第五章 特征值与特征向量

1987~2008本章考题考点分布统计表

考点	考频	考题分布与分值					
特征值、特征向量 的概念与计算	1	2002,—(5) 题 3 分					
相似与相似对角化	2	2003,十一题	2004,23 题 9 分				
实对称矩阵	2	2006,23 题 9 分	2007,24 题 11 分				

本章导读

本章从2002年开始有考题.特征值和特征向量是线性代数的重要内容之一,也是考研的重点 之一,它涉及行列式、矩阵,相关、无关,秩,基础解系 …… 一系列问题,知识点多,综合性强,必须好 好复习.

第一,要掌握求特征值、特征向量的各种方法;第二是相似,把握住和对角矩阵相似的充分必 要条件,会求可逆矩阵 P;第三(可能更重要),利用实对称矩阵的隐含信息处理求特征值、特征向 量,用正交矩阵相似对角化等一系列问题。

真题分类练习

□ 一阶题,相对容易,推荐先做 二阶题,较综合,可在第二轮复习时做

一、特征值、特征向量的概念与计算

试题特点

常见的命题形式:

- 1. 用定义 $A\alpha = \lambda \alpha, \alpha \neq 0$ 推理、分析、判断.
- 2. 由 $|\lambda E A| = 0$ 和 $(\lambda_i E A)x = 0$ 求基础解系.
- 3. 通过相似 $P^{-1}AP = B$.
- (1) $abla \mathbf{A} \boldsymbol{\alpha} = \lambda \boldsymbol{\alpha}, \quad \mathbf{M} \mathbf{B}(\mathbf{P}^{-1}\boldsymbol{\alpha}) = \lambda(\mathbf{P}^{-1}\boldsymbol{\alpha}),$
- (2) $\mathbf{m} \mathbf{B} \mathbf{\alpha} = \lambda \mathbf{\alpha}$, $\mathbf{M} \mathbf{A}(\mathbf{P} \mathbf{\alpha}) = \lambda(\mathbf{P} \mathbf{\alpha})$,

170	艾宾浩斯抗造 忘复习计划	臻选 超号		,		再做时间	一夫 一四天 一七天 一一月 一考前

特别地,如r(A) = 1,有

$$|\lambda E - A| = \lambda^n - \sum a_{ii} \lambda^{n-1}$$

 $\lambda_1 = \sum a_{ii}, \lambda_2 = \lambda_3 = \dots = \lambda_n = 0$

通过下面的考题,请进一步体会考场上如何求特征值、特征向量.

解题加速度

1.(1991, 数四, 4 分) 已知向量 $\alpha = (1, k, 1)^{T}$ 是矩阵

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

的逆矩阵 A^{-1} 的特征向量,试求常数 k 的值.

艾宾浩斯抗遗
忘复习计划

真题真刷基础篇·考点分类详解版(数学二)

3.(1993, 数四, 3分) 设 $\lambda=2$ 是非奇异矩阵 A 的一个特征值,则矩阵 $\left(\frac{1}{3}A^2\right)^{-1}$ 有一个特征值 等于

- (A) $\frac{4}{3}$.
- (B) $\frac{3}{4}$.
- (C) $\frac{1}{2}$. (D) $\frac{1}{4}$.

相似与相似对角化

试题特点

围绕相似定义 $P^{-1}AP = B$,相似的性质设计试题,或者考查判断是否和对角矩阵相似.

 $A \sim \Lambda ⇔ A$ 有 n 个线性无关的特征向量

 \Leftrightarrow $\Delta A \in A \in A$ $\Delta A \subset A$ $\Delta A \in A$ $\Delta A \subset A$ $\Delta A \subset$

如 A 有 n 个不同的特征值 $\Rightarrow A \sim \Lambda$.

2 (2003,十一题,10 分) 若矩阵 $A = \begin{vmatrix} 8 & 2 & a \end{vmatrix}$ 相似于对角矩阵 Λ ,试确定常数 a 的值;并

求可逆矩阵 $P \oplus P^{-1}AP = \Lambda$.

答题区

3 (2004,23 题,9 分) 设矩阵
$$A = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 4 & -3 \\ 1 & a & 5 \end{bmatrix}$$
 的特征方程有一个二重根,求 a 的值,并

讨论 A 是否可相似对角化.

答题区

解题加速度

1. (1997,数四,9分)设矩阵 A 与 B 相似,且

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}.$$

- (1) 求 a,b 的值.
- (2) 求可逆矩阵 P,使 $P^{-1}AP = B$.

2.(1999, 数四, 7分) 设矩阵 $\mathbf{A} = \begin{bmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{bmatrix}$,问当 k 为何值时,存在可逆矩阵 \mathbf{P} ,使得

P-1AP 为对角矩阵?并求出 P 和相应的对角矩阵.

真题真 刷基础篇・考点分类详解版 (数学二)

$$3.(2000, 数四, 9 分)$$
 设矩阵 $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{bmatrix}$,已知 \mathbf{A} 有3个线性无关的特征向量, $\lambda = 2$ 是

A 的二重特征值,试求可逆矩阵 P,使得 $P^{-1}AP$ 为对角形矩阵.

实对称矩阵

试题特点

实对称矩阵有几个重要的定理,例如:实对称矩阵一定和对角矩阵相似(不管特征值有没有重 根);实对称矩阵特征值不同时特征向量必相互正交(由此有内积为 0,从而可构造齐次方程组求特 征向量);实对称矩阵可以用正交矩阵来相似对角化. 试题就是围绕这些定理来设计的. 此部分是 考研的重点,特别要复习好综合性强的解答题.

(2006,23 题,9 分) 设 3 阶实对称矩阵 A 的各行元素之和均为 3,向量α1 = (-1,2,

- $(-1)^{T}$, $\alpha_{2} = (0, -1, 1)^{T}$ 是线性方程组 Ax = 0 的两个解.
- (I) 求 A 的特征值与特征向量;
- (\mathbb{I}) 求正交矩阵 \mathbb{Q} 和对角矩阵 Λ , 使得 $\mathbb{Q}^{\mathsf{T}}A\mathbb{Q} = \Lambda$.

答题区

[2007,24 题,11 分)设三阶实对称矩阵 A 的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2, \mathbf{E}$

- $[-1,1)^{\mathsf{T}}$ 是 A 的属于 λ_1 的一个特征向量,记 $B = A^5 4A^3 + E$,其中 E 为三阶单位矩阵.
- (I) 验证 α , 是矩阵 B 的特征向量,并求 B 的全部特征值与特征向量;
- (Ⅱ) 求矩阵 B.

答题区