Kernels: Linear models in function space

Rodrigo A. Vargas-Hernández

31/Jan/2023

References for today's lecture (31/Jan/2023)

Chapter 13: Sparse linear models and Chapter 14: Kernels

- Kernel ridge regression
- extra material

Regularization Overfitting

• One technique that is often used to control the over-fitting phenomenon in such cases is that of regularization,

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i}^{N} (y_i - \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_i))^2 + \frac{\lambda}{2} \sum_{j} w_j^2$$
 (1)

 \bullet λ is known as the **regularization** term.

(HOMEWORK)

• What is the value of the **optimal** parameters θ^* (Eq. 12)?

(tip):
$$\sum_{i} w_{i}^{2} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w}$$
 and $\frac{\partial \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w}}{\boldsymbol{w}} = 2\boldsymbol{w}$

Notation

- ▶ $\mathbf{x} \rightarrow \text{single data point, } \mathbf{x} = [x_0, \dots, x_i, \dots, x_d]$
- ightharpoonup d
 ightharpoonuptotal number of **features** in **x**
- ightharpoonup y
 ightharpoonup observable of a single point 1
- $lackbrack \mathbf{X}
 ightarrow ext{all data points, } \mathbf{X} = [\mathbf{x}_1^T, \cdots, \mathbf{x}_N^T]$
- **y** \rightarrow observables for all data points, $\mathbf{y} = [y_1, \cdots, y_N]$
- $ightharpoonup N
 ightarrow ext{total number of data points}$
- $ightharpoonup \mathcal{D}
 ightarrow \mathsf{D}$ Data set, $\mathcal{D} = [\mathbf{X}, \mathbf{y}]$
- lackbox heta heta all model's parameters
- $ightharpoonup f(\cdot)
 ightarrow \mathsf{model}$
- $ightharpoonup \mathcal{L}(\cdot)
 ightarrow \mathsf{loss}$, error or cost function

¹Could be a vector, multiple observables

Regularization Overfitting

• One technique that is often used to control the over-fitting phenomenon in such cases is that of regularization,

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i}^{N} (y_i - \boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x}_i))^2 + \frac{\lambda}{2} \sum_{j} w_j^2$$
 (2)

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \left(\mathbf{y} - \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X}) \right)^{\mathrm{T}} \left(\mathbf{y} - \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X}) \right) + \frac{\lambda}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w}$$
(3)

- \triangleright λ is known as the **regularization** term.
- $ightharpoonup \lambda$ is optimized using Cross-Validation.
- $lackbox{\Phi}(\mathbf{X})$ is the representation of all data points \mathbf{X} in the feature space $\phi(\cdot)$.

(Quick primer) Cross-Validation

• Search algorithm to optimize **hyper-parameters** in ML models.

- ▶ For every fold we search for the best λ .
- Average all the best λ s, $\lambda^* = \frac{1}{K} \sum_{j=1}^{K} \lambda_j$.
- ▶ What are the cons of CV?

(code) Cross-Validation

```
import numpy as np
from sklearn.model_selection import KFold
data = load data() # data = (X,y)
n folds = 5 # number of folds
kf = KFold(n splits=n folds)
# grid on the possible values of lambda
lambda_grid = np.array([0.,0.001,0.01,0.1,0.5,1.])
l = []
# iterate over the k-folds
for train, val in kf.split(X): # index
 X train, y train = X[train], y[train]
 X_{val}, y_{val} = X[val], y[val]
  # search algorithm for lambda
  lambda_opt = solve_for_lambda((X train,y train), (X val,y val),lambda_grid)
  l .append(lambda opt)
l_= np.array(l_)
best lambda = np.mean(l )
```

solution of linear regression + regularization

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \left(\mathbf{y} - \boldsymbol{\theta}^{\mathrm{T}} \mathbf{\Phi}(\mathbf{X}) \right)^{\mathrm{T}} \left(\mathbf{y} - \boldsymbol{\theta}^{\mathrm{T}} \mathbf{\Phi}(\mathbf{X}) \right) + \frac{\lambda}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}$$
(4)

• Solve for θ using $\nabla_{\theta} \mathcal{L}(\theta) = 0$.

