EXAMEN FINAL CONVOCATORIA C2. MAEDO. GRADO EN MATEMÁTICAS.

14 DE ENERO DE 2022.

Nombre y apellidos

Ejercicio 1. (2'5 puntos) Resolver los siguientes problemas de valor inicial, dando los intervalos máximales de la solución.

a)
$$\begin{cases} xy' + 2y = x^3y^2 \sin x \\ y\left(\frac{\pi}{2}\right) = \frac{8}{\pi^2}, \end{cases}$$
 b) $\begin{cases} (y^2 - x)dx + 2y \ dy = 0 \\ y(2) = 1, \end{cases}$ c) $\begin{cases} (\sin x)^{2022}y' - 3x^2y^2 = -3x^2 \\ y(1) = -1, \end{cases}$

Ejercicio 2. (1'5 puntos) Consideramos la ecuación diferencial $y' + 3 - \sqrt{3x + y} = 0$. Se pide

- 1. Demostrar que existe una única solución verificando $y(x_0) = y_0$ con $3x_0 + y_0 > 0$ y obtenerla.
- 2. Demostrar que existen infinitas soluciones verificando $y(x_0) = y_0$ con $3x_0 + y_0 = 0$.

Ejercicio 3. (1'5 puntos) Consideramos, para
$$k > 0$$
, el PVI $\begin{cases} y' = 1 + k^2y^2 \\ y(0) = 0, \end{cases}$ Se pide

- 1. Demostrar que existe una única solución.
- 2. Dar el intervalo, que nos proporciona el Teorema de Picard, de la solución de este PVI.
- 3. Obtener el intervalo maximal de la solución de este PVI.

Ejercicio 4. (2 puntos) Se pide para la ecuación diferencial

$$2y'' - (a+2)y' + ay = e^x, \quad a \in \mathbb{R},$$
 (1)

- 1. La solución general, usando el método de coefientes indeterminados, de la ecuación (1), para a=2.
- 2. La solución general, usando el método de variación de parámetros, de la ecuación (1), para $a \neq 2$.

Ejercicio 5. (1'5 puntos) Consideremos la ecuación diferencial con coeficientes continuos sobre un intervalo I

$$y'' + a_1(x)y' + a_2(x)y = 0, (2)$$

de la que conocemos una solución particular no nula en I, $y_1(x)$. Demostrar que el cambio de variable $y(x) = y_1(x)z(x)$, reduce la ecuación diferencial (2) a una lineal de orden 1 en la variable w(x) = z'(x) que nos permite obtener junto a $y_1(x)$ un conjunto fundamental de soluciones de la ecuación diferencial (2) en I. Como aplicación de este ejercicio, se pide dar la solución general y los posibles intervalos de definición de las soluciones, sabiendo que un polinomio de grado 1 es solución de la ecuación diferencial

$$(x-1)^2y'' - 2(x-1)y' + 2y = 0.$$

Ejercicio 6. (1 punto) Demostrando previamente que $x_0 = 0$ es un punto singular regular de la ecuación $x^2y'' + 3xy' + 4x^4y = 0$, dar la solución general.