Table 4. Compressible mixing layer operating conditions and uncertainties.

Input Parameters	Case 1	Case 2	Case 3	Case 4	Case 5
M_1	0.463 ± 0.012	1.003 ± 0.021	1.571 ± 0.025	1.955 ± 0.021	2.463 ± 0.032
M_2	0.089 ± 0.009	0.189 ± 0.009	0.285 ± 0.014	0.269 ± 0.008	0.175 ± 0.009
P_{01} (kPa)	109.32 ± 0.05	151.84 ± 0.05	270.41 ± 0.05	445.50 ± 0.06	778.10 ± 0.09
P_{02} (kPa)	94.56 ± 0.05	82.47 ± 0.05	71.47 ± 0.05	63.83 ± 0.05	50.95 ± 0.05
P_1 (kPa)	93.94 ± 0.10	80.37 ± 0.11	62.02 ± 0.10	57.58 ± 0.10	50.84 ± 0.11
P_2 (kPa)	93.92 ± 0.10	80.59 ± 0.11	66.29 ± 0.10	61.51 ± 0.10	49.91 ± 0.11
T_{01} (K)	296.10 ± 0.50	294.60 ± 0.50	284.59 ± 0.50	298.02 ± 0.50	289.25 ± 0.51
T_{02} (K)	292.48 ± 0.50	293.58 ± 0.50	295.57 ± 0.50	298.22 ± 0.50	292.58 ± 0.50
T_1 (K)	283.95 ± 0.84	245.25 ± 2.04	190.50 ± 2.68	168.87 ± 2.26	130.70 ± 2.63
T_2 (K)	292.02 ± 0.51	291.49 ± 0.54	290.85 ± 0.69	293.96 ± 0.56	290.80 ± 0.54
U_1 (m/s)	156.25 ± 4.3	314.89 ± 6.32	434.76 ± 6.08	509.24 ± 4.35	564.16 ± 4.59
U_2 (m/s)	30.35 ± 3.0	64.75 ± 2.96	97.28 ± 4.87	92.57 ± 2.79	59.76 ± 3.19
$r = U_2/U_1$	0.194 ± 0.020	0.206 ± 0.010	0.224 ± 0.012	0.182 ± 0.006	0.106 ± 0.006
$s = \rho_2/\rho_1$	0.972 ± 0.004	$\boldsymbol{0.844 \pm 0.007}$	0.700 ± 0.010	0.614 ± 0.008	0.441 ± 0.010
M _c	0.185 ± 0.008	0.381 ± 0.011	0.546 ± 0.013	0.690 ± 0.009	0.883 ± 0.010