त्रिकोणमिती

चला, शिकूया.

- त्रिकोणमितीची ओळख
- त्रिकोणमितीय गुणोत्तरे
- त्रिकोणमितीय गुणोत्तरातील संबंध
- विशिष्ट कोनाची त्रिकोणमितीय गुणोत्तरे

त्रिकोणमितीची ओळख(Introduction to trigonometry)

आपण जिमनीवरील अंतरे दोरीने, चालत जाऊन मोजू शकतो, परंतु समुद्रातील जहाजाचे दीपस्तंभापासूनचे अंतर कसे मोजत असतील? झाडाची उंची कशी मोजायची ?

वरील चित्रांचे निरीक्षण करा. चित्रातील प्रश्न गणिताशी निगडित आहेत. या प्रश्नांची उत्तरे मिळवण्यासाठी गणित विषयाच्या त्रिकोणमिती या शाखेचा उपयोग होतो. त्रिकोणमितीचा उपयोग अभियांत्रिकी, खगोलशास्त्र, नौकाशास्त्र इत्यादी शाखांमध्येही केला जातो.

त्रिकोणमिती (Trigonometry) हा शब्द तीन ग्रीक शब्दांपासून तयार झाला आहे. Tri म्हणजे तीन, gona म्हणजे बाजू, metron म्हणजे मोजमाप.

आपण त्रिकोणाचा अभ्यास केला आहे. काँटकोन त्रिकोण, पायथागोरसचे प्रमेय आणि समरूप त्रिकोणांचे गुणधर्म यांच्या आधारे त्रिकोणमिती विषयाची सुरुवात होते.

त्यांची उजळणी करू.

 Δ ABC मध्ये \angle B हा काटकोन आहे तर \angle B या काटकोनासमोरील बाजू AC ही कर्ण आहे. $\angle A$ समोरील बाजू BC आहे, $\angle C$ समोरील बाजू AB आहे.

या त्रिकोणाच्या संदर्भात पायथागोरसच्या प्रमेयाचे विधान $(AB)^2 + (BC)^2 = (AC)^2$

जर Δ ABC $\sim \Delta$ PQR तर त्यांच्या संगत बाजू प्रमाणात असतात, म्हणजे $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$

एखाद्या मोठ्या झाडाची उंची मोजायची असेल तर समरूप त्रिकोणांच्या गुणधर्माचा उपयोग करून ती कशी काढता येते ते पाह.

कृती: हा प्रयोग दिवसा चांगले ऊन असेल तेव्हा करता येतो. शेजारील आकृती पाहा. QR ही झाडाची उंची आहे. BC ही एका काठीची उंची आहे.

लहान काठी जिमनीत उभी रोवून तिची उंची व तिच्या सावलीची लांबी मोजा. झाडाच्या सावलीची लांबी मोजा. सूर्याचे किरण समांतर असल्यामुळे Δ PQR व Δ ABC हे समकोन म्हणजेच समरूप त्रिकोण आहेत, हे जाणून घ्या. समकोन त्रिकोणांच्या संगत बाजू प्रमाणात असतात याचा उपयोग करून $\frac{QR}{PR} = \frac{BC}{AC}$ मिळते. म्हणून झाडाची उंची $QR = \frac{BC}{4C} \times PR$ हे समीकरण मिळते.

PR, BC व AC आपल्याला माहीत आहेत. या किमती समीकरणात घालून QR ची लांबी, म्हणजेच झाडाची उंची ठरवता येते.

हा प्रयोग सकाळी 8 वाजता न करता दुपारी 11:30 किंवा 1:30 ला करणे सोयीचे आहे. ते का?

कृती: वरील कृती करून तुम्ही स्वतः परिसरातील उंच झाडाची उंची काढा. परिसरात झाड नसेल तर एखाद्या खांबाची उंची काढा.

दिव्याचा खांब **आकृती** 8.4

त्रिकोणाच्या संदर्भातील काही संज्ञा (Terms related to triangle)

काटकोन Δ ABC मध्ये, \angle B = 90 $^{\circ}$ आहे तर \angle A व \angle C हे लघुकोन आहेत.