Solution: (last week's lecture notes)

$$\boldsymbol{\theta}^* = \left(\mathbf{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{\Phi}(\mathbf{X}) + \lambda \mathbb{I}_d \right)^{-1} \mathbf{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{y}$$
 (5)

- ▶ What is $\Phi(X)^T\Phi(X)$?
- ▶ What are the dimensions of θ^* and $\Phi(X)^T\Phi(X)$?

solution of linear regression + regularization

• What is $\Phi(X)^T\Phi(X)$?

$$\Phi(\mathbf{X})^{\mathrm{T}} \Phi(\mathbf{X}) = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_0(\mathbf{x}_2) & \cdots & \phi_0(\mathbf{x}_N) \\ \phi_1(\mathbf{x}_1) & \phi_1(\mathbf{x}_2) & \cdots & \phi_1(\mathbf{x}_N) \\ \vdots & \vdots & & \vdots \\ \phi_{d-1}(\mathbf{x}_1) & \phi_{d-1}(\mathbf{x}_2) & \cdots & \phi_{d-1}(\mathbf{x}_N) \\ \phi_d(\mathbf{x}_1) & \phi_d(\mathbf{x}_2) & \cdots & \phi_d(\mathbf{x}_N) \end{pmatrix} \begin{pmatrix} \phi_0(\mathbf{x}_1), & \phi_1(\mathbf{x}_1), & \cdots, & \phi_d(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2), & \phi_1(\mathbf{x}_2), & \cdots, & \phi_d(\mathbf{x}_2) \\ \vdots & \ddots & \ddots & \ddots \\ \phi_0(\mathbf{x}_{N-1}), & \phi_1(\mathbf{x}_{N-1}), & \cdots, & \phi_d(\mathbf{x}_{N-1}) \\ \phi_0(\mathbf{x}_N), & \phi_1(\mathbf{x}_N), & \cdots, & \phi_d(\mathbf{x}_N) \end{pmatrix}$$

• $\phi_j(\mathbf{x}_i)$, feature j in $\phi(\cdot)$ for point i

Homework: proof that $\Phi(\mathbf{X})^{\mathrm{T}}\Phi(\mathbf{X}) = \sum_{i}^{N} \phi(\mathbf{x}_{i})\phi(\mathbf{x}_{i})^{\mathrm{T}}$ remember, $\phi(\mathbf{x}_{i})^{\mathrm{T}} = [\phi_{0}(\mathbf{x}_{i}), \phi_{1}(\mathbf{x}_{i}), \cdots, \phi_{d}(\mathbf{x}_{i})]$, (vector of (1, d) dimensions)

Kernel space

$$\boldsymbol{\theta}^* = \left(\mathbf{\Phi}(\mathbf{X})^{\mathrm{T}}\mathbf{\Phi}(\mathbf{X}) + \lambda \mathbb{I}_d\right)^{-1}\mathbf{\Phi}(\mathbf{X})^{\mathrm{T}}\mathbf{y}$$
 (6)

Matrix identity (Eq. 167): $(\mathbb{I} + AB)^{-1}A = A(\mathbb{I} + BA)^{-1}$

$$\boldsymbol{\theta}^{**} = \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} \left(\boldsymbol{\Phi}(\mathbf{X})\boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} + \lambda \mathbb{I}_{N}\right)^{-1} \mathbf{y}$$
 (7)

What is Φ(X)Φ(X)^T?

$$\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathrm{T}} = \begin{pmatrix} \phi_0(\mathbf{x}_1), & \phi_1(\mathbf{x}_1), & \cdots, & \phi_d(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2), & \phi_1(\mathbf{x}_2), & \cdots, & \phi_d(\mathbf{x}_2) \\ \phi_0(\mathbf{x}_N), & \phi_1(\mathbf{x}_N), & \cdots, & \phi_d(\mathbf{x}_N) \\ \end{pmatrix} \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_0(\mathbf{x}_2) & \cdots & \phi_0(\mathbf{x}_N) \\ \phi_1(\mathbf{x}_1) & \phi_1(\mathbf{x}_2) & \cdots & \phi_1(\mathbf{x}_N) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{d-1}(\mathbf{x}_1) & \phi_{d-1}(\mathbf{x}_2) & \cdots & \phi_{d-1}(\mathbf{x}_N) \\ \phi_d(\mathbf{x}_1) & \phi_d(\mathbf{x}_2) & \cdots & \phi_d(\mathbf{x}_N) \end{pmatrix}$$

• What are the matrix elements of $\Phi(X)\Phi(X)^T$, $[\phi(x_i)^T\phi(x_j)]_{ij}$?

