AMENDMENTS TO THE SPECIFICATION:

Please replace paragraph [0008] with the following amended paragraph.

[0008] In order solve the aforementioned problems, the present invention is a vehicle stabilizer for high stress that is formed by conducting a hot-bending process on a solid round steel bar material, wherein a bending portion is molded in a state which satisfies conditions:

$$0 < \Phi \le 4$$
 and $(\Phi \times d/R) \le 2$,

in which d represents a material diameter of the solid round steel bar material, R represents a radius of bending of the bending portion, d1 represents a short radius axis dimension of a cross section of the bending portion, d2 represents a long radius axis dimension of the cross section of the bending portion, and a flat rate Φ of the cross section of the bending portion gequation:

$$\Phi = (d2-d1)/d2 \times 100$$
.

Please replace paragraph [0025] with the following amended paragraph.

[0025] In the stabilizer 10, the bending portion 16 is formed into a state which satisfies conditions:

$$0 < \Phi \le 4$$
, and $(\Phi \times d/R) \le 2$,

wherein d represents a (material) diameter of the solid round steel bar material, R represents a radius of bending of the bending portion 16, d1 represents a short radius axis dimension of a cross section of the bending portion 16, and d2 represents a long radius axis dimension of the cross section of the bending portion 16, and a flat rate Φ of the cross section of the bending portion 16 is represented by the following equation:

$$\Phi = (d2-d1)/d2 \times 100(\%)$$
 (1).

Please replace Table 1 on page 10 with the following amended Table 1.

No.	material	radius of	d/R	short	long	flat rateΦ	$\Phi \times d/R$	remarks
	diameter d	bending		radius	radius	(%)		
	(mm)	R (mm)		axis	axis			
				dimension	dimension			
				dl (mm)	d2 (mm)			
Al	23	65	0.35	22.8	23.0	0.87	0.31	Present
A2	23	45	0.51	22.6	23.0	1.74	0.89	Invention
A3	26	65	0.40	25.7	26.0	1.15	0.46	
A4	26	45	0.58	25.5	26.0	1.92	1.11	
A5	23	65	0.35	22.8	23.0	0.87	0.31	
A6	23	45	0.51	22.6	23.0	1.74	0.89	
A7	26	65	0.40	25.7	26.0	1.15	0.46	
A8	26	45	0.58	25.5	26.0	1.92	1.11	
B1	23	65	0.35	21.8	23.0	5.22	1.85	Comparative
B2	23	45	0.51	21.6	23.0	6.09	3.11	Example
B3	26	65	0.40	24.5	26.0	5.77	2.31	
B4	26	45	0.58	24.3	26.0	6.54	3.78	:
B5	23	65	0.35	21.8	23.0	5.22	1.85	
B6	23	45	0.51	21.6	23.0	6.09	3.11	
B7	26	65	0.40	24.5	26.0	5.77	2.31	
B8	26	45	0.58	24.3	26.0	6.54	3.78	

Please replace the Abstract with the following amended Abstract.

Abstract

To provide a vehicle stabilizer for high stress in which fatigue life of a bending portion can be prolonged and which can exhibit excellent durability. A configuration of a bending portion 16, to which a maximum stress is applied and which is the most fragile part, of a vehicle stabilizer for high stress 10 is formed in a state which satisfies conditions: $0 < \Phi \le 4$ and $(\Phi \times d/R) \le 2$, wherein d represents a material diameter before bending process, R represents a radius of bending of the bending portion 16, d1 represents a short radius axis dimension of a cross section of the bending portion 16, d2 represents a long radius axis dimension of a cross section of the bending portion 16, and a flat rate Φ of a cross section of the bending portion 16 is represented by the following equation: $\Phi = (d2-d1)/d2 \times 100$. Accordingly, concentration of shearing

stress on the bending portion 16 during a load input can be suppressed to prevent the vehicle stabilizer for high stress 10 from being broken due to the concentration of stress on the bending portion 16.