第四章 最优性理论

修贤超

https://xianchaoxiu.github.io

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

最优化问题解的存在性

■ 考虑优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $x \in \mathcal{X}$

- 首先分析最优解的存在性, 然后考虑如何求出其最优解
- 回顾 Weierstrass 定理, 即定义在紧集上的连续函数一定存在最大 (最小) 值点
- 而在许多实际问题中, 定义域可能不是紧的, 目标函数也不一定连续

推广的 Weierstrass 定理

- 若函数 $f: \mathcal{X} \to (-\infty, +\infty]$ 适当且闭, 且以下条件中任意一个成立
 - \bigcirc dom $f = \{x \in \mathcal{X} : f(x) < +\infty\}$ 是有界的
 - \Box 存在一个常数 $\bar{\gamma}$ 使得下水平集

$$C_{\bar{\gamma}} = \{ x \in \mathcal{X} \mid f(x) \leq \bar{\gamma} \}$$

是非空且有界的

 $lue{x}$ f 是强制的, 即对于任一满足 $\|x^k\| \to +\infty$ 的点列 $\{x^k\} \subset \mathcal{X}$, 都有

$$\lim_{k \to \infty} f(x^k) = +\infty,$$

则函数 f 的最小值点集 $\{x \in \mathcal{X} \mid f(x) \leq f(y), \forall y \in \mathcal{X}\}$ 非空且紧

注记

- \blacksquare 三个条件在本质上都是保证 f(x) 的最小值不能在无穷远处取到
- 定理仅要求 f(x) 为适当且闭的函数, 并不需要 f(x) 的连续性
- 例子 当定义域不是有界闭集时,对于强制函数 $f(x)=x^2, x\in\mathcal{X}=\mathbb{R}$,其全局最优解一定存在
- 例子 对于适当且闭的函数 $f(x) = e^{-x}, x \in \mathcal{X} = \mathbb{R}$, 不满足三个条件中任意一个, 因此不能断言其全局极小值点存在

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

无约束可微问题的最优性理论

■ 无约束可微优化问题通常表示为

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

- 验证一个点是否为极小值点, 称其为最优性条件
 - □ 一阶最优性条件
 - □ 二阶最优性条件

下降方向

■ 对于可微函数 f 和点 $x \in \mathbb{R}^n$, 如果存在向量 d 满足

$$\nabla f(x)^{\top} d < 0$$

那么称 d 为 f 在点 x 处的一个下降方向

- 一阶最优性条件是利用梯度 (一阶) 信息来判断给定点的最优性
- 如果 f 在点 x 处存在一个下降方向 d, 那么对于任意的 T > 0, 存在 $t \in (0,T]$, 使得

$$f(x + td) < f(x)$$

因此, 在局部最优点处不能有下降方向

一阶必要条件

■ 假设 f 在全空间 \mathbb{R}^n 可微. 如果 x^* 是一个局部极小点, 那么

$$\nabla f(x^*) = 0$$

证明 任取 $v \in \mathbb{R}^n$, 考虑 f 在点 $x = x^*$ 处的泰勒展开

$$f(x^* + tv) = f(x^*) + tv^{\top} \nabla f(x^*) + o(t)$$

整理得

$$\frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) + o(1)$$

根据 x^* 的最优性, 在上式中分别对 t 取点 0 处的左、右极限可知

$$\lim_{t \to 0^{+}} \frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) \ge 0$$

$$\lim_{t \to 0^{-}} \frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) \le 0$$

即对任意的 v 有 $v^{\top}\nabla f(x^*)=0$, 由 v 的任意性知 $\nabla f(x^*)=0$

二阶最优性条件

- 称满足 $\nabla f(x) = 0$ 的点 x 为 f 的稳定点 (或驻点、临界点)
- 对于 $f(x) = x^3$, 满足 f'(x) = 0 的点为 $x^* = 0$, 但其不是局部最优解, 因此仅仅是必要条件, 还需要加一些额外的限制条件, 才能保证最优解的充分性
- 假设 f 在点 x 的一个开邻域内是二阶连续可微的, 考虑

$$f(x+d) = f(x) + \nabla f(x)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x) d + o(\|d\|^2)$$

■ 当一阶必要条件满足时, 简化为

$$f(x+d) = f(x) + \frac{1}{2}d^{\top}\nabla^{2}f(x)d + o(\|d\|^{2})$$

二阶最优性条件

- 假设 f 在点 x 的一个开邻域内是二阶连续可微的,则以下最优性条件成立
 - \square 二阶必要条件 若 x^* 是 f 的一个局部极小点, 则

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0$$

□ 二阶充分条件 若满足

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succ 0$$

则 x^* 是 f 的一个局部极小点

■ 对于给定点的全局最优性判断还需要借助实际问题的性质

二阶最优性条件

■ 必要性 若 $\nabla^2 f(x^*)$ 有负的特征值 $\lambda_- < 0$, 设 $\nabla^2 f(x^*)d = \lambda_- d$, 则

$$\frac{f(x^* + d) - f(x^*)}{\|d\|^2} = \frac{1}{2} \frac{d^\top}{\|d\|} \nabla^2 f(x^*) \frac{d}{\|d\|} + o(1) = \frac{1}{2} \lambda_- + o(1)$$

