

Text Report on

Classification of cells using single cell transcriptomics data and machine learning

Reporter: Jiahui Zhong

Student Number: 20120196

Supervisor: Prof. Vladimir Brusic

Dr. Heshan Du

Dr. Xiaoling Liu

Content

Abstract	3
AIMS AND OBJECTIVES	
BACKGROUND	3
1 What is single cell sequencing?	3
2 Why use single cell sequencing?	4
3 How to realize single cell sequencing?	
4 Computational analysis of SCT data	7
5 Supervised and unsupervised machine learning to SCT data	10
METHODOLOGY	10
Progress	11
1 Raw data collection (over 1,500 files)	11
2 Metadata construction	12
3 Quality control	15
4 Data pre-processing (Data cleaning, filtering and standardization)	
5 Reference genome assembly selected and built	
6 Case study	
CONCLUSION	20
AGILE PROJECT PLAN	
Reference	
Appendix 1	25

Abstract

In recent years, single cell transcriptomics (SCT) becomes much popular research method instead of bulk sequencing technology. It can detect heterogeneous genetic information which is not obtained by mixed sample multicellular sequencing. This leads the whole field of genetics into a new dimension. The main steps of SCT are a) single cell capturing/ sorting, b) reverse transcription/ PCR amplification, c) library building and sequencing, d) biological information analysis. Downstream analysis to single cell experimental data with supervised machine learning can build classification of cells, detect rare subtype of blood cells, refine the ontology of immune cells and conduct diseases diagnosis and health prediction. This project focus on classification of cells using SCT data and machine learning. The objective of this project is to develop and implement an applied system that can use the updating single cell database, perform supervised machine learning, and validate the performance of the system on the follow-up new data sets. The project includes the following steps: data collection, feature extraction, model structure building and training, classification system training, testing and validation, and comparative analysis. This system will be used to determine the cell type and the sorting of one single cell.

Aims and objectives

- 1. Organize data from single cell transcriptome (SCT) data files (10X technology).
- 2. Develop ontology of human cell types.
- 3. Develop AI based classification models for various cell types and their states.
- 4. Validate those models with experimental data reported elsewhere.
- 5. Implement a system for assessment of anonymous file for each individual cell.
- 6. Explore the use of this system for potential blood testing.
- 7. Deliverables objectives: 5 journal papers and 1 conference paper.

Background

1 What is single cell sequencing?

Single cell sequencing is a sequencing technique for obtaining genetic information of a single cell. Single-cell sequencing is to answer different types of questions at the single-cell level: a) DNA sequence: ATCG sequence and abundance of each sequence; b) epigenetic modification of DNA: methylation, hydroxymethylation, and various modifications of histone; c) RNA sequence: AUCG sequence and abundance of each sequence; d) epigenetic modification of RNA: for example, m6A modification, which has been very popular in recent research; e) chromatin structure: 3C, 4C, 5C,

etc.; f) other applications: DNA damage location, protein-protein interaction, etc.

2 Why use single cell sequencing?

In the field of life sciences, single cell sequencing has solved many biological problems that have not been clarified for a long time because of the bottleneck of biotechnology. [1] Single cell sequencing technology can interpret many gene level problems with high cost-effectiveness. The research and application of single cell sequencing technology have increased exponentially in recent years. [2]

Fig. 1 Standard genome sequencing and single cell sequencing workflow. [3]

2. 1 The division of fine tissue

In many cases, the target sample for transcriptome sequencing is not necessarily the entire organ (e.g. the whole pancreas or leaf), but a more specific local tissue. At this time, the traditional transcriptome will face limitations. For example, embryo research is much involved in the field of developmental biology. However, almost all species have very small individuals at embryonic stage. When studying precise sections, it is easy to attach other tissue parts to the captured sample (e.g. when pulling off the skin tissue of early embryo as sample, it is difficult to ensure that other tissues, such as muscle, are not involved). [4] Another similar example is the research on intestine of fruit flies. It is too difficult to separate the whole tissue, which is most probably brought into other tissues together (even the whole individual). In this case, the target tissue only accounts for a small part of the whole sequencing sample, and sequencing samples have a much high probability of not presenting the concerned information.

