We claim:

1. A monocyclopentadienyl complex which comprises the structural feature of the formula (Cp)(-Z-A)_mM (I), where the variables have the following meanings:

5

- Ср is a cyclopentadienyl system,
- Ζ is a bridge between A and Cp of the formula,

10

where

R^{1B},R^{2B}

15

L^{1B}

are each, independently of one another, carbon or silicon,

are each, independently of one another hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C6-C20-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR3B3, where the organic radicals R^{1B} and R^{2B} may also be substituted by halogens and the two radicals R^{1B} and R^{2B} and/or R^{1B} or R^{2B} and A may also be joined to form a five- or six-membered ring,

20

 R^{3B}

are each, independently of one another, hydrogen, C1-C20-alkyl, C2-C20alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R3B may also be joined to form a five- or six-membered ring,

30

25

- Α is an unsubstituted, substituted or fused, five-membered heteroaromatic ring system,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten and

35

m is 1, 2 or 3.

- A monocyclopentadienyl complex as claimed in claim 1 having the formula (Cp)-(-Z-A)_mMX_k (VI), where the variables have the following meanings:
- 40
- Ср is a cyclopentadienyl system,

10

15

20

25

30

. 35

40

Ζ is a bridge between A and Cp of the formula,

where

L^{1B} are each, independently of one another, carbon or silicon.

R^{1B},R^{2B} are each, independently of one another hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}₃, where the organic radicals R^{1B} and R^{2B} may also be substituted by halogens and

the two radicals R^{1B} and R^{2B} and/or R^{1B} or R^{2B} and A may also be joined

to form a five- or six-membered ring,

 R^{3B} are each, independently of one another, hydrogen, C1-C20-alkyl, C2-C20alkenyl, C6-C20-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring.

Α is an unsubstituted, substituted or fused, five-membered heteroaromatic ring

system,

is a metal selected from the group consisting of titanium in the oxidation state 3, M vanadium, chromium, molybdenum and tungsten,

m is 1, 2 or 3,

Х are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, β-diketonate, CO, BF₄, PF₆ or a bulky noncoordinating anion,

are each, independently of one another, hydrogen, C1-C20-alkyl, C2-C20-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR33, where the organic radicals R1-R2 may also be substituted by halogens and two radicals R¹-R² may also be joined to form a five- or six-membered ring,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

C₈-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

6-20 carbon atoms in the aryl part and two radicals R³ may also be joined to form a five- or six-membered ring and

k is 1, 2, or 3.

10

3. A monocyclopentadienyl complex as claimed in claim 1 or 2, wherein the cyclopentadienyl system Cp has the formula (II):

R^{1A}

$$\begin{array}{c}
R^{1A} \\
E^{1A} \\
E^{2A}
\end{array}$$

$$\begin{array}{c}
E^{2A} \\
E^{3A}
\end{array}$$

$$\begin{array}{c}
E^{3A} \\
E^{3A}
\end{array}$$

20

where the variables have the following meanings:

 $E^{1A}-E^{5A}$ are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

25

R^{1A}-R^{5A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, BR^{6A}₂, where the organic radicals R^{1A}-R^{5A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{5A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{5A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S, with 1, 2 or 3 substituents R^{1A}-R^{5A} each being a -Z-A group and

30

 R^{6A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring.

35

40

 A monocyclopentadienyl complex as claimed in any of claims 1 to 3, wherein the cyclopentadienyl system Cp together with -Z-A has the formula (IV):

30

35

40

$$A - Z - E^{5A} - E^{2A}$$

$$R^{4A} - R^{3A}$$

$$R^{4A} - R^{3A}$$

$$R^{4A} - R^{3A}$$

$$R^{4A} - R^{3A}$$

where the variables have the following meanings:

10 $E^{1A}-E^{5A}$ are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

25 Z is a bridge between A and Cp of the formula,

where

L^{1B} are each, independently of one another, carbon or silicon,

R^{1B},R^{2B} are each, independently of one another hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}₃, where the organic radicals R^{1B} and R^{2B} may also be substituted by halogens and the two radicals R^{1B} and R^{2B} and/or R^{1B} or R^{2B} and A may also be joined to form a five- or six-membered ring,

 R^{3B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring and

5

- A is an unsubstituted, substituted or fused, five-membered heteroaromatic ring system.
- 5. A monocyclopentadienyl complex as claimed in any of claims 1 to 4, wherein A has the formula (IIIa) or (IIIb)

$$\begin{array}{c|ccccc}
R^{4C} & R^{3C} & & & & \\
\hline
R^{1C} & R^{2C} & & & & \\
\hline
R^{1C} & R^{2C} & & & \\
\hline$$

15

where

E^{1C}

is nitrogen, phosphorus, sulfur or oxygen,

25

20

R^{1C}-R^{4C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃, where the organic radicals R^{1C}-R^{4C} may also be substituted by halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃ and two vicinal radicals R^{1C}-R^{4C} or the two radicals R^{1C} or R^{4C} and Z may also be joined to form a five- or six-membered ring.