当 ||d|| 充分小时, $f(x^* + d) < f(x^*)$, 这和点 x^* 的最优性矛盾

■ 充分性 由 $\nabla f(x^*) = 0$ 时的二阶展开,

$$\frac{f(x^*+d) - f(x^*)}{\|d\|^2} = \frac{d^\top \nabla^2 f(x^*) d + o(\|d\|^2)}{\|d\|^2} \ge \frac{1}{2} \lambda_{\min} + o(1).$$

当 ||d|| 充分小时有 $f(x^* + d) \ge f(x^*)$, 即二阶充分条件成立

实例: 实数情形的相位恢复

■考虑

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \sum_{i=1}^m r_i^2(x)$$

其中
$$r_i(x) = (a_i^{\top} x)^2 - b_i^2, i = 1, 2, \cdots, m$$

■ 计算梯度和的海瑟矩阵

$$\nabla f(x) = 2\sum_{i=1}^{m} r_i(x) \nabla r_i(x) = 4\sum_{i=1}^{m} ((a_i^{\top} x)^2 - b_i^2) (a_i^{\top} x) a_i$$
$$\nabla^2 f(x) = \sum_{i=1}^{m} (12(a_i^{\top} x)^2 - 4b_i^2) a_i a_i^{\top}$$

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

无约束不可微问题的最优性理论

■ 仍考虑问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

- = f(x) 是不可微函数,例如 $||x||_1$
- 目标函数可能不存在梯度和海瑟矩阵

凸优化问题一阶充要条件

- 假设 f 是适当且凸的函数, 则 x^* 为全局极小点当且仅当 $0 \in \partial f(x^*)$
 - □ 必要性 因为 x* 为全局极小点, 所以

$$f(y) \ge f(x^*) = f(x^*) + 0^{\top} (y - x^*), \quad \forall y \in \mathbb{R}^n$$

因此 $0 \in \partial f(x^*)$

$$f(y) \ge f(x^*) + 0^{\top} (y - x^*) = f(x^*), \quad \forall y \in \mathbb{R}^n$$

因而 x^* 为一个全局极小点

复合优化问题的一阶必要条件

■ 考虑一般复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

其中 f 为光滑函数 (可能非凸), h 为凸函数 (可能非光滑)

■ 定理 4.5 令 x* 为复合优化问题的一个局部极小点, 那么

$$-\nabla f(x^*) \in \partial h(x^*)$$

其中 $\partial h(x^*)$ 为凸函数 h 在点 x^* 处的次梯度集合

■ 由于目标函数可能是整体非凸的,因此一般没有一阶充分条件

实例: ℓ_1 范数优化问题

■考虑

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + \mu ||x||_1$$

■ ||x||1 不是可微的, 但可以计算其次微分

$$\partial_i \|x\|_1 = \begin{cases} \{1\}, & x_i > 0 \\ [-1, 1], & x_i = 0 \\ \{-1\}, & x_i < 0 \end{cases}$$

■ 若 x^* 是局部最优解, 则 $-\nabla f(x^*) \in \mu \partial \|x^*\|_1$, 即

$$\nabla_i f(x^*) = \begin{cases} -\mu, & x_i^* > 0 \\ a \in [-\mu, \mu], & x_i^* = 0 \\ \mu, & x_i^* < 0 \end{cases}$$

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

对偶理论

■ 一般的约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $c_i(x) \le 0, \ i \in \mathcal{I}$

$$c_i(x) = 0, \ i \in \mathcal{E}$$

■ 可行域定义为

$$\mathcal{X} = \{ x \in \mathbb{R}^n \mid c_i(x) \le 0, \ i \in \mathcal{I} \ \mathbf{\underline{H}} \ c_i(x) = 0, \ i \in \mathcal{E} \}$$

■ 通过将 X 的示性函数加到目标函数中可以得到无约束优化问题, 但是转化后问题的目标函数是不连续的、不可微的以及不是有限的

拉格朗日函数

■ 拉格朗日函数 $L: \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) = f(x) + \sum_{i \in \mathcal{I}} \lambda_i c_i(x) + \sum_{i \in \mathcal{E}} \nu_i c_i(x)$$

