Array & Strings

Prof. Nilesh Gambhava

Computer Engineering Department, Darshan Institute of Engineering & Technology, Rajkot

Programming for Problem Solving (PPS) GTU # 3110003

USING

Need of Array Variable

 \square Suppose we need to store rollno of the student in the integer variable.

```
Declaration int rollno;
```

□ Now we need to store rollno of 100 students.

```
Declaration
int rollno101, rollno102, rollno103, rollno104...;
```

- This is not appropriate to declare these many integer variables.e.g. 100 integer variables for rollno.
- ☐ Solution to declare and store multiple variables of similar type is an array.
- An array is a variable that can store multiple values.

Definition: Array

An array is a fixed size sequential collection of elements of same data type grouped under single variable name.

int rollno[100];

[0]	[1]	[2]	•••	[99]

Fixed Size

Here, the size of an array is 100 (fixed) to store rollno

Sequential

It is indexed to 0 to 99 in sequence

Same Data type

All the elements (0-99) will be integer variables

Single Name

All the elements (0-99) will be referred as a common name rollno

Declaring an array

```
Syntax
data-type variable-name[size];
```

Integer Array
int mark[5];

Float Array
float avg[5];

- ☐ By default array index starts with **②**.
- If we declare an array of size5 then its index ranges from 0to 4.
- ☐ First element will be store at mark[0] and last element will be stored at mark[4] not mark[5].
- Like integer and float array we can declare array of type char.

Initialing and Accessing an Array

Declaring, initializing and accessing single integer variable

Declaring, initializing and accessing integer array variable

```
int mark[5]={85,75,76,55,45}; //mark is initialized with 5 values
printf("%d",mark[0]); //prints 85
printf("%d",mark[1]); //prints 75
printf("%d",mark[2]); //prints 65
printf("%d",mark[3]); //prints 55
printf("%d",mark[4]); //prints 45
```

```
    [0]
    [1]
    [2]
    [3]
    [4]

    mark[5]
    85
    75
    65
    55
    45
```

Read(Scan) Array Elements

Reading array without loop

```
void main()
     int mark[5];
      printf("Enter array element=");
      scanf("%d",&mark[0]);
      printf("Enter array element=");
     scanf("%d",&mark[1]);
      printf("Enter array element=");
     scanf("%d",&mark[2]);
      printf("Enter array element=");
      scanf("%d",&mark[3]);
      printf("Enter array element=");
      scanf("%d",&mark[4]);
      printf("%d",mark[0]);
      printf("%d",mark[1]);
      printf("%d",mark[2]);
     printf("%d",mark[3]);
     printf("%d",mark[4]);
18 }
```

Reading array using loop

```
void main()
  int mark[5],i;
  for(i=0;i<5;i++)
   printf("Enter array element=");
   scanf("%d",&mark[i]);
  for(i=0;i<5;i++)
   printf("%d",mark[i]);
```

```
[0] [1] [2] [3] [4] mark[5]
```

Develop a program to count number of positive or negative number from an array of 10 numbers.

```
Program
 1 void main(){
       int num[10],i,pos,neg;
       pos = 0;
       neg = 0;
       for(i=0;i<10;i++)
            printf("Enter array element=");
            scanf("%d",&num[i]);
       for(i=0;i<10;i++)
            if(num[i]>0)
                pos=pos+1;
            else
                neg=neg+1;
       printf("Positive=%d, Negative=%d", pos, neg);
18 }
```

Output

```
Enter array element=1
Enter array element=2
Enter array element=3
Enter array element=4
Enter array element=5
Enter array element=-1
Enter array element=-2
Enter array element=3
Enter array element=4
Enter array element=5
Positive=8,Negative=2
```

Develop a program to read n numbers in an array and print them in reverse order.

```
Program
 1 void main()
       int num[100],n,i;
       printf("Enter number of array elements=");
       scanf("%d",&n);
   //loop will scan n elements only
       for(i=0;i<n;i++)</pre>
            printf("Enter array element=");
            scanf("%d",&num[i]);
   //negative loop to print array in reverse order
       for(i=n-1;i>=0;i--)
            printf("%d\n",num[i]);
17 }
```

Output

```
Enter number of array
elements=5
Enter array element=1
Enter array element=2
Enter array element=3
Enter array element=4
Enter array element=5
```

Practice Programs

- 1) Develop a program to calculate sum of n array elements in C.
- 2) Develop a program to calculate average of n array elements in C.
- 3) Develop a program to find largest array element in C.
- 4) Develop a program to print sum of second and second last element of an array.
- 5) Develop a program to copy array elements to another array.
- 6) Develop a program to count odd and even elements of an array.

