Exhibit A

CURRENT PROTOCOLS IN MOLECULAR BIOLOGY

VOLUME 1

EDITORIAL BOARD

Frederick M. Ausubel

Massachusetts General Hospital & Harvard Medical School

Roger Brent

Massachusetts General Hospital & Harvard Medical School

Robert E. Kingston

Massachusetts General Hospital & Harvard Medical School

David D. Moore

Massachusetts General Hospital & Harvard Medical School

J.G. Seidman

Harvard Medical School

John A. Smith

University of Alabama

Kevin Struhl

Harvard Medical School

GUEST EDITORS

Lisa M. Albright

DNA Sequencing

Donald M. Coen

Harvard Medical School Polymerase Chain Reaction

Ajit Varki

University of California San Diego Glycoproteins

SERIES EDITOR

Virginia Benson Chanda

John Wiley & Sons, Inc.

Copyright © 1994-1997 by John Wiley & Sons, Inc.

Copyright @ 1987-1994 by Current Protocols

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

While the authors, editors, and publisher believe that the specification and usage of reagents, equipment, and devices, as set forth in this book, are in accord with current recommendations and practice at the time of publication, they accept no legal responsibility for any errors or omissions, and make no warranty, express or implied, with respect to material contained herein. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. This is particularly important in regard to new or infrequently employed chemicals or experimental reagents.

Library of Congress Cataloging in Publication Data:

Current protocols in molecular biology. 3 vols.

Molecular biology—Technique.
Molecular biology—Laboratory manuals.
Ausubel, Frederick M.

QH506.C87 1987

574.8'8'028

87-21033

ISBN 0-471-50338-X

Printed in the United States of America

20 19 18 17 16 15 14 13

1c. Harsh .eatment: Pour several hundred milliliters of boiling 0.1% SDS onto the membrane. Cool to room temperature.

If a membrane is to be reprobed, it must not be allowed to dry out between hybridization and stripping. If it becomes dry, the probe may bind to the matrix.

2. Place membrane on a sheet of dry Whatman 3MM filter paper and blot excess liquid with a second sheet. Wrap the membrane in plastic wrap and set up an autoradiograph.

If signal is still seen after autoradiography, rewash using harsher conditions.

3. The membrane can now be rehybridized. Alternatively, it can be dried and stored for later use.

Membranes can be stored dry between Whatman 3MM paper for several months at room temperature. For long-term storage, place the membranes in a desiccator at room temperature or 4°C.

REAGENTS AND SOLUTIONS

Aqueous prehybridization/hybridization (APH) solution

 $5 \times SSC$ (APPENDIX 2)

5× Denhardt solution (APPENDIX 2)

1% (w/v) SDS

Add 100 µg/ml denatured salmon sperm DNA (see below) just before use

Alternatives to Denhardt solution and denatured salmon sperm DNA as blocking agents are listed in Table 2.10.5 (see discussion in critical parameters).

Denatured salmon sperm DNA

Dissolve 10 mg Sigma type III salmon sperm DNA (sodium salt) in 1 ml water. Pass vigorously through a 17-G needle 20 times to shear the DNA. Place in a boiling water bath for 10 min, then chill. Use immediately or store at -20°C in small aliquots. If stored, reheat to 100°C for 5 min and chill on ice immediately before using.

Formamide prehybridization/hybridization (FPH) solution

 $5 \times SSC$ (APPENDIX 2)

5× Denhardt solution (APPENDIX 2)

50% (w/v) formamide

1% (w/v) SDS

Add 100 µg/ml denatured salmon sperm DNA (see above) just before use

Alternatives to Denhardt solution and denatured salmon sperm DNA as blocking agents are listed in Table 2.10.5 (see discussion in critical parameters).

Commercial formamide is usually satisfactory for use. If the liquid has a yellow color, deionize as follows: add 5 g of mixed-bed ion-exchange resin [e.g., Bio-Rad AG 501-X8 or 501-X8(D) resins] per 100 ml formamide, stir at room temperature for 1 hr, and filter through Whatman no. 1 paper.

CAUTION: Formamide is a teratogen. Handle with care.

