SKUPENSKÉ STAVY LÁTOK

Plynné skupenstvo:

- vzdialenosti medzi jednotlivými časticami sú veľké
- sily vzájomného pôsobenia medzi nimi sú malé
- častice sa môžu voľne pohybovať v danom objeme
- hustota plynov je malá a koeficienty tepelnej rozťažnosti a stlačiteľnosti sú značné.

Kvapaliny:

na rozdiel od plynov majú určitý objem.

Častice v kvapaline sa ešte môžu do určitej miery voľne pohybovať, ale príťažlivé sily ich udržiavajú v jednom zhluku.

Kvapalina mení svoj tvar, ale nemení svoj objem

SKUPENSKÉ STAVY LÁTOK

<u>Tuhé skupenstvo</u>: Vzdialenosti medzi časticami sú také malé, že odpudivé sily sa vyrovnajú príťažlivým.

(Teda častice sa ustália v určitých rovnovážnych polohách, pričom vzniká kryštalická mriežka).

Má svoj vlastný objem aj tvar

<u>Plazmatický stav</u>: charakterizuje látky pri značne vysokých teplotách alebo v elektrických výbojoch, kedy sú látky v podobe ionizovaných častíc (sú zbavené časti svojich elektrónových obalov), elektrónov, neutrálnych atómov a molekúl.

Zvláštne zákonitosti plazmatického stavu sa uplatňujú pri termonukleárnych procesoch.

Var – tvorba bubliniek pary vo vnútri kvapaliny – vyparovanie z celého objemu kvapaliny

Teplota varu = tlak nasýtenej pary sa rovná vonkajšiemu tlaku, závisí na medzimolekulových silách (T_v)

Utajený var = vznik mikrobubliniek pary vo vnútri kvapaliny, nastáva prehriatie (teplota kvapaliny je vyššia ako T_v a nenastal var — metastabilný stav) vzniká obvykle u čistých kvapalín, čím je kvapalina čistejšia, tým ťažšie dochádza k varu kvapaliny

Topenie a tuhnutie – opačné procesy prebiehajúce pri tej istej teplote a rovnakom tlaku

Teplota topenia a tuhnutia T_t – teplota, pri ktorej je tuhá a kvapalná látka v rovnováhe

Roztok je homogénna sústava skladajúca sa najmenej z dvoch zložiek – rozpúšťadla a rozpustenej látky.

Rozpúšťadlom označujeme spravidla tú látku, ktorá je v nadbytku.

Rozpúšťadlá môžu byť polárne a nepolárne.

Polárne molekuly, napr. NaCl sa rozpúšťajú v polárnych rozpúšťadlách.

Nepolárne molekuly sa rozpúšťajú v nepolárnych rozpúšťadlách.

Voda je polárnym rozpúšťadlom.

Autoprotolýza vody:

$$H_2O + H_2O \Leftrightarrow H_3O^+ + OH^ K_v = [H_3O^+].[OH^-] = 10^{-14}$$
 pri teplote 22 °C

lónový súčin vody

Rozpúšťanie látok vo vode spôsobuje zmenu koncentrácie oxóniových alebo hydroxidových iónov ⇒ zmena hodnoty pH roztoku

$$pH = - log [H_3O^+]$$
 $pH = - log a_{H_3O^+}$

a = f.c (f = aktivitný koeficient)
 Pri zriedených roztokoch sa koncentrácie blížia aktivitám

Osmóza je prenikanie molekúl rozpúšťadla cez semipermeabilnú membránu, v snahe o vyrovnanie koncentrácie roztoku na oboch stranách membrány.

Osmotický tlak má veľký význam v biologických systémoch,

má veľmi dôležitú úlohu pri výmene vody a rozpustených častíc medzi bunkou a jej extracelulárnom prostredí.

Ak porovnávame dva roztoky s rozdielnym osmotickým tlakom, tak

- roztok s vyšším osmotickým tlakom je <u>hypertonický</u>,
- roztok s nižším osmotickým tlakom je <u>hypotonický</u>

Dva roztoky s rovnakým osmotickým tlakom sú izotonické.

Tlak, ktorým sa musí pôsobiť na roztok, aby sa zabránilo prenikaniu rozpúšťadla semipermeabilnou membránou do roztoku je <u>osmotický tlak.</u>

Roztoky injektované do žíl v ľudskom organizme musia byť izotonické s krvou.

Fyziologický roztok je 0,9% roztok NaCl, c=0,15 mol.dm⁻³

Je izotonický s roztokom glukózy s c = 0,3 mol.dm⁻³.

Koloidné roztoky

Koloidné roztoky sa skladajú z dispergovanej látky, ktorej častice majú koloidné rozmery 1-500 nm a z dispergovaného prostredia.

Podľa spôsobu interakcií častíc dispergovanej látky s disperzným médiom delíme koloidy na:

lyofilné: koloidné častice sú stabilizované disperzným prostredím. (majú silnú afinitu k povrchu molekúl prostredia)

lyofóbne: koloidné častice odpudzujú disperzné prostredie.

Tuhá látka

- látka, ktorá si zachováva stály tvar a objem ⇒ tvar a objem nezávisí od nádoby
- látka, ktorej stavebné častice sú usporiadané v pravidelnej, geometricky sa opakujúcej mriežke (medzi tieto látky sa nezaraďujú amorfné látky)

Amorfné látky – majú stály tvar a objem, ale nemajú pravidelné usporiadanie častíc a sú bez kryštálových stien

Podľa smeru šírenia fyzikálnych vlastností tuhými látkami delíme tuhé látky na:

Anizotropné látky – fyzikálne vlastnosti sú rozdielne v závislosti od smeru, v ktorom sú merané. (kryštalické látky)

Izotropné látky – fyzikálne vlastnosti sú rovnaké vo všetkych smeroch merania (amorfné látky)

Kryštálová štruktúra

= pravidelné trojrozmerné usporiadanie stavebných častíc (atómov, iónov, molekúl ...)

Kryštálová (priestorová) mriežka

geometricky pravidelná sieť bodov (uzlov) v priestore
 Ak sú uzly obsadené stavebnými časticami (atómami, iónmi, molekulami ...)
 = kryštálová štruktúra

Kryštálová mriežka – je určená základným rovnobežnostenom = základná bunka Základná bunka = časť priestorovej mriežky použitá na zostrojenie celej mriežky

Základná bunka je základnou stavebnou jednotkou kryštálovej štruktúry. Je charakterizovaná dĺžkami hrán a, b, c, uhlami α , β , γ , ktoré tieto hrany zvierajú.

primitívna štvorcová plošne centrovaná (tetragonálna) kocková (kubická)

bázicky centrovaná priestorovo centrovaná jednoklonná kosoštvorcová

(monoklinická) (ortorombická)

Bravais (1850)

 odvodil 14 možných druhov základných buniek, pomocou ktorých možno geometricky opísať ľubovoľnú kryštálovú štruktúru

Podľa tvaru základných buniek rozdeľujeme kryštály do siedmich kryštalografických sústav:

kubická monoklinická

tetragonálna ortorombická

triklinická trigonálna hexagonálna

 Podľa druhu častíc a charakteru príťažlivých síl:

kovové

iónové

kovalentné (atómové, polymérne)

molekulové

Kovové štruktúry (kryštály)

Prítomnosť voľne pohyblivých elektrónov vysvetľuje charakteristické vlastnosti kovových kryštálov:

- tepelná vodivosť,
- elektrická vodivosť,
- optické vlastnosti (kovový lesk, nepriehľadnosť),
- mechanické vlastnosti (kujnosť, ťažnosť, tvárnosť a pod.)

Iónové štruktúry (kryštály)

elektrická vodivosť roztokov

Pravidelne sa striedajúce katióny a anióny viazané elektrostatickými príťažlivými silami bez smerovej orientácie Veľké príťažlivé sily \Rightarrow málo prchavé, pomerne tvrdé, vysoké T_t a T_v krehké, rozpustné v polárnych rozpúšťadlách = ionizácia =

Molekulové štruktúry (kryštály)

skladajú sa z molekúl, ktoré sú viazané slabými van der Waalsovými silami, prípadne vodíkovými väzbami

Slabé príťažlivé sily \Rightarrow mäkké, nízke T_t a T_{v_j} prchavé – sublimujú (I_2, CO_2) , rozpustné v nepolárnych rozpúšťadlách = roztoky sú nevodivé

Vrstevnaté štruktúry (kryštály)

- Iónové vrstva katiónov je obklopená 2
 vrstvami aniónov (Mg(OH)₂, Cal₂, Ca(OH)_{2...})
- Kovalentné vrstvy kovalentne viazaných atómov (grafit...)

Polymorfia – látka existujúca v rôznych štruktúrnych modifikáciách (formách) Kremeň ↔ tridymit ↔ cristobalit

Trigonálna k.s.

Triklinická k.s.

Tetragonálna or kubická k.s. Vysokoteplotná forma SiO₂

Alotropia – prvok existuje v rôznych štruktúrnych modifikáciách (formách) grafit ↔ diamant

Izomorfia – rozličné látky s podobnými chemickými vlastnosťami majú rovnaký typ štruktúry

- Napr. MgSO₄. 7H₂O, FeSO₄. 7H₂O
- $ZnSO_4 . 7H_2O$, $MnSO_4 . 7H_2O$

alebo KH₂AsO₄, KH₂PO₄, NH₄H₂PO₄

Chemické reakcie možno klasifikovať na základe rôznych hľadísk:

Na základe zmien v stechiometrickom zložení reagujúcich látok

- = reakcie syntézy
- = reakcie rozkladu
- = reakcie nahradzovania (substitúcie)
- = reakcie podvojnej zámeny

Podľa druhu elementárnych častíc, ktoré sa vymieňajú medzi časticami reaktantov rozlišujeme:

 protolytické (acidobázické) – reaktanty si vymieňajú protón

Pr.
$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

 Oxidačno-redukčné (redoxné) – reaktanty si vymieňajú elektróny

Pr.
$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

Podrobnejšie delenie chemických reakcií

Oxidačno-redukčné reakcie (redox reakcie):

- a) syntéza Fe + S → FeS
- b) analýza $2HgO \rightarrow 2Hg + O_2$
- c) substitúcia CuSO₄ + Fe → FeSO₄ + Cu
- d) disproporcionačné reakcie (disproporcionácia)

$$4KCIO_3 \rightarrow KCI + 3KCIO_4$$

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

e) symproporcionačné reakcie

(symproporcionácia, komproporcionácia)

$$Cu + CuCl_2 \rightarrow 2CuCl$$

f) zložitejšie oxidačno-redukčné reakcie

$$5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow$$

 $\rightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$

Podrobnejšie delenie chemických reakcií

a) protolytické reakcie

- neutralizácia

$$HCI + KOH \rightarrow KCI + H_2O$$

- hydrolýza

$$CH_3COONa + H_2O \rightarrow CH_3COOH + Na^+ + OH^-$$

- vytesňovanie kyselín z ich solí

$$H_2SO_4 + KNO_3 \rightarrow HNO_3 + KHSO_4$$

Podrobnejšie delenie chemických reakcií

b) vylučovacie reakcie

- produkt sa vylúči vo forme plynu

FeS (s) + 2HCl (aq)
$$\rightarrow$$
 H₂S(g) + FeCl₂ (aq)

- produkt sa vylúči vo forme tuhej látky, sú to zrážacie reakcie

$$CdCl_2$$
 (aq) + $H_2S(g) \rightarrow CdS(s) + 2HCl(aq)$

c) vznik a rozpad komplexov

$$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$$