ESTRUCTURAS REPETITIVAS

TEMAS:

- 1. Contadores
- 2. Acumuladores
- 3. Banderas
- 4. Estructuras de repetición

Objetivo

- Determinar la función de cada uno de los recursos (*contador, acumulador y bandera*) que se utilizan en una estructura repetitiva.
- Definir qué es una estructura repetitiva.
- Diferenciar las estructuras repetitivas según su comportamiento.
- Identificar la mejor estructura repetitiva según su eficiencia para un caso específico.

ESTRUCTURA DE REPETICIÓN O ITERACIÓN

Las estructuras repetitivas se utilizan cuando se quiere que un conjunto de instrucciones se ejecuten *un cierto número finito de veces*.

Por ej. Ingrese 10 valores y muestre la suma de los mismos.

Con estructura secuencial

Contadores Acumuladores y Banderas

CONTADOR

Es una variable cuyo valor se *incrementa* o *decrementa* en una cantidad constante cada vez que se produce un determinado suceso o acción.

Su función: Contar sucesos o acciones internas de un bucle. Se debe inicializar al contador asignándole un valor inicial. Se situará antes y fuera del bucle. La variable contador es de **tipo entero**.

Sintaxis:

IDENTIFICADOR = IDENTIFICADOR + VALOR CONSTANTE

C=0

Por ejemplo: C = C + 1

ACUMULADOR

Es una variable cuyo valor se incrementa o decrementa en una cantidad variable en cada iteración o ciclo de un proceso repetitivo.

Su función: se utiliza con frecuencia para sumar una determinada cantidad de valores, por lo tanto la variable debe ser de tipo entero o real. También deber ser *inicializada* antes de ser usada.

Sintaxis:

IDENTIFICADOR = IDENTIFICADOR + VALOR VARIABLE

S = 0

Por ejemplo: S = S + X

VARIABLE BANDERA

Una variable bandera es aquella que presenta estados, y según lo que ocurra cambia el estado.

Es utilizada dentro de la **condición de un bucle**, para determinar cuándo un bucle se sigue iterando o cuando no. De esta manera una variable bandera debe ser de tipo **booleano o entero**.

Por ejemplo:

IDENTIFICADOR = Falso (VALOR INICIAL)

Si ocurre un suceso: IDENTIFICADOR = Verdadero o 1

Si ocurre otro suceso: IDENTIFICADOR = Falso o 0

EJEMPLO DE CONTADOR, ACUMULADOR Y BANDERA

Supongamos que somos cajeros de un banco. El cajero puede descansar 1 hora por jornada cada vez que atendió a 50 clientes o que haya pagado más de \$100000. El descanso del cajero será controlado por su superior para ver si llegó a los 50 clientes, o si llegó a los 100000 y si descansó o no.

Entonces vamos a usar c para contar los clientes y s para contar el dinero pagado y b para indicar su descanso.

Sintaxis:

Iniciar las variables

 $c=0 \rightarrow Arranca\ en\ 0$

 $s=0 \rightarrow Arranca en 0$

 $b=0 \rightarrow Sin descanso$

Función de las variables

 $c = c + 1 \rightarrow cuenta clientes$

 $s = s + dinero \rightarrow Acumula dinero$

Algoritmo

Entra el cliente 1

Cajero paga al cliente X dinero

Controla el supervisor si **c = 50** o si **s>100000**

Si eso es verdad verifica si **no** ocupó su descanso b=0

si **b=0** le corresponde el descanso y cambia a **b=1**

si b no es =0 no le corresponde el descanso (siga trabajando)

Se incrementa el contador c=c+1

Se actualiza el acumulador s=s+ X dinero

Si c<50 o si s no es mayor a 100000 pasa el siguiente cliente

Cuándo utilizaríamos un proceso repetitivo?

- Escribir algo en pantalla cierta cantidad de veces
- Hacer una operación matemática cierta cantidad de veces.

Entonces, a todo proceso que se repite cierto número de veces dentro de un pseudocódigo o un programa se les llama bucle o ciclo.

