南京大学 计算机科学与技术系

Department of Computer Science & Technology, NJU

计算机中的信息表示

How a computer represents information internally?

刘奇志

进制

- ◎ 一个数可以用不同的进制来表示。常用的进制有:
 - 十进制 (0~9, 逢十进一)
 - 二进制
 - _ 二进制 (0~1, 逢2进一)
 - 八进制 (0~7, 逢8进一)
 - 十六进制 (0~9、A~F, 逢16进一)
- ♥ 例如,对于十进制数:29
 - 二进制表示为: 11101
 - 八进制表示为:35
 - 十六进制表示为: 1D

二进制数的运算

二进制与十进制之间的转换(整数)

- ♥ 二进制转成十进制 (29)
 - $(11101)_2 = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 29$
 - $(35)_8 = 3 \times 8^1 + 5 \times 8^0 = 29$
 - $(1D)_{16}=1\times 16^{1}+13\times 16^{0}=29$
- ♥ 十进制(29)转成二进制

(十六进制)

二进制与十进制之间的转换(小数)

- 二进制转成十进制
 - $(0.1101)_2 = 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 0.8125$
- ◆ 十进制转成二进制
 - 乘以2取整数位,直到乘积为整

0.8125	$\times 2$
1 .625	$\times 2$
1 .25	$\times 2$
0.5	×2
1 . O	

二进制与八、十六进制之间的转换

- 整数:从低位向高位每三/四位一组,高位不足补0
- 小数:从高位向低位每三/四位一组,低位不足补O

```
( 11101.1101)2
= ( 011 101.110 100)2 = (35.64)8
= ( 0001 1101.1101)2 = (1D.D)16
```

机器数

- ◆ 真值:在数值前面用"+"号表示正数,"-"号表示负数的带符号二进制数。
 - **+**1010111
 - **-**1010111
- 机器数:用"0"表示符号"+",用"1"表示符号"-",即把真值的符号"数值化"后的二进制数(原码)。
 - 8位(1字节): 01010111, 11010111
 - 16位(2字节): 00000000 01010111, 10000000 01010111

溢出问题

- 假定用一个字节存储数据
 - → 不考虑符号

→考虑符号

```
(0111 1111)
+ (0000 0001)
(1000 0000)
```

(1111 1111)

 $(0000\ 0001)$

 $(0000\ 0000)$

● 解决办法:加宽存储空间

原码存在的问题

- ♥ 问题1: O的机器数(原码)不唯一
 - 以8位为例: 00000000, 10000000
- 问题2:减法运算借位不方便; 改成加负数,结果不正确
 - 以8位为例:

	(0000	0011)	原码	3
_	(0000	1101)	原码	13
	(210)	原码	

	(0000 0011)	原码	3
+	(1000 1101)	原码	-13
	(1001 0000)	原码	?

● 解决办法: 补码

补码 (complement)

- 补码的定义
 - → 符号位: +→0, → 1
 - → 其他位:

$$[-2^{n-1}, (2^{n-1}-1)]$$

$$X = -10000000 (-128)$$

8位:

$$[X]_{3} = 1 0000000$$

● 补码的简单求法

→ 正数: 同原码

→ 负数: 符号位同原码, 其余各位取反, 末位加1

真值X: +1010111 -1010111

[X]_原(8位): 01010111 11010111

[X]_原(16位): 000000001010111 100000001010111

[X]_{*}(8位): 01010111 10101001

[X]_素(16位): 000000001010111 11111111110101001

● 由于每位二进制数只有0和1两种,故2ⁿ⁻¹ - |X|就相当于是对|X|的各位 "取反加1", "取反加1"只是对补码定义中2ⁿ⁻¹ - |X|的简单记忆法。

● 补码的优势

- → 数据0的补码只有0000000(8位) 1000000(8位)是-128的补码
- → 可将减法变成加法,结果正确

```
+ (1111 0011) <sub>补码</sub> 3
+ (1111 0011) <sub>补码</sub> -13
(1111 0110) <sub>补码</sub> -10
```

	(0000 0011)	原码	3
_	(0000 1101)		13
	(?10)	原码	

	(0000 0011)	原码	3
+	(1000 1101)	原码	-13
	(1001 0000)	原码	?

● 为什么补码可以将减法变成加法?

假设在圆盘上进行加减运算:

- → 加法: 顺时针运动找到结果;
- → 减法: 逆时针运动找到结果;
- → 运动一周,终点回到起点。
- 口 任一个数X(9),减去一个数A(6),总可以 找到另一个数B(4),使得X+B=X-A(9+4=9-6),于是称B(4)是 - A(-6)的 补数。
- □ 因为逆时针运动能到达的点,顺时针运动 一定也能到达,两种运动跨度之和叫做模 (=|-A|+B)。

● 再假设这个圆盘的模改为128,则圆盘上的任一个数X-A,相当于X+B,其中, B=128-|-A|, B是-A的补数.

- 推广
 - → [X]_补= 模 |X|
- □ 对于8位二进制数:模为1000 0000,则
 [X]_补=1000 0000-|X|
- □ 如果模为2ⁿ⁻¹ ,则 [X]_补= 2ⁿ⁻¹ - |X|

计算机中的实数** (non-integral numbers)

- 定点数
- 浮点数
- BCD
- 对数数字系统 (Logarithmic number systems)
- 任意精度 (arbitrary-precision) 浮点数计算系统
- ♥ 比例计算 (rational arithmetic) 软件包 (分数)
- 其它计算软件 (Computer algebra systems) , 如Mathematica等...

定点数 (Fixed-point)

- 定点数就是约定小数点的位置固定不变。
- 定点整数(纯整数): 小数点在数的最右方
- 定点小数(纯小数):小数点在符号位之后
- 小数点是隐含的,不另开辟空间存放
- 定点小数(纯小数)的小数点前的0也是隐含的,不另开辟空间存放

定点数可表示数值的范围

码制	定点小数		定点整数		
	最大数	最小数	最大数	最小数	
原码	1-2 ⁻ⁿ	-(1-2 ⁻ⁿ)	2 ⁿ - 1	$-(2^{n}-1)$	
补码	1-2 ⁻ⁿ	-1	2 ⁿ - 1	-2 ⁿ	

注意: 表中的n 不包括小数点或 符号位

定点数的运算

- 参与运算的数要么都调整成整数
 - \rightarrow 3+0.5=(3×10+0.5×10)/10

比例因子

- 参与运算的数要么都调整成小数
 - \rightarrow 3+0.5=(3/100+0.5/100)×100

比例因子

● 比例因子选择不当,会产生溢出或降低运算精度。

浮点数 (Floating point)

- \bullet \pm $M \cdot R^E$
 - → ±(S), sign,数符.
 - → M, mantissa,尾数,一般为定点小数,常用补码或原码表示,指明有效数字的位数, 因而决定浮点数的精度.
 - → R, radix,比例因子的基数,一般为2,8或16.
 - → E, exponent,比例因子的指数,又称为浮点数的阶码,一般为定点整数,常用补码或移码表示,指明小数点在数据中的位置,因而决定浮点数的表示范围.

单精度浮点数格式 (IEEE754)

数符/尾符

```
尾数——原码,且规格化,且隐含存储1
指数——移码,是127的偏移([X]<sub>8</sub>=127+X)
```

将-0.5按IEEE754单精度格式存储。

单精度浮点数值域

$$N_{\text{max}} = 2^{127} \cdot (2 - 2^{-23})$$

$$N_{\text{min}} = -2^{127} \cdot (2 - 2^{-23})$$

$$|N|_{\text{min}} = 2^{-126}$$

指数范围为-126~127,对应移码为01~FE. (十六进制)

对于移码为00或为FF的情况,IEEE有特殊的规定:

移码为00: 尾数是0,表示0

尾数不是0,表示绝对值非常小的数

移码为FF: 尾数是0,表示无穷大

尾数不是0,不是一个数(NaN)

单精度浮点数的尾数用23位存储(除符号位外), 2^(23) = 8388608, 故单精度浮点数的有效位数约是7位。

双精度浮点数的尾数用52位存储(除符号位外), $2^{(52)} = 4503599627370496$,故双精度的有效位数约是16位。

浮点数的规格化

为什么要进行浮点数的规格化?

