Практика по матану, 3 сем (преподаватель Роткевич А. С.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Φ yı	нкции от нескольких переменных	2
	1.1	02.09.2019	2
		1.1.1 Основные определения	2
	1.2	05.09.2019	5
		$1.2.1$ Примеры для \mathbb{R}^2	5
	1.3	09.09.2019	7
		1.3.1 Ещё больше определений	7
		1.3.2 Ещё больше примеров	7
	1.4	12.09.2019	9
		1.4.1 Некоторые особенные примеры	9
		1.4.2 Частные производные. Определения	9
		1.4.3 Частные производные. Примеры	10
	1.5	16.09.2019	12
		1.5.1 Дифференцирование неявных функций	13
	1.6	19.09.2019	14
		1.6.1 Неявные функции наносят ответный удар	14
	1.7	23.09.2019	16
		1.7.1 Дифференциалы высших порядков	17
	1.8	26.09.2019	18
		1.8.1 Ничего интересного	18
	1.9	03.10.2019	18
		191 Ф-ла Тейлора для неявной функции	18

1 Функции от нескольких переменных

$1.1 \quad 02.09.2019$

1.1.1 Основные определения

Опр

$$ho:X*X o\mathbb{R}$$
 - метрика, если

1.
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$$
 (X,ρ) - метрическое пространство

Примеры

1.
$$\mathbb{R} \ \rho(x,y) = |x-y|$$

2.
$$x \neq \emptyset$$
 $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$

3.
$$\mathbb{R}^n$$
, $n \geqslant 1$ $\rho(x,y) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$, где $x = (x_1, ..., x_n)$ $y = (y_1, ..., y_n)$

Опр

$$ho_1,
ho_2: X*X o \mathbb{R}$$
 - метрики, тогда $ho_1,
ho_2$ - эквивалентны, если (они задают одну топологию) $c_1
ho_1(x,y)\leqslant
ho_2(x,y)\leqslant c_2
ho_1(x,y)$ для $c_1, c_2>0$ - const

$$\mathbb{R}^2$$
 $ho_1(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2} \leqslant \sqrt{2\rho_2^2(x,y)}$ $ho_2(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$ (упр.) $\frac{1}{\sqrt{2}}\rho_1(x,y) \leqslant \rho_2(x,y) \leqslant \rho_1(x,y)$ Пусть $\rho_3(x,y) = (|x_1-y_1|^p + ... |x-n-y_n|^p)^{\frac{1}{p}}, \ p \geqslant 1$ Если $p \to \infty$ $\rho_3 \to \rho_2$ $l_n^p = (\mathbb{R}^n, \rho_3)$ - пространство Лебега конечномерное (упр.) Д-ть, что все метрики эквивалентны (ρ_1, ρ_2, ρ_3)

Опр

 $ho:X*X o\mathbb{R}$ - метрика,

Открытым шаром в X относительно метрики ρ называется мн-во $B_r(x) = B(x,r) = \{y \in X : \rho(x,y) < r\}$

Замкнутым шаром называется $\overline{B}_r(x) = \{y \in X : \rho(y, x) \leqslant r\}$ Сферой называется $S_r(x) = \{y \in X : \rho(x, y) = r\}$

Упр

Замкнутый шар - не всегда замыкание шара (см. дискретную метрику)

Пример

$$\overline{l^p} = \{\{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty\} \ 1 \leqslant p < \infty$$

$$\rho(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = (\sum_{n=1}^{\infty} (x_n - y_n)^p)^{\frac{1}{p}}$$

$$l^p - \text{пр-во Лебега (последовательностей)}$$

Пример

C[0,1] - пр-во непр. функций $\rho(f,g) = \max_{[0,1]} |f-g|$ - полна (любая фундаментальная последовательность сходится)

$$ho_p(f,g)=(\int\limits_0^1|f-g|^pdx)^{rac{1}{p}}$$
 - не полная

Опр

 (X, ρ) - метр. пр-во, $\{x_k\}_{k=1}^{\infty} \subset X, \, a \in X \, x_k \to a$ в пр-ве X по метрике ρ , если $\rho(x_n, a) \underset{k \to \infty}{\to} 0$

$$\mathbb{R}^2\ M_k=(x_k,y_k)\ P=(a,b)\ M_k\to P$$
 в евкл. метрике, т.е. $ho(M_k,P)=\sqrt{(x_k-a)^2+(y_k-b)^2}\underset{k\to\infty}{\to}0x_k\to a,\ y_k\to b$

Замечание

Есть ρ_1, ρ_2 - экв. метрики, то $\rho_1(x_k, a) \to 0 \rho_2(x_k, a) \to 0$

Упр

$$x_k \to a, \ x_k \to b \Rightarrow a = b$$

 $(\rho(a,b) \leqslant \rho(a,x_k) + \rho(x_k,b) \to 0 \Rightarrow \rho(a,b) \to 0 \Rightarrow a = b)$

Опр

$$E\subset X,\,(X,\rho)$$
 - метр. пр-во, то $a\in X$ - т. сгущ. Е, если $orall \mathcal{E}\ \exists x\in E:
ho(a,x)<\mathcal{E}$

Опр

$$f:E o Y\;(X,
ho),\,(Y,d)$$
 - метр. пр-ва $(E\subset X),\,$ а - т. сгущ. $E,\,A\in Y,\,$ тогда A - предел отображения f в точке $a,\,$ если $f(x) o A$ при $x\in E\setminus\{a\} o a$ (или $\forall \mathcal{E}>0\quad \exists \delta>0: \rho(x,a)<\delta$ и $x\in E\subset\{a\},\,$ то $d(f(x),A)<\mathcal{E})$ Обозначение: $A=\lim_{x o a}f(x)$ или $f(x) o A$ $x o a$

Замечание

$$A = \lim_{x \to a} f(x) \forall \mathcal{E} > 0 \ \exists \delta > 0 : f(B_{\delta}(a) \setminus \{a\}) \subset B_{\mathcal{E}}(A)$$

$1.2 \quad 05.09.2019$

1.2.1 Примеры для \mathbb{R}^2

Будем в
$$\mathbb{R}^2$$
, $\rho((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Опр

$$f: E \to \mathbb{R}, \ E \subset \mathbb{R}^2, \ a \in \mathbb{R}^2$$
 - точка сгущения, $\lim_{x \to a} f(x) = F$, если $\forall \mathcal{E} > 0 \quad \exists \delta > 0: 0 < \rho(x,a) < \delta, \ x \in E \Rightarrow |f(x) - A| < \mathcal{E}$

 $B \mathbb{R}^2$ работают:

арифм. действия, теор. о двух миллиционерах, критерий Коши:

Опр

$$f:E \to \mathbb{R}$$
, частный случай $\exists \lim_{x \to a} f \forall \mathcal{E} > 0 \quad \exists \delta > 0:$ $|f(x) - f(y)| < \mathcal{E} \ 0 < \rho(x,a), \rho(y,a) < \delta \ (ynp)$

$\mathbf{y}_{\pi p}$

$$\exists \lim_{x\to a} f \forall \{x_n\} : x_n \neq a \quad x_n \to a \ (\rho(x_n,a)\to 0) \ \exists \lim_{n\to\infty} f(x_n)$$
 Обозначение:
$$\lim_{\substack{x\to x_0\\y\to y_0}} f(x,y) = \lim_{\substack{(x,y)\to (x_0,y_0)}} f(x,y) \text{ - предел функции в т.}$$
 (x_0,y_0)

Пример

$$f(x,y) = (x+y) \sin \frac{1}{x} \sin \frac{1}{y}, \lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = 0, \text{ т.к.} |f(x,y)| \leqslant |x| + |y| \underset{\substack{x \to 0 \\ y \to 0}}{\to} 0,$$

$$\exists \lim_{\substack{y \to 0 \\ y \to 0}} \lim_{x \to y} f(x,y)$$

Пример

$$\overline{f(x,y)} = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$
 - не существует, так как $\lim f(x,x) = 1, \, f(x,2x) = 0$

Пример

Построить
$$f(x,y)$$
 т.ч. $\forall a,b \; \exists \lim_{t\to 0} f(at,bt) = A$, но $\angle \lim_{\substack{x\to 0 \ y\to 0}} f(x,y)$ $f=\frac{y^2}{x}=\frac{b^2}{a}t\to 0$, но при $x=\frac{1}{n^2}, \; y=\frac{1}{n}$ предел - единица

Замечание

Если
$$\gamma(t)_{t\to t_0}^a\in\mathbb{R}^2$$
 и $\exists\lim_{x\to a}f(x)=A,$ то $\exists\lim_{t\to t_0}f(\gamma(t))$

Замечание

Если
$$\forall \gamma: \gamma(t) \to a \in \mathbb{R}^2$$
 и $\exists \lim f(\gamma(t)),$ то $\exists \lim_{x \to a} f$

Замечание

 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ - не предел по кривой (из-за необязательного равенства предела и значения в пределе). Более формально: пусть = $\lim_{x \to x_0} \overline{f}(x)$ $\overline{f}(x) = \lim_{y \to y_0} f(x,y) \neq$ (не обязательно) $\neq f(x,y_0)$

Опр

$$\lim_{\substack{x\to +\infty\\y\to +\infty}} f(x,y)=A, \text{ если}$$

$$\forall \mathcal{E}>0 \ \exists M>0: \forall x,y: \max(x,y)>M \ |f(x,y)-A|<\mathcal{E}$$

$$f=rac{y}{x}tg(rac{x}{x+y})$$
 - не имеет предела, $f(x,x)=tg(rac{1}{2}),$ $f(x,x^2)=xtg(rac{1}{1+x}) o 0$

1.3 09.09.2019

1.3.1 Ещё больше определений

Опр

1.
$$A = \lim_{\substack{x \to +\infty \\ y \to +\infty}} f(x,y)$$
, если $orall \mathcal{E} > 0 \; \exists M > 0 : x > M \; y > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

2.
$$A = \lim_{\substack{x \to +\infty \ y \to +\infty}} f(x,y)$$
, если $orall \mathcal{E} > 0 \; \exists M > 0 : |x| > M \; |y| > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

3.
$$A = \lim_{P \to \infty} f(P) \ P \in \mathbb{R}^2$$
, если $orall \mathcal{E} > 0 \ \exists M > 0 :
ho(0,P) > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

Замечание

Демидович по первым двум определениям

Опр

Для конечного предела:
$$A=\lim_{x\to a} f(x,y),$$
 если $\forall \mathcal{E}>0 \quad \exists M>0 \quad \delta>0: y>M \quad |x-a|<\delta\Rightarrow |f(x,y)-A|<\mathcal{E}$

1.3.2 Ещё больше примеров

Пример

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2}\right)^{x^2}$$

Решение

Заметим, что
$$\frac{xy}{x^2+y^2} \leqslant \frac{1}{2} \Rightarrow 2xy \leqslant x^2+y^2 \Rightarrow 0 \leqslant (x-y)^2$$
 для х $\neq y$ Значит дробь стремится к 0

Пример

$$\frac{\lim_{x \to 0} \left(\frac{xy}{x^2 + y^2}\right)^{x^2}}{\lim_{y \to 0} \left(\frac{xy}{x^2 + y^2}\right)^{x^2}}$$

Решение

При
$$x = y$$
 предел $\frac{1}{2}$
При $x = y^2$ предел 0

Решение

Первый не имеет предела $(x=y,\,x=\sqrt{y}).$ Второй $\frac{\sqrt{3}}{2}.$ Третий 0

$$\frac{ \underset{\substack{x \to +\infty \\ y \to +\infty}}{\lim} \frac{ sin(y-x^2)}{y-x^2} }{ \frac{y-x^2}{}}$$

Решение

$$z = y - x^2, z \to 0 \Rightarrow x, y \to 0$$
$$|z| \leqslant |x| + |y| \leqslant 2\sqrt{x^2 + y^2}$$

$$\frac{\mathbf{\Pi}\mathbf{pимеp}}{f} = \frac{1-\sqrt[3]{sin^4x+cos^4y}}{\sqrt{x^2+y^2}},$$
 найти $\lim_{\substack{x\to 0\\y\to 0}} f$

Решение

$$1 - \sqrt[3]{t} \frac{1-t}{3} \text{ (т.к. } 1 - \sqrt[3]{t} = \frac{1-t}{1+\sqrt[5]{t}+\sqrt[3]{t^2}})$$

$$3 \text{ начит } \lim_{\substack{x \to 0 \\ y \to 0}} f = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1}{3} \frac{1-(\sin^4x+\cos^4y)}{\sqrt{x^2+y^2}} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{2\sin^2y-\sin^4y-\sin^4x}{3\sqrt{x^2+y^2}}$$

$$3 \text{ аменим по Тейлору: } = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{2y^2+\overline{o}(y^3)-x^4+\overline{o}(x^6)}{3\sqrt{x^2+y^2}}$$

$$\Pi \text{ опробуем оценить по модулю } |\frac{2y^2-x^4}{\sqrt{x^2+y^2}}|, \text{ заметим что } y^2 \leqslant x^2+y^2,$$

$$x^4 \leqslant 2(x^2+y^2) \leqslant x^2+y^2 \text{ (для } x^2+y^2<1),$$
чтобы избавиться от \overline{o} оценим так:
$$\overline{o}+y^2 \leqslant 2(x^2+y^2), \ \overline{o}+x^4 \leqslant 2(x^2+y^2) \leqslant x^2+y^2$$

$$\text{ Тогда } |\frac{2y^2-x^4}{\sqrt{x^2+y^2}}| \leqslant 2\frac{3(x^2+y^2)}{\sqrt{x^2+y^2}} \leqslant 6\sqrt{x^2+y^2} \to 0$$

12.09.2019 1.4

1.4.1 Некоторые особенные примеры

Пример

$$\overline{\lim_{\substack{x \to 0 \\ y \to 1}} (1+x)^{\frac{1}{x+x^2y}}} = \lim_{\substack{x \to 0 \\ y \to 1}} ((1+x)^{\frac{1}{x}})^{\frac{1}{1+xy}} = e$$

$$\frac{\textbf{Пример}}{f(x,y)} = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} &, x^2 + 2^2 \neq 0 \\ a &, else \end{cases}$$

- 1) a = ?, т.ч. f неп
- 2) a = ?, f непрю на прямых, проходящих через 0

Решение

1)
$$a = \lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 - xy^2}{x^2 + y^2} = \lim_{\substack{x \to 0 \ y \to 0}} x \frac{x^2 - y^2}{x^2 + y^2} = 0$$

Замечание

$$x^n y^m \leqslant (\sqrt{x^2 + y^2})^{n+m}$$
 и $|x| \leqslant \sqrt{x^2 + y^2}$

Частные производные. Определения

$$f: \Omega \subset \mathbb{R}^3 \to \mathbb{R}, P_0 = (x_0, y_0, z_0)$$

Опр

f - диф. в точке P_0 , если $\exists A, B, C \in \mathbb{R}$, т.ч.

$$f(x_0, +\delta x, y_0 + \delta y, z + \delta z = f(x_0, y_0, z_0) + A\delta x + B\delta y + C\delta z + \overline{o}(\sqrt{(\delta x)^2 + (\delta y)^2 + (\delta z)^2})$$
 Пусть $h = (\delta x, \delta y, \delta z)^T$

$$f(P_0 + h) = f(P_0) = \begin{pmatrix} A \\ B \\ C \end{pmatrix}^T h + \overline{o}(|h|)$$

$$df(x, y, z) = Adx + Bdy + Cdz$$

Дифференциал сопоставляет $(dx, dy, dz) \rightarrow Adx + Bdy + Cdz$

Опр

Частной произв. по перем. х в т. (x_0, y_0, z_0) называется предел (если \exists)

$$\lim_{t \to 0} \frac{f(x_0 + t, y_0, t_0) - f(x_0, y_0, z_0)}{t} = \frac{\partial f}{\partial x}(x_0, y_0, z_0) = f'_x(x_0, y_0, z_0)$$

1.4.3 Частные производные. Примеры

y_{TB}

f - дифф.
$$\Rightarrow$$
 \exists част. пр. и $A=\frac{\partial f}{\partial x}(x_0,y_0,z_0),\ B=\frac{\partial f}{\partial x},\ C=\frac{\partial f}{\partial x}$

Производные старшего порядка

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x})$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} \neq (\text{не всегда}) \ \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x}$$

Частные производные сложной функции

$$w = f(x, y, z), \ \mathbb{R}^2 \to \mathbb{R}^3. \ (u, v) \to (\varphi(u, v), \psi(u, v), \chi(u, v))$$

$$w = f(\varphi(u, v), \psi(u, v), \chi(u, v))$$

$$\frac{\partial w}{\partial u} = \frac{\partial f}{\partial x}, \frac{\partial \varphi}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial \psi}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial \chi}{\partial u}$$

$$\frac{\partial w}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial \varphi}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial \psi}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial \chi}{\partial v}$$

$$\left(\frac{\partial w}{\partial u}\right) = \begin{pmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \psi}{\partial u} & \frac{\partial \chi}{\partial u} \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \psi}{\partial v} & \frac{\partial \chi}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

Пример

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial f}{\partial x} \frac{\partial^2 \varphi}{\partial u \partial v} + (\frac{\partial^2 f}{\partial x^2} \frac{\partial u}{\partial v} + \frac{\partial^2 f}{\partial x \partial y} \frac{\partial \psi}{\partial v} + \frac{\partial^2 f}{\partial x \partial z} \frac{\partial \chi}{\partial v}) \frac{\partial \varphi}{\partial u} + \dots$$

$$\begin{split} F &= f(x, xy, xyz) = f(u, v, w) \\ \frac{\partial F}{\partial x} &= \frac{\partial f}{\partial u} 1 + \frac{\partial f}{\partial v} y + \frac{\partial f}{\partial w} yz \\ \frac{\partial}{\partial x} &= \frac{\partial}{\partial u} + y \frac{\partial}{\partial v} + uz \frac{\partial}{\partial w} \\ \frac{\partial^2 F}{\partial x^2} &= \frac{\partial}{\partial x} (\frac{\partial f}{\partial u}) + \frac{\partial}{\partial x} (\frac{\partial f}{\partial v}) y + \frac{\partial f}{\partial v} \frac{\partial}{\partial x} (y) + \frac{\partial}{\partial x} (\frac{\partial f}{\partial w}) yz + \frac{\partial f}{\partial w} \frac{\partial}{\partial x} (yz) \end{split}$$

$$\begin{split} \frac{\partial}{\partial x} (\frac{\partial f}{\partial u}) &= \frac{\partial^2 f}{\partial u^2} + y \frac{\partial^2 f}{\partial u \partial v} + yz \frac{\partial^2 f}{\partial u \partial w} = \\ &= \frac{\partial^2 f}{\partial u^2} + y \frac{\partial^2 f}{\partial v^2} + (yz)^2 \frac{\partial^2 f}{\partial w^2} + zy \frac{\partial^2 f}{\partial u \partial v} + 2y^2 z \frac{\partial^2 f}{\partial v \partial w} + 2yz \frac{\partial^2 f}{\partial u \partial w} \end{split}$$

Дано
$$u=x^y$$
, найти $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$, $\frac{\partial^2 u}{\partial x \partial y}$
$$\frac{\partial u}{\partial x} = yx^{y-1}, \quad \frac{d^2 u}{\partial x^2} = y(y-1)x^{y-2}$$

$$\frac{\partial u}{\partial y} = \ln(x)x^y, \quad \frac{\partial^2 y}{\partial y^2} = \ln^2(x)x^y$$

$$\frac{\partial^2 u}{\partial x \partial y} = x^{y-1} + y\ln(x)x^{y-1}$$

$1.5 \quad 16.09.2019$

Пример

Выяснить, есть ли производная у $f(x,y) = \sqrt[3]{x^3 + y^3}$

Решение

$$\frac{\partial f}{\partial x} = \frac{x^2}{\sqrt[3]{(x^3 + y^3)^2}}, \quad x^3 + y^3 \neq 0$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{\sqrt[3]{t^3 + 0^3} - \sqrt[3]{o^3 + 0^3}}{t} = 1$$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \text{ Не } \exists$$

$$\sqrt[3]{x^3 + y^3} - \text{диф. В точке } (0,0) \Rightarrow$$

$$\sqrt[3]{x^3 + y^3} = 0 + x + y + \overline{o}(\sqrt{x^2 + y^2})$$

$$\sqrt[3]{(0 + \delta x)^3 + (0 + \delta y)^3} = f(x,y) + \frac{\partial f}{\partial x}(0,0)\delta x + \frac{\partial f}{\partial x}(0,0)\delta y + \overline{o}(\sqrt{\delta x^2 + \delta y^2})$$

$$= 0$$

$$= 1$$

$$\sqrt[3]{x^3 + y^3} = x + y + \overline{o}(\sqrt{x^2 + y^2}), \quad x, y \to 0$$

$$x_n = y_n \quad \sqrt[3]{2}x = 2x + \overline{o}(x)$$

$$\sqrt[3]{2} - 2 = \overline{o}(1)?!!$$

То есть из существования ч.п. не следует дифференцируемость

Теорема

Если существуют ч.п. и они непр. в рассм. точке \Rightarrow ф-ия диф. в этой точке

$$f(x,y) = xy\frac{x^2 - y^2}{x^2 + y^2}, \ f(0,0) = 0 \Rightarrow \text{f - Heпр. в 0}$$

$$g(x,y) = \frac{\partial f}{\partial x} = \frac{3x^2y - y^3}{x^2 + y^2} - 2x^2y\frac{x^2 - y^2}{(x^2 + y^2)}, \quad \frac{\partial f}{\partial x}(0,0) = 0$$

$$\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})|_{(0,0)} = \lim_{t \to 0}(\frac{-\frac{t^3}{t^2} - 0}{t}) = -1$$
 Аналогично $\frac{\partial f}{\partial x} = 0, \ \frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = 1$

Если
$$\frac{\partial^2 f}{\partial x \partial y}$$
 и $\frac{\partial^2 f}{\partial y \partial x}$ \exists в окр. точки, непр. в этой точке \Rightarrow в этой точке $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

1.5.1 Дифференцирование неявных функций

Опр

$$F:\mathbb{R}^n imes\mathbb{R} o \mathbb{R}\ F(x_1,...,x_n;y),\ F(x_1^0,...,x_n^0;y^0)=0$$
 $y=f(x_1,...,x_n)$ - ф-ия задана неявно уравнением $F(x_1,...,x_n;y)=0$ в откр. точке $(x_1^0,...,x_n^0,y^0),$ если $(x=(x_1,...,x_n))$:

1.
$$F(x, f(x)) = 0$$
 (в окр. x^0)

2.
$$f(x^0) = y^0$$

Теорема (о неявном отображении)

$$F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, \quad F(x^0,y^0) = 0, \ F$$
 - непр. диф. в окр $(x^0,y^0),$ $F_y'(x^0,y^0) \neq 0, \ \text{тогда}$:

- 1. $\exists y = f(x_1, ..., x_n)$ зад. неявно ур. F(x, y) = 0
- 2. f диф. в окр. x^0

3.
$$\frac{\partial f}{\partial x_0} = -\frac{\partial F}{\partial x_0} / \frac{\partial F}{\partial y}$$
 в окр. x^0

1.6 19.09.2019

1.6.1 Неявные функции наносят ответный удар

Пример

$$F(x,y)=ye^y+x+x^2=0$$

$$y(x)=y(0)+y'(0)x+\frac{y''(0)}{2}x^2+\ldots+\frac{g^{(n)}(0)}{n!}x^n+\overline{o}(x^n), \text{ при } x\to 0$$

$$x_0=0 \quad y(0)=? \quad ye^y=0 \quad y=0$$

$$F'y=e^y+ye^y|_{(0,0)}=1\neq 0$$

$$y'(0)=-\frac{F'_x}{F'_y}|_{(0,0)}=-\frac{1+2x}{1}=-1 \text{ т.о. неявное отображение}$$

$$y'(x)=-\frac{F'_x}{F'_y}=-\frac{1+2x}{(y(x)+1)e^{y(x)}}$$

$$y(x)=0-x+\overline{o}(x)$$

Что теперь делать? Способ 1:

$$y''(x) = (y'(x))' = \left(-\frac{F_x'(x, y(x))}{F_y'(x, y(x))}\right)' = \left(-\frac{1 + 2x}{(y(x) + 1)e^{y(x)}}\right)'$$

$$= -\frac{2}{(y(x) + 1)e^{y(x)}} + \frac{1 + 2x}{((y(x) + 1)e^{y(x)}}(y(x) + 2)e^{y(x)}y'(x) \underset{x=0}{\overset{x=0}{=}} -2 - 4 = -6$$

Наш ряд Тэйлора:

$$y(x) = -x - 3x^2 + \overline{o}(x^2)$$

Способ 2 (метод неопр. коэффициентов)

$$y(x) = -x + ax^{2} + bx^{3} + \overline{o}(x^{3})$$

$$F(x, y(x)) = 0 \text{ B onp } x=0$$

$$(-x + ax^{2} + bx^{3} + \overline{o}(x^{3}))e^{-x + ax^{2} + bx^{3} + \overline{o}(x^{3})} + x + x^{2} = 0$$

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{6} + \overline{o}(t^{3}), \quad t \to 0$$

$$t = y(x)$$

$$(-x+ax^2+bx^3)[1+(-x+ax^2+bx^3)+\frac{(-x+ax^2+bx^3)^2}{2}+\\ +\frac{(-x+ax^2+bx^3)^3}{6}+o(x^2)]+x+x^2=0$$

$$F(x,y)=ye^y+x+x^2=0$$

$$(-x+ax^2+bx^3+\overline{o}(x^3))(1-x+(a+\frac{1}{2})x^2+(b-a-\frac{1}{6})x^3+\overline{o}(x^3))+x+x^2=0$$

$$\overline{o}(x^3)-x+x^2(1+a)+x^3(b-a-a-\frac{1}{2})+x+x^2=0$$

$$\overline{o}(x^3)+(a+2)x^2+(b-2a-\frac{1}{2})x^3=0$$

$$\begin{cases} a+2=0\\ b-2a-\frac{1}{2}=0 \end{cases}$$
 система должна быть диагональной
$$a=-2\quad b=-\frac{7}{2}$$

$$\cos(xy) + \sin x + e^{y+x} = 2$$

Проверить условие т.о неявной ф-ии и найти разл у(x) по Тейллору до $\overline{o}(x^3)$

$$x = 0, \quad F(0, y) = 0 \to y(0)$$

1.
$$1 + e^y = 2$$
, $y = 0$, $F(0,0) = 0$, $y(0) = 0$

2.
$$F'_y = -x\sin(xy) + e^{y+x}|_{(0,0)} = 1 \neq 0$$

 $F'_x = -y\sin(xy) + \cos(x) + e^{y+x}|_{(0,0)} = 2$
 $y'(0) = -2$

Методом неявных коэффициентов

$$y(x) = -2x + ax^{2} + bx^{3} + \overline{o}(x^{3})$$
$$\cos(-2x^{2} + ax^{3} + bx^{4} + \overline{o}(x^{4})) + \sin x + e^{-x + ax^{2} + bx^{3} + \overline{o}(x^{3})} = \dots$$

$1.7 \quad 23.09.2019$

$$F(u; x, y) = 0$$

$$F(u_0;x_0,y_0)=0 \ F'_u(u_0;x_0,y_0)
eq 0$$
 \Rightarrow $\begin{cases} u(x_0,y_0)=u_0 \ F(u(x,y),x,y)=0 \ u'_x=-rac{F'_x}{F'_y} \ u'_y=-rac{F'_y}{F'_y} \end{cases}$

Ф-ла Тейлора для функцийи от неск. перем.

$$u: E \subset \mathbb{R}^n \to \mathbb{R}, \quad x \in E \to u(x)$$

$$T_R(x, x^0) = \sum_{|\alpha| \leqslant k} \frac{\partial^\alpha u(x^0)}{\partial x^\alpha} \frac{(x - x^0)^\alpha}{\alpha!} = \sum_{j=0}^k \frac{d^j u(x^0)[x - x^0]}{j!}$$

$$\alpha \text{ - мультииндекс}, \quad \alpha = (\alpha_1, ..., \alpha_k), \quad \alpha_j \in \mathbb{N} \cup \{0\}$$

$$|\alpha| = \alpha_1 + ... + \alpha_n, \quad \alpha! = \alpha_1! ... \alpha_n!$$

$$\frac{\partial^\alpha u}{\partial x^\alpha} = \frac{\partial^{|\alpha|}}{\partial x^{\alpha_1}} \frac{\partial^{|\alpha|}}{\partial x^{\alpha_n}}, \quad (x - x_0)^\alpha = (x_1 - x_1^0)^{\alpha_1} ... (x_n - x_n^0)^{\alpha_n}$$

Теорема

$$u \in C^k \overset{\text{b okp. } x^0}{\Rightarrow}$$

$$u: \mathbb{R}^2 \to \mathbb{R}$$

$$\begin{split} u(x,y) &= u(x_0,y_0) +_x' (x_0,y_0)(x-x_0) + u_y'(x_0,y_0)(y-y_0) + \\ &+ u_{xx}'' \frac{(x-x_0)^2}{2!} + u_{xy}'' \frac{(x-x_0)(y-y_0)}{1!} + u_{yy}'' \frac{(y-y_0)^2}{2!} + \frac{\frac{\partial^3 u}{\partial x^3} (x-x^0)^3}{3!} + \\ &+ \frac{\frac{\partial^3 u}{\partial x^2 \partial y} (x-x^0)^2 (y-y^0)}{2!1!} + \ldots + \overline{o}(\sqrt{(x-x_0)^2 + (y-y_0)^2})^3 \end{split}$$

1.7.1 Дифференциалы высших порядков

Пример

$$u: \mathbb{R}^2 \to \mathbb{R}^2 \quad (x,y) \to u(x,y)$$

$$du = \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} dx + \frac{\partial u}{\partial y}\Big|_{(x_0,y_0)} dy = du[dx,dy]$$

$$du: \mathbb{R}^2 \to \mathbb{R} \quad (dx,dy) \to du[dx,dy] \text{ - дифференциал первого порядка}$$

$$d^2u = d(du) = d(\frac{\partial u}{\partial x})dx + d(\frac{\partial u}{\partial y})dy = \frac{\partial^2 u}{\partial x^2}dx^2 + 2\frac{\partial^2 u}{\partial x \partial y}dxdy + \frac{\partial^2 u}{\partial y^2}dy^2$$

$$d_d^k(d^{k-1}u) = \sum_{j=0}^k C_j^k \frac{\partial^k u}{\partial x^j \partial y^{k-j} dx^j dy^{k-j}} = d^k u[dx,dy], \quad u \in C^k$$

$$= dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial x}$$

Понятно, что можно дальше обобщать, но делать мы это, конечно, не будем

Пример

$$\begin{split} f &= x^y = e^{y \ln x}, \quad d^2 f \text{ в точке } (2,1) \\ \frac{\partial f}{\partial x} &= e^{y \ln x} \frac{y}{x} \quad \frac{\partial f}{\partial y} = e^{y \ln x} \ln x \\ f''_{xx} &= \frac{\partial^2 f}{\partial x^2} = e^{y \ln x} \left(\frac{x}{y}\right)^2 - e^{y \ln x} \frac{y}{x^2} \stackrel{(2,1)}{=} 0 \\ f''_{yy} &= e^{y \ln x} \ln^2 \stackrel{(2,1)}{=} \ln^2 2 \\ f''_{xy} &= e^{y \ln x} \frac{y}{x} \ln x + e^{y \ln x} \frac{1}{x} \stackrel{(2,1)}{=} \ln 2 + 1 \end{split}$$

Тогда наш ответ:

$$d^2u|_{(2,1)} = 2(\ln 2 + 1)dxdy + 2\ln^2 2dy^2$$

Пример

Найти
$$d^3f$$
 для $f = x^4 + xy^2 + yz^2 + zx^2$

Как понять, что такое $d^3 f$ от отрех переменных?

$$d^3u = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y} + dz\frac{\partial}{\partial z}\right)^3 u$$

$$d^3 \stackrel{(0,1,2)}{=} 3 * 2dx^2dz + 3 * 2dydz^2 + 3 * 2dx^2dy$$

- 1.8 26.09.2019
- 1.8.1 Ничего интересного
- 1.9 03.10.2019
- 1.9.1 Ф-ла Тейлора для неявной функции

$$F(x, y; y) = u^3 + 3yu - 4x = 0$$
, $u(x, y)$ B okp. (1, 1)

Задача. Написать ф. Тейлора для u(x,y) с точность. до $\underline{o}(\underbrace{\sqrt{(x-1)^2+(y-1)^2}})^n$

$$(x,y) = (1,1)$$
 $u^3 + 3u - 4 = 0 \Rightarrow (u^2 + u + 4)(u - 1) = 0 \Rightarrow u(1,1) = 1$

Проверим, что $F_u'(1,1,1) \neq 0$, $3u^2 + 3y \neq 0$

$$u'_{x} = -\frac{F'_{x}}{F'_{u}} = \frac{2}{3} \quad u'_{y} = -\frac{F'_{y}}{F'_{u}} = -\frac{1}{2}$$

$$u(x,y) = 1 - \frac{2}{3}(x-1) - \frac{1}{2}(y-1) + \overline{o}(\varphi) \quad n = 1$$

Способ 1 (n = 2, 3, ...)

$$u'_{x} = -\frac{F'_{x}}{F'_{u}} = -\frac{4}{3u^{2} + 3y} \quad u''_{xx} = \frac{4 * 6uu'_{x}}{(3u^{2} + 3y^{2})^{2}} = -\frac{16}{36} = -\frac{4}{9}$$

$$u''_{xy} = \frac{4(6uu'_y + 3)}{(3u^2 + 3y^2)^2} = 0 \quad u''_{yy} = \left(-\frac{3u}{3u^2 + 3y}\right)'_y = -\frac{u'_y(u^2 + y) - (2uu' + 1)u}{(u^2 + y)^2} = \frac{1}{4}$$
$$u(x, y) = 1 - \frac{2}{2}(x - 1) - \frac{1}{2}(y - 1) + \frac{1}{2}(-\frac{4}{9}(x - 1)^2 + \frac{1}{4}(y - 1)^2)^2 + \overline{o}(\varphi^2)$$

Способ 2 (более высокие степени, метод неопр. коэф.)

$$u^{3}(x,y) = \left(1 + \frac{2}{3}(x-1) - \frac{1}{2}(y-1) + a(x-1)^{2} + b(x-1)(y-1) + c(y-1)^{2} + \overline{o}(\varphi^{2})\right)^{3}$$

$$t = x - 1 \qquad s = y - 1$$

$$0 = u^{3} + 3yu - 4x = \overline{o}(\varphi^{2}) + 1 + 3 * 1^{2} \left(\frac{2}{3}t - \frac{1}{2}s + at^{2} + bts + cs^{2}\right) + 3\left(\left(\frac{2}{3}t\right)^{2} + \frac{s^{2}}{4} - \frac{2}{3}ts\right) + 3(s+1)u - 4(t+1) = 0$$

$$\left((s+1)u = s + \frac{2}{3}t - \frac{1}{2}s + s\left(\frac{2}{3}t - \frac{1}{2}s\right) + at^2 + bts + cs^2 + \overline{o}(\varphi^2) \right)$$

$$= \overline{o}(\varphi^2) + \underbrace{(1+3-4) + t\left(3\frac{2}{3} + 3\frac{2}{3} - 4\right) + s\left(-\frac{3}{2} + \frac{3}{2}\right) + t^2\left(3a + 3\frac{4}{9} + 3a\right) + t^2\left(3b - 2 + 3\left(\frac{2}{3} + b\right)\right) + s^2\left(3c + \frac{3}{4} - \frac{3}{2} + 3c\right)$$

$$\Rightarrow a = -\frac{2}{9} \quad b = 0 \quad c = \frac{1}{8}$$

ДЗ: 3127-3186 (10 задач)