

7. Distribution of the Least Square

<u>Course</u> > <u>Unit 6 Linear Regression</u> > <u>Lecture 20: Linear Regression 2</u> > Estimator

7. Distribution of the Least Square Estimator Distribution of the Least Square Estimator

Gaussian Noise

3/3 points (graded)

Recall that the Least-Squares Estimator $\hat{m{eta}}$ has the formula

$$\hat{\boldsymbol{\beta}} = \left(\mathbb{X}^T \mathbb{X}\right)^{-1} \mathbb{X}^T \mathbf{Y}.$$

If we assume that the vector ϵ is an n-dimensional Gaussian with mean 0 and covariance $\sigma^2 I_n$ for some known $\sigma^2 > 0$, then:

"The model is **homoscedastic**; i.e. $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d."

True
False
✓
"In the deterministic design setting, the LSE $\hat{m{eta}}$ is a Gaussian random variable."
True
○ False
✓
"If $\mathbb X$ is a random variable, then the LSE $\hat{m{eta}}$ is still a Gaussian random variable."
True
False

Solution:

- "The model is homoscedastic; i.e. $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d." is true. The covariance matrix is a diagonal matrix. Recall the useful fact that the ith coordinate of a multi-dimensional gaussian is also a gaussian. In the case where the covariance matrix is diagonal, the coordinates also happen to be independent. Therefore, the first statement is **true**.
- "In the deterministic design setting, the LSE $\hat{\beta}$ is a Gaussian random variable" is true. We have

$$\hat{\beta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y} = \beta + (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \epsilon.$$

By using the result of the first exercise, we arrive at the conclusion that \hat{eta} is also Gaussian: $\hat{eta} \sim \mathcal{N}\left(eta, \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}\right)$.

• "If $\mathbb X$ is a random variable, then the LSE $\hat{\beta}$ is still a Gaussian random variable" is false. The assumption that $\mathbb X$ is deterministic/constant is *crucial.* If $\mathbb X$ were a generic random variable, then $\hat{\beta}$ might no longer be Gaussian.

Perhaps the simplest example is the case where $\mathbb X$ is determined by an unbiased coin flip. Specifically, consider what happens if $\mathbb X$ takes value \mathbb{X}_1 if the coin comes up heads, otherwise it takes value \mathbb{X}_2 . Then by the law of total probability, \hat{eta} has density $rac{f_1}{2}+rac{f_2}{2}$ where f_1,f_2 are densities of Gaussians $\mathcal{N}(\beta, \sigma^2(\mathbb{X}_1^T\mathbb{X}_1)^{-1})$, $\mathcal{N}(\beta, \sigma^2(\mathbb{X}_2^T\mathbb{X}_2)^{-1})$ respectively. If $\mathbb{X}_1 \neq \mathbb{X}_2$, this is not a Gaussian distribution, but a "mixture" of two Gaussians. (Note: this is not to be confused with the density of the sum of two Gaussian random variables, which IS a Gaussian random variable. Summing the densities is different from summing the random variables!) In general, it can be very difficult to write down the distribution of $\hat{\beta}$ in terms of the distribution of \mathbb{X} .

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 6 Linear Regression:Lecture 20: Linear Regression 2 / 7. Distribution of the Least Square Estimator

Add a Post

Show all posts by recent activity ▼ There are no posts in this topic yet.