

Teaching Demonstration: K-means Clustering

Ari Smith

Preliminary assumptions

- In context of a course on Machine Learning methods; students have seen supervised learning methods but not unsupervised learning
- Understand key ML terms such as target, feature, observation, hyperparameter
- Familiarity with Jupyter notebook, has sklearn and pandas properly installed
- Adapted from Machine Learning in Action by Prof. Justin Boutilier, itself partially adapted from The Analytics Edge by Dimitris Bertsimas

Overview

- Unsupervised learning
- The basics of clustering
- K-means clustering
 - Optimal approach
 - Heuristic approach: Lloyd's algorithm
- How to use in practice
 - Example: Clustering news articles

Setup and Motivations

Supervised vs. Unsupervised learning

Supervised learning: predict/explain a target variable given feature variables

 Unsupervised learning: learn patterns in observations with no target, only feature variables

Unsupervised application: taste-communities

 Users of online platforms can often informally develop their own communities based on the content they interact with

• Ex. BookTok, PetTok, PerfumeTok

• Being able to recognize communities, and identify users as members of certain communities can be useful for recommending content

Unsupervised application: taste-communities

- In 2018, Netflix grouped users into ~1300 "taste-communities" to recommend content
 - Prior to 2016, recommendations were given uniformly by country of user
- Cluster 290:
 - Movies like: Black Mirror, Lost, and Groundhog Day

Clustering Basics

The goal of clustering

Clustering is an unsupervised learning algorithm

 Partition data into clusters such that the observations within a cluster are similar to each other

How do we define "similar"?

We use distance metrics to measure similarity of two observations

Define an observation with F features: $\mathbf{x_i} = (x_{i1}, x_{i2}, ..., x_{iF})^T$

A function $d(x_1, x_2)$ is a distance metric if it satisfies the following criteria

- Non-negativity: $d(x_1, x_2) \ge 0$ and $d(x_1, x_2) = 0$ iff $x_1 = x_2$
- Symmetry: $d(x_1, x_2) = d(x_2, x_1)$
- Triangle inequality: $d(x_1, x_2) + d(x_2, x_3) \ge d(x_1, x_3)$

Distance metrics

Euclidean:

$$d(x_1, x_2) = \|x_1 - x_2\|_2 = \left(\sum_{f=1}^F |x_{1f} - x_{2f}|^2\right)^{\overline{2}}$$

Manhattan:

$$d(x_1, x_2) = ||x_1 - x_2||_1 = \sum_{f=1}^{F} |x_{1f} - x_{2f}|$$

Chebyshev:

$$d(\mathbf{x_1}, \mathbf{x_2}) = \|\mathbf{x_1} - \mathbf{x_2}\|_{\infty} = \max_{f=1,\dots,F} |x_{1f} - x_{2f}|$$

Defining a cluster

Index set: includes the IDs of all observations in a cluster

$$S_k = \{1,3,7,21,44\}$$

Centroid: the "center" or "representative point" of each cluster

$$s_k = \frac{1}{|S_k|} \sum_{i \in S_k} x_i$$

Cluster distances

Intra-cluster distance: distance between two points in the same cluster

Inter-cluster distance: distance between points in different clusters

K-means Clustering

K-means clustering

Partition observations into *k* clusters in a way that minimizes the total squared Euclidean distance between each observation and its cluster's centroid

• i.e., minimizes variance of observations within clusters

Hyperparameters

• k – number of clusters

K-means: optimization problem

Decision variables:

- a_{ij} : 1 if observation i assigned to cluster j, 0 otherwise
- s_i : centroid of cluster j

Data:

• x_i : observation i

minimize
$$\sum_{i} \sum_{j} a_{ij} ||\mathbf{x}_{i} - \mathbf{s}_{j}||_{2}^{2}$$
 subject to $\sum_{j} a_{ij} = 1$, $\forall i$ $\sum_{i} a_{ij} \geq 1$, $\forall j$ $a_{ij} \in \{0, 1\}$, $\forall i, j$ $s_{i} \in \mathbb{R}^{F}$, $\forall j$

Heuristic Approach

• Optimization problem is *NP-Hard*, time to solve grows exponentially as dataset size increases (not practical for big data)

• Instead, a heuristic approach is most often used: Lloyd's Algorithm

 Understanding how algorithm works has practical implications for using k-means clustering

Lloyd's Algorithm

- 1. Randomly initialize k centroids
- 2. Assign each observation to its closest centroid using the distance metric
- 3. Recompute the cluster centroids as mean of assigned observations
- 4. If centroids do not change, stop. Otherwise, return to step 2.

