Уеб система за минималната контактна логика с мярка

Стоев Мартин

7 март $2023 \, г$.

Въведение

- Защо модални логики ?
- Каква е целта на тази дипломна работа ?
- Теоретична част
- Практическа част

Съдържание

- ▶ Табло метод
- Минимална контактна логика
- Изпълнимост в минималната контактна логика
- ▶ Минимална контактна логика с мярка
- ▶ Изпълнимост в минималната контактна логика с мярка

Табло метод

- Табло метод като процедура за опровергаване на формули
- ▶ Табло метод като процедура за построяване на модели
- ▶ Табло Метод в Пропозиционалната Логика

Табло метод в пропозиционалната логика

Маркиране на валидността на формула φ

- ightharpoons $\mathbb{T}arphi$ маркиране на формулата arphi за валидна
- ightharpoonup ightharpoonup маркиране на формулата arphi за невалидна

Стъпки на табло метода

- Разшираване на табло метода
- Намиране на противоречия

└Табло метод в пропозиционалната логика

Правила

Негиране

$$\frac{\mathbb{T}(\neg\varphi),X}{\mathbb{F}(\varphi),X}$$

$$\frac{\mathbb{F}(\neg\varphi), X}{\mathbb{T}(\varphi), X}$$

Конюнкция

$$\frac{\mathbb{T}(\varphi \wedge \psi), X}{\mathbb{T}\varphi, \mathbb{T}\psi, X}$$

$$\frac{\mathbb{F}(\varphi \wedge \psi), X}{\mathbb{F}\varphi, X \qquad \mathbb{F}\psi, X}$$

Правила

Дизюнкция

$$\frac{\mathbb{T}(\varphi \lor \psi), X}{\mathbb{T}\varphi, X \qquad \mathbb{T}\psi, X}$$

Импликация

$$\frac{\mathbb{T}(\varphi \to \psi), X}{\mathbb{F}\varphi, X \qquad \mathbb{T}\psi, X}$$

$$\frac{\mathbb{F}(\varphi \to \psi), X}{\mathbb{T}\varphi, \mathbb{F}\psi, X}$$

 $\frac{\mathbb{F}(\varphi \vee \psi), X}{\mathbb{F}\varphi, \mathbb{F}\psi, X}$

Правила

Еквивалентност

$$\frac{\mathbb{T}(\varphi \leftrightarrow \psi), X}{\mathbb{T}\varphi, \mathbb{T}\psi, X} \quad \mathbb{F}\varphi, \mathbb{F}\psi, X \qquad \boxed{1}$$

$$\frac{\mathbb{F}(\varphi \leftrightarrow \psi), X}{\mathbb{T}\varphi, \mathbb{F}\psi, X} \quad \mathbb{F}\varphi, \mathbb{T}\psi, X$$

Дефиниции

Дефиниция (Затворен клон)

Когато в него има едновременно една и съща формула маркирана за валидна и за невалидна.

Дефиниция (Атомарен клон)

Когато клона не може да се разширява повече.

Дефиниция (Завършено табло)

Когато всеки клон в таблото е или затворен или атомарен.

Общовалидна формула

Проверяваме дали дадена формула φ е общовалидна с следните стъпки:

- 1. Маркираме φ за невалидна, т.е. $\mathbb{F}\varphi$.
- 2. Ползваме $\mathbb{F}\varphi$ за начална формула на таблото.
- 3. Разширяваме все докато таблото не е завършено.
- 4. Ако всички клонове на таблото са затворени, то формулата φ е общовалидна.

Пример

1.
$$\mathbb{F}(X \to ((X \land \neg Y) \lor \neg X)$$

2.
$$\mathbb{T}X$$
, $\mathbb{F}((X \land \neg Y) \lor \neg X)$

3.
$$\mathbb{T}X$$
, $\mathbb{F}(X \land \neg Y)$, $\mathbb{F}\neg X$)

4.
$$\mathbb{T}X$$
, $\mathbb{F}(X \land \neg Y)$, $\mathbb{T}X$)

Минимална контактна логика

- 1. Синтаксис
- 2. Семантика
- 3. Свойства
- 4. Изпълнимост на формула

Синтаксис

Синтаксис

- ► W цял свят
- Ø празен регион
- ightharpoonup ightharpoonup използвани в дадена формула
- ► Булеви константи за W и Ø, 1 и 0 съответно

