臣

Europäisches Patentamt

European Patent Office

Office européen des brevets

(1) Publication number:

0 632 048 A1

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 94109742.0

(9) Int. Cl.⁶: C07F 9/6561, A61K 31/675

② Date of filing: 23.06.94

⁽³⁰⁾ Priority: 29.06.93 JP 159693/93

Date of publication of application: 04.01.95 Bulletin 95/01

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE

7) Applicant: MITSUBISHI KASEI CORPORATION 5-2, Marunouchi 2-chome Chiyoda-ku Tokyo 100 (JP)

Inventor: Takashima, Hideaki 3-23-1-8 Tuchihashi. Miyamae-ku Kawasaki-shi, Kanagawa-ken (JP) Inventor: Inoue, Naoko 2-6-3-108 Tachibanadai, Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Ubasawa, Masaru 2864-3-2-506 Naracho, Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Sekiya, Kouichi 23-4 Tanamachi, Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Yabuuchi, Shingo 5-1 Tutujigaoka, Midori-ku Yokohama-shi,

Kanagawa-ken (JP)

Representative: ter Meer, Nicolaus, Dipl.-Chem., Dr. Patentanwälte TER MEER-MÜLLER-STEINMEISTER & PARTNER Mauerkircherstrasse 45 D-81679 München (DE)

Phosphonate-nucleotide ester derivatives.

© Phosphonate-nucleotide ester derivatives of the present invention have excellent antiviral activity and activity. Further, it can be orally administered.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to novel phosphonate-nucleotide ester derivatives or pharmaceutically acceptable salts thereof. More particularly, it relates to novel phosphonate-nucleotide ester derivatives or pharmaceutically acceptable salts thereof which can be orally administered as antiviral agents.

2. Background of the Invention

10

Infectious viral diseases have been recognized as medically important problems. For treatment of such diseases, drugs having antiviral activity but no inhibitory activity on growth of normal cell lines have been developed. For example, 9-(2-phosphonylmethoxy)ethyladenine (PMEA), 9-(2-phosphonylmethoxy)ethyl-2,6-diaminopurine (PMDAP) etc. have been reported to be effective on herpes simplex viruses type-I and II (HSV-1 and HSV-2), human immunodeficiency virus (HIV), hepatitis B virus (Yokota et al., Antimicrob. Agents Chemother., 35, 394 (1991); Votruba et al., Mol. Pharmacol., 32, 524 (1987)].

The problems of these nucleotides and ionic organophosphate esters are their deficiency of oral absorptivity [see, De Clercq et al., Antimicrob. Agents Chemother., 33, 185 (1989)]. Therefore, these compounds should be parenterally administered, for example, by intravenous or intramuscular injection, to attain sufficient blood concentration to elicit their effect.

However, it is difficult to apply treatment utilizing parenteral administration unless the subject is in a hospital. Accordingly, it is not a preferred method to treat subjects suffering from altricious diseases such as AIDS and HBV diseases. Accordingly, there required development of drugs which have antiviral activity and can be parenterally administered. Up to date, no drugs have been put into practical use.

SUMMARY OF THE INVENTION

The present inventors have studied intensively to solve the above problems. As the results, we have found that the object can be attained using a certain kind of phosphonatenucleotide esters, and have attained the present invention.

That is, the point of the present invention resides in phosphonatenucleotide ester derivatives of the following general formula (I):

35

40

25

(wherein ring A represents

50

__

(wherein R1 and R2 independently represent hydrogen, halogen, hydroxyl, mercapto, C6-C10 arylthio or amino), R3 represents C1-C4 alkyl or ethyl having one or more substituents selected from the group consisting of fluorine, C_1 - C_4 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy; R^4 represents ethyl having one or more substituents selected from the group consisting of fluorine, C1-C4 alkoxy, phenoxy, C7-C10 phenylalkoxy and C2-C5 acyloxy; X, Y and Z independently represent methyne or nitrogen atom); or pharmaceutically acceptable salts thereof.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be explained in detail.

Phosphonate-nucleotide ester derivatives of the present invention are represented by the above general formula (I). In the above general formula (I), halogen atoms in R1 and R2 include, for example, fluorine, chlorine, bromine, inodine; C6-C10 arylthio includes, for example, phenylthio, tolylthio, naphthylthio. C1-C4 alkylin R^3 includes, for example, methyl, ethyl, n-propyl, i-propyl, i-butyl, i-butyl, sec-butyl, tert-butyl. C_1 - C_4 alkoxy as a substituent on ethyl in R3 includes, for example, methoxy, ethoxy, n-propoxy, i-propoxy, butoxy. C7-C10 phenylalkoxy includes, for example, phenyl-C1-C4 alkoxy such as benzyloxy, phenethyloxy, phenylpropoxy. C2-C5 acyloxy includes, for example, acetoxy, propionyloxy, butyryloxy, i-butyryloxy, valeryloxy. C_1 - C_4 alkoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy as substituents on ethyl in R^4 include those on ethyl

A preferred ring A in the above general formula (I) includes:

(wherein R1 and R2 independently represent hydrogen, halogen, hydroxyl, mercapto, C6-C10 arylthio or

A particularly preferred A is

55

15

25

40

(wherein R¹ represents hydrogen, chlorine, hydroxyl, mercapto, tolylthio or amino; R² represents hydrogen, o chlorine, iodine, hydroxyl or amino);

$$\begin{bmatrix} R^1 \\ N \end{bmatrix}^0$$

20 (wherein R¹ represents amino; R² represents hydrogen); or

$$\mathbb{R}^1$$
 \mathbb{N}
 \mathbb{R}^2

(wherein R1 and R2 represent amino).

 R^3 is preferably C_1 - C_3 alkyl, 2,2,2-trifluoroethyl or an ethyl group having a substituent selected from a group consisting of C_1 - C_3 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy. Particularly, C_1 - C_3 alkyl or 2,2,2-trifluoroethyl is preferred.

 R^4 is preferably 2,2,2-trifluoroethyl or an ethyl group having a substituent selected from a group consisting of C_1 - C_3 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy. Particularly, 2,2,2-trifluoroethyl is preferred. When R^3 or R^4 represents a substituted ethyl group, such an ethyl group is preferably substituted at 2-position. Further, at least one of R^3 and R^4 is preferably 2,2,2-trifluoroethyl. X and Z are preferably nitrogen atoms.

Phosphonate-nucleotide ester derivatives of the present invention represented by the above general formula (I) can form pharmaceutically acceptable salts thereof. Examples of such salt include, for example, in the presence of acidic groups, metal salt such as lithium, sodium, potassium, magnesium, calcium salt, ammonium salt such as methylammonium, dimethylammonium, trimethylammonium, dicyclohexylammonium; in the presence of basic groups, mineral salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate, organic salts such as methanesulfonate, benzenesulfonate, paratoluenesulfonate, acetate, propionate, tartrate, fumarate, maleate, malate, oxalate, succinate, citrate, benzoate, mandelate, cinnamate, lactate.

Compounds of the present invention may form tautomers such as keto-enol tautomers depending on the substituents. Such tautomers are also included in the present invention.

Examples of the present compounds are shown in the following tables 1 to 7 (in the tables, P.S. indicates the position of the substituent:

55

50

25

as X, Y or Z; and C for X, Y or Z represents -CH=).

$$\begin{array}{c|c}
Z & R' \\
N & R^2 \\
O & P - OR^2 \\
O & R^4
\end{array}$$

Table

5

10

		Tab	1 e	1					
15	Comp. No.	R'	R²	R³	R4	X	Y	Z	P. S.
	1	-Н	-H	−CH₃	-CF ₂ CF ₃	N	С	N	Х
20	2	-н	-H	—CH₃	-CF ₂ CF ₃	N	С	N	Z
	3	-H	-н	—СН ₃	-CH ₂ CF ₃	N	С	N	X
	4	-Н	-Н	—СН₃	-CH ₂ CF ₃	N	С	N	Z
25	5	-Н	-н	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
	6	<u>-</u> Н	-н	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	Ν	Z
	. 7	-H	-H	−CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X
30	8	-H	-H	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	Ν	Z
	9	-H	-H	−CH ₂ CF ₃	-CH ₂ CF ₃	Ν	С	N	X
	10	-H	-H	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	Ν	Z
35	11	-H	-Н	−CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	С	Ν	Х
	12	-H	-H	−CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	С	N	Z
	1 3	-Н	-H	—CH₂CH₂OCH₃	−CH₂CH₂OCH₃	N	С	Ν	X
40	1 4	-H	-H	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	C.	N	Z
	1 5	-H	-н	-CH ₂ CH ₂ OC ₂ H ₅	−CH ₂ CH ₂ OC ₂ H ₅	N	С	N	X
	1 6	-H	-H	-CH ₂ CH ₂ OC ₂ H ₅	−CH₂CH₂OC₂H₅	Ν	С	N	Z
45	1 7	-H	-H	-CH₂CH₂OC₃H ₇	−CH ₂ CH ₂ OC ₃ H ₇	N	С	N	X
1	18	-H	-H	-CH ₂ CH ₂ OC ₃ H ₇	-CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Z
	19	-H	-H	—CH₂CH₂OC₀H₅	-CH ₂ CF ₃	N	С	N	X
50	20	-H	-H	—CH₂CH₂OC₅H₅	-CH ₂ CF ₃	N	С	N	Z

Table 1 (Continued)

				(Continued)	<u> </u>				
	Comp. No.	R'	R²	R³	R4	X	Y	z	P. S.
	2 1	-н	-Н	-CH ₂ CH ₂ OC ₆ H ₅	−CH₂CH₂OCH₃	N	С	N	X ·
	2 2	-Н	-н	-CH ₂ CH ₂ OC ₆ H ₅	−CH₂CH₂OCH₃	N	С	N	Z
	2 3	-н	-н	−CH2CH2OC6H5	-CH₂CH₂OC₅H₅	N	С	Ŋ	X
	2 4	-Н	-н	-CH₂CH₂OC₀H₅	−CH₂CH₂OC₅H₅	N	C.	N	Z
	2 5	-Н	-н	-CH2CH2OCH2C6H5	−CH₂CF₃	N	С	N	X
	2 6	-H	-Н	-CH2CH2OCH2C6H5	−CH₂CF₃	N	С	Ν	Z
	2 7	-н	-н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	Ν	X
	28	-Н	-Н	—CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N.	С	Ν	Z
	2 9	-Н	-Н	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	N	С	Ν	Х
	3 0	-H	-Н	—CH2CH2OCH2C6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	C	Ν	Z
	3 1	-H	-Н	—CH₂CH₂OCH₂C₅H₅	-CH2CH2OCH2C6H5	N	С	N	Х
	3 2	-Н	-H	—CH₂CH₂OCH₂C6H5	—CH₂CH₂OCH₂C₅H₅	Ν	C.	Ν	Z
	3 3	-H	-H	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	С	Ν	X
	3 4	-Н	-Н	-CH2CH2OC2H4C6H5	—CH2CH2OC2H4C6H5	Ν	С	Ν	Z
	3 5	-H	-н	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	N	X
	3 6	-Н	-H	-CH₂CH₂OC(O)CH₃	-CH ₂ CF ₃	N	С	Ν	Z
·	3 7	-H	-н	-CH₂CH₂OC(0)CH₃	−CH₂CH₂OCH₃	N	С	N	X
	3 8	-H	-н	-CH2CH2OC(0)CH3	-CH₂CH₂OCH₃	N	С	N	Z
	3 9	-Н	-н	-CH₂CH₂OC(O)CH₃	−CH2CH2OC6H5	N	С	N	Х
	4 0	-H	-Н	-CH₂CH₂OC(O)CH₃	−CH ₂ CH ₂ OC ₆ H ₅	N	С	N	Z

55

10

. 20

30

35

Та	b 1	е	1	(Con	t :	i n	u	е	d)

Comp.	R'	R²	R³	R4	X	Y	$ _{Z}$	P. S.
No.						<u> </u>		
·41	-H	-H	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₂C₀H₅	N	С	N	X
4 2	-н	-н	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	N	С	N	Z
4 3	-Н	-Н	—CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	N	X
4 4	-н	-Н	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(0)CH₃	Ν	С	N	Z
4 5	-H	-H	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	Ν	X
4 6	-H	-H	-CH2CH2OC(O)C2H5	-CH2CH2OC(0)C2H5	N	С	Ŋ	Z
4 7	-Н	-Н	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	X
4 8	-Н	-Н	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	Z
4 9	-H	-Н	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
5 0	-н	-Н	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	Ν	С	N	Z

Table 1 (Continued)

5	Comp. Na	R'	R²	R³	R '	х	Y	Z	P. S.
	5 1	-Н	-он	−CH₃	-CF ₂ CF ₃	Ν	С	N	X
10	5 2	-н	−óH	−СН3	−CF ₂ CF ₃	Ν	С	Ν	Z
	5. 3	-Н	-он	—СН₃	−CH ₂ CF ₃	Ν	С	·N	X
15	5 4	-Н	-ОН	−CH₃	−CH₂CF₃	Ν	С	N	Z
	5 5	-Н	-он	−CF₂CF₃	−CF₂CF₃	N	С	N	Х
20	5 6	-H	-он	-CF ₂ CF ₃	−CF ₂ CF ₃	Ν	С	N	Z
	5 7	-Н	-он	-CF ₂ CF _{.3}	−CH ₂ CF ₃	Ν	С	N	X
	5 8	-Н	-он	-CF ₂ CF ₃	−CH ₂ CF ₃	N	C	N	Z
25	5 9	-н	-OH	−CH ₂ CF ₃	-CH ₂ CF ₃	7	С	N	X
	6 0	-Н	-OH	-CH ₂ CF ₃	−CH ₂ CF ₃	Ν	·C	N	Z
30	6 1	-Н	-OH	-CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	N	X
	6 2	-н	-он	−CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	Ν	Z
35	6 3	-H	-он	−CH ₂ CH ₂ OCH ₃	—CH₂CH₂OCH₃	Ν	С	Ν	X
;	6 4	-H	-он	−CH ₂ CH ₂ OCH ₃	-CH₂CH₂OCH₃	Ν	С	Ν	Z
40	6 5	-Н	-он	-CH2CH2OC2H5	-CH₂CH₂OC₂H₅	Ν	С	N	· X
	6 6	-Н	-он	−CH ₂ CH ₂ OC ₂ H ₅	−CH ₂ CH ₂ OC ₂ H ₅	N	С	N.	Z
	67	-Н	-он	−CH2CH2OC3H7	-CH ₂ CH ₂ OC ₃ H ₇	N	С	N	X
45	6 8	-H	-он	-CH2CH2OC3H7	−CH ₂ CH ₂ OC ₃ H ₇	Ν	С	Ν	Z
	6 9	-Н	-он	−CH2CH2OC6H5	−CH₂CF₃	Ν	С	Ν	X
50	7 0	-н	-он	-CH2CH2OC6H5	-CH₂CF₃	Ν	С	Ν	Z

Table 1 (Continued)

- 11	<u> </u>	Continued					
R'	R²	R³	R4	X	Y	z	P. S.
-H	-ОН	-CH₂CH₂OC₅H₅	−CH₂CH₂OCH₃	N	С	N	Х
-н	-он	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Z
-Н	-он	-CH2CH2OC6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	С	N	Х
-H	-он	-CH2CH2OC6H5	−CH ₂ CH ₂ OC ₆ H ₅	N	С	N	Z
-H	-он	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	X
-H	-он	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	N	Z
-н	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	X
-H	-он	—CH₂CH₂OCH₂C₅H₅	−CH₂CH₂OCH₃	N	С	N	Z^{\cdot}
-H	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OC₀H₅	N	С	N	Х
-H	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OC₀H₅	N	С	Ν	Z
-Н	-он	-CH2CH2OCH2C6H5	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	N	С	N	· X
-H	-он	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	N	С	N	Z
-H	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
-Н	-он	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	-CH2CH2OC2H4C6H5	N	С	N	Z
-Н	-он	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	N	X
-Н	-он	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	N	Z
-H	-он	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OCH₃	N	С	N	Х
-н	-он	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OCH₃	N	С	N	Z
-н	-он	-CH₂CH₂OC(0)CH₃	-CH ₂ CH ₂ OC ₆ H ₅	Ν	С	N	Х
-H	-он	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC₅H₅	N	С	N	Z
	-H -	-H -OH	R¹ R² R³ −H −OH −CH₂CH₂OC₀H₅ −H −OH −CH₂CH₂OC₀H₅ −H −OH −CH₂CH₂OC₀H₅ −H −OH −CH₂CH₂OCH₂C₀H₅ −H −OH −CH₂CH₂OCOCH₄C₀H₅ −H −OH −CH₂CH₂OCOCOCH₃ −H −OH −CH₂CH₂OCOOCOCH₃ −H −OH −CH₂CH₂OCOOCOCOCH₃ −H −OH −CH₂CH₂OCOOCOCOCOCOCCH₃ −H −OH −CH₂CH₂OCOOCOCOCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCC	R¹ R² R³ R⁴ -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OCH₃ -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OCH₃ -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OC₆H₅ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OC₆H₅ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OC₆H₅ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₂ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₃ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OC႕₃OCH₂C₆H₅ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₂C₆H₅ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₂C₆H₅ -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₂C₆H₅ -H -OH -CH₂CH₂OC₂H₄C₆H₅ -CH₂CH₂OCH₄C₆H₅ -H -OH -CH₂CH₂OCOOCH₃ -CH₂CH₂OCH₃ -H -OH -CH₂CH₂OCOOCOCH₃ -CH₂CH₂OCH₃ -H -OH -CH₂CH₂OCOOCOCH₃ -CH₂CH₂OCH₃ -H -OH -CH₂CH₂OCOOCOCH₃ -CH₂CH₂OCH₃	R¹ R² R³ R⁴ X -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OCH₃ N -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OC₀H₅ N -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OC₀H₅ N -H -OH -CH₂CH₂OC₀H₅ -CH₂CH₂OC₀H₅ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CF₃ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃C₀H₅ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₂C₀H₅ N -H -OH -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₂C₀H₅ N -H -OH -CH₂CH₂OCH₂C₀H₃C₀H₅ -CH₂CH₂OCH₂C₀H₅ N -H -OH -CH₂CH₂OCH₂C₀H₃C₀H₅ -CH₂CH₂OC₂H₄C₀H₅ N -H -OH -CH₂CH₂OCOOCH₃<	R¹ R² R³ R⁴ X Y -H -OH -CH₂CH₂OC₅H₅ -CH₂CH₂OCH₃ N C -H -OH -CH₂CH₂OC₅H₅ -CH₂CH₂OCH₃ N C -H -OH -CH₂CH₂OC₅H₅ -CH₂CH₂OC₅H₅ N C -H -OH -CH₂CH₂OCਜ₂C₆H₅ -CH₂CH₂OC₆H₅ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₃ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₃ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₃ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₃C₆H₅ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₂C₆H₅ N C -H -OH -CH₂CH₂OCH₂C₆H₅ -CH₂CH₂OCH₂C₆H₅ N C -H -OH -CH₂CH₂OCH₂CGH₄C₆H₅ -CH₂CH₂OCH₂CGH₄C₆H₅ N	R¹ R² R³ R⁴ X Y Z -H OH -CH₂CH₂OC₀H₃ -CH₂CH₂OCH₃ N C N -H OH -CH₂CH₂OC₀H₃ -CH₂CH₂OC₀H₃ N C N -H OH -CH₂CH₂OC₀H₃ -CH₂CH₂OC₀H₃ N C N -H OH -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OC₀H₃ N C N -H OH -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂ N C N -H OH -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂ N C N -H OH -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂ N C N -H OH -CH₂CH₂ -CH₂ N C N -H OH -CH₂ -CH₂ N C N -H OH -CH₂ -CH₂ N C N -H OH -CH₂ -CH₂ -CH₂ N C N <

