MEASURE THEORY

ARPON RAKSIT

original: January 18, 2016 updated: January 18, 2016

1. Measure spaces

- **1.1. Notation.** We denote the power set of a set Ω by $\mathcal{P}(\Omega)$.
- **1.2. Definitions.** (1.2.1) Let Ω be a set. A σ -algebra on Ω is a collection $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ of subsets of Ω satisfying:
 - $(1.2.1.1) \ \emptyset \in \mathcal{F}.$
 - (1.2.1.2) If $A \in \mathcal{F}$, then $\Omega A \in \mathcal{F}$.
 - (1.2.1.3) If $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}$, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$.

Note that applying (1.2.1.2) to (1.2.1.1) and (1.2.1.3) implies, respectively: (1.2.1.4) $\Omega \in \mathcal{F}$.

- (1.2.1.5) If $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}$, then $\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{F}$.
- If Ω is equipped with a σ -algebra \mathcal{F} , then we say a subset $A\subseteq\Omega$ is measurable if $A\in\mathcal{F}$.
- (1.2.2) Let \mathcal{F} be a σ -algebra on a set Ω . Then a measure on \mathcal{F} (when the σ -algebra \mathcal{F} is understood/implicit, we will also absusively call this a measure on Ω) is a function $\mu \colon \mathcal{F} \to [0, \infty]$ that is countably additive, i.e.:
 - $(1.2.2.1) \ \mu(\emptyset) = 0.$
 - (1.2.2.2) If $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}$ is a collection of (pairwise) disjoint measurable sets, then $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$.

Here addition with ∞ is treated as one would expect.

- (1.2.3) A measure space is a triple $(\Omega, \mathcal{F}, \mu)$ where Ω is a set, \mathcal{F} a σ -algebra on Ω , and μ a measure on \mathcal{F} .
- **1.3. Lemma.** Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Suppose $A, B \in \mathcal{F}$ such that $A \subseteq B$. Then $\mu(A) \leq \mu(B)$.

Proof. Note that $B - A = B \cap (\Omega - A) \in \mathcal{F}$ by (1.2.1.2, 1.2.1.5). Then $\mu(B) = \mu(A) + \mu(B - A)$ by countable additivity. This proves the claim since, by definition, $\mu(B - A) \geq 0$.

- **1.4. Definition.** We say a measure space $(\Omega, \mathcal{F}, \mu)$ is *finite* if $\mu(\Omega) < \infty$. By (1.3), this condition implies $\mu(A) < \infty$ for all $A \in \mathcal{F}$.
- **1.5. Lemma.** Let Ω be a set and let $\{\mathcal{F}_i\}$ be a collection of σ -algebras on Ω . Then $\bigcap \mathcal{F}_i$ is also a σ -algebra on Ω .

Proof. Evident.

1.6. Lemma. Let Ω be a set and let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ be any collection of subsets of Ω . Then there is a minimal (with respect to inclusion) σ -algebra \mathcal{F} on Ω containing \mathcal{A} . We refer to \mathcal{F} as the σ -algebra generated by \mathcal{A} .

Proof. Let $\{\mathcal{F}_i\}$ be the collection of σ -algebras on Ω containing \mathcal{A} ; the collection is certainly nonempty, as it contains the σ -algebra $\mathcal{P}(\Omega)$ of *all* subsets of Ω . Then the desired minimal σ -algebra is easily seen to be the intersection $\bigcap \mathcal{F}_i$, which is a σ -algebra by (1.5).

1.7. Definition. Let X be a topological space. The *Borel* σ -algebra on X, often denoted \mathcal{B} , is the σ -algebra generated by the collection of open sets in X, often denoted \mathcal{G} .