MAT137

- Deadline to add/change courses: Wed., Sept 21
- Deadline of pre-calculus quiz: Thursday, Sept 22 at 11:59 pm.
- Deadline of tutorial 1 worksheet: Thursday, Sept 22 at 11:59 pm
- Today we will discuss proofs.
- Watch videos 1.14, 1.15 and complete pre-class quiz 5.

Main Proofs/Disproofs for $P \Rightarrow Q$

Direct:

Main Proofs/Disproofs for $P \Rightarrow Q$

• **Direct**: Here we simply start by assuming *P* is true and prove things till we reach *Q*.

- **Direct**: Here we simply start by assuming *P* is true and prove things till we reach *Q*.
- Contrapositive:

- **Direct**: Here we simply start by assuming P is true and prove things till we reach Q.
- **Contrapositive**: Here we prove the equivalent $\neg Q \Rightarrow \neg P$.

- **Direct**: Here we simply start by assuming *P* is true and prove things till we reach *Q*.
- **Contrapositive**: Here we prove the equivalent $\neg Q \Rightarrow \neg P$.
- Contradiction (Reductio ad absurdum): Here we disprove implications $P \Rightarrow Q$

- **Direct**: Here we simply start by assuming P is true and prove things till we reach Q.
- **Contrapositive**: Here we prove the equivalent $\neg Q \Rightarrow \neg P$.
- Contradiction (Reductio ad absurdum): Here we disprove implications $P \Rightarrow Q$ by finding a *counterexample* some special x_0 such that $P(x_0)$ is true and $Q(x_0)$ is false.

Main Proofs/Disproofs for $P \Rightarrow Q$

- **Direct**: Here we simply start by assuming P is true and prove things till we reach Q.
- **Contrapositive**: Here we prove the equivalent $\neg Q \Rightarrow \neg P$.
- Contradiction (Reductio ad absurdum): Here we disprove implications $P \Rightarrow Q$ by finding a *counterexample* some special x_0 such that $P(x_0)$ is true and $Q(x_0)$ is false.

• Mathematical Induction :

• Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.

Main Proofs/Disproofs for $P \Rightarrow Q$

- **Direct**: Here we simply start by assuming P is true and prove things till we reach Q.
- **Contrapositive**: Here we prove the equivalent $\neg Q \Rightarrow \neg P$.
- Contradiction (Reductio ad absurdum): Here we disprove implications $P \Rightarrow Q$ by finding a *counterexample* some special x_0 such that $P(x_0)$ is true and $Q(x_0)$ is false.

• Mathematical Induction :

- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n.

Main Proofs/Disproofs for $P \Rightarrow Q$

- **Direct**: Here we simply start by assuming P is true and prove things till we reach Q.
- Contrapositive: Here we prove the equivalent $\neg Q \Rightarrow \neg P$.
- Contradiction (Reductio ad absurdum): Here we disprove implications $P \Rightarrow Q$ by finding a *counterexample* some special x_0 such that $P(x_0)$ is true and $Q(x_0)$ is false.

• Mathematical Induction :

- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n. We will return to it below.

Definition

Let f be a function with domain D.

We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

ullet OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Definition

Let f be a function with domain D.

We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

$$ullet$$
 OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Suppose I give you a specific function f and I ask you to prove it is one-to-one.

Definition

Let f be a function with domain D.

We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

$$ullet$$
 OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Suppose I give you a specific function f and I ask you to prove it is one-to-one.

- Write the structure of your proof (how do you begin? what do you assume? what do you conclude?) if you use the first definition.
- Write the structure of your proof if you use the second definition.

Definition

Let f be a function with domain D.

We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

$$ullet$$
 OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Suppose I give you a specific function f and I ask you to prove it is one-to-one.

- Write the structure of your proof (how do you begin? what do you assume? what do you conclude?) if you use the first definition.
- Write the structure of your proof if you use the second definition.

Exercise

Prove that f(x) = 3x + 2, with domain \mathbb{R} , is one-to-one.

Definition

Let f be a function with domain D. We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

ullet OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Definition

Let f be a function with domain D. We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

$$ullet$$
 OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Suppose I give you a specific function f and I ask you to prove it is not one-to-one.

Definition

Let f be a function with domain D. We say f is one-to-one when

$$\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

$$ullet$$
 OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Suppose I give you a specific function f and I ask you to prove it is not one-to-one. You need to prove f satisfies the *negation* of the definition.

- Write the negation of the first definition.
- Write the negation of the second definition.
- Write the structure of your proof.

Definition

Let f be a function with domain D. We say f is one-to-one when

- $\forall x_1, x_2 \in D, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$
- ullet OR, equivalently, $\forall x_1, x_2 \in D, \ f(x_1) = f(x_2) \implies x_1 = x_2$

Suppose I give you a specific function f and I ask you to prove it is not one-to-one. You need to prove f satisfies the *negation* of the definition.

- Write the negation of the first definition.
- Write the negation of the second definition.
- Write the structure of your proof.

Exercise

Prove that $f(x) = x^2$, with domain \mathbb{R} , is not one-to-one.

Theorem

- IF f is increasing on D
- THEN f is one-to-one on D

Theorem

Let f be a function with domain D.

- IF f is increasing on D
- THEN f is one-to-one on D

 Remind yourself of the precise definition of "increasing" and "one-to-one".

Theorem

- IF f is increasing on D
- THEN f is one-to-one on D

- Remind yourself of the precise definition of "increasing" and "one-to-one".
- 2. To prove the theorem, what will you assume? what do you want to show?

Theorem

- IF f is increasing on D
- THEN f is one-to-one on D

- Remind yourself of the precise definition of "increasing" and "one-to-one".
- 2. To prove the theorem, what will you assume? what do you want to show?
- 3. Look at the part you want to show. Based on the definition, what is the structure of the proof?

Theorem

- IF f is increasing on D
- THEN f is one-to-one on D

- Remind yourself of the precise definition of "increasing" and "one-to-one".
- 2. To prove the theorem, what will you assume? what do you want to show?
- 3. Look at the part you want to show. Based on the definition, what is the structure of the proof?
- 4. Complete the proof.

DISproving a theorem

FALSE Theorem

- IF f is one-to-one on D
- THEN f is increasing on D

DISproving a theorem

FALSE Theorem

Let f be a function with domain D.

- IF f is one-to-one on D
- THEN f is increasing on D

1. This theorem is false. What do you need to do to prove it is false?

DISproving a theorem

FALSE Theorem

- IF f is one-to-one on D
- THEN f is increasing on D

- 1. This theorem is false. What do you need to do to prove it is false?
- 2. Prove the theorem is false.

• Proof by mathematical induction is a technique used to show that a result holds for every natural number $\mathbb{N}.$

- \bullet Proof by mathematical induction is a technique used to show that a result holds for every natural number $\mathbb{N}.$
- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.

- Proof by mathematical induction is a technique used to show that a result holds for every natural number \mathbb{N} .
- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n.

- Proof by mathematical induction is a technique used to show that a result holds for every natural number \mathbb{N} .
- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n.

Induction

For predicates P(n), $n \in \mathbb{N}$.

- Proof by mathematical induction is a technique used to show that a result holds for every natural number \mathbb{N} .
- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n.

Induction

For predicates P(n), $n \in \mathbb{N}$.

1. (Base case) we start with showing P(a) is true for some $a \ge 1$.

- Proof by mathematical induction is a technique used to show that a result holds for every natural number \mathbb{N} .
- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n.

Induction

For predicates P(n), $n \in \mathbb{N}$.

- 1. (Base case) we start with showing P(a) is true for some $a \ge 1$.
- 2. (Induction Step/Hypothesis) Assuming P(k) is true, we then must prove that P(k+1) is true too i.e. $P(k) \Rightarrow P(k+1)$.

- Proof by mathematical induction is a technique used to show that a result holds for every natural number $\mathbb{N}.$
- Let P(n) be the proposition that we wish to prove is true for every $n \in \mathbb{N}$.
- We create a domino effect, by knocking over the first domino P(1) then showing that $P(n) \Rightarrow P(n+1)$ is true for any n.

Induction

For predicates P(n), $n \in \mathbb{N}$.

- 1. (Base case) we start with showing P(a) is true for some $a \ge 1$.
- 2. (Induction Step/Hypothesis) Assuming P(k) is true, we then must prove that P(k+1) is true too i.e. $P(k) \Rightarrow P(k+1)$.

That implies that all the P(n), $n \in \mathbb{N}$ are true.

Examples of P(n), $n \in \mathbb{N}$

• P(n) = "the 2n + 1 is an odd number". for $n \ge 0$.

Examples of $\overline{P(n)}, n \in \mathbb{N}$

- P(n) ="the 2n + 1 is an odd number". for $n \ge 0$.
- P(n) ="the inequality $2^n > n+1$ for $n \ge 2$.

Examples of P(n), $n \in \mathbb{N}$

- P(n) ="the 2n + 1 is an odd number". for $n \ge 0$.
- P(n) ="the inequality $2^n > n+1$ for $n \ge 2$.
- P(n) ="the formula $\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}$ " (Geometric series) for $n \ge 0$.

Let S_n be a statement depending on a positive integer n.

In each of the following cases, which statements are guaranteed to be true?

Let S_n be a statement depending on a positive integer n.

In each of the following cases, which statements are guaranteed to be true?

- 1. We have proven:
 - S₃
 - $\forall n \geq 1, S_n \implies S_{n+1}$
- 2. We have proven:
 - S₁
 - $\forall n \geq 3, S_n \implies S_{n+1}$

- 3. We have proven:
 - S₁
 - $\forall n \geq 1, S_n \implies S_{n+3}$
- 4. We have proven:
 - S₁
 - $\forall n \geq 1, S_{n+1} \implies S_n$

We want to prove

$$\forall n \geq 1, S_n$$

So far we have proven

- S₁
 - $\forall n \geq 1, S_n \implies S_{n+3}$.

What else do we need to do?

We want to prove

$$\forall n \in \mathbb{Z}, S_n$$

So far we have proven

• S₁

What else do we need to do?

Theorem

 $\forall N \geq 1$, every set of N students in MAT137 will get the same grade.

Theorem

 $\forall N \geq 1$, every set of N students in MAT137 will get the same grade.

Proof.

- Base case. It is clearly true for N = 1.
- Induction step.

Assume it is true for N. I'll show it is true for N+1. Take a set of N+1 students. By induction hypothesis:

- The first *N* students get the same grade.
- The last *N* students get the same grade.

Hence the N+1 students all get the same grade.

For every $N \ge 1$, let

 $S_N =$ "every set of N students in MAT137 will get the same grade"

For every $N \ge 1$, let

 $S_N =$ "every set of N students in MAT137 will get the same grade"

What did we actually prove in the previous page?

- *S*₁ ?
- $\forall N \geq 1$, $S_N \implies S_{N+1}$?

Induction exercise

Using induction prove the following P(n) = "the inequality $2^n > n + 1$ for $n \ge 2$."

Induction exercise

Using induction prove the following P(n) ="the formula $\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}$ " (Geometric series) for $n \ge 0$."