2.1 Il est clair que $D_f = \mathbb{R}$.

Soit $a \in \mathbb{R}$ un élément que lconque de l'ensemble de définition. Montrons que la fonction f est continue au point a.

Soit $\varepsilon > 0$ un nombre positif quelconque (arbitrairement petit).

Il s'agit de montrer l'existence d'un nombre $\delta > 0$ tel que pour tout $x \in \mathbb{R}$ avec $|x - a| < \delta$ on ait $|f(x) - f(a)| < \varepsilon$.

Mais, on constate que $|f(x)-f(a)|=|1-1|=|0|=0<\varepsilon$ quel que soit $x\in\mathbb{R}$, de sorte que δ peut être choisi arbitrairement, c'est-à-dire indépendamment de ε .

En particulier, si $\delta = 1$, alors on a bien pour tout $x \in \mathbb{R}$ avec $|x - a| < \delta$ que $|f(x) - f(a)| = 0 < \varepsilon$, ce qui prouve la continuité de la fonction f en a.

Analyse : continuité Corrigé 2.1