ASSIGNMENT 2

Assignment Date	06 November 2022
Student Name	SARITHA.C
Student Roll Number	715319106015
Maximum Marks	2 Marks

Question-1. Import required library

Solution:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from keras.models import Model

from keras.layersimport LSTM, Activation, Dense, Dropout, Input, Embedding

from keras.optimizers import Adam

from keras. preprocessing. text import Tokenizer

from keras.preprocessing import sequence

from keras.utils import pad_sequences

from keras.utils import to categorical

from keras.callbacks import EarlyStopping

Question-2. Read the Dataset

Solution:

```
df = pd.read_csv('spam.csv',delimiter=',',encoding='latin-1')
df.head()
```

Question-3. Preprocessing the Dataset

Solution:

```
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True)
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
X = df.v2
Y = df.v
1 le =LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)
```

```
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25)
max words = 1000
max len = 150
tok =
                  Tokenizer(num word s=max tok.fit on texts(X tr
ain) words) sequences = tok.texts_to_sequences(X_train)
sequences_matrix = pad_sequenc es
(sequences,maxlen=max_len)
Question:4
Solution:
inputs = Input(shape=[max_len])
layer = Embedding(max words,50,input length=max len)(inputs)
layer = LSTM(128)(layer)
layer = Dense(128)(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1)(layer)
layer = Activation('sigmoid')(layer)
model = Model(inputs=inputs,outputs=layer)
Question-7. Fit the Model
Solution:
history = model.fit(sequences_matrix,Y_train,batch_size=20,epochs=15,
validation split=0.2)
```

```
metrics = pd.DataFrame(history.history)
metrics.rename(columns ={'loss':'Training_Loss', 'accuracy':'Training_Accuracy', 'val_loss':
'Valida
tion Loss', 'val accuracy': 'Validation Accuracy'}, inplace = True)
def plot graphs1(var1, var2, string):
metrics[[var1, var2]].plot()
plt.title('Training and Validation ' + string)
plt.xlabel ('Number of epochs')
plt.ylabel(string)
plt.legend([var1, var2])
plot_graphs1('Training_Accuracy', 'Validation_Accuracy', 'Accuracy')
Question-8.Save The Model
Solution:
model.save('Spam_sms_classifier.h5')
Question-9. Test The Model
Solution:
test_sequences = tok.texts_to_sequences(X_test)
test_sequences_matrix = pad_sequences(test_sequences,maxlen=max_len)
accuracy1 = model.evaluate(test sequences matrix,Y test)
```