Y la expresión lógica que controla el flujo repetitivo se denomina *Corte de Control*.

Estas estructuras son las siguientes:

- 1. Estructura FOR
- 2. Estructura WHILE
- 3. Estructura **DO WHILE**

Mientras (condición sea verdadera) hacer PROC 1 PROC 2 Fin_mientras PROC 3 PROC 3

La expresión lógica se evalúa **antes** de la ejecución del bucle. Si la condición es verdadera se ejecuta las acciones incluidas en el bucle, caso contrario el control pasa a la sentencia siguiente al lazo.

Si la expresión lógica no se cumple cuando se ejecuta el bucle por primera vez, el conjunto de acciones del lazo **no se ejecuta nunca**.

ESTRUCTURA FOR (PARA)

```
Para i = 0 hasta N de 1 en 1
PROC 1
PROC 2
Fin_del For
PROC 3
```

iteraciones o pasos.

En programación usamos el bucle FOR para repetir una o mas instrucciones un número determinado de veces, muy parecido al WHILE, solo que el bucle FOR es mas compacto en el código y de modo automático controla el número de

Proceso que se repite

ESTRUCTURA DO WHILE (HACER MIENTRAS)

Hacer

PROC 1

PROC 2

Mientras condición

PROC 3

La estructura **DO WHILE** cumple la misma función que la estructura **WHILE**. La diferencia está en que la estructura **WHILE** comprueba la condición al inicio y **DO WHILE** lo hace al final. Es por ello que la estructura **DO WHILE** ejecuta por lo menos una vez los procesos.

Ej. Ingresar 10 números y muestre la sumatoria de ellos.

Cond. Lógica → Repetir mientras contador < 10

Dentro de los problemas que se pueden resolver con estas estructuras encontramos:

- 1. Problemas donde **se conoce la cantidad** de veces que se repite el ciclo. Generalmente **N**.
- 2. Problemas donde NO se conoce la cantidad de veces que se repite el ciclo.
- 3. Problemas de generación de valores.

¿CUÁNDO UTILIZAR UN BUCLE U OTRO?

- La estructura FOR suele utilizarse cuando se conoce exactamente el número de iteraciones del bucle.
- La estructura WHILE suele utilizarse cuando se conoce o No el número de iteraciones del bucle, pudiendo ser éste mayor o igual a 0.
- La estructura Do..While suele utilizarse cuando se conoce o No el número de iteraciones del bucle, pudiendo ser éste mayor o igual a 1.

Por Ejemplo: Pedir las calificaciones de un alumno correspondientes a tres exámenes, obtener el respectivo promedio y determinar si dicho alumno aprobó o reprobó. Tomar 6 como nota mínima de aprobación.

Ahora, qué pasaría si serian N alumnos.

WHILE

Ahora, qué pasaría si se quisiera calcular el promedio general de todos los alumnos.

FOR

DO WHILE INICIO C=0 P=0 S=0 N1, N2, N3 P=(N1+N2+N3)/3 N P>=6 **REPROBADO APROBO** N S N>0 PG=S/N C=C+1 **NO INGRESO NOTAS** S=S+P PG N C<=N FIN

- *Ej.1 Generar la siguiente serie: 10,9,8,7,6,5,4,3,2,1,0*
- Ej. 2 Generar la tabla de multiplicar de un número X ingresado por el usuario del 1 al 12.
- Ej. 3 Ingrese N valores y determine la suma de los valores ingresado en la posición par.

Ingrese N valores y determine la suma de los valores ingresado en la posición par.

Ej. Si la cantidad de valores es 5 y los nros. Ingresados los siguientes 23, 4, 56, 45, 25

Los valores que tendría que sumar serian: 4 y 45, que están en la posición 2 y 4, dando como Resultado 49

DIAGRAMA DE FLUJO Declarar e Inicializar las variables Ingrese la Cantidad de Nros Controlador del bucle **Ingresar el Nro** Preguntar si la posición es par C MOD 2=0 Si está en la posición par Acumular Incrementar el contador en 1 y C ← C+1 volver a analizar el control del bucle Cierre Mostrar lo acumulado

EJERCICIOS PARA AFIANZAR LOS TIPOS DE ESTRUCTURAS DE REPETICION

PROBLEMAS DONDE SE CONOCE LA CANTIDAD DE VECES QUE SE REPITE EL CICLO

Práctica 1:

Introduzca N números enteros y muestre el promedio de los mismos.

Práctica 2:

Introduzca N números enteros y muestre el porcentaje de números positivos ingresados.

Práctica 3:

Introduzca N valores y determine el mayor de ellos y en qué posición se encuentra.

Analice que pasaría si el valor ingresado para N es 0.

PROBLEMAS DONDE NO SE CONOCE LA CANTIDAD DE VECES QUE SE REPITE EL CICLO

Práctica 1:

Introduzca una cantidad no determinada de valores, cuyo final está determinado por el valor cero, y determine el promedio de ellos.

Práctica 2:

Dada una cantidad indeterminada de alumnos, ingrese las edades de los mismos, calcule y muestre el porcentaje de alumnos que estén entre 18 y 20 años.

Práctica 3:

Introduzca una cantidad indeterminada de números enteros, determine la sumatoria e indique si hubo algún número negativo.

PROBLEMAS DE GENERACIÓN DE VALORES

Práctica 1:

Genere los números impares menores a 100 y dé a conocer la suma de ellos.

Práctica 2:

Genere la tabla de multiplicar de un numero X ingresado por el usuario del 1 al 10, desde un valor inicial hasta un valor final. Por ejemplo la tabla del 5 desde 4 hasta el 15.

Práctica 3:

Generar N números aleatorios de 2 dígitos y mostrar el porcentaje de los números pares. (Utilizar la función random(x).

Práctica 4:

Realizar un menú que considere las siguientes opciones:

Caso 1: Cubo de un Número

Caso 2: Número Par o Impar

Caso 3: Salir

MAS PRACTICA SOBRE ESTRUCTURA REPETITIVAS

Ejercicio 1

Dar los valores de la raíces de la ecuación de segundo grado, ingresando los coeficientes a, b, c como datos. Considere todos los casos posibles, y mostrar también un mensaje indicando si son reales iguales, reales distintas, o complejas.

CON BUCLE conociendo N

Se ingresa N ternas de coeficientes y mostrar los valores de las raíces de la ecuación de segundo grado. Mostrar también con un mensaje indicando si son reales iguales, distintas o complejas.

CON BUCLE cuando no se conoce N

Ingrese una cantidad **indeterminada** de ternas correspondientes a los coeficientes de una ecuación de segundo grado. Se pide:

- a) Mostrar los valores de las raíces
- b) Indique con un mensaje si las raíces con iguales, distintas o complejas
- c) Muestre la cantidad de ternas analizadas
- d) Razone para realizar el fin del programa

Ejercicio 2

Se ingresan una cantidad de valores enteros no determinada. Se desea saber cuántos de los valores ingresados fueron pares y cuantos fueron impares. El ingreso termina cuando el valor ingresado es cero.

Ejercicio 3

El dueño de una remisería de N coches, desea que, ingresando la recaudación cada 30 días de un coche obtener cierta información por cada uno de los autos.

SE PIDE:

- a. Cuanto recauda en promedio por día.
- b. Determinar y mostrar cuál sería el sueldo del chofer, sabiendo que, si la recaudación mensual supera los 9000 pesos, el sueldo es el 30% de la recaudación realizada; y si no lo supera, el sueldo es el 25%.
- c. Si el promedio de lo recaudado por día es menor a \$300, muestre un mensaje indicando que dicho chofer se debe esforzar más.

