

Our biotechnology company has developed a new medical device concept.

To scientifically prove its feasibility, a research team seeks an automated search solution to streamline the online academic research process.

This proposal outlines an end-toend solution to improve the research workflow created by our technical team.

Source: Freepik

Problem Statement

The current manual approach poses significant challenges and limitations:

- time-consuming
- susceptible to errors

Proposed Solution Overview

A comprehensive and integrated system to:

- automate research tasks,
- · employ advanced algorithms, and
- improve overall efficiency, accuracy, and productivity.

Technical Team

Software Consultants: Elena Mendes Edwards Kazuma Hazebayashi

Agent Design Specialist:

Anastasia Rizzo

Agent Development Specialist:

Samuel Adeniyi

Solution Design

Solution Implementation

Picture 1. Picture 2.

Solution Implementation

Picture 3.

Picture 4.

Solution Implementation

Picture 5. Picture 6.

Solution Implementation

Picture 7. Picture 8.

Picture 9.

Risk Assessment

Potential Risks	Challenges	Mitigation
Synchronous HTTP Requests	Using synchronous requests.get in an asynchronous framework like FastAPI can cause performance bottlenecks and reduce scalability.	Replace requests.get with an asynchronous HTTP client library like httpx or aiohttp for improved performance and scalability.
Inefficient CSV Writing	Writing to the CSV file row by row can result in slow performance for large datasets.	Refactor the write_to_csv function to collect data in a list and perform a bulk write operation for better efficiency.
Lack of Error Handling	The code lacks proper handling of exceptions, leading to less meaningful error messages.	Implement appropriate error handling by raising specific exceptions or using try-except blocks and log exceptions for improved error messages and handling.
Missing Exception Handling in API Endpoints	The API endpoints catch exceptions but only print them and return a generic error response.	Handle exceptions explicitly, log them, and return appropriate HTTP responses with error details to provide better information to users or clients.
Deprecated Dependencies	The code imports outdated libraries (newspaper3k and nltk) that have been replaced.	Update the code to use current and maintained libraries for web scraping and natural language processing tasks.
Missing Unit Tests	The code lacks unit tests, making it harder to ensure correctness and reliability.	Write unit tests to validate the code's functionality and prevent bugs or regressions, especially for critical parts of the code.

Justification and Benefits

Improved Efficiency

Enhanced Collaboration

Modularity and Scalability

Intelligent Data Processing

Structured Data
Storage and Access

References

Adeniyi, S. (2023) Explainer Video Script for Team, 14 July.

Bansall S. (2023) Agents in Artificial Intelligence. *Available from:* https://www.geeksforgeeks.org/agents-artificial-intelligence [Accessed 08 June 2023].

Elise J. (2020) Handling Errors in Python. *Available from:* https://betterprogramming.pub/handling-errors-in-python-9f1b32952423 [Accessed 08 June 2023].

IBM (2023) Test-driven development. Available from:

https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/ [Accessed 08 June 2023].

Microsoft (2023) Best practices for exceptions. Available from:

https://learn.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions [Accessed 08 June 2023].

Mozilla (2023) Introducing asynchronous JavaScript. *Available from:* https://developer.mozilla.org/en-us/docs/Learn/JavaScript/Asynchronous/Introducing [Accessed 08 June 2023].

Russell, S. & Norvig, P. (2021) Artificial Intelligence: A Modern Approach. (4th ed). Pearson Education.

Shah, U.S. et al.(2022) Agent-Based Data Extraction in Bioinformatics. *Hindawi. Available from:* https://www.researchgate.net/publication/359500106 Agent-Based Data Extraction in Bioinformatics [Accessed 08 June 2023].

Wooldridge, M. J. (2009) An introduction to multiagent systems. (2nd ed). New York: John Wiley & Sons.