STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor: 18. Informatika

Integrace do průmyslu 4.0

Jakub Andrýsek

Brno 2021

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

INTEGRACE DO PRŮMYSLU 4.0

INTEGRATION INTO INDUSTRY 4.0

AUTOR Jakub Andrýsek

ŠKOLA Gymnázium Brno, Vídeňská,

příspěvková organizace

KRAJ Jihomoravský

ŠKOLITEL Mgr. Jaroslav Páral

OBOR 18. Informatika

Pro	h	lá	č	an	í

Prohlašuji, že svou práci na téma *Integrace do průmyslu 4.0* jsem vypracoval samostatně pod vedením Mgr. Jaroslava Párala a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Dále prohlašuji, že tištěná i elektronická verze práce SOČ jsou shodné a nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a změně některých zákonů (autorský zákon) v platném změní.

V Brně dne:	 	
, Bine die.	 Jakub Andrýsek	

Poděkování

Děkuji svému školiteli Mgr. Jaroslavovi Páralovi za obětavou pomoc, podnětné připomínky a hlavně nekonečnou trpělivost, kterou mi během práce poskytoval.

Tato práce byla provedena za finanční podpory Jihomoravského kraje.

Anotace

Anotace má za úkol stručně popsat cíle práce a velmi stručný úvod k tématu. Většinou bývá použit první odstavec, nebo jiná část úvodu.

Zahradničení je dnes naprosto běžnou zájmovou činností. Mnoho lidí mající takovou zálibu je ovšem velmi časově vytížených. Kromě práce se musí starat mnohdy i o rodinu a na péči o rostliny jim často jednoduše nezbývá čas. Jedním z těchto lidí je i můj táta, který mě inspiroval k vytvoření PRO-TOPlantu – systému pro snadnou a levnou automatizaci skleníku.

Cílem práce je vytvořit univerzální a dostupný systém pro automatizaci skleníku, který by usnadnil péči o rostliny časově vytíženým lidem.

Klíčová slova

Klíčová slova. Snažte se najít alespoň 5, ideálně i více klíčových slov, která jednoduše vystihují vaši práci.

automatizace skleníku, ESP32, PROTOPlant, automatizace, open-source hardware, open-source software

Annotation

Zde přijde anglický překlad anotace.

Gardening is a very common hobby today. However, many people who likes this activity doesn't have enough time for it. Beside work, they have to take care of their families and after this, they don't have any time to take care of plants. My dad is exactly this kind of man. And that inspired me to create PROTOPlant – system for easy and cheap greenhouse automation.

Goal of this thesis is to create universal and available system for greenhouse automation, that will make it easier for these people to take care of their plants.

Keywords

Klíčová slova - jejich překlad do angličtiny.

greenhouse automation, ESP32, PROTOPlant, automation, open-source hardware, open-source software

Obsah

Ú	vod		11
1	Kor	nkurence	12
	1.1	Hardware	12
		1.1.1 PLC	12
		1.1.2 Industruino	12
		1.1.3 Hardwario	13
		1.1.4 Arduino	13
		1.1.5 Srovnání	13
	1.2	Software	14
		1.2.1 NodeRED	14
		1.2.2 Blynk	14
		1.2.3 Home asistent	14
		1.2.4 Porovnání	15
2	Inte	egrace do průmyslu 4.0	16
	2.1	Popis	16
	2.2	Řešení	17
	2.3	Naszaení	17
3	Sen	zory	18
	3.1	1. verze - univerzální sensorika	18
		3.1.1 Řídící deska	19
	3.2	Uchycení	19

	3.3	Program	19
	3.4	2. verze - speciální senzorika	21
		3.4.1 Řídící deska	21
	3.5	Uchycení	21
	3.6	Program	22
4	Wel	bový server	23
	4.1	Fronted	23
		4.1.1 Bootstrap	23
		4.1.2 JavaScript	
	4.2	Backend	24
		4.2.1 PHP	24
		4.2.2 Nette	25
		4.2.3 Web API	25
	4.3	Webové rozhraní Pletačka IoT	
		4.3.1 Úvodní stránka	26
		4.3.2 Přehled ze senzoru	26
		4.3.3 Správa senzorů	26
		4.3.4 Nastavení směn	26
	4.4	Databáze	27
5	Pod	lpůrný server	28
	5.1	Kontrola senzorů	28
	5.2	Automatické aktualizace	28
6	Pri	ncip fungování Pletačka IoT	30
		6.0.1 Sběr dat	30
		6.0.2 Vyhodnocování dat	30
		6.0.3 Zobrazování dat	31
		6.0.4 Konektivita	31
7	Výv	voj	32
		Systám Plotačka IoT vorzo 1 0	39

