Recurrent Neural Networks

อ. ปรัชญ์ ปิยะวงศ์วิศาล

Pratch Piyawongwisal

Today

- Recurrent Neural Networks
- Backpropagation through time
- Types of RNN
- Vanishing Gradient Problem
- GRU
- LSTM
- Bidirectional RNN
- Deep RNN

Recurrent Neural Network

- เป็น Neural Network ชนิดหนึ่งที่เหมาะสำหรับใช้กับข้อมูลที่เป็นแบบ sequential
- ข้อมูลแบบ sequential คือข้อมูลแบบ array ที่<u>มีลำดับ</u> โดยค่าอาจเปลี่ยนไปตามเวลา t
 - sequential input X อยู่ในฐป $x^{<1>}$, $x^{<2>}$, ..., $x^{<t>}$
 - sequential output \hat{y} อยู่ในรูป $\hat{y}^{<1>}$, $\hat{y}^{<2>}$, ..., $\hat{y}^{<t>}$
- ullet ตัวอย่าง: X เป็นประโยคภาษาไทย
 - $x^{<1>} =$ ชัน
 - $\chi^{<2>} = 101$
 - x<3> = สุนัข

Note: RNN อาจจะมี input ไม่ก็ output เป็นแบบ sequential, หรือจะเป็น sequential ทั้งคู่ก็ได้

Recurrent Neural Network

- โดยทั่วไป RNN มักจะรับ input X แบบ sequential ในรูป $x^{<1>}$, $x^{<2>}$, ..., $x^{<t>}$
- ullet แล้ว ullet orจเป็นได้หลายรูปแบบ เช่น
 - categorical $idu Y \in \{\text{spam}, \text{regular}, \text{important}\}$
 - numerical เช่น Y เป็นระดับความทุกข์ของผู้พูด
 - sequential เช่น Y = "I like dogs"
- ullet ตัวอย่าง: X เป็นประโยคภาษาไทย

•
$$x^{<1>} =$$
 \tilde{a}

•
$$\chi^{<2>} = 101$$

RNN Applications

- Natural Language Processing (NLP) tasks
 - Sentiment Analysis
 - Machine Translation
 - Speech Recognition
 - Name-Entity Recognition
 - Question & Answering
- Time Series (e.g., stock market prediction)
- Video Classification
- Music Generation
- ...และอีกมากมาย

Why not feedforward NN?

• ทำไม Feedforward NN จึงไม่เหมาะกับ Sequential Data

Problems

- ขนาดของ input/output แต่ละ instance อาจจะไม่เท่ากันได้
 - "I love dogs", "I like to pet dogs", "Please let me hug the dog"
- ขาดการแชร์ features ที่เรียนรู้มาระหว่าง $x^{< t>}$ ในแต่ละตำแหน่ง
- ullet ต้องใช้ ${\sf parameter}$ จำนวนมหาศาล เนื่องจาก X อาจมีขนาดใหญ่มากได้
 - เช่น หากเราเก็บแต่ละคำ (word) ในรูปแบบ one-hot vector
 - จะได้ว่าขนาดของ X = dict_size * max_sentence_length

RNN Model

RNN Model Notations & Explanation

- Activation $a^{< t>}$ เป็น hidden state/memory ของ RNN
 - $a^{< t>}$ จะถูกส่งต่อไปใน step ถัดไปเรื่อยๆ (เกิดเป็น $a^{< t+1>}$, $a^{< t+2>}$, ...)
 - ullet ทำให้ RNN สามารถหาคำตอบ $\widehat{y}^{< t>}$ โดยอาศัยข้อมูลที่จำมาจาก step ก่อนๆ ได้
- Weight matrices
 - W_{ax} คือ weight ที่นำไปคูณกับ input $x^{< t>}$ เพื่อคำนวณหาค่า activation $a^{< t>}$
 - W_{aa} คือ weight ที่นำไปคูณกับ activation $a^{< t-1>}$ เพื่อคำนวณหาค่า activation $a^{< t>}$
 - จะจำมากน้อยแค่ใหน
 - W_{ya} คือ weight ที่นำไปคูณกับ activation $a^{< t>}$ เพื่อคำนวณหาค่า output $y^{< t>}$

RNN Equations

- ullet เราสามารถเขียนการคำนวณ ${\sf step}$ แรก (t=1) ของ ${\sf RNN model}$ ในรูปสมการ ได้ดังนี้
 - เริ่มจาก $a^{<0>}=\vec{0}$
 - หาการรับ memory จาก step ก่อนหน้า:

•
$$a^{<1>} = g_1(W_{aa}a^{<0>} + W_{ax}x^{<1>} + b_a)$$

• หา output:

•
$$\hat{y}^{<1>} = g_2(W_{ya}a^{<1>} + b_y)$$

- ullet ดังนั้น สมการสำหรับ ${
 m step}\ t$ ใดๆ คือ
 - $a^{<t>} = g_1(W_{aa}a^{<t-1>} + W_{ax}x^{<t>} + b_a)$

•
$$\hat{y}^{< t>} = g_2(W_{ya}a^{< t>} + b_y)$$

Note/ทบทวน:

Activation Function g() ใช้สำหรับใส่ ความ non-linear ให้กับ model (เหมือนใน Feedforward NN)

RNN Equations

- ullet เราสามารถเขียนการคำนวณ ${\sf step}$ แรก (t=1) ของ ${\sf RNN \ model}$ ในรูปสมการ ได้ดังนี้
 - เริ่มจาก $a^{<0>}=\vec{0}$
 - หาการรับ memory จาก step ก่อนหน้า:

•
$$a^{<1>} = g_1(W_{aa}a^{<0>} + W_{ax}x^{<1>} + b_a)$$

• หา output:

•
$$\hat{y}^{<1>} = g_2(W_{ya}a^{<1>} + b_y)$$

- ullet ดังนั้น สมการสำหรับ ${
 m step}\ t$ ใดๆ คือ
 - $a^{<t>} = g_1(W_{aa}a^{<t-1>} + W_{ax}x^{<t>} + b_a)$
 - $\hat{y}^{< t>} = g_2(W_{ya}a^{< t>} + b_y)$

How to train RNN?

