Clyde Kertzer

Apollonian Circle Packings

Clyde Kertzer

University of Colorado Boulder

June 15, 2023

Apollonian Circle Packings

Apollonian Circle Packings

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Apollonian Circle Packings

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

If three circles are mutually tangent, there are two other circles that are tangent to all three.

Apollonian Circle Packings

Apollonian Circle Packings

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Apollonian Circle Packings

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Quadruple with one circle of infinite radius

Apollonian Circle Packings

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Quadruple with one circle of infinite radius

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2).$$

Apollonian Circle Packings

Clyde Kertzer

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

Clyde Kertzer

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

Clyde Kertzer

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

 $[-6, 11, 14, 23]^1$

¹Images from: AMS "When Kissing Involves Trigonometry"

Apollonian Circle Packings

Apollonian Circle Packings

[-6, 11, 14, 23] reduces to [-6, 11, 14, 15]

Apollonian Circle **Packings**

Clyde Kertzer

[-6, 11, 14, 15]

Apollonian Circle Packings

Clyde Kertzer

[-6, 11, 14, 15]

Apollonian Circle Packings

Apollonian Circle Packings

Apollonian Circle Packings

The strip packing: [0,0,1,1]

Apollonian Circle Packings

Apollonian Circle Packings

Apollonian Circle Packings

Apollonian Circle Packings

Apollonian Circle Packings

Recall:
$$(a + b + c + d)^2 = 2(a^2 + b^2 + c^2 + d^2)$$
.
 $[-a, b, c, d]$ $d - c$, $d - b$, $d + a$

Apollonian Circle Packings

Apollonian Circle Packings

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	4	9	25

Apollonian Circle Packings

[-a,b,c,d]	d-c	d-b	d + a	
[-6, 10, 15, 19]	4	9	25	
[-12, 21, 28, 37]	9	16	49	
[-18, 22, 99, 103]	4	81	121	
[-20, 36, 45, 61]	16	25	81	
[-21, 30, 70, 79]	9	49	100	

Apollonian Circle Packings

[-a,b,c,d]	d-c	d-b	d + a	
[-6, 10, 15, 19]	2^{2}	3 ²	5 ²	
[-12, 21, 28, 37]	3^2	4 ²	7^{2}	
[-18, 22, 99, 103]	2^{2}	9 ²	11^{2}	
[-20, 36, 45, 61]	4 ²	5 ²	9^{2}	
[-21, 30, 70, 79]	3 ²	7 ²	10^{2}	

Apollonian Circle Packings

[-a,b,c,d]	d-c	b − a	d-b	с — а	d + a
[-6, 10, 15, 19]	2^{2}		3^2		5 ²
[-12, 21, 28, 37]	3 ²		4 ²		7^{2}
[-18, 22, 99, 103]	2^{2}		92		11^{2}
[-20, 36, 45, 61]	4 ²		5 ²		9^{2}
[-21, 30, 70, 79]	3 ²		7 ²		10^{2}

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	b − a	d-b	с — а	d + a
[-6, 10, 15, 19]	2 ²	2 ²	3 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	3 ²	4 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2^{2}	2^{2}	9 ²	9 ²	11^{2}
[-20, 36, 45, 61]	4 ²	4 ²	5 ²	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	3 ²	7 ²	7 ²	10 ²

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	<i>b</i> − <i>a</i>	d-b	с — а	d+a
[-6, 10, 15, 19]	2^{2}	2 ²	3^2	3 ²	5 ²
[-12, 21, 28, 37]	3^2	3 ²	4 ²	4 ²	7 ²
[-18, 22, 99, 103]	2^{2}	2^{2}	9^{2}	9 ²	11^{2}
[-20, 36, 45, 61]	4 ²	4 ²	5 ²	5 ²	9 ²
[-21, 30, 70, 79]	3^2	3 ²	7^{2}	7 ²	10^{2}

