Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

Ē Các câu khác đều sai

(Đề thi 20 câu / 1 trang)

ĐỀ THI GIỮA HỌC KỲ 2, NĂM HỌC 2018-2019 Môn thi: Phương pháp tính Thời gian làm bài: 45 phút.

Câu 1. Biết A c	ó giá tri gần đ	úng là $a=4.2556$ vớ	ới sai số tươ	ơng đối là $\delta_a=0.04$.7%. Ta làm tr	\dot{a} thành a^* the	eo nguyên tắc
		r hai sau dấu chấm. S					2,
A 0.0064		B 0.0065	•	0.0077		D 0.0076	
	hác đều sai						
Câu 2. Cho $a =$	13.2618 với s	sai số $\delta_a = 0.056\%$.	Số chữ số d	đáng tin trong cách v	∕iết thập phân	của a là:	
(A) 1		(B) 2		(C) 3		(D) 4	
E Các câu k	hác đều sai						
Câu 3. Cho biểu	thức $f = x^2$	$+xy-2y^2$. Biết x	= 0.3201 =	$\pm 0.0055 \text{ và } y = 1.4$	578 ± 0.0002	. Sai số tương đối	của f là:
(A) 0.0034	v	B 0.0027		$\bigcirc 0.0028$		D 0.0035	•
E Các câu k	hác đều sai						
		$x^3 + 4x - 3 = 0 \text{ trê}$	n khoảng c	ách ly nghiệm [0_1]	có nghiệm gầ	n = 0.6	5 Sai số nhỏ
		nh giá sai số tổng qu			co ngmẹm ga	u dulig $x = 0.0$	o. Sai so inio
(A) 0.0312	cong thuc da	B 0.0314	at Cua x 1	C 0.0313		D 0.0311	
\sim		0.0314		0.0313		0.0311	
	hác đều sai	x 2 21	$H \cap V$	~ /\C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	[1 0] 771	1 17 11	40. 1.0
		$= e^x - 2x - 2 =$	0 trong kh	oang cach li nghiệm	[1,2]. Theo $[$	phương phap chia	doi, nghiệm
	x_5 của phươi			1 0700		1 4075	
(A) 1.6719		B) 1.6797		1.6562		(D) 1.6875	
	hác đều sai	00			2		
Câu 6. Hàm $g(x)$	$c) = \sqrt[3]{4x + 7}$	là hàm co trong $[2, 3]$	3]. Giá trị c	của hệ số co q là:		_	
(A) 0.1872		(B) 0.1873		C 0.2192		D 0.2193	
E Các câu k	hác đều sai						
		$\sqrt[3]{4x+7}$ thỏa điều	kiên lăp tr	ên [2,3]. Nếu chọn x	$e_0 = 3$ thì ngh	iêm gần đúng x_2	theo phương
pháp lặp	_	V 100 V mod drou		[2,0]. 1 (0	0 0 1111 11911	niện gan dang w z	mee priceing
(A) 2.6048	don iu.	B 2 6684	ıê.,	2.5922	D	D 2.5823	
\simeq	háa đầu ani	S FAIL	IĘU .	28 0.1 ¥	P	2.0020	
	hác đều sai	3/4 + 7 41.2 #:\$	/11: 6LJ 19LJ (#.			`:	
		$\sqrt[3]{4x+7}$ thỏa điều		on tren [2,5]. Neu cr	$ion x_0 = 3 tn$	ı sai so tüyet doi	nno nnat cua
	gan dung x_2 u	neo công thức hậu ng	mem ia:	0.0170		0.0170	
(A) 0.0147		(B) 0.0146		(C) 0.0178		(D) 0.0179	
	hác đều sai						
•	" \	$) = \ln(x+2) - 1 =$	_		ệm [0,1]. Với	x_0 cho bởi điều	kiện Fourier,
	gân đúng x_1 tí	nh theo phương pháp	Newton la				
(A) 0.7041		(B) 0.6137		\bigcirc 0.7042		(D) 0.6138	
(E) Các câu k	hác đều sai						
Câu 10. Cho phư	ong trình $f(x)$	$= \ln(x+2) - 1 =$	0 trong kh	oảng cách ly nghiện	n [0,1]. Với x_0	cho bởi điều kiệ	n Fourier, sai
		x_2 tính theo công					
\bigcirc 0.0023		(B) 0.0022		C 0.0015		D 0.0014	
\simeq	hác đều sai						
Câu 11.	Γ 1 2	1 T					
Cho A -	$\begin{bmatrix} 1 & 2 \\ 2 & \alpha \end{bmatrix}$	Với giá trị nào	của α thì n	na trận A là vác định	ditana.		
C110 21 =	$\begin{bmatrix} 2 & \alpha \\ 1 & \alpha \end{bmatrix}$	1 . voi gia tri nao	cua a un n	na trạn 21 là xác tiệm	r duong.		
(A) 21 2 1	LIA	$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \text{. Với giá trị nào}$ $\begin{bmatrix} \mathbf{B} & \alpha < 3.3332 \end{bmatrix}$		2 2224 < 2	- 1		
$\alpha > 4$		$\alpha < 3.3332$		$0.3334 < \alpha$	< 4	$\alpha = 3$	
2 Suc cua k	- aca sar	_					
Câu 12.	$\begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$. Tìm phần tử L_{32}	_				
Cho $A =$	$= \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$	\mid . Tìm phần tử L_{32}	của ma trậ	n L trong phân tích \mathbb{I}	Doolitle của r	na trận $A = LU$,	L là ma trận
	L"	_					
tam giác	ado:	R $L_{22} = 1$		C $L_{22} = 0.5$		<u> </u>	_
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +		$IRIL_{100} = I$		$101 L_{20} = 0.5$		$L_{22} = -0.5$	3