- \square λ_i 为第 i 个不等式约束对应的拉格朗日乘子
- ν_i 为第 i 个等式约束对应的拉格朗日乘子
- 拉格朗日对偶函数 $g: \mathbb{R}^m_+ \times \mathbb{R}^p \to [-\infty, +\infty)$

$$g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)$$

= $\inf_{x \in \mathbb{R}^n} (f(x) + \sum_{i \in \mathcal{I}} \lambda_i c_i(x) + \sum_{i \in \mathcal{E}} \nu_i c_i(x))$

拉格朗日对偶函数

■ 引理 4.1 若 $\lambda \geq 0$, 则 $g(\lambda, \nu) \leq p^*$

证明 若 $\tilde{x} \in \mathcal{X}$. 则

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) \le L(\tilde{x}, \lambda, \nu) \le f(\tilde{x})$$

对 \tilde{x} 取下界得

$$g(\lambda, \nu) \le \inf_{\tilde{x} \in \mathcal{X}} f(\tilde{x}) = p^*$$

拉格朗日对偶问题

■ 拉格朗日对偶问题

$$\max_{\lambda \ge 0, \nu} g(\lambda, \nu) = \max_{\lambda \ge 0, \nu} \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)$$

- \square 称 λ 和 ν 为对偶变量, 设最优值为 q^*
- □ 拉格朗日对偶问题是一个凸优化问题

例子 标准形式线性规划及其对偶

$$\begin{aligned} & \min & c^\top x & \max & -b^\top \nu \\ & \text{s.t.} & Ax = b & \text{s.t.} & A^\top \nu + c \geq 0 \\ & & x \geq 0 \end{aligned}$$

弱对偶性与强对偶性

- 弱对偶性 $d^* \le p^*$
 - □ 对凸问题与非凸问题都成立
 - □ 可导出复杂问题的非平凡下界, 例如, SDP 问题

$$\max \quad -\mathbf{1}^{\top} \nu$$

s.t.
$$W + \operatorname{diag}(\nu) \succeq 0$$

给出了二路划分问题的一个下界

min
$$x^{\top}Wx$$
 s.t. $x_i^2 = 1, i = 1, \dots, n$

- 强对偶性 $d^* = p^*$
 - □ 对一般问题而言通常不成立
 - □ (通常) 对凸问题成立
 - □ 称保证凸问题强对偶性成立的条件为约束品性

适当锥与广义不等式

- 称满足如下条件的锥 K 为适当锥
 - □ K 是凸锥
 - □ K 是闭集
 - □ K 是实心的 (solid), 即 int $K \neq \emptyset$
 - \square K 是尖的 (pointed), 即对任意非零向量 x, 若 $x \in K$, 则 $-x \notin K$
- 适当锥 K 可以诱导出广义不等式, 它定义了全空间上的偏序关系

$$x \leq_K y \Leftrightarrow y - x \in K$$

- 当 $K = \mathbb{R}^n_+$ 时, $x \preceq_K y$ 是我们之前经常使用的记号 $x \leq y$
- 当 $K = S_+^n$ 时, $X \leq_K Y$ 表示 $Y X \succeq 0$, 即 Y X 是半正定矩阵

对偶锥与拉格朗日乘子

 \blacksquare \diamondsuit K 为全空间 Ω 的子集, 称集合

$$K^* = \{ y \in \Omega \mid \langle x, y \rangle \ge 0, \ \forall x \in K \}$$

为其对偶锥

注记

- 假设非负锥 $K=\mathbb{R}^n_+, \Omega=\mathbb{R}^n$, 定义 $\langle x,y\rangle=x^\top y$, 那么 $K^*=\mathbb{R}^n_+$
- 假设半正定锥 $K = \mathcal{S}_+^n$, $\Omega = \mathcal{S}^n$, 定义

$$\langle X, Y \rangle = \text{Tr}(XY^{\top})$$

可以证明

$$\langle X, Y \rangle \ge 0, \ \forall X \in \mathcal{S}^n_+ \quad \Leftrightarrow \quad Y \in \mathcal{S}^n_+$$

即半正定锥的对偶锥仍为半正定锥

■ 称满足 $K = K^*$ 的锥 K 为<mark>自对偶锥</mark>

广义不等式约束优化问题拉格朗日函数的构造

■ 广义不等式约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $c_i(x) \leq_{K_i} 0, i \in \mathcal{I}$

$$c_i(x) = 0, i \in \mathcal{E}$$

■ 拉格朗日函数

$$L(x, \lambda, \nu) = f(x) + \sum_{i \in \mathcal{I}} c_i(x)\lambda_i + \sum_{i \in \mathcal{E}} \nu_i c_i(x), \quad \lambda_i \in K_i^*, \ \nu_i \in \mathbb{R}$$