FIN DE LA CLASE

Ejercicio N° 1:

Ingresar el valor del Kw y el consumo eléctrico en una casa, se pide:

- Mostrar un mensaje "No tiene consumo" si el consumo es igual a cero.
- Mostrar lo que debe pagar el usuario, teniendo en cuanta que se le realiza un descuento del 5% para consumos menores a 350 Kw.

Ejercicio N° 2

Ingresar las coordenadas de un punto en el plano, dos variables X, Y.

Indicar si dicho punto si está dentro o fuera del cuadrado.

Ejercicio N° 1 - Resolver son Estructura Mientras

Para N empleados que trabajan en una fábrica ingrese por cada uno de ellos el valor de cada hora y la cantidad de horas trabajadas por un empleado, se pide mostrar por cada uno de ellos:

- Mostrar un mensaje "No trabajo" si la cantidad de horas es igual a cero.
- Mostrar el sueldo del empleado, teniendo en cuenta que se le realiza un descuento del 11% para jubilación y de un 3% para obra social, y si trabajó más de 60 hs tiene un premio de 5% sobre el total de cantidad de horas*valor de la hora

Y además el concepto total en pago de sueldos por la fábrica.

Ejercicio N° 2 - Resolver con Estructura Para

Ingrese N coordenadas de puntos en el plano, dos variables X, Y.

Indique:

- Si dicho punto se encuentra dentro o fuera del cuadrado.
- · Cuántos puntos están dentro del cuadrado.
- Porcentaje de puntos fuera del cuadrado

Ejercicio N° 1

Por cada uno de los empleados que trabajan en una fábrica se ingresa por cada uno de ellos el valor de cada hora y la cantidad de horas trabajadas, se pide mostrar por cada uno de ellos:

- Mostrar un mensaje "No trabajo" si la cantidad de horas es igual a cero.
- Mostrar el sueldo del empleado, teniendo en cuenta que se le realiza un descuento del 11% para jubilación y de un 3% para obra social, y si trabajó más de 60 hs tiene un premio de 5% sobre el total de cantidad de horas*valor de la hora

Y además el concepto total en pago de sueldos por la fábrica.

NOTA: El final de datos se da ,cuando ingresa un valor de hora igual a 0 (cero).

Ejercicio N° 2

Se ingresan coordenadas X, Y correspondiente a las coordenadas de puntos en el plano.

Para finalizar indique si se quieren seguir ingresando datos.

Indique:

- Si dicho punto se encuentra dentro o fuera del cuadrado.
- · Cuántos puntos están dentro del cuadrado.
- · Porcentaje de puntos fuera del cuadrado

Ejercicio N° 1

Para un empleado que trabaja en una fábrica se ingresa el valor de cada hora y la cantidad de horas trabajadas, se pide mostrar:

- Mostrar un mensaje "No trabajo" si la cantidad de horas es igual a cero.
- Mostrar el sueldo del empleado, teniendo en cuenta que se le realiza un descuento del 11% para jubilación y de un 3% para obra social, y si trabajó más de 60 hs tiene un premio de 5% sobre el total de cantidad de horas*valor de la hora

Ejercicio N° 2

Se ingresan las variables X, Y; correspondiente a sus coordenadas de un punto.

Indique:

• Si dicho punto se encuentra dentro o fuera del cuadrado.

Ejercicio N° 1 (Realizar con ciclo mientras)

Para N empleados que trabajan en una fábrica se ingresa el valor de cada hora y la cantidad de horas trabajadas, se pide mostrar:

- Mostrar un mensaje "No trabajo" si la cantidad de horas es igual a cero.
- Mostrar el sueldo del empleado, teniendo en cuenta que se le realiza un descuento del 11% para jubilación y de un 3% para obra social, y si trabajó más de 60 hs tiene un premio de 5% sobre el total de cantidad de horas*valor de la hora

Ejercicio N° 2 - (Realizar con ciclo Para)

Se ingresan N pares de valores para las variables X, Y; correspondiente a las coordenadas de un punto en el plano.

Indique:

- Si dicho punto se encuentra dentro o fuera del cuadrado.
- · Cantidad de puntos fuera del cuadrado.

