Complex Analysis Homework 3

Colin Williams

September 17, 2020

Question 1

Question.

Define a function f by

$$f(z) = \frac{z}{1 + |z|}.$$

- (a) Prove that f is continuous on \mathbb{C} .
- (b) Prove that $f(z_1) = f(z_2)$ implies that $z_1 = z_2$.
- (c) Prove that f maps \mathbb{C} onto D(0,1).

Proof. (a)

To prove this function is continuous, I will use that we know the following

- 1. The sum of continuous function is continuous
- 2. The quotient of continuous function is continuous as long as the denominator is not equal to zero.
- 3. A function f is continuous at point $z_0 \in \mathbb{C}$ if for every $\varepsilon > 0$, there exists some $\delta > 0$ such that whenever $|z z_0| < \delta$, we have $|f(z) f(z_0)| < \varepsilon$.

Thus, to prove that f(z) is continuous, we merely need to show that z, 1, and |z| are continuous and that $1+|z|\neq 0$. First, since $|z|\geq 0$ for all $z\in \mathbb{C}$, we know that $1+|z|\geq 1$ for all $z\in \mathbb{C}$; thus, 1+|z| is never equal to zero, so we need not worry about this.

Next, I will show that g(z) = z is a continuous function by examining $|g(z) - g(z_0)|$ for some arbitrary $z_0 \in \mathbb{C}$. In fact, it is as simple as:

$$|g(z) - g(z_0)| = |z - z_0|$$

Thus, $|g(z) - g(z_0)| < \varepsilon$ for any $\varepsilon > 0$ precisely when $|z - z_0| < \delta$ for δ any number $\leq \varepsilon$. Since this holds true for any $z_0 \in \mathbb{C}$, it is clear that g(z) = z satisfies the above definition of continuity for all points in \mathbb{C} .

Similarly, I will show that g(z)=1 is a continuous function by looking at $|g(z)-g(z_0)|$ for some arbitrary $z_0\in\mathbb{C}$. However, it is clear that $|g(z)-g(z_0)|=|1-1|=|0|=0$. Thus, $|g(z)-g(z_0)|<\varepsilon$ for any $\varepsilon>0$ no matter how we choose δ . Since z_0 can be any point in \mathbb{C} , g(z)=1 clearly satisfies the definition of continuity for all points in \mathbb{C} .

Lastly, I will show that g(z) = |z| is a continuous function. Again, take z_0 to be some arbitrary point in \mathbb{C} , then examine $|g(z) - g(z_0)|$ as follows:

$$|g(z) - g(z_0)| = ||z| - |z_0||$$

$$= ||z| - |-z_0||$$

$$\leq |z + (-z_0)|$$

$$= |z - z_0|$$
since $|w| = |-w|$ for all $w \in \mathbb{C}$
by the "reverse" Triangle Inequality

Thus, $|g(z) - g(z_0)| < \varepsilon$ for any $\varepsilon > 0$ precisely when $|z - z_0| < \delta$ for δ any number $\leq \varepsilon$. Since this is true for any $z_0 \in \mathbb{C}$, it is clear that g(z) = |z| satisfies the above definition of a continuous function for all points in \mathbb{C} .

Thus, we have shown z, 1, and |z| are all continuous function; therefore, 1 + |z| is also a continuous function and since $1 + |z| \neq 0$ for all $z \in \mathbb{C}$, we must have that

$$f(z) = \frac{z}{1 + |z|}$$

is a continuous function as well.

Proof. (b)

Assume that two points $z_1, z_2 \in \mathbb{C}$ satisfy $f(z_1) = f(z_2)$. It will be convenient to express z_1 and z_2 in polar coordinates (exponential form), say $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ for $r_1, r_2 > 0$ and θ_1, θ_2 the argument of z_1 and z_2 respectively; thus, $f(r_1 e^{i\theta_1}) = f(r_2 e^{i\theta_2})$. This gives:

$$\begin{split} \frac{r_1e^{i\theta_1}}{1+|r_1e^{i\theta_1}|} &= \frac{r_2e^{i\theta_2}}{1+|r_2e^{i\theta_2}|} \\ &\Longrightarrow \frac{r_1e^{i\theta_1}}{1+r_1} = \frac{r_2e^{i\theta_2}}{1+r_2} \\ &\Longrightarrow \frac{r_1}{1+r_1}e^{i\theta_1} = \frac{r_2}{1+r_2}e^{i\theta_2} \\ &\Longrightarrow \frac{r_1}{1+r_1} = \frac{r_2}{1+r_2} \text{ and } \theta_1 = \theta_2 + 2k\pi \end{split} \qquad \text{by definition of equality of complex numbers in polar form} \end{split}$$

Working with the left equality, we can see that $r_1 + r_1r_2 = r_2 + r_2r_1$ by cross multiplying the fractions. Thus, by subtracting r_1r_2 , we get $r_1 = r_2$. This, together with $\theta_1 = \theta_2 + 2k\pi$ implies that $z_1 = z_2$ by definition of equality of complex numbers in polar form. Thus, $f(z_1) = f(z_2) \implies z_1 = z_2$ just as desired.

Proof. (c)

We know that for any $z_0 \in D(0,1)$, we can express z_0 in polar form as $z_0 = r_0 e^{i\theta_0}$ where $0 < r_0 < 1$ and θ_0 is the argument of z_0 . From part (b), we showed that for any $z = re^{i\theta}$,

$$f(z) = \frac{r}{1+r}e^{i\theta} \tag{1}$$

Thus, $f(z) = z_0$ whenever

$$\frac{r}{1+r} = r_0 \quad \text{and} \quad \theta = \theta_0 + 2k\pi$$

For simplicity, we can choose $\theta = \theta_0$, and then we solve the left equality:

$$\frac{r}{1+r} = r_0$$

$$\implies r = r_0(1+r)$$

$$\implies r = r_0 + r \cdot r_0$$

$$\implies r - r \cdot r_0 = r_0$$

$$\implies r(1-r_0) = r_0$$

$$\implies r = \frac{r_0}{1-r_0}$$

Thus, we have shown that every $z_0 = r_0 e^{i\theta_0} \in D(0,1)$ has a pre-image given by $z_0^* = \frac{r_0}{1-r_0} e^{i\theta_0}$ such that $f(z_0^*) = z_0$. To complete the picture note that for f(z) defined in (1), the modulus, given by $\frac{r}{1+r}$, is always between 0 and 1 since 0 < r < 1+r. Thus, for every $z \in \mathbb{C}$, $f(z) \in D(0,1)$ and for every $z_0 \in D(0,1)$, we have shown that there exists a z_0^* such that $f(z_0^*) = z_0$. Therefore, we have shown that f does indeed map every element of \mathbb{C} onto D(0,1).