TELECOM CHURN CASE STUDY -Assignment

Submission by: T. Naresh Kumar, NEIL RAGHAV, Neelam KUMARI- DS-C54 March 2023

Business Objective

Maximize: Company's profit by retaining customer.

Minimize: Customer churn by identifying the key cause of the problem.

Business Constraint:

Provide offers and discount and improve the service quality without

compromising with profit.

This is a classification project since the variable to be predicted is binary (churn or not churn). The objective here is to predict churn probability, conditioned on the customer features.

Data Inputs

- 1. Data + Dictionary+ Telecom+ Churn+ Case+ Study
- 2. Telecom_churn_data.csv.

Data Cleaning & Manipulation of Data

- 1. Null values
- 2. Filtering Unwanted columns
- 3. Missing values
- 4. Sorting the data
- 5. Fixing the data type
- 6. Feature scaling
- 7. Model building

Removed the 70% of Null values

Tagging the CHURNERS

Now tagged the churned customers (churn=1, else 0) based on the fourth month as follows: Those who have not made any calls (either incoming or outgoing) AND have not used mobile internet even once in the churn phase.

We'll use total_ic_mou_9, total_og_mou_9, vol_2g_mb_9, vol_3g_mb_9 columns to tag the curners. For churners there will not be any voice and data usage

	arpu_6	arpu_7	arpu_8	arpu_9	onnet_mou_6	onnet_mou_7	onnet_mou_8	onnet_mou_9	offnet_mou_6	offnet_mou_7	offnet_mou_8	offnet_mou_9
7	1,069.18	1,349.85	3,171.48	500.00	57.84	54.68	52.29	0.00	453.43	567.16	325.91	0.00
8	378.72	492.22	137.36	166.79	413.69	351.03	35.08	33.46	94.66	80.63	136.48	108.71
3	492.85	205.67	593.26	322.73	501.76	108.39	534.24	244.81	413.31	119.28	482.46	214.06
6	430.98	299.87	187.89	206.49	50.51	74.01	70.61	31.34	296.29	229.74	162.76	224.39
7	690.01	18.98	25.50	257.58	1,185.91	9.28	7.79	558.51	61.64	0.00	5.54	87.89
•												

Outlier Treatment

Univariate Analysis

Churn rate on the basis whether the customer decreased her/his MOU in action month

Analysis of the minutes of usage MOU (churn and not churn) in the action phase

Bi-Variate Analysis

Analyzing churn rate WRT the decreasing recharge amount and number of recharge during the action phase

We can see from the above plot, that the churn rate is higher for the customers, whose recharge amount as well as number of recharge have decreased in the action phase when compared to the good phase.

From the Below plots we can see clearly that the recharge amounts (Total & Maximum) started to fall in the month 8 i.e near to the churn phase.

Scaling numeric features

During EDA we have observed few outliers in numeric features. So, using Robust Scaling using median and quantile values instead of Standard Scaling using mean and standard deviation.

	arpu_6	arpu_7	arpu_8	onnet_mou_6	onnet_mou_7	onnet_mou_8	offnet_mou_6	offnet_mou_7	offnet_mou_8	roam_ic_mou_6	roam_ic_mou_7	roam_
0	1,409.37	1,052.63	1,674.24	453.28	343.38	589.58	826.99	811.99	815.96	70.83	39.78	
1	388.90	533.34	675.71	13.28	11.94	48.51	201.43	230.93	277.83	0.00	0.00	
2	19.42	597.25	709.65	3.68	1,031.28	1,018.29	24.89	927.86	1,043.43	0.00	0.00	
3	874.33	925.35	969.89	574.06	363.44	382.78	1,131.76	1,137.78	1,049.96	0.00	0.00	
4	464.52	433.63	422.34	118.33	147.34	176.88	80.99	58.54	22.44	155.34	578.74	

Model building with PCA

Logistic regression with PCA

Prediction on the train set

Accuracy: - 0.84

Sensitivity:- 0.86 Specificity:- 0.82

Recall:- 0.86 AUC: 0.91

Prediction on the test set

Accuracy: - 0.82 Sensitivity: - 0.86

Specificity:- 0.82

Recall:- 0.86 AUC:- 0.89

Decision tree with PCA

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_max_depth	param_min_samples_leaf	param_min_samples_split	params
o	1.75	0.02	0.01	0.00	5	50	50	{'max_depth': 5, 'min_samples_leaf: 50, 'min_samples_split': 50}
1	1.33	0.08	0.00	0.00	5	50	100	{'max_depth': 5, 'min_samples_leaf: 50, 'min_samples_split': 100}
2	1.29	0.02	0.00	0.00	5	100	50	{'max_depth': 5, 'min_samples_leaf: 100, 'min_samples_split': 50}
2	1 20	0.02	0.00	0.00	E	400	400	{'max_depth': 5, 'min_samples_leaf:

Prediction on the train set

Accuracy: - 0.87 Sensitivity: - 0.87 Specificity: - 0.87 Recall: - 0.87

Area under curve is: 0.87

Prediction on the test set

Accuracy: - 0.84 Sensitivity: - 0.87

Specificity: - 0.87 Recall: - 0.87 Area

under curve is: 0.77

We can see from the model performance that the Sensitivity and Specificity remains same while evaluating the model on the test set and Train Set. However, the accuracy dropped a little in TEST set but still it is quite good in the test set.

Random forest with PCA

We see that as we increase the value of max_depth, both train and test scores increase till a point. The ensemble tries to overfit as we increase the max_depth.

Thus, controlling the depth of the constituent trees will help reduce overfitting in the forest.

Finally we find the optimal hyperparameters using GridSearchCV.

---0.866--- OOB Score tells how accurate will be our model, calculated the OOB score based on the train data set. Now, next we will also see the predictions and other metrics.

confusion matrix
[[7228 915] [222 545]]
Accuracy:- 0.87
sensitivity 0.71
specificity 0.89

AUC: 0.88

Logistic Regression without PCA

- 1.As we see there are Many features with high p-values and hence those are insignificant for our model.
- 2.Also, there are few features with negative coefficients as well.

0.975] 0.740
0.975]

Feature selection using RFE

Model-1

Generalized Linear Model Regre	ession Re	suits				
Dep. Variable:	Churn	No. Ol	servation	ns:	38004	
Model:	GLM	D	f Residua	ils:	37988	
Model Family:	Binomial		Df Mod	lel:	15	
Link Function:	Logit		Sca	le:	1.0000	
Method:	IRLS	Log	-Likelihoo	od:	nan	
Date: Sun, 05 N	ov 2023		Devian	ce:	30556.	
Time:	12:38:03	P	earson ch	i 2: 1.9	94e+08	
No. Iterations:	13	Pseudo	R-squ. (C	S):	nan	
Covariance Type: no	onrobust					
	coef	std err	z	P> z	[0.025	0.975
const	0.4739	0.049	9.576	0.000	0.377	0.571
arpu_6	0.5393	0.023	23.797	0.000	0.495	0.584
onnet_mou_8	1.3359	0.065	20.554	0.000	1.209	1.463
std_og_t2m_mou_8	1.1846	0.059	20.141	0.000	1.069	1.300
og_others_8	-6.8052	3.118	-2.183	0.029	-12.916	-0.694
total_og_mou_8	-2.5263	0.099	-25.572	0.000	-2.720	-2.333
loc_ic_t2m_mou_7	0.8600	0.040	21.648	0.000	0.782	0.938
loc_ic_t2m_mou_8	-1.0917	0.092	-11.881	0.000	-1.272	-0.912
loc_ic_mou_8	-0.4331	0.096	-4.534	0.000	-0.620	-0.246
total_ic_mou_8	-0.7308	0.063	-11.671	0.000	-0.854	-0.608

1	VIF_CALC(X_train[rfe	_cols
	Features	VIF
4	total_og_mou_8	13.79
7	loc_ic_mou_8	8.71
1	onnet_mou_8	6.79
6	loc_ic_t2m_mou_8	5.79
8	total_ic_mou_8	5.70
2	std_og_t2m_mou_8	5.49
14	dec_avg_revenuePC_action	3.45
13	dec_rech_action	3.40
5	loc_ic_t2m_mou_7	2.29
10	total_rech_num_8	1.83
9	total_rech_num_6	1.67
0	arpu_6	1.39
11	last_day_rch_amt_8	1.25
12	max_rech_data_8	1.15
3	og_others_8	1.00

Removing column total_og_mou_8, which is insignificant as it has very high p-value

Model-2

10 log_no_pca	_2.summa	ry()					
Generalized Linear M	lodel Regre	ssion Re	sults				
Dep. Variable:		Churn	No. Ob	servation	ns:	38004	
Model:		GLM	Df	Residua	ls:	37989	
Model Family:	Е	inomial		Df Mod	el:	14	
Link Function:		Logit		Sca	le:	1.0000	
Method:		IRLS	Log-	Likelihoo	od:	nan	
Date:	Sun, 05 No	ov 2023		Devian	ce:	31405.	
Time:	1	2:46:22	Pe	arson ch	i2: 5.0	1e+08	
No. Iterations:		13	Pseudo F	≀-squ. (C	S):	nan	
Covariance Type:	no	nrobust					
		coef	std err	z	P> z	[0.025	0.975]
	const	0.4162	0.051	8.099	0.000	0.315	0.517

