

Feature Extraction and Selection

> Marco Loog

Outline

- > A bit on high-dimensional spaces
- Some basics of feature extraction
- > Some basics of feature selection

Feature Space

A p-dimensional space, in which each dimension is a feature containing N [labeled] samples [objects]

> Why and how should lower number of features?

Curse of Dimensionality

> Problem: too few samples in too many dimensions [the curse of dimensionality]

Let's discuss histogram-based density estimation ...with increasingly finer binning?

> Anyway: in high-dimensional spaces, our 2D/3D intuition does not work anymore...

- Example: neighborhood capturing 10% of uniformly distributed data in hypercube
- E.g. in \mathbb{R}^{20} sides of $\sqrt[20]{.1} \approx 0.89$ So, not a small block anymore...

> Example : boundary points

1000 normal samples in 2D then 1% on convex hull 1000 in 20D then 95% on convex hull

30

> Example : points tend to have equal distances

Consider $\frac{\operatorname{std}(d^2)}{\operatorname{mean}(d^2)}$ for squared distance d^2

For points in \mathbb{R}^{1000} from standard normal, distribution is approximately N(2000,8000)

> This means [roughly] for increasing dimensionality local, distance-based methods suffer most, e.g. NN-methods global, more restricted models suffer less, e.g. linear models

> So...

controlling classifier complexity important *p* should be kept as low as possible : dimensionality reduction

Dimensionality Reduction by Selection and Extraction

Dimensionality Reduction

> Problem: too few samples in too many dimensions [the curse of dimensionality]

Dimensionality Reduction

- > Problem: too few samples in too many dimensions [the curse of dimensionality]
- Solution : drop dimensions / features

Feature extraction

Feature extraction

Questions :

Which dimensions to drop? What feature subset to keep?

Dimensionality Reduction

> Other uses :

Fewer parameters give faster algorithms and parameters are easier to estimate

Explaining which measurements are useful and which are not [reducing redundancy]

Visualization of data can be a powerful tool when designing pattern recognition systems

Feature Selection vs Extraction

- Feature selection :select d out ofp measurements
- Feature extraction :
 map p measurements
 to d measurements

Feature Selection vs Extraction

Think of selection and extraction as finding a mapping

> We need:

Criterion function, e.g. error, class overlap, information loss,...

Optimization or "search" algorithm to find mapping for given criterion

Note on Criteria

> The optimal[?] criterion : final performance of the entire system Maybe calculated using cross-validation

> Approximate performance predictors

Calculate performance of easy-to-use criterion giving indication of how well a more powerful / realistic criterion may perform

Two
Classical
Linear
Feature Extractors

Linear Feature Extraction

› Unsupervised :

Principal Component Analysis [PCA]

Supervised :

Linear Discriminant Analysis [LDA]

Fisher mapping [fisherm]

PCA is one of the most widely used feature extraction methods LDA is its supervised cousin

Similar ideas are at the basis of many "novel" methods

PCA

> Principal component analysis [PCA, 1901] : find directions in data which...

Retain as much [total] variance as possible Make projected data uncorrelated Minimize squared reconstruction error

PCA

- > Let a be a projection vector that reduces to 1D
- \rightarrow Let's say our data has covariance matrix C

What value does $a^T Ca$ equal to?

So, what should we maximize?

PCA

- > Let a be a projection vector that reduces to 1D
- > Let's say our data has covariance matrix CWhat value does $a^T Ca$ equal to?
 - So, what should we maximize?

> Seems we need an assumption...

Assume the constraint $||a||^2 = 1$ Then solve, for instance, with Lagrangian : $a^T Ca - \lambda(||a||^2 - 1)$

PCA Example

E.g. NIST digits: 2000 samples, p = 256

PCA Example

- > For image data,principal componentsmight[!] also beinterpretable...
- Here: largest occuring variations between digits

Remarks on PCA

> Principal component analysis :

Global and linear

May need considerable amount of data to estimate covariance $[C, \Sigma, S_T, ...]$ well

› Danger :

Criterion is not necessarily related to the goal

E.g. might discard important directions

[Then again, most classifier also do not optimize error rate directly...]

Supervised Linear Feature Extraction

If desired output is given, supervised criteria can be used

One illustration only: Linear Discriminant Analysis [LDA, or in PRTools terms fisherm]

Intermezzo: Scatter Matrices

- $\rightarrow m$, $S_T = \Sigma$: mean and covariance of all samples
- $\rightarrow m_i$, Σ_i : mean and covariance of class i
- \rightarrow Total scatter : Σ equals sum of within and between
- > Within-scatter: $S_w = \sum_{i=1}^{C} \frac{n_i}{n} \Sigma_i$
- > Between-scatter: $S_B = \sum_{i=1}^{C} \frac{n_i}{n} (m_i m)(m_i m)^T$

Intermezzo: Scatter Matrices

- $S_T = \text{total scatter, "overall width"}$
- S_W = "average class width"; the smaller, the better
- S_B = "average distance between class means"; the larger, the better

LDA [or Fisher mapping]

- > Reduction to 1D for two classes
 - Find projection vector a such that classes are maximally separated
 - Choose *a* to maximize Fisher criterion :

$$J_F(a) = \frac{a^T S_B a}{a^T S_W a}$$

Solution: Eigenanalysis of $S_W^{-1}S_B$

Nonlinear Feature Extraction

› Large collection of possible mappings...

- > Today: only one unsupervised method What is *the* way to make linear stuff nonlinear?
- > Tomorrow: [the gist of] so-called auto-encoders

KPCA

Kernelize PCA by relating eigenvectors of X^TX and XX^T [assuming centralized feature vectors]

Summary

> Feature extraction, like selection :

Useful for visualization

Necessary because of curse of dimensionality

> Feature extraction :

Linear vs. nonlinear Supervised vs. unsupervised

> PCA possibly most important method

On to Feature Selection

Feature Selection

> The general idea is to pick a set of good features from the original/initial set of features

Feature Selection

> We need a criterion function

How do we measure how good a feature subset is?

E.g. error, class overlap, information loss

> We need a search algorithm

How do we go through all possible subsets?

E.g. pick best single feature at each time

› Maybe more than for feature extraction : optimality is sacrificed

Feature Selection

> Which approach to feature selection have we seen?

Criteria

Criteria

- Actual classification performance: "best" possible criterion, but potentially very expensive
- Approximate performance predictors: calculate easy-to-use measure that gives indication of real performance

Probabilistic Criteria

- > Probabilistic distance
- E.g. Kullback-Leibler divergences and variations
- Often needs estimates of class-conditional densities
 Potentially difficult
 Potentially expensive

Scatter Matrices Again...

- $\rightarrow m$, $S_T = \Sigma$: mean and covariance of all samples
- m_i , Σ_i : mean and covariance of class i
- \rightarrow Total scatter : Σ equals sum of within and between
- > Within-scatter: $S_w = \sum_{i=1}^{C} \frac{n_i}{n} \Sigma_i$
- > Between-scatter: $S_B = \sum_{i=1}^{n} \frac{n_i}{n} (m_i m)(m_i m)^T$

Scatter Matrices Again...

- $S_T = \text{total scatter, "overall width"}$
- S_W = "average class width"; the smaller, the better
- S_B = "average distance between class means"; the larger, the better

Heuristic Scatter-based Criteria

> Example scatter-based performance indicators

```
J_1 = \operatorname{trace} (S_W + S_B) = \operatorname{trace} (\Sigma) = \operatorname{trace} (S_T)

J_2 = \operatorname{trace} (S_B / S_W)

J_3 = \det (\Sigma) / \det (S_W)

J_4 = \operatorname{trace} (S_W) / \operatorname{trace} (S_B)
```

Yet Another Criterion

Mahalanobis distance

$$D_M = (m_1 - m_2)^T C^{-1} (m_1 - m_2)$$

Assumes Gaussian distributions with equal covariance matrix *C* In which case, some of the probabilistic distances reduce to this

> Multi-class, e.g. take sum or minimum
Of course, general solution to extend two-class criteria

 \rightarrow 1D case : Fisher criterion $J_F = \frac{(m_1 - m_2)^2}{\sigma_1^2 + \sigma_2^2}$

Sub-optimality of Criteria

$$D_M = (m_1 - m_2)^T C^{-1} (m_1 - m_2)$$

- Give a 2D problem in which Euclidean distance [this assumes C = I] picks up the wrong 1D feature...
- Give a 2D problem in which Mahalanobis distance picks up the wrong 1D feature...

Now, on to Search Algorithms

Now, on to Search Algorithms

- \rightarrow Feature selection : Select a subset of d out of p measurements which optimizes chosen criterion
- Simplest solution : look at all possible subsets Any problems there?

Now, on to Search Algorithms

- \rightarrow Feature selection : Select a subset of d out of p measurements which optimizes chosen criterion
- Simplest solution : look at all possible subsets Any problems there?
- There are $\binom{p}{d} = \frac{p!}{d!(p-d)!}$ subsets

So, like for the criteria, we settle for approximations...

Search Algorithms

- > Sub-optimal algorithms : select one feature [or a few features] at a time
- Simplest variation: best individual *d*But these are not necessarily the best *d*!

d Best or Best d?

More Sub-Optimal Strategies

> Forward selection

Start with empty feature set

One at a time, keep adding feature that gives best performance considering entire chosen feature set

More Sub-Optimal Strategies

› Backward selection

Same as forward selection ...but then the other way 'round

E.g.

Select d = 2out of p = 5features

More Sub-Optimal Strategies

> Plus-*l*-take-away-*r*

Start with empty set [if l > r] or entire set [if l < r]

Keep adding best l and removing worst r [...or vice versa]

Benefit over previous strategies?

Branch & Bound

- > Branch & bound
- \Rightarrow Optimal when criterion is monotonic in number of features d

Floating Search...

Backtrack if that improves criterion for given # features Floating Search...

When Should One Stop?

- › Due to estimation problems [e.g. covariance matrix], criterion may have an optimum
- Or we could specify desired number of measurements, say, based on data set size
- Or? Use error rate?

Discussion / Conclusion

- Some unexpected behaviors in higher dimensions
- Considered curse of dimensionality
 Way to counter it and improve performance: lower dimensionality
- > Linear approaches to dimensionality reduction Feature selection and feature extraction Feature extraction can be nonlinear...
- Approaches are approximative / suboptimal But that holds for many classifiers to start with...

