有限元大作业报告

2019年6月11日

1 3T 单元

1.1 3T 单元的建立

3T 单元是一种平面三角形线性单元,包括 3 个节点,每个节点有 2 个平面运动自由度。单元刚度阵规模为 6×6 。3T 单元插值函数采用一次函数: $N_1^e=\frac{1}{2A^e}\left[(x_2^ey_3^e-x_3^ey_2^e)+y_{23}^ex+x_{32}^ey\right]N_2^e=\frac{1}{2A^e}\left[(x_3^ey_1^e-x_1^ey_3^e)+y_{31}^ex+x_{13}^ey\right]N_3^e=\frac{1}{2A^e}\left[(x_1^ey_2^e-x_2^ey_1^e)+y_{12}^ex+x_{21}^ey\right]$

图 1: 3T 单元示意图

该插值函数满足归一化条件,包含 1 x y 项,能够准确插值线性场。且由于形函数线性,应变矩阵 B^e 为常数,即 3T 单元为常应变单元。3T 单元刚度阵计算如下: $\boldsymbol{B}^e = \frac{1}{2A^e} \begin{bmatrix} y_{23}^e & 0 & y_{31}^e & 0 & y_{12}^e & 0 \\ 0 & x_{32}^e & 0 & x_{13}^e & 0 & x_{21}^e \\ x_{32}^e & y_{23}^e & x_{13}^e & y_{31}^e & x_{21}^e & y_{12}^e \end{bmatrix}$

$$m{K}^e = \int_{\Omega^e} m{B}^{
m eT} m{D} m{B}^e {
m d}\Omega = t^e A^e m{B}^{
m eT} m{D} m{B}^e$$

单元应变计算如下: $\varepsilon^e = \nabla_S u^e = B^e d^e$ 结果确为常应变。

1.2 3T 单元的 Patch Test

选取一个 6 节点 6 单元的不规则网格划分如??,构造一个单轴拉伸的线性场,进行 Patch Test C 测试,选取参数 $E=1\times 10^7,\ \nu=0.3,\ t=1,\ F=10$ 。

1 3T 单元 2

图 2: Patch Test 网格划分

测试结果如下,在忽略极小的浮点误差下与单轴拉伸的理论结果完全一致。

Y-DISPLACEMENT	Z-DISPLACEMENT
-3. 00000e-007	0.00000e+000
0.00000e+000	0.00000e+000
-1. 12166e-021	0.00000e+000
-3. 00000e-007	0.00000e+000
-2. 40000e-007	0.00000e+000
-6. 00000e-008	0.00000e+000
	-3. 00000e-007 0. 00000e+000 -1. 12166e-021 -3. 00000e-007

图 3: Patch Test 结果

与建模时候的预测相同,3T 单元能够准确复现线性场,达到预期的一阶收敛率。

1.3 3T 单元收敛率分析

收敛率分析是针对插值函数的分析,与有限元求解无关,因此我们采用 matlab 进行分析。网格划分时先将网格划分为长度为 h 的小的正方形网格,再沿 45° 方向将正方形划分成两个三角形。

图 4: 收敛率分析网格示意图

对于每个正方形,建立一个以左下顶点为原点的局部坐标系 x',y'。对于左上的三角形,插值函数为: $N_1^e=1-\frac{y'}{h}$ $N_2^e=\frac{y'-x'}{h}$ $N_3^e=\frac{x'}{h}$ 对于右下角的三角形,插值函数为: $N_1^e=1-\frac{x'}{h}$ $N_3^e=\frac{y'}{h}$ $N_4^e=\frac{x'-y'}{h}$ 选择二次试探函数 $u(x)=x^2$ 进行插值,单元误差函数定义为 $e^2=\int_0^L \left(u^e-u\right)^2 \mathrm{d}x$ 。对 e 积分,做双对数图如下,收敛率为 1,符合之前线性收敛的假设。