Finds local optimum, but not always global optimum each time

Lloyd's Algorithm Pseudocode

```
s_i := \text{random\_sample}(x_1 \dots x_n) \quad \text{for } j \in 1 \dots k
While True:
          S_i := \{\} for j \in 1 \dots k
           for i \in 1 \dots n:
                      c := \operatorname{argmin}_{i \in 1 \dots k} d(\mathbf{x_i}, \mathbf{s_i})
                      S_c \coloneqq S_c \cup x_i
           s_j^* := \frac{1}{|S_j|} \sum_{i \in S_j} x_i for j \in 1 \dots k
           if s_i == s_i^* for all j \in 1 ... k:
                      return S_i, s_i for j \in 1 ... k
            s_i := s_i^*
```


Lloyd's Algorithm Example

Lloyd's Algorithm

- In practice, terminates much faster than optimal formulation
- However, clusters are local optima, not global optima
- Clusters found depend on randomly chosen starting centroids
- Repeat algorithm with multiple random starts and keep best performing clusters, to maximize chance of finding global optima

Using k-means in practice

Hyperparameters

• k

Number of repetitions with random start

Features should be normalized/on a similar scale so some features don't have outsized impact of distance metric compared to others

Python package sklearn.cluster.Kmeans easy to use (only supports Euclidean)

- Elbow plot method
- Plot total squared intra-cluster distances for many values of k
- Find "elbow" where decreases in total distance become marginal

Silhouette Score Method

 Scores observations by how close they are to other members of cluster against closeness to next nearest cluster

- Clusters with low mean scores either:
- can be broken into more clusters (k too low)
- are not meaningfully distinct from another cluster (k too high)

Practical Example: DailyKos

Overview

Internet blog, forum, and news site devoted to the Democratic Party and liberal politics

Obtained 3430 articles with 1545 features from Fall 2004

Each feature is a variable corresponding to the number of times a word appears

What were the hot topics on DailyKos at the time?

Silhouette coefficient values

Elbow Plot

and Silhouette Plots

K-means Clustering

Centroid Analysis

- Too many features to look at entire centroids
- Examine 10 largest features of each centroid
 - Most popular words in articles within cluster

cluster 0		cluster 1		cluster 2	
dean	0.049536	democrat	0.012004	bush	0.067433
poll	0.042395	bush	0.011225	kerry	0.038338
kerry	0.042108	republican	0.010322	poll	0.017919
edward	0.029633	elect	0.009296	general	0.013632
primaries	0.028711	poll	0.009140	presided	0.012335
clark	0.027232	senate	0.007929	administration	0.008843
democrat	0.026924	house	0.007766	democrat	0.007560
lieberman	0.015307	november	0.007584	iraq	0.007437
gephardt	0.015182	state	0.007276	campaign	0.007400
result	0.011227	vote	0.007257	state	0.007386

Next Lesson

Hierarchical/Agglomerative Clustering

Linkage Criteria

Interpreting Dendrograms

Application to DailyKos Dataset, comparison with k-means clusters

Extra Slides

Breakdown of Optimal Formulation

Decision variables:

- a_{ij} : 1 if observation i assigned to cluster j, 0 otherwise
- s_i : centroid of cluster j

minimize
$$\sum_i \sum_j a_{ij} ||\boldsymbol{x}_i - \boldsymbol{s}_j||_2^2$$

Data:

• x_i : observation i

Total distance between observations and assigned centroids is minimized All observations are assigned to exactly one cluster Each cluster is non-empty Variables are properly defined

Informal proof that Lloyd's alg finds local optimum

- Total distances (aka loss function) is a function of index sets and centroid coordinates
- For any fixed centroid coordinates, assigning observations to nearest centroids minimizes total distances
- For any fixed cluster index sets, setting centroids as mean feature values minimize total distances (for Euclidean metric)
- Loss function cannot increase at any iteration
- If index sets and centroids do not change in an iteration, partial derivative of loss function w.r.t. all input variables = 0, so a local extrema is found

Informal proof that Lloyd's alg terminates

- Index sets must change at every iteration, and cannot repeat (or else loss function would increase)
- There is a finite number of index set combinations (k^n)
- Therefore, Lloyd's algorithm must terminate in a finite number of iterations i (in practice usually significantly smaller than k^n , and does not usually increase rapidly with n)
- Each iteration is O(knm), so full algorithm is O(knmi)