- ในการ train RNN เราจะใช้วิธี backpropagation เหมือนเดิม
 - ullet forward pass: คำนวณตามสไลด์ก่อนหน้า นำ output \hat{y} ไปเทียบกับเฉลย y เพื่อหา loss
 - backward pass: ส่ง gradient ของ loss ย้อนกลับไป update W ทุกตัว
- ต่างจาก backprop ใน feedforward NN อย่างไร?
 - ค่า total loss จะต้องรวม loss ที่เกิดจากทุก time step

•
$$L(\hat{y}, y) = \sum_{t=1}^{T} L^{}(\hat{y}^{}, y^{})$$

- note: โดยที่ $L^{< t>}$ อาจจะเป็น logloss หรือ cross-entropy ตามปกติ
- gradient ของ total loss จะถูกส่งย้อนกลับไป จากขวา -> ซ้ายใน unrolled network
- ด้วยเหตุนี้จึงเรียกว่า backprop "through time" (BPTT)

Types of RNN

MENEE741 อ.ปรัชญ์ ปียะวงศ์วิศาล RMUTL

Vanishing Gradient Problem

- ทบทวน: ปัญหา vanishing gradient ใน feedforward NN
 - เกิดใน backward pass
 - ปัญหา: ค่า gradient ลดลงอย่างรวดเร็วระหว่างถูกส่งย้อนกลับไปใน layer แรกๆ
 - ผลเสีย: layer แรกๆ การเรียนรู้หยุดชะงัก
 - สาเหตุ:
 - NN มีจำนวน layer สูง (deep มากๆ)
 - ใช้ activation function ที่มีการบีบค่า (เช่น sigmoid)

Vanishing Gradient Problem in RNN

- ภาษามักมี long-term dependency ในข้อมูล เช่น
 - The cat, which sat on the sofa next to the kitchen, was full.
 - The cats, which sat on the sofa next to the kitchen, were full.
- และเนื่องจากใน BPTT นั้น gradient จะต้องถูกส่งย้อนกลับไปหลาย time step
 - จึงทำให้เกิดปัญหา vanishing gradient ได้ ไม่ต่างกับ deep feedforward NN
 - input "cat/cats" ในอดีตไกลๆ ก็จะไม่สามารถส่งอิทธิพลต่อ step ปัจจุบันได้
 - พูดง่ายๆ คือ model เกิดการ "ลืม" ได้ง่าย

Gated Recurrent Unit (GRU)

- Proposed by Cho et al., 2014
- ให้ $c^{< t>}$ เป็น memory cell โดยที่ $c^{< t>} = a^{< t>}$
- และ $ilde{c}^{< t>}$ คือผลจากการนำ $c^{< t-1>}$ และ $x^{< t>}$ มาสร้าง memory ใหม่ (เป็น candidate)
 - $\tilde{c}^{<t>} = \tanh(W_c[c^{<t-1>}, x^{<t>}] + b_c)$
 - เช่น $ilde{c}^{< t>}$ อาจจะใช้จำว่าประโยคนี้มีประธานเป็น plural หรือ singular
- main idea: เพิ่ม update gate Γ_u สำหรับควบคุมการจำ/ลืมข้อมูล
 - $\Gamma_u = \sigma(W_u[c^{<t-1>}, x^{<t>}] + b_u)$
- สุดท้ายจึง update memory cell: $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 \Gamma_u) * c^{< t-1>}$

Full GRU Model

• $\tilde{c}^{< t>} = tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$ • $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$ • $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$ << in the proof of the proof of the content of

Why add Γ_u and Γ_r ?

- ช่วยให้ model สามารถเลือกจำข้อมูลในอดีตเท่าที่จำเป็นต่อการทำนาย ทำให้สามารถรับมือกับ ข้อมูลที่มี long-term dependency ได้
- ช่วยลดการหายของ gradient ใน backprop ได้

Long-Short Term Memory (LSTM)

- Hochreiter & Schmidhuber, 1997
- เป็น model ที่เป็นที่นิยมมากในยุคก่อน Transformer
- มีความซับซ้อนกว่า GRU (ถึงแม้ว่าเก่ากว่า)
 - ullet เพิ่ม ${
 m forget\ gate\ } \Gamma_{\!f}$ แทนการใช้ $1-\Gamma_{\!u}$
 - ullet เพิ่ม output gate Γ_o สำหรับแปลง memory $c^{< t>}$ เป็น activation $a^{< t>}$
 - ต่างจากใน GRU ที่ให้ $c^{< t>} = a^{< t>}$

Long-Short Term Memory (LSTM)

•
$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

•
$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

•
$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

•
$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

•
$$c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

•
$$a^{< t>} = \Gamma_o * \tanh(c^{< t>})$$

Bi-directional RNN

• WIP

Deep RNN

• WIP