Булеви операции

- ▶ п за булево сечение
- ▶ ⊔ за булево обединение
- * за отрицание

— Минимална контактна логика

Синтаксис

Дефиниция за терм

Терма се дефинира индуктивно:

- Булевите константи са термове
- ▶ $p \in \mathbb{V}$ ar е терм
- Ако х е терм, то *х е също така терм
- ▶ Ако х и у са два терма, то **х** σ **у** е също така терм, където σ ∈ { \sqcap , \sqcup }

Атомарни формули

Пропозиционални константи: \top and \bot

Пропозиционални операции: $\neg, \lor, \land, \rightarrow, \leftrightarrow$

Нека а и b са два терма. То тогава

- ► C(a, b)
- a ≤ b

са атомарни формули.

∟ Минимална контактна логика

Синтаксис

Дефиниция за формула

Формула се дефинира индуктивно:

- Всяка пропозиционална константа е формула
- ▶ Всяка атомарна формула е формула
- ightharpoonup Ако φ е формула, то $\neg \varphi$ е също така формула
- ▶ Ако φ и ψ са две формули, то φ σ ψ е също така формула, където σ ∈ { \lor , \land , \rightarrow , \leftrightarrow }

∟ Минимална контактна логика

Синтаксис

Съкращения

- ▶ a = b, когато $(a \le b) \land (b \le a)$
- ▶ $a \neq b$, когато ¬(a = b)
- ▶ $a \nleq b$, когато $\neg(a \leq b)$

Семантика

Семантика

Релационна система се дефинира като $\mathcal{F}=(W,R)$, където $W\neq\emptyset$. \mathcal{F} наричаме фрейм.

Булева оценка на променлива означаваме с v и дефинираме като:

- $\mathbf{v}(0) = \emptyset$
- ▶ v(1) = W
- $\triangleright v(a \sqcap b) = v(a) \cap v(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a*) = W \setminus v(a)$

Семантика

Модел

Наредената n-торка $\mathcal{M} = (\mathcal{F}, v)$ наричаме модел. Дефинираме изпълнимост на дадена формула в \mathcal{M} като:

- M ⊭ ⊥
- M ⊨ T
- ▶ $\mathcal{M} \models aCb$ когато $(\exists x \in v(a)), (\exists y \in v(b))(xRy)$
- ▶ $\mathcal{M} \models a \leq b$ когато $v(a) \subseteq v(b)$
- $ightharpoonup \mathcal{M} \models \neg \varphi$ когато $\mathcal{M} \not\models \varphi$
- ▶ $\mathcal{M} \models a \lor b$ когато $\mathcal{M} \models a$ или $\mathcal{M} \models b$
- ▶ $\mathcal{M} \models a \land b$ когато $\mathcal{M} \models a$ и $\mathcal{M} \models b$

∟ Минимална контактна логика

Свойства

Свойства

Аксиома (Рефлексивност на контакта)

Нека b е терм, тогава:

$$b \neq 0 \implies bCb$$

Аксиома (Симетрия на контакта)

Нека а и b са два терма, тогава:

Лема (Еквивалентност на термове)

Нека а и b са два терма и v е оценка , тогава:

$$a = b \implies v(a) = v(b)$$

— Минимална контактна логика

Свойства

Лема (Нулева формула)

Нека а и b са два терма, тогава:

$$a \le b \iff a \sqcap b * = \emptyset$$

Лема (Не-нулева формула)

Нека а и b са два терма, тогава:

$$\neg (a \le b) \iff a \sqcap b * \neq \emptyset$$

Лема (Монотоност на контакта)

Нека а и b са два терма, тогава:

$$aCb \land a \leq a' \land b \leq b' \implies a'Cb'$$

Свойства

Свойства

Лема (Дистрибутивност на контакта)

Нека а и b са два терма, тогава:

$$aC(b \sqcup c) \iff aCb \lor aCc$$

Лема (Тривиални свойства)

Нека a, b и c са три терма и φ и ψ са две формули, тогава:

- $\blacktriangleright \ \varphi \lor T \Longrightarrow T, \ T \lor \varphi \Longrightarrow T, \ \varphi \lor F \Longrightarrow \varphi, \ F \lor \varphi \Longrightarrow \varphi,$
- $ightharpoonup a \sqcap 1 \Longrightarrow a, \quad 1 \sqcap a \Longrightarrow a, \quad a \sqcap 0 \Longrightarrow 0, \quad 0 \sqcap a \Longrightarrow 0,$
- $ightharpoonup a \sqcup 1 \Longrightarrow 1, \quad 1 \sqcup a \Longrightarrow 1, \quad a \sqcup 0 \Longrightarrow a, \quad 0 \sqcup a \Longrightarrow a,$

