Домашняя работа

Задача 1

Вспомним определения из дискретной математики:

$$egin{aligned} A\setminus B &= \{\,x\mid x\in A\wedge x
otin B\,\} \ A\Delta B &= A\setminus B\cup B\setminus A = \{\,x\mid x\in A\wedge x
otin B\, ee \, B\lor x\in B\wedge x
otin A\,\} \ A\cap B &= \{\,x\mid x\in A\wedge x\in B\,\} \end{aligned}$$

Окей, теперь докажем:

$$A \setminus B = (A\Delta B) \cap A$$

Пусть $x\in A\setminus B$, тогда $x\in A\wedge x\notin B$. По опред. симм. разности: $A\Delta B=A\setminus B\cup B\setminus A$, тогда т.к. $x\in A\setminus B$, то $x\in A\Delta B$!

Выходит, что наш x лежит и в A и в $A\Delta B$, что значит, что $x\in A\cap (A\Delta B)$.

Доказали, что $A \setminus B \subseteq A \cap (A\Delta B)!$

Пусть теперь $x\in (A\Delta B)\cap A$, что значит, что $x\in A$ и $x\in A\Delta B$. По опред. симм. разности: $A\Delta B=A\setminus B\cup B\setminus A$.

Если наш x лежит в $B\setminus A$, то это значит, что $x\in B\wedge x\notin A$, но так как $x\in A$, то такого не может быть.

Выходит, остается только, что $x\in A\setminus B$, что значит $x\in A\wedge x\notin B$, что согласуется с условием $x\in A$

Следовательно, $(A\Delta B)\cap A\subseteq A\setminus B$

чтд

Задача 2

Докажем, что $A \cup B = (A\Delta B)\Delta(A \cap B)$

Пусть $x \in A \cup B$, тогда $x \in A \lor x \in B$. Рассмотрим два случая:

Если $x\in A\cap B$, тогда $x\in A\wedge x\in B$. Так как $x\in A\cap B$, то $x\notin A\Delta B$. Тогда $x\in (A\cap B)\setminus (A\Delta B)$. Выходит, что тогда $x\in (A\Delta B)\Delta (A\cap B)$ по опреду симм. разности

Если же $x \notin A \cap B$, тогда возможны два подслучая:

ullet $x\in A\wedge x
otin B$, то тогда $x\in A\setminus B\subseteq A\Delta B$

ullet $x\in B \wedge x
otin B$, то тогда $x\in B\setminus A\subseteq A\Delta B$

Во всех подслучаях $x\in A\Delta B$ и при этом $x\notin A\cap B$, тогда $x\in (A\Delta B)\setminus (A\cap B)$, что по опред. симм. разности значит, что $x\in (A\Delta B)\Delta (A\cap B)$!

Следовательно, $A \cup B \subseteq (A\Delta B)\Delta(A \cap B)$.

Теперь пусть $x\in (A\Delta B)\Delta(A\cap B)$, что значит, что $x\in (A\Delta B)\setminus (A\cap B)$ или $x\in (A\cap B)\setminus (A\Delta B)$. Рассмотрим эти два случая:

- ullet $x\in A\Delta B\wedge x
 otin A\cap B$, тогда $x\in A\setminus B$ или $x\in B\setminus A$, что значит $x\in A\cup B$!
- $x\in A\cap B\wedge x
 otin A\Delta B$, что значит, что $x\in A\wedge x\in B$, откуда следует, что $x\in A\cup B$

Ну и тогда $(A\Delta B)\Delta(A\cap B)\subseteq A\cup B$

чтд

Задача 3

Имеем беск. последовательность мн-в: $A_1, A_2, A_3, \ldots, A_n, \ldots$

Если $x\in \limsup A_n$, то это значит, что существуют n_1,n_2,n_3,\ldots такие, что $x\in A_{n_1}$ и $x\in A_{n_2}$ и $x\in A_{n_3}$ и т.д. и этих индексов бесконечность

Нам как-то нужно выразить через \cap и \cup все такие x

Попробуем рассмотреть объединение всех множеств:

$$B_1 = A_1 \cup A_2 \cup A_3 \cup A_4 \cup \cdots \cup A_n \cup \ldots$$

Но в B_1 есть и те элементы, которые появляются конечное количество раз. Попробуем убрать A_1 и посмотрим, что останется:

$$B_2 = A_2 \cup A_3 \cup A_4 \cup \cdots \cup A_n \cup \ldots$$

Если элемент был только в A_1 , то в B_2 его уже не будет!

