SEQUENCE LISTING

<110>	Tissot, Ghislaine Dufourmantel, Nathalie Garcon, Frederic Ferullo, Jean-Marc Pelissier, Bernard			
<120>	Fertile Transplastomic Leguminous Pl	ants		
<130>	05500-00148			
<140> <141>	US 10/538,130 2005-06-06			
<150> <151>	PCT/EP03/015007 2003-12-08			
<150> <151>	FR 02/15490 2002-12-06			
<160>	41			
<170>	PatentIn version 3.3			
	1 1362 DNA Glycine max			
<400>	1 tcac gatcttctaa taagaacaag aaatcttttt	cacaatcaat	ccttttatcc	60
	tcaa taatcagaaa gatccttttc aatcaagttt			120
	cttc tactgcattt ttatttactt ttttttatt	•		180
taactc	ccac aaggtttggt cctgtagaat ctgacccatt	tcatcattga	gcgaaaagta	240
cgaaaa	aaat cagatcgatt tttcgaccaa aagtactatg	tgaaatcctc	ggttttttcc	300
tctttc	tcta tccctatctc gtaggtagag cgtttgaatc	aatagagaac	cctttcttct	360
gtatct	gtat gaatcgatat tattacattc caaaattcct	tcccgatacc	tcctaaggaa	420
ccgaat	tgga tcccaaattg acgggttagt gtgagcttat	ccatgcggtt	atgcaccctt	480
cgaata	ggaa tocattttot gaaagatooo ggotttogto	cgttggtggg	tcttcgagat	540
cctttc	gatg acctatgttg tgttgaaggg atatctatat	gaaaagacag	ttctatttct	600
attcta	ttag tattttcgat tagtattaaa ttcgttttag	ttagtgatct	cggctcagct	660
agtcct	ttet ttegtgatga aetgttggea eetgtettae	attttgtctc	tgtggaccga	720

ggagaaaggg agctcagcgg caagaggatt gtaacatgag agaagcaagg aggtcaacct

780

840 ttttcaaata tacaacatgg gttctggcaa tgcaatgtgg ttggactctc atgtcgatct 900 gaatgaatca tcctttccac ggaggtaaat ctttgcctgc taggcaagag tatagcaaat 960 tacaaattct gtcttggtag ggcatgtatt tttattacta ttaaattgaa gtagttaatg 1020 gtggggttac cattatcctt tttgtggtaa cgaatatgtg ttcctaagaa aagcaatttg 1080 tccatttttt cggggtctcg aaggggcgtg gaaacacata agaactcttg aattgaaatg 1140 gaaaaataga tgtaactcca gttacttcgg aaatggtaag atctttggcg caagaacgca agaggagggg ttgatccgta tcatcttgac ttggttctga tttctctatt ttttaataaa 1200 atcgagtcgg gttcttctcc tacccgtatc gaatagaaca tgcttagcca aatcttcttc 1260 1320 atggaaaacc tgctttattt agatcgggaa aatcatatgg ttttatgaaa tcatgtgcta 1362 ttgctcgaat ccgtggtcaa tcctatttcc gatagagcag tt

<210> 2

<211> 1763

<212> DNA

<213> Glycine max

<400> 2

gacaatggaa tccaattttt ccataatttt cgtatccgta atagtgtgaa aagaaagcct 60 aactccaaga agttgtttaa gaatagtggc gttgagtttc ttgacccttt gccttaggat 120 tagtcagttc tatttctcga tggaggcaag ggatataact cagcggtaga gtgtcacctt 180 gacgtggtgg aagttatcag ttcgagcctg attatcccta aacccaatgt aagtttttct 240 atttgtatgc cgtgatcgaa taataattga gaatggataa gaggctcgtg ggattacacg 300 360 aggggtgggg gggctatatt tctgggagcg aactccagtc gaatatgaag cgcctggata caagttatgc cttggaatgg aagagaattc cgaatcagct ttgtctacga acaaggaagc 420 tataagtaat gcaactagga atctcatgga gagttcgatc ctggctcagg atgaacgctg 480 geggeatgee ttacacatge aagteggaeg ggaagtggtg tttecagtgg eggaegggtg 540 600 agtaacgcgt aagaacctac ccttgggagg ggaacaacag ctggaaacgg ctgctaatac cccgtaggct gaggagcaaa aggaggaatc cgcccgagga ggggctcgcg tctgattagc 660 720 tagttggtga ggcaatagct taccaaggcg atgatcagta gctggtccga gaggatgatc 780 agccacactg ggactgagac acggcccaga ctcctacggg aggcagcagt ggggaatttt ccgcaatggg cgaaagcctg acggagcaat gccgcgtgaa ggtagaaggc ctacgggtca 840 tgaacttett tteeeggaga agaageaatg aeggtateeg gggaataage ateggetaae 900

