Capstone Design: Preparation of the Subtalar Joint in TTC **Arthrodesis**

MacKenzie Campbell, Michael De Biasio, Kevin Wang, Irina Zhu

December 2, 2020

Background: Surgical Procedure

Background: Subtalar Joint Anatomy

A way to prepare the **subtalar joint** through a **plantar incision** in patients undergoing TTC nailing in a **trauma setting** that improves **bone fusion rates**

A way to prepare the **subtalar joint** through a **plantar incision** in patients undergoing TTC nailing in a **trauma setting** that improves **bone fusion rates**

Proposed Solution Overview

Cutting Tool

Proposed Solution: Materials and Cost

Materials

Martensitic 400-series stainless steel with blade made of tungsten carbide.

Costs

1mm-thick 400-series stainless steel: **USD \$0.815/lb**. (current mkt value).

Tungsten carbide: **USD \$9-12.00/lb**. (approx. mkt value).

Manufacturing: ~ USD \$30.00/tool.

Total cost: ~ CAD \$40.60/tool

Low fidelity Prototyping

Force Calculations

Friction on hinges

6.18x10⁻⁹ N

Max blade	27.6 N
force required	
to cut cartilage	

Handle force	9.17 N
Force on pin	3.93 N

Fixture Force on pin (N) Worktable 3mm Hinges (N) 10mm

Handle force (N)

force

Blade Selection

Force (N)	15		50	
Length to fixed end (mm)	5	10	5	10
Max Stress (N/m²)	6x10 ⁷		2x10 ⁸	
Max Displace- ment (µm)	1.7	5.7	2.7	9.1

Open curette

Closed curette

Anterior lesion curette

Modified anterior lesion curette

Tungsten carbide yield strength: 3.35 - 5.30 x10⁸ N/m²

Factor of Safety: 2.5-8

Surface Area Calculations

<u>Underside of talus</u> <u>Top of calcaneus</u>

Talus Area: 600 mm²
Calcaneus Area: **726 mm**²

With scrapes of size 2mm x 10mm x 1mm:

SA scraped (%)	# of scrapes required
25%	7.5
50%	16.5

~5 minutes

Summary, Design Successes and Failures

Next Steps

- Make a higher-fidelity prototype
 - Give to surgeons, test forces and cartilage scraping
- Gather more feedback from surgeons
- Evaluate subtalar fusion rates

Acknowledgements

Dr. Spencer Montgomery, MD

Dr. Amit Atrey, MD

Dr. Amir Khoshbin, MD

Professor Chris Bouwmeester

Karly Franz

Gary Hoang

Dr. Jeremy LaMothe, MD

Dr. Mansur Halai, MD

St. Michael's Inspired Care. Inspiring Science.

References

- K. Yoshimot, et al., "Does Preparation of the Subtalar Joint for Primary Union Affect Clinical Outcome in Patients Undergoing Intramedullary Nail for Rheumatoid Arthritis of the Hindfoot and Ankle?," The Journal of Foot & Ankle Surgery, vol. 59, no. 5, pp. 984-987, 2020. Available: https://www.jfas.org/article/S1067-2516(20)30165-4/fulltext
- C. L. Brockett and G. J. Chapman, "Biomechanics of the ankle," Orthopaedics and Trauma, vol. 30, no. 3, pp. 232-238, 2016. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994968/.
- G. E. Quill, "Tibiotalocalcaneal Arthrodesis With Medullary Rod Fixation," Techniques in Foot and Ankle Surgery, vol. 2, no. 2, pp. 135-143, 2003. Available: https://journals.lww.com/techfootankle/Abstract/2003/06000
 /Tibiotalocalcaneal Arthrodesis With Medullary Rod.9.aspx.
- B. H. Lee, C. Fang, R. Kunnasegaran, and G. Thevendran, "Tibiotalocalcaneal Arthrodesis With the Hindfoot Arthrodesis Nail: A Prospective Consecutive Series From a Single Institution," The Journal of Foot & Ankle Surgery, vol. 57, no. 1, pp. 23-30, 2018. Available: https://www.jfas.org/article/S1067-2516(17)30358-7/fulltext.
- K. Akiyama, T. Sakai, N. Sugimoto, H. Yoshikawa, and K. Sugamoto, "Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density," Osteoarthritis and Cartilage, vol. 20, no. 4, pp. 296-304, 2012. Available: http://www.sciencedirect.com/science/article/pii/S1063458412000209.
- Stryker, "Ankle Arthrodesis Nail: Operative Technique", pp. 1-31, 2009. Available: https://www.strykermeded.com/media/1602/t2-ankle-arthrodesis-nail.pdf.

St. Michael's

Inspired Care.
Inspiring Science.

References

- P. Chen, J. Sui, and C. Wang, "Cutting Force Analysis of Bovine Acetabular Cartilage," Procedia CIRP, vol. 89, pp. 189-193, 2020. Available: https://www.sciencedirect.com/science/article/pii/S2212827120305163.
- M. Mahvash, L.M. Voo, D. Kim, K. Jeung, J. Wainer, and A.M. Okamura, "Modeling the forces of cutting with scissors," IEEE transactions on bio-medical engineering, vol. 55, no. 3, pp. 848-56, 2008. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709828/.
- G. L. Bennett, B. Cameron, G. Njus, M. Saunders, and D. Kay, "Tibiotalocalcaneal Arthrodesis: A Biomechanical Assessment of Stability," Foot & Ankle International, vol. 26, no. 7, pp. 530-536, 2005. Available: https://pubmed.ncbi.nlm.nih.gov/16045843/.
- Y. Yasui, C. P. Hannon, D. Seow, and J. G. Kennedy, "Ankle arthrodesis: A systematic approach and review of the literature," World Journal of Orthopaedics, vol. 7, no. 11, pp. 700–708, 2016. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112338/.
- M.M. Van Meter and R.A. Adam, "Costs associated with instrument sterilization in gynecologic surgery", American Journal of Obstetrics & Gynecology, vol. 215, no. 5, 2016. Available: https://www.ajog.org/article/S0002-9378(16)30358-1/pdf.
- "ACUFEX Curettes," Smith & Nephew. Available: https://www.smith-nephew.com/canada/products/extremities-and-limb-restoration/acufex-curettes/

St. Michael's Inspired Care.

Inspiring Science.

