(51) Int. Cl.⁶:

H 05 K 3/22

B 23 K 26/00 H 01 L 23/50 H 01 L 21/60

DEUTSCHES PATENTAMT

® Offenlegungsschrift

® DE 197 39 481 A 1

(21) Aktenzeichen:

197 39 481.7

(22) Anmeldetag:

9. 9. 97

43 Offenlegungstag:

15. 10. 98

6

PX

66 Innere Priorität:

197 15 219.8

11.04.97

(7) Anmelder:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München, DE

(74) Vertreter:

Schoppe, F., Dipl.-Ing.Univ., Pat.-Anw., 81479 München (72) Erfinder:

Azdasht, Ghassem, Dipl.-Ing., 14052 Berlin, DE; Azadeh, Ramin, Dipl.-Ing., 12357 Berlin, DE; Rüthnick, Clemens, Dipl.-Ing., 14109 Berlin, DE; Lange, Martin, 10437 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Vorrichtung und Verfahren zum Aufbringen einer Mehrzahl von Lotkugeln auf ein Substrat
- Eine Vorrichtung zum Aufbringen einer Mehrzahl von Lotkugeln auf ein Substrat weist eine Lotkugelfixierungsvorrichtung, eine Mehrzahl von Glasfasern und einen Faserhalter auf. In der Lotkugelfixierungsvorrichtung ist eine Mehrzahl von Kanälen vorgesehen, deren Querschnittflächen kleiner sind als die Querschnittflächen der aufzubringenden Lotkugeln. Der Faserhalter ist bezüglich der Lotkugelfixierungsvorrichtung derart angeordnet, daß zwischen denselben ein Hohlraum gebildet ist, der mit einem Unterdruck beaufschlagbar ist. Der Faserhalter hält die Glasfasern in Ausrichtung mit den Kanälen.

Beschreibung

Die vorliegende Frfindung bezieht sich auf eine Vorrichtung und ein Verfahren zum Aufbringen von Lotkugeln auf ein Substrat und insbesondere auf eine Vorrichtung und ein Verfahren zum Aufbringen und Plazieren einer Mehrzahl von Lotkugeln auf dem Substrat und zum Aufschmelzen derselben auf das Substrat mittels eines Lasers.

Gemäß dem Stand der Technik wird eine Lotstelle auf einem Substrat gebildet, indem eine Lotkugel auf das Substrat 10 aufgebracht und nachfolgend geschmolzen wird. Dies wird beispielsweise mittels eines sogenannten "Solder Ball Bumper" durchgeführt. Sollen mehrere Lotstellen auf einem Substrat plaziert werden, werden jeweils einzelne Lotkugeln auf das Substrat aufgebracht und beispielsweise mittels des 15 genannten Verfahrens geschmolzen.

Es ist terner bekannt, mehrere Lotkugeln gleichzeitig auf ein Substrat aufzubringen und die Umschmelzung nachfolgend in einem Durchlaufofen zu realisieren. Bei diesem Vertahren wird zum Umschmelzen der Lotkugeln jedoch ein 20 Flußmittel benötigt.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung und ein Verfahren zum Aufbringen einer Mehrzahl von Lotkugeln auf ein Substrat zu schaffen, die ein zeitsparendes Aufbringen der Lotkugeln ohne die Verwendung eines Flußmittels ermöglichen.

Diese Aufgabe wird durch eine Vorrichtung gemäß Anspruch 1 sowie ein Verfahren gemäß Anspruch 6 gelöst.

Die vorliegende Erfindung schafft eine Vorrichtung zum Aufbringen einer Mehrzahl von Lotkugeln auf ein Substrat, 30 die eine Lotkugelfixierungsvorrichtung, in der eine Mehrzahl von Kanälen vorgesehen ist, deren Querschnittflächen kleiner als die Querschnittfläche der aufzubringenden Lotkugeln sind, sowie eine Mehrzahl von Glasfasern aufweist. Ein Faserhalter ist bezüglich der Lotkugelfixierungsvorrichtung derart angeordnet, daß zwischen denselben ein mit einem Unterdruck beaufschlagbarer Hohlraum gebildet ist, wobei der Faserhalter die Glasfasern in Ausrichtung mit den Kanälen hält.

