Q1.

	8	(a)	Q/V, with symbols explained [do not allow in terms of units]	B1	[1]
		(b) (i)	either to separate charges, work must be done	M1	[2]
			or energy released when charges 'come together'	A1	[2]
		(ii)	either energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ change = $\frac{1}{2} \times 1200 \times 10^{-6} (50^2 - 15^2)$ change = 1.4 J (1.37) [allow 2 marks for $\frac{1}{2}C(\Delta V)^2$, giving energy = 0.74 J)	C1 C1 A1	[3]
Q2 .	•				
5 (a) at $t = 1.0$ s, $V = 2.5$ V energy = $\frac{1}{2}CV^2$ $0.13 = \frac{1}{2} \times C \times (8.0^2 - 2.5^2)$ $C = 4500 \mu\text{F}$				C1 C1 M1 A0	[3]
			of two capacitors in series in all branches of combination ected into correct parallel arrangement	M1 A1	[2]
Q3.					
5	(ntio of charge (on body) and its potential It is not allow reference to plates of a capacitor)	B1	[1]
			potential at surface of sphere =) $V = Q/4\pi\epsilon_0 r$ = $Q/V = 4\pi\epsilon_0 r$	M1 A0	[1]
	(1	b) (i) C	= $4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$ = 4.0×10^{-11} F (allow 1 s.f.)	A1	[1]
		(ii) Q	$= CV$ = $4.0 \times 10^{-11} \times 7.0 \times 10^{5}$ = 2.8×10^{-5} C	A1	[1]
	(e is an insulator / not a conductor / has no free electrons es do not move (on an insulator) so no single value for the potential	B1 B1	
		or	charge cannot be considered to be at centre	B1	[3]
	(d) either energy	energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ y = $\frac{1}{2} \times 4 \times 10^{-11} \times \{(7.0 \times 10^5)^2 - (2.5 \times 10^5)^2)\}$ = 8.6 J	C1 C1 A1	[3]

5	(a)	bloo	storage of charge? I storage of energy sking of direct current ducing of electrical oscillations bothing		
			y two, 1 mark each)	B2	2 [2]
	(b)	(i)	capacitance of parallel combination = $60 \mu F$ total capacitance = $20 \mu F$	C1 A1	
		(ii)	p.d. across parallel combination = $1/\!\!\!/_2 \times p.d.$ across single capacitor maximum is $9V$	C1 A1	
	(c)		er energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $Q = CV$ rgy = $\frac{1}{2} \times 4700 \times 10^{-6} \times (18^2 - 12^2)$ = 0.42 J	C1 C1 A1	1
Q5.					
3	(8	SC	narges on plates are equal and opposite on or resultant charge nergy stored because there is charge separation	M1 A1 B1	[3]
	(1	o) (i)	capacitance = Q / V = $(18 \times 10^{-3}) / 10$ = $1800 \mu F$	C1 A1	[2]
		(ii)) use of area under graph or energy = $\frac{1}{2}CV^2$ energy = $2.5 \times 15.7 \times 10^{-3}$ or energy = $\frac{1}{2} \times 1800 \times 10^{-6} \times (10^2 - 7.5^2)$ = 39 mJ	C1 A1	[2]
	(0	p.	ombined capacitance of Y & Z = $20\mu\text{F}$ or total capacitance = $6.67\mu\text{F}$ d. across capacitor X = 8V or p.d. across combination = 12V harge = $10\times10^{-6}\times8$ or $6.67\times10^{-6}\times12$	C1 C1	
		OI.	$= 80 \mu\text{C}$	A1	[3]
Q6.					
5	(a)		two capacitors in series or any circuit such that $V \le 25$ V across any Cin parallel with second series pair or any correct combination		[2]
	(b)		two capacitors in series in parallel with a single capacitor or other correct combination	B2	[2]

Q7.

