Software Construction and User Interface (SE/ComS 319)

Ali Jannesari

Department of Computer Science lowa State University, Fall 2018

USER INTERFACES

Outline

- User interfaces
- Design principles for user interfaces
- User interfaces construction

- User interface: Way by which end-users will interact with your software
- Should take into consideration users' expectations, experience and skills
- Bad interface → low usability

- Human errors have been correlated to the usability of user-interface (J. Galliers and et al, ACM TCHI).
 - Confirmation dialog box:

- Examples of excellent UI:
 - AirBnB, DropBox, ...

- Examples of poor UI
 - IBM Lotus Notes
 - Windows 8,...

Use of a visible language

- Layout
- Typography: selection of typefaces and typesetting, including variable width and fixed width
- Color and Texture
- Imagery
- Sequencing
- Sound
- Visual identity: the additional, unique rules that lend overall consistency to a user interface

Use of a visible language (2)

- Organize: provide the user with a clear and consistent conceptual structure
 - Consistency, screen layout, relationships and navigability
- Economize: do the most with the least amount of cues
 - Simplicity, clarity, distinctiveness, and emphasis
- Communicate: match the presentation to the capabilities of the user.
 - In order to communicate successfully keep in balance legibility, readability, typography, symbolism, multiple views, and color/texture.

Design principles for user interfaces

- Design Issues
- Design Process
- Evaluation

UI Design Issues

- Human factors
- Interaction styles (to/from the user)
 - Visualization
 - Error/warnings
 - Color
 - . . .

UI Design Issues – Human Factors

- Limited short-term memory
 - How many items of information can one remember instantaneously?
- Familiarity
 - Use terms and concepts from the domain of the application
- Consistency
 - Similar/comparable operations should be activated in the same way
- Error recovery & guidance
 - Provide meaningful, unambiguous feedback when errors occur

UI Design Issues – Interaction styles

- Obtaining information from the user
- Presenting information to the user
 - Direct Manipulation
 - Menu-based
 - Form-based
 - Natural language
 - Command language

Interaction styles – Input

- Direct manipulation
 - Advantage: Intuitive interaction
 - Disadvantage: Hard to implement, requires visual metaphor
 - Applications: Games, CAD
- Menu-based
 - Advantage: Avoids user error
 - Disadvantage: Can be slow and/or complex
 - Applications: Most systems

Interaction styles – Input

- Form-based
 - Advantage: Simple and Checkable
 - Disadvantage: Can be long
 - Applications: e-Commerce
- Natural Language
 - Advantage: easy and natural
 - Disadvantage: Natural language processing (NLP)
 - Applications: Information retrieval systems, apps
- Command-Line Language
 - For all of us: easy to implement, hard to understand/remember all commands

Interaction styles – output

Direct

Data Visualization

- Techniques for displaying large amounts of information
- May reveal relationships and/or trends of data
 - Could improve human problem-solving performance
 - Could influence Business Decisions
 - Wrong inferences!! (Risks of Visualization)

Design Process of UI

- User Analysis
 - Understand what users will do with the system
- Prototyping
 - Develop (many) prototypes
- Evaluation
 - Experiment with the prototypes

User Analysis

User Analysis

- Ask questions, show examples, explain what can (more importantly cannot) be done, . . .
 - Requirements solicitation
 - Ethnography (Observe the user at work)
- Tangible information (feedback) from user:
 - I want to control my computing device using voice commands
 - I want to control my computing device using voice commands and it must only follow my voice commands
 - I want to mind-control my computing device

Prototyping

- Provide users a direct experience with the interface
- Helps in getting users' judgment
- Simple prototypes
 - Paper + pencil (story-boards, scenarios, use-cases, etc.)
 - Digital with dummy buttons
 - e.g., Pencil Project http://pencil.evolus.vn/ (free and open-source GUI prototyping tool)
 - Digital with some functionality (e.g., scripting, visual language, etc.)

• . . .

Evaluation – Usability

- Conformance to domain-specific vocabulary
- Recognition of options
- Consistency
- Visibility of system status
- Error prevention
- Error information
- Easy recovery methods
- Precise and concise information
- Help and manuals
- Flexibility for experts

Evaluation – Usability

Designing the User Interface (Ben Shneiderman):

- 1. Strive for consistency.
- Give shortcuts to the user.
- 3. Offer informative feedback.
- 4. Make each interaction with the user yield a result.
- 5. Offer simple error handling.
- 6. Permit easy undo of actions.
- Let the user be in control.
- 8. Reduce short-term memory load on the user.

Typical UI-Design (UI Development cycle)

User interface principles – Recap

- Keep the users in mind
- Get feedback often
- Prepare multiple (progressively advanced) prototypes

Construction of User Interface (UI)

- UI allows users interact with the data
 - Manage
 - View
 - Modify
- Location of data & type of interaction
 - Stand-alone applications: data hosted on the client
 - Client-server applications
 - Data hosted on the server, user-interface and computations on the client
 - Data hosted on the server, computations on the server, user-interface on the client
 - Data hosted on the server, computations partitioned between client and server (data requested when needed or pre-fetched), user-interface on the client.

Software development process (1)

- System analysis & requirements elicitation
 - Analysis: What are the functional and non-functional requirements of the desired system?
 - Domain model: Relationship of the software with the real-world.
 - Application model: Description of application functionality.
- System design: High-level architecture of the application
 - Relationships: UML and modularization
 - Class diagrams: Organize the data (information hiding, interface specification)
 - Interface design (interactions between software modules)
- Implementation & Testing
- Deployment

Software development process (2)

- Design considers domain & data, modularization and interface
- Distinction between data, components and interface during design
 - Data design → data structures
 - Component (package) design → separation of functionalities
 - Decomposability
 - Composability
 - Understandability (Individuality)
 - Continuity (Extensibility)
 - Protection (Security)
 - Interface design → reduction of communication complexity
 - Example of interfaces in Java: JavaFX, Swing, AWT for GUI development and event-driven programming

Summary

- User interfaces
- Design principles for user interfaces
- User interfaces construction

Literature – User Interfaces

- https://www.interaction-design.org/literature/topics/uidesign
- https://blog.teamtreehouse.com/10-user-interface-designfundamentals
- http://web.cs.wpi.edu/~matt/courses/cs563/talks/smartin/i
 - nt_design.html
- Designing the User Interface (6th Edition) by Ben Shneiderman and Catherine Plaisant

