Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester Analysis-I

Home Assignment IV

Due Date: 24 Dec. 2021

- (i) Express the repeating decimals 12.202120212021... as the ratio of two integers.
 - (ii) You drop a ball from a meters above a flat surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance $\frac{h}{\sqrt{2}}$. Find the total distance the ball travels up and down.
- 2. Prove or disprove the following:
 - (i) If $\sum_{n=1}^{\infty} a_n$ is a series such that its sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$

$$\lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right| = \frac{1}{\sqrt{2}},$$

then it is convergent.

- (ii) If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then so is $\sum_{n=1}^{\infty} a_n^3$.
- (iii) The series $1 + \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \cdots$ is convergent.
- 3. Show that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of non-negative reals such that $\{a_n\}_{n\in\mathbb{N}}$ is decreasing, then $\lim_{n\to\infty}na_n=0$.
- 4. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive reals such that $t_n =$ $\sum_{k=n}^{\infty} a_k$ for each $n \in \mathbb{N}$, then the series $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{t_n}}$ is convergent.
- 5. Find the sum of the following series.

 - (i) $\sum_{n=1}^{\infty} \frac{n}{n^4 + n^2 + 1}$ (ii) $\sum_{n=1}^{\infty} \left(\frac{3}{n^2 + 7n + 12} + 3^{2+n} 2^{1-3n} \right)$
- 6. Test the convergence of the following series.
- (i) ∑_{n=1}[∞] √ (n+4) / (n⁴+4)
 (ii) ∑_{n=1}[∞] (1·3·····(2n-1)) / (2·4·····(2n))(3ⁿ+1)
 (iii) ∑_{n=1}[∞] (n-2) / (n²-2) / (n²-2) / (n²-2)
 (iv) ∑_{n=1}[∞] a_n with a₁ = √3 and a_{n+1} = n/(n+1) a_n for all n ∈ N.
 7. Prove that if ∑_{n=1}[∞] a_n is convergent, then |∑_{n=1}[∞] a_n| ≤ ∑_{n=1}[∞] |a_n|.
 8. Prove that ∑_{n=1}[∞] nrⁿ⁻¹ = 1/((1-r)²) for |r| < 1.
 9. Let ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b be convergent with sums a and b, resolved
- 9. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be convergent with sums a and b, respectively. Show that if their Cauchy product $\sum_{n=0}^{\infty} c_n$ converges to c, then c=ab.
- 10. Prove that the Root test is 'stronger' than the Ratio test. More precisely, prove the following.
 - (i) If we are able to use the Ratio Test for a series $\sum_{n=1}^{\infty} a_n$, where $a_n > 0$ for all $n \in \mathbb{N}$, then the Root Test works as well.
 - (ii) There exists a series $\sum_{n=1}^{\infty} a_n$ with $a_n > 0$ for all $n \in \mathbb{N}$ such that the Root Test indicates whether the series converges or diverges but the Ratio Test is inconclusive.
