Métodos Numéricos

Departamento de Computación, FCEyN, Universidad de Buenos Aires.

5 de mayo de 2016

Clase de hoy

- Clasificación de noticias
- Evaluación: Cross validation
- ¿Qué experimentar y cómo?
- Variantes para mostrar resultados

El problema

No es una utopía: Djokovic puede alcanzar el récord de Grand Slam

Llegó a 10 títulos de los Grandes, siete menos que los que reúne su vencido, Roger Federer; sin embargo, acumula méritos propios para aventurar que podría alcanzar semejante hito

Por Sebastián Torok | canchallena.com

id	section	topic	text	title
3066966	Deportes	Deportes	"NUEVA YORK Novak "	"No es una utopía: "
3065926	"El Mundo"	Internacionales	"Los bomberos tratan de "	"Declaran el estado de"
:):	:	:	:
2496990	Tecnología	Tecnología	"La plataforma de video "	"La tiranía digital del "

El problema

id	section	topic	text	title
6431364	Procesados	????	"El presidente Mauricio "	"Panama Papers: la respuesta de Macri "

- En función del texto de las noticias decidir cuál categoría le corresponde
- Comparar con anteriores noticias usando
 - Bag of words
 - N-grams
 - ► Term frequency—inverse document frequency (tf-idf)
 - Stemming

El problema

id	section	topic	text	title
6431364	Procesados	????	"El presidente Mauricio "	"Panama Papers: la respuesta de Macri"

- En función del texto de las noticias decidir cuál categoría le corresponde
- Comparar con anteriores noticias usando:
 - Bag of words
 - N-grams
 - Term frequency-inverse document frequency (tf-idf)
 - Stemming

Bag of words

Virtudes? ¿Problemas?

¹http://www.python-course.eu/text_classification_python.php

Bag of words

¿Virtudes? ¿Problemas?

¹http://www.python-course.eu/text_classification_python.php

N-grams

- La probabilidad de un "grama" está dada por los n-1 anteriores
- $P(g_n|g_{n-1},g_{n-2},\ldots,g_{n-N+1}) = \frac{\#(g_n,g_{n-1},g_{n-2},\ldots,g_{n-N+1})}{\#(g_{n-1},g_{n-2},\ldots,g_{n-N+1})}$
- Bigramas, trigramas, etc.
- En nue tro caso, se puede hacer sobre palabras o sobre
 - curas aplicaciones: detección de idioma (letras), cadenas de proteinas, fonemas/palabras en el contexto de procesamiento del habla
 - ¿Virtudes? ¿Problemas?

N-grams

- La probabilidad de un "grama" está dada por los n-1 anteriores
- $P(g_n|g_{n-1},g_{n-2},\ldots,g_{n-N+1}) = \frac{\#(g_n,g_{n-1},g_{n-2},\ldots,g_{n-N+1})}{\#(g_{n-1},g_{n-2},\ldots,g_{n-N+1})}$
- ▶ Bigramas, trigramas, etc.
- En nuestro caso, se puede hacer sobre palabras o sobre caracteres
 - Cens aplicaciones: detección de idioma (letras), cadenas de proteinas, fonemas/palabras en el contexto de procesamiento del habla
 - ¿Virtudes? ¿Problemas?

N-grams

- La probabilidad de un "grama" está dada por los n-1 anteriores
- $P(g_n|g_{n-1},g_{n-2},\ldots,g_{n-N+1}) = \frac{\#(g_n,g_{n-1},g_{n-2},\ldots,g_{n-N+1})}{\#(g_{n-1},g_{n-2},\ldots,g_{n-N+1})}$
- Bigramas, trigramas, etc.
- En nuestro caso, se puede hacer sobre palabras o sobre caracteres
 - Otras aplicaciones: detección de idioma (letras), cadenas de proteínas, fonemas/palabras en el contexto de procesamiento del habla
- ¿Virtudes? ¿Problemas?

