

Fig. 1a

Fig. Ib

Fig. 2

. 09	107	155	203	251	299	347
5'-AGTCAATCTG CTCATAATCA TAGCATAGCC GTATAGAAAG AAATTCTACA CTCTGCTACC	AAAAA ATG GAT TCC CCT TGC TTA GTA GCA TTA CTG GTT TTC TCT TTT	GTA ATT GGA TCT TGC TTT TCT GAT AAT CCC ATA GAC AGC TGC TGG AGA	GGA GAC TCA AAC TGG GCC CAA AAT AGA ATG AAG CTC GCA GAT TGT GCA	GTG GGC TTC GGA AGC TCC ACC ATG GGA GGC AAG GGA GAT CTT TAT	ACG GTC ACG AAC TCA GAT GAC GAC CCT GTG AAT CCT GCA CCA GGA ACT	CTG CGC TAT GGA GCA ACC CGA GAT AGG CCC CTG TGG ATA ATT TTC AGT
	Met Asp Ser Pro Cys Leu Val Ala Leu Leu Val Phe	Val Ile Gly Ser Cys Phe Ser Asp Asn Pro Ile Asp Ser Cys Trp Arg	Gly Asp Ser Asn Trp Ala Gln Asn Arg Met Lys Leu Ala Asp Cys Ala	Val Gly Phe Gly Ser Ser Thr Met Gly Gly Lys Gly Gly Asp Leu Tyr	Thr Val Thr Asn Ser Asp Asp Pro Val Asn Pro Ala Pro Gly Thr	Leu Arg Tyr Gly Ala Thr Arg Asp Arg Pro Leu Trp Ile Ile Phe Ser
	-21 -20	-5	10	30	50	60

Fig. ^z

					•
395	443	491	539	587	635
CTC AAA ATG CCT ATG TAC ATT GCT GGG TAT Leu Lys Met Pro Met Tyr Ile Ala Gly Tyr 80	3A GCA CAA GTT TAT ATT GGC AAT GGC GGT -y Ala Gln val Tyr Ile Gly Asn Gly Gly 100	AGA GTT AGC AAT GTT ATC ATA CAC GGT TTG Arg Val Ser Asn Val Ile Ile His Gly Leu 115	ACT AGT GTT TTG GGG AAT GTT TTG ATA AAC Thr Ser Val Leu Gly Asn Val Leu Ile Asn 130	CCT GTT CAT CCT CAG GAT GGC GAT GCT CTT Pro Val His Pro Gln Asp Gly Asp Ala Leu 145	AAT ATT TGG ATT GAT CAT AAT TCT TTC TCC Asn Ile Trp Ile Asp His Asn Ser Phe Ser 160
GGG AAT ATG AAT ATA AAG CT Gly Asn Met Asn Ile Lys Le 75	AAG ACT TTT GAT GGC AGG GGA GCA Lys Thr Phe Asp Gly Arg Gly Ala 90	TGT GTG TTT ATC AAG Cys Val Phe Ile Lys 110	TAT CTG TAC GGC TGT AGT ACT TYR Leu Tyr Gly Cys Ser Th	GAG AGT TTT GGG GTG GAG COGlu Ser Phe Gly Val Glu Po	ACT CTG CGC ACT GCT ACA AM Thr Leu Arg Thr Ala Thr As 155

Fig. 4 cont.

683	731		827	875	923
ACT CTT ACT TCG ACT GGA GTT Thr Leu Thr Ser Thr Gly Val 180	CAT CAT AAA GTG ATG TTG TTA 1 His His Lys Val Met Leu Leu 195	C AAA TCC ATG AAG GTG ACA GTG D Lys Ser Met Lys Val Thr Val 215	r GGA CAA AGA ATG CCC AGG GCA s Gly Gln Arg Met Pro Arg Ala 230	C AAT AAT TAT GAC CCA TGG ACT n Asn Asn Tyr Asp Pro Trp Thr 245	T CCA ACC ATT CTA AGT GAA GGG n Pro Thr Ile Leu Ser Glu Gly 260
TCT GAT GGT CTG GTC GAT GTC Ser Asp Gly Leu Val Asp Val 175	TCA AAC AAT CTT TTT TTC AAC Ser Asn Asn Leu Phe Phe Asn 190	GAT GAT GCA TAT AGT GAT GAC ASP ASP A1a TYT Ser ASP ASP 205	AAT CAA TTT GGA CCT AAC TGT Asn Gln Phe Gly Pro Asn Cys 220	TAT GGA CTT GTA CAT GTT GCA AAC Tyr Gly Leu Val His Val Ala Asn 235	GCA ATT GGT GGG AGT TCA AAT Ala Ile Gly Gly Ser Ser Asn 255
AAT TCT Asn Ser 170	ACT ATT Thr Ile	GGG CAT Gly His	GCG TTC Ala Phe	CGA TAT Arg Tyr 235	ATA TAT Ile Tyr 250

Fig. 4 cont.