浮点数尾数的位数表示数的有效数位,有效数位越多,数据的精度越高。为了在浮点数运算过程中,尽可能多地保留有效数字的位数,使有效数字尽量占满尾数数位,必须经常对浮点数进行规格化操作。

规格化数的标志

尾数最高位具有非零数字。即:

若基为R,则|M|>=1/R

若R=2,则M=±0.1bb...bb或 M=±1.bb...bb(IEEE754格式)

若用补码表示尾数,则,规格化数的标志为:

"尾数的符号位和最高位具有不同的代码"

BCD (Binary-coded decimal)

- 用四个二进制位储存一个十进制的数码
 - → 有利于二进制和十进制之间进行快捷转换(相对于一般的浮点式表示法, BCD可减少 电脑作浮点运算时所耗费的时间)
 - → 有利于用二进制来精确表示十进制数

● BCD码有多种形式,常用的是8421码,每一位十进数码用四位二进数码表示,不允许出现1010~1111六种组合。

0	0000	5	0101	
1	0001	6	0110	
2	0010	7	0111	
3	0011	8	1000	
4	0100	9	1001	
10	0001 0000			
123	0001 0010 0011			
123.4	0001 0010 0011	. 0100		

● 可以采用1010~1111六种组合中的某种组合表示正号、负号或小数点等信息。

● 这种编码技巧,最常用于会计系统的设计里,因为会计制度经常需要对很长的数字串作准确的计算。 BCD也常用于其他需要高精度的计算场合。此外,基于BCD码设计电路,可以便于数码管显示数字,13(00001101): 0001 0011

● 采用BCD码运算时,逢16进1比逢10进1"迟钝" 了6。怎么做才能得到正确的结果?

- 但基于BCD码,不便于复杂计算(比如求sin(x)),所以很多情况下都不 采用BCD码。
- ◎ 对数数字系统 (Logarithmic number systems)
- 任意精度 (arbitrary-precision) 浮点数计算系统
- 比例计算 (rational arithmetic) 软件包 (分数)
- 其他计算软件 (Computer algebra systems) , 如Mathematica等…

ASCII (American Standard Code for Information Interchange)

● 美国标准信息交换码

- → ASCII码是常用的将字符转换成二进制数的标准代码。
- → ASCII码由8位二进制数组成,其中最高位为校验位,用于传输过程检验数据正确性,其余7位二进制数表示一个字符,共有128种组合。若校验位也扩展为数据位,则有256种组合。
- → 为了方便起见,常常用十六进制数或十进制数来描述二进制ASCII码,有些系统还定 义了控制符来描述。
- → 原来是美国的国家标准,1967年被定为国际标准。

ASCI 十进制		字符	控制字符	意义	ASCI 十进制		字符	控制字符	意义
000	00		NULL		016	10	•	DLE	
001	01	0	SOH		017	11	-	DC1	
002	02	0	STX		018	12	1	DC2	
003	03		ETX		019	13	- 33	DC3	
004	04	•	EOT		020	14	- PT	DC4	
005	05	*	ENQ		021	15	§	NAK	
006	06	•	ACK		022	16	_	SYN	
007	07	•	BELL	振铃	023	17	1	ETB	
008	08	•	BS	退格键	024	18	1	CAN	
009	09		HT	定位键	025	19	1	EM	
010	0A		LF	line feed	026	1A	\rightarrow	SUB	档案结束
011	0B	ਰਾ	VT	home	027	1B	+	ESC	escape
012	0C	우	FF	form feed	028	1C	Ŀ	FS	向右键
013	0D		CR	carriage return	029	1D	++	GS	向左键
014	0E	1	SO		030	1E	A	RS	向上键
015	0F	☆	SI		031	1F	V	US	向下键

AS	CII 码	₽ Mr	AS	CII 码	<i>⇒ 8</i> /x	AS	CII 码	i⇒ hh	AS	CII 码	
十进制	十六进制	字符	十进制	十六进制	字符	十进制	十六进制	字符	十进制	十六进制	字符
032	20		056	38	8	080	50	Р	104	68	h
033	21	!	057	39	9	081	51	Q	105	69	i
034	22	***	058	ЗА	:	082	52	R	106	6A	j
035	23	#	059	3B	;	083	53	S	107	6B	k
036	24	\$	060	3C	<	084	54	Т	108	6C	ı
037	25	%	061	3D	=	085	55	U	109	6D	m
038	26	&	062	3E	>	086	56	V	110	6E	n
039	27	•	063	3F	?	087	57	w	111	6F	О
040	28	(064	40	@	088	58	х	112	70	р
041	29)	065	41	Α	089	59	Y	113	71	q
042	2A	*	066	42	В	090	5A	Z	114	72	r
043	2B	+	067	43	С	091	5B	[115	73	s
044	2C	,	068	44	D	092	5C	\	116	74	t
045	2D	-	069	45	E	093	5D]	117	75	u
046	2E		070	46	F	094	5E	^	118	76	v
047	2F	/	071	47	G	095	5F	_	119	77	w
048	30	0	072	48	Н	096	60	`	120	78	х
049	31	1	073	49	I	097	61	а	121	79	У
050	32	2	074	4A	J	098	62	b	122	7A	z
051	33	3	075	4B	К	099	63	С	123	7B	{
052	34	4	076	4C	L	100	64	d	124	7C	I
053	35	5	077	4D	М	101	65	е	125	7D	}
054	36	6	078	4E	N	102	66	f	126	7E	~
055	37	7	079	4F	О	103	67	g	127	7F	

