OLAP queries and dashboard

Requirements

To be able to run the queries found in olap.ipynb or the dashboard you will first have to boot up and populate the postgres database. To do so follow the README.md above and make sure to have installed all requirements by running pip install -r src/requirements.txt.

OLAP queries

The OLAP queries are for the most part self explanatory and should be able to be seen and run by following the instructions in the notebook.

OLAP Queries Listed

 Rollup Query: Getting the Aggregated Hectares Burnt / Cost per Year SELECT EXTRACT(YEAR FROM burncostdate) AS year, SUM(hectaresburnt) AS hectaresburnt, SUM(cost) AS cost FROM dailyburncost GROUP BY year ORDER BY year;

2. Drilldown Query: Getting Aggregated Hectares Burnt/Cost per year per Province

SELECT EXTRACT(YEAR FROM burncostdate) AS year, fireprovinceshort AS province,SUM(hectaresburnt) AS hectaresburnt,SUM(cost) AS cost FROM dailyburncost GROUP BY GROUPING SETS ((year,province)) ORDER BY year;

```
1986 | SK
                  196.34038206316623 | 26380.010864011005
1987 | ON
                    14227.92792308665 | 7416257.047727833
1987 | SK
                  21695.517855478924 | 2616456.6252257414
1988 | ON
                    23462.85961072778 | 14138485.61731017
1988 | MB
                  5781.8737278200515 | 711327.2413020197
1988 | SK
                    7816.780057988726 | 904734.5595244003
1989 | NL
                  2150.3956761946715 | 884177.2590100288
1989 | MB
                    773174.7988482267 | 102631053.83335538
```

3. Slice Query: Getting all FACTs from the Year 2022

SELECT * FROM dailyburncost WHERE EXTRACT(YEAR FROM burncostdate)=2022 ORDER BY burncostdate

Figure 1: text

4. Dice Query: Getting the per Province Per Year Aggregated Hectares Burnt and Costs for the Provinces of Quebec and British Columbia

SELECT EXTRACT(YEAR FROM burncostdate) AS year, fireprovinceshort
AS province, SUM(hectaresburnt) AS hectaresburnt, SUM(cost)
AS cost FROM dailyburncost WHERE fireprovinceshort='QC' OR
fireprovinceshort='BC' GROUP BY GROUPING SETS ((year, fireprovinceshort))
ORDER BY year;

year	province	hectaresburnt		cost
1989	BC	801.22030819001		311927.9386802062
1989	QC	417050.8967506842	1	131815762.99566288
1990	BC	1200.2578239916022	1	526053.9147644294
1990	QC	1531.475724106538	1	532390.7919900914
1991	QC	35161.019537605025	1	13062653.150757343
1991	BC	939.3577084399344	1	452381.8992486935
1992	QC	113.12012299568964	1	43169.678666505606
1992	BC	2129.72786970193		1070466.2137473891
1993	QC	368.954055574313	1	145879.44649781616
1993	BC	0.08747862706606391	1	49.52755939515313
1994	QC	3840.322969722674	1	1602336.2937208025
1994	BC	616.5227659669126	1	396460.8155084678
1995	l BC l	1483.4053860478775	Τ	1060775.9276190195

5. Dice Query 2: Getting all FACTs where there is greater than 200 hectares burnt or average temp is greater than 20

SELECT * FROM dailyburncost WHERE hectaresburnt>200.0 OR
averagetemperature > 20 ORDER BY hectaresburnt ASC;

	stationid	burncostdate	provinceid	burnincidentid	fireprovinceshort	averagetemperature	maxrelativehumidity	maxwindspeedgust	hectaresburnt	cost
0		1989-08-12					NaN	NaN		3.132034e-07
1								NaN		5.043642e-07
2		1991-08-15					NaN	NaN		5.043642e-07
3		1989-08-10								
4		1991-08-15					NaN	NaN	6.303650e-10	5.875073e-07
									7.180876e+03	1.213280e+07
									7.180876e+03	1.213280e+07
									7.180876e+03	1.213280e+07
41271									7.180876e+03	8.450825e+06

Figure 2: text

6. Comb Query 1: Getting average cost and hectares burned from FACT Table for fires that have burned more than 10 hectares grouped by province (Rollup + Slice)

SELECT fireprovinceshort, AVG(cost) as cost,AVG(hectaresburnt) as avg_burnt, COUNT(burnincidentid) as fires FROM dailyburncost WHERE hectaresburnt > 10 GROUP BY fireprovinceshort

fireprovinceshort	cost	avg_burnt	fires
		+	
NL	354559.55060377024	306.10658650885557	571
NS	64389.88283441146	66.64730327994103	10
QC	163011.24117769834	200.98308753362286	6750
ON	253802.0590604995	93.87534816590585	9739
MB	61366.15314534975	160.53798155974187	14950
SK	51334.11666419762	154.95906082830376	18304
AB	70249.51028253877	102.4188332134256	6006
BC	302068.7708467641	111.05944081250921	9818