Уберем теперь и A_2 :

$$B_3 = A_3 \cup A_4 \cup \cdots \cup A_n \cup \ldots$$

В B_3 уже не будет элементов, которые встретились только в A_2 и/или в A_3

Тут можем понять, что те элементы, которые встречаются бесконечное количество раз должны быть и в B_1 и в B_2 и в B_3 и так далее!

То есть сколько бы начальных множеств мы не отбросили, этот элемент всегда должен появляться в оставшейся части :)

То есть $\limsup A_n = igcap_{n=1}^\infty B_n$

Hy а B_n , как мы поняли, равен $igcup_{k=n}^\infty A_k$

Тогда:

$$\limsup A_n = igcap_{n=1}^\infty igcup_{k=n}^\infty A_k$$

Докажем, что это так:

Пусть:

$$x\in igcap_{n=1}^\infty igcup_{k=n}^\infty A_k$$

Что значит, что $orall n \geq 1 \ x \in igcup_{k=n}^\infty A_k$

Пусть x появился только конечное количество раз. Тогда существует какой-то номер множества, в котором он появился последний раз, то есть $\exists N: \forall k>N \ x \notin A_k$

Рассмотрим тогда множество $\bigcup_{k=N+1}^\infty A_k$. Согласно нашему предположению, $x
otin \bigcup_{k=N+1}^\infty A_k$, но получаем противоречие с тем, что $x \in \bigcap_{n=1}^\infty \bigcup_{k=n}^\infty A_k$

Следовательно, x встречается беск. кол-во раз, тогда $x \in \limsup A_n!$ Ну и тогда:

$$igcap_{n=1}^\infty igcup_{k=n}^\infty A_k \subseteq \limsup A_n$$

Теперь пусть:

$$x \in \limsup A_n$$

Возьмем произвольный m>0 и рассмотрим мн-во $igcup_{k=m}^{\infty}A_k$

Посколько $x\in \limsup A_n$, то $\exists N\geq m: x\in A_N$, что значит, что $x\in igcup_{k=m}^\infty A_k$

А так как это верно для любого m>0, то x должен принадлежать $igcap_{n=1}^\infty igcup_{k=n}^\infty A_k$

Следовательно:

$$\limsup A_n \subseteq igcap_{n=1}^\infty igcup_{k=n}^\infty A_k$$

чтд

Задача 4

Имеем беск. последовательность мн-в: $A_1, A_2, A_3, \ldots, A_n, \ldots$

Если $x\in \liminf A_n$, то это значит, что существует 0 или конечное число номеров $n_1,n_2,\dots n_k$ таких, что $x\notin A_{n_1}$ и $x\notin A_{n_2}$ и \dots и $x\notin A_{n_k}$

Попробуем рассмотреть мн-во:

$$B_1 = A_1 \cap A_2 \cap A_3 \cap A_4 \cap \cdots \cap A_n \cap \cdots$$

 B_1 включает в себя все элементы, которые принадлежат всем множествам последовательности, но в нем нет, например, тех элементов, которые бы принадлежали всем множествам последовательности, за исключением, например, одного или там двух или там трех. Логика понятна в общем

Тогда рассмотрим такое мн-во:

$$B_2 = A_2 \cap A_3 \cap A_4 \cap \cdots \cap A_n \cap \ldots$$

В B_2 есть все элементы, которые находятся во всех мн-вах послед-сти, кроме мн-ва A_1

