Geometry of Surfaces - Exercises

Exercises marked with * are to be answered (partially) in the online quiz for this week on the Keats page for this module.

29.* Let \mathcal{S} be the surface given by the surface patch

$$\sigma: (-1,1) \times (-1,1) \to \mathbb{R}^3, \ (u,v) \mapsto (u,v,\cos(u) + \sin(v)).$$

Calculate the coefficients of the first fundamental form of S at $\sigma(0,0) = (0,0,1)$.

- **30.*** Compute the first fundamental form of the surface $\sigma(u,v) = (u-v, u+v, u^2+v^2)$.
- **31.** Let σ be a surface and $Edu^2 + 2Fdudv + Gdv^2$ its first fundamental form. Compute the first fundamental form of the surface $\tilde{\sigma} = \lambda \sigma$ with $0 \neq \lambda \in \mathbb{R}$.
- **32.** Show that

$$\sigma(u,v) = \frac{1}{1+u^2+v^2}(2u,2v,u^2+v^2-1)$$

is a conformal parametrization of the unit sphere S^2 minus N=(0,0,1). [Note that σ is the inverse map of the stereographic projection $S^2\setminus\{N\}\to\mathbb{R}^2$.]

33.* Let $\sigma:(0,1)\times(0,1)\to\mathbb{R}^3$ be a regular surface patch whose first fundamental form is given by

$$ds^{2} = du^{2} + (1 - u)dudv + \frac{3u^{2}}{4v}dv^{2}.$$

Compute the length of the curve

$$\gamma:(0,1)\to\mathbb{R}^3, t\mapsto \sigma(t,t^2).$$

- **34.** Prove that the concept of isometric surfaces is an equivalence relation. More precisely, prove that:
 - (a) A surface A is always isometric to itself.
 - (b) If a surface A is isometric to a surface B, then B is isometric to A.
 - (c) If a surface A is isometric to a surface B and B is isometric to a surface C, then A is isometric to C.
- **35.** Prove that the generalized cylinder given by $\sigma(u,v)=(f(u),g(u),v)$ with $\dot{f}^2+\dot{g}^2=1$ is (locally) isometric to a plane.
- **36.** Prove that the cone given by $\sigma(u,v) = (\cos(u)v,\sin(u)v,v)$ with $0 < u < 2\pi$ and $0 < v < \infty$ is isometric to (part of) the plane.
- **37.*** Let \mathcal{S} be a surface with surface patch $\sigma:(0,1)\times(0,1)\to\mathbb{R}^3$ and first fundamental form

$$ds^{2} = (u^{2}v^{3} + v^{3})du^{2} + 2vdudv + \frac{1}{v}dv^{2}.$$

Compute the area of S.

38. Write down an integral formula for the area of the paraboloid $z = x^2 + y^2$ with $z \le 1$.