2. 2 Cellular heterogeneity

For multicellular organisms, there are differences between cells and cells. Oosperm begins to divide from one cell and gradually forms blastocyst. When it eventually develops into individuals, there will be more and more differences between cells: some differentiate into neurons, some differentiate into skeletal muscles, each expressing different genetic information and assuming different physiological functions. For example, in cancer tissues, genetic information such as genome and transcriptome of cells at different locations is different. The genetic information of the cells in the center of the mass, the cells around the mass, the cells in the lymphatic metastasis, and the cells in the distal metastasis are different.^[5] This difference can determine whether a certain treatment is effective for the tumor in clinical practice. This is the heterogeneity of genetic information. Traditional research methods are carried out at the multicellular level. Conventional transcriptome essentially conducts detection to a mixture of different kinds of cells in tissue. The final signal value of those is actually the average of multiple cells, which loses innumerable information of heterogeneity. Single cell sequencing can detect heterogeneous information which cannot be obtained by mixed sample sequencing. Single cell analysis is much used in diagnostic application of cancer, multiple sclerosis, diabetes, and infection. ^[6-9]

Fig. 2 The main steps of the single cell transcriptome.

3 How to realize single cell sequencing?

3. 1 Separate individual cell

Currently there are two strategies to achieve single-cell sequencing.

The first strategy is to separate individual cells, construct sequencing libraries independently and finally conduct sequencing routes. This process can be produced by flow cytometry (including microfluidic chips) or laser capture microdissection (LCM). Flow cytometry is mainly used in cell samples. For tissue slice samples, single cells are obtained mainly through LCM method. The principle

can be seen in the following schematic diagram.

Fig. 3 Laser capture microdissection (LCM) for tissue sample catching. (Guillot et al, 2015)

3. 2 Single cell recognition based on label - barcode

However, the throughput is very low when single cells are separated and built library one by one and then sequenced separately, which is mainly limited by the cost. As the number of cells to be tested increases, the cost of sequencing increases almost linearly as well. The cost of sequencing would be very high even if a dozen or twenty cells are tested. Nonetheless, these dozens of cells are not enough to explain one investigation. In order to overcome this difficulty, the second strategy has been adopted in recent years: single cell recognition based on label - barcode. Its main idea is to add a unique DNA sequence to each cell so that when sequencing, the sequence carrying the same barcode is considered to come from the same cell. This strategy can measure information from thousands of single cells by just building one library at one time.

Fig. 4 Single-cell sequencing and barcoding with droplet microfluidics. [10]

For RNA (transcriptome mRNA), the scheme of adding label to cells is to add barcode to the 5' end of poly T primer during reverse transcription process before sequencing of mRNA. See the diagram above. First, single cell suspension samples and barcode hydrogel beads are wrapped in an oil droplet through microfluidic chips. After reverse transcription in oil droplets, the cDNA library of each single cell carries the unique barcode (blue part). Finally, cDNA libraries of all single cells are mixed and sequenced together. Then the barcode can be recognized by specific program and each single cell can be distinguished and profiled separately.

Single Cell RNA Sequencing Workflow RT& Second-strand Synthesis Solid Tissue Dissociation Single Cell Isolation **RNA cDNA Amplified** RNA Cell Types Identification Clustering CAAGTTCCTACAGCTA GTCCATGCCCATCCG Single-cell Sequencing Library Amplified cDNA Sequencing **Expression Profiles**

Fig. 5 Single cell RNA sequencing workflow. (Image source: Wikipedia)

4 Computational analysis of SCT data

Deep learning algorithms extract original features from large annotated SCT data sets (such as images or genomes) and use them to create a prediction tool based on hidden patterns. Once the training is completed, the algorithm can apply this training to analyze other data.

The challenges of SCT sequencing technology are isolating single cells, DNA amplification and data processing (quality control, error correction and bias removal). Issues of resulting SCT data are bias in captured cells, non-uniform amplification, mixing data from different protocols, amplification of errors, allele dropout, sampling bias of DNA fragments. Computational methods for processing and analyzing single-cell sequencing data begin from quantitative standards (spike-ins and unique molecular identifiers (UMIs)) and quality control, such as base quality, contamination, sample mixup, batch effects and reproducibility based on replicates. Computational analysis of SCT data involves dimension reduction and clustering (e.g. t-SNE, PCA, ICA, Spectral t-SNE), hierarchical clustering, consensus clustering, mapping cell types/clusters across time, pseudo-time trajectories, spatial mapping of single cells, etc.

