CSDS 552 – Deep Learning

Faizad Ullah

Types of Learning

Supervised

The outcome is provided along with the data.

Unsupervised

The outcome is NOT provided along with the data.

What is Machine Learning?

What is Deep (Machine) Learning?

Feature Engineering

Linear Combination (shallow approach)

$$f(x) = \sum_{i} \alpha_{i} g_{i}(x)$$

Combination (deep approach)

Combination (deep approach)

Visual Cortex of a Cat (HUBEL; WIESEL; 1959)

The ventral (recognition) pathway in the visual cortex

Types of Neurons

Linear Regression

Linear Regression

Linear Regression with one variable

Size ($feet^2$)	Price \$(×1000)		
1500	190		
2250	285		
2740	420		
2318	300		
2500	350		
1250	180		

Notation:

m = Number of training samples

n = Number of features

 $x_i = j$ th feature

y = Label

 (x^i, y^i) : the *ith* sample in the dataset

Linear Regression with one variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with one variable, univariate linear regression, simple linear regression

Choose θ_0 , θ_1 such that $h_{\theta}(x) \approx y$ for our training examples (x, y).

Parameters

$$\theta_0$$
, θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$Minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

A simplified case

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters

$$\theta_0$$
, θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$Minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

Assume $\theta_0 = 0$

Hypothesis

$$h_{\theta}(x) = \theta_1 x$$

Parameters

$$\theta_1$$

Cost function

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

 $Minimize_{\theta_1}J(\theta_1)$

$h_{\theta}(x) = \theta_1 x$

(for a fixed θ_1 , this is a function of x)

X	у	3	_				$h_{\theta}(x)$
1	1			θ_1 =	-1 /	<i>A</i> –	.n 5
2	2	2	+	v_1 -		θ_1 =	.0.3
3	3	У					
		1				$\theta_1 = 0$	
$ heta_1$ =	= {0,1,	2 }	0	1 x	2	3	

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

$J(\theta_1)$

(function of the parameter θ_1)

$$J(1) = \frac{1}{2(3)} \Big((1-1)^2 + (2-2)^2 + (3-3)^2 \Big) = 0$$

$$J(0.5) = \frac{1}{6} \Big((0.5-1)^2 + (1-2)^2 + (1.5-3)^2 \Big) = 0.58$$

$$J(0) = \frac{1}{6} \Big((1)^2 + (2)^2 + (3)^2 \Big) = 2.3$$

Using both of the "knobs"

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters

$$\theta_0$$
, θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$Minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

(for fixed θ_0 , θ_1 , this is a function of x)

$J(\theta_0,\theta_1)$

(function of the parameters θ_0 , θ_1)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent Algorithm

The Gradient Descent Algorithm

Goal: Minimize $J(\theta_0, \theta_1)$

Outline:

- Start with some (θ_0, θ_1) For example (0,0)
- Keep updating (θ_0, θ_1) to reduce $J(\theta_0, \theta_1)$
 - Until we <u>hopefully</u> reach <u>a</u> minimum

A simplified version of gradient descent

Assume again that we set $\theta_0 = 0$ and our hypothesis and cost function practically have only one coefficient, θ_1 .

$$h_{\theta}(x) = \theta_1 x$$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{\ddot{d}}{d\theta_1} (J(\theta_1))$$

 $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$

Direction of step

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The limiting case is when x_2 approaches x_1 $= \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

2.5
$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} (J(\theta_1))$$

 $\theta_1 \coloneqq \theta_1 - \alpha(negative)$: Increases θ_1

 $\theta_1 \coloneqq \theta_1 - \alpha(positive)$: Decreases θ_1

Step size

Gradient =
$$\frac{y_2-y_1}{x_2-x_1} = \frac{f(x_2)-f(x_1)}{x_2-x_1}$$

The limiting case is when x_2 approaches $x_1 = \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

$$\theta_1 \coloneqq \theta_1 - \alpha \, \frac{d}{d\theta_1} \big(J(\theta_1) \big)$$
 $\theta_1 \coloneqq \theta_1 - \alpha \, (negative) \text{: Increases } \theta_1$
 $\theta_1 \coloneqq \theta_1 - \alpha \, (positive) \text{: Decreases } \theta_1$

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α .
- With α too small, takes a long time to reach the minimum

Step size

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The limiting case is when x_2 approaches $x_1 = \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} \big(J(\theta_1) \big)$$
 $\theta_1 \coloneqq \theta_1 - \alpha (negative)$: Increases θ_1
 $\theta_1 \coloneqq \theta_1 - \alpha (positive)$: Decreases θ_1

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α .
- With α too small, takes a long time to reach the minimum
- With α too big, we can miss the minimum, and may fail to converge

Step size

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The limiting case is when x_2 approaches x_1 $= \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α .
- No need to decrease α with time or number of steps

The problem of local optima

Gradient Descent by Hand

x	Y
1	2
2	4
3	6

$$\theta_1 = 0.1$$
 $\alpha = 0.1$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{d}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

Gradient Descent by Hand

x	Y	
1	2	
2	4	
3	6	

$$\theta_1 = 0.1$$
 $\alpha = 0.5$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{d}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

Gradient Descent by Hand

x	Υ	
1	2	
2	4	
3	6	

$$\theta_1 = 0.1$$
 $\alpha = 0.9$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{d}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

Gradient Descent by Hand

x	Y	
2	4	
4	8	
6	12	

$$\theta_1 = 0.5$$
 $\alpha = 0.1$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{d}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }  \{ \text{(Where $\alpha$ is the learning rate. E.g., 1, 0.1, 0.01, 0.001,... etc.)}
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$

$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) x^{(i)}$$

```
repeat until convergence { \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \quad \text{update} \\ \theta_0 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \quad \text{simultaneously}
```

$$w_j \leftarrow w_j - \eta rac{\partial E}{\partial w_j} \ w_j \leftarrow w_j + \Delta w_j \ \Delta w_j = -\eta rac{\partial E}{\partial w_j} \ \Delta w_j = \eta (t-y) x_j^{(i)}$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

Types of Gradient Descent

Batch gradient descent: Computes the gradient of the cost function with respect to to the parameters θ for the entire training dataset (m instances).

Stochastic gradient descent: SGD performs a parameter update for *each* training example $x^{(j)}$ and label $y^{(j)}$

Mini-batch gradient descent: Mini-batch gradient descent takes the best of both worlds and performs an update for random mini-batches of k training examples, where k < m.

Read: https://ruder.io/optimizing-gradient-descent/

Multivariate

Single feature (variable)

Size (feet ²)	Price (\$1000)	
x	y	
2104	460	
1416	232	
1534	315	
852	178	
•••	•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables)

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
• • •	• • •	• • •	• • •	• • •

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

Notation:

m = Number of training samples

n = Number of features

x = Feature

y = Label

 $(\mathbf{x_i}^{(i)}, \mathbf{y_i}^{(i)})$: the jth feature of the ith sample in the dataset

Generally speaking, weights are indicating the importance of each feature.

Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now:

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_1 \ x_2 \ ... \ x_n]$ is the n-dimensional feature vector, and $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$X \in \mathbb{R}^n$$
 $\mathbf{\Theta} \in \mathbb{R}^{n+1}$

Geometric Interpretation

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_1 \ x_2 \ ... \ x_n]$ is the n-dimensional feature vector, and $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
 (a 2-D hyperplane in 3-D)

Hypothesis

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_1 \ x_2 \ ... \ x_n]$ is the n-dimensional feature vector, and $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$X \in \mathbb{R}^n$$
, $\Theta \in \mathbb{R}^{n+1}$

To make this more uniform, assume $x_0 = 1$ to get:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_0 \ x_1 \ x_2 \ ... \ x_n]$ is the (n+1)-dimensional feature vector, and

 $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$X \in \mathbb{R}^{n+1}$$
, $\Theta \in \mathbb{R}^{n+1}$

Vectorizing the notation

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

Now we can redefine our hypothesis as:

$$\Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}, X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ and where } \Theta \in \mathbb{R}^{n+1} \text{ and } X \in \mathbb{R}^{n+1}$$
 and,
$$h_{\Theta}(X) = \Theta^T X$$

Multivariate linear regression

For m-training instances

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

$$\Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}, X = \begin{bmatrix} x_0^{(1)} & x_0^{(2)} & x_0^{(3)} & x_0^{(m)} \\ x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & x_n^{(m)} \end{bmatrix}$$

$$n \times 1$$

$$n \times m$$

$$h_{\theta}(X) = \theta^{T} X = [\theta_{0} \ \theta_{1} \ \dots \theta_{n}] \begin{bmatrix} x_{0}^{(1)} x_{0}^{(2)} x_{0}^{(3)} & x_{0}^{(m)} \\ x_{1}^{(1)} x_{1}^{(2)} x_{1}^{(3)} & \dots & x_{1}^{(m)} \\ \dots & \dots & \dots \\ x_{n}^{(1)} x_{n}^{(2)} x_{n}^{(3)} & x_{n}^{(m)} \end{bmatrix} = [h_{\theta}(x^{(0)}) \ h_{\theta}(x^{(1)}) \ \dots h_{\theta}(x^{(m)})]$$

$$1 \times n \qquad n \times m \qquad = \qquad 1 \times m$$

Multivariate Gradient Descent

Multivariate Gradient Descent

Hypothesis:
$$h_{\theta}(x) = h_{\Theta}(X) = \Theta^T X = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Parameter vector: $\Theta = \theta_0$, $\theta_1 \dots \theta_n$

Feature vector: $X = x_0 x_1 \cdots x_n$

Cost Function:
$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

```
repeat{ \theta_j \coloneqq \theta_j - \alpha \, \frac{\partial}{\partial \, \theta_j} \big( J(\Theta) \big) \qquad \text{//simultaneously update for all } j = 0 \, \dots \, n }
```

Gradient Descent

```
Previously (n=1):
Repeat {
      \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})
                                               \frac{\partial}{\partial \theta_0} J(\theta)
      \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}
                              (simultaneously update \theta_0, \theta_1)
```

```
New algorithm (n \ge 1):
Repeat {
    \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
                (simultaneously update \theta_j for j=0,\ldots,n )
 \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}
\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}
```

Sources

- Worldwide Calculus: Lines, Planes, and Hyperplanes, https://www.youtube.com/watch?v=-snDkhE2Vsk
- Akshay L Chandra medium.com
 - McCulloch-Pitts Neuron—Mankind's First Mathematical Model Of A Biological Neuron: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
 - Perceptron: The Artificial Neuron (An Essential Upgrade To The McCulloch-Pitts Neuron): https://towardsdatascience.com/perceptron-the-artificial-neuron-4d8c70d5cc8d
 - Perceptron Learning Algorithm: A Graphical Explanation Of Why It Works: https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
- Prof. Mitesh M. Khapra (https://miteshk/) on NPTEL's (https://nptel.ac.in/) Deep Learning course (https://onlinecourses.nptel.ac.in/noc18_cs41/preview)
- Machine Learning for Intelligent Systems, Kilian Weinberger, Cornell, Lectures 3-6, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
- Perceptrons. An Introduction to Computational Geometry. Marvin Minsky and Seymour Papert.
 M.I.T. Press, Cambridge, Mass., 1969. https://science.sciencemag.org/content/165/3895/780