Annual income prediction model

Project 4 Sonia Morales Elizabeth Romero Isaac Silva Santiago Morales

This project **transforms** historical data into actionable insights, showcasing the value of predictive modeling in addressing societal challenges.

Why This Project Matters

Real-World Relevance

- Understanding income patterns helps policymakers, businesses, and researchers analyze socio-economic trends.
- Offers insights into factors influencing income disparity in the U.S.

Practical Applications

- Targeted Marketing and Customer Segmentation
- Credit Risk Assessment
- Insurance Premium Calculation
- Personalized Financial Services
- E-Commerce and Subscription-Based Services
- Workforce Planning and Talent Acquisition
- Public Policy and Economic Planning

Bridging Technology and Society

- Highlights the power of data in making informed decisions.
- Promotes ethical use of predictive models to drive equity and opportunity.

The US Adult Census dataset is a repository of 48,842 entries extracted from the 1994 US Census database.

In the first section, we focus on **data cleaning and optimization** to ensure its readiness for effective model training.

In the second section, we leverage this refined data to **develop predictive models** that determine whether an individual earned more or less than \$50,000 in 1994. We then evaluate and compare these models to identify the approach that delivers the highest accuracy.

As a bonus, we implemented a user-friendly **form app** powered by our best-performing model, enabling real-time income predictions.

Basic data information

Each entry (row) contains the following information about an individual:

age: Integer > 0, representing an individual's age.

workclass: Employment status (e.g., Private, Self-employed, Government, etc.).

fnlwgt: Final weight, representing the estimated number of people the census entry corresponds to.

Education: Highest education level (e.g., Bachelors, High School, Doctorate, etc.).

Education num: Numeric representation of the highest education level (Integer > 0).

Marital status: Marital status (e.g., Married, Divorced, Never-married, etc.)

Occupation: General job type (e.g., Tech support, Sales, Armed Forces, etc.).

relationship: Role in household (e.g., Wife, Husband)

race: Person's race (e.g., White, Black, Indian)

Sex: Biological sex (Male, Female).

capital-gain: Money earned from investments (≥0)

capital-loss: Money lost from investments (≥0)

hours-per-week: Weekly work hours

native-country: Birth country (e.g., US, Mexico)

the label(income): Earns <=50k or >50k USD annually

Data cleaning

Handling nulls and "?"

The dataset contained missing values and "?" Fill in missing values with (Mode)

```
import numpy as np
# Replace "?" with NaN in the specified columns using .loc
X.loc[X['workclass'] == "?", 'workclass'] = np.nan
X.loc[X['occupation'] == "?", 'occupation'] = np.nan
X.loc[X['native-country'] == "?", 'native-country'] = np.nan
# Impute missing values with the most frequent value (mode) using .loc[]
X.loc[:, 'workclass'] = X['workclass'].fillna(X['workclass'].mode()[0])
X.loc[:, 'occupation'] = X['occupation'].fillna(X['occupation'].mode()[0])
X.loc[:, 'native-country'] = X['native-country'].fillna(X['native-country'].mode()[0])
```

Ensuring correct data types

The data types in the feature columns were verified to be the correct ones

```
X.loc[:, 'age'] = X['age'].astype(int)
X.loc[:, 'fnlwgt'] = X['fnlwgt'].astype(int)
X.loc[:, 'capital-gain'] = X['capital-gain'].astype(int)
X.loc[:, 'capital-loss'] = X['capital-loss'].astype(int)
X.loc[:, 'hours-per-week'] = X['hours-per-week'].astype(int)
```

Data cleaning

One-hot encoding

It was performed on categorical features By doing this **education-num column** was dropped

```
# Drop `education-num` since it seems redundant
X.drop('education-num', axis=1, inplace=True)
```

Duplicates in target columns

In the income columns 2 duplicates were found and replaced by the correct values.

```
y = y.replace({"<=50K.": "<=50K", ">50K.": ">50K")]
```

Data model optimization

Feature Engineering

- Merging two columns variables To optimize performance
- -Drop Education-nums since it seems redundant

```
# Create a new feature 'net-capital-gain'
X['net-capital-gain'] = X['capital-gain'] - X['capital-loss']
# Drop the original 'capital-gain' and 'capital-loss' columns if no longer needed
X.drop(['capital-gain', 'capital-loss'], axis=1, inplace=True)
# Drop 'education-num' since it seems redundant
X.drop('education-num', axis=1, inplace=True)
```

Handling Outliers

```
import seaborn as sns
import matplotlib.pyplot as plt

# Boxplot to check for outliers in 'hours-per-week'

sns.boxplot(x=X['hours-per-week'])

# Remove outliers in 'hours-per-week'

X = X[X['hours-per-week'] <= 80]

plt.show()
```


K means Clustering

Using KMeans with PCA enables efficient, interpretable, and scalable clustering for this high-dimensional dataset. It focuses on relevant patterns, reduces noise, and ensures clusters are well-separated, providing actionable insights with reduced complexity.

Cluster 0 - Purple:

- Youngest and least experienced group.
- Overwhelmingly private sector (~96%).
- Lowest net capital gains and income (~0.85% earn >50k).
- Represents entry-level workers with limited wealth accumulation.

Cluster 1 - Blue:

- Oldest and wealthiest group.
- Highest net capital gains (~1812) and income (~46.3% earn >50k).
- Longest working hours
- Mix of private and self-employed workers.
- Represents high earners, experienced professionals with diverse job types.

K means Clustering

Cluster 2 - Green:

- **Middle-aged group** in predominantly private employment (~86%).
- Low income (~3.7% earn >50k) and moderate work hours (~38.2).
- Likely represents **middle-income earners** with lower financial gains.

