Announcement Finder User Guide

Eric Tsang August 30, 2016

1 Table of Contents

1	Tab	Table of Contents2				
2	Prod	Procedures				
	2.1	Obtain, Compile & Run the Project	3			
	2.2	Example 1: Finding an Announcement	4			
	2.3	Example 2: Changing Agent Behaviors with Announcements	5			
3	Objects					
	3.1	Obstacle	8			
	3.2	Definition	8			
	3.3	Agent	8			
	3.3.1	1 Agent Behavior Selection	8			
4	Edit	able Table View	10			
5	Windows					
	5.1 Announcement Finder Window		12			
	5.1.1	ı File Menu	12			
	5.1.2	2 Window Menu	12			
	5.1.3	3 Agents Table	13			
	5.1.4	4 Display Mode Drop-Down Menu	15			
	5.1.5					
	5.2	Definitions Window	17			
	5.2.2	1 File Menu	18			
	5.2.2	2 Definitions Table	18			
	5.3	Obstacles Window	20			
	5.3.1	រ File Menu	21			
	5.3.2	2 Obstacles Table	21			
	5.3.3	Obstacles Table Input Dialog				
	5.4	Simulation Window	22			
	5.4.3		_			
	5.4.2	2 Simulation	23			
6	Propositional Logic Sentence Input Syntax					
	6.1	Operands				
	6.2 Operators		24			
	6.3	Examples	24			

2 Procedures

2.1 Obtain, Compile & Run the Project

- 1. Download a .zip of the project from the link below and extract it:
 - https://github.com/ericytsang/research2o16.announcementresolver/archive/master.zip
- 2. Open a terminal in the root directory of the project.
- 3. Make sure that both the java and javac commands are version 1.8.0_91 or greater. The latest versions of the JDK can be found at the following link:
 - http://www.oracle.com/technetwork/java/javase/downloads/index.html
- 4. To compile an executable JAR file, enter ./gradlew jarGui into the terminal:

5. To execute the compiled JAR file, enter

java -jar ./build/libs/"Announcement finder.jar"<mark>intotheterminal</mark>:

2.2 Example 1: Finding an Announcement

1. Execute the application. The Announcement Finder Window (5.1) should appear:

- 2. Right click the <u>Agents Table (5.1.3)</u> then press *Add*. An <u>Agents Table Input Dialog (5.1.3.1)</u> should appear:
- 3. In the Agents Table Input Dialog (5.1.3.1):
 - a. Enter p and q and -r into the Current Belief State field.
 - b. Enter p into the Target Belief State field.
 - c. Leave everything else as their default values.
 - d. Click OK.
- 4. Right click the <u>Agents Table (5.1.3)</u> then press *Add* again. An <u>Agents Table Input Dialog</u> (5.1.3.1) should appear:
- 5. In the Agents Table Input Dialog (5.1.3.1):
 - a. Enter p and -q and r into the Current Belief Stαte field.
 - b. Enter -p into the Target Belief State field.
 - c. Leave everything else as their default values.
 - d. Click OK.
- 6. Click Find announcement in the Announcement Finder Window (5.1).

- a. An announcement should appear in the bottom left corner of the <u>Announcement</u> Finder Window (5.1)
- b. A preview of the revised belief states of each agent will appear in the *Revised belief* state column.
- 7. Click Commit to have each agent adopt its revised belief state as its current belief state.