Câu 13.	-1]		
Cho $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \\ A \end{bmatrix}$. Phân tích $A = BB^T$ theo pl	hương pháp Choleski, tổng các p	phần tử $tr(B) = b_{11} + b_{22} + b_{33}$
$\underline{}$ của ma trận B là:	* J		
A 5.4910	B 5.4964	C 4.6964	D 4.4647
E Các câu khác đều sai			
Câu 14.	3]		
$Cho A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & -1 & 1 \end{bmatrix}$	3 5 . Số điều kiện tính theo chuẩn 1 1	1 của ma trận là:	
A 220	B 176	© 80	D 60
E Các câu khác đều sai			
Câu 15. Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. Theo phuon	g pháp Jacobi, với $x^{(0)} = [1, 1]$	$[.5]^T$ tìm số lần lặp cần thiết để
nghiệm có sai số theo	chuẩn vô cùng nhỏ hơn 10^{-5}		
A 10	B 11	© 9	D 7
E Các câu khác đều sai			
Câu 16. Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6\\ 3x_1 + 11x_2 = 7 \end{cases}$. Với $x^{(0)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$[1,1.5]^T$. Vecto $x^{(3)}$ tính theo ph	ương pháp Jacobi là:
	$\begin{cases} 15x_1 - 2x_2 = 6\\ 3x_1 + 11x_2 = 7 \end{cases} \text{V\'oi } x^{(0)} = \begin{bmatrix} 1\\ B \end{bmatrix} \begin{bmatrix} 0.4485; 0.4727 \end{bmatrix}^T$ $\begin{cases} 15x_1 - 2x_2 = 6\\ 3x_1 + 11x_2 = 7 \end{cases} \text{V\'oi } x^{(0)} = \begin{bmatrix} 1\\ 3x_1 + 11x_2 = 7 \end{bmatrix} \end{cases}$	$ (0.4680; 0.5087]^T $	
Câu 17. Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. Với $x^{(0)} =$	$[1,1.5]^T$. Sai số $\Delta x^{(2)}$ của ve	cto $x^{(2)}$ tính theo phương pháp
Jacobi, sử dụng chuẩn A 0.0568	n một và công thức hậu ngh <mark>iệ</mark> m <mark>l</mark> à B 0.0569	: 0.0978	D 0.0977
E Các câu khác đều sai		CP	
Câu 18. Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6\\ 3x_1 + 11x_2 = 7 \end{cases} $ Với $x^{(0)} = \begin{bmatrix} 1 \\ 0.000000000000000000000000000000000$	$[.5;1]^T$. Vecto $x^{(3)}$ tính theo ph	uơng pháp Gauss-Seidel là:
(A) $[0.4655; 0.5190]^T$ (E) Các câu khác đều sai	$ \begin{bmatrix} 0.4303; 0.4909 \end{bmatrix}^T $	$(0.4655; 0.5094]^T$	
Câu 19. Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6 & \text{Voi } \frac{\text{H}}{x^{(0)}} = [\\ 3x_1 + 11x_2 = 7 & \text{Voi } x^{(0)} = [\\ \end{cases}$	$[1.5;1]^T$, sử dụng phương pháp	Gauss-Seidel, tìm chỉ số n nhỏ
nhất để $ x^{(n)}-x^{(n-1)} $ 2	$ 1\rangle 1 _1 \le 0.0600$	C 3	D 5
E Các câu khác đều sai			
Câu 20. Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6\\ 3x_1 + 11x_2 = 7 \end{cases}$. Với $x^{(0)} =$	$[1.5;1]^T$, sử dụng phương pháp	p Gauss-Seidel, đánh giá sai số
	theo công thức tiên nghiệm và ch		
A 0.0302	B 0.0303	© 0.0198	D 0.0199

TS. Nguyễn Tiến Dũng

Các câu khác đều sai

 \mathbf{D} ề 3417 \mathbf{D} ÁP ÁN

Câu 1. B	Câu 5. (A)	Câu 9. B	Câu 13. D	Câu 17. (C)
Câu 2. C	Câu 6. C	Câu 10. (A)	Câu 14. B	Câu 18. ①
Câu 3. D	Câu 7. (A)	Câu 11. (E)	Câu 15. (A)	Câu 19. (C)
Câu 4. B	Câu 8. (D)	Câu 12. (D)	Câu 16. (A)	Câu 20. D

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 20 câu / 1 trang)

E Các câu khác đều sai

ĐỀ THI GIỮA HỌC KỲ 2, NĂM HỌC 2018-2019 Môn thi: Phương pháp tính Thời gian làm bài: 45 phút.

Câu 1			ơng đối là $\delta_a=0.047\%$. Ta làm	tròn a thành a^{*} theo nguyên tắc
A	quá bán đến chữ số thứ 0.0076	hai sau dấu chấm. Sai số tuyệt (B) 0.0065	đối của a^* là: 0.0077	D 0.0064
E	Các câu khác đều sai	0.0000	0.0077	0.0001
		ai số $\delta_a=0.056\%$. Số chữ số đ	đáng tin trong cách viết thập phâ	n của a là:
A	4	B 2	C 3	D 1
Ē	Các câu khác đều sai			
Câu 3			± 0.0055 và $y = 1.4578 \pm 0.000$	
(A)	0.0035	B) 0.0027	(C) 0.0028	(D) 0.0034
(E)	Các câu khác đều sai	3 . 4 . 9 . 0 . 5 . 11 . 2	/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	À 1/ + 0.0F 0 : Á 1.2
Cau 4		3 + 4x - 3 = 0 trên khoảng c nh giá sai số tổng quát của x^* l	ách ly nghiệm $[0,1]$ có nghiệm \mathfrak{g}	gần đúng $x^* = 0.65$. Sai số nhỏ
\bigcirc A	0.0311	B 0.0314	a. C 0.0313	D 0.0312
E	Các câu khác đều sai	110A	C.M.	0.0012
Câu 5		$= e^x - 2x - 2 = 0 \text{ trong kh}$	oảng cách li nghiệm $[1,2]$. Theo	phương pháp chia đôi, nghiệm
	gần đúng x_5 của phươn	g trình là:		
(\underline{A})	1.6875	B) 1.6797	C 1.6562	D 1.6719
(E)	Các câu khác đều sai	m CP	3	
Câu 6	• ()	là hàm co trong [2, 3]. Giá trị c		0.1070
A	0.2193	(B) 0.1873	0.2192	D 0.1872
Câu 7	Các câu khác đều sai	$\sqrt[3]{4x+7}$ thỏo điều kiên lặp trá	ên [2,3]. Nếu chọn $x_0=3$ thì ng	hiâm gần đúng 🚓 thao nhương
Cau 1	pháp lặp đơn là:	$\sqrt{4x+1}$ moa dieu kiçii iáb ne	$[2,3]$. Neu chọn $x_0 = 3$ thi ng	Them gan dung x_2 theo phoons
(A)	2.5823	B 2.6684	CC 2.5922 A D	D 2.6048
(E)	Các câu khác đều sai	. I YI LIFO		
Câu 8			on trên [2,3]. Nếu chọn $x_0=3$ t	hì sai số tuyệt đối nhỏ nhất của
		eo công thức hậu nghiệm là:	(a) a a 4 = a	©
A	0.0179	(B) 0.0146	(C) 0.0178	(D) 0.0147
(E)	Chambata a taich f(x)	lo (o + 0) 1 0 4man = 1	lah a ² a 4 1 1- 1 10 - 11 - 17:	5: 1. 3: #:À 1.:^ F
Cau 9		= m(x + 2) - 1 = 0 trong hat the phương pháp Newton là	khoảng cách ly nghiệm [0,1]. Vớ	of x_0 cho bot then kigh Fourier,
(A)	0.6138	B) 0.6137	C 0.7042	(D) 0.7041
(E)	Các câu khác đều sai			
Câu 10		$= \ln(x+2) - 1 = 0 \text{ trong kh}$	oảng cách ly nghiệm [0,1]. Với s	c_0 cho bởi điều kiện Fourier, sai
		g x_2 tính theo công thức sai số		
(A)	0.0014	B 0.0022	(C) 0.0015	D 0.0023
(E)	Các câu khác đều sai	. 7		
Câu 11	Cho $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$	l Với giá trị nào giáo o thì n	ag trận A là vác định dương:	
	$C = \begin{bmatrix} 2 & \alpha & 3 \\ 1 & \alpha & -1 \end{bmatrix}$	[]	na trận A là xác định dương:	
\widehat{A}	$\alpha = 3$	$\alpha < 3.3332$	\bigcirc 3.3334 < α < 4	\bigcirc $\alpha > 4$
(E)	Các câu khác đều sai			
Câu 12				
	$Cho A = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$. Tìm phần tử L_{32} của ma trậi	n L trong phân tích Doolitle của	ma trận $A=LU,L$ là ma trận
	$\begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$ tam giác dưới:			
\widehat{A}	$L_{32} = -0.5$	(B) $L_{32} = 1$	C $L_{32} = 0.5$	(D) $L_{32} = -1$

