LEC11 Weighted Shortest Paths

3.28 https://github.com/GUMI-21/MIT6.006_note

PreReview

- Single-Source Shortest
 - Paths with BFS in O(|V | + |E|) time (return distance per vertex)
- Single-Source Reachability
 - with BFS or DFS in O(|E|) time (return only reachable vertices)
 - when talk about Reachability, I only need to juge reachable, doesn't need to maintain parent array
- Connected components
 - with Full-BFS or Full-DFS in O(|V | + |E|) time
- Topological Sort of a DAG with Full-DFS in O(|V | + |E|) time
 - · every vertex go forward in order
- Previously: distance = number of edges in path
- Today: generalize meaning of distance

Weight Graphs

A weighted graph is a graph G = (V, E) together with a weight function w:E o Z e=(u,v),w(e)=w(u,v)

• a example

$$w(b,f) = -4$$

application

- -distance in road network
- -latency in network connections
- -strength of a relationship in a social network

represent weights computationally

1.store in adjacenry list. 2.any separate set mapping edge to weigh.

- · Inside graph representation: store edge weight with each vertex in adjacency lists
- Store separate Set data structure mapping each edge to its weight read weight of edge runtime - O(1)

Weighted Path

weight w(π) if path $\pi = \sum_{e \in \pi} w(e)$

a shortest path(weighted)

is a minimum weight path from S to T.

$$\delta(s,t)=\inf\{w(\pi)|path\ \pi\ from\ s\ to\ t\}$$
 (if no path $\delta(s,t)=\infty$) inf : infinity

there is a problem in *Negative-weight Cycles*, if there is a path from s to v that goes through a vertex on a negative weight cycle. $\delta(s,v)=-\infty$

this will be talked in next lec

Weighted Shortest Paths Alg

in next four lectures

BFS

-if graph has positive weights, and all weights are the same BUT if I have a positive weight edge, sunch as w(u,v) = 4, I can just put four edges of weight 1 in series between u & v. Buf If the weights is too big can't use this method.

Restrictions		SSSP Algorithm		
Graph	Weights	Name	Running Time $O(\cdot)$	Lecture
General	Unweighted	BFS	V + E	L09
DAG	Any	DAG Relaxation	V + E	L11 (Today!)
General	Any	Bellman-Ford	$ V \cdot E $	L12
General	Non-negative	Dijkstra	$ V \log V + E $	L13

Shortest-Path(weighted) Trees

(for weighted shortest-path, only need P(v) for v with finite $\delta(s, v)$)

- -Init P empty, P(s) = None
- -For each vertex $u \in V$ where $\delta(s, u)$ is finite:
- -For each v in Adj+(u): if v not in P and $\delta(s,v)=\delta(s,u)+w(u,v)$, then exist shortest path that uses(u,v), so set P(v) = u.

DAG Relaxation

• the core think of DAG Relaxation Algorithm

Just like iterate all paths and find the minimum path, but on all cross path, the repeated edges just counted once => store counted path weight. (the core thought of Dynamic Rrogramming)

like a greedy algorithm

- DAG Relaxation Algorithm maintain distance estimates(预估) d(s,v)(init infinite) estimates upper-bound $\delta(s,v)$, gradually lower until equal.
- triangle inequality:

$$\delta(u,v) <= \delta(u,x) + \delta(x,v)$$

if $(u,v) \in E$, s.t. $d(s,v) > d(s,u) + w(u,v)$

"relax"e dge ny lowering d(s,v) to w(u,v)

- Relaxation is Safe
 each d(s,v) is weight of some path from s to v or infinite
 Relax(u,v) => assign d(s,v) to weight of some path.
- process
 - => Sets d(s,v) = infinitem then set d(s,s) = 0, process each vetex u in a topological sort order.
 - => for each outgoing neighbour v in Adj+(u): if d(s,v) > d(s,u) + w(u,v): relax(u,v), i.e. set d(s,v) = d(s,u) + w(u,v)

=> Claim: At end, all $d(s,v) = \delta(s,v)$ can be proofed by induction.