Fig. 6 Popular methods to address common investigations. [11]

Fig. 7 Schematic on workflow for single cell RNA transcriptomics analyzing. [12]

Fig. 8 Visualization analysis of single cell RNA transcriptomics data. [13]

Big data analysis of scRNA-seq can be used to explore which cell types are present in a tissue, identify unknown/rare cell types or states, elucidate the changes in gene expression during differentiation processes or across time or states, identify genes that are differentially expressed in particular cell types between conditions (e.g. treatment or disease), explore changes in expression among a cell type while incorporating spatial, regulatory, and/or protein information (Fig. 5). The pre-processing upstream analysis and the downstream analysis of single cell RNA transcriptomics can be shown as follows (Fig. 6, 7).

5 Supervised and unsupervised machine learning to SCT data

Fig. 9 A typical single-cell RNA-seq analysis workflow using unsupervised machine learning methods for one study at a time

Previous analysis methods of single cell RNA-seq has been supported by unsupervised learning methods, such as principal component analysis or clustering because repositories of known cases are lacking. The problem with unsupervised method is that number of classes is unknown. Data used in supervised learning is known and labeled (the class is known), while unsupervised learning it is not. Other problems are the accuracy of unsupervised learning is low and it has low sensitivity for highly dimensional data. However, we need to know the exact class of data subset and have the ontology of classes. Supervised learning such as artificial neural networks (ANN) can be used for further diagnostic purposes. [14-16]

Fig. 10 Our single-cell RNA-seq analysis workflow using supervised machine learning methods.

Methodology

The project focuses on the development and implementation of supervised machine methods to do classification of single cells by the gene expression and utilization of this knowledge for improved molecular diagnostics of disease. About 250 data sets from human, mouse and other organisms

single cell studies are available. These data have been collected from GEO database and 10X GemCode company demonstration supply [17, 18]. The data sets contain between 500 and 12,000 cells along with the metadata that describe the experiment and sample conditions. A computational system will be generated for recognizing critical features to distinguish different cell types with subsequent optimized machine learning model structures and parameters.

- 1. Raw SCT data collection and pre-processing.
- 2. Metadata construction and reference genome assembly building.
- 3. Feature selection/extraction.
- 4. Machine learning (ANN) training model building and optimization of model structure and parameters.
- 5. Case studies on different samples.
- 6. Set up a computational system.
- 7. Testing with new updating SCT data sets.
- 8. Diagnostic applications.

Progress

1 Raw data collection (over 1,500 files)

The 10X single cell transcriptome sequencing data of the relevant articles published by 13th July 2019 were searched for using computer with the keywords - "single cell" AND "10X" in "GEO Datasets" (GEO (Gene Expression Omnibus) database of NCBI) (https://www.ncbi.nlm.nih.gov/). Raw data (matrix.mtx, barcodes.tsv, genes.tsv) of 10X related studies on GEO database by 13th July 2019 and single cell gene expression datasets on 10X genomics company website by 16th September 2019 have both been collected.

Fig. 11 GEO database searched with keywords "single cell" AND "10X".

Fig. 12 Data collected from relevant articles published by July 13th, 2019.

2 Metadata construction

The aggregated data annotation of the studies has been arrayed into a Metadata chart form, which is designed with "INDEX", "SERIES", "ACCESSION", "GENOME", "ORGANISM", etc. as the captions of each column in Microsoft Excel 2016. The metadata is sorted by "ACCESSION", that is the number name of series (e.g. GSE119561). ACCESSION is arranged in order from small to large, from top to bottom. This is very important to the follow-up work, because it can be found that many related data sets have very similar series numbers. Only 10X relevant research is included in metadata, other research with other single cell transcriptomics technologies (e.g. Drop-seq, SMART-seq, inDrop, etc.) of the same super series is not involved in. Sample number (e.g. GSM3377671) is unique for each 10X study.

The metadata totally has 15 kinds of organisms – "Mus musculus", "Homo sapiens", "Danio rerio", "Ambystoma mexicanum", "Gallus gallus", etc. The metadata has 248 series mapped with 1800 samples, the description of each study is involved in the metadata and some of them has additional comments.

Fig. 13 The whole picture of Metadata chart form.

Fig. 14 Components of Metadata.

Text Report

Kingdom	Phylum	Organism	Genome	Number sample metadata	of in
Virus	Riboviria (Influer virus)	Canis lupus familiar nza Influenza A vir (A/WSN/1933(H1N1)) Homo sapiens	us Influence A vinus	S	
Fungi	Ascomycota	Saccharomyces cerevisiae	Saccharomyces_ce revisiae R64? sacCer3		
<u> </u>	Angiosperms	Arabidopsis thaliana	TAIR10		
1 Auricus	Nematoda	Caenorhabditis elegan			
	Platyhelminthes	Schmidtea mediterranea	GSE72389?		
	Arthropoda	Drosophila melanogaster	dm6 dm3 Drosophila melanogaster Release 6 BDGP6 version 87		
		Ciona intestinalis	KH2012		
		Ambystoma mexicanu			
		Ambystoma mexicanu	dr82?		
			dr82		
		Danio rerio	GRCz10		
		Danio terio	GRCz11/danRer11		
		Gallus gallus	GRCz11 ENSEMBL Gallus gallus 5.0	3	
		Sus scrofa	Sscrofa11 Release		
		Rattus norvegicus	Rnor6 Release 92		
Animalia			mm10 mm10? mm10 (GRCm38) custom_genome.fa	2	
		Mus musculus	GRCm38	2	
	Ch l - t	- Indo madeuras	GRCm38.84		
	Chordata		mm9		
			mm10 or hg19		
			hg19		
			hg19, mm10		
			mm10, GRCh37?		
		Homo sapiens; M	us GRCh38; mm10		
		musculus	mm38, hg38		
			hg19		
			mm10 or hg19		
			hg19		
			GRCh38		
			GRCh37		
			GRCh38?		
	Homo sapiens	mm10			
		F	hg38		
			hg19?		
			Ensembl_GRCh38		
			.p12_rel94		

Fig. 15 Total organisms and versions of genome sorted out from metadata.

Homo sapiens	hg19								
Homo sapiens	GRCh38								
Homo sapiens	GRCh37								
Homo sapiens	GRCh38 and custom A/WS	with A/WS	N/1933, 1	9969 rows,	19961 + ad	dded 8 virus	gene nam	e, with pro	bes
Homo sapiens	GRCh38?	no ENGS p	robes						
Homo sapiens	GRCh38 version 90	gene nam	e number:	58302, no	probe				
Homo sapiens	mm10 (two studies: GSM3	it claims it	it claims it	t human, n	<mark>e</mark> ed to be (checked aga	ain, 33538		
Homo sapiens	hg38								
Homo sapiens	Ensembl_GRCh38.p12_rel9	4							
Homo sapiens; Influenza A virus (A/WSN/1933(H1N1))	GRCh38 and custom A/WS	N/1933 de	rived from	plasmids u	used for rev	erse geneti	CS.		
Homo sapiens; Mus musculus	hg19, mm10								
Homo sapiens; Mus musculus	mm10, GRCh37?								
Homo sapiens; Mus musculus	GRCh38; mm10								
Homo sapiens; Mus musculus	mm38, hg38								
Homo sapiens; Mus musculus	hg19								
Homo sapiens; Mus musculus	mm10 or hg19								
Mus musculus	mm10								
Mus musculus	mm10?								
Mus musculus	custom_genome.fa								
Mus musculus	modified UCSC mm10 with	additiona	I gene "Pro	op1L" adde	d to gtf file	at chromo	some 11: 5	0,948,572-	50,949,1
Mus musculus	mm10plusCustom.fa								
Mus musculus	GRCm38								
Mus musculus	GRCm38.84								
Mus musculus	mm9								
Mus musculus	hg19								

Fig. 16 Comparative analysis to different alternative genome of human and mouse.

3 Quality control

Studies which are not related but filtered by GEO browser with the key words are excluded (e.g. 10X Hank's salt solution). Series who have an inconsistent description of their studies are excluded out as well.

4 Data pre-processing (Data cleaning, filtering and standardization)

All relevant different types of data files have been downloaded ("download.py") according to series from GEO website and each of them has been cleaned and corrected one by one. Data files of super series studies have been split up. The compressed data from each downloaded file of each series is captured/read and uncompressed by the program "compress.py". Different formats of the matrix file (e.g. .h5, .csv, .tsv, .txt, .mtx (tsv)) of each sample has been converted (program "convert.py") into CSV file (.csv) for visualization, with cell barcodes/cell numbers as the horizontal heading, gene names as the vertical heading and gene expression numbers as the digital matrix.

Fig. 17 Thousands of data files downloaded and cleaned.

Data filtering (program "filter_data.py") has been done by the exclusion of null data, which can be caused by the count of empty plates in the experimental protocol of single cell transcriptomics – the cell capture rate is zero at this situation. For example, in the raw data of the study sample GSMXXXXXXXX, the cell barcode is 70,0000, however the actual gene expression is only ______, which means it calculates lots of empty gene expression, so we filtered output the actual meaningful data by removing the null data in each matrix of each raw data file.

Fig. 18 MTX file needs to be converted to CSV file for better visualization.

