PRÁCTICA 1: Cardinalidad

Pablo Verdes

Dante Zanarini

Pamela Viale

Alejandro Hernandez

Mauro Lucci

- 1. Mediante el uso de biyecciones apropiadas, demuestre cada uno de los siguientes ítems:
 - a) $P = \{x \in \mathbb{N}/x \mod 2 = 0\}$ es equipotente a \mathbb{N} .
 - b) $A = \{1, 2, 3\}$ no es equipotente a $B = \{7\}$.
 - c) Todos los intervalos reales cerrados y acotados son equipotentes entre si.
 - d) $(-\infty, \infty)$ es equipotente a (0,1) y a $(0,\infty)$.
- 2. Sean A, B, C conjuntos cualesquiera. Mostrar que:
 - a) Si $A \subseteq B$ entonces $card(A) \preceq card(B)$.
 - b) $card(A B) \leq card(A)$.
 - c) $card(A) = card(A \times \{b\})$ para cualquier b.
 - d) $card(A \times B \times C) = card(A \times (B \times C)).$
 - e) $card(A \times B) = card(B \times A).$
 - f) Si $card(B) \leq card(C)$ entonces $card(A \times B) \leq card(A \times C)$.
 - g) Si card(A) = n entonces $card(\mathcal{P}(A)) = 2^n$.
- 3. Demuestre las siguientes propiedades:
 - a) La relación \sim es una relación de equivalencia.
 - b) La relación \leq es una relación de orden.
- 4. Mostrar que si $A \sim B$ y $C \sim D$ entonces $A \times C \sim B \times D$. ¿Vale la afirmación reciproca?
- 5. Demuestre que si $A \leq B$ y $C \leq D$, y ademas $B \cap D = \emptyset$, entonces $A \cup C \leq B \cup D$.
- 6. Demuestre que [0, 1] es equipotente a [0, 1). Sugerencia: utilice el teorema de Cantor-Schroder-Bernstein.

- 7. Sea P_i el conjunto de todos los polinomios a coeficientes enteros de grado $i \in \mathbb{N}_0$. (Considere al polinomio nulo como un polinomio de grado 0).
 - a) Describa por comprensión los conjuntos P_0 , P_3 y P_n .
 - b) Describa al conjunto P de todos los polinomios a coeficientes enteros de grado natural, en términos de los conjuntos P_i .
 - c) Defina una función $f:D_i\to\mathbb{Z}^{i+1}$ y demuestre que es inyectiva.
 - d) Valiéndose de todo lo anterior y de las propiedades de las relaciones \leq y \sim , demuestre que P es numerable.
- 8. Mostrar que los siguientes conjuntos son infinito numerables:
 - $a) \ A = \left\{ \frac{\sqrt[m]{m}}{n^n} : m, n \in \mathbb{N} \right\}.$
 - b) $B = \{\text{sucesiones de la forma } \langle s_0, s_0 + r, s_0 + 2r, \dots, s_0 + nr, \dots \rangle / s_0, r \in \mathbb{Z} \}.$
 - c) $C = \{[a, b] : a, b \in \mathbb{Z} \land b > a\}.$
- 9. Un numero $r \in \mathbb{C}$ se dice algebraico si y solo si es la solución de una ecuación polinómica a coeficientes enteros, es decir si y solo si: $a_0 + a_1r + a_2r^2 + \ldots + a_nr^n = 0$ para algún $n \in \mathbb{N}$ y $a_i \in \mathbb{Z}$ para $i = 0, 1, \ldots, n$. Probar que:
 - a) Todo numero racional es algebraico.
 - b) ¿Que se puede concluir a partir del ítem anterior con respecto a la cardinalidad del conjunto de los números algebraicos?
 - c) $\sqrt{2}$ es algebraico.
 - d) i es algebraico.
 - e) El conjunto de los números algebraicos es numerable.
- 10. Los números que no son algebraicos se denominan trascendentes.
 - a) Teniendo como hipótesis que \mathbb{C} no es numerable, probar que existen números trascendentes.
 - b) Probar que los números trascendentes no son numerables.

Sugerencia: en ambos casos razonar por el absurdo y considerar a los reales como la unión de los reales algebraicos y trascendentes.

11. Se sabe que $\aleph_0 \prec c$, donde $\aleph_0 = card(\mathbb{N})$ y $c = card(\mathbb{R})$. Pero: ¿existe un cardinal α tal que $\aleph_0 \prec \alpha \prec c$? Cantor, al no poder dar una respuesta a esta pregunta, conjetura la validez de la llamada hipótesis del continuo. Esta expresa que:

No existe un cardinal
$$\alpha$$
 tal que $\aleph_0 \prec \alpha \prec c$

A partir de esto, al cardinal c se lo suele llamar también \aleph_1 . Utilizando esta hipótesis, se pide demostrar el siguiente teorema:

$$card(A) = \aleph_0 \text{ y } card(B \cup A) = \aleph_1 \Rightarrow card(B) = \aleph_1$$

- 12. Sea Σ un conjunto finito de símbolos. Σ^* denota el conjunto de todas las cadenas (secuencias finitas y ordenadas de símbolos) sobre el alfabeto Σ .
 - a) ¿Cuantas cadenas se pueden construir sobre el alfabeto Σ ?
 - b) Teniendo en cuenta que un lenguaje sobre Σ es un subconjunto de Σ^* ¿Cuantos lenguajes existen sobre el alfabeto Σ ?

13.

- a) Muestre que la cardinalidad de $\mathcal{P}(X)$ es igual a la cardinalidad del conjunto de todas las funciones de X en $\{0,1\}$.
- b) Pruebe que $card\left(\{f/f:\mathbb{N}\to\{0,1\}\}\right)\preceq card\left(\{f/f:\mathbb{N}\to\mathbb{N}\}\right)$.
- c) Concluya que $\aleph_0 \prec \mathcal{P}(\mathbb{N}) \leq card(\{f/f : \mathbb{N} \to \mathbb{N}\}).$
- d) Todo programa de computadora puede considerarse como una cadena sobre el alfabeto presente en el sistema. Por lo tanto, ¿cuantos programas se pueden programar en una maquina?
- e) ¿Que conclusiones pueden sacarse a partir de los últimos dos ítems?