		7.1.1 Senzory	32
		7.1.2 Web	32
	7.2	Systém Pletačka IoT verze 2.0	34
		7.2.1 Senzory	34
		7.2.2 Web	34
	7.3	Systém Pletačka IoT verze 3.0	34
8	Test	ování 3	5
	8.1	Domácí testování	35
	8.2	Testování ve firmě	35
9	Nas	zení 3	7
		9.0.1 Zpětná vazba	37
Př	filohy	3	9
\mathbf{A}	Sen	ory 3	9
	A.1	Pletačka board v1.0	39
		A.1.1 Hardware	10
		A.1.2 Software	10
	A.2	Pletačka board v2.0	10
		A.2.1 Hardware	11
		A.2.2 Software	11
В	Web	ový server 4	2
	B.1	Struktura projektu	12
	B.2	Uživatelské rozhraní	13
	B.3	Backend	13
	B.4	API	13
\mathbf{C}	Pod	oůrný server 4	4
	C.1	Komunikace se senzory	14
	C_{2}	Aktualizace senzorů	15

iteratura	46
Seznam obrázků	47
Seznam tabulek	48

Úvod

Cílem práce je navrhnout ucelený systém monitorující chod strojů ve firmě a přizpůsobit ho co možná nejlépe potřebám firmy.

S nápadem vytvořit takovýto systém přišel můj děda, zakladatel firmy na výrobu ponožek. Jeho snem vždy bylo mít takový systém, který by částečně zastal monotónní lidskou práci a nahradil ji efektivní automatizací.

Můj systém jsem tedy navrhoval na míru pro rodinou firmu na pletení ponožek, ve které je okolo 25 pletacích strojů. Tento systém je schopen v reálném čase zaznamenávat a následně odesílat naměřená data ze strojů na server. Pro uživatele pak systém nabízí moderní webové stránky, kde si může naměřená data přehledně zobrazit a analyzovat.

Podle pletacích strojů na kterých tento systém běží jsem projekt pojmenoval Pletačka IoT. Systém se skládá ze tří částí, senzorová část, která je připojená k pletacímu stroji a odesílá data. Dále pak server, který veškerá data zpracovává a zobrazuje je uživateli. Poslední částí je podpůrný server, který se stará o aktualizaci a o kontrolu správného chodu senzorů.

Při vytváření tohoto projektu jsem si dal za cíl

- projekt s otevřeným zdrojovým kódem
- cenová dostupnost
- jednoduché přidání senzorů
- přehledné uživatelské rozhraní

Konkurence

Tento systém je velice specifický a nedá se srovnávat jako celek. Potenciální konkurenci tohoto systému jsem tedy rozdělil na dva celky.

- Hardware
- Software

1.1 Hardware

1.1.1 PLC

JA
Note:
Přidat
obrázky

PLC neboli programovatelný logický automat je průmyslový počítač k řízení automatizovaných procesů. Automaty zpracovávají data v reálném čase a s co nejkratší odezvou. PLC jsou velmi modulární a dají se skládat různě dohromady, podle potřeby uživatele.

1.1.2 Industruino

Firma Industruino[4] se zabývá vývojem zařízení pro průmyslovou automatizaci založenou na platformě Arduino. Zařízení splňují průmyslové standardy a jsou navržená pro montáž na DIN lištu. Firma nabízí také moduly s WiFi nebo se SIM konektivitou.

1.1.3 Hardwario

Hardwario[3] je česká firma, která nabízí průmyslové IoT stavebnice. Cílem této firmy je nabídnou průmyslové IoT řešení, které si sami sestavíte podle svých představ. Firma se zaměřuje na nízkoenergetické moduly s vydrží několika let. Nevýhodou tohoto produktu je jeho vysoká pořizovací cena.

JA Note: Cena???

1.1.4 Arduino

Arduino [ARDUGREENHOUSE] je otevřený (open source) projekt který se díky své nízké ceně a jednoduchosti na používání rozšířil po celém světě. Arduino má v nabídce přes deset různých modelů. Desky jsou univerzální a jsou velmi často využívány na kutilské projekty. K Arduinu také existuje velké množství shieldů, které základním modulům dodávají další funkcionalitu. Desky Arduino se programují v jazyce Wiring, vytvořeném přímo pro programování mikrokontrolérů, nebo v jazyce C++.

