/* elice */

양재 Al School 인공지능 캠프

Lecture 6

분류 (Classification)

박상기 선생님

수업 목표

1 ○ 분류 (Classification)의 의미를 이해한다 Classification의 특성과 알고리즘, 그리고 Regression과의 차이점을 알아봅시다.

2 Classification의 다양한 방식을 알아본다

Logistic Regression, Softmax, Naïve Bayes, SVM 등의 분류 방식을 알아봅시다

Classification의 개념

Regression vs Classification

Regression

• 분포된 데이터를 방정식(Hypothesis)을 통해 결과의 값을 예측

Supervised Learning

• Classification : 주어진 input이 어느 카테고리에 있는지 판별

Classification

• Regression이 결과값을 추정하는 방식이었다면, Classification은 카테고리에 분류하는 방식

Linear regression은 Classification에 사용할 수 없다!

Classification

- Linear regression은 사용 불가능
- Classification은 0, 또는 1값만 가지는데, linear regression은 그 범위 이상의 값을 가질 수 있다.
- 0 또는 1 사이의 값만 내보내는 Hypothesis 함수가 필요

Logistic function을 사용한 분류

- 0~1 사이의 값만 내보내는 함수가 필요하다
- $0 \le h(x) \le 1$
- Sigmoid (logistic) function

$$h(x) = g(\boldsymbol{\theta}^T x) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T x}}$$

$$h(x) = g(\boldsymbol{\theta}^T x) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T x}}$$

$$m{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_1 \ heta_n \end{bmatrix}$$
 , $m{x} = egin{bmatrix} x_0 \ x_1 \ heta_1 \ heta_n \end{bmatrix}$, $m{ heta}^T m{x} = heta_0 x_0 + heta_1 x_1 + \cdots heta_n x_n$

- $h(x) = P(y = 1|x;\theta)$
- 주어진 input이 x라는 값을 가질 때 1번 class에 들어갈 확률
- 1번 class일 확률과 0번 class 일 확률의 합은 항상 1이 되어야 한다
- $P(y = 1|x; \theta) + P(y = 0|x; \theta) = 1$

Decision Boundary

- 언제 어떤 클래스에 넣어주어야 할까?
 - Hypothesis function의 값 0.5를 기준으로 분류

•
$$y = \begin{cases} 1 & \text{if } \boldsymbol{\theta}^T \boldsymbol{x} \ge 0 \\ 0 & \text{if } \boldsymbol{\theta}^T \boldsymbol{x} < 0 \end{cases}$$
, where $h(x) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \boldsymbol{x}}}$

Decision Boundary

$$\begin{array}{cccc}
 & \times \times \times \\
 & = g(-3 + x_1 + x_2) \\
 & = \frac{1}{1 + e^{-(-3 + x_1 + x_2)}}
\end{array}$$

$$\theta^T x = -3 + x_1 + x_2 \ge 0$$
 이면 $y = 1$ 로 예측하자

$$h(x) = 0.5$$
이면 $\boldsymbol{\theta}^T x = 0$

Non-Linear Decision Boundary

$$h(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

$$= g(-1 + x_1^2 + x_2^2)$$

$$\theta^T x = -1 + x_1^2 + x_2^2 \ge 0$$
 이면 $y = 1$ 로 예측하자

$$h(x) = 0.5$$
이면 $\boldsymbol{\theta}^T x = 0$

Cost Function

- θ parameter 값을 어떻게 정할까?
- Linear regression을 그대로 사용하면 non-convex
- Logistic 만의 cost function이 필요하다

Cost Function

•
$$y = \begin{cases} 1 & \text{if } \theta^T x \ge 0 \\ 0 & \text{if } \theta^T x < 0 \end{cases} = \begin{cases} 1 & \text{if } h(x) \ge 0.5 \\ 0 & \text{if } h(x) < 0.5 \end{cases}$$

• y = 1 이고, h(x) = 0이면 잘못 분류하고 있다는 뜻 => Penalty

Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Repeat until convergence, do{

where, $h(x^{(i)}) = \frac{1}{1 + \rho - \theta^T x^{(i)}}$

$$\theta_j \coloneqq \theta_j - \alpha \left(\sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^{(i)} \right)$$
, for all θ_j

[이론 6-1] Convex / non-Convex Cost Functions

Linear Regression Cost Function (convex)

Logistic Regression Cost Function (non-convex)

Logistic Regression Cost Function (convex)

Logistic Regression의 binary class 분류에서 multi-class 분류로 확장

3개 이상의 카테고리?

- A인가 아닌가? -> A 선별
- B인가 아닌가? -> B 선별
- C인가 아닌가? -> C 선별
- 그럼 Cost function은?

•
$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
, $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$
• $x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$, $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$
• $x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$, $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$

$$\begin{bmatrix} \theta_{00} & \theta_{01} & \theta_{02} \\ \theta_{10} & \theta_{11} & \theta_{12} \\ \theta_{20} & \theta_{21} & \theta_{22} \end{bmatrix} * \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \end{bmatrix}$$

 y_i 에 Sigmoid를 적용!

$$\begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} * [\mathbf{sigmoid}(\mathbf{y_i}) = \frac{e^{\hat{y}_i}}{\sum_i e^{\hat{y}_i}}] = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.2 \end{bmatrix}$$
 A 그룹에 넣어주자!

- Sigmoid의 결과값은 input이 각 카테고리에 속할 확률
- 결과 행렬의 모든 확률 값을 다 더하면 반드시 1
- 가장 높은 확률값을 가지는 카테고리에 넣어준다
- Cost function으로는 Cross-entropy 사용

• One hot encoding: 확률이 가장 높은 것만 1, 나머지는 0

$$h(x) = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\bullet \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \theta_{00} & \theta_{01} & \theta_{02} \\ \theta_{10} & \theta_{11} & \theta_{12} \\ \theta_{20} & \theta_{21} & \theta_{22} \end{bmatrix} * \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{sigmoid}(\mathbf{y_i}) = \frac{\mathbf{e}^{\hat{y}_i}}{\sum_i e^{\hat{y}_i}} \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• Cross-entropy: 두 변수들의 확률 분포가 얼마나 비슷한지 나타내는 척도

•
$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \ln \left(h(x^{(i)}) \right) \right)$$
, where $h(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$
•
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0.7 \\ 0.1 \end{bmatrix}$$

비확률적 이진 선형분류모델

$$h(x) = g(\boldsymbol{\theta}^T \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \boldsymbol{x}}}$$

•
$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
에서,

- y = 1이면, $h(x) \approx 1$, $\theta^T x \gg 0$ 일수록 좋고,
- y = 0이면, $h(x) \approx 0$, $\theta^T x \ll 0$ 일수록 좋다

Logistic regression 에서는…

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

•
$$y = \begin{cases} 1 & \text{if } \boldsymbol{\theta}^T \boldsymbol{x} \ge 0 \\ 0 & \text{if } \boldsymbol{\theta}^T \boldsymbol{x} < 0 \end{cases} = \begin{cases} 1 & \text{if } h(x) \ge 0.5 \\ 0 & \text{if } h(x) < 0.5 \end{cases}$$

• y = 1 이고, h(x) = 0이면 잘못 분류하고 있다는 뜻 => Penalty

- **Hinge Function:** 1, -1 을 기준으로 값이 0이 되는 새로운 Cost function을 정의
- y = 1이면, $h(x) \approx 1$, $\theta^T x \gg 0$ 일수록 좋고,
- y = 0이면, $h(x) \approx 0$, $\theta^T x \ll 0$ 일수록 좋다

Cost Function of SVM

• Logistic regression:

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right]$$

• **SVM**: cost의 평균대신 합을 사용

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right]$$

Decision Boundary Margin

- y = 10 면, $\theta^T x \ge 1 (not \ge 0)$
- y = 0이면, $\theta^T x \le -1 (not < 0)$

Decision Boundary Margin

- Class를 분류하는 기준선에 여유를 둘 수 있다
- Large Margin Classifier

 X_1

Decision Boundary Margin

• Support Vector: 결정 경계에 가장 가까운 데이터

• slack 변수를 이용해 어느정도 오차를 허용하기도 함

 X_1

Kernel SVM

- Non-linear Decision Boundary
 - 데이터를 구분 짓는 '선'을 긋기 힘들다

Kernel SVM

- 데이터를 선형으로 구분할 수 있는 공간으로 재배치 한다
- 이때 데이터를 재배치 해주는 함수가 Kernel
- Polynomial, Sigmoid, Gaussian RBF ···

Naïve Bayes Classifier

통계적 기법을 이용한 클래스 규정 알고리즘

Bayes Rule

• Bayes 정리:
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

• P(A|B): 사건 B가 발생했을 때, A도 같이 발생했을 확률

	비가 옴	비가 안옴	
맑은 날	2	8	10
흐린 날	5	5	10
	7	13	20

Bayes Rule

• P(UX|U)=P(UX)VP(UX)/P(UY)=0.8

	비가 옴	비가 안옴	
맑은 날	2	P(맑 비X)=8/13	P(맑)=0.5
흐린 날	5	5	10
	7	P(ਖ X)=0.65	20

- 각 특징들이 서로 영향을 미치지 않는다고 가정 (독립적)
- 만약 오늘 **맑고**, 바람이 **세고**, 기압이 **낮고**, 온도가 **낮다**면 비가 올 확률은?

	날	씨	바람		기압		온도		
	맑음	흐림	셈	약함	높음	낮음	높음	낮음	계
비옴	2	6	6	2	8	0	5	3	8
비안옴	8	4	2	10	2	10	6	6	12
계	10	10	8	12	10	10	11	9	20

```
P(\text{비|맑음, M, 기압낮, 온도낮}) = P(\text{맑음|비})P(\text{셈|비})P(\text{기압낮|비})P(\text{온도낮|비})P(\text{비}) P(\sim \text{비|맑음, M, 기압낮, 온도낮}) = P(\text{맑음|\sim U})P(\text{M|\sim U})P(\text{기압낮|\sim U})P(\text{온도낮|\sim U})P(\sim \text{U})
```

 $\frac{P(||p|, ||m|, ||m|,$

	날	W	바람		기압		온도		
	맑음	흐림	셈	약함	높음	낮음	높음	낮음	계
비옴	2/8	6	6/8	2	6	2/8	5	3/8	8/20
비안옴	8/12	4	2/12	10	2	10/12	6	6/12	12/20
계	10	10	8	12	10	10	11	9	20

- 스팸 메일의 분류
 - 스팸인 메일과 정상적인 메일의 단어를 체크
 - 새로운 메일의 단어들에 대한 확률로 스팸메일을 구분

IDX	type	text
1	ham	Hope you are having a good week. Just checking in
2	ham	Kgive back my thanks.
3	ham	Am also doing in cbe only. But have to pay.
4	spam	complimentary 4 STAR Ibiza Holiday or 10,000 cash needs your URGENT
5	spam	okmail: Dear Dave this is your final notice to collect your 4* Tenerife Holiday or

idx	check	good	thanks	pay	~		
1	1	1	0	0			
2	0	0	1	1	~		
3	0	0	0	0			
		~					

 $P(\Delta \mathbf{H}|\mathbf{T})$ 단어1, 단어2, 단어3 ...) > $P(\mathbf{S})$ 단어1, 단어2, 단어3 ...) 이면 스팸

5559	ham	Shall call now dear having food

- +) Multi-class 분류에서 쉽고 빠르게 예측 가능
- +) 각 특징들이 독립이라면 다른 분류 방식에 비해 결과가 좋고,
 학습 데이터도 적게 필요

- -) 각 특징들이 독립이 아니라면 결과의 신뢰성 하락
- -) 학습 데이터에 없는 범주의 데이터가 들어오면 정상적인 예측 불가능

/* elice */

문의및연락처

academy.elice.io contact@elice.io facebook.com/elice.io medium.com/elice