

RECEIVED
CENTRAL FAX CENTER
OCT 10 2006

LISTING OF CURRENT CLAIMS

1. (currently amended) A compound of Formula I:

wherein:

R¹ is -NR^aR^b, -CR^cR^dR^e, CO₂R^a, or -C(O)NR^aR^b; or R¹ is hydrogen, cycloalkenyl, aryl, or heteroaryl, where each aryl or heteroaryl is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkylthio, C₁₋₆ alkylsulfonyl, halogen, haloalkyl, cyano, nitro, -C(O)NR^aR^b, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, and C₁₋₉ alkylcarbonyl and with the proviso that R¹ can not be 4-methoxyphenyl when R³ is unsubstituted phenyl;

R² is hydrogen, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkylsulfonyl, aryl, or arylalkyl, wherein said aryl or arylalkyl is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen;

R³ is aryl or heteroaryl, each optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkylthio, C₁₋₆ alkylsulfonyl, aminosulfonyl, monoalkylaminosulfonyl, dialkylaminosulfonyl, halogen, haloalkyl, cyano, nitro, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, and C₁₋₉ alkylcarbonyl;

R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ alkylthioalkyl, carboxyalkyl, acyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, di-C₃₋₆ cycloalkyl-C₁₋₃ alkyl, C₁₋₆ heteroalkyl, aminoalkyl, aminocarbonylalkyl, cyanoalkyl, C₅₋₈ heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, phenylalkyl, diphenylalkyl, and C₁₋₃ alkyl substituted with both a C₃₋₆ cycloalkyl and a phenyl group, wherein each of said cycloalkyl, phenyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, hydroxyalkyl, cyano, acylamino, alkylsulfonyl, alkylsulfonyloxy, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl; or

R^a and R^b are taken together with the nitrogen to which they are attached form an heterocycl or heteroaryl ring selected from the group consisting of pyrrolidine, piperidine, homopiperidine, tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, tetrahydropyrimidine, hexahydropyrimidine, pyrazolidine, piperazine, morpholine, imidazoline, pyrrole, pyrazole, and imidazole, where each of said rings is optionally substituted with one or more substituents selected from the group consisting of hydroxy, oxo, alkyl, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, acyl, acylamino, aminocarbonyl, aminocarbonylalkyl, aminocarbonylamino, aminosulfonyl, alkylsulfonylamino, aminosulfonylamino, and phenyl, wherein each of said phenyl groups is optionally substituted with one or more groups independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen, and each of said amino-groups is optionally monosubstituted or disubstituted with alkyl, or is contained in a pyrrolidinyl, piperidinyl, morpholinyl, or piperazinyl group, pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl and piperazin-1-yl;

R^c is hydrogen, hydroxy, C₁₋₆ alkoxy, or -NR^a"R^b";

R^d and R^e are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ alkylthioalkyl, heteroalkyl, heterocycl, heterocyclalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, di-C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, phenylalkyl, diphenyl-C₁₋₃ alkyl, and C₁₋₃ alkyl substituted with both a C₃₋₆ cycloalkyl and a phenyl group, wherein each of said cycloalkyl, phenyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen; or

R^e and R^d are taken together to form a divalent group selected from C₁₋₆ alkylidenyl, C₁₋₆ heteroalkylidenyl, C₃₋₆ cycloalkylidenyl, C₃₋₆ cycloalkyl-alkylidenyl, C₃₋₆ cycloalkyl-C₁₋₃ alkylidenyl, C₃₋₆ heterocyclidenyl, C₃₋₆ heterocycl-C₁₋₃ alkylidenyl, C₃₋₆ heterocyclalkyl-C₁₋₃ alkylidenyl, aryl-C₁₋₃ alkylidenyl, aryl-C₁₋₃ alkyl-alkylidenyl, heteroaryl-C₁₋₃ alkylidenyl, and heteroarylalkyl-C₁₋₃ alkylidenyl, wherein each of said cycloalkyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen; or

R^d and R^e are taken together with the carbon to which they are attached to form a cycloalkyl or heterocycl ring;