2.3 Example 2: Changing Agent Behaviors with Announcements

1. Execute the application. The <u>Announcement Finder Window (5.1)</u> should appear:

- 2. In the menu bar, click Window > Simulation to open the Simulation Window (5.4).
- 3. Go back to the <u>Announcement Finder Window (5.1)</u> and right click the <u>Agents Table (5.1.3)</u> then press *Add*. An <u>Agents Table Input Dialog (5.1.3.1)</u> should appear:
- 4. In the Agents Table Input Dialog (5.1.3.1):
 - a. Enter wander and red and -yellow into the Current Belief Stαte field.
 - b. Enter wander into the Target Belief State field.
 - c. Leave everything else as their default values.
 - d. Click OK.
- 5. Right click the <u>Agents Table (5.1.3)</u> then press *Add* again. An <u>Agents Table Input Dialog</u> (5.1.3.1) should appear:
- 6. In the Agents Table Input Dialog (5.1.3.1):
 - a. Enterwander and -red and yellow into the Current Belief State field.
 - b. Enter -wander into the Target Belief State field.
 - c. Set the Agent color to yellow.
 - d. Set *X Position* to **1**.
 - e. Leave everything else as their default values.
 - f. Click OK.

7. Notice that the Simulation Window (5.4) now displays 2 agents:

- 8. In the menu bar of the <u>Announcement Finder Window (5.1)</u>, click <u>Window > Definitions</u> to open the <u>Definitions Window (5.2)</u>.
- 9. Right click the <u>Definitions Table (5.2.2)</u> then click *Add*. A <u>Definitions Table Input Dialog (5.2.2.1)</u> should appear.
- 10. In the Definitions Table Input Dialog (5.2.2.1):
 - a. Enter wander in the Proposition field.
 - b. Set the Behavior drop-down menu to Wander.
 - c. Click OK.
- 11. Right click the first item in the <u>Definitions Table (5.2.2)</u> again then click *Add*. A <u>Definitions Table Input Dialog (5.2.2.1)</u> should appear.
- 12. In the <u>Definitions Table Input Dialog (5.2.2.1)</u>:
 - a. Enter 1 in the Proposition field.
 - b. Set the Behavior drop-down menu to Guard.
 - c. Set *X position* to 0.
 - d. Set Y position to 0.
 - e. Set Direction to NORTH.
 - f. Click OK.

13. Now, agents whose belief state satisfies the proposition wander will wander around in the simulation. The rest of the agents will stand guard in the center of the simulation. At this point, both agents should be wandering around.

- 14. Click Find announcement in the Announcement Finder Window (5.1).
 - a. An announcement should appear in the bottom left corner of the <u>Announcement Finder Window (5.1)</u>
 - b. A preview of the revised belief states of each agent will appear in the *Revised belief* state column.
- 15. Click Commit to have each agent adopt its revised belief state as its current belief state. Now the yellow agent should return to the center of the simulation.

3 Objects

3.1 Obstacle

An <u>Obstacle (3.1)</u> consists of two points that are connected by a line. <u>Agents (3.3)</u> cannot pass through <u>Obstacles (3.1)</u> (i.e. the lines). They must go around them instead.

3.2 Definition

A <u>Definition (3.2)</u> is an association of a propositional logic sentence with an agent behavior.

3.3 Agent

An <u>Agent (3.3)</u> has a position, direction, color, belief state and belief revision operator. The image to the left shows the <u>Simulation Window (5.4)</u> with a red agent at position 3, 4 facing east.

The <u>Agent (3.3)</u> will exhibit the behavior of the first <u>Definition (3.2)</u> in the <u>Definitions Table (5.2.2)</u> that its belief state satisfies. See <u>Agent Behavior Selection (3.3.1)</u> for more details.

3.3.1 Agent Behavior Selection

When an agent's belief state changes, it looks through the <u>Definitions (3.2)</u> of the <u>Definitions Table</u> (5.2.2) to determine what behavior to perform. The <u>Definition (3.2)</u> the <u>Agent (3.3)</u> chooses to perform is the behavior of the first <u>Definition (3.2)</u> whose proposition is satisfied by the agent's belief state.