Model-3

Dep. Variable:		Churn	No. Ob	servation	18:	38004	
Model:		GLM	Df	Residua	ls:	37990	
Model Family:	E	Binomial		Df Mod	el:	13	
Link Function:		Logit		Sca	le:	1.0000	
Method:		IRLS	Log-	Likelihoo	od:	nan	
Date:	Sun, 05 No	ov 2023		Devian	ce:	31440.	
Time:	1	2:46:56	Pe	arson ch	i2: 5.	41e+08	
No. Iterations:		13	Pseudo F	R-squ. (C	S):	nan	
Covariance Type:	no	nrobust					
		coef	std err	z	P> z	[0.025	0.975]
	const	0.4246	0.051	8.292	0.000	0.324	0.525

3	VIF_CALC(X_train[log	_col:
	Features	VIF
6	loc_ic_mou_8	8.69
7	total_ic_mou_8	5.70
5	loc_ic_t2m_mou_8	5.58
13	dec_avg_revenuePC_action	3.44
12	dec_rech_action	3.39
4	loc_ic_t2m_mou_7	2.29
9	total_rech_num_8	1.78
8	total_rech_num_6	1.65
0	arpu_6	1.37
1	onnet_mou_8	1.27
10	last_day_rch_amt_8	1.23
2	std_og_t2m_mou_8	1.20
11	max_rech_data_8	1.15
3	og_others_8	1.00

	Features	VIF
5	loc_ic_t2m_mou_8	4.14
12	dec_avg_revenuePC_action	3.44
11	dec_rech_action	3.39
6	total_ic_mou_8	2.93
4	loc_ic_t2m_mou_7	2.28
8	total_rech_num_8	1.78
7	total_rech_num_6	1.65
0	arpu_6	1.37
1	onnet_mou_8	1.27
9	last_day_rch_amt_8	1.23
2	std_og_t2m_mou_8	1.19
10	may rook data 9	

Removing column
loc_ic_mou_8, which is
insignificant as it has very
high p-value and high VIF

Removing column dec_avg_revenue PC_action, which is insignificant as it has very high p-value

Model-4

Dep. Variable:		Churn	No. Ob	servatio	ns: 3	38004
Model:		GLM	Df	Residua	ils: 3	37991
Model Family:	Bi	nomial		Df Mod	lel:	12
Link Function:		Logit		Sca	ile: 1	.0000
Method:		IRLS	Log-	Likeliho	od:	nan
Date:	Sun, 05 No	v 2023		Devian	ce: 3	1750.
Time:	12	2:47:33	Pe	arson ch	i 2: 2.26	6e+08
No. Iterations:		13	Pseudo R	-squ. (C	S):	nan
Covariance Type:	non	robust				
	coef	std err	Z	P> z	[0.025	0.975
con	st 0.1547	0.048	3.223	0.001	0.061	0.249

VIF	Features	
4.14	loc_ic_t2m_mou_8	5
2.92	total_ic_mou_8	6
2.28	loc_ic_t2m_mou_7	4
1.77	total_rech_num_8	8
1.64	total_rech_num_6	7
1.33	arpu_6	0
1.26	onnet_mou_8	1
1.21	last_day_rch_amt_8	9
1.18	std_og_t2m_mou_8	2
1.15	max_rech_data_8	10
1.14	dec_rech_action	11
1.00	og_others_8	3

Removing total_ic_mou_8 as it still has high p-Value

Model-5

38004	servations:	No. Obs	Churn		Dep. Variable:
37992	Residuals:	Df	GLM		Model:
11	Df Model:		nomial	Bi	Model Family:
1.0000	Scale:		Logit		Link Function:
nan	Likelihood:	Log-L	IRLS		Method:
32241.	Deviance:		v 2023	Sun, 05 Nov	Date:
3.99e+08	arson chi2:	Pea	2:48:11	12	Time:
nan	-squ. (CS):	Pseudo R	13		No. Iterations:
			robust	non	Covariance Type:
.025 0.978	P> z [0	z	std err	coef	

