https://drive.google.com/file/d/1yET7D-x0JgwfQeSTtpznsJec5w__P-zg/view?usp=drive_link

Diseño, Caracterización y Control de Sensores CMOS con Píxeles Interconectables

Tesista: Ing. Mariano Morel

Director: Dr. Nicolás Calarco

Resumen

- Diseño de sensores CMOS versátiles con píxeles interconectables.
- Detectan cambios en la luz, como el patrón de interferencia 'speckle' (moteado)
- Miden desplazamientos en tiempo real con una salida analógica proporcional (**correlación**), sin procesamiento digital: produce mejoras energéticas, de sensibilidad y rapidez

Objetivos Específicos

- Determinar especificaciones del sensor.
- Realizar pruebas experimentales con sensores actuales.
- Diseñar y simular el sensor (pre y post layout).
- Enviar el diseño para fabricación.
- Caracterización y pruebas aplicadas para futuras etapas.

Ventajas de sensores ópticos

- Mediciones sin necesidad de marcas en la pieza, sin contacto físico, sin componentes adicionales en las superficies, sin condiciones ambientales adversas e interferencias electromagnéticas.
- Salida analógica para registrar variaciones de mayor frecuencia.

Desarrollo Tecnológico

- Aplicaciones en la industria:
- Automotriz: posición de acelerador, volante y partes del motor.
- Robótica: detección de ángulos en articulaciones y ruedas.

Ventajas:

Alta sensibilidad y resolución, inmunes a interferencias.

Puede encapsularse para resistir polvo y altas temperaturas, especialmente en aplicaciones automotrices.

Sensores CMOS

Ventaja:

Permite registrar las variaciones de speckle sin necesidad de procesamiento digital, logrando mediciones mucho más rápidas y eficientes en consumo energético

PIXEL: Definición

 Cada pixel esta compuesto por un fotodiodo y un circuito electrónico. El fotodiodo es decir, la superficie sensible a la luz, esta hecho de un implante n+ sobre el sustrato p-, ocupa el 60% del área del pixel; el circuito electrónico ocupa prácticamente el 40% del área restante, y consta de transistores y celdas de memoria SRAM que permiten interconectar cada pixel vecinos.

Sensor CMOS: pixeles interconectables - programables

 Este sensor consiste en un arreglo de pixeles programables que tiene la capacidad de formar el patrón de detección en el lugar indicado una vez que el haz incide sobre el, evitando la necesidad de complejos alineamientos mecánicos micrométricos

Desafío

- La precisión depende de la resolución espacial del sensor, la estabilidad de la fuente de luz, y la calidad de interconexión de los píxeles.
- Reto en optimizar que el diseño del sensor responda de manera estable a frecuencias elevadas, manteniendo precisión y confiabilidad en el seguimiento de vibraciones rápidas.
- SE BUSCARÁ QUE EL CHIP PUEDA RE-CONFIGURAR SU PATRÓN EN TIEMPO REAL AL MOVIMIENTO.

