Basics of Quantum Mechanics

Quantum computing and Complex geometry, Enjoying math Jeongwoo Jae, August 19, 2024

I. QUANTUM STATE

Quantum states $|0\rangle$ and $|1\rangle$ are represented by

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad \text{and} \quad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}.$$
 (1)

- 1. Show that each of quantum states $|0\rangle$ and $|1\rangle$ is a unit length vector.
- 2. Show that the quantum states $|0\rangle$ and $|1\rangle$ are orthogonal each other.
- 3. Represent a quantum state $|\psi\rangle = (\alpha, \beta)^{\intercal}$ in terms of $|0\rangle$ and $|1\rangle$, where $\alpha, \beta \in \mathbb{C}$ satisfying $|\alpha|^2 + |\beta|^2 = 1$, and \intercal is the transpose operation.
- 4. Calculate $p_0 = |\langle 0|\psi\rangle|^2$ and $p_1 = |\langle 1|\psi\rangle|^2$.
- 5. Do the same things for quantum states given by

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \quad \text{and} \quad |-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$
 (2)

6. Do the same things for quantum states given by

$$|+i\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ i \end{pmatrix} \quad \text{and} \quad |-i\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -i \end{pmatrix}$$
 (3)

The pairs of quantum states $\{|0\rangle, |1\rangle\}$, $\{|+\rangle, |-\rangle\}$, and $\{|+i\rangle, |-i\rangle\}$ correspond to the three axes of Bloch sphere, $\pm x$, $\pm y$, and $\pm z$, respectively. See Fig. 1.

FIG. 1. An illustration of Bloch spheres from Wikipedia.

II. UNITARY OPERATION AND QUANTUM GATES

A. Unitary operator

Definition.—A Hermitian operator is a matrix satisfying $H = H^{\dagger}$, where \dagger is called the dagger operation defined by $\hat{A}^{\dagger} := (\hat{A}^{*})^{\intercal} = (\hat{A}^{\intercal})^{*}$.

Definition.—A unitary operator is a matrix satisfying $UU^{\dagger}=U^{\dagger}U=\mathbf{I}.$

Consider quantum gates X, Y, Z, H, and CX:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \text{and} \quad CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- 1. Show that the quantum gates are unitary.
- 2. Calculate $X |0\rangle$, $Y |0\rangle$, $Z |0\rangle$, $X |1\rangle$, $Y |1\rangle$, and $Z |1\rangle$.
- 3. Calculate $X \mid \pm \rangle$, $Y \mid \pm \rangle$, and $Z \mid \pm \rangle$.
- 4. Calculate $X \mid \pm i \rangle$, $Y \mid \pm i \rangle$, and $Z \mid \pm i \rangle$.
- 5. Find points corresponding to the quantum states obtained from 2–4 on the Bloch sphere.
- 6. Show that an exponential of anti-Hermitian operator $i\hat{G}$, $e^{i\hat{G}}$, is a unitary operator. Use $(\hat{A}^n)^{\dagger} = (\hat{A}^{\dagger})^n$ and $e^{\hat{A}} := \mathbf{I} + \hat{A} + \frac{1}{2!}\hat{A}^2 + \frac{1}{3!}\hat{A}^3 \cdots$. The operator \hat{G} is called *generator*.

A unitary operator $U_{\vec{n}}(\theta)$ can be represented by

$$U_{\vec{n}}(\theta) := \exp\left[i\frac{\theta}{2}\left(n_x X + n_y Y + n_z Z\right)\right] = I\cos\left(\frac{\theta}{2}\right) + i\vec{n} \cdot \vec{\sigma}\sin\left(\frac{\theta}{2}\right),\tag{4}$$

where $\vec{n} := (n_x, n_y, n_z)$ and $\vec{\sigma} := (X, Y, Z)$.

- 1. Obtain $e^{i\frac{\pi}{2}X}|0\rangle$, $e^{i\frac{\pi}{2}Y}|0\rangle$, $e^{i\frac{\pi}{2}Z}|0\rangle$, $e^{i\frac{\pi}{2}X}|1\rangle$, $e^{i\frac{\pi}{2}Y}|1\rangle$, and $e^{i\frac{\pi}{2}Z}|1\rangle$.
- 2. Represent $U_{\vec{n}}(\theta)$ as the form of matrix.
- 3. Discuss the relation between the unitary operation and rotation matrix.
- 4. Draw a point corresponding to $U_{\vec{n}}(\theta)|0\rangle$ on the Bloch sphere.

Remark.—For a qubit state, the unitary operator $U_{\vec{n}}(\theta)$ is a universal quantum gate.

Consider a set of gates for universal quantum computation:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}, \quad \text{and} \quad CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$
 (5)

Any quantum gate can be decomposed into a circuit of H, S, T, and CX.

Definition.—A quantum circuit consisting of H, S, and CX is called Clifford circuit.

Definition.—Two independent quantum states $|\psi\rangle$ and $|\phi\rangle$ can be represented as a quantum state $|\Psi\rangle = |\psi\rangle \otimes |\phi\rangle$, where \otimes is a tensor product. For given two quantum states $(a,b)^{\dagger}$ and $(c,d)^{\dagger}$, their tensor product is given by

$$\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}.$$
(6)

- 1. Calculate $H|0\rangle$ and $H|1\rangle$.
- 2. Calculate $CX |0\rangle |0\rangle$ and $CX |+\rangle |0\rangle$.
- 3. Represent the state $CX \mid + \rangle \mid 0 \rangle$ as a tensor product of two quantum states. Is it possible or not?