Examen du mardi 11 novembre 8h30 -10h25

Matériaux de l'ingénieur, section A GML-10463 Science des matériaux GML-21452

Professeurs: Diego Mantovani et Daniel Larouche

Nom :	Prénom :
Matricule :	Programme :
Matériaux de l'ingénieur :	Science des matériaux :

INSTRUCTIONS

- L'examen est individuel, aucun échange (verbale ou de documents) n'est permis ;
- Aucun documentation permise;
- Déposez sur la table d'examen votre carte d'étudiant ;
- Le professeur se réserve le droit d'enlever des notes en regard de la présentation générale et de la correction du français et ce, jusqu'à concurrence de 10 points sur 100 ;
- Ordinateurs, baladeurs, systèmes complexes de calcul et téléphones cellulaires interdits ;
- Lisez attentivement l'ensemble de l'examen avant de commencer à répondre ;
- Maîtrisez votre impulsivité et réfléchissez plusieurs fois avant de répondre ;
- Écrivez seulement dans les espacés prévus au recto. Le verso est pour votre brouillon. <u>Aucune notion au verso ne sera corrigée, (sauf là où le contraire est indiqué)</u>;
- Évaluez le temps que vous dédiiez à chaque question en fonction de son pointage;
- Seulement les calculateurs admis par la faculté sont permis ;
- Vous devez remettre TOUTES les feuilles de ce formulaire d'examen.

Réservé à la correction

1	2	3	4	5	6	7	Total
10	20	10	14	8	18	20	100

EXERCISE I (5-5 points)

Une tige d'alumine à section cylindrique (diamètre = 40 mm) est encastrée à ses extrémités de façon à empêcher tout déplacement longitudinal. La tige est mise en place et fixée dans ses encastrements (distance entre encastrement = 250 mm) à la température ambiante (20°C) de façon qu'aucune contrainte interne ne soit générée. De plus, aucune force externe n'est appliquée sur la tige. $l = l_0 (1 + \alpha \Delta t)$ est la longueur correspondant à une variation de température Δt , l_0 étant la longueur initiale. Les propriétés de l'alumine sont les suivantes :

 $\begin{array}{ll} \mbox{Module de Young:} & E = 370 \mbox{ GPa} \\ \mbox{R\'esistance \`a la traction:} & \sigma_{Rt} = 500 \mbox{ MPa} \\ \mbox{R\'esistance \`a la compression:} & \sigma_{Rc} = 2200 \mbox{ MPa} \\ \mbox{Coefficient de dilatation lin\'eique:} & \alpha = 8.8 \times 10^{-6}\mbox{/}^{\circ}\mbox{C} \end{array}$

- Coefficient de dilatation linéique : α = 8,8 x 10°°/°C
 a) Quelle est la contrainte engendrée dans la tige quand la température est portée de la température ambiante à 500°C ?
 (Notes : l'augmentation en température est progressive, aucun gradient thermique ne s'établit dans la tige, la déformation peut donc être considéré comme proportionnelle et suivante une fonction linéaire à la charge)

 b) Est-ce que vous prévovez une runture de la tige dans ces conditions thermiques ? Si qui
- b) Est-ce que vous prévoyez une rupture de la tige dans ces conditions thermiques ? Si oui, justifiez votre réponse. Si non, déterminez quelle température engendrerait la rupture.

EXERCISE II (2-2-6-2-8 points)

La figure ci-dessous représente les courbes caractéristiques obtenues au cours d'essais de résilience Charpy réalisés sur deux matériaux A et B.

a) Quelle est la grandeur Y représentée en ordonnée ? En quelle(s) unité(s) est exprimée cette grandeur ?

b) Quel matériau est le plus tenace à la température ambiante ? Justifiez votre réponse.

c)	Sachant que la rigidité du matériau A est supérieure à celle du matériau B, tracez schématiquement la courbe des contraintes versus les déformations (en traction) de chacun des matériaux si l'essai de traction est réalisé à une température θ = -20 °C.
d)	Si la vitesse d'application de la charge dans l'essais Charpy était diminuée, dans quel sens (Gauche ou Droite) seraient déplacées les courbes de résilience ci-dessus ? <i>Justifiez votre réponse</i> .

