Applications of definite integrals

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

January 5, 2021

- Applications of definite integrals
 - Areas
 - Volumes
 - Solids of revolution
 - Arclength
 - Surface area of solids of revolution
- 2 Approximate integrals

- Applications of definite integrals
 - Areas
 - Volumes
 - Solids of revolution
 - Arclength
 - Surface area of solids of revolution
- 2 Approximate integrals

- Applications of definite integrals
 - Areas
 - Volumes
 - Solids of revolution
 - Arclength
 - Surface area of solids of revolution

2 Approximate integrals

Area between curves

$$S \approx \sum_{i=1}^n [f(x_i^*) - g(x_i^*)] \Delta x_i \rightarrow \int_a^b [f(x) - g(x)] dx.$$

• The area enclosed by y = f(x), y = g(x) and x = a, x = b is:

$$S = \int_a^b |f(x) - g(x)| dx.$$

• The area enclosed by x = f(y), x = g(y) and y = c, y = d is:

$$S = \int_{c}^{d} |f(y) - g(y)| dy.$$

Example

Find the areas enclosed by

- **1** the curves $y = x^2$, $y = \frac{x^2}{2}$, y = 2x.
- ② the curve $x^2 = y(y-1)^2$.

Areas enclosed by parametric curves

Consider a region enclosed by a parametric curve which is traced out once by the parametric equations $\begin{cases} x = x(t), \\ y = y(t), \alpha \leq t \leq \beta, \end{cases}$

$$S = \int_{\alpha}^{\beta} |y(t)x'(t)| dt.$$

Example

Find the area of the region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Curves given in polar coordinates

The area enclosed by the rays $\varphi=\alpha, \varphi=\beta$ and the curve

$$r = r(\varphi)$$
 is $S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi$.

Example

Evaluate the planar areas enclosed by the following curves

a)
$$r = 3 \sin 3\varphi$$

b)
$$r = 2(1 + \cos \varphi)$$
.

Volumes

Consider a solid S that lies between the planes x=a and x=b. Assume that the cross-sectional area of S in the plane (P_x) , through x and perpendicular to the x-axis is A(x). Divide S into n slabs of width Δx_i , we can approximate the volume S_i by the volume of a cylinder with base area $A(x_i^*)$ and height Δx_i . $V \approx \sum_{i=1}^n A(x_i^*) \Delta x_i$.

Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane (P_x) , through x and perpendicular to the x-axis is A(x), then the volume of S is

$$V = \int_a^b A(x) dx.$$

Solids of revolution

Solids of revolution are obtained by revolving a region about a line. For example, rotating the graph y = f(x), $a \le x \le b$ about Ox

Figure: Source: https://math.libretexts.org/

The volume of the solid obtained by rotating the region bounded by x = a, x = b, y = 0 and y = f(x) about Ox is

$$V = \pi \int_a^b f^2(x) dx.$$

The volume of the solid obtained by rotating the region bounded by y = c, y = d, x = 0 and x = g(y) about Oy is

$$V = \pi \int_{c}^{d} g^{2}(y) dy.$$

Example

Find the volume of the region given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$.

Example

Find the volum of the solids of revolution obtained by rotating

- the region enclosed by $y = \sin x$ and the lines $y = 0, x = 0, x = \frac{\pi}{2}$ about Ox.
- ② the region enclosed by $y = \sin x$ and the lines y = 0, y = 1, x = 0 about Oy.
- the region enclosed by $y = \sin x$ and the lines $y = 0, x = 0, x = \frac{\pi}{2}$ about Oy.

