Practice Problems 7: Solution

Problems

(a) $\int_{-\infty}^{\infty} \frac{dx}{3-4x} = \lim_{t \to -\infty}^{\infty} \int_{t}^{0} \frac{dx}{3-4x}$

U=3-4X First Solve indefinite integral

 $\int \frac{dx}{3-4x} = \int -\frac{dy}{4} = -\frac{1}{4} \int \frac{dy}{u} = -\frac{1}{4} \ln|y| + C$ $= -\frac{1}{4} \ln|3-4x| + C$

50,

 $\lim_{t \to \infty} \int_{t}^{\infty} \frac{dx}{3-4x} = \lim_{t \to -\infty} \frac{1}{4} \ln|3-4x| dt$ $= -\frac{1}{4} \ln|3| + \lim_{t \to -\infty} \frac{1}{4} \ln|3-4t|$ $= -\frac{1}{4} \ln|3| + \lim_{t \to -\infty} \frac{1}{4} \ln|3-4t|$

The integral is divergent.

(b) $\int_{1}^{\infty} \frac{dx}{(2x+1)^3} = \lim_{t \to \infty} \int_{1}^{t} \frac{dx}{(2x+1)^3}$

U=211+1=> du=2dx : First solve indefinite integul

 $\int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \left(\frac{1}{2} \right) + C = -\frac{1}{2} \left(\frac{2x+1}{2} \right) + C$

Problem 2.	
Not testable	
Howeve, The case you're interested	
(a) $\int_{2}^{\alpha} \frac{\chi}{\chi^{3}+1} d\chi = \int_{0}^{1} \frac{\chi}{\chi^{3}+1} d\chi + \int_{1}^{1} \frac{\chi}{\chi^{3}+1} d\chi$	
when 267. (Since the integral is from (0, 00)	
$\frac{\chi}{\chi^3 + 1} < \frac{\chi}{\chi^3} = \frac{1}{\chi^2}$	
Assume, $f(x) = \frac{\chi}{\sqrt{3}}$	
Sivice 20 < 1 and Jaz is Convergent (show)	it)
So, Sanda is Convergent	
and Induis a proper integral and Finite	
Sa, Son Veryent 15 Convergent	

Problem 3

$$\int_{0}^{\infty} \left(\frac{x}{x^{2}+1} - \frac{C}{3x+1}\right) dx = \lim_{t \to \infty} \int_{0}^{t} \frac{x}{2^{2}+1} - \frac{C}{3x+1} dx$$

First, we solve inchinde integral using v : substitution

$$\int_{0}^{\infty} \left(\frac{x}{x^{2}+1} - \frac{C}{3x+1}\right) dx = \left[\frac{1}{2} \frac{2x}{x^{2}+1} - \frac{C}{3} \frac{3}{3x+1}\right] dx$$

$$\int_{0}^{\infty} \left(\frac{x}{x^{2}+1} - \frac{C}{3x+1}\right) dx = \left[\frac{1}{2} \ln \left|\frac{x}{x^{2}+1}\right| - \frac{C}{3} \ln \left|\frac{x}{3x+1}\right| + \frac{C}{3} \ln \left|\frac{x}{3x+1}\right$$

(a) $\int_{0}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to 0^{+}} \int_{0}^{\infty} \frac{dx}{x^{p}} = \lim_{t \to 0^{+}} \frac{1}{x^{p}} = \lim_{t \to 0^{+}}$ $=\frac{1}{1-P}-\lim_{t\to\infty}\frac{t^{-P+1}}{-P+1}$ the integral is convergent if the lint exists SO, -P+1 Lo = 5/2 P>1) b) Je man ft dx

e x(lnx)P

t = x = x(lnx)P First, we solve indefinite integral Inn=u => dx = du $\int \frac{dn}{x(\ln n)^p} = \int \frac{du}{up} = \frac{-p+1}{-p+1} + C = \frac{(\ln x)^{1-p}}{1-p}$ So, lui st dx

e relluxIP = lui (lnx)-P t

tow I-P e - an (Int)-P | For |- P<0

+>00 (P)1)

problem 5

1) $y = 1 + 6x^{3} = 0$ The exact layth $L = \int_{0}^{b} \sqrt{1 + (f(n))^{2}} dx = \int_{0}^{b} \sqrt{1 + (\frac{dy}{dx})^{2}} dx$ The exact layth $L = \int_{0}^{b} \sqrt{1 + (f(n))^{2}} dx = \int_{0}^{b} \sqrt{1 + (\frac{dy}{dx})^{2}} dx$ $L = \int \int 1 + (9n^2)^2 dx = \int \sqrt{1 + 81} x dx$ U=1+81x > du-81dx = 5/82 Tu du 81 $\frac{-1}{81} \frac{\sqrt{3}}{\sqrt{2}} \sqrt{82} \frac{2(81)^{3/4}}{243}$ 2) $y^2 = 4 (x + 4)^3$ $y = 2(x + 4)^3/2^2$ $y = 2(\frac{3}{2})(x + 4)^2$ $L = \int_{0}^{2} \sqrt{(1 + 9(x + 4))} \, dx = \int_{37}^{55} \sqrt{u} \, du \, du \, du$ $=\frac{1}{9}\left(\frac{3}{2}\right)^{\frac{3}{2}}$ U= 1+9(n+4) du = 9dX $= \frac{2}{27} \left(\frac{55}{55} - \frac{3}{27} + \frac{3}{12} \right)$ town dx social

Problem 6: $P(-1,\frac{1}{2}), Q(1,\frac{1}{2})$ $\Rightarrow L = \int \sqrt{1+x^2} dx = 2 \int \sqrt{1+x^2} dx$ because It is
ever function $= 2 \int \sqrt[4]{4} \sqrt{1+\tan^2 x} Sec^2 x dx$ dx1) y=x2 y' = x $X = \tan 2$ $dx = Sec^2 2 d2$ = 25th Sec 2 sec 2 dz if · (27) > Sec 2>. = 2 [secztanz] Jap Secztanzdz] integration by part Sec Z = U => Sec Z tan Zdz=dy Sec ZdZ = dV => tan Z = V = 2 [\(\sum_{2} - \int_{sec Z}(\sec Z - 1)\) dZ] $=2\left[\int_{0}^{2}-\int_{0}^{4}\frac{3}{\sec^{2}d^{2}}+\int_{0}^{4}\frac{4}{\sec^{2}d^{2}}\right]$ $2 \int_{0}^{1/4} Sec^{3} dt = 2\sqrt{2} - 2 \int_{0}^{1/4} sec^{2} dt + 2 \int_{0}^{1/4} sec^{2} dt$ Rearrange the equation $2\int^{\pi/4} \sec^3 2 dz + 2\int^{\pi/4} \sec^3 2 dz = 2\sqrt{2} + 2\int^{\pi/4} \sec^3 2 dz$ 2/ \J+n2 dx=2/ 4 See ZdZ = \J2+\J4 Sec Z dZ =\J2+ ln | Sec Z+ten Z | \J6 = \J2+ ln | 1+\J2|