# ZCU-NLP at MADAR 2019: Recognizing Arabic Dialects

# Pavel Přibáň<sup>1,2</sup>, and Stephen Taylor<sup>1</sup>

<sup>1</sup> Department of Computer Science and Engineering, Faculty of Applied Sciences,

<sup>2</sup> NTIS – New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic

E-mail: pribanp@kiv.zcu.cz, stepheneugenetaylor@gmail.com Web: nlp.kiv.zcu.cz

#### MADAR SubTask 1

The goal of the Subtask-1 is to detect one of 25 specific Arabic city dialects or MSA<sup>1</sup> in a given sentence.

هذا الطريق من فضلك. خذ هذا المصعد.

 $\Rightarrow$  MSA

<sup>1</sup>Modern Standard Arabic

#### MADAR SubTask 2

The goal of the Subtask-2 is to predict the country (out of 21 Arab countries) of origin of a Twitter user by using tweets posted by the user.

مد.. يدك وامنحهم الدفء الذي ينتظرونه تحت الصفر

 $\Rightarrow$  Qatar

#### Subtask-1 Overview

### Our Approach?

- Tortuous Classifier
  - Language model features + Classic machine learning method (SVM, Naive Bayes)
- Neural Network Classifier
  - Language model features, Character Embeddings + BiLSTM

#### Tortuous Classifier

## Inputs:

• Pre-trained 26 dialect word/character language models, word unigram and bigrams, character 3-gram, 4gram, and 5-gram

#### Classifier<sup>1</sup>:

- Several Multinomial Naive Bayes and SVM classifiers
- Combined into voting classifiers (soft/hard)
  - Experiments with soft/hard voting
- Similar features used by the baseline character 5-gram language models

<sup>1</sup>We call it *tortuous* because it twists around to apply multiple classifiers to the same features

#### Subtask-2 Overview

- Pre-trained 21 language models built on the development tweets
- Tweet assigned to the country with the largest language model score
- The user country is decided based on the counts of tweet assignments

#### Neural Network Classifier

## Inputs:

- Pre-trained 26 dialect character language models
- Sequence of first 200 character n-grams of a given text
  - ⇒ Character Embeddings

#### Architecture:

- Embedding layer is followed by two BiLSTMs with 64
- The Output vector of the BiLSTMs is concatenated with language model features
  - ⇒ Character Embeddings
- The concatenated vector is passed to MLP layer (with 400) units which is followed by a softmax layer

#### Model Training & Hyper-Parameters:

- Training for 800 epochs
- Adam optimizer with learning rate 0.01, no dropout

# Neural Network Classifier Architecture **Character Embedings** 000 Concatenated 000







<DCSE> SCIENCE AND ENGINEERING







# SubTask 1 Results

- Tortuous Classifier
  - Best 0.658 macro  $F_1$ -score on the test data

#### • Neural Network Classifier

- -0.648 macro  $F_1$ -score on the test data <sup>1</sup>
- $-0.555 \,\mathrm{macro}\,F_{1}\mathrm{-score}^{2}$ , only with n-gram input (unigrams, bigrams and trigrams)
- Classic machine learning approach outperforms neural network
- Best results achieved only with a language model features
- Many geographically related errors

<sup>1</sup>Only with a language model features <sup>2</sup>On the development data

# SubTask 2 Results II

- 47.51 macro  $F_1$ -score on the test data
- This is below the baseline (50.31) which also used character 5-gram language model scores.
- Apparently the baseline combined tweet results differently; perhaps it combined all tweets for a user before scoring.

#### Conclusion

This paper presents an automatic approach for Arabic dialect detection. Our proposed systems for the Subtask-1 use language model features. Our experiments showed that simpler machine learning algorithms outperform RNN using language model features.

Subtask-2 turned out to be more challenging because Tweets, which are real-world wild data, are more difficult to process than systematically prepared texts.