The volume of the solid obtained by rotating the region bounded by y = f(x), y = 0, x = a, x = b about Oy is

$$V=2\pi\int_a^b x f(x)dx.$$

Arclength

$$L = \sum_{i=1}^{n} \widehat{P_{i-1}P_i} \approx \sum_{i=1}^{n} P_{i-1}P_i = \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} \Delta x_i.$$

The arclength of the curve

•
$$(C)$$
: $y = f(x)$, $a \le x \le b$

$$L=\int_a^b\sqrt{1+f'^2(x)}dx.$$

•
$$(C)$$
:
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, $\alpha \le t \le \beta$ is

$$L = \int_{\alpha}^{\beta} \sqrt{x'^2(t) + y'^2(t)} dt.$$

•
$$(C)$$
: $r = r(\varphi)$, $\alpha \le \varphi \le \beta$ is

$$L = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi.$$

Example

- Find the arclength of the curve $y = x^{\frac{3}{2}}$, $0 \le x \le 4$.
- ② Find the arclength of the curve $x = a \cos^3 t$, $y = a \sin^3 t$, a > 0.
- **3** Find the arclength of the curve $r = a(1 + \cos \varphi)$, (a > 0).

Surface area of solids of revolution

Rotating the graph y = f(x), $a \le x \le b$ about Ox

Figure: Source: https://math.libretexts.org/

Figure: Source: https://math.libretexts.org/

0000

The surface area of the solid of revolution obtained by

• rotating the graph y = f(x), $a \le x \le b$ about Ox is

$$S = 2\pi \int_a^b |f(x)| \sqrt{1 + f'^2(x)} dx.$$

• rotating the curve x = g(y), $c \le y \le d$ about Oy is

$$S = 2\pi \int_{c}^{d} |g(y)| \sqrt{1 + g'^{2}(y)} dy.$$

0000

Example

Find the surface area of the solid of revolution obtained by rotating the graph $y = \sin x$, $0 \le x \le \frac{\pi}{2}$ about Ox.

- Applications of definite integrals
 - Areas
 - Volumes
 - Solids of revolution
 - Arclength
 - Surface area of solids of revolution

2 Approximate integrals

There are situations in which it is impossible to find the exact value of a definite integral,

• the function is determined from an experiment by instrument reading or collected data, no explicit formula for f(x).

Aim: Approximate value of definite integrals.

Recall:
$$\int_a^b f(x)dx = \sum_{i=1}^n S_i \approx \sum_{i=1}^n f(x_i^*) \Delta x_i, \text{ where}$$
$$a \equiv x_0 < x_1 < \ldots < x_n \equiv b, \ x_i^* \in [x_{i-1}, x_i], \ \Delta x_i = x_i - x_{i-1}.$$
 Simply choose $x_i^* \equiv \text{end points}.$ In the following rules, we need

- formula used.
- error bound of the approximation.

Midpoint rule

$$\int_{a}^{b} f(x)dx \approx \Delta x [f(\bar{x}_{1}) + f(\bar{x}_{2}) + \ldots + f(\bar{x}_{n})],$$
where $\Delta x = \frac{b-a}{n}$, $\bar{x}_{i} = \frac{x_{i-1} + x_{i}}{2}$, $1 \le i \le n$.
If $|f''(x)| \le M, x \in [a, b]$, then $|E_{M}| \le \frac{M(b-a)^{3}}{24n^{2}}$.

Trapezoidal rule

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + \ldots + 2f(x_{n-1}) + f(x_n)],$$
where $\Delta x = \frac{b-a}{n}$, $x_i = x_0 + i\Delta x$, $1 \le i \le n$.

If $|f''(x)| \le M, x \in [a, b]$, then $|E_T| \le \frac{M(b-a)^3}{12n^2}$.

Simpson's rule

In each small strip, approximate the (red) curve by a (blue) parabola.

Divide the interval into n = 2k subintervals:

$$a \equiv x_0, x_i = x_0 + i\Delta x, 1 \le i \le 2k, \ \Delta x = \frac{b-a}{2k}.$$

Then

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \ldots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right].$$

If
$$|f^{(4)}(x)| \le M, x \in [a, b]$$
, then $|E_S| \le \frac{M(b-a)^5}{180n^4}$.