图 5: 收敛率双对数图

2 8H 单元

2.1 8H 单元的建立

8H 单元是一种三维拉压单元,8 节点24 自由度。插值时采用母单元插值方法,即构造一个母单元,建立母单元与实际单元之间的一一映射关系,通过在母单元插值后映射到实际单元完成对实际单元的插值。

图 6:8H 单元 d1 母单元与实际单元

 $N_L^{8\mathrm{H}}(\xi,\eta,\zeta) = N_I^{2L}(\xi) N_J^{2L}(\eta) N_K^{2L}(\zeta)$ 母单元插值函数为三方向线性插值函数的积: $= \frac{1}{8} \left(1 + \xi_L \xi \right) \left(1 + \eta_L \eta \right) \left(1 + \zeta_L \zeta \right)$ 坐标映射 Ja

$$J^e = GN^{8H} \left[x^e y^e \right]$$

cobian 矩阵为:
$$= \begin{bmatrix} \frac{\partial N_1^{8H}}{\partial \xi} & \frac{\partial N_2^{8H}}{\partial \xi} & \cdots & \frac{\partial N_8^{8H}}{\partial \xi} \\ \frac{\partial N_1^{8H}}{\partial \eta} & \frac{\partial N_2^{8H}}{\partial \eta} & \cdots & \frac{\partial N_8^{8H}}{\partial \eta} \\ \frac{\partial N_1^{8H}}{\partial \zeta} & \frac{\partial N_2^{8H}}{\partial \zeta} & \cdots & \frac{\partial N_8^{8H}}{\partial \zeta} \end{bmatrix} \begin{bmatrix} x_1^e & y_1^e \\ x_2^e & y_2^e \\ \vdots & \vdots \\ x_8^e & y_8^e \end{bmatrix}$$
 应变矩阵 B^e 满足: $B^e = \begin{bmatrix} B_1^e & B_2^e & \cdots & B_8^e \end{bmatrix}$

其中:
$$B_i^e = \begin{bmatrix} \frac{\partial N_i^{\text{SH}}}{\partial x} & 0 & 0 \\ 0 & \frac{\partial N_i^{\text{SH}}}{\partial y} & 0 \\ 0 & 0 & \frac{\partial N_i^{\text{SH}}}{\partial z} \\ 0 & \frac{\partial N_i^{\text{SH}}}{\partial z} & \frac{\partial N_i^{\text{SH}}}{\partial y} \\ \frac{\partial N_i^{\text{SH}}}{\partial z} & 0 & \frac{\partial N_i^{\text{SH}}}{\partial y} \\ \frac{\partial N_i^{\text{SH}}}{\partial z} & 0 & \frac{\partial N_i^{\text{SH}}}{\partial x} & 0 \end{bmatrix} (i = 1, 2, \cdots, 8)$$

$$B^e \text{ 的元素满足:} \begin{bmatrix} \frac{\partial N_i^{\text{SH}}}{\partial x} & \frac{\partial N_i^{\text{SH}}}{\partial x} & 0 \\ \frac{\partial N_i^{\text{SH}}}{\partial y} & \frac{\partial N_i^{\text{SH}}}{\partial x} & 0 \\ \frac{\partial N_i^{\text{SH}}}{\partial y} & \frac{\partial N_i^{\text{SH}}}{\partial y} & \cdots & \frac{\partial N_i^{\text{SH}}}{\partial y} \\ \frac{\partial N_i^{\text{SH}}}{\partial z} & \frac{\partial N_i^{\text{SH}}}{\partial z} & \cdots & \frac{\partial N_i^{\text{SH}}}{\partial z} \\ \frac{\partial N_i^{\text{SH}}}{\partial z} & \frac{\partial N_i^{\text{SH}}}{\partial z} & \cdots & \frac{\partial N_i^{\text{SH}}}{\partial z} \\ \frac{\partial N_i^{\text{SH}}}{\partial z} & \frac{\partial N_i^{\text{SH}}}{\partial z} & \cdots & \frac{\partial N_i^{\text{SH}}}{\partial z} \\ \end{bmatrix} = (J^e)^{-1}GN^{\text{SH}}$$

 B^e 不是常系数矩阵,单元刚度阵 K^e 需要积分获得。假设 J^e 的行列式为常数,则被积函数为 2 次,需要 $2\times2\times2$ 的高斯积分。实际编程时分别直接计算 8 个高斯点对应的 J^e 、 B^e 和被积函数的值,再加权相加即可得到单元刚度阵。

2 8H 单元 5

2.2 8H 单元的 Patch Test

由于一一映射的要求,8H 单元必须是凸六面体单元,故选择一个大立方体套小立方体的结构,共 16 节点 7 单元。其中大立方体边长为 1,小立方体与大立方体平行且中心重合,边长为 0.6。加载形式为无重力单轴拉伸,参数 $E=1\times10^7$, $\nu=0.3$,t=1,F=100。

图 7: Patch Test 网格划分

结果如下。在不规则单元下,8H 计算的结果与实际结果有一定的偏移,偏移可能是由于 J^e 的行列式不是常数,导致高斯积分的结果与实际值发生了偏差。但是若取作规则单元,仍然能够保证精确复现线性场。

NODE	X-DISPLACEMENT	Y-DISPLACEMENT	Z-DISPLACEMENT
1	0.00000e+000	0.00000e+000	0.00000e+000
2	9.28893e-006	-9.44056e-008	-9.99794e-008
3	1.07342e-005	-3.14089e-006	5.02537e-008
4	0.00000e+000	-2.85849e-006	0.00000e+000
5	0.00000e+000	0.00000e+000	-2.83348e-006
6	1.07221e-005	8.05604e-008	-3.10277e-006
7	9.32495e-006	-2.91083e-006	-2.84237e-006
8	0.00000e+000	-3.14771e-006	-3.12416e-006
9	2.03906e-006	-5.71069e-007	-5.27135e-007
10	7.67256e-006	-6.16545e-007	-5.72331e-007
11	8.263 7 8e-006	-2.41080e-006	-6.55711e-007
12	1.96302e-006	-2.34067e-006	-6.93518e-00 7
13	1.95649e-006	-6.45204e-00 7	-2.29590e-006
14	8.28590e-006	-5.99913e-00 7	-2.36601e-006
15	7.73754e-006	-2.41443e-006	-2.39147e-006
16	2.05507e-006	-2.48524e-006	-2.47829e-006

图 8: Patch Test 结果

3 后处理 6

2.3 8H 单元的收敛率

8H 单元是三线性单元,能够精确复现线性场。选择二次试探函数 $u(x)=x^2$ 进行插值。由于三个方向插值为直积,故 y,z 积分之后对结果没有影响,即结果和一维单元的收敛率一致,都是线性收敛。

图 9: 收敛率双对数图

3 后处理

后处理采用 vtk 格式实现。某次实验输出的 vtk 格式结果样图如下。vtk 信息中包含各节点、单元的几何信息,六个方向的位移和 Mises 应力。stap++ 每次执行输出两个 vtk 文件,分别对应变形前和变形后的几何信息,七个物理量的信息完全一致。

3 后处理 7

图 10: 输出结果样图

本次实验使用的 vtk 文件包括控制行、节点信息、单元信息、节点物理量、单元物理量四个部分。典型的 vtk 的部分图如下:

图 11: 一个典型的 vtk 文件(部分)

其中控制行在程序开始执行时输出。变形前的节点和单元信息分别在读取节点和单元信息之后立即输出,保证即使无法求解也能够绘制出几何信息,便于查错。当位移计算完成时,在变形前的 vtk 中写入六个方向的位移信息; 在变形后的 vtk 中先按照原始位形与位移和夸张系数计算出新的节点坐标,再依次输出单元信息和位移信息。当在向.out 结果文件中写入应力后,依次向两个 vtk 中写入应力信息。为方便起见,每个单元写入的 Mises 应力为单元全部高斯点的 Mises 应力的平均值。