

MSM8909 Boot Architecture Overview

80-NR964-3 B

Confidential and Proprietary – Qualcomm Technologies, Inc.

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm or its subsidiaries without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The information provided in this document is provided on an "as is" basis.

This document contains confidential and proprietary information and must be shredded when discarded.

Qualcomm is a trademark of QUALCOMM Incorporated, registered in the United States and other countries. All QUALCOMM Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

> Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A. © 2014 Qualcomm Technologies, Inc. All rights reserved.

Revision History

Revision	Date	Description
А	Sep 2014	Initial release
В	Oct 2014	The following changes were made: • Added slide 7 • Updated slides 31, 32, and 34

Contents

- MSM8909 Boot Architecture
- MSM8909 PBLs
- Boot Loader Customization
- Watchdog Reset Debug
- References
- Questions?

MSM8909 Boot Architecture

PBL Boot Option – Major Boot Difference Between MSM8909, MSM8916, and MSM8x10/MSM8x12

 The Boot_config [0..4] GPIOs or BOOT_CONFIG fuses can be used to select the following boot options. Once the fuse is blown, the GPIOs used for the boot option are free to be used as common GPIOs.

BOOT_CONFIG	MDM8909	Comments
0x00	BOOT_DEFAULT_OPTION	eMMC @ SDC1 → HS USB 2.0
0x01	BOOT_SDC_PORT2_THEN_SDC_PORT1_OPTION	SD @ SDC2 → eMMC@SDC1
0x02	BOOT_eMMC_OPTION	eMMC@SDC1
0x03	BOOT_USB_OPTION	HS USB 2.0
0x04	BOOT_NAND_OPTION	NAND boot

- OEMs must select default boot device as eMMC boot or NAND boot based on FAST BOOT fuses blown. The eMMC GPIO interface is MUXed with NAND GPIOs for bootable device (both are mutual exclusive).
- 0x00 is always the default boot option for all earlier MSM[™] chipsets but in MSM8909 chipset eMMC and NAND boot are mutually exclusive.

Boot Config GPIO information for eMMC and NAND

eMMC pin	GPIO number
SDC1_CLK	100
SDC1_DAT[7]	101
SDC1_DAT[6]	102
SDC1_DAT[5]	103
SDC1_DAT[4]	104
SDC1_DAT[3]	105
SDC1_DAT[2]	106
SDC1_DAT[1]	107
SDC1_DAT[0]	108
SDC_CMD	109

NAND pin	GPIO number
EBI2_OE_N	100
EBI2_ALE_N	101
EBI2_CLE_N	102
EBI2_A_D[4]	103
EBI2_A_D[5]	104
EBI2_A_D[7]	105
EBI2_A_D[6]	106
EBI2_A_D[3]	107
EBI2_WE_N	108
EBI2_BUSY_N	109
EBI2_A_D[2]	8
EBI2_A_D[1]	9
EBI2_A_D[0]	10
EBI2_NAND_C_S_N	11

Note: Do not pull up GPIO by default. Drive strength, pull values, and directions are controlled by the following registers:

- HWIO_TLMM_EBI2_EMMC_GPIO_CFG
- HWIO_TLMM_SDC1_HDRV_PULL_CTL

Other Key Boot Differences Between MSM8909, MSM8916, and MSM8x10/MSM8x12

	MSM8909	MSM8916	MSM8x10/MSM8x12
Boot processor	APPS CPU processor – Cortex- A7 (ARMv7-based CPU)	APPS CPU processor – Cortex- A53 (A53 ARMv8-based CPU)	RPM Processor (cortex-M3)
Boot ROM	PBL supports ELF load	PBL supports ELF load	Supports MBN format
Boot devices/interfaces	eMMC, HSUSB, SD and NAND	eMMC, HSUSB, SD	eMMC, HSUSB, SD
Default boot option	eMMC @ SDC1 →USB SBL image is loaded from either NAND or eMMC based on fast boot fuses blown.	eMMC @ SDC1→SD @ SDC2→USB	eMMC @ SDC1→SD @ SDC2→USB
Aarch mode	AArch32 mode only	AArch32 mode and AArch64 mode	AArch32 mode only.
SBL internal memory usage	L2 as TCM and RPM code-RAM	L2 as TCM and RPM code-RAM	L2 as TCM and IMEM
SBL loads	SBL loads: • QSEE, RPM_FW, and APPSBL • SDI functionality is merged with SBL and TZ, which is a different image loaded by SBL in MSM8x10/MSM8x12 • SBL1 supports 32-bit ELF load (RPM_FW is not applicable)	SBL loads: • QSEE, QHEE, RPM_FW, and APPSBL • SDI functionality is merged with SBL and TZ, which is a different image loaded by SBL in MSM8x10/MSM8x12. • SBL1 supports 32-bit and 64-bit ELF load (RPM_FW is not applicable)	QSEE, SDI, RPM_FW, and APPSBL

Other Key Boot Differences Between MSM8909, MSM8916, and MSM8x10/MSM8x12 (cont.)

	MSM8909	MSM8916	MSM8x10/MSM8x12
RPM_FW execution	RPM_FW starts execution when QSEE brings RPM CPU (Cortex-M3) out of reset	RPM_FW starts execution when QHEE running at AP CPU (Cortex-A53) in EL2 brings RPM CPU (Cortex-M3) out of reset	RPM_FW starts execution by a handshake with SBL running at AP CPU
Hash checking in boot ROM for ELF segments	Hash checking is made by default in boot ROM to check the data integrity of the loaded SBL	Hash checking is made by default in boot ROM to check the data integrity of the loaded SBL	Not supported
Battery charging	Battery charging @ SBL	Battery charging @ SBL	Battery charging @ SBL
APPS-CPU HYP Mode	HYP mode is not used	HYP mode is used	HYP mode is not used

Note: Refer [Q2] for MSM8916 boot architecture details.

Boot Address for MSM8909 Processors

 There are different processors in the MSM8909 chipset. The following table lists the processor types and boot addresses:

Subsystem	Processor	Boot address		
APPS	Cortex-A7	0xFC010000*		
RPM	Cortex-M3	0x00200000 _(Subsystem view)	0x0 _(System view)	
Modem	MSS_QDSP6	Configurable*		
Pronto	ARM9™	0x0 or 0xFFFF0000 or hardware remap*		

^{*}No change in boot address of System and Subsystem views.

Confidential and Proprietary – Qualcomm Technologies, Inc.

Boot Call Stack

Component	Based on processor	Loaded from	ZI/RW allocated in	Executes in	Function	
APPS PBL (Application Primary Boot Loader)	Cortex-A7	Not Applicable	L2 TCM, RPM CodeRAM	ROM	Boot device and interface detection, Emergency Download mode support, and load and authenticate SBL1 ELF segments across L2 TCM and RPM CodeRAM	
SBL1 (Secondary Boot	Cortex-A7	NAND/eMMC	L2 TCM, DDR	L2 TCM	Init memory subsystem (buses, DDR, clocks, and CDT),	
Loader Stage 1)			OCIMEM		load/authorize TZ, RPM_FW, APPSBL images, memory dump via USB2.0 and Sahara, Watchdog debug retention	
			RPM CodeRAM	RPM CodeRAM	(e.g., L2 flush), RAM dump to eMMC/SD support, Mass Storage mode support, USB driver support, USB charging, thermal check, PMIC driver support, configure DDR, and flush L1/L2/ETB to crash debug support related configuration	
QSEE (Secure Exec Environment)	Cortex-A7	NAND/eMMC	LPDDR2/3	LPDDR2/3	Equivalent to TZBSP. Setup secure runtime execution environment, configure xPU, support fuse driver, setup SMMU configurations, SDI-logic-after-wdog-reset to flush L1/L2/ETB for crash debug support-related configuration for non-production OR debug-enabled device.	
RPM_FW	Cortex-M3	NAND/eMMC	RPM DataRAM/ MessageRAM	RPM CodeRAM	Resource Power Manager	
APPSBL image	Cortex-A7	NAND/eMMC	LPDDR2/3	LPDDR2/3	HLOS-specific feature-rich bootloader (LK), load/auth Kernel, recovery mode, etc.	
Modem PBL (Modem Primary Boot Loader)	MSS Q6	Not applicable	MSS Q6 TCM	ROM	Setup Q6 TCM, load MBA from LPDDR2 into Q6 TCM, authenticate MBA in Q6 TCM, and lock SMMU CB	
MBA (Modem Boot Authenticator)	MSS Q6	NAND/eMMC	MSS Q6 TCM	LPDDR2/3 and Q6 TCM	Authenticates the modem image, xPU protects the DDR regions for Modem	

Boot Code Flow

MSM8909 Boot Flowchart

- The system powers on and takes MSM8909 AP CPU out of reset.
- In Cortex-A7 APPS PBL executes
 - (a) Loads, Execute and authenticates the SBL1 segment #1 from the boot device to L2 (as TCM).
 - (b) Loads, Execute and authenticates SBL1 segment #2* (DDR/SDI equivalent) to RPM code RAM, then jumps to SBL1.
- 3 SBL1#1
 - (a) Loads and authenticates the QSEE/TZ image from the boot device to DDR.
 - (b) Loads and authenticates the RPM firmware image from the boot device to RPM code RAM.
 - (c) Loads and authenticates the HLOS APPSBL image from the boot device to DDR.
- SBL1 #1 transfers execution to QSEE/TZ.
- QSEE/TZ set up secure environment and bring RPM out of RESET to start execution of RPM firmware.
- QSEE/TZ jumps to HLOS APPSBL to start execution.
- *SBL1 segment#2 is equal to DDR driver + SDI equivalent copied to RPM code RAM.
- DDR is initialized by SBL1 segment#2 and part of the SDI functionality included in SBL1 segment#2. For more details, refer to watchdog reset debug slides (slide 30 to 33).

MSM8909 Boot Flowchart

- HLOS APPSBL loads and authenticates the HLOS kernel.
- 8. HLOS kernel:
 - (a) Loads the Modem Boot Authenticator (MBA) to DDR via PIL.
 - (b) Brings modem DSP Q6 out of reset.
 - (c) Loads the AMSS modem image to DDR via PIL.
 - (c') Modem PBL copies the MBA from DDR to modem TCM and authenticates MBA and jump to MBA image.
 - (c") MBA authenticates modem image and then jumps to modem.
 - (d) HLOS loads the Pronto image to DDR via PIL.
 - (d') HLOS brings Pronto out of reset and Pronto image starts execution.

SBL-QSEE Interface

SBL loads and authenticates different boot images and hands over the control to QSEE. SBL populates image information as captured in the below structure for all images loaded by SBL, and then passes to QSEE.

```
typedef struct boot sbl gsee interface
  uint32 magic 1;
  uint32 magic_2;
  uint32 version;
  uint32 number images;
  uint32 reserved 1;
  boot images entry
  boot image entry[BOOT IMAGES NUM ENTRIES];
} boot sbl gsee interface;
                                                       typedef struct
                                                       secboot verified info type
boot_images_entry
                                                                     version id;
                                                         uint32
  secboot_sw_type image_id;
                                                         uint64
                                                                     sw id;
  uint32 e_ident;
                                                         uint64
                                                                     msm hw id;
  uint64 entry point;
                                                                     enable debug;
  secboot verified info type image verified info;
                                                         uint32
                                                         secboot_image_hash_info_type
  uint32 reserved 1;
                                                         image_hash_info;
  uint32 reserved 2;
                                                         uint32 enable crash dump;
  uint32 reserved 3;
                                                         secboot_verified_info_type
  uint32 reserved 4;
} boot_images_entry;
```

Independent Modem Authentication Flow

Boot Flowchart – Independent Modem Authentication

- APPS HLOS downloads the MBA and modem image to DDR
- 2. APPS HLOS writes MBA and modem image address to RMB registers
- 3. APPS HLOS takes the modem out of reset
- 4. Modem PBL executes and sets its own clock
- Modem PBL copies the MBA from DDR to modem TCM
- Modem PBL authenticates the MBA
- Modem PBL relinquishes control to the MBA
- 8. MBA closes the public domain and locks the modem address range
- MBA authenticates the modem image
- 10. MBA relinquishes control to the modem image
- 11. Modem image starts to run

MSM8909 PBLs

Apps PBL Boot – SBL ELF Loading

Modem PBL Boot – MBA ELF Loading

PBL Boot – ELF Loading

- Apps PBL ELF loading of SBL image
 - APPS PBL starts ELF loading by verifying the ELF headers, loads program headers, and then authenticates hash segments
 - APPS PBL loads the loadable segments and verifies hashes for each of those segments
- Modem PBL ELF loading of MBA image
 - Before bringing Hexagon[™] processor out of RESET, PIL loads MBA ELF as is in DDR and writes start address to RMB0
 - Modem PBL starts loading MBA ELF from DDR to Hexagon L2 TCM
 - Modem PBL first loads and verifies ELF headers, loads program headers and hash segments, and then authenticates hash segments
 - Modem PBL loads loadable segments and verifies hashes for those segments

PBL Error Logging

- APPS PBL Saves the error information in RPM code RAM
 - 1. Once a PBL error occurs, it goes to the error handler.
 - 2. PBL logs the necessary log information into the RPM code RAM.
 - 3. PBL goes to Emergency Download mode if it is not disabled by the fuse.
 - 4. In Emergency Download mode, PBL enters the Sahara protocol to receive and authenticate the flash programmer from the host.
 - Once loaded and authentications are passed, the system jumps to the flash programmer start address.
 - The flash programmer executes and downloads the necessary boot images from the host side.
- Modem PBL Updates PBL-logs' error status and error details on RMB-status registers

APPS PBL Error Log Format

APPS PBL Error Code Definitions

```
typedef enum
                      = 0x010000,
 PBL LOG GENR
                      = 0x020000,
 PBL LOG PROC
 PBL LOG LOADER
                      = 0x030000,
                      = 0x040000,
 PBL LOG FUSE
 PBL_LOG_AUTH
                      = 0 \times 050000,
                      = 0 \times 060000,
 PBL_LOG_TIMER
 PBL_LOG_CLOCK
                      = 0x070000,
 PBL LOG SEC HW
                      = 0x080000,
                      = 0x090000,
 PBL LOG SECBOOT
 PBL_LOG_SEC_IMG_AUTH
                      = 0x0A0000,
                      = 0x0B0000,
 PBL LOG SDCC
 PBL_LOG_SAHARA
                      = 0 \times 0 = 0 \times 0 = 0 = 0 = 0
                      = 0x0D0000,
 PBL_LOG_NAND
 PBL_LOG_PCIe
                      = 0x0E0000,
 PBL_LOG_UFS
                      = 0x0F0000,
 PBL LOG USB
                      = 0x100000,
 PBL LOG EXCEPTION
                      = 0x110000,
                      = 0x120000,
 PBL LOG ELF
                      = 0x7FFFFFFF /* To ensure it's 32 bits wide */
 PBL LOG FORCE32BITS
}pbl_log_block_type;
```