MY DO

· []

							Tr.
971	1019	1067	1115	1163	1217	1277	1337
AAT AGT TTC ACT GCA CCA AAT GAG AGC TAC AAG AAG CAA GTA ACC ATA Asn Ser Phe Thr Ala Pro Asn Glu Ser Tyr Lys Lys Gln Val Thr Ile 275	CGT ATT GGA TGC AAA ACA TCA TCT TGT TCA AAT TGG GTG TGG CAA Arg Ile Gly Cys Lys Thr Ser Ser Ser Cys Ser Asn Trp Val Trp Gln 295	TCT ACA CAA GAT GTT TTT TAT AAT GGA GCT TAT TTT GTA TCA TCA GGG Ser Thr Gln Asp Val Phe Tyr Asn Gly Ala Tyr Phe Val Ser Ser Gly 300	AAA TAT GAA GGG GGT AAT ATA TAC ACA AAG AAA GAA GCT TTC AAT GTT Lys Tyr Glu Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe Asn Val 315 320 325	GAG AAT GGG AAT GCA ACT CCT CAA TTG ACA AAA AAT GCT GGG GTT TTA Glu Asn Gly Asn Ala Thr Pro Gln Leu Thr Lys Asn Ala Gly Val Leu 330	ACA TGC TCT CTC TCT AAA CGT TGT TGATGATGCA TATATTCTAG CATGTTGTAC Thr Cys Ser Leu Ser Lys Arg Cys 350	TATCTAAATT AACATCAACA AGAAAATATA TCATGATGTA TATTGTTGTA TTGATGTCAA	AATAAAAATG TATCTTTTAC TATTAAAAA AAAAATGATC GATCGGACGG TACCTCTAGA-3'

Fig. 4 cont.

3 .at.

Fig. 8a

Fig. 8b

0.7 +

0.6

0.5

0.4

0.3

0.2

0.1

0.04

——□—— rCry j l —————— PBS ------ no Ab

1/dilution of Robbit arti-Amb a Land II
Fig. 10b

A.A.

Fig. 12

-		

PEPTIDE NAME CJI-1 (1-20) CJI-2 (11-30) CJI-3 (21-40) CJI-4 (31-50) CJI-5 (41-60) CJI-6 (51-70) CJI-7 (61-80) CJI-8 (71-90) CJI-9 (81-100) CJI-10 (91-110) CJI-11 (101-120) CJI-12 (111-130) CJI-13 (121-140) CJI-14 (131-150) CJI-15 (141-160) CJI-16 (151-170) CJI-17 (161-180) CJI-18 (171-190) CJI-19 (181-200) CJI-20 (191-210) CJI-21 (201-220) CJI-22 (211-230) CJI-23 (221-240) CJI-24 (231-250) CJI-25 (241-260) CJI-26 (251-270) CJI-27 (261-280) CJI-28 (271-290) CJI-29 (281-300) CJI-30 (291-310) CJI-31 (301-320) CJI-32 (311-330) CJI-33 (321-340) CJI-34 (331-350) CJI-35 (341-353)

DNPIDSCWRGDSNWAQNRMK DSNWAONRMKLADCAVGFGS LADCAVGFGSSTMGGKGGDL STMGGKGGDLYTVTNSDDDP YTVTNSDDDDPVNPAPGTLRY VNPAPGTLRYGATRDRPLWI GATRDRPLWIIFSGNMNIKL **IFSGNMNIKLKMPMYIAGYK** KMPMYIAGYKTFDGRGAQVY TFDGRGAQVYIGNGGPCVFI IGNGGPCVFIKRVSNVIIHG KRVSNVIIHGLYLYGCSTSV LYLYGCSTSVLGNVLINESF LGNVLINESFGVEPVHPQDG GVEPVHPQDGDALTLRTATN DALTLRTATNIWIDHNSFSN IWIDHNSFSNSSDGLVDVTL SSDGLVDVTLTSTGVTISNN TSTGVTISNNLFFNHHKVML LFFNHHKVMLLGHDDAYSDD LGHDDAYSDDKSMKVTVAFN KSMKVTVAFNQFGPNCGQRM **QFGPNCGQRMPRARYGLVHV** PRARYGLVHVANNNYDPWTI ANNNYDPWTIYAIGGSSNPT YAIGGSSNPTILSEGNSFTA ILSEGNSFTAPNESYKKOVT PNESYKKOVTIRIGCKTSSS IRIGCKTSSSCSNWVWQSTQ CSNWVWQSTQDVFYNGAYFV DVFYNGAYFVSSGKYEGGNI SSGKYEGGNIYTKKEAFNVE YTKKEAFNVENGNATPOLTK NGNATPQLTKNAGVLTCSLS NAGVLTCSLSKRC

POSITIVITY INDEX (PERCENT POSITIVE X MEAN S.I.)

