Figure 1.1 - kernel virtual memory map

Note: more during driver architecture

The figure shows the structure of the page table entries used to manage the fourth gigabyte of virtual address space. It indicates the *purpose* of each area of *virtual* address space, and this has nothing to do with the assignment of physical RAM.

Figure 1.2 - page fault scenarios

Bit	Set (1)	Not set (0)
0	No page present in RAM	Protection fault (insufficient access permission)
1	Read access	Write access
2	Privileged kernel mode	User mode

Figure 1.3 - core page-frame management

ZONE_DMA DMA-able pages < 16MB

ZONE_NORMAL Normally addressable pages 16–896MB

ZONE_HIGHMEM Dynamically mapped pages > 896MB

Figure 1.4 – buddy allocator per zone

Figure 1.5 - buddy allocator in action

Figure 1.6 - buddy allocator system APIs

struct page * alloc_page(unsigned int gfp_mask)
Allocate a single page and return a struct address

struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2-power-of order number of pages and returns a struct page

unsigned long get_free_page(unsigned int gfp_mask)
Allocate a single page, zero it and return a virtual address

unsigned long __get_free_page(unsigned int gfp_mask) Allocate a single page and return a virtual address

unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2-power-of -order number of pages and return a virtual address

void __free_pages(struct page *page, unsigned int order)

Free an order number of pages from the given page

void __free_page(struct page *page)
Free a single page

void free_page(void *addr)

Free a page from the given virtual address

Figure 1.7 - buddy allocator flags

ZONE_DMA DMA-able pages < 16MB

ZONE_NORMAL Normally addressable pages 16–896MB

ZONE_HIGHMEM Dynamically mapped pages > 896MB

GFP_KERNEL (_GFP_WAIT | _GFP_IO | _GFP_FS)

GFP_DMA __GFP_DMA

GFP_ATOMIC __GFP_HIGH

__GFP_HIGHMEM

Allocates from ZONE HIGHMEM or ZONE NORMAL

Note: more during device drivers

Figure 1.8 - slab allocator subsystem architecture

Note: we will see more during driver architecture.