Table I (Continued)

	101	1	(Continued)					r
Comp. Na	R'	R²	R³	R'	X	Y	Z	P. S.
9 1	-Н	-он	-CH2CH2OC(0)CH3	—CH₂CH₂OCH₂C6H5	N	С	N	X
9 2	-н	-OH	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	Ν	Z
9 3	-H	-он	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	Ν	X
9 4.	-Н	-он	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	Ν	Z
9 5	-H	-OH.	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	C.	N	X
9 6	-н	−OH	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	С	N	Z
9 7	-Н	-он	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	Ń	X
98	-н	-он	-CH2CH2OC(0)C3H7	-CH2CH2OC(O)C3H7	Ν	С	N	Z
99	-н	-он	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C₄H₃	Ν	С	N	X
100	-н	-он	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	С	N	Z

--

Table 1 (Continued)

5	Comp. No.	R,	R²	R³	R4	X	Y	Z	P. S.
	101	-н	−NH₂	−CH3	-CF ₂ CF ₃	Ν	С	N	Х
10	102	-Н	-NH2	−СН₃	-CF ₂ CF ₃	N	С	N	Z
,	1 0 3	-н	-NH2	−CH₃	−CH ₂ CF ₃	Z	С	Ν	Х
15	104	-Н	−NH₂	−CH₃	−CH ₂ CF ₃	N	С	N	Z
	105	-н	−NH₂	-CF ₂ CF ₃	-CF ₂ CF ₃	Z	С	N	Х
20	106	-H	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	Z	С	N	Z
	107	-Н	-NH2	-CF ₂ CF ₃	−CH₂CF₃	N	С	Ν	X
	108	H	-NH2	-CF ₂ CF ₃	-CH₂CF₃	N	C.	N	Z
25	109	-н	-NH2	−CH ₂ CF ₃	-CH₂CF₃	Ν	С	Ν	X
	110	-H	−NH₂	−CH₂CF₃	−CH₂CF₃	Z	С	Ν	Z
30	111	-H	-NH2	−CH₂CH₂OCH₃	−CH₂CF₃	N.	С	Ν	X
	112	-Н	-NH ₂	—CH₂CH₂OCH₃	-CH ₂ CF ₃	Ν	С	Ν	Z
35	113	-H	-NH2	—CH₂CH₂OCH₃	−CH₂CH₂OCH₃ .	Z	С	Ν	X
	114	-Н	−NH₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
40	115	-Н	-NH2	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	X
	116	-H	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	Z
	117	-Н	-NH ₂	−CH2CH2OC3H7	−CH ₂ CH ₂ OC ₃ H ₇	Ν	С	Ν	X
45	118	-Н	-NH ₂	−CH₂CH₂OC₃H ₇	−CH₂CH₂OC₃Ḥ ₇	N	С	Ν	Z
	119	-H	-NH ₂	−CH2CH2OC6H5	-CH ₂ CF ₃	N	С	Ν	Х
50 .	120	-Н	-NH2	−CH2CH2OC6H5	−CH₂CF₃	N	С	Ν	Z

Table 1 (Continued)

5	Comp. Na	R'	R²	R³	R4	X	Y	Z	P. S.
	121	-Н	-NH2	-CH₂CH₂OC₅H₅	-CH₂CH₂OCH₃	N	С	N	Х
10	1 2 2	-Н	-NH ₂	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	С	N	Z
	1 2 3	-н	-NH2	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	С	N	Х
	124	-H	-NH2	-CH₂CH₂OC₅H₅	-CH₂CH₂OC₅H₅	N	С	N	Z
15	1 2 5	-Н	−NH₂	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	N	Х
-	126	-н	-NH ₂	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	Ν	·Z
20	127	-н	−NH₂	—CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	Ν	Х
	128	-Н	-NH ₂	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	Ν	Z
25	129	−H·	−NH₂	—CH2CH2OCH2C6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	С	N	Χ.
	130	-H	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	Ν	Z
30	131	-Н	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	Ν	Х
	1 3 2	-H	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
	133	-H	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Ν	Х
35	1,34	-H	−NH₂	—CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	С	N	Z
	1 3 5	-H	-NH ₂	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	Ν	X
40	136	-H	-NH ₂	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	Ν	$Z_{}$
	1 3 7	-H	-NH2	-CH₂CH₂OC(0)CH₃	−CH₂CH₂OCH₃	N	С	Ν	X
45	138	-н	−NH₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	Ν	C	Ν	Z
	1 3 9	-H	−NH₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	Х
50	1 4 0	-Н	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH ₂ CH ₂ OC ₆ H ₅	N	С	Ν	Z

Table 1 (Continued)

	1	1 -						
Comp.	Ŗ١	R²	R³	R*	Х	Y	Z	P. S.
141	-н	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	X
142	-Н	−NH₂	-CH2CH2OC(0)CH3	-CH₂CH₂OCH₂C₅H₅	N	С	N	Z
143	-Н	-NH2	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(0)CH₃	N	С	Ν	X
144	-H	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OC(0)CH₃	N	С	N	Z
145	-Н	−NH₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	X
1 4 6	-H	-NH ₂	-CH2CH2OC(0)C2Hs	-CH2CH2OC(0)C2H5	N	С	Ν	Z
147	-H	-NH ₂	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	X
1 4 8	-H	-NH ₂	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	Ν	Z
1 4 9	-H	−NH₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
150	-H	−NH₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z

0

Table 1 (Continued)

		1 4 0 1 1	_ 1	Continue	1)				
5	Comp. No.	R¹	R²	R³	R4	Х	Y	z	P. S.
	151.	-OH	-Н	-CH₃	−CF ₂ CF ₃	N	С	Ν	X
10	152	-он	-Н	−CH₂	-CF ₂ CF ₃	N	С	Ν	Z
	153	-он	-Н	-CH ₃	−CH ₂ CF ₃	N	С	N	Х
15	154	-он	-Н	—СH ₃	−CH₂CF₃	Ν	С	Ν	Z
	155	-он	-H	-CF ₂ CF ₃	−CF ₂ CF ₃	Ν	С	Ν	Х
20	156	∸OH·	-H	-CF ₂ CF ₃	−CF ₂ CF ₃	Ν	С	N	Z
	157	-он	-H	-CF ₂ CF _{.3}	−CH ₂ CF ₃	Ν	С	Ν	Х
	158	-он	-н	-CF ₂ CF ₃	−CH₂CF₃	Ν	С	Ν	Z
25	159	-он	-Н	−CH ₂ CF ₃	−CH₂CF₃	N	С	Ν	Х
	160	-он	-Н	−CH₂CF₃	—CH₂CF₃	Ν	С	Ν	. Z
30	161	-он	-Н	-CH₂CH₂OCH₃	—CH₂CF₃	Ν	С	Ν	Х
	162	-он	-H	−CH ₂ CH ₂ OCH ₃	—CH₂CF₃	N	С	Ν	Z
35	1 6 3	-он	-Н	-CH₂CH₂OCH₃	—CH₂CH₂OCH₃	Ν	С	Ν	Х
{	164	-он	-Н	-CH₂CH₂OCH₃	—CH₂CH₂OCH₃	Ν	С	Ν	Z
40	165	-он	-H	−CH ₂ CH ₂ OC ₂ H ₅	—CH₂CH₂OC₂H₅	Ν	С	Ν	Х
	166	-он	-H	-CH2CH2OC2H5	—CH₂CH₂OC₂H₅	И	С	Ν	Z
·	1 6.7	-он	-H	-CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H₁	Ν	С	Ν	Х
45	168	-он	-н	-CH₂CH₂OC₃H₁	—CH₂CH₂OC₃H ₇	Ν	С	Ν	Z
	169	-он	-H	−CH ₂ CH ₂ OC ₆ H ₅	—CH₂CF₃	Ν	С	Ν	Х
50	170	-он	-H	−CH2CH2OC6H5	−CH₂CF₃	Ν	С	Ν	Z

Table 1 (Continued)

5	Comp. No.	R'	R²	R³	R4	Х	Y	Z	P. S.
	171	-он	-н	—CH₂Cr; ОС ₆ H ₅	−CH ₂ CH ₂ OCH ₃	N	С	N	X
10	1,72	-он	÷Н	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	С	N	Z
	173	-он	-Н	-CH₂CH₂OC₅H₅	—CH₂CH₂OC₅H₅	N	С	N	Х
15	174	-он	-H	—CH₂CH₂OC₅H₅	—CH₂CH₂OC₀H₅	N	С	N	Z
	175	-он	-H	-CH2CH2OCH2C6H5	-CH₂CF₃	Ν	С	N	X
	176	-он	-H	-CH2CH2OCH2C6H5	−CH₂CF₃	N.	С	N	Z
20	1.77	-OH	-Н	-CH2CH2OCH2C6H5	−CH₂CH₂OCH₃	N	С	N	X
	178	-OH	-H	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	Ν	Z
25	179	-он	-H	-CH2CH2OCH2C6H5	—CH2CH2OC6H5	N	C	Ν	X
	180	-он	-H	-CH2CH2OCH2C6H5	—CH₂CH₂OC₅H₅	N	С	Ν	Z
30	181	-он	-H	—CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C6H₅	N	С	Ν	Х
	182	-он	-H	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C₅H₅	Ν	С	N	Z
35	183	-OH	-H	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	С	N	X
35	184	-он	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	С	N	Z
	185	-он	-Н	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	N	С	N	Х
40	186	-OH	-H	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	Ν	С	Й	Z
	187	-он	-H	—CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	С	N	Х
45	188	-он	-Н	-CH2CH2OC(0)CH3	—CH₂CH₂OCH₃	Ν	С	N	Z
	189	-он	-н	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC₅H₅	N	С	N	Х
50	190	-OH	-н	-CH ₂ CH ₂ OC(0)CH ₃	—CH₂CH₂OC₅H₅	Ν	С	N	Z
									_

Table 1 (Continued)

5	Comp. No.	Ri	R²	R³	. R ⁴	Х	Y	Z	P. S.
	1 9 1	-он	-Н	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	Ν	X
10	192	<u>–</u> OH	-H	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	Ν	Z
	193	-он	-Н	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	Ν	С	Ν	Х
15	194	-он	-Н	-CH2CH2OC(O)CH3	-CH₂CH₂OC(O)CH₃	N	С	N	Z
	195	-он	-Н	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	С	N	X
20	196	-он	-Н	-CH2CH2OC(0)C2H5	-CH2CH2OC(O)C2H5	N	С	N	Z
20	197	-он	-Н	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	Ν	X
	198	-он	-н	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ν	С	N.	Z
25	199	-он	-н	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	C	N	Х
	200	-он	-Н	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	C.	N	Z

.-

Table 1 (Continued)

5	Comp.	R¹	R²	R³	R4	х	Y	Z	P. S.
	201	-он	-он	—CH₃	-CF ₂ CF ₃	N	С	N	X
10	202	-он	-он	−СН₃	−CF ₂ CF ₃	N	С	N	Z
	203	-он	−0Ĥ	−CH ₃	−CH ₂ CF ₃	N	С	N	Х
15	204	-он	-OH	—СН₃	−CH ₂ CF ₃	N	С	Ν	Z
	205	-он	-он	−CF ₂ CF ₃	-CF₂CF₃	Ν	С	N	Х
20	206	-он	-он	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	Ν	Z
20	207	-он	-он	-CF ₂ CF ₃	-CH₂CF₃	N	С	N.	X
	2.08	-он	-он	-CF ₂ CF ₃	−CH ₂ CF ₃	Ν	С	N	Z _.
25	209	-он	-он	-CH ₂ CF ₃	−CH ₂ CF ₃	N	С	N	X
	210	-ОН	-ОН	−CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
30	211	-он	-он	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Х
	212	-он	-OH	-CH₂CH₂OCH₃	-CH ₂ CF ₃	Ν	С	N	Z
35	213	-он	-ОН	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	С	N	Х
	214	-он	-он	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	С	N	Z
40	215	-он	-он	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	Ν	С	N	X
70	216	-он	-он	−CH₂CH₂OC₂H₅	-CH2CH2OC2H5	Ν	С	Ν	Z
	2 1 7	-он	-он	—CH₂CH₂OC₃H7	−CH2CH2OC3H7	Z	С	N	X
45	218	-он	-он	-CH₂CH₂OC₃H7	−CH2CH2OC3H7	Ν	С	N	Z
	219	-он	-он	CH ₂ CH ₂ OC ₆ H ₅	−CH ₂ CF ₃	Ν	С	N	Х
50	220	-ОН	-он	—CH₂CH₂OC₅H₅	−CH₂CF₃	N	С	N	Z

Table 1 (Continued)

	• •								
5	Comp. Na.	R¹	R²	R³	R ⁴	Х	Y.	z	P. S.
	2 2 1	-OH	-он	—CH2CH2OC6H5	—CH₂CH₂OCH₃	Ν	С	N	Х
10	2 2 2	-он	-он	-CH2CH2OC6H5	-CH₂CH₂OCH₃	Ν	С	N	Z
	2 2 3	-он	-он	-CH2CH2OC6H5	—CH₂CH₂OC₅H₅	Ν	С	Ν	X
15	224	-он	-он	-CH ₂ CH ₂ OC ₆ H ₅	—CH₂CH₂OC₅H₅	Ν	С	N	Z
	2 2 5	-он	-он	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	Ν	С	N	X
	2 2 6	-он	-он	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	Ŋ	С	N	Z
20	227	-он	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	C.	Ν	Х
•	2 2 8	-он	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	С	N	Z
25	2 2 9	-он	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	Ν	С	N	X
	2 3 0	-он	-он	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	2 3 1	-OH	-он	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
	2 3 2	-он	-он	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	Ν	Z
35	2 3 3	-он	-OH	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
	2 3 4	-он	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
40	2 3 5	-OH	-он	-CH2CH2OC(O)CH3	-CH ₂ CF ₃	N	С	N	X
70	2 3 6	-он	-ÖH	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	N	С	N	Z
	2 3 7	-он	-он	-CH ₂ CH ₂ OC(0)CH ₃	—CH₂CH₂OCH₃	N	С	N	X
45	2 3 8	-он	-он	-CH2CH2OC(O)CH3	-CH₂CH₂OCH₃	N	С	N	Z
	2 3 9	-он	-он	-CH2CH2OC(O)CH3	—CH2CH2OC6H5	N	С	N	X
50	2 4 0	-он	-он	-CH2CH2OC(0)CH3	-CH2CH2OC6Hs	N	С	N	Z

Table 1 (Continued)

			Jon tinaca,					
Comp. Na	R¹	R²	R³	R⁴	Х	Y	Z	P. S.
2 4 1	-он	-OH	-CH₂CH₂OC(O)Ch.	-CH2CH2OCH2C6H5	N	С	N	X
2 4 -2	-он	-он	-CH₂CH₂0C(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
2 4 3	-он	-он	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	Ν	X
244	-он	-он	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC(O)CH₃	N	С	Ν	Z
2 4 5	-ОН	-он	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	C	Ν	X
246	-OH	-он	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	Ν	Z
247	-он	-OH	-CH₂CH₂OC(0)C₃H₁	-CH₂CH₂OC(O)C₃H₁	N	С	Ŋ	X
2 4 8	-он	-он	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
2 4 9	-он	-он	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	Ν	С	Ν	X
250	-он	-он	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	С	Ν	Z

. 50

Table 1 (Continued)

5	Comp. Na.	R¹	R²	R³	R ⁴	X	Y	ž	P. S.
	251	-он	-NH ₂	−СН₃	-CF ₂ CF ₃	N	С	Ν	Х
10	252	-ОН	-NH ₂	−СН₃	-CF ₂ CF ₃	N	С	Ν	Z
	253 [.]	-он	-NH ₂	—СН₃	-CH ₂ CF ₃	N	С	N	· X
15	254	-он	-NH ₂	—СН₃	-CH ₂ CF ₃	N	С	N	Z
	255	-он	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	N	Х
20	256	-он	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	N	Z
į	257	-он	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	Ν	С	Ν	X
	258	-он	−NH₂	-CF ₂ CF ₃	-CH ₂ CF ₃	Ν	С	И	Z
25	259	-он	-NH2	-CH ₂ CF ₃	-CH ₂ CF ₃	И	С	N	Х
÷	260	-он	−NH₂	−CH ₂ CF ₃	-CH ₂ CF ₃	Z	С	N	Z·
30	261	-ОН	−NH₂	−CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	Ν	С	Ν	X
	262	-он	-NH ₂	-CH₂CH₂OCH₃	−CH ₂ CF ₃	Ν	С	Ν	Z
35	263	-он	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	С	N	Х
	264	-он	-NH2	-CH₂CH₂OCH₃	-CH2CH2OCH3	N	С	N	Z
40	265	-он	-NH ₂	—CH₂CH₂OC₂H₅	-CH2CH2OC2H5	Ν	С	Ν	X
·	266	-он	−NH₂	—CH2CH2OC2H5	-CH ₂ CH ₂ OC ₂ H ₅	Ν	С	N	Z
	267	-он	-NH2	-CH₂CH₂OC₃H7	-CH₂CH₂OC₃H₁	Ν	С	N	X
45	2 6 8	-он	−NH₂	—CH₂CH₂OC₃H₁	-CH₂CH₂OC₃H₁	Z	С	Ν	Z
	269	-он	-NH2	-CH2CH2OC6H5	-CH ₂ CF ₃	Ν	С	N	X
50	270	-он	−NH₂	−CH ₂ CH ₂ OC ₆ H ₅	−CH ₂ CF ₃	Ν	С	N	Z

