Model Isinga. Sprawozdanie z projektu.

Emil Olszewski, 268789

Czerwiec 2023

1 Informacje wstępne

Narzędzia użyte do wykonania projektu:

- Język: Julia 1.9.0
- Biblioteki:
 - Statistics 1.9.0
 - Plots 1.38.12
 - JLD2 0.4.31
- Generator liczb pseudolosowych: Xoshiro256++
- Rysunki: Biblioteka "Plots"
- Wsparcie sztucznej inteligencji: brak

2 Sprawozdanie

2.1 Konfiguracje po 100 MCS

W tej części zadania przeprowadzono symulacje modelu Isinga dla siatek kwadratowych o wymiarach 10x10 oraz 80x80 o losowej konfiguracji początkowej $(P(S_{ij} = 1) = P(S_{ij} = -1) = 0.5)$ w temperaturach T = 1, T = 2, Z = 4.

Rysunek 6: Siatka 80x80, $T=4\,$

2.2 Trajektorie magnetyzacji

Na poniższych wykresach przedstawiono zmianę magnetyzacji układu w temperaturze T=1dla różnych siatek.

2.3 Trajektorie dla różnych temperatur

Dla tych samych siatek przeprowadzono symulacje w 3 różnych temperaturach: poniżej krytycznej, krytycznej i powyżej.

Rysunek 9: L = 10

Rysunek 12: L=80

2.4 Magnetyzacja jako funkcja temperatury

Poniżej znajdują się wykresy przedstawiające średnią magnetyzacje siatki w zależności od temperatury zredukowanej. Wykonano symulacje dla uśrednień po zespole jak i po czasie.

Rysunek 13: $T^* \in (0,5;3,5)$ $L \in \{10,20,40,80\}$. Uśredniono po 30 zespołach

Rysunek 14: $T^* \in (0, 5; 3, 5)$ $L \in \{10, 20, 40, 80\}$. Uśredniono po czasie