4. SOLUTION OF RPCA-EWC

For convenience, the subscripts of parameters are ignored. Specifically, let $P_0^* = P_{\mathcal{M}_{K-1}}$, $X_2 = \tilde{X}_{2,K}$, $\Omega = \zeta_K \Omega_{\mathcal{M}_{K-1}}$. The formula (12) in the paper can be described as follows:

$$\mathcal{J}(\mathbf{P}) = \mathcal{J}_K(\mathbf{P}) + \zeta_K \mathcal{J}_{loss}(\mathbf{P}, \mathbf{P}_0^*)
= \|\mathbf{X}_2 - \mathbf{X}_2 \mathbf{P} \mathbf{P}^T\|_F^2 + \|\mathbf{P} - \mathbf{P}_0^*\|_{\mathbf{\Omega}}^2$$
(S9)

The formula (S9) can be reformulated as

$$\mathcal{J}(\boldsymbol{P}) = tr(\boldsymbol{P}^{T}\boldsymbol{\Omega}\boldsymbol{P}) - tr(\boldsymbol{P}^{T}\boldsymbol{X}_{2}^{T}\boldsymbol{X}_{2}\boldsymbol{P}) - 2tr(\boldsymbol{P}^{T}\boldsymbol{\Omega}\boldsymbol{P}_{0}^{*}) + \underbrace{\left\{tr(\boldsymbol{X}_{2}^{T}\boldsymbol{X}_{2}) + tr(\boldsymbol{P}_{0}^{*T}\boldsymbol{\Omega}\boldsymbol{P}_{0}^{*})\right\}}_{constant}$$
(S10)

Let $G(\mathbf{P}) = tr(\mathbf{P}^T \mathbf{\Omega} \mathbf{P}) - 2tr(\mathbf{P}^T \mathbf{\Omega} \mathbf{P}_0^*)$, $H(\mathbf{P}) = tr(\mathbf{P}^T \mathbf{X}_2^T \mathbf{X}_2 \mathbf{P})$. Thus, $\mathcal{J}(\mathbf{P}) = G(\mathbf{P}) - H(\mathbf{P}) + constant$. The minimization of (S10) is equivalent to

$$\min_{\mathbf{P}} \quad G(\mathbf{P}) - H(\mathbf{P})
s.t. \quad \mathbf{P}^T \mathbf{P} = \mathbf{I} \in \mathbb{R}^{l \times l}$$
(S11)

Because G(P) and H(P) are convex, the objective function (S11) is actually DC programming problem [3], [4]. DC programming includes linearizing and solving the convex functions as follows [5].

Assume that P_i is the solution at ith iteration, we approximate the second part H(P) by linearizing

$$H_l(\mathbf{P}) = H(\mathbf{P}_i) + \langle \mathbf{P} - \mathbf{P}_i, \mathbf{U}_i \rangle$$

As the subgradient $U \in \partial H(P) = 2X_2^T X_2 P$, let $U_i = 2X_2^T X_2 P_i$. Then, (S11) is approximated by

$$oldsymbol{P}_{i+1} \doteq \mathop{rg\min}_{oldsymbol{P}^Toldsymbol{P} = oldsymbol{I}} G(oldsymbol{P}) -$$

Because Ω is semidefinite, let $\Omega = L^T L$ and L is the triangle matrix [5]. Thus, we can get

$$G(\mathbf{P}) - \langle \mathbf{P}, \mathbf{U}_{i} \rangle$$

$$= tr(\mathbf{P}^{T} \Omega \mathbf{P}) - 2tr(\mathbf{P}^{T} \Omega \mathbf{P}_{0}^{*}) - 2tr(\mathbf{P}^{T} \mathbf{X}_{2}^{T} \mathbf{X}_{2} \mathbf{P}_{i})$$

$$= \langle \mathbf{L} \mathbf{P}, \mathbf{L} \mathbf{P} \rangle - 2 \langle \mathbf{L} \mathbf{P}, \mathbf{L} \mathbf{P}_{0}^{*} + (\mathbf{L}^{T})^{-1} \mathbf{X}_{2}^{T} \mathbf{X}_{2} \mathbf{P}_{i} \rangle$$

$$= ||\mathbf{Z}_{i} - \mathbf{L} \mathbf{P}||_{F}^{2} - ||\mathbf{Z}_{i}||_{F}^{2}$$
(S12)

where $Z_i = LP_0^* + (L^T)^{-1}X_2^TX_2P_i$ is constant at (i+1)th iteration [5]. Then, (S12) is equivalent to [5], [6]

$$\boldsymbol{P}_{i+1} = \underset{\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}}{\operatorname{arg \, min}} \| \boldsymbol{P} - \boldsymbol{L}^T \boldsymbol{Z}_i \|_F^2$$
(S13)

Let $\boldsymbol{Y}_i = \boldsymbol{L}^T \boldsymbol{Z}_i = \Omega \boldsymbol{P}_0^* + \boldsymbol{X}_2^T \boldsymbol{X}_2 \boldsymbol{P}_i$. According to the lemma in [6], we can obtain that $\boldsymbol{P}_{i+1} = \boldsymbol{W}_i \boldsymbol{I}_{m_2,l} \boldsymbol{V}_i^T$, where $\boldsymbol{W}_i \in \mathbb{R}^{m_2 \times m_2}$ and $\boldsymbol{V}_i \in \mathbb{R}^{l \times l}$ are left and right singular values of the singular vector decomposition of \boldsymbol{Y}_i [5]. m_2 is the dimension of \boldsymbol{X}_2 and l is the number of principal components. The procedure is summarized in Algorithm 2 in the paper.