1 Sets Continued

1.1 Set Properties

Set Properties

Set Properties

Sets have properties similar but not the same as Arithmetic. Let U be the Universal set of elements of interest. Let $X,Y,Z\subseteq U$ The basic operators on sets are:

• Complement: \overline{X}

 \bullet Intersection: $X \cap {\bf Y}$

• Union $X \cup Y$

Set Props. Cont'd

Fundamental Properties of Set Theory Operators

Identity		
	$X \cap U = X$	$X \cup \{\} = X$
Anihilation	$X \cap \{\} = \{\}$	$X \cup U = U$
Complement	$M \cap U = U$	$H \cup C = C$
	$X\cap \overline{X}=\{\}$	$X \cup \overline{X} = U$
Idempotent	$X \cap X = X$	$X \cup X = X$
Commutativity	$A \cap A = A$	$A \cup A = A$
-	$X \cap Y = Y \cap X$	$X \cup Y = Y \cup X$

Set Props Cont'd Associativity

$$(X \cap Y) \cap Z = X \cap (Y \cap Z) \quad (X \cup Y) \cup Z = X \cup (Y \cup Z)$$

Distributivity: \cap over \cup

 $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

Distributivity: \cup over \cap

 $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$

Elementary Properties of Sets

- $\bullet \ \ \overline{\overline{\overline{X}}} = X$
- $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$

- $X \subseteq X \cup Y$ and $Y \subseteq X \cup Y$
- $\bullet \ \ X \subseteq Y \equiv \overline{Y} \subseteq \overline{X}$

- Also $Y \subseteq X \equiv \overline{X} \subseteq \overline{Y}$

Elementary Properties (Cont'd)

 $\bullet \ \ X = Y \equiv \overline{X} = \overline{Y}$

Proof:

$$\begin{array}{l} X = Y \equiv X \subseteq Y \ and \ Y \subseteq X \\ \equiv \overline{Y} \subseteq \overline{X} \ and \ \overline{X} \subseteq \overline{Y} \\ \equiv \overline{X} = \overline{Y} \end{array}$$

Set Theory Theorems

Set Theory Theorems

- $\begin{array}{cccc} \bullet & Y \subseteq X & \equiv & X \cup Y = X \\ \bullet & Y \subseteq X & \equiv & X \cap Y = Y \end{array}$

$$Y \subseteq X \equiv X \cup Y = X$$

Show
$$Y \subseteq X \equiv X \cup Y = X$$

- 1. $Y \subseteq X \to X \cup Y = X$
- $2.\ \, X\cup Y=X\rightarrow Y\subseteq X$

Proof. (1.)

Assume $Y \subseteq X$, show $X \cup Y = X$ i.e. $X \cup Y \subseteq X$ and $X \subseteq X \cup Y$ Show $X \cup Y \subseteq X$

let $z \in X \cup Y$ $\therefore z \in X \text{ or } z \in Y$

Cont'd

$$\begin{array}{l} \textit{Proof. } \textit{Case } z \in X \\ \therefore z \in X \\ \textit{Case } z \in Y \\ \textit{\{assuming } Y \subseteq X \ \} \\ \therefore z \in X. \\ \textit{Show } X \subseteq X \cup Y \\ \textit{True, from properties of } \cup. \end{array}$$

$Y \subseteq X \equiv X \cup Y = X$ (Cont'd)

Show(2.)
$$X \cup Y = X \rightarrow \mathbf{Y} \subseteq \mathbf{X}$$

$$\begin{array}{l} \textit{Proof.} \ (2.) \\ \textit{Assume} \ X \cup Y = X, \, \text{show} \ Y \subseteq X \\ \textit{let} \ z \in Y, \\ \textit{\therefore} \ z \in X \cup Y \\ \textit{\{assuming} \ X \cup Y = X \ \} \\ \textit{\therefore} \ z \in X \end{array}$$

$$Y \subseteq X \equiv X \cap Y = Y$$
 Show $Y \subseteq X \equiv X \cap Y = Y$

i.e. Show

1.
$$Y \subseteq X \to X \cap Y = Y$$

$$2.\ X\cap Y=Y\to Y\subseteq X$$

Proof. Exercise

$$X \subseteq Y \equiv X \cap \overline{Y} = \{\}$$

Theorem 1. $X \subseteq Y \equiv X \cap \overline{Y} = \{\}$

Diagram:

