Assignment 24

Adarsh Srivastava

The link to the solution is

https://github.com/Adarsh1310/EE5609

Abstract—This documents solves a problem based on Jordan Form.

1 Problem

If **N** is a nilpotent 3 X 3 matrix over C, prove that $\mathbf{A} = \mathbf{I} + \frac{1}{2}\mathbf{N} - \frac{1}{8}\mathbf{N}^2$ satisfies $\mathbf{A}^2 = \mathbf{I} + \mathbf{N}$, i.e., **A** is a square root of $\mathbf{I} + \mathbf{N}$. Use the binomial series for $(1+t)^{\frac{1}{2}}$ to obtain a similar formula for a square root of $\mathbf{I} + \mathbf{N}$, where **N** is any nilpotent n X n matrix over C.

2 Solution

We know that $N^3=0$ since the minimal polynomial of N is x^3 , So,

$$\mathbf{A}^{2} = \left(\mathbf{I} + \frac{1}{2}\mathbf{N} - \frac{1}{8}\mathbf{N}^{2}\right)\left(\mathbf{I} + \frac{1}{2}\mathbf{N} - \frac{1}{8}\mathbf{N}^{2}\right)$$
 (2.0.1)

=
$$\mathbf{I} + \frac{1}{2}\mathbf{N} - \frac{1}{8}\mathbf{N}^2 + \frac{1}{4}\mathbf{N}^2 - \frac{1}{8}\mathbf{N}^2$$
 (2.0.2)

$$= I + N$$
 (2.0.3)

Now using Taylor's Formula on $(1 + t)^{1/2}$,

$$= 1 + \sum_{i=1}^{\infty} \frac{1}{i!} [(1+t)^{1/2}]^i t^i$$
 (2.0.4)

$$=1+\sum_{i=1}^{\infty}(-1)^{i+1}\frac{(2i-3)t^{i}}{i!2^{i}}$$
 (2.0.5)

So square root of I + N where N is $n \times n$ nilpotent matrix can be,

$$= \mathbf{I} + \sum_{i=1}^{n-1} (-1)^{i+1} \frac{(2i-3)\mathbf{N}^i}{i!2^i}$$
 (2.0.6)