

09/856723

SEQUENCE LISTING

<110> Kramer, Michael

<120> Regulatory Protein pKe#83 from Human
Keratinocytes

<130> km-3/PCT

<140> PCT/DE 99/03732

<141> 1999-11-19

<150> DE19854672.6

<151> 1998-11-26

<150> DE19856301.9

<151> 1998-12-07

<160> 10

<170> PatentIn Ver. 2.1

<210> 1

<211> 2667

<212> DNA

<213> Homo sapiens

<400> 1

gttttggtag gcaaaaagag actattgaaa gctgagactt tagaatttag tgacttat 60
gttagtgata agaagaagga tatgtctcca ccctttattt gtgaggagac agatgaacaa 120
aagcttccaa ctctagacat cggttagaac ttggagaaaag aaaaatttaga gaattccaga 180
tccttagaat gcagatcaga tccagaatct cctataaaa aaacaagttt atctcctact 240
tctaaacctg gatactcata tagtagagat cttagaccttg ctaagaaaaa acatgcttcc 300
ctgaggcaga cggagtctga tccagatgt gatagaacca cttaaatca tgcagatcat 360
tcatcaaaaa tagtccagca tcgattgtt tctagacaag aagaacttaa ggaaagagca 420
agagttctgc ttgagcaagc aagaagagat gcagccttaa aggccccggaa taagcacaat 480
accaacacag ccacccatt ctgcaacagg cagctaagtg atcagcaaga tgaagagcga 540
cgtcggcagc tgagagagag agctcgtcag ctaatagcag aagctcgatc tggagtgaag 600
atgtcagaac ttcccagcta tggtaatg gctgcaactt agttgaaaga aaggtcaaag 660
gcatctggag atgaaaaatga taatatttag atagatacta acgaggagat ccctgaaggc 720
tttgtttag gagggtggaga tgaacttact aacttagaaa atgaccttga tactcccgaa 780
caaaaacagta agttggtgga cttgaagctg aagaagctcc tagaagttca gccacaggtg 840
gcaaattcac cctccagtgc tgcccagaaa gctgtcaactg agagctcaga gcaggacatg 900
aaaagtggca cagaagatct ccggactgaa cgattacaaa aaacaacaga acgttttaga 960
aatcctgttg tggcagcaaa agatttaca gtcagaaaaa ctcaacttca gtcttcagc 1020
caatatattt agaatagaco agagatggaa aggccagagat caatacagga agatacaaag 1080
aaaggaaatg aggagaaggc agcgataact gaaactcaga ggaaggccatc agaagatgaa 1140
gtgcttaata aagggttcaa agacaccgt cagttatgtt taggagaatt ggcagcacta 1200
gagaatgagc aaaagcaaat tgacacccgt gccgcgctgg tggagaagcgc cttcgctat 1260
ctcatggaca caggaaggaa cacagaagaa gaagaagcta tgatgcagga atggtttatg 1320
ttagttata agaaaaatgc cttataagg agaatgaatc agctctctt tctggaaaaa 1380
gaacatgatt tagaacgcg gtatgagctg ctgaaccggg aattgagggc aatgttagcc 1440
attgaagact ggcagaagac cgaggcccg aagcgcacgc aacagttct gctagatgag 1500
ctggtgccc tggtaacaa gcgcgtcg ctcgtcaggg acctggacgc gcaggagaag 1560
caggccgaag aagaagatga gcattttggag cgaactctgg agcaaaaacaa aggcaagatg 1620
gccaagaaaag aggagaaaatg tggcttcag tagccatcaag atcagaaaaga atctctccca 1680
acattttaga gtcttgcttc ccaaaccaga aaaagtcaaa ctcatgttg atttaaaaact 1740
tttaacatctt tggatgtt gattgtacta ctttacctct actttaccac caccacccctt 1800
ttcctccctc ctttccaaat aatatacaga actccaaaat agcttcattt aaggatttt 1860
ttgtgagttt acaatttcctg tggaaatcagat ttgcacagac accttgcgtg 1920
tggatgtt tggaggtgtt caagaaactg ttcgaaaaag aacaaaaaca cttccctcg 1980

tatttctct catttttga tgagaggaaa atttcaaaca ttattcttgt tgggtttgt 2040
aatagcataa tgacagtggg agggataaca gggataaga aaaatgtcat gatTTTTTC 2100
cggtcctgcc acatgtaaaca ctactctgt tacctaaatt ttatagttag atcatatcca 2160
atctacttat taaactgtgt tctattacc agtggagttt ttctgcagt gttgcgttc 2220
actgtaaagga taatggagtt cctctcctct gcttcctca gaggatggc ctttaacata 2280
gccagaaaca agccctgtgg tttgaaggtg agctgtgagg atggactaa ttgatatgca 2340
ccagttaca aagacagtct tatcatccga gaatacacca tcttttctc tggataatta 2400
tttcttacat catgcttgat tcctacattt tgggtttt caacattggc tcacgaatgc 2460
tgtaatatt tattctgtat tgataaaaag tctgtcttg cactacaagt aaatccccca 2520
ttaatattt tctcttttag catagoactg tcatttttg tgaaaatggt tatgtttatt 2580
tattacaata ctgagtcata tataaattt caataaaagc agaaactttc ttacctaaa 2640
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 2667