Свойства

Тривиални свойства, продължение

- $ightharpoonup (a \sqcup b)Cc \iff aCc \lor bCc$
- $(a \sqcup b) \le c \iff a \le c \land b \le c$
- $ightharpoonup aCb \Longrightarrow a \neq 0 \land b \neq 0$
- $ightharpoonup a \sqcap b \neq 0 \Longrightarrow aCb$
- $ightharpoonup a = 0 \lor b = 0 \Longrightarrow \neg(aCb)$
- $ightharpoonup 0 < a \Longrightarrow T$
- $ightharpoonup a \leq 1 \Longrightarrow T$
- $ightharpoonup 0C0 \Longrightarrow F$
- $ightharpoonup aC0 \Longrightarrow F$
- ightharpoonup according according
- $ightharpoonup 1C1 \Longrightarrow T$
- $ightharpoonup aC1 \Longrightarrow a \neq 0$
- $ightharpoonup a \neq 0 \Longrightarrow aCa$

Минимална контактна логика

Изпълнимост в минималната контактна логика

За да проверим дали дадена формула φ е изпълнима в минималната контактна логика трябва да построим модел \mathcal{M} за да бъде вярно $\mathcal{M} \models \varphi$.

За да опростим формулата, ползваме табло метода и вместо да строим модел за първоначалната формула, строим модел само за атомарните клонове в таблото.

Намирането на един такъв модел \mathcal{M} който изпълнява атомарните формули в клона е достатъчно, и няма нужда да се разглежда последващите клонове.

- -Минимална контактна логика
 - ∟Изпълнимост в минималната контактна логика

Конюнктивен табло клон

Един атомарен клон се състои от маркирани формули. Дадената формула е изъплнима точно тогава, когато всички атомарни формули от таблото са изпълними.

Нека φ е формула и \mathcal{T} е таблото от φ , то за означаване на конюктивен табло клон ще ползваме следното:

$$B = \{ \mathbb{T}C(a_i, b_i) \mid i \in \{1, \dots, I\} \} \cup \{ \mathbb{F}C(e_k, f_k) \mid k \in \{1, \dots, K\} \} \cup \{ \mathbb{F}d_j = 0 \mid j \in \{1, \dots, J\} \} \cup \{ \mathbb{T}g_I = 0 \mid I \in \{1, \dots, L\} \}$$

└-Минимална контактна логика

∟Изпълнимост в минималната контактна логика

Конюнктивен табло клон

За олеснение можем да махнем Т и F и получаваме.

$$\bigwedge_{i=1}^{I} C(a_i, b_i) \wedge \bigwedge_{k=1}^{K} \neg C(e_k, f_k) \wedge \\ \bigwedge_{j=1}^{J} d_j \neq 0 \wedge \bigwedge_{l=1}^{L} g_l = 0$$

-Минимална контактна логика

∟Изпълнимост в минималната контактна логика

Конюнктивен табло клон

Дефиниция (Множеството на всички променливи)

С \mathbb{V} *ar*_B ще ознчаваме множеството от всички променливи използвани в дадена формула.

Дефиниция (Оценка на променливи)

С e ще ознчаваме функцията която за всяка оценка от $\mathbb{V}ar_B$ дава истина или лажа.

 $e: \mathbb{V}$ ar_B $\rightarrow \{$ лъжа, истина $\}$

Конюнктивен табло клон

Дефиниция (Булева оценка)

Нека e е оценка на променливи и \mathcal{T}_s е множеството от всички термове, тогава функцията $\xi_e:\mathcal{T}_s \to \{$ лъжа, истина $\}$ ще наричаме булева оценка, която се дефинира по следния начин:

- ▶ $\xi_e(0) = лъжа$
- ▶ $\xi_e(1) = \text{истина}$
- \blacktriangleright $\xi_e(p) = e(p)$, където $p \in \mathbb{V}$ ar_B
- ► $\xi_e(a \sqcap b) = \xi_e(a)$ и $\xi_e(b)$
- ► $\xi_e(a \sqcup b) = \xi_e(a)$ или $\xi_e(b)$
- $\blacktriangleright \xi_e(\mathbf{a}*) = \text{He } \xi_e(\mathbf{a})$

- -- Минимална контактна логика
 - ∟Изпълнимост в минималната контактна логика

Стъпки за построяване на модел

Ще казваме, че модална точка e е построена за терма а, когато:

$$\xi_e(a)$$
 = истина

Ще групираме атомарните формули на такива за които е необходимо съществуването на модална точка и на такива за които не е.

Следните атомарни формули се нуждаят от същестуването на поне една модална точка:

- $ightharpoonup C(a_i, b_i), \text{ for } i < I$
- ▶ $d_j \neq 0$, for j < J

—Минимална контактна логика

Изпълнимост в минималната контактна логика

Построяване на модални точки за контактите

За всеки контакт $C(a,b) \in B$ ще построим по две модални точки, такива, че:

▶
$$\xi_{p}(a) =$$
истина

▶
$$\xi_q(b)$$
 = истина

- -- Минимална контактна логика

Построяване на модални точки за контактите

Ново генерираните модални точки трябва да удовлетворяват не-контактите, т.е. следното условие трябва да е изпълнено:

$$\neg C(e,f) \in B : (\xi_p(e) =$$
 лъжа или $\xi_q(f) =$ лъжа) и
$$(\xi_p(f) =$$
 лъжа или $\xi_q(e) =$ лъжа) и
$$(\xi_p(e) =$$
 лъжа или $\xi_p(f) =$ лъжа) и
$$(\xi_q(e) =$$
 лъжа или $\xi_q(f) =$ лъжа)

Също така за равно на нула термовете, следното условие трябва да е изпълнено:

$$t=0\in B: \xi_p(t)=$$
лъжа и $\xi_q(t)=$ лъжа

-Минимална контактна логика

Изпълнимост в минималната контактна логика

Построяване на модални точки за контактите

След успешно генерираните модални точки за двата терма, обогатяваме R със следните релации:

- ▶ pRp рефлексивност на модалната точка р
- ▶ qRq рефлексивност на модалната точка q
- ▶ pRq симетричност между р и q
- ▶ qRp симетричност между q и p

- -Минимална контактна логика
 - ∟Изпълнимост в минималната контактна логика

Построяване на модални точки за контактите

Генерираните модални точки и техните релации за контакта C(a, b)

- -- Минимална контактна логика
 - ∟Изпълнимост в минималната контактна логика

Построяване на модална точка за не-равен на нула терм

За всеки не-равен на нула терм $a \neq 0 \in B$ ще построим една модални точки, такава, че:

▶ $\xi_e(a)$ = истина

За равно на нула термовете, следното условие трябва да е изпълнено:

$$t=0\in B: \xi_{e}(t)=$$
лъжа

След успешно генериране на модалната точка, отново обогатяваме R със следната:

ightharpoonup eRe - рефлексивност на модалната точка e

Уеб система за минималната контактна логика с мярка

—Минимална контактна логика

∟Изпълнимост в минималната контактна логика

Построяване на модална точка за не-равен на нула терм

Генерираната модална точка и нейната релация за $a \neq 0$

Построяване на модел

Дефиниция

Нека \mathcal{T}_s е множеството от всички термове и нека \mathcal{F} е фрейм създаден с построяване на модални точки за контактите и не-равно на нула термове. Тогава модалната оценка $v:\mathcal{T}_s \to \mathcal{P}(W)$ се дефинира рекурсивно, като:

- $\nu(0) = W$
- $v(1) = \emptyset$
- ▶ $v(p) = \{e \mid e \in W \text{ и } e(p) = \text{истина}\}$
- $v(a \sqcap b) = v(a) \cap v(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a*) = W \setminus v(a)$

Минимална контактна логика

∟Изпълнимост в минималната контактна логика

Построяване на модел

Лема

Нека а е терм и нека e е оценка на променливи, от дефиницията на ξ и v, следва, че:

$$\xi_e(\mathbf{a}) = \leftrightarrow e \in v(\mathbf{a})$$

В такъв случай, когато $\xi_e(a)$ = истина ще казваме, че модална точка e е валидна.

Минимална контактна логика с мярка

Минималната контактна логика с мярка е самата минимална контактна логика с добавена количествена мярка.

Мярката е функция която на даден на регион съпоставя положително реално число.

$$\mu: \mathscr{P}(W) \longrightarrow \mathbb{R}^+$$

Мярката между два терма представляваме с следната атомарна формула:

$$a \leq_{\mu} b$$

Семантика на минималната контактна логика с мярка

Модела на минималната контактна логика се разширява със следната индуктивна дефиниция за изпълнимост:

► $\mathcal{M} \models a \leq_{\mu} b$, когато $\mu(v(a)) \leq \mu(v(b))$

Лема (Тривиални импликации за модели с мярка)

Нека а, b и с са три терма и нека φ и ψ са две формули, тогава:

- $ightharpoonup 0 \leq_{\mu} a \Longrightarrow T$
- $ightharpoonup a \leq_u 1 \Longrightarrow T$

- $(a \leq_{\mu} b) \vee (b \leq_{\mu} a) \Longrightarrow T$

Система линейни неравенства

Формула с повече атомарни формули с мярка създава система линейни неравенства.

Системата линейни неравенства има следната структура:

$$\begin{cases} \sum_{j^1} X_{j^1} \leq \sum_{j^1} X_{j^1} \\ \dots \\ \sum_{j^n} X_{j^n} \leq \sum_{j^n} X_{j^n} \\ \sum_{k^1} X_{k^1} > \sum_{l^1} X_{l^1} \\ \dots \\ \sum_{k^m} X_{k^m} > \sum_{l^m} X_{l^m} \end{cases}$$

Нека $M = (W, R, \nu)$ е модел. Системата се построява с оценяване на термовете в \leq_{μ} и $<_{\mu}$ атомарни формули. Броят на точки в модела са N = |W|. Нека подредим точките $p_0, p_1, ..., p_N$. В такъв случай системата ще има N различни променливи $X_0, X_1, ..., X_N$, където $\forall i < N : X_i$ е съпоставена на точка p_i .

Дефиниция

Нека х и у са два терма, тогава формулата $\leq_{\mu} (x,y)$ се преобразува в:

$$\sum_{i:p_i\in v(x)} X_i \leq \sum_{j:p_j\in v(y)} X_j$$

Lemma

Това преобразуване може да се опрости до:

$$\sum_{i:p_i\in \nu(x)\setminus \nu(y)} X_i \leq \sum_{j:p_j\in \nu(y)\setminus \nu(x)} X_j$$

Дефиниция

Нека х и у са два терма, тогава формулата < $_{\mu}$ (x,y) се преобразува в:

$$\sum_{i:p_i\in v(x)} X_i < \sum_{j:p_j\in v(y)} X_j$$

Lemma

Това преобразуване може да се опрости до:

$$\sum_{i:p_i\in \nu(x)\setminus \nu(y)} X_i < \sum_{j:p_j\in \nu(y)\setminus \nu(x)} X_j$$

Дефиниция

Нека M = (W, R, v) е модел. Нека \mathcal{S} е система от линейни неравенства дефинирана с:

- ▶ неравенство за всяка ≤_µ формула
- неравенство за всяка <_и формула
- ▶ неравенство $0 < X_i$ за всяко і: $0 \le i < N$

Казваме, че системата $\mathcal S$ е валидна ако тя има решение.

С добавянето на атомарните формули с мярка се променя и таблото и конюктивия табло клон. Нека φ е формула и $\mathcal T$ е таблото от φ , тогава:

$$B = \{ \mathbb{T}C(a_i, b_i) \mid i \in \{1, \dots, I\} \} \cup \{ \mathbb{F}C(e_k, f_k) \mid k \in \{1, \dots, K\} \} \cup \{ \mathbb{F}d_j = 0 \mid j \in \{1, \dots, J\} \} \cup \{ \mathbb{T}g_l = 0 \mid l \in \{1, \dots, L\} \} \cup \{ \mathbb{T}m_p \leq_{\mu} n_p \mid p \in \{1, \dots, P\} \} \cup \{ \mathbb{F}u_q \leq_{\mu} v_q \mid q \in \{1, \dots, Q\} \}$$

Конюнктивен табло клон

За олеснение можем да махнем \mathbb{T} и \mathbb{F} и получаваме.

$$\bigwedge_{i=1}^{I} C(a_i, b_i) \wedge \bigwedge_{k=1}^{K} \neg C(e_k, f_k) \wedge \\ \bigwedge_{j=1}^{J} d_j \neq 0 \wedge \bigwedge_{l=1}^{L} g_l = 0 \wedge \\ \bigwedge_{p=1}^{P} m_p \leq_{\mu} n_p \wedge \bigwedge_{q=1}^{Q} u_q <_{\mu} v_q$$

Дефиниция

Нека B е конюктивен табло клон. Казваме, че модалната точка e е валидна в B, когато:

- ► $t = 0 \in B$: $\xi_e(t) =$ лъжа
- ightharpoonup $eg C(e,f) \in B : \xi_e(e) =$ лъжа или $\xi_e(f) =$ лъжа

Дефиниция

Нека В е конюктивен табло клон и нека х и у са две валидни модални точки. Казваме, че $\langle x,y \rangle$ е валдина релация, когато:

$$\neg C(e,f) \in B : (x \notin v(e)$$
 или $y \notin v(f))$ и $(x \notin v(f)$ или $y \notin v(e))$

Дефиниция

Нека B е конюктивен табло клон и нека W е множество от валидни модални точки в B. Дефинираме модел $\mathcal{M} = (W, R, v)$ в B, където:

$$\upsilon(t)=\{e\mid e\in \pmb{W}\ \text{и}\ \xi_e(t)=\ \text{истина}\},$$
 където t е терм от атомарните формули в В

$$R = \{\langle x, y \rangle \mid x, y \in W \text{ и } \langle x, y \rangle \text{ е валидна релация} \}$$

Лема (Невъзможни подмножествени модели)

Нека $\mathcal{M}=(W,R,v)$ е модел, където W е множество от валидни модални точки. Нека $\mathcal{M}'=(W',R',v')$ е модел, където $W'\subseteq W,R'\subseteq R$, тогава:

- 1. $\mathcal{M} \not\models t \neq 0 \implies \mathcal{M}' \not\models t \neq 0$
- 2. $\mathcal{M} \not\models C(a,b) \implies \mathcal{M}' \not\models C(a,b)$

Лема (Дедукция на променливите)

Нека $\mathcal{M}=(W,R,v)$ е модел, където W е множество от валидни точки. Нека $\mathcal{M}'=(W',R',v')$ е модел, дефиниран от $W'\subseteq W$, тогава:

$$v'(t) = v(t) \cap W'$$

Алгоритъм за построяване на модел с мярка

вход: φ формула изход:

- ► Не е изпълнима, ако ¬ $\exists \mathcal{M} : \mathcal{M} \models \varphi$
- ► Модел \mathcal{M} , за който $\mathcal{M} \models \varphi$

Уеб система за минималната контактна логика с мярка — Минимална контактна логика с мярка

Алгоритъм за построяване на модел с мярка

Стъпка 0:

Възможно е да може да се построи модел в всеки конюнктивен клон на таблото, затова ще проверяваме всеки клон докато не намерим модел.

Следващите стъпки работят върху един такъв клон.

Стъпка 1:

Генерираме модел ${\cal M}$ от валидни модални точки W в B.

- —Минимална контактна логика с мярка
 - L Алгоритъм за построяване на модел с мярка

Стъпка 2:

Нека $\mathbb{P} = \mathcal{P}(W)$. Нека разгледаме $W' \in \mathbb{P}$ започвайки от подмножествата с най-много елементи. W' създава модела \mathcal{M}' по лемата за дедукция на променливите. Проверяваме дали \mathcal{M}' изпълнява не-равно на нула термовете и контактие от B:

Стъпка 2.а:

Ако са изпълними, тогава ако системата от линейни неравенства от В и \mathcal{M}' има решение, то тогава валиден модел е построен, иначе W се премахва от \mathbb{P}

Стъпка 2.б:

Ако не са изпълними, тогава по лемата за невъзможните подмножествени модели всички подмножества на W' се премахват от \mathbb{P} .

Алгоритъм за построяване на модел с мярка

Стъпка 3:

Ако W' не е намерено в стъпка 2., тогава не съсществува модел с мярка който да удовлетворява конюнктивния клон В.

Край:

Ако модел с мярка не е намерен в всеки от конюнктивните клонове в таблото, то тогава $\neg \exists \mathcal{M} : \mathcal{M} \models \varphi$

Уеб система за минималната контактна логика с мярка

Минимална контактна логика с мярка

Алгоритъм за построяване на модел с мярка

Благодаря ви.

Нека да пробваме самата програмка!