```
1 . do "/var/folders/2w/hhdffn2j7vg0q3zxtrj96n6h0000gn/T//SD00622.000000"
 2 . clear
 3 . capture log close
 4 . cd "/Users/yimingzhang/Desktop"
   /Users/yimingzhang/Desktop
 5 . log using "PS2 example.log", replace
         name: <unnamed>
          log: /Users/yimingzhang/Desktop/PS2 example.log
     log type: text
    opened on: 24 Jul 2023, 23:04:55
 6.
 7 \cdot * Load the data
 8 . insheet using "pst2_data.csv", comma names
   (4 vars, 5,922 obs)
10 . * Convert the date to Stata's date format
11 . gen stata_date = date(date, "YMD")
12.
13 . * Set the time series variable
14 . tsset stata_date
   Time variable: stata_date, 14613 to 23210, but with gaps
           Delta: 1 unit
15.
16 . * Check for heteroskedasticity
17 . tsline ret_spx
18 .
19 . * a. Estimate a CAPM style regression for Microsoft
20 . reg ret_msft ret_spx
```

Source	SS	df	MS	Number of obs	=	3,288
 				F(1, 3286)	=	4507.28
Model	.515916339	1	.515916339	Prob > F	=	0.0000
Residual	.376125349	3,286	.000114463	R-squared	=	0.5784
 			-	Adj R-squared	=	0.5782
Total	.892041687	3,287	.000271385	Root MSE	=	.0107

ret_msft	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ret_spx	1.132816	.0168734	67.14	0.000	1.099732	1.165899
_cons	.0004576	.0001868	2.45	0.014	.0000914	.0008238

21 .

22 . \star Test that the regression beta is equal to one

23 . test ret_spx == 1

(1) ret_spx = 1

$$F(1, 3286) = 61.96$$

 $Prob > F = 0.0000$

24 . test ret_spx == 0.5

(1) ret_spx = .5

25 .

26 . * Repeat the above steps for Tesla

27 . reg ret_tsla ret_spx

Source	SS	df	MS	Number of obs		=	3,288
Model Residual	.779474666 3.49135943	1 3,286	.77947466	6 Prob 5 R-squ	F(1, 3286) Prob > F R-squared Adj R-squared Root MSE > t [95% cor		733.63 0.0000 0.1825
Total	4.27083409	3,287	.00129931	_			0.1823
ret_tsla	Coefficient	Std. err.	t	P> t			interval]
ret_spx _cons	1.392421	.0514083 .0005691	27.09 2.63	0.000 0.009	1.29162		1.493217

(1) ret_spx = 1

$$F(1, 3286) = 58.27$$

 $Prob > F = 0.0000$

29 . test ret_spx == 0.5

(1) ret_spx = .5

F(1, 3286) = 301.35Prob > F = 0.0000

30 .

31 . * b. Test for heteroskedasticity for Microsoft

32 . reg ret_msft ret_spx

Source	SS	df	MS	Number of obs		=	3,288
Model Residual	.515916339 .376125349	1 3,286	.515916339	Prob R-squ	F(1, 3286) Prob > F R-squared Adj R-squared Root MSE		4507.28 0.0000 0.5784 0.5782
Total	.892041687	3,287	.000271385	-			.0107
ret_msft	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
ret_spx _cons	1.132816 .0004576	.0168734 .0001868	67.14 2.45	0.000 0.014	1.09973		1.165899 .0008238

33 . estat hettest

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity

Assumption: Normal error terms

Variable: Fitted values of ret_msft

H0: Constant variance

chi2(1) = 9.79Prob > chi2 = 0.0018

34 .

35 . * Correct the standard errors

36 . reg ret_msft ret_spx, robust

Linear regression

Number of obs = 3,288F(1, 3286) = 2847.74Prob > F = 0.0000R-squared = 0.5784Root MSE = .0107

Robust

ret_msft	Coefficient	std. err.	t	P> t	[95% conf.	interval]
ret_spx	1.132816	.021228	53.36	0.000	1.091194	1.174437
_cons	.0004576	.0001862	2.46	0.014	.0000924	.0008227

37 .

