CS7NS1/CS4400 SCALABLE COMPUTING

Processing Units

Flip Classroom

Understand the principles and concepts

You will take your own personal notes

Supplement what you learned from your own paper summaries

Scalable Computing: Processing Units

What is it	What does it encompass
Properties: ✓ Scalable : how big is big ✓ Adaptive : how easily reconfigurable and repurposed ✓ Dispersed : tasks, resources, nodes, processes ✓ Accessible : Human, machine ✓ Affordable : Devices, comms, energy, deployment ✓ Reliable : Lifetime, MTBF, consequences	<pre>Core: Processing : computational, data, Communications : carriers, systems, protocols Proximity : location, distance Trust : security, P2P Concepts:</pre>
Domains: ✓ Internet of Things ✓ Processing Units: CPUs, GPUs	 Horizontal/Vertical Scaling Self organization Adaptation
 ✓ Frocessing Offics. CPOS, GPOS ✓ Functional Groupings: Cluster, Grid, Cloud ✓ Nano architectures ✓ Quantum architectures 	> Tuning

Scalable Computing: IoT

Discuss	Properties
✓ Processing Units	> Scalable
✓ <u>CPUs:</u>	
✓ CPU frequency/performance scalability : basic	> Adaptive
<u>principles</u>	Adaptive
https://www.mcs.anl.gov/~itf/dbpp/text/node26.html	
 ✓ Parallelism – Partitioning, communication, 	Dispersed
agglomeration, mapping, multi-core	
✓ Performance, algorithms, tools.	> D !!
✓ GPUs:	> Reliable
✓ Scaling – weak and strong.	
✓ Small domains can be less efficient with	
multiple GPUs?	
✓ <u>Hash cracking – benefits?</u>	
✓ ASICs – Bitcoin miners – useful for hash crack?	

9/29/2018 © TCD

Prof. Ciarán Mc Goldrick (c) TCD

7

Scalable Computing: IoT

Use cases	Use cases
> Vehicular	> Data Science / Learning
> Systems	> Systems
Passengers	How to design efficient scalable ML
Interconnectivity	> Interconnectivity
➤ DSRC	Availability
➤ WiFi	Absolute/Probabilistic
> 3/4/5G	Processing
Processing	Algorithm Efficiency and Energy
➤ Energy	Security/Trust
Security/Trust	Deployment
> Deployment	

Scalable Computing

Third assignment ...

✓ Hard final deadline. 5pm Monday 8th October.

Fog Computing:

- 1. https://ieeexplore.ieee.org/document/8100873 (Survey)
- 2. https://ieeexplore.ieee.org/document/8314121 (Survey)
- 3. https://ieeexplore.ieee.org/document/8066283 (Securing)

Cloud/Edge Computing

- 1. https://ieeexplore.ieee.org/document/7409914 (Resiliency)
- 2. https://ieeexplore.ieee.org/document/8030322 (Edge)
- 3. https://ieeexplore.ieee.org/document/7807328 (Resource)
- ✓ Each student to take and study <u>one (1) paper</u> (i.e. 1,2 <u>or</u> 3) from <u>each</u> group on this list a <u>total</u> of two papers. Each paper you choose must focus on a different technology, solution or purpose. Only choose papers relevant to your stream and specific interests
- ✓ For each of those papers, specifically
 - identify the four key contributions/findings/conclusions of the paper;
 - identify the four key technology insights provided by the paper;
 - identify the four key insights of relevance cloud/fog/edge scalability that you have gleaned from this paper.

Third submission ...

- > Blackboard: mymodule.tcd.ie
- > AUTOMATIC plagiarism detection
- Submit a pdf of a <u>single sided A4 page</u> including your name, student ID, course code (and stream as relevant) and your <u>concise writings on each of</u> <u>the two papers</u> you chose
- Your total submission should be no longer than one standard single sided A4 page, 11pt font so please be as concise and technically precise as possible in your writing.