SOLUTIONS TO MATH3411 PROBLEMS 35-42

35. Here, it is a good idea to draw the decision tree arising from the Huffman algorithm. However, I am going to be lazy and just write up the steps without drawing anything. Let us first find the binary Huffman code for $S^1 = S = \{s_1, s_2\}$:

Source Step 0 Step 1
$$s_1 p_1 = \frac{2}{3} \mathbf{0} p_{12} = 1 \emptyset$$
 $s_2 p_2 = \frac{1}{3} \mathbf{1}$

The binary Huffman code for S^1 is 0, 1. The expected codeword length is 1. Let us now find the binary Huffman code for $S^2 = \{s_1s_1, s_1s_2, s_2s_1, s_2s_2\}$:

In other words, the binary Huffman code for σ_1,\ldots,σ_4 is 1, 01, 000, 001. The expected codeword length is $1+\frac{5}{9}+\frac{3}{9}=\frac{17}{9}\approx 1.889$ (using Knuth's theorem). Finally, let us find the binary Huffman code for $S^3=\{s_1s_1s_1,s_1s_2s_1,s_2s_1,s_2s_1,s_1s_2s_2,s_2s_1s_2,s_2s_2s_1,s_1s_1s_1\}$:

In other words, the binary Huffman code for $\sigma_1, \ldots, \sigma_8$ is

By Knuth's theorem, the expected codeword length then:

$$L = 1 + \frac{16}{27} + \frac{11}{27} + \frac{8}{27} + \frac{7}{27} + \frac{4}{27} + \frac{3}{27} = \frac{76}{27} \approx 2.81$$

The average codeword length per binary symbol for S^1 , S^2 , and S^3 is

$$L^{(1)} = 1$$
 $\frac{L^{(2)}}{2} = \frac{17}{18} \approx 0.944$ $\frac{L^{(3)}}{3} = \frac{76}{81} \approx 0.938$

a) The characteristic polynomial of M is

$$p_M(x) = \det(M - xI) = \det\begin{pmatrix} \frac{1}{3} - x & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{2} - x & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{2} - x \end{pmatrix} = -x^3 + \frac{4}{3}x^2 - \frac{17}{48}x + \frac{1}{48} = \frac{1}{48}(x - 1)(12x - 1)(4x - 1)$$

We see that M has eigenvalues $1, \frac{1}{4}$, and $\frac{1}{12}$.

Let us now solve $(M-I)\mathbf{p}=0$ to find the equilibrium probabilities \mathbf{p} :

$$\begin{pmatrix} -\frac{2}{3} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & -\frac{1}{2} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & -\frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} = R_{2} + \frac{1}{2}R_{1}} \begin{pmatrix} -\frac{2}{3} & \frac{1}{4} & \frac{1}{4} \\ 0 & -\frac{3}{8} & \frac{3}{8} \\ 0 & \frac{3}{8} & -\frac{3}{8} \end{pmatrix} \xrightarrow{R_{3} = R_{3} + R_{2}} \begin{pmatrix} 1 & -\frac{3}{8} & -\frac{3}{8} \\ 0 & -\frac{3}{8} & \frac{3}{8} \\ 0 & 0 & 0 \end{pmatrix}$$
$$\frac{R_{1} = R_{1} - R_{2}}{R^{2} = -\frac{8}{3}} \begin{pmatrix} 1 & 0 & -\frac{3}{4} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

The eigenvectors of M for the eigenvalue 1 are thus $t \begin{pmatrix} \frac{3}{4} \\ 1 \\ 1 \end{pmatrix}$ for all $t \neq 0$.

Of these, **p** is the one with $1=t\frac{3}{4}+t+t=t\frac{11}{4};$ i.e., $t=\frac{4}{11}.$

Therefore,
$$\mathbf{p} = \frac{1}{11} \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix}$$
.

b) There might well be a better way to answer this (without referring to Markov literature) but here is one way. Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors of M for $\frac{1}{4}$ and $\frac{1}{2}$, respectively. Then we can diagonalise M as $M = N^{-1}DM$ where N has columns $\mathbf{p}, \mathbf{v}_1, \mathbf{v}_2$, and $D = \text{diag}(1, \frac{1}{4}, \frac{1}{2})$. Then

$$\lim_{n \to \infty} M^n = \lim_{n \to \infty} (N^{-1}DN)^n = \lim_{n \to \infty} N^{-1}D^nN = \lim_{n \to \infty} N^{-1} \begin{pmatrix} 1^n & 0 & 0 \\ 0 & \left(\frac{1}{4}\right)^n & 0 \\ 0 & 0 & \left(\frac{1}{2}\right)^n \end{pmatrix} N = N^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} N$$

We see that $M^{\infty} := \lim n \to \infty M^n$ does indeed exist. To see what M^{∞} is, you might be able to stare hard at the expression above; to be honest, I can't see it myself but it probably isn't difficult. Instead, let us calculate M^{∞} in another way: First note that $M^{\infty}\mathbf{p} = \lim_{n \to \infty} M^n\mathbf{p} = \lim_{n \to \infty} p = p$, so M^{∞} has \mathbf{p} as eigenvector for the eigenvalue 1. Similarly, \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of M^{∞} with eigenvalues $\frac{1}{4}$ and $\frac{1}{2}$. Thus, M^{∞} has three eigenvalues, the same number as the size of M, so the dimension of the eigenspace E_1 for the eigenvalue 1 is 1. In other words, the eigenvectors of M^{∞} for the eigenvalue 1 is the span of \mathbf{p} . There is thus only the vector \mathbf{p} that is an eigenvector for 1 and has unit length. Now note that $MM^{\infty} = M^{\infty}$. Letting A_i denote the ith column of any matrix A, we see that, for any i = 1, 2, 3, $M(M^{\infty})_i = (MM^{\infty})_i = (M^{\infty})_i$. In other words, each of the three columns $(M^{\infty})_i$ is an eigenvector for the eigenvalue 1; they must therefore be scalar multiples of \mathbf{p} . However, each column of M^{∞} has unit length (since the columns of M have unit length, M^T has the all-1 vector as eigenvector, as does therefore M^{∞}) and must therefore equal \mathbf{p} . To conclude, the columns of M^{∞} all equal \mathbf{p} .

a) Let us now solve $(M-I)\mathbf{p}=0$ to find the equilibrium vector \mathbf{p} :

$$\begin{pmatrix} -0.3 & 0.2 & 0.1 \\ 0.2 & -0.4 & 0.4 \\ 0.1 & 0.2 & -0.5 \end{pmatrix} \xrightarrow{R_1 = R_1 + 3R_3} \begin{pmatrix} 0 & 0.8 & -1.4 \\ 0 & -0.8 & 1.4 \\ 0.1 & 0.2 & -0.5 \end{pmatrix} \xrightarrow{R_1 = R_1 + R_2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -0.8 & 1.4 \\ 0.4 & 0.8 & -2 \end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 + R_2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -0.8 & 1.4 \\ 0.4 & 0 & -0.6 \end{pmatrix}$$

The eigenvectors of M for the eigenvalue 1 are thus $t(\frac{0.6}{0.4}, \frac{1.4}{0.8}, 1)^T = t(\frac{3}{2}, \frac{7}{4}, 1)^T$ for all $t \neq 0$. Of these, \mathbf{p} is the one with $1 = t\frac{7}{4} + \frac{3}{2}t + t = t\frac{17}{4}$; i.e., $t = \frac{4}{17}$.

Therefore,
$$\mathbf{p} = \frac{1}{17} \begin{pmatrix} 6 \\ 7 \\ 4 \end{pmatrix}$$
.

Let us now calculate the Huffman codes $\operatorname{Huff}_{\operatorname{E}}, \operatorname{Huff}_{(2)}, \operatorname{Huff}_{(3)}$:

Source	p_i	Huff_E	So	urce	p_i	$\mathrm{Huff}_{(1)}$	Source	p_i	$\mathrm{Huff}_{(2)}$	Source	p_i	$\operatorname{Huff}_{(3)}$
s_1	$\frac{6}{17}$	00		s_1	0.7	0	s_1	0.2	10	s_1	0.1	01
s_2	$\frac{7}{17}$	1		s_2	0.2	10	s_2	0.6	0	s_2	0.4	00
s_3	$\frac{4}{17}$	01		s_3	0.1	11	s_3	0.2	11	s_3	0.5	1

The average lengths of these codes

$$L_E = \frac{28}{17} \approx 1.65$$
 $L_{(1)} = 1.3$ $L_{(2)} = 1.4$ $L_{(3)} = 1.6$

The Markov Huffman code has average length

$$L_M = \frac{6}{17}L_{(1)} + \frac{7}{17}L_{(2)} + \frac{4}{17}L_{(3)} = \frac{6}{17}1.3 + \frac{7}{17}1.4 + \frac{4}{17}1.6 \approx 1.41$$

This is less than $L_E \approx 1.65$, and only about $\frac{L_M}{L_{\rm block}} = \frac{1.41}{2} \approx 71\%$ of the block code length.

