ETESP

QUÍMICA GERAL

TABELA PERIÓDICA

LOCALIZAÇÃO DOS ELEMENTOS

EXCEÇÕES NA DISTRIBUIÇÃO ELETRÔNICA

DIAGRAMA DE LINUS PAULING X DIAGRAMA DE RICH-SUTER

PIL

QUÍMICA GERALI PROFESSOR JOTA | ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

LOC	ALIZAÇÃO	DOS ELEN	MENTOS QU	ÍMICOS														
1s²	2s ²	2p ⁶	3s ²	3p ⁶	4s ²	3 d ¹⁰	4p ⁶	5s ²	4 d ¹⁰	5p ⁶	δs²	4 f ¹⁴	5 d ¹⁰	6p⁴	7s²	5f14	6d ¹⁰	7p ⁶
	1s ¹		Ti	1s ² 2	2s ² 2p ⁶ 3	s ² 3p ⁶ 4												₹.
	25 ¹	25 ²	4s ² 3					· Camada s e- da ca			_	0	2p ¹	2p ²	2p ³	2p4	2p ⁵	2p ⁶
	3s ¹	3s²	subni	vel mai	s energé	etico)							3p1	3p ²	3p ³	3p4	3p ⁵	3p ⁵
	45) 4 ₅ 2	3d ¹	Ti	3d3	3d4	3 <u>d</u> 5	3d ⁵	3d ⁷	3d ^g	3d ³	3d ¹⁰	4p1	4p²	4р () 4p4	4p ⁵	4p5
	5s ¹	5s²	4d1	4 <u>0</u> 2	4d ³	4d ⁴	4d ⁵	CAS	4d ⁷	4d³	4d ⁹	4d ¹⁰	5p1	5p ²	5p ³	5p4	5p5	5p ⁵
	5s ¹	5s²	57 a 71	5d ²	5d3	5d ⁴	5d ⁵	5d ⁵	5d ⁷	5d ^s	5d ³	5d ¹⁰	5p1	5p ²	Бр ³	5p4	5p ⁵	5p5
	75 ¹	7s²	89 a 103	5d ²	5cl ³	6d4	5¢ ⁵	5d ⁵	6d ⁷	6d ^g	5d ³	6d₁0	7p ¹	7p²	7p³	7p ⁴	7p ⁵	7p5
				451	4f ²	4f ³	4f4	4f5	415	4f ⁷	e	4f ⁹	4f ¹⁰	4f ¹¹	4f ¹²	4513	4f ^{1,1}	5d1
				5f1	5f ²	5f ³	5f4	5f ⁵	5f ⁵	5f7	J _{5f8}	5f ⁹	5f ¹⁰	5f ¹¹	5f ¹²	5f ¹³	5f ¹⁴	£01±

Para os elementos de Transição Externa, soma-se os e- do subnível mais energético com os da camada de valência para determinar o grupo. O período é a camada de valência

