0.1 H16 数学 A

 \square λ,μ の固有空間をそれぞれ V_{λ},V_{μ} とする.対角化可能であるから $V=V_{\lambda}\oplus V_{\mu}$ である. $W_{\lambda}=W\cap V_{\lambda},W_{\mu}=W\cap V_{\mu}$ とする. $W_{\lambda}\cap W_{\mu}=W\cap V_{\lambda}\cap V_{\mu}=\{0\}$ である.また $w\in W$ に対して $w=w_{\lambda}+w_{\mu}$ となる $w_{\lambda}\in V_{\lambda},w_{\mu}\in V_{\mu}$ が一意的に存在する. $W\ni f(w)-\mu w=(\lambda-\mu)w_{\lambda}$ より $w_{\lambda}\in W_{\lambda}$ である.同様に $w_{\mu}\in W_{\mu}$ である.よって $W=W_{\lambda}\oplus W_{\mu}$ である.W を f の固有空間の直和に分解できたから $f|_{W}$ は対角化可能である.

2 (1)X のコンパクト集合 C をとる、 $x \in X \setminus C$ を一つ固定する。各 $y \in C$ に対して $x \in U_y, y \in V_y, U_y \cap V_y = \emptyset$ となる開集合 U_y, V_y が存在する。 $\{V_y \mid y \in C\}$ は C の開被覆であるから有限部分集合 $C' \subset C$ が存在して $C \subset \bigcup_{y \in C'} V_y$ となる. $U = \bigcap_{y \in C'} U_y$ とする.U は x の開近傍であり $U \subset X \setminus C$ であるから x は C の外点.任意の x でなりたつから C は閉集合である.

 $(2)A\cap B$ の開被覆 $S=\{U_{\lambda}\mid \lambda\in\Lambda\}$ を任意にとる. $S\cup\{X\setminus A\}$ は B の開被覆である. したがって有限部分集合 $\Lambda'\subset\Lambda$ が存在して $B\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}\cup(X\setminus A)$ となる. $A\cap B\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}$ である. したがって $A\cap B$ はコンパクト集合である.

 $\boxed{3}(1)G(x) = \int_0^x f(x,y)dy$ とする.

$$\frac{G(x+h) - G(x)}{h} = \int_0^{x+h} \frac{f(x+h,y)}{h} dy - \int_0^x \frac{f(x,y)}{h} dy = \int_x^{x+h} \frac{f(x,y)}{h} dy + \int_0^{x+h} \frac{f(x+h,y) - f(x,y)}{h} dy$$
$$= \int_0^h \frac{f(x,y+x)}{h} dy + \int_0^x \frac{f(x+h,y) - f(x,y)}{h} dy + \int_x^{x+h} \frac{f(x+h,y) - f(x,y)}{h} dy$$

である. 第一項は $\lim_{h\to 0}\int_0^h \frac{f(x,y+x)}{h}dy=\frac{\partial}{\partial h}\int_0^h f(x,y+x)dy=f(x,x)$ である.

第二項は $\frac{h\to 0}{h}$ $\frac{h\to 0}{h}$ $\frac{h\to 0}{h}$ $\frac{h\to 0}{h}$ $\frac{h\to 0}{h}$ $\frac{h\to 0}{h}$ となる $\theta\in(0,1)$ が存在して $\int_0^x \frac{f(x+h,y)-f(x,y)}{h}dy \leq \int_0^x \frac{\partial f}{\partial x}(x+\theta h,y)dy \leq \infty$ であるから優収束定理より $\lim_{h\to 0}\int_0^x \frac{f(x+h,y)-f(x,y)}{h}dy = \int_0^x \frac{\partial f}{\partial x}(x,y)dy$ である.

第三項はある 0 の近傍で $\left|\frac{f(x+h,y)-f(x,y)}{h}\right| \leq M$ であるから $\lim_{h\to 0}\int_x^{x+h}\frac{f(x+h,y)-f(x,y)}{h}dy \leq \lim_{h\to 0}\int_x^{x+h}Mdy=0$ である. よって $G'(x)=f(x,x)+\int_0^x\frac{\partial f}{\partial x}(x,y)dy$ である.

したがって $F'(x)=f(x,x)-f(x,-x)+\int_{-x}^{x}\frac{\partial f}{\partial x}(x,y)dy$ である。 さらに $F''(x)=\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial y}(x,x)-\frac{\partial f}{\partial x}(x,-x)+\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial y}(x,x)+\frac{\partial f}{\partial y}(x,x)+\frac{\partial f}{\partial y}(x,x)+\frac{\partial f}{\partial y}(x,x)+\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x$

4 $f(z)=e^{iz}/(z-i\varepsilon)$ とすれば、f は $z\neq i\varepsilon$ で正則である。積分経路 C を原点中心の半径 $R>2\varepsilon$ の上半平面の半円とする。 C_1 を実軸上の -R から R までの部分、 C_2 を半円とする。f の C での積分は留数定理から $\int_C f(z)dz=2\pi i \mathrm{Res}(f,i\varepsilon)=2\pi i e^{-\varepsilon}$ である。 C_2 での積分は $z=Re^i\theta$ $0\leq \theta\leq\pi$ とすると、 $|\int_{C_2} f(z)dz|\leq \int_0^\pi e^{-R\sin\theta}/Rd\theta \to 0$ $0\leq \theta\leq\pi$ である。したがって $\int_{-\infty}^\infty f(x)dx=2\pi i e^{-\varepsilon}$ より $\frac{1}{2\pi i}\int_{-\infty}^\infty f(x)dx=e^{-\varepsilon}$ である。