Fig. 15b

139) UTL:

		_
TT	ĬΉ	10
GTTTT	>	ı
TT	口	
FTC	>	•
ATGGCTTCCCCATGCTTAATAGCAGTCCTTGT	Ø	
ATA(Н	15
LT A.	ᆸ	ı
rgc.	ບ	
CCA	д	
rcco	Ø	
3CT.	S A S	1 -20
TG	×	21
AAA		ï
AA		
ATTCTGAACCCTAAAA		
ACC		
GA		
rcı		
AT		
_		
CT		
AAATTCTA!		
AA		
5 -		
וט		

120 CCTTTGTGCAATTGTATCTTGTTACTCTGATAATCCCATCGACAGCTGCTGGAGAGGAGA G ĸ U V മ U മ Н Ø

180 TTCGAACTGGGATCAAAACAGAATGAAGCTCGCAGACTGTGCTGTGGGATTTGGAAGCTC Ŋ Ü r D A 25 บ Д Ø Ц × × ĸ α

CACCATGGGAGGCAAAGGAGGAGATTTTTACACCGTCACAAGCACAGATGATAATCCTGT s 45 E Д Ö Ü × G 35 <u>ල</u>

300 GAATCCTACACCAGGAACTTTGCGCTATGGAGCAACAAGAGAAAAAGCACTTTGGATCAT 3. Ы × 西 65 ĸ H Ø Ö R Ы H Ö д

TTTCTCTCAGAATATGAATATAAAGCTCAAGATGCCTTTGTATGTTGCTGGACATAAGAC H ᆸ д Σ Н Z Σ വ 420 ĸ F Ы ပ Д ტ Z Ö ᄓ V H 100 Ω Ö я 95 Ö

09

гт 480 г	3A 540 D	rg 600 C	CA 660 H	AA 720 K	cc 780
TTATTCTCCATAGTTTGCATATACACGGTTGTAATACGAGTGTTTT V I L H S L H I H G C N T S V L 120	STCTATTGGGGTCGAGCCTGTTCATGCTCAGGATGGG(S I G V E P V H A Q D G I 40 145 150	rgttacaaatgcttggattgatcataattctctctccgat' v t n a w i D H N S L S D v t N a w i D H N S L S D	TCGATGTTACGCTTGGCTCCACTGGAATTACTATCTCCAACAAT I D V T L G S T G I T I S N N 180 180	ATAAAGTGATATTAGGACATGATGATACATATGACGATGAC H K V M L L G H D D T Y D D D 200 210	ATTTGGACCTAATGCTGGGCAAAGAATGCC
GAAAGTGAGCCATGTTATTCTCCATAGTTTG K V S H V I L H S L 115	GGGGGATGTTTGGTAAGTGAGTCTATTGGGGTCGAGCCTGTTCATGCTCAGGATGGGGA G D V L V S E S I G V E P V H A Q D G D 135 150	CGCCATTACTATGCCATGTTACAAATGCTTGGATTGATCATAATTCTCTCTC	TTCTGATGGTCTTATCGATGTTACGCTTCCACTGGAATTACTATCTCCAACAATCA S D G L I D V T L G S T G I T I S N N H 175 180 185	CTTCTTCAACCATCATAAGTGATGTTATTAGGACATGATGATGATGACAA F F N H K V M L L G H D D T Y D D , D K 195 200	ATCTATGAAAGTGACAGTGGCGTTCAATCAATTTGGACCTAATGCTGGGCAAAGAATGCC

Fig. 16 cont.

: []

М

Σ

ĸ

Ø

Ö

Ø

Z 225

д

Ö

14

Z

K

닭

×

Σ

Ø

220

0 # 0		006	
AAGGGCACGATATGGACTTGTACATGTTGCAAACAATAATTATGATCCATGGAATATATA 040	R A R Y G L V H V A N N Y D P W N I Y 235 240 245 250	TGCTATTGGTGGGAGTTCAAATCCAACCATTCTGAGTGAAGGGGAATAGTTTCACTGCCCC	A I G G S S N P T I L S E G N S F T A F

096					
GCTTG	ر د		200	0.6	
TCA	ζ	מ	c	4	
CCA	ç	74			
TCA	ζ	מ			
GTGAATCACCATCAGC	;	H G G H S N			
H	(ပ	L	82	
AGGG'	(IJ	•	7	
ATA					
ACAAAGCGTATA		V T K R			
AAG		×			
ACA		H		280	
ľ		>		7	
AAGCAAG		0	ł		
AAG		×	i	÷	
A A G		×	•		
TTAC.) !	>	4	175	
<u>ל</u> מ	•	ď	מ	7	
מים בי	1	Ģ	1		
F C &	1000	Č	מ		