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	b — а	d-b	с — а	d + a
[-6, 10, 15, 19]	2 ²	2 ²	3 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	3 ²	4 ²	4 ²	7 ²
[-18, 22, 99, 103]	2^{2}	2^{2}	9^{2}	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	4 ²	5 ²	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	3 ²	7 ²	72	10 ²

$$\left[\underbrace{-(2\cdot 3)}_{-6}, \underbrace{2^2+2\cdot 3}_{10}, \underbrace{3^2+2\cdot 3}_{15}, \underbrace{(2+3)^2-2\cdot 3}_{19}\right]$$

Apollonian Circle **Packings**

Clyde Kertzer

$$\left[\underbrace{-(2\cdot 3)}_{-6}, \underbrace{2^2+2\cdot 3}_{10}, \underbrace{3^2+2\cdot 3}_{15}, \underbrace{(2+3)^2-2\cdot 3}_{19}\right]$$

$$[-xy, x^2 + xy, y^2 + xy, (x + y)^2 - xy]$$

Apollonian Circle Packings

Clyde Kertzer

$$\left[\underbrace{-(2\cdot 3)}_{-6}, \underbrace{2^2+2\cdot 3}_{10}, \underbrace{3^2+2\cdot 3}_{15}, \underbrace{(2+3)^2-2\cdot 3}_{19}\right]$$

$$[-xy, x^2 + xy, y^2 + xy, (x + y)^2 - xy]$$

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy]$$

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	9 ²	11^{2}
[-20, 36, 45, 61]	4 ²	5 ²	92
[-21, 30, 70, 79]	3 ²	7 ²	10 ²

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	<mark>9</mark> 2	11^{2}
[-20, 36, 45, 61]	4 ²	5 ²	92
[-21, 30, 70, 79]	3 ²	7 ²	10 ²

Apollonian Circle **Packings**

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7 ²
[-18, 22, 99, 103]	2 ²	<mark>9</mark> 2	11^{2}
[-20, 36, 45, 61]	4 ²	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	7 ²	10 ²

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	<mark>9</mark> 2	11 ²
[-20, 36, 45, 61]	4 ²	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	<mark>7</mark> 2	10 ²

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	5 ²	92
[-21, 30, 70, 79]	3 ²	7 ²	10 ²

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

$$[-12, 16, 48, 52]$$

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	5 ²	92
[-21, 30, 70, 79]	3 ²	7 ²	10 ²

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

$$[-12, 16, 48, 52] = [-3, 4, 12, 13]$$

Apollonian Circle Packings

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	5 ²	92
[-21, 30, 70, 79]	3 ²	7 ²	10 ²

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

$$[-12, 16, 48, 52] = [-3, 4, 12, 13]$$
 $(x = 3, y = 1)$

Apollonian Circle Packings

Clyde Kertzer

Theorem

All reduced primitive symmetric quadruples with distinct a, b, c, d are of the form

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy].$$

with gcd(x, y) = 1.

Apollonian Circle Packings

Clyde Kertzer

Packings where one of the numbers is the same:

Apollonian Circle Packings

Clyde Kertzer

Packings where one of the numbers is the same: [-4, 8, 9, 9]

Apollonian Circle Packings

Clyde Kertzer

Packings where one of the numbers is the same: [-4, 8, 9, 9]

Theorem

All primitive ACPs with c = d are given by

$$\left[-x, \ x + y^2, \ \left(\frac{2x + y^2}{2y} \right)^2, \ \left(\frac{2x + y^2}{2y} \right)^2 \right] \quad y \text{ even}$$

$$\left[-x, \ x + 2y^2, \ 2\left(\frac{x + y^2}{2y} \right)^2, \ 2\left(\frac{x + y^2}{2y} \right)^2 \right] \quad y \text{ odd}$$

Apollonian Circle Packings

Clyde Kertzer

Packings where one of the numbers is the same: [-4, 8, 9, 9]

Theorem

All primitive ACPs with c = d are given by

$$\left[-x, \ x + y^2, \ \left(\frac{2x + y^2}{2y} \right)^2, \ \left(\frac{2x + y^2}{2y} \right)^2 \right] \quad y \text{ even}$$

$$\left[-x, \ x + 2y^2, \ 2\left(\frac{x + y^2}{2y} \right)^2, \ 2\left(\frac{x + y^2}{2y} \right)^2 \right] \quad y \text{ odd}$$