Kuis 4 No. 6

Desain dan Analisis Algoritma MINGGU UAS: Greedy Algorithm

HINDARI PLAGIARISME! JANGAN MEMPERLIHATKAN/MEMBERIKAN JAWABAN ANDA KEPADA ORANG LAIN!

DODO & SEGMEN-SEGMEN GARIS

TEMPAT PENGUMPULAN

Judge: MUAS: Greedy Algorithm (Tugas) → Dodo & Segmen-segmen Garis

Perhatian! Pilih salah satu untuk dikerjakan. Poin maksimal soal garis adalah 35 (dari 100), soal monitor maksimal 26 (dari 100). Boleh submit dua-duanya, tetapi yang akan diperiksa adalah yang nilai judge-nya lebih tinggi. Jika sama, maka yang diperiksa hanya soal monitor. Untuk soal monitor, jika anda pernah membagikan jawaban kepada teman, hati-hati karena jika sama di Kuis ini, akan dianggap bekerja sama. Alasan "bikinnya barengan saat latihan kemarin, jadi kebetulan sama" tidak akan diterima.

DESKRIPSI MASALAH

 \mathbf{D}^{ODO} sedang bermain-main dengan segmen garis. *Segmen garis* adalah garis yang dibatasi oleh dua buah titik di ujungnya (yang biasanya dinyatakan denan menggunakan rumus y = mx + c adalah *garis*, yang tidak memiliki titik ujung). Diberikan beberapa segmen garis yang berada pada sumbu X dengan koordinat $[L_i, R_i]$ (L_i adalah ujung **Kiri** garis dan R_i adalah ujung **Kanan**-nya). Bantulah Dodo untuk menghitung jumlah minimal dari segmensegmen garis tersebut sehingga mereka dapat melingkupi seluruh bagian segmen [0, M].

SPESIFIKASI MASUKAN

Baris pertama input adalah integer $M(1 \le M \le 5000)$. Baris-baris berikutnya adalah pasangan " L_i R_i " ($|L_i|, |R_i| \le 50000, i \le 100000$). Input diakhiri dengan pasangan bilangan "0 0". Seluruh input adalah bilangan integer.

SPESIFIKASI KELUARAN

Keluarkan jumlah segmen minimal yang dibutuhkan untuk melingkupi bagian [0, M]. Pada baris-baris berikutnya, keluarkan setiap koordinat segmen yang dibutuhkan, diurutkan berdasarkan ujung kiri garis (L_i) . Jika bagian [0, M] tidak mungkin dilingkupi dengan segmensegmen garis yang diberikan, keluarkan 0 pada baris pertama output.

TELADAN MASUKAN DAN KELUARAN

No	Masukan	Keluaran
1	5	3
	-1 2	-3 2
	-3 2	1 4
	3 4	3 10
	4 5	
	3 10	
	-10 1	
	1 4	
	0 0	
2	1	0
	-1 0	
	-5 -3	
	2 5	
	0 0	

DODO & MONITOR

TEMPAT PENGUMPULAN

Judge: MUAS: Greedy Algorithm (Tugas) → **Dodo & Monitor**

DESKRIPSI MASALAH

 $\mathbf{D}^{\mathrm{ODO}}$ sekarang bekerja sebagai manajer di perusahan monitor RCT (*Raphus Cucullatus*). RCT baru saja memproduksi 6 jenis monitor baru untuk berbagai keperluan: videotron, tv layar lebar, monitor pc, laptop, tablet, HP, dlsb. Monitor-monitor tersebut memiliki ukuran layar 6×6 , 5×5 , 4×4 , 3×3 , 2×2 , dan 1×1 ("ketebalan" monitor dianggap 1). Untuk menekan biaya pengiriman barang, RCT hanya membuat satu jenis kardus monitor yaitu yang memiliki ukuran 6×6 . Tugas anda adalah membantu Dodo untuk menghitung berapa jumlah kardus minimum yang dibutuhkan utk membungkus sejumlah monitor.

Contoh : Jika terdapat 3 buah monitor 1×1 yang hendak dibungkus, maka tidak perlu digunakan 3 buah kardus, tetapi dapat digunakan hanya 1 kardus saja, karena ukuran kardus 6×6 dapat digunakan oleh 3 buah monitor ukuran 1×1 .

SPESIFIKASI MASUKAN

Baris pertama dari masukan berisi sebuah bilangan yang menyatakan banyaknya tes kasus. Maksimal ada 1000 tes kasus. Untuk setiap tes kasus, masukan terdiri dari satu baris yang berisi 6 buah bilangan integer positif n ($0 \le n \le 1000$). Angka pertama adalah jumlah monitor dengan ukuran 6×6 , angka kedua adalah jumlah monitor dengan ukuran 5×5 , dst.

SPESIFIKASI KELUARAN

Untuk setiap tes kasus, tampilkan banyaknya kardus minimum yang dibutuhkan untuk membungkus seluruh monitor tersebut.

TELADAN MASUKAN DAN KELUARAN

No	Masukan	Keluaran
1	2 0 0 0 0 0 3 2 1 1 0 2 2	1 4