Composition of Fuzzy Relations

Soft Computing CSE 4237

$$R_1 = \begin{bmatrix} \mu_{R_1}(x_1, y_1) & \mu_{R_1}(x_1, y_2) & \mu_{R_1}(x_1, y_3) & \mu_{R_1}(x_1, y_4) \\ \mu_{R_1}(x_2, y_1) & \mu_{R_1}(x_2, y_2) & \mu_{R_1}(x_2, y_3) & \mu_{R_1}(x_2, y_4) \\ \mu_{R_1}(x_3, y_1) & \mu_{R_1}(x_3, y_2) & \mu_{R_1}(x_3, y_3) & \mu_{R_1}(x_3, y_4) \\ \mu_{R_1}(x_4, y_1) & \mu_{R_1}(x_4, y_2) & \mu_{R_1}(x_4, y_3) & \mu_{R_1}(x_4, y_4) \end{bmatrix}$$

$$R_{2} = \begin{bmatrix} \mu_{R_{2}}(y_{1}, z_{1}) & \mu_{R_{2}}(y_{1}, z_{2}) \\ \mu_{R_{2}}(y_{2}, z_{1}) & \mu_{R_{2}}(y_{2}, z_{2}) \\ \mu_{R_{2}}(y_{3}, z_{1}) & \mu_{R_{2}}(y_{3}, z_{2}) \\ \mu_{R_{2}}(y_{4}, z_{1}) & \mu_{R_{2}}(y_{4}, z_{2}) \end{bmatrix}$$

$$R_{2} = \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.0 & 0.5 \\ 0.3 & 0.1 & 0.0 \\ 0.2 & 0.3 & 0.1 \end{bmatrix}$$

$$R_2 = \begin{bmatrix} \mu_{R_2}(y_1, z_1) & \mu_{R_2}(y_1, z_2) & \mu_{R_2}(y_1, z_3) \\ \mu_{R_2}(y_2, z_1) & \mu_{R_2}(y_2, z_2) & \mu_{R_2}(y_2, z_3) \\ \mu_{R_2}(y_3, z_1) & \mu_{R_2}(y_3, z_2) & \mu_{R_2}(y_3, z_3) \\ \mu_{R_2}(y_4, z_1) & \mu_{R_2}(y_4, z_2) & \mu_{R_2}(y_4, z_3) \end{bmatrix}$$

 $Y \times Z$

$$R_1 \circ R_2 = \begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \\ 0.3 & 1.0 & 0.8 & 1.0 \\ 0.9 & 0.8 & 1.0 & 0.8 \\ 0.0 & 1.0 & 0.8 & 1.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.0 & 0.5 \\ 0.3 & 0.1 & 0.0 \\ 0.2 & 0.3 & 0.1 \end{bmatrix}$$

$$R_1 \circ R_2 = \begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \\ 0.3 & 1.0 & 0.8 & 1.0 \\ 0.9 & 0.8 & 1.0 & 0.8 \\ 0.0 & 1.0 & 0.8 & 1.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.0 & 0.5 \\ 0.3 & 0.1 & 0.0 \\ 0.2 & 0.3 & 0.1 \end{bmatrix}$$

$$\begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 \\ 1.0 \\ 0.3 \\ 0.2 \end{bmatrix}$$

$$= [1.0 \land 1.0] \lor [0.3 \land 1.0] \lor [0.9 \land 0.3] \lor [0.0 \land 0.2]$$

$$R_1 \circ R_2 = \begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \\ 0.3 & 1.0 & 0.8 & 1.0 \\ 0.9 & 0.8 & 1.0 & 0.8 \\ 0.0 & 1.0 & 0.8 & 1.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.0 & 0.5 \\ 0.3 & 0.1 & 0.0 \\ 0.2 & 0.3 & 0.1 \end{bmatrix}$$

$$\begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 \\ 1.0 \\ 0.3 \\ 0.2 \end{bmatrix}$$
$$= [1.0 \land 1.0] \lor [0.3 \land 1.0] \lor [0.9 \land 0.3] \lor [0.0 \land 0.2]$$

$$= 1.0 \lor 0.3 \lor 0.3 \lor 0.0 = 1.0$$

$$R_1 \circ R_2 = \begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \\ 0.3 & 1.0 & 0.8 & 1.0 \\ 0.9 & 0.8 & 1.0 & 0.8 \\ 0.0 & 1.0 & 0.8 & 1.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.0 & 0.5 \\ 0.3 & 0.1 & 0.0 \\ 0.2 & 0.3 & 0.1 \end{bmatrix}$$

$$\begin{bmatrix} 0.0 & 1.0 & 0.8 & 1.0 \end{bmatrix} \quad \begin{bmatrix} 0.2 & 0.3 & 0.1 \end{bmatrix}$$