Kernel space as linear model

Solution of standard linear regression,

$$f(\mathbf{x}, \boldsymbol{\theta}^*) = \sum_{i}^{d} \theta_{i}^* \phi(\mathbf{x})^{i} = \boldsymbol{\theta}^{* \mathrm{T}} \phi(\mathbf{x})$$

$$= \left[\left(\mathbf{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{\Phi}(\mathbf{X}) + \lambda \mathbb{I}_{d} \right)^{-1} \mathbf{\Phi}(\mathbf{X})^{\mathrm{T}} \mathbf{y} \right]^{\mathrm{T}} \phi(\mathbf{x}) \quad (9)$$

OTHER solution,

$$f(\mathbf{x}, \boldsymbol{\theta}^{**}) = \boldsymbol{\theta}^{** \mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\theta}^{**}$$

$$= \underbrace{\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}}}_{\boldsymbol{\kappa}^{\mathrm{T}}} \underbrace{\left(\boldsymbol{\Phi}(\mathbf{X}) \boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} + \lambda \mathbb{I}_{d}\right)^{-1} \mathbf{y}}_{\alpha}$$
(10)

Kernel space as linear model

$$f(\mathbf{x}, \boldsymbol{\theta}^{**}) = \underbrace{\phi(\mathbf{x})^{\mathrm{T}} \Phi(\mathbf{X})^{\mathrm{T}}}_{\kappa^{\mathrm{T}}} \underbrace{\left(\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathrm{T}} + \lambda \mathbb{I}_{d}\right)^{-1} \mathbf{y}}_{\alpha}$$
(12)
$$= \phi(\mathbf{x})^{\mathrm{T}} \boldsymbol{\theta}^{**} = \kappa^{\mathrm{T}} \alpha = \sum_{i}^{N} \kappa(\mathbf{x}, \mathbf{x}_{i}) \alpha_{i}$$
(13)
$$(14)$$

• What is $\phi(\mathbf{x})^{\mathrm{T}} \Phi(\mathbf{X})^{\mathrm{T}}$ and/or $\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathrm{T}}$?

$$\begin{array}{lll} \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\boldsymbol{\Phi}(\mathbf{X})^{\mathrm{T}} & = & \left(\boldsymbol{\phi}_{0}(\mathbf{x}), & \boldsymbol{\phi}_{1}(\mathbf{x}), & \cdots, & \boldsymbol{\phi}_{d}(\mathbf{x})\right) \begin{pmatrix} \phi_{0}(\mathbf{x}_{1}) & \phi_{0}(\mathbf{x}_{2}) & \cdots & \phi_{0}(\mathbf{x}_{N}) \\ \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \cdots & \phi_{1}(\mathbf{x}_{N}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{d-1}(\mathbf{x}_{1}) & \phi_{d-1}(\mathbf{x}_{2}) & \cdots & \phi_{d-1}(\mathbf{x}_{N}) \\ \phi_{d}(\mathbf{x}_{1}) & \phi_{d}(\mathbf{x}_{2}) & \cdots & \phi_{d}(\mathbf{x}_{N}) \end{pmatrix} \\ & = & \left(\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{0}), & \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{1}), & \cdots, & \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{N})\right) \end{array}$$

• Do we need to compute $\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_i)$?

Kernel function

- $\bullet \ \kappa(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j)$
 - $\triangleright \kappa(\mathbf{x}_i, \mathbf{x}_j)$ is the dot or inner product between functions,

$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\nu} \tag{15}$$

- (From Wikipedia): On the other hand, an explicit representation for φ is not necessary, as long as ν is an inner product space.
- For $\phi(\cdot)$ as an infinite polynomial, $\kappa(\mathbf{x}_i, \mathbf{x}_j)$ is the **Squared Exponential Kernel**,

$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 \exp^{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2\ell^2}}$$
 (16)

- How are we optimizing σ and ℓ ?
- What are the **free-parameters** of this class of models?

Kernel functions

The Kernel Cookbook by David Duvenaud

Sklearn tutorial

Faster optimization of kernel ridge regression

Lasso regression MUST STUDY THIS ON YOUR OWN!

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i}^{N} (y_{i} - \boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x}_{i}))^{2} + \underbrace{\frac{\lambda}{2} \sum_{j} |w_{j}|}_{\text{absolute value}}$$

$$= \frac{1}{2} (\mathbf{y} - \boldsymbol{\theta}^{T} \boldsymbol{\Phi}(\mathbf{X}))^{T} (\mathbf{y} - \boldsymbol{\theta}^{T} \boldsymbol{\Phi}(\mathbf{X})) + \underbrace{\frac{\lambda}{2} ||\boldsymbol{w}||_{1}}_{\text{regularization}}$$

Useful links:

- Wikipedia
- Sklearn tutorial
- What is Lasso used for?