Docket No.: ZIMR/0023

1413.022491

AMENDMENTS TO THE CLAIMS

Please cancel claims 7-9 and amend the claims as follows:

1. (Currently Amended) A charged particle beam device, comprising:

a charged particle emitter for emitting a primary charged particle beam;

a deflection system, comprising three deflection stages[[;]], wherein the

deflection system is arranged for deflecting the primary charged particle beam and

specimen-released charged particles along a first or a second beam path; and

at least two detection units, each associated with one of the first or second beam

path, so that the deflection system is adapted to switch between the at least the two

detection units; and , wherein whereby one of the three deflection stages is closer to a

specimen stage than the two detection units.

2. (Previously Presented) The charged particle beam device according to claim 1,

further comprising:

an aperture unit for shaping the charged particle beam.

3. (Previously Presented) The charged particle beam device according to claim 2,

wherein the aperture unit is a multi-aperture unit having at least two apertures; and

wherein each aperture of the two apertures is associated with one of the first or second

beam path so that the deflection system is adapted to switch between the two apertures

and a corresponding detection unit of the two detection units.

4. (Previously Presented) The charged particle beam device according to claim 1,

wherein the deflection system comprises six dipole deflectors and is arranged for

deflecting the primary charged particle beam and the specimen-released charged

particles in two dimensions.

5. (Previously Presented) The charged particle beam device according to claim 4.

wherein each of the three deflection stages comprises two of the six dipole deflectors.

Application No. 10/550,177 Reply to Final Office Action of March 10, 2009

Docket No.: ZIMR/0023

1413.022491

6. (Previously Presented) The charged particle beam device according to claim 1, wherein each of the three deflection stages comprises a magnetic deflection component.

7-9. (Cancelled)

10. (Currently Amended) The charged particle beam device according to claim 1 claims, wherein whereby a primary beam deflection angle and a specimen-released charged particles deflection angle are different.

11. (Previously Presented) The charged particle beam device according to claim 1 further comprising a mirror unit.

12. (Currently Amended) The charged particle beam device according to any of claim 1, wherein a primary beam deflection angle and a specimen-released charged particles deflection angle are substantially the same.

- 13. (Previously Presented) The charged particle beam device according to claim 3, wherein the apertures are arranged in a first sector area and the detection units are arranged in a second sector area, and wherein the first and the second sector areas do not overlap.
- 14. (Previously Presented) The charged particle beam device according to claim 1, wherein the three deflection stages are arranged symmetrically to a plane substantially orthogonal to the optical axis.
- 15. (Previously Presented) A method of imaging a specimen, comprising: providing a primary charged particle beam;

Docket No.: ZIMR/0023

1413.022491

deflecting the primary charged particle beam away from an optical axis using a first deflection stage of a deflection system;

deflecting the primary charged particle beam towards the optical axis using a second deflection stage of a deflection system;

redirecting the primary charged particle beam to travel substantially along the optical axis using a third deflection stage;

focusing the primary charged particle beam on a specimen such that the specimen releases charged particles; and

deflecting the specimen-released charged particles, whereby the third deflection stage is controlled such that one detection unit of two detection units is selected.

- 16. (Previously Presented) The method of imaging a specimen according to claim 15, wherein the first and the second deflection stages are controlled such that an aperture of a multi-aperture unit is selected, wherein the aperture corresponds to a detection unit of the two detection units.
- 17. (Currently Amended) The method of imaging a specimen according to claim 15, wherein whereby the method steps of deflecting of [[on]] the primary charged particle beam and the specimen-released charged particles are conducted in two dimensions.
- 18. (Previously Presented) A multiple charged particle device, comprising:

a charged particle emitting unit for emitting a plurality of primary charged particle beams;

a plurality of deflection systems, each comprising at least three deflection stages, wherein the deflection system is arranged for deflecting the plurality of primary charged particle beams and a plurality of specimen-released charged particles along a plurality of at least a first or a second beam paths;

a plurality of at least two detection units, each of the plurality of the at least two detection units associated with one of the plurality of primary beams and each of the at least two detection units associated with one of the at least first or second beam path so

Application No. 10/550,177 Reply to Final Office Action of March 10, 2009 Docket No.: ZIMR/0023

1413.022491

that the deflection systems are adapted to switch between the at least two detection units; and

a multi-lens unit for focusing the plurality of charged particle beams.

19. (Cancelled)

20. (Previously Presented) A charged particle beam device, comprising:

a charged particle emitter for emitting a primary charged particle beam;

a deflection system, comprising three deflection stages, wherein the deflection system is arranged for deflecting the primary charged particle beam and specimen-released charged particles along a first or a second beam path;

two detection units each associated with one of the first or second beam path so that the deflection system is adapted to switch between the two detection units;

wherein one of the three deflection stages is closer to a specimen stage than the two detection units;

wherein the charged particle beam device further comprises an aperture unit for shaping the charged particle beam, wherein the aperture unit is a multi-aperture unit comprising two apertures; and

wherein each aperture of the two apertures is associated with one of the first or second beam path so that the deflection system is adapted to switch between the two apertures and the corresponding detection unit of the two detection units.