User : : MDESIGN 2020 -Program

Module version: 18.0.12

Date: 23.05.2023

Customer: Student

Project

Shaft, Standard

This program allows to prove the bearing ability for shafts and axles. The calculation base is provided by DIN 743, edition of December 2012.

The proof of the bearing ability for shafts an axles is produced by defining a calculated safety. This safety is divided in the safety against fatigue fracture and the residual deformation (and flaw or forced break).

When calculating the avoidance of fatigue fracture, constant stress amplitudes being equivalent to damaging loads are taken as a basis. These ones are resulting from the predetermined loads. When proving against the residual deformation or forced break, designated as a safety against yielding, only the maximum occurring load is determinant. This one is resulting from the predetermined loads, too.

The calculation of factors of safety is related only to the point of a clear notch effect. For it, 9 calculable notches are at your disposal due to the graphical selection, principally.

The scope is limited to steels. Welded members should be calculated separately. But the utilized standard or the present program is ineffective for this purpose!

The calculation base for the module Shaft Calculation is provided by DIN 743, edition of December 2012, part 1-4 " Tragfähigkeitsberechnung von Wellen and Achsen" ("Calculation of bearing capacity of shafts and axles").

Input data:

Shaft calculation in accordance with DIN 743 - standard version

Geometry scheme General shaft geometry

Calculation process Dynamic and static

strength proof

Geometry

Shaft geometry

Shaft geometry

Nr.	D _{a I}	D _{i I}	D _{ar}	Dir	L	R_z	r	d:	t:	α_{σ}	$\alpha_{\sigma b}$	$\alpha_{\tau t}$:	n	n	n	β_{σ}	β_{σ}	β_{τ}	d
	mm	mm	mm	mm	mm	μm	mm	mm	mm	zd:	:		zd •	b	t •	zddBK	bdBK	dBK:	BK
													•	•	•	:	:		•
																			m
																			m
1	32	0	32	0	58	3.2	1	0	0	0	0	0	0	0	0	0	0	0	0
2	40	0	40	0	50	1.6	0.8	0	0	0	0	0	0	0	0	0	0	0	0
3	50	0	50	0	24.5	6.3	1	0	0	0	0	0	0	0	0	0	0	0	0
4	56.79	0	56.79	0	55	3.2	1	0	0	0	0	0	0	0	0	0	0	0	0
A	2		2																
5	50	0	50	0	22.5	6.3	0.8	0	0	0	0	0	0	0	0	0	0	0	0
6	40	0	40	0	18.5	1.6	0	0	0	0	0	0	0	0	0	0	0	0	0

: MDESIGN 2020 -User: Program

Date: 23.05.2023 Module version: 18.0.12 Project

Shaft, Standard

Predetermine the diameter determinant for the heat treatment?

no

Customer : Student

Calculation of the deflection for point

Shaft speed

Considering weight - horizontal or vertical

Width of bearing stiffness?

x = 160n:1500 1/min

horizontal shaft

No

Bearing

Nr	Type =	Position	Radial	Torsional	Bending	Radial	Torsional	Bending	Bearing
		x =	bearing	bearing	bearing	bearing	bearing	bearing	width =
		mm	stiffness c_r	stiffness c_{α}	stiffness	stiffness c _r	stiffness c_{α}	stiffness	mm
			=	=	$c_{\beta} =$	=	=	$c_{\beta} =$	
			N/m	N·m	N.W	N/m	N·m	N.w	
1	Locating	218.5	1e+015	0	0	1e+015	0	0	0
	bearing ->								
2	Locating bearing <-	99.5	1e+015	0	0	1e+015	0	0	0

Loading Data

Type of loading: tension-pressure Dynamically pure cyclic Type of loading: bending Dynamically pure cyclic Type of loading: torsion Dynamically pure cyclic

Factor for maximum loading (tension-pressure)

Factor for maximum loading (bending) 1

Factor for maximum loading (torsion) 1

1

Customer: Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Axial forces Fax

Nr.	Position x =	Amount =	Radius =	Angle α =
	mm	N	mm	•
1	160	-634.41	28.396	180

Radial forces F_r

Nr.	Position x =	Amount =	Angle α =
	mm	N	0
1	160	-1200.83	270

Torsion

Nr.	Position x =	Torsion moments M _t :	Power P:	Transition part =
	mm	N·mm	kW	
1	29	114591.55	0	drive
2	160	114591.55	0	takeoff

Specifications about the load/loadings

Loading case Constant mean stress

(loading case 1)

Calculation of finite-life fatique strength ?

Load cycles until fatique strength $N_D = 1000000$ Required load cycles $N_I = 10000000$

Slope exponent of S-N curve normal stress $$q_\sigma\!: 5$$

Slope exponent of S-N curve shear stress $$q_{\tau}:8$$

Minimum safety against fatigue fracture $S_{Dmin} = 1.2$

Minimum safety against residual deformation $S_{Fmin} = 1.2$

Minimum safety against incipient crack with hard surface $S_{Gmin} = 1.2$

Material Data

Strength values according to MDESIGN database

: MDESIGN 2020 -User : Program

Module version: 18.0.12 Date: 23.05.2023

Project

Customer: Student

Shaft, Standard

Material designation

Material number

18CrNiMo7-6

1.6587

Gage diameter

For the gage diameter

Tensile strength

Young's modulus Shear modulus

Yield stress

Cyclic fatigue strength under bending stress

Cyclic tension and pressure fatigue strength

Cyclic torsional fatigue strength

 $d_{B} = 16$

mm

 $\sigma_{B'}(R_m) = 1200$

N/mm² $\sigma_{S'}(R_e) = 850$

 $\sigma_{bW'} = 600$

N/mm² N/mm²

 $\sigma_{\text{zdW'}} = 480$

N/mm²

 $\tau_{tW'} = 360$

N/mm²

 $E = 215000 \text{ N/mm}^2$

G = 83000

N/mm²

 $\rho = 7850$

kg/m³

Apply surface hardening to

Material group

Density

Heat treatment

Surface hardening

Total shaft

Cemented steels

trial hardened

(Cr-Ni-Mo-cemented

steels)

cemented

Results:

Calculation process:

Dynamic and static strength proof

Geometry

Total shaft length
Total shaft mass
Mass moment of inertia of the shaft
Geometrical moment of inertia of the shaft
Position of the centre of gravity
in the X-axis
Angle of torsion

L m

Ι

φ

=	228.5	mm
=	2.86	kg
=	0.00085	kg·m²
=	142.704	cm ⁴
=	133.18	mm
=	0.043	0

Customer: Student

: MDESIGN 2020 -User : Program

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Additional shaft data:

Shaft fillet number	l mm	I _p cm⁴	W _t cm³	m kg	J kg·m²	I cm ⁴	W _b
1	58	10.294	6.434	0.366	0	5.147	3.217
2	50	25.133	12.566	0.493	0.0001	12.566	6.283
3	24.5	61.359	24.544	0.378	0.0001	30.68	12.272
4	55	102.129	35.966	1.094	0.0004	51.064	17.983
5	22.5	61.359	24.544	0.347	0.0001	30.68	12.272
6	18.5	25.133	12.566	0.182	0	12.566	6.283

Loading Data

Calculation results for point 160 mm X

Trend of curve of the transverse force 628.371 Q_{x} Ν deflection 0.000426 mm $\mathbf{y}_{\mathbf{x}}$ Angle of deflection 0.000106

Supporting forces:

No.	Type	Positio n x mm	Radial force in the Y-axis R _y N	Radial force in the Z-axis R _z N	Result. radial force R N	Axial force in the X-axis R _{ax} N	Tilting moment in the Y-axis N·m	Tilting moment in the Z-axis N·m	Result. tilting moment N·m
1	Locating bearing <-	99.5	-131.275	-590.324	604.74 4	0	0	0	0
2	Locating bearing ->	218.5	159.322	-610.506	630.95 3	634.41	0	0	0

Resulting maximum bending moment:

Position 160 mm Amount 36.833 M_{bmax} N·m

Resulting maximum torsional moment:

Position 29 Χ mm **Amount** 114.592 N·m M_{tmax}

Resulting maximum tension-pressure-force:

Position 160 mm Х

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023

Customer : Student

N/mm²

Project :

0.505

Shaft, Standard

Amount $F_{zdmax} = 634.41$ N

Resulting maximum tension-pressure-stress:

Position x = 210.546 mm

Amount $\sigma_{\rm zdmax} =$ Resulting maximum bending stress:

Position x = 160 mm

Amount $\sigma_{hmax} = 2.048 \text{ N/mm}^2$

Resulting maximum torsional stress:

Position x = 29 mm

Amount $\tau_{tmax} = 17.81$ N/mm²

Resulting maximum equivalent stress:

Position x = 29 mm

Amount $\sigma_{\text{vmax}} = 30.848 \text{ N/mm}^2$

Resulting maximum deflection:

Position x = 0 mm

Amount $y_{max} = 0.001205$ mm

Angle of the maximum deflection:

Position x = 0.653 mm

Amount Θ = 0.000695 °

Minimum safety against yielding:

Position x = 58 mm

Amount $S_{\epsilon} = 24.703$

Minimum safety against fatigue fracture:

Position x = 58 mm

Amount $S_D = 12.693$

Minimum safety against incipient crack with hard surface:

Position x = 58 mm

Amount $S_G = 77.32$

Parameter of cross-sections:

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

Tension-pressure force \mathbf{F}_{zd} and tension/pressure stress σ_{zd}

No.	Туре	Position x mm	Result. F _{zdx} N	Amplitude F _{zda} N	Mean F _{zdm} N	Maximum F _{zdmax} N	Amplitude ^O zda N/mm²	Mean σ_{zdm} N/mm ²	Maximum O _{zdmax} N/mm ²
1	Shaft fillet	58	0	0	0	0	0	0	0
2	Shaft fillet	108	0	0	0	0	0	0	0
3	Shaft fillet	132.5	0	0	0	0	0	0	0
4	Shaft fillet	187.5	634.41	634.41	0	634.41	0.323	0	0.323
5	Shaft fillet	210	634.41	634.41	0	634.41	0.505	0	0.505
6	Calculation results for point x	160	634.41	634.41	0	634.41	0.25	0	0.25

Bending moment \mathbf{M}_b and bending stress σ_b

No.	Туре	Position x mm	Result. M _{bx} N·m	Amplitude M _{ba} N·m	Mean M _{bm} N·m	Maximum M _{bmax} N·m	Amplitude o _{ba} N/mm²	Mean ^o bm N/mm²	Maximum o _{bmax} N/mm²
1	Shaft fillet	58	0.104	0.104	0	0.104	0.032	0	0.032
2	Shaft fillet	108	5.243	5.243	0	5.243	0.834	0	0.834
3	Shaft fillet	132.5	20.109	20.109	0	20.109	1.639	0	1.639
4	Shaft fillet	187.5	19.536	19.536	0	19.536	1.592	0	1.592
5	Shaft fillet	210	5.359	5.359	0	5.359	0.853	0	0.853
6	Calculation results for point x	160	36.833	36.833	0	36.833	2.048	0	2.048

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

Torsional moment M_{t} und Torsional stress τ_{t}

No.	Туре	Position x mm	Result. M _{tx} N·m	Amplitude M _{ta} N·m	Mean M _{tm} N·m	Maximum M _{tmax} N·m	Amplitude ^{au_{ta}} N/mm ²	Mean ^t tm N/mm²	Maximum t _{tmax} N/mm²
1	Shaft fillet	58	114.592	114.592	0	114.592	17.81	0	17.81
2	Shaft fillet	108	114.592	114.592	0	114.592	9.119	0	9.119
3	Shaft fillet	132.5	114.592	114.592	0	114.592	4.669	0	4.669
4	Shaft fillet	187.5	0	0	0	0	0	0	0
5	Shaft fillet	210	0	0	0	0	0	0	0
6	Calculation results for point x	160	114.592	114.592	0	114.592	3.186	0	3.186

Critical shaft speed values:

Critical bending shaft speed values

No.	Critical shaft speed values n _b 1/min	Eigenfrequencies ω rad/s
1	147741.06	15471.41
2	406806.45	42600.67
3	672369.05	70410.32
4	1112230.23	116472.48
5	1521810.74	159363.65

Customer : Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Critical torsional shaft speed values

No.	Critical shaft speed values n _b 1/min	Eigenfrequencies ω rad/s
1	543907.45	56957.86
2	963052.13	100850.58
3	1266403.87	132617.5
4	1754193.61	183698.73
5	2231983.22	233732.74

Material Data

Material parameter for	d_{max}	=	56.792	mm
Material designation		18CrNiMo7-6		
Material number		1.6587		
Tensile strength	$\sigma_{\!B}$	=	1028.348	N/mm²
Yield stress	$\sigma_{\!S}$	= ⁷	728.413	N/mm²
Cyclic tension and pressure fatigue strength	$\sigma_{\sf zdW}$	=	411.339	N/mm²
Cyclic fatigue strength under bending stress	$\sigma_{\! ext{bW}}$	=	514.174	N/mm²
Cyclic torsional fatigue strength	$ au_{tW}$	=	308.504	N/mm²
Technological dimension factor (tensile strength)	$K_{1B}(d_{max})$	=	0.857	
Technological dimension factor (yield stress)	$K_{1S}(d_{max})$	=	0.857	

Proof of Strength

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

 $K_1(d)$ - Technological dimension factor

 ${\rm K_2}({\rm d})$ - Geometrical dimension factor

 $\mathbf{K}_{\mathbf{F}}$ - Influence factor of surface roughness

 $\alpha_{\sigma\!,\;\tau}$ - Form factors

No.	Туре	Position	K _{1B} (d)	K _{1S} (d)	Tension	Bending	Tension-	Torsion	Tension	Bending	Torsion
		х			-	and	pressure	$K_{F_{\tau}}$	-	$\alpha_{\sf ob}$	$\alpha_{ au}$
		mm			pressur	torsion	,		pressur		
					е	K ₂ (d)	bending		e		
					K ₂ (d)		$K_{F\sigma}$	G	$\alpha_{\sigma zd}$		
1	Shaft fillet	58	0.9	0.9	1	0.9	0.92	0.95	2.58	2.33	1.67
2	Shaft fillet	108	0.87	0.87	1	0.89	0.97	0.98	3	2.69	1.85
3	Shaft fillet	132.5	0.86	0.86	1	0.87	0.87	0.93	2.73	2.51	1.73
4	Shaft fillet	187.5	0.86	0.86	1	0.87	0.87	0.93	2.73	2.51	1.73
5	Shaft fillet	210	0.87	0.87	1	0.89	0.97	0.98	3	2.69	1.85
6	Calculation	160	0.86	0.86	1	0.86	0.92	0.95	-	-	-
	results										
	for point x				/						

G' - Relative stress drop

 $n_{\sigma\!,\;\tau}^{}$ - Bearing factor

No.	Туре	Position x mm	Tension- pressure G'zd 1/mm	Bending G' _b 1/mm	Torsion G' _t 1/mm	Tension- pressure no _{zd}	Bending n _{ob}	Torsion n _τ
1	Shaft fillet	58	2.53	2.53	1.15	1.32	1.32	1.21
2	Shaft fillet	108	3.11	3.11	1.44	1.35	1.35	1.24
3	Shaft fillet	132.5	2.55	2.55	1.15	1.32	1.32	1.21
4	Shaft fillet	187.5	2.55	2.55	1.15	1.32	1.32	1.21
5	Shaft fillet	210	3.11	3.11	1.44	1.35	1.35	1.24
6	Calculation results for point x	160	-	-	ı	-	-	-

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

 $\beta_{\sigma\!ZddBK},~\beta_{\sigma\!bdBK},~\beta_{\tau dBK}$ - Stress concentration factor at d_{BK}

 $\beta_{ozd},~\beta_{ob},~\beta_{\tau}$ - Stress concentration factors K_{v} - Influence factor of surface hardening

No.	Туре	Position x mm	Tension- pressure β _{ozddBK}	Bendin g β _{obdBK}	Torsion $\beta_{\tau dBK}$	Tension- pressure β_{ozd}		Torsion β_{τ}	Tension- pressure K _{vzd}		Torsion $K_{V\tau}$
1	Shaft fillet	58	-	-	-	1.96	1.77	1.37	1.1	1.1	1.1
2	Shaft fillet	108	-	-	ı	2.22	1.99	1.49	1.1	1.1	1.1
3	Shaft fillet	132.5	-	-	ı	2.07	1.9	1.42	1	1	1
4	Shaft fillet	187.5	-	-	ı	2.07	1.9	1.42	1	1	1
5	Shaft fillet	210	-	-	ı	2.22	1.99	1.49	1.1	1.1	1.1
6	Calculation results for point x	160	-	-	-	1	4	1	1	1	1

 $\mathrm{K}_{\mathrm{o}'} \ \mathrm{K}_{_{\mathrm{T}}}$ - Total influence factor

 $\sigma_{zdWK'}$ $\sigma_{bWK'}$ τ_{tWK} - Cyclic fatigue strength of the notched part K_{2F} - Static bearing effect

