Rethinking Computer-aided Tuberculosis Diagnosis

Yun Liu^{1*}, Yu-Huan Wu^{1*}, Yunfeng Ban², Huifang Wang², Ming-Ming Cheng¹

¹TKLNDST, College of Computer Science, Nankai University

²InferVision

http://mmcheng.net/tb/

- The second leading cause of death by infectious disease (after HIV)
- Induced by Mycobacterium TB
- Typically infects the lungs
- 8,000,000 10,000,000 new TB patients every year
- 2,000,000 3,000,000 deaths every year

- Golden standard: diagnostic microbiology for the identification of Mycobacterium TB
 - Biosafety level-3 lab (BSL-3) is needed
 - It requires several months for this process
- Early TB screening through X-rays
 - Common and data-intensive
 - Low accuracy (68.7% in our study)
- •Motivation: Adopt deep learning for computeraided TB diagnosis/screening with X-ray images

Challenges

- Deep learning is always data-hungry
- The publicly available TB data are very limited

Datasets	Year	Class	Label	Sample
MC [1]	2014	2	Image-level	138
Shenzhen [1]	2014	2	Image-level	662
DA [2]	2014	2	Image-level	156
DB [2]	2014	2	Image-level	150
TBX11K	2020	4	Bounding box	11200

Summary of publicly available TB datasets, among which TBX11K is ours.

^[1] Jaeger S, Candemir S, Antani S, et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases[J]. QIMS, 2014, 4(6): 475.

^[2] Chauhan A, Chauhan D, Rout C. Role of Gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation[J]. PloS One, 2014, 9(11).

- We contribute to the community with a large-scale Tuberculosis X-ray (TBX11K) dataset which
 - is $17 \times larger$ than the existing largest dataset
 - annotates TB areas using bounding boxes
 - gold standard, double-check
 - includes **four categories** of healthy, sick but non-TB, active TB, and latent TB

Split for the proposed TBX11K dataset

	Class	Train	Val	Test	Total
Non-TB	Healthy	3000	800	1200	5000
	Sick & Non-TB	3000	800	1200	5000
ТВ	Active TB	473	$\overline{157}$	294	924
	Latent TB	104	36	72	212
	Active & Latent TB	23	7	24	54
	Uncertain TB	0	0	10	10
Total		6600	1800	2800	11200

Distribution of the areas of TB bounding boxes

- Task: Simultaneous X-ray image classification and TB area detection
- Baselines: SSD^[1], RetinaNet^[2], Faster R-CNN^[3], FCOS^[4]
 - Adding an image classification branch
 - Two-stage training

[1] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//ECCV. Springer, Cham, 2016: 21-37.

[3] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//NIPS. 2015: 91-99.

[4] Tian Z, Shen C, Chen H, et al. FCOS: Fully convolutional one-stage object detection[C]//IEEE ICCV. 2019: 9627-9636.

^[2] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//IEEE ICCV. 2017: 2980-2988.

Method	Pretrained	Backbone	Accuracy	AUC (TB)	Sensitivity	Specificity	Ave. Prec.	Ave. Rec.
SSD	Yes	VGGNet-16	84.7	93.0	78.1	89.4	82.1	83.8
RetinaNet		ResNet-50 w/ FPN	87.4	91.8	81.6	89.8	84.8	86.8
Faster R-CNN		ResNet-50 w/ FPN	89.7	93.6	91.2	89.9	87.7	90.5
FCOS		ResNet-50 w/ FPN	88.9	92.4	87.3	89.9	86.6	89.2
SSD		VGGNet-16	88.2	93.8	88.4	89.5	86.0	88.6
RetinaNet	No	ResNet-50 w/ FPN	79.0	87.4	60.0	90.7	75.9	75.8
Faster R-CNN		ResNet-50 w/ FPN	81.3	89.7	72.5	87.3	78.5	79.9

X-ray image classification results on the proposed TBX11K test data

Method Data	Pretrained	Backbone	CA TB		Active TB		Latent TB		
			AP_{50}^{bb}	AP^{bb}	AP ₅₀	AP^{bb}	AP_{50}^{bb}	APbb	
SSD			VGGNet-16	52.3	22.6	50.5	22.8	8.1	3.2
RetinaNet		V	ResNet-50 w/ FPN	52.1	22.2	45.4	19.6	6.2	2.4
Faster R-CNN		Yes	ResNet-50 w/ FPN	57.3	22.7	53.3	21.9	9.6	2.9
FCOS	ALL		ResNet-50 w/ FPN	46.6	18.9	40.3	16.8	6.2	2.1
SSD	1		VGGNet-16	61.5	26.1	60.0	26.2	8.2	2.9
RetinaNet		No	ResNet-50 w/ FPN	20.7	7.2	19.1	6.4	1.6	0.6
Faster R-CNN			ResNet-50 w/ FPN	21.9	7.4	21.2	7.1	2.7	0.8
SSD			VGGNet-16	68.3	28.7	63.7	28.0	10.7	4.0
RetinaNet		Yes	ResNet-50 w/ FPN	69.4	28.3	61.5	25.3	10.2	4.1
Faster R-CNN			ResNet-50 w/ FPN	63.4	24.6	58.7	23.7	9.6	2.8
FCOS	ТВ		ResNet-50 w/ FPN	56.3	22.5	47.9	19.8	7.4	2.4
SSD	1 D		VGGNet-16	69.6	29.1	67.0	29.0	9.9	3.5
RetinaNet		No	ResNet-50 w/ FPN	40.5	13.8	37.8	12.7	3.2	1.1
Faster R-CNN		No	ResNet-50 w/ FPN	37.4	11.8	35.3	11.3	3.9	1.1
FCOS			ResNet-50 w/ FPN	42.1	14.4	38.5	13.6	4.3	1.1

TB area detection results on the proposed TBX11K test set

