Causality

CMPUT 366: Intelligent Systems

Bar §3.4

Lecture Outline

- 1. Recap
- 2. Causality Introduction
- 3. Causal Queries

Recap: Independence in a Belief Network

Belief Network Semantics:

Every node is independent of its non-descendants, conditional only on its parents

Patterns of dependence:

1. Chain: Ends are not marginally independent, but conditionally independent given middle

2. Common ancestor: Descendants are not marginally independent, but conditionally independent given ancestor

3. Common descendant: Ancestors are marginally independent, but not conditionally independent given descendant

Recap: Variable Elimination

- 1. Condition on observations by conditioning
- 2. Construct joint distribution factor by multiplication
- 3. Remove non-query, non-observed variables by summing out
- 4. Normalize at the end

Interleaving order of sums and products can improve efficiency:

$$\sum_{A} \sum_{E} f_1(Q, A, B, C) \times f_2(C, D, E)$$
112 computations

$$= \left(\sum_{A} f_1(Q, A, B, C)\right) \times \left(\sum_{E} f_2(C, D, E)\right)$$
 28 computations

Causality Introduction: A Tale of Two Belief Networks

	Rain	Wet	P(Rain, Wet)
D(Doin T)	F	Τ	0.125
P(Rain = T) = 0.5	F	F	0.375
P(Rain = F) = 0.5	Т	Τ	0.45
T(Ttair - T) = 0.3	T	F	0.05

• Two different ways to **factor** the joint distribution between whether the sidewalk is **Wet** and whether it is **Raining**:

$$P(\text{Rain}, \text{Wet}) = P(\text{Wet} \mid \text{Rain})P(\text{Rain})$$

$$= P(\text{Rain} \mid \text{Wet})P(\text{Wet})$$

Each factorization corresponds to a different Belief Network

The Inverted Network Isn't Crazy

Corresponds to the factoring $P(Rain \mid Wet)P(Wet)$

- Sometimes you want to answer the question
 Given that I observe that the sidewalk is Wet, what is the probability that it is currently Raining?
 - This is just updating our confidence in a hypothesis (it is **Raining**) given our observations (**Wet** sidewalk)
- Could preprocess the natural network into this form to avoid having to do a lot of computations with Bayes' Rule

The Inverted Network Is Crazy

Corresponds to the factoring $P(Rain \mid Wet)P(Wet)$

- If I cause my sidewalk to be Wet (by throwing water on it), what is the probability that it is Raining?
 - So, condition on Wet=true
 - This network seems to imply that it will be $P(Rain \mid Wet = True) = .78 > P(Rain) = .5$
 - wait, what?
- Question: What is going wrong in this example?

Wet	P(Wet)	
7	0.575	
F	0.425	

Rain	Wet	et P(Rain Wet)	
F	F	0.88	
Τ	F	0.12	
F	Т	0.22	
Т	Т	0.78	

Observations vs. Interventions

- The semantics of Belief Networks are defined for observational questions
 - They don't directly model causal questions
 - In fact, in our Rainy Sidewalk example, we would get exactly the same (crazy) answer to our causal question from querying the natural network
- The joint distribution represented by the networks doesn't model the situation in which I intervene
 - Adding a variable James_Throws_Water to the distribution

Simpson's Paradox

Suppose we have information from two trials of a new drug: One on male test subjects, and one on female test subjects.

G - gender D - received drug R - recovered

G	D	R	count	P(G,D,R)
M	Т	Т	18	0.225
М	Т	F	12	0.15
M	F	Т	7	0.0875
M	F	F	3	0.0375
F	Т	Т	2	0.025
F	Т	F	8	0.1
F	F	Т	9	0.1125
F	F	F	21	0.2625

• Is the drug effective for males?

$$P(R \mid D = true, G = male) = 0.60$$

 $P(R \mid D = false, G = male) = 0.70$

• Is the drug effective for females?

$$P(R \mid D = true, G = female) = 0.20$$

 $P(R \mid D = false, G = female) = 0.30$

• Is the drug effective?

$$P(R \mid D = true) = 0.50$$

 $P(R \mid D = false) = 0.40$

Simpson's Paradox, explained

- The joint distribution factors as $P(G,D,R) = P(R \mid D,G) \times P(D \mid G) \times P(G)$
- Per-gender queries are answered directly by $P(R \mid D, G)$

For the **overall query**, we want
$$P(R \mid D) = \frac{\sum_G P(R \mid G, D) P(G)}{\sum_{G,R} P(R \mid G, D) P(G)}$$

• But that's not how the distribution factors. If we follow the factoring above, we will instead compute

$$P(R \mid D) = \frac{P(R, D)}{P(D)} = \frac{\sum_{G} P(G, D, R)}{\sum_{G, R} P(G, D, R)} = \frac{\sum_{G} P(R \mid D, G) P(D \mid G) P(G)}{\sum_{G, R} P(R \mid D, G) P(D \mid G) P(G)}$$

- In our dataset, knowing whether a subject **got the drug** tells you something about their **gender**, and males have a **higher overall recovery** rate than females
- $P(R \mid G = male) = 0.625$ vs $P(R \mid G = female) = 0.275$

Selection Bias

- This problem is an example of selection bias
- Whether subjects received treatment is systematically related to their response to the treatment
- This is why randomized trials are the gold standard for causal questions:
 - The only thing that determines whether or not a subject is treated is a random number
 - Random number is definitely independent of anything else (including response to treatment)

Post-Intervention Distribution

- The causal query is really a query on a different distribution in which we have forced D=true
 - Different from the original joint distribution conditioned on observing that D=true
 - We will refer to the two distributions as the observational distribution and the post-intervention distribution
- With a post-intervention distribution, we can compute the answers to causal queries using existing techniques (e.g., variable elimination)

Post-Intervention Distribution for Simpson's Paradox

Observational distribution:

$$P(G, D, R) = P(R \mid D, G) \times P(D \mid G) \times P(G)$$

- Question: What is the post-intervention distribution for Simpson's Paradox?
 - We're forcing D=true, so $P(D=true \mid G)=1$ for all $g\in dom(G)$
 - That's the same as just omitting the $P(D \mid G)$ factor
- Post-intervention distribution:

$$P(G, D, R) = P(R \mid D, G) \times P(G)$$

The Do-Calculus

- How should we express causal queries?
- One approach: The do-calculus
- Condition on observations: $P(Y \mid X = x)$
- Express interventions with special do operator: $P(Y \mid do(X = x))$
- Allows us to mix observational and interventional information: $P(Y \mid Z = z, do(X = x))$

Evaluating Causal Queries With the Do-Calculus

Given a query $P(Y \mid do(X = x), Z = z)$:

- 1. Construct post-intervention distribution \hat{P} by removing all links from X's direct parents to X
- 2. Evaluate the observational query $\hat{P}(Y \mid X = x, Z = z)$ in the post-intervention distribution

Example: Simpson's Paradox

- Observational distribution: $P(G,D,R) = P(R \mid D, G) \times P(D \mid G) \times P(G)$
- Observational query:

$$P(R \mid D) = \frac{P(R, D)}{P(D)} = \frac{\sum_{G} P(G, D, R)}{\sum_{G, R} P(G, D, R)} = \frac{\sum_{G} P(R \mid D, G) P(D \mid G) P(G)}{\sum_{G, R} P(R \mid D, G) P(D \mid G) P(G)}$$

- Observational query values: $P(R \mid D=true) = 0.50$ $P(R \mid D=false) = 0.40$
- **Post-intervention distribution** for causal query P(R | do(D=true)): $\hat{P}(G,D,R) = P(R \mid D, G) \times P(G)$
- Causal query:

$$P(R | do(D = true)) = \hat{P}(R | D = true) = \frac{\sum_{G} P(R | D, G)P(G)}{\sum_{G,R} P(R | D, G)P(G)}$$

Causal query values:
 P(R | do(D=true)) = 0.40
 P(R | do(D=false)) = 0.50

Example: Rainy Sidewalk

Query: P(Rain | do(Wet=true)

Natural network:

- Observational distribution: P(Wet, Rain) = P(Wet|Rain)P(Rain)
- Post intervention distribution: P(Wet=true, Rain) = P(Rain)P(Wet)
- P(Rain | do(Wet=true)) = .50

Inverted network:

- Observational distribution: P(Wet, Rain) = P(Rain | Wet)P(Rain)
- Post intervention distribution:
 P(Wet=true, Rain) = P(Rain | Wet)P(Wet)
- P(Rain | do(Wet=true)) = .78

Causal Models

- The natural network gives the correct answer to our causal query, but the inverted network does not (Why?)
- Not every factoring of a joint distribution is a valid causal model

Definition:

A **causal model** is a directed acyclic graph of random variables such that for every edge $X \rightarrow Y$, the value of random variable X is **realized** before the value of random variable Y.

Alternative Representation: Influence Diagrams

Instead of adding a new operator, we can instead represent causal queries by **augmenting** the causal model with **decision** variables F_D for each potential intervention target D.

$$dom(F_D) = dom(D) \cup \{idle\}$$

$$P(D \mid pa(D), F_D) = \begin{cases} P(D \mid pa(D)) & \text{if } F_D = idle, \\ 1 & \text{if } F_D \neq idle \land D = F_D, \\ 0 & \text{otherwise.} \end{cases}$$

Influence Diagrams Examples

Summary

- Observational queries P(Y | X=x) are different from causal queries
 P(Y | do(X=x))
- To evaluate causal query P(Y | do(X=x)):
 - 1. Construct post-intervention distribution P by removing all links from X's direct parents to X
 - 2. Evaluate the observational query $\hat{P}(Y \mid X=x, Z=z)$ in the post-intervention distribution
- Not every correct Bayesian network is a valid causal model