<210> 2
<211> 2547
<212> DNA
<213> Homo sapiens

<220>
<223> splice variant

<400> 2
gttttgttag gcaaaaagag actattgaaa gctgagactt tagaatttag tgacttata 60
gttagtgata agaagaagga tatgtctcca cccttttattt gtgaggagac agatgaacaa 120
aagcttcaaa ctctagacat cggttagaac ttggagaaag aaaaatttaga gaattccaga 180
tccttagaat gcagatcaga tccagaatct cctatcaaaa aaacaagttt atctcctact 240
tctaaacctg gataactcata tagtagagat cttagacctt ctaagaaaaa acatgcttcc 300
ctgaggcaga cggagtctga tccagatgt gatagaacca cttaaatca tgcagatcat 360
tcatcaaaaa tagtccagca tcgattgtt tctagacaag aagaacttaa ggaaagagca 420
agagttctgc ttgagcaagc aagaagagat gcagccttaa aggcccggaa taagcacaat 480
accaacacag ccaccccccatt ctgcaacagg cagctaagtg atcagaaga tgaagagcga 540
cgtcggcagc tgagagagag agctcgtcag ctaatagcag aagctcgatc tggagtgaag 600
atgtcagaac ttcccagcta tggtaatg gctgagaaa agttgaaaga aaggtcaaag 660
caaaacagta agttgggtga cttgaagctg aagaagctcc tagaagttca gccacaggtg 720
gcaaattcac cctccagtc tgcccagaaa gctgttaactg agagctcaga gcaggacatg 780
aaaagtggca cagaagatct ccggactgaa cgattacaaa aaacaacaga acgtttttaga 840
aatcctgttg tggtaatc agatttaca gtcagaaaaa ctcaacttca gtctttcagc 900
caatatattt agaatagacc agagatgaaa aggtagatgatca aatacagga agataacaag 960
aaaggaaatg aggagaaggc agcgataact gaaactcaga ggaagccatc agaagatgaa 1020
gtgcttaata aagggttcaa agacaccatg cagtagatgt taggagaatt ggcagcacta 1080
gagaatgagc aaaagcaaat tgacaccgt gccgcgtgg tggagaagcg cttcgctat 1140
ctcatggaca caggaaggaa cacagaagaa gaagaagctg tgatgcagga atggtttatg 1200
ttagttata agaaaaatgc cttataagg agaatgaatc agctctctc tctggaaaaa 1260
gaacatgatt tagaacgcg gtatgagctg ctgaaccggg aattgagggc aatgttagcc 1320
attgaagact ggcagaagac cgaggcccag aagcgcacgc aacagttct gctagatgag 1380
ctgggtggccc tggtaacaa ggcgcgtgc ctcgtcaggg acctggacgc gcaggagaag 1440
caggccgaag aagaagatga gcattttggag cgaactctgg agcaaaacaa aggcaagatg 1500
gccaagaaag aggagaatg tggtaatcag tagccatcaag atcagaacaa atctctccca 1560
acattttaga gtottgttc ccaaaccaga aaaagtcaaa ctcattgtt atttaaaact 1620
tttaacattt tggtaatcgtg gattgtacta ctttacctct actttaccac caccaccctt 1680
ttcctccctc ctttccaaat aatatacaga actccaaaat agcttcattt aaggatttt 1740
ttgtgagttt acaatttcct tggtaatcgt tggaaatagat ttgcacagac accttgcgtg 1800
tgattggat tggaggtgtt caagaaaactg ttcgaaaaag aacaaaaaca cttccctcg 1860
tatTTTCTCT catttttga tgagaggaaa atttggaaaca ttattttgt tgggtttgt 1920
aatagcataa tgacagtggg agggataaca gggataaga aaaatgtcat gatTTTTTC 1980
cggtcctgcc acatgtaaaca ctactctgt tacctaaatt ttatagttag atcatatcca 2040
atctacttat taaactgtgt tctattacc agtggagttt ttctgcagt gttgcgttc 2100
actgtaaagga taatggagtt cctctcctct gcttcctca gaggatggc ctttaacata 2160
gccagaaaca agccctgtgg tttgaaggtg agctgtgagg atggactaa ttgatatgca 2220
ccagttaca aagacagtct tatcatccga gaatacacca tcttttctc tggataatta 2280

tttcttacat catgcttgat tcctacattt tggtgggtt caacattggc tcacgaatgc 2340
tgttaatatt tattctgtat tgataaaaag tctgtcttgc cactacaagt aaatccccca 2400
ttaataattt tcttcatttag catagcaactg tcattttttg tgaaaatggt tatgtttatt 2460
tattacaata ctgagtcata tataaatttt caataaaagc agaaaacttcc ttaccttaaa 2520
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2547

<210> 3
<211> 523
<212> PRT
<213> Homo sapiens

<220>
<223> Phosphorylation sites: 9x Protein kinase, 15x
Casein kinase, 2x Tyrosin kinase

<220>
<223> Prenylation site (CAAX-box)

<400> 3
Met Ser Pro Pro Phe Ile Cys Glu Glu Thr Asp Glu Gln Lys Leu Gln
1 5 10 15

Thr Leu Asp Ile Gly Ser Asn Leu Glu Lys Glu Lys Leu Glu Asn Ser
20 25 30

Arg Ser Leu Glu Cys Arg Ser Asp Pro Glu Ser Pro Ile Lys Lys Thr
35 40 45

Ser Leu Ser Pro Thr Ser Lys Leu Gly Tyr Ser Tyr Ser Arg Asp Leu
50 55 60

Asp Leu Ala Lys Lys His Ala Ser Leu Arg Gln Thr Glu Ser Asp
65 70 75 80

Pro Asp Ala Asp Arg Thr Thr Leu Asn His Ala Asp His Ser Ser Lys
85 90 95

Ile Val Gln His Arg Leu Leu Ser Arg Gln Glu Glu Leu Lys Glu Arg
100 105 110

Ala Arg Val Leu Leu Glu Gln Ala Arg Arg Asp Ala Ala Leu Lys Ala
115 120 125

Gly Asn Lys His Asn Thr Asn Thr Ala Thr Pro Phe Cys Asn Arg Gln
130 135 140

Leu Ser Asp Gln Gln Asp Glu Glu Arg Arg Arg Gln Leu Arg Glu Arg
145 150 155 160

Ala Arg Gln Leu Ile Ala Glu Ala Arg Ser Gly Val Lys Met Ser Glu
165 170 175

Leu Pro Ser Tyr Gly Glu Met Ala Ala Glu Lys Leu Lys Glu Arg Ser
180 185 190

Lys Ala Ser Gly Asp Glu Asn Asp Asn Ile Glu Ile Asp Thr Asn Glu
195 200 205

Glu Ile Pro Glu Gly Phe Val Val Gly Gly Asp Glu Leu Thr Asn
210 215 220

Leu Glu Asn Asp Leu Asp Thr Pro Glu Gln Asn Ser Lys Leu Val Asp
225 230 235 240

Leu Lys Leu Lys Lys Leu Leu Glu Val Gln Pro Gln Val Ala Asn Ser
245 250 255

Pro Ser Ser Ala Ala Gln Lys Ala Val Thr Glu Ser Ser Glu Gln Asp
260 265 270

Met Lys Ser Gly Thr Glu Asp Leu Arg Thr Glu Arg Leu Gln Lys Thr
275 280 285

Thr Glu Arg Phe Arg Asn Pro Val Val Phe Ser Lys Asp Ser Thr Val
290 295 300

Arg Lys Thr Gln Leu Gln Ser Phe Ser Gln Tyr Ile Glu Asn Arg Pro
305 310 315 320

Glu Met Lys Arg Gln Arg Ser Ile Gln Glu Asp Thr Lys Lys Gly Asn
325 330 335

Glu Glu Lys Ala Ala Ile Thr Glu Thr Gln Arg Lys Pro Ser Glu Asp
340 345 350

Glu Val Leu Asn Lys Gly Phe Lys Asp Thr Ser Gln Tyr Val Val Gly
355 360 365

Glu Leu Ala Ala Leu Glu Asn Gln Lys Gln Ile Asp Thr Arg Ala
370 375 380

Ala Leu Val Glu Lys Arg Leu Arg Tyr Leu Met Asp Thr Gly Arg Asn
385 390 395 400

Thr Glu Glu Glu Ala Met Met Gln Glu Trp Phe Met Leu Val Asn
405 410 415

Lys Lys Asn Ala Leu Ile Arg Arg Met Asn Gln Leu Ser Leu Leu Glu
420 425 430

Lys Glu His Asp Leu Glu Arg Arg Tyr Glu Leu Leu Asn Arg Glu Leu
435 440 445

Arg Ala Met Leu Ala Ile Glu Asp Trp Gln Lys Thr Glu Ala Gln Lys
450 455 460

Arg Arg Glu Gln Leu Leu Asp Glu Leu Val Ala Leu Val Asn Lys
465 470 475 480

Arg Asp Ala Leu Val Arg Asp Leu Asp Ala Gln Glu Lys Gln Ala Glu
485 490 495

Glu Glu Asp Glu His Leu Glu Arg Thr Leu Glu Gln Asn Lys Gly Lys
500 505 510

Met Ala Lys Lys Glu Glu Lys Cys Val Leu Gln
515 520

<210> 4
<211> 481
<212> PRT
<213> Homo sapiens

<220>
<223> Phoshorylation sites: 9x Protein kinase, 15x Casein kinase, 2x Tyrosine kinase

<220>
<223> Prenylation site (CAAX-box)

<400> 4
Met Ser Pro Pro Phe Ile Cys Glu Glu Thr Asp Glu Gln Lys Leu Gln
1 5 10 15