5	(a		g. separate charges, store energy, smoothing circuit. etc	B1	[1]
	(b) (i)	charge = current × time	B1	[1]
		(ii)	area is 21.2 cm^2 (allow $\pm 0.5 \text{ cm}^2$)		
			1.0 cm² represents (0.125 \times 10 ⁻³ \times 1.25 =) 156 μ C		[4]
		(iii)	capacitance = Q/V		[2]
			– 220 μΓ	A1	[2]
	(c)	1/2	her energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$	C1	[3]
Q8.					
	4	(a) (charge / potential(ratio must be clear)	B1	[1]
			potential (at surface of sphere) = $Q/4\pi\epsilon_0 R$		[1]
		(c)	(i) $C = 4\pi \times 8.85 \times 10^{-12} \times 0.63$ = 7.0×10^{-11} farad / F	A1	[3]
		(ii) energy = $\frac{1}{2}CV^2$	C1	
			$V = 6.0 \times 10^5 \text{ V}$ (use of 0.75 rather than 0.25, allow max 2 marks)		[3]
				[Total	: 8]

Q9.

```
4 (a) charge / potential (difference) (ratio must be clear)
                                                                                                                                          B1 [1]
           (b) (i) V = Q / 4\pi \epsilon_0 r
                                                                                                                                          B1
                                                                                                                                                  [1]
                 (ii) C = Q/V = 4\pi\varepsilon_0 r and 4\pi\varepsilon_0 is constant
                                                                                                                                          M1
                        so C ∝ r
                                                                                                                                          A<sub>0</sub>
                                                                                                                                                  [1]
           (c) (i) r = C/4\pi \epsilon_0 r
                                                                                                                                          C1
                        r = (6.8 \times 10^{-12}) / (4\pi \times 8.85 \times 10^{-12})
                                                                                                                                          C<sub>1</sub>
                        = 6.1 \times 10^{-2} \text{m}
                                                                                                                                          A<sub>1</sub>
                                                                                                                                                  [3]
                 (ii) Q = CV = 6.8 \times 10^{-12} \times 220
                              = 1.5 \times 10^{-9} \text{ C}
                                                                                                                                          A<sub>1</sub>
                                                                                                                                                 [1]
           (d) (i) V = Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})
                                                                                                                                         A1
                                                                                                                                                  [1]
                 (ii) either energy = \frac{1}{2}CV^2
                                                                                                                                          C<sub>1</sub>
                                    \Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2
                                                                                                                                          C<sub>1</sub>
                                    = 1.65 \times 10^{-7} - 6.2 \times 10^{-8}= 1.03 \times 10^{-7} J
                                                                                                                                         A1
                                                                                                                                                  [3]
                                    energy = 1/2QV
                                                                                                                                   (C1)
                        or
                                    \Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83
                                                                                                                                   (C1)
                                    = 1.03 \times 10^{-7} J
                                                                                                                                   (A1)
Q10.
          (a) (i) work done moving unit positive charge
                                                                                                                                            M1
                        from infinity to the point
                                                                                                                                            A1
                                                                                                                                                    [2]
                 (ii) charge / potential (difference)
                                                                          (ratio must be clear)
                                                                                                                                            B1
                                                                                                                                                    [1]
           (b) (i) capacitance = (2.7 \times 10^{-6}) / (150 \times 10^{3})
                                                                                                                                            C<sub>1</sub>
                        (allow any appropriate values)
                        capacitance = 1.8 \times 10^{-11}
                                                                          (allow 1.8 ±0.05)
                                                                                                                                                    [2]
                                                                                                                                            A1
                 (ii) either energy = \frac{1}{2}CV^2 or energy = \frac{1}{2}QV and Q = CV
                                                                                                                                            C1
                        energy = \frac{1}{2} \times 1.8 \times 10^{-11} \times (150 \times 10^{3})^{2} or \frac{1}{2} \times 2.7 \times 10^{-6} \times 150 \times 10^{3}
                                    = 0.20 J
                                                                                                                                            A1
                                                                                                                                                    [2]
           (c) either since energy \propto V^2, capacitor has (\frac{1}{2})^2 of its energy left
                            full formula treatment
                                                                                                                                            C1
                 energy lost = 0.15 J
                                                                                                                                            A1
                                                                                                                                                    [2]
```

Q11.

