P S G COLLEGE OF TECHNOLOGY DEPT OF APPLIED MATHEMATICS & COMPUTATIONAL SCIENCES 18XW31 MATHEMATICAL FOUNDATIONS OF COMPUTING: ASSIGNMENT TOPICS 1 Proof Methods PS3

1.	What is a conjecture ? When does it become a proof?	19PW01
2.	What is Fermat's last theorem ? Relate it to proposition	19PW02
3.	What is Goldbach Conjecture? Relate it to proposition	19PW03
4.	Let n be an integer. Prove that if n ² is odd, then n is odd.	19PW04
5.	If a b and a c then a b+c (Direct Method)	19PW05
6.	Every odd integer is a difference of 2 squares. (eg. $7=4*4-3*3$) (o	direct method)
		19PW06
7.	Prove that $\sqrt{2}$ is irrational by contradiction.	19PW08

8. Use a proof by contradiction to prove that at least one of the numbers a1; a2; ;an is greater than or equal to the average of these numbers, (a1 +a2 +_ _ ; an) /n.

19PW09

- 9. If $n \in Z$, then $5 n^2 + 3n + 7$ is odd. (Try Cases) 19PW10
- 10. Suppose a,b∈ Z. If both ab and a+b are even, then both a and b are even.(Contrapositive)19PW11
- 11. The product of any 5 consecutive integers is divisible by 120. (3*4*5*6*7=2520=120*21) (Any Method) 19PW13
- 12. There exist irrational numbers x and y such that x^y is rational. (constructive proof)
- 13. Prove or disprove : If A, B and C are sets, then $A (B \cap C) = (A B) \cap (A C)$. (counter example)
- 14. Conjecture a formula for the sum of first n +ve odd integers and prove by Mathematical Induction.19PW16
- 15. Given a chocolate bar with m x n squares of chocolate, task is to divide it into mn individual squares. Only allowed to split one piece of chocolate at a time using a vertical or a horizontal break. For example, suppose that the chocolate bar is 2 x 2. The first split makes two pieces, both 2x1. Each of these pieces requires one more split to form single squares. This gives a total of three splits. Use strong induction to conclude: To divide up a chocolate bar with m x n squares, we need at most mn 1 splits. Hint: Use strong induction on k, the number of squares in the chocolate bar (k = mn).

Additional Problems

- 1. Prove by mathematical induction 1.2.3+2.3.4+ .. n.(n+1).(n+2)=1/4.n.(n+1.(n+2).(n+3)
- 2. Find a formula for $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{2.4} \dots + \frac{1}{n.(n+1)}$ by examining the values of this expression for small n. Prove the formula you conjectured.
- 3. Use M. I to prove the inequality $n < 2^n$ for every positive integer n.
- 4. What is a harmonic ? P. T $H_{2^n} \ge 1 + \frac{n}{2}$
- 5. P. T. $\overline{\bigcap_{j=1}^n A_j} = \bigcup_{j=1}^n \overline{A_j}$ where A₁, A₂ ...A_n are subsets of universal set and n >= 2.