Modem PBL Error Log Format

Fuses Used in PBL

Fuse bits eFuse	Domain	GPIO	Description
FAST_BOOT (4 bits)	OEM		Used by boot code to specify which device has priority to be booted from; this helps speed up the boot flow. However, in MSM8909 chipset, eMMC and NAND boot are mutually exclusive.
VID (16 bits)	OEM		USB vendor ID
PID (16 bits)	OEM		USB product ID
E_DLOAD_DISABLE	OEM		Disables emergency downloader
USB_ENUM_TIMEOUT	OEM		BOOT ROM must support USB enumeration timeout. Timeout applies to USB Download mode. If USB is not enumerated within time (90 sec), quit USB enumeration. If USB suspends or is disconnected after enumeration, start timer again.
OEM_PK_HASH	OEM		Blows the hash of OEM public key
FORCE_USB_BOOT	No fuse	1 pin, GPIO37	Forces boot from USB

Boot Loader Customization

Boot Loader Customization

- If the OEM uses different memory parts than those used in the reference design, the boot loader needs to be updated
- For DDR memory
 - CDT in the .xml file needs to be reviewed and updated
 - DDR device type, mode (interleaved or not), density (rank/bank/row/col), and JEDEC specification default timing data
 - Retrieved by SBL1 and stored in shared IMEM (OCIMEM), and accessed by RPM
- Hardware platform ID
 - Defines PLATFORM_SUBTYPE based on the same chipset (MTP, CDP, etc.)
 - Controls the alternate functions on GPIOs
 - Stored in SMEM (DDR) and accessed by Little Kernel boot loader and the Linux kernel

Single Instance DDR Driver

- Eliminate 3 instances of DDR driver (SBL1, RPM_FW, and SDI) to 1 instance
- RPM CodeRAM size increased by 16 KB (144 KB) to host a SBL1 ELF segment which includes DDR driver.
- Since RPM (M3) and APPS (Cortex-A7) are part of ARMv7 family, both SBL1 and RPM_FW plug into the same driver instance loaded in RPM CodeRAM by PBL. SDI watchdog reset path also uses the same instance to bring DDR out of self refresh.
- Rationale
 - Scale DDR driver sequence and settings maintenance
 - Image size optimization

Watchdog Reset Debug

SDI Handling Changes Compared to MSM8x26, MSM8x10, and MSM8x12

MSM8926

- During cold boot, a separate SDI image is loaded by SBL1 into OCIMEM for non-production device. SDI brings DDR out of self refresh and flushes the L2/secure-cache/etc and other contents for watchdog/crash dump debug
- PBL on watchdog reset jumps to OCIMEM fixed offset
- MSM8909 and MSM8916
 - No separate SDI image. Part (~20%) of SDI logic is in SBL1 RPM-code-ram segment and the remaining is in TZ image.
 - During cold boot, SDI logic part of TZ enables wdog-reset/SDI-path only for non-production device.
 - DDR handling logic, during SDI, reuses SBL1 DDR driver segment in RPM CodeRAM. All the L2/secure cache flush logic, during SDI, is reused from the TZ image.
 - PBL on watchdog reset jumps to SBI1 segment#2 of RPM CodeRAM fixed offset.

Watchdog Debug Flow Diagram

Watchdog Debug Flow

- Cold boot
 - APPS PBL → SBL1 → QSEE → RPM_FW* → APPSBL.
 *Logically QSEE transfers the control to APPSBL (not RPM_FW).
- Watchdog reset (first reset)
 - APPS PBL → SBL1 segment #2, bring DDR out of self-refresh → QSEE
 - QSEE flushes the caches, saves on-chip debug buffer, before forcing second reset via PS_HOLD drop
- Second reset
 - APPS PBL → SBL1 → Sahara download mode
 - SBL1 supports default memory dump feature to dump the DDR via USB for non-production device.

References

Ref.	Document					
Qualc	Qualcomm Technologies					
Q1	Application Note: Software Glossary for Customers	CL93-V3077-1				
Q2	MSM8916/MSM8936/MSM8939 Boot Architecture Overview	80-NL239-1				

Questions?

https://support.cdmatech.com