7. Comb Query 2: Getting average Temp, Hectares Burnt, and Total cost from fires burning more than 10 hectares by year. (Rollup + Slice)

SELECT EXTRACT(YEAR FROM burncostdate) as year, AVG (averagetemperature) as avg_temp, AVG(hectaresburnt) as avg_burnt, SUM(cost) as total_cost FROM dailyburncost WHERE hectaresburnt > 10 GROUP BY year ORDER BY year;

year	avg_temp		avg_burnt	1	total_cost
1986	15.065053763440854		84.47487399176363	1	8189994.582136311
1987	16.13895747599444	l	44.88821023212052	1	8684482.33694823
1988	16.056714628297343	l	34.95451087265067	1	11583502.368882671
1989	17.912069756769522	l	314.3479198833328	1	323865507.15756345
1990	15.83274111675128		45.42988452887317	1	8768303.96628786

```
    1991 | 17.467824497257673 | 76.43773029026994 | 35570380.01278175

    1992 | 14.533806146572124 | 155.7814339868413 | 10889832.398385208

    1993 | 12.69942196531793 | 194.76202004253352 | 7470136.468116514

    1994 | 15.614835747086047 | 184.43397109467898 | 77155473.3159063

    1995 | 16.480870396939448 | 205.92798774311274 | 283805284.2387678

    1996 | 16.08126326963902 | 74.63139936154586 | 82653252.56108153

    1997 | 14.141843971631243 | 52.883526889490824 | 17446497.18393898
```

8. Comb Query 3: Compare provinces in term of average temperature and total cost and hecctares burnt looking only at the month of August.

SELECT fireprovinceshort, AVG(averagetemperature) as avgtemp ,SUM(hectaresburnt) as totalburnt,SUM(cost) as totalcost FROM dailyburncost \ WHERE EXTRACT(MONTH FROM burncostdate)=8 GROUP BY fireprovinceshort ORDER BY avgtemp DESC

fireprovinceshort	0 1	totalburnt totalcost	
NS	19.592157	53.080946 4.502069e+04	
NB BC	18.179186 17.905035	2.906608 2.152975e+03 611948.569143 1.612825e+09	
MB		816247.783700 2.933066e+08	
	16.446630	227398.673711 5.800051e+08	
	16.287687	550868.924205 2.039902e+08	
QC AB	16.017258 15.742508	255365.486559	
NL	15.433447	12731.810064 1.434929e+07	

9. Comb Query 4: Getting fires in June, July, or August in Ontario by year (Slice + rollup)

SELECT EXTRACT(YEAR FROM burncostdate) as year, AVG(averagetemperature) as avg_temp,SUM(hectaresburnt) as total_hectare_burnt,SUM(cost) as cost FROM (SELECT * FROM dailyburncost WHERE EXTRACT(MONTH FROM burncostdate)=6 OR EXTRACT(MONTH FROM burncostdate)=7 OR EXTRACT(MONTH FROM burncostdate)=8) WHERE fireprovinceshort='ON' GROUP BY year ORDER BY year ASC;

year	avg_temp		total_hectare_burnt		cost
1986	14.469951534733449	+- 	13564.149788102195		7070265.045356327
1987	16.545919778699897		13227.67173394098	-	6894877.051119337
1988	18.000817307692262		17475.794743917017	-	10530739.932696287
1989	18.220064550833794		106844.98320244312	-	82501103.98634677
1990	16.400829875518685		9200.85485524539	-	7994429.532258958
1991	17.58764044943821		19651.12095414346	-	18315067.404853284
1992	12.824260355029585		1637.9818507074642	-	1447734.6669142374
1993	15.806329113924049		654.2675861598867	-	567685.0282180471
1994	17.094249201277954		1252.5188646774718	-	1081697.797337804

```
    1995 | 18.146010844306755 |
    137297.0886663584 | 121572654.79643449

    1996 | 15.859498480243149 |
    36503.620479258956 | 35218385.763882056

    1997 | 15.334394904458597 |
    910.0298040610726 | 983686.607303572

    1998 | 16.07062975027142 |
    11813.211204389007 | 13448224.653155047

    1999 | 14.621813725490206 |
    11751.537601831027 | 13791768.128413608

    2000 | 16.29876543209876 |
    315.16228867761544 | 378041.6930960958

    2001 | 17.22814465408806 |
    456.5877039496165 | 559509.3353134096
```

10. Iceberg Query: Getting the 10 weeks of the year with the most fires, as well as their average temperature and average costs

