Lecture 10: Approximate Dynamic Programming

Diana Borsa

13th February 2020, UCL

This Lecture

- Last lectures:
 - ▶ MDP, DP, Model-free Prediction, Model-free Control
 - Bellman equations and their corresponding operators.
 - RL under function approximation. Deadly triad.
 - Multiple step and off-policy updates
- ► This lecture:
 - Revisit the framework of Approximate Dynamic Programming.
 - ► Under the 2 sources of error (estimation + fct. approximation), what can we say about resulting estimates?
- Next lectures: (more) approximate versions of these paradigms, mainly in the absence of perfect knowledge of the environment + neural networks parametrisation.

Preliminaries

(Quick Recap)

(Reminder) The Bellman Optimality Operator

Definition (Bellman Optimality Operator $T_{\mathcal{V}}^*$)

Given an MDP, $\mathcal{M}=\langle\mathcal{S},\mathcal{A},p,r,\gamma\rangle$, let $\mathcal{V}\equiv\mathcal{V}_{\mathcal{S}}$ be the space of bounded real-valued functions over \mathcal{S} . We define, point-wise, the Bellman Expectation operator $T_{\mathcal{V}}^*:\mathcal{V}\to\mathcal{V}$ as:

$$(T_{\mathcal{V}}^*f)(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) f(s') \right], \ \forall f \in \mathcal{V}$$
 (1)

As a common convention we drop the index ${\mathcal V}$ and simply use $T^*=T^*_{{\mathcal V}}$

The Bellman Expectation Operator

Definition (Bellman Expectation Operator)

Given an MDP, $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, let $\mathcal{V} \equiv \mathcal{V}_{\mathcal{S}}$ be the space of bounded real-valued functions over \mathcal{S} . For any policy $\pi : \mathcal{S} \times \mathcal{A} \to [0,1]$, we define, point-wise, the Bellman Expectation operator $\mathcal{T}^{\pi}_{\mathcal{V}} : \mathcal{V} \to \mathcal{V}$ as:

$$(T_{\mathcal{V}}^{\pi}f)(s) = \sum_{a} \pi(s, a) \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s)f(s') \right], \ \forall f \in \mathcal{V}$$
 (2)

(Reminder) Dynamic Programming with Bellman Operators

Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = T^*v_k$.

Policy Iteration

- ightharpoonup Start with π_0 .
- ► Iterate:
 - Policy Evaluation: v_{π_i}
 - (E.g. For instance, by iterating T^{π} : $v_k = T^{\pi_i} v_{k-1} \Rightarrow v_k \to v^{\pi_i}$ as $k \to \infty$)
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a q_{\pi_i}(s, a)$

Approximate DP

- ► More often than not:
 - ▶ We won't know the underlying MDP.
 - \Rightarrow sampling/estimation error, as we don't have access to the true operators T^{π} (T^{*})
 - ▶ We won't be able to represent the value function exactly after each update.
 - ⇒ approximation error, as we approximate the true value functions within a (parametric) class (e.g. linear functions, neural nets, etc).
- \triangleright Objective: Under the above conditions, come up with a policy π that is (close to) optimal.

Approximate Value Iteration (+ friends)

(Reminder) Value Iteration

Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = T^*v_k$.

As $k \to \infty$, $v_k \to_{\|.\|_{\infty}} v^*$. (Direct application for the Banach's Fixed Point theorem)

Approximate Value Iteration

Approximate Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = A T^* v_k$. $(v_{k+1} \approx T^* v_k)$
- ▶ Return control policy: $\pi_{k+1} = Greedy(v_{k+1})$

Question: As $k \to \infty$, $v_k \to_{\parallel,\parallel_{\infty}} v^*$? Generally X. But maybe we don't need to!

Good news: interested in the quality of π_n after *n* iterations: v_{π_n} (or q_{π_n})

Performance of AVI

Theorem (Bertsekas & Tsitsiklis, 1996)

Consider a MDP. And let q_k be the value function returned by AVI after k steps and let π_k be its corresponding greedy policy, then:

$$\|q^*-q_{\pi_n}\|_\infty \leq rac{2\gamma}{(1-\gamma)^2}\max_{0\leq k < n} \|T^*q_k-\mathcal{A}T^*q_k\|_\infty + rac{2\gamma^{n+1}}{(1-\gamma)}\epsilon_0$$

where

$$\epsilon_0 = \|q^* - q_0\|_{\infty}$$

and T* is the optimal Bellman operator associated with this MDP

Performance of AVI

Theorem (Bertsekas & Tsitsiklis, 1996)

Consider a MDP. And let q_k be the value function returned by AVI after k steps and let π_k be its corresponding greedy policy, then:

$$\|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < n} \|T^*q_k - \mathcal{A}T^*q_k\|_{\infty} + \frac{2\gamma^{n+1}\gamma}{(1-\gamma)} \underbrace{\epsilon_0}_{\text{(initial error)}}$$

where

$$\epsilon_0 = \|q^* - q_0\|_{\infty}$$

and T^* is the optimal Bellman operator associated with this MDP

Performance of AVI

Theorem (Bertsekas & Tsitsiklis, 1996)

Consider a MDP. And let q_k be the value function returned by AVI after k steps and let π_k be its corresponding greedy policy, then:

$$\|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < n} \underbrace{\|\mathcal{T}^* q_k - \mathcal{A} \mathcal{T}^* q_k\|_{\infty}}_{\text{approximation error at iter. } k} + \frac{2\gamma^{n+1}\gamma}{(1-\gamma)} \underbrace{\epsilon_0}_{\text{(initial error)}}$$

where

$$\epsilon_0 = \|q^* - q_0\|_{\infty}$$

and T* is the optimal Bellman operator associated with this MDP

Statement:
$$\|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < n} \|T^*q_k - \mathcal{A}T^*q_k\|_{\infty} + \frac{2\gamma^{n+1}}{(1-\gamma)} \|q^* - q_0\|_{\infty}$$

Proof

Let's denote $\epsilon = \max_{0 \le k \le n} \|T^* q_k - \mathcal{A} T^* q_k\|_{\infty}$. Then for all k < n:

$$||q^{*} - q_{k+1}||_{\infty} \leq ||q^{*} - T^{*}q_{k}||_{\infty} + ||T^{*}q_{k} - q_{k+1}||_{\infty}$$

$$\leq ||T^{*}q^{*} - T^{*}q_{k}||_{\infty} + \epsilon$$

$$\leq \gamma ||q^{*} - q_{k}||_{\infty} + \epsilon$$
(5)

Thus:

$$||q^* - q_k||_{\infty} \leq \gamma ||q^* - q_{k-1}||_{\infty} + \epsilon$$

$$\leq \gamma (\gamma ||q^* - q_{k-2}||_{\infty} + \epsilon) + \epsilon$$

$$\cdots$$

$$(6)$$

$$(7)$$

$$\leq \gamma^{k} \| q^{*} - q_{0} \|_{\infty} + \epsilon (1 + \gamma + \dots + \gamma^{K-1})$$

$$\leq \gamma^{k} \| q^{*} - q_{0} \|_{\infty} + \frac{1}{(1 - \gamma)} \epsilon$$
(8)

Performance of AVI (Proof continued)

$$\text{Statement: } \|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < n} \|T^* q_k - \mathcal{A} T^* q_k\|_{\infty} + \frac{2\gamma^{n+1}}{(1-\gamma)} \|q^* - q_0\|_{\infty}$$

Proof

Let's denote $\epsilon = \max_{0 \le k < n} \|T^*q_k - \mathcal{A}T^*q_k\|_{\infty}$. Then for all k, we have

$$\|q^* - q_k\|_{\infty} \le \gamma^k \|q^* - q_0\|_{\infty} + \frac{1}{(1 - \gamma)}\epsilon$$
 (10)

Now recall, the performance of a greedy policy, π_k based on q_k :

$$\|q^* - q_{\pi_k}\|_{\infty} \le \frac{2\gamma}{1-\gamma} \|q^* - q_k\|_{\infty}$$
 (11)

Combining the two results, we get the statement of the theorem.

Performance of AVI: Breakdown

Statement:

$$\|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^2} \max_{0 \leq k < n} \|T^* q_k - \mathcal{A} T^* q_k\|_{\infty} + \frac{2\gamma^{n+1}}{(1 - \gamma)} \|q^* - q_0\|_{\infty}$$

Some implications:

- As $n \to \infty$, $\Rightarrow 2\gamma^n/(1-\gamma) \to 0$
- ightharpoonup What if $a_0 = a^*$?

$$\|q^* - q_{\pi_n}\|_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} \max_{0 \le k \le n} \|T^*q_k - \mathcal{A}T^*q_k\|_{\infty}$$

▶ Consider iteration 1: $q_1 = AT^*q_0 = Aq^*$.In general $\Rightarrow ||q_1 - q_0||_{\infty} > 0$.

Performance of AVI: Breakdown

Statement:

$$\|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^2} \max_{0 \leq k < n} \|T^* q_k - \mathcal{A} T^* q_k\|_{\infty} + \frac{2\gamma^{n+1}}{(1 - \gamma)} \|q^* - q_0\|_{\infty}$$

- ightharpoonup Consider a hypothesis space \mathcal{F} .
- ▶ What if $A = \Pi_{\infty}$ is the projection operator in L_{∞} :

$$\Pi_{\infty}g:=\arg\inf_{f\in\mathcal{F}}\|g-f\|_{\infty}$$

► We obtain:

$$q_{k+1} = \prod_{\infty} T^* q_k = \arg\inf_{f \in \mathcal{F}} ||T^* q_k - f||_{\infty}$$

- Note that $AT^* = \prod_{\infty} T^*$ is a contraction operator in L_{∞} .
- ▶ Algorithm converges for its fixed point: $f = \prod_{\infty} T^* f$
- ▶ If $q^* \in \mathcal{F}$, the above will converge to q^* .

Fitted Q-iteration with Linear Approximation

Propose Algorithm:

$$q_{k+1} = \prod_{\infty} T^* q_k = \arg\inf_{f \in \mathcal{F}} \|T^* q_k - f\|_{\infty}$$

- ► Consider a linear hypothesis space $\mathcal{F}_{\phi} = \{q_w(s, a) = w^T \phi(s, a) | \forall w \in B\}.$
- ► We obtain:

$$q_{k+1} = \arg\inf_{f \in \mathcal{F}_{\phi}} ||T^*q_k - f||_{\infty}$$
 (12)

$$\Leftrightarrow w_{k+1} = \arg\inf_{w \in B} \|T^*(w_k^T \phi) - w^T \phi\|_{\infty}$$
 (13)

- Potential problems:
 - ▶ P1: L_{∞} minimisation typically hard to carry out efficiently.
 - ▶ P2: *T** is typically unknown and will be approximated as well.

Fitted Q-iteration with Linear Approximation

Proposals:

▶ **P1**: $L_{\infty} \to L_2$, wrt to a probability distribution μ over $S \times A$.

$$q_{k+1} = \arg\inf_{f \in \mathcal{F}} \|T^*q_k - f\|_{\mu}^2.$$

- **P2**: Sample to approximate T^* .
 - ► Sample $(S_t, A_t, R_{t+1}, S_{t+1}) \sim \mu, P$
 - Approximate $T^*q_k(S_t, A_t)$ by

$$Y_t = R_{t+1} + \gamma \max_{a} q_k(S_{t+1}, a) := \tilde{T}^* q_k$$

Every iteration *k*:

$$q_{k+1} = \arg\min_{q_w \in \mathcal{F}} \frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} (Y_t - q_w(S_t, A_t))^2$$

Fitted Q-iteration with other Approximations

Algorithm:

 \triangleright Every iteration k+1:

$$q_{k+1} = \arg\min_{q_{\theta} \in \mathcal{F}} \frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} (Y_t - q_{\theta}(S_t, A_t))^2$$

$$= \arg\min_{q_{\theta} \in \mathcal{F}} \frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} \left(\tilde{T}^* q_k(S_t, A_t) - q_{\theta}(S_t, A_t) \right)^2$$
(15)

- $ightharpoonup \mathcal{F} = \mathcal{F}_{\theta}$ can be:
 - Linear functions
 - Neural networks
 - Kernel functions
 - **.**.

Fitted Q-iteration (General recipe)

Algorithm:

ightharpoonup Every iteration k+1:

$$q_{k+1} = \arg\min_{q_{\theta} \in \mathcal{F}} \frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} \left(\tilde{\mathcal{T}}^* q_k(S_t, A_t) - q_{\theta}(S_t, A_t) \right)^2$$

for samples $(S_t, A_t, R_{t+1}, S_{t+1}) \sim \mu, P$.

$$\mathcal{F} = \mathcal{F}_{\theta}$$
 can be: Samples: Targets:

• Linear functions
• Online
• $\tilde{T}^*q_k = R_{t+1} + \gamma \max_a q_k(S_{t+1}, a)$
• Neural networks
• Fixed Dataset
• $\tilde{T}^*q_{target} = \tilde{T}^*q_{\theta}$
• Kernel functions
• Replay Memory
• Off-policy updates (lecture 9)

Multi-step operators (lecture 9)

Generative Model

Fitted Q-iteration (General recipe: DQN)

Algorithm:

ightharpoonup Every iteration k+1:

$$q_{k+1} = \arg\min_{q_{ heta} \in \mathcal{F}} \frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} \left(\tilde{T}^* q_k(S_t, A_t) - q_{ heta}(S_t, A_t) \right)^2$$

 $\mathcal{F} = \mathcal{F}_{\theta}$ can be:

- Linear functions
- Neural networks
- Kernel functions
- **...**

Samples:

- Online
- Fixed Dataset
- Replay Memory
- Generative Model

Targets:

$$\tilde{T}^*q_k = R_{t+1} + \gamma \max_a q_k(S_{t+1}, a)$$

$$\blacktriangleright \ \ \tilde{T}^*q_{target} = \tilde{T}^*q_{\theta^-}$$

- Off-policy updates (lecture 9)
- Multi-step operators (lecture 9)

(Reminder) Policy Iteration

Policy Iteration

- ▶ Start with π_0 .
- ► Iterate:
 - Policy Evaluation: $q_i = q_{\pi_i}$
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a q_{\pi_i}(s, a)$

As $i \to \infty$, $q_i \to_{\parallel,\parallel_{\infty}} q^*$. Thus $\pi_i \to \pi^*$.

(Reminder) Approximate Policy Iteration

Approximate Policy Iteration

- ightharpoonup Start with π_0 .
- ► Iterate:
 - Policy Evaluation: $q_i = Aq_{\pi_i}$
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a q_i(s, a)$

 $(q_i \approx q_{\pi_i})$

Question 1: As $i \to \infty$, does $q_i \to_{\parallel,\parallel_{\infty}} q^*$?

Question 2: Or does π_i converge to the optimal policy?

In general, what is the quality, q_{π_i} , of the obtained policy π_i ?

Performance of API

Theorem (API Performance)

Consider a MDP. And let q_k and π_k be the value function and respectively evaluated (greedy) policy achieved by API at iteration k, then:

$$\lim\sup_{k\to\infty}\|q^*-q_{\pi_k}\|_{\infty}\leq \frac{2\gamma}{(1-\gamma)^2}\lim\sup_{k\to\infty}\|q_k-q_{\pi_k}\|_{\infty}$$

API performance - Depiction

Performance of API

Theorem (API Performance)

Consider a MDP. And let q_k and π_k be the value function and respectively evaluated (greedy) policy achieved by API at iteration k, then:

$$\limsup_{k o \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k o \infty} \underbrace{\|q_{\pi_k} - q_k\|_{\infty}}_{approximation\ error\ at\ iter.\ k}$$

Statement:
$$\limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Let's denote $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$, for all iterations k.

$$gain_{k} = q_{\pi_{k+1}} - q_{\pi_{k}}$$

$$= T^{\pi_{k+1}} q_{\pi_{k+1}} - T^{\pi_{k}} q_{\pi_{k}}$$

$$= T^{\pi_{k+1}} q_{\pi_{k+1}} - T^{\pi_{k+1}} q_{\pi_{k}} +$$
(16)

$$T^{\kappa_{1}}q_{\pi_{k+1}} - T^{\kappa_{1}}q_{\pi_{k}} +$$

$$+ T^{\pi_{k+1}}q_{\pi_{k}} - T^{\pi_{k+1}}q_{k} +$$
(18)

$$+T^{\pi_{k+1}}q_k-T^{\pi_k}q_k+$$
 (19)

$$+T^{\pi_k}q_k-T^{\pi_k}q_{\pi_k} \tag{20}$$

Notation:

▶ Matrix P (transition probabilities): $n_a n_s \times n_s$

$$P((s, a), s') = Prob(s'|s, a)$$

▶ Matrix P^{π} (transition probabilities, given policy π): $n_a n_s \times n_a n_s$

$$P((s, a), s', a') = Prob(s', a'|s, a) = Prob(s'|s, a)\pi(a'|s')$$

Note, that under this notation:

$$T^{\pi}q = R + \gamma P^{\pi}q$$

where $R \in \mathbb{R}^{n_s n_a}$ is a vector enumerating all rewards r(s, a).

$$\text{Statement: } \limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Let's denote $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$, for all iterations k.

$$gain_{k} = q_{\pi_{k+1}} - q_{\pi_{k}}$$

$$= T^{\pi_{k+1}} q_{\pi_{k+1}} - T^{\pi_{k}} q_{\pi_{k}}$$

$$= T^{\pi_{k+1}} q_{\pi_{k+1}} - T^{\pi_{k+1}} q_{\pi_{k}} +$$

$$+ T^{\pi_{k+1}} q_{\pi_{k}} - T^{\pi_{k+1}} q_{k} +$$
(21)
$$(22)$$

 $+T^{\pi_{k+1}}q_{\nu}-T^{\pi_{k}}q_{\nu}+$

$$+T^{\pi_k}q_k-T^{\pi_k}q_{\pi_k} \tag{25}$$

(24)

Statement:
$$\limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{q_k}\|_{\infty}$$

Proof

Let's denote $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$, for all iterations k.

$$\begin{array}{lll} \textit{gain}_{k} & = & q_{\pi_{k+1}} - q_{\pi_{k}} \\ & = & T^{\pi_{k+1}} q_{\pi_{k+1}} - T^{\pi_{k+1}} q_{\pi_{k}} + & = \gamma P^{\pi_{k+1}} (q_{\pi_{k+1}} - q_{\pi_{k}}) = \gamma P^{\pi_{k+1}} \textit{gain}_{k} \\ & + T^{\pi_{k+1}} q_{\pi_{k}} - T^{\pi_{k+1}} q_{k} + & = \gamma P^{\pi_{k+1}} (q_{\pi_{k}} - q_{k}) = \gamma P^{\pi_{k+1}} e_{k} \\ & + T^{\pi_{k+1}} q_{k} - T^{\pi_{k}} q_{k} + & \geq 0 \\ & + T^{\pi_{k}} q_{k} - T^{\pi_{k}} q_{\pi_{k}} & = \gamma P^{\pi_{k}} (q_{k} - q_{\pi_{k}}) = -\gamma P^{\pi_{k}} e_{k} \end{array}$$

Unpacking explicitly $T^{\pi}q_k \leq T^{\pi_k}q_k, \forall \pi$

$$T^{\pi_{k+1}}q_k(s, a) = r(s, a) + \gamma \sum_{a'} \pi_{k+1}(a'|s')q_k(s', a')$$

$$= r(s, a) + \gamma \max_{a'} q_k(s', a') \qquad (as \ \pi_{k+1} = arg \max_{a'} q_k(s', a'))$$

Unpacking explicitly: $T^{\pi}q_k \leq T^{\pi_{k+1}}q_k, \forall \pi$, where $\pi_{k+1} := \arg\max_a q_k(s, a)$

Proof

Let's look at the definition of $T^{\pi_{k+1}}$

$$T^{\pi_{k+1}}q_k(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) \sum_{a'} \pi_{k+1}(a'|s') q_k(s',a')$$

$$= r(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} q_k(s',a') \qquad (as \ \pi_{k+1} := arg \ max_{a'} \ q_k(s',a'))$$

Now T^{π} is $T^{\pi}q_k(s,a)=r(s,a)+\gamma\sum_{s'}P(s'|s,a)\sum_{a'}\pi(a'|s')q_k(s',a')$ Thus the difference, at each state and action:

$$T^{\pi_{k+1}}q_k(s,a) - T^{\pi}q_k(s,a) = \gamma \sum_{s'} P(s'|s,a) \underbrace{\left(\max_{a'} q_k(s',a') - \sum_{a'} \pi(a'|s')q_k(s',a')\right)}_{>0} (26)$$

$$\text{Statement: } \limsup_{k \to \infty} \| q^* - q_{\pi_k} \|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \| \underbrace{q_{\pi_k} - q_k}_{e_k} \|_{\infty}$$

Proof

Let's denote $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$, for all iterations k.

$$\begin{array}{lll} \textit{gain}_{k} & = & q_{\pi_{k+1}} - q_{\pi_{k}} \\ & = & T^{\pi_{k+1}} q_{\pi_{k+1}} - T^{\pi_{k+1}} q_{\pi_{k}} + & = \gamma P^{\pi_{k+1}} (q_{\pi_{k+1}} - q_{\pi_{k}}) = \gamma P^{\pi_{k+1}} \textit{gain}_{k} \\ & + T^{\pi_{k+1}} q_{\pi_{k}} - T^{\pi_{k+1}} q_{k} + & = \gamma P^{\pi_{k+1}} (q_{\pi_{k}} - q_{k}) = \gamma P^{\pi_{k+1}} \textit{gain}_{k} \\ & + T^{\pi_{k+1}} q_{k} - T^{\pi_{k}} q_{k} + & \geq 0 \\ & + T^{\pi_{k}} q_{k} - T^{\pi_{k}} q_{\pi_{k}} & = \gamma P^{\pi_{k}} (q_{k} - q_{\pi_{k}}) = -\gamma P^{\pi_{k}} e_{k} \\ & \geq & \gamma P^{\pi_{k+1}} \textit{gain}_{k} + \gamma (P^{\pi_{k+1}} - P^{\pi_{k}}) e_{k} \end{array}$$

Re-arranging, we get:

$$gain_k \ge \gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k$$

Performance of API - Performance gain via Greedy step

Statement:

$$gain_k \ge \gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k$$

Some implications:

▶ What if $e_k = 0$? (perfect evaluation at iter. k)

$$gain_k \geq 0$$

aka
$$q_{\pi_{k+1}} \geq q_{\pi_k}$$
.

ightharpoonup Can $gain_k < 0$?

Performance of API - Performance gain via Greedy step

Q: Can $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$ be negative?

Simple MDP

+1
$$S_0$$
 +1 $\mathcal{A} = \{\leftarrow, \rightarrow\}$

Performance of API - Performance gain via Greedy step

▶ **Q**: Can $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$ be negative?

Deterministic policy π_k :

	s_1	<i>s</i> ₀	s ₂
$\pi_k(a s)$	\leftarrow	\leftarrow	\leftarrow

Consider an approx. q_k :

$q_k(s,a)$	s ₁	<i>s</i> ₀	s ₂
$a_1 = \rightarrow$	0.8	.87	8.0
$a_2 = \leftarrow$	1.1	.85	0.83

Evaluation π_k :

$q_{\pi_k}(s,a)$	s_1	<i>s</i> ₀	<i>s</i> ₂
$a_1 = \rightarrow$	0.81	0.9	1.0
$a_2 = \leftarrow$	1.0	0.81	0.73

Greedy policy π_{k+1} :

	s_1	<i>s</i> ₀	s ₂
$\pi_k(a s)$	\leftarrow	\rightarrow	\leftarrow

Performance of API - Performance gain via Greedy step

▶ **Q**: Can $gain_k := q_{\pi_{k+1}} - q_{\pi_k}$ be negative?

Deterministic policy π_k :

	s_1	<i>s</i> ₀	s ₂
$\pi_k(a s)$	\leftarrow	\leftarrow	\leftarrow

Greedy policy π_{k+1} :

	<i>s</i> ₁	<i>s</i> ₀	<i>s</i> ₂
$\pi_k(a s)$	\leftarrow	\rightarrow	\leftarrow

Evaluation π_k :

$q_{\pi_k}(s,a)$	s_1	<i>s</i> ₀	<i>s</i> ₂
$a_1 = \rightarrow$	0.81	0.9	1.0
$a_2 = \leftarrow$	1.0	0.81	0.73

Evaluation π_{k+1} :

$q_{\pi_{k+1}}(s,a)$	s_1	<i>s</i> ₀	s ₂
$a_1 = \rightarrow$	0.0	0.9	1.0
$a_2 = \leftarrow$	1.0	0.0	0.0

$$\text{Statement: } \limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Let's denote $L_k:=q^*-q_{\pi_k}$, for all iterations k. ("Loss in performance")

$$L_{k+1} = q^* - q_{\pi_{k+1}}$$

$$= T^{\pi^*} q_{\pi^*} - T^{\pi_{k+1}} q_{\pi_{k+1}}$$

$$= T^{\pi^*} q_{\pi^*} - T^{\pi^*} q_{\pi_k} +$$
(27)

$$+T^{\pi^*}q_{\pi_k}-T^{\pi^*}q_k+\tag{29}$$

$$+T^{\pi^*}q_k-T^{\pi_{k+1}}q_k+ \tag{30}$$

$$+T^{\pi_{k+1}}q_k-T^{\pi_{k+1}}q_{\pi_k}+\tag{31}$$

$$+T^{\pi_{k+1}}q_{\pi_k}-T^{\pi_{k+1}}q_{\pi_{k+1}} \tag{32}$$

$$\text{Statement: } \limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Let's denote $L_k := q^* - q_{\pi_k}$, for all iterations k. ("Loss in performance")

$$\begin{array}{lll} L_{k+1} & = & q^* - q_{\pi_{k+1}} \\ & = & T^{\pi^*} q_{\pi^*} - T^{\pi^*} q_{\pi_k} + & = \gamma P^{\pi^*} (q_{\pi^*} - q_{\pi_k}) = \gamma P^{\pi^*} L_k \\ & + T^{\pi^*} q_{\pi_k} - T^{\pi^*} q_k + & = \gamma P^{\pi^*} (q_{\pi_k} - q_k) = \gamma P^{\pi^*} e_k \\ & + T^{\pi^*} q_k - T^{\pi_{k+1}} q_k + & \leq 0 \\ & + T^{\pi_{k+1}} q_k - T^{\pi_{k+1}} q_{\pi_k} + & = \gamma P^{\pi_{k+1}} (q_k - q_{\pi_k}) = -\gamma P^{\pi_{k+1}} e_k \\ & + T^{\pi_{k+1}} q_{\pi_k} - T^{\pi_{k+1}} q_{\pi_{k+1}} & = \gamma P^{\pi_{k+1}} (q_{\pi_k} - q_{\pi_{k+1}}) = -\gamma P^{\pi_{k+1}} g_k \\ & \leq & \gamma P^{\pi^*} L_k + \gamma (P^{\pi^*} - P^{\pi_{k+1}}) e_k - \gamma P^{\pi_{k+1}} g_k \end{array}$$

$$\text{Statement: } \limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Thus we have:

$$L_{k+1} \leq \gamma P^{\pi^*} L_k + \gamma (P^{\pi^*} - P^{\pi_{k+1}}) e_k - \gamma P^{\pi_{k+1}} g_k$$

$$\leq \gamma P^{\pi^*} L_k + \gamma (P^{\pi^*} - P^{\pi_{k+1}}) e_k - \gamma P^{\pi_{k+1}} (\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k)$$

$$\leq \gamma P^{\pi^*} L_k + \gamma (P^{\pi^*} + \gamma P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) - P^{\pi_{k+1}}) e_k$$
(35)

$$\leq \gamma P^{\pi^*} L_k + \gamma \left(P^{\pi^*} + P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) \right) e_k \tag{36}$$

Statement:
$$\limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \le \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Thus we have:

$$L_{k+1} \leq \gamma P^{\pi^*} L_k + \gamma (P^{\pi^*} - P^{\pi_{k+1}}) e_k - \gamma P^{\pi_{k+1}} g_k$$

$$\leq \gamma P^{\pi^*} L_k + \gamma (P^{\pi^*} - P^{\pi_{k+1}}) e_k - \gamma P^{\pi_{k+1}} (\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k)$$
(38)

$$\leq \gamma P^{\pi^*} L_k + \gamma \left(P^{\pi^*} + \gamma P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) - P^{\pi_{k+1}} \right) e_k \tag{39}$$

$$\leq \gamma P^{\pi^*} L_k + \gamma \left(P^{\pi^*} + P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) \right) e_k \tag{40}$$

Asymptotic regime $k \to \infty$:

$$\lim \sup_{k \to \infty} L_k \leq \gamma (I - \gamma P^{\pi^*})^{-1} \lim \sup_{k \to \infty} \left(P^{\pi^*} + P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) \right) e_k$$

$$\text{Statement: } \limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Proof

Asymptotic regime $k \to \infty$:

$$\lim \sup_{k \to \infty} L_k \leq \gamma (I - \gamma P^{\pi^*})^{-1} \lim \sup_{k \to \infty} \left(P^{\pi^*} + P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) \right) e_k$$

Thus, taking the $L-\infty$ norm:

$$\lim \sup_{k \to \infty} \|L_k\|_{\infty} \leq \frac{\gamma}{1 - \gamma} \lim \sup_{k \to \infty} \left\| \left(P^{\pi^*} + P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) \right) \right\| \cdot \|e_k\|_{\infty} (41)$$

$$\leq \frac{\gamma}{1 - \gamma} \left(\frac{1 + \gamma}{1 - \gamma} + 1 \right) \cdot \lim \sup_{k \to \infty} \|e_k\|_{\infty} (42)$$

Note: Here we used that $||P||_{\infty} = 1$ for all (row-)stochastic matrices P.

(Reminder) $TD(\lambda)$ with Linear Approximation

- ► Consider a linear hypothesis space $\mathcal{F}_{\phi} = \{q_w(s, a) = w^T \phi(s, a) | \forall w \in B\}.$
- ► Temporal difference error:

$$\delta_t = R_{t+1} + \gamma q_{w_t}(S_{t+1}, \pi(S_{t+1})) - q_{w_t}(S_t, A_t)$$
(43)

- Parameters update:
 - \triangleright $w_{t+1} = w_t + \alpha_t \delta_t e_t$
- Properties:
 - ► This converges $\lim_{t\to\infty} w_t = w^*$, if $\sum_t \alpha_t = \infty$ and $\sum \alpha^2 < \infty$. (Tsitsiklis et Van Roy'96).
 - ► Furthermore:

$$\|q_{\mathbf{w}^*} - q_{\pi}\|_{2,\mu^{\pi}} \le \frac{1 - \lambda \gamma}{1 - \gamma} \inf_{\mathbf{w}} \|q_{\mathbf{w}} - q_{\pi}\|_{2,\mu^{\pi}} \tag{44}$$

$\mathsf{TD}(\lambda)$ with Linear Approximation

Statement:

$$\|q_{ extbf{w}^*}-q_\pi\|_{2,\mu^\pi} \leq rac{1-\lambda\gamma}{1-\gamma}\inf_w\|q_w-q_\pi\|_{2,\mu^\pi}$$

Some implications:

- ▶ **Q**: For which λ is the RHS minimised (tightest bound)?
 - ▶ **A**: $\lambda = 1$ (TD(1) = Monte Carlo).
- ▶ **Q**: What if $q_{\pi} \in \mathcal{F}_{\phi}$?
 - ightharpoonup **A** : RHS = 0. Thus $q_{w^*} = q^*$.
- ▶ **Q**: What if $q_{\pi} \notin \mathcal{F}_{\phi}$?
 - **A** : RHS eq 0. In general the FP $q_{w^*}
 eq \inf_w \|q_w q_\pi\|_{2,\mu^\pi}$

AVI in general

Statement:

$$\|q^* - q_{\pi_n}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < n} \underbrace{\|T^*q_k - q_{k+1}\|_{\infty}}_{\epsilon_k} + \underbrace{\frac{2\gamma^{n+1}}{(1-\gamma)}\|q^* - q_0\|_{\infty}}^{0 \text{ as } n \to \infty}$$

Some lessons:

- In general, convergence is not guaranteed. (In practice, fairly well behaved)
- ightharpoonup Control the approximation errors ϵ
 - ightharpoonup Two sources of error: estimation(sampling) + approximation(\mathcal{F})
 - ▶ For efficient optimisation: $L_{\infty} \rightarrow L_{2,\mu}$
- Convergence point is not always q*!
- ▶ $q^* \in \mathcal{F}$ is useful, but not enough!

API in general

$$\text{Statement: } \limsup_{k \to \infty} \|q^* - q_{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|\underbrace{q_{\pi_k} - q_k}_{e_k}\|_{\infty}$$

Some lessons:

- ▶ In general, convergence is not guaranteed. (In practice, fairly well behaved)
- Control the approximation errors e_k
 - ▶ Two sources of error: estimation(sampling) + approximation(\mathcal{F})
 - lacktriangle For efficient optimisation: $L_{\infty} o L_{2,\mu^{\pi_i}}$ (safe on-policy)
- Depending on the conditions/function call, we can obtain convergence:
 - ightharpoonup Convergence point is not always q^* or $q_{\pi}!$
 - Convergence points might not be unique.
- ▶ $q^* \in \mathcal{F}$ is usually not enough!

The only stupid question is the one you were afraid to ask but never did. -Rich Sutton

For questions that arise outside of class, please use Moodle!