

WEBENCH® Design Report

Design: 682565/8 LM3478MM LM3478MM 4.0V-36.0V to 6.25V @ 6.0A VinMin = 4.0V VinMax = 36.0V Vout = 6.25V Iout = 6.0A Device = LM3478MM Topology = SEPIC Created = 4/5/12 6:37:30 AM BOM Cost = \$10.25 Total Pd = 10.88 W Footprint = 2,368.0 mm2 BOM Count = 26

Electrical BOM

# N	Name	e Manufacturer Part Number		Quantillyrice		Properties	Footprint
1. C	Cbp	MuRata	GRM188R72A104KA35D Series= X7R	1	\$0.03	Cap= 100.0 nF ESR= 0.0 Ohm VDC= 100.0 V IRMS= 0.0 A	0603 10mm2
2. C	Ccomp	MuRata	GRM155R60J334KE01D Series= X5R	1	\$0.02	Cap= 330.0 nF ESR= 0.0 Ohm VDC= 6.3 V IRMS= 0.0 A	0402 8mm2
3. C	Ccomp2	MuRata	GRM2165C1H112JA01D Series= C0G/NP0	1	\$0.02	Cap= 1.1 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
4. C	Cin	Panasonic	EEV-FK1H331Q Series= FK	3	\$0.48	Cap= 330.0 µF ESR= 120.0 mOhm VDC= 50.0 V IRMS= 900.0 mA	SM_RADIAL_H13 264mm
5. C	Cout	Nippon Chemi-Con	APXA100ARA561MJC0G Series= PXA	3	\$1.03	Cap= 560.0 µF ESR= 12.0 mOhm VDC= 10.0 V IRMS= 5.3 A	CAPSMT_62_JC0 156mm
6. C	Cramp	MuRata	GRM2165C2A162JA01D Series= C0G/NP0	1	\$0.02	Cap= 1.6 nF ESR= 0.0 Ohm VDC= 100.0 V IRMS= 0.0 A	0805 13mm2

# Name	Manufacturer	Part Number	Qua	ınti l yrice	Properties	Footprint
7. Csep	TDK	C4532X7R1H475M Series= X7R	4	\$0.35	Cap= 4.7 µF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 2.9 A	1812 39mm2
8. D1	Vishay-Semiconductor	12CWQ10FNPBF	1	\$0.69	VF@Io= 950.0 mV VRRM= 100.0 V	DPAK 102mm2
9. Lin	Coilcraft	SER2013-472MLB	1	\$0.95	L= 4.7 μH DCR= 1.7 mOhm	SER2013 438mm2
10. Lout	Coilcraft	XAL1010-153MEB	1	\$1.08	L= 15.0 μH DCR= 20.0 mOhm	XAL1010 160mm2
11. M1	Infineon Technologies	BSC110N06NS3G	1	\$0.37	VdsMax= 60.0 V IdsMax= 50.0 Amps	PG-TDSON-8 55mm2
12. Rbp	Vishay-Dale	CRCW080520R0FKEA Series= CRCWe3	1	\$0.01	Res= 20.0 Ohm Power= 125.0 mW Tolerance= 1.0%	0805 13mm2
13. Rcomp	Vishay-Dale	CRCW08051K58FKEA Series= CRCWe3	1	\$0.01	Res= 1.58 kOhm Power= 125.0 mW Tolerance= 1.0%	0805 13mm2
14. Rfadj	Vishay-Dale	CRCW080586K6FKEA Series= CRCWe3	1	\$0.01	Res= 86.6 kOhm Power= 125.0 mW Tolerance= 1.0%	0805 13mm2
15. Rfb1	Vishay-Dale	CRCW080510K0FKEA Series= CRCWe3	1	\$0.01	Res= 10.0 kOhm Power= 125.0 mW Tolerance= 1.0%	0805 13mm2
16. Rfb2	Vishay-Dale	CRCW080539K2FKEA Series= CRCWe3	1	\$0.01	Res= 39.2 kOhm Power= 125.0 mW Tolerance= 1.0%	0805 13mm2
17. Rramp	Vishay-Dale	CRCW0805100RFKEA Series= CRCWe3	1	\$0.01	Res= 100.0 Ohm Power= 125.0 mW Tolerance= 1.0%	0805 13mm2
18. Rsense	Panasonic	ERJ-M1WSF4M0U Series= 1119	1	\$0.15	Res= 4.0 mOhm Power= 1.0 W Tolerance= 1.0%	2512 43mm2
19. U1	Texas Instruments	LM3478MM	1	\$0.93	Switcher	

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	163.005 m A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	8.371 A	Current	Output capacitor RMS ripple current
3.	Csep IRMS	8.421 A	Current	SEPIC capacitor RMS ripple current
4.	D1 Irms	10.259 A	Current	D1 Irms
5.	IC lpk	8.062 m A	Current	Peak switch current in IC
6.	lin Avg	12.096 A	Current	Average input current
7.	Lin lpk	13.329 A	Current	Lin peak current
8.	Lin Ipp	2.527 A	Current	Peak-to-peak input inductor ripple current
9.	Lin Irms	12.154 A	Current	Lin ripple current
10.	Lout lpk	6.072 A	Current	Lout peak current
11.	Lout Ipp	790.067 m A	Current	Peak-to-peak output inductor ripple current
12.	Lout Irms	5.711 A	Current	Lout ripple current
13.	M1 Irms	14.625 A	Current	M1 MOSFET Irms

MUA08A 34mm2

#	Name	Value	Category	Description	
14.	BOM Count	26.0	General	Total Design BOM count	
15.	FootPrint	2.368 k mm2	General	Total Foot Print Area of BOM components	
16.	Frequency	202.5 k Hz	General	Switching frequency	
17.	IC Tolerance	24.3 m V	General	IC Feedback Tolerance	
18.	Mode	CCM	General	Conduction Mode	
19.	Total BOM	\$10.25	General	Total BOM Cost	
20.	D1 Tj	92.727 degC	Op_Point	D1 junction temperature	
21.	SEPIC Resonance	13.294 k Hz	Op_Point	SEPIC Resonance Frequency	
	Freq			· ·	
22.	V SEPIC damping	109.149 m	Op_Point	V SEPIC damping factor	
	factor			. •	
23.	Vin p-p	20.279 m V	Op_Point	Peak-to-peak input voltage	
24.	Vsep p-p	1.055 V	Op_Point	Peak-to-peak sepic voltage	
25.	Cross Freq	2.171 k Hz	Op_point	Bode plot crossover frequency	
26.	Duty Cycle	67.0 %	Op_point	Duty cycle	
27.	Efficiency	77.504 %	Op_point	Steady state efficiency	
28.	Gain Marg	11.126 db	Op_point	Bode Plot Gain Margin	
29.	IC Tj	88.05 degC	Op_point	IC junction temperature	
30.	IOUT_OP	6.0 A	Op_point	lout operating point	
31.	M1 TjOP	30.3 degC	Op_point	M1 MOSFET junction temperature	
32.	Phase Marg	69.123 deg	Op_point	Bode Plot Phase Margin	
33.	Phase Shift	69.978 deg	Op_point	Bode Plot Phase Shift	
34.	VIN_OP	4.0 V	Op_point	Vin operating point	
35.	Vout p-p	79.1 m V	Op_point	Peak-to-peak output ripple voltage	
36.	Cin Pd	1.063 m W	Power	Input capacitor power dissipation	
37.	Cout Pd	280.27 m W	Power	Output capacitor power dissipation	
38.	Csep Pd	53.182 m W	Power	SEPIC capacitor power dissipation	
39.	D1 Pd	5.702 W	Power	Diode power dissipation	
40.	D1 PdCond	5.7 W	Power	Diode conduction losses	
41.	D1 PdSw	2.429 m W	Power	Diode switching losses	
42.	IC Pd	290.25 m W	Power	IC power dissipation	
43.	Lin Pd	280.154 m W	Power	Lin power dissipation	
44.	Lout Pd	654.874 m W	Power	Lout power dissipation	
45.	M1 Pd	1.567 W	Power	M1 MOSFET total power dissipation	
46.	M1 PdCond	1.766 W	Power	M1 MOSFET conduction losses	
47.	M1 PdSw	-198.035 m W	Power	M1 MOSFET switching losses	
48.	Rsense Pd	855.542 m W	Power	LED Current Rsns Power Dissipation	
49.	Total Pd	10.884 W	Power	Total Power Dissipation	

Design Inputs

9 1				
	#	Name	Value	Description
	1.	lout	6.0 A	Maximum Output Current
	2.	lout1	6.0 Amps	Output Current #1
	3.	VinMax	36.0 V	Maximum input voltage
	4.	VinMin	4.0 V	Minimum input voltage
	5.	Vout	6.25 V	Output Voltage
	6.	Vout1	6.25 Volt	Output Voltage #1
	7.	base_pn	LM3478	National Based Product Number
	8.	Та	30.0 degC	Ambient temperature
	9.	UserFsw	202.5 kHz	Customer Selected Frequency

Design Assistance

1. LM3478 Product Folder: http://www.national.com/pf/LM/LM3478.html: contains the data sheet and other resources.

National's WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the simulation is built. National does not warrant the accuracy or completeness of the specifications or any information contained therein. National does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of National's WEBENCH simulation tools is subject to National's Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.