Algèbre I - Série 4 - corrigé

20 octobre 2023

Exercice 1

Soient $b=(b_1,b_2), b'=(b'_1,b'_2)\in\mathbb{R}^2$, non-colinéaires. Mq. (b,b') forment une base Rappel

Thm 3.2 : Soit $A \in \mathcal{M}_{n,m}(\mathbb{R})$. $\forall c \in \mathbb{R}^m, Ax = c$ admet une unique solution \Leftrightarrow les vecteurs colonnes de A forment une base de l'ensemble \mathbb{R}^m .

Donc on cherche à montrer qu'il existe une unique solution au système suivant :

avec
$$A = (b, b'), \ Ax = c \Leftrightarrow \begin{cases} b_1 x + b'_1 y = c_1 \\ b_2 x + b'_2 y = c_2 \end{cases}$$
 (1)

Comme b, b' non-colinéaires, on a b, b' non-nuls Sans perte de généralité supposons $b_2 \neq 0$.

$$b_2 \neq 0 \xrightarrow{(2)} x = \frac{c_2 - b_2' y}{b_2}$$

$$\xrightarrow{(1)} b_1 \cdot \left(\frac{c_2 - b_2' y}{b_2}\right) + b_1' y = c_1$$

$$\Longrightarrow (b_2 b_1' - b_1 b_2') y = b_2 c_1 - b_1 c_2$$

$$\Longrightarrow y = \frac{b_2 c_1 - b_1 c_2}{b_2 b_1' - b_1 b_2'}$$

 $\implies b_2b_1' - b_1b_2' \neq 0 \iff$ Le système admet une unique solution comme x et y sont indépendants

Mq. $b_2b_1' - b_1b_2' \neq 0$

Supposons par l'absurde $b_2b'_1 - b_1b'_2 = 0$

$$b_2 \neq 0 \implies b_1 = \frac{b_1 b_2'}{b_2} \text{ (par hypothèse)}$$

 $\implies b' = \left(\frac{b_1}{b_2} \cdot b_2', b_2'\right)$
 $\implies b_2' \neq 0 \text{ (car } b' \text{ non-nul)}$
 $\implies b = \left(\frac{b_1'}{b_2'} \cdot b_2, b_2\right)$
 $\implies b_2 \neq 0 \text{ (car } b \text{ non-nul)}$

On observe $b_2b' = b'_2b$ donc b, b' sont colinéaires ξ donc on a bien $b_2b'_1 - b_1b'_2 \neq 0$ et le système admet une unique solution donc (b, b') est une base de \mathbb{R}^2

Exercice 2

Considérons
$$\mathcal{F} = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right\}$$

1

$$\begin{aligned} & \text{Mq. } \mathcal{F} = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right\} \text{ est une famille libre de de } \mathcal{M}_{2,2}(\mathbb{R}) \text{ (sur } \mathbb{R}) \\ & \text{Soient } \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \text{ t.q.} \end{aligned}$$

$$\lambda_{1} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{2} + \lambda_{3} & \lambda_{1} - \lambda_{3} \\ \lambda_{2} - \lambda_{3} & \lambda_{1} + \lambda_{3} \end{pmatrix}$$

$$\implies (\lambda_{2} + \lambda_{3}) + (\lambda_{2} - \lambda_{3}) = \lambda_{2} = 0$$

$$\implies (\lambda_{2} + \lambda_{3}) - (\lambda_{2} - \lambda_{3}) = \lambda_{3} = 0$$

$$\implies \lambda_{1} + \lambda_{3} = \lambda_{1} = 0$$

 $l_1 = l_2 = l_3 = 0$ donc \mathcal{F} est libre.

2

Complétons \mathcal{F} en une base de $\mathcal{M}_{2,2}(\mathbb{R})$

Remarque

 $\overline{dim(\mathcal{M}_{2,2}(\mathbb{R}))} = 4, \ |\mathcal{F}| = 3, \text{ donc on doit ajouter 1 \'elément}$

On peut ajouter
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Mq. $\mathcal{F}' = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ est libre.
Preuve identique à celle de \mathcal{F} libre.

Donc \mathcal{F}' est libre et maximale (4 éléments pour dimension 4) donc c'est une base.

Exercice 3

Soient E un e.v. et $F, G, H \leq E$

Rappel

 $\overline{G+H}$, $F\cap (G+H)$, $(F\cap G)+(F\cap H)$ sont des ss.e.v de E

```
1
```

(i)

Mq.
$$(F \cap G) + (F \cap H) \subset F \cap (G + H)$$

Soit $w \in (F \cap G) + (F \cap H)$. Mq $w \in F \cap (G + H)$.
par déf. de $+: \exists u \in F \cap G, v \in F \cap H$ t.q. $w = u + v$
par déf. de $\cap: u \in F \cap G$ et $v \in F \cap H \implies u, v \in F$ et $u \in G$ et $v \in H$
 $\implies u + v \in F$ et $u + v \in G + H$
 $\implies w = u + v \in F \cap (G + H)$
donc $(F \cap G) + (F \cap H) \subset F \cap (G + H)$

(ii)

