

Deep Poisson Factor Modeling

Ricardo Henao, Zhe Gan, James Lu and Lawrence Carin Department of Electrical and Computer Engineering, Duke University, Durham, NC

Contributions

- A deep architecture for topic models based entirely on Poisson Factor Analysis (PFA) modules.
- Inherent shrinkage in all layers, thanks to the DP-like formulation of PFA.
- Block updates for binary units improve mixing.
- PFA modules can be used to easily build discriminative topic models.
- Efficient MCMC inference scales as function of the number of *non-zeros* in data and binary units.
- Scalable Bayesian inference algorithm based on Stochastic Variational Inference (SVI).

Poisson factor analysis as a module

Assume \mathbf{x}_n is an M-dimensional vector containing word counts for the n-th of N documents, where M is the vocabulary size. We impose the model

$$\mathbf{x}_n \sim \text{Poisson}\left(\mathbf{\Psi}(\boldsymbol{\theta}_n \circ \mathbf{h}_n)\right),$$
 (1)

where

- $\Psi \in \mathbb{R}^{M \times K}_+$, factor loadings matrix with K factors.
- $\boldsymbol{\theta}_n \in \mathbb{R}_+^K$, factor intensities.
- $\mathbf{h}_n \in \{0,1\}^K$, binary units indicating which factors are active for observation n.
- Symbol denotes element-wise (Hadamard) product.

Prior specification [2]:

$$x_{mn} = \sum_{k=1}^{K} x_{mkn}, \quad x_{mkn} \sim \text{Poisson}(\lambda_{mkn}), \quad \lambda_{mkn} = \psi_{mk} \theta_{kn} h_{kn},$$

 $\psi_k \sim \text{Dirichlet}(\eta \mathbf{1}_M), \quad \theta_{kn} \sim \text{Gamma}(r_k, (1-b)b^{-1}), \quad h_{kn} \sim \text{Bernoulli}(\pi_{kn}).$ (2)

Note that η controls for the sparsity of Ψ , while r_k accommodates for over-dispersion in \mathbf{x}_n via $\boldsymbol{\theta}_n$. **PFA module:** Conditioned on \mathbf{h}_n , we express

 $\mathbf{x}_n \sim \text{PFA}(\mathbf{\Psi}, \boldsymbol{\theta}_n, \mathbf{h}_n; \eta, r_k, b)$ (3)

(\circ)

Deep representations with PFA modules

Develop a deep prior specification for \mathbf{h}_n as

$$\mathbf{x}_{n} \sim \text{PFA}\left(\mathbf{\Psi}^{(1)}, \boldsymbol{\theta}_{n}^{(1)}, \mathbf{h}_{n}^{(1)}; \boldsymbol{\eta}^{(1)}, r_{k}^{(1)}, b^{(1)}\right), \qquad \mathbf{h}_{n}^{(1)} = \mathbf{1}\left(\mathbf{z}_{n}^{(2)}\right),$$

$$\mathbf{z}_{n}^{(2)} \sim \text{PFA}\left(\mathbf{\Psi}^{(2)}, \boldsymbol{\theta}_{n}^{(2)}, \mathbf{h}_{n}^{(2)}; \boldsymbol{\eta}^{(2)}, r_{k}^{(2)}, b^{(2)}\right), \qquad \vdots$$

$$\vdots \qquad \qquad \mathbf{h}_{n}^{(L-1)} = \mathbf{1}\left(\mathbf{z}_{n}^{(L)}\right),$$

$$\mathbf{z}_{n}^{(L)} \sim \text{PFA}\left(\mathbf{\Psi}^{(L)}, \boldsymbol{\theta}_{n}^{(L)}, \mathbf{h}_{n}^{(L)}; \boldsymbol{\eta}^{(L)}, r_{k}^{(L)}, b^{(L)}\right), \qquad \mathbf{h}_{n}^{(L)} = \mathbf{1}\left(\mathbf{z}_{n}^{(L+1)}\right),$$

$$(4)$$

where

• Function $\mathbf{1}(\cdot)$ is defined component-wise as

$$h_{nk}^{(\ell)} = 1 \text{ if } z_{nk}^{\ell+1} > 0, \quad \text{otherwise } h_{nk}^{(\ell)} = 0.$$
 (5)

• For top layer

$$z_{kn}^{(L+1)} \sim \text{Poisson}\left(\lambda_k^{(L+1)}\right), \qquad \lambda_k^{(L+1)} \sim \text{Gamma}\left(a_0, b_0\right).$$
 (6)

Binary units are constituted as [1]

$$h_{kn}^{(\ell-1)} = 1 \left(z_{kn}^{(\ell)} \ge 1 \right), \qquad z_{kn}^{(\ell)} \sim \text{Poisson} \left(\tilde{\lambda}_{kn}^{(\ell)} \right), \qquad \tilde{\lambda}_{kn}^{(\ell)} = \sum_{k'=1}^{K_{\ell}} \psi_{kk'}^{(\ell)} \theta_{k'n}^{(\ell)} h_{k'n}^{(\ell)}. \tag{7}$$

Equivalently

$$p(h_{kn}^{(\ell-1)} = 1) = \text{Bernoulli}\left(\pi_{kn}^{(\ell)}\right), \qquad \pi_{kn}^{(\ell)} = 1 - \exp\left(-\tilde{\lambda}_{kn}^{(\ell)}\right). \tag{8}$$

Inference: Analytic Gibbs updates due to local conjugacy. SVI for large datasets.