- 容易验证 $L(x, \lambda, \nu) \leq f(x), \ \forall \ x \in \mathcal{X}, \ \lambda_i \in K_i^*, \ \nu_i \in \mathbb{R}$
- 对偶函数 $g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)$, 对偶问题为

$$\max_{\lambda_i \in K_i^*, \ \nu_i \in \mathbb{R}} \quad g(\lambda, \nu)$$

实例: 线性规划问题的对偶

■ 考虑线性规划问题

$$\begin{aligned} \min_{x} & c^{\top} x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{aligned}$$

■拉格朗日函数

$$L(x, s, \nu) = c^{\top} x + \nu^{\top} (Ax - b) - s^{\top} x = -b^{\top} \nu + (A^{\top} \nu - s + c)^{\top} x$$

■ 对偶函数

$$g(s,\nu) = \inf_{x} L(x,s,\nu) = \begin{cases} -b^{\top}\nu, & A^{\top}\nu - s + c = 0 \\ -\infty, &$$
其他

实例: 线性规划问题的对偶

■ 对偶问题

$$\max_{s,\nu} \quad -b^{\top}\nu \qquad \qquad \max_{s,y} \quad b^{\top}y$$
 s.t.
$$A^{\top}\nu - s + c = 0 \qquad \stackrel{y = -\nu}{\Leftrightarrow} \qquad \text{s.t.} \quad A^{\top}y + s = c$$

$$s \ge 0 \qquad \qquad s \ge 0$$

■ 若保留约束 $x \ge 0$, 则拉格朗日函数为

$$L(x,y) = c^{\mathsf{T}}x - y^{\mathsf{T}}(Ax - b) = b^{\mathsf{T}}y + (c - A^{\mathsf{T}}y)^{\mathsf{T}}x$$

■ 对偶问题需要将 $x \ge 0$ 添加到约束里

$$\max_{y} \left\{ \inf_{x} \ b^{\top} y + (c - A^{\top} y)^{\top} x \quad \text{s.t.} \quad x \ge 0 \right\} \quad \Rightarrow \quad \max_{y} \quad b^{\top} y$$

$$\text{s.t.} \quad A^{\top} y \le c$$

实例: 线性规划问题的对偶

■ 将 $\max b^{\top}y$ 改写为 $\min -b^{\top}y$, 对偶问题的拉格朗日函数为

$$L(y,x) = -b^{\mathsf{T}}y + x^{\mathsf{T}}(A^{\mathsf{T}}y - c) = -c^{\mathsf{T}}x + (Ax - b)^{\mathsf{T}}y$$

■ 得到对偶函数

$$g(x) = \inf_{y} L(y, x) = \begin{cases} -c^{\top} x, & Ax = b \\ -\infty, &$$
其他

■ 相应的对偶问题是

$$\max_{x} - c^{\top} x$$
s.t. $Ax = b$

$$x > 0$$

■ 该问题与原始问题完全等价,表明线性规划问题与其对偶问题互为对偶

实例: ℓ_1 正则化问题的对偶

■考虑

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1$$

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} ||r||^2 + \mu ||x||_1$$

s.t.
$$r = Ax - b$$

■拉格朗日函数

$$L(x, r, \lambda) = \frac{1}{2} ||r||^2 + \mu ||x||_1 - \langle \lambda, Ax - b - r \rangle$$

= $\frac{1}{2} ||r||^2 + \lambda^{\top} r + \mu ||x||_1 - (A^{\top} \lambda)^{\top} x + b^{\top} \lambda$

实例: ℓ_1 正则化问题的对偶

■ 对偶函数

$$g(\lambda) = \inf_{x,r} \ L(x,r,\lambda) = \begin{cases} b^\top \lambda - \frac{1}{2} \|\lambda\|^2, & \|A^\top \lambda\|_\infty \le \mu \\ -\infty, &$$
其他

■ 对偶问题

$$\max_{\lambda} \quad b^{\top} \lambda - \frac{1}{2} \|\lambda\|^{2}$$

s.t.
$$\|A^{\top} \lambda\|_{\infty} \le \mu$$

实例: 半定规划问题的对偶问题

■考虑

$$\min_{X \in \mathcal{S}^n} \langle C, X \rangle
\text{s.t.} \quad \langle A_i, X \rangle = b_i, \ i = 1, 2, \dots, m
\quad X \succeq 0$$

■拉格朗日函数

$$L(X, y, S) = \langle C, X \rangle - \sum_{i=1}^{m} y_i (\langle A_i, X \rangle - b_i) - \langle S, X \rangle, \quad S \succeq 0$$

半定规划对偶问题的对偶问题

■ 对偶函数

$$g(y,S) = \inf_{X} L(X,y,S) = \begin{cases} b^{\top}y, & \sum_{i=1}^{m} y_{i}A_{i} - C + S = 0\\ -\infty, &$$
其他

