

5.사각형의 성질

상위 1% 도약을 위한 고난도 족보

감수자: 이지연 (bori2021@eduzone.co.kr)

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2022-06-17
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

3. 그림과 같이 세 변의 길이가 서로 다른 삼각형

ABC 에서 변 AC 를 한 변의 길이로 하면서 변 BC의 연장선 위에 $\overline{AC} = \overline{CD}$ 가 되도록 점 D 를

정하여 마름모 ACDE를 그린다. 또, 변 AB를 한

변으로 하면서 $\angle BAF = \angle CAE$ 가 되도록 마름모 AFGB를 그린다. $\triangle AFC = 12 \text{ cm}^2$, $\overline{CE} = 6 \text{ cm}$ 일

1. 그림과 같은 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, 점 C에서 선분 ED에 내린 수선의 발을 H라고 하자. $\angle HDC = 50\,^\circ$,

 $\angle DAE = 105$ °일 때, $\angle HBC$ 의 크기는?

- ① 45°
- ② 47°
- 350°
- (4) 52°
- (5) 55°

- G A E B^{*} C D
- ① 4.8 cm

때, \overline{AC} 의 길이는?

- ② 5 cm
- ③ 5.4 cm
- ④ 5.8 cm
- ⑤ 6 cm

2. 그림과 같은 평행사변형 *ABCD*에서 두 대각선의 교점을 *O*라 하자. ∠*ADB* = 30°, ∠*AOB* = 45°일 때, ∠*ABD*의 크기는?

- ① 90°
- ② 95°
- ③ 100°
- 4) 105°
- (5) 110°

4. 직사각형 ABCD의 내부에 점 P가 있다. 대각선 \overline{BD} 를 긋고 점 P에서 각 꼭짓점을 연결하면 $\triangle ABP$, $\triangle PBC$ 의 넓이는 각각 $34\,\mathrm{cm}^2$, $21\,\mathrm{cm}^2$ 가 된다. 이 때, $\triangle PBD$ 의 넓이는?

- ① $11 \, \text{cm}^2$
- ② $12 \, \text{cm}^2$
- $313 \, \text{cm}^2$
- $\textcircled{4} \ 14\,\mathrm{cm}^{\,2}$
- 515 cm^2

5. $\square ABCD$ 는 $\angle B$ 가 예각인 평행사변형이다. 점 D에서 변 AB의 연장선에 내린 수선의 발을 H, \overline{BC} 의 중점을 M이라고 하면 $\overline{AB} = \overline{BM}$ 이고, $\angle BHM = 35\,^\circ$ 이다. 이 때, $\angle HMC$ 의 크기는?

- ① 105°
- ② 110°
- ③ 115°
- 4) 120°
- ⑤ 125°

6. 다음 그림과 같은 직사각형 ABCD에서 점 O를 두 대각선의 교점, 점 M를 \overline{AB} 의 중점이라 하자. $\triangle DOC$ 는 정삼각형이고 $\square ABCD = 108.8 \, \mathrm{cm}^2$, $\overline{MH} = x \, \mathrm{cm}$ 일 때, x의 값은?

① 3

- ② 3.2
- 3.4
- **4**) 3.6
- (5) 3.8

7. $\square ABCD$ 는 $\overline{AD}//\overline{BC}$, $\overline{AC} \perp \overline{BD}$ 인 등변사다리 꼴이다. $\overline{AD} = 3 \, \mathrm{cm}$, $\overline{BC} = 5 \, \mathrm{cm}$ 일 때, $\square ABCD$ 의 넓이는?

- ① $15 \, \text{cm}^2$
- ② $16 \, \text{cm}^2$
- $318 \, \text{cm}^2$
- 40 cm^2
- (5) 22 cm²

8. 다음 그림과 같이 $\angle B=50\,^\circ$, $\angle C=70\,^\circ$ 인 $\triangle ABC$ 에서 $\overline{BP}=\overline{CQ}=\overline{PQ}$ 가 되도록 \overline{AB} , \overline{AC} 위에 각각 점 P, Q를 잡을 때, $\angle x$ 의 크기는?

