 for $f \cdot 1 = f$.

Now to check the distributive property, for $f \cdot (g+h)$ we have $a_0b_0 + a_1b_1x^2 + ... + a_mb_nx^{mn} + a_0c_0 + a_1c_1x^2 + ... + a_mc_jx^{mj} = (f \cdot g) + (f \cdot h)$. So the distributive property is proven and $(Q(x), +, \times)$ is therefore a ring.

Problem 2

Is \mathbb{Z} , the set of integers with the usual addition and multiplication, a field? Justify your answer.

 $(\mathbb{Z},+,\times)$ is not a field. First it is clear that $(\mathbb{Z},+,0)$ is supposed to be the Abelian group and $(\mathbb{Z},\times,1)$ is supposed to be the commutative monoid – as we can't have a multiplicative inverse for every integers $\in \mathbb{Z}$. Which implies for $(\mathbb{Z},+,\times)$ to be a field, it is required that every element in \mathbb{Z} which is not the additive inverse (0) to have an inverse with respect to \times . But the only multiplicative inverse that are $\in \mathbb{Z}$ are -1 and 1. Say if we have 2, which is an integer that is not 0, but we can't have its multiplicative inverse $\frac{1}{2}$ to be $\in \mathbb{Z}$. Thus, $(\mathbb{Z},+,\times)$ is not a field.