Elements of Set Theory

Herbert B. Enderton

Contents

\mathbf{R}	Ref	erence 3		
	R.1	¶ Empty Set Axiom		
	R.2	¶ Extensionality Axiom		
	R.3	¶ Pair Set		
	R.4	¶ Pairing Axiom		
	R.5	¶ Power Set		
	R.6	¶ Power Set Axiom		
	R.7	¶ Subset Axioms		
	R.8	¶ Union Axiom		
	R.9	¶ Union Axiom, Preliminary Form		
1	Introduction 6			
	1.1	Baby Set Theory		
		1.1.1		
		1.1.2		
		1.1.3		
		1.1.4		
	1.2	Sets - An Informal View		
		1.2.1 Exercise 2.1		
		1.2.2		
		1.2.3 Exercise 2.3		
2	Axioms and Operations 11			
	2.1	Axioms		
		2.1.1 ** Theorem 2A		
		2.1.2 Theorem 2B		
	2.2	Exercises 3		
		2.2.1		
		2.2.2		
		2.2.3		
		2.2.4		
		2.2.5		
		2.2.6		
		2.2.7 Exercise 3.6b		

	000	■ T
		Exercise 3.7a
		Exercise 3.7b
	-	Exercise 3.8
		\bigcirc Exercise 3.9
		ightharpoonup Exercise 3.10
2.3	Algebra	of Sets
	2.3.1	Commutative Laws
	2.3.2	🕏 Associative Laws
	2.3.3	🕏 Distributive Laws
	2.3.4	🕏 De Morgan's Laws
	2.3.5	\bigcirc Identities Involving \varnothing
	2.3.6	1 Monotonicity
	2.3.7	1 Anti-monotonicity
	2.3.8	• General Distributive Laws
	2.3.9	• General De Morgan's Laws
2.4	Exercise	es 4
	2.4.1	9 Exercise 4.11
	2.4.2	9 Exercise 4.12
	2.4.3	9 Exercise 4.13
	2.4.4	9 Exercise 4.14
	2.4.5	B Exercise 4.15
	2.4.6	B Exercise 4.16
	2.4.7	9 Exercise 4.17
	2.4.8	Exercise 4.18
	2.4.9	B Exercise 4.19
	2.4.10	Exercise 4.20
	2.4.11	B Exercise 4.21
	2.4.12	1 Exercise 4.22
	2.4.13	Exercise 4.23
		1 Exercise 4.24a
		9 Exercise 4.24b
		1 Exercise 4.25 26

Chapter R

Reference

R.1 ¶ Empty Set Axiom

There is a set having no members:

 $\exists B, \forall x, x \notin B.$

Axiom. \exists – Set.emptyCollection

R.2 ¶ Extensionality Axiom

If two sets have exactly the same members, then they are equal:

$$\forall A, \forall B, [\forall x, (x \in A \iff x \in B) \Rightarrow A = B].$$

Axiom. \exists - Set.ext

R.3 ¶ Pair Set

For any sets u and v, the **pair set** $\{u, v\}$ is the set whose only members are u and v.

Definition.

 \exists - Set.insert

 \exists – Set.singleton

R.4 ¶ Pairing Axiom

For any sets u and v, there is a set having as members just u and v:

$$\forall u, \forall v, \exists B, \forall x, (x \in B \iff x = u \text{ or } x = v).$$

Axiom.

 \exists – Set.insert

 \exists – Set.singleton

R.5 ¶ Power Set

For any set a, the **power set** $\mathscr{P}a$ is the set whose members are exactly the subsets of a.

Definition. \exists – Set.powerset

R.6 ¶ Power Set Axiom

For any set a, there is a set whose members are exactly the subsets of a:

$$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$

Axiom. \exists – Set.powerset

R.7 ¶ Subset Axioms

For each formula ϕ not containing B, the following is an axiom:

$$\forall t_1, \dots \forall t_k, \forall c, \exists B, \forall x, (x \in B \iff x \in c \land \phi).$$

Axiom. \exists - Set.Subset

R.8 ¶ Union Axiom

For any set A, there exists a set B whose elements are exactly the members of the members of A:

$$\forall A, \exists B, \forall x [x \in B \iff (\exists b \in A) x \in b]$$

Axiom. \exists – Set.sUnion

R.9 ¶ Union Axiom, Preliminary Form

For any sets a and b, there is a set whose members are those sets belonging either to a or to b (or both):

$$\forall a, \forall b, \exists B, \forall x, (x \in B \iff x \in a \text{ or } x \in b).$$

Axiom. \exists – Set.union

Chapter 1

Introduction

1.1 Baby Set Theory

Which of the following become true when " \in " is inserted in place of the blank? Which become true when " \subseteq " is inserted?

