5. (a) Give a precise statement of the Contractive Mapping Principle.

Solution:

Let $T: M \to M$ be a map from a metric space (M, d) to itself such that

$$d(x,y) \le kd(T(x),T(y))$$

for some k < 1. Then there exists a unique x_0 such that

$$T(x_0) = x_0.$$

5. (b) Consider the mapping $f:[1,\infty)\to[1,\infty)$ given by

$$f(x) = \frac{x}{2} + \frac{a}{2x}$$

for fixed a with 1 < a < 3. Show that f is a contractive mapping. What is its fixed point? Solution:

We take $M=([1,\infty),|\ldots-\ldots|)$ to by the metric space with the standard metric from $\mathbb{R}.$ Observe

$$|f(y) - f(x)| = \left| \int_{x}^{y} f'(t) dt \right|$$

$$\stackrel{\dagger}{\leq} \int_{x}^{y} |f'(t)| dt$$

$$\leq |y - x| \cdot \max |f'(x)|$$

where

$$f'(x) = \frac{1}{2} - \frac{a}{2}x^{-2}.$$

Note that $f''(x) = ax^{-3} > 0$ for x > 1, so f is increasing and thus $|f'(x)| \le \max\{\lim_{x\to\infty} f'(x), |f'(1)|\} = \max\{\frac{1}{2}, |\frac{1}{2}(1-a)|\} < 1$. Letting k be this maximum, we have shown f to be a contraction.

A contraction satisfies

$$x = \frac{1}{2} + \frac{a}{2}x^{-1}$$

when

$$0 = x^2 - \frac{1}{2}x - \frac{a}{2}$$

when

$$x = \frac{1 \pm \sqrt{1 + 8a}}{4}.$$

So

$$x = \frac{1 + \sqrt{1 + 8a}}{4}.$$

6. (a) Let f be a continuous function on [a,b]. Show that if, for all $k \in \mathbb{N}$, $\int_a^b f(x) x^k dx = 0$, then $f \equiv 0$.

Solution:

Let $\varepsilon > 0$ be given. We invoke Weierstrauss to obtain a polynomial p(x) so that

$$f(x) = p(x) + R_{\varepsilon}(x)$$

where sup $|R_{\varepsilon}| < \varepsilon$. Since $\int_a^b x^n f(x) = 0$ for all n,

$$0 = \int_{a}^{b} p(x)f(x) dx = \int_{a}^{b} f^{2}(x) - R_{\varepsilon}(x)f(x) dx$$

$$\implies \int_{a}^{b} f^{2}(x) = \int_{a}^{b} R_{\varepsilon}(x)f(x) dx < (b - a)\varepsilon \cdot \sup|f|.$$

Hence $\int_a^b f^2 = 0$. We show that this implies that $f \equiv 0$ by contrapositve. That is, suppose $|f(x_0)| > 0$ for some $x_0 \in [a, b]$. Without loss of generality, we can take $a < x_0 < b$ by continuity. Now, continuity gives $\delta > 0$ with $x_0 - a > \delta$ and $b - x_0 < \delta$ so that $|f(x) - f(x_0)| < \frac{|f(x_0)|}{2}$, and, in particular, $|f(x)| > \frac{|f(x_0)|}{2}$ whenever $|x - x_0| < \delta$. Observe

$$\int_{a}^{b} f^{2}(x) dx = \int_{x_{0}-\delta}^{x_{0}+\delta} f^{2}(x) dx + \int_{|x-x_{0}| \ge \delta} f^{2}(x) dx$$

$$\ge \int_{x_{0}-\delta}^{x_{0}+\delta} |f(x)|^{2} dx$$

$$\ge 2\delta \cdot \frac{|f(x_{0})|^{2}}{4}$$

$$> 0.$$

6. (b) Let f be a continuous function on [a, b]. Show that if, for all $k \in \mathbb{N}$, $\int_{-a}^{a} f(x) x^{2k} dx = 0$, then $f \equiv 0$.

Solution:

Observe that

$$f(-x)(-x)^{2k+1} = -f(x)x^{2k+1}$$

so by linearity of integrals and symmetry of the interval, for any given polynomial

$$\int_{-a}^{a} p(x)f(x) dx = \int_{-a}^{a} q(x)f(x) dx$$

where q is a polynomial containing only the even monomial terms of p. The argument proceeds from here exactly as in (a).

7. Let (X, d) be a compact metric space. Show that (X, d) is complete.

Solution:

Let $\{x_n\}$ be Cauchy sequence in (X,d). Since (X,d) is compact, there exists a limit point, say x, of $\{x_n\}$. Let $\varepsilon > 0$ be given. There exists M > 0 so that $d(x_m, x_n) < \varepsilon/2$ for $M \le m < n$. Since x is a limit point, there exists $N \ge M$ so that $d(x_N, x) < \varepsilon/2$ for $n \ge N$. Combining these, we have that for $n \ge N \ge M$,

$$d(x_n, x) \le d(x_n, x_N) + d(x_N, x) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

8. Fix $N \in \mathbb{N}$ and a compact interval [a, b], and let \mathcal{F} be the family of all polynomials $\sum_{j=0}^{N} a_j x^j$ on [a, b] for which $|a_j| \leq 1$ for all j. Show that \mathcal{F} is uniformly bounded and unofrmly equicontinous.

Solution:

For the even function $f(x) = |x|^n$ on $x \in [a, b]$, it attains its maximum at either x = 0, x = a or x = b since f'(x) = 0 or does not exist only when x = 0. Thus,

$$\left| \sum_{n=1}^{N} a_n x^n \right| \le \sum_{n=1}^{N} |a_n| |x|^n$$

$$\le N \max\{|a|, |b|, |a|^2, |b|^2, \dots, |a|^N, |b|^N\}.$$

So \mathcal{F} is uniformly bounded.

Now, let $\varepsilon > 0$ be given. Since the monomial $f(x) = x^n$ is continuous (as a successive product of continuous functions), f(x) is uniformly continuous on any given [a,b] since the closed and bounded interval [a,b] is compact. Thus, the distance $|x^n - t^n| < N\varepsilon$ for all $0 < n \le N$, for sufficiently small |x - t|, by choosing a minimum. In particular, for a given representative of \mathcal{F} , $f(x) = \sum_{n=1}^{N} a_n x$, we have

$$\left| \sum_{n=1}^{N} a_n x^n - \sum_{n=1}^{N} a_n t^n \right| \le \sum_{n=1}^{N} |a_n| |x^n - t^n| \le N |x^n - t^n| < \varepsilon.$$

9. (a) Show that $\sin \theta \ge \frac{2}{\pi}\theta$, for all $0 \le \theta \le \frac{\pi}{2}$.

Solution:

See Jordan's Lemma [BC04, p. 262].

Let $f(\theta) = \sin \theta$, and note $f''(\theta) = -\sin \theta < 0$ for $0 < \theta < \frac{\pi}{2}$, hence f is concave down there. Observe that the line defined by $\ell(\theta) = \frac{2}{\pi}\theta$ between 0 and $\frac{\pi}{2}$ is a line segment between f(0) and $f(\pi/2)$. We will show that for such a concave down function, the line segment given by ℓ lies entirely below the graph of f.

Let $0 = a < x_0 < b = \frac{\pi}{2}$. By the mean value theorem then the fundamental theorem of calculus, there exists x_1, x_2 such that $a < x_1 < x_0 < x_2 < b$,

$$\frac{f(b) - f(x_0)}{b - x_0} - \frac{f(x_0) - f(a)}{x_0 - a} = f'(x_2) - f(x_1)$$
$$= \int_{x_1}^{x_2} f''(t)dt$$
$$< 0.$$

Thus,

$$(x_{0} - a)(f(b) - f(x_{0})) < (b - x_{0})(f(x_{0}) - f(a))$$

$$\iff (x_{0} - a)(f(b) - f(x_{0})) + (f(x_{0}) - f(a))(x_{0} - a) < (b - x_{0})(f(x_{0}) - f(a)) + (f(x_{0}) - f(a))(x_{0} - a)$$

$$\iff (x_{0} - a)\left(f(b) - f(a)\right) < \left(f(x_{0}) - f(a)\right)(b - a)$$

$$\iff \ell(x_{0}) = (x_{0} - a)\frac{f(b) - f(a)}{b - a} + f(a) < f(x_{0}).$$

$$\iff \frac{2}{\pi} < \sin x_{0}.$$

We remark that what we have shown is that for any function $f:[a,b] \to \mathbb{R}$ such that f''(x) < 0 there, $f(x) \ge \ell(x)$ where ℓ is the line between (a, f(a)) and (b, f(b)).

9. (b) By using part (a), or by any other method, show that if $\lambda < 1$, then

$$\lim_{R \to \infty} R^{\lambda} \int_0^{\pi/2} e^{-R\sin\theta} d\theta = 0.$$

Solution:

By part (a)
$$-R\sin\theta \le \theta - \frac{2R}{\pi}$$
 so
$$0 < R^{\lambda} \int_0^{\pi/2} e^{-R\sin\theta} d\theta \le R^{\lambda} \int_0^{\pi/2} e^{-2R\theta/\pi}$$

$$= R^{\lambda-1} \frac{\pi}{2} (1 - e^{-R})$$

for all R > 0. Letting $R \to \infty$, both sides of the inequality go to 0, hence by squeezing, the integral goes to 0.

10. Show that if f and g are analytic functions that both have a zero of order $n \geq 0$ at z_0 , then

$$\lim_{z \to z_0} \frac{f(z)}{q(z)} = \frac{f^{(n)}(z)}{q^{(n)}(z)}.$$

Solution:

Since f and g are analytic, they both can be represented as power series centered at z_0

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 and $g(z) = \sum_{k=0}^{\infty} b_k (z - z_0)^k$.

Moreover, a_0, \ldots, a_{n-1} and b_0, \ldots, b_{n-1} are each zero since both have zeros of order n. Thus

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{(z - z_0)^{-n} \cdot \sum_{k=n}^{\infty} a_k (z - z_0)^k}{(z - z_0)^{-n} \cdot \sum_{k=n}^{\infty} b_k (z - z_0)^k}$$

$$= \lim_{z \to z_0} \frac{\sum_{k=n}^{\infty} a_k (z - z_0)^{k-n}}{\sum_{k=n}^{\infty} b_k (z - z_0)^{k-n}}$$

$$= \frac{a_n}{b_n}.$$

Now,

$$\left(\frac{d}{dz}\right)^n f(z) = n!a_n$$
 and $\left(\frac{d}{dz}\right)^n g(z) = n!b_n$

So

$$\frac{f^{(n)}(z)}{g^{(n)}(z)} = \frac{a_n}{b_n}$$

and the equality is established.

11. Evaluate

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^3 dx.$$

Justify each step in your calculation.

Solution:

See [BC04, ch. 7.75 p. 269]. First note

$$\sin^3(x) = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 = \frac{1}{8i^3}(e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix}).$$

Now, let

$$f(z) = \frac{e^{3iz} - 3e^{iz} + 2}{z^3},$$

and observe that $f(x) + f(-x) = 8i^3 \left(\frac{\sin x}{x}\right)^3$. Moreover, f has a simple pole at z = 0 since

$$\begin{split} f(z) &= z^{-3} \sum_{n=0}^{\infty} \left\{ \frac{(3iz)^n}{n!} - \frac{3(iz)^n}{n!} \right\} + 2z^{-3} \\ &= \left\{ \underbrace{\frac{1}{0!z^3}}_{0!z^3} + \underbrace{\frac{3}{0!z^3}}_{0!z^3} + 2 \right\} + \left\{ \underbrace{\frac{3i}{1!z^2}}_{1!z^2} \right\} + \left\{ \frac{-9}{2!z} - \frac{-3}{2!z} \right\} + \sum_{n=0}^{\infty} \left\{ (3i)^n - 3i^n \right\} \frac{z^n}{n!} \\ &\stackrel{\dagger}{=} \frac{-3}{z} + g(z). \end{split}$$

where g(z) is the analytic function given by the power series of positive power terms in the Laurent series for f(z).

