Задания

к домашней контрольной работе

по дисциплине «Теория случайных процессов и математическая статистика»

(Часть 2)

Задание 1

«Оценка надежности простейших систем методом Монте-Карло»

- 1. Система состоит из трех блоков, соединенных последовательно. Первый блок содержит два элемента: A, B, второй три элемента: C, D, E, третий один элемент F. Элементы первого и второго блоков соединены параллельно. A) найти методом Монте-Карло оценку P^* надежности системы, задав перед началом испытаний случайным образом вероятности безотказной работы элементов P(A), P(B), P(C), P(D), P(E), P(F) из диапазона [0.6, 1]. [0.6, 1] найти абсолютную погрешность $|P^*-P|$, где [0.6, 1] где [0.6, 1] вычисленная аналитически. Произвести 50 испытаний.
- 2. Устройство состоит из двух узлов, соединенных последовательно. Первый узел содержит три элемента: A, B, C, а второй два элемента: D, E. Элементы каждого узла соединены параллельно. Время безотказной работы элементов распределено по показательному закону, с параметрами λ , заданными случайным образом из диапазона [0.01, 0.1] до начала испытаний. Найти методом Монте-Карло: а) оценку P^* вероятности безотказной работы устройства за время длительностью 60 часов; б) среднее время безотказной работы устройства. Произвести 50 испытаний.

Задание 2

«Простейшие случаи криволинейной корреляции, множественная корреляция»

Составить экспериментальную выборку исследуемых признаков У и X (взять два произвольных столбца матрицы экспериментов (не нормированной) из индивидуальной части задания к лабораторной работе № 1). А) рассчитать выборочный коэффициент линейкой корреляции и выборочное корреляционное отношение. Сделать вывод наличии функциональной зависимости (линейной или линейной) не между рассматриваемыми признаками. Б) по имеющимся экспериментальным данным построить уравнения линейной, квадратичной, экспоненциальной и логарифмической регрессии. Построить их графики (на одном рисунке), отметить на графике экспериментальные точки. Среди перечисленных выше выбрать уравнение регрессии наилучшим образом приближающее экспериментальную зависимость (сравнивая между собой значения средне квадратичных отклонений экспериментальных точек от линий регрессии).

2. Составить экспериментальную выборку признаков Z, X, Y (взять три столбца матрицы экспериментов из индивидуальной части задания к лабораторной работе № 1). Привести уравнение многомерной линейной регрессии для указанных признаков (из результатов лабораторной №1). Построить график полученной плоскости, отметить на нем экспериментальные точки. Оценить тесноту линейной связи между Z и обоими признаками X, Y, между Z и X (при фиксированном Y), между Z и Y (при фиксированном X), рассчитав выборочный совокупный коэффициент корреляции, и частные выборочные коэффициенты корреляции.

Задание 3 «Ранговая корреляция»

1. Два эксперта оценили качество твердого сорта сыра, выпускаемого 12 производителями по стобалльной системе и выставили следующие оценки (в первой строке указаны баллы, выставленные первым экспертом, во второй — вторым). Здесь N — ваш номер по списку.

98	94	88	80	76	70	63	61	60	58	56	51
99	91	93-N	74	78	65	64	66	52	53	48+N	62

Рассчитать выборочные коэффициенты ранговой корреляции Спирмена и Кендалла. Проверить гипотезу о наличии существенной связи между мнениями экспертов с уровнем значимости 0,05 для каждого из коэффициентов. Совпадают ли результаты проверки гипотезы в обоих случаях?

Задание 4

«Однофакторный дисперсионный анализ»

1. Произведено по 8 испытаний на каждом из 6 уровней фактора. Методом дисперсионного анализа при уровне значимости 0,01 проверить нулевую гипотезу о равенстве групповых средних. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями. Результаты испытаний приведены в таблице. Здесь rnd — случайное число из диапазона (110; 130), причем для каждого столбца свое.

Номер	Уровни фактора								
кспытания	F ₁	F ₂	F,	F ₄	F ₅	F,			
1 2 3 4 5 6 7 8	100 101 126 rnd 133 141 147 148	92 102 104 115 119 122 rnd 146	74 87 88 93 94 101 102 105	68 80 83 87 96 97 106 rnd	64 83 83 84 90 96 101 rnd	69 71 80 80 81 82 86 99			
<i>x</i> _{cp} /									

2. Произведено 13 испытаний, из них 4 – на первом уровне фактора, 6 – на втором, 3 – на третьем. Методом дисперсионного анализа при уровне значимости 0,01 проверить нулевую гипотезу о равенстве групповых средних. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями. Результаты приведены в таблице. Здесь rnd – случайное число из диапазона (50; 70), причем для каждого столбца свое.

Номер	Уровни фактора						
испытаиия <i>i</i>	F ₁	F ₂	F,				
1 2 3 4 5 6	37 47 40 rnd	rnd 86 67 92 95 98	rnd 100 98				
$\bar{x}_{\mathrm{rp} j}$		90					

Задание 5 «Проверка однородности выборок с помощью критерия Вилкоксона»

Эффективность каждого из двух рационов (A и B) откорма скота характеризуется выборками объемов n_1 =10 и n_2 =12 (в первой строке приведен вес в кг животных, которых откармливали по рациону A, во второй строке — по рациону B, N — номер по списку):

x_i: 24+*N* 25 27 27 30 32 33 34 35 36

y_i: 21 21 22 23 25 25 25 25 27 27 29 31-*N*

Используя критерий Вилкоксона, при уровне значимости 0,05 проверить нулевую гипотезу об одинаковой эффективности рационов A и B, приняв в качестве конкурирующей гипотезу о том, что это не так.

Критические точки критерия Вилкоксона

Объемы выборок		Q				Объемы выборок		Q			
n ₁	n,	0,005	0,01	0,025	0,05	n,	u ³	0,005	0.01	0,025	0,05
6	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	23 24 25 26 27 28 30 31 32 33 34 36 37 38 39 40 42 43 44 45	24 25 27 28 29 30 32 33 34 36 37 39 40 41 43 44 45 47 48 50	26 27 29 31 32 34 35 37 38 40 42 43 45 46 48 50 51 53	28 30 31 33 35 37 38 40 42 44 46 47 49 51 53 55 57 58 60 62	7	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	32 34 35 37 38 40 41 43 44 46 47 49 50 52 53 55 57 58 60	34 35 37 39 40 42 44 45 47 49 51 52 54 56 58 59 61 63 64	36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72	39 41 43 45 47 49 52 54 56 61 63 65 67 69 72 74 76 78

	Объемы выборок			Q		Объемы выборок		Q			
n ₁	n ₂	0,005	0,01	0.025	0,05	n ₁	n ₂	0,005	0,01	0.025	0,05
8	8 9 10 11 12 13 14 15 16 17 18	43 45 47 49 51 53 54 56 58 60 62 62	45 47 49 51 53 56 58 60 62 64 66 68	49 51 53 55 58 60 62 65 67 70 72 74	51 54 56 59 62 64 67 69 72 75 77	11	18 19 20 21 22 23 24 25 11 12 13	92 94 97 99 102 105 107 110 87 90 93 96	96 99 102 105 108 110 113 116 - 91 94 97 100	103 107 110 113 116 119 122 126 96 99 103 106	110 113 117 120 123 127 130 134 100 104 108 112
9	20 21 22 23 24 25 9 10 11 12	66 68 70 71 73 75 56 58 61 63 65	70 72 74 76 78 81 59 61 63 66 68	77 79 81 84 86 89 62 65 68 71 73	83 85 88 90 93 96 66 69 72 75 78		15 16 17 18 19 20 21 22 23 24 25	99 102 105 108 111 114 117 120 123 126 129	103 107 110 113 116 119 123 126 129 132 136	110 113 117 121 124 128 131 135 139 142 146	116 120 123 127 131 135 139 143 147 151 155
	14 15 16 17 18 19 20 21 22 23 24 25	67 69 72 74 76 78 81 83 85 88 90 92	71 73 76 78 81 83 85 88 90 93 95	76 79 82 84 87 90 93 95 98 101 104 107	81 84 87 90 93 96 99 102 105 108 111	12	12 13 14 15 16 17 18 19 20 21 22 23	105 109 112 115 119 122 125 129 132 136 139 142	109 113 116 120 124 127 131 134 138 142 145 149	115 119 123 127 131 135 139 143 147 151 155 159	120 125 129 133 138 142 146 150 155 159 163 168
10	10 11 12 13 14 15 16 17	71 73 76 79 81 84 86 89	74 77 79 82 85 88 91 93	78 81 84 88 91 94 97 100	82 86 89 92 96 99 103 106	13	24 25 13 14 15 16 17 18	146 149 125 129 133 136 140 144	153 156 130 134 138 142 146 150	163 167 136 141 145 150 154 158	172 176 142 147 152 156 161 166