СУЧАСНІ ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ

122 «Комп'ютерні науки» КН-19 2020 / 2021 навчальний рік

PYTHON # 11

- 1. Пакет NumPy
- 2. Пакет SciPy
- 3. Пакет SymPy

Пакети: SciPy: NumPy

NumPy Base N-dimensional array package

SciPy library Fundamental library for scientific computing

Matplotlib Comprehensive 2-D plotting

IPython Enhanced interactive console

SymPy Symbolic mathematics

pandas Data structures & analysis

NumPy (нум пай) – п-вимірні масиви SciPy (сай пай) – наукові обчислення SymPy (сім пай) – символічні обчислення Matplotlib - 2D графіка

3

NumPy

Відкрита бібліотека (пакет) розширення Python для підтримки великих багатовимірних масивів та матриць та виконання операцій з ними.

Модулі:

- np.emath математичні функції,
- np.random випадкові функції,
- np.fft дискретне перетворення Фур'є,
- np.linalg лінійна алгебра,
- np.matlib матричні операції.

Функції:

- сортування,
- поліноми,
- статистичні,
- - фінансові,

NumPy

ndarray – колекція елементів одного типу.

header – вбудований об'єкт опису масиву. Спосіб інтерпретації кожного елемента в масиві визначається окремим об'єктом – data-type. Крім основних типів (int, float, ...), об'єкти типів даних також можуть представляти структури даних.

Вибраний елемент (за індексом) є об'єктом Python – array_scalar, вбудований у NumPy.

NumPy. Типи елементів

Базові array scalar типи:

- int цілочисловий тип,
- float_ тип з рухомою комою,
- complex комплексний тип,
- bytes байт тип,
- unicode символи юнікоду,
- bool_ логічний тип.

за замовчуванням float_

Bapiaції array scalar типів:

int8	uint8	float8	complex64	bool8
int16	uint16	float16	complex128	
int32	uint32	float32	complex192	
int64	uint64	float64	complex256	
		float128		

NumPy. Створення

5 базових механізмів створення масиву

- Внутрішній (arange, ones, ...).
- Перетворення з інших структур Python (list, ...).
- Зчитування з файлу.
- Формування з послідовності (strings, ...).
- З використанням спеціальних функцій (random,...).

Внутрішній механізм:

- array(object [,dtype, copy, order,...])
- empty(shape[,dtype,order]) пустий масив
- ones(shape[,dtype, order])- масив 1-ць
- zeros (shape[,dtype, order]) масив 0-ів
- full(shape,fill_value[,dtype, order]) масив заповнений значеннями fill value

```
shape – кортеж, що визначає розмірність,dtype – тип елементу,order – порядок збереження.
```

NumPy. Математичні операції

Функція	Повертає
negative(x1, / [,])	Поелементно -Х1
positive (x1, / [,])	Поелементно +Х1
add(x1,x2, / [,])	Поелементне Х1 + Х2
subtract(x1,x2, / [,])	Поелементне Х1 - Х2
multiply(x1,x2, / [,])	Поелементне X1 * X2
divide(x1,x2, / [,])	Поелементне X1/X2
reminder(x1,x2, / [,])	Поелементне Х1 % Х2
mod(x1,x2, / [,])	Поелементне Х1 % Х2

sign(x, / [,])	Поелементне знак Х
power(x1,x2, / [,])	Поелементне X1 ** X2

NumPy. Математичні функції

Функція	Повертає
exp(x, /[,])	Поелементна експонента
log(x, /[,])	Поелементний логарифм
sqrt(x, /[,])	Поелементний корінь
gcd(x1,x2, / [,])	Поелементний НОД
тинонометричні	
sin(x, /[,])	Поелементне <i>sin(</i>)
asin(x, /[,])	Поелементне asin()
гиперболічні	
sinh(x, /[,])	Поелементне sinh()
asinh(x, /[,])	Поелементне asinh()
ПЕРЕТВОРЕННЯ	
deg2rad(x, /[,])	Поелементне град -> рад
rad2deg(x, / [,])	Поелементне рад -> град

NumPy. Порівняння, логіка

Функція	Повертає
greater(x1,x2, / [,])	Поелементне >
greater_equal(x1,x2, / [,])	Поелементне >=
less_equal(x1,x2, / [,])	Поелементне <
not_equal(x1,x2, / [,])	Поелементне <=
equal(x1,x2, / [,])	Поелементне ==
greater(x1,x2, / [,])	Поелементне !=
logical_and(x1,x2, / [,])	Поелементне and
logical_or(x1,x2, / [,])	Поелементне <i>от</i>
logical_xor(x1,x2, / [,])	Поелементне хог
logical_not(x, / [,])	Поелементне <i>not</i>

NumPy. Модуль random

Функція	Повертає
Integers (low [, high, size, dtype, endpoint])	Випадкові цілі від <i>low</i> до <i>high</i> (виключно), або коли <i>endpoint</i> = True , до <i>high</i> (включно).
random ([size, dtype, out])	Випадкові з рухомою комою в інтервалі [0.0, 1.0).
bytes(length)	Випадкову послідовність байтів
Більш 30 функцій розподілення :	
normal([loc, scale, size])	Нормальне розподілення

NumPy. Статістика

Функція	Повертає
median(a[, axis,])	Медіана масиву
average(a[, axis,])	Середня арифметична
mean (a[, axis,])	Мода масиву
std (a[, axis,])	Стандартне відхилення
corcoef (x[, y, rowar, bias, ddof])	Коефіцієнти кореляції
correlate (x, v[, mode])	Взаємна кореляція двох масивів
histogram (a,[,bins,range, normed,])	Гістограма розподілу значень в масиві

NumPy. Сортування

Функція	Повертає
sort(a[, axis, kind, order])	Отсортовану копію а

argmax(a[, axis, kind, order])	Індекс максимального елемента A
argmin(a[, axis, kind, order])	Індекс мінімального елемента A
where(condition, [x,y])	Елемент x або y , враховуючи умову condition
count_nonzero (a, [, axis])	Кількість не нульових елементів масиву a

NumPy. Модуль linalg

Функція	Повертає
Dot(a,b[, out])	Скалярне множення двох масивів a b
matmul([x1,x2, /[, out, casting, order,])	Множення матриць х1 х2
linalg.matrix_power(a,n)	Степінь n матриці a
linalg.norm(x[,ord,axis,keep])	Норма масиву х
linalg.solve(a,b)	Рішення СЛАР $a*x = b$

SciPy

Відкрита бібліотека (пакет) високоякісних наукових та інженерних інструментів. Модулі:

- .constants фізичні константи,
- .integrate інтегрування,
- .optimize оптимізація,
- .interpolate інтерполяція,
- .fft перетворення Фурє,
- . signal обробки сигналів,
- .linalg лінійна алгебра,
- . sprase розріджені матриці,
- .spatial дерева, метрики,
- .special спеціальні функції
- .ndimage обробки зображень,
- .stats статистичні функції.

SciPy (приклад)

Функція scipy.optimize.minimize() – безумовна мінімізація функцій багатьох змінних.

Тестова функція Розенброка:

$$f(x) = \sum_{i=0}^{n-2} \left[100 * (x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

Мінімум = 0, коли всі $x_i = 1$

https://ru.wikipedia.org/wiki/Тестовые функции для оптимизации

Приклади: EXAMPL_LEC_13_PYTHON_12_3_SciPy.ipynb

SymPy

Відкрита бібліотека для символічної математики. Повнофункціональна комп'ютерною алгебра (CAS). Основні модулі:

- Polynomials поліноми,
- Solving equations рішення рівнянь,
- Combinatorics комбінаторика,
- Discrete math дискретна математика,
- Matrix матричні операції,
- Geometry геометричні обчислення,
- Physics фізичні обчислення,
- Statistics статистика,
- Cryptography криптографія.

... та багато іншого

Рекомендована ЛІТЕРАТУРА

- Програмування числових методів мовою Python: підруч. / А. В. Анісімов, А. Ю. Дорошенко, С. Д. Погорілий, Я. Ю. Дорогий; за ред. А. В. Анісімова. К.: Видавничо-поліграфічний центр "Київський університет", 2014. 640 с.
- Програмування числових методів мовою Python: навч. посіб. / А. Ю. Дорошенко, С. Д. Погорілий, Я. Ю. Дорогий, Є. В. Глушко; за ред. А. В. Анісімова. К.: Видавничо-поліграфічний центр "Київський університет", 2013. 463 с.
- Основи програмування Python: Підручник для студ. спеціальності 122 «Компютерні науки» / А.В.Яковенко; КПІ.- Київ: КПІ, 2018. 195 с.
- **Бейдер Д.** Чистый Python. Тонкости программирования для профи.-СПб.: Питер. 2018.-288 с.: ил.

Посилання

https://scipy.org/

Контрольні запитання

- Визначте призначення **numpy**. Поясніть принципи організації масивів в **numpy**.
- Пояснить основні механізми створення масивів в пакеті **numpy**. Надайте приклади.
- Надайте призначення модулів та функцій пакету **numpy**. Надайте приклади застосування.

The END Mod 1. Lec 11.