Which of the following accurately describes the state-action value function	วท
Q(s,a)?	

1 / 1 punto

- It is the return if you start from state s, take action a (once), then behave optimally after that.
- \bigcirc It is the return if you start from state s and repeatedly take action a.
- It is the return if you start from state s and behave optimally.
- O It is the immediate reward if you start from state s and take action a (once).
 - ✓ Correcto Great!

2. 1 / 1 punto

You are controlling a robot that has 3 actions: \leftarrow (left), \rightarrow (right) and STOP. From a given state s, you have computed Q(s, \leftarrow) = -10, Q(s, \rightarrow) = -20, Q(s, STOP) = 0.

What is the optimal action to take in state s?

- STOP
- \bigcirc \leftarrow (left)
- \bigcirc \rightarrow (right)
- Impossible to tell

Yes, because this has the greatest value.

3.

1/1 punto

For this problem, $\gamma = 0.25$. The diagram below shows the return and the optimal action from each state. Please compute Q(5, \leftarrow).

100 100	25 0	6.25 0	2.5 0	10 → 0	40 40	← return $Q(5,←)=?$ ← action ← reward
	2	2	4	-	_	-

- 0.625
- 0.391
- 1.25
- 2.5

✓ Correcto

Yes, we get 0 reward in state 5. Then 0 * 0.25 discounted reward in state 4, since we moved left for our action. Now we behave optimally starting from state 4 onwards. So, we move right to state 5 from state 4 and receive $0 * 0.25^2$ discounted reward. Finally, we move right in state 5 to state 6 to receive a discounted reward of $40 * 0.25^3$. Adding these together we get 0.625.