ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

Vsebina

- □ definicija masivnih podatkov,
- □ ključni podatkovni viri,
- □ analiza trendov razvoja in
- □ aktualni izzivi na področju

Definicija

- □ Tradicionalno 3xV
 - Volume (Velikost)
 - **□ Velocity** (Hitrost)
 - Variety (Raznorodnost)

- Vedno premikajoča tarča!
 - Masivnih podatkov ni mogoče učinkovito obdelati s tradicionalnimi metodami obdelave podatkov

Definicija

- □ Definicija s 5xV
 - Volume (Velikost)
 - Velocity (Hitrost)
 - Variety (Raznorodnost)
 - Veracity (Verodostojnost)
 - Value (Vrednost)

- □ Podpora pri odločanju!
 - Analize in napovedi so fokus obdelave podatkov!

Aplikacije

Tudi mi smo senzorji ...

- □ Kje se srečamo s tehnologijami masivnih podatkov?
 - Ste kdaj prejeli ciljno reklamno sporočilo?
 - Analize obnašanja na spletu
 - Uporabljate kartice popusta?
 - Nakupovalne navade
 - Ste kdaj plačali s kreditno kartico?
 - Zaznava goljufivih bančnih transakcij
 - Ste prejeli popust pri zavarovali avto?
 - Bonusni programi zavarovalnic (primer sledenja)
 - Uporabljate elektriko?
 - Napovedovanje porabe električne energije

Osnovni izrazoslovje

- Ciljna spremenljivka (ang. target variable) je spremenljivka, ki jo napovedujemo
- Razlagalna spremenljivka (ang. explanatory variable) je vrednost, ki jo uporabljamo za napovedovanje
- □ Značilnica (ang. feature), je značilna lastnost ali značilen vidik nečesa
- □ **Izdvajanje značilnic (ang. featuer extraction)** je postopek strukturiranja značilnic za nadaljno rabo
- Podatkovne transformacije (ang. data transformation) je preslikava podatkov iz ene oblike/strukture v drugo

Osnovni izrazoslovje

- Čiščenje podatkov (ang. data cleaning) je proces zaznave in odstranjevanja manjkajočih ali pokvarjenih podatkov
- □ Izbira podatkov (ang. data selection) je postopek
 izbiranja ustreznih podatkov za naše analize
- Agregacija podatkov (ang. data aggregation), je združevanje podatkov v skupne strukture
- Podatkovno zlivanje (ang. data fusion) je postopek združevanja komplementarnih podatkov
- Podatkovno bogatenje (ang. data enrichment) pomeni izboljševanje informacijske vrednosti podatkov skozi njihovo združevanje

Tradicionalen model procesa podatkovne analitike

Masivni podatki spreminjajo svet!

Nekoč

- □ Zastavi vprašanje
- □ Izvedi eksperiment
- □ Zberi podatke
- □ Analiziraj podatke
- Odgovori na vprašanje

Danes

- □ Zbiraj podatke
- □ Zastavi vprašanje
- □ Strukturiraj podatke
- □ Analiziraj podatke
- Odgovori na vprašanje

Podatkovni viri

Masivni podatki so nestrukturirani ali delno strukturirani

Masivni podatki vsebujejo vrednost

Masivni podatki niso enostavno razumljivi

- □ Senzorski podatki
- □ Logi naprav
- □ Spletne strani
- □ EMaili
- □ Socialna omrežja
- □ Mediji
- Tradicionalni dokumenti
- □ ...

Trenutni trendi

□ Ključni uporabniki

- Finančni sektor
- 2. Proizvodnja
- 3. Prodaja
- 4. Mediji/zabava
- 5. Igralništvo
- 6. Zdravstvo
- 7. Telekomunikacije
- 8. Vladne organizacije

ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

PO3 – Prilagoditve pomnilniški hierarhiji

Vsebina – V4Volume

- □ DAM model (ang. Disk Access Model)
- □ Predpomnilniško-zavedni algoritmi

Ključne predpostavke:

- □ Podatki so preveliki za RAM
 - Podatkovne strukture so prevelike za RAM
- Operacije nad podatki so zelo enostavne
 - Časovna zahtevnost odvisna zgolj od števila dostopov do diska

Model dostopov do diska (DAM)

- Velika količina podatkov
 - Podatki se prenašajo v blokih
 - V pomnilnik lahko shranimo nekaj blokov
 - Velikost diska je "neomejena"
- Cilj: Minimizacija prenosa podatkov
 - Parametri:
 - B = velikost bloka
 - M = velikost pomnilnika RAM
 - N = velikost podatkov

Prebiranje vrstice

□ Koliko IO operacij je potrebno za branje?

Prebiranje vrstice

□ Koliko IO operacij je potrebno za branje?

```
□ O(N/B)
```


□ Najslabši primer?

□ Najslabši primer?

$$O\left(\log_2 \frac{N}{B}\right) \approx O(\log_2 N)$$

□ PRIMER: Binarno drevo

 Nauk zgodbe: podatkovna struktura je ključ do učinkovite implementacije algoritma.

$$O(\log_2 N)$$

$$O(\log_B N) = O\left(\frac{\log_2 N}{\log_2 B}\right)$$

PONOVITEV: Urejanje z zlivanjem

- $\square N = 1000 MB$
- \square M = 10 MB
- \Box B = 1MB

Zakaj merge v dveh korakih?

- $\square N = 1000 MB$
- \square M = 10 MB
- \Box B = 1MB

- Zakaj mergev dveh korakih?
 - Vedno beremo1 blok!

- \square N = 1000 MB
- \square M = 10 MB
- \Box B = 1MB

□ Koliko IO operacij?

- $\square N = 1000 MB$
- \square M = 10 MB
- \Box B = 1MB

□ Koliko IO operacij?

$$O\left(rac{N}{B}\log_{M/B}rac{N}{B}
ight)$$
 Cena prehoda Število prehodov

- 1. Uredi bloke velikosti M
- 2. Ustvari M/B tokov
- 3. Zlij tokove

- Algoritem v naprej ne pozna parametrov B in M
- □ Cilj enak kot prej:
 - minimizirati število prenosov
- Optimizacija za vse možne M in B
 - Seveda pa ne najhitreje pri vseh M in B
 - Konsistentnost
- Je naš algoritem sortiranja predpomnilnoško zaveden?

- □ Ang: Cache-oblivious algorithm
- Def: Algoritmi, ki izkoriščajo pomnilniško hierarhijo brez eksplicitnega znanja o velikosti pomnilnika.

- □ PRIMER: Transponirana matrika:
 - A velikosti n×m in B velikosti m×n
 - Kako izvedemo operacijo:

$$B = A_{\perp} \dot{s}$$

It's all about divide and conquer!

1	2	თ	4
5	6	7	8
9	10	11	12
13	14	15	16

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16

Učinkovit pomnilniško zaveden pristop:

- 1. Deli v bloke velikosti M
 - Če to idejo implementiramo rekurzivno, bomo vedno prišli do bloka velikosti M
 - Vse nadaljnje rekurzije ne zahtevajo več branja!

Branje zaporednih blokov je cca. 10x hitrejše!

Množenje matrik

Množenje matrik (transponiran B)

Množenje matrik (transponiran B)

- □ Pomnilniško nezaveden pristop:
 - PREDPOSTAVKE PODATKOVNE STRUKTURE:
 - Hrani toliko podatkov, kot jih lahko
 - Ko dostopamo do vrednosti, ki je ne hrani, prebere blok

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16

9	10	
13	14	

Koliko IO operacij je potrebno za iskanje elementa?

- □ PRIMER: Binarno drevo
 - Ne glede na velikost bloka, stvar deluje enako!

Lijačno (funnel) zlivanje

- Definicija strukture zlivanja, ki deluje učinkovito neglede na M
 - k-lijak podatkovna struktura, ki zlije k urejenih vhodnih tokov
- □ Rekurzivno zlivanje: N^(1/3) tokov z N^(2/3) elementov

ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

P03 – Opisna analiza

Motivacija

- □ Analiza nakupov
 - Začetek Big Data analiz
- □ Apriori algoritem
 - Najbolj citiran članek na področju podatkovnega rudarjenja
- □ Temeljno vprašanje:
 - Kakšne so navade kupcev?

Motivacija

Kaj kupuje Homer Simpson poleg plenic?

- □ Odgovor:
 - Če kupuješ plenice imaš doma verjetno otroka
 - Ker imaš otroka, verjetno ne hodiš dosti v ven
 - Izkaže se, da poleg plenice kupuješ pivo

Motivacija

Kaj kupuje Homer Simpson poleg plenic?

□ Posledica:

- V trgovinah imamo skupaj pivo in plenice
- Plenice daš v akcijo in dvigneš ceno piva
- Lahko damo v akcijo tudi pivo?

Vsebina

□ Opisna statistika

□ Asociacijska pravila

□ Apriori algoritem

□ Iskanje opisnih (meta) podatkov

- □ Statistični povzetki:
 - Srednje (pričakovane) vrednosti
 - Spremenljivost (disperzija)

- Običajno izdelamo iz histograma
 - Rešujemo problem volumna

- □ Osnovni podatki:
 - $\square N =$ Število elementov
 - Min n = Najmanjši element
 - \square Max n = Največji element
 - Razpon vrednosti $n \in [Min \ n, Max \ n]$
- \square Histogram H[k] = število elementov v košu k
 - $\square K =$ število košev
 - □ k ∈ [0, K-1]

□ Kako določiti število košev K?

$$\blacksquare K = \frac{Max \, n - Min \, n}{h}, \text{ kjer je } h \text{ velikost koša}$$

$$\blacksquare K = \sqrt{n}$$

Normalna porazdelitev običajno

$$k = \lceil \log_2 n \rceil + 1,$$

Izboljšava za nenormalno porazdelitev

$$k=1+\log_2(n)+\log_2igg(1+rac{|g_1|}{\sigma_{g_1}}igg)$$

□ Povprečje na osnovi histograma

$$\bar{n} = \frac{\sum_{k=0}^{K} k * H[k]}{\sum_{k=0}^{K} H[k]}$$

 \square Pričakovana vrednost = arg max H[k]

□ Kako izračunamo mediano?

□ Standardni odklon

$$\bar{n} = \sqrt{\frac{\sum_{k=0}^{K} k * (H[k] - \bar{n})}{\sum_{k=0}^{K} H[k]}}$$

□ Spremenljivost

$$m_{1} = \frac{\sum (x_{i} - \bar{x})}{N}$$

$$m_{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{N}$$

$$m_{3} = \frac{\sum (x_{i} - \bar{x})^{3}}{N}$$

$$m_{4} = \frac{\sum (x_{i} - \bar{x})^{4}}{N}$$

Asimetrija (skewness)

$$b_1 = \frac{m_3}{s^3} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3}{\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2\right]^{3/2}} ,$$

□ Spremenljivost

$$m_{1} = \frac{\sum (x_{i} - \bar{x})}{N}$$

$$m_{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{N}$$

$$m_{3} = \frac{\sum (x_{i} - \bar{x})^{3}}{N}$$

$$m_{4} = \frac{\sum (x_{i} - \bar{x})^{4}}{N}$$

Sploščenost (kurtosis)

$$g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2\right)^2} - 3$$

Model trgovine in nakupovalnega vozička

Množica pogosto kupljenih izdelkov

- □ Velik nabor artiklov
- Velik nabor nakupovalnih vozičkov
 - V vsakem vozičku malo artiklov
- □ Katere artikli so "pogosto" kupljeni?
 - □ Podorno število množice /

$$sup(I) = \frac{\check{s}t. vozi\check{c}kov v katerih je I}{\check{s}t. vseh vozi\check{c}kov},$$

Podporna pragovna vrednost s določa množico pogosto kupljenih izdelkov

- Množica artiklov = {marelice, češnje, pomaranče, breskve, jagode}
- □ Podporna pragovna vrednost s = 33%, približno 3

$$B_1 = \{m,c,b\}$$
 $B_2 = \{m,p,i\}$
 $B_3 = \{m,b\}$ $B_4 = \{c,i\}$
 $B_5 = \{m,p,b\}$ $B_6 = \{m,c,b,i\}$
 $B_7 = \{c,b,i\}$ $B_8 = \{b,c\}$

- □ Kateri so pogosti artikli:
 - □ {m}, {c}, {b}, {i},
 - **□** {m,b}, {b,c}, {c,i}

Formalizacija

□ Iščemo "if-then" relacije

$$\{i_1, i_2, ..., i_k\} \rightarrow j$$

 $l \rightarrow j, če = \{i_1, i_2, ..., i_k\}$

□ Zaupanje:

$$conf(I \rightarrow j) = \frac{\sup(I \cup j)}{\sup(I)} = P(j|I)$$

 \square Kakšno je zaupneje v pravilo $\{m,b\} \rightarrow c$?

