LAST NAME:			F	TRST	Γ NAME:		CIRC	CIRCLE:						
							Li 2:3	0pm	Li 5:30pm	n Z	Zweck 10am	Zweck 1pm		
					ı									
1	/10	2	/10	3	/10	4	/10	5	/10					
6	/10	7	/10	8 (0	/10	9	/10	10	/10	Γ	/10	0		

MATH 2415 Final Exam, Fall 2017

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

(1) [10 pts] Evaluate the integral $\iint_D x \, dA$ where D is that quarter of the annulus $1 \le x^2 + y^2 \le 16$ that is in the first quadrant.

- (2) [10 pts] Let $\mathbf{F} = x\mathbf{i} + 2y\mathbf{j} + xyz\mathbf{k}$. Calculate
- (a) $\operatorname{curl}(\mathbf{F})$

(b) $\operatorname{div}(\mathbf{F})$

- (3) [10 pts] Let $z = f(x, y) = x^2 + 4y^2$, and let C be the level curve f(x, y) = 4. (a) Find a parametrization of the curve C.

(b) Use your answer to (a) to find a vector, \mathbf{v} , that is tangent to the curve C at the point $(x,y)=(1,\sqrt{3}/2)$.

(c) Find the directional derivative of f in the direction of the vector \mathbf{v} in (b) at the point $(x,y)=(1,\sqrt{3}/2)$.

(4) [10 pts] Find an equation of the form Ax+By+Cz=D for the plane that contains the line parametrized by $\mathbf{r}_1(t)=(1+2t,3+4t,5-t)$ and that is parallel to the line parametrized by $\mathbf{r}_2(t)=(2+t,3,-1+4t)$.

- (5) [10 pts]
- (a) Let $u(x,t) = \sin(x+2t)$. Show that u satisfies the wave equation $u_{tt} = 4u_{xx}$.

(b) Let $\mathbf{r}(t) = (t^2, t^3)$ and let z = f(x, y) be a function so that f(1, 1) = 6, $\frac{\partial f}{\partial x}(1, 1) = 4$, and $\frac{\partial f}{\partial y}(1, 1) = 5$. Let $g(t) = f(\mathbf{r}(t))$. Calculate g'(1).

(6) [10 pts] Find the absolute maximum and minimum values of the function $f(x,y) = x^2 + y^2 - 2y$ on the upper half disk where $x^2 + y^2 \le 4$ and $y \ge 0$.

	F				_	_		_		_			_		
(7)	⊢110 ı	ntsl L	et. Fi	(x, y)	$= \eta \mathbf{i} -$	-ri.	and b	et. C	' be	the	unit	circle	oriented	counter	clockwise.
\ · /	1 - 0 1		OU = 1	(∞, g)	9.	ω.	correct 1			ULLU	CLILLO	CIICIC	oriented	COULTOOL	CIOCII WIDO.

(a) Use a sketch to determine whether $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero.

(b) Calculate $\int_C {\bf F} \cdot d{\bf r}$ using the definition of the line integral.

(c) Is ${f F}$ conservative? Justify your answer.

(8) [10 pts] Evaluate $\iint_R (x-y)^2 e^{x+y} dxdy$ where R is the parallelogram bounded by x+y=1, x+y=3, x-y=-2 and x-y=1. **Hint:** Use the Change of Variables Theorem with u=x+y and v=x-y.

(9) [10 pts] Let S be the surface parametrized by

$$(x, y, z) = \mathbf{r}(\theta, \phi) = (2\cos\theta\sin\phi, 3\sin\theta\sin\phi, 4\cos\phi).$$

Calculate a parametrization of the tangent plane to the surface S at the point where $(\theta, \phi) = (\pi/4, \pi/2)$.

(10) [10 pts] Let E be the solid region bounded by the planes $y=x, x=1, y=0, z=1+y,$ and $z=0$ Calculate $\iiint_E x dV$.
Pledge: I have neither given nor received aid on this exam

Signature: