MA2252 Introduction to computing

lectures 23-24 Interpolation

Matias Ruiz

November 2023

Interpolation Problem Statement

Suppose we have a data set containing n data points (x_i, y_i) , $i = 1, 2, \dots, n$.

Goal: To find an estimation function $\hat{y}(x)$ with domain $x \in [x_1, x_n]$ such that $\hat{y}(x_i) = y_i$.

The function $\hat{y}(x)$ is called **interpolation function**.

Note: The choice of interpolation function depends on other factors such as accuracy, underlying physics etc. Depending on this choice, there are different interpolation methods.

Some Interpolation methods

- Linear Interpolation
- Cubic Spline Interpolation
- Lagrange Polynomial Interpolation

Linear interpolation

Here, the interpolation function $\hat{y}(x)$ is defined piecewise by linear polynomials (or straight lines). So,

$$\hat{y}_i(x) = y_i + \frac{(y_{i+1} - y_i)(x - x_i)}{x_{i+1} - x_i}, \quad x_i \le x \le x_{i+1} \quad (i = 1, 2, \dots, n-1)$$
(1)

MATLAB's interp1() function can be used to make life easier.

Cubic spline interpolation

A cubic spline is a function defined piecewise by cubic polynomials.

In cubic spline interpolation, the interpolating function is a cubic spline defined as

$$S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i, \quad x_i \le x \le x_{i+1} \quad (i = 1, 2, \dots, n)$$
 (2)

Again, MATLAB's interp1 function can be used by giving 'cubic' as argument.

Cubic spline interpolation (contd.)

The unknown parameters a_i, b_i, c_i and d_i are found using these conditions:

$$S_i(x_i) = y_i \quad (i = 1, 2, \dots, n-1)$$
 (3a)

$$S_i(x_{i+1}) = y_{i+1} \quad (i = 1, 2, \dots, n-1)$$
 (3b)

$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}) \quad (i = 1, 2, \dots, n-2)$$
 (3c)

$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}) \quad (i = 1, 2, \dots, n-2)$$
 (3d)

$$S_1''(x_1) = 0$$
 (3e)

$$S_{n-1}''(x_n) = 0 (3f)$$

Lagrange Polynomial Interpolation

Here, the interpolation function is a Lagrange polynomial defined as

$$L(x) = \sum_{i=1}^{n} y_i P_i(x) \tag{4}$$

where

$$P_{i}(x) = \prod_{j=1, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}.$$
 (5)

The Lagrange polynomial L(x) of degree n-1 passes through n data points i.e. it satisfies $L(x_i) = y_i$ $(i = 1, 2, \dots, n)$.