CSC 520, Spring 2020

Principles of Programming Languages

Michelle Strout

Plan

Announcements

- HW7 is due Friday Wednesday April 8th
- Will have a zoom waiting room in office hours

Last time

- Type Systems
- A type system for two types: typing rules and how to implement them

Today

- What is type soundness?
- Formation, Introduction, and Elimination Rules
- Type checking with type constructors

Type soundness

lf

- $\Gamma \vdash e : \tau$
- $\langle e, \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle$
- Γ , ρ , and σ are consistent,

then

 τ predicts ν

Consistency: $dom \Gamma = dom \rho$, and

 $\forall x \in \text{dom } \Gamma : \Gamma(x) \text{ predicts } \sigma(\rho(x)).$

Sample predictions: int predicts 7, bool predicts #t

Programmers understanding language designed Compu

- Questions about types never seen before (aka new types)
 - What types can I make?
 - What syntax goes with form?
 - What functions?
 - What about user-defined types?
- Examples: pointer, struct, function, record

Talking type theory

- Formation: make new types
- Introduction: make new values
- Elimination: observe ("take apart") existing values

Types and their C constructs

Type

Produce

Consume

Introduce

Eliminate

struct

(definition form only)

dot notation

e.next, e->next

pointer

&

*

function

(definition form only)

application

Types and their μ Scheme constructs

Type

Produce

Consume

Introduce

Eliminate

record

constructor

accessor functions

function

type predicate

function

lambda

application

Types and their ML constructs

Type

Produce

Consume

Introduce

Eliminate

arrow

Lambda (fn)

Application

constructed

(algebraic)

Apply constructor

Pattern match

constructed

(tuple)

 (e_1, \ldots, e_n)

Pattern match!

Functions

• Here is an example of how to determine types for "introducing" a value and "eliminating" a value

Introduction

Elimination

Where we've been and where we're going

New watershed in the homework

- You've been developing and polishing programming skills: recursion, higher-order functions, using types to your advantage
- Now shifting to doing real programming-languages stuff like type systems
- You've seen everything needed to implement a basic type checker and now want to learn how type constructors
- What's next? More sophisticated type systems with an infinite number of types

Questions to consider about monomorphic and polymorphic type systems

- What is and is not a good type (classifier for terms)?
- How shall we represent types?

Monomorphic vs. Polymorphic Types

Monomorphic types have no type parameters

- int
- bool
- int -> bool
- int * int

Polymorphic Types have type parameters

- 'a list
- 'a list -> 'a list
- ('a * int)

Design and Implementation of Monomorphic OF ARIZONA. Languages

Mechanisms

- Every new type require special syntax (eg. structs, pointers arrays)
- Implementation is a straightforward application of what you already know
- Language designer's process when adding new kinds of types
 - What new types do I have (formation rules)?
 - What new syntax to create new values with that type (introduction rules)?
 - What new syntax do I have to observe terms of a type (elimination rules)?
- Q: What if I add lists to a language? How many

Type formation rules for type expressions

Types that classify terms

- int
- bool
- int -> bool
- int * int

Type constructors, don't classify by self

- list (but "int list" is a type)
- array (but "char array" is a type)
- records/structs

Nonsense types, don't mean anything

- int int
- bool*array

What's a good type?

Type formation rules for Typed Impcore

$$\frac{\tau \in \{\text{UNIT}, \text{INT}, \text{BOOL}\}}{\tau \text{ is a type}}$$

(BASETYPES)

$$au$$
 is a type ARRAY (au) is a type

(ARRAYFORMATION)

Type rules for variables

Lookup the type of a variable:

$$\frac{x \in \operatorname{dom} \Gamma \qquad \Gamma(x) = \tau}{\Gamma \vdash x : \tau}$$

(VAR)

Types match in assignment:

$$\frac{x \in \text{dom } \Gamma \qquad \Gamma(x) = \tau \qquad \Gamma \vdash e : \tau}{\Gamma \vdash \text{SET}(x, e) : \tau}$$
 (SET)

Type rules for control

Boolean condition; matching branches

$$\frac{\Gamma \vdash e_1 : \mathsf{BOOL} \qquad \Gamma \vdash e_2 : \tau \qquad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \mathsf{IF}(e_1, e_2, e_3) : \tau} \qquad \mathsf{(IF)}$$

Classic types for data structures

Product types: Both x and y

New abstract syntax: PAIR, FST, SND

$$\begin{array}{lll} \underline{\tau_1 \text{ and } \tau_2 \text{ are types}} & \underline{\Gamma \vdash e_1 : \tau_1} & \underline{\Gamma \vdash e_2 : \tau_2} \\ \hline \tau_1 \times \tau_2 \text{ is a type} & \overline{\Gamma \vdash \mathsf{PAIR}(e_1, e_2) : \tau_1 \times \tau_2} \\ & \underline{\Gamma \vdash e : \tau_1 \times \tau_2} \\ \hline \underline{\Gamma \vdash \mathsf{FST}(e) : \tau_1} & \underline{\Gamma \vdash e : \tau_1 \times \tau_2} \\ \hline \Gamma \vdash \mathsf{SND}(e) : \underline{\tau_2} \end{array}$$

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")

Arrow types: Function from x to y

Syntax: lambda, application

Use a tuple to represent a multi-argument function:

$$\frac{\tau_1,\ldots,\tau_n \text{ and } \tau \text{ are types}}{\tau_1 \times \cdots \times \tau_n \to \tau \text{ is a type}}$$

(ARROWFORMATION)

Arrow types: Function from x to y

Eliminate with application:

$$\Gamma \vdash e : \tau_1 \times \cdots \times \tau_n \to \tau$$

$$\frac{\Gamma \vdash e_i : \tau_i, \quad 1 \leq i \leq n}{\Gamma \vdash \mathsf{APPLY}(e, e_1, \dots, e_n) : \tau}$$

Introduce with lambda:

$$\frac{\Gamma\{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\} \vdash e : \tau}{\Gamma \vdash \mathsf{LAMBDA}(x_1 : \tau_1, \dots, x_n : \tau_n, e) : \tau_1 \times \dots \times \tau_n \to \tau}$$

Typical syntactic support for types

- Explicit types on lambda and define
 - For lambda, argument types

```
(lambda ([n : int] [m : int]) (+ (* n n) (* m m)))
```

- For define, argument and result types

Abstract syntax, Q: what is different from before?

```
datatype exp = ...
  | LAMBDA of (name * tyex) list * exp
    ...
datatype def = ...
  | DEFINE of name * tyex * ((name * tyex) list * exp)
    ...
```


Array types: Array of x

Computer Science

Formation:

$$au$$
 is a type

 $ARRAY(\tau)$ is a type

Introduction:

$$\Gamma \vdash e_1 : \mathsf{INT} \qquad \Gamma \vdash e_2 : \tau$$

 $\Gamma \vdash \mathsf{AMAKE}(e_1, e_2) : \mathsf{ARRAY}(\tau)$

Array types continued

Elimination:

$$rac{\Gamma dash e_1 : \mathsf{ARRAY}(au) \qquad \Gamma dash e_2 : \mathsf{INT}}{\Gamma dash \mathsf{AAT}(e_1, e_2) : au}$$

$$\Gamma \vdash e_1 : \mathsf{ARRAY}(au) \qquad \Gamma \vdash e_2 : \mathsf{INT} \qquad \Gamma \vdash e_3 : au$$

$$\Gamma \vdash \mathsf{APUT}(e_1, e_2, e_3) : au$$

 $\frac{\Gamma \vdash e : \mathsf{ARRAY}(\tau)}{\Gamma \vdash \mathsf{ASIZE}(e) : \mathsf{INT}}$

References (similar to C/C++ pointers) Computer Science

Given

ref
$$au$$
 REF (au)

*e REF-GET
$$(e)$$

e1 := e2 REF-SET
$$(e1, e2)$$

Write formation, introduction, and elimination rules.

Rules for references

Formation

```
tau is a type
-----
REF(tau) is a type
```

Introduction

```
Gamma |- ???
------
Gamma |- REF-MAKE(e) : REF(tau)
```

Elimination

```
Gamma |- e : REF(tau)
-----
Gamma |- REF-GET(???) : ???
```

```
Gamma |- e1 : REF(tau) Gamma |- e2 : ???

Gamma |- REF-SET(???) : tau
```

From rule to code

Arrow-introduction

```
\frac{\Gamma\{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\} \vdash e : \tau \qquad \tau_i \text{ is a type}, 1 \leq i \leq n}{\Gamma \vdash \mathsf{LAMBDA}(x_1 : \tau_1, \dots, x_n : \tau_n, e) : \tau_1 \times \dots \times \tau_n \to \tau}
```

```
(* Type-checking LAMBDA *)
datatype exp = LAMBDA of (name * tyex) list * exp
fun ty (Gamma, LAMBDA (formals, body)) =
  let val Gamma' = (* body gets new env *)
        foldl (fn ((x, ty), g) \Rightarrow bind (x, ty, g))
               Gamma formals
      val bodytype = ty(Gamma', body)
      val formaltypes = map (fn (x, ty) \Rightarrow ty) formals
  in funtype (formaltypes, bodytype)
  end
```