Show
$$X \subseteq Y \to X \cap \overline{Y} = \{\}$$

Assume $X\subseteq Y$ i.e. from above (swapping X and Y): $X\cap Y=X$ \therefore $X\cap \overline{Y}=(X\cap Y)\cap \overline{Y}=X\cap (Y\cap \overline{Y})=X\cap \{\}=\{\}$

$$\mathbf{Show}\ X\cap\overline{Y}=\{\}\to X\subseteq Y$$

Show
$$X \cap \overline{Y} = \{\} \to X \subseteq Y$$

Assume
$$X \cap \overline{Y} = \{\}$$
 As $X \subseteq Y \equiv X \cap Y = X$, show $X = X \cap Y$

$$\begin{array}{rcl} X & = & X \cap U \\ & = & X \cap \left(Y \cup \overline{Y}\right) \\ & = & \left(X \cap Y\right) \cup \left(X \cap \overline{Y}\right) \\ & = & \left(X \cap Y\right) \cup \left\{\right\} \\ & = & X \cap Y \end{array}$$

De Morgan's Laws

De Morgan's Laws

1.
$$\overline{(X \cap Y)} = \overline{X} \cup \overline{Y}$$
 – De Morgan 1

2.
$$\overline{(X \cup Y)} = \overline{X} \cap \overline{Y}$$
 – De Morgan 2

De Morgan 1 Veitch Diagram

$$X \cap Y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ X & 0 & 1 & \ddots & \overline{X} \cap \overline{Y} & = & \overline{1} & 1 & 1 \\ X & \overline{X} & \overline{X} & \overline{Y} & \overline$$

Proof of De Morgan's Law 1

Proof of De Morgan 1 $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$

- 1. Show $\overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y}$
- 2. Show $\overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}$

Show 1. $\overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y}$

Theorem 2. $\overline{X} \cap \overline{X \cap Y} = \overline{X}$

```
Proof.
         X\cap Y\subseteq X
         \{\ A\subseteq B\equiv \overline{B}\subseteq \overline{A}\ \}
         \equiv \overline{X} \subseteq \overline{X \cap Y}
         \{ A \subseteq B \equiv A \cap B = A \}
         \equiv \overline{X} \cap \overline{X \cap Y} = \overline{X}
                                                                                                                                                                                                               Corollary 3. \overline{Y} \cap \overline{X \cap Y} = \overline{Y}
Show 1. \overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y} (Cont'd)
Theorem 4. \overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y}
         Recall: A \subseteq B \equiv A \cap B = A
Proof.
         \check{\overline{X}} \, \, \underbrace{ \, \, \, \overline{Y}} \subseteq \overline{X \cap Y}
         \equiv (\overline{X} \cup \overline{Y}) \cap \overline{X \cap Y} = \overline{X} \cup \overline{Y}
         \{ \cap \text{ Distributes over } \cup \}
         \equiv (\overline{X} \cap \overline{X \cap Y}) \cup (\overline{Y} \cap \overline{X \cap Y}) = \overline{X} \cup \overline{Y}
         \{ \text{ by Thms. } \overline{X} \cap \overline{X \cap Y} = \overline{X} \text{ and } \overline{Y} \cap \overline{X \cap Y} = \overline{Y} \}
          \equiv \overline{X} \cup \overline{Y} = \overline{X} \cup \overline{Y}
         \equiv True
                                                                                                                                                                                                               Show 2. \overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}
Theorem 5. \overline{\overline{X} \cup \overline{Y}} \cup X = X
Proof.
         \overline{X} \subseteq \overline{X} \cup \overline{Y}
         \equiv \overline{\overline{X} \cup \overline{Y}} \subseteq \overline{\overline{X}}
         \equiv \overline{\overline{X} \cup \overline{Y}} \subseteq X
         \equiv \overline{\overline{X} \cup \overline{Y}} \cup X = X
                                                                                                                                                                                                               Corollary 6. \overline{\overline{X} \cup \overline{Y}} \cup Y = Y
Show 2. \overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y} (Cont'd)
Theorem 7. \overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}
Proof.
         \overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}
         \{ A \subseteq B \equiv \overline{B} \subseteq \overline{A} \}
         \equiv \overline{\overline{X} \cup \overline{Y}} \subseteq \overline{\overline{X \cap Y}}
         \equiv \overline{\overline{X} \cup \overline{Y}} \subseteq X \cap Y
          \equiv \overline{\overline{X} \cup \overline{Y}} \cup (X \cap Y) = X \cap Y
```

 $\equiv \left(\overline{\overline{X} \cup \overline{Y}} \cup X\right) \cap \left(\overline{\overline{X} \cup \overline{Y}} \cup Y\right) = X \cap Y$

 $\equiv \dot{X} \cap Y = X \cap Y$

 $\equiv True$

Prove De Morgan 2 $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$

Theorem 8. $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$

 $\begin{array}{l} Proof. \\ \overline{X \cup Y} = \overline{X} \cap \overline{Y} \\ \{ \ A = B \equiv \overline{A} = \overline{B} \ \} \\ \equiv \overline{\overline{X \cup Y}} = \overline{\overline{X} \cap \overline{Y}} \\ \equiv X \cup Y = \overline{\overline{X} \cap \overline{Y}} \\ \{ \ \text{De Morgan 1} \ \} \\ \equiv X \cup Y = \overline{\overline{X}} \cup \overline{\overline{Y}} \\ \equiv X \cup Y = X \cup Y \\ \equiv True \end{array}$

1.2 Cardinality of Sets

Cardinality of Sets

Disjoint Sets

Sets X and Y are disjoint iff $X \cap Y = \{\}$. We define |X| as the size of set X, i.e. |X| is the number of elements in X. Sometimes #X is used instead of |X|. With $A = \{2, 3, 5, 7, 11, 13, 17, 19\}$, |A| = 8.

