CORRIGÉ DU DS°6

SUJET n°1 (1 exercice + 1 problème)

EXERCICE (extrait de E3A PC 2017)

- 2. A_0 n'étant pas inversible, 0 est valeur propre de A_0 (cours). On peut aussi utiliser le théorème du rang : $\dim \operatorname{Ker} A_0 = \dim \mathbb{R}^4 \operatorname{rg}(A_0) = 3$, qui montre que 0 est valeur propre d'ordre ≥ 3 .

Soit $V = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$; l'équation $A_0V = 0$ équivaut à x + y - z + t = 0; il s'agit de l'équation de l'hyperplan

Ker A_0 ; une base en est formée, par exemple, des vecteurs $U_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, $U_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ et $U_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$ (ces

trois vecteurs vérifiant l'équation précédente et étant trivialement linéairement indépendants).

- **3. a)** On calcule : $A_0U_0 = -2U_0$.
 - b) Ainsi, U_0 est un vecteur propre associée à la valeur propre -2. Puisque $U_0 \notin \operatorname{Ker} A_0$, la droite vectorielle de base U_0 et l'hyperplan $\operatorname{Ker} A_0$ sont supplémentaires, donc (U_0, U_1, U_2, U_3) est une base de $\mathcal{M}_4(\mathbb{R})$ formée de vecteurs propres de A_0 ; cela montre que A_0 est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.
 - c) Pour la matrice diagonale D = diag(-2, 0, 0, 0) et la matrice inversible $P = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$

de $\mathcal{M}_4(\mathbb{R})$ on a $A_0 = PDP^{-1}$ (P est la matrice de passage de la base canonique à la base (U_0, U_1, U_2, U_3).

PROBLÈME (E3A PC 2017, 3 heures)

Partie I.

- **1. a)** Pour t = 0: f(0) = 1. Pour $t \neq 0$: $f(t) = \left[\frac{e^{-ts}}{-t}\right]_{s=0}^{s=1} = \frac{1-e^{-t}}{t}$.
 - b) f est clairement continue sur \mathbb{R}^* (quotient de fonctions continues). Le développement limité en 0: $e^{-t} = 1 - t + o(t)$ entraine que $\lim_{t\to 0} f(t) = 1 = f(0)$ donc f est continue en 0 et par suite f est continue sur \mathbb{R} .

De plus, f est strictement décroissante sur $\mathbb R$ puisque :

$$\forall s \in]0;1], \ \forall (t,u) \in \mathbb{R}^2, \ t < u \Longrightarrow e^{-su} < e^{-st} \Longrightarrow f(u) < f(t)$$

(la dernière inégalité stricte étant justifiée par le fait que l'intégrale d'une fonction continue positive et non identiquement nulle est strictement positive).

Enfin, $\lim_{t \to -\infty} f(t) = \lim_{t \to -\infty} \frac{\mathrm{e}^{-t}}{-t} = +\infty$ (croissances comparées) et $\lim_{t \to +\infty} f(t) = 0$.

D'après le théorème de bijection, f est une bijection de \mathbb{R} sur $]0;+\infty[$.

c) On connaît le développement en série entière : $\forall t \in \mathbb{R}, \ e^{-t} = \sum_{i=1}^{+\infty} \frac{(-t)^n}{n!}$.

On en déduit $f(t) = \frac{1 - e^{-t}}{t} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}t^{n-1}}{n!}$ pour $t \neq 0$, cette égalité restant vraie pour t = 0

C'est le développement de f en série entière, avec un rayon de convergence infini.

2. a) Puisque le rayon de convergence est infini, on peut intégrer terme à terme ce développement en série entière sur le segment [0;x] pour tout x réel et on obtient : $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}x^n}{n(n!)}$

b) Pour
$$x = 1$$
, on obtient $S(1) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n(n!)} = \int_0^1 f(t) dt = \int_0^1 \frac{1 - e^{-t}}{t} dt$.

3. a) La fonction $t \mapsto \frac{e^{-t}}{t}$ est continue sur \mathbb{R}^* donc sur $[x; +\infty[$ pour tout x > 0.

Pour $t \ge 1$ on a $0 \le \frac{e^{-t}}{t} \le e^{-t}$; or $t \mapsto e^{-t}$ est intégrable sur $[1; +\infty[$ (fonction de référence du cours), donc à l'aide des théorèmes de comparaison pour les fonctions positives, on en déduit qu'il en est de même de $t \mapsto \frac{e^{-t}}{t}$.

Finalement, $R(x) = \int_{-\infty}^{+\infty} \frac{e^{-t}}{t} dt$ est bien définie pour tout x > 0.