tctgtgc	cag	cagccgcggt	aagacagagg	atgcaagcgt	tatccggaat	gattgggcgt	960
aaagcgt	ctg	taggtggctt	tttaagttcg	ccgtcaaatc	ccagggctca	accctggaca	1020
ggcggtg	gaa	actaccaagc	tggagtacgg	taggggcaga	gggaatttcc	ggtggagcgg	1080
tgaaatg	cgt	agagatcgga	aagaacacca	acggcgaaag	cactctgctg	ggccgacact	1140
gacactg	aga	gacgaaagct	aggggagcga	atgggattag	ataccccagt	agtcctagcc	1200
gtaaacg	atg	gatactaggc	gctgtgcgta	tcgacccgtg	caatgctgta	gctaacgcgt	1260
taagtat	ccc	gcctggggag	tacgttcgca	agaatgaaac	tcaaaggaat	tgacgggggc	1320
ccgcaca	agc	ggtggagcat	gtggtttaat	tcgatgcaaa	gcgaagaacc	ttaccagggc	1380
ttgacat	gcc	gcgaatcctc	ttgaaagaga	ggggtgcctt	cgggaacgcg	gacacaggtg	1440
gtgcatg	gct	gtcgtcagct	cgtgccgtaa	ggtgttgggt	taagtcccgc	aacgagcgca	1500
accctcg	tgt	ttagttgcca	acatttagtt	tggaaccctg	agcagactgc	cggtgataag	1560
ccggagg	aag	gtgaggatga	cgtcaagtca	tcatgcccct	tatgccctgg	gcgacacacg	1620
tgctaca	atg	gacgggacaa	aggatcgcga	tcccgcgagg	gtgagctaac	tccaaaaacc	1680
cgtcctc	agt	tcggattgta	ggctgcaact	cgcctgcatg	aagccggaat	cgctagtaat	1740
cgccggt	cag	ccatacggcg	gtg				1763
<211> <212>	3 30 DNA Arti	ficial Sequ	1ence			•	
<220> <223>	Synt	hetic seque	ence OSSD3				
	3 jctc	caccgccgta	tggctgaccg				30
<211> <212>	4 63 DNA Arti	ficial Sequ	1ence				
<220> <223>	Synt	thetic seque	ence OSSD5				
	4 atg	gactagtcca	ccgcggtggt	ctagactcga	ggacaatgga	atccaatttt	60

tcc

```
<210> 5
. <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic sequence OSSG3
 <400> 5
 ctctccatgg gttaacaagc ttaactgctc tatcggaaat aggattgacc
                                                                       50
 <210> 6
 <211> 39
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic sequence OSSG5
 <400> 6
                                                                       39
 ctagtggtac cgatccaatc acgatcttct aataagaac
 <210> 7
 <211> 40
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic sequence OSSG310
 gaacctcctt gcttctctca tgttacaatc ctcttgccgc
                                                                       40
 <210> 8
 <211> 43
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic sequence OAAX3
 ctcagtactc gagttatttg ccgactacct tggtgatctc gcc
                                                                       43
 <210> 9
 <211> 34
 <212> DNA
 <213> Artificial Sequence
 <220>
```

<223> Syni	thetic seque	ence UAANS				
<400> 9 gaagetteea	tggcagaagc	ggtgatcgcc	gaag			34
<210> 10 <211> 132' <212> DNA <213> Art:	7 ificial sequ	ıence				
<220> <223> Synt	thetic seque	ence AADA312	2			
<400> 10 gctcccccgc	cgtcgttcaa	tgagaatgga	taagaggctc	gtgggattga	cgtgaggggg	60
cagggatggc	tatatttctg	ggagcgaact	ccgggcgaat	acgaagcgct	tggatacagt	120
tgtagggagg	gatccatggc	agaagcggtg	atcgccgaag	tatcaactca	actatcagag	180
gtagttggcg	tcatcgagcg	ccatctcgaa	ccgacgttgc	tggccgtaca	tttgtacggc	240
tccgcagtgg	atggcggcct	gaagccacac	agtgatattg	atttgctggt	tacggtgacc	300
gtaaggcttg	atgaaacaac	gcggcgagct	ttgatcaacg	accttttgga	aacttcggct	360
tcccctggag	agagcgagat	tctccgcgct	gtagaagtca	ccattgttgt	gcacgacgac	420
atcattccgt	ggcgttatcc	agctaagcgc	gaactgcaat	ttggagaatg	gcagcgcaat	480
gacattcttg	caggtatctt	cgagccagcc	acgatcgaca	ttgatctggc	tatcttgctg	540
ccggttcctg	gagaacatag aacaggatct aacaggatct	atttgaggcg	ctaaatgaaa	ccttaacgct	atggaactcg	600 660 660
ccgcccgact	gggctggcga	tgagcgaaat	gtagtgctta	cgttgtcccg	catttggtac	720
agcgcagtaa	ccggcaaaat	cgcgccgaag	gatgtcgctg	ccgactgggc	aatggagcgc	780
ctgccggccc	agtatcagcc	cgtcatactt	gaagctagac	aggcttatct	tggacaagaa	840
gaagatcgct	tggcctcgcg	cgcagatcag	ttggaagaat	ttgtccacta	cgtgaaaggc	900
gagatcacca	aggtagtcgg	caaataatct	agagatcctg	gcctagtcta	taggaggttt	960
tgaaaagaaa	ggagcaataa	tcattttctt	gttctatcaa	gagggtgcta	ttgctccttt	1020
cttttttct	ttttatttat	ttactagtat	tttacttaca	tagacttttt	tgtttacatt	1080
atagaaaaag	aaggagaggt	tattttcttg	catttattca	tgattgagta	ttctattttg	1140
attttgtatt	tgtttaaaat	tgtagaaata	gaacttgttt	ctcttcttgc	taatgttact	1200
2+2+2++++	~a++++++	t+ <i>cc</i> 22222	2222422224	tttaaattat	tottatotot	1260

tatcttt	gaa	tatctcttat	ctttgaaata	ataatatcat	tgaaataaga	aagaagagct	1320
atattc	J						1327
<210><211><211><212><213>	11 1330 DNA Arti) Lficial sequ	lence				٠
<220> <223>	Synt	chetic seque	ence AADA160	5			
<400>	11		.				60
getecce	ccgc	cgtcgttcaa	tgagaatgga	taagaggctc	gtgggattga	cgtgagggg	60
cagggat	tggc	tatatttctg	ggagcgaact	ccgggcgaat	acgaagcgct	tggatacagt	120
tgtagg	gagg	gatttatgga	tcccgaagcg	gtgatcgccg	aagtatcaac	tcaactatca	180
gaggtag	gttg	gcgtcatcga	gcgccatctc	gaaccgacgt	tgctggccgt	acatttgtac	240
ggctcc	gcag	tggatggcgg	cctgaagcca	cacagtgata	ttgatttgct	ggttacggtg	300
accgtaa	aggc	ttgatgaaac	aacgcggcga	gctttgatca	acgacctttt	ggaaacttcg	360
gcttcc	cctg	gagagagcga	gattctccgc	gctgtagaag	tcaccattgt	tgtgcacgac	420
gacatca	attc	cgtggcgtta	tccagctaag	cgcgaactgc	aatttggaga	atggcagcgc	480
aatgaca	attc	ttgcaggtat	cttcgagcca	gccacgatcg	acattgatct	ggctatcttg	540
ctgacaa	aaag	caagagaaca	tagcgttgcc	ttggtaggtc	cagcggcgga	ggaactcttt	600
gatccg	gttc	ctgaacagga	tctatttgag	gcgctaaatg	aaaccttaac	gctatggaac	660
tegeege	cccg	actgggctgg	cgatgagcga	aatgtagtgc	ttacgttgtc	ccgcatttgg	720
tacagc	gcag	taaccggcaa	aatcgcgccg	aaggatgtcg	ctgccgactg	ggcaatggag	780
cgcctg	ccgg	cccagtatca	gcccgtcata	cttgaagcta	gacaggctta	tcttggacaa	840
gaagaag	gatc	gcttggcctc	gcgcgcagat	cagttggaag	aatttgtcca	ctacgtgaaa	900
ggcgaga	atca	ccaaggtagt	cggcaaataa	tctagcgatc	ctggcctagt	ctataggagg	960
ttttgaa	aaag	aaaggagcaa	taatcatttt	cttgttctat	caagagggtg	ctattgctcc	1020
tttcttt	tttt	tctttttatt	tatttactag	tattttactt	acatagactt	ttttgtttac	1080
attataç	gaaa	aagaaggaga	ggttattttc	ttgcatttat	tcatgattga	gtattctatt	1140
ttgattt	ttgt	atttgtttaa	aattgtagaa	atagaacttg	tttctcttct	tgctaatgtt	1200
actatat	tctt	tttgattttt	tttttccaaa	aaaaaaatca	aattttgact	tcttcttatc	1260
tottato	~+++	gaatatotot	tatotttoaa	ataataatat	cattonanta	2022202202	1320

gctatattcg 1330

<212> D	2 746 NA rtificial seq	uence				
<220> <223> S	ynthetic sequ	ence AOA170				
<400> 1						
gctcccc	gc cgtcgttcaa	tgagaatgga	taagaggctc	gtgggattga	cgtgaggggg	60
cagggatg	gc tatatttctg	ggagcgaact	ccgggcgaat	actgaagcgc	ttggatacaa	120
gttatcct [.]	tg gaaggaaaga	caattccgaa	tctagaaata	attttgttta	actttaagaa	180
ggagatat	ac ccatgggcaa	gggcgaggaa	ctgttcactg	gcgtggtccc	aatcttaagc	240
tccatgga	at ccctgacgtt	acaacccatc	gcgcgggtcg	atggcgccat	taatttacct	300
ggctccaa	aa gtgtttcaaa	ccgtgctttg	ctcctggcgg	ctttagcttg	tggtaaaacc	360
gctctgac	ga atctgctgga	tagcgatgac	gtccgccata	tgctcaatgc	cctgagcgcg	420
ttggggat	ca attacaccct	ttctgccgat	cgcacccgct	gtgatatcac	gggtaatggc	480
ggcgcatta	ac gtgcgccagg	cgctctggaa	ctgtttctcg	gtaatgccgg	aatcgcgatg	540
cgttcgtt	ag cggcagcgct	atgtctgggg	caaaatgaga	tagtgttaac	cggcgaaccg	600
cgtatgaa	ag agcgtccgat	aggccatctg	gtcgattcgc	tgcgtcaggg	cggggcgaat	660
attgatta	cc tggagcagga	aaactatccg	cccctgcgtc	tgcgcggcgg	ttttaccggc	720
ggcgacat	tg aggttgatgg	tagcgtttcc	agccagttcc	tgaccgctct	gctgatgacg	780
gcgccgct	gg cccctaaaga	cacaattatt	cgcgttaaag	gcgaactggt	atcaaaacct	840
tacatcgat	ta tcacgctaaa	tttaatgaaa	acctttggcg	tggagatagc	gaaccaccac	900
taccaacaa	at ttgtcgtgaa	gggaggtcaa	cagtatcact	ctccaggtcg	ctatctggtc	960
gagggcgat	tg cctcgtcagc	gtcctatttt	ctcgccgctg	gggcgataaa	aggcggcacg	1020
gtaaaagt	ga ccggaattgg	ccgcaaaagt	atgcagggcg	atattcgttt	tgccgatgtg	1080
ctggagaaa	aa tgggcgcgac	cattacctgg	ggcgatgatt	ttattgcctg	cacgcgcggt	1140
gaattgca	cg ccatagatat	ggatatgaac	catattccgg	atgcggcgat	gacgattgcc	1200
accacggc	gc tgtttgcgaa	aggaaccacg	acgttgcgca	atatttataa	ctggcgagtg	1260

1320 aaagaaaccg atcgcctgtt cgcgatggcg accgagctac gtaaagtggg cgctgaagtc 1380 gaagaagggc acgactatat tcgtatcacg ccgccggcga agctccaaca cgcggatatt 1440 ggcacgtaca acgaccaccg tatggcgatg tgcttctcac tggtcgcact gtccgatacg ccagttacga tcctggaccc taaatgtacc gcaaaaacgt tccctgatta tttcgaacaa 1500 ctggcgcgaa tgagtacgcc tgcctaattt aaatagacat tagcagataa attagcagga 1560 aataaagaag gataaggaga aagaactcaa gtaattatcc ttcgttctct taattgaatt 1620 gcaattaaac tcggcccaat cttttactaa aaggattgag ccgaatacaa caaagattct 1680 attgcatata ttttgactaa gtatatactt acctagatat acaagatttg aaatacaaaa 1740 1746 tctagc

<210> 13

<211> 1694

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic sequence AROA319

<400> 13

60 gctcccccgc cgtcgttcaa tgagaatgga taagaggctc gtgggattga cgtgaggggg 120 cagggatggc tatatttctg ggagcgaact ccgggcgaat actgaagcgc ttggatacaa 180 gttatccttg gaaggaaaga caattccgaa tctagaaata attttgttta actttaagaa ggagatatac ccatggaatc cctgacgtta caacccatcg cgcgggtcga tggcgccatt 240 300 aatttacctg gctccaaaag tgtttcaaac cgtgctttgc tcctggcggc tttagcttgt ggtaaaaccg ctctgacgaa tctgctggat agcgatgacg tccgccatat gctcaatgcc 360 420 ctgagcgcgt tggggatcaa ttacaccctt tctgccgatc gcacccgctg tgatatcacg 480 ggtaatggcg gcgcattacg tgcgccaggc gctctggaac tgtttctcgg taatgccgga 540 ategegatge gttegttage ggeagegeta tgtetgggge aaaatgagat agtgttaace 600 ggcgaaccgc gtatgaaaga gcgtccgata ggccatctgg tcgattcgct gcgtcagggc ggggcgaata ttgattacct ggagcaggaa aactatccgc ccctgcgtct gcgcggcggt 660 tttaccggcg gcgacattga ggttgatggt agcgtttcca gccagttcct gaccgctctg 720 780 ctgatgacgg cgccgctggc ccctaaagac acaattattc gcgttaaagg cgaactggta 840 tcaaaacctt acatcgatat cacgctaaat ttaatgaaaa cctttggcgt ggagatagcg aaccaccact accaacaatt tgtcgtgaag ggaggtcaac agtatcactc tccaggtcgc 900

tatctggtcg	agggcgatgc	ctcgtcagcg	tcctattttc	tcgccgctgg	ggcgataaaa	960
ggcggcacgg	taaaagtgac	cggaattggc	cgcaaaagta	tgcagggcga	tattcgtttt	1020
gccgatgtgc	tggagaaaat	gggcgcgacc	attacctggg	gcgatgattt	tattgcctgc	1080
acgcgcggtg	aattgcacgc	catagatatg	gatatgaacc	atattccgga	tgcggcgatg	1140
acgattgcca	ccacggcgct	gtttgcgaaa	ggaaccacga	cgttgcgcaa	tatttataac	1200
tggcgagtga	aagaaaccga	tcgcctgttc	gcgatggcga	ccgagctacg	taaagtgggc	1260
gctgaagtcg	aagaagggca	cgactatatt	cgtatcacgc	cgccggcgaa	gctccaacac	1320
gcggatattg	gcacgtacaa	cgaccaccgt	atggcgatgt	gcttctcact	ggtcgcactg	1380
tccgatacgc	cagttacgat	cctggaccct	aaatgtaccg	caaaaacgtt	ccctgattat	1440
ttcgaacaac	tggcgcgaat	gagtacgcct	gcctaattta	aatagacatt	agcagataaa	1500
ttagcaggaa	ataaagaagg	ataaggagaa	agaactcaag	taattatcct	tcgttctctt	1560
aattgaattg	caattaaact	cggcccaatc	ttttactaaa	aggattgagc	cgaatacaac	1620
aaagattcta	ttgcatatat	tttgactaag	tatatactta	cctagatata	caagatttga	1680
aatacaaaat	ctag					1694

<210> 14 <211> 553

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic sequence HELIO312

<400> 14

60 gctcccccgc cgtcgttcaa tgagaatgga taagaggctc gtgggattga cgtgaggggg 120 cagggatggc tatatttctg ggagcgaact ccgggcgaat actgaagcgc ttggatacaa 180 gttatccttg gaaggaaaga caattccgaa tctagaaata attttgttta actttaagaa 240 ggagatatac ccatggataa attaattgga tcttgtgtat ggggagctgt aaattatact tctgattgta atggagaatg taaaagaaga ggatataaag gaggacattg tggatctttt 300 gctaatgtaa attgttggtg tgaaacttaa tctagaggaa atagacatta gcagataaat 360 tagcaggaaa taaagaagga taaggagaaa gaactcaagt aattatcctt cgttctctta 420 attgaattgc aattaaactc ggcccaatct tttactaaaa ggattgagcc gaatacaaca 480 aagattetat tgeatatatt ttgaetaagt atataettae etagatatae aagatttgaa 540

553 atacaaaatc tag <210> 15 <211> 1487 <212> DNA Artificial sequence <213> <220> <223> Synthetic sequence HPPD323 <400> 15 60 gctcccccgc cgtcgttcaa tgagaatgga taagaggctc gtgggattga cgtgaggggg cagggatggc tatatttctg ggagcgaact ccgggcgaat actgaagcgc ttggatacaa 120 180 gttatccttg gaaggaaaga caattccgaa tctagaaata attttgttta actttaagaa 240 ggagatatac ccatggcaga tctatacgaa aacccaatgg gcctgatggg ctttgaattc 300 atcgaattcg cgtcgccgac gccgggtacc ctggagccga tcttcgagat catgggcttc 360 accaaagtcg cgacccaccg ttccaagaac gtgcacctgt accgccaggg cgagatcaac 420 ctgatcctca acaacgagcc caacagcatc gcctcctact ttgcggccga acacggcccg 480 teggtgtgeg geatggegtt eegegtgaag gaetegeaaa aggeetaeaa eegegeeetg gaacteggeg eccageegat ceatattgae acegggeega tggaattgaa eetgeeggeg 540 atcaagggca teggeggege geegttgtae etgategaee gttteggega aggeageteg 600 atctacgaca tcgacttcgt gtacctcgaa ggtgtggagc gcaatccggt cggtgcaggt 660 ctcaaagtca tcgaccacct gacccacaac gtctatcgcg gccgcatggt ctactgggcc 720 aacttctacg agaaattgtt caacttccgt gaagcgcgtt acttcgatat caagggcgag 780 tacaccggcc tgacttccaa ggccatgagt gcgccggacg gcatgatccg catcccgctg 840 aacgaagagt cgtccaaggg cgcggggcag atcgaagagt tcctgatgca gttcaacggc 900 960 qaaqqcatcc agcacqtggc gttcctcacc gacgacctgg tcaagacctg ggacgcgttg aaqaaaatcg gcatgcgctt catgaccgcg ccgccagaca cttattacga aatgctcgaa 1020 1080 ggccgcctgc ctgaccacgg cgagccggtg gatcaactgc aggcacgcgg tatcctgctg gacggatctt ccgtggaagg cgacaaacgc ctgctgctgc agatcttctc ggaaaccctg 1140 1200 atgggcccgg tgttcttcga attcatccag cgcaagggcg acgatgggtt tggcgagggc 1260 aacttcaagg cgctgttcga gtccatcgaa cgtgaccagg tgcgtcgtgg tgtattgacc gccgattaat ttaaatagac attagcagat aaattagcag gaaataaaga aggataagga 1320 gaaagaactc aagtaattat ccttcgttct cttaattgaa ttgcaattaa actcggccca 1380 atcttttact aaaaggattg agccgaatac aacaaagatt ctattgcata tattttgact 1440 aagtatatac ttacctagat atacaagatt tgaaatacaa aatctag 1487 <210> 16 <211> 3929 <212> DNA <213> Artificial sequence <220> <223> Synthetic sequence CRYL325 <400> 16 60 gctcccccgc cgtcgttcaa tgagaatgga taagaggctc gtgggattga cgtgaggggg 120 cagggatggc tatatttctg ggagcgaact ccgggcgaat actgaagcgc ttgqatacaa gttatccttg gaaggaaaga caattccgaa tctagaaata attttgttta actttaagaa 180 240 ggagatatac ccatgggcaa gggcgaggaa ctgttcactg gcgtggtccc aatcttaagc tccatggata acaatccgaa catcaatgaa tgcattcctt ataattgttt aagtaaccct 300 360 gaagtagaag tattaggtgg agaaagaata gaaactggtt acaccccaat cgatatttcc ttgtcgctaa cgcaatttct tttgagtgaa tttgttcccg gtgctggatt tgtgttagga 420 ctagttgata taatatgggg aatttttggt ccctctcaat gggacgcatt tcttgtacaa 480 attgaacagt taattaacca aagaatagaa gaattcgcta ggaaccaagc catttctaga 540 ttagaaggac taagcaatct ttatcaaatt tacgcagaat cttttagaga gtgggaagca 600 gatcctacta atccagcatt aagagaagag atgcgtattc aattcaatga catgaacagt 660 720 gcccttacaa ccgctattcc tctttttgca gttcaaaatt atcaagttcc tcttttatca 780 gtatatgttc aagctgcaaa tttacattta tcagttttga gagatgtttc agtgtttgga caaaggtggg gatttgatgc cgcgactatc aatagtcgtt ataatgattt aactaggctt 840 900 attggcaact atacagatca tgctgtacgc tggtacaata cgggattaga gcgtgtatgg ggaccggatt ctagagattg gataagatat aatcaattta gaagagaatt aacactaact 960 gtattagata tegtttetet attteegaae tatgatagta gaaegtatee aattegaaea 1020 1080 gtttcccaat taacaagaga aatttataca aacccagtat tagaaaattt tgatggtagt tttcgaggct cggctcaggg catagaagga agtattagga gtccacattt gatggatata 1140 cttaacagta taaccatcta tacggatgct catagaggag aatattattg gtcagggcat 1200

1260

caaataatgg cttctcctgt agggttttcg gggccagaat tcacttttcc gctatatgga

1320 actatgggaa atgcagetee acaacaaegt attgttgete aactaggtea gggegtgtat 1380 agaacattat cgtccacttt atatagaaga ccttttaata tagggataaa taatcaacaa 1440 ctatctgttc ttgacgggac agaatttgct tatggaacct cctcaaattt gccatccgct 1500 gtatacagaa aaagcggaac ggtagattcg ctggatgaaa taccgccaca gaataacaac gtgccaccta ggcaaggatt tagtcatcga ttaagccatg tttcaatgtt tcgttcaggc 1560 1620 tttagtaata gtagtgtaag tataataaga gctcctatgt tctcttggat acatcgtagt 1680 gctgaattta ataatataat tccttcatca caaattacac aaataccttt aacaaaatct 1740 actaatcttg gctctggaac ttctgtcgtt aaaggaccag gatttacagg aggagatatt 1800 cttcgaagaa cttcacctgg ccagatttca accttaagag taaatattac tgcaccatta tcacaaagat atcgggtaag aattcgctac gcttctacca caaatttaca attccataca 1860 1920 tcaattgacg gaagacctat taatcagggg aatttttcag caactatgag tagtgggagt 1980 aatttacagt ccggaagctt taggactgta ggttttacta ctccgtttaa cttttcaaat 2040 ggatcaagtg tatttacgtt aagtgctcat gtcttcaatt caggcaatga agtttatata 2100 gatcgaattg aatttgttcc ggcagaagta acctttgagg cagaatatga tttagaaaga 2160 gcacaaaagg cggtgaatga gctgtttact tcttccaatc aaatcgggtt aaaaacagat gtgacggatt atcatattga tcaagtatcc aatttagttg agtgtttatc tgatgaattt 2220 tgtctggatg aaaaaaaaga attgtccgag aaagtcaaac atgcgaagcg acttagtgat 2280 gagcggaatt tacttcaaga tccaaacttt agagggatca atagacaact agaccgtggc 2340 tggagaggaa gtacggatat taccatccaa ggaggcgatg acgtattcaa agagaattac 2400 2460 gttacgctat tgggtacctt tgatgagtgc tacttaacgt atttatatca aaaaatagat 2520 gagtcgaaat taaaagccta tacccgttac caattaagag ggtatatcga agatagtcaa 2580 gacttagaaa tctatttaat tcgctacaat gccaaacacg aaacagtaaa tgtgccaggt acgggttcct tatggcgcct ttcagcccca agtccaatcg gaaaatgtgc ccatcattcc 2640 2700 catcatttct ccttggacat tgatgttgga tgtacagact taaatgagga cttaggtgta 2760 tgggtgatat tcaagattaa gacgcaagat ggccatgcaa gactaggaaa tctagaattt 2820 ctcgaagaga aaccattagt aggagaagca ctagctcgtg tgaaaagagc ggagaaaaaa 2880 tggagagaca aacgtgaaaa attggaatgg gaaacaaata ttgtttataa agaggcaaaa gaatctgtag atgctttatt tgtaaactct caatatgata gattacaagc ggataccaac 2940 atcgcgatga ttcatgcggc agataaacgc gttcatagca ttcgagaagc ttatctgcct 3000

3060 gagctgtctg tgattccggg tgtcaatgcg gctatttttg aagaattaga agggcgtatt 3120 ttcactgcat tctccctata tgatgcgaga aatgtcatta aaaatggtga ttttaataat ggcttatcct gctggaacgt gaaagggcat gtagatgtag aagaacaaaa caaccaccgt 3180 teggteettg ttgtteegga atgggaagea gaagtgteac aagaagtteg tgtetgteeg 3240 ggtcgtggct atatecttcg tgtcacagcg tacaaggagg gatatggaga aggttgcgta 3300 accattcatg agatcgagaa caatacagac gaactgaagt ttagcaactg tgtagaagag 3360 gaagtatatc caaacaacac ggtaacgtgt aatgattata ctgcgactca agaagaatat 3420 3480 gagggtacgt acacttctcg taatcgagga tatgacggag cctatgaaag caattcttct 3540 qtaccaqctq attatqcatc agcctatgaa gaaaaagcat atacagatgg acgaagagac 3600 aatccttgtg aatctaacag aggatatggg gattacacac cactaccagc tggctatgtg acaaaagaat tagagtactt cccagaaacc gataaggtat ggattgagat cggagaaacg 3660 3720 gaaggaacat tcatcgtgga cagcgtggaa ttacttctta tggaggaata atttaaatag 3780 acattagcag ataaattagc aggaaataaa gaaggataag gagaaagaac tcaagtaatt 3840 atccttcgtt ctcttaattg aattgcaatt aaactcggcc caatctttta ctaaaaggat 3900 tgagccgaat acaacaaaga ttctattgca tatattttga ctaagtatat acttacctag 3929 atatacaaga tttgaaatac aaaatctag

<210> 17

<211> 3878

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic sequence CRYL327

<400> 17

getececege egtegtteaa tgagaatgga taagaggete gtgggattga egtgaggggg 60
cagggatgge tatattetg ggagegaact eegggegaat actgaagege ttggatacaa 120
gttateettg gaaggaaaga eaatteegaa tetagaaata attttgtta actttaagaa 180
ggagatatae eeatggataa eaateegaae ateaatgaat geatteetta taattgtta 240
agtaaceetg aagtagaagt attaggtgga gaaagaatag aaaetggtta eaceeeaate 300
gatatteet tgtegetaae geaatteet ttgagtgaat ttgtteeegg tgetggattt 360
gtgttaggae tagttgatat aatatgggga atttttggte eeteteaatg ggaegeattt 420

480 cttgtacaaa ttgaacagtt aattaaccaa agaatagaag aattcgctag gaaccaagcc 540 atttctagat tagaaggact aagcaatctt tatcaaattt acgcagaatc ttttagagag 600 atgaacagtg cccttacaac cgctattcct ctttttgcag ttcaaaatta tcaagttcct 660 cttttatcag tatatgttca agctgcaaat ttacatttat cagttttgag agatgtttca 720 gtgttttggac aaaggtgggg atttgatgcc gcgactatca atagtcgtta taatgattta 780 actaggetta ttggcaacta tacagateat getgtaeget ggtacaatae gggattagag 840 cgtgtatggg gaccggattc tagagattgg ataagatata atcaatttag aagagaatta 900 acactaactg tattagatat cgtttctcta tttccgaact atgatagtag aacgtatcca 960 attcgaacag tttcccaatt aacaagagaa atttatacaa acccagtatt agaaaatttt 1020 gatggtagtt ttcgaggctc ggctcagggc atagaaggaa gtattaggag tccacatttg 1080 atggatatac ttaacagtat aaccatctat acggatgctc atagaggaga atattattgg 1140 tcagggcatc aaataatggc ttctcctgta gggttttcgg ggccagaatt cacttttccg 1200 1260 ctatatggaa ctatgggaaa tgcagctcca caacaacgta ttgttgctca actaggtcag ggcgtgtata gaacattatc gtccacttta tatagaagac cttttaatat agggataaat 1320 1380 aatcaacaac tatctgttct tgacgggaca gaatttgctt atggaacctc ctcaaatttg ccatccgctg tatacagaaa aagcggaacg gtagattcgc tggatgaaat accgccacag 1440 1500 aataacaacg tgccacctag gcaaggattt agtcatcgat taagccatgt ttcaatgttt cgttcaggct ttagtaatag tagtgtaagt ataataagag ctcctatgtt ctcttggata 1560 1620 catcgtagtg ctgaatttaa taatataatt ccttcatcac aaattacaca aataccttta 1680 acaaaatcta ctaatcttgg ctctggaact tctgtcgtta aaggaccagg atttacagga ggagatattc ttcgaagaac ttcacctggc cagatttcaa ccttaagagt aaatattact 1740 gcaccattat cacaaagata tcgggtaaga attcgctacg cttctaccac aaatttacaa 1800 ttccatacat caattgacgg aagacctatt aatcagggga atttttcagc aactatgagt 1860 1920 agtgggagta atttacagtc cggaagcttt aggactgtag gttttactac tccgtttaac ttttcaaatg gatcaagtgt atttacgtta agtgctcatg tcttcaattc aggcaatgaa 1980 gtttatatag atcgaattga atttgttccg gcagaagtaa cctttgaggc agaatatgat 2040 ttagaaagag cacaaaaggc ggtgaatgag ctgtttactt cttccaatca aatcgggtta 2100 aaaacagatg tgacggatta tcatattgat caagtatcca atttagttga gtgtttatct 2160

