Lecture 4

Topics covered in this lecture session

- 1. Formulae for addition, factor and multi-angle.
- 2. Inverse Trigonometric functions.

CELEN036 :: Lecture Slides - P.Gatia

1

3

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Addition and factor formulae

Prove:
$$\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

LHS =
$$\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \left(\frac{\sqrt{2}}{2}\right) \cdot \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \cdot \left(\frac{1}{2}\right)$$

$$=\frac{\sqrt{6}+\sqrt{2}}{4} = RHS$$

CELEN036 :: Lecture Slides - P.Gajjar

CELEN036
Foundation Algebra for Physical Sciences & Engineering

Addition and factor formulae

Note: x(A+B) = xA + xB, but $\sin(A+B) \neq \sin A + \sin B$.

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

CELEN036 :: Lecture Slides - P.Gajjar

University of

Nottingham

2

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Addition and factor formulae

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

Adding

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\underline{\hspace{0.1cm}}\sin(A-B) = \underline{\hspace{0.1cm}}\sin A\cos B = \underline{\hspace{0.1cm}}\cos A\sin B$$

Subtracting

$$\sin(A+B) - \sin(A-B) = 2\cos A \sin B$$

Similarly, it can be proved that $\cos(A+B) + \cos(A-B) = 2\cos A\cos B$

$$\cos(A+B) - \cos(A-B) = -2\sin A \sin B$$

CELEN036 :: Lecture Slides - P.Gajjar

4

Addition and factor formulae

Writing A + B = C and A - B = D \Rightarrow $A = \frac{C + D}{2}$ and $B = \frac{C - D}{2}$

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$

$$\sin(A+B) - \sin(A-B) = 2\cos A \sin B$$

 $\cos(A+B) + \cos(A-B) = 2\cos A\cos B$ $\cos(A+B) - \cos(A-B) = -2\sin A \sin B$

$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

$$\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\cos C - \cos D = -2 \sin \left(\frac{C+D}{2} \right) \sin \left(\frac{C-D}{2} \right)$$

Prove that $\sin 50^{\circ} + \sin 10^{\circ} = \sin 70^{\circ}$ Example

CELEN036 :: Lecture Slides - P.Gajjar

Foundation Algebra for Physical Sciences & Engineering

Worked Examples

- 1. Given $\cos\theta = -\frac{3}{5}$; $180^\circ < x < 270^\circ$. Find the values of $\sin 2\theta$ and $\tan 2\theta$.
- 2. Prove that $\frac{1 \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \tan \theta.$
- 3. Prove that $\frac{\sin 3\theta}{1 + 2\cos 2\theta} = \sin \theta$. Hence deduce the value of $\sin 15^{\circ}$.

With
$$t = \tan\left(\frac{\theta}{2}\right)$$
,

useful formulae in Calculus

$$\sin \theta = \frac{2t}{1+t^2}$$
 $\cos \theta = \frac{1-t^2}{1+t^2}$ $\tan \theta = \frac{2t}{1-t^2}$

$$\cos\theta = \frac{1-t^2}{1+t^2}$$

$$\tan\theta = \frac{2t}{1-t^2}$$

CELEN036 :: Lecture Slides - P.Gaijar

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Multi-angle formulae

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 2\cos^2\theta - 1$$
$$= 1 - 2\sin^2\theta$$

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

$$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$$

$$\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$$

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

CELEN036 :: Lecture Slides - P.Gajja

Foundation Algebra for Physical Sciences & Engineering

Inverse Trigonometric Functions

The graph of the sine function over \mathbb{R} , indicates that it is not one-one however, if we restrict the domain to $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, then sine function is one-one and its inverse exists.

It is denoted by \sin^{-1} or \arcsin and is defined by

$$y = \sin x \quad \Leftrightarrow \quad x = \sin^{-1} y \qquad ; \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

CELEN036 :: Lecture Slides - P.Gatia

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Inverse Trigonometric Functions

Inverse Function	Domain of Inverse function ≡ Range of Trigonometric function	Range of Inverse function i.e. Restricted Domain for Trigonometric function	Graph of Inverse Trigonometric function
$\cos^{-1}x$ or arccos	[-1,1]	$[0,\pi]$	* cos-1 x
$\sin^{-1}x$ or \arcsin	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	\$\frac{4}{4} \sin^4 x

CELEN036 :: Lecture Slides - P.Gajjar

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Inverse Trigonometric Functions

Inverse Function	Domain of Inverse function ≡ Range of Trigonometric function	Range of Inverse function i.e. Restricted Domain for Trigonometric function	Graph of Inverse Trigonometric function
$\csc^{-1}x$ or \arccos	$\mathbb{R}-(-1,1)$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$	
$\cot^{-1} x$ or arccot	R	$(0,\pi)$	cot ⁻¹ x

CFLFN036 :: Lecture Slides - P.Gaitar

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Inverse Trigonometric Functions

Inverse Function	Domain of Inverse function ≡ Range of Trigonometric function	Range of Inverse function i.e. Restricted Domain for Trigonometric function	Graph of Inverse Trigonometric function
tan ⁻¹ x or arctan	$\mathbb R$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	† tau-1 x
sec ⁻¹ x or arcsec	$\mathbb{R}-(-1,1)$	$[0,\pi]-\left\{\frac{\pi}{2}\right\}$	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

University of Nottingham

UK CHINA | MALAYSIA

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Inverse Trigonometric Functions

Find the values of:

$$(i)$$
 $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$

$$(ii)$$
 $\tan^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

CELEN036 :: Lecture Slides - P.Gajjar

12