Théorie des opérateurs

T. Menacer Université Mohammed kheider Biskra Département de Mathématiques

March 8, 2020

Contents

Contents	i
Introduction	iii
Opérateurs linéaires bornés dans les espaces normés	\mathbf{v}
Définitions	V
Opérateur liniéaire borné	vi
Norme d'un opérateur borné	viii
Convergence simple et convergence uniforme	
Opérateur inverse, Opérateur adjoint et Théorie spectrale.	xiii
Opérateur inverse,	xiii
Spectre d'un opérateur	
Opérateur adjoint	

ii CONTENTS

Opérateurs compacts Opérateurs isométriques, normaux, unitaires, positifs auto-adjoints xxi	
Travaux Dirigés xx Série 1	vii
Bibliography xx	xi

Introduction

Opérateurs linéaires bornés dans les espaces normés

Définitions

Définition 1 Soient E et F deux K – espaces Vectoriels normés. Un opérateur linéaire de E dans F est une application A definie sur E, à valeurs dans F et verifiant

$$\forall x, y \in E, \forall \lambda \in K$$

$$A(x + y) = A(x) + A(y) et A(\lambda x) = \lambda A(x)$$

Généralement on utilise la notation Ax au lieu de A(x)

Définition 2 Soit $A: E \to F$ un opérateur linéaire. On definit l'image de l'opérateur A par:

$$\operatorname{Im}(A) = \{Ax, x \in E\}$$

et le noyau de l'opérateur A par :

$$Ker\left(A\right)=\left\{ x\in\ E\,:\,Ax=0\right\}$$

Classement

Un opérateur linéaire est un homomorphise d'espaces vectoriels

 $A:E\to F$

Cas particulers

- Si A est bijectif alors A est un isomorphisme
- Si E = F alors, A est un endomorphisme de E

vOPÉRATEURS LINÉAIRES BORNÉS DANS LES ESPACES NORMÉS

- \bullet Si A est un isomorphise de E dans E alors A est un automorphisme
- Si F=K alors, A est une forme linéaire sur E (fonctionnel linéaire sur E=fcts)

Opérateur liniéaire borné

Définitions

Soient E et F deux espaces vectoriels normés de normes respectives $\|.\|_E$ et $\|.\|_F$.

Un opérateur liniéaire $A: E \to F$ est dit borné si $\exists M \ge 0: \forall x \in E$,

$$\|Ax\|_F \le M \, \|x\|_{E.}$$

Exemple 3 1. L'opérateur identité

$$Id_E : E \to E \quad x \to Id_E(x) = x$$

 $\forall x \in E ||Id_E(x)|| = ||x||$

2. L'opérateur nul: $0: E \to F$

$$x \to 0 (x) = 0_F$$

 $\forall x \in E : ||0 (x)|| = ||0_F|| = 0 = 0. ||x||_E$

 $\it 3.\ L'homoth\'etie\ Vectorielle\ de\ rapport\ K\ :$

$$H_k: E \to E$$

$$x \to H_k(x) = k.x$$

$$\forall x \in E \|H_k(x)\| = \|k.x\| = |k| \cdot \|x\|$$

4. L'opérateur de décalage (Shift)

$$A: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$$

$$x = (x_{1}, x_{2}, ..., x_{n}, .) \to A(x) = (0, x_{1}, x_{2}, ..., x_{n}, ..)$$

$$\forall x \in L^{2}(\mathbb{R}):$$

$$||A(x)||_2 = \left(\sum_{k=1}^{\infty} (A(x))_k^2\right)^{\frac{1}{2}}$$

= $\left(\sum_{k=1}^{\infty} x_k^2\right)^{\frac{1}{2}} = ||x||_2$

vii

Proposition 4 : $Si\ A: E \to F$ est un opérateur borné, alors il reste borné si on remplace les normes dans E et F par des normes équivalentes. (Exp)

Notation 5 Etant donnés deux K-espaces Vectoriel normés, alors

On designe par L(E,F) l'ensembles des opérateurs linéaires bornés de E dans F .

 $Si E = F \ on \ écrit \ L(E), on \ verifier \ que$

1.
$$(A, B) \in (L(E, F))^2$$
 et $\lambda \in \mathbb{K} \Rightarrow A + \lambda B \in L(E, F)$
 $(L(E, F) \text{ est aussi } K\text{-espaces } Vectoriel)$

2.
$$A \in L(E, F)$$
 et $B \in L(E, G) \Rightarrow B \circ A = B.A \in L(E, G)$

Théorème 6 : Soit $A: E \to F$ un opérateur linéaire alors les assertions suivantes sont équivalentes

- 1. A est borné
- 2. A est continu sur tout l'espace E
- 3. A est continu en 0

Preuve. $1 \Rightarrow 2$ on suppose de A est borné

$$\exists M \geq 0, \forall x \in E, \text{on a}$$

$$||Ax|| \le M \, ||x||$$

et $\forall x \in E, \forall y \in E$

$$||A(x - y)|| \le M ||x - y||$$

$$\Rightarrow ||Ax - Ay|| \le M ||x - y||$$

 $\Rightarrow A$ est lipschtzienne donc, elle est continue

 $2 \Rightarrow 3$ evident (cas particulier)

 $3 \Rightarrow 1$ on suppose que A est continu en 0, alors $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E, (\|x\| < \delta) \Rightarrow (\|Ax\| < \varepsilon)$

Soient
$$\varepsilon > 0$$
 et $x \in E, x \neq 0$.On pose $x' = \frac{\delta}{2 \|x\|} x$ alors $\|x'\| = \frac{\delta}{2}$

D'oŭ $\|x'\| < \delta$ et par conséquent $\|Ax'\| < \varepsilon$

$$||Ax'|| = ||A\left(\frac{\delta}{2||x||}x\right)||$$

= $\frac{\delta}{2||x||} ||Ax|| < \varepsilon$.

il resulte que $||Ax|| < \frac{2\varepsilon}{\delta} ||x||$. Il existe alors M satisfaisant (1)

Remarque 7 Si E est de diemension finie, alors toute application linéaire de E dans F est continue (borné). Exercices (T.D)

Norme d'un opérateur borné

Définition 8 Soit $A: E \to F$ un opérateur linéaire borné. On appelle norme de A le nombre ||A|| definie par :

$$||A|| = \inf \{ M \ge 0, ||Ax||_E \le M ||x||_E \} \, \forall x \in E$$

Proposition 9 Si $A: E \to F$ est un opérateur linéaire borné alors,

$$||A|| = \sup_{\|x\| \le 1} ||Ax|| = \sup_{\|x\| \ne 0} \frac{||Ax||}{\|x\|} = \sup_{\|x\| = 1} ||Ax||$$

Preuve. Posons

$$M_A = \{ M \ge 0, \forall \ x \in E : ||Ax||_F \le M ||x||_E \}$$

$$\alpha = \sup_{\|x\| \leq 1} \left\|Ax\right\|, \, \beta = \sup_{\|x\| \neq 0} \frac{\|Ax\|}{\|x\|}, \, \gamma = \sup_{\|x\| = 1} \left\|Ax\right\|_F$$

Il est claire que $||A|| = \inf(M_A)$, $\alpha \ge \gamma$ et $\beta = \gamma$ par ailleurs, $x \in E$ et $x \ne 0 \Rightarrow \frac{||Ax||}{||X||} \le \beta \Rightarrow ||Ax|| \le \beta ||x|| \Rightarrow \beta \in M_A \Rightarrow ||A|| \le \beta$.

D'autre part, $\forall \varepsilon > 0, \exists x_{\varepsilon} \neq 0$:

$$\beta - \varepsilon < \frac{\|Ax\|}{\|x_{\varepsilon}\|} \le \beta$$

D'où $\forall \varepsilon > 0, \exists x_{\varepsilon} \neq 0$:

$$(\beta - \varepsilon) \|x_{\varepsilon}\| < \|Ax_{\varepsilon}\| \le \|A\| \|x_{\varepsilon}\|$$

Cela signifie que $(\beta - \varepsilon) < \|A\|$.comme ε est positif et arbitraire alors $\beta \le \|A\|$

il reste à prouver que $\alpha \leq \|A\|$ on a $\|Ax\| \leq \|A\| \|x\|$, $\forall x \in E \Rightarrow \forall x \in E, \|x\| \leq 1 \Rightarrow \sup_{\|x\| \leq 1} \|Ax\| \leq \|A\| \Rightarrow \alpha \leq \|A\|$

Exemple 10 L'identité, L'hohothétie de rapport k et l'opérateur de déallage (shift) S, ont pour normes respectives

$$||id_E|| = 1, ||0|| = 0, ||H_k|| = |k|, ||S|| = 1.$$

Proposition 11 Soient $A: E \to F$ un opérateur linéaire borné et $M \ge 0$.on suppose que $||A|| \le M$ alors, pour avoir ||A|| = M, il suffit que l'une des deux conditions suivantes soit vérifiée

- 1. Il existe $x \in E$ vérifiant ||x|| = 1, et ||A(x)|| = M
- 2. Il existe une suite (x_n) d'éléments de E vérifiant $||x_n|| = 1$, $\forall n$ et $\lim_{n \to +\infty} ||Ax_n|| = M$.

Preuve. La première assertion est une conséquebce directe de la definition de la norme et du Sup. Montrons la deusièmme. Sous les hypothèses énoncées on a,

$$\forall \ \varepsilon > 0, \exists n_x \in \mathbb{N} : \forall \ n > n_{\varepsilon},$$

$$M - \varepsilon < ||A(x_n)||$$

Il s'ensuit que $\forall \varepsilon > 0$

$$||A|| = Sup_{||x||=1} ||Ax|| \ge M - \varepsilon$$

En faisant tendre ε vers 0 dans cette derniére inégalité, on obtient

$$||A|| \geq M$$
.

Exemple 12 Montrer que l'opérateur suivant est bien definit et trouver sa norme :

$$A: (C[0,1], \mathbb{R}), \|\|_{\infty} \to L^{2}_{[0,1]}, \|\|_{2})$$

$$Af\left(x\right) =xf\left(x\right)$$

Solution

1. Montrer que A est bien defini signifie qu'il faut montrer L'implication suivante

$$f \in (C[0,1], \mathbb{R}) \Rightarrow A(f) \in L^2_{[0,1]}$$

xOPÉRATEURS LINÉAIRES BORNÉS DANS LES ESPACES NORMÉS

on a:

$$\int_{0}^{1} |Af(x)|^{2} dx = \int_{0}^{1} |xf(x)|^{2} dx = \int_{0}^{1} x^{2} |f(x)|^{2} dx$$

$$\leq \int_{0}^{1} x^{2} (\sup_{x \in [0,1]} |f(x)|)^{2} dx$$

$$= ||f||_{\infty}^{2} \int_{0}^{1} x^{2} dx = \frac{1}{3} ||f||_{\infty}^{2} < \infty$$

Par conséquent, A $(f)\in L^2_{[0,1]}$ et l'opérateur A est done bien défini

2. D'aprés la formule précédente. L'opérateur A est borne et $||A|| \le \frac{1}{\sqrt{3}}$. Montrons qu'en fait $||A|| = \frac{1}{\sqrt{3}}$. Pour cela, considérons la fonction $f(x) = 1, \forall x \in [0, 1]$, on a

$$f \in (C[0,1], \mathbb{R}) \text{ et } ||f||_{\infty} = 1$$

De plus

$$||A(f)||_{2}^{2} = \int_{0}^{1} |Af(x)|^{2} dx = \int_{0}^{1} x^{2} dx = \frac{1}{3}$$

D'aprés le point 1 de la proposition on l'égalité

$$||A|| = \frac{1}{\sqrt{3}}$$

Exemple 13 Montrer que l'opérateur suivant est bien defini et trouver sa norme.

$$A: L^{2}(\mathbb{R}), A(x) = (0, \frac{x_{2}}{2}, ..., \left(1 - \frac{1}{n}\right) x_{n}, ...)$$

pour
$$x = (x_1, x_2, ..., x_n,)$$

Solution:

1. pour
$$x = (x_1, x_2, ..., x_n, , ,) \in L^2(\mathbb{R})$$

$$\sum_{k=1}^{\infty} |A(x)_k|^2 = \sum_{k=1}^{\infty} \left| \left(1 - \frac{1}{k} \right) x_k \right|^2 = \sum_{k=1}^{\infty} \left(1 - \frac{1}{k} \right)^2 |x_k|^2$$

$$\leq \sum_{k=1}^{\infty} |x_k|^2 = ||x||_2^2$$

par conséquent, l'opérateur $A \in L^2(\mathbb{R})$ et A est bien defini

2. On a $||A|| \le 1$.Montrons que ||A|| = 1 pour cela, considérons la suite $x_n = (0, ..., 0, 1, 0, ...(n \text{ fois }))$

Il est clair que
$$||x_n|| = 1 \ \forall \ n \ge 1$$
, De plus $\lim_{n\to\infty} ||A(x^{(n)})||_2 = \lim_{n\to\infty} ||(0,...,0,(1-\frac{1}{n}),0,..)|| = \lim_{n\to\infty} (1-\frac{1}{n}) = 1$

D'aprés le point 2 de la proposition on a ||A|| = 1

Proposition 14 On a les propriétés suivantes:

1.
$$\forall A \in L(E, F), ||A(x)|| \le ||A|| ||x||_E, \forall x \in E$$

2.
$$\begin{cases} A \in L(E,F) & et \ \|A\| = 0 \Rightarrow A = 0 \ (\textit{Op\'erateur nul }) \\ \|\lambda.A\| = |\lambda| \|A\|, \forall \ A \in L(E,F) & et \ \lambda \in K \\ \forall \ A,B \in L(E,F) : \|A+B\| \leq \|A\| + \|B\| \end{cases}$$

On deduit de ce point en particulier que $L\left(E,F\right)$ est normé

3.
$$A \in L(E, F)$$
 et $B \in L(E, F) \Rightarrow$

$$\begin{cases}
B \circ A \in L(E, F) \\
\|B.A\| \le \|A\| \cdot \|B\|
\end{cases}$$

Théorème 15 Si F est de banach ,alors muni de la norme d'opérateur (formues) L'espace

Convergence simple et convergence uniforme

Définition 16 Soient E et F deux &-espaces vectoriels normés. On dit qu'une suite (A_n) de $\mathcal{L}(E, F)$ converge vers $A \in \mathcal{L}(E, F)$

• Simplemt si
$$\forall x \in E$$
, $\lim_{n \to +\infty} ||A_n x - A x||_F = 0$ et on écrit $A_n \xrightarrow{s} A$

x@PÉRATEURS LINÉAIRES BORNÉS DANS LES ESPACES NORMÉS

• Uniformément si $\lim_{n \to +\infty} ||A_n - A||_F = 0$ et on écrit $A_n \stackrel{u}{\to} A$

Remarque 17 La convergence uniforme des opérateurs bornés est la convrgence dans l'espace $\mathcal{L}(E, F)$

Remarque 18

$$\left(A_n \xrightarrow{u} A\right) \implies \left(A_n \xrightarrow{s} A\right)$$

En effet $\forall n \in \mathbb{N}, (A_n - A) \in \mathcal{L}(E, F), alors$

$$0 \le ||A_n x - Ax||_F \le ||A_n - A|| \, ||x||_E, \forall x \in E.$$

Par passage à la limite

$$0 \le \lim_{n \to -\infty} \|A_n x - Ax\|_F \le \lim_{n \to -\infty} \|A_n - A\| \|x\|_E = 0, \forall x \in E.$$

Remarque 19

$$\left(A_n \xrightarrow{u} A\right) \implies \lim_{n \to -\infty} ||A_n|| = ||A||.$$

Remarque 20 Cela découle directement de l'inégalité

$$|||A_n|| - ||A||| \le ||A_n|| = ||A_n - A||$$

Opérateur inverse, Opérateur adjoint et Théorie spectrale.

Opérateur inverse,

Définition 21 Soient E et F deux k-espaces vectoriels normés et $A \in \mathcal{L}(E, F)$

- On dit que A est inversible s'il existe $B \in \mathcal{L}(F, E)$ telque $AB = Id_E$ (inversible à gauche)
- Un tel opérateur est unique, on l'appelle opérateur inverse de A et le note $B=A^{-1}$

Théorème 22 (Théorème de l'inverse de Banach)

Si $A \in \mathcal{L}(E, F)$, (F espace de Banach) est bijectif alors son inverse A^{-1} est continu.

* On note $I\mathcal{L}(E)$ l'ensemble des opérateurs $A \in \mathcal{L}(E)$ inversible

Proposition 23 Soient E un espace de Banach, F espace vectoriel normé et $A \in \mathcal{L}(E, F)$ bijectif. Alors les propriétés suivantes so t équivalentes

- i) $A^{-1} \in \mathcal{L}(F, E)$.
- ii) $\exists c > 0, telque x \in E : ||Ax|| \ge c ||x||.$
- iii) F est un espace de Banach

OPÉRATEUR INVERSE, OPÉRATEUR ADJOINT ET THÉORIE xiv SPECTRALE.

Preuve.

