Urgent appendix removal training for non-medical personal in unstable environment

Group 3 Ditte Tangkau (5423767) Fleur Kleene (5637104) Ekaterina Karmanova

Motivation

- Medical emergencies on offshore facilities are costly and risky (1)
 ~ 10% acute appendicitis (1)
- Strategies to lower these costs (1):
 - Vaccinations
 - Improve screening
 - Improve treatment capabilities
- High cognitive load extreme conditions, inexperienced practitioner (level 3 stationed & level 4 on shore (2)), telemedicine (3)
- Only improving the availability of instruments is not the solution

Existing solutions

- Emergency evacuation via helicopter
- Send a doctor to the facilities
- Have a permanent medical crew to cope with emergency surgeries
- Have a robotic device that can perform surgeries

BUT

- Expensive logistics
- Lack of trained personnel and doctors
- Expensive and sophisticated in use equipment

Goal

To design and test a training environment where inexperienced medical practitioners can practice the surgery of acute appendicitis in the same conditions as they would experience on an offshore facility.

Training program should achieve:

- Improvement in the performance to cut a straight line (by a hybrid controller)
- Improve the accuracy for stitching (by an impedance controller)

Hypothesis:Practicing in conditions with perturbations will give a better performance and accuracy compared to practicing without one.

Method

 Use the Haply and interactive 2D environment to train the personal perform two basic procedures in appendix removal surgery

Two tasks

- 1) Cutting a straight line is visualized by moving from one point to another
- 2) Accurate stitching is visualized by keeping the needle stable in position around points

Controller

- Hybrid controller for task 1
- Impedance controller for task 2

Task 1: Cutting

Task 2: Sewing

Experiments:

Two different conditions

C1 = with external perturbations

C2 = without external perturbations

Two different groups:

- Group T1: x10 task C1 -> x10 task C2
- Group T2: x10 task C2 -> x10 task C2

Hypothesis to evaluate: training teleoperated surgery in unstable environment leads to better performance rather than being trained in stable conditions.

Experimental results: group T1

Experimental results: group T2

Conclusions

Hypothesis:Practicing in conditions with perturbations will give a better performance and accuracy compared to practicing without one.

Results: Group T2 performed the cutting task **faster** than group T1. The accuracy in the cutting task was similar.

Both groups performed the stitching task with **similar speed**. Group T2 had a **higher performance** score.

Discussion: More test-subjects would provide more accurate results.

Conclusion: Practicing in conditions with perturbations appears to slightly improve the time spent on cutting and the accuracy of stitching