- ① 40°
- ② 50°
- 360°
- **4** 70 °
- ⑤ 80°

9. 정사각형 ABCD에서 $\angle BAE = 22^{\circ}$, $\angle DAF = 23$ 일 때, $\angle AEF$ 의 크기는?

- \bigcirc 67°
- ② 68°
- 369°
- **4**) 70°
- ⑤ 71°

(5) 50°

 ${f 10.}$ 중심이 P이고 길이가 $20\,{
m cm}\,{f 0}$ \overline{AB} 를 지름으로 하는 반원에 대하여 그림과 같이 반원 위의 한 점 G에서 \overline{AB} 에 내린 수선의 발을 F라 하자. \overline{GF} 위 의 점 C, D와 반원 위의 점 E가 $\overline{AD} = \overline{DE}$, $\angle GDE = 90$ °, $\angle ADC : \angle ACD = 1 : 2$ 일 때, 부채꼴 EPB의 넓이는?

- ① $4\pi \,\mathrm{cm}^2$
- $2 5\pi \text{ cm}^2$
- $\Im 6\pi \text{ cm}^2$
- $40 8\pi \, \text{cm}^2$
- $(5) 10\pi \text{ cm}^2$

11. 그림과 같이 직사각형 ABCD에서 $\overline{BE} = \overline{CD}$, $\overline{EC} = \overline{DF}$ 를 만족시키도록 점 E와 점 F를 잡았다. \overline{BF} 와 \overline{DE} 의 교점을 P라고 할 때, $\angle BPE$ 의 크기 는?

- ① 30°
- ② 35°
- ③ 40°
- 45°

12. 그림에서 사각형 ABCD는 평행사변형이고, 점 M, N은 각각 \overline{AB} , \overline{DC} 의 중점이다. \overline{AN} 의 연장선 이 \overline{BC} 의 연장선과 만나는 점을 Q, \overline{DM} 의 연장선 이 \overline{BC} 의 연장선과 만나는 점을 P, \overline{AQ} 와 \overline{DP} 의 교점을 O라고 한다. 사각형 ABCD의 넓이가 24 cm²일 때, 삼각형 *OPQ*의 넓이는?

- ① $27 \, \text{cm}^2$
- ② $28 \, \text{cm}^2$
- $3 29 \, \text{cm}^2$
- $4) 30 \text{ cm}^2$
- (5) 31 cm²

13. 그림과 같은 직사각형 ABCD의 한 변 DC 위에 $\overline{DF}:\overline{FC}=3:2$ 가 되도록 점 F를 잡고, \overline{AF} 의 연장 선과 \overline{BC} 의 연장선의 교점을 E라 하자. $\Box ABCD$ 의 넓이가 $150\,\mathrm{cm}^2$ 이라 할 때, $\triangle CFE$ 의 넓이는?

- $\bigcirc 18\,\mathrm{cm}^2$
- ② $20 \, \text{cm}^2$
- $325 \, \text{cm}^2$
- (4) 27 cm²
- $30 \, \text{cm}^2$

14. 다음 그림과 같은 평행사변형 ABCD에서 \overline{CD} 위의 한 점 G에 대하여, 선분 \overline{BG} 를 그을 때, $\overline{BE} = \overline{EF} = \overline{FG}$ 이다. 점 I는 $\triangle AGD$ 의 내심이고 $\triangle GBC$ 의 넓이가 45일 때, $\triangle AEF$ 의 넓이를 구하면?

- ① 36
- ② 38
- 3 40
- 43
- **⑤** 45

15. 평행사변형 ABCD의 꼭짓점 D를 지나는 직선이 \overline{AB} 의 연장선, \overline{BC} , \overline{AC} 와 만나는 점을 각각 E, F, G라 할 때, $\triangle FEC$ 와 넓이가 같은 삼각형은?

