Темпы роста мультиопераций

Мотошкин Артем Александрович

Институт математики и информационных технологий

22 апреля 2025 г.

Актуальность

Изучение темпов роста помогает понять, как быстро можно вывести все возможные комбинации элементов в структуре.

- Темпы роста напрямую влияют на сложность решения задач удовлетворения ограничений (CSP) и их подкванторных аналогов (QCSP).
- Также используются на практике: при выводе типов в компиляторах и оптимизации распределения регистров.

Что такое мультиоперация?

Основные определения

Пусть $E_k = \{0, 1, \dots, k-1\}.$

Для целого положительного \boldsymbol{n} отображение

$$f: E_k^n \to 2^{E_k}$$

называется n-местной мультиоперацией ранга k.

Что такое темп роста?

Основные определения

Рассмотрим декартову степень A^n , $n \in \mathbb{N}$, конечного множества A с заданным на нём множеством операций M. Элементы A^n будем называть наборами. Применяя операции из M к уже имеющимся наборам покоординатно можно получать новые наборы:

$$egin{pmatrix} a_1^1 \ dots \ a_n^1 \end{pmatrix}, \cdots, egin{pmatrix} a_1^m \ dots \ a_n^m \end{pmatrix}
ightarrow egin{pmatrix} f(a_1^1,...,a_1^m) \ dots \ f(a_n^1,...,a_n^m) \end{pmatrix}, \quad f \in M.$$

Что такое темп роста?

Основные определения

- Генерирующее множество: минимальный набор элементов, позволяющий получить все элементы A^n через операции из M
- Темп роста: функция $d_{(A,M)}(n)$, определяющая минимальный размер генерирующего множества

Что такое темп роста?

Основные определения

Темпом роста называется число элементов в минимальном генерирующем множестве, из которого можно вывести все элементы декартовой степени с помощью операций из M.

$$\textit{d}_{(A,M)}(n) = \min \left\{ |X| \mid X \subseteq A^n, \ \langle X \rangle_M = A^n \right\}$$

Обзор существующих результатов

Комков С.А. (2022)

- Получил точные/асимптотические темпы роста для всех клонов решётки Поста: от $\log n$ до 2^n .
- Описал классы с минимальным логарифмическим темпом роста.
- Доказал, что при конечном числе существенных предикатов темп роста не превышает $O(\log n)$.

Как вычислять новые наборы?

В контексте мультиопераций новые наборы находятся также путем покоординатного применения операций из M, но координаты это подмножества E_k .

$$F(A_1, A_2, ..., A_k) = \bigcup_{\substack{a_1 \in A_1 \\ a_2 \in A_2}} \{F(a_1, a_2, ..., a_k)\}$$

$$\vdots$$

$$a_k \in A_k$$

Как найти темп роста?

Требуется найти минимальное генерирующее множество, которое позволит получить все наборы.

Но надо учитывать, что теперь мощность множества всех наборов не k^n , а 2^{kn} .

Важно, что генерирующее множество может состоять только из наборов из элементов E_k .

	k	n	arity	quantity_of_operations	count	percent
0	2	1	1	1	2	0.125000
1	2		2		110	0.429688
2	2	1		1	52670	0.803680
3	2	2		1	0	0.000000
4	2	2	2	1	24	0.000366
5	2	2		1	40824	0.000010
6	2		1	1	0	0.000000
7	2		2		24	0.000001
8		2	1	1	0	0.000000
9	2		2	2	26280	0.805147
10	2	2	2	2	16226	8000008
11				2	8460	0.064671
12	2	1	1	3	396	0.707143
13	2	2			24	0.000009

Рис. 1: Вычисленные структуры

Рис. 2: Распределение для k=2, n=2, арность мультиопераций=3

Рис. 3: Распределение для k=2, n=1, арность мультиопераций=3

Рис. 4: Распределение для пар мультиопераций, k=2, n=2, арность=2

Рис. 5: Распределение для пар мультиопераций, k=2, n=1, арность=2

Рис. 6: Тепловая карта для k=2, n=2, арность мультиопераций=3

Выводы и перспективы

Основные итоги

Выводы

- Получены численные оценки темпов роста для различных структур.
- Найдены распределения мощностей минимальных генерирующих множеств различных структур.

Перспективы

- Исследование темпов роста для более сложных структур.
- Автоматизация поиска минимальных генерирующих множеств с помощью ML-методов.

Список источников

• Комков С. А. Темпы роста произвольных конечных структур: дис. ... канд. физ.-мат. наук: 01.01.09: защищена 27.04.2022 / С. А. Комков; науч. рук. А. А. Часовских; МГУ имени М.В. Ломоносова – Москва, 2022. – 111 с.