उदा. काटकोन Δ PQR मध्ये

 $\angle P$ समोरील बाजू = . . . $\angle P$ लगतची बाजू = $\angle R$ समोरील बाजू = . . . $\angle R$ लगतची बाजू =

त्रिकोणमितीय गुणोत्तरे (Trigonometic ratios)

शेजारील आकृती 8.8 मध्ये काही काटकोन त्रिकोण दाखवले आहेत. त्यांचा $\angle B$ हा सामाईक कोन आहे. त्यामुळे हे सर्व काटकोन त्रिकोण समरूप आहेत.

येथे Δ PQB $\sim \Delta$ ACB आहे.

$$\therefore \frac{PB}{AB} = \frac{PQ}{AC} = \frac{BQ}{BC}$$

$$\frac{PQ}{AC} = \frac{PB}{AB}$$
 : $\frac{PQ}{PB} = \frac{AC}{AB}$ एकांतर क्रिया

$$\frac{QB}{BC} = \frac{PB}{AB}$$
 : $\frac{QB}{PB} = \frac{BC}{AB}$ एकांतर क्रिया

खालील आकृत्या 8.9 आणि 8.10 या आकृती 8.8 मधून वेगळ्या केलेल्या त्रिकोणांच्या आहेत.

(i) Δ PQB मध्ये,

$$\frac{PQ}{PB} = \frac{\angle B}{}$$
 च्या समोरील बाजू कर्ण

$$\frac{AC}{AB} = \frac{\angle B}{}$$
 च्या समोरील बाजू कर्ण

$$\frac{PQ}{PB}$$
 व $\frac{AC}{AB}$ ही गुणोत्तरे समान आहेत.

$$\frac{PQ}{PB} = \frac{AC}{AB} = \frac{\angle B}{AB} = \frac{AC}{AB}$$
 कर्ण

या गुणोत्तराला B या कोनाचे साइन (sine) गुणोत्तर असे म्हणतात. हे गुणोत्तर थोडक्यात sinB असे लिहितात.

(ii) Δ PQB व Δ ACB मध्ये

$$\frac{BQ}{PB} = \frac{\angle \mathbf{B}}{\mathbf{B}} = \frac{\mathbf{B}}{\mathbf{B}} = \frac{\mathbf{B}}{\mathbf{B}}$$

$$\frac{BQ}{PB} = \frac{BC}{AB} = \frac{\angle B}{\triangle B} = \frac{\angle B}{\triangle B} = \frac{A}{\triangle B}$$

या गुणोत्तराला कोन B चे कोसाईन (cosine) गुणोत्तर असे म्हणतात. हे गुणोत्तर थोडक्यात cosB असे लिहितात.

(iii)
$$\frac{PQ}{BQ} = \frac{AC}{BC} = \frac{\angle B}{\angle B}$$
 च्या समोरील बाजू $\angle B$ च्या लगतची बाजू

या गुणोत्तराला कोन B चे टॅंजंट (tangent) गुणोत्तर असे म्हणतात. हे गुणोत्तर थोडक्यात tanB असे लिहितात.

उदा.

काही वेळा काटकोन त्रिकोणाच्या लघुकोनांची मापे θ (थीटा), α (अल्फा), β (बीटा) इत्यादी ग्रीक अक्षरांनी दर्शवतात. सोबतच्या आकृतीत, Δ ABC च्या C या लघुकोनाचे माप θ या अक्षराने दाखवले आहे. अशावेळी $\sin C$, $\cos C$, $\tan C$ ही गुणोत्तरे अनुक्रमे $\sin \theta$, $\cos \theta$, $\tan \theta$ अशीही लिहितात.

$$\sin C = \sin \theta = \frac{AB}{AC}$$
, $\cos C = \cos \theta = \frac{BC}{AC}$, $\tan C = \tan \theta = \frac{AB}{BC}$

हे लक्षात ठेवूया.