Lemma 1

$$B \subseteq A \to |A - B| = |A| - |B|$$

Lemma 2

$$A \cap B = \{\} \rightarrow |A \cup B| = |A| + |B|$$

Cardinalty Cont'd

Theorem
$$|A \cup B| = |A| + |B| - |A \cap B|$$

We can split $A \cup B$ into disjoint sets: i.e. $A \cup B = (A - (A \cap B)) \cup (B - (A \cap B)) \cup (A \cap B)$

Proof.

$$|A \cup B| = |(A - (A \cap B)) \cup (B - (A \cap B)) \cup (A \cap B)|$$

$$\{all \, these \, disjoint\}$$

$$= |A - (A \cap B)| + |B - (A \cap B)| + |A \cap B|$$

$$\{A \cap B \subseteq A \, and \, A \cap B \subseteq B\}$$

$$= |A| - |A \cap B| + |B| - |A \cap B| + |A \cap B|$$

$$= |A| + |B| - |A \cap B|$$

Cardinality of Sets

Cardinality $A \cup B \cup C$

$$\begin{split} |A \cup B \cup C| &= |(A \cup B) \cup C| \\ &= |A \cup B| + |C| - |(A \cup B) \cap C| \\ &= \{Set \, Theory \, distributive \, law \} \\ &|A \cup B| + |C| - |(A \cap C) \cup (B \cap C)| \\ &= |A| + |B| - |A \cap B| + |C| \\ &- (|A \cap C| + |B \cap C| - |(A \cap C) \cap (B \cap C)| \\ &= |A| + |B| + |C| \\ &- (|A \cap B| + |A \cap C| + |B \cap C|) \\ &+ |A \cap B \cap C| \end{split}$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Example

Students pass the year if they pass all 3 exams A, B, C. For a particular year it was found that

- 3% failed all 3 papers
- 9% failed papers B and C
- 10% failed papers A and C
- 12% failed papers A and B
- 32% failed paper A
- 30% failed paper B
- 46% failed paper C
- 1. What percentage of students passed the year
- 2. What percentage failed exactly one paper.

Solution

Solution:

1.3 Power Set

Power Set

The Power Set, P(S), of a set S, is the set of subsets of S, i.e. $x \in P(S) \equiv x \subseteq S$.

If |S| = n then $|P(S)| = 2^n$.

Example 9. $S = \{a, b, c\}$

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$
 where \emptyset is the empty set, i.e. $\emptyset = \{\}$.

In forming the subsets of S e.g. $S = \{0, 1, 2, 3, \dots, n-1\}$, we have 2 choices for each element; to include it or exclude it.

2 choices for 0, 2 choices for 1, 2 choices for 2 etc.

Total #choices = $2 * 2 * \cdots * 2$ (n times) = 2^n .

There is a natural correspondence between the subsets of $0,1,2,3,\ldots,n-1$ and binary numbers.

Subsets and Binary

subset	n-1	 k	 3	2	1	0
{}	0	 0	 0	0	0	0
{0}	0	 0	 0	0	0	1
{1}	0	 0	 0	0	1	0
{0,1}	0	 0	 0	0	1	1
i i						
$\{\ldots,k,\ldots\}$		1				
i :						
$\boxed{\{0,1,2,\ldots k,\ldots n\}}$	1	 1	 1	1	1	1

- 0 in column, k, indicates that k is not in the subset
- 1 in column, k, indicates that k is in the subset.

Binary and Decimal

Binary	decimal
00	$0 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 0 * 2^1 + 0 * 2^0$
01	$1 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 0 * 2^1 + 1 * 2^0$
010	$2 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$
011	$3 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$
	<u>:</u>
11	$2^{n} - 1 = 1 * 2^{n-1} + \dots + 1 * 2^{2} + 1 * 2^{1} + 1 * 2^{0}$

$$|P(S)| = 2^{|S|}$$
 Proof by Induction

$$|P(S)| = 2^{|S|}$$

Let |S| = n. Proof by induction on n.

Base Case:

$$n = 0$$

If
$$|S| = 0$$
 then $S = \emptyset$: $P(S) = \{\emptyset\}$. $|\{\emptyset\}| = 1$ if $|P(S)| = 1 = 2^0 = 2^{|S|}$.

