

Unsupervised Classification of vibro-acoustic signals based on machine learning Forschungspraxis

Zhen Zhou

Supervisor:

Norbert Kolotzek

Prof. Dr.-Ing. B. Seeber

Munich, 9. February 2021

Motivations

- 44 spectral & temporal features of measurements (Dec. 2019 -Apr. 2020)
- Currently, features labeled manually

- 1) Can we classify the vibro-acoustic signals based on unsupervised learning?
- 2) Can we extract information about the machine state or abnormal behavior from the measurements?

Main idea

1. Data Preprocessing for Artificial Neural Networks

- 2. AutoEncoder ANN
 - Self-Supervised Learning Not dependent on labels
 - Implement data compression
- 3. Clustering algorithm Unsupervised Learning
 - DBSCAN
 - K-Means
 - (GMM Actually not performing well in this case)

Data Preprocessing

- Data structure
 - 1 recording lasts 8 minutes every 90 Minutes
 - Each file split into 319 blocks. (3 sec with 50% overlap)
 - Extraction of 44 features in each block
 - Total of 559845 data analyzed.

- Data reduction
 - Because of redundant information & noise
 - Decide to select randomly 1 block in each recording
 - Current dimension: (1755, 44)

Features Selection

- Compare the correlation of the data
 - 0.8<=|r|<1: high correlation;
 - 0.3<=|r|<0.8: middle correlation
 - Here threshold = 0.6 (retain the appropriate number of columns)
- Current dimension: (1755, 15)
- The correlation heatmap as shown -->

Features Selection

Delete noisy features

According to the data visualization, the following two columns will

be deleted.

Features Selection

Remained features ->

Current dimension:(1755, 13)

Data Preprocessing for ANN

- PCA Principal component analysis
 - Choose first 10 components, which can express 94% of the variance.
 - Function: Reduce the dimensions; Remove the noise; Remove redundant information
- Data standardization
 - Linearly map each dimension feature to the specified interval, [0, 1]
 - The value range of ReLU activation function is [0, 1]
- Current dimension: (1755, 10)

AutoEncoder

- Explanation: Encoder & Decoder
 - Self-Supervised Learning Not dependent on labels
 - Implement data compression
- Application:
 - Dimensionality reduction
 - Anomaly detection
- Only choose 'Code' Area
- Realize unsupervised dimensionality reduction

AutoEncoder

Decoder

- Encoder:
 - input_4: (, 10)
 - dense_13: (, 8)
- Code:
 - dense 14: (, 3)
- Decoder:
 - dense 15
 - dense 16
- Current dimension: (1755, 3)

Model: "model_7"		
Layer (type)	Output Shape	Param #
input_4 (InputLayer)	(None, 10)	0
dense_13 (Dense)	(None, 8)	88
dense_14 (Dense)	(None, 3)	27
dense_15 (Dense)	(None, 8)	32
dense_16 (Dense)	(None, 10)	90

Encoder

Total params: 237

AutoEncoder

- Output from Encoder:
 - (1755, 10) --> (1755, 3)
 - Distribution of reduced data

Clustering - DBSCAN

- Explanation
 - Density-based clustering algorithm
 - Divide areas with sufficiently high density into clusters
 - Performs well in noisy spaces
- Algorithm Description:
 - Input: database containing n objects, radius e, minimum number MinPts;
 - Output: All generated clusters meet the density requirement.

Clustering - DBSCAN

Parameters: radius e=0.3; MinPts = 5

Clustering - DBSCAN

- Plot the result for classification
 - Label -1: abnormal behavior
- The bottom row corresponds to the original data index
- Only observe abnormal situations
- But no temporal in/decrease for heath status

- Explanation
 - Distance-based clustering algorithm
 - Fast calculation speed
- Algorithm Description:
 - According to a certain distance function repeatedly divide the data into k clusters
 - Need to specify the number of clusters

Taken from: https://zhuanlan.zhihu.com/p/37875887 (checked on: 05.02.2021)

Parameters: Num_cluster=10

- Plot the result for classification
 - Some labels: abnormal behavior
 - Others need further analysis

Plot: How often are the clusters chosen over time?

• Health state 15.0

Abnormal

Summary / Conclusion

Transforming wealth of features (high dimensionality) to meaningful low dimensionality

Detecting critical / abnormal behavior

 After clustering increase or decrease on occurrence could be used as a prediction for health status