Thr Leu Asp Ile Gly Ser Asn Leu Glu Lys Glu Lys Leu Glu Asn Ser
20 25 30

Arg Ser Leu Glu Cys Arg Ser Asp Pro Glu Ser Pro Ile Lys Lys Thr
35 40 45

Ser Leu Ser Pro Thr Ser Lys Leu Gly Tyr Ser Tyr Ser Arg Asp Leu
50 55 60

Asp Leu Ala Lys Lys His Ala Ser Leu Arg Gln Thr Glu Ser Asp
65 70 75 80

Pro Asp Ala Asp Arg Thr Thr Leu Asn His Ala Asp His Ser Ser Lys
85 90 95

Ile Val Gln His Arg Leu Leu Ser Arg Gln Glu Glu Leu Lys Glu Arg
100 105 110

Ala Arg Val Leu Leu Glu Gln Ala Arg Arg Asp Ala Ala Lys Ala
115 120 125

Gly Asn Lys His Asn Thr Asn Thr Ala Thr Pro Phe Cys Asn Arg Gln
130 135 140

Leu Ser Asp Gln Gln Asp Glu Glu Arg Arg Arg Gln Leu Arg Glu Arg
145 150 155 160

Ala Arg Gln Leu Ile Ala Glu Ala Arg Ser Gly Val Lys Met Ser Glu
165 170 175

Leu Pro Ser Tyr Gly Glu Met Ala Ala Glu Lys Leu Lys Glu Glu Gln
180 185 190

Asn Ser Lys Leu Val Asp Leu Lys Leu Lys Lys Leu Leu Glu Val Gln
195 200 205

Pro Gln Val Ala Asn Ser Pro Ser Ser Ala Ala Gln Lys Ala Val Thr
210 215 220

Glu Ser Ser Glu Gln Asp Met Lys Ser Gly Thr Glu Asp Leu Arg Thr
225 230 235 240

Glu Arg Leu Gln Lys Thr Thr Glu Arg Phe Arg Asn Pro Val Val Phe

245	250	255
Ser Lys Asp Ser Thr Val Arg Lys Thr Gln Leu Gln Ser Phe Ser Gln		
260	265	270
Tyr Ile Glu Asn Arg Pro Glu Met Lys Arg Gln Arg Ser Ile Gln Glu		
275	280	285
Asp Thr Lys Lys Gly Asn Glu Glu Lys Ala Ala Ile Thr Glu Thr Gln		
290	295	300
Arg Lys Pro Ser Glu Asp Glu Val Leu Asn Lys Gly Phe Lys Asp Thr		
305	310	315
320		
Ser Gln Tyr Val Val Gly Glu Leu Ala Ala Leu Glu Asn Glu Gln Lys		
325	330	335
Gln Ile Asp Thr Arg Ala Ala Leu Val Glu Lys Arg Leu Arg Tyr Leu		
340	345	350
Met Asp Thr Gly Arg Asn Thr Glu Glu Glu Ala Met Met Gln Glu		
355	360	365
Trp Phe Met Leu Val Asn Lys Lys Asn Ala Leu Ile Arg Arg Met Asn		
370	375	380
Gln Leu Ser Leu Leu Glu Lys Glu His Asp Leu Glu Arg Arg Tyr Glu		
385	390	395
400		
Leu Leu Asn Arg Glu Leu Arg Ala Met Leu Ala Ile Glu Asp Trp Gln		
405	410	415
Lys Thr Glu Ala Gln Lys Arg Arg Glu Gln Leu Leu Asp Glu Leu		
420	425	430
Val Ala Leu Val Asn Lys Arg Asp Ala Leu Val Arg Asp Leu Asp Ala		
435	440	445
Gln Glu Lys Gln Ala Glu Glu Asp Glu His Leu Glu Arg Thr Leu		
450	455	460
Glu Gln Asn Lys Gly Lys Met Ala Lys Lys Glu Glu Lys Cys Val Leu		
465	470	475
480		
Gln		
<210> 5		
<211> 2559		
<212> DNA		
<213> Homo sapiens		
<220>		
<223> splice variant		
<400> 5		
gttttgttag gcaaaaagag actattgaaa gctgagactt tagaatttag tgacttat 60		
gttagtgata agaagaagga tatgtctcca ccctttattt gtgaggagac agatgaacaa 120		
aagcttcaaa ctctagacat cggtagtaac ttggagaaag aaaaattaga gaattccaga 180		
tccttagaat gcagatcaga tccagaatct cctatcaaaa aaacaagttt atctcctact 240		
tctaaacctg gatactcata tagtagagat ctagaccttg ctaagaaaaa acatgcttcc 300		
ctgaggcaga cggagtctga tccagatgct gatagaacca ctttaaatca tgcagatcat 360		

tcatcaaaaa tagtccagca tcgattgtta tctagacaag aagaactaa gaaaagagca 420
 agagttctgc ttgagcaagc aagaagagat gcagccctaa aggcccggaa taagcacaat 480
 accaacacag ccaccccccatt ctgcaacagg cagctaagtg atcagaaga tgaagagcga 540
 cgtcggcagc tgagagagag agctcgtag ctaatagcag aagctcgatc tggagtgaag 600
 atgtcagaac ttcccagcta tggtaaatg gctgcagaaa agttgaaaga aaggtcaaag 660
 gcatctggag aacaaaacag taagttgtg gacttgaagc tgaagaagct cctagaagtt 720
 cagccacagg tggcaaattc accctccagt gctgcccaga aagctgtac tgagagctca 780
 gagcaggaca tgaaaagtgg cacagaagat ctccggactg aacgattaca aaaaacaaca 840
 gaacgtttta gaaatcctgt tgtgttcagc aaagattcta cagtcagaaa aactcaactt 900
 cagtcttca gccaatatata tgagaataga ccagagatga aaaggcagag atcaatacag 960
 gaagatacaa agaaaggaaa tgaggagaag gcagcgataa ctgaaactca gaggaagcga 1020
 tcagaagatg aagtgtttaa taaagggttc aaagacacca gtcagtatgt agtaggagaa 1080
 ttggcagcac tagagaatga gcaaaagcaa attgacaccg gtgcgcgcgt ggtggagaag 1140
 cgccttcgct atctcatgga cacaggaagg aacacagaag aagaagaagc tatgtgcag 1200
 gaatgttta tggtagttaa taagaaaaat gccttaataa ggagaatgaa tcagctct 1260
 cttctggaaa aagaacatga tttagaacga cgttatgagc tgctgaaccg gaaattgagg 1320
 gcaatgttag ccattgaaga ctggcagaag accgaggccc agaagcgcacg cgaacagctt 1380
 ctgcttagatg agctgggtggc cttggtaac aagcgcgtatc cgctcgtagc gcacctggac 1440
 ggcgcaggaga agcaggccga agaagaagat gacgttttg agcgaactct ggagcaaaac 1500
 aaaggcaaga tggccaagaa agaggagaaa tggttcttc agtagccatc agatcagaaa 1560
 gaatctctcc caacattttt gagtctgtc tcccaaaccg aaaaagtca gactcattgt 1620
 tgatTTaaaa ctttaacat tttgttggc tggattgtac tactttacct ctactttacc 1680
 accaccaccc ttttctccc tcctttccaa ataataataca gaactccaaa atagcttcat 1740
 ttaaggattt ttttgtgagt taacaatttc ctgaaatcc tggaaatag atttgcacag 1800
 acaccttgcgt agtattgtt attggaggtg tcaagaaac tggtaaaaaa agaacaaaaa 1860
 cacttccctc gttattttt ctcattttt gatgagagga aaattgaaa cattattttt 1920
 gttgttggg gtaatagcat aatgacagtgg ggggggtac aaggggataa gaaaaatgtc 1980
 atgattttt tccggctctg ccacatgtaa cacttactct gttacccaaa tttttagtt 2040
 agatcatatc caatctactt attaaactgt gttcttattt ccagtgaggt ttttctgcag 2100
 tgggtgcgtt tcactgtaa gataatggag ttcccttcct ctgcttcct cagaggatgg 2160
 tcctttaaca tagccagaaa caagccctgt gtttgaagg tgagctgtga gatgggact 2220
 aattgatatg caccatgtt caaagacagt ctatcatcc gagaatacac catcttttc 2280
 tctggataat tatttcttac atcatgttg attccatcat tttgttgggt tcaacattt 2340
 gtcacgaat gctgttaata tttattctgt attgataaaa agtctgtctt gccactacaa 2400
 gtaaatcccc cattaat tttcttctt agcatagcactt gtcattttt tggaaaatg 2460
 gttatgtta tttattacaa tactgagtca tatataaatt ttcataaaaaa gcagaaactt 2520
 tcttacctt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2559

