nr albumu: 347208 str. 1/4 Seria: 4

Zadanie D1

$$\begin{aligned} &\text{Oznaczmy } A_n = \sum_{k=n(n-1)/2+1}^{n(n+1)/2} \frac{1}{k} = \sum_{k=1}^n \frac{1}{n(n-1)/2+k}. \\ &\text{Zauważmy, } \dot{\textbf{z}} e \, A_n - A_{n+1} = -\frac{1}{(n+1)(n+2)/2} + \sum_{k=1}^n \left(\frac{1}{n(n-1)/2+k} - \frac{1}{n(n+1)/2+k} \right) = -\frac{1}{(n+1)(n+2)/2} + \sum_{k=1}^n \frac{n(n+1)/2+k-n(n-1)}{(n(n-1)/2+k)(n(n+1)/2+k)} \\ &\text{Stąd jednak } |A_n - A_{n+1}| \leqslant \frac{1}{(n+1)(n+2)/2} + \sum_{k=1}^n \frac{n+2k}{(n(n-1)/2+k)(n(n+1)/2+k)} \leqslant \frac{1}{(n+1)(n+2)/2} + \sum_{k=1}^n \frac{n+2n}{(n(n-1)/2)^2} = \frac{1}{(n+1)(n+2)/2} + \frac{3n^2}{(n(n-1)/2)^2}. \end{aligned}$$

 $\frac{1}{(n+1)(n+2)/2} + \frac{3n^2}{(n(n-1)/2)^2}.$ Jednak jak łatwo widać, oba te wyrazy są funkcjami wymiernymi stopnia -2, zatem asymptotyczne kryterium porównawcze da nam, że ponieważ szereg $\sum_{n} \frac{1}{n^2}$ jest zbieżny, to szereg $\sum_{n} |A_{2n-1} - A_{2n}|$ jest zbieżny, zatem zbieżny jest szereg $\sum_{n} (A_{2n-1} - A_{2n})$.

Zauważmy ponadto, że $0 \leqslant A_n = \sum_{k=1}^n \frac{1}{n(n-1)/2+k} \leqslant \sum_{k=1}^n \frac{1}{n(n-1)/2} = \frac{1}{(n-1)/2}$, co na mocy tw. o trzech ciągach daje, że An zbiega do zera.

Teraz udowodnimy, że istotnie szereg $S:=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\dots$ z treści zadania jest zbieżny. Ustalmy $\varepsilon>0$. Na mocy zbieżności szeregu $\sum_{n}\left(A_{2n-1}-A_{2n}\right)$ istnieje takie N_1 , że dla n,m spełniających $N_1 < n < m \text{ mamy } |A_{2n-1} - A_{2n} + A_{2n+1} - A_{2n+2} + \ldots + A_{2m-1} - A_{2m}| < \frac{\epsilon}{5}. \text{ Ponadto na mocy zbieżności}$ ciągu A_n do zera istnieje takie N_2 , że dla $n > N_2$ mamy $|A_n| < \frac{\varepsilon}{5}$.

Niech $N = \max(N_1, N_2(N_2 - 1) + 1)$. Rozpatrzmy dowolne n, m spełniające N < n < m. Niech s będzie takie, że $s(s-1)/2 < n \le s(s+1)/2$ zaś t takie, że $t(t-1)/2 < n \le t(t+1)/2$. Jeśli s=t, to zauważmy, że suma wyrazów szeregu S na pozycjach $n, n+1, \ldots, m$ nie przekracza na moduł liczby A_s , co wynika wprost z definicji A_s . Zatem suma ta jest mniejsza niż $\frac{\varepsilon}{5}$.

