

Amishi Gupta, Tyler Westland, Ritvik Irigireddy, Angel Li, Isha Prem, & Neta Shubin

TABLE OF CONTENTS

Introduction

What is Dyslexia?

Collaboration

Children's Dyslexia Center - Boston North, Diana Baum (Director)

Dataset

What does the data look like?

App

A web application that detects likeliness of user being dyslexia based on handwriting

ML Model

Machine Learning Models that were utilized

Future

Implications & future improvements for our project

Solution

Issue

Dyslexia is a general term for disorders that affect your writing, speaking, reading, and spelling skills, impacting a student's ability to read and write.

This is why it is important that it is diagnosed and treated early.

Strategy

Generate and optimize a machine learning model that can classify if an individual is likely to have dyslexia in order to initiate further potential consultations.

Aim

To create an application using our machine learning model to predict if an individual has dyslexia based on their handwriting.

Our Data

https://www.kaggle.com/datasets/drizasazanitaisa/dyslexia-handwriting-dataset

Classes		
Corrected	Characterized as messy handwriting	
Normal	No issues with legibility and orientation of letters	
Reversal	Letters are in the opposite orientation as normal letters should be and are therefore indicating dyslexia	

Preprocessing the Data

Undersampling The Data

How Are Models Evaluated?

Accuracy

- Percentage of predictions that were correct on our test set.

Confusion Matrix

		Predicted Class	
		0	1
True Class	0	True Negative	False Positive
	1	False Negative	True Positive

Receiver Operating Characteristic (ROC) Curve

- The greater the area under the curve (AUC), the better the model performs

True Positive Rate (TPR) =
$$\frac{TP}{TP + FN}$$

False Positive Rate (FPR) = $\frac{FP}{FP + TN}$

Models

K-Means

Our first image classifier

Random Forest

Used to predict accuracy and classification

CNN

A type of neural network with convolutional layers

LeNet-5

A type of CNN model for handwritten digit recognition

Inception V3

Uses the pre-trained convolutional layers of a model

VGG16

Another pre-trained model that performed very well with our dataset

K-Means

Poor accuracy no matter the number of clusters because the images in our dataset aren't easily clusterable.

Random Forest THE CONCEPT

A combination of multiple decision trees that extracts the most important features.

RandomizedSearchCV

Neural Network

Convolutional Neural
Network (CNN)

Transfer Learning

CNN: LeNet-5

Image size: 32 x 32 2 Convolutional Layers 2 Average pooling Layers 2 Dense Layers RMSprop Optimizer Learning Rate: 0.001

Transfer Learning: InceptionV3

The Best Model - VGG16 Model

Avoids Overfitting

The training accuracy (87.8%) and validation accuracy (89.4%) are similar indicating minimum overfitting

ROC Curve

Uses Preprocessed Data

Data utilized is realistic after being preprocessed

Confusion Matrix

Confusion Matrix for Test Data

Collaboration

How Collaborating Helped Us?

- Letter reversal can occur in younger individuals without dyslexia. Not all individuals with dyslexia perform letter reversals
- "Although students with dyslexia produced a higher proportion of reversal errors than those without dyslexia in bother letter writing and letter naming" Diane Baum, Director of Children's Dyslexia Centers - Boston North.

- Adding a disclaimer for user age (the user must be above the age of 7 in order for the results to be more accurate)
- Adding an algorithm to determine if there is an abnormal spacing between letters and words (another indicator of dyslexia).

Abnormal Spacing Algorithm

- Algorithm detects abnormal spacing between letters in a word
 - OpenCV
 - Contour Centers
- Would like to use a machine learning dataset to improve upon this algorithm in the future

Cheeseburger

Web Application Demo Video

Further Implications

Including more detections for features in dyslexia handwriting (ex: abnormal mix of upper and lower case)

Datasets

Supplemental MRI scans

Continue working with and learning from Children's Dyslexia Centers

Mobile App

Provide an application with a friendlier and more versatile user interface

Thank You For Listening!

Angela, Amishi, Isha, Neta, Ritvik,Tyler

 ${\bf Email} \ \underline{\bf TylerWestland@gmail.com} \ regarding \ any \ questions!$

