

INFORMATICS INSTITUTE OF TECHNOLOGY In Collaboration with UNIVERSITY OF WESTMINSTER

Recourse Recommendations System

A Project Proposal by Mr. Ushan Sankalpa

Supervised by Mr. Cassim Farook

Submitted in partial fulfilment of the requirements for the BEng (Hons) Software Engineering degree at the University of Westminster.

November 2022

Table of Contents

1.	Introduction	4
2.	Problem Domain	4
3.	Problem Definition	4
3.	1. Problem Statement	5
4.	Research Motivation	5
5.	Existing work	5
6.	Research Gap	8
7.	Contribution to the Body of Knowledge	9
7.	1. Technological contribution	9
7.	2. Domain contribution	9
8.	Research Challenge	9
9.	Research question/s	9
10.	Research Aim	9
11.	Research Objectives	9
12.	Project Scope	10
12	2.1. In-scope	10
12	2.2. Out-scope	10
12	2.3. Diagram showing prototype feature	10
13.	Methodology	10
13	3.1. Research methodology	10
13	3.2. Development methodology	11
	13.2.1. Life cycle model	11
	13.2.2. Design Methodology	11
	13.2.3. Evaluation Methodology	11
	Benchmarking	11
13	3.3. Project management methodology	11

	13.3.1.	Schedule	11
	Gantt Cha	urt	11
	Deliverab	les	11
	13.3.2.	Resource Requirements	11
	Software	Requirements	11
	Hardware	Requirements	11
	Data Requ	uirements	11
	Skill Requ	uirements	11
	13.3.3.	Risk Management	11
Refe	erences		12

List of Figures

List of Tables

List of Abbreviations

1. INTRODUCTION

This document defines the background of the problem, the existing works that are related to my research topic, the solution that I am planning to implement, and how I am supposed to address the currently facing issues. The past research interests are also explored with their limitations and the research gaps are also identified with relevant reasons. Moreover, this paper further includes the solution methodology, the software and data requirements needed to implement it, the time plan, and the risk mitigation plan for the next few months of research work.

2. PROBLEM DOMAIN

Nowadays, most students learn using online resources. Even though students gained knowledge in universities, schools, and other institutes, they always tend to explore more to expertise in their fields with the help of online sources. There are different types of online resources for different learning styles (visual, read and write, auditory). For example, some students may be interested in watching tutorial videos. It will help them to extract the content more than reading documentation. But some students are more interested in reading and gaining knowledge than watching a video. Sometimes we cannot identify the most suitable learning type that suits us. When someone has to be ready for an exam within two to three days, he/she has to face difficulties in finding the best learning material for a specific subject that matches their learning style. In such cases, it would be a great solution to have an online resources recommendation system by identifying our learning styles.

3. PROBLEM DEFINITION

Every student has a different learning style. Some students are visual learners, while some students prefer to learn through audio. The online learning system, with its range of options and resources, can be personalized in many ways. It is hard to find the perfect online material for our subject and learning style. It takes more time to try out different sources and find the relevant ones. The main issue with most online resources is reliability. Even though we found the perfect match for our choice, the information it contains may not reliable.

3.1. Problem Statement

Students are facing difficulties in finding the best online resources that match their learning styles.

4. RESEARCH MOTIVATION

As a university student, I faced problems when choosing the right online sources when studying. It took me a period to find myself the best learning style that suits me. I found it by trying and following videos, reading materials, and making notes. It takes some time. In some situations, I had to watch so many tutorial videos from different sites to find the best one that meet my requirement. During the exam days, I encountered complications finding the suitable reference.