2220 gatgaatttt gtctggatga aaaaaaagaa ttgtccgaga aagtcaaaca tgcgaagcga 2280 cttagtgatg agcggaattt acttcaagat ccaaacttta gagggatcaa tagacaacta 2340 gaccgtggct ggagaggaag tacggatatt accatccaag gaggcgatga cgtattcaaa 2400 gagaattacg ttacgctatt gggtaccttt gatgagtgct acttaacgta tttatatcaa 2460 aaaatagatg agtcgaaatt aaaagcctat acccgttacc aattaagagg gtatatcgaa 2520 gatagtcaag acttagaaat ctatttaatt cgctacaatg ccaaacacga aacagtaaat 2580 gtgccaggta cgggttcctt atggcgcctt tcagccccaa gtccaatcgg aaaatgtgcc 2640 catcattccc atcatttctc cttggacatt gatgttggat gtacagactt aaatgaggac 2700 ttaggtgtat gggtgatatt caagattaag acgcaagatg gccatgcaag actaggaaat 2760 ctagaatttc tcgaagagaa accattagta ggagaagcac tagctcgtgt gaaaagagcg 2820 gagaaaaaat ggagagacaa acgtgaaaaa ttggaatggg aaacaaatat tgtttataaa 2880 gaggcaaaag aatctgtaga tgctttattt gtaaactctc aatatgatag attacaagcg 2940 gataccaaca tcgcgatgat tcatgcggca gataaacgcg ttcatagcat tcgagaagct 3000 tatctgcctg agctgtctgt gattccgggt gtcaatgcgg ctatttttga agaattagaa 3060 gggcgtattt tcactgcatt ctccctatat gatgcgagaa atgtcattaa aaatggtgat 3120 tttaataatg gcttatcctg ctggaacgtg aaagggcatg tagatgtaga agaacaaaac 3180 aaccaccgtt cggtccttgt tgttccggaa tgggaagcag aagtgtcaca agaagttcgt 3240 gtctgtccgg gtcgtggcta tatccttcgt gtcacagcgt acaaggaggg atatggagaa ggttgcgtaa ccattcatga gatcgagaac aatacagacg aactgaagtt tagcaactgt 3300 3360 gtagaagagg aagtatatcc aaacaacacg gtaacgtgta atgattatac tgcgactcaa 3420 gaagaatatg agggtacgta cacttctcgt aatcgaggat atgacggagc ctatgaaagc 3480 aattottotg taccagotga ttatgoatca gootatgaag aaaaagoata tacagatgga 3540 cgaagagaca atccttgtga atctaacaga ggatatgggg attacacacc actaccagct 3600 ggctatgtga caaaagaatt agagtacttc ccagaaaccg ataaggtatg gattgagatc 3660 ggagaaacgg aaggaacatt catcgtggac agcgtggaat tacttcttat ggaggaataa 3720 tttaaataga cattagcaga taaattagca ggaaataaag aaggataagg agaaagaact caagtaatta teettegtte tettaattga attgeaatta aacteggeee aatettttae 3780 taaaaggatt gagccgaata caacaaagat tctattgcat atattttgac taagtatata 3840

cttacctaga	tatacaagat	ttgaaataca	aaatctag			3878
<210> 18						
<211> 2261 <212> DNA <213> Arti	ficial sequ	ience				
<220> <223> Synt	hetic seque	ence CRYS329	€			
<400> 18 gctcccccgc	cgtcgttcaa	tgagaatgga	taagaggctc	gtgggattga	cgtgaggggg	60
cagggatggc	tatatttctg	ggagcgaact	ccgggcgaat	actgaagcgc	ttggatacaa	120
gttatccttg	gaaggaaaga	caattccgaa	tctagaaata	attttgttta	actttaagaa	180
ggagatatac	ccatggataa	caatccgaac	atcaatgaat	gcattcctta	taattgttta	240
agtaaccctg	aagtagaagt	attaggtgga	gaaagaatag	aaactggtta	caccccaatc	300
gatatttcct	tgtcgctaac	gcaatttctt	ttgagtgaat	ttgttcccgg	tgctggattt	360
gtgttaggac	tagttgatat	aatatgggga	atttttggtc	cctctcaatg	ggacgcattt	420
cttgtacaaa	ttgaacagtt	aattaaccaa	agaatagaag	aattcgctag	gaaccaagcc	480
atttctagat	tagaaggact	aagcaatctt	tatcaaattt	acgcagaatc	ttttagagag	540
tgggaagcag	atcctactaa	tccagcatta	agagaagaga	tgcgtattca	attcaatgac	600
atgaacagtg	cccttacaac	cgctattcct	ctttttgcag	ttcaaaatta	tcaagttcct	660
cttttatcag	tatatgttca	agctgcaaat	ttacatttat	cagttttgag	agatgtttca	720
gtgtttggac	aaaggtgggg	atttgatgcc	gcgactatca	atagtcgtta	taatgattta	780
actaggctta	ttggcaacta	tacagatcat	gctgtacgct	ggtacaatac	gggattagag	840
cgtgtatggg	gaccggattc	tagagattgg	ataagatata	atcaatttag	aagagaatta	900
acactaactg	tattagatat	cgtttctcta	tttccgaact	atgatagtag	aacgtatcca	960
attcgaacag	tttcccaatt	aacaagagaa	atttatacaa	acccagtatt	agaaaatttt	1020
gatggtagtt	ttcgaggctc	ggctcagggc	atagaaggaa	gtattaggag	tccacatttg	1080
atggatatac	ttaacagtat	aaccatctat	acggatgctc	atagaggaga	atattattgg	1140
tcagggcatc	aaataatggc	ttctcctgta	gggttttcgg	ggccagaatt	cacttttccg	1200
ctatatggaa	ctatgggaaa	tgcagctcca	caacaacgta	ttgttgctca	actaggtcag	1260
ggcgtgtata	qaacattatc	gtccacttta	tatagaagac	cttttaatat	agggataaat	1320

