Lewis Ho Functional Analysis Problem Set 6

Problem 1 Norm closed \Rightarrow weakly closed: I show the complement of a norm-closed ball is weakly open. Let x not be in the norm-closed ball, i.e have norm greater than 1. By Hahn Banach, there exists some ℓ with norm 1 such that $\ell(x) = ||x||$. Let $\varepsilon = (||x|| - 1)/2$. Let y be a vector inside the ℓ, ε neighborhood of x. Then

$$\varepsilon > |\ell(y - x)| = |\ell(y) - ||x|||.$$

Because $\ell(y)$ is bounded by ||y|| from above, this means $|||y|| - ||x||| < \varepsilon$, i.e. ||y|| > 1. Thus every element outside the norm-closed ball is contained in a weak neighborhood also outside the ball, meaning that the norm-closed ball is also weakly closed.

Weakly closed \Rightarrow norm closed: let x_n with norm ≤ 1 be Cauchy. For all $\ell \in \mathcal{X}^*$ and $\varepsilon > 0$, there exists some N for which m, n > N implies $||x_n - x_m|| < \varepsilon / ||\ell||$. Thus $||\ell(x_n - x_m)|| < \varepsilon$, x_n is weakly Cauchy, and converges to some x in the weak closure of the ball. Suppose x is not the norm limit of the sequence: then there is some closed ε ball containing all x_m for m > N large enough that x isn't in. But then by Hahn Banach, some linear functional strictly separates x from all x_m with m > N, so x cannot be the weak limit of x_n , a contradiction. Thus if the unit ball is weakly closed, it is norm closed.

Problem 2 Suppose not. Let b_{n_k} be a pointwise convergent subsequence. Then let $x \in \ell^{\infty}$ be defined as alternating 1 and -1 for each n_k th element and 0 otherwise. Then $b_{n_k}(x)$ is not Cauchy, a contradiction.

Problem 3 Lower semicontinuity of $\|\cdot\|_X$ in the weak topology: given some $x_0 \in X$ and $\varepsilon > 0$, by Hahn-Banach, there exists some $\ell \in X^*$ such that $\ell(x_0) = \|x_0\|$. Consider V, the ε neighborhood of x_0 defined by ℓ . For all $x \in V$,

$$\varepsilon > |\ell(x - x_0)| = |\ell(x) - ||x_0|||.$$

 $\ell(x)$ is bounded from above by ||x||, so ||x|| is at most ε less than $||x_0||$.

Lower semicontinuity of $\|\cdot\|_{X^*}$ in the weak* topology: by the above argument, $\|\cdot\|_{X^*}$ is lower semicontinuous in the weak topology. Because X is reflexive, $(X^*, wk^*) = (X^*, wk)$, and in particular, every weak neighborhood of X^* is a weak* neighborhood; thus $\|\cdot\|_{X^*}$ is lower semicontinuous in the weak* topology as well.

Minima for lower semicontinuous functions on compact sets: suppose the statement is false, i.e. some lower semicontinuous f gets arbitrarily large (negatively) on a weakly compact set (note: both norms are weakly lower semicontinuous). Then let x_n be a sequence of points with $f(x_n) < -n$. Because weakly compact sets are weakly sequentially compact, there exists some weakly convergent subsequence $x_{n_k} \to x$. This

means there exists arbitrarily negative values of f in every neighborhood of x, and thus f can't both be well defined and lower semicontinuous, a contradiction.

Proof of statement: let d be the distance between x_0 and M, the subspace it is not a member of. Let B be the closed 2d ball around x_0 , and consider $B \cap M$. Because both are closed and B is weakly compact by the reflexivity of X, the lowersemicontinuous function $f(y) = ||x_0 - y||$ attains its minimum in $B \cap M$ at some y_0 (closed subsets of compact sets are compact). Note then that:

$$f(y_0) = \min_{y \in B \cap M} \|x_0 - y\| = \min_{y \in M} \|x_0 - y\| = \inf_{y \in M} \|x_0 - y\|,$$

as no points of M outside B can be closer to x_0 than the ones within.

Problem 4 Weak convergence \Rightarrow norm bounded, pointwise convergent: for pointwise convergence, note that evaluation at some point x defines a bounded linear functional. Thus if f_n converge for all linear functionals they must converge pointwise. Suppose they're not norm bounded, then for each k there exists some $f_{n_k}(x_k) > k$. (For ease of notation, let's relabel them f_k, x_k .