

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits
- Others

RC and RL Circuits

 A circuit that contains only source(s), resistor(s) and <u>a</u> <u>capacitor</u> is called an *RC* <u>circuit</u>.

 A circuit that contains only source(s), resistor(s) and <u>an</u> <u>inductor</u> is called an *RL* circuit.

Natural Response

Behavior (*i.e.*, current and voltage) when stored energy in the inductor or capacitor is released to the resistive part of the network (containing <u>no independent sources</u>).

Natural Response of a Charged Capacitor

(a) $t = 0^-$ is the instant just before the switch is moved from terminal 1 to terminal 2;

(b) t = 0 is the instant just after it was moved, t = 0 is synonymous with t = 0+.

Natural Response of a Charged Capacitor

Natural Response of RC Circuit

Time Constant τ (= RC)

 A circuit with a small time constant has a fast response and vice versa.

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response Summary

Capacitor voltage cannot change instantaneously

$$v(0^-) = v(0^+)$$

$$v(t) = v(0)e^{-t/\tau}$$

• time constant $\tau = RC$

Inductor current cannot change instantaneously

$$i(0^-) = i(0^+)$$

$$i(t) = i(0)e^{-t/\tau}$$

• time constant
$$\tau = \frac{L}{R}$$

[Source: Berkeley]

Example

• In the circuit below, let $v_C(t=0)=15$ V. Find v_C , v_χ , and i_χ for t>0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Lecture 5

Example

• The switch in the circuit below has been closed for a long time. At t=0, the switch is opened. Calculate i(t) for t>0.