Table 1 (Continued)

5	Comp. Na.	R'	R²	R³	R4	Х	Y	Z	P.S.
	271	-он	-NH ₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Х
10	2 7 2	-он	-NH2	-CH2CH2OC6H5	−CH₂CH₂OCH₃	N	С	N	Z
	273	-он	−NH₂	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	Ν	Х
	274	-он	-NH ₂	-CH2CH2OC6H5	−CH2CH2OC6H5	N	С	Ν	Z
15	275	-он	-NH2	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	И	С	N	X
	276	-он	−NH₂	-CH₂CH₂QCH₂C6H5	-CH₂CF₃	N	С	N	Z
20	277	-он	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	Ν	X
	278	-он	-NH ₂	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	N	Z
25	279	-он	−NH₂	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	N	С	N	X
	280	-он	−NH₂	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	N	С	N	Z
30	281	-он	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
	282	-он	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
	283	-он	−NH₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
35	284	-он	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	·C	N	Z
	285	-OH	-NH2	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	N	С	N	X
40	286	-он	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	−CH ₂ CF ₃	N	С	N	Z
	287	-он	−NH₂	-CH₂CH₂OC(0)CH₃	CH₂CH₂OCH₃	N	С	Ν	X
45	288	-он	−NH₂	-CH₂CH₂OC(0)CH₃	CH₂CH₂OCH₃	N	С	N	Z
•	289	-он	−NH₂	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OC₅H₅	N	·C	Ν	X
50	290	-он	-NH2	-CH₂CH₂OC(0)CH₃	−CH2CH2OC6H5	N	С	N	Z

Table 1 (Continued)

Сотр.	R'	R²	R³	R ⁴	Х	Y	Z	P. S.
2 9 1	-он	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₂C6H5	N	С	N	X
292	-ОН	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	Ν	Z
293	-он	-NH2	-CH₂CH₂OC(0)CH₃	-CH2CH2OC(0)CH3	N	С	N	Х
294	-он	−NH₂	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC(0)CH ₃	N	С	N	Z
2 9 5	-он	−NH₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(O)C2H5	N	С	N	X
2.96	-он	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
297	-он	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
298	-он	-NH₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
299	-он	-NH2	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Х
3 0 0	-он	−NH₂	-CH₂CH₂OC(0)C₄H₃	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z

. 15

Table 1 (Continued)

5	Comp. No.	R'	R²	R³	R ⁴	X	Y	Z	P. S.
	3 0 1	-NH ₂	-Н	−CH₃	-CF2iF3	Ν	С	N	X
10	3 0 2	-NH2	-Н	—СН₃	-CF ₂ CF ₃	Ν	С	Ν	Z
:	3 0 3	-NH ₂	-н	—СН₃	−CH ₂ CF ₃	Ν	С	N	X
15	3 0 4	-NH2	-Н	−CH ₃	-CH₂CF₃	Z	С	Ν	Z
	3 0 5	-NH2	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
20	306	-NH ₂	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	N	Z
20	3 0 7	-NH ₂	-Н	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X
	3 0 8	-NH2	-н	-CF ₂ CF ₃	-CH ₂ CF ₃	Ν	С	N	Z
25	309	-NH2	-Н	−CH ₂ CF ₃	−CH ₂ CF ₃	Ν	С	N	X
	3 1 0	-NH2	-H	−CH ₂ CF ₃	−CH₂CF₃	Ν	C.	N	Z
30	3 1 1	−NH₂	-H	—CH₂CH₂OCH₃	−CH₂CF₃	Ν	С	N	Х
	3 1 2	-NH2	-H	-CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	N	Z
35	3 1 3	−NH₂	-H	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Х
	3 1 4	-NH2	-Н	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	С	N	Z
40	315	-NH2	-Н	—CH₂CH₂OC₂H5	-CH2CH2OC2H5	N	С	N	Х
	3 1 6	−NH₂	-Н	-CH2CH2OC2H5	−CH2CH2OC2H5	N	С	N	Z
-	3 1 7	-NH ₂	-Н	-CH2CH2OC3H7	-CH2CH2OC3H7	Ν	С	N	X
45	318	-NH ₂	-Н	—CH₂CH₂OC₃H7	-CH2CH2OC3H7	N	С	N	Z
	319	-NH2	-Н	—CH2CH2OC6H5	−CH ₂ CF ₃	Ν	С	N	X
50	3 2 0	−NH₂	-Н	−CH2CH2OC6H5	−CH ₂ CF ₃	N	С	Ν	Z

Table 1 (Continued)

			,						
5	Comp. No.	R'	R²	R³	R ⁴	Х	Y	Z	P. S.
	321	-NH2	-Н	—CH₂CH₂OC₀H₅	-CH₂CH₂OCH₃	N	С	N	X
10	3 2 2	−NH₂	-Н	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Z
	3 2 3	−NH₂	-Н	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Х
15	3 2 4	−NH₂	-Н	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
	3 2 5	−NH₂	-Н	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	C	N	Х
	3 2 6	-NH ₂ ·	-H	—CH2CH2OCH2C6H5	-CH₂CF₃	N	С	N	Z
20	3 2 7	-NH2	-Н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	Ν	С	N	Х
	3 2 8	-NH ₂	-Н	-CH₂CH₂OCH₂C6H5	-CH₂CH₂OCH₃	Ν	С	Ν	Z
25	3 2 9	-NH2	-H	−CH ₂ CH ₂ OCH ₂ C ₆ H ₅	−CH2CH2OC6H5	Ν	С	Ν	Х
	3 3 0	-NH2	-H	-CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	Ν	С	Ν	Z
30	331	-NH2	-н	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	И	С	N	Х
	3 3 2	-NH2	-Н	-CH₂CH₂OCH₂C₀H₅	-CH2CH2OCH2C6H5	Ν	С	Ν	Z
35	3 3 3	-NH2	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	С	Ν	X
	3 3 4	-NH2	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Ν	Z
40	3 3 5	−NH₂	-Н	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	N	С	N	Х
70	3 3 6	-NH ₂	-H	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	Ν	С	N	Z
1	3 3 7	-NH2	-Н	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	С	N	Х
45	3 3 8	-NH ₂	-Н	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	Ŋ	С	Ŋ	Z
	3 3 9	-NH2	-Н	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC6H5	N	С	N	Х
50	3 4 0	-NH ₂	-н	-CH₂CH₂OC(0)CH₃	−CH2CH2OC6H5	N	С	N	Z

Тa	b 1	e	1	(Cont	i	n u	ed)
	~ .	•	-		-	** -	/

Comp. Na	R¹	R²	R³	R⁴ .	Х	Y	Z	P. S.
3 4 1	−NH₂	-Н	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	X
3 4 2	-NH ₂	-Н	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	Ν	С	Ν	Z
3 4 3	-NH ₂	-Н	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC(O)CH₃	N	С	N	X
3 4 4	-NH ₂	-Н	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	Ν	Z
3 4 5	-NH2	-Н	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	N	С	N	Х
3 4 6	-NH ₂	-H	-CH₂CH₂OC(0)C₂H₅	-CH ₂ CH ₂ OC(0)C ₂ H ₅	Ν	С	N	Z
3 4 7	-NH ₂	-Н	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
3 4 8	-NH ₂	-Н	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH2CH2OC(0)C3H7	N	С	Ν	Z
3 4 9	-NH ₂	-H	-CH ₂ CH ₂ OC(0)C ₄ H ₉	$-CH_2CH_2OC(0)C_4H_9$	N	С	N	X
350	-NH ₂	-Н	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	N.	С	Ν	Z

Table 1 (Continued)

5	Сетр. Na	R¹	R²	R³	R4	Х	Y	z	P. S.
٠.	351	-NH2	- 1	—СH₃	-CF ₂ CF ₃	N	С	N	Х
10	3 5 2	-NH ₂	- I	−CH ₃	-CF ₂ CF ₃	N	С	N	Z
	3 5 3	-NH2	- I	—CH3	−CH ₂ CF ₃	N	С	N	Х
•	354	-NH ₂	- I	−СН₃	-CH₂CF₃	N	С	Ν	Z
15	3 5 5	-NH ₂	- I	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	Ν	Х
	3 5 6	-NH2	- I	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	Ν	Z
20	3 5 7	-NH2	- I	-CF ₂ CF ₃	−CH ₂ CF ₃	N	С	N	Х
	3 5 8	−NH₂	- I	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	Ν	Z
25 .	3 5 9	−NH₂	- I	-CH ₂ CF ₃	−CH ₂ CF ₃	N	С	Ν	Х
	3 6 0	-NH ₂	- I	−CH ₂ CF ₃	−CH ₂ CF ₃	N	С	Ν	Z
30	3 6 1	-NH ₂	- I	—CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	Ν	Х
	3 6 2	-NH2	± 1	-CH2CH2OCH3	-CH ₂ CF ₃	Ν	С	N	Z
	3 6 3	−NH₂	- I	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	Ç	Ν	X
35	364	-NH2	- I	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
	3 6 5	-NH2	- 1	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	X
40	366	-NH ₂	- 1	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N.	Z
	367	-NH ₂	- I	-CH2CH2OC3H7	-CH2CH2OC3H7	N	С	Ν	X
45	368	−NH₂	- I	-CH₂CH₂OC₃H₁	-CHzCHzOC₃Hz	N	С	N	Z
	369	-NH2	- I	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	N	Х
50	370	−NH₂	- I	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	Ν	Z

Table 1	(Continued)
---------	-------------

			• `	continued,)					
5	Comp. Na	R¹	R²	R³	R4	7	۲ .	Y	z	P. S.
	3 7 1	-NH2	- I	-CH2CH2OC6H5	-CH2CH2OCH3	1	1 1		N	X
10	3 7 2	-NH ₂	- I	-CH2CH2OC6H5	-CH ₂ CH ₂ OCH ₃	· N	1 (N	\overline{z}
	3 7 3	-NH ₂	- I	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	1 (1	X
15	3 7 4	-NH ₂	- I	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	N			V	Z
	3 7 5	-NH ₂	- I	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N		1	1	X
20	3 7 6	-NH ₂	-1	-CH₂CH₂OCH₂C₅H₅	-CH₂CF₃	N	C	1	1	\overline{z}
	3 7 7	-NH ₂	- I	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	C	1	1	X
25	3 7 8	-NH ₂	- I	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	C	1	1	\overline{z}
25	3 7 9	-NH ₂	- 1	-CH₂CH₂OCH₂C6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	C	N	1	X
	3 8 0	-NH ₂	- I	-CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	N	С	N	,	\overline{z}
30	3 8 1	-NH ₂	- I	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C₅H₅	N	С	N		X
	3 8 2	-NH2	- I	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N		\overline{z}
35	3 8 3	−NH₂	- 1	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	+	X
	384	-NH ₂	- I	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N		\overline{z}
40	3 8 5	-NH ₂	- 1	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	N	:	x
	386	-NH ₂	-1	-CH₂CH₂OC(0)CH₃	−CH₂CF₂	N	С	N	1	Z
45.	3 8 7	−NH₂	- I	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	С	N	7	X
	3 8 8	-NH ₂	- I	-CH2CH2OC(0)CH3	-CH2CH2OCH3	N	С	N	2	Z
	389	-NH ₂	- 1	-CH₂CH₂OC(O)CH₃	-CH2CH2OC6H5	N	Ċ	N	Σ	
50	3 9 0	-NH ₂	- I -	-CH₂CH₂OC(0)CH₃	-CH ₂ CH ₂ OC ₆ H ₅	N	С	N	7	2
									Ц	

Tabl	e	1	(Continued)
1	_		COUNTINGERY

	11		T					•
Comp.	R'	R²	R³	R4	X	Y	Z	P. S.
391	-NH ₂	- I	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₂C₅H₅	N	С	N	Х
392	-NH ₂	-1	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Z
3 9 3	-NH ₂	- I	-CH2CH2OC(O)CH3	-CH₂CH₂OC(O)CH₃	N	C	N	X
3 9 4	-NH ₂	- I	-CH2CH2OC(O)CH3	-CH2CH2OC(0)CH3	N	C	N	Z
3 9 5	-NH2	-1	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	C	N	X
3 9 6	−NH₂	- I	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	N	С	N	Z
3 9 7	-NH2	- I	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	Ν	X
398	-NH ₂	- I	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	Z
3 9 9	-NH2	- I	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(O)C4H9	N	С	N	X
400	-NH ₂	- 1	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	·N	С	N	Z

.

Table 1 (Continued)

5	Comp. No.	R'	R²	. R ³	R4	Х	Y	Z	P. S.
	4 0 1	-NH ₂	-он	—СН₃	-CF ₂ CF ₃	N	С	N	X
10	402	-NH ₂	-он	—СН₃	-CF ₂ CF ₃	Ν	С	N	Z
	4 0 3	-NH2	-он	−СН₃	−CH ₂ CF ₃	N	С	N	X
15	404	-NH ₂	он	—CH₃	−CH ₂ CF ₃	N	С	N	Z
	405	-NH2	-он	−CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Х
20	406	-NH ₂	-он	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	N	Z
	407	-NH2	-он	-CF ₂ CF ₃	-CH₂CF₃	Ν	С	N	X
	408	-NH2	-он	-CF ₂ CF ₃	−CH₂CF₃	N	С	N	Z
25	409	-NH ₂	-OH	-CH₂CF₃	−CH ₂ CF ₃	N	С	N	X
	410	-NH2	-он	-CH ₂ CF ₃ .	−CH ₂ CF ₃	Ν	С	N	Z
30	4 1 1	-NH2	-он	-CH₂CH₂OCH₃	−CH₂CF₃	7	C	N	X
	412	-NH2	-он	-CH₂CH₂OCH₃	-CH ₂ CF ₃	Ν	С	N	Z
35	413	-NH2	-OH	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	С	N	X
	414	-NH ₂	-OH	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	С	N	Z
. 40	415	-NH2	-он	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	Ν	X
	4 1 6	−NH₂	-OH	-CH2CH2OC2H5	—CH2CH2OC2H5	N	С	N	Z
	417	−NH₂	-он	−CH2CH2OC3H7	-CH₂CH₂OC₃H7	Ν	С	N	Х
45	418	-NH2	-он	−CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H7	N	С	N	Z
	419	-NH ₂	-он	-CH₂CH₂OC6H5	-CH₂CF₃	N	С	Ν	X
50	420	-NH₂	-он	−CH ₂ CH ₂ OC ₆ H ₅	−CH ₂ CF ₃	N	С	N	Z

Tab	1	e	1	(Con	ŧ	i n	11 6	a	١
	•	•	-	(0011	ι	1 11	uc		,

		4510	1 (0	on tinued)					
5	Comp.	R'	R²	. R³	R*	X	Y	Z	P. S.
	42'	-NH ₂	-он	-CH2CH2OC6H5	−CH₂CH₂OCH₃	N	C	N	X
10	422	-NH ₂	-он	−CH ₂ CH ₂ OC ₆ H ₅	-CH₂CH₂OCH₃	N	С	N	Z
	4 2 3	-NH ₂	-он	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	N	С	N	X
15	4 2 4	-NH2	-он	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
	4 2 5	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	X
	4 2 6	-NH ₂	-ОН	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Z
20	427	−NH₂	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Х
	4 2 8	-NH2	-он	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	N	Z
25	4 2 9	-NH2	-он	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
	4 3 0	−NH₂	-ОН	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	4 3 1	−NH₂	-ОН	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
	4 3 2	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
35 ·	4 3.3	-NH2	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Х
33	4 3 4	-NH ₂	-он	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	С	Ν	Z
	4 3 5	-NH ₂	-он	-CH ₂ CH ₂ OC(0)CH ₃	−CH ₂ CF ₃	N	С	N	Х
40	4 3 6	►NH ₂	-он	-CH₂CH₂OC(O)CH₃	-CH ₂ CF ₃	N	С	N	Z
	4 3 7	−NH₂	-он	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	С	Ν	X
45	4 3 8	-NH2	-он	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	С	N	Z
	4 3 9	-NH ₂	-он	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC ₆ H ₅	Ν	С	Ν	X
50	4 4 0	-NH ₂	-он	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC ₆ H ₅	Ν	С	N	Z

Tabl	e	1	(Cont	inued)
1 4 5			COUL	1 11 11 12 12 11 /

			on that cay					
Comp.	R'	R²	R³	R4	X	Y	Z	P. S.
4 4 1	-NH2	-он	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OCH₂C₅H₅	N	С	N	Х
4 4 2	−NH₂	-он	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
4 4 3	−NH₂	-он	-CH2CH2OC(O)CH3	-CH ₂ CH ₂ OC(0)CH ₃	N	С	N	X
4 4 4	−NH₂	-он	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC(0)CH₃	N	С	Ν	Z
4 4 5	-NH2	-он	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	Ν	X
4 4 6	-NH ₂	-он	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	Ν	Z
4 4 7	-NH ₂	-ОН	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
4 4 8	-NH2	-он	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH2CH2OC(0)C3H7	N	С	N	Z
4 4 9	−NH₂	-он	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	N	С	Ν	X
450	-NH2	-OH	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	Ν	С	N	Z

Table 1 (Continued)