38 . \ast Test that the corrected beta is equal to one

39 . test ret_spx == 1

(1) ret_spx = 1

F(1, 3286) = 39.15Prob > F = 0.0000

40 .

41 . * Repeat the above steps for Tesla

42 . reg ret_tsla ret_spx

Source	SS	df	MS		er of obs	=	3,288
Model Residual	.779474666 3.49135943	1 3,286	.779474660 .00106249	6 Prob 6 R-sq	F(1, 3286) Prob > F R-squared Adj R-squared Root MSE		733.63 0.0000 0.1825
Total	4.27083409	3,287	.00129931	-			0.1823 .0326
ret_tsla	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
ret_spx _cons	1.392421 .001497	.0514083 .0005691	27.09 2.63	0.000 0.009	1.291620 .000381	-	1.493217 .0026127

43 . estat hettest

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity

Assumption: Normal error terms
Variable: Fitted values of ret_tsla

H0: Constant variance

chi2(1) = 19.74Prob > chi2 = 0.0000

44 . reg ret_tsla ret_spx, robust

Linear regression

Number of obs = 3,288F(1, 3286) = 418.95

Prob > F = 0.0000 R-squared = 0.1825 Root MSE = .0326

ret_tsla	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ret_spx	1.392421	.0680287	20.47	0.000	1.259039	1.525804
_cons	.001497	.0005666	2.64	0.008	.000386	.002608

45 . test ret_spx == 1

(1) ret_spx = 1

$$F(1, 3286) = 33.28$$

 $Prob > F = 0.0000$

46 .

47 \cdot * c. Attempt to correct the standard errors through GLS for Microsoft

48 . qui reg ret_msft ret_spx, robust

- 49 . predict ehat, resid (2,634 missing values generated)
- 50 . gen ehat_sq = ehat^2
 (2,634 missing values generated)
- 51 . gen ret_spx_gls = ret_spx / sqrt(ehat_sq)
 (2,634 missing values generated)
- 52 . gen ret_msft_gls = ret_msft / sqrt(ehat_sq)
 (2,634 missing values generated)
- 53 . gen cons_gls = 1 / sqrt(ehat_sq)
 (2,634 missing values generated)
- 54 . reg ret_msft_gls cons_gls ret_spx_gls, noc

	Source	SS	df	MS	Number of obs	=	3,288
-					F(2, 3286)	>	99999.00
	Model	8163324.07	2	4081662.03	Prob > F	=	0.0000
	Residual	3285.63651	3,286	.999889383	R-squared	=	0.9996
-					Adj R-squared	=	0.9996
	Total	8166609.7	3,288	2483.76208	Root MSE	=	. 99994
	•						

ret_msft_gls	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
cons_gls ret_spx_gls		9.65e-07 .0004048			.0004548 1.132541	.0004586 1.134128

- 55 .
- 56 . * Repeat the above steps for Tesla
- 57 . qui reg ret_tsla ret_spx, robust
- 58 . predict ehat2, resid
 (2,634 missing values generated)
- 59 . gen ehat_sq2 = ehat2^2
 (2,634 missing values generated)
- 60 . gen ret_tsla_gls = ret_tsla / sqrt(ehat_sq2)
 (2,634 missing values generated)
- 61 . reg ret_tsla_gls cons_gls ret_spx_gls, noc

Source	SS	df	MS		er of ob	s = =	3,288
Model Residual	1959.75313 15034748.3	2 3,286	979.87656! 4575.395	5 Prob L R-sq	F(2, 3286) Prob > F R-squared Adj R-squared Root MSE		0.21 0.8072 0.0001
Total	15036708.1	3,288	4573.2080	-			-0.0005 67.642
ret_tsla_gls	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
cons_gls ret_spx_gls	3.87e-06 .0177807	.0000653 .0273836	0.06 0.65	0.953 0.516	0001 03		.0001318 .0714713

- 62 .
- 63 . * Conduct a Hausman Test for Microsoft
- 64 . qui reg ret_msft ret_spx
- 65 . est store ols
- 66 .
- 67 . qui reg ret_msft_gls cons_gls ret_spx_gls, noc
- 68 . est store gls
- 69 . suest ols gls

