Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Теория вероятностей»

ДОМАШНЕЕ ЗАДАНИЕ №3

Вариант 18

Выполнил:
Суханкулиев Мухаммет,
студент группы N3246
Abort .
(подпись)
Проверил:
Лимар Иван Александрович,
ассистент, НОЦ математики
(отметка о выполнении)
(подпись)
(подинев)

Санкт-Петербург 2024 г.

СОДЕРЖАНИЕ

1	Задача 18	4
1.1	Постановка задачи	4
	Решение	
1.2	1.2.1 a	
	1.2.2 6	
1.0		
	Ответ	
Списс	ок использованных источников	. 6

1 ЗАДАЧА 18.

1.1 Постановка задачи

Функция распределения $F_X(t)$ случайной величины X имеет вид:

$$F_X(t) = \begin{cases} 1 - \exp(-3t), & t \ge 0, \\ 0, & t < 0. \end{cases}$$

Случайные величины $Y = \exp(X)$ и $Z = X^2 - XY + 3Y - 1$ являются функциями от случайной величины X.

Найти: a) плотность распределения $f_{V}(v)$ случайной величины Y;

б) математическое ожидание EZ.

1.2 Решение

1.2.1 a

Функция распределения $F_X(t)$ – это экспоненциальное распределение с параметром $\lambda=3$ (для $t\geq 0$). Плотность распределения $f_X(t)$ – это производная $F_X(t)$ по t:

$$f_X(t) = \begin{cases} 3 \exp(-3t), & t \ge 0, \\ 0, & t < 0. \end{cases}$$

Тогда плотность случайной величины X:

$$f_X(x) = \begin{cases} 3 \exp(-3x), & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Из условия $Y = \exp(X) => X = \ln(Y)$. Чтобы найти плотность $f_Y(v)$ воспользуемся формулой преобразования случайных величин:

$$f_Y(v)=f_X(x)\cdot\left|rac{dx}{dv}
ight|$$
, где $x=\ln{(v)}$ $f_Y(v)=3\exp(-3\ln(v))\cdotrac{1}{v}=3v^{-3}\cdot v^{-1}=3v^{-4},$ $v\geq 1$ (поскольку $Y=\exp(X)$, а $X\geq 0$).

1.2.2 6

Используем линейность математического ожидания:

$$E[Z] = E[X^2] - E[XY] + E[3Y] - E[1] = E[X^2] - E[XY] + 3E[Y] - 1$$

Для экспоненциального распределения с параметром $\lambda = 3$:

$$E[X^2] = Var(X) + (E[X])^2$$
, где
 $E[X] = \frac{1}{\lambda} = \frac{1}{3}, Var(X) = \frac{1}{\lambda^2} = \frac{1}{9}$

Тогда:

$$E[X^2] = \frac{1}{9} + \left(\frac{1}{3}\right)^2 = \frac{2}{9}$$

Так же поскольку $Y = \exp(X)$:

$$E[Y] = \int_{1}^{\infty} y \cdot f_{Y}(v) dy = \int_{1}^{\infty} y \cdot 3y^{-4} dy = 3 \left[-\frac{y^{-2}}{2} \right]_{1}^{\infty} = 3 \left(0 + \frac{1}{2} \right) = \frac{3}{2}$$

Так как X и Y не независимы $E[XY] \neq E[X] \cdot E[Y]$.

В этом случае:

$$E[XY] = \int_0^\infty x \cdot \exp(x) \cdot f_X(x) dx = \int_0^\infty x \cdot \exp(x) \cdot 3 \exp(-3x) dx = 3 \int_0^\infty x \cdot \exp(-2x) dx$$

Вычислим:

$$\int x \cdot \exp(-2x) \, dx = x \left(-\frac{\exp(-2x)}{2} \right) - \int -\left(\frac{\exp(-2x)}{2} \right) dx$$
$$= x \left(-\frac{\exp(-2x)}{2} \right) + \frac{1}{2} \cdot \frac{\exp(-2x)}{-2} = -\frac{x}{2 \exp(2x)} - \frac{1}{4 \exp(2x)}$$

Подставим пределы интегрирования:

$$\left[-\frac{x}{2\exp(2x)} - \frac{1}{4\exp(2x)} \right]_0^\infty = \frac{1}{4}$$

Тогда:

$$E[XY] = 3 \cdot \frac{1}{4} = \frac{3}{4}$$

Подставим значения в E[Z]:

$$E[Z] = \frac{2}{9} - \frac{3}{4} + 3 \cdot \frac{3}{2} - 1 = \frac{107}{36} = 2\frac{35}{36}$$

1.3 Ответ

a)
$$f_Y(v) = 3v^{-4}, v \ge 1;$$

6)
$$EZ = \frac{107}{36} = 2\frac{35}{36}$$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Решетов, Суслина Типовые расчеты по ТВ 2014.pdf Google Диск
- 2. <u>ИТМО ТВ 2024-25 Google Диск</u>