Der Hohlraum ist vorzugsweise mittels einer Unterdruckerzeugungsvorrichtung mit einem Unterdruck beaufschlagbar, während ferner vorzugsweise eine Vorrichtung zum Erzeugen und Leiten von Laserpulsen durch die Glasfasem
vorgesehen ist.

Die vorliegende Erfindung schafft terner ein Verfahren 45 zum Aufbringen einer Mehrzahl von Lotkugeln auf ein Substrat, bei dem zunächst eine Mehrzahl von Lotkugeln durch eine in einer Lotkugelfixierungsvorrichtung vorgesehene Mehrzahl von Kanälen, deren Querschnittflächen kleiner als die der Lotkugeln ist, angesaugt wird, so daß jeweils Lotkugeln an den Kanälen fixiert sind. Die Lotkugelfixierungsvorrichtung wird nachtolgend zu einem Substrat bewegt, woraufhin die Lotkugeln auf eine Oberfläche des Substrats aufgesetzt werden. Im Anschluß werden den Lotkugeln durch das Leiten von Laserpulsen durch die Kanäle auf die Substratoberfläche geschmolzen. Vorzugsweise wird während des Schmelzen der Lotkugeln denselben ein Inertgas zugeführt, um dieselben vor einer Oxidation zu schützen.

Die vorliegende Erfindung schafft somit eine Vorrichtung und ein Verfahren, die ein flußmittelfreies Umschmelzen 60 von Lotkugeln auf einem Substrat ermöglichen. Die vorliegende Erfindung ermöglicht ferner die Realisierung des gesamten Umschmelzprozesses in kürzester Zeit.

Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Ansprüchen dargelegt.

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1 bis Fig. 4 schematische Querschnittdarstellungen der erfindungsgemäßen Vorrichtung während unterschiedlicher Phasen des erfindungsgemäßen Verfahrens.

In Fig. 1 ist eine schematische Querschnittdarstellung eines bevorzugten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung in einem Ausgangszustand dargestellt.

In einer Trägerplatte 10 sind Kanäle 12, die dieselbe zwischen zwei Hauptoberflächen derselben durchdringen, vorgesehen. Auf der Trägerplatte 10 sind bei dem dargestellten Ausführungsbeispiel Abstandhalter 14 vorgesehen, derart, daß dieselben einen Faserhalter 16 mit der Trägerplatte 10 verbinden, wobei zwischen Hauptoberflächen des Faserhalters 16 und der Trägerplatte 10 ein Hohlraum 18 gebildet ist. Der Faserhalter 16 hält ein Glasfaserbündel 20, das aus einzelnen Glasfasern 22 besteht, derart, daß die einzelnen Glasfasern 22 jeweils auf Kanäle 12 gerichtet sind. Dazu weist der Faserhalter 16 beispielsweise Durchgangsöffnungen auf, durch die Glasfasern 22 denselben von einer Hauptoberfläche zur anderen durchdringen. Bei dem in den Fig. dargestellten Ausführungsbeispiel stehen den Glasfasern in den Hohlraum vor, was jedoch für die vorliegende Erfindung kein zwingendes Merkmal ist.

Der Hohlraum 18 weist ferner einen Ausgang 24 auf, über den der Hohlraum 18 mit einem Unterdruck P beaufschlagt werden kann. Dieser Unterdruck kann mittels einer Unterdruckerzeugungsvorrichtung, beispielsweise einer Vakuumpumpe, erzeugt werden. Dazu wird die Vakuumpumpe beispielsweise über eine Druckübertragungsvorrichtung 26, die eine übliche Rohrleitung sein kann, mit dem Ausgang 24 des Hohlraums 18 verbunden.

