

FCC Measurement/Technical Report on

Host-based multiradio module with Wi-Fi, Bluetooth and NFC

EMMY-W163

in WLAN 2.4 GHz and Bluetooth LE mode

FCC ID: XPYEMMYW163 IC: 8595A-EMMYW163

Test Report Reference: MDE_UBLOX_1551_FCCd_Rev_1

Test Laboratory: 7layers GmbH Borsigstrasse 11

40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0

F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1 1.1	Applied Standards and Test Summary Applied Standards	4 4
1.1	FCC-IC Correlation Table	5
1.3	Measurement Summary / Signatures	6
2	Administrative Data	11
2.1	Testing Laboratory	11
2.2	Project Data	11
2.3	Applicant Data	11
2.4	Manufacturer Data	11
3	Test object Data	12
3.1	General EUT Description	12
3.2	EUT Main components	13
3.3	WLAN Power Table	16
3.4	Ancillary Equipment	16
3.5	Auxiliary Equipment	17
3.6	EUT Setups	17
3.7	Operating Modes	18
3.8	Product labelling	18
4	Test Results	19
4.1	Occupied Bandwidth (6 dB)	19
4.2	Occupied Bandwidth (99%)	21
4.3	Peak Power Output	23
4.4	Spurious RF Conducted Emissions	28
4.5	Spurious RF Conducted Emissions in Restricted Bands	30
4.6 4.7	Transmitter Spurious Radiated Emissions	40
4.7	Band Edge Compliance Conducted Band Edge Compliance Conducted at Restricted Band	46 48
	Band Edge Compliance Radiated	54
	Power Density	56
5	Test Equipment	58
6	Antenna Factors, Cable Loss and Sample Calculations	61
6.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	61
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	62
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	63
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	64
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	65
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	66
7	Setup Drawings	67

8	Measurement Uncertainties	68
9	Photo Report	68
10	Revision History	68

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r05, 2016-04-08".

Note 2:

ANSI C63.10-2013 is applied.

Note 3:

According to applicant's description are the multiradio modules EMMY-W161 and EMMY-163 identical related to the 2.4 GHz WLAN and 5 GHz WLAN radio. Differences are only related to the Bluetooth radio: EMMY-W161 uses one single antenna port (pin) for WLAN and Bluetooth, EMMY-W163 uses a separate antenna ports for Bluetooth and one for WLAN. This report is focused on Bluetooth LE mode and on 2.4 GHz WLAN mode.

Note 4:

Bluetooth LE mode uses the same GFSK modulation like Bluetooth BDR mode, but

- fewer channels (up to 40 instead of up to 80) in the same frequency band
- and for this device lower output power (max. 5 dBm instead of max. 10 dBm).

Bluetooth BDR mode is therefore worse for "Transmitter spurious radiated emissions" and "Band Edge Compliance Radiated" and cover also Bluetooth LE mode. Please refer to test report "MDE_UBLOX_1551_FCCb", where the same EUT were tested in Bluetooth BDR mode.

Note 5:

For 2.4 GHz WLAN were only "spot checks" performed to show evidence, that EMMY-W163 has the same RF-characteristic like EMMY-W161 (please refer to Test Report "MDE UBLOX 1551 FCCc").

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.207 §15.247

Conducted Emissions at AC Mains
The measurement was performed according to ANSI C63.10

Final Result

OP-Mode
Operating mode
Remark: only spot check testing, please refer to test report
MDE_UBLOX_1551_FCCc

Final Result

FCC IC

Not Not tested tested

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (2) §15.247

Occupied Bandwidth (6 dB) The measurement was performed according to ANSI C63.10 Final Result			
The measurement was performed according to ANSI C63.	10	rinai Re	Suit
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency			
Bluetooth LE, high	S163_db01	Passed	Passed
Bluetooth LE, low	S163_db01	Passed	Passed
Bluetooth LE, mid	S163_db01	Passed	Passed
WLAN b		Not	Not
Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		tested	tested
WLAN g		Not	Not
Remark: only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc		tested	tested
WLAN n 20 MHz		Not	Not
Remark: only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc		tested	tested
WLAN n 40 MHz		Not	Not
Remark: only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc		tested	tested

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

MDE_UBLOX_1551_FCCc)

§15.24 <i>/</i>			
Occupied Bandwidth (99%)			
The measurement was performed according to ANSI C	263.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency			
Bluetooth LE, high	S163_db01	N/A	Tested
Bluetooth LE, low	S163_db01	N/A	Tested
Bluetooth LE, mid	S163_db01	N/A	Tested
WLAN b		Not	Not
Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		tested	tested
WLAN g		Not	Not
Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		tested	tested
WLAN n 20 MHz		Not	Not
Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		tested	tested
WLAN n 40 MHz		Not	Not
Remark: (only spot check testing, please refer to test report		tested	tested

Remark: No applicable limit. Measurement results for information purpose.

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (b) (3) (4) §15.247

Peak Power Output			
The measurement was performed according to ANSI C63.10		Final Res	sult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Measurement method	-		
Bluetooth LE, high, conducted	S163_db01	Passed	Passed
Bluetooth LE, low, conducted	S163_db01	Passed	Passed
Bluetooth LE, mid, conducted	S163_db01	Passed	Passed
WLAN b, high, conducted	S163_db01	Passed	Passed
WLAN b, low, conducted	S163_db01	Passed	Passed
WLAN b, mid, conducted	S163_db01	Passed	Passed
WLAN g, high, conducted	S163_db01	Passed	Passed
WLAN g, low, conducted	S163_db01	Passed	Passed
WLAN g, mid, conducted	S163_db01	Passed	Passed
WLAN n 20 MHz, high, conducted	S163_db01	Passed	Passed
WLAN n 20 MHz, low, conducted	S163_db01	Passed	Passed
WLAN n 20 MHz, mid, conducted	S163_db01	Passed	Passed
WLAN n 40 MHz, high, conducted	S163_db01	Passed	Passed
WLAN n 40 MHz, low, conducted	S163_db01	Passed	Passed
WLAN n 40 MHz, mid, conducted	S163_db01	Passed	Passed

§ 15.247 (d)

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Spurious RF Conducted Emissions The measurement was performed according to ANSI C63.10 **Final Result OP-Mode FCC** IC Setup Radio Technology, Operating Frequency Bluetooth LE, high S163_db01 Passed Passed Bluetooth LE, low S163_db01 Passed Passed Bluetooth LE, mid S163_db01 Passed Passed WLAN b Not Not Remark: (only spot check testing, please refer to test report tested tested MDE_UBLOX_1551_FCCc) WLAN g Not Not Remark: (only spot check testing, please refer to test report tested tested MDE_UBLOX_1551_FCCc) WLAN n 20 MHz Not Not Remark: (only spot check testing, please refer to test report tested tested MDE_UBLOX_1551_FCCc) WLAN n 40 MHz Not Not Remark: (only spot check testing, please refer to test report tested tested MDE_UBLOX_1551_FCCc)

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Spurious RF Conducted Emissions in restricted bands			
The measurement was performed according to ANSI C63.10		Final Res	sult
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	FCC	IC
WLAN b, additional channel, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested
WLAN b, high, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN b, low, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN b, mid, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested
WLAN g, additional channel, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested
WLAN g, high, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN g, low, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN g, mid, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested
WLAN n 20 MHz, additional channel, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested
WLAN n 20 MHz, high, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN n 20 MHz, low, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN n 20 MHz, mid, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested

WLAN n 40 MHz, additional channel, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested
WLAN n 40 MHz, high, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN n 40 MHz, low, 9 kHz - 24 GHz	S163_db01	Passed	Passed
WLAN n 40 MHz, mid, 9 kHz - 24 GHz Remark: (only spot check testing, please refer to test report MDF_UBLOX_1551_FCCc.)		Not tested	Not tested

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	FCC	IC
WLAN b, mid, 1 GHz - 26 GHz Remark: WLAN & Bluetooth antenna ports terminated with 50 Ohm	S163_da01	Passed	Passed
WLAN b, mid, 30 MHz - 1 GHz Remark: WLAN & Bluetooth antenna ports terminated with 50 Ohm	S163_da01	Passed	Passed
WLAN b, mid, 9 kHz - 30 MHz Remark: WLAN & Bluetooth antenna ports terminated with 50 Ohm	S163_da01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Band Edge Compliance Conducted				
The measurement was performed according to ANSI C63.10		Final Res	Final Result	
OD Mada	Catum	FCC	10	
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	FCC	IC	
Bluetooth LE, high, high	S163_db01	Passed	Passed	
Bluetooth LE, low, low	S163_db01	Passed	Passed	
WLAN b Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	
WLAN g Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	
WLAN n 20 MHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	
WLAN n 40 MHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Band Edge Compliance Radiated

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup FCC IC

Radio Technology, Operating Frequency, Band Edge

WLAN b, high, high S163_da01 Passed Passed

Remark: Due to 50 Ohm termination at the antenna ports no radiated WLAN signal measurable. Please refer to "Band Edge Compliance

Conducted at Restricted Band".

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Band Edge Compliance Conducted at Restricted Band The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	FCC	IC
WLAN b, high	S163_db01	Passed	Passed
WLAN g, high, high	S163_db01	Passed	Passed
WLAN n 20 MHz, high, high	S163_db01	Passed	Passed
WLAN n 40 MHz, high, high	S163_db01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (e)

Power Density				
The measurement was performed according to ANSI C63.10		Final Re	Final Result	
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC	
Bluetooth LE, high	S163_db01	Passed	Passed	
Bluetooth LE, low	S163_db01	Passed	Passed	
Bluetooth LE, mid	S163_db01	Passed	Passed	
WLAN b Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	
WLAN g Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	
WLAN n 20 MHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	
WLAN n 40 MHz Remark: (only spot check testing, please refer to test report MDE_UBLOX_1551_FCCc)		Not tested	Not tested	

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Wolfgang Richter

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1 Page 10 of 68

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2016-06-07

2.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Wolfgang Richter

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2016-09-02

Testing Period: 2016-01-28 to 2016-08-30

2.3 APPLICANT DATA

Company Name: u-blox AG

Address: Zürcherstrasse 68

8800 Thalwil Switzerland

Contact Person: Mr. Giulio Comar

2.4 MANUFACTURER DATA

Company Name: please see applicant data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	WLAN 2.4 GHz, 5 GHz, BT, NFC, SRD (5.8 GHz)				
Product name	Host-based multiradio module with Wi-Fi, Bluetooth and NFC				
Туре	EMMY-W163				
Declared EUT data by the supplier					
Voltage Type	DC				
Voltage Level	normal: 3.3 V DC low: 3.0 V DC high: 3.6 V DC				
Modulation Type	Bluetooth LE: GFSK WLAN: DSSS, OFDM, HT20 MCS0 - MCS7, HT40 MCS0 - MCS7 please see each test protocol				
General product description	EMMY-W161 and EMMY-W163 are ultra-compact multi-radio modules providing Wi-Fi, Classic Bluetooth, Bluetooth low energy and NFC mode of operation. It is designed for both simultaneous and independent operations of: • Wi-Fi IEEE 802.11ac and a/b/g/n • Dual-mode Bluetooth 4.2 • NFC				
Specific product description for the EUT	EMMY-W163: Shielded module, separate antenna pins for WLAN 802.11 ac/a/b/g/n and Bluetooth communication				
The EUT provides the following ports:	- DC power supply - antenna ports - signal ports				
Data rates	Bluetooth LE, GFSK: 1 Mbit/s WLAN b: please see chapter "WLAN Power Table" WLAN g: please see chapter "WLAN Power Table" WLAN n 20 MHz: please see chapter "WLAN Power Table" WLAN n 40 MHz: please see chapter "WLAN Power Table"				
Power levels	Bluetooth LE: 5 dBm WLAN: please see chapter "WLAN Power Table"				

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1015032ca01	ca01	Radiated Sample "#3"
Sample Parameter	Value	e
Integral Antenna 1	Antenna on evaluation board (target	
(WLAN)	Antenova, Type A10194, SMD chip a	intenna, 1.8 dBi Peak gain in
	2.4 GHz band, 4.1 dBi Peak gain in 5	5 GHz band
Integral Antenna 2	Antenna on evaluation board (target	
(Bluetooth)	Johanson Technology, Type 2450AT4 9.5x2x1.2 [mm], 2.2 dBi Peak gain	
Serial No.	9.3x2x1.2 [IIIII] , 2.2 ubi Peak yaiii	III 2.4 GHZ ballu
	02	
HW Version	03	
SW Version	N/A	
Comment	-	

Sam	ple Name		Sample Code		Description			
DE10)15032da01	(da01		Conducted Sam	nple "#4"		
S	ample Paramete	2r	Value					
	nna connector 1	t	The following ant cransmission on	nna connector on evaluation board (target platform): ollowing antennas are designated for 2.4 and 5 GHz WLAN mission on EMMY-W163. le 2 of Test Object Specification:				
					Peak ga	ain [dBi]		
#	Manufacturer	Part i	number	Antenna type	2.4 GHz band	5 GHz band		
W1	Antenova	A101 [1]	94	SMD chip antenna 10x10x0.9 [mm]	1.8	4.1		
W2	Linx	ANT-[[4]	DB1-RAF-RPS	Dual-band dipole antenna	2.5	4.6		
W3	Taoglas	GW.4	0.2153	Dual-band dipole antenna	3.74	2.5		
W4	Taoglas	GW.5 [5]	9.3153	Dual-band dipole antenna	2.37	2.93		
W5	Walsin	RFDP	4870900SBLB8G1	Dual-band dipole antenna	2	3		
W6	Linx	ANT-2 [3]	2.4-CW-RCT-RP	Single-band dipole antenna	2.2	N/A		
W7	Delock	8839	5 [6]	Dual-band dipole antenna	1.5	2.1		
	nna connector 2 etooth)	C	The following ant on EMMY-W163.	or on evaluation bo ennas are designat Object Specificatio	ed for Bluetooth			
					Peak gain [dBi]			
#	Manufacturer	Pa	rt number	Antenna type	2.4 GHz band			
B1	Johanson Technology	24	50AT45A100	SMD chip antenna 9.5x2x1.2 [mm]	2.2			
B 2	Linx	1A	NT-2.4-CW-RCT-RP	Single-band dipole antenna	2.2			
B3	Taoglas	G۱	W.26.0151	Single-band dipole antenna	1.8			
B4	Linx	ΑN	NT-2.4-CW-RH	Single-band monopole antenna	-0.9			
Seria	ıl No.	-						
	/ersion		03					
	/ersion	I	N/A					
Com	ment	-	=					