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

11 M EX 21 M E

LOCALIZAÇÃO DOS ELEMENTOS QUÍMICOS

	00001111	111111111111111111111111111111111111111		_													
2s ²	2p ⁶	3s ²	3p ⁶	4s ²	3d ¹⁰	4p ⁶	5s ²	4d ¹⁰	5p ⁶	ós²	4 f ¹⁴	5 d ¹⁰	6p ⁶	7s ²	5f14	6d ¹⁰	7p ⁶
1s1		A	1s ² 2	2s ² 2p ⁶ 3	3s ² 3p ⁶ 4	s ² 3d ¹⁰	4p ⁶ 5s ² 4	d ¹⁰ 5p ⁶	6s ² 4f ¹⁴ :	5d ⁹							3
25 ¹	25 ²		_	T 10 2 : 0	11.0		,	33	6s² – Ca valência	- 6º Per		2p!	2p2	2p ³	2p4	2p ⁵	2p ⁶
3s ¹	3s²						(soma-se energét		a camad	a de		3p1	3p ²	3p ³	3p4	3p ⁵	3p ⁵
45	J 452	3d1	3d ²	303	3d ⁴	3 <u>d</u> 5	3d ⁶	3d ⁷	3d ⁸	3d ³	3q ₁₀	β 4ρ¹	4p²	4р () 4p ⁴	4p ⁵	4p ⁶
5s ¹	5s ²	4d ¹	4 <u>1</u> d ²	4d ³	4d ⁴	4d ⁵	CAS	4d ⁷	4d³	4d ⁹	4d ¹⁰	5p1	5p ²	5p3	5p4	5p ⁵	5p ⁵
5s ¹	6s²	57 a 71	5d ²	5d³	5d ⁴	5d ⁵	5d ⁵	5d ⁷	5d ⁸	Au	5d ¹⁰	5p1	5p ²	6p³	5p4	5p ⁵	5p ⁵
7s ¹	7s²	89 a 103	ნ <u>ქ²</u>	5d ³	5d ⁴	5d≥	ઈડો ⁵	6d ⁷	6d ⁸	5d ³	6₫ ¹⁹	7p ¹	7p²	7p ³	7p4	7p ⁵	7p ⁶
			4f1	4f ²	4f³	4f4	4f5	415	4f ⁷	_ #! 	4f ⁹	4f ¹⁰	4f ¹¹	4f ¹²	4513	4f ¹⁴	5d1
			5f1	5f ²	5f ³	5f ⁴	5f ⁵	5f ⁵	5f ⁷	\int_{5f^3}	5f ⁹	5f ¹⁰	5f ¹¹	5f ¹²	5f ¹³	5f ¹⁴	201 ₇

Para os elementos de Transição

Externa, soma-se os e- do subnível mais
energético com os da camada de
valência para determinar o grupo.
O período é a camada de valência

QUÍMICA GERALI, PROFESSORJOTA I, ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

11 M EX 21 M E

)CALIZAÇ <i>î</i>	O DOS ELEN	VIENTOS QU	imicos														
2s ²	2p ⁶	3s ²	3p ⁶	4s ²	3d ¹⁰	4p ⁶	5s ²	4 d ¹⁰	5p⁴	δs²	4 f ¹⁴	5 d ¹⁰	6p⁴	7s²	5f14	6d10	7p ⁶
1s1		Ac	75	s ² – Can	nada de	valência	- 7º Per	riodo									3
25 ¹	252		5	f¹ – esta	i na casa	a 1						2p!	2p2	2p ³	2p4	2p ⁵	2p ^e
3s ¹	3s ²											3p ¹	3p ²	3p3	3p4	3p ⁵	3p ⁱ
45	J 452	3d1	3d ²	3d ³	3d ⁴	3d ⁵	3d ⁵	3d ⁷	3d ^g	3d ³	3d ₁₀	4p ¹	4p ²	4p () 4p ⁴	4p ⁵	4p ^t
5s ¹	5s²	4d ¹	4d ²	4 ∆3	4d ⁴	4d ⁵	C /15	4d ⁷	4d ³	4,d ³	4d ¹⁹	5p1	5p ²	5p ³	5p4	5p ⁵	5p ⁴
5s1	5s ²	57 a 71	5d ²	5d ³	5d ⁴	5d ⁵	5d ⁶	5d ⁷	5d ^g	5d ^g	5d ¹⁰	5p1	5p ²	5p ³	5p4	5p5	5p
7s ¹	7s ²	89 a 103	5d ²	5d ³	5d ⁴	5cl⁵	5d ⁵	6d ⁷	6d ⁸	5d ³	5d ¹⁹	7p!	7p²	7p³	7p ⁴	7p ⁵	7p ^t
			4f ¹	4f ²	4f³	4f4	45	415	4f ⁷		4f ⁹	4£10	4f ¹¹	4f ¹²	4513	4f ^{1,1}	5d
			Δc	512	5f3	5f4	5/5	5fē	5f7	J 5/5	5f ⁹	5f10	5f11	5f12	5f13	5f14	[] 5d