- **b)** Déjà, il est facile de vérifier que l'intégrale $\int_{0}^{+\infty} \ln(t) e^{-t} dt$ existe, puisque :
 - la fonction $t \mapsto \ln(t)e^{-t}$ est continue sur $]0; +\infty[$;
 - $\ln(t) e^{-t} \sim_{t \to 0^+} \ln(t)$, et $t \mapsto \ln t$ est une fonction de signe constant et intégrable au voisinage de 0; $\ln(t) e^{-t} = o(\frac{1}{t^2})$, et la fonction $t \mapsto \frac{1}{t^2}$ est positive intégrable au voisinage de $+\infty$.

 - En intégrant par parties :

$$-\int_0^1 \ln(t)e^{-t} dt = \left[\ln(t)(e^{-t} - 1)\right]_0^1 - \int_0^1 \frac{e^{-t} - 1}{t} dt = \int_0^1 \frac{1 - e^{-t}}{t} dt = S(1).$$

Cette intégration par parties est légitime puisque $\ln(t)(\mathrm{e}^{-t}-1) \underset{t\to 0^+}{\sim} -t\ln(t)$, donc $\lim_{t\to 0^+} \ln(t)(\mathrm{e}^{-t}-1) = 0$.

• En intégrant par parties :

$$-\int_{1}^{+\infty} \ln(t) e^{-t} dt = \left[\ln(t) e^{-t} \right]_{1}^{+\infty} - \int_{1}^{+\infty} \frac{e^{-t}}{t} dt = -\int_{1}^{+\infty} \frac{e^{-t}}{t} dt = -R(1).$$

Cette intégration par parties est légitime puisque $\ln(t)\mathrm{e}^{-t}$ a pour limite 0 en $+\infty$.

- En additionnant les résultats précédents, on trouve $\gamma = S(1) R(1) = -\int_{0}^{+\infty} \ln(t) e^{-t} dt$.
- c) Par la relation de Chasles : $\forall x > 0$, $R(x) = R(1) \int_{1}^{x} \frac{e^{-t}}{t} dt$; or $x \mapsto \int_{1}^{x} \frac{e^{-t}}{t} dt$ est la primitive s'annulant en 1 de la fonction continue $t \in \mathbb{R}_+^* \mapsto \frac{\mathrm{e}^{-t}}{t}$, donc est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .

Il en résulte que R est aussi de classe \mathscr{C}^1 sur \mathbb{R}_+^* et : $\forall x > 0, \ R'(x) = -\frac{\mathrm{e}^{-x}}{x}$

De $S(x) = \int_0^x f(t) dt$ on déduit $S'(x) = f(x) = \frac{1 - e^{-x}}{x}$ pour $x \neq 0$.

On a donc: $S'(x) = R'(x) + \frac{1}{x}$ pour x > 0. Les fonctions S et $x \mapsto R(x) + \ln(x) + \gamma$ ont des dérivées égales sur l'intervalle $]0; +\infty[$. Comme elles prennent la même valeur pour x=1 $(S(1)=R(1)+\gamma)$ elles sont égales sur cet intervalle.

4. a) • La série entière de terme général $\frac{x^k}{k}$ a un rayon de convergence égal à 1, puisque le terme général tend vers 0 pour |x| < 1 et tend vers l'infini pour x > 1. Donc la série converge pour $x \in]-1;1[$, et en particulier aussi pour $x \in]0;1[$.

La fonction $t \mapsto \frac{x^t}{t} = \frac{\mathrm{e}^{t \ln x}}{t}$ est continue sur $[1; +\infty[$ et, pour $t \geqslant 1, \ 0 \leqslant \frac{x^t}{t} \leqslant \mathrm{e}^{t \ln(x)}$ qui est intégrable sur $[1; +\infty[$ puisque $\ln(x) < 0$.

Cela prouve la convergence de l'intégrale $\int_{1}^{+\infty} \frac{x^{t}}{t} dt$, et finalement g(x) est bien défini pour $x \in [0; 1[.$

• Soit $x \in [0;1[$. Les fonctions $t \mapsto \frac{1}{t}$ et $t \mapsto x^t = e^{t \ln(x)}$ sont décroissantes et positives sur $[1; +\infty[$ $(\ln(x) < 0)$
$$\label{eq:donc} \begin{split} & \text{donc } t \mapsto \frac{x^t}{t} \text{ l'est aussi.} \\ & \text{On a donc, pour tout } k \in \mathbb{N}^* \ : \end{split}$$

$$\forall t \in [k; k+1], \ \frac{x^{k+1}}{k+1} \leqslant \frac{x^t}{t} \leqslant \frac{x^k}{k},$$

et en intégrant cette inégalité entre k et k+1, on

$$\forall k \geqslant 1, \ \frac{x^{k+1}}{k+1} \leqslant \int_{k}^{k+1} \frac{x^{t}}{t} \, \mathrm{d}t \leqslant \frac{x^{k}}{k} \, \cdot$$

En additionnant alors les inégalités de gauche pour k variant de $n \ a + \infty$, et celles de droite pour k variant de n+1 à $+\infty$, ce qui est licite puisque l'intégrale et la série convergent, on obtient :

$$\int_{n+1}^{+\infty} \frac{x^t}{t} dt \le \sum_{k=n+1}^{+\infty} \frac{x^k}{k} \le \int_{n}^{+\infty} \frac{x^t}{t} dt.$$

On en déduit :

$$0 \leqslant g_n(x) - g(x) = \int_n^{+\infty} \frac{x^t}{t} dt - \sum_{k=-1}^{+\infty} \frac{x^k}{k} \leqslant \int_n^{n+1} \frac{x^t}{t} dt \leqslant \frac{x^n}{n}.$$

- **b)** On en déduit pour tout $x \in [0;1[:0]] g_n(x) g(x) \le \frac{1}{n}$ donc $\|g_n g\|_{\infty}^{]0;1[} \le \frac{1}{n}$ puis $\lim_{n\to+\infty} \|g_n-g\|_{\infty}^{]0;1[}=0$, c'est-à-dire que la suite (g_n) converge uniformément vers g sur]0;1[.
- c) Rappelons que, pour $n \in \mathbb{N}^*$ et x > 0, $g_n(x) = \sum_{k=1}^n \frac{x^k}{k} \int_1^n \frac{x^t}{t} dt$.

Une fonction polynôme étant continue, pour prouver la continuité de g_n il suffit de prouver celle de la

fonction
$$F: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_1^n \frac{x^t}{t} \, \mathrm{d}t = \int_1^n \frac{\mathrm{e}^{t \ln x}}{t} \, \mathrm{d}t. \end{array} \right.$$

Pour cela, posons $f(x,t) = \frac{e^{t \ln x}}{t}$ pour x > 0 et $t \in [1; n]$. Alors:

- pour tout x > 0, la fonction $t \mapsto f(x,t)$ est continue (par morceaux) sur [1;n], par théorèmes
- pour tout $t \in [1; n]$ la fonction $x \mapsto f(x, t)$ est continue sur \mathbb{R}_+^* par théorèmes usuels;
- soit a > 0. Pour tout $x \in [0; a]$ et tout $t \in [1; n]$, on a $0 \leqslant f(x, t) \leqslant \frac{e^{t \ln a}}{t} = \varphi(t)$, et la fonction φ est continue donc intégrable sur le segment [1;n]. L'hypothèse de domination locale est donc satisfaite.

Le théorème de continuité d'une intégrale à paramètre indique alors que F est continue sur tout intervalle $]0;a] \subset \mathbb{R}_+^*$ donc sur \mathbb{R}_+^* . Il en est donc de même de g_n .

d) • Compte tenu de la convergence uniforme de (g_n) vers g sur]0;1[, et puisque $1 \in \overline{[0;1[}$, le théorème de la double limite permet d'affirmer que

$$\lim_{x \to 1^{-}} g(x) = \lim_{n \to +\infty} \left(\lim_{x \to 1^{-}} g_n(x) \right) = \lim_{n \to +\infty} g_n(1)$$

puisque les g_n sont continues en 1 (question précédente).

• En utilisant le développement en série entière

$$\forall x \in]-1; 1[, \ln(1+x) = \sum_{n>1} (-1)^{n-1} \frac{x^n}{n},$$

on obtient : $\sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x) \text{ pour } x \in]0;1[.$

D'autre part.

$$\int_{1}^{+\infty} \frac{x^{t}}{t} dt = \int_{1}^{+\infty} \frac{e^{t \ln(x)}}{t} dt = \int_{-\ln(x)}^{+\infty} \frac{e^{-u}}{u} du = R(-\ln x),$$

le changement de variable effectué étant licite puisque $t\mapsto u=-t\ln x$ est une bijection de classe \mathscr{C}^1 de $[1;+\infty[$ sur $[-\ln x;+\infty[$.

On en déduit pour $x \in [0;1[$:

$$g(x) = -\ln(1-x) - R(-\ln x) = -\ln(1-x) - S(-\ln x) + \ln(-\ln x) + \gamma,$$

en utilisant le I.3) c).

Par suite, $g(x) = \ln\left(\frac{-\ln x}{1-x}\right) - S(-\ln x) + \gamma$.

Puisque $\lim_{x\to 1} \frac{\ln(x)}{x-1} = 1$ et que S est continue en 0, on obtient : $\lim_{x\to 1^-} g(x) = \ln(1) - S(0) + \gamma = \gamma$.

• Compte tenu de $\lim_{n\to+\infty} g_n(1) = \lim_{x\to 1^-} g(x) = \gamma$, et de $g_n(1) = \sum_{k=1}^n \frac{1}{k} - \ln n$, on obtient finalement :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k} - \ln(n) = \gamma.$$

5. $R(ax) = \int_{ax}^{+\infty} \frac{e^{-t}}{t} dt = \int_{x}^{+\infty} \frac{e^{-au}}{u} du$ grâce au changement de variable affine (donc licite) t = au.

