

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Digitale Signalverarbeitung

Labor Nr. 3: FIR Filter

Autoren: Tommy Jahnke Nils Parche

 $\begin{array}{c} \textit{Professor:} \\ \text{Prof. Dr. Vollmer} \end{array}$

Inhaltsverzeichnis

1	Beso	chreibung	1
2	Attachements		2
	2.1	A1 Tiefpassentwurf mit fir()	2
	2.2	A2 Tiefpassentwurd mit firpm()	2
	2.3	B Bandpass-Filterentwurf	2
	2.4	C1 Analoge Übertragungscharakteristik des DSK Boards	2
	2.5	C2 Echtzeit-Festkomma-Impementierung des FIR-Filters	2
	2.6	C3 Vergleich des Amplitudengangs vom FIR-Filter Matlab - DSK Board	2
	2.7	D Profiling FIR-ISR	2
	2.8	E Weichenfilter Transformation mit $h_{TP} \to h_{HP}$	2
	2.9	F Weichenfilter Amplitudengang Hoch- und Tiefpass	2
	2.10	G Weichenfilter Transformation mit $h_{TP} \to h_{HP}$	2
3	Fazi	t.	3

1 Beschreibung

Die Labordurchführung wurde nach der Praktikumsbeschreibung Kapitel 4 bearbeitet. In dieser Beschreibung wird davon ausgegangen, dass die Laborbeschreibung vorliegt. In den nachfolgenden Bericht wird die Fast-Fourier-Transformation nach dem Radix-2 Methode für eine 8 und 64 Punkte FFT untersucht.

20. November 2017 1

2 Attachements

- 2.1 A1 Tiefpassentwurf mit fir()
- 2.2 A2 Tiefpassentwurd mit firpm()
- 2.3 B Bandpass-Filterentwurf
- 2.4 C1 Analoge Übertragungscharakteristik des DSK Boards
- 2.5 C2 Echtzeit-Festkomma-Impementierung des FIR-Filters
- 2.6 C3 Vergleich des Amplitudengangs vom FIR-Filter Matlab- DSK Board
- 2.7 D Profiling FIR-ISR
- 2.8 E Weichenfilter Transformation mit $h_{TP} \rightarrow h_{HP}$
- 2.9 F Weichenfilter Amplitudengang Hoch- und Tiefpass
- 2.10 G Weichenfilter Transformation mit $h_{TP} \rightarrow h_{HP}$

20. November 2017 2

3 Fazit

20. November 2017 3