

JAIN COLLEGE OF ENGINEERING & RESEARCH, BELAGAVI Programme: Computer Science and Engineering (AIML)

CONTINUOUS INTERNAL EVALUATION-I

Semester:3rd

Course: Digital Design and Computer Organization Code: BCS302 Course Coordinator: Dr. Prakash K Sonwalkar

Date: 19/10/2024 Max. Marks: 50

Duration:1 Hour 30 Min

Note: Answer any one full question choosing from each part.

	PAI (
Q.	Part - A	iverfront Metaloghies, yang panistra dan sensi (1777)	CASTALT CONSTRUCTOR	NUCLEAR PROPERTY AND PROPERTY OF THE PROPERTY
No.	Question	Marks	C	R.B.T.
1 a)	Simplify the Boolean function F (A, B, C, D) =A'B+A'C+BD using Boolean algebra.	7	1	Level L3
1 b)	Using a 4-variable Karnaugh map, simplify the following function: $F(A,B,C,D)=\sum m(0,1,2,5,8,9,10,14)$	8	1	I.A
1 c)	Explain the working of NAND and NOR gates. Design a circuit for a Boolean function using only NAND gates.	10	1	I.A
THE RESERVE OF THE PERSON NAMED IN	OB	***************************************		
2 a)	What are don't-care conditions? How do they help in simplifying Boolean functions? Use an example to explain.	9	1	L2
2 b)	Implement the Boolean function F (A, B, C) = AB+BC+AC using NOR gates only.	9	1	L3
? c)	Write a Verilog model for a simple 2-input AND gate.	7	1	L6
and the state of the state of	Part -B		L	1
3 a)	Explain the design procedure of a 4-bit binary adder-subtractor circuit.	7	2	L2
b)	Design a 3-to-8-line decoder and explain its working principle.	8	2	L3
c)	What is a multiplexer? Design a 4-to-1 multiplexer and explain how it works with an example.	10	2	L4
	OR			
4 a)	What is a priority encoder? Design afour-input priority encoder and explain its operation.	7	2	L2
b)	Explain the concept of combinational logic circuits and provide an example of a full-adder design.	8	2	L4
(c)	Design a Octal to Binary encoder and explain its working principle.	10	2	L6

COUR	SE OUTCOMES (COs)
1	Apply the K-Map techniques to simplify various Boolean expressions.
2	Design different types of combinational and sequential circuits along with Verilog programs.
3	Describe the fundamentals of machine instructions, addressing modes and Processor performance.
4	Explain the approaches involved in achieving communication between processor and I/O devices.
5	Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance

REVISED BLOC	MS TAXONOMY	LEARNING I	LEVEL (RBT)		
L1: Remember	L2: Understand	L3: Apply	L4: Analyze	L5: Evaluate	L6: Create

PROGRAM OUTCOMES (POs)				
1 Engineering Knowledge	5	Modern tool usage	9	Individual and Team-Work
2 Problem Analy is	6	Engineer and Society	10	Communication
3 Design / Development Solutions	7	Environment and Sustainability	11	Project Management and Finance
4 Conduct Investigations of Complex problems	8	Ethics	12	Life-long Learning

JAIN COLLEGE OF ENGINEERING & RESEARCH, BELAGAVI Programme: Computer Science and Engineering (AIML)

CONTINUOUS INTERNAL EVALUATION-II

Semester:3rd

Course: Digital Design and Computer Organization Code: BCS302

Date:23/12/2024 Max. Marks: 50

Course Coordinator: Dr. Prakash K Sonwalkar

Duration:1 Hour 30 Min

Note: Answer any one full question choosing from each part.

0	Part -A		-	
Q. No	Question	Marks	C	R.B.T. Level
1 a	with a neat diagram.	8	2	L2
1 b	- 1-1-1-1 the functional units of a computer with a block diagram	8	3	L2
1 c)		9	3	L2
	OR		1	
2 a)	timing diagram.	8	2	L2
2 b)	performance? performance equation. How does clock rate affect system	8	3	L2
(c)	Explain the concept of memory locations and addresses. How are instructions sequenced in a program?	9	3	L2
	Part -B			
a)	Illustrate different addressing modes with suitable examples.	8	3	L3
b)	Describe the process of handling multiple devices using interrupts.	8	4	L2
c)	Discuss the trade-offs between speed, size, and cost in memory systems.	9	4	L2
	OR			
a)	Explain the role of interrupts in I/O devices. Discuss the hardware needed to		1	T
	handle interrupts.	8	4	L2
b)	What is Direct Memory Access (DMA)? Explain the bus arbitration mechanism used in DMA.	8	2	L1
)	Explain the concept of cache memory. Discuss the different mapping functions used in cache design.	9	2	L2

COUR	SE OUTCOMES (COs)
1	Apply the K-Map techniques to simplify various Boolean expressions
2	Design different types of combinational and sequential circuits along with Verilog programs.
3	Describe the fundamentals of machine instructions, addressing modes and Processor performance.
4	Explain the approaches involved in achieving communication between processor and I/O devices.
5	Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance

REVISED BLOC	OMS TAXONOM	Y LEARNING LE	VEL (RBT)		
	L2: Understand		L4: Analyze	L5: Evaluate	L6: Create

PROGRAM OUTCOMES (POs)				
1 Engineering Knowledge	5	Modern tool usage	9	Individual and Team-Work
2 Problem Analysis	6	Engineer and Society	10	Communication
3 Design / Development Solutions	7	Environment and Sustainability	11	Project Management and Finance
4 Conduct Investigations of Complex problems	8	Ethics		Life-long Learning

BCS302

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Design and Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

OF	-	Module 1	M	L	C
Q.1	a	the complement of the following function:	96	L3	CO1
	<u> </u>	(i) $F = xy' + x'y$ (ii) $F = x'yz' + x'y'z$			
	b	method for three variables.	04	L2	CO1
	c.	This is made to simplify the following function:	10	L3	CO1
		(i) $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$			
		(ii) $F(x, y, z) = x'y + yz' + y'z'$			
Q.2		OR Apply V was A 12 in 199			
Q. <u>-</u>	a.	- FF-5 map tooming to simplify the function	06	L3	CO1
	b.	$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ and $d(w, x, y, z) = \Sigma(0, 2, 5)$			
	U.	prime implicants for the boolean function is and also	10	L3	CO1
	c.	determine which are essential $F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$			_
	۲.	Develop a verilog gate-level description of the circuit shown in Fig.Q2(c).	04	L3	CO1
		1			
		A - C) WI			
		B			
	-	63			
		E			
		C			
		Fig.Q2(c)			
		Module – 2			
Q,3	a.	Explain the combinational circuit design procedure with code conversion	10	T 0	000
7		example.	10	L2	CO ₂
	b.	Design a full adder circuit. Also develop data flow verilog model for full	100	1 2	600
		adder.	10	L3	CO ₂
		OR			
Q.4	a.	Describe 4 × 1 MUX with block diagram and truth table. Also develop a	10	L2	CO2
2		behavioral model verilog code for 4 × 1 MUX.	10	LZ	CO ₂
	b.	What are storage elements? Explain the working of SR and D latch along	10	T.0	-
		with logic diagram and function table.	10	L2	CO ₂
		Module –\3			
2.5	a.	Explain the basic operational concepts between the processor and memory.	10	/	
	b.	Describe the following:	10		CO ₃
	D.	(i) Processor clock	10	L2	CO ₃
		(ii) Basic performance equation			
		(iii) Clock rate (iv) SPEC rating			
(OR OR			
.6	a.	Define addressing mode. Explain any four types of addressing mode with	1 10) L2	CO
		example.			
		1 of 2			-
		20.20 y			

				302	
-	b.	Mention four types of operations to be performed by instructions in a computer. Explain the basic types of instruction formats to earry out. $C \leftarrow [A] + [B]$	10	L2	CO3
	/	Module – 4			
QЛ	a.	With a neat diagram, explain the concept of accessing I/O devices.	104	L2	CO4
	b.	What is bus arbitration? Explain centralized and distributed arbitration method with a neat diagram.	10	L2	CO4
		OR			
Q.8	a.	With neat sketches, explain various methods for handling multiple interrupts requests raised by multiple devices.	10	L2	CO4
	b.	What is cache memory? Explain any two mapping function of cache	10	L2	CO4
		memory.			
2.9	T	Module – 5	10	12	COF
Į.)	a.	Draw the single bus architecture and write the control sequence for execution of instruction ADD (R_3) , R_1 .	10	L3	CO5
	b.	With suitable diagram, explain the concept of register transfer and fetching	10	L2	COS
		of word from memory.			
	,	OR	1		
.10	a.	With a neat diagram, explain the flow of 4-stage pipeline operation.	610	L2	CO
	b.	Explain the role of cache memory and pipeline performance.	10	1	CO
			3		