- ① $\triangle AFG$
- \bigcirc $\triangle GFC$
- \bigcirc $\triangle GCD$
- $\triangle ABF$
- \bigcirc $\triangle BEF$

9

정답 및 해설

1) [정답] ③ [해설]

 \overline{BC} 와 \overline{DE} 의 연장선의 교점을 P라 하자.

 $\triangle AED$ 와 $\triangle BEP$ 에서

 $\overline{AE} = \overline{BE}$, $\angle AED = \angle BEP$ (맞꼭지각)

∠*DAE*=∠*PBE*(엇각)이므로

 $\triangle AED \equiv \triangle BEP(ASA$ 합동)

 $\therefore \overline{AD} = \overline{BP}, \ \angle EPB = \angle EDA = 25^{\circ}$

 $\triangle PCH$ 에서 $\angle PCH = 180^{\circ} - (90^{\circ} + 25^{\circ}) = 65^{\circ}$

 $\overline{PB} = \overline{BC}$ 이므로 점 B는 $\triangle PCH$ 의 외심이다.

 $\overline{BH} = \overline{BC}$ 이므로 $\angle BHC = \angle BCH = 65^{\circ}$

 $\therefore \angle HBC = 180^{\circ} - 2 \times 65^{\circ} = 50^{\circ}$

2) [정답] ④

[해설]

점 B에서 \overline{AD} 에 내린 수선의 발을 E라 하자. ΔEBD 에서 \overline{BD} 는 빗변이고 $\overline{OB} = \overline{OD}$ 이므로 점 O는 ΔEBD 의 외심이다.

 $\overline{OE} = \overline{OD}$ 이므로 $\angle OED = 30^{\circ}$

 $\overline{OE} = \overline{OB}$ 이므로 $\angle EBO = 60^{\circ}$

 $\triangle EBO$ 는 정삼각형이므로 $\angle EOA = 15\,^{\circ}$

한편, $\triangle AOD$ 에서

 $\angle OAD = 45\,^{\circ} - 30\,^{\circ} = 15\,^{\circ}$ (외각의 성질)

 $\angle EOA = \angle EAO = 15$ 이므로 $\overline{AE} = \overline{OE}$

 $\triangle EBO$ 가 정삼각형이므로 $\overline{AE} = \overline{OE} = \overline{EB}$

따라서 $\triangle EAB$ 는 $\angle E = 90$ °인 직각이등변삼각형

 $\therefore \angle ABE = 45^{\circ}$

 \therefore \angle ABD = 45 $^{\circ}$ +60 $^{\circ}$ = 105 $^{\circ}$

3) [정답] ②

[해설]

 $\square ACDE$ 는 마름모이므로 $\overline{AE}//\overline{BC}$

 $\square AMCN$ 은 직사각형이므로 $\overline{AM} = \overline{CN}$

$$\triangle ACE = \frac{1}{2} \times \overline{AE} \times \overline{AM} = \triangle ABE$$

 $\triangle ABE$ 와 $\triangle AFC$ 에서

 $\overline{AB} = \overline{AF}, \ \overline{AE} = \overline{AC}$

 $\angle BAE = \angle BAC + \angle CAE$

 $= \angle BAC + \angle FAB = \angle FAC$

 $\triangle ABE \equiv \triangle AFC(SAS$ 합동)

 $\therefore \triangle AFC = \triangle ABE$

 $\triangle ACE$ 에서 $\frac{1}{2} \times 6 \times \overline{AH} = 12$ 에서

 $\overline{CH} = \overline{EH} = 3$ cm 이고 피타고라스의 정리에 의해

$$\overline{AC}^2 = 3^2 + 4^2 = 25$$
 $\therefore \overline{AC} = 5 \text{ (cm)}$

4) [정답] ③

[해설]

 $\triangle ABD = \frac{1}{2} \Box ABCD = \triangle ABP + \triangle CDP$

 $\triangle ABE + \triangle AED = (\triangle AED + \triangle PED) + \triangle PBC$

 $\therefore \triangle ABE = \triangle PED + \triangle PBC$

또, $\triangle ABE = \triangle PAB - \triangle PBE$ 이므로

 $\triangle PAB - \triangle PBE = \triangle PED + \triangle PBC \cdots \bigcirc$

 $\therefore \triangle PBD = \triangle PBE + \triangle PED$

 $= \triangle PAB - \triangle PBC(:: \bigcirc)$

=34-21=13 (cm²)

5) [정답] ①

[해설]

 \overline{AD} 의 중점을 N이라 하면 $\overline{AN} = \overline{DN}$ $\square ABMN$ 은 $\overline{AN}/\overline{BM}$, $\overline{AN} = \overline{BM}$ 이므로 평행사 변형이다.

 $\therefore \overline{AB}//\overline{NM}, \overline{AN} = \overline{NM}$

따라서 ∠*HMN*=∠*BHM*=35°(엇각)

한편, $\triangle ADH$ 는 직각삼각형이므로 점 N은 외심이다.

 $\therefore \overline{AN} = \overline{HN}$

따라서 $\overline{NH} = \overline{NM}$ 이므로

 \angle NHM= \angle NMH= 35 $^{\circ}$

 $\therefore \angle HAN = \angle AHN = 70^{\circ}$

또한, $\overline{AB}//\overline{NM}$ 이므로 $\angle HAN = \angle NMC = 70$ $^{\circ}$

 $\therefore \angle HMC = \angle HMN + \angle NMC = 35^{\circ} + 70^{\circ} = 105^{\circ}$

6) [정답] ③

[해설]
$$\overline{AD} = 108.8 \times \frac{1}{8} = 13.6 (cm)$$

 ΔDOC 는 정삼각형이므로 $\overline{OC} = \overline{CD} = 8$ cm ΔOBC 는 $\overline{BO} = \overline{CO}$ 인 이등변삼각형이므로 $\overline{BO} = 8$ cm

$$\overline{OM} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 13.6 = 6.8 \text{ (cm)}$$

 ΔBMO 에서

$$\frac{1}{2} \times 4 \times 6.8 = \frac{1}{2} \times 8 \times x \quad \therefore x = 3.4$$

7) [정답] ②

[해설]

 \overline{BC} 의 연장선 위에 $\overline{AC}//\overline{DE}$ 인 점 E를 잡으면 $\Box ACED$ 는 $\overline{AD}//\overline{CE}$, $\overline{AC}//\overline{DE}$ 인 평행사변형이다.

 $\stackrel{\triangle}{\rightarrow}$, $\overline{AD} = \overline{CE} = 3$ cm

 \overline{AC} = \overline{DE} , \overline{AC} = \overline{BD} 이므로 \overline{BD} = \overline{DE}

 $\triangle DBE$ 는 이등변삼각형이고.

$$\overline{BH} = \overline{EH} = \frac{1}{2}\overline{BE} = 4$$
cm

 $\angle ABC = \angle DCB$, $\triangle ABD \equiv \triangle DCA(SAS$ 합동)이

므로 $\angle ABD = \angle DCA$

따라서 $\angle DBC = \angle ACB = 45$ °

 ΔDBH 는 직각이등변삼각형이므로

 $\overline{DH} = \overline{BH} = 4$ cm

$$\therefore \Box ABCD = \frac{1}{2} \times (3+5) \times 4 = 16 \text{ (cm}^2)$$

8) [정답] ①

[해설]

 \overline{PB} 에 평행한 선분을 긋고 점 Q에서 \overline{PB} 에 평행한 선분을 그어 만나는 점을 D라 하자.

 $\square PBDQ$ 는 $\overline{PQ}//\overline{BD}$, $\overline{PB} = \overline{QD}$ 이므로 평행사변 형이고 $\overline{BP} = \overline{PQ}$ 이므로 마름모이다.

즉, $\overline{BP} = \overline{PQ} = \overline{QD} = \overline{BD}$

 $\overline{AB}//\overline{QD}$ 이므로 $\angle BAC = \angle DQC = 60$ °(동위각) $\overline{QD} = \overline{QC}$ 이므로 $\triangle QDC$ 는 정삼각형이다.

 $\therefore \angle DCQ = 60^{\circ}$

 ΔBDC 에서

 \overline{BD} = \overline{DC} , $\angle DCB$ = $10\,^{\circ}$ 이므로 $\angle DBC$ = $10\,^{\circ}$ $\angle PBD$ = $50\,^{\circ}$ - $10\,^{\circ}$ = $40\,^{\circ}$

 $\overline{PQ}//\overline{BD}$ 이므로 $\angle APQ = \angle PBD$ (동위각) $\therefore \angle x = 40^{\circ}$

9) [정답] ②

[해설]

 \overline{BC} 의 연장선 위에 $\triangle ADF$ 와 합동인 삼각형이 되도록 점 P를 잡으면

 $\overline{AP} = \overline{AF}$, $\angle PAE = \angle FAE = 45^{\circ}$ 이므로

 $\angle AQP = 90^{\circ}$, $\overline{PQ} = \overline{FQ}$

 $\triangle PQE$ 와 $\triangle FQE$ 에서

 \overrightarrow{PQ} = \overrightarrow{FQ} , $\angle PQE$ = $\angle FQE$ = 90°, \overrightarrow{QE} 는 공통이 므로 $\triangle PQE$ = $\triangle FQE$ (SAS 합동)

 $\stackrel{\triangle}{\neg}$, $\angle PEQ = \angle FEQ$

그런데 $\overline{AD}//\overline{BE}$ 이므로 $\angle PEQ = \angle DAE = 68$ $\therefore \angle x = 68$ °

10) [정답] ⑤

[해설] $\angle GDE = \angle AFD = 90$ 이므로 $\overline{DE}//\overline{AP}$

 $\angle DEA = \angle PAE$, $\overline{AD} = \overline{ED}$ 이므로

 $\angle PEA = \angle PAE$

즉, $\triangle ADE \equiv \triangle EPA(ASA$ 합동)

 $\therefore \overline{AD} = \overline{DE} = \overline{AP} = \overline{PE} = 10$ cm

따라서 □APED는 마름모이다.

$$\angle DAE = \angle PAE = a$$
, $\angle ADC = b$, $\angle ACD = 2b$ 라 하면

$$\triangle ADC$$
에서 $a+b+2b=180$ ° 이므로

$$\therefore a + 3b = 180 \quad \cdots \bigcirc$$

$$\triangle ADF$$
에서 $\angle DAF + \angle ADF = 90$ 이므로

$$2a+b=90^{\circ}$$
 ... \bigcirc

 \bigcirc , \bigcirc 를 연립하여 풀면 $a=18^{\circ}$, $b=54^{\circ}$

이때, $\triangle APE$ 에서

 $\angle EPB = \angle PAE + \angle AEP = 2a = 36$ 이므로 부채 꼴 EPB의 넓이는

$$\pi \times 10^2 \times \frac{36^{\circ}}{360^{\circ}} = 10\pi (\text{cm}^2)$$

11) [정답] ④

[해설]

점 F를 지나고 \overline{DE} 에 평행한 직선과 점 E를 지 나고 \overline{DC} 에 평행한 직선의 교점을 Q라 하면 \square FDEQ는 평행사변형이다.