Продолжим цикл:

$$B_3 = A_3 \cap A_4 \cap \cdots \cap A_n \cap \ldots$$

Тут понимаем, что $\liminf A_n = \bigcup_{n=1}^\infty B_n$

Ну а B_n , как мы поняли ранее, равен $igcap_{k=n}^\infty B_k$

Тогда:

$$\liminf A_n = igcup_{n=1}^\infty igcap_{k=n}^\infty A_k$$

Ну теперь докажем это:

Пусть $x\in \bigcup_{n=1}^\infty \bigcap_{k=n}^\infty A_k$, тогда $\exists N>0: x\in \bigcap_{k=N}^\infty A_k$, что по сути значит, что x принадлежит бесконечному кол-ву мн-в послед-сти, кроме конечного числа, т.е. $x\in \liminf A_n$

Следовательно, $igcup_{n=1}^{\infty}igcap_{k=n}^{\infty}A_k\subseteq \liminf A_n$

Пусть $x\in\liminf A_n$, значит $\exists N>0: \forall m\geq N\ x\in A_m$, то есть $x\in\bigcap_{k=N}^\infty A_k$, что буквально значит, что $x\in\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k$

Получили, что $\liminf A_n \subseteq igcup_{n=1}^\infty igcap_{k=n}^\infty A_k$

чтд

Задача 5

Я не знаю, как писать эти масти карт в техе, поэтому введу замену ахах:

пики: A

- ullet бубны B
- ullet крести: C
- ullet черви: D

Вспомним опред. σ -алгебры:

Множество \mathcal{F} , элементами которого являются подмножества множества Ω (не обязательно все), называется σ -алгеброй, если выполнены следующие условия:

- $(S1) \Omega \in \mathcal{F}$
- (S2) если $A\in \mathcal{F}$, то $\overline{A}\in \mathcal{F}$
- (S3) если $A_1,A_2,\ldots\in\mathcal{F}$, то $A_1\cup A_2\cup\ldots\in\mathcal{F}$

пункт а

$$S_1 = \{ \{ D, B, A \}, \{ C \} \}$$

Проверим условия из опреда.

- $\Omega \in \sigma(S_1)$
- $\begin{array}{c} \bullet \ \ \overline{\set{D,B,A}} = \set{C} \Rightarrow \set{C} \in \sigma(S_1), \ \overline{\set{C}} = \set{D,B,A} \Rightarrow \set{D,B,A} \in \\ \sigma(S_1), \ \overline{\Omega} = \emptyset \Rightarrow \emptyset \in \sigma(S_1) \end{array}$
- $\{D, B, A\} \cup C = \Omega$

Получается, что $\sigma(S_1) = \set{\Omega,\emptyset,\set{D,B,A},\set{C}}$

пункт b

$$S_2 = \set{\set{C}}$$

Проверим условия из опреда.

- $\Omega \in \sigma(S_2)$
- $\overline{\Omega}=\emptyset\Rightarrow\emptyset\in\sigma(S_2)$, $\overline{\set{C}}=\set{D,B,A}\Rightarrow\set{D,B,A}\in\sigma(S_2)$

Ну тут теперь стало все аналогично как в пункте а, поэтому

$$\sigma(S_2) = \{ \Omega, \emptyset, \{ D, B, A \}, \{ C \} \}$$

пункт с

$$S_3 = \{ \{ A, D \}, \{ B, C \} \}$$

Проверим условия из опреда.

•
$$\Omega \in \sigma(S_3)$$

$$\bullet \ \, \overline{\Omega} = \emptyset \Rightarrow \emptyset \in \sigma(S_3), \ \overline{\set{A,D}} = \set{B,C} \Rightarrow \set{B,C} \in \sigma(S_3), \ \overline{\set{B,C}} = \set{A,D} \Rightarrow \set{A,D} \in \sigma(S_3)$$

•
$$\{A, D\} \cup \{B, C\} = \Omega$$

(с пустым мн-вом не проверяю, потому что ну очев)

Получаем, $\sigma(S_3) = \set{\Omega,\emptyset,\set{A,D},\set{B,C}}$

пункт d

$$S_4 = \{\{A,D\}\}$$

Проверим условия из опреда.

