

Content

- Objective
- Requirements
- Block Diagram of a Communication System
- GNU Radio
- Modulation
- Encoding
- Encryption
- Simulation
- Real world Transmission

Requirements

Transmitter design

Encoding

Security implementation

Reliability enhancement

Jamming protection

modulation

Receiver design

Reliability enhancement

Demodulation

decoding

Block Diagram

Transmitter

Receiver

GNU Radio

Version 3.10

Free and open-source software development toolkit

Offers signal processing building blocks to create software defined radios

Can be utilized in a simulation like environment without hardware

BPSK – Binary Phase Shift Keying

Modulation

Comparing Phase vs Frequency modulation Phase modulation is more immune to noise effects

Therefore, it is more suited for data transmission

QPSK – Quadrature Phase Shift Keying

Modulation

Comparing Phase vs Frequency modulation Phase modulation is more immune to noise effects

Therefore, it is more suited for data transmission

Why BPSK?

- Comparing to QPSK, information transmission rate of BPSK is lower due to the high bandwidth
- But BPSK has low error probability
- BPSK modulated data can travel long distances
- BPSK modulation is more power efficient
- Therefore, BPSK was used as the modulation technique

- Why QPSK?
 - Spectrally efficient
 - For the same BER bandwidth required is half as BPSK
 - Because of the low bandwidth, information transmission rate is higher than BPSK

Modulation

Constellation Rect. Object

Id: gpsk

Symbol Map: 0, 1, 2, 3

Constellation Points: ...07mj

Rotational Symmetry: 4

Real Sectors: 2

Imaginary Sectors: 2

Width Real Sectors: 1

Width Imaginary Sectors: 1

Constellation Modulator

Constellation: <con... (m=4)>

lout!

Differential Encoding: Yes

Samples/Symbol: 4

Excess BW: 350m

Constellation Modulator

- A digital signal processing block that performs modulation by mapping digital symbols to points in a complex plane
- Differential Encoding : Yes
 - Instead of encoding each symbol independently, the difference between adjacent symbols is encoded
 - Reduces the sensitivity of the receiver to phase shifts in the signal, which can be caused by noise or fading.
 - Improves the reliability of the data transmission

Full modulation Diagram

Polyphase Clock Sync

- A clock recovery technique
- Removes Inter-Symbol
 interference (ISI) and down
 samples the signal to produce
 samples at a desired rate
- Useful in digital communication systems where the transmitted signal may experience phase and timing offsets due to channel distortion or other factors

Path 3

ath 2

Costas Loop

- Used for carrier phase synchronization such that it synchronize a receiver's local oscillator with the received carrier signal
- Uses a phase error detector to measure the difference between the phase of the received signal and the phase of the local oscillator.
- This phase error is then used to adjust the phase of the local oscillator so that it tracks the phase of the received signal.
- Simple and effective

- Linear Equalizer
 - The Linear Equalizer block equalizes the incoming signal using an FIR filter
 - Used in a receiver chain to compensate for the effects of multipath fading, which can cause time- and frequencyselective distortion of the received signal.
 - Increases the gain of the needed signal and decreases the gain of the distortions

File Transmission

Channel coding (Forward Error Correction)

- Since a feedback can't be obtained, FEC is used as the error correction method
- Transmitter encodes the data with an error correcting code and sends the coded message
- Channel decoder in transmitter accepts message bits and adds redundancy according to prescribed rule
- Channel decoder in receiver exploits the redundancy to decide which message bits were transmitted
- 2 FEC methods
- Block coding and Convolution coding

```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
irror_mod.use_x = True
mirror_mod.use_y = False
lrror_mod.use_z = False
 _operation == "MIRROR Y"
 lrror_mod.use_x = False
 lrror_mod.use_y = True
 lrror_mod.use_z = False
  _operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modified
   rror ob.select = 0
  bpy.context.selected obj
   ata.objects[one.name].sel
  int("please select exaction
  --- OPERATOR CLASSES ----
     pes.Operator):
      mirror to the selected
   ject.mirror_mirror_x"
  ext.active_object is not
```