$$\therefore \overline{DE} = \overline{FQ}, \ \overline{FD} = \overline{QE}, \ \angle FDE = \angle FQE$$

$$\overline{DC}//\overline{QE}$$
이므로 $\angle QEC = \angle ECD = 90^{\circ}$ (엇각)

$$\therefore \angle QEB = 90^{\circ}$$

 $\triangle QEB$ 와 $\triangle ECD$ 에서

$$\angle QEB = \angle ECD = 90$$
°, $\overline{QE} = \overline{EC}$, $\overline{EB} = \overline{DC}$ ○] $\Box \neq$

 $\triangle QEB \equiv \triangle ECD(SAS$ 합동)

 $\therefore \overline{QB} = \overline{ED} = \overline{QF}, \ \angle BQE = \angle DEC$

이때 \overline{BC} 와 \overline{FQ} 의 교점을 R라 하면 $\overline{FQ}//\overline{DE}$ 이

므로 $\angle QRE = \angle RED()$ ()

 $\therefore \angle BQE = \angle QRE$

 ΔQRE 에서

 $\angle QRE + \angle RQE = 90^{\circ}$ 이므로

 $\angle BQE + \angle RQE = \angle RQB = 90^{\circ}$

즉, $\triangle QFB$ 는 $\overline{QF} = \overline{QB}$, $\angle FQB = 90$ °인 직각이 등변삼각형이므로 ∠ QFB=45°

따라서 $\overline{FQ}//\overline{DE}$ 이므로

∠ BPE = ∠ QFB = 45° (동위각)

12) [정답] ①

[해설]
$$\square AMND = \square MBCN = \frac{1}{2} \square ABCD$$

= $\frac{1}{2} \times 24 = 12 (\text{cm}^2)$

$$\therefore \triangle OMN = \frac{1}{4} \Box AMND = \frac{1}{4} \times 12 = 3 \text{ (cm}^2)$$

한편, $\triangle AMD$ 와 $\triangle MBP$ 에서

 $\overline{AM} = \overline{BM}$, $\angle AMD = \angle BMP$ (맞꼭지각),

 $\angle MAD = \angle MBP()$ 이므로

 $\triangle AMD = \triangle BMP(ASA$ 합동)

$$\triangle NCQ = \triangle BMP = \triangle AMD = \frac{1}{2} \Box AMND$$

$$=\frac{1}{2}\times 12 = 6(\text{cm}^2)$$

$$\therefore \triangle OPQ = \triangle OMN + \triangle BMP + \Box MBCN + \triangle NCQ$$
$$= 3 + 6 + 12 + 6 = 27 \text{ (cm}^2)$$

13) [정답] ②

[해설] $\triangle ACD$ 에서 \overline{DF} : \overline{FC} =3:2이므로

$$\triangle ADF: \triangle AFC = 3:2$$

$$\triangle ACD = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 150 = 75 \text{ (cm}^2\text{)}$$

$$\therefore \triangle AFC = \frac{2}{5} \triangle ACD = \frac{2}{5} \times 75 = 30 \text{ (cm}^2\text{)}$$

한편, $\triangle ADC = \triangle ADE$ 이므로

 $\triangle ACF = \triangle DEF = 30 \text{cm}^2$

 ΔDCE 에서 \overline{DF} : \overline{FC} = 3:2이므로

 $\triangle DFE: \triangle CFE = 3:2$

 $3:2=30:\Delta CFE, 3\Delta CFE=60$

 $\therefore \triangle CFE = 20 \text{ cm}^2$

14) [정답] ②

[해설]
$$\triangle AGD = \frac{1}{2} \times 3 \times (19 + 9 + 18) = 69$$

$$\triangle ABG = \frac{1}{2} \Box ABCD = \triangle AGD + \triangle BCG$$

$$=69+45=114$$

$$\therefore \triangle AEF = \frac{1}{3} \triangle ABG = \frac{1}{3} \times 114 = 38$$

15) [정답] ④

[해설]

 $\triangle BED = \triangle BEC$ 이므로 $\triangle BFD = \triangle FEC$ 이다. $\triangle BFD = \triangle ABF$ 이므로 $\triangle FEC = \triangle ABF$ 이다.