캡스톤디자인 면담 확인서

팀원	유재상			
주제	설명가능한 딥러닝을 이용한 심전도 데이터 분석 연구			
면담일시	2021. 11. 12.	지도교수	김성태	(인)
	acc 대신 roc curve : area under roc curve binary decision의 경우 이쪽이 더 좋을 수 있음 autoencoder의 모델변경: recon의 anomaly 체크까지는 유효해보이나 성능이 충분해보이지 않음 recon능력이 향상되어야 어느부분에서 anomaly detection이 되었는지 explainable retrieval, contents based retrieval: knn기반으로 이상파형을 잡아낸다면, 뭘 가져올것인가-단순 벡터비교의 경우에는 틱이 밀리면 정확도 낮아질수있음, pqrst feature 이용하면 가능할듯 kl-다이버전스 / Earth Mover's Distance 참고해볼 것.			
면				
담내				
용				
	recon이 잘 될 경우에 a 만의 비교할 경우 retriev			고 해당부분