Première partie

TP2 Analyse - Rendu de Benjamin Khenniche et Elisa Lescarret

1 Exercie 1

1.1 Question 1

On prend x_0 le milieu de [a;b] c'est à dire $x_0 = 1/2(a+b)$ l se trouve donc dans un des deux intervalles $]a;x_0[$ ou $]x_0;b[$

D'après la méthode par dichotomie si $f(a)f(x_0) < 0$ alors $l \in]a; x_0[$ on pose alors $a_1 = a$ $b_1 = x_0[$

Si $f(a)f(x_0) = 0$ alors $l = x_0$

Si $f(a)f(x_0) > 0$ alors $l \in]x_0; b[$ On pose $a_1 = x_0 \ b_1 = b$

On pose ensuite $x_1 = 1/2(a_1 + b_1)$

On construit donc une suite $x_n = 1/2(a_n + b_n)$ tel que $|x_n - l| \leq \frac{(b-a)}{2^{n+1}}$

1.2 Question 2

Soit e_n l'écart entre x_n et l On a donc $e_{n+1}=e_n/2$ testons si la méthode est d'ordre 1

On doit vérifier que $|e_{n+1}|/|e_n|$ converge quand $n \to +\infty$

$$\lim_{n \to +\infty} \frac{|e_{n+1}|}{|e_n|} = \lim_{n \to +\infty} \frac{\left|\frac{e_n}{2}\right|}{|e_n|} = \frac{1}{2}$$

On vérifie pour l'ordre 2 si $\frac{|e_{n+1}|}{|e_n|^2}$ converge quand $n \to +\infty$

$$\lim_{n\to +\infty}\frac{|e_{n+1}|}{|e_n|^2}=\lim_{n\to +\infty}\frac{|e_n|}{2|e_n|^2}=\lim_{n\to +\infty}\frac{1}{2|e_n|}=+\infty$$

 $rac{|e_{n+1}|}{|e_n|^2}$ diverge la méthode est donc d'ordre 1

1.3 Question 3

Pour commencer l'algorithme il faut que f(a) et f(b) soit de signe opposés pour que $0 \in [f(a), f(b)]$ donc f(a)f(b) < 0

1

On a pour condition d'arrêt $|f(x_n)| \le \epsilon$

2 Exercice 2

2.1 Question 1

On a
$$\frac{y-f(a)}{x-a}=\frac{f(b)-f(a)}{b-a}\Rightarrow g(a)=\frac{af(b)-bf(a)}{f(b)-f(a)}$$

On a donc

$$x_{n+1} = g(x_n) = \frac{x_n f(b) - b f(x_n)}{f(b) - f(a)}$$

2.2 Question 2

f(a) et f(b) sont de signes opposés pour que $0 \in [f(a), f(b)]$ donc f(a)f(b) < 0

Quand la convergence coupe l'axe en abscisse en l cela correspond à $|x_{n+1}-x_n|<\epsilon$

3 Exercice 3

3.1 Question 1

Soit l'équation $f(x) = x^3 - 2x - 5$, nous cherchons les limites de f(x)

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$f'(x) = 3x^2 - 2$$

TABLEAU DE VARIATION:

$$x : -\infty; -\sqrt{2/3}; \sqrt{2/3}; +\infty$$

$$f'(x):+;-;+$$

$$f(x) : -\infty; <0; <0; +\infty$$

Il y a donc bien une seul solution.

3.2 Question 2

Algo...

3.3 Question 3

On a:
$$f(x) = x^3 - 2x - 5$$
 et $f'(x) = 3x - 2$ et $f''(x) = 6x$

Et nous cherchons un $u_0 \in [a,b]$ tel que $f(u_0) \times f''(u_0) > 0$ et $f(a) \times f(b) < 0$

Nous savons que $f(\sqrt{2/3}) < 0$ et f(4) = 51. choisissons donc l'interval $[\sqrt{2/3}, 4]$ et $u_0 = 4$

4 Exercice 4

4.1 Question 1

Comparaison avec Newton: Contrairement à la méthode de Newton, la méthode de la corde se sert de deux points $(x_0 \text{ et } x_1)$ pour calculer une "'tangente" approximative. x_n dépend de x_{n-1} et x_{n-2} . Deplus à l'initialisation, x_0 et x_1 n'ont pas besoin d'encadrer une racine de f(x). Cependant, f(x) doit être strictement monotone $(f'(x) \neq 0)$ sur tout son domaine de définition.

Comparaison avec Newton : La méthode de la sécante ressemble beaucoup à celle de Lagrange. A ceci près que pour Lagrange, une des deux bornes (celle supérieure) est fixée. Pour la sécante, nous avont x_0 et x_1 , l'une étant la dernière trouvé, l'autre datant d'une itération de plus.

- 4.2 Question 2
- 4.3 Question 3