

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

ANÁLISIS ESTRUCTURAL			1703	7	9	
	Asignatura		Clave	Semestre	Créditos	
INGENIERÍ <i>A</i>	AS CIVIL Y GEOMÁTICA	ESTRUCTURA	.S	INGENIERÍA CIVIL		
	División Departamento		Licencia	Licenciatura		
Asigr	ıatura:	Horas/sema		Horas/seme	stre:	
_	gatoria X	Teóricas 4	4.5	Teóricas	72.0	
Optat	iva	Prácticas (0.0	Prácticas	0.0	
		Total	4.5	Total	72.0	
Modalidad:	Curso teórico					
Seriación obl	l igatoria antecedente: Nin	ouna				
		8				
Seriación obl	ligatoria consecuente: Din	nensionamiento d	e Elementos Est	ructurales		
condiciones d	el curso: alizará el análisis de estru le carga, calculando la acci ividad vigente.					
NÚI	M. NOMBRE			HOR	AS	
1.	Introducción a las estructur	Introducción a las estructuras hiperestáticas		4.	4.5	
2.	Trabajo y energía			9.	9.0	
3.	Método de las flexibilidade	es		9.	.0	
4.	Método de las rigideces			43.	.5	
5.	Introducción a las líneas de	e influencia		6.	.0	
				72.	.0	

Actividades prácticas

Total

0.0

72.0

1 Introducción a las estructuras hiperestáticas

Objetivo: El alumno comprenderá los principios fundamentales del análisis estructural utilizados para resolver sistemas hiperestáticos.

Contenido:

- 1.1 Interacción entre el análisis y diseño estructural.
- **1.2** Principios fundamentales: continuidad, ley de Hooke y equilibrio.
- 1.3 Grado de hiperestaticidad, grados de libertad y grado de indeterminación cinemática.
- **1.4** Ventajas y desventajas de las estructuras hiperestáticas.
- 1.5 Modelos estructurales.
- 1.6 Alcances, limitaciones, ventajas y deventajas de las herramientas y programas de cómputo para análisis y diseño estructural.

2 Trabajo y energía

Objetivo: El alumno aplicará los conceptos de trabajo y energía para calcular desplazamientos en estructuras isostáticas.

Contenido:

- 2.1 Concepto de trabajo y energía de deformación.
- 2.2 Teoremas aplicables al análisis estructural: Betti, Maxwell-Betti y Castigliano.
- **2.3** Energía de deformación considerando flexión, cortante, axial y torsión.
- **2.4** Concepto de trabajo y desplazamientos virtuales.
- 2.5 Obtención de desplazamientos en estructuras isostáticas por trabajos virtuales.

3 Método de las flexibilidades

Objetivo: El alumno aplicará los principios básicos del método de flexibilidades para resolver estructuras hiperestáticas.

Contenido:

- **3.1** Concepto de flexibilidad.
- 3.2 Compatibilidad de deformaciones y aplicación del principio de superposición.
- **3.3** Estructura primaria.
- **3.4** Ecuaciones de compatibilidad.
- 3.5 Obtención de coeficientes de flexibilidad. Matriz de flexibilidades y características.
- 3.6 Obtención de elementos mecánicos en estructuras hiperestáticas.
- 3.7 Solución de ejemplos con computadora.

4 Método de las rigideces

Objetivo: El alumno aplicará los principios básicos del método de rigideces para la solución de estructuras hiperestáticas y calculará fuerzas sísmicas en edificios, empleando el método estático.

Contenido:

- 4.1 Concepto de rigidez y obtención de rigideces angulares y lineales.
- **4.2** Aplicación del principio de superposición, definición de estructura primaria y obtención de momentos y fuerzas de empotramiento.
- **4.3** Ecuaciones de equilibrio, matriz de rigidez de la estructura y sus características.
- **4.4** Obtención de desplazamientos y elementos mecánicos en vigas continuas.
- **4.5** Método de Cross para el análisis de vigas continuas.
- 4.6 Introducción al análisis sísmico.
- **4.7** Hipótesis para el análisis sísmico estático. Deducción de la fórmula básica.
- 4.8 Determinación de fuerzas laterales en edificaciones regulares a base de marcos (despreciando la torsión).

- **4.9** Análisis de marcos hiperestáticos.
- **4.10** Conceptos de rigidez lateral, rigidez de entrepiso y distorsión de entrepiso.
- **4.11** Análisis de armaduras hiperestáticas.
- **4.12** Solución de ejemplos con computadora.

5 Introducción a las líneas de influencia

Objetivo: El alumno aplicará el concepto de líneas de influencia para calcular los efectos máximos en elementos sometidos a cargas móviles.

Contenido:

MCCORMAC, Jack

Análisis de estructuras, método clásico y matricial.

- **5.1** Definición de línea de influencia y su utilidad en el análisis de diversas estructuras.
- **5.2** Líneas de influencia por trabajo virtual.
- **5.3** Principio de Muller Breslau.
- **5.4** Líneas de influencia para reacciones.
- **5.5** Líneas de influencia para fuerza cortante.
- **5.6** Líneas de influencia para momento flexionante.
- 5.7 Solución de ejemplos con computadora.

Bibliografía básica	Temas para los que se recomienda:
CAMBA CASTAÑEDA, J. L., CHACÓN GARCÍA, F., et al.	
Apuntes de análisis estructural	1, 2, 3 y 4
México	
Facultad de Ingeniería, UNAM, 2002	
GONZÁLEZ CUEVAS, O.	
Análisis estructural	Todos
México	
Limusa, 2012	
HIBBELER, Russel	
Análisis estructural	Todos
8a. edición	
México	
Prentice Hall, 2008	
LAIBLE, Jeffrey	
Análisis estructural	Todos
México	
McGraw-Hill,1988	
MACLEOD, Iain	
Modern Structural Analysis	Todos
London	
Thomas Telford, 2008	

Todos

4a. edición México

Alfaomega, 2010

Bibliografía complementaria

Temas para los que se recomienda:

4

ASAMBLEA LEGISLATIVA DEL DISTRITO FEDERAL

Reglamento de Construcciones para el Distrito Federal

México

Gaceta Oficial del Distrito Federal, 2004

ASAMBLEA LEGISLATIVA DEL DISTRITO FEDERAL

Normas Técnicas Complementarias para Diseño por Sismo

México

Gaceta Oficial del Distrito Federal, 2004

KASSIMALI, Aslam

Structural Analysis Todos

4th edition Toronto

CL Engineering, 2010

MELI PIRALLA, R.

Diseño estructural 1 y 4

2a. edición México

Limusa, 2010

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios	X	Búsqueda especializada en internet	X
Uso de software especializado	X	Uso de redes sociales con fines académicos	X
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

El profesor deberá ser Ingeniero Civil con experiencia profesional media-alta, orientado hacia el área de estructuras, que posea las siguientes aptitudes y actitudes: habilidad para el modelado y análisis de sistemas estructurales. Dedicación a la docencia, capacidad de transmitir y actualizar conocimientos, facilidad para relacionarse con alumnos, colaboradores y académicos, capacidad de trabajo y creatividad en las tareas académicas.