De même $R(bx) = \int_x^{+\infty} \frac{e^{-au}}{u} du$. On obtient donc $R(ax) - R(bx) = \int_x^{+\infty} \frac{e^{-au} - e^{-bu}}{u} du$.

D'autre part en utilisant le I.3) c):

$$R(ax) - R(bx) = S(ax) - S(bx) - \ln(ax) + \ln(bx) = S(ax) - S(bx) + \ln b - \ln a.$$

Par continuité de S en 0, on en déduit en faisant tendre x vers 0:

$$\int_0^{+\infty} \frac{e^{-au} - e^{-bu}}{u} du = \ln b - \ln a.$$

6. a) Pour x > 0 on a :

$$R(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt \le \int_{x}^{+\infty} \frac{e^{-t}}{x} dt = \frac{1}{x} [-e^{-t}]_{x}^{+\infty} = \frac{e^{-x}}{x}$$

Par suite $0 \le xR(x) \le e^{-x}$ d'où $\lim_{x \to +\infty} xR(x) = 0$.

b) Avec le I.3) c) : $R(x) = -\ln x + S(x) - \gamma$ donc $R(x) \underset{x \to 0}{\sim} -\ln x$. On en déduit $\lim_{x \to 0} xR(x) = \lim_{x \to 0} -x \ln x = 0$. Avec en plus $\lim_{x \to +\infty} xR(x) = 0$ obtenu à la question précédente, cela justifie l'intégration par parties :

$$\int_0^{+\infty} R(x) \, \mathrm{d}x = \left[x R(x) \right]_0^{+\infty} - \int_0^{+\infty} x R'(x) \, \mathrm{d}x = \int_0^{+\infty} e^{-x} \, \mathrm{d}x = 1 \,,$$

en utilisant $xR'(x) = -e^{-x}$ (montré au I.3)c)).

Partie II

1. a) I_n existe puisque $t \mapsto t^n e^{-t}$ est continue sur $[0; +\infty[$ et $t^n e^{-t} = o(\frac{1}{t^2})$ en $+\infty...$

b) On intègre par parties:

$$I_{n+1} = \left[-t^{n+1} e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} (n+1) t^n e^{-t} dt = (n+1) I_n,$$

l'intégration par parties étant justifiée car $\lim_{t\to +\infty} t^{n+1} \mathrm{e}^{-t} = 0\,.$

On montre alors facilement par récurrence sur n que $I_n=n!$: en effet, c'est vérifié pour n=0 puisque $I_0=[-\mathrm{e}^{-t}]_0^{+\infty}=1$, et si l'on suppose $I_n=n!$ pour un entier $n\in\mathbb{N}$, on en déduit $I_{n+1}=(n+1)I_n=(n+1)!$.

- **2. a)** – Puisque P(x+t) est une combinaison linéaire des t^k on déduit que pour tout $x \in \mathbb{R}$ T(P)(x) est bien défini, comme combinaison linéaire des I_k .
 - T est une application linéaire puisque pour tout $x \in \mathbb{R}$, $T(\lambda P + Q)(x) = \lambda T(P)(x) + T(Q)(x)$ par linéarité de l'intégrale.
 - On calcule, pour $x \in \mathbb{R}$:
 - $-T(1)(x) = I_0 = 1 \text{ donc } T(1) = 1;$

$$- T(X)(x) = \int_0^{+\infty} e^{-t}(x+t) dt = xI_0 + I_1 = 1 + x \text{ donc } T(X) = 1 + X.$$

$$-T(X^{2})(x) = \int_{0}^{+\infty} e^{-t}(x+t)^{2} dt = x^{2}I_{0} + 2xI_{1} + I_{2} = 2 + 2x + x^{2} \text{ donc } T(X^{2}) = 2 + 2X + X^{2}.$$

Donc pour tout polynôme $P \in R_2[X]$ on a $T(P) \in \mathbb{R}_2[X]$ par combinaison linéaire.

T est donc bien un endomorphisme de $\mathbb{R}_2[X]$.

- Compte tenu des calculs ci-dessus, sa matrice dans la base canonique de $\mathbb{R}_2[X]$ est $M = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.
- b) M est triangulaire et a donc comme unique valeur propre 1 (d'ordre 3). Si elle était diagonalisable elle serait semblable à la matrice diagonale ayant des 1 sur la diagonale, c'est-à-dire la matrice identité et on aurait alors $M = I_3$, ce qui est faux : M n'est donc pas diagonalisable.
- **3. a)** On applique la formule de Taylor pour les polynômes. Pour un polynôme $P \in \mathbb{R}_n[X]$ on a :

$$P(x+t) = \sum_{k=0}^{n} \frac{P^{(k)}(x)}{k!} t^{k}$$

donc
$$P(x+t) = \sum_{k=0}^{n} t^k b_k(x)$$
, en posant $b_k(x) = \frac{P^{(k)}(x)}{k!}$.

b) Le fait que T est bien défini sur $\mathbb{R}_n[X]$ et est linéaire se démontre comme dans II.2.a). On a de plus, pour $P \in \mathbb{R}_n[X]$,

$$\forall x \in \mathbb{R}, T(P)(x) = \sum_{k=0}^{n} I_k b_k(x) = \sum_{k=0}^{n} I_k \frac{P^{(k)}(x)}{k!} = \sum_{k=0}^{n} P^{(k)}(x)$$

puisque $I_k = k!$.

