浙江理工大学 2023—2024 学年第一学期

《高等数学 A1》期末试卷(A)卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

座位号:	承诺人签名:			学号:				班级:		
题号	_	=	三	四	五.	六	七	总分	复核 签约	
得分										
阅卷人										
符合要求,	请把所选	项前的字	母填在匙	题后的括·	号内)			r = f(x)		一项
A.	一定连续	ξ]	B. 一定 ^司	丁导	С. —	定可微分	}	D. 可能有[间断点	
2. 当.	$x \to 0$ 时	f(x)=	$\int_0^{x^2} \arcsin$	n <i>tdt</i> 是 g	g(x) = (1	$+\sin x$	2-1的		(,
	高阶无穷	_). 同阶非等		
3. 函差	数 $f(x) =$	$\frac{1}{r}$ 按 (x)	+1) 的幂	暴展开的	り 帯 有 佩	亚诺型	余项的	n 阶泰勒月	展开式	人为
$a_0 + a_1(x +$										`
A.	-2		В. –	1		C. 2		D.	1	
4. 使函	4. 使函数 $f(x) = \sqrt{x^2 - x^4}$ 满足罗尔定理条件的区间为)
A.	[0,1]		В. [-1,1]		C. [-2	2,1]	D.	[0,2]	
5. 若 <i>f</i>	$\frac{d}{dx}(x) = \frac{d}{dx}$	$\int_0^x \sin(t-t)$	-x) dt ,	则 $f(x)$	=				()
A. s	in x	B.	$-1+\cos$	x	C.	$-\sin x$		D. 1-si	nx	

- 二. 填空题(本大题共 5 小题,每小题 4 分,共 20 分,请把答案填在题中横线上)
 - 1. 设函数 $y = x^3 + ax^2 + bx$ 在点 x = 1 处极值为 -2 ,则 $a = ______$, $b = ______$ 。
 - 2. 设隐函数由方程 $x^3 \int_0^y e^t dt y + \arcsin 2 = 0$ 所确定,则 dy =_______。

 - 4. 微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0) = 0 的解为______。
 - 5. 设对数螺线 $\rho = e^{\theta}$ 位于 $\theta \in [0,\pi]$ 内部分的弧长为_____。
- 三. 解答下列各题(本大题共 5 小题,每小题 6 分,共 30 分,应写出演算过程及相应文字说明)

1.
$$\Re \lim_{x\to 0} \left[\frac{1}{\ln(1+x^2)} - \frac{1}{x^2} \right].$$

2. 求由参数方程
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
 所确定函数的二阶导数
$$\frac{d^2y}{dx^2}.$$

3. 求函数 $f(x) = \int_0^x (2-t)e^{-t}dt$ 的凹凸区间与拐点.

4. 计算反常积分
$$\int_0^{+\infty} xe^{-2x} dx$$
.

5. 计算
$$\int \frac{2x-8}{\sqrt{x^2-6x+10}} dx$$
.

四. (本题7分,应写出具体解题过程)

求
$$\int_0^2 f(x-1)dx$$
,其中 $f(x) = \begin{cases} 2x \arctan x, x < 0 \\ \frac{1}{1+x}, \quad x \ge 0 \end{cases}$.

五. (本题 8 分,应写出具体解题过程)

设
$$f(x) = e^x - \int_0^x (x-t)f(t)dt$$
, f 为二阶可导函数, 试求 $f(x)$.

六. (本题 10分,应写出具体解题过程)

设直线 $y=ax\left(0< a<2\right)$ 与抛物线 $y=x^2$ 围成平面图形面积为 S_1 ,它们与直线 x=2 围成平面图形的面积为 S_2 ,

- (1) 求a的值,使得 $S = S_1 + S_2$ 最小,并求S的最小值;
- (2)求S取得最小值时,直线y=ax(0<a<2),抛物线 $y=x^2$ 与直线x=2所围成图形绕x轴旋转一周所得的旋转体的体积。

七. (本题5分)

设函数 $f(x) = \int_1^x e^{t^2} dt$, 证明: 存在 $\xi \in (1,2)$, 使得 $f(\xi) = (2 - \xi)e^{\xi^2}$.