An Impossibility Theorem of Quantifying Causal Effect

Yue Wang

Department of Applied Mathematics University of Washington yuewang@uw.edu

March 29, 2018

Collaborator

- This work is collaborated with Dr. Linbo Wang at Department of Biostatistics, Harvard University.
- Full paper can be found at https://arxiv.org/abs/1711.04466

Outline

- What is causal effect.
- Existing causal quantities and their problems.
- Criteria for a "good" causal quantity
- An impossibility theorem.

What is causal effect

- Heating with fire causes water to boil. (Deterministic)
- HIV exposure causes AIDS. (Stochastic, strong effect)
- Smoking causes lung cancer. (Stochastic, weak effect)

What is causal effect

 Skip 100 pages of philosophical discussions of causal effect...

Purpose

- We have some random variables X_1, X_2, \dots, X_n, Y .
- X₁, · · · , X_n (cause variables) are exactly all the direct causes of Y (result variable). We assume there is no hidden cause of Y.
- Our purpose is to quantify the effect of a causal relationship X₁ → Y, based on the joint probability distribution of X₁, X₂, · · · , X_n, Y.

Information theory

- Idea: if X causes Y, then X contains information of Y. Use information to quantify causal effect.
- Measure of information: entropy.

$$\mathsf{H}(X) = -\sum_i p_i \log p_i,$$

where $p_i = \mathbb{P}(X = x_i)$.

• $H(X) \ge 0$. Equality holds if and only if X is deterministic.

Mutual information (MI)

$$\mathsf{MI}(X,Y) = \mathsf{H}(X) + \mathsf{H}(Y) - \mathsf{H}(X,Y).$$

Mutual information (MI)

- Intuition: the information shared between X and Y. The information gain of Y if we know X. The predict power of X on Y.
- If X causes Y, then MI(X, Y) can be used to describe the causal effect of X → Y.
- MI(X, Y) ≥ 0. Equality holds if and only if X and Y are independent.

Conditional Mutual information (CMI)

Generalize MI for more variables.

$$CMI(X_1, Y \mid X_2) = MI(X_1X_2, Y) - MI(X_2, Y).$$

- Conditioned on the knowledge of X₂, how much extra information of Y could X₁ provide.
- Can be used to describe the causal effect of X₁ → Y if X₁ and X₂ cause Y.
- CMI($X_1, Y \mid X_2$) \geq 0. Equality holds if and only if X_1 and Y are independent conditioned on X_2 . This means that with the knowledge of X_2, X_1 contains no new knowledge of Y.

Problem of CMI

- CMI measures unique information. When $X_1 \approx X_2$, they contain nearly the same information of Y. Both $CMI(X_1, Y \mid X_2)$ and $CMI(X_2, Y \mid X_1)$ are very small.
- Cannot distinguish:

- ϵ and δ are independent small noises.
- CMI(X_1 , $Y \mid X_2$) is 0 in the first case, and very small in the second case.

New methods

- Utilize the slight difference between X_1 and X_2 .
- Causal strength (CS) and part mutual information (PMI).

•

$$\mathsf{CS}(X_1,Y) = \sum_{x_1,x_2,y} \mathbb{P}(x_1,x_2,y) \log \frac{\mathbb{P}(y \mid x_1,x_2)}{\sum_{x_1'} \mathbb{P}(y \mid x_1',x_2) \mathbb{P}(x_1')}.$$

•

$$\mathsf{PMI}(X_1, Y \mid X_2) = \\ \sum_{x_1, x_2, y} \mathbb{P}(x_1, x_2, y) \log \frac{\mathbb{P}(x_1, y \mid x_2)}{\sum_{x_1'} \mathbb{P}(y \mid x_1', x_2) \mathbb{P}(x_1') \sum_{y'} \mathbb{P}(x_1 \mid x_2, y') \mathbb{P}(y')}.$$

New methods

$$X_2 = X_1 + \epsilon, \ Y = X_2 + \delta$$
 $X_2 = X_1 + \epsilon, \ Y = X_1 + \delta$
 $X_1 \perp \!\!\!\perp Y \mid X_2$ $X_2 \perp \!\!\!\perp Y \mid X_1$

$$X_2 = X_1 + \epsilon, Y = X_1 + X_2 \perp \!\!\!\perp Y \mid X_1$$

 ϵ and δ are independent small noises.

 $CS(X_1, Y)$ and $PMI(X_1, Y \mid X_2)$ are 0 in the first case, and relatively large in the second case.

Problem of new methods

- These two joint distributions are almost the same, but the resulting causal effects are very different.
- CS and PMI may not be continuous with joint distribution (under total variation distance) when both {X₁} and {X₂} have all the information of Y contained in {X₁, X₂}.