On obtient donc $T(P) = \sum_{k=0}^{n} P^{(k)}$ qui appartient bien à $\mathbb{R}_n[X]$. Et on a aussi montré la formule demandée, avec $a_k = 1$ pour $k \in [1; n]$.

c) La formule précédente permet de calculer facilement, pour tout $k \in [1; n]$:

$$T(X^k) = X^k + kX^{k-1} + k(k-1)X^{k-2} + \dots + \frac{k!}{2}X^2 + k!X + k!,$$

ce qui permet d'écrire la matrice de T dans la base canonique de $\mathbb{R}_n[X]$:

$$M = \begin{pmatrix} 1 & 1 & 2 & \dots & n! \\ 0 & 1 & 2 & \dots & n! \\ 0 & 0 & 1 & \dots & n!/2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

M est triangulaire et a donc comme unique valeur propre 1 (d'ordre n+1).

De plus, il est clair que la matrice $M-I_n$ est de rang n (ses n dernières colonnes sont indépendantes puisque les coefficients au-dessus de la diagonale sont non nuls), donc d'après le théorème du rang, le sous-espace propre associé à la valeur propre 1, c'est-à-dire $\operatorname{Ker}(T-\operatorname{Id})$, est de dimension $\dim \mathbb{R}_n[X]-n=1$.

Et puisque l'on a T(1) = 1, il s'agit de l'ensemble des polynômes constants.

4. Puisque la solution de l'équation homogène associée y'-y=0 est $x\mapsto k\mathrm{e}^x$, il suffit de montrer que la fonction $F\colon x\mapsto \mathrm{e}^x\int_x^{+\infty}\mathrm{e}^{-t}g(t)\,\mathrm{d}t$ est une solution particulière de l'équation y'-y=g.

Déjà, la définition de F a bien un sens puisque la fonction $t \mapsto e^{-t}g(t)$ est continue sur \mathbb{R} , et, g étant bornée (par M), on a pour tout réel t, $|e^{-t}g(t)| \leq Me^{-t}$, et $t \mapsto e^{-t}$ est intégrable au voisinage de $+\infty$. On a alors, en utilisant la relation de Chasles:

$$\forall x \in \mathbb{R}, \ F(x) = e^x \left(\int_0^{+\infty} e^{-t} g(t) \, dt - \int_0^x e^{-t} g(t) \, dt \right)$$

ce qui montre que F est de classe \mathscr{C}^1 sur $\mathbb R$ et que :

$$\forall x \in \mathbb{R}, \ F'(x) = e^x \left(\int_0^{+\infty} e^{-t} g(t) dt - \int_0^x e^{-t} g(t) dt \right) - e^x \left(e^{-x} g(x) \right).$$

Ainsi, on a bien F' - F = -g, et F est bien solution de l'équation différentielle proposée.

La solution générale de cette équation s'obtient alors en lui ajoutant la solution générale de l'équation homogène associée.

5. a) T_g est bien définie puisque g est continue et bornée donc $|g(x+t)e^{-t}| \leq Me^{-t}$ qui est intégrable sur \mathbb{R}_+ .

Le changement de variable affine u=t+x (licite) permet alors d'écrire :

$$T_g(x) = \int_0^{+\infty} e^{-t} g(x+t) dt = \int_x^{+\infty} e^{-u+x} g(u) du = e^x \int_x^{+\infty} e^{-u} g(u) du.$$

 T_g est donc la fonction que j'ai appelée F dans la question précédente; les calculs ont déjà été faits : T_g est de classe \mathscr{C}^1 sur \mathbb{R} et $(T_g)' = T_g - g$.

b) D'après ce qui précède, $T_g = \lambda g$ entraine $\lambda g' = (\lambda - 1)g$.

Si $\lambda = 0$ on obtient g = 0, ce qui est exclu par l'énoncé.

Si $\lambda \neq 0$, on obtient $g(x) = ke^{\frac{\hat{\lambda}-1}{\lambda}x}$ avec $k \in \mathbb{R}^*$. Comme g doit être bornée sur \mathbb{R} , la seule possibilité est $\lambda = 1$ et g = k constante. Réciproquement si g = k constante on obtient bien $T_g(x) = k$ donc $T_g = g$.

Si g est constante non nulle, $\lambda = 1$ convient. Sinon il n'existe pas de λ tel que $T_g = \lambda g$.