<210> 6
 <211> 487
 <212> PRT
 <213> Homo sapiens

<220>
 <223> Phosphorylation sites: 8x Protein kinase, 12x
 Casein kinase, 2x Tyrosine kinase

<220>
 <223> Prenylation site (CAAX-box)

<400> 6
 Met Ser Pro Pro Phe Ile Cys Glu Glu Thr Asp Glu Gln Lys Leu Gln
 1 5 10 15

Thr Leu Asp Ile Gly Ser Asn Leu Glu Lys Glu Lys Leu Glu Asn Ser
 20 25 30

Arg Ser Leu Glu Cys Arg Ser Asp Pro Glu Ser Pro Ile Lys Lys Thr
 35 40 45

Ser Leu Ser Pro Thr Ser Lys Leu Gly Tyr Ser Tyr Ser Arg Asp Leu
50 55 60

Asp Leu Ala Lys Lys Lys His Ala Ser Leu Arg Gln Thr Glu Ser Asp
65 70 75 80

Pro Asp Ala Asp Arg Thr Thr Leu Asn His Ala Asp His Ser Ser Lys
85 90 95

Ile Val Gln His Arg Leu Leu Ser Arg Gln Glu Glu Leu Lys Glu Arg
100 105 110

Ala Arg Val Leu Leu Glu Gln Ala Arg Arg Asp Ala Ala Leu Lys Ala
115 120 125

Gly Asn Lys His Asn Thr Asn Thr Ala Thr Pro Phe Cys Asn Arg Gln
130 135 140

Leu Ser Asp Gln Gln Asp Glu Glu Arg Arg Arg Gln Leu Arg Glu Arg
145 150 155 160

Ala Arg Gln Leu Ile Ala Glu Ala Arg Ser Gly Val Lys Met Ser Glu
165 170 175

Leu Pro Ser Tyr Gly Glu Met Ala Ala Glu Lys Leu Lys Glu Arg Ser
180 185 190

Lys Ala Ser Gly Glu Gln Asn Ser Lys Leu Val Asp Leu Lys Leu Lys
195 200 205

Lys Leu Leu Glu Val Gln Pro Gln Val Ala Asn Ser Pro Ser Ser Ala
210 215 220

Ala Gln Lys Ala Val Thr Glu Ser Ser Glu Gln Asp Met Lys Ser Gly
225 230 235 240

Thr Glu Asp Leu Arg Thr Glu Arg Leu Gln Lys Thr Thr Glu Arg Phe
245 250 255

Arg Asn Pro Val Val Phe Ser Lys Asp Ser Thr Val Arg Lys Thr Gln
260 265 270

Leu Gln Ser Phe Ser Gln Tyr Ile Glu Asn Arg Pro Glu Met Lys Arg
275 280 285

Gln Arg Ser Ile Gln Glu Asp Thr Lys Lys Gly Asn Glu Glu Lys Ala
290 295 300

Ala Ile Thr Glu Thr Gln Arg Lys Pro Ser Glu Asp Glu Val Leu Asn
305 310 315 320

Lys Gly Phe Lys Asp Thr Ser Gln Tyr Val Val Gly Glu Leu Ala Ala
325 330 335

Leu Glu Asn Glu Gln Lys Gln Ile Asp Thr Arg Ala Ala Leu Val Glu
340 345 350

Lys Arg Leu Arg Tyr Leu Met Asp Thr Gly Arg Asn Thr Glu Glu Glu
355 360 365

Glu Ala Met Met Gln Glu Trp Phe Met Leu Val Asn Lys Lys Asn Ala
370 375 380

Leu Ile Arg Arg Met Asn Gln Leu Ser Leu Leu Glu Lys Glu His Asp
385 390 395 400

Leu Glu Arg Arg Tyr Glu Leu Leu Asn Arg Glu Leu Arg Ala Met Leu
405 410 415

Ala Ile Glu Asp Trp Gln Lys Thr Glu Ala Gln Lys Arg Arg Glu Gln
420 425 430

Leu Leu Leu Asp Glu Leu Val Ala Leu Val Asn Lys Arg Asp Ala Leu
435 440 445

Val Arg Asp Leu Asp Ala Gln Glu Lys Gln Ala Glu Glu Glu Asp Glu
450 455 460

His Leu Glu Arg Thr Leu Glu Gln Asn Lys Gly Lys Met Ala Lys Lys
465 470 475 480

Glu Glu Lys Cys Val Leu Gln
485

<210> 7

<211> 4914

<212> DNA

<213> Homo sapiens

<400> 7

ggcgggggag ccctccagaa tacccatcat atagccccctg aggtggcatg gtgatgtctc 60
catgagggaa ccccttccca cttcatactg tcacgtatat catagtgttc ttgactggc 120
cattcatcta agatgggatt taccctgtga aacaggaga agacttatgg accccaagca 180
tcatttcaag ttgaagttga gtttttaaaa gccatccatg caaagttcct ttgctttgga 240
ccctctgcattataaaagct gctgtattgc taacccagaa ctgctccagt gtcttgactg 300
atcatcatgg cttcagtttgc gaagagactg cagcgtgtgg gaaaacatgc atccaaagttc 360
cagtttgcgg cctcctacca ggagctcatg gttgagttgtca cgaagaaatg gtaaccagat 420
aaactgggtgg tagtttggac cagaagaagc cgaaggaagt cttctaaggc acatagctgg 480
caacctggaa taaaaaatcc ctagctgggt gttgttgtgt ggcctgttcc taaaaacatt 540
gaaatcaactg taacactttt taaggatcct catgcggaaag aatttgaaga caaagagtgg 600
acatttgcata gaaaaatga atcccccttgc ggtcgaagga aagctttgc tactagcagc 660
atcaatatga aacagtatgc aagccctatg ccaactcaga ctgatgtcaa gttaaaattc 720
aagccattat ctaaaaaatgt tttatctgc gctcttcagg tttcattatc ttgcattttt 780
ctgagggaaag gaaaagccac agatgaagac atgcaaaatgt tggctagttt ggtgagttatg 840
aagcaggctg acatttggcaat ttttagatgc ttgcagaagaa ataatgaaga tgatgtgag 900
aacagagtga accaagaaga aaaggcagct aaaattacag agcttatcaa caaacttaac 960
tttttggatg aagcagaaaa ggacttggcc accgtgaatt caaattccatt tgatgtatcct 1020
gatgctgcag aattaaatcc atttggagat cctgactcaag aagaacctat cactgaaaca 1080
gcttcaccta gaaaaacaga agactttt tataataaca gctataatcc ctttaaagag 1140
gtgcagactc cacagtattt gaaccatttc gatgagccag aagcatttgt gaccataaag 1200
gattctcctc cccagtctac aaaaagaaaa aatataagac ctgtggatgat gagcaagtac 1260
ctctatgctg atagttctaa aactgaagaa gaagaattgg atgaatcaaa tccttttat 1320
gaacctaataat caactcctcc tccaaataat ttggtaaattc ctgttcaaga actagaaact 1380
