

1 Solutions polynôme

Soit la fonction de transfert :

$$H(p) = \frac{S(p)}{E(p)} = \frac{12}{p \cdot (120 + 40 \cdot p + 3 \cdot p^2)}$$
(1)

Question 1 : Mettre H(p) sous la forme canonique.

Question 2 : Déterminer sa classe et son ordre.

Question 3 : Déterminer les valeurs numériques des racines du polynôme du dénominateur. Les racines carrées doivent être calculées.

On donne la forme suivante pour H(p):

$$H(p) = \frac{K}{p \cdot \left(1 + \frac{2 \cdot \xi}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}\right)}$$
(2)

Question 4 : Déterminer les valeurs numériques de K, ξ et ω_0 .

2 Calcul de puissances

Question 5 : Dans chaque cas, donner le résultat sous la forme a^n avec a et n deux entiers relatif :

- 1. $3^4 \cdot 5^4$,
- 2. $(5^3)^{-2}$,
- 3. $\frac{2^5}{2^{-2}}$,
- 4. $(-7)^3 \cdot (-7)^{-5}$,
- 5. $\frac{6^3}{2^5}$
- $6. \ \frac{(30^4)^7}{2^{28} \cdot 5^{28}}.$

Question 1:

Question 2:

Question 3:

Question 4:

Question 5:

- 1. $3^4 \cdot 5^4 =$
- 2. $(5^3)^{-2}$ =
- 3. $\frac{2^5}{2^{-2}}$ =
- 4. $(-7)^3 \cdot (-7)^{-5} =$ 5. $\frac{6^5}{2^5} =$
- $6. \ \frac{(30^4)^7}{2^{28} \cdot 5^{28}} =$