Булевы функции

Функция — правило, согласно которому каждому элементу х из области определения (X) Опр ставится в соответсвие определенный элемент из области значений (F).

Для булевых функций $X = F = \{0, 1\}$

Пример
$$f = AB + C$$

$$f(0,1,0) = 0$$

Опр аргументы — независимые переменные, функция — зависимая переменная

У одной функции может быть множество формул.

Способы задания булевых функций

1) Аналитический

2) Табличный

No	A	В	С	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1_	0	0
7	1	1	1	0

3) Карта Вейча (Карно)

Дизъюнктивные и конъюнктивные нормальные формы

Нормальные формы, использующие в своей записи только операции, определенные булевым базисом (, + , ¬)

Опр ДНФ — дизъюнктивная нормальная форма — дизъюнкция выражений, которые либо:

1) отдельный аргумент (возможно с инверсией)

2) простая конъюнкция некоторых аргументов

является ДНФ: $\frac{1}{2}$ не является ДНФ: 🕂 – Д

КНФ — конъюнктивная нормальная форма — конъюнкция выражений, которые либо:

- 1) отдельный аргумент (возможно с инверсией)
- 2) простая дизъюнкция некоторых аргументов A + B + D

является КНФ: (A+B)(C+E+A)

не является КНФ: $(AB+C)(B+\overline{C})$

Отдельный аргумент, как выражение, может быть причислен и к КНФ и к ДНФ записи

$$f = \overline{A}$$

Минтермы. СДНФ

Опр Минтерм (минимальный терм) — булева функция, которая принимает единичное значение только на одном наборе значений переменных

Утв Конъюнкция двух различающихся минтермов, зависящих от одних и тех же аргументов, равна нулю.

Пример

Утв Если в f только одна единица, то она представима в виде минтерма, если же их несколько, то f представима в виде дизъюнкции соответвующих минтермов.

Пример

Всякая булева функия от заданного числа аргументов представима в виде СДНФ единственным образом. По этой причине СДНФ также называют канонической или стандартной формой.

Построение СДНФ

Алгоритм построения СДНФ по таблице истинности:

- 1) В таблице выделить те наборы переменных, на которых функция равна 1
- 2) Для каждого такого набора записать конъюнкцию переменных:

если 1, то переменная неизменна

если 0, то переменная инвертируется

3) Все полученные конъюнкции связываются дизъюнкциями

Пример

№	X	у	Z	f	x, y, 2 + x y 2 + x y 2 + x y 2
0	0	0	0	0	
1	0	0	1	0	
2	0	1	0	0	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	1	
6	1	1	0	1	
7	1	1	1	1	

Теоремы для ДНФ и СДНФ

Th Разложения для ДНФ

Th Существование и единственность представления булевой функции в СДНФ

Для любой булевой функции от n аргументов не равной 0-существует единственное представление её в виде СДНФ от n аргументов

Импликанты

Импликанта Ψ функции f — функция, все минтермы которой, входят в множество минтермов

функции f

$$f(A,B,C) = AB+RC = (3,6,7)$$

$$\varphi_0 = 0$$

$$\psi_{y} = \mathfrak{M}_{y}$$

$$V - M + 1$$

$$Y_5 = M_3 + M_4$$

$$Y_6 = M_6 + M_{24}$$

Число импликант функции равно

 $|\varphi_{2}| = m_{2} + m_{0} + m_{7}$

mos rucio nuntepuol

Карты Вейча(Карно)

Форма записи булевой функции в виде таблицы.

		4		4	Š	A			
В	ABĒ	ABC	ĀBC	ĀВĈ	B	6	7	3	2
Ē	$Aar{B}ar{C}$	ABC	ĀĒC	ĀĒĈ		4	5	1	O
- 1	\bar{c}		?	Ē				;	

		4			
В	12	14	6	4	
B	13	15	7	5	
	9	11	3	1	D
	8	10	2	0	
		—			

		1	₹						
		4				<u>A</u>			
_	25	29	13	9	24	28	12	8	
B	27	31	15	11	26	30	14	10	
	19	23	7	3	18	22	6	2	$ ^{D}$
	17	21	5	1	16	20	4	0	
			7						•

Пример

		4		<u> </u>		A	1		
В	ABĈ	ABC	ĀBC	ĀВĒ	В	6	7	3	2
Ē	AĒĈ	ABC	ĀĒC	ĀĒĈ		4	5	1	0
	\overline{c}		2	- <u>\bar{\bar{c}}</u>				;	

1) функция задана в СДНФ

2) функция задана в ДНФ

$$f_1 - A$$

$$f_2 = BC$$

Методы построения сокращенных и минимальных форм

Опр Минимизация булевой формулы — нахождение наименьшего числа простых импликант (состоящие из одной конъюнкции), которые в дизъюнкции описывают исходную функцию

Опр Сокращенная ДНФ — запись функции, в которой

- 1) любые два слагаемых отличаются минимум в двух местах,
- 2) ни один их конъюнктов не содержится в другом.

Методы: Алгебраический - использует теоремы одного аргумента, склеивания и поглощения. Метод Квайна - использует только теорему склеивания, находя в записи функции конъюнкции, отличающиеся только в знаке одного из аргументов.

