FTP_Alg_Week 1: Exercises

jungkyu.canci@hslu.ch

Exercise with the asterisk * are considered non easy ones.

Exercise 1 A sorting method with "Big-Oh" complexity $O(n \log n)$ spends exactly 1 millisecond to sort 1'000 data items. Assuming that time T(n) of sorting n items is directly proportional to $n \log n$, that is, $T(n) = c \cdot n \log n$, derive a formula for T(n), given the time T(N) for sorting N items, and estimate how long this method will sort 1'000'000 items.

Exercise 2 A quadratic algorithm with processing time $T(n) = cn^2$ spends T(N) seconds for processing N data items. How much time will be spent for processing n = 5'000 data items, assuming that N = 100 and T(N) = 1 ms?

Exercise 3 An algorithm with time complexity O(f(n)) and processing time $T(n) = c \cdot f(n)$, where f(n) is a known function of n, spends 10 seconds to process 1'000 data items. How much time will be spent to process 100'000 data items if f(n) = n and $f(n) = n^3$?

Exercise 4 Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-Oh complexity of each algorithm.

Expression	Dominant term(s)	$O(\ldots)$
$5 + 0.001n^3 + 0.025n$		
$500n + 100n^{1.5} + 50n\log_{10}n$		
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$n\log_3 n + n\log_2 n$		
$3\log_8 n + \log_2 \log_2 \log_2 n$		
$100n + 0.01n^2$		
$0.01n + 100n^2$		
$2n + n^{0.5} + 0.5n^{1.25}$		
$0.01n\log_2 n + n(\log_2 n)^2$		
$100n\log_3 n + n^3 + 100n$		
$0.003\log_4 n + \log_2\log_2 n$		

Exercise 5 The statements below show some features of "Big-Oh" notation for the functions $f \equiv f(n)$ and $g \equiv g(n)$. Determine whether each statement is TRUE or FALSE and correct the formula in the latter case.

Statement	Is it TRUE or FALSE?	If it is FALSE then write the correct formula
Rule of sums: $O(f+g) = O(f) + O(g)$		
Rule of products: $O(f \cdot g) = O(f) \cdot O(g)$		
Transitivity: if $g = O(f)$ and $h = O(f)$ then $g = O(h)$		
$5n + 8n^2 + 100n^3 = O(n^4)$		
$5n + 8n^2 + 100n^3 = O(n^2 \log n)$		

Exercise 6 Work out the computational complexity of the following piece of code:

```
Algorithm

for i = n to 1 do

for j = 1 to n do

for k = 0 to n do

... // constant number of operations

k = k + 2

end for

j = j * 2

end for

i = i / 2

end for
```

Exercise 7 (*) Work out the computational complexity of the following piece of code:

```
\begin{array}{c} sum{=}0 \\ \textbf{for } i=1 \ \textbf{to n do} \\ \textbf{for } j=n \ \textbf{to 1 do} \\ \textbf{for } k=j \ \textbf{to n do} \\ sum{=}sum + (i{+}j{*}k) \\ k=k+2 \\ \textbf{end for} \\ j=j/2 \\ \textbf{end for} \\ i=i{*}2 \\ \textbf{end for} \end{array}
```

Exercise 8 (*) Running time T(n) of processing n data items with a given algorithm is described by the recurrence: $T(n) = k \cdot T\left(\frac{n}{k}\right) + c \cdot n$; T(1) = 0.

Derive a closed form formula for T(n) in terms of c, n, and k. What is the computational complexity of this algorithm in a "Big-Oh" sense? [Hint: To have the well-defined recurrence, assume that $n=k^m$ with the integer $m=\log_k n$ and k.]