Московский авиационный институт (Национальный исследовательский университет)

Факультет: «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Дисциплина: «Численные методы»

Лабораторная работа 1 Azure ML

Студент: Девяткина Д.В.

Группа: 80-304

Дата:

Оценка:

Постановка задачи

Ваша задача познакомиться с платформой Azure Machine Learning, реализовывав полный цикл разработки решения задачи машинного обучения, использовав три различных алгоритма, реализованные на этой платформе.

Задача 1

Предсказывание цены автомобиля на основании его производителя, типа распределительного вала, размера двигателя и количества лошадиных сил.

Был использован алгоритм *линейной регрессии*, а конкретно *множественной линейной регрессии* (так как цена в этом эксперименте ищется в зависимости от 4 предикторов), как наиболее простой способ построения прогнозирования. В ЛР 0 после построения графика, можно было увидеть, что зависимость цены от количества лошадиных сил можно было считать линейной.

Из датасета выделила 70 % для обучающей выборки.

Рис 1. Модель эксперимента

columns 60 Scored Labels make engine_type engine_size horsepower price lh.... 14b 📱 Illinia 6795 8005.685989 mazda ohc 91 68 7136.07893 toyota ohc 98 70 6938 5572 5958.625465 dodge ohc 90 68 102 8558 8393.089612 dodge ohc 98 bmw ohc 164 121 24565 26888.658492 ohc 146 116 9989 13637.15678 toyota 173 21485 17919.579779 volvo ohcv 134 toyota ohc 92 62 8778 6208.014826 subaru ohcf 108 82 9233 8489.182739 volvo ohc 145 106 22470 16539.293917 toyota ohc 146 116 11199 13637.15678 jaguar dohc 258 176 35550 32246.060532

linreg price prediction > Score Model > Scored dataset

Рис 2. Полученные оценки

Здесь мы можем посмотреть на цену, которая была у автомобиля изначально и сравнить её с полученной в ходе расчета.

Metrics	
Mean Absolute Error	1729.520744
Root Mean Squared Error	2334.415066
Relative Absolute Error	0.267213
Relative Squared Error	0.079516
Coefficient of Determination	0.920484

Рис 3. Метрики

Средняя абсолютная ошибка, среднеквадратичная ошибка, относительные ошибки и коэффициент смешанной корреляции (детерминированности).

Error Histogram

Рис 4. Ошибки и их частоты

Задача 2

Мультиклассовая классификация типа кузова (хэтчбек, кабриолет, седан и тд) по всем параметрам датасета.

Для классификации я выбрала *дерево решений*, он прост для представления и понимания, сами деревья строятся в Azure ML Studio, является надежным, не требует подготовки данных и работает со всеми типами данных.

Выделила 80% процентов датасета для обучения.

Рис 5. Модель эксперимента

Рис 6. Построенные деревья решений

Scored Probabilities for Class "convertible"	Scored Probabilities for Class "hardtop"	Scored Probabilities for Class "hatchback"	Scored Probabilities for Class "sedan"	Scored Probabilities for Class "wagon"	Scored Labels
	<u>l.</u>	la. tad	Land	ļ	II
0	0	1	0	0	hatchback
0	0	1	0	0	hatchback
0	0	0	0.875	0.125	sedan
0	0	0	1	0	sedan
0.25	0.125	0.375	0.25	0	hatchback
0	0	1	0	0	hatchback
0	0.125	0.75	0.125	0	hatchback
0	0	0.25	0.75	0	sedan
0	0	0	0.75	0.25	sedan

Рис 7. Результат Scored Model

В результате мы получаем оцененные вероятности каждого класса для всех позиций и класс, который наиболее вероятен.

desforest body prediction > Evaluate Model > Evaluation results

Рис 8. Матрица ошибок

Metrics

0	0.775
Overall accuracy	0.775
Average accuracy	0.91
Micro-averaged precision	0.775
Macro-averaged precision	0.9
Micro-averaged recall	0.775
Macro-averaged recall	0.754762

Рис 9. Метрики

Общая точность, средняя точность, микро- и макро- усредненная точность и полнота.

Задача 3

Классификация по количеству дверей (2 или 4) по всем параметрам.

Был выбран метод опорных векторов для бинарной классификации, он довольно широко используется и относится к обучению с учителем.

Из датасета выделила 70 % для обучающей выборки.

Рис 10. Модель эксперимента

60	28							
stroke	compression_ratio	horsepower	peak_rpm	city_mpg	highway_mpg	price	Scored Labels	Scored Probabilities
	La la	Jun.	alid.	ıllı.	1.11	ļ.,	h	la d
3.29	9.4	69	5200	31	37	7499	four	0.11311
3.23	9.4	68	5500	31	38	7609	four	0.348712
3.54	8.7	92	4200	29	34	8948	four	0.017442
3.47	21.9	55	4800	45	50	7099	four	0.013165
3.1	8.3	155	4750	16	18	34184	four	0.142905
3.39	7.6	102	5500	24	30	7689	two	0.925762
3.23	9.4	68	5500	31	38	6229	two	0.936669
3.39	8.6	84	4800	26	32	10245	four	0.066718
3.15	9	68	5000	31	38	6095	two	0.874707

Рис 11. Результат обучения

Рис 12. ROC-кривая

Рис 13. Кривая Precision/Recall

True Positive	False Negative	Accuracy	Precision	Threshold	 AUC
19	4	0.883	0.864	0.5	0.934
False Positive	3	Recall 0.826	F1 Score 0.844		
Positive Label	Negative Label four				

Рис 14. Метрики

Матрица ошибок, доля правильных ответов, точность, полнота, F-мера.

Score Bin	Positive Examples	Negative Examples	Fraction Above Threshold	Accuracy	F1 Score	Precision	Recall	Negative Precision	Negative Recall	Cumulative AUC
(0.900,1.000]	14	1	0.250	0.833	0.737	0.933	0.609	0.800	0.973	0.013
(0.800,0.900]	5	0	0.333	0.917	0.884	0.950	0.826	0.900	0.973	0.013
(0.700,0.800]	0	1	0.350	0.900	0.864	0.905	0.826	0.897	0.946	0.035
(0.600,0.700]	0	1	0.367	0.883	0.844	0.864	0.826	0.895	0.919	0.058
(0.500,0.600]	0	0	0.367	0.883	0.844	0.864	0.826	0.895	0.919	0.058
(0.400,0.500]	0	0	0.367	0.883	0.844	0.864	0.826	0.895	0.919	0.058
(0.300,0.400]	2	2	0.433	0.883	0.857	0.808	0.913	0.941	0.865	0.102
(0.200,0.300]	1	3	0.500	0.850	0.830	0.733	0.957	0.967	0.784	0.177
(0.100,0.200]	0	9	0.650	0.700	0.710	0.564	0.957	0.952	0.541	0.410
(0.000,0.100]	1	20	1.000	0.383	0.554	0.383	1.000	1.000	0.000	0.934

Рис 15. Статистика для интервалов вероятности

Выводы

Прежде чем самим писать алгоритмы машинного обучения, важно посмотреть, как они работают на готовых реализациях и что необходимо выводить для анализа точности после обработки и обучения. В Azure ML много различных алгоритмов и методов обучения, с которыми удобно и просто работать.