Accepted Manuscript

Outbreak of brainstem encephalitis associated with enterovirus-A71 in Catalonia, Spain (2016): a clinical observational study in a children's reference centre in Catalonia

Dídac Casas-Alba, Mariona F. de Sevilla, Ana Valero-Rello, Claudia Fortuny, Juan-José García-García, Carlos Ortez, Jordi Muchart, Thais Armangué, Iolanda Jordan, Carles Luaces, Irene Barrabeig, Rubén González-Sanz, María Cabrerizo, Carmen Muñoz-Almagro, Cristian Launes

PII: S1198-743X(17)30185-4

DOI: 10.1016/j.cmi.2017.03.016

Reference: CMI 900

To appear in: Clinical Microbiology and Infection

Received Date: 19 January 2017

Revised Date: 15 March 2017

Accepted Date: 18 March 2017

Please cite this article as: Casas-Alba D, de Sevilla MF, Valero-Rello A, Fortuny C, García-García J-J, Ortez C, Muchart J, Armangué T, Jordan I, Luaces C, Barrabeig I, González-Sanz R, Cabrerizo M, Muñoz-Almagro C, Launes C, Outbreak of brainstem encephalitis associated with enterovirus-A71 in Catalonia, Spain (2016): a clinical observational study in a children's reference centre in Catalonia, *Clinical Microbiology and Infection* (2017), doi: 10.1016/j.cmi.2017.03.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Outbreak of brainstem encephalitis associated with
2	enterovirus-A71 in Catalonia, Spain (2016): a clinical
3	observational study in a children's reference centre in
4	Catalonia.
5 6 7 8	Dídac Casas-Alba ¹ , Mariona F de Sevilla ^{1,2,3} , Ana Valero-Rello ^{2,4} , Claudia Fortuny ^{1,2,3} , Juan-José García-García ^{1,2,3} , Carlos Ortez ⁵ , Jordi Muchart ⁶ , Thais Armangué ⁵ , Iolanda Jordan ^{2,3,7} , Carles Luaces ⁸ , Irene Barrabeig ⁹ , Rubén González-Sanz ¹⁰ , María Cabrerizo ¹⁰ , Carmen Muñoz-Almagro ^{2,3,8,11} , Cristian Launes ^{1,2,3} .
9 10 11 12 13 14 15 16 17 18 19 20	1) Department of Paediatrics, Hospital Sant Joan de Deu (University of Barcelona), Spain; 2) Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugue de Llobregat, Spain; 3) CIBER en Epidemiología y Salud Pública, CIBERESP, Spain; 4) Department of Molecular Microbiology, Hospital Sant Joan de Deu, Spain; 5) Department of Paediatric Neurology, Hospital Sant Joan de Deu (University of Barcelona), Spain; 6) Department of Diagnostic Imaging, Hospital Sant Joan de Deu (University of Barcelona), Spain; 7) Paediatric Intensive Care Unit, Hospital Sant Joan de Deu (University of Barcelona), Spain; 8) Emergency Departament, Hospital Sant Joan de Deu (University of Barcelona), Spain; 9) Epidemiological Surveillance Unit of Health Region, Barcelona-South, Public Health Agency of Catalonia, Hospitalet de Llobregat, Spain; 10) Enterovirus Unit, National Centre for Microbiology, Institute of Public Health "Carlos III", Madrid, Spain; 11) School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
21	KEY WORDS : Enterovirus; molecular epidemiology; types; EV-A71; brainstem; encephalitis.
22	RUNNING TITLE: Brainstem encephalitis and EV-A71 in Catalonia, Spain
23	CORRESPONDING AUTHOR:
24	Cristian Launes
25	Paediatric Infectious Diseases Research Group, Paediatrics Department
26	Institut de Recerca Pediàtrica Hospital Sant Joan de Deu
27	P. Sant Joan de Déu, no. 2, 08950 Esplugues, Barcelona, Spain
28	Phone: +34.93.280.55.69, Fax: +34.93.280.36.26; E-mail: claunes@sjdhospitalbarcelona.org
29 30 31 32	FUNDING: This study was partially supported by a grant from the Spanish National Health Institute [grant number PI15CIII-00020] and "Fundación Godia". Dr Armangue is supported by a grant from Instituto Carlos III (CM14/00081) and Dodot Procter & Gamble research grant sponsored by Asociación Española de Pediatría (AEP) (DN040579, TA).
33 34	TRANSPARENCY DECLARATION: The funders have not influenced the design or analysis, nor have they had any role in preparing the manuscript.
35	CONFLICT OF INTEREST: The authors declare no potential conflicts of interest.

ABSTRACT

37	Objectives: To describe the characteristics of an outbreak of brainstem encephalitis and
38	encephalomyelitis related to enterovirus (EV) infection in Catalonia (Spain), a setting where
39	these manifestations were uncommon.
40	Methods: Clinical and microbiological data from patients with neurological symptoms
41	associated with EV detection admitted to a reference paediatric hospital between April and
42	June 2016 were analysed.
43	Results: Fifty-seven patients were included. Median age was 27.7 months (p25-p75:17.1-37.6).
44	Forty-one (72%) were diagnosed with brainstem encephalitis, 7 (12%) with aseptic meningitis,
45	6 (11%) with encephalitis, and 3 (5%) with encephalomyelitis (2/3 with cardiopulmonary
46	failure). Fever, lethargy and myoclonic jerks were the most common symptoms. Age <12
47	months, higher white-blood-cell count, and higher procalcitonin levels were associated with
48	cardiopulmonary failure. Using a PAN-EV real-time PCR, EV was detected in faeces and/or
49	nasopharyngeal aspirate in all the patients, but it was found in cerebrospinal fluid only in
50	patients with aseptic meningitis. EV was genotyped in 47/57 and EV-A71 was identified in
51	40/47, being the only EV type found in patients with brainstem symptoms. Most of the
52	detected EV-A71 strains were subgenogroup C1. Intravenous immunoglobulins were used in
53	34 patients. Eight cases (14%) were admitted to the intensive care unit. All the patients but 3,
54	those with encephalomyelitis, showed a good clinical course and had no significant sequelae.
55	No deaths occurred.
56	Conclusions: The 2016 outbreak of brainstem encephalitis in Catalonia was associated with EV-
57	A71 subgenogroup C1. Despite the clinical manifestations of serious disease, a favourable
58	outcome was observed in the majority of patients.

INTRODUCTION

59

60	An outbreak of enterovirus (EV) infection affecting more than 100 children with acute
61	brainstem symptoms was reported in Catalonia (Spain) between April and June 2016. EV
62	detected in the first patients were typed as EV-A71 [1,2].
63	EV-A71 infections characteristically present as hand-foot-mouth disease (HFMD) or
64	herpangina, but they are also associated with neurological pathologies [3,4], causing epidemics
65	of aseptic meningitis, brainstem encephalitis, encephalomyelitis, and acute flaccid paralysis
66	(AFP) largely restricted to infants [4]. The first association of EV-A71 with an outbreak of
67	neurological disease occurred in California between 1969 and 1972 [5], although a subsequent
68	retrospective study detected EV-A71 in samples from 1963 from the Netherlands [6]. In
69	Europe, there were large outbreaks in Bulgaria and Hungary in the 1970s [7,8]. Since then, big
70	outbreaks of EV-A71-associated illness with severe presentations have only been reported in
71	the Asia-Pacific region, while sporadic cases and small outbreaks of mild to moderate disease
72	have been reported worldwide [9-11]. Recent global concern about EV-A71-related
73	neurological disease has increased due to the 2016 outbreak in Spain [2].
74	The great genetic diversity within EV, due to their error-prone RNA-dependent RNA
75	polymerase [12] and the intra- and inter-species recombination events among EVs [13-15],
76	together with the different socioeconomic conditions of each setting, may lead to differences
77	in clinical expression and outcomes from one outbreak to another. Furthermore, facing to
78	treat a completely unknown disease in our setting was even more difficult since various
79	treatment approaches had been used in Southeast Asia [16-20], with little strong clinical
80	evidence of their benefit. The WHO summarised the evidence and issued clinical guidelines for
81	management of HFMD/EV-A71 illness of different severities [21].
82	The objectives of this study were to describe the clinical characteristics of patients with EV
83	infection associated with acute neurologic manifestations during the outbreak, as well as to

detect variables associated with more severe disease and poorer prognosis. The study also describes the molecular EV typing of these cases.

METHODS

Study design

Epidemiological, microbiological, and clinical data were prospectively collected from all children with enterovirus-related neurological disease who were seen in or transferred for hospitalization to a tertiary paediatric hospital (Hospital Sant Joan de Déu, University of Barcelona) from April 15 to June 30, 2016. This hospital is a 300-bed reference medical centre for high-complexity pathologies that provides health care services to a paediatric population of ≈300,000 subjects. The centre has participated in a Spanish EV molecular surveillance network since 2010.

Inclusion criteria and definitions

Case definitions of the WHO Guide to Clinical Management and Public Health Response for HFMD [21] were used to define the inclusion criteria. Patients with the clinical diagnosis of brainstem encephalitis, encephalomyelitis with/without autonomic dysfunction, encephalitis, and aseptic meningitis were included if EV infection was detected in any sample and no other cause was associated with the clinical symptoms.

The Vietnamese Ministry of Health HFMD Classification and Management Guidelines were used to stratify the severity of patients with brainstem encephalitis or encephalomyelitis [22]. Ataxia was considered a Grade 2b Group 2 criterion [16]. See web-only Supplementary Table S1. The major variables considered in estimating severity were the Vietnamese classification, the presence of cardiopulmonary failure, and the persistence of neurologic symptoms with a modified Rankin Scale ≥ 2 (neurologic symptoms with significant disability) at days 14 and 30 from the onset of disease [23].

	ACCEPTED MANUSCRIPT
110	Management, including microbiological diagnosis and imaging tests
111	A protocol for the diagnosis and management of cases was established and it was applied
112	prospectively during the study period.
113	Baseline assessment at presentation included history and physical examination, blood and CSF
114	analysis, bacterial cultures, and collection of nasopharyngeal swab and stool samples in all the
115	cases. An in-house PAN-Enterovirus real time-PCR [24] was performed in plasma and CSF in all
116	patients. In addition, nasopharyngeal aspirate and stools were collected for EV detection by
117	PAN-Enterovirus real time-PCR in patients with brainstem encephalitis or encephalomyelitis.
118	RT-PCR for herpes simplex virus (HSV) in CSF was tested. The FilmArray Meningitis-Encephalitis
119	(FA-M/E) panel was also tested in the CSF of the first 20 patients with brainstem symptoms of
120	the outbreak [1]. Imaging studies were performed to all children with brainstem encephalitis
121	and encephalomyelitis, except those with mild symptoms or quick recovery. The imaging
122	studies included brain and spine magnetic resonance image (MRI) (diffusion-weighted, fast-
123	spin-echo, T1 and T2-weighted, fluid-attenuation-inversion-recovery, and spoiled-gradient-
124	echo sequences for the brain study, and T1 and T2-weighted for the spine study).
125	Treatment conformed to several guidelines for diagnosis and treatment of HFMD,
126	recommending supportive care and consideration of IVIG in severe cases [16,21]. The clinical,
127	radiological, and pathological assessments described for the Australian 2013 outbreak [20]
128	were taken into special consideration to prescribe IVIG and/or methylprednisolone. IVIG (1
129	g/kg/day, once daily, for 2 days) was administrated to patients with lethargy, invalidating or
130	persistent ataxia, progressive worsening, or paresis. Methylprednisolone (30 mg/kg/day, 1
131	time/day, for 3 days) was given to patients with clinical or MRI signs of myelitis and patients

Outpatient follow-up after discharge was performed on all patients at days 14 and 30 from onset of disease.

with brainstem MRI lesions and persistent symptoms in whom IVIG had already been

132

133

134

135

administered.

EV-positive samples were genotyped at the Enterovirus Unit of the National Centre for Microbiology using a RT-nested PCR in the 3'-VP1 region specific for species EV-A, B and C and sequencing according to a previously described procedure [25]. To study the relationships between Spanish EV-A71 strains and those circulating in other countries, a phylogenetic analysis was performed. Multiple sequence alignments were performed by the ClustalW program. Genetic distances were calculated using the maximum composite likelihood (MCL) nucleotide distance model, and statistical significance of phylogenies estimated by bootstrap analysis with 1000 pseudoreplicate datasets. Phylogenetic trees were constructed using the neighbour-joining (NJ) method in the MEGA software 6.0.

Statistical analysis

Descriptive statistics are reported in terms of absolute frequencies and percentages. Data comparisons of categorical variables were performed using Pearson Chi-square test or Fisher exact test when appropriate. Continuous non-normal distributed variables were described as median value and interquartile range (IQR) and compared using Mann-Whitney U test and Kruskal-Wallis analysis. Spearman's rho correlation coefficient was used to analyse the correlation between the time from the onset of neurologic symptoms to the initiation of therapies and the duration of symptoms after the onset of therapies. Statistical analysis was performed with SPSS v22.0 software (Armonk, NY: IBM Corp). A P-value < 0.05 was considered statistically significant. Relative risks and the 95% confidence intervals were calculated with MedCalc® software.

The institutional ethics board approved the study and informed consent was obtained from parents or carers.

RESULTS

162	Patient demographics
163	Sixty-three patients were admitted with neurological-symptoms and EV detection during the
164	study period. In 6 of them, the informed consent could not be obtained and they were
165	excluded from the study.
166	Of the 57 patients, 41 (72%) were classified with brainstem encephalitis following the WHO
167	Classification, 7 cases (12%) were diagnosed with aseptic meningitis, 6 cases (11%) with
168	encephalitis, and 3 cases (5%) with encephalomyelitis, two of them with cardiopulmonary
169	failure.
170	Overall, the median age at disease onset was 27.7 months (IQR: 17.1-37.6) and 33/57 were
171	males (57.9%). The first case was diagnosed on April 27 and the outbreak lasted 10 weeks.
172	Figure 1.
173	
174	Non-neurological manifestations
175	Supplementary Table S2 shows the main clinical symptoms of patients. Fever (axillary
176	temperature ≥ 38°C at home or in hospital) was the initial manifestation in all patients, with
177	the median peak body temperature being 39°C (IQR:38.5-39.5). The mean time from the onset
178	of fever to admission was 48 hours (IQR:24-72 hours) and the fever lasted a median of 3 days
179	(IQR:2-4 days). There were no differences in peak body temperature between patients with
180	aseptic meningitis and patients with brainstem encephalitis or encephalomyelitis; however,
181	fever lasted less in patients with aseptic meningitis. Table 1.
182	Among the muco-cutaneous manifestations, herpangina was observed only in 8 (14%)
183	patients, whilst petechial rash on extremities was the main observed exanthema (11, 19%)
184	followed by HFMD vesicular exanthema (10, 18%).
185	

Neurological manifestations

186

The mean time from the onset of fever to the onset of neurological symptoms was 24 hours (IQR:0-72 hours). Within the first 24 hours of fever, the most common neurological symptoms were lethargy and/or irritability (17 (30%) patients). Myoclonic jerks, tremor, ataxia and/or cranial nerve involvement appeared subsequently in 44 children, mainly after 24 hours of fever (27 (61%) patients). Nystagmus and/or strabismus were observed in 8 patients (14%). The 3 patients with encephalomyelitis developed paresis with a marked weakness especially in the neck and shoulder region after 24 hours of fever, two of them experiencing bulbar palsy and autonomous nervous system (ANS) dysfunction in the form of cardiopulmonary failure as well. One patient had a typical febrile seizure.

Laboratory and imaging findings

White-blood-cell (WBC) count and procalcitonin were high in patients with severe ANS dysfunction, but normal in all the others. Table 1. No patient had significant alterations in plasma C-reactive protein. CSF white-cell count was significantly higher in patients with aseptic meningitis than in patients with brainstem encephalitis and/or encephalomyelitis. Table 1. Forty-seven MRIs were performed, among which 25 (53%) were abnormal: 15 had bulbar involvement and 18 had medullar involvement. The most common MRI findings were high intensity lesions on T2-weighted images in the dorsal pons and medulla, midbrain, and dentate nuclei. In cases with medullar involvement, MRI showed bilateral high intensity lesions on T2-weighted images in the anterior horn cells of the spinal cord and also in the posterior chords in some cases.

Virological findings

The PAN-Enterovirus real time-PCR detected EV genome in the CSF of 6/57 (11%) patients, being all of them patients with the diagnosis of aseptic meningitis. Negative patients in CSF were tested for EV detection in faeces and nasopharyngeal aspirate using the same PAN-

213	Enterovirus real time-PCR. The rates of detections were 40/46 (87%) in faeces and (35/51,
214	69%) in nasopharyngeal aspirate. In only 2 of 33 patients was EV detected in plasma.
215	On the other hand, the FilmArray M/E panel detected EV genome in CSF of 4/20 patients with
216	brainstem symptoms who were negative for EV detection in CSF using the PAN-Enterovirus
217	real time-PCR [1]. HHEV-6 was detected in 3 of 20 and the result was interpreted as latency in
218	CSF [1].
219	No bacterial culture from CSF or blood was positive. No patient tested positive for HSV
220	infection in CSF.
221	Detected EV was genotyped in 47 of 57 (82%) patients, being EV-A71 the most frequently
222	identified type (40/47), followed by echovirus-30 (4/47), coxsackievirus(CV)-B1 (2/47), and CV-
223	A10 (1/47). EV-A71 was the only serotype detected in patients with brainstem encephalitis or
224	encephalomyelitis. Table 2 shows EV types and the WHO clinical diagnosis. EV-A71 was
225	detected in the CSF from one brainstem encephalitis case and in another CSF sample, an EV-A
226	was identified, but the specific serotype could not be determined. The rest of EV-A71 were
227	typed from respiratory and/or stool detections.
228	Phylogenetic analysis carried out with 38 EV-A71 strains obtained in this study and others
229	available in GenBank showed that most of the Spanish ones (35/38) belonged to
230	subgenogroup C1 and only 3/38 to subgenogroup C2. Figure 2. Furthermore, Spanish C1 strains
231	formed a subclade together with the variant Germany strain detected in 2015 [15, 26].
232	
233	Management
234	Thirty-three patients (58%) received IVIG, among whom 26 also received steroids (46%). No
235	patient with aseptic meningitis or encephalitis received treatment. The median lag time
236	between the onset of fever and the administration of IVIG was 3 days (IQR:3-5), and from
237	admission to its administration was 1 day (IQR:1-2). The median time from the onset of fever
238	to corticosteroid administration was 4 days (IQR:3.5-5 days) and a median of 2 days (IQR:1-3)

passed from admission to its administration. Steroids were initiated in 6 cases with normal MRI, because of cranial nerve dysfunction (2 cases) and persistent symptoms (mainly, ataxia) despite the administration of IVIG (4 cases). Four patients did not receive steroids because of complete recovery before abnormal MRI results.

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

239

240

241

242

Outcomes and variables associated with a more severe disease

The neurological symptoms lasted a median of 5 days (IQR:3.5-8 days), and the median hospital stay was 7 days (IQR:4.5-9 days). Eight cases (14%) were admitted to the intensive care unit (ICU), due to decreased consciousness level for a short-observation period (6 cases) and severe shock (2) requiring mechanical ventilation and inotropes. The median ICU stay was 3.5 days (IQR:1.5-17.5). Forty-four patients (77%) recovered fully while they were hospitalized and the remaining 13 patients (23%) were discharged with symptoms, ranging from mild ataxia in 10 patients, to paresis in 3. Paresis affected neck musculature chiefly (2 patients had hypotony on horizontal and vertical suspension, oral feeding disability and shoulder weakness, and 1 patient was bending the neck laterally). At day 30, all of them were improving and oral feeding was successfully recovered. Three additional patients presented persistent hyperreflexia in some extremity with no significant disability at day 30. There were no deaths. With regard to epidemiological variables associated with severe ANS dysfunction, 2/9 patients < 12 month-old underwent cardiopulmonary failure, whereas no older patients had it (p=0.02). Higher white blood cell counts, higher procalcitonin blood levels, lower CSF white-cell counts were more common in patients with cardiopulmonary failure. As for MRI results, all the patients with cardiopulmonary failure had bulbar inflammatory lesions (2/2), but this finding was also found in patients without ANS dysfunction (13/45), so the differences were not significant. Table 1.

Sequelae with significant disability at day 30 were related to the presence of encephalomyelitis independently of cardiopulmonary failure, using both the case definitions of the WHO (relative-risk (RR): 96.2; 95%CI: 6-1557) and stage 4 of the Vietnamese classification (RR: 31; 95%CI: 6-163). Table 3. We did not find any correlation between the prompt initiation of IVIG and the duration of neurological symptoms after the onset of treatment (Spearman rho=-0.24, p=0.20). However, the lag time between the onset of symptoms and the onset of corticosteroids, and the duration of neurological symptoms after the onset of treatment, correlated inversely (Spearman rho=-0.56, p=0.01). No paresis/ANS dysfunction was observed in patients who had been administered corticosteroids and/or IVIG.

DISCUSSION

This is the first report of an outbreak of central nervous system (CNS) disease associated with EV-A71 detection in Spain. In all the patients with brainstem or encephalomyelitis symptoms in whom EV could be typed, EV-A71 was found. The other EV types were in the minority and were only found causing benign entities. The outbreak occurred in spring, showing a similar seasonal pattern to that reported for other EVs in Spain [9,25]. It affected children of around 2 years of age, like other EV-A71 epidemics elsewhere [4,20,27]. Although the EV-A71 outbreak seemed to be largely restricted to Catalonia, some sporadic cases in the rest of Spain occurred (no published data). Furthermore, a smaller concomitant outbreak in France has recently been reported [28]. EV-A71 is classified into 7 genogroups, A–G, on the basis of the diversity of the nucleotide sequences of the VP1 protein capsid. In the last years, increasing epidemic activity of genogroups B3-B5 and C1-C5 has been reported in the Asian-pacific region while genogroup C1 to C5 viruses were also detected in Australia. In Europe, most of the EV-A71 detected belongs to C1 and C2 [12]. The phylogenetic analysis showed that most of the EV-A71 detected in 2016 in Catalonia belonged to subgenogroup C1. Our centre participates in a Spanish EV

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

surveillance network that reported low-level circulation of EV-A71 in recent years, associated with non-severe neurological symptoms [10,29]. These EV-A71 C1 viruses had not previously been detected in Spain [10] and were closely related to a new cluster of EV-A71 C1 viruses identified in Germany and France in 2015 and 2016, respectively, suggesting that this new variant has spread from the North to the South of Europe [15,26,28]. The Public Health Agency of Catalonia conducted an epidemiological research and they did not find an association between the first cases suggesting a common origin neither a clear connection between cases [30]. Similarly to poliomyelitis, detection of EV-A71 from sterile sites is specific but usually insensitive [21], while detection from rectal and throat swabs is more sensitive but less specific and may include asymptomatic carriage. The clinical similarity between the patients as well as the detection of EV-A71 in all the cases of brainstem encephalitis and encephalomyelitis guided us to the etiologic diagnosis of the outbreak. Wide networks of EV molecular surveillance in European countries may help to identify new virulent variants and to assist in early detection of the etiology and epidemiological connections of similar outbreaks, which in turn may help to guide clinical management and foster optimal diagnostic strategies. We found a very low rate of patients with EV-A71 and mucocutaneous manifestations, which is concordant with previous literature reporting a wide variability of manifestations depending on the dermatotropism and neurotropism of the circulating strain [8,31]. This fact made a prompt diagnosis harder. Initial manifestations could be indistinguishable among patients with meningitis, encephalitis, brainstem encephalitis, and encephalomyelitis, but patients with the later two progressively developed myoclonic jerks, tremor, ataxia, and, among a minority, cranial nerve involvement. In patients with aseptic meningitis, fever duration was shorter, pleocytosis was higher, and the CSF was more likely to be positive for EV, as in other studies [32]. Consequently, patients with a suspected diagnosis of aseptic meningitis and persisting fever should undergo close clinical observation and may require further investigation.

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

Regarding variables associated with a more severe disease, most of our patients were classified in the Stage 2b Group 2 of the Vietnamese classification at the peak of the disease. During hospitalization, some patients worsened to Stage 2b Group 2, but no patient developed ANS dysfunction (Stages 3 and 4), in contrast to other series [26]. There were no deaths, which seems plausible considering that the case-fatality rate for this disease is low (0.4%) [26]. Nevertheless, two cases had signs of severe ANS dysfunction at admission. Both of them were < 12 months old, in line with other series that have inversely correlated the age at onset with the severity [18,33,34]. Leucocytosis has also been described in the most severely affected children, as has a more prolonged fever [19,35]. As with the outbreak in Australia in 2013 [20], this study also supports the usefulness of the 2011 WHO guidelines for establishing the risk of sequelae using the case definitions of each clinical entity. Persistent paresis at day 30 was only observed in the 3 patients with encephalomyelitis. The role of IVIG treatment in reducing acute morbidity and mortality rates is controversial [16-20]. Despite the main indication of IGIV treatment being clinical severity [16,21], we used the MRI to guide the treatment, following some other experiences [20]. The frequency and type of MRI findings in our patients with severe symptoms (Stage 2b Group2) were consistent with previous reports [20,36,37], but we found an unexpected number of patients with non-severe symptoms (Stage 2a) and bulbar involvement on MRI. Furthermore, some patients with abnormal MRI were not treated due to the timing of imaging and recovery. This limits the conclusions that can be drawn about the role of MRI in treatment planning, as some patients may not need to be treated if they continue to improve despite abnormal imaging. Additionally, no conclusions can be drawn concerning the worsening of neurological manifestations without IVIG treatment, as all the patients with severe disease received it. Regarding steroids, they are a common treatment in viral and inflammatory myelitis [38], and their use in EV-A71 disease has been documented [20, 39]. The prompt use of corticosteroids in children with no severe symptoms has been also associated with increased risk of

342	subsequent severe disease in other observational studies [40,41]. In our series, most of the
343	patients received the treatment after several days of symptoms, and a worsened clinical
344	course was not observed in them. Additional research about the effectiveness and safety of
345	IVIG and steroids is imperative.
346	One of the main limitations of this study is that the small number of patients with ANS
347	dysfunction limits the extrapolation from the data. It is also an observational study and this
348	fact limits the conclusions about the efficacy of treatments.
349	To conclude, 57 patients with CNS disease due to EV, sought treatment in our department.
350	Most of them were infants with brainstem encephalitis, a manifestation rarely observed in our
351	setting previously. EV-A71 was detected in all the cases of brainstem encephalitis or
352	encephalomyelitis. Most of the EV-A71 belonged to subgenogroup C1, which was closely
353	related to a new cluster of EV-A71 C1 viruses identified in Germany and France in 2015 and
354	2016. Treatment with IVIGs and corticosteroids was used according to the severity, but no
355	conclusions about their efficacy can be drawn. Age < 12 months, longer fever, higher WBC-
356	count, and higher procalcitonin levels were related to a more severe disease. All the patients
357	but the 3 who presented with signs of encephalomyelitis before treatment showed a good
358	clinical course and had no significant sequelae at day 30.
359	
360	ACKNOWLEDGMENTS

361

362

Thanks to all the clinical, laboratory and diagnostic imaging personnel who take care of patients and who organized the response and management of the outbreak in our centre.

363

364

365

366

FUNDING

This study was partially supported by a grant from the Spanish National Health Institute [grant number PI15CIII-00020] and "Fundación Godia". Dr Armangue is supported by a grant from

367	Instituto Carlos III (CM14/00081) and a Dodot Procter & Gamble research grant sponsored by
368	Asociación Española de Pediatría (AEP) (DN040579, TA).
369	The funders have not influenced the design or analysis, nor have they had any role in preparing
370	the manuscript.
371	
372	CONFLICT OF INTEREST
373	The authors declare no potential conflicts of interest.
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	

387	REFERENCES
388	1. Launes C, Casas-Alba D, Fortuny C, Valero-Rello A, Cabrerizo M, Muñoz-Almagro C. Utility of
389	Filmarray Meningitis/Encephalitis panel during an outbreak of enterovirus brainstem
390	encephalitis in Catalonia (2016). J Clin Microbiol 2016;55:336-8.
391	
392	2. European Centre for Disease Prevention and Control. Enterovirus detections associated
393	with severe neurological symptoms in children and adults in European countries. 2016 Aug 08
394	[cited 2017 Jan 5]. http://ecdc.europa.eu/en/publications/Publications/01-08-2016-RRA-
395	Enterovirus%2071-Spain,%20France,%20Netherlands.pdf
396	
397	3. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and
398	management of enterovirus 71. Lancet Neurol 2010;9:1097-105.
399	
400	4. McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health
401	significance. FEMS Microbiol Rev 2002;26: 91-107.
402	
403	5. Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with
404	disease of the central nervous system. J Infect Dis 1974;129:304-9.
405	
406	6. Van der Sanden S, Koopmans M, Uslu G, Van der Avoort H, on behalf of the Dutch Working
407	Group for Clinical Virology. Epidemiology of enterovirus 71 in The Netherlands, 1963 to 2008. J
408	Clin Microbiol 2009;47:2826–33.

409	
410	7. Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Koroleva G, et al.
411	Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol
412	1979;60:329-40.
413	
414	8. Nagy G, Takátsy S, Kukán E, Mihály I, Dömök I. Virological diagnosis of enterovirus type 71
415	infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978.
416	Arch Virol 1982;71:217-27.
417	
418	9. Rodà D, Pérez-Martínez E, Cabrerizo M, Trallero G, Martínez-Planas A, Luaces C, et al.
419	Clinical characteristics and molecular epidemiology of enterovirus infection in infants < 3
420	months in a referral paediatric hospital of Barcelona. Eur J Pediatr 2015;174:1549-53.
421	
422	10. Cabrerizo M, Tarragó D, Muñoz-Almagro C, Del Amo E, Domínguez-Gil M, Eiros JM,
423	et al. Molecular epidemiology of enterovirus 71, coxsackievirus A16 and A6 associated
424	with hand, foot and mouth disease in Spain. Clin Microbiol Infect 2014;20:O150-6.
425	
426	11. Akhmadishina LV, Govorukhina MV, Kovalev EV, Nenadskaya SA, Ivanova OE, Lukashev AN
427	Enterovirus A71 Meningoencephalitis Outbreak, Rostov-on-Don, Russia, 2013. Emerg Infect Dis
428	2015;21:1440-3.
429	

+23

430	12. Tee KK, Lam TT, Chan YF, Bible JM, Kamarulzaman A, Tong CY, et al. Evolutionary genetics
431	of human enterovirus 71: origin, population dynamics, natural selection, and seasonal
432	periodicity of the VP1 gene. J Virol 2010;84:3339–50.
433	
433	
434	13. Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, Lin KH, et al. Reemergence of enterovirus
435	71 in 2008 in Taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin
436	Microbiol 2009;47:3653–62.
437	
437	
438	14. Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and emergence of
439	enteroviruses through intra- and inter-species recombination: Plasticity and phenotypic impact
440	of modular genetic exchanges in the 5' untranslated region. PLoS Pathog 2015;11:e1005266.
441	
442	15. Karrasch M, Fischer E, Scholten M, Sauerbrei A, Henke A, Renz DM, et al. A severe
443	pediatric infection with a novel enterovirus A71 strain, Thuringia, Germany. J Clin Virol
444	2016;84:90-5.
445	
113	
446	16. Chea S, Cheng YB, Chokephaibulkit K, Chotpitayasunondh T, Rogier van Doorn H, Hafy Z, et
447	al. Workshop on use of intravenous immunoglobulin in hand, foot and mouth disease in
448	Southeast Asia. Emerg Infect Dis 2015;21.
449	

450	17. Wang SM, Lei HY, Huang MC, Su LY, Lin HC, Yu CK, et al. Modulation of cytokine production
451	by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem
452	encephalitis. J Clin Virol 2006;37:47-52.
453	
454	18. Chang LY, Hsia SH, Wu CT, Huang YC, Lin KL, Fang TY, et al. Outcome of enterovirus 71
455	infections with or without stage-based management: 1998 to 2002. Pediatr Infect Dis J
456	2004;23:327-32.
457	
458	19. Ooi M, Wong S, Mohan A, Podin Y, Perera D, Clear D, et al. Identification and validation of
459	clinical predictors for the risk of neurological involvement in children with hand, foot, and
460	mouth disease in Sarawak. BMC Infect Dis 2009;9:3.
461	
.01	
462	20. Teoh HL, Mohammad SS, Britton PN, Kandula T, Lorentzos MS, Booy R, et al. Clinical
463	characteristics and functional motor outcomes of enterovirus 71 neurological disease in
464	children. JAMA Neurol 2016;73:300-7.
465	
466	21. Cardosa J, Farrar J, Yeng C. A Guide to Clinical Management and Public Health Response
467	for Hand, Foot and Mouth Disease (HFMD). Geneva, Switzerland: World Health Organization
468	Western Pacific Region. 2011 [cited 2016 Oct 15].
469	http://www.wpro.who.int/publications/docs/GuidancefortheclinicalmanagementofHFMD.pdf
470	

471	22. Qui PT, Khanh TH, Trieu HT, Giang PT, Bich NN, Thoa le PK, et al. Intravenous magnesium
472	sulfate for the management of severe hand, foot, and mouth disease with autonomic nervous
473	system dysregulation in Vietnamese children: study protocol for a randomized controlled trial.
474	Trials. 2016;17:98.
475	
476	23. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement
477	for the assessment of handicap in stroke patients. Stroke 1988;19:604-7.
478	
479	24. Selva L, Martinez-Planas A, García-García JJ, Casadevall R, Luaces C, Muñoz-Almagro C.
480	Comparison of an in-house real-time RT-PCR assay with a commercial assay for detection of
481	enterovirus RNA in clinical samples. Eur J Clin Microbiol Infect Dis 2012;31:715-9.
482	
483	25. Cabrerizo M, Echevarría JE, González I, de Miguel T, Trallero G. Molecular epidemiological
484	study of HEV-B enteroviruses involved in the increase in meningitis cases occurred in Spain
485	during 2006. J Med Virol 2008;80:1018-24.
486	
487	26. Böttcher S, Obermeier PE, Neubauer K, Diedrich S, Laboratory Network for Enterovirus
488	Diagnostics . Recombinant Enterovirus A71 Subgenogroup C1 Strains, Germany, 2015. Emerg
489	Infect Dis. 2016;22:1843-6.
490	

491	27. Khanh TH, Sabanathan S, Thanh TT, Thoa le PK, Thuong TC, Hang Vt, et al. Enterovirus 71-
492	associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg Infect Dis
493	2012;18:2002-5.
494	
.5.	
495	28. Antona D, Kossorotoff M, Schuffenecker I, Mirand A, Leruez-Ville M, Bassi C, et al. Severe
496	paediatric conditions linked with EV-A71 and EV-D68, France, May to October 2016. Euro
497	Surveill 2016;21. pii: 30402. doi: 10.2807/1560-7917.ES.2016.21.46.30402.
498	
450	5
499	29. Cabrerizo M, Díaz-Cerio M, Muñoz-Almagro C, Rabella N, Tarragó D, Romero MP, et al.
500	Molecular epidemiology of enterovirus and parechovirus infections according to patient age
501	over a 4-year period in Spain. J Med Virol 2017;89:435-42.
502	
302	
503	
504	30. Subdirecció General de Vigilància i Resposta a Emergències de Salut Pública (Agència de
505	Salut Pública de Catalunya). Informe investigació epidemiológica quadres neurològics aguts per
506	enterovirus en población pediátrica. 201 [cited 2017 Feb 28].
507	http://canalsalut.gencat.cat/web/.content/contingut_responsiu/salutAZ/E/enterovirus/neurol
508	ogics_enterovirus.pdf
509	
E4.0	
510	

511	31. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, et al. An epidemic of enterovirus 71
512	infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 1999;341:929
513	35.
514	
515	32. Volle R, Bailly JL, Mirand A, Pereira B, Marque-Juillet S, Chambon M. Variations in
516	cerebrospinal fluid viral loads among enterovirus genotypes in patients hospitalized with
517	laboratory-confirmed meningitis due to enterovirus. J Infect Dis 2014;210:576-84.
518	
519	33. Chang L-Y, Huang L-M, Gau SS-F, Wu YY, Hsia SH, Fan TY, et al. Neurodevelopment and
520	cognition in children after enterovirus 71 infection. N Engl J Med 2007;356:1226–34.
521	
522	34. Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, et al. Hand, foot, and mouth disease in
523	China, 2008-12: an epidemiological study. Lancet Infect Dis 2014;14:308-18.
524	
525	35. Chang L, Lin T, Hsu K, Huang YC, Lin KL, Hsueh C, et al. Clinical features and risk factors of
526	pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet
527	1999;354: 1682-6.
528	
529	36. Shen WC, Chiu HH, Chow KC, Tsai CH. MR imaging findings of enteroviral
530	encephalomyelitis: an outbreak in Taiwan. AJNR Am J Neuroradiol 1999;20:1889-95.
531	

532	37. Chen CY, Chang YC, Huang CC, Lui CC, Lee KW, Huang SC. Acute flaccid paralysis in infants
533	and young children with enterovirus 71 infection: MR imaging findings and clinical correlates.
534	AJNR Am J Neuroradiol 2001; 22:200-5.
535	
536	38. Defresne P, Meyer L, Tardieu M, Scalais E, Nuttin C, De Bont B, et al. Efficacy of high dose
537	steroid therapy in children with severe acute transversemyelitis. J Neurol Neurosurg Psychiatry
538	2001;71:272-4.
539	
540	39. Nolan MA, Craig ME, Lahra MM, Rawlinson WD, Prager PC, Williams GD, et al. Survival
541	after pulmonary edema due to enterovirus 71 encephalitis. Neurology 2003;60:1651-6.
542	
543	40. He Y, Yang J, Zeng G, Shen T, Fontaine RE, Zhang L, et al. Risk factors for critical disease and
544	death from hand, foot and mouth disease. Pediatr Infect Dis J. 2014;33:966-70.
545	
546	41. Mou J, Dawes M, Li Y, He Y, Ma H, Xie X, Griffiths S, Cheng J. Severe hand, foot and mouth
547	disease in Shenzhen, South China: what matters most? Epidemiol Infect 2014;142:776-88.

Table 1. Epidemiological, clinical, laboratory, and imaging variables associated with more severe disease in children with EV-related neurologic disease (n=57).

	no.	Age (months) ^a	Sex (males)	Peak fever (°C) ^a	Duration of fever ^a (days)	White blood cell count ^a (cells*10 ³ /µI)	CSF white cell count ^a (cells/mm3)	Procalcitonin (ng/m) ^a	Bulbar involvement on MRI (Yes/no. patients who underwent MRI)
WHO clinical classification [21] CNS involvement stage without ANS dysfunction	55	27.8 (18.4-37.7)	31/55	39.0 (38.5-39.5)	3 (2-4)	12.4 (11-15)	182 (105-442)	0.1(0.07-0.15)	13/45
Cardiopulmonary failure stage	2	8.2 (7.7-8.6) p=0.07	2/2 p=0.55	38.3 (38.1-38.5) p=0.14	4 (3-5) p=0.43	19.4 (17.4-21.4) p=0.03	55 (10-100) p=0.09	1 (0.40-1.60) p=0.02	2/2 p=0.10
Vietnam HFMD classification [22]						45			
Aseptic meningitis	7	12.3 (0.7-37.7)	4/7	38.3 (38.0-39.2)	1 (0.5-3)	12.4 (10.1-15.4)	560 (200-690)	0.09 (0.06-0.11)	-
2a	9	18.4 (5.1-48.9)	6/9	39.0 (38.3-39.8)	3 (1-4)	11.0 (9.9-12.7)	88 (52-180)	0.10 (0.10-0.25)	1/5
2bG1	9	27.9 (22.6-36.9)	5/9	39.0 (38.0-39.8)	3 (0.5-4.5)	11.9 (11.5-13.3)	198 (135-370)	0.09 (0.09-0.20)	1/9
2bG2	30	28.1 (20.6-42.0)	16/30	39.0 (38.7-39.6)	3.5 (3-4)	12.8 (11.7-15.3)	180 (112-385)	0.08 (0.05-0.14)	11/29
4	2	8.2 (7.9-8.6)	2/2	38.3 (38.1-38.5)	4 (3-5)	19.4 (17.4-21.4)	55 (10-100)	1.00 (0.40-1.60)	2/2
		p=0.09	p=0.73	p=0.25	p=0.02	p=0.05	p=0.02	p=0.10	p=0.08
NRL exploration with persistent									
paresis at day 30									
Yes	3	8.6 (8.2-16.7)	2/3	38.5 (38.3-39.1)	4 (3.5-4.5)	17.4 (15.0-19.4)	50 (30-75)	0.09 (0.07-0.14)	3/3
No	54	27.8 (18.2-37.8)	31/54	39.0 (38.5-39.5)	3 (2-4)	12.4 (11.1-15.1)	185 (112-445)	1.00 (0.40-1.60)	12/42
		p=0.12	p=1.00	p=0.59	p=0.27	p=0.07	p=0.02	p=0.01	p=0.01

549

CSF: cerebrospinal fluid; MRI: magnetic resonance imaging; WHO: World Health Organization; CNS: central nervous system; ANS: autonomic nervous system; HFMD: hand-foot-mouth disease; NRL: neurologic.

550 CSF: cerebrospir 551 NRL: neurologic.

a) Median (interquartile range)

Table 2. Clinical characteristics and enterovirus (EV) positive rates according to EV

554 genotypes.

558

	Patients in w	Patients in whom EV could not be genotyped n = 10			
	EV-A71 n=40	Other EV types n=7	p-value ^a	Total n=47	
WHO clinical classification [21]	2 (28.6%) 4 (66.6%) 31 (100%) 1 (100%) 2 (100%)	5 (71.4%) 2 (33.3%) 0 (0%) 0 (0%)	< 0.01	7 6 31 1	0 0 10 ^b 0
Positive samples in cerebrospinal-fluid Positive samples in respiratory specimens	4/37° 27/40	5/7 2/4	< 0.01 0.59	9/44 29/44	2/8 6/7
Positive samples in faeces	29/35	3/3	1	32/38	8/8

WHO: World Health Organization; ANS: autonomous nervous system.

a) Comparing proportions between groups EV-A71 and other EV types

b) In one case, EV from species A was identified but it could not be typed

c) The 4 detections were made using the FilmArray meningitis/encephalitis panel [1]

Table 3. Outcomes according to the WHO clinical classification [21] and the

Vietnamese HFMD classification [22].

	Length of hospital stay (days)	IVIG treatment (Yes)	NRL symptoms (mRS ≥2) at day 14	NRL symptoms (mRS ≥2) at day 30
WHO clinical classification				
Meningitis	3 (2-5)	0/7	0/7	0/7
Encephalitis	4.5 (3-6.2)	1/6	0/6	0/6
Brainstem encephalitis	8 (6-9)	30/41	9/41	0/41 ^a
Encephalomyelitis	10 (7.5-11.0)	1/1	1/1	1/1
Encephalomyelitis and				
cardiopulmonary failure	51 (38-64)	2/2	2/2	2/2
, ,			p=0.01	p<0.01
Vietnam HFMD classification				
Aseptic meningitis	3 (2-5)	0/7	0/7	0/7
2a	4 (3-6.5)	2/9	0/9	0/9
2bG1	9 (5.5-10.5)	6/9	2/9	0/9
2bG2	8 (6-10)	24/30	8/30	1/30 ^a
4	51 (38-64)	2/2	2/2	2/2
			p=0.01	p<0.01

IVIG: Intravenous immunoglobulin; NRL: neurologic; mRS: modified Rankin Scale; WHO: World Health Organization;

HFMD: hand-foot-mouth disease.

563

a) Three other patients had discrete hyperreflexia in an extremity without significant disability.

WHO clinical diagnostic

