

5A, 600V N-CHANNEL MOSFET

GENERAL DESCRIPTION

SVF5N60T/F/D/MJ is an N-channel enhancement mode power MOS field effect transistor which is produced using Silan proprietary F-CellTM structure VDMOS technology. improved planar stripe cell and the improved guard ring terminal have been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation

These devices are widely used in AC-DC power suppliers, DC-DC converters and H-bridge PWM motor drivers.

FEATURES

- * $5A,600V,R_{DS(on)}(typ) = 1.88\Omega@V_{GS}=10V$
- * Low gate charge
- * Low Crss
- * Fast switching
- * Improved dv/dt capability

NOMENCLATURE

ORDERING INFORMATION

Part No.	Package	Marking	Material	Packing
SVF5N60T	TO-220-3L	SVF5N60T	Pb free	Tube
SVF5N60F	TO-220F-3L	SVF5N60F	Pb free	Tube
SVF5N60D	TO-252-2L	SVF5N60D	Pb free	Tube
SVF5N60DTR	TO-252-2L	SVF5N60D	Pb free	Tape & Reel
SVF5N60MJ	TO-251J-3L	SVF5N60MJ	Pb free	Tube

Page 1 of 10

SVF5N60T/F/D/MJ_Datasheet

ABSOLUTE MAXIMUM RATINGS (Tc=25°C unless otherwise noted)

Characteristics		0 1 1	Ratings		
		Symbol	SVF5N60T/D/MJ	SVF5N60F	Unit
Drain-Source Voltage	Drain-Source Voltage		600		V
Gate-Source Voltage	Gate-Source Voltage		±30		V
But O was	T _C =25°C		5		A
Drain Current	T _C =100°C	l _D	3.1		
Drain Current Pulsed		I _{DM}	20		Α
Power Dissipation(T _C =25°C)			120	40	W
-Derate above 25°C		P _D	0.96	0.32	W/°C
Single Pulsed Avalanche Energy (Note 1)		E _{AS}	242		mJ
Operation Junction Temperature Range		TJ	<i>-</i> 55∼+150		°C
Storage Temperature Range		T _{stg}	-55∼+150		°C

THERMAL CHARACTERISTICS

		Ratings				
Characteristics	Symbol	SVF5N	SVF5N	SVF5N	SVF5N	Unit
		60T	60D	60MJ	60F	
Thermal Resistance, Junction-to-Case	R ₀ JC	1.04	1.04	1.00	3.13	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	110	110	120	°C/W

ELECTRICAL CHARACTERISTICS (Tc=25°C unless otherwise noted)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Drain -Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250μA	600			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =600V, V _{GS} =0V	-		1.0	μΑ
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	V_{GS} = V_{DS} , I_D =250 μ A	2.0		4.0	V
Static Drain- Source On State Resistance	R _{DS(on)}	V _{GS} =10V, I _D =2.5A	-	1.88	2.15	Ω
Input Capacitance	C_{iss}		-	479.8		
Output Capacitance	C_{oss}	V _{DS} =25V,V _{GS} =0V, f=1.0MHZ		62.7		pF
Reverse Transfer Capacitance	C_{rss}			2.1		
Turn-on Delay Time	$t_{d(on)}$			14.93		
Turn-on Rise Time	t _r	V_{DD} =300V, I_{D} =5.0A, R_{G} =25 Ω	-	28.40		
Turn-off Delay Time	$t_{d(off)}$	(Nata 2.2)	-	28.27		ns
Turn-off Fall Time	t _f	(Note 2,3)	-	21.73		
Total Gate Charge	Q_g			9.27		
Gate-Source Charge	Q_gs	V_{DS} =480V, I_{D} =5.0A, V_{GS} =10V		2.79		nC
Gate-Drain Charge	Q_{gd}	(Note 2,3)		3.37		

SVF5N60T/F/D/MJ_Datasheet

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	Is	Integral Reverse P-N			5	
Pulsed Source Current	I _{SM}	Junction Diode in the MOSFET			20	Α
Diode Forward Voltage	V _{SD}	I _S =5.0A,V _{GS} =0V	-	-	1.4	V
Reverse Recovery Time	T _{rr}	I _S =5.0A,V _{GS} =0V,	-	190	-	ns
Reverse Recovery Charge	Qrr	dl _F /dt=100A/μs		0.53		μC

Notes:

- 1. L=30 mH, I_{AS} =3.78A, V_{DD} =70V, R_{G} =25 Ω , starting T_{J} =25 $^{\circ}$ C;
- 2. Pulse Test: Pulse width ≤300µs,Duty cycle≤2%;
- 3. Essentially independent of operating temperature.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS(continued)

Drain Current - I_D(A)

TYPICAL TEST CIRCUIT

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching Test Circuit & Waveform

PACKAGE OUTLINE

PACKAGE OUTLINE (continued)

PACKAGE OUTLINE (continued)

Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!

Page 9 of 10

SVF5N60T/F/D/MJ_Datasheet

ATTACHMENT

Revision History

Date	REV	Description	Page
2011.02.11	1.0	Original	
2011.07.04	1.1	Add the package of TO-251J-3L	
2011.09.13	1.2	Update the package outline of TO-220-3L	