		1 4 0 1 6	1 (0	on tinuea)					
5	Comp.	R'	R²	R³	R ⁴	X	Y	Z	P. S.
	4 5 1	-NH ₂	-NH ₂	−СН₃	-CF ₂ CF ₃	N	С	N	X
10	452	-NH2	-NH ₂	−СН₃	-CF ₂ CF ₃	N	С	N	Z
	453	-NH ₂	-NH ₂	−CH ₃	-CH ₂ CF ₃	N	С	N	X
15	454	-NH ₂	-NH ₂	−CH₃	-CH₂CF₃	N	С	N	Z
	4 5 5	−NH₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
20	456	−NH₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
•	457	-NH2	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X
	4 5 8	-NH2	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
25	459	-NH2	-NH2	-CH ₂ CF ₃	−CH ₂ CF ₃	N	С	N	X
	460	-NH2	-NH2	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
30	461	−NH₂	-NH2	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Х
	462	-NH ₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Z
35	463	-NH2	-NH ₂	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	X
	4 6 4	-NH2	-NH2	-CH₂CH₂OCH₃	—CH₂CH₂OCH₃	N	С	N	Z
.40	465	-NH2	-NH ₂	—CH₂CH₂OC₂H₅	−CH ₂ CH ₂ OC ₂ H ₅	Ν	С	N	X
	466	−NH₂	−NH₂	-CH₂CH₂OC₂H₅	-CH₂CH₂OC₂H₅	N	С	N	Z
	467	-NH2	−NH₂	−CH₂CH₂OC₃H ₇	-CH₂CH₂OC₃H₁	N	C	N	X
45	468	-NH ₂	-NH₂	-CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H₁	Ν	С	N	Z
	469	-NH ₂	−NH₂	-CH₂CH₂OC₀H₅	−CH₂CF₃	Ν	С	N	Х
50	470	−NH₂	-NH2	-CH2CH2OC6H5	−CH ₂ CF ₃	Ν	С	N	Z

Table 1 (Continued)

	lable	1 (0	ontinued)	•				
Comp.	k,	R²	R³	R4	X	Y	Z	P. S.
471	-NH2	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH₂CH₂OCH₃	N	C	N	X
472	-NH ₂	-NH ₂	-CH₂CH₂OC₅H₅	-CH₂CH₂OCH₃	N	C	N	Z
473	−NH₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC5H5	· N	C	N	X
474	-NH ₂	-NH ₂	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	C	N	Z
475	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	X
476	-NH2	-NH ₂	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH ₂ CF ₃	N	С	N	Z
477	−NH₂	-NH ₂	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH2CH2OCH3	N	С	N	X
478	-NH ₂	-NH ₂	-CH₂CH₂OCH₂C₅H₅	-CH₂CH₂OCH₃	N	С	N	Z
479	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	X
4 8 0	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	· Z
4 8 1	−NH₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
482	-NH2	-NH ₂	-CH₂CH₂OCH₂C₅H₅	-CH₂CH₂OCH₂C₅H₅	N	С	N	Z
4 8 3.	−NH₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
484	-NH2	−NH₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
4 8 5	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	С	N	X
4 8 6	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	С	N	Z
487	-NH2	-NH ₂	-CH₂CH₂OC(O)CH₂	—CH₂CH₂OCH₃	N	С	N	X
488	-NH ₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	С	N	Z
4 8 9	-NH2	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OC6H5	N	С	N	X
490	-NH2	-NH ₂	-CH₂CH₂OC(O)CH₂	−CH ₂ CH ₂ OC ₆ H ₅	N	С	N	Z

Table 1 (Continued)

	1		Υ					
Comp.	R¹	R²	R³	R'	X	Y	z	P. S.
491	-NH	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	Х
4 9 2	−NH₂	-NH2	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
4 9 3	−NH₂	-NH2	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	N	Х
494	−NH₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OC(0)CH3	N	С	N	Z
4 9 5	−NH₂	-NH ₂	-CH2CH2OC(O)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
496	-NH2	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	Ċ	Ν	Z
497	-NH ₂	-NH2	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ν	С	Ν	X
498	−NH₂	-NH2	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	Ν	Z
499	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	C	N	X
500	−NH₂	-NH2	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	Ċ	N	Z

-

	T	a b	1	e	1	(Con	t	i	n	u	e	d))
--	---	-----	---	---	---	------	---	---	---	---	---	----	---

		· II		T THUCU					
5	Comp. Na	R'	R²	R³	R ⁴	X	Y	Z	P. S.
	501	-C1	-NH2	-CH₃	-CF ₂ CF ₃	N	C	N	X
10	502	-C1	-NH ₂	—CH₃	-CF ₂ CF ₃	N	C	N	Z
	503	-C1	-NH ₂	−CH3	-CH ₂ CF ₃	N	c	N	X
15	504	-C1	-NH ₂	−CH3	-CH ₂ CF ₃	N	C	N	Z
	505	-C1	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
	506	-C1	-NH ₂	−CF ₂ CF ₃	-CF ₂ CF ₃	N	C	N	Z
20	507	-C1	-NH ₂	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	X
	508	-C1	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
25	509	-C1	-NH ₂	-CH₂CF₃	-CH ₂ CF ₃	N	С	N	Х
	510	-C1	-NH2	−CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
30	511	-C1	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Х
	512	-C1	−NH₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	С	N	Z
35	5 1 3	-C I	−NH₂	-CH2CH2OCH3	−CH₂CH₂OCH₃	N	С	N	. X
	514	-C1	-NH ₂	-CH₂CH₂OCH₃	−CH ₂ CH ₂ OCH ₃	N	С	N	Z
	515	-C1	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	Ν	X
40	516	-C1	-NH ₂	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	N	С	N	Z
-	517	-C1	-NH ₂	−CH ₂ CH ₂ OC ₃ H ₇	-CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Х
45	5 1 8	-C1	-NH ₂	-CH₂CH₂OC₃H₁	-CH₂CH₂OC₃H₁	N	С	Ν	Z
1	519	-C1	-NH ₂	-CH2CH2OC6H5	-CH₂CF₃	N	С	N	X .
50	520	-C1	-NH ₂	-CH2CH2OC6H5	−CH₂CF₃	N	С	N	Z

Table 1 (Continued)

				on tinded,					
5	Comp. Na	R¹	R²	. R³	R ⁴	X	Y	Z	P. S.
	5 2 1	-C1	-1. ¹ H ₂	−CH ₂ CH ₂ OC ₆ H ₅	-CH₂CH₂OCH₃	N	С	N	X
10	5 2 2	-C1	-NH2	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Z
-	5 2 3	-C1	-NH2	-CH2CH2OC6H5	−CH₂CH₂OC₅H₅	N	С	N	X
15	5 2 4	-C1	-NH2	-CH2CH2OC6H5	-CH₂CH₂OC₅H₅	N	С	N	Z
	5 2 5	-C1	-NH2	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	X
•	526	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Z
20	5 2 7	-C1	-NH2	-CH₂CH₂OCH₂C6H5	-CH₂CH₂OCH₃	N	С	N	X
	528	-C1	-NH2	-CH₂CH₂OCH₂C₅H₅	-CH₂CH₂OCH₃	N	С	N	Z
25	529	-C1	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
	5 3 0	-C1	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	5 3 1	-C1	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	X
	5 3 2	-C1	−NH₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C₅H₅	N	С	N	\overline{z}
,	5 3 3	-C1	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Х
35	5 3 4	-C1	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
	5 3 5	-C1	-NH2	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	N	Х
o	5 3 6	-C1	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CF₃	N	С	N	Z ·
	5 3 7	-C1	-NH2	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	C	N	х
5	538	-C1	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	С	N	Z
	5 3 9	-C1	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	Ν	С	N	Х
_	5 4 0	-C1	-NH2	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	Z
0					·	ш-і			

Table 1 (Continued)

Comp.	R'	R²	R³	R'	x	Y	Z	P. S.
5 4 1	-C1	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	X
5 4 2	-C1	−NH₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
5 4 3	-C1	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC(0)CH₃	N	С	N	X
5 4 4	-C1	−NH₂	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC(0)CH ₃	N	С	N	Z
5 4 5	-C1	−NH₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	X
5 4 6	-C1	-NH2	-CH2CH2OC(O)C2H5	-CH2CH2OC(0)C2H5	N	С	Ν	Z
5 4 7	-C1	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	C	Ν	X
5 4 8	-C1	−NH₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
5 4 9	-C1	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H,	Ν	С	N	X
550	-C1	−NH₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z

Table 1 (Continued)

		1 4 5 1		Continued	,				
5	Comp. Na	R¹	R²	R³	R4	X	Y	Z	P. S.
	5 5 1	-C1	-C1	-CH ₃	-CF ₂ CF ₃	N	С	N	Х
10	5 5 2	-C1	-C1	—СH ₃	-CF ₂ CF ₃	N	С	N	Z
	5 5 3	-C1	-C1	−CH₃	-CH ₂ CF ₃	N	С	N	Х
15	5 5 4	-C1	-C1	-CH₃	-CH ₂ CF ₃	N	С	N	Z
	555	-C1	-C1	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
20 .	556	-C1	-C1	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
	5 5 7	-C1	-C1	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	X
	5 5 8	-C1	-C1	-CF ₂ CF ₃	-CH₂CF₃	N	С	Ν	Z
25	5 5 9	-C1	-C1	−CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X
	560	-C1	-C1	-CH₂CF₃	−CH ₂ CF ₃	N	С	N	Z
30	561	-C1	-C1	-CH₂CH₂OCH₃	-CH₂CF₃	N	С	N	X
	562	-C1	-C1	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Z
35	563	-C1	-C1	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	Ν	Х
	564	-C1	-C1	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
	565	-C1	-C1	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	Ν	С	N	X
40	566	−C.1	-C1	-CH ₂ CH ₂ OC ₂ H ₅	-CH ₂ CH ₂ OC ₂ H ₅	N	С	N	Z
	567	-C1	-C1	—CH₂CH₂OC₃H7	-CH₂CH₂OC₃H7	N	C.	N	X
45	568	-C1	-C1	-CH₂CH₂OC₃H₁	-CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Z
	569	-C1	-C1	-CH2CH2OC6H5	−CH₂CF₃	N	С	N	X
50	570	-C1	-C1	-CH₂CH₂OC₅H₅	-CH ₂ CF ₃	N	С	N	Z

Table l (Continued)

5	Comp. Na	R¹	R²	R³	R ⁴	Х	Y	Z	P.S.
	5 7 1	-C1	-C1	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Х
10	572	-C1	-C1	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Z
	573	-C1	-C1	-CH2CH2OC6H5	-CH₂CH₂OC₀H₅	N-	С	N	X
15	574	-C1	-C1	-CH2CH2OC6H5	-CH2CH2OC6H5	N	c	N	Z
	575	-C1	-C1	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	N	Х
	576	-C1	-C1	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	N	Z
20	577	-C1	-C1	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Х
	578	-C1	-C1	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	Ν	Z
25	579	-C1	-C1	-CH2CH2OCH2C6H5	-CH₂CH₂OC₀H₅	N	С	N	X
	580	-C1	-C1	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	Ν	С	N	Z
30	5 8 1	-C1	-ci	-CH2CH2OCH2C6H5	-CH2CH2OCH2C5H5	N	С	Ν	X
	582	-C1	-C I	-CH₂CH₂OCH₂C6H5	-CH2CH2OCH2C6H5	N:	С	N	Z
35	583	-C1	-C1	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	Ċ	Ň	X
	5 8 4	-C1	-C1	—CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Ν	Z
	5 8 5	-C 1	-C1	-CH₂CH₂OC(0)CH₃	−CH₂CF₃	N	С	Ν	Х
40	586	-C1	_C 1	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	N	С	Ν	Z
	587	-C1	-C1	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	С	N	X
45	588	-C1	-C1	-CH2CH2OC(O)CH3	-CH₂CH₂OCH₃	N	С	N	Z
	589	-C1	-C1	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	X
50	590	-C1	-C1	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	Z

Table 1 (Continued)

	·		0.011 (111 (1 (1)					
Comp.	R¹	R²	R³	R4	X	Y	z	P. S.
591	-C I	-C1	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH2C6H5	N	С	N	Х
592	-C I	-C1	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Z
593	-C1	-C I	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	Ν	Х
594	-C1	-C1	-CH2CH2OC(0)CH3	-CH₂CH₂OC(O)CH₃	N	С	N	Z
595	-C1	-C1	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	Ν	X
596	-C1	-C1	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
597	-C1	-C1	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	Ν	X
598	-C1	-C1	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH2CH2OC(0)C3H7	N	С	Ν	Z
5 9 9	-C1	-C1	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
600	-C1	-C1	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	Ċ	N	Z

Table 1 (Continued)

Comp.	R¹	D2	D?		T	T	T	Γ-
No	I R.	R²	R³	R ⁴	X	Y	Z	P. S.
601	-SH	-NH2	-CH ₂	-CF ₂ CF ₃	N	С	N	X
602	-SH	-NH ₂	−CH ₃	-CF ₂ CF ₃	N	С	N	Z
603	-SH	-NH2	−CH₃	-CH ₂ CF ₃	N	С	N	X
6 0 4	-ѕн	-NH2	−CH₃	−CH ₂ CF ₃	N	С	N	Z
605	-SH	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Х
606	-SH	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
607	-SH	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Х
608	-ѕн	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
609	-SH	-NH2	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X
610	-ѕн	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
6 1 1	-ѕн	-NH2	-CH2CH2OCH3	-CH ₂ CF ₃	N	С	N	Х
612	-ѕн	-NH₂	—CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Z
6 1 3	-SH	−NH₂	—CH₂CH₂OCH₃	−CH ₂ CH ₂ OCH ₃	N	С	N	X
6 1 4	-SH	-NH2	—CH₂CH₂OCH₃	-CH ₂ CH ₂ OCH ₃	N	С	Ν	Z
6 1 5	-SH	-NH2	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	N	С	N	X
6 1 6	-SH	-NH2	-CH2CH2OC2H5	-CH₂CH₂OC₂H₅	N	С	Ν	\overline{z}
617	-ѕн	-NH ₂	—CH₂CH₂OC₃H ₇	—CH₂CH₂OC₃H ₇	N	С	N	X
6 1 8	-ѕн	−NH₂	—CH₂CH₂OC₃H7	−CH₂CH₂OC₃H₁	N	С	N	Z
619	-ѕн	-NH ₂	-CH₂CH₂OC₀H₅	−CH ₂ CF ₃	N	С	N	X
620	-SH	−NH₂	-CH₂CH₂OC₅H₅	-CH₂CF₃	N	С	N	Z

45...

Table 1 (Continued)

	Comp.					Г		Π	
5	Nα	R'	R².	R³	R4	X	Y	Z	P. S.
	621	-SH	-NH ₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	X
10	622	-SH	-NH2	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	C.	N	Z
	623	-SH	-NH2	-CH2CH2OC6H5	-CH2CH2OC5H5	N	С	N	X
15	624	-SH	-NH2	-CH₂CH₂OC₀H₅	-CH2CH2OC6H5	N	С	N	Z
	625	-SH	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	N	X
	626	-SH	-NH ₂	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	Ν	Z
20	627	-SH	−NH₂	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	N	Х
•	628	-SH	−NH₂	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	N	Z
25	629	-SH	-NH2	—CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	N	С	N	X
	630	-ѕн	-NH2	—CH2CH2OCH2C6H5	—CH₂CH₂OC₅H₅	N	С	Ν	Z
30	631	-SH	-NH ₂	—CH2CH2OCH2C6H5	—CH2CH2OCH2C6H5	N	С	Ν	Х
	632	-SH	-NH2	-CH2CH2OCH2C6H5	—CH2CH2OCH2C6H5	N	С	Ν	Z
35	633	-SH	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Х
33,	634	-SH	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Ν	Z
	6 3 5	-SH	-NH2	-CH2CH2OC(O)CH3	−CH ₂ CF ₃	Ν	С	Ν	X
40	636	-ѕн	-NH ₂	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	Ν	С	N	Z
	6 3 7	-ѕн	-NH ₂	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OCH₃	N	С	N	X
45	638	-SH	-NH ₂	—CH₂CH₂OC(O)CH₃	—CH₂CH₂OCH₃	Ν	С	N	Z
	639	-SH	-NH ₂	-CH2CH2OC(0)CH3	-CH₂CH₂OC6H5	Ν	С	Ν	X
50	640	-SH	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC₅H₅	Ν	С	Ν	Z

Table 1 (Continued)

C	Comp. No.	R'	R²	R³	R¹	x	Y	Z	P. S.
(641	-ѕн	-NH ₂	-CH2CH2OC^O)CH3	-CH2CH2OCH2C6H5	N	С	N	X
6	6 4 2	-ѕн	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Z
6	643	-SH	-NH ₂	-CH2CH2OC(O)CH3	-CH₂CH₂OC(0)CH₃	N	С	Ν	Х
€	644	-SH	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OC(O)CH₃	N	С	N	Z
ε	6 4 5	-SH	-NH ₂	-CH₂CH₂OC(0)C₂H₅	-CH2CH2OC(0)C2H5	N	С	N	X
6	6 4 6	-ѕн	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	С	N	Z
6	6 4 7	-SH	-NH ₂	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	X.
6	3 4 8	-ѕн	-NH2	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH₂CH₂OC(0)C₃H ₇	N	С	N	Z
6	3 4 9	-SH	-NH2	-CH2CH2OC(O)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
6	5 0	-ѕн	-NH ₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z

Table 1 (Continued)

5	Сотр.	R'	R²	R³	R ⁴	X	Y	Z	P. S.
	- No.	−NH₂	-NH,	 —CH₃	-CF ₂ CF ₃	N	N	N	X
10	652	-NH:	-NH ₂	-CH₃	-CF ₂ CF ₃	N	N	N	Y
•	653	-NH ₂	-NH ₂	-CH₃	-CF ₂ CF ₃	N	N	N	Z
15	654	-NH ₂	-NH ₂	-CH₃	-CH ₂ CF ₃	N	N	N	X
	655	−NH₂	-NH ₂	—СН₃	-CH₂CF₃	N	N	N	Y
20	656	-NH ₂	-NH ₂	—CH ₃	-CH ₂ CF ₃	N	N	N	Z
20	657	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	X
	658	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	N	N	Y
25	659	-NH2	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	N	N	Z
	660	-NH ₂	-NH2	-CF ₂ CF ₃	-CH₂CF₃	N	Ņ	N	X
30	661	-NH2	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	Ν	N	N	Y
	662	-NH2	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	Ν	N	Ν	Z
35	663	-NH2	-NH2	−CH ₂ CF ₃	−CH₂CF₃	Ν	N	N	X
	664	-NH2	-NH2	-CH ₂ CF ₃	-CH ₂ CF ₃	Ν	Ν	Ν	Y
40	665	-NH2	-NH2	-CH ₂ CF ₃	-CH₂CF₃	N	N	Ν	Z
	666	−NH₂	-NH2	—CH₂CH₂QCH₃	−CH ₂ CF ₃	Ν	N	N	X
	667	-NH2	-NH ₂	-CH₂CH₂OCH₃	−CH ₂ CF ₃	N	N	N	Y
45	668	−NH₂	-NH2	—CH₂CH₂OCH₃	—CH₂CF₃	Ν	Ν	Ν	Z
	669	-NH ₂	-NH2	-CH₂CH₂OCH₃	—CH₂CH₂OCH₃	N	Ν	Ν	Х
50	670	-NH2	−NH₂	-CH₂CH₂OCH₃	—CH₂CH₂OCH₃	7	N	Ν	Y

Table 1 (Continued)

		1 4 0 1	C 1 (con tinded)					
5	Comp. Na	R¹	R²	R³	R4	Х	Y	z	P. S.
	671	−NH₂	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	N	N	Z
10	672	−NH₂	-NH2	-CH₂CH₂OC₂H₅	-CH₂CH₂OC₂H₅	N	N	N	X
	673	−NH₂	-NH ₂	−CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	N	N	Y
15	674	-NH2	-NH2	-CH ₂ CH ₂ OC ₂ H ₅	-CH ₂ CH ₂ OC ₂ H ₅	N	N	N	Z
	675	−NH₂	-NH2	-CH₂CH₂OC₃H₁	-CH₂CH₂OC₃H₁	N	N	N	Х
-	676	−NH₂	-NH2	−CH ₂ CH ₂ OC ₃ H ₇	-CH2CH2OC3H7	N	N	Ν	Y
20	677	-NH ₂	-NH ₂	-CH₂CH₂OC₃H₁	-CH₂CH₂OC₃H₁	N	N	Ν	Z
	678	-NH2	-NH ₂	−CH2CH2OC6H5	-CH₂CF₃	N	N	N	Х
25	679	-NH2	-NH ₂	-CH2CH2OC6H5	−CH₂CF₃	N	N	N	Y
	680	−NH₂	-NH ₂	-CH₂CH₂OC₅H₅	−CH ₂ CF ₃	N	N	N	Z
30	681	−NH₂	-NH2	-CH₂CH₂OC₀H₅	-CH₂CH₂OCH₃	N	N	N	Х
	682	−NH₂	−NH₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	Ν	N	Ν	Y
	683	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	Ν	N	Z
35	684	-NH2	-NH ₂	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	Ν	N	Х
	685	-NH ₂	−NH₂	-CH2CH2OC6H5	−CH ₂ CH ₂ OC ₆ H ₅	N.	Ν	Ν	Y
40	686	-NH ₂	-NH2	−CH2CH2OC6H5	−CH2CH2OC6H5	Ν	Ν	N	Z
	687	-NH ₂	-NH2	—CH₂CH₂OCH₂C6H5	−CH ₂ CF ₃	Ν	N	N	X
45	688	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	Ν	N	N	Y
-	689	-NH ₂	-NH2	—CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	N	N	Z
Į	690	-NH ₂	−NH₂	-CH₂CH₂OCH₂C₅H₅	-CH₂CH₂OCH₃	Ν	N	N	X

50

Table 1 (Continued)

			•						
5	Comp. Na	·R'	R²	R³ .	R4	X	Y	Z	P.S.
	6 9 1	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	N	N	Y
10	692	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CH ₂ OCH ₃	N	N	N	Z
-	693	−NH₂	-NH ₂	-CH₂CH₂OCH₂C₅H₅	-CH2CH2OC5H5	N	N	N	X
	694	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	Y
15	695	-NH2	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	Z
	696	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	N	N	Х
20	697	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	N	N	Y
	698	-NH ₂	-NH ₂	-CH₂CH₂OCH₂C₀H₅	-CH2CH2OCH2C4H5	N	N	N	Z
25	699	-NH ₂	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	Ν	Х
	700	-NH2	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	Ν	Y
	701	-NH ₂	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	N	Z
30	702	−NH₂	-NH2	-CH₂CH₂OC(0)CH₃	-CH₂CF₃	N	N	N	Х
	703	-NH2	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	−CH ₂ CF ₃	N	Ν	N	Y
35	704	-NH ₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	−CH ₂ CF ₃	N	Ν	N	Z
	705	-NH2	-NH2	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	N	N	X
40	706	-NH ₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	Ν	N	Y
	707	-NH ₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	Ν	Ν	N	Z.
	708	-NH ₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OC6H5	N	N	N	Х
45	709	-NH ₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	N	N	Υ '
. [710	-NH ₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC₅H₅	N	N	N	Z
. [710	-NH2	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC₅H₅	N	N	N	Z

50

Table 1 (Continued)

	1 4 0 1 0	1 (0	on thinged)					
Comp.	R'	R²	R³	R ⁴	X	Y	Z	P. S.
711	−NH₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH2C5H5	N	N	N	Х
712	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	N	N	Y
7 1 3	−NH₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₂C₅H₅	N	N	N	Z
714	−NH₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC(0)CH3	N	N	N	Х
7 1 5	-NH ₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC(O)CH₃	N	N	N	Y
7 1 6	-NH2	-NH2	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	N	N	Z
717	-NH2	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	N	Х
718	−NH₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	Ν	.Y
719	-NH ₂	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	Ν	Ν	Z
720	-NH ₂	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	Ν	Ν	X
721	-NH2	−NH₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	N	Ν	Y
7 2 2	-NH2	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	Ν	Ν	Z
723	-NH2	-NH2	-CH ₂ CH ₂ OC(0)C ₄ H ₃	-CH2CH2OC(0)C4H9	Ν	Ν	Ν	Х
724	-NH ₂	-NH ₂	-CH₂CH₂OC(0)C₄H₃	-CH2CH2OC(0)C4H9	Ν	Ν	N	Y
725	-NH2	−NH₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	N	N	N	Z

Table 1 (Continued)

		 							
5	Comp.	R'	R²	R³	R4	X	Y	z	P. S.
	726	-NH2	-NH ₂	−СН₃	-CF ₂ CF ₃	N	N	С	X
10	727	−NH₂	-NH2	-CH₃	-CF ₂ CF ₃	N	N	С	Y
	.728	−NH₂	-NH2	−CH ₂	-CH ₂ CF ₃	N	N	С	Х
15	729	−NH₂	−NH₂	−CH ₃	-CH ₂ CF ₃	N	N	С	Y
	730	-NH2	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	Х
	7 3 1	-NH2	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	Y
20	7 3 2	-NH2	-NH2	-CF ₂ CF ₃	−CH₂CF₃	N	N	С	Х
	7 3 3	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	Ν	С	Y
25 .	7 3 4	−NH₂	-NH2	-CH₂CF₃	-CH ₂ CF ₃	N	N	С	Х
	7 3 5	-NH2	-NH2	-CH₂CF₃	-CH ₂ CF ₃	N	Ν	С	·Y
30	7 3 6	-NH2	-NH2	-CH₂CH₂OCH₃	-CH ₂ CF ₃	Ν	N	С	Х
	737	−NH₂	-NH2	-CH₂CH₂OCH₃	−CH ₂ CF ₃	Ν	Ν	С	Y
35	738	-NH2	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ν	Ν	С	X
	7.3 9	-NH2	−NH₂	-CH₂CH₂OCH₃	-CH2CH2OCH3	N	Ν	С	Y
	740	-NH2	-NH2	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	Ν	N	С	Х
40	741	-NH ₂	-NH2	-CH2CH2OC2H5	-CH2CH2OC2H5	N	N	С	Y
	742	-NH2	−NH₂	-CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H₁	N	N	С	Х
45	743	-NH ₂	-NH ₂	-CH₂CH₂OC₃H₁	-CH₂CH₂OC₃H7	N	N	С	Y
	744	-NH2	−NH₂	-CH₂CH₂OC6H5	-CH ₂ CF ₃	N	N	С	X
50	7 4 5	-NH ₂	-NH ₂	-CH2CH2OC6H5	−CH₂CF₃	N	N	С	Y

Table ! (Continued)

_	Comp.	R'	R ²	R³	R'	X	Y	z	P. S.
5	Na					L			1 . 3.
	746	−NH₂	-NH ₂	-CH₂CH₂OC₅H₅	-C1-CH2OCH3	N	N	С	Х
10	747	−NH₂	-NH2	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	N	С	Y
	748	-NH2	-NH ₂	-CH₂CH₂OC₀H₅	-CH2CH2OC6H5	N	N	С	Х
	749	−NH₂	-NH2	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	N	С	Y
15	750	−NH₂	-NH2	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	N	С	Х
	751	−NH₂	−NH₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	С	Y
20	752	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	N	С	Х
	753	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	N.	С	Y
25	754	-NH2	-NH ₂	-CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	N	N	С	Х
25	755	-NH2	−NH₂	-CH₂CH₂OCH₂C6H5	−CH2CH2OC6H5	N	N	С	Y
	756	-NH2	−NH₂	-CH₂CH₂OCH₂C6H5	-CH2CH2OCH2C6H5	N	N	С	Х
30	757	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	Ν	С	Y
	758	-NH2	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	С	Х
35	759	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	Ν	С	Y
	760	-NH2	-NH ₂	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	Ν	N	С	Х
40	761	-NH2	-NH2	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	N	N	С	Y
·	762	-NH2	-NH2	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	Ν	С	. X
	763	-NH ₂	-NH ₂	-CH₂CH₂OC(O)CH₃	—CH₂CH₂OCH₃	Ν	Ν	С	Y
45	764	-NH2	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC₅H₅	N	N	С	Х
	765	-NH ₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	N	С	Y

50

Table 1 (Continued)

	1 4 0 1 0		on trinded)					
Comp.	R'	R²	R³	R*	х	Y	Z	P. S.
766	−NH₂	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	N	С	Х
767	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₂C6H5	N	Ν	С	Y
768	-NH ₂	-NH ₂ .	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC(O)CH₃	N	N	С	X
769	-NH2	-NH2	-CH2CH2OC(0)CH3	-CH₂CH₂OC(O)CH₃	N	Ν	·C	Y
770	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	N	N	С	X
771	-NH2	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	Ν	С	Y
772	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH₂CH₂OC(O)C₃H₁	Ν	N	С	X
773	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Ν	N	С	Y
774	-NH2	−NH₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	N	С	Х
775	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(O)C4H9	Ν	N	С	Y

. . .

$$\begin{array}{c|c}
N & NH_2 \\
N & N
\end{array}$$

$$\begin{array}{c|c}
O & P-OR^2 \\
OR^4
\end{array}$$

Table 2

15	Comp.	R³	R ⁴
	Na		
	776	—CH₃	-CF ₂ CF ₃
	777	−CH₃	-CH ₂ CF ₃
20	778	-CF ₂ CF ₃	-CF ₂ CF ₃
	779	-CF ₂ CF ₃	-CH₂CF₃
25	780	-CH ₂ CF ₃	−CH₂CF₃
	781	—CH₂CH₂OCH₃	−CH₂CF₃
	782	CH2CH2OCH3	—CH₂CH₂OCH₃
30	783	-CH₂CH₂OC₂H₅	-CH2CH2OC2H5
	784	—CH₂CH₂OC₃H₁	-CH₂CH₂OC₃H₁
	785	−CH2CH2OC6H5	—CH₂CF₃
35	786	−CH2CH2OC6H5	—CH₂CH₂OCH₃
	787	−CH2CH2OC6H5	−CH ₂ CH ₂ OC ₅ H ₅
	788	−CH2CH2OCH2C6H5	-CH ₂ CF ₃
40 .	789	−CH2CH2OCH2C6H5	−CH ₂ CH ₂ OCH ₃
	790	-CH2CH2OCH2C6H5	−CH ₂ CH ₂ OC ₅ H ₅
	791	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5
45	792	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5
	793	-CH2CH2OC(0)CH3	-CH ₂ CF ₃
	794	-CH₂CH₂OC(0)CH₃	−CH2CH2OC6H5
50	795	—CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5

55

Table 2 (Continued)

Comp.	R³	R ⁴
796	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₂C₀H₅
797	-CH2CH2OC(0)CH3	—CH₂CH₂OC(0)CH₃
7 9 8	-CH2CH2OC(0)C2H5	—CH2CH2OC(0)C2H5
799	—CH₂CH₂OC(O)C₃H₁	—CH₂CH₂OC(0)C₃H₁
800	-CH2CH2OC(O)C4H9	-CH2CH2OC(0)C4H9

.

CH₃

O

CH₃

O

O

P-OR³

Table 3

	lable 3	
Comp.	R³ .	R4
801	−CH₃	-CF ₂ CF ₃
802	−CH₃	-CH ₂ CF ₃
803	-CF ₂ CF ₃	-CF ₂ CF ₃
804	-CF ₂ CF ₃	−CH ₂ CF ₃
805	-CH ₂ CF ₃	−CH ₂ CF ₃
806	—CH₂CH₂OCH₃	-CH ₂ CF ₃
807	—CH₂CH₂OCH₃	—CH₂CH₂OCH₃
808	−CH2CH2OC2H5	−CH ₂ CH ₂ OC ₂ H ₅
809	—CH₂CH₂OC₃H ₇	−CH ₂ CH ₂ OC ₃ H ₇
810	-CH₂CH₂OC6H5	-CH ₂ CF ₃
811	-CH2CH2OC6H5	—CH₂CH₂OCH₃
812	-CH₂CH₂OC₀H₅	-CH ₂ CH ₂ OC ₆ H ₅
8 1 3	−CH ₂ CH ₂ OCH ₂ C ₆ H ₅	—CH₂CF₃
814	−CH ₂ CH ₂ OCH ₂ C ₆ H ₅	—CH₂CH₂OCH₃
815	-CH2CH2OCH2C6H5	—CH₂CH₂OC₅H₅
816	-CH2CH2OCH2C6H5	—CH2CH2OCH2C6H5
 817	-CH2CH2OC2H4C6H5	—CH2CH2OC2H4C6H5
818	-CH₂CH₂OC(O)CH₃	−CH₂CF₃
819	-CH₂CH₂OC(O)CH₃	−CH ₂ CH ₂ OC ₆ H ₅
820	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5

Table 3 (Continued)

Comp.	R³	R4
8 2 1	−CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5
8 2 2	−CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OC(0)CH₃
8 2 3	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅
8 2 4	-CH₂CH₂OC(0)C₃H₁	-CH ₂ CH ₂ OC(0)C ₃ H ₇
8 2 5	-CH2CH2OC(0)C4H3	-CH ₂ CH ₂ OC(0)C ₄ H ₉

Table 4

	lable	4						
Comp.	R¹	R²	R³	R4	X	Y	z	P. S.
8 2 6	-NH2	-NH ₂	−CH ₃	-CF ₂ CF ₃	N	N	N	X
827	-NH2	-NH2	−CH3	-CF ₂ CF ₃	N	N	N	Y
828	-NH2	-NH2	−CH ₃	-CF ₂ CF ₃	N	N	N	Z
829	-NH2	-NH ₂	−CH ₃	-CH₂CF₃	N	N	N	X
830	−NH₂	-NH2	-CH ₃	-CH ₂ CF ₃	N	N	N	Y
8 3 1	-NH2	-NH2	-СН3	-CH ₂ CF ₃	N	N	N	Z
8 3 2	-NH2	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	X
8 3 3	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	Y
8 3 4	-NH2	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	Z
8 3 5	-NH2	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	N	X
8 3 6	-NH2	-NH ₂	-CF ₂ CF ₃	−CH ₂ CF ₃	N	N	N	Y
8 3 7	−NH₂	-NH ₂	-CF ₂ CF ₃	−CH₂CF₃	N	N	N	Z
838	−NH₂	-NH2	-CH ₂ CF ₃	-CH ₂ CF ₃	N	N	N	X
839	-NH2	-NH ₂	-CH ₂ CF ₃	−CH ₂ CF ₃	N	N	N	Y
840	−NH₂	-NH2	−CH ₂ CF ₃	-CH ₂ CF ₃	N	N	N	\overline{z}
8 4 1	-NH2	-NH2	—CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	N	Χ.
8 4 2	-NH ₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	N	Y
8 4 3	−NH₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	N	Z
8 4 4	−NH₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CH ₂ 0CH ₃	N	N	N	X
8 4 5	-NH2	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CH ₂ OCH ₃			N	Y

Table 4 (continued)

Comp.	Ŗ'	R²	R³	R*	X	Y	Z	P. S.
8 : 6	-NH ₂	-NH ₂	−CH ₂ CH ₂ OCH ₃	-CH₂CH₂OCH₃	N	N	N	Z
8 4 7	-NH2	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	N	N	X
8 4 8	−NH₂	-NH2	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	N	N	N	Y
849	−NH₂	-NH2	-CH ₂ CH ₂ OC ₂ H ₅	-CH ₂ CH ₂ OC ₂ H ₅	N	N	N	Z
850	-NH2	-NH2	-CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H₁	N	N	N	X
8 5 1	-NH2	-NH ₂	-CH2CH2OC3H7	-CH₂CH₂OC₃H₁	N	N	N	Y
8 5 2	−NH₂	-NH ₂	-CH2CH2OC3H7	-CH₂CH₂OC₃H₁	N	N	N	Z
8 5 3	-NH2	-NH2	-CH ₂ CH ₂ OC ₆ H ₅	-CH₂CF₃	N	N	N	X
8 5 4	−NH₂	-NH2	-CH₂CH₂OC₅H₅	−CH₂CF₃	N	N	Ν	Y
8 5 5	−NH₂	-NH2	-CH2CH2OC6H5	-CH ₂ CF ₃	N	Ν	N	Z
856	-NH2	-NH ₂	−CH ₂ CH ₂ OC ₆ H ₅	-CH₂CH₂OCH₃	N	Ν	N	Х
857	−NH₂	-NH2	-CH₂CH₂OC₅H₅	−CH₂CH₂OCH₃	N	N	N	Y
8 5 8	−NH₂	-NH2	-CH₂CH₂OC₅H₅	−CH₂CH₂OCH₃	N	N	N	Z
859	-NH2	−NH₂	−CH ₂ CH ₂ OC ₆ H ₅	-CH ₂ CH ₂ OC ₆ H ₅	N	N	Ν	X
860	-NH ₂	-NH2	-CH2CH2OC6H5	−CH₂CH₂OC6H5	N	Ν	N	Y
861	-NH2	-NH2	-CH2CH2OC6H5	-CH2CH2OC6H5	N	N	N	Z
862	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	N	Χ.
8 6 3	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH₂CF₃	N	Ν	N	Y
864	-NH2	-NH2	-CH2CH2OCH2C6H5	−CH₂CF₃	N	N	N	Z
865	-NH2	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	N	N	X

