Colles, semaine 19 $(4/03\rightarrow 8/03)$

Espaces vectoriels (questions de cours) Fonctions convexes (exercice)

Cette semaine, les questions de cours portent le début du cours d'algèbre linéaire. L'exercice proposé portera sur les fonctions convexes.

Questions de cours.

- Soit $a \in \mathbb{K}$ et $F_a = \{P \in \mathbb{K}[X] : P(a) = 0\}$. Savoir prouver que F_a est un s.e.v. de $\mathbb{K}[X]$ en utilisant la caractérisation des s.e.v. ou en reconnaissant un noyau.
- Une intersection de sous-espaces vectoriels de E est un sous-espace vectoriel de E.
- Si E est un \mathbb{K} -espace vectoriel et $(x_1, \ldots, x_p) \in E^p$, alors $\operatorname{Vect}(x_1, \ldots, x_p)$ est un sous-espace vectoriel de E.
- Si E est un \mathbb{K} -espace vectoriel et F et G deux s.e.v., alors F+G est un s.e.v. de E.
- Si E est un K-espace vectoriel et F et G deux s.e.v., alors $F + G = \text{Vect}(F \cup G)$.
- Deux sous-espaces sont en somme directe si et seulement si leur intersection est triviale.
- Définition de deux sous-espaces supplémentaires et preuve de $M_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus A_n(\mathbb{K})$. (fait dans le cours sur les matrices par analyse-synthèse).

Savoir-faire importants.

- Savoir démontrer qu'une fonction est convexe en passant par la définition.
- Savoir démontrer qu'une fonction dérivable sur un intervalle est convexe en prouvant que sa dérivée est croissante.
- Connaître les inégalités associées à la convexité, notamment l'inégalité de Jensen.

À venir en semaine 20 : Espaces vectoriels, familles de vecteurs.