Sam	ple Name	Sample Code		Description		
DE10)15032db01	db01		Conducted Sam	nple "#4a"	
S	ample Paramete		Valu			
Ante (WLA	nna connector 1 NN)	The following an transmission on	Antenna connector on evaluation board (target platform): The following antennas are designated for 2.4 and 5 GHz WLAN transmission on EMMY-W163. - Table 2 of Test Object Specification:			
				Peak ga	in [dBi]	
#	Manufacturer	Part number	Antenna type	2.4 GHz band	5 GHz band	
W1	Antenova	A10194 [1]	SMD chip antenna 10x10x0.9 [mm]	1.8	4.1	
W2	Linx	ANT-DB1-RAF-RPS [4]	Dual-band dipole antenna	2.5	4.6	
W3	Taoglas	GW.40.2153	Dual-band dipole antenna	3.74	2.5	
W4	Taoglas	GW.59.3153 [5]	Dual-band dipole antenna	2.37	2.93	
W5	Walsin	RFDPA870900SBLB8G1	Dual-band dipole antenna	2	3	
W6	Linx	ANT-2.4-CW-RCT-RP [3]	Single-band dipole antenna	2.2	N/A	
W7	Delock	88395 [6]	Dual-band dipole antenna	1.5	2.1	
	nna connector 2 etooth)	The following an on EMMY-W163.	or on evaluation bo tennas are designat Object Specificatio	ed for Bluetooth		
				Peak gain [dBi]		
#	Manufacturer		Antenna type	2.4 GHz band		
B1	Johanson Technology	2450AT45A100	SMD chip antenna 9.5x2x1.2 [mm]	2.2		
B 2	Linx	ANT-2.4-CW-RCT-RP	Single-band dipole antenna	2.2		
В3	Taoglas	GW.26.0151	Single-band dipole antenna	1.8		
B4	Linx	ANT-2.4-CW-RH	Single-band monopole antenna	-0.9		
Seria	l No.	-				
	/ersion	03				
	/ersion	N/A				
Com	ment	-				

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 WLAN POWER TABLE

Declared Power limits vs channel for FCC

Modulation group	WLAN TX Power in dBm at frequency in MHz												
- ,	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472
DSSS 1, 2, 5.5, 11 Mbps	18	18	18	18	18	18	18	18	18	18	18	15	12
OFDM 6, 9, 12, 18 Mbps	13	16	16	16	16	16	16	16	16	15	13	10	8
OFDM 24, 36 Mbps	13	16	16	16	16	16	16	16	16	15	13	10	9
OFDM 48, 54 Mbps	13	13	13	13	13	13	13	13	13	13	13	9	9
HT20 MCS0, MCS1, MCS2	13	15	16	16	16	16	16	16	16	16	12	10	9
HT20 MCS3, MCS4	13	15	16	16	16	16	16	16	16	16	12	9	9
HT20 MCS5, MCS6, MCS7	13	13	13	13	13	13	13	13	13	13	12	9	8

Modulation group		WLAN TX Power in dBm at frequency in MHz							
	2422	2427	2432	2437	2442	2447	2452	2457	2462
HT40 MCS0, MCS1, MCS2	10	11	13	14	14	13	10	7	6
HT40 MCS3, MCS4	11	11	13	14	14	13	10	7	6
HT40 MCS5, MCS6, MCS7	11	12	13	13	13	13	11	8	7

Remark: Please see detailed EUT settings in the test protocols.

3.4 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
target platform	u-blox , 03, -, -	u-blox EVB-W16

3.5 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
AC/DC power supply (115 V 60 Hz)	PeakTech, -, -, 081062045	PeakTech 6005D

3.6 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
	DE1015032ca01,	Sample with integral antennas
S163_ca01	target platform,	
	AC/DC power supply	
	DE1015032da01,	Sample with antenna connectors
S163_da01	target platform,	•
	AC/DC power supply	
	DE1015032db01,	Sample with antenna connectors
S163_db01	target platform,	•
	AC/DC power supply	

3.7 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.7.1TEST CHANNELS

WLAN

20 MHz Test Channels:

Channel:

Frequency [MHz]

2.4 GHz ISM				
2400 -	2483.5	MHz		
low	mid	high		
1	6	13		
2412	2/137	2/172		

40 MHz Test Channels:

Channel:

Frequency [MHz]

low	mid	high
3	6	11
2422	2437	2462

BT LE Test Channels:

Channel:

Frequency [MHz]

2.4 GHz ISM					
2400 - 2483.5 MHz					
low	mid	high			
0	19	39			
2402	2440	2480			

In case of testing another channel, the measurement summary state "additional channel" and the channel or centre frequency of the operating frequency is stated in the test protocol.

3.7.2DUTY CYCLE

WLAN: 100 % duty cycle

3.8 PRODUCT LABELLING

3.8.1FCC ID LABEL

Please refer to the documentation of the applicant.

3.8.2LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.1.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Span: 3 MHzTrace: MaxholdSweeps: 2000Sweep time: 5 msDetector: Peak

4.1.2TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

4.1.3TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 1010 hPa
Humidity: 42 %

BT LE GFSK

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [kHz]	Limit [kHz]	Margin to Limit [kHz]
2.4 GHz ISM	0.0	2402.0	739.5	500.0	239.5
	19.0	2440.0	745.5	500.0	245.5
	39.0	2480.0	745.5	500.0	245.5

Remark: -

4.1.4MEASUREMENT PLOT (SHOWING THE LOWEST VALUE, "WORST CASE")

Date: 1.FEB.2016 12:32:23

4.1.5TEST EQUIPMENT USED

R&S TS8997

4.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.2.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

• Resolution Bandwidth (RBW), 1 % to 5 % of OBW (6 dB):

BT-LE: 30 kHz

• Video Bandwidth (VBW), approx. 3 x RBW:

BT-LE: 100 kHz

• Span, 1.5 to 5 x OBW (6dB):

BT-LE: 3 MHz
•Trace: Maxhold
•Sweeps: 2000
•Sweep time: 20 ms
•Detector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

4.2.2TEST REQUIREMENTS / LIMITS

No applicable limit. Measurement results for information purpose.

4.2.3TEST PROTOCOL

Ambient 23 °C temperature:

Air Pressure: 1017 hPa Humidity: 41 %

BT LE

<u> </u>			
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [kHz]
2.4 GHz ISM	0.0	2402.0	1024.6
	19.0	2440.0	1024.6
	39.0	2480.0	1020.3

Remark: Please see next sub-clause for the measurement plot.

4.2.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = mid

Date: 22.MAR.2016 13:16:41

4.2.5TEST EQUIPMENT USED R&S TS8997

4.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.3.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1 MHzVideo Bandwidth (VBW): 3 MHz

•Trace: Maxhold •Sweeps: 2000 •Sweep time: 5 ms •Detector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

4.3.2TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

4.3.3TEST PROTOCOL

Ambient

23 °C - 26° C

temperature:

Air Pressure: 1011 -1023 hPa 41 % - 55 % Humidity:

BT LE

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402.0	2.5	30.0	27.5
	19	2440.0	2.3	30.0	27.7
	39	2480.0	2.0	30.0	28.0

23 °C Ambient temperature: 1017 hPa Air Pressure: 41 % Humidity:

WLAN b-Mode; 20 MHz

Mode	Set EUT target power	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
DSSS, 1 Mbps	18.0	2412.0	23.4	30.0	6.6
DSSS, 1 Mbps	18.0	2437.0	23.5	30.0	6.5
DSSS, 1 Mbps	18.0	2462.0	23.6	30.0	6.4
DSSS, 1 Mbps	12.0	2472.0	15.6	30.0	14.4