Para os elementos de Transição Interna, o subnível mais energético define a "casa" O período é a camada de valência

QUÍMICA GERALI PROFESSORJOTA I ESCOVA TÉCNICA ESTADUAL DE SÃO PAULO

 $2p^2$

 $3p^2$

 $4p^{2}$

5p2

 $5p^2$

7p2

4f11

5f11

2p1

3p1

5p1

5p1

7p1

4510

5f10

3010

4010

5d19

 $5c|^{19}$

459

5f⁹

303

403

503

503

203

303

40

 $5p^3$

5p3

703

4512

5f12

2p4

394

594

5p4

701

4513

5f13

5f14

GO(VICY 68997) | Shree LOCALIZAÇÃO DOS ELEMENTOS QUÍMICOS

Exceção LANTANÍDEOS (não termina em f)

Exceção ACTNÍDEOS (não termina em

TABELA PERIÓDICA

LOCALIZAÇÃO DOS ELEMENTOS QUÍMICOS

 25^{2}

 $3s^2$

5s2

752

301

401

57 a 71

89 a 103

302

402

5d2

4)f1

 $5f^{\perp}$

303

403

503

452

304

44

594

5d4

4f3

5f3

1s²2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹

305

405

5d5

505

454

5f4

6s2 - Camada de valência - 6º periodo

307

407

507

5d7

455

5f5

 $3d^3$

403

5d3

5cl3

457

4f¹⁴ 5d¹ 14+1 =15 Casa 15 (soma-se os e- dois últimos subniveis)

3d5

5d5

505

455

5f5

 $1s^{1}$

251

3s1

551

 $5s^{1}$

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

LOCALIZAÇÃO DOS ELEMENTOS QUÍMICOS

Exceção LANTANÍDEOS (não termina em f)

Exceção ACTNÍDEOS (não termina em f)

.

QUÍMICA GERALI, PROFESSOR JOTA I, ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

COUNTEX COURT

Exceções notáveis das distribuições eletrônicas

Em certos casos um subnivel semipreenchido puxa o elétron com mais força que um outro que deveria em tese ser preenchido primeiro.

Esta energia faz o elétron saltar para um outro subnivel.

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

L

QUÍMICA GERALI PROFESSOR JOTA | ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

Tabela periódica

11 M D 11 M D

Nióbio, rutênio, ródio, paládio, platina, além de uma grande número de lantanídeos e actinídeos (não mostrados) desobedecem abertamente o Diagrama de Pauling!!! Serão todos esses elementos exœções? Quando explicamos isso em sala de aula chamamos atenção a esses casos? Ou varremos para baixo do tapete, não os mencionamos, e torcemos para que nenhum aluno pergunte sobre eles? Quando perguntam, falamos simplesmente que são exceções?

Não, esses casos não são exceções! Essa é a realidade! O bom Diagrama funciona bem para uma série de elementos, em especial, os representativos, mas falha ao descrever a estrutura eletrônica de vários metais. A natureza nunca foi tão obediente mesmo ... mas não é por isso que o Diagrama não tenha o seu mérito. Mas ai? Só isso? O Diagrama de Pauling não funciona para esses elementos e não tem nenhuma explicação para essas observações?

Diagrama de Rich-Suter. Este diagrama tenta explicar mas não será estudado no ensino médio.

DISTRIBUIÇÃO ELETRÔNICA -EXCEÇÕES

Exceções notáveis das distribuições eletrônicas

Em certos casos um subnivel semipreenchido puxa o elétron com mais força que um outro que deveria em tese ser preenchido primeiro.

Esta energia faz o elétron saltar para um outro subnivel.

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA FÉCRICA ESTABUAL DE SÃO PAULO

QUÍMICA GERAL