R^a" and R^b" are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ alkylthioalkyl, carboxyalkyl, acyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, di-C₃₋₆ cycloalkyl-C₁₋₃ alkyl, C₁₋₆ heteroalkyl, aminoalkyl,

aminocarbonylalkyl, cyanoalkyl, C₅₋₈ heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, phenylalkyl, diphenyl-C₁₋₃ alkyl, and C₁₋₃ alkyl substituted with both a C₁₋₆ cycloalkyl and a phenyl group, wherein each of said cycloalkyl, phenyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, hydroxyalkyl, cyano, acylamino, alkylsulfonyl, alkylsulfonyloxy, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl; or

R^a and R^b are taken together with the nitrogen to which they are attached form an heterocyclyl or heteroaryl ring selected from the group consisting of pyrrolidine, piperidine, homopiperidine, tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, tetrahydropyrimidine, hexahydropyrimidine, pyrazolidine, piperazine, morpholine, imidazoline, pyrrole, pyrazole, and imidazole, where each of said rings is optionally substituted with one or more substituents selected from the group consisting of hydroxy, oxo, alkyl, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, acyl, acylamino, aminocarbonyl, aminocarbonylalkyl, aminocarbonylamino, aminosulfonyl, alkylsulfonylamino, aminosulfonylamino, and phenyl, wherein each of said phenyl groups is optionally substituted with one or more groups independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl, or is contained in a pyrrolidinyl, piperidinyl, morpholinyl, or piperazinyl group;

or individual stereoisomers isomers, racemic or non-racemic mixtures of isomers, or pharmaceutically acceptable salts thereof.

2. (original) The compound of claim 1 wherein R³ is optionally substituted phenyl.
3. (original) The compound of claim 2, wherein R³ is a di- or tri-substituted phenyl.
4. (original) The compound of claim 3, wherein R³ is a 2,4-disubstituted or 2,4,6-trisubstituted phenyl.
5. (original) The compound of claim 4, wherein R³ is a 2,4-disubstituted or 2,4,6-trisubstituted phenyl, and the substituents are each independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkylthio, halogen, haloalkyl, cyano, alkylamino, dialkylamino, and nitro.
6. (original) The compound of claim 5, wherein R² is hydrogen, C₁₋₆ alkyl, or C₁₋₆ alkylcarbonyl.
7. (original) The compound of claim 3, wherein R¹ is -CR^aR^bR^c and R^c is hydroxy.
8. (original) The compound of claim 7, wherein R^d and R^e are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, where each of said aryl or heteroaryl groups is optionally

substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen.

9. (original) The compound of claim 7, wherein R^d and R^e are each independently selected from the group consisting of C₁₋₉ alkyl, C₁₋₆ alkoxyalkyl, aryl, and heteroaryl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen.

10. (original) The compound of claim 9, wherein R² is C₁₋₆ alkyl; and R³ is a 2,4-disubstituted or 2,4,6-trisubstituted phenyl, and the substituents are each independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxy, halogen, haloalkyl, cyano, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen and C₁₋₉ alkyl.

11. (original) The compound of claim 7, wherein R^d and R^e are taken together to form a cycloalkyl or heterocyclyl group.

12. (original) The compound of claim 3, wherein R¹ is -CR^cR^dR^e; R^c is selected from the group consisting of C₁₋₉ alkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen; and R^d and R^e are taken together to form a divalent group selected from C₁₋₆ alkylideny, C₁₋₆ heteroalkylideny, C₃₋₆ cycloalkylideny, C₃₋₆ cycloalkyl-alkylideny, C₃₋₆ cycloalkyl-C₁₋₃ alkylideny, C₃₋₆ heterocyclylideny, C₃₋₆ heterocyclyl-C₁₋₃ alkylideny, C₃₋₆ heterocyclylalkyl-C₁₋₃ alkylideny, aryl-C₁₋₃ alkylideny, aryl-C₁₋₃ alkyl-alkylideny, heteroaryl-C₁₋₃ alkylideny, and heteroarylalkyl-C₁₋₃ alkylideny, wherein each of said cycloalkyl, aryl, or heteroaryl groups is optionally substituted.

13. (original) The compound of claim 12, wherein R^c and R^d are taken together to form a divalent group selected from C₁₋₆ alkylideny, C₃₋₆ cycloalkyl-alkylideny, aryl-C₁₋₃ alkylideny, and heteroaryl-C₁₋₃ alkylideny, wherein each of said aryl or heteroaryl groups is optionally substituted.

