Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$\omega_0^{\#1} + \mathcal{T}_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\omega^{\alpha\beta} + \partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\omega^{\alpha}_{\alpha} + \partial_{\beta}\partial^{\beta}\mathcal{T}^{\alpha}_{\alpha}$	1
$\omega_{0^+}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\omega^{\alpha\beta} == 0$	1
$\omega_{1}^{\#1}{}^{\alpha} + 2 \mathcal{T}_{1}^{\#1}{}^{\alpha} = 0$	$\omega_{1}^{\#1}{}^{\alpha} + 2 \mathcal{T}_{1}^{\#1}{}^{\alpha} == 0 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \omega^{\beta \chi} + 2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} ==$	3
	$\partial_{\chi}\partial^{\chi}\partial_{\beta}\omega^{\beta\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	
$\omega_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\omega^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\omega^{\alpha\beta}$	8
$\omega_2^{\#1}\alpha\beta + \mathcal{T}_2^{\#1}\alpha\beta == 0$	$\omega_{2}^{\#1}{}^{\alpha\beta} + \mathcal{T}_{2}^{\#1}{}^{\alpha\beta} = 0 \left 4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \omega^{\chi\delta} + 4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \mathcal{T}^{\chi\delta} + \right $	5
	$2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \omega^{\chi}_{\chi} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \mathcal{T}^{\chi}_{\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \omega^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \omega^{\beta\alpha} +$	
	$6 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \mathcal{T}^{\alpha\beta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \omega^{\chi\delta} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \mathcal{T}^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \omega^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \omega^{\chi \beta} +$	
	$6 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \omega^{\alpha \chi} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\omega^{\chi\alpha}+6\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi}+$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \omega_{X}^{\chi} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{X}^{\chi}$	
Total constraints/gauge generators:	luge generators:	14

Quadratic (free) action	$S == \iiint (\theta^{\alpha\beta} \ \omega_{\alpha\beta} + h^{\alpha\beta} \ \mathcal{T}_{\alpha\beta} + \frac{1}{1/\kappa}$	$(\partial_{\nu}\theta_{\mu\rho}\partial^{\rho}\theta^{\mu\nu}-\partial_{\rho}\theta_{\mu\nu}\partial^{\rho}\theta^{\mu\nu}+2\partial_{\rho}h_{\mu\nu}\partial^{\rho}\theta^{\mu\nu}-\partial_{\rho}h_{\mu\nu}\partial^{\rho}h^{\mu\nu}+$	$\partial_{\nu}h_{\mu ho}\left(-2\partial^{ ho} heta^{\mu u}+\partial^{ ho}h^{\mu u} ight) ight) ight]\!\left[t,x,y,z ight]$ dz dy d x d t
-------------------------	---	---	--

(No massive particles)

Pole residue:

 $(-3+\sqrt{5})1/\kappa > 0$

Polarisations: 1

Quadratic pole

$h_0^{#2}$	0	0	0	0									
_	7 5	0	$-\frac{k^2}{1/\kappa}$	0				T#2		0	0	0	0
$\theta_{0}^{#2}$	0	0	0	0				7**1	1/4	4 k ²	0	$-\frac{1/\kappa}{4 k^2}$	0
$\theta_0^{\#1}$	+	0	$+$ $\frac{k^2}{1/\kappa}$	0				ω#2 +2		0	0	0	0
	$ heta_0^{\#1}$	$\theta_{0}^{#2}$ 1	$h_{0}^{\#1}$ 1	$h_0^{#2} +$				$\omega_{\circ+}^{\#1}$	1/4	4 k ²	0	$\frac{1/\kappa}{4 k^2}$	0
	_	$ heta_1^{\#1}_{lpha_I}$	$\theta_{1}^{\#1}$	α θ	#2 1 α	h	#1 1 α			-	7+ +	$\mathcal{T}_{0}^{\#1}$ †	T#2+
$ heta_1^{\#1}$ †	$\Gamma^{lphaeta}$	$-\frac{k^2}{1/\kappa}$	0		0		0			ω_{0}^{*1}	$\omega_{0}^{\#2}$	# ₀	#
$ heta_1^{\#1}$	\dagger^{α}	0	$-\frac{k^2}{1/2}$	<u>2</u> - K	0	- √	$\frac{k^2}{2 1/\kappa}$			''2 ⁺ αβ	1, 1,2	- ^{k2}	
$\theta_1^{#2}$	\dagger^{α}	0	0		0		0)#1	$^{\prime}$ 2 $^{+}$ $\alpha\beta$	$\frac{k^2}{1/k}$	1/ _K	
$h_1^{\#1}$	\dagger^{α}	0	$\frac{k^2}{\sqrt{2}}$	 L/κ	0		<u>k²</u> 2 1/κ		,	, r	$+\alpha\beta$	$+\alpha\beta$	J
		$\omega_{1}^{\#1}$	$_{lpha eta} \omega$	#1 1 α	$\omega_1^{\#_2}$	2 α	${\mathcal T}_1^{\#}$	α			$\theta_2^{\#1}$	$h_{2}^{#1}$	ı
$\omega_{1}^{\#1}$	$\dagger^{\alpha\beta}$	$-\frac{1/\kappa}{k^2}$		0	0		0		7#1	$^{\prime}$ 2 ⁺ $\alpha\beta$	$\frac{1/\kappa}{4 k^2}$	$-\frac{1/\kappa}{4k^2}$	
$\omega_1^{\#_1}$	^L † ^α	0	- 4	$-\frac{41/\kappa}{9 k^2}$		$\frac{2\sqrt{2}}{9k^2}$		$\frac{1/\kappa}{2}$	$\omega_{2}^{\#1}{}_{lphaeta}$ 7		$\frac{1/\kappa}{4 k^2}$	$\frac{1/\kappa}{4 k^2}$	
$\omega_1^{\#2}$	2 $^{\alpha}$	0		0		0		0		3	αβ -	$+^{\alpha\beta}$	
${\mathcal T}_1^{\sharp_1}$	¹ † ^α	0	<u>2√</u> 9	$\frac{2}{k^2}$	0		- 21 97	<u>L/κ</u> κ ²			$\omega_{2}^{\#1} \dagger^{\alpha \beta}$	${\cal T}_2^{\#1} + $	

Massive and massless spectra

Polarisations: 1

Unitarity conditions

(Unitarity is demonstrably impossible)