```
In [27]: ASSIGNMENT 7

In [35]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error,r2_score
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.datasets import load_iris
    from sklearn.metrics import accuracy_score, confusion_matrix, classification_r
    eport

In [5]: df=pd.read_csv("PlayTennis.csv")
    display(df.head())
```

Outlook | Temperature | Humidity Wind | Play Tennis Sunny Hot High Weak No Sunny Hot High Strong No Overcast Hot High Weak Yes 3 Rain Mild High Weak Yes Rain Cool Normal Weak Yes

```
In [6]: Outlook = df["Outlook"].str.get_dummies(sep=" ")
In [7]: Temperature = df["Temperature"].str.get_dummies(sep=" ")
In [8]: Humidity = df["Humidity"].str.get_dummies(sep=" ")
In [9]: Wind = df["Wind"].str.get_dummies(sep=" ")
In [10]: play_Tennis = df["Play Tennis"].str.get_dummies(sep=" ")
In [11]: df.drop(['Outlook','Temperature','Humidity','Wind','Play Tennis'],axis=1,inpla ce=True);
```

In [12]: print(Outlook)

	Overcast	Rain	Sunny		
0	0	0	1		
1	0	0	1		
2	1	0	0		
3	0	1	0		
4	0	1	0		
5	0	1	0		
6	1	0	0		
7	0	0	1		
8	0	0	1		
9	0	1	0		
10	0	0	1		
11	1	0	0		
12	1	0	0		
13	0	1	0		

```
In [13]: print(Outlook)
    print(Temperature)
    print(Humidity)
    print(Wind)
    print(play_Tennis)
```

	0verc	ast	Rain	Sunny
0		0	0	1
1		0	0	1
2		1	0	0
3		0	1	0
4 5		0 0	1 1	9
6		1	0	0
7		0	0	1
8		0	0	1
9		0	1	0
10 11		0 1	0 0	1 0
12		1	0	0
13		0	1	é
	Cool	Hot	Mil	
0	0	1		9
1	0	1		9
2	0 0	1 0		Э 1
3 4	1	0		9
5	1	0		9
6	1	0		9
7	0	0		1
8 9	1 0	0 0		ð 1
10	0	0		1
11	0	0		1
12	0	1		9
13	0	0		1
0	High 1	Norn	пат 0	
1	1		0	
2	1		0	
3	1		0	
4	0		1	
5 6	0 0		1 1	
7	1		0	
8	0		1	
9	0		1	
10	0		1	
11 12	1 0		0 1	
13	1		0	
	Stron	g We	eak	
0		0	1	
1		1	0	
2 3 4		0 0	1 1	
4		0	1	
5		1	0	
5 6 7		1	0	
7 8		0 0	1 1	
8 9		0	1	
10		1	0	

In [14]: df = pd.concat([Outlook, Temperature, Humidity, Wind, play_Tennis], axis=1)

In [15]: df

Out[15]:

	Overcast	Rain	Sunny	Cool	Hot	Mild	High	Normal	Strong	Weak	No	Yes
0	0	0	1	0	1	0	1	0	0	1	1	0
1	0	0	1	0	1	0	1	0	1	0	1	0
2	1	0	0	0	1	0	1	0	0	1	0	1
3	0	1	0	0	0	1	1	0	0	1	0	1
4	0	1	0	1	0	0	0	1	0	1	0	1
5	0	1	0	1	0	0	0	1	1	0	1	0
6	1	0	0	1	0	0	0	1	1	0	0	1
7	0	0	1	0	0	1	1	0	0	1	1	0
8	0	0	1	1	0	0	0	1	0	1	0	1
9	0	1	0	0	0	1	0	1	0	1	0	1
10	0	0	1	0	0	1	0	1	1	0	0	1
11	1	0	0	0	0	1	1	0	1	0	0	1
12	1	0	0	0	1	0	0	1	0	1	0	1
13	0	1	0	0	0	1	1	0	1	0	1	0

```
In [16]: x = df.drop(['Yes', 'No'], axis=1)
```

In [17]: y=df['Yes']

```
In [30]:
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, strat
         ify=y)
In [31]: | dt = DecisionTreeClassifier(criterion='entropy')
In [32]: dt.fit(x_train,y_train)
Out[32]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=Non
                     max_features=None, max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                     splitter='best')
In [33]:
         y_pred=dt.predict(x_test)
In [34]: print(confusion matrix(y test, y pred))
         print(classification_report(y_test, y_pred))
         print(accuracy_score(y_test, y_pred))
         [[2 0]
          [2 1]]
                      precision
                                    recall f1-score
                                                       support
                   0
                           0.50
                                      1.00
                                                0.67
                                                             2
                                                             3
                   1
                           1.00
                                      0.33
                                                0.50
                                                             5
         avg / total
                           0.80
                                      0.60
                                                0.57
         0.6
```