CSC 261/461 Database Systems

Eustrat Zhupa

September 30, 2018

Weak Entitities

- ► Entity without a key attribute and is
- ► identification-dependent on another entity type.
- ► A weak entity must participate in an identifying relationship type with an owner or identifying entity type
- ► Entities are identified by the combination of:
 - ► A partial key of the weak entity type
 - ► The particular entity they are related to in the identifying relationship type

Week Entities

- Example:
 - ► A DEPENDENT entity is identified by the dependent's first name, and the specific EMPLOYEE with whom the dependent is related
 - Name of DEPENDENT is the partial key
 - ► DEPENDENT is a weak entity type
 - ► EMPLOYEE is its identifying entity type via the identifying relationship type DEPENDENT_OF

Attributes of Relationships

- ► A relationship type can have attributes:
 - For example, HoursPerWeek of WORKS_ON
 - ▶ Its value for each relationship instance describes the number of hours per week that an EMPLOYEE works on a PROJECT.
 - A value of HoursPerWeek depends on a particular (employee, project) combination
 - ► Most relationship attributes are used with M:N relationships

ER Model Concepts

Cardinality

- Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1, or M:N
 - Shown by placing appropriate numbers on the relationship edges.
- Participation constraint (on each participating entity type): total or partial.
 - ► Total shown by double line, partial by single line.

ER Model Concepts

Cardinality

- Specified on each participation of an entity type E in a relationship type R
- Specifies that each entity e in E participates in at least min and at most max relationship instances in R
- ▶ Default(no constraint): min = 0, max = n (signifying no limit)
- ▶ Must have $min \le max$, $min \ge 0$, $max \ge 1$
- ► Derived from the knowledge of mini-world constraints

- ► A department has exactly one manager and an employee can manage at most one department.
 - ► Specify (0,1) for participation of EMPLOYEE in MANAGES
 - ► Specify (1,1) for participation of DEPARTMENT in MANAGES
- An employee can work for exactly one department but a department can have any number of employees.
 - ► Specify (1,1) for participation of EMPLOYEE in WORKS_FOR
 - ► Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

- ► Step 1: Mapping of Regular Entity Types.
 - ► For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
 - ▶ Choose one of the key attributes of E as the primary key for R.
 - ▶ If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.
- ► Example: We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entities in the ER diagram.
 - SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

- ► Step 2: Mapping of Weak Entity Types
 - ► For each weak entity type W in the ER schema with owner entity type E, create a relation R & include all simple attributes (or simple components of composite attributes) of W as attributes of R.
 - Also, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
 - ► The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

- ► Example: Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 - ► Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
 - ► The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

- ► Step 3: Mapping of Binary 1:1 Relation Types
 - ► For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- ► There are three possible approaches:
 - ► Foreign Key (2 relations) approach: Choose one of the relations-say S-and include a foreign key in S the primary key of T. It is better to choose an entity type with total participation in R in the role of S.
 - ▶ Merged relation (1 relation) option: An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are total.
 - ► Cross-reference or relationship relation (3 relations) option: The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.

- ► Step 4: Mapping of Binary 1:N Relationship Types.
 - ► For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
 - ► Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
 - Include any simple attributes of the 1:N relation type as attributes of S.
- ► Example: 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the figure.
 - ► For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO.

- ► Step 5: Mapping of Binary M:N Relationship Types.
 - ► For each regular binary M:N relationship type R, create a new relation S to represent R. This is a relationship relation.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
 - ► Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.
- ► Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS_ON in the relational database schema.

- ► Step 6: Mapping of Multivalued attributes.
 - ▶ For each multivalued attribute A, create a new relation R.
 - ▶ This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
 - ► The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.
- ► Example: The relation DEPT_LOCATIONS is created.
 - ► The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key-represents the primary key of the DEPARTMENT relation.
 - ► The primary key of R is the combination of {DNUMBER, DLOCATION}.

GUIDELINE 1

- ► Each tuple in a relation should represent one entity or relationship instance.
 - Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs) should not be mixed in the same relation
 - Only foreign keys should be used to refer to other entities
 - ► Entity and relationship attributes should be kept apart as much as possible.
- ▶ <u>Bottom Line</u>: Design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret.

Issues

- ► Information is stored redundantly
- Wastes storage
- Causes update anomalies
- ► Insertion anomalies
- ► Deletion anomalies
- Modification anomalies

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	
Research	5	333445555	
Administration	4	987654321	
Headquarters	1	888665555	

DEPT_LOCATIONS

Dnumber	Dlocation	
1	Houston	
4	Stafford	
5	Bellaire	
5	Sugarland	
5	Houston	

Redundancy EMP DEPT Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn Smith, John B. 123456789 1965-01-09 731 Fondren, Houston, TX Research 333445555 Wong, Franklin T. 333445555 1955-12-08 638 Voss, Houston, TX 5 Research 333445555 Zelava, Alicia J. 999887777 1968-07-19 3321 Castle, Spring, TX 4 Administration 987654321 Wallace, Jennifer S. 987654321 1941-06-20 291 Berry, Bellaire, TX 4 Administration 987654321 Naravan, Ramesh K. 666884444 1962-09-15 975 FireOak, Humble, TX 5 Research 333445555 English, Joyce A. 453453453 1972-07-31 5631 Rice, Houston, TX 5 Research 333445555 Jabbar, Ahmad V. 987987987 1969-03-29 980 Dallas, Houston, TX 4 Administration 987654321 Borg, James E. 888665555 1937-11-10 450 Stone, Houston, TX Headquarters 888665555 1

		Redundancy	Redunda	ıncy	
EMP_PROJ	MP_PROJ				
Ssn	Pnumber	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

Guideline 2

- Design a schema that does not suffer from the insertion, deletion and update anomalies.
- ▶ If there are any anomalies present, then note them so that applications can be made to take them into account.

Guideline 3

- ► Relations should be designed such that their tuples have as few NULL values as possible
- ► Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- ► Reasons for nulls
 - Attribute not applicable or invalid
 - Attribute value unknown (may exist)
 - ► Value known to exist, but unavailable

(b) EMP_LOCS

Ename	Plocation	
Smith, John B.	Bellaire	
Smith, John B.	Sugarland	
Narayan, Ramesh K.	Houston	
English, Joyce A.	Bellaire	
English, Joyce A.	Sugarland	
Wong, Franklin T.	Sugarland	
Wong, Franklin T.	Houston	
Wong, Franklin T.	Stafford	
Zelaya, Alicia J.	Stafford	
Jabbar, Ahmad V.	Stafford	
Wallace, Jennifer S.	Stafford	
Wallace, Jennifer S.	Houston	
Borg, James E.	Houston	

EMP_PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

	Ssn	Pnumber	Hours	Pname	Plocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
٠	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
٠	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
٠	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
٠	333445555	2	10.0	ProductY	Sugarland	Smith, John B.
*	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
	333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K.
	333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
	333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.
×	333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K.
	333445555	20	10.0	Reorganization	Houston	Wong, Franklin T.

GUIDELINE 4

- ► The relations should be designed to satisfy the *lossless* join condition.
- No spurious tuples should be generated by doing a natural-join of any relations.
- Avoid relations that contain matching attributes that are not (foreign key, primary key) combinations

