AE4301 Automatic Flight Control System Design Part I: Control Theory

Anahita Jamshidnejad Aerospace Engineering Lecture 5

What we learned so far

- Modeling dynamical systems:
 - transfer functions (frequency domain)
 - state-space representation (time domain)
- Pole placement
- Proportional, integral, and derivative controllers

Introduction Freq resp Bode plot Summary

Main objectives

- Being able to analyze frequency response (steady-state response of LTI systems to sine inputs)
- Being able to plot and analyze Bode diagrams: magnitude and phase of sinusoidal transfer functions for the entire frequency spectrum

Frequency-response: Introduction

- Frequency response: Steady-state response of a system to a sinusoidal input $u(t) = \bar{u} \sin \omega t$
- Change the input frequency over a certain range and analyze the response
- ullet Steady-state response to sine input of frequency ω is

$$y_{\rm ss} = \bar{u}|G(j\omega)|\sin(\omega t + \angle G(j\omega))$$

- $G(j\omega)$ is sinusoidal transfer function
- Output of a stable, linear, time-invariant system to a sinusoidal input $u(t) = \bar{u} \sin \omega t$ is sinusoidal of same frequency and different amplitude and phase:

amplitude =
$$\bar{u} \cdot |G(j\omega)|$$

phase = $\angle G(j\omega)$

Introduction Freq resp Bode plot Summary

Response to a 0.5 Hz sine

Response of $\omega_n^2/(s^2+2\zeta\omega_n s+\omega_n^2)$, $\zeta=0.4$, $\omega_n=4\pi$

Freq resp

Bode plot

Response to a 1 Hz sine

Response of $\omega_n^2/(s^2+2\zeta\omega_n s+\omega_n^2)$, $\zeta=0.4$, $\omega_n=4\pi$

Freq resp Bode plot Summary

Response to a 1.5 Hz sine

Response of $\omega_n^2/(s^2+2\zeta\omega_n s+\omega_n^2)$, $\zeta=0.4$, $\omega_n=4\pi$

Introduction

Freq resp

Bode plot

Response to a 2 Hz sine

Response of $\omega_n^2/(s^2+2\zeta\omega_n s+\omega_n^2)$, $\zeta=0.4$, $\omega_n=4\pi$

Freq resp

Bode plot

Response to 5 Hz sine

Response of $\omega_n^2/(s^2+2\zeta\omega_n s+\omega_n^2)$, $\zeta=0.4$, $\omega_n=4\pi$

Response to a 10 Hz sine

Response of $\omega_n^2/(s^2+2\zeta\omega_n s+\omega_n^2)$, $\zeta=0.4$, $\omega_n=4\pi$

Proof

Frequency response to $u(t) = \bar{u} \sin \omega t$:

$$Y(s) = G(s)U(s) = G(s)\frac{\bar{u}\omega}{s^2 + w^2}$$

$$= \frac{\bar{u}\omega(s - z_1)(s - z_2)\dots(s - z_m)}{(s + j\omega)(s - j\omega)(s - p_1)(s - p_2)\dots(s - p_n)}$$

Using partial fraction expansion (assume distinct poles):

$$Y(s) = \frac{a}{s + j\omega} + \frac{\bar{a}}{s - j\omega} + \frac{b_1}{s - p_1} + \frac{b_2}{s - p_2} + \dots + \frac{b_n}{s - p_n} \quad (*)$$

Time-domain response (inverse Laplace):

$$y(t) = ae^{-j\omega t} + \bar{a}e^{j\omega t} + b_1e^{p_1t} + b_2e^{p_2t} + \dots + b_ne^{p_nt}$$

Introduction

Freq resp

Bode plot

... Proof

- Stability implies negative real part for poles p_1, p_2, \ldots
- Therefore, when $t \to \infty$, $e^{p_1 t} \to 0$, $e^{p_2 t} \to 0$, ...
- Steady-state response: $y_{ss} = ae^{-j\omega t} + \bar{a}e^{j\omega t}$

Q. What if there are poles of multiplicity $m_{\rm p}$?

• Determining a: multiply both sides of (*) by $(s+j\omega)$ and replace s by $-j\omega$:

$$a = G(s) \frac{\bar{u}\omega}{s^2 + \omega^2} (s + j\omega) \Big|_{s=-j\omega} = -\frac{\bar{u}G(-j\omega)}{2j}$$

• Similarly, $\bar{a} = \frac{\bar{u}G(j\omega)}{2j}$

... Proof

• Use polar representation of $G(j\omega)$:

$$G(j\omega) = |G(j\omega)| e^{j\phi}$$
 with $\phi = \angle G(j\omega)$

- Since $G(j\omega)$ and $G(-j\omega)$ are complex conjugates: $|G(j\omega)| = |G(-j\omega)|$
- Rewrite steady-state response:

$$\begin{aligned} y_{\rm ss} &= \bar{u} \left| G(j\omega) \right| \frac{e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)}}{2j} \\ &= \underline{\bar{u}} \left| G(j\omega) \right| \sin(\omega t + \underbrace{\phi}_{\rm phase \; shift}) \end{aligned}$$

- Positive phase angle: phase lead \rightarrow lead network
- Negative phase angle: phase lag → lag network

TUDelft

Example

For the transfer function $G(s) = \frac{K}{\tau s + 1}$ find the steady-state response to sinusoidal input $u(t) = \bar{u}\sin(\omega t)$ and determine whether this is a lead or a lag network (reason based on ω).

$$y_{\rm ss} = \frac{\bar{u}K}{\sqrt{1+\tau^2\omega^2}}\sin\left(\omega t - \arctan\tau\omega\right)$$

Small ω : amplitude $\approx \bar{u}K$ and phase shift very small

Large ω : amplitude small (almost inversely proportional to ω) and phase shift approaches -90° as ω approaches infinity.

phase-lag network!

Exercise

For the transfer function $G(s)=\dfrac{s+\dfrac{1}{\tau_1}}{s+\dfrac{1}{\tau_2}}$ determine based on τ_1 and τ_2 whether this network is a lead or a lag network.

Introduction Freq resp Bode plot Summary

Why sine input? Fourier series

- Any periodic function can be decomposed into a sum of sinusoidal components.
- Fourier series expansion:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(\omega_n t) + b_n \sin(\omega_n t) \right]$$

• If we know the response to each sine frequency *and* the system is linear, we know the response to any periodic signal.

Bode plot

• When you subject a sine wave input to an LTI system (mathematically speaking, including linear operations only) it does not change shape \rightarrow It won't change its frequency $\omega!!$

A sine wave input to an LTI system will always generate a sine wave output of the same frequency

- Two possible changes only:
 - Amplitude (height of sine wave) → corresponds to magnitude of sinusoidal transfer function
 - Phase (shifting sine wave in time) → corresponds to phase angle of sinusoidal transfer function

response to a single frequency (what we did analytically) ... response for frequency spectrum (what Bode plots do graphically)

Bode plots

- A Bode diagram consists of two graphs:
 - Magnitude of sinusoidal transfer function in dB , i.e., $20 \log |G(j\omega)|$, versus $\log \omega$
 - Phase angle of sinusoidal transfer function in degrees, i.e., $\angle G(j\omega)$, versus $\log \omega$
- Main advantage of Bode plots: multiplication of magnitudes can be converted into addition.
- Basic factors of $G_1(j\omega)G_2(j\omega)\dots G_\ell(j\omega)$:
 - Gain *K*
 - Integral and derivative factors $(j\omega)^{\pm 1}$
 - First-order factors $(1+j\omega\tau)^{\pm 1}$
 - Quadratic factors $(1 + 2\zeta(j\omega/\omega_n) + (j\omega/\omega_n)^2)^{\pm 1}$

Bode plot: Gain *K*

- A number greater than unity has a positive value in dB.
- A number smaller than unity has a negative value in dB.
- Log-magnitude curve for a constant gain K is a horizontal straight line at $20 \log K$ dB.
- Phase angle of constant gain is zero.
- Effect of varying *K*:
 - Raises or lowers log-magnitude curve
 - No effect on phase curve
- Reminder: In dB reciprocal of a number differs from its value in sign only:

$$20\log K = -20\log\frac{1}{K}$$

Bode plot: Integral & derivative

• Logarithmic magnitude of $1/j\omega$ and $j\omega$ in dB:

$$20 \log |1/j\omega| = -20 \log \omega$$
 dB, $20 \log |j\omega| = 20 \log \omega$ dB

• Plot of magnitude versus $\log \omega$: straight line with slope $-20 \frac{\mathrm{dB}}{\mathrm{decade}}$ for integral and slope $20 \frac{\mathrm{dB}}{\mathrm{decade}}$ for derivative.

Note: A decade is a frequency band from ω to 10ω . On logarithmic scale papers distance between $\omega = 1$ and

 $\omega=10$, and between $\omega=10$ and $\omega=100$, and between $\omega=5$ and $\omega=50$ are same (a decade).

• Phase angle of $1/j\omega$ is -90° , and phase angle of $j\omega$ is 90° .

Bode plot: First-order factors

- We use asymptotes to approximate Bode plots.
- Log-magnitude of $1/(1+j\omega\tau)$ in dB:

$$20 \log |1/(1+j\omega\tau)| = -20 \log \sqrt{1+\omega^2\tau^2}$$
 dB

- $\omega \tau \ll 1$: $-20 \log \sqrt{1 + \omega^2 \tau^2} \approx 0$ dB - $\omega \tau \gg 1$: $-20 \log \sqrt{1 + \omega^2 \tau^2} \approx -20 \log \omega \tau$ dB
- Starting from small $\omega \tau$ log-magnitude curve is 0-dB line. When $\omega \tau$ is very large log-magnitude curve decreases value by 20 dB per decade \rightarrow log-magnitude curve becomes straight line with slope $-20 \frac{\mathrm{dB}}{\mathrm{decade}}$.
- Corner frequency: $\omega_{\rm C}=1/ au o au$ shifts $\omega_{\rm C}$ to left & right
- Phase of $1/(1+j\omega\tau)$: $\phi=-\arctan\omega\tau$. $\omega\tau=0\Rightarrow\phi=0^\circ$, $\omega\tau=1\Rightarrow\phi=-45^\circ$, $\omega\tau\to\infty\Rightarrow\phi=-90^\circ$

Introduction

Freq resp

Bode plot

Bode plot: First-order factors

- In Bode plot for reciprocal factors log-magnitude and phase angle curves change in sign only.
- Change signs obtained for $1/(1+j\omega\tau)$ to get curves for $1+j\omega\tau$.
- Corner frequencies for $1/(1+j\omega\tau)$ and $1+j\omega\tau$ are same.
- Slope of high-frequency asymptote for $1+j\omega\tau$ is $20\frac{\mathrm{dB}}{\mathrm{decade}}$.
- Phase angle for $1 + j\omega\tau$ varies between 0° and 90° as ω varies from 0 to ∞ .

Bode plots for $1/(1+j\omega\tau)$

Magnitude plot

Argument plot

Asymptotes

For
$$\omega \tau \ll 1 \rightarrow \frac{1}{1+j\omega \tau} \approx 1$$

For
$$\omega \tau \gg 1 \rightarrow \frac{1}{1+j\omega\tau} \approx \frac{1}{j\omega\tau}$$

Asymptotes

For
$$\omega \tau \ll 1 \rightarrow \angle(\frac{1}{1+j\omega\tau}) \approx 0$$

For
$$\omega \tau \gg 1 \rightarrow \angle(\frac{1}{1+i\omega\tau}) \approx -90^{\circ}$$

Freq resp

Bode plot

Bode plots for $1 + j\omega\tau$

Magnitude plot

Asymptotes

For
$$\omega \tau \ll 1 \rightarrow 1 + j\omega \tau \approx 1$$

For
$$\omega \tau \gg 1 \rightarrow 1 + j\omega \tau \approx j\omega \tau$$

Argument plot

Asymptotes

For
$$\omega \tau \ll 1 \rightarrow \angle (1 + j\omega \tau) \approx 0$$

For
$$\omega \tau \gg 1 \rightarrow \angle (1 + j\omega \tau) \approx 90^{\circ}$$

Bode plot: Second-order factors

•
$$G(j\omega) = \frac{1}{1 + 2\zeta(j\omega/\omega_n) + (j\omega/\omega_n)^2}$$

• Magnitude:
$$20 \log \left| \frac{1}{1 + 2\zeta(j\omega/\omega_n) + (j\omega/\omega_n)^2} \right| =$$

$$-20 \log \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)^2}$$

- $\frac{\omega}{\omega_n} \ll 1 \Rightarrow$ Magnitude ≈ 0 dB : Low-frequency asymptote is a horizontal line at 0 dB.
- $\frac{\omega}{\omega_n} \gg 1 \Rightarrow$ Magnitude $\approx -20 \log \frac{\omega^2}{\omega_n^2} = -40 \log \frac{\omega}{\omega_n}$ dB: High-frequency asymptote is a straight line of slope -40 dB/decade.

What is ω at intersection of asymptotes? ω_n

• For quadratic factor in transfer function, corner frequency is same as natural frequency $\omega_{\rm C}=\omega_n$.

Bode plot: Second-order factors

- Near corner frequency $\omega_{\rm C} = \omega_n$ a resonant peak occurs.
- Damping ratio ζ determines the magnitude of resonant peak.
- Resonant frequency ω_r (for which $|G(j\omega)|$ is maximum):

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$
 for $0 \le \zeta \le 0.707$

• Magnitude of resonant peak M_r :

$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} \qquad \text{for} \quad 0 \le \zeta \le 0.707$$

Bode plot: Second-order factors

Phase angle of quadratic factor:

$$\phi = -\arctan \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}$$

- $\omega = 0 \Rightarrow \phi = 0^{\circ}$
- $\omega = \omega_{\rm C} = \omega_n \Rightarrow \phi = -90^{\circ}$ (regardless of ζ)
- $\omega \to \infty \Rightarrow \phi = -180^{\circ}$
- **Note:** For second-order factor $1 + 2\zeta(j\omega/\omega_n) + (j\omega/\omega_n)^2$ reverse signs of magnitude and phase Bode plots of $1/(1 + 2\zeta(j\omega/\omega_n) + (j\omega/\omega_n)^2)$.

Influence of ω_n

$$G(s) = \frac{\omega_n^2}{s^2 + 2\omega_n s + \omega_n^2}$$

Conclusion:

 $\omega_n \uparrow \Rightarrow$ "bandwidth" increases

Introduction Freq resp Bode plot Summary

Influence of ζ

$$G(s) = \frac{1}{s^2 + 2\zeta s + 1}$$

Conclusion:

 $\zeta \uparrow \Rightarrow$ "resonant peak" decreases

Introduction Freq resp

Bode plot

Bode plots: Rewrite transfer functions

- Now we are familiar with logarithmic Bode plots of basic factors of transfer functions: gain, integral and derivative, 1st-order and 2nd-order factors.
- We can use these to construct a composite logarithmic plot for any general form $G_1(s)G_2(s)\ldots G_\ell(s)$.
- Because adding logarithms of gains corresponds to multiplying them, sketching curves for individual factors and adding them gives Bode plot of original transfer function.
- We should first rewrite transfer functions to obtain these basic factors.

Example

Rewrite the following transfer function as basic factors to sketch the Bode plots:

$$G(s) = \frac{8s+4}{s(s+3)}$$

we should obtain these formulations:

• Gain: *K*

• Integral or derivative: s or 1/s

• 1st-order factors: $1 + \tau s$, $1/(1 + \tau s)$

$$G(s) = \frac{4}{3} \frac{1+2s}{s(1+(1/3)s)}$$

Example: 1st-order factor 1 + 2s

 $G_1(s) = 1 + 2s \Rightarrow$ Sinusoidal transfer function: $G_1(j\omega) = 1 + 2j\omega$

Introduction

Example: 1st-order factor 1/(1+1/3s)

 $G_2(s) = \frac{1}{1+1/3s} \Rightarrow$ Sinusoidal transfer function: $G_2(j\omega) = \frac{1}{1+1/3j\omega}$

Introduction

Example: Integral factor 1/s and gain

 $G_3(s) = \frac{1}{s} \text{ and } K = 4/3$

Introduction

Freq resp

Example: Bode plot

Terminology

lead $1 + \tau j\omega$ (1st order) or $1 + 2\zeta j\omega/\omega_n + (j\omega)^2/\omega_n^2$ (2nd order) term in numerator: if, respectively, $\tau > 0$ or $\zeta > 0$, phase contribution is positive; output sine *leads* ahead of the input sine.

lag $1 + \tau j\omega$ (1st order) or $1 + 2\zeta j\omega/\omega_n + (j\omega)^2/\omega_n^2$ (2nd order) in denominator: phase contribution for $\tau > 0$ or $\zeta > 0$ is negative; output sine *lags* behind the input sine.

derivative factor $j\omega$ in numerator gives 90 degrees phase lead.

integral factor $j\omega$ in denominator gives 90 degrees phase lag.

gain Constant factor K has no phase effect, unless K < 0, then 180 degrees phase change.

- To determine frequency response (LTI system's response to sine input function of frequency ω), replace s by $j\omega$ in transfer function G(s).
- $G(j\omega)$ is called sinusoidal transfer function.
- Frequency response of an LTI system is a sine function with same frequency ω as input sine wave, but the amplitude is multiplied by $|G(j\omega)|$ and there is a phase shift of $\angle G(j\omega)$.
- Bode plots sketch $|G(j\omega)|$ and $\angle G(j\omega)$ for the whole frequency spectrum in logarithmic scales.

AE4301 Automatic Flight Control System Design Part I: Control Theory

Anahita Jamshidnejad Aerospace Engineering Lecture 5

