série d'Anad Avanvée (Octobre 20223)

Exercice 1

Soient $x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $x_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $x_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ les vecteurs de la base canonique de \mathbb{R}^3

Determiner La matrice symétrique M telle que : ${}^{t}x_{i}Mx_{i} = 1 \quad \forall i = 1, 2, 3$ ${}^{t}(x_{i} - x_{i}) M(x_{i} - x_{i}) \quad \forall i \neq j$

Exercice 2

Soient p_1, \dots, p_n n nombres réels strictement positifs tels que $\sum_{1 \le i \le n} p_i = 1$. On considère la matrice diagonale

$$D_p = \begin{array}{ccc} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{array}$$

1/ Montrer que D_p est symétrique définie positive

2/ Pour
$$n = 3$$
 et $p_1 = p_2 = p_3 = \frac{1}{3}$. Soient $u_1 = \begin{pmatrix} 1 \\ 4 \\ t \end{pmatrix}$ et $u_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ deux vecteurs de \mathbb{R}^3

Determiner t pour que u_1 et u_2 soient D_p -orthogonale

3/ Soient $u_3=\left(\begin{array}{c} \frac{1}{2}\\ \frac{1}{3}\\ t'\end{array}\right)$ un vecteur de \mathbb{R}^3 . Determiner t' pour que u_3 soit D-normé

Exercice 3

Soient
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$, $1 = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$ et $D_p = \begin{pmatrix} p_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & p_n \end{pmatrix}$

 D_p est la matrice des poids $(\sum p_i = 1)$

1/ Calculer les produits scalaires suivants

-
$$\langle X, 1 \rangle_{D_p}$$
,

$$-\langle X - \overline{X} \uparrow, X - \overline{X} \uparrow \rangle_{D_p}$$

$$-\langle X - \overline{X} \uparrow, Y - \overline{Y} \uparrow \rangle_{D_p}$$

2/ Soient la matrice de dimension (n,p) suivante

$$M = \begin{pmatrix} x_1^1 & \cdots & x_1^p \\ \vdots & \cdots & \vdots \\ x_n^1 & \cdots & x_n^p \end{pmatrix}$$

Claculer $\langle M, M \rangle_{D_n}$. (Rappel $\langle X, Y \rangle_{D_n} = X^t D_p Y$.)

Exercice 4

Six individus sont mesurés par trois variables, les résultats obtenus sont donnés ci-aprés

$$X = \begin{pmatrix} \frac{1}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 \\ 0 & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & 0 \end{pmatrix}$$

 \mathbb{R}^3 et \mathbb{R}^6 sont munis des métriques identité I_3 et I_6 respectivement.

- 1. Calculer les normes des individus et des variables.
- 2. Effectuer une AFG du tableau X.
- 3. Donner la dimension du tableau réduit
- 4. Calculer le tableau réduit

Exercice 5

Soit le tableau X croisant six individus et trois variables. Chaque individu est muni d'un poids $p_i = \frac{1}{6}$

$$X = \begin{pmatrix} 8 & 1 & 0 \\ 4 & 6 & 5 \\ 6 & 8 & 7 \\ 10 & 4 & 7 \\ 8 & 2 & 5 \\ 0 & 3 & 6 \end{pmatrix}$$

- 1/ Centrer le tableau X.
- 2/ On effectue une ACP du tableau X, sur quel espace il est préférable de se placer
- 3/ Donner la matrice à diagonaliser V.
- $4/\ \lambda_1=12$ et $\lambda_2=8$ sont deux valeurs propre de V. Endéduire la troisième valeur propre.

5/ Vérifier que
$$u_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 et $u_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ sont deux vecteurs propre de V .

6/ Calculer les inerties et inerties cumulées et endéduire le nombre d'axes à retenir

7/ Soient
$$W^{(1)} = \sqrt{6} \begin{pmatrix} 2 \\ -1 \\ -1 \\ 1 \\ 1 \\ -2 \end{pmatrix}$$
 et $W^{(2)} = \sqrt{6} \begin{pmatrix} -\sqrt{2} \\ 0 \\ \sqrt{2} \\ \sqrt{2} \\ 0 \\ -\sqrt{2} \end{pmatrix}$

les coordonnées des individus sur les deux premiers axes factoriels

Calculer les contributions absolues et relatives des individus sur le plan.

8/ Interpreter les résultats.

Exercice 6.

Soient trois variables X^1, X^2, X^3 , on veut construire une variable combinaisons linéaire des variables X^1, X^2, X^3 notée $Y = a_1 X^1 + a_2 X^2 + a_3 X^3$ de variance maximale. On suppose que $a_1^2 + a_2^2 + a_3^2 = 1$.

- 1. Donner la variance de Y notée Var(Y).
- 2. Ecrire Var(Y) sous forme matricielle.
- 3. En déduire a_1, a_2 et a_3 .

Exercice 7

Soit le tableau regroupant 10 individus repérés par trois variables quantitatives. Chaque individu est muni d'un poids $p_i = \frac{1}{10}$

$$X = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
On so were seed d'affectives use.

On se propose d'effectuer une ACP normée du tableau X

- 1/ Sur quel espace il est préférable de se placer
- 2/ Donner la matrice à diagonaliser dans ce cas. Calculer ses valeurs propres et vecteurs propres normées associés
- 3/ Calculer l'inertie expliquée par le premier axe factoriel
- 4/ Calculer les coordonnées de la première composante principale
- 5/ Calculer la corrélation entre la première composante principale et la deuxième variable initiale. Conclure

Exercice 8

Etude des critères de performances des micros portables décris par six variables suivantes :

CPU: puissance de traitement de données par le processeur (GHz)

DD: capacité du disque dure (Géga)

RAM: capacité de la mémoire vivre (Géga)

CG: capacité de la carte graphique (Méga)

DVB : la durée de vie de la batterie (minutes)

ECR: la dimension de l'écran (pousse)

Tab.1 : Matrice de données

	CPU	DD	RAM	CG	DVB	ECR
HP	1.86	160	2	256	180	15.4
Toshiba	1.6	120	2	256	180	15.4
Acer	1.5	80	1	64	120	15.4
Samsung	1.8	250	2	512	180	17
Sony	2	250	3	1024	240	17
Ibm	1.73	140	1	128	180	15
Siemens	1.63	120	1	128	120	15
Zala	1.4	80	1	64	90	14

Tab. 2 : Matrice des corrélations

$$\begin{pmatrix} 1 & 0.8775 & 0.79102 & 0.81598 & 0.95583 & 0.77402 \\ & 1 & 0.79764 & 0.88341 & 0.85792 & 0.90232 \\ & & 1 & 0.87067 & 0.81969 & 0.78633 \\ & & & 1 & 0.83684 & 0.83553 \\ & & & & 1 & 0.79321 \\ & & & & 1 \end{pmatrix}$$

Les valeurs propres : 5.201 0.310 0.255 0.126 0.074

Tab.3: Projections des Micro-portables, contributions absolues et relatives

Micro-port	Proj sur le plan	$C_a(1,2)$ (%)	$C_r(1,2)$ (%)
HP	(0.7238, 0.7129)	21.72	81.08
Toshiba	(-0.4862, -0.2045)	02.25	29.77
Acer	(-1.8172, -0.4092)	14.68	90.96
Samsung	(2.1012, -0.6361)	26.90	86.96
Sony	(4.2101, -0.1100)	43.08	97.75
Ibm	(-0.5204, 0.9556)	37.42	79.37
Siemens	(-1.3757, 0.0430)	04.62	89.37
Zala	(-2.8356, -0.3516)	24.30	94.07

Tab.4: Projections des caractéristiques, contributions absolues et relatives

caractéristiques	Proj sur le plan	$C_a (1,2)(\%)$	$C_r(1,2)$ (%)
CPU	(0.9342, 0.3272)	51.27	
DD	(0.9527, -0.0720)	19.12	
RAM	(0.9058, -0.1198)	20.40	
CG	(0.9385, -0.1568)	24.86	
DVB	(0.9428, 0.2873)	43.69	
ECR	(0.9110, -0.2769)	40.65	

Questions

- 1/ Donner l'espace des individus et l'espace des variables
- 2/ Quel est l'analyse effectué.
- 3/ Sur quel espace il est préférable de se placer pour faire cette analyse.
- 4/ Interpréter le tableau 1.
- 5/ Donner la dernière valeur propre.
- 6/ Quelle sera la dimension du nouveau tableau réduit?
- 7/ Donner les deux premières composantes principales, leurs moyennes et variances (sans calcul).
- 8/ Quels sont les individus qui ont contribué le plus dans la constructions du plan.
- 9/ Quelles sont les caractéristiques les plus importantes dans un mico-portable.
- 10/ Doner un sens à chacun des axes factoriels
- 11/ Compléter le tableau 4. Tracer le cercle des correlations et interpréter.
- 12/ Conclusion.

Exercice 9.

Soit le tableau de contingrace suivant :

$$\begin{pmatrix}
5 & 2 & 3 \\
1 & 5 & 4 \\
3 & 7 & 0 \\
2 & 1 & 7
\end{pmatrix}$$

Donner les tableaux des profils lignes et profils colonnes