KU LEUVEN

Avoiding local minima in Deep Learning: a nonlinear optimal control approach

Master's Thesis defence

Jan Scheers

Supervisor: Prof. dr. ir. Panos Patrinos

Mentor: Ir. Brecht Evens

23 June 2021

0 Outline

- 1 Introduction
- 2 Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- **5** Timeseries Experiment
- **6** Conclusion

1 Outline

- 1 Introduction
- Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- 5 Timeseries Experiment
- 6 Conclusion

1 Machine Learning and Neural Networks

- Machine Learning
 - Subset of Artificial Intelligence
 - Learn relationships in data sets
 - Input features → Target output
 - Learn on Training Data, Apply to Test Data
- Artificial Neural Networks
 - Popular machine learning model
 - Very expressive
 - Suited for large data sets
 - Can model complex nonlinear relationships
- Focus on deep feedforward neural networks in this thesis

1 Neuron

Single Neuron - McCulloch-Pitts model [A. Dertat 2017].

1 Activation Function

McCulloch-Pitts neuron model

$$y = \sigma(w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$$

Rectified Linear Unit (ReLU)

$$\sigma(x) = x^+ = \max(0, x)$$

Hyperbolic Tangent (tanh)

$$\sigma(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh(x)$$

1 Neural Network

Feedforward Deep Neural Network [A. Dertat 2017].

1 Neural Network Training

► Function definition of network with *L* layers

$$f_W(x) = W_L \sigma(W_{L-1} \sigma(\dots W_1 \sigma(W_0 x)\dots))$$

- Function application & matrix multiplication
- Training = unconstrained optimization problem over training set:

$$\underset{W}{\mathsf{minimize}} \quad C(W) = \frac{1}{N} \sum_{j=0}^{N} l(f_W(x_j) - y_j)$$

- $f_W(x_j)$: prediction of network for x_j
- lacktriangle compare network prediction to target output y_j
- ▶ Minimize average loss for loss function $l(\cdot, \cdot)$
- Proxy for performance metric P defined over the test set

1 Gradient Descent

Training problem is solved using Gradient Descent:

$$W_{k+1} = W_k - \eta_k \nabla C(W_k)$$

- η_k : step size a.k.a. "learning rate"
- Gradient is calculated using Backpropagation algorithm
- Cumbersome to calculate full gradient for large datasets
 - → Approximate gradient over "mini-batch" of datapoints
 - Stochastic Gradient Descent
- Current best algorithms use adaptive learning rates
 - AdaGrad, Rmsprop, ADAM, ...
- Halting based on "early stopping" criterion
 - ◆ pure optimization halts on small gradient

1 Local Minima

- Gradient Descent is a locally converging algorithm
- Cost function will have highly non-convex surface
- Possibly uncountably many local minima
- Finding global minimum is intractible
 - "bad" local minima: have comparatively high cost value
 - Hard to define exactly
- " ... but experts now suspect that, for sufficiently large neural networks, most local minima have a low cost function value ... " [Goodfellow et. al. 2016]
- Other optimization challenges
 - III-conditioned Hessian matrix
 - Exploding/Vanishing gradients
 - "Dying" ReLU

1 Neural networks as Dynamical Systems

$$z_0 = x$$

 $z_{k+1} = \sigma_k(W_k z_k), \quad k = 0, ..., L$
 $f_W(x) = z_{L+1}$

- Neural networks are dynamical systems
 - Each layer is a state
- Optimal Control objective cost function:

$$E(\theta) = \sum_{s=1}^{L-1} g^{s}(a^{s}, \theta^{s}) + h(a^{L})$$

NN training only considers terminal cost

1 Training as Optimal Control Problem

$$\begin{split} & \underset{W,z}{\text{minimize}} & & \sum_{j=0}^n ||\sigma_L(W_L z_L) - y_j||_2^2 \\ & \text{subject to} & & z_{1,j} = \sigma_0(W_0, x_j), & j = 1, \dots, n \\ & & & z_{k+1,j} = \sigma_k(W_k z_{k,j}), & k = 1, \dots, L-1, j = 1, \dots, n \end{split}$$

Optimal Control	Neural Network		
decision variables	weight parameters		
state variables	(neuron) activation		
stage	layer		

1 Goal of the thesis: Solving the OCP

- Optimal control theory: two direct approaches
- Sequential Approach
 - Direct Single Shooting
 - Eliminate states using dynamics
 - Reduces to unconstrained problem
 - Small, highly nonlinear NLP
 - Equivalent to backpropagation for NN [Dreyfus et al. 1990]
- Simultaneous Approach
 - Direct Multiple Shooting
 - Keep states as variables
 - Large, structured problem
 - Novel approach for NN
 - Topic of this thesis

