Jeremy Immanuel Putra Tandjung Professor Wooyoung Kim CSS 422 05/23/2020

Q1. Consider the logic gate circuit shown below

(1)
$$\sim$$
 (\sim (a $^{\land}$ c)+ \sim b)* \sim ((b+d)* \sim b)

(2)

a	b	С	d	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

(3) Also attached on canvas submission

(4) I apologize for the dark header, as the logisim on my ubuntu defaults to dark mode even when I changed my ubuntu system theme to light mode.

a b c d | x

a	b	С	d	Х
0	0	0	0	0
	0	0	1	
0	0	1	0	0
0	0	1		0
0	1		1 0	0
0 0 0 0 0 0	1	0	1	0
0	1	1	0	1
0		1	1	1
	1 0	0	0	0
1	0	0	1	0
1	0	1	1 0	0
1	0	1	1	0
1	1	0	1 0	1
1	1	0	1	0 0 0 0 0 1 1 0 0 0
1 1 1 1 1 1	1	1	0	0
1	1	1	1	0

Q2. Design a combinational circuit system.

(1)

a	b	С	Α	В	С
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

(2) & (3)

A K-map

	~x~y	~xy	xy	x~y
~Z	0	1	1	0
~Z	0	1	1	1

$$A = y + xz$$

B K-map

	~x~y	~xy	ху	x~y
~Z	1	0	0	1
~Z	1	0	1	0

$$B = \sim_X \sim_Y + \sim_Y \sim_Z + xyz$$

C K-map

	~x~y	~xy	xy	x~y
~Z	0	0	1	1
~Z	1	1	0	0

$$C = \sim_{XZ} + x \sim_{Z} = x \wedge z$$

(4) Also attached in canvas submission

(5)

 X	у	z	A	В	C	
x	у	z	Α	В	С	
0	0	0	0	1	0	
0	0	1	0	1	1	
0	1	0	1	0	0	
0	1	1	1	0	1	
1	0	0	0	1	1	
1	0	1	1	0	0	
1	1	0	1	0	1	
1	1	1	1	1	0	

Q3. Combinational circuit and Full Adder

(1)

X	У	Z	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(2) S K-map

	~x~y	~xy	xy	x~y
~z	0	1	0	1
~Z	1	0	1	0

$$S = {\sim}x{\sim}yz + {\sim}xy{\sim}z + xyz + x{\sim}y{\sim}z$$

(3) C K-map

	~x~y	~xy	ху	x~y
~Z	0	0	1	0
Z	0	1	1	1

$$C = xy + yz + xz$$

(4)
$$(x ^ y) ^ z == \sim x \sim yz + \sim xy \sim z + xyz + x \sim y \sim z$$

$$\begin{array}{ll} (\ x \ ^{\prime} y\) \ ^{\prime} z &= (\sim xy + x \sim y) \ ^{\prime} z \\ &= \sim (\sim xy + x \sim y)z + (\sim xy + x \sim y) \sim z \\ &= (x + \sim y)(\sim x + y)z + \sim xy \sim z + x \sim y \sim z \\ &= x \sim xz + xyz + \sim x \sim yz + \sim yyz + \sim xy \sim z + x \sim y \sim z \\ &= \frac{x \sim xz}{x} + xyz + \sim x \sim yz + \frac{\sim yyz}{x} + \sim xy \sim z + x \sim y \sim z \\ &= xyz + \sim x \sim yz + \sim xy \sim z + x \sim y \sim z \end{array}$$

$$(5) xy + (x^y) z == xy + yz + xz$$

$$\begin{array}{ll} xy + (\ x \ ^{\wedge} y\)\ z & = xy(1+z) + x \sim yz + \sim xyz \\ & = xy + xyz + x \sim yz + \sim xyz \\ & = xy + xz(y+\sim y) + \sim xyz \\ & = xy + xz + \sim xyz \\ & = xy + xz + \sim xyz \\ & = xy(1+z) + xz + \sim xyz \\ & = xy + xyz + xz + \sim xyz \\ & = xy + xz + xyz + \sim xyz \\ & = xy + xz + yz(x+\sim x) \\ & C & = xy + yz + xz \end{array}$$

Q4. Design a sequential circuit

A(t)	B(t)	x	у	Z	A(t+1)	B(t+1)
0	0	0	0	0	0	0
0	0	0	1	1	1	0
0	0	1	0	1	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	1
0	1	0	1	1	1	0
0	1	1	0	1	0	1
0	1	1	1	1	1	0
1	1	0	0	0	0	0
1	1	0	1	1	1	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0
1	0	0	0	0	0	0
1	0	0	1	1	1	0
1	0	1	0	1	0	0
1	0	1	1	1	0	1

(2) Excitation table

Cu	Current state			Next state			Excitation				
Q2	Q1	Q0	Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0	1	1	1	1	Х	1	Х	1	Х
1	1	1	1	1	0	x	0	x	0	x	1
1	1	0	1	0	1	x	0	x	1	1	х
1	0	1	1	0	0	x	0	0	X	x	1
1	0	0	0	1	1	х	1	1	Х	1	х
0	1	1	0	1	0	0	X	x	0	х	1
0	1	0	0	0	1	0	Х	X	1	1	х
0	0	1	0	0	0	0	Χ	0	Х	Х	1

(3) J2 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	1	0	0	0
Q2	Х	Х	Х	Х

$$J2 = \sim Q1 \sim Q0$$

K2 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	X	X	х	X
Q2	1	0	0	0

$$K2 = \sim Q1 \sim Q0$$

J1 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	1	0	X	X
02	1	0	Х	Х

$$J1 = \sim Q0$$

K1 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	х	х	0	1
Q2	Х	Х	0	1

$$K1 = \sim Q0$$

J0 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	1	Х	Х	1
Q2	1	Х	Х	1

J0 = 1

K0 K-map

	~Q1~Q0	~Q1Q0	Q1Q0	Q1~Q0
~Q2	Х	1	1	Х
Q2	Х	1	1	Х

Extra Credit

X	Υ	Carry in	S(t)	Carry-out (t)	S(t+1)	Carry-out (t+1)
0	0	0	0	1	1	1
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	0	1	0	0	1	1
1	1	0	0	0	0	0
1	1	1	1	0	0	0