Markov boundary (MB)

Assume we have cause variables $S = \{X_1, \dots, X_n\}$ and the result variable Y. A Markov boundary of Y, S_1 , is a subset of S, which is minimal, and keeps its information of Y.

$$\mathsf{MI}(\mathcal{S}_1,\,Y)=\mathsf{MI}(\mathcal{S},\,Y),$$

$$\forall \mathcal{S}_2 \subsetneq \mathcal{S}_1, \quad \mathsf{MI}(\mathcal{S}_2, Y) < \mathsf{MI}(\mathcal{S}, Y).$$

This means $Y \perp \!\!\! \perp \mathcal{S} \backslash \mathcal{S}_1 \mid \mathcal{S}_1$.

Markov boundary (MB)

- MB may not be unique. (Set $X_1 = X_2$ in the above example.)
- Assume MB is unique. A cause variable inside MB has
 positive irreplaceable predict power of Y, and a cause
 variable outside MB has zero irreplaceable predict power
 of Y. Therefore the unique MB should be exactly all the
 cause variables with positive causal effect.

Problem of new methods

- When there are multiple MB, both CS and PMI are not directly defined. (Contains 0/0 in the expression.)
- Try to use continuation: choose a sequence of distributions (for which CS and PMI are defined) converging to the original distribution, and check whether the corresponding CS and PMI converge.

Problem of new methods

Theorem

In any arbitrarily small neighborhood of a distribution with multiple MB, CS (also PMI) can take any value in an interval with positive length.

- When there are multiple MB, both CS and PMI cannot be well-defined.
- Similar to the behavior of a complex function near an essential singularity.
- Calculating CS and PMI in such case is not numerically feasible.

Sketch of the proof

- Construct two sequences of distributions, both of which converge to the original distribution.
- CS (or PMI) of two sequences always exist, but converge to different values.
- Distribution of one sequence can continuously transform into distribution of the other sequence, during which CS (or PMI) is always defined.

Purpose

- We have cause variables $S = \{X_1, X_2, \dots, X_n\}$ and result variable Y.
- Our purpose is to quantify the effect of a causal relationship $X_1 \rightarrow Y$.
- We propose several criteria for a "good" causal quantity.
- We focus on the case where MB is unique. In such case, the unique MB should be exactly all the variables with positive causal effect.

Criteria for quantifying causal effect

- C0. The effect of $X_1 \rightarrow Y$ is identifiable from the joint distribution of cause variables and result variable.
- C1. If there is unique MB \mathcal{M} , and $X_1 \notin \mathcal{M}$, then the effect of $X_1 \to Y$ is 0.
- C2. If there is unique MB \mathcal{M} , and $X_1 \in \mathcal{M}$, then the effect of $X_1 \to Y$ is at least CMI($X_1, Y \mid \mathcal{M} \setminus \{X_1\}$).
- C3. The effect of X₁ → Y is a continuous function of the joint distribution.
- CMI fails in C2. CS and PMI fail in C3.

An impossibility theorem

Theorem

Assume in a distribution, Y has multiple MB. X_1 belongs to at least one MB, but not all MB. Then in any neighborhood of this distribution, the effect of $X_1 \rightarrow Y$ cannot be defined while satisfying criteria CO-C3.

Sketch of proof

For variable X_1 , we define X_1 with ϵ -noise to be X_1^{ϵ} , which equals X_1 with probability $1-\epsilon$, and equals an independent noise with probability ϵ . Denote all cause variables by \mathcal{S} .

Lemma (Strict Data Processing Inequality)

 \mathcal{S}_1 is a group of variables without X_1, Y . If we add ϵ -noise on X_1 to get X_1^{ϵ} , then $CMI(X_1^{\epsilon}, Y \mid \mathcal{S}_1) \leq CMI(X_1, Y \mid \mathcal{S}_1)$, and the equality holds if and only if $CMI(X_1, Y \mid \mathcal{S}_1) = 0$.

Lemma

Assume Y has multiple MB. For one MB \mathcal{M}_0 , if we add ϵ noise on all variables of $\mathcal{S} \setminus \mathcal{M}_0$, then in the new distribution, \mathcal{M}_0 is the unique MB.

Sketch of proof

- Assume $X_1 \in \mathcal{M}_0, X_1 \notin \mathcal{M}_1$ for MB $\mathcal{M}_0, \mathcal{M}_1$.
- We can add ϵ -noise on $S \setminus M_1$, such that M_1 is the unique MB. Criterion C1 shows that the effect of $X_1^{\epsilon} \to Y$ is 0.
- We can add ϵ -noise on $\mathcal{S}\setminus\mathcal{M}_0$, such that \mathcal{M}_0 is the unique MB. Criterion C2 shows that the effect of $X_1 \to Y$ is at least $\text{CMI}(X_1, Y \mid \mathcal{M}_0 \setminus \{X_1\}) > 0$.
- Let $\epsilon \to 0$. Criterion C3 shows that the effect of $X_1 \to Y$ should be at least CMI($X_1, Y \mid \mathcal{M}_0 \backslash X$), and should be 0.

Summary

- Quantifying causal effect with multiple MB is an essentially ill-posed problem.
- When a distribution with unique MB is close to another distribution with multiple MB, a reasonable causal quantity is either very small (CMI) or fluctuate violently (CS, PMI). Therefore in such case, quantitative method is not feasible.
- A practical problem: detecting whether MB is unique from data.

Algorithm 1: An assumption-free algorithm for determining the uniqueness of MB

(1) **Input**Observations of $S = \{X_1, \dots, X_k\}$ and Y

(2) Set
$$\mathcal{E} = \emptyset$$

(3) For
$$i = 1, ..., k$$
,

Test whether
$$X_i \perp \!\!\! \perp Y \mid S \setminus \{X_i\}$$

If $X_i \perp \!\!\! \perp Y \mid S \setminus \{X_i\}$
 $\mathcal{E} = \mathcal{E} \cup \{X_i\}$

(4) If
$$Y \perp \!\!\! \perp \!\!\! \perp S \mid \mathcal{E}$$

output: Y has a unique MB

Else

output: Y has multiple MB

Algorithm 2: An assumption-free algorithm for producing one MB

```
(1) Input
Observations of S = \{X_1, \dots, X_k\} and Y
(2) Set \mathcal{M}_0 = S
(3) Repeat
Set X_0 = \arg\min_{X \in \mathcal{M}_0} \Delta(X, Y \mid \mathcal{M}_0 \setminus \{X_i\})
If X_0 \perp \!\!\! \perp Y \mid \mathcal{M}_0 \setminus \{X_0\}
Set \mathcal{M}_0 = \mathcal{M}_0 \setminus \{X_0\}
Until X_0 \perp \!\!\! \perp Y \mid \mathcal{M}_0 \setminus \{X_0\}
(4) Output \mathcal{M}_0 is a MB
```

Algorithm 3: A general algorithm for determining the uniqueness of MB

(1) Input

Observations of $S = \{X_1, \dots, X_k\}$ and YAlgorithm Ω which can correctly produce one MB

- (2) **Set** $\mathcal{M}_0 = \{X_1, \dots, X_m\}$ to be the result of Algorithm Ω on \mathcal{S}
- (3) **For** i = 1, ..., m,

Set \mathcal{M}_i to be the result of Algorithm Ω on $\mathcal{S} \mid \{X_i\}$ **If** $Y \perp \!\!\! \perp \!\!\! \mathcal{M}_0 \mid \mathcal{M}_i$

Output Y has multiple MB Terminate

(4) Output Y has a unique MB

Algorithm 4: An assumption-free algorithm for determining the uniqueness of MB

(1) Input

Observations of
$$S = \{X_1, \dots, X_k\}$$
 and Y

- (2) **Set** $\mathcal{M}_0 = \{X_1, \dots, X_m\}$ to be the result of Algorithm 2 on \mathcal{S}
- (3) For i = 1, ..., m,

If
$$Y \perp \!\!\! \perp X_i \mid S \setminus \{X_i\}$$

If
$$X_i \not\perp \!\!\!\perp Y \mid S \setminus \{X_i\}$$

Output Y has multiple MB

Terminate

(4) **Output** Y has a unique MB

Algorithms performances

Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green 'x'), 3-AF (blue '+'), 4 (black diamond) with different numbers of observations in Case A. Number of observations and time costs are in logarithm.

Algorithms performances

Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green 'x'), 3-AF (blue '+'), 4 (black diamond) with different numbers of observations in Case B. Number of observations and time costs are in logarithm.

Algorithms performances

Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green 'x'), 3-AF (blue '+'), 4 (black diamond) with different numbers of observations in Case C. Number of observations and time costs are in logarithm.

References

- CMI: DOBRUSHIN, R. L. (1963). General formulation of Shannon's main theorem in information theory. Amer. Math. Soc. Trans. 33, 323–438.
- CS: JANZING, D., BALDUZZI, D., GROSSE-WENTRUP, M. & SCHÖLKOPF, B. (2013). Quantifying causal influences. Ann. Stat. 41, 2324–2358.
- PMI: ZHAO, J., ZHOU, Y., ZHANG, X. & CHEN, L. (2016).
 Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. 113, 5130–5135.
- MB: PEARL, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Thank you!