Advanced AIME Problems Part 2

SEM AMC Club - Compiled by Arjun Vikram, 2019

- 1. Find the number of five-digit positive integers, n, that satisfy the following conditions:
 - \circ The number n is divisible by 5
 - \circ The first and last digits of n are equal
 - \circ The sum of the digits of n is divisible by 5

2. Let ABCD be a square, and let E and F be points on \overline{AB} and \overline{BC} , respectively. The line through E parallel to \overline{BC} and the line through F parallel to \overline{AB} divide ABCD into two squares and two nonsquare rectangles. The sum of the areas of the two squares is $\frac{9}{10}$ of the area of square ABCD. Find $\frac{AE}{EB} + \frac{EB}{AE}$. (Source: 2013 AIME 1 #3)

3. In the array of 13 squares shown below, 8 squares are colored red, and the remaining 5 squares are colored blue. If one of all possible such colorings is chosen at random, the probability that the chosen colored array appears the same when rotated 90° around the central square is $\frac{1}{n}$, where n is a positive integer. Find n. (Source: 2013 AIME 1 #4)

4. The real root of the equation $8x^3-3x^2-3x-1=0$ can be written in the form $\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}$, where a, b, and c are positive integers. Find a+b+c. (Source: 2013 AIME 1 #5)

5. Let $\triangle PQR$ be a triangle with $\angle P=75^\circ$ and $\angle Q=60^\circ$. A regular hexagon ABCDEF with side length 1 is drawn inside $\triangle PQR$ so that side \overline{AB} lies on \overline{PQ} , side \overline{CD} lies on \overline{QR} , and one of the remaining vertices lies on \overline{RP} . There are positive integers a,b,c, and d such that the area of $\triangle PQR$ can be expressed in the form $\frac{a+b\sqrt{c}}{d}$, where a and d are relatively prime, and c is not divisible by the square of any prime. Find a+b+c+d. (Source: 2013 AIME 1 #12)

Answers: 1. 200 2. 018 3. 429 4. 098 5. 021