The level of a certain hormone in the blood stream fluctuates between an undetectable concentration at t=07:00 and /ov ng/m/ at t=19:00 hours. Approximate the cyclic variations in this hormone level with an appropriate trig function. Let t be the time in hours from 0:00 hrs through the day.

$$y=0$$
 $y=100$
 $t=0$ $t=7$ $t=19$ $t=24$

Amplitude: $A = \frac{(ov-o)}{2} \ge 50$

> The function is offset by so upwards

Period: T = 24 $\omega = \frac{2\pi}{T} = \frac{\pi}{12}$

$$t=0$$
 $t=0$
 $t=0$

$$y(t) = 50 \text{ sin} \left(\frac{\pi}{12} (nt - 13) \right) + 50$$

= $50 \text{ sin} \left(\frac{\pi}{12} t - \frac{13\pi}{12} \right) + 50$

mig functions Inverse

J= arcsin x

domain: -1 < × & 1

range: -2 < y < 2

$$y = cosx$$

$$y = arecos \times$$
 $clomain: -1 \le x \le 1$
 $range: 0 \le y \le \pi$

domain: $-\infty < x \le \infty$ range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$