

ECON408: Computational Methods in Macroeconomics

Deterministic Dynamics and Introduction to Growth Models

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Overview
- Difference Equations
- Solow Growth Model

Overview

Motivation and Materials

- In this lecture, we will introduce (non-linear) dynamics
 - → This lets us explore stationarity and convergence
 - → We will see an additional example of a fixed point and convergence
- The primary applications will be to simple models of growth, such as the Solow growth model.

Materials

- Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J. Sargent
 - → Julia by Example
 - → Dynamics in One Dimension

```
1 using LaTeXStrings, LinearAlgebra, Plots
2 default(;legendfontsize=16)
```


Difference Equations

(Nonlinear) Difference Equations

$$x_{t+1} = g(x_t)$$

- A time homogeneous first order difference equation
 - ightarrow g:S
 ightarrow S for some $S\subseteq\mathbb{R}$ in the univariate case
 - \rightarrow S is called the **state space** and x is called the **state variable**.
 - \rightarrow Time homogeneity: q is the same at each time t
 - ightarrow First order: depends on one lag (i.e., x_{t+1} and x_t but not x_{t-1})

Trajectories

- ullet An initial condition x_0 is required to solve for the sequence $\{x_t\}_{t=0}^\infty$
- Given this, we can generate a **trajectory** recursively

$$egin{aligned} x_1 &= g(x_0) \ x_2 &= g(x_1) = g(g(x_0)) \ x_{t+1} &= g(x_t) = g(g(\ldots g(x_0))) \equiv g^t(x_0) \end{aligned}$$

- ullet If not time homogeneous, we can write $x_{t+1}=g_t(x_t)$
- Stochastic if $x_{t+1} = g(x_t, \epsilon_{t+1})$ where ϵ_{t+1} is a random variable

Linear Difference Equations

$$x_{t+1} = ax_t + b$$

For constants a and b. Iterating,

$$x_1 = g(x_0) = ax_0 + b$$
 $x_2 = g(g(x_0)) = a(ax_0 + b) + b = a^2x_0 + ab + b$
 $x_3 = a(a^2x_0 + ab + b) + b = a^3x_0 + a^2b + ab + b$
...

$$x_t = b \sum_{j=0}^{t-1} a^j + a^t x_0 = b rac{1-a^t}{1-a} + a^t x_0$$

Convergence and Stability for Linear Difference Equations

- If |a| < 1, then take limit
- Then for any x_0 we have global stability

$$\lim_{t o\infty}x_t=\lim_{t o\infty}g^{t-1}(x_0)=\lim_{t o\infty}\left(brac{1-a^t}{1-a}+a^tx_0
ight)=rac{b}{1-a}$$

- Otherwise
 - \rightarrow If a=1 then diverges unless b=0
 - \rightarrow If |a|>1 diverges for all b

Nonlinear Difference Equations

- ullet We can ask the same questions for nonlinear $g(\cdot)$
- Keep in mind the connection to the fixed points from the previous lecture
 - ightarrow If $g(\cdot)$ has a unique fixed point from any initial condition, it tells us about the dynamics
- Connecting to **contraction mappings** etc. would help us be more formal, but we will stay intuitive here

Solow Growth Model

Models of Economic Growth

- There are different perspectives on what makes countries grow
 - → Malthusian models: population growth uses all available resources
 - → Capital accumulation: more capital leads to more output, tradeoff of consumption today to build more capital for tomorrow
 - → Technological progress/innovation: new ideas lead to more output, so the tradeoffs are between consumption today vs. researching technologies for the future
- The appropriate model depends on country and time-period
 - → Malthusian models are probably most relevant right up until about the time he came up with the idea

Exogenous vs. Endogenous

- In these, the tradeoffs are key
 - → Can be driven by some sort of decision driven by the agent's themselves (e.g., government plans, consumers saving, etc.) endogenously
 - → Or can be exogenously chosen as not responding to policy and incentives
 - → You always leave some things exogenous to isolate a key force
- Consequence of choices: what determines the longrun growth rate?
 - → Analyze with fixed points!
 - → In models of capital accumulation, technological limitations limit the longrun growth rate
 - → Often people refer to models of technological progress as **endogenous growth models** because the long-run growth rate is determined by innovation decisions rather than by limitations on capital accumulation