WLAN g-Mode; 20 MHz

Mode	Set EUT target	Frequency [MHz]	Peak Power [dBm]	Limit	Margin to
	power			[dBm]	Limit [dB]
OFDM, 54 Mbps	13.0	2412.0	22.6	30.0	7.4
OFDM, 36 Mbps	16.0	2437.0	24.9	30.0	5.1
OFDM, 36 Mbps	13.0	2462.0	22,7	30.0	7.3
OFDM, 36 Mbps	10.0	2467.0	19.6	30.0	10.4
OFDM, 54 Mbps	9.0	2472.0	18.6	30.0	11.4

WLAN n-Mode; 20 MHz

Mode	Set EUT target power	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
OFDM, MCS6	13.0	2412.0	22.9	30.0	7.1
		-			
OFDM, MCS3	15.0	2417.0	24.3	30.0	5.7
OFDM, MCS3	16.0	2437.0	25.4	30.0	4.6
OFDM, MCS6	12.0	2462.0	21.6	30.0	8.4
OFDM, MCS3	9.0	2467.0	18.6	30.0	11.4
OFDM, MCS6	8.0	2472.0	18.8	30.0	11.2

WLAN n-Mode; 40 MHz

Mode	Set EUT target power	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
OFDM, MCS6	11.0	2422.0	20.6	30.0	9.4
OFDM, MCS4	11.0	2427.0	20.5	30.0	9.5
OFDM, MCS4	14.0	2437.0	23.2	30.0	6.8
OFDM, MCS4	13.0	2447.0	22.0	30.0	8.0
OFDM, MCS6	11.0	2452.0	20.5	30.0	9.5
OFDM, MCS6	7.0	2462.0	16.4	30.0	13.6

Remark: -

4.3.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement method = conducted

Radio Technology = WLAN b, Operating Frequency = mid, Measurement method = conducted

Date: 7.JUN.2016 08:21:21

Radio Technology = WLAN g, Operating Frequency = mid, Measurement method = conducted

Date: 7.JUN.2016 08:35:58

Radio Technology = WLAN n 20 MHz, Operating Frequency = mid, Measurement method = conducted

Date: 7.JUN.2016 10:05:22

Radio Technology = WLAN n 40 MHz, Operating Frequency = mid, Measurement method = conducted

Date: 30.AUG.2016 14:46:48

4.3.5TEST EQUIPMENT USED R&S TS8997

4.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.4.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

•Frequency range: 30 – 25000 MHz •Resolution Bandwidth (RBW): 100 kHz •Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 2

•Sweep Time: 330 s •Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

4.4.2TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

4.4.3TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1017 hPa
Humidity: 41 %
BT LE GFSK

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0.0	2402.0	-	-	PEAK	100.0	3.1	-16.9	> 20 dB
19.0	2440.0	-	-	PEAK	100.0	2.9	-17.1	> 20 dB
39.0	2480.0	-	-	PEAK	100.0	2.7	-17.3	> 20 dB

Remark: -

4.4.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = mid

Title: spurious emissions
Comment A: CH M2: 2440 MHZ
Date: 1.FEB.2016 11:18:02

4.4.5TEST EQUIPMENT USED

R&S TS8997

4.5 SPURIOUS RF CONDUCTED EMISSIONS IN RESTRICTED BANDS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.5.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the conducted spurious emissions measurements. The antenna port of the EUT was connected to spectrum analyzer via a short coax cable with a known cable loss C_L . The measured voltage U_{meas} at the 50 Ohm input of the analyser was used to calculate the EUT output power at the antenna port:

$$P = U_{meas} + C_L - 107$$

where

P is the output power in dBm

 U_{meas} is the measured voltage at the 50 Ohm input of the analyzer in dBµV C_{l} is the cable loss of the used cable.

The maximum transmit isotropically antenna gain G_i (in dBi) was added to the measured output power P to determine the equivalent isotropically radiated power EIRP.

$$EIRP = P + Gi$$

where

P is the output power in dBm

G_i is maximum transmit antenna gain in dBi.

The resultant EIRP level was converted to an equivalent electric filed strength using the following relationship:

 $E = EIRP - 20 \log d + 104.8$

where

E is the electric field strength in dBµV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m.

The appropriate maximum ground reflection factor was added to the EIRP:

6 dB for frequencies ≤ 30 MHz;

4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and

0 dB for frequencies > 1000 MHz).

Frequency range [MHz]	measurement distance d	-20 log d [dB]	ground reflection factor
	[m]		[dB]
0,009 - 0,49	300	-49,54	6
0,49 - 30	30	-29,54	6
30 - 1000	3	-9,54	4,7
>1000	3	-9,54	0

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

1. Measurement up to 30 MHz

Step 1: pre measurement

This is a preliminary test to identify the highest amplitudes relative to the limit.

- Detector: Peak-Maxhold/ Quasipeak (FFT-based)
- •Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- •Frequency steps: 0.05 kHz and 2.25 kHz
- •IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

EMI receiver settings:

- Detector: Peak / Average / Quasi-Peak (depending on frequency)
- •Frequency range: 0.009 30 MHz
- •Frequency steps: measurement at frequencies detected in step 1
- •IF-Bandwidth: 0.2 10 kHz (depending on frequency)
- •Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: pre measurement

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings:

- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHzIF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms

Step 2: final measurement

EMI receiver settings:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

3. Measurement above 1 GHz

Step 1: pre measurement

Settings:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 2: final measurement

Spectrum analyzer settings:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.5.2TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.5.3TEST PROTOCOL

Ambient temperature: 21–25 °C
Air Pressure: 1002–1020 hPa
Humidity: 38–45 %

WLAN b-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
DSSS, 1Mbit / 18 dBm	2412.0	2386.186667 4823.916667	52.3 51.3	AV AV	1000	54 54	1.7 2.7
DSSS, 2Mbit / 12 dBm	2472.0	2485.980500 2485.980500	59.1 52.5	Peak AV	1000	74 54	14.9 1.5
DSSS, 11Mbit / 18 dBm	2412.0	2386.186667 4823.700000	45.0 41.0	AV AV	1000	54 54	9.0 13.0
DSSS, 11Mbit / 12 dBm	2472.0	2486.4205	51.0	AV	1000	54	3.0

Remark: -

Ambient temperature: 21–25 °C
Air Pressure: 1002–1020 hPa
Humidity: 38–45 %

WLAN g-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
OFDM, 9Mbit / 13 dBm	2412.0	2389.840000	49.0	AV	1000	54	5.0
OFDM, 9Mbit / 8 dBm	2472.0	2485.755000 2483.698000	73.4 53.8	Peak AV	1000	74 54	0.6 0.2

Remark: -

Ambient temperature: 21–25 °C Air Pressure: 1002–1020 hPa Humidity: 38–45 %

WLAN n-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
HT20, MCS6 / 13 dBm	2412.0	2389.680000 2389.920000	69.6 52.1	Peak AV	1000	74 54	4.4 1.9
HT20, MCS6 / 8 dBm	2472.0	2483.538500 2483.538500	73.6 49.6	Peak AV	1000	74 54	0.4 4.4

Remark: -

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1 Page 33 of 68

Ambient temperature: 21-25 °C Air Pressure: 1002-1020 hPa Humidity: WLAN n-Mode; 40 MHz 38-45 %