aatcaacaac	tatctgttct	tgacgggaca	gaatttgctt	atggaacctc	ctcaaatttg	1380
ccatccgctg	tatacagaaa	aagcggaacg	gtagattcgc	tggatgaaat	accgccacag	1440
aataacaacg	tgccacctag	gcaaggattt	agtcatcgat	taagccatgt	ttcaatgttt	1500
cgttcaggct	ttagtaatag	tagtgtaagt	ataataagag	ctcctatgtt	ctcttggata	1560
catcgtagtg	ctgaatttaa	taatataatt	ccttcatcac	aaattacaca	aataccttta	1620
acaaaatcta	ctaatcttgg	ctctggaact	tctgtcgtta	aaggaccagg	atttacagga	1680
ggagatattc	ttcgaagaac	ttcacctggc	cagatttcaa	ccttaagagt	aaatattact	1740
gcaccattat	cacaaagata	tcgggtaaga	attcgctacg	cttctaccac	aaatttacaa	1800
ttccatacat	caattgacgg	aagacctatt	aatcagggga	atttttcagc	aactatgagt	1860
agtgggagta	atttacagtc	cggaagcttt	aggactgtag	gttttactac	tccgtttaac	1920
ttttcaaatg	gatcaagtgt	atttacgtta	agtgctcatg	tcttcaattc	aggcaatgaa	1980
gtttatatag	atcgaattga	atttgttccg	gcagaagtaa	cctttgaggc	agaatatgat	2040
taatttaaat	agacattagc	agataaatta	gcaggaaata	aagaaggata	aggagaaaga	2100
actcaagtaa	ttatccttcg	ttctcttaat	tgaattgcaa	ttaaactcgg	cccaatcttt	2160
tactaaaagg	attgagccga	atacaacaaa	gattctattg	catatatttt	gactaagtat	2220
atacttacct	agatatacaa	gatttgaaat	acaaaatcta	g		2261
<210> 19 <211> 48 <212> DNA						

- <213> Artificial sequence
- <220>
- <223> Synthetic sequence OTPRRNC5
- <400> 19
- caattgtcgc gagaattcgc tagcggcgcc gctcccccgc cgtcgttc
- <210> 20
- <211> 59
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Synthetic sequence OTPRRNC3
- <400> 20
- atcgatccgc gggagctcgg taccatgcat cgtctagatt cggaattgtc tttccttcc 59

48

```
<210> 21
<211> 57
<212>
      DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence OG10L5
<400> 21
                                                                    57
tatctagaaa taattttgtt taactttaag aaggagatat acccatgggc aagggcg
<210> 22
<211> 67
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence OPGFP3
qqatqcattq cttaaqattq ggaccacgcc agtgaacagt tcctcgccct tgcccatggg
                                                                      60
                                                                      67
tatatct
<210> 23
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence OAROADB5
<400> 23
gccttaagct ccatggaatc cctgacgtta caaccc
                                                                      36
<210> 24
<211>
      38
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence ORAOADB3
gcgatgcata atttaaatta ggcaggcgta ctcattcg
                                                                      38
<210> 25
<211> 40
<212> DNA
<213> Artificial sequence
<220>
```

```
<223> Synthetic sequence OSMC5
<400> 25
                                                                      40
gaaagetteg gaeegtagtt taaacaggee catatggeet
<210> 26
<211> 39
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence OSMC3
<400> 26
smcgactcga gttaattaat cggcgcgcca ggccatatg
                                                                      39
<210> 27
<211> 48
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequenceOSMC51
<400> 27
gageggeege etegagegga eegtagttta aacaggeeca tatggeet
                                                                      48
<210> 28
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence OSMC31
                                                                      36
gaaagctttt aattaatcgg cgcgccaggc catatg
<210> 29
<211> 42
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence OHPPD5
<400> 29
                                                                      42
qccttaagct ccatggcaga tctatacgaa aacccaatgg gc
<210> 30
<211> 43
<212> DNA
```

<213>	Artificial sequence	
<220> <223>	Synthetic sequence OHPPD3	
<400> gccatt	30 taaa ttaatcggcg gtcaatacac cacgacgcac ctg	43
<210><211><211><212><212><213>	37	
<220> <223>	Synthetic sequence OCRYWT5	
<400> gcctta	31 agct ccatggataa caatccgaac atcaatg	37
<210><211><211><212><213>		
<220> <223>	Synthetic sequence OCRYWTL3	
<400> gccatt	32 taaa ttatteetee ataagaagta atteeaeget gteeaeg	47
<210> <211> <212> <213>	49	
<220> <223>	Synthetic sequence OCRYWTC3	
<400> gccatt	33 taaa ttaatcatat tetgeeteaa aggttaette tgeeggaae	49
<210><211><211><212><213>	34 23 DNA Artificial sequence	
<220> <223>	Synthetic sequence P1	
<400>	34 gaat agaacatgct tag	23

```
<210> 35
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence P2
<400> 35
                                                                     22
acaccatgga taaattaatt gg
<210> 36
<211> 25
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence P3
<400> 36
                                                                     25
cctctagatt aagtttcaca ccaac
<210> 37
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence P4
<400> 37
cgtcatactt gaagctagac aggc
                                                                     24
<210> 38
<211> 43.
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence P5
<400> 38
ctcagtactc gagttatttg ccgactacct tggtgatctc gcc
                                                                     43
<210> 39
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic sequence P6
```

<400> gttaag	gtaa cgacttcggc atgg	24
<210><211><211><212><213>		
<220> <223>	Synthetic sequence P7	
<400> catggg	40 gttct ggcaatgcaa tgtg	24
<210><211><211><212><213>	26	
<220> <223>	Synthetic sequence P8	
	41 cgaa ctctccatga gattcc	26