ECE569 Module 11

• Profiling

Developer Tools - Profilers

https://developer.nvidia.com/performance-analysis-tools

NVPROF EXERCISE

- Command Line Profiler
 - Compute time in each kernel
 - Compute memory transfer time
 - Collect metrics and events
 - Support complex process hierarchy's
 - Collect profiles for NVIDIA Visual Profiler
 - No need to recompile
- \$ nvprof ./myadd
 - View available metrics
 - **\$ nvprof --query-metrics**
 - View global load/store efficiency
 - \$ nvprof --metrics gld_efficiency,gst_efficiency ./myadd
 - Store a timeline to load in NVVP
 - \$ nvprof -o profile.timeline ./myadd
 - Store analysis metrics to load in NVVP
 - \$ nvprof -o profile.metrics --analysis-metrics ./myadd

ECE569

NVPROF EXERCISE

- Either in interactive session.
- or
- Use job submission script given in hw1 as a template and include nvprof as part of the "/usr/bin/time mpirun" command
 - /usr/bin/time mpirun -np 1 nvprof --log-file profile.txt ./myadd
 - /usr/bin/time mpirun -np 1 nvprof --metrics all -o nvvp_profile.nvvp ./myadd
 - /usr/bin/time mpirun -n 1 nvprof -o profile.timeline ./myadd
 - /usr/bin/time mpirun -n 1 nvprof –o profile.metrics --analysis-metrics ./myadd

Import nvprof into NVVP

- Launch nvvp
- Click
 - File/ Import/ Nvprof/ Next/ Single process/ Next / Browse
 (next to Timeline data file)
 - Select profile.timeline
- Add Metrics to timeline
 - Click on 2nd Browse (for Event/Metric data files)
 - Select profile.metrics

Load your profile files

- Select profile.timeline
- Click on 2nd Browse (for Event/Metric data files)
- Select profile.metrics
- Click Finish
- Explore Timeline
 - Control + mouse drag in timeline to zoom in
 - Control + mouse drag in measure bar (on top) to measure time

NVVP

8

Timing Analysis Window

ECE569

Guided Analysis Window

Guided Analysis – GPU Usage

Unguided Analysis

Instructions:

- 1. Click on a kernel
- 2. On Analysis tab click on the unguided analysis

2. Click Analyze All Explore metrics and properties

Unguided Analysis

NSIGHT

CUDA enabled IDE

- Source code editor: syntax highlighting
- Build Manger
- Visual Debugger
- Visual Profiler

Linux/Macintosh

- Editor = Eclipse
- Debugger = cuda-gdb with a visual wrapper
- Profiler = NVVP

Windows

- Integrates directly into Visual Studio
- Profiler is NSIGHT VSE

Nsight Eclipse Edition

ECE569

NSIGHT: Importing project

Instructions:

- Run nsight
 Select default workspace
- 2. Click File / New / Makefile Project With Existing CodeTest
- 3. Enter Project Name and select the project directory
- 4. Click Finish
- 5. Right Click On Project / Properties / Run Settings / New / C++ Application
- 6. Browse for executable
- 7. In Project Explorer double click on .cu and explore source
- 8. Click on the build icon
- 9. Click on the run icon
- 10. Click on the profile icon

Before profiling

- Certain kinds of errors cause CUDA programs to complete, but crash under profiling
- Check your program with cuda-memcheck if code behaves incorrectly under profiling

```
cuda-memcheck ./my-program ...
```

Before profiling

- Compile device code with optimizations
 - Optimizations dramatically change performance
 - Remove "-G" device-debug flag from nvcc
- Compile device code with line information
 - Add "-lineinfo" flag to nvcc

nvcc -G main.cu

nvcc -lineinfo main.cu

Profiling, Debugging Tools Summary

- Performance programmers rely on debugging and profiling tools
 - You should setup your environment and choose the tools most convenient for you.
 - For assignments you may not need them much but for your project you will need these tools
 - quantify how well you are utilizing compute resources, memory bandwidth

Next

Threads, Thread blocks, workload management