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
HT40, MCS0 / 10 dBm	2422.0	2389.600000 2389.600000	66.8 48.8	Peak AV	1000	74 54	7.2 5.2
HT40, MCS0 / 6 dBm	2462.0	2483.505500 2483.505500	70.6 47.5	Peak AV	1000	74 54	3.4 6.5
HT40, MCS6 / 11 dBm	2422.0	2386.266667 2389.786667	68.8 51,3	Peak AV	1000	74 54	5.2 2.7
HT40, MCS6 / 7 dBm	2462.0	2483.500000 2483.500000	71.2 49.3	Peak AV	1000	74 54	2.8 4.7

Remark: -

4.5.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = WLAN b-Mode, 2Mbit / 12 dBm, Operating Frequency = high

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Corr. (dB)
2485.980500		52.50	54.00	1.50	1000.0	1000.000	-5.8
2485.980500	59.10		74.00	14.90	1000.0	1000.000	-5.8

Radio Technology = WLAN g-Mode, 9Mbit / 8 dBm, Operating Frequency = high

Final_Result

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(dB)
					(ms)		
2483.698000		53.83	54.00	0.17	1000.0	1000.000	-5.8
2483.698000	72.44		74.00	1.56	1000.0	1000.000	-5.8
2484.028000		53.78	54.00	0.22	1000.0	1000.000	-5.8
2484.028000	71.52		74.00	2.48	1000.0	1000.000	-5.8
2484.550500		53.67	54.00	0.33	1000.0	1000.000	-5.8
2484.550500	73.01		74.00	0.99	1000.0	1000.000	-5.8
2485.755000		52.94	54.00	1.06	1000.0	1000.000	-5.8
2485.755000	73.40		74.00	0.60	1000.0	1000.000	-5.8

Radio Technology = WLAN n-Mode HT20, MCS6 / 8 dBm, Operating Frequency = high

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Corr. (dB)
2483.538500		49.60	54.00	4.40	1000.0	1000.000	-5.8
2483.538500	73.62		74.00	0.38	1000.0	1000.000	-5.8
2483.566000		49.52	54.00	4.48	1000.0	1000.000	-5.8
2483.566000	73.49		74.00	0.51	1000.0	1000.000	-5.8
2484.006000		49.50	54.00	4.50	1000.0	1000.000	-5.8
2484.006000	70.99		74.00	3.01	1000.0	1000.000	-5.8
2484.534000		49.27	54.00	4.73	1000.0	1000.000	-5.8
2484.534000	68.93		74.00	5.07	1000.0	1000.000	-5.8

Radio Technology = WLAN n-Mode HT40, MCS6 / 11 dBm, Operating Frequency = low

Final_Result

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(dB)
` '				` '	(ms)	` '	` ′
2386.266667		50.75	54.00	3.25	1000.0	1000.000	-5.8
2386.266667	68.81		74.00	5.19	1000.0	1000.000	-5.8
2386.480000		50.85	54.00	3.15	1000.0	1000.000	-5.8
2386.480000	68.98		74.00	5.02	1000.0	1000.000	-5.8
2386.666667		50.96	54.00	3.04	1000.0	1000.000	-5.8
2386.666667	68.70		74.00	5.30	1000.0	1000.000	-5.8
2386.746667		50.96	54.00	3.04	1000.0	1000.000	-5.8
2386.746667	68.70		74.00	5.30	1000.0	1000.000	-5.8
2386.853333		50.99	54.00	3.01	1000.0	1000.000	-5.8
2386.853333	68.51		74.00	5.49	1000.0	1000.000	-5.8
2386.933333		50.98	54.00	3.02	1000.0	1000.000	-5.8
2386.933333	68.35		74.00	5.65	1000.0	1000.000	-5.8
2387.120000		51.00	54.00	3.00	1000.0	1000.000	-5.8
2387.120000	68.28		74.00	5.72	1000.0	1000.000	-5.8
2387.306667		50.99	54.00	3.01	1000.0	1000.000	-5.8
2387.306667	68.13		74.00	5.87	1000.0	1000.000	-5.8
2387.493333		50.99	54.00	3.01	1000.0	1000.000	-5.8
2387.493333	67.65		74.00	6.35	1000.0	1000.000	-5.8
2387.706667		51.02	54.00	2.98	1000.0	1000.000	-5.8
2387.706667	67.66		74.00	6.34	1000.0	1000.000	-5.8
2389.786667		51.27	54.00	2.73	1000.0	1000.000	-5.8
2389.786667	66.58		74.00	7.42	1000.0	1000.000	-5.8

4.5.5TEST EQUIPMENT USED

Radiated Emissions

4.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.6.1TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \, \text{m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between $30\text{--}1000 \, \text{MHz}$ was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

Anechoic chamberAntenna distance: 3 mDetector: Peak-Maxhold

•Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

•Frequency steps: 0.05 kHz and 2.25 kHz

•IF-Bandwidth: 0.2 kHz and 9 kHz

Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

•Open area test side

•Antenna distance: according to the Standard

•Detector: Quasi-Peak

•Frequency range: 0.009 - 30 MHz

•Frequency steps: measurement at frequencies detected in step 1

•IF-Bandwidth: 0.2 - 10 kHz

•Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 – 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

Detector: Peak, AverageIF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 1 MHz - Measuring time: 1 s

4.6.2TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.6.3TEST PROTOCOL

Ambient 21-25 °C

temperature:

Air Pressure: 1002-1020 hPa

38-45 % Humidity:

WLAN b-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
DSSS, 11Mbit / 18 dBm	2442.0	-	noise		-	-	> 9	RB

Remark: WLAN and Bluetooth antenna ports terminated with 50 Ohm.

4.6.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN b-Mode, 11Mbit / 18 dBm, Operating Frequency = mid

Radio Technology = WLAN b-Mode, 11Mbit / 18 dBm, Operating Frequency = mid

Radio Technology = WLAN b-Mode, 11Mbit / 18 dBm, Operating Frequency = mid

4.6.5TEST EQUIPMENT USED Radiated Emissions

4.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.7.1TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

•Frequency Range Band Edge frequency +/- 3 MHz

•Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

•Sweep time: 5 ms •Sweeps: 1000 •Trace: Maxhold

4.7.2TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

Margin to

4.7.3TEST PROTOCOL

23 °C Ambient temperature: Air Pressure: 1017 hPa Humidity: 41 %

BT LE GFSK				<u>-</u>			=.
Channel	Channel	Band Edge	Spurious	Detector	RBW	Ref.	Limit
No.	Center	Freq.	Level		[kHz]	Level	[dBm]
	Frequency	[MHz]	[dBm]			[dBm]	

Limit [dB] [MHz] 0.0 -45.7 28.8 2402.0 2400.0 PEAK 100.0 -16.9 39.0 2480.0 -52.0 PEAK 100.0 2.7 34.7 2483.5 -17.3

Remark: Please see next sub-clause for the measurement plot.

4.7.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = low, Band Edge = low

Title: Band Edge Compliance Comment A: CH B: 2402 MHz 1.FEB.2016 10:53:08

4.7.5TEST EQUIPMENT USED

R&S TS8997

4.8 BAND EDGE COMPLIANCE CONDUCTED AT RESTRICTED BAND

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.8.1TEST DESCRIPTION

Please see test description for the test case "Spurious RF Conducted Emissions in restricted bands"

4.8.2TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1 Page 48 of 68

4.8.3TEST PROTOCOL

Ambient 21–25 °C

temperature:

Air Pressure: 1002–1020 hPa

Humidity: 38–45 %

WLAN b-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
DSSS, 2Mbit / 12 dBm	2472.0	2485.500000	59.1 52.5	Peak AV	1000	74 54	14.9 1.5	BE
DSSS, 11Mbit / 12 dBm	2472.0	2485.500000	58.7 48.0	Peak AV	1000	74 54	15.3 6.0	BE

Ambient 21–25 °C

temperature:

Air Pressure: 1002–1020 hPa Humidity: 38–45 %

WLAN g-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
OFDM, 9Mbit / 8 dBm	2472.0	2483.698000 2483.698000	72.4 53.8	Peak AV	1000	74 54	1.6 0.2	BE

Ambient 21-25 °C

temperature:

Air Pressure: 1002–1020 hPa Humidity: 38–45 %

WLAN n-Mode; 20 MHz

Mode / Set EU ⁻ target power	-	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
HT20, MCS6 / 8 dBm	2472.0	2483.538500 2483.538500	73.6 49.6	Peak AV	1000	74 54	0.4 4.4	BE

Ambient 21–25 °C

temperature:

Air Pressure: 1002–1020 hPa Humidity: 38–45 %

WLAN n-Mode; 40 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
HT40, MCS6 / 7 dBm	2462.0	2483.500000 2483.500000	71.2 49.3	Peak AV	1000	74 54	2.8 4.7	BE

Remark: -

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1 Page 49 of 68

4.8.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = WLAN b-Mode, 2Mbit / 12 dBm, Operating Frequency = high

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Corr. (dB)
2485.500000		52.50	54.00	1.50	1000.0	1000.000	-5.8
2485.500000	59.10		74.00	14.90	1000.0	1000.000	-5.8

Radio Technology = WLAN g-Mode, 9Mbit / 8 dBm, Operating Frequency = high

Tillal_Result							
Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(dB)
					(ms)		
2483.698000		53.83	54.00	0.17	1000.0	1000.000	-5.8
2483.698000	72.44		74.00	1.56	1000.0	1000.000	-5.8
2484.028000		53.78	54.00	0.22	1000.0	1000.000	-5.8
2484.028000	71.52		74.00	2.48	1000.0	1000.000	-5.8
2484.275500		53.77	54.00	0.23	1000.0	1000.000	-5.8
2484.275500	72.22		74.00	1.78	1000.0	1000.000	-5.8

Radio Technology = WLAN n-Mode HT20, MCS6 / 8 dBm, Operating Frequency = high

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Corr. (dB)
2483.538500		49.60	54.00	4.40	1000.0	1000.000	-5.8
2483.538500	73.62		74.00	0.38	1000.0	1000.000	-5.8
2483.566000		49.52	54.00	4.48	1000.0	1000.000	-5.8
2483.566000	73.49		74.00	0.51	1000.0	1000.000	-5.8
2484.006000		49.50	54.00	4.50	1000.0	1000.000	-5.8
2484.006000	70.99		74.00	3.01	1000.0	1000.000	-5.8
2484.534000		49.27	54.00	4.73	1000.0	1000.000	-5.8
2484.534000	68.93		74.00	5.07	1000.0	1000.000	-5.8
2484.798000		48.96	54.00	5.04	1000.0	1000.000	-5.8
2484.798000	68.99		74.00	5.01	1000.0	1000.000	-5.8
2485.056500		48.69	54.00	5.31	1000.0	1000.000	-5.8
2485.056500	69.06		74.00	4.94	1000.0	1000.000	-5.8

Radio Technology = WLAN n-Mode HT40, MCS6 / 7 dBm, Operating Frequency = high

Final Result

I IIIai_IXesuit							
Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(dB)
					(ms)		
2483.500000		49.34	54.00	4.66	1000.0	1000.000	-5.8
2483.500000	71.22		74.00	2.78	1000.0	1000.000	-5.8
2483.522000		49.24	54.00	4.76	1000.0	1000.000	-5.8
2483.522000	71.12		74.00	2.88	1000.0	1000.000	-5.8
2483.857500		48.03	54.00	5.97	1000.0	1000.000	-5.8
2483.857500	70.02		74.00	3.98	1000.0	1000.000	-5.8
2483.912500		47.86	54.00	6.14	1000.0	1000.000	-5.8
2483.912500	69.89		74.00	4.11	1000.0	1000.000	-5.8
2483.934500		47.77	54.00	6.23	1000.0	1000.000	-5.8
2483.934500	69.75		74.00	4.25	1000.0	1000.000	-5.8
2484.110500		47.25	54.00	6.75	1000.0	1000.000	-5.8
2484.110500	69.28		74.00	4.72	1000.0	1000.000	-5.8
2484.341500		46.72	54.00	7.28	1000.0	1000.000	-5.8
2484.341500	68.26		74.00	5.74	1000.0	1000.000	-5.8
2484.440500		46.55	54.00	7.45	1000.0	1000.000	-5.8
2484.440500	67.75		74.00	6.25	1000.0	1000.000	-5.8

4.8.5TEST EQUIPMENT USED

Radiated Emissions

4.9 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.9.1TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.9.2TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1 Page 54 of 68

4.9.3TEST PROTOCOL

Ambient 21-25 °C

temperature:

Air Pressure: 1002-1020 hPa

Humidity: 38-45 %

WLAN b-Mode; 20 MHz

Mode / Set EUT target power	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
DSSS, 11Mbit / 12 dBm	2472.0	-	noise		-	-	> 13	RE

Remark: Remark: Due to 50 Ohm termination at the antenna ports no radiated WLAN signal measurable. Please refer to "Band Edge Compliance Conducted at Restricted Band".

4.9.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

4.9.5TEST EQUIPMENT USED

Radiated Emissions

Page 56 of 68

4.10 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.10.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

•Resolution Bandwidth (RBW): 3 kHz •Video Bandwidth (VBW): 10 kHz

•Trace: Maxhold •Sweeps: 2000 •Sweep time: 420 ms •Detector: Peak

4.10.2TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

4.10.3TEST PROTOCOL

23 °C Ambient temperature: Air Pressure: 1017 hPa Humidity: 41 % BT LE

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0.0	2402.0	-12.9	8.0	20.9
	19.0	2440.0	-13.8	8.0	21.8
	39.0	2480.0	-13.4	8.0	21.4

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

Remark: Please see next sub-clause for the measurement plot.

4.10.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = mid

4.10.5TEST EQUIPMENT USED R&S TS8997

5 TEST EQUIPMENT

1 Conducted Emissions Shielded Room 02

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	828304/029	2015-03	2017-03
	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2014-11	2016-11
	EP 1200/B, NA/B1	Amplifier with integrated variable Oscillator	Spitzenberger & Spieß	B6278	2015-07	2018-07
	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
	Opus10 THI (8152.00)	ThermoHygro Datalogger 02 (Environ)	Lufft Mess- und Regeltechnik GmbH	7489	2015-02	2017-02
	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	829996/002	2015-03	2017-03
	Opus10 TPR (8253.00)	ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
	CMD 55	Digital Radio Communication Tester	Rohde & Schwarz	831050/020	2014-12	2017-12
	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
	CMW 500	CMW 500	Rohde & Schwarz	107500	2015-07	2017-07

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer		Last Calibration	Calibration Due
			EMCO Elektronic GmbH	00083069		
	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
	5HC3500/1800 0-1.2-KK	High Pass Filter	Trilithic	200035008		
	,	8.80m x 4.60m x 4.05m (l x w x h)	,	P26971-647- 001-PRB	2015-07	2018-07

