Oppgave 1: SELECT-spørringer i SQL

```
▶ Run on active connection | 		 Select block
SELECT
★
FROM
song
```

a)

Denne var veldig lang så jeg kuttet den av, men

den ga ut 24 objekter.

b)

c)

```
D Run on active connection | == Select block

SELECT
    artist.name AS artist,
    song.name AS song

FROM
    artist
    JOIN featuredOn ON artist.artistID = featuredOn.artistID
    JOIN song ON featuredOn.songID = song.songID

WHERE
    NOT artist.artistID = song.artistID

ORDER BY
    artist,
    song;
```

d)

```
{
    "artist": "Beyoncé",
    "song": "Savage Remix"
},
    {
        "artist": "Chance the Rapper",
        "song": "I'm the One"
},
    {
        "artist": "Drake",
        "song": "Love Me"
},
    {
        "artist": "Drake",
        "song": "Work"
},
    {
        "artist": "E-40",
        "song": "Saved"
},
    {
        "artist": "Future",
        "song": "Blasé"
},
    {
        "artist": "Future",
        "artist": "Future",
        "song": "Future",
        "artist": "Future",
        "
```

Denne er også lang, fikk ut 19 objekter.

e)

f)

g)

h)

Oppgave 2: Flere spørringer i relasjonsalgebra

a)

b)

Tegnet som kan se ut som ^ er et union tegn.

c)

Oppgave 3: Introduksjon til normaliseringsteori

- a) Dersom vi må endre navnet til regissøren, må vi endre fire celler. Dersom vi må endre fødselsdatoen også, må vi endre fire celler til.
- b) Alternativt design innebærer å lage to uavhengige tabeller, en med informasjon om regissør og en med informasjon om film, og en tabell som kobler sammen denne informasjonen

Regissør:

directorID	directorName	directorBirthYear
1	Jacques Táti	1908
2	Harmony Korine	1973
3	Cheryl Dunye	1966

Film:

filmID	name	year
1	PlayTime	1967
2	Mon Ocle	1953
3	Spring Breakers	2012
4	Monsieur Hulot's Holiday	1953
5	Trafic	1971
6	The Watermelon Woman	1996

FilmAv:

filmID	regissørID
1	1
2	1
3	2
4	1
5	1
6	3

Oppgave 4: Funksjonelle avhengigheter, nøkler og tillukning

Vi vet blant annet at alle rader som har samme verdi for A må ha samme verdi for B, at en supernøkkel er en kombinasjon av attributter som unikt kan identifisere hver rad i en tabell, og at en kandidatnøkkel er en minimal supernøkkel, det vil si den minste mengden av attributter som kan unikt identifisere hver rad

a) Påstander:

- 1. Stemmer, trivielt.
- 2. Nei, B har ulike verdier for samme A.
- 3. Stemmer, C har unike verdier for unike verdier av A.
- 4. Stemmer, C har unike verdier for unike kombinasjoner av AB.
- 5. Nei, D har ulike verdier for samme C.
- 6. Nei, C har ulike verdier for samme D.
- 7. Ja, siden alle rader i tabellen er unike.
- 8. Nei, vi har duplikatrader som gir ulike verdier.
- 9. Nei, samme verdi for D gir ulike verdier for ABC.
- 10. Ja, ABD gir ulike verdier for D.

b) Tillukninger:

- 1. $D^+ = DA$
- 2. $BC^+ = BCD = BCDA = R$
- 3. $AB^+ = ABD = ABDC = R$
- 4. $BD^+ = BDA = BDAC = R$

Relasjonen har bare en kandidatnøkkel, B^+ = BD = BDA = BDAC = R.