Δεύτερη εργασία στο μάθημα Αρχές Γλωσσών Προγραμματισμού "Πλησιέστερα σημεία (Python vs Haskell)"

Γκόγκος Χρήστος Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστημίου Ιωαννίνων

Άρτα, Μάιος 2024

Εισαγωγή

Έστω ένα πλήθος σημείων στον τρισδιάστατο χώρο για τα οποία γνωρίζουμε τις συντεταγμένες τους (3 πραγματικές τιμές για κάθε σημείο). Ζητείται η ταξινόμηση των σημείων σε αύξουσα σειρά απόστασης από ένα σημείο και η καταγραφή των αποτελεσμάτων σε αρχείο.

Περιγραφή του προβλήματος

Τα σημεία που θα χρησιμοποιηθούν ως είσοδος του προβλήματος βρίσκονται στα ακόλουθα αρχεία εισόδου:

- 1. input1000.txt
- 2. input10000.txt
- 3. input100000.txt
- 4. input1000000.txt

Κάθε γραμμή των αρχείων εισόδου αναπαριστά ένα σημείο με την πρώτη τιμή να αφορά το x, τη δεύτερη τιμή το y και την τρίτη τιμή το z του σημείου. Για παράδειγμα οι 5 πρώτες σειρές του αρχείου input1000.txt είναι οι ακόλουθες:

```
55.4713285 33.9651119 -80.1720792 -29.4058978 -6.4184514 6.9367483 95.6618122 -73.9369300 34.2486936 -27.1541168 -2.2328586 -59.3975579 33.2396751 -54.4673938 -8.3871883
```

Κατεβάστε τα αρχεία εισόδου από το inputs.zip¹.

Ζητούμενα

Ζητείται η ανάπτυξη 3 προγραμμάτων που θα διαβάζουν την είσοδο, και θα ταξινομούν τα σημεία σε αύξουσα σειρά απόστασης από το σημείο (0,0,0). Η (ευκλείδια) απόσταση ενός σημείου με συντεταγμένες x_1, y_1, z_1 από ένα άλλα σημείο με συντεταγμένες x_2, y_2, z_2 δίνεται από τον ακόλουθο τύπο.

https://github.com/chgogos/dituoi_ARCHES_GLOSSON_PROGRAMMATISMOU/blob/main/docs/assignments/ 2024_4/inputs.zip

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

Η ταξινόμηση να γίνεται χρησιμοποιώντας τον αλγόριθμο quicksort² (με δική σας υλοποίηση) και η έξοδος να καταγράφεται σε αρχείο.

Να γραφούν 3 προγράμματα, το πρώτο σε Python, το δεύτερο σε Python με χρήση της βιβλιοθήκης NumPy και το τρίτο σε Haskell. Συγκρίνατε τους χρόνους εκτέλεσης για τα 12 συνολικά τρεξίματα (4 είσοδοι × 3 υλοποιήσεις) που θα κάνετε και συντάξτε μια τεχνική αναφορά που με πίνακες και γραφήματα να παρουσιάζει τα αποτελέσματα. Η τεχνική αναφορά να περιέχει και στοιχεία για το υλικό (π.χ. επεξεργαστή, μνήμη RAM, μονάδα δευτερεύουσας αποθήκευσης) και το λογισμικό που χρησιμοποιήθηκε (π.χ. λειτουργικό σύστημα, εκδόσεις Python, NumPy, Haskell).

Υποβολή εργασίας

- Προθεσμία υποβολής εργασίας: 31/05/2024 (Πέμπτη).
- Η εργασία μπορεί να υποβληθεί μόνο στο ecourse https://ecourse.uoi.gr/course/view.php?
 id=1945.
- Η εργασία είναι ατομική.
- Παραδοτέα (σε ένα zip αρχείο):
 - Τεχνική αναφορά 2-3 σελίδων (1 αρχείο pdf).
 - Κώδικας (αρχεία .py και .hs που να διαβάζουν τα αρχεία εισόδου από τον τρέχοντα φάκελο).
 - Οδηγίες μεταγλώττισης και εκτέλεσης για κάθε πρόγραμμα σε αρχείο README.TXT.
 - Προσοχή, μην συμπεριλάβετε στην υποβολή σας τα αρχεία εισόδου, δηλαδή τα αρχεία input*.txt.

 $^{^2} https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort$