petit challenge entre amis

initiation aux probabilités - sheldon ross - p54

une urne, des boules et le grand méchant l∞up ...

question:

- considérons 1 urne vide de taille ∞
- nous plaçons et retirons des boules, de 3 façons différentes
- combien-y-a-t-il de boules dans l'urne à minuit pour chaque méthode :
 - méthode 1 :
 - \bullet à minuit moins 1 min , on place les boules numérotées de 1 à 10 et on retire la 10 (ajout et retrait instantanés)
 - à minuit moins $30 \mathrm{~s}$, on place $11 \mathrm{~à}\ 20$ et on retire la 20 (")
 - à minuit moins 15 s , on place 21 à 30 et on retire la 30 (")
 - ainsi de suite, en divisant le temps par 2 à chaque étape
 - méthode 2 :
 - à minuit moins 1 min , on place 1 à 10 et on retire la 1 (")
 - à minuit moins 30 s , on place 11 à 20 et on retire la 2 (")
 - à minuit moins 15 s , on place 21 à 30 et on retire la 3 (")
 - ...
 - méthode 3 :
 - à minuit moins 1 min , on place 1 à 10 et on enlève 1 boule au hasard (")
 - à minuit moins $30 \mathrm{~s}$, on place $11 \mathrm{~à}~20 \mathrm{~et}$ on enlève $1 \mathrm{~boule}$ au hasard (")
 - à minuit moins 15 s , on place 21 à 30 et on enlève 1 boule au hasard (")
 - ...

réponse:

méthode 1 : facile

- remarque : on fera attention au raisonnement (simpliste) faux suivant : "j'en mets 10, j'en enlève 1, clairement le nombre de boules est ∞ à minuit"
- la méthode 2 va clarifier ce point \dots

méthode 2 : faisable

- comme dit supra, j'en mets 10, j'en enlève 1 est faux
- contrairement à ce que notre intuition nous laisse entrevoir : | à minuit l'urne est vide!
- ce qui conforte (si j'ose dire) "à la limite" un dicton bien connu "méfions nous des évidences"
- en effet, en réfléchissant un peu, il apparaı̂t clairement que :
 - la boule 1 est sortie au 1-er tour : minuit $60 \times (\frac{1}{2})^0$ s = minuit 60 s
 - la boule 2 au 2-nd tour : minuit $60 \times (\frac{1}{2})^1$ s = minuit 30 s
 - $\forall n \geq 1$, la boule n au n-ème tour : minuit $60 \times (\frac{1}{2})^{n-1}$ s
 - bref, à minuit, quel que soit le numéro de la boule, elle n'est plus là : l'urne est vide!

méthode 3: wtf is this?!

2

- après 1 petit (et long) temps de réflexion, pschitt ... nous sommes si peu de chose ...
- comme on dit, "ce n'est pas le but qui compte, c'est le chemin"
- la preuve est intéressante
 - je trouve qu'il y a qq idées ingénieuses
 - 2 rappels de cours (théorème de passage à la limite et reste d'1 série, ici divergente)
- j'ai aussi fait 1 simulation python, histoire de vérifier si tout tient vraiment la route ... pas forcément concluant ...
- mais sans plus attendre, allons-y!

preuve:

- pré-requis : le théorème de passage à la limite T.P.L.
 - (E_n) 1 suite d'évènements emboîtée $(\searrow \text{ ou } \nearrow) \Longrightarrow \boxed{p(\lim_{n \to +\infty} E_n) = \lim_{n \to +\infty} p(E_n)}$
 - preuve : long mais pas dur voir ici par ex
- que faire?
 - honnêtement, cela semble dur
 - dans ce cas, avançons doucement en nous inspirant des 2 cas précédents (surtout du 2-nd)
- que fait la boule 1?
 - A_1 : la boule 1 est dans l'urne à minuit
 - E_n : la boule 1 est dans l'urne après le n-ième retrait
 - peut-on calculer $p(A_1)$?

- · lucky chance!
 - $E_2 \subset E_1$: pour être dans l'urne après le 2-nd retrait, il faut être dans l'urne après le 1-er
 - ... $E_n \subset E_{n-1} \subset ... \subset ... E_2 \subset E_1 \Longrightarrow (E_n)$ est "emboîtée" (suite \searrow d'évènements)
 - or $A_1 = \bigcap_{n=1}^{+\infty} E_n$: être dans l'urne à minuit, c'est rester dans l'urne après chaque retrait
- calcul de $p(A_1)$:
 - $p(E_n) = \frac{9}{9+1} \times \frac{18}{18+1} \times ... \times \frac{9n}{9n+1}$ <u>où</u> le +1 représente la boule 1 (que je ne peux pas prendre)
 - $p(A_1) = p(\bigcap_{n=1}^{+\infty} E_n) = \text{T.P.L.} = \lim_{n \to +\infty} p(E_n) = \prod_{n=1}^{+\infty} \frac{9n}{9n+1}$ dont l'inverse se calcule facilement ...

petitfuté.com

$$\bullet \quad \frac{1}{p(A_1)} = \prod_{n=1}^{+\infty} \frac{9n+1}{9n} = \prod_{n=1}^{+\infty} (1+\frac{1}{9n}) = (1+\frac{1}{9}) \times (1+\frac{1}{18}) \times (1+\frac{1}{27}) \times \dots$$

•
$$\frac{1}{p(A_1)} > 1 + \frac{1}{9} + \frac{1}{18} + \frac{1}{27} \dots > \frac{1}{9} \sum_{n=1}^{+\infty} \frac{1}{i} \longrightarrow +\infty \text{ (SH div)} \Longrightarrow \boxed{p(A_1) = 0}$$

- généralisation : que fait la boule i?
 - ok nice, let's do it again : c'est quasi-pareil!

•
$$p(A_i) = p(\bigcap_{n=i}^{+\infty} E_n) = \text{T.P.L.} = \lim_{n \to +\infty} p(E_n) = \prod_{n=i}^{+\infty} \frac{9n}{9n+1}$$

•
$$\frac{1}{p(A_1)} > \frac{1}{9i} + \frac{1}{9(i+1)} \dots$$

- la seule chose importante dans la série (de films) divergente, c'est le reste qui (peut importe l'indice de départ) diverge
- $\Longrightarrow \forall i \in \mathbb{N}^*, p(A_i) = 0$
- end of the game : montrons que l'urne est vide à minuit !
 - l'urne est vide si elle ne contient aucune boule ...

•
$$0 \le p(\bigcup_{n=1}^{+\infty} A_n) \le \sum_{n=1}^{+\infty} p(A_i) = 0$$

- (1) : d'après le programme (généralisé) du CC de seconde ;))
- (2) : comme vu, $\forall i, p(A_i) = 0$
- l'urne est vide à minuit!
- 1 extra pour la route :
 - l'égalité (2) à l'air évidente, il n'en est rien ...
 - comme le reste de la SA est équivalent à "ln n", nous avons en gros dit que : $\forall i \, p(A_i) < \frac{1}{\ln n}$
 - pour n boules cela donne : $\sum_{i=1}^n p(A_i) < \sum_{+\infty} n \times \frac{1}{\ln n} > +\infty$: pas très utile ...
 - OUPS: what's going on here?!

test python

- j'ai fait quelques essais python, voici ce que j'ai obtenu :
 - nombre d'essai : 5 essais
 - taille d'un essai : $50\ 000\ \text{étapes}\ (n = 50\ 000)$
 - low : numéro le plus bas encore dans l'urne
 - len : nombre de boules dans l'urne
- clairement, si avec la méthode 3, l'urne est vide à midi, ça prend son temps \dots
- le programme est disponible sur math13net

test(nb_essai=5, nb_etape=50000)

```
meth_1 | meth_2 | meth_3
low:1.0 len:450000 | low:50001.0 len:450000 | low:4.0 len:450000
low:1.0 len:450000 | low:50001.0 len:450000 | low:11.0 len:450000
low:1.0 len:450000 | low:50001.0 len:450000 | low:1.0 len:450000
low:1.0 len:450000 | low:50001.0 len:450000 | low:2.0 len:450000
low:1.0 len:450000 | low:50001.0 len:450000 | low:4.0 len:450000
```