The screenshots above show three agents with different belief states in a single simulation performing different behaviors:

- The yellow Agent (3.3) is patrolling at y=0 because its belief state satisfies the first Definition (3.2) in the Definitions Table (5.2.2) which maps patrol ^ yellow with patrolling along y=0.
- The red <u>Agent (3.3)</u> is patrolling at y=1 because its belief state failed to satisfy the first <u>Definition (3.2)</u> in the <u>Definitions Table (5.2.2)</u>, but it satisfies the second <u>Definition (3.2)</u> which maps patrol ^ red with patrolling along y=1.
- The green <u>Agent (3.3)</u> is patrolling at y=2 because its belief state fails to satisfy the first two <u>Definitions (3.2)</u> in the <u>Definitions Table (5.2.2)</u>; however, it satisfies the third <u>Definition (3.2)</u> which maps patrol to patrolling along y=2.

4 Editable Table View

The <u>Editable Table View (4)</u> is used in many places throughout the application, so it is important to understand it.

Each column of the table describes an attribute of some object and each row of the table describes a single instance of the object.

Right clicking anywhere on the table while no list items are selected will produce the context menu shown on the left.

Right clicking on the table while a list item selected will show context menu with item-specific options enabled as shown to the left.

Hotkeys for each context menu item are shown in parentheses to the right of each item.

The items in the context menu each have different functions:

- Add Opens an input dialog for you to enter details about the new row
 - o If you fill out the dialog and press *OK*, a new row will be added to the table after the currently selected row.
 - o If you press *Cancel*, the list shall remain unchanged.
- *Insert* Like *Add* except this will create the new row before the selected row.
- Edit Opens an input dialog for you to modify the row data. The input dialog is prefilled with the row's current data.
 - \circ If you fill out the input dialog and press OK, your changes will be applied to the selected row.
 - o If you press *Cancel*, the list will remain unchanged.
- Delete removes the selected row from the table.
- Move up moves the selected row above the row above it.
- Move down moves the selected row below the row below it.

5 Windows

This section describes the all windows and dialog boxes that exist in the application. There are 4 main windows:

• Announcement Finder Window (5.1)

Definitions Window (5.2)

• Obstacles Window (5.3)

• Simulation Window (5.4)

5.1 Announcement Finder Window

The <u>Announcement Finder Window (5.1)</u> is shown above. It is the first window that appears when starting the application. The main activities for this window include:

- Viewing and modifying the list of agents
- Finding an announcement for the list of agents
- Opening and closing peripheral windows

5.1.1 File Menu

The File Menu (5.1.1) lets you:

- Save the current list of Agents (3.3) to a text file.
- Load a list of Agents (3.3) from a save file into the program. This will overwrite all existing agents.
- *Close* the window. This will also close all peripheral windows and terminate the application.

5.1.2 Window Menu

The Window Menu (5.1.2) can open and close peripheral windows:

- Definitions Window (5.2)
- Obstacles Window (5.3)
- Simulation Window (5.4)

When a peripheral window is open, a check mark will appear beside the corresponding menu item in the Window Menu (5.1.2).

Multiple peripheral windows may be open at once.

5.1.3 Agents Table

The <u>Agents Table (5.1.3)</u> is an <u>Editable Table View (4)</u> which allows you to view and modify the list of <u>Agents (3.3)</u>. The input dialog used by this table is the <u>Agents Table Input Dialog (5.1.3.1)</u>.

The columns in the agents table are:

- Online whether or not the agent instance is connected to the application. Virtual agents are always connected, but connections could be lost with physical robot agents (e.g. bad Bluetooth connection).
- Current belief state current belief state of the agent. This combined with the <u>Definitions Table</u>
 (5.2.2) determines what behavior the agent shall exhibit. See <u>Agent Behavior Selection</u>
 (3.3.1).
- Target belief state the belief state you want the agent's belief state to satisfy after it is revised by the announcement.
- Belief revision operator belief revision operator the agent uses when doing belief revision.
- Revised belief state the belief state the agent would adopt if it were to revise by the announcement.

5.1.3.1 Agents Table Input Dialog

All propositional logic sentences must be entered using the <u>Propositional Logic Sentence Input Syntax (6)</u>.

5.1.3.1.1 Choosing the Agent's Belief Revision Operator

You can choose a belief revision operator for an <u>Agent (3.3)</u> when you are adding a new agent or editing an existing one through the <u>Agents Table Input Dialog (5.1.3.1)</u>.

