This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 626 998 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:31.10.2001 Bulletin 2001/44
- (21) Application number: 93906130.5
- (22) Date of filing: 18.02.1993

- (51) Int Cl.7: C12N 5/10, A01N 63/02
- (86) International application number: PCT/US93/01544
- (87) International publication number: WO 93/17098 (02.09.1993 Gazette 1993/21)
- (54) PRODUCTION OF VIRAL RESISTANT PLANTS VIA INTRODUCTION OF UNTRANSLATABLE PLUS SENSE VIRAL RNA

PRODUKTION VIRUS-RESISTENTER PFLANZEN DURCH EINFÜHRUNG VON NICHT-TRANSLATIERBARER VIRALER PLUS-STRANG-RNA

PRODUCTION DE PLANTES RESISTANT A DES VIRUS PAR INTRODUCTION D'ARN VIRAL DE NON TRANSLATION A SENS POSITIF

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE
- (30) Priority: 19.02.1992 US 838509
- (43) Date of publication of application: 07.12.1994 Bulletin 1994/49
- (73) Proprietor: THE STATE OF OREGON
 ACTING BY AND THROUGH THE OREGON
 STATEBOARD OF HIGHER EDUCATION ON
 BEHALF OF THE UNIVERSITY OF OREGON
 Corvallis, OR 97331-2140 (US)
- (72) Inventors:
 - DOUGHERTY, William, G. Philomath, OR 97370 (US)
 - LINDBO, John, A.
 Corvallis, OR 97330 (US)
- (74) Representative: Gowshall, Jonathan Vallance FORRESTER & BOEHMERT Pettenkoferstrasse 20-22 80336 München (DE)
- (56) References cited:

EP-A- 0 242 016 EP-A- 0 298 918 EP-A- 0 325 066 EP-A- 0 425 004 EP-A- 0 426 195 EP-A- 0 504 869 WO-A-92/13089 WO-A-92/13090

- PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 87, August 1990 WASHINGTON US, pages 6291-6295, STANLEY, J., ET AL. 'Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants'
- VIROLOGY, vol. 164, 1988 pages 383-389, VAN DUN, C.M.P., ET AL. 'Transgenic tobacco expressing tobacco streak virus or mutated alfalfa mosaic virus coat protein does not cross-protect against alfalfa mosaic virus infection'
- ANNUAL MEETING OF THE AMERICAN PHYTOPATHOLOGICAL SOCIETY, ST. LOUIS, MISSOURI, USA, AUGUST 17-21, 1991. PHYTOPATHOLOGY 81 (10). 1991. 1174., LINDBO J A ET AL 'TRANSGENIC NICOTIANA-TABACUM PLANTS EXPRESSING VARIOUS FORMS OF THE TOBACCO ETCH VIRUS TEV COAT PROTEIN ARE RESISTANT TO TEV INFECTION.'
- Molecular Plant-Microbe Interactions, Volume 5, No. 2, issued March 1992, LINDBO et al.:
 "Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence", pages 144-153, see entire document.

EP 0 626 998 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- Virology, Volume 189, No. 2, issued August 1992, LINDBO et al.: "Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts", pages 725-733, see entire document.
- Molecular Plant-Microbe Interactions, Volume 4, No. 3, issued May 1991, KAWCHUK et al.: "Sense and Antisense RNA-Mediated Resistance to Potato Leafroll Virus In Russet Burbank Potato Plants", pages 247-253, see entire document.
- Plant Molecular Biology, Volume 17, issued 1991, VAN DER WILK et al.: "Expression of the Potato Leafroll Luteovirus Coat Protein Gene in Transgenic Potato Plants Inhibits Viral Infection", pages 431-439, see entire document.
- Journal of General Virology, Volume 72, issued August 1991, MARSH et al.: "Artificial Defective Interfering RNAs Derived from Brome Mosaic Virus", pages 1787-1792, see entire document.
- Proceedings of the National Academy of Sciences USA, Volume 88, Issued August 1991, DAY et al.: "Expression of an Antisense Viral Gene in Transgenic Tobacco Confers Resistance to the DNA Virus Tomato Golden Mosaic Virus", pages 6721-6725, see entire document.

- Virology, Volume 175, issued 1990, POWELL et al.: "Protection Against Tobacco Mosaic Virus Infection in Transgenic Plants Requires Accumulation of Coat Protein Rather than Coat Protein RNA Sequences", pages 124-130, see entire document.
- Virology, Volume 154, issued 1986, ALLISON et al.: "The Nucleotide Sequence of the Coding Region of Tobacco Etch Virus Genomic RNA: Evidence for the Synthesis of a Single Polyprotein", pages 9-20, see entire document.
- Trends in Genetics, Volume 5, No. 2, issued February 1989, BAULCOMBE: "Strategies for Virus Resistance in Plants", pages 56-60, see entire document.

Description

10

- 15

FIELD OF THE INVENTION

5 [0001] This invention is directed to the production of plants with a reduced susceptibility to virus infection.

BACKGROUND OF THE INVENTION

[0002] Plant viruses are responsible for major losses in worldwide crop production. Much effort is directed towards the development of new plant varieties which exhibit increased resistance to viral infection. Until recently such efforts were primarily based on the traditional plant breeding approach, however this approach is often limited by a lack of sources of resistance within the crop species. The advent of modern molecular biology techniques has facilitated the development of new methods of rendering plant varieties resistant to virus attack that are not limited by a requirement for preexisting resistance genes within a species.

Molecular Approaches

[0003] Many of these molecular approaches are based on the theory of pathogen derived resistance (Sanford and Johnston, 1985). This theory predicts that a "normal" host (plant) - pathogen (virus) relationship can be disrupted if the host organism expresses essential pathogen derived genes. It has been proposed that host organisms expressing pathogen gene products in excess amounts, at an inappropriate developmental stage, or in a dysfunctional form may disrupt the normal replicative cycle of the pathogen and result in an attenuated or aborted infection of the host.

[0004] Two approaches typify this pathogen derived resistance: coat protein mediated resistance and antisense RNA expression. It has been demonstrated that transgenic plants expressing a plant virus coat protein can be resistant to infection by the homologous virus. This coat protein mediated resistance has been demonstrated for several virus groups. While the mechanism of this resistance is not yet fully understood, it has been suggested that the presence of the plant synthesized coat protein prevents the removal of the protein coat (uncoating) of an invading virus and/or virus movement within the infected plant, leading to resistance.

[0005] Plants which express an RNA molecule which is complementary to plus sense RNA species encoded by the virus may show a decreased susceptibility to infection by that virus. Such a complementary RNA molecule is termed antisense RNA. It is thought that the plant encoded antisense RNA binds to the viral RNA and thus inhibits its function.

Potyviruses

[0006] The Potato Virus Y, or potyvirus, family represents a large number of plant viral pathogens which collectively can infect most crop species including both monocotyledonous and dicotyledonous plants. Potyvirus infection can induce a variety of symptoms including leaf mottling, seed and fruit distortion and can severely compromise crop yield and/or quality (Hollings and Brunt, 1981).

[0007] Potyviruses have a single-strand plus sense RNA of circa 10,000 nucleotides which has a viral encoded protein linked to the 5' end and a 3' polyadenylate region. A single open reading frame codes for a 351 kDa polyprotein which is proteolytically processed into mature viral gene products. The RNA is encapsidated by approximately 2,000 copies of a coat protein monomer to form a virion. This capsid protein is encoded by the sequence present at the 3' end of the large open reading frame.

[0008] Potyviruses can be transmitted by aphids and other sap feeding insects and in some instances can also be transmitted in the seeds of infected plants. Replication of the viral RNA is thought to occur in the cytoplasm of infected plant cells after uncoating. The replication mechanism involves both translation of the plus sense RNA to yield viral gene products (which include a replicase and a proteinase) and also the synthesis of a minus sense RNA strand. This minus sense strand then acts as a template for the synthesis of many plus sense genomes which are subsequently encapsidated in coat protein to yield infectious mature "virions", thus complete the replicative cycle of the virus.

[0009] Experiments have been reported in which transgenic plants expressing the coat protein gene of a potyvirus show a reduced susceptibility to virus infection (Lawson et al. 1990; Ling et al. 1991; Stark and Beachy 1989).

[0010] EP-A-0242016 discloses the incorporation of genetic material, in particular cDNA corresonding to plant viral satellite RNA, into a plant such that, when the plant is infected by a plant virus, the expression of the incorporated material modifies the plant virus or its effects.

⁵⁵ [0011] WO-A-9213090 discloses a method for producing transgenic plants with reduced virus susceptibility.

SUMMARY OF THE INVENTION

[0012] The disclosed invention concerns a method of producing plants with a decreased susceptibility to virus infection. This is achieved by transforming plants with a DNA molecule which includes a gene derived in part from the genome of a plant virus. This gene is specifically constructed to produce an unitranslate ble version of applies sense. RNA molecule required for viral replication, thus, expression of the gene within the plant causes the production of this non-functional molecule which then inhibits viral replication within the plant, rendering the plant resistant to viral infection.

[0013] In particular, invention provides an alternative and novel approach to rendering plants resistant to potyvirus infection.

[0014] Plants are transformed with a gene construct engineered to express an untranslatable form of the plus sense RNA which encodes the coat protein of a potyvirus.

[0015] In the case of Tobacco Etch Virus (TEV), it is demonstrated that tobacco plants transformed with such a gene construct accumulate the untranslatable plus sense RNA but do not produce detectable levels of the coat protein. It is further shown that these plants are resistant to TEV infection. It is also shown that tobacco cells expressing this untranslatable plus sense RNA do not support TEV replication, unlike control tobacco cells and also unlike tobacco cells which are engineered to express the plus sense translatable RNA and which, as a result, accumulate TEV coat protein. Although the exact mechanism is unknown, it is proposed that the untranslatable plus sense RNA inhibits viral replication by binding to the minus sense RNA and preventing the minus sense RNA from functioning in the replication cycle. [0016] It is believed that this approach will be applicable to other potyviruses, to genes other than the coat protein gene and to other plus sense RNA virus families. It is also believed that this means of inhibiting gene function is applicable to other biological systems, including mammalian viruses.

DESCRIPTION OF DRAWINGS

[0017]

25

30

35

40

45

50

55

Fig. 1 represents the nucleotide sequence of the Tobacco Etch Virus genome and its deduced amino acid sequence, according to Allison et al. (1986). The nucleotide sequence of the plus sense strand of the DNA inserts is given. The first nucleotide (N) could not be determined unequivocally. The predicted amino acid sequence of the large ORF of reading frame three of the viron sense RNA is presented in the nucleotide sequence. This sequence is also set forth in SEQ ID No. 1 of the enclosed sequence listing. The termination codon at the end of the large ORF is marked with a *. The putative cleavage site between the large (54,000 Mw) nuclear inclusion protein and the capsid protein is indicated by the arrow. Oligonucleotide primer binding sites are underlined and labeled. Fig. 2 is a schematic representation of the construction of pTC:FL, utilized in construction of transformation vectors for the invention. Restriction endonuclease sites were introduced into pTL 37/8595 at positions A, B and C in the diagram. Following these nucleotide changes the mutated pTL 37/8595 was digested with the restriction enzyme Ncol, the DNA fragment delineated by the restriction enzyme sites at B and C was removed, and the plasmid religated to generate pTC:FL. pTC:FL contains the Tobacco Etch Virus (TEV) coat protein nucleotide sequence flanked by BamHI restriction sites and the TEV 5' and 3' untranslated sequences (UTS). T7 and SP6 promoters are also shown. Abbreviations used in this diagram are as follows: T7, T7 RNA polymerase promoter sequence; SP6, SP6 RNA polymerase promoter sequence; ori, origin of replication; M13 ori, bacteriophage M13 single-stranded origin of replication; ampr, β-lactamase gene. Lightly stippled areas are TEV 5' and 3' untranslated sequences; solid black area, TEV genome cDNA nucleotides 144 to 200; striped area, a portion of the TEV NIb gene (TEV nt 8462-8517); heavily stippled areas, cDNA of TEV CP nucleotide sequence (TEV nt 8518-9309). Fig. 3 is a schematic representation of the forms of the Tobacco Etch Virus coat protein gene inserted into tobacco in the invention. All constructs contained the enhanced CaMV 35S (Enh 35S) promoter, CaMV 35S 5' untranslated sequence (UTS) of 50 bp and the CaMV 35S 3' UTS/polyadenylation site of 110 bp. The nomenclature used to describe the transgenic plant lines is presented along with the gene products produced in those plant lines (far right column). Abbreviations are as follows: 35S, transgenic plants containing the CaMV 35S promoter and 5' and 3' UTS only; FL, transgenic plants containing the transgene coding for full-length, AS and RC transgenic plants contain the transgene expressed as an antisense form of the TEV CP gene, or an untranslated sense form of the TEV CP gene, respectively. Stippled areas represent various forms of the TEV CP nucleotide sequence.

Fig. 4 is a graphic representation of the appearance of systemic symptoms in plants infected with Tobacco Etch Virus showing responses of control plants and transformed plants generated as described in the invention. Ten B49 (wild type) plants and ten B2 plants of transgenic plant lines 35S #4, FL #3, FL #24, homozygous for the inserted TEV gene, were mechanically inoculated with 50 μl of 1:10 dilution of infected plant sap (A). Twenty B49 plants and 20 R1 plants of lines AS #3 and RC #5 were mechanically inoculated with 50 μl of 5 μg/ml TEV (B).

Plants were examined daily for the appearance of systemic symptoms. Plants were evaluated daily, and any plant displaying systemic symptoms (attenuated or wild-type) were recorded as symptomatic.

SEQUENCE LISTING

5

- [0018] The attached sequence listing sets forth nucleotide sequences relevant to the present invention.
- [0019] SEQ ID No. 1 is the complementary DNA sequence corresponding to the Tobacco Etch Virus Genome.
- [0020] SEQ ID No. 2 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:FL.
- [0021] SEQ ID No. 3 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:RC.
 - [0022] SEQ ID No. 4 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

15 DETAILED DESCRIPTION

[0023] The present invention relates to genetically engineered plants which are transformed with a DNA molecule encoding an untranslatable plus sense RNA molecule.

20 Definition of Terms

- [0024] Susceptible plant: A plant that supports viral replication and displays virus-induced symptoms.
- [0025] Resistant plant: A plant wherein virus-induced symptoms are attenuated and virus replication is attenuated.
- [0026] Plus sense RNA (and sense RNA): That form of an RNA which can serve as messenger RNA.
- ²⁵ [0027] Minus sense RNA: That form of RNA used as a template for plus sense RNA production.
 - [0028] Antisense RNA: RNA complementary to plus sense RNA form.
 - [0029] Ro generation: Primary transformants.
 - [0030] R₁ generation: Progeny of primary transformants.
 - [0031] R₂ generation: Second generation progeny of R₀ generation (i.e., progeny of R₁ generation).
- 30 [0032] A gene derived in part from a plant virus RNA molecule: At least the portion of the gene encoding the untranslatable RNA molecule is derived from a plant virus RNA molecule.

GENERAL DESCRIPTION

- [0033] An uniranslatable plus sense RNA-molecule is encoded by a gene located on the DNA molecule. The gene comprises DNA derived from a plant virus RNA genome and also DNA from heterologous sources. The DNA from heterologous sources includes elements controlling the expression of the virus-derived DNA sequences. The DNA sequence of the gene includes elements controlling the expression of the virus-derived DNA sequences. The DNA sequence of the gene unitranslatable plus sense RNA within the cells of the transformed plant reduces the susceptibility of the plant to virus the feet of the plant to virus the feet of the plant to virus the gene unitranslatable plus sense RNA within the cells of the transformed plant reduces the susceptibility of the plant to virus the feet of the virus the plant to virus the feet of the virus the feet of the virus the virus the feet of the virus the viru
 - [0034] More particularly, the portion of the gene which comprises DNA from a plant virus has been derived from a potyvirus. Plants transformed with the DNA molecule containing the gene are less susceptible to infection by potyviruses. Most specifically, the DNA from the potyvirus source has been derived from the coat protein gene of Tobacco Etch Virus and transformed plants are resistant to infection by Tobacco Etch Virus. Plants which can be made resistant to potyvirus infection include, but are not limited to, tobacco.
 - [0035] Accordingly, the present invention provides a method for genetically engineering plants by insertion, into the plant genome, a DNA construct containing a recombinant gene derived from a potyvirus genome such that the engineered plants display resistance to the potyvirus.
- [0036] In accordance with one aspect of the presen invention, genetically transformed plants which are resistant to infection by a plant potyvirus are produced by inserting into the genome of the plant a DNA sequence which causes the production of an untranslatable coat protein RNA of the potyvirus.
 - [0037] In accordance with another aspect of the present invention, a DNA sequence is provided to function in plant cells to cause the production of an untranslatable plus sense RNA molecule. There has also been provided, in accordance with yet another aspect of the present invention, bacterial and transformed plant cells that contain the above-
- described DNA. In accordance with yet another aspect of the present invention, a differentiated tobacco plant has been provided that comprises transformed tobacco cells which express the untranslatable coat protein RNA of Tobacco Etch Virus and which plants exhibit resistance to infection by Tobacco Etch Virus.
 - [0038] A mechanism by which an untranslatable plus sense RNA molecule, such as described in the current invention

can function to inhibit the normal biological function of a minus sense RNA molecule is proposed. One skilled in the art will recognize that the novel approach described herein is not limited to the specific experimental example given and will appreciate the wider potential utility of the invention.

[0039] The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' nontranslated region which causes polyadenylate nucleotides to be added to the 3' end of the viral RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

[0040] A number of promoters which are active in plant cells have been described in the literature. Promoters which are known or are found to cause transcription of viral RNA in plant cells can be used in the present invention. Such promoters may be obtained from plants or viruses and include, but are not limited to, the CaMV 35S promoter. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of untranslatable plus sense RNA to render the plant substantially resistant to virus infection. The amount of untranslatable plus sense RNA needed to induce resistance may vary with the plant type. Accordingly, while the 35S promoter is preferred, it should be understood that this promoter may not be the optimal one for all embodiments of the present invention. Furthermore, the promoters used in the DNA constructs of the invention may be modified, if desired, to affect their control characteristics. DNA sequences have been identified which confer regulatory specificity on promoter regions. For example, the small subunit of the ribulose bis-phosphate carboxylase (ss RUBISCO) gene is expressed in plant leaves but not in root tissues. A sequence motif that represses the expression of the ss RUBISCO gene in the absence of light, to create a promoter which is active in leaves but not in root tissue, has been identified. This and/or other regulatory sequence motifs may be ligated to promoters such as the CaMV 35S promoter to modify the expression patterns of a gene. Chimeric promoters so constructed may be used as described herein. For purposes of this description, the phrase "CaMV 35S promoter" will therefore include all promoters derived by means of ligation with operator regions, random or controlled mutagenesis, as well as tandem or multiple copies of enhancer elements, and the like.

- 15

[0041] The 3' nontranslated region of genes which are known or are found to function as polyadenylation sites for viral RNA in plant cells can be used in the present invention. Such 3' nontranslated regions include, but are not limited to, the 3' transcribed, nontranslated region of the CaMV 35S gene and the 3' transcribed, nontranslated regions containing the polyadenylation signals of the tumor-inducing (TI) genes of Agrobacterium, such as the tumor morphology large (tml) gene. For purposes of this description, the phrase "CaMV 35S 3' nontranslated region" will therefore include all such appropriate 3' nontranslated regions.

[0042] The DNA constructs of the disclosed embodiment contain, in double-stranded DNA form, a portion of a cDNA version of the single-stranded RNA genome of TEV. In potyviruses, including TEV, the viral genome includes genesenceding the coat protein, a replicase enzyme and a proteinase filter disclosed embodiment utilizes the region of the genome encoding the coat protein gene. In considering the present invention and the evidence for the proposed mechanism by which are unitarislatable plus sense and a molecule can inhibit viral replication, those skilled in the art will

recognize that other portions of a potyvirus genome could be substituted for the coat protein gene. Furthermore, it will be apparent that suitable genomic portions are not limited to complete gene sequences.

[0043] A disclosed embodiment of the invention utilizes a double-stranded complementary DNA (cDNA) derived from the region of the TEV genome encoding the coat protein gene. To the 5' end of this cDNA is ligated the CaMV 35S promoter and CaMV 35S RNA 5' nontranslated region. To the 3' end is ligated the CaMV 35S 3' nontranslated region. These 5' and 3' sequences are present to cause transcription of the gene in plant cells by the cellular enzyme RNA polymerase to produce an RNA molecule of sequence corresponding to the sequence of the coat protein cDNA sequence. Ordinarily, such an RNA would then be translated by ribosomes which would synthesize a protein of amino acid sequence specified by the nucleotide sequence of the RNA molecule. Particular amino acids are specified by nucleotide triplets termed codons. Codons which stipulate translation initiation and termination are also present in DNA and RNA sequences. The current invention relates to RNA molecules which are untranslatable by ribosomes. In the preferred embodiment the sequence of the TEV cDNA encoding the coat protein is mutated by a standard in vitro mutagenesis technique to produce a frameshift mutation early in the coat protein structural gene immediately followed by three translation termination signal codons. These mutations do not affect the ability of RNA polymerase to transcribe an RNA molecule from the cDNA but prevent translation of the transcribed RNA by ribosomes. Those skilled in the art will recognize that for the disclosed gene and for other genes, DNA sequences can be altered in other ways to cause the DNA to encode an untranslatable plus sense RNA molecule. Thus the disclosed invention is not limited to the mutations disclosed.

[0044] A disclosed embodiment utilizes a cDNA encoding the coat protein gene of TEV, mutated so as to encode an untranslatable plus sense RNA. It will be obvious to one skilled in the art that further sequence alteration of the cDNA

molecule could be used to confer additional features on the untranslatable plus sense RNA molecule. Additional features include those which would result in increased viral resistance of plants transformed with the cDNA molecule encoding an untranslatable plus sense RNA. The inclusion of a ribozyme sequence which causes the RNA catalyzed destruction of the target RNA molecule would constitute one such additional feature. Suitable ribozyme sequences are known, as discussed in Tabler and Tsagris (1991).

[0045] A DNA construct in accordance with the present invention is introduced, via a suitable vector and transformation method as described below, into plant cells and plants transformed with the introduced DNA are regenerated. Various methods exist for transforming plant cells and thereby generating transgenic plants. Methods which are known or are found to be suitable for creating stably transformed plants can be used in this invention. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome mediated transformation; polyethylene mediated transformation using viruses; microinjection of plant cells; microprojectile bombardment of plant cells and Agrobacterium tumefaciens (AT) mediated transformation. The latter technique is the method of choice for the disclosed preferred embodiment of the present invention.

15 [0046] In an embodiment of the current invention, the DNA sequences comprising the CaMV 35S promoter and CaMV 35S nontranslated 3' region and the mutated cDNA encoding an untranslatable plus sense RNA derived from the TEV coat protein gene are combined in a single cloning vector. This vector is subsequently transformed into AT cells and the resultant cells are used to transform cultured tobacco cells.

[0047] Vectors suitable for the AT mediated transformation of plants with the DNA of the invention are disclosed. It will be obvious to one skilled in the art that a range of suitable vectors is available, including those disclosed by Bevan (1983), Herrera-Estrella (1983), Klee (1985) and EP-A-120516 (Schilperoort et al.). Suitable vectors are available on a commercial basis from Clontech (Palo Alto, CA) and Pharmacia LKB (Pleasant Hill, CA) and other sources.

[0048] Following the transformation of plant cells and regeneration of transformed plants with the DNA molecules as described, regenerated plants are tested for increased virus resistance. Plants are preferably exposed to the virus at a concentration within a range where the rate of disease development correlates linearly with virus concentration. Methods for virus inoculation are well known to those skilled in the art and are reviewed by Kado and Agrawai (1972). One such method includes abrading a leaf surface with an aqueous suspension containing an abrasive material such as carborundrum and virus or dusting leaves with such an abrasive material and subsequently applying the virus onto the leaf surface. A virus suspension can be directly inoculated into leaf veins or alternatively plants can be inoculated using insect vectors. The virus suspension may comprise purified virus particles, or alternatively, sap from virus infected plants may be utilized.

[0049] Transformed plants are then assessed for resistance to the virus. The assessment of resistance or reduced susceptibility may be manifest in different ways dependant on the particular virus type and plant type. Those skilled in the art will realize that a comparison of symptom development on a number of inoculated untransformed plants with symptom development on similarly inoculated transformed plants will provide a preferred method of determining the effects of transformation with the specified DNA molecule on plant resistance. Symptoms of infection include, but are not limited to leaf mottling, chlorosis and etching. Plants showing increased viral resistance may be recognized by delay in appearance of such symptoms or attenuation or total lack of such symptoms.

o Example

45

[0050] Work with tobacco plants and the Tobacco Etch Virus (TEV) is illustrative of the invention.

Construction of gene encoding untranslatable plus sense RNA molecule.

[0051] The Highly Aphid Transmissible (HAT) isolate of Tobacco Etch Virus (TEV) was obtained from Dr. Tom Pirone (University of Kentucky) and maintained in *Nicotiana tabacum* (Burley 21). The virus was purified from *Nicotiana tabacum* (Burley 21) 20 to 30 days following inoculation. Viral purification and RNA isolation procedures have been described (Dougherty and Hiebert (1980a). Complementary DNA (cDNA) was synthesized, made double-stranded and inserted into the bacterial plasmid pBR322 as described by Allison et al. (1985a, 1985b, 1986). cDNA synthesis was accomplished as follows: Purified viral RNA primed with oligo(dT₁₂₋₁₈) served as a template for single-strand cDNA synthesis by reverse transcriptase. Following the addition of homopolymeric tracts of deoxycytidine 5' monophosphate, second-strand synthesis, primed with oligo(dG₁₂₋₁₈), was completed with DNA polymerase I. *Sal*i and *Eco*RI linkers were ligated to the double-stranded cDNA and inserted into the bacterial plasmid pBR322 (Kurtz and Nicodemus 1981). The resulting cDNA clones were screened by colony hybridization (Hanahan and Meselson 1980) with oligo(dT₁₂₋₁₈) primed, ³²P-labeled single-stranded TEV cDNA. Plasmid DNA was isolated from colonies which hybridized with the probe, and the *Sali/Eco*RI cDNA inserts were sized by electrophoresis in a 0.8% (w/v) agarose gel using a horizontal water-cooled gel apparatus.

[0052] The Sall/EcoRl inserts from the recombinant molecules were isolated from an agarose gel with NA45 membrane (Schleicher & Schuell, Keene, NH) according to the manufacturer's protocol. The following restriction enzymes were used either alone or in combination to digest the isolated cDNA insert: Hindill, Xhol, Alul, Haelli, Rsal, Sau3A, and Taql. Restriction enzyme digestion products were inserted into the DNA of an appropriate M13 bacteriophage (Messing 1983) selected for the presence of corresponding polylinker restriction sites, and their nucleotide sequences were determined by dideoxy chain termination.

[0053] Plasmid pTL 37/8595 (Carrington and Dougherty 1987; Carrington et al. 1987) contains a cDNA copy of the genomic sequence of HAT TEV corresponding to nucleotides (nt) 1-200 and nt 8462-9495 (Fig. 2). (Numbering of the TEV genome nucleotides is according to that presented in Allison et al. 1986). The nucleotide sequence and deduced amino acid sequence of the Tobacco Etch Virus genome and the numbering system utilized by Allison et al. (1986) and herein is shown in Fig. 1 and SEQ ID No. 1 in the attached sequence listing. The first and last codons of the coat protein (CP) coding region in the TEV genome are nt 8518-8520 (encoding the amino acid serine) and 9307-9309 (opal stop codon) respectively. pTL 37/8595 was subject to *in vitro* site-directed mutagenesis as described by Taylor et al. (1985a, 1985b). In all cases, nucleotide changes were confirmed by dideoxy-nucleotide sequencing (Sanger et al. 1977).

[0054] TEV nt 9312-9317 were first mutated (Fig. 2) to generate a BamHI restriction site (GGATCC). TEV nt 8516-8521 were then altered to generate an Ncol site (CCATGG), changing the first codon of the TEV CP coding region from AGT (Ser), to ATG (Met). A single oligonucleotide was then used to mutate TEV nt 133-138 to a BamHI restriction site (GGATCC), nt 143-148 to an Ncol restriction site (CCATGG) and nt 142 to a deoxyadenylate residue. These mutations generated an Ncol site centered on the first codon of the TEV ORF and in a good translational start context as described by Kozak (1984). Digestion of the resulting plasmid with the restriction enzyme Ncol; removing TEV nt # 143-200/8462-8516, and religation generated plasmid pTC:FL pTC:FL contained only the TEV CP gene flanked by BamHI restriction sites and TEV 5' and 3' untranslated sequences (see Fig. 2). The nucleotide sequence of the TEV CP gene in pTC:FL produced by this mutagenesis scheme is shown in SEQ ID No. 2 in the attached sequence listing.

[0055] Plasmid pTC:RC (RNA Control, producing untranslatable plus sense RNA) was generated by insertion of a single deoxythymidylate residue after TEV nt 8529, and point mutations of TEV nt 8522 (G to C), 8534 (C to A), 8542 (G to A), and 8543 (A to G) to create a frameshift mutation immediately followed by three stop codons. An *Nhel* restriction site (GCTAGC) was simultaneously generated, for screening purposes, at nt 8539-8544. The nucleotide sequence of the TEV CP gene in pTC:RC produced by this mutagenesis scheme is shown in SEQ ID No. 3 in the attached sequence listing.

[0056] All plasmids described above were linearized with *Hind*III, transcribed with T7 RNA polymerase (Melton et al. 1984), and translated in a rabbit reticulocyte lysate containing ³⁵S Methionine (Dougherty and Hiebert 1980a). Radiolabeled translation products were analyzed by electrophoretic separation on a 12.5% acrylamide gel containing SDS (Laemmli 1970) and detected by autoradiography. Transcripts of plasmid pTC:RC produced no detectable protein products, while transcripts from pTC:FL produced proteins of the expected sizes.

[0057] The various forms of the CP nucleotide sequence were then inserted as BamHI cassettes into the plant expression vector pPEV (see below and Fig. 3).

[0058] The full length TEV CP open reading frame of pTC:FL was inserted in the reverse orientation to make the antisense (AS) construct pTC:AS. The nucleotide sequence of the TEV CP gene in pTC:AS is shown in SEQ ID No. 4 in the attached sequence listing.

Transformation Vector Construction

⁻ 15

25

[0059] Construction of pPEV. The vector pPEV is part of a binary vector system for *Agrobacterium tumefaciens* mediated plant cell transformation. Plasmid pPEV was constructed from the plasmids pCGN 2113 (Calgene), pCIB 710 and pCIB 200 (Ciba Geigy Corp.). pCGN 2113 contains the "enhanced" Cauliflower Mosaic Virus (CaMV) 35S promoter (CaMV sequences -941 to 90/-363 to +2, relative to the transcription start site) in a pUC derived plasmid backbone. pCIB 710 has been described (Rothstein et al. 1987) and pCIB 200 is a derivative of the wide host range plasmid pTJS 75 (Schmidhauser and Helinski 1985) which contains left and right *A. tumefaciens* T37 DNA borders, the plant selectable NOS/NPT II chimeric gene from the plasmid Bin 6 (Bevan 1984) and part of a pUC polylinker. The small *EcoRI-EcoRV* DNA fragment of pCIB 710 (Rothstein et al. 1987) was ligated into *EcoRI-EcoRV* digested pCGN 2113. This regenerated the enhanced CaMV 35S promoter (Kay et al. 1987) of pCGN 2113 and introduced the CaMV 35S 5' and 3' untranslated sequences into pCGN 2113. The CaMV 35S promoterterminator cassette of the resulting plasmid was isolated as an *EcoRI-Xbal* DNA fragment and ligated into *EcoRI-Xbal* digested pCIB 200 to generate pPEV. CP nucleotide sequences from PTC:FL, pTC:RC, and pTC:AS were cloned as *Bam*HI cassettes into *Bam*HI digested pPEV and orientation of inserts confirmed by digestion with appropriate restriction endonucleases.

Transformation and Regeneration of Tobacco

[0060] pPEV plasmids containing TEV CP ORFs were mobilized from *E. coli* HB101 into *A. tumefaciens* A136 containing plasmid pClB 542 (Ciba Geigy), using the helper plasmid pRK 2013 in *E. coli* HB101 and the tri-parental mating system of Ditta et al. (1980). Plasmid pClB 42 supplied *vir* functions necessary for T-DNA transfer.

[0061] Leaf discs of *Nicotiana tabacum cv* Burley 49 were transformed and whole plants regenerated according to Horsch et al. (1985). Transformed tissue was selected by culturing callus on MS plates (Murashige and Skoog 1962) containing 1 μ g/ml 6-benzylaminopurine (Sigma Corp.), 01 μg/ml α-naphthaleneacetic acid (Sigma Corp.), 500 μg/ml carbenicillin and 100 μg/ml Kanamycin sulfate (Sigma Corp.). Shoots were rooted on MS plates containing 500 μg/ml carbenicillin and 100 μg/ml kanamycin sulfate, and plantlets were transplanted into soil and transferred directly into the greenhouse approximately 2-3 weeks after rooting.

[0062] R0, R1 and R2 generation plants were screened by western and/or northern blot analyses. R2 seed (ca. 100 seeds per R2 plant) was screened for the kanamycin-resistant phenotype (kan') by surface sterilizing seed in 10% bleach for 5 min., washing twice in sterile water and germinating on MS plates containing 100 µg/ml kanamycin sulfate. R2 seed lines which were 100% kanamycin resistant were screened by western blot analysis for expression of TEV coat protein. Those transgenic plant lines generated and their nomenclature are presented in Fig. 3.

Molecular Analyses of Transgenic Plants

20 [0063] Transgenic tobacco plants were analyzed by western and northern blot analyses to determine the nature of protein and RNA products produced respectively. Total RNA samples isolated from the various transgenic lines were analyzed in northern blot hybridization studies. Total nucleic acids were isolated from tissue and RNA precipitated with LiCl as described by Verwoerd et al. (1989). RNAs were electrophoretically separated on 1.2% agarose gels containing 6% (v/v) formaldehyde and transferred to nitrocellulose. Prehybridization and hybridization conditions were as described in Sambrook et al. (1989). Strand specific riboprobes were generated from SP6 or T7 DNA dependent RNA polymerase transcription reactions of pTL 37/8595 linearized with the restriction enzymes Asp718 (Boehringer Mannheim, Indianapolis, IN) or *Hind*III, respectively, using α-labelled ³²P-CTP ribonucleotide and suggested procedures (Promega, Madison, WI).

[0064] An RNA transcript of approximately 1,000 nt was expected with all transgenic plant lines. Such a TEV CP transcript was detected in CP expressing plant lines by using a minus sense riboprobe containing the TEV CP sequence. A similar transcript was detected in AS plants by using a plus sense riboprobe containing the TEV CP sequence. The transcript in the RC line, while detected with a minus sense riboprobe, may have migrated as a slightly larger (ca 1,100-1,200 nt) RNA species, possibly due to termination at an alternately selected site and/or a longer poly-A tail on the transcript. Differing levels of CP transcript accumulation were observed among different transgenic plant lines. Transgenic plant lines expressing the coat protein of TEV were identified by western blot analysis using polyclonal antisera to TEV CP. Tissue samples of regenerated plants were ground in 10 volumes of 2X Laemmli (Tris-glicine) runner buffer (Laemmli 1970) and clarified by centrifugation in a microcentrifuge for 10 min. at 10,000xg. Protein concentration was estimated by the dye binding procedure of Bradford (1976) using BSA as a standard. Protein samples (50 µg total protein) were separated on a 12.5% polyacrylamide gel containing SDS and subjected to the immunoblot transfer procedures described by Towbin et al. (1979). Anti-TEV coat protein polyclonal primary antibodies, alkaline phosphatase conjugated secondary antibodies and the chromogenic substrates NBT (para-nitro blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indoyl phosphate para-toluidine salt) were used to detect bound antigen.

[0065] Coat protein products produced in FL plants were stable and accumulated to different levels in individual transgenic plant lines. It was estimated by western blot analysis that between 0.01% to 0.001% of total extracted protein was TEV CP.

Assessment of Resistance to TEV

45

[0066] Eight-week-old (circa 15 cm tall) R1 and R2 plants were inoculated with either purified virus preparations or infected plant sap. Inoculum was applied with sterile, premoistened cotton swabs. Infected plant sap inoculum was prepared by grinding TEV-infected *N. tabacum* Burley 21 leaf tissue (2 weeks postinoculation) in carborundum and 50 mM sodium phosphate buffer (pH 7.8) at a ratio of 1gm:02gm:10mls, respectively, and filtering the homogenate through cheesecloth. TEV virons were purified as described by Dougherty and Hiebert (1980b). One leaf per plant was dusted lightly with carborundum (320 grit) and inoculated at two interveinal locations with 50 µl (total) of inoculum. Inoculated plants were examined daily and the appearance and severity of systemic symptoms recorded. Symptoms on any leaf above the inoculated leaf were considered to be systemic.

[0067] Typically, inoculation of Burley 49 plants with TEV (either purified virus or plant sap) resulted in severe chlorosis and mosaic and mottle on systemically infected leaves approximately 6-7 days after inoculation. Severe etching of the

leaf followed within a few days. It was observed that transgenic plants containing only the CaMV promoter and untranslated sequences (i.e., 35S plant line) responded to challenge inoculation in a manner similar to wild type Burley 49, developing extensive chlorosis and etching at the same rate (Fig. 4A). Plant lines which expressed FL TEV CP showed little or no delay in the appearance of symptoms when inoculated with infected plant sap. However, FL transgenic plants did show a slight attenuation of symptoms and eventually (2-4 weeks after initial appearance of symptoms), younger leaf tissue emerged devoid of symptoms and virus as demonstrated by back inoculation experiments. Typically chlorosis and etching on older systemic leaves was limited.

[0068] Ten independently transformed RC lines and seven independently transformed AS lines were obtained. Progeny from three of the RC lines, including line RC #5 and from one of the AS lines, including AS #3, showed an altered response to viral infection relative to control plants. All of these lines were verified to be transformed and were producing expected RNA products. A possible explanation for the variation in observed phenotype is the previously noted "position effect" whereby the expression of genes from identical DNA sequences integrated at different locations within the genome show varying patterns of tissue specificity.

[0069] Ten R2 expressing plants of the FL expressing line were inoculated with infected plant sap, and 20 R1 plants of lines AS #3 and RC #5 were inoculated with 50 µl of a 5 µg/ml solution of purified TEV. Identical results to those obtained by purified TEV inoculation were obtained when AS #3 and RC #5 R1 plants were inoculated with TEV-infected plant sap, as described above.

[0070] Transgenic Burley 49 plant lines AS #3 and RC #5, expressing only TEV CP related RNA sequences, showed a delay in the appearance of symptoms and a modification of symptoms when inoculated with TEV (Fig. 4B). Since the 20 R1 plants were not screened for expression of CP RNA prior to inoculation, some of the symptomatic plants represented non-expressing plants in which the gene of interest had been lost during Mendelian segregation. Modified symptoms on AS #3 plants appeared as small chlorotic lesions often associated with a vein. Most of the leaves were devoid of symptoms and virus (determined by back inoculation experiments). Approximately 15% of RC #5 plants showed symptoms which were identical to those of infected Burley 49. However, the remaining RC #5 plants were entirely asymptomatic, and virus was not detected in back inoculation studies.

[0071] Plants from TEV resistant AS and RC lines showed no increased resistance, relative to untransformed controls, to infection by two other members of the potyvirus family, namely Tobacco Vein Mottling Virus and Potato Virus Y.

[0072] R₂ generation plants derived from TEV-resistant RC plants showed the expected Mendelian pattern of inheritance of the TEV-resistant phenotype.

Analysis of TEV Replication in Protoplasts Derived from Transgenic Plant Lines

[0073] In an attempt to explain the results obtained when AS and RC transgenic plants were challenged with TEV, it was sought to determine if all of the transgenic plant lines would support virus replication at a level comparable to Burley 49. Accumulation of viral encoded proteins was used as an indirect indicator of viral replication. Protoplasts were derived from leaf tissue of homozygous CP expressing plants and electroporated according to the procedure of Luciano et al. (1987) with TEV RNA. Protoplasts were prepared from transgenic plants and electroporated according to the procedure of Luciano et al. (1987). Protoplasts (1 X 106) were resuspended in 450 µl electroporation buffer (330 mM mannitol, 1 mM KPO₄ pH 7.0, 150 mM KCl) and electroporated using a BTX Transfector 300 (BTX San Diego, CA) (950 micro Farads, 130-volt pulse amplitude, 3.5 mm electrode gap) in the presence or absence of 6 µg of purified TEV RNA. After electroporation, protoplasts were incubated for 96 hours in incubation medium as described in Luciano et al. (1987). Protoplasts were extracted in 2X Laemmli (Trisglycine) running buffer, and 5 x 10⁴ extracted protoplasts were then subjected to western blot analysis as described above. Protoplast viability was measured by dye exclusion as described in Luciano et al. (1987). All electroporated protoplast samples had equivalent viability counts. The results indicated that protoplasts from all FL plant lines supported virus replication at levels comparable to wild type Burley 49 protoplasts. R1 transgenic plants from lines AS #3 and RC #5 were initially screened by northern analysis, and leaves from positive expressors were used in the production of protoplasts. Transfected protoplasts derived from AS #3 plants supported TEV replication, albeit at a reduced level. Protoplasts derived from RC #5 transgenic plant leaf tissue did not support TEV replication at a detectable level. These results, and those presented in the whole plant inoculation series, suggested AS and RC plants interfere with TEV replication.

Discussion of Data

10

30

50

[0074] The above example indicates that varying degrees of protection from TEV infection can be achieved by over-expression of coat protein and by expression of an antisense RNA. The current invention which comprises the expression of an untranslatable plus sense RNA molecule provides protection against TEV infection that is more effective than either of these two methods. Plants of line RC #5, transformed with the disclosed DNA molecule encoding an untranslatable plus sense RNA derived from the TEV coat protein gene, were asymptomatic and appear to be com-

pletely protected from virus infection. The disclosed invention therefore represents a new and effective way of generating potyvirus resistant germplasm.

[0075] Tobacco protoplasts derived from plants expressing the antisense RNA supported a reduced level of TEV replication compared to control cells derived from untransformed plants. In contrast, tobacco protoplasts derived from plants of line RC #5, expressing the untranslatable plus sense RNA did not support detectable TEV replication. This suggests that the untranslatable plus sense RNA was more effective at blocking TEV replication in the cells of those transformed plants tested.

[0076] It is proposed that the untranslatable plus sense RNA inhibits viral replication by hybridizing to the minus sense RNA replicative template of TEV. The finding that plants expressing untranslatable plus sense RNA derived from the TEV coat protein gene are not protected from infection by Potato Virus Y or Tobacco Vein Mottling Virus is therefore explained by the circa 40-50% amino acid sequence divergence between the coat proteins of these viruses and TEV (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986).

[0077] From the above-described findings, it would be reasonable and entirely predictable that if plants were transformed with a gene encoding an untranslatable plus sense RNA derived from a gene which was highly conserved between viruses of the potyvirus family, that these plants would be protected from infection by a wide range of viruses. Regions of the potyvirus genome which are sufficiently conserved between potyvirus types to be potentially useful in such an approach may be readily determined by one skilled in the art. Highly conserved regions may be determined by reference to published sequence data (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986; Lain et al. 1989; Maiss et al. 1989). The utility of the identified regions could be readily determined using the methodologies described above and substituting the defined region for the TEV coat protein gene.

[0078] Regions of the potyvirus genome potentially suitable include, but are not limited to the genes encoding the viral replicase and the viral proteinase. Furthermore, it will be apparent to one skilled in the art that highly conserved portions of a particular gene may also serve in this role.

[0079] It will also be apparent to one skilled in the art that the described invention may also be used to produce plants resistant to viruses outside of the potyvirus family in instances where these viruses also produce a minus sense RNA replicative template.

BIBLIOGRAPHY

- 30 [0080] Allison et al. 1985a. Virology 147:309-316. Allison et al. 1985b. Proc. Natl. Acad. Sci. USA 82:3969-3972.
 - [0081] Allison et al. 1986. Virology 154:9-20.
 - [0082] Bevan 1984. Nucl. Acids Res. 12:8711-8721.
 - [0083] Bradford 1976. Nucl. Acids Res. 12:8711-8721.
 - [0084] Carrington and Dougherty 1987. J. Virol. 61:2540-2548.
- 35 [0085] Carrington et al. 1987. Nucl. Acids Res. 15:10066.
 - [0086] Ditta et al. 1980. Proc. Natl. Acad. Sci. USA 77:7347-7351.
 - [0087] Domier et al. 1986. Nucl. Acids Res. 14:5417-5430.
 - [0088] Dougherty and Hiebert 1980a. Virology 101:466-474.
 - [0089] Dougherty and Hiebert 1980b. Virology 104:183-194.
- 40 [0090] Hanahan and Meselson 1980. Gene 10:63-67.
 - [0091] Herrera-Estrella et al. 1983. Nature (London) 303:209-213.
 - [0092] Hollings and Brunt 1981. Commonwealth Mycological Institute/Association of Applied Biologists Descrip. Plant Viruses, No. 245.
 - [0093] Horsch et al. 1985. Science 227:1229-1231.
- [0094] Kado and Agrawai 1972. Principles and Techniques in Plant Virology.
 - [0095] Kay et al. 1987. Science 236:1299-1302.
 - [0096] Kozak 1984. Nature (London) 308:241-246.
 - [0097] Kurtz and Nicodemus 1981. Gene 13:145-152.
 - [0098] Laemmli 1970. Nature (London) 227:680-685.
- 50 [0099] Lain et al. 1989. Virus Res. 13:157-172.
 - [0100] Lawson et al. 1990. Bio/Technology 8:127-134.
 - [0101] Ling et al. 1991. Bio/Technology 9:752-758.
 - [0102] Luciano et al. 1987. Plant Science 51:295-303.
 - [0103] Maiss et al. 1989. J. Gen. Virol. 70:513-524.
- ⁵ [0104] Melton et al. 1984. Nucl. Acids Res. 12:7145-7156.
 - [0105] Messing 1983. "Methods in Enzymology" (R. Wu, L. Grossman, and K. Moldave, eds.). Vol. 101c, pp. 20-78. Academic Press, New York.
 - [0106] Murashige and Skoog 1962. Plant Physiol. 15:473-497.

	5	[0108] [0109] Spring I [0110] [0111] [0112] [0113] [0114] [0115] [0116]	Robaglia et al. 1989. <u>J. Gen. Virol.</u> 70:935-947. Rothstein et al. 1987. <u>Gene</u> 53:153-161. Sambrook et al. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratories, Cold Harbor, New York. Sanford and Johnston 1985. <u>J. Theor. Biol.</u> 113:395-405. Sanger et al. 1977. <u>Proc. Natl. Acad. Sci. USA</u> 74:5463-5467. Schmidhauser and Helinski 1985. <u>J. Bact.</u> 164:446-455. Stark and Beachy 1989. <u>Bio/Technology</u> 7:1257-1262. Tabler and Tsagris 1991. <u>Gene</u> 100:175-183. Taylor et al. 1985a. <u>Nucl. Acids Res.</u> 13:8749-8764. Taylor et al. 1985b. <u>Nucl. Acids Res.</u> 13:8765-8785. Towbin et al. 1979. Proc. Natl. Acad. Sci. USA 76:4350-4354.
	15	[0118]	Verwoerd et al. 1989. Nucl. Acids Res. 17:2372.
•	15		INCE LISTING
		[0119]	
	20	(1)	GENERAL INFORMATION:
			(i) APPLICANT: William G. Dougherty and John A. Lindbo
	25		(ii) TITLE OF INVENTION: Production of Plants Showing Immunity to Viral Infection via Introduction of Genes Encoding Untranslatable Plus Sense RNA Molecules
			(iii) NUMBER OF SEQUENCES: 4
			(iv) CORRESPONDENCE ADDRESS:
	30		(A) ADDRESSEE: Richard J. Polley
			(B) STREET: One World Trade Center 121 S.W. Salmon Street, Suite 1600
	0.5		(C) CITY: Portland
	35		(D) STATE: Oregon
			(E) COUNTRY: United States of America
	40		(F) ZIP: 97204
			(v) COMPUTER READABLE FORM:
	45		(A) MEDIUM TYPE: Diskette, 5.25 inch
	45		(B) COMPUTER: IBM PC Compatible
			(C) OPERATING SYSTEM: MS DOS
	50		(D) SOFTWARE: WordPerfect 5.1
	٠		(vi) CURRENT APPLICATION DATA:
			(A) APPLICATION NUMBER: 07/838,509
			(B) FILING DATE: February 19, 1992
			(C) CLASSIFICATION: 435

	(vi) PRIOR APPLICATION DATA: None	
	(vii) ATTORNEY/AGENT INFORMATION	
5	(A) NAME: Richard J. Polley, Esq.	
	(B) REGISTRATION NUMBER: 28,107	
10	(C) REFERENCE/DOCKET NUMBER: 245-35829/RJP	١
	(viii) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: (503) 226-7391	
15	(B) TELEFAX: (503) 228-9446	
	(2) INFORMATION FOR SEQ ID NO: 1:	
20	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 9495	
	(B) TYPE: Nucleic Acid	
25	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: (A) DESCRIPTION: cDNA to genomic RNA	
	(lii) HYPOTHETICAL: No	
35	(iv) ANTI-SENSE: No	
	(v) FRAGMENT TYPE: N/A	
	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: Tobacco Etch Virus (TEV)	
	(B) STRAIN: Highly Aphid Transmitted (HAT)	
45	(vii) IMMEDIATE SOURCE: TEV propagated in N. tabacum Burley 49	
	(viii) POSITION IN GENOME: N/A	
	(ix) FEATURE:	
50	(A) NAME/KEY: Coat protein gene	
	(B) LOCATION: Genomic nucleotides 8518-9306	
55	(C) IDENTIFICATION METHOD:	
	(D) OTHER INFORMATION: SEQ. ID No. 1 is the cDNA corresponding to the Tobacco Etch Virus Geno	me.
	(x) PUBLICATION INFORMATION:	

	EP 0 626 998 B1	
	(A) AUTHORS: Allison et al.	
	(B) TITLE: The nucleotide sequence of the coding region of Tobacco Etch Virus Genomic RNA: for the Synthesis of a Single Polyprotein	Evidence
5	(C) JOURNAL: Virology	
	(D) VOLUME: 154	
10	(E) ISSUE:	
	(F) PAGES: 9-20	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	NAAATAACAA ATCTCAACAC AACATATACA AAACAAAC	60
20	CTACTTCTAT TGCAGCAATT TAAATCATTT CTTTTAAAGC AAAAGCAATT TTCTGAAAAT 1	20
	TTTCACCATT TACGAACGAT AGCA ATG GCA CTG ATC TTT GGC ACA GTC AAC GCT 1 Met Ala Leu Ile Phe Gly Thr Val Asn Ala 1 5 10	74
25	AAC ATC CTG AAG GAA GTG TTC GGT GGA GCT CGT ATG GCT TGC GTT ACC Asn Ile Leu Lys Glu Val Phe Gly Gly Ala Arg Met Ala Cys Val Thr 15 20 25	
30		
35		

	AGC Ser	GCA Ala	CAT His	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	AAT Asn	GGA Gly 35	AGC Ser	ATT Ile	TTG Leu	AAG Lys	AAG Lys 40	GCA Ala	GAA Glu	270
5	GAG Glu	ACC Thr	TCT Ser 45	CGT Arg	GCA Ala	ATC Ile	ATG Met	CAC His 50	AAA Lys	CCA Pro	GTG Val	ATC Ile	TTC Phe 55	GGA Gly	GAA Glu	GAC Asp	318
10	TAC Tyr	ATT Ile 60	ACC Thr	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	CAT His	TTA Leu	GAG Glu	GTC Val	366
	GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT Tyr	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG Ala	CTC Leu	ACC Thr 90	414
15															AGG Arg 105		462
20	AGG Arg	AAA Lys	GTG Val	GCC Ala 110	AAA Lys	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC Ser	ATT Ile	GTT Val 120	GAG Glu	AAG Lys	510
	ATT Ile	GTA Val	GTG Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	AAG Lys	GTT Val	GAT Asp	ACC Thr	ACA Thr 135	GCA Ala	GCA Ala	GTG Val	558
25															AGT Ser		606
30	CCA Pro 155	AAG Lys	CGT Arg	AAG Lys	AAG Lys	CAG Gln 160	AAA Lys	AAC Asn	TTC Phe	TTC Leu	CCC Pro 165	GCC Ala	ACT Thr	TCA Ser	CTA Leu	AGT Ser 170	654
															ATG Met 185		702
35															AGA Arg		750
40															GGC		798
															ACA Thr		846
45															TCG Ser		894
	CTC Leu	ACT Thr	TTT Phe	GGT Gly	TCA Ser 255	AGT Ser	GGC Gly	CTA Leu	GTT Val	TTG Leu 260	AGG Arg	CAA Gln	GGC	TCG Ser	TAC Tyr 265	GGA Gly	942
															cgg Arg		990
55									Ala						GTT Val		1038

	CAC His	TCA Ser 300	ATG Met	ACA Thr	CAT His	TAT Tyr	AGC Ser 305	GAC Asp	AAA Lys	TCA Ser	ATC Ile	TCT Ser 310	GAG Glu	GCA Ala	TTC Phe	TTC Phe	1086
5	ATA Ile 315	CCA Pro	TAC Tyr	TCT Ser	AAG Lys	AAA Lys 320	TTC Phe	TTG Leu	GAG Glu	TTG Leu	AGA Arg 325	CCA Pro	GAT Asp	GGA Gly	ATC Ile	TCC Ser 330	1134
10	CAT His	GAG Glu	TGT Cys	ACA Thr	AGA Arg 335	GGA Gly	GTA Val	TCA Ser	GTT Val	GAG Glu 340	CGG Arg	TGC Cys	GGT Gly	GAG Glu	GTG Val 345	GCT Ala	1182
	GCA Ala	ATC Ile	CTG Leu	ACA Thr 350	CAA Gln	GCA Ala	CTT	TCA Ser	CCG Pro 355	TGT Cys	Gly	AAG Lys	ATC Ile	ACA Thr 360	TGC Cys	AAA Lys	1230
15	CGT Arg	TGC Cys	ATG Met 365	GTT Val	GAA Glu	ACA Thr	CCT Pro	GAC ABP 370	ATT Ile	GTT Val	GAG Glu	GCT Gly	GAG Glu 375	TCG Ser	GGA Gly	GAA Glu	1278
20	AGT Ser	GTC Val 380	ACC Thr	AAC Asn	CAA Gln	GGT Gly	AAG Lys 385	CTC Leu	CTA Leu	GCA Ala	ATG Met	CTG Leu 390	AAA Lys	GAA Glu	CAG Gln	TAT Tyr	1326
	CCA Pro 395	GAT Asp	TTC Phe	CCA Pro	ATG Met	GCC Ala 400	GAG Glu	AAA Lys	CTA Leu	CTC Leu	ACA Thr 405	AGG Arg	TTT Phe	TTG Leu	CAA Gln	CAG Gln 410	1374
25	AAA Lys	TCA Ser	CTA Leu	GTA Val	AAT Asn 415	ACA Thr	AAT Asn	TTG Leu	ACA Thr	GCC Ala 420	TGC Cys	GTG Val	AGC Ser	GTC Val	AAA Lys 425	CAA Gln	1422
30	CTC Leu	ATT Ile	GGT Gly	GAC Asp 430	CGC Arg	AAA Lys	CAA Gln	GCT Ala	CCA Pro 435	TTC Phe	ACA Thr	CAC His	GTA Val	CTG Leu 440	GCT Ala	GTC Val	1470
	AGC Ser	GAA Glu	ATT Ile 445	CTG Leu	TTT Phe	AAA Lys	GGC Gly	AAT Asn 450	AAA Lys	CTA Leu	ACA Thr	GGG Gly	GCT Ala 455	GAT Asp	CTC Leu	GAA Glu	1518
35	GAG Glu	GCA Ala 460	AGC Ser	ACA Thr	CAT His	ATG Met	CTT Leu 465	GAA Glu	ATA Ile	GCA Ala	AGG Arg	TTC Phe 470	TTG Leu	AAC Asn	AAT Asn	Arg	1566
40	ACT Thr 475	GAA Glu	TAA neA	ATG Met	CGC Arg	ATT Ile 480	GGC Gly	CAC His	CTT Leu	GGT Gly	TCT Ser 485	TTC Phe	AGA Arg	AAT Asn	AAA Lys	ATC Ile 490	1614
	TCA Ser	TCG Ser	AAG Lys	GCC Ala	CAT His 495	GTG Val	AAT ABN	AAC Asn	GCA Ala	CTC Leu 500	ATG Met	TGT Cys	GAT Asp	AAT Asn	CAA G1n 505	CTT Leu	1662
45	GAT Asp	CAG Gln	TAA Asn	GGG Gly 510	AAT Asn	TTT Phe	ATT Ile	TGG Trp	GGA Gly 515	CTA Leu	AGG Arg	GGT Gly	GCA Ala	CAC His 520	GCA Ala	AAG Lys	1710
50	AGG Arg	TTT Phe	CTT Leu 525	LYS	GGA Gly	TTT Phe	TTC Phe	ACT Thr 530	GAG Glu	ATT	GAC Asp	CCA Pro	AAT Asn 535	GAA Glu	GGA Gly	TAC Tyr	1758
	GAT Asp	AAG Lys 540	TAT Tyr	GTT Val	ATC Ile	AGG Arg	AAA Lys 545	CAT His	ATC Ile	AGG Arg	GLY	AGC Ser 550	AGA Arg	AAG Lys	CTA Leu	GCA Ala	1806
55	ATT Ile 555	GGC Gly	AAT Asn	TTG Leu	ATA Ile	ATG Met 560	TCA Ser	ACT Thr	GAC Aap	TTC Phe	CAG Gln 565	ACG Thr	CTC Leu	AGG Arg	CAA Gln	CAA Gln 570	1854

											ATT Ile						1902
<i>5</i>											TGT Cys						1950
10											AAG Lys						1998
											AAG Lys						2046
15											AAT Asn 645						2094
20											GTC Val						2142
											ATT Ile						2190
25	GCG Ala	TGG Trp	CCA Pro 685	ACA Thr	ATG Met	CAA Gln	GAT Asp	GTT Val 690	GCA Ala	ACT Thr	GCA Ala	TGC Cys	TAC Tyr 695	TTA Leu	CTT Leu	TCC Ser	2238
30											CTA Leu						2286
											GAT Asp 725						2334
35	ACG Thr	ACA Thr	GGA Gly	TAC Tyr	CAC His 735	ATG Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	ACA Thr	ACA Thr	TCC Ser	CAG Gln	CTA Leu 745	ATT Ile	2382
40	GAA Glu	TTC Phe	GTT Val	CAT His 750	TCA Ser	GGT Gly	TTG Leu	GAA Glu	TCC Ser 755	GAA Glu	ATG Met	AAA Lys	ACT Thr	TAC Tyr 760	AAT Asn	GTT Val	2430
	GGA Gly	GGG Gly	ATG Met 765	AAC Asn	CGA Arg	GAT Asp	Val	GTC Val 770	ACA Thr	CAA Gln	GGT Gly	GCA Ala	ATT Ile 775	GAG Glu	ATG Met	TTG Leu	2478
45	ATC Ile	AAG Lys 780	TCT Ser	ATA Ile	TAC Tyr	AAA Lys	CCA Pro 785	CAT His	CTC Leu	ATG Met	AAG Lys	CAG Gln 790	TTA Leu	CTT Leu	GAG Glu	GAA Glu	2526
	GAG Glu 795	CCA Pro	TAC Tyr	ATA Ile	ATT Ile	GTC Val 800	CTG Leu	GCA Ala	ATA Ile	GTC Val	TCC Ser 805	CCT Pro	TCA Ser	ATT Ile	TTA Leu	ATT Ile 810	2574
	GCC Ala	ATG Met	TAC Tyr	AAC Asn	TCT Ser 815	GGA Gly	ACT Thr	TTT Phe	GAG Glu	CAG Gln 820	GCG Ala	TTA Leu	CAA Gln	ATG Met	TGG Trp 825	TTG Leu	2622
55	CCA Pro	TAA neA	ACA Thr	ATG Met 830	AGG Arg	TTA Leu	GCT Ala	AAC Asn	CTC Leu 835	GCT Ala	GCC Ala	ATC Ile	TTG Leu	TCA Ser 840	GCC Ala	TTA Leu	2670

		GCG (Gln L	AG TI ys Le 45	A ACT u Thr	TTG Leu	GCA Ala	GAT Asp 850	TTG Leu	TTC Phe	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT Asn	TTG Leu	2718
5	•	Ile 1	AAT G Asn G 860	AG TA lu Ty	T GCG r Ala	Gln	GTA Val 865	ATT Ile	TTG Leu	GAC Asp	AAT ABN	CTG Leu 870	Ile	GAC Asp	GGT Gly	GTC Val	2756
10		AGG (Arg \ 875	GTT A Val A	AT CA sn Hi	T TCG s Ser	CTA Leu 880	TCC Ser	CTA	GCA Ala	ATG Met	GAA Glu 885	ATT Ile	GTT Val	ACT	ATT Ile	AAG Lys 890	2814
		CTG (GCC A	CC CA	A GAG n Glu 895	Met	GAC Asp	ATG Met	GCG Ala	TTG Leu 900	AGG Arg	GAA Glu	GGT Gly	GGC Gly	TAT Tyr 905	Ala	2862
15		GTG 3	ACC T	CT GA er Gl 91	ı Lys	GTG Val	CAT His	GAA Glu	ATG Met 915	TTG Leu	GAA Glu	AAA Lys	AAC Asn	TAT Tyr 920	GTA Val	AAG Lys	2910
20		GCT 1 Ala I	Leu L	AG GA ys As 25	r GCA p Ala	TGG Trp	GAC Asp	GAA Glu 930	TTA Leu	ACT Thr	TGG Trp	TTG Leu	GAA Glu 935	AAA Lys	TTC Phe	TCC Ser	2958
•		Ala	ATC A Ile A 940	GG CA rg Hi	TCA Ser	AGA Arg	AAG Lys 945	CTC Leu	TTG Leu	AAA Lys	TTT Phe	GGG Gly 950	CGA Arg	AAG Lys	CCT Pro	TTA Leu	3006
25		ATC A Ile M 955	ATG A Aet L	AA AA Ya Ab	ACC Thr	GTA Val 960	Aap GAT	TGC Cys	GGC Gly	GGA Gly	CAT His 965	ATA Ile	GAC Asp	TTG Leu	TCT Ser	GTG Val 970	3054
30		AAA T	CG C	TT TT eu Ph	Lys 975	TTC Phe	CAC His	TTG Leu	GAA Glu	CTC Leu 980	CTG Leu	AAG Lys	GGA Gly	ACC Thr	ATC Ile 985	TCA Ser	3102
		AGA G	SCC G	TA AA' al As: 99) Gly	ej ecc	GCA Ala	AGA Arg	AAG Lys 995	GTA Val	AGA Arg	GTA Val	GCG Ala	AAC Lys 1000	Asn	GCC Ala	3150
35		ATG A Met I	thr L	AA GG ys Gl 005	GTT Val	TTT Phe	CTC Leu	AAA Lys 1010	Ile	TAC Tyr	AGC Ser	ATG Het	CTT Leu 1015	Pro	GAC Asp	GTC Val	3198
40		Tyr L	AG T Lys P LO20	TT ATO	ACA Thr	GTC Val	TCG Ser 1025	Ser	GTC Val	CTT Leu	TCC Ser	TTG Leu 1030	Leu	TTG Leu	ACA Thr	TTC Phe	3246
,,,		TTA T Leu P 1035	TTT C	AA AT	GAC Asp	TGC Cys 1040	Met	ATA Ile	AGG Arg	GCA Ala	CAC His 1045	Arg	GAG Glu	GCG Ala	AAG Lys	GTT Val 1050	3294
45		GCT G	CA CA	AG TTO	GAG Gln 105	Lys	GAG Glu	AGC Ser	GAG Glu	TGG Trp 1060	qaA	AAT Asn	ATC Ile	ATC Ile	AAT Asn 1065	Arg	3342
		ACT T	TC C	AG TA: ln Ty: 10:	Ser	AAG Lys	CTT Leu	GAA Glu	AAT Asn 1075	Pro	ATT Ile	GGC Gly	Tyr	CGC Arg 1080	Ser	ACA Thr	3390
<i>50</i>		GCG G Ala G	IU G	AA AGI lu Arq 085	Leu	CAA Gln	TCA Ser	GAA Glu 1090	His	CCC Pro	GAG Glu	GCT Ala	TTC Phe 1095	Glu	TAC Tyr	TAC Tyr	3438
55		AAG T Lys P 1	TT TO he Cy .100	C ATT	GGA Gly	AAG Lys	GAA Glu 1105	Asp	CTC Leu	GTT Val	GAA Glu	CAG Gln 1110	Ala	AAA Lys	CAA Gln	CCG Pro	3486

	GAG ATA GCA TAC TIT GAA AAG ATT ATA GCT TTC ATC ACA CTT GTA TTA Glu Ile Ala Tyr Phe Glu Lys Ile Ile Ala Phe Ile Thr Leu Val Leu 1115 1120 1125 1130
5	ATG GCT TTT GAC GCT GAG CGG AGT GAT GGA GTG TTC AAG ATA CTC AAT Met Ala Phe Asp Ala Glu Arg Ser Asp Gly Val Phe Lys Ile Leu Asn 1135 1140 1145
10	AAG TTC AAA GGA ATA CTG AGC TCA ACG GAG AGG GAG ATC ATC TAC ACG 3630 Lys Phe Lys Gly Ile Leu Ser Ser Thr Glu Arg Glu Ile Ile Tyr Thr 1150 1155 1160
	CAG AGT TTG GAT GAT TAC GTT ACA ACC TTT GAT GAC AAT ATG ACA ATC Gln Ser Leu Asp Asp Tyr Val Thr Thr Phe Asp Asp Asn Met Thr Ile 1165 1170 1175
- 15	AAC CTC GAG TTG AAT ATG GAT GAA CTC CAC AAG ACG AGC CTT CCT GGA Asn Leu Glu Leu Asn Met Asp Glu Leu His Lys Thr Ser Leu Pro Gly 1180 1185 1190
20	GTC ACT TTT AAG CAA TGG TGG AAC AAC CAA ATC AGC CGA GGC AAC GTG 3774 Val Thr Phe Lys Gln Trp Trp Asn Asn Gln Ile Ser Arg Gly Asn Val 1195 1200 1205 1210
	AAG CCA CAT TAT AGA ACT GAG GGG CAC TTC ATG GAG TTT ACC AGA GAT Lys Pro His Tyr Arg Thr Glu Gly His Phe Met Glu Phe Thr Arg Asp 1215 1220 1225
25	ACT GCG GCA TCG GTT GCC AGC GAG ATA TCA CAC TCA CCC GCA AGA GAT Thr Ala Ala Ser Val Ala Ser Glu Ile Ser His Ser Pro Ala Arg Asp 1230 1235 1240
<i>30</i>	TTT CTT GTG AGA GGT GCT GTT GGA TCT GGA AAA TCC ACA GGA CTT CCA 3918 Phe Leu Val Arg Gly Ala Val Gly Ser Gly Lys Ser Thr Gly Leu Pro 1245 1250 1255
	TAC CAT TTA TCA AAG AGA GGG AGA GTG TTA ATG CTT GAG CCT ACC AGA Tyr His Leu Ser Lys Arg Gly Arg Val Leu Met Leu Glu Pro Thr Arg 1260 1265 1270
35 ⁻	CCA CTC ACA GAT AAC ATG CAC AAG CAR CTG AGA AGT GAA CCA TTT AAC Pro Leu Thr Asp Asn Met His Lys Gln Leu Arg Ser Glu Pro Phe Asn 1275 1280 1285 1290
40	TGC TTC CCA ACT TTG AGG ATG AGA GGG AAG TCA ACT TTT GGG TCA TCA Cys Phe Pro Thr Leu Arg Met Arg Gly Lys Ser Thr Phe Gly Ser Ser 1295 1300 1305
40	CCG ATC ACA GTC ATG ACT AGT GGA TTC GCT TTA CAC CAC TTT GCA CGA 4110 Pro Ile Thr Val Met Thr Ser Gly Phe Ala Leu His His Phe Ala Arg 1310 1315 1320
45	AAC ATA GCT GAG GTA AAA ACA TAC GAT TTT GTC ATA ATT GAT GAA TGT Asn Ile Ala Glu Val Lys Thr Tyr Asp Phe Val Ile Ile Asp Glu Cys 1325 1330 1335
	CAT GTG AAT GAT GCT TCT GCT ATA GCG TTT AGG AAT CTA CTG TTT GAA His Val Asn Asp Ala Ser Ala Ile Ala Phe Arg Asn Leu Leu Phe Glu 1340 1345 1350
	CAT GAA TTT GAA GGA AAA GTC CTC AAA GTG TCA GCC ACA CCA CCA GGT His Glu Phe Glu Gly Lys Val Leu Lys Val Ser Ala Thr Pro Pro Gly 1355 1360 1365 1370
55	AGA GAA GTT GAA TTT ACA ACT CAG TTT CCC GTG AAA CTC AAG ATA GAA Arg Glu Val Glu Phe Thr Thr Gln Phe Pro Val Lys Leu Lys Ile Glu 1375 1380 1385

			Phe Gln			Ser Leu	CAA GGG Gln Gly			4350
5				Cys G			CTA GTA Leu Val 141	Tyr Val		4398
10		Asn Asp					CTT GTG Leu Val 1430			4446
				Asp G			AAG AGT Lys Ser			4494
15					er Val		CAT TTC His Phe		Ala	4542
20			Glu Asn			Ile Asp	: ATT GAT : lle Asp			4590
				Val P			GTG GAC Val Asp 149	Asn Arg		4638
25	GTG CAG Val Gln 1500	Tyr Asn	AAA ACT Lys Thr	GTG G Val V 1505	TG AGT al Ser	TAT GGG Tyr Gly	GAG CGC Glu Arg 1510	ATC CAA Ile Gln		4686
30				His L			GCA CTT Ala Leu 5			4734
					lu Ile		ATG GTT Met Val		Glu	4782
35	GCT GCC Ala Ala	TTT CTA Phe Leu 155	Cys Phe	ATG T Met T	AC AAT yr Asn 1555	Leu Pro	GTG ACA	ACA CAG Thr Gln .1560	AGT 4	4830
40				Glu A			TTA CAA Leu Gln 157	Ala Arg		4878
40	ATG GCA Met Ala 1580	Gln Phe	GAG CTA Glu Leu	TCA T Ser T 1585	AT TTT	TAC AC	ATT AAT : Ile Asn 1590	TTT GTG Phe Val	CGA 4	4926
45	TTT GAT Phe Asp 1595	GGT AGT Gly Ser	ATG CAT Met His 160	Pro V	TC ATA	CAT GAC His Asp 160	AAG CTG Lys Leu 5	AAG CGC Lys Arg	TTT 4 Phe 1610	4974
					he Leu		TTG GCG		Asn	5022
50	AAA GGC Lys Gly	TTA TCC Leu Ser 163	Ser Trp	CTT A Leu T	ACG AGT Thr Ser 1635	Gly Glu	TAT AAG	CGA CTT Arg Leu 1640		5070
55				Gly I			TTC GTG Phe Val 165	Cys Lys		5118

			Asp		TTG Leu			Glu					Val				5166
5		Gly			GGT		Gly					Val					5214
10	GTT Val				CTG Leu 1699	Gln					Ser					Leu	5262
	GCA Ala				Arg					Glu					Ser		5310
15	TTT Phe	GAA Glu	GCC Ala 1725	Ala	ACT Thr	GGG Gly	AGA Arg	GCA Ala 1730	Phe	TCC Ser	TTC Phe	ACA Thr	AAT Asn 1735	Tyr	TCA Ser	ATA Ile	5358
20			Ile		GAC Asp			Lys.					Thr				5406
	AAA Lys 1755	Glu			GCA Ala		Leu					Asp					5 454
25	TTT Phe	TCG Ser	AAC Asn	CTA Leu	GCA Ala 1775	Lys	GAT Asp	CAA Gln	GAT Asp	GTC Val 1780	Thr	GGT	ATC Ile	ATC Ile	CAA Gln 1785	Asp	5502
30	TTC Phe									Gln					Val		5550
	AAG Lys	CAT His	CTG Leu 1805	Lys	CTT Leu	AAA Lys	AGT Ser	CAC His 1810	Trp	AAT Asn	AAA Lys	AGC Ser	CAA Gln 181	Ile	ACT Thr	AGG Arg	5598
35	GAC Asp	ATC Ile 1820	Ile	ATA Ile	GCT Ala	TTG Leu	TCT Ser 1825	Val	TTA Leu	ATT Ile	GGT Gly	GGT Gly 1830	Gly	TGG Trp	ATG Met	CTT Leu	5646
40	GCA Ala 1835	Thr	TAC Tyr	TTC Phe	AAG Lys	GAC Asp 1840	Lys	TTC Phe	AAT Asn	GAA Glu	CCA Pro 1845	Val	TAT Tyr	TTC Phe	CAA Gln	GGG Gly 1850	5694
	AAG Lys	AAG Lys	AAT Asn	CAG Gln	AAG Lys 1855	His	AAG Lys	CTT Leu	AAG Lys	ATG Met 1860	Arg	GAG Glu	GCG Ala	CGT Arg	GGG Gly 1865	Ala	5742
45	AGA Arg	GGG Gly	CAA Gln	TAT Tyr 1870	GAG Glu	GTT Val	GCA Ala	GCG Ala	GAG Glu 1875	Pro	GAG Glu	GCG Ala	CTA Leu	GAA Glu 1880	His	TAC Tyr	5790
50	TTT Phe	GGA Gly	AGC Ser 1885	Ala	TAT Tyr	AAT Asn	AAC Asn	AAA Lys 1890	Gly	AAG Lys	CGC Arg	AAG Lys	GGC Gly 189	Thr	ACG Thr	AGA Arg	5838
	GGA Gly	ATG Met 1900	Gly	GCA Ala	AAG Lys	TCT Ser	CGG Arg 1905	Lys	TTC Phe	ATA Ile	AAC Asn	ATG Met 1910	Tyr	GGG Gly	TTT Phe	GAT Asp	5886
55	CCA Pro 1915	Thr	GAT Asp	TTT Phe	TCA Ser	TAC Tyr 1920	Ile	AGG Arg	TTT Phe	GTG Val	GAT Asp 1925	Pro	TTG Leu	ACA Thr	GGT Gly	CAC His 1930	5934

						Thr					Asp		GTG Val			Glu	5982
5					Arg					Ile			GAG Glu		Glu		6030
10	CAA Gln	AGT Ser	CTT Leu 1965	Ser	ACC Thr	CAC His	ACC Thr	ACA Thr 1970	Ile	CAT His	GCT Ala	TAT Tyr	TTG Leu 1975	Val	AAT Asn	AGT Ser	6078
	Gly	ACG Thr 1980	Lys	AAA Lys	GTT Val	CTT Leu	AAG Lys 1989	Val	GAT Asp	TTA Leu	ACA Thr	CCA Pro 1990		TCG Ser	TCG Ser	CTA Leu :	6126
15	CGT Arg 1995	Ala	AGT Ser	GAG Glu	AAA Lys	TCA Ser 2000	Thr	GCA Ala	ATA Ile	ATG Met	GGA Gly 2005	Phe	CCT Pro	GAA Glu	AGG Arg	GAG Glu 2010	6174
20	AAT Asn	GAA Glu	TTG Leu	CGT Arg	CAA Gln 2015	Thr	Gly	ATG Met	GCA Ala	GTG Val 2020	Pro	GTG Val	GCT Ala	TAT Tyr	GAT Asp 2025	Gln	6222
	TTG Leu				Asn					Phe					Leu		6270
25	AAG Lys	GGA Gly	CCA Pro 2045	Arg	GAT Asp	TAC Tyr	AAC Asn	CCG Pro 2050	Ile	TCG Ser	AGC Ser	ACC Thr	ATT Ile 2055	Сув	CAT Hib	TTG Leu	6318
30	ACG Thr	AAT Asn 2060	Glu	TCT Ser	GAT Asp	GGG Gly	CAC His 2065	Thr	ACA Thr	TCG Ser	TTG Leu	TAT Tyr 2070	Gly	ATT Ile	GGA Gly	TTT Phe	6366
	GGT Gly 2075	Pro	TTC Phe	ATC Ile	ATT Ile	ACA Thr 2080	Asn	AAG Lys	CAC His	TTG Leu	TTT Phe 2085	Arg	AGA Arg	TAA Asn	AAT Asn	GGA Gly 2090	6414
35	ACA Thr	CTG Leu	TTG Leu	GTC Val	CAA Gln 2095	Ser	CTA Leu	CAT	GCT Gly	GTA Val 2100	Phe	AAG Lys	GTC Val	AAG Lys	AAC Asn 2109	Thr	6462
40	ACG Thr	ACT Thr	TTG Leu	CAA Gln 2110	Gln	CAC His	CTC Leu	ATT	GAT Asp 2115	Gly	AGG Arg	GAC Asp	ATG Met	ATA Ile 2120	Ile	ATT Ile	6510
	Arg	ATG Met	CCT Pro 2125	Lys	GAT Asp	TTC Phe	CCA Pro	CCA Pro 2130	Phe	CCT Pro	CAA Gln	AAG Lys	CTG Leu 2135	Lys	TTT Phe	AGA Arg	6558
45			Gln					Ile					ACC Thr				6606
50	ACT Thr 2155	Lys	AGC Ser	ATG Met	TCT Ser	AGC Ser 2160	Met	GTG Val	TCA Ser	GAC Asp	ACT Thr 2165	Ser	TGC Cys	ACA Thr	TTC Phe	CCT Pro 2170	6654
	TCA Ser	TCT Ser	GAT Asp	GGC	ATA Ile 2175	Phe	TGG Trp	AAG Lys	CAT His	TGG Trp 2180	Ile	CAA Gln	ACC Thr	AAG Lys	GAT Asp 2185	Gly	6702
55	CAG Gln	TGT Cys	GGC	AGT Ser 2190	Pro	TTA Leu	GTA Val	TCA Ser	ACT Thr 2195	Arg	GAT Asp	GGG Gly	TTC Phe	ATT Ile 2200	Val	GGT Gly	6750

•	ATA CAC	TCA GCA Ser Ala 2205	TCG AAT Ser Asn	Phe	ACC AAG Thr Ass 2210	C ACA	AAC AA: Asn Asi	TAT T Tyr P 2215	TC ACA he Thr	AGC Ser	6798
5		Lys Asn	TTC ATG Phe Met					n Glu A			6846
10			TGG CGA Trp Arg 2240	Leu .		qaA s					6894
•			ATG AGC Met Ser 2255				Pro Phe			Lys	6942
- 15			CTC ATG Leu Met O			. Val		c Gln G			6990
20	AGG AAA Arg Lys	TGG GTC Trp Val 2285	GTG GAA Val Glu	Ala :	CTG TC Leu Se 2290	A GGG r Gly	AAC TTO Asn Le	AGG C Arg P 2295	CA GTG	GCT Ala	7038
	GAG TGT Glu Cys 230	Pro Ser	CAG TTA Gln Leu	GTC Val 2305	Thr Ly	G CAT B His	GTG GT Val Val 23:	L Lys G	GA AAG ly Lys	TGT Cys	7086
25	CCC CTC Pro Leu 2315	TTT GAG Phe Glu	CTC TAC Leu Tyr 2320	Leu	CAG TTO Gln Le	ı Asn	CCA GAI Pro Gli 2325	A AAG G 1 Lys G	AA GCA lu Ala	TAT Tyr 2330	7134
30	TTT AAA Phe Lys	CCG ATG Pro Met	ATG GGA Met Gly 2335	GCA Ala	TAT AAC Tyr Ly:	CCA Pro 2340	Ser Ar	A CTT A J Leu A	AT AGA sn Arg 2345	Glu	7182
	GCG TTC Ala Phe	CTC AAG Leu Lys 235	GAC ATT Asp Ile O	CTA . Leu	AAA TA Lys Ty: 23!	r Ala	AGT GAI Ser Gl	ı Ile G	AG ATT lu Ile 360	GGG Gly	7230
35	AAT GTG Asn Val	GAT TGT Asp Cys 2365	GAC TTG Asp Leu	Leu	GAG CT: Glu Le: 2370	r GCA 1 Ala	ATA AG Ile Se	ATG C Met'L 2375	TC GTC eu Val	ACA Thr	7278
40	AAG CTC Lys Leu 238	Lys Ala	TTA GGA Leu Gly	TTC Phe 2385	Pro Th:	r GTG r Val	AAC TA ABN TY: 23	r Ile T	CT GAC	CCA Pro	7326
40	GAG GAA Glu Glu 2395	ATT TTT Ile Phe	AGT GCA Ser Ala 2400	Leu .	AAT ATO ABD Met	t Lys	GCA GC Ala Al 2405	r ATG G a Met G	GA GCA ly Ala	CTA Leu 2410	7374
45	TAC AAA Tyr Lys	GGC AAG	AAG AAA Lys Lys 2415	GAA Glu	GCT CT Ala Le	C AGC Ser 2420	Glu Le	C ACA C	TA GAT eu Asp 2425	Glu	7422
	CAG GAG Gln Glu	GCA ATG Ala Met 243	CTC AAA Leu Lys O	GCA Ala	AGT TG Ser Cy 24	s Leu	CGA CT Arg Le	ı Tyr I	CG GGA hr Gly 440	AAG Lys	7470
<i>50</i>	TTG GGA Leu Gly	ATT TGG Ile Trp 2445	AAT GGC Asn Gly	Ser	TTG AAI Leu Ly: 2450	A GCA B Ala	GAG TT Glu Le	G CGT C 1 Arg P 2455	CA ATT	GAG Glu	7518
55	AAG GTT Lys Val 246	Glu Asn	AAC AAA Asn Lys	ACG Thr 2465	Arg Th:	T TTC r Phe	ACA GC Thr Al 24	a Ala P	CA ATA	GAC Asp	7566

	ACT Thr 247	Len	CTT	GCT Ala	GGT Gly	AAA Lys 248	Val	TGC	GTG Val	GAT Asp	GAT Asp 248!	Phe	AAC Asn	AAT Asn	CAA Gln	TTT Phe 2490	7614
5	TAT Tyr	GAT Asp	CTC Leu	AAC Asn	ATA Ile 249	Lys	GCA Ala	CCA Pro	TGG Trp	ACA Thr 2500	Val	GGT Gly	ATC Met	ACT Thr	AAG Lys 250	Phe	7662
10	TAT	CAG Gln	GGG Gly	TGG Trp 251	Asn	GAA Glu	TTG Leu	ATG Met	GAG Glu 251	GCT Ala	TTA Leu	CCA Pro	AGT Ser	GGG Gly 252	Trp	GTG Val	7710
	TAT Tyr	TGT Cys	GAC Asp 2525	Ala	GAT Asp	GCT Gly	TCG Ser	CAA Gln 2530	Phe	GAC Asp	AGT Ser	TCC Ser	TTG Leu 253!	Thr	CCA Pro	TTC Phe	7758
15	CTC Leu	ATT Ile 2540	Asn	GCT Ala	GTA Val	TTG Leu	AAA Lys 2545	Val	CGA Arg	CTT Leu	GCC Ala	TTC Phe 2550	Met	GAG Glu	GAA Glu	TGG Trp	7806
20	GAT Asp 2555	Ile	GGT Gly	GAG Glu	CAA Gln	ATG Met 2560	Leu	CGA Arg	AAT Asn	TTG Leu	TAC Tyr 256	Thr	GAG Glu	ATA Ile	GTG Val	TAT Tyr 2570	7854
	ACA Thr	CCA Pro	ATC Ile	CTC Leu	ACA Thr 2575	Pro	GAT Asp	GGT Gly	ACT Thr	ATC Ile 2580	Ile	AAG Lys	AAG Lys	CAT His	AAA Lys 2585	Gly	7902
25	AAC Asn	TAA naA	AGC Ser	GGG Gly 2590	Gln	CCT Pro	TCA Ser	ACA Thr	GTG Val 2595	Val	GAC Asp	AAC Asn	ACA Thr	CTC Leu 2600	Met	GTC Val	7950
30	ATT Ile	ATT Ile	GCA Ala 2605	Met	TTA Leu	TAC Tyr	ACA Thṛ	TGT Cys 2610	Glu	AAG Lys	TGT Cys	GGA Gly	ATC Ile 2615	Asn	AAG Lys	GAA Glu	7998
	GAG Glu	ATT Ile 2620	Val	TAT Tyr	TAC Tyr	GTC Val	AAT Asn 2625	Gly	GAT Asp	GAC Asp	CTA Leu	TTG Leu 2630	Ile	GCC Ala	ATT Ile	CAC His	8046
35	CCA Pro 2635	Yab	AAA Lys	GCT Ala	GAG Glu	AGG Arg 2640	Leu	AGT Ser	AGA Arg	TTC Phe	AAA Lys 2645	Glu	TCT Ser	TTC Phe	GGA Gly	GAG Glu 2650	8094
40	TTG Leu	GGC GGC	CTG Leu	AAA Lys	TAT Tyr 2655	Glu	TTT Phe	GAC Asp	TGT Cys	ACC Thr 2660	Thr	AGG Arg	GAC Asp	AAG Lys	ACA Thr 2665	Gln	8142
	TTG Leu	TGG Trp	TTC Phe	ATG Met 2670	Ser	CAC His	AGG Arg	GCT Ala	TTG Leu 2675	Glu	AGG Arg	GAT Asp	GGC Gly	ATG Met 2680	Tyr	ATA Ile	8190
45	CCA Pro	Lys	CTA Leu 2685	Glu	GAA Glu	GAA Glu	AGG Arg	ATT Ile 2690	Val	TCT Ser	ATT Ile	TTG Leu	GAA Glu 2695	Trp	GAC Asp	AGA Arg	8238
	Ser	AAA Lys 2700	Glu	CCG Pro	TCA Ser	CAT His	AGG Arg 2705	Leu	GAA Glu	GCC Ala	ATC Ile	TGT Cys 2710	Ala	TCA Ser	ATG Met	ATT	8286
	GAA Glu 2715	Ala	TGG Trp	GGT Gly	TAT Tyr	GAC Asp 2720	Lys	CTG Leu	GTT Val	GAA Glu	GAA Glu 2725	Ile	CGC Arg	AAT naa	TTC Phe	TAT Tyr 2730	8334
55	GCA Ala	TGG Trp	GTT Val	TTG Leu	GAA Glu 2735	Gln	GCG Ala	CCG Pro	TAT Tyr	TCA Ser 2740	Gln	CTT Leu	GCA Ala	GAA Glu	GAA Glu 2745	Gly	8382

					Leu					CTT Leu					Thr		8430
				Thr					Glu	GAG Glu				Val			8478
10			Asp					Glu		CTT Leu			Gln				8526
		Asp					Ala			AAG Lys		Asp					8574
15						Ala				AGG Arg 2820	Asp					Thr	8622
20					Ser					Asn					Lys	CTT Leu	8670
				Arg					Val	GTT Val				Asn			8718
25			Tyr					Ile		TTG Leu			Ala				8766
30		Glu					Trp			GCA Ala		Met					8814
	GTG Val	AAT Asn	GAA Glu	GAG Glu	CAA Gln 289	Met	AAA Lys	ATA Ile	TTG Leu	CTA Leu 2900	Asn	GGA Gly	TTT Phe	ATG Met	GTG Val 290	Trp	8862
35					Gly					TTG Leu S					Val		8910
40	ATG Met	GAT Asp	GGT Gly 2925	Glu	GAT Asp	CAA Gln	GTT Val	TCA Ser 2930	Tyr	CCG Pro	CTG Leu	AAA Lys	CCA Pro 293	Met	GTT Val	GAA Glu	8958
			Gln					Gln		ATG Met			Phe				9006
45	GCT Ala 295	Glu	GCG Ala	TAT Tyr	ATT Ile	GAG Glu 2960	Met.	AGG Arg	AAT Asn	AGG Arg	GAG Glu 296!	Arg	CCA Pro	TAC Tyr	ATG Met	CCT Pro 2970	9054
50	AGG Arg	TAT Tyr	GGT Gly	CTA Leu	CAG Gln 297	Arg	AAC Asn	ATT Ile	ACA Thr	GAC Asp 2980	Met	AGT Ser	TTG Leu	TCA Ser	CGC Arg 298	Tyr	9102
	GCG Ala	TTC	GAC Asp	TTC Phe 2990	Tyr	GAG Glu	CTA Leu	ACT Thr	TCA Ser 299	AAA Lys 5	ACA Thr	CCT Pro	GTT Val	AGA Arg 300	Ala	AGG Arg	9150
55	GAG Glu	GCG Ala	CAT His 3005	Met	CAA Gln	ATG Met	AAA Lys	GCT Ala 3010	Ala	GCA Ala	GTA Val	CGA Arg	AAC Asn 301	Ser	GGA Gly	ACT Thr	9198

5	Arg Leu Phe Gly Leu Asp Gly Asn Val Gly Thr Ala Glu Glu Asp Thr 3020 3025 3030	9240
	GAA CGG CAC ACA GCG CAC GAT GTG AAC CGT AAC ATG CAC ACA CTA TTA Glu Arg His Thr Ala His Asp Val Asn Arg Asn Met His Thr Leu Leu 3035 3040 3045 3050	9294
0	GGG GTC CGC CAG TGA TAGTTTCTGC GTGTCTTTGC TTTCCGCTTT TAAGCTTATT Gly Val Arg Gln	9349
	GTAATATATA TGAATAGCTA TTCACAGTGG GACTTGGTCT TGTGTTGAAT AGTATCTTAT	9409
	ATATTTAAT ATGTCTTATT AGTCTCATTA CTTAGGCGAA CGACAAAGTG AGGTCACCTC	9469
5	GGTCTAATTC TCCTATGTAG TGCGAG	9495
	(3) INFORMATION FOR SEQ ID NO: 2:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 792	
?5	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Circular	
30	(ii) MOLECULE TYPE: cDNA to genomic RNA	
	(iii) HYPOTHETICAL: No	
35	(iv) ANTI-SENSE: No	
	(v) FRAGMENT TYPE: N/A	
10	(vi) ORIGINAL SOURCE:	
.0	(A) ORGANISM: Tobacco Etch Virus	
	(B) STRAIN: Highly Aphid Transmitted	
15	(C) INDIVIDUAL ISOLATE: N/A	
	(vii) IMMEDIATE SOURCE:	
i0	(A) LIBRARY: No	
	(B) CLONE: pTC:FL	
	(viii) POSITION IN GENOME: N/A	
i <i>5</i>	(ix) FEATURE:	
	(A) NAME/KEY: Mutations (AGT-ATG) introduced into nucleotides corresponding to genomi 8518-8520 of SEQ ID No. 1, to create initiating methionine codon.	ic nucleotides

	(b) LOCATION, Nucleotides 1-3 of SEQ ID No. 2
•	(C) IDENTIFICATION METHOD:
5	(D) OTHER INFORMATION: SEQ ID NO: 2 is the modified Tobacco Etch Virus coat protein gene present in pTC:FL.
	(x) PUBLICATION INFORMATION:
10	(A) AUTHORS: Allison et al.
•	(B) TITLE: The nucleotide sequence of the coding region of Tobacco Etch Virus Genomic RNA: Evidence for the Synthesis of a Single Polyprotein
15	(C) JOURNAL: Virology
	(D) VOLUME: 154
20	(E) ISSUE:
	(F) PAGES: 9-20
	(A) AUTHORS: Lindbo and Dougherty
25	(B) TITLE: Untranslatable Transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in Transgenic Plants and Protoplasts
	(C) JOURNAL: Virology
30	(D) VOLUME: 189
	(E) ISSUE:
35	(F) PAGES: 725-733
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

		,													GCC		9
5	GTG Val	GAT Asp 5	GCT Ala	GGT Gly	GCT Ala	GAC Asp	GCT Ala 10	GGT Gly	AAG Lys	AAG Lys	AAA Lys	GAT Asp 15	CAA Gln	AAG Lys	GAT Asp	GAT Asp	57
10	AAA Lys 20	GTC Val	GCT Ala	GAG Glu	CAG Gln	GCT Ala 25	TCA Ser	AAG Lys	GAT Asp	AGG Arg	GAT Asp 30	GTT Val	AAT Asn	GCT Ala	GGA Gly	ACT Thr 35	105
•	TCA Ser	GGA Gly	ACA Thr	TTC Phe	TCA Ser 40	GTT Val	CCA Pro	CGA Arg	ATA Ile	AAT Asn 45	GCT Ala	ATG Met	GCC Ala	ACA Thr	AAA Lys 50	CTT Leu	153
15	CAA Gln	TAT Tyr	CCA Pro	AGG Arg 55	ATG Met	AGG Arg	GGA Gly	GAG Glu	GTG Val 60	GTT Val	GTA Val	AAC Asn	TTG Leu	AAT Asn 65	CAC	CTT Leu	201
20	TTA Leu	GGA Gly	TAC Tyr 70	AAG Lys	CCA Pro	CAG Gln	CAA Gln	ATT Ile 75	GAT Asp	TTG Leu	TCA Ser	AAT Asn	GCT Ala 80	CGA Arg	GCC Ala	ACA Thr	249
	CAT	GAG Glu 85	CAG Gln	TTT Phe	GCC Ala	GCG Ala	TGG Trp 90	CAT His	CAG Gln	GCA Ala	GTG Val	ATG Met 95	ACA Thr	GCC Ala	TAT Tyr	GGA Gly	297
25	GTG Val 100	AAT Asn	GAA Glu	GAG Glu	CAA Gln	ATG Met 105	AAA Lys	ATA Ile	TTG Leu	CTA Leu	AAT Asn 110	GGA Gly	TTT Phe	ATG Met	GTG Val	TGG Trp 115	345
30	TGC Cys	ATA Ile	GAA Glu	AAT Asn	GGG Gly 120	ACT Thr	TCC Ser	CCA Pro	TAA Asn	TTG Leu 125	AAC Asn	GGA Gly	ACT Thr	TGG Trp	GTT Val 130	ATG Met	393

	ATG Met	Aap	GGT Gly	GAG Glu 135	Asp	CAA Gln	GTT Val	TCA Ser	TAC Tyr 140	CCG Pro	CTG Leu	AAA Lys	CCA Pro	ATG Met 145	GTT Val	GAA Glu	441
5	AAC	GCG Ala	CAG Gln 150	CCA Pro	ACA Thr	CTG Leu	AGG Arg	CAA Gln 155	ATT Ile	ATG Met	ACA Thr	CAC His	TTC Phe 160	AGT Ser	GAC Asp	CTG Leu	489
10	GCT Ala	GAA Glu 165	GCG Ala	TAT Tyr	ATT Ile	GAG Glu	ATG Met 170	AGG Arg	AAT Asn	AGG Arg	GAG Glu	CGA Arg 175	CCA Pro	TAC Tyr	ATG Met	CCT Pro	537
	AGG Arg 180	TAT	GGT Gly	CTA Leu	CAG Gln	AGA Arg 185	AAC Asn	ATT Ile	ACA Thr	GAC Asp	ATG Met 190	AGT Ser	TTG Leu	TCA Ser	CGC Arg	TAT Tyr 195	585
15	GCG Ala	TTC Phe	GAC Asp	TTC Phe	TAT Tyr 200	GAG Glu	CTA Leu	ACT Thr	TCA Ser	AAA Lys 205	ACA Thr	CCT Pro	GTT Val	AGA Arg	GCG Ala 210	AGG Arg	633
20	GAG Glu	GCG Ala	CAT His	ATG Met 215	CAA Gln	ATG Met	AAA Lys	GCT Ala	GCT Ala 220	GCA Ala	GTA Val	CGA Arg	AAC Asn	AGT Ser 225	GGA Gly	ACT Thr	681
25	AGG Arg	TTA Leu	TTT Phe 230	GGT Gly	CTT Leu	GAT Asp	GGC	AAC Asn 235	GTG Val	GGT Gly	ACT Thr	GCA Ala	GAG Glu 240	GAA Glu	GAC Asp	ACT Thr	729
-	GAA Glu	CGG Arg 245	CAC His	ACA Thr	GCG Ala	CAC His	GAT Asp 250	GTG Val	AAC Asn	CGT Arg	AAC Asn	ATG Met 255	CAC His	ACA Thr	CTA Leu	TTA Leu	777 -
30	GGG Gly 260	GTC Val	CGC Arg	CAG Gln	TGA												792
	(4)	NFOR	MATIC	N FO	R SEC	J ID N	O: 3:										
35	1	(i) SEC	QUEN	CE CH	HARAC	CTERI	STICS	S :									
40		(B (C) LENG) TYPI) STR) TOP	E: Nuc ANDE	cleic A	S: Do											
	1	(ii) MC (iii) HY	POTH	IETIC.	AL: No		o gen	omic f	RNA								
45		(iv) AN (v) FR (vi) OF	ÁGME	NT T	YPE: N												
50		(B) ORG) STR.) INDI	AIN: F	lighly .	Aphid	Trans		1)								
•		(vii) IM	MEDI.	ATE S	OUR	CE:											
55		•) LIBA) CLO			;											
		wiii) D	OCITI	- NI INI	CEN	DME.	N1/A								•		

(ix) FEATURE:

	(A) NAME/KEY: Mutation of AGT-GGC (Ser-Gly) to ATG-GCC (Met-Ser)
5	(B) LOCATION: Nucleotides 1-6 of SEQ ID NO. 3 (corresponding to nucleotides 8518-8523 of SEQ INO. 1)
5	(A) NAME/KEY: Frameshift mutation (insertion of T) producing stop codon
10	(B) LOCATION: Nucleotide 13 of SEQ ID No. 3 (corresponding to position between nucleotides 8529 ar 8530 of SEQ. ID No. 1)
	(D) OTHER INFORMATION: SEQ ID No: 3 is the modified Tobacco Etch Virus coat protein gene prese in pTC:RC.
15	(x) PUBLICATION INFORMATION:
15	(A) AUTHORS: J. A. Lindbo and W. G. Dougherty
20	(B) TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgen Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
	(C) JOURNAL: Molecular Plant-Microbe Interactions
	(D) VOLUME: 5
25	(E) ISSUE: 2
	(F) PAGES: 144-153
30	(A) AUTHORS: J. A. Lindbo and W. G. Dougherty
	(B) TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Inte fere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts
35	(C) JOURNAL: Virology
	(D) VOLUME: 189
	(E) ISSUE:
40	(F) PAGES: 725-733
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
1 5	ATG GCC ACT 9 Met Ser Thr
	GTG TGA TGA TGGTGCTAGC GCTGGTAAGA AGAAAGATCA AAAGGATGAT 58
50	
•	

		11001000110	UNIGOVINGO	GUIGIIVUIG	CIGGRACIIC		100
	AGGAACATTC	TCAGTTCCAC	GAATAAATGC	TATGGCCACA	AAACTTCAAT		158
5	ATCCAAGGAT	GAGGGGAGAG	GTGGTTGTAA	ACTTGAATCA	CCTTTTAGGA		208
	TACAAGCCAC	agcaaattga	TTTGTCAAAT	GCTCGAGCCA	CACATGAGCA		258
	GTTTGCCGCG	TGGCATCAGG	CAGTGATGAC	AGCCTATGGA	GTGAATGAAG		308
10	AGCAAATGAA	aatattgcta	AATGGATTTA	TGGTGTGGTG	CATAGAAAAT		358
	GGGACTTCCC	Caaatttgaa	CGGAACTTGG	GTTATGATGG	ATGGTGAGGA		408
	TCAAGTTTCA	TACCCGCTGA	AACCAATGGT	TGAAAACGCG	CAGCCAACAC		458
15	TGAGGCAAAT	TATGACACAC	TTCAGTGACC	TGGCTGAAGC	GTATATTGAG		508
	ATGAGGAATA	GGGAGCGACC	ATACATGCCT	AGGTATGGTC	TACAGAGAAA		558
20	CATTACAGAC	ATGAGTTTGT	CACGCTATGC	GTTCGACTTC	TATGAGCTAA		608
20	CTTCAAAAAC	ACCTGTTAGA	GCGAGGGAGG	CGCATATGCA	aatgaaagct		658
	GCTGCAGTAC	GAAACAGTGG	AACTAGGTTA	TTTGGTCTTG	ATGGCAACGT		708
25	GGGTACTGCA	GAGGAAGACA	CTGAACGGCA	CACAGCGCAC	GATGTGAACC		758
	GTAACATGCA	CACACTATTA	GGGGTCCGCC	AGTGA			793
30	(5) INFORMATIO	ON FOR SEQ ID	NO: 4				
30	(i) SEQUEN	CE CHARACTE	RISTICS:				
	(A) LEN	GTH: 792					
	(B) TYP	E: Nucleic acid					
35		ANDEDNESS: [OLOGY: Circula					
	(0) 104	OLOGT: Circula	ır				
		LE TYPE: cDNA	to genomic RN	A			
40	(iii) HYPOTH (iv) ANTI-SE				•		
	(v) FRAGME	NT TYPE: N/A					
	(vi) ORIGINA	AL SOURCE:					
		ANISM: Tobacc					
45		AIN: Highly Aphi				•	
		VIDUAL ISOLAT	E: N/A				
	(vii) IMMEDI	ATE SOURCE:					
50	(A) LIBR	RARY: No					
•	(B) CLO	NE: pTC:AS			4		
		ON IN GENOME	:: N/A				
55	(ix) FEATUR	E:		i			
	(A) NAM	IE/KEY:					
	(B) LOC	ATION:					
	(C) IDEN	NTIFICATION MI	ETHOD:				

(D) OTHER INFORMATION: SEQ ID No. 4 is the modified Tobacco Etch Virus Coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

(x) PUBLICATION INFORMATION:

- (A) AUTHORS: J. A. Lindbo and W. G. Dougherty
- (B) TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts
- (C) JOURNAL: Virology
- (D) VOLUME: 189
- (E) ISSUE: --

5

10

15

20

25

30

35

40

50

55

- (F) PAGES: 725-733
- (A) AUTHORS: J. A. Lindbo and W. G. Dougherty
- (B) TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
- (C) JOURNAL: Molecular Plant-Microbe Interactions
- (D) VOLUME: 5
- (E) ISSUE: 2
- (F) PAGES: 144-153
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

;	TCACTGGCGG	ACCCCTAATA	GTGTGTGCAT	GTTACGGTTC	ACATCGTGCG	CTGTGTGCCG	60
	TTCAGTGTCT	TCCTCTGCAG	TACCCACGTT	GCCATCAAGA	CCAAATAACC	TAGTTCCACT	120
	GTTTCGTACT	GCAGCAGCTT	TCATTTGCAT	ATGCGCCTCC	CTCGCTCTAA	CAGGIGIIII	180
1	TGAAGTTAGC	TCATAGAAGT	CGAACGCATA	GCGTGACAAA	CTCATGTCTG	TAATGTTTCT	240
	CTGTAGACCA	TACCTAGGCA	TGTATGGTCG	CTCCCTATTC	CTCATCTCAA	TATACGCTTC	300
	AGCCAGGTCA	CTGAAGTGTG	TCATAATTTS	CCTCAGIGTT	GGCTGCGCST	TTTCAACCAT	360
	TEGTTTCAGC	GGGTATGAAA	CTTGATECTE	ACCATCCATC	ATAACCCAAG	TTCCGTTCAA	420
'	ATTTGGGGAA	GTCCCATTIT	כדאדטכאככא	CACCATAAAT	CCATTTAGCA	ATATTTTCAT	480
	TTGCTCTTCA	TTCACTCCAT	AGGCTSTCAT	CACTGCCTCA	TGCCACGCGG	CAAACTGCTC	540
	ATGTGTGGCT	CCYCCYLLIC	АСЛААТСААТ	TIGOTGIGGO	TIGIAICCIA	AAAGGTGATT	600
•	CAAGTTTACA	אככאככדכדכ	CCCTCATCCT	TGGATATTGA	AG TTTT GTGG	CCATAGCATT	660
	TATTCGTGGA	ACTGAGAATG	TTCCTCAAGT	TOCAGOATTA	ACATCCCTAT	CCTTTGAAGC	720
	CIGCICAGCG	YCILIYICYL	CCTTTTCATC		CCAGCGTCAG	CACCAGCATE	780
	CACAGTGCCC	AT .					792

Claims

5

10

⁻ 15

20

25

30

35

40

45

50

A method of producing a plant with saveduced susceptibility to viral infection, comprising:

transforming plant cells with a DNA molecule that encodes untranslatable plus-sense viral RNA molecule wherein the untranslatable plus-sense viral RNA molecule is derived from the nucleotide sequence of a plant virus-gene; and

regenerating a plant comprising the transformed plant cell.

- 2. A transgenic plant produced according to the method of Claim 1.
- 3. The method of Claim 1 wherein the untranslatable plus-sense viral RNA molecule is derived from a viral coat protein gene.
- 4. The method of Claim 1 wherein the untranslatable plus-sense viral RNA molecule is derived from a potyvirus.
- ADNA motecule useful for producing virus resistant plants comprising a promoter operably linked to a DNA molecule encoding an untranslatable plus-sense viral RNA molecule, derived from the nucleotide sequence of a plant virus gene.
 - 6. The method of any one of Claims 1, 3 or 4 wherein the untranslatable plus-sense viral RNA molecule contains at least one mutation that renders the RNA molecule untranslatable, and expression of the untranslatable plus-sense viral RNA molecule within the plant reduces the susceptibility of the plant to virus infection;
 - and wherein the method further comprises the step of selecting a plant that shows a reduced susceptibility to infection by the virus.

Patentansprüche

1. Ein Verfahren zur Herstellung einer Pflanze mit einer reduzierten Anfälligkeit für eine virale Infektion, umfassend:

Transformation von Pflanzenzellen mit einem DNA-Molekül, das für ein nicht-translatierbares plus-strang virales RNA-Molekül kodiert, dadurch gekennzeichnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül von der Nukleotidsequenz eines Pflanzenvirusgens abgeleitet ist; und

Regeneration einer Pflanze, beinhaltend die transformierte Pflanzenzelle.

- 2. Eine transgene Pflanze, hergestellt entsprechend des Verfahrens nach Anspruch 1.
- 3. Das Verfahren nach Anspruch 1, dadurch gekennzelchnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül von einem viralen Hüllproteingen abgeleitet ist.
- Das Verlahren nach Anspruch 1, dadurch gekennzeichnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül von einem Potyvirus abgeleitet ist.
 - 5. Ein DNA-Molekül, verwendbar zur Herstellung virusresistenter Planzen, umfassend einen Promoter, wirksam verbunden mit einem DNA-Molekül, das für ein nicht-translatierbares plus-strang virales RNA-Molekül kodiert, welches von der Nukleotidsequenz eines Pflanzenvirusgens abgeleitet ist.
- 6. Das Verfahren nach einem der Ansprüche 1, 3 oder 4, dadurch gekennzeichnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül mindestens eine Mutation enthält, die das RNA-Molekül nicht-translatierbar macht, und daß die Expression des nicht-translatierbaren plus-strang viralen RNA-Moleküls in der Pflanze zu einer reduzierten Anfälligkeit der Pflanze gegen Virusinfektion führt;
- und, dadurch gekennzeichnet, daß das Verfahren weiterhin den Schritt der Selektion einer Pflanze umfaßt, die eine reduzierte Anfälligkeit für eine Infektion durch das Virus zeigt.

Revendications

5

10

- 15

25

30

35

40

45

50

55

- Méthode de production d'une plante avec une sensibilité réduite à l'infection virale, comprenant les étapes consistant:
 - à transformer des cellules végétales avec une molécule d'ADN qui code une molécule d'ARN viral sens plus non traduisible, la molécule d'ARN viral sens plus non traduisible étant dérivée de la séquence nucléotidique d'un gène de virus de plante ; et
 - à régénérer une plante comprenant la cellule végétale transformée.
- 2. Plante transgénique produite selon la méthode de la revendication 1.
- 3. Méthode selon la revendication 1, dans laquelle la molécule d'ARN viral sens plus non traduisible est dérivée d'un gène de protéine de capside virale.
- Méthode selon la revendication 1, dans laquelle la molécule d'ARN viral sens plus non traduisible est dérivée d'un potyvirus.
- 5. Molécule d'ADN utile pour produire des plantes résistantes à des virus, comprenant un promoteur lié de façon opérationnelle à une molécule d'ADN codant une molécule d'ARN viral sens plus non traduisible, dérivée de la séquence nucléotidique d'un gène de virus de plante.
 - 6. Méthode selon l'une quelconque des revendications 1, 3 ou 4, dans laquelle la molécule d'ARN viral sens plus non traduisible contient au moins une mutation qui rend la molécule d'ARN non traduisible, et l'expression de la molécule d'ARN viral sens plus non traduisible dans la plante réduit la sensibilité de la plante à une infection virale ; et la méthode comprenant en outre l'étape consistant à sélectionner une plante qui montre une sensibilité réduite à une infection par le virus.

34

NAAI	AATA	CAA	ATCT	CAAC	AC AF	CAT	ATACA	AA A	ACAA	ACGA	ATC	TCAA	GCA	ATCA	AGCA	TT	60
CTA	TTC:	TAT	TGCAC	CAA	T T	LAAT	CATT	CT	TTTA	AAGC	AAA	AGCA	ATT	TTCT	GAAA	AТ	120
TTT	CACCI	ATT	TACG	AACG)	AT AC							GGC . Gly					174
AAC Asn	ATC Ile	CTG Leu	AAG Lys	GAA Glu 15	GTG Val	TTC Phe	GGT Gly	GGA Gly	GCT Ala 20	Arg	ATG Met	GCT Ala	TGC Cys	GTT Val 25	ACC Thr		222
AGC Ser	GCA Ala	CAT	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	TAA neA	GGA Gly 35	AGC Ser	ATT Ile	TTG Leu	AAG Lys	AAG Lys 40	Ala	GAA Glu		270
GAG Glu	ACC Thr	TCT Ser 45	CGT Arg	GCA Ala	ATC Ile	ATG Met	CAC His 50	AAA Lys	CCA Pro	GTG Val	ATC	TTC Phe 55	GCA Gly	GAA Glu	GAC Asp		318
TAC Tyr	ATT Ile 60	ACC Thr	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	His	TTA Leu	GAG Glu	GTC Val		366
GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG Ala	CTC Leu	ACC Thr 90		414
CAT His	GGC	AAG Lys	AGA Arg	CGC Arg 95	AAA Lys	GTT Val	TCT Ser	GTG Val	AAT Asn 100	Asn	AAG Lys	AGG Arg	AAC Asn	AGG Arg 105	AGA Arg		462
AGG Arg	AAA Lys	GTG Val	GCC Ala 110	AAA Lys	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC Ser	ATT	GTT Val 120	Glu	AAG Lys		510
ATT Ile	GTA Val	GTG Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	AAG Lys	GTT Val	GAT Asp	ACC Thr	ACA Thr 135	GCA Ala	GCA Ala	GTG Val		558
GAA Glu	GAC Asp 140	ATT	TGC Cys	AAT Asn	GAA Glu	GCT Ala 145	ACC Thr	ACT Thr	CAA Gln	CTT Leu	GTG Val 150	His	AAT Asn	AGT Ser	ATG Met		606
CCA Pro 155	AAG Lys	CGT Arg	AAG Lys	AAG Lys	CAG Gln 160	AAA Lys	AAC Asn	TTC Phe	TTG Leu	CCC Pro 165	GCC Ala	ACT Thr	TCA Ser	CTA Leu	AGT Ser 170		654
AAC Asn	GTG Val	TAT Tyr	GCC Ala	CAA Gln 175	ACT	TGG Trp	AGC Ser	ATA Ile	GTG Val 180	Arg	AAA Lys	CGC	CAT	ATG Met 185	CAG Gln		702
GTG Val	GAG Glu	ATC Ile	ATT Ile 190	AGC Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	CGA Arg	GCG Ala	AGG Arg	GTC Val	AAG Lys 200	Arg	TTT		750
GAG Glu	GGC Gly	TCG Ser 205	GTG Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	AGT Ser	GTG Val	CGT	CAC	ATG Met 215	TAT	GGC	GAG Glu		798
AGG Arg	AAA Lys 220	Arg	GTG Val	GAC Asp	Leu	CGT Arg	Ile	GAC Asp	AAC Asn	TGG Trp	CAG Gln	Gln	GAG Glu	ACA Thr	CTT Leu		846

FIG. 1

	GAC Asp																894
CTC Leu	ACT Thr	TTT Phe	GGT Gly	TCA Ser 255	AGT Ser	GGC Gly	CTA Leu	GTT Val	TTG Leu 260	AGG Arg	CAA Gln	GGC Gly	TCG Ser	TAC Tyr 265	GGA Gly		942
	GCG Ala																990
	GGG Gly																1038
	TCA Ser 300																1086
	CCA Pro															•	1134
CAT His	GAG Glu	TGT Cys	ACA Thr	AGA Arg 335	GGA Gly	GTA Val	TCA Ser	GTT Val	GAG Glu 340	CGG	TGC Cys	GGT Gly	GAG Glu	GTG Val 345	GCT Ala		1182
GCA Ala	ATC Ile	CTG Leu	ACA Thr 350	CAA Gln	GCA Ala	CTT Leu	TCA Ser	CCG Pro 355	TGT Cys	GGT Gly	AAG Lys	ATC Ile	ACA Thr 360	TGC Cys	AAA Lys		1230
CGT	TGC Cys	ATG Met 365	GTT Val	GAA Glu	ACA Thr	CCT Pro	GAC Asp 370	ATT	GTT Val	GAG Glu	GGT Gly	GAG Glu 375	TCG Ser	GGA Gly	GAA Glu		1278
AGT Ser	GTC Val 380	ACC Thr	AAC Asn	CAA Gln	GGT Gly	AAG Lys 385	CTC Leu	CTA Leu	GCA Ala	ATG Met	CTG Leu 390	AAA Lys	GAA Glu	CAG Gln	TAT Tyr		1326
CCA Pro 395	GAT Asp	TTC Phe	CCA Pro	ATG Met	GCC Ala 400	GAG Glu	AAA Lys	CTA Leu	CTC Leu	ACA Thr 405	AGG Arg	TTT	TTG Leu	CAA Gln	CAG Gln 410		1374
AAA Lys	TCA Ser	CTA Leu	GTA Val	AAT Asn 415	ACA Thr	AAT Asn	TTG Leu	ACA Thr	GCC Ala 420	TGC Cys	GTG Val	AGC Ser	GTC Val	AAA Lys 425	CAA Gln		1422
CTC Leu	ATT Ile	GGT Gly	GAC Asp 430	CGC Arg	AAA Lys	CAA Gln	GCT Ala	CCA Pro 435	TTC Phe	ACA Thr	CAC His	GTA Val	CTG Leu 440	GCT Ala	GTC Val		1470
	GAA Glu																1518
GAG Glu	GCA Ala 460	AGC Ser	ACA Thr	CAT His	ATG Met	CTT Leu 465	GAA Glu	ATA Ile	GCA Ala	AGG Arg	TTC Phe 470	TTG Leu	AAC Asn	AAT Asn	CGC		1566
ACT Thr 475	GAA Glu	TAA neA	ATG Met	cgc Arg	ATT Ile 480	G1A GCC	CAC His	CTT Leu	GGT Gly	TCT Ser 485	TTC Phe	AGA Arg	AAT Asn	AAA Lys	ATC 11e 490		1614

	TCG Ser															1662
GAT Asp	CAG Gln	TAA naA	GGG Gly 510	AAT Asn	TTT Phe	ATT	TGG Trp	GGA Gly 515	CTA Leu	AGG Arg	GGT	GCA Ala	CAC His 520	GCA Ala	AAG Lys	1710
	TTT Phe															1758
GAT Asp	AAG Lys 540	Tyr	GTT Val	ATC Ile	AGG Arg	AAA Lys 545	CAT His	ATC Ile	AGG Arg	GGT Gly	AGC Ser 550	AGA Arg	AAG Lys	CTA Leu	GCA Ala	1806
ATT Ile 555	GGC Gly	AAT Asn	TTG Leu	ATA Ile	ATG Met 560	TCA Ser	ACT Thr	GAC Asp	TTC Phe	CAG Gln 565	ACG Thr	CTC Leu	AGG Arg	CAA Gln	CAA Gln 570	1854
ATT Ile	CAA Gln	GGC Gly	GAA Glu	ACT Thr 575	ATT Ile	GAG Glu	CGT Arg	AAA Lys	GAA Glu 580	ATT Ile	GGG Gly	AAT Asn	CAC His	TGC Cys 585	ATT Ile	1902
TCA Ser	ATG Met	CGG Arg	AAT Asn 590	GGT Gly	AAT Asn	TAC Tyr	GTG Val	TAC Tyr 595	CCA Pro	TGT Cys	TGT Cys	TGT Cys	GTT Val 600	ACT Thr	CTT Leu	1950
GAA Glu	GAT Asp	GGT Gly 605	AAG Lys	GCT Ala	CAA Gln	TAT Tyr	TCG Ser 610	GAT Asp	CTA Leu	AAG Lys	CAC His	CCA Pro 615	ACG Thr	AAG Lys	AGA Arg	1998
CAT His	CTG Leu 620	GTC Val	ATT Ile	G1y	AAC Asn	TCT Ser 625	GGC Gly	GAT Asp	TCA Ser	AAG Lys	TAC Tyr 630	CTA Leu	GAC Asp	CTT Leu	CCA Pro	2046
GTT Val 635	CTC Leu	AAT Asn	GAA Glu	GAG Glu	AAA Lys 640	ATG Met	TAT Tyr	ATA Ile	GCT Ala	AAT Asn 645	GAA Glu	GGT Gly	TAT Tyr	TGC Cys	TAC Tyr 650	2094
ATG Met	AAC Asn	ATT Ile	TTC Phe	TTT Phe 655	GCT Ala	CTA Leu	CTA Leu	GTG Val	AAT Asn 660	GTC Val	AAG Lys	GAA Glu	GAG Glu	GAT Asp 665	GCA Ala	2142
AAG Lys	GAC Asp	TTC Phe	ACC Thr 670	AAG Lys	TTT Phe	ATA Ile	AGG Arg	GAC Asp 675	ACA Thr	ATT Ile	GTT Val	CCA Pro	AAG Lys 680	CTT Leu	GGA Gly	2190
GCG Ala	TGG	CCA Pro 685	ACA Thr	ATG Met	CAA Gln	GAT Asp	GTT Val 690	GCA Ala	ACT Thr	GCA Ala	TGC Cys	TAC Tyr 695	TTA Leu	CTT Leu	TCC Ser	2238
ATT Ile	CTT Leu 700	TAC Tyr	CCA Pro	GAT Asp	GTC Val	CTG Leu 705	AGA Arg	GCT Ala	GAA Glu	CTA Leu	CCC Pro 710	AGA Arg	ATT	TTG Leu	GTT Val	2286
GAT Asp 715	CAT His	GAC Asp	AAC Asn	AAA Lys	ACA Thr 720	ATG Met	CAT His	GTT Val	TTG Leu	GAT Asp 725	TCG Ser	TAT Tyr	GGG Gly	TCT Ser	AGA Arg 730	2334
ACG Thr	ACA Thr	GGA Gly	TAC Tyr	CAC His 735	ATG Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	ACA Thr	ACA Thr	TCC Ser	CAG Gln	CTA Leu 745	ATT Ile	2382

GAA Glu	TTC Phe	GTT Val	CAT His 750	TCA Ser	GGT Gly	TTG Leu	GAA Glu	TCC Ser 755	GAA Glu	ATG Met	AAA Lys	ACT Thr	TAC Tyr 760	AAT Asn	GTT Val	2430
					GAT Asp											2478
					AAA Lys											2526
					GTC Val 800											2574
					GGA Gly											2622
					TTA Leu											2670
GCG Ala	CAA Gln	AAG Lys 845	TTA Leu	ACT Thr	TTG Leu	GCA Ala	GAT Asp 850	TTG Leu	TTC	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT Asn	TTG Leu	2718
ATT Ile	TAA nea 008	GAG Glu	TAT Tyr	GCG Ala	CAG Gln	GTA Val 865	ATT Ile	TTG Leu	GAC qeA	TAA neA	CTG Leu 870	ATT Ile	GAC	GGT Gly	GTC Val	2766
					CTA Leu 880											2814
					ATG Met											2862
					GTG Val											2910
					TGG Trp											2958
					AGA Arg											3006
					GTA Val 960											3054
					TTC Phe											3102
AGA Arg	GCC Ala	GTA Val	AAT Asn 990	Gly	GGC Gly	GCA Ala	AGA Arg	AAG Lys 995	GTA Val	AGA Arg	GTA Val	GCG Ala	AAG Lys 100	Asn	GCC Ala	3150

Met Thr Lys Gly 1005	GTT TTT CTC Val Phe Leu	AAA ATC TAC Lys Ile Tyr 1010	AGC ATG CTT Ser Met Leu 1015	Pro Asp Val	3198
TAC AAG TTT ATO Tyr Lys Phe Ile 1020		Ser Val Leu			3246
TTA TTT CAA AT Leu Phe Gln Ile 1035	GAC TGC ATG Asp Cys Met 1040	ATA AGG GCA Ile Arg Ala	CAC CGA GAG His Arg Glu 1045	GCG AAG GTT Ala Lys Val 1050	3294
GCT GCA CAG TTO Ala Ala Gln Leo	CAG AAA GAG Gln Lys Glu 1055	AGC GAG TGG Ser Glu Trp 1060	Asp Asn Ile	ATC AAT AGA Ile Asn Arg 1065	3342
ACT TTC CAG TAS Thr Phe Gln Tys	: Ser Lys Leu	GAA AAT CCT Glu Asn Pro 1075	ATT GGC TAT Ile Gly Tyr	CGC TCT ACA Arg Ser Thr 1080	3390
GCG GAG GAA AGA Ala Glu Glu Arq 1085	CTC CAA TCA Leu Gln Ser	GAA CAC CCC Glu His Pro 1090	GAG GCT TTC Glu Ala Phe 109	Glu Tyr Tyr	3438
AAG TTT TGC ATT Lys Phe Cys Ile 1100	GGA AAG GAA Gly Lys Glu 110	Asp Leu Val	GAA CAG GCA Glu Gln Ala 1110	AAA CAA CCG Lys Gln Pro	3486
GAG ATA GCA TAG Glu Ile Ala Tyr 1115	TTT GAA AAG Phe Glu Lys 1120	ATT ATA GCT Ile Ile Ala	TTC ATC ACA Phe Ile Thr 1125	CTT GTA TTA Leu Val Leu 1130	3534
ATG GCT TTT GAG Met Ala Phe Asp	GCT GAG CGG Ala Glu Arg 1135	AGT GAT GGA Ser Asp Gly 1140	Val Phe Lys	ATA CTC AAT Ile Leu Asn 1145	3582
AAG TTC AAA GGA Lys Phe Lys Gly 115	' Ile Leu Ser	TCA ACG GAG Ser Thr Glu 1155	AGG GAG ATC Arg Glu Ile	ATC TAC ACG Ile Tyr Thr 1160	3630
Lys Phe Lys Gly	' Ile Leu Ser O C GAT TAC GTT	Ser Thr Glu 1155 ACA ACC TTT	Arg Glu Ile	Ile Tyr Thr 1160 ATG ACA ATC Met Thr Ile	3630 3678
Lys Phe Lys Gly 115 CAG AGT TTG GAT Gln Ser Leu Asp	Ile Leu Ser O GAT TAC GTT Asp Tyr Val	Ser Thr Glu 1155 ACA ACC TTT Thr Thr Phe 1170 GAA CTC CAC Glu Leu His	Arg Glu Ile GAT GAC AAT Asp Asp Asn 1179 AAG ACG AGC	Ile Tyr Thr 1160 ATG ACA ATC Met Thr Ile	
Lys Phe Lys Gly 11: CAG AGT TTG GA: Gln Ser Leu Asp 1165 AAC CTC GAG TTC Asn Leu Glu Leu	G GAT TAC GTT ASP TYR Val G AAT ATG GAT ASP Met Asp 118 G CAA TGG TGG	Ser Thr Glu 1155 ACA ACC TTT Thr Thr Phe 1170 GAA CTC CAC Glu Leu His 5	Arg Glu Ile GAT GAC AAT ASP ASP ASN 1175 AAG ACG AGC Lys Thr Ser 1190 ATC AGC CGA	Ile Tyr Thr 1160 ATG ACA ATC Met Thr Ile CTT CCT GGA Leu Pro Gly GGC AAC GTG	3678
CAG AGT TTG GAM Gln Ser Leu Asp 1165 AAC CTC GAG TTC Asn Leu Glu Leu 1180 GTC ACT TTT AAC Val Thr Phe Lys	G Ile Leu Ser G GAT TAC GTT ASP TYR Val G AAT ATG GAT ASP Met ASP 118 G CAA TGG TGG G GIn Trp Trp 1200	Ser Thr Glu 1155 ACA ACC TTT Thr Thr Phe 1170 GAA CTC CAC Glu Leu His 5 AAC AAC CAA Asn Asn Gln	Arg Glu Ile GAT GAC AAT ASP ASP ASN 1173 AAG ACG AGC Lys Thr Ser 1190 ATC AGC CGA Ile Ser Arg 1205 ATG GAG TTT Met Glu Phe	Ile Tyr Thr 1160 ATG ACA ATC Met Thr Ile CTT CCT GGA Leu Pro Gly GGC AAC GTG Gly Asn Val 1210 ACC AGA GAT	3678 3726
CAG AGT TTG GATGIN Ser Leu Aspertage 1165 AAC CTC GAG TTC ASPERTAGE 1180 GTC ACT TTT AAC Val Thr Phe Lyst 1195 AAG CCA CAT TAT	GITE Leu Ser GOT TAC GTT ASP TYR Val GAT ATG GAT ASN MET ASP 118 GCAA TGG TGG GIN TRP TRP 1200 CAGA ACT GAG ARG THR Glu 1215 GGTT GCC AGC Val Ala Ser	Ser Thr Glu 1155 ACA ACC TTT Thr Thr Phe 1170 GAA CTC CAC Glu Leu His 5 AAC AAC CAA Asn Asn Gln GGG CAC TTC Gly His Phe 1220 GAG ATA TCA	Arg Glu Ile GAT GAC AAT ASP ASP ASN 1173 AAG ACG AGC Lys Thr Ser 1190 ATC AGC CGA Ile Ser Arg 1205 ATG GAG TTT Met Glu Phe CAC TCA CCC	Ile Tyr Thr 1160 ATG ACA ATC Met Thr Ile CTT CCT GGA Leu Pro Gly GGC AAC GTG Gly Asn Val 1210 ACC AGA GAT Thr Arg Asp 1225 GCA AGA GAT	3678 3726 3774

TAC CAT TTA Tyr His Leu 1260	TCA AAG AGA Ser Lys Arg	GGG AGA C Gly Arg \ 1265	GTG TTA A Val Leu N	ATG CTT GAG Met Leu Glu 1270	CCT ACC Pro Thr	AGA 3966 Arg
	GAT AAC ATG Asp Asn Met 128	His Lys (31n Leu A			
	ACT TTG AGG Thr Leu Arg 1295					Ser
CCG ATC ACA Pro Ile Thr	GTC ATG ACT Val Met Thr 1310	Ser Gly F	TTC GCT T Phe Ala I 1315	TTA CAC CAC Leu His His	TTT GCA Phe Ala 1320	CGA 4110 Arg
	GAG GTA AAA Glu Val Lys 5		Asp Phe V		Asp Glu	
CAT GTG AAT His Val Asn 1340	GAT GCT TCT Asp Ala Ser	GCT ATA C Ala Ile A 1345	GCG TTT A Ala Phe A	AGG AAT CTA Arg Asn Leu 1350	CTG TTT Leu Phe	GAA 4206 Glu
CAT GAA TTT His Glu Phe 1355	GAA GGA AAA Glu Gly Lys 136	Val Leu I	Lys Val S	CCA GCC ACA Ser Ala Thr 1365	CCA CCA Pro Pro	GGT 4254 Gly 1370
AGA GAA GTT Arg Glu Val	GAA TTT ACA Glu Phe Thr 1375	ACT CAG 1 Thr Gln H	TTT CCC C Phe Pro \ 1380	STG AAA CTC /al Lys Leu	AAG ATA Lys Ile 1385	Glu
GAG GCT CTT Glu Ala Leu	AGC TTT CAG Ser Phe Gln 1390	Glu Phe V	STA AGT 1 Val Ser I 1395	TTA CAA GGG Leu Gln Gly	ACA GGT Thr Gly 1400	GCC 4350 Ala
AAC GCC GAT Asn Ala Asp 140	GTG ATT AGT Val Ile Ser S	TGT GGC C Cys Gly A 1410	SAC AAC A Asp Asn 1	ATA CTA GTA Lle Leu Val 141	Tyr Val	GCT 4398 Ala
AGC TAC AAT Ser Tyr Asn 1420	GAT GTT GAT Asp Val Asp	AGT CTT C Ser Leu C 1425	GGC AAG C Gly Lys I	CTC CTT GTG Leu Leu Val 1430	CAA AAG Gln Lys	GGA 4446 Gly
TAC AAA GTG Tyr Lys Val 1435	TCG AAG ATT Ser Lys Ile 144	Asp Gly A	Arg Thr A	ATG AAG AGT Met Lys Ser 1445	GGA GGA Gly Gly	ACT 4494 Thr 1450
GAA ATA ATC Glu Ile Ile	ACT GAA GGT	ACT TCA	STG AAA J	AAG CAT TTC	ATA GTC	GCA 4542
	Thr Glu Gly 1455	Thr Ser \	Val Lys I 1460	Lys His Phe	Ile Val 1465	
ACT AAC ATT Thr Asn Ile	1455 ATT GAG AAT	GGT GTA A	Val Lys I 1460 ACC ATT (Lys His Phe	Ile Val 1469 GTA GTT	5 GTG 4590
Thr Asn Ile	ATT GAG AAT Ile Glu Asn 1470 ACT AAG GTT Thr Lys Val	GGT GTA AGIN Val T	Val Lys I 1460 ACC ATT (Ihr Ile A 1475 GTT TTG (LYS HIS Phe GAC ATT GAT ASP Ile ASP	GTA GTT Val Val 1480 AAT AGA Asn Arg	GTG 4590 Val

Leu G 1515	GT AGA	GTT Val	GGG Gly	CGA Arg 1520	His	AAG Lys	GAA Glu	GGA Gly	GTA Val 1525	Ala	CTT Leu	CGA Arg	ATT Ile	GGC Gly 1530	4734
CAA A	ACA AAT	AAA Lys	ACA Thr 1535	Leu	GTT ·Val	GAA Glu	ATT Ile	CCA Pro 1540	Glu	ATG Met	GTT Val	GCC Ala	ACT Thr 1545	Glu	4782
GCT G	CC TT	CTA Leu 155	Сув	TTC Phe	ATG. Met	TAC Tyr	AAT Asn 1555	Leu	CCA Pro	GTG Val	ACA Thr	ACA Thr 1560	Gln	AGT Ser	4830
GTT TO	CA ACC Ser Thr 156	Thr	CTG Leu	CTG Leu	GAA Glu	AAT Asn 1570	Ala	ACA Thr	TTA Leu	TTA ·Leu	CAA Gln 1575	Ala	AGA Arg	ACT Thr	4878
Met A	CA CAC La Glr 1580					Tyr					Asn				4926
TTT G Phe A 1595	AT GG1	AGT Ser	ATG Met	CAT His 1600	Pro	GTC Val	ATA Ile	CAT His	GÁC Asp 1605	Lys	CTG Leu	AAG Lys	CGC Arg	TTT Phe 1610	4974
AAG C' Lys L	CTA CAC Leu His	ACT	TGT Cys 1615	Glu	ACA Thr	TTC Phe	CTC Leu	AAT Asn 1620	Lys	TTG Leu	GCG Ala	ATC Ile	CCA Pro 1625	Asn	5022
AAA G	GC TT	Ser 1630	Ser	TGG Trp	CTT	ACG Thr	AGT Ser 1635	Gly	GAG Glu	TAT Tyr	AAG Lys	CGA Arg 1640	Leu	GGT Gly	5070
TAC A	TA GCA	GAG	GAT	GCT	GGC	ATA	AGA	ATC	CCA	TTC	GTG	TGC	AAA	GAA	5118
	164	5	Asp	Ala	GIY	11e 1650		Ile	Pro	Phe	Val 1655		Lys	Glu	
ATT C	164 CCA GAC Pro Asp	5 TCC	TTG	CAT	GAG	GAA Glu	TTA	TGG	CAC	ATT	GTA Val	GTC	GCC	CAT	5166
ATT CO	164 CA GAC TO ASI	TCC Ser	TTG Leu GGT	CAT His	GAG Glu 1665 GGG Gly	GAA Glu AGG	ATT Ile	TGG Trp	CAC His	ATT Ile 1670 GTA Val	GTA Val CAG	GTC Val	GCC Ala	CAT His	5166
ATT COLUMN TO THE PROPERTY OF	164 CCA GAC Pro Asp 1660 GT GAC	TCC Ser TCG Ser	TTG Leu GGT Gly	CAT His ATT Ile 1680 CAA Gln	GAG Glu 1665 GGG Gly	GAA Glu AGG Arg	ATT Ile CTC Leu GTG	TGG Trp ACT Thr	CAC His AGC Ser 1685 TCA Ser	ATT Ile 1670 GTA Val	GTA Val) CAG Gln	GTC Val GCA Ala	GCC Ala GCA Ala ACT	CAT His AAG Lys 1690 CTA Leu	
ATT COLUMN TO THE PROPERTY OF	164 CCA GAC Pro Asp .660 GT GAC :1y Asp	TCC Ser	TTG Leu GGT Gly CTG Leu 1695 AGA Arg	CAT His ATT Ile 1680 CAA Gln	GAG Glu 1665 GGG Gly ACG Thr	GAA Glu AGG Arg GAT Asp	ATT Ile CTC Leu GTG Val	TGG Trp ACT Thr CAC His 1700 GAA Glu	CAC His AGC Ser 1685 TCA Ser	ATT Ile 1670 GTA Val S ATT Ile	GTA Val CAG Gln GCG Ala	GTC Val GCA Ala AGG Arg	GCC Ala GCA Ala ACT Thr 1705 AGT Ser	CAT His AAG Lys 1690 CTA Leu	5214
ATT CILL P. 10 AAA G. 1675 GTT G. Val V. GCA T. Ala C. TTT G.	164 CCA GAC Pro Asp .660 CGT GAC Cly Asp TT TAT Yal Tyr	TCC Ser TCG Ser ACT Thr AAT 1710 GCA Ala	TTG Leu GGT Gly CTG Leu 1699 AGA Arg	CAT His ATT Ile 1680 CAA Gln CGC Arg	GAG Glu 1665 GGG Gly ACG Thr ATA Ile	GAA Glu AGG Arg GAT Asp GCA Ala	ATT Ile CTC Leu GTG Val GAT Asp 1715 TTT Phe	TGG Trp ACT Thr CAC His 1700 GAA Glu	CAC His AGC Ser 1689 TCA Ser CAA Gln	ATT Ile 1670 GTA Val Ile ATT Ile ATG Met	CAG GIn GCG Ala AAG Lys	GTC Val GCA Ala AGG Arg CAG Gln 1720 TAC	GCC Ala GCA Ala ACT Thr 1705 AGT Ser	CAT His AAG Lys 1690 CTA Leu CAT His	5214 5262
ATT CITE PORTON CONTROL CONTRO	164 CCA GAC TO ASP .660 GGT GAC LY ASF TT TAT TAI Tyr CGC ATC LYS Ile	TCC Ser TCG Ser TTCG Ser TTT	TTG Leu GGT Gly CTG Leu 1699 AGA Arg	CAT His ATT Ile 1680 CAA Gln CGC Arg	GAG Glu 1665 GGG Gly ACG Thr ATA Ile AGA Arg	GAA Glu AGG Arg GAT Asp GCA Ala GCA Ala Lys	ATT Ile CTC Leu GTG Val GAT Asp 1715 TTT Phe	TGG Trp ACT Thr CAC His 1700 GAA Glu	CAC His AGC Ser 1689 TCA Ser CAA Gln TTC Phe	ATT Ile 1670 GTA Val ile ATT Ile ATG Met ACA Thr	CAG Gin GCG Ala AAG Ly8 AAT Asn 1739 ACA Thr	GTC Val GCA Ala AGG Arg CAG Gln 1720 TAC Tyr	GCC Ala GCA Ala ACT Thr 1705 AGT Ser TCA Ser	CAT His AAG Lys 1690 CTA Leu CAT His ATA Ile	5214 5262 5310

TTT Phe	TCG Ser	AAC Asn	CTA Leu	GCA Ala 1775	Lys	GAT Asp	CAA Gln	GAT Asp	GTC Val 1780	Thr	GGT Gly	ATC Ile	ATC Ile	CAA Gln 1785	Asp	5502
				Glu					Gln		GAT Asp			Val		5550
			Lys					Trp			AGC Ser		Ile			5598
		Ile					Val				GGT Gly 1830	Gly				5646
	Thr					Lys					GTC Val					5694
					His					Arg	GAG Glu				Ala	5742
				Glu					Pro		GCG Ala			His		5790
TTT Phe	GGA Gly	AGC Ser 188	Ala	TAT Tyr	TAA neA	AAC Asn	AAA Lys 1890	Gly	AAG Lys	CGC Arg	AAG Lys	GGC Gly 189	Thr	ACG Thr	AGA Arg	5838
GGA Gly	ATG Met 1900	Gly	GCA Ala	AAG Lys	TCT Ser	CGG Arg 1905	Lys	TTC Phe	ATA Ile	AAC Asn	ATG Met 1910	Tyr	GGG Gly	TTT Phe	GAT Asp	5886
CCA Pro 191	Thr	GAT Asp	TTT Phe	TCA Ser	TAC Tyr 1920	Ile	AGG Arg	TTT Phe	GTG Val	GAT Asp 1929	CCA Pro	TTG Leu	ACA Thr	GGT Gly	CAC His 1930	5934
ACT Thr	ATT Ile	GAT Asp	GAG Glu	TCC Ser 193	Thr	AAC Asn	GCA Ala	CCT Pro	ATT Ile 1940	Asp	TTA Leu	GTG Val	CAG Gln	CAT His 194	Glu	5982
TTT Phe	GGA Gly	AAG Lys	GTT Val 1950	Arg	ACA Thr	CGC Arg	ATG Met	TTA Leu 195	Ile	GAC Asp	GAT Asp	GAG Glu	ATA Ile 1960	Glu	CCT Pro	6030
CAA Gln	AGT Ser	CTT Leu 196	Ser	ACC Thr	CAC His	ACC Thr	ACA Thr 1970	Ile	CAT His	GCT Ala	TAT Tyr	TTG Leu 197	Val	AAT Asn	AGT Ser	6078
GGC Gly	ACG Thr 1980	Lys	AAA Lys	GTT Val	CTT Leu	AAG Lys 1985	Val	GAT Asp	TTA Leu	ACA Thr	CCA Pro 1990	His	TCG Ser	TCG Ser	CTA Leu	6126
	2300															
CGT Arg 199	GCG Ala	AGT Ser	GAG Glu	AAA Lys	TCA Ser 2000	Thr	GCA Ala	ATA Ile	ATG Met	GGA Gly 200	TTT Phe 5	CCT Pro	GAA Glu	AGG Arg	GAG G1u 2010	6174

TTG CCA CCA AAG Leu Pro Pro Lys 2030	Asn Glu Asp 1	TTG ACG TTT GA Leu Thr Phe Gl 2035	A GGA GAA AGC I J Gly Glu Ser L 2040	TTG TTT 6270 Leu Phe
AAG GGA CCA CGT Lys Gly Pro Arg 2045	Asp Tyr Asn 1	CCG ATA TCG AG Pro Ile Ser Se: 2050	C ACC ATT TGT C Thr lle Cys H 2055	AT TTG 6318 His Leu
ACG AAT GAA TCT Thr Asn Glu Ser 2060	GAT GGG CAC A Asp Gly His 1 2065	ACA ACA TCG TTO Thr Thr Ser Le	G TAT GGT ATT G I Tyr Gly Ile G 2070	GA TTT 6366 ly Phe
GGT CCC TTC ATC Gly Pro Phe Ile 2075	ATT ACA AAC I Ile Thr Asn I 2080	AAG CAC TTG TT Lys His Leu Pho 20	e Arg Arg Asn A	AT GGA 6414 sn Gly 2090
ACA CTG TTG GTC Thr Leu Leu Val	CAA TCA CTA (Gln Ser Leu ! 2095	CAT GGT GTA TTO His Gly Val Pho 2100	E Lys Val Lys A	AC ACC 6462 BBn Thr 105
ACG ACT TTG CAA Thr Thr Leu Gln 2110	Gln His Leu	ATT GAT GGG AGG Ile Asp Gly Arc 2115	G GAC ATG ATA A J Asp Met Ile I 2120	TT ATT 6510
CGC ATG CCT AAG Arg Met Pro Lys 2125	Asp Phe Pro I	CCA TTT CCT CA Pro Phe Pro Gli 2130	A AAG CTG AAA I n Lys Leu Lys F 2135	TT AGA 6558 The Arg
GAG CCA CAA AGG Glu Pro Gln Arg 2140	GAA GAG CGC A Glu Glu Arg 1 2145	ATA TGT CTT GTO	ACA ACC AAC T Thr Thr Asn P 2150	TC CAA 6606 The Gln
ACT AAG AGC ATG Thr Lys Ser Met 2155	TCT AGC ATG (Ser Ser Met V 2160	GTG TCA GAC ACT Val Ser Asp Thr 210	Ser Cys Thr P	TC CCT 6654 The Pro 2170
TCA TCT GAT GGC Ser Ser Asp Gly	ATA TTC TGG 7 Ile Phe Trp 1 2175	AAG CAT TGG AT Lys His Trp Ile 2180	Gln Thr Lys A	AT GGG 6702 sp Gly 185
CAG TGT GGC AGT Gln Cys Gly Ser 2190	Pro Leu Val S	ICA ACT AGA GA: Ser Thr Arg Asp 2195	GGG TTC ATT G Gly Phe Ile V 2200	TT GGT 6750 al Gly
ATA CAC TCA GCA Ile His Ser Ala 2205	Ser Asn Phe	ACC AAC ACA AAG Thr Asn Thr Ass 2210	AAT TAT TTC A ASN Tyr Phe T 2215	CA AGC 6798 Thr Ser
GTG CCG AAA AAC Val Pro Lys Asn 2220	TTC ATG GAA 1 Phe Met Glu I 2225	TTG TTG ACA AA! Leu Ļeu Thr Asi	CAG GAG GCG C Gln Glu Ala G 2230	AG CAG 6846 ln Gln
TGG GTT AGT GGT Trp Val Ser Gly 2235	TGG CGA TTA I Trp Arg Leu I 2240	AAT GCT GAC TC Asn Ala Asp Se 22	. Val Leu Trp G	GG GGC 6894 Lly Gly 2250
CAT AAA GTT TTC His Lys Val Phe	ATG AGC AAA (Met Ser Lys I 2255	CCT GAA GAG CC Pro Glu Glu Pro 2260	Phe Gln Pro V	TT AAG 6942 21 Lys 265
GAA GCG ACT CAA Glu Ala Thr Gln 2270	Leu Met Asn (GAA TTG GTG TAG Glu Leu Val Ty: 2275	TCG CAA GGG G Ser Gln Gly G 2280	AG AAG 6990 lu Lys

AGG Arg	AAA Lys	TGG Trp 228	Val	GTG Val	GAA Glu	GCA Ala	CTG Leu 2290	TCA Ser	GGG Gly	AAC Asn	TTG Leu	AGG Arg 229	Pro	GTG Val	GCT Ala	7038
GAG Glu	TGT Cys 2300	Pro	AGT Ser	CAG Gln	TTA Leu	GTC Val 230	Thr	AAG Lys	CAT His	GTG Val	GTT Val 2310	Lys	GGA Gly	AAG Lys	TGT Cys	7086
CCC Pro 2319	Leu	TTT Phe	GAG Glu	CTC Leu	TAC Tyr 2320	Leu	CAG Gln	TTG Leu	AAT Asn	CCA Pro 2325	Glu	AAG Lys	GAA Glu	GCA Ala	TAT Tyr 2330	7134
					Gly			AAG Lys		Ser					Glu	7182
GCG Ala	TTC Phe	CTC Leu	AAG Lys 2350	Asp	ATT Ile	CTA Leu	AAA Lys	TAT Tyr 2355	Ala	AGT Ser	GAA Glu	ATT Ile	GAG Glu 2360	Ile	GGG Gly	7230
TAA neA	GTG Val	GAT Asp 2365	Cys.	GAC Asp	TTG Leu	CTG Leu	GAG Glu 2370	CTT Leu)	GCA Ala	ATA Ile	AGC Ser	ATG Met 237	Leu	GTC Val	ACA Thr	7278
AAG Lys	CTC Leu 2380	Lys	GCG Ala	TTA Leu	GGA Gly	TTC Phe 2385	Pro	ACT Thr	GTG Val	AAC Asn	TAC Tyr 2390	Ile	ACT Thr	GAC Asp	CCA Pro	7326
GAG Glu 239	Glu	ATT Ile	TTT Phe	AGT Ser	GCA Ala 2400	Leu	AAT Asn	ATG Met	AAA Lys	GCA Ala 2409	Ala	ATG Met	GGA Gly	GCA Ala	CTA Leu 2410	7374
TAC Tyr	AAA Lys	GGC Gly	AAG Lys	AAG Lys 2415	Lys	GAA Glu	GCT Ala	CTC Leu	AGC Ser 2420	Glu	CTC Leu	ACA Thr	CTA Leu	GAT Asp 2425	Glu	7422
CAG Gln	GAG Glu	GCA Ala	ATG Met 2430	Leu	AAA Lys	GCA Ala	AGT Ser	TGC Cys 2435	Leu	CGA Arg	CTG Leu	TAT Tyr	ACG Thr 2440	Gly	AAG Lys	7470
TTG Leu	GGA Gly	ATT Ile 2445	Trp	AAT Asn	GGC Gly	TCA Ser	TTG Leu 2450	AAA Lys	GCA Ala	GAG Glu	TTG Leu	CGT Arg 245	Pro	ATT Ile	GAG Glu	7518
AAG Lys	GTT Val 2460	Glu	AAC Asn	AAC Asn	AAA Lys	ACG Thr 2465	Arg	ACT Thr	TTC Phe	ACA Thr	GCA Ala 2470	Ala	CCA Pro	ATA Ile	GAC Asp	7566
ACT Thr 2475	Leu	CTT Leu	GCT Ala	GGT	AAA Lys 2480	Val	TGC Cys	GTG Val	GAT Asp	GAT Asp 248	Phe	AAC Asn	AAT Asn	CAA Gln	TTT Phe 2490	7614
					Lys			TGG Trp		Val					Phe	7662
TAT Tyr	CAG Gln	GGG Gly	TGG Trp 2510	Asn	GAA Glu	TTG Leu	ATG Met	GAG Glu 2515	Ala	TTA Leu	CCA Pro	AGT Ser	GGG Gly 2520	Trp	GTG Val	7710
TAT Tyr	TGT Cys	GAC Asp 2525	Ala	GAT Asp	GGT Gly	TCG Ser	CAA Gln 2530	TTC Phe	GAC Asp	AGT Ser	TCC Ser	TTG Leu 253	Thr	CCA Pro	TTC Phe	7758

CTC Leu	ATT 11e 254	Asn	GCT Ala	GTA Val	TTG Leu	AAA Lys 2549	Val	CGA Arg	CTT Leu	GCC Ala	TTC Phe 2550	Met	GAG Glu	GAA Glu	TGG Trp	7806
GAT Asp 255	ATT Ile 5	GGT Gly	GAG Glu	CAA Gln	ATG Met 256	Leu	CGA Arg	AAT Asn	TTG Leu	TAC Tyr 256	Thr	GAG Glu	ATA Ile	GTG Val	TAT Tyr 2570	7854
ACA Thr	CCA Pro	ATC Ile	CTC Leu	ACA Thr 257	Pro	GAT Asp	GGT Gly	ACT Thr	ATC 11e 2580	Ile	AAG Lys	AAG Lys	CAT His	AAA Lys 2585	Gly	7902
AAC Asn	AAT Asn	AGC Ser	GGG Gly 2590	Gln	CCT Pro	TCA Ser	ACA Thr	GTG Val 2599	Val	GAC Asp	AAC Asn	ACA Thr	CTC Leu 2600	Met	GTC ·	7950
ATT	ATT Ile	GCA Ala 260	Met	TTA Leu	TAC Tyr	ACA Thr	TGT Cys 251	Glu	AAG Lys	TGT Cys	GGA Gly	ATC Ile 261	Asn	AAG Lys	GAA Glu	7998
GAG Glu	ATT Ile 2620	Val	TAT Tyr.	TAC Tyr	GTC Val	AAT Asn 2625	Gly	GAT Asp	GAC Asp	CTA Leu	TTG Leu 2630	Ile	GCC Ala	ATT Ile	CAC His	8046
CCA Pro 263	GAT Asp 5	AAA Lys	GCT Ala	GAG Glu	AGG Arg 2640	Leu	AGT Ser	AGA Arg	TTC Phe	AAA Lys 2645	Glu	TCT Ser	TTC Phe	GGA Gly	GAG Glu 2650	8094
TTG Leu	GGC Gly	CTG Leu	AAA Lys	TAT Tyr 2655	Glu	TTT Phe	GAC Asp	TGT Cys	ACC Thr 2660	Thr	AGG Arg	GAC Asp	AAG Lys	ACA Thr 266	Gln	8142
TTG Leu	TGG Trp	TTC Phe	ATG Met 2670	Ser	CAC His	AGG Arg	GCT Ala	TTG Leu 2675	Glu	AGG Arg	GAT Asp	GGC Gly	ATG Met 2680	Tyr	ATA Ile	8190
CCA Pro	AAG Lys	CTA Leu 2689	Glu	GAA Glu	GAA Glu	AGG Arg	ATT Ile 2690	Val	TCT Ser	ATT Ile	TTG Leu	GAA Glu 2695	Trp	GAC Asp	AGA Arg	8238
TCC Ser	AAA Lys 2700	Glu	CCG Pro	TCA Ser	CAT His	AGG Arg 2709	Leu	GAA Glu	GCC Ala	ATC Ile	TGT Cys 2710	Ala	TCA Ser	ATG Met	ATT Ile	8286
GAA Glu 271	GCA Ala 5	TGG Trp	GGT Gly	TAT Tyr	GAC Asp 2720	Lys	CTG Leu	GTT Val	GAA Glu	GAA Glu 2725	Ile	CGC Arg	AAT Asn	TTC Phe	TAT Tyr 2730	8334
GCA Ala	TGG Trp	GTT Val	TTG Leu	GAA Glu 2735	Gln	GCG Ala	CCG Pro	TAT Tyr	TCA Ser 2740	Gln	CTT Leu	GCA Ala	GAA Glu	GAA Glu 2745	Gly	8382
AAG Lys	GCG Ala	CCA Pro	TAT Tyr 2750	Leu	GCT Ala	GAG Glu	ACT Thr	GCG Ala 2755	Leu	AAG Lys	TTT Phe	TTG Leu	TAC Tyr 2760	Thr	TCT Ser	8430
CAG																
Gln	CAC His	GGA Gly 2765	Thr	AAC Asn	TCT Ser	GAG Glu	ATA Ile 2770	Glu	GAG Glu	TAT	TTA Leu	AAA Lys 277	Val	TTG Leu	TAT Tyr	8478

GTG GAT GCT Val Asp Ala 2795	GGT GCT Gly Ala	GAC GCT GG Asp Ala Gl 2800	AAG AAG Lys Lys	AAA GAT CA Lys Asp Gl: 2805	A AAG GAT Lys Asp	GAT 8574 Asp 2810
AAA GTC GCT Lys Val Ala		Ala Ser Ly		Asp Val As		Thr
TCA GGA ACA Ser Gly Thr						
CAA TAT CCA Gln Tyr Pro 284	Arg Met		val Val		a Asn His	
TTA GGA TAC Leu Gly Tyr 2860						
CAT GAG CAG His Glu Gln 2875	TTT GCC Phe Ala	GCG TGG CAT Ala Trp His 2880	CAG GCA Gln Ala	GTG ATG AC Val Met The 2885	A GCC TAT	GGA 8814 Gly 2890
GTG AAT GAA Val Asn Glu	GAG CAA Glu Gln 2895	Met Lys Ile	A TTG CTA Leu Leu 2900	Asn Gly Ph	T ATG GTG Met Val 290	Trp
TGC ATA GAA Cys Ile Glu	AAT GGG Asn Gly 2910	ACT TCC CC	A AAT TTG Asn Leu 2915	AAC GGA AC	TGG GTT Trp Val 2920	ATG 8910 Met
ATG GAT GGT Met Asp Gly 292	Glu Asp	CAA GTT TC Gln Val Se 29	Tyr Pro	CTG AAA CC Leu Lys Pro 29	Met Val	GAA 8958 Glu
AAC GCG CAG ABN Ala Gln 2940	CCA ACA Pro Thr	CTG AGG CA Leu Arg Gl 2945	A ATT ATG	ACA CAC TTO Thr His Pho 2950	C AGT GAC E Ser Asp	CTG 9006 Leu
GCT GAA GCG Ala Glu Ala 2955	TAT ATT Tyr Ile	GAG ATG AGG Glu Met Arc 2960	AAT AGG Aan Arg	GAG CGA CC Glu Arg Pro 2965	A TAC ATG	CCT 9054 Pro 2970
AGG TAT GGT Arg Tyr Gly	CTA CAG Leu Gln 2975	Arg Asn Ile	T ACA GAC Thr Asp 2980	Met Ser Le	S TCA CGC a Ser Arg 298:	Tyr
GCG TTC GAC Ala Phe Asp	TTC TAT Phe Tyr 2990	GAG CTA AC Glu Leu Th	TCA AAA Ser Lys 2995	ACA CCT GT Thr Pro Va	r AGA GCG l Arg Ala 3000	AGG 9150 Arg
GAG GCG CAT Glu Ala His 300	Met Gln	ATG AAA GC Met Lys Al	a Ala Ala	GTA CGA AA Val Arg As 30	n Ser Gly	ACT 9198 Thr
AGG TTA TTT Arg Leu Phe 3020	GGT CTT Gly Leu	GAT GGC AA Asp Gly As 3025	GTG GGT	ACT GCA GA Thr Ala Gl 3030	G GAA GAC u Glu Asp	ACT 9246 Thr
GAA CGG CAC Glu Arg His 3035	ACA GCG Thr Ala	CAC GAT GT His Asp Va 3040	AAC CGT Asn Arg	AAC ATG CA Asn Met Hi 3045	C ACA CTA s Thr Leu	TTA 9294 Leu 3050

Gly Val Ar		AGTTTCTGC G1	rgtctttgc t	TTCCGCTTT T	AAGCTTATT	9349
GTAATATATA	TGAATAGCTA	TTCACAGTGG	GACTTGGTCT	TGTGTTGAAT	AGTATCTTAT	9409
TATTTTAT	ATGTCTTATT	AGTETCATTA	CTTAGGCGAA	CGACAAAGTG	AGGTCACCTC	9469
GGTCTAATTC	TCCTATGTAG	TGCGAG				9495

PTL 37/8595

GENERATE BamHI SITE

1. AT A(nt 93 | 2-93 | 7)

2 GENERATE Nool SITE AT B (nt 8516-8521)

³GENERATE BamHi SITE (nt 133-138) Nool SITE (nt 143-148) AND DEOXYADENYLATE: RESIDUE (at nt 142) at C.

DIGEST WITH Nool

REMOVE TEV NUCLEOTIDES 143-200/8462-8516 (FLANKED BY SITES B AND C)AND RELIGATE.

FIG. 2