$$\begin{bmatrix} 1.0 & 0.3 & 0.9 & 0.0 \end{bmatrix} \circ \begin{bmatrix} 1.0 \\ 1.0 \\ 0.3 \\ 0.2 \end{bmatrix}$$

$$R_1 \circ R_2 = \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.3 & 0.5 \\ 0.9 & 0.9 & 0.9 \\ 1.0 & 0.3 & 0.5 \end{bmatrix}$$

$$= [1.0 \land 1.0] \lor [0.3 \land 1.0] \lor [0.9 \land 0.3] \lor [0.0 \land 0.2]$$

$$= 1.0 \lor 0.3 \lor 0.3 \lor 0.0 = 1.0$$

$$R_1 \circ R_2 = \begin{bmatrix} 1.0 & 1.0 & 0.9 \\ 1.0 & 0.3 & 0.5 \\ 0.9 & 0.9 & 0.9 \\ 1.0 & 0.3 & 0.5 \end{bmatrix}$$

$$R_1 \circ R_2 = 1.0/(x_1, z_1) + 1.0/(x_1, z_2) + 0.9/(x_1, z_3)$$

$$+1.0/(x_2, z_1) + 0.3/(x_2, z_2) + 0.5/(x_2, z_3)$$

$$+0.9/(x_3, z_1) + 0.9/(x_3, z_2) + 0.9/(x_3, z_3)$$

$$+1.0/(x_4, z_1) + 0.3/(x_4, z_2) + 0.5/(x_4, z_3)$$

 R_1 :

	91	92	93	94	95
x_1	0.1	0.2	0.0	1.0	0.7
x_2	0.3	0.5	0.0	0.2	1.0
x_3	0.8	0.0	1.0	0.4	0.3

 i_2 :

	z_1	z_2	z_3	z_4
y_1	0.9	0.0	0.3	0.4
y_2	0.2	1.0	0.8	0.0
y_3	0.8	0.0	0.7	1.0
y_4	0.4	0.2	0.3	0.0
y_5	0.0	1.0	0.0	0.8

$$\mu_{R_1}(x_1, y_1) \cdot \mu_{R_2}(y_1, z_1) = 0.1 \times 0.9 = 0.09$$

$$\mu_{R_1}(x_1, y_2) \cdot \mu_{R_2}(y_2, z_1) = 0.2 \times 0.2 = 0.04$$

$$\mu_{R_1}(x_1, y_3) \cdot \mu_{R_2}(y_3, z_1) = 0.0 \times 0.8 = 0.0$$

$$\mu_{R_1}(x_1, y_4) \cdot \mu_{R_2}(y_4, z_1) = 1.0 \times 0.4 = 0.4$$

$$\mu_{R_1}(x_1, y_5) \cdot \mu_{R_2}(y_5, z_1) = 0.7 \times 0.0 = 0.0$$

0.0

 y_5

1.0

0.0

0.8

R_1 :					
	y_1	y_2	y_3	y_4	y_5
x_1	0.1	0.2	0.0	1.0	0.7
x_2	0.3	0.5	0.0	0.2	1.0
x_3	0.8	0.0	1.0	0.4	0.3

 Max-product composition $R_1 \cdot R_2$
 z_1 z_2 z_3 z_4
 x_1 0.4
 0.7
 0.3
 0.56

 x_2 0.27
 1.0
 0.4
 0.8

 x_3 0.8
 0.3
 0.7
 1.0

 R_2 :

	z_1	z_2	z_3	z_4
y_1	0.9	0.0	0.3	0.4
y_2	0.2	1.0	0.8	0.0
y_3	0.8	0.0	0.7	1.0
y_4	0.4	0.2	0.3	0.0
y_5	0.0	1.0	0.0	0.8

$$\mu_{R_1 \cdot R_2}(x_1, z_1)$$

$$= 0.09 \lor 0.04 \lor 0.0 \lor 0.4 \lor 0.0 = 0.4$$

Max-average composition of Fuzzy Relations

Max-average composition of Fuzzy Relations

$$\mu_{R_1\langle +\rangle R_2}(x_1, z_1)$$

$$= \frac{1}{2} [1.0 \lor 0.4 \lor 0.8 \lor 1.4 \lor 0.7] = 0.7$$

Max-average composition of Fuzzy Relations

R_1 :					
:	y_1	y_2	y_3	y_4	y_5
x_1	0.1	0.2	0.0	1.0	0.7
x_2	0.3	0.5	0.0	0.2	1.0
x_3	0.8	0.0	1.0	0.4	0.3

	z_1	z_2	z_3	z_4
x_1	0.7	0.85	0.65	0.75
x_2	0.6	1.0	0.65	0.9
x_3	0.9	0.65	0.85	1.0

 R_2 :

$$\mu_{R_1\langle +\rangle R_2}(x_1,z_1)$$

$$= \frac{1}{2} [1.0 \lor 0.4 \lor 0.8 \lor 1.4 \lor 0.7] = 0.7$$