FIGURE 1: Graphical models. (a) PFA module. Nodes $(\mathbf{b}_k, \hat{\mathbf{z}}_n \text{ and } \mathbf{y}_n)$ and edges drawn with dashed lines correspond to the discriminative PFA. (b) DPFM.

PFA modules for discriminative tasks

Assume that there is a label $y_n \in \{1, \ldots, C\}$ associated with document n. We impose the model

$$\widehat{\mathbf{y}}_n \sim \text{Multinomial}\left(1, \widehat{\boldsymbol{\lambda}}_n\right), \qquad \widehat{\lambda}_{cn} = \lambda_{cn} / \sum_{c=1}^C \lambda_{cn},$$
 (9)

where

- y_n is represented as a C-dimensional one-hot vector, $\widehat{\mathbf{y}}_n$.
- $\bullet \lambda_n = \mathbf{B}(\boldsymbol{\theta}_n^{(1)} \circ \mathbf{h}_n^{(1)})$ and λ_{cn} is element c of $\boldsymbol{\lambda}_n$.
- $\mathbf{B} \in \mathbb{R}^{C \times K}$, matrix of nonnegative classification weights.
- $\mathbf{b}_k \sim \text{Dirichlet}(\zeta \mathbf{1}_C)$, for \mathbf{b}_k column of \mathbf{B} .

Table 1: Graph representation obtained from 20 News. Meta-topics are denoted by circles and layer-1 topics as boxes, with word lists corresponding to the top four words in layer-1 topics, $\boldsymbol{\psi}_k^{(1)}$. We only show the top four connections between meta-topics and their associated topics

Experiments

Benchmark corpora

- Data:
- -20 Newsgroups (20 News): 2,000 words, 11,315/7,531 training/test documents.
- -Reuters corpus volume I (RCV1): 10,000 words, 794,414/10,000 training/test documents.
- -Wikipedia (Wiki): 7,702 words, $10^7/1,000$ training/test documents.
- Performance: held-out perplexity on 20% of test set.
- Models: LDA, FTM, RSM, nHDP, DPFA-SBN, DPFA-RBM and DPFM.
- Runtime: one iteration of the two-layer DPFM on 20 News takes approx. 3/2 secs, for MCMC/SVI.

TABLE 2: Held-out perplexities for 20 News, RCV1 and Wiki. Size: number of topics and/or binary units.

Model	Method	Size	20 News	RCV1	Wiki
DPFM	SVI	128-64	818	961	791
DPFM	MCMC	128-64	780	908	783
DPFA-SBN	SGNHT	1024-512-256		942	770
DPFA-SBN	SGNHT	128-64-32	827	1143	876
DPFA-RBM	SGNHT	128-64-32	896	920	942
nHDP	SVI	(10,10,5)	889	1041	932
LDA	Gibbs	128	893	1179	1059
FTM	Gibbs	128	887	1155	991
RSM	CD5	128	877	1171	1001

Classification

- Data: 20 News for document classification.
- Performance: test accuracy.
- Models: LDA, DocNADE, RSM, OSM and DPFM.

Table 3: Test accuracy on 20 News. Subscript accompanying model names indicate their size.

Model	LDA_{128}	$DocNADE_{512}$	RSM_{512}	OSM_{512}	$DPFM_{128}$	$DPFM_{128-6}$
Accuracy (%)	65.7	68.4	67.7	69.1	72.11	72.67

DPFM also outperforms multinomial logistic regression, SVM, supervised LDA and two-layer feed-forward neural networks, for which test accuracies ranged from 67% to 72.14%, using term frequency-inverse document frequency features.

Medical records

- Duke University 5-year dataset (2007-2011): 240,000 patients, 4.4M visits.
- 34,000 medication mapped to 1,691 pharmaceutical active ingredients (AI).
- Dataset: 1,019×131,264 counts matrix of AIs vs. patients.
- MCMC-based DPFM of size 64-32.

Table 4: Representative meta-topics obtained from (left) 20 News and (right) medical records. Meta-topic weights $\boldsymbol{\psi}_k^{(2)}$ vs. layer-1 topics indices, with word lists corresponding to the top five words in layer-1 topics, $\boldsymbol{\psi}_k^{(1)}$.

References

M. Zhou. Infinite edge partition models for overlapping community detection and link prediction. In AISTATS, 2015.
 M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson factor analysis. In AISTATS, 2012.