The interactive component used to specify the belief revision operator is a drop down menu as shown below. Using the drop down menu you can select which belief revision operator you would like to use for the <u>Agent (3.3)</u>.

Some belief revision operators require additional input to work properly so when they are selected, some more input controls will appear below the drop down menu as shown below. Follow the on-screen instructions to configure these belief revision operators.

5.1.4 Display Mode Drop-Down Menu

The <u>Display Mode Drop-Down Menu (5.1.4)</u> is located near the bottom left of the <u>Announcement Finder Window (5.1)</u> as shown above.

Changing the value in this control changes the way belief states for all agents are displayed:

• *Default* – belief states are displayed the way they were inputted into the application:

• *Models* – belief states are displayed as a set of states where each state in the set is displayed on its own line:

• Disjunctive Normal Form – The application attempts to express each belief state as a disjunction of conjunctions in their most simple form:

• Full Disjunctive Normal Form – The application appends to express each belief state as a disjunction of conjunctions where each conjunction involves every known variable:

5.1.5 Cancel, Find Announcement and Commit Buttons

The Cancel, Find announcement and Commit buttons are located near the bottom right of the Announcement Finder Window (5.1):

• Find Announcement – begins computation of an announcement that when all agents revise their belief state by, their resulting belief state would satisfy their target belief state. Once an

announcement has been computed, it will be displayed on the bottom left of the Announcement Finder Window (5.1), below the Display Mode Drop-Down Menu (5.1.4):

- Cancel stops the computing of an announcement. The button will be enabled while the application is computing an announcement. It is disabled otherwise.
- Commit when an announcement is found, a preview of the revised belief states of each agent is displayed in the *Revised belief state* column. Pressing *Commit* will make the agents adopt the revised belief state as their current belief state.

5.2 Definitions Window

The <u>Definitions Window (5.2)</u> can be opened from the <u>Announcement Finder Window (5.1)</u> via <u>Window</u> > <u>Definitions</u> as shown on the left.

5.2.1 File Menu

The File Menu (5.2.1) lets you:

- Save the current list of Definitions (3.2) to a text file.
- Load a list of <u>Definitions (3.2)</u> from a save file into the program. This will overwrite all existing definitions.
- Close the window.

5.2.2 Definitions Table

The <u>Definitions Table (5.2.2)</u> is an <u>Editable Table View (4)</u> which allows you to view and modify the ordered list of <u>Definition (3.2)</u>. The input dialog used by the <u>Definitions Table (5.2.2)</u> is the <u>Definitions Table Input Dialog (5.2.2.1)</u>.

The columns of this table include:

- *Proposition* the propositional logic sentence that an agent's belief state must satisfy before performing the definition's associated *behavior*.
- Behavior the agent behavior that an agent shall exhibit if its belief state satisfies the definition's proposition.

5.2.2.1 Definitions Table Input Dialog

The <u>Definitions Table Input Dialog (5.2.2.1)</u> is shown on the left. It has a couple of interactive components:

Proposition – enter the propositional sentence that an agent's belief state must satisfy before executing this behavior (see <u>Propositional Logic Sentence Input Syntax (6)</u>).

Behavior – a drop-down menu where you can select various behaviors the agent should perform:

Some behavior options require additional inputs in order to work properly, so when they are selected, extra interactive components will appear below the *Behavior Drop-Down Menu*. Currently, only the *Guard* and *Patrol* behavior options require additional inputs.

When the *Guard* behavior is selected, a few extra controls appear below the *Behavior Drop-Down Menu*:

X position – the x position that the agent should move to. This control takes a signed integer as input.

Y position – the y position that the agent should move to. This control takes a signed integer as input.

Direction – the direction that the agent should turn to face once it reaches the specified x y coordinates.

When the *Patrol* option is selected, an <u>Editable Table View (4)</u> appears below the *Behavior Drop-Down Menu*. The table view is used to edit a list of waypoints the agent should visit:

Waypoints table – an Editable Table View (4) used to view and modify a list of waypoints. The input dialog used by this table view is the Waypoints Table Input Dialog (5.2.2.1.1).

5.2.2.1.1 Waypoints Table Input Dialog

5.3 Obstacles Window

The <u>Obstacles Window (5.3)</u> can be opened from the <u>Announcement Finder Window (5.1)</u> via <u>Window</u> > <u>Obstacles</u> as shown on the left.

5.3.1 File Menu

The File Menu (5.3.1) lets you:

- Save the current list of Obstacles (3.1) to a text file.
- Load a list of Obstacles (3.1) from a save file into the program. This will overwrite all existing obstacles.
- Close the window.

5.3.2 Obstacles Table

The Obstacles Table (5.3.2) is an Editable Table View (4) which allows you to view and modify the list of Obstacles (3.1). The input dialog used by the Obstacles Table (5.3.2) is the Obstacles Table Input Dialog (5.3.3).

The columns of this table include:

- x1 x position of first point in the Obstacle (3.1).
- y1 y position of first point in the Obstacle (3.1).
- x2 x position of second point in the Obstacle (3.1).
- y2 y position of second point in the Obstacle (3.1).

5.3.3 Obstacles Table Input Dialog

An <u>Obstacle Table Input Dialog (3.3.3)</u> is shown to the left. It is used by the <u>Obstacles Table (5.3.2)</u> when creating a new or editing an existing <u>Obstacle (3.1)</u> object. It has a few input fields:

Position 1 x – Specifies the x position of the first point of the Obstacle (3.1). It takes a signed integer as input.

Position 1 y – Specifies the y position of the first point of the Obstacle (3.1). It takes a signed integer as input.

Position 2 x – Specifies the x position of the second point of

the Obstacle (3.1). It takes a signed integer as input. Position 2 y – Specifies the y position of the second point of the Obstacle (3.1). It takes a signed integer as input.

5.4 Simulation Window

The <u>Simulation Window (5.4)</u> can be opened from the <u>Announcement Finder Window (5.1)</u> via <u>Window > Simulation</u> as shown on the left.

5.4.1 File Menu

The File Menu (5.4.1) lets you:

• Close the window.

5.4.2 Simulation

- The <u>Simulation Window (5.4)</u> is used to observe the behavior of agents and how they react to changes in their belief states. This is the origin; coordinate x=0 and y=0.
- The length of every interval is exactly 1 unit.
- This is coordinate x=3 and y=2.
- You can move the viewport by clicking and dragging in the simulation area.

6 Propositional Logic Sentence Input Syntax

There are two kinds of symbols in the **Propositional Logic Sentence Input Syntax (6)**:

- Operands
- Operators

6.1 Operands

Name	Description	Input Symbol
Variable	An atomic proposition that may evaluate to true or false depending on the given state.	 Any combination of letters and numbers Case insensitive Must start with a letter Examples: p, patrol, abc123, guardGateA,
Tautology	An atomic variable that evaluates to true in every state.	• 1
Contradiction	An atomic proposition that evaluates to false in every state.	• 0

6.2 Operators

Name	Description	Input Symbol	Example
Implication (→)	$p\rightarrow q$ is true in all cases except for the case that p is true and q is false.	• then	• p then q
Equivalence (↔)	p⇔q is true only when both p and q are true or both p and q are false.	• iff	• p iff q
Negation (¬)	¬p is true only when p is false.	• -	• -q
Conjunction (A)	p∧q is true only when both p and q are true.	• and	• p and q
Disjunction (V)	pvq is true only when p is true or q is true or both p and q are true.	• or	• p or q
Exclusive Disjunction (⊕)	$p \bigoplus q$ is true only when either p or q is true, but not both.	• xor	• p xor q

6.3 Examples

- variable
- negated
- p iff -q xor r
- -abc123 or p90x
- -(p and q) then r
- guardGateA xor patrol