260

255

SCGAACTGGG A N W 29	020		
SCGAACTGGGTGTGGAGATCTACTACTTTATTAATGGAGCTTATTTGTAT A N W V W R S T R D A F I N G A Y F V 310	_ H		
GCGAACTGGGTGTGGAGATCTACACGAGATGCTTTTATTAATGGAGCTTATTTTGTA A N W V W R S T R D A F I N G A Y F V 295 310	F-(Ø	
GCGAACTGGGTGTGGAGATCTACACGAGATGCTTTTATTAATGGAGCTTATTTT A N W V W R S T R D A F I N G A Y F 300 305	4	>	10
GCGAACTGGGTGTGGAGATCTACACGAGATGCTTTTATTAATGGACA N W W W R S T R D A F I N G A N W W W R S T R D A F I N G 305	PTT		n
GCGAACTGGGTGTGGAGATCTACACGAGATGCTTTTATTAATGGACA N W W W R S T R D A F I N G A N W W W R S T R D A F I N G 305	ra T	×	
GCGAACTGGGTGTGAGATCTACACGAGATGCTTTTATTAATGGA A N W W W R S T R D A F I N G A N W V W R S T R D A F I N G S S S S S S S S S S S S S S S S S S	3CT.	A	
GCGAACTGGGTGTGGAGATCTACACG1 A N W V W R S T R 295	_	Ŋ	
GCGAACTGGGTGTGGAGATCTACACG1 A N W V W R S T R 295	AAT	Z	0.5
GCGAACTGGGTGTGGAGATCTACACG1 A N W V W R S T R 295	TT	н	3(
GCGAACTGGGTGTGGAGATCTACACG1 A N W V W R S T R 295	TTI	Ľ	
GCGAACTGGGTGTGGAGATCTACACG1 A N W V W R S T R 295	CTJ	Ø	
GCGAACTGGGTGTGGAGATCTACACG1 A N W V W R S T R 295	ATC	Д	
SCGAACTGGGTGT A N W V 295	GAG	ø	0 (
SCGAACTGGGTGT A N W V 295	CAC	EH	3
SCGAACTGGGTGT A N W V 295	CTA		
SCGAACTGGGTGT A N W V 295	GAT	ĸ	
SCGAACTGGGTG A N W V 295	GGA	X	
GCGAACTG A N W	I.G	>	
SCGAAC A N	999	3	
3CG ▶			
FH	909		}

1080	`	
AGAA	Z	
GAG	闰	330
3TT	>	n
AAA(×	
CTTTCAAAGTTGA	Ŀı	
3CT.	4	
3AA(N E A	25
ATC	z	32
GTZ	ß	
ATA	Y N S	
ACA	×	
TAT	н	0
:GAAGAGACCAATATATACAATAGTAATGAAGCT	Z	32
CCA	EH	
AGA	阿	
AAG	EI EI	
\ddot{z}	E	ان 5
AAA	X	S.
362	ڻ ت	
TCGG	S	
AT		

4 0	
77	
CTCCTCAATTAACCAAAAATGCTGGAGTTGTAACCTAAGCTCTCTCT	APOLTKNAGVVT -
SGC	Ø
TGC	A
BAA	2
TGGG	כי
-	

335 340 345

ATCTTGCTTATGAAACGAAAAAATATATAG-3'

170

Fig. 16 cont.

APP Tr

0 9	120	180	240	300	360	420
-CGGTATAGATTCTATATTCTGAGCCCTAAAAATGGCTTCCCCATGCTTAATAGCAT	TCCTTGTTTCCTTTGTGTATCTTGTTGCTCTGATAATCCCATAGACAGCTGCT	GGAGAGGAGTTCGAACTGGAATGAAGCTCGCAGATTGCGCTGTGGGAT	TTGGAAGCTCCACCATGGGAGGAGGAGATTTTTACACCGTCACAAGCGCAGATG	ATAATCCTGTGAATCCTACAGGAACTTTGCGCTATGGAGCAACAAGAAAAAGCAC	TTTGGATCATTTTCTCTCAGAATATATAAAGCTCAAGATGCCTTTGTATGTTGCTG	GACATAAGACTATTGACGGCAGGGGAGCAGGAGGGGGGGCGGTCCCTGTCGGATAGTTCATCTTGGCAACGGCGGTCCCTGTCGAAAAAAAA
M A S P C L I A	F L V F L C A I V S C C S D N P I D S C	W R G D S N W G Q N R M K L A D C A V G	F G S S T M G G K G G D F Y T V T S A D	D N P V N P T P G T L R Y G A T R E K A	L W I I F S Q N M N I K L K M P L Y V A	
-21-20	-10 -5 +1	10 25	30 45	50 65	70 85	

A 480	C 540	009	т.	T 720	780	AT 840
TGTTTATGAGGAAAGTGAGCCATGTTATTCTCCATGGTTTGCATATACACGGTTGTAATA L F M R K V S H V I L H G L H I H G C N 110 115 120	CTAGTGTTTTGGGATGTTTTGGTAAGTGAGTCTATTGGGGTGGTGCCTGTACACCCCC TSVLGDVLVSESIGVVPVHP 130	AGGACGGAGATGCGTTTACTGTGAGGACCTCTGAACATATTTGGGTCGACCATAATACTC Q D G D A F T V R T S E H I W V D H N T 150 165	TCTCCAATGGCACCGACGTCGACGTTACTCTTGCTTCCACTGCTGTTACTATTT L S N G T D G L V D V T L A S T A V T I 170 185	CCAATAACCACTTCTTCGACCATGATGATGTTGTTAGGACATAGTGATTCATTC	CAGATGATAAAGTGAAAGTCACAGTTGCATTTAACCACTTTGGACCTAATTGTGTGC S D D K V M K V T V A F N H F G P N C V 210 225	AACGATTGCCAAGGGCTAGATATGGACACTTTCATGTTGTTAATAATAATTATGAGCCAT Q R L P R A R Y G H F H V V N N N Y E P 230 230 FIG 17 CONT

1278

006	096	1020	1080
GGGGAAAATATGCCATTGGAGGAAGTTCTGATCCAACAATTATAAGTGAAGGGAATAGAT W G K Y A I G G S S D P T I I S E G N R 250 265	TTCTTGCACCAAATGAATCTTATAAAAGGAGGTGACAATACGTGTAGGTTGTAAATCTA F L A P N E S Y K K E V T I R V G C K S 270 275 280	CAAGTTGTGATGCATGGAGATCAAAAGATGATGCCTTCCTT	TTGTACAATCAGGCAAAGGGGTATAATGGTGGAGAGGCATTCAAGGTTGAAAGTGCAAATG F V Q S G K G Y N G G E A F K V E S A N 310 315
U 13	· —		- · ·

U Н ບ 340 ĸ ᄓ Ø Ö Ø K H ᄓ H 330 臼

1200 TGATATGAAAAGTCAATCGATATAATAATGTGTTATTTGTAATATTTCAGCTTTGAATAT

1260

GTTGGTATTAAAAAAAAAA-3'

Fig. 17 cont.

CJI-41	KMPMYIAGYKTFDGRGAQVYIGNGGPCVFI
CJI-41.1	PMYIAGYKTFDGRGAQVYIGNGGP
CJI-41.2	YIAGYKTFDGRGAQVYIGNGGP
CJI-41.3	KKYIAGYKTFDGRGAQVYIGNGGP

CJI-42	DALTLRTATNIWIDHNSFSNSSDGLVDVTL
CJI-42.1	RTATNIWIDHNSFSNSSDGLVD
CJI-42.2	KRTATNIWIDHNSFSNSSDGLVDK

CJI-43	KSMKVTVAFNQFGPNCGQRMPRARYGLVHVANNNYD
CJI-43.1	KSMKVTVAFNQFGPNCGQRMPRARYGLVHV
CJI-43.6	KSMKVTVAFNQFGPNSGQRMPRARYGLVHV
CJI-43.7	KSMKVTVAFNQFGPNCGQRMPRARYGLV
CJI-43.8	KSMKVTVAFNQFGPNSGQRMPRARYGLV
CJI-43.9	KSMKVTVAFNQFGPNCGQRMPRARYG
CJI-43.10	KSMKVTVAFNQFGPNSGQRMPRARYG
CJI-43.11	KSMKVTVAFNQFGPNSGQRMPRARYGKK
CJI-43.12	KSMKVTVAFNQFGPNCGQRMPRARYG

CJI-45	PRARYGLVHVANNNYDPWTIYAIGGSSNPT
CO = 20 1 =	RARYGLVHVANNNYDPWTIYAIGGSSNP
CJI-45.2	RARYGLVHVANNNYDPWTIYAIGGSS

CJI-44	DVFYNGAYFVSSGKYEGGNIYTKKEAFNVE
CJI-44.1	NGAYFVSSGKYEGGNIYTKKEAFNVE
CJI-44.2	NGAYFVSSGKYEGGNIYTKKEAFN
CJI-44.3	KKNGAYFVSSGKYEGGNIYTKKEAFN

. 41

Fig. 19a

Fig. 19b

Fig. 20

CJI-42.5	DERTATNIWIDHNSFSNSSDD
CJI-42.8	DERTATNIWIDHNSFSNSSDGLAD
CJI-43.26	DEKSMKATVAFNQFGPNDE
CJI-43.27	DEKSMKVTAAFNQFGPNDE
CJI-43.30	DEEKSMKATVAFNEFGPNDEE
CJI-43.31	DEEKSMKVTVAANQFGPNDEE
CJI-43.32	DEEKSMKVTVAFNQAGPNDEE
CJI-43.35	DEKSMKATAAFNQFGPNDE
CJI-43.36	DEEKSMKATAAFNQFGPNDEE
CJI-43.39	DDAYSDDKSMKVTVAFNQFGDE
CJI-24.5	DKEPRARYGLVHVANNNYDPWTIEEE
CJI-44.5	DENGAYFVSSGKYEGGNIYTKKEAFNAE
CJI-44.6	DEENGAYFVSSGKYEGGNIYTKKEAFNVE
CJI-44.8	DEEGAYFVSSGKYEGGNIYTKKEAFNVE

POSITIVITY INDEX

1/dilution of plasma

(background subtracted)

Fig. 25a

Fig. 25b

Fig. 26

Fig. 27

10 20 30 40 50 60 	70 80 90 100 110 120 	130 140 150 160 170 180	190 200 210 220 230 240
rra. L	CAA	rta L	ე ტ
AAA!	3AT(D	AGT' S	TAT Y
50 - ATG2	110 - - 	170 - R	230 AAG' K
5C 3CCATC	3CA(AAT N	GAA
ATG(M	GCA(11 12 13 13	GTG V
40 AAA.	100 00 00 20	160 TAGA	220 CAAT N 60
ATT.	100 	CHI	2 TTC F
rtt'	ATA	TAT. Y	ATC
O I C II,	0 – & H H H H	0 - AAA K	0 - AAC N
30 TTTI	90 	150 - E	21(ATC2 I
3AA'	CAA	GTC	210 SATGCTATCAAC D A I N
AAA(ATG M	GTT. V	GAT D
20 TAG	80 - 55 - 55 - 4	140 AGT	200 CAT
GTA'	CTG L	GAC	CGT
CAA	ፓኅ ፑ	TH TH	TCT S.
10 	70 - GCC A	130 TATG 30	190 GCAT H
TCG	atg M	ATT I	GAG E
AGT	CCAA	1. CCCAAATT. A Q I	GTT V
⊕	CT A	CC	AA

Fig. 28

			•			
300	TGCA C	360 	420	GCGT A	480 	
290	TAGGCGATGGAAGCATTGCACTGAGGCATTTTCAACAGCATGCAT	310 320 340 360 360 360 360 360 360 360 360	410	TCTTCAATGGGCCATGTCAACCTTTTAAGGTAGGTAGATGGGATAATAGCTGCGT F F N G P C Q P H F T F K V D G I I A A 120	430 440 450 460 470 480 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
280 	rcaaca s r 80	340 	100 400 1	AAGGTA K V 120	460 	140
270	ACTGAGGCATTT' T E A F	330 GTGCCAGGCAGC V P G S	390	CACTTTACTTTT H F T F	450 AATAATAGAATA	ተ ሩ ሩ
260	AGCATGATTGC K H D C	320 	380	CATGTCAACCT P C Q P	440 scgagctggaag	4 × n
250	TAGGCGATGGA? \$ G D G	310 AAAACCCATCAG K N P S	370	rcttcaatgggc F F N G	430 ACCAAAATCCAG	Y Q N P

Fig. 28 Cont.

	•				•	
540	ວິດຄຸ	600 	099	GAAT E	720	GCAC A
	GCT.	ນ ≱ ຊ		CCC P		ACG T
	TGG. ₩	ACA		AGT. S		ATT
530	ŢĠĠ. ¥	590 - CCA P	650	AAC	710	AGT
	CAA	AGA R		ATG M		GCATT G I
	AAA(K	GATA D	•	CTA		99 9
520	GTTTTACTCTAATGGGTAAAGGTGTAATTGATGGGCAAGGAAAACAATGGTGGGCTGGCC G F T L M G K G V I D G Q G K Q W W A G 160	550 560 600 600	640	AATTCGATTTTCCACGGGTCTGATAATCCAAGGACTGAAACTAATGAACAGTCCCGAAT KFDFST GLIKLMNSPE	700	TTCATTTAGTTATTGTGAGGAGTAAAATCATCGGCATTAGTATTACGGCAC F H L V F G N C E G V K I I G I S I T A 210
) 9 9	AAC(N		3GA(AAA. K
0 -	GAT D	0 – H O U	0 -	CAA Q	0 -	GTA V
510	ATT I	570 ATTT	630	ATC I	069	GGA G
	GTA V	GAA		IATA I		rgrgag C E
	GGT	CGA R		CTC		rg C
500	AAA' K	560 GGA	620	_ 55 6	680	N N
	3GG1 G	N N		T		.1966
	ATG M	GTC V		ກາ ເກີ		TTT:
490	TCT?	550 	610	 F F 190	670	- PAGTJ V '
, 4.	ractor T	5! raaa' r 1.		GAZ		ATTTA H L 2
	PTT? F	א ה ה.		att F		TCA.
	ତି ଓ	Ãα		A K		HH

Fig.28 Cont.

780	CGAGAGACAGTCCTAACACTGGAATTGATATCTTTGCATCTAAAACTTTCACTTAC PRDSPNTDG IDIFASKNFHL 230	790 800 810 820 830 840	860 870 880 890 900 	910 920 930 940 950 960
	H	FCT	CHI	ATA I
	P F	rc Tr	AGT(FTC
770	Z Z	830 GGG	890 	950 AAA! K
7	AAA K	830 ACAGGG	8 ATAG	CTP A
	CTA	9 9 9	GTA	GGGGCT. G À
0 -	CAT A O	O LIAG	80 ATAA I	0 A A U O O U D U D U D U D U D U D U D U D U
760	rtrgC F A 240	820 	880 - 3GAAT G I	940 GTAAAT V N V N 300
	CT	TCG(ATG(H	A C G.
	TATC I	3CGJ	19000 19000	930 TACGTGCAC Y V H
750	aatggaattgat D G I D	810 	870 CAGG	930 ACG1 Y \
7	IAAI	8 SATGA D D	B DI	CATA
	7 9	GGA	,GCGGT	OFF.
0 -	TGA D	0 - AGGG(0 – H H C	0 CGTT
740	CAC:	800 	860 TGATT L I	920
	'AA(N	AGGA G	rcr L	åGCZ ▶
	်င္သီ မ	ATA I	3GAT D	R
730	CAGT S S 230	790 CACG	850 1 TGAG	910 CTC1 290
7	GAC D	7 AGAAC K N	8 HT4 1	AAC N
	AGA R	aag K	850 TGTGATTGAGG V I E 270	GAA E
	CG.	A A	T T T	ე. გ

Fig.28 Cont.

1020	lataa I	1080	7 × 7	1140 	BACAT T	1200
	GCCAT S H		A C	•	ATGT(D V	GCAGT CS
1010	I G M A	1070	TAALAAALCAA L I N Q	1130	ATCCAAGATGTGA I Q D V	1190
	GGCA!	r E	L		CAAA	CAAC'
1000	GGTTCA G S 320	1060	CCCATA P I 340	1120	GCGGTT A V 360	1180 GCAATT A I 380
066	 ACATGGCAGGGTGGTTCA T W Q G G S 320	1050	AATTCGGAGAAC N S E N	1110	GCTTGCCAAAACCAGAGGTCTGCGGTTCAAATCCAAGATGTGACAT A C Q N Q R S A V Q I Q D V T 360	1160 1170 1180 1190 1200
980	l AAGAATCAAA RIK	1040	TGAAATGATA 7 E M I	1100	CTGCTTGCCAA S A C Q	1160 grgggacarca(
970		1030	TTTATGAGAATGATAAATTCGGAGAACCCCATATTAATAATCAATTCAATTTTATTAATCAATCAATTTTATTA	1090	GCACTTCAGCTTCT C T S A S 350	1150 ACAAGAACATACGT Y K N I R 370

Fig.28 Cont.

1260	GGGAAAA G K	1320	CCTGCAT P A	1380	CCAAAAA P K	1440	TTGTTGG L L
1250	AGCTTACCTCA K L T S	1310	GACACGTCATC G H V I	1370	CCCATAAACAC S H K H	1430	GAACACGCATA R T R I
1240	TCTTTGAZ S L F 400	1300	TTCAGTGG F S G	1360	TCTAAATC S K S 440	1420 	GGTAACAG G N F 460
1230	GTATGCCCTGCAAAGATATAAAGCTAAAGTGATATATCTTTGAAGCTTACCTCAGGGAAAA S M P C K D I K L S D I S L K L T S G K 390	1290	TTGCTTCCTGCCTTAATGATAATGGATATTTCAGTGGACACGTCATCCCTGCAT I A S C L N D N A N G Y F S G H V I P A I A 410	1350	GCAAGAATTTAAGTCCAAGGGAAAAGAATCTTAAATCCCATAAACACCCAAAAA C K N L S P S A K R K E S K S H K H P K 440	1410	CTGTAATGGTTGAAAATATGCGAGGAACAGGGTAACAGAACACGCATATTGTTGG T V M V E N M R A Y D K G N R T R I L L 450
1220	AGATATAAAG D I K	1280	I TAATGATAATG N D N	1340	TCCAAGTGCT PSA	1400	aaatatgcga N M R
1210	GCCCTGCAA	1270	TTCCTGCCT' S C L 410	1330	AGAATTTAAG' K N L S 430	1390	TAATGGTTGA V M V E 450
,	GTAT S M		TTGC' I A		GCAA C K		CTGT T V

Fig.28 Cont.

1500	GCCAAGT A K	1560 	TGCAGCT C S	1620 	GTGAATA	1680	AAGGCAT
1490	GTCCATGTAAGGC S P C K A	1550 	AGGTGGATA R W I	1610	gratgtgcta	1670	AATGTTTCI
1480	GGTTGCAGT G C S 480	1540 	rarccrcaga Y P Q 500	1600	ATTGAAACTC	1660	ATAAATCATC
1470	CAAATGTCAT	1530	ATTATGCCGCAGGAGTAI I M P Q E Y	1590 	aatgagataci -	1650	і Зататтсаады
1460	ATTGTACAAA(N C T N	1520	ATCGTATTATGCCGCAGGAGATATGCAGTCGTATGCAGCT H R I M P Q E Y Y P Q R W I C S 500	1580	raccarccari Y H P - 514	1640	AATATTAGAACTGATATTGAAAATAAATCATCAAGGTTTTCTAAGGCAT
1450	GGTCGAGGCCTCCGAATTGTACAAATGTCATGGTTGCAGTCCATGTAAGGCCAAGT G S R P P N C T N K C H G C S P C K A K 470	1510	TAGTTATTGTTCATC L V I V H 490	1570	GTCATGGCAAAATCTACCATAATGAGATACATTGAAACTGTATGTGCTAGTGAATA C H G K I Y H P - 510 514	1630	 TTCTTGTGGTACAA!
	GGTC G		TAGT L V		GTCA		TTC1

Fig.28 Cont.

- 53

X N P(

Ø) M

Ø

H

മ

Ŀ

K

ы

H

U

А

Ħ

×

Ö

А Ö

>

SHORT

4 4 Ø Ü G Ö)K N P() × × × Д × × × ĸ 闰 闰 CKN 闰 回 > > > > Z Z Z Z A A Ŀ Ŀ Ŀ Ŀı Н Н Н Н à Ø) M Z Z Z Z Н 3 Н Н Н Ø 4 4 4 ø Ø H H Α А А Ħ Ø ß Ħ Ħ ĸ ۲ų ĸ ĸ Ŀ 4 Ŋ ø Ŋ ß 回 闰 H 田 Ħ Н H 闰 ບ ບ > > Д А ĸ × ĸ Ħ ĸ Ħ K × 70 Ö Ω А Ö Ö > > SAKAGUCHI Cry j II Cry j II SHORT LONG LONG

Fig 30

A 450

1.0

0.9

0.8

0.7

9.0

Fig. 33

0.0

0.1

0.2

0.4

0.3

. . .

-

PATIENT #	MAST	PURIFIED NATIVE Cry j l	PURIFIED NATIVE Cry j II	RECOMBINANT Cry j II (rCry j II)
1034	2	- .	+	-
1142	2	+	•	
1143	0	+	+	+
1144	1	+	+	-
1145	0	-	-	+
1146	3	+ .	-	-
1147	3	. +	-	-
1148	3	+	+	+
1151	3	+	+	-
1153	1	+	-	-
1154	3	+	+	-
1158	2	+	+	•
1159	2	+	+	+
1165	1	+	-	+
1167	1/0		+	-
1170	1/0	+	-	-
1171	2	+	-	-
1178	1	+	-	-
1181	1/0	+	<u>-</u>	-
1182	1	+	+	-
1183	1	+	+	+ ´
1185	1/0	+	+	-
1186	1/0	+	+	+
·				
POSITIVE	21	20	13	5

FTFKVDGIIAAYQ Cry j IIA NGYFSGHVIPACKN Cry j IIB Cry j IIC: 60 MGHHHHHHEFRKVEHSRHDAINIFNVEKYGAVGDGKHDCTEAFSTAWQAACKNPSAMLLV PGSKKFVVNNLFFNGPCQPHFTFKVDGIIAAYQNPASWKNNRIWLQFAKLTGFTLMGKGV 128 IDGQGKQW Cry j IID: 10 MGHHHHHHEFWAGQCKWVNGREICNDRDRPTAIKFDFSTGLIIQGLKLMNSPEFHLVFGN 110 100 CEGVKIIGISITAPRDSPNTDGIDIFASKNFHLQKNTIGTGDDCVAIGTGSSNIVIEDLI 127 CGPGHGI

Cry j IIE: MGHHHHHHEFSIGSLGRENSRAEVSYVHVNGAKFIDTQNGLRIKTWQGGSGMASHIIYEN 80 70 VEMINSENPILINQFYCTSASACQNQRSAVQIQDVTYKNIRGTSATAAAIQLKCSDSMPC 127 KDIKLSD Cry j IIF: MGHHHHHHEFISLKLTSGKIASCLNDNANGYFSGHVIPACKNLSPSAKRKESKSHKHPKT 80 70 VMVENMRAYDKGNRTRILLGSRPPNCTNKCHGCSPCKAKLVIVHRIMPQEYYPQRWICSC **HGKIYHP** Cry j IIG (J1) GKGVIDGQGKQWWAGQCKWVNGRE Cry j-IIH (J3) DSMPCKDIKLSDISLKLTSGKIAS Cry j-IIQ (J2) IEDLICGPGHGISIGSLGRENSRA

Cry41.Fig

Mean Stimulation Index