W przeciwnym wypadku widzimy, że suma wyrazów szeregu S na pozycjach $n, n+1, \ldots, s(s+1)/2$ także nie przekracza na moduł $\frac{\varepsilon}{\epsilon}$, analogicznie z wyrazami na pozycjach $t(t-1)/2+1,\ldots,m$. Wystarczy więc pokazać, że wartość bezwzględna sumy wyrazów szeregu S na pozycjach s $(s+1)/2+1,\ldots,t(t-1)/2$ nie przekracza na moduł $\frac{3\varepsilon}{5}$. Jeśli s+1=t to wynika to z tego, że suma ta jest na moduł równa A_s . W przeciwnym wypadku, jeśli s jest nieparzyste, rozbijamy ten moduł sumy wyrazów nierównością trójkąta na sumę wyrazów na pozycjach s(s+1)/2+1,...,(s+1)(s+2)/2 oraz (s+1)(s+2)/2+1,...,t(t-1)/2, z czego ta pierwsza jest na moduł równa $A_{s+1} \leqslant \frac{\varepsilon}{5}$. Wystarczy więc pokazać, że dla s parzystego, suma wyrazów $s(s+1)/2+1,\ldots,t(t-1)/2$ nie przekracza $\frac{2\varepsilon}{\epsilon}$. Podobnie teraz jeśli s+1=t, postępujemy jak powyżej, jeśli zaś nie, a t jest parzyste, redukujemy t o jeden znów rozbijając nierównością trójkąta na sumę wyrazów na pozycjach $s(s+1)/2+1,\ldots,(t-1)(t-2)/2$ oraz $(t-1)(t-2)/2+1,\ldots,t(t-1)/2$ widzimy, że ta druga jest na moduł równa $A_t < \frac{\varepsilon}{\varepsilon}$. Wystarczy więc pokazać, że dla s parzystego, zaś t nieparzystego, moduł sumy wyrazów na pozycjach $s(s+1)/2+1, \ldots, t(t-1)/2$ jest mniejszy niż $\frac{\varepsilon}{5}$. Jednak suma ta to dokładnie $A_{s+1}-A_{s+2}+A_{s+3}-\ldots+A_{t-2}-A_{t-1}$, co na mocy założenia wynikającego z warunku Cauchy'ego dla szeregu $\sum_{r} (A_{2r-1} - A_{2r})$ istotnie jest mniejsze na moduł niż $\frac{\varepsilon}{5}$.

Zatem szereg S spełnia warunek Cauchy'ego, zatem jest zbieżny.

Zadanie D2

Dowód. Zauważmy, że

$$\begin{split} S - S_{2k-1} &= a_{2k} - a_{2k+1} + a_{2k+2} - a_{2k+3} + \dots = \\ &= \frac{a_{2k}}{2} + \frac{a_{2k}}{2} - \frac{a_{2k+1}}{2} - \frac{a_{2k+1}}{2} + \frac{a_{2k+2}}{2} + \frac{a_{2k+2}}{2} - \frac{a_{2k+3}}{2} - \frac{a_{2k+3}}{2} + \frac{a_{2k+4}}{2} + \dots = \\ &= \frac{a_{2k}}{2} + \underbrace{\left(\frac{a_{2k}}{2} - \frac{a_{2k+1}}{2}\right) - \left(\frac{a_{2k+1}}{2} - \frac{a_{2k+2}}{2}\right)}_{>0} + \underbrace{\left(\frac{a_{2k+2}}{2} - \frac{a_{2k+3}}{2}\right) - \left(\frac{a_{2k+3}}{2} - \frac{a_{2k+4}}{2}\right)}_{>0} + \dots > \\ &> \frac{a_{2k}}{2} \end{split}$$

gdzie wykorzystaliśmy to, że $a_n \to 0$, możliwość nawiasowania szeregu zbieżnego oraz fakt, że $\frac{a_{2k}}{2} - \frac{a_{2k+1}}{2} >$ $\frac{a_{2k+1}}{2} - \frac{a_{2k+2}}{2}$.

Termin: 2014-01-24 Analiza matematyczna

nr albumu: 347208 str. 2/4 Seria: 4

Analogicznie:

$$\begin{split} S - S_{2k} &= -\alpha_{2k+1} + \alpha_{2k+2} - \alpha_{2k+3} + \ldots = \\ &= \frac{-\alpha_{2k+1}}{2} - \frac{\alpha_{2k+1}}{2} + \frac{\alpha_{2k+2}}{2} + \frac{\alpha_{2k+2}}{2} - \frac{\alpha_{2k+3}}{2} - \frac{\alpha_{2k+3}}{2} + \frac{\alpha_{2k+4}}{2} + \ldots = \\ &= -\frac{\alpha_{2k+1}}{2} - \left(\frac{\alpha_{2k+1}}{2} - \frac{\alpha_{2k+2}}{2}\right) + \left(\frac{\alpha_{2k+2}}{2} - \frac{\alpha_{2k+3}}{2}\right) - \left(\frac{\alpha_{2k+3}}{2} - \frac{\alpha_{2k+4}}{2}\right) + \left(\frac{\alpha_{2k+4}}{2} - \frac{\alpha_{2k+5}}{2}\right) + \ldots < \\ &< -\frac{\alpha_{2k+1}}{2} \end{split}$$

Na mocy tych samych faktów.

Zadanie D3

Powiemy, że funkcja f ma w punkcie x_0 pochodną równą g jeśli $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ istnieje i jest równa g. Zapisujemy wtedy $f'(x_0) = g$.

Jak pokazaliśmy na wykładzie, $\ln'(x) = \frac{1}{x}$.

Lemat 1 (Rolle). Jeśli funkcja $f:[a,b] \to \mathbb{R}$ jest ciągła w [a,b] oraz różniczkowalna w (a,b), a ponadto f(a) = f(b), to istnieje $c \in (a,b)$ takie, że f'(c) = 0.

Dowód. Na mocy udowodnionego na wykładzie tw. Weierstraßa o osiąganiu kresów, istnieją $x_0, y_0 \in [a, b]$ takie, że $f(x_0) = \inf f$, $f(y_0) = \sup f$.

Jeśli $\{x_0, y_0\} \subseteq \{a, b\}$, czyli oba kresy są osiągane na krańcach przedziału, to łatwo widzimy, że f jest funkcją stałą, i jak łatwo widać z definicji pochodnej, jest ona wszędzie na (a, b) równa zeru.

Zatem rozważmy przypadek, gdy choć jeden z kresów jest osiągany we wnętrzu dziedziny f. Bez straty ogólności, załóżmy, że jest to infimum.

Wtedy jednak $\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}\leqslant 0$, bo $f(x)\geqslant f(x_0)$, zaś $x-x_0<0$.

Z drugiej strony $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} \geqslant 0$, bo $f(x)\geqslant f(x_0)$, zaś $x-x_0>0$.

Zatem $f'(x_0) = 0$.

Lemat 2 (Lagrange). Jeśli $f:[a,b]\to\mathbb{R}$ jest ciągła w [a,b] oraz różniczkowalna w (a,b), to istnieje $c\in(a,b)$ takie, że $f'(c)=\frac{f(a)-f(b)}{a-b}$.

 $\begin{array}{l} \textit{Dow\'od}. \ \ \textit{Niech} \ g(x) = f(x) - \frac{f(\alpha) - f(b)}{a - b} x. \ \ \textit{Wtedy} \ g(\alpha) - g(b) = f(\alpha) - f(b) - \frac{f(\alpha) - f(b)}{a - b} (\alpha - b) = 0, \\ \textit{za\'s} \ dla \ x_0 \in (a,b) \\ \textit{mamy} \ \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0) - \frac{f(\alpha) - f(b)}{a - b} (x - x_0)}{x - x_0} = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} - \frac{f(\alpha) - f(b)}{a - b} \right) = f'(x_0) - \frac{f(\alpha) - f(b)}{a - b}.. \\ \textit{Zatem jest to funkcja r\'ozniczkowalna i ciągła (ciągłość wynika z faktów z wykładu), zatem spełnione są } \end{array}$

Zatem jest to funkcja różniczkowalna i ciągła (ciągłość wynika z faktów z wykładu), zatem spełnione są założenia tw. Rolle'a (lematu 1). Istnieje więc takie $c \in (a,b)$, że g'(c)=0, czyli na mocy powyższego $f'(c)=\frac{f(a)-f(b)}{a-b}$.

Lemat 3. Jeśli $f : [a,b] \to \mathbb{R}$ jest funkcją ciągłą w [a,b] i różniczkowalną w (a,b), oraz jej pochodna na (a,b) jest zawsze dodatnia (ujemna), to funkcja ta jest rosnąca (malejąca).