- sin गुणोत्तर = कोनासमोरील बाजू कर्ण
- cos गुणोत्तर = कोनालगतची बाजू कर्ण
- tan गुणोत्तर = कोनासमोरील बाजू कोनालगतची बाजू

सरावसंच 8.1

1.

आकृती 8.12

2.

आकृती 8.13

3.

4.

शेजारील आकृती 8.12 मध्ये Δ PQR चा \angle R हा काटकोन आहे तर खालील गुणोत्तरे लिहा.

(i) sin P (ii) cos Q (iii) tan P (iv) tan Q

आकृती 8.13 मध्ये Δ XYZ हा काटकोन त्रिकोण आहे. \angle XYZ = 90° आहे. बाजूंची लांबी a,b,c अशी दिली आहे. यावरून खालील गुणोत्तरे लिहा.

(i) $\sin X$ (ii) $\tan Z$ (iii) $\cos X$ (iv) $\tan X$

काटकोन Δ LMN मध्ये, \angle LMN = 90° \angle L = 50° आणि \angle N = 40° आहे. यावरून खालील गुणोत्तरे लिहा.

- (i) sin 50°
- (ii) cos 50°
- (iii) tan 40°
- (iv) cos 40°

दिलेल्या आकृतीमध्ये $\angle PQR = 90^\circ$, $\angle PQS = 90^\circ$, $\angle PRQ = \alpha$ व $\angle QPS = \theta$ तर खालील त्रिकोणमितीय गुणोत्तरे लिहा.

- (i) $\sin \alpha$, $\cos \alpha$, $\tan \alpha$
- (ii) $\sin \theta$, $\cos \theta$, $\tan \theta$

त्रिकोणमितीय गुणोत्तरांमधील संबंध (Relations among trigonometric ratios)

आकृती 8.16 मध्ये,

 Δ PMN हा काटकोन त्रिकोण आहे.

 $m \angle M = 90^{\circ}, \angle P$ व $\angle N$ हे परस्परांचे कोटिकोन आहेत.

 \therefore जर m \angle N = θ तर m \angle P = 90 - θ

$$\sin \theta = \frac{PM}{PN} \dots (1)$$

$$\cos \theta = \frac{NM}{PN}$$
(2)

$$\tan\theta = \frac{PM}{NM} \dots (3)$$

$$\sin(90 - \theta) = \frac{NM}{PN} \dots (4)$$

$$\cos (90 - \theta) = \frac{PM}{PN}$$
(5)

$$\sin(90 - \theta) = \frac{NM}{PN} \dots (4)$$

$$\cos(90 - \theta) = \frac{PM}{PN} \dots (5)$$

$$\tan(90 - \theta) = \frac{NM}{PM} \dots (6)$$

∴
$$\sin \theta = \cos (90 - \theta)$$
 (1) ब (5) বুদ্ধন $\cos \theta = \sin(90 - \theta)$ (2) ब (4) বুদ্ধন

आता हेही लक्षात घ्याः
$$\tan \theta \times \tan (90 - \theta) = \frac{PM}{NM} \times \frac{NM}{PM}$$
 (3) व (6) वरून

$$\therefore \tan \theta \times \tan (90 - \theta) = 1$$

तसेच
$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{PM}{PN}}{\frac{NM}{PN}} = \frac{PM}{PN} \times \frac{PN}{NM} = \frac{PM}{NM} = \tan \theta$$

हे लक्षात ठेवूया.

$$cos(90 - \theta) = sin \theta, sin(90 - \theta) = cos \theta$$

$$\sin(90 - \theta) = \cos\theta$$

$$\frac{\sin \theta}{\cos \theta} = \tan \theta,$$

$$\tan \theta \times \tan (90 - \theta) = 1$$

* अधिक माहितीसाठी

$$\frac{1}{\sin \theta} = \csc \theta, \ \frac{1}{\cos \theta} = \sec \theta, \ \frac{1}{\tan \theta} = \cot \theta$$

म्हणजेच $\csc\theta$, $\sec\theta$ आणि $\cot\theta$ ही अनुक्रमे $\sin\theta$, $\cos\theta$ आणि $\tan\theta$ यांची व्यस्त गुणोत्तरे आहेत.