2 Outline

- Introduction
- 2 Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- 5 Timeseries Experiment
- 6 Conclusion

2 Multiple Shooting in MATLAB

- Multiple shooting increases dimension of problem
 - For network of width W, depth L, N datapoints:
 - Single shooting: $\mathcal{O}(W^2L)$ variables
 - Multiple shooting: $\mathcal{O}(W^2L + WLN)$ variables
- Exploration of the multiple shooting approach
 - Implemented in MATLAB
 - Constrained NLP solved by fmincon
 - Comparison with nntoolbox
 - Training algorithm is traingd

	ta	ınh	ReLU		
Algorithm	avg tr MSE	avg run time	avg tr MSE	avg run time	
Gradient Descent	0.0299	1.577s	0.0274	1.480s	
Multiple Shooting	0.2350	23.82s	0.2111	115.8s	

2 Gradient Descent vs Multiple Shooting

10⁻⁰
10⁻¹
20 40 Epoch 60 80 100

Gradient Descent Training History

Multiple Shooting Training History

NN fit with Gradient Descent

NN fit with Multiple Shooting

3 Outline

- 1 Introduction
- Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- 5 Timeseries Experiment
- 6 Conclusion

3 Augmented Lagrangian Method

- fmincon not well suited for this problem
 - ⇒ implement specialized algorithm
 - exploit structure in problem
- Augmented Lagrangian Method
 - Algorithmic framework for constrained NLP
 - Similar to penalty method
- Constrained NLP:

$$\min_{u} \quad f(u)$$
s.t.
$$h(u) = 0$$

3 Classical Augmented Lagrangian Method

 \triangleright β -augmented Lagrangian:

$$\min_{u} \max_{\lambda} \ \mathcal{L}_{\beta}(u,\lambda) = f(u) + \langle \lambda, h(u) \rangle + \frac{\beta}{2} ||h(u)||_{2}^{2}$$

- Converges to local minimizer of constrained problem if
 - β is large
 - λ is close to λ*
- Algorithm solves series of unconstrained problems

$$u_{k+1} = \underset{u}{\operatorname{argmin}} \ \mathcal{L}_{\beta_k}(u, \lambda_k)$$
$$\lambda_{k+1} = \lambda_k + \sigma_k h(u_{k+1})$$

3 Classical Augmented Lagrangian Method

- ▶ Penalty parameter increases or is kept the same in each iteration
 - depends on constraint violation
- Stopping criterion:

$$||h(u_k)|| \leq \tau_1$$
 and $||\nabla_u \mathcal{L}_{\beta_k}(u_k, \lambda_k)|| \leq \tau_2$

- NN training has nonconvex f with nonlinear constraints, inexact solution to inner problem
- Textbook theory requires strong assumptions, exact solution
- ► Sahin et al. (2019) proposes alternative framework:
 - Promises $\tilde{\mathcal{O}}(1/\epsilon^3)$ calls to first-order solver
 - Theoretical estimates on convergence

3 β -Augmented Lagrangian

$$\begin{split} & \underset{W,z}{\text{minimize}} & & \sum_{j=0}^n ||\sigma_L(W_L z_L) - y_j||_2^2 & & \underset{u}{\text{min}} & \frac{1}{2}||F(u)||_2^2 \\ & \text{subject to} & & z_{1,j} = \sigma_0(W_0, x_j) & \Leftrightarrow & \text{s. t.} & & h(u) = 0 \\ & & & z_{k+1,j} = \sigma_k(W_k z_{k,j}) \end{split}$$

- $lackbox{} u = \{W,z\}$ collects weight and state variables in single vector
- lacktriangle minimizing eta-Augmented Lagrangian is LS problem

$$\underset{u}{\operatorname{argmin}} \quad \mathcal{L}_{\beta}(u,\lambda) = \frac{1}{2} ||F(u)||_{2}^{2} + \langle \lambda, h(u) \rangle + \frac{\beta}{2} ||h(u)||_{2}^{2}$$

$$= \frac{\beta}{2} \left| \left| \begin{bmatrix} F(u)/\sqrt{\beta} \\ h(u) + \lambda/\beta \end{bmatrix} \right| \right|_{2}^{2}$$

$$(1)$$

3 Applied Augmented Lagrangian Method

```
Input: Initial weights vector W, penalty parameter \beta, stopping
           tolerance \tau, input-target pairs (x_i, y_i), i = 1, \ldots, n
Initialization u_0 = \{W, f_W(x)\}, \lambda_0 \in \mathcal{N}(0,1);
                                                                     Initialize state
for k = 0.1.... do
    \eta_k = 1/\beta^k:
                                                                       Update tolerance
    find u_{k+1} such that
          ||\nabla_{u_k} \mathcal{L}_{\beta^k}(u_k, \lambda_k)|| \leq \eta_k;
                                                            Approx. primal solution
    \sigma_{k+1} = \min \left( \frac{||h(u_0)|| \log^2 2}{||h(u_{k+1})||k| \log^2 (k+1)}, 1 \right) ;
                                                           Update dual step size
     \lambda_{k+1} = \lambda_k + \sigma_{k+1} h(u_{k+1}) ;
                                                                 Update dual variables
     If ||\nabla_{u_{k+1}} \mathcal{L}_{\beta^k}(u_{k+1}, \lambda_k)|| + ||h(u_{k+1})|| < \tau:
          break:
                                                                      Stopping Criterion
```

end

3 Convergence

Typical convergence behaviour of Algorithm 1

3 Jacobian

- Inner problem is nonlinear least squares
 - Solved using Trust Region Reflective method
 - scipy.optimize.least_squares
 - Works best with analytical solution for Jacobian matrix
- lacobian matrix
 - Dimension $\approx (DWN \times DW(N+W))$
 - Sparse, banded structure
- Numerical Verification
 - Automatic differentiation
 - AlgoPy library
 - Confirms correctness of analytical solution

3 Jacobian Derivation

$$M_{\beta}(u,\lambda) := \begin{bmatrix} F(u)/\sqrt{\beta} \\ h(u) + \lambda/\beta \end{bmatrix}, J_{M_{\beta}} := \begin{bmatrix} \frac{\partial M_{\beta}}{\partial u_{1}} & \frac{\partial M_{\beta}}{\partial u_{2}} & \dots & \frac{\partial M_{\beta}}{\partial u_{n}} \end{bmatrix}$$

$$\frac{\partial M_{\beta}}{\partial W_{k}} = -z_{k,j}\sigma'_{k}(W_{k}z_{k,j}) \quad , j = 1, \dots, n, k = 0, \dots, L$$

$$\frac{\partial M_{\beta}}{\partial z_{k}} = \begin{bmatrix} 1 \\ -W_{k}\sigma'_{k}(W_{k}z_{k}) \end{bmatrix} \quad , k = 1, \dots, L$$

- $ightharpoonup W_k, z_k$ are matrices ightarrow derivatives are tensors
- $ightharpoonup W_k, z_k$ vectorized ightharpoonup derivatives are block matrices

3 Visualisation of Jacobian

Network has 2 layers, 3 nodes/layer, 2 inputs, 2 outputs and 7 datapoints.

4 Outline

- Introduction
- Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- 5 Timeseries Experiment
- 6 Conclusion

4 Test setup

- Regression problem
 - Approximate:

$$y = \sin(x^2), x \in [0, \pi]$$

- Using fully connected feedforward network
- ADAM optimizer for comparison
 - ADaptive Moment Estimation
 - Robust, industry standard optimizer
 - Stochastic gradient descent with adaptive learning rate
- 20 training runs per test configuration
 - Same initial conditions each run
 - Same data, noise, weight initialization
 - Gradient estimation over full dataset in each epoch
- Intel® Core™ i5-7300HQ CPU 2.50GHz with 8Gi RAM

4 Halting criterion

- Nonconvex Optimization
 - Local minimizer of cost function: small gradient
- Machine Learning
 - "Early Stopping"
 - · Based on performance metric on validation set
- ► Time based, epoch based halting
- ▶ Goal of thesis: local minima ⇒ Halt at local minimum
 - ADAM: 10 epochs without any improvement to cost function
 - ALM: 1 epoch without significant improvement:

$$(1+\epsilon)C(W_{k+1}) > C(W_k)$$

- Halting based on gradient
- Discards influence of states, constraint violation

Examples of convergence behaviour of ADAM optimizer for a network using ReLU activation and 40 data points. The network has 2 hidden layers of 16 nodes.

Example of convergence behaviour of ALM optimizer for network using tanhactivation and 40 data points. The network has 2 hidden layers of 8 nodes.

MSE of batch using 40 data points and ReLU activation function

4 Results for network with tanh activation

 $\sigma(\cdot) = \tanh(\cdot)$

	Ν	avg MSE	best MSE	time(s)	avg epochs	converging runs 20 runs
ADAM	10	$2.09e^{-2}$	$1.20e^{-11}$	18.7	3790	17
ALM	10	$2.10e^{-1}$	$1.59e^{-1}$	1.85	6.38	16
ADAM	20	$1.25e^{-2}$	$9.84e^{-4}$	19.8	3960	17
ALM		$5.87e^{-2}$	$7.69e^{-3}$	8.06	7.50	20
ADAM	40	$2.56e^{-2}$	$7.58e^{-3}$	19.2	3920	15
ALM		$1.61e^{-2}$	$7.90e^{-3}$	11.6	6.90	20

Fully connected feedforward network, 2 hidden layers, 8 nodes / layer

Results for network with ReLU activation

$\sigma(\cdot) =$	$\max(\cdot, 0)$
-------------------	------------------

	N	avg MSE	best MSE	time(s)	avg epochs	converging runs 20 runs
ADAM	20	$1.22e^{-1}$	$3.15e^{-3}$	30.3	3500	5
ALM	20	$1.63e^{-1}$	$1.08e^{-2}$	4.41	5.47	15
ADAM	40	$6.28e^{-2}$	$8.85e^{-3}$	22.4	2690	5
ALM	40	$9.89e^{-2}$	$1.37e^{-2}$	8.09	5.11	18
ADAM	80	$7.61e^{-2}$	$7.64e^{-3}$	29.9	3150	4
ALM		$1.02e^{-1}$	$1.03e^{-2}$	25.3	4.21	14

Fully connected feedforward network, 2 hidden layers, 16 nodes / layer

5 Outline

- Introduction
- Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- **5** Timeseries Experiment
- 6 Conclusion

5 Santa Fe timeseries data

- Far-infrared laser fluctuations, coupled nonlinear ODEs
- 1000 data points training, 100 points test data

Test Setup

Approximate using recurrent neural network:

$$\hat{y}_{k+1} = f_W(\begin{bmatrix} \hat{y}_k & \hat{y}_{k-1} & \dots & \hat{y}_{k-p} \end{bmatrix}^T)$$

- Previous predictions used to make next prediction
- tanh activation, 80 inputs, 1 layer, 48 nodes
- 920 training pairs, 600 in training set, 320 in validation set
- 4 training runs per algorithm, same initial conditions
- Intel® Core™ i5-7300HQ CPU 2.50GHz with 8Gi RAM

rest MSE in Blac, validation MSE in Gran

5 Timeseries data test results

_	_			best pred MSE	epochs	time
ALM	$3.712e^{-4}$	$2.779e^{-4}$	$1.070e^{0}$	$8.288e^{-1}$	5	1201s
ADAM	$2.517e^{-4}$	$2.329e^{-4}$	$2.016e^{-1}$	$9.100e^{-2}$	2353	20.9s

- ▶ ALM is very slow: 20min on avg, compared to 20s for ADAM
- Similar performance for training data, ADAM much better on test data
- Most calls to jacobian are in first epochs:

Average number of Jacobian evaluations per epoch

6 Outline

- 1 Introduction
- Multiple Shooting in MATLAB
- 3 Augmented Lagrangian Method
- 4 Regression Experiment
- 5 Timeseries Experiment
- **6** Conclusion

6 Conclusion

- Novel perspective on neural network training using control theory
 - Single shooting: Backpropagation with Gradient Descent
 - Multiple shooting: new algorithm
 - MATLAB provides POC
- ALM framework implemented
 - Framework adapted from [Sahin et al. 2019]
 - Analytical solution for Jacobian
- Numerical Tests
 - ALM outperforms ADAM for network with many bad local minima
 - ALM becomes impractical for larger datasets
- Mini-batch approach for ALM can mitigate scaling problem
 - Cannot be easily adapted from stochastic gradient descent
 - Multiple shooting is harder to warm-start

7 References

- [1] A. Dertat. Applied deep learning part 1: Artificial neural networks. URL: https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6, retrieved 2021-05-31
- [2] S. E. Dreyfus. Artificial neural networks, back propagation, and the kelley-bryson gradient procedure. Journal of Guidance, Control, and Dynamics, 13(5):926–928, 1990.
- [3] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. URL: http://www.deeplearningbook.org.
- [4] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets, 2018.
- [5] M. F. Sahin, A. eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented lagrangian framework for nonconvex optimization with nonlinear constraints. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

7 Comparison to Evens et al (2021)

- Different ALM framework
- Gauss-Newton approach for inner problem
- ► Not tested on larger datasets

7 Loss Functions

quadratic loss function

cross-entropy loss

$$||y^2 - \hat{y}^2||$$

$$y\log(\hat{y}) + (1-y)\log(1-\hat{y})$$

Mean Squared Error(MSE)

negative log-likelihood

Regression

Classification

Visualisation of loss surface of ResNet-56 [Li et al. 2018].