

FACULTAD DE CIENCIAS SOCIALES

Examen Parcial

Especialidad de Economía Econometría 1 2011-I

Profesor: Gabriel Rodríguez

Indicaciones: Todas las secciones son obligatorias. El número de puntos que aparece entre paréntesis corresponde al número de minutos que Ud. debería asignar a la sección respectiva. En consecuencia, la duración del examen es de 2 horas (120 puntos). Ningún material de consulta del curso es permitido.

1 Sección 1 (40 puntos)

Defina (brevemente) los siguientes conceptos:

	Los supuestos del modelo clásico de regresión múltiple.	
1	(E(E) - 0 N - >00	
	2. Consistencia de un estimador $\hat{\theta}$. $(\hat{\mathcal{E}}) = 0$ $N = 200$	
. /	door solver	, OK
	3 Eficiencia asintótica. y Marianza anndotica?/Vonanton - Van As[ON]	semidific.
	your og with on	you to
	4. Dos ejemplos de variables ficticias (en series de tiempo y en corte transversal).	/

- 5. Matriz M_Z en el modelo $Y = Z\gamma + \epsilon$. $M_Z = (J Z(Z'Z)'Z') M MZ$ 6. Test de especificación de Hausman.
- 7. Teorema de Slutsky.
- 8. Test de Wald con restricciones no lineales $c(\beta) = q$.

2 Sección 2 (80 puntos)

1. (20 puntos) Sea el Modelo $Y = X_1\beta_1 + X_2\beta_2 + \epsilon$ donde X_1 y X_2 son matrices de orden $T \times k_1$ y $T \times k_2$, respectivamente y donde $k_1 + k_2 = k$. Utilice la fórmula de matrices

$$yz' = z'zy' + zz'$$
 $e = y - \hat{y} = y$

 particionadas para encontrar β_1 y β_2 . Use sus resultados para explicar el Teorema de Frisch-Waugh. Ayuda: la fórmula de matrices particionadas es la siguiente:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} (I + A_{12}F_2A_{21}A_{11}^{-1}) & -A_{11}^{-1}A_{12}F_2 \\ -F_2A_{21}A_{11}^{-1} & F_2 \end{bmatrix}$$

donde $F_2 = (A_{22} - A_{21}A_{11}^{-1}A_{12}).$

- 2) (30 puntos) Considere el modelo $Y=X\beta+\epsilon$. Si se tiene el caso que $Plim(T^{-1}X'\epsilon)\neq$ 0, explique en qué consiste el estimador $\widehat{\beta}_{IV}$. Muestre que dicho estimador es consistente. Cuál es la distribución límite (ásintótica) de Bry? Use la siguiente notación y supuestos: $Plim(T^{-1}Z/X) = Q_{ZX}$, $Plim(T^{-1}Z/X) = Q_{ZX}$, $Plim(T^{-1}X/X) = Q_{XX}$, $Plim(T^{-1}Z'\epsilon) = 0.$
- 3. (30 puntos) Asuma el modelo $Y = X\beta + \epsilon$ y el conjunto de restricciones $R\beta^* = q$. Es decir β^* es el estimador de mínimos cuadrados restringidos. Halle la expresión para β^* (en función de $\widehat{\beta}$, X, R y q (Ayuda: comience por construir el Lagrangiano para minimizar la sumatoria de residuos al cuadrado sujeto a las restricciones ya mencionadas). Muestre que el estimador β^* es insesgado. Halle la matriz de varianzas y covarianzas de β^* . Muestre que la $Var(\hat{\beta}) - Var(\beta^*) = \sigma^2 \Delta$ donde $\Delta = (X'X)^{-1}R'[R(X'X)^{-1}R']R(X'X)^{-1}$ es una matriz cuadrada, simétrica y de rango completo, es decir una matrix semi definida positiva. Explique.

Lima, 7 de Mayo 2011

N(0,6%

Var. +7/8-61=

DIM (T" Z'A) = 072 Olim (7-15/x)=Q2x

Bn: (71x) 217 -

B, = (2'x) 2' (xB+E)

Bin = B + (5,x)-, 3, E

PIM BIN = B + (T-1 2'x) - T-1 2'E

Pliman = B + Oex O ensise,

 $T^{12}(\hat{\beta}_{10} - \beta) = (\hat{z}^{1} \times)^{-1/2} = 1$

07 021× 020021

H, Y = H, X2 P2 + E

A, Y = H, X2 P2 + E

A, Z(H, X2) (H, X2) (H, X2) H, Y

(X2 H, X2) - X2 H, Y