Let Γ be the indented contour given by the path sum of the paths indicated below in the complex plane.

Since f is analytic in the interior of Γ , the Cauchy-Gorsat theorem gives

$$0 \stackrel{*}{=} \int_{\Gamma} f(z) dz = \int_{L_1} f(z) dz + \int_{L_2} f(z) dz + \int_{C_R} f(z) dz + \int_{C_\rho} f(z) dz.$$

If we parametrize L_1 by z(t) = t for $\rho \le t \le R$ and $-L_2$ by z(t) = -t for $\rho \le t \le R$, then

$$\int_{L1} f(z) dz + \int_{L2} f(z) dz = \int_{\rho}^{R} f(t) dt + \int_{R}^{\rho} f(-t)(-dt)$$
$$= \int_{\rho}^{R} f(t) + f(-t) dt$$
$$= 8i^{3} \int_{\rho}^{R} \left(\frac{\sin t}{t}\right)^{3} dt$$

Now, note

$$\left| \int_{C_R} f(z) \, dz \right| \le \pi R \frac{e^{-3\operatorname{Im} z} + e^{-\operatorname{Im} z} + 2}{R^3}$$

where $z \in C_R$, and if $R \to \infty$ the modulus goes to 0.

For the last path integral we parametrize $-C_{\rho}$ with $z(t) = \rho e^{it}$ for $0 \le t \le \pi$, so

$$\int_{C_{\rho}} f(z) dz \stackrel{\dagger}{=} \int_{C_{\rho}} \frac{-3}{z} dz + \int_{C_{\rho}} g(z) dz$$
$$= 3 \int_{0}^{\pi} \frac{i\rho e^{it}}{\rho e^{it}} dt + \int_{C_{\rho}} g(z) dz$$
$$= 3\pi i + \int_{C_{\rho}} g(z) dz.$$

Finally note,

$$\left| \int_{C_{\rho}} g(z) \, dz \right| \le \pi \rho \max_{|z| \le 1} |g(z)|$$

when $\rho \leq 1$, and when $\rho \to 0$ the modulus goes to 0. We now have

$$0 \stackrel{*}{=} \lim_{\begin{subarray}{c} \rho \to 0 \\ R \to \infty \end{subarray}} \left\{ \int_{L_1 + L_2} f(z) \, dz + \int_{C_R + C_\rho} f(z) \, dz \right\}$$
$$0 = 8i^3 \int_0^\infty \left(\frac{\sin t}{t} \right)^3 dt + 3\pi i$$

if and only if

$$\int_0^\infty \left(\frac{\sin t}{t}\right)^3 dt = \frac{3\pi}{8}.$$

12. Suppose f is an entire function and that u(x,y) = Re[f(z)] is bounded above (i.e., there exists u_0 such that $u(x,y) \leq u_0$). Show that u(x,y) is constant.

Solution:

Let $g(z) = e^{f(z)} = e^{u(x,y)} \cdot e^{i \text{Im}[f(z)]}$. Note $|g(z)| = e^{u(x,y)} < e^{u_0}$ hence g is bounded. Since the composition of entire functions are entire, g is entire, and by the Maximum Modulus Principle, must be constant. Thus $u(x,y) = \ln(|g(z)|)$ is constant.

13. (a) Let P(z) and Q(z) be polynomials of degrees n and m correspondingly, and let $m \ge n + 2$. Write the expression

$$\frac{1}{z^2} \cdot \frac{P(1/z)}{Q(1/z)} \quad (z \neq 0)$$

as the quotient of two polynomials, and point out why z=0 is a removable singular point of that quotient.

