

N-Ch 80V Fast Switching MOSFETs

General Description

The QM8020AP is the highest performance trench N-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The QM8020AP meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

Product Summery

BVDSS	RDSON	ID
80V	5.2mΩ	163A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter
- Networking DC-DC Power System
- Power Tool Application

TO220 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	80	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ^{1,7}	163	А
I _D @T _C =100℃	Continuous Drain Current, V _{GS} @ 10V ^{1,7}	103	Α
I _D @T _A =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	14.3	А
I _D @T _A =70℃	Continuous Drain Current, V _{GS} @ 10V ¹	11.5	Α
I _{DM}	Pulsed Drain Current ²	350	А
EAS	Single Pulse Avalanche Energy ³	750	mJ
I _{AS}	Avalanche Current	108	Α
P _D @T _C =25℃	Total Power Dissipation ⁴	260	W
P _D @T _A =25℃	Total Power Dissipation ⁴	2.02	W
T _{STG}	Storage Temperature Range	-55 to 150	℃
TJ	Operating Junction Temperature Range	-55 to 150	℃

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-Ambient ¹		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		0.48	°C/W

N-Ch 80V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	80			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25℃ , I _D =1mA		0.078		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A		4	5.2	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	\/ -\/ -250\	2.5		4.5	٧
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-7.7		mV/℃
		V _{DS} =64V , V _{GS} =0V , T _J =25℃			1	- uA
I _{DSS}	Drain-Source Leakage Current	V_{DS} =64V , V_{GS} =0V , T_J =55 $^{\circ}\mathrm{C}$			5	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		98		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.8	5.6	Ω
Q_g	Total Gate Charge (10V)	V _{DS} =60V , V _{GS} =10V , I _D =15A		87		
Q_{gs}	Gate-Source Charge			23.7		nC
Q_{gd}	Gate-Drain Charge			22.4		
T _{d(on)}	Turn-On Delay Time	V _{DD} =30V , V _{GS} =10V , R _G =3.3Ω,		30		
T _r	Rise Time		56		2 20	
T _{d(off)}	Turn-Off Delay Time	I _D =15A		60.4		ns ns
T _f	Fall Time			21.2		
C _{iss}	Input Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		6735		
Coss	Output Capacitance			1350		pF
C _{rss}	Reverse Transfer Capacitance			312		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =50V , L=0.1mH , I _{AS} =30A	59.6			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	V V 0V 5 0			163	Α
I _{SM}	Pulsed Source Current ^{2,6}	=V _D =0V , Force Current			350	Α
V _{SD}	Diode Forward Voltage ² V _{GS}	_{SS} =0V , I _S =A , T _J =25℃			1.2	V
t _{rr}	Reverse Recovery Time			51		nS
Q _{rr}	Reverse Recovery Charge IF=	=15A,dI/dt=100A/µs,Tյ=25℃		90		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =50V, V_{GS} =10V,L=0.1mH, I_{AS} =108A
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.
- 7. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized $V_{GS(th)}$ v.s T_J

N-Ch 80V Fast Switching MOSFETs

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} v.s T_J

N-Ch 80V Fast Switching MOSFETs

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform