Les questions de cours portent sur ce qui est entre accolades et en gras. On attend une maîtrise de l'intégralité des notions abordées.

Cours: Intégration

Subdivision pointée. Théorème des sommes de Riemann. Majoration dans le cas d'une fonction Lipschitzienne. [Théorème fondamental du calcul intégral]. Intégration par parties, changement de variable C^1 . [Formule de Taylor avec reste intégral]. Inégalité de Taylor-Lagrange.

Cours: Applications linéaires

 \mathbb{K} désigne un corps. *E*, *F*, *G* désigne des \mathbb{K} -espaces vectoriels.

Espace $\mathcal{L}(E,F)$.

Notion d'application linéaire, notation $\mathcal{L}(E,F)$. Si $f \in \mathcal{L}(E,F)$, $f(0_E) = 0_F$ et f est un morphisme de groupes entre (E,+) et (F,+). Si f est linéaire et bijective, alors f^{-1} est linéaire. [Pour tout sev V de E, f(V) est un sev de F. Pour tout sev E de E

 $\mathcal{L}(E,F)$ est un sev de $\mathcal{F}(E,F)$. $\mathcal{L}(E,F) \times \mathcal{L}(F,G) \to \mathcal{L}(E,G)$, $(f,g) \mapsto g \circ f$ est bilinéaire.

Pour toute famille $(x_i)_{i\in I}$ génératrice de E, $(f(x_i))_{i\in I}$ est génératrice de $\operatorname{Im}(f)$. Si $(x_i)_{i\in I}$ est libre et f injective, alors $(f(x_i))_{i\in I}$ est libre. [Si $(x_i)_{i\in I}$ est une base de E et f bijective, alors $(f(x_i))_{i\in I}$ est une base de E]. Application de rang fini. [Si f ou g est de rang fini, alors $g \circ f$ est de rang fini et $\operatorname{rg}(g \circ f) \leq \operatorname{min}(\operatorname{rg}(g),\operatorname{rg}(f))$.] Egalité dans le cas où l'une des applications est un isomorphisme.

Endomorphismes.

Anneau $(\mathcal{L}(E), +, \circ)$. Pour tous supplémentaires F, G dans E, projection sur F parallèlement à G. Toute projection est linéaire. [Soit $f \in \mathcal{L}(E)$. Alors f est un projecteur ssi $f^2 = f$, auquel cas c'est le projecteur sur Im(f) parallèlement à ker(f).] Si f est un projecteur, alors $Im(f) = ker(f - Id_E)$. Symétrie par rapport à F parallèlement à G. Toute symétrie est linéaire. [Soit $f \in \mathcal{L}(E)$. Alors f est une symétrie ssi $f^2 = Id_E$ auquel cas f est la symétrie par rapport à $ker(f - Id_F)$ parallèlement à $ker(f + Id_F)$.] Notion d'automorphisme. Groupe linéaire $(GL(E), \circ)$.

Exercices

Les exercices porteront sur l'intégration. L'exploitation du TRI est particulièrement bienvenue.

* * * * *