Langage IMP

1 Langage source : syntaxe

Le langage IMP¹, est un langage de programmation impératif très simple, où toutes les variables sont de type entier. Voici une grammaire de ce langage (au format de Bison) :

où les symboles I V Af Sk Se If Th El Wh Do Pl Mo Mu sont des unités lexicales, correpondant aux ensembles de lexèmes suivants :

I : une suite de chiffres, non-vide, commençant par un chiffre non-nul

V : un identificateur de variable

symbole	Af	Sk	Se	If	Th	El	Wh	Do	Pl	Мо	Mu
lexeme	:=	Skip	;	if	then	else	while	do	+	-	*

(i.e. ces unités lexicales ne comportent qu'un lexème, qui est donné dans le tableau). On appelle commande un mot engendré par le non-terminal C; une commande atomique est une commande qui n'est pas décomposable sous la forme c_1 Se c_2 pour des commandes c_1, c_2 ; une expression est un mot e engendré par le non-terminal E.

^{1.} qui est dû à J. Goubault-Larrecq, cours de sémantique et compilation, licence 1, ENS Cachan, 2013.

2 Langage source : sémantique

La sémantique de IMP est définie ci-dessous. Le procédé de définition employé s'appelle une sémantique opérationnelle à petits pas. Notons V un ensemble de variables 2 . On appelle environnement sur V toute application $\rho:V\to\mathbb{Z}$. Pour tout mot w sur l'alphabet $\{0,1,\ldots,9\}$, on note $\nu(w)\in\mathbb{N}$ l'entier dénoté par w en base 10. La valeur d'une expression e dans un environnement ρ est définie par :

$$\llbracket x \rrbracket \rho = \rho(x) \quad \text{pour toute variable } x \in V,$$

$$\llbracket w \rrbracket \rho = \nu(w) \text{ pour tout mot } w \in \{1, \dots, 9\} \{0, 1, \dots, 9\}^* \cup \{0\},$$

Une suite de commandes est un mot sur l'alphabet des commandes. On note \cdot le produit de concaténation des suites de commandes. Pour toute variable $x \in V$, expression e, commande atomique e_0 , commande e, suite de commandes e, on pose :

La sémantique d'une commande c est définie par : $[c]\rho = \rho'$ si et seulement si

$$(c,\rho) \to^* (\varepsilon,\rho').$$

^{2.} On assimile chaque identificateur, qui est un mot concret, à une seule variable.