

Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad)

(Aziz Nagar, C.B.Post, Hyderabad -500075)

Subject Code: A23505

R18

B.Tech. II Year I Semester Examination NOVEMBER-2019

SUBJECT:MFCS

BRANCH: CSE&IT

Time: 3 Hours

Note: This question paper contains two Parts A and B.

Max. Marks:75

Part A is compulsory which carries 25 Marks. Answer all the questions.

Part B consists of 5 questions. Answer all the questions.

Bloom's Level:

Remember	L1	Analyze	L4
Understand	L2.	Evaluate	L5
Apply	· L3	Create	L6

Apply			· · · · ·
	PART - A	Bloom's Level	25 Marks
ANSWER ALL THE QUESTIONS			
1	Define contradiction	L2	2M
2	Identify the disjunctive normal form of the formula: P↔Q.	L1	3M
3	Write the examples of applications of counting problems	L1	2M
4	Define permutation	L1	3M
/ 5	State the binomial theorem.	L1 L2	2M
	Identify the generating function for the following sequence		3M
6	1,-2,3,-4		
7	Define Lattice.	L1	2M
8	Construct the hasse diagram for the divisibility relation A={3,6,12,36,72}	L2	3M
9	Define In-degree and Out-degree of a graph	L2	2M
10	Explain the incidence matrix of graph.	L2	3M
	PART - B	Bloom's	5075
ANC	WER ALL THE QUESTIONS	Level	50Marks
		L2	5M
11.1.a)	Write the following arguments in symbolic form and test the validity of given	LZ	3111
	argument.If I join MIT then I will get best education. If I get best education,		
	then I will get job in USA. If I get Job in USA then I will become a millionaire.		
	I joined MIT. I will become millionaire.		
	Explain the principal disjunctive and principal conjunctive normal forms and obtain	, et	
b)	the principal disjunctive normal form of $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$.	L2	5M
	[OR]	L2	JIVI
ii.a)	Prove that	L2	10M
11.4)	A) $\sim (P \uparrow Q) \leftrightarrow \sim P \downarrow \sim Q$	LL	10111
	$ B \sim (P \downarrow Q) \leftrightarrow \sim P \uparrow \sim Q$		
	, , , , ,		
	Without using truth table?		·
12.i.a)	Select the number of rows of 6 Americans, 7 Mexicans and 10 Canadians in	L2	5M
	which an American invariably stands between a Mexican and a Canadian	*	
	never stand side by side.		
L)	Estimate how many arrangements are there for the word 'MISSISSIPPI' with	L2	5M
U)	no two pair of consecutive same letters.	22	5141
	no two pair of consecutive same teless.		
		10	
ii.a)	Recognize the number of ways of forming committee of 5 persons from a	L2	5M
	group of 5 Indians 4 Russians such that three are at least 3 Indians committee?		
b)	Discover the number of ways of selecting 9 members committee with7persons?	L2	5M
,			
3 (2)	Identify the generating function for the following sequence 1 ² , 2 ² ,3 ² ,	L2	5M
		- -	
b) .	Solve the recurrence relation $a_n=a_{n-1}+n^3$, $n>=1$ where $a_0=5$ by using substitution	L2	5M
٠, ا			
	method?		
		D.	T.0

OR				
ii.a)	Solve the recurrence relation $a_{n+1}=8a_n$, $n>=0$ where $a_0=4$		5M	
	b) Solve the recurrence relation $a_n-3a_{n-1}=n$, $n>=1$ $a_0=1$ by using generating		5M	
function? 14.i.a) Let A={1,2} and B={p,q,r,s} and let R be a relation from A to B defined by R={(1,q), (1,r), (2,p), (2,q), (2,s)} Write the matrix and digraph of R		Ll	5M	
b)	Explain properties of relations with examples.	L2	5M	
	[OR]			
ii.a)	ii.a) Define (A) Sub lattice (B) Lattice homomorphism (C) Complete lattice (D) Distributive lattice		5M	
b)	Explain the special properties of binary relations.	L2	5M	
	Explain kruskal"s algorithm with an example?	L2	5M	
	Discuss depth first search algorithm with an example?	L2	5M	
U)	[OR]			
ii.a)			5M	
b)	Explain prims algorithm with example.	L2	5M	

