Fonctions de Parking

Tessa Lelièvre-Osswald

Encadrant : Matthieu Josuat-Vergès

IRIF - Pôle Combinatoire

25 août 2020

Introduction: Combinatoire

- **Combinatoire** : domaine des mathématiques et de l'informatique théorique étudiant les ensembles finis *structurés* par leur énumération et leur comptage.
- Branches principales :
 - combinatoire énumérative : dénombrement.
 - combinatoire bijective : déduire une égalité entre les cardinaux de deux classes combinatoires en bijection.
- Classe combinatoire : ensemble ${\mathcal A}$ muni d'une application ${\mathcal A} \to {\mathbb N},$ appelée taille.

Introduction: Exemples

Classes combinatoires :

- ▶ Mots de longueur *n* sur l'alphabet $\{0,1\}$: $|\{0,1\}^n| = 2^n$
- ▶ Permutations de $\{1, ..., n\}$: $|\mathfrak{S}_n| = n!$
- ▶ k-cycles de \mathfrak{S}_n : $|{}^k\mathfrak{S}_n| = \frac{n!}{(n-k)!k}$
- Bijection : $\mathfrak{S}_n \longleftrightarrow {}^{n+1}\mathfrak{S}_{n+1}$:
 - ullet $\mathfrak{S}_n \to {}^{n+1}\mathfrak{S}_{n+1}: \mathsf{Soit}\ \sigma = \mathsf{a}_1 \ldots \mathsf{a}_n \ \mathsf{notre}\ \mathsf{permutation}.$ $\sigma' = (n+1 \ a_1 \dots a_n) \in {}^{n+1}\mathfrak{S}_{n+1}.$
 - ▶ $^{n+1}\mathfrak{S}_{n+1} \to \mathfrak{S}_n$: Soit $\sigma' = (a_1 \dots a_{n+1})$ notre permutation circulaire.

Notons i l'indice tel que $a_i = n + 1$. $\sigma = a_{i+1} \dots a_{n+1} a_1 \dots a_{i-1} \in \mathfrak{S}_n$.

$$\frac{(n+1)!}{(n+1-(n+1))!(n+1)} = \frac{(n+1)!}{0!(n+1)} = \frac{n!(n+1)!}{n+1} = n!$$

Introduction : Chemins de Dyck

- Mot de Dyck : $\mathcal{D}_n = \{ w \in \{0, 1\}^{2n} \}$ respectant les deux conditions } :
 - $|w|_0 = |w|_1 = n$
 - Pour tout préfixe w' de w, $|w'|_0 \leq |w'|_1$
- Chemin de Dyck :
 - ► Chaque 1 devient un pas Nord (↑)
 - ▶ Chaque 0 devient un pas Est (\rightarrow)
- $d_n = |\mathcal{D}_n| = Cat(n) = \frac{1}{n+1} {2n \choose n}$

Exemple :

$$w = 1011010100$$

Introduction: Chemins de Dyck

Mot de Dyck étiquetté :

 $\mathcal{LD}_n = \{ w \in \{0, \dots, n\}^{2n} \text{ respectant} \}$ les trois conditions $\}$:

- $|w|_0 = |w|_{\neq 0} = n$
- ▶ Pour tout préfixe w' de w, $|w'|_0 \leq |w'|_{\neq 0}$
- ▶ Pour tout $i \in \{1, ..., n\}, |w|_i = 1$

• Chemin de Dyck étiquetté :

- ► Chaque i ≠ 0 devient un pas Nord (↑) étiquetté par i
- ightharpoonup Chaque 0 devient un pas Est (
 ightarrow)
- $|d_n = |\mathcal{LD}_n| = (n+1)^{n-1}$

• Exemple : w = 4015002030

5 / 14

Introduction : Fonctions de Parking

- Fonction de Parking primitive : $\mathcal{PF'}_n = \{(a_1, \ldots, a_n) \mid 1 \leqslant a_i \leqslant i \text{ pour tout } i \text{ entre } 1 \text{ et } n, \text{ et } a_i \leqslant \ldots \leqslant a_n\}$
 - Exemple : $(1,1,3,3,4) \in \mathcal{PF'}_5$
 - ► Contre-exemple : $(1,1,3,2,4) \notin \mathcal{PF'}_5$
- $pf'_n = |\mathcal{PF'}_n = Cat(n) = \frac{1}{n+1} {2n \choose n}$
- Fonction de Parking : $\mathcal{PF}_n = \{(a_1, \dots, a_n) \text{ dont le tri croissant } (b_1, \dots, b_n) \in \mathcal{PF'}_n\}$
 - Exemple : $(1,1,3,2,4) \in \mathcal{PF}_5$
 - ► Contre-exemple : $(2,1,4,5,4) \not\in \mathcal{PF}_5$
- $pf_n = |\mathcal{PF}_n = (n+1)^{n-1}$

Introduction Posets

- ullet Poset : Ensemble ${\mathcal E}$ partiellement ordonné : ensemble muni d'une relation d'ordre ≼ permettant de comparer certains couples d'éléments de l'ensemble, muni de propriétés :
 - ▶ Réflexivité : $e \in \mathcal{E} \rightarrow e \leq e$
 - Anti-symétrie : $e_1 \leq e_2 \wedge e_2 \leq e_1 \rightarrow e_1 = e_2$
 - ► Transitivité : $e_1 \leq e_2 \wedge e_2 \leq e_3 \rightarrow e_1 \leq e_3$
- Exemple :
 - $\mathcal{E} = \mathbb{N} \times \mathbb{N}$
 - $\blacktriangleright \preccurlyeq : (a,b) \preccurlyeq (c,d) \text{ ssi } a \leqslant c \text{ et } b \leqslant d$
 - \triangleright (3,8) et (2,9) sont incomparables

- 🕦 Des posets pour le cas classique
 - Posets classiques primitifs
 - Posets classiques non-primitifs
- Des posets pour le cas rationnel
 - Le cas rationnel
 - Posets rationnels primitifs
 - Posets rationnels non-primitifs
- Conclusion

- Des posets pour le cas classique
 - Posets classiques primitifs
 - Posets classiques non-primitifs
- Des posets pour le cas rationnel
 - Le cas rationnel
 - Posets rationnels primitifs
 - Posets rationnels non-primitifs
- Conclusion

9 / 14

Des relations de couverture pour \mathcal{D}_n et $\mathcal{PF'}_n$

- $\mathcal{D}_n: w >_d w'$, s'il existe deux mots w_1 et w_2 tels que :
 - $w = w_1 01 w_2$
 - $w' = w_1 10 w_2$
- Si w₁ >_d w₂, alors le chemin de Dyck correspondant à w₂ est au dessus de celui correspondant à w₁, et la différence entre les deux chemins est un carré de côté 1.
- $\mathcal{PF'}_n$: f > g s'il existe i tel que :
 - $f = (a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n)$
 - $g = (a_1, \ldots, a_{i-1}, a_i 1, a_{i+1}, \ldots, a_n)$

Bijection entre les deux ensembles

- $\mathcal{PF'}_n \to \mathcal{D}_n$:
 - $f = (a_1, \ldots, a_n) \in \mathcal{PF'}_n$.
 - I_i = nombre d'occurences de i dans f.
 - ► Mot de Dyck correspondant : $\underbrace{1 \cdots 1}_{l_1} \underbrace{0 \underbrace{1 \cdots 1}_{l_2} 0 \cdots \underbrace{1 \cdots 1}_{l_d} 0}$.
- $\mathcal{D}_n \to \mathcal{PF'}_n$:
 - $w \in \mathcal{D}_n$.
 - Considérons son chemin de Dyck.
 - s_i = abscisse du i^e pas Nord. $a_i = s_i + 1$.
 - ▶ Fonction de parking primitive correspondante : $(a_1, ..., a_n)$.

Posets **bijectifs** obtenus pour \mathcal{D}_4 et $\mathcal{PF'}_4$

- Des posets pour le cas classique
 - Posets classiques primitifs
 - Posets classiques non-primitifs
- Des posets pour le cas rationnel
 - Le cas rationnel
 - Posets rationnels primitifs
 - Posets rationnels non-primitifs
- Conclusion

- Des posets pour le cas classique
 - Posets classiques primitifs
 - Posets classiques non-primitifs
- Des posets pour le cas rationnel
 - Le cas rationnel
 - Posets rationnels primitifs
 - Posets rationnels non-primitifs
- Conclusion