Applied Cryptography Spring Semester 2023 Lectures 22, 23, 24, 25, 26

Kenny Paterson (@kennyog)

Applied Cryptography Group

https://appliedcrypto.ethz.ch/

Overview of lectures

- Introducing Public Key Encryption
- The KEM/DEM paradigm
- RSA Encryption
- Diffie-Hellman Key Exchange and ElGamal Encryption
- Appendix: Basic Number Theory

Introducing Public Key Encryption

Introducing Public Key Encryption

- So far, we have considered symmetric encryption schemes.
- Participants need to somehow share key *K* in order to encrypt/decrypt.
- In Public Key Encryption (PKE), we use different keys for encryption and decryption.
 - Bob generates a public/private key pair.
 - Alice uses Bob's public key to encrypt to Bob.
 - Bob uses his private key to decrypt.
- Also called Asymmetric Encryption.

Syntax for PKE

A PKE scheme \mathcal{PKE} consists of a triple of algorithms: \mathcal{PKE} = (KGen,Enc,Dec).

<u>KGen</u>: randomised key generation, generates a key pair $(sk,pk) \in S\mathcal{K} \times \mathcal{PK}$. (sk) is the **private** key, pk the **public** key).

Enc: usually randomised, takes as input public key pk, plaintext $m \in \mathcal{M} \subseteq \{0, 1\}^*$ and produces output $c \in C \subseteq \{0, 1\}^*$.

<u>Dec</u>: takes as input private key sk, ciphertext $c \in \{0, 1\}^*$ and produces output $m \in \mathcal{M}$, or an error message denoted \bot .

<u>Correctness</u>: we require that for all key pairs (sk,pk) output by KGen, and for all plaintexts m,

$$Dec_{sk}(Enc_{pk}(m)) = m.$$

A concrete example: Textbook RSA

KGen: generates:

- random primes p, q of some bit-size k/2, with N = pq (so bit-size of N is k);
- integers d, e such that $de = 1 \mod (p-1)(q-1)$. Outputs key pair (sk, pk) where sk = d, pk = (e, N).

<u>Enc</u>: inputs public key pk = (e, N), plaintext $m \in [1, N-1]$; outputs $c = m^e \mod N$.

<u>Dec</u>: inputs private key sk = d, ciphertext c; outputs $m = c^d \mod N$.

<u>Correctness</u>: follows from property that if $de = 1 \mod (p-1)(q-1)$ then $m^{de} = m \mod N$ for all $m \in [1, N-1]$ (this demands a mathematical proof).

- Implementation issues: how do we generate random primes of a given bitsize? How do we generate d and e? How do we encode messages as integers in the interval [1, N-1]?
- Enc is not randomised here, which already hints at trouble.
- This scheme is not secure. It must not be used as is in practice.

What is PKE good for?

- PKE is typically much more expensive than symmetric encryption (in speed, key-size, etc)...
- Example: for textbook RSA, encryption involves an exponentiation mod N, where N typically has 2048 bits.
- PKE is often used in applications to transport symmetric keys which are then used to encrypt bulk data.
- This use of PKE is often referred to as hybrid encryption.
 - The symmetric keys are then used in a symmetric encryption scheme (e.g. nonce-based AEAD) to encrypt the actual data.
 - We will return to this in a few slides time.
- PKE is occasionally used to directly transport short, infrequent messages (e.g. PINs from card to payment terminal in EMV system).

What is PKE good for?

- Main problem with PKE: it requires distribution of authentic public keys.
- How does Alice know that a public key is genuinely Bob's?

- At a high level, PKE translates the problem of symmetric key distribution into the problem of distribution of authentic public keys.
- Question: Is that an easier problem?

Formalising security for PKE

- As with symmetric encryption, it is not enough that the secret key should be hard to guess: we want confidentiality of messages, more precisely indistinguishability under chosen ciphertext attacks (IND-CCA).
- Captures the idea that nothing about the plaintext should leak to the adversary, even when the adversary can obtain decryptions of arbitrary messages.
 - Adversary has access to an encryption oracle and a decryption oracle for key pair (sk,pk).
 - Adversary can submit arbitrary pairs of messages (m_o, m_1) to the encryption oracle, and receives $\operatorname{Enc}_{pk}(m_b)$.
 - Adversary can submit arbitrary* bit-strings c' to the decryption oracle and receives $Dec_{sk}(c')$.
 - Adversary has to recover the bit b.
 - Compare to definition for IND-CCA security of symmetric encryption.

^{*}Adversary cannot submit an output from encryption oracle to decryption oracle, otherwise he can win trivially.

IND-CCA security for PKE in a picture

IND-CCA security for PKE

• The adversary's *advantage* in the IND-CCA security game is defined to be:

$$Adv_{\mathcal{PKE}}^{IND\text{-CCA}}(A) := 2|Pr(b=b') - 1/2|.$$

- A PKE scheme $\mathcal{PKE} =$ (KGen, Enc, Dec) is said to be IND-CCA-secure if the advantage is "small" for any adversary using "reasonable" resources.
- More precisely, we say that a scheme \mathcal{PKE} is $(q_e, q_d, t, \varepsilon)$ -IND-CCA-secure if no adversary running in time t, making q_e enc (\cdot) queries and q_d dec (\cdot) queries has advantage more than ε .
- As with SE, we will provide concrete security reductions to underlying hard problems.
- One can also use complexity-theoretic notions such a poly-time, negligible, etc, after introducing a security parameter κ to dictate key sizes.
- Usually only a single enc(·) query is allowed; one can show equivalence to model with multiple such queries with a factor of q_e loss in security.
- IND-CPA security: as IND-CCA but remove the decryption oracle.

Implications of the IND-CCA definition

Q: Suppose an attacker can recover **sk** from **pk** by some means for a PKE scheme. Can the scheme be IND-CCA secure?

A: No. Attacker can just decrypt $c = \operatorname{Enc}_{pk}(m_b)$.

Q. Suppose a scheme is IND-CCA secure. Is it necessarily IND-CPA secure?

A. Yes, because removing the decryption oracle only makes the adversary less powerful. (Can easily provide a reduction proof.)

Q. Suppose a PKE scheme has a deterministic encryption algorithm. Can it be IND-CPA secure?

A. No. Make one encryption query on (m_o, m_1) to receive c; then encrypt both m_o and m_1 directly using pk and compare ciphertexts.

Q. Is textbook RSA IND-CCA secure? IND-CPA secure?

A. It's deterministic, so it cannot achieve either notion.

Hyrbid Encryption + KEM/DEM Paradigm

Key Encapsulation Mechanisms (KEMs)

A KEM \mathcal{KEM} consists of a triple of algorithms: \mathcal{KEM} = (KGen, Encap, Decap).

<u>KGen</u>: randomised key generation, generates a key pair $(sk,pk) \in S\mathcal{K} \times P\mathcal{K}$. (sk) is the **private** key, pk the **public** key).

Encap: usually randomised, takes as input public key pk, and produces output $(c, K) \in C \times \mathcal{K}$.

<u>Decap</u>: takes as input private key sk, encapsulation $c \in \{0, 1\}^*$ and produces output $K \in \mathcal{K}$, or an error message denoted \bot .

<u>Correctness</u>: for all key pairs (sk,pk) output by KGen,

if
$$(c, K) \leftarrow \text{Encap}(pk)$$
,

then $K \leftarrow \text{Decap}(sk,c)$.

Comparison to PKE: Encap has no message input; Encap internally generates a key *K* and its encapsulation *c*.

IND-CCA security for KEMs in a picture

 $Adv_{\mathcal{KFM}}^{IND\text{-}CCA}(A) := 2|Pr(b=b') - 1/2|.$

A Data Encapsulation Mechanism (DEM) is nothing other than a symmetric encryption scheme \mathcal{DEM} , with algorithms (DEM.KGen, DEM.Enc, DEM.Dec).

KEM/DEM Composition:

PKE.KGen:

Let $\mathcal{KEM} = (KGen, Encap, Decap)$ be a KEM and $\mathcal{DEM} = (DEM. KGen, DEM. Enc, DEM. Dec)$ be a DEM such that KEM.K = DEM.K

Then we build a PKE scheme \mathcal{PKE} = (PKE.KGen,PKE.Enc,PKE.Dec) from \mathcal{KEM} and \mathcal{DEM} as follows:

```
(sk,pk) \leftarrow KEM.KGen; return (sk,pk).
PKE.Enc(pk,m):
                                     1. (c_0, K) \leftarrow \text{KEM.Encap}(pk);
                                     2. c_1 \leftarrow \mathsf{DEM}.\mathsf{Enc}(K,m);
                                     3. return (c_0, c_1).
PKE.Dec(sk, (c_0, c_1)):
                                     1. m \leftarrow \perp;
                                     2. K \leftarrow \text{KEM.Decap}(sk,c_0);
```

4. return m.

NB: message space for \mathcal{PKE} is $\mathcal{DEM}.\mathcal{M}$; ciphertext space for \mathcal{PKE} is $\mathcal{KEM}.C \times \mathcal{DEM}.C$.

3. If $K \neq \perp$ then $m \leftarrow \mathsf{DEM}.\mathsf{Dec}(K,c_1)$;

Theorem:

Suppose \mathcal{PKE} is built from \mathcal{KEM} and \mathcal{DEM} as above. If \mathcal{KEM} is IND-CCA secure and \mathcal{DEM} is IND-CCA secure, then \mathcal{PKE} is IND-CCA secure.

We give a proof for this theorem for a PKE adversary A making exactly one encryption oracle query ($q_e = 1$).

More formally, we show for any IND-CCA adversary A against PKE with q_e =1, there exist adversaries B and C such that:

$$\mathsf{Adv}^{\mathit{IND-CCA}}_{\mathcal{PKE}}(A) \leq 2 \cdot \mathsf{Adv}^{\mathit{IND-CCA}}_{\mathcal{KEM}}(B) + \mathsf{Adv}^{\mathit{IND-CCA}}_{\mathcal{DEM}}(C).$$

Moreover, B and C run in the same time as A. If A makes q_d decryption oracle queries, then B makes at most q_d decapsulation queries and C makes at most q_d decryption queries.

Proof (sketch):

The proof involves a sequence of games G_0 , G_1 , G_2 , G_3 .

G_o: A plays the normal IND-CCA game for PKE, with q_e =1; let $c = (c_o, c_1)$ denote the response to A's single encryption oracle query on (m_o, m_1) ; let b be the hidden bit chosen by A's challenger. By construction:

$$(c_o, K_o) \leftarrow \text{KEM.Encap}(pk) \text{ and } c_1 \leftarrow \text{DEM.Enc}(K_o, m_b).$$

PKE dec(·) oracle: as per the PKE scheme, using private key sk.

G₁: A plays the normal IND-CCA game for PKE, with q_e =1; the response (c_o , c_1) to A's encryption oracle query on (m_o , m_1) is constructed using "real" output from an IND-CCA challenger in the KEM security game. By construction:

$$(c_{o_i}K_o) \leftarrow \text{KEM.Encap}(pk) \text{ and } c_1 \leftarrow \text{DEM.Enc}(K_{o_i}m_b).$$

PKE dec(·) oracle: on input (c'_o, c'_1) : if $c'_o \neq c_o$ then we use a KEM decap(·) oracle from KEM security game to get a key K (or \bot) and then output DEM.Dec (K, c'_1) ; otherwise, (when $c'_o = c_o$), we decrypt c'_1 using K_o .

Proof (sketch):

 G_2 : As G_1 but the response (c_o , c_1) to A's encryption oracle query on (m_o , m_1) is constructed using "random" output K_1 from an IND-CCA challenger in the KEM security game. By construction:

$$(c_o, K_o) \leftarrow \text{KEM.Encap}(pk) \text{ and } c_1 \leftarrow \text{DEM.Enc}(K_1, m_b) \text{ where } K_1 \leftarrow_{\$} \mathcal{K}.$$

PKE dec(·) oracle: on input (c'_o, c'_1) : if $c'_o \neq c_o$ then we use the KEM decap(·) oracle on c'_o to get a key K (or \perp) and then output DEM.Dec (K, c'_1) ; otherwise (when $c'_o = c_o$), we output DEM.Dec (K_1, c'_1) .

 G_3 : As G_2 but we now run KEM.KGen to get (sk,pk), obtain c_o by running KEM.Encap(pk), and obtain c_1 from a call to the enc (\cdot) oracle in IND-CCA security game for the DEM (with hidden bit b). By construction:

$$(c_{o_i}K_o) \leftarrow \text{KEM.Encap}(pk) \text{ and } c_1 \leftarrow \text{DEM.Enc}(K_1, m_b) \text{ where } K_1 \leftarrow_{\$} \mathcal{K}.$$

PKE dec(·) oracle: on input (c'_o, c'_1) : if $c'_o \neq c_o$ then we use sk; otherwise (when $c'_o = c_o$), we use a call to the dec(·) oracle in DEM security game.

Proof (sketch):

The proof involves a sequence of games G_0 , G_1 , G_2 , G_3 .

From G_o to G₁: this is mostly a syntactic change, where we change how decryption is done (introducing a KEM challenger and its oracles).

From G₁ to G₂: we can construct an IND-CCA adversary B for the KEM that "bridges" between these games (G₁ corresponds to b=0 case, G₂ to b=1 case in KEM game). Doing this allows us to use K_o in the KEM but **independent, random** K_1 in the DEM.

From G_2 to G_3 : this is again mostly a syntactic change, where we modify how encryption and decryption are done (using DEM oracles instead of KEM oracles).

In G₃: an adversary A who wins in this game can be used to construct an IND-CCA adversary C against the DEM.

A standard computation involving probabilities of events W_i (the event that A outputs b' = b in Game G_i) completes the proof.

G_{o}

 G_1

 G_3

Notes:

- In game G₃, C is an IND-CCA adversary against the DEM that only makes one encryption query (but many decryption queries).
 - This implies that only "one-time" security of the DEM is required.
- The proof is only for an IND-CCA adversary A against the PKE scheme that makes a single encryption query.
 - It can be extended to an adversary making q_e queries, at the cost of some complexity in the proof and some factors q_e in the bounds.
 - But one-time security of the DEM still suffices.
- We don't have an integrity definition for PKE/KEMs; the public-key setting makes creating ciphertext/encapsulation forgeries trivial.

RSA Encryption

Recap: Textbook RSA

<u>KGen</u>: generates a pair of random primes p, q of some bit-size k/2, and integers d, e such that $de = 1 \mod (p-1)(q-1)$. Set N = pq. Output key pair (sk,pk) where sk = d, pk = (e,N).

<u>Enc</u>: inputs public key pk = (e, N), plaintext $m \in [1, N-1]$; output $c = m^e \mod N$.

<u>Dec</u>: inputs private key sk = d, ciphertext c; output $m = c^d \mod N$.

Recall:

- This scheme is not secure and must not be used in practice.
- It's not even randomised, so has no chance of even being IND-CPA secure.

Generating keys for RSA

KGen: generates a pair of random primes p, q of some bit-size k/2, and integers d, e such that $de = 1 \mod (p-1)(q-1)$. Set N = pq. Output key pair (sk,pk) where sk = d, pk = (e,N).

Generating large, random primes with k/2 bits:

 Needs a good source of randomness and an efficient primality test with low error rate.

Many things can go wrong, part 1:

"Mining your p's and q's":

- $N_1 = p_1 q_1$, $N_2 = p_1 q_2 \Rightarrow p_1 = \gcd(N_1, N_2) \Rightarrow$ easy recovery of common prime p_1 and break of both keys.
- If M distinct RSA moduli are available, we can compute $O(M^2)$ pairwise gcds using an $O(M \log M)$ algorithm due to Bernstein.
- In 2012, this attack broke 0.50% of server public RSA keys on the Internet.
- Root cause: insufficient entropy in RSA key generation process.
- https://factorable.net/weakkeys12.extended.pdf.

Generating keys for RSA

Many things can go wrong, part 2:

ROCA attack on an over-optimised prime generation algorithm.

- Using p and q of special form to speed-up prime generation on smart-cards led to a major vulnerability in millions of smart-cards, including Estonian ID card system.
- https://crocs.fi.muni.cz/ media/public/papers/nemec roca ccs17 preprint.pdf

Take-aways:

- Implementations of even a 40-year-old algorithm can (and do) still get things wrong.
- Use a well-vetted library and standardised approaches to parameter selection.

Generating keys for RSA

KGen: generates a pair of random primes p, q of some bit-size k/2, and integers d, e such that $de = 1 \mod (p-1)(q-1)$. Set N = pq. Output key pair (sk, pk) where sk = d, pk = (e, N).

Solving $de = 1 \mod (p-1)(q-1)$:

- Suppose e is coprime to (p-1)(q-1).
- Running the extended Euclid algorithm yields integers s, t such that

$$e \cdot s + (p-1)(q-1) \cdot t = 1.$$

• Reduce modulo (p-1)(q-1) to get:

$$e \cdot s = 1 \mod (p-1)(q-1).$$

- Then take d = s.
- $e = 2^{16} + 1$ is often used in practice.
 - Faster encryption, no known weaknesses, e is prime and highly likely coprime to (p-1)(q-1).
 - Many other tempting optimization lead to vulnerabilities (e.g. small d).

Using Chinese Remainder Theorem in RSA

<u>Dec</u>: inputs private key sk = d, ciphertext c; output $m = c^d \mod N$.

Textbook RSA decryption can be made faster by working mod p and mod q, and then combining the results using the Chinese Remainder Theorem (CRT).

Typically then include p, q and $u := q^{-1} \mod p$ as part of the private key.

To decrypt:

- Set $f = d \mod p$ -1; $g = d \mod q$ -1
- Compute $m_p = c^f \mod p$
- Compute $m_q = c^g \mod q$
- Set $h = \mathbf{v}(m_p m_q) \mod p$
- Output $m_q + hq \mod N$

It is not too hard to show that this correctly implements RSA decryption.

Working with exponents f and g (mod p and mod q, respectively) makes the arithmetic operations much faster than direct implementation of $m = c^d \mod N$.

Many things can go wrong, Part 3:

- In MEGA cloud storage system, $(d, p, q, u=q^{-1} \mod p)$ are stored on server encrypted under a symmetric key K known only to the client **using ECB mode**!
- On login, client fetches ECB-encrypted (d, p, q, u) from server, decrypts to obtain (d, p, q, u), recomputes $u'=q^{-1} \mod p$ and tests if u'=u to sanity check the key.
- But an adversarial cloud server can overwrite blocks of private key with chosen values, because the system exposes an encryption oracle for key K (due to a key reuse vulnerability).
- So the client tries to compute $(q')^{-1} \mod p'$ where now p' and q' are controlled by the adversary.
 - This process succeeds if and only if q' is coprime to p'.
 - And if it fails an error message is returned to the server.
 - Based on presence/absence of the error message, information about coprimality of p', q' leaks to the adversary.
 - Key trick: make q' depend on selected blocks of d by exploiting malleability of ECB mode when doing private key overwriting.
 - Allows complete recovery of d using around $2^{11} 2^{12}$ login attempts.
 - Full details at: https://mega-caveat.github.io/

Keysize requirements

- One way to break RSA is to recover the private key d from the public key (e, N) by first factorising N to find p, q and then solving $de = 1 \mod (p-1)(q-1)$.
- Other attacks may be possible, but we have to at least make sure that factorising N is hard.
- The Integer Factorisation Problem (IFP) has been studied for thousands of years, and intensively since the 1970s (because of its importance in cryptography).
- The current best algorithm for solving IFP on a classical computer is called the Number Field Sieve (NFS).
- This algorithm was invented in the early 1990s, and there has been no significant **algorithmic** improvement in IFP since then.
- But Moore's law + code improvements have had a significant effect.
- Running time + space required by NFS:

$$\exp[(c+o(1))(\ln N)^{1/3}(\ln \ln N)^{2/3}]$$
 with $c=(64/9)^{1/3}$.

• Super-polynomial but sub-exponential in the bit-size of *N*.

Keysize requirements

- In 2015, a **512-bit RSA modulus** could be factored using NFS on Amazon EC2 in about 4 hours at a cost of USD75.
 - See https://eprint.iacr.org/2015/1000.
- Between 2009 and 2019, the biggest modulus publicly factored was a **768-bit** RSA modulus, one of the RSA challenges.
 - Using the equivalent of about 2,000 core years on 2.2 GHz CPUs.
 - See https://eprint.iacr.org/2010/006.pdf.
- Nov. 2019: RSA-240 (795 bits), Boudot et al.: 900 core years significantly less computation than the 2009 record!
- Feb. 2020: RSA-250 (**829** bits), Boudot et al.: 2700 core years on Intel Xeon Gold 6130 CPUs as a reference (2.1GHz), using CadoNFS software.
- See https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html and https://arxiv.org/abs/2006.06197

RSA-250

=

*

Keysize requirements

- It is conjectured that a **1024-bit modulus** would require about 2⁸⁰ machine operations, hence providing 80 bits of security.
 - This is well beyond the capabilities of academic groups but probably within reach for a national security agency with a large budget.
- To achieve 128-bit security, the modulus *N* needs to be somewhere between **2048** and **3072** bits.
 - Estimates vary BSI vs NIST vs ECRYPT.
 - See https://www.keylength.com.
 - Most websites still using RSA keys now use keys of 2048 bits, a few use 3072.
 - Question: Why not just "go large" on keysize?

Other attacks on RSA: Malleability

- We already know that textbook RSA is not IND-CPA secure, and we are going to need some kind of randomisation.
- But this is not all: textbook RSA also has a dangerous malleability property:
 - Suppose $c = m^e \mod N$.
 - Choose s arbitrarily from [1,N-1].
 - Consider s^e · c mod N:

$$s^e \cdot c = s^e \cdot m^e = (s \cdot m)^e \mod N$$
.

- So $s^e \cdot c \mod N$ is an encryption of $s \cdot m \mod N$ in textbook RSA!
- This gives an active attacker the ability to modify an RSA plaintext in a controlled fashion, by carefully modifying ciphertexts.
- This leads to various attacks against deployed systems.

