CS885 Reinforcement Learning Lecture 2b: May 4, 2018

Value Iteration
[SutBar] Sec. 4.1, 4.4, [Sze] Sec. 2.2, 2.3,
[Put] Sec. 6.1-6.3, [SigBuf] Chap. 1

Outline

- Convergence properties of
 - Policy evaluation
 - Value iteration

Value Iteration Algorithm

valueIteration(MDP)

$$V_0^*(s) \leftarrow \max_a R(s, a) \ \forall s$$
For $t = 1$ to h do
$$V_t^*(s) \leftarrow \max_a R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{t-1}^*(s') \ \forall s$$

Return V*

Optimal policy π^*

$$t = 0: \pi_0^*(s) \leftarrow \underset{a}{\operatorname{argmax}} R(s, a) \ \forall s$$
$$t > 0: \pi_t^*(s) \leftarrow \underset{a}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{t-1}^*(s') \ \forall s$$

NB: t indicates the # of time steps to go (till end of process) π^* is non stationary (i.e., time dependent)

Value Iteration

Matrix form:

 \mathbb{R}^a : $|S| \times 1$ column vector of rewards for a

 V_t^* : $|S| \times 1$ column vector of state values

 T^a : $|S| \times |S|$ matrix of transition prob. for a

valueIteration(MDP)

$$V_0^* \leftarrow \max_a R^a$$

For $t = 1$ to h do
$$V_t^* \leftarrow \max_a R^a + \gamma T^a V_{t-1}^*$$
Return V^*

Infinite Horizon

- Let $h \to \infty$
- Then $V_h^{\pi} \to V_{\infty}^{\pi}$ and $V_{h-1}^{\pi} \to V_{\infty}^{\pi}$

Policy evaluation:

$$V_{\infty}^{\pi}(s) = R(s, \pi_{\infty}(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi_{\infty}(s)) V_{\infty}^{\pi}(s') \ \forall s$$

Bellman's equation:

$$V_{\infty}^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{\infty}^{*}(s')$$

Policy evaluation

Linear system of equations

$$V_{\infty}^{\pi}(s) = R(s, \pi_{\infty}(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi_{\infty}(s)) V_{\infty}^{\pi}(s') \ \forall s$$

Matrix form:

R: $|S| \times 1$ column vector of sate rewards for π

V: $|S| \times 1$ column vector of state values for π

T: $|S| \times |S|$ matrix of transition prob for π

$$V = R + \gamma TV$$

Solving linear equations

- Linear system: $V = R + \gamma TV$
- Gaussian elimination: $(I \gamma T)V = R$
- Compute inverse: $V = (I \gamma T)^{-1}R$
- Iterative methods
 - Value iteration (a.k.a. Richardson iteration)
 - Repeat $V \leftarrow R + \gamma TV$

Contraction

- Let $H(V) \stackrel{\text{def}}{=} R + \gamma TV$ be the policy eval operator
- Lemma 1: H is a contraction mapping.

$$\left| \left| H(\tilde{V}) - H(V) \right| \right|_{\infty} \le \gamma \left| \left| \tilde{V} - V \right| \right|_{\infty}$$

• Proof
$$|H(\tilde{V}) - H(V)|_{\infty}$$

 $= |R + \gamma T \tilde{V} - R - \gamma T V|_{\infty}$ (by definition)
 $= |\gamma T(\tilde{V} - V)|_{\infty}$ (simplification)
 $\leq \gamma |T|_{\infty} |\tilde{V} - V|_{\infty}$ (since $|AB| \leq |A| |B|$)
 $= \gamma |\tilde{V} - V|_{\infty}$ (since $\max_{s} \sum_{s'} T(s, s') = 1$)

Convergence

• Theorem 2: Policy evaluation converges to V^{π} for any initial estimate V

$$\lim_{n\to\infty} H^{(n)}(V) = V^{\pi} \quad \forall V$$

- Proof
 - By definition $V^{\pi} = H^{(\infty)}(0)$, but policy evaluation computes $H^{(\infty)}(V)$ for any initial V
 - By Lemma 1, $\left|\left|H^{(n)}(V) H^{(n)}(\tilde{V})\right|\right|_{\infty} \leq \gamma^n \left|\left|V \tilde{V}\right|\right|_{\infty}$
 - Hence, when $n \to \infty$, then $\left| \left| H^{(n)}(V) H^{(n)}(0) \right| \right|_{\infty} \to 0$ and $H^{(\infty)}(V) = V^{\pi} \ \forall V$

Approximate Policy Evaluation

 In practice, we can't perform an infinite number of iterations.

• Suppose that we perform value iteration for n steps and $\left| \left| H^{(n)}(V) - H^{(n-1)}(V) \right| \right|_{\infty} = \epsilon$, how far is $H^{(n)}(V)$ from V^{π} ?

Approximate Policy Evaluation

- Theorem 3: If $\left| \left| H^{(n)}(V) H^{(n-1)}(V) \right| \right|_{\infty} \le \epsilon$ then $\left| \left| V^{\pi} H^{(n)}(V) \right| \right|_{\infty} \le \frac{\epsilon}{1 \gamma}$
- Proof $|V^{\pi} H^{(n)}(V)|_{\infty}$ $= |H^{(\infty)}(V) - H^{(n)}(V)|_{\infty}$ (by Theorem 2) $= |\Sigma_{t=1}^{\infty} H^{(t+n)}(V) - H^{(t+n-1)}(V)|_{\infty}$ $\leq \Sigma_{t=1}^{\infty} |H^{(t+n)}(V) - H^{(t+n-1)}(V)|_{\infty}$ ($|A + B| \leq |A| + |B|$) $= \Sigma_{t=1}^{\infty} \gamma^{t} \epsilon = \frac{\epsilon}{1-\gamma}$ (by Lemma 1)

Optimal Value Function

Non-linear system of equations

$$V_{\infty}^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{\infty}^{*}(s') \forall s$$

Matrix form:

 \mathbb{R}^a : $|S| \times 1$ column vector of rewards for a

 V^* : $|S| \times 1$ column vector of optimal values

 T^a : $|S| \times |S|$ matrix of transition prob for a

$$V^* = \max_a R^a + \gamma T^a V^*$$

Contraction

- Let $H^*(V) \stackrel{\text{def}}{=} \max_a R^a + \gamma T^a V$ be the operator in value iteration
- Lemma 4: H* is a contraction mapping.

$$\left| \left| H^* (\tilde{V}) - H^* (V) \right| \right|_{\infty} \le \gamma \left| \left| \tilde{V} - V \right| \right|_{\infty}$$

Proof: without loss of generality,

let
$$H^*(\tilde{V})(s) \ge H^*(V)(s)$$
 and
let $a_s^* = \underset{a}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s')$
 $\tilde{a}_s^* = \underset{a}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) \tilde{V}(s')$

Contraction

Proof continued:

```
• Then 0 \le H^*(\tilde{V})(s) - H^*(V)(s) (by assumption)
= R(s, \tilde{a}_s^*) + \gamma \sum_{s'} \Pr(s'|s, \tilde{a}_s^*) \tilde{V}(s') \quad \text{(by definition)}
-R(s, a_s^*) - \gamma \sum_{s'} \Pr(s'|s, a_s^*) V(s')
\le R(s, \tilde{a}_s^*) + \gamma \sum_{s'} \Pr(s'|s, \tilde{a}_s^*) \tilde{V}(s') \quad \text{(since } \tilde{a}_s^* \text{ suboptimal for } V)
-R(s, \tilde{a}_s^*) - \gamma \sum_{s'} \Pr(s'|s, \tilde{a}_s^*) V(s')
= \gamma \sum_{s'} \Pr(s'|s, \tilde{a}_s^*) \left[ \tilde{V}(s') - V(s') \right]
\le \gamma \sum_{s'} \Pr(s'|s, \tilde{a}_s^*) \left| |\tilde{V} - V| \right|_{\infty} \quad \text{(maxnorm upper bound)}
= \gamma \left| |\tilde{V} - V| \right|_{\infty} \quad \text{(since } \sum_{s'} \Pr(s'|s, \tilde{a}_s^*) = 1)
```

• Repeat the same argument for $H^*(V)(s) \ge H^*(\tilde{V})(s)$ and for each s

Convergence

 Theorem 5: Value iteration converges to V* for any initial estimate V

$$\lim_{n\to\infty} H^{*(n)}(V) = V^* \quad \forall V$$

- Proof
 - By definition $V^* = H^{*(\infty)}(0)$, but value iteration computes $H^{*(\infty)}(V)$ for some initial V
 - By Lemma 4, $\left|\left|H^{*(n)}(V) H^{*(n)}(\tilde{V})\right|\right|_{\infty} \le \gamma^n \left|\left|V \tilde{V}\right|\right|_{\infty}$
 - Hence, when $n \to \infty$, then $\left| \left| H^{*(n)}(V) H^{*(n)}(0) \right| \right|_{\infty} \to 0$ and $H^{*(\infty)}(V) = V^* \ \forall V$

Value Iteration

- Even when horizon is infinite, perform finitely many iterations
- Stop when $||V_n V_{n-1}|| \le \epsilon$

valueIteration(MDP) $V_0^* \leftarrow \max_a R^a; \quad n \leftarrow 0$ Repeat $n \leftarrow n + 1$ $V_n \leftarrow \max_a R^a + \gamma T^a V_{n-1}$ Until $||V_n - V_{n-1}||_{\infty} \le \epsilon$ Return V_n

Induced Policy

- Since $||V_n V_{n-1}||_{\infty} \le \epsilon$, by Theorem 5: we know that $||V_n V^*||_{\infty} \le \frac{\epsilon}{1-\gamma}$
- But, how good is the stationary policy $\pi_n(s)$ extracted based on V_n ?

$$\pi_n(s) = \operatorname*{argmax}_a R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_n(s')$$

• How far is V^{π_n} from V^* ?

Induced Policy

- Theorem 6: $||V^{\pi_n} V^*||_{\infty} \le \frac{2\epsilon}{1-\gamma}$
- Proof

$$\begin{aligned} \left| \left| V^{\pi_n} - V^* \right| \right|_{\infty} &= \left| \left| V^{\pi_n} - V_n + V_n - V^* \right| \right|_{\infty} \\ &\leq \left| \left| V^{\pi_n} - V_n \right| \right|_{\infty} + \left| \left| V_n - V^* \right| \right|_{\infty} \left(\left| \left| A + B \right| \right| \leq \left| \left| A \right| \right| + \left| \left| B \right| \right| \right) \\ &= \left| \left| H^{\pi_n(\infty)}(V_n) - V_n \right| \right|_{\infty} + \left| \left| V_n - H^{*(\infty)}(V_n) \right| \right|_{\infty} \\ &\leq \frac{\epsilon}{1 - \gamma} + \frac{\epsilon}{1 - \gamma} \quad \text{(by Theorems 2 and 5)} \\ &= \frac{2\epsilon}{1 - \gamma} \end{aligned}$$

Summary

- Value iteration
 - Simple dynamic programming algorithm
 - Complexity: $O(n|A||S|^2)$
 - Here n is the number of iterations
- Can we optimize the policy directly instead of optimizing the value function and then inducing a policy?
 - Yes: by policy iteration