손그림 의류 검색 서비스

Ztyle I 김혜연 조현정 최유진 한상범

팀 소개

Ztyle: boaz의 z + 스케치에 기반한 이미지 생성을 통해 style 추천한다는 의미

김혜연

18기 분석 고려대학교 통계학과

조현정

18기 분석 고려대학교 일반대학원 통계학과

최유진

18기 시각화 숙명여자대학교 소비자경제학과

한상범

18기 분석 경기대학교 컴퓨터공학과

목차

- 1. 주제 소개
- 2. 프로젝트 목적 및 의의
- 3. 사전 공부
- 4. 분석 순서도
- 5. 분석 1) 데이터 수집
 - 2) 데이터 전처리
 - 3) 채색 모델
 - 4) 검색 결과 도출
- 6. 시연 영상
- 7. 활용 방안 및 한계점
- 8. 참고 자료 출처

1 주제 소개

손그림 의류 검색 서비스

주제

손그림을 활용한 의류 추천 시스템 개발

분석 배경

의류 산업이 발전함에 따라 소비자들의 니즈를 충족시키기 위한 서비스의 필요성이 대두됨

> 소비자가 원하는 상품을 쉽게 찾을 수 있도록 해야 구매까지 연결될 수 있음

2 프로젝트 목적

스케치에 기반한 고객 맞춤 상품 추천 모델 개발

→ 밑그림이 주어진 상태에서 **이미지 수정 & 채색**을 통해 고객 니즈에 맞는 상품 추천

사용자가 스케치를 하면 실제 이미지로 생성해서 관련된 유사 도메인 객체 추천 추천 결과는 실제 쇼핑몰의 의류 이미지 및 URL 사용자가 원하는 상품 결과가 나오지 않더라도 관련 검색 결과를 통해 고객의 니즈 만족 가능

→ 원하는 의류 상품명 등을 **기억하지 못하는 경우**, 직관적인 스케치를 통해 소비자가 원하는 상품을 찾을 수 있을 것으로 기대

3 사전 공부

스터디

- DCGAN
- CycleGAN
 - Pix2pix
 - CGÁN

논문 리뷰

- iGAN
- Sketch2Fashion

- ▶ [iGAN] 스케치 → 이미지 생성
- ▶ [Generating Photographic Faces From the Sketch Guided by Attribute Using GAN] → 얼굴 스케치
- ► [Tango2022_Article_Anime-to-realClothingCosplayCo] 애니메이션 의류 → 실제 의류 이미지
- ▶ [A_Visualization_Interface_for_Exploring_Similar_Brands_on_a_Fashion] → 위 논문 저자가 쓴 의류 추천시스템 논문
- ► [Sketch2Fashion]
- ▶ [신경망 모델을 이용한 손그림 의류 매칭 시스템] 카고팬츠 그림 → 이미지 생성
- ▶ [Sketch your own GAN] 고양이 자세 변형

4 분석 순서도

데이터 수집

데이터 전처리

Edge detection

통해 원본 이미지의

DexiNed 활용

윤곽선 검출

채색 모델

검색 결과 도출 및 서비스화

사용 데이터 Fashion

Outfit items

상의: 7896개 치마: 3655개 바지: 4000개 모자: 2543개

Edge detection을 거친 밑그림 이미지 채색

Pix2Pix edges with color 활용

품목별로 훈련(상의/바지/치마/모자)

모델 평가

- 1) 품목별 모델 결과 교차 채색
- 2) 원본과 채색된 이미지 간 유사도 (눈으로 봤을 때/SSIM)

MS Vision API

채색된 이미지와 비슷한 이미지들을 URL로 제시

수정 및 채색한 이미지 업로드하면 html 나타내 주는 서버 구현

1) 데이터 수집

Fashion-outfit-items

상의, 바지, 치마, 신발, 모자 등 13개 카테고리의 의류 데이터

사용 데이터

- 상의(7896개)
- 바지(4000개)
- 모자(2543개)

2) 데이터 전처리 - Edge detection

DexiNed를 이용한 데이터 전처리

원본 이미지

DexiNed 결과 이미지

2) 데이터 전처리

Edge detection 모델 비교

원본

2) 데이터 전처리

DexiNed

Dense Extreme Inception Network for Edge Detection

LDC와 같이 다른 CNN 기반의 Sota 모델과는 달리 **단일 훈련단계를** 거침 **사전 훈련된 가중치가 필요 없으며**, 더 적은 매개변수 튜닝으로 훈련됨

Dexi(Dense extreme inception network)와 업샘플링 블록(UB) 두 개의 하위 네트워크로 이루어짐 덱시는 RGB 이미지를 입력 받고 UB는 덱시의 각 블록의 피쳐맵 입력 받음 얇은 에지 맵을 생성하고 심층 레이어의 누락을 방지하여 사전 훈련된 데이터가 없더라도 대부분의 경우 최첨단 결과 도출

DeepFaceDrawing X

- 비선정 이유: 얼굴 요소의 feature embedding을 통해 러프한 스케치를 한 후, 정교한 스케치로 정제함
- => 그러나 의류는 위치 embedding 불가

Pix2Pix edges with color O

- 선정 이유: 이미지를 이미지로 변환하는 것을 하나의 모델로 해결
- ⇒비교적 적은 데이터 셋, 다양한 데이터 셋 사용 가능

- 채색 방식: 경험적으로 적당한 포인트 개수 이용

Pix2Pix edges with color

Step 1.

Source와 target을 Pix2Pix 모델에 같이 넣고 학습 진행

- Source: Edge detection을 통해 얻은 밑그림 이미지
- Target: 원본 이미지

Step 2.

스케치 및 채색

- 검정색 lpt 스트로크로 영역 수정 가능
- 그 안에 색상으로 선/점 듬성듬성 찍으면 영역이 채워짐

Step 3.

생성자는 채색된 밑그림이 원본 라벨 데이터와 똑같아지도록 채색

- 생성자는 채색한 이미지가 실제 이미지라고 판별자를 속이도록 학습,
- 판별자는 실제 라벨 데이터와 생성자가 채색한 데이터 중에 무엇이 참, 거짓인지 학습

Pix2Pix edges with color

※ 상의, 바지, 치마, 모자 4가지 품목별로 tuning된 모델 훈련

모델 평가: 품목별 모델 비교

치마 모델로 채색한 바지

상의 모델로 채색한 모자 검색 결과

치마 모델로 채색한 바지 검색 결과

중간 부분이 잘 나뉘어 바지의 형태가 뚜렷

회색/빨간색 비니 결과가 잘 나옴

핏까지 잘 잡아서 검색

품목별로 훈련한 모델을 다른 품목과 교차하여 채색해본 결과, 각 품목별 모델이 각자의 품목을 가장 잘 채색했음

모델 평가: 원본-결과 유사도 비교를 통한 및 최적 에폭 선정

① 눈으로 확인

상의(epoch 270)

치마(epoch 300)

Input 채색 이미지

Target 원본 이미지

Output 결과 이미지

모델 평가: 원본-결과 유사도 비교를 통한 및 최적 에폭 선정

② SSIM (Structural Similarity Index)

주어진 두 이미지의 similarity(유사도)를 계산하는 측도로,

gradient-based로 구현되어 있기 때문에 딥러닝에서 두 이미지를 유사하게 만드는 문제에서 두 이미지 또는 두 패치의 유사도를 측정하여 Loss Function을 사용하는 방법이 많이 사용됨

상의(epoch 270)

바지(epoch 310)

치마(epoch 300)

모자(epoch 280)

epoch 252: 0.6866625956589972 epoch 259: 0.6804764410638361

epoch 266: 0.6894695906062055

☑ epoch 270 : 0.685630850792321

epoch 275: 0.6832484300242664 epoch 280: 0.6810390196510877 epoch 285: 0.6978122924889553 epoch 280: 0.7200017045832657 epoch 290: 0.7259579487249527

epoch 300 : 0.7245713014503538

epoch 310 : 0.7334168521213602

epoch 320: 0.7334818923007439

epoch 270 : 0.6322067541161321 epoch 280 : 0.6282084891128017 epoch 290 : 0.7459425936321603

epoch 300 : 0.7750812323672011

epoch 310 : 0.7293356761531374 epoch 320 : 0.7536009644922258 epoch 330 : 0.76960431387748 epoch 250: 0.8174501048877669 epoch 260: 0.8264260805145446 epoch 270: 0.8274044366402631

poch 280 : 0.8303817558596772

4) 검색 결과 도출

MS Vision API: 이미지 검색 모델로, 채색된 이미지와 비슷한 이미지들을 URL로 제시함

선정 이유?

Google Vision API는 관리자가 구글 클라우드에 자신들의 이미지를 올리고 그 이미지 중에서 유사한 이미지를 불러오는 방식 우리는 실제 쇼핑몰의 URL이 필요해 MS API 채택

bing 검색 결과 URL 중 어떤 URL 채택?

- Hostpageurl: 해당 이미지가 위치한 링크
- Webpageurl: bing에 검색한 후 이미지 카테고리를 선택한 결과

그 중 **Webpageurl**을 선택한 이유는 다른 연관된 이미지도 추가적으로 확인할 수 있기 때문

4) 검색 결과 도출

원하는 의류 검색 결과

Input 채색 이미지

Output 결과 이미지

HTML 검색 결과

4) 검색 결과 도출

번외:D

6 시연 영상

7 활용 방안 및 한계점

기대효과 · 의의

- **간단한 스케치를** 통해 사용자의 **구체적인 니즈**가 반영된 상품 검색
- 제품명, 브랜드 등을 정확히 기억하지 못한 경우에도 상품 로고, 특징 등을 그려 상품 검색 가능
- 해당 상품을 구매할 수 있는 **사이트 URL**을 제공하므로 이를 통한 상품 구매 기대

한계점

- 모델을 학습시키는 과정에서 컴퓨팅 한계
- 정확하지 않은 **러프한 스케치**는 정제하기 어려움
- MS API 검색 결과, 상품 검색 결과가 부정확한 경우가 있음

추후 고도화

- 품목 구분 없이 모델 학습
- 웹 배포 UI **구현**
- 상품 검색 시, **한국 쇼핑몰 링크**로 자동 연결하여 사용자의 구매를 실질적으로 유도할 수 있는 서비스 구축

참고 자료・출처

GAN in Action (https://tensorflow.blog/gan-in-action/)

Pix2Pix-edges-with-color ([https://github.com/michaelnation26/pix2pix-edges-with-color) (https://github.com/michaelnation26/pix2pix-edges-with-color))

IGAN: Generative Visual Manipulation on the Natural Image Manifold (https://arxiv.org/abs/1609.03552)

DeepFaceDrawing: Deep Generation of Face Images from Sketches (http://geometrylearning.com/paper/DeepFaceDrawing-supple.pdf)

Sketch2Fashion: Generating clothing visualization from sketches

DexiNed: Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection (https://arxiv.org/pdf/1909.01955.pdf)

MS API JIOI (https://learn.microsoft.com/ko-kr/azure/cognitive-services/bing-visual-search/overview)