gaaaggcgag tgaaaaagaaaa ggccccggct ccaccagtcc tctcaccaaa aacaggagata 1440
ttaaatgaaaa acacagtttc tgcagggaaaa gatctctcta cttctctaa gccaaggccct 1500
ataccaagtc ctgttttggg gcgaaagcca aatgtctagtc agtcttgct tttatgggt 1560
aaagaagtta caaagaacta ccgaggagta aaaatcacca attttactac atcgtggaga 1620
aatggtttat ctttttgc aatattacac cacttttagac cagatttaat tgactacaag 1680
tctctgaatc ctcaagatata taaagagaac aacaaaaagg catacgatgg atttgccagc 1740
ataggaattt cccgattattt ggaaccttct gatatggat tattagcaat tcctgtataaa 1800
ctgactgtta tgacttatct ctatcaaata agggcacatt tcagtgccca agaactaaat 1860
gtcgatcaga tagagggaaaa cagcagtaaa agcacaatata aagttggaaa ctatgaaaca 1920

gatacaaaca gttctgttga tcaagaaaaa ttctatgcag agcttagtga tctgaagcgg 1980
gaggcctgaac tacaacagcc tatcagcggc gcagtagact tcttatcaca ggatgactct 2040
gtatTTgtaa atgatagcgg ggttggagag toagaaaagtgc agcatcaaac tcctgtatgt 2100
caccttagtc caagcacagc ctccccttac tgtcgcagga ctaaaaagtga cacagaaccc 2160
cagaagtctc agcagagctc tggaaggact tcaggatctg atgaccctgg aatatgttcc 2220
aatacagatt caacccaagc acaggTTTtgc tttaggcaaaa agagactatt gaaagctgag 2280
actttagaat ttagtgcattt atatgttagt gataagaaga aggatatgtc tccacccttt 2340
atTTgtgagg agacagatga acaaaaagctt caaactctag acatcggtag taacttggag 2400
aaagaaaaat tagagaattc cagatcccta gaatgcagat cagatccaga atctcctatc 2460
aaaaaaacaa gtttatctcc tacttctaaa ctggataact catatagttag agatctagac 2520
cttgctaaga aaaaacatgc ttccctgagg cagacggagt ctgatccaga tgctgataga 2580
accactttaa atcatgcaga tcattcatca aaaatagtcc agcatcgattt gttatctaga 2640
caagaagaac ttaagggaaag agcaagagtt ctgcttgagc aagcaagaag agatgcagcc 2700
ttaaaggcgg ggaataagca caataccaac acagccaccc cattctgcaa caggcagcta 2760
agtgtatcagc aagatgaaga gcgcacgtcgg cagctgagag agagagctcg ttagtgcata 2820
gcagaagctc gatctggagt gaagatgtca gaacttccc gctatgtga aatggctgca 2880
gaaaagtgtga aagaaaggctc aaaggcatct ggagatgaaa atgataatat tgagatagat 2940
actaacgagg agatccctga aggcttggtt gttaggaggtg gagatgaaact tactaactta 3000
gaaaatgacc ttgatactcc cgaacaaaac agtaagtgg tggacttggaa gctgaagaag 3060
ctcctagaag ttcaagccaca ggtggcaaat toaccctcca gtgctgccc gaaagctgta 3120
actgagagct cagagcagga catgaaaagt ggcacagaag atctccggac tgaacgattt 3180
aaaaaaacaa cagaacgttt tagaaatcct gtgtgttca gcaaagattc tacagtca 3240
aaaactcaac ttcaagtcttt cagccaatat attgagaata gaccagagat gaaaaggcag 3300
agatcaatac aggaagatac aaagaaaagga aatgaggaga aggcaagcgt aactgaaact 3360
cagaggaagc catcagaaga tgaagtgcattt aataaagggt tcaaagacac cagtca 3420
gtagtaggag aattggcagc actagagaat gagcaaaaagc aaatttgcac ccgtgcccg 3480
ctgggtggaga agcgccttcg ctatctcatg gacacaggaa ggaacacaga agaagaagaa 3540
gctatgtatgc aggaatgggtt tatgttagtt aataagaaaa atgccttaat aaggagaatg 3600
aatcagctct ctcttctgga aaaagaacat gatttgcac gacggatgtga gctgctgaa 3660
cgggaattga gggcaatgct agccattgaa gactggcaga agaccgaggc ccagaagcga 3720
cgcgaacagc ttctgctaga tgagctggc gcccctggta acaagcgcga tgcgctcg 3780
agggacctgg acgcgcagga gaagcaggcc gaagaagaag atgagcattt ggagcgaact 3840
ctggagcaaa acaaaggcga gatggccaag aaagaggaga aatgtgttct tcaatgcaca 3900
tcagatcaga aagaatctct cccaaacattt tagagtcttgc ttcccaaaac cagaaaaagt 3960
cagactcattt gttgatttaa aactttttaac attttgtttg gctggattgt actactttac 4020
ctctacttta ccaccaccac ccttttccctc ctcctttcc aaataatata cagaactcca 4080
aaatagctc attaaggat tttttgtga gtaacaattt tccttgcattt cctgtgaaat 4140
agatttgcac agacacccctg tgagtgtattt gtttggagg ttttcaagaa actgttgc 4200
aaagaacaaa aacacttccc tcgttatttt ctctcatttt ttgtatgagag gaaaatttga 4260
aacattattt ttgttgttgt tggtatagc ataatgcac tgggggggat acaaggggat 4320
aagaaaaatg tcatgatttt tttccggc tggccacatgt aacacttact ctgttaccta 4380
aattttatag ttagatcata tccaatctac ttattaaact gtgttctatt taccagtgg 4440
gttttctgc agtgggttgcg tttcactgtc aggataatgg agttcccttc ctctgctt 4500
ctcagaggat ggtccctttaa catagccaga aacaaggccct gtgggttggaa ggtgagctgt 4560
gaggatggga ctaattgtata tgcaccaggc tacaaggaca gtcttatcat ccgagaatc 4620
accatcttt tctctggata attatttctt acatcatgtc tgattccctac attttgttgg 4680
gtttcaacat tggctcacga atgctgtttaa tattttattct gtattgataa aagtctgtc 4740
ttgccactac aagtaaatcc cccatttaat attttcttct ttagcatagc actgtcattt 4800
tttgtgaaaa tgggtatgtt tattttattac aatactgagt catatataaaa ttttcaataa 4860
aagcagaaac ttttttaccc taaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa a*nd 4914

