

Introdução ao matplotlib

Obrigado!

apoia.se/livedepython

dunossauro at bouman in ~/git/apoiase on master*				
<pre>\$ python apoiadores.py</pre>				
Alysson Oliveira	Amaziles Carvalho	Andre Machado	Bruno Guizi	
Carlos Augusto	Cleber Santos	David Reis	Dayham Soares	
Diego Ubirajara	Edimar Fardim	Eliabe Silva	Elias Soares	
Emerson Lara	Fabiano Silos	Fabiano Teichmann	Fabiano Gomes	
Fernando Furtado	Fábio Serrão	Gleison Oliveira	Humberto Rocha	
JONATHAN DOMINGOS	Jean Vetorello	Johnny Tardin	Jonatas Oliveira	
Jonatas Simões	João Lugão	Jucélio Silva	Júlia Kastrup	
Leon Teixeira	Magno Malkut	Maria Boladona	Matheus Francisco	
Nilo Pereira	Pablo Henrique	Paulo Tadei	Pedro Alves	
Rafael Galleani	Regis Santos	Renan Moura	Renato Santos	
Rennan Almeida	Rodrigo Vaccari	Sérgio Passos	Thiago Araujo	
Tiago Cordeiro	Vergil Valverde	Vicente Marcal	Wander Silva	
Welington Carlos	Wellington Camargo	Welton Souza	William Oliveira	
Willian Gl	Yros Aguiar	Falta você	Falta você	

Roteiro

- Entendo o básico sobre o matplotlib
- Alguns conceitos básicos primordiais
 - Títulos
 - Labels
 - Legendas
- Explorando alguns tipos de gráficos
 - o plt.lines
 - o plt.bar
 - o plt.barh
 - o plt.pie
 - o plt.hist
- Trabalhando com dados

BAIXE A BASE (https://bit.ly/2HFkCtb)

Que raios é matplotlib?

Matplotlib é um módulo Python para plotting, e é um componente da suíte de módulos 'scientificPython'. Matplotlib permite que você prepare facilmente figuras de nível profissional com uma API abrangente para personalizar todos os aspectos das figuras.

5 linhas sem perder a amizade [0]

```
import matplotlib.pyplot as plt
X = range(100)
Y = [value ** 2 for value in X]
plt.plot(X, Y)
plt.show()
```


5 linhas sem perder a amizade [1]

O raio embelezador

Agora com 7 e mais bonito [0]

```
import matplotlib.pyplot as plt
from matplotlib import style
style.use('ggplot')
X = range(100)
Y = [value ** 2 for value in X]
plt.plot(X, Y)
plt.show()
```


Agora com 7 e mais bonito [1]

Uma consideração anterior

from matplotlib.plyplot as plt

(Tudo que vamos ver daqui pra frente vai omitir esses passos)

plt.show()

Labels

Uma maneira simples de explicar o que cada coisa do gráfico significa

plt.plot(x, y, label='bananas')

Grids

Título

plt.title('Curvas de potência')

xlabel, ylabel

São as explicações do que o gráfico está exibindo em x e y (como medidas):

Tempo x Tamanho

Altura x Largura

Custo x Tempo

- - -

xlabel, ylabel

São as explicações do que o gráfico está exibindo em x e y (como medidas):

Tempo x Tamanho

plt.xlabel('valor de x') plt.ylabel('valor de y')

. . .

Gráficos de linha

São necessários dois iteráveis (listas, tuplas, conjuntos, ...) um para que seja feita a escala do eixo x, outra do eixo y.

$$x = (1, 2, 3, 4)$$

 $y = (1, 2, 3, 4)$
 $plt.plot(x, y)$

Mas, vamos falar só dessa linha agora

Gráficos de linha

plt.plot(x, y, formato)

Formato	O que faz?	
-	Linha contínua	
	Linha tracejada	
	Linha tracejada com pontos	
:	Linha pontilhada	
	Exibe somente os pontos	
0	círculos	
٨	Triangulos	
*	Estrela	
	COLA	

Gráficos de linha

plt.plot(x, y, formato)

Formato	O que faz?
b	Azul
g	verde
r	vermelho
С	ciano
m	magenta
у	amarelo
k	preto
w	branco
•••	COLA

Gráficos de linha (linha_02.py)

Gráficos de barra

São necessários dois iteráveis (listas, tuplas, conjuntos, ...) um para que seja feita a escala do eixo x, outra do eixo y.

Gráficos de pizza

data = [5, 25, 50, 20]

plt.pie(data)

Gráficos de histograma

from random import randint

x = [randint(1, 5000) for x in range(10)]plt.hist(x)

Lendo um arquivo e entendendo os dados

```
texto = "
with open(<file>) as variável:
texto = variável.read()
#texto é uma string
```


Monte um gráfico de linhas com as temperaturas médias do ano de 1999.

Faça um histograma das temperaturas máximas de todos os anos.

Exiba um gráfico de linhas de todas as temperaturas, utilizando cores e símbolos diferentes para cada temperatura.

Faça um gráfico de barras com nomes de animais e dizendo o quanto você gosta deles de 0 a 100

Roteiro [2]

- Subplots
- Manipulando figuras
- Gráficos de 3 dimensões

subplots

subplots (compartilhando eixo x)

```
f, axarr = plt.subplots(2, sharex=True)
axarr[0].plot(x, y0, '--')
axarr[0].set_title('Sharing X axis')
axarr[1].plot(x, y1, '-.')
```


subplots (compartilhando x) [subplot_00.py]

subplots (compartilhando eixo y) [subplot_01.py]

```
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y0, '--')
ax1.set_title('Sharing Y axis')
ax2.plot(x, y1, 'g^')
```


subplots (compartilhando eixo y) [subplot_01.py]

Monte um gráfico que contenha 4 subplots com quatro tipos de gráficos de linha com cores diferentes e 'pontos lúdicos' diferentes e com cores diferentes

plt.figure

Responsável por criar uma nova figura, lembre-se, nós não criamos uma ainda, só usamos a pronta que o matplotlib nos deixa de brinde

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=<sua_figura>)

plt.figure

```
x = [1, 2, 3, 4]
 = [4,3,2,1]
fig = plt.figure()
style = fig.patch
 style.set facecolor('green')
 plt.plot(x, y)
```


Não deu muito certo, não é mesmo? plt.plot -> criou uma nova figura usando as propriedade de figure

plt.figure

Então, qual é a ideia do figure com subplots?

Então, qual é a ideia do figui (linhas, colunas, gráfico)

subplot(2, 1, 1)

subplot(2, 1, 2)

canvas

9

Então, qual é a ideia do figure com subplots?

subplot(2, 2, 1) subplot(2, 2, 2) subplot(2, 2, 3) **subplot(2, 2, 4)** canvas

e

Então, qual é a ideia do figure com subplots?

Monte um gráfico que contenha 4 subplots com quatro tipos de gráficos de linha com cores diferentes e 'pontos lúdicos' diferentes e com cores diferentes (usando plt.figure) e com um fundo colorido

Gráficos 3D

```
from mpl toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
fig.add subplot(111, projection='3d')
<matplotlib.axes. subplots.Axes3DSubplot at
ax = fig.add subplot(111, projection='3d')
x = [1, 2, 3, 4]
y = [4,3,2,1]
z = [50, 60, 70, 80]
 ax.plot wireframe(x, y, z)
```

