Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №4 по дисциплине «Методы машинного обучения» на тему

«Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей»

Выполнил: студент группы ИУ5-22М Бурашников В. В.

Москва — $2020 \, \text{г.}$

1. Цель лабораторной работы

Изучить сложные способы подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей [?].

2. Задание

Требуется выполнить следующие действия [?]:

- 1. Выбрать набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите модель ближайших соседей для произвольно заданного гиперпараметра K. Оцените качество модели с помощью трех подходящих для задачи метрик.
- 5. Постройте модель и оцените качество модели с использованием кросс-валидации. Проведите эксперименты с тремя различными стратегиями кросс-валидации.
- 6. Произведите подбор гиперпараметра K с использованием $\operatorname{GridSearchCV}$ и кроссвалидации.
- 7. Повторите пункт 4 для найденного оптимального значения гиперпараметра K. Сравните качество полученной модели с качеством модели, полученной в пункте 4.
- 8. Постройте кривые обучения и валидации.

3. Ход выполнения работы

Подключим все необходимые библиотеки и настроим отображение графиков [?,?]:

```
In [2]: from datetime import datetime
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        from sklearn.metrics import mean_absolute_error
        from sklearn.metrics import median_absolute_error, r2_score
        from sklearn.model_selection import GridSearchCV
        from sklearn.model_selection import KFold, RepeatedKFold, ShuffleSplit
        from sklearn.model_selection import cross_val_score, train_test_split
        from sklearn.model_selection import learning_curve, validation_curve
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.preprocessing import StandardScaler
        # Enable inline plots
        %matplotlib inline
        # Set plots formats to save high resolution PNG
        from IPython.display import set_matplotlib_formats
        set_matplotlib_formats("retina")
```

Зададим ширину текстового представления данных, чтобы в дальнейшем текст в отчёте влезал на А4 [?]:

```
In [3]: pd.set_option("display.width", 70)
```

3.1. Предварительная подготовка данных

В качестве набора данных используются оценки вина профессиональными сомелье и химические характеристики вин:

```
In [4]: data = pd.read_csv("./wine.csv")
```

Проверим полученные типы:

In [5]: data.dtypes

Out[5]:	fixed acidity	float64
	volatile acidity	float64
	citric acid	float64
	residual sugar	float64
	chlorides	float64
	free sulfur dioxide	float64
	total sulfur dioxide	float64
	density	float64
	рН	float64
	sulphates	float64
	alcohol	float64
	quality	int64
	dtype: object	

Посмотрим на данные в данном наборе данных:

```
In [6]: data.head()
```

```
Out[6]:
           fixed acidity volatile acidity citric acid residual sugar
                                                     0.00
                                                                       1.9
        0
                      7.4
                                       0.70
                      7.8
                                        0.88
                                                     0.00
                                                                       2.6
        1
        2
                      7.8
                                       0.76
                                                     0.04
                                                                       2.3
        3
                     11.2
                                        0.28
                                                     0.56
                                                                       1.9
        4
                      7.4
                                       0.70
                                                     0.00
                                                                       1.9
           chlorides free sulfur dioxide total sulfur dioxide
                                                                    density
        0
               0.076
                                       11.0
                                                              34.0
                                                                     0.9978
        1
               0.098
                                       25.0
                                                              67.0
                                                                     0.9968
                                                              54.0
        2
               0.092
                                       15.0
                                                                     0.9970
        3
               0.075
                                       17.0
                                                              60.0
                                                                     0.9980
               0.076
                                       11.0
                                                              34.0
                                                                     0.9978
             рΗ
                                      quality
                 sulphates
                             alcohol
        0 3.51
                       0.56
                                 9.4
                                             5
                                             5
        1 3.20
                       0.68
                                 9.8
        2 3.26
                       0.65
                                 9.8
                                             5
        3 3.16
                       0.58
                                 9.8
                                             6
                                 9.4
                                             5
        4 3.51
                       0.56
```

```
Out[7]:
          fixed acidity volatile acidity citric acid residual sugar
                     7.4
                                      0.70
                                                   0.00
                                                                    1.9
                     7.8
                                      0.88
                                                   0.00
                                                                    2.6
        1
        2
                     7.8
                                      0.76
                                                   0.04
                                                                    2.3
                    11.2
                                                                    1.9
        3
                                      0.28
                                                   0.56
        4
                     7.4
                                      0.70
                                                   0.00
                                                                    1.9
           chlorides free sulfur dioxide total sulfur dioxide density
        0
               0.076
                                     11.0
                                                           34.0
                                                                  0.9978
               0.098
                                     25.0
                                                           67.0
        1
                                                                  0.9968
        2
                                                           54.0
               0.092
                                     15.0
                                                                  0.9970
        3
               0.075
                                     17.0
                                                           60.0
                                                                  0.9980
        4
               0.076
                                     11.0
                                                           34.0
                                                                  0.9978
                                     quality
            pH sulphates alcohol
        0 3.51
                      0.56
                                9.4
                                           5
        1 3.20
                      0.68
                                9.8
                                           5
        2 3.26
                      0.65
                                9.8
                                           5
                                           6
        3 3.16
                      0.58
                                9.8
                                9.4
                                           5
        4 3.51
                      0.56
```

