1 Обязательная часть

Строим centroid decomposition. С этой фразы начинается каждое решение. Так что вынесем ее отдельно.

1. Построение AVL.

Самый простой вариант: всегда берем средний по номеру (индексу) элемент на рассматриваемом отрезке (подмассиве). Тогда, казалось бы, в корень всегда попадает идеальное среднее, слева и справа от него равное количество элементов, все отлично. Но тут есть маленькая проблемка. Количество слева и справа либо равное, либо рахличается на 1. И если звезды сойдутся так, что влево постоянно будет попадать на один элемент больше, то разница высот может оказаться больше двух. С этим надо как-то бороться.

Вот если бы количество вершин было таким, что можно построить полное бинарное дерево (пбд далее), то все было бы прекрасно: влево и вправо уходило бы всегда равное число элементов. Хм, а это мысль. Давайте внушать нашему AVL, что оно пбд.

Итак, пусть d - максимальная высота пбд, которое можем построить из данных элементов, то есть $2^d-1 \le n$. Но у нас осталась еще $n-2^d+1$ вершина, отправим их на новый последний уровень. Если бы можно было построить пбд с d+1 уровнем, то на последнем было бы 2^d вершин, причем в левом поддереве лежало бы 2^{d-1} . Вот и положим их все (если столько наберется) влево, а остатки $n-2^d-2^{d-1}+1$ вправо (или 0, если влево столько не набиралось). Тогда корень — это ячейка массива посередине между 2^{d-1} и $n-(n-2^d-2^{d-1}+1)=2^d+2^{d-1}-1$. Ура, мы нашли идеальный корень. Теперь рекурсивно вызываемся от двух поддеревьев, жизнь прекрасна.

Почему линия? Идеальный корень каждого поддерева находим за константу, то есть все вершины расставляем по местам за линию.

2. Глубины вершин.

Пусть к нам пришла вершина х. Надо ее куда-то за логарифм деть. Давайте найдем такую наибольшую вершину, у которой значение меньше х. Если такой нет, значит, х оказался новым минимальным. Сделаем его левым поддеревом старой наименьшей (самой левой) вершины. Но пусть нашлась такая вершина у. У нее правый сын может быть, а может и не быть. Пусть нет. Тогда просто подвесим наш х справа от у. Если правый сын есть, то засунем наш х между ними.

Осталась одна проблема — найти максимальное значение, меньшее данного, за логарифм. Для этого мы можем просто поддерживать сбалансированное дерево поиска.

3. Площадь покрывающего прямоугольника.

Поддерживаем декартово дерево. Ключ — х, значение — у, в каждой вершине храним максимальные и минимальные х и у в ее поддереве. Добавлять и удалять в такой структуре за логарифм уже умеем. Осталось понять, как искать площадь.

Заметим, что если мы получим "правильное" поддерево (все вершины которого лежат в данном отрезке, и оно максимально), то по нему легко можем найти запрашиваемую площадь. Как? Ну мы ведь не зря храним минимумы и максимумы по поддереву в каждой вершине. Берем корень поддерева. Берем лежащие в нем значение хmin, хmax, ymin, утах. Получаем ответ по довольно простой формуле:

$$S = (xmax - xmin) \cdot (ymax - ymin)$$

Но как получить такое поддерво? Засплитить. Дважды. Короче просто вырезать поддерево с нужными ключами. Сплит за логарифм делать умеем, все хорошо.

4. Lower bound.

```
struct Node {
    Node *1, *r;
    int x;
};

Node* lower_bound(Node* v, int a) {
    if (v->x < a) {
        if (v->r != 0) return lower_bound(v->r, a);
        return 0;
    }
    if (v->l != 0) return min(v->x, lower_bound(v->l, a));
    return v;
}
```