Math 411 Spring 2016 Homework #10

Due April 12, Tue in class

- 1. Textbook, 5.A, page 138: 25, 29;
- 2. Textbook, 5.B, page 153: 3;
- 3. Let A be an $n \times n$ invertible matrix.
 - (1) Let λ be a nonzero scalar. Then λ is an eigenvalue of A if and only if $1/\lambda$ is an eigenvalue of A^{-1} ;
 - (2) Suppose, in addition, that A is upper triangular. Then the eigenvalues of A^{-1} are $1/a_{ii}$, $\forall i = 1, ..., n$.
- 4. Let λ_1 and λ_2 be two distinct eigenvalues of a linear operator T. Show that $\text{Null}(T \lambda_1 I) \cap \text{Null}(T \lambda_2 I) = \{0\}.$

More practice problems: Do not submit

- 1. Textbook, 5.A, page 138: 23;
- 2. Let the linear operator $T \in \mathcal{L}(V)$ be such that $T^2 = T$.
 - (1) Show that the range of I T equals the null space of T (*Hint*: x = T(x) + (I T)(x) for any $x \in V$);
 - (2) Show that V is a direct sum of the null space of T and the range of T.
- 3. Show that the product of two $n \times n$ upper triangular matrices is upper triangular, and the inverse of an $n \times n$ upper triangular matrix is upper triangular.