

南京拓微集成电路有限公司

DATASHEET

(TP7660H 电压反转器)

1

TP7660H 电荷泵电压反转器

产品简介:

TP7660H 是一款 DC/DC 电荷泵电压反转器专用集成电路。芯片能将输入范围为 2.5V~11V 的电压转换成相应的-2.5V~-11V 的输出,并且只需外接两只电容,无需电感,降低了损耗、面积及电磁干扰。该芯片的无负载电流小、驱动能力强(较国外同类产品大 50%)。产品特点:

• 输入工作电压范围广: 2.5V~11V• 电压转换精度高: 99.9%• 电源转换效率高: 98%

低功耗: 无负载电流为 40uA (输入 5V 时)
输出电阻小: 50Ω (输入 5V 时)
外围元器件少,便于使用: 只需两只外接电容

• 静电击穿电压高: 可达 3KV

• SOP-8 封装

管脚顺序及描述:

引脚号	符号	引脚描述			
1	NC	无连接(建议接地)			
2	CAP+	外接电容+			
3	GND	地线			
4	CAP-	外接电容-			
5	VOUT	输出			
6	NC	无连接(建议接地)			
7	OSC	振荡器外接电容			
8	VDD	输入电压			

功能块方框图:

典型应用电路:(应用中建议客户1、6脚接地)

极限参数:

电源电压 11.5V 功耗 SOP-8 470mW

工作温度 T_A -40℃~125℃

导线焊接温度(10秒) 260℃

电特性:

(T_A=25℃,V_{DD}=5V 除非特别说明)

符号	参数	测试条件	最小	典型	最大	单位
V_{DD}	电源电压		2.5		11	V
I_Q	无负载电流	$R_L = \infty$		40	60	uA
R_{OUT}	输出电阻	$I_{OUT}=10mA$		50		Ω
Fosc	振荡频率	管脚7开路		10		KHz
P_{EFF}	电源效率	$R_L=5K \Omega$	95	98		%
$V_{\text{OUT}}E_{\text{FF}}$	转换精度	$R_L = \infty$	98	99.9		%

特性曲线:

输出电阻 VS 输入电压

输出电阻 VS 负载电流(Vdd=5V)

输出电压 VS 负载电流 (Vdd=10V)

电源效率 VS 负载电流(Vdd=10V)

电路并联:

若要降低输出电阻可采用将 TP7660 芯片并联的形式,如下图:

ROUT(单芯片的) 输出电阻近似为:———— n(并联芯片数)

电路级联:

若要生成较高的输出负电压,可采用芯片级联的形式,如下图:

由于单个芯片的电源效率有限,实际应用中级联的芯片数也是有限的。此种情况下,输出电阻近似为每个芯片阻值的 n 倍(n 为级联芯片数)。

调节 TP7660 频率:

若需提高振荡器的频率可以接入一外部时钟进行过激励,如下图:

需要注意的是,外部时钟的输出端应接 $1K\Omega$ 的电阻以防自锁。此外由于内部电路结构,电荷泵频率大小为激励时钟频率的一半。

若要提高电路的转换效率也可适当地降低振荡频率,在7、8脚间接一电容,如下图:

此时开关损耗减少。不过,随着频率的降低泵电容和存储电容的阻抗必将增高,所以需以频率降低的倍数为乘数来提高 C1, C2 的值。

倍压电路:

基于此结构,可得到能同时获得倍压与反压的应用电路,如下图:

在此图中, C1,C3 分别是负电压电路的泵电容与存储电容, C2,C4 分别是倍压电路的泵电容与存储电容。输入电压为+5V 时,可同时得到+9V 与-5V 的输出电压。

封装结构:

