GRADIENT DESCENT

The Key to Learning in Neural Networks

Why Do We Need

Gradient Descent?

Neural networks learn by trial and error. They start with random weights and adjust them over time to **reduce mistakes.**

But how do they know what to change and by how much?

That's where **Gradient Descent** comes in—it's like a **GPS for optimization**, guiding the model toward the best possible predictions.

The Core Idea Behind Gradient Descent

Imagine you're **hiking down** a **foggy mountain** but can't see the bottom. What do you do?

- Take small steps downhill based on the steepness.
- If it's steep, step carefully. If it's flat, adjust slowly.
- Keep moving until you reach the lowest point.

That's exactly how Gradient Descent works—it takes small steps in the direction that reduces error, **refining** the model's predictions.

How Gradient Descent Works?

- 1. **Calculate the Error** Measure how far the model's predictions are from the actual values using a loss function.
- 2. **Find the Gradient** Compute the slope (direction of steepest decrease)
- 3. **Adjust Weights** Take a small step in the opposite direction of the gradient to reduce error.
- 4. **Repeat Until Convergence** Keep updating until the model stops improving.

The Learning Rate – A Critical Choice

The learning rate determines how big each step is:

- Too small → Learning is slow and may never converge.
- Too large → The model might jump around and never settle.
- Just right → The model steadily improves and finds the optimal solution.

Choosing the right learning rate is crucial for efficient training!

Types of Gradient Descent

There are different ways to apply Gradient Descent:

1. Batch Gradient Descent

- Uses the entire dataset to compute the gradient.
- Stable but slow for large datasets.

2. Stochastic Gradient Descent (SGD)

- Updates weights after each sample instead of the whole dataset.
- Faster but noisier, leading to more fluctuations.

3. Mini-Batch Gradient Descent

• A balance between Batch and SGD, updating after a small group of samples.

The Role of Optimizers

Gradient Descent is great, but sometimes we need smart optimizations to improve **speed and accuracy.**

Popular optimizers built on Gradient Descent:

- Momentum Speeds up learning by considering past gradients.
- RMSprop Adapts learning rates for different parameters.
- Adam Combines Momentum and RMSprop for faster, more stable training (widely used).

Vanishing Gradient

Gradient stuck in local minima

Challenges & Improvements in Gradient Descent

Gradient Descent isn't perfect. It can:

- Get stuck in local minima (bad solutions).
- Struggle with vanishing gradients in deep networks.
- Be sensitive to bad learning rate choices.

To improve it, techniques like adaptive optimizers, learning rate scheduling, and better initialization methods are used.

Why Gradient Descent

Matters

Without Gradient Descent, neural networks wouldn't learn. It's the key process that allows AI to:

- Improve its predictions over time.
- Adapt to new data.
- Solve complex problems in vision, NLP, and more.

It's the engine that powers modern deep learning!

Final Thoughts

- Gradient Descent **optimizes neural networks** by adjusting weights to minimize errors.
- **Different types** (Batch, SGD, Mini-Batch) balance speed and stability.
- Optimizers like Adam help improve performance.

Mastering Gradient Descent is a **fundamental step** toward understanding deep learning!

