Lösung zum 3D-Clipping, Theorie

nacheinander zu testende Fälle:

a)
$$-1 \le z \le z_{\min}$$

b)
$$z \le x \le -z$$

c)
$$z \le y \le -z$$

Parameterdarstellung der Gerade

$$x(t) = x_0 + t(x_1 - x_0), \quad y(t) = y_0 + t(y_1 - y_0), \quad z(t) = z_0 + t(z_1 - z_0), \quad 0 \le t \le 1$$

zu a

a)
$$z_0 + t_1(z_1 - z_0) = -1 \Leftrightarrow t_1 = \frac{-1 - z_0}{z_1 - z_0} = \frac{z_0 + 1}{z_0 - z_1}$$

b)
$$z_0 + t_2(z_1 - z_0) = z_{\min} \Leftrightarrow t_2 = \frac{z_{\min} - z_0}{z_1 - z_0} = \frac{z_0 - z_{\min}}{z_0 - z_1}$$

zu b

a)
$$x_0 + t_1(x_1 - x_0) = z_0 + t_1(z_1 - z_0) \Leftrightarrow t_1 = \frac{z_0 - x_0}{x_1 - x_0 + z_0 - z_1}$$

b)
$$x_0 + t_2(x_1 - x_0) = -(z_0 + t_2(z_1 - z_0)) \Leftrightarrow t_2 = \frac{-z_0 - x_0}{x_1 - x_0 + z_1 - z_0}$$

zu c analog

Clipping für Fall a

Annahme: $t_1 \le t_2$, sonst vertausche t_1 und t_2

i)
$$t_1, t_2 \in (0; 1)$$

$$t = 0$$

$$t = 1$$

$$P_0$$

$$t_1$$

$$t_2$$

setze
$$P_0 = P_0 + t_1 \Delta P$$
, $P_1 = P_0 + t_2 \Delta P$ mit $\Delta P = P_1 - P_0$

ii) $t_1, t_2 \notin [0; 1]$

iii)
$$t_1 \in (0;1), t_2 \notin [0;1]$$

$$P_0 \qquad t_1 \qquad P_1 \qquad t_2 \qquad P_0 = P_0 + t_1 \Delta P$$

iv)
$$t_1 \notin [0; 1], t_2 \in (0; 1)$$

$$t_1 \qquad P_0 \qquad t_2 \qquad P_1 \qquad P_1 = P_1 + t_2 \Delta P$$

Clipping für Fall b

i)
$$z(t_1) > 0, z(t_2) > 0$$

⇒ zurückweisen

ii)
$$z(t_1) \le 0, z(t_2) \le 0$$

⇒ Standard-Clipping wie im Fall a

iii) Annahme: $z_0 < z_1$, sonst vertausche P_0 und P_1

 $t_u := \min\{t_1,t_2\} \text{ (unterer Schnittpunkt), } t_o := \max\{t_1,t_2\} \text{ (oberer Schnittpunkt)}$ damit hier $z(t_u) \leq 0, \, z(t_o) > 0$

 α) $t_u < 0$:

⇒ zurückweisen

 β) $t_u \ge 1$:

⇒ nichts zu tun (alles sichtbar)

 $\gamma) \ 0 \le t_u < 1:$

$$\Rightarrow P_1 = P_1 + t_u \Delta P$$