Induction Step:

Assume true for n, show true for n + 1.

i.e. Assume (if
$$|A| = n$$
 then $|P(A)| = 2^n$), show (if $|S| = n + 1$ then $|P(S)| = 2^{n+1}$).

Induction Step

Assume |S| = n + 1.

Consider an element, x, of S, i.e. $x \in S$.

Discard x, then we have $S - \{x\}$ and $\therefore |S - \{x\}| = n$.

By induction, $|P(S - \{x\})| = 2^n$.

The original subsets of S consist of

- those that do not have the element, x, i.e. the subsets of $S \{x\}$. and $|P(S \{x\})| = 2^n$.
- those that do have the element, x, which are the subsets of $S \{x\}$ with the element, x, added in, giving 2^n subsets.

$$|P(S)| = 2^n + 2^n = 2^{n+1}$$
.

Cantor's Theorem, $|\mathbb{N}| \neq |P(\mathbb{N})|$

CardinalityofSets

Let
$$S = \{0, 1, 2\}$$
 and $P(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\},\$

.. |S|=3 and |P(S)|=8 and in this case $|S|\neq |P(S)|$. For a finite set, S, $|S|\neq |P(S)|$.

Sets with same Cardinality

Two sets have the same cardinality iff there is a one to one (1-1) correspondence between both sets.

Let $A=\{a,b,c,d,e,\ldots,x,y,z\}$ and $B=\{1,2,3,\ldots 26\}$ then |A|=|B| as we have the 1-1 correspondence

a	b	c	 y	z
1	2	3	 25	26

$$|\mathbb{N}| = |Even|$$

$$|\mathbb{N}| = |Even|$$

Consider infinite sets:

Infinite sets S_1 and S_2 have the same cardinality if there is a one to one (1-1) correspondence between both sets.

Let Even be the set of even natural numbers then $|\mathbb{N}| = |Even|$ as:

Even	0	2	4	6	 2*n	
N	0	1	2	3	 n	

There is a (1-1) correspondence between the two sets \mathbb{N} and Even. The sets \mathbb{N} and Even have the same cardinality i.e. $|\mathbb{N}| = |Even|$, even though $Even \subseteq \mathbb{N}$ and $Even \neq \mathbb{N}$.

$$|\mathbb{N}| = |\mathbb{Z}|$$

$$|\mathbb{N}| = |\mathbb{Z}|$$

Consider a 1-1 correspondence between \mathbb{N} and \mathbb{Z} ,

N	 -(2*n+1)	 3	1	0	2	4	 2*n	
\mathbb{Z}	 -n	 -2	-1	0	1	2	 n	

The negative integers are in (1-1) correspondence with the odd natural numbers and the positive integers are in (1-1) correspondence with the even natural numbers.

Proof of Cantor's Theorem $|\mathbb{N}| \neq |P(\mathbb{N})|$

Cantor's Theorem

$$|\mathbb{N}| \neq |P(\mathbb{N})|$$

Proof is by contradiction.

Assume $|\mathbb{N}| = |P(\mathbb{N})|$, : there is a (1-1) correspondence between \mathbb{N} and $P(\mathbb{N})$.

N	0	1	 n	
$P(\mathbb{N})$	sub(0)	sub(1)	 sub(n)	

where sub(n) is the subset corresponding to n.

Also, for each subset, S, of \mathbb{N} there is a matching element in \mathbb{N} ,

i.e. for each element $S \in P(\mathbb{N})$, there is an element, $k \in \mathbb{N}$, such that sub(k) = S. **Note**: $S \in P(\mathbb{N})$ iff $S \subseteq \mathbb{N}$.

Cantor's Thm. (Cont'd)

For each subset, sub(n), of \mathbb{N} , either $n \in sub(n)$ or $n \notin sub(n)$. Define a subset D of \mathbb{N} , such that

$$D = \{k \in \mathbb{N} : k \notin sub(k)\}$$

i.e. for $k \in \mathbb{N}$,

$$k \in D \equiv k \notin sub(k)$$

Note similarity with Russell Set, R, where $R = \{x \mid x \notin x\}$ i.e. $x \in R \equiv x \notin x$.

Cantor's Thm. (Cont'd)

Since $D\subseteq\mathbb{N}$, i.e. $D\in P(\mathbb{N})$, there is an element, $d\in\mathbb{N}$, such that sub(d)=D, ...

$$d\in sub(d)\equiv d\in D$$

but from the definition of D,

$$d \in D \equiv d \notin sub(d)$$

and so $d \in sub(d) \equiv d \notin sub(d)$, a contradiction. This contradiction arose due to assuming that $|\mathbb{N}| = |P(\mathbb{N})| : |\mathbb{N}| \neq |P(\mathbb{N})$.