

Лекция 7

Идеал, фактор-кольцо, поле

Содержание лекции:

В настоящей лекции мы продолжаем изучать структуру кольца и вводим центральные понятия его подструктуры - идеала и классов вычетов по модулю. Мы также определим некоторые свойства элементов кольца и, в конце, обсудим важнейший класс колец - поля.

Ключевые слова:

Идеал кольца, фактор-кольцо, канонический кольцевой гомоморфизм, класс вычетов, делитель нуля, область целостности, нильпотент, обратимый элемент, главный идеал, поле.

A BTO			
	nti	$\mathbf{w}\mathbf{w}$	າຕລາ
7 1 D 1 O	ועע	17 A P	ou.

Трифанов А.И.

Москаленко М.А.

Ссылка на ресурсы:

7.1 Идеалы и фактор-кольца

Идеалом J в кольце R называется аддитивная подгруппа со свойством

$$RJ \subseteq J \quad (\forall x \in R, \quad \forall y \in J \quad xy \in J).$$

Nota bene Тот факт, что J является идеалом кольца R обычно обозначают $J \triangleleft R$.

Пример 7.1. Найдем идеалы в кольце \mathbb{Z} . Пусть m - наименьшее положительное число, лежащее в идеале $J \triangleleft \mathbb{Z}$. Тогда $(m) = m \cdot \mathbb{Z}$. Других идеалов в кольце \mathbb{Z} содержащих элемент m нет. Действительно, пусть

$$z = \min_{>0} \{J\} \quad \Rightarrow \quad \forall m \in \mathbb{Z} \quad m = z \cdot u + r, \quad r < z, \quad r \in J \quad \Rightarrow \quad r = 0.$$

 $\|$ Идеал вида $(x) := x \cdot R, x \in R$ называется **главным идеалом** кольца R.

Лемма 7.1. Пусть $J \triangleleft R$, тогда следующее отношение является отношением эквивалентности на R:

$$x \sim y \quad \Leftrightarrow \quad x - y \in J.$$

▶

Утверждение следует из прямой проверки свойств:

R.
$$x - x = 0 \in J \implies x \sim x$$
;

S.
$$x \sim y \implies x - y \in J \implies y - x = -(x - y) \in J \implies x \sim y;$$

T.
$$x \sim y$$
, $y \sim z \implies x - z = (x - y) + (y - z) \in J \implies x \sim z$.

4

 ${\it Nota \ bene}$ Фактор-множество R/J состоит из классов эквивалентности вида

$$\bar{x} = x + J$$
.

Лемма 7.2. Фактор-множество R/J, наделенное операциями, индуцированными из R имеет структуру кольца:

$$\bar{x} + \bar{y} = \overline{x + y}, \quad \bar{x} \cdot \bar{y} = \overline{x \cdot y}, \quad \bar{0} = J.$$

 \triangleright

Проверяем непосредственно свойства операций:

1.
$$\bar{x} + \bar{y} = (x+J) + (y+J) = (x+y) + J = \overline{x+y}$$
,

2.
$$\bar{x} \cdot \bar{y} = (x+J) \cdot (y+J) = xy + J = \overline{xy}$$

3.
$$\bar{0} \cdot \bar{x} = J \cdot (x+J) = J = \bar{0}$$
.

4

ИДЕАЛ, ФАКТОР-КОЛЬЦО, ПОЛЕ

Множество R/J называется фактор-кольцом кольца R по идеалу J. Отображение $\varphi:R\to R/J$, действующее как

$$x \mapsto \bar{x} = x + J$$

является гомоморфизмом, который называется каноническим.

Пример 7.2. Элементами фактор-кольца $\mathbb{Z}/(m) \triangleq \mathbb{Z}/m\mathbb{Z}$ являются *классы вычетов* по модулю m:

$$\bar{0} = \{x \in \mathbb{Z} : x = 0 \operatorname{mod}(m)\},$$

$$\bar{1} = \{x \in \mathbb{Z} : x = 1 \operatorname{mod}(m)\},$$

$$\dots \dots$$

$$\overline{m-1} = \{x \in \mathbb{Z} : x = (m-1) \operatorname{mod}(m)\}.$$

Лемма 7.3. Пусть $\sigma: R \to R'$ - гомоморфизм колец, тогда

$$R/\ker\sigma\simeq\operatorname{Im}\sigma.$$

Утверждение следует из биективности и линейности отображения:

$$(x + \ker \sigma) \mapsto \sigma(x).$$

◀

7.2 Делители нуля. Нильпотенты

Делителем нуля в кольце R называется всякий элемент $x \neq 0$, такой что

$$\exists y \neq 0: \quad xy = 0.$$

Пример 7.3. В кольце $\mathbb{Z}/6\mathbb{Z}$ делителями нуля являются элементы $\bar{2}$ и $\bar{3}$.

| Областью целостности называется кольцо, в котором нет делителей нуля.

Пример 7.4. Областями целостности являются кольца \mathbb{Z} и $\mathbb{Z}/p\mathbb{Z}$, где p - простое.

Элемент $z \neq 0$ называется **нильпотентом**, если

$$\exists n \in \mathbb{N} : z^n = 0.$$

Nota bene Всякий нильпотент является делителем нуля. Обратное верно не всегда.

7.3 Обратимые элементы. Поле

Обратимым элементом кольца называется всякий элемент $u \in R$ такой что

$$\exists v \in R \quad u \cdot v = 1$$

 $Nota\ bene$ В паре u,v оба элемента являются обратимыми.

Лемма 7.4. Множество обратимых элементов кольца R образует мультипликативную группу, обозначаемую R^* .

Лемма 7.5. Имеет место эквивалентность:

$$x \in R^* \quad \Leftrightarrow \quad (x) = (1) \triangleq R.$$

Полем k называется кольцо, в котором каждый ненулевой элемент обратим.

Лемма 7.6. Всякое поле k является областью целостности.

Пусть $x, y \in \mathbb{k}$ такие что xy = 0. По определению \mathbb{k} имеем

$$\exists u, v : ux = 1, \quad yv = 1.$$

Откуда сразу получаем:

$$1 = (ux) \cdot (yv) = u \cdot (xy) \cdot v = 0.$$

4

Nota bene Обратное, вообще говоря не верно: \mathbb{Z} - область целостности, но не поле.

Теорема 7.1. Пусть R - ненулевое кольцо, тогда следующие утверждения равносильны:

- (1) R поле;
- (2) в *R* нет идеалов, кроме (0) и (1);
- (3) любой гомоморфизм R в ненулевое кольцо инъективен.

▶

Докажем соответствующие импликации:

- $(1) \Rightarrow (2)$: Пусть $J \leq R$ и $x \in J$, тогда $(1) = (x) \subseteq J \quad \Rightarrow \quad J = (1)$.
- $(2) \Rightarrow (3)$: Пусть $f: R \to B$ - кольцевой гомоморфизм. Тогда

$$\ker f \leq R$$
, $\ker R \neq R \Rightarrow \ker f = 0$,

откуда следует инъективность.

ИДЕАЛ, ФАКТОР-КОЛЬЦО, ПОЛЕ

• $(3) \Rightarrow (1)$ Пусть $x \notin R^*$, тогда

$$(x) \neq (1)$$
 \Rightarrow $B = R/(x) \neq 0$, $\varphi: R \to R/(x)$

Из инъективности канонического отображения φ следует, что (x)=0 и x=0.