1.1.5 Srovnání

První tří zmíněné platformy jsou hojně využívány v průmyslu a řídí většinu automatizovaných procesů, jejich nasazení je složité a celé systémy jsou velmi drahé.

Požadavky na platformu

- 1. Připraveno na montáž na zařízení
- 2. Průmyslové napětí 5-25 V
- 3. Open source
- 4. Barevný displej
- 5. Bezdrátová konektivita ve výchozím provedení
- 6. Moderní konektor USB-C

Hardware	1	2	3	4	5	6
PLC	1	1	X	X	X	X
Industruino	1	1	1	X	1	X
Hardwario	1	X	1	X	1	X
Arduino	X	X	1	X	X	X
Moje řešení	1	1	1	1	1	1

1.2 Software

1.2.1 NodeRED

NodeRED je jednoduché grafické prostředí k programování IoT zařízení. Hlavní výhodou této aplikace je, že celá běží jako webová stránka. Tím umožňuje uživateli rychlou práci bez nutnosti instalovat speciální aplikace. NodeRED programování stojí na principu propojování jednotlivých uzlů. Ve složitějších projektech mohou být bloky dosti nepřehledné a složité na úpravu.

1.2.2 Blynk

Blynk je platforma pro vzdálené ovládání IoT projektů. Základem platformy je jednoduchá mobilní aplikace pro nastavování a vyčítání dat. Aplikace nabízí velké množství widgetů které se připínají na zobrazovací panel. Na osobní projekty do pěti zařízení je aplikace zdarma, jinak je nutné platit měsíční poplatky.

1.2.3 Home asistent

Home asistent je software pro řízení chytrých domácností. Systém dokáže pracovat s více než 1700 službami. Připojená zařízení se konfigurují pomocí textového souboru. Aplikace také dokáže integrovat mnoho rozšíření, například ESPHome. To slouží k ovládání mikrokontrolérů ESP které jsou

hojně rozšířené v kutilské komunitě. Aplikace také nabízí přehledné widgety k rychlému zobrazení nejdůležitějších dat.

1.2.4 Porovnání

Node RED a Home asistent jsou projekty s otevřeným zdrojovým kódem, utvářené komunitou, díky tomu jsou tyto systémy velmi modulární a rychle se rozvíjejí. Naopak Blynk je uzavřená platforma zaměřená na firmy a vývojáře. Můj systém spojuje užitečné vlastnosti ze všech těchto systémů a nabízí je jako celek v podobě systému Pletačka IoT.

Integrace do průmyslu 4.0

Průmysl 4.0 se do České republiki dostal okolo roku 2013 a od té doby se stále více rozšiřuje v průmyslových firmách. Jedna z klíčových částí je IoT, neboli internet věcí, který nám zajišťuje vzdálenou kontrolu a řízení strojů. Další vlastností těchto systémů je zaznamenávání a následné ukládání dat do datových úložišť. Moderní IoT řídící systémy se snaží proniknou co nejvíce do hloubky řídících systém a zpřesnit tak naměřená data, důležitá pro optimalizaci produkce.

2.1 Popis

Při návrhu mého systému jsem se snažil řídit se těmito zásadami a navrhnout tak co nejmodernější a provozně efektivní systém. Základem bylo zhodnocení stávající situace a navržení možného řešení.

Jedntlivé problémy

- dlouhá doba stání nečinných strojů
- ruční počítání vyprodukovaného zboží
- absence historického přehledu produkce

2.2 Řešení

Mým řešením je tedy návrh moderního systému, který by celý tento provoz monitoroval a zobrazoval zaměstnavateli. Dále se také snažím o zhodnocení jednotlivých směn a jejich porovnání. Systém neustále vyvíjím a rozšiřuji podle potřeb firmy.

2.3 Naszaení

Jak jsem již psal, tento systém je aktuálně nasazen ve firmě ROTEX Vysočina s.r.o[1], která se věnuje výrobou ponožek. Firma pracuje ve dvousměnném provozu a deně vyprodukuje v průměru **** párů ponožek. Díky mému systémy by se ve firmě dala zoptimalizovat produkce a výkon strojů a tím zefektivnit budoucí výrobu.