In [8]: df.dtypes

Out[8]:	fixed acidity	float64	
	volatile acidity	float64	
	citric acid	float64	
	residual sugar	float64	
	chlorides	float64	
	free sulfur dioxide	float64	
	total sulfur dioxide	float64	
	density	float64	
	рН	float64	
	sulphates	float64	
	alcohol	float64	
	quality	int64	
	dtype: object		

Проверим размер набора данных:

```
In [9]: df.shape
```

Out[9]: (1599, 12)

Проверим основные статистические характеристики набора данных:

```
In [10]: df.describe()
```

Out[10]:		fixed acidity	volatile acidity	citric acid	residual sugar	\
	count	1599.000000	1599.000000	1599.000000	1599.000000	
	mean	8.319637	0.527821	0.270976	2.538806	
	std	1.741096	0.179060	0.194801	1.409928	
	min	4.600000	0.120000	0.000000	0.900000	

25%	7.10000	0 0.	390000	0.09	90000	1.9	00000
50%	7.900000		520000	0.20	60000	2.200000	
75%	9.200000		640000	0.420000		2.600000	
max	15.90000	0 1.	580000	1.00	00000	15.5	00000
					7.6		,
	chlorides	free sulfur		total	sulfur dio		\
count	1599.000000		9.000000		1599.000		
mean	0.087467		5.874922		46.46		
std :	0.047065		.460157		32.89		
min	0.012000		1.000000		6.000		
25% 50%	0.070000		7.000000		22.000		
50%	0.079000		1.000000		38.000		
75%	0.090000 0.611000		1.000000		62.000		
max	0.611000	12	2.000000		289.000	3000	
	density	рН	sulph	ates	alcohol	\	
count	1599.000000	1599.000000	1599.00		1599.000000	`	
mean	0.996747	3.311113	0.65		10.422983		
std	0.001887	0.154386	0.16		1.065668		
min	0.990070	2.740000	0.33		8.400000		
25%	0.995600	3.210000	0.55		9.500000		
50%	0.996750	3.310000	0.62		10.200000		
75%	0.997835	3.400000	0.73	0000	11.100000		
max	1.003690	4.010000	2.00	0000	14.900000		
	quality						
count	1599.000000						
mean	5.636023						
std	0.807569						
min	3.000000						
25%	5.000000						
50%	6.000000						
75%	6.000000						
max	8.000000						

Проверим наличие пропусков в данных:

In [11]: df.isnull().sum()

Out[11]: fixed acidity 0 volatile acidity 0 citric acid residual sugar 0 0 chlorides free sulfur dioxide 0 total sulfur dioxide 0 density 0 0 рΗ 0 sulphates alcohol 0 0 quality dtype: int64

3.2. Разделение данных

Разделим данные на целевой столбец и признаки:

```
In [67]: X = df.drop("density", axis=1)
         y = df["density"]
In [68]: print(X.head(), "\n")
         print(y.head())
   fixed acidity volatile acidity citric acid residual sugar \
0
                                            0.00
             7.4
                              0.70
                                                             1.9
1
             7.8
                              0.88
                                            0.00
                                                             2.6
2
             7.8
                              0.76
                                            0.04
                                                              2.3
3
            11.2
                              0.28
                                            0.56
                                                             1.9
4
             7.4
                              0.70
                                                             1.9
                                            0.00
   chlorides free sulfur dioxide total sulfur dioxide
                                                            pH \
0
       0.076
                             11.0
                                                    34.0 3.51
1
       0.098
                             25.0
                                                    67.0 3.20
2
       0.092
                             15.0
                                                    54.0 3.26
3
       0.075
                             17.0
                                                    60.0 3.16
4
       0.076
                             11.0
                                                    34.0 3.51
   sulphates alcohol quality
0
        0.56
                  9.4
                             5
        0.68
                  9.8
                             5
1
2
        0.65
                 9.8
                             5
                             6
3
        0.58
                 9.8
4
                  9.4
                             5
        0.56
     0.9978
0
1
     0.9968
2
     0.9970
3
     0.9980
     0.9978
Name: density, dtype: float64
In [69]: print(X.shape)
         print(y.shape)
(1599, 11)
(1599,)
  Предобработаем данные, чтобы методы работали лучше:
In [70]: columns = X.columns
         scaler = StandardScaler()
         X = scaler.fit_transform(X)
```