En d'autres termes, la seule valeur propre possible de l'endomorphisme $g \mapsto T_g$ (voir question d) ci-après) est 1, et le sous-espace propre associé est le sous-espace vectoriel formé des applications constantes

c) Puisque g est bornée on a pour tout $x \in \mathbb{R} : |g(x)| \leq N_{\infty}(g)$. On en déduit :

$$|T_g(x)| \leqslant \int_0^{+\infty} e^{-t} N_{\infty}(g) dt = N_{\infty}(g).$$

On a donc $N_{\infty}(T_q) \leqslant N_{\infty}(g)$.

d) Notons déjà que le fait que l'ensemble des applications bornées de $\mathbb R$ dans $\mathbb R$ est bien un $\mathbb R$ -espace vectoriel et que N_{∞} est bien une norme sur E sont directement des résultats du cours.

D'après la question précédente, l'application T définie sur E est bien à valeurs dans E.

Si g et h appartiennent à E et si $\lambda \in \mathbb{R}$, on a; par linéarité de l'intégrale :

$$\forall x \in \mathbb{R}, \ T(\lambda g + h)(x) = \int_0^{+\infty} e^{-t} (\lambda g + h)(x + t) \, dt = \lambda T(g)(x) + T(h)(x),$$

donc $T(\lambda g + h) = \lambda T(g) + T(h)$, et T est bien un endomorphisme de E.

Enfin, l'existence d'une constante k telle que $N_{\infty}(T_g) \leq k.N_{\infty}(g)$ (ici k=1) prouve que T est continu pour la norme N_{∞} (caractérisation des applications linéaires continues, théorème du cours).

e) Supposons que g tend vers 0 en $+\infty$, et soit $\varepsilon > 0$. Par définition de la limite :

$$\exists A \in \mathbb{R} \text{ tel que } |g(x)| \leq \varepsilon \text{ pour } x \geqslant A.$$

On en déduit pour $x\geqslant A$: $|T_g(x)|\leqslant \int_0^{+\infty}\varepsilon\,\mathrm{e}^{-t}\,\mathrm{d}t=\varepsilon$, puisque $|g(x+t)|\leqslant \varepsilon$ pour $t\geqslant 0$. Toujours par définition de la limite, celà prouve que T_q tend vers 0 en $+\infty$.

6. a) L'application $t \mapsto e^{(i-1)t}$ est continue sur $[A; +\infty[$, et elle y est intégrable puisque $|e^{(i-1)t}| = e^{-t}$ est intégrable sur \mathbb{R}_+ .

Le calcul ne pose pas de problème :

$$\int_{A}^{+\infty} e^{(i-1)t} dt = \left[\frac{e^{(i-1)t}}{i-1} \right]_{A}^{+\infty} = \frac{e^{(i-1)A}}{1-i}$$

puisque $|e^{(i-1)t}| = e^{-t}$ tend vers 0 en $+\infty$.

b) L'application $g\mapsto T_g$ est linéaire, cela a été montré à la question II.5).d). Pour $g(t)=\mathrm{e}^{\mathrm{i}t}$ on calcule :

$$T_g(x) = e^x \int_x^{+\infty} e^{-u} e^{iu} du = \frac{e^{ix}}{1-i} \quad \text{(question pr\'ec\'edente)}$$
$$= \frac{1}{2} (\cos(x) + i\sin(x))(1+i) = \frac{1}{2} (\cos(x) - \sin(x)) + \frac{i}{2} (\cos(x) + \sin(x)).$$

Par linéarité de T on en déduit :

$$T_c(x) = \mathcal{R}e\left(T_g(x)\right) = \frac{1}{2}(\cos(x) - \sin(x)) \quad \text{et} \quad T_s(x) = \mathcal{I}m\left(T_g(x)\right) = \frac{1}{2}(\cos(x) + \sin(x)).$$

On a donc $T_c = \frac{1}{2}(c-s)$ et $T_s = \frac{1}{2}(c+s)$. L'application $t \mapsto T_g$ est bien un endomorphisme de F et sa matrice dans la base (c,s) est

N n'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ puisque son polynôme caractéristique égal à

$$\chi_N(x) = \begin{vmatrix} x - \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & x - \frac{1}{2} \end{vmatrix} = \left(x - \frac{1}{2}\right)^2 + \frac{1}{4}$$

n'a pas de racine réelle.

Partie III

1. a) Pour $x \in [-r; r]$ on peut dériver terme à terme (cours sur les séries entières) et obtenir :

$$\theta'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$
 et $\theta''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2}$.