Mq.
$$F \cap (G+H) \not\subset (F \cap G) + (F \cap H)$$
 en général Contre exemple $E = \mathbb{R}^2$, $F = \langle e_1 \rangle$, $G = \langle e_1 + e_2 \rangle$, $H = \langle e_1 - e_2 \rangle$ On remarque $-\langle G+H \rangle = \mathbb{R}^2 \implies G+H = \langle e_1, e_2 \rangle$ $-\langle F\cap G \rangle + \langle F\cap H \rangle = \{\mathbb{O}_E\}$ $-\langle F\cap (G+H) \rangle = F\cap \mathbb{R}^2 = F$ donc $F \cap (G+H) \not\in (F\cap G) + (F\cap H)$

2

Soient
$$U, V \leq \mathbb{R}^6$$
 t.q. $dim(U) = 2$, $dim(V) = 5$

a

— Valeur max $E,V \leq \mathbb{R}^6 \implies \dim(U+V) \leq 6$ (ça peut être = 6) ex. $U = \langle e_5, e_6 \rangle$, $V = \langle e_1, e_2, e_3, e_4, e_5 \rangle \implies \dim(U+V) = 6$ — Valeur min $\dim(U+V) \geq \max\{\dim(U), \dim(V)\} = \max\{2, 5\} = 5 \text{ Ca ne peut pas être moins car } U \subset U+V \text{ comme } \mathbb{O}_{\mathbb{R}^6} \in V \text{ (idem pour V)}$ ex. $U = \langle e_1, e_2 \rangle$, $V = \langle e_1, e_2, e_3, e_4, e_5 \rangle \implies \dim(U+V) = 5$

b

Rappel

Formule de dimension :
$$dim(U+V) = dim(U) + dim(V) - dim(U\cap V)$$

 $\implies dim(U\cap V) = dim(U) + dim(V) - dim(U+V)$

donc dim(U+V)=2+5-5=2 ou 2+5-6=1 en reprenant U+V de la partie a. ex.

$$U = \langle e_5, e_6 \rangle, \ V = \langle e_1, e_2, e_3, e_4, e_5 \rangle \implies \dim(U \cap V) = \dim(\langle e_5 \rangle) = 1$$

$$U = \langle e_1, e_2 \rangle, \ V = \langle e_1, e_2, e_3, e_4, e_5 \rangle \implies \dim(U \cap V) = \dim(\langle e_1, e_2 \rangle) = 2$$

3

Considérons les ss.e.v de
$$\mathbb{R}^4$$
 $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + 3z - 4t = 0 \text{ et } 3z - 2t = 0\} \text{ et } W = \langle \{(1, 0, 0, 0), (0, 4, 0, 0), (2, -1, 0, 0), (0, 0, 0, 1)\} \rangle$

 \mathbf{a}

Calculons les dimensions

(i) On cherche une base de USoit $(x, y, z, t) \in U$ Alors

$$\begin{cases} 2x + 3z - 4t &= 0\\ 3z - 2t &= 0 \end{cases}$$
 (3)

Posons $A := \{v_1, v_2\}$

Mq Aest libre

Soient $a, b \in \mathbb{R}$ t.q. $av_1 + bv_2 = (0, 0, 0, 0)$

$$\implies (0, a, 0, 0) + (b, 0, \frac{2}{3}b, b) = (0, 0, 0, 0)$$

$$\implies a = b = 0 \implies A \text{ libre}$$

donc A est libre et génératrice donc une base de Udonc dim(U) = |A| = 2

(ii) Pour
$$W$$
 on note $B = \{\underbrace{(1,0,0,0)}_{w_1}, \underbrace{(0,4,0,0)}_{w_2}, \underbrace{(2,-1,0,0)}_{w_3}, \underbrace{(0,0,0,1)}_{w_4}\}$
Trouvons une base C en l'extrayant de B (donc $C \subset B$)

Remarquons $w_3 = 2w_1 - \frac{1}{2}w_2$, donc $\langle \{w_1, w_2, w_4\} \rangle = \langle B \rangle$

Posons $C = \{w_1, w_2, w_4\}, C$ est donc génératrice

Mq. C est libre

Soient $a, b, c \in \mathbb{R}$ t.q. $aw_1 + bw_2 + cw_3 = (0, 0, 0, 0)$

$$\implies (a,0,0,0) + (0,4b,0,0) + (0,0,0,-1) = (0,0,0,0)$$

$$\implies a = b = c = 0 \implies C$$
 libre

donc C est libre et génératrice donc une base de W

donc dim(W) = |C| = 3

```
b
```

Mq. $U+W=\mathbb{R}^4$ On travaille avec les base de U et W, A et C respectivement. $A\cup C=\{v_1,v_2,w_1,w_2,w_4\}$ engendre U+WOn remarque $v_2=e_2,\ w_1=e_1,\ w_2=4e_2,\ w_4=e_4$ On remarque que $A\cup C$ engendre la base canonique $\{e_1,e_2,e_3,e_4\}$ On sait que c'est vrai pour e_1,e_2,e_4 , on remarque aussi que $e_3=\frac{3}{2}v_1-\frac{3}{2}e_1-\frac{3}{2}e_4$ donc $\mathbb{R}^4\subset \langle A\cup C\rangle=U+W$ mais $U+W\subset \mathbb{R}^4$ donc $U+W=\mathbb{R}^4$ (par double inclusion)