 $i) \implies ii$ $A^{-1} \in \mathcal{L}(F, E) \implies A^{-1}$ est continu, alors on a

$$\begin{aligned} \left\| A^{-1}Ax \right\|_{E} & \leq & \left\| A^{-1} \right\| \left\| Ax \right\|_{F}, \forall x \in E \\ \left\| Ax \right\|_{F} & \geq & \left\| A^{-1} \right\|^{-1} \left\| x \right\|_{E}, \forall x \in E \end{aligned}$$

 $ii) \implies iii).$

Soit (y_n) une suite de Cauchy dans FA est bijectif alors

$$\exists (y_n) \in E/\forall n \in \mathbb{N} : Ax_n = y_n$$

Or d'après ii) $\forall n, m \in \mathbb{N}$, on a

$$||x_n - x_m|| \le c^{-1} ||A(x_n - x_m)|| \le c^{-1} ||y_n - y_m||$$

Alors (x_n) une suite de Cauchy dans l'espace de Banach E , donc elle converge vers $x \in E$

Comme A est continu on aura $(y_n) = A(x_n) \rightarrow Ax \in F$, alors F est de Banach

 $iii) \implies i$).

Elle découle du théorème d'inversion de Banach

Lemme 24 Soient E, F et G des espaces de Banach.

Si $A \in \mathcal{L}(E, F)$ et $B \in \mathcal{L}(F, G)$ sont des espaces inversibles. Alors $BA \in \mathcal{L}(E, G)$ est inversible et l'on a $(BA)^{-1} = A^{-1}B$ est inversible, alors A+B est inversible pour tout $B \in \mathcal{L}(E) / \|B\| < \|A\|^{-1}$ et on a

$$(A+B)^{-1} = \sum_{n\geq 0} (A^{-1}B)^n A^{-1}$$

Théorème 25 Soit E un espace de Banach

Soit $A \in \mathcal{L}(E) / ||A|| < 1$, alors $Td_E - A$ est inversible et ue $(Td_E - A)^{-1}$

$$(Td_E - A)^{-1} = \sum_{n \ge 0} A^n$$

Preuve. On remarque que de Banach existe et borné suivant le théorème précédent

On a
$$\sum_{n\geq 0} \|A^n\| \leq \sum_{n\geq 0} \|A\|^n < \infty$$
 car $\|A\| < 1$
Comme E est complet , alors $S = \sum_{n\geq 0} A^n \in \mathcal{L}\left(E\right)$

 $\forall n$, on a:

$$(Td_E - A) \sum_{n=0}^{k=n} A^k = \sum_{n=0}^{k=n} (Td_E - A) A^k = Td_E - A^{n+1}$$

En faisant tendre n vers $(+\infty)$

$$(Td_E - A)\sum_{n\geq 0} A^n = \sum_{n\geq 0} A^n (Td_E - A) = Td_E$$

Donc

$$(Td_E - A)^{-1} = \sum_{n>0} A^n$$

Remarque 26 L'ensemble IL(E) est un ouvert de L(E).

Remarque 27 Le resultat de 1) peut être utile dans la résolution de l'équation intégrale

 $A \in \mathcal{L}(E), g \in E \ donnés \ et \ f \in E \ inconve$

$$f(x) = g(x) + Af(x)$$

Remarque 28 Il convient aussi de savoir utiliser le résultat 1) sous la forme suivante

Si
$$A \in \mathcal{L}(E) / \|(Td_E - A)\| < 1 \implies A \text{ est inversible et } (A)^{-1} = \sum_{n \geq 0} (Td_E - A)^n$$

Spectre d'un opérateur

Définition 29 Soit E un espace vectoriel sur \mathbb{k} et $A \in \mathcal{L}(E)$

1. On appelle spectre de A, l'ensemble

$$\sigma(A) = \{\lambda \in \mathbb{k} / (\lambda I - A) \text{ non inversible}\} \text{ c'est à dire non bijectif}$$

OPÉRATEUR INVERSE, OPÉRATEUR ADJOINT ET THÉORIE xvi SPECTRALE.

- Tout $\lambda \in \sigma(A)$ est dit valeur spectraleA
- Le nombre $r(A) = \sup\{|\lambda|, \lambda \in \sigma(A)\}$ est appelé rayon spectrale de A
- On a toujours $r(A) \leq ||A||$. et si $\sigma(A) = \emptyset \implies r(A) = 0$.
- a) On appelle valeur propre de A tout $\lambda \in \mathbb{k}$ telleque $(\lambda I A)$ n'est pas injectif
 - L'ensemble $\sigma_p(A) = \{\lambda \in \mathbb{k} \mid \lambda \text{ est une valeur propre }\}$ est appelé spectre ponctuel de A.

 On a toujours $\sigma_p(A) \subset \sigma(A)$.
 - Le sous espace vectoriels $\ker(\lambda I A) \neq \{0\}$ est appelé espace propre associé à $\lambda \in \sigma_p(A)$.
 - La dimension de $\ker(\lambda I A)$ est appelée la multiplicité géométrique d'une valeur propre $\lambda \in \sigma_p(A)$
 - La $\lim_{n\to\infty} (\ker(\lambda I A))^n$ est appelée multiplicité algébrique.
- **b)** L'ensemble $\sigma_c(A) = \{\lambda \in \mathbb{k} \mid (\lambda I A)\}$ injectif et $\operatorname{Im}(\lambda I A)$ dense mais distinct de E est appelé spectre continu
- c) On appelle spectre résiduel de A l'ensemble $\sigma_r(A) = \{\lambda \in \mathbb{k} / (\lambda I A)\}$ injectif et $\operatorname{Im}(\lambda I A)$ non dense dans E
- 2. On appelle ensemble résolvante de A, l'ensemble

$$\rho(A) = \{\lambda \in \mathbb{k} / (\lambda I - A) \text{ inversible}\} = \sigma(A)_E^c$$

 $On \ a \ \sigma(A) = \mathbb{k} \backslash \rho(A)$

• Si $\lambda \in \rho(A)$, $R_{\lambda}(A) : \lambda \mapsto (\lambda I - A)^{-1}$ est appelé la résolvante de A.

Exemple 30 Si $A = Id_H = I$, H espace de Hilbert. On a $\lambda I - A = (\lambda - 1)T$ est inversible si $(\lambda - 1) \neq 0$, donc $\sigma(A) = \{1\}$

Remarque 31 $Si \dim E < +\infty \implies (\lambda I - A) inversible ssi \ker (\lambda I - A) = \{0\} donc \ \sigma(A) = \sigma_p(A).$

Exemple 32 *Soit* $H = L^{2}([0;1], \mathbb{R})$

$$\begin{array}{ccc} A & : & H \to H \\ Af(t) & = & tf(t), t \in [0; 1] \end{array}$$

$$\begin{array}{l} \lambda \in \mathbb{R}, f \in H, t \in [0;1] \\ On \ a \end{array}$$

$$(\lambda I - A) f(t) = (\lambda - t) f(t)$$

On distingue deux cas

• Si $\lambda \notin [0;1]$, la fonction $t \mapsto \frac{1}{\lambda-1}$ est bornée et l'opérateur $(\lambda I - A)^{-1}$ défini par

$$(\lambda I - A)^{-1} g(t) = \frac{1}{\lambda - t} g(t), g \in H$$

est un opérateur borné.

• Si $\lambda \in [0; 1]$, alors la fonction $t \mapsto \frac{1}{\lambda - 1}$ n'est pas dans H. donc $(\lambda I - A)$ n'est pas inversible $\sigma(A) = [0; 1]$

Si on suppose que λ une valeur propre de A et f le vecteur propre associé dans H.

Alors
$$(\lambda - t) f(t) = 0, t \in [0, 1]$$
, il s'en suit que $f = 0, \sigma_p(A) = \emptyset$.

Théorème 33 $Soit A \in \mathcal{L}(E)$

- 1. $Si |\lambda| > ||A||$, $alors \lambda \in \rho(A)$ et $\sigma(A) \subset \overline{B}(0, ||A||)$
- 2. $\rho(A)$ est un ouvert non vide de k.
- 3. $\sigma(A)$ est un compact non vide de \mathbb{k}
- 4. Si A est inversible, alors $\sigma(A^{-1}) = \{\frac{1}{\lambda}, \lambda \in \sigma(A)\}$
- 5. On $a \sigma(A) \subset \overline{B}(0, r(A))$, De plus, on $a r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$

Preuve.

1. Si $|\lambda| > ||A||$, alors $\lambda \neq 0$ et $||\lambda^{-1}A|| < 1$, donc $(I - \lambda^{-1}A)$ est inversible ie $\lambda \in \sigma(A)$

OPÉRATEUR INVERSE, OPÉRATEUR ADJOINT ET THÉORIE xviii SPECTRALE.

2. On a $\rho(A)$ non vide (d'après 1)

On considère l'application $f : \mathbb{k} \to \mathcal{L}(E)$ définie par :

$$\lambda \in \mathbb{k} \ f(\lambda) = \lambda I - A$$

On remarque que $\rho(A) = f^{-1}(I\mathcal{L}(E))$

 $\forall \lambda, \mu \in \mathbb{k}, \text{On a}$

$$||f(\lambda) - f(\mu)|| = ||(\lambda - \mu)I|| \le |\lambda - \mu|$$

 \implies f est continue or $I\mathcal{L}(E)$ est un ouvert de $\mathcal{L}(E)$

 $\implies \rho(A) = f^{-1}(I\mathcal{L}(E))$ est un ouvert de \mathbb{k} .

3. $\sigma\left(A\right)=\Bbbk\backslash\rho\left(A\right)$ est fermé (d'après 2), s'il est bornée d'après 1 , alors il est compact.

Proposition 34 La résolvante satisfait à l'équation fonctionnelle suivante dite identité de la résolvante:

$$R(\lambda_1, A) - R(\lambda_2, A) = (\lambda_2 - \lambda_1) R(\lambda_1, A) R(\lambda_2, A)$$

Preuve. En utilisant le fait que $A - \lambda_1 I$ et $A - \lambda_2 I$ commutent, on a

$$(R(\lambda_1, A) - R(\lambda_2, A)) (A - \lambda_1 I) (A - \lambda_2 I) = R(\lambda_1, A) (A - \lambda_1 I) (A - \lambda_2 I) - R(\lambda_2, A) (A - \lambda_2 I) - R(\lambda_2, A) (A - \lambda_2 I) - (A - \lambda_1 I)$$

$$= A - \lambda_2 I - (A - \lambda_1 I)$$

$$x = (\lambda_2 - \lambda_1) I$$

Soit $\lambda \in \sigma(A^{-1})$ comme A est inversible $\implies \lambda \neq 0$ Comme $(A^{-1} - \lambda I)$ est non inversible

$$(A^{-1} - \lambda I) = \lambda A^{-1} \left(\frac{1}{\lambda}I - A\right)^{-1}$$

L'opérateur $\left(\frac{1}{\lambda}I - A\right)^{-1}$ est non inversible ie $\frac{1}{\lambda} \in \sigma(A) \Longrightarrow \sigma(A^{-1}) \subset \sigma(A)^{-1} = \left\{\frac{1}{\lambda}, \lambda \in \sigma(A)\right\}$

En changeant le rôle de A et de A^{-1} on obtient $\sigma\left(A\right)^{-1}\subset\sigma\left(A^{-1}\right)$

Opérateur adjoint

Identification entre espaces normés

Définition 35 Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces normés $A: E \to F$ est appelé isométrie ssi

$$||Ax||_F = ||x||_E, \forall x \in E$$

Conséquences

- 1. Une isométrie est un opérateur borné de norme 1
- 2. Une isométrie est toujours injective
- 3. Si A est une isométrie surjective alors, $A \in Iso(E, F)$ et A^{-1} est une isométrie de F dans E
- 4. Si E et F sont deux espaces de Hilbert alors

A isométrie
$$\iff \forall x_1, x_2 \in E: \langle Ax_1, Ax_2 \rangle_F = \langle x_1, x_2 \rangle_E$$

Espace dual d'un espace normé

Définition 36 Soit $(E, \|.\|_E)$ un espace vectoriel normé.

