HW1

Q1

The runtime for the given data is as follow:

Size / Time(ms)	Naive 3 sum	Smart 3 sum
8	0.02	0.05
32	0.50	1.00
128	31.25	15.62
512	2109.38	406.25
1024	17062.50	1812.50
4096	1124015.63	35343.75
4196	1215734.38	39203.13
8192	9034207.23	155703.13

Naive 3 sum

When the size is double, the runtime is 2^3 times longer, e.g., when size is changed from 4096 to 8192, the runtime is 8.3 times longer, which shows it has $O(N^3)$ growth rate

Smart 3 sum

When the size is double, the runtime is $2^2 log 2$ times longer, e.g., when size is changed from 4096 to 8192, the runtime is 4.4 times longer, which shows it has $O(N^2 log N)$ growth rate

Q2

The runtime for the given data is as follow:

Size / Time(ms)	Quick Find	Quick Union	Weighted Quick Union
8	3.13	0.23	0.24
32	12.22	0.20	0.22
128	48.12	0.31	0.30
512	188.55	0.52	0.61
1024	386.26	0.89	1.02
4096	1503.79	3.47	3.81
8192	2659.27	14.10	7.97

Quick find

union() is O(N), **find()** is O(1),and **read()** N data with each one conduct both **union** and **find**, that is O(M*(N+1)), so overall the algorithm has $O(N^2)$. For example, when size is changed from 1024 to 4096, the runtime is $3.89 \approx 4$ times,

Quick union

The result shows a very small growth rate on small size data, but as the size grow, the growth rate is close to $O(N^2)$. The reason is, as more points are involved, the *root* would be "deeper" to reach.

Weighted quick union

Result shows that the runtime is better than original quick union. The grow rate is reaching O(NlogN) as the size is greater.

Q3

I use **curve_fit(func,x,y)** from **scipy.optimize** (and **numpy**) to perform curve fitting on my test result.

Naive 3 sum

Hypothesis : $F(N) = a + bN^3$

I get:

$$a = -5.73887675e + 02$$

$$b = 1.64336470e - 05$$

So I let : c=1 and $N_c=1$.

Smart 3 sum

Hypothesis : $F(N) = a + bN^2 log N$

I get:

$$a = 7.50690982e + 01$$

$$b = 2.57614766e - 04$$

So I let: c=1 and $N_c=7$.

Quick Find

Hypothesis : $F(N) = a + bN^2$

I get:

$$a = 2.12797912e + 02$$

$$b = 3.88638493e - 05$$

So I let: c=1 and $N_c=15$.

Quick Union

Hypothesis : $F(N) = a + bN^2$

I get:

$$a = 3.31506992e - 01$$

$$b = 2.04184706e - 07$$

So I let: c=1 and $N_c=1$.

Weighted Quick Union

 $\mathsf{Hypothesis}: F(N) = a + bNlogN$

I get:

$$a = 2.45783432e - 01$$

$$b = 1.04681628e - 04$$

So I let: c=1 and $N_c=2$.

Q4

My implementation uses two local variants to store the maximum value and the minimum value during the iteration.

I use *numpy.random.randint(low,high,len)* from **numpy** to generate random data with different sizes to test my implementation.

Size/Time(ms)	Farthest pair
128	0.15
512	0.12
1024	0.20
4096	0.64
8192	1.24
16384	2.45
32768	4.60
65536	9.39

Result shows a O(N) growth rate as required.

Q5

My implementation uses two local indexes, one for a smaller number going from the left to the right on the array, the other one represents a bigger number going from the right to the left.

By maintaining those two index, I can compare (**current num+ small num + big num**) with **0**, if it is greater, the right index decrease and choose a smaller **big num**, and if it is smaller, the left index increase and choose a bigger **small num**.

I use *numpy.random.randint(low,high,len)* from **numpy** to generate random data with different sizes to test my implementation.

Size/Time(ms)	Fastest 3 sum
128	0
512	15.63
1024	93.75
4096	1546.88
8192	6421.88
16384	25640.63

The result shows a $O(N^2)$ growth rate as required.