- $\sec \theta = \csc (90 \theta)$ $\csc \theta = \sec (90 \theta)$
- $\tan \theta = \cot (90 \theta)$ $\cot \theta = \tan (90 \theta)$

जरा आठवूया.

30° – 60° – 90° मापाच्या त्रिकोणाचा गुणधर्म

एखाद्या त्रिकोणाच्या कोनांची मापे $30^\circ,60^\circ,90^\circ$ असतील तर आपल्याला माहीत आहे की, 30° कोनासमोरील बाजू कर्णाच्या निम्मी असते आणि 60° कोनासमोरील बाजू कर्णाच्या लांबीच्या $\frac{\sqrt{3}}{2}$ पट असते.

शेजारील आकृतीमध्ये, काटकोन \triangle ABC मध्ये \angle C = 30°, \angle A = 60°, \angle B = 90° आहे.

$$\therefore$$
 AB = $\frac{1}{2}$ AC आणि BC = $\frac{\sqrt{3}}{2}$ AC

जाणून घेऊया.

30° व 60° या कोनांची त्रिकोणमितीय गुणोत्तरे (Trignometric ratios of 30° and 60° angles)

काटकोन Δ PQR मध्ये जर \angle R = 30°,

$$\angle$$
P = 60°, \angle Q = 90° आणि समजा PQ = a

$$αR PQ = \frac{1}{2} PR$$

$$α = \frac{1}{2} PR$$

$$QR = \frac{\sqrt{3}}{2} PR$$

$$QR = \frac{\sqrt{3}}{2} × 2a$$

$$∴ PR = 2a$$

$$QR = \frac{\sqrt{3}}{2} × 3a$$

$$\therefore$$
 जर PQ = a तर PR = $2a$ आणि QR = $\sqrt{3}a$

(I) 30° मापाच्या कोनाची त्रिकोणमितीय गुणोत्तरे.

$$\sin 30^{\circ} = \frac{PQ}{PR} = \frac{a}{2a} = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{QR}{PR} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}}{2}$$

$$\tan 30^{\circ} = \frac{PQ}{QR} = \frac{a}{\sqrt{3}a} = \frac{1}{\sqrt{3}}$$

(Ⅱ) 60° मापाच्या कोनाची त्रिकोणमितीय गुणोत्तरे.

$$\sin 60^{\circ} = \frac{QR}{PR} = \frac{\sqrt{3} a}{2a} = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{PQ}{PR} = \frac{a}{2a} = \frac{1}{2}$$

$$\tan 60^{\circ} = \frac{QR}{PQ} = \frac{\sqrt{3} a}{a} = \sqrt{3}$$

काटकोन Δ PQR मध्ये \angle Q = 90° दिला आहे. \angle P व \angle R हे परस्परांचे कोटिकोन आहेत, म्हणून कोटिकोनाच्या साइन व कोसाइन या गुणोत्तरांमधील संबंध येथे पडताळून पाहा.

$$\sin \theta = \cos(90-\theta)$$

 $\sin 30^{\circ} = \cos(90^{\circ} - 30^{\circ}) = \cos 60^{\circ}$
 $\sin 30^{\circ} = \cos 60^{\circ}$

$$\cos \theta = \sin(90 - \theta)$$

 $\cos 30^{\circ} = \sin(90^{\circ} - 30^{\circ}) = \sin 60^{\circ}$
 $\cos 30^{\circ} = \sin 60^{\circ}$

हे लक्षात ठेवूया.

$\sin 30^{\circ} = \frac{1}{2}$	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$	$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$
$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$	$\cos 60^{\circ} = \frac{1}{2}$	tan 60° = √3

(III) 45° मापाच्या कोनाची त्रिकोणमितीय गुणोत्तरे.

काटकोन \triangle ABC मध्ये \angle B= 90°, \angle A =45°, \angle C = 45° \therefore हा समद्विभुज काटकोन त्रिकोण आहे. समजा, AB = a तर BC = a पायथागोरसच्या प्रमेयावरून AC ची लांबी काढू.

$$AC^{2} = AB^{2} + BC^{2}$$
$$= a^{2} + a^{2}$$
$$AC^{2} = 2a^{2}$$
$$\therefore AC = \sqrt{2} a$$

मागील आकृती 8.19 मध्ये $\angle C = 45^{\circ}$ आहे.

$$\sin 45^{\circ} = \frac{AB}{AC} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = \frac{AB}{BC} = \frac{a}{a} = 1$$

$$\cos 45^{\circ} = \frac{BC}{AC} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}}$$

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}}, \qquad \cos 45^{\circ} = \frac{1}{\sqrt{2}},$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = 1$$

 $(IV) \ 0^{\circ} \ a \ 90^{\circ} \ Hापांच्या कोनांची त्रिकोणिमतीय गुणोत्तरे$

आकृती 8.20

काटकोन Δ ACB मध्ये $\angle C$ = 90° आणि $\angle B$ = 30° आहे. $\sin 30^\circ = \frac{AC}{AB}$ हे आपल्याला माहीत आहे. AB ची लांबी स्थिर ठेवून, $\angle B$ चे माप जसेजसे कमी होते तशीतशी $\angle B$ समोरील बाजू AC ची लांबी कमी होते म्हणून $\angle B$ चे माप कमी झाले की $\sin \theta$ ची किंमत कमी होते.

∴ ∠B चे माप 0° होईल तेव्हा AC ची लांबी ही 0 होईल.

$$\therefore \sin 0^{\circ} = \frac{AC}{AB} = \frac{0}{AB}$$

$$\therefore \sin 0^{\circ} = 0$$

आता आकृती 8.21 पाहा. या काटकोन त्रिकोणात $\angle B$ चे माप जसजसे वाढत जाते तसतसे AC ची लांबी वाढताना दिसते. $\angle B$ चे माप जर 90° झाले तर AC ही AB एवढी होईल.

$$\therefore \sin 90^{\circ} = \frac{AC}{AB} \qquad \therefore \sin 90^{\circ} = 1$$

आपण कोटिकोनाची त्रिकोणमितीय गुणोत्तरे पाहिली आहेत.

$$\sin \theta = \cos (90 - \theta)$$
 आणि $\cos \theta = \sin (90 - \theta)$
 $\therefore \cos 0^{\circ} = \sin (90 - 0)^{\circ} = \sin 90^{\circ} = 1$
आणि $\cos 90^{\circ} = \sin (90 - 90)^{\circ} = \sin 0^{\circ} = 0$

$$\sin 0^{\circ} = 0$$
, $\sin 90^{\circ} = 1$, $\cos 0^{\circ} = 1$, $\cos 90^{\circ} = 0$

आपल्याला माहीत आहे की,

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\theta}{1} = 0$$

परंतु $\tan 90^\circ = \frac{\sin 90^\circ}{\cos 90^\circ} = \frac{1}{0}$

परंतु $\frac{1}{0}$ हा भागाकार करता येत नाही. θ लघुकोन असून तो मोठा होत होत 90° च्या जवळ जाऊ लागतो, तसा $\tan \theta$ अनिर्बंधपणे मोठा होत जातो. परंतु $\tan 90$ ची किंमत ठरवता येत नाही.

विशिष्ट मापाच्या कोनांची त्रिकोणमितीय गुणोत्तरे

गुणोत्तरे कोनांची मापे	कोनांची मापे 0°		45°	60°	90°	
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	
COS	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ठरवता येत नाही	

सोडवलेली उदाहरणे

उदा (1) किंमत काढा : 2tan 45° + cos 30° - sin 60°

उकल : 2tan 45° + cos 30° - sin 60°

$$= 2 \times 1 + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$$
$$= 2 + 0$$
$$= 2$$

उदा (2) किंमत काढा. $\frac{\cos 56^\circ}{\sin 34^\circ}$

उकल : $56^{\circ} + 34^{\circ} = 90^{\circ}$ म्हणजे 56 व 34 ही कोटिकोनांची मापे आहेत.

$$\sin \theta = \cos (90 - \theta)$$

$$\therefore$$
 sin 34° = cos (90-34)° = cos 56°

$$\therefore \frac{\cos 56^{\circ}}{\sin 34^{\circ}} = \frac{\cos 56^{\circ}}{\cos 56^{\circ}} = 1$$

उदा (3) काटकोन \triangle ACB मध्ये जर \angle C = 90°, AC = 3, BC = 4 तर \angle A व \angle B ची खालील त्रिकाणिमतीय गुणोत्तरे काढा.

sin A, sin B, cos A, tan B

उकलः काटकोन Δ ACB मध्ये पायथागोरसच्या प्रमेयावरून,

$$AB^2 = AC^2 + BC^2$$

= $3^2 + 4^2$
= 5^2

$$AB = 5$$

$$\sin A = \frac{BC}{AB} = \frac{4}{5}$$

$$\sin B = \frac{AC}{AB} = \frac{3}{5}$$

$$\cos A = \frac{AC}{AB} = \frac{3}{5}$$

$$\tan B = \frac{AC}{BC} = \frac{3}{4}$$

काटकोन
$$\triangle$$
 PQR मध्ये \angle R= θ $\sin \theta = \frac{5}{13}$ $\therefore \frac{PQ}{PR} = \frac{5}{13}$

 \therefore PQ = 5k आणि PR = 13k मानू.

पायथागोरसच्या प्रमेयावरून QR काढू.

$$PQ^2 + QR^2 = PR^2$$

$$(5k)^2 + QR^2 = (13k)^2$$

$$25k^2 + QR^2 = 169 k^2$$

$$QR^2 = 169 k^2 - 25k^2$$

$$QR^2 = 144 k^2$$

$$QR = 12k$$

आता काटकोन Δ PQR मध्ये PQ = 5k आणि PR = 13k, QR = 12k

$$\cos \theta = \frac{QR}{PR} = \frac{12k}{13k} = \frac{12}{13}$$
, $\tan \theta = \frac{PQ}{QR} = \frac{5k}{12k} = \frac{5}{12}$

विचार करूया

- (1) वरील उदाहरण सोडवताना PQ आणि PR या बाजूंची लांबी 5k आणि 13k का घेतली आहे?
- (2) PQ आणि PR ची लांबी अनुक्रमे 5 आणि 13 घेता येईल का? घेता येत असल्यास लेखनात काही बदल करावा लागेल का?

त्रिकोणमितीमधील महत्त्वाचे समीकरण

 Δ PQR हा काटकोन त्रिकोण आहे

$$\angle$$
PQR = 90°, \angle R= θ मानू.

$$\sin \theta = \frac{PQ}{PR} \dots (1)$$

$$\cos \theta = \frac{QR}{PR} \dots (2)$$

पायथागोरसच्या प्रमेयावरून

$$PQ^2 + QR^2 = PR^2$$

$$\therefore \frac{PQ^2}{PR^2} + \frac{QR^2}{PR^2} = \frac{PR^2}{PR^2} \cdot \cdot \cdot \cdot \cdot$$
प्रत्येक पदाला
PR² ने भागले

$$\therefore \left(\frac{PQ}{PR}\right)^2 + \left(\frac{QR}{PR}\right)^2 = 1$$

$$\therefore (\sin \theta)^2 + (\cos \theta)^2 = 1....(1) = (2)$$
बरून

 $(\sin\theta)^2$ म्हणजे $\sin\theta$ चा वर्ग, हा $\sin^2\theta$ असा लिहितात.

 $\sin^2\theta + \cos^2\theta = 1$ हे समीकरण आपण पायथागोरसचे प्रमेय वापरून θ हा एक लघुकोन असणाऱ्या काटकोन त्रिकोणाच्या साहाय्याने सिद्ध केले. $\theta = 0^\circ$ किंवा $\theta = 90^\circ$ असेल तरीही हे समीकरण सत्य असते याचा पडताळा घ्या.

 $\sin^2\theta + \cos^2\theta = 1$ हे समीकरण कोणत्याही मापाच्या कोनासाठी सत्य असल्यामुळे त्याला त्रिकोणमितीतील मूलभूत नित्य समानता म्हणतात.

(i) $0 \le \sin \theta \le 1$, $0 \le \sin^2 \theta \le 1$

(ii) $0 \le \cos \theta \le 1$, $0 \le \cos^2 \theta \le 1$

सरावसंच 8.2

1. खालील सारणीत प्रत्येक स्तंभात एक गुणोत्तर दिले आहे. त्यावरून इतर दोन गुणोत्तरे काढा आणि रिकाम्या जागा भरा.

sin θ		$\frac{11}{61}$		$\frac{1}{2}$				$\frac{3}{5}$	
$\cos \theta$	$\frac{35}{37}$				$\frac{1}{\sqrt{3}}$				
tan θ			1			$\frac{21}{20}$	$\frac{8}{15}$		$\frac{1}{2\sqrt{2}}$

2. किमती काढा.

(i)
$$5\sin 30^{\circ} + 3\tan 45^{\circ}$$

(iii)
$$2\sin 30^{\circ} + \cos 0^{\circ} + 3\sin 90^{\circ}$$

(v)
$$\cos^2 45^\circ + \sin^2 30^\circ$$

3. जर
$$\sin \theta = \frac{4}{5}$$
 तर $\cos \theta$ काढा.

4. जर
$$\cos \theta = \frac{15}{17}$$
 तर $\sin \theta$ काढा.

(ii)
$$\frac{4}{5} \tan^2 60^\circ + 3 \sin^2 60^\circ$$

(iv)
$$\frac{\tan 60}{\sin 60 + \cos 60}$$

(vi)
$$\cos 60^{\circ} \times \cos 30^{\circ} + \sin 60^{\circ} \times \sin 30^{\circ}$$

- 1. खालील बहुपर्यायी प्रश्नांच्या उत्तराचा अचूक पर्याय निवडा.
 - (i) खालीलपैकी कोणते विधान सत्य आहे.
 - (A) $\sin \theta = \cos (90 \theta)$
- (B) $\cos \theta = \tan (90 \theta)$
- (C) $\sin \theta = \tan (90 \theta)$
- (D) $\tan \theta = \tan (90 \theta)$
- (ii) sin 90° ची किंमत खालीलपैकी कोणती ?
 - (A) $\frac{\sqrt{3}}{2}$ (B) 0 (C) $\frac{1}{2}$
- (D) 1
- (iii) 2 tan 45° + cos 45° sin 45° = िकती ?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

- (iv) $\frac{\cos 28^{\circ}}{\sin 62^{\circ}}$ = किती ?
 - (A) 2
- (B) -1 (C) 0
- (D) 1
- 2. काटकोन \triangle TSU मध्ये TS = 5, \angle S = 90°, SU = 12 तर sin T, cos T, tan T काढा. तसेच sin U, cos U, tan U काढा.

3. काटकोन \triangle YXZ मध्ये, \angle X = 90°, XZ = 8 सेमी, YZ = 17 सेमी तर $\sin Y$, $\cos Y$, $\tan Y$, sin Z, cos Z, tan Z काढा.

4. काटकोन \triangle LMN मध्ये \angle N = θ , \angle M = 90° , $\cos \theta = \frac{24}{25}$ तर $\sin \theta$ आणि $\tan \theta$ ही गुणोत्तरे काढा, तसेच $(\sin^2 \theta)$ व $(\cos^2 \theta)$ ची किंमत काढा.

- 5. गाळलेल्या जागा भरा.
 - (i) $\sin 20^\circ = \cos \bigcirc$
 - (ii) $\tan 30^{\circ} \times \tan \bigcirc = 1$
 - (iii) $\cos 40^{\circ} = \sin \Box$