Formalizacija

□ Iščemo "if-then" relacije

$$\{i_1, i_2, ..., i_k\} \rightarrow j$$

 $l \rightarrow j, če = \{i_1, i_2, ..., i_k\}$

□ Zaupanje:

$$conf(I \rightarrow j) = \frac{\sup(I \cup j)}{\sup(I)} = P(j|I)$$

□ Kakšno je zaupneje v pravilo $\{m,b\} \rightarrow c$? $conf(\{m,b\} \rightarrow c) = 50\%$

Naivni Algoritem

- Zanimajo nas vsa asociativna pravila, ki imajo podporo večjo od s in zaupanje večje kot c
- □ Osvnovna ideja, če ima I podporo s, potem ima pravilo $I \rightarrow i$ podporo, ki je vsaj cs. Zato:
 - A vsebuje vse množice, ki imajo podporo vsaj cs
 - \blacksquare B vsebuje vse množice, ki imajo vsaj s (tako $A \subseteq B$)
 - $\blacksquare B \setminus A$ definira pravila
 - Poiščimo torej tiste množice, ki so v B in jih ni v A ter ugotovimo kateri element jim manjka
- □ Ne pozabimo, problem je Big Data!

Naivni Algoritem

- Problem iskanja asociativnih pravil je enak problemu iskanja pogosto kupljenih artiklov
 - Zahteva uporabo DAM!
- □ Prešteti moremo vse množice s podporo cs
 - V bistvu histogram
- □ Štetje zahteva:
 - Izvedbo trikotna matrike
 - Izvedbo seznama parov

Apriorni algoritem

Množica artiklov ne more biti pogosta, če vse njene podmnožice niso pogoste!

Časovna zahtevnost algoritma je enaka podpornemu

številu, ki ga iščemo!

□ Postopno filtriranje glede na dedukcijo!ⓒ

Monotonost (matematično):

$$\forall x, y: x \le y \Rightarrow f(x) \le f(y)$$

Praktično: če se par artiklov pojavi v s nakupovalnih vozičkih, se vsak izmed para artiklov sam pojavi vsaj s-krat.

Apriorni algoritem

- □ Z drugimi besedami: če se artikel ne pojavi v vozičku vsaj s-krat, potem se tudi noben izmed njegovih parov ne:
 - □ <u>Prehod 1</u>: Preštejemo število pojavitev vsakega artikla in brišemo vse, ki se ne pojavijo vsaj s-krat
 - Generiramo seznam kandidatov parov pogosto kupljenih artiklov
 - <u>Prehod 2</u>: Preštejemo kolikokrat se pojavijo pari pogosto kupljenih artiklov (vse filtrirane preskočimo) in zopet filtriramo.
 - Generiramo seznam trojic pogosto kupljenih artiklov.

Apriorni algoritem

- □ Generiranje trojic pogosto kupljenih artiklov:
 - □ Izberemo par, iz katerega želimo generirati trojice
 - Izberemo drugi par, ki vsebuje vsaj en element, v prvem paru
 - Dobimo tretji element, ki definira trojico.

- Množica artiklov =
 {marelice, češnje,
 pomaranče, breskve,
 jagode}
- Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\} B_2 = \{m,p,j\}$ $B_3 = \{m,b\} B_4 = \{c,j\}$ $B_5 = \{m,p,b\} B_6 = \{m,c,b,j\}$ $B_7 = \{c,b,j\} B_8 = \{b,c\}$

- □ Korak 1:
 - \square sup($\{m\}$)=5
 - \square sup($\{c\}$)=5
 - \square sup($\{p\}$)=2
 - \square sup($\{b\}$)=5
 - \square sup($\{i\}$)=4
- □ Filtriranje
 - **□** {m,c,b,j}

- Množica artiklov =
 {marelice, češnje,
 pomaranče, breskve,
 iagode}
- Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\} B_2 = \{m,p,j\}$ $B_3 = \{m,b\} B_4 = \{c,j\}$ $B_5 = \{m,p,b\} B_6 = \{m,c,b,j\}$ $B_7 = \{c,b,j\} B_8 = \{b,c\}$

- □ Filtriranje
 - **□** {m,c,b,j}
- □ Generiramo pare:
 - \square sup($\{m,c\}$)=2
 - \square sup($\{m,b\}$)=4
 - \square sup($\{m,j\}$)=2
 - $\square \sup(\{c,b\})=4$
 - \square sup($\{c,j\}$)=3
 - \square sup($\{b,j\}$)=2

- Množica artiklov = {marelice, češnje, pomaranče, breskve, iagode}
- □ Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\}$ $B_2 = \{m,p,i\}$ $B_3 = \{m,b\}$ $B_4 = \{c,i\}$ $B_5 = \{m,p,b\}$ $B_6 = \{m,c,b,i\}$

 $B_7 = \{c,b,j\}$ $B_8 = \{b,c\}$

- □ Generiramo pare:
 - \square sup($\{m,c\}$)=2
 - \square sup($\{m,b\}$)=4
 - \square sup($\{m,j\}$)=2
 - \square sup($\{c,b\}$)=4
 - \square sup($\{c,j\}$)=3
 - \square sup($\{b,j\}$)=2
- □ Filtriranje
 - Število parov je 6
 - □ Prag = 3

- Množica artiklov =
 {marelice, češnje,
 pomaranče, breskve,
 jagode}
- Podporna pragovna vrednost s = 3 in c=50% $B_1 = \{m,c,b\} B_2 = \{m,p,j\}$ $B_3 = \{m,b\} B_4 = \{c,j\}$ $B_5 = \{m,p,b\} B_6 = \{m,c,b,j\}$ $B_7 = \{c,b,j\} B_8 = \{b,c\}$

- □ Filtriranje
 - \square sup($\{m,b\}$)=4
 - \square sup($\{c,b\}$)=4
 - $\Box \sup(\{c,j\})=3$
- □ Izračunamo trojice
 - \square sup($\{m,b,c\}$)=2
 - \square sup($\{c,b,j\}$)=2

ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

PO4 – Analiza časovnih vrst

Motivacija - V 4 Velocity

- □ Časovna vrsta
 - Časovno urejena množica opazovanj

- □ Aplikacije:
 - Vremenske napovedi (temperatura, vlažnost, ...)
 - □ Finančni trendi (vrednost valut, delnic ...)
 - Povpraševanje po dobrinah (nakupi)
 - Medicina (srčni utrip, EEG,...)

Motivacija - V 4 Velocity

- □ Časovna vrsta
 - V čem je razlika?

- □ Regresija (tradicionalno)
 - Ciljna spremenljivka
 - Razlagalne spremenljivke

$$y_i = eta_0 1 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Motivacija - V 4 Velocity

- □ Časovna vrsta
 - Tradicionalna časovna vrsta (četrtletni zaslužki podjetja)

- Analiza vsebovanih vzorcev za predvidevanje:
 - Trendi, cikli, šum, povezave z zunanjimi okoliščinami ...

Vsebina

□ Analiza in lastnosti časovnih vrst

- □ Napovedovanje vrednosti
 - Autokorelacija
 - ARIMA

Narava časovnih vrst

- Obravnavali bomo le univariantne diskretne časovne vrste
 - Univariantnost spremljamo eno samo spremenljivko
 - Meritve izvajamo v enakomernih časovnih korakih
- □ Notacija
 - Naključna spremenljivka $X = \{x_t\}$, kjer t predstavlja čas
 - $t \in \{1, 2, ..., T\}$
- □ Variabilnost:

Osnovni matematični model

- □ Notacija
 - Naključna spremenljivka $X = \{x_t\}$, kjer t predstavlja čas
 - \blacksquare $t \in \{1, 2, ..., T\}$
- \square Naivna različica: $x_t = f(t)$
 - Zaradi visoke stopnje variabilnosti skoraj nikoli ni učinkovit
- \square Splošni model: $x_t = f(t) + \varepsilon$
 - \Box f(t) deterministični del, ki sledi časovnim zakonitostim
 - lacktriangle naključni del, ki sledi zakonom verjetnosti

Osnovni matematični model

□ Razlogi za variabilnost vrednosti

Dekompozicija signala:

■ Trend:

Sezonski efekti:

■ Neregularne fluktuacije: □

Stacionarna časovna vrsta

□ Definicija:

- Časovna vrsta je stacionarna, kadar je verjetnost pojavitve vsake vrednosti $X = \{x_t\}$ enaka verjetnosti pojavitve vsake vrednosti v drugem časovnem obdobju $X_h = \{x_{t+h}\},$
- Taka časovna vrsta je odvisna zgolj od časovne razlike in ne od dejanskega časa!
- □ Šibko stacionarna:
 - Povprečje je konstanta
- □ Zakaj je stacionarnost koristna?

Avtokorelacija

□ Pearsonov korelacijski koeficient

$$r = r_{xy} = rac{\sum x_i y_i - n ar{x} ar{y}}{\sqrt{(\sum x_i^2 - n ar{x}^2)} \, \sqrt{(\sum y_i^2 - n ar{y}^2)}}.$$

- □ kjer
 - □ n − število elementov
 - x,y spremenljivki

Avtokorelacija

- Definicija
 - Korelacija med signalom $X = \{x_t\}$ in njegovo zakasnjeno kopijo $X_h = \{x_{t+h}\}$

- □ Naivni pristop k napovedovanju:
 - Poiskati najprimernejši h
- Določa sezonski efekt oz. periodičnost signala

Tradicionalne časovne vrste

Naključne vrednosti

- Nabor vrednosti iz območja [X,Y]
- Ima konstantno povprečje
- □ Konstantno varianco
- □ Je stacionaren

Beli šum (Gaussovo naključje)

Tradicionalne časovne vrste

Naključni sprehod

- $\square x_{t+1} = x_t + w_{t}, \text{ kjer}$
 - je w_t naključna vrednost
- □ Povprečje se spreminja
- Tudi varianca se spremenija
- □ Ni stacionaren

10 naključnih sprehodov:

Tradicionalne časovne vrste

Naključni sprehod

- $\square x_{t+1} = x_t + w_{t}, \text{ kjer}$
 - je w_t naključna vrednost
- □ Povprečje se spreminja
- Tudi varianca se spremenija
- □ Ni stacionaren

Diferenciacija

- Odvod naključni sprehod

- □ Ker je w_t povsem
 naključna vrednost
 - \blacksquare je Δx_{t+1} stacionaren!

Ocena trenda – tradicionalna regresija

- Definicija
 - Korelacija med signalom $X = \{x_t\}$ in njegovo zakasnjeno kopijo $X_h = \{x_{t+h}\}$
- □ Naivni pristop k napovedovanju:
 - Poiskati najprimernejši h
- Takšen pristop lahko uporabimo zgolj nad stacionarno časovno vrsto.

Navadna linearna regresija

Ocena dolgoročnega trenda

- □ Minimizacija napake
 - □ Differencialne enačbe
- Metoda najmanjših kvadratov
 - (-) Poudari outlierje
 - (+)Enostavna reševanje

Metoda najmanjših kvadratov

- Centriranje podatkov
 - Črta gre skozi koordinatno izhodišče

$$y_i = b_0 + b_1 x_i$$

$$\overline{y} = b_0 + b_1 \overline{x}$$

$$y_i - \overline{y} = 0 + b_1 (x_i - \overline{x})$$

 $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_k x_{i,k} + \varepsilon_i$

- □ Splošni model
 - $\blacksquare k$ koeficientov za k parametrov
 - lacksquare in napaka $arepsilon_i$
 - $lackbox{$\square$ V matrični obliki: } y_i = \begin{bmatrix} x_{i,1}, \ x_{i,2}, \ \dots, \ x_{i,k} \end{bmatrix} egin{bmatrix} eta_1 \\ draphi \\ draphi \\ eta_k \end{bmatrix} + arepsilon_i$

Metoda najmanjših kvadratov

- □ Če imamo več meritev, lahko izdelamo matriko -
 - b predstavljaoceno dejanskevrednosti

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

 $_{\square}$ Generalizirano $\mathbf{y}_{\parallel}=\mathbf{X}\mathbf{b}+\mathbf{e}_{\parallel}$

 \square Velikosti matrik: $\mathbf{X}: n \times k$

b: $k \times 1$

e: $n \times 1$

y: $n \times 1$

Metoda najmanjših kvadratov

Minimizacija kvadratov napak

$$\begin{array}{ll} \square \ \, \mathsf{Re\check{s}itev:} & \frac{f(\mathbf{b})}{\partial \mathbf{b}} = 0 \\ & = (\mathbf{y} - \mathbf{X}\mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{b}) \\ & = \mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X}\mathbf{b} + \mathbf{b} \mathbf{X}^T \mathbf{X}\mathbf{b} \end{array}$$

- Po nekaj napora lahko z diferencialnimi enačbami ugotovimo
 - □ Ta formula je biblija!

$$\mathbf{b} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

□ Inverzna matrika:

$$\mathbf{A}^{-1} = egin{bmatrix} a & b \ c & d \end{bmatrix}^{-1} = rac{1}{\det \mathbf{A}} egin{bmatrix} d & -b \ -c & a \end{bmatrix} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}.$$

Metoda najmanjših kvadratov - Primer

$$\square$$
 Ne pozabimo: $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

□ Vhod:

$$x_{1, ext{original}} = [1, \quad 3, \quad 4, \quad 7, \quad 9, \quad 9]$$
 $x_{1} = [-4.5, \ -2.5, \ -1.5, \ 1.5, \ 3.5, \ 3.5]$ $x_{2, ext{original}} = [9, \quad 9, \quad 6, \quad 3, \quad 1, \quad 2]$ $x_{2} = [4, \ 4, \ 1, \ -2, \ -4, \ -3]$ $y_{ ext{original}} = [3, \quad 5, \quad 6, \quad 8, \quad 7, \quad 10]$ $y = [-3.5, \ -1.5, \ -0.5, \ 1.5, \ 0.5, \ 3.5]$

$$\mathbf{X} = \begin{bmatrix} -4.5 & 4 \\ -2.5 & 4 \\ -1.5 & 1 \\ 1.5 & -2 \\ 3.5 & -4 \\ 3.5 & -3 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -3.5 \\ -1.5 \\ -0.5 \\ 1.5 \\ 0.5 \\ 3.5 \end{bmatrix} \qquad \mathbf{X}^T \mathbf{X} = \begin{bmatrix} 55.5 & -57.0 \\ -57.0 & 62 \end{bmatrix} \quad \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 36.5 \\ -36.0 \end{bmatrix}$$

$$\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 62 & 57.0 \\ 57.0 & 55.5 \end{bmatrix} \quad \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 36.5 \\ -36.0 \end{bmatrix}$$

192

Inverzna matrika

□ Ni enostavno!

$$\mathbf{A}^{-1} = egin{bmatrix} a & b \ c & d \end{bmatrix}^{-1} = rac{1}{\det \mathbf{A}} egin{bmatrix} d & -b \ -c & a \end{bmatrix} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}.$$

$$\mathbf{A}^{-1} = egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}^{-1} = rac{1}{\det(\mathbf{A})} egin{bmatrix} A & B & C \ D & E & F \ G & H & I \end{bmatrix}^{\mathrm{T}} = rac{1}{\det(\mathbf{A})} egin{bmatrix} A & D & G \ B & E & H \ C & F & I \end{bmatrix}$$

□ Bločna inverzija

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \\ -(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \end{bmatrix}$$

Metoda najmanjših kvadratov - Primer

 \Box Rezultat b1 = 1.01 in b2 = 0.43?

ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

PO5 – Analiza časovnih vrst

Motivacija - V 4 Velocity

- □ Časovna vrsta:
 - Beli šum, naključni sprehod,...
- Razlogi za variabilnost vrednosti
 - Dekompozicija signala:
 - Trend:
 - Sezonski efekti:
 - Neregularne fluktuacije

Avtokorelacija in linearna regresija

□ Pearsonov korelacijski koeficient

$$r=r_{xy}=rac{\sum x_iy_i-nar{x}ar{y}}{\sqrt{(\sum x_i^2-nar{x}^2)}}rac{\sqrt{(\sum y_i^2-nar{y}^2)}}{}.$$

□ Avtokorelacija je korelacija med signalom $X = \{x_t\}$ in njegovo zakasnjeno kopijo $X_h = \{x_{t+h}\}$

- oxdot Generalizirana regresijska enačba ${f y}_- = {f X}{f b} + {f e}_$
 - lacksquare Metoda najmanjših kvadratov $\mathbf{b} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$

Vsebina

- □ Tradicionalni pristopi, ki napovedovanju vrednosti v časovnih vrstah:
 - Premikajoče povprečje
 - Avtoregresijski model
 - ARIMA

Načrtovanje napovedovalnih modelov

Beli šum

- □ Definicija
 - □ Povprečje = 0
 - Varianca = konstanta
 - Je nekoreliran
- V signalu ne ugotovimo vzorca
 - Množica statističnih testov
- Zaključni kriterij vsake časovne analize.

Nelinearna regresija z metodo najmanjših kvadratov

Matrična predstavitev metode najmanjših kvadratov

v linearnem sistemu: $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_k x_{i,k} + \varepsilon_i$

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} \vdots \\ b_k \end{bmatrix} \begin{bmatrix} \vdots \\ e_n \end{bmatrix}$$

□ Polinomska regresija:

$$y_i \,=\, eta_0 + eta_1 x_i + eta_2 x_i^2 + \cdots + eta_m x_i^m + arepsilon_i \; (i=1,2,\ldots,n)$$

Kako z več spremenljivkami?

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \ 1 & x_2 & x_2^2 & \dots & x_2^m \ 1 & x_3 & x_3^2 & \dots & x_3^m \ dots \ dots & dots & dots & dots \ dots \ y_n \end{bmatrix} egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_3 \ dots \ eta_m \end{bmatrix} + egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ dots \ eta_3 \ dots \ eta_m \end{bmatrix}$$

Avtoregresijski model

- □ Notacija *AR(p)*
 - p število preteklih vrednosti, ki jih uporabimo za napoved
- □ Definicija: $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$
 - Rešljivo s tradicionalno linearno regresijo
- □ Zahteva stacionarne vrednosti!
 - Povprečje = 0
 - Standardna deviacija = konstanta

Premikajoče povprečje

- Ang. moving average
- □ Notacija: MA(q)
 - q določa dolžino modela
- au Definicija: $X_t = \mu + arepsilon_t + heta_1 arepsilon_{t-1} + \dots + heta_q arepsilon_{t-q}$
 - lacktriangledown hinspace hinsp
 - $\mathbf{E}_t, \, \mathcal{E}_{t-1}, \dots, \, \mathcal{E}_{t-q}$ napake prejšnjih napovedih (stacionarni)
 - lacktriangledown povprečje zadnjih q vrednosti

Reševanje MA modelov

 Napake v napovedovanju so nedoločljive, zato potrebujemo iterativni pristop.

- Množica možnih pristopov:
 - Metoda Yule-Walker
 - Metoda največje verjetnosti (Maximum Likelihood)
 - Newton-Raphsonov in Scoring Algorithmi
 - Iterativni Gauss Newtonov algoritem

Avtoregresijsko premikajoče povprečje

- □ Ang. autoregresive moving average
- □ Notacija: ARMA(p,q)
 - □ p število avtoregresijskih členov
 - □ q ševilo členov belega šuma (napak)

□ Definicija:

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$$

Integrirana ARMA

- □ Ang. Avtoregresive Integrated Moving Average
- □ Notacija: ARIMA(p,d,q)
 - p in q prevzeta iz ARMA
 - d red diferenciacije
- □ Diferenciacija:

$$extstyle extstyle ext$$

□ Drugi red:
$$y_t^* = y_t' - y_{t-1}'$$
 $= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$
 $= y_t - 2y_{t-1} + y_{t-2}$

Načrtovanje modelov

- □ Metoda Box-Jenkins
 - Identifikacija modela
 - □ Izvedba modela
 - Diagnostika

- □ Pred uporabo B-J izvedi:
 - Ali so podatki beli šum?
 - Ali je časovna vrsta stacionarna?
 - Če ni, izvedi diferenciacijo

Izračun korelograma

- Procese modeliramo glede ne vrste, ki jih razberemo na osnovi korelograma:
 - To je graf avtokorelacije glede na zakasnitev
 - Lahko izberemo optimalno zakasnitev?

Delna avtokorelacija

- Korelacija je približek regresije z navadnimi najmanjšimi kvadrati:
 - \blacksquare x: {22,17,16,14,13,10,1215,21,19,18,16,19,20,24}
 - \mathbf{x}_1 : {17,16,14,13,10,1215,21,19,18,16,19,20,24, 21}
 - Korelacijski faktor: 0.68132
 - Regresijski koeficient (AR(1) model): 0.69608
 - Vsaka vrednost "ima 69% vpliva na naslednjo vrednost"
- □ PRIMER AR(3) modela:
 - $X = k_1 x_1 + k_2 x_2 + k_3$
 - \blacksquare Zanima nas koliko točno vpliva $k_2 x_2$ npr. brez $k_1 x_1$
 - Izkaže se, da je vpliv n-tega zamika enak koeficientu n-tega člena regresije n-zamikov.

Metoda Box-Jenkins

- □ Identifikacija modela in optimalne zakasnitve
 - Analiza avtokorelacije za določitev najprimernejše zakasnitve (optimal lag).
 - Upoštevanje delne avtokorelacije
 - Izločanje ekstremnih dogodkov

MODEL	Avtokorelacija	Delna avtokorelacija
AR(p)	Pada počasi proti 0	Takoj upade blizu 0
MA(q)	Takoj upade blizu 0	Pada počasi proti 0
ARMA(p,q)	Pada počasi proti 0	Pada počasi proti 0

Metoda B-J

- □ Diagnostika:
 - Običajno izračun korena povprečne kvadratne napake (ang. root mean square error)

$$RMSE = \sqrt{\sum \frac{(y_{pred} - y_{ref})^2}{N}}$$

Izris grafa napake in preveri ali so napake res beli šum?