■ 对偶问题

$$\min_{y \in \mathbb{R}^m} -b^{\top} y$$
s.t.
$$\sum_{i=1}^m y_i A_i - C + S = 0$$

$$S \succeq 0$$

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

切锥

■ 给定可行域 \mathcal{X} 及 $x \in \mathcal{X}$, 若存在序列 $\{z_k\}_{k=1}^{\infty} \subset \mathcal{X}, \lim_{k \to \infty} z_k = x$ 以及正标 量序列 $\{t_k\}_{k=1}^{\infty}, t_k \to 0$ 满足

$$\lim_{k \to \infty} \frac{z_k - x}{t_k} = d$$

则称向量 d 为 \mathcal{X} 在点 x 处的一个切向量

■ 所有点 x 处的切向量构成的集合称为切锥, 用 $T_{\mathcal{X}}(x)$ 表示

几何最优性条件

■一般优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $c_i(x) \le 0, \ i \in \mathcal{I}$

$$c_i(x) = 0, \ i \in \mathcal{E}$$

■ 定理 4.6 假设可行点 x^* 是上述问题的一个局部极小点. 如果 f(x) 和 $c_i(x), i \in \mathcal{I} \cup \mathcal{E}$ 在点 x^* 处是可微的, 那么

$$d^{\top} \nabla f(x^*) \ge 0, \quad \forall d \in T_{\mathcal{X}}(x^*)$$

等价于

$$T_{\mathcal{X}}(x^*) \cap \{d \mid \nabla f(x^*)^{\top} d < 0\} = \emptyset$$

线性化可行锥

■ 定义 4.6 对于可行点 $x \in \mathcal{X}$, 定义积极集 $\mathcal{A}(x) = \mathcal{E} \cup \{i \in \mathcal{I} \mid c_i(x) = 0\}$, 点 x 处的线性化可行方向锥定义为

$$\mathcal{F}(x) = \left\{ d \middle| d^{\top} \nabla c_i(x) = 0, \ \forall \ i \in \mathcal{E} \\ d^{\top} \nabla c_i(x) \le 0, \ \forall \ i \in \mathcal{A}(x) \cap \mathcal{I} \right\}$$

线性化可行锥包含切锥

■ 命题 4.1 设 $c_i(x), i \in \mathcal{E} \cup \mathcal{I}$ 一阶连续可微, 则对任意可行点 x 有

$$T_{\mathcal{X}}(x) \subseteq \mathcal{F}(x)$$

■ 反之, 切锥未必包含线性化可行锥

$$\min_{x \in \mathbb{R}} \quad f(x) = x$$
 s.t.
$$c(x) = -x + 3 \le 0$$

- 则 $T_{\mathcal{X}}(3) = \{d \mid d \geq 0\}, \mathcal{F}(3) = \{d \mid d \geq 0\},$ 于是 $T_{\mathcal{X}}(3) = \mathcal{F}(3)$
- 将问题的约束变形为

$$c(x) = (-x+3)^3 \le 0$$

因为可行域不变, 故点 $x^*=3$ 处, 切锥 $T_{\mathcal{X}}(x^*)=\{d\mid d\geq 0\}$ 不变. 由 $c'(x^*)=-3(x^*-3)^2=0$ 知线性化可行锥 $\mathcal{F}(x^*)=\{d\mid d\in\mathbb{R}\}$

■ 因此 $\mathcal{F}(x^*) \supset T_{\mathcal{X}}(x^*)$ (严格包含)

约束品性的引入

- 线性化可行方向锥 $\mathcal{F}(x)$ 受可行域 \mathcal{X} 代数表示方式的影响
- 切锥 $T_{\mathcal{X}}(x)$ 仅由可行域 \mathcal{X} 决定
- 线性可行化方向锥容易计算, 但不能反映可行域 X 的本质特征
- 切锥能反映可行域 *X* 的本质特征, 但不容易计算
- 引入约束品性来沟通两者,确保最优点 x^* 处 $T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$,从而可以用 $\mathcal{F}(x)$ 取代 $T_{\mathcal{X}}(x)$

约束品性

- 定义 4.7 给定可行点x 及相应的积极集 $\mathcal{A}(x)$. 如果积极集对应的约束函数的梯度, 即 $\nabla c_i(x)$, $i \in \mathcal{A}(x)$ 是线性无关的, 则称线性无关约束品性 (LICQ) 在点 x 处成立
- 定义 4.8 给定可行点 x 及积极集 $\mathcal{A}(x)$. 如果存在一个向量 $w \in \mathbb{R}^n$, 使得

$$\nabla c_i(x)^\top w < 0, \quad \forall i \in \mathcal{A}(x) \cap \mathcal{I}$$

 $\nabla c_i(x)^\top w = 0, \quad \forall i \in \mathcal{E}$

并且等式约束对应的梯度集 $\{\nabla c_i(x),\ i\in\mathcal{E}\}$ 是线性无关的, 则称点 x 处 Mangasarian-Fromovitz 约束品性 (MFCQ) 成立

