

Forskningsdesign: Ikke-eksperimentelle design og metaanalyse

Astrid Marie Jorde Sandsør

UiO Institutt for spesialpedagogikk

Det utdanningsvitenskapelige fakultet

Mål

- Gjennomgå det dere har lest
- Supplere det dere har lest
- Gi perspektiver og innsikt
- Gi redskaper til å tenke

I dag

- Ikke-eksperimentelle studier
 - Tverrsnitt
 - Longitudinelle (prospektive)
- Indre validitet
 - Statistisk kontroll
- Systematic reviews

- Slides fra SPED 4010, (Zachrisson, 2020)
- Lund et al (2002), Kapittel 8 & 9

Repetisjon

- Beskrivende studier
 - Ikke antagelser om kausalitet
 - Indre validitet ikke relevant
- Årsaksstudier
 - Trusler mot indre validitet

Tre klassiske kriterier

- Hume (1738-1740): «A Treatise of Human Nature» (vitenskapsteori)
 - 1. "The cause and effect must be contiguous in space and time.»
 - 2. "The cause must be prior to the effect.»
 - 3. "There must be a constant union betwixt the cause and effect. 'Tis chiefly this quality, that constitutes the relation."

Indre validitet

- Viser studien et årsaksforhold?
 - Er sjokolade årsaken til Nobelpriser?
- Trusler: Er det alternative, plausible, forklaringer?
 - NB! Ikke alle trusler er plausible i alle studier
- Tenke gjennom ved design av en studie:
 - Hvordan kan vi gardere oss mot alternative forklaringer?

Trusler mot indre validitet

- Ikke-observert konfundering
- Retning
- Historie
- Modning
- Seleksjon

- Testing
- Frafall
- Instrumentering
- Regresjon mot gjennomsnittet
- Atypisk kontrollgruppe

Ikke-eksperimentelle studier: Definisjon

- Studier uten manipulering
 - Dvs. ikke eksperimentelle
- Studier/analyser hvor vi ikke sannsynliggjør forskjeller gjennom design
 - Dvs. ikke kvasieksperimentelle
- MEN: Noen studier kan ha elementer som gjør dem til kvasieksperimenter for noen problemstillinger, ikke andre
 - f.eks. analyser med/uten søsken-modeller

Fordeler

- Vi kan studere ting som vi ikke kan manipulere (praktisk eller etisk)
 - f.eks. kjønnsforskjeller
- Praktisk gjennomførbare
- Enklere logikk

To hovedtyper

- Kryss-seksjonell («tverrsnitt»)
 - Alle mål på ett tidspunkt
- Longitudinell («prospektiv», «lengdesnitt», «forløp», «panel»)
 - Mål på ulikt tidspunkt
- Kan være både beskrivende og ha ambisjoner om å si noe om årsakssammenhenger

- Kun et måletidspunkt
- Avhengige og uavhengige variabler

- Vanlig fordi det er enkelt
- Sammenheng eller forskjeller mellom variabler på ett tidspunkt
- Svak indre validitet
- Potensielt god ytre validitet

Kryss-seksjonelt design

EUROPEAN EARLY CHILDHOOD EDUCATION RESEARCH JOURNAL, 2017 https://doi.org/10.1080/1350293X.2018.1412050

Is cognitive development at three years of age associated with ECEC quality in Norway?

Erik Eliassen ¹⁰ a, Henrik Daae Zachrisson and Edward Melhuish ¹⁰ c,d

- Er det sammenheng mellom barnehagekvalitet og kognitive ferdigheter?
 - Alle mål på ett tidspunkt
- Finner ingen sammenhenger
 - Trusler mot indre validitet styrker null-funn

Kryss-seksjonelt design

8 E. ELIASSEN ET AL.

- Tester om sammenhengen er lik for ulike nivåer av sosioøkonomisk bakgrunn (SES)
- Kan ikke utelukke 0-verdien fra noen av undergruppene

- Hva kan de si noe om (og ikke)?
 - Sammenheng
 - Antakelser om kausalitet
 - Status quo ved 3 års alder
 - Ikke endring
 - Ikke andre aldersgrupper

- Andre eksempler
 - Er det kjønnsforskjell i ordflyt?
 - Er det sammenheng mellom tid brukt på lesetrening og ordflyt?
 - Cochleaimplantasjon og sosial deltakelse

- Temporalitet (samtidighet)
 - Fører cochleaimplantat til sosial deltakelse eller fører sosial deltakelse til cochleaimplantat?
 - Eller er begge forklart av en ikke-observert variabel? (Familiebakgrunn? Utadvendthet?)
- Antatt temporalitet (litt mindre svak indre validitet)
 - Foreldres utdannelse kommer før nasjonale prøver selv om de måles samtidig
 - Men, er begge forklart av en ikke-observert variabel? (skolekvalitet der de bosetter seg?)

- Alt er målt samtidig
- Kan si noe om sammenhenger... på et tidspunkt
- Svak indre validitet

Longitudinelle studier

- Trendstudier -> PISA
 - Sammenligning av ulike kohorter over tid
- Forløpsstudier (prospektive) -> NumLit
 - Følger personer over tid
- Kohortstudier -> MoBa
 - Ofte kombinasjon

Trendstudier

- F.eks. land følges over tid
 - De som måles er av lik alder
- Populasjon: Viser endring (f.eks. 16 åringer) over tid
- Individ: kryss-seksjonell studie
 - f.eks. lekser -> bedre resultat

Trendstudier - eksempel

International Journal of Educational Development 79 (2020) 102287

Contents lists available at ScienceDirect

International Journal of Educational Development

journal homepage: www.elsevier.com/locate/ijedudev

Do increases in national-level preschool enrollment increase student achievement? Evidence from international assessments

Rolf Strietholt a,b,c,*. Nina Hogrebe d. Henrik Daae Zachrisson e

- Land er enhet over tid
- Endring i barnehagedekning -> endring i PISA/PIRLS-resultater
 - Elever målt på ett tidspunkt
 - Effekt på tvers av kohorter

Trendstudier - eksempel

R. Strietholt et al.

International Journal of Educational Development 79 (2020 | Strietholt et al.

International Journal of Educational Development 79 (2020) 10228

Endring i testskår

Endring i barnehagedekning

Longitudinelle studier på individnivå

Flere måletidspunkt

- Avhengige og/eller uavhengige variable + tid
- Dager-måneder-år

Longitudinelle studier på individnivå

- Mer krevende -> frafall
 - Sammenheng eller forskjeller mellom variabler over tid
 - Potensielt svak indre validitet
 - Potensielt god ytre validitet

Longitudinelle studier på individnivå

Endring over tid

- Måler vi det samme over tid?
- «Intercept» (nivå f.eks. ved T1)
- «slope» (endring over tid)

Longitudinelle studier på individnivå - Eksempel

Longitudinelle studier på individnivå - Eksempel

PSYCHOLOGICAL SCIENCE Research Rebort Psychological Science **Nonword-Repetition Ability Does Not** 23(10) 1092-1098 © The Author(s) 2012 Reprints and permission: Appear to Be a Causal Influence on sagepub.com/journalsPermissions.na DOI: 10.1177/0956797612443833 **Children's Vocabulary Development** http://pss.sagepub.com (\$)SAGE Monica Melby-Lervåg¹, Arne Lervåg², Solveig-Alma Halaas Lyster¹, Marianne Klem¹, Bente Hagtvet¹, and Charles Hulme^{1,3} Department of Special Needs Education, University of Oslo; Department of Educational Research, University of Oslo; and 3 Division of Benefulance and Lanceone Calance Hairmanine College Landon

Longitudinelle studier på individnivå - Eksempel

- Er det endring i kjønnsforskjell i ordflyt fra 2.-4. klasse?
- Er det sammenheng mellom tid brukt på lesetrening i 2. klasse og endring i ordflyt gjennom året?
- Er det endring i sosial deltagelse for barn med cochleaimplantat gjennom barneårene?

Hvordan styrke intern validitet?

- Kontrollere statistisk for alternative hypoteser
 - Skyldes forskjellen en tredjevariabel?
- Multivariat regresjon/variansanalyse
 - «kontrollere» for andre variabler
 - «ta bort» alternative forklaringer
- Effekt isolert for disse alternativene

Hvordan styrke intern validitet?

- Delt varians
 - Kontrollere / betinge
 - Tar bort delt varians mellom X, Y og kontrollvariabler
 - Varians = Mål på spredning $\sigma = SD(X) = \sqrt{VAR(x)}$
 - Eksempel: Er sammenhengen mellom ordflyt (wordf) og pseudoordflyt (pseudof) forklart av lesehastighet?

Plot og venn-diagram

Bivariat regresjon

sum wordf pseudof

Variable	0bs	Mean	Std. Dev.	Min	Max
wordf	90	41.58889	10.64852	19	64
pseudof	90	20.5	5.438626	6	33

Source	SS	df	MS	Number of obs		90
Model Residual	5949.40408 4142.38481	1 88	5949.40408 47.0725546	R-squared	= =	126.39 0.0000 0.5895
Total	10091.7889	89	113.390886	- Adj R-squared Root MSE	d = =	0.5849 6.8609
wordf	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
pseudof _cons	1.503324 10.77075	.133721 2.835075		0.000 1.2375 0.000 5.1366	_	1.769066 16.40487

Bivarat regresjon

Venn-diagram – legge til lesetid

Multippel regresjon

Sammenheng wordf pseudof «kontrollert» for rtime

Max	Min	Std. Dev.	Mean	0bs	Variable
64	19	10.64852	41.58889	90	wordf
33	6	5.438626	20.5	90	pseudof
50.6385	1.674	10.71277	21.14849	90	rtime a

	Source	SS	df	MS	Number of o	obs =	90
-					- F(2, 87)	=	62.94
	Model	5967.47659	2	2983.7383	B Prob > F	=	0.0000
	Residual	4124.3123	87	47.4058885	R-squared	=	0.5913
h					- Adj R-squar	red =	0.5819
7	Total	10091.7889	89	113.390886	Root MSE	=	6.8852
	wordf	Coef.	Std. Err.	t	P> t [95%	6 Conf.	Interval]
	pseudof	1.862225	.5965649	3.12	0.002 .676	54882	3.047963
	rtime_a	1869985	.3028622	-0.62	0.539788	39699	.4149729
	_cons	7.368004	6.20214	1.19	0.238 -4.9	95942	19.69543

Multippel regresjon

10 Ribeiro and Zachrisson

Table 2

Fixed Effects Models Predicting Teacher-Rated Child PA From

Challenging Peers in the Group (Model 2, n = 956) Across Ages 2

	Model 1 (peer average PA)		
	Coefficient (SE)	ES	
Peer average PA	.403 (.086)**	.22	
One challenging peer	_	_	
Two or more	_	_	
Group size	008 (.009)	.004	
How long known the child	.006 (.003)	.003	
Hours in care	.004 (.005)	.002	
Single mother	113 (.214)	.06	
Maternal employment	010 (.074)	.005	
Maternal depression	.048 (.12)	.03	
Peer Average PA × Gender	_	_	
One Challenging Peer × Gender	_	_	
Two or More × Gender	_	_	

^{*} p < .05, ** p < .01 ES = effect size; PA = physical aggression
Astrid Marie Jorde Sandsør – SPED4010

Statistisk kontroll – trusler mot intern validitet

- Har vi kontrollert for ALLE alternative hypoteser?
- Er alle målene våre gode nok?
 - f.eks. tid brukt på lesing; foreldres jobb
- Vanligvis kan vi ikke utelukke alle alternative hypoteser (hvordan kan vi vite?)

Multivariate Behavioral Research, 44:828–847, 200: Copyright © Taylor & Francis Group, LLC ISSN: 0027-3171 print/1532-7906 online DOI: 10.1080/002731709033333673 Psychology Press
Taylor & Francis Croup

- Men: det er mulig
 - Hvis teorien er god nok... og målene er gode nok ... valide og reliable
 - ... Så kan en eksperimentell effekt gjenskapes

2008 Saul B. Sells Award Address Paper

How Bias Reduction Is Affected by Covariate Choice, Unreliability, and Mode of Data Analysis: Results From Two Types of Within-Study Comparisons

Thomas D. Cook and Peter M. Steiner

Institute for Policy Research

Northwestern University

Steffi Pohl

Friedrich-Schiller-Universität, Jena, Germany

Ikke-eksperimentell design

- Kryss-seksjonelle ett tidspunkt
- Longitudinelle flere tidspunkt
- Statistisk kontroll «kontrollerer» for alternative hypoteser

Tenkeoppgave

- Sverige og Norge valgte i fjor vår ulike strategier for å håndtere pandemien
 - Sykdom, død, og økonomi har vært ulik
- Er dette en test på om den ene vs. den andre modellen var best?
- Hvordan kan vi lage et design som gir oss gode svar?

- Samle studiene som prøver å besvare den samme problemstillingen
- Syntesedannende undersøkelser, systematic review, metaanalyse
 - Sammenligne effektstørrelser, hva er gjennomsnittlig resultat og hvor mye varierer resultatene?
 - Hvorfor er resultatene forskjellig?
 - Hva lærer vi om forskningsspørsmålet når vi vi samler enkeltstudiene?
- Metoden kan også brukes til å få oversikt over et forskningsfelt eller forskningsspørsmål – systematisk litteraturgjennomgang
 - Oppsummere relevante studier
 - Målet kan være å få kunnskap om et felt eller finne trekk ved hva som fungerer, selv når studier ikke er helt sammenlignbare
 - Omfattende systematic review (f.eks. Cochrane) eller Rapid review (forenklet)

- Handler om ytre validitet
 - Kan funnene fra enkeltstudier generaliseres?
 - Hvilken effektstørrelse tror vi på?
- Kvalitative vurderinger i hva som skal med, hvilke begrensninger vi legger i utvalget av studier
- Kvalitative vurderinger i kvaliteten på studiene
- Kvantitative vurderinger når utvalgte studier sine effektstørrelser sammenlignes

- Idealet, «Best case»: samle sammen rådata fra masse ulike forsøk til et datasett og teste hypotese og underhypoteser
- Realiteten: samle sammen resultatet av studier
 - Telle +, -, 0-funn? Hva med størrelsen på effekten?
 - Glass (1976): Metaanalyse som statistisk analyse av effektstørrelser
 - (Effektstørrelser ble gjennomgått i forelesningen 14. oktober)
- Sammenligner vi epler og pærer
 - Er det samme tiltak?
 - Måler de samme utfall?
 - Bør et studie med lav styrke få like stor vekt som en med høy styrke?
 - Bør et studie med dårlig design få like stor vekt som et studie med godt design?

- 1. Problemstilling (forskningsspørsmålet)
- 2. Kriterier for inkludering (geografi, utvalg, publiseringstyper, tidsrom..) og utvikling av søkestrenger
- 3. Søk (google scholar, databaser for artikler, «snøballmetode», eposter til forskere...)
- 4. Rensing av søk (f.eks. vurdere basert på abstract)
- 5. Kvalitetsvurdering av inkluderte studier (skjematisk analyse)
- 6. Sammenstilling av resultater + dokumentasjon på fremgangsmåte (effektstørrelser, eventuelt mer generelle funn)

- Forskeren blir en integrert del av arbeidet umulig å unngå skjønnsmessige vurderinger
 - Bør ha god kjennskap til forskningsfeltet
 - Bør ha god kjennskap til forskningsdesign, også fra andre fagfelt
 - Ofte velger forskere bare å inkludere eksperimenter...
 - ...men kvasi-eksperimenter kan si noe om effekt dersom de har et godt design!
 - (hva er best, et eksperiment med 10 klasserom, eller et kvasi-eksperiment med alle landets klasserom?)
 - Gode kvasi-eksperimenter har som regel mye mindre effektstørrelser enn ikkeeksperimentelle metoder. Hva tror vi mest på?
 - Krever at forskeren kjenner til metodene

- Hvordan sammenligne effektstørrelser?
 - Standardisere forskjellene mellom tiltaksgruppen og kontrollgruppen
 - Glass $g=\frac{\bar{Y}_T-\bar{Y}_K}{s_K}$, Cohen $d=\frac{\bar{Y}_T-\bar{Y}_K}{s_p}$, s_p er veid gjennomsnitt av s_K og s_T
 - Pearsons r, korrelasjon mellom variabler (krever ikke mer standardisering)
 - Mulig å transformere mellom de ulike, og regne ut basert på ulike rapporterte test-statistikker (se Lund et al boka)
 - Cohen: liten/medium/stor effekt basert på r, MEN ikke å anbefale uten å ha tenkt seg nøye om!
- Så kan man lage et gjennomsnitt av alle effektstørrelsene, eventuelt med vekter for antall observasjoner, standardavvik, osv.
- Og teste om effektstørrelsene er konsistente

Systematic reviews

- Analyse av tredjevariabler
 - Kan vi undersøke mulige årsaker til ulike effektstørrelser?

Economics of Education Review

Volume 66, October 2018, Pages 206-222

Do children benefit from universal early childhood education and care? A meta-analysis of evidence from natural experiments

Thomas van Huizen ≥ 🖾, Janneke Plantenga

Systematic reviews

Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of "Far Transfer": Evidence From a Meta-Analytic Review

Perspectives on Psychological Science 2016, Vol. 11(4) 512-534 © The Author(s) 2016 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1745691616635612

(\$)SAGE

Monica Melby-Lervåg¹, Thomas S. Redick², and Charles Hulme³

Department of Special Needs Education, University of Oslo; Department of Psychological Sciences, Purdue University; and ³Division of Psychology and Language Sciences, University College London, and Department of Special Needs Education, University of Oslo

Phonological Skills and Their Role in Learning to Read: A Meta-Analytic Review

2012. Vol. 138. No. 2, 322-352

Monica Melby-Lervåg and Solveig-Alma Halaas Lyster University of Oslo

Charles Hulme "iniversity College London and University of Oslo

https://doi.org/10.1002/cl2.1059

The effect of linguistic comprehension instruction on generalized language and reading comprehension skills: A systematic review Campbell Systematic Reviews, 2019:15:e1059.

Kristin Rogde^{1,3} | Åste M. Hagen² | Monica Melby-Lervåg² | Arne Lervåg³

Preschool predictors of later reading comprehension ability: a systematic review

A Campbell Systematic Review 2017:14

Hanne Næss Hjetland, Ellen Irén Brinchmann, Ronny Scherer, Monica Melby-Lervåg