Pompe à palettes ★

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e\overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Il est possible de mettre la loi entrée-sortie sous la forme $\dot{\lambda}_+(t) = -e\dot{\theta}(t)\sin\theta(t)$ — $\frac{e^2\dot{\theta}(t)\cos\theta(t)\sin\theta(t)}{\sqrt{e^2\cos^2\theta(t)-e^2+R^2}}$ (voir exercice ?? – à vérifier).

Question 1 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

Question 2 Déterminer $\Gamma(B, 2/0)$.

Indications:

$$\begin{aligned} &1. \ \, \{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B. \\ &2. \ \, \overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_1} + 2\dot{\lambda}(t)\dot{\theta}(t)\overrightarrow{j_1} + \lambda(t)\ddot{\theta}(t)\overrightarrow{j_1} - \lambda(t)\dot{\theta}^2(t)\overrightarrow{i_1}. \end{aligned}$$

2.
$$\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_1} + 2\dot{\lambda}(t)\dot{\theta}(t)\overrightarrow{j_1} + \lambda(t)\ddot{\theta}(t)\overrightarrow{j_1} - \lambda(t)\dot{\theta}^2(t)\overrightarrow{i_1}$$

Corrigé voir .