pd.DataFrame(X, columns=columns).describe()

```
/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/sklearn/
  return self.fit(X, **fit_params).transform(X)
Out [70]:
                               volatile acidity
                fixed acidity
                                                   citric acid
                 1.599000e+03
                                    1.599000e+03
                                                  1.599000e+03
         count
                 3.554936e-16
         mean
                                    1.733031e-16 -8.887339e-17
                 1.000313e+00
                                    1.000313e+00 1.000313e+00
         std
                                   -2.278280e+00 -1.391472e+00
                -2.137045e+00
         min
         25%
                -7.007187e-01
                                  -7.699311e-01 -9.293181e-01
                                  -4.368911e-02 -5.636026e-02
         50%
                -2.410944e-01
         75%
                 5.057952e-01
                                   6.266881e-01 7.652471e-01
                 4.355149e+00
                                   5.877976e+00 3.743574e+00
         max
                residual sugar
                                    chlorides free sulfur dioxide
                  1.599000e+03
                                1.599000e+03
                                                      1.599000e+03
         count
                 -1.244227e-16
                                3.821556e-16
                                                     -6.221137e-17
         mean
         std
                  1.000313e+00
                                1.000313e+00
                                                      1.000313e+00
         min
                 -1.162696e+00 -1.603945e+00
                                                     -1.422500e+00
         25%
                 -4.532184e-01 -3.712290e-01
                                                     -8.487156e-01
         50%
                 -2.403750e-01 -1.799455e-01
                                                     -1.793002e-01
         75%
                  4.341614e-02 5.384542e-02
                                                      4.901152e-01
                               1.112703e+01
                  9.195681e+00
                                                      5.367284e+00
         max
                total sulfur dioxide
                                                 рΗ
                                                        sulphates
                        1.599000e+03
                                      1.599000e+03
                                                     1.599000e+03
         count
         mean
                        4.443669e-17 2.861723e-15
                                                     6.754377e-16
         std
                        1.000313e+00
                                      1.000313e+00
                                                     1.000313e+00
                       -1.230584e+00 -3.700401e+00 -1.936507e+00
         min
         25%
                       -7.440403e-01 -6.551405e-01 -6.382196e-01
         50%
                       -2.574968e-01 -7.212705e-03 -2.251281e-01
         75%
                        4.723184e-01 5.759223e-01
                                                    4.240158e-01
                        7.375154e+00 4.528282e+00
                                                    7.918677e+00
         max
                     alcohol
                                    quality
               1.599000e+03
                              1.599000e+03
         count
                1.066481e-16
                              8.887339e-17
         mean
         std
                1.000313e+00
                              1.000313e+00
         min
               -1.898919e+00 -3.265165e+00
         25%
               -8.663789e-01 -7.878226e-01
         50%
               -2.093081e-01
                              4.508484e-01
         75%
                6.354971e-01
                              4.508484e-01
                4.202453e+00 2.928190e+00
         max
```

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/sklearn/

return self.partial_fit(X, y)

Разделим выборку на тренировочную и тестовую:

3.3. Модель ближайших соседей для произвольно заданного гиперпараметра ${\it K}$

Напишем функцию, которая считает метрики построенной модели:

mean_absolute_error: 0.0006631799999999915
median_absolute_error: 0.000488999999999917

r2_score: 0.7565853831960054

In [75]: test_model(reg_5)

Видно, что средние ошибки не очень показательны для одной модели, они больше подходят для сравнения разных моделей. В тоже время коэффициент детерминации неплох сам по себе, в данном случае модель более-менее состоятельна.

3.4. Использование кросс-валидации

Проверим различные стратегии кросс-валидации. Для начала посмотрим классический K-fold:

```
In [76]: scores = cross_val_score(KNeighborsRegressor(n_neighbors=5), X, y,
                                   cv=KFold(n_splits=10), scoring="r2")
         print(scores)
         print(scores.mean(), "±", scores.std())
 \hbox{\tt [0.54201038\ 0.62530238\ 0.60103483\ 0.42462355\ 0.16800613\ 0.67138819] }
0.69157226 0.54801332 0.58253055 0.60540914]
0.5459890743612823 \pm 0.14447376628869613
In [77]: scores = cross_val_score(KNeighborsRegressor(n_neighbors=5), X, y,
                                   cv=RepeatedKFold(n_splits=5, n_repeats=2),
                                   scoring="r2")
         print(scores)
         print(scores.mean(), "±", scores.std())
[0.77705867 0.75730479 0.73613982 0.73003897 0.75598591 0.75393584
0.77560511 0.76695948 0.73507993 0.70824869]
0.7496357209085482 \pm 0.020820903031886513
In [78]: scores = cross_val_score(KNeighborsRegressor(n_neighbors=5), X, y,
                                   cv=ShuffleSplit(n_splits=10), scoring="r2")
         print(scores)
         print(scores.mean(), "±", scores.std())
[0.80127744 0.78002178 0.77815453 0.70739327 0.77181739 0.75596438
0.77531645 0.70537579 0.75995107 0.74154166]
0.7576813769129686 \pm 0.029770859778064405
```

