АРХИТЕКТУРА И ОРГАНИЗАЦИЈА РАЧУНАРА 1

Верзија 2014 1.0

Садржај

Садржај	3
Кеш меморија (Cache Memory)	5
Задатак 1	5
Задатак 2	6
Задатак 3	9
Задатак 4	12
Задатак 5	15
Задатак 6	19
Задатак 7	20
Задатак 8	22
Задатак 9	24
Задатак 10	27
Задатак 11	29
Задатак 12	
Задатак 13	32
Задатак 14	
Задатак 15	
Задатак 16	
Задатак 17	
Задатак 18	
Виртуелна меморија (Virtual Memory)	
Задатак 1	
Задатак 2	
Задатак 3	
Задатак 4	
Задатак 5	
Задатак 6	
Задатак 7	
Задатак 8	
Задатак 9	
ладатак эПреклапање приступа меморијским модулима (Memory Inteleaving)	
Задатак 1	
Задатак 2	
• •	
Задатак 4	
Задатак 5	
Задатак 6	
Задатак 7	
Задатак 8	
Задатак 9	
Проточна обрада (Pipeline)	
Задатак 1	
Задатак 2	
Задатак 3	
Задатак 4	
Задатак 5	
Задатак 6	
Задатак 7	
Задатак 8	80

Задатак 9	81
Sugaran Si miniminininininininininininininininini	
Задатак 10	81
Задатак 11	82
Задатак 12	
Задатак 13	83
Задатак 14	
Задатак 15	
Задатак 16	
Задатак 17	
Задатак 18	
Задатак 19	
Задатак 20	
Задатак 21	
Задатак 22	
Задатак 23	
Задатак 24	
Задатак 25	98
Задатак 26	
Задатак 27	

Кеш меморија (CACHE MEMORY)

Задатак 1.

Оперативна меморија рачунара је капацитета 1 МВ, а ширина речи износи 1 бајт.

- а) Нацртати структуру кеш меморије, означити ширину у битовима свих релевантних делова и укратко описати њихову намену за кеш меморију са 1024 блока, блоком величине четири бајта и асоцијативним пресликавањем претпостављајући да је ширина речи дела кеш меморије у коме се чува садржај један бајт.
- б) Садржај релевантних локација оперативне меморије је дат на слици. Четири захтева за операцијама читања из оперативне меморије са локација 1402h, 401h, 2000h и 1003h се изводе у датом редоследу. За сваки захтев у посебној врсти табеле попунити колоне означене са: Адреса – генерисана адреса, Тип - тип приступа (Rd – читање, Wr – упис), Тад - вредност поља Тад генерисане адресе, Word вредност поља Word генерисане адресе, Време - време потребно за обављање приступа и Адресе адресе локација оперативне меморије којима се приступа у току извршења датог захтева. Приликом израчунавања времена потребног за обављање приступа узети у обзир само време утврђивања сагласности у ТАС МЕМОРИЈИ (t_{SA}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАG МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности. Навести вредности свих релевантних делова кеш меморије после ове четири операције, претпостављајући да је кеш меморија на почетку била празна.

Адреса	400	401	402	403		1000	1001	1002	1003		1400	1401	1402	1403	 2000	2001	2002	2003	
Садржај	0	1	0	0	•••	0	0	0	2	•••	0	0	3	0	 4	0	0	0	

Садржај релевантних локација оперативне меморије.

в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморију и обрнуто, па се тек онда приступа локацији, и да се све операције раде секвенцијално. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАС МЕМОРИЈИ (t_{SA}) , време приступа оперативној меморији (t_{OM}) , време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАG МЕМОРИЈИ (t_{тм}), занемарити времена потребна за остале активности.

Решење:

Структура адреса код кеш меморије:

Број блока	Word (1 Syma)
Тад (m бита)	Word (I бита)

а) Структура кеш меморије приказана је на слици.

Вежбе на табли Страна 5 од 100

Структура кеш меморије са асоцијативним пресликавањем

б) Генерисане адресе су: 1402h, 401h, 2000h и 1003h. Вредности свих релевантних делова кеш меморије после четири операције читања приказани су на слици.

Адреса	Тип	Tag	Word	Време	Адресе
1402h	Rd	00000010100000000	10	$t_{SA}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	1400h-1403h
401h	Rd	00000000100000000	01	$t_{SA}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	400h-403h
2000h	Rd	00000100000000000	00	$t_{SA}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	2000h-2003h
1003h	Rd	00000010000000000	11	$t_{SA}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	1000h-1003h

број			TAG			DA		
улаза	D	V	МЕМОРИЈА	адреса	M	EM(РИ	JA
0	0	1	000000010100000000	0	0	0	3	0
1	0	1	000000000100000000	4	0	1	0	0
2	0	1	000001000000000000	8	4	0	0	0
3	0	1	0000000100000000000	12	0	0	0	2
4	0	0						
÷				:				
1023	0	0		4092				
	Ca	држај	релевантних делова	а кеш ме	MOI	оије		

Расто дохратон о блоко ја:

в) Време дохватања блока је:

 $t_B=4\cdot(t_{OM}+t_{DM}).$

Укупно време је:

 $t=4 \cdot (t_{SA}+4 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM})=20 \cdot t_{DM}+16 \cdot t_{OM}+8 \cdot t_{SA}+4 \cdot t_{TM}.$

Задатак 2.

Оперативна меморија рачунара је капацитета 1 МВ, а ширина речи износи 1 бајт.

а) Нацртати структуру кеш меморије, означити ширину у битовима за све релевантне делове и укратко описати њихову намену за кеш меморију са 1024 блока, блоком величине четири бајта и

Вежбе на табли Страна 6 од 100

директним пресликавањем претпостављајући да је ширина речи дела кеш меморије у коме се налази садржај један бајт.

б) Садржај релевантних локација оперативне меморије је дат на слици. Четири захтева за операцијама читања из оперативне меморије са локација 1402h, 401h, 2000h и 1003h се изводе у датом редоследу. За сваки захтев у посебној врсти табеле попунити колоне означене са: Адреса – генерисана адреса, Тип - тип приступа (Rd – читање, Wr – упис), Тад - вредност поља Тад генерисане адресе, Block - вредност поља Block генерисане адресе, Word - вредност поља Word генерисане адресе, Време - време потребно за обављање приступа и Адресе - адресе локација оперативне меморије којима се приступа у току извршења датог захтева. Приликом израчунавања времена потребног за обављање приступа узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SD}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности. Навести вредности свих релевантних делова кеш меморије после ове четири операције, претпостављајући да је кеш меморија на почетку била празна.

Адреса
Садржај

400	401	402	403	 1000	1001	1002	1003		1400	1401	1402	1403	 2000	2001	2002	2003	
0	1	0	0	 0	0	0	2	• • •	0	0	3	0	 4	0	0	0	

Садржај релевантних локација оперативне меморије.

в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморију и обрнуто, па се тек онда приступа локацији, и да се све операције раде секвенцијално. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАС МЕМОРИЈИ (t_{SD}) , време приступа оперативној меморији (t_{OM}) , време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАС МЕМОРИЈИ (t_{TM}) , занемарити времена потребна за остале активности.

Решење:

Структура адреса код кеш меморије:

Број блока		Word (1 Syra)
Тад (m бита)	Block (k бита)	Word (I бита)

а) Структура кеш меморије је приказана на слици.

Вежбе на табли Страна 7 од 100

Структура кеш меморије са директним пресликавањем

б) Генерисане адресе су: 1402h, 401h, 2000h и 1003h. Вредности свих релевантних делова кеш меморије после четири операције читања приказани су на слици.

Адреса	Тип	Tag	Block	Word	Време	Адресе
1402h	Rd	00000001	0100000000	10	$t_{SD}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}$	1400h-1403h
401h	Rd	00000000	0100000000	01	$t_{SD}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}$	400h-403h
2000h	Rd	00000010	0000000000	00	$t_{SD}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}$	2000h-2003h
1003h	Rd	00000001	0000000000	11	$t_{SD}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}$	1000h-1003h

Садржај релевантних делова кеш меморије

в) Време дохватања блока је:

 $t_B=4 \cdot (t_{OM}+t_{DM}).$

Укупно време је:

Вежбе на табли Страна 8 од 100

 $t=4 \cdot (t_{SD}+4 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SD})=16 \cdot t_{DM}+16 \cdot t_{OM}+8 \cdot t_{SD}+4 \cdot t_{TM}.$

Задатак 3.

Оперативна меморија рачунара је капацитета 1 МВ, а ширина речи износи 1 бајт.

- а) Нацртати структуру кеш меморије, означити ширину у битовима за све релевантне делове и укратко описати њихову намену за:
- а1) кеш меморију са 1024 блока, блоком величине четири бајта и сет-асоцијативним пресликавањем са два блока по сету
- а2) кеш меморију са 1024 блока, блоком величине четири бајта и сет-асоцијативним пресликавањем са четири блока по сету,

претпостављајући да је ширина речи дела кеш меморије у коме се налази садржај један бајт

б) Садржај релевантних локација оперативне меморије је дат на слици. Четири захтева за операцијама читања из оперативне меморије са локација 1402h, 401h, 2000h и 1003h се изводе у датом редоследу. За сваки захтев у посебној врсти табеле попунити колоне означене са: Адреса – генерисана адреса, Тип - тип приступа (Rd - читање, Wr - упис), Тад - вредност поља Тад генерисане адресе, Set вредност поља Set генерисане адресе, Word - вредност поља Word генерисане адресе, Време - време потребно да се обављање приступа и Адресе - адресе локација оперативне меморије којима је приступа у току извршења датог захтева. Навести вредности свих релевантних делова кеш меморије после ове четири операције, претпостављајући да је кеш меморија на почетку била празна.

Адреса	
Садржај	

400	401	402	403	 1000	1001	1002	1003		1400	1401	1402	1403	 2000	2001	2002	2003	
0	1	0	0	 0	0	0	2	:	0	0	3	0	 4	0	0	0	

Садржај релевантних локација оперативне меморије.

в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији, и да се све операције раде секвенцијално. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАС МЕМОРИЈИ (t_{SS}) , време приступа оперативној меморији (t_{OM}) , време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАG МЕМОРИЈИ (t_{тм}), занемарити времена потребна за остале активности.

Решење:

Структура адреса код кеш меморије:

Број блока		Word (1 бита)
Тад (m бита)	Set (k бита)	Word (I бита)

а1) Структуре кеш меморије је приказана на слици.

Вежбе на табли Страна 9 од 100

Структура кеш меморије са сет-асоцијативним пресликавањем са два блока по сету a2) Структуре кеш меморије је приказана на слици.

Вежбе на табли Страна 10 од 100

Структура кеш меморије са сет-асоцијативним пресликавањем са четири блока по сету

Вежбе на табли Страна 11 од 100 б1) Сет-асоцијативно пресликавање са 2 блока по сету.

Вредности свих релевантних делова кеш меморије после четири операције читања приказани су на слици.

Адреса	Тип	Tag	Set	Word	Време	Адресе
1402h	Rd	00000010	100000000	10	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	1400h-1403h
401h	Rd	000000000	100000000	01	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	400h-403h
2000h	Rd	000000100	000000000	00	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	2000h-2003h
1003h	Rd	00000010	000000000	11	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	1000h-1003h

број сета	број улаза	D	<u>v</u>	ТА G МЕМОРИЈА	адреса	M		ТА) РИ	JA_
SET_0	0 1	0	1	000000100 00000010	0 4	0	0	0	2
				:	÷				
CET	0	0	1	000000010	2048	0	0	3	0
SET ₂₅₆	1	0	1	000000000	2052	0	1	0	0
				· :	:				
CET	0	0	0		4088				
SET ₅₁₁	1	0	0		4092				
		Сад	ржај р	елевантних д	целова к	еш и	мем	ори	je.

62) Сет-асоцијативно пресликавање са 4 блока по сету

Вредности свих релевантних делова кеш меморије после четири операције читања приказани су на слици.

Адреса	Тип	Tag	Set	Word	Време	Адресе
1402h	Rd	000000101	00000000	10	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	1400h-1403h
401h	Rd	0000000001	00000000	01	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	400h-403h
2000h	Rd	0000001000	00000000	00	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	2000h-2003h
1003h	Rd	000000100	00000000	11	$t_{SS}+4\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	1000h-1003h

број сета	број улаза	D	<u>v</u>	ТА G МЕМОРИЈА	адреса	M	DA EMC		JA
	0	0	1	0000000101	0	0	0	3	0
CET	1	0	1	0000000001	4	0	1	0	0
SET_0	2	0	1	0000001000	8	4	0	0	0
	3	0	1	000000100	12	0	0	0	2
				:	:				
	0	0	0		4080				
OPP TO	1	0	0		4084				
SET_{256}	2	0	0		4088				
	3	0	0		4092				
		Caz	цржа <u>і</u> ре	елевантних д	елова ке	ши	емс	риј	e

в1) Време дохватања блока је:

 $t_B=4 \cdot (t_{OM}+t_{DM}).$

Укупно време је:

 $t=4 \cdot (t_{SS}+4 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SS})=16 \cdot t_{DM}+16 \cdot t_{OM}+8 \cdot t_{SS}+4 \cdot t_{TM}.$

в2) Исто као и в1).

Задатак 4.

Оперативна меморија рачунара је капацитета 512 МВ, а ширина речи износи 16 бита.

Страна 12 од 100 Вежбе на табли

а) Нацртати структуру кеш меморије, означити ширину у битима свих релевантних делова и кратко објаснити функције свих делова кеш меморије за следеће случајеве:

кеш меморије са 64 К блокова, величином блока 256 речи и асоцијативним пресликавањем,

кеш меморије са 64 К блокова, величином блока 256 речи и директним пресликавањем,

кеш меморије са 64 К блокова, величином блока 256 речи и сет-асоцијативним пресликавањем, са 16 блокова по сету,

претпостављајући да је ширина речи дела кеш меморије у коме се чувају садржаји 16 бита.

б) Садржај релевантних локација оперативне меморије је дат на слици, при чему су све вредности приказане хексадецимално. Узети да се, најпре, реализују две операције читања са адреса 0A0FF00h и 0A0FFFFh, затим две операције уписа вредности 0003h и 0004h у локације на адресама 0DE1000h и 0DE10FFh, респективно и на крају две операције читања са адреса 0807500h и 08075FFh. Операције читања и уписа се искључиво реализују над садржајима кеш меморије. Уколико се у случају горњих операција читања и уписа утврди да нема сагласности довлачи се одговарајући блок садржаја из оперативне у кеш меморију. Блокови кеш меморије чији је садржај модификован враћају се у оперативну меморију.

				:			
адреса	• • •	0807500	0807501		08075FE	08075FF	
садржај	• • •	0	0		0	0	
				:			
адреса	• • •	0A0FF00	0A0FF01		0A0FFFE	0A0FFFF	
садржај	• • •	1	1		1	1	
•				:			
адреса	• • •	0DE1000	0DE1001		0DE10FE	0DE10FF	
садржај	• • •	2	2		2	2	•••
'				:			

Садржај релевантних локација оперативне меморије

За све случајеве кеш меморије, дати садржаје релевантних делова кеш меморије после извршења наведених операција, претпостављајући да је кеш меморија на почетку била празна.

в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији, и да се све операције раде секвенцијално. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАС МЕМОРИЈИ код кеш меморије са асоцијатиним пресликавањем износи (t_{SA}), код кеш меморије са директним пресликавањем износи (t_{SD}), а код кеш меморије са сет-асоцијатиним пресликавањем износи (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАС МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.

Решење:

а1) Структура адреса код кеш меморије:

Број блока		Word (8 бита)
Tag (20 бита)		word (8 oura)
а2) Структура адреса ко	д кеш меморије:	
Број блока		Word (9 Syrps)
Tag (4 бита)	Block (16 бита)	Word (8 бита)
а3) Структура адреса ко	д кеш меморије:	
Број блока		W 1(0.7
Тад (8 бита)	Set (12 бита)	Word (8 бита)

б1) Изглед релевантних делова кеш меморије је дат на слици.

Вежбе на табли Страна 13 од 100

Електротехнички факултет Универзитета у Београду Архитектура и организација рачунара 1

Адреса	Тип	Tag	Word	Време	Адресе
0A0FF00h	Rd	00001010000011111111	00000000	$t_{SA}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	A0FF00h-A0FFFFh
0A0FFFFh	Rd	00001010000011111111	11111111	$t_{\rm SA} + t_{\rm DM}$	-
0DE1000h	Wr	00001101111000010000	00000000	$t_{SA}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	DE1000h-DE10FFh
0DE10FFh	Wr	00001101111000010000	11111111	$t_{\mathrm{SA}} + t_{\mathrm{DM}}$	-
0807500h	Rd	00001000000001110101	00000000	$t_{SA}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	807500h-8075FFh
08075FFh	Rd	00001000000001110101	11111111	$t_{SA}+t_{DM}$	-

број улаза	D	_ V _	ТАG МЕМОРИЈА	адреса	I	_	OATA MOP	_	\
0	0	1	0A0FF	000000h	1	1		1	1
1	1	1	0DE10	000100h	3	2		2	4
2	0	1	08075	000200h	0	0		0	0
:	:	<u> </u>		:					
FFFFh	0	0		FFFF00h					
	Ca,	држај р	оелевантних д	елова ке	шм	ем	ориј	je	

• "\range F ---- F ---- --- \range --- --- --- ---

б2) Изглед релевантних делова кеш меморије је дат на слици:

Адреса	Тип	Tag	Block	Word	Време	Адресе
0A0FF00	Rd	0000	1010000011111111	00000000	$t_{SD}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}$	A0FF00h-A0FFFFh
0A0FFFF	Rd	0000	1010000011111111	11111111	t_{SD}	-
0DF1000	Wr	0000	11011111000010000	00000000	$t_{SD}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}+t_{DM}$	DE1000h-DE10FFh
0DE10FF	Wr	0000	11011111000010000	11111111	$t_{\mathrm{SD}} + t_{\mathrm{DM}}$	-
0807500	Rd	0000	1000000001110101	00000000	$t_{SD}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SD}$	807500h-8075FFh
08075FF	Rd	0000	1000000001110101	11111111	t_{SD}	-

број улаза	D	V	ТАG МЕМОРИЈА	адреса	I		OATA MOP		\
0000h	0	0		000000h					
:	÷	:		:					
8075h	0	1	0	807500h	0	0		0	0
:	÷	:		÷					
A0FFh	0	1	0	A0FF00h	1	1		1	1
:	÷	:		÷					
DE10h	1	1	0	DE1000h	3	2		2	4
:	÷	:		÷					
FFFFh	0	0		FFFF00h					
	Сол	narani n	ATABAHTHIN T	OHODO 140				_	

Садржај релевантних делова кеш меморије

б3) Изглед релевантних делова кеш меморије је дат на слици.

Адреса	Тип	Tag	Block	Word	Време	Адресе
0A0FF00	Rd	00001010	000011111111	00000000	$t_{SS}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	A0FF00h-A0FFFFh
0A0FFFF	Rd	00001010	000011111111	11111111	t_{SS}	-
0DF1000	Wr	00001101	111000010000	00000000	$t_{SS}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}+t_{DM}$	DE1000h-DE10FFh
0DE10FF	Wr	00001101	111000010000	11111111	$t_{SS}+t_{DM}$	-
0807500	Rd	00001000	000001110101	00000000	$t_{SS}+n\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	807500h-8075FFh
08075FF	Rd	00001000	000001110101	11111111	t_{SS}	-

број сета	број улаза	\mathbf{D}_{000}	_	\mathbf{V}_{000}	_	ТАG ₀ МЕМОРИЈА	адреса	ľ	D MEN	ATA 1OP	_	١
	0	0		0			000000h					
	1	0		0			000100h					
$SET_{000h} \\$	2	0		0			000200h					

Вежбе на табли Страна 14 од 100

Садржај релевантних делова кеш меморије

в) Време дохватања блока је:

 $t_B = 256 \cdot (t_{OM} + t_{DM}).$

Задатак 5.

Оперативна меморија рачунара има капацитет 2 МВ, ширина речи износи 16 бита и време приступа меморије износи T_m . Процесор има раздвојене кеш меморије за инструкције и податке. Инструкцијска кеш меморија има капацитет DATA дела 4 КВ, пресликавање је на нивоу блока, величина блока је 128 бајта, ширина речи је 16 бита. Претпоставити да су све инструкције ширине 16 битова, и да се адресе на које указује регистар РС односе на 16-битне величине.

а) Нацртати структуру свих релевантних делова кеш меморије са:

директним пресликавањем,

асоцијативним пресликавањем, ако је алгоритам замене FIFO и

сет-асоцијативним пресликавањем са два блока по сету, ако је алгоритам замене FIFO,

и укратко описати функцију сваког дела. Нацртати структуру адресе коју генерише процесор и објаснити како се користе групе битова у сва три случаја да се:

провери да ли је тражена инструкција у кеш меморији и

Вежбе на табли Страна 15 од 100

да се очита инструкција из кеш меморије.

б) Израчунати укупно време потребно за читање инструкција из кеш меморије, за сва три типа кеш меморије, када се извршава следећи програм:

10
200
2555
2655

Прва очитана инструкција се налази на адреси 10, а последња на адреси 2655. Петља се изврши два пута. Кеш меморија је била празна на почетку. Када се рачуна време: треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије, па се тек онда инструкција очита. Узети у обзир само време потребно за приступ кеш меморији за проверу сагласности и приступ податку T_k , као и време потребно за пребацивање податка из оперативне меморије у кеш меморију или процесор и обрнуто је T_m , занемарити времена потребна за остале активности.

Решење:

а1) Структура адреса код кеш меморије:

Број блока	Word (6 бита)						
Tag (9 бита)	1 3						
а2) Структура адреса код к	еш меморије:						
Број блока		Word (C Syro)					
Tag (14 бита)		Word (6 бита)					
а3) Структура адреса код к	еш меморије:						
Број блока							
Tag (10 бита)	Set (4 бита)	Word (6 бита)					

- б)Адресе којима се приступа: 0000Ah, ..., 009FBh, 000С8h, ..., 00A5Fh;
- б1) Начин смештања и садржаји сваког улаза Таг меморије приказани су на слици.

улаз		директно								
0	0	1								
1	0	1								
2	0	1								
3	0	1	0	1						
4	0	1	0	1						
5	0	1	0	1						
6	0	1	0	1						
7	0	1	0	1						
8	0			1						
9	0			1						
10	0									
11	0									
12	0									
13	0									
14	0									
15	0									
16	0									
17	0									
18	0									

Вежбе на табли Страна 16 од 100

19	0		
20	0		
21	0		
22	0		
23	0		
24	0		
25	0		
26	0		
27	0		
28	0		
29	0		
30	0		
31	0		

Садржаји свих улаза Таг меморије у случају директног пресликавања

Време дохватања блока је:

$$t_B = 64 \cdot (t_{DM} + t_{OM}).$$

Укупно време дохватања свих блокова је:

$$t_{Ball}$$
=32 t_B +8 t_B +5 t_B +7 t_B =52 t_B .

Укупно време је:

$$t=3328 t_{DM}+3328 t_{OM}+5054 t_{SD}+52 t_{TM}$$

б2) Начин смештања и садржаји сваког улаза Таг меморије приказани су на слици.

улаз	асоцијативно								
0	0	0 32 27							
1	1	33	28						
2	2	34	29						
3	3	35	30						
3 4 5 6 7 8 9	3 4 5 6 7 8	36	31						
5	5	37 38 39	32						
6	6	38	33						
7	7	39	34						
8	8	3	32 33 34 35						
	9	4	36						
10	10	3 4 5 6 7 8 9	37						
11 12 13 14 15 16	11 12	6	38						
12	12	7	39						
13	13	8	40						
14	14	9	41						
15	14 15 16	10							
16	16	11							
17	17	12							
18	18	13							
19	19	14							
20	20	15							
21	21	16							
20 21 22 23 24 25	20 21 22 23 24 25	13 14 15 16 17							
23	23	18							
24	24	19							
25	25	20							
26	26	21 22							
27	27	22							
26 27 28 29	26 27 28 29 30	23 24 25							
29	29	24							
30	30	25							
31	31	26							
	Memoriale v cuvilaiv ac								

Садржаји свих улаза Таг меморије у случају асоцијативног пресликавања

Страна 17 од 100 Вежбе на табли

Време дохватања блока је:

 $t_B = 64 \cdot (t_{DM} + t_{OM}).$

Укупно време дохватања свих блокова је:

 t_{Ball} =32 t_B +8 t_B +24 t_B +15 t_B =79 t_B .

Укупно време је:

 $T=10058 \cdot t_{DM} + 5056 \cdot t_{OM} + 5081 \cdot t_{SA} + 79 \cdot t_{TM}$.

б3) Начин смештања и садржаји сваког улаза Таг меморије приказани су на слици.

	сет		T	аг	
	0	0	2		
	1	0	2		
	2	0	2		
	3	0	2	1	
	4	0	2	1	
	5 6	0	2 2	1	
		0	2	1	
улаз 0	7	0	2	1	
	8	0			2 2
	9	0			2
	10	0			
	11	0			
	12	0			
	13	0			
	14	0			
	15	0			
	0	1			
	1	1			
	2	1			
	3	1	0	2	
	3 4 5	1	0	2	
	5	1	0	2 2 2 2 2	
	6	1	0	2	
улаз 1	7	1	0	2	
	8	1			
	9	1			
	10	1			
	11	1			
	12	1			
	13	1			
	14	1			
	15	1			
а Таг ме		ie v c	пучаіх	/ CET-2	сопиі

Садржаји свих улаза Таг меморије у случају сет-асоцијативног пресликавања

Време дохватања блока је:

 $t_B = 64 \cdot (t_{DM} + t_{OM}).$

Укупно време дохватања свих блокова је:

 t_{Ball} =16 t_B +16 t_B +8 t_B +5 t_B +5 t_B +5 t_B +2 t_B =57 t_B .

Укупно време је:

 $T=3648 t_{DM}+3648 t_{OM}+5059 t_{SS}+57 t_{TM}$

Вежбе на табли Страна 18 од 100

Задатак 6.

Посматра се рачунар са следећим карактеристикама. Оперативна меморија је капацитета 2¹⁶ речи а ширина речи је 16 бита. Процесор генерише адресе које се односе на 16-битне адресе.

