9.3.2 התכנסות בתנאי של טורים כלליים

5202 בפברואר 82

הגדרות

טור מתכנס בתנאי

נאמר שהטור $\sum\limits_n |a_n|$ מתכנס בתנאי אם"ם הטור אם"ם בתנאי אם"ם מתכנס בתנאי אם מתכנס בתנאי אם איננו מתכנס בתנאי אם

 x^{+}, x^{-} :סימון

בהינתן $x\in\mathbb{R}$ נסמן

$$\begin{cases} x^{-} = & \frac{|x| - x}{2} = \max\{-x, 0\} \ge 0\\ x^{+} = & \frac{|x| + x}{2} = \max\{x, 0\} \end{cases}$$

 $|x|=x^++x^-$ אזי מתקיים $x=x^+-x^-$ וגם

משפטים

1. פירוק להפרש אי־שליליים של טור מתכנס בתנאי

$$-\left\{\sum\limits_{n}a_{n}^{+},\sum\limits_{n}a_{n}^{-}
ight\}\in\left\{-\infty,\infty
ight\}$$
 אם התכנס בתנאי, $\sum\limits_{n}a_{n}$

הוכחה

משום שהטור $\sum_n a_n$ מתכנס בתנאי, הטור $\sum_n a_n = \sum_n a_n^+ + \sum_n a_n^- + \sum_n a_n^-$ מתכנס בתנאי, הטורים (נניח בה"כ $\sum_n a_n = \sum_n a_n^+ - \sum_n a_n^- + \sum_n a_n^-$ מתכנס גם מתכנס מתכנס מתכנס מתכנס. מתקיים הנדרש. $\sum_n a_n = \sum_n a_n^+ - \sum_n a_n^-$ מתכנס גם הוא בסתירה. לכן מתקיים הנדרש.

2. משפט רימן

יהי אזי: טור המתכנס בתנאי. אזי: $\sum\limits_n a_n$

- λ א המתכנס המח $\sum_n a_n$ הטור של סדר שינוי א קיים ל $\lambda \in \mathbb{R}$
- $-\infty$ ל והשני החד מתבדר ל ∞ ל והשני כך האחד מתבדר כך שאחד הטור שינויי סדר של פיומיי (לפחות אחד מכל סוג) קיימים (לפחות אחד מכל סוג)

הוכחה לא תועבר, אך היא מסתמכת על משפט 1.