Low Rank Tensor Completion and Applications

Zheng Tan, Wensi Ai, Siyu Huang, Zhengtong Liu

Introduction!

Low Rank Tensor Completion

- Tensor: $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$
- Operations on matrix can be generalized to tensor
- Denote tensor after Fourier transformation along the third dimension to be $\hat{\mathcal{X}}$
- Tubal rank: maximum rank of frontal slice after Fourier transform along the third dimension
- Sampling method: fully random, random tubes $\mathcal{X}(i, j, :)$
- Four classical/state of the art methods are used

Tensor Nuclear Norm Alternating Direction Method of Multiplier (TNN-ADMM)

Background

Nuclear norm:

Given
$$X = U\Sigma V^*$$

$$\operatorname{rank}(X) = \|\mathbf{s}\|_0$$
, where $\mathbf{s} = (\sigma_1, \dots, \sigma_n)$

Define
$$||X||_* = ||\mathbf{s}||_1 = \sum_{i=1}^N \sigma_i$$

Background

 $g(\mathbf{u}) = \inf_{\mathbf{x} \in \mathbb{R}^N} L(\mathbf{x}; \mathbf{u})$

Lagrangian:

$$min f(\mathbf{x})$$
 s.t. $A\mathbf{x} = \mathbf{b}$

Lagrange dual problem:

Lagrange dual problem:
$$d^*:=\max_{\mathbf{u}\in\mathbb{R}^M}g(\mathbf{u}).$$

$$\mathbf{J}) = f(\mathbf{X}) + \mathbf{J}$$

 $g_{\rho} = \inf_{\mathbf{x}} L_{\rho}(\mathbf{x}; \mathbf{u})$

Augmented Lagrangian:

$$L_{
ho}(\mathbf{x};\mathbf{u}) = f(\mathbf{x}) + \langle A\mathbf{x} - \mathbf{b}, \mathbf{u}
angle + rac{
ho}{2} \|A\mathbf{x} - \mathbf{b}\|_2^2$$

ADMM

Unconstrained formulation:

$$|\lambda||X||_* + \frac{1}{2}||A \circ X - M||_F^2$$

Splitting form:

$$\lambda \|X\|_* + \frac{1}{2} \|A \circ Y - M\|_F^2$$
 s.t. $X = Y$

Augmented Lagrangian:

$$\lambda \|X\|_* + \frac{1}{2} \|A \circ Y - M\|_F^2 + \rho \langle W, X - Y \rangle + \frac{\rho}{2} \|X - Y\|_F^2$$

$$\|\lambda\|X\|_* + \frac{1}{2}\|A\circ Y - M\|_F^2 + \rho\langle W, X - Y \rangle + \frac{\rho}{2}\|X - Y\|_F^2$$

ADMM

Updates x, y in an alternating fashion, such that each subproblem has a closed-form solution and can be calculated efficiently

X:
$$\sup_{X} \min_{X} \lambda \|X\|_* + \frac{\rho}{2} \|X - Y + W\|_F^2$$

Y:
$$\arg\min_{Y} \frac{1}{2} ||A \circ Y - M||_F^2 + \frac{\rho}{2} ||X - Y + W||_F^2$$

W:
$$W^{k+1} = W^k + (X^{k+1} - Y^{k+1})$$

$$\arg \min_{X} \lambda \|X\|_* + \frac{\rho}{2} \|X - Y + W\|_F^2$$

Let $Y-W=U\Sigma V^*$, apply shrink on each diagonal element of Σ , i.e., $\bar{\mathbf{s}}=\operatorname{shrink}(\mathbf{s},\lambda/\rho)$, then the closed-form solution of X is given by $X=U\bar{\Sigma}V^*$.

$$\mathsf{shrink}(\mathbf{v},\mu) = \left\{ egin{array}{ll} \mathbf{v} - \mu & \mathbf{v} > \mu \\ \mathbf{0} & |\mathbf{v}| \leq \mu \\ \mathbf{v} + \mu & \mathbf{v} < -\mu \end{array}
ight.$$

Experiment

Average Rank Approximation

Ideas

- Given a complete tensor $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, seek to minimize its averaged rank $\frac{1}{n_3} \sum_{i=1}^{n_3} rank(\hat{\mathcal{X}}(:,:,i))$ subject to $\mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{M})$
- Can be alternatively written as minimizing $\sum_{i,k} \delta(\hat{S}(i,i,k))$ with the same constraint.
- Approximate the Kronecker delta by convex relaxation

$$\phi_{\lambda}(x):=\min\{1,rac{1}{2\lambda}x^2\}$$

Synthetic Result

CUR Approximation

CUR-Based Low-Rank Approximation of Matrices

 $Let \ A \in \mathcal{R}^{m imes n}, \ and \ C \in \mathcal{R}^{m imes k}, \ R \in \mathcal{R}^{k imes n} \ are \ selected \ rows \ and \ columns, \ respectively. \ U \in \mathcal{R}^{k imes k} \ is \ the \ intersection \ matrix. \ A \simeq CU^+R.$

Extend CUR to Tensors.....

 $Let \ \mathcal{X} \in \mathcal{R}^{I_1 \times I_2 \times I_3}, \ and \ C \in \mathcal{R}^{I_1 \times L_1 \times I_3}, \ R \in \mathcal{R}^{L_2 \times I_2 \times I_3} \ are \ lateral \ and \ horizontal \ slices, \ respectively.$ $U \in \mathcal{R}^{L_1 \times L_2 \times I_3} \ is \ the \ intersection \ tensor.$ $\mathcal{X} \cong C \ *U^+ \ *R, \ where \ * \ is \ tubal \ product.$

Key Idea

Let X be our data with missing entries, and Ω be the index set that denotes missing entries.

$$egin{aligned} Update \ \mathcal{X} \ by \ \mathcal{P}_{\Omega}(\mathcal{X}) \ = \mathcal{P}_{\Omega}(C \ * \ U^+ \ * \ R), \ and \ keep \ \mathcal{P}_{\Omega^\perp}(\mathcal{X})) \ unchanged. \end{aligned}$$

Low-rank Autoregressive Tensor Completion (LATC)

Key Ideas

- 1. Minimize the tensor rank for global consistency
- 2. Minimize temporal variation for local consistency (temporal consistency)

Math Formulation

The temporal variation for local consistency of a time series matrix \mathbf{Z} with a coefficient matrix $\mathbf{A} \in \mathbb{R}^{M \times d}$ and a time lag set $\mathcal{H} = \{h_1, \dots, h_d\}$ is defined as

$$\|\mathbf{Z}\|_{\mathbf{A},\mathcal{H}} = \sum_{m,t} (z_{m,t} - \sum_{i} a_{m,i} z_{m,t-h_i})^2$$

This regularization ensures that the individual time series z_m should be fitted in an autoregressive pattern, and z_m should be consistent with the previous d time series.

Math Formulation

The Low-Rank Autogressive Tensor Completion (LATC) refers to the optimization model

$$\min_{\mathcal{X}, \mathbf{Z}, \mathbf{A}} \|\mathcal{X}\|_{r,*} + \frac{\lambda}{2} \|\mathbf{Z}\|_{\mathbf{A}, \mathcal{H}} \quad \text{s.t.} \mathcal{X} = \mathcal{Q}(\mathbf{Z}), \ \mathcal{P}_{\Omega}(\mathbf{Z}) = \mathcal{P}_{\Omega}(\mathbf{Y})$$

where $\|\mathcal{X}\|_{r,*}$ denotes the truncated nuclear norms with rank r; $\mathbf{Y} \in \mathbb{R}^{M \times (IJ)}$ denotes the partially observed time series matrix; $\mathcal{X} = \mathcal{Q}(\mathbf{Y}) \in \mathbb{R}^{M \times I \times J}$ is the tensorization of \mathbf{Y} (M: number of sensors, I: the number of time points per day, J: number of days);

 $\mathcal{P}_{\Omega}(\mathbf{Z}) = \mathcal{P}_{\Omega}(\mathbf{Y})$ ensures that the values of the observed entries stay the same, with

$$[\mathcal{P}_{\Omega}(\mathbf{Y})]_{m,n} = \begin{cases} y_{m,n}, & \text{if } (m,n) \in \Omega, \\ 0, & \text{otherwise,} \end{cases}$$

where $m = 1, \dots, M$ and $n = 1 \dots IJ$.

Math Formulation

Then the augmented Lagrangian function can be written as

$$\mathcal{L}(\mathcal{X}, \mathbf{Z}, \mathbf{A}, \mathcal{T}) = \|\mathcal{X}\|_{r,*} + \frac{\lambda}{2} \|\mathbf{Z}\|_{\mathbf{A}, \mathcal{H}} + \frac{\rho}{2} \|\mathcal{X} - \mathcal{Q}(\mathbf{Z})\|_F^2 + \langle \mathcal{X} - \mathcal{Q}(\mathbf{Z}), \mathcal{T} \rangle$$

where ρ is the weight parameter of the added Frobenius norm penalty and $\mathcal{T} \in \mathbb{R}^{M \times I \times J}$ is the dual variable.

The constraint $\mathcal{P}_{\Omega}(\mathbf{Z}) = \mathcal{P}_{\Omega}(\mathbf{Y})$ is kept after each iteration to keep the observation consistency.

Then ADMM can help transform the augmented Lagrangian function into subproblems to update \mathcal{X} , \mathbf{Z} , and \mathcal{T} ; the solution can be approximated iteratively.

$$\begin{split} \textbf{atively.} \\ \boldsymbol{\mathcal{X}}^{\ell+1,\nu+1} &:= \arg\min_{\boldsymbol{\mathcal{X}}} \ \mathcal{L}(\boldsymbol{\mathcal{X}}, \mathbf{Z}^{\ell+1,\nu}, A^{\ell}, \boldsymbol{\mathcal{T}}^{\ell+1,\nu}), \\ \boldsymbol{Z}^{\ell+1,\nu+1} &:= \arg\min_{\boldsymbol{\mathcal{Z}}} \ \mathcal{L}(\boldsymbol{\mathcal{X}}^{\ell+1,\nu+1}, \boldsymbol{Z}, A^{\ell}, \boldsymbol{\mathcal{T}}^{\ell+1,\nu}), \\ \boldsymbol{\mathcal{T}}^{\ell+1,\nu+1} &:= \boldsymbol{\mathcal{T}}^{\ell+1,\nu} + \rho(\boldsymbol{\mathcal{X}}^{\ell+1,\nu+1} - \mathcal{Q}(\mathbf{Z}^{\ell+1,\nu+1})), \end{split}$$

Application to Spatiotemporal Traffic Data

Benchmark Results!

Signal-to-Noise Ratio (SNR)

$$SNR := 20 \log_{10} \frac{||\mathcal{T}||_F}{||\tilde{\mathcal{T}} - \mathcal{T}||_F}$$

where $\tilde{\mathcal{T}}$ is the observed part, and \mathcal{T} is the actual image tensor.

Thanks!