<210> 8
<211> 1076
<212> PRT
<213> Homo sapiens

<220>
<223> Phosphorylation sites: 24x Protein kinase, 29x

Casein kinase, 5x Tyrosine kinase

<220>

<223> 8 Myristilation sites

<400> 8

Met Lys Gln Tyr Ala Ser Pro Met Pro Thr Gln Thr Asp Val Lys Leu
1 5 10 15

Lys Phe Lys Pro Leu Ser Lys Lys Val Val Ser Ala Ala Leu Gln Phe
20 25 30

Ser Leu Ser Cys Ile Phe Leu Arg Glu Gly Lys Ala Thr Asp Glu Asp
35 40 45

Met Gln Ser Leu Ala Ser Leu Val Ser Met Lys Gln Ala Asp Ile Gly
50 55 60

Asn Leu Asp Asp Phe Glu Glu Asp Asn Glu Asp Asp Asp Glu Asn Arg
65 70 75 80

Val Asn Gln Glu Glu Lys Ala Ala Lys Ile Thr Glu Leu Ile Asn Lys
85 90 95

Leu Asn Phe Leu Asp Glu Ala Glu Lys Asp Leu Ala Thr Val Asn Ser
100 105 110

Asn Pro Phe Asp Asp Pro Asp Ala Ala Glu Leu Asn Pro Phe Gly Asp
115 120 125

Pro Asp Ser Glu Glu Pro Ile Thr Glu Thr Ala Ser Pro Arg Lys Thr
130 135 140

Glu Asp Ser Phe Tyr Asn Asn Ser Tyr Asn Pro Phe Lys Glu Val Gln
145 150 155 160

Thr Pro Gln Tyr Leu Asn Pro Phe Asp Glu Pro Glu Ala Phe Val Thr
165 170 175

Ile Lys Asp Ser Pro Pro Gln Ser Thr Lys Arg Lys Asn Ile Arg Pro
180 185 190

Val Asp Met Ser Lys Tyr Leu Tyr Ala Asp Ser Ser Lys Thr Glu Glu
195 200 205

Glu Glu Leu Asp Glu Ser Asn Pro Phe Tyr Glu Pro Lys Ser Thr Pro
210 215 220

Pro Pro Asn Asn Leu Val Asn Pro Val Gln Glu Leu Glu Thr Glu Arg
225 230 235 240

Arg Val Lys Arg Lys Ala Pro Ala Pro Pro Val Leu Ser Pro Lys Thr
245 250 255

Gly Val Leu Asn Glu Asn Thr Val Ser Ala Gly Lys Asp Leu Ser Thr
260 265 270

Ser Pro Lys Pro Ser Pro Ile Pro Ser Pro Val Leu Gly Arg Lys Pro
275 280 285

Asn Ala Ser Gln Ser Leu Leu Val Trp Cys Lys Glu Val Thr Lys Asn

290 295 300
Tyr Arg Gly Val Lys Ile Thr Asn Phe Thr Thr Ser Trp Arg Asn Gly
305 310 315 320
Leu Ser Phe Cys Ala Ile Leu His His Phe Arg Pro Asp Leu Ile Asp
325 330 335
Tyr Lys Ser Leu Asn Pro Gln Asp Ile Lys Glu Asn Asn Lys Lys Ala
340 345 350
Tyr Asp Gly Phe Ala Ser Ile Gly Ile Ser Arg Leu Leu Glu Pro Ser
355 360 365
Asp Met Val Leu Leu Ala Ile Pro Asp Lys Leu Thr Val Met Thr Tyr
370 375 380
Leu Tyr Gln Ile Arg Ala His Phe Ser Gly Gln Glu Leu Asn Val Val
385 390 395 400
Gln Ile Glu Glu Asn Ser Ser Lys Ser Thr Tyr Lys Val Gly Asn Tyr
405 410 415
Glu Thr Asp Thr Asn Ser Ser Val Asp Gln Glu Lys Phe Tyr Ala Glu
420 425 430
Leu Ser Asp Leu Lys Arg Glu Pro Glu Leu Gln Gln Pro Ile Ser Gly
435 440 445
Ala Val Asp Phe Leu Ser Gln Asp Asp Ser Val Phe Val Asn Asp Ser
450 455 460
Gly Val Gly Glu Ser Glu Ser Glu His Gln Thr Pro Asp Asp His Leu
465 470 475 480
Ser Pro Ser Thr Ala Ser Pro Tyr Cys Arg Arg Thr Lys Ser Asp Thr
485 490 495
Glu Pro Gln Lys Ser Gln Gln Ser Ser Gly Arg Thr Ser Gly Ser Asp
500 505 510
Asp Pro Gly Ile Cys Ser Asn Thr Asp Ser Thr Gln Ala Gln Val Leu
515 520 525
Leu Gly Lys Lys Arg Leu Leu Lys Ala Glu Thr Leu Glu Leu Ser Asp
530 535 540