- $\Omega \in \sigma(S_4)$
- $\overline{\Omega}=\emptyset\Rightarrow\emptyset\in\sigma(S_4)$, $\overline{\set{A,D}}=\set{B,C}\Rightarrow\set{B,C}\in\sigma(S_4)$

Ну тут теперь дальше точно также как и в прошлом пункте, поэтому

Получаем, $\sigma(S_4) = \{ \Omega, \emptyset, \{A, D\}, \{B, C\} \}$

пункт е

$$S_5 = \{ \{ A, D \}, \{ B \}, \{ C \} \}$$

Проверим условия из опреда.

- $\Omega \in \sigma(S_5)$
- $egin{aligned} \bullet \ \ \overline{\Omega} = \emptyset \Rightarrow \emptyset \in \sigma(S_5), \ \overline{\{A,D\}} = \{B,C\} \Rightarrow \{B,C\} \in \sigma(S_5), \ \overline{\{B,C\}} = \\ \{A,D\} \Rightarrow \{A,D\} \in \sigma(S_5), \ \overline{\{B\}} = \{A,C,D\} \Rightarrow \{A,C,D\} \in \sigma(S_5), \\ \overline{\{C\}} = \{A,B,D\} \Rightarrow \{A,B,D\} \in \sigma(S_5), \ \overline{\{A,C,D\}} = \{B\} \Rightarrow \{B\} \in \sigma(S_5), \ \overline{\{A,B,D\}} = \{C\} \Rightarrow \{C\} \in \sigma(S_5) \end{aligned}$
- Тут достаточно рассмотреть объединения только тех множеств, чье объединение дает мн-во по мощности меньшее 4, ну иначе мы просто получим Ω : $\{A,D\} \cup \{B\} = \{A,B,D\} \Rightarrow \{A,B,D\} \in \sigma(S_5)$ и $\{A,D\} \cup \{C\} = \{A,C,D\} \Rightarrow \{A,C,D\} \in \sigma(S_5)$

Получаем,
$$\sigma(S_5) = \set{\Omega,\emptyset,\set{A,D},\set{B},\set{C},\set{A,B,D},\set{A,C,D}}$$

пункт f

$$S_6 = \{ \{ A, D \}, \{ C \} \}$$

Проверим условия из опреда.

• $\Omega \in \sigma(S_5)$

- $\begin{array}{l} \bullet \ \, \overline{\Omega} = \emptyset \Rightarrow \emptyset \in \sigma(S_5) \text{, } \overline{\set{A,D}} = \set{B,C} \Rightarrow \set{B,C} \in \sigma(S_6) \text{, } \overline{\set{B,C}} = \\ \left\{ A,D \right\} \Rightarrow \set{A,D} \in \sigma(S_6) \text{, } \overline{\set{C}} = \set{A,B,D} \Rightarrow \set{A,B,D} \in \sigma(S_6) \text{, } \\ \overline{\set{A,B,D}} = \set{C} \Rightarrow \set{C} \in \sigma(S_6) \end{array}$
- $\{A,D\} \cup \{C\} = \{A,C,D\} \Rightarrow \{A,C,D\} \in \sigma(S_6)$. Все остальные объединения ничего нового не дадут, но тут мы получили одно новое мн-во. Тогда $\overline{\{A,C,D\}} = \{B\} \Rightarrow \{B\} \in \sigma(S_6)$. Ну а дополнение $\{B\}$ нам даст $\{A,C,D\}$, что уже есть

Получаем,
$$\sigma(S_6) = \set{\Omega,\emptyset,\set{A,D},\set{B},\set{C},\set{A,B,D},\set{A,C,D}}$$

Ответ: ответы даны выше после каждого пункта