. 10

Table 4 (continued)

C		, ```	T	Ţ				·
Comp.	R'	R²	R³	R ⁴	X	Y	Z	P. S.
866	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	N	N	Y
867	-NH2	-NH2	-CH₂CH₂OCH₂C₀H₅	-CH ₂ CH ₂ OCH ₃	N	N	N	Z
868	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	X
869	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	Y
870	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	Z
871	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C5H5	N	N	N	X
872	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C6H5	N	N	N	Y
873	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	N	N	Z
874	−NH₂	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	N	X
875	−NH₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C3H5	N	N	N	Y
876	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	N	Z
877	−NH₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	N	N	N	X
878	−NH₂	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	N	N	Y
879	-NH2	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CF₃	Ν	N	N	Z
880	-NH2	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	Ν	N	N	X
881	-NH2	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	N	N	Y
882	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	—CH₂CH₂OCH₃	Ν	N	N	Z
883	-NH2	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	Ņ	N	N	Х
884	-NH ₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC₀H₅	N	N	N	Y
885	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC6H5	N	N	N	Z
						_ · I		- 1

Table 4 (continued)

		1 4 0 1 6	4 (0						
5	Comp. No.	R¹	R²	R³	R'	X	Y	Z	P. S.
	886	-NH ₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	N	N	X
10	887	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	N	N	Y
	888	−NH₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	N	N	Z
15	889	−NH₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(O)CH3	N	N	N	X
	890	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC(O)CH3	N	N.	N	Y
20	891	-NH2	−NH₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC(O)CH3	Ν	N	·N	Z
	892	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	Ν	N	Й	X
	893	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	Ν	N	Ν	Y
25	8 9 4	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	Ν	N	Ν	Z
	8 9 5	-NH2	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Ν	N	N	Х
30	896	-NH ₂	-NH2	-CH₂CH₂OC(O)C₃H₁	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ν	Ν	N	Y
	897	−NH₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Ν	N	N	Z
35	898	−NH₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	Ν	N	X
	8 9 9	-NH2	-NH2	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	N	N	N	Y
10	900	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₄	N	N	N	Z

45

50

Table 4 (continued)

		lable	= 4 (0	ontinued)					
5	Comp. Na	R'	R²	R³	R4	X	Y	7 2	P.S.	-
	901	-NH2	-NH ₂	-CH₃	-CF ₂ CF ₃	· N	IN	1 C	X	_
10	902	-NH ₂	-NH2	−CH₂	-CF ₂ CF ₃	N	I N	i c	+	
	903	-NH ₂	-NH ₂	−CH ₃	-CH ₂ CF ₃	N	N	I C	X	
15	904	−NḤ₂	-NH ₂	−СН₃	-CH ₂ CF ₃	N	N	C	Y	_
	905	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	X	_
	906	-NH2	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	Y	
20	907	−NH₂	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	C	X	1
	908	-NH2	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	С	Y	1
25	909	−NH₂	−NH₂	−CH₂CF₃	-CH ₂ CF ₃	N	N	С	X	
	910	-NH ₂	-NH2	-CH ₂ CF ₃	-CH ₂ CF ₃	N	N	С	Y	1
30	9 1 1	−NH₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	С	X	
	9 1 2	−NH₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	С	Y	1
35	913	-NH2	-NH ₂	-CH₂CH₂OCH₃	-CH2CH2OCH3	N	N	C.	X	1
	914	-NH ₂	-NH ₂	−CH ₂ CH ₂ OCH ₃	-CH₂CH₂OCH₃	N	N	С	Y	1
	915	−NH₂	-NH ₂	-CH₂CH₂OC₂H₅	-CH2CH2OC2H5	N	N	С	X	
40	916	-NH ₂	-NH ₂	-CH2CH2OC2H5	-CH₂CH₂OC₂H₅	N	N	С	Y	
	917	-NH ₂	−NH₂	-CH₂CH₂OC₃H₁	-CH2CH2OC3H7	N	N	C	Х	
45	918	-NH ₂	−NH₂	-CH2CH2OC3H7	-CH ₂ CH ₂ OC ₃ H ₇	N	N	С	Y	
	919	−NH₂	-NH ₂	-CH₂CH₂OC6H5	-CH ₂ CF ₃	N	N	Ċ	Χ.	
50	920	-NH ₂	-NH ₂	-CH₂CH₂OC₀H₅	−CH ₂ CF ₃	N	N	С	Y	

Table 4 (continued)

					,				
5	Comp. Na	R¹	R²	R³ ·	R'	X	Y	Z	P. S.
	921	-NH ₂	-NH2	-CH2CH2OC6H5	-CH₂CH₂OCH₃	Ν	N	С	Х
10	922	-NH2	-NH2	-CH2CH2OC6H5	−CH₂CH₂OCH₃	Ν	Ν	С	Y
	923	-NH2	−NH₂	-CH2CH2OC6H5	-CH₂CH₂OC₅H₅	Ν	N	С	Х
15	924	-NH2	-NH2	-CH2CH2OC6H5	-CH₂CH₂OC₅H₅	Ν	N	С	Y
	925	-NH2	−NH₂	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	N	С	Х
20	926	-NH2	-NH2	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	Ν	N	С	Y
	927	-NH ₂	-NH2	-CH2CH2OCH2C6H5	−CH₂CH₂OCH₃	Ν	N	С	Х
	928	-NH2	-NH2	-CH2CH2OCH2C6H5	−CH₂CH₂OCH₃	Ν	N	С	Y
25	929	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	Ν	N	С	X
	930	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	Ν	N	С	Y
30	931	-NH2	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C5H5	Ν	N	С	Х
	932	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	Ν	N	С	Y
35	9 3 3	-NH2	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	Ν	С	Х
	934	-NH ₂	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	С	Y
40 ·	935	-NH ₂	-NH2	-CH2CH2OC(0)CH3	-CH₂CF₃	Ŋ	Ν	С	X
70	936	-NH2	-NH2	-CH2CH2OC(0)CH3	−CH₂CF₃	Ν	N	C	Y
	937	-NH2	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	N	C	X
45	9 3 8	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH₂CH₂OCH₃	Ν	N	С	Y
	939	-NH ₂	-NH2	-CH2CH2OC(0)CH3	−CH2CH2OC6H5	Z	N	С	Х
50	940	-NH2	-NH;	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC₅H₅	Ν	N	С	Y

Table 4 (continued)

5	Comp. Na	R'	R²	R³	R ⁴	Х	Y	Z	P. S.
	9 4 1	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₂C6H5	N	N	С	X
10	942	-NH ₂	-NH ₂	—CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	Ν	N	С	Y
	9 4 3	-NH2	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH ₂ CH ₂ OC(0)CH ₃	Ν	N	С	X
15	9 4 4	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC(O)CH3	N	N	C	Y
	9 4 5	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	N	С	Х
20	9 4 6	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N.	N	С	Y
	947	-NH ₂	-NH2	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ν	N	Ċ	X
25	9 4 8	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(P)C3H7	N	N	С	Y
20	9 4 9	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9	Ν	Ν	С	X
	950	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	N	.C	Y

Table 4 (continued)

				· ·					
5	Comp. No.	R۱	R²	R³	R'	x	Y	Z	P. S.
	951	-NH ₂	-NH2	—CН₃	-CF ₂ CF ₃	N	С	N	Х
10	952	-NH ₂	-NH ₂	−СН₃	−CF₂CF₃	N	С	N	Z
	953	-NH ₂	-NH ₂	-СН,	-CH2CF3	N	С	N	Х
15	954	-NH ₂	-NH ₂	—CH ₃ .	-CH ₂ CF ₃	N	С	N	Z
	955	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
	956	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
20	957	-NH ₂	−NH₂	-CF ₂ CF ₃	-CH₂CF₃	N	С	Ν	Х
	958	-NH2	-NH ₂	-CF ₂ CF ₃	−CH ₂ CF ₃	Ν	C.	N	Z
25	959	-NH ₂	−NH₂	−CH₂CF₃	−CH₂CF₃	N	С	N	X
	9.60	-NH2	−NH₂	-CH₂CF₃	−CH₂CF₃	N	С	Ν	Z
30	961	-NH2	-NH2	-CH₂CH₂OCH₃	−CH ₂ CF ₃	Ν	С	Ν	Х
	962	-NH2	−NH₂	-CH2CH2OCH3	−CH ₂ CF ₃	Ν	С	Ν	Z
or.	963	-NH ₂	−NH₂	-CH2CH2OCH3	-CH₂CH₂OCH₃	N	С	N	X
35	964	−NH₂	−NH₂	-CH2CH2OCH3	-CH₂CH₂OCH₃	N	С	N	Z
	.9 6 5	-NH2	-NH2	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	Ν	Х
40	966	−NH₂	-NH ₂	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	Ν	С	Ν	Z
	967	−NH₂	-NH2	-CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H7	N	С	Ν	Х
45	968	-NH2	-NH ₂	-CH₂CH₂OC₃H7	-CH₂CH₂OC₃H ₇	Ν	С	Ν	Z
	969	−NH₂	-NH2	−CH ₂ CH ₂ OC ₆ H ₅	-CH ₂ CF ₃	Ν	С	N	Х
50	970	−NH₂	−NH₂	−CH2CH2OC6H5	−CH₂CF₃	N	С	N	Z
		•							

Table 4 (continued)

5	Comp.	R¹	R²	R³	R⁴	X	Y	Z	P. S.
	971	-NH2	−NH₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Х
10	9 7.2	-NH ₂	−NH₂	-CH2CH2OC6H5	—CH₂CH₂OCH₃	Ν	С	Ν	Z
	973	-NH2	-NH2	-CH2CH2OC6H5	-CH2CH2OC6H5	Ν	С	Ν	Х
15	974	-NH2	−NH₂	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	С	Ν	Z
144	9 7 5	-NH2	−NH₂	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	Ν	С	Ν	Х
20	976	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	Ν	С	Ν	Z
	9 7 7	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	Ν	X
	978	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	С	N	Z
25 .	979	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	Ν	С	Ν	X
	980	−NH₂	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z.
30	981	−NH²	-NH2	-CH2CH2OCH2C6H6	-CH2CH2OCH2C6H5	N	С	N	Х
	982	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
35	983	−NH₂	−NH₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Х
	984	-NH2	−NH₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
40	985	-NH2	-NH2	-CH₂CH₂OC(O)CH₃	−CH₂CF₃	N	С	N	X
70	986	-NH2	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	−CH₂CF₃	N	С	N	Z
	987	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₂	—CH₂CH₂OCH₃	N	С	N	X
45	988	−NH₂	-NH ₂	-CH₂CH₂OC(O)CH₃	—CH₂CH₂OCH₃	N	С	N	Z
	989	−NH₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OC₅H₅	N	С	N	X
· 50 , ·	990	−NH₂	-NH2	-CH₂CH₂OC(O)CH₃	—CH₂CH₂OC₅H₅	N	С	N	Z

Table 4 (continued)

Comp.	R¹	R²	R³	R*	X	Y	z	P. S.
9 9 1	-NH2	-Nh ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H3	N	С	N	X
992	-NH ₂	−NH₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Z
993	-NH2	−NH₂	-CH2CH2OC(0)CH3	-CH ₂ CH ₂ OC(0)CH ₃	N	C	N	Х
994	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CH ₂ OC(0)CH ₃	N	С	N	Z
995	-NH2	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
996	-NH2	−NH₂	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	N	Z
997	-NH2	-NH ₂	-CH2CH2OC(0)C2H7	-CH2CH2OC(0)C3H7	Ν	С	N	X
998	-NH2	−NH₂	-CH₂CH₂OC(O)C₃H₁	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ŋ	С	N	Z
999	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	С	N	X
1000	−NH₂	-NH2	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	С	N	\overline{z}

Table 5

Comp.	Γable 5	
No.	R³	R*
1001	—СН₃	-CF ₂ CF ₃
1002	−CH ₃	-CH ₂ CF ₃
1003	-CF ₂ CF ₃	-CF ₂ CF ₃
1004	-CF ₂ CF ₃	−CH₂CF₃
1005	-CH ₂ CF ₃	−CH ₂ CF ₃
1006	—CH₂CH₂OCH₃	-CH ₂ CF ₃
1007	−CH ₂ CH ₂ OCH ₃	−CH₂CH₂OCH₃
1008	−CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅
1009	-CH₂CH₂OC₃H ₇	−CH₂CH₂OC₃H ₇
1010	-CH2CH2OC6H5	-CH ₂ CF ₃
1011	-CH2CH2OC6H5	−CH2CH2OCH3
1012	−CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5
1013	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	—CH₂CF₃
1014	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃
1015	-CH2CH2OCH2C6H5	—CH₂CH₂OC₅H₅
1016	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH2CH2OCH2C6H5
1017	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5
1.018	-CH ₂ CH ₂ OC(0)CH ₃	−CH₂CF₃
1019	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC ₆ H ₅
1020	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5

Table 5 (Continued)

Comp.	R³	R*
1021	-CH₂CH₂OC(O)CH₃	−CH2CH2OCH2C6H5
1022	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(0)CH₃
1023	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5
1024	-CH2CH2OC(0)C3H7	-CH2CH2OC(O)C3H1
1025	-CH2CH2OC(0)C4H9	-CH2CH2OC(O)C4H9

Table 6

7	ч	v	1	_	
 11	_	-			-

Comp.	D3	
Na	R³	R ⁴
1026	−CH₃	-CF ₂ CF ₃
1027	−CH ₃ .	-CH₂CF₃
1028	-CF ₂ CF ₃	-CF ₂ CF ₃
1029	-CF ₂ CF ₃	—CH₂CF₃
1030	-CH ₂ CF ₃	—CH₂CF₃
1031	-CH₂CH₂OCH₃	-CH ₂ CF ₃
1032	−CH₂CH₂OCH₃	—CH₂CH₂OCH₃
1033	-CH2CH2OC2H5	-CH ₂ CH ₂ OC ₂ H ₅
1034	-CH₂CH₂OC₃H₁	—CH₂CH₂OC₃H ₇
1035	-CH2CH2OC6H5	-CH ₂ CF ₃
1036	-CH₂CH₂OC₀H₅	—CH₂CH₂OCH₃
1037	-CH2CH2OC6H5	-CH ₂ CH ₂ OC ₆ H ₅
1038	-CH2CH2OCH2C6H5	−CH₂CF₃
1,039	-CH2CH2OCH2C6H5	−CH₂CH₂OCH₃
1040	-CH₂CH₂OCH₂C6H5	-CH ₂ CH ₂ OC ₆ H ₅
1041	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C₅H₅
1042	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅
1043	-CH2CH2OC(O)CH3	-CH₂CF₃
1044	-CH2CH2OC(O)CH3	—CH₂CH₂OC₀H₅
1045	-CH³CH³OC(O)CH³	-CH2CH2OCH2C6H5

Table 6 (Continued)

Comp.	R³	R4
1046	-CH₂CH₂0C(0)CH₃	-CH2CH2OCH2C6H5
1047	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃
1048	-CH2CH2OC(0)C2H5	-CH2CH2OC(O)C2H5
1049	-CH ₂ CH ₂ 0C(0)C₃H ₇	-CH2CH2OC(O)C3H7
1050	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(O)C4H9

Table 7

10	Omo. (

Comp.	R³ ·	R ⁴
No.	R	R.
1051	-СН3	-CF ₂ CF ₃
1052	-CH₃	−CH₂CF₃
1053	−CF₂CF₃	—CF₂CF₃
1054	-CF ₂ CF ₃	—CH₂CF₃
1055	-CH ₂ CF ₃	-CH ₂ CF ₃
1056	—CH₂CH₂OCH₃	-CH ₂ CF ₃
1057	—CH₂CH₂OCH₃	—CH₂CH₂OCH₃
1058	-CH₂CH₂OC₂H₅	—CH₂CH₂OC₂H₅
1059	−CH ₂ CH ₂ OC ₃ H ₇	—CH₂CH₂OC₃H ₇
1060	-CH2CH2OC6H5	-CH ₂ CF ₃
1061	—CH₂CH₂OC₅H₅	—CH₂CH₂OCH₃
1062	—CH₂CH₂OC₅H₅	—CH₂CH₂OC₅H₅
1063	—CH₂CH₂OCH₂C₀H₅	—CH₂CF₃
1064	—CH₂CH₂OCH₂C₀H₅	—CH₂CH₂OCH₃
1065	—CH₂CH₂OCH₂C₀H₅	—CH₂CH₂OC₅H₅
1066	—CH₂CH₂OCH₂C₅H₅	—CH₂CH₂OCH₂C₅H₅
1067	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C5H5
1068	-CH2CH2OC(O)CH3	−CH₂CF₃
1069	-CH2CH2OC(0)CH3	-CH2CH2OC5H5
1070	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5

Table 7 (Continued)