Leu Tyr Val Ser Asp Lys Lys Lys Asp Met Ser Pro Pro Phe Ile Cys
545 550 555 560
Glu Glu Thr Asp Glu Gln Lys Leu Gln Thr Leu Asp Ile Gly Ser Asn
565 570 575
Leu Glu Lys Glu Lys Leu Glu Asn Ser Arg Ser Leu Glu Cys Arg Ser
580 585 590
Asp Pro Glu Ser Pro Ile Lys Lys Thr Ser Leu Ser Pro Thr Ser Lys
595 600 605
Leu Gly Tyr Ser Tyr Ser Arg Asp Leu Asp Leu Ala Lys Lys Lys His
610 615 620

Ala Ser Leu Arg Gln Thr Glu Ser Asp Pro Asp Ala Asp Arg Thr Thr
625 630 635 640

Leu Asn His Ala Asp His Ser Ser Lys Ile Val Gln His Arg Leu Leu
645 650 655

Ser Arg Gln Glu Glu Leu Lys Glu Arg Ala Arg Val Leu Leu Glu Gln
660 665 670

Ala Arg Arg Asp Ala Ala Leu Lys Ala Gly Asn Lys His Asn Thr Asn
675 680 685

Thr Ala Thr Pro Phe Cys Asn Arg Gln Leu Ser Asp Gln Gln Asp Glu
690 695 700

Glu Arg Arg Arg Gln Leu Arg Glu Arg Ala Arg Gln Leu Ile Ala Glu
705 710 715 720

Ala Arg Ser Gly Val Lys Met Ser Glu Leu Pro Ser Tyr Gly Glu Met
725 730 735

Ala Ala Glu Lys Leu Lys Glu Arg Ser Lys Ala Ser Gly Asp Glu Asn
740 745 750

Asp Asn Ile Glu Ile Asp Thr Asn Glu Glu Ile Pro Glu Gly Phe Val
755 760 765

Val Gly Gly Asp Glu Leu Thr Asn Leu Glu Asn Asp Leu Asp Thr
770 775 780

Pro Glu Gln Asn Ser Lys Leu Val Asp Leu Lys Leu Lys Lys Leu Leu
785 790 795 800

Glu Val Gln Pro Gln Val Ala Asn Ser Pro Ser Ser Ala Ala Gln Lys
805 810 815

Ala Val Thr Glu Ser Ser Glu Gln Asp Met Lys Ser Gly Thr Glu Asp
820 825 830

Leu Arg Thr Glu Arg Leu Gln Lys Thr Thr Glu Arg Phe Arg Asn Pro
835 840 845

Val Val Phe Ser Lys Asp Ser Thr Val Arg Lys Thr Gln Leu Gln Ser
850 855 860

Phe Ser Gln Tyr Ile Glu Asn Arg Pro Glu Met Lys Arg Gln Arg Ser
865 870 875 880

Ile Gln Glu Asp Thr Lys Lys Gly Asn Glu Glu Lys Ala Ala Ile Thr
885 890 895

Glu Thr Gln Arg Lys Pro Ser Glu Asp Glu Val Leu Asn Lys Gly Phe
900 905 910

Lys Asp Thr Ser Gln Tyr Val Val Gly Glu Leu Ala Ala Leu Glu Asn
915 920 925

Glu Gln Lys Gln Ile Asp Thr Arg Ala Ala Leu Val Glu Lys Arg Leu
930 935 940

Arg Tyr Leu Met Asp Thr Gly Arg Asn Thr Glu Glu Glu Ala Met
945 950 955 960

Met Gln Glu Trp Phe Met Leu Val Asn Lys Lys Asn Ala Leu Ile Arg
965 970 975

Arg Met Asn Gln Leu Ser Leu Leu Glu Lys Glu His Asp Leu Glu Arg
980 985 990

Arg Tyr Glu Leu Leu Asn Arg Glu Leu Arg Ala Met Leu Ala Ile Glu
995 1000 1005

Asp Trp Gln Lys Thr Glu Ala Gln Lys Arg Arg Glu Gln Leu Leu Leu
1010 1015 1020

Asp Glu Leu Val Ala Leu Val Asn Lys Arg Asp Ala Leu Val Arg Asp
1025 1030 1035 1040

Leu Asp Ala Gln Glu Lys Gln Ala Glu Glu Glu Asp Glu His Leu Glu
1045 1050 1055

Arg Thr Leu Glu Gln Asn Lys Gly Lys Met Ala Lys Lys Glu Glu Lys
1060 1065 1070

Cys Val Leu Gln
1075

<210> 9
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 9
gaatagacca gagatgaaaa ggcag

25

<210> 10
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> reverse primer

<400> 10
cggttcagca gctcataacc

19