b) We encode $s_2s_2s_1s_1s_2s_3s_3$:

symbol	code to use	encoded symbol
s_2	Huff_E	1
s_2	$\mathrm{Huff}_{(2)}$	0
s_1	$\mathrm{Huff}_{(2)}$	10
s_1	$\operatorname{Huff}_{(1)}$	0
s_2	$\operatorname{Huff}_{(1)}$	10
s_3	$\mathrm{Huff}_{(2)}$	11
s_3	$\operatorname{Huff}_{(3)}$	1

so this is encoded as 1010010111.

c) We decode 010001010:

code to use	encoded symbol	decoded symbol
Huff_E	01	s_3
$\operatorname{Huff}_{(3)}$	00	s_2
$\mathrm{Huff}_{(2)}$	0	s_2
$\mathrm{Huff}_{(2)}$	10	s_1
$\operatorname{Huff}_{(1)}$	10	s_2

so this is decoded as $s_3s_2s_2s_1s_2$.

38. We wish to encode the message $bac \bullet$:

	subinterval start	\mathbf{width}
symbols	0	1
b	$0 + \frac{2}{5} \times 1 = \frac{2}{5}$	$\frac{1}{5} \times 1 = \frac{1}{5}$
a	$\frac{2}{5} + 0 \times \frac{1}{5} = \frac{2}{5}$	$\frac{2}{5} \times \frac{1}{5} = \frac{2}{25}$
c	$\frac{2}{5} + \frac{3}{5} \times \frac{2}{25} = \frac{56}{125}$	$\frac{1}{5} \times \frac{2}{25} = \frac{2}{125}$
•	$\frac{56}{125} + \frac{4}{5} \times \frac{2}{125} = \frac{288}{625}$	$\frac{1}{5} \times \frac{2}{125} = \frac{2}{625}$

We must therefore choose a number in the interval $\left[\frac{288}{625}, \frac{290}{625}\right) = [0.4608, 0.4640)$, like 0.4620 say.

39.

a) We wish to encode the message $s_2s_1s_3s_1 \bullet$

	subinterval start		\mathbf{width}
begin		0	1
s_2	$0 + 0.4 \times 1 =$	0.4	$0.3 \times 1 = 0.3$
s_1	$0.4 + 0 \times 0.3 =$	0.4	$0.4 \times 0.3 = 0.12$
s_3	$0.4 + 0.7 \times 0.12 =$	0.484	$0.2 \times 0.12 = 0.024$
s_1	$0.484 + 0 \times 0.024 =$	0.484	$0.4 \times 0.024 = 0.0096$
•	$0.484 + 0.9 \times 0.0096 =$	0.49264	$0.1 \times 0.096 = 0.00096$

We must pick a number in the interval [0.49264, 0.49264 + 0.00096) = [0.49264, 0.4936), like 0.493 say.

b) We wish to decode the number 0.12345:

code number rescaled	in interval	decoded symbol
0.12345	[0, 0.4)	s_1
(0.12345 - 0)/.4 = 0.308625	[0, 0.4)	s_1
(0.308625 - 0)/.4 = 0.7715625	[0.7, 0.9)	s_3
(0.7715625 - 0.7)/.2 = 0.3578125	[0, 0.4)	s_1
(0.3578125 - 0)/.4 = 0.89453125	[0.7, 0.9)	s_3
(0.89453125 - 0.7)/.4 = 0.97265625	[0.9, 1)	•

The decoded message is then $s_1s_1s_3s_1s_3 \bullet$.

40.

r	s	ℓ	new entry	output
ma_na_ma_na_doo_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	Ø	0	1. m	(0,m)
a_na_ma_na_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	Ø	0	2. a	(0,a)
_na_ma_na_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	Ø	0	3	(0,)
na_ma_na_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	Ø	0	4. n	(0,n)
a_ma_na_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	a	2	5. a_	(2,_)
ma_na_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	m	1	6. ma	(1,a)
_na_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	u	3	7. ∟n	(3,n)
a_doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	a_	5	8. a_d	(5,d)
ooldooldooldoolmalnalmalnaldooldooldooldoo	Ø	0	9. o	(0,0)
o_doo_doo_doo_ma_na_ma_na_doo_doo_doo	О	9	10. ou	(9,_)
doo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	Ø	0	11. d	(0,d)
oo_doo_doo_doo_ma_na_ma_na_doo_doo_doo	О	9	12. oo	(9,0)
_doo_doo_doo_ma_na_ma_na_doo_doo_doo	u	3	13d	(3,d)
oo_doo_doo_ma_na_ma_na_doo_doo_doo	00	12	14. oo_	(12,)
doo_doo_ma_na_ma_na_doo_doo_doo	do	11	15. do	(11,o)
o_doo_ma_na_ma_na_doo_doo_doo	Ou	10	16. o_d	(10,d)
oo_ma_na_ma_na_doo_doo_doo	00_	14	17. oo∟m	(14,m)
a_na_ma_na_doo_doo_doo	a_	5	18. a_n	(5,n)
a_ma_na_doo_doo_doo	a_	5	19. a_m	(5,m)
a_na_doo_doo_doo	a_n	18	20. a_na	(18,a)
_doo_doo_doo	_d	13	21. ∟do	(13,o)
o_doo_doo_doo	o_d	16	22. o_do	(16,o)
o_doo_doo	o∟do	22	23. o_doo	(22,o)
_doo	∟do	21	24doo	(21,0)

The encoded message is then

b) Let us decode the codeword (0,t)(0,o)(0,-)(0,b)(0,e)(3,o)(0,r)(3,n)(2,t)(3,t)(2,-)(4,e):

output	new	dictionary entry
(0,t)	1.	t
(0,0)	2.	0
(0,)	3.	J
(0,b)	4.	b
(0,e)	5.	e
(3,0)	6.	_ 0
(0,r)	7.	r
(3,n)	8.	∟n
(2,t)	9.	ot
(3,t)	10.	_t
(2,)	11.	0
(4,e)	12.	be

The decoded text is "to be or not to be".

41. $H(S) = -\frac{2}{3}\log_2\frac{1}{3} - \frac{3}{9}\log_2\frac{1}{9} = \frac{2}{3}\log_23 + \frac{6}{9}\log_23 = \frac{4}{3}\log_23 \approx 2.113$

42.

- Q29: **a)** $H(S) = -\frac{1}{2}\log_2\frac{1}{2} \frac{1}{3}\log_2\frac{1}{3} \frac{1}{6}\log_2\frac{1}{6} \approx 1.459$ The average length L = 1.5 > H(S) - but pretty close.
 - **b)** $H(S) = -\frac{1}{3}\log_2\frac{1}{3} \frac{1}{4}\log_2\frac{1}{4} \frac{1}{5}\log_2\frac{1}{5} \frac{1}{6}\log_2\frac{1}{6} \frac{1}{20}\log_2\frac{1}{20} \approx 2.140$ The average length L = 2.217 > H(S) - but not far off.
 - c) $H(S) = -\frac{1}{2}\log_2\frac{1}{2} \frac{1}{4}\log_2\frac{1}{4} \frac{1}{8}\log_2\frac{1}{8} \frac{1}{16}\log_2\frac{1}{16} \frac{1}{16}\log_2\frac{1}{16} \approx 1.875$ The average length L = 1.875 = H(S) - exactly the same!
 - **d)** $H(S) = -\frac{27}{40} \log_2 \frac{27}{40} \frac{9}{40} \log_2 \frac{9}{40} \frac{3}{40} \log_2 \frac{3}{40} \frac{1}{40} \log_2 \frac{1}{40} \approx 1.280$ The average length L = 1.425 > H(S) - not too far off.
- Q33: $H(S) = -0.22 \log_4 0.22 0.2 \log_4 0.2 0.18 \log_4 0.18 0.15 \log_4 0.15 0.10 \log_4 0.10 0.08 \log_4 0.08 0.05 \log_4 0.05 0.02 \log_2 0.02 \approx 1.377$ The average length L = 1.47 > H(S) - but pretty close.
- Q35: $H(S^1) = -\frac{2}{3}\log_2\frac{2}{3} \frac{1}{3}\log_2\frac{1}{3} \approx 0.918$ $H(S^2) = 2H(S^1) \approx 1.837$ $H(S^3) = 3H(S^1) \approx 2.755$

The corresponding average lengths are 1, 1.889 and 2.815, respectively. These are all greater than the corresponding entropies - but not by a lot.

Q39: $H(S) = -0.4 \log_{10} 0.4 - 0.3 \log_{10} 0.3 - 0.2 \log_{10} 0.2 - 0.1 \log_{10} 0.1 \approx 0.5558$ digits/symbol. The 5-symbol message $s_2 s_1 s_3 s_1 \bullet$ was encoded as 0.493, so $\frac{3}{5} = 0.6$ digits per symbol were used, which is more than 0.5558 but not by a lot.