TS. Nguyễn Tiến Dũng

 $\mathbf{\hat{D}}$ ê 3418 $\mathbf{\hat{D}}$ **AP** $\mathbf{\hat{A}}$ **N**

Câu 1. (B) Câu 17. (C) Câu 5. D Câu 9. (B) **Câu 13.** (A) Câu 2. (C) Câu 6. (C) **Câu 10.** (D) **Câu 14.** (B) **Câu 18.** (A) **Câu 11.** (E) Câu 15. (D) Câu 3. (A) Câu 7. D Câu 19. (C) Câu 4. B Câu 8. (A) **Câu 12.** (A) **Câu 16.** (D) **Câu 20.** (A)

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

Ē Các câu khác đều sai

(Đề thi 20 câu / 1 trang)

ĐỀ THI GIỮA HỌC KỲ 2, NĂM HỌC 2018-2019 Môn thi: Phương pháp tính Thời gian làm bài: 45 phút.

Câu 1.	Biết A có giá tri gần đúi	ng là $a=4.2556$ với sai số tượ	ơng đối là $\delta_a=0.047\%$. Ta làm t	tròn a thành a^* theo nguyên tắc
		hai sau dấu chấm. Sai số tuyệt		
<u>A</u> (0.0077	B 0.0065	0.0064	D 0.0076
\sim	Các câu khác đều sai			
Câu 2.	Cho $a = 13.2618$ với sa	$\sin s\delta \delta_a = 0.056\%$. Số chữ số ϵ	đáng tin trong cách viết thập phâ	n của a là:
(A) :	3	(B) 2	(C) 1	(D) 4
(E) (Các câu khác đều sai			
Câu 3.	Cho biểu thức $f = x^2 +$	$-xy - 2y^2$. Biết $x = 0.3201$ =	± 0.0055 và $y = 1.4578 \pm 0.000$	2. Sai số tương đối của f là:
	0.0028	B 0.0027	© 0.0034	D 0.0035
(E)	Các câu khác đều sai			
		$3 + 4x - 3 \equiv 0$ trên khoảng c	cách ly nghiệm [0, 1] có nghiệm g	x^* ần đúng $x^* \equiv 0.65$. Sai số nhỏ
		h giá sai số tổng quát của x^* l		
\widehat{A}	0.0313	(B) 0.0314	© 0.0312	D 0.0311
\simeq	Các câu khác đều sai	1 O A	C N	0.0011
		$-e^{x}-2x-2=0$ trong kh	oảng cách li nghiệm [1, 2]. Theo	nhương nhán chịa đôi nghiệm
Cau 5.	gần đúng x_5 của phương		loang each it lightent [1, 2]. Theo	phương pháp chia doi, nghiệm
\bigcirc	1.6562	B) 1.6797	C 1.6719	D 1.6875
\simeq		В 1.0794	1.0719	1.0875
	Các câu khác đều sai	90	1 3	
	• ()	à hàm co trong $[2,3]$. Giá trị c		
(A) (0.2192	(B) 0.1873	© 0.1872	(D) 0.2193
(E) (Các câu khác đều sai			
Câu 7.	Cho phương trình $x = \frac{1}{2}$	$\sqrt[3]{4x+7}$ thỏa điều kiện lặp tr	ên [2,3]. Nếu chọn $x_0=3$ thì ng	hiệm gần đúng x_2 theo phương
	pháp lặp đơn là:	- > ^		
(A) 2	2.5922	B 2.6684	CC 2.6048 ↑ ↑ D	D 2.5823
(E)	Các câu khác đều sai	JAILIFO	200 I ¥1	
		$\sqrt[3]{4x+7}$ thỏa điều kiên lặp đ	ơn trên [2,3]. Nếu chọn $x_0=3$ t	hì sai số tuyệt đối nhỏ nhất của
		eo công thức hậu nghiệm là:	<u>[</u>	
(A)	0.0178	B) 0.0146	© 0.0147	\bigcirc 0.0179
\simeq	Các câu khác đều sai	0 33233	0 33323	0 0.02.0
\sim		$-\ln(x+2)$ 1 = 0 trong	khoảng cách ly nghiệm [0,1]. Vớ	gi m. aho hởi điều kiến Fourier
Cau 9.		$= \ln(x + 2) - 1 = 0$ trong have the phương pháp Newton le		of x_0 cho bot died kiện Fourier,
\bigcirc	0.7042	B) 0.6137	C 0.7041	D 0.6138
\simeq		(B) 0.0137	0.7041	0.0138
\sim	Các câu khác đều sai	1 (2 (11 110 50 17 17)	
Câu 10.			noảng cách ly nghiệm [0,1]. Với x	c_0 cho bởi điều kiện Fourier, sai
		x_2 tính theo công thức sai số		
(A) (0.0015	B 0.0022	(C) 0.0023	D 0.0014
(E) (Các câu khác đều sai			
Câu 11.	$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$]		
	Cho $A = \begin{bmatrix} 2 & \alpha & 3 \end{bmatrix}$. Với giá trị nào của α thì r	na trận A là xác định dương:	
_	$\begin{bmatrix} 1 & \alpha & -1 \end{bmatrix}$]_	_	
(A) :	$3.3334 < \alpha < 4$. Với giá trị nào của α thì r	$\alpha > 4$	Ω $\alpha = 3$
E)	Các câu khác đều sai			
Câu 12.				
	Cho $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix}$. Tìm phần tử L_{22} của ma trâ	n L trong phân tích Doolitle của	ma trần $A = LU$. L là ma trần
	$\begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \end{vmatrix}$	- r 202 von ma uu	r 2001110 cuu	
	tam giác dưới:			
\bigcirc	$L_{22} = 0.5$	R $L_{22} = 1$	C $L_{22} = -1$	$L_{22} = -0.5$

