Module 9.3: Time Series Analysis with Python Fall Term 2023

Week 7:

Cointegration

Outline in Weeks

- Introduction; Descriptive Modeling
- Returns; Autocorrelation; Stationarity
- ARMA Models
- Unit Roots; ARIMA Models
- Volatility Modeling
- Value at Risk
- Cointegration

Outline

Cointegration and Common Trends

2 Error Correction Models and the Engle-Granger Procedure

Epilogue

Cointegration and Common Trends

Suppose we have two time series Y_t and X_t , which are both I(1), and we analyze a regression model of the form

$$Y_t = \beta_1 + \beta_2 X_t + U_t.$$

Here U_t has mean zero but may display autocorrelation. Two cases:

- $U_t \sim I(1)$: if U_t displays no mean-reversion, then Y_t does not revert to the explained part $\beta_1 + \beta_2 X_t$. Even if $\beta_2 = 0$, its t-statistic and R^2 will often seem significant (*spurious regressions*). To avoid this, one should estimate a model in differences, i.e., $\Delta Y_t = a_1 + a_2 \Delta X_t + \Delta U_t$.
- $U_t \sim I(0)$: now Y_t and X_t have a *common* stochastic trend, such that the linear combination $Y_t \beta_2 X_t$ does not have a trend. This is called *cointegration*.

Example

Cointegration and Common Trends

Consider the model

$$Y_t = \beta_1 + \beta_2 X_t + U_{1,t}$$

 $X_t = X_{t-1} + U_{2,t}$

where $\beta_2 \neq 0$, $U_{1,t}$, $U_{2,t} \stackrel{\text{iid}}{\sim} (0, \sigma^2)$ independently of each other.

• X_t is a random walk and thus nonstationary. Y_t contains X_t and is thus also nonstationary. But

$$Y_t - \beta_2 X_t = \beta_1 + U_{1,t}$$

is stationary: the RHS is white noise plus a constant.

• $(1, -\beta_2)$ is called the *cointegrating vector*.

Cointegration and Common Trends, contd.

• The concept is easily extended to more than two series: if X_{2t}, \ldots, X_{kt} are all I(1) variables, and

$$Y_t = \beta_1 + \beta_2 X_{2t} + \ldots + \beta_k X_{kt} + U_t,$$

then this is a spurious regression if $U_t \sim I(1)$ (and $\beta_i = 0$), and a cointegrating relation if U_t is stationary.

- In other words, cointegration between k integrated series means that there exists a linear combination¹ of them which is stationary.
- Examples of possibly cointegrated time series:
 - exchange rates and relative prices (purchasing power parity);
 - spot and futures prices of assets or exchange rates;
 - short- and long-term interest rates (term structure models);
 - stock prices and dividends (present value relations).

¹i.e., a weighted sum

Outline

Cointegration and Common Trends

Error Correction Models and the Engle-Granger Procedure

Epilogue

Testing for Cointegration

- For cointegrated series, one should exploit the long-run equilibrium relationship between variables for estimation rather than differencing. Differencing would *remove* that structure.
- Engle and Granger proposed the following procedure:
 - Conduct individual unit root tests to ensure all series are *I*(1).
 - Estimate the regression model

$$Y_t = \beta_1 + \beta_2 X_{2t} + \ldots + \beta_k X_{kt} + U_t$$

by ordinary least-squares. Estimates are (super)consistent, but standard errors are wrong because series are *I*(1).

- Apply an ADF unit root test (with constant) to the residuals \hat{u}_t from this regression. This yields a test for $H_0: U_t \sim I(1)$ (spurious regression) against $H_1: U_t \sim I(0)$ (cointegration). The critical values depend on k. E.g., for k=2 (X_{2t} and an intercept), the 5% c.v. is -3.41.
- If H_0 is rejected, estimate an *error correction model*.

Engle-Granger critical values

Number of series (w/o constant) Critical value -3.41 -3.80 -4.16 -4.49 -4.74

Error Correction Models

- Cointegration between Y_t and X_t implies that deviations $(Y_{t-1} \beta_1 \beta_2 X_{t-1})$ from the equilibrium level should be (partially) corrected in the next period, by Y_t , X_t , or both.
- This leads to a vector error correction model (VECM), which in the simplest form is

$$\Delta Y_t = c_1 + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{1t},$$

$$\Delta X_t = c_2 + \alpha_2 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{2t},$$

where e_{1t} and e_{2t} are two white noise errors (possibly correlated), and where we expect $\alpha_1 < 0$ and/or $\alpha_2 \beta_2 > 0$.

- We might need to add lags of ΔY_t and/or ΔX_t on RHS to combat autocorrelation.
- The Granger representation theorem states that cointegration implies an error correction model (possibly with more lags), and vice versa; see exercises.

Engle-Granger Procedure

The VFCM

$$\Delta Y_t = c_1 + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{1t},$$

$$\Delta X_t = c_2 + \alpha_2 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{2t}.$$

is estimated by replacing $Y_{t-1} - \beta_1 - \beta_2 X_{t-1}$ by OLS residual $\hat{u}_{t-1} = Y_{t-1} - \hat{\beta}_1 - \hat{\beta}_2 X_{t-1}$, and estimating α_1 and α_2 by OLS.

- Note that \hat{u} is stationary, so this is a valid regression!
- If $\alpha_2 = 0$, then all correction is done by Y_t , and not by X_t . In that case it makes sense to treat X_t as exogenous and Y_t as endogenous, and consider the "single-equation" error correction model

$$\Delta Y_t = c + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_t.$$

• In general, both Y_t and X_t are endogenous.

Outline

Cointegration and Common Trends

- 2 Error Correction Models and the Engle-Granger Procedure
- Epilogue

Example

- Until 1971, as part of the Bretton-Woods system of fixed exchange rates, the US dollar
 was convertible to gold, i.e., it was possible for foreign central banks to redeem US
 dollars for gold at a fixed rate of 35\$ per troy ounce, so that the price of gold was fixed.
- In 1971, US president Nixon unilaterally cancelled the direct convertibility, ultimately ending the Bretton-Woods agreement.
- Gold became a floating asset, and its price increased sharply; in other words, the US\$
 was massively devalued.

- We want to analyze the hypothesis that the increasing price (in US\$) of oil is not a
 consequence of an increased demand for (or a reduced supply of) oil, but rather of a
 continued devaluation of the US\$.
- We have at our disposal monthly data from April 1968 to January 2017 (586 observations) on the following variables:
 - gold_t, the spot price of one troy ounce of gold in US\$;
 - oil_t, the spot price of one barrel of WTI crude oil in US\$.
- Idea: if the relative price of oil expressed in units of $\operatorname{gold}_t/\operatorname{gold}_t$ is stationary, then this implies that $\operatorname{log}(\operatorname{oil}_t) \operatorname{log}(\operatorname{gold}_t)$ is stationary, so that $\operatorname{log}(\operatorname{oil}_t)$ and $\operatorname{log}(\operatorname{gold}_t)$ must be cointegrated if the individual series are integrated.

Cointegration and Common Trends

Step 1 Test that the variables are integrated (ADF test with constant and trend)

```
ADF, p, crits, res = tsa.stattools.adfuller(df["LOIL"], regression='ct', autolag='AIC', store=True)
print("ADF = ", ADF, "\np = ", p)

ADF = -2.5524224546607397
p = 0.3022670842559252

ADF, p, crits, res = tsa.stattools.adfuller(df["LGOLD"], regression='ct', autolag='AIC', store=True)
print("ADF = ", ADF, "\np = ", p)

ADF = -2.559158224027972
p = 0.29904292389348935
```

Neither test rejects, so the series are I(1).

Step 2 Estimate long-run relationship $loil_t = \beta_1 + \beta_2 lgold_t + U_t$

Estimated long run relationship

		OLS Re	egression R	esults		
Dep. Variabl	e:	1	LOIL R-sq	uared:		0.873
Model:			OLS Adj.	R-squared:		0.873
Method:		Least Squa	ares F-st	atistic:		4015.
Date:	We	d. 11 Oct 2	2023 Prob	(F-statistic)	:	6.99e-264
Time:		15:03	3:24 Log-	Likelihood:		-183.59
No. Observat	ions:		586 AIC:			371.2
Df Residuals	:		584 BIC:			379.9
Df Model:			1			
Covariance T	'vne:	nonrok	nist			
	,,,					
	coef	std err	t	P> t	[0.025	0.975]
				0.000		
LGOLD	0.9262	0.015	63.364	0.000	0.898	0.955
Omnibus:		4.	.994 Durb	in-Watson:		0.074
Prob(Omnibus):	0.	.082 Jarq	ue-Bera (JB):		4.313
Skew:		-0.	.133 Prob	(JB):		0.116
Kurtosis:		2.	.675 Cond	. No.		38.3

The cointegrating vector is $(1, -\beta_2) = (1, -0.926)$ (if the Engle-Granger test rejects). *Careful*: standard errors are wrong, because variables are I(1).

Step 3 Apply ADF test (with intercept) to u.

```
ADF, p, crits, res = tsa.stattools.adfuller(u, regression='c', autolag='AIC', store=True)
print("ADF = ", ADF)

ADF = -3.7247713389879844
```

Careful: we need to use the Engle-Granger 5% critical value of -3.41, **not** the one given by adfuller (nor the p-value). Conclusion: test rejects the null of "no cointegration".

Step 4a Estimate the VECM equation for loil. Note: I threw in a lag of the dependent variable, as there was autocorrelation without it (cf. selected lag length in ADF test).

	01 G D	-1 D14	_				
	OLS Regres	sion Result	s =======				
Dep. Variable:	df.LOIL.diff	()	R-squa	red:		0.078	
Model:	C	LS	Adj. R	-squared:		0.074	
Method:	Least Squar	es	F-stat		24.46		
Date:	Wed, 11 Oct 20	23	Prob (F-statistic	:	6.31e-11	
Time:	16:25:	01	Log-Li	kelihood:		654.56	
No. Observations:	5	84	AIC:			-1303.	
Df Residuals:	5	81	BIC:			-1290	
Df Model:		2					
Covariance Type:	nonrobu	st					
	coef	std err	t	P> t	[0.025	0.975	
Intercept	0.0036	0.003	1.111	0.267			
u.shift()	-0.0350	0.010	-3.518	0.000	-0.054	-0.01	
df.LOIL.diff().shift()	0.2565	0.040	6.399	0.000	0.178	0.33	
Omnibus:	325.732		Durbin-Watson:			2.00	
Prob(Omnibus):	0.000		Jarque-Bera (JB):			11453.205	
Skew:	1.828		Prob(JB):			0.00	
Kurtosis:	24.385		Cond. No.			12.	

Step 4b Estimate the VECM equation for lgold.

```
VECM equation for lgold
                                                     OLS Regression Results
                         Dep. Variable:
                                               df.LGOLD.diff()
                                                                                                  0.003
                                                                 R-squared:
                         Model:
                                                                Adj. R-squared:
                                                                                                  0.001
                                                Least Squares F-statistic:
                         Method.
                                                                                                 1.616
                         Date:
                                             Wed, 11 Oct 2023 Prob (F-statistic):
                                                                                                 0.204
                         Time:
                                                      16:29:45
                                                                Log-Likelihood:
                                                                                                850.41
                         No. Observations:
                                                                AIC:
                                                                                                -1697.
                         Df Residuals:
                                                           583
                                                                BIC:
                                                                                                -1688.
                         Df Model:
                         Covariance Type:
                         Intercept
                                        0.0059
                                                    0.002
                                                               2.504
                                                                                      0.001
                                                                                                  0.010
                                                                                     -0.005
                                                                                                  0.023
                         Omnibus:
                                                                 Durbin-Watson:
                                                                Jarque-Bera (JB):
                         Prob (Omnibus):
                                                         0.000
                                                                                               356.493
                         Skew:
                                                         0.368
                                                                Prob(JB):
                                                                                               3.88e-78
                         Kurtosis:
                                                                 Cond. No.
                                                                                                   3.02
```

The adjustment coefficient α_2 in the equation for d(lgold) is insignificant (p = 0.204). So all the adjustment is done by loil \rightarrow single-equation ECM.

• The final model is the single-equation ECM

$$\Delta \text{loil}_t = 0.0036 - 0.035(\text{loil}_{t-1} - 0.926\text{lgold}_{t-1} + 2.26) + 0.25\Delta \text{loil}_{t-1} + e_{1t}.$$

In our earlier notation,

$$\Delta Y_t = c + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + \gamma \Delta Y_{t-1} + e_{1t},$$

with c = 0.0036, $\alpha_1 = -0.035 < 0$ as desired, $\beta_1 = -2.26$, $\beta_2 = 0.926$, and $\gamma = 0.25$.

Interpretation: there is an equilibrium relationship between loil and Igold. In case of a
disequilibrium, loil adjusts towards the equilibrium. The adjustment amounts to 3.5%
per period.

Outline

- Error Correction Models and the Engle-Granger Procedure
- **Epilogue**

Learning Goals

Students

- Understand the concept of cointegration,
- are able to test for cointegration using the Engle-Granger procedure,
- and are able to estimate an error correction model.

Homework

- Exercise 7
- Problem 6 from Chapter 8 of Brooks (2019)