Leçon 204 : Connexité. Exemples et applications.

Développements :

Surjectivité de l'exponentielle, Simplicité de SO(3), Composantes connexes des formes quadratiques réelles

Bibliographie:

Queffelec Topologie (Q), Hauchecorne (H), Gourdon Analyse (G), Tauvel Analyse complexe (T), Rouvière (Rouv)

Notes

Plan librement inspiré de celui présenté par Mégane Bournissou et Jérémy Martin.

Plan

Soit X un espace topologique.

1 Définitions et premières propriétés

1.1 Définitions de la connexité

Définition 1 (Q p.113). définitions équivalentes de la connexité avec les ouverts, fermés, application continue

Exemple 2. \emptyset et un singleton sont connexes.

Application 3 (Q p.114). exp et racine n-ièmes de l'unité

Définition 4 (Q p.114). partie connexe

Proposition 5 (Q p.114). Lemme de passage des douanes : toute partie connexe de X qui rencontre l'intérieur et l'extérieur de A, rencontre aussi la frontière.

Contre-exemple 6 (G p.39). \mathbb{Q} n'est pas connexe : \mathbb{Q} $(-\infty, a[\cup]a, +\infty), a \in \mathbb{R}\backslash\mathbb{Q}$.

1.2 Opérations et stabilité

Proposition 7 (Q p.115). Stable par union sous certaines conditions

Contre-exemple 8. Pas vrai en général : deux boules disjointes

Remarque 9 (H p.296). Une intersection de connexes n'est pas connexe en général : cercle et droite tangent en 2 points distincts.

Proposition 10 (Q p.115). image d'un connexe par une application continue est connexe

Application 11 (G ex 8 p.47). \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes

Contre-exemple 12 (H p. 296). Pas vrai pour l'image réciproque

Proposition 13 (Q p.115). Si $A \subset X$ est connexe, et si $A \subset B \subset \overline{A}$, alors B est connexe. En particulier, l'adhérence d'un connexe est connexe

Proposition 14 (Q p.115). Un produit d'espaces topogiques est connexe ssi chacun des espaces est connexe

1.3 Connexité sur la droite réelle

Théorème 15 (Q p.120). Les connexes de \mathbb{R} sont les intervalles

Théorème 16 (Q p.120). TVI

Application 17 (Q p.120). Thm de Brouwer en dimension 1

1.4 Composantes connexes

Définition 18 (Q p.121). composante connexe

Remarque 19. Les composantes connexes forment une partition de X. X est connexe ssi il n'a qu'une seule composante connexe.

Proposition 20 (Q p.121). La composante connexe de x est la réunion de tous les connexes contenant x. C'est le plus grand connexe contenant x. Elle est fermée dans X.

Proposition 21 (Q p.122). Si on a une décomposition en union disjointe d'ouverts connexes non vides, alors ce sont les composantes connexes.

Exemple 22. $]-\infty,x] \cup [y,+\infty[\ x < y]$

Proposition 23 (Q p.143 nouvelle édition). Une fonction localement constante est constante sur chaque composante connexe.

2 Connexité par arcs

2.1 Connexité par arcs

Définition 24 (Q p.117). connexité par arcs

Exemple 25. \mathbb{R} et \mathbb{C} sont connexes par arcs. Une partie étoilée est connexe par arcs.

Proposition 26 (Q p.117). connexe par arcs implique connexe. Réciproque vrai si X est un ouvert d'un evn.

Exemple 27 (Q p.117). L'épigraphe d'une fonction continue réelle est connexe par arcs.

Contre-exemple 28 (H p.300 ou Q ex 1 p. 145). Un connexe qui n'est pas connexe par arcs

Proposition 29. Simplicité de SO(3)

2.2 Connexité par lignes brisées

Bonus G p.42

3 Application de la connexité

3.1 Connexité dans l'analyse réelle

Théorème 30 (G). p. 47 ex 9 Darboux

Proposition 31 (Rouv p. 105). Différentielle nulle sur un connexe implique cste

3.2 Connexité dans l'analyse complexe

Théorème 32 (T p. 52). Principe du prolongement analytique

Application 33. Prolongement de la fonction Γ d'Euler.

Théorème 34 (T p. 53). Principe des zéros isolés

Proposition 35 (T p.61). Sur un connexe, f' = 0 implique f cste

Théorème 36 (T p.86). Principe du maximum

Théorème 37 (T p.71). Indice cst sur les composantes connexes etc

+formule de Cauchy mais c'est sur un con Vexe..

3.3 Connexité dans les matrices

Proposition 38 (Q p.126). Composantes connexes de $GL_n(\mathbb{R})$.

Proposition 39. Connexité de $GL_n(\mathbb{C})$

Proposition 40. Composantes connexes des formes quadratiques réelles

Proposition 41 (Q p.147 ex 10). projecteurs de rang p dans $\mathcal{M}_n(\mathbb{R})$ connexe

Théorème 42. Surjectivité de l'exponentielle matricielle complexe

Proposition 43. Image de exp matricielle réelle

Contre-exemple 44. matrice réelle qui n'a pas d'antécédant par exp.