apl. Prof. Dr. D. Castrigiano

Dr. G. Zumbusch

HÖHERE MATHEMATIK 2 FÜR PHYSIK

(Analysis 1)

 $Studienbegleitende\ Pruefung\ A$ $Mittwoch,\ 12.02.2003,\ 10:00-11:30\ Uhr.$ $Arbeitszeit:\ 90\ Minuten$

- 1. Aufgabe. Sei $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = 3 \arctan x 4x$.
 - 1. Warum ist f streng monoton fallend?
 - 2. Wie lautet f(0)?
 - 3. Man bestimme $D := f(\mathbb{R})$.
 - 4. Warum existiert die Umkehrfunktion $g := f^{-1}, g : D \longrightarrow \mathbb{R}$?
 - 5. Man berechne g(0), g'(0), g''(0) und g'''(0).

[8 Pkte.]

2. Aufgabe. Man faktorisiere das Polynom $P(X) = X^8 - 16$ über \mathbb{C} und über \mathbb{R} . Die im Ergebnis auftretenden komplexen Zahlen sind in der Form a+ib mit $a,b \in \mathbb{R}$ zu schreiben.

[8 Pkte.]

3. Aufgabe. Sei $g: \mathbb{R} \longrightarrow \mathbb{R}$, gegeben durch

$$g(x) = \frac{\cos 2x^2 - 1}{x^4}$$

für $x \neq 0$ und g(0) = -2.

1. Man berechne

$$\lim_{x \to 0} \frac{g(x) + 2}{x} .$$

Warum ist die Funktion g in 0 differenzierbar? Wie lautet g'(0)?

- 2. Warum ist g differenzierbar?
- 3. Warum ist g stetig?
- 4. Man gebe eine Potenzreihe mit Entwicklungspunkt 0 an, die für reelle Argumente $x \in \mathbb{R}$ die Funktion g darstellt.
- 5. Welchen Konvergenzradius hat die Potenzreihe aus Nr. 4?
- 6. Man bestimme die Taylorreihe von g mit Entwicklungspunkt 0, also $T_{g,0}$.
- 7. Man ermittle die Taylorreihe der Funktion $G: \mathbb{R} \longrightarrow \mathbb{R}$,

$$G(x) := \int_0^x g(t) dt .$$

8. Wie lauten $g^{(n)}(0)$, für $n = 0, 1, 2, 3, \dots$.

- **4. Aufgabe.** Für $n \in \mathbb{N}$ sei die Treppenfunktion $\varphi_n : [0,1] \longrightarrow \mathbb{R}$ durch $\varphi_n \left| \left| \frac{k-1}{n}, \frac{k}{n} \right| = \left(\frac{k}{n}\right)^2$, $k = 1, 2, 3, \dots, n$ und $\varphi_n(0) = 0$ gegeben.
 - 1. Man berechne

$$\int_0^1 \varphi_n(x) \, dx$$

für $n = 1, 2, 3, \dots$.

2. Man ermittle

$$\lim_{n\to\infty} \int_0^1 \varphi_n(x) \, dx \ .$$

3. Man zeige für $x \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$:

$$\left|\varphi_n(x) - x^2\right| \le \frac{2n+1}{n^2} \, .$$

- 4. Man zeige, dass die Folge (φ_n) gleichmäßig gegen $f:[0,1]\longrightarrow \mathbb{R}, f(x)=x^2$, konvergiert.
- 5. Man berechne

$$\int_0^1 f(x) \, dx$$

auf zwei verschiedene Weisen.

[12 Pkte.]

Hinweis: Für das Bestehen der Prüfung sind 17 der 44 erreichbaren Punkte erforderlich. Ab 37 Punkten wird mit Note 1,0 bewertet.