1. Friendlier Pacman

1. Assume finite horizon of 8 (so Pacman takes exactly 8 actions) and no discounting ($\gamma = 1$). Now, for each state...

...fill an the optimal policy:

...and fill in the corresponding V*(s) value (utility):

(available actions: \uparrow , \downarrow ,

	0	1	2
0	8	6	4
1	10	16	14
2	12	14	12

Hint: Pacman gets a reward for taking any action while in (1,1), and is not rewarded for the action to enter that

- 1.1.
- 1.2. Q values:
 - 1.2.1. 4
 - 1.2.2. 14
- 1.3. No Actions to stay in place:
 - 1.3.1. False
 - 1.3.2. 8
- (1/(1-0.5)) * 2 = 41.4.

2. Markov Decision Processes

2.1.

State	А	В	С	D	Е
K	4	3	2	1	0

2.2.

State	А	В	С	D	Е
K	8	∞	∞	1	0

- (a) Mark all of the statements that must be true for any MDP.
 - For no state s and for all policies π , $V^*(s) \ge V^{\pi}(s)$
 - For some state s and some policy π , $V^*(s) \ge V^{\pi}(s)$ For all states s and all policies π , $V^*(s) \ge V^{\pi}(s)$

 - None of the above
- (b) Mark **all** of the statements that are true for value iteration.
 - Each iteration of value iteration produces a value function that has higher value than the prior value functions for all states.
 - Value iteration can produce a value function that has higher value than the earlier value functions for some state.
 - Each iteration of value iteration produces a value function that has lower value than the prior value functions for all states.
 - Each iteration of value iteration produces a value function that has value at least as high as the prior value functions for all states.
- O None of the above 2.3.

- (a) $\bigcirc \frac{1}{2}$ $\bigcirc \frac{1}{3}$ $\bigcirc 2$ $\bigcirc -1$ $\bigcirc 3$ $\bigcirc \gamma$ None
- (b) \bowtie \max_a \bigcirc \min_a \bigcirc None
- (c) $\bigcirc T(s', a, s'')$ $\bigotimes T(s, a, s')$ \bigcirc None
- (d) $R(s, a, s')+ \bigcirc R(s, a, s')- \bigcirc$ None
- (e) $\bigcirc \ \, \max_{a} \ \, \bigcirc \ \, \min_{a} \ \, \bigcirc \ \, \max_{a'} \ \, \bigoplus ^{} \min_{a'} \ \, \bigcirc \ \, \gamma \, \max_{a} \ \, \bigcirc \ \, \gamma \, \min_{a} \ \, \bigcirc \ \, \gamma \, \min_{a'} \ \, \bigcap \ \, \gamma \, \min_{$
- (f) $\bigcirc \sum_{s'} \sum_{s'} T(s, a, s') \bigcirc \sum_{s''} C(s, a', s'') \bigcirc None$
- (g) \bigcirc R(s,a,s')+ \bigcirc R(s,a,s')- \bigcirc R(s',a',s'')+ \bigcirc R(s',a',s'')- \Longrightarrow None
- (h) $\bigcirc \frac{1}{2}V^*(s')$ $\bigstar \gamma V^*(s')$ $\bigcirc V^*(s')$ $\bigcirc \frac{1}{2}V^*(s'')$ $\bigcirc \gamma V^*(s'')$ $\bigcirc V^*(s'')$ \bigcirc None

2.4.