5. EXISTING WORK

Citation	Brief Description	Limitations	Contribution
Shao, Y.	This paper introduces a	This work provided a	This paper
(n.d.). Prediction	Deep Neural Network	means of providing a	investigates how to
of preferences on	(DNN) classification	learning material	use pre-encoded data
M-Learning based	model to predict four	adaptability model	to train a classification
on VARK score	preferences of mobile	using Naïve Bayes	model for the
using DNN to	learners, including	classifier and K-	prediction of mobile
classify multi-label	audio, PowerPoint,	Means clustering	learners' preferences
and single-label	video, and e-book, by	algorithm, which	based on VARK
data. [online]	using the symbolic	associates a user	scores. The
Available at:	dataset from the study of	profile to a content	motivation of
http://users.cecs.an	AI-Ismail, Gedeon, and	group.	choosing this dataset
u.edu.au/~Tom.Ge	Yamin (2017).		is related to the
deon/conf/ABCs2			popularity of mobile
020/paper/ABCs2			learning.
020_paper_v2_18			
4.pdf [Accessed 18			
Oct. 2022].			

Kerkiri. T., Manitsaris, A. and Mavridis, (2009). How elearning systems may benefit from ontologies and recommendation methods to efficiently personalise resources. Internat ional Journal of Knowledge and Learning, 5(3/4), p.347. doi:10.1504/ijkl.20 09.031229.

The considerable amount of knowledge through various documents within organisations increasingly grows. Their efficient maintenance and meaningful retrieval is of great importance

This work proved that the learner would have to examine much less retrieved resources in order to filter those that are suitable to his informational needs.

In this paper an elearning system proposed that is based semantic webbased methods. In this system, the learners' feedback, expressed reputation as metadata, is used to propose suitable LRs', through recommendation techniques. Ontologies' are designed based on educational standards implement the entities of the system.

Process of building dataset and classification of vark learning styles with machine learning and predictive analytics models. (2021). *Journal* of **Contemporary** Issues in Business and Government,

As there is a rise in the online and customized learning platforms, learning style preferences give us insight into better utilization of educational available. resources VARK learning styles developed are by Fleming and Bonwell on the premises of preferred This study explored the relationship between demographic factors like school and place people grew up and learning styles. Results proved contradict those factors. They conclude that with the growth of big data learning style

This study shows the ability of the machine learning algorithms to ascertain the relationships between the data. The learning styles are an important part of the student's way of processing the information during the education.

26(02).	intake of information by	classification, a blend	
doi:10.47750/cibg.	the students.	of model algorithms	
2020.26.02.128.		or stacked algorithms	
		like voting classifier	
		can be used to adapt to	
		a user application	
D. M.E. C	In this many the Wish	English and leading of	To distance of the second
De Medio, C.,	In this paper, the Web	From this analysis of	In this work we
Limongelli, C.,	offers exceptional	earlier uses of	addressed the teaching
Sciarrone, F. and	opportunities. An enor-	interesting LOs, the	activity, presenting an
Temperini, M.	mous wealth of learning	teacher can	extension of an LMS
(2020).	resources and	decide to select a	making it able to help
MoodleREC: A	technologies can be	given LO from those	the teacher build a
recommendation	made	in the ranked list.	course
system for creating	available in a relatively	She/he can also	based on
courses using the	simple way: for teachers,	be encouraged to use	recommended LOs,
moodle e-learning	the Web is a rich field,	other LOs, not listed in	whereas the
platform. Compute	where they can find	the query response, on	recommendations
rs in Human	useful educational	the	come from
Behavior, 104,	materials suitable for	basis of their usage,	the response of the LO
p.106168.	supple-	alongside of the LO in	to the requested
doi:10.1016/j.chb.	menting or creating a	question, in other	features, and from the
2019.106168.	course	courses	use that
			other teachers have
			done of the LO in
			different courses
Ezaldeen, H.,	The main purpose of a	This work provided a	This paper presents on
	The main purpose of e-	This work provided a	This paper presents an
Misra, R.,	learning is accessibility	means of providing a	AI based E-learning
Alatrash, R. and	to users around the world	learning material	system by
Priyadarshini, R.	in anywhere and anytime	adaptability model	incorporating
(2019). <i>Machine</i>	mode, and ability to find	using Naïve Bayes	intelligent support
Learning Based	and select the	classifier and K-	systems. Based on the

Improved	appropriate courses with	Means clustering	need and aptitude of
Recommendation	less efforts and	algorithm, which	the student the
Model for E-	minimum time.	associates a user	learning materials
learning. [online]		profile to a content	could be chosen which
IEEE Xplore.		group.	will help both the
doi:10.1109/ICIC			students and the
RS46726.2019.95			teachers to enhance
55866.			the learning outcome
			as a whole

6. RESEARCH GAP

The suggested solution is about recommending learning resources for people with the same learning preferences using an algorithm by identifying their learning styles. The accuracy can be improved using that algorithm. The users can also suggest learning materials they followed using the feedback form.

7. CONTRIBUTION TO THE BODY OF KNOWLEDGE

By addressing the above gap what is the contribution you are going to make

7.1. Technological contribution

7.2. Domain contribution

8. RESEARCH CHALLENGE

Evidence for complexity and challenge to achieve, you need to write such that it gives reason why it could lead to a publication.

Publishable doesn't mean it is publishable in a conference but publishable in a https://mjl.clarivate.com/search-results journal

Further evidence to show that this can be further extended to PhD research

9. RESEARCH QUESTION/S

https://www.scribbr.com/research-process/research-questions/

10. RESEARCH AIM

One sentence

Further elaborate on the aim

11. RESEARCH OBJECTIVES

Elaborate the steps of atomic activities that you need to carryout to achieve the aim

Research	Explanation	Learning
Objectives		Outcome
Problem		LO1
Identification		
Literature	RO1	LO1
Review	RO2	
	RO3	
Data Gathering		LO2,
and Analysis		LO3
Research		
Design		
Implementation		
Testing and		
Evaluation		

12.PROJECT SCOPE

12.1.In-scope

12.2.Out-scope

12.3.Diagram showing prototype feature

13.METHODOLOGY

13.1.Research methodology

Research	The author of the research has selected the positivism as the research
Philosophy	philosophy
Research Approach	Deductive or inductive why?

Research Strategy	Experiment, survey => questionnaire (can be quantitative or qualitative) or interview (can be quantitative or qualitative),		
Research Choice	Mono method => only one method can quantitative (Positivist) or qualitative (interpretivist), Multi method (More than one method but all belong to same paradigm (positivist or interpretivist)) or Mixed method (only pragmatist can mix the method => mixing the method from positivism and interpretivism)		
Time zone	Cross-sectional or longitudinal		

13.2. Development methodology

- 13.2.1. Life cycle model
- 13.2.2. Design Methodology
- 13.2.3. Evaluation Methodology

Benchmarking

- a. What is the life cycle model and why?
- b. Design methodology => SSADM or OOAD or Anything else?
- c. Evaluation methodology => Evaluation metrics and/or benchmarking

13.3. Project management methodology

13.3.1. Schedule

Gantt Chart

Deliverables

13.3.2. Resource Requirements

Software Requirements

Hardware Requirements

Data Requirements

Skill Requirements

13.3.3. Risk Management

- d. Schedule using the Gantt Chart after doing a WBS (Do not have to provide the WBS)
- e. Deliverables, milestones and dates of deliverables
- f. Resource requirements

- i. Hardware requirements
- ii. Software requirements
- iii. Skills requirements
- iv. Data Requirements

g. Risk Management

Risk Item	Severity	Frequency	Mitigation Plan
	5	5	
	5	4	
	5	1	

REFERENCES

Structure of the report for ASE and FYP Students and CSF Students who will involve in development project

Introduction

Literature Review

Methodology

Requirement Elicitation and analysis

SLEP Framework

Design

Implementation

Testing

Evaluation

Conclusion

Structure of the report for CSF Students for students doing Conceptual Framework Research

Introduction

Literature Review

Methodology

Data Gathering and Analysis

SLEP Framework

Conceptual Framework Design

Evaluation

Conclusion