4	(a)	e.g.	storing energy separating charge blocking d.c. producing electrical oscillations tuning circuits smoothing preventing sparks timing circuits		
		(an	y two sensible suggestions, 1 each, max 2)	B2	[2]
	(b)	(i)	$-Q$ (induced) on opposite plate of C_1 by <u>charge conservation</u> , charges are $-Q$, $+Q$, $-Q$, $+Q$, $-Q$	B1 B1	[2]
		(ii)	total p.d. $V = V_1 + V_2 + V_3$ $Q/C = Q/C_1 + Q/C_2 + Q/C_3$ $1/C = 1/C_1 + 1/C_2 + 1/C_3$	B1 B1 A0	[2]
	(c)	(i)	energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ = $\frac{1}{2} \times 12 \times 10^{-6} \times 9.0^2$ = $\frac{4}{2} \times 10^{-4}$ J	C1 A1	[2]
		(ii)	energy dissipated in (resistance of) wire/as a spark	B1	[1]
212					
5	(a)	(i)	ratio of charge and potential (difference)/voltage (ratio must be clear)	B1	[1]
		(ii)	capacitor has equal magnitudes of (+)ve and (-)ve charge total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated work done to achieve this so stores energy	B1 B1 M1 A1	[4]
	(b)	(i)	capacitance of Y and Z together is 24 μ F 1/C = 1/24 + 1/12 C = 8.0 μ F (allow 1 s.f.)	C1 A1	[2]
			some discussion as to why all charge of one sign on one plate of X $Q = (CV =) \frac{8.0 \times 10^{-6}}{5} \times 9.0$ = 72 µC	B1 M1 A0	[2]
		(iii)	1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ = 6.0 V (allow 1 s.f.) (allow 72/12)	A1	[1]
			 either Q = 12 × 10⁻⁶ × 3.0 or charge is shared between Y and Z charge = 36 μC Must have correct voltage in (iii) 1 if just quote of 36 μC in (iii)? 	C1 A1	[2]

Q13.

4 (a) e.g. store energy (do not allow 'store charge')

in smoothing circuits

blocking d.c.

in oscillators

any sensible suggestions, one each, max. 2

B2 [2]

(b) (i) potential across each capacitor is the same and Q = CV

B1 [1]

(ii) total charge $Q = Q_1 + Q_2 + Q_3$ $CV = C_1V + C_2V + C_3V$ (allow Q = CV here or in (i)) so $C = C_1 + C_2 + C_3$ M1 M1

A0 [2]

(c) (i)

A1 [1]

(ii) — H —

A1 [1]

Q14.

6 (a) (i) energy = EQ= $9.0 \times 22 \times 10^{-3}$

 $= 9.0 \times 22 \times 10$ = 0.20 J

A1 [2]

(ii) 1. C = Q/V $V = (22 \times 10^{-3})/(4700 \times 10^{-6})$ = 4.7 V

2 either $E = 1/CV^2$

[2]

[2]

2. either $E = \frac{1}{2}CV^2$ = $\frac{1}{2} \times 4700 \times 10^{-6} \times 4.7^2$ = 5.1×10^{-2} J

or $E = \frac{1}{2}QV$

= $\frac{1}{2} \times 22 \times 10^{-3} \times 4.7$ = 5.1×10^{-2} J

(A1)

or $E = \frac{1}{2}Q^2/C$

 $= \frac{72}{2} \sqrt{10}$ $= \frac{1}{2} \times (22 \times 10^{-3})^2 / 4700 \times 10^{-6}$ $= 5.1 \times 10^{-2} \text{ J}$

- (b) energy lost (as thermal energy) in resistance/wires/battery/resistor (award only if answer in (a)(i) > answer in (a)(ii)2)
- B1 [1]

Q15.

6	(a)	for the two capacitors in parallel, capacitance = $96 \mu F$ for complete arrangement, $1/C_T = 1/96 + 1/48$	C1	
		$C_T = 32 \mu F$		
	(b)	p.d. across parallel combination is one half p.d. across single capacitor total p.d. = 9 V	C1 A1	[2]