Profit Curves and Imbalanced Classes

galvanize

Problem Motivation

- Classification datasets can be "imbalanced".
 - o i.e. many observations of one class, few of another
- Costs of a false positive is often different from cost of a false negative.
 - e.g. missing fraud can be more costly than screening legitimate activity
- Accuracy-driven models will over-predict the majority class.

What's a possible problem during LEARNING (fitting the model)?

What's a possible problem during EVALUATION (scoring the model)?

Example: 100 pos, 10000 neg

Example: 100 pos, 10000 neg

What's a possible problem during LEARNING (fitting the model)?

Solution: cost-sensitive learning, oversampling/undersampling

What's a possible problem during EVALUATION (scoring the model)?

Solution: cost-benefit matrix

Solutions

Cost-sensitive learning:

- cost-benefit matrices & "profit curves"
- modified objective functions

Sampling:

- Oversampling
- Undersampling
- SMOTE Synthetic Minority Oversampling Technique

Recall the ROC Curve:

- ROC shows FPR = (1-TNR) vs
 TPR (aka Recall)
- doesn't give preference to one over the other

Q: How to handle unequal error costs?

A: Plot expected profit!

QUESTION: how would you pick your favorite matrix?

A	Pred: pos	Pred: neg
Actual: pos	12	8
Actual: neg	15	965

В	Pred: pos	Pred: neg
Actual: pos	0	20
Actual: neg	0	980

С	Pred: pos	Pred: neg
Actual: pos	15	5
Actual: neg	115	865

D	Pred: pos	Pred: neg
Actual: pos	18	2
Actual: neg	250	730

QUESTION: how would you pick your favorite matrix?

Α	Pred: pos	Pred: neg	В
Actual: pos	12	8	Actua pos
Actual: neg	15	965	155
С		345	D

В	Pred: pos	Pred:
Actual: pos	PR	980

	FINE	10	5
DE	Actual: neg	115	865

D	Pred: pos	Pred: neg
Actual: pos	18	2
Actual: neg	250	730

Confusion Matrix

	Pred: Y	Pred: N
Actual: y	TP	FN
Actual: n	FP	TN

Confusion Matrix

P = TP+FN = count of actual y N = FP+TN = count of actual n

Probability Matrix

	Pred: Y	Pred: N	
Actual: y	TP	FN	
Actual: n	FP	TN	

	Pred: Y	Pred: N
Actual: y	p(Y,y)	p(N,y)
Actual: n	p(Y,n)	p(N,n)

Confusion Matrix

Probability Matrix

$$p(Y,y) = TP / (P + N)$$

 $p(Y,n) = FP / (P + N)$
 $p(N,y) = FN / (P + N)$
 $p(N,n) = TN / (P + N)$

VALUES ARE COUNTS

VALUES ARE PROBAS

Cost-Benefit Matrix

	~	
	Pred: Y	Pred: N
Actual: y	p(Y,y)	p(N,y)
Actual: n	p(Y,n)	p(N,n)

	Pred: Y	Pred: N
Actual: y	b(Y,y)	c(N,y)
Actual: n	c(Y,n)	b(N,n)

Confusion Matrix

VALUES ARE COUNTS

Probability Matrix

$$p(Y,y) = TP / (P + N)$$

 $p(Y,n) = FP / (P + N)$
 $p(N,y) = FN / (P + N)$
 $p(N,n) = TN / (P + N)$

VALUES ARE PROBABILITIES

Cost-Benefit Matrix

VALUES ARE \$\$\$!

Computing the Expected Profit

	Pred: Y	Pred: N
Actual: y	TP	FN
Actual: n	FP	TN

<u>₹</u>		
	Pred: Y	Pred: N
Actual: y	p(Y,y)	p(N,y)
Actual:	p(Y,n)	p(N,n)

	Pred: Y	Pred: N
Actual: y	b(Y,y)	c(N,y)
Actual: n	c(Y,n)	b(N,n)

$$E[Profit] = p(Y,y).b(Y,y) + p(Y,n).c(Y,n) + p(N,y).c(N,y) + p(N,n).b(N,n)$$

$$= p(Y \mid y).p(y).b(Y,p) + p(Y \mid n).p(n).c(Y,n) + p(N \mid y).p(y).c(N,y) + p(N \mid n).p(n).b(N,n)$$

$$= p(y).[p(Y \mid y).b(Y,p) + p(N \mid y).c(N,y)] + p(n)[p(Y \mid n).c(Y,n) + p(N \mid n).b(N,n)]$$

Cost-Benefit Matrix (example 1)

Prompt: You are building a model to predict if credit card charges are fraudulent.

- If we predict a fraudulent charge, we'll call the customer to confirm.
- If you miss a fraudulent charge, it on average costs \$100
- Calling someone to confirm if their charge was real costs on average \$4

Question: What is an appropriate cost benefit matrix?

A	Predicted: fraud	Predicted: not fraud
Actual: fraud	96	-100
Actual: not fraud	-4	0

В	Predicted: fraud	Predicted: not fraud
Actual: fraud	-4	-100
Actual: not fraud	-4	0

С	Predicted: fraud	Predicted: not fraud
Actual: fraud	96	0
Actual: not fraud	-4	0

Cost-Benefit Matrix (example 2)

You are building a model to **predict if customers will churn** from your online clothing store. You'll use your model **to send a promotional email** to users you think are going to churn.

You'd like to use a cost benefit matrix so you can build **profit curves to determine the optimal model**.

- Customers on average spend \$200/month.
 Your profit is 10% of this revenue.
- A promotional email costs on average \$2/customer
 and prevents 50% of users from churning for 6 months.
- When the promotional email is sent to users who were not going to churn, it annoys 5% of them and causes them to churn 2 months earlier than they otherwise would have.

	Predicted: churn	Predicted: not churn
Actual: churn	?	?
Actual: Not churn	?	?

From Thresholding to Profit Curves

Percent of test instances classified as "positive"

Cost-sensitive Evaluation: comparing classifiers

Profit Curve:

- Same idea as ROC curve but with expected profit
- For each threshold, compute the expected profit

Percent of test instances classified as "positive"

Cost-sensitive Evaluation: comparing classifiers

Profit Curve:

- Same idea as ROC curve but with expected profit
- For each threshold, compute the expected profit

Cost-sensitive evaluation:

- Select threshold with highest expected profit.

Percent of test instances classified as "positive"

- Models with explicit objective function can be modified to incorporate classification cost.
 - o e.g. logistic regression

Logistic regression's usual objective function:

$$\ln p(\vec{y}|X;\theta) = \sum_{i=1}^{n} (y_i \ln h_{\theta}(x_i) + (1 - y_i) \ln(1 - h_{\theta}(x_i)))$$

New objective function, representing expected cost:

$$J^{c}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(y_{i} (h_{\theta}(X_{i}) C_{TP_{i}} + (1 - h_{\theta}(X_{i})) C_{FN_{i}}) + (1 - y_{i}) (h_{\theta}(X_{i}) C_{FP_{i}} + (1 - h_{\theta}(X_{i})) C_{TN_{i}}) \right).$$

- This will affect optimization.
 - e.g. cost-sensitive logistic regression is not convex!
- Not all models have a cost-sensitive implementation.

Example: 100 pos, 10000 neg

What's a possible problem during LEARNING (fitting the model)?

Solution: cost-sensitive learning, oversampling/undersampling

What's a possible problem during EVALUATION (scoring the model)?

Solution: cost-benefit matrix

Undersampling

Undersampling randomly discards majority class observations to balance training sample.

PRO: Reduces runtime on very large datasets.

CON: Discards potentially important observations.

Oversampling

Oversampling replicates observations from minority class to balance training sample.

PRO: Doesn't discard information.

CON: Likely to overfit.

SMOTE - Synthetic Minority Oversampling TEchnique

Generates new observations from minority class.

For each minority class observation and for each feature, randomly generate between it and one of its k-nearest neighbors.

SMOTE pseudocode

```
synthetic observations = []
while len(synthetic observations) + len(minority observations) < target:</pre>
    obs = random.choice(minority observations):
    neighbor = random.choice(kNN(obs, k)) # randomly selected neighbor
    new observation = {}
    for feature in obs:
        weight = random() # random float between 0 and 1
        new feature value = weight*obs[feature] \
                             + (1-weight) *neighbor[feature]
        new observation[feature] = new feature value
    synthetic observations.append(new observation)
```


Sampling Techniques

What's the right amount of over-/under-sampling?

- The degree & kind of resampling is another set of hyperparameters to tune
- Mix it up! You may get the best results by both oversampling and undersampling
- Evaluation: profit if you have a cost-benefit matrix, otherwise ROC-AUC score, F1, etc.

Cost Sensitivity vs Sampling

- Neither is strictly superior.
- Oversampling tends to work better than undersampling on small datasets.
- Some algorithms don't have an obvious cost-sensitive adaptation, requiring sampling.

See also "Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?" http://storm.cis.fordham.edu/gweiss/papers/dmin07-weiss.pdf