LERNZIELE TEMPERATUR UND WÄRME

Begriff	Lernziele
Temperatur	Begriff "thermisches Gleichgewicht" mit einem Diagramm erklären Beispiele für temperaturabhängige Materialeigenschaften kennen Definition der Celsiusskala (Fixpunkte, Einteilung) erklären zwischen Celsius- und Kelvintemperaturen umrechnen
Längenausdehnung	Längenausdehnung für einen festen Körper berechnen realisieren, dass lineare Ausdehnung nur innerhalb eines bestimmten Temperaturbereichs gute Näherung ist Funktionsweise von Bimetallen erklären
	zwei Anwendungen von Bimetallen kennen
Volumenausdehnung	Volumenausdehnung von Flüssigkeiten und festen Körpern mit Hilfe der Werte aus der FoTa berechnen
	Dichteänderung von Flüssigkeiten und festen Körpern berechnen Anomalie des Wassers um 4°C beschreiben und ihre Bedeutung für die Natur realisieren
innere Energie und Wärme	Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhänge für spezielle Prozesse ("Wasserkesselmodell")
	Unterschied zwischen adiabatischen und isothermen Prozessen erklären; je ein Beispiel für einen adiabatischen, aber nicht isothermen, und einen isothermen, aber nicht adiabatischen Prozess kennen
	Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen
Wärmetransportarten	Zwei Beispiele für Konvektion beschreiben
	Zeitlichen Temperaturverlauf bei Wärmeleitung beschreiben
	Je zwei Beispiele für gute und schlechte Wärmeleiter kennen (mit Anwendungen)
	Strahlungsgesetze auf einfache Beispiele anwenden
spezifische Wärme	zwei Möglichkeiten zur Bestimmung der zugeführten Wärmemenge beschreiben
	zugeführte bzw. abgegebene Wärmemenge aus Temperaturänderung berechnen
	zwei Beispiele für die Bedeutung von Wasser als Wärmespeicher bzw. Kühlmittel kennen
	einfache Mischrechnungen systematisch lösen
Phasenübergänge	Temperaturverlauf bei Phasenübergang skizzieren
	Übergangswärmen berechnen
	erklären, was gesättigter Dampf ist
	Siedepunkt für beliebigen Druck anhand einer Dampfdruckkurve bestimmen
	Phasendiagramm qualitativ skizzieren
	Bedeutung von kritischem Punkt und Tripelpunkt kennen

Wärmemaschinen zwei Beispiele für reale Wärmekraftmaschinen (z.B. Viertaktmotor,

Dampfmaschine, Gasturbine) beschreiben und deren Wirkungsgrade

kennen

Energieflussdiagramme für Wärmekraftmaschine, Kühlmaschine und

Wärmepumpe zeichnen

Berechnungen mit Leistungsziffern für Kühlmaschine und Wärme-

pumpe (real und ideal)

Grösse Wert

absoluter Nullpunkt o K = -273.15 °C

Längenausdehnungskoeffizient (Metalle) typisch 10 – 30 \cdot 10 $^{\text{-}6}~\text{K}^{\text{-}1}$

Volumenausdehnung (Flüssigkeiten) typisch 2 – 20 · 10⁻⁴ K⁻¹

spezifischer Heizwert von Heizöl 42.7 MJ/kg

Stefan-Boltzmann-Konstante $\sigma = 5.67 \cdot 10^{-8} \text{ W}/(\text{m}^2 \cdot \text{K}^4)$

Solarkonstante $S = 1'380 \text{ W/m}^2$

spezifische Wärme von Wasser $c = 4.182 \text{ kJ/(kg} \cdot \text{K)}$

Verdampfungswärme von Wasser Lv = 2.26 MJ/kg

Schmelzwärme von Wasser $L_f = 334 \text{ kJ/kg}$

typische Wirkungsgrade Benzinmotor: 20 % – 30 %

Kernkraftwerk: 30 %