Multi Dimensional Array

Declaring 2 Dimensional Array

```
Syntax

data-type variable-name[x][y];
```

Declaration

```
int data[3][3]; //This array can hold 9 elements
```

int data[3][3];

	Column-0	Column-1	Column-2
Row-0	data[0][0]	data[0][1]	data[0][2]
Row-1	data[1][0]	data[1][1]	data[1][2]
Row-2	data[2][0]	data[2][1]	data[2][2]

- A two dimensional array can be seen as a table with 'x' rows and 'y' columns.
- The row number ranges from
 to (x-1) and column
 number ranges from
 to
 to

Initialing and Accessing a 2D Array: Example-1

```
Program
```

```
1 int data[3][3] = {
2 {1,2,3}, //row 0 with 3 elements
3 {4,5,6}, //row 1 with 3 elements
4 {7,8,9} //row 2 with 3 elements
5 };
6 printf("%d",data[0][0]); //1
7 printf("%d",data[0][1]); //2
   printf("%d\n",data[0][2]); //3
   printf("%d",data[1][0]); //4
   printf("%d",data[1][1]); //5
   printf("%d\n",data[1][2]); //6
   printf("%d",data[2][0]);//7
   printf("%d",data[2][1]); //8
16 printf("%d",data[2][2]); //9
1 // data[3][3] can be initialized like this also
 2 int data[3][3]={{1,2,3},{4,5,6},{7,8,9}};
```

	Column-0	Column-1	Column-2
Row-0	1	2	3
Row-1	4	5	6
Row-2	7	8	9

Initialing and Accessing a 2D Array: Example-2

```
Program
1 int data[2][4] = {
2 {1,2,3,4}, //row 0 with 4 elements
3 {5,6,7,8}, //row 1 with 4 elements
4 };
   printf("%d",data[0][0]); //1
6 printf("%d",data[0][1]); //2
7 printf("%d",data[0][2]); //3
   printf("%d\n",data[0][3]); //4
   printf("%d",data[1][0]); //5
   printf("%d",data[1][1]); //6
   printf("%d",data[1][2]); //7
13 printf("%d",data[1][3]); //8
1 // data[2][4] can be initialized like this also
2 int data[2][4]={{1,2,3,4},{5,6,7,8}};
```

	Col-0	Col-1	Col-2	Col-3
Row-0	1	2	3	4
Row-1	5	6	7	8

Read(Scan) 2D Array Elements

```
Program
   void main(){
       int data[3][3],i,j;
       for(i=0;i<3;i++)
            for(j=0;j<3;j++)</pre>
                printf("Enter array element=");
                scanf("%d",&data[i][j]);
       for(i=0;i<3;i++)</pre>
            for(j=0;j<3;j++)
                printf("%d",data[i][j]);
            printf("\n");
```

	Column-0	Column-1	Column-2
Row-0	1	2	3
Row-1	4	5	6
Row-2	7	8	9

Output

```
Enter array element=1
Enter array element=2
Enter array element=3
Enter array element=4
Enter array element=5
Enter array element=6
Enter array element=7
Enter array element=7
Enter array element=8
Enter array element=9
123
456
789
```

Develop a program to count number of positive, negative and zero elements from 3 X 3 matrix

```
Program
  void main(){
        int data[3][3],i,j,pos=0,neg=0,zero=0;
       for(i=0;i<3;i++)
            for(j=0;j<3;j++)
                printf("Enter array element=");
                scanf("%d",&data[i][j]);
                if(data[i][j]>0)
                    pos=pos+1;
                else if(data[i][j]<0)</pre>
                    neg=neg+1;
                else
                    zero=zero+1;
        printf("positive=%d, negative=%d, zero=%d", pos, neg, zero);
18 }
```

Output

```
Enter array element=9
Enter array element=5
Enter array element=6
Enter array element=-3
Enter array element=-7
Enter array element=0
Enter array element=11
Enter array element=13
Enter array element=13
Enter array element=8
positive=6,negative=2,zero=1
```

Practice Programs

- 1. Develop a program to perform addition of two matrix.
- 2. Develop a program to perform multiplication of two matrix.

String (Character Array)

Definition: String

 \square A String is a one-dimensional array of characters terminated by a null(')0'.

```
[0] [1] [2] ... [9]

char name[10];
```

- □ Each character in the array occupies one byte of memory, and the last character must always be null('\0').
- ☐ The termination character ('\0') is important in a string to identify where the string ends.

Declaring & Initializing String

```
Declaration
char name[10];

Initialization method 1:
char name[10]={'D','A','R','S','H','A','N','\0'};

Initialization method 2:
char name[10]="DARSHAN";
//'\0' will be automatically inserted at the end in this type of declaration.
```

```
    [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

    name[10] D A R S H A N \0
```

Read String: scanf()

```
Program

1 void main()
2 {
3     char name[10];
4     printf("Enter name:");
5     scanf("%s",name);
6     printf("Name=%s",name);
7 }

Output
Enter name: Darshan
Name=Darshan
Name=CE

Output
Enter name: CE Darshan
Name=CE
```

- ☐ There is no need to use address of (&) operator in scanf to store a string.
- As string **name** is an array of characters and the name of the array, i.e., **name** indicates the base address of the string (character array).
- scanf() terminates its input on the first whitespace(space, tab, newline etc.) encountered.

Read String: gets()

```
#include<stdio.h>
void main()

char name[10];
printf("Enter name:");
gets(name); //read string including white spaces
printf("Name=%s", name);
}
```

Output

Enter name:Darshan Institute
Name=Darshan Institute

- \square **gets():** Reads characters from the standard input and stores them as a string.
- puts(): Prints characters from the standard.
- scanf(): Reads input until it encounters whitespace, newline or End Of File(EOF) whereas gets() reads input until it encounters newline or End Of File(EOF).
- gets(): Does not stop reading input when it encounters whitespace instead it takes whitespace as a string.

String Handling Functions : strlen()

- C has several inbuilt functions to operate on string. These functions are known as string handling functions.
- strlen(s1): returns length of a string in integer

Program

```
1 #include <stdio.h>
2 #include <string.h> //header file for string functions
3 void main()
4 {
5     char s1[10];
6     printf("Enter string:");
7     gets(s1);
8     printf("%d",strlen(s1)); // returns length of s1 in integer
9 }
```

Output

```
Enter string: CE Darshan 10
```

String Handling Functions: strcmp()

- strcmp(s1,s2): Returns 0 if s1 and s2 are the same.
- \square Returns less than 0 if s1<s2.
- Returns greater than 0 if s1>s2.

Program

```
void main()

{
    char s1[10],s2[10];
    printf("Enter string-1:");
    gets(s1);
    printf("Enter string-2:");
    gets(s2);
    if(strcmp(s1,s2)==0)
        printf("Strings are same");
    else
        printf("Strings are not same");
}
```

Output

Enter string-1:Computer Enter string-2:Computer Strings are same

Output

Enter string-1:Computer Enter string-2:Computer Strings are same

String Handling Functions

For examples consider: char s1[]="Their",s2[]="There";

Syntax	Description
strcpy(s1,s2)	Copies 2 nd string to 1 st string. strcpy(s1,s2) copies the string s2 in to string s1 so s1 is now "There". s2 remains unchanged.
strcat(s1,s2)	Appends 2 nd string at the end of 1 st string. strcat(s1,s2); a copy of string s2 is appended at the end of string s1. Now s1 becomes "TheirThere"
strchr(s1,c)	Returns a pointer to the first occurrence of a given character in the string s1. printf("%s", strchr(s1,'i')); Output: ir
strstr(s1,s2)	Returns a pointer to the first occurrence of a given string s2 in string s1. printf("%s", strstr(s1, "he")); Output: heir

String Handling Functions (Cont...)

For examples consider: char s1[]="Their",s2[]="There";

Syntax	Description	
strrev(s1)	Reverses given string. strrev(s1); makes string s1 to "riehT"	
strlwr(s1)	Converts string s1 to lower case. printf("%s", strlwr(s1));	Output : their
strupr(s1)	Converts string s1 to upper case. printf("%s", strupr(s1));	Output : THEIR
strncpy(s1,s2,n)	Copies first n character of string s2 to string s1 s1=""; s2="There"; strncpy(s1,s2,2); printf("%s",s1);	Output : Th
strncat(s1,s2,n)	Appends first n character of string s2 at the end of string s1. strncat(s1,s2,2); printf("%s", s1);	Output : TheirTh

String Handling Functions (Cont...)

For examples consider: char s1[]="Their",s2[]="There";

Syntax	Description	
strncmp(s1,s2,n)	Compares first n character of string s1 and s2 and returns similar restrcmp() function. printf("%d", strcmp(s1, s2, 3));	esult as Output : 0
strrchr(s1,c)	Returns the last occurrence of a given character in a string s1. printf("%s", strrchr(s2, 'e'));	Output : ere

Thank you