En reportant dans l'équation différentielle on obtient :

$$\sum_{\substack{n=2\\n=1}}^{+\infty} n(n-1)a_n x^{n-1} + \sum_{n=1}^{+\infty} na_n x^{n-1} - \sum_{n=0}^{+\infty} a_n x^n - \sum_{n=0}^{+\infty} a_n x^{n+1} = 1$$

ou encore

$$\sum_{n=1}^{+\infty} n^2 a_n x^{n-1} - \sum_{n=0}^{+\infty} a_n x^n - \sum_{n=0}^{+\infty} a_n x^{n+1} = 1$$

soit:

$$a_1 - a_0 + \sum_{n=2}^{+\infty} n^2 a_n x^{n-1} - \sum_{n=1}^{+\infty} a_n x^n - \sum_{n=0}^{+\infty} a_n x^{n+1} = 1$$

En posant n = n' + 2 dans la première somme et n = n' + 1 dans la deuxième, on obtient :

$$a_1 - a_0 + \sum_{n=0}^{+\infty} (n+2)^2 a_{n+2} x^{n+1} - \sum_{n=0}^{+\infty} a_{n+1} x^{n+1} - \sum_{n=0}^{+\infty} a_n x^{n+1} = 1$$

puis en regroupant:

$$a_1 - a_0 + \sum_{n=0}^{+\infty} ((n+2)^2 a_{n+2} - a_{n+1} - a_n) x^{n+1} = 1.$$

Par unicité des coefficients d'un développement en série entière, on en déduit :

$$a_1 - a_0 = 1$$
 et $\forall n \in \mathbb{N}, (n+2)^2 a_{n+2} - a_{n+1} - a_n = 0.$

- b) Soit $K = \max(|a_0|, |a_1|)$. Montrons par récurrence double sur n que pour tout n on a $n!|a_n| \leq K$.
 - C'est évidemment vérifié pour n = 0 et n = 1.
 - Supposons la propriété vraie pour n et n+1. On en déduit alors :

$$(n+2)!|a_{n+2}| = \frac{(n+1)!}{n+2}|a_{n+1} + a_n| \leqslant \frac{(n+1)!}{n+2}(|a_{n+1}| + |a_n|) \leqslant \frac{1}{n+2}(K + (n+1)K) = K$$

ce qui démontre l'inégalité au rang n+2.

On a donc bien montré que pour tout $n \ge 0$: $|a_n| \le \frac{K}{n!}$

• Considérons alors une série entière associée à une suite (a_n) vérifiant $a_1 - a_0 = 1$ et pour $n \ge 0$: $(n+2)^2 a_{n+2} - a_{n+1} - a_n = 0$.

Puisque pour tout $n \ge 0$ on a $|a_n| \le \frac{K}{n!}$, son rayon de convergence est supérieur à celui de la série entière $\sum \frac{x^n}{n!}$, donc est égal $+\infty$. La somme de cette série entière est donc une application de classe \mathscr{C}^{∞} sur \mathbb{R} , et en « remontant » les calculs, on montre que cette application vérifie l'équation différentielle précédente.

2. a) De $z(x) = e^{-x}y(x)$ on déduit $z'(x) = -e^{-x}y(x) + e^{-x}y'(x)$ et $z''(x) = e^{-x}y(x) - 2e^{-x}y'(x) + e^{-x}y''(x)$. On en déduit

$$xz''(x) + (2x+1)z'(x) = e^{-x}(xy(x) - 2xy'(x) + xy''(x)) + (2x+1)(-y(x) + y'(x))$$
$$= e^{-x}(xy''(x) + y'(x) - (x+1)y(x)).$$

Par suite y est dans S si et seulement si $xz''(x) + (2x+1)z'(x) = e^{-x}$.

b) Pour x > 0, l'équation s'écrit $Z'(x) = -\frac{2x+1}{x}Z(x) = 0$. Une primitive sur \mathbb{R}_+^* de $\frac{2x+1}{x}$ est $2x + \ln x$.

Donc directement d'après le cours : $Z(x) = \lambda e^{-2x - \ln x} = \frac{\lambda}{x} e^{-2x}$ où λ est une constante réelle.

c) On applique la méthode de variation de la constante, en cherchant Z(x) sous la forme $Z(x) = \frac{\lambda(x)}{x} e^{-2x}$ où λ est une application de classe \mathscr{C}^1 sur \mathbb{R}_+^* .

L'équation proposée équivaut alors à $\frac{\lambda'(x)}{x}e^{-2x} = \frac{e^{-x}}{x}$ d'où $\lambda'(x) = e^x$ puis $\lambda(x) = e^x + \mu$ avec μ constante réelle.

Les solutions de l'équation proposées sont donc les applications $Z(x) = \frac{e^x + \mu}{x}e^{-2x} = \frac{1}{x}(e^{-x} + \mu e^{-2x})$.

d) Il suffit d'intégrer Z pour obtenir

$$z(x) = \int_{1}^{x} \frac{e^{-t}}{t} dt + \mu \int_{1}^{x} \frac{e^{-2t}}{t} dt + C.$$

En introduisant

$$R(x) = \int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t = -\int_{1}^{x} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t + \int_{1}^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t$$

et

$$R(2x) = \int_{2x}^{+\infty} \frac{e^{-t}}{t} dt = \int_{x}^{+\infty} \frac{e^{-2u}}{u} du = -\int_{1}^{x} \frac{e^{-2t}}{t} dt + \int_{1}^{+\infty} \frac{e^{-2t}}{t} dt,$$

on obtient $z(x) = -R(x) - \mu R(2x) + \nu$ où μ et ν sont des réels quelconques.

e) La solution générale $y \in \mathcal{S}$ s'en déduit :

$$y(x) = e^x z(x) = -e^x R(x) - \mu e^x R(2x) + \nu e^x$$
 avec $(\mu, \nu) \in \mathbb{R}^2$.

