線形代数学・同演習 B

演習問題 3

1. 次のベクトルの組は, \mathbb{R}^4 の基底をなすか調べよ.

$$(1) \begin{pmatrix} 1 \\ -4 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \\ -6 \end{pmatrix}, \begin{pmatrix} -1 \\ 6 \\ 1 \\ 5 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ -3 \\ 1 \end{pmatrix} \quad (2) \begin{pmatrix} 1 \\ -1 \\ -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ -4 \\ -4 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ -8 \\ 4 \\ 9 \end{pmatrix}$$

- 2. V を 1 次以下の 2 変数多項式 ax + by + c の全体がなす集合とする .
 - (1) V は自然な演算でベクトル空間となることを確認せよ.
 - (2) V の次元はいくつか? また V の自然な基底を 1 組求めよ .
 - (3) 平面の 3 点 $P_1=(0,0), P_2=(1,0), P_3=(0,1)$ において,それぞれ指定された値 c_1,c_2,c_3 をとるような V の元を表すのに最も適した V の基底を求めよ. *1
- 3^{\dagger} 次の多項式の組は $\mathbb{R}[x]_3$ の基底になるか調べよ.

(1)
$$\begin{cases} p_1(x) = x^3 - 3x \\ p_2(x) = x^2 - 5x - 4 \\ p_3(x) = 3x^3 - x + 2 \\ p_4(x) = 2x^2 + x + 1 \end{cases}$$
 (2)
$$\begin{cases} q_1(x) = x^3 - x \\ q_2(x) = 4x^3 - x^2 - 3 \\ q_3(x) = -3x^3 + 6x^2 + x + 8 \\ q_4(x) = x^3 + 5x^2 + x + 5 \end{cases}$$

- 4^{\dagger} n 次の対称行列全体の集合を $\mathrm{Sym}(n,\mathbb{R})$ で表す.
 - (1) Sym (n,\mathbb{R}) はベクトル空間となることを確認せよ.
 - (2) Sym (n,\mathbb{R}) の次元を求めよ.
 - (3) Sym (n,\mathbb{R}) の基底を一組求めよ *2 .
- 5^{\dagger} $\mathbb{R}[x]_2$ において ,多項式 ax^2+bx+c を次の基底 q_1,q_2,q_3 に関してベクトル表示せよ .
 - (1) $q_1(x) = 1$, $q_2(x) = x$, $q_3(x) = x^2$.
 - (2) $q_1(x) = x^2 + x + 1$, $q_2(x) = x + 1$, $q_3(x) = 1$.
 - (3) $q_1(x) = x^2 + x$, $q_2(x) = x^2 + 2x 1$, $q_3(x) = -x + 2$.
- 6^* (1) 複素数 $\mathbb C$ は実数体 $\mathbb R$ 上のベクトル空間とみなせることを示しその次元を求めよ.
 - (2) 実数の集合 $\mathbb R$ は有理数の集合 $\mathbb K=\mathbb Q$ 上のベクトル空間とみなせることを示せ.また,円周率 π が超越数* 3 であることを利用して,その次元は無限大となることを示せ.

¹⁰月24日分 (凡例:無印は基本問題,†は特に解いてほしい問題,*は応用問題) 講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017LA.html

 $^{^{*1}}$ $f_i(P_j) = \delta_{ij}$ (i,j=1,2,3) となる多項式 f_1,f_2,f_3 を求めればよい .

 $^{^{*2}}$ 行列単位 E_{ij} を用いるとよい.これは (i,j) 成分のみが 1 でそれ以外の成分はすべて 0 である正方行列である.サイズは文脈に応じて定める.

 $^{^{*3}}$ どんな整数係数 (有理数係数) 多項式 p(x) に対しても $p(x_0)
eq 0$ であるとき,実数 x_0 を超越数という.