- 1. Show that the set of all structly increasing infinde sequences of positive integers is uncountable.
- 2. Prove that the collection of all finite subsets of W is countable.
- 3. Let $s = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define the relation \sim on s where $\frac{(a,b)}{(a,b)} \sim (e,d)$ iff ad = bc. Prove that \sim is an equivalence relation.
- 4. Prove that for the set of positive integers, the relation " m is multiple of n" is an order relation.
- 5. Let S is a set and fox A, B \(\int P(S)\), We define A \(\int B\) to mean |A| \(\le \) |B|. Is this selation a partial order on P(S)? Explain.

 P(S) \(\tau\) power set of S

 |A| \(\tau\) cardinality of A

 |B| \(\tau\) cardinality of B
- 6. Consider the set s = 1R where $n \sim y$ iff $n = y^*$.

 i) Find an the numbers that are nelated to n = 1.

 Repeat this enercise for $n = \sqrt{2}$ and n = 0
 - ii) prove that ~ is an equivalence relation on s.