Опр Тупиковая ДНФ — сокращенна ДНФ, которая не содержит лишних (не влияющих на таблицу истинности) импликант

Методы: Петрика - проверяет каждую простую импликанту на предмет её нужности (измениится ли итоговая функция, если её удалить) в формуле

<u>Опр</u> <u>Минимальная</u> ДНФ — тупиковая ДНФ, которая содержит минимальное число вхождений переменных

Методы: Петрика - среди тупиковых форм есть минимальные Карт Вейча - по теореме склеивания объединяются соседние ячейки

Макстерм. СКНФ

Опр Макстерм — булева функция, принимающая единичные значения на всех наборах аргументов, кроме одного

<u>Утв</u> Макстерм является инверсией минтерма

Пример

	N .				_	\bigcirc	
2	minterm id	X	y	Z	$\left(\mathbf{f}\right)$	$ \langle \overline{f} \rangle $	maxterm id
0	0	0	0	0	1	Ŏ	7
1	1	0	0	1	1	0	6
?	2	0	1	0	1	0	5
ک	3	0	1	1	1	0	4
1	4	1	0	0	1	0	3
5	5	1	0	\supset	(0)	$ \widehat{1} $	2
(6	1	1	0	1	0	1
4	7	1	1	1	1	0	0
,							

$$\overline{f} = \overline{ABC}$$
 $\overline{f} = \overline{ABC} = \overline{A+B+C} = M_2$
Связь индексов макстермов и минтермов:

$$M_{l} = \overline{M_{2^{n-l-1}}}$$
 $M_{i} = \overline{M_{2^{n-l-1}}}$

Утв Дизъюнкция двух различающихся макстермов, зависящих от одних и тех же аргументов, равна единице

Опр СКНФ — КНФ, которая не имеет одинаковых дизъюнкций и все они полные

Исходя из ранее указанного определения макстерма, можно сказать, что СКНФ представляет собой конъюнкцию макстермов функции

Th Разложения для КНФ

Всякую булеву функцию можно представить в виде

$$f(A_1, A_n) = (A_i + f(A_1, A_n)) \cdot (A_i + f(A_1, A_n)) \cdot (A_i + f(A_1, A_n))$$

<u>proof</u>

Построение СКНФ

Алгоритм построения СКНФ по таблице истинности:

- 1) В таблице выделить те наборы переменных, на которых функция равна 0
- 2) Для каждого такого набора записать дизъюнкцию переменных функции:

если 0, то переменная неизменна

если 1, то переменная инвертируется

3) Все полученные дизъюнкции связываются конъюнкциями

Пример

№	X	у	Z	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$(x+y+z)(x+y+z)(x+y+z)=+$$

Нахождение СКНФ через СДНФ

Аналитически:

- 1) Для функции f найти СДНФ инверсии данной функции (все минтермы, которые не вошли в функцию)
- 2) В аналитической записи инверсии f по теореме де Моргана проинвертировать результат (чтобы снова получить выражение для f).

Пример
$$f(A,B,C) = (0,1,2,4,5)$$
 $f(A,B,C) = (3,6,7) = ABC + ABC + ABC$ $COMPunlepoun$ $\overline{T} = f = \overline{ABC} + ABC + ABC = (A+B+C)(\overline{A}+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})$

С помощью карт Вейча:

- 1) Перенести ДНФ функции на карту Вейча
- 2) Для ячеек с нулями сформировать дизъюнкции по правилу, что если ячейка находится в области, где некоторая переменная находится в прямом виде, то в дизъюнкции для этой ячейки она должна быть в инвертированном виде
- 3) Объединить все дизъюнкции с помощью конъюнкции.

Пример

$$\begin{array}{c|c}
A & BC \\
\hline
 & 1 & 1 & 0 \\
\hline
 & 1 & 1 & 0 \\
\hline
 & A & C \\
\hline
 & -A + BC
\end{array}$$

$$\begin{array}{c|c}
A & BC \\
\hline
 & A + B + C \\
\hline
 & -A + BC
\end{array}$$

Нахождение сокращенных и минимальных КНФ. Перевод из КНФ в ДНФ

Поиск сокращенной формы:

- 1) представить заданную функцию в СДНФ
- 2) найти СДНФ инверсии исходной функции
- 3) поиск сокращенной ДНФ для инверсии (например методом Квайна)
- 4) проинвертировать результат по де Моргану

Поиск тупиковых и минимальных форм:

- 1) представить заданную функцию в СДНФ
- 2) найти СДНФ инверсии исходной функции
- 3) поиск сокращенной ДНФ для инверсии (любым методом, например Квайна)
- 4) поиск тупиковых форм ДНФ инверсии (методом Петрика или по карте Вейча)
- 5) проинвертировать полученные формулы по де Моргану получен список тупиковых КНФ исходной функции
- 6) формулы с минимальным числом вхождений аргументов будут минимальными КНФ для исходной функции

Перевод из КНФ в ДНФ

- 1) раскрытие скобок КНФ
- 2) метод инвертирования:
 - а) проинвертировать функцию в КНФ используя закон де Моргана получена ДНФ инверсии
 - б) ДНФ инверсии отметить на карте Вейча нулями, остальные клетки занять единицами
 - в) по СДНФ функции на карте Вейча найти ДНФ.