Câu 13.	1]		
Cho $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Phân tích $A = BB^T$ theo ph	nương pháp Choleski, tổng các p	bhần tử $tr(B) = b_{11} + b_{22} + b_{33}$
của ma trận B là:	-		
A 4.6964	B 5.4964	C 5.4910	D 4.4647
(E) Các câu khác đều sai			
Câu 14.			
Cho $A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & -1 & 1 \end{bmatrix}$. Số điều kiện tính theo chuẩn 1	của ma trận là:	
A 80	B 176	C 220	D 60
(E) Các câu khác đều sai			
Câu 15.	$\begin{cases} 15x_1 - 2x_2 = 6 \end{cases}$		
Cho hệ phương trình 〈	$\left \begin{array}{l} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{array}\right $ Theo phương	g pháp Jacobi, với $x^{(0)} = [1, 1]$	$.5]^T$ tìm số lần lặp cần thiết để
nghiêm có sai số theo c	chuẩn vô cùng nhỏ hơn 10^{-5}		
(A) 9	(B) 11	(C) 10	(D) 7
E Các câu khác đều sai			
Câu 16.	$15x_1 - 2x_2 = 6$	T (0)	
Cho hệ phương trình {	$15x_1 - 2x_2 = 6$ $3x_1 + 11x_2 = 7$ Với $x^{(0)} = [1]$ $\begin{bmatrix} 0.4485; 0.4727 \end{bmatrix}^T$ $\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$ Với $x^{(0)} = [1]$ một và công thức hậu nghiệm là:	$[1.5]^T$. Vecto $x^{(3)}$ tính theo ph	ương pháp Jacobi là:
\bigcirc [0.4680; 0.5087] ^T	$(B) [0.4485; 0.4727]^T$	$(0.4630; 0.5140]^T$	\bigcirc [0.4630; 0.5101] ^T
E Các câu khác đều sai	KHOA	CNCV	
Câu 17.	$\int 15x_1 - 2x_2 = 6$	[4 4 E]T Q : (3 A (2) 2	(2) (1 1 1 1 1 1
Cho hệ phương trinh	$3x_1 + 11x_2 = 7$. Vol $x^{(0)} =$	$[1, 1.5]^{2}$. Sai so $\Delta x^{(2)}$ cua vec	$x^{(2)}$ tinh theo phương phap
Jacobi, sử dụng chuẩn	một và công thức hậ <mark>u nghiệ</mark> m <mark>l</mark> à:		
(A) 0.0978	B 0.0569	0.0568	D 0.0977
E Các câu khác đều sai		CP	
Câu 18.	$15x_1 - 2x_2 = 6$	(2)	
Cho hệ phương trình {	$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. Với $x^{(0)} = [1]$	$.5;1]^{T}$. Vecto $x^{(3)}$ tính theo ph	ương pháp Gauss-Seidel là:
\bigcirc [0.4655; 0.5094] ^T		$(0.4655; 0.5190]^T$	\bigcirc $[0.4679; 0.5087]^T$
E Các câu khác đều sai	AI LIÈO S	DOU TẠP	
Cho hệ phương trình	$\begin{cases} 15x_1 - 2x_2 = 6 & \text{Voi } x^{(\theta)} = 7 \\ 3x_1 + 11x_2 = 7 \end{cases}$	T-CA CP 1.5: 11 ^T sử dụng phương phán	Gauss-Seidel tìm chỉ số n nhỏ
Cho ne phương trinh	$3x_1 + 11x_2 = 7$	1.0, 1] , su dung phuong phap	Guass Sciaci, till cill so it illio
$\mathbf{nhất} \mathbf{dr} x^{(n)} - x^{(n-1)} $	$ 0 _{1} \le 0.0600$		
(A) 3	(B) 4	(C) 2	(D) 5
E Các câu khác đều sai			
Cha hâ nhương trình	$\int 15x_1 - 2x_2 = 6$	[1 5.1]T of duna physica phás	· Cours Soidal đánh siá soi sắ
	$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. Với $x^{(0)} =$		o Gauss-Seigei, dann gia sai so
$\Delta x^{(2)}$ của vecto $x^{(2)}$ th	neo công thức tiên nghiệm và ch	uẩn vô cùng là:	
A 0.0198	B 0.0303	0.0302	D 0.0199

TS. Nguyễn Tiến Dũng

Các câu khác đều sai

 $\mathbf{D}\hat{\mathbf{e}}$ 3419 $\mathbf{D}\mathbf{A}\mathbf{P}\mathbf{A}\mathbf{N}$

Câu 5. C Câu 1. (B) Câu 9. (B) **Câu 13.** (D) Câu 17. (A) **Câu 14.** (B) Câu 2. (A) Câu 6. (A) Câu 10. (C) Câu 18. (D) Câu 15. (C) Câu 3. (D) Câu 7. (C) Câu 11. (E) **Câu 19.** (A) Câu 8. D **Câu 12.** (D) **Câu 16.** (C) Câu 4. B Câu 20. (D)

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 20 câu / 1 trang)

E Các câu khác đều sai

ĐỀ THI GIỮA HỌC KỲ 2, NĂM HỌC 2018-2019 Môn thi: Phương pháp tính Thời gian làm bài: 45 phút.

Câu 1. Biết A có giá tr	ri gần đúng là $a=4.2556$ với sa	ni số tương đối là $\delta_a=0.047\%$.	Ta làm tròn a thành a^* theo nguyên tắc
	. 5 ữ số thứ hai sau dấu chấm. Sai s		2 7
A 0.0064	B 0.0076	0.0065	D 0.0077
E Các câu khác đề			
Câu 2. Cho $a = 13.26$	18 với sai số $\delta_a = 0.056\%$. Số c	chữ số đáng tin trong cách viết t	nập phân của a là:
(A) 1	(B) 4	(C) 2	(D) 3
E Các câu khác đề	u sai		
Câu 3. Cho biểu thức	$f = x^2 + xy - 2y^2$. Biết $x = 0$	0.3201 ± 0.0055 và $y = 1.4578$	± 0.0002 . Sai số tương đối của f là:
(A) 0.0034	(B) 0.0035	$\bigcirc 0.0027$	(D) 0.0028
E Các câu khác đề	u cai		
		poảng cách ly nghiệm [0, 1] có n	ghiệm gần đúng $x^*=0.65$. Sai số nhỏ
	thức đánh giá sai số tổng quát c		
(A) 0.0312	B 0.0311	© 0.0314	D 0.0313
\simeq		0.0314	0.0313
E Các câu khác đề		OACNO	
		ong khoang cach li nghiệm [1, 2	2]. Theo phương pháp chia đôi, nghiệm
	a phương trình là:	1 4707	1 2722
(A) 1.6719	(B) 1.6875	C 1.6797	(D) 1.6562
E Các câu khác đề	///		
Câu 6. Hàm $g(x) = \sqrt[3]{x}$	$\sqrt{4x+7}$ là hàm co trong $[2,3]$. C	Giá trị của hệ số co q là:	_
(A) 0.1872	B 0.2193	© 0.1873	\bigcirc 0.2192
E Các câu khác đề	u sai		
		n lặp trên [2,3]. Nếu chọn $x_0 \equiv$	3 thì nghiệm gần đúng x_2 theo phương
pháp lặp đơn là		1 tup (1 to [2,0]) 1 (0 to 0 to 1 to 0	
(A) 2.6048	B) 2 5823	2.6684 A P	D 2.5922
\simeq		O 39 OFTAP	210022
E Các câu khác đề		ul 18 d debt 7000 to 010Nián ab an a	2 412: - 6 4
			$c_0=3$ thì sai số tuyệt đối nhỏ nhất của
	ng x_2 theo công thức hậu nghiện		0.0170
(A) 0.0147	(B) 0.0179	(C) 0.0146	(D) 0.0178
(E) Các câu khác đề			
			0,1]. Với x_0 cho bởi điều kiện Fourier,
	ng x_1 tính theo phương pháp Ne		
(A) 0.7041	(B) 0.6138	(C) 0.6137	\bigcirc 0.7042
(E) Các câu khác đề	u sai		
C <mark>âu 10.</mark> Cho phương trì	$nh f(x) = \ln(x+2) - 1 = 0 tr$	rong khoảng cách ly nghiệm [0,1]. Với x_0 cho bởi điều kiện Fourier, sai
	gần đúng x_2 tính theo công thức		
(A) 0.0023	B 0.0014	\bigcirc 0.0022	(D) 0.0015
E Các câu khác đề	n sai		
Câu 11. \[\begin{array}{c} 1 \\ 1 \\ \end{array}	2 1]		
Cho $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	α 3 Với giá trị nào của	α thì ma trận A là xác định dươ	ing:
	$\alpha = 0$. Voi gia tri nao cua	a tili lila tiqii 21 la xac tijili tuto	ng.
		2 2 222	\bigcirc 3.3334 < α < 4
$(A) \alpha > 4$	$\alpha \equiv 3$	$\alpha < 5.5552$	(D) 5.3534 < α < 4
Cac cau knac uc	u sai		
Câu 12. 2	$\begin{bmatrix} 2 & 1 \end{bmatrix}$		itle của ma trận $A=LU,L$ là ma trận
Cho $A = 1$	0 . Tìm phần tử L_{32} của	ma trận L trong phân tích Dool	itle của ma trận $A=LU,L$ là ma trận
L°	-1 2		
tam giác dưới:	- ·	C $L_{22} = 1$	
$1 A 1 L_{00} = -1$	$I_{22} = -0.5$	$L_{20} = 1$	$L_{20} = 0.5$

