Process scheduling examples:

Q1: Find the average waiting time and average turnaround time for executing the following processes using FCFS (first-come first-service) scheduling?

Process	Burst time
P0	7
P1	5
P2	2
P3	9

Answer:

The first step of the solution is founding the Gantt chart.

Gantt chart:

P0	P1	P2	P3	
0 7	1	2 1	4	23

The waiting time of P0 = 0

The waiting time of P1 = 7

The waiting time of P2 = 12

The waiting time of P3 = 14

The average waiting time = (0 + 7 + 12 + 14)/4 = 33/4 = 8.25

The turnaround time of p0 = 7

The turnaround time of p1 = 12

The turnaround time of p2 = 14

The turnaround time of p3 = 23

The average turnaround time = (7+12+14+23)/4 = 56/4 = 14

Q2: Find the average waiting time (A.W.T) and average turnaround time (A.T.A.T) for executing the following process using (1) Preemptive short-job first (2) Non-preemptive short-job first?

Process	P1	P2	P3	P4	P5
Burst time	5	13	8	4	10
Arrival time	2	3	0	5	1

(1) Using preemptive short-job first

Gantt chart

P3	P1	P4	P3	P5	P2
0 2	2 7	1	1 1	7 2	7 40

W.T. of
$$p1 = 2 - 2 = 0$$

T.A.T. of P1=
$$7 - 2 = 5$$

W.T. of
$$p2 = 27 - 3 = 24$$

T.A.T. of
$$P2 = 40 - 3 = 37$$

W.T. of p3 =
$$0+(11-2) = 9$$

T.A.T. of
$$P3 = 17 - 0 = 17$$

W.T. of
$$p4 = 7 - 5 = 2$$

T.A.T. of P4=
$$11 - 5 = 6$$

W.T. of
$$p5 = 17 - 1 = 16$$

T.A.T. of P5=
$$27 - 1 = 26$$

A.W.T. =
$$(0+24+9+2+16)/5 = 51/5 = 10.2$$

$$A.T.A.T = (5+37+17+6+26)/5 = 91/5 = 18.2$$

2) Using non- preemptive short-job first

Gantt chart

	P3	P4	P1	P5	P2	
0	8	3 1	2 1	.7	27 4	0

W.T. of
$$p1 = 12 - 2 = 10$$

T.A.T. of P1=
$$17 - 2 = 15$$

W.T. of
$$p2 = 27 - 3 = 24$$

T.A.T. of
$$P2 = 40 - 3 = 37$$

W.T. of
$$p3 = 0$$

T.A.T. of P3=
$$8 - 0 = 8$$

W.T. of
$$p4 = 8 - 5 = 3$$

T.A.T. of P4=
$$12 - 5 = 7$$

W.T. of
$$p5 = 17 - 1 = 16$$

T.A.T. of
$$P5 = 27 - 1 = 26$$

A.W.T. =
$$(10+24+0+3+16)/5 = 53/5 = 10.6$$

$$A.T.A.T = (15+37+8+7+26)/5 = 93/5 = 18.6$$

Q3: Find the average waiting time and turnaround time for executing the following process using priority scheduling algorithm?

Process	P1	P2	P3	P4	P5
Burst time	5	13	8	6	12
Priority	1	3	0	4	2

Gantt chart

P3	P1	P5	P2	P4
0 8	3 1	13 2	5 38	8 44
W.T. of p1 =	8	7	Γ.A.T. of P1=13	
W.T. of $p2 =$	25		T.A.T. of $P2 = 38$	
W.T. of p3 =	0		Γ .A.T. of P3= 8	
W.T. of p4 =	38		T.A.T. of P4= 44	
W.T. of p5 =	13		T.A.T. of P5= 25	

A.W.T. =
$$(8+25+0+38+13)/5 = 84/5 = 16.8$$

$$A.T.A.T = (13+38+8+44+25)/5 = 128/5 = 25.6$$

Q4: Find the average waiting time (A.W.T.) and the average turnaround time (A.T.A.T.) for executing the following processes using round-robin algorithm, where time quantum is 5?

Process	P1	P2	P3	P4	P5
Burst time	11	4	14	9	21
Arrival time	5	0	0	1	2

Gantt chart

P2	P3	P4	P5	P1	P3	P4	P5	P1	P3	P5	P1	P5	P5
		9											

W.T. of P1 =
$$(19-5)+(38-24)+(52-43) = 14 + 14+9 = 37$$

W.T. of P2 = 0
W.T. of P3 = $(4-0) + (24-9) + (43-29) = 4 + 15 + 14 = 33$
W.T. of P4 = $(9-1) + (29-14) = 8 + 15 = 23$
W.T. of P5 = $(14-2) + (33-19) + (47-38) + (53-52) = 12+14+9+1=36$
A.W.T. = $(37 + 0 + 33 + 23 + 36) / 5 = 129 / 5 = 25.8$
T.A.T of P1 = $(53-5) = 48$
T.A.T of P2 = $(4-0) = 4$
T.A.T of P3 = $(47-0) = 47$
T.A.T of P4 = $(33-1) = 32$
T.A.T of P5 = $(59-2) = 57$
A.T.A.T. = $(48 + 4 + 47 + 32 + 57) / 5 = 188 / 5 = 37.6$

Q25: Consider a multilevel feedback queue scheduling (MLFBQ) with three queues q1, q2, and q3. q1 and q2 use round-robin algorithm with time quantum (TQ) = 5, and 4 respectively. q3 use first-come first-service algorithm. Find the average waiting time (A.W.T) and average turnaround time (A.T.A.T) for executing the following process?

Processes	P1	P2	P3	P4
Burst time	8	22	4	12

In MLFBQ scheduling algorithm, the process move between queues. If a process uses too much CPU time, it will be moved to a lower-priority queue.

Gantt chart

P1	P2	P3	P4	P1	P2	P4	P2	P4
0	5	10	14	19	22 2	26 3	30 4	3 46

W.T. of
$$p1 = 0 + (19-5) = 14$$

W.T. of
$$p2 = 5 + (22-10) + (30-26) = 5+12+4 = 21$$

T.A.T. of
$$P2 = 43$$

W.T. of
$$p3 = 10$$

T.A.T. of
$$P3 = 14$$

W.T. of p4 =
$$14 + (26-19) + (43-30) = 14+7+13=34$$

A.W.T. =
$$(14 + 21 + 10 + 34)/4 = 79/4 = 19.75$$

$$A.T.A.T = (22 + 43 + 14 + 46) = 125/4 = 31.25$$