Black Hole Bit Mechanics

Exact Identities, Fraction-Like Scalings, and Testable Locks

Evan Wesley

August 25, 2025

Abstract

Horizon thermodynamics can be written as clean, exact identities that make the "bits of a black hole" explicit. Entropy in bits, Hawking temperature, area quantum per bit, and the minimal energy to add a single bit all collapse to closed forms. Evaluating these for $1 M_{\odot}$, $10 M_{\odot}$, and Sgr A* ($\sim 4 \times 10^6 M_{\odot}$) reveals the hard scalings ($S_{\rm bits} \propto M^2$, $T_H \propto 1/M$) and an exact Landauer-like relation: the energy to add one bit is $k_B T_H \ln 2$. No numerology; just the standard horizon formulas written in their sharpest information form, with numbers a reader can check in seconds.

1 Exact identities (no approximations)

For a Schwarzschild black hole of mass M:

$$r_s = \frac{2GM}{c^2}, \qquad A = 4\pi r_s^2 = \frac{16\pi G^2 M^2}{c^4}.$$

Bekenstein-Hawking entropy (in *nats*):

$$\frac{S}{k_B} = \frac{A}{4\ell_P^2} = \frac{4\pi G M^2}{\hbar c}, \qquad \ell_P^2 = \frac{\hbar G}{c^3}.$$

Entropy in bits:

$$S_{\text{bits}} = \frac{S}{k_B \ln 2} = \frac{4\pi}{\ln 2} \frac{GM^2}{\hbar c} = \frac{4\pi}{\ln 2} \left(\frac{M}{m_P}\right)^2, \qquad m_P = \sqrt{\frac{\hbar c}{G}}.$$
 (1)

Hawking temperature:

$$T_H = \frac{\hbar c^3}{8\pi G M k_B}. (2)$$

Smarr-in-bits (exact). Multiply Eqs. (1) and (2):

$$k_B T_H S_{\text{bits}} = \frac{Mc^2}{2 \ln 2}.$$
 (3)

That is an exact equipartition-like identity written directly in bits.

Landauer-for-horizons (exact). Adding exactly one bit means $\Delta S_{\text{bits}} = 1 \Rightarrow \Delta S = k_B \ln 2$. The first law gives $\Delta E = T_H \Delta S$, hence

$$\Delta E_{1 \text{ bit}} = k_B T_H \ln 2 \tag{4}$$

— the horizon version of Landauer's bound, with no approximations.

Area quantum per bit (exact). Since $S/k_B = A/(4\ell_P^2)$ and $S_{\text{bits}} = S/(k_B \ln 2)$, one bit corresponds to

$$\Delta A_{\text{per bit}} = 4 \,\ell_P^2 \,\ln 2. \tag{5}$$

2 Numbers you can touch

Constants (SI): $G = 6.67430 \times 10^{-11}$, $c = 2.99792 \times 10^8$ m/s, $\hbar = 1.05457 \times 10^{-34}$ J s, $k_B = 1.38065 \times 10^{-23}$ J/K, $\ln 2 = 0.69314718056$, $M_{\odot} = 1.98847 \times 10^{30}$ kg, $m_P = 2.17643 \times 10^{-8}$ kg, $\ell_P = 1.61626 \times 10^{-35}$ m.

It is useful to factor the scalings through the solar mass. Define the solar anchors

$$S_0 \equiv S_{\text{bits}}(M_{\odot}) = 1.513322012406642 \times 10^{77}, \quad T_0 \equiv T_H(M_{\odot}) = 6.170073824811396 \times 10^{-8} \text{ K},$$

$$E_0 \equiv \Delta E_{1 \text{ bit}}(M_{\odot}) = 3.685434613241369 \times 10^{-12} \text{ eV}, \quad r_{s,0} = 2.95334 \times 10^3 \text{ m}, \quad A_0 = 1.09607 \times 10^8 \text{ m}^2.$$

Then for any mass M,

$$S_{\text{bits}}(M) = S_0 \left(\frac{M}{M_{\odot}}\right)^2, \qquad T_H(M) = T_0 \left(\frac{M_{\odot}}{M}\right), \qquad \Delta E_{1 \text{ bit}}(M) = E_0 \left(\frac{M_{\odot}}{M}\right).$$

Table: S_{bits} , T_H , one-bit energy, r_s , A

Mass	$S_{ m bits}$	T_H (K)	$\Delta E_{1 ext{ bit }} ext{(eV)}$
$1M_{\odot}$	1.51332×10^{77}	6.17007×10^{-8}	3.68543
$10M_{\odot}$	1.51332×10^{79}	6.17007×10^{-9}	3.68543
$4 \times 10^6 M_{\odot} (\mathrm{Sgr A}^*)$	2.42132×10^{90}	1.54252×10^{-14}	9.21359

Area-per-bit (Planck geometry, exact number)

From (5):

$$\Delta A_{\text{per bit}} = 4 \ell_P^2 \ln 2 = 7.242778905692047 \times 10^{-70} \text{ m}^2.$$

3 Plots (auto-generated in Overleaf)

 S_{bits} vs. mass (log-log, slope 2)

 T_H vs. mass (log-log, slope -1)

4 Fraction-flavored locks (what to test next)

Integer-bit ladder (constructive). Fix an integer N and set $S_{\text{bits}} = N$. From (1):

$$M_N = m_P \sqrt{\frac{\ln 2}{4\pi} N}.$$

That is an exact mass ladder with precisely N bits on the horizon. While astrophysical formation is messy, it defines a clean, testable family in principle.

Rational mass ratios \Rightarrow rational bit ratios (exact). If $M_1/M_2 = p/q$ with $p, q \in \mathbb{Z}$, then

$$\frac{S_{\text{bits}}(M_1)}{S_{\text{bits}}(M_2)} = \left(\frac{p}{q}\right)^2.$$

Any rational mass hierarchy maps to a rational bit hierarchy.

Landauer-Hawking operational check (falsifiable). For any black hole, the framework predicts (4) exactly:

$$\Delta E_{1 \text{ bit}} = k_B T_H \ln 2.$$

A measured deviation would falsify the thermodynamic backbone used here.

5 Why this fits the larger pattern

Entropy (capacity) scales quadratically; temperature (bit cost) scales inversely; their product is a fixed fraction of Mc^2 . That is expansion and collapse as one motion: add mass to raise capacity; pay less per bit as you go. The area-per-bit quantum, $4\ell_P^2 \ln 2$, is the geometric tick of that loop.

All numerics shown were generated from the exact formulas above using CODATA constants. This file is self-contained: no external plots or data are required to compile.