Data conversion has been conducted by transforming the produced CSV file into four different kinds of standard file formats - .h5, .csv, .npz, .mtx (tsv), which have been selected and decided to be the common, unified and standardized output format for various purpose of use, for example, visualization or statistical utilization. The program ("convert.py") has been prepared for this process.

Fig. 19 Data count matrix for one sample as an example.

5 Reference genome assembly selected and built

Genome assembly is the gene name database comprises the names and IDs of all known genes so far, it is wanted as the annotation tracks available. Different genome version is used in different studies.

The alteration of genomic versions and the lack of uniform naming standards have led to very complex confusion. One gene name can have several different probes name, this is not comparable between two different genomes of one same organism. High quality and highly accurate control would be decided to exclude some of the studies which only supply gene name list without probes number or those only have probes number list without gene name list. Sometimes one probe corresponds to different gene names (synonym or alias). Clear lists of fullest gene names and common gene names should be made as the reference genome for each organism, with the probes mapping to the genes. Reference genome assembly needs to be found and serves in the follow-up machine learning section, which contains the common list of gene names appeared in every study of one same species.

```
ENSMUSG00000051951 Xkr4
                          Gene Expression
                    Gm1992 Gene Expression
            9089699
ENSMUSG00000102343 Gm37381 Gene Expression
ENSMUSG00000025900 Rp1 Gene Expression
ENSMUSG00000109048 Rp1 Gene Expression
ENSMUSG00000025902 Sox17 Gene Expression
ENSMUSG00000104328 Gm37323 Gene Expression
ENSMUSG00000033845 Mrpl15 Gene Expression
ENSMUSG00000025903 Lypla1 Gene Expression
ENSMUSG00000104217 Gm37988 Gene Expression
ENSMUSG000000033813 Tceal Gene Expression ENSMUSG00000002459 Rgs20 Gene Expression
ENSMUSG00000085623 Gm16041 Gene Expression
ENSMUSG00000033793 Atp6v1h Gene Expression
ENSMUSG00000025905 Oprk1 Gene Expression
ENSMUSG00000033774
                           Gene Expression
                    Npbwr1
ENSMUSG00000025907 Rb1cc1 Gene Expression
ENSMUSG00000094915 AC168977.2 Gene Expression
ENSMUSG00000079808
                   AC168977.1 Gene Expression
ENSMUSG00000095041 PISD Gene Expression
ENSMUSG00000063897 DHRSX
                           Gene Expression
                    Vmn2r122
ENSMUSG00000096730
                               Gene Expression
ENSMUSG00000095742 CAAA01147332.1 Gene Expression
```

Fig. 20 Genome assembly used in GSM3937878 as an example.

NCBI, ENSEMBL and UCSC provide three most complete genome databases as the three well-known genome browsers retrieving genomic information. The reference genome assembly of different organism has been searched from ENSEMBL genome browser as the current version, with the reason that the number probes of ENSEMBL genome assembly are updated continuously and regularly.

Reference genome assembly is created for each different organism separately. It is created with two columns in Excel using the gene file (.tsv) supplied in the sample webpage, one is Ensembl Gene ID and one is Gene Name. It is used to map Ensembl Gene ID (e.g. ENSG00000210049) to Gene Name (e.g. MT-TF) for each organism. When it comes to the organisms which have enormous amount of studies, like Homo sapiens and Mus musculus, etc., five genome builds have been selected randomly in different samples of different series and have been compared and merged to make the final reference assembly, which is named as "common list".

Fig. 21 Genome assembly with its alias in Mouse genome mm10 as an example.

grchm38_ENSMUSG00000051951	grchm38_Xkr4		
grchm38_ENSMUSG00000089699	grchm38_Gm1992		
grchm38_ENSMUSG00000102343	grchm38_Gm37381		
grchm38_ENSMUSG00000025900	grchm38_Rp1		
grchm38_ENSMUSG00000109048	grchm38_Rp1		
grchm38_ENSMUSG00000025902	grchm38_Sox17		
grchm38_ENSMUSG00000104328	grchm38_Gm37323		
archm38 EVICIVII ICCUUUUU3384E	archm38 Mrnl15		
ENSG00000104237 RP1	retinitis pigmentosa 1 (autosomal dominant)	Homo sapiens (human)	RP1 (nam
ENSG00000104237 RP1 ENSMUSG00000025900 Rp1	retinitis pigmentosa 1 (autosomal dominant) retinitis pigmentosa 1 (human)	Homo sapiens (human) Mus musculus (mouse)	RP1 (nam
	,	, , ,	Rp1 (nam
ENSMUSG00000025900 Rp1	retinitis pigmentosa 1 (human)	Mus musculus (mouse)	,

Fig. 22 An example for the same gene name with different probe numbers in one genome version (GRCm 38).

