Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera

Praca dyplomowa magisterska

Opiekun: prof. nzw. Zbigniew Kotulski

Andrzej Piasecki apiaseck@mion.elka.pw.edu.pl

Plan prezentacji

- 1. Motywacja
- 2. Wprowadzenie
- 3. Architektura generatora
- 4. Analiza dysku twardego jako źródła entropii
- 5. Pytania

Motywacja

- Losowość jest niezbędnym elementem kryptografii
 - Proces generowania kluczy
- Twórcy algorytmów, protokołów kryptograficznych często zakładają dostępność nieskończonego strumienia bitów losowych
 - Każda sesja TLS wymaga 384 bitów losowych
 - Wygenerowanie klucza 1024 bitowego do RSA wymaga statystycznie ok. 100 200 Kb.

Entropia

 Entropia jest to średnia ilość informacji przypadająca na znak symbolizujący zajście zdarzenia z pewnego zbioru. Zdarzenia w tym zbiorze mają przypisane prawdopodobieństwa wystąpienia.

$$H(x) = \sum_{i=1}^{n} p(i) \log_{r} \frac{1}{p(i)}$$

- W teorii informacji najczęściej stosuje się logarytm o podstawie *r*=2, wówczas jednostką entropii jest bit.
- Entropię można interpretować jako niepewność wystąpienia danego zdarzenia elementarnego w następnej chwili.

Wymagania stawiane generatorom bitów losowych

- nieprzewidywalny nie wiadomo czy następnym bitem będzie 1 v 0
- bezstronny 0 i 1 są jednakowo prawdopodobne
- niezależny bity są nieskorelowane

Podział generatorów bitów losowych

- Deterministyczne DRBG
 - Wykorzystują deterministyczne algorytmy do wygenerowania pseudolosowej sekwencji bitów z wejściowej, losowej sekwencji bitów nazywanej ziarnem
- Niedeterministyczne NRBG
 - Wykorzystują źródła entropii, z których pobierana jest odpowiednia ilość entropii, potrzebna do wygenerowania z niej, algorytmami deterministycznymi, losowej sekwencji bitów.

Schemat NRBG

Źródła entropii

Sprzętowe

- Czas między emisjami cząsteczek w czasie rozpadu radioaktywnego
- Szum termiczny diody półprzewodnikowej lub rezystora
- Niestabilność częstotliwości własnej oscylatora
- Turbulencje powietrza w zamkniętym napędzie dyskowym, powodujące losowe fluktuacje czasów oczekiwania na odczyt/zapis danych
- Dźwięk z mikrofonu lub sygnał wizyjny z kamery
- Czas między uderzeniami w klawisze (użytkownik)
- Ruch myszy (użytkownik)

Programowe

- Zegar systemowy
- Treść aktualnie wyświetlanego obrazu.
- Statystyki systemu operacyjnego
- Zawartość pamięci podręcznej procesora

Analiza dysku twardego jako źródła entropii

- Zasada pozyskiwania entropii
 - Zapisujemy na dysk twardy blok danych o określonym rozmiarze.
 - Turbulencje powietrza w napędzie dyskowym, drgania głowicy czy losowość zawarta w samym systemie operacyjnym powodują pewne odchylenia od wartości oczekiwanej.
 - Dwa tryby zapisu
 - write-through natychmiastowy bloku danych na dysk
 - write-back najpierw dane zapisywane do pamięci podręcznej następnie na dysk

Czas zapisu (najmłodsze 16 bitów) 1000 bajtowego bloku danych mierzony w taktach procesora

Czas zapisu (najmłodsze 12 bitów) 1000 bajtowego bloku danych mierzony w taktach procesora

Czas zapisu (najmłodsze 8 bitów) 1000 bajtowego bloku danych mierzony w taktach procesora

Czas zapisu (najmłodsze 8 bitów) 1000 bajtowego bloku danych mierzony w taktach procesora

Czas zapisu (najmłodsze 16 bitów) 500 bajtowego bloku danych mierzony w taktach procesora Dysk nieobciążony

wartość średnia = 13539

Czas zapisu (najmłodsze 16 bitów) 500 bajtowego bloku danych mierzony w taktach procesora Dysk obciążony 2MB/s

wartość średnia = 23891

Korelacja próbek

Korelacja próbek

Korelacja kolejnych wartości modulo 256

Kontrola losowości bitów

- kompresja bezstratna
 - Ciąg losowy nie zawiera nadmiarowości.
- testy statystyczne
 - DIEHARD
 - Crypt-XS
 - NIST Statistical Test Suite

Szybkość źródła

- Dla bloku 1000 bajtów
 - Średni czas zapisu 34000 cykli zegara ok. 20µs
 - $8 \text{ bit\'ow na } 20 \mu s => 400 \text{ Kb/s}$
- Dla bloku danych 160 bajtów
 - Średni czas zapisu 6400 cykli zegara
 - -6 bitów $4\mu s => 1,5$ Mb/s

Zbyt mała długość bloku danych

Kalibracja generatora

- Dobór rozmiaru bloku zapisywanego na dysk w zależności od szybkości dysku
- Podatne na manipulację
 - Obciążenie dysku przez napastnika podczas kalibracji spowoduje wybranie zbyt krótkiego bloku danych
- Kalibracja 'online'
 - Wyliczając z N poprzednich próbek średni czas zapisu zmieniamy rozmiar bloku danych.

Testy źródła entropii

- Test źródła entropii ma na celu sprawdzanie czy źródło generuje bity z niezerową entropią
- Test jest w stanie wykryć jedynie awarię źródła.
- Najbardziej skomplikowane testy nie są w stanie wykryć przejęcia kontroli nad źródłem przez napastnika

Wybór funkcji przejścia

- Pozbycie się wzajemnej korelacji próbek
 - Przeplot
 - Szyfrowanie algorytmami symetrycznymi

Funkcja generująca wyjście

- Jednokierunkowa funkcja skrótu
 - Oddziaływanie na bity losowe jednokierunkową funkcją skrótu powiększa entropię w stosunku do entropii wejściowej
 - Jeżeli na wejściu j.f.s. podamy ciąg bitów którego łączna entropia jest większa od rozmiaru wyjściowego ciągu bitów j.f.s, to entropia każdego z wyjściowych bitów będzie równa 1

Test generatora

- sprawdzenie czy generowane bity rzeczywiście są losowe
 - kompresja bezstratna
 - testy statystyczne
 - DIEHARD
 - Crypt-XS
 - NIST Statistical Test Suite

Dziękuje za uwagę