Discrete Mathematics

Tutorial sheet

Boolean Algebra

Question 1.

What is the output for each of the following logic circuits:

Solution:

- 1. $\overline{A} + B$
- $2. \ \overline{A(\overline{BC})}$

Question 2.

Write down the truth table for the output Q of the following circuit.

Solution:

\overline{A}	B	A + B	$\overline{A+B}$	$\overline{A+B}+B$	$Q = \overline{\overline{A + B} + B}$
0	0	0	1	1	0
0	1	1	0	1	0
1	0	1	0	0	1
1	1	1	0	1	0

Question 3.

Simplify each Boolean expression to one of the following expressions: $0, 1, A, B, AB, A+B, \overline{AB}, \overline{A}+\overline{B}, \overline{A}B$ and $A\overline{B}$

- 1. $\overline{\overline{A} + \overline{B}}$
- $2. \ A(A + \overline{A}) + B$

3.
$$(A+B)(\overline{A}+B)\overline{B}$$

Solution:

```
1. \overline{A} + \overline{B} = A.B (De Morgan's law)

2. A(A + \overline{A}) + B

A(A + \overline{A}) + B = A.A + A.\overline{A} + B Distributivity

= A + 0 + B A.A = A and A.\overline{A} = 0

= A + B A + 0 = A
```

3.
$$(A+B)(\overline{A}+B)\overline{B}$$

 $(A+B)(\overline{A}+B)\overline{B}$. $= (A+B)(\overline{A}.\overline{B}+B.\overline{B})$ distributivity
 $= (A+B)(\overline{A}.\overline{B}+0)$ $B.\overline{B}=0$
 $= (A+B)(\overline{A}.\overline{B})$
 $= (A.\overline{A}.\overline{B}+B.\overline{A}.\overline{B})$ distributivity
 $= (A.\overline{A}.\overline{B}+\overline{A}.B.\overline{B})$ commutativity
 $= (0.\overline{B}+\overline{A}.0)$ $A\overline{A}=B..\overline{B}=0$
 $= (0+0)$ $0.\overline{B}=\overline{A}.0=0$
 $= 0$

Question 4.

- 1. Use the laws of boolean algebra to simplify the boolean expression: $a + \overline{a}b = a + b$.
- 2. Use the truth table prove that $a + \overline{a}b = a + b$.
- 3. Use he results from 1 and 2 to find a simplified circuit for the following logic circuit:

Solution:

$$a + \overline{a}b = a.1 + \overline{a}b \qquad \text{Identity law}$$

$$= a.(1+b) + \overline{a}b \qquad \text{Identity law}$$

$$a.1 + ab + \overline{a}b \qquad \text{Distributive law}$$

$$= a.1 + b(a + \overline{a}) \qquad \text{Distributive law}$$

$$= a.1 + b.(1) \qquad \text{Complement law}$$

$$= a + b \qquad \text{Identity law}$$

	a	b	\overline{a}	a+b	$\overline{a}b$	$a + \overline{a}b$
	0	0	1	0	0	0
2.	0	1	1	1	1	1
	1	0	0	1	0	1
	1	1	0	1	0	1

The column for $(\overline{a+b})$ is the same as the column $\overline{a}\overline{b}$, hence, $(\overline{a+b})=\overline{a}\overline{b}$.

Question 5.

3.

1. What is the output of the following logical circuit:

 $\frac{\text{Solution:}}{pqr + p\overline{q}r + pq\overline{r}}$

2. Simplify the output form the circuit above and find a simpler circuit which has the same effect.

Solution:

1. $pqr + p\overline{q}r + pq\overline{r} = p(q+r)$. Hence, this circuit can be simplified to

2.

Question 6.

Use the truth table prove De Morgan's laws: $\overline{ab} = \overline{a} + \overline{b}$ and $\overline{a+b} = \overline{a}.\overline{b}$ Solution:

a	b	\overline{a}	\overline{b}	a + b	$\overline{a+b}$	$\overline{a}.\overline{b}$	ab	\overline{ab}	$\overline{a} + \overline{b}$
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

The column for $(\overline{a+b})$ is the same as the column $\overline{a}\overline{b}$, hence, $(\overline{a+b}) = \overline{a}\overline{b}$. The column for $(\overline{a}\overline{b})$ is the same as the column $\overline{a} + \overline{b}$, hence, $(\overline{a}\overline{b}) = \overline{a} + \overline{b}$.

Question 7.

Use the laws of boolean algebra to simplify the boolean expression:

$$\overline{ab}(\overline{a}+b)(\overline{b}+b)$$

Question 8.

Use the laws of boolean algebra to simplify the boolean expression:

$$\overline{a}(a+b) + (b+aa)(a+\overline{b})$$

Solution:

$$\overline{a}(a+b) + (b+aa)(a+\overline{b}) = \overline{a}(a+b) + (b+a)(a+\overline{b}) \text{ idempotent law}$$

$$= \overline{a}(a+b) + (a+b)(a+\overline{b}) \text{ Commutative law}$$

$$= (a+b).(\overline{a}+(a+\overline{b})) \text{ Distributive law}$$

$$= (a+b).((\overline{a}+a)+\overline{b}) \text{ Associative law}$$

$$= (a+b).(1+\overline{b}) \text{ Complement law}$$

$$= (a+b).1 \text{ Annulment law}$$

$$= (a+b). \text{ Identity law}$$

Question 9.

Prove that in a boolean algebra $a^2 = a$. You are required to explain your answer by making a reference to a boolean algebra axioms (laws). Solution:

```
\begin{array}{lll} a & = & a.1 & (a.1=a) \\ & = & a.(a+\overline{a}) & (\overline{a}+a=1) \\ & = & a.a+a.\overline{a} & (\text{distributiviy of . over } +) \\ & = & a^2+0 & (a.\overline{a}=0) \\ & = & a^2 & a+0=a \end{array}
```

Question 10.

The following diagram shows a circuit with three inputs and two outputs, u and v.

- 1. List the logic gates used in this circuit.
- 2. Describe each output u and v as a Boolean expression in terms of x, y and z.

Solution:

- $1.\ 2$ and-gates and 3 or-gates
- 2. u = x + y + z where as v = ((x + y).z) + (x.y) = x.y + x.z + y.z

Question 11.

Derive the Boolean expression for the following logic circuit shown below

$\frac{\text{Solution:}}{(a+b).c.d.e}$

Question 12.

1. Write down a boolean expression for the following input/output behaviour.

X	У	Z	u
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

2. Construct the corresponding circuit of the above expression using notgates, and-gates and or-gates only.

Solution:

1. In order to answer this questions we need to check all combination that makes the output 1 the and-gates then use or-gates to link all the possible true outputs. by doing this we will get:

$$u = (x.y.\overline{z}) + (\overline{x}.y.z) + (\overline{x}.\overline{y}.\overline{z}).$$

Question 13.

Given the following boolean expression $\overline{\overline{(x+y)}} + \overline{z}$.

- 1. Construct its corresponding circuit.
- 2. Use DeMorgan's laws to find a simpler form for this expression
- 3. Construct the circuit the simplified expression.

Solution:

 $2. \ (x+y)z$

Question 14.

Simplifying the following boolean expression using Karnaugh Map

$$\overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + ab\overline{x}$$

Solution:

c ab	00	01	11	10
0	1	1	1	
1		1		

We can now group the 1's as follows:

c	00	01	11	10
0	1	1	1	
1		1		

Now for each grouping, we are not going to consider any variable that is changing. For the first grouping in, yellow, consists of two 1's which correspond to a=0, b=0, c=0 and a=0, b=1, c=0. In another way, the value in this first grouping is independent from the value of b. so when a=0 and c=0 the output is 1. hence, this can be reduced to just \overline{ac}

For the green grouping which consists of two 1's corresponding to a=0, b=1, c=0 and a=0, b=1, c=1. In another way, the value in this first grouping is independent from the value of c. so when a=0 and b=1 the output is 1. hence this can be reduced to $\overline{a}b$ Finally, for he second grouping in orange consists of two 1's which correspond to a=0, b=1, c=0 and a=1, b=1, c=0. In another way, the value in this first grouping is independent from the value of a. so when b=1 and c=0 the output is 1. Hence this can be reduced to just $b\overline{c}$.

The final reduced expression is then $\overline{ac} + \overline{ab} + b\overline{c}$

Question 15.

Given the following boolean function

$$f(a,b,c,d) = \overline{a}\overline{b}cd + \overline{a}bcd + abcd + a\overline{b}cd + ab\overline{c}\overline{d} + ab\overline{c}d + abc\overline{c}$$

1. Fill in the missing value in the following Karnaugh map of f(a, b, c):

ab cd	00	01	11	10
00				
01				
11				
10				

2. Use K-map in (1) to find the minimum sum of products of f(a, b, c).

Solution:

	ab cd	00	01	11	10
1.	00	0	0	1	0
1.	01	0	0	1	0
	11	1	1	1	1
	10	0	0	1	0

2.

Hence, f(a, b, c) = ab + cd.

Question 16.

Given the following circuit:

- 1. Find the output of this circuit.
- 2. Use the laws of algebra to give a simpler expression for this output.
- 3. Use the result in 2 to draw a simpler circuit equivalent circuit.

Solution:

```
1. ABC + A\overline{B}(\overline{AC})
      ABC + A\overline{B}(\overline{\overline{AC}}) = ABC + A\overline{B}(\overline{\overline{A}} + \overline{\overline{C}})
                                                                              De Morgan's law
                                    =ABC+A\overline{B}\overline{A}+A\overline{B}\overline{C}
                                                                              Distributive law
                                    = ABC + A\overline{B}A + A\overline{B}C
                                                                             Complement law
                                    =ACB+AA\overline{B}+AC\overline{B}
                                                                             Associative law
2.
                                    =ACB+A\overline{B}+AC\overline{B}
                                                                             Idempotent law
                                    = AC(B + \overline{B}) + A\overline{B}
                                                                             Idempotent law
                                    = AC.(1) + A\overline{B}
                                                                             Complement law
                                    =AC+A\overline{B}
                                                                             Identity law
                                    =A(C+\overline{B})
                                                                             Identity law
```

3. $ABC + A\overline{B}(\overline{\overline{AC}}) = A(C + \overline{B})$, hence the simplified circuit is :

Question 17.

A set of three sensors in a factory detects whether the pollution level it is outputting from an incinerator exceeds the safety limit. In which case the incinerator is shut down. An alarm A goes off if at least two the three sensors s_1, s_2 and s_3 detect a pollution level above the limit. Draw a logic circuit for the system showing the inputs s_1, s_2 and s_3 and the output A. Solution:

The output of this circuit should be $A = s_1.s_2 + s_1.s_3 + s_2.s_3$. The logical circuit for the output A is

End of questions