Term frequency—inverse document frequency (tf—idf)

- tf-idf: cuán importante es una palabra en un documento respecto del conjunto de todos los documentos
- Dados d un documento en D y t un término,
- term frequency: $tf(t) = \frac{\text{\#apariciones de } t \text{ en } d}{\text{\#términos en } d}$
- inverse document frequency:
 - $idf(t) = \log \frac{|D|}{\# documentos que contienen a t}$
 - tflar(t) = tf(t).idf(t)
- ¿ Tudes? ¿ Problemas?

Term frequency—inverse document frequency (tf–idf)

- tf-idf: cuán importante es una palabra en un documento respecto del conjunto de todos los documentos
- ▶ Dados d un documento en D y t un término,
- term frequency: $tf(t) = \frac{\#\text{apariciones de } t \text{ en } d}{\#\text{términos en } d}$
- inverse document frequency: $idf(t) = \log \frac{|D|}{\#\text{documentos que contienen a } t}$
- tfidf(t) = tf(t).idf(t)
 - ¿ tudes? ; Problemas?

Term frequency—inverse document frequency (tf–idf)

- tf-idf: cuán importante es una palabra en un documento respecto del conjunto de todos los documentos
- ▶ Dados d un documento en D y t un término,
- term frequency: $tf(t) = \frac{\#\text{apariciones de } t \text{ en } d}{\#\text{términos en } d}$
- inverse document frequency: $idf(t) = \log \frac{|D|}{\#\text{documentos que contienen a } t}$
- tfidf(t) = tf(t).idf(t)
- ¿Virtudes? ¿Problemas?

Stemming

- ▶ ¿Tiene sentido considerar separadamente palabras como investigadora, investigador, investigadoras, investigadores, investigar, investigaron, investigación, etc.?
- Reemunzar palabras por su raiz antes de usar, por ejemplo, bas of words
- > ; Vitudes : Problemas?

Stemming

- ▶ ¿Tiene sentido considerar separadamente palabras como investigadora, investigador, investigadoras, investigadores, investigar, investigaron, investigación, etc.?
- Reemplazar palabras por su raiz antes de usar, por ejemplo, bag of words
- ▶ ¿ Intudes ¿ Problemas?

Stemming

- ▶ ¿Tiene sentido considerar separadamente palabras como investigadora, investigador, investigadoras, investigadores, investigar, investigaron, investigación, etc.?
- Reemplazar palabras por su raiz antes de usar, por ejemplo, bag of words
- ¿Virtudes? ¿Problemas?

Evaluación

- ¿Cómo sé si mi clasificador funciona bien?
- ▶ ¿Y si sufre de overfitting² (sobreajuste)?
- Paliatos de entrenamiento y datos de validación

Mal y pronto: poco error sobre el conjunto de entrenamiento pero poca generalización.

Evaluación

- ▶ ¿Cómo sé si mi clasificador funciona bien?
- ▶ ¿Y si sufre de overfitting² (sobreajuste)?
- Paliatos de entrenamiento y datos de validación

²Mal y pronto: poco error sobre el conjunto de entrenamiento pero poca generalización.

Evaluación

- ¿Cómo sé si mi clasificador funciona bien?
- ▶ ¿Y si sufre de overfitting² (sobreajuste)?
- Paliativo: datos de entrenamiento y datos de validación

²Mal y pronto: poco error sobre el conjunto de entrenamiento pero poca generalización.

- Evaluar el modelo en los datos de entrenamiento puede darnos una impresión errónea.
- ► Entrenamiento (100-p) % Validación p % (p.e. 20 %).
- Separando los datos <u>al azar</u> para evitar tomar patrones en las divisiones.
- ightharpoonup igh
 - 1. Desordenar los datos
 - 2. Sepa en k folds del mismo tamaño
 - 3. For i = 1 ... k:
 - Entre ar sobre todos los folds menos el i y validar sobre el i

Tomada de clase de Aprendizaje Automático.