Cluster 3 - Yellow:

- Older and diverse employment.
- High representation in **Local/State government** jobs.
- Moderate capital gains (~876) and income (~19.9% earn >50k).
- Likely represents **government employees** with stable, moderate earnings.

Classification	Report:			
	precision	recall	f1-score	support
<=50K	0.88	0.92	0.90	4730
>50K	0.62	0.51	0.56	1202
accuracy			0.84	5932
macro avg	0.75	0.71	0.73	5932
weighted avg	0.83	0.84	0.83	5932

Random Forest

Accuracy: 0.8465

Classification Report:

	precision	recall	f1-score	support
<=50K	0.88	0.94	0.91	6649
>50K	0.62	0.45	0.52	1512
accuracy			0.85	8161
macro avg	0.75	0.69	0.71	8161
weighted avg	0.83	0.85	0.84	8161

Confusion Matrix:

[[6226 423] [830 682]] **Accuracy**: 84.65%

Key Insights:

- The model is great at identifying people earning <=50K, with a recall of **94%** (it correctly identified most cases).
- However, it struggles with >50K predictions, achieving only
 45% recall, meaning it missed quite a few higher earners.
- The overall weighted scores indicate that the model balances predictions well but favors the majority class (<=50K).

Confusion Matrix:

- 6226 people earning <=50K were correctly classified, but
 423 were misclassified as >50K.
- For >50K, 830 were misclassified as <=50K, while only 682 were correctly identified.

Neural Network

Accuracy: **0.8450**

Classification	on Report: precision	recall	f1-score	support
0 1	0.90 0.57	0.90 0.56	0.90 0.57	6649 1512
accuracy macro avg weighted avg	0.74 0.84	0.73 0.84	0.84 0.73 0.84	8161 8161 8161

Confusion Matrix:

[[6015 634] [665 847]]

Accuracy: 84.5% Key Insights:

- Similar to Random Forest, the model performs very well for <=50K cases, with 90% precision and recall.
- For >50K predictions, the precision and recall drop to about 57%, meaning it has trouble differentiating higher earners.
- The accuracy is slightly lower than Random Forest, but it maintains a good balance in predictions.

Confusion Matrix:

- **6015** <=50K cases were correctly classified, but **634** were wrongly predicted as >50K.
- For >50K, 847 were correctly classified, but 665 were missed.

XGBoost

Accuracy: 0.8585

Classification Report:

	precision	recall	f1-score	support
0	0.89	0.95	0.92	6649
1	0.67	0.46	0.55	1512
accuracy			0.86	8161
macro avg	0.78	0.71	0.73	8161
weighted avg	0.85	0.86	0.85	8161

Confusion Matrix:

[[6308 341] [814 698]]

Accuracy: 85.85% Key Insights:

- XGBoost outperformed the other models overall, with the highest accuracy.
- It has strong precision for >50K predictions (67%) but still struggles with recall for this group (46%), meaning it misses some higher earners.
- It balances predictions better than the other models, achieving the best macro-average F1 score.

Confusion Matrix:

- 6308 <=50K cases were correctly classified, with only 341 misclassified as >50K.
- For >50K, 698 were correctly predicted, while 814 were missed.

Support Vector Classification

Support Vector Classification uses **support vectors** to predict the target values of income

Classificatio	n Report			
	precision	recall	f1-score	support
<=50K	0.87	0.95	0.90	4730
>50K	0.66	0.43	0.52	1202
accuracy			0.84	5932
macro avg	0.77	0.69	0.71	5932
weighted avg	0.83	0.84	0.83	5932

Why our models are predicting <50K better?

1. Class Imbalance

In the dataset, there are significantly more people earning <=50K than >50K:

• <=**50K**: 6649 samples

• >50K: 1512 samples

This imbalance means the models see a lot more examples of the <=50K group during training, making them better at recognizing patterns for this majority class. However, since there are fewer examples of >50K, the models don't learn as effectively to identify these cases, leading to lower recall and precision for >50K predictions.

2. Decision Bias Toward the Majority Class

Most machine learning models aim to maximize overall accuracy. To do this, they tend to focus on the majority class (<=50K) because misclassifying fewer higher earners (>50K) won't impact the accuracy as much. For example:

• If the model guesses <=50K for everyone, it would still achieve ~81% accuracy because most people in the dataset earn <=50K.

This bias makes the models less likely to predict >50K, even when the data might indicate it.

Flask App

Thank you!

Requirements

Data Model Implementation (25 points)

- A Python script initializes, trains, and evaluates a model (10 points)
- The data is cleaned, normalized, and standardized prior to modeling (5 points)
- The model utilizes data retrieved from SQL or Spark (5 points)
- The model demonstrates meaningful predictive power at least 75% classification accuracy or 0.80 R-squared. (5 points)

Data Model Optimization (25 points)

- The model optimization and evaluation process showing iterative changes made to the model and the resulting changes in model performance is documented in either a CSV/Excel table or in the Python script itself (15 points)
- Overall model performance is printed or displayed at the end of the script (10 points)

GitHub Documentation (25 points)

- GitHub repository is free of unnecessary files and folders and has an appropriate .gitignore in use (10 points)
- The README is customized as a polished presentation of the content of the project (15 points)

Group Presentation (25 points)

- All group members speak during the presentation. (5 points)
- Content, transitions, and conclusions flow smoothly within any time restrictions. (5 points)
- The content is relevant to the project. (10 points)
- The presentation maintains audience interest. (5 points)