MAL 728 Category Theory Major Test (May 2010)

Time: 2 Hours Max. Marks: 50

1. Let $\underline{\underline{Bn}}(I)$ be the category whose objects are functions $(A, f) = A \xrightarrow{f} I$ and whose morphisms $(A, f) \xrightarrow{h} (B, g)$ are functions $A \xrightarrow{h} B$ such that gh = f. Show that $\underline{\underline{Bn}}(I)$ has (i) a terminal object, (ii) pullbacks, and (iii) a subobject-classifier. Construct cartesian products $(A, f) \times (B, g)$ and Hom objects $(A, f) \xrightarrow{} (B, g)$ towards showing that $\underline{\underline{Bn}}(I)$ is cartesian-closed (you are not required to prove that it is actually cartesian-closed).

[15 Marks]

2. What is a topos? Define the natural numbers object in a topos.

Find the natural numbers object in the category (i) $\underline{\underline{sets}}$ whose objects are sets and whose morphisms are functions, and (ii) $\underline{Bn}(I)$ of Problem $\overline{1}$.

[15 Marks]

3. Prove that the category of finite sets as objects and morphisms $X \stackrel{\alpha}{\longrightarrow} Y$ as $m \times n$ matrices with entries from a field \mathbb{F} [we denote this category by $\underline{\underline{\text{Fin Set}}}_{\mathbb{F}}$] where |X| = n, |Y| = m, is a fuzzy theory.

Further show that it is *-autonomous. What is $X \otimes Y$ here and what is the dualizer?

[10 Marks]

4. Let $\underline{Ab} \xrightarrow{G} \underline{Gr}$ be the functor which forgets that a given abelian groups is abelian remembering only that it is a group $[\![Ab]\!]$ is the category with objects abelian groups, \underline{Gr} is the category with objects as groups; morphisms are homomorphisms in both cases $[\![Bc]\!]$. For a group X let N be the subgroup generate by $\{xy(yx)^{-1} \mid x,y \in X\}$. Show that N is a normal subgroup, that X/N is abelian and that the functor FX := X/N is left adjoint to G.

[10 Marks]

—Smile—