No.	Туре	Position x mm	Tension - pressure K _σ	K_{σ}	Torsion K _r	Tension - pressure ozdwk N/mm²	σ _{bWK}	Torsions ^τ tWK N/mm²	Tension - pressure K _{2Fzd}	Bendin g K _{2Fb}	Torsion K _{2Ft}
1	Shaft fillet	58	1.86	1.86	1.43	231.5	289.2 9	226.0 7	1	1	1
2	Shaft fillet	108	2.05	2.07	1.54	204.4 5	253.1 4	203.1	1	1	1
3	Shaft fillet	132.5	2.21	2.32	1.71	185.7 9	221.2 6	180.9 4	1	1	1
4	Shaft fillet	187.5	2.21	2.32	1.71	185.7 9	221.2 6	180.9 4	1	1	1
5	Shaft fillet	210	2.05	2.07	1.54	204.4 5	253.1 4	203.1	1	1	1
6	Calculation results for point x	160	1.09	1.24	1.2	378.8 3	413.9 6	256.2 6	1	1	1

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

 $\gamma_{\textrm{F}}$ - Yield point rise

 $\sigma_{\text{zdFK'}}$ $\sigma_{\text{bFK'}}$ τ_{tFK} - Yield point of the part

No.	Туре	Position x mm	Tension- pressure γ _{Fzd}	Bending ^{YFb}	Torsion ^γ Ft	Tension- pressure σ_{ZdFK} N/mm ²	Bending o _{bFK} N/mm ²	Torsion TtFK N/mm²
1	Shaft fillet	58	1.1	1.1	1	838.26	838.26	439.97
2	Shaft fillet	108	1.1	1.1	1	814.7	814.7	427.61
3	Shaft fillet	132.5	1.1	1.1	1	801.25	801.25	420.55
4	Shaft fillet	187.5	1.1	1.1	1	801.25	801.25	420.55
5	Shaft fillet	210	1.1	1.1	1	814.7	814.7	427.61
6	Calculation results for point x	160	1	1	1	728.41	728.41	420.55

Static safety

No.	Туре	Position X mm	/ S _F	In Point1 S _{F1}	in Point2 S _{F2}
1	Shaft fillet	58	24.7	-	-
2	Shaft fillet	108	46.84	-	-
3	Shaft fillet	132.5	88.58	-	-
4	Shaft fillet	187.5	418.41	-	-
5	Shaft fillet	210	600.04	-	-
6	Calculation results for point x	160	121.85	-	-

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

 $\boldsymbol{\psi}$ - Influence factor of the mean stress sensitivitz

 σ_{mv} , τ_{mv} - Comparative mean stress

No.	Туре	Position x mm	Tension- pressure ΨzdσK	Bending Ψ _{bσ} Κ	Torsion $\psi_{\tau K}$	o _{mv} N/mm²	τ _{mv} N/mm²	o _{mv1} N/mm²	τ _{mv1} N/mm²	σ _{mv2} N/mm²	τ _{mv2} N/mm²
1	Shaft fillet	58	-	0.16	0.12	0	0	-	<u> </u>	-	-
2	Shaft fillet	108	ı	0.14	0.11	0	0			-	-
3	Shaft fillet	132.5	-	0.12	0.1	0	0		- 7	-	-
4	Shaft fillet	187.5	0.1	0.12	-	0	0	1-	-	-	-
5	Shaft fillet	210	0.11	0.14	-	0	0 /		-	-	-
6	Calculation results for point x	160	0.23	0.25	0.14	0	0	<u> </u>	-	-	-

Alternating fatigue strength of the part (rated fatigue limit)

No.	Туре	Position	Tension-	Bending	Torsion	Tension	Bending			Bendin	Torsion
		Х	pressure	^σ bADK	τ _{tADK}	<u> </u>	in Deizet	in	pressure	g :	in
		mm	^o zdADK N/mm²	N/mm²	N/mm²	pressure in		Point1	in Point2	in Point2	Point2
			14/111111-			Point1	o _{bADK1} N/mm²	^T tADK1 N/mm²	σ _{zdADK2}	σ _{bADK2}	^T tADK2 N/mm²
				4	,,	σ _{zdADK1}	. 4	,	N/mm ²	N/mm ²	,
						N/mm²					
1	Shaft fillet	58	-0_	289.2	226.07	-	-	-	-	-	-
				9							
2	Shaft fillet	108		253.1	203.1	-	-	-	-	-	-
				4							
3	Shaft fillet	132.5	-	221.2	180.94	-	-	-	-	-	-
				6							
4	Shaft fillet	187.5	185.79	221.2	-	-	-	-	-	-	-
				6							
5	Shaft fillet	210	204.45	253.1	-	-	-	-	-	-	-
				4							
6	Calculation	160	378.83	413.9	256.26	-	-	-	-	-	-
	results			6							
	for point x										