14. (original) The compound of claim 3, wherein R¹ is -CR^cR^dR^e; R^c is selected from the group consisting of C₁₋₉ alkyl, C₁₋₆ alkoxyalkyl, and heteroaryl, where the heteroaryl is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen; and R^d and R^e are taken together to form a divalent group selected from C₁₋₆ alkylideny, C₃₋₆ cycloalkyl-alkylideny, C₃₋₆ heterocyclyl-C₁₋₃ alkylideny, aryl-C₁₋₃ alkylideny, and heteroaryl-C₁₋₃ alkylideny, wherein each of said aryl, or heteroaryl groups is optionally substituted

with one or more substituents independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, amino, alkylamino, and dialkylamino.

15. (original) The compound of claim 3, wherein R¹ is -CR^cR^dR^e and R^c is hydrogen.

16. (original) The compound of claim 15, wherein R^d and R^e are each independently selected from the group consisting of C₁₋₉ alkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen.

17. (original) The compound of claim 15, wherein R^d and R^e are each independently selected from the group consisting of C₁₋₉ alkyl, C₁₋₆ alkoxyalkyl, aryl, and heteroaryl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen; R² is C₁₋₆ alkyl; and R³ is a 2,4-disubstituted or 2,4,6-trisubstituted phenyl, and the substituents are independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxy, halogen, haloalkyl, cyano, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen and C₁₋₉ alkyl.

18. (original) The compound of claim 3, wherein R¹ is -NR^aR^b; -C(O)NR^aR^b; or -CR^cR^dR^e, where R^c is -NR^aR^b and R^d and R^e are each independently selected from the group consisting of hydrogen and C₁₋₉ alkyl.

19. (original) The compound of claim 18, wherein R^a, R^b, R^a, and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, heterocyclalkyl, optionally substituted arylalkyl, and optionally substituted heteroarylalkyl.

20. (original) The compound of claim 18, wherein R^a and R^b, or R^a and R^b, are taken together with the nitrogen to which they are attached form an heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, homopiperidine, tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, tetrahydropyrimidine, hexahydropyrimidine, pyrazolidine, piperazine, morpholine, and imidazoline, where each of said rings is optionally substituted with one or more substituents independently selected from the group consisting of hydroxy, oxo, alkyl, aminoalkyl, acyl, acylamino, aminocarbonyl, aminocarbonylalkyl, and aminocarbonylamino, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl, or is contained in a pyrrolidinyl, piperidinyl, morpholinyl, or piperazinyl group.

21. (original) The compound of claim 3, wherein

R¹ is -NR^aR^b;

R^a is selected from the group consisting of hydrogen, C₁₋₉ alkyl, and C₁₋₆ alkoxyalkyl; and,

R^b is selected from the group consisting of C_{1-9} alkyl, hydroxyalkyl, C_{1-6} alkoxyalkyl, C_{3-6} cycloalkyl- C_{1-3} alkyl, heterocyclalkyl, arylalkyl, and heteroarylalkyl, wherein each of said aryl or heteroaryl groups is optionally substituted.

22. (original) The compound of claim 21, wherein R^2 is C_{1-6} alkyl; and R^3 is a 2,4-disubstituted or 2,4,6-trisubstituted phenyl, and the substituents are independently selected from the group consisting of C_{1-6} alkyl, C_{1-6} alkoxy, halogen, haloalkyl, cyano, and $-NR^{a''}R^{b''}$, where $R^{a''}$ and $R^{b''}$ are each independently selected from the group consisting of hydrogen and C_{1-9} alkyl.

23. (original) The compound of claim 3 wherein

R^1 is $-CR^cR^dR^e$;

R^c is $-NR^{a''}R^{b''}$;

R^d and R^e are each independently selected from the group consisting of hydrogen and C_{1-9} alkyl;

$R^{a''}$ is selected from the group consisting of hydrogen, C_{1-9} alkyl, and C_{1-6} alkoxyalkyl; and,

$R^{b''}$ is selected from the group consisting of C_{1-9} alkyl, hydroxyalkyl, C_{1-6} alkoxyalkyl, C_{3-6} cycloalkyl- C_{1-3} alkyl, heterocyclalkyl, arylalkyl, and heteroarylalkyl, wherein each of said aryl or heteroaryl groups is optionally substituted.

