

Grokking: Generalization beyond overfitting on small algorithmic datasets

Докладчик:

Рецензент:

Хакер:

Воробьев Николай

Лишуди Дмитрий

Асланов Алишер

Введение

Grokking – это феномен внезапного появления у модели обобщающей способности после длительного переобучения

Ограничения и особенности

Данные

- синтетические таблицы
- небольшой размер
- на вход подаем токены

Модель

- трансформер (2 слоя)
- 400к параметров

Пример данных

*	а	b	С	d	е
а	а	d	?	С	d
b	С	d	d	а	С
С	?	е	d	b	d
d	а	?	?	b	С
е	b	b	С	?	а

Эксперименты

Бинарные операции

Параметры обучения

Визуализация результатов

Figure 3: Left. t-SNE projection of the output layer weights from a network trained on S_5 . We see clusters of permutations, and each cluster is a coset of the subgroup $\langle (0,3)(1,4), (1,2)(3,4) \rangle$ or one of its conjugates. Right. t-SNE projection of the output layer weights from a network trained on modular addition. The lines show the result of adding 8 to each element. The colors show the residue of each element modulo 8.

Интерпретация

Phase changing: примеры

Phase Change in 5 Digit Addition Infinite Data Training Curve

Repeated Subsequence Prediction Infinite Data Training

Phase changing: наблюдение

Смена фазы на обучающей и тестовой выборке

Train + Test Loss curves for modular addition trained on 95% of the data

Modular addition mod 113 loss curve, trained on 95% of the data

Phase changing: наблюдение

Смена фазы на обучающей и тестовой выборке

Аналогичное поведение на других задачах!

Train + Test Loss curves for modular addition trained on 95% of the data

Modular addition mod 113 loss curve, trained on 95% of the data

Идея

Grokking = Phase changing + Regularisation + Limited Data

Grokking = Phase changing + Regularisation + Limited Data

Phase Change in 5 Digit Addition Infinite Data Training Curve

Phase Change in 5 Digit Addition Finite Data Training Curve (Linear Scale)

Phase changing: интуиция

Фазовые изменения присущи композициям

Phase changing: интуиция

Фазовые изменения присущи композициям

MODELS WITH MORE THAN ONE LAYER HAVE AN ABRUPT IMPROVEMENT IN IN-CONTEXT LEARNING

In-context learning curves for small transformers (figure copied from Anthropic's Induction Heads paper) - 2L and 3L models develop induction heads and show a phase change, 1L models do not

Grokking: интуиция

- Модель хочет запомнить выборку
- Много данных → сильно проще обобщить
- Мало данных → проще запомнить
- Среднее количество данных → grokking

Источники

- Оригинальная статья на arxiv [en]: https://arxiv.org/pdf/2201.02177.pdf
- Постер с воркшопа [en]:
 https://mathai-iclr.github.io/papers/posters/MATHAI_29_poster.png
- Блог пост [en]:
 https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking