Supplementary material concerning the paper:

Event Critical-Horizon Opacity

Dan You, Member, IEEE, ShouGuang Wang, Senior Member, IEEE, MengChu Zhou, Fellow, IEEE Carla Seatzu, Senior Member, IEEE

ACRONYMS

DES Discrete Event Systems
DFA Deterministic Finite-state Automata
UAV Unmanned Aerial Vehicles

NOMENCLATURE

 \mathbb{Z}^+ set of positive integers Xfinite set of states Σ set of events $\delta{:}~X\times\Sigma\to X$ deterministic transition function $x_0 \in X$ unique initial state $G = (X, \Sigma, \delta, x_0)$ Σ_s set of secret events Σ_F set of fault events Σ_o set of observable events Σ_u set of unobservable events Σ^* set of all finite-length strings of elements in Σ including the empty string ϵ . L(G)language generated by G $P: \Sigma^* \to \Sigma_o^*$ natural projection $P_G^{-1}(\omega)$ set of consistent strings of $\omega \in \Sigma_o^*$ in G $\Psi(\Sigma')$ set of strings in L(G) ending with an event $e \in \Sigma'$ $\Gamma_K(\sigma)$ K-step suffix of $\sigma \in \Sigma^*$ $\mathcal{K}: \Sigma_S \to \mathbb{Z}^+ \cup \{+\infty\}$ a function associating with each secret event a critical horizon Seq(x)set of all sequences leading from initial state x_0 to state x in system G $La = \{$ "Ø", "S" $\}$ set of labels label evolution function w.r.t. a set of secret $\eta_{\Sigma'_{\alpha}}: La \times \Sigma^* \to La$ events $\Sigma_S' \subseteq \Sigma_S$ $Ver^{\mathcal{K}}(G) = (Z, \Sigma_0, \delta_Z, z_0)$ event critical-horizon opacity verifier

PROOF OF LEMMA 1

K-step event-opacity verifier

infinite-step event-opacity verifier

 $Ver^K(G) = (Y, \Sigma_0, \delta_Y, y_0)$

 $Ver^{\infty}(G) = (Q, \Sigma_0, \delta_O, q_0)$

1) First, we consider $\epsilon \in L(Ver^{\mathcal{K}}(G))$. Clearly, $|P_G^{-1}(\epsilon)| \neq \emptyset$. By Definition 9, it is $\delta_z(z_0, \epsilon) = z_0 = \{(\Gamma_{Kmax+1}(\sigma), x, l) | (\sigma, x, l) \in UR_{\Sigma_{S(+\infty)}}(\{(\epsilon, x_0, \emptyset)\})\}$. Thus, it is trivial to see that

$$\delta_z(z_0, \epsilon) = \{ (\Gamma_{Kmax+1}(\sigma), \delta(x_0, \sigma), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma)) \\ |\sigma \in P_G^{-1}(\epsilon) \}.$$

Next, we consider $\omega' \in L(Ver^{\mathcal{K}}(G))$ with $\omega' = \omega v$, where $v \in \Sigma_o$ and $\omega \in L(Ver^{\mathcal{K}}(G))$ satisfying $|P_G^{-1}(\omega)| \neq \emptyset$ and

$$\delta_z(z_0, \omega) = \{ (\Gamma_{Kmax+1}(\sigma), \delta(x_0, \sigma), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma)) | \\ \sigma \in P_C^{-1}(\omega) \}.$$
 (1)

Clearly, $\delta_z(z_0,\omega) \neq \emptyset$. Let $z = \delta_z(z_0,\omega)$. By Definition 9, $v \in En_o(z)$ and

$$\delta_z(z, v) = \{ (\Gamma_{Kmax+1}(\sigma), x, l) |$$

$$(\sigma, x, l) \in UR_{\Sigma_{S(+\infty)}}(Next(z, v)) \}.$$

Due to (1), since $v \in En_o(z)$, it follows that

$$\exists \sigma \in P_G^{-1}(\omega), \text{ s.t. } \delta(x_0, \sigma v)!$$
 (2)

and it holds that

$$Next(z,v) = \{ (\Gamma_{Kmax+1}(\sigma)v, \delta(x_0, \sigma v), \\ \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma v)) \mid \sigma \in P_G^{-1}(\omega), \delta(x_0, \sigma v)! \}.$$

