

Blackbody:

Blackbodies are perfect emitters and absorbers of electromagnetic radiation

They emit radiation at different wavelengths according to the Planck Function

Planck function

hotter bodies emit more radiation and have a peak emission at a shorter wavelength

Who is Planck?

Max Karl Ernst Ludwig Planck FRS^[1] (German: [maks 'plaŋk] (◄) listen);^[2] English: /ˈplæŋk/;^[3] 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918.^[4]

"Father of quantum mechanics"

Wien's displacement law: When the temperature of a blackbody radiator increases, the peak of the radiation curve moves to shorter wavelengths.

Stefan-Boltzman law:

The radiative flux emitted by an object is the integral over wavelength of the Planck curves shown here:

Objects at a higher T emit more radiation (F)

Kirchhoff's law:

At a given wavelength, a real object emits / absorbs a fraction ε_{λ} / a_{λ} of the radiation a blackbody would emit/absorb at a given temperature.

$$\varepsilon_{\lambda}$$
 = emissivity
 a_{λ} = absorptivity

Black Body?

Both are between 0 and 1

wavelength (nm)

$$1 \text{ nm} = 10^{-3} \mu \text{m}$$

Wien's displacement law

$$\lambda_m T = 2897 \ \mu m \cdot K$$

Stefan-Boltzmann law

$$F = \sigma T^4$$

Kirchhoff's law

$$\epsilon_{\lambda} = a_{\lambda}$$