Other attacks on RSA: Small e

- Using small exponents, such as e = 3, can speed up encryption.
- Suppose Alice has public key (e=3, N) and suppose Bob is only sending a very small message $m < N^{1/3}$.
- Then $c = m^3$ over the integers, i.e., no modular reduction has taken place.
- If Eve knows that m will be very small then she can recover the message m from the ciphertext c simply by taking cube roots over the integers (trivial, using Newton's method).

• Example:

N has 1024 bits, m is an AES key with 128 bits, e = 3.

Then m^e has only 3 x 128 = 384 bits, much less than 1024 bits.

- To mitigate such attacks, we need some kind of message padding.
- Small $\frac{d}{d}$ is also insecure even up to $\frac{d}{d} \approx N^{1/4}$ (Wiener's attack).

Padding for RSA

- In response to attacks like those we've discussed, special padding schemes for the RSA setting have been introduced.
- The three goals of such padding schemes are to:
 - 1. Introduce randomness into the message.
 - 2. Expand short messages to full size.
 - Destroy algebraic relationships among messages to remove the malleability property.
- The ultimate aim should be to achieve IND-CCA security for RSA encryption.
- This has proved tricky to do, and even today the most widely-deployed RSA padding scheme, called PKCS#1 v1.5, does not achieve IND-CCA security.
- We do have padding schemes that enable us to achieve IND-CCA security, but they are not so widely deployed, e.g. RSA-OAEP.
- Why?

PKCS#1 v1.5 padding

- Byte-oriented encoding scheme for RSA.
- Assume N has k bytes; maximum message size is then k 11 bytes.
- Message m placed in least significant bytes.
- Set first two most significant bytes to "oo o2".
- Follow with at least 8 non-oo random bytes, then a oo byte.
- Then apply the RSA operation to this encoded version of *m*:

$$c = pad(m)^e \mod N$$
.

PKCS#1 v1.5 padding

$Dec_d(c)$:

- Compute $m' = c^d \mod N$.
- Check that m' begins with oo o2, reject if not.
- Check that m' then has at least 8 non-oo bytes, reject if not.
- Check that m'then has a oo byte; reject if least significant byte is reached without finding one.
- Return as m all the bytes to the right of the oo byte.
- Security?

Bleichenbacher's attack on PKCS#1 v1.5

- If an attacker sends a random string of bytes for decryption, then it has probability about 2^{-16} of having a valid padding format:
 - the first two bytes must be "oo o2" prob. 2^{-16} .
 - there are then at least 8 non-oo bytes prob. $(255/256)^8 = 0.97$.
 - there is at least one "oo" byte before the LSB is reached prob. depends on key-length, higher for longer keys.
- Suppose now that the attacker has an **oracle** telling it whether the decryption algorithm succeeds or fails on an input c'.
- As with padding oracles for CBC mode, such an oracle is common in implementations.

Bleichenbacher's attack on PKCS#1 v1.5

- Attacker wants to decrypt $c = (00 02 || r || 00 || m)^e \mod N$.
- Let's write pad(m) = (00 02 || r || 00 || m) to denote the **padded** message.
- Attacker asks for decryption of $s^e \cdot c = (s \cdot pad(m))^e \mod N$, for some choice of s.
- Most choices of s will lead to a decryption failure.
- With probability roughly 2^{-16} , decryption **succeeds**, and the adversary learns that $s \cdot pad(m)$ mod N begins with bytes "oo o2".
- This gives a range for $s \cdot pad(m) \mod N$ over the integers: $s \cdot pad(m) \mod N \in [2B, 3B-1]$ where $B = 2^{8(k-2)}$
- By gathering many such inequalities for different and carefully chosen values of s in an adaptive attack, attacker can recover pad(m), and hence m.

Bleichenbacher's attack on PKCS#1 v1.5

- Bleichenbacher's attack requires many decryption attempts, around 220 in its original version.
- The attack has been improved a lot; many variants have been discovered.
- Typically 5-10k queries are needed for a 1024-bit modulus N in modern versions.
- Many real-world systems, including SSL/TLS, have been found to be vulnerable to the style of attack.
- For example, DROWN and ROBOT attacks on SSL/TLS.
 - https://drownattack.com/
 - https://robotattack.org/
- RSA-PKCS#1 v1.5 should be avoided but is still widely used in practice.
- A similar attack shows that RSA-PKCS#1 v1.5 is not IND-CCA secure.

RSA-OAEP

- OAEP is an alternative encoding scheme for RSA due to Bellare and Rogaway. OAEP stands for "Optimal Asymmetric Encryption Padding".
- A version of it is widely standardized in PKCS#1 v2.1.
- Setup of OAEP. Suppose we are using λ -bit RSA moduli (e.g. λ = 2048).
- Let λ_o and λ_1 be chosen so that no adversary can perform 2^{λ} operations for $\lambda = \lambda_o$ or $\lambda = \lambda_1$, e.g. $\lambda_o = \lambda_1 = 128$.
- Set $n = \lambda \lambda_o \lambda_1$.
- Messages in RSA-OAEP are assumed to be n-bit strings.
- Let G be a hash function mapping λ_o bit strings to $n + \lambda_1$ bit strings.
- Let H be a hash function from $n + \lambda_1$ bit strings to λ_0 bit strings.
- These hash functions should be collision resistant.

RSA-OAEP

- Let *m* be an *n*-bit string.
- Choose a random λ_o -bit string R.
- Set $S_1 = (m || o^{\lambda 1}) \bigoplus G(R)$.
- Set $S_2 = R \oplus H(S_1)$.
- Form the bit-string $S = S_1 || S_2$.
- Interpret S as a λ-bit integer and compute

$$c = S^e \mod N$$
.

- Decryption reverses these steps and checks that the result has λ_1 o-bits in the right position.
- Decryption fails if the o-bits are not present; outputs m if they are.

Intuition for RSA-OAEP design

- RSA messages are randomised and have full length.
- Since S_1 and S_2 are both outputs of hash functions, the bit-string S looks random and algebraic relationships among the message components are broken up.
- Suppose you are given a decryption oracle. Because of the way the hash functions are combined, it's hard to come up with a ciphertext that decrypts to produce λ_1 zero bits in the correct position, without having done an encryption in the first place; so the decryption oracle essentially becomes useless.

RSA-OAEP can be proven to be IND-CCA secure, though with strong assumptions on G and H, and under a strong number theoretic assumption (much stronger than assuming that factoring is hard). It's not perfect, but:

Use RSA-OAEP!

RSA.KEM: Building a simple KEM from RSA

RSA.KGen: generates a pair of random primes p, q of some bit-size k/2, and integers d, e such that $de = 1 \mod (p-1)(q-1)$. Set N = pq. Output key pair (sk,pk) where sk = d, pk = (e,N). Let $H: \{0,...,N-1\} \rightarrow \{0,1\}^k$ be a hash function.

RSA.Encap: inputs public key pk = (e, N); $s \leftarrow_{\$} \{0, ..., N-1\}$; return (c, K) where $c = s^e \mod N$; K = H(s)

RSA.Decap: inputs private key sk = d and encapsulation c.

compute $s = c^d \mod N$; output K = H(s).

Theorem:

RSA.KEM is IND-CCA secure in the **Random Oracle Model** provided the **RSA** inversion problem is hard.

The RSA Inversion Problem

1. Challenger C runs RSA KeyGen to produce pair (sk,pk) with

$$sk = d, pk = (e, N).$$

- 2. C selects $x \leftarrow_{\$} \{0,...,N-1\}$; sets $y = x^e \mod N$.
- 3. A is given input (N,e,y) by C; A runs and outputs some value x'.

A wins if x' = x.

- Strictly speaking, this version of the RSA Inversion problem is relative to the choice of KeyGen that we use.
- If A can factor N then it can solve the RSA inversion problem.
- The reverse implication is open, but no algorithm faster than factoring N is known for solving RSA inversion in general.
- For analysis of RSA.KEM, see extra slides.
- RSA.KEM is a much better scheme than RSA-OAEP, but is not widely used in practice.

- So far, all of our public key schemes have been in the RSA setting:
 - Public/verification keys involve integers N that are the product of two primes, p,q, along with an integer e.
 - Private/signing keys are integers $\frac{d}{d}$ such that $\frac{de}{d} = 1 \mod (p-1)(q-1)$.
 - Security depends on hardness of factoring and related problems (RSA inversion).
 - The discrete logarithm setting provides another platform for carrying out public key cryptography.
 - After introducing this setting, we'll look at Diffie-Hellman key exchange, and finally public key encryption.

- Assume p and q are large primes and q divides p-1.
- So we can write p = kq + 1 for some integer k; so k = (p-1)/q.
- (So p and q do **not** have the same flavour as in RSA!).
- Often, but not always, k=2.

Toy example: p = 29, q = 7, k = 4.

- In reality, for 128-bit security, *p* will need to have 3072 bits and *q* will need to have (at least) 256 bits.
- Typical real-world deployments: *p* has 1024 or 2048 bits, *q* has (at least) 160 bits.

- Now we pick h, a random integer mod p, and compute $g = h^{(p-1)/q}$ mod p (= h^k mod p).
 - If $g = 1 \mod p$, we try again (we will succeed with very high probability)
- Fact 1: if $g \ne 1 \mod p$, then the q powers of g, namely $G_q = \{g, g^2, g^3, \dots g^q\}$ are all distinct mod p.
- Fact 2: $g^q = 1 \mod p$.
- Fact 3: if we multiply together two elements in the set G_{q} , we obtain a third element that is also in the set G_{q} .
- In combination, these facts mean that the set G_q forms a group of order q; the group operation is multiplication mod p.
 - G_q is a cyclic group (everything is a power of g).
 - We say that g is a generator of G_q .
 - The number of elements in G_q is q, a prime.

Toy example (ctd):

- p = 29, q = 7, k = 4 (27 = 4.7+1).
- h = 2; $g = h^{(p-1)/q} = 2^4 = 16 \mod 29$.
- $G_q = \{g, g^2, g^3, \dots g^q\}$:
 - So $g^2 = 16^2 = 256 = 24 \mod 29$; and:
 - $g^3 = 16^3 = 16^2 \times 16 = 24 \times 16 = 384 = 7 \mod 29$;
 - $q^4 = 16^4 = 16^3 \times 16 = 7 \times 16 = 112 = 25 \mod 29$;
 - $g^5 = 16^5 = 16^4 \times 16 = 25 \times 16 = 400 = 23 \mod 29;$
 - $g^6 = 16^6 = 16^5 \times 16 = 23 \times 16 = 368 = 20 \mod 29$;
 - $g^7 = 16^7 = 16^6 \times 16 = 20 \times 16 = 320 = 1 \mod 29;$
- Hence $G_q = \{16, 24, 7, 25, 23, 20, 1\}.$
- And, for example, $24 \times 7 = g^2 \times g^3 = g^5 = 23 \mod 29$.

The discrete logarithm problem (DLP)

- The set $G_q = \{g, g^2, g^3, \dots g^q\}$ of powers of $g \mod p$ is a cyclic group of prime order q with generator g.
- It forms a subgroup of the integers mod p under multiplication.
- We can write $g^q = 1 = g^o$ and so take $G_q = \{1 = g^o, g^1, g^2, g^3, ... g^{q-1}\}$.

The discrete logarithm problem in G_q :

Let (p, q, g) be as above. Set $y = g^x \mod p$, where x is a uniformly random value in $\{0,1,...,q-1\}$. **Find** x.

(Think of value x as being the logarithm of $y = g^x \mod p$ when the base of logarithms is g.)

Solving the DLP

- The DLP has received intense analysis from mathematicians and computer scientists for nearly 40 years.
 - Several different algorithms exist, but they are beyond the scope of this course.
 - This is an active area of research, with recent breakthroughs in related settings.
- The Function Field Sieve has complexity of the form:

$$\exp[(1+o(1)).(32/9)^{1/3}(\log p)^{1/3}(\log p)^{2/3}]$$

which is sub-exponential (but super-polynomial) in $\log p$.

- The Pollard- ρ algorithm and its variants has complexity of the form: O($q^{1/2}$), which is exponential in log q.
- To achieve 80-bits of security against both algorithms, we need q to have 160 bits and p to have 1024 bits.
- To achieve 128-bits of security against both algorithms, we need q to have 256 bits and p to have about 3072 bits.

Cryptography in the discrete logarithm setting

- Basic message so far: we can choose p and q big enough so as to make the DLP in G_q sufficiently hard.
- But we have to keep an eye on developments in algorithms for solving the DLP.
- Similar to RSA setting: what if someone comes up with a better factoring algorithm? Or a large quantum computer?

- Question now is: can we use the DLP to build cryptosystems (in particular, encryption schemes)?
- We will look at Diffie-Hellman, then ElGamal.

Diffie-Hellman Key Exchange (DHKE)

- DHKE is a public key method for agreeing on a shared secret (which can be used as a session key, for example).
- Introduced in famous 1976 paper by Diffie and Hellman that launched public key cryptography.
 - https://www-ee.stanford.edu/~hellman/publications/24.pdf
- We will use the Discrete Logarithm setting.
- Recall: p = k.q + 1, and g generates G_q , a cyclic group of prime order q in the set of integers modulo p:

$$G_q = \{g^o = 1, g^1, g^2, \dots, g^{q-1}\}.$$

- In Diffie and Hellman's original presentation, we have a collection of n users.
- All users make use of the same set of public parameters (p,q,g).
- User U_i picks \mathbf{x}_i uniformly at random from $\{0,1,...,q-1\}$.
- User U_i 's private key is x_i ; its public key is $Y_i = g^{x_i} \mod p$.
- All the public keys Y_i,...., Y_n are assumed to be available in a public, authentic directory.
 - In the 1970s, telephone directories were common!

To compute a shared value between user U_i and user U_j :

- User U_i computes $K_i = (Y_i)^{x_i} = g^{x_i \cdot x_i} = g^{x_i \cdot x_j} \mod p_i$
- User U_i computes $K_j = (Y_i)^{x_j} = g^{x_i \cdot x_j} \mod p$.
- Key point: the values $K_{\underline{j}}$ and $K_{\underline{j}}$ are the same.
- We should not use K_{ij} directly as a key since it is large integer mod p.
- Instead, we should derive key(s) from it using a Key Derivation Function (KDF).
- For now, think of KDF as just being a hash function.

- Notice that no interaction is needed between any pair of users in order to establish a key.
- Instead, the users are assumed to have access to the public, authentic database of public keys Y_1,..., Y_n.
- We have non-interactive key exchange (NIKE).

- Question 1: How is NIKE different from PKE?
- Question 2: Can we get from NIKE to PKE?

Security of Diffie-Hellman Key Exchange

- An attacker can see all public keys $Y_1, ..., Y_n$ and would like to compute some (or all) of the shared values K_i (or the keys derived from them).
- The underlying algorithmic problem can be stated as follows:
 - Given (p,q,g), and the values g^a mod p, g^b mod p, for uniformly random a, b, find g^{ab} mod p.
- This is the Computational Diffie-Hellman Problem (CDHP).

Security of Diffie-Hellman Key Exchange

• The Computational Diffie-Hellman Problem (CDHP).

Given (p,q,g), and the values $g^a \mod p$, $g^b \mod p$, for uniformly random a, b, find $g^{ab} \mod p$.

- If we can efficiently solve the DLP, then we can efficiently solve CDHP: find a from g^a mod p by solving DLP, then compute $(g^b)^a$ mod p.
- So CDHP is not harder than DLP, and could be easier.
- We don't know in general whether CDHP is equivalent to DLP, but this is widely believed to be so, and known to be so in special cases (den Boer 1988, Maurer-Wolf 1999).
- This helps us choose secure parameters for Diffie-Hellman: just assume CDHP is as hard as DLP.

A modern view of Diffie-Hellman Key Exchange

A modern view of Diffie-Hellman Key Exchange

- We simplify to just two parties, Alice and Bob.
- Alice and Bob first agree on parameters g, p and q, select fresh random private values x, y, then exchange the corresponding values X, Y over a public communications channel.
- We regard the private values x, y and the public values X, Y as being ephemeral.
 - That is, they are generated once and used only once, setting up a fresh shared value $K = g^{xy} \mod p$ each time.
- It now seems that any two parties can securely agree upon a key without having had any previous association!

MITM Attack on Diffie-Hellman Key Exchange

But an active man-in-the-middle attacker can modify the public values in transit.

- For example, the attacker can change X to a value g^z mod p
 for which he knows z.
- The attacker can then compute the key that Alice would compute on receipt of $g^z \mod p$, namely, $(g^z)^{y_-} = (g^y)^z = (Y)^z \mod p$.
- And similarly in the other direction.
- So an active attacker can completely compromise the security of "modern" Diffie-Hellman key exchange.
- Was that the case for the NIKE version?

Preventing MITM Attack on Diffie-Hellman Key Exchange

- So the modern version requires the authenticity of the public values X, Y to be protected in transit.
- How can this be done?
- Two possible solutions: use a MAC or use digital signatures.

O: If we had a key for a MAC, why do we need to agree a new key via Diffie-Hellman?

A: Forward security: even if the MAC key was to be revealed at some point in time, the keys from Diffie-Hellman exchanges completed before that time would still be secure (more in later lectures).

O: What additional requirements does the use of signatures bring?

A: We now need an assurance of the authenticity of the signature verification keys. This is typically done using certificates, CAs, and PKI.

From Diffie-Hellman to ElGamal Encryption

From Diffie-Hellman Key Exchange to Public Key Encryption

- Diffie-Hellman paper appeared in 1976.
- Introduced the concept of public key encryption, but contained no concrete example of a public key encryption scheme.
- Included Diffie-Hellman key exchange (with a public database).
- So can we get from DHKE to PKE?
- Yes we can!
- We next define the ElGamal public key encryption scheme, dating from 1985.

ElGamal Public Encryption Scheme

Public parameters (p,q,g) as usual (can be shared amongst many users).

<u>KeyGen</u>: pick x uniformly at random from $\{0,1,...,q-1\}$. Set public key to be $X = q^x \mod p$ and private key to be x.

Enc: given public key X and message M (assumed to be encoded as an element of G_a):

- 1. Pick r uniformly at random from $\{0,1,...,q-1\}$. Set $Y = g^r \mod p$.
- 2. Compute $Z = X^r \mod p$.
- 3. Output the ciphertext $C = (Y, M \cdot Z \mod p)$.

ElGamal Public Encryption Scheme

<u>Dec</u>: given private key x and ciphertext C = (Y, C'):

- 1. Check that Y is in G_{α} , return "fail" if not.
- 2. Compute $Z' = Y^x \mod p$.
- 3. Output $M = C' \cdot (Z')^{-1} \mod p$.

Correctness of the scheme:

$$C' \cdot (Z')^{-1} = M \cdot Z \cdot (Z')^{-1} = M \cdot X^{r} \cdot (Y^{x})^{-1} \mod p$$

$$= M \cdot (g^{x})^{r} \cdot ((g^{r})^{x})^{-1} \mod p$$

$$= M \cdot g^{xr} \cdot g^{-xr} \mod p$$

$$= M$$

Relationship Between Diffie-Hellman and ElGamal

Public key: $(p,q,g,X=g^{\times})$

 $(Y=g^r \mod p, C'=M\cdot X^r \mod p)$

- We effectively have a Diffie-Hellman key exchange, involving long-term key pair (x,X) and one-time key pair (r,Y), with the sender choosing (r,Y) and including the public value Y as part of the ciphertext.
- We use the shared Diffie-Hellman value $X^r = g^{xr} \mod p$ as an encryption mask.
- The encrypting party need not have a "registered" public key to use the scheme (as should be the case for PKE!).

Security of ElGamal Public Encryption Scheme

IND-CPA security for ElGamal encryption can be proven based on the hardness of a variant of the CDH Problem, called the Decisional Diffie-Hellman Problem:

Given (p,q,g), and uniformly random values a,b,c from $\{0,1,...,q-1\}$, distinguish the triple (g^a, g^b, g^{ab}) from the triple (g^a, g^b, g^c) .

Informally:

- Ciphertext includes $M \cdot Z \mod p$ where $Z = g^{xr} \mod p$.
- If (g^x, g^r, g^{xr}) is indistinguishable from (g^x, g^r, g^c) , then we can replace $Z = g^{xr}$ by $Z = g^c$ in the construction of ciphertext.
- But, since g^c is uniformly random in G_q , it follows that $M \cdot Z \mod p$ is uniformly random in G_q as well.
- Hence M is perfectly hidden!

Formally: do a game hopping proof with G_o the normal IND-CPA game and G_1 the game in which the challenge ciphertext uses g^c in place of g^{xr} .

ElGamal PKE has two significant disadvantages:

- It is not IND-CCA secure (find an attack exploiting the homomorphic nature of ElGamal encryption!)
- It is inconvenient to work with messages that have to be encoded as elements of G_q .
- DHIES (Diffie-Hellman Integrated Encryption Scheme) addresses both of these problems in a PKE scheme.
- One can also define a KEM based on ElGamal and use the KEM/DEM paradigm.

Public parameters (p,q,g) as usual, H a hash function with suitable output domain.

<u>KeyGen</u>: pick x uniformly at random from $\{0,1,...,q-1\}$. Set public key to be $X = g^x \mod p$ and private key to be x.

<u>Enc</u>: given public key X and message M (a bit-string):

- 1. Pick r uniformly at random from $\{0,1,...,q-1\}$. Set $Y = g^r \mod p$.
- 2. Compute $Z = X^r \mod p$.
- 3. Set K = H(Z, X, Y).
- 4. Split K into K_e and K_m .
- 5. Compute C' = EtM(M) using keys K_e and K_m for encryption and MAC, respectively.
- 6. Output the ciphertext C = (Y, C').

<u>Dec</u>: given private key \times and ciphertext C = (Y, C):

- 1. Check that Y is in G_{α} , return "fail" if not.
- 2. Compute $Z = Y^x \mod p$.
- 3. Set K = H(Z, X, Y).
- 4. Split K into K_e and K_m .
- 5. Decrypt C'using keys K_e and K_m for encryption and MAC, respectively.
- 6. Output "fail" if step 5 fails, otherwise output the message returned in step 5.

Correctness again relies on: $X^r = Z = Y^* \mod p$, that is, that we implicitly have a Diffie-Hellman key exchange.

- Checking that Y is in G_q is essential for security!
- This is done by checking if $Y^q = 1 \mod p$: a somewhat expensive check to do.
- But failure to check can lead to *small subgroup attacks*.
- Idea of the attack is that an adversary who can force the use of g of small order t (instead of large order q) may be able to learn x mod t by seeing if decryption fails or not.
- Attack requires t trials on special ciphertexts (in the worst case) to recover x mod t.
- Attack requires p-1 to be divisible by t.
- If adversary can do this for enough different, small, coprime values t then it can even reconstruct x (using the CRT).

- DHIES is IND-CCA secure in the Random Oracle Model.
- The security proof relies on the hardness of a variant of the Computational Diffie-Hellman Problem (assuming we use an IND-CPA symmetric encryption scheme and a SUF-CMA MAC scheme).
- It's really an instance of the KEM/DEM paradigm: we are sending information Y that allows a shared key K to be computed, and then using that key K in a symmetric encryption scheme.
- We could replace "EtM" with any AE scheme.
- Can go nonce-based, use AEAD, etc.

From Diffie-Hellman Key Exchange to Public Key Encryption

- An elliptic-curve variant of DHIES also exists, called ECIES.
 - It has smaller ciphertext sizes, because of the more compact representation of group elements (g^x) in the elliptic curve setting.
 - Security relies on the hardness of the Elliptic Curve Diffie-Hellman (ECDH) Problem.
- These schemes are standardised in ANSI X9.63, IEEE P1363a, ...
- ECIES will be used in the next generation of EMV "chip and PIN" card standards.
- We'll return to ECIES when we look at elliptic curve cryptography.

Homework

- Read Chapters 10-12 of Boneh-Shoup for many more details, constructions and proofs.
- Work on exercise sheets 8, 9.
- Prepare for this week's lab.

Appendix: Some Basic Number Theory

Basic Number Theory: Remainders, factors,...

We use the notation N to denote the non-negative integers:

$$N = \{0,1,2,...\}.$$

- We write $a \mod b$ for the "remainder of a on division by b", i.e. the integer r in $\{0,...,b-1\}$ such that $a = q \cdot b + r$ for some q.
- For example,
 - 9 mod 7 = 2, because 9 = $1 \cdot 7 + 2$;
 - $21 \mod 7 = 0$, because $21 = 3 \cdot 7 + 0$.
- We say " α is a factor of b" if α divides b with remainder o.
- For example,
 - 3 is a factor of 6, but
 - 4 is not a factor of 6.

Basic Number Theory: Modular arithmetic

- Modular arithmetic refers to arithmetic done with the numbers in $\{o,...,b-1\}$ (for some b), where we always reduce our results to remainders on division by b.
- For example, with b = 7, we have:
 - $6 + 4 = 10 = 3 \mod 7$.
 - $6 \cdot 4 = 24 = 7 \cdot 3 + 3 = 3 \mod 7$.
 - $6^4 = 6 \cdot 6 \cdot 6 \cdot 6 = (6^2)^2 = 36^2 = 1^2 = 1 \mod 7$.

- Important principle: we never need to work with numbers much bigger than b if we are doing arithmetic mod b: we can just reduce mod b as we go along.
- Note that if b is composite, then we can multiply two non-zero numbers mod b and get zero!
 - For example, with b = 12 we have $6.4 = 24 = 2.12 + 0 = 0 \mod 12$.
- This is different from normal arithmetic....

Basic Number Theory: Primes and gcds

- A number greater than 1 with only itself and 1 as factors is called a prime number. For example, 13 is prime, but 21 is composite (= not prime).
- The greatest common divisor (gcd) of two numbers is the largest number that is a factor of both numbers. For example, gcd(4,6) = 2.
- Two numbers are said to be relatively prime if their gcd is 1.

Basic Number Theory: Modular inverses

- Over the rational numbers we define the (multiplicative) inverse of α , denoted α^{-1} as the number such that $\alpha \cdot \alpha^{-1} = 1$.
- Modulo some number p, we can also define (modular) inverses.
 - For example, $5 \cdot 5 \mod 6 = 25 \mod 6 = 1 \mod 6$.
 - Hence $5^{-1} = 5 \mod 6$.
- All numbers o < a < p such that gcd(a,p) = 1 have an inverse modulo p.
- But if o < α < p is such that gcd(a,p) > 1, then a will not have an inverse modulo p.
- If p is a prime, then gcd(a,p) = 1 for all o < a < p (why?), and so every number a in $\{1,...,p-1\}$ will have an inverse mod p.
- The numbers modulo a prime p form a field, which means that addition, multiplication and division are defined and work for all inputs "as expected".

Basic Number Theory

• As an example, let's make the addition and multiplication tables mod 5.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

	0	1	2	3	4
Ο	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- Notice the pattern along rows and columns of addition table.
- Notice how every element has a multiplicative inverse except o.
- 1 and 4 are self-inverse.
- As an exercise, make the same tables for modulus 6.

Basic Number Theory: The Euclidean algorithm

- Given $a, b \in \mathbb{N}$ we want to compute gcd(a,b).
- Euclid's algorithm is based on recursive application of the formulae:

```
gcd(a,b) = gcd(b, a \mod b) (1)

gcd(a,o) = a (2)
```

- Notice that $o \le a \mod b < b$, so the numbers decrease in size at every step.
- Example:

```
gcd(21, 14)

= gcd(14, 21 mod 14) (using (1))

= gcd(14, 7)

= gcd(7, 14 mod 7) (using (1))

= gcd (7,0)

= 7. (using (2))
```

Basic Number Theory: The extended Euclidean algorithm

- The extended Euclidean algorithm outputs integers r, s, t where $r = \gcd(a,b)$ and $s \cdot a + t \cdot b = r$.
- In other words, it gives an expression for gcd(a,b) as a linear combination of a and b over the integers.
- It works like the Euclidean algorithm but keeps track of additional information as we go along.
- It computes a series of coefficients r_i , s_i , t_i such that:

$$r_i = s_i \cdot \alpha + t_i \cdot b.$$

In each step we compute

$$r_{i+1} = r_{i-1} - q_i \cdot r_i$$
 where $o \le r_{i+1} < |r_i|$
 $s_{i+1} = s_{i-1} - q_i \cdot s_i$
 $t_{i+1} = t_{i-1} - q_i \cdot t_i$

- We initialise the algorithm with $r_o = a$, $r_1 = b$ and $s_o = 1$, $s_1 = o$, $t_o = o$, $t_1 = 1$.
- Eventually $r_k = \gcd(a,b)$ and $\gcd(a,b) = s_k \cdot a + t_k \cdot b$.

Basic Number Theory: The extended Euclidean algorithm

- The extended Euclidean algorithm outputs integers r, s, t where $r = \gcd(\alpha, b)$ and $s \cdot \alpha + t \cdot b = r$.
- Example:

i	r _i	qi	Si	t _i	$r_i = s_i \cdot a + t_i \cdot b$
0	a = 14	_	1	0	$1 \cdot 14 + 0 \cdot 21 = 14$
1	b = 21	_	0	1	$0 \cdot 14 + 1 \cdot 21 = 21$
2	14	0	1	0	$1 \cdot 14 + 0 \cdot 21 = 14$
3	7	1	-1	1	$-1 \cdot 14 + 1 \cdot 21 = 7$
4	0	2	3	-2	$3\cdot 14 - 2\cdot 21 = 0$

Using the extended Euclidean algorithm

- The numbers s and t are often useful for applications.
- For example, running the extended Euclid's algorithm on α with o < α < p
 and a prime p gives s and t such that:

$$a \cdot s + p \cdot t = 1$$
.

Reducing this equation mod p, we get:

$$a \cdot s = 1 \mod p$$
.

- So Euclid's algorithm allows us to find the inverse of α mod p.
- Recall that in RSA key generation, we need to a pair (e,d) such that:

$$e \cdot d = 1 \mod (p-1)(q-1)$$
.

- This can also be done using the extended Euclidean algorithm:
 - Choose e at random in the range [1, (p-1)(q-1)].
 - With high probability, gcd(e, (p-1)(q-1)) = 1 and then running Euclid's algorithm gives us the required d.

Correctness of textbook RSA

Let N = pq and suppose $ed = 1 \mod (p-1)(q-1)$.

Hence $(p-1)(q-1) \mid ed - 1$.

So write ed = 1 + k(p-1)(q-1).

Let m be coprime to N. Then m is coprime to p and q.

By Fermat's little theorem, $m^{p-1} = 1 \mod p$.

Then $m^{ed} = m^{1+k(p-1)(q-1)} = m \cdot (m^{p-1})^{k(q-1)} = m \cdot 1^{k(q-1)} = m \mod p$.

Hence p divides m^{ed} - m.

By symmetry q also divides m^{ed} - m. Then N=pq also divides m^{ed} - m.

Hence_ $m^{ed} = m \mod N$.

This completes the correctness proof.

(What about the case where *m* is not coprime to *N*?)

Appendix: Building a Simple KEM from RSA

Building a simple KEM from RSA

<u>RSA.KGen</u>: generates a pair of random primes p, q of some bit-size k/2, and integers d, e such that $de = 1 \mod (p-1)(q-1)$. Set N = pq. Output key pair (sk,pk) where sk = d, pk = (e,N). Let $H: \{0,...,N-1\} \rightarrow \{0,1\}^k$ be a hash function.

RSA.Encap: inputs public key pk = (e, N); $s \leftarrow_{\$} \{0, ..., N-1\}$; return (c, K) where $c = s^e \mod N$; K = H(s)

RSA.Decap: inputs private key sk = d and encapsulation c.

compute $s = c^d \mod N$; output K = H(s).

Theorem:

The above scheme RSA.KEM is IND-CCA secure in the **Random Oracle Model** provided the **RSA inversion problem** is hard.

The RSA Inversion Problem

1. Challenger C runs RSA KeyGen to produce pair (sk,pk) with

$$sk = d, pk = (e, N).$$

- 1. C selects $x \leftarrow_{\$} \{0,...,N-1\}$; sets $y = x^e \mod N$.
- 2. A is given input (N,e,y) by C; A runs and outputs some value x'.
- 3. A wins if x' = x.
- NB $x = y^d = y^{1/e} \mod N$, so x is the e-th root of y mod N.
- Strictly speaking, this version of the RSA Inversion problem is relative to the choice of KeyGen that we use.
- If A can factor N then it can solve the RSA inversion problem.
- The reverse implication is open, but no algorithm faster than factoring N is known for solving RSA inversion in general.

The Random Oracle Model (ROM)

- The ROM is a strong abstraction of hash functions.
- Formalized by Bellare and Rogaway (1993).
- In short, in the ROM, we model a hash function H as a random function (from a given domain to a given range).
- An adversary A cannot then compute H for itself but must instead "outsource" all its computations of H to its challenger in the form of oracle queries.
- This gives a security reduction in a proof the power to "inspect" queries made by A, possibly extracting useful information from them.
- It also allows the reduction to "program" specific values into its *H*-oracle replies.
- We can also argue that any output H(x) is uniformly random unless and until A
 queries H on input x.
- We will see this in action in our analysis of RSA.KEM ahead.

The Random Oracle Model (ROM)

- Of course, real hash functions like SHA-256 are fixed functions and not random oracles.
- So we must **instantiate** the random oracle somehow in order to implement any scheme whose analysis use the ROM.
- Heuristic step: replace the random oracle with a fixed hash function.
- There are many arguments for and against using the ROM in security proofs.
- Pro: it's a useful tool, especially in the public key setting.
- Con: it's not formally sound.

98

- Pro: none of the examples showing this are very natural.
- Pro: it enables more efficient schemes (in comparison to the standard model).
- A lot of research effort has gone into closing the gap between standardmodel-secure schemes and ROM-secure schemes.

Building a simple KEM from RSA (recap)

<u>RSA.KGen</u>: generates a pair of random primes p, q of some bit-size k/2, and integers d, e such that $de = 1 \mod (p-1)(q-1)$. Set N = pq. Output key pair (sk,pk) where sk = d, pk = (e,N). Let $H: \{0,...,N-1\} \rightarrow \{0,1\}^k$ be a hash function.

RSA.Encap: inputs public key pk = (e, N); $s \leftarrow_{\$} \{0, ..., N-1\}$; return (c, K) where $c = s^e \mod N$; K = H(s)

RSA.Decap: inputs private key sk = d and encapsulation c.

compute $s = c^d \mod N$; An RSA inversion instance! Output K = H(s).

Uniformly random unless adversary queries H on s.

Proof Intuition for simple KEM from RSA – 1

Claim:

RSA.KEM is IND-CCA secure in the ROM assuming the hardness of RSA inversion.

<u>Proof – intuition for IND-CPA security</u>

We show that from any IND-**CPA** adversary *A* against the KEM, we can build an adversary *B* solving the RSA inversion problem.

Given an RSA inversion challenge (N,e,y), B sets pk = (N,e) and uses y to construct challenge encapsulation c^* in the KEM security game for A.

- Key K_o then equals $H((c^*)^d \mod N) = H(y^d \mod N) = H(y^{1/e} \mod N) = H(x)$.
- Key K_1 is set to random by B.

Recall that A's challenger (played by B) gives (pk, c^* , K_b) to A; to win in the KEM security game, A must be able to distinguish K_o from K_1 , i.e. distinguish H(x) from random.

A can't do this unless it queries H on x at some point, since otherwise H(x) is uniformly random and has an identical distribution to K_1 .

If A does query H on x, then B can find x amongst the queries made by A; in fact, A can check each H-query z made by A and test if $z^e = y \mod N$.

Sketch of reduction for IND-CPA security

Proof Intuition for simple KEM from RSA – 2

- What about IND-CCA security?
- The crucial point is that B must provide a consistent simulation of $dec(\cdot)$ and $H(\cdot)$ queries for A, at least until x is queried (after that, we don't care the simulation can go wrong).
- B "patches the random oracle" using a table of triples of one of two forms: (z, c, h) or (??, c, h).
- On dec(*c*) query:
 - Check for a table entry (z,c,h); if one exists, respond with h.
 - Otherwise, choose random h and add entry (??,c,h) to the table; this implicitly defines H(z) = h where $z = c^{1/e} \mod N$ is unknown (hence "??" in place of z in the table).
- On *H* query with input *z*:
 - Check if there is already an entry (z,c,h) in the table; if so, return h (basic consistency).
 - Check if $z^e = c \mod N$ for some entry (??,c,h) in the table.
 - If yes, then complete table entry to (z,c,h); return h (maintain consistency with dec queries).
 - If not, select a random h, set $c = z^e \mod N$ and add a new entry (z,c,h); return h.
- Working out all the details is a bit messy, so we omit them.
- B's advantage is tightly related to that of A but its running time is higher (due to cost of maintaining table consistency).

Incomplete sketch of reduction

