ALGOMINO BFS_STANDAND (G,s): * COUNT_ REACHABLES = G ; 11SETTING DEL NODI FOR_EACH VE V/1982: V.color = white; V. TT = N/2 3 V. d = 00; Enqueue (Q,9); 11 SETTING DELLA SORGENTE 9.00lor = "gray". $\varsigma.\pi = \phi$; 9.d = 0 HESPLORATIONE while (G.not Empty ()): u = Q. Dequeue(). | POR-EACH V IN U. Adj[]: V.cclor == "white": ** COUNT-REACHABLES + + V. TT = 4 V. Color = "gray" v.d = u.d + 1; ! Enqueue (G, V).

u.color = "Black";

· Possibile soluzione 1:

COUNT. REACHABLES = 0.

BFS. STANDARD (GIS).

FOR EACH VE V/15%:

IF (V.d \$ 0):

COUNT. REACHABLES H

RETURN COUNT. REACHABLES.

· Possibile solutione 2:

MODIFICO ('ALGORITHO CON * E

2) Gerivere un algoritmo che, dati un grafo G=(V,E) non orientato ed un vertice $V\in V$, Stampa ℓ 'elenco dei vertico che hauno distanta pari da V.

HO ANCORA 2 ACTERNATIVE:

- · modificare direttamente l'algoritmo
- · analyteare il suo output.

BF9 (G19)}

FOR-EACH $V \in V / dSR$: $V \cdot Color = V \cdot White^{v};$ $V \cdot TT = NL ;$ $V \cdot d = \infty ;$ Enqueue (G, G);

G.color = "gray"; S.TI = 0; G.d = 0;

* PRINT (9)

While (IsNotEmpty (a)):

u = Dequeue (a);

For each (Y & Adj [u] / u.Tr).

(V. color == "white"):

V. color = "gray";

 $V \cdot d = u \cdot d + 1$

(V.d Y. Q == 0):

** PRINT (V)

Enqueue (Q, V);

U. Color= "blace";

(()

Solutione alternativa (BREVE):

PRINT_EVEN_DISTANCE (G, 5):

| BES (G, 5);

| FOR (V & V);

| IF (V.d 1/. 2 == 0): |
| PRINT (V)
| 1