■ 定义 4.9 若所有的约束函数 $c_i(x), i \in \mathcal{I} \cup \mathcal{E}$ 都是线性的, 则称线性约束品性成立

Karush-Kuhn-Tucker(KKT) 条件: 引入

■ 回顾几何最优性条件

$$x^*$$
局部极小 $\Leftrightarrow T_{\mathcal{X}}(x^*) \cap \{d \mid \nabla f(x^*)^{\top} d < 0\} = \emptyset$

■ $T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$ 时 (约束品性成立), 上述条件变为

$$\begin{cases}
d^{\top} \nabla f(x^*) < 0, \\
d^{\top} \nabla c_i(x^*) = 0, i \in \mathcal{E}, \\
d^{\top} \nabla c_i(x^*) \le 0, i \in \mathcal{A}(x^*) \cap \mathcal{I}
\end{cases} = \varnothing$$

■ 上式依然难以验证, 但可使用 Farkas 引理进行化简

Farkas 引理

引理 4.3 设p 和 q 为两个非负整数, 给定 \mathbb{R}^n 中的向量 $\{a_i\}_{i=1}^p, \{b_i\}_{i=1}^q$ 和 c, 则满足

$$d^{\top} a_i = 0, \ i = 1, 2, \cdots, p$$

 $d^{\top} b_i \ge 0, \ i = 1, 2, \cdots, q$
 $d^{\top} c < 0$

的 d 不存在当且仅当存在 $\{\lambda_i\}_{i=1}^p$ 和 $\mu_i \geq 0, i = 1, 2, \cdots, q$, 使得

$$c = \sum_{i=1}^{p} \lambda_i a_i + \sum_{i=1}^{q} \mu_i b_i$$

从 Farkas 引理到 KKT 条件

■ 由 Farkas 引理, 取 $a_i = \nabla c_i(x^*), i \in \mathcal{E}, b_i = \nabla c_i(x^*), i \in \mathcal{A}(x^*) \cap \mathcal{I}$ 以及 $c = -\nabla f(x^*), \text{ 则 } T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$ 时几何最优性条件等价于

$$-\nabla f(x^*) = \sum_{i \in \mathcal{E}} \lambda_i^* \nabla c_i(x^*) + \sum_{i \in \mathcal{A}(x^*) \cap \mathcal{I}} \lambda_i^* \nabla c_i(x^*)$$

■ 如果补充定义 $\lambda_i^* = 0, i \in \mathcal{I} \setminus \mathcal{A}(x^*)$, 那么

$$-\nabla f(x^*) = \sum_{i \in \mathcal{I} \cup \mathcal{E}} \lambda_i^* \nabla c_i(x^*) \quad \Rightarrow \quad -\text{阶最优性条件}$$

■ 对于任意的 $i \in \mathcal{I}$, 有

$$\lambda_i^* c_i(x^*) = 0 \Rightarrow 互补松弛条件$$

■ x* 称为 KKT 点, (x*, \lambda*) 称为 KKT 对

KKT 条件

■ 定理 4.7 假设x* 是一般优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $c_i(x) \le 0, \ i \in \mathcal{I}$

$$c_i(x) = 0, \ i \in \mathcal{E}$$

的一个局部最优点. 如果 $T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$ 成立, 那么存在拉格朗日乘子 λ_i^* 使得如下条件成立

稳定性条件
$$\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_{i \in \mathcal{I} \cup \mathcal{E}} \lambda_i^* \nabla c_i(x^*) = 0$$

原始可行性条件 $c_i(x^*) = 0, \ \forall i \in \mathcal{E}$ 原始可行性条件 $c_i(x^*) < 0, \ \forall i \in \mathcal{I}$ 对偶可行性条件 $\lambda_i^* > 0, \ \forall i \in \mathcal{I}$ 互补松弛条件 $\lambda_i^* c_i(x^*) = 0, \ \forall i \in \mathcal{I}$

二阶最优性条件: 引入

■ 若 x^* 是满足 KKT 条件的点, 假设 $T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$, 则 $\forall d \in \mathcal{F}(x^*)$,

$$d^{\top} \nabla f(x^*) = -\sum_{i \in \mathcal{E}} \underbrace{\lambda_i^* d^{\top} \nabla c_i(x^*)}_{= 0} - \sum_{i \in \mathcal{A}(x^*) \cap \mathcal{I}} \underbrace{\lambda_i^* d^{\top} \nabla c_i(x^*)}_{\leq 0} \geq 0,$$

- 一阶条件无法判断 x* 是否是最优值点
- 若 $d^{\mathsf{T}}\nabla f(x^*)=0$,则需用二阶信息来进一步判断可行域内的目标函数值

