Definitionen

Hier folgen die Definitionen wichtiger mathematischer Begriffe aus dem Skript:

Matrizen und lineare Abbildungen

- Matrix: Eine reelle $m \times n$ -Matrix A ist eine Tabelle mit m Zeilen und n Spalten, den Dimensionen m und n. Jede Eintrag A_{ij} ist eine reelle Zahl. Die Menge aller solcher Matrizen wird mit $\mathbb{R}^{m \times n}$ bezeichnet.
- Lineare Abbildung: Eine Abbildung $a: \mathbb{R}^m \to \mathbb{R}^n$ heißt linear, wenn sie die Form $a(x) = A \cdot x$ hat, wobei A eine $n \times m$ Matrix ist. Lineare Abbildungen respektieren Addition und skalare Multiplikation.

Orthogonale Matrizen

• Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt **orthogonal**, falls $A^{-1} = A^T$ gilt. Das bedeutet, dass das Produkt AA^T die Einheitsmatrix ergibt.

Eigenwerte und Eigenvektoren

• Ein Vektor $v \neq 0$ heißt **Eigenvektor** einer Matrix A, wenn für einen Skalar λ , der Eigenwert, gilt: $Av = \lambda v$. Die Menge aller Eigenwerte von A wird als das Spektrum von A bezeichnet.

Vektorräume

• Ein **Vektorraum** über einem Körper K ist eine Menge V zusammen mit zwei Operationen (Vektoraddition und Skalarmultiplikation), die bestimmten Axiomen genügen, wie Kommutativität und Distributivität der Addition und Multiplikation, Existenz von additives Inverses und Neutrales Element.

Weitere lineare Abbildungen zwischen Vektorräumen

• Eine Abbildung zwischen zwei Vektorräumen über dem gleichen Körper \mathbb{K} ist linear, wenn die Abbildung $a:V\to W$ die Form a(u+v)=a(u)+a(v) und $a(\alpha u)=\alpha a(u)$ für alle $u,v\in V$ und alle Skalare $\alpha\in\mathbb{K}$ erfüllt.