- On appelle dual algébrique de E, l'ensemble des applications linéaires sur E, on le note par F^{\maltese}
- On appelle dual topologique de E, l'ensemble $\mathcal{L}(E, \mathbb{k})$ des applications linéaires continues de E dans \mathbb{k} , on le note par F^*

Théorème 37 a) Soit H un espace préhilbertien.

Pour tout $y \in H$, l'application

$$x \in H \mapsto \langle x; y \rangle$$

est une forme linéaire continue de norme ||y||

$OP \acute{E}RATEUR\ INVERSE,\ OP \acute{E}RATEUR\ ADJOINT\ ET\ TH \acute{E}ORIE$ xx SPECTRALE.

b) Soit f est une forme linéaire continue sur un espace Hilbert. Alors, il existe un élément unique y de H telque

$$f(x) < x, y >, \forall x \in H$$

n obtient que

$$< g, Ax > = < f, x > ou < g, Ax > = < A^*g, x >$$

Définition 38 L'application A^* définie de F dans E par:

Opérateur adjoint

$$E \xrightarrow{A} F : \xrightarrow{g} \mathbb{k}$$
$$x \mapsto Ax = y$$

On a $g \in F^*$

f = goA est une fonctionnelle linéaire continue sur E donc $f \in E^*$

$$g \in F^* \mapsto f \in E^*$$

- \bullet Cet opérateur s'appelle opérateur adjoint de A et se note A^*
- $\bullet\,$ On désigne la valeur de f pour $x \in E$ par le symbole < f, x >, o

$$\forall x \in E, \forall y \in F : \langle Ax, y \rangle_F = \langle x, A^*y \rangle_E$$

Définition 39 est appelée l'adjoint de A

Proposition 40 Soit $A \in \mathcal{L}(E, F)$. Alors

$$A^* \in \mathcal{L}(F, E)$$
 et $||A^*|| = ||A||$

Preuve. Soient $y_1, y_2 \in F$ et $\alpha \in \mathbb{k}$.

Alors, $\forall x \in E$, on a

$$< x, A^* (y_1 + \alpha y_2) >_E = < Ax, y_1 + \alpha y_2 >_F$$

= $< Ax, y_1 >_F + \overline{\alpha} < Ax, y_2 >_F$
= $< x, A^* y_1 >_E + \overline{\alpha} < x, A^* y_2 >_E$
= $< x, A^* y_1 + \alpha A^* y_2 >_E$

D'où

$$A^*(y_1 + \alpha y_2) = A^*y_1 + \alpha A^*y_2$$

ie A^* est linéaire

De plus $\forall y \in F$, on a

$$||A^*y||_E^2 = \langle A^*y, A^*y \rangle_E$$

 $\langle y, AA^*y \rangle_F \leq ||y||_F ||A|| ||A^*y||_E$

D'où

$$||A^*y||_E \le ||A|| \, ||y||_E$$

Cela dit que

$$A^* \in \mathcal{L}(F, E) \text{ et } ||A^*|| \le ||A|| \tag{1}$$

Enfin, pour $x \in E$, on a

$$||Ax||_F^2 = \langle Ax, Ax \rangle_F = \langle x, A^*Ax \rangle_E$$

 $\leq ||x||_E ||A^*|| ||Ax||_F$

Alors on obtient

$$\left\|Ax\right\|_F \leq \left\|A^*\right\| \left\|x\right\|_E$$

On en deduit que

$$||A|| \le ||A^*|| \tag{2}$$

de(1) et (2), on conclut

$$||A|| = ||A^*||$$

Proposition 41 Soient $A, B \in \mathcal{L}(E, F), C \in \mathcal{L}(F, E)$ et $\alpha, \beta \in \mathbb{k}$, on a

1.
$$(I_{dE})^* = I_{dE}$$

2.
$$A^{**} = A$$

3.
$$(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$$

4.
$$CA \in \mathcal{L}(E, F), (CA)^* = A^*C^*$$

5.
$$||A^*A|| = ||AA^*|| = ||A||^2$$

OPÉRATEUR INVERSE, OPÉRATEUR ADJOINT ET THÉORIE xxii SPECTRALE.

Théorème 42 Un opérateur $A \in \mathcal{L}(E, F)$ est inversile si et seulement si A^* est inversile et on a $(A^*)^{-1} = (A^{-1})^*$

Preuve. D'après la proposition précédente on a

$$(A^{-1})^* A^* = (AA^{-1})^* = (I_{dE})^* = I_{dE}$$

$$A^* (A^{-1})^* = (A^{-1}A)^* = (I_{dE})^* = I_{dE}$$

Donc $A^* \in \mathcal{L}(F, E)$ est inversile et $(A^*)^{-1} = (A^{-1})^*$.