临界锥

■ 定义 4.10 设 (x^*, λ^*) 是满足 KKT 条件的 KKT 对, 定义临界锥为

$$\mathcal{C}(x^*, \lambda^*) = \{ d \in \mathcal{F}(x^*) \mid \nabla c_i(x^*)^\top d = 0, \ \forall i \in \mathcal{A}(x^*) \cap \mathcal{I} \ \stackrel{\text{def}}{=} \lambda_i^* > 0 \}$$

其中 $\mathcal{F}(x^*)$ 为点 x^* 处的线性化可行方向锥

- 临界锥是线性化可行方向锥 *F*(*x**) 的子集
- \bullet 当 $d \in \mathcal{C}(x^*, \lambda^*)$ 时, $\forall i \in \mathcal{E} \cup \mathcal{I}$ 有 $\lambda_i^* \nabla c_i(x^*)^\top d = 0$, 故

$$d^{\top} \nabla f(x^*) = \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^* d^{\top} \nabla c_i(x^*) = 0$$

二阶最优性条件

■ 定理 4.8 假设 x^* 是问题的一个局部最优解, 并且 $T_{\mathcal{X}}(x^*) = \mathcal{F}(x^*)$ 成立. 令 λ^* 为相应的拉格朗日乘子, 即 (x^*, λ^*) 满足 KKT 条件, 那么

$$d^{\top} \nabla^2_{xx} L(x^*, \lambda^*) d \ge 0, \quad \forall d \in \mathcal{C}(x^*, \lambda^*)$$

■ 定理 4.9 假设在可行点 x^* 处, 存在一个拉格朗日乘子 λ^* , 使得 (x^*, λ^*) 满足 KKT 条件. 如果

$$d^{\top} \nabla^2_{xx} L(x^*, \lambda^*) d > 0, \quad \forall d \in \mathcal{C}(x^*, \lambda^*), \ d \neq 0$$

那么 x* 为问题的一个严格局部极小解

■ 回顾无约束优化问题的二阶最优性条件

例子

■考虑

min
$$x_1^2 + x_2^2$$
 s.t. $\frac{x_1^2}{4} + x_2^2 - 1 = 0$

■ 拉格朗日函数为

$$L(x,\lambda) = x_1^2 + x_2^2 + \lambda(\frac{x_1^2}{4} + x_2^2 - 1)$$

■ 该问题可行域在任意一点 $x = (x_1, x_2)^{\mathsf{T}}$ 处的线性化可行方向锥为

$$\mathcal{F}(x) = \{ (d_1, d_2) \mid \frac{x_1}{4} d_1 + x_2 d_2 = 0 \}$$

因为只有一个等式约束且其对应函数的梯度非零, 故有 LICQ 成立, 于是 $\mathcal{F}(x)=T_{\mathcal{X}}(x)$. 若 (x,λ) 为 KKT 对, 由于无不等式约束, 故 $\mathcal{C}(x,\lambda)=(x)$

例子

■ 可以计算出其 4 个 KKT 对

$$(x^{\mathsf{T}}, \lambda) = (2, 0, -4), \quad (-2, 0, -4), \quad (0, 1, -1) \quad \text{fl} \quad (0, -1, -1)$$

■ 第一个 KKT 对 y = (2, 0, -4), 计算可得

$$\nabla^2_{xx} L(y) = \begin{bmatrix} 0 & 0 \\ 0 & -6 \end{bmatrix}, \quad \mathcal{C}(y) = \{ (d_1, d_2) \mid d_1 = 0 \}$$

取 d = (0,1), 则

$$d^{\top} \nabla_{xx}^2 L(y) d = -6 < 0$$

因此 y 不是局部最优点

例子

■ 类似地对第三个 KKT 对 z = (0, 1, -1), 计算可得

$$\nabla^2_{xx}L(z) = \begin{bmatrix} \frac{3}{2} & 0\\ 0 & 0 \end{bmatrix}, \quad \mathcal{C}(z) = \{(d_1, d_2) \mid d_2 = 0\}$$

对于任意的 $d = (d_1, 0)$ 且 $d_1 \neq 0$, 有

$$d^{\top} \nabla_{xx}^2 L(z) d = \frac{3}{2} d_1^2 > 0$$

因此 z 为一个严格局部最优点

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

带约束凸优化问题

■ 前述问题都可以写为

$$\min_{x \in \mathcal{D}} \quad f(x)$$
s.t. $c_i(x) \leq 0, \quad i = 1, 2, \cdots, m$

$$Ax = b$$

- $\blacksquare A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^p$ 是已知的
- f(x) 为适当的凸函数, $c_i(x)$ 是凸函数且 dom $c_i = \mathbb{R}^n$
- 集合 \mathcal{D} 表示自变量 x 的自然定义域, 即

$$\mathcal{D} = f = \{x \mid f(x) < +\infty\}.$$

■ 自变量 x 还受约束的限制, 定义可行域

$$\mathcal{X} = \{x \in \mathcal{D} \mid c_i(x) \le 0, i = 1, 2, \dots, m, Ax = b\}$$

