Formulario fisica

1 Cinematica

1.1 Moto Rettilineo Uniforme

Legge oraria	$s = v \cdot (t - t_i) + s_i$
Legge oraria $(t_i = 0)$	$s = v \cdot t + s_i$
Velocita'	$v = \frac{s - s_i}{t - t_i} \lor v = \frac{\delta s}{\delta t}$
Tempo	$t = \frac{s - s_i}{v} + t_i$
Modulo variazione velocita	$\Delta V = \sqrt{V_1^2 \pm V_2^2}$

1.2 Moto Rettilineo Uniformemente Accelerato

Legge oraria	$s = \frac{1}{2} \cdot a \cdot (t - t_i)^2 + v_i \cdot (t - t_i) + s_i$
Legge oraria $(t_i = 0)$	$s = \frac{1}{2} \cdot a \cdot t^2 + v_i \cdot t + s_i$
Velocita istantanea	$v = v_i + a \cdot (t - t_i)$
Velocita istantanea $(t_i = 0)$	$v = v_i + a \cdot t$
Accelerazione	$a = \frac{v - v_i}{t - t_i} \lor a = \frac{\delta v}{\delta t}$
Rapporto $v/s/a$	$v^2 = v_i^2 + 2 \cdot a \cdot (s - s_i)$

1.3 Gradi - Radianti & km/h - m/s

$\operatorname{Gradi} \to \operatorname{Radianti}$	$\alpha_{radianti} = \frac{\alpha_{gradi} \cdot \pi}{180}$
Radianti \rightarrow Gradi	$\alpha_{gradi} = \frac{180}{\alpha_{radianti} \cdot \pi}$
m km/h ightarrow m/s	$v_{m/s} = \frac{v_{km/h}}{3.6}$
$m/s \rightarrow km/h$	$v_{km/h} = v_{m/s} \cdot 3.6$

1.4 Trigonometria

Angolo tra vettore e asse X	$\overrightarrow{V} = \sqrt{V_x^2 + V_y^2} \alpha = \arccos(\frac{V_x}{\sqrt{V_x^2 + V_y^2}})$
Prodotto seno · coseno	$\cos \alpha \cdot \sin \alpha = \frac{1}{2} \cdot \sin (2\alpha)$

Cateto da ipotenusa	$b = a \cdot \sin \beta = a \cdot \cos \gamma c = a \cdot \sin \gamma = a \cdot \cos \beta$
Cateto da cateto	$b = c \cdot \tan \beta = c \cdot \cot \gamma c = b \cdot \tan \gamma = b \cdot \cot \beta$
	a h
Teorema dei seni	$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$
Teorema del coseno	$a^2 = b^2 + c^2 - 2bc\cos\alpha$

1.5 Attrito

Forza risultante (attrito statico)	$F = \mu_s \cdot F_{\perp}$
Forza risultante (attrito dinamico)	$F = \mu_d \cdot F_h f i = \mu_d \cdot F_\perp$

1.6 Moto parabolico

Componenti del moto	$\begin{cases} v_{0x} = v_0 \cdot \cos \alpha \\ v_{0x} = v_0 \cdot \sin \alpha \end{cases}$
Velocita	$v = \sqrt{v_{0_x}^2 + v_{0_y}^2} \alpha = \arctan \frac{v_{0_y}}{v_{0_x}}$
Legge oraria	$\begin{cases} x = x_0 + v_{0x} \cdot t & (moto\ rettilineo\ uniforme) \\ y = -\frac{1}{2} \cdot g \cdot t^2 + v_{0y} \cdot t + y_0 & (moto\ uif.\ accelerato) \end{cases}$
Gittata	$x_g = \frac{2 \cdot v_{0_x} \cdot v_{0_y}}{g}$
Gittata massima (45°, $\frac{\pi}{4}$)	$x_{g_max} = \frac{v_0^2}{g}$
Tempo di volo	$t_{volo} = \frac{2 \cdot v_{0_y}}{g}$
Altezza massima	$y_{max} = \frac{v_{0_y}^2}{2 \cdot g}$
Tempo per raggiungere l'altezza massima	$t_{y max} = \frac{v_{0_y}}{g}$

1.7 Leggi di Newton

I principio della dinamica	$\sum_{i} \vec{F}_{i} = 0 \implies \vec{a} = 0$
II principio della dinamica	$\sum_i ec{F_i} = m ec{a}$
III principio della dinamica	$ec{F}_{A o B} = ec{F}_{B o A}$

1.8 Moto circolare uniforme

Frequenza e periodo	$f = \frac{1}{t}$
Legge oraria	$\theta_t = \theta_0 + \omega \cdot t$
Velocita tangenziale	$v = \frac{s}{t} v = \frac{2\pi \cdot r}{t}$
Velocita angolare	$\omega = \frac{2\pi}{t}$ $v = \omega \cdot r$
Accelerazione centripeta	$a_c = \frac{v^2}{r} a_c = \omega^2 \cdot r$

1.9 Moto circolare uniformemente accelerato

Legge oraria $(t_i = 0)$	$\theta = \frac{1}{2} \cdot \alpha \cdot t^2 + \omega_0 \cdot t + \theta_0$
Accelerazione totale	$\vec{a}_{tot} = \vec{a}_{tangenziale} + \vec{a}_{centripeta}$
Accelerazione angolare	$\alpha = \frac{\omega_f - \omega_i}{t_f - t_i}$
Velocita angolare	$\omega = \omega_0 + \alpha \cdot t$
Rapporto velocita - accelerazione	$\omega^2 = \omega_0^2 + 2 \cdot \alpha \cdot (\theta - \theta_0)$
Forza centripeta	$ec{F_c} = m \cdot ec{a} ec{F_c} = m \cdot rac{v^2}{r} ec{F_c} = m \cdot \omega^2 \cdot r$

1.10 Forza elastica

Elongazione	$\Delta x = L - (\pm L_0)$
Forza elastica $(Hooke's \ law)$	$\vec{F}_e = -k \cdot \vec{x}_{metri}$
Pulsazione	$\omega = \sqrt{\frac{k}{m}}$
Periodo	$T = \frac{2\pi}{\omega}$

1.11 Lavoro

Lavoro	$L = F \cdot \Delta s$
Energia cinetica	$K = \frac{1}{2} \cdot m \cdot \vec{v} $
Energia potenziale	$U = m \cdot g \cdot h$
Energia potenziale elastica	$U_e = \frac{1}{2} \cdot k \cdot \Delta x^2$
Energia Meccanica (totale)	M = K + U
Principio di conservazione	$\Delta M = M_f - M_0 = 0$