Unidad 5

Autovalores y autovectores

Cecilia Rapelli Marcos Prunello

Año 2018

- Los autovalores y autovectores son esas cosas raras que aparecen por todos lados pero nunca terminamos por entender.
- El objetivo de esta unidad es ver métodos para su cálculo, pero antes vamos a repasar qué son (informalmente, sin rigurosidad, el que avisa no traiciona...)

- En muchas disciplinas los objetos que se estudian se representan con vectores (ej. x, y) y las cosas que se hacen con ellos son transformaciones lineales, que se representan como matrices (ej. A).
- Así, en muchas situaciones las relaciones que importan entre esos objetos/vectores se expresan como:

$$y = Ax$$

- Esto abarca desde sistemas de ecuaciones lineales (presentes casi en todos lados en ciencia) hasta problemas muy sofisticados en ingeniería.
- Ahora bien, en general no es muy fácil mirar a la matriz A y directamente darse cuenta qué es lo que va a pasar cuando se la multipliquemos a x.

- Sin embargo, podríamos encontrar casos donde haya una relación muy simple entre el vector x y el vector resultado y=Ax.
- Por ejemplo, si miramos la matriz $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ y se la multiplicamos al vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, ¡nos da como resultado el mismo vector \mathbf{x} !
- Es decir, que para ese vector, es muy fácil ver qué aspecto tiene **Ax**.
- Se puede generalizar esta observación con el concepto de autovectores.
- Un autovector de una matriz $\bf A$ es cualquier vector $\bf x$ para el que sólo cambia su escala cuando se lo multiplica con $\bf A$, es decir: $\bf A \bf x = \lambda \bf x$, para algún número λ real o complejo, que recibe el nombre de autovalor.

- Entonces si una matriz A describe algún tipo de sistema, los autovectores son aquellos vectores que, cuando pasan por el sistema, se modifican en una forma muy sencilla.
- Por ejemplo, si A describe operaciones geométricas, en principio A podría estirar y rotar a los vectores, sin embargo, a sus autovectores lo único que puede hacerles es estirarlos, no rotarlos.

• Sea:
$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$ y $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 En este gráfico podemos ver los vectores antes de transformarlos (multiplicarlos) mediante A:

 Y en este gráfico podemos ver como quedan luego de la transformación:

- u y v no cambiaron su dirección, sólo su norma: son autovectores de A, asociados a los autovalores 5 y 2.
- En cambio, la matriz A modificó la dirección de w, entonces no es un autovector.

Definición

- Dada una matriz A cuadradada de orden n, llamamos autovector o vector propio de A a todo vector x de orden n cuya dirección no se modifica al transformarlo mediante A.
 - Transformarlo mediante A significa realizar el producto Ax dando como resultado un nuevo vector de orden n.
 - Que la dirección de \mathbf{x} no se modifique significa que el nuevo vector debe ser múltiplo de \mathbf{x} , es decir, igual a $\lambda \mathbf{x}$, con $\lambda \in \mathbb{C}$, que recibe el nombre de autovalor o valor propio de A.
- Lo anterior se resume en la siguiente expresión: ${\bf x}$ es un autovector y λ es un autovalor de ${\bf A}$ si:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}, \quad \mathbf{x} \neq \mathbf{0}, \quad \lambda \in \mathbb{C}$$

Definición

Observación

• Se debe observar que si ${\bf x}$ es un autovector con el autovalor λ entonces cualquier múltiplo diferente de cero de ${\bf x}$ es también un autovector con el autovalor λ .

Propiedades

- Dada una matriz A cuadradada de orden n:
 - A tiene n autovalores, $\lambda_1, \lambda_2, \cdots, \lambda_n$, los cuales no necesariamente son todos distintos.
 - $tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$.
 - $\det(A) = \prod_{i=1}^n \lambda_i$.
 - Los autovalores de \mathbf{A}^k son $\lambda_1^k, \lambda_2^k, \cdots, \lambda_n^k$.
 - Si A^k es real y simétrica todos sus autovalores son reales y los autovectores correspondientes a distintos autovalores son ortogonales.
 - Si A es triangular los valores propios son los elementos diagonales.
 - Los autovalores de una matriz y su transpuesta son los mismos.
 - Si **A** tiene inversa, los autovalores de \mathbf{A}^{-1} son $1/\lambda_1, 1/\lambda_2, \cdots, 1/\lambda_n$.
 - Los valores de $\alpha \mathbf{A}$ son $\alpha \lambda_1, \alpha \lambda_2, \cdots, \alpha \lambda_n, \alpha \in \mathbb{R}$.
 - Las matrices A y Q⁻¹AQ (forma cuadrática) tienen los mismos valores propios.

• A partir de la expresión anterior:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \implies \mathbf{A}\mathbf{x} - \lambda\mathbf{x} = \mathbf{0} \implies (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = \mathbf{0}$$

- Esto es un sistema de ecuaciones lineales con matriz de coeficientes $\mathbf{A} \lambda \mathbf{I}$ y vector de términos independientes $\mathbf{0}$, es decir, es un **sistema** homogéneo y como tal tiene solución no nula si: $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ (repasar por qué).
- El desarrollo de esta expresión conduce a un polinomio de grado n en la incógnita λ que igualado a cero es llamado **ecuación característica** y su resolución permite hallar los autovalores.

Ejemplo

$$\mathbf{A} = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \implies$$

$$det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 5 - \lambda & -2 & 0 \\ -2 & 3 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = \dots = -\lambda^3 + 9\lambda^2 - 18\lambda + 6 = 0$$

- Las soluciones de la ecuación característica son $\lambda_1=6,2899, \lambda_2=2,2943$ y $\lambda_3=0,4158$, los cuales son los autovalores de ${\bf A}$.
- Hallar la ecuación característica ya es demasiado trabajoso para n = 3,
 y mucho más será para mayor n... por eso veremos métodos que directamente nos den los coeficientes de esta ecuación.

- Pero nos faltan los autovectores!
- Para eso hacemos uso de la definición: **A** es un autovector de **A** asociado al autovalor λ si $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$.
- Tomamos uno de los autovalores, por ejemplo, $\lambda_1=6,2899$ y resolvemos el sistema de ecuaciones que la expresión anterior plantea:

$$\begin{aligned} (\mathbf{A} - 6,2899 \, \mathbf{I}) \mathbf{x} &= \mathbf{0} \implies \begin{bmatrix} -1,2899 & -2 & 0 \\ -2 & -3,2899 & -1 \\ 0 & -1 & -5,2899 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \implies \begin{cases} -1,2899x_1 - 2x_2 & = 0 \\ -2x_1 - 3,2899x_2 - x_3 & = 0 \implies \begin{cases} x_1 = 8,2018x_3 \\ x_2 = -5,2899x_2 \\ x_3 \in \mathbb{R} \end{aligned}$$

• Como se puede ver la solución de este sistema homogéneo no es única, representando los infinitos autovectores asociados a $\lambda_1 = 6,2899$. Por ejemplo, si elegimos $x_3 = 1$, obtenemos el autovector:

$$\mathbf{x}_1 = \begin{bmatrix} 8,2018 \\ -5,2899 \\ 1 \end{bmatrix}$$

- En general, se resuelve informando el autovector de norma 1 que sí es único.
- De la misma forma se procede con los restantes autovalores λ_2 y λ_3 .

Resumen 1: Obtener autovalores y autovectores

• **Paso 1**: desarrollar la expresión de $det(\mathbf{A} - \lambda \mathbf{I})$ para obtener la ecuación característica (muy engorroso para n > 3):

$$f(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^n + b_1 \lambda^{n-1} + \dots + b_{n-1} \lambda + b_n = 0$$

- **Paso 2**: resolver la ecuación característica para hallar los autovalores $\lambda_1, \lambda_2, \dots, \lambda_n$. Dependiendo de n, podemos hacerlo a mano, con la calculadora o con los métodos de la Unidad 2.
- Paso 3: tomar cada autovalor λ_i y resolver el sistema de ecuaciones lineales $(\mathbf{A} \lambda_i \mathbf{I})\mathbf{x} = \mathbf{0}$. No nos sirven los métodos de la Unidad 3 porque este sistema es compatible indeterminado, realizarlo "a mano" y dar un expresión para los infinitos autovectores o informar el autovector de norma 1.

- Como ya mencionamos, el desarrollo de $\det(\mathbf{A} \lambda \mathbf{I})$ para obtener la ecuación característica tal como lo vimos en el ejemplo inicial se vuelve engorroso rápidamente.
- El método de Krylov permite obtenerla de manera sencilla, basándose en el siguiente teorema:
- Teorema de Caylay-Hamilton: toda matriz cuadrada A verifica su propia ecuación característica. Es decir, siendo la ecuación característica:

$$f(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^n + b_1 \lambda^{n-1} + \dots + b_{n-1} \lambda + b_n = 0,$$

se verifica que:

$$f(\mathbf{A}) = \mathbf{A}^n + b_1 \mathbf{A}^{n-1} + \dots + b_{n-1} \mathbf{A} + b_n \mathbf{I} = \mathbf{0}_{n \times n},$$

Ejemplo

$$\mathbf{A} = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \quad \mathbf{A}^2 = \begin{bmatrix} 29 & -16 & 2 \\ -16 & 14 & -4 \\ 2 & -1 & 1 \end{bmatrix} \quad \mathbf{A}^3 = \begin{bmatrix} 177 & -108 & 18 \\ -108 & 78 & -18 \\ 18 & -18 & 6 \end{bmatrix}$$

$$f(\mathbf{A}) = f(\mathbf{A}) = \mathbf{A}^3 + b_1 \mathbf{A}^2 + b_2 \mathbf{A} + b_3 \mathbf{I} = \mathbf{0} \implies$$

$$\begin{bmatrix} 177 & -108 & 18 \\ -108 & 78 & -18 \\ 18 & -18 & 6 \end{bmatrix} + b_1 \begin{bmatrix} 29 & -16 & 2 \\ -16 & 14 & -4 \\ 2 & -1 & 1 \end{bmatrix} + b_2 \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} + b_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow$$

$$\begin{bmatrix} 177 + 29b_1 + 5b_2 + b_3 & -108 - 16b_1 - 2b_2 & 18 + 2b_1 \\ -108 - 16b_1 - 2b_2 & 78 + 14b_1 + 3b_2 + b_3 & -18 - 4b_1 - b_2 \\ 18 + 2b_1 & -18 - 4b_1 - 1b_2 & 6 + 2b_1b_2 + b_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 Cualquiera de las columnas constituyen un sistema de tres ecuaciones lineales en las incógnitas b₁, b₂ y b₃, los coeficientes de la ecuación característica.

 Podemos usar el siguiente artificio para generar un único sistema de ecuaciones:

$$f(\mathbf{A}_{n \times n}) = \mathbf{0}_{n \times n} \implies f(\mathbf{A}) \mathbf{y} = \mathbf{0} \mathbf{y} = \mathbf{0}_{n \times 1} \quad \forall \mathbf{y}_{n \times 1} \in \mathbb{R}^n$$

• Por ejemplo, tomando $\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^t$, nos queda:

$$f(\mathbf{A}) \mathbf{y} = \mathbf{0} \mathbf{y}$$

$$\Rightarrow (\mathbf{A}^3 + b_1 \mathbf{A}^2 + b_2 \mathbf{A} + b_3 \mathbf{I}) \mathbf{y} = \mathbf{0}$$

$$\Rightarrow \mathbf{A}^3 \mathbf{y} + b_1 \mathbf{A}^2 \mathbf{y} + b_2 \mathbf{A} \mathbf{y} + b_3 \mathbf{y} = \mathbf{0}$$

$$\Rightarrow \begin{bmatrix} 177 & -108 & 18 \\ -108 & 78 & -18 \\ 18 & -18 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b_1 \begin{bmatrix} 29 & -16 & 2 \\ -16 & 14 & -4 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b_2 \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} +$$

$$b_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 177 \\ -108 \\ 18 \end{bmatrix} + b_1 \begin{bmatrix} 29 \\ -16 \\ 2 \end{bmatrix} + b_2 \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} + b_3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 29 & 5 & 1 \\ -16 & -2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} -177 \\ 108 \\ -18 \end{bmatrix}$$

- Lo anterior no es más que un sistema de tres ecuaciones lineales, Cb = d. donde:
 - el vector incógnitas es $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix}$, los coeficientes de la ecuación característica.

 - el vector de términos independientes es $\mathbf{d} = -\mathbf{A}^3 \, \mathbf{y} = \begin{bmatrix} -177 \\ 108 \\ -18 \end{bmatrix}$.
 la matriz de coeficientes es $\mathbf{C} = [\mathbf{A}^2 \, \mathbf{y} \quad \mathbf{A} \, \mathbf{y} \quad \mathbf{y}] = \begin{bmatrix} 29 & 5 & 1 \\ -16 & -2 & 0 \\ 2 & 0 & n \end{bmatrix}$
- Dependiendo de *n*, podemos resolver este sistema "a mano", con la calcu o con algunos de los métodos de la Unidad 3.
- En el ejemplo, el resultado es: $b_1 = -9$, $b_2 = 18$ y $b_3 = -6$.

La ecuación característica entonces es:

$$\lambda^3 - 9\lambda^2 + 18\lambda - 6 = 0$$

- Esta ecuación coincide con la que obtuvimos en la sección anterior.
- A partir de aquí, se debe continuar desde el Paso 2 del Resumen 1 para hallar los autovalores y sus respectivos autovectores.

Resumen 2: Método de Krylov

- Qué necesita: la matriz A y un vector y.
- Qué nos da: un sistema de ecuaciones para obtener los coeficientes de la ecuación característica.
- Paso 1: elegir un vector y de dimensión $n \times 1$.
- Paso 2: crear la matriz de coeficientes $C = [A^{n-1}y \cdots A^2y Ay y].$
- Paso 3: crear el vector de términos independientes $\mathbf{d} = -\mathbf{A}^n \mathbf{y}$, de dimensión $n \times 1$.
- Paso 4: resolver el sistema Cb = d, donde el vector de incógnitas b son los coeficientes de la ecuación característica.
- Paso 5: formar la ecuación característica y continuar desde el Paso 2 del Resumen 1 para hallar los autovalores y sus respectivos autovectores.

 Este método propone hallar los coeficientes b_k de la ecuación característica:

$$f(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^n + b_1 \lambda^{n-1} + \dots + b_{n-1} \lambda + b_n = 0$$

mediante el siguiente cálculo iterativo:

$$\mathbf{M}_1 = \mathbf{A}$$
 $b_1 = -tr(\mathbf{M}_1)$ $\mathbf{M}_k = \mathbf{A}(\mathbf{M}_{k-1} + b_{k-1}\mathbf{I})$ $b_k = -\frac{tr(\mathbf{M}_k)}{k}$ $k = 2, 3, \cdots, n$

• Este método se deriva a partir de propiedades de matrices conjugadas.

• En nuestro ejemplo, tenemos:

$$\mathbf{M}_{1} = \mathbf{A} = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \qquad b_{1} = -tr(\mathbf{M}_{1}) = -9$$

$$\mathbf{M}_{2} = \mathbf{A}(\mathbf{M}_{1} + b_{1}\mathbf{I}) = \begin{bmatrix} -16 & 2 & 2 \\ 2 & -13 & 5 \\ 2 & 5 & -7 \end{bmatrix} \qquad b_{2} = -\frac{tr(\mathbf{M}_{2})}{2} = 18$$

$$\mathbf{M}_{3} = \mathbf{A}(\mathbf{M}_{2} + b_{2}\mathbf{I}) = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad b_{3} = -\frac{tr(\mathbf{M}_{3})}{3} = -6$$

• La ecuación característica entonces es:

$$\lambda^3 - 9\lambda^2 + 18\lambda - 6 = 0$$

• A partir de aquí, otra vez se debe continuar desde el Paso 2 del Resumen 1 para hallar los autovalores y sus respectivos autovectores.

- Este método también sirve para calcular \mathbf{A}^{-1} .
- Por Cayley-Hamilton, ya sabemos que:

$$f(\mathbf{A}) = \mathbf{A}^n + b_1 \mathbf{A}^{n-1} + \dots + b_{n-2} \mathbf{A}^2 + b_{n-1} \mathbf{A} + b_n \mathbf{I} = \mathbf{0}$$

• Premultiplicando por A^{-1} nos queda:

$$\mathbf{A}^{-1}(\mathbf{A}^{n} + b_{1}\mathbf{A}^{n-1} + \dots + b_{n-2}\mathbf{A}^{2} + b_{n-1}\mathbf{A} + b_{n}\mathbf{I}) = \mathbf{A}^{-1}\mathbf{0}$$

$$\mathbf{A}^{n-1} + b_{1}\mathbf{A}^{n-2} + \dots + b_{n-2}\mathbf{A} + b_{n-1}\mathbf{I} + b_{n}\mathbf{A}^{-1} = \mathbf{0}$$

$$\mathbf{A}^{-1} = -\frac{1}{b_{n}}(\mathbf{A}^{n-1} + b_{1}\mathbf{A}^{n-2} + \dots + b_{n-2}\mathbf{A} + b_{n-1}\mathbf{I})$$

$$\mathbf{A}^{-1} = -\frac{1}{b_{n}}(\mathbf{M}_{n-1} + b_{n-1}\mathbf{I})$$

... donde el último reemplazo se deduce a partir de la fórmula iterativa vista antes:

$$\mathbf{M}_{1} = \mathbf{A}$$

$$\mathbf{M}_{2} = \mathbf{A}(\mathbf{M}_{1} + b_{1}\mathbf{I}) = \mathbf{A}(\mathbf{A} + b_{1}\mathbf{I}) = \mathbf{A}^{2} + b_{1}\mathbf{A}$$

$$\mathbf{M}_{3} = \mathbf{A}(\mathbf{M}_{2} + b_{2}\mathbf{I}) = \mathbf{A}(\mathbf{A}^{2} + b_{1}\mathbf{A} + b_{1}\mathbf{I}) = \mathbf{A}^{3} + b_{1}\mathbf{A}^{2} + b_{2}\mathbf{A}$$

$$\mathbf{M}_{4} = \mathbf{A}(\mathbf{M}_{3} + b_{3}\mathbf{I}) = \mathbf{A}^{4} + b_{1}\mathbf{A}^{3} + b_{2}\mathbf{A}^{2} + b_{3}\mathbf{A}$$

$$\vdots$$

$$\mathbf{M}_{n-1} = \mathbf{A}(\mathbf{M}_{n-2} + b_{n-2}\mathbf{I}) = \mathbf{A}^{n-1} + b_{1}\mathbf{A}^{n-2} + b_{2}\mathbf{A}^{n-3} + \dots + b_{n-2}\mathbf{A}$$

Resumen 3: Método de Faddeev-LeVerrier

- Qué necesita: la matriz A
- Qué nos da: los coeficientes de la ecuación característica.
- **Paso 1**: calcular los coeficientes b_k de la ecuación característica con la fórmula recursiva:

$$\mathbf{M}_1 = \mathbf{A}$$
 $b_1 = -tr(\mathbf{M}_1)$ $\mathbf{M}_k = \mathbf{A}(\mathbf{M}_{k-1} + b_{k-1}\mathbf{I})$ $b_k = -\frac{tr(\mathbf{M}_k)}{k}$ $k = 2, 3, \dots, n$

 Paso 2: formar la ecuación característica y continuar desde el Paso 2 del Resumen 1 para hallar los autovalores y sus respectivos autovectores.

- Definición: si λ es un autovalor de A tal que en valor absoluto es mayor que cualquier otro autovalor, se dice que es un autovalor dominante y sus autovectores se llaman autovectores dominantes.
- El método de las potencias dice que si A tiene un autovalor dominante y v es su autovector normalizado, la sucesión x_k a partir de cualquier x₀ no nulo converge a v:

$$\mathbf{x}_k = \mathbf{A}\mathbf{x}_{k-1}$$

• El autovalor correspondiente está dado por el **cociente de Rayleigh**: si **x** es un autovector de **A**, entonces su correspondiente autovalor es:

$$\lambda = \frac{(\mathbf{A}\mathbf{x})^t \mathbf{x}}{\mathbf{x}^t \mathbf{x}}$$

• Se llama método de las potencias porque:

$$\mathbf{x}_{1} = \mathbf{A}\mathbf{x}_{0}$$
 $\mathbf{x}_{2} = \mathbf{A}\mathbf{x}_{1} = \mathbf{A}^{2}\mathbf{x}_{0}$
 $\mathbf{x}_{3} = \mathbf{A}\mathbf{x}_{2} = \mathbf{A}^{3}\mathbf{x}_{0}$
 \vdots
 $\mathbf{x}_{k} = \mathbf{A}\mathbf{x}_{k-1} = \mathbf{A}^{k}\mathbf{x}_{0}$

- El método de la potencia tiende a producir aproximaciones en donde los elementos de x tienen gran magnitud, lo cual produce problemas (errores de desbordamiento, overflow error).
- Por eso, en la práctica se añade un escalamiento en cada paso iterativo, dividiendo por el elemento de mayor magnitud del paso anterior.
- Método de las potencias: si A tiene un autovalor dominante, la siguiente sucesión c_k converge al mismo mientras que la sucesión x_k converge a uno de sus autovectores dominantes:

$$\mathbf{x}_k = \frac{1}{c_k} \mathbf{A} \mathbf{x}_{k-1}$$

donde c_k es la coordenada de mayor tamaño de $\mathbf{A}\mathbf{x}_{k-1}$ y \mathbf{x}_0 es cualquier vector no nulo.

• Retomando nuestro ejemplo:

k	x_k	$\mathbf{A} \mathbf{x}_k$	c_k	$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k/c_k$	Error (L ₂)
0	[1 1 1] ^t	[3 0 0] ^t	3	[1 0 0] ^t	1.4142
1	$[1 \ 0 \ 0]^t$	[5 -2 0] ^t	5	$[1 - 0.4 \ 0]^t$	0.4
2	$[1 - 0.4 \ 0]^t$	[5.8 -3.2 0.4] ^t	5.8	[1 -0.5517 0.0690] ^t	0.1667
3	[1 -0.5517 0.0690] ^t	[6.1034 -3.7241 0.6207] ^t	6.1034	[1 -0.6102 0.1017] ^t	0.0690
4	[1 -0.6102 0.1017] ^t	[6.2203 -3.9322 0.7119] ^t	6.2203	[1 -0.6322 0.1144] ^t	0.0254
16	[1 -0.644972 0.1219239] ^t	[6.2899 -4.0568 0.7669] ^t	6.2899	[1 -0.644972 0.1219241] ^t	3.956E-7

Modificaciones de este método

Método de las potencias inversas

- Permite hallar el menor autovalor de A.
- Consiste en aplicar el \mathbf{A}^{-1} para hallar su mayor autovalor.
- Pero como los autovalores de A⁻¹ son los recíprocos de los de A, el autovalor así hallado es el recíproco del menor autovalor de A.

Método de las potencias con deflación (o de Hotelling)

- Una vez hallado el mayor autovalor λ_1 es posible encontrar el segundo mayor autovalor aplicando el mismo método sobre la matriz $\mathbf{A}_2 = \mathbf{A} \lambda_1 \mathbf{u} \mathbf{u}^t$, donde $\mathbf{u} = \mathbf{x}/||\mathbf{x}||$, con \mathbf{x} el autovector hallado para λ_1 .
- Si $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ son los autovalores de **A**, entonces $\{0, \lambda_2, \cdots, \lambda_n\}$ son los de **A**₂.
- Repitiendo este proceso se encuentran los restantes autovalores.

Resumen 4: Método de las Aproximaciones Sucesivas o de las Potencias

- Qué necesita: la matriz A y un vector inicial x_0 .
- Qué nos da: el autovalor dominante de A y su autovector.
- **Paso 1**: elegir un vector inicial \mathbf{x}_0 de dimensión $n \times 1$.
- Paso 2: repetir el siguiente proceso iterativo estableciendo un criterio para la convergencia:

$$\mathbf{x}_k = \frac{1}{c_k} \mathbf{A} \mathbf{x}_{k-1}$$

- Paso 3: al finalizar, c_k aproxima al autovalor dominante y \mathbf{x}_k a uno de sus autovectores.
- Modificación 1: hacer los mismo con A^{-1} nos da el recíproco del menor autovalor de A y uno de sus autovectores.
- Modificación 2: aplicar sucesivamente este método modificando A como establece Hotelling para hallar todos los autovalores.