14.2-14.3: Hypothesis Tests on Regression

1 Nov 2011 BUSI275 Dr. Sean Ho

- HW7 due next Tues
- Please download: 16-Banks.xls

Outline for today

- Review of regression model
- Decomposition of variance in regression
 - Model vs. Residual
- F-test on the overall regression model
 - Comparison with t-test on correlation
- T-test on slopes b
- Confidence intervals on predicted values

Applying the regression model

- Example: 16-Banks.xls
- Scatterplot:

X: Employees (D:D)

Y: Profit (C:C)

- Layout → Trendline
- Correlation r:
 - CORREL(datY, datX)

- Intercept b₀: INTERCEPT(dataY, dataX)
- Slope b₁: SLOPE(dataY, dataX)
- SD of residuals (s_ε): STEYX(dataY, dataX)

Predictions using the model

- Assuming that our linear model is correct, we can then predict profits for new companies, given their size (number of employees)
 - Profit (\$mil) = 0.039*Employees 36.45
- e.g., for a company with 1000 employees, our model predicts a profit of \$2.558 million
 - This is a point estimate; s_ε adds uncertainty
- Predicted Ŷ values: using X values from data
 - Citicorp: $\hat{Y} = 0.039*93700 36.45 \approx 3618$
- Residuals: (actual Y) (predicted Y):
 - \bullet Y \hat{Y} = 3591 3618 = -27.73 (\$mil)
 - Overestimated Citicorp's profit by \$27.73 mil

Analysis of Variance

- In regression, R² indicates the fraction of variability in the DV explained by the model
 - If only 1 IV, then $R^2 = r^2$ from correlation
- Total variability in DV: $SS_{tot} = \Sigma(y_i \overline{y})^2$
 - =VAR(dataY) * (COUNT(dataY) 1)
- Explained by model: $SS_{mod} = SS_{tot} * R^2$
- Unexplained (residual): SS_{res} = SS_{tot} SS_{mod}
 - Can also get from $\Sigma(y_i \hat{y}_i)^2$
- Hence the total variability is decomposed into:

$$\bullet$$
 SS_{tot} = SS_{mod} + SS_{res}

(book: SST = SSR + SSE)

F test on overall model (R2)

Follow the pattern from the regular SD:

$$\sigma = \sqrt{\frac{1}{n-1} \sum (x - \bar{x})^2}$$

	Total (on DV)	Model	Residual
SS	$SS_{tot} = \Sigma(y - \overline{y})^2$	$SS_{mod} = \Sigma(\hat{y} - \overline{y})^2$	$SS_{res} = \Sigma(y - \hat{y})^2$
df	n - 1	#vars - 1	n - #vars
MS = SS/df	SS _{tot} / (n-1)	SS _{mod} / 1	SS _{res} / (n-2)
SD = √(MS)	S _Y	_	s _ε (=STEYX)

- The test statistic is $F = MS_{mod} / MS_{res}$
 - Get p-value from FDIST(F, df_{mod} , df_{res})

Calculating F test

- Key components are the SS_{mod} and SS_{res}
- If we already have R², the easiest way is:
 - Find $SS_{tot} = VAR(dataY) * (n-1)$
 - ◆ Bank.xls: 38879649 (≈ 39e6)
 - Find $SS_{mod} = SS_{tot} * R^2$
 - ◆ e.g., 39e6 * 88.53% ≈ 34e6
 - Find SS_{res} = SS_{tot} SS_{mod}
 - e.g., 39e6 34e6 ≈ 5e6
- Otherwise, find SS_{res} using pred \hat{y} and residuals
- \blacksquare Or, work backwards from $s_{\varepsilon} = STEYX(Y, X)$

F-test on R² vs. t-test on r

- If only one predictor, the tests are equivalent:
 - \bullet F = t^2 ,
 - Banks.xls: F ≈ 378, t ≈ 19.4
 - F-dist with $df_{mod} = 1$ is same as t-dist
 - Using same df_{res}
- If multiple IVs, then there are multiple r's
 - Correlation only works on pairs of variables
- F-test is for the overall model with all predictors
 - R² indicates fraction of variability in DV explained by the complete model, including all predictors

T-test on slopes

- In a model with multiple predictors, there will be multiple slopes (b₁, b₂, ...)
- A t-test can be run on each to see if that predictor is significantly correlated with the DV
- Let $SS_x = \Sigma(x \overline{x})^2$ be for the predictor X:
- Then the standard error for its slope b₁ is
 - $SE(b_1) = s_{\varepsilon} / \sqrt{SS_X}$
- Obtain t-score and apply a t-dist with df_{res}:
 - =TDIST(b₁ / SE(b₁), df_{res}, tails)
- If only 1 IV, the t-score is same as for r

Summary of hypothesis tests

	Correlation	Regression	Slope on X ₁
Effect	r	R ²	b ₁
SE	√((1-r²) / df)	-	s _ε / √SS _x
df	n - 1	df1 = #var - 1 df2 = n - #var	n - #var
Test statistic	t = r / SE(r)	F = MS _{mod} / MS _{res}	$t = b_1 / SE(b_1)$

- Regression with only 1 IV is same as correlation
 - All tests would then be equivalent

Confidence int. on predictions

Given a value x for the IV, our model predicts a point estimate ŷ for the (single) outcome:

•
$$\hat{y} = b_0 + b_1 *x$$

■ The standard error for this estimate is

$$SE(\hat{y}) = s_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SS_X}}$$

- Recall that $SS_x = \Sigma(x \overline{x})^2$
- Confidence interval: ŷ ± t * SE(ŷ)
- When estimating the average outcome, use

$$SE(\hat{y}) = s_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{SS_X}}$$

TODO

- HW7 (ch10,14): due Tue 8 Nov
- Projects:
 - Acquire data if you haven't already
 - If waiting for REB: try making up toy data so you can get started on analysis
 - Background research for likely predictors of your outcome variable
 - Read ahead on your chosen method of analysis (regression, time-series, logistic, etc.)

