(5) Univariable Analysis of Categorical Data

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jul 16, 2023

Outlines

- Introduction
- Chi-squared test
- Fisher's exact test
- McNemar's test

Learning outcomes

- Understand the concept of non-parametric test
- Familiarize with selected non-parametric tests for categorical variables
- Understand and able to interpret the results of the selected non-parametric tests

Introduction

Non-parametric Test

• Statistical test that:

- Distribution free, no assumptions about the distribution of the data e.g. normality, equality of variances
- No specific population parameters to be tested, e.g. mean
- Typically categorical; nominal or ordinal data
- e.g. observed frequencies for categories in a sample number of smokers by gender etc

Non-parametric Test

- Statistical test that (cont.):
 - More flexible, can perform analysis when assumptions for parametric not fulfilled.
 - e.g. data not normally distributed.
 - LESS powerful than parametric test.

Non-parametric Test

- Non-parametric tests used for testing association for categorical outcomes:
 - Two categorical variables (two or more categories),
 one measurement: Chi-squared test, Fisher's exact
 test
 - One categorical variable (two categories), two repeated measurements: McNemar's test

- Purpose: Test the association between two categorical variables
- Procedure:
 - It compares the <u>observed</u> cell counts VS <u>expected</u> cell counts
 - If they differ substantially association

- Assumptions:
 - − Only < 20% cells with expected count < 5
 - − No expected counts < 1

Research objective:

To test the association between A and B

Research question:

Is there an association between A and B?

RQ: Is there an association between A and B?

Example

- Sample size: 200
- Variables:
 - Smoking: smoking / no smoking
 - Cancer: lung cancer / no lung cancer

Cross-tabulation

Con alchor	Lung Cancer			
Smoking	Yes	No		
Yes	20 (62.5%)	12 (37.5%)		
No	55 (32.7%)	113 (67.3%)		

Expected Count

Smoking	Lung	Sub-total	
Sillokilig	Yes		Sub-total
Yes	20 (32*75/200 = 12)	12 (32*125/200 = 20)	32
No	55 (168*75/200 = 63)	113 (168*125/200 = 105)	168
Sub-total	75	125	200

No expected count < 5

Results

Pearson's Chi-squared test

data: lung\$Smoking and lung\$Cancer
X-squared = 10.159, df = 1, p-value = 0.001436

P-value

Results

Table X: Association between smoking and lung cancer.

Variable		Lung	No lung	n	χ²-	<i>P</i> -value ^a
		cancer	cancer		statistic ^a	
		n (%)	n (%)		(df)	
Smoking	Yes	20	12	32	10.159	0.001
		(62.5)	(37.5)		(1)	
	No	55	113	168		
		(32.7)	(67.3)			

^a Chi-square test for independence

Fisher's Exact Test

Fisher's Exact Test

- Purpose: Test the association between two categorical variables
- Situation:
 - When chi-squared test assumption not fulfilled
 - − i.e. small expected count < 5 more 25% of the cells

Example

• Sample size: 20

• Variables:

- Gender: Male / Female

Disease: Disease / No disease

Cross-tabulation

	Disease		
Gender	Disease	No disease	
Male	10 (66.7%)	5 (33.3%)	
Female	0 (0.0%)	5 (100.0%)	

Expected Count

Gender	Dis	Sub-total	
Disease		No disease	Sub-total
Male	10 (7.5)	5 (7.5)	15
Female	0 (2.5)	5 (2.5)	5
Sub-total	10	10	20

50% of expected count < 5, but none < 1

Results

```
Pearson's Chi-squared test
```

data: disease
X-squared = 6.6667, df = 1, p-value = 0.009823
Warning message:
In chisq.test(disease, correct = F) :

Chi-squared approximation may be incorrect

Using Chi-squared test is not appropriate

Fisher's Exact Test for Count Data

data: disease
p-value = 0.03251

Using Fisher's exact

Results

Table X: Association between gender and disease status.

Variable	Variable		No-disease	n	P-value ^a
		n (%)	n (%)		
Gender	Male	10 (66.7%)	5 (33.3%)	15	0.004
	Female	0 (0.0%)	5 (100.0%)	5	

^a Fisher's exact test

No test statistic, only P-value

- Purpose: Test the difference between two repeated measurements of one categorical variable (two categories)
- e.g. pre-post treatment, paired measurement using different methods

- Whether the subjects still have the same outcomes (concordant) or different outcomes (discordant) upon repetition (pre-post)
- Determined by looking at the discordant cells
- Assumption:
 - Only two categories
 - Mutually exclusive categories

Research objective:

To test the difference in outcomes for A pre and post treatment

Research question:

Is there any difference outcomes for A pre and post treatment?

RQ: Is there any difference in outcomes for A pre and post treatment?

