Transfer learning with Transformer networks

Grégory Châtel

Disaitek Intel Software Innovator

11/28/2018

Neural network architectures for NLP

MLP, CNN, dilated CNN, RNN (LSTM / GRU), Tranformer

Attention mechanisms

Scaled Dot-Product Attention

Q is the query vector, K is the key vector and V value vector.

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}(rac{QK^T}{\sqrt{d_k}})V.$$

Attention mechanisms

Multi-Head Attention

$$\begin{aligned} \mathsf{MultiHead}(Q,K,V) &= \mathsf{Concat}(\mathsf{head}_1,\ldots,\mathsf{head}_h) \\ \mathsf{where} \quad \mathsf{head}_i &= \mathsf{Attention}(QW_i^Q,KW_i^K,VW_i^V) \end{aligned}$$

where the projections W_{i}^{Q} , W_{i}^{K} and W_{i}^{V} are parameter matrices.

Transformer network

Original transformer

Transformer network

OpenAl multi-layer decoder

Pre-training task

Language modeling

Results on standard datasets

New state of the art on the following tasks:

- Textual Entailment
 - ► SNLI 89.3 → 89.9
 - ▶ MNLI Matched $80.6 \rightarrow 82.1$
 - ▶ MNLI Mismatched $80.1 \rightarrow 81.4$
 - ▶ SciTail $83.3 \rightarrow 88.3$
 - ▶ QNLI 82.3 → 88.1
- Semantic Similarity
 - ► STS-B 81.0 → 82.0
 - $\blacktriangleright \ \mathsf{QQP}\ 66.1 \to 70.3$
- Reading Comprehension
 - ► RACE 53.3 → 59.0
- Commonsense Reasoning
 - ► ROCStories 77.6 → 86.5
 - ► COPA 71.2 → 78.6
- Linguistic Acceptability
 - ► CoLA 35.0 → 45.4
- Multi-Task Benchmark
 - ► GLUE 68.9 → 72.8

References

- Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.
- Radford, Alec, et al. "Improving language understanding by generative pre-training." URL Article pdf link Blog post (2018).
- Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 (2018).