TEST REPORT REFERENCE: MDE_UBLOX_1551_FCCd_Rev_1

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2014-11	2016-11
	TT 1.5 WI	Turn Table	Maturo GmbH	-		
	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2014-01	2017-01
	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
	5HC2700/1275 0-1.5-KK	High Pass Filter	Trilithic	9942012		
	AS 620 P	Antenna mast	HD GmbH	620/37		
	4HC1600/1275 0-1.5-KK	High Pass Filter	Trilithic	9942011		
	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
	HL 562	Ultralog new biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2015-06	2018-06
	Opus10 THI (8152.00)	, ,	Lufft Mess- und Regeltechnik GmbH	12482	2015-03	2017-03
	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
	HFH2-Z2	Loop Antenna	Rohde & Schwarz GmbH & Co. KG	829324/006	2014-11	2017-11
	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2014-11	2016-11
	Opus10 TPR (8253.00)	sure	Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		

Ref.No.	Device Name	Description	Manufacturer		Last Calibration	Calibration Due
	3160-10		EMCO Elektronik GmbH	00086675		
	HL 562 Ultralog		Rohde & Schwarz GmbH & Co. KG	100609	2016-04	2019-04
	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
	HF 907	_	Rohde & Schwarz GmbH & Co. KG	102444	2015-05	2018-05

3 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	OSP120		Rohde & Schwarz GmbH & Co. KG	101158	2015-08	2016-08
	A8455-4	4 Way Power Divider (SMA)		-		
	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
	Opus10 THI (8152.00)	ThermoHygro Datalogger 03 (Environ)	Lufft Mess- und Regeltechnik GmbH	7482	2015-02	2017-02
	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	107695	2014-06	2017-06
	VT 4002	Climatic Chamber	Vötsch	5856600215001 0	2016-03	2018-03
	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02	2018-02
	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	259291	2013-08	2016-08
	1515 / 93459	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673		
	Datum, Model: MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2015-06 2016-07	2016-06 2017-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0,15	10,1
5	10,3
7	10,5
10	10,5
12	10,7
14	10,7
16	10,8
18	10,9
20	10,9
22	11,1
24	11,1
26	11,2 11,2
28	11,2
30	11,3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z 5	uator)
dB	dB
0,1	10,0
0,1	10,2
0,2	10,3
0,2	10,3
0,3	10,4
0,3	10,4
0,4	10,4
0,4	10,5
0,4	10,5
0,5	10,6
0,5	10,6
0,5	10,7
0,5	10,7
0,5	10,8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

0.2 /111		<u> </u>
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0,009	20,50	-79,6
0,01	20,45	-79,6
0,015	20,37	-79,6
0,02	20,36	-79,6
0,025	20,38	-79,6
0,03	20,32	-79,6
0,05	20,35	-79,6
0,08	20,30	-79,6
0,1	20,20	-79,6
0,2	20,17	-79,6
0,3	20,14	-79,6
0,49	20,12	-79,6
0,490001	20,12	-39,6
0,5	20,11	-39,6
0,8	20,10	-39,6
1	20,09	-39,6
2	20,08	-39,6
3	20,06	-39,6
4	20,05	-39,5
5	20,05	-39,5
6	20,02	-39,5
8	19,95	-39,5
10	19,83	-39,4
12	19,71	-39,4
14	19,54	-39,4
16	19,53	-39,3
18	19,50	-39,3
20	19,57	-39,3
22	19,61	-39,3
24	19,61	-39,3
26	19,54	-39,3
28	19,46	-39,2
30	19,73	-39,1

Cable loss 1 (inside (suitch (mass)) Cable loss 3 (switch (mass)) Cable loss 3 (switch (mass)) Corr. (ad dB) (distance (decade)) distance (distance (decade)) distance (decade) distance (distance (distance)) distance (decade) distance (distance) distance distance distance distance distance (distance) distance dis	(9 KHZ - 30 MHZ)						
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	loss 1 (inside chamber)	loss 2 (outside chamber)	loss 3 (switch unit)	loss 4 (to receiver)	corr. (-40 dB/ decade)	(meas. distance	(meas. distance
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	dB	dB	dB	dB	dB	m	m
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	0,1	0,1	0,1		-80	300	
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	0,1						3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1	0,1						
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1							3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1							
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1							3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1	0,1						3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0	0,1		0,1				3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,	0,1		0,1	0,1			3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1	0,1		0,1	0,1			3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1<							3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<						300	3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1						3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<							3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<							3
0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<							
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<							3
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<							3
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<			0,1				3
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<			0,1				3
0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<		0,1				30	3
0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3							3
0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3				0,1		30	3
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3							3
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3					-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3							3
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3				0,1	-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3							3
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3	0,3	0,1	0,2	0,1	-40	30	
0,3 0,1 0,3 0,1 -40 30 3	0,3			0,1		30	3
	0,3	0,1	0,2	0,1		30	3
0,4 0,1 0,3 0,1 -40 30 3							3
	0,4	0,1	0,3	0,1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$(a_{Limit} = 3 \text{ H})$	$(d_{Limit} = 3 m)$				
	AF R&S				
Frequency	HL562	Corr.			
MHz	dB (1/m)	dB			
30	18,6	0,6			
50	6,0	0,9			
100	9,7	1,2			
150	7,9	1,6			
200	7,6	1,9			
250	9,5	1,9 2,1			
300	11,0	2,3			
350	12,4	2,6			
400	13,6	2,3 2,6 2,9			
450	14,7	3,1			
500	15,6	3,2			
550	16,3	3,5			
600	17,2	3,1 3,2 3,5 3,5 3,6 3,6			
650	18,1	3,6			
700	18,5	3,6			
750	19,1	4,1			
800	19,6	4,1			
850	20,1	4,4			
900	20,8	4,7			
950	21,1	4,8			
1000	21,6	4,9			

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,29	0,04	0,23	0,02	0,0	3	3
0,39	0,09	0,32	0,08	0,0	3	3
0,56	0,14	0,47	0,08	0,0	3	3
0,73	0,20	0,59	0,12	0,0	3	3
0,84	0,21	0,70	0,11	0,0	3	
0,98	0,24	0,80	0,13	0,0	3	3
1,04	0,26	0,89	0,15	0,0	3	3
1,18	0,31	0,96	0,13	0,0	3	3
1,28	0,35	1,03	0,19	0,0	3	3
1,39	0,38	1,11	0,22	0,0	3	3
1,44	0,39	1,20	0,19	0,0	3	3
1,55	0,46	1,24	0,23	0,0	3	3
1,59	0,43	1,29	0,23	0,0	3	3
1,67	0,34	1,35	0,22	0,0	3	3
1,67	0,42	1,41	0,15	0,0	3	3
1,87	0,54	1,46	0,25	0,0	3	3
1,90	0,46	1,51	0,25	0,0	3	3
1,99	0,60	1,56	0,27	0,0	3	3
2,14	0,60	1,63	0,29	0,0	3	3
2,22	0,60	1,66	0,33	0,0	3	3
2,23	0,61	1,71	0,30	0,0	3	3

(d _{Limit}	=	10	m)