SELECT EXTRACT(WEEK FROM burncostdate) as week, AVG(averagetemperature) avg_temp, COUNT(burnincidentid) AS fires, AVG(cost) as avg_cost FROM dailyburncost GROUP BY week ORDER BY fires DESC LIMIT 10;

week	avg_temp	1	fires	1	avg_cost
29	17.75540386038046		14869	-+· 	67915.83662463122
28	17.535134949522444	1	14561	1	84718.62231880634
30	17.739053377814695		14388	-	57222.219177688006
31	17.2993579225225	1	14017	-	55380.37973021749
27	16.919980830199563	1	13563	-	76063.62693145222
32	17.460191791330914	1	13035	-	62704.451023903835
33	16.882128216310335	1	11465	-	56814.51364408961
26	16.58846457037751	1	11417	-	45434.346044547034
25 I	15.653364900262055	1	9926	1	34526.378918785165
34	15.785639508420681	1	8788	-	51673.873800171146
(10 row	s)				

11. Windowing Query: A ranking of months by most hectares burnt for each year

SELECT EXTRACT(YEAR FROM burncostdate) as year, EXTRACT(MONTH FROM burncostdate) as month, AVG(averagetemperature) as avg_temp,SUM(hectaresburnt) as total_hectare_burnt,SUM(cost) as cost, RANK() OVER (PARTITION BY EXTRACT(YEAR FROM burncostdate) ORDER BY SUM(hectaresburnt) DESC) FROM dailyburncost GROUP BY GROUPING SETS ((year,month)) ORDER BY year,rank;

year	month		0= 1		total_hectare_burnt		cost	•	rank	
1986	6		12.967687074829936		9445.2399858812	 	4890738.601219509			1
1986	1 7	1	16.335377358490565	1	3971.0091406412243	1	2065723.4363922821	-		2
1986	J 5	1	16.169620253164553	1	3185.5047963637553	1	1653527.8395789892	-		3
1986	8		15.026203208556154	1	304.04427838601526	1	134782.23914061638	-		4
1986	9	1	7.6927536231884055	1	87.11618064104631	1	45409.000674086536	-		5
1986	4	1	3.9	1	22.3485580217033	1	3002.7200579544706	-		6
1986	I 10	1	2.8166666666666664	ı	12 618526705120624	ı	6577 362361875905	- 1		7

```
7 |
1987 |
                  16.96859838274926 |
                                         16441.274756242743 |
                                                                 4658313.32717081
                                                                                        1
1987
                                                                                        2
           6 I
                 16.010196078431413 |
                                         12191.896422823502 | 3176618.8636521394
1987 |
           5 I
                 10.720469798657735
                                         3739.1830863782748
                                                                828913.8189015682
                                                                                        3
1987 |
           8 1
                 14.623546511627946 |
                                          3487.571637192051 | 1338429.3534290253
                                                                                        4
1987 |
           4 |
                   8.95416666666667
                                         34.191076191792334
                                                                15150.77679246737
                                                                                        5
```

12. Usage of Window Clause: A calculation of the percentage of hectares burnt in a 3 month moving average

```
SELECT burnincidentid, EXTRACT(YEAR FROM burncostdate) as year, EXTRACT(MONTH FROM burncostdate) as month, hectaresburnt, hectaresburnt / SUM(hectaresburnt) OVER W AS fires_mov_avg
FROM dailyburncost GROUP BY GROUPING SETS ((burnincidentid, year, month, hectaresburnt))
WINDOW W AS (PARTITION BY EXTRACT(YEAR FROM burncostdate)
ORDER BY EXTRACT(MONTH FROM burncostdate) RANGE BETWEEN '1'
PRECEDING AND '1' FOLLOWING)
```

burnincidentid	year	month	hectaresburnt	fires_mov_avg
188	1986	4	4.46971160434066	0.0013933653164756165
189	1986	4	4.46971160434066	0.0013933653164756165
190	1986	4	4.46971160434066	0.0013933653164756165
186	1986	4	4.46971160434066	0.0013933653164756165
187	1986	4	4.46971160434066	0.0013933653164756165
274	1986	5	1.0265254301647333	8.112841678785102e-05
273	1986	5	1.0265254301647333	8.112841678785102e-05
109	1986	5	11.745024203524355	0.0009282334278012099
110	1986	5	11.745024203524355	0.0009282334278012099
111	1986	5	11.745024203524355	0.0009282334278012099
112	1986	5	11.745024203524355	0.0009282334278012099
548	1986	5	4.7396281176610975	0.000374582561765977
549	1986	5	4.7396281176610975	0.000374582561765977
272	1986	5	1.0265254301647333	8.112841678785102e-05

Dashboard

For the dashboard you will have to create a file at '~/.streamlit/secrets.toml' with contents in this format (Consult Streamlit documentation for location on Windows): [connections.postgresql] dialect = "postgresql" host = "localhost" port = "5432" database = "firedb" username = "username" password = "password"

The dashboard is produced using the library Streamlit which produces an interactable dashboard in the browser based on the scripting in dashboard.py. To start it up, ensure all requirements are installed and run streamlit run dashboard.py. The start page is mostly empty so navigate with the sidebar to one of the two other pages to begin exploring the dashboard. One thing to note is that "Time-dimension" means on which timescale the aggregates are done,

where "Year-Month" treats all months across the years seperately while "Month" groups all fires in e.g. March together no matter the year. Some examples of the dashboard are produced below for your convenience:

