Pochodne		Całki		Własności pochodnych
f(x)	f'(x)	f(x)	$\int f(x) dx$	$[k f(x)]' = k f'(x)$ $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$
C C-stała	0	0	C	$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$x^{\alpha}_{\alpha\text{-stala}}$	$\alpha x^{\alpha-1}$	1	x + C	$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	x	$\frac{x^2}{2} + C$	$[f(g(x))]' = f'(g(x)) \cdot g'(x)$
$\frac{1}{x}$	$-\frac{1}{x^2}$	x^{α} α α α α $\alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	$[(f(x))^{(g(x))}]' = (f(x))^{(g(x))} \left(g'(x) \ln f(x) + \frac{g(x)}{f(x)} f'(x)\right)$
a^x a a a a a $a > 0, a \neq 1$	$a^x \ln a$	$\frac{1}{x}$	$\ln x + C$	Własności całek
e^x	e^x	a^x a -stała $a>0, a\neq 1$	$\frac{a^x}{\ln a} + C$	$\int k f(x) dx = k \int f(x) dx$
$\log_a x$ $a-\text{stała}$ $a>0, a\neq 1$	$\frac{1}{x \ln a}$	e^x	$e^x + C$	$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$
$\ln x$	$\frac{1}{x}$	$\sin x$	$-\cos x + C$	$\int f(g(x)) g'(x) dx = \begin{cases} g(x) = t \\ g'(x) dx = dt \end{cases} = \int f(t) dt$
$\sin x$	$\cos x$	$\cos x$	$\sin x + C$	$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$
$\cos x$	$-\sin x$	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$	Dodatkowe wzory całkowe
$\operatorname{tg} x$ $\operatorname{ctg} x$	$\frac{1}{\cos^2 x}$	$\frac{1}{1+x^2}$	arc tg x + C	$\int \sin \alpha x dx = -\frac{1}{\alpha} \cos \alpha x + C \qquad \int \cos \alpha x dx = \frac{1}{\alpha} \sin \alpha x + C$ $\int e^{\alpha x} dx = \frac{1}{\alpha} e^{\alpha x} + C$
$\arcsin x$	$\sin^2 x$	$\frac{1}{\cos^2 x}$	tg x + C	$\int e^{-t} dx = \frac{1}{\alpha} e^{-t} + C$ $\int \frac{dx}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C \qquad \int \frac{dx}{x^2 - a^2} dx = \frac{1}{2a} \ln \frac{x - a}{x + a} + C$
$\frac{\operatorname{arcsm} x}{\operatorname{arccos} x}$	$ \begin{array}{c c} -\frac{1}{\sin^2 x} \\ \frac{1}{\sqrt{1-x^2}} \\ -\frac{1}{\sqrt{1-x^2}} \end{array} $	$\frac{-1}{\sin^2 x}$	ctg x + C	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arc} \operatorname{sg} \frac{1}{a} + C \qquad \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \operatorname{arc} \operatorname{sin} \frac{1}{x + a} + C$ $\int \frac{1}{f(x)} dx = \ln f(x) + C \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$
arc tg x	$\frac{\sqrt{1-x^2}}{\frac{1}{1+x^2}}$	$\sin^2 x$		$\int \frac{dx}{\sqrt{a+x^2}} dx = \ln\left(x + \sqrt{q+x^2}\right) + C$
$\operatorname{arc}\operatorname{ctg} x$	$-\frac{1}{1+x^2}$	tg x	$-\ln \cos x +C$	Podstawienie trygonometryczne
	1+x-	$\operatorname{ctg} x$	$\ln \sin x + C$	$\frac{t = \operatorname{tg} \frac{x}{2}}{\operatorname{tg} x = \frac{2t}{1-t^2}} \frac{\cos x = \frac{1-t^2}{1+t^2}}{\operatorname{tg} x = \frac{2t}{1-t^2}} \frac{\cos x = \frac{1-t^2}{1+t^2}}{\operatorname{dx} = \frac{2dt}{1+t^2}}$
		Cog a	m sm w c	$ \operatorname{tg} x = \frac{2t}{1-t^2} \mid \operatorname{ctg} x = \frac{1-t^2}{2t} \mid dx = \frac{2dt}{1+t^2} $
$\sinh x$	$\cosh x$	$\ln x$	$x(\ln x - 1) + C$	Trygonometria
$\cosh x$	$\sinh x$	$\log_a x$	$\frac{x(\ln x - 1)}{\ln a} + C$	$\sin^2 x + \cos^2 x = 1$ $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$ $\operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha} = \frac{\cos \alpha}{\sin \alpha}$
$\operatorname{tgh} x$	$\frac{1}{\cosh^2 x}$			$\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1 \sin 2x = 2\sin x \cos x \cos 2x = \cos^2 x - \sin^2 x$
$\operatorname{ctgh} x$	$-\frac{1}{\sinh^2 x}$			$\sin \alpha \sin \beta = \frac{1}{2} \left(\cos(\alpha - \beta) - \cos(\alpha + \beta) \right)$
				$\cos \alpha \cos \beta = \frac{1}{2} \left(\cos(\alpha - \beta) + \cos(\alpha + \beta) \right)$
Styczna: $y - y_0 = f'(x_0)(x - x_0)$				$\sin \alpha \cos \beta = \frac{1}{2} \left(\sin(\alpha - \beta) - \sin(\alpha + \beta) \right)$
Normalna: $y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$				$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
Kąt przecięcia krzywych: tg $\alpha = \left \frac{f'(x_0) - g'(x_0)}{1 + f'(x_0)g'(x_0)} \right $				$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
Wzór Tylora: $f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + R_n(x,a)$			$R_n(x,a)$	Część z podanych tutaj wzorów wymaga dodatkowych założeń lub działa w ograniczonym zakresie
m n	m n $m+n$ $(1)^{x}$: 1^{y} l r			
$a^{m} \cdot a^{n} = a^{m+n}$ $\frac{a^{m}}{a^{n}} = a^{m-n}$ $(a^{m})^{n} = a^{m \cdot n}$ $a^{n} \cdot b^{n} = (a \cdot b)^{n}$ $\frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}$ $\sqrt[n]{a^{m}} = a^{\frac{n}{n}}$ $a^{-n} = \frac{1}{a^{n}}$		4 3 3 2 2 -4 -3 -2 -1 0 1 2 3 4		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	log - x			
$x = a^{\log_a x}$ $\log_a (b^n) = n \log_a b$ $\log_a (b \cdot c) = \log_a b + \log_a c$ $\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$ $\ln x = \log_e x$ $\log x = \log_{10} x$ $\log_a b = \frac{\log_e b}{\log_a a}$ $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ $e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\cot g x + t g x$
$e \approx 2,718281828459$				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$