Probability and Statistics: Lecture-24

Monsoon-2020

```
by Pawan Kumar (IIIT, Hyderabad) on October 7, 2020
```

» Checklist for online class

- 1. Turn off your microphone, when you are listening
- 2. Turn on microphone only when you have question
- 3. Attend tutorials to practice problems or to discuss solutions or doubts
- 4. Chat is not always reliable, I may not look at chat

» Table of contents

1. Continuous Distributions

- * Standard Normal Distribution
- * Normal Distribution
- * Gamma Distribution
- st Properties of Gamma Function
- * Solved Problems

2. Mixed Random Variable

» Bound for Φ Function...

» Bound for $\overline{\Phi}$ Function...

Bound for Φ Function

Let $Z \sim N(0,1)$. We recall that

$$\Phi(x) = P(Z \le x).$$

For all x > 0, the Φ -function satisfies the following bound

$$\frac{1}{\sqrt{2\pi}} \frac{x}{x^2 + 1} e^{-x^2/2} \le 1 - \Phi(x) \le \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-x^2/2}$$

$$(h(x)) = Q(x) - U = 70$$

» Answer to previous problem...

To show lower bound, let
$$x^2/2$$

$$h(x) = Q(x) - \frac{1}{\sqrt{2x}} \frac{x}{x^2+1} e^{x^2/2} + x^2$$

where

$$Q(x) = 1 - \varphi(x)$$
which of $h(x)$

enties of
$$h(x)$$

 $(0) = Q(0) = Q(0)$

» Answer to previous problem... 1 2 - 1/2 HADO If derring x incr. HX7,0

Note: h is strictly decreased

Definition of Normal Random Variables

* Have seen the standard normal RV, can obtain any normal RV by

Definition of Normal Random Variables

* Have seen the standard normal RV, can obtain any normal RV by shifting and scaling

$$X = \sigma Z + \mu$$
, where $\sigma > 0$

Definition of Normal Random Variables

* Have seen the standard normal RV, can obtain any normal RV by shifting and scaling

$$\textit{X} = \sigma \textit{Z} + \mu$$
, where $\sigma > 0$

* We have expectation of X, E[X]

Definition of Normal Random Variables

* Have seen the standard normal RV, can obtain any normal RV by shifting and scaling

$$X = \sigma Z + \mu$$
, where $\sigma > 0$

* We have expectation of X, E[X]

$$extbf{ extit{E}}[extbf{ extit{X}}] = \sigma extbf{ extit{E}}[extbf{ extit{Z}}] + \mu = \mu, \ ext{Var}(extbf{ extit{X}}) = \sigma^2 ext{Var}(extbf{ extit{Z}}) = \sigma^2$$

Definition of Normal Random Variables

 Have seen the standard normal RV, can obtain any normal RV by shifting and scaling

$$X = \sigma Z + \mu$$
, where $\sigma > 0$

* We have expectation of X, E[X]

$$extbf{\emph{E}}[extbf{\emph{X}}] = \sigma extbf{\emph{E}}[extbf{\emph{Z}}] + \mu = \mu,$$
 $extsf{Var}(extbf{\emph{X}}) = \sigma^2 extsf{Var}(extbf{\emph{Z}}) = \sigma^2$

* In this case, we write $extbf{ iny N}(\mu,\sigma^2)$

Definition of Normal Random Variables

 Have seen the standard normal RV, can obtain any normal RV by shifting and scaling

$$X = \sigma Z + \mu$$
, where $\sigma > 0$

* We have expectation of X, E[X]

$$extbf{\emph{E}}[extbf{\emph{X}}] = \sigma extbf{\emph{E}}[extbf{\emph{Z}}] + \mu = \mu,$$
 $extbf{Var}(extbf{\emph{X}}) = \sigma^2 extbf{Var}(extbf{\emph{Z}}) = \sigma^2$

- * In this case, we write $\emph{X} \sim \emph{N}(\mu, \sigma^2)$
- * Conversely, if $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X \mu}{\sigma}$ is standard RV, i.e., $Z \sim N(0, 1)$

CDF and PDf of Normal Random Variable

* To find the CDF of $\mathit{X} \sim \mathit{N}(\mu, \sigma^2),$ we have the following

CDF and PDf of Normal Random Variable

* To find the CDF of $\mathit{X} \sim \mathit{N}(\mu, \sigma^2),$ we have the following

$$F_X(x) = P(X \le x)$$

CDF and PDf of Normal Random Variable

* To find the CDF of $\mathit{X} \sim \mathit{N}(\mu, \sigma^2),$ we have the following

$$F_X(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

CDF and PDf of Normal Random Variable

* To find the CDF of $X \sim N(\mu, \sigma^2)$, we have the following

$$F_X(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$
$$= P\left(Z \le \frac{x - \mu}{\sigma}\right)$$

CDF and PDf of Normal Random Variable

* To find the CDF of $X \sim N(\mu, \sigma^2)$, we have the following

$$F_{X}(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

CDF and PDf of Normal Random Variable

* To find the CDF of $X \sim N(\mu, \sigma^2)$, we have the following

$$F_X(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

CDF and PDf of Normal Random Variable

* To find the CDF of $extit{X} \sim extit{N}(\mu, \sigma^2),$ we have the following

$$F_{X}(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

$$f_X(x) = \frac{d}{dx}F_X(x)$$

* To find the CDF of $\mathit{X} \sim \mathit{N}(\mu, \sigma^2),$ we have the following

$$F_X(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

$$f_X(x) = \frac{d}{dx}F_X(x) = \frac{d}{dx}\Phi\left(\frac{x-\mu}{\sigma}\right)$$

CDF and PDf of Normal Random Variable

* To find the CDF of $X \sim N(\mu, \sigma^2)$, we have the following

$$F_{X}(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{d}{dx} \Phi\left(\frac{x - \mu}{\sigma}\right)$$
$$= \frac{1}{\sigma} \Phi'\left(\frac{x - \mu}{\sigma}\right)$$

CDF and PDf of Normal Random Variable

* To find the CDF of $X \sim N(\mu, \sigma^2)$, we have the following

$$F_{X}(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right)$$
$$= \frac{1}{\sigma} \Phi'\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma} f_Z(\frac{x-\mu}{\sigma})$$

CDF and PDf of Normal Random Variable

* To find the CDF of $extbf{X} \sim extbf{N}(\mu, \sigma^2),$ we have the following

$$F_{X}(x) = P(X \le x) = P(\sigma Z + \mu \le x)$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{d}{dx} \Phi\left(\frac{x - \mu}{\sigma}\right)$$
$$= \frac{1}{\sigma} \Phi'\left(\frac{x - \mu}{\sigma}\right) = \frac{1}{\sigma} f_Z(\frac{x - \mu}{\sigma})$$
$$= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}$$

PDF, CDF, Compute Probabilities of Normal RV

If ${\it X}$ is a normal RV with mean μ and variance σ^2 , i.e.,

PDF, CDF, Compute Probabilities of Normal RV

If ${\it X}$ is a normal RV with mean μ and variance $\sigma^2,$ i.e.,

$$\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$$

PDF, CDF, Compute Probabilities of Normal RV

If ${\it X}$ is a normal RV with mean μ and variance $\sigma^2,$ i.e.,

$$X \sim N(\mu, \sigma^2)$$

PDF, CDF, Compute Probabilities of Normal RV

If X is a normal RV with mean μ and variance σ^2 , i.e.,

$$\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$$

$$f_X(x) =$$

PDF, CDF, Compute Probabilities of Normal RV

If X is a normal RV with mean μ and variance σ^2 , i.e.,

$$\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$$

$$f_X(\mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}}\mathbf{e}^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}}$$

PDF, CDF, Compute Probabilities of Normal RV

If *X* is a normal RV with mean μ and variance σ^2 , i.e.,

$$\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2),$$

$$f_X(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$
 $F_X(x) =$

$$F_X(x) =$$

PDF, CDF, Compute Probabilities of Normal RV

If X is a normal RV with mean μ and variance σ^2 , i.e.,

$$extbf{X} \sim extbf{N}(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$F_X(x) = P(X \le x)$$

$$F_X(x) = P(X \leq x)$$

PDF, CDF, Compute Probabilities of Normal RV

If X is a normal RV with mean μ and variance σ^2 , i.e.,

$$\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$F_X(x) = P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

PDF, CDF, Compute Probabilities of Normal RV

If X is a normal RV with mean μ and variance σ^2 , i.e.,

$$X \sim N(\mu, \sigma^2),$$

$$f_X(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$
 $F_X(x) = P(X \le x) = \Phi\left(rac{x-\mu}{\sigma}
ight)$
 $P(a < X \le b) =$

» Summary: PDF, CDF, Computing Probabilities for Normal RV...

PDF, CDF, Compute Probabilities of Normal RV

If X is a normal RV with mean μ and variance σ^2 , i.e.,

$$X \sim N(\mu, \sigma^2), \qquad P(A \angle X \leq b)$$

then

$$f_{X}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

$$F_{X}(x) = P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$P(a < X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Solved Example Let $\mathbf{X} \sim \mathbf{N}(-5,4)$

Solved Example

Let $X \sim N(-5,4)$

* Find P(X < 0)

Solved Example

Let $X \sim N(-5,4)$

- * Find P(X < 0)
- * Find P(-7 < X < -3)

Solved Example

Let
$$X \sim N(-5, 4)$$

** Find $P(X < 0)$

** Find $P(X > -3)$

** Find $P(X >$

» Linear Transformation of a Normal RV is a Normal RV...

» Linear Transformation of a Normal RV is a Normal RV...

If $X \sim N(\mu_X, \sigma_X^2)$, and Y = aX + b, where $a, b \in \mathbb{R}$, then $Y \sim N(\mu_Y, \sigma_Y^2)$ where $\mu_{\mathbf{Y}} = \mathbf{a}\mu_{\mathbf{X}} + \mathbf{b}, \quad \sigma_{\mathbf{Y}}^2 = \mathbf{a}^2 \sigma_{\mathbf{X}}^2.$

$$Y = aX + b = a(6x + 1 + 1 + b)$$
 where $2 = N(0,1)$

$$= a6x + a1 + b$$

$$= a6x + b + b + b$$

$$= a6x + b + b + b$$

$$= a16x + b$$

* Widely used distribution

- * Widely used distribution
- * Related to exponential and normal

- » Gamma Distribution...
 - * Widely used distribution
 - * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers.

- » Gamma Distribution...
 - * Widely used distribution
 - * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

- » Gamma Distribution...
 - * Widely used distribution
 - * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

$$\Gamma(n) = (n-1)$$

- * Widely used distribution
- * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, ...\}$, then

$$\Gamma(n) = (n-1)!$$

Generally, for any positive number $\alpha, \Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty \mathbf{x}^{\alpha-1} \mathbf{e}^{-\mathbf{x}} d\mathbf{x}, \quad \text{for } \alpha > 0.$$

- * Widely used distribution
- * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

$$C(n) = (n-1)!$$

Generally, for any positive number $\alpha, \Gamma(\alpha)$ is defined as

$$\Gamma(lpha) = \int_0^\infty extbf{ extit{x}}^{lpha-1} extbf{ extit{e}}^{- extbf{ extit{x}}} extbf{ extit{d} extit{x}}, \quad ext{for } lpha > 0.$$

Gamma function for positive real values