An die von dem Hohlraum beabstandeten Enden der Glasfasern ist eine Laserpulserzeugungseinrichtung anschließbar, die in der Lage ist, Laserpulse durch die einzelnen Glasfasern 22 des Faserbündels 20 zu leiten.

Bezugnehmend auf die Fig. 2 bis 4 wird nachfolgend die Wirkungsweise der erfindungsgemäßen Vorrichtung sowie ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Verfahrens näher erläutert.

Zunächst wird, wie in Fig. 2 dargestellt ist, die oben beschriebene Vorrichtung in ein Lotkugelreservoir 28, in dem eine Mehrzahl von Lotkugeln 30 angeordnet sind, eingetaucht, bzw. auf die Mehrzahl von Lotkugeln 30 aufgesetzt. Danach wird an die Leitung 26 ein Unterdruck angelegt, um beispielsweise in dem Hohlraum 18 ein Vakuum zu erzeugen. Durch das Vakuum werden jeweils an den Kanälen 12 Lotkugeln 30 angesaugt. Die erfindungsgemäße Vorrichtung mit den angesaugten Lotkugeln 30 ist in Fig. 3 dargestellt. Da die Querschnittslächen, d. h. die Durchmesser, der Kanäle kleiner sind als die Querschnittflächen, d. h. die Durchmesser, der Lotkugeln, werden die Lotkugeln 30 wie dargestellt an den Kanälen 12 fixiert. Diese Kanäle 12 können je nach gewünschtem Muster, das die Lotstellen nachfolgend auf dem Substrat ergeben sollen, in der Trägerplatte 10 vorgesehen sein. Nach dem Ansaugen der Lotkugeln 30 kann beispielsweise durch Druckluft und/oder durch einen Laserstrahl kontrolliert werden, ob alle Kugeln an der Trägerplatte 10 fixiert sind.

Nachfolgend werden die an der Trägerplatte 10 fixierten Lotkugeln 30 zu einem Substrat 32 bewegt und auf eine Oberstäche desselben aufgesetzt, siehe Fig. 4. Anschließend werden diese aufgesetzten Lotkugeln 30 mittels Laserenergie umgeschmolzen.

Zu diesem Zweck ist für jede Lotkugel 30 eine Glasfaser 22 vorgesehen, die durch einen jeweiligen Kanal 12 auf die jeweilige Lotkugel 30 gerichtet ist. Durch die jeweilige Glasfaser wird ein Laserpuls geleitet, der durch den jeweiligen Kanal 12 auf die jeweilige Lotkugel 30 trifft, um dieselbe umzuschmelzen. Dazu sind die Faserbündel bei dem

25

35

bevorzugten Ausführungsbeispiel in einen Laserkopf (nicht gezeigt) geführt, wobei der Laserstrahl beispielsweise mittels eines Scannersystems in die Glasfaser geführt wird.

Beim Umschmelzen der Lotkugeln 30, d. h. während des Beaufschlagens derselben mit dem Laserpuls, ist es bevorzugt, die fixierten Lotkugeln mit einem Inertgas zu beaufschlagen, um die Oberfläche der Lotkugeln während des Lötens vor einer Oxidation zu schützen. Dieses Inertgas kann durch die gleichen Kanäle 12 zugeführt werden.

Bei einem alternativen Ausführungsbeispiel wird nach 10 dem Aufsetzen der Lotkugeln auf ein Substrat eine Kraft auf die Lotkugeln ausgeübt, während die Lotkugeln geschmolzen werden. Durch das Ausüben einer solchen Kraft ist es beispielsweise möglich, ein Thermokompressionsbonden von Gold durchzuführen.