Furthermore, it is

$$UR_{\Sigma_{S(+\infty)}}(Next(z,v)) = \{ (\Gamma_{Kmax+1}(\sigma)\nu u, \\ \delta(x_0, \sigma vu), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma vu)) \mid \\ \sigma \in P_G^{-1}(\omega), u \in \Sigma_u^*, \delta(x_0, \sigma vu)! \}.$$

Trivially, it is

$$\delta z(z,v) = \{ (\Gamma_{Kmax+1}(\sigma \nu u), \delta(x_0, \sigma v u), \eta_{\Sigma_{S(+\infty)}} \\ (\emptyset, \sigma v u)) \mid \sigma \in P_G^{-1}(\omega), u \in \Sigma_u^*, \delta(x_0, \sigma v u)! \}.$$
(3)

Note that it holds

$$P_G^{-1}(\omega') = P_G^{-1}(\omega v) = \{ \sigma v u \mid \sigma \in P_G^{-1}(\omega), u \in \Sigma_u^*, \delta(x_0, \sigma v u)! \}.$$
 (4)

Thus, $|P_G^{-1}(\omega')| \neq \emptyset$ by (2). In addition, by (3) and (4), it follows

$$\delta_z(z, v) = \{ (\Gamma_{Kmax+1}(\sigma'), \delta(x_0, \sigma'), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma')) \mid \sigma' \in P_G^{-1}(\omega') \}.$$

Since $z = \delta_z(z_0, \omega)$ and $\omega' = \omega v$, it is

$$\delta_z(z_0, \omega') = \delta_z(z, v) = \{ (\Gamma_{Kmax+1}(\sigma'), \\ \delta(x_0, \sigma'), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma')) \mid \sigma' \in P_G^{-1}(\omega') \}.$$

Consequently, we conclude that

$$\forall \omega \in L(Ver^{\mathcal{K}}(G)), |P_G^{-1}(\omega)| \neq \emptyset \text{ and}$$

$$\delta_z(z_0, \omega) = \{ (\Gamma_{Kmax+1}(\sigma), \delta(x_0, \sigma), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma)) \mid \sigma \in P_G^{-1}(\omega) \}.$$

2) It is proved that $\forall \omega \in L(Ver^{\mathcal{K}}(G)), |P_G^{-1}(\omega)| \neq \emptyset$. It means $\forall \omega \in L(Ver^{\mathcal{K}}(G)), \ \omega \in P(L(G))$. Thus, $L(Ver^{\mathcal{K}}(G)) \subseteq P(L(G))$. Next, we prove $L(Ver^{\mathcal{K}}(G)) \supseteq P(L(G))$.

First, we consider $\epsilon \in P(L(G))$. It is clear that $\epsilon \in L(Ver^{\mathcal{K}}(G))$.

Next, we consider $\omega' \in P(L(G))$ s.t. $\omega' = \omega v$, where $v \in \Sigma_o$ and $\omega \in P(L(G)) \wedge \omega \in L(Ver^{\mathcal{K}}(G))$. We prove $\omega' \in L(Ver^{\mathcal{K}}(G))$.

Since $\omega v \in P(L(G)), \quad \omega \in P(L(G))$ and $v \in \Sigma_o$, it holds that

$$\exists \sigma \in P_G^{-1}(\omega), \text{ s.t. } \sigma v \in L(G).$$
 (5)

Since $\omega \in L(Ver^{\mathcal{K}}(G))$, there exists $z \in Z$ s.t.

$$z = \delta_z(z_0, \omega) = \{ (\Gamma_{Kmax+1}(\sigma), \delta(x_0, \sigma), \eta_{\Sigma_{S(+\infty)}}(\emptyset, \sigma)) \mid \sigma \in P_G^{-1}(\omega) \}.$$

Due to (5) and (6), it is $v \in En_o(z)$. Thus, $\omega' \in L(Ver^{\mathcal{K}}(G))$ since $\omega \in L(Ver^{\mathcal{K}}(G))$.

Consequently, it holds that $\forall \omega \in P(L(G)), \quad \omega \in L(Ver^{\mathcal{K}}(G)), \quad \text{i.e.,} \quad L(Ver^{\mathcal{K}}(G)) \supseteq P(L(G)).$ Therefore, $P(L(G)) = L(Ver^{\mathcal{K}}(G)).$