Labeling buffer

200 mM Tris·Cl, pH 7.5

30 mM MgCl₂

10 mM spermidine

Mild stripping solution

5 mM Tris·Cl, pH 8.0

2 mM EDTA

0.1× Denhardt solution (APPENDIX 2)

Hybridization Analysis of DNA Blots

Exhibit B

CURRENT PROTOCOLS IN MOLECULAR BIOLOGY

VOLUME 3

EDITORIAL BOARD

Frederick M. Ausubel

Massachusetts General Hospital & Harvard Medical School

Roger Brent

Massachusetts General Hospital & Harvard Medical School

Robert E. Kingston

Massachusetts General Hospital & Harvard Medical School

David D. Moore

Massachusetts General Hospital & Harvard Medical School

J.G. Seidman

Harvard Medical School

John A. Smith

University of Alabama

Kevin Struhl

Harvard Medical School

GUEST EDITORS

Lisa M. Albright

DNA Sequencing

Donald M. Coen

Harvard Medical School Polymerase Chain Reaction

Ajit Varki

University of California San Diego Glycoproteins

SERIES EDITOR

Virginia Benson Chanda

John Wiley & Sons, Inc.

Copyright © 1994-1997 by John Wiley & Sons, Inc.

Copyright @ 1987-1994 by Current Protocols

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

While the authors, editors, and publisher believe that the specification and usage of reagents, equipment, and devices, as set forth in this book, are in accord with current recommendations and practice at the time of publication, they accept no legal responsibility for any errors or omissions, and make no warranty, express or implied, with respect to material contained herein. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. This is particularly important in regard to new or infrequently employed chemicals or experimental reagents.

Library of Congress Cataloging in Publication Data:

Current protocols in molecular biology. 3 vols.

 Molecular biology—Technique. 2. Molecular biology—Laboratory manuals. I. Ausubel, Frederick M.

QH506.C87 1987 5 ISBN 0-471-50338-X

574.8'8'028

87-21033

Printed in the United States of America

20 19 18 17 16 15 14 13

SDS electrophoresis buffer, 5×

15.1 g Tris base

72.0 g glycine

5.0 g SDS

H₂O to 1000 ml

Dilute to $1 \times$ or $2 \times$ for working solution, as appropriate

Do not adjust the pH of the stock solution, as the solution is pH 8.3 when diluted. Store at 0° to 4° C until use (up to 1 month).

SED (standard enzyme diluent)

20 mM Tris-Cl, pH 7.5

500 µg/ml bovine serum albumin (Pentax Fraction V)

10 mM 2-mercaptoethanol

Store up to 1 month at 4°C

Sodium acetate, 3 M

Dissolve 408 g sodium acetate · 3H₂O in 800 ml H₂O

Add H₂O to 1 liter

Adjust pH to 4.8 or 5.2 (as desired) with 3 M acetic acid

Sodium acetate buffer, 0.1 M

Solution A: 11.55 ml glacial acetic acid/liter (0.2 M).

Solution B: 27.2 g sodium acetate (NaC₂H₃O₂·3H₂O)/liter (0.2 M).

Referring to Table A.2.2 for desired pH, mix the indicated volumes of solutions A and B, then dilute with H_2O to 100 ml. (See Potassium acetate buffer recipe for further details.)

Sodium phosphate buffer, 0.1 M

Solution A: 27.6 g NaH₂PO₄·H₂O per liter (0.2 M).

Solution B: 53.65 g Na₂HPO₄·7H₂O per liter (0.2 M).

Referring to Table A.2.3 for desired pH, mix the indicated volumes of solutions A and B, then dilute with H₂O to 200 ml. (See Potassium phosphate buffer recipe for further details.)

SSC (sodium chloride/sodium citrate), 20×

3 M NaCl (175 g/liter)

0.3 M Na₃citrate-2H₂O (88 g/liter)

Adjust pH to 7.0 with 1 M HCl

STE buffer

10 mM Tris Cl, pH 7.5

10 mM NaCl

1 mM EDTA, pH 8.0

TAE (Tris/acetate/EDTA) electrophoresis buffer

50× stock solution:

Working solution, pH ~8.5:

242 g Tris base

57.1 ml glacial acetic acid

40 mM Tris-acetate

37.2 g Na₂EDTA-2H₂O

2 mM Na₂EDTA-2H₂O

H₂O to 1 liter

TBE (Tris/borate/EDTA) electrophoresis buffer

10× stock solution, 1 liter:

108 g Tris base (890 mM)

55 g boric acid (890 mM)

40 ml 0.5 M EDTA, pH 8.0 (20 mM)

Appendix 2

A,2.5