	CII码	字符		CII码	字符		CII码	字符		CII码	字符
十进制	十六进制	J-19		十六进制	J-19	十进制	十六进制	3-19	十进制		2-19
128	80	ς	160	A0	á	192	C0	L	224	E0	α
129	81	ü	161	A1	í	193	C1	上	225	E1	ß
130	82	é	162	A2	ó	194	C2	Т	226	E2	Y
131	83	â	163	A3	ú	195	C3	H	227	E3	π
132	84	ä	164	A4	ñ	196	C4		228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	Аб	a	198	C6	F	230	E6	μ
135	87	Ç	167	A7	0	199	C7	⊩	231	E7	T
136	88	ê	168	A8	خ	200	C8	L	232	E8	ф
137	89	ë	169	A9	г	201	C9	F	233	E9	Θ
138	8A	è	170	AA	_	202	CA	<u>JL</u>	234	EΑ	Ω
139	8B	ï	171	AB	1/2	203	CB	┰	235	EB	δ
140	8C	î	172	AC	1/4	204	CC	⊩	236	EC	œ
141	8D	ì	173	AD	i	205	CD		237	ED	Ф
142	8E	Ä	174	AE	<<	206	CE	#	238	EE	€
143	8F	Å	175	AF	>>	207	CF	上	239	EF	\cap
144	90	É	176	B0		208	D0	Щ	240	F0	
145	91	æ	177	B1	雛	209	D1	一一	241	F1	±
146	92	Æ	178	B2		210	D2	т	242	F2	≥
147	93	ô	179	В3		211	D3	L	243	F3	≤
148	94	ö	180	B4	\Box	212	D4	F	244	F4	
149	95	ò	181	B5	4	213	D5	F	245	F5	
150	96	û	182	B6	\mathbb{H}	214	D6	Г	246	F6	÷
151	97	ù	183	B7	П	215	D7	#	247	F7	æ
152	98	Ÿ	184	B8	7	216	D8	+	248	F8	°
153	99	ö	185	B9	4	217	D9	П	249	F9	•
154	9A	Ü	186	BA		218	DA	Г	250	FA	•
155	9B	₫	187	BB	٦	219	DB		251	FB	√
156	9C	£	188	BC		220	DC		252	FC	п
157	9D	¥	189	BD	Ш	221	DD		253	FD	2
158	9E	Pts	190	BE	4	222	DE		254	FE	
159	9F	f	191	BF	٦	223	DF	a d	255	FF	

常用字符的ASCII码值

高位

低位

0100 0001(二进制) / 41(十六进制)

ASCII码值 十进制	字符	ASCII码值十 进制	字符	ASCII码值十 进制	字符
0	(null)	65	A	97	a
10	换行	66	В	98	b
32	空格	•••	•••	•••	•••
48	0	90	Z	122	z
49	1	91	[123	{
•••	•••			127	DEL
57	9				

其它码制

- ◎ 汉字字符集的个数远远超过256,可以用2个字节表示的编码(65536种组合)
 - ➤ GB2312 (简体)
 - ➤ Big5 (繁体)
- 国际通用大字符集
 - > Unicode
- **🌑 ...**
- **◎** 它们一般都兼容ASCII码

Unicode (Universal Coded Character Set)

- 使用16位的编码空间,也就是每个字符占用2个字节。这样理论上一共最 多可以表示2¹⁶即65536个字符。基本满足各种语言的使用。实际上当前版 本的Unicode尚未填充满,保留了大量空间作为特殊使用或扩展。
- UTF-8 (Unicode Transformation Format 8 bit) 是一种根据 Unicode 标准 定义的可变长度字符编码。兼容ASCII码。由 Ken Thompson和 Rob Pike于1992年 创建。现在已经标准化为RFC 3629。UTF-8用1到6个字节编码Unicode字符。用在 网页上可以统一页面显示中文简体繁体及其它语言(如英文,日文,韩文)。

Thanks!