- Block coding: Check block by block and add parity
- Convolution coding : Check bit by bit and add parity
- Convolution vs Block coding
 - Block coding is easier to implement and simpler to understand
 - But Convolution coding has better error controlling correction capabilities
 - Therefore, convolution coding is used

```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
irror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
irror_mod.use_x = False
lrror_mod.use_y = True
 lrror_mod.use_z = False
  _operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
 melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.actl
   "Selected" + str(modified
   irror ob.select = 0
  bpy.context.selected_obj
   lata.objects[one.name].sel
  int("please select exaction
  --- OPERATOR CLASSES ----
    vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
  ext.active_object is not
```


Id: k Value: 7

Variable Id: rate Value: 2

Id: polys

Value: 109, 79

Variable **CCSDS Encoder Definition** Id: enc_ccsds

> Parallelism: 0 Frame Bits: 240 Start State: 0

Streaming Behavior: Tailbiting

CC Decoder Definition

Id: dec_cc Parallelism: 0 Frame Bits: 240 Constraint Length (K): 7

Rate Inverse (1/R) (1/2) --> 2: 2

Polynomials: 109, 79 Start State: 0 End State: -1

Streaming Behavior: Tailbiting

Byte Padding: False

FEC with modulation

FEC Extended Encoder

Encoder Objects: <gn...E40> >
Threading Type: capillary
Puncture Pattern: 11

FEC Extended Decoder

Decoder Objects: <gn...870> >

Threading Type: capillary

Annihilator: None Puncture Pattern: 11

CCSDS Encoder Definition

Id: enc_ccsds
Parallelism: 0
Frame Bits: 240
Start State: 0

Streaming Behavior: Tailbiting

CC Decoder Definition

Id: dec_cc
Parallelism: 0

Frame Bits: 240

Constraint Length (K): 7

Rate Inverse (1/R) (1/2) --> 2: 2

Polynomials: 109, 79

Start State: 0 End State: -1

Streaming Behavior: Tailbiting

Byte Padding: False

FEC Extended Encoder Block

- Used to implement the forward error correcting method
- Threading type: capillary
 - Applying FEC to small segments of data instead to the entire block
 - Detect and correct errors in real time instead of waiting for the entire block to be transmitted
 - Therefore, faster error correction and detection compared to other threading types
- Encoder object : CCSDS Encoder
 - Streaming behavior : Tailbiting
 - Split the data into multiple blocks and add a CRC code to the end of each block
 - If an error is detected the decoder uses the redundant data at the end of the previous block to correct the error
 - Useful for streaming data transmission
 - Ensures that the errors in the transmitted data are corrected in real time without the retransmission of the entire blocks of data

Encryption

- ☐ Data file was encrypted, and the encryption key was sent through a secured channel
- The data file was encrypted using a symmetric key cryptography technique.
- AES is used
- AES vs DES
 - AES is the most commonly used symmetric cryptography technique
 - AES is more mathematically efficient
 - AES is significantly faster
 - AES is exponentially stronger than DES due to high number of bit keys
 - AES 128,192,256-bit keys
 - DES 56-bit keys

- The encryption key was sent through an asymmetric key encrypted channel
- RSA is used
- Since encryption key doesn't have to be transmitted regularly, RSA is used even though it's slow

- RSA is more secure than AES
- But RSA channel isn't capable of sending a file with large number of bits.
- Hence the data file can't be sent through RSA even though it's more secured
- Therefore, the encryption key was sent through RSA while the file was sent through AES

Encryption blocks

Simulation

Osmocom Source

- provides an interface to receive data from various software-defined radio (SDR) devices
- Osmocom Sink
 - Osmocom Sink block provides a powerful and flexible way to send data over the air using a range of RF transceivers

THANK YOU!