Simultaneous results for ols, gls

Number of obs = 3,288

	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
ols_mean ret_spx _cons	1.132816 .0004576	.0212248 .0001862	53.37 2.46	0.000 0.014	1.091216 .0000926	1.174416 .0008225
ols_lnvar _cons	-9.075259	.0672333	-134.98	0.000	-9.207034	-8.943484
gls_mean cons_gls ret_spx_gls	.0004567 1.133335	2.65e-07 .0002816	1721.01 4024.81	0.000 0.000	.0004562 1.132783	.0004572 1.133886
gls_lnvar _cons	0001106	. 000686	-0.16	0.872	0014552	.001234

- 70 . *test if constants and slopes are the same in the two specifications
- 71 . test ([ols_mean]_cons=[gls_mean]cons_gls) ([ols_mean]ret_spx=[gls_mean]ret_spx_g > ls)
 - (1) [ols_mean]_cons [gls_mean]cons_gls = 0
 - (2) [ols_mean]ret_spx [gls_mean]ret_spx_gls = 0

$$chi2(2) = 0.00$$

Prob > $chi2 = 0.9997$

72 .

73 . * Repeat the above steps for Tesla

74 . qui reg ret_tsla ret_spx

75 . est store ols

76 . qui reg ret_tsla_gls cons_gls ret_spx_gls, noc

77 . est store gls

78 . suest ols gls

Simultaneous results for ols, gls

Number of obs = 3,288

 T					
	Robust				
Coefficient	std. err.	Z	P> z	[95% conf.	interval]

1.392421	.0680183	20.47	0.000	1.259108	1.525735
.001497	.0005666	2.64	0.008	.0003866	.0026074
-6.847135	.0504303	-135.77	0.000	-6.945977	-6.748294
3.87e-06	3.86e-06	1.00	0.315	-3.69e-06	.0000114
.0177807	.0093345	1.90	0.057	0005146	.036076
8.428448	.7042744	11.97	0.000	7.048096	9.808801
	.001497 -6.847135 3.87e-06 .0177807	.001497 .0005666 -6.847135 .0504303 3.87e-06 3.86e-06 .0177807 .0093345	.001497 .0005666 2.64 -6.847135 .0504303 -135.77 3.87e-06 3.86e-06 1.00 .0177807 .0093345 1.90	.001497 .0005666 2.64 0.008 -6.847135 .0504303 -135.77 0.000 3.87e-06 3.86e-06 1.00 0.315 .0177807 .0093345 1.90 0.057	.001497 .0005666 2.64 0.008 .0003866 -6.847135 .0504303 -135.77 0.000 -6.945977 3.87e-06 3.86e-06 1.00 0.315 -3.69e-06 .0177807 .0093345 1.90 0.0570005146

```
79 . *test if constants and slopes are the same in the two specifications
```

- - (1) [ols_mean]_cons [gls_mean]cons_gls = 0
 - (2) [ols_mean]ret_spx [gls_mean]ret_spx_gls = 0

$$chi2(2) = 405.43$$

Prob > $chi2 = 0.0000$

81 .

82 . \ast d. Check the stability of the betas through the sample for Microsoft

83.

84 . gen year = substr(date, 1, 4)

85 . destring year, replace
 year: all characters numeric; replaced as int

86 .

87 . reg ret_msft ret_spx, robust

Linear regression	Number of obs	=	3,288
	F(1, 3286)	=	2847.74
	Prob > F	=	0.0000
	R-squared	=	0.5784
	Root MSE	=	.0107

