Digital System Design Project 2 – Exact Boolean Minimization

姓名:張睿麟

學號: B11015030 系級:四資工二乙

先備知識:

- 1. Prime Implicant . Essential Prime Implicant [1]
- 2. Quine–McCluskey algorithm [2]
- 3. Petrick's method [3]

實作步驟:

- 1. 把得到的 Terms 全部列出來
- 2. 利用 Quine-McCluskey algorithm 化簡 => 尋找 Essential Prime Implicant
 - 甲、化簡到最後沒辦法繼續化簡的 Terms 就是 Prime Implicant
 - 乙、尋找所有 Prime Implicant 中只有包含 1 個 minterm 的就是 Essential Prime Implicant
- 3. 利用 Petrick Algorithm 排列組合出所有的可能,進一步尋找最簡可能
 - 甲、針對非 Essential Prime Implicant 的 Prime Implicant 做排列組合
 - 乙、最短的組合再和一定需要的 EPI 組合成最簡方程式

程式實作說明:

儲存 Terms 的方式是用 string 資料型態

1. termsExpansion()

- 甲、利用遞迴把"-"分成 0×1 ,繼續遞迴直到讀完輸入的 terms(舉例: $10-1 \Rightarrow 1001 \times 1011$)
- 乙、遇到 Don't care 先看成 1,但是要記錄下來,因為在取 Essential Prime Implicant 時,不一定需要 Don't care

2. Classification()

- 甲、利用 for 迴圈及記錄每個 Terms 有多少個 1
- 乙、用 2D 的 vector 分類並儲存這些 Terms

3. Simplify()

- 甲、利用遞迴,把鄰近的 Terms 全部比對,若兩個 Terms 之間只差一個 bit ,則把該 bit 替換成"-"進行化簡。
- 乙、在過程中,會去紀錄可以化簡的 Terms,化簡至該迴圈的最後, 會去把沒辦法化簡的 Terms 新增至化簡好的表格,在進行化簡。
- 丙、所以程式結束後,能夠確保該表格已經不能化簡,且過程中沒辦 法化簡的 Terms 也會儲存下來。

4. createPrimeImplicant()

- 甲、把化簡後的 Terms,展開,為了看哪些 minterms 有包含
- 乙、順便去紀錄所有的 minterms 出現過幾次

5. createEssentialPrimeImplicant()

甲、只有出現過 1 次的 minterms,可作為 Essential Prime Implicant

6. createPetrickTable()

甲、整理出非 Essential Prime Implicant 的表,稱做 othersTerms

- 7. 剩下的程式會把 otherTerms 的 terms 給上字母 a-z 標記為不同的 terms , 利用 Petrick Algorithm 排列組合出所有的可能,因為是用 a-z 排列組合, 所以可以針對每種組合的式子各自排序過後,遇到重複的字母,可以取 一次就好。
- 8. 在針對每個式子做統整排序,遇到相同的式子可以刪除。
- 9. 剩下來的式子當中,長度最短的就可以成為最佳化簡的式子

測資演示:

4 Variables

Input1.pla	Output1.pla
.i 4	.i 4
.0 1	.0 1
.ilb a b c d	.lib a b c d
.ob f	.ob f
.p 5	.p 4
00-0 1	00-0 1
0-11 1	10-1 1
10-1 -	11 1
1-00 1	1-00 1
1111 1	.e
.e	
Terminal	
Total number of terms: 4	
Total number of literals: 11	

5 Variables

o variables	
Input2.pla	Output2.pla
.i 5	.i 5
.0 1	.0 1
.ilb a b c d e	.lib a b c d e
.ob f	.ob f
.p 10	.p 6
00-00 1	-1001 1
01-11 -	-1010 1
-01-1 -	01-1- 1
01001 1	11-00 1
0-110 1	-01 1
01-1- 1	00-00 1
101-0 1	.e
11-00 -	
11001 -	
110-0 1	
.e	
Terminal	
Total number of terms: 6	
Total number of literals: 21	

Total number of literals: 21

6 Variables

Input3.pla	Output3.pla	
.i 6	.i 6	
.0 1	.0 1	
.ilb a b c d e g	.lib a b c d e g	
.ob f	.ob f	
.p 10	.p 5	
10-1-0 1	-00-01 1	
0110-1 -	-0111- 1	
1-0101 1	0110-1 1	
11-1-0 1	11-0 1	
-00-01 -	1-01 1	
1-0111 1	.e	
-0111		
1-011- 1		
1001		
-01110 -		
.e		
Terminal		
Total number of terms: 5		
Total number of literals: 19		

參考資料:

- [1]: https://en.wikipedia.org/wiki/Implicant
- [2]: https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm
- [3]: https://en.wikipedia.org/wiki/Petrick%27s_method