CS229: Machine Learning

Junchuan Zhao

May 17, 2022

Abstract

This document includes my notes of CS229: Machine Learning.

Lecture 2 1

Linear Regression

Hypothesis: $h(x) = \sum_{j=0}^{n} \theta_j x_j$ (n: number of features)

Linear Regression: the hypothesis is the linear combination of the training dataset.

Loss function (goal): $\min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$

Parameters: θ , m, n, x, y

1.2 Gradient Descent

Batch Gradient Descent

Basic Ideas: start with some θ , keep changing θ to reduce $J(\theta)$, repeat until convergent

 $\begin{array}{l} \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \ (\alpha : \ \text{learning rate}) \\ \frac{\partial}{\partial \theta_j} J(\theta) = (h_\theta(x) - y) \cdot x_j \end{array}$

 $\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x)^i - y^i) \cdot x_j^i \ (\alpha: \text{ learning rate})$

Batch Gradient Descent: all the training data as a batch when optimizing the loss function. (-): not good for large scale dataset, very expensive.

1.2.2 Stochastic Gradient Descent

Algorithm 1 Stochastic Gradient Descent

Require: the parameter of j^{th} feature

Ensure: the updated parameter of j^{th} feature

1: for i = 1 to m do

 $\theta_j := \theta_j - \alpha \cdot (h_\theta(x)^i - y^i) \cdot x_j^i;$

3: end for

stochastic gradient descent heads over to the global optimum.

1.2.3 Total Equations

A Total Equation for Stochastic Gradient Descent: $\nabla_{\theta} J(\theta) = \mathbf{0}$

If A is square $(A \in \mathbb{R}_{n \times n})$

Trace of A:
$$tr(A) = \sum_{i} A_{ii}$$

Features of Trace:

- $tr(A) = tr(A^T)$
- $f(A) = tr(AB), \nabla_A f(A) = B^T$
- tr(AB) = tr(BA)
- tr(ABC) = tr(CAB)
- $\nabla_A tr(AA^TC) = CA + C^TA$

Loss Function: $\nabla_{\theta}J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$ $= \frac{1}{2}(\theta^TX^T - y^T)(X\theta - y)$ $= \frac{1}{2}(\theta^TX^TX\theta - \theta^TX^Ty - y^TX\theta)$ $= X^TX\theta - X^Ty$ Loss Function: $X^TX\theta - X^Ty = \mathbf{0} \iff X^TX\theta = X^Ty$ $\theta = (X^TX)^{-1}X^Ty$

2 Lecture 3

2.1 Locally Weighted Regression

"Parametric" learning algorithm: fit fixed set of parameters (θ_i) to data.

"Non-parametric learning algorithm": amount of data/parameters you need to keep grows (linearly) with the size of data.

Linear Regression: to evaluate h at certain x

Fit θ to minimize

$$\frac{1}{2} \sum_{i} (y^i - \theta^T x^i)^2,$$

return $\theta^T x$

Linear Regression: to evaluate h at local region of x

Fit θ to minimize

$$\sum_{i} w^{i}(y^{i} - \theta^{T}x^{i})^{2}$$
, where w^{i} is a "weight function".

common choice for w^i is $w^i = e^{\left(-\frac{(x^i-x)^2}{2\tau^2}\right)}$

If $|x^i - x|$ is small, then $w^i \approx 1$.

If $|x^i - x|$ is large, then $w^i \approx 0$.

 τ : bandwidth, control a larger or narrower window.

2.2 Why Square Error?

Assume $y^i = \theta^T x^i + \epsilon^i$, where $\epsilon^i \sim N(0, \sigma^2)$ models effects of random noise $p(y^i|x^i;\theta) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y^i-\theta^Tx^i)^2}{2\sigma^2}}$ $\iff y^i|x^i;\theta \sim N(\theta^Tx^i,\sigma^2)$

Difference between Likelihood (L) and Probability (P): L variess parameters, P varies datapoints. Assume the datapoints are IID,

The "likelihood" of
$$\theta$$
: $L(\theta) = p(\boldsymbol{y}|\boldsymbol{x};\theta) = \prod_{i=1}^{m} p(y^{i}|x^{i};\theta)$

Assume the datapoints are HD, The "likelihood" of
$$\theta$$
: $L(\theta) = p(\boldsymbol{y}|\boldsymbol{x};\theta) = \prod_{i=1}^{m} p(y^{i}|x^{i};\theta)$
$$l(\theta) = \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{(\cdots)} = \sum_{i=1}^{m} [\log \frac{1}{\sqrt{2\pi}\sigma} + \log e^{(\cdots)}]$$

$$= m \log \frac{1}{\sqrt{2\pi}\sigma} - \sum_{i=1}^{m} \frac{(y^{i} - \theta^{T} x^{i})^{2}}{2\sigma^{2}}$$

MLE: maximum likelihood estimation. Choose θ to maximize $L(\theta)$

i.e. choose
$$\theta$$
 to minimize $\frac{1}{2} \sum_{i=1}^{m} (y^i - \theta^T x^i)^2$, which is actually $J(\theta)$