Lecture 14: Globalization strategies

- Two basic globalization strategies: <u>line search</u> (Ch. 3) and trustregion (Ch. 4, not syllabus)
 - Note: "globalization" does not imply that we search for global optimum, but we make the algorithm work far from a (local or global) optimum!
- Step-length, Wolfe conditions
- Step-length computation
- Hessian modifications

Reference: N&W Ch.3-3.1, 3.4, 3.5

A general algorithm for unconstrained optimization

- 1. Initial guess x_0
- 2. While termination criteria not fulfilled
 - a) Find descent direction p_k from x_k
 - b) Walk along p_k to x_{k+1} (how long? line search!)
 - c) k = k+1
- 3. $x_M = x^*$? (possibly check sufficient conditions for optimality)

Termination criteria:

Stop when first of these become true:

- $\|\nabla f(x_k)\| \le \epsilon$ (necessary condition)
- $||x_k x_{k-1}|| \le \epsilon$ (no progress)
- $||f(x_k) f(x_{k-1})|| \le \epsilon$ (no progress)
- $k \le k_{\text{max}}$ (kept on too long)

Descent directions:

Steepest descent

$$p_k = -\nabla f(x_k)$$

Newton

$$p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Quasi-Newton

$$p_k = -B_k^{-1} \nabla f(x_k)$$
$$B_k \approx \nabla^2 f(x_k)$$

A comparison of steepest descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route. (wikipedia.org)

Steepest descent direction vs Newton direction from objective function approximation

(a) Steepest descent: first-order approximation (linearization) of $f(\mathbf{x})$ at \mathbf{x}^k

(b) Newton's method: second-order (quadratic) approximation of f(x) at x^k

From Edgar, Himmelblau, Lasdon: "Optimization of Chemical Processes"

Why sufficient decrease?

Decrease not enough, need <u>sufficient decrease</u> (1st Wolfe condition)

Sufficient decrease

Figure 3.3 Sufficient decrease condition.

Curvature condition

Figure 3.4 The curvature condition.

Backtracking Line Search

Algorithm 3.1 (Backtracking Line Search). Choose $\bar{\alpha} > 0$, $\rho \in (0, 1)$, $c \in (0, 1)$; Set $\alpha \leftarrow \bar{\alpha}$; repeat until $f(x_k + \alpha p_k) \leq f(x_k) + c\alpha \nabla f_k^T p_k$ $\alpha \leftarrow \rho \alpha$; end (repeat)
Terminate with $\alpha_k = \alpha$.

Line search Newton

```
Algorithm 3.2 (Line Search Newton with Modification). Given initial point x_0; for k=0,1,2,\ldots Factorize the matrix B_k=\nabla^2 f(x_k)+E_k, where E_k=0 if \nabla^2 f(x_k) is sufficiently positive definite; otherwise, E_k is chosen to ensure that B_k is sufficiently positive definite; Solve B_k p_k = -\nabla f(x_k); Set x_{k+1} \leftarrow x_k + \alpha_k p_k, where \alpha_k satisfies the Wolfe, Goldstein, or Armijo backtracking conditions; end
```

Local convergence rates

Steepest descent: Linear convergence

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le r \quad \text{for all } k \text{ sufficiently large, } r \in (0, 1)$$

Newton: Quadratic convergence

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} \le M \quad \text{for all } k \text{ sufficiently large, } M > 0$$

Quasi-Newton: Superlinear convergence

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

$$\frac{\|x_{k+1} - x^*\|}{\|x_0\|}$$