Slater 约束品性与强对偶原理: 相对内点

■ 给定集合D, 记其仿射包为

affine
$$\mathcal{D} = \{ x \mid x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k, \ x_1, x_2, \dots, x_k \in \mathcal{D}, \ \sum_{i=1}^k \theta_i = 1 \}$$

■ 定义 4.11 集合 D 的相对内点集定义为

$$\operatorname{relint} \mathcal{D} = \{ x \in \mathcal{D} \mid \exists \ r > 0, \ \mathbf{\'e} \mathcal{B} \ B(x, r) \cap \operatorname{affine} \mathcal{D} \subseteq \mathcal{D} \}.$$

■ 相对内点是内点的推广

Slater 约束品性

■ 定义 4.12 若对凸优化问题

$$\min_{x \in \mathcal{D}} \quad f(x) \quad \text{ s.t. } \quad c_i(x) \leqslant 0, \ i = 1, 2, \dots, m, \quad Ax = b$$

存在 $x \in \operatorname{relint} \mathcal{D}$ 满足

$$c_i(x) < 0, \quad i = 1, 2, \dots, m, \quad Ax = b$$

则称对此问题 Slater 约束品性满足. 该约束品性也称为 Slater 条件

■ 定理 4.10 若凸优化问题满足 Slater 条件, 则强对偶原理成立

一阶充要条件

■ 定理 4.11 对于凸优化问题, 用 a_i 表示矩阵 A^{\top} 的第 i 列, ∂f , ∂c_i 表示次梯度, 如果 Slater 条件成立, 那么 x^* , λ^* 分别是原始, 对偶全局最优解当且仅当

稳定性条件
$$0 \in \partial f(x^*) + \sum_{i \in \mathcal{I}} \lambda_i^* \partial c_i(x^*) + \sum_{i \in \mathcal{E}} \lambda_i^* a_i$$
 原始可行性条件 $Ax^* = b, \ \forall i \in \mathcal{E}$ 原始可行性条件 $c_i(x^*) \leq 0, \ \forall i \in \mathcal{I}$ 对偶可行性条件 $\lambda_i^* \geq 0, \ \forall i \in \mathcal{I}$ 互补松弛条件 $\lambda_i^* c_i(x^*) = 0, \ \forall i \in \mathcal{I}$

关于充分性的评述

- 对于一般的约束优化问题, 当问题满足特定约束品性时, 我们知道 KKT 条件 是局部最优解处的必要条件
- 对于凸优化问题, 当 Slater 条件满足时, KKT 条件则变为局部最优解的充要条件 (根据凸性, 局部最优解也是全局最优解) 定理的充分性说明, 若能直接求解出凸优化问题的 KKT 对, 则其就是对应问题的最优解.
- Slater 条件的意义在于当问题最优解存在时, 其相应 KKT 条件也会得到满足

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

实例: 仿射空间的投影问题

■ 考虑

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} ||x - y||_2^2$$

s.t.
$$Ax = b$$

- 拉格朗日函数 $L(x,\lambda) = \frac{1}{2}||x-y||^2 + \lambda^{\top}(Ax-b)$
- Slater 条件成立, x^* 为一个全局最优解当且仅当存在 $\lambda^* \in \mathbb{R}^m$ 使得

$$\begin{cases} x^* - y + A^{\top} \lambda^* = 0 \\ Ax^* = b \end{cases}$$

实例: 仿射空间的投影问题

■ 由上述 KKT 条件第一式, 等号左右两边同时左乘 A 可得

$$Ax^* - Ay + AA^{\mathsf{T}}\lambda = 0 \quad \Rightarrow \quad \lambda^* = (AA^{\mathsf{T}})^{-1}(Ay - b)$$

■ 将 λ^* 代回 KKT 条件第一式可知

$$x^* = y - A^{\top} (AA^{\top})^{-1} (Ay - b)$$

因此点 y 到集合 $\{x \mid Ax = b\}$ 的投影为 $y - A^{\top}(AA^{\top})^{-1}(Ay - b)$

总结

■ 无约束优化问题及其最优性条件

问题	一阶条件	二阶条件
可微问题	$\nabla f(x^*) = 0$ (必要)	必要/充分
凸问题	$0 \in \partial f(x^*)$ (充要)	_
复合优化问题	$-\nabla f(x^*) \in \partial h(x^*)$ (必要)	_
非凸非光滑	$0 \in \partial f(x^*)$ (必要)	_

■ 约束优化问题的最优性条件和相应约束品性

问题	一阶条件	二阶条件	约束品性
一般问题	KKT 条件 (必要)	必要/充分	LICQ
凸问题	KKT 条件 (充要)	_	Slater

Q&A

Thank you!

感谢您的聆听和反馈