SOLUÇÃO DE LISTA DE EXERCÍCIOS

Lista 04

(REGRAS DE INFERÊNCIA)

Leitura necessária:

- Matemática Discreta e Suas Aplicações, 6ª Edição (Kenneth H. Rosen):
 - Capítulo 1.5: Regras de Inferência

Revisão.

- 1. Responda formalmente as seguintes perguntas:
 - (a) O que é um argumento lógico? Dê sua explicação em termos de premissas e conclusões.
 - (b) Qual a diferença entre um argumento válido e um argumento inválido?
 - (c) Explique quando é possível que um argumento válido tenha uma conclusão falsa.
 - (d) O que é uma falácia lógica? Dê dois exemplos de falácias e as explique.

Exercícios.

- 2. (Rosen 1.5.3) Qual regra de inferência foi usada em cada um dos argumentos abaixo?
 - (a) "Alice é uma aluna de matemática. Logo, Alice é uma aluna de matemática ou de ciência da computação."
 - (b) "Jerry é um aluno de matemática e de computação. Logo, Jerry é um aluno de matemática."
 - (c) "Se está chovendo, então a piscina estará fechada. Está chovendo. Logo, a piscina está fechada."
 - (d) "Se nevar hoje, a universidade vai fechar. A universidade não fechou hoje. Logo, não nevou hoje."
 - (e) "Se eu for nadar, então eu ficarei no sol por muito tempo. Se eu ficar no sol por muito tempo, eu vou ter insolação. Logo, se eu for nadar, eu terei insolação."
- 3. (Rosen 1.5.9) Para cada conjunto de premissas, quais conclusões relevantes podem ser obtidas? Explique as regras de inferência utilizadas para obter cada conclusão a partir das premissas.
 - a) "Se eu tiro o dia de folga, chove ou neva." "Eu tirei terça-feira de folga, ou eu tirei quinta-feira de folga." "Fez sol na terça-feira." "Não nevou na quinta-feira."
 - b) "Se eu como comida apimentada, eu tenho sonhos estranhos." "Eu tenho sonhos estranhos se troveja enquanto eu durmo." "Eu não tive sonhos estranhos."
 - c) "Eu sou esperto ou eu sou sortudo." "Eu não tenho sorte." "Se eu tivesse sorte, então eu ganharia na loteria."
 - f) "Todos os roedores roem sua própria comida." "Ratos são roedores." "Coelhos não roem sua comida." "Morcegos não são roedores."
- 4. (Rosen 1.5.13) Para cada um dos argumentos abaixo, explique quais regras de inferência são utilizadas em cada passo:

- (a) "Doug, um aluno desta classe, sabe escrever programas em JAVA. Todos que sabem escrever programas em JAVA podem conseguir bons empregos. Logo, alguém nessa sala pode conseguir um bom emprego."
- (b) "Alguém nessa classe gosta de observar baleias. Todas as pessoas que gostam de observar baleias se preocupam com a poluição dos oceanos. Logo, há uma pessoa nessa classe que se preocupa com a poluição dos oceanos."
- 5. (Rosen 1.5.15) Para cada uma das afirmações determine se os argumentos são corretos ou não e explique por quê.
 - (a) "Todos os alunos dessa classe sabem lógica. Xavier é um aluno dessa classe. Logo, Xavier sabe lógica."
 - (b) "Todo aluno de ciência da computação cursa Matemática Discreta. Natasha está cursando Matemática Discreta. Logo, Natasha é uma aluna de ciência da computação."
 - (c) "Todos os papagaios gostam de frutas. Meu passarinho de estimação não é um papagaio. Logo, meu bichinho de estimação não gosta de frutas."
 - (d) "Todos que comem granola todo dia são saudáveis. Linda não é saudável. Logo, Linda não come granola todo dia."
- 6. (Rosen 1.5.19) Determine se cada um dos argumentos seguintes é válido. Se o argumento está correto, qual regra de inferência foi usada? Se o argumento está errado, qual erro lógico ocorreu?
 - (a) "Se $n \notin um$ número real tal que n > 1, então $n^2 > 1$. Suponha que $n^2 > 1$. Então n > 1."
 - (b) "Se n é um número real tal que n > 3, então $n^2 > 9$. Suponha que $n^2 \le 9$. Então $n \le 3$."
 - (c) "Se n é um número real tal que n > 2, então $n^2 > 4$. Suponha que $n \le 2$. Então $n^2 \le 4$."
- 7. (Rosen 1.5.23) Identifique o(s) erro(s) no seguinte argumento que supostamente mostra que se $\exists x : P(x)$ e $\exists x : Q(x)$ são verdade então $\exists x : (P(x) \land Q(x))$ é verdade.
 - (1) $\exists x : P(x) \land \exists x : Q(x)$ Premissa
 - (2) $\exists x : P(x)$ Simplificação conjuntiva de (1)
 - (3) P(c) Instanciação existencial de (2)
 - (4) $\exists x : Q(x)$ Simplificação conjuntiva de (1)
 - (5) Q(c) Instanciação existencial de (4)
 - (6) $P(c) \wedge Q(c)$ Adição conjuntiva de (3) e (5)
 - (7) $\exists x : (P(x) \land Q(x))$ Generalização existencial