⊘ Exercise 1.1a

 $\{\emptyset\}$ ____ $\{\emptyset, \{\emptyset\}\}$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1a

Because the *object* $\{\emptyset\}$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is also **true** in the case of " \subseteq ".

Exercise 1.1b

 $\{\varnothing\}_{---}\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1b

Because the *object* $\{\emptyset\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

⊘ Exercise 1.1c

 $\{\{\emptyset\}\}_{---}\{\emptyset,\{\emptyset\}\}.$

Proof. ∃ − Enderton.Set.Chapter_1.exercise_1_1c

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

♥ Exercise 1.1d

 $\{\{\varnothing\}\}....\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. ∃ – Enderton.Set.Chapter_1.exercise_1_1d

Because the *object* $\{\{\emptyset\}\}\$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\{\varnothing\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Exercise 1.1e

 $\{\{\emptyset\}\}_{--}\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1e

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Show that no two of the three sets \emptyset , $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to each other.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_2

By the \P Extensionality Axiom, \varnothing is only equal to \varnothing . This immediately shows it is not equal to the other two. Now consider object \varnothing . This object is a

member of $\{\emptyset\}$ but is not a member of $\{\{\emptyset\}\}$. Again, by the \P Extensionality Axiom, these two sets must be different.

Show that if $B \subseteq C$, then $\mathscr{P}B \subseteq \mathscr{P}C$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_3

Let $x \in \mathscr{P}B$. By definition of the \P Power Set, x is a subset of B. By hypothesis, $B \subseteq C$. Then $x \subseteq C$. Again by definition of the \P Power Set, it follows $x \in \mathscr{P}C$.

Assume that x and y are members of a set B. Show that $\{\{x\}, \{x,y\}\} \in \mathscr{PP}B$.

Proof. \exists – Enderton.Set.Chapter_1.exercise_1_4

Let x and y be members of set B. Then $\{x\}$ and $\{x,y\}$ are subsets of B. By definition of the \P Power Set, $\{x\}$ and $\{x,y\}$ are members of $\mathscr{P}B$. Then $\{\{x\},\{x,y\}\}$ is a subset of $\mathscr{P}B$. By definition of the \P Power Set, $\{\{x\},\{x,y\}\}$ is a member of $\mathscr{P}B$.

1.2 Sets - An Informal View

1.2.1 **Exercise** 2.1

Define the rank of a set c to be the least α such that $c \subseteq V_{\alpha}$. Compute the rank of $\{\{\emptyset\}\}\$. Compute the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$.

Proof. We first compute the values of V_n for $0 \le n \le 3$ under the assumption the set of atoms A at the bottom of the hierarchy is empty.

$$\begin{split} V_0 &= \varnothing \\ V_1 &= V_0 \cup \mathscr{P} V_0 \\ &= \varnothing \cup \{\varnothing\} \\ &= \{\varnothing\} \\ V_2 &= V_1 \cup \mathscr{P} V_1 \\ &= \{\varnothing\} \cup \mathscr{P} \{\varnothing\} \\ &= \{\varnothing\} \cup \{\varnothing, \{\varnothing\}\} \\ &= \{\varnothing, \{\varnothing\}\} \\ V_3 &= V_2 \cup \mathscr{P} V_2 \\ &= \{\varnothing, \{\varnothing\}\} \cup \mathscr{P} \{\varnothing, \{\varnothing\}\}, \{\varnothing\}, \{\varnothing\}\} \} \\ &= \{\varnothing, \{\varnothing\}\} \cup \{\varnothing, \{\varnothing\}\}, \{\varnothing\}\} \} \end{split}$$

It then immediately follows $\{\{\varnothing\}\}\$ has rank 2 and $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$ has rank 3.

We have stated that $V_{\alpha+1} = A \cup \mathscr{P}V_{\alpha}$. Prove this at least for $\alpha < 3$.

Proof. Let A be the set of atoms in our set hierarchy. Let P(n) be the predicate, " $V_{n+1} = A \cup \mathscr{P}V_n$." We prove P(n) holds true for all natural numbers $n \geq 1$ via induction.

Base Case Let n=1. By definition, $V_1=V_0\cup \mathscr{P}V_0$. By definition, $V_0=A$. Therefore $V_1=A\cup \mathscr{P}V_0$. This proves P(1) holds true.

Induction Step Suppose P(n) holds true for some $n \geq 1$. Consider V_{n+1} . By definition, $V_{n+1} = V_n \cup \mathcal{P}V_n$. Therefore, by the induction hypothesis,

$$\begin{aligned} V_{n+1} &= V_n \cup \mathscr{P}V_n \\ &= (A \cup \mathscr{P}V_{n-1}) \cup \mathscr{P}V_n \\ &= A \cup (\mathscr{P}V_{n-1} \cup \mathscr{P}V_n) \end{aligned} \tag{1.1}$$

But V_{n-1} is a subset of V_n . \bigcirc Exercise 1.3 then implies $\mathscr{P}V_{n-1} \subseteq \mathscr{P}V_n$. This means (1.1) can be simplified to

$$V_{n+1} = A \cup \mathscr{P}V_n$$

proving P(n+1) holds true.

Conclusion By mathematical induction, it follows for all $n \ge 1$, P(n) is true.

1.2.3 **Exercise** 2.3

List all the members of V_3 . List all the members of V_4 . (It is to be assumed here that there are no atoms.)

Proof. As seen in the proof of PExercise 2.1,

$$V_3 = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}.$$

By \mathscr{F} Exercise 2.2, $V_4 = \mathscr{P}V_3$ (since it is assumed there are no atoms). Thus

```
V_4 = \{
             Ø,
             \{\varnothing\},
             \{\{\emptyset\}\},
             \{\{\{\emptyset\}\}\},
             \{\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}\},
             \{\varnothing, \{\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing, \{\varnothing\}\}\},\
             \{\{\varnothing\},\{\{\varnothing\}\}\},
             \{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\},
             \{\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing,\{\varnothing\},\{\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\},\
             \{\varnothing, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
             \{\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
}.
```

10

Chapter 2

Axioms and Operations

2.1 Axioms

2.1.1 ****** Theorem 2A

Theorem 2A. There is no set to which every set belongs.

Note: This was revisited after reading Enderton's proof prior.

Proof. Let A be an arbitrary set. Define $B = \{x \in A \mid x \notin x\}$. By the \P Subset Axioms, B is a set. Then

$$B \in B \iff B \in A \land B \notin B$$
.

If $B \in A$, then $B \in B \iff B \notin B$, a contradiction. Thus $B \notin A$. Since this process holds for any set A, there must exist no set to which every set belongs.

2.1.2 **?** Theorem 2B

Theorem 2B. For any nonempty set A, there exists a unique set B such that for any x,

 $x \in B \iff x \text{ belongs to every member of } A.$

Proof. Suppose A is a nonempty set. This ensures the statement we are trying to prove does not vacuously hold for all sets x (which would yield a contradiction due to \mathcal{F} Theorem 2B). By the \P Union Axiom, $\bigcup A$ is a set. Define

$$B = \{x \in \bigcup A \mid (\forall b \in A), x \in b\}.$$

By the \P Subset Axioms, B is indeed a set. By construction,

 $\forall x, x \in B \iff x \text{ belongs to every member of } A.$

By the \P Extensionality Axiom, B is unique.

2.2 Exercises 3

Assume that A is the set of integers divisible by 4. Similarly assume that B and C are the sets of integers divisible by 9 and 10, respectively. What is in $A \cap B \cap C$?

Answer. \exists - Enderton.Set.Chapter_1.exercise_3_1

The set of integers divisible by 4, 9, and 10.

Give an example of sets A and B for which $\bigcup A = \bigcup B$ but $A \neq B$.