24. (original) The compound of claim 23, wherein R^2 is C_{1-6} alkyl; and R^3 is a 2,4-disubstituted or 2,4,6-trisubstituted phenyl, and the substituents are independently selected from the group consisting of C_{1-6} alkyl, C_{1-6} alkoxy, halogen, haloalkyl, cyano, and $-NR^{a''}R^{b''}$, where $R^{a''}$ and $R^{b''}$ are each independently selected from the group consisting of hydrogen and C_{1-9} alkyl.

25. (original) The compound of claim 3, wherein R^1 is aryl or heteroaryl, where said aryl or heteroaryl is optionally substituted with one or more substituents independently selected from C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkylthio, C_{1-6} alkylsulfonyl, halogen, haloalkyl, cyano, nitro, and $-NR^{a'}R^{b'}$, where $R^{a'}$ and $R^{b'}$ are each independently selected from the group consisting of hydrogen, C_{1-9} alkyl, and C_{1-9} alkylcarbonyl.

26. (original) The compound of claim 25, where said aryl or heteroaryl is optionally substituted with one or more substituents independently selected from C_{1-6} alkyl, C_{1-6} alkoxy, halogen, haloalkyl, cyano, and $-NR^{a'}R^{b'}$, where $R^{a'}$ and $R^{b'}$ are each independently selected from the group consisting of hydrogen, C_{1-9} alkyl, and C_{1-9} alkylcarbonyl.

27. (original) The compound of claim 1 wherein R^3 is an optionally substituted pyridinyl.

28. (original) The compound of claim 1, wherein R^3 is a di- or tri-substituted pyridinyl.

29. (original) The compound of claim 27, wherein R^1 is $-CR^cR^dR^e$ and R^e is hydroxy.

30. (original) The compound of claim 29, wherein R^d and R^e are each independently selected from the group consisting of hydrogen, C_{1-9} alkyl, C_{1-6} alkoxyalkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-3} alkyl,

aryl, arylalkyl, heteroaryl, and heteroarylalkyl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen.

31. (original) The compound of claim 30, wherein R^d and R^e are each independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxyalkyl, aryl, and heteroaryl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen.
32. (original) The compound of claim 29, wherein R^d and R^e are taken together to form a cycloalkyl or heterocyclyl group.
33. (original) The compound of claim 27, wherein R¹ is -CR^cR^dR^e; R^c is selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen; and R^d and R^e are taken together to form a divalent group selected from C₁₋₆ alkylidenyl, C₁₋₆ heteroalkylidenyl, C₃₋₆ cycloalkylidenyl, C₃₋₆ cycloalkyl-alkylidenyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl-alkylidenyl, C₃₋₆ heterocyclidenyl, C₃₋₆ heterocyclyl-C₁₋₃ alkylidenyl, C₃₋₆ heterocyclylalkyl-C₁₋₃ alkylidenyl, aryl-C₁₋₃ alkylidenyl, aryl-C₁₋₃ alkyl-alkylidenyl, heteroaryl-C₁₋₃ alkylidenyl, and heteroarylalkyl-C₁₋₃ alkylidenyl, wherein each of said cycloalkyl, aryl, or heteroaryl groups is optionally substituted.
34. (original) The compound of claim 33, wherein R^c and R^d are taken together to form a divalent group selected from C₁₋₆ alkylidenyl, C₃₋₆ cycloalkyl-alkylidenyl, aryl-C₁₋₃ alkylidenyl, and heteroaryl-C₁₋₃ alkylidenyl.
35. (original) The compound of claim 33, wherein R¹ is -CR^cR^dR^e; R^c is selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxyalkyl, and heteroaryl, where the heteroaryl is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen; and R^d and R^e are taken together to form a divalent group selected from C₁₋₆ alkylidenyl, C₃₋₆ cycloalkyl-alkylidenyl, C₃₋₆ heterocyclidenyl-C₁₋₃ alkylidenyl, aryl-C₁₋₃ alkylidenyl, and heteroaryl-C₁₋₃ alkylidenyl, wherein each of said aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, amino, alkylamino, and dialkylamino.
36. (original) The compound of claim 27, wherein R¹ is -CR^cR^dR^e and R^e is hydrogen.
37. (original) The compound of claim 36, wherein R^d and R^e are each independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl,

arylalkyl, heteroaryl, and heteroarylalkyl, where each of said aryl or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen.