		1 à 2 1 (D) 1 1 1 1
Phan tich $A = BB^{T}$ theo pl	hưởng pháp Choleski, tổng các j	phan tư $tr(B) = b_{11} + b_{22} + b_{33}$
,]		
B 4.4647	C 5.4964	D 4.6964
. Số điều kiện tính theo chuẩn i	1 của ma trận là:	
B 60	C 176	D 80
$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. Theo phương	g pháp Jacobi, với $x^{(0)} = [1, 1]$	$[.5]^T$ tìm số lần lặp cần thiết để
(
(B) 7	(C) 11	(D) 9
$15x_1 - 2x_2 = 6$	T. (0)	
$3x_1 + 11x_2 = 7$. Với $x^{(0)} = [1]$	$[1, 1.5]^T$. Vecto $x^{(3)}$ tính theo ph	urong pháp Jacobi là:
$(B) [0.4630; 0.5101]^T$	$(0.4485; 0.4727]^T$	\bigcirc $[0.4680; 0.5087]^T$
KHOM	CVCV	
$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$ Với $x^{(0)} =$	$[1,1.5]^T$. Sai số $\Delta x^{(2)}$ của ve	cto $x^{(2)}$ tính theo phương pháp
c một và công thức hậu nghiệm là		
B 0.0977	0.0569	D 0.0978
	CP	
$15x_1 - 2x_2 = 6$ $3x_1 + 11x_2 = 7$. Với $x^{(0)} = [1]$	$[1.5;1]^T$. Vecto $x^{(3)}$ tính theo ph	uơng pháp Gauss-Seidel là:
(B) [0.4679: 0.5087] T	$(0.4303; 0.4909]^T$	\bigcirc [0.4655: 0.5094] ^T
	•	
$\begin{cases} 15x_1 - 2x_2 = 6 & \text{Voi } x^{(0)} = 0 \\ 3x_1 + 11x_2 = 7 & \text{Voi } x^{(0)} = 0 \end{cases}$	$[1.5;1]^T$, sử dụng phương pháp	Gauss-Seidel, tìm chỉ số n nhỏ
$ \hat{j} _1 \le 0.0600$		
B 5	C 4	D 3
$\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. Với $x^{(0)} = $	$[1.5;1]^T$, sử dụng phương phá	p Gauss-Seidel, đánh giá sai số
B 0.0199	© 0.0303	D 0.0198
	B 4.4647 Số điều kiện tính theo chuẩn $\frac{1}{8}$ B 60 $15x_1 - 2x_2 = 6$ $3x_1 + 11x_2 = 7$ Theo phươn $\frac{1}{8}$ Phuẩn vô cùng nhỏ hơn 10^{-5} B 7 $15x_1 - 2x_2 = 6$ $3x_1 + 11x_2 = 7$ Với $x^{(0)} = [1]$ $\frac{1}{8}$ $[0.4630; 0.5101]^T$ $\frac{1}{8}$ $\frac{1}{8$. Số điều kiện tính theo chuẩn 1 của ma trận là: (B) 60

TS. Nguyễn Tiến Dũng

Các câu khác đều sai

 \mathbf{D} ề 3420 \mathbf{D} ÁP ÁN

Câu 1. C	Câu 5. (A)	Câu 9. 🔘	Câu 13. B	Câu 17. D
Câu 2. D	Câu 6. D	Câu 10. (A)	Câu 14. (C)	Câu 18. B
Câu 3. B	Câu 7. (A)	Câu 11. (E)	Câu 15. (A)	Câu 19. D
Câu 4. (C)	Câu 8. (B)	Câu 12. (B)	Câu 16. (A)	Câu 20. (B)