3. a) Remarque : la relation $R(x) = -\ln(x) - \gamma + o(1)$ fournie par l'énoncé provient de la relation $S(x) = R(x) + \ln x + \gamma$ vue à la question I.3)c) et du fait que $\lim_{x\to 0} S(x) = S(0) = 0$.

En reportant $R(x) = -\ln(x) - \gamma + o(1)$ et de même pour R(2x) dans le résultat précédent on obtient :

$$y(x) = e^{x} (\ln x + \gamma + \mu(\ln(2x) + \gamma) + \nu + o(1))$$

= $e^{x} (\ln x(1 + \mu) + \gamma + \mu(\ln 2 + \gamma) + \nu + o(1))$

Cette expression n'a une limite finie en 0 que pour $\mu = -1$ puisque $\ln x$ tend vers $-\infty$. On a alors, compte tenu de $R(x) = S(x) - \ln(x) - \gamma$:

$$\forall x > 0, \ y(x) = e^x (R(2x) - R(x) + \nu) = e^x (S(2x) - S(x) + C),$$

en ayant posé $C = -\ln 2 + \nu$.

b) En posant comme au III.2)a) : $z(x) = e^{-x}y(x) = S(2x) - S(x) + C$, on calcule pour $x \neq 0$:

$$z'(x) = 2S'(2x) - S'(x) = 2\frac{1 - e^{-2x}}{2x} - \frac{1 - e^{-x}}{x} = \frac{e^{-x} - e^{-2x}}{x}$$
$$z''(x) = -\frac{e^{-x} - e^{-2x}}{x^2} + \frac{-e^{-x} + 2e^{-2x}}{x} \cdot$$

D'où:

$$xz''(x) + (2x+1)z'(x) = -\frac{e^{-x} - e^{-2x}}{x} + -e^{-x} + 2e^{-2x} + 2(e^{-x} - e^{-2x}) + \frac{e^{-x} - e^{-2x}}{x} = e^{-x}.$$

Cela reste pour x=0, donc z vérifie l'équation (*) pour tout $x\in\mathbb{R}$ et par suite $y(x)=\mathrm{e}^x(S(2x)-S(x)+C)$ vérifie l'équation xy''+y'-(x+1)y=1.

Comme S est développable en série entière avec un rayon de convergence infini, on déduit du cours sur le produit de Cauchy de deux séries entières que y est développable en série entière avec un rayon de convergence infini.

Au III.1), on a trouvé que l'équation xy'' + y' - (x+1)y = 1 possède une unique solution possédant un développement en série entière si on impose la condition initiale $y(0) = a_0$. On peut donc écrire $\theta(x) = e^x(S(2x) - S(x) + a_0)$ pour tout $x \in \mathbb{R}$.

c) Calculons une expression de a_n .

Des relations :

$$\theta(x) = \sum_{n=0}^{+\infty} a_n x^n \quad , \quad S(2x) - S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} (2^n - 1) x^n}{n(n!)} \quad , \quad e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \, ,$$

et

$$\theta(x) = e^{x}(S(2x) - S(x) + a_0)$$

on déduit, par application de la formule du cours sur le produit de Cauchy:

$$\forall n \geqslant 1, \ a_n = \sum_{k=1}^{n} \frac{(-1)^{k-1}(2^k - 1)}{k(k!)} \frac{1}{(n-k)!} + \frac{a_0}{n!}$$

d'où

$$n!a_n = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{(2^k - 1)}{k} + a_0.$$

Cette expression peut se simplifier, en écrivant $\frac{(-1)^{k-1}(2^k-1)}{k} = \int_1^2 (-t)^{k-1} dt$:

$$n!a_n - a_0 = \sum_{k=1}^n \int_1^2 (-t)^{k-1} \binom{n}{k} dt = \int_1^2 \frac{1}{(-t)} \left(\sum_{k=0}^n \binom{n}{k} (-t)^k - 1 \right) dt$$
$$= \int_1^2 \frac{(1-t)^n - 1}{-t} dt = \int_1^2 \frac{(1-t)^n - 1}{(1-t) - 1} dt$$
$$= \sum_{k=1}^n \int_1^2 (1-t)^{k-1} dt = \sum_{k=1}^n \left[-\frac{(1-t)^k}{k} \right]_1^2 = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$

On obtient finalement:

$$\forall n \geqslant 1, \ a_n = \frac{1}{n!} \left(\sum_{k=1}^n \frac{(-1)^{k-1}}{k} + a_0 \right).$$