Процесор има кеш меморију са асоцијативним пресликавањем на нивоу блока са четири улаза. Величина блока је 16 речи. Користи се LRU алгоритам замене блокова и write-back алгоритам за ажурирање садржаја оперативне меморије. LRU алгоритам је реализован са четири бројача по модулу 4, сваки уз свој улаз кеш меморије. Улаз одабран за замену је онај чији бројач има вредност 0. На почетку је кеш меморија била празна а сви бројачи су имали вредност 0. Вредност бројача се ажурира на исти начин када је кеш меморија пуна и када је празна. Процесор генерише следећу секвенцу адреса са типом операције назначеним у загради после сваке адресе (Rd=read, Wr=write):

734Fh (Rd), DE38h (Rd), FF03h (Wr), 7350h (Rd), 7351h (Rd), DE48h (Wr), 7352h (Rd), 7348h (Rd).

- а) Дати садржај свих улаза који су реферисани у датој секвенци, садржаје асоцијативног (TAG) дела (A0, A1, A2 и A3), вредности V (Valid) и D (Dirty) бита, као и LRU бројача, после сваког приступа кеш меморији.
- б) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SA}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.
- в) Одговорити на питања а) и б) у случају да се уместо write-back алгоритма за ажурирање садржаја оперативне меморије користи write-through.
- г) Претпоставити да је задата кеш меморија са директним пресликавањем на нивоу блока. Величина блока је 256 речи. Капацитет DATA дела кеш меморије је 1 К речи. Навести секвенцу вредности Тад поља за задату секвенцу адреса.

Решење:

Напомена: Када се наведе да се ради о **write-back** алгоритму за ажурирање садржаја оперативне меморије, а не наведе се о којој се политици довлачења ради приликом несагласности (Miss) приликом операције уписа онда се подразумева **write allocated**.

Када се наведе да се ради о **write-through** алгоритму за ажурирање садржаја оперативне меморије, а не наведе се о којој се политици довлачења ради приликом несагласности (Miss) приликом операције уписа онда се подразумева **no write allocated**.

а) Структура адреса код кеш меморије:

Број блока	Word (4 бита)
Тад (12 бита)	Word (4 бита)

Адреса	Тип	Tag	Word	Време	Адресе
734Fh	Rd	011100110100	1111	$t_{SA}+16 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	7340h-734Fh
DE38h	Rd	110111100011	1000	$t_{SA}+16 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	DE30h-DE3F
FF03h	Wr	1111111110000	0011	$t_{SA}+16 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	FF00h-FF0Fh
7350h	Rd	011100110101	0000	$t_{SA}+16 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	7350h-735Fh
7351h	Rd	011100110101	0001	$t_{SA}+t_{DM}$	-
DE48h	Wr	110111100100	1000	$t_{SA}+16 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	DE40h-DE4Fh
7352h	Rd	011100110101	0010	$t_{SA}+t_{DM}$	-
7348h	Rd	011100110100	1000	$t_{SA}+16 \cdot (t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	7340h-734Fh

Вежбе на табли Страна 19 од 100

Следећа табела садржи вредности свих релевантних делова кеш меморије после сваке адресе у секвенци адреса:

адреса	A0	A1	A2	A3	C0	C 1	C2	C3	V0	V 1	V2	V 3	D 0	D1	D2	D3
734Fh	734h				3	0	0	0	1	0	0	0	0	0	0	0
DE38h	734h	DE3h			2	3	0	0	1	1	0	0	0	0	0	0
FF03h	734h	DE3h	FF0h		1	2	3	0	1	1	1	0	0	0	1	0
7350h	734h	DE3h	FF0h	735h	0	1	2	3	1	1	1	1	0	0	1	0
7351h	734h	DE3h	FF0h	735h	0	1	2	3	1	1	1	1	0	0	1	0
DE48h	DE4h	DE3h	FF0h	735h	3	0	1	2	1	1	1	1	1	0	1	0
7352h	DE4h	DE3h	FF0h	735h	2	0	1	3	1	1	1	1	1	0	1	0
7348h	DE4h	734h	FF0h	735h	1	3	0	2	1	1	1	1	1	0	1	0

б) Време дохватања блока је:

 $t_b = 16 \cdot (t_{OM} + t_{DM}).$

Укупно време је:

 $t = 104 \cdot t_{DM} + 96 \cdot t_{OM} + 14 \cdot t_{SA} + 6 \cdot t_{TM}$.

в1)

Адреса	Тип	Tag	Word	Време	Адресе
734Fh	Rd	011100110100	1111	$t_{SA}+16\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	7340h-734Fh
DE38h	Rd	110111100011	1000	$t_{SA} + 16 \cdot (t_{OM} + t_{DM}) + t_{TM} + t_{SA} + t_{DM}$	DE30h-DE3Fh
FF03h	Wr	111111110000	0011	$t_{SA}+t_{OM}$	FF03h
7350h	Rd	011100110101	0000	$t_{SA}+16\cdot(t_{OM}+t_{DM})+t_{TM}+t_{SA}+t_{DM}$	7350h-735Fh
7351h	Rd	011100110101	0001	$t_{SA}+t_{DM}$	-
DE48h	Wr	110111100100	1000	$t_{SA}+t_{OM}$	DE48h
7352h	Rd	011100110101	0010	$t_{SA}+t_{DM}$	-
7348h	Rd	011100110100	1000	$t_{SA}+t_{DM}$	-

Следећа табела садржи вредности свих релевантних делова кеш меморије после сваке адресе у секвенци адреса:

адреса	A0	A1	A2	A3	C0	C1	C2	C3	V0	V1	V2	V3
734Fh	734h	_	_	_	3	0	0	0	1	0	0	0
DE38h	734h	DE3h	_	_	2	3	0	0	1	1	0	0
FF03h	734h	DE3h		_	2	3	0	0	1	1	0	0
7350h	734h	DE3h	735h	_	1	2	3	0	1	1	1	0
7351h	734h	DE3h	735h	_	1	2	3	0	1	1	1	0
DE48h	734h	DE3h	735h	_	1	2	3	0	1	1	1	0
7352h	734h	DE3h	735h	_	1	2	3	0	1	1	1	0
7348h	734h	DE3h	735h		3	1	2	0	1	1	1	0

в2) Време дохватања блока је:

 $T_b = 16 \cdot (t_{OM} + t_{DM}).$

Укупно време је:

 $T = 54 \cdot t_{DM} + 50 \cdot t_{OM} + 11 \cdot t_{SA} + 3 \cdot t_{TM}$

г) Секвенца вредности Тад поља је 011100b, 110111b, 111111b, 011100b, 011100b, 110111b, 011100b, 011100b.

Задатак 7.

Адреса је ширине 32 бита, а адресибилна јединица је 32-битна реч. Између магистрале процесора и меморије рачунара везана је кеш меморија организована сет-асоцијативно на нивоу блока, капацитета 16 MW (mega речи), са 16 сетова, два улаза по сету. На почетку је кеш био празан, а почетна вредност SP=200h, а ACC=0h, стек расте од виших ка нижим адресама, а SP указује на прву слободну локацију.

Страна 20 од 100 Вежбе на табли

Електротехнички факултет Универзитета у Београду Архитектура и организација рачунара 1

Алгоритам за ажурирање садржаја оперативне меморије је write-back. Кеш меморија је са write allocated политиком довлачења. Посматра се следећа секвенца инструкција које процесор генерише (све вредности су хексадецималне):

адреса:	инструкција:	
FF00	ADD #800h	
FF02	JSR 1224h	; poziv potprograma
FF04	SUB 8000h	
FF06		
1224	PUSH	
1225	LOAD #888h	
1227	RTS	

- а) Дати садржај оба улаза свих сетова који су реферисани у датој секвенци, као и вредности V (Valid) бита, после завршетка дате секвенце, ако је алгоритам замене FIFO. Означити сетове.
- б) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.
 - в) Исто као под а) и б) само је алгоритам замене LRU.

Решење:

а) Структура адреса код кеш меморије:

Број блока		Word (10 Syma)
Tag (9 бита)	Set (4 бита)	Word (19 бита)

Секвенца адреса које генерише представљени програмски сегмент: FF00h (Rd), FF01h (Rd), FF02h (Rd), FF03h (Rd), 200h (Wr), 1224h (Rd), 1FFh (Wr), 1225h (Rd), 1226h (Rd), 1227h (Rd), 1FFh (Rd), 800h (Rd). Све адресе се односе на сет 0 кеш меморије.

Адреса	Тип	Tag	Set	Word	Време	Адресе
FF00	Rd	000000000	0000	00011111111100000000	$t_{SS}+524288*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	0h-7FFFFh
FF01	Rd	000000000	0000	00011111111100000001	t_{SS}	-
FF02	Rd	000000000	0000	00011111111100000010	t_{SS}	-
FF03	Rd	000000000	0000	00011111111100000011	t_{SS}	-
200	Wr	000000000	0000	000000001000000000	$t_{SS}+t_{DM}$	-
1224	Rd	000000000	0000	0000001001000100100	t_{SS}	-
1FF	Wr	000000000	0000	00000000001111111111	$t_{SS}+t_{DM}$	-
1225	Rd	000000000	0000	0000001001000100101	t_{SS}	-
1226	Rd	000000000	0000	0000001001000100110	t_{SS}	-
1227	Rd	000000000	0000	0000001001000100111	t_{SS}	-
1FF	Rd	000000000	0000	00000000001111111111	t_{SS}	-
800	Rd	000000000	0000	000000100000000000	t_{SS}	-

број	број			TAG_0	DATA	
сета	улаза	$\mathbf{D_0}$	$\mathbf{V_0}$	МЕМОРИЈА	адреса	МЕМОРИЈА
$SET_{0h} \\$	0	1	1	00000000	00000h	

Вежбе на табли Страна 21 од 100

б) Време дохватања блока је: $T_b=524288 \cdot (t_{OM}+t_{DM})$.

Укупно време је:

 $T=524290*t_{DM}+524288*t_{OM}+13*t_{SS}+1*t_{TM}$

в) Исто како а) и б).

Задатак 8.

Адреса је ширине 32 бита, а адресибилна јединица је 8-битна реч. Између магистрале процесора и меморије рачунара везане су две кеш меморије, једна за инструкције и друга за податке, организоване сет-асоцијативно на нивоу блока свака капацитета 16 КВ, величина блока је 16 бајтова, са два улаза по сету. На почетку су обе кеш меморије биле празне, а почетна вредност SP=200h, а ACC=0h, стек расте од виших ка нижим адресама. Акумулатор је 32-битни. Алгоритам за ажурирање садржаја оперативне меморије write-back. Кеш меморија је са по write allocated политиком довлачења. Посматра се следећа секвенца инструкција које процесор генерише (све вредности су хексадецималне):

```
адреса:
          инструкција:
FF00
          PUSH
FF01
          JSR 1234h
                       ; poziv potprograma
FF06
          LOAD 8000h
FF0B
1234
          POP
1235
          STORE 8000h
123A
          PUSH
123B
          RTS
```

- а) Дати садржај оба улаза свих сетова који су реферисани у датој секвенци, као и вредности V (Valid) и D (Dirty) бита, после завршетка дате секвенце, ако је алгоритам замене FIFO. Означити сетове.
- б) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.
 - в) Исто као под а) и б) само је алгоритам замене LRU.

Решење:

а) Структура адреса код кеш меморије:

Број блока		Word (4 бита)
Tag (19 бита)	Set (9 бита)	Word (4 бита)

Секвенца адреса у којима се приступа: FF00, 200, 1FF, 1FE, 1FD, FF01, FF02, FF03, FF04, FF05, 1FC, 1FB, 1FA, 1F9, 1234, 1F9, 1FA, 1FB, 1FC, 1235, 1236, 1237, 1238, 1239, 8000, 8001, 8002, 8003, 123A,

Вежбе на табли Страна 22 од 100

1FC, 1FB, 1FA, 1F9, 123B, 1F9, 1FA, 1FB, 1FC, FF06, FF07, FF08, FF09, FF0A, 8000, 8001, 8002, 8003, FF0B.

Адреса	Тип	Tag	Set	Word	Време	Адресе
FF00	I	0000000000000000111	111110000	0000	$t_{SS}+16*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	FF00h-FF0Fh
FF01	I	0000000000000000111	111110000	0001	t_{SS}	-
FF02	I	0000000000000000111	111110000	0010	t_{SS}	-
FF03	I	0000000000000000111	111110000	0011	t_{SS}	-
FF04	I	0000000000000000111	111110000	0100	t_{SS}	-
FF05	I	0000000000000000111	111110000	0101	t_{SS}	-
1234	I	000000000000000000000000000000000000000	100100011	0100	$t_{SS}+16*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	1230h-123Fh
1235	I	000000000000000000000000000000000000000	100100011	0101	t_{SS}	-
1236	I	000000000000000000000000000000000000000	100100011	0110	t_{SS}	-
1237	I	000000000000000000000000000000000000000	100100011	0111	t_{SS}	-
1238	I	000000000000000000000000000000000000000	100100011	1000	t_{SS}	-
1239	I	000000000000000000000000000000000000000	100100011	1001	t_{SS}	-
123A	I	000000000000000000000000000000000000000	100100011	1010	t_{SS}	-
123B	I	000000000000000000000000000000000000000	100110010	1011	t_{SS}	-
FF06	I	0000000000000000111	111110000	0110	t_{SS}	-
FF07	I	0000000000000000111	111110000	0111	t_{SS}	-
FF08	I	0000000000000000111	111110000	1000	t_{SS}	-
FF09	I	0000000000000000111	111110000	1001	t_{SS}	-
FF0A	I	0000000000000000111	111110000	1010	t_{SS}	-
FF0B	I	0000000000000000111	111110000	1011	t_{SS}	-

Адреса	Тип	Tag	Set	Word	Време	Адресе
200	Wr	000000000000000000000000000000000000000	000100000	0000	$t_{SS}+t_{OM}$	200h
1FF	Wr	000000000000000000000000000000000000000	000011111	1111	$t_{SS}+t_{OM}$	1FFh
1FE	Wr	000000000000000000000000000000000000000	000011111	1110	$t_{SS}+t_{OM}$	1FEh
1FD	Wr	000000000000000000000000000000000000000	000011111	1101	$t_{SS}+t_{OM}$	1FDh
1FC	Wr	000000000000000000000000000000000000000	000011111	1100	$t_{SS}+t_{OM}$	1FCh
1FB	Wr	000000000000000000000000000000000000000	000011111	1011	$t_{SS}+t_{OM}$	1FBh
1FA	Wr	000000000000000000000000000000000000000	000011111	1010	$t_{SS}+t_{OM}$	1FAh
1F9	Wr	000000000000000000000000000000000000000	000011111	1001	$t_{SS}+t_{OM}$	1F9h
1F9	Rd	000000000000000000000000000000000000000	000011111	1001	$t_{SS}+16*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	1F0h-1FFh
1FA	Rd	000000000000000000000000000000000000000	000011111	1010	t_{SS}	-
1FB	Rd	000000000000000000000000000000000000000	000011111	1011	t_{SS}	-
1FC	Rd	000000000000000000000000000000000000000	000011111	1100	t_{SS}	-
8000	Wr	000000000000000000000000000000000000000	000000000	0000	$t_{SS}+t_{OM}$	8000h
8001	Wr	00000000000000000100	000000000	0001	$t_{SS}+t_{OM}$	8001h

Вежбе на табли Страна 23 од 100

8002	Wr	000000000000000000000000000000000000000	000000000	0010	$t_{SS}+t_{OM}$	8002h
8003	Wr	000000000000000000000000000000000000000	000000000	0011	$t_{SS}+t_{OM}$	8003h
1FC	Wr	000000000000000000000000000000000000000	000011111	1100	t_{SS}	-
1FB	Wr	000000000000000000000000000000000000000	000011111	1011	t_{SS}	-
1FA	Wr	000000000000000000000000000000000000000	000011111	1010	t_{SS}	-
1F9	Wr	000000000000000000000000000000000000000	000011111	1001	t_{SS}	-
1F9	Rd	000000000000000000000000000000000000000	000011111	1001	t_{SS}	-
1FA	Rd	000000000000000000000000000000000000000	000011111	1010	t_{SS}	-
1FB	Rd	000000000000000000000000000000000000000	000011111	1011	t_{SS}	-
1FC	Rd	000000000000000000000000000000000000000	000011111	1100	t_{SS}	-
8000	Rd	000000000000000000000000000000000000000	000000000	0000	$t_{SS}+16*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	8000h-800Fh
8001	Rd	000000000000000000000000000000000000000	000000000	0001	t_{SS}	-
8002	Rd	000000000000000000000000000000000000000	000000000	0010	t_{SS}	-
8003	Rd	00000000000000000100	00000000	0011	t_{SS}	_

б) Време дохватања блока је: $t_B=16*(t_{OM}+t_{DM})$.

Укупно време је:

в) Исто како а) и б).

$$\begin{aligned} t &= t_I + t_D \\ t_I &= 32 * t_{DM} + 32 * t_{OM} + 22 * t_{SS} + 2 * t_{TM} \\ t_D &= 32 * t_{DM} + 44 * t_{OM} + 30 * t_{SS} + 2 * t_{TM} \\ t &= 64 * t_{DM} + 76 * t_{OM} + 52 * t_{SS} + 4 * t_{TM} \end{aligned}$$

Задатак 9.

Адреса је ширине 32 бита, а адресибилна јединица је 16-битна реч. Између магистрале процесора и меморије рачунара везана је јединствена кеш меморије за инструкције и за податке, организоване сетасоцијативно на нивоу блока, капацитета 32 КВ, величина блока је 128 бајтова, са два улаза по сету. На почетку је кеш меморија била празна, а почетна вредност SP=600Ah, а MEM[0001h]=1h, MEM[4001h]=2h, MEM[4002h]=4h стек расте од виших ка нижим адресама и указује на прву слободну локацију. Акумулатор је 32-битни. Алгоритам за ажурирање садржаја оперативне меморије write-through. Кеш меморија је са по write allocated политиком довлачења и користи LRU алгоритам замене. Посматра се следећа секвенца инструкција које процесор генерише (све вредности су хексадецималне):

Вежбе на табли Страна 24 од 100

адреса: инструкција: E005 LOAD 0001h

E008 JSR A006h ; poziv potprograma

E00B STORE 201Ah

E00E

...

A006 LOAD 4001h

A009 ADD 4001h

A00C STORE 4003h

A00F RTS

- а) Дати садржај свих улаза свих сетова који су реферисани у датој секвенци, као и вредности релевантних бита, после завршетка дате секвенце. Означити сетове.
- б) Уместо јединствене кеш меморије капацитета 32 KB користе се две кеш меморије, једна за податке а друга за инструкције, свака капацитета 16 KB. Упоредити укупно време потребно за приступ кеш меморије у датој секвенци у оба случаја. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАG МЕМОРИЈИ (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАG МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.

Решење:

a)

1W=32b

CacheSize=16 KW

BlockSize=64 W

SetAssociativity=2

Структура адреса код кеш меморије:

Број блока		Word (6 Suma)
Тад (19 бита)	Set (7 бита)	Word (6 бита)

Секвенца адреса које генерише представљени програмски сегмент: E005h (Rd), E006h (Rd), E007h (Rd), 0001h (Rd), 0002h (Rd), E008h (Rd), E009h (Rd), E00Ah (Rd), 600Ah (Wr), 6009h (Wr), A006h (Rd), A007h (Rd), A008h (Rd), 4001h (Rd), 4002h (Rd), A009h (Rd), A00Ah (Rd), A00Bh (Rd), 4001h (Rd), 4002h (Rd), A00Ch (Rd), A00Dh (Rd), A00Eh (Rd), 4003h (Wr), 4004h (Wr), A00Fh (Rd), 6009h (Rd), 600Ah (Rd), E00Bh (Rd), E00Ch (Rd), E00Dh (Rd), 201Ah (Wr), 202Bh (Wr),

Адреса	Тип	Tag	Set	Word	Време а)	Време б)
E005	Rd	0000000000000000111	0000000	000101	$t_{SS} + 64*(t_{OM} + t_{DM}) + t_{TM} + t_{SS}$	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$
E006	Rd	0000000000000000111	0000000	000110	t_{SS}	t_{SS}
E007	Rd	0000000000000000111	0000000	000111	t_{SS}	t_{SS}
0001	Rd	000000000000000000000000000000000000000	0000000	000001	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$
0002	Rd	000000000000000000000000000000000000000	0000000	000010	t_{SS}	t_{SS}
E008	Rd	0000000000000000111	0000000	001000	t_{SS}	t_{SS}
E009	Rd	0000000000000000111	0000000	001001	t_{SS}	t_{SS}
E00A	Rd	0000000000000000111	0000000	001010	t_{SS}	t_{SS}
600A	Wr	0000000000000000011	0000000	001010	$t_{SS}+t_{OM}$	$t_{SS}+t_{OM}$
6009	Wr	00000000000000000011	0000000	001001	$t_{SS}+t_{OM}$	$t_{SS}+t_{OM}$

Вежбе на табли Страна 25 од 100

A006	Rd	00000000000000000101	0000000	000110	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$
A007	Rd	0000000000000000101	0000000	000111	t _{SS}	tss
A008	Rd	00000000000000000101	0000000	001000	t_{SS}	t_{SS}
4001	Rd	000000000000000000000000000000000000000	0000000	000001	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	$t_{SS} + 64*(t_{OM} + t_{DM}) + t_{TM} + t_{SS}$
4002	Rd	000000000000000000000000000000000000000	0000000	000010	t_{SS}	t_{SS}
A009	Rd	0000000000000000101	0000000	001001	t_{SS}	t_{SS}
A00A	Rd	0000000000000000101	0000000	001010	t_{SS}	t_{SS}
A00B	Rd	0000000000000000101	0000000	001011	t_{SS}	t_{SS}
4001	Rd	0000000000000000000000010	0000000	000010	t_{SS}	t_{SS}
4002	Rd	000000000000000000000000000000000000000	0000000	000101	t_{SS}	t_{SS}
A00C	Rd	00000000000000000101	0000000	001100	t_{SS}	t _{SS}
A00D	Rd	00000000000000000101	0000000	001101	t_{SS}	t _{SS}
A00E	Rd	00000000000000000101	0000000	001110	t_{SS}	t _{SS}
4003	Wr	000000000000000000000000000000000000000	0000000	000011	$t_{SS}+t_{DM}+t_{OM}$	$t_{SS}+t_{DM}+t_{OM}$
4004	Wr	000000000000000000000000000000000000000	0000000	000100	$t_{SS}+t_{DM}+t_{OM}$	$t_{SS}+t_{DM}+t_{OM}$
A00F	Rd	00000000000000000101	0000000	001111	t_{SS}	t _{SS}
6009	Rd	00000000000000000011	0000000	001001	$t_{SS} + 64*(t_{OM} + t_{DM}) + t_{TM} + t_{SS}$	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$
600A	Rd	0000000000000000011	0000000	001010	t_{SS}	t _{SS}
E00B	Rd	0000000000000000111	0000000	001011	$t_{SS}+64*(t_{OM}+t_{DM})+t_{TM}+t_{SS}$	t _{SS}
E00C	Rd	0000000000000000111	0000000	001100	t _{SS}	t _{SS}
E00D	Rd	0000000000000000111	0000000	001101	t _{SS}	t _{SS}
201A	Wr	000000000000000000000001	0000000	011010	$t_{SS}+t_{OM}$	$t_{SS}+t_{OM}$
202B	Wr	000000000000000000000000000000000000000	0000000	011011	$t_{SS}+t_{OM}$	$t_{SS}+t_{OM}$

Адресе се односе на сет 00h кеш меморије

Садржај релевантних делова кеш меморије

Време дохватања блока је: $t_B = 64*(t_{OM} + t_{DM})$.

Укупно време је:

$$t=386*t_{DM}+390*t_{OM}+39*t_{SS}+6*t_{TM}$$
.

б) Структура адреса код кеш меморије:

Број блока		Word (6 бита)
Tag (20 бита)	Set (6 бита)	Word (O Onta)

Адресе се односе на сет 00h кеш меморије

Садржај релевантних делова кеш меморије за инструкције

Укупно време приступа кеш меморији за инструкције је:

$$t_{I}\!\!=\!\!128^*t_{DM}\!\!+\!\!128^*t_{OM}\!\!+\!\!21^*t_{SS}\!\!+\!\!2^*t_{TM}$$

Вежбе на табли Страна 26 од 100

број	број		${f TAG_{00}}$		
сета	улаза	V_{00}	МЕМОРИЈА	1	LRU CNT
CET	0	1	6		1
SET_{00h}	1	1	4		0

Садржај релевантних делова кеш меморије за податке

Укупно време приступа кеш меморији за податке је:

$$t_D\!\!=\!\!194*t_{DM}\!+\!198*t_{OM}\!+\!17*t_{SS}\!+\!3*t_{TM}$$

Укупно време је:

$$t=322*t_{DM}+326*t_{OM}+38*t_{SS}+5*t_{TM}$$

Задатак 10.

Адреса је ширине 32 бита, а адресибилна јединица је 16-битна реч. Процесор има раздвојене кеш меморије за инструкције и податке. Кеш меморија за инструкције и кеш меморија за податке имају следеће карактеристике: организоване су сет-асоцијативно на нивоу блока, свака капацитета 8 КВ, величина блока је 64 бајтова, са четири улаза по сету. Алгоритам за ажурирање садржаја оперативне меморије је write-trough. Кеш меморија је са write allocated политиком довлачења и користи LRU алгоритам замене. Посматра се следећи програмски сегмент на језику Ц:

for (j=0; j < 0x80; j++)
for (i=0; i < 0x100; i++)

$$x[i][j]=2 * x[i][j];$$

Променљива і и ј су смештене у регистрима, а низ х (х[0][0]) почев од локације 300h. У програмском језику Ц низови се у меморију смештају тако да је адреса елемента х[i][j] дата са: x[0][0]+i*n+j. На почетку је кеш меморија била празна.

- а) Нацртати структуру кеш меморије за податке, означити ширину у битовима свих релевантних делова и укратко описати њихову намену за дату кеш меморију.
- б) Дати садржај свих улаза свих сетова који су реферисани у датој секвенци, садржаје асоцијативног (Tag) дела, вредности V (Valid) и D (Dirty) бита, као и LRU бројача, после завршетка дате секвенце. Означити сетове.

Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.

в) Модификовати дати програмски сегмент тако да време приступа кеш меморији за податке буде краће него у тачки б). Израчунати укупно време потребно за приступ кеш меморији за податке у тако модификованом програмском сегменту.

Решење:

a)

Структура адреса код кеш меморије:

Број блока		Word (5 бита)
Tag (22 бита)	Set (5 бита)	Word (5 бита)

б)

	улаз 0		улаз 1		улаз 2		улаз 3		LRU COUNT			
број сета	V	ТА G МЕМОРИЈА	V	ТАG МЕМОРИЈА	V	ТА G МЕМОРИЈА	V	ТА G МЕМОРИЈА	CNT0	CNT1	CNT2	CNT3
0	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
1	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
2	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
3	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
4	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
5	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
6	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
7	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
8	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
9	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
10	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
11	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
12	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
13	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
14	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
15	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
16	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
17	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
18	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
19	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
20	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
21	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
22	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
23	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
24	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
25	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
26	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
27	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
28	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
29	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
30	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
31	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3

Садржај релевантних делова кеш меморије

```
t_1\!\!=\!1081344*t_{DM}\!+\!1081344*t_{OM}\!+\!98304*t_{SS}\!+\!32768*t_{TM}.
B)
     for (i=0; i < 0x100; i++)
              for (j=0; j < 0x80; j++)
                       x[i][j]=2 * x[i][j];
```

	улаз 0		улаз 0 улаз 1		улаз 2		улаз 3		LRU COUNT			1
број сета	V	ТА G МЕМОРИЈА	V	ТАG МЕМОРИЈА	V	ТАG МЕМОРИЈА	V	ТА G МЕМОРИЈА	CNT0	CNT1	CNT2	CNT3
0	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3

Страна 28 од 100 Вежбе на табли

1	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
2	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
3	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
4	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
5	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
6	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
7	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
8	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
9	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
10	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
11	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
12	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
13	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
14	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
15	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
16	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
17	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
18	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
19	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
20	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
21	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
22	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
23	1	00001D	1	00001E	1	00001F	1	000020	0	1	2	3
24	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
25	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
26	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
27	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
28	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
29	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
30	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
31	1	00001C	1	00001D	1	00001E	1	00001F	0	1	2	3
			•									

Садржај релевантних делова кеш меморије

 $t_2 = 65536 * t_{DM} + 65536 * t_{OM} + 66560 * t_{SS} + 1024 * t_{TM}$.

Задатак 11.

LRU i486

Меморијски адресни простор рачунара је 4 GB, а адресибилна јединица је бајт. Кеш меморија је са сет-асоцијативним пресликавањем на нивоу блока. Блок је величине 256 B, а кеш меморија има капацитет меморије података 4 MB. Сваки сет има 4 улаза.

Код микропроцесора Intel 80486 користи се следећа апроксимација LRU алгоритма. Сваки сет поседује 4 улаза. Та четири улаза се деле на две групе (група 0 и група 1) од по два улаза (улаз 0 и улаз 1 у групи). За спровођење алгоритма користе се три бита придружена сваком сету. Један бит (бит В2) говори којој се групи улаза најскорије приступало, а друга два бита (бити В1 и В0) говоре ком се улазу из сваке групе скорије приступало.

- а) Дефинисати алгоритам и хардвер којим се ажурирају описана три бита при једном приступу неком улазу.
 - б) Дефинисати алгоритам и хардвер којим се врши избор улаза за замену.

Вежбе на табли Страна 29 од 100

- в) За кеш меморију дати вредности описаних бита сета 2FFh после завршетка следеће секвенце адреса (све вредности су хексадецималне): 12FF0A (Rd), 22FF0B (Rd), 30C0C (Rd), 32FF00 (Wr), 42FF01 (Rd), 130C01 (Rd), 22FF00 (Wr), 52FFFF (Rd).
- г) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.

Решење:

а) Нека је број улаза (0 до 3) коме се врши обраћање кодиран са 2 бита Е1 и Е0. При сваком обраћању треба ажурирати описане бите на следећи начин: у бит В2 треба уписати број групе улаза којој се приступа; то је заправо вредност бита Е1. Ако је то група 0, онда у бит В0 треба уписати ком се улазу из групе приступало, а то је заправо вредност Е0; ако је то група 1, онда у бит В1 треба уписати ову вредност Е0. Према томе, потребни хардвер изгледа овако:

б) Избор улаза у који треба сместити нови блок се обавља тако што се прво провери да ли постоји неки слободан улаз. Уколико постоји један или више слободних улаза они се попуњавају по FIFO принципу. Уколико не постоји слободан улаз онда је потребно извршити избор улаза за замену. Избор улаза за замену врши се по следећем алгоритму: бира се за замену улаз који је давније коришћен из оне групе која је давније коришћена. На пример, ако је вредност бита В2 једнака 0, бира се група 1; при том, ако је вредност бита В1 једнака 0, бира се улаз 1 из те групе. Хардвер изгледа овако:

в) Структура адреса код кеш меморије:

Вежбе на табли Страна 30 од 100

1 ag (12 041a)				Set	. (12 0H1a)	
Адреса	Тип	Tag	Set	Word	Време	Адресе
0012FF0A	Rd	001	2FF	0A	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	12FF00h-12FFFFh

Set (12 Syrre)

Адреса	Тип	Tag	Set	Word	Време	Адресе
0012FF0A	Rd	001	2FF	0A	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	12FF00h-12FFFFh
0022FF0B	Rd	002	2FF	0B	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	22FF00h-22FFFFh
00030C0C	Rd	000	30C	0C	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	30C00h-30CFFh
0032FF00	Wr	003	2FF	00	$t_{SS}+t_{B}+t_{TM}+t_{SS}+t_{DM}$	32FF00h-32FFFF
0042FF01	Rd	004	2FF	01	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	42FF00h-42FFFFh
00130C01	Rd	001	30C	01	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	130C00h-130CFFh
0022FF00	Wr	002	2FF	00	$t_{SS}+t_{DM}$	-
0052FFFF	Rd	005	2FF	FF	$t_{SS}+t_{B}+t_{B}+t_{TM}+t_{SS}$	32FF00h-32FFFF, 52FF00-52FFFFh

Дата секвенца представља тражење следећих вредности TAG у сету 2FFh: 1, 2, 3, 4, 2, 5. Стања улаза i бита В овог сета током извршавања ове секвенце су следећа:

TAG	Улаз0	Улаз1	Улаз2	Улаз3	битови В20
1	1				000
2	1	2			001
3	1	2	3		101
4	1	2	3	4	111
2	1	2	3	4	011
5	1	2	5	4	101

Упоређивањем коначног стања сета са оним из претходног задатка, може се приметити да за дати пример алгоритам из овог задатка даје лошију одлуку при замени улаза 2, који је скорије коришћен него улаз 0.

г) Време дохватања блока је: $t_B = 256*(t_{DM} + t_{OM})$.

Укупно време је:

Тод (12 била)

 $t=2050*t_{DM}+2048*t_{OM}+15*t_{SS}+7*t_{TM}$

Задатак 12.

Посматра се процесор са следећим карактеристикама: адреса је ширине 32 бита, а адресибилна јединица је 16-битна реч. Процесор има раздвојене кеш меморије за инструкције и податке. Кеш меморија за инструкције и кеш меморија за податке имају следеће карактеристике: организоване су сетасоцијативно на нивоу блока, свака капацитета 16 КВ, величина блока је 64 бајтова, са четири улаза по сету. Алгоритам за ажурирање садржаја оперативне меморије је write-back. Кеш меморија је са по write allocated политиком довлачења и користи псеудо LRU (i486) алгоритам замене. Процесор генерише следећу секвенцу адреса са типом операције назначеним у загради после сваке адресе (Rd=read, Wr=write):

AA59h (Rd), B251h (Rd), CA50h (Wr), D251h (Rd), EA57h (Rd), F250h (Wr), 1256h (Rd), CA54h (Rd).

На почетку је кеш меморија била празна.

- а) Нацртати структуру кеш меморије за податке, означити ширину у битовима свих релевантних делова и укратко описати њихову намену за дату кеш меморију.
- б) Дати садржај свих улаза свих сетова који су реферисани у датој секвенци, садржаје асоцијативног (Tag) дела, вредности V (Valid) и D (Dirty) бита, као и LRU бројача, после сваког приступа кеш меморији у датој секвенци. Означити сетове.
- в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SS}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.

Вежбе на табли Страна 31 од 100

Решење:

а) Структура адреса код кеш меморије:

Број блока		Word (5 бита)
Тад (21 бита)	Set (6 бита)	Word (5 бита)

б)

Адреса	Тип	Tag	Set	Word	Време	Адресе
AA59h	Rd	15h	12h	19h	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	AA40h-AA5Fh
B251h	Rd	16h	12h	11h	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	B240h-B25Fh
CA50h	Wr	19h	12h	10h	$t_{SS}+t_{OM}$	CA50h
D251h	Rd	1Ah	12h	11h	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	D240h-D25Fh
EA57h	Rd	1Dh	12h	17h	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	EA40h-EA5Fh
F250h	Wr	1Eh	12h	10h	$t_{SS}+t_{OM}$	F250h
1256h	Rd	02h	12h	16h	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	1240h-125Fh
CA54h	Rd	19h	12h	14h	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	CA40h-CA5Fh

SET _{12h}			улаз 0		улаз 1 улаз 2			улаз 3							
Адреса	D	V	ТА G МЕМОРИЈА	D	V	ТАG МЕМОРИЈА	D	v	ТА G МЕМОРИЈА	D	V	ТА G МЕМОРИЈА	псеудо LRU		D
AA59	0	1	15	0	0		0	0		0	0		0	0	0
B251h	0	1	15	0	1	16	0	0		0	0		0	0	1
CA50h	0	1	15	0	1	16	0	0		0	0		0	0	1
D251h	0	1	15	0	1	16	0	1	1A	0	0		1	0	1
EA57h	0	1	15	0	1	16	0	1	1A	0	1	1D	1	1	1
F250h	0	1	15	0	1	16	0	1	1A	0	1	1D	1	1	1
1256h	0	1	2	0	1	16	0	1	1A	0	1	1D	0	1	0
CA54h	0	1	2	0	1	16	0	1	19	0	1	1D	1	0	0

Садржај релевантних делова кеш меморије

B)

Време дохватања блока је: $t_B=32*(t_{OM}+t_{DM})$.

Укупно време је: $t=192*t_{DM}+194*t_{OM}+14*t_{SS}+6*t_{TM}$.

Задатак 13.

Разматра се процесор код кога је адреса ширине 32 бита а адресибилна јединица је 8 битна реч који има L1 кеш меморију са следећим карактеристикама: Блок, односно кеш линија је величине 32 бајта; Кешу се приступа на нивоу 8 битне речи; Кеш меморија је сет асоцијативна капацитета DATA дела 64 КВ, са два блока по сету; Алгоритам за ажурирање садржаја оперативне меморије је write-back. Кеш меморија је са write allocated политиком довлачења и користи FIFO алгоритам замене.

- а) Нацртати структуру кеш меморије, означити ширину у битовима за све релевантне делове и укратко описати њихову намену.
- б) Процесор генерише следећу секвенцу адреса са типом операције назначеним у загради после сваке адресе (R=read, W=write):

8043h (Rd), 10055h (Wr), 8044h (Rd), 1804Fh (Rd), 10056h (Rd), 005Bh (Rd), 2805Eh (Wr), 10055h (Rd), 8045h (Rd), 8046h (Wr). Дати садржај свих улаза свих сетова кеш меморије који су реферисани у датој секвенци, као и вредности V (Valid) бита и D (Dirty), после завршетка дате секвенце. Означити сетове.

Вежбе на табли Страна 32 од 100

- в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе цео блок из оперативне меморије у L1 кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАС МЕМОРИЈИ (tss), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа TAG МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.
- г) Одговорити на питања a) в) уколико L1 кеш меморија уместо наведених карактеристика има следеће: Алгоритам за ажурирање садржаја оперативне меморије је write-trougth. Кеш меморија је са по write allocated политиком ловлачења.
- д) Одговорити на питања a) в) уколико L1 кеш меморија уместо наведених карактеристика има следеће: Алгоритам за ажурирање садржаја оперативне меморије је write-trougth. Кеш меморија је са write allocated политиком довлачења.
- ђ) Одговорити на питања а) − в) уколико L1 кеш меморија уместо наведених карактеристика има следеће: Алгоритам за ажурирање садржаја оперативне меморије је write-back. Кеш меморија је са по write allocated политиком довлачења.
- е) Уколико се дати процесор модификује тако да поред L1 кеш меморија има и помоћну кеш меморију (victim cache), величине блока исте као и код L1 кеш меморија, који је реализован асоцијативно са 8 блокова и FIFO алгоритмом замене. Кеш линија избачена из L1 кеш меморије се увек пребацује у помоћну кеш меморију. Уколико се у помоћној кеш меморији открије сагласност дата линија се враћа у L1 кеш. Време приступа помоћној кеш меморији за проверу сагласности износи t_{SV}. Уколико постоји сагласност време трансфера линије података из L1 у помоћну кеш меморију и обрнуто износи t_{VL}. Одговорити на питања а) - в) поново.

Решење:

a)

Структура адреса код L1 кеш меморије:

Број блока		Word (5 Suza)
Tag (17 бита)	Set (10 бита)	Word (5 бита)

б)

Адреса	Тип	Tag	Set	Word	Време б)	Време г)	Време д)	Време ђ)
8043h	Rd	00000000000000001	0000000010	00011	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
10055h	Wr	00000000000000010	0000000010	10101	$t_{SS}+t_B+t_{TM}+t_{SS}+t_{DM}$	$t_{SS}+t_{OM}$	$t_{SS}+t_B+t_{TM}+t_{SS}+t_{DM}+t_{OM}$	$t_{SS}+t_{OM}$
8044h	Rd	00000000000000001	0000000010	00100	t_{SS}	t_{SS}	t_{SS}	t_{SS}
1804Fh	Rd	00000000000000011	0000000010	01111	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
10056h	Rd	00000000000000010	0000000010	10110	t_{SS}	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	t_{SS}	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
005Bh	Rd	000000000000000000	0000000010	11011	$t_{SS}+2*t_B+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
2805Eh	Wr	00000000000000101	0000000010	11110	$t_{SS}+t_{B}+t_{TM}+t_{SS}+t_{DM}$	$t_{SS}+t_{OM}$	$t_{SS}+t_B+t_{TM}+t_{SS}+t_{DM}+t_{OM}$	$t_{SS}+t_{OM}$
10056h	Rd	00000000000000010	0000000010	10110	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	t_{SS}	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	t_{SS}
8045h	Rd	00000000000000001	0000000010	00101	$t_{SS}+2*t_B+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
8046h	Wr	000000000000000001	0000000010	00110	$t_{SS}+t_{DM}$	$t_{SS}+t_{DM}+t_{OM}$	$t_{SS}+t_{DM}+t_{OM}$	$t_{SS}+t_{DM}$

в) Време дохватања блока је: $t_B=32*(t_{OM}+t_{DM})$.

Укупно време је: $T=291*t_{DM}+288*t_{OM}+17*t_{SS}+7*t_{TM}$.

Вежбе на табли Страна 33 од 100 L)

Садржај релевантних делова кеш меморије

Време дохватања блока је: $t_B=32*(t_{OM}+t_{DM})$.

Укупно време је: $T=161*t_{DM}+163*t_{OM}+15*t_{SS}+5*t_{TM}$.

д)

Садржај релевантних делова кеш меморије

Време дохватања блока је: $t_B=32*(t_{OM}+t_{DM})$.

Укупно време је: $T=227*t_{DM}+227*t_{OM}+17*t_{SS}+7*t_{TM}$.

ħ)

Време дохватања блока је: $t_B=32*(t_{OM}+t_{DM})$.

Укупно време је: $T=161*t_{DM}+162*t_{OM}+15*t_{SS}+5*t_{TM}$.

е) Ова техника се користи да смањи **conflict misses** (директно и сет-асоцијативно). Кешу се додаје један мали потпуно асоцијативан кеш (victim кеш). Он садржи блокове који су били жртве (victims) pri **miss**-у. При **miss**-у се најпре врши провера у **victim**-кешу. Ако јесте, онда **кеш блок** и **victim** блок мењају место. Ако није у **victim** кешу тек онда се иде у оперативну меморију.

a4)

Структура адреса код L1 кеш меморије:

Број блока		Word (5 бита)
Tag (17 бита)	Set (10 бита)	Word (5 бита)

Структура адреса код victim кеш меморије:

Број блока	- Word (5 бита)
Тад (27 бита)	Word (5 бита)

б4)

Адреса	Тип	Tag	Set	Word	Време
8043h	Rd	000000000000000001	0000000010	00011	$t_{SS}+t_{SV}+t_{B}+t_{TM}+t_{SS}$

Вежбе на табли Страна 34 од 100

10055h	Wr	000000000000000000000000000000000000000	000000010	10101	$t_{SS}+t_{SV}+t_{B}+t_{TM}+t_{SS}$
8044h	Rd	000000000000000001	000000010	00100	t_{SS}
1804Fh	Rd	00000000000000011	000000010	01111	$t_{SS}+t_{SV}+t_{B}+t_{TM}+t_{SS}$
10056h	Rd	00000000000000000000010	000000010	10110	t_{SS}
005Bh	Rd	000000000000000000	000000010	11011	$t_{SS}+t_{SV}+t_{B}+t_{TM}+t_{SS}$
2805Eh	Wr	00000000000000101	000000010	11110	$t_{SS}+t_{SV}+t_{B}+t_{TM}+t_{SS}$
10056h	Rd	000000000000000010	0000000010	10110	$t_{SS}+t_{SV}+2*t_{BL}+t_{TM}+t_{SS}$
8045h	Rd	000000000000000001	000000010	00101	$t_{SS}+t_{SV}+2*t_{BL}+t_{TM}+t_{SS}$
8046h	Wr	000000000000000001	000000010	00110	$t_{SS}+t_{DM}$

Садржај релевантних делова victim кеш меморије

в4) Време дохватања блока је: $t_B=32*(t_{OM}+t_{DM})$.

Укупно време је: $T=161*t_{DM}+160*t_{OM}+18*t_{SS}+7*t_{TM}+7*tSV+4*t_{BL}$.

Задатак 14.

Разматра се процесор код кога је адреса ширине 32 бита а адресибилна јединица је 8 битна реч који има кеш меморију са следећим карактеристикама: Блок, односно кеш линија је величине 16 бајта; Кешу се приступа на нивоу 8 битне речи; Кеш меморија је сет асоцијативна са 32 сета, са четири блока по сету; Кеш подржава само write-back политику уписа; Провера валидности и модификованости се посматра на нивоу 4 бајта.

- а) Нацртати структуру кеш меморије, означити ширину у битовима за све релевантне делове и укратко описати њихову намену.
- б) Процесор генерише следећу секвенцу адреса са типом операције назначеним у загради после сваке адресе (R=read, W=write):
- 20Ah (R), A0Fh (W), 200h (W), FE00h (R), FE0Ch (R), C00Ah (W), A05h (R), B80Dh (R). Дати садржај свих улаза свих сетова који су реферисани у датој секвенци, као и вредности V (Valid) бита и D (Dirty), после завршетка дате секвенце, ако је алгоритам замене FIFO. Означити сетове.
- в) Израчунати укупно време потребно за приступ кеш меморији за податке у датој секвенци. Треба претпоставити да се прво пренесе део блок из оперативне меморије у кеш меморије и обрнуто, па се тек онда приступа локацији. Приликом израчунавања времена потребног да се добије садржај узети у обзир само време утврђивања сагласности у ТАБ МЕМОРИЈИ (t_{SA}), време приступа оперативној меморији (t_{OM}), време приступа DATA МЕМОРИЈИ (t_{DM}) и време приступа ТАБ МЕМОРИЈИ (t_{TM}), занемарити времена потребна за остале активности.
- г) Како би гласили одговори на питања а) в) у случају да се валидност посматра на нивоу блока а модификованост на нивоу 4 бајта.

Вежбе на табли Страна 35 од 100

Решење:

a)

б)

Адреса	Тип	Tag	Set	Под сет	Word	Време
20A	Rd	000000000000000000000000000000000000000	00000	10	10	$t_{SS}+t_{PB}+t_{TM}+t_{SS}$
A0F	Wr	000000000000000000000101	00000	11	11	$t_{SS}+t_{PB}+t_{TM}+t_{SS}+t_{DM}$
200	Wr	000000000000000000000000000001	00000	00	00	$t_{SS}+t_{PB}+t_{TM}+t_{SS}+t_{DM}$
FE00	Rd	0000000000000001111111	00000	00	00	$t_{SS}+t_{PB}+t_{TM}+t_{SS}$
FE0C	Rd	0000000000000001111111	00000	11	00	$t_{SS}+t_{PB}+t_{TM}+t_{SS}$
C00A	Wr	0000000000000001100000	00000	10	10	$t_{SS}+t_{PB}+t_{TM}+t_{SS}+t_{DM}$
A05	Rd	00000000000000000000101	00000	01	01	$t_{SS}+t_{PB}+t_{TM}+t_{SS}$
B80D	Rd	0000000000000001011100	00000	11	01	$t_{SS}+2*t_{PB}+t_{TM}+t_{SS}$

број сета	број улаза	D 0	V0	D1	V1	D2	V2	D3	V3	ТАС МЕМОРИЈА
SET_{0h}	0	0	0	0	0	0	0	0	1	0000000000000001011100
	1	0	0	0	1	0	0	1	1	00000000000000000000101
	2	0	1	0	0	0	0	0	1	0000000000000001111111
	3	0	0	0	0	1	1	0	0	0000000000000001100000
										•

Садржај релевантних делова кеш меморије

в) Време дохватања под блока је: t_{PB} =4 \cdot (t_{OM} + t_{DM}), док је време дохватања блока t_B =4 \cdot (t_{OM} + t_{DM}).

a2)

Вежбе на табли Страна 36 од 100

б2)

Адреса	Тип	Tag	Set	Под сет	Word	Време
20A	Rd	000000000000000000000000000000000000000	00000	10	10	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
A0F	Wr	000000000000000000000101	00000	11	11	$t_{SS}+t_{B}+t_{TM}+t_{SS}+t_{DM}$
200	Wr	000000000000000000000000000000000000000	00000	00	00	$t_{SS}+t_{DM}$
FE00	Rd	0000000000000001111111	00000	00	00	$t_{SS}+t_{B}+t_{TM}+t_{SS}$
FE0C	Rd	00000000000000001111111	00000	11	00	t_{SS}
C00A	Wr	0000000000000001100000	00000	10	10	$t_{SS}+t_{B}+t_{TM}+t_{SS}+t_{DM}$
A05	Rd	000000000000000000000101	00000	01	01	t_{SS}
B80D	Rd	0000000000000001011100	00000	11	01	$t_{SS}+t_{B}+t_{PB}+t_{TM}+t_{SS}$

број	број						TAG
сета	улаза	D 0	D1	D2	D3	V	МЕМОРИЈА
	0	0	0	0	0	1	0000000000000001011100
CET	1	0	0	0	1	1	00000000000000000000101
SET_{0h}	2	0	0	0	0	1	0000000000000001111111
	3	0	0	1	0	1	0000000000000001100000
Садржаі релевантних делова кеш меморије							

в2) Време дохватања под блока је: t_{PB} =4· $(t_{OM}+t_{DM})$, док је време дохватања блока t_{B} =4· $(t_{OM}+t_{DM})$.

Задатак 15.

Посматра се кеш меморија са look through приступом приликом читања. Време приступа кеш меморији је 2 ns док је Miss penalty 8 ns.

Вежбе на табли Страна 37 од 100

- а) Уколико је вероватноћа да се податак налази у кеш меморији 0.9 колико износи просечно време приступа меморији?
- б) Уколико би се величина блока дуплирала вероватноћа поготка би се повећала на 0.95. За колико процената би се смањило просечно време приступа меморији?
- в) Како би се променило време приступа меморији уколико би се користила техника look aside приликом читања?
 - г) Који су недостатци look aside технике приступа меморији?

Решење:

Просечно време приступа кеш меморији укључује време утврђивања сагласности и приступа подацима у кеш емморији.

CacheCycleTime=2 ns

MissPenalty=8 ns

a) look-trough read

HitRate=0.9

AverageMemoryAccessTime=HitTime+MissPenalty * MissRate

MissRate=1 - HitRate

AverageMemoryAccessTime=CacheCycleTime+MissPenalty * (1 - HitRate)

AverageMemoryAccessTime=2+8 * 0.1=2.8 ns

б) look-trough read

HitRate=0.95

AverageMemoryAccessTime=HitTime+MissPenalty * MissRate

AverageMemoryAccessTime=CacheCycleTime+MissPenalty * MissRate

MissRate=1 - HitRate

AverageMemoryAccessTimeDoubled=2+8 * 0.05=2.4 ns

AverageMemoryAccessTime - AverageMemoryAccessTimeDoubled · 100 = 16.67%

Average Memory Access Time Doubled

AverageMemoryAccessTime - AverageMemoryAccessTimeDoubled · 100 = 14.29%

AverageMemoryAccessTime

в) look-aside read

HitRate=0.9

AverageMemoryAccessTime=CacheCycleTime * HitRate+MissPenalty * MissRate

AverageMemoryAccessTime=CacheCycleTime * HitRate+MissPenalty * (1 - HitRate)

AverageMemoryAccessTime=2 * 0.9+8 * (1 - 0.9)=2.6 ns

г) Приликом коришћења технике look-aside податак се тражи и у кеш меморији и у главној меморији у паралели. Уколико се податак открије у кеш меморији циклус према главној меморији се отказује. Главни недостатак овог приступа је повећан саобраћај на магистрали.

Вежбе на табли Страна 38 од 100

Задатак 16.

Посматра се кеш меморија капацитета 10КВ чије је време приступа речи 0.2 ns. Она се користи за убрзавање приступа главној RAM меморији капацитета 4 GB, са временом приступа 10 ns. Величина једне кеш линије је 16 речи, а вероватноћа да се податак нађе у кеш меморији (hit rate) је 0.95. Уколико се реч не налази у меморији прво се довлачи тражени податак па тек онда преостале речи из кеш линије. У свим случајевима претпоставити write-trough политику уписа. Колико је просечно време приступа кешу за случај:

- а) операције читања код look-through приступом приликом читања?
- б) операције читања код look-aside приступом приликом читања?
- в) операције уписа код write-trough приступом приликом уписа?

Решење:

CacheSize=10 KB

CacheCycleTime=0.2 ns

MemorySize=4 GB

MemoryCycleTime=10 ns

CacheLineSize=16 W

HitRate=0.95

a) look-trough

AverageMemoryAccessTime=HitTime+MissPenalty * MissRate

MissRate=1 – HitRate

MissPenalty=MemoryCycleTime

HitTime=CacheCycleTime

AverageMemoryAccessTime=CacheCycleTime+MemoryCycleTime * (1 - HitRate)

AverageMemoryAccessTime=0.2+10 * (1 - 0.95)=0.7 ns

б) look-aside

AverageMemoryAccessTime=CacheCycleTime * HitRate+MemoryCycleTime * (1 - HitRate)

AverageMemoryAccessTime=0.2 * 0.95+10 * (1 - 0.95)=0.69 ns

в) write-trough write ca write allocated политиком довлачења

AverageMemoryAccessTime=MemoryCycleTime * HitRate+

+(MemoryCycleTime+MemoryCycleTime) * (1 - HitRate)

AverageMemoryAccessTime=MemoryCycleTime+MemoryCycleTime * (1 - HitRate)

AverageMemoryAccessTime=10.5 ns

c2) write-trough write ca non-write allocated политиком довлачења

AverageMemoryAccessTime=MemoryCycleTime * HitRate+

Вежбе на табли Страна 39 од 100

+MemoryCycleTime * (1 - HitRate)=MemoryCycleTime

Задатак 17.

Посматра се кеш меморија капацитета 2MB чије је време приступа речи 0.2 ns. Она се користи за убрзавање приступа главној RAM меморији капацитета 1 GB, са временом приступа једној речи је 2 ns. Из меморије се чита и у меморију уписује реч по реч. Величина једне кеш линије је 8 речи и цела линија се довлачи/одвлачи у случају било ког промашаја, а вероватноћа да се податак нађе у кеш меморији (hit rate) је 0.95. Вероватноћа операције уписа је 30%. Вероватноћа да је кеш линија модификована износи 40%. Приликом операције уписа се користи write allocate политика. Колико је просечан број приступа меморији за случај:

- а) кеш меморије са look-through приступом?
- б) кеш меморије са look-aside приступом?

Размотрити решења за случај write through и write back начина уписа са write allocated политиком.

Решење:

CacheSize=2 MB

CacheCycleTime=0.2 ns

MemorySize=1 GB

MemoryCycleTime=2 ns

CacheLineSize=8 W

HitRate=0.95

Write=30%

Modified=40%

a) look-trough ca write throug

Read+Write=1

Hit?	Операција	Фреквенција	Број приступа меморији
+	Read	Read * HitRate=0.665	0
-	Read	Read * (1 – HitRate)=0.035	CacheLineSize/W=8
+	Write	Write * HitRate=0.285	1
-	Wtite	Write * (1 – HitRate)=0.015	CacheLineSize/W+1=9

AverageAccessesNumber=0.665 * 0+0.035 * 8+0.285 * 1+0.015 * 9=0.7

look-trough ca write back

Hit?	Операција	Фреквенција	Број приступа меморији
+	Read	Read * HitRate=0.665	0
-	Read	Read * (1 – HitRate)=0.035	CacheLineSize/W * (1+Modifier)=11.2
+	Write	Write * HitRate=0.285	0
-	Wtite	Write * (1 – HitRate)=0.015	CacheLineSize/W * (1+Modifier)=11.2

AverageAccessesNumber=0.665 * 0+0.035 * 11.2+0.285 * 0+0.015 * 11.2=0.56

б) look-aside ca write throug

Hit?	Операција	Фреквенција	Број приступа меморији
+	Read	Read * HitRate=0.665	1
-	Read	Read * (1 – HitRate)=0.035	CacheLineSize/W=8
+	Write	Write * HitRate=0.285	1

Вежбе на табли Страна 40 од 100

-	Wtite	Write * (1 – HitRate)=0.015	CacheLineSize/W+1=9
---	-------	-----------------------------	---------------------

AverageAccessesNumber=0.665 * 1+0.035 * 8+0.285 * 1+0.015 * 9=1.365

look-aside ca write back

Hit?	Операција	Фреквенција	Број приступа меморији
+	Read	Read * HitRate=0.665	1
-	Read	Read * (1 – HitRate)=0.035	CacheLineSize/W * (1+Modifier)=11.2
+	Write	Write * HitRate=0.285	0
-	Wtite	Write * (1 – HitRate)=0.015	CacheLineSize/W * (1+Modifier)=11.2

AverageAccessesNumber=0.665 * 1+0.035 * 11.2+0.285 * 0+0.015 * 11.2=1.225

Задатак 18.

Посматра се кеш меморија капацитета 128КВ чије је време приступа речи 1 такт. Фреквенција система је 2 GHz. Она се користи за убрзавање приступа главној RAM меморији капацитета 1 GB. Време одзива меморије 50 тактова, брзина трансфера 4 бајта по такту. Величина једне кеш линије је 16 В и цела линија се довлачи/одвлачи у случају било ког промашаја, а вероватноћа да се податак нађе у кеш меморији (hit rate) је 0.90. Вероватноћа операције уписа је 35%. Вероватноћа да је кеш линија модификована износи 30%. Приликом операције уписа се користи non-write allocate политика и користи се write back техником уписа. Колико је просечан број приступа меморији за случај:

- а) кеш меморије са look-through приступом?
- б) кеш меморије са look-aside приступом?

Решење:

f=2 GHz

Write=0.3

CacheSize=128 KB

HitRate=0.9

MemoryDelayCycles=50

MemoryTransferRatePerCycle=4 B

Modified=0.3

CachLIneSize=16 B

a)

AverageMemoryAccessTimeR=HitTime+MissPenalty * MissRate

MissRate=1 - HitRate=0.1

MissPenaltyCycles=(MemoryDelayCycles+CacheLineSize/W) * (1+Modifier)

MissPenalty=MissPenaltyCycles / f

MissPenalty=(50+16/4) * (1+0.3) * 0.5=35.1 ns

HitTime=CacheCycleTime=0.5 ns

AverageMemoryAccessTimeR=0.5+35.1 * 0.1=4.01 ns

AverageMemoryAccessTimeW=HitTime+MissPenalty * MissRate

MissRate=1 - HitRate=0.1

MissPenaltyCycles=MemoryDelayCycles+1

MissPenalty=MissPenaltyCycles / f

Вежбе на табли

MissPenalty=((50+16/4)*0.3)+50+1)*0.5=25.5 ns

HitTime=CacheCycleTime=0.5 ns

AverageMemoryAccessTimeW=0.5+25.5 * 0.1=3.05 ns

AverageMemoryAccessTime=Read*AverageMemoryAccessTimeR+Write*AverageMemoryAccessTimeW AverageMemoryAccessTime=0.7 * 4.01+0.3 * 3.05=3.722 ns

б)

AverageMemoryAccessTimeR=HitTime * HitRate+MissPenalty * MissRate

MissRate=1 - HitRate=0.1

MissPenaltyCycles=(MemoryDelayCycles+CacheLineSize/W) * (1+Modifier)

MissPenalty=MissPenaltyCycles / f

MissPenalty=(50+16/4) * (1+0.3) * 0.5=35.1 ns

HitTime=CacheCycleTime=0.5 ns

AverageMemoryAccessTimeR=0.5 * 0.9+35.1 * 0.1=3.96 ns

AverageMemoryAccessTimeW=3.05 ns

Average Memory Access Time R+W rite*Average Memory Access Time R+W rite*Average Memory Access Time Weight Average Memory Access Time R+W rite*Average Memory Access Time Weight Average Memory Access Time R+W rite*Average Memory Access Time Weight Average Memory Access Time R+W rite*Average Memory Access Time R+W rit

AverageMemoryAccessTime=0.7 * 4.01+0.3 * 3.05=3.687 ns

Вежбе на табли Страна 42 од 100

Виртуелна меморија (Virtual Memory)

Задатак 1.

Посматра се рачунар са страничном организацијом виртуелне меморије. Виртуелни адресни простор корисника је 16 МВ и подељен је на странице величине 1 КВ. Реални адресни простор је 1 МВ и подељен је на блокове величине 1 КВ. Виртуелном и реалном адресом се адресирају речи дужине 1 бајт.

Урадити следеће:

- а) Означити дужине у битовима свих делова виртуелне и реалне адресе.
- б) Нацртати табелу страница, објаснити како се приступа табелама страница различитих корисника и дати функцију појединих поља дескриптора странице.
- в) Објаснити како се врши пресликавање виртуелне у реалну адресу за случај да је страница у меморији и навести шта се од тога ради хардверски а шта софтверски.
- г) Објаснити шта се ради за случај да страница није у меморији и навести шта се од тога ради хардверски а шта софтверски.

Решење:

а) Структура виртуелне и реалне адресе и дужине у битовима делова виртуелне и реалне адресе су приказани на слици.

Вежбе на табли Страна 43 од 100

Задатак 2.

У рачунару са виртуелном меморијом страничне организације дефинисаном у претходном задатку постоји јединица за убрзавање пресликавања виртуелних у реалне адресе.

- а) Узети да рачунар поседује јединицу за убрзавање пресликавања виртуелних у реалне адресе, реализовану у техници асоцијативног пресликавања у којој се истовремено чувају релевантни делови дескриптора 512 најчешће коришћених страница до 16 корисника. Урадити следеће:
- а1) Нацртати, означити дужину у битовима и објаснити функцију свих релевантних делова јединице за убрзавање пресликавања.
 - а2) Означити дужине у битовима релевантних делова виртуелне и реалне адресе и објаснити како се: проверава да ли се релевантни дескриптор налази у јединици за убрзавање пресликавања; долази до дескриптора уколико се утврди да се налази у јединици за убрзавање пресликавања;

формира реална адреса;

- у јединици за убрзавање пресликавања обезбеђује да се странице различитих корисника које имају исти број не пресликавају у исти, већ свака у свој блок.
- а3) У случају да се за генерисану виртуелну адресу утврди да се релевантни дескриптор не налази у јединици за убрзавање пресликавања, објаснити шта се ради у случају:

када је релевантна страница у меморији;

када релевантна страница није у меморији и

навести шта се од тога ради хардверски, а шта софтверски.

- б) Узети да рачунар поседује јединицу за убрзавање пресликавања виртуелних у реалне адресе, реализовану у техници директног пресликавања у којој се истовремено чувају релевантни делови дескриптора 2048 најчешће коришћених страница до 16 корисника. Урадити исто као под а) овог задатка.
- в) Узети да рачунар поседује јединицу за убрзавање пресликавања виртуелних у реалне адресе, реализовану у техници сет-асоцијативног пресликавања са два улаза по сету у којој се истовремено чувају релевантни делови дескриптора 2048 најчешће коришћених страница до 16 корисника. Урадити исто као под а) овог задатка.

Решење:

a)

Вежбе на табли Страна 44 од 100

б)

Вежбе на табли Страна 45 од 100

B)

Вежбе на табли Страна 46 од 100

Задатак 3.

Виртуелна меморија капацитета 8K речи, а адресирање је на нивоу 16-битних речи. Процесор оперише само са 16-битним целобројним величинама (у даљем тексту *реч* означава 16-битну величину). Физичка адресни простор је величине 4 KW (4 кило речи). Виртуелна меморија организована је на страничном принципу, при чему је величина странице односно блока 1 KW. Посматра се програмски сегмент који приступа следећим виртуалним страницама: 4, 2, 0, 1, 2, 6, 1, 4, 0, 1, 0, 2, 3, 5, 7.

- а) Приказати логичку структуру виртуелне адресе и означити значење и дужину сваког поља.
- б) Приказати логичку структуру реалне адресе и означити значење и дужину сваког поља.
- в) Утврдити које 4 странице се налазе у оперативној меморији у после сваког приступа страници уколико се користи FIFO алгоритам замене.

Решење:

Вежбе на табли Страна 47 од 100

VirtualAddressSpace=8K

MainMemory=4K //Physical Address Space

PageSize=1K

BlockSize=1K

a)

Виртуална адреса:

12 10	9	0
Page (3)	Offset (10)	

б)

Реална адреса:

11 10	9	0
Block (2)	Offset (10)	

Постоји 4 блока у физичкој меморији и 8 у виртуелној меморији.

B)

420126140102357

Корак 1 тражи се страница 4. У меморији ће се налазити странице: 4.

Корак 2 тражи се страница 2. У меморији ће се налазити странице: 2, 4.

Корак 3 тражи се страница 0. У меморији ће се налазити странице: 0, 2, 4.

Корак 4 тражи се страница 1. У меморији ће се налазити странице: 1, 0, 2, 4.

Корак 5 тражи се страница 2. У меморији ће се налазити странице: 1, 0, 2, 4.

Корак 6 тражи се страница 6. У меморији ће се налазити странице: 6, 1, 0, 2.

Корак 7 тражи се страница 1. У меморији ће се налазити странице: 6, 1, 0, 2.

Корак 8 тражи се страница 4. У меморији ће се налазити странице: 4, 6, 1, 0.

Корак 9 тражи се страница 0. У меморији ће се налазити странице: 4, 6, 1, 0.

Корак 10 тражи се страница 1. У меморији ће се налазити странице: 4, 6, 1, 0.

Корак 11 тражи се страница 0. У меморији ће се налазити странице: 4, 6, 1, 0.

Корак 12 тражи се страница 2. У меморији ће се налазити странице: 2, 4, 6, 1.

Корак 13 тражи се страница 3. У меморији ће се налазити странице: 3, 2, 4, 6.

Корак 14 тражи се страница 5. У меморији ће се налазити странице: 5, 3, 2, 4.

Корак 15 тражи се страница 7. У меморији ће се налазити странице: 7, 5, 3, 2.

Задатак 4.

Процесор подржава постојање више програма у меморији истовремено, до 16 корисника. Рачунар поседује виртуелну меморију, код које 32-битне адресе одговарају виртуелном адресном простору, а физички адресни простор је величине 64 KW (64 кило речи). Адресирање је на нивоу 32-битних речи. Виртуелна меморија организована је на страничном принципу, при чему је величина странице 256 W (256 речи). Процесор поседује посебан хардвер за убрзавање пресликавања виртуелних у реалне (физичке) адресе (у даљем тексту TLB). TLB је реализован са директним пресликавањем, при чему је величина простора за информациони садржај TLB-а укупно 16 В (бајта). Информациони садржај је само број блока у физичкој меморији. Процесор извршава следећи део програма корисника са идентификатором 3:

Вежбе на табли Страна 48 од 100

Електротехнички факултет Универзитета у Београду Архитектура и организација рачунара 1

Адреса (hex):Наредба:Коментар:32F00LOAD R0, #1234h; R0:=1234h32F02PUSH R0; Mem[SP--]:=R032F03STORE 27001h, R0; Mem[27001h]:=R0

Слободни део оперативне меморије обухвата блокове почев од F0h закључно са FFh. Ови блокови попуњавају се редом. Ниједна од страница датог корисника није у оперативној меморији, а SP има вредност 11D15h пре извршавања датог дела програма. Претпоставити да се приликом промене контекста садржај TLB јединице неће променити.

- а) Приказати логичку структуру виртуелне и физичке адресе и дати значење и дужину сваког поља.
- б) Приказати шта представља улазни податак који процесор даје TLB-у, шта је кључ за претрагу у TLB, и како се добија улаз у TLB у коме се тај кључ тражи.
- в) За сваки приступ меморији означити: виртуелну адресу којој се приступа, тип операције (Rd, Wr, Ex), идентификацију корисника, вредност поља Раде и Word, вредност поља Тад и Entry у TLB јединици, коментар да ли је било сагласности у TLB јединици, блок оперативне меморије Block, физичку адресу којој се приступило или коментар уколико је дошло до прекида. Одговор дати табеларно.

Виртуелна адреса	Тип	User	Page	Word	Tag	Entry	Коментар	Block	Физичка адреса

- г) Приказати вредности кључева и информационог садржаја релевантних улаза у TLB (означити те улазе), после извршавања датог дела програма.
 - д) Приказати изглед табеле страница након извршавања датог програмског сегмента.

Решење:

а) Логичка структура виртуелне адресе је:

31	7
Page	Offset

Логичка структура физичке адресе је:

15		7
	Block	Offset

б) Улазни податак за TLB је тако:

27	23
User	Page

Број улаза у TLB је одређен помоћу 4 најнижих бита улазног податка (то су 4 најнижих бита поља Раде), док је кључ за претрагу виших 24 бита улазног податка:

Кључ за претрагу (Tag): User(4):Page(23...4)

Улаз у TLB: *Page*(3...0)

B)

Виртуелна	Тип	User	Page	Word	Tag	Entry	Коментар	Block	Физичка
адреса	1 1111	0.501	1 4.50	,, ora	18	Birti	remember	210011	адреса
32F00	Ex	3	00032F	00	300032	F	Miss	-	Page Fault
32F00	Ex	3	00032F	00	300032	F	Miss	F0	F000
32F01	Ex	3	00032F	01	300032	F	Hit	F0	F001
32F02	Ex	3	00032F	02	300032	F	Hit	F0	F002
11D15	Wr	3	00011D	15	300011	D	Miss	-	Page Fault
32F02	Ex	3	00032F	02	300032	F	Hit	F0	F002
11D15	Wr	3	00011D	15	300011	D	Miss	F1	F115

Вежбе на табли Страна 49 од 100

32F03	Ex	3	00032F	03	300032	F	Hit	F0	F003
32F04	Ex	3	00032F	03	300032	F	Hit	F0	F004
27001	Wr	3	000270	01	300027	0	Miss	-	Page Fault
32F03	Ex	3	00032F	03	300032	F	Hit	F0	F003
32F04	Ex	3	00032F	03	300032	F	Hit	F0	F004
27001	Wr	3	000270	01	300027	0	Miss	F2	F201

L)

]	Кључе	ви (Та	Информациони садржај	
Улаз	V	D	Tag	Блок
0	1	1	300027	F2
D	1	1	300011	F1
F	1	0	300032	F0

д)

	Табела страница корисника 3											
Улаз	V	D	Блок	Диск								
				-								
11D	1	1	F1	-								
				-								
270	1	1	F2	-								
				-								
32F	1	0	F0	-								
				-								

Задатак 5.

Процесор подржава виртуелну организацију меморије са страничним пресликавањем. Странице су дужине 2^{16} речи. Капацитет физичке меморије је највише 2^{15} блокова. Меморијске (физичке) адресе су ширине 31 бит, ширина магистрале података је 16 бита, а адресирање је на нивоу 16-битних речи. Корисничке логичке (виртуелне) адресе су 24-битне, а процесор подржава рад 256 корисничких програма.

Процесор поседује и хардвер за убрзавање пресликавања, у даљем тексту TLB. TLB је организован са сет-асоцијативним пресликавањем, поседује два улаза по сету и 64 сета. Алгоритам замене је FIFO. Кориснички програм са бројем D0h генерише следећу секвенцу виртуелних адреса (све вредности су хексадецималне):

278800 (Ex), A700FF(Rd), 278801(Ex), E78800(Rd), B600FA(Wr), 278802(Ex), B600FF(Rd), E78802(Rd)

Слободни део оперативне меморије обухвата блокове почев од 00F0h закључно са 00FFh. Ови блокови попуњавају се редом. Изглед табеле страница датог корисника пре почетка дате секвенце:

	Табела страница корисника D0h											
Улаз V D Блок Диск												
•••				-								
27	1	0	0037h	-								
				-								
E7	1	1	004Eh	-								
				-								

Остале странице корисника се не налазе у оперативној меморији, пре дате секвенце TLB је била празна. Претпоставити да се приликом промене контекста садржај TLB јединице неће променити.

- а) Приказати логичку структуру виртуелне адресе и означити значење и дужину сваког поља.
- б) Приказати шта представља улазни податак који процесор даје TLB-у, шта је кључ за претрагу у TLB, и како се добија сет у TLB у коме се тај кључ тражи.
- в) За сваки приступ меморији означити: виртуелну адресу којој се приступа, тип операције (Rd, Wr), идентификацију корисника, вредност поља Раде и Word, вредност поља Тад и Set у TLB јединици, коментар да ли је било сагласности у TLB јединици, блок оперативне меморије Block, физичку адресу којој се приступило или коментар уколико је дошло до прекида. Одговор дати табеларно.

Вежбе на табли Страна 50 од 100

Електротехнички факултет Универзитета у Београду Архитектура и организација рачунара 1

Виртуелна адреса	Тип	User	Page	Word	Tag	Set	Коментар	Block	Физичка адреса

- г) Приказати вредности кључева и информационог садржаја релевантних улаза у TLB (означити те улазе), после задавања дате секвенце адреса.
 - д) Приказати изглед табеле страница након извршавања датог програмског сегмента.

Решење:

a)

Логичка структура виртуелне адресе је:

23 16	15	0
Page	Offset	

Логичка структура физичке адресе је:

	30 16	15 0
Ī	Block	Offset

б) Улазни податак за TLB има структуру:

_15	8	3	7		0
	User			Page	

Кључ за претрагу је поље User(7:0):Page(7:6), а налази се у сету са редним бројем једнаким пољу Page(5:0).

B)

Виртуелна адреса	Тип	User	Page	Word	Tag	Set	Коментар	Block	Физичка адреса
278800	Ex	D0	27	8800	1101000000	100111	Miss	0037	00378800
A700FF	Rd	D0	A7	00FF	1101000010	100111	Miss	-	Page Fault
278800	Ex	D0	27	8800	1101000000	100111	Hit	0037	00378800
A700FF	Rd	D0	A7	00FF	1101000010	100111	Miss	00F0	00F000FF
278801	Ex	D0	27	8801	1101000000	100111	Hit	0037	00378801
E78800	Rd	D0	E7	8800	1101000011	100111	Miss	004E	004E8800
B600FA	Wr	D0	B6	00FA	1101000010	110111	Miss	-	Page Fault
278801	Ex	D0	27	8801	1101000000	100111	Miss	0037	00378801
E78800	Rd	D0	E7	8800	1101000010	100111	Hit	004E	004E8800
B600FA	Wr	D0	B6	00FA	1101000010	110111	Miss	00F1	00F100FA
278802	Ex	D0	27	8802	1101000000	100111	Miss	0037	00378802
B600FF	Rd	D0	B6	00FF	1101000000	100111	Hit	00F1	00F100FF
E78802	Rd	D0	E7	8802	1101000011	100111	Hit	004E	004E8802

r)

Садржај је следећи (све вредности су хексадецималне):

Сет 27h

I	Сључе	ви (Та	<i>g</i> меморија)	Информациони садржај
Улаз	V	D	Tag	Блок
0	1	0	343h	004E
1	1	0	340h	0037

Сет 36h

I	Сључе	ви (Та	Информациони садржај			
Улаз	V	D	Tag	Блок		
0	1	1	342h	00F1		
1	0					

д)

	Табела страница корисника D0h									
Улаз	V	D	Блок	Диск						
				-						
27	1	0	0037h	-						
				-						
A7	1	0	00F0h	-						
						-				
B6	1	1	00F1h	-						
				-						
E7	1	1	004Eh	-						
				-						

Задатак 6.

Процесор подржава постојање више програма у меморији истовремено, до 8 корисника. Рачунар поседује виртуелну меморију, код које 32-битне адресе одговарају виртуелном адресном простору, а физички адресни простор је величине 256 MW (256 мега речи). Адресирање је на нивоу 32-битних речи. Виртуелна меморија организована је на страничном принципу, при чему је величина странице 1 KW (1 кило речи). Процесор поседује посебан хардвер за убрзавање пресликавања виртуелних у реалне (физичке) адресе (у даљем тексту TLB). TLB је организован са сет-асоцијативним пресликавањем, поседује два улаза по сету и 64 сета. Алгоритам замене TLB-а је FIFO. Процесор извршава следећи део програма корисника са идентификатором 7:

Адреса (hex):	Наредба:	Коментар:
10000	LOAD R0, #40004h	; R0 :=40004h
10002	PUSH R0	; Mem[SP]:=R0
10003	STORE 20005h, R0	; Mem[20005h] :=R0
10005		

Кориснику су додељена два блока оперативне меморије почев од F0h закључно са F1h. Ови блокови попуњавају се редом. Алгоритам замене страница у оперативној меморији је FIFO. Ниједна од страница датог корисника није у оперативној меморији, а стек расте од виших ка нижим адресама и SP указује не прву слободну локацију, и има вредност 30009h пре извршавања датог дела програма. Регистар R0 је 32-битни. Претпоставити да се приликом промене контекста садржај TLB јединице неће променити.

- а) Приказати логичку структуру виртуелне и физичке адресе и дати значење и дужину сваког поља.
- б) Приказати шта представља улазни податак који процесор даје TLB-у, шта је кључ за претрагу у TLB, и како се добија улаз у TLB у коме се тај кључ тражи.
- в) За сваки приступ меморији означити: виртуелну адресу којој се приступа, тип операције (Rd, Wr, Ex), идентификацију корисника, вредност поља Раде и Word, вредност поља Тад и Set у TLB јединици, коментар да ли је било сагласности у TLB јединици, блок оперативне меморије Block, физичку адресу којој се приступило или коментар уколико је дошло до прекида. Одговор дати табеларно.

		1 2							1
Виртуелна адреса	Тип	User	Page	Word	Tag	Set	Коментар	Block	Физичка адреса

- г) Приказати вредности кључева и информационог садржаја релевантних улаза у TLB (означити те улазе), после задавања дате секвенце адреса.
- д) Приказати изглед табеле страница након извршавања датог програмског сегмента. Решење:
- а) Логичка структура виртуелне адресе је:

31		10	9		0
	Page(22)			Offset(10)	

Логичка структура физичке адресе је:

27 10 9

Вежбе на табли Страна 52 од 100

Block(18) Offset(10)

б)

Tag(19) Set(6) Offset(0)

B)

Виртуелна адреса	Тип	User	Page	Word	Tag	Set	Коментар	Block	Физичка адреса
10000	Ex	7	40	0	70001	0	Miss	-	Page Fault
10000	Ex	7	40	0	70001	0	Miss	F0	3C000
10001	Ex	7	40	1	70001	0	Hit	F0	3C001
10002	Ex	7	40	2	70001	0	Hit	F0	3C002
30009	Wr	7	C0	9	70003	0	Miss	-	Page Fault
10002	Ex	7	40	2	70001	0	Hit	F0	3C002
30009	Wr	7	C0	9	70003	0	Miss	F1	3C409
10003	Ex	7	40	3	70001	0	Hit	F0	3C003
10004	Ex	7	40	4	70001	0	Hit	F0	3C004
20005	Ex	7	80	5	70002	0	Miss	-	Page Fault
10003	Ex	7	40	3	70001	0	Miss	-	Page Fault
10003	Ex	7	40	3	70001	0	Miss	F1	3C403
10004	Ex	7	40	4	70001	0	Hit	F1	3C404
20005	Ex	7	80	5	70002	0	Miss	F0	3C005

г) Сет 0h

	Кључе	ви (Та	Информациони садржај	
Улаз	V	D	Tag	Блок
0	1	0	70001h	F1
1	1	1	70002h	F0

д)

	Табела страница								
Улаз	V	D	Блок	Диск					
				-					
40h	1	0	F1h	-					
				-					
80h	1	1	F0h	-					
•••				-					
C0h	0	1	F1h	-					
				-					

Задатак 7.

Виртуелне меморијске адресе су ширине 16 бита, а адресирање је на нивоу 16-битних речи. Процесор оперише само са 16-битним целобројним величинама (у даљем тексту реч означава 16-битну величину). Процесор подржава постојање више програма у меморији истовремено, до 16 корисника. Физички адресни простор је величине 4 GW (4 гига речи). Виртуелна меморија организована је на сегментом принципу, при чему је максимална величина сегмента 4 KW (4 кило речи). Процесор поседује посебан хардвер за убрзавање пресликавања виртуелних у реалне (физичке) адресе (у даљем тексту TLB). TLB је реализован са директним пресликавањем, при чему се сви сегменти са истим бројем, различитих корисника, пресликавају у исти улаз у TLB. Информациони садржај једног улаза у TLB је следећи: дужина сегмента, права приступа и почетна адреса сегмента у физичкој меморији. Права приступа се дефинишу помоћу три бита R, W и E, при чему јединица значи дозвољено читање податка (R), упис податка (W) и извршавање инструкције (E). Процесор извршава следећи део програма корисника са идентификатором 3:

Адреса (hex): Наредба: Коментар:

3F00 MOV R0, #1234h ; R0:=1234h

Вежбе на табли Страна 53 од 100

3F03 MOV 2001h, R0

; Mem[2001h]:=R0

3F05 ...

Пре почетка извршавања датог програмског сегмента у оперативном меморији су били присутни сегменти програма, стека и података датог корисника. Сегмент програма је дужине 4 KW и смештен је почев од локације 200000h физичке меморије, сегмент стека је дужине 1 KW и смештен је почев од локације 300000h физичке меморије, а сегмент података је дозвољен за упис и читање, дужине је 2 KW и смештен је од адресе 400000h физичке меморије. Стек расте од виших ка нижим адресама и указује на прву слободну локацију, а SP има почетну вредност 1215h пре извршавања датог дела програма. Претпоставити да се приликом промене контекста садржај TLB јединице неће променити.

- а) Приказати логичку структуру виртуелне адресе и означити значење и дужину сваког поља.
- б) Приказати шта представља улазни податак који процесор даје TLB-у, шта је кључ за претрагу у TLB, и како се добија улаз у TLB у коме се тај кључ тражи.
- в) За сваки приступ меморији означити: виртуелну адресу којој се приступа, тип операције (Rd, Wr, Ex), идентификацију корисника, вредност поља Segment и Word, вредност поља Тад и Entry у TLB јединици, коментар да ли је било сагласности у TLB јединици, почетну адресу сегмента Saddr, физичку адресу којој се приступило или коментар уколико је дошло до прекида. Одговор дати табеларно.

Виртуелна адреса	Тип	User	Segment	Word	Tag	Entry	Коментар	Saddr	Физичка адреса

- г) Приказати вредности кључева и информационог садржаја релевантних улаза у TLB (означити те улазе), после извршавања датог дела програма.
 - д) Приказати изглед табеле сегмената након извршавања датог програмског сегмента.

Решење:

а) Логичка структура виртуелне адресе је тако:

15	11
Segment(4)	Offset(12)

Физичка адреса се добија сабирањем адресе почетка сегмента унутар физичке меморије и редног броја речи унутар сегмента.

б) Улазни податак за TLB је:

7		3
	User(4)	Segment(4)

Кључ за претрагу у TLB поље *User*, а налази се у улазу са редним бројем једнаким пољу *Segment*.

B)

Виртуелна	Тип	User	Segment	Word	Tag	Entry	Коментар	Saddr	Физичка
адреса	1 1111	OSCI	Beginent	Word	Tag	Littiy	Romentup	Saddi	адреса
3F00	Ex	3	3	F00	3	3	Miss	200000	200F00
3F01	Ex	3	3	F01	3	3	Hit	200000	200F01
3F02	Ex	3	3	F02	3	3	Hit	200000	200F02
1215	Wr	3	1	215	3	1	Miss	300000	300215
3F03	Ex	3	3	F03	3	3	Hit	200000	200F03
3F04	Ex	3	3	F04	3	3	Hit	200000	200F04
2001	Wr	3	2	001	3	2	Miss	400000	400001

L)

]	Кључе	ви (Та	д меморија)	Информациони садржај		
Улаз	V	D	Tag	RWE (bin)	Дужина	Почетна адреса(hex)
0	0	0				
1	1	1	3	110	1K	300000
2	1	1	3	110	2K	400000
3	1	0	3	001	4K	200000

Д)

	Табела сегмената									
Улаз	V	D	RWE (bin)	Дужина	Почетна адреса(hex)	Диск				
0	0	0				-				
1	1	1	110	1K	300000	-				
2	1	1	110	2K	400000	-				
3	1	0	001	4K	200000	_				

Задатак 8.

Процесор подржава виртуелну меморију, и поседује хардвер за убрзавање пресликавања виртуелних у реалне адресе (у даљем тексту TLB). При том је виртуелна адреса ширине 16 бита, а реална адреса 32 бита, уз подршку до 4 корисника. Виртуелна меморија организована је по сегментно-страничном принципу, са максимално 4 сегмената по кориснику и 16 странице по сегменту. TLB је организован асоцијативно, са 4 улаза и LRU алгоритмом замене. Кориснички програм са бројем 3h генерише следећу секвенцу виртуелних адреса (све вредности су хексадецималне):

4632h (Ex), 5C5Fh (Ex), BE8Eh (Rd), 2237h (Wr), 5C60h (Ex), 463Fh (Ex), FCFAh (Wr).

Пре почетка извршавања овог програмског сегмента TLB јединица је била празна, а у оперативној меморији се није налазила ни једна страница датог корисника. Кориснику се додељују странице у оперативне меморији почев од блока C1h физичке меморије. Ове странице се додељују редом. Алгоритам замене страница у оперативној меморији је FIFO. Одредити минималну величину сегмената тако да не дође до прекида услед прекорачења опсега. Претпоставити да се приликом промене контекста садржај TLB јединице неће променити.

- а) Приказати логичку структуру виртуелне и физичке адресе и дати значење и дужину сваког поља.
- б) Приказати шта представља улазни податак који процесор даје TLB-у, шта је кључ за претрагу у TLB, и како се добија улаз у TLB у коме се тај кључ тражи.
- в) За сваки приступ меморији означити: виртуелну адресу којој се приступа, тип операције (Rd, Wr, Ex), идентификацију корисника, вредност поља Segment, Page и Word, вредност поља Таg TLB јединици, коментар да ли је било сагласности у TLB јединици, блок оперативне меморије Block, физичку адресу. Одговор дати табеларно.

Виртуелна адреса	Тип	User	Segment	Page	Word	Tag	Коментар	Block	Физичка адреса

- г) Приказати вредности кључева и информационог садржаја релевантних улаза у TLB (означити те улазе), после извршавања датог дела програма.
- д) Приказати изглед табеле сегмената и свих табела страница након извршавања датог програмског сегмента.

Решење:

б)

а) Логичка структура виртуелне адресе је:

	15	13	9
	Segment(2)	Page(4)	Offset(10)
Погичь	ка структура физичі	ке алресе је:	

огичка структура физичке адресе је:

Block(22)	Offset(10)

Улазни податак за TLB има структуру:

_ 7	,	5	3
	User(2)	Segment(2)	Page(4)

Кључ за претрагу је поље User(1:0): Segment(1:0): Page(3:0).

B) Виртуелна User Segment Page Word Tag Коментар Block Физичка

Вежбе на табли Страна 55 од 100

адреса									адреса
4632	Ex	11	01	0001	1000110010	11010001	Miss	-	Page Fault
4632	Ex	11	01	0001	1000110010	11010001	Miss	C1	00030632
5C5F	Ex	11	01	0111	0001011111	11010111	Miss	-	PageFault
5C5F	Ex	11	01	0111	0001011111	11010111	Miss	C2	0003085F
BE8E	Rd	11	10	1111	1010001110	11101111	Miss	-	Page Fault
5C5F	Ex	11	01	0111	0001011111	11010111	Hit	C2	0003085F
BE8E	Rd	11	10	1111	1010001110	11101111	Miss	C3	00030E8E
2237	Wr	11	00	1000	1000110111	11001000	Miss	-	Page Fault
5C5F	Ex	11	01	0111	0001011111	11010111	Hit	C2	0003085F
BE8E	Rd	11	10	1111	1010001110	11101111	Hit	C3	00030E8E
2237	Wr	11	00	1000	1000110111	11001000	Miss	C4	00031237
5C60	Ex	11	01	0111	0001100000	11010111	Hit	C2	00030860
463F	Ex	11	01	0001	1000111111	11010001	Hit	C1	0003063F
FCFA	Wr	11	11	1111	0011111010	11111111	Miss	-	Page Fault
463F	Ex	11	01	0001	1000111111	11010001	Hit	C1	0003063F
FCFA	Wr	11	11	1111	0011111010	11111111	Miss	C5	000314FA

Г)

]	Кључе	ви (Та	д меморија)	Информациони садржај			
Улаз	V	D	Tag	RWE (bin)	Блок	LRU-CNT	
0	1	0	11010001	001	C1	2	
1	1	0	11010111	001	C2	1	
2	1	1	11111111	110	C5	3	
3	1	1	11001000	110	C4	0	

д)

	Табела сегмената								
Улаз	RWE (bin)	Дужина	PTP						
0	110	9K	0						
1	001	8K	1						
2	110	16K	2						
3	110	16K	3						

	Табела страница 0								
Улаз	V	D	Блок	Диск					
				-					
8	1	1	C4	-					
•••				-					

	Табела страница 1								
Улаз	V	D	Блок	Диск					
				-					
1	1	0	C1	-					
7	1	0	C2	-					

	Табела страница 2								
Улаз	V	D	Блок	Диск					
				-					
				-					
F	1	0	C3	-					

Табела страница 3						
Улаз	V	D	Блок	Диск		
				-		
•••				-		

Страна 56 од 100 Вежбе на табли

F	1	1	C5	-

Задатак 9.

Процесор подржава постојање више програма у меморији истовремено, до 8 корисника. Рачунар поседује виртуелну меморију, код које 32-битне адресе одговарају виртуелном адресном простору, а физички адресни простор је величине 256 MW (256 мега речи). Адресирање је на нивоу 32-битних речи. Виртуелна меморија организована је на сегментно страничном принципу, при чему је величина странице 1 KW (1 кило речи). Постоје 4 сегмента, то су сегмент програма, сегмент података, сегмент стека и хип сегмент. Процесор поседује посебан хардвер за убрзавање пресликавања виртуелних у реалне (физичке) адресе (у даљем тексту TLB). TLB је организован са сет-асоцијативним пресликавањем, поседује четири улаза по сету и 32 сета. Алгоритам замене TLB-а је LRU. Процесор извршава следећи део програма корисника са идентификатором 7:

Адреса (hex):	Наредба:	Коментар:
00000D76	MOV R0, #1234h	; R0:=1234h
00000D78	PUSH R0	; Mem[SP]:=R0
00000D79	MOV 40000F56h, R0	; Mem[40000F56h]:=R0
00000D7B	MOV (40000FABh), R0	; Mem[Mem[40000FABh]]:=R0
00000D7D		

За дати програм сегмент програма је величине 16 KW, сегмент података 6 KW, сегмент стека 8 KW, док је хип сегмент 10 KW. Стек расте од виших ка нижим адресама и SP указује не прву слободну локацију има вредност 80000С13h пре извршавања датог дела програма. Садржај меморијске локације 40000FABh je C0000E24h.

Пре почетка извршавања овог програмског сегмента TLB јединица је била празна, а у оперативној меморији се није налазила ни једна страница датог корисника. Кориснику се додељују странице у оперативне меморији почев од блока ABh физичке меморије. Ове странице се додељују редом. Алгоритам замене страница у оперативној меморији је FIFO. Регистар R0 је 32-битни. Приликом промене контекста брише се комплетан садржај TLB јединице.

- а) Приказати логичку структуру виртуелне и физичке адресе и дати значење и дужину сваког поља.
- б) Приказати шта представља улазни податак који процесор даје ТLВ-у, шта је кључ за претрагу у TLB, и како се добија улаз у TLB у коме се тај кључ тражи.
- в) За сваки приступ меморији означити: виртуелну адресу којој се приступа, тип операције (Rd, Wr, Ex), идентификацију корисника, вредност поља Segment, Page и Word, вредност поља Таg и Set у TLB јединици, коментар да ли је било сагласности у TLB јединици, блок оперативне меморије Block, физичку адресу којој се приступило или коментар уколико је дошло до прекида. Одговор дати табеларно.

Виртуелна адреса	Тип	User	Segment	Page	Word	Tag	Set	Коментар	Block	Физичка адреса

- г) Приказати вредности кључева и информационог садржаја релевантних улаза у TLB (означити те улазе), после извршавања датог дела програма.
- д) Приказати изглед табеле сегмената и свих табела страница након извршавања датог програмског сегмента.

Решење:

а) Логичка структура виртуелне адресе је:

_ 31	29	9
Segment(2)	Page(20)	Offset(10)

Логичка структура физичке адресе је:

9

Вежбе на табли Страна 57 од 100

Block(18)	Offset(10)
= ===(==)	

б) Улазни податак за TLB има структуру:

24	21		19
User(3)		Segment(2)	Page(20)

Кључ за претрагу је поље User(7:0): Segment(1:0): Page(19:5), а налази се у сету са редним бројем једнаким пољу Page(4:0).

в)

Виртуелна адреса	Тип	User	Segment	Page	Word	Tag	Set	Коментар	Block	Физичка адреса
00000D76	Ex	7	0	3	176	E0000	3	Miss	-	Page Fault
00000D76	Ex	7	0	3	176	E0000	3	Miss	AB	002AD76
00000D77	Ex	7	0	3	177	E0000	3	Hit	AB	002AD77
00000D78	Ex	7	0	3	178	E0000	3	Hit	AB	002AD78
80000C13	Wr	7	2	3	013	F0000	3	Miss	-	Page Fault
00000D78	Ex	7	0	3	178	E0000	3	Miss	AB	002AD78
80000C13	Wr	7	2	3	013	F0000	3	Miss	AC	002B013
00000D79	Ex	7	0	3	179	E0000	3	Hit	AB	002AD79
00000D7A	Ex	7	0	3	17A	E0000	3	Hit	AB	002AD7A
40000F56	Wr	7	1	3	356	E8000	3	Miss	-	Page Fault
00000D79	Ex	7	0	3	179	E0000	3	Miss	AB	002AD79
00000D7A	Ex	7	0	3	17A	E0000	3	Hit	AB	002AD7A
40000F56	Wr	7	1	3	356	E8000	3	Miss	AD	002B756
00000D7B	Ex	7	0	3	17B	E0000	3	Hit	AB	002AD7B
00000D7C	Ex	7	0	3	17C	E0000	3	Hit	AB	002AD7C
40000FAB	Rd	7	1	3	3AB	E8000	3	Hit	AD	002B7AB
C0000E24	Wr	7	3	3	224	F8000	3	Miss	-	Page Fault
00000D7B	Ex	7	0	3	17B	E0000	3	Miss	AB	002AD7B
00000D7C	Ex	7	0	3	17C	E0000	3	Hit	AB	002AD7C
40000FAB	Rd	7	1	3	3AB	E8000	3	Miss	AD	002B7AB
C0000E24	Wr	7	3	3	224	F8000	3	Miss	AE	002BA24

г)

Сет 3h

	Кључе	ви (Та	д меморија)	Информациони садржај			
Улаз	V	D	Tag	RWE (bin)	Блок	LRU-CNT	
0	1	0	E0000	001	AB	1	
1	1	1	E8000	110	AD	2	
2	1	1	F8000	110	AE	3	
3	0	0					

д)

		Табела сегмена	ата
Улаз	RWE (bin)	Дужина	PTP
0	001	16K	Табела страница програма
1	110	6K	Табела страница података
2	110	8K	Табела страница стека
3	110	10K	Табела странца хипа

	Табела страница програма						
Улаз	V	D	Блок	Диск			
0				-			
				-			
3	1	0	AB	-			
				=			

Вежбе на табли Страна 58 од 100

	Табела страница података							
Улаз	V	D	Блок	Диск				
0				=				
				-				
3	1	1	AD	-				
				-				

Табела страница стека								
Улаз V D Блок Диск								
0				-				
				-				
3	1	1	AC	-				
•••				-				

	Табела странца хипа								
Улаз	Диск								
0				-					
				-					
3	1	1	AE	-					
				-					

Страна 59 од 100 Вежбе на табли

Преклапање приступа меморијским модулима (Memory Inteleaving)

Задатак 1.

Оперативна меморија се састоји од осам меморијских модула, а капацитет модула је 128 KB, што чини тотални капацитет меморије од 1 MB. Ширина речи оперативне меморије је 1 бајт. Адреса оперативне меморије је ширине 20 бита, а њени најстарији и најмлађи битови су означени са A_{19} и A_{0} , респективно.

- а) Нацртати и описати који опсег адреса меморијског адресног простора је додељен ком од осам модула за четири случаја преклапања приступа модулима ако је број модула спецификован следећим битовима адресе:
 - a1) A₁₉ A₁₈ A₁₇
 - a2) A₁₉ A₁₈ A₀
 - a3) $A_{19} A_1 A_0$
 - a4) $A_2 A_1 A_0$

и показати за сваки од њих који адресни битови формирају адресу бајта унутар модула.

б) Објаснити да ли преплитање меморијских модула убрзава рад рачунара који се састоји од процесора, оперативне меморије, неколико периферија и магистрале, али не садржи DMA контролере или друге процесоре. У случају да

убрзава, објаснити на који начин се то постиже,

не убрзава, објаснити зашто.

- в) У случају рачунара који се састоји од четири процесора, четири DMA контролера, оперативне меморије са преклапањем приступа меморијским модулима као што је описано у задатку и асинхроне магистрале, постоји потреба за арбитрацијом магистрале где master прво учествује у арбитрацији, па тек онда када прими дозволу од арбитратора магистрале сме да изврши циклус на магистрали. За описани рачунар објаснити:
 - в1) Које врсте циклуса на магистрали постоје.
 - в2) Колико дуго је магистрала заузета за време сваког од наведених врста циклуса.
- в3) Колико група линија постоје на магистрали и чему свака од њих служи за сваки тип циклуса на магистрали.
- в4) Нацртати и објаснити временске дијаграме свих сигнала на магистрали за све типове циклуса на магистрали.

Решење:

a)

а1) Адресе су распоређене по меморијским модулима на следећи начин:

	$0.2^{17} + 0$
опсег адреса	$0.2^{17}+1$
0.2^{17}	M_0
до	
$0.2^{17} + (2^{17} - 1)$	
	$0\cdot 2^{17} + (2^{17} - 1)$

опсег адреса

 $\begin{array}{c}
1 \cdot 2^{17} + 0 \\
1 \cdot 2^{17} + 1
\end{array}$

Битови A_{16} до A_0 спецификују адресу унутар модула.

а2) Адресе су распоређене по меморијским модулима на следећи начин:

Битови А₁₇ до А₁ спецификују адресу унутар модула.

а3) Адресе су распоређене по меморијским модулима на следећи начин:

Вежбе на табли Страна 61 од 100

$$1 \cdot 2^{19} + (2^{19} - 1)$$

$$1 \cdot 2^{19} + (2^{19} - 4)$$

$1\cdot 2^{19} + (2^{19} - 3)$

Битови A_{18} до A_2 спецификују адресу унутар модула.

а4) Адресе су распоређене по меморијским модулима на следећи начин:

$0.2^{20} + 1$
$0.2^{20} + 9$
\mathbf{M}_1
$0\cdot 2^{20} + (2^{20} - 7)$
$0.2^{20}+(2^{20}-7)$

$0.2^{20} + 7$
$0.2^{20} + 15$
M_7
$0\cdot 2^{20} + (2^{20} - 1)$

Битови А₁₉ до А₃ спецификују адресу унутар модула.

- б) Меморија са преклапањем приступа неће убрзати рад рачунара.
- B)
- в1) Постоје три типа циклуса на магистрали:

циклус иницијализације операције читања податка,

циклус уписа податка и

циклус враћања податка.

в2) За сва три типа циклуса магистрала је заузета само док траје пренос релевантних информација за тај циклус из регистара master-a у регистре slave-a.

в3)

циклус иницијализације операције читања податка

циклус уписа податка

циклус враћања податка

Задатак 2.

Меморијске адресе су ширине 16 бита, ширина магистрале података је 8 бита, адресирање је бајтовско, а двобајтни подаци се у меморију смештају тако да је на нижој адреси нижи бајт. Процесор

оперише само са 16-битним целобројним величинама (у даљем тексту *реч* означава 16-битну величину), и све инструкције су 16-битне. Улазно/излазни адресни простор је меморијски пресликан. Време одзива меморије је неодређено, магистрала је асинхрона.

- а) Предложити организацију оперативне меморије са преклопљеним приступом меморијским модулима, при чему се рачунар састоји само од датог (једног) процесора, оперативне меморије, периферија и једне асинхроне магистрале. Прецизно дати следеће: број меморијских модула, начин адресирања модула, начин адресирања локација унутар модула и распоред адреса по модулима. Време одзива меморије је довољно пута веће од трајања циклуса на магистрали.
- б) Да ли је, за организацију из претходне тачке, неопходно да процесор, при иницирању читања из меморије, по линијама података шаље неку идентификацију?

Ако јесте, коју идентификацију треба да шаље, а ако није, како процесор може да зна на који му захтев меморија одговара, у случају да модули нису потпуно једнаки по времену одзива?

в) Одговорити на иста питања из тачке а), ако се између процесора и меморије постави кеш меморија организована сет-асоцијативно на нивоу блока, са 128 сетова, 4 блока у сету и капацитетом 8 KB података.

Решење:

- а) Организација модула је следећа: два модула M0 и M1, модули се адресирају битом најмање тежине у адреси (A0), адресирање унутар модула је помоћу бита A15 до A1, а распоред адреса је такав да су у M0 све парне, а у M1 све непарне адресе.
 - б) Није потребно.
 - в) Адресе су расподељене на следећи начин (све вредности су хексадецималне):

```
M0:0000, 0010, 0020, 0030, ...., FFF0
M1:0001, 0011, 0021, 0031, ...., FFF1
....
Mi:000i, 001i, 002i, 003i, ...., FFFi
....
M15: 000F, 001F, 002F, 003F, ...., FFFF
```

Задатак 3.

Процесор је двоадресни. Адресе су ширине 16 бита, а адресирање је на нивоу 16-битних речи. Процесор поседује регистре за податке D3...0 и адресне регистре A3...0. Једини начин адресирања је регистарско индиректно, преко адресних регистара.

Пројектује се меморијски систем са преклапањем приступа модулима. Време приступа модулу (трајање једног читања или уписа) је 100 ns. Када процесор и модул комуницирају, трајање циклуса на магистрали је 15 ns. Модули се организују тако да се приступ оптимизује за секвенцијално обраћање меморији.

- а) Колико (највише) модула предлажете? Образложити.
- б) Приказати начин адресирања модула и распоред адреса по модулима.
- в) Колико циклуса на магистрали се обави при извршавању следеће секвенце инструкција? Образложити.

LOAD D0, A1 ; D0:=Mem[A1]
ADD D0, A2 ; D0:=D0+Mem[A2]
STORE D0, A2 ; Mem[A2]:=D0

Вежбе на табли Страна 63 од 100

Решење:

- а) Највећи број модула који (теоријски) има смисла је 7, што значи да треба инсталирати 8 модула, као број који је први наредни степен 2.
 - б) За секвенцијални приступ суседне адресе треба да буду у различитим модулима.
 - в) Укупан број циклуса на магистрали је 11.

Задатак 4.

Меморијске адресе су ширине 32 бита, ширина магистрале података је 16 бита, а адресирање је на нивоу 16-битних речи. Између процесора и магистрале везана је кеш меморија организована блоковски, са величином блока од 2^{16} речи. Ради убрзања приступа меморији, меморија је организована са преклапањем модула (*memory inteleaving*). Време одзива меморијског модула је толико да се може обавити иницијализација операције у још 14 меморијских модула после модула X од стране кеш меморије, док операција у модулу X не буде завршена.

- а) Предложити број меморијских модула до којих би се преклапао приступ.
- б) Предложити распоред адреса по овим модулима.
- в) Како се врши препознавање модула и како се добија интерна адреса унутар модула?

Решење:

- а) Највећи број модула који (теоријски) има смисла је 15, што значи да треба инсталирати 16 модула, као број који је први наредни степен 2.
 - б) Суседне адресе су у суседним модулима, због секвенцијалног (блоковског) приступа.
 - в) Најнижа 4 бита адресе одређују број модула, а остали бити интерну адресу унутар модула.

Задатак 5.

Меморија је организована у 16 модула до којих се преклапа приступ, тако да је оптимизација извршена за секвенцијални приступ процесора меморији на нивоу бајта.

- а) Који бити адресе одређују модул, а који локацију унутар модула? Како су адресе распоређене по модулима?
- б) Ако осим описаног процесора не постоје други иницијатори операција са меморијом, да ли је потребна арбитрација приступа магистрали? Кратко образложити зашто.
- в) У наставку су дате вредности релевантних сигнала на магистрали у току неколико узастопних циклуса на магистрали (све вредности су хексадецималне и сви приступи су на нивоу бајта). Пронаћи које је операције са меморијом вршио процесор. За сваку операцију дати вредност адресе меморијске локације којој је процесор приступао, вредност податка који је прочитан/уписан и тип операције (читање/упис).

Такт	Addres Bus	Data Bus	rd	wr	ack
1	A00E	FE	1	0	1
2	B144	F4	1	0	1
3	D000	F2	0	1	1
4	C222	F2	1	0	1
5	FFFE	D0	1	1	1
6	FFF4	D1	1	1	1
7	FFF2	20	1	1	1

Табела садржаја на магистрали

Решење:

Вежбе на табли Страна 64 од 100

- а) Бити 3..0 одређују модул, а бити 15..4 локацију унутар модула. У модулу и су све адресе које дају остатак и при дељењу са 16 (i=0, ..., 15).
- б) Потребна је. Без обзира што постоји само један *иницијатор операција* (процесор), постоји више *master-а* који воде *циклусе на магистрали* (процесор и меморијски модули). Ови master-и конкуришу за приступ магистрали, па је потребна арбитрација.

B)

Адреса	Податак	Операција
A00E	00D0	Read
B144	00D1	Read
D000	FFF2 (odnosno F2)	Write
C222	0020	Read

Задатак 6.

Разматра се рачунарски систем који се састоји од једног процесора, меморије и магистрале. Меморијске адресе су ширине 32 бита, ширина магистрале података је 16 бита, а адресирање је на нивоу 16-битних речи. За описани рачунар који је једини иницијатор операција са меморијом у систему, пројектује се меморијски систем са преклопљеним приступом меморијским модулима, тако да се оптимизује секвенцијални приступ до векторских података у меморији. Сваки циклус на магистрали траје тачно 4 такта (укључујући и арбитрацију). Време одзива меморије, од завршетка циклуса иницирања операције читања, до почетка циклуса враћања очитаног податка је 16 тактова. Број модула је 4. Виши приоритет имају циклуси враћања податка из меморије.

- а) Како су распоређене адресе по модулима, који бити адресне речи одређују модул, а који адресу унутар модула?
- б) Који типови циклуса постоје на магистрали? Дати временске облике сигнала на магистрали за све типове и навести ко је *master*, а ко *slave*.
- в) Колико периода такта траје операција читања вектора дужине 64 из меморије, под претпоставком да процесор може да прихвати све очитане податке и иницира узастопно операције читања, без празног хода? Колико периода такта би трајало исто читање, али ако је меморија организована без преклапања, а циклус читања једне речи траје 16 тактова (приближно исте перформансе меморије)?

Решење:

- а) Суседне адресе у различитим модулима. А1..0 одређују модул, а остали адресу унутар модула.
- б) Видети предавања или вежбе.
- в) Читање 4 суседне речи из 4 модула траје 4+16+4+4+4=36 тактова. После тога може да почне поновно иницирање читања 4 наредне речи. Дакле, укупно читање 64 речи траје (64/4)*36=576 тактова.

Без преклапања: 64*16=1024 такта.

Задатак 7.

Разматра се рачунарски систем који се састоји од четири процесора, меморије и магистрале. Меморијске адресе су ширине 32 бита, ширина магистрале података је 16 бита, а адресирање је на нивоу 16-битних речи. За описани рачунар пројектује се меморијски систем са преклопљеним приступом меморијским модулима, са 256 модула који покривају цео адресни простор. Циклус повратка прочитаног податка из меморије идентификује се тако што су обе контролне линије rd и wr активне. Сви захтеви за приступ магистрали постављају се синхроно, на исти сигнал такта. Арбитрација се обавља комбинационо, тако да се у истом такту арбитрирају сви захтеви постављени на тај сигнал такта (или раније), даје дозвола једном master-у и тај master обавља циклус на магистрали. Међу процесорима, виши приоритет има процесор са мањим идентификационим бројем (ID). Међу модулима, виши приоритет има модул са мањим бројем. Циклус враћања очитаног податка из меморије има

Вежбе на табли Страна 65 од 100

највиши приоритет. Уколико процесор постави захтев модулу који је заузет обрадом раније задате операције, модул му одговара негативно у истом такту (ack=0), процесор одустаје од захтева, паузира 2 такта, а онда понавља исти захтев. Након иницијализације операције уписа у меморију меморијски модул је заузет наредне две периоде сигнала такта. Након иницијализације операције читања из меморије модул је заузет две периоде сигнала такта и одговор даје тек у трећој. Четири процесора постављају захтеве за операције са меморијом на следећи начин (формат је: такт:IDprocesora-адреса(операција)):

1:0-00000000h(Rd), 1:1-0000FFFFh(Rd), 4:3-FF000000h(Wr), 5:2-FF0000FFh(Rd)

Приказати како теку циклуси на магистрали за ову секвенцу. Приказ дати табеларно, тако да се по редовима табеле наводе циклуси на магистрали, прва колона даје редни број такта, друга садржај на адресној магистрали, трећа садржај на магистрали података, а четврта, пета и шеста вредности сигнала rd, wr и ack, редом. За вредност на магистрали података током циклуса уписа податка или враћања прочитаног податка из меморије ставити X.

- а) За случај да најнижи бити адресе одређују модул.
- б) За случај да највиши бити адресе одређују модул.

Решење:

а) Приспео	Уређај	Адреса	Податак	Операција	Обрађено	Ack	Нови захтеви
1	P0	00000000	0	Rd	1	1	М0 одговара у Т=4
1	P1	0000FFFF	1	Rd	2	1	M255 одговара у Т=5
4	P3	FF000000	X	Wr	7	1	М0 заузето до Т9
5	P2	FF0000FF	2	Rd	6	1	M255 одговара у T=9
4	M0	0	X	Da	4	1	-
5	M255	1	X	Da	5	1	-
9	M255	2	X	Da	9	1	-

Табела захтева арбитратору

Такт	Addres Bus	Data Bus	rd	wr	ack
1	00000000	0	1	0	1
2	0000FFFF	1	1	0	1
3	-				
4	0	X	1	1	1
5	1	X	1	1	1
6	FF0000FF	2	1	0	1
7	FF000000	X	0	1	1
8	-				
9	2	X	1	1	1

Табела садржаја на магистрали

б)

Приспео	Уређај	Адреса	Податак	Операција	Обрађено	Ack	Нови захтеви
1	P0	00000000	0	Rd	1	1	М0 одговара у Т=4
1	P1	0000FFFF	1	Rd	2	0	Поново у Т5
4	P3	FF000000	X	Wr	7	0	Поново у Т10
5	P2	FF0000FF	2	Rd	6	1	M255 одговара у T=9
4	M 0	0	X	Da	4	1	-
5	P1	0000FFFF	1	Rd	5	1	М0 одговара у Т=8
8	M 0	1	X	Da	8	1	-
9	M255	2	X	Da	9	1	-

Вежбе на табли Страна 66 од 100

10	P3	FF000000	X	Wr	10	1	М255 заузето до Т12

Табела захтева арбитратору

Такт	Addres Bus	Data Bus	rd	wr	ack
1	00000000	00	1	0	1
2	0000FFFF	01	1	0	0
3	-				
4	00	X	1	1	1
5	0000FFFF	01	1	0	1
6	FF0000FF	02	1	0	1
7	FF000000	X	0	1	0
8	01	X	1	1	1
9	02	X	1	1	1
10	FF000000	X	0	1	1

Табела садржаја на магистрали

Задатак 8.

Посматра се рачунарски систем са меморијским системом са преклопљеним приступом меморијским модулима, тако да је оптимизација извршена за секвенцијални приступ процесора меморији. Величина једног меморијског модула је 1МВ и постоји 16 модула. Адресибилна јединица и ширина акумулатора су по 1 бајт. Циклус повратка прочитаног податка из меморије идентификује се тако што су обе контролне линије rd и wr активне. Претпоставити да након иницијализације операције уписа у меморију меморијски модул је заузет наредне три периода сигнала такта и да је након иницијализације операције читања из меморије модул заузет две периоде сигнала такта и одговор даје тек у трећој.

Сви захтеви за приступ магистрали постављају се синхроно, на исти сигнал такта. Арбитрација се обавља комбинационо, тако да се у истом такту арбитрирају сви захтеви постављени на тај сигнал такта (или раније), даје дозвола једном *master*-у и тај *master* обавља циклус на магистрали. Међу процесорима, виши приоритет има процесор са вишим идентификационим бројем (ID). Међу модулима, виши приоритет има модул са мањим бројем. Циклус враћања очитаног податка из меморије има највиши приоритет. Уколико процесор постави захтев модулу који је заузет обрадом раније задате операције, модул му одговара негативно у истом такту (*ack*=0), процесор одустаје од захтева, паузира 2 такта, а онда понавља исти захтев. Три процесора извршавају следеће програмске сегменте (формат заглавља је: такт:IDprocesora, све вредности су хексадецималне):

такт 0:1 (IDprocesora) 0:2 0:3

1000 LOAD A001h F000 PUSH 4800 STORE 18h

1004 F001 ... 4802 ...

Претпоставити да су вредност за процесор 1 ACC=8h, за процесор 2 ACC=8h и SP=300h и за процесор 3 ACC=88h. Стек расте од виших на нижим локацијама, а SP показује на прву слободну локацију. Инструкције се дохватају тако што се одмах након пријема једног бајта инструкције у следећем такту упућује захтев за довлачењем следећег бајта. Све инструкције које током извршавања врше приступ подацима у меморији, сам приступ започињу у трећем такту након фазе читања инструкције (прочитају инструкцију, чекају два такт, па крећу са приступом у меморију).

Приказати како теку циклуси на магистрали за ову секвенцу. Приказ дати табеларно, тако да се по редовима табеле наводе циклуси на магистрали, прва колона даје редни број такта, друга садржај на адресној магистрали, трећа садржај на магистрали података, а четврта, пета и шеста вредности сигнала rd, wr и ack, редом. За вредност на магистрали података током циклуса уписа податка или враћања прочитаног податка из меморије ставити X.

Решење:

a)

Приспео	Уређај	Адреса	Податак	Операција	Обрађено	Ack	Нови захтеви
0	P1	001000	1	Rd	2	0	Поново у Т=5
0	P2	00F000	2	Rd	1	0	Поново у Т=4

Вежбе на табли Страна 67 од 100

0	P3	004800	3	Rd	0	1	М0 одговара у T=3
3	M0	3	X	Da	3	1	Нови захтев у Т=4
4	P2	00F000	2	Rd	5	1	М0 одговара у Т=8
5	P1	001000	1	Rd	6	0	Поново у Т=9
4	P3	004801	3	Rd	4	1	M1 одговара у T=7
7	M1	3	X	Da	7	1	Нови захтев у Т=10
8	M0	2	X	Da	8	1	Нови захтев у Т=11
9	P1	001000	1	Rd	9	1	М0 одговара у T=12
10	P3	000018	88	Wr	10	1	М8 заузет до T=13
11	P2	000300	8	Wr	11	0	Поново у Т=14
12	M0	1	X	Da	12	1	Нови захтев у Т=13
14	P2	000300	8	Wr	14	1	М0 заузет до T=17
13	P1	001001	1	Rd	13	1	M1 одговара у T=16
16	M0	1	X	Da	16	1	Нови захтев у Т=17
17	P1	001002	1	Rd	17	1	M2 одговара у T=20
20	M2	1	X	Da	20	1	Нови захтев у Т=21
21	P1	001003	1	Rd	21	1	M3 одговара у T=24
24	M3	1	X	Da	24	1	Нови захтев у Т=27
27	P1	00A001	1	Rd	27	1	M1 одговара у T=30
30	M1	1	X	Da	30	1	-

Табела захтева арбитратору

Такт	Addres Bus	Data Bus	rd	wr	ack
0	004800	3	1	0	1
1	00F000	2	1	0	0
2	001000	1	1	0	0
3	3	X	1	1	1
4	004801	3	1	0	1
5	00F000	2	1	0	1
6	001000	1	1	0	0
7	3	X	1	1	1
8	2	X	1	1	1
9	001000	1	1	0	1
10	000018	88	0	1	1
11	000300	8	0	1	0
12	1	X	1	1	1
13	001001	1	1	0	1
14	000300	8	0	1	1
15	-				
16	1	X	1	1	1
17	001002	1	1	0	1
18	-				
19	-				
20	1	X	1	1	1
21	001003	1	1	0	1
22	-				
23	-				
24	1	X	1	1	1
25	-				
26	-				
27	00A001	1	1	0	1

Вежбе на табли Страна 68 од 100

28	-				
29	-				
30	1	X	1	1	1

Табела садржаја на магистрали

Задатак 9.

Рачунарски систем се састоји из три процесора, DMA контролера и оперативне меморије. Меморијске адресе су ширине 32 бита, ширина магистрале података је 32 бита, адресирање је нивоу 32 битне речи. Улазно/излазни адресни простор је меморијски пресликан. Претпоставити да након иницијализације операције уписа у меморију меморијски модул је заузет наредне три периоде сигнала такта и да је након иницијализације операције читања из меморије модул заузет две периоде сигнала такта и одговор даје тек у трећој. Када процесор или DMA контролер и модул комуницирају, трајање циклуса на магистрали је једна периода сигнала такта. Адреса оперативне меморије је ширине 32 бита, а њени најстарији и најмлађи битови су означени са A_{31} и A_{0} , респективно.

- а) Предложити организацију оперативне меморије са преклопљеним приступом меморијским модулима, тако да се обезбеди максимална конкурентност и приступ сукцесивним локацијама. Прецизно дати следеће: број меморијских модула, начин адресирања модула, начин адресирања локација унутар модула и распоред адреса по модулима.
- б) Циклус повратка прочитаног податка из меморије идентификује се тако што су обе контролне линије rd и wr активне. Сви захтеви за приступ магистрали постављају се синхроно, на исти сигнал такта. Арбитрација се обавља комбинационо, тако да се у истом такту арбитрирају сви захтеви постављени на тај сигнал такта (или раније), даје дозвола једном master-у и тај master обавља циклус на магистрали. Међу процесорима, виши приоритет има процесор са мањим идентификационим бројем (ID). DMA контролер има највиши приоритет, редни број му је 3. Међу модулима, виши приоритет има модул са већим бројем. Циклус враћања очитаног податка из меморије има највиши приоритет. Уколико се постави захтев модулу који је заузет обрадом раније задате операције, модул му одговара негативно у истом такту (ack=0), одустаје од захтева, паузира 3 такта, а онда понавља исти захтев. Уређаји постављају захтеве за операције са меморијом на следећи начин (формат је: такт:IDUredjaja-адреса(операција)):

1:0-00000000h(Rd), 1:1-00002468h(Rd), 2:2-00076543h(Wr), 0:3-12345678h(Rd)

DMA контролер је иницијализован да пребацује 4 речи из меморије на периферију почев од адресе 12345678h. DMA контролер ради у режиму циклус по циклус. Након дохватања једне речи из меморије DMA контролер следећи захтев за приступ меморији генерише након три периоде сигнала такта.

Приказати како теку циклуси на магистрали за ову секвенцу. Приказ дати табеларно, тако да се по редовима табеле наводе циклуси на магистрали, прва колона даје редни број такта, друга садржај на адресној магистрали, трећа садржај на магистрали података, а четврта, пета и шеста вредности сигнала rd, wr и ack, редом. За вредност на магистрали података током циклуса уписа податка или враћања прочитаног податка из меморије ставити X.

Решење:

a)

Вежбе на табли

б)

Приспео	Уређај	Адреса	Податак	Операција	Обрађено	Ack	Нови захтеви
1	P0	00000000	0	Rd	1	0	Поново у Т=5
1	P1	00002468	1	Rd	2	0	Поново у Т=6
2	P2	00076543	X	Wr	4	1	М3 заузет до T=7
0	DMA	12345678	3	Rd	0	1	М0 одговара у T=3
3	M0	03	X	Da	3	1	Нови захтев у Т=7
5	P0	00000000	0	Rd	5	1	M0 одговара у T=8
6	P1	00002468	1	Rd	6	0	Поново у T=10
7	DMA	12345679	3	Rd	7	1	M1 одговара у T=10
8	M0	00	X	Da	8	1	-
10	P1	00002468	1	Rd	11	1	М0 одговара у T=14
10	M1	03	X	Da	10	1	Нови захтев у T=14
14	DMA	1234567A	3	Rd	15	1	M2 одговара у T=18
14	M0	01	X	Da	14	1	-
18	M2	03	X	Da	18	1	Нови захтев у Т=22
22	DMA	1234567B	3	Rd	22	1	М3 одговара у T=25
25	M3	03	X	Da	25	1	-

Табела захтева арбитратору

Такт	Addres Bus	Data Bus	rd	wr	ack
0	12345678	3	1	0	1
1	00000000	0	1	0	0
2	00002468	1	1	0	0
3	3	X	1	1	1
4	00076543	2	0	1	1
5	00000000	0	1	0	1
6	00002468	1	1	0	0
7	12346579	3	1	0	1
8	0	X	1	1	1
9	-				
10	3	X	1	1	1
11	00002468	1	1	0	1
12	-				
13	-				
14	1	X	1	1	1

Вежбе на табли Страна 70 од 100

15	1234567A	3	1	0	1
16	-				
17	-				
18	3	X	1	1	1
19	-				
20	-				
21	-				
22	1324657B	3	1	0	1
23	-				
24	-				
25	3	X	1	1	1

Табела садржаја на магистрали

Страна 71 од 100 Вежбе на табли

Проточна обрада (Pipeline)

Задатак 1.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом. За наведене програмске сегменте навести да ли постоји хазард података или не, да ли постоји stall циклуси, ако постоји хазард података да ли се може решити прослеђивањем података и ако постоји како се прослеђују подаци:

- a) ADD R4, R6, R7
 - ADD R8, R2, R7
 - ADD R7, R6, R4
- б) SW R4, (R6)4
 - LW R3, (R4)8
 - ADD R4, R6, R8
- в) ADD R7, R9, R10
 - SW R10, (R7)4
 - LW R7, (R9)4
- r) LW R8, (R4)8
 - ADD R4, R6, R10
 - ADD R2, R8, R10
- д) ADD R4, R5, R10
 - ADD R10, R2, R4
 - SW R11, (R5)8
- ħ) LW R4, (R5)8
 - ADD R7, R5, R4
 - ADD R5, R8, R5
- e) LW R4, (R5)8
 - SW R4, (R3)4
 - ADD R5, R3, R2

Решење:

Вежбе на табли Страна 72 од 100

Процесор са стандардном проточном обрадом

- а) Хазард података, прослеђивање
- б) Без хазарда података
- в) Хазард података, прослеђивање
- г) Хазард података, прослеђивање
- д) Хазард података, прослеђивање
- ђ) Хазард података, stalla циклус између LOAD и ADD, прослеђивање
- е) Хазард података, прослеђивање

Задатак 2.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом.

- а) Набројати микрооперације потребне за извршавање инструкције LOAD са регистарско индиректним адресирања са померајем.
 - б) Набројати микрооперације потребне за извршавање ALU инструкције.
- в) Посматра се програмски сегмент који се састоји од 3 инструкције LOAD-ALU-ALU. Приказати табеларно шта се дешава у којој фази за сваку инструкцију. Размотрити организације без прослеђивања и са прослеђивањем.
- г) Колико је број инструкција у јединици времена за овај процесор? Колико времена је потребно за извршење наведеног програмског сегмента?

```
Решење:
```

```
a)
```

"register-relative" LOAD

IF

IF/ID.IR <- Mem[PC];

IF/ID.NPC,PC <- (if ((EX/MEM.opcode==branch) & EX/MEM.conr){EX/MEM.ALUOutput} else {PC+4});

ID

ID/EX.A <- Regs[IF/ID.IR6..10];

Вежбе на табли Страна 73 од 100

```
ID/EX.B <- Regs[IF/ID.IR11..15];</pre>
ID/EX.NPC <- IF/ID.NPC;
ID/EX.IR <- IF/ID.IR;
ID/EX.Imm <- (IF/ID.IR16)<sup>16</sup>##IF/ID.IR16..31;
EX
EX/MEM.IR<- ID/EX.IR
EX/MEM.ALUOutput <- ID/EX.A+ID/EX.Imm;
EX/MEM.cond <- 0;
EX/MEM.B<-ID/EX.B;
MEM
MEM/WB.IR <- EX/MEM.IR;
MEM/WB.LMD <- Mem[EX/MEM.ALUOutput];</pre>
WB
Regs[MEM/WB.IR11..15] <- MEM/WB.LMD;
б) "ALU-type instruction."
IF
IF/ID.IR <- Mem[PC];</pre>
IF/ID.NPC,PC <- (if ((EX/MEM.opcode==branch) & EX/MEM.conr){EX/MEM.ALUOutput}
    else {PC+4});
ID
ID/EX.A <- Regs[IF/ID.IR6..10]; ID/EX.B <- Regs[IF/ID.IR11..15];
ID/EX.NPC <- IF/ID.NPC; ID/EX.IR <- IF/ID.IR;
ID/EX.Imm <- (IF/ID.IR16)<sup>16</sup>##IF/ID.IR16..31;
EX
EX/MEM.IR <- ID/EX.IR;
EX/MEM.ALUOutput <- ID/EX.A func ID/EX.B;
or
EX/MEM.ALUOutput <- ID/EX.A op ID/EX.Imm;
EX/MEM.cond <- 0;
MEM
MEM/WB.IR <- EX/MEM.IR;
MEM/WB.ALUOutput <- EX/MEM.ALUOutput;
```

Вежбе на табли Страна 74 од 100

WB

Regs[MEM/WB.IR16..20] <- MEM/WB.ALUOutput;

or

Regs[MEM/WB.IR11..15] <- MEM/WB.ALUOutput;

B)

У случају да нама хазарда

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R4, R5		IF	ID	EX	MEM	WB				
OR R6, R7, R8			IF	ID	EX	MEM	WB			

RW хазард између LOAD и прве ALU инструкције (R1). Без прослеђивања. Упис у регистар и читање уписаног податка није могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R1, R5		IF	stall	stall	stall	ID	EX	MEM	WB	
OR R6, R7, R8			stall	stall	stall	IF	ID	EX	MEM	WB

RW хазард између LOAD и прве ALU инструкције (R1). Без прослеђивања. Упис у регистар и читање уписаног податка је могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R1, R5		IF	stall	stall	ID	EX	MEM	WB		
OR R6, R7, R8			stall	stall	IF	ID	EX	MEM	WB	

RW хазард између LOAD и прве ALU инструкције (R1). Са прослеђивањем.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R1, R5		IF	ID	stall	EX	MEM	WB			
OR R6, R7, R8			IF	stall	ID	EX	MEM	WB		

RW хазард између LOAD и друге ALU инструкције (R1). Без прослеђивања. Упис у регистар и читање уписаног податка није могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R4, R5		IF	ID	EX	MEM	WB				
OR R6, R1, R8			IF	stall	stall	ID	EX	MEM	WB	

RW хазард између LOAD и друге ALU инструкције (R1). Са прослеђивањен.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R4, R5		IF	ID	EX	MEM	WB				
OR R6, R1, R8			IF	ID	EX	MEM	WB			

RW хазард између прве и друге ALU инструкције (R3). Без прослеђивања. Упис у регистар и читање уписаног податка је могуће у устом такту.

Вежбе на табли Страна 75 од 100

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R4, R5		IF	ID	EX	MEM	WB				
OR R6, R3, R8			IF	stall	stall	ID	EX	MEM	WB	

RW хазард између прве и друге ALU инструкције (R3). Са прослеђивањем.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R4, R5		IF	ID	EX	MEM	WB				
OR R6, R3, R8			IF	ID	EX	MEM	WB			

RW хазард између LOAD и друге ALU инструкције (R1), и између прве и друге ALU инструкције (R3). Без прослеђивања. Упис у регистар и читање уписаног податка је могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R4, R5		IF	ID	EX	MEM	WB				
OR R6, R1, R3			IF	stall	stall	ID	EX	MEM	WB	

RW хазард између LOAD и прве ALU инструкције (R1), и RW хазард између прве и друге ALU инструкције (R3). Без прослеђивања. Упис у регистар и читање уписаног податка није могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R1, R5		IF	stall	stall	stall	ID	EX	MEM	WB	
OR R6, R3, R8			stall	stall	stall	IF	stall	stall	stall	ID

Инструкција	11	12	13
LW R1, (R2)0			
ADD R3, R1, R5			
OR R6, R3, R8	EX	MEM	WB

RW хазард између LOAD и прве ALU инструкције (R1), и RW хазард између прве и друге ALU инструкције (R3). Са прослеђивањем.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R1, R5		IF	ID	stall	EX	MEM	WB			
OR R6, R3, R8			IF	stall	ID	EX	MEM	WB		

L)

CPI=1.

Уколико се не јаве хазарди потребно је 7 (4+3=7) тактова да се изврше 3 инструкције.

Задатак 3.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом.

а) Навести шта чини интерну структуру сваког степена проточне обраде.

Страна 76 од 100 Вежбе на табли

- б) Навести који се све делови процесора користе у сваком кораку проточне обраде уколико се јави LOAD инструкција.
- в) Навести који се све делови процесора користе у сваком кораку проточне обраде уколико се јави ALU инструкција.
- г) Посматра се програмски сегмент који се састоји од 3 инструкције LOAD-ALU-STORE. Приказати табеларно шта се дешава у којој фази за сваку инструкцију. Размотрити организације без прослеђивања и са прослеђивањем.

Решење:

a)

IF: PC register, Address calculation unit, Instruction Cache memory

IF/ID: IF/ID.IR, IF/ID.NPC

ID: Register file, sign extension unit

ID/EX: ID/EX.A, ID/EX.B, ID/EX.NPC, ID/EX.IR, ID/EX.Imm

EX: Arithmetical and Logical Unit, Branch condition calculation unit

EX/MEM: EX/MEM.IR, EX/MEM.ALUOUT, EX/MEM.cond, EX/MEM.B, EX/MEM.NPC

MEM: Data Cache memory

MEM/WB: MEM/WB.IR, MEM/WB.ALUOUT, MEM/WB.LMD

WB: Multiplexer

б)

IF: PC register, Address calculation unit, Instruction Cache memory

IF/ID: IF/ID.IR, IF/ID.NPC

ID: Register file, sign extension unit

ID/EX: ID/EX.A, ID/EX.B, ID/EX.NPC, ID/EX.IR, ID/EX.Imm

EX: Arithmetical and Logical Unit

EX/MEM.IR, EX/MEM.ALUOUT, EX/MEM.cond, EX/MEM.B

MEM: Data Cache memory

MEM/WB: MEM/WB.IR, MEM/WB.LMD

WB: Multiplexer, Register file

B)

IF: PC register, Address calculation unit, Instruction Cache memory

IF/ID: IF/ID.IR, IF/ID.NPC

ID: Register file, sign extension unit

ID/EX: ID/EX.A, ID/EX.B, ID/EX.NPC, ID/EX.IR, ID/EX.Imm

EX: Arithmetical and Logical Unit

EX/MEM: EX/MEM.IR, EX/MEM.ALUOUT, EX/MEM.cond

MEM: -

MEM/WB: MEM/WB.IR, MEM/WB.ALUOUT

WB: Multiplexer

L)

Вежбе на табли Страна 77 од 100

RW хазард између LOAD и ALU инструкције (R1). RW хазард између ALU и STORE инструкције (R3). Без прослеђивања. Упис у регистар и читање уписаног податка није могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM	WB					
ADD R3, R1, R5		IF	stall	stall	stall	ID	EX	MEM	WB	
SW R3, (R8)0			stall	stall	stall	IF	stall	stall	stall	ID

Инструкција		11	12	13
LW R1, (R2)0				
ADD R3, R1, R5	•••			
SW R3, (R8)0		EX	MEM	WB

RW хазард између LOAD и ALU инструкције (R1). RW хазард између ALU и STORE инструкције (R3). Са прослеђивањем. Упис у регистар и читање уписаног податка је могуће у устом такту.

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)0	IF	ID	EX	MEM*	WB					
ADD R3, R1, R5		IF	ID	stall	*EX*	MEM	WB			
SW R3, (R8)0			IF	stall	ID	EX	*MEM	WB		

Задатак 4.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding). Посматра се следећи програмски сегмент:

SUB R2, R1, R3

AND R12, R2, R5

OR R13, R6, R2

ADD R14, R2, R2

SW R15, (R2)100h

Приказати табеларно шта се дешава у којој фази за сваку инструкцију.

Решење:

Инструкција	1	2	3	4	5	6	7	8	9	10
SUB R2, R1, R3	IF	ID	EX	MEM	WB					
AND R12, R2, R5		IF	ID	EX	MEM	WB				
OR R13, R6, R2			IF	ID	EX	MEM	WB			
ADD R14, R2, R2				IF	ID	EX	MEM	WB		
SW R15, (R2)100h					IF	ID	EX	MEM	WB	

Задатак 5.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding). Написати асемблерски програм који избегава stalls циклусе за извршавање следећег низа израза:

a=b+c;

d=a-f;

e=g-h;

Претпоставити да су све променљиве целобројне.

Вежбе на табли Страна 78 од 100

Решење:

Инструкција	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
LW Rb, (R0)b	IF	ID	EX	M	WB										
LW Rc, (R0)c		IF	ID	EX	M	WB									
LW Rf, (R0)f			IF	ID	EX	M	WB								
ADD Ra, Rb, Rc				IF	ID	EX	M	WB							
SW Ra, (R0)a					IF	ID	EX	M	WB						
SUB Rd, Ra, Rf						IF	ID	EX	M	WB					
LW Rg, (R0)g							IF	ID	EX	M	WB				
LW Rh, (R0)h								IF	ID	EX	M	WB			
SW Rd, (R0)d									IF	ID	EX	M	WB		
SUB Re, Rg, Rh										IF	ID	EX	M	WB	
SW Re, (R0)e											IF	ID	EX	M	WB

Задатак 6.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding). Извршава се следећи програмски сегмент:

LW R1, (R1)0

SUB R4, R1, R5

AND R6, R1 R7

OR R8, R1, R9

Приказати табеларно шта се дешава у којој фази за сваку инструкцију.

Решење:

Инструкција	1	2	3	4	5	6	7	8	9
LW R1, (R1)0	IF	ID	EX	MEM	WB				
SUB R4, R1, R5		IF	ID	stall	EX	MEM	WB		
AND R6, R1 R7			IF	stall	ID	EX	MEM	WB	
OR R8, R1, R9					IF	ID	EX	MEM	WB

Задатак 7.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном код кога постоји прослеђивање података (forwarding), при чему се користити јединствена меморија и за приступ инструкцијама (Instruction Memoru) и за приступ подацима (Data Memory). Уколико се из више степена покуша приступи меморији предност има инструкција која се дуже налази у проточној обради. Извршава се следећи програмски сегмент:

LW R1, (R1)0

SW R5, (R6)100h

SUB R2, R3, R4

OR R5, R1, R9

ADD R7, R8, R11

Приказати табеларно шта се дешава у којој фази за сваку инструкцију.

Решење:

- I - I - I - I - I - I - I - I - I - I											
Инструкција	1	2	3	4	5	6	7	8	9	10	11
LW R1, (R1)0	IF	ID	EX	MEM*	WB						
SW R5, (R6)100h		IF	ID	EX	MEM*	WB					
SUB R2, R3, R4			IF	ID	EX	MEM	WB				
OR R5, R1, R9				stall	stall	IF	ID	EX	MEM	WB	
ADD R7, R8, R11							IF	ID	EX	MEM	WB

Вежбе на табли Страна 79 од 100

Задатак 8.

Посматра се систем са процесором који садржи петостепену стандардну проточну обраду, код кога постоји прослеђивање података (forwarding), код које се утврђивање да ли је дошло до скока или не обавља у другом степену и извршава се следећи програмски сегмент

LW R2, (R0)10;

BNEZ R1, skip;

ADD R1, R1, R2;

skip: SUB R1, R2, R1;

- а) Шта се дешава током извршавања овог сегмента ако се инструкције скока извршавају без предикције са заустављањем и пражњењем проточне обраде?
- б) Шта се дешава током извршавања овог сегмента ако се инструкције скока извршавају без предикције са заустављањем проточне обраде?
- в) Шта се дешава током извршавања овог сегмента ако се инструкције скока извршавају са предикцијом да нема скока?

Решење:

Процесор са стандардном проточном обрадом код које се утврђивање да ли је дошло до скока или не обавља у другом степену

а) Уколико услов скока није испуњен.

Инструкција	1	2	3	4	5	6	7	8	9
LW R2, (R0)10	IF	ID	EX	MEM	WB				
BNEZ R1, skip		IF	ID	EX	MEM	WB			
ADD R1, R1, R2			IF	idle	idle	idle	idle		
ADD R1, R1, R2				IF	ID	EX	MEM	WB	
SUB R1, R2, R1					IF	ID	EX	MEM	WB

Уколико је услов скока испуњен.

Инструкција	1	2	3	4	5	6	7	8	9
LW R2, (R0)10	IF	ID	EX	MEM	WB				
BNEZ R1, skip		IF	ID	EX	MEM	WB			
ADD R1, R1, R2			IF	idle	idle	idle	idle		
skip: SUB R1, R2, R1				IF	ID	EX	MEM	WB	

б) Уколико услов скока није испуњен.

Вежбе на табли Страна 80 од 100

Инструкција	1	2	3	4	5	6	7	8
LW R2, (R0)10	IF	ID	EX	MEM	WB			
BNEZ R1, skip		IF	ID	EX	MEM	WB		
ADD R1, R1, R2			IF	ID	EX	MEM	WB	
SUB R1, R2, R1				IF	ID	EX	MEM	WB

Уколико је услов скока испуњен.

Инструкција	1	2	3	4	5	6	7	8
LW R2, (R0)10	IF	ID	EX	MEM	WB			
BNEZ R1, skip		IF	ID	EX	MEM	WB		
ADD R1, R1, R2			IF	idle	idle	idle	idle	
skip: SUB R1, R2, R1				IF	ID	EX	MEM	WB

в) Уколико услов скока није испуњен.

Инструкција	1	2	3	4	5	6	7	8
LW R2, (R0)10	IF	ID	EX	MEM	WB			
BNEZ R1, skip		IF	ID	EX	MEM	WB		
ADD R1, R1, R2			IF	ID	EX	MEM	WB	
SUB R1, R2, R1				IF	ID	EX	MEM	WB

Уколико је услов скока испуњен.

Инструкц	ија	1	2	3	4	5	6	7	8
LV	V R2, (R0)10	IF	ID	EX	MEM	WB			
BN	IEZ R1, skip		IF	ID	EX	MEM	WB		
AΓ	DD R1, R1, R2			IF	idle	idle	idle	idle	
skip: SU	B R1, R2, R1				IF	ID	EX	MEM	WB

Задатак 9.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding) и статичка предикција да скок није прихваћен (branch non-taken prediction), код које се утврђивање да ли је дошло до скока или не обавља у другом степену. Која ће инструкција бити учитана из меморије у 5 такту, уколико је почетни садржај регистра R0 је 0h?

ADDI R1, R0, #10 R1, R1, #10 SUBI R1, exit **BEQZ** R2, R3, R4 ADD

SUB R2, R3, R4 Exit

Решење:

Инструкција	1	2	3	4	5	6	7	8	9	10
ADDI R1, R0, #10	IF	ID	EX	MEM	WB					
SUBI R1, R1, #10		IF	ID	EX	MEM	WB				
BEQZ R1, exit			IF	ID	stall	EX	MEM	WB		
ADD R2, R3, R4				IF	stall	idle	idle	idle	idle	
SUB R2, R3, R4						IF	ID	EX	MEM	WB

У такту број 5 из меморије ће бити учитана инструкција: ADD R2, R3, R4.

Задатак 10.

Посматра се систем са процесором који садржи петостепену стандардну проточну обраду, код које се утврђивање да ли је дошло до скока или не обавља у другом степену, код кога постоји прослеђивање и извршава се следећи програмски сегмент

Вежбе на табли Страна 81 од 100 LW R1, (R0)10;

BNEZ R1, skip;

ADD R1, R1, R2;

skip: SUB R1, R2, R1;

Шта се дешава током извршавања овог сегмента ако се инструкције скока извршавају са предикцијом да нема скока?

Решење:

Погодак

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R0)10;	IF	ID	EX	MEM	WB					
BNEZ R1, skip;		IF	ID	stall	stall	EX	MEM	WB		
ADD R1, R1, R2;			IF	stall	stall	ID	EX	MEM	WB	
SUB R1, R2, R1;						IF	ID	EX	MEM	WB

Промашај:

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R0)10;	IF	ID	EX	MEM	WB					
BNEZ R1, skip;		IF	ID	stall	stall	EX	MEM	WB		
ADD R1, R1, R2;			IF	stall	stall	idle	idle	idle	idle	
SUB R1, R2, R1;						IF	ID	EX	MEM	WB

Задатак 11.

Посматра се систем са процесором који садржи петостепену стандардну проточну обраду, код које се утврђивање да ли је дошло до скока или не обавља у другом степену, код кога постоји прослеђивање и извршава се следећи програмски сегмент

ADDI R1, R0, #10;

BNEZ R1, skip;

ADD R1, R1, R2;

skip: SUB R1, R2, R1;

Шта се дешава током извршавања овог сегмента ако се инструкције скока извршавају са предикцијом да нема скока?

Решење:

Погодак

Инструкција	1	2	3	4	5	6	7	8	9
ADDI R1, R0, #10;	IF	ID	EX	MEM	WB				
BNEZ R1, skip;		IF	ID	stall	EX	MEM	WB		
ADD R1, R1, R2;			IF	stall	ID	EX	MEM	WB	
SUB R1, R2, R1;					IF	ID	EX	MEM	WB

Промашај:

Инструкција	1	2	3	4	5	6	7	8	9
ADDI R1, R0, #10;	IF	ID	EX	MEM	WB				
BNEZ R1, skip;		IF	ID	stall	EX	MEM	WB		
ADD R1, R1, R2;			IF	stall	idle	idle	idle	idle	

Вежбе на табли Страна 82 од 100

SUB R1, R2, R1;			IF	ID	EX	MEM	WB
, , ,							

Задатак 12.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding) и статичка предикција да скок није прихваћен (branch non-taken prediction), код које се утврђивање да ли је дошло до скока или не обавља у другом степену. Која ће се вредност налазити у регистру R2 на крају сегмента уколико се на почетку у њему налазила променљива X?

SUBI R1, R2, #10 BEQZ R1, exit exit ADDI R2, R2, #1

Решење:

if (X <> 10)

Инструкција	1	2	3	4	5	6	7	8	9	10
SUBI R1, R2, #10	IF	ID	EX	MEM	WB					
BEQZ R1, exit		IF	ID	stall	EX	MEM	WB			
ADDI R2, R2, #1			IF	stall	ID	EX	MEM	WB		

if (X=10)

Инструкција	1	2	3	4	5	6	7	8	9	10
SUBI R1, R2, #10	IF	ID	EX	MEM	WB					
BEQZ R1, exit		IF	ID	stall	EX	MEM	WB			
ADDI R2, R2, #1			IF	stall	idle	idle	idle	idle		
ADDI R2, R2, #1					IF	ID	EX	MEM	WB	

У регистру R2 ће се на крају сегмента налазити X=X+1.

Задатак 13.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза помоћу процесора са стандардном проточном обрадом. Извршава се следећи програмски сегмент:

loop: LW R1, (R2)0 ADDI R1, R1, #1 SW R1, (R2)0 ADDI R2, R2, #4 SUB R4, R3, R2 BNEZ R4, loop ADD R1, R1, R2

Претпоставити да је почетна вредност R3 регистра R2+396. Приказати табеларно шта се дешава у којој фази за сваку инструкцију:

- а) за случај да нема прослеђивања, али се читање и упис у регистар у истом такту прослеђују кроз регистре. Утврђивање да ли је дошло до скока или не обавља у EX/MEM степену. Када се утврди да се ради о инструкцији скока pipeline се празни.
- б) Претпоставити да постоји прослеђивање података (forwarding) и статичка предикција да скок није прихваћен (branch non-taken prediction), код које се утврђивање да ли је дошло до скока или не обавља у другом степену.

Решење:

a)

	Инстру	кција	1	2	3	4	5	6	7	8	9	10
loop:	LW	R1, (R2)0	IF	ID	EX	MEM	WB					
	ADDI	R1, R1, #1		IF	ID	stall	stall	EX	MEM	WB		

Вежбе на табли Страна 83 од 100

Електротехнички факултет Универзитета у Београду Архитектура и организација рачунара 1

SW	R1, (R2)0		IF	stall	stall	ID	stall	stall	EX	MEM
ADDI	R2, R2, #4					IF	stall	stall	ID	EX
SUB	R4, R3, R2								IF	ID
BNEZ	R4, loop									IF
ADD	R1, R1, R2									
LW	R1. (R2)0									

Инстр	укција		11	12	13	14	15	16	17	18
loop:	LW	R1, (R2)0								
	ADDI	R1, R1, #1								
	SW	R1, (R2)0	WB							
	ADDI	R2, R2, #4	MEM	WB						
	SUB	R4, R3, R2	stall	stall	EX	MEM	WB			
	BNEZ	R4, loop	stall	stall	ID	stall	stall	EX	MEM	WB
	ADD	R1, R1, R2			IF	idle	idle	idle	idle	idle
	LW	R1, (R2)0								IF

б)

Инст	рукција		1	2	3	4	5	6	7	8	9	10	11	12
loop:	LW	R1, (R2)0	IF	ID	EX	MEM	WB							
	ADDI	R1, R1, #1		IF	ID	stall	EX	MEM	WB					
	SW	R1, (R2)			IF	stall	ID	EX	MEM	WB				
	ADDI	R2, R2, #4					IF	ID	EX	MEM	WB			
	SUB	R4, R3, R2						IF	ID	EX	MEM	WB		
	BNEZ	R4, loop							IF	ID	stall	EX	MEM	WB
	ADD	R1, R1, R2								IF	stall	idle	idle	idle
	LW	R1, (R2)0										IF	ID	EX

Задатак 14.

Нацртати структурну шему јединице за учитавање инструкција (IF) процесор са стандардном проточном обрадом у случају да се користи кеш за предикцију скока.

Решење:

Задатак 15.

Посматра се систем са стандардном проточном обрадом. Извршава се следећи програмски сегмент

LW R1, (R7)0

ADDI R7, R7, #1

LOOP: LW R2, (R7)0

ADDI R7, R7, #1

Вежбе на табли Страна 84 од 100

SUB R3, R1, R2

BEQZ R3, NOTE

ADDI R1, R2, #0

NOTE: SUB R4, R7, R5

BNEZ R4, LOOP

ADDI R7, R7, #1

Почетна вредност регистра R7 је 100h, R5 је 105h, а изглед дела меморије почев од адресе 100 је приказан на следећој слици. Адресирање је на нивоу 32-битне речи. Из меморије се чита и у њу уписује 32-битне реч по реч. Почетна адреса програма је 0, а свака инструкција заузима тачно једну адресу. Приказати изглед релевантних делова система након завршетка програмског сегмента уколико се:

- а) шема за предвиђање са једним битом за предвиђање скока.
- б) шема за предвиђање са једним битом за предвиђање скока и јединица са бафером предвиђања (branch prediction buffer) величине 8.
 - в) корелисана шема за предвиђање (1, 1) и јединица са бафером предвиђања величине 8.
 - г) шема за предвиђање са два бита за предвиђање скока.
- д) шема за предвиђање са два бита за предвиђање скока и јединица са бафером предвиђања величине 8.
- ђ) шема за предвиђање са једним битом за предвиђање скока и јединица са кешом предвиђања (branch target cache) са 8 асоцијативних улаза.
- е) шема за предвиђање са два бита за предвиђање скока и јединица са кешом предвиђања (branch target cache) са 8 асоцијативних улаза.

Адреса Садржај

100	101	102	103	104	105	106	
1	1	2	2	2	2	5	

Изглед дела меморије

Решење:

Редослед извршавања инструкција: 0, 1, 2, 3, 4, 5+, 7, 8+, 2, 3, 4, 5-, 6, 7, 8+, 2, 3, 4, 5+, 7, 8+, 2, 3, 4, 5+, 7, 8-. Ознака+(-) поред адресе инструкције означава да се ради о инструкцији скока и да је услов испуњен (није испуњен).

a)

 $0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0 \Rightarrow 0$

б)

улаз	предикција
0	0, 1, 1, 1, 1, 0
1	0
2	0
3	0
4	0
5	0, 1, 0, 1, 1, 1
6	0
7	0

B)

у лаз	предикција	УЛАЗ	предикција
Jeres	npogmaja	30200	

Вежбе на табли

0	0, 1
1	0
2	0
3	0
4	0
5	0, 1
6	0
7	0

0	0, 1, 1, 1, 0
1	0
2	0
3	0
4	0
5	0, 0, 1, 1, 1
6	0
7	0

 $0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0 \Rightarrow 0$

г) Предикција 11 означава јаку предикцију да ће бити скока, 10 слабу предикцију да ће бити скока, 00 означава јаку предикцију да неће бити скока, а 01 слабу предикцију да неће бити скока.

д)

Улаз	предикција
0	01, 11, 11, 11, 11, 10
1	01
2	01
3	01
4	01
5	01, 11, 10, 11, 11, 11
6	01
7	01

ђ) Кеш за предикцију скока дозвољава и читање и упис у истом такту. Уколико се адреса не налази у кешу за предикцију користи се статичка предикција да неће бити скока.

улаз	PC	Next PC	Предикција
0	5	7, 6, 7, 7, 7	1, 0, 1, 1, 1
1	8	2, 2, 2, 2, 9	1, 1, 1, 1, 0
2			
3			
4			
5			
6			
7			

е) Кеш за предикцију скока дозвољава и читање и упис у истом такту. Уколико се адреса не налази у кешу за предикцију користи се слаба предикција да неће бити скока. Оно шта се уписује у кеш за предикцију скока у случају да се одређена адресе на налази и кеш меморији је ствар пројектантске одлуке. У овом примеру је узето да приликом уметања неке адресе у кеш за предикцију у случају да услов скока није испуњен уписује се јака предикција да неће бити скока, а у случају да је услов скока испуњен уписује се јака предикција да ће бити скока.

улаз	PC	Next PC	Предикција
0	5	7, 7, 7, 7, 7	11, 10, 11, 11, 11
1	8	2, 2, 2, 2, 2	11, 11, 11, 11, 10
2			
3			
4			
5			
6			
7			

Вежбе на табли Страна 86 од 100

Задатак 16.

Посматра се систем са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding), код које се утврђивање да ли је дошло до скока или не обавља у EX/MEM степену. Извршава се следећи програмски сегмент

LOOP: LW R1, (R7)0

BEQZ R1, EXIT

ADDI R7, R7, #1

SUBI R3, R3, #1

ADD R2, R2, R1

BNEZ R3, LOOP

EXIT: SUB R4, R4, R5

ADD R6, R7, R8

ADD R9, R10, R11

Почетна вредност регистра R2 је 0h, R3 је 0h, R7 је 100h, а изглед дела меморије почев од адресе 100 је приказан на следећој слици. Из меморије се чита и у њу уписује 32-битне реч по реч. Почетна адреса програма је 1000h, а свака инструкција заузима тачно једну адресибилну јединицу, користи кеш за предикцију скока са 8 асоцијативних улаза и два бита за предикцију скока по улазу чији је садржај приказан на следећој слици. Предикција 11 означава јаку предикцију да ће бити скока, 10 слабу предикцију да ће бити скока, 00 означава јаку предикцију да неће бити скока, а 01 слабу предикцију да неће бити скока. Кеш за предикцију скока дозвољава и читање и упис у истом такту. Приказати табеларно шта се дешава у којој фази за првих 9 инструкција датог програма у случају да постоји прослеђивање. Дати табеларно и приказ кеш меморије за предикцију.

Адреса
Садржај

100	101	102	103	104	105	106	
1	2	0	4	5	6	7	

Изглед дела меморије

улаз	PC	Next PC	Предикција
0	1001	1006	10
1	1005	1000	11
2			
3			
4			
5			
6			
7			

Кеш за предикцију скока

Решење:

Редослед извршавања инструкција: 1000, 1001-, 1002, 1003, 1004, 1005+, 1000, 1001-, 1002.... Ознака+(-) поред адресе инструкције означава да се ради о инструкцији скока и да је услов испуњен (није испуњен).

Инструкција	1	2	3	4	5	6	7	8	9
LW R1, (R1)0	IF	ID	EX	MEM	WB				
BEQZ R1, EXIT		IF	ID	stall	EX	MEM	WB		
SUB R4, R4, R5			IF	stall	ID	EX	idle	idle	
ADD R6, R7, R8					IF	ID	idle	idle	idle
ADD R9, R10, R11						IF	idle	idle	idle
ADDI R7, R7, #1							IF	ID	EX

Вежбе на табли Страна 87 од 100

SUBI R3, R3, #1				IF	ID
ADD R2, R2, R1					IF
BNEZ R3, LOOP					
LW R1, (R7)0					
BEQZ R1, EXIT					
ADDI R7, R7, #1					

Инструкција	10	11	12	13	14	15	16	17
LW R1, (R1)0								
BNEZ R1, EXIT								
SUB R4, R4, R5								
ADD R6, R7, R8								
ADD R9, R10, R11	idle							
ADDI R7, R7, #1	MEM	WB						
SUBI R3, R3, #1	EX	MEM	WB					
ADD R2, R2, R1	ID	EX	MEM	WB				
BNEZ R3, LOOP	IF	ID	EX	MEM	WB			
LW R1, (R7)0		IF	ID	EX	MEM	WB		
BEQZ R1, EXIT			IF	ID	stall	EX	MEM	WB
ADDI R7, R7, #1				IF	stall	ID	EX	MEM

улаз	PC	Next PC	Предикција
0	1001	1006, 1002, 1002	10, 00, 00
1	1005	1000, 1000	11, 11
2			
3			
4			
5			
6			
7			

Задатак 17.

Посматра се систем са стандардном проточном обрадом код кога не постоји прослеђивање података (forwarding), код које се утврђивање да ли је дошло до скока или не обавља у EX/MEM степену. Свака фаза извршавања инструкције траје једну периоду сигнала такта укључујући и фазу 2 у којој се чита из регистарског фајла (Registers) и фазу 5 у којој се уписује у регистарски фајл (Registers).

Извршава се следећи програмски сегмент

LOOP: LW R2, (R1)0

ADDI R1, R1, #1

BEQZ R2, END

ADD R3, R3, R2

SUB R4, R1, R5

BNEZ R4, LOOP

END: ADDI R1, R1, #1

SW R3, (R1)0

ADDI R7, R7, #1

Почетна вредност регистра R1 је 100h, R3 је 0h, R5 је 104h, а изглед дела меморије почев од адресе 100 је приказан на следећој слици. Адресирање је на нивоу 32-битне речи. Из меморије се чита и у њу уписује 32-битне реч по реч. Почетна адреса програма је 0, а свака инструкција заузима тачно једну

Вежбе на табли Страна 88 од 100

адресу. Потребно је модификовати јединице за учитавање инструкција (IF) процесор тако да се користи кеш за предикцију скока са 8 асоцијативних улаза и два бита за предикцију скока по улазу који дозвољава и читање и упис у истом такту.

Адреса	
Садржај	j

	100h	101h	102h	103h	104h	105h	106h	
	1	1	0	2	2	2	5	

Приказати табеларно шта се дешава у којој фази за сваку. Кеш меморија за предикцију скока је пре почетка извршавања сегмента била празна. Користи се стандардна шема за предвиђање са два бита. Предикција 11 означава јаку предикцију да ће бити скока, 10 слабу предикцију да ће бити скока, 00 означава јаку предикцију да неће бити скока, а 01 слабу предикцију да неће бити скока. Кеш за предикцију скока дозвољава и читање и упис у истом такту. Уколико се адреса не налази у кешу за предикцију користи се слаба предикција да неће бити скока. Приликом уметања неке адресе у кеш за предикцију у случају да услов скока није испуњен уписује се слаба предикција да неће бити скока, а у случају да је услов скока испуњен уписује се слаба предикција да ће бити скока.

Решење:

Инструкција	1	2	3	4	5	6	7	8	9	10
LOOP: LW R2, (R1)0	IF	ID	EX	MEM	WB					
ADDI R1, R1, #1		IF	ID	EX	MEM	WB				
BEQZ R2, END			IF	ID	stall	stall	EX	MEM	WB	
ADD R3, R3, R2				IF	stall	stall	ID	EX	MEM	WB
SUB R4, R1, R5							IF	ID	EX	MEM
BNEZ R4, LOOP								IF	ID	stall
ADDI R1, R1, #1									IF	stall

Инструкција	11	12	13	14	15	16	17	18	19	20
SUB R4, R1, R5	WB									
BNEZ R4, LOOP	stall	stall	EX	MEM	WB					
ADDI R1, R1, #1	stall	stall	ID	EX	idle	idle				
SW R3, (R1)0			IF	ID	idle	idle	idle			
ADDI R7, R7, #1				IF	idle	idle	idle	idle		
LW R2, (R1)0					IF	ID	EX	MEM	WB	
ADDI R1, R1, #1						IF	ID	EX	MEM	WB
BEQZ R2, END							IF	ID	stall	stall
ADD R3, R3, R2								IF	stall	stall

Инструкција	21	22	23	24	25	26	27	28	29	30
BEQZ R2, END	EX	MEM	WB							
ADD R3, R3, R2	ID	EX	MEM	WB						
SUB R4, R1, R5	IF	ID	EX	MEM	WB					
BNEZ R4, LOOP		IF	ID	stall	stall	stall	EX	MEM	WB	
LW R2, (R1)0			IF	stall	stall	stall	ID	EX	MEM	WB
ADDI R1, R1, #1							IF	ID	EX	MEM
BEQZ R2, END								IF	ID	stall
ADD R3, R3, R2									IF	stall

Инструкција	31	32	33	34	35	36	37	38	39	40
ADDI R1, R1, #1	WB									
BEQZ R2, END	stall	EX	MEM	WB						
ADD R3, R3, R2	stall	ID	EX	idle	idle					
SUB R4, R1, R5		IF	ID	idle	idle	idle				
BNEZ R4, LOOP			IF	idle	idle	idle	idle			
ADDI R1, R1, #1				IF	ID	EX	MEM	WB		

Вежбе на табли Страна 89 од 100

Електротехнички факултет Универзитета у Београду

A .				
Δηνιστοντι	/ра и орган	Maaiimia r	าวนเขมาวกว 1	ı
	ура и оргап	изацица р	Јачупара	ı

SW R3, (R1)0			IF	ID	stall	stall	stall	EX
ADDI R7, R7, #1				IF	stall	stall	stall	ID

Инструкција	41	42	43	44	45	46	47	48	49	50
SW R3, (R1)0	MEM	WB								
ADDI R7, R7, #1	EX	MEM	WB							

Задатак 18.

Посматра се систем са стандардном проточном обрадом код кога постоји прослеђивање података (forwarding), код које се утврђивање да ли је дошло до скока или не обавља у другом степену. Свака фаза извршавања инструкције траје једну периоду сигнала такта укључујући и фазу 2 у којој се чита из регистарског фајла (Registers) и фазу 5 у којој се уписује у регистарски фајл (Registers).

Извршава се следећи програмски сегмент

LOOP: LW R2, (R1)0

ADDI R1, R1, #1

ADD R3, R3, R2

BEQZ R2, END

SUB R4, R1, R5

BNEZ R4, LOOP

END: ADDI R1, R1, #1

SW R3, (R1)0

ADDI R7, R7, #1

Почетна вредност регистра R1 је 100h, R3 је 0h, R5 је 104h, а изглед дела меморије почев од адресе 100 је приказан на следећој слици. Адресирање је на нивоу 32-битне речи. Из меморије се чита и у њу уписује 32-битне реч по реч. Почетна адреса програма је 0, а свака инструкција заузима тачно једну адресу.

Адреса	
Садржај	

100h	101h	102h	103h	104h	105h	106h	
1	0	2	0	3	0	4	

- а) Приказати табеларно шта се дешава у којој фази за сваку инструкцију ако се инструкције скока извршавају са предикцијом да нема скока?
- б) Дати процесор, који поседује могућност прослеђивања, се модификује тако да уместо заустављања проточне обраде користе технике закашњеног пуњења (delayed load) и закашњеног скока (delayed branch). Модификовати дати програм тако да одговаран новом процесору, приказати табеларно шта се дешава у којој фази за сваку инструкцију тако модификованог програма.

Решење:

a)

Инструкција	1	2	3	4	5	6	7	8	9	10
LOOP: LW R2, (R1)0	IF	ID	EX	MEM	WB					
ADDI R1, R1, #1		IF	ID	EX	MEM	WB				
ADD R3, R3, R2			IF	ID	EX	MEM	WB			
BEQZ R2, END				IF	ID	EX	MEM	WB		
SUB R4, R1, R5					IF	ID	EX	MEM	WB	
BNEZ R4, LOOP						IF	ID	stall	EX	MEM
ADDI R1, R1, #1							IF	stall	idle	idle
LW R2, (R1)0									IF	ID
ADDI R1, R1, #1										IF

Вежбе на табли Страна 90 од 100

Инструкција	11	12	13	14	15	16	17	18	19	20
BNEZ R4, LOOP	WB									
ADDI R1, R1, #1	idle	idle								
LW R2, (R1)0	EX	MEM	WB							
ADDI R1, R1, #1	ID	EX	MEM	WB						
ADD R3, R3, R2	IF	ID	EX	MEM	WB					
BEQZ R2, END		IF	ID	EX	MEM	WB				
SUB R4, R1, R5			IF	idle	idle	idle	idle			
ADDI R1, R1, #1				IF	ID	EX	MEM	WB		
SW R3, (R1)0					IF	ID	EX	MEM	WB	
ADDI R7, R7, #1						IF	ID	EX	MEM	WB

б)

LOOP: LW R2, (R1)0

ADDI R1, R1, #1

NOP

BEQZ R2, END

ADD R3, R3, R2

SUB R4, R1, R5

NOP

BNEZ R4, LOOP

NOP

END: ADDI R1, R1, #1

SW R3, (R1)0

ADDI R7, R7, #1

Задатак 19.

Посматра се систем са процесором који садржи петостепену стандардну проточну обраду. У степен EX се поред постојеће ALU јединице додаје нова EALU јединица која служи за рад са целим бројевима. Операције MUL, DIV трају 3, 10 тактова, респективно. Извршава се следећи програмски сегмент

MUL R1, R2, R3;

ADD R4, R5, R3;

OR R5, R6, R7;

AND R3, R1, R4;

Приказати табеларно шта се дешава у којој фази за сваку инструкцију ако се инструкције:

- а) завршавају у редоследу у коме су започете (In Order), без прослеђивања, уколико се упис и читање податка у регистарски фајл може реализовати у истом такту.
 - б) завршавају у редоследу у коме су започете (In Order), са прослеђивањем.
 - в) завршавају независно од редоследа у коме су започете (Out of Order).
- г) извршавају на процесору који има могућност да извршава две инструкције у паралели (Super Scalar), које се завршавају независно од редоследа у коме су започете (Out of Order).

Решење:

Вежбе на табли Страна 91 од 100

a)

Инструкција	1	2	3	4	5	6	7	8	9	10	11
MUL R1, R2, R3	IF	ID	EX1	EX2	EX3	MEM	WB				
ADD R4, R5, R3		IF	ID	EX	stall	stall	MEM	WB			
OR R5, R6, R7			IF	ID	stall	stall	EX	MEM	WB		
AND R3, R1, R4				IF	stall	stall	ID	stall	EX	MEM	WB

б)

Инструкција	1	2	3	4	5	6	7	8	9	10
MUL R1, R2, R3	IF	ID	EX1	EX2	EX3	MEM	WB			
ADD R4, R5, R3		IF	ID	EX*	stall	stall	MEM	WB		
OR R5, R6, R7			IF	ID	stall	stall	EX	MEM	WB	
AND R3, R1, R4				IF	stall	stall	*ID	EX	MEM	WB

B)

Инструкција	1	2	3	4	5	6	7	8	9	10
MUL R1, R2, R3	IF	ID	EX1	EX2	EX3*	MEM	WB			
ADD R4, R5, R3		IF	ID	EX*	MEM	WB				
OR R5, R6, R7			IF	ID	EX	stall	MEM	WB		
AND R3, R1, R4				IF	*ID	stall	*EX	MEM	WB	

L)

Инструкција	1	2	3	4	5	6	7	8	9	10
MUL R1, R2, R3	IF	ID	EX1	EX2	EX3*	MEM	WB			
ADD R4, R5, R3	IF	ID	EX	MEM	WB					
OR R5, R6, R7		IF	ID	EX	MEM	WB				
AND R3, R1, R4		IF	ID	stall	stall	*EX	MEM	WB		

Задатак 20.

Посматра се процесором са проточном обрадом који има следећу организацију степене у оквиру проточне обраде: IF, ID, ALU1, MEM1, MEM2, ALU2 и WB. Степен ALU1 се користи за израчунавање адресе код инструкција скока, load и store. Степен ALU2 се користи за сва остала израчунавања и за разрешавање скока. Једине инструкције за приступ меморији су load и store. Једини начин адресирања за приступ меморији је регистарско индиректно адресирање са померајем. Како је како је кеш меморија за податке спора приступ меморији се извршава у два степена МЕМ1 и МЕМ2, није дозвољено да две инструкције приступају истовремено кеш меморији за податке. Посматра се следећи програмски сегмент:

LW R1, (R2)50

ADD R3, R1, R4

LW R5, (R3)100

XOR R6, R5, R7

SW R6, (R2)50

ADDI R1, R1, #100

SUBI R4, R4, #8

- а) Одредити све зависности у оквиру програмског сегмента.
- б) Претпоставити да се pipeline извршава без прослеђивања, уколико се упис и читање податка у регистарски фајл може реализовати у истом такту, колико циклуса је потребно да се изврши посматрани програмски сегмент?

Вежбе на табли Страна 92 од 100

- в) Претпоставити да се pipeline извршава са прослеђивањем, колико циклуса је потребно да се изврши посматрани програмски сегмент?
 - г) Да ли је могуће променити редослед операција да се добије мањи број циклуса?

Решење:

- a)
- 1. LW R1, (R2)50
- 2. ADD R3, R1, R4
- 3. LW R5, (R3)100
- 4. XOR R6, R5, R7
- 5. SW R6, (R2)50
- 6. ADDI R1, R1, #100
- 7. SUBI R4, R4, #8

Зависности:

2 од 1 за R1

6 од 1 за R1

3 од 2 за R3

4 од 3 за R5

5 од 4 за R6

б)

Инструкција	1	2	3	1	5	6	7	8	Q	10
	1	4		4	3	0	1	O	7	10
LW R1, (R2)50	IF	ID	ALU1	MEM1	MEM2	ALU2	WB			
ADD R3, R1, R4		IF	ID	stall	stall	stall	stall	ALU1	MEM1	MEM2
LW R5, (R3)100			IF	stall	stall	stall	stall	ID	stall	stall
XOR R6, R5, R7								IF	stall	stall
SW R6, (R2)50										
ADDI R1, R1, #100										
SUBI R4, R4, #8										

11	12	13	14	15	16	17	18	19	20
ALU2	WB								
stall	stall	ALU1	MEM1	MEM2	ALU2	WB			
stall	stall	ID	stall	stall	stall	stall	ALU1	MEM1	MEM2
		IF	stall	stall	stall	stall	ID	stall	stall
							IF	stall	stall

21	22	23	24	25	26	27	28	29
ALU2	WB							
stall	stall	ALU1	MEM1	MEM2	ALU2	WB		
stall	stall	ID	ALU1	MEM1	MEM2	ALU2	WB	
		IF	ID	ALU1	MEM1	MEM2	ALU2	WB

B)

Инструкција	1	2	3	4	5	6	7	8	9	10

Страна 93 од 100 Вежбе на табли

LW R1, (R2)50	IF	ID	ALU1	MEM1	MEM2*	ALU2	WB			
ADD R3, R1, R4		IF	ID	ALU1	MEM1	MEM2	*ALU2*	WB		
LW R5, (R3)100			IF	ID	stall	stall	stall	*ALU1	MEM1	MEM2*
XOR R6, R5, R7				IF	stall	stall	stall	ID	ALU1	MEM1
SW R6, (R2)50								IF	ID	ALU1
ADDI R1, R1, #100									IF	ID
SUBI R4, R4, #8										IF

11	12	13	14	15	16	17	18
ALU2	WB						
MEM2	*ALU2*	WB					
stall	stall	*MEM1	MEM2	ALU2	WB		
stall	stall	ALU1	MEM1	MEM2	ALU2	WB	
stall	stall	ID	ALU1	MEM1	MEM2	ALU2	WB

L)

Инструкција	1	2	3	4	5	6	7	8	9	10
LW R1, (R2)50	IF	ID	ALU1	MEM1	MEM2*	ALU2	WB			
ADD R3, R1, R4		IF	ID	ALU1	MEM1	MEM2	*ALU2*	WB		
LW R5, (R3)100			IF	ID	stall	stall	stall	*ALU1	MEM1	MEM2*
XOR R6, R5, R7				IF	stall	stall	stall	ID	ALU1	MEM1
ADDI R1, R1, #100								IF	ID	ALU1
SUBI R4, R4, #8									IF	ID
SW R6. (R2)50										IF

11	12	13	14	15	16
ALU2	WB				
MEM2	*ALU2*	WB			
MEM1	MEM2	ALU2	WB		
ALU1	MEM1	MEM2	ALU2	WB	
ID	ALU1	*MEM1	MEM2	ALU2	WB

Задатак 21.

Посматра се систем са проточном обрадом приказаном на следећој слици.

У степен EX се поред постојеће ALU јединице додаје нова FALU јединица која служи за рад са бројевиа у покретном зарезу. Ови бројеви су смештену у регистре F0-F15. Операције FADD, FSUB и FMUL трају 2, 2 и 4 тактова, респективно. Претпоставити да се проточна обрада извршава са прослеђивањем и да се адреса операнда у меморији израчунава у кораку ЕХ. Уколико две инструкције треба да приступе истој јединици предност има она која је прва учитана. Извршава се следећи програмски сегмент

/* F1=MEM[R1] LOOP: FLW F1, (R1)0

Вежбе на табли Страна 94 од 100

```
/* F0=F0*F1 */
FMUL F0, F0, F1
FSW F0, (R1)0
                  /* MEM[R1]=F0
                                     */
                  /* F0=F2+F2 */
FADD F0, F2, F2
FADDI F2, F2, #1
                  /* F2=F2+1
SUBI R1, R1, #2
                  /* R1=R1-2
BNEZ R1, LOOP
                  /* Loop if R1≠0
                                     */
FADDI F3, F4, #1
                  /* F3=F4+1
```

Почетна вредност регистра R1 је 100

- а) Приказати табеларно шта се дешава у којој фази за сваку инструкцију.
- б) Које врсте хазарда постоје у датом програмском сегменту?
- в) Колико је тактова потребно да се изврши представљени програмски сегмент?

Решење:

a)

Инструкција	1	2	3	4	5	6	7	8	9
FLW F1, (R1)0	IF	ID	EX	MEM	WB				
FMUL F0, F0, F1		IF	ID	stall	MUL1	MUL2	ADD1	ADD2	MEM
FSW F0, (R1)0			IF	stall	ID	EX	stall	stall	stall
FADD F0, F2, F2					IF	ID	stall	ADD1	ADD2
FADDI F2, F2, #1						IF	stall	ID	ADD1
SUBI R1, R1, #2								IF	ID
BNEZ R1, LOOP									IF
FADDI F3, F4, #1									
FLW F1, (R1)0									
FMUL F0, F0, F1									
FSW F0, (R1)0									
FADD F0, F2, F2									

Инструкција	10	11	12	13	14	15	16
FLW F1, (R1)0							
FMUL F0, F0, F1	WB						
FSW F0, (R1)0	MEM	WB					
FADD F0, F2, F2	stall	MEM	WB				
FADDI F2, F2, #1	ADD2	stall	MEM	WB			
SUBI R1, R1, #2	EX	stall	stall	MEM	WB		
BNEZ R1, LOOP	stall	ID	idle	idle	idle		
FADDI F3, F4, #1		IF	idle	idle	idle	idle	
FLW F1, (R1)0			IF	ID	EX	MEM	WB
FMUL F0, F0, F1				IF	ID	stall	MUL1
FSW F0, (R1)0					IF	stall	ID
FADD F0, F2, F2							IF

б)

- 1 RAW хазард
- 2 Структурни хазард
- 3 RAW хазард+Структурни хазард
- 4 Структурни хазард

Вежбе на табли

- 5 RAW хазард
- 6 Структурни хазард
- 7 Контролни хазард

B)

AverageTimePipelined=Start+N * AverageInstructionTimePipelined

Start=4

Задатак 22.

Разматра се рачунарски систем у коме се извршавање одређене инструкције одвија у 5 фаза:

Фаза	IF	ID	EX	MEM	WB
Време (ns)	3	1	2	3	1

- а) Колико траје извршавање инструкције помоћу процесора који нема могућност паралелног извршавања инструкција?
 - б) Колико траје извршавање инструкције помоћу процесора који има стандардну проточну обраду?
- в) Ако се извршава програм који се састоји од N поменутих инструкција, колико је трајање програма за системе описане у тачкама а и б?
- г) Ако се у оквиру проточне обраде извршавање IF степена смањи на 2 ns, да ли ће се то одразити на укупне перформансе система? А ако се повећа на 4ns?

Решење:

- a) AverageInstructionTimeUnpipelined=3+1+2+3+1=10 ns,
- 6) Time to perform single instruction from stage 1 to stage $5=5 * max\{3, 1, 2, 3, 1\}=15$,

AverageInstructionTimePipelined= $max\{3, 1, 2, 3, 1\}=3$ ns

B) AverageTime=NumOfInstructions * AverageInstructionTime

AverageTimeUnpipelined=N * AverageInstructionTimeUnpipelined=10N,

AverageTimePipelined=Start+N * AverageInstructionTimePipelined=15 - 3+N*3 ~ 3N

r) AverageInstructionTimePipelined_{2ns}= $max\{2, 1, 2, 3, 1\}=3$ ns

AverageInstructionTimePipelined_{4ns}= $max\{4, 1, 2, 3, 1\}=4$ ns

Задатак 23.

Разматра се процесор са 6-то степеном проточном обрадом на који ради на фреквенцији од 5 GHz. Претпоставити да је за сваки корак проточне обраде потребан један такт. На овом процесору се извршава 500 инструкција од којих су 40 условни скокови од којих је 50% испуњено.

- а) Колико је просечно тактова по инструкцији (СРІ) потребно приликом извршавања овог програма?
- б) Колико траје извршавање овог програма?
- в) Да ли ће се ишта променити уколико се pipeline продужи на 7 степени и уколико се радна фреквенција повећа на 8GHz?

Решење:

Приликом овог решења узети су у разматрање само управљачки хазарди.

n=6

f=5 GHz

IdealCPI=1

Вежбе на табли Страна 96 од 100

a)

NumOfInstructions=500

NumOfConditionalBranch=40

ConditionalBranchTakenFrequency=0.5

BranchPenalty

ClockCycleTime=1/f=0.2 ns

CPI=IdealCPI+PipelineStallClockCyclesPerInstruction

PipelineStallClockCyclesPerInstruction=StructuralStalls+DataStalls+ControlStalls

DataStalls=RAWStalls+WARStalls+WAWStalls

ControlStalls=BranchFrequency * BranchPenalty

BranchFrequency=ConditionalBranchFrequency * ConditionalBranchTakenFrequency

ConditionalBranchFrequency=NumOfConditionalBranch / NumOfInstructions

BranchPenalty	1	2	3	4	5	6
CPI	1.04	1.08	1.12	1.16	1.20	1.24

б)

AverageTime=NumOfInstructions * ClockCycleTime * CPI

BranchPenalty	1	2	3	4	5	6
AverageTime[ns]	104	108	112	116	120	124

B)

n=7

f=8 GHz

ClockCycleTime=1 / f=0.125 ns

AverageInstructionTime=ClockCycleTime * CPI

BranchPenalty	1	2	3	4	5	6	7
AverageInstructionTimeA[ns]	0.208	0.216	0.224	0.232	0.24	0.248	-
AverageInstructionTimeC[ns]	0.13	0.135	0.14	0.145	0.15	0.155	0.16

Задатак 24.

Разматра се процесор са 6-то степеном проточном обрадом. Времена извршавања појединих фаза инструкције су: 0.3, 0.5, 0.4, 0.4, 0.4 и 0.6 ns, респективно.

- а) Колико траје извршавање инструкције помоћу процесора који нема могућност паралелног извршавања инструкција?
 - б) Колико траје извршавање инструкције помоћу процесора који има проточну обраду?
 - в) Колико траје извршавање 200 инструкција међу којима нема инструкција скока?
- г) Колико траје извршавање 200 инструкција међу којима је 4% безусловних скокова, 16% условних скокова од којих је 40% испуњено уколико се користе следећи приступи: заустављање проточне обраде, претпоставка да ће доћи до скока, претпоставка да неће доћи до скока? У следећој табели је дато колико циклуса се губи у случају појединих претпоставки:

Branch scheme	Penalty unconditional	Penalty untaken	Penalty taken
Заустављање	2	3	3
Прихватање скока	2	3	2

Вежбе на табли Страна 97 од 100

Неприхватање скока	2	0	3

Решење:

- a) AverageInstructionTimeUnpipelined=0.3+0.5+0.4+0.4+0.4+0.6=2.6 ns
- 6) Time to perform single instruction from stage 1 to stage $6=6 * \max\{0.3, 0.5, 0.4, 0.4, 0.4, 0.6\}=3.6$ ns, AverageInstructionTimePipelined= $\max\{0.3, 0.5, 0.4, 0.4, 0.4, 0.6\}=0.6$ ns
- B) AverageTime=NumOfInstructions * AverageInstructionTime

AverageTimeUnpipelined=N * AverageInstructionTimeUnpipelined=200 * 2.6=520 ns,

AverageTimePipelined=N * AverageInstructionTimePipelined=200 * 0.6=120 ns

r) CPI=IdealCPI+PipelineStallClockCyclesPerInstruction

ControlStalls=UnconditionalBranchFrequency * UnconditionalBranchPenalty+BranchTakenFrequency * BranchTakenPenalty+BranchUnTakenFrequency * BranchUnTakenPenalty

Успорење проточне обраде:

	Безусловни	Условни	Условни	Укупно
	скокови	испуњени	неиспуњени	3 купно
Фреквенција скокова	4%	16%*40%=6.4%	16%*60%=9.6%	20%
Заустављање	0.04 * 2=0.08	0.064 * 3=0.192	0.096 * 3=0.288	0.08+0.192+0.288=0.56
Прихватање скока	0.04 * 2=0.08	0.064 * 3=0.192	0.096 * 2=0.192	0.08+0.192+0.192=0.464
Неприхватање скока	0.04 * 2=0.08	0.064 * 0=0	0.096 * 3=0.288	0.08+0+0.288=0.368

Задатак 25.

Разматра се процесор са 5-то степеном стандардном проточном обрадом на који ради на фреквенцији од 2GHz. Претпоставити да је за сваки корак проточне обраде потребан један такт, при чему се користити јединствена меморија и за приступ инструкцијама (Instruction Memory) и за приступ подацима (Data Memory). Уколико се из више степена покуша приступи меморији предност има инструкција која се дуже налази у проточној обради. У неком програму вероватноћа појављивања инструкција које приступају меморији (LOAD и STORE) је 30%. Да ли ће се ишта променити уколико се ріреline продужи на 6 степени додавањем екстра корака за инструкције које приступају меморији (МЕМ1 и МЕМ2) и уколико се радна фреквенција повећа на 3GHz? Напомена: узети у разматрање само структурне хазарде.

Решење:

CPI=IdealCPI+PipelineStallClockCyclesPerInstruction

StructuralStalls=MemoryAccessFrequency * MemoryAccessPenalty

AverageTime=NumOfInstructions * ClockCycleTime * CPI

MemoryAccessPenalty_{2GHz}=1

MemoryAccessPenalty_{3GHz}=2

Побољшање перформанси је приближно 20%, а не 50% за колико се подигла радна фреквенција.

Вежбе на табли Страна 98 од 100

Задатак 26.

Разматра се процесор са 5-то степеном стандардном проточном обрадом на који ради на фреквенцији од 2GHz. Претпоставити да је за сваки корак проточне обраде потребан један такт. У неком програму вероватноћа појављивања LOAD инструкција је 30% и вероватноћа да је податак који довлачи та инструкција потребан следећој 50%. Одредити средње време извршавања инструкција у овом случају. Напомена: узети у разматрање само хазарде података.

Решење:

CPI = Ideal CPI + Pipeline Stall Clock Cycles Per Instruction

DataStalls=DataDependencyFrequency * DataDependencyPenalty

AverageInstructionsTime=ClockCycleTime * CPI

AverageInstructionsTime=0.5 * (1+0.3 * 0.5)=0.575 ns

Задатак 27.

Разматра се процесор са 5-то степеном стандардном проточном обрадом на који ради на фреквенцији од 2GHz. У случају идеалног меморијског систем СРІ износи 1.5. Користити се јединствена кеш меморија и за приступ инструкцијама и за приступ подацима. У неком програму вероватноћа појављивања инструкција које приступају меморији (LOAD и STORE) је 30%. У систему постоји 128 КВ јединствена кеш меморија са директним пресликавањем и write back техником уписа. Вероватноћа да се податак налази у кеш меморији 0.95. Разматра се меморијски систем са преклопљеним приступима код кога је време одзива меморије 40 тактова, брзина трансфера 4 бајта по такту. Вероватноћа да је кеш линија (блок) модификован износи 40%. Свака линија се састоји из 32 бајта. Не постоји write buffer. Процесор поседује посебан хардвер за убрзавање пресликавања виртуелних у реалне (физичке) адресе (у даљем тексту TLB). TLB потребно 20 тактова уколико се догоди TLB Miss. TLB не успорава кеш меморију уколико дође до проналаска податка у кеш меморији (сасће hit). Када се ради о TLB, важе следеће претпоставке: TLB не садржи 0.2% адреси које се пресликавају, без обзира да ли адресе проистичу директно од процесора или их је генерисла кеш меморија као последицу несагласности у кеш меморији (сасће Miss).

- а) Израчунати СРІ уз претпоставку да је TLB идеалан.
- б) Израчунати СРІ уз претпоставку да је TLB реалан.
- в) Какав утиче на перформансе TLB-а уколико су кеш адресе виртуалне или физичке?

Решење:

f=2 GHz

n=5

IdealMemoryCPI=1.5

MemoryAccessFrequency=0.3

CacheSize=128 KB

HitRate=0.95

MemoryDelayCycles=40

MemoryTransferRatePerCycle=W=4 B

Modified=0.4

CachLIneSize=32 B

TLBMissPenalty=20

TLBMissRate=0.002

a)

Вежбе на табли Страна 99 од 100

CPI=IdealMemoryCPI+PipelineStallClockCyclesPerInstruction

PipelineStallClockCyclesPerInstruction=CacheStallClock+StructuralStalls

CacheStallClock=MemoryAccessPerInstruction * MissPenalty * MissRate

MemoryAccessPerInstruction=1+MemoryAccessFrequency=1.3

MissPenalty=(MemoryDelayCycles+CacheLineSize/W) * (1+Modifier)

MissPenalty=(40+32/4) * (1+0.4)=67.2

MissRate=1 - HitRate

CacheStallClock=1.3 * 67.2 * 0.05=4.368

StructuralStalls=MemoryAccessFrequency * MemoryAccessPenalty

MemoryAccessPenalty=1

StructuralStalls=0.3 * 1=0.3

CPI=1.5+4.368+0.3=6.168

б)

CPI=CPIa+TLBStalls

TLBStalls=MemoryAccessPerInstruction*TLBAccessPerMemoryAccess*TLBMissRate*TLBMissPenalty

TLBAccessPerMemoryAccess=MissRate * TLBAccessesPerCacheMiss

TLBAccessPerMemoryAccess=MissRate * (1+Modifier)

TLBAccessPerMemoryAccess=0.05 * (1+0.4)=0.07

TLBStalls=1.3 * 0.07 * 0.002 * 20=0.00364

CPI=6.168+0.00364=6.17164

B)

У случају реалног кеша пре приступа кешу мора, најпре, да се изврши превођење виртуелних у реалне адресе. То би повећало "hit time" и успорило рад процесора.

Што се тиче виртуалне кеш меморије TLB-у се може приступати у паралели са кеш меморијом, постоји опасност од успоравања које је последица несагласности у TLB али постоји сагласност у кеш меморији. Први проблем је последица чињенице да различити корисници имају исте виртуелне адресе које се пресликавају на различите физичке адресе. Други проблем са виртуелним кешом се састоји у томе да различити корисници могу да користе различите виртуелне адресе за исту физичку адресу.

Copyright © 2014 Електротехнички факултет Универзитета у Београду

Вежбе на табли Страна 100 од 100