38. (original) The compound of claim 27, wherein R¹ is -NR^aR^b; -C(O)NR^aR^b; or -CR^cR^dR^e, where R^c is -NR^aR^b; and, R^d and R^e are each independently selected from the group consisting of hydrogen and C₁₋₆ alkyl.

39. (original) The compound of claim 38, wherein R^a, R^b, R^a" and R^b" are each independently selected from the group consisting of hydrogen, C₁₋₆ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, heterocyclalkyl, arylalkyl, and heteroarylalkyl.

40. (original) The compound of claim 38, wherein R^a and R^b, or R^a" and R^b", are taken together with the nitrogen to which they are attached form an heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, homopiperidine, tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, tetrahydropyrimidine, hexahydropyrimidine, pyrazolidine, piperazine, morpholine, and imidazoline, where each of said rings is optionally substituted with one or more substituents independently selected from the group consisting of hydroxy, oxo, alkyl, aminoalkyl, acyl, acylamino, aminocarbonyl, aminocarbonylalkyl, and aminocarbonylamino, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl, or is contained in a pyrrolidinyl, piperidinyl, morpholinyl, or piperazinyl group.

41. (original) The compound of claim 27, wherein R¹ is -NR^aR^b;

R^a is selected from the group consisting of hydrogen, C₁₋₆ alkyl, and C₁₋₆ alkoxyalkyl; and
R^b is selected from the group consisting of C₁₋₆ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, heterocyclalkyl, arylalkyl, and heteroarylalkyl.

42. (original) The compound of claim 27 wherein

R¹ is -CR^cR^dR^e;
R^c is -NR^aR^b";
R^d and R^e are each independently selected from the group consisting of hydrogen and C₁₋₆ alkyl;
R^a" is selected from the group consisting of hydrogen, C₁₋₆ alkyl, and C₁₋₆ alkoxyalkyl; and
R^b" is selected from the group consisting of C₁₋₆ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, heterocyclalkyl, arylalkyl, and heteroarylalkyl, wherein each of said aryl or heteroaryl groups is optionally substituted.

43. (original) The compound of claim 27, wherein R¹ is aryl or heteroaryl where said aryl or heteroaryl is optionally substituted.

44. (original) The compound of claim 43, where said aryl or heteroaryl is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, halogen, haloalkyl, cyano, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, and C₁₋₉ alkylcarbonyl.

45. (currently amended) A pharmaceutical composition comprising a therapeutically effective amount of at least one compound of formula I

wherein:

R¹ is -NR^aR^b, -CR^cR^dR^e, CO₂R^a, or -C(O)NR^aR^b; or R¹ is hydrogen, cycloalkenyl, aryl, or heteroaryl, where each aryl or heteroaryl is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkylthio, C₁₋₆ alkylsulfonyl, halogen, haloalkyl, cyano, nitro, -C(O)NR^aR^b, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, and C₁₋₉ alkylcarbonyl and with the proviso that R¹ can not be 4-methoxyphenyl when R³ is unsusbtituted phenyl;

R² is hydrogen, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkylsulfonyl, aryl, or arylalkyl, wherein said aryl or arylalkyl is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, and halogen;

R³ is aryl or heteroaryl, each optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkylthio, C₁₋₆ alkylsulfonyl, aminosulfonyl, monoalkylaminosulfonyl, dialkylaminosulfonyl, halogen, haloalkyl, cyano, nitro, and -NR^aR^b, where R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, and C₁₋₉ alkylcarbonyl;

R^a and R^b are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ alkylthioalkyl, carboxyalkyl, acyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, di-C₃₋₆ cycloalkyl-C₁₋₃ alkyl, C₁₋₆ heteroalkyl, aminoalkyl, aminocarbonylalkyl, cyanoalkyl, C₅₋₈ heterocyclyl, heterocyclylalkyl, aryl, arylalkyl,

heteroaryl, heteroarylalkyl, phenylalkyl, diphenylalkyl, and C₁₋₃ alkyl substituted with both a C₃₋₆ cycloalkyl and a phenyl group, wherein each of said cycloalkyl, phenyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, hydroxylalkyl, cyano, acylamino, alkylsulfonyl, alkylsulfonyloxy, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl; or

