High Dimensional Functional Model

1 Model

Consider outcome Y_{ij} is the grey matter volume (WVOLUME variable in the data), let X_{ij} be the τ protein (TAU), and Z_{ij} be the amyloid protein (AMYLOID) measured at $j = 1, \ldots, d$ brain regions of interest (ROI) $i = 1, \ldots, n$ subjects indexed by PIDN. Let \mathbf{W}_{ij} be the q dimensional baseline covariate. Our model is

$$Y_{ij} = \beta_j(Z_{ij})X_{ij} + \boldsymbol{\alpha}^{\mathrm{T}}\mathbf{W}_{ij} + \epsilon_{ij},$$

where ϵ_{ij} , i = 1, ..., n, j = 1, ..., d, are independent mean zeros random errors. We assume $\beta_j(Z_{ij})$ is in the K dimensional functional spaces, where $K \ll d$. That is

$$\beta_j(\cdot) = \sum_{k=1}^K \eta_{kl} \kappa_k(\cdot). \tag{1}$$

We estimate parameter β_j and α by using B-spline technique. We replace $\beta_j(\cdot)$ by a B-spline approximation $\mathbf{B}(t)^{\mathrm{T}}\boldsymbol{\gamma}_j$, where $\mathbf{B}(t)$ is a rth order B-spline basis with N knots. To satisfy the relation in (1), we assume $\mathbf{\Gamma} \equiv (\boldsymbol{\gamma}_j, j=1,\ldots,d)^{\mathrm{T}}$ is a low rank matrix. Now we reduce the problem of estimating $\beta_j(\cdot)$ to the problem of recovering $\mathbf{\Gamma}$. Let \mathbf{e}_j be the d dimensional unit vector with the jth entry to be one. We obtain the estimators for $\mathbf{\Gamma}, \alpha$ through minimizing

$$\sum_{i=1}^{n} \sum_{j=1}^{d} \{Y_{ij} - \mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Gamma} \mathbf{B}(Z_{ij}) X_{ij} - \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{W}_{ij} \}^{2} + \lambda_{L} \|\mathbf{\Gamma}\|_{*} + \lambda_{P} \sum_{j=1}^{d} \mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Gamma} \mathbf{D} \mathbf{\Gamma}^{\mathrm{T}} \mathbf{e}_{j},$$

where **D** is the second order weights matrix for the penalized spline regression and $\|\cdot\|_*$ is the nuclear norm. One choice of **D** can be $\int \mathbf{B}''(s)\mathbf{B}''(s)^{\mathrm{T}}ds$, where **B**" is the secondary derivative of **B**.

2 Algorithm

Let's first disregard $\boldsymbol{\alpha}^{\mathrm{T}}\mathbf{W}_{ij}$ and solve

$$\min \sum_{i=1}^{n} \sum_{j=1}^{d} \{Y_{ij} - \mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Gamma} \mathbf{B}(Z_{ij}) X_{ij} \}^{2} + \lambda_{L} \|\mathbf{\Gamma}\|_{*} + \lambda_{P} \sum_{j=1}^{d} \mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Gamma} \mathbf{D} \mathbf{\Gamma}^{\mathrm{T}} \mathbf{e}_{j},$$

$$\Leftrightarrow \min \sum_{i=1}^{n} \sum_{j=1}^{d} \{Y_{ij} - \mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Gamma} \mathbf{B}(Z_{ij}) X_{ij} \}^{2} + \lambda_{L} \|\mathbf{\Gamma}\|_{*} + \lambda_{P} \operatorname{trace}(\mathbf{\Gamma} \mathbf{D} \mathbf{\Gamma}^{\mathrm{T}}).$$

Let
$$f(\Gamma) = \sum_{i=1}^n \sum_{j=1}^d \{Y_{ij} - \mathbf{e}_j^{\mathrm{T}} \mathbf{\Gamma} \mathbf{B}(Z_{ij}) X_{ij} \}^2 + \lambda_P \operatorname{trace}(\Gamma \mathbf{D} \Gamma^{\mathrm{T}}) \text{ and } g(\Gamma) = \lambda_L \| \Gamma \|_*$$

Since $f(\cdot)$ is smooth and $g(\cdot)$ is convex, we use proximal gradient method to solve the above minimization. Denote $\mathbf{B}(Z_{ij})X_{ij}$ by \mathbf{v}_{ij} , the gradient of $f(\Gamma)$ is

$$\nabla f(\mathbf{\Gamma}) = \sum_{i=1}^{n} \sum_{j=1}^{d} 2(\mathbf{e}_{j} \mathbf{e}_{j}^{\mathrm{T}} \mathbf{\Gamma} \mathbf{v}_{ij} \mathbf{v}_{ij}^{\mathrm{T}} - Y_{ij} \mathbf{e}_{j} \mathbf{v}_{ij}^{\mathrm{T}}) + \lambda_{P} (\mathbf{\Gamma} \mathbf{D}^{\mathrm{T}} + \mathbf{\Gamma} \mathbf{D}).$$

Then we can estimate $\widehat{\Gamma}$ as follows.

Algorithm 1 Proximal gradient estimation

- 1. Given initial guess $\Gamma^0 = \mathbf{0}$, a threshold ϵ , λ_L , and λ_P .
- 2. For $t \geq 0$, repeat

$$\Gamma^{t+1} = \mathbf{prox}_{\alpha^t} (\Gamma^t - \alpha^t \nabla f(\Gamma^t))
= \underset{\Gamma}{\operatorname{argmin}} \frac{1}{2\alpha^t} \|\Gamma - (\Gamma^t - \alpha^t \nabla f(\Gamma^t))\|_F^2 + \lambda_L \|\Gamma\|_*.$$
(2)

3. If $\|\mathbf{\Gamma}^{t+1} - \mathbf{\Gamma}^t\|_F / \|\mathbf{\Gamma}^t\|_F \le \epsilon$, stop; else, go to Step 2.

 α^t is the step size, which can be chosen by a constant or by backtracking line search. The minimization in (2) can be solved by soft-thresholding SVD. Let $\mathbf{U}\Sigma\mathbf{V}^{\mathrm{T}}$ be the SVD of the matrix $\mathbf{\Gamma}^t - \alpha^t \nabla f(\mathbf{\Gamma}^t)$, then the solution of (2) is given by $\mathbf{\Gamma}^{t+1} = \mathbf{U}\Sigma_{\alpha^t\lambda_L}\mathbf{V}^{\mathrm{T}}$, where $\Sigma_{\alpha^t\lambda_L} = \mathrm{diag}\{(\Sigma_{i,i} - \alpha^t\lambda_L)_+\}$.