ret_msft	Coefficient		t	P> t	[95% conf.	interval]
		Robust				


```
_cons
                     .0004576
                                 .0001862
                                              2.46
                                                      0.014
                                                                 .0000924
                                                                             .0008227
88 . xi i.year*ret_spx
                                           (naturally coded; _Iyear_2000 omitted)
   i.year
                      Iyear 2000-2023
   i.year*ret_spx
                      _IyeaXret_#
                                           (coded as above)
89 . drop Iyear*
90 . reg ret_msft ret_spx _I*, robust
   note: _IyeaXret_2014 omitted because of collinearity.
   note: _IyeaXret_2015 omitted because of collinearity.
   note: _IyeaXret_2016 omitted because of collinearity.
   note: _IyeaXret_2017 omitted because of collinearity.
   note: _IyeaXret_2018 omitted because of collinearity.
   note: _IyeaXret_2019 omitted because of collinearity.
   note: _IyeaXret_2020 omitted because of collinearity.
   note: _IyeaXret_2021 omitted because of collinearity.
   note: _IyeaXret_2022 omitted because of collinearity.
   note: _IyeaXret_2023 omitted because of collinearity.
                                                     Number of obs
                                                                                3,288
   Linear regression
                                                                         =
                                                      F(14, 3273)
                                                                               323.94
                                                                         =
                                                      Prob > F
                                                                         =
                                                                               0.0000
                                                      R-squared
                                                                               0.5929
                                                                         =
                                                      Root MSE
                                                                         =
                                                                               .01053
                                    Robust
         ret msft
                     Coefficient
                                  std. err.
                                                        P>|t|
                                                                   [95% conf. interval]
                                                  t
                                                        0.000
                       .8883665
                                   .0648695
                                               13.69
                                                                   .7611776
                                                                               1.015555
          ret_spx
                      -.0558922
                                   .0740158
                                               -0.76
                                                        0.450
                                                                 -.2010141
                                                                               .0892297
   _IyeaXret_2001
   _IyeaXret_2002
                       .1221236
                                   .1013222
                                                1.21
                                                        0.228
                                                                 -.0765377
                                                                               .3207849
                                                                               .3660674
   _IyeaXret_2003
                       .0774573
                                   .1471983
                                                0.53
                                                        0.599
                                                                 -.2111529
   IyeaXret 2004
                       .2840773
                                   .1325609
                                                2.14
                                                        0.032
                                                                   .0241665
                                                                               .5439881
   _IyeaXret_2005
                                                3.43
                       .3295029
                                   .0959274
                                                        0.001
                                                                    .141419
                                                                               .5175867
   _IyeaXret_2006
                       .2371338
                                   .0888875
                                                2.67
                                                        0.008
                                                                   .0628531
                                                                               .4114145
   _IyeaXret_2007
                       .5471484
                                   .1181707
                                                4.63
                                                        0.000
                                                                   .3154523
                                                                               .7788445
                       .5565243
                                   .0888458
                                                6.26
                                                        0.000
                                                                               .7307233
   _IyeaXret_2008
                                                                   .3823253
   _IyeaXret_2009
                       .2061779
                                   .0825341
                                                2.50
                                                        0.013
                                                                   .0443542
                                                                               .3680016
   _IyeaXret_2010
                        .393908
                                   .1032026
                                                3.82
                                                        0.000
                                                                   .1915597
                                                                               .5962563
                                   .0779272
                                                4.10
                                                        0.000
                                                                               .4720627
   _IyeaXret_2011
                       .3192717
                                                                   .1664806
                       .4392827
                                   .0868361
                                                5.06
                                                        0.000
                                                                               .6095412
   _IyeaXret_2012
                                                                   .2690241
                       .5919075
                                                1.36
                                                                                1.44262
   _IyeaXret_2013
                                   .4338843
                                                        0.173
                                                                 -.2588048
   _IyeaXret_2014
                              0
                                  (omitted)
   _IyeaXret_2015
                                  (omitted)
   _IyeaXret_2016
                                  (omitted)
```



```
_IyeaXret_2017
                             0 (omitted)
   _IyeaXret_2018
                              0 (omitted)
   _IyeaXret_2019
                             0 (omitted)
   _IyeaXret_2020
                             0 (omitted)
   IyeaXret 2021
                             0 (omitted)
   _IyeaXret_2022
                                (omitted)
   _IyeaXret_2023
                                (omitted)
            _cons
                       .0004532
                                  .0001838
                                               2.47
                                                      0.014
                                                                 .0000928
                                                                             .0008136
91.
92 . * Repeat the above steps for Tesla
93 . reg ret_tsla ret_spx, robust
   Linear regression
                                                    Number of obs
                                                                              3,288
                                                    F(1, 3286)
                                                                             418.95
                                                                       =
                                                    Prob > F
                                                                       =
                                                                             0.0000
                                                    R-squared
                                                                       =
                                                                             0.1825
                                                    Root MSE
                                                                       =
                                                                              .0326
                                 Robust
       ret_tsla
                  Coefficient std. err.
                                               t
                                                    P>|t|
                                                               [95% conf. interval]
                    1.392421
                                .0680287
                                            20.47
                                                    0.000
                                                               1.259039
                                                                           1.525804
        ret_spx
          _cons
                      .001497
                                .0005666
                                             2.64
                                                    0.008
                                                                .000386
                                                                            .002608
94 . xi i.year*ret_spx
                                          (naturally coded; _Iyear_2000 omitted)
   i.year
                     _Iyear_2000-2023
   i.year*ret_spx
                     _IyeaXret_#
                                          (coded as above)
95 . drop _Iyear*
96 . reg ret_tsla ret_spx _I*, robust
   note: IyeaXret 2014 omitted because of collinearity.
   note: IyeaXret 2015 omitted because of collinearity.
   note: _IyeaXret_2016 omitted because of collinearity.
   note: _IyeaXret_2017 omitted because of collinearity.
   note: _IyeaXret_2018 omitted because of collinearity.
   note: _IyeaXret_2019 omitted because of collinearity.
   note: _IyeaXret_2020 omitted because of collinearity.
   note: _IyeaXret_2021 omitted because of collinearity.
   note: _IyeaXret_2022 omitted because of collinearity.
   note: _IyeaXret_2023 omitted because of collinearity.
                                                    Number of obs
   Linear regression
                                                                              3,288
```

F(14, 3273)

54.96

Prob > F = 0.0000 R-squared = 0.1950 Root MSE = .03241

					 	
ret_tsla	Coefficient	Robust std. err.	t	P> t	[95% conf.	intervall
				·· -		
ret_spx	1.124074	.2672483	4.21	0.000	.6000834	1.648065
_IyeaXret_2001	. 1318168	.2950776	0.45	0.655	4467386	.7103722
_IyeaXret_2002	. 0982042	.3529913	0.28	0.781	593902	.7903104
_IyeaXret_2003	. 7076956	.4085712	1.73	0.083	0933854	1.508777
_IyeaXret_2004	.0966198	.3206588	0.30	0.763	5320924	.725332
_IyeaXret_2005	. 1881156	.3089784	0.61	0.543	4176949	.7939261
_IyeaXret_2006	2784742	.3234865	-0.86	0.389	9127307	.3557822
_IyeaXret_2007	. 3635275	.3362665	1.08	0.280	2957867	1.022842
_IyeaXret_2008	.1637751	.3402845	0.48	0.630	503417	.8309671
_IyeaXret_2009	0174276	.3244096	-0.05	0.957	6534939	.6186387
_IyeaXret_2010	1.184405	.4157287	2.85	0.004	.3692902	1.99952
_IyeaXret_2011	. 7936406	.3076077	2.58	0.010	.1905175	1.396764
_IyeaXret_2012	.5121882	.3136637	1.63	0.103	1028088	1.127185
_IyeaXret_2013	2.080545	1.019302	2.04	0.041	.0820114	4.079079
_IyeaXret_2014	0	(omitted)				
_IyeaXret_2015	0	(omitted)				
_IyeaXret_2016	0	(omitted)				
_IyeaXret_2017	0	(omitted)				
_IyeaXret_2018	0	(omitted)				
_IyeaXret_2019	0	(omitted)				
_IyeaXret_2020	0	(omitted)				
_IyeaXret_2021	0	(omitted)				
_IyeaXret_2022	0	(omitted)				
_IyeaXret_2023	0	(omitted)				
_cons	.0014121	.0005669	2.49	0.013	.0003005	.0025237

^{97.} end of do-file

^{98 .}