Maintenant si $A^* \in \mathcal{L}(F, E)$ est inversile, alors l'étape précédente montre que $(A^*)^* \in \mathcal{L}(E, F)$ est inversile

Exemple 43 Soient $E = l^2(\mathbb{N}, \mathbb{R})$ et si $S : E \to E$ L'opérateur Shift défini par:

$$S(x_1, x_2, ..., x_n, ...) = (0, x_1, x_2, ..., x_n, ...) \quad \forall (x_1, x_2, ..., x_n, ...) \in E$$

Alors S* est défini par:

$$S^*(x_1, x_2, ..., x_n, ...) = (x_2, x_3, ..., x_n, ...) \quad \forall (x_1, x_2, ..., x_n, ...) \in E$$

En effet, pour tous (x_n) , (y_n) dans E. De la définition de l'opérateur adjoint, on a

$$< S^*(x_n), (y_n) > = < (x_n), S(y_n) >$$

 $= < (x_1, x_2, ..., x_n, ...), (0, y_1, ..., y_n, ...) >$
 $= x_2y_1 + x_3y_2 + ... + x_ny_{n-1} + ...$
 $= < (x_2, x_3, ..., x_n, ...), (y_1, ..., y_n, ...) >$

donc

$$S^*(x_n) = (x_2, x_3, ..., x_n, ...)$$

Opérateurs compacts

Définition 44 Soient E un espace topologique séparé

Un sous- ensemble F est dit compact si tout recouvrement ouvert de F on peut extraire un sous recouvrement fini d'ouvert c'est à dire: Pour toute famille $\{V_i, i \in J\}$ d'ensemble ouverts dont le réunion contient F admet une sous famille finie $\{V_{dk}, dk \in J, k = 1, 2, ..., n\}$ dont la rénion contient F

Définition 45 Soit E un espace métrique

Un sous ensemble $F \subset E$ est compact si toute suite d'éléments de F on peut extraire une suite convergente vers un élément de F.

1. Si E est un espace vectoriel de dimension infinie

$$F \ compact \Longrightarrow F \ ferm\'e \ et \ born\'e$$

La réciproque est fausse

2. Si E est un espace vectoriel de dimension finie

$$F \ compact \iff F \ ferm\'e \ et \ born\'e$$

Définition 46 Un sous ensemble F de E.

On dit que F est relativement compact si \overline{F} est compact

Définition 47 Soit E un espace de Hilbert et $A \in \mathcal{L}(E, F)$, on dit que A est compact s'il transforme tout sous ensemble borné de E en un ensemble relativement borné.

$$\begin{array}{cccc} A & : & E \to F \\ B \, (\textit{born\'e}) & \longmapsto & A \, (B) \ \textit{relativement compact} \end{array}$$

- $A \ est \ compact \iff \left[B\left(0,1\right) \subset E \Longrightarrow \overline{A\left(B\left(0,1\right)\right)} \ est \ compact \right]$
- On désigne l'ensemble des opérateurs compacts par $\mathbb{k}(E)$.

Théorème 48 tout opérateur compact est borné ie $\mathbb{k}(E) \subset \mathcal{L}(E)$

Preuve. $A \in \mathbb{k}(E)$, B(0,1) est borné de $E \Longrightarrow \overline{A(B(0,1))}$ est compact $\Longrightarrow \overline{A(B(0,1))}$ est borné $\Longrightarrow \exists M > 0$ tq $||Ax|| \le M, \forall y \in E, ||y|| \le 1$ Soit $x \in E : \frac{x}{||x||} \in B_E(0,1)$, donc $\left\|A\frac{x}{||x||}\right\| \le M, \forall x \in E$ $\Longrightarrow ||Ax|| \le M ||x||, \forall x \in E$ $\Longrightarrow A$ est continu $\Longrightarrow A \in \mathbb{k}(E) \Longrightarrow A \in \mathcal{L}(E)$ \blacksquare La réciproque est fausse.

Contre exemple

$$Id_E: E \to E$$

$$B(0,1) \text{ (born\'e)} \to B_E(0,1) \not\Rightarrow B_E(0,1) \text{ est compact}$$

Définition 49 Un opérateur A est de rang fini si son image est de dimension finie $(RangA = \dim(\operatorname{Im} A))$

• L'ensemble des opérateurs de rang fini $k_o(E)$

Exemple 50 E espaace Hilbert (e_n) une base hilbertienne de E. $H_n = vect\{e_1, e_2, ..., e_n\}$ dim $H_n = nu$

$$P_n$$
: $H \to H_n$
 $x \longmapsto p_n(x)$

 $RangP_n \leq n$

Opérateurs isométriques, normaux, unitaires, positifs auto-adjoints

Définition 51 Soient E et F deux espaaces de Hilbert

1. Un élément $U \in \mathcal{L}(E, F)$ est appelé unitaire si

$$U^*U = id_E \ et \ UU^* = id_F$$

OPÉRATEURS ISOMÉTRIQUES, NORMAUX, UNITAIRES, POSITIFS AUTO-ADJOINTS xxv

2. Un élément $U \in \mathcal{L}(E, F)$ est appelé isométrique si

$$||Ux||_F = ||x||_E$$
 pour tout $x \in E$

3. Un élément $N \in \mathcal{L}(E)$ est appelé normal si

$$NN^* = N^*N$$

4. Un élément $S \in \mathcal{L}(E)$ est appelé hermitiène ou auto-adjoint si

$$S = S^*$$

5. Un élément $\rho \in \mathcal{L}(E)$ est appelé positif

$$si\rho \ est \ auto-adjoint \ et \ si \ \forall x \in E, < \rho x, x > \geq 0$$

Exemple 52 Soit H un espace de Hilbert et $P \in \mathcal{L}(E)$ une projection orthogonal sur F = Im(P), alors P est auto- adjoint.

Preuve. En effet
$$\forall x, x' \in F, y, y' \in F^{\perp}$$
 (Ortogonal de F) $< P(x + y), x' + y' > = < P(x + y), x' > + < P(x + y), y' >$ on a $P(x + y) = 0$ $= < x + y, x' > = < x, x' > + < y, x' >$ on a $< y, x' > = 0$ $= < x, x' >$ (1) $< (x + y), P(x' + y') > = < x, P(x' + y') > = < x, x' >$ (2) $< P(x + y), x' + y' > = < (x + y), P(x' + y') > = < (x + y), P^*(x' + y') >$ $\implies P = P^*$ donc P est auto-adjoint De plus $< P(x + y), x' + y' > = < x, x > = ||x||^2 \ge 0$ donc $\forall x \in F, \forall y \in F^{\perp}, P \ge 0$ \blacksquare $T \in \mathcal{L}(E, F), TT^* \in \mathcal{L}(E)$. $(TT^*)^* = T^*T^* = TT^*$ $< T^*Tx, x > = < Tx, Tx > = ||Tx||^2 > 0$

Lemme 53 Soient $T \in \mathcal{L}(E)$ un opérateur normal $(TT^* = T^*T)$ alors

$$kerT = kerT^*$$

Preuve.