30

 R^{5C} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{5C} may also be joined to form a five- or six-membered ring and

. 35

40

- p is 0 when E^{1C} is sulfur or oxygen and 1 when E^{1C} is nitrogen or phosphorus.
- 6. A monocyclopentadienyl complex as claimed in any of claims 1 to 5, wherein L^{1B} is carbon.

- 7. A monocyclopentadienyl complex as claimed in any of claims 1 to 6, wherein Z is -CH₂-, -C(CH₃)₂-, -CH(C₆H₅)- or -C(C₆H₅)₂-.
- 8. A catalyst system for olefin polymerization comprising

- A) at least one monocyclopentadienyl complex as claimed in any of claims 1 to 7,
- B) optionally an organic or inorganic support,
- 10
- C) optionally one or more activating compounds,
- D) optionally one or more catalysts suitable for olefin polymerization and
- E) optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.
 - 9. A prepolymerized catalyst system comprising a catalyst system as claimed in claim 8 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:1 000, based on the catalyst system.

20

- The use of a catalyst system as claimed in claim 8 or 9 for the polymerization or copolymerization of olefins.
- 11. A process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of a catalyst system as claimed in claim 8 or 9.
 - 12. A process for preparing cyclopentadienyl system anions of the formula (VII),

30

$$A \xrightarrow{R^{4B}} R^{1A}$$

$$R^{4B}$$

$$R^{4A}$$

$$R^{3A}$$

$$R^{3A}$$

35

40

where the variables have the following meanings:

R^{1A}-R^{4A}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_2 , $N(SiR^{6A}_3)_2$, OR^{6A} , $OSiR^{6A}_3$, SiR^{6A}_3 where the organic radicals R^{1A} - R^{4A} may also be substituted by halogens and two

vicinal radicals R^{1A} - R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A} - R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,
- 10 A is an unsubstituted, substituted or fused, heteroaromatic 5-membered ring system,
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR³⁸₃, where the organic radicals R⁴⁸ may also be substituted by halogens and two geminal or vicinal radicals R⁴⁸ may also be joined to form a five- or six-membered ring and
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the step a) or a'), where,

in step a), an A anion is reacted with a fulvene of the formula (VIIIa)

$$R^{4B}$$
 R^{4B}
 R^{4A}
 R^{3A}
 R^{4A}
 R^{4A}
 R^{4B}

or,

in step a'), an organometallic compound $R^{4B}M^BX^B_{\ b}$ where

- M^B is a metal of group 1 or 2 of the Periodic Table of the Elements,
- is halogen, C₁-C₁₀-alkyl, alkoxy having from 1 to 20 carbon atoms in the alkyl part and/or from 6 to 20 carbon atoms in the aryl part, or R⁴⁸ and
 - b is 0 when M^B is a metal of group 1 of the Periodic Table of the Elements and is 1 when M^B is a metal of group 2 of the Periodic Table of the Elements,

40

25.

30

15

25

30

35

40

is reacted with a fulvene of the formula (VIIIb):

$$R^{4B}$$
 R^{4A}
 R^{3A}
 R^{3A}
 R^{4A}
 R^{3A}

10 13. A process for preparing cyclopentadiene systems of the formula (VIIa)

where the variables have the following meanings:

20 E^{6A} - E^{10A} are each carbon, where in each case four adjacent E^{6A} - E^{10A} form a conjugated diene system and the remaining E^{6A} - E^{10A} additionally bears a hydrogen atom,

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

R^{6A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, heteroaromatic 5-membered ring system,

 R^{1B} , R^{2B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

6-20 carbon atoms in the aryl part or SiR^{3B}_{3} , where the organic radicals R^{1B} and R^{2B} may also be substituted by halogens and R^{1B} and R^{2B} and/or R^{1B} and A may also be joined to form a five- or six-membered ring.

5 R^{3B}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

10

which comprises the following step: a") reaction of an A-CR^{1B}R^{2B-} anion, with a cyclopentenone system of the formula (IX)

15

$$O = \bigcap_{R^{4A}} R^{2A}$$

$$(IX)$$

20

25

30

35