Data Wrangling Report

Gathering Data

Three different ways were used in Gathering the data:

- 1. Gathering the data from "twitter_archive_enhanced.csv" file, which was supplied with the project
- 2. Gathering the data from the url which was still supplied with the project as-well:
 https://d17h27t6h515a5.cloudfront.net/topher/2017/August/599fd2ad_image-predictions.tsv. This url contained 'image-predictions.tsv'

which was then read and changed into a data-frame.

3. Lastly we used tweepy library to request the data needed from twitter for 'WeRateDogs'. The file we captured was a json.txt file (tweetjson.txt) and then changed it to a data-frame containing those three columns ("twee_id", "retweet_counts" and "fav_counts")

Accessing Data

Visual Assessment Results

- `twitter_arch` Visual Notes:
 - 'in_reply_to_status_id', 'in_reply_to_user_id',
 retweeted_status_id', 'retweeted_status_user_id' and
 retweeted_status_timestamp' columns most of them are NAN
 Values and they are not needed for our analysis
 - Some 'rating_denominator' are more than 10 such as index (902)
 - The dog names are not all filled
 - Some `rating_numerator` are extreme
- 'twitter_img_prediction' Visual Notes:
 - some prediction columns ain't needed we only need one for confidence Level and a second one for predictions
- Can't see any visual problems in `twitter_api`

Programmatic Assessment Notes

- "twitter_arch" programmatic Notes:
 - Data Type:
 - `tweet_id` column needs to be string instead of int64
 - `timestamp` column needs to be datetime instead of str but will be dropped
 - > Inaccurate Data:
 - `expanded_urls` have missing data (2297 entery only)
 - > Some 'rating denominator' are not out of 10
 - Some `rating_numerator` are extreme and not realistic
 - All Dog Classifications(`doggo`,`floofer`, `pupper`, `puppo`) null values are written 'None'
 - ➤ 181 retweeted tweets that needs to be erased from the data set before dropping the unwanted columns
 - Duplicated Data:
 - there are 137 duplicated `expanded_urls` which is an indication for the same tweet and therefore will be dropped
 - Only needed Columns in my analysis:
 - tweet_id
 - rating_numerator
 - rating_denominator
 - dog classification
 - expanded urls
- "twitter_img_prediction" Programmatic Notes
 - Data Type:
 - tweet_id is int64 and should be changed to str
 - Missing Data:
 - `tweet_id` got missing data (2075 entery) while expected to match the archieve (2356)
 - > Tidiness of columns:
 - ➤ All dog ratings need to be only one column
- `twitter_api`Assesment Notes:
 - Data Types:
 - `tweet_id` is int64 needs to be str

Cleaning

twitter_arch Data Cleaning

- 1. Created a copy from twitter_arch to not make any changes in the original dataset.
- 2. Dropped the retweeted tweets.
- 3. Changed the data type of 'tweet_id' from int to str since no mathematical operation can be shall be done on IDs.
- 4. Replacing the 'None' values in all dog classification columns (doggo, floofer, etc...)
- 5. Created one more column called 'dog_class' and concatenated the three columns of the dog classifications together and renamed the ones whom have more than a classification. Finally dropped the three columns.
- 6. Removed the duplicated 'expanded urls'.
- 7. Removed the tweets that doesn't had an empty 'expanded_url'.
- 8. Removed the 'rating denominator' that are not 10.
- 9. Fixing the rating_numerator by excluding the extreme entries: we will assume 20 is the max allowed range because such that it won't affect my analysis only 5 entries will be dropped.

twitter_img_prediction Data Cleaning

- 1. Created a copy from *twitter_img_prediction* to not make any changes in the original dataset.
- 2. Changed the data type of 'tweet_id' from int to str
- 3. Removed the duplicated jpg_urls
- 4. Reshaped the dataframe to have two extra columns one for dog type and the other was the confidence level.
- 5. Dropped the unwanted columns.

twitter api Data Cleaning

- 1. Created a copy from *twitter_api* to not make any changes in the original dataset.
- 2. Changed the data type of 'tweet_id' from int to str

Merging the three Data Sets together using the tweet_id

- 1. Created df_combine1 that left merges (df_arch_clean) and (df_img_clean)
- 2. Dropped the null jpg_urls
- 3. Created df_main which merges (df_combine1) and (df_api_clean)
- 4. Stored the data frame to a csv as requested in a file called 'twitter_archieve_master.csv'

Analyzing & Visualizations

- 1. Top and lowest rated breeds using mean value of rating_numerators divided by rating_denominator of each breed
 - Side Note: I thought mean value would be better than the sum of values to give a more reliable numerator rating.
- 2. Top and lowest retweeted Breeds by using the sum value of retweeted counts.
- 3. Top breeds that can be detected with high confidence using the img_prediction tool used.
- 4. Proportionality between the favorite counts and retweeted counts for the top 10 breeds
- 5. Checked if there is a relation between the rating and the retweet counts or the fav_counts but it appeared that there was no relation between rating and either of them.