Correction has been made when the genomes adopted in some studies show the wrong data format, the decimal point in probe, the space keys, confused/mixed genome version and the incorrect naming. Corrected and cleaned genome file is saved with the format ".txt" or ".tsv" but not ".csv", in case of Excel date format confusion. Also, the gene names and the gene IDs are renamed with adding organisms' names in front of them to distinguish properly. There are some genome related file supplied in sample webpage is showed in ".H5" file format, a short code ("h5_to_csv.py") is created to open ".H5" files properly. These cleared versions of genome mapping assemblies for each organism are used as the references for the follow-up machine learning section.

	Component	Common list probes number	Full list probes number	Note
Mouse	"grchm38_GSE132199.tsv" "mm10_2_GSM2928504_GSE109049.tsv" "mm10_3_GSM3272966_GSE117176.tsv" "mm10_4_GSM3937878_GSE134139.tsv" "mm10_5_GSM3537044_GSE124577.tsv" (special genome)	27998	28693	"mm10_1_GSM2671415_GSE100106.tsv" Deleted. (Not clear version.)
Human	"grch37_1_GSM3073089_GSE112570.tsv" "grch38_1_GSE117403.tsv" "grch38_2_GSM3375767_GSE119506.tsv" "grch38_3_GSM3478791_GSE122703.tsv" "grch38_4_GSM3543618_GSE124703.tsv" "grch38_5_GSM3813936_GSE124703.tsv" "hg19_2_GSM3430548_GSE121267.tsv" "hg19_3_GSM3635372_GSE127471.tsv" "hg19_4_GSM2897333_GSE108394.tsv" (special genome)	30710	60570	"hg19_1_GSM2867931_GSE106245.tsv" "hg19_5_GSM3143601_GSE114530.tsv" Deleted. (Decimal point, date format error, version error.)

Tab. 23 Components and the number of gene probes of common list (reference genome assembly) and full list for Mouse and Human.

1	ALL PROBES HUMAN						
2							
3	PROBES	hg19	GRCh37	GRCh38	Ensembl_GRCh38.p12_rel94	GSM3717979	
4	ENSG00000117533	hg19_VAMP4	grch37_VAMP4	grch38_VAMP4	#VAMP4	#VAMP4	in all
5	ENSG00000228915				#OR7E128P		Ensembl_GRCh38.p12_rel94
6	ENSG00000248222	hg19_CTB-174D11.1	grch37_CTB-174D11.1	grch38_CTB-174D11.1	#AC011389.1	#AC011389.1	in all
7	ENSG00000236230	hg19_RP11-400N13.1	grch37_RP11-400N13.1	grch38_RP11-400N13	#AL356108.1	#AL356108.1	in all
8	ENSG00000236596				#AC092568.1		Ensembl_GRCh38.p12_rel94
9	ENSG00000233029	hg19_RP11-439A17.9	grch37_RP11-439A17.9	grch38_RP11-439A17	#AC244453.2	#AC244453.2	in all
10	ENSG00000162636	hg19_FAM102B	grch37_FAM102B	grch38_FAM102B	#FAM102B	#FAM102B	in all
11	ENSG00000261714				#AC105137.1		Ensembl_GRCh38.p12_rel94
60566	ENSG00000101871	hg19_MID1	grch37_MID1	grch38_MID1	#MID1	#MID1	in all
60567	ENSG00000196517	hg19_SLC6A9	grch37_SLC6A9	grch38_SLC6A9	#SLC6A9	#SLC6A9	in all
60568	ENSG00000092439	hg19_TRPM7	grch37_TRPM7	grch38_TRPM7	#TRPM7	#TRPM7	in all
60569	ENSG00000221840	hg19_OR4A5	grch37_OR4A5	grch38_OR4A5	#OR4A5	#OR4A5	in all
60570	ENSG00000284387				#MIR24-2		Ensembl_GRCh38.p12_rel94
60571	ENSG00000085733	hg19_CTTN	grch37_CTTN	grch38_CTTN	#CTTN	#CTTN	in all
60572	ENSG00000168140	hg19_VASN	grch37_VASN	grch38_VASN	#VASN	#VASN	in all
60573	ENSG00000258631	hg19_RP11-739G5.1	grch37_RP11-739G5.1	grch38_RP11-739G5.1	#AC110023.1	#AC110023.1	in all
60574							

Fig. 24 Full list of Human genome, Ensembl probes with the mapping to different genome versions.

1	ALL PROBES MOUSE				
2					
3	PROBES	mm10	grchm38	GSE120410 (modified UCSC	mm10 with additional gene "Prop1L" added to
4	ENSMUSG00000101435	mm10_Gm28772	grchm38_Gm28772	#Gm28772	in all
5	ENSMUSG00000044244	mm10_ll20rb	grchm38_II20rb	#II20rb	in all
6	ENSMUSG00000069094	mm10_Pde7a	grchm38_Pde7a	#Pde7a	in all
7	ENSMUSG00000105704	mm10_Gm43055	grchm38_Gm43055	#Gm43055	in all
8	ENSMUSG00000033871	mm10_Ppargc1b	grchm38_Ppargc1b	#Ppargc1b	in all
9	ENSMUSG00000005447	mm10_Pafah1b3	grchm38_Pafah1b3	#Pafah1b3	in all
10	ENSMUSG00000025163	mm10_Cd7	grchm38_Cd7	#Cd7	in all
28688	ENSMUSG00000096468	mm10_Gm16405	grchm38_Gm16405	#Gm16405	in all
28689	ENSMUSG00000052534	mm10_Pbx1	grchm38_Pbx1	#Pbx1	in all
28690	ENSMUSG00000101886	mm10_Gm28324	grchm38_Gm28324	#Gm28324	in all
28691	ENSMUSG00000039197	mm10_Adk	grchm38_Adk	#Adk	in all
28692	ENSMUSG00000032182	mm10_Yipf2	grchm38_Yipf2	#Yipf2	in all
28693	ENSMUSG00000048693	mm10_Olfr435	grchm38_Olfr435	#Olfr435	in all
28694	ENSMUSG00000005917	mm10_Otx1	grchm38_Otx1	#Otx1	in all
28695	ENSMUSG00000101634	mm10_1700066B17Rik	grchm38_1700066B17Rik	#1700066B17Rik	in all
28696	ENSMUSG00000037025	mm10_Foxa2	grchm38_Foxa2	#Foxa2	in all
28697		_			

Fig. 25 Full list of Mouse genome, Ensembl probes with the mapping to different genome versions.

All code involved in this article can be found on https://github.com/SingleCellAnalysis/SingleCellAnalysis.

6 Case study

A case study on classification of five cell types from PBMC samples have been submitted to BIBM.

Conclusion

Downstream big data analysis of single cell transcriptomics data can contribute a lot to human life science knowledgement. It can support further precise classification of single cell, detect of rare cell subtypes and conduct diseases diagnosis, detection and prediction. In our project, around 2,000 SCT data files have been collected (from GEO database and other qualified resources), cleaned and standardized, and the description information of each sample study has been mapped into the metadata. Reference genome assembly has been built for machine learning model training. Refined cell ontology serves as annotation labeling in supervised machine learning still needs to be cleared. In the case study of classification of PBMC blood sample, the accuracy of cell recognition and classification is 90%, much more accuracy of classification still needs to be achieved for realistic clinical implementation. Optimization feature extraction methods and training model structure and parameters needs to be found. The overall goal of this project is to develop a system that will enable users to perform automatized analysis of SCT data, which can highly increase the promotion in cell biology, developmental biology and the preclinical and prognostic diagnosis and treatment of diseases.

