

A Simple Proof of Schmidt's Conjecture

Thotsaporn “Aek” Thanatipanonda *

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, A-4040 Linz, Austria

thotsaporn@gmail.com

Submitted: March 9, 2012; Accepted: ; Published: XX
Mathematics Subject Classification: 11B65, 33B99

Abstract

For any integer $r \geq 1$, the sequence of numbers $\{c_k^{(r)}\}_{k \geq 0}$ is defined implicitly by

$$\sum_k \binom{n}{k}^r \binom{n+k}{k}^r = \sum_k \binom{n}{k} \binom{n+k}{k} c_k^{(r)}, \quad n = 0, 1, 2, \dots$$

Asmus Schmidt conjectured that all $c_k^{(r)}$ are integers. We give a new proof of this fact.

The problem above was stated by Schmidt [3] in 1992. In Concrete Mathematics [1] on page 256, it was stated as a research problem. Already here, it was indicated that H. Wilf had shown the integrality of $c_n^{(r)}$ for any r but only for $n \leq 9$. For the first nontrivial case, $r = 2$; $\sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ are the famous Apéry numbers, the denominators of rational approximations to $\zeta(3)$. This case was proved in 1992 independently by Schmidt himself [4] and by Strehl [5]. They both gave an explicit expression for $c_n^{(2)}$

$$c_n^{(2)} = \sum_j \binom{n}{j}^3 = \sum_j \binom{n}{j}^2 \binom{2j}{n}.$$

*supported by the strategic program “Innovatives OÖ 2010 plus” by the Upper Austrian Government

These numbers are called Franel numbers. In the same paper [5], Strehl also gave a proof for $r = 3$ which uses Zeilberger's algorithm of creative telescoping. He also gave an explicit expression for $c_n^{(3)}$

$$c_n^{(3)} = \sum_j \binom{n}{j}^2 \binom{2j}{j}^2 \binom{2j}{n-j}.$$

The first full proof was given by Zudilin [6] in 2004 using a multiple generalization of Whipple's transformation for hypergeometric functions. Since then, the congruence properties related to the Schmidt numbers $S_n^{(r)} := \sum_k \binom{n}{k}^r \binom{n+k}{k}^r$ and to the Schmidt polynomials $S_n^{(r)}(x) := \sum_k \binom{n}{k}^r \binom{n+k}{k}^r x^k$ have been studied extensively. In this note, we return to Schmidt's original problem and present a simple proof.

It is a natural first step to investigate the individual term $\binom{n}{k}^r \binom{n+k}{k}^r$ before considering the full sum $\sum_k \binom{n}{k}^r \binom{n+k}{k}^r$. Our proof rests on the following lemma, which was proved by Guo and Zeng [2]. In order to keep this note self-contained, we give a simple, well motivated, computer proof of their lemma.

Lemma. *For $k \geq 0$ and $r \geq 1$, there exist integers $a_{k,j}^{(r)}$ with $a_{k,j}^{(r)} = 0$ for $j < k$ or $j > rk$, and*

$$\binom{n}{k}^r \binom{n+k}{k}^r = \sum_j a_{k,j}^{(r)} \binom{n}{j} \binom{n+j}{j} \quad (1)$$

for all $n \geq 0$.

Proof. Define $\bar{a}_{k,j}^{(r)}$ recursively by $\bar{a}_{k,k}^{(1)} = 1$, $\bar{a}_{k,j}^{(1)} = 0$ ($j \neq k$) and

$$\bar{a}_{k,j}^{(r+1)} = \sum_i \binom{k+i}{i} \binom{k}{j-i} \binom{j}{k} \bar{a}_{k,i}^{(r)}. \quad (2)$$

Then it is clear that $\bar{a}_{k,j}^{(r)}$ are integers.

We show by induction on r that $\bar{a}_{k,j}^{(r)}$ satisfies (1). The statement is clearly

true for $r = 1$. Suppose the statement is true for r . Then

$$\begin{aligned}
\sum_j \bar{a}_{k,j}^{(r+1)} \binom{n}{j} \binom{n+j}{j} &= \sum_j \sum_i \bar{a}_{k,i}^{(r)} \binom{k+i}{i} \binom{k}{j-i} \binom{j}{k} \binom{n}{j} \binom{n+j}{j} \\
&\quad \text{(by definition of } \bar{a}_{k,j}^{(r+1)}) \\
&= \sum_i \bar{a}_{k,i}^{(r)} \sum_j \binom{k+i}{i} \binom{k}{j-i} \binom{j}{k} \binom{n}{j} \binom{n+j}{j} \\
&= \sum_i \bar{a}_{k,i}^{(r)} \binom{n}{i} \binom{n+i}{i} \binom{n}{k} \binom{n+k}{k} \\
&= \binom{n}{k}^r \binom{n+k}{k}^r \binom{n}{k} \binom{n+k}{k} \\
&\quad \text{(by induction hypothesis)} \\
&= \binom{n}{k}^{r+1} \binom{n+k}{k}^{r+1}.
\end{aligned}$$

The identity from line 2 to line 3,

$$\binom{n}{i} \binom{n+i}{i} \binom{n}{k} \binom{n+k}{k} = \sum_j \binom{k+i}{i} \binom{k}{j-i} \binom{j}{k} \binom{n}{j} \binom{n+j}{j},$$

can be verified easily with Zeilberger's algorithm.

Therefore $\bar{a}_{k,j}^{(r)}$ satisfies (1). For the lemma, we can now take $a_{k,j}^{(r)} = \bar{a}_{k,j}^{(r)}$. \square

The definition (2) may seem to come out of nowhere. It was found as follows. We tried to find a relation of the form:

$$a_{k,j}^{(r+1)} = \sum_i s(k, j, i) a_{k,i}^{(r)}.$$

with the hope to find a nice formula for $s(k, j, i)$, free of r . The coefficients $s(k, j, i)$ then were found by automated guessing. First we calculated the numbers $a_{k,j}^{(r)}$ for r from 1 to 15 and all k, j . Then we made an ansatz for a hypergeometric term $s(k, j, i)$. Fitting this ansatz to the calculated data and solving the constants led to the conjecture

$$s(k, j, i) = \binom{k+i}{i} \binom{k}{j-i} \binom{j}{k}.$$

Now we give a proof of the main statement. By the lemma, we have

$$\sum_i \binom{n}{i}^r \binom{n+i}{i}^r = \sum_i \sum_k a_{i,k}^{(r)} \binom{n}{k} \binom{n+k}{k} = \sum_k \binom{n}{k} \binom{n+k}{k} \sum_i a_{i,k}^{(r)}.$$

Therefore, we have

$$c_k^{(r)} = \sum_i a_{i,k}^{(r)}.$$

which concludes our statement.

Acknowledgement

I want to thank Veronika Pillwein and Manuel Kauers for their helpful suggestions and support.

References

- [1] R.L. Graham, D.E. Knuth and O. Patashnik, *Concrete mathematics. A foundation for computer science*, 2nd edition, Addison-Wesley Publishing Company, Reading, MA, 1994.
- [2] Victor J. W. Guo and Jiang Zeng, *Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials*, arxiv.org.
- [3] Asmus Schmidt, *Generalized q-Legendre polynomials*, J. Comput. Appl. Math. **49:1-3** (1993), 243-249.
- [4] Asmus Schmidt, *Legendre transforms and Apéry's sequences*, J. Austral. Math. Soc. Ser. A **58:3** (1995), 358-375.
- [5] Volker Strehl, *Binomial Identities-combinatorial and algorithmic aspects*, Discrete Math. **136:1-3** (1994), 309-346.
- [6] Wadim Zudilin, *On a combinatorial problem of Asmus Schmidt*, The electronic journal of Combinatorics. **11** (2004), #R22.