1. Ricerca non informata

- 1. ricerca per ampiezza = per righe
- 2. ricerca in profondità = per colonne
 - limitata ad L: mi fermo a riga L
 - iterativa = ad ogni iterazione riparto da radice e aumento L
- 3. ricerca a costo uniforme (Dijkstra) = aggiorno frontiera espandendo nodo con costo del cammino minore e aggiorno nodi che posso raggiungere da nodo espanso

2. Ricerca informata

- 1. best-first-greedy = aggiorno frontiera espandendo nodo con valore minore di f (finzione euristica di distanza)
- 2. A^* = aggiorno frontiera espandendo nodo con valore minore di f + g (distanza + costo cammino)

3. CSP

- 1. formulare problema = insieme delle variabili X, insieme dei domini D, insieme dei vincoli C
- 2. disegnare grafo vincoli
- 3. algoritmo AC3 =
 - rendere archi orientati
 - tutti gli archi in Arc
 - estraggo e rimuovo un arco da Arc
 - se devo, modifico dominio nodo da cui parte arco
 - se ho modificato il dominio di nodo X, aggiungo ad Arc tutti gli archi entranti in X
 - mi fermo quando Arc è vuoto
- 4. backtracking
 - · scelta della variabile
 - MRV: variabile con minor numero di valori legali rimanenti
 - ▶ Degree = variabile coinvolta nel maggior numero di vincoli
 - ordine di prova dei valori
 - ▶ dato dal testo
 - LCV = valore che lascia maggior numero di scelte possibili per le variabili adiacenti
 - inferenza
 - FC = ogni volta che la variabile x viene assegnata, si stabilisce la sua consistenza d'arco: per ogni y collegata a x si eliminano valori del dominio di y non legali per x

4. Logica proposizionale

- 1. formalizzare frasi
- 2. conseguenze logiche vere o false con model checking
 - modello = K modello per x se x vera in K
 - conseguenza logica = $K \models \alpha$ se e solo se $M(k) \subseteq M(\alpha)$
 - quindi calcolo tabelle di verità di k e di α , vedo dove sono vere e paragono risultati
- 3. soddisfatta (vera in almeno un'interpretazione) e tautologia (vera in tutte le interpretazioni)
- 4. converire in *CNF* = and di clausole, che sono or di letterali
 - 1. eliminare \leftrightarrow
 - 2. eliminare \rightarrow
 - 3. portare ¬ davanti a singole variabili

- 4. proprietà distributive di \land e \lor
- 5. verificare conseguenze logiche con algoritmo di risoluzione
 - per dimostrare che $k \models \alpha$, dimostra che $k \land \neg \alpha$ è insoddisfacibile (cioè arriviamo ad una clausola vuota):
 - ► converto in CNF e separo clausole genero nuove clausole con principio di risoluzione: $\frac{c_1,c_2}{c_1\vee c_2}$ semplificando (es. $A\vee B\vee A\vee B\vee E$)
 - se finisco clausole allora $k \not\models \alpha$, se arrivo a clausola vuota allora $k \models \alpha$
- 6. clasole di Horn (contengono al più un letterale positivo) e forward chaining =
 - conto [c] = per ogni clausola c, indica quante premesse mancano da valutare inferiti [s] = per ogni simbolo s, true se lo abbiamo già dedotto. Inizio tutti false coda = coda dei simboli che inizialmente contiene quelli noti come veri
 - finché coda non è vuota:
 - ightharpoonup estrai un simbolo p dalla coda
 - se p = 1q abbiamo già trovato quello che cercavamo
 - ► se *p* non è ancora stato inferito:
 - segna *p* come inferito
 - per ogni clausola c che ha p tra le premesse: riduci conteggio delle premesse non ancora soddisfatte (conto [c]) e se tutte le premesse sono state soddisfatte (conto = 0) aggiungi c in coda