Résistance à la	a rupture à :			
0°C:				
Ductilité à :				
Ducumic a .				
-80°C :				
-00 C .				
40°C_:				
<u>Dureté à :</u>				
40 °C:				

EXERCISE III (10 points)

Un axe en acier, dont le plan est donné ci-dessous, est soumis en service à un chargement cyclique en traction, d'amplitude constante et de contrainte moyenne nulle (σ_{moy} = 0). La force maximale appliquée à l'axe est égale à 1,45 MN. La courbe de Wöhler de cet acier est également donnée ci-dessous.

a)	Quelle est la valeur du rapport $R = \sigma_{min}/\sigma_{max}$ caractérisant le chargement cyclique ?
))	Si une fissure principale de fatigue apparaît dans le congé de raccordement de l'axe, quelle sera la durée de vie N de cet axe dans ces conditions de chargement ?
Qu	elle devrait être la valeur du rayon r d congé pour que l'axe ait une durée de vie infinie ?

EXERCISE IV (3-2-5-4 points)

a) Sur le diagramme de phase A-B ci-dessous, indiquez les domaines biphasés en y inscrivant les phases en présence.

b) Point eutectique : - Température : _____°C

- Composition : _____%B

c) Associez la proportion de phase liquide avec les points figuratifs, C, D, E, F et G.

Proportion de phase liquide (%)	0	10	50	90	100
Points figuratifs C, D, E, F ou G					

d) Donner les deux compositions pour lesquelles on a 50% d'eutectique juste avant solidification complète de l'alliage.

i) %B

ii) %B

EXERCISE V (2-2-2-2 points) Le coefficient de diffusion n'est pas traité

Expliquez l'influence des paramètres suivants sur le coefficient de diffusion. Justifiez votre réponse.

a)	Température?
b)	Intensité des liaisons atomiques?
c)	Concentration de lacunes?
d)	Taille des éléments diffusants?

Le graphique suivant montre l'influence de la teneur en chrome sur la résistivité du cuivre à 300 K.

À 500 K, la résistivité du cuivre pur est $\rho = 2,674 \times 10^{-6} \Omega \cdot \text{cm}$,

a) Calculez la constante de Matthiessen:en assumant que la résistivité du cuivre peut se calculer à partir de l'équation suivante :

$$\rho = \rho_0 \left[1 + \beta \left(T - 200 \text{ K} \right) \right]$$

pour toute température supérieure $\geq 200 \text{ K}$,

b)	Qualla gara la régistivité de l'alliaga Qu. 0.150/ et Cr à 500 V
U)	Quelle sera la résistivité de l'alliage Cu – 0,15% at. Cr à 500 K

EXERCISE VII (7-7-4-2 points) **E2**

Les caractéristiques à 20°C pour le silicium sont les suivantes :

Matériau	Bande interdite E _g (eV)	Conductivité σ (S/m)	Mobilité des électrons μ_{ϵ} (m ² /V/s)	Mobilité des trous μ_t (m ² /V/s)
Silicium	1,1	4.3×10^{-4}	0,14	0,04

1 eV =
$$1.602 \times 10^{-19} \text{ J}$$

h = $6.626 \times 10^{-34} \text{ J} \cdot \text{s}$
k = $1,381 \times 10^{-23} \text{ J/K}$
k = $8,617 \times 10^{-5} \text{ eV/K}$

a) Calculez la résistivité du silicium pur à 400 K.

b) Calculez la résistivité du silicium extrinsèque de type n à 20°C si la concentration d'éléments dopants est de 1 x 10¹⁸ atomes par cm³.

Remarque 1 : On considère que la contribution des porteurs minoritaires est négligeable et que tous les donneurs participent è la conduction.

c)	Dessinez schématiquement la variation du logarithme de la conductivité d'un semi- conducteur extrinsèque en fonction de 1/T. Identifiez la portion de la courbe ou la conduction intrinsèque est dominante.
d)	Pourquoi la conduction intrinsèque est-elle dominante dans cette région?
	· · · · · · · · · · · · · · · · · · ·