3.5. Подбор гиперпараметра K

gs.fit(X, y)
gs.best_params_

Введем список настраиваемых параметров:

cv=ShuffleSplit(n_splits=10), scoring="r2",

return_train_score=True, n_jobs=-1)

Out[80]: {'n_neighbors': 3}

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

In [81]: plt.plot(n_range, gs.cv_results_["mean_train_score"]);

Очевидно, что для K=1 на тренировочном наборе данных мы находим ровно ту же точку, что и нужно предсказать, и чем больше её соседей мы берём — тем меньше точность.

На тестовом наборе данных картина сильно интереснее:

In [82]: plt.plot(n_range, gs.cv_results_["mean_test_score"]);

Выходит, что сначала соседей слишком мало (высоко влияние выбросов), а затем количество соседей постепенно становится слишком велико, и среднее значение по этим соседям всё больше и больше оттягивает значение от истинного.

Проверим получившуюся модель:

```
In [83]: reg = KNeighborsRegressor(**gs.best_params_)
reg.fit(X_train, y_train)
test_model(reg)

mean_absolute_error: 0.0006740416666666596
median_absolute_error: 0.00050333333333333001
r2_score: 0.7550997432386466

В целом получили примерно тот же результат. Очевидн
данный метод и так показал достаточно хороший результат
```

В целом получили примерно тот же результат. Очевидно, что проблема в том, что данный метод и так показал достаточно хороший результат для данной выборки. Построим кривую обучения [?]:

```
In [84]: def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None):
             train_sizes=np.linspace(.1, 1.0, 5)
             plt.figure()
             plt.title(title)
             if ylim is not None:
                 plt.ylim(*ylim)
             plt.xlabel("Training examples")
             plt.ylabel("Score")
             train_sizes, train_scores, test_scores = learning_curve(
                 estimator, X, y, cv=cv, n_jobs=-1, train_sizes=train_sizes)
             train_scores_mean = np.mean(train_scores, axis=1)
             train_scores_std = np.std(train_scores, axis=1)
             test_scores_mean = np.mean(test_scores, axis=1)
             test_scores_std = np.std(test_scores, axis=1)
             plt.grid()
             plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                              train_scores_mean + train_scores_std, alpha=0.1,
                              color="r")
             plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                              test_scores_mean + test_scores_std, alpha=0.1,
                              color="g")
             plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                      label="Training score")
             plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
                      label="Cross-validation score")
             plt.legend(loc="best")
             return plt
In [85]: plot_learning_curve(reg, str(gs.best_params_), X, y,
                             cv=ShuffleSplit(n_splits=10));
```


Построим кривую валидации:

```
In [86]: def plot_validation_curve(estimator, title, X, y,
                                   param_name, param_range, cv,
                                   scoring="accuracy"):
             train_scores, test_scores = validation_curve(
                 estimator, X, y, param_name=param_name,
                 param_range=param_range,
                 cv=cv, scoring=scoring, n_jobs=-1)
             train_scores_mean = np.mean(train_scores, axis=1)
             train_scores_std = np.std(train_scores, axis=1)
             test_scores_mean = np.mean(test_scores, axis=1)
             test_scores_std = np.std(test_scores, axis=1)
             plt.title(title)
             plt.xlabel(param_name)
             plt.ylabel("Score")
             plt.ylim(0.0, 1.1)
             lw = 2
             plt.plot(param_range, train_scores_mean, label="Training score",
                          color="darkorange", lw=lw)
             plt.fill_between(param_range, train_scores_mean - train_scores_std,
                              train_scores_mean + train_scores_std, alpha=0.2,
                              color="darkorange", lw=lw)
             plt.plot(param_range, test_scores_mean,
                          label="Cross-validation score",
                          color="navy", lw=lw)
             plt.fill_between(param_range, test_scores_mean - test_scores_std,
                              test_scores_mean + test_scores_std, alpha=0.2,
                              color="navy", lw=lw)
             plt.legend(loc="best")
             return plt
```


In []: