EPFL

MAN

Mise à niveau

Maths 1A Prepa-031(A)

Student:
Arnaud FAUCONNET

Professor: Guido BURMEISTER

Printemps - 2019

Chapter 2

Équations et inéquations sur les réels

2.1 Identité algébrique

Propriétés:

- $(\mathbb{R}, +, \cdot)$ est un corps commutatif.
- L'identité remarquable. Soient $a, b \in \mathbb{R}$

1.
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

2.
$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

3.
$$a^2 - b^2 = (a - b) \cdot (a + b)$$
 $a + b$: expression conjugué de $a - b$

4.
$$a^3 - b^3 = (a - b) \cdot (a^2 + ab + b^2)$$
 $a^2 + ab + b^2$: expression conjugué de $a - b$

5.
$$a^n - b^n = (a - b) \cdot (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

Exemples: Amplifions par l'expression conjugué:

1.

$$\frac{1}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+1$$

2.

$$\frac{1}{\sqrt[3]{x}+1} \frac{(\sqrt[3]{x}-\sqrt[3]{x}+1)}{(\sqrt[3]{x}-\sqrt[3]{x}+1)} = \frac{(\sqrt[3]{x})^2+\sqrt[3]{x}+1}{x+1}, \quad (x \neq 1)$$

2.2 Ensemble solutions

Exemples:

1. Résoudre en $x \in \mathbb{R}$:

$$4x + 5 = 0$$

L'unique solution est $x=-\frac{5}{4}$ L'ensemble solution est $S=\left\{-\frac{5}{4}\right\}$

2. Résoudre en $x \in \mathbb{R}$:

$$2x \ge 3$$

L'ensemble solution $S = \left[\frac{3}{2}; +\infty \right[$

Définition: Soient f, g deux fonctions définies sur $D_{\text{déf}} \in \mathbb{R}$.

Résoudre l'équation:

$$f(x) = g(x)$$

ou l'inéquation f(x) < g(x)(strict)

ou encore $f(x) \le g(x)(\text{large})$

C'est chercher **l'ensemble aux valeurs** de *x* vérifiant l'équation ou l'inéquation

$$S = \{x \in \mathbb{D}_{\mathsf{d\acute{e}f}} \subset \mathbb{R} | \underbrace{x \ \mathsf{v\acute{e}rifie} \ \mathsf{l\acute{e}quation} \ \mathsf{ou} \ \mathsf{l\acute{e}n\acute{e}quation}}_{\mathsf{proposition} \ P(x)} \}$$

- R : l'ensemble des valeurs à considerer (référentiel)
- $\mathbb{D}_{\text{déf}}$: l'ensemble des valeurs pour lesquelles l'expression P(x) a un sens.
- L'équation ou l'inéquation est contrainte ou propriété imposées

La résolution d'un problème passe par une succession de problème équivalents: les ensembles solutions sont identiques.

Exemples: Résoudre en $x \in \mathbb{R}$

- 1. $P(x): \sqrt[3]{x} \le 2$
 - $\mathbb{D}_{d\acute{e}f} = \mathbb{R}$
 - Équivalence:

$$\underbrace{\sqrt[3]{x} \leq 2}_{\text{proposition }P(x), \text{ ensemble }A} \implies \underbrace{x \leq 2^3 = 8}_{\text{proposition }Q(x), \text{ ensemble B}}$$

Ainsi

$$S = A = B =]-\infty; 8]$$

- 2. $P(x): x^2 = 64$
 - $\mathbb{D}_{d\acute{e}f} = \mathbb{R}$
 - Implication

$$\underbrace{x^2 = 64}_{P(x):A} \longleftarrow \underbrace{x = 8}_{Q(x):B}$$

On a
$$B = \{8\} \subset \{-8, 8\} = A = S$$

- 3. $P(x): \sqrt{x} = -4$
 - $\mathbb{D}_{d\acute{e}f} = \mathbb{R}_+$
 - Implication:

$$\underbrace{\sqrt{x} = -4}_{P(x):A} \implies \underbrace{x = (-4)^2 = 16}_{Q(x):B}$$

Ainsi
$$S = A = \emptyset \subset \{16\} = B$$
 on a des solutions "parasites"

Asvoir (et énoncé) ce qu'on cherche (on veut faire)

2.2.1 Équations et inéquations linéaires

Définition: Soient $a, b \in \mathbb{R}$

$$a \cdot x = b$$

est une équation linéaire en $x \in \mathbb{R}$

Clairement, $\mathbb{D}_{d\acute{e}f} = \mathbb{R}$

Pour résoudre une équation linéaire, on cherche à isoler x: discussion selon a

• $a \neq 0$ (on peut diviser par a):

$$ax = b \iff x = \frac{b}{a}$$
 d'où $S = \left\{\frac{b}{a}\right\}$

• a = 0 (on ne peut pas diviser pas diviser par a !)

$$ax = b \iff 0x = b$$

- Si b = 0: 0x = 0. Tout $x \in \mathbb{R}$ est solution $S = \mathbb{R}$

- Si $b \neq 0$: $0x \neq 0$. Aucun x est solution $S = \emptyset$

Exemple: Résoudre en $x \in \mathbb{R}$ l'équation

$$m^2 \cdot x - m - 4x = 2$$

en fonction de paramètre réel m (pour chaque m l'équation est différente)

Remarque: Équation du 1^{er} degré, en x, on cherche à **isoler** x.

$$\underbrace{(m^2-4)}_{x} x = \underbrace{m+2}_{h}$$

Discussion du coefficient de x

• $m^2 - 4 \neq 0$, $m \notin \{-2; 2\}$

$$\implies x = \frac{m+2}{(m+2)\cdot (m-2)} = \frac{1}{m-2}$$

$$S = \left\{ \frac{1}{m-2} \right\}$$

• $m^2 - 4 = 0$, $m \in \{-2, 2\}$

$$- \sin m = -2$$

$$(m^2 - 4)x = m + 2 \iff 0x = 0$$

$$- \sin m = 2$$

$$(m^2 - 4)x = m + 2 \iff 0x = 4$$
$$S = \emptyset$$

Résumé:

• si
$$m \notin \{-2; 2\}$$
, $S = \left\{\frac{1}{m-2}\right\}$

•
$$\operatorname{si} m = -2$$
, $S = \mathbb{R}$

•
$$\operatorname{si} m = 2$$
, $S = \emptyset$

Définition: Soient $a, b \in \mathbb{R}$

est une inéquation **linéaire** en $x \in \mathbb{R}$: on cherche à isoler x. D'où une discussion de a.

• *a* > 0:

$$ax > b \iff x > \frac{b}{a}$$

$$S = \left[\frac{b}{a}; +\infty \right[$$

• a = 0:

$$ax > b \iff 0x > b$$

- si b < 0, tout x est solution de S.

$$S = \mathbb{R}$$

- si $b \ge 0$, aucun x est solution de S.

$$S = \emptyset$$

• *a* < 0:

$$ax > b \iff x < \frac{b}{a}$$

$$S = \left[-\infty; \frac{b}{a} \right]$$

Remarque: Résolution similaire pour $ax \ge b$, ax < b et $ax \le b$

Exemple: Résoudre en $x \in \mathbb{R}$: $m^2x - m - 4m \le 2$ en fonction du paramètre m.

Remarque: Inéquation linéaire, on cherche à isoler x

$$(m^2 - 4)x \le m + 2$$

Discussion du coefficient de *x*

• Paramètre positif:

$$m^{2} - 4 = (m - 2)(m + 2) > 0 \implies m \in]-\infty; -2] \cup [2; +\infty[$$

$$(m^{2} - 4)x \le m + 2 \iff x \le \frac{m + 2}{(m - 2)(m + 2)} = \frac{1}{m - 2}$$

$$S = \left] -\infty; \frac{1}{m - 2} \right]$$

• Paramètre nul:

$$m^{2} - 4 = 0 \iff m \in \{-2; 2\}$$

$$- m = -2$$

$$(m^{2} - 4)x \le m + 2 \iff 0x \le 0$$

$$S = \mathbb{R}$$

$$- m = 2$$

$$(m^{2} - 2)x \le m + 2 \iff 0x \le 4$$

• Paramètre négatif:

$$m^{2} - 4 < 0 \iff m \in]-2; 2[$$

$$(m^{2} - 4)x \le m + 2 \iff x \ge \frac{1}{m+2}$$

$$S = \left[\frac{1}{m-2}; +\infty\right[$$

Résumé

• si
$$m \in]-\infty; -2 [\cup]2; +\infty[, S =]-\infty; \frac{1}{m-2}]$$

• si
$$m \in \{-2, 2\}$$
, $S = \mathbb{R}$

•
$$\operatorname{si} m \in]-2; 2[, S = \left[\frac{1}{m-2}; +\infty\right[$$

2.3 Équations et inéquations rationelles

Définition: Une fonction rationnelle en $x \in \mathbb{R}$ est un quotient de fonction polynomiale. Pour résoudre une équation f(x) = g(x) ou inéquations f(x) < g(x) sur la fonction rationnelle.

- On différencie le domaine de définition $\mathbb{D}_{\text{déf}}$.
- On passe **toutes** les expression du même côté de l'égalité (ou inégalités) et on étudie le signe en factorisant.

Exemple: Résoudre en x l'inéquation $x > \frac{4}{x}$

- $\mathbb{D}_{d\acute{e}f} = \mathbb{R}$
- Inéquation rationnelle: on porte toute du même côté

$$x - \frac{4}{x} > 0 \iff \frac{x^2 - 4}{x} > 0$$
$$\iff \frac{(x+2) \cdot (x-2)}{x} > 0$$

• tableau des signes (remarque: le valeurs remarquables sont -2, 0, 2)

$$S =]-2;0[\cup]2;+\infty[$$

2.4 sectoin missing

2.5 sectoin missing

2.6 Valeur absolue

Définition: Soit $x \in \mathbb{R}$. La valeur absolue de x, notée |x| est réel positif ou null

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Exemple:

$$|-3| = -(-3) = 3$$
 $|\sqrt{2}| = \sqrt{2}$

Propriétés: Soient $x, y \in \mathbb{R}$. Alors

- 1. $|x| \ge 0$
- 2. $|x| = 0 \iff x = 0$
- 3. $|x^2| = x^2$
- 4. |-x| = |x|
- 5. $x = \operatorname{sgn}(x) \cdot |x| \text{ et } |x| = \operatorname{sgn}(x) \cdot x$
- 6. $-|x| \le x \le |x|$
- 7. $|x + y| \le |x| + |y|$ (inégalité triangulaire)
- 8. $|x \cdot y| = |x| \cdot |y|$

2.6.1 Equation à valeur absolue

Remarque: L'équation $|x|=a, \quad a\in\mathbb{R}$ ne peut clairement pas avoir de solutions en $x\in\mathbb{R}$ si a<0

Théorème: On a l'équivalence

$$|x| = a \iff a \ge 0 \text{ et } \left\{ \begin{array}{l} x = a \\ x = -a \end{array} \right.$$

En effet,

Remarque: (généralisation)

Soient f et g deux fonctions rélles. On a l'équivalence

$$|f(x)| = g(x) \iff g(x) \ge 0 \text{ et } \left\{ \begin{array}{l} f(x) = g(x) \\ f(x) = -g(x) \end{array} \right.$$

Remarque: On ne discute pas le signe de f(x), mais seulement celui de g(x) (condition de positivité). On travaille donc sur le référentiel restreint $\mathbb{D}_{\text{déf}} \cap \mathbb{D}_{\text{positif}}$

Exemple: Résoudre en $x \in \mathbb{R}$

$$|x^2 + 2x - 5| = x + 1$$

- domaine de définition: $\mathbb{D}_{\text{déf}} = \mathbb{R}$
- équivalence:

$$|x^2 + 2x - 5| = x + 1 \iff x + 1 \ge 0 \text{ et } \begin{cases} x^2 + 2x - 5 = x + 1 & (1) \\ x^2 + 2x - 5 = -(x + 1) & (2) \end{cases}$$

- condition de positivité : $x + 1 \ge 0$
 - D'où $\mathbb{D}_{pos} = [-1; +\infty]$
- équatoin (1)

(1)
$$:x^2 + x - 6 = 0$$

 $(x+3) \cdot (x-2) = 0$

d'où
$$S_1 = \{-3, 2\}$$

Remarque: -3 est à exclure: $-3 \notin \mathbb{D}_{pos}$

• l'équation (2)

$$(2): x^2 + 3x - 4 = 0$$
$$(x+4) \cdot (x-1) = 0$$

d'où
$$S_1 = \{-4, 1\}$$

• Solution:

$$S = \mathbb{D}_{\mathsf{déf}} \cap \mathbb{D}_{\mathsf{pos}} \cap (S_1 \cup S_2) = \{1, 2\}$$

2.6.2 Inéquation à valeur absolue

Remarque: L'inéquation $|x| \le a$, $a \in \mathbb{R}$, ne peut pas avoir de solution si a < 0. On n'a pourtant besoin de discuter le signe de a!

Théorème: Soit $a \in \mathbb{R}$. On a l'équivalence

$$|x| \le a \iff \begin{cases} x \le a \\ \text{et} \\ x \ge -a \end{cases}$$

En effet,

$$S = [-a, a] =]-\infty; a] \cap [-a; +\infty[$$

$$S = \emptyset =]-\infty; a] \cap [-a; +\infty[$$

Théorème: Soient f et g deux fonctions réelles. On a l'équivalence

$$|f(x)| \le g(x) \iff \left\{ \begin{array}{l} f(x) \le g(x) \\ \text{et} \\ f(x) \ge -g(x) \end{array} \right.$$

Remarques:

- 1. On ne discutera pas le signe de f(x), ni celui de g(x) (le cas trivial g(x) < 0 est rejeté lors de l'intersection)
- 2. Idem avec l'inégualité stricte.

Remarque: L'inéquation $|x| \le a$, $a \in \mathbb{R}$ admet clairement tout $x \in \mathbb{R}$ comme solution si a < 0 (une valeur absolue est toujours grand qu'un nombre négatif). On ne discutera pourtant pas le signe de a!

$$|x| \le a$$
, $a < 0$ trivial : $S = \emptyset$

$$|x| \ge a$$
, $a < 0$ trivial : $S = \mathbb{R}$

Théorème: Soit $a \in \mathbb{R}$. On a l'équivalence

$$|x| \ge a \iff \begin{cases} x \ge a \\ \text{ou} \\ x \le -a \end{cases}$$

En effet,

Théorème: Soient f et g deux fonctions réelles. On a l'équilavence

$$|f(x)| \ge g(x) \iff \left\{ egin{array}{l} f(x) \ge g(x) \\ ext{ou} \\ f(x) \le -g(x) \end{array}
ight.$$

Remarques:

- 1. On ne discutera ni le signe de f(x), ni celui de g(x). Le cas trivial g(x) < 0 est traité par la réunion.
- 2. idem pour l'inégalité stricte.

Exemple: Résoudre en $x \in \mathbb{R}$

$$|x| + \frac{x-1}{2} < 0$$

• domaine de définition: $\mathbb{D}_{déf} = \mathbb{R}$

• équivalence

$$|x| < -\frac{x-1}{2} \iff \begin{cases} x < -\frac{x-1}{2} & (1) \\ \text{et} \\ x > \frac{x-1}{2} & (2) \end{cases}$$

• inéquation (1). On isole x

$$3x < 1$$
 d'oú $S_1 = \left[-\infty; \frac{1}{3}\right[$

• inéquation (1). On isole x

$$x > -1 \text{ d'oú } S_2 =]-1;+\infty[$$

• Solution:

$$S = \mathbb{D}_{\mathsf{déf}} \cap S_1 \cap S_2 = \left] -1, \frac{1}{3} \right[$$

Exemple: Résoudre en $x \in \mathbb{R}$

$$|x-2| > \frac{2x-4}{r}$$

• $\mathbb{D}_{d\acute{e}f} = \mathbb{R}^*$

ullet

$$|x-2| < \frac{2x-4}{x} \iff \begin{cases} x-2 > \frac{2x-4}{x} & (1) \\ \text{ou} \\ x-2 < -\frac{2x-4}{x} & (2) \end{cases}$$

• inéquation (1)

$$x - 2 - \frac{2x - 4}{x} > 0$$
$$(x - 2) \cdot \left(1 - \frac{2}{x}\right) > 0$$
$$\frac{(x - 2)^2}{x} > 0$$

d'où

$$S_1 = \mathbb{R}_+^* \setminus \{2\} =]0; 2[\cup]2; +\infty[$$

• inéquation (2)

$$x-2+\frac{2x-4}{x}<0$$
$$(x-2)\cdot\left(1+\frac{2}{x}\right)<0$$
$$\frac{(x-2)\cdot(x+2)}{x}<0$$

d'où

$$S_1 = \mathbb{R}_+^* \setminus \{2\} =]0; 2[\cup]2; +\infty[$$

d'où

$$S_2 =]-\infty; -2[\cup]0; 2[$$

• Solution:

$$S = \mathbb{D}_{\text{déf}} \cap (S_1 \cup S_2)$$

$$s =]-\infty; -2[\cup] \ 0; 2 \ [\cup] 2; +\infty[$$