Tyrolka

XV OIJ, zawody I stopnia, tura ukryta

24 listopada 2020 - 4 stycznia 2021

W Bajtockim Parku Linowym rośnie N drzew, jedno za drugim w długim rzędzie za wejściem. Drzewo numer i rośnie w odległości x_i metrów od wejścia, a na wysokości y_i metrów znajduje się stacja, którą można wykorzystać jako początek lub koniec zjazdu linowego. Zrządzeniem losu, wszystkie liczby x_i oraz y_i są całkowite.

Dyrekcja Parku chciałaby otworzyć nowy zjazd, który byłby najbezpieczniejszy, czyli którego nachylenie jest możliwie najmniejsze. Jak wiemy z geometrii, nachylenie liny rozpiętej między stacją i a stacją j będzie ilorazem różnicy wysokości i różnicy odległości drzew, czyli będzie równe $\frac{|y_i-y_j|}{|x_i-x_j|}$ (oczywiście nie musi być liczbą całkowitą).

Wybierz zatem takie stacje, aby zminimalizować ten iloraz – napisz program, który wczyta opis pozycji możliwych stacji, wyznaczy najbezpieczniejszy zjazd linowy i wypisze numery stacji na standardowe wyjście. Nie interesuje nas jednak sytuacja, w której nachylenie byłoby równe 0, czyli między równymi wysokościami – po takim zjeździe nie dałoby się poruszać.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 200\,000$) określająca liczbę drzew. W kolejnych N wierszach znajduje się opis pozycji kolejnych drzew. Opis pozycji drzewa numer i składa się z dwóch liczb nieujemnych całkowitych x_i oraz y_i ($1 \le x_i, y_i \le 200\,000$) określających odpowiednio: odległość drzewa od wejścia w metrach oraz wysokość w metrach na jakiej została wyznaczona możliwa stacja zjazdu. Drzewa **nie muszą** być podane w kolejności rosnących x_i – były sadzone w różnych momentach, przez co otrzymały numery w przypadkowej kolejności.

Wartości x_i są parami różne (żadne dwa drzewa nie są w tym samym miejscu). Gwarantowane jest, że istnieje przynajmniej jedna para drzew o różnych wysokościach.

Wyjście

W pierwszym (jedynym) wierszu wyjścia należy dwie liczby całkowite $i, j, (1 \le i, j \le N, i \ne j)$ oznaczające numery drzew, między którymi należy rozpiąć najbezpieczniejszy zjazd linowy. Jeśli istnieje wiele poprawnych odpowiedzi możesz wypisać dowolną z nich. Możesz też wypisać liczby i, j w dowolnej kolejności.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
$N \le 1000$	35
dla każdego drzewa: $y_i \le 1000$	50

Przykład

Wejście dla testu tyr0a:

	,	- 3		
4				
1	1			
4	3			
3	5			
5	3			

Wyjście dla testu tyr0a:

4 1

Wyjaśnienie do przykładu: Sytuację obrazuje poniższy rysunek:

Wejście dla testu tyr0b:

5-	j = ·
4	
1 3	
4 3	
6 2	
9 1	
1	

Wyjście dla testu tyr01	Wyjście	dla	testu	tvr0h
-------------------------	---------	-----	-------	-------

1 3

Pozostałe testy przykładowe

- test tyr0c: $N=200\,000,\,i$ -ty punkt $(1\leq i\leq N)$ ma współrzędne (i,i)
- test tyr0d: $N=200\,000$, i-ty punkt $(1\leq i\leq N)$ ma współrzędne $(i,(i^2+7\mod N)+1)$

oij.edu.pl