⁴Diapo fuertemente basada en las de Aprendizaje Automático

- Evaluar el modelo en los datos de entrenamiento puede darnos una impresión errónea.
- ► Entrenamiento (100-p) % Validación p % (p.e. 20 %).
- Separando los datos <u>al azar</u> para evitar tomar patrones en las divisiones.
- ightharpoonup igh
 - 1. Desordenar los datos
 - 2. Sepal en k folds del mismo tamaño
 - 3. For i = 1 ... k:
 - Entrenar sobre todos los folds menos el i y validar sobre el i

Tomada de clase de Aprendizaje Automático.

⁴Diapo fuertemente basada en las de Aprendizaje Automático

- Evaluar el modelo en los datos de entrenamiento puede darnos una impresión errónea.
- ► Entrenamiento (100-p) % Validación p % (p.e. 20 %).
- Separando los datos <u>al azar</u> para evitar tomar patrones en las divisiones.
- ▶ ¿Y si <u>al azar</u> no funciona tan bien? → k-Fold Cross Validation
 - 1. Desordenar los datos
 - 2. Sepal en k folds del mismo tamaño
 - 3. For i = 1 ... k:
 - Entrenar sobre todos los folds menos el i y validar sobre el i

Tomada de clase de Aprendizaje Automático.

⁴Diapo fuertemente basada en las de Aprendizaje Automático

- Evaluar el modelo en los datos de entrenamiento puede darnos una impresión errónea.
- ► Entrenamiento (100-p) % Validación p % (p.e. 20 %).
- Separando los datos <u>al azar</u> para evitar tomar patrones en las divisiones.
- ightharpoonup ¿Y si <u>al azar</u> no funciona tan bien? ightharpoonup k-Fold Cross Validation
 - 1. Desordenar los datos
 - 2. Separar en k folds del mismo tamaño
 - 3. Para i = 1 ... k:

Entrenar sobre todos los folds menos el i y validar sobre el i

³Tomada de clase de Aprendizaje Automático.

⁴Diapo fuertemente basada en las de Aprendizaje Automático

Entender el problema

- Visualizar los resultados. ¿Qué medidas de performance podré usar?
 - ► Fractitud (accuracy): porcentaje de instancias bien clasificadas
 - favor: es fácil de entender y reportar
 - En contra: puede ser engañosa. 95 % parece muy bueno pero
 - si hay 2 clases y el 98 % del total pertenece a una

- Entender el problema
- ▶ Visualizar los resultados. ¿Qué medidas de performance podré usar?

- Entender el problema
- Visualizar los resultados. ¿Qué medidas de performance podré usar?
 - Exactitud (accuracy): porcentaje de instancias bien clasificadas
 - Tavor: es fácil de entender y reportar En contra: puede ser engañosa. 95 % parece muy buen
 - si hay 2 clases y el 98 % del total pertenece a una?

11 / 17

- Entender el problema
- ► Visualizar los resultados. ¿Qué medidas de performance podré usar?
 - Exactitud (accuracy): porcentaje de instancias bien clasificadas
 - A favor: es fácil de entender y reportar
 - En contra: puede ser engañosa. 95 % parece muy bueno pero si hay 2 clases y el 98 % del total pertenece a una?

- Entender el problema
- Visualizar los resultados. ¿Qué medidas de performance podré usar?
 - Exactitud (accuracy): porcentaje de instancias bien clasificadas
 - A favor: es fácil de entender y reportar
 - En contra: puede ser engañosa. 95 % parece muy bueno pero ¿y si hay 2 clases y el 98 % del total pertenece a una?