Dowód. Rozpatrzmy dowolne $x,y \in [a,b]$ takie, że x < y. Wiemy na mocy lematu 2 zastosowanego dla przedziału [x,y], że istnieje $c \in (x,y)$ takie, że $f'(c) = \frac{f(x) - f(y)}{x - y}$, jednak f'(c) > 0 (f'(c) < 0), x - y < 0, zatem i f(x) < f(y) (f(x) > f(y)).

Zapiszmy tezę równoważnie: dla x > 1 zachodzi:

$$\frac{x-1}{1+(x-1)/2} < \ln x < \frac{(x-1)(1+(x-1)/2)}{x}$$

Analiza matematyczna

str. 3/4 Seria: 4

Dowód. Popatrzmy na pierwszą nierówność. Niech $f(x)=\ln x-\frac{x-1}{1+(x-1)/2}$ Mamy dla $x_0>1$:

$$\begin{split} f'(x_0) &= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) = \lim_{x \to x_0} \left(\frac{\ln x - \frac{x - 1}{1 + (x - 1)/2} - \ln x_0 - \frac{x_0 - 1}{1 + (x_0 - 1)/2}}{x - x_0} \right) = \\ &= \lim_{x \to x_0} \left(\frac{\ln x - \ln x_0}{x - x_0} - \frac{\frac{x - 1}{1 + (x - 1)/2} - \frac{x_0 - 1}{1 + (x_0 - 1)/2}}{x - x_0} \right) = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{(x - 1)(1 + (x_0 - 1)/2) - (x_0 - 1)(1 + (x - 1)/2)}{(1 + (x_0 - 1)/2)(x - x_0)} \right) = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{x - x_0 + (xx_0 - x)/2 - 1 - (x_0 - 1)/2 - x_0 - (x_0x - x)/2 + 1 + (x - 1)/2}{(1 + (x - 1)/2)(1 + (x_0 - 1)/2)(x - x_0)} \right) = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{x - x_0}{(1 + (x - 1)/2)(1 + (x_0 - 1)/2)} \right) = \frac{1}{x_0} - \frac{1}{(1 + (x_0 - 1)/2)^2} = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{1}{(1 + (x - 1)/2)(1 + (x_0 - 1)/2)} \right) = \frac{1}{x_0} - \frac{1}{(1 + (x_0 - 1)/2)^2} = \\ &= \frac{(1 + (x_0 - 1)/2)^2 - x_0}{x_0(1 + (x_0 - 1)/2)^2} = \frac{(x_0/2 + 1/2)^2 - x_0}{x_0(x_0/2 + 1/2)^2} = \frac{(x_0/2 - 1/2)^2}{x_0(x_0/2 + 1/2)^2} > 0 \end{split}$$

Zatem na dowolnym przedziale [1, a] ta funkcja jest rosnąca, zatem jest rosnąca na $[1, +\infty)$. Jednak zauważmy, że dla x = 1 mamy f(x) = 0, zatem dla x > 1 zachodzi f(x) > 0.

Popatrzmy na drugą nierówność. Zapiszmy $g(x) = \ln x - \frac{(x-1)(1+(x-1)/2)}{x}$.

Mamy dla $x_0 > 1$:

$$\begin{split} g'(x_0) &= \lim_{x \to x_0} \left(\frac{g(x) - g(x_0)}{x - x_0} \right) = \lim_{x \to x_0} \left(\frac{\ln x - \frac{(x - 1)(1 + (x - 1)/2)}{x} - \ln x_0 + \frac{(x_0 - 1)(1 + (x_0 - 1)/2)}{x_0}}{x - x_0} \right) = \\ &= \lim_{x \to x_0} \left(\frac{\ln x - \ln x_0}{x - x_0} \right) - \lim_{x \to x_0} \left(\frac{\frac{(x - 1)(1 + (x - 1)/2)}{x} - \frac{(x_0 - 1)(1 + (x_0 - 1)/2)}{x_0}}{x - x_0} \right) = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{x_0(x - 1)(1 + (x - 1)/2) - x(x_0 - 1)(1 + (x_0 - 1)/2)}{xx_0(x - x_0)} \right) = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{x_0(x^2 - 1)/2 - x(x_0^2 - 1)/2}{xx_0(x - x_0)} \right) = \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{(x - x_0)(xx_0 + 1)/2}{xx_0(x - x_0)} \right) = \\ &= \frac{1}{x_0} - \lim_{x \to x_0} \left(\frac{(xx_0 + 1)/2}{xx_0} \right) = \frac{1}{x_0} - \frac{x_0^2 + 1}{2x_0^2} = \frac{2x_0 - x_0^2 - 1}{2x_0^2} = \frac{-(x_0 - 1)^2}{2x_0^2} < 0 \end{split}$$

