Math AM tut 6 or 7

abobla

8th Nov 2024

1

How to combine two types of improper Riemann integrals?

When $f:(0,\infty)\to\mathbb{R}$ is such that it blows up near zero, and $f\in\mathbf{R}[\infty)$, then we say that f is Riemann Integrable on $(0, \infty)$ (and write $f \in \mathbf{R}(0, \infty)$), and define

$$\int_{(0,\infty)} f(x) dx = \int_0^\infty f(x) dx = \int_{(0,1]} f(x) dx + \int_{[1,\infty)} f(x) dx$$
 (1)

Ex: For each $\alpha \in (0, \infty)$, define a map $f: (0, \infty) \to (0, \infty)$ by $f(x) := x^{\alpha - 1}e^{-x}$, $x \in (0, \infty)$. Clearly $f \in \mathbf{R}[0, \infty)$.

Qn: is $\int_0^1 f(x) dx < \infty$ case 1: $\alpha \ge 1$

then $f(x) = x^{\alpha-1}e^{-x}$: $x \in [0,1]$ is a continous function on [0,1] and hence $f \in \mathbf{R}[0,1] \implies \int_0^1 f(x) \mathrm{d}x < \infty$, hence if $\alpha = 1$, then $f \in \mathbf{R}(0,\infty)$ case 2: $\alpha < 1$ means $\alpha \in (0,1)$.

Define

$$g(x) = \frac{1}{x^{1-\alpha}} : x \in (0,1]$$
 (2)

and look at $f|_{[0,1]}$, ie,

$$f(x) = \frac{e^{-x}}{x^{1-\alpha}} : x \in (0,1]$$
 (3)

Note: $f, g \in \mathbf{R}[\epsilon, 1] \, \forall \, \epsilon \in (0, 1)$ and both are positive valued functions and

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} e^{-x} = 1 \in (0, \infty)$$
 (4)

Moreover $g(x) = \frac{1}{x^5} \ x \in (0,1]$ where $s = 1 - \alpha \in (0,1)$ is done as an excercise. hence $g \in (0,1]$, hence $\int_0^1 g(x) \mathrm{d}x < \infty$

so by ratio test. $\int_0^1 f(x) dx < \infty$ Now, combining everything, we get that $\forall \alpha \in (0,\infty), \int_0^\infty x^{\alpha-1} e^{-x} dx = \int_0^1 x^{\alpha-1} e^{-x} dx + \int_1^\infty x^{\alpha-1} e^{-x} dx$

Gamma Function $\mathbf{2}$

 $\forall \alpha \in (0,\infty), \Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} \mathrm{d}x$ (Gamma function), Note that $\Gamma:(0,\infty) \to (0,\infty)$

Show that :

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha) \ \alpha \in (0, \infty)$$
 (5)

use by parts Show that

$$\Gamma(n) = (n-1)! \ \forall n \in \mathbb{N}$$
 (6)

Use the first one and induction

3

Show that $\int_0^\infty \frac{1}{x^2+\sqrt{x}}\mathrm{d}x < \infty$ ans: (Hint: Compare with $\frac{1}{\sqrt{x}}$ on 0 to 1 and with $\frac{1}{x^2}on1to\infty$)