Matriz de confusión

Matriz de Confusión: (Clasificación binaria)

tp: true positivestn: true negativesfp: false positivesfn: false negatives

	SPAM (predicho)	NO SPAM (predicho)	
SPAM (real)	2739 tp	56 fn	
NO SPAM (real)	4 fp	1042 tn	

Definiciones

- Documento recuperado = Positivo predicho
 Por ejemplo mail clasificado como spam por el modelo
- Documento <u>relevante</u> = Positivo real
 Por ejemplo mail clasificado como spam por el usuario

 $Pocision = \frac{tp}{tp+fp} \text{ De los recuperados, qué porcentaje son } \frac{t}{t}$

⁵Tomada de clase de Aprendizaje Automático.

Matriz de confusión

Matriz de Confusión: (Clasificación binaria)

tp: true positivestn: true negativesfp: false positivesfn: false negatives

	SPAM (predicho)	NO SPAM (predicho)	
SPAM (real)	2739 tp	56 fn	
NO SPAM (real)	4 fp	1042 tn	

Definiciones

- Documento <u>recuperado</u> = Positivo predicho
 Por ejemplo mail clasificado como spam por el modelo
- ▶ Documento <u>relevante</u> = Positivo real
 Por ejemplo mail clasificado como spam por el usuario

Pocision = $\frac{tp}{tp+fp}$ De los recuperados, qué porcentaje son relevantes $\frac{tp}{tp+fn}$ De los relevantes, qué porcentaje son recuperados

⁵Tomada de clase de Aprendizaje Automático.

Matriz de confusión

Matriz de Confusión: (Clasificación binaria)

tp: true positivestn: true negativesfp: false positivesfn: false negatives

	SPAM (predicho)	NO SPAM (predicho)	
SPAM (real)	2739 tp	56 fn	
NO SPAM (real)	4 fp	1042 tn	

Definiciones

- Documento <u>recuperado</u> = Positivo predicho
 Por ejemplo mail clasificado como spam por el modelo
- Documento <u>relevante</u> = Positivo real
 Por ejemplo mail clasificado como spam por el usuario
- Precision = $\frac{tp}{tp+fp}$ De los recuperados, qué porcentaje son relevantes
- Recall = $\frac{tp}{tp+fn}$ De los <u>relevantes</u>, qué porcentaje son <u>recuperados</u>

⁵Tomada de clase de Aprendizaje Automático.

Más medidas

- Sensitivity = $\frac{tp}{tp+fn}$ Porcentaje de pacientes enfermos correctamente diagnosticados⁶
- ► Specificity = $\frac{tn}{tn+fp}$ Porcentaje de pacientes sanos correctamente diagnosticados

F-measures

- Media armónica: $F_1 = 2 \frac{precision.recall}{precision+recall}$
- Fórmula general: $F_{\beta} = (1 + \beta^2) \frac{precision.recall}{\beta^2.precision+recall}$
- $ightharpoonup F_2$ enfatiza recall mientras que $F_{0,5}$ enfatiza precision

⁶Notar que Sensitivity es Recall.

Más medidas

κ de Cohen

Indica cuánto concuerdan dos clasificadores sobre los mismos datos. Es más robusta que un cálculo de porcentaje de acuerdo ya que tiene en cuenta el acuerdo por casualidad.

$$\kappa = \frac{p_o - p_e}{1 - p_e} = 1 - \frac{1 - p_o}{1 - p_e}$$

donde p_o es el acuerdo relativo entre los clasificadores y p_e es la probabilidad hipotética de acuerdo por casualidad.

 $\kappa \leq 1$ y valores cercanos a 1 indican un buen nivel de acuerdo mientras que valores negativos indican lo contrario.

Ejemplo

		А	
		Sí	No
В	Sí	17	7
	No	5	14

$$p_{o} = \frac{17+14}{43} = 0,721$$

$$p_{e} = P(Si|A) * P(Si|B) + P(No|A) * P(No|B)$$

$$p_{e} = \frac{22}{43} * \frac{24}{43} + \frac{21}{43} * \frac{19}{43} = 0,501$$

$$\kappa = \frac{p_{o} - p_{e}}{1 - p_{e}} = 0,441$$

Resultados

 Corremos el clasificador sobre los datos y obtenemos 82,4 % de accuracy. Nada mal.