JA
Note:
Obrázek
pletárny

Senzory

Senzory k projektu Pletačka IoT jsou postavené na mikročipu ESP32 T-Display. Celý tento systém je navržen tak, že na každém pletacím stroji je jeden inteligentní senzor. Každý z těchto senzorů má svoje jedinečné číslo, pod kterým posílá naměřená data na server. Senzor je na pájen z 5 nebo 24 voltů a má spotřebu do 1 ampéry. Návrh senzorů i jejich software mám verzovaný nástrojem Git na veřejném Githubu.

Github: Pletacka-board[5]

3.1 1. verze - univerzální sensorika

První verzi jsem pojal jako testovací, bylo tedy potřeba navrhnout univerzální desku a otestovat celý systém.

Při navrhování první verze senzoru jsem se držel těmito body:

- ESP32 s barevným displejem
- vstup ze 4 periferií
- vstupní napětí od 10 do 25V
- teplotní čidlo

- tři barevné diody
- čtyři uživatelská tlačítka

3.1.1 Řídící deska

Návrh desky jsem tvořil v aplikaci EAGLE od společnosti Autodesk. Deska má rozměry 75 na 60 mm a v každém rohu má upevňovací díry. Kabely se do desky připojují pomocí 5mm svorkovnice. Na vstupu napájení je měnič napětí který pracuje v rozsahu od 10 do 25 voltů a na výstupu dává 5V.

Řídící procesor celé desky je modul ESP32 T-Display. Tento čip také zajišťuje WiFi konektivitu s okolím a odesílá naměřená data na server. Pro univerzální detekování vstupů z periferií se využívají optočleny, které předávají signál do mikroprocesoru. K uživatelskému ovládání senzoru jsou zde čtyři programovatelná tlačítka a tři indikační diody. Aktuální naměřená data se zobrazují na displeji a informují obsluhu o zastavení stroje a počtu upletených párů. Senzor je také schopen zaznamenávat data ze čtyř vstupů a teplotu z teplotního senzoru.

3.2 Uchycení

Obal řídící desky je vytisknutý na 3D tiskárně z materiálu PETG. Na přední straně je průhled z plexi skla na barevný displej a okolo něj jsou rozmístěná uživatelská tlačítka. Na boční straně krabičky jsou připravené dvě drážky na protažení stahovacích zip pásků pro uchycení na sloupek stroje. Kabely jsou poté svedeny po konstrukci stroje až k periferiím.

3.3 Program

K programování využívám aplikaci Visual Studio Code s rozšířením PlatformIO, které je navržena k programování mikrokontrolérů. Zdrojový kód mám napsaný v jazyce C++. Program se skládá z několika vláken, které

se pravidel spouštějí a vykonávají. První a zároveň nejdůležitější vlákno je senzorové, zde se periodicky kontroluje stav periferií a při změně se odešle událost na server. Další vlákno zajišťuje pravidelné vykreslování dat na displej a zbylá vlákna se starají o správný chod senzoru. Software také obsahuje ladící mód ve kterém si administrátor může zobrazit stav senzoru v mobilní aplikaci a jednodušeji tak hledat potenciální chybu.

JA
Note:
Obrázek
deksa
=;

krabička

3.4 2. verze - speciální senzorika

Po měsíci testování jsem zhodnotil využití jednotlivých součástek a následně jsem vytvořil nový seznam požadavků, přizpůsobený pro lepší chod senzoru. Zařízení je díky tomu mnohem menší, levnější a softwarově rychlejší.

- vstup pouze ze 2 periferií
- vstupní napětí již od 5V
- zredukování rozměrů
- moderní USB C konektor
- zredukování na dvě tlačítka a dvě indikační diody
- možnost přímého napájení senzoru bez měniče

3.4.1 Řídící deska

Návrh druhé desky jsem se rozhodl udělat v open source aplikaci KiCad. Tato aplikace podporuje mnoho rozšíření, která velmi zpříjemní návrh a zjednoduší přípravu podkladů.

V novém návrhu jsem se především zaměřoval na rozměr desky, tan aktuálně činí 32×76mm. Deska si zachovala stejný procesor ESP32 s displejem, ale přišla o dvě tlačítka a jednu indikační diodu. V senzoru se také změnilo zapojení měniče napětí, ten nově dokáže pracovat již od 5V, které následně mění na 3,3V. Na bočních stranách desky vznikla také nová křidélka pro zasunutí do nového krytu.