Solution:

Let

$$P(z) = a_0 + \dots + a_n z^n$$
 and $Q(z) = b_0 + \dots + b_m z^m$ $(a_n \neq 0 \text{ and } b_m \neq 0).$

Observe,

$$\frac{1}{z^2} \cdot \frac{P(1/z)}{Q(1/z)} = \frac{1}{z^2} \frac{a_0 + a_1 z^{-1} \cdots + a_n z^{-n}}{b_0 + b_1 z^{-1} \cdots + b_m z^{-m}}$$
$$= \frac{a_0 z^{m-2} + \cdots + a_n z^{n-m-2}}{b_0 z^m + \cdots + b_m}.$$

Taking the limit as $z \to 0$ gives $0/b_m = 0$ when m > n + 2 and a_n/b_m when $m \ge n + 2$. In either case, the limit exists. This new expression is the quotient of two analytic functions with the denominator non-zero, hence it is analytic. Thus, the expression can be extended analytically to z = 0 so the singularity is removable.

13. (b) Use the final result in part (a) to show that if all the zeros of Q(z) are interior to a given simple closed curve C, then

$$\int_C \frac{P(z)}{Q(z)} \, dz = 0$$

Solution:

See [BC04, ch. 6.64, p. 228]. Let $f(z) = \frac{P(z)}{Q(z)}$ which has finitely many isolated singularities. Hence, there is an annular region with repsective radii $R_1 < R_2$ containing the contour C for which f is analytic. By Laurent's theorem, we may write f as the series

$$f(z) = \sum_{k=-\infty}^{\infty} b_k z^k$$
 with $b_k = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{k+1}} dz$

for $R_1 < |z| < R_2$. If we evaluate the quantity in part (a),

$$\frac{1}{z^2}f(z^{-1}) = \sum_{k=-\infty}^{\infty} b_k z^{-k-2}$$

for $R_1 < |z^{-1}| < R_2$ if and only if $R_2^{-1} < |z| < R_1^{-1}$. Since this function has a removable singularity at z=0, this series may only have terms with non-negative powers of z. Hence $b_{-1}=b_0=b_1=\cdots=0$. In particular

$$0 = b_{-1} = \frac{1}{2\pi i} \int_C f(z) \, dz.$$

We have established the desired equality.

14. Evaluate the integral

$$\int_{|z|=2} \frac{\sin \pi z \, dz}{(2z+1)^3.}$$

Solution:

Let D be the annular region 1 < |z+1/2| < 3 and note that the contour |z| = 2 is entirely within D. Let $f(z) = \frac{\sin \pi z}{(z+1/2)^3}$, then f is analytic when $z \neq -1/2$ as the quotient of two entire functions and, in particular, is analytic in D. By Laurent's theorem, f can be expressed in D as

$$f(z) = \sum_{k=-\infty}^{\infty} b_k (z + 1/2)^k$$

and the integral of f around |z| = 2 is given by $2\pi i b_{-1}$. Using the uniqueness of representation and the Taylor series of $\sin \pi z$ centered at -1/2, we have

$$f(z) = (z+1/2)^{-3} \sum_{n=0}^{\infty} (-1)^n \frac{d^n}{dz^n} \sin \pi z \Big|_{z=-1/2} (z+1/2)^n$$

$$= \frac{-1}{(z+1/2)^3} + \frac{0}{(z+1/2)^2} + \frac{\pi^2}{z+1/2} + \sum_{n=3}^{\infty} (-1)^n \frac{d^n}{dz^n} \sin \pi z \Big|_{z=-1/2} (z+1/2)^{n-3}$$

SO

$$\int_{|z|=2} \frac{\sin \pi z \, dz}{(2z+1)^3} = 8 \int_{|z|=2} \frac{\sin \pi z \, dz}{(z+1/2)^3} = 16\pi^3 i$$

References

- [BC04] James Ward Brown and Ruel V. Churchill. Complex Variables and Applications. McGraw-Hill, 7th edition, 2004.
- [Str00] Robert S. Strichartz. The Way of Analysis Revised Edition. Jones and Bartlett Publishers, 2000.