Comp. Na	R³	R4
1071	-CH₂CH₂OC(0)CH₃	−CH₂CH₂OCH₂C₅H₅
1072	-CH₂CH₂OC(0)CH₃	-CH₂CH₂0C(0)CH₃
1073	-CH2CH2OC(0)C2H5	-CH₂CH₂OC(0)C₂H₅
1074	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7
1075	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9

$$\begin{array}{c|c}
Z & R' \\
N & N \\
N & R^2
\end{array}$$

$$\begin{array}{c|c}
0 & P - OR^3 \\
OR^4
\end{array}$$

		Tab	l e	l					
15 .	Comp. No.	R'	R²	R³	R ⁴	x	Y	z	P. S.
	1076	-C1	-H	—СН₃	-CF ₂ CF ₃	N	С	N	X
20	1077	-C1	-H	−CH ₃	−CF ₂ CF ₃	N	С	N	Z
	1078	-C1	-H	—СН ₃ ·	-CH ₂ CF ₃	N	С	N	X
	1079	-C1	-H	−CH ₃	−CH ₂ CF ₃	N	С	Ν	Z
25	1080	-C1	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	Ν	X
	1081	-C1	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	Ν	Z
	1082	-C1	-H	-CF ₂ CF ₃	−CH ₂ CF ₃	Ν	С	N	X
30	1083	-C1	-H	-CF ₂ CF ₃	−CH ₂ CF ₃	N	С	Ν	Z_{\cdot}
	1084	-C1	-H	−CH ₂ CF ₃	−CH ₂ CF ₃	Ν	С	Ν	Х
	1085	-C1	-H	-CH ₂ CF ₃	−CH ₂ CF ₃	N	С	Ν	Z
35	1086	-C1	-H	-CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	N	X
	1087	-C1	-H	-CH₂CH₂OCH₃	−CH ₂ CF ₃	Ν	С	Ν	Z
	1088	-C1	-H	-CH₂CH₂OCH₃	−CH₂CH₂OCH₃	Ν	С	Ν	X
40	1089	-C1	-H	-CH₂CH₂OCH₃	−CH₂CH₂OCH₃	Ν	С	Ν	Z
	1090	-C1	-H	-CH ₂ CH ₂ OC ₂ H ₅	-CH ₂ CH ₂ OC ₂ H ₅	Ν	С	N	X
	1091	-C1	-н	-CH ₂ CH ₂ OC ₂ H ₅	−CH2CH2OC2H5	N	С	N	Z
45	1092	-C1	-H	-CH ₂ CH ₂ OC ₃ H ₇	-CH₂CH₂OC₃H₁	N	С	N	X
.]	1093	-C1	-Н	−CH ₂ CH ₂ OC ₃ H ₇	−CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Z
	1094	-C1	-H	-CH ₂ CH ₂ OC ₆ H ₅	-CH ₂ CF ₃	N	С	N	X
50	1095	-C1	-H	−CH ₂ CH ₂ OC ₆ H ₅	-CH ₂ CF ₃	N	С	N	Z

Table 1 (Continued)

	lable I (Continued)								
	Comp. No.	R'	R²	R³	R'	х	Y	Z	P. S.
	1096	-C1	-Н	-CH₂CH₂OC₅H₅	—CH₂CH₂OCH₃	N	С	N	X
	1097	-C1	-H	-CH₂CH₂OC₅H₅	—CH₂CH₂OCH₃	Ν	С	N	Z
	1098	-C 1	-н	-CH2CH2OC6H5	—CH₂CH₂OC₅H₅	Ν	С	Ν	Х
	1099	-C1	-H	-CH₂CH₂OC₅H₅	-CH₂CH₂OC ₆ H ₅	N	С	N	Z
	1100	-C1	-н	-CH2CH2OCH2C6H5	CH₂CF₃	Z	С	N	Х
	1101	-C1	-н	-CH₂CH₂OCH₂C6H5	−CH₂CF₃	N	С	N	Z
	1102	-C1	-Н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	Ν	С	Ν	X
	1103	-C1	-Н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	Ν	С	N	Z
	1104	-C1	-Н	-CH2CH2OCH2C6H5	—CH₂CH₂OC₅H₅	N	С	N	X
	1105	-C1	-н	-CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	Ŋ	С	Ν	Z
	1106	-C1	-H	CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C₅H₅	N	С	Ν	X
•	11.07	-C 1	-Н	-CH₂CH₂OCH₂C6H5	—CH₂CH₂OCH₂C6H5	Ν	С	Ν	Z
	1108	-C1	-н	-CH2CH2OC2H4C6H5	—CH2CH2OC2H4C6H5	N	C	Ν	X
	1109	-C1	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C5H5	Ν	С	Ν	Z.
	1110	-C1	-H	-CH₂CH₂OC(0)CH₃	−CH₂CF₃	Ν	С	N	X
	1111	-C1	-H	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	Ν	С	N	Z
	1112	-C1	-Н	-CH2CH2OC(0)CH3	—CH₂CH₂OCH₃	Ν	С	N	X
	1113	-C1	-Н	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OCH₃	Ν	С	N	Z
	1114	-C1	-н	-CH₂CH₂OC(0)CH₃	−CH2CH2OC6H5	Ń	С	N	X
	1115	-C1	-Н	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC6H5	Ν	С	N	Z

Table 1 (Continued)

	Table 1 (Continued)								
5	Comp. No.	R'	R²	R²	R4 .	х	Y	z	P. S.
	1116	-C1	-Н	-CH2CH2OC(0)CH3	—CH₂CH₂OCH₂C₅H₅	N	С	И	Х
10	1117	-C 1	-Н	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
	1118	-C 1	-Н	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OC(O)CH₃	Ν	С	Ν	Х
15	1119	-C1	-Н	-CH₂CH₂OC(O)CH₃	—CH₂CH₂OC(Ö)CH₃	N	С	Ν	Z
	1120	-C1	-H	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	Ν	.C	N	X
20	1121	-C 1	-H	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	Ν	С	Ν	Z
	1122	-C 1	-Н	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ν	С	N	Х
25	1123	-C 1	-H	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH₂CH₂OC(O)C₃H ₇	Ν	С	N	Z
	1124	-C 1	-Н	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	С	·N	·X
	1125	-C1	-Н	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	Ν	С	N	Z
30									

The compound of the present invention may be synthesized according to the following reaction scheme (1) or (2):

50

55

35

Reaction Scheme (I):

(wherein, R^1 to R^4 , and a ring A are as defined above; R^5 is an ethyl group having one or more substituents selected from a group consisting of fluorine, C_1 - C_4 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy, C_2 - C_5 acyloxy, C_1 - C_4 acylamino and hydroxyl; W is a leaving group such as halogen, paratoluenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy).

A compound of Formula (II) is reacted with a compound of Formula (III) at 10 - 250 °C, preferably at 130 - 180 °C for 0.1 - 20 hours, preferably for 3 - 15 hours.

A compound of Formula (IV) may be separated and purified, as needed, by the conventional means for separation and purification, for example, by distillation, adsorption, partition chromatography. A compound of Formula (IV) may be separated and purified as described above, but may be directly used in the subsequent reaction without purification.

Subsequently, a compound of Formula (IV) is reacted with a compound of Formula (V) in the presence of a base, for example, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydride, potassium hydride, triethylamine, diazabicycloundecene in a solvent such as acetonitrile, tetrahydrofuran, dimethylsulfoxide, dimethylformamide, methylpyrrolidone at 10 - 200 °C, preferably at 50 - 150 °C, for 0.1 to 100 hours, preferably for 5 - 20 hours to give a compound (I).

40

35

10

15

20

43

50

Reaction Scheme (2):

(wherein, R1 to R4, and a ring A are as defined above; Me is methyl and Et is ethyl)

A compound of Formula (VI) is reacted with trimethylsilyldiethylamine in a solvent, for example, in a chlorinated solvent such as dichloromethane, dichloroethane, chloroform at the temperature around room temperature for about an hour. In this case, two moles or more trimethylsilyldiethylamine is used based on one mole of a compound of Formula (VI).

Subsequently, after the reaction mixture is concentrated to dryness, the residue is dissolved in a chlorinated solvent such as dichloromethane, and two mole or more oxalyl chloride is added to 1 mole of the compound of Formula (VI), and the reaction is carried out in the presence of a catalytic amount of dimethylformamide under ice cooling for about an hour, then at the temperature around room temperature for about an hour.

After a solvent is distilled off, thus obtained compound of Formula (VII) without purification is usually reacted with R³OH, R⁴OH in a solvent, for example, a chlorinated solvent such as dichloromethane or pyridine, acetonitrile, tetrahydrofuran, dimethylsulfoxìde, dimethylformamide, methylpyrrolidone, etc. at 10 - 100 °C, preferably at 20 - 30 °C for 0.1 - 100 hours, preferably for 5 - 24 hours to give a compound (I).

A compound of Formula (I) which may be obtained according to the above reaction scheme (1) or (2) may be separated and purified by properly selecting conventional means for separation and purification for nucleotide, for example, recrystallization, adsorption, ion-exchange, partition chromatography or the like, as needed. Various base derivatives may be derived from thus obtained compound of Formula (I) according to the known methods, as needed.

As the compound of Formula (II), (III) or (VI) in the above reaction schemes, those commercially available reagents may be purchased and used. Alternatively, those synthesized according to the known methods may be suitably used.

As shown in the following experimental examples, the compound of the present invention may be expected as antiviral agents which can be orally administered, and further expected to possess antineoplastic activity like other ionic phosphonate-nucleotide analogs. The viruses of interest may not be particularly limited, but include, for example, RNA viruses such as human immunodeficiency virus, influenza virus, hepatitis C virus; DNA viruses such as herpes simplex virus type-I, herpes simplex virus type-It, cytomegalovirus, herpes zoster, hepatitis B virus. More preferably, it is hepatitis B virus.

30

40

45

The compound of the present invention can be orally administered to a human patient. The dose is appropriately determined depending on, for example, the age, the conditions, the weight of the subject. Generally, 1 - 1,000 mg/kg, preferably 5 - 50 mg/kg is administered once or more daily.

The compound of the present invention is preferably used as a composition comprising pharmaceutically acceptable carrier such as conventional pharmaceutical carrier, excipient, etc. Such carrier may be either solid or liquid. Solid carrier includes, for example, lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride; and liquid carrier includes, for example, glycerin, peanut oil, polyvinyl pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, physiological saline, water, etc.

Various dosage form may be employed, including tablets, powders, granules, troches, etc. when a solid carrier is used; and syrups, soft gelatin capsules, gels, pastes, etc. when a liquid carrier is used.

Example

15

The present invention will be explained in detail in the following examples, which are not a limitation of the scope of the invention.

Example 1

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]adenine (compound No. 309 in Table 1)

2-Chloroethylchloromethylether (1.96 g, 15.2 mmol) was reacted with tris(2,2,2-trifluoroethyl)phosphite (5 g, 15.2 mmol) at 160 °C for 14 hours to quantitatively obtain 5.15 g of 2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxylethyl chloride.

Adenine (2.07 g, 15.3 mmol) was suspended in dimethylformamide (30 ml) and reacted with sodium hydride (60 % in mineral oil, 0.61 g) at 100 °C for an hour. Subsequently, 2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxy]ethyl chloride (5.15 g) was added to the above reaction solution and reacted at 100 °C for 5 hours. After reaction was over, the product was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on silica gel column and eluted with 5 % methanol/chloroform to give the title compound (2.77 g, 42 %).

m.p.: 111 - 113 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ): 3.91 (d, J=8.0Hz, 2H) 3.94 (t, J=5.0Hz, 2H) 4.30-4.39 (m, 6H) 6.00 (br, 2H) 7.83 (s, 1H) 8.31 (s. 1H)

Example 2

35

40

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2,6-diaminopurine (compound No. 459 in Table 1)

The procedure in Example 1 was repeated, except that 2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 108 °C (ether)

1H-NMR (CDCl3, δ): 3.91-3.95 (m, 4H) 4.24 (t, J=5.1Hz, 2H) 4.30-4.42 (m, 4H) 4.68 (br, 2H) 5.32 (br, 2H) 7.57 (s, 1H)

Example 3

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-chloropurine (compound No. 509 in Table 1)

The procedure in Example 1 was repeated, except that 2-amino-6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: 132 °C (ether)

1H-NMR (CDCl3, δ) : 3.91 (t, J=4.7Hz, 2H) 3.94 (d, J=7.6Hz, 2H) 4.30 (t, J=4.7Hz, 2H) 4.35-4.49 (m, 4H) 5.16 (br, 2H) 7.83 (s, 1H)

Example 4

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-chloropurine (compound No. 510 in Table 1)

5

10

20

The procedure in Example 1 was repeated, except that 2-amino-6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: amorphous

1H-NMR (CDCl3, δ) :

3.93 (t, J=5.1Hz, 2H) 3.94 (d, J=7.7Hz, 2H) 4.24 (t, J=5.1Hz, 2H) 4.31-4.42 (m, 4H) 4.66 (br, 2H) 5.27 (br, 2H) 7.56 (s, 1H)

Example 5

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-8-aza-2,6-diaminopurine (compound No. 663 in Table 1)

The procedure in Example 1 was repeated, except that 8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 169 °C (ethanol)

¹H-NMR (Me₂SO-d₆, δ): 3.98 (t, J=5.1Hz, 2H) 4.11 (d, J=7.8Hz, 2H) 4.46-4.86 (m, 6H) 6.38 (br, 2H) 7.18-8.00 (m, 2H)

Example 6

Production of 8-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-8-aza-2,6-diaminopurine (compound No. 664 in Table 1)

The procedure in Example 1 was repeated, except that 8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

o m.p.: 128 °C (diisopropyl ether)

1H-NMR (Me2 SO-d6, δ): 4.03-4.15 (m, 4H) 4.55-4.71 (m, 4H) 6.05 (br, 2H) 7.50 (br, 2H)

Example 7

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]theophylline (compound No. 805 in Table 3)

The procedure in Example 1 was repeated, except that theophylline was used instead of adenine, to obtain the title compound.

m.p.: 77 °C (hexane)

1H-NMR (CDCl3, δ): 3.41 (s, 3H) 3.60 (s, 3H) 3.93 (d, J=8.1Hz, 2H) 3.94 (t, J=5.0Hz, 2H) 4.31-4.48 (m, 4H) 4.52 (t, J=5.0Hz, 2H) 7.60 (s, 1H)

Example 8

45

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2,6-dichloropurine (compound No. 559 in Table 1)

The procedure in Example 1 was repeated, except that 2,6-dichloropurine was used instead of adenine, to obtain the title compound.

m.p.: 71-72 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ): 3.90-4.08 (m, 4H) 4.32-4.52 (m, 6H) 8.19 (s, 1H)

Example 9

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-3-deaza-8-aza-2,6-diaminopurine (compound No. 838 in Table 4)

The procedure in Example 1 was repeated, except that 3-deaza-8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound. m.p.: 116.- 122 °C (ether)

10

'H-NMR (Me₂ SO-d₆, δ): 3.94 (t. J = 5.2Hz, 2H) 4.09 (d. J = 7.7Hz, 2H) 4.46-4.78 (m. 6H) 5.55 (s. 2H) 5.57 (s, 1H) 6.66 (s, 2H)

Example 10

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-7-deaza-8-aza-2,6-diaminopurine (compound No. 734 in Table 1)

The procedure in Example 1 was repeated, except that 7-deaza-8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound. m.p.: 54 - 64 °C (ether)

20

'H-NMR (Me₂ SO-d₆, δ): 3.91 (t, J=5.3Hz, 2H) 4.07 (d, J=8.0Hz, 2H) 4.27 (t, J=5.3Hz, 2H) 4.52-4.78 (m, 4H) 8.00 (s, 1H)

Example 11

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-6-chloropurine (compound No. 1,084 in

The procedure in Example 1 was repeated, except that 6-chloropurine was used instead of adenine, to obtain the title compound. m.p.: oil

3.95 (d, J = 7.8Hz, 2H) 4.00 (t, J = 4.9Hz, 2H) $4.34 \cdot 4.48$ (m, 4H) 4.52 (t, J = 4.9Hz, ¹H-NMR (CDCl₃, δ): 2H) 8.20 (s, 1H) 8.75 (s, 1H)

Example 12

35

Production of 9-[2-[methyl(2,2,2-trifluoloethyl)phosphonylmethoxy]ethyl]adenine (compound No. 303 in Table 1)

The compound obtained in Example 1 (1 g, 2.3 mmol) was dissolved in methanol (10 ml), to which was added silica gel (5 g). After reaction at 50 °C for 7 hours, the product was concentrated to dryness. The residue was eluted with 5 % methanol/chloroform to obtain the title compound (0.75 g, 88%). m.p.: 107 - 110 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ):

3.74 (d, J = 11.1Hz, 3H) 3.83 (d, J = 8.3Hz, 2H) 3.93 (t, J = 4.1Hz, 2H) 4.30-4.39(m, 4H) 5.65 (br, 2H) 7.86 (s. 1H) 8.33 (s. 1H)

45

Example 13

Production of 9-[2-[methyl(2,2,2-trifluoloethyl)phosphonylmethoxy]ethyl]-2,6-diaminopurine (compound No. 453 in Table 1)

50

The procedure in Example 9 was repeated, except that the compound obtained from Example 2 was used instead of that obtained from Example 1, to obtain the title compound. m.p.: amorphous

1 H-NMR (CDCI3, δ):

3.77 (d, J = 11.0Hz, 3H) 3.86 (d, J = 8.2Hz, 2H) 3.91 (t, J = 5.0Hz, 2H) 4.24 (t, J=4.1Hz, 2H) 4.25-4.42 (m, 2H) 4.69 (br, 2H) 5.35 (br, 2H) 7.60 (s. 1H)

Example 14

Production of 9-[[2-[bis(2-methoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 313 in Table 1)

9-[(2-Phosphonylmethoxy)ethyl]adenine (1 g, 3.5 mmol) was suspended in dichloromethane (10 ml) and reacted with trimethylsilyldiethylamine (3 ml) at room temperature for an hour and concentrated to dryness. The residue was dissolved in dichloromethane (10 ml), to which were added dimethylformamide (0.05 ml) and oxalyl chloride (0.9 ml). The mixture was reacted under ice-cooling for an hour, then at room temperature for an hour. After solvent was distilled off, the residue was dissolved in pyridine (20 ml) and reacted with 2-methoxyethanol (0.76 g) at room temperature for 12 hours. After concentration to dryness, the residue was dissolve in chloroform, adsorbed on silica gel column, eluted with 5 % methanol/chloroform to give the title compound (0.3 g, 22%).

m.p.: 90 - 93 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ): 3.35 (s, 6H) 3.55. (d, J=4.6Hz, 4H) 3.86 (d, J=8.2Hz, 2H) 3.95 (t, J=4.9Hz, 2H) 4.16-4.19 (m, 4H) 4.40 (t, J=4.9Hz, 2H) 5.67 (br, 2H) 7.98 (s, 1H) 8.35 (s. 1H)

Example 15

Production of 9-[[2-bis(2-phenoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 323 in Table 1)

The procedure in Example 11 was repeated, except that 2-phenoxyethanol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: 112 - 115 °C (hexane)

1H-NMR (CDCl3, δ): 3.88 (t, J=4.8Hz, 2H) 3.95 (d, J=8.0Hz, 2H) 4.07 (t, J=4.4Hz, 4H) 4.21-4.26 (m, 4H) 4.30 (t, J=4.8Hz, 2H) 5.55 (br, 2H) 6.85-6.92 (m, 6H) 7.26 (t, J=7.4Hz, 4H) 8.06 (s, 1H) 8.12 (s. 1H)

Example 16

25

30

35

Production of 9-[[2-bis(2-benzyloxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 331 in Table 1)

The procedure in Example 11 was repeated, except that 2-benzyloxyethanol was used instead of 2-methoxyethanol to obtain the title compound.

m.p.: 45 - 48 °C (hexane)

1H-NMR (CDCI3, δ): 3.61 (d, J=4.6Hz, 4H) 3.81 (d, J=8.1Hz, 2H) 3.84 (t, J=5.0Hz, 2H) 4.17-4.23 (m, 4H) 4.30 (t, J=5.0Hz, 2H) 4.51 (s, 4H) 5.49 (br, 2H) 7.29-7.33 (m, 10H) 7.91 (s, 1H) 8.35 (s. 1H)

40 Example 17

Production of 9-[[2-bis(2-acetoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 343 in Table 1)

The procedure in Example 11 was repeated, except that 2-acetoxyethanol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: 68 - 70 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ) : 2.08 (s, 6H) 3.84 (d, J=8.3Hz, 2H) 3.95 (t, J=4.9Hz, 2H) 4.22-4.26 (m, 8H) 4.42 (t, J=4.9Hz, 2H) 5.63 (br, 2H) 7.94 (s, 1H) 8.36 (s. 1H)

50 Example 18

Production of 9-[[2-bis(2-valeryloxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 349 in Table 1)

The procedure in Example 11 was repeated, except that 2-valeryloxyethanol was used instead of 2-methoxyethanol to obtain the title compound.

m.p.: oil

1H-NMR (CDCl3, δ): 0.91 (t, J=7.5Hz, 6H) 1.36 (qt, J=7.5Hz, 4H) 1.60 (tt, J=7.5Hz, 4H) 2.33 (t, J=7.5Hz, 4H) 3.83 (d, J=8.1Hz, 2H) 3.95 (t, J=5.0Hz, 2H) 4.21-4.25 (m, 8H)

4.41 (t, J=5.0Hz, 2H) 5.73 (br, 2H) 7.94 (s, 1H) 8.35 (s. 1H)

Example 19

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-iodoadenine (compound No. 359 in Table 1)

The procedure in Example 11 was repeated, except that 2,2,2-trifluoroethanol and 9-[(2-phosphonyl-methoxy)ethyl]-2-iodoadenine were used instead of 2-methoxyethanol and 9-[(2-phosphonyl-methoxy)ethyl]-adenine, respectively, to obtain the title compound.

m.p.: 179 °C (CHCl₃)

1H-NMR (Me2 SO-d6, δ): 3.88 (t, J=5.0Hz, 2H) 4.13 (d, J=8.0Hz, 2H) 4.28 (t, J=5.0Hz, 2H) 4.56-4.70 (m, 4H) 7.63 (br, 2H) 7.99 (ş, 1H)

15 Example 20

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]guanine (compound No. 259 in Table 1)

The procedure in Example 1 was repeated, except that 6-O-benzylguanine, which can be synthesized by the known method, was used instead of adenine, to obtain 9-[2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxy]ethyl]-6-O-benzylguanine.

The compound (2.21 g, 4.07 mmol) was dissolved in ethanol (20 ml), to which were added cyclohexene (20 ml) and 20 % palladium hydroxide carbon (1.5 g), and the mixture was reacted under reflux for 2 hours. After palladium hydroxide carbon was removed by filtration, the solution was concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to obtain the title compound (1.01 g, 55 %).

m.p.: 214 °C (ethanol)

1H-NMR (Me2 SO-d6, δ): 3.86 (t, J=5.1Hz, 2H) 4.13 (d, J=8.1Hz, 2H) 4.17 (t, J=5.0Hz, 2H) 4.58-4.70 (m, 4H) 6.61 (br, 2H) 8.06 (s, 1H) 10.88 (br, 1H)

Example 21

30

35

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]guanine (compound No. 260 in Table 1)

Guanosine (1 g, 3.53 mmol) was suspended in dimethylacetaminde (10 ml), to which was added 2-[bis-(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl iodide (1.7 g), and the reaction was carried out at 100 °C for 2 hours. The reaction solution was concentrated to dryness, and the residue was dissolved in 30 % methanol/water, adsorbed on an octadecyl silica gel column, eluted with 30 % methanol/water to give the title compound (0.1 g, 6.3 %).

m.p.: 255 °C (H₂O)

1H-NMR (Me2 SO-d6, δ): 3.89 (t, J=5.0Hz, 2H) 4.10 (d, J=8.0Hz, 2H) 4.40 (t, J=5.0Hz, 2H) 4.57-4.70 (m, 4H) 6.34 (br, 2H) 8.09 (s, 1H) 10.95 (br, 1H)

45 Example 22

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]adenine-1-N-oxide (compound No. 780 in Table 2)

The compound in Example 1 (8.12 g, 18.6 mmol) was dissolved in chloroform (150 ml), to which was added m-chloroperbenzoic acid (15 g), and reacted at 50 °C for 2 hours. The separated precipitate was removed by filtration, then adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (3.42 g, 42 %).

m.p.: 186 °C (ethyl acetate)

55. 1H-NMR (Me2 SO-d6, δ): 3.88 (t, J=5.0Hz, 2H) 4.10 (d, J=8.0Hz, 2H) 4.36 (t, J=5.0Hz, 2H) 4.52-4.66 (m, 4H) 8.18 (s, 1H) 8.56 (s, 1H)

Example 23

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-6-thioguanine (compound No. 609 in Table 1)

The compound in Example 3 (800 mg, 1.7 mmol) was dissolved in ethanol (15 ml), to which was added thiourea (157 mg) and reacted under reflux for 4 hours. After reaction was over, the mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (252 mg, 32 %).

m.p.: 144 °C (ethanol)

1H-NMR (Me2 SO-d6, δ): 3.80 (t, J=5.1Hz, 2H) 4.06-4.16 (m, 4H) 4.49-4.68 (m, 4H) 6.73 (br, 2H) 7.76 (s, 1H)

Example 24

15

10

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-p-toluylthiopurine (compound No. 1,030 in Table 6)

The compound in Example 3 (9.4 mg, 20 mmol) was dissolved in DMF (90 ml). p-Thiocresol (5.23 g) and triethylamine (2.8 ml) were added at room temperature, and the mixture was reacted at 100 °C for 4 hours. After reaction was over, the reaction mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with chloroform to give the title compound (9.8 g, 88 %).

m.p.: oil

1H-NMR (CDCl3, δ) : 2.40 (s, 3H) 3.89-3.96 (m, 4H) 4.26 (d, J = 5.1Hz, 2H) 4.39-4.47 (m, 4H) 4.79 (br,

2H) 7.23 (d, J=9.8Hz, 2H) 7.31 (d, J=9.8Hz, 2H) 7.71 (s, 1H)

Example 25

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-hydroxy-6-p-toluylthiopurine (compound No. 1,055 in Table 7)

The compound in Example 21 (6.9 mg, 12.3 mmol) was dissolved in 50 % aqueous acetic acid (120 ml). Sodium nitrite (12 g) was added thereto, and the mixture was reacted at 50 °C for 1 hour. After reaction was over, the reaction mixture was cooled to room temperature and concentrated to dryness. The residue was partitioned between chloroform and aqueous sodium bicarbonate, and the chloroform layer was dried on magnesium sulfate and filtered. The filtrate was concentrated to dryness, crystallized from ether to give the title compound (2.31 g, 34 %).

m.p.: 176 °C (ether)

1H-NMR (Me2 SO-d6, δ): 2.33 (s, 3H) 3.85 (t, ...

2.33 (s, 3H) 3.85 (t, J=5.1Hz, 2H) 4.01 (d, J=8.0Hz, 2H) 4.25 (d, J=5.1Hz, 2H) 4.53-4.69 (m, 4H) 7.24 (d, J=8.1Hz, 2H) 7.43 (d, J=8.1Hz, 2H) 8.05 (s, 1H) 11.58 (br, 1H)

Example 26

40

45

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-1-methylguanine (compound No. 1,005 in Table 5)

The compound in Example 20 (500 mg, 1.1 mmol) was dissolved in DMF (7 ml), and reacted with potassium carbonate (150 mg), molecular sieves (0.4 nm, 100 mg) and methyl iodide (203 mg) at room temperature for 2 hours. The reaction solution was filtered and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (30 mg, 5.8 %).

m.p.: oil

¹H-NMR (Me₂ SO-d₆, δ): 3.27 (s, 3H) 3.80 (d, J=5.0Hz, 2H) 4.05-4.11 (m, 4H) 4.52-4.68 (m, 4H) 6.98 (br, 2H) 7.59 (s, 1H)

Reference Example 1

Production of 9-[[2-bis(2-acetamidethyl)phosphonylmethoxy]ethyl]adenine

5

$$\begin{array}{c|c}
N H_2 \\
N \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
O \\
P \\
O C H_2 C H_2 N H C O C H_3)_2
\end{array}$$

15

20

10

The procedure in Example 11 was repeated, except that 2-acetamide etahnol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: oil

1H-NMR (CDCI3, δ):

2.02 (s, 6H) 3.41-3.53 (m, 4H) 3.81 (d, J=8.5Hz, 2H) 3.94 (t, J=4.9Hz, 2H) 3.97-4.21 (m, 4H) 4.43 (t, J=4.9Hz, 2H) 6.18 (br. 2H) 6.77 (br. 2H) 8.00 (s, 1H) 8.34 (s. 1H)

25 Reference Example 2

Production of 9-[[2-bis(2-hydroxyethyl)phosphonylmethoxy]ethyl]adenine

30

35

$$\begin{array}{c|c}
N H_2 \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c|c}
0 \\
P (OCH_2CH_2OH)_2
\end{array}$$

40

The compound obtained from Example 13 (1 g, 1.9 mmol) was dissolved in ethanol, 10 % palladium-carbon (0.1 g) was added and reacted at 60 °C for 7 hours under hydrogen atmosphere. After palladium-carbon was removed by filtration, the solution was concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column, eluted with 5 % methanol/chloroform to give the title compound (0.38 g, 55 %).

m.p.: 102 - 104 °C (ethyl acetate)

1H-NMR (Me2 SO-d6, δ):

3.50 (q, J=3.9Hz, 4H) 3.86-3.96 (m, 8H) 4.32 (t, J=5.1Hz, 2H) 4.85 (t, J=5.6Hz, 2H) 7.21 (br, 2H) 8.09 (s, 1H) 8.13 (s. 1H)

Experiment 1

Inhibition of HBV growth

55

50

HB611 cells (recombinant human lever cancer cell producing HBV, 2x10⁴) was incubated on Dulbecco ME medium containing bovine fetal serum, streptomycin (100 mg/ml), penicillin (100 IU/ml) and G-418 (0.2 mg/ml) at 37 °C. On the 2nd and 5th days of cultivation, the medium was changed, then the media

containing specimens at final concentration of 10 mM were substituted on the 8th, 11th and 14th days. On 17 days of cultivation, DNA of the cell was recovered. The amount of HBV-DNA was measured by southern blotting, and inhibition of HBV-DNA synthesis in the cell was determined. In addition, the concentration of the compound required for 50 % death of the HB611 cells was determined. The results are shown in the following Table 8.

Table 8

10	Compound	Inhibition of HBV-DNA Synthesis(%)	LD ₅₀ of HB611 cell (μM)
	Example 1	91.5	>1000
	Example 2	99.9	840
	Example 3	99.9	399
	Example 5	97.2	-
15 [.]	Example 12	86.3	>1000
	Example 13	100	>1000
	Example 14	55.0	>1000
	Example 15	59.7	174
	Example 16	57.8	178
20	Example 17	66.2	>1000
	Example 18	73.4	47 ·
	Example 20	99.9	-
	Example 21	71.3	-
	Example 22	76.2	
25	Example 23	86.1	-
	Example 24	99.9	-
	Example 25	99.9	-
	Example 26	99.9	-
	Reference Example 1	-	>1000
30	Referemce Example 2	31.0	>1000

Experiment 2

Inhibition of HBV growth in rat or mouse serum upon oral administration

Groups of rats (3 rats per group) were received single oral dose of specimen (1 g/kg or 0.5 g/kg), bled at 1 hour after administration and serum was prepared. Separately, groups of mice (3 mice per group) were received single oral dose of specimen (0.3 g/kg), bled at 30 minutes after administration and serum was prepared.

HB611 cells (2x10⁴) were incubated on Dulbecco ME medium containing 10 % bovine fetal serum, streptomycin (100 mg/ml), penicillin (100 IU/ml) and G-418 (0.2 mg/ml) at 37 °C. On the 2nd and 5th days of cultivation, the medium was changed, then substituted with a medium containing 5 % of the above serum (rat or mouse serum after oral administration of the specimen) on the 8th, 11th and 14th day, and DNA of the cell was recovered on the 17th days of cultivation. The amount of HBV-DNA was measured by southern blotting, and intracellular HBV-DNA synthesis inhibition was determined. For reference, the same experiment was conducted on PMEA. The results are shown in the following Table 9.

50

Table 9

	Compound	Subject	Oral Dosage (g/kg)	HBV-DNA Synthesis Inhibition(%)
5	Example 1	Rat	1	89.9
	Example 2	Rat	1	71.9
	Example 3	Mouse	0.3	99.9
	Example 4	Mouse	0.3	36.3
	Example 5	Mouse	0.3	87.2
10	Example 12	⋅Rat	1	92.9
	Example 13	Rat	1	77.7
	Example 14	Rat	0.5	25.4
	Example 15	Rat	0.5	38.5
	Example 16	Rat	0.5	43.6
15	Example 18	Rat	0.5	61.4
	Example 20	Mouse	0.3	99.9
	Example 22	Mouse	0.3	15.2
	Reference Example 1	Rat	0.5	0
	Referemce Example 2	Rat	0.5	0
20	PMEA	Rat	1	35.5

Claims

30

35

40

45

50

55

1. A phosphonate-nucleotide ester derivative of the following general formula (I):

$$Z$$
 A
 $CH_2CH_2OCH_2P-OR^3$
 OR^4
 OR^4

wherein ring A represents

$$R^1$$
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^2
 R^2

wherein R^1 and R^2 independently represent hydrogen, halogen, hydroxyl, mercapto, C_6 - C_{10} arylthio or amino; R^3 represents C_1 - C_4 alkyl or ethyl having one or more substituents selected from the group consisting of fluorine, C_1 - C_4 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy; R^4 represents ethyl having one or more substituents selected from the group consisting of fluorine, C_1 - C_4 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy; X, Y and Z independently represent methyne or

nitrogen atom; or a pharmaceutically acceptable salt thereof.

2. A compound according to Claim 1, wherein the ring A is

Э

10

15

or

wherein R1 and R2 are as defined in Claim 1.

3. A compound-according to Claim 1, wherein the ring A is

20

$$R^1$$
 N
 R^2

25

wherein R^1 is hydrogen, chlorine, hydroxyl, mercapto, tolylthio or amino; R^2 is hydrogen, chlorine, iodine, hydroxyl or amino.

4. A compound according to Claim 1, wherein the ring A is

35

40

wherein R1 is amino; R2 is hydrogen.

5. A compound according to Claim 1, wherein the ring A is

50

45

- wherein R1 and R2 are amino.
- A compound according to Claim 1, wherein R³ is C₁-C₃ alkyl, 2,2,2-trifluoroethyl or ethyl having a substituent selected from the group consisting of C₁-C₃ alkoxy, phenoxy, C₇-C₁₀ phenylalkoxy and C₂-

C₅ acyloxy.

- 7. A compound according to Claim 1, wherein R3 is C1-C3 alkyl or 2,2,2-trifluoroethyl.
- A compound according to claim 1, wherein R⁴ is 2,2,2-trifluoroethyl or ethyl having a substituent selected from a group consisting of C₁-C₃ alkoxy, phenoxy, C₇-C₁₀ phenylalkoxy and C₂-C₅ acyloxy.
 - 9. A compound according to Claim 1, wherein R4 is 2,2,2-trifluoroethyl.
- 10. A compound according to Claim 1, wherein X and Z are nitrogen atoms, X and Y are nitrogen atoms, or X, Y and Z are nitrogen atoms.
 - 11. A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 12. An antiviral agent containing a compound of Claim 1 as an active ingredient.
 - 13. A method for treatment of viral infection which comprises administering a compound of Claim 1 to a patient infected with a virus.
 - 14. A method for treatment of Claim 13, wherein the virus is hepatitis B virus.

25

20

15

30

35

40

45

50

EUROPEAN SEARCH REPORT

Application Number

stegory	Citation of document with indi of relevant passi	cation, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THI APPLICATION (Inc.)
	EP-A-0 481 214 (BRIST * the whole document	TOL-MYERS SQUIBB CO.)	1-14	C07F9/6561 A61K31/675
	WO-A-92 09611 (BEECH) * the whole document	AM GROUP PLC) *	1-14	
		•		
				TECHNICAL FIFEDS SEARCHED (Int.Cl.6)
				CO7F
		•		A61K
	The present search report has been			
	Place of search	Date of completion of the search	<u> </u>	Examiner
	THE HAGUE	22 September 1994	H Bes	lier, L
X : parti Y : parti docu	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category totogical background	E : earlier patent doc	atment, but publi ate in the application or other reasons	invention shed on, or