Kriging with Iterative Spatial Prediction of Uncertainty KRISP-U

Matthew Burnett

Department of Mechanical Engineering

University of South Carolina

Motivation

- Reduce the number of data points needed to characterize experimental domains
 - Specifically, in cases where sampling is expensive or otherwise arduous

Algorithm

- The algorithm uses LOO resampling to estimate uncertainty of the model spatially
- It compares the full model, P(x), to a model missing one-point, $Q_n(x)$, using KL-divergence
- The divergence is then assigned to the point removed and the set of points is interpolated to predict the uncertainty of the entire field

SOUTH CAROLINA College of Engineering and Computing

KRISP-U

- fit():
 - Fits the kriging model to the dataset and predicts over a grid.
- evaluate():
 - Evaluates the model using cross-validation and computes uncertainties.
- interpolate_uncertainty()
 - Interpolates uncertainties over a spatial grid.
- print_stats()
 - Prints statistics of the fitted model.
- get_stats()
 - Analyzes the variogram of the fitted model.

Model Selection

- Proper variogram selection is essential the model will be meaningless otherwise
 - If enable_plotting is True the variogram will be plotted for you
 - Scikit has a great tutorial on variogram selection
 - Any variogram in the PyKrige library can be used
- Universal or Ordinary Kriging can be selected
 - The difference is Ordinary kriging assumes a constant mean while Universal Kriging assumes the mean drifts

Fitting and Evaluation

 The model both predicts the expected values and the error spatially, additionally it recommends the optimal testing location (where uncertainty is maximum)

Simulated Iterative Sampling

- Has tendency to resample locations
- Effectively reduces total uncertainty in simulated cases