Es ist für Fachleute offensichtlich, daß das Glasfaserbündel 22 aus einer Vielzahl von über den Faserhalter 16 gleichmäßig verteilten Glasfasern bestehen kann, wobei abhängig von dem gewählten Muster der Kanäle 12 beim Aufschnielzen der Lotkugel jeweils die Glasfasern, die auf einen der 20 Kanäle gerichtet sind, mit einem Laserpuls beaufschlagt werden. Alternativ können die Glasfasern in dem Faserhalter in gleicher Anzahl und Anordnung positioniert sein, wie die Kanäle in der Trägerplatte 10.

Patentansprüche

1. Vorrichtung zum Aufbringen einer Mehrzahl von Lotkugeln (30) auf ein Substrat (32) mit folgenden

einer Lotkugelfixierungsvorrichtung (10), in der eine Mehrzahl von Kanälen (12) vorgesehen ist, deren Querschnittflächen kleiner als die Querschnittflächen der aufzubringenden Lotkugeln (30) sind;

einer Mehrzahl von Glasfasern (22); und einem Faserhalter (16), der bezüglich der Lotkugelfixierungsvorrichtung (10) derart angeordnet ist, daß zwischen denselben ein Hohlraum (18) gebildet ist, der mit einem Unterdruck beaufschlagbar ist, wobei der Faserhalter (16) die Glasfasern (22) in Ausrichtung mit 40 den Kanälen (12) hält.

- 2. Vorrichtung gemäß Anspruch 1, die ferner eine Unterdruckerzeugungsvorrichtung zum Erzeugen eines Unterdrucks in dem Hohlraum (18) aufweist.
- 3. Vorrichtung gemäß Anspruch 1 oder 2, die ferner 45 eine Vorrichtung zum Erzeugen und Leiten von Laserpulsen durch die Glasfasern (22) aufweist.
- 4. Vorrichtung gemäß einem der Ansprüche 1 bis 3, die ferner eine Vorrichtung zum Kontrollieren, ob eine Lotkugel (30) an jedem Kanal (12) der Lotkugelfixie- 50 rungsvorrichtung (10) fixiert ist, aufweist.
- 5. Vorrichtung gemäß einem der Ansprüche 1 bis 4, die ferner eine Vorrichtung zum Einbringen eines Inertgases in den Hohlraum (18) aufweist.
- 6. Verfahren zum Aufbringen einer Mehrzahl von Lot- 55 kugeln (30) auf ein Substrat (32) mit folgenden Schrit-

Ansaugen einer Mehrzahl von Lotkugeln (30) durch eine in einer Lotkugelfixierungsvorrichtung (10) vorgesehene Mehrzahl von Kanälen (12), deren Quer- 60 schnittflächen kleiner sind als die der Lotkugeln (30). derart, daß jeweils Lotkugeln (30) an den Kanälen (12)

Bewegen der Lotkugelfixierungsvorrichtung (10) zu dem Substrat (32) und Aufsetzen der Lotkugeln (30) 65 auf eine Oberfläche des Substrats (32); und Schmelzen der Lotkugeln (30) durch das Leiten von Laserpulsen durch die Kanäle (12).

- 7. Verfahren gemäß Anspruch 6, bei dem die Lotkugeln (30) aus einem Lotkugelreservoir (28) angesaugt werden.
- 8. Verfahren gemäß Anspruch 6 oder 7, bei dem während des Schmelzens der Lotkugeln (30) ein Inengas durch die Kanäle denselben zugeführt wird.
- 9. Verfahren gemäß einem der Ansprüche 6 bis 8, bei dem nach dem Schritt des Ansaugens kontrolliert wird, ob an jedem Kanal (12) eine Lotkugel (30) fixiert wurde.
- 10. Vertahren gemäß einem der Ansprüche 6 bis 9, bei dem nach dem Aufsetzen der Lotkugeln (30) eine Kraft auf dieselben ausgeübt wird.

Hierzu 2 Seite(n) Zeichnungen

BNSDOCID: <DE__19739481A1 | 1

- Leerseite -

FIG.3

FIG.4