# Sentence Comprehension as a Cognitive Process: A computational modeling approach

Day 5: Similarity-based interference in parsing

Shravan Vasishth and Felix Engelmann ESSLLI 2016, Bolzano

# Target match vs mismatch configurations (reflexives)



# Target match vs mismatch configurations (agreement)



# Non-agreement subject-verb dependencies

These have only been investigated for Target Match conditions (mostly by Julie Van Dyke)

The worker was surprised that the resident who was living near the dangerous warehouse/neighbor was complaining about the investigation.

## Agreement dependencies

#### Target Match

- a. The  $key_{+sing}$  to the cabinet $_{+sing}$  is in the box.
- b. The  $key_{+sing}$  to the cabinets $_{+plur}$  is in the box.

#### Target Mismatch

- a. \*The key<sub>+sing</sub> to the cabinet<sub>+sing</sub> are in the box.
- b. \*The key<sub>+sing</sub> to the cabinets<sub>+plur</sub> are in the box.

# Reflexive/reciprocal dependencies

(1)a. Target-match; distractor-mismatch

The surgeon<sup>+masc</sup><sub>+c-com</sub> who treated Jennifer<sup>-masc</sup><sub>-c-com</sub> had pricked himself ${masc \choose c-com}$ ...

b. Target-match; distractor-match

The surgeon<sup>+masc</sup><sub>+c-com</sub> who treated Jonathan<sup>+masc</sup><sub>-c-com</sub> had pricked himself ${masc \atop c$ -com}...

c. Target-mismatch; distractor-mismatch

The surgeon $_{+c\text{-}com}^{-fem}$  who treated Jonathan $_{-c\text{-}com}^{-fem}$  had pricked herself $\{_{c\text{-}com}^{fem}\}$ ...

d. Target-mismatch; distractor-match

The surgeon $_{+c\text{-}com}^{-fem}$  who treated Jennifer $_{-c\text{-}com}^{+fem}$  had pricked herself $\{_{c\text{-}com}^{fem}\}$ ...





### Publication bias

- There is clear evidence for publication bias in Target Match data (see the missing data in the lower left part of the funnel plot).
- In Target Mismatch, we see quite a few extreme effects being observed.
- These are probably instances of Type S and M errors, and are due to the fact that we run relatively low powered studies in psycholinguistics (See SV's ESSLLI 2015 course: <a href="http://bit.ly/esslli15vasishth">http://bit.ly/esslli15vasishth</a>).

## Bayesian Meta-regression (Jäger, Engelmann, Vasishth 2016)

$$y_i \mid \theta_i, \beta, \sigma_i^2 \sim N(\theta_i + \beta \times \text{predictor}_i, \sigma_i^2)$$
  $i = 1, \dots, n$   
 $\theta_i \mid \theta, \tau^2 \sim N(\theta, \tau^2),$   
 $\theta \sim N(0, 100^2),$   
 $\beta \sim N(0, 100^2),$   
 $\tau \sim N(0, 100^2)T(0, ) \text{(truncated normal)}$ 

In the data, the distractor was either:

- Subject AND Topic
- Subject OR Topic
- Neither subject nor topic

We investigated whether the prominence of the distractor has an effect

In the data, the distractor was in a configuration such that interference was:

- proactive
- retroactive

We investigated whether the prominence of the distractor has an effect

So the predictors were:

- AND vs OR (contrast coding: +1,-1)
- Or vs Other (contrast coding +1, -1)
- Pro vs retroactive interference (+1, -1)

The meta analysis model is shown in the next slide:

```
\begin{aligned} y_i \mid \theta_i, \beta_{AND}, \beta_{OR}, \beta_{PR}, \sigma_i^2 \sim & N(\theta_i + \beta_{AND} \text{ANDOR}_i + \beta_{OR} \text{ORother}_i + \beta_{PR} \text{proretro}, \sigma_i^2) \quad i = 1, \dots, n \\ \theta_i \mid \theta, \tau^2 \sim & N(\theta, \tau^2), \\ \theta \sim & N(0, 100^2), \\ \beta \sim & N(0, 100^2), \\ \tau \sim & N(0, 100^2) T(0,) \text{(truncated normal)} \end{aligned}
```

We can track the posterior distributions of

- The three beta parameters
- The between study variability tau
- The "true effect" theta.

# Target Match and Mismatch studies (Meta-regression)





# Sub-group analyses (by dependency type)

- Subject-verb dependencies (non-agreement, nonreflexive/reciprocal), all are Target Match
- Agreement subject-verb dependencies (Target Match and Mismatch)
- Reflexive/reciprocal dependencies (Target Match and Mismatch)



## Conclusions from metaanalysis

- Dependency type affects the pro/retro interference effect: proactive interference is strong only in agreement Match and reflexive Match data.
- Subject-verb dependencies and reflexives (Mismatch) show a slowdown in the interference effect.
- Agreement mismatch shows a speedup in the interference effect.
- The magnitude of the interference effect is rather small (in reading).
- The 2005 version of the ACT-R model fails to explain some of the studies:
  - Studies showing facilitation in Target Match.
  - Studies showing inhibition in Target Mismatch.