	Features	VIF
5	loc_ic_t2m_mou_8	2.46
4	loc_ic_t2m_mou_7	2.28
7	total_rech_num_8	1.76
6	total_rech_num_6	1.64
0	arpu_6	1.33
1	onnet_mou_8	1.24
8	last_day_rch_amt_8	1.21
2	std_og_t2m_mou_8	1.18
9	max_rech_data_8	1.14
10	dec_rech_action	1.14
3	og_others_8	1.00

Removing total_rech_num_ 8 due to high VIF

Model-6

Dep. Variable:	Churn	No. Observations:	38004
Model:	GLM	Df Residuals:	37993
Model Family:	Binomial	Df Model:	10
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	nan
Date:	Sun, 05 Nov 2023	Deviance:	33459.
Time:	12:49:04	Pearson chi2:	8.12e+06
No. Iterations:	13	Pseudo R-squ. (CS):	nan
Covariance Type:	nonrobust		
	coef std en	z P> z [0	.025 0.975

	Features	VIF
5	loc_ic_t2m_mou_8	2.37
4	loc_ic_t2m_mou_7	2.28
6	total_rech_num_6	1.32
0	arpu_6	1.27
7	last_day_rch_amt_8	1.20
8	max_rech_data_8	1.13
9	dec_rech_action	1.09
1	onnet_mou_8	1.05
2	std_og_t2m_mou_8	1.04
3	og_others_8	1.00

Here we see the p-values are in the Acceptable Range also the VIF's of all the values are also below 5 which is a good and acceptable range. Hence Model-6 will be the final Model

Calculation of the accuracy sensitivity and specificity for various probability cutoffs.

		accaracy	concidentity a
	probability	accuracy	sensitivity
0.00	0.00	0.50	1.00
0.10	0.10	0.66	0.97
0.20	0.20	0.72	0.95
0.30	0.30	0.76	0.92
0.40	0.40	0.79	0.89
0.50	0.50	0.81	0.85
0.60	0.60	0.82	0.79
0.70	0.70	0.81	0.71
0.80	0.80	0.74	0.51
0.90	0.90	0.56	0.12
	specificity		
0.00	0.00		
0.10	0.36		
0.20	0.49		
0.30	0.60		
0.40	0.69		
0.50	0.78		
0.60	0.85		
0.70	0.91		
0.80	0.96		
0.90	0.99		

Analysis of the above curve

Accuracy - Becomes stable around 0.6 approx.

Sensitivity - Decreases with the increased probability.

Specificity - Increases with the increasing probability.

Hence we consider cutoff point to be 0.6

EVALUATION METRICS

As we can see we from the above ROC plot we get AUC of 0.82.

Model summary (Logistic Regression Without PCA)

- •Train set
- •Accuracy:- 0.82
- •Sensitivity:- 0.79
- •Specificity:- 0.85
- •Recall:- 0.79
- Test set
- •Accuracy:- 0.85
- •Sensitivity:- 0.79
- •Specificity:- 0.85
- •Recall:- 0.79

Conclusion

In conclusion and regarding the upcoming strategy, our exploratory data analysis (EDA) has unveiled a notable decline in recharges, call usage, and data usage during the 8th month, which corresponds to the Action Phase. Key findings include the following significant features:

```
•loc_og_t2m_mou_7
```

- •total_og_mou_6
- •loc_og_t2t_mou_7
- •roam ic mou 7
- •onnet_mou_7
- •arpu_7
- •loc_og_t2c_mou_7
- •onnet mou 8
- •roam_og_mou_8
- •arpu 6

Of particular importance is the Average Revenue Per User (ARPU) in the 7th month, which plays a critical role in determining churn. A sudden drop in ARPU may indicate that a customer is contemplating churn, necessitating appropriate action.

The most influential factors contributing to customer churn are local outgoing minutes of usage. Roaming minutes of usage (both incoming and outgoing) also significantly affect churn, as does the total outgoing minutes of usage.

To address these findings, the following strategies can be implemented:

- •A sudden decline in local outgoing minutes of usage could be attributed to subpar customer service, network issues, or inappropriate customer plans. Efforts should be directed towards improving network quality and enhancing customer satisfaction.
- •Based on usage patterns, recent recharges, and on-net usage, regular feedback calls should be conducted to gauge customer satisfaction and understand their concerns and expectations. Appropriate measures should be taken to mitigate churn risks.
- •Introducing attractive offers to customers experiencing a sudden decrease in their expenditure on calls and data during the Action Phase can entice them to stay.
- •Tailored plans should be offered to such customers to retain them and prevent churn.
- •Promotional offers can also be an effective tool in retaining customers and reducing churn.

