[SZÁMÍTÓGÉP-HÁLÓZATOK]

Mérési utasítás IPv6

A Távközlés-informatika laborban natív IPv6 rendszer áll rendelkezésre. Először az ún. állapotmentes automatikus címhozzárendelést (stateless address autoconfiguration) vizsgáljuk meg, melynél előny, hogy kliens oldalon nem szükséges beállításokat végrehajtani. A mechanizmus alapja az ICMPv6-os protokoll Router Advertisement csomagjaira alapoz, melynek segítségével a kliens magától generál egy IPv6 címet saját MAC címéből.

1. feladat

Indítson csomagelkapást wireshark segítségével az eth0-es interfészen addig, amíg el nem kap egy "Router Advertisement" csomagot – az egyszerűség kedvéért alkalmazhatjuk az "icmpv6" szót a megjelenítési szűrőnél.

Válaszoljon az alábbi kérdésekre:

- Milyen IPv6-os címre küldi a router az ICMPv6-os csomagot?
- Milyen hosszúságú prefixet hirdet a router?
- Milyen ICMPv6-os flagek aktívak? (1)
- Hirdeti-e a helyi DNS kiszolgálókat a Router Advertisement csomag?
- 2. feladat

Ahhoz, hogy saját magunk konfiguráljunk IPv6 címet, meg kell adnunk, hogy kliensünk figyelmen kívül hagyja ezeket a csomagokat. Ehhez a következő parancsokat kell begépelnünk:

```
ifconfig eth0 down
echo 0 > /proc/sys/net/ipv6/conf/eth0/accept ra
echo 0 > /proc/sys/net/ipv6/conf/eth0/autoconf
ifconfig eth0 0.0.0.0 up
```

Ezzel törölte az aktív (eth0) interfész beállításait.

2016.03.29. Kovács Ákos Készítette:

[SZÁMÍTÓGÉP-HÁLÓZATOK]

Széchenyi István Egyetem Győr Távközlési Tanszék

3. feladat

Állítson be egy statikus IPv6 címet az eth1 interfésznek. Annak érdekében, hogy érzékeltessünk az IPv6 címtartományának nagyságát, az általunk beállítandó IPv6 címbe foglaljuk bele a mai dátumot és a gyakorlat időpontját, valamint a gépszámot is!

Pl.:

if config eth0 inet6 add $2001:738:2c01:8001:2016:0330:1140:\underline{3}/64$ Ahol

- A dőlt betűs rész nem változtatható!
- A vastagon szedett rész a mai dátum és gyakorlat időpont!
- az aláhúzott rész a gépszám

Ezzel a helyi IPv6 hálózat elérhetővé vált. Ahhoz, hogy az IPv6 globális hálózata elérhetővé váljon, szükségünk van egy helyi átjáróra. Ezt a route parancs segítségével adhatjuk meg, mely parancs a Linux routing táblájának módosítására szolgál.

```
route -A inet6 add default gw 2001:738:2c01:8001::1
```

Ezzel megadtuk, hogy "merre" kell a csomagot az internet felé irányítani. Gyakorlatilag most már elérjük az egész IPv6-os hálózatot, de ahhoz, hogy ne kelljen IPv6 címeket használni a különböző hálózati szolgáltatások eléréséhez, névfeloldást kell alkalmaznunk. Ehhez meg kell mondani, milyen IPv6 címen található a névkiszolgáló. Ezt a Linux alatt a resolv.conf fájlba egy "nameserver" bejegyzéssel tehetünk meg.

```
echo "nameserver 2001:738:2c01:8001::1" > /etc/resolv.conf
```

Most indítsuk el a wireshark-ot, és állítsunk be egy csomagvizsgálatot az eth0-re. Majd ezek után vegyük használatba az IPv6 hálózatot, első körben egy pingeléssel. Az IPv6 alatt, mivel más a hálózati protokoll, más programokat is kell használni, mint IPv4-nél. Jelen esetben ez a ping6.

```
ping6 -c 2 2001:738:2c01:8001::1
```

Az IPv6-ban nem található ARP lekérdezés. Az IPv6 tervezése közben a fejlesztők inkább az ICMP protokollba integrálták az IPv6 cím > MAC cím leképzést. Ez az ICMPv6, valamint kiegészítették egy Neighbor Discovery Protokollal (ND).

4. feladat

Keresse meg a wiresharkban a Neighbor discovery protokoll csomagjait. (Neighbor solicitation Neighbor advertisement) valamint az ICMPv6 protokoll echo request, echo replay csomagjait.

2016. 03. 29. Készítette: Kovács Ákos

[SZÁMÍTÓGÉP-HÁLÓZATOK]

Nyisson egy tetszőleges web böngészőt, majd nyissa megy a http://www.kame.net honlapot. Amennyiben minden megfelelően működik, a weblapon mozog a teknős.

6. feladat

Kérdezze le a traceroute IPv6-os verziójával a **ipv6.google.com** szerverhez vezető utat.

traceroute6 ipv6.google.com

2016.03.29. Készítette: Kovács Ákos