3.5 Uchycení

Druhá verze využívá stejného principu uchycení, jako ta předchozí. Mění se zde však spojení krabičky se senzorovou deskou. V nové verzi jsem desku navrhl tak, aby se dala jednoduše zasunout do kolejnic které jsou předtištěné

JA
Note:
krabička
popis,
uchycení
JA
Note:

deksa =; krabička

Obrázek

v krabičce a následně zafixovat šroubkem ze zadní strany. To umožňuje jednoduchou montáž a rychlé připojení. Tento návrh už má také vyřešené zafixování kabelů ke konstrukci krabičky pomocí plastové svěrky.

3.6 Program

Program druhé verze vychází z minulé, ale přináší s sebou nové funkce a vylepšuje stávající. Novou funkcionalitou je například automatická aktualizace programu přes WiFi, kterou nadále zdokonaluji. Další vylepšení jsem přidal k displeji, který dokáže zobrazit více údajů a automaticky mezi nimi přepínat.

Webový server

Webový server je nejdůležitější a nejobsáhlejší část celého systému. Webový server mám nasazený na mikropočítači Raspberry Pi 4 Modelu B který má 8GB operační paměti. Toto zařízení jsem zvolil hlavně kvůli nízké spotřebě elektrické energie a velké komunitě lidí, kteří tento mikropočítač využívají.

Na zařízení běží operační systém Raspberry Pi OS s grafickým rozhraním. Webové stránky běží na HTTP serveru Apache2 a PHP 7.3. Jako databázový systém využívám MariaDB. Server běží lokálně uvnitř firmy na zabezpečené sítí, tím pádem není nutné velké zabezpečení systému. Z toho také vyplývá, že stránka je dostupná pouze ve vnitřní síti firmy. Celý webový server mám verzovaný také na Githubu.

Github: Pletacka-website[6]

JA Note: Zabezpečení jinak přepsat

4.1 Fronted

Frontend je vizuální část webové stránky zobrazená uživatelem. Pomocí frontendu se na obrazovku vykresluje veškerý text a jednotlivé prvky stránky.

4.1.1 Bootstrap

Bootstrap je knihovna sloužící k jednoduchému a rychlému vytvoření responzivních webových stránek. Díky této knihovně jsou stránky správně zobrazovány i na mobilních zařízeních. Tento nástroj se vyvíjí od roku 2011 a je pod otevřenou licencí. Webový server využívá Bootstrap verze čtyři.

4.1.2 JavaScript

Na webovém serveru používám JavaScript primárně k aktualizaci částí stránek. Tato technologie se nazývá AJAX a umožňuje překreslovat vybrané části stránek. Načítání stánek je tím pádem rychlejší a šetří přenesená data. K tomuto efektivnímu překreslování slouží knihovna Naja[7], kterou napsal český vývojář Jiří Pudil. Knihovna také nabízí jednoduchou integraci do PHP frameworku, o kterém budu psát dále.

4.2 Backend

Je to nejobsáhlejší část celé této práce. Backend je serverová část webové stránky, neběží tedy u vás na počítači jako frontend, ale na webovém serveru. Celý backend systému Pletačka IoT jsem napsal v programovacím jazyce PHP a běží na frameworku Nette[8], který nabízí ucelenou sadu nástrojů k tvorbě webů. Backend se stará o přijímání dotazů ze senzorů a následný zápis do databáze, pohání celý webový server a vytváří databázové výběry. Nejdříve zde popíšu použité technologie a následně rozeberu jednotlivé stránky aplikace.

4.2.1 PHP

Webovou aplikaci programuji v PHP ve verzi 7.3. Jako programovací studio jsem zvolil studentskou verzi aplikace PHPStorm, která je velmi mocným nástrojem při tvorbě webu. Testovací verze aplikace mám spuštěnou na svém počítači kde také celý tento systém vyvíjím.

Pro snadnější ladění chyb používám Xdebug, díky kterému si můžu krokovat jednotlivé řádky kódu a rychleji tak nalézt chybu.

Jako systém pro správu balíčků používám nástroj Composer, který se ovládá z terminálu pomocí jednoduchých příkazů. Umožňuje rychlou definici závislostí a aktualizaci všech modulů pomocí jednoho příkazu.

4.2.2 Nette

Nette je webový framework vyvíjený komunitou. Vznikl v České republice a jeho zakladatelem je David Grudl. Nabízí vlastní šablonovací jazyk, na jednoduchou a efektivní tvorbu webových stránek. Nette disponuje obsáhlou a velmi dobře zpracovanou dokumentací, ale také velkou komunitou lidí kteří s tímto frameworkem pracují a velmi dobře mu rozumí.

4.2.3 Web API

Web API je soubor příkazů ke komunikaci s webovou stránkou. Webová stránka Pletačka IoT obsahuje pouze základní sadu web API. Primárně ji využívají senzory k odesílání naměřených dat a ke zpětnému posílání odpovědí do senzoru. Druhé využití API je k vytváření databázových výberů, to je voláno nástrojem na automatizaci procesů v nastavený čas.

4.3 Webové rozhraní Pletačka IoT

Každá stránka stránka je rozdělena na tři části. Záhlaví, to obsahuje logo stránek a odkazy na nejpoužívanější stránky. Druhou částí jsou samotné webové stránky které budou popsány v dalších odstavcích. Poslední částí je minimalistické zápatí s copyright znakem.

Stránky Pletačky jsem navrhoval tak, aby splňovaly tyto paramtery:

- jednoduché rozhraní pro uživatele
- přehledné zobrazení day
- zobrazovat pouze užitečná dat

Note:
Doplňit
obrázky
stránek
pod
kapitolu
nebo
jeden
list s
fotkama

JA

- rychlá editace senzorů
- využití zavedeného číselného identifikátoru

4.3.1 Úvodní stránka

V horní části úvodní stránky se vypisují tři nejpodstatnější údaje. Jde o celkový počet upletených párů za aktuální směnu. Dále pak úspěšnost vypočítávanou z času zastavení stroje a z cekové času zapnutí stroje. Posledním údajem je průměrná doba stání jednoho stroje.

Pod těmito čísly se zobrazuje tabulka s barevnými obdelníčky, kde každý představuje jeden stroj. Barva obdelníčku udává aktuální stav stroje a text v pozadí tuto informaci doplňuje.

4.3.2 Přehled ze senzoru

Po kliknutí na senzor na úvodní stránce, se zobrazí data o právě vybraném stroji. Veškerá data jsou rozdělena do dvou sloupců podle pracovních směn. To umožňuje zaměstnavateli jednoduché porovnávání směn. V úvodu každého sloupce je obecný přehled naměřených dat za různá období. Pod obsahem je přehled v grafech a porovnání nejdůležitější údajů.

4.3.3 Správa senzorů

Pro vstup do této sekce je nutné uživatelské přihlášení do systému. Stránka pak nabízí přehled senzorů s jednotlivými možnostmi úpravy.

První z odkazů vede na aktuální přehled ze senzoru. Druhý řeší editaci senzoru a poslední maže vybraný senzor.

4.3.4 Nastavení směn

Jednoduchá stránka na které se nastavuje pořadí směn. Střídání směn probíhá pravidelně po týdnech, proto je nastavení velmi jednoduché.

4.4 Databáze

Databáze je rozdělená do dvou skupin tabulek.

První skupina tabulek je nastavovací, jedná se o hlavní nastavení webu, nastavení směn a o tabulku s uživateli a jejich oprávněním.

Druhá skupina je senzorová. Každý senzor zde má pět tabulek na ukládání svých dat. První senzorová tabulka ukládá čistá nezpracovaná data posílaná přímo ze senzoru. Zbylé čtyři tabulky jsou databázové výběry různých časových úseků, jde o výber hodinový, denní, měsíční a roční. Tyto tabulky se vytvářejí automaticky pomocí výběrového API.

Struktura tabulek je vyobrazena ve schématu níže.

Note: Scéma struktury tabulek

JA

Podpůrný server

Podpůrný server vznikl jako rozšíření pro senzory. Server je naprogramovaný v Pythonu a běží na Raspberry Pi společně s webovým serverem.

Zdrojový kód na Githubu: Pletacka-python-server[9]

5.1 Kontrola senzorů

Hlavním úkolem tohoto serveru je detekce zapnutých senzorů. Na serveru běží takzvaný Watchdog, jde o hlídacího psa, který každé čtyři vteřiny čaké na zprávu ze senzoru. Touto zprávou se senzor nahlásí, že je zapnutý, pokud takováto zpráva nedojde deset vteřin, je senzor prohlášen za vypnutý a v databázi se označí jako neaktivní. Tato jednoduchá metoda umožňuje kontrolovat velké množství senzorů jednoduchým programem.

5.2 Automatické aktualizace

Bezdrátová aktualizace senzorů je nová funkcionalita kterou nadále vyvíjím a rozšiřuji. Senzory aktuálně podporují rychlou aktualizaci přes WiFi ze vzdáleného počítače. V počítači stačí vybrat číslo senzoru a nová verze programu se pomocí WiFi připojení nahraje do senzoru.

V nové verzi přibude také hromadná aktualizace senzorů a systém na

udržování aktuální verze systému ve všech senzorech.

Princip fungování Pletačka IoT

V předchozích kapitolách byly popsány jednotlivé část systému Pletačka IoT. V této kapitole bude celý systém popsán jako celek a

6.0.1 Sběr dat

První a tou nejdůležitější částí je získávání dat pomocí senzorů. Jakmile senzor zaznamená jakoukoliv změnu, okamžitě tuto zprávu odesílá na server. Odesílání probíhá skrze senzorové API, kde se nejdříve ověří senzor a následně se stav zapíše do databáze k příslušnému senzoru. Po zapsání do databáze se vrátí do senzoru zpráva o provedení zápisu.

6.0.2 Vyhodnocování dat

Dalším krokem je zpracovávání surových dat z databáze. K tomuto účelu běží na serveru výběrové API, které je automaticky spouštěné v nastavený čas. Jde o generování širších výběrů dat, hodinové, denní, měsíční a roční výběr. Tyto výběry se následně ukládají do databáze k danému senzoru. Generování těchto dat probíhá převážně v noci, kdy je server nejméně vytížen.

6.0.3 Zobrazování dat

Posledním krokem je zobrazení dat uživateli. Je to jediná část se kterou se běžný uživatel dostane do kontaktu. Proto je nutné aby zobrazení bylo co nejrychlejší a pro uživatele co nejpříjemnější. K rychlému zobrazování se využívají předgenerované výběry, ke kterým se rychle dopočítá nově nasbíraná část dat.

6.0.4 Konektivita

Webové stránky se dají jednoduše zobrazit na počítači či notebooku. Stránky jsou také responzivní a správně se zobrazují i na mobilních zařízeních. Přístup k webu je pouze z vnitřní sítě firmy, to zajišťuje dostatečnou bezpečnost pro celý systém.

JA
Note:
schéma
sběr vyhodnocení zobrazení

Vývoj

Na této práci jsem začal pracovat v únoru 2020, kdy jsem si jako úplný nováček četl dokumentaci k jazyce PHP. Původní verzi webového rozhraní jsem začínal navrhovat v čistém PHP, tento způsob byl však velmi zdlouhavý a neefektivní. Po měsíci práce v čistém PHP jsem přešel na framework Nette, který mi práci zjednodušil a posunul mě velmi rychle dál.

7.1 Systém Pletačka IoT verze 1.0

Tato verze vznikla začátkem července kdy už systém uměl pracovat s virtuálními senzory.

7.1.1 Senzory

Souběžně s programováním webu jsem pracoval na softwaru pro senzory. V této době byly senzory schopné posílat data na server, ale neměli žádný grafický výstup ani nepodporovaly interakci s uživatelem.

7.1.2 Web

Vznikla základní kostra webu a postupně vznikaly první stránky. Data ze senzorů se zatím pouze ukládala do databáze a web s nimi zatím neuměl

pracovat. Začínal se vyvíjet systém na zpracovávání údajů ze senzorů.

7.2 Systém Pletačka IoT verze 2.0

Druhá verze přinesla velké rozšíření systému. Tato verze přišla v půlce prosince a prošla dlouhodobým testováním.

7.2.1 Senzory

Senzory nově podporují nahrávání aktualizací přes WiFi, dále mají přehlednější zobrazování dat na displej a dokážou upozornit na výpadek sítě. Vyšla také nová generace senzorů které mnohem menší a lépe přizpůsobené výrobně ponožek.

7.2.2 Web

Největší proměnou prošlo webové rozhraní. Domovská stránka má přehledné zobrazování stavů senzorů, u senzorů se zobrazují důležitá data a pomocí grafů se dají data jednoduše porovnávat. Přibylo také nastavování směn a hromadné přidávání senzorů.

7.3 Systém Pletačka IoT verze 3.0

Nadále pracuji na další verzi, která přinese nové funkcionality a vylepší stávající.

Testování

Testování systému je jedna z nejdůležitějších částí navrhování jakýchkoliv systémů. Správným otestováním by se měla odladit většina potenciálních chyb.

8.1 Domácí testování

Průběžné testování částí webu probíhalo již při vývoji a kontrolovalo správné fungování nových funkcí.

Později bylo nutné nachystat rozsáhlejší testy a připravit jim testovací databázi s fiktivními daty. Tímto způsobem jsem například kontroloval správnost běhu funkce pro výpočet času zastavení stroje.

Podobné testování probíhalo také na senzorech.

8.2 Testování ve firmě

V bodě kdy byly odladěny závažné chyby jsem systém nasadil na dva pletací stroje. Nově nasbíraná data byla již reálná a dalo se na nich postavit nové testování. Senzory jsem tedy nechal několik dní sbírat údaje o upletených ponožkách a následně jsem nad nimi spostil generování uživatelsky čitelných dat.

Od půlky prosince probíhá dlouhodobé testování bez zásahu do vygenerovaných dat. Naměřené údaje pravidelně stahuji a kontroluji jejich správnost.

Kapitola 9

Nasazení

První nasazení na pletací stroje proběhlo v květnu roku 2020. V první fázi jsem osadil ě pletací stroje a sbíral z nich data.

Druhé nasazení dalších senzorů proběhlo koncem září kdy byly doosazeny další dva stroje. Bylo tedy nasazeny čtyři senzory a probíhal vývoj nových.

V půlce prosince jsem připravil dalších šest senzorů, které jsem osadil na další stroje.

9.0.1 Zpětná vazba

Závěr

V závěru by mělo být:

- Rekapitulace cíle práce
- Dosáhnul jsem jej? Ano, nebo ne?
- Zhodnocení průběhu práce
- Co mi práce dala?

Příloha A

Senzory

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

A.1 Pletačka board v1.0

A.1.1 Hardware

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

A.1.2 Software

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

A.2 Pletačka board v2.0

A.2.1 Hardware

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

A.2.2 Software

Příloha B

Webový server

!!!!! Pletačka website !!!!!

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

B.1 Struktura projektu

B.2 Uživatelské rozhraní

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

B.3 Backend

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

B.4 API

Příloha C

Podpůrný server

!!!Pletačka python server!!!!!! Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nunc magna, sollicitudin id leo eu, viverra congue risus. Aliquam consequat ipsum ut erat placerat consequat nec at diam. Aenean est odio, molestie sit amet nunc in, pretium luctus elit. Donec imperdiet orci vel porttitor placerat. Proin ut hendrerit elit, ultricies accumsan urna. Vivamus condimentum lorem viverra lectus finibus, nec volutpat turpis auctor. Cras quis felis non lorem consectetur interdum eu eu sem. Proin sit amet feugiat metus. Ut vitae orci a enim vestibulum porta.

C.1 Komunikace se senzory

C.2 Aktualizace senzorů

Literatura

- 1. ROTEX VYSOČINA S.R.O. Webové stránky firmy ROTEX Vysočina [online] [cit. 2020-12-08]. Dostupné z: http://www.rotexvysocina.cz/.
- 2. ARDUINO. Webové stránky Arduino [online] [cit. 2020-11-15]. Dostupné z: https://www.arduino.cc.
- 3. HARDWARIO. Webové stránky Hardwario [online] [cit. 2020-11-15]. Dostupné z: https://www.hardwario.com.
- 4. INDUSTRUINO. Webové stránky Industruino [online] [cit. 2020-11-15]. Dostupné z: https://industruino.com.
- 5. JAKUB ANDRÝSEK. *Návrh a zdrojový kód senzorů* [online] [cit. 2020-12-08]. Dostupné z: https://github.com/Pletacka-IoT/Pletacka-board.
- 6. JAKUB ANDRÝSEK. Zdrojový kód webového serveru [online] [cit. 2020-12-08]. Dostupné z: https://github.com/Pletacka-IoT/Pletacka-website.
- 7. JIŘÍ PUDIL. Webové stránky knihovný Naja [online] [cit. 2020-12-01]. Dostupné z: https://naja.js.org.
- 8. DAVID GRUDL. Webové stránky frameworku Nette [online] [cit. 2020-12-01]. Dostupné z: https://nette.org.
- 9. JAKUB ANDRÝSEK. Zdrojový kód podpůrného serveru [online] [cit. 2020-12-08]. Dostupné z: https://github.com/Pletacka-IoT/Pletacka-python-server.

Seznam obrázků

Seznam tabulek