Project Plan

Tool	Doononsible	Doginaing	Finish date	Time (d)	Ctatus
Task	Responsible	Beginning	Finish date	Time (d)	Status
Literature review on single cell transcriptomics and computational analysis	Jiahui ZHONG	2019/6/1	2019/9/28	119	Complete
Data collection (from GEO database and 10X company database)	Jiahui ZHONG	2019/6/1	2019/9/1	92	Complete
Raw data pre-processing (thousands of files)	Jiahui ZHONG			0	Complete
Review paper	Jiahui ZHONG	2019/9/1	2019/12/1	91	40%
Build Metadata	Jiahui ZHONG	2019/6/1	2019/9/1	92	Complete
Metadata upgrading and updating	Jiahui ZHONG	2019/6/1	2019/12/1	183	98%
Clean the genome reference (different versions)	Jiahui ZHONG	2019/8/1	2019/9/15	45	Complete
Data correction, cleaning, filtering, converting and standardization (count matrices)	Jiahui ZHONG	2019/8/1	2019/9/10	40	50% (only 1
Quality control	Jiahui ZHONG	2019/8/1	2019/9/10	40	Complete
Normalization	Jiahui ZHONG	2019/8/1	2019/9/10		Complete
Feature extraction/selection	Jiahui ZHONG	2019/9/10			Complete
Case study paper on PBMCs published	Jiahui ZHONG	2019/9/26	2019/10/15	19	Complete
Text report	Jiahui ZHONG	2019/9/26	2019/10/15	19	30%
Presentation slides	Jiahui ZHONG	2019/9/26		19	90%
Poster on new blood tests, ontologies and challenges	Jiahui ZHONG	2019/9/30	2019/11/5	36	0%
Poster on SCT data repository for machine learning	Jiahui ZHONG	2019/9/30		36	0%
Cell ontology/taxonomy (Develop ontology of human cell types)	Jiahui ZHONG	2019/9/3	2019/10/27	54	20%
Implement suitable supervised machine learning algorithms for classification of cells from SCT data	Jiahui ZHONG	2019/9/3	2019/10/27	54	90%
Model traning testing with hundreds of models (Develop Al based classification models for various cell types and their states)	Jiahui ZHONG	2019/9/10	2019/10/27	47	90%
Model training with a) feature extraction, b) log-transformed data	Jiahui ZHONG	2019/10/10	2019/10/20	10	0%
Another paper. Optimized techniques (optimization on architecture and model structure and parameters). New data sets with higher quality. On the base of the published PBMC paper.	Jiahui ZHONG	2019/10/22	2019/12/31	70	5%
Validate those models with experimental data reported elsewhere	Jiahui ZHONG	2019/10/10	2019/10/20	10	0%
Artificial neural network (ANN)	Jiahui ZHONG	2019/9/10	2019/10/27	47	80%
Implement a computational system for assessment of anonymous file for each individual cell	Jiahui ZHONG	2019/9/5		437	40%
Explore the use of this system for potential blood testing	Jiahui ZHONG	2020/3/5	2020/11/15	255	0%
Diagnostic applications	Jiahui ZHONG	2019/11/5			30%
Thesis writing	Jiahui ZHONG	2020/9/1			2%

Reference

- 1. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nature Reviews Genetics. 2016 Mar;17(3):175.
- 2. Todd R, Margolin DH. Challenges of single-cell diagnostics: analysis of gene expression. Trends in molecular medicine. 2002 Jun 1;8(6):254-7.
- 3. Owens B. Genomics: The single life. Nature News. 2012 Nov 1;491(7422):27.
- 4. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015 May 21;161(5):1187-201.
- 5. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PloS one. 2012 May 7;7(5):e33788.
- 6. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schröder R, Deckert M, Schmidt S, Ravid R. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. Journal of Experimental Medicine. 2000 Aug 7;192(3):393-404.
- 7. Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, Smith DM. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell metabolism. 2016 Oct 11;24(4):593-607. A
- 8. Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Charlebois R, Massanella M, Brassard N, Alsahafi N, Delgado GG, Routy JP. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell host & microbe. 2016 Sep 14;20(3):368-80.
- 9. Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nature communications. 2015 Nov 20;6:8938. A
- 10. Zilionis R, Nainys J, Veres A, et al. Single-cell barcoding and sequencing using droplet microfluidics[J]. Nature protocols, 2017, 12(1): 44.
- 11. Junker J P, van Oudenaarden A. Every cell is special: genome-wide studies add a new dimension to single-cell biology[J]. Cell, 2014, 157(1): 8-11.
- 12. Luecken M D, Theis F J. Current best practices in single cell RNA seq analysis: a tutorial[J]. Molecular systems biology, 2019, 15(6).
- 13. Aran D, Looney A P, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nature immunology, 2019, 20(2): 163.
- 14. Hsu DF, Chung YS, Kristal BS. Combinatorial fusion analysis: methods and practices of combining multiple scoring systems. In Advanced data mining technologies in bioinformatics 2006 (pp. 32-62).

Text Report

IGI Global.

- 15. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intelligent Systems and their applications. 1998 Jul;13(4):18-28.
- 16. Hopfield JJ. Artificial neural networks. IEEE Circuits and Devices Magazine. 1988 Sep;4(5):3-10.
- 17. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A. NCBI GEO: archive for functional genomics data sets—update. Nucleic acids research. 2012 Nov 26;41(D1):D991-5.
- 18. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT. Massively parallel digital transcriptional profiling of single cells. Nature communications. 2017 Jan 16;8:14049.

Appendix 1