R^a and R^b are taken together with the nitrogen to which they are attached form an heterocycl or heteroaryl ring selected from the group consisting of pyrrolidine, piperidine, homopiperidine, tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, tetrahydropyrimidine, hexahydropyrimidine, pyrazolidine, pipcrazine, morpholine, imidazoline, pyrrole, pyrazole, and imidazole, where each of said rings is optionally substituted with one or more substituents selected from the group consisting of hydroxy, oxo, alkyl, hydroxylalkyl, alkoxy, alkoxyalkyl, aminoalkyl, acyl, acylamino, aminocarbonyl, aminocarbonylalkyl, aminocarbonylamino, aminosulfonyl, alkylsulfonylamino, aminosulfonylamino, and phenyl, wherein each of said phenyl groups is optionally substituted with one or more groups independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl, or is contained in a ~~pyrrolidinyl, piperidinyl, morpholinyl, or piperazinyl group, pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl and piperazin-1-yl;~~

R^c is hydrogen, hydroxy, C₁₋₆ alkoxy, or -NR^d"R^b";

R^d and R^e are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxylalkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ alkylthioalkyl, heteroalkyl, heterocycl, heterocyclalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, di-C₃₋₆ cycloalkyl-C₁₋₃ alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, phenylalkyl, diphenyl-C₁₋₃ alkyl, and C₁₋₃ alkyl substituted with both a C₃₋₆ cycloalkyl and a phenyl group, wherein each of said cycloalkyl, phenyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen; or

R^c and R^d are taken together to form a divalent group selected from C₁₋₆ alkylidenyl, C₁₋₆ heteroalkylidenyl, C₃₋₆ cycloalkylidenyl, C₃₋₆ cycloalkyl-alkylidenyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl-alkylidenyl, C₃₋₆ heterocyclidenyl, C₃₋₆ heterocycl-C₁₋₃ alkylidenyl, C₃₋₆

heterocyclalkyl-C₁₋₃ alkylidaryl, aryl-C₁₋₃ alkylidaryl, aryl-C₁₋₃alkyl-alkylidaryl, heteroaryl-C₁₋₃alkylidaryl, and heteroarylalkyl-C₁₋₃ alkylidaryl, wherein each of said cycloalkyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen; or

R^d and R^e are taken together with the carbon to which they are attached to form a cycloalkyl or heterocycl ring;

R^a" and R^b" are each independently selected from the group consisting of hydrogen, C₁₋₉ alkyl, hydroxyalkyl, C₁₋₆ alkoxyalkyl, C₁₋₆ alkylthioalkyl, carboxyalkyl, acyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₃ alkyl, di-C₃₋₆ cycloalkyl-C₁₋₃ alkyl, C₁₋₆ heteroalkyl, aminoalkyl, aminocarbonylalkyl, cyanoalkyl, C₅₋₈ heterocycl, heterocyclalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, phenylalkyl, diphenyl-C₁₋₃ alkyl, and C₁₋₃ alkyl substituted with both a C₃₋₆ cycloalkyl and a phenyl group, wherein each of said cycloalkyl, phenyl, aryl, or heteroaryl groups is optionally substituted with one or more substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, hydroxyalkyl, cyano, acylamino, alkylsulfonyl, alkylsulfonyloxy, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl; or

R^a" and R^b" are taken together with the nitrogen to which they are attached form an heterocycl or heteroaryl ring selected from the group consisting of pyrrolidine, piperidine, homopiperidine, tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, tetrahydropyrimidine, hexahydropyrimidine, pyrazolidine, piperazine, morpholine, imidazoline, pyrrole, pyrazole, and imidazole, where each of said rings is optionally substituted with one or more substituents selected from the group consisting of hydroxy, oxo, alkyl, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, acyl, acylamino, aminocarbonyl, aminocarbonylalkyl, aminocarbonylamino, aminosulfonyl, alkylsulfonylamino, aminosulfonylamino, and phenyl, wherein each of said phenyl groups is optionally substituted with one or more groups independently selected from C₁₋₆ alkyl, haloalkyl, C₁₋₆ alkoxy, amino, alkylamino, dialkylamino, and halogen, and each of said amino groups is optionally monosubstituted or disubstituted with alkyl, or is contained in a pyrrolidinyl, piperidinyl, morpholinyl, or piperezinyl group;

or individual stereoisomers isomers, racemic or non-racemic mixtures of isomers, or pharmaceutically acceptable salts thereof; in admixture with at least one pharmaceutically acceptable carrier.

46-48. (Canceled)

* * * * *