EC5.203 Communication Theory (3-1-0-4):

Lecture 12: **Digital Modulation**

03 March 2025

References

• Chap. 4 (Madhow)

Digital modulation

- Digital modulation is the process of translating bits to analog waveforms that can be sent over a physical channel.
- Baseband example: Binary antipodal Signaling

Recap: Digital Communications

- Analog signal can be converted to digital signal or sequence by sampling and quantization
 - Songs/Movies stored in CD/DVD, Data in hard-drive

Recap: Digital Communication Systems

Digital modulation: baseband example

• Binary antipodal Signaling

Linear Modulation

$$u(t) = \sum_{n} b[n]p(t - nT)$$

where $\{b[n]\}$ is sequence of symbols and p(t) is modulating pulse for T seconds. For this example

$$p(t) = I_{[0,T]}(t)$$

is rectangular window in time domain.

• Baseband signal sent directly over the physical baseband channel.

Digital modulation: passband example

BPSK (also called 2-PAM)

Passband

Signal Constellation for BPSK

• Constellation or Alphabet: The set of values each symbol can take

BPSK (also called 2-PAM)

• For BPSK, it does not matter which bits maps to which phase.

Can we load more bits per symbol?

Another way for 2 bits/symbol: QPSK

• Load Q component also giving rise to QAM and PSK modulation schemes

QPSK/4PSK/4QAM

QPSK baseband

• For single physical baseband channel, QPSK is not possible; simply set $b_s[n] = 0$

QPSK: Passband

$$u_p(t) = \Re\{u(t)e^{j2\pi f_c t}\} = u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t)$$

QPSK: Passband

$$u_p(t) = \Re\{u(t)\cos(2\pi f_c t)\} = u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t)$$

$$u(t) = u_c(t) + ju_s(t) = \pm 1 \pm j1$$
 $nT < t < (n+1)T$

• When $b_c[n] = 1$ and $b_s[n] = 1$:

$$u_p(t) = u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t) = \sqrt{2}\cos(2\pi f_c t + \pi/4)$$

• When $b_c[n] = -1$ and $b_s[n] = 1$:

$$u_p(t) = -u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t) = \sqrt{2}\cos(2\pi f_c t + 3\pi/4)$$

• When $b_c[n] = -1$ and $b_s[n] = -1$:

$$u_p(t) = -u_c(t)\cos(2\pi f_c t) + u_s(t)\sin(2\pi f_c t) = \sqrt{2}\cos(2\pi f_c t - 3\pi/4)$$

• When $b_c[n] = 1$ and $b_s[n] = -1$:

$$u_p(t) = u_c(t)\cos(2\pi f_c t) + u_s(t)\sin(2\pi f_c t) = \sqrt{2}\cos(2\pi f_c t - \pi/4)$$

QPSK/4PSK/4QAM

Can we load even more bits?

COMMON CONSTELLATIONS

- ullet In general, M-ary modulation scheme can transmit $\log_2 M$ bits per symbol.
- Information rate = $\frac{\log_2 M}{T}$ bits/sec.

Bandwidth Occupancy

Motivation

Modeling bandwidth occupancy

• Consider the complex envelope of a linearly modulated signal

$$u(t) = \sum b[n]p(t - nT)$$

where $\{b[n]\}$ is sequence of symbols and p(t) is modulating pulse for T seconds.

- $\{b[n]\}$ is modeled as random at the transmitter as well as receiver.
- However for characterizing the bandwidth occupancy of digitally modulated signal u, we define the quantities of interest in terms of average across time.
- We treat u(t) as a finite power signal that can be modeled as a deterministic sequences once $\{b[n]\}$ is fixed.
- Bandwidth is then defined in terms of power spectral density.

Power Spectral Density (PSD)

- Power spectral density $S_x(f)$ for signal x(t) specifies how the power in a signal is distributed in different frequency bands.
- PSD is defined as power per unit frequency.
- Units of watts/hertz or joules (since power/frequency = energy)
- Total power in x(t) is given by

$$P_x = \int_{-\infty}^{\infty} S_x(f) \ df = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_{T_0}^{T_0} |x(t)|^2 \ dt$$

- PSD is generally used for random or periodic signals.
 - PSD for random process: We are interested in modeling the complete random process instead of a particular realization of it in a given time.

Periodogram-based PSD estimation

• Limit the signal x(t) to a finite observation interval

$$x_{T_0} = x(t)I_{[-T_0/2,T_0/2]}(t)$$

where T_0 is the length of the observation interval. Since T_0 is finite and x(t) has finite power, $x_{T_0}(t)$ has finite energy. So its Fourier transform is given by

$$X_{T_0} = \mathcal{F}(x_{T_0}(t))$$

- The energy spectral density of x_{T_0} is given by $|X_{T_0}(f)|^2$.
- Therefore the estimated PSD is given by

$$\hat{S}_x(f) = \frac{|X_{T_0}(f)|^2}{T_0}$$

• Formally, the PSD is in the limit of large time windows as follows

$$\hat{S}_x(f) = \lim_{T_0 \to \infty} \frac{|X_{T_0}(f)|^2}{T_0}$$

PSD of Linearly Modulated Signal

• Theorem 4.2.1: Consider a linearly modulated signal where the symbol sequence $\{b[n]\}$ is zero mean and uncorrelated with average symbol energy

$$\sigma_b^2 = \overline{|b[n]|^2} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N |b[n]|^2,$$

then the PSD is given by

$$S_u(f) = \frac{|P(f)|^2}{T} \sigma_b^2$$

and the power of the modulated signal is

$$P_u = \frac{\sigma_b^2 ||p||^2}{T}$$

where $||p||^2$ denotes the energy of the modulating pulse. Proof.

- Assumptions:
 - The symbols have zero DC value: $\lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} b[n] = 0$.
 - The symbols are uncorrelated: $\lim_{N\to\infty} \frac{1}{2N} \sum_{n=-N}^N b[n] b^*[n-k] = 0$ for $k\neq 0$.