(d _{Limit} = 10 i	m)								
30	18,6	-9,9	0,29	0,04	0,23	0,02	-10,5	10	3
50	6,0	-9,6	0,39	0,09	0,32	0,08	-10,5	10	3
100	9,7	-9,2	0,56	0,14	0,47	0,08	-10,5	10	3
150	7,9	-8,8	0,73	0,20	0,59	0,12	-10,5	10	3
200	7,6	-8,6	0,84	0,21	0,70	0,11	-10,5	10	3
250	9,5	-8,3	0,98	0,24	0,80	0,13	-10,5	10	3
300	11,0	-8,1	1,04	0,26	0,89	0,15	-10,5	10	3
350	12,4	-7,9	1,18	0,31	0,96	0,13	-10,5	10	3
400	13,6	-7,6	1,28	0,35	1,03	0,19	-10,5	10	3
450	14,7	-7,4	1,39	0,38	1,11	0,22	-10,5	10	3
500	15,6	-7,2	1,44	0,39	1,20	0,19	-10,5	10	3
550	16,3	-7,0	1,55	0,46	1,24	0,23	-10,5	10	3
600	17,2	-6,9	1,59	0,43	1,29	0,23	-10,5	10	3
650	18,1	-6,9	1,67	0,34	1,35	0,22	-10,5	10	3
700	18,5	-6,8	1,67	0,42	1,41	0,15	-10,5	10	3
750	19,1	-6,3	1,87	0,54	1,46	0,25	-10,5	10	3
800	19,6	-6,3	1,90	0,46	1,51	0,25	-10,5	10	3
850	20,1	-6,0	1,99	0,60	1,56	0,27	-10,5	10	3
900	20,8	-5,8	2,14	0,60	1,63	0,29	-10,5	10	3
950	21,1	-5,6	2,22	0,60	1,66	0,33	-10,5	10	3
1000	21,6	-5,6	2,23	0,61	1,71	0,30	-10,5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24,4	-19,4
2000	28,5	-17,4
3000	31,0	-16,1
4000	33,1	-14,7
5000	34,4	-13,7
6000	34,7	-12,7
7000	35,6	-11,0

	,			
cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, atten- uator & pre-amp)	cable loss 4 (to receiver)	
,	,	,	,	
dB	dB	dB	dB	
0,99	0,31	-21,51	0,79	
1,44	0,44	-20,63	1,38	
1,87	0,53	-19,85	1,33	
2,41	0,67	-19,13	1,31	
2,78	0,86	-18,71	1,40	
2,74	0,90	-17,83	1,47	
2,82	0,86	-16,19	1,46	

Fraguency	AF R&S HF907	Corr.
Frequency		
MHz	dB (1/m)	dB
3000	31,0	-23,4
4000	33,1	-23,3
5000	34,4	-21,7
6000	34,7	-21,2
7000	35,6	-19,8

				cable		
ı				loss 4		
ı	cable			(switch		
ı	loss 1	cable	cable	unit,		used
ı	(relay	loss 2	loss 3	atten-	cable	for
ı	inside	(inside	(outside	uator &	loss 5 (to	FCC
ı	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
ı	dB	dB	dB	dB	dB	
ı	0,47	1,87	0,53	-27,58	1,33	
ı	0,56	2,41	0,67	-28,23	1,31	
	0,61	2,78	0,86	-27,35	1,40	
ı	0,58	2,74	0,90	-26,89	1,47	
ı	0,66	2,82	0,86	-25,58	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35,6	-57,3
8000	36,3	-56,3
9000	37,1	-55,3
10000	37,5	-56,2
11000	37,5	-55,3
12000	37,6	-53,7
13000	38,2	-53,5
14000	39,9	-56,3
15000	40,9	-54,1
16000	41,3	-54,1
17000	42,8	-54,4
18000	44,2	-54,7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0,56	1,28	-62,72	2,66	0,94	1,46
0,69	0,71	-61,49	2,84	1,00	1,53
0,68	0,65	-60,80	3,06	1,09	1,60
0,70	0,54	-61,91	3,28	1,20	1,67
0,80	0,61	-61,40	3,43	1,27	1,70
0,84	0,42	-59,70	3,53	1,26	1,73
0,83	0,44	-59,81	3,75	1,32	1,83
0,91	0,53	-63,03	3,91	1,40	1,77
0,98	0,54	-61,05	4,02	1,44	1,83
1,23	0,49	-61,51	4,17	1,51	1,85
1,36	0,76	-62,36	4,34	1,53	2,00
1,70	0,53	-62,88	4,41	1,55	1,91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40,2	-23,5
18500	40,2	-23,2
19000	40,2	-22,0
19500	40,3	-21,3
20000	40,3	-20,3
20500	40,3	-19,9
21000	40,3	-19,1
21500	40,3	-19,1
22000	40,3	-18,7
22500	40,4	-19,0
23000	40,4	-19,5
23500	40,4	-19,3
24000	40,4	-19,8
24500	40,4	-19,5
25000	40,4	-19,3
25500	40,5	-20,4
26000	40,5	-21,3
26500	40,5	-21,1

	3 (10 0112 2010 0112)						
cable	cable	cable	cable	cable			
loss 1	loss 2	loss 3	loss 4	loss 5			
(inside	(pre-	(inside	(switch	(to			
chamber)	amp)	chamber)	unit)	receiver)			
dB	dB	dB	dB	dB			
0,72	-35,85	6,20	2,81	2,65			
0,69	-35,71	6,46	2,76	2,59			
0,76	-35,44	6,69	3,15	2,79			
0,74	-35,07	7,04	3,11	2,91			
0,72	-34,49	7,30	3,07	3,05			
0,78	-34,46	7,48	3,12	3,15			
0,87	-34,07	7,61	3,20	3,33			
0,90	-33,96	7,47	3,28	3,19			
0,89	-33,57	7,34	3,35	3,28			
0,87	-33,66	7,06	3,75	2,94			
0,88	-33,75	6,92	3,77	2,70			
0,90	-33,35	6,99	3,52	2,66			
0,88	-33,99	6,88	3,88	2,58			
0,91	-33,89	7,01	3,93	2,51			
0,88	-33,00	6,72	3,96	2,14			
0,89	-34,07	6,90	3,66	2,22			
0,86	-35,11	7,02	3,69	2,28			
0,90	-35,20	7,15	3,91	2,36			

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26,5	43,4	-11,2
27,0	43,4	-11,2
28,0	43,4	-11,1
29,0	43,5	-11,0
30,0	43,5	-10,9
31,0	43,5	-10,8
32,0	43,5	-10,7
33,0	43,6	-10,7
34,0	43,6	-10,6
35,0	43,6	-10,5
36,0	43,6	-10,4
37,0	43,7	-10,3
38,0	43,7	-10,2
39,0	43,7	-10,2
40,0	43,8	-10,1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4,4				-15,6	3	0,5
4,4				-15,6	3	0,5
4,5				-15,6	3	0,5
4,6				-15,6	3	0,5
4,7				-15,6	3	0,5
4,7				-15,6	3	0,5
4,8				-15,6	3	0,5
4,9				-15,6	3	0,5
5,0				-15,6	3	0,5
5,1				-15,6	3	0,5
5,1				-15,6	3	0,5
5,2				-15,6	3	0,5
5,3				-15,6	3	0,5
5,4				-15,6	3	0,5
5,5				-15,6	3	0,5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolarisation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.

10 REVISION HISTORY

	Report version control					
Version	Release date	Change Description	Version validity			
initial	2016-07-07		invalid			
Rev_1	2016-09-02	1.1: KDB 558074 D01 DTS Meas Guidance updated to v03r05, 2016-04-08 Edition, Note 4 modified (Justification for Bluetooth LE-mode), 3.1: EUT description changed for clarification from "test vehicle" to "evaluation board", 4.3, 4.5, 4.8 and 4.9: re-measured with lower declared output power, 4.3.2: Reference to Frequency Hopping Systems deleted (not applicable)	valid			