

Variational Inference

Machine Learning: Jordan Boyd-Graber University of Colorado Boulder

LECTURE 21

Variational Inference

- Inferring hidden variables
- More complicated models
- Connections to EM and Gibbs sampling
- Last HW

Setup

- $\vec{x} = x_{1:n}$ observations
- $\vec{z} = z_{1:m}$ hidden variables
- α fixed parameters
- Want the posterior distribution

$$p(z \mid x, \alpha) = \frac{p(z, x \mid \alpha)}{\int_z p(z, x \mid \alpha)}.$$

Motivation

Can't compute posterior for many interesting models

GMM (finite)

- 1. Draw $\mu_k \sim \mathcal{N}(0, \tau^2)$
- 2. For each observation $i = 1 \dots n$:
 - 2.1 Draw $z_i \sim \text{Mult}(\pi)$
 - 2.2 Draw $x_i \sim \mathcal{N}(\mu_{z_i}, \sigma_0^2)$
 - Posterior is intractable for large n

$$p(\mu_{1:K}, z_{1:n} \,|\, x_{1:n}) = \frac{\prod_{k=1}^K p(\mu_k) \prod_{i=1}^n p(z_i) p(x_i \,|\, z_i, \mu_{1:K})}{\int_{\mu_{1:K}} \sum_{z_{1:n}} \prod_{k=1}^K p(\mu_k) \prod_{i=1}^n p(z_i) p(x_i \,|\, z_i, \mu_{1:K})}$$

Main Idea

We create a variational distribution over the latent variables

$$q(z_{1:m} \mid \nu) \tag{1}$$

- ullet Find the settings of u so that q is close to the posterior
- If q == p, then this is vanilla EM

What does it mean for distributions to be close?

 We measure the closeness of distributions using Kullback-Leibler Divergence

$$\mathsf{KL}(q \mid\mid p) \equiv \mathbb{E}_q \left[\log \frac{q(Z)}{p(Z \mid x)} \right] \tag{2}$$

What does it mean for distributions to be close?

 We measure the closeness of distributions using Kullback-Leibler Divergence

$$\mathsf{KL}(q \mid\mid p) \equiv \mathbb{E}_q \left[\log \frac{q(Z)}{p(Z \mid x)} \right] \tag{2}$$

- Characterizing KL divergence
 - If q and p are high, we're happy
 - If q is high but p isn't, we pay a praise
 - If q is low, we don't care
 - \circ If KL = 0, then distribution are equal

Concave Functions and Expectations

If you haven't seen this before, spend fifteen minutes to convince yourself that it's true

Evidence Lower Bound (ELBO)

Apply Jensen's inequality on log probability of data

$$\log p(x) = \log \int_{z} p(x, z)$$

$$= \log \int_{z} p(x, z) \frac{q(z)}{q(z)}$$

$$= \log \left(\operatorname{E}_{q} \left[\frac{p(x, Z)}{q(z)} \right] \right)$$

$$\geq \operatorname{E}_{q}[\log p(x, Z)] - \operatorname{E}_{q}[\log q(Z)]$$

Evidence Lower Bound (ELBO)

Apply Jensen's inequality on log probability of data

$$\begin{aligned} \log p(x) &= \log \int_z p(x, z) \\ &= \log \int_z p(x, z) \frac{q(z)}{q(z)} \\ &= \log \left(\operatorname{E}_q \left[\frac{p(x, Z)}{q(z)} \right] \right) \\ &\geq \operatorname{E}_q[\log p(x, Z)] - \operatorname{E}_q[\log q(Z)] \end{aligned}$$

- Fun side effect: Entropy
- Maximizing the ELBO gives as tight a bound on on log probability

Relation to KL Divergence

Conditional probability definition

$$p(z \mid x) = \frac{p(z, x)}{p(x)} \tag{3}$$

Relation to KL Divergence

Conditional probability definition

$$p(z \mid x) = \frac{p(z, x)}{p(x)} \tag{3}$$

Plug into KL divergence

$$\begin{split} \mathrm{KL}(q(z)||p(z\,|\,x)) &=& \mathrm{E}_q \left[\log \frac{q(Z)}{p(Z\,|\,x)} \right] \\ &=& \mathrm{E}_q[\log q(Z)] - \mathrm{E}_q[\log p(Z\,|\,x)] \\ &=& \mathrm{E}_q[\log q(Z)] - \mathrm{E}_q[\log p(Z,x)] + \log p(x) \\ &=& -(\mathrm{E}_q[\log p(Z,x)] - \mathrm{E}_q[\log q(Z)]) + \log p(x) \end{split}$$

Relation to KL Divergence

Conditional probability definition

$$p(z \mid x) = \frac{p(z, x)}{p(x)} \tag{3}$$

Plug into KL divergence

$$\begin{split} \mathrm{KL}(q(z)||p(z\,|\,x)) &=& \mathrm{E}_q \left[\log \frac{q(Z)}{p(Z\,|\,x)} \right] \\ &=& \mathrm{E}_q [\log q(Z)] - \mathrm{E}_q [\log p(Z\,|\,x)] \\ &=& \mathrm{E}_q [\log q(Z)] - \mathrm{E}_q [\log p(Z,x)] + \log p(x) \\ &=& -(\mathrm{E}_q [\log p(Z,x)] - \mathrm{E}_q [\log q(Z)]) + \log p(x) \end{split}$$

 Negative of ELBO (plus constant); minimizing KL divergence is the same as maximizing ELBO

Mean field variational inference

Assume that your variational distribution factorizes

$$q(z_1,\ldots,z_m)=\prod_{j=1}^m q(z_j)$$

- You may want to group some hidden variables together
- Does not contain the true posterior because hidden variables are dependent

General Blueprint

- Choose q
- Derive ELBO
- Coordinate ascent of each q_i
- Repeat until convergence

Example: GMM

Mean field family is

$$q(\mu_{1:K}, z_{1:n}) = \prod_{k} q(\mu_{k} | \tilde{\mu_{k}}, \tilde{\sigma_{k}}^{2}) \prod_{i} q(z_{k} | \phi_{k})$$
(4)

Induces the following ELBO

$$\left(\sum_{k=1}^K \mathrm{E}[\log p(\mu_k)] + \mathrm{H}(q(\mu_k))\right) + \left(\sum_{i=1}^n \mathrm{E}[\log p(z_i)] + \mathrm{E}[\log p(x_i \,|\, z_i, \mu_{1:K})] + \mathrm{H}(q(z_i))\right)$$

Expected log prior over mixture locations

Expected log prior over mixture locations

$$\mathrm{E}[\log p(\mu_k)] = -(1/2)\log 2\pi\sigma_0^2 - \mathrm{E}[\mu_k^2]/2\sigma_0^2 + \mathrm{E}[\mu_k]\mu_0/\sigma_0^2 - \mu_0^2/2\sigma_0^2$$

Expected log prior over mixture assignments

Expected log prior over mixture locations

$$\mathrm{E}[\log p(\mu_k)] = -(1/2)\log 2\pi\sigma_0^2 - \mathrm{E}[\mu_k^2]/2\sigma_0^2 + \mathrm{E}[\mu_k]\mu_0/\sigma_0^2 - \mu_0^2/2\sigma_0^2$$

Expected log prior over mixture assignments

$$\mathrm{E}[\log p(z_i)] = \log(1/K)$$

Entropy over locations

Expected log prior over mixture locations

$$\mathrm{E}[\log p(\mu_k)] = -(1/2)\log 2\pi\sigma_0^2 - \mathrm{E}[\mu_k^2]/2\sigma_0^2 + \mathrm{E}[\mu_k]\mu_0/\sigma_0^2 - \mu_0^2/2\sigma_0^2$$

Expected log prior over mixture assignments

$$\mathrm{E}[\log p(z_i)] = \log(1/K)$$

Entropy over locations

$$H(q(\mu_k)) = (1/2) \log 2\pi \tilde{\sigma}_k^2 + 1/2$$

Entropy over assignments

Expected log prior over mixture locations

$$\mathrm{E}[\log p(\mu_k)] = -(1/2)\log 2\pi\sigma_0^2 - \mathrm{E}[\mu_k^2]/2\sigma_0^2 + \mathrm{E}[\mu_k]\mu_0/\sigma_0^2 - \mu_0^2/2\sigma_0^2$$

Expected log prior over mixture assignments

$$\mathrm{E}[\log p(z_i)] = \log(1/K)$$

Entropy over locations

$$H(q(\mu_k)) = (1/2) \log 2\pi \tilde{\sigma}_k^2 + 1/2$$

Entropy over assignments

$$\mathrm{H}(q(z_i)) = -\sum_{k=1}^K \phi_{ij} \log \phi_{ij}$$

Updates

Update cluster assignments

$$q^{*}(z_{i} = k) \equiv \phi_{i,k} \propto \exp\left\{\log \pi_{k} + x_{i} \mathbb{E}_{q}\left[\mu\right] - \mathbb{E}_{q}\left[\mu_{k}^{2}\right]/2\right\}$$
 (5)

Update cluster centers

$$\tilde{\mu_k} = \frac{\mu_0/\sigma_0^2 + \sum_i \mathbb{E}_q \left[z_i^k \right] x_i}{1/\sigma_0^2 + \sum_i \mathbb{E}_q \left[z_i^k \right]}$$
(6)

Relationship with Gibbs Sampling

- Gibbs sampling: sample from the conditional distribution of all other variables
- Variational inference: each factor is set to the exponentiated log of the conditional
- Variational is easier to parallelize, Gibbs faster per step
- Gibbs typically easier to implement

In class

- Deriving variational inference for topic models
- Then you'll implement in your last homework