Resultados

 Corremos el clasificador sobre los datos y obtenemos 82,4 % de accuracy. Nada mal.

¿Algo interesante para destacar?

Resultados

 Corremos el clasificador sobre los datos y obtenemos 82,4 % de accuracy. Nada mal.

¿Algo interesante para destacar?

- Muchas instancias de "Cultura" son clasificadas como otras categorías, principalmente como "Política"
- Algo similar sucede con "Sociedad"
- ► Tal vez esas categorías tienen muchas palabras en común. ¿Y si sacamos las stopwords⁷ del texto? Accuracy: 88,8 %

Las palabras más usadas en un lenguaje, como por ejemplo artículos y preposiciones, no aportan información relevante al tipo de texto pero pueden influir negativamente en la clasificación

- Muchas instancias de "Cultura" son clasificadas como otras categorías, principalmente como "Política"
- Algo similar sucede con "Sociedad"
- ► Tal vez esas categorías tienen muchas palabras en común. ¿Y si sacamos las stopwords⁷ del texto? Accuracy: 88,8 %

Las palabras más usadas en un lenguaje, como por ejemplo artículos y preposiciones, no aportan información relevante al tipo de texto pero pueden influir negativamente en la clasificación

- Muchas instancias de "Cultura" son clasificadas como otras categorías, principalmente como "Política"
- Algo similar sucede con "Sociedad"
- ► Tal vez esas categorías tienen muchas palabras en común.

¿Y si sacamos las stopwords⁷ del texto? Accuracy: 88,8 %

Las palabras más usadas en un lenguaje, como por ejemplo artículos y preposiciones, no aportan información relevante al tipo de texto pero pueden influir negativamente en la clasificación

- Muchas instancias de "Cultura" son clasificadas como otras categorías, principalmente como "Política"
- Algo similar sucede con "Sociedad"
- ► Tal vez esas categorías tienen muchas palabras en común. ¿Y si sacamos las stopwords⁷ del texto? Accuracy: 88,8 %

⁷Las palabras más usadas en un lenguaje, como por ejemplo artículos y preposiciones, no aportan información relevante al tipo de texto pero pueden influir negativamente en la clasificación.

- Muchas instancias de "Cultura" son clasificadas como otras categorías, principalmente como "Política"
- Algo similar sucede con "Sociedad"
- ► Tal vez esas categorías tienen muchas palabras en común. ¿Y si sacamos las stopwords⁷ del texto? Accuracy: 88,8 %

⁷Las palabras más usadas en un lenguaje, como por ejemplo artículos y preposiciones, no aportan información relevante al tipo de texto pero pueden influir negativamente en la clasificación.

Resumen

- ▶ La experimentación no es sólo reportar resultados. En base a los resultados se gana entendimiento y se repiensa el problema y esto permite iterar nuevamente con experimentos.
- Es importante elegir una manera adecuada para mostrar los resultados. Ciertas características pueden quedar ocultas detra de medidas mentirosas.
 - Siempre recordando los límites en términos de tiempo que hay erclos TPs.

Resumen

- ▶ La experimentación no es sólo reportar resultados. En base a los resultados se gana entendimiento y se repiensa el problema y esto permite iterar nuevamente con experimentos.
- Es importante elegir una manera adecuada para mostrar los resultados. Ciertas características pueden quedar ocultas detrás de medidas mentirosas.
 - Siempre recordando los límites en términos de tiempo que hay erclos TPs.

Resumen

- ▶ La experimentación no es sólo reportar resultados. En base a los resultados se gana entendimiento y se repiensa el problema y esto permite iterar nuevamente con experimentos.
- Es importante elegir una manera adecuada para mostrar los resultados. Ciertas características pueden quedar ocultas detrás de medidas mentirosas.
- Siempre recordando los límites en términos de tiempo que hay en los TPs.