 $\implies x \in \ker T^*.$

1. $kerT \subset KerT^*$ Soit $x \in KerT$ $||T^*x||^2 = \langle T^*x, T^*x \rangle = \langle TT^*x, x \rangle = \langle T^*Tx, x \rangle = 0$ $\Longrightarrow \langle T^*x, T^*x \rangle = 0 \implies T^*x = 0$

2.
$$kerT^* \subset KerT$$

Soit $x \in KerT^*$
 $||Tx||^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle = \langle TT^*x, x \rangle = 0$
 $\implies \langle Tx, Tx \rangle = 0 \implies Tx = 0$
 $\implies x \in \ker T$.

Théorème 54 Soit E un espace vectoriel normé telque $B_E(0,1)$ soit compact, alors E est de dimension finie

ie. $B_E(0,1)$ est compact \Longrightarrow dim $< +\infty$.

Travaux Dirigés

Série 1

TD:1

Exercice 55 Déterminer si l'application $T:(E,N_1)\to (F,N_2)$ est continue dans les cas suivants

- 1. $E = C([0,1], \mathbb{R})$ muni de la norme $||f||_1 = \int_0^1 |f(t)| dt$, $T: (E, ||.||_1) \to (E, ||.||_1) \text{ et } f \longmapsto fg \text{ où } g \in E \text{ est fixé}.$
- 2. $E = \mathbb{R}[X]$ muni de la norme $\left\| \sum_{k\geq 0} a_k x^k \right\| = \sum_{k\geq 0} |a_k|,$ $T: (E, \|.\|) \to (E, \|.\|) \text{ et } p \longmapsto p'$
- 3. $E = \mathbb{R}_n [X] \text{ muni de la norme } \left\| \sum_{k=0}^{k=n} a_k x^k \right\| = \sum_{k=0}^{k=n} |a_k|,$ $T : (E, \|.\|) \to (E, \|.\|) \text{ et } p \longmapsto p'$
- 4. $E = \mathbb{R}[X] \text{ muni de la norme } \left\| \sum_{k \ge 0} a_k x^k \right\| = \sum_{k \ge 0} k! |a_k|,$ $T : (E, \|.\|) \to (E, \|.\|) \text{ et } p \longmapsto p'$
- 5. $E = C([0,1], \mathbb{R})$ muni de la norme $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}$, $F = C([0,1], \mathbb{R})$ muni de la norme $||f||_1 = \int_0^1 |f(t)| dt$ et $T : (E, ||.||_2) \to (F, ||.||_1)$ $f \longmapsto fg$ où $g \in E$ est fixé.

Exercice 56 Soit $E = C^{\infty}([0,1],\mathbb{R})$. On considère l'opérateur de dérivation $D: E \to E, f \longmapsto f'$. Montrer que, quelle que soit la norme N dont on munit E, D n'est jamais une application linéaire continue de (E, N) dans (E, N).

Exercice 57 Montrer que si l'espace vectoriel E est de dimension finie, alors tout opérateur linéaire $A: E \to F$ est borné.

Exercice 58 Soit $E = M_n(\mathbb{R})$ muni de la norme N définie pour tout $A = (a_{i,j})_{1 \leq i,j \leq n}$ par $N(A) = \sup_{i=1}^n \left\{ \sum_{j=1}^n |a_{i,j}| \right\}$ (on admet qu'il s'agit d'une norme) Démontrer que l'application trace $T_r : E \to \mathbb{R}$ est continue, et calculer sa norme.

Exercice 59 Soit E = C([0,1]) muni de $\|.\|_{\infty}$ et F = C([0,1]) muni de $\|f\|_F = \|f\|_{\infty} + \|f'.\|_{\infty}$. Soit $T: E \to F$ défini par $Tf(x) = \int_0^x f(t) dt$. Démontrer que T est continue et calculer sa norme.

Exercice 60 Montrer que si $A: E \to F$ est un opérateur linéaire borné alors,

$$||A|| = \sup_{\|x\| \le 1} ||A(x)|| = \sup_{\|x\| \ne 0} \frac{||A(x)||}{\|x\|} = \sup_{\|x\| = 1} ||A(x)||$$

Exercice 61 Soit $E = l^2$, $(\lambda_n)_{n \ge 1}$ une suite bornée dans \mathbb{C} et $M = \sup_n |\lambda_n|$. Soit $T: l^2 \to l^2$ définie par :

$$Tx = y$$
, avec $y = (\lambda_n x_n)_{n \ge 1} si \ x = (x_n)_{n \ge 1} \in E$.

- 1. Montrer que T est linéaire, continue, et calculer sa norme
- 2. Montrer que si l'ensemble $\{|\lambda_n|, n \geq 1\}$ est minoré par un nombre strictement positif, alors T est bijective.

Préciser dans ce cas T^{-1} .

Série 2

T D: 2 et 3

SÉRIE 2 xxix

Exercice 62 Soit $E = l^2$, $(\lambda_n)_{n \ge 1}$ une suite bornée dans \mathbb{C} et $M = \sup_n |\lambda_n|$. Soit $T: l^2 \to l^2$ définie par :

$$Tx = y$$
, avec $y = (\lambda_n x_n)_{n \ge 1}$ si $x = (x_n)_{n \ge 1} \in E$.

- 1. Montrer que T est linéaire, continue, et calculer sa norme
- 2. Montrer que si l'ensemble $\{|\lambda_n|, n \geq 1\}$ est minoré par un nombre strictement positif, alors T est bijective.

Préciser dans ce cas T^