User : Program : MDESIGN 2020 -

Customer : Student

Project Module version: 18.0.12 Date: 23.05.2023

Shaft, Standard

Dynamic safety

No.	Туре	Position x mm	S _D	in Point1 S _{D1}	in Point2 S _{D2}
1	Shaft fillet	58	12.69	-()	-
2	Shaft fillet	108	22.21	0	-
3	Shaft fillet	132.5	37.25		-
4	Shaft fillet	187.5	111.93	<u> </u>	-
5	Shaft fillet	210	171.28	_	-
6	Calculation results for point x	160	73.31	-	-

Safety against incipient crack with hard surface

No.	Туре	Position X mm	S _G	In Point1 S _{G1}	in Point2 S _{G2}
1	Shaft fillet	58	77.32	-	-
2	Shaft fillet	108	127.62	-	-
3	Shaft fillet	132.5	221.74	-	-
4	Shaft fillet	187.5	471.36	-	-
5	Shaft fillet	210	604.27	-	-
6	Calculation results for point x	160	507.01	-	-

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023

Customer : Student

Project :

Shaft, Standard

Unnotched (part dimension) for point x

= 728 N/mm² = 728 N/mm²

= 1.6587

= 18CrNiMo7-6

= 1028 N/mm²

= 421 N/mm² = 411 N/mm² = 514 N/mm²

> Tension-pressure Bending Torsion

= 309 N/mm²

Notched (part dimension) for point x

= 18CrNiMo7-6 = 1.6587

= 1028 N/mm²

= 728 N/mm²
prk = 728 N/mm²
prk = 728 N/mm²
prk = 421 N/mm²
prk = 421 N/mm²
prk = 379 N/mm²
prk = 414 N/mm²
prk = 256 N/mm²

Tension-pressure Bending Torsion

Customer : Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Trend of curve of the transverse force in the Y-X-plane

Trend of curve of the transverse force in the Z-X-plane

Customer : Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Trend of curve of the transverse force (combined characteristic)

Bending moment in the Y-X-plane

Customer : Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Trend of curve of the bending moment curve in the Z-X plane

Trend of curve of the bending moment (combined characteristic)

: MDESIGN 2020 -Program User :

Customer : Student Project

Module version: 18.0.12 Date: 23.05.2023

Shaft, Standard

Trend of curve of the torsional moment

Trend of curve of the tension-pressure forces

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023

Customer : Student

Project :

Shaft, Standard

Deflection and angle of deflection in the Y-X-plane

Deflection and angle of deflection in the Z-X-plane

Program : MDESIGN 2020 - User : Customer : Student

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

Deflection and angle of deflection (combined characteristic)

Equivalent mean stress (normal stress)

Program : MDESIGN 2020 - User :

Module version : 18.0.12 Date : 23.05.2023

Customer : Student

Project :

Shaft, Standard

Equivalent mean stress (shear stress)

Safety factor against yielding (diagram section up to 5*minimum safety)

Customer: Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

Safety against fatigue fracture (diagram section up to 5*minimum safety)

Safety against incipient crack with hard surface (Cross-section: SG=5*SGmin)

Customer : Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

Maximum value of the tension-pressure stress (combined characteristic)

Maximum value of the bending stress (combined characteristic)

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023

Customer : Student

Project :

Shaft, Standard

Maximum value of the torsional stress (combined characteristic)

Equivalent stress development (resultant)

Customer : Student

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project

Shaft, Standard

Amplitude value of the tension-pressure stress (combined characteristic)

Amplitude value of the bending stress (combined characteristic)

Program : MDESIGN 2020 - User :

0301 .

Module version: 18.0.12

Date: 23.05.2023

Customer : Student

Project :

Shaft, Standard

Amplitude value of the torsional stress (combined characteristic)

Mean value of the tension-pressure stress (combined characteristic)

Program : MDESIGN 2020 -

User :

Customer : Student

Module version: 18.0.12

Date: 23.05.2023

Project

Shaft, Standard

Mean value of the bending stress (combined characteristic)

Mean value of the torsional stress (combined characteristic)

Program : MDESIGN 2020 - User :

Module version : 18.0.12 Date : 23.05.2023

Customer : Student

Project :

Shaft, Standard

Safety against fatigue fracture

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023

Customer : Student

Project :

Shaft, Standard

Safety against incipient crack with hard surface

Calculation graphic Y-X-plane

Program : MDESIGN 2020 - User :

Module version: 18.0.12 Date: 23.05.2023 Project:

Shaft, Standard

Customer : Student

Calculation graphic Z-X-plane