Zatem na dowolnym przedziale [1, a] ta funkcja jest malejąca, zatem jest malejąca na $[1, +\infty)$. Jednak zauważmy, że dla x = 1 mamy g(x) = 0, zatem dla x > 1 zachodzi g(x) > 0.

Zatem teza.

Zadanie D5

Zauważmy, że nie może być $m_1 = 1$, gdyż wtedy szereg ten ma sumę ściśle większą niż jeden.

Ponadto zauważmy, że wszystkie dopuszczalne szeregi dla $m_1>1$ są zbieżne. Istotnie, każdy kolejny wyraz jest przynajmniej dwa razy mniejszy od poprzedniego, zatem na mocy kryteriów z wykładu szereg jest zbieżny. Zauważmy, że ponieważ $\frac{1}{m_1 m_2 \dots m_n} < \frac{1}{m_1^n}$, to

$$\frac{1}{m_1} < \sum_{n=1}^{\infty} \frac{1}{m_1 m_2 \cdots m_n} \le \sum_{n=1}^{\infty} \frac{1}{m_1^n} = \frac{\frac{1}{m_1}}{1 - \frac{1}{m_1}} = \frac{1}{m_1 - 1}$$

W związku z tym, gdyby pewne x miało dwie różne reprezentacje $x=\sum\limits_{n=1}^{\infty}\frac{1}{m_1\cdots m_n}=\sum\limits_{n=1}^{\infty}\frac{1}{m_1'\cdots m_n'},$ to musiałyby się one zaczynać tym samym $m_1=m_1'.$ Zauważmy wtedy jednak, że $m_1x-1=\sum\limits_{n=2}^{\infty}\frac{1}{m_2m_3\cdots m_n}=\sum\limits_{n=2}^{\infty}\frac{1}{m_2m_3\cdots m_n}$

 $\sum_{n=2}^{\infty} \frac{1}{m'_2 m'_3 \cdots m'_n}$, zatem musiałoby na mocy tego samego argumentu być $m_2 = m'_2$. Indukcyjnie, kontynuując to rozumowanie otrzymujemy, że dla każdego k mamy $\mathfrak{m}_k=\mathfrak{m}'_k$.

Aby udowodnić istnienie reprezentacji, dokonajmy następującej indukcyjnej konstrukcji: ustalamy $x_1 = x$ i następnie dla $n=2,3,\ldots$ ustalamy m_n takie, żeby $x_n\in\left(\frac{1}{m_n},\frac{1}{m_n-1}\right]$, a następnie $x_{n+1}=m_nx_n-1$.

Zauważmy, że taka konstrukcja sprawia, że ponieważ $x_n \leqslant \frac{1}{m_n-1}$, to $x_{n+1} \leqslant \frac{m_n}{m_n-1} - 1 = \frac{1}{m_n-1}$, zatem $m_{n+1} \geqslant m_n$ z definicji. W szczególności jeśli $x_n \leqslant 1$, to $x_{n+1} \leqslant 1$. Ponadto mamy, że $x_n > 0$, gdyż $x_n = 1$
$$\begin{split} m_{n-1}x_{n-1}-1 > m_{n-1}\frac{1}{m_{n-1}}-1 &= 0.\\ \text{Ustalmy teraz N, że dla } 1 \leqslant k \leqslant N \text{ mamy} \end{split}$$

$$\frac{1}{m_k} + \frac{1}{m_k m_{k+1}} + \ldots + \frac{1}{m_k m_{k+1} \ldots m_{N-1} m_N} < x_k \leqslant \frac{1}{m_k} + \frac{1}{m_k m_{k+1}} + \ldots + \frac{1}{m_k m_{k+1} \ldots m_{N-1} \left(m_N - 1\right)}$$

