1

1. BILINEAR TRANSFORM

1.1. In Fig. $\ref{eq:sphere}$, consider the case when S is switched to Q right in the beginning. Formulate the differential equation

Solution: The differential equation is the same as before

$$\frac{v_c(t) - 0}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0 \quad (1.1)$$

i.e.,
$$\frac{v_c(t)}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + C_0 \frac{dv_c}{dt} = 0$$
 (1.2)

but with a different initial condition

$$q(0^{-}) = q(0) = 0 (1.3)$$

1.2. Find H(s) considering the outure voltage at the capacitor

Solution: On taking the Laplace transform on both sides of this equation

$$\frac{V_c(s)}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + sQ(s) - 0 = 0$$

(1.4)

$$\Longrightarrow V_c(s)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) + sC_0V_c(s) = \frac{V_2(s)}{R_2} \tag{1.5}$$

$$\Longrightarrow \frac{V_c(s)}{V_2(s)} = \frac{\frac{1}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$
 (1.6)

The transfer function is thus

$$H(s) = \frac{\frac{1}{R_2 C_0}}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}}$$
(1.7)

On substituting the values, we get

$$H(s) = \frac{5 \times 10^5}{s + 1.5 \times 10^6} \tag{1.8}$$

1.3. Plot H(s). What kind of filter is it?

Solution: Download the following Python code that plots Fig. 1

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Circuit/codes/4.3.py

Run the codes by executing

python 4.3.py

./figs/4.3.png

Fig. 1.3. Plot of H(s)

Consider the frequency-domain transfer function by putting $s = j\omega$

$$H(j\omega) = \frac{5 \times 10^5}{j\omega + 1.5 \times 10^6}$$
 (1.9)

$$\implies |H(j\omega)| = \frac{5 \times 10^5}{\sqrt{\omega^2 + 2.25 \times 10^{12}}} \quad (1.10)$$

As ω increases, $|H(j\omega)|$ decreases In other words, the amplitude of high-frequency signals gets diminished and they get

filtered out
Therefore, this is a low-pass filter

1.4. Using trapezoidal rule for integration, formulate the difference equation by considering

$$y(n) = y(t)|_{t=n}$$
 (1.11)

Solution:

$$\frac{v_c(t)}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + C_0 \frac{\mathrm{d}v_c}{\mathrm{d}t} = 0 \quad (1.12)$$

$$\Longrightarrow C_0 \frac{\mathrm{d}v_c}{\mathrm{d}t} = \frac{2u(t) - v_c(t)}{R_2} - \frac{v_c(t)}{R_1} \tag{1.13}$$

$$\implies v_c(t)|_{t=n}^{n+1} = \int_n^{n+1} \left(\frac{2u(t) - v_c(t)}{R_2 C_0} - \frac{v_c(t)}{R_1 C_0} \right) dt$$
(1.14)

By the trapezoidal rule of integration

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{2}(f(a)+f(b)) \qquad (1.15)$$

Consider $y(t) = v_c(t)$

$$y(n+1) - y(n) = \frac{1}{R_2 C_0} (u(n) + u(n+1))$$
$$-\frac{1}{2} (y(n+1) + y(n)) \left(\frac{1}{R_1 C_0} + \frac{1}{R_2 C_0} \right)$$
(1.16)

Thus, the difference equation is

$$y(n+1)\left(1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)$$

$$= y(n)\left(1 - \frac{1}{2R_1C_0} - \frac{1}{2R_2C_0}\right)$$

$$+ \frac{1}{R_2C_0}\left(u(n) + u(n+1)\right) \quad (1.17)$$

1.5. Find H(z)

Solution: Let $\mathcal{Z}\{y(n)\} = Y(z)$

On taking the Z-transform on both sides of the difference equation

$$zY(z)\left(1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)$$

$$= Y(z)\left(1 - \frac{1}{2R_1C_0} - \frac{1}{2R_2C_0}\right)$$

$$+ \frac{1}{R_2C_0}\left(\frac{1}{1 - z^{-1}} + \frac{z}{1 - z^{-1}}\right) \quad (1.18)$$

$$Y(z)\left(z + \frac{z}{2R_1C_0} + \frac{z}{2R_2C_0} - 1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}\right)$$
$$= \frac{1}{R_2C_0} \frac{1+z}{1-z^{-1}} \quad (1.19)$$

Also

$$v_2(t) = 2 \qquad \forall t \ge 0 \qquad (1.20)$$

$$\implies x(n) = 2u(n) \tag{1.21}$$

$$\implies X(z) = \frac{2}{1 - z^{-1}} \qquad |z| > 1 \qquad (1.22)$$

Thus, the transfer function in z-domain is

$$H(z) = \frac{Y(z)}{X(z)}$$

$$= \frac{\frac{1+z}{2R_2C_0}}{z + \frac{z}{2R_1C_0} + \frac{z}{2R_2C_0} - 1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0}}$$

$$= \frac{\frac{1+z^{-1}}{2R_2C_0}}{1 + \frac{1}{2R_1C_0} + \frac{1}{2R_2C_0} - z^{-1} + \frac{z^{-1}}{2R_1C_0} + \frac{z^{-1}}{2R_2C_0}}$$
(1.24)

On substituting the values

$$H(z) = \frac{2.5 \times 10^5 (1 + z^{-1})}{7.5 \times 10^5 + 1 + (7.5 \times 10^5 - 1)z^{-1}}$$
(1.26)

with the ROC being

$$|z| > \max\left(1, \left| \frac{7.5 \times 10^5 - 1}{7.5 \times 10^5 + 1} \right| \right)$$
 (1.27)

$$\implies |z| > 1 \tag{1.28}$$

1.6. How can you obtain H(z) from H(s)?

Solution: The *Z*-transform can be obtained from the Laplace transform by the substitution

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \tag{1.29}$$

where T is the step size of the trapezoidal rule (1 in our case)

This is known as the bilinear transform

$$H(z) = \frac{\frac{\overline{R_{2}C_{0}}}{2^{\frac{1-z^{-1}}{1+z^{-1}}} + \frac{1}{R_{1}C_{0}} + \frac{1}{R_{2}C_{0}}}}{\frac{\frac{1+z^{-1}}{2R_{2}C_{0}}}{1-z^{-1} + \left(\frac{1}{2R_{1}C_{0}} + \frac{1}{2R_{2}C_{0}}\right)(1+z^{-1})}}$$

$$= \frac{\frac{\frac{1+z^{-1}}{2R_{2}C_{0}}}{1+\frac{1}{2R_{1}C_{0}} + \frac{1}{2R_{2}C_{0}} - z^{-1} + \frac{z^{-1}}{2R_{1}C_{0}} + \frac{z^{-1}}{2R_{2}C_{0}}}}$$

$$= \frac{2.5 \times 10^{5}(1+z^{-1})}{7.5 \times 10^{5} + 1 + (7.5 \times 10^{5} - 1)z^{-1}}$$
(1.33)

which is the same as what we obtained earlier