Alternative Hypothesis: <u>Alternative Hypothesis</u>: The outcomes for A is P-value \leq **0.05** different pre and post Statistical Test treatment Null Hypothesis: Null Hypothesis: *P*-value > **0.05** No difference in outcomes for A pre and post treatment McNemar's test *P*-value $\rightarrow \chi^2$ -stat

Example

- Sample size: 60
- Variable:
 - Size of skin lesion pre and post treatment

Cross-tabulation

Skin Lesion Size		Skin Lesion Size After Treatment		
Before Treatment	Large	Small	Sub-total	
Large	5	25	30	
Small	1	29	30	
Sub-total	6	54	60	

Discordant pairs

Results

McNemar's Chi-squared test

data: skin
McNemar's chi-squared = 22.154, df = 1, p-value = 2.517e-06

McNemar's test uses chi-squared statistics to get *P*-value

Results

Table X: Status of skin lesion pre- and post-treatment.

Size of Skin Lesion		Post		n	X ² -	<i>P</i> -value
		Large n (%)	Small n (%)		statistic (df) ^a	
Pre	Large	5 (8.3)			20.346 (1)	< 0.001
	Small	1 (1.7)	29 (48.3)			

^a McNemar's test

McNemar's test also uses X² statistics

- Briefly describe about parametric test
- Describe the purpose of testing by Chi-squared test
- Describe the purpose of testing by Fisher's exact test
- Describe the purpose of testing by McNemar's test

Table 1. Demographic characteristics in two groups prior to training

Domog	uanhia vaniahlas	SMS	SMS group		ol group	Chi-square	P-value
Demographic variables		\overline{n}	%	n	%	statistics	P-value
Gender	Female Male	17 20	45.9 54.1	17 19	47.2 52.8	0.913	0.550
Education level	Diploma Academic education	23 14	62.2 37.8	20 16	55.6 44.4	0.596	0.742
Married status	Married single	32 5	86.5 13.5	33 3	91.7 8.3	0.502	0.371
Job	Housekeeper Employee pensionary	15 14 8	40.5 37.8 21.7	9 9 18	25 25 50	8.152	0.227
Drug type	Metformin Insulin Combine	10 3 24	27 8.1 64.9	9 5 22	25 13.9 61.6	1.561	0.668

Lari, H., Noroozi, A., & Tahmasebi, R. (2018). Impact of short message service (SMS) education based on a health promotion model on the physical activity of patients with type II diabetes. The Malaysian journal of medical sciences: MJMS, 25(3), 67.

Table III: Characteristics of the victims of sexual assaults stratified according to the victim-perpetrator relationship

Victim-perpetrator relationship.	Relatives, n (%)	Known to the victim, n (%)	Stranger, n (%)	Total, n (%)	P-val- ue*
Ethnicity					
Malay	11 (17.5)	37 (58.7)	15 (23.8)	63 (65.6)	
Chinese	0	7 (63.6)	4 (36.4)	11 (11.5)	0.602
Indian	1 (7.7)	7 (53.8)	5 (38.5)	13 (13.5)	
Others	0	6 (66.7)	3 (33.3)	9 (9.4)	
Type of offence					
Rape	7 (10.4)	45 (67.2)	15 (22.4)	67 (69.8)	
Gang Rape	0	6 (50)	6 (50)	12 (12.5)	
Sodomy	1 (50)	1 (50)	0	2 (2.1)	0.003
Both (Rape & Sodomy)	1 (25)	2 (50)	1 (25)	4 (4.2)	
Molestation	3 (27.3)	3 (27.3)	5 (45.5)	11(11.5)	
Place of crime					
Victim's own house	12 (37.5)	13 (40.6)	7 (21.9)	32 (33.3)	
Offender's house	0	21 (91.3)	2 (8.7)	23 (24.0)	< 0.00
Others	0	23 (62.2)	14 (37.8)	37 (38.5)	
Unsure	0	0	4 (100)	4 (4.2)	

^{*}Fisher's exact test

Ahmad, M. I., Ismail, R., Arifin, W. N., Noordin, M., Amirah, N., Bahari, N. S. N. S., & Arshad, M. K. N. M. (2020). Sexual Assault: A Descriptive Study of Victims Attending a Public Hospital in Ipoh. Malaysian Journal of Medicine & Health Sciences, 16(1).

Table 4. GOS at three and six months for unfavourable group

GOS at three months	GOS at six months	
6	7	-
2	2	
2	1	
0	0	
1	1	
11	11	
	6 2 2 0 1	6 7 2 2 1 0 0 1

McNemar test, P = 0.368

Sidek, M. S. M., Siregar, J. A., Ghani, A. R. I., & Idris, Z. (2018). Teleneurosurgery: outcome of mild head injury patients managed in non-neurosurgical centre in the state of Johor. The Malaysian journal of medical sciences: MJMS, 25(2), 95.

Thank You