

Instituto Federal de Santa Catarina

Campus Florianópolis
Departamento Acadêmico de Eletrônica
Prof. Leandro Schwarz
Curso de Engenharia Eletrônica

Atividade Prática Animação *pushLeds* em Assembly

1 Critérios Avaliativos

Esta atividade deve ser postada em um arquivo compactado **em formato ZIP** no SIGAA impreterivelmente até às ____:____ do dia ____/____. Recomenda-se a postagem da atividade o quanto antes, de modo a evitar problemas associados à indisponibilidade de acesso à Internet.

O arquivo zip deve conter:

- 1. O arquivo workspace e o diretório .vscode do Visual Studio Code.
- 2. Todos os códigos-fonte (.c, .cpp, .h, .hpp, .s, .inc, .asm) necessários para a compilação com sucesso do código.
- 3. O arquivo de simulação do Proteus, compatível com a versão 8.6 SP2 build 23525.

A nota do atividade prática é baseada no funcionamento e na qualidade da solução apresentada. São critérios indispensáveis:

- Funcionamento da solução;
 - Cumprimento dos critérios estabelecidos.
- Organização do código;
 - Documentação (comentários necessários no código-fonte);
 - Endentação coerente;
 - Formatação adequada.
- Otimização;
 - Uso apropriado dos periféricos;
 - Uso racional de memórias RAM, EEPROM e Flash.

2 Objetivo

Criar uma animação estilo *pushLEDs* em linguagem Assembly, utilizando as instruções de comparação, deslocamento e lógica bit a bit.

3 Hardware

A seguir, é apresentado o diagrama esquemático do arquivo de simulação e a lista de componentes e suas configurações:

- Microcontrolador;
 - Device: ATMEGA328P;
 - Library: AVR2;
 - Part Reference: oculto;
 - Part Value: oculto;
 - Encapsulamento: SPDIL28;
 - Fuse CLKDIV8: (1) Unprogrammed;
 - Fuse CLKSEL: (1111) External crystal 8.0-MHz;
 - Clock Frequency: 16 MHz;
- Resistores;
 - Device: RES;
 - Library: DEVICE;
 - Part Reference: oculto;
 - Part Value: oculto;
 - Encapsulamento: RES40;
 - Model Type: DIGITAL;
 - Resistance: 1k5;
- LED;
 - Device: LED-GREEN¹
 Library: ACTIVE;
 Part Reference: oculto;

¹Também são aceitos os componentes LED-AQUA, LED-BLUE, LED-ORANGE, LED-PINK, LED-PURPLE, LED-RED, LED-WHITE e LED-YELLOW. Mantendo o posicionamento dos componentes, o aluno está livre para usar a criatividade!

- Part Value: oculto;

LISA Model File: Digital;Full drive current: 1mA;

4 Requisitos Obrigatórios

- 1. O código deve ser programado para o microcontrolador ATmega328P;
- 2. O código deve ser programado em C.
- 3. A animação a ser implementada é do tipo "push-LEDs", e funciona da seguinte forma:
 - (a) Considere que os LEDs são enumerados de 7 a 0;
 - (b) Um LEDs é chamado de *pushed* e um LED é chamado de *pusher*;
 - (c) Somente os LEDs *pusher* e *pushed* devem ser acessos;
 - (d) Inicialmente, o LED 0 é pusher e o LED 1 é pushed;
 - (e) A cada *frame* da animação, o LED *pusher* é incrementado até que ele se sobreponha ao LED *pushed*;
 - (f) Quando os LEDs *pusher* e *pusher* tornam-se coincidentes, o LED imediatamente à esquerda é aceso e torna-se o novo LED *pushed*;
 - (g) O LED *pusher* volta a ser o LED 0 e a animação continua a partir do passo do item 3e até que o LED *pushed* seja explido do conjunto de LEDs, quando, então, a animação reinicia do item 3d.
- 4. A duração (ou seja, o atraso) de cada passo da animação (frame) é de 250ms;
- 5. Com exceção do primeiro *frame* do *loop* de animação, a lógica envolvida na formação de todos os outros *frames* deve, **obrigatoriamente**, utilizar operações de manipulação bit a bit, sendo **proibido** o uso da instrução de carregamento de imediato (LDI).

5 Sugestões de Implantação

Os itens a seguir são apenas sugestões, sendo, portanto, sua adoção **facultativos**. Sua implementação é, no entanto, **aconselhada**, seja por apresentarem dicas de implementação ou para aumento da rabustez e/ou portabilidade do código final.

- Utilize a convenção de uso de registradores do GCC, ou seja:
 - R0 e R1 são registradores **fixos**: não devem ser modificados em parte alguma do código;
 - R2-R17 e R28-R29 são registradores recuperáveis: recomenda-se que, se modificados, tenham seu valor salvo no início e restaurado no final da subrotina. Este processo é chamado de manutenção de contexto.
 - R18-R27 e R30-R31 são registradores descartáveis: qualquer subrotina pode modificá-los sem necessidade de manutenção de contexto.
 - Se for necessário que um registrador descartável mantenha seu valor prévio após a chamada e retorno de uma subrotina, ele deve ser armazenado na pilha antes da chamada da função e carregado da pilha após o retorno.
 - Considere que o registrador SREG é um registrador descartável.

6 Resultado Desejado

Cada um dos *frames* da animação é apresentado na tabela a seguir. Após o *frame* 35, a animação reinicia a partir do *frame* 1.

Tabela 1: Sequência de frames da animação.

Frame	LEDs	Frame	LEDs
1	0000000	19	0000000
2	0000000	20	0000000
3	0000000	21	0000000
4	0000000	22	0000000
5	0000000	23	0000000
6	0000000	24	0000000
7	0000000	25	0000000
8	0000000	26	0000000
9	0000000	27	0000000
10	0000000	28	••••••
11	0000000	29	••••••
12	0000000	30	••••••
13	0000000	31	••••••
14	0000000	32	••••••
15	0000000	33	••••••
16	0000000	34	••••••
17	0000000	35	••••••
18	0000000	1	0000000