WAS IST EIGENTLICH...EIN ULTRAFILTER?

UND WAS KANN MAN DAMIT ANSTELLEN?

Peter Krautzberger

Institut für Mathematik, Freie Universität Berlin

"Was ist eigentlich…?" Seminar, Freie Universität Berlin Mai 2008

ÜBERSICHT

- 1 (ULTRA-)FILTER
- 2 Ultrafilter bilden Modelle
- 3 Ultrafilter bilden Limiten
- 4 Ultrafilter bilden Zahlen

Sei M eine (unendliche) Menge.

FILTER

 $F \subseteq \mathfrak{P}(M)$ heißt *Filter* (auf M), falls

- **1** M ∈ F, $\emptyset ∉ F$
- $A, B \in F \Leftrightarrow A \cap B \in F \text{ (eDE)}$
- $A \in F$, $A \subseteq B \Rightarrow B \in F$.

Ultrafilter

ULTRAFILTER

Ein Filter F heißt **Ultrafilter**, falls eine (alle) der folgenden Eigenschaften gilt:

- F ist maximal: für alle Filter G: $(F \subseteq G \Rightarrow F = G)$.
- F ist prim: $A \cup B \in F \Leftrightarrow (A \in F \text{ oder } B \in F)$
- F ist ultra: für $A \subseteq M$ gilt entweder $A \in F$ oder $M \setminus A \in F$.

Ultrapotenz am Beispiel R

ÄQUIVALENT MODULO ULTRAFILTER U

 $f,g:\mathbb{N}\to\mathbb{R}$ sind **äquivalent**, falls $\{m\in\mathbb{N}\mid f(m)=g(m)\}\in U$.

Ultrapotenz

Menge der Äquivalenzklassen $\mathbb{R}^U := \{ [f]_U \mid f : \mathbb{N} \to \mathbb{R} \}.$

Sei X ein topologischer Raum.

FILTERKONVERGENZ

- Ein Filter F (auf X) konvergiert gegen $x \in X$, falls $\mathcal{U}(x) \subseteq F$
- X hausdorff ⇔ jeder Filter konvergiert höchstens eindeutig.
- X präkompakt ⇔ jeder Ultrafilter konvergiert.

TOPOLOGISCHE DYNAMIK

Sei X kompakt, $f: X \to X$ stetig. (= Dynamisches System)

$x \in X$ ist **rekurrent**

- für jede Umgebung A (von x) ein $n \in \mathbb{N}$ existiert, so dass $f^n(x) \in A$.
- \bullet] es gibt Ultrafilter U auf \mathbb{N} , so dass $u \lim_{n \in \mathbb{N}} f^n(x)$ "daran entlang" wieder x ist.

Ultrafilter als Stone-Čech Kompaktifizierung

$\beta\mathbb{N}$

- $\blacksquare \beta \mathbb{N} = \{ p \mid p \text{ Ultrafilter auf } \mathbb{N} \}$ größter kompakter Raum mit \mathbb{N} dicht und diskret.
- Addition und Multiplikation setzen sich fort assoziativ, aber nicht kommutativ.
- Es gibt viele idempotente Elemente.

Unendliche Kombinatorik

Ist $\mathbb{N}=A_0\cup A_1$, so enthält ein A_i

- arithmetische Progressionen jeder Länge (Van der Waerden)
- für ein $(x_n)_{n\in\mathbb{N}}$ alle $\sum_{i\in F} x_i$ $(F\subseteq\mathbb{N}$ endlich) (Hindman)

