```
In [1]: import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

In [2]: data=pd.read_csv("abalone.csv")

In [3]: data.head()

Out[3]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

- 0. 0 0.	00-0		
#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dtype	es: float64(7),	int64(1), object	(1)

In [5]: data.isnull().sum()/data.shape[0]

memory usage: 293.8+ KB

```
Out[5]: Sex
                            0.0
        Length
                           0.0
        Diameter
                           0.0
        Height
                           0.0
        Whole weight
                           0.0
        Shucked weight
                           0.0
        Viscera weight
                           0.0
        Shell weight
                           0.0
                           0.0
        Rings
        dtype: float64
```

```
In [6]: data.shape
Out[6]: (4177, 9)
In [7]: data.hist(figsize=(20,20))
Out[7]: array([[<AxesSubplot:title={'center':'Length'}>,
                     <AxesSubplot:title={'center':'Diameter'}>,
                     <AxesSubplot:title={'center':'Height'}>],
                   [<AxesSubplot:title={'center':'Whole weight'}>,
                     <AxesSubplot:title={'center':'Shucked weight'}>,
                     <AxesSubplot:title={'center':'Viscera weight'}>],
                   [<AxesSubplot:title={'center':'Shell weight'}>,
                     <AxesSubplot:title={'center':'Rings'}>, <AxesSubplot:>]],
                  dtype=object)
                          Length
                                                            Diameter
                                                                                                Height
                                              1000
                                                                                 3000
                                                                                 2500
                                               800
            800
                                                                                 2000
                                               600
            600
                                                                                 1500
                                               400
            400
                                                                                 1000
                                               200
                        Whole weight
                                                          Shucked weight
                                                                                              Viscera weight
            800
            700
                                                                                  800
                                               800
            600
                                               600
            400
                                               400
                                                                                  400
            300
            200
                                               200
                                                                                  200
            100
                       1.0
                           1.5
                                                        0.4
                                                           0.6
                                                              0.8 1.0
                                                                                          0.2 0.3
                                                                                                 0.4 0.5
                        Shell weight
                                              1400
                                              1200
                                               600
                                               400
                                               200
```

In [8]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

In [9]: data['Sex']=le.fit_transform(data['Sex'])

In [10]: data

Out[10]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

In [11]: data.describe()

Out[11]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	1.052909	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594
std	0.822240	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614
min	0.000000	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500
25%	0.000000	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500
50%	1.000000	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000
75%	2.000000	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000
max	2.000000	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000
4							>

```
In [12]: X = data.drop('Rings',1)
y = data['Rings']
```

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=2)

C:\Users\HP\AppData\Local\Temp/ipykernel_7904/2454726055.py:1: FutureWarning: I n a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

X = data.drop('Rings',1)

```
In [13]: lm=LinearRegression()
In [14]: lm.fit(data,y)
Out[14]: LinearRegression()
In [15]: lm.coef_
Out[15]: array([ 3.86667275e-16, -5.21804822e-15, -1.71737624e-14, -2.68882139e-16,
                 2.98372438e-15, 1.34575510e-14, -6.80358547e-15, -2.94902991e-14,
                 1.00000000e+00])
In [16]: lm.intercept_
Out[16]: 0.0
In [17]: y.mean()
Out[17]: 9.933684462532918
In [18]: from sklearn.metrics import r2 score, mean squared error, mean absolute error
In [19]: ybar=lm.predict(data)
In [20]: r2_score(y,ybar)
Out[20]: 1.0
In [21]: print(f'The Mean Squared Error of our model is: {mean_squared_error(y,ybar)} \nTh
         The Mean Squared Error of our model is: 8.384751475437836e-30
         The Mean Abs Error of the model is: 2.0296588605799904e-15
 In [ ]:
```