Istotnie, dla k=N wynika to z konstrukcji, gdyż $\frac{1}{m_N} < x_M \leqslant \frac{1}{m_N-1}$. Załóżmy więc, że jest to prawda dla jakiegoś k=K>2 i udowodnimy, że jest to prawda dla k=K-1. Istotnie mamy, że

$$\begin{split} \frac{1}{m_{K}} + \frac{1}{m_{K}m_{K+1}} + \ldots + \frac{1}{m_{K}m_{K+1}\cdots m_{N-1}m_{N}} < x_{K} \\ \leqslant \frac{1}{m_{K}} + \frac{1}{m_{K}m_{K+1}} + \ldots + \frac{1}{m_{K}m_{K+1}\cdots m_{N-1}(m_{N}-1)} \end{split}$$

Zatem

$$\begin{split} \frac{1}{m_{K}} + \frac{1}{m_{K}m_{K+1}} + \ldots + \frac{1}{m_{K}m_{K+1}\cdots m_{N-1}m_{N}} < m_{K-1}x_{K-1} - 1 \leqslant \\ \leqslant \frac{1}{m_{K}} + \frac{1}{m_{K}m_{K+1}} + \ldots + \frac{1}{m_{K}m_{K+1}\cdots m_{N-1}\left(m_{N} - 1\right)} \end{split}$$

Skąd

$$\begin{split} 1 + \frac{1}{m_{K}} + \frac{1}{m_{K}m_{K+1}} + \ldots + \frac{1}{m_{K}m_{K+1} \cdots m_{N-1}m_{N}} < m_{K-1}x_{K-1} \leqslant \\ \leqslant 1 + \frac{1}{m_{K}} + \frac{1}{m_{K}m_{K+1}} + \ldots + \frac{1}{m_{K}m_{K+1} \cdots m_{N-1}\left(m_{N}-1\right)} \end{split}$$

Co daje

$$\frac{1}{m_{K-1}} + \frac{1}{m_{K-1}m_{K}} + \dots + \frac{1}{m_{K-1}m_{K}\dots m_{N-1}m_{N}} < x_{K-1} \le$$

$$\le \frac{1}{m_{K-1}} + \frac{1}{m_{K-1}m_{K}} + \dots + \frac{1}{m_{K-1}m_{K}\dots m_{N-1}(m_{N}-1)}$$

Co kończy dowód kroku indukcyjnego. W szczególności dla k = 1 uzyskujemy

$$\frac{1}{m_1} + \ldots + \frac{1}{m_1 m_2 \cdots m_N} < x \leqslant \frac{1}{m_1} + \ldots + \frac{1}{m_1 m_2 \cdots m_{N-1} (m_N - 1)}$$
 (1)

Jednak różnica skrajnych stron to $\frac{1}{\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{N-1}}\left(\frac{1}{\mathfrak{m}_N-1}-\frac{1}{\mathfrak{m}_N}\right)=\frac{1}{\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{N-1}\mathfrak{m}_N(\mathfrak{m}_N-1)}\leqslant \frac{1}{2^N}$ (gdyż $\mathfrak{m}_i\geqslant 2$), co przy N dążącym do nieskończoności dąży do 0.

Jak już powiedzieliśmy, $\sum\limits_{n=1}^{\infty} \frac{1}{m_1 m_2 \cdots m_n}$ istnieje, zatem lewa strona w nierówności 1 ma granicę przy $N \to \infty$, zatem prawa też ma granicę i jest ona równa granicy lewej strony, skąd na mocy twierdzenia o trzech ciągach, ciąg stale równy x też ma taką granicę, ale granica tego ciągu to x.

Zatem
$$x = \sum_{n=1}^{\infty} \frac{1}{m_1 m_2 \cdots m_n}$$
.