Answer. \exists - Enderton.Set.Chapter_1.exercise_3_2

Let
$$A = \{\{1\}, \{2\}\}$$
 and $B = \{\{1, 2\}\}.$

Show that every member of a set A is a subset of $\bigcup A$. (This was stated as an example in this section.)

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_3

Let $x \in A$. By definition,

$$\bigcup A = \{ y \mid (\exists b \in A) y \in b \}.$$

Then $\{y \mid y \in x\} \subseteq \bigcup A$. But $\{y \mid y \in x\} = x$. Thus $x \subseteq \bigcup A$.

Show that if $A \subseteq B$, then $\bigcup A \subseteq \bigcup B$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_4

Let A and B be sets such that $A \subseteq B$. Let $x \in \bigcup A$. By definition of the union, there exists some $b \in A$ such that $x \in b$. By definition of the subset, $b \in B$. This immediately implies $x \in \bigcup B$. Since this holds for all $x \in \bigcup A$, it follows $\bigcup A \subseteq \bigcup B$.

Assume that every member of \mathscr{A} is a subset of B. Show that $\bigcup \mathscr{A} \subseteq B$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_5

Let $x \in \bigcup \mathscr{A}$. By definition,

$$\bigcup \mathscr{A} = \{ y \mid (\exists b \in A) y \in b \}.$$

Then there exists some $b \in A$ such that $x \in b$. By hypothesis, $b \subseteq B$. Thus x must also be a member of B. Since this holds for all $x \in \bigcup \mathscr{A}$, it follows $\bigcup \mathscr{A} \subseteq B$.

Show that for any set A, $\bigcup \mathscr{P}A = A$.

Proof. ∃ − Enderton.Set.Chapter_1.exercise_3_6a

We prove that (i) $\bigcup \mathscr{P}A \subseteq A$ and (ii) $A \subseteq \bigcup \mathscr{P}A$.

- (i) By definition, the \P Power Set of A is the set of all subsets of A. In other words, every member of $\mathscr{P}A$ is a subset of A. By \lozenge Exercise 3.5, $\bigcup \mathscr{P}A \subseteq A$.
- (ii) Let $x \in A$. By definition of the power set of A, $\{x\} \in \mathscr{P}A$. By definition of the union,

$$\bigcup \mathscr{P}A = \{y \mid (\exists b \in \mathscr{P}A), y \in b\}.$$

Since $x \in \{x\}$ and $\{x\} \in \mathscr{P}A$, it follows $x \in \bigcup \mathscr{P}A$. Thus $A \subseteq \bigcup \mathscr{P}A$.

Conclusion By (i) and (ii), $\bigcup \mathscr{P}A = A$.

Show that $A \subseteq \mathcal{P} \bigcup A$. Under what conditions does equality hold?

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_6b

Let $x \in A$. By \bigcirc Exercise 3.3, x is a subset of $\bigcup A$. By the definition of the \P Power Set,

$$\mathscr{P}\bigcup A = \{y \mid y \subseteq \bigcup A\}.$$

Therefore $x \in \mathcal{P} \bigcup A$. Since this holds for all $x \in A$, $A \subseteq \mathcal{P} \bigcup A$.

We show equality holds if and only if there exists some set B such that $A=\mathscr{P}B.$

- (\Rightarrow) Suppose $A = \mathcal{P} \bigcup A$. Then our statement immediately follows by settings $B = \bigcup A$.
- (\Leftarrow) Suppose there exists some set B such that $A = \mathcal{P}B$. Therefore

Conclusion By (\Rightarrow) and (\Leftarrow) , $A = \mathscr{P} \bigcup A$ if and only if there exists some set B such that $A = \mathscr{P}B$.

Show that for any sets A and B,

$$\mathscr{P}A \cap \mathscr{P}B = \mathscr{P}(A \cap B).$$

Proof. ∃ − Enderton.Set.Chapter_1.exercise_3_7a

Let A and B be arbitrary sets. We show that $\mathscr{P}A\cap\mathscr{P}B\subseteq\mathscr{P}(A\cap B)$ and then show that $\mathscr{P}A\cap\mathscr{P}B\supseteq\mathscr{P}(A\cap B)$.

(\subseteq) Let $x \in \mathscr{P}A \cap \mathscr{P}B$. That is, $x \in \mathscr{P}A$ and $x \in \mathscr{P}B$. By the definition of the \P Power Set,

$$\mathscr{P}A = \{y \mid y \subseteq A\}$$

$$\mathscr{P}B = \{y \mid y \subseteq B\}$$

Thus $x \subseteq A$ and $x \subseteq B$, meaning $x \subseteq A \cap B$. But then $x \in \mathscr{P}(A \cap B)$, the set of all subsets of $A \cap B$. Since this holds for all $x \in \mathscr{P}A \cap \mathscr{P}B$, it follows

$$\mathscr{P}A\cap\mathscr{P}B\subseteq\mathscr{P}(A\cap B).$$

 (\supseteq) Let $x \in \mathcal{P}(A \cap B)$. By the definition of the \P Power Set,

$$\mathscr{P}(A \cap B) = \{ y \mid y \subseteq A \cap B \}.$$

Thus $x \subseteq A \cap B$, meaning $x \subseteq A$ and $x \subseteq B$. But this implies $x \in \mathscr{P}A$, the set of all subsets of A. Likewise $x \in \mathscr{P}B$, the set of all subsets of B. Thus $x \in \mathscr{P}A \cap \mathscr{P}B$. Since this holds for all $x \in \mathscr{P}(A \cap B)$, it follows

$$\mathscr{P}(A \cap B) \subseteq \mathscr{P}A \cap \mathscr{P}B.$$

Conclusion Since each side of our identity is a subset of the other,

$$\mathscr{P}(A \cap B) = \mathscr{P}A \cap \mathscr{P}B.$$

Show that $\mathscr{P}A \cup \mathscr{P}B \subseteq \mathscr{P}(A \cup B)$. Under what conditions does equality hold?

Proof.

∃ - Enderton.Set.Chapter_1.exercise_3_7b_i

∃ – Enderton.Set.Chapter_1.exercise_3_7b_ii

Let $x \in \mathscr{P}A \cup \mathscr{P}B$. By definition, $x \in \mathscr{P}A$ or $x \in \mathscr{P}B$ (or both). By the definition of the \P Power Set,

$$\mathscr{P}A = \{ y \mid y \subseteq A \}$$

$$\mathscr{P}B = \{ y \mid y \subseteq B \}.$$

Thus $x \subseteq A$ or $x \subseteq B$. Therefore $x \subseteq A \cup B$. But then $x \in \mathscr{P}(A \cup B)$, the set of all subsets of $A \cup B$.

We show equality holds if and only if one of A or B is a subset of the other.

$$(\Rightarrow)$$
 Suppose

$$\mathscr{P}A \cup \mathscr{P}B = \mathscr{P}(A \cup B). \tag{2.1}$$

By the definition of the \P Power Set, $A \cup B \in \mathcal{P}(A \cup B)$. Then (2.1) implies $A \cup B \in \mathcal{P}A \cup \mathcal{P}B$. That is, $A \cup B \in \mathcal{P}A$ or $A \cup B \in \mathcal{P}B$ (or both).

For the sake of contradiction, suppose $A \nsubseteq B$ and $B \nsubseteq A$. Then there exists an element $x \in A$ such that $x \notin B$ and there exists an element $y \in B$ such that $y \notin A$. But then $A \cup B \notin \mathscr{P}A$ since y cannot be a member of a member of $\mathscr{P}A$. Likewise, $A \cup B \notin \mathscr{P}B$ since x cannot be a member of a member of $\mathscr{P}B$. Therefore our assumption is incorrect. In other words, $A \subseteq B$ or $B \subseteq A$.

(⇐) WLOG, suppose $A \subseteq B$. Then, by \bigcirc Exercise 1.3, $\mathscr{P}A \subseteq \mathscr{P}B$. Thus

$$\mathscr{P}A \cup \mathscr{P}B = \mathscr{P}B$$

= $\mathscr{P}A \cup B$.

Conclusion By (\Rightarrow) and (\Leftarrow) , it follows $\mathscr{P}A \cup \mathscr{P}B \subseteq \mathscr{P}(A \cup B)$ if and only if $A \subseteq B$ or $B \subseteq A$.

Show that there is no set to which every singleton (that is, every set of the form $\{x\}$) belongs. [Suggestion: Show that from such a set, we could construct a set to which every set belonged.]

Proof. We proceed by contradiction. Suppose there existed a set A consisting of every singleton. Then the \P Union Axiom suggests $\bigcup A$ is a set. But this set is precisely the class of all sets, which is *not* a set. Thus our original assumption was incorrect. That is, there is no set to which every singleton belongs.

Give an example of sets a and B for which $a \in B$ but $\mathscr{P}a \notin \mathscr{P}B$.

Answer. \exists - Enderton.Set.Chapter_1.exercise_3_9

Let
$$a = \{1\}$$
 and $B = \{\{1\}\}$. Then

$$\mathcal{P}a = \{\emptyset, \{1\}\}\$$

$$\mathcal{P}B = \{\emptyset, \{\{1\}\}\}.$$

It immediately follows that $\mathscr{P}a \notin \mathscr{P}B$.

16

Show that if $a \in B$, then $\mathscr{P}a \in \mathscr{PP} \bigcup B$. [Suggestion: If you need help, look in the Appendix.]

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_10

Suppose $a \in B$. By \bigcirc Exercise 3.3, $a \subseteq \bigcup B$. By \bigcirc Exercise 1.3, $\mathscr{P}a \subseteq \mathscr{P} \bigcup B$. By the definition of the \P Power Set,

$$\mathscr{P}\mathscr{P}\bigcup B=\{y\mid y\subseteq\mathscr{P}\bigcup B\}.$$

Therefore $\mathscr{P}a \in \mathscr{PP} \bigcup B$.

2.3 Algebra of Sets

2.3.1 • Commutative Laws

For any sets A and B,

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Proof.

 \exists - Set.union_comm

 \exists - Set.inter_comm

Let A and B be sets. We show (i) $A \cup B = B \cup A$ and then (ii) $A \cap B = B \cap A$.

(i) By the definition of the union of sets,

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$
$$= \{x \mid x \in B \lor x \in A\}$$
$$= B \cup A.$$

(ii) By the definition of the intersection of sets,

$$A \cap B = \{x \mid x \in A \land x \in B\}$$
$$= \{x \mid x \in B \land x \in A\}$$
$$= B \land A.$$

2.3.2 Associative Laws

For any sets A, B and C,

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Proof.

 \exists - Set.union_assoc

 \exists - Set.inter_assoc

Let A, B, and C be sets. We show (i) $A \cup (B \cup C) = (A \cup B) \cup C$ and then (ii) $A \cap (B \cap C) = (A \cap B) \cap C$.

(i) By the definition of the union of sets,

$$\begin{split} A \cup (B \cup C) &= \{x \mid x \in A \lor x \in (B \cup C)\} \\ &= \{x \mid x \in A \lor x \in \{y \mid y \in B \lor C\}\} \\ &= \{x \mid x \in A \lor (x \in B \lor x \in C)\} \\ &= \{x \mid (x \in A \lor x \in B) \lor x \in C\} \\ &= \{x \mid x \in \{y \mid y \in A \lor y \in B\} \lor x \in C\} \\ &= \{x \mid x \in (A \cup B) \lor x \in C\} \\ &= (A \cup B) \cup C. \end{split}$$

(ii) By the definition of the intersection of sets,

$$A \cap (B \cap C) = \{x \mid x \in A \land x \in (B \cap C)\}$$

$$= \{x \mid x \in A \land x \in \{y \mid y \in B \land y \in C\}\}$$

$$= \{x \mid x \in A \land (x \in B \land x \in C)\}$$

$$= \{x \mid (x \in A \land x \in B) \land x \in C\}$$

$$= \{x \mid x \in \{y \mid y \in A \land y \in B\} \land x \in C\}$$

$$= \{x \mid x \in (A \cap B) \land x \in C\}$$

$$= (A \cap B) \cap C.$$

2.3.3 Distributive Laws

For any sets A, B, and C,

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$$

Proof.

- \exists Set.inter_distrib_left
- \exists Set.union_distrib_left

Let A, B, and C be sets. We show (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and then (ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

(i) By the definition of the union and intersection of sets,

$$\begin{split} A \cap (B \cup C) &= \{x \mid x \in A \land x \in B \cup C\} \\ &= \{x \mid x \in A \land x \in \{y \mid y \in B \lor y \in C\}\} \\ &= \{x \mid x \in A \land (x \in B \lor x \in C)\} \\ &= \{x \mid (x \in A \land x \in B) \lor (x \in A \land x \in C)\} \\ &= \{x \mid x \in A \cap B \lor x \in A \cap C\} \\ &= (A \cap B) \cup (A \cap C). \end{split}$$

(ii) By the definition of the union and intersection of sets,

$$\begin{split} A \cup (B \cap C) &= \{x \mid x \in A \vee x \in B \cap C\} \\ &= \{x \mid x \in A \vee x \in \{y \mid y \in B \wedge y \in C\}\} \\ &= \{x \mid x \in A \vee (x \in B \wedge x \in C)\} \\ &= \{x \mid (x \in A \vee x \in B) \wedge (x \in A \vee x \in C)\} \\ &= \{x \mid x \in A \cup B \wedge x \in A \cup C\} \\ &= (A \cup B) \cap (A \cup C). \end{split}$$

For any sets A, B, and C,

$$C - (A \cup B) = (C - A) \cap (C - B)$$
$$C - (A \cap B) = (C - A) \cup (C - B)$$

Proof.

- \exists Set.diff_inter_diff
- \exists Set.diff_inter

Let A, B, and C be sets. We show (i) $C - (A \cup B) = (C - A) \cap (C - B)$ and then (ii) $C - (A \cap B) = (C - A) \cup (C - B)$.

(i) By definition of the union, intersection, and relative complements of sets,

$$\begin{split} C - (A \cup B) &= \{x \mid x \in C \land x \not\in A \cup B\} \\ &= \{x \mid x \in C \land x \not\in \{y \mid y \in A \lor y \in B\}\} \\ &= \{x \mid x \in C \land \neg (x \in A \lor x \in B)\} \\ &= \{x \mid x \in C \land (x \not\in A \land x \not\in B)\} \\ &= \{x \mid (x \in C \land x \not\in A) \land (x \in C \land x \not\in B)\} \\ &= \{x \mid x \in (C - A) \land x \in (C - B)\} \\ &= (C - A) \cap (C - B). \end{split}$$

(ii) By definition of the union, intersection, and relative complements of sets,

$$C - (A \cap B) = \{x \mid x \in C \land x \notin A \cap B\}$$

$$= \{x \mid x \in C \land x \notin \{y \mid y \in A \land y \in B\}\}\}$$

$$= \{x \mid x \in C \land \neg (x \in A \land x \in B)\}$$

$$= \{x \mid x \in C \land (x \notin A \lor x \notin B)\}$$

$$= \{x \mid (x \in C \land x \notin A) \lor (x \in C \land x \notin B)\}$$

$$= \{x \mid x \in (C - A) \lor x \in (C - B)\}$$

$$= (C - A) \cup (C - B).$$

2.3.5 \bigcirc Identities Involving \varnothing

For any set A,

$$A \cup \varnothing = A$$
$$A \cap \varnothing = \varnothing$$
$$A \cap (C - A) = \varnothing$$

Proof.

 \exists - Set.union_empty

 \exists - Set.inter_empty

 \exists - Set.inter_diff_self

Let A be an arbitrary set. We prove (i) that $A \cup \emptyset = A$, (ii) $A \cap \emptyset = \emptyset$, and (iii) $A \cap (C - A) = \emptyset$.

(i) By definition of the emptyset and union of sets,

$$\begin{split} A \cup \varnothing &= \{x \mid x \in A \vee x \in \varnothing\} \\ &= \{x \mid x \in A \vee F\} \\ &= \{x \mid x \in A\} \\ &= A. \end{split}$$

(ii) By definition of the emptyset and intersection of sets,

$$A \cap \emptyset = \{x \mid x \in A \land x \in \emptyset\}$$

$$= \{x \mid x \in A \land F\}$$

$$= \{x \mid F\}$$

$$= \{x \mid x \neq x\}$$

$$= \emptyset.$$

(iii) By definition of the emptyset, and the intersection and relative complement of sets,

$$\begin{split} A \cap (C - A) &= \{x \mid x \in A \land x \in C - A\} \\ &= \{x \mid x \in A \land x \in \{y \mid y \in C \land y \not\in A\}\} \\ &= \{x \mid x \in A \land (x \in C \land x \not\in A)\} \\ &= \{x \mid x \in C \land F\} \\ &= \{x \mid F\} \\ &= \{x \mid x \neq x\} \\ &= \varnothing. \end{split}$$

2.3.6 • Monotonicity

For any sets A, B, and C,

$$A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$$
$$A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$$
$$A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$$

Proof. TODO

For any sets A, B, and C,

$$A\subseteq B\Rightarrow C-B\subseteq C-A$$

$$\varnothing\neq A\subseteq B\Rightarrow\bigcap B\subseteq\bigcap A.$$

Proof. TODO

2.3.8 • General Distributive Laws

For any sets A and \mathscr{B} ,

$$A \cup \bigcap \mathscr{B} = \bigcap \left\{ A \cup X \mid X \in \mathscr{B} \right\} \quad \text{for} \quad \mathscr{B} \neq \varnothing$$
$$A \cap \bigcup \mathscr{B} = \bigcup \left\{ A \cap X \mid X \in \mathscr{B} \right\}$$

Proof. TODO

2.3.9 • General De Morgan's Laws

For any set C and $\mathscr{A} \neq \varnothing$,

$$C - \bigcup \mathscr{A} = \bigcap \{C - X \mid X \in \mathscr{A}\}$$
$$C - \bigcap \mathscr{A} = \bigcup \{C - X \mid X \in \mathscr{A}\}$$

Proof. TODO

2.4 Exercises 4

Show that for any sets A and B,

$$A = (A \cap B) \cup (A - B)$$
 and $A \cup (B - A) = A \cup B$.

Proof. TODO

Verify the following identity (one of De Morgan's laws):

$$C - (A \cap B) = (C - A) \cup (C - B).$$

Proof. TODO

Show that if $A \subseteq B$, then $C - B \subseteq C - A$.

Proof. TODO

Show by example that for some sets A, B, and C, the set A-(B-C) is different from (A-B)-C.

Proof. TODO

Define the symmetric difference A+B of sets A and B to be the set $(A-B) \cup (B-A)$.

Exercise 4.15a

Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$.

Proof. TODO

• Exercise 4.15b

Show that A + (B + C) = (A + B) + C.

Proof. TODO

2.4.6 **D** Exercise 4.16

Simplify:

$$[(A \cup B \cup C) \cap (A \cup B)] - [(A \cup (B - C)) \cap A].$$

Proof. TODO

2.4.7 **①** Exercise 4.17

Show that the following four conditions are equivalent.

- (a) $A \subseteq B$,
- (b) $A B = \emptyset$,
- (c) $A \cup B = B$,
- (d) $A \cap B = A$.

Proof. TODO

Assume that A and B are subsets of S. List all of the different sets that can be made from these three by use of the binary operations \cup , \cap , and -.

Proof. TODO

Is $\mathscr{P}(A-B)$ always equal to $\mathscr{P}A-\mathscr{P}B$? Is it ever equal to $\mathscr{P}A-\mathscr{P}B$?

Proof. TODO

Let A, B, and C be sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that B = C.

Proof. TODO

Show that $\bigcup (A \cup B) = \bigcup A \cup \bigcup B$.

Proof. TODO

Show that if A and B are nonempty sets, then $\bigcap (A \cup B) = \bigcap A \cap \bigcap B$.

Proof. TODO

Show that if \mathscr{B} is nonempty, then $A \cup \bigcap \mathscr{B} = \bigcap \{A \cup X \mid X \in \mathscr{B}\}.$

Proof. TODO

Show that if \mathscr{A} is nonempty, then $\mathscr{P} \cap A = \bigcap \{\mathscr{P}X \mid X \in \mathscr{A}\}.$

Proof. TODO

Show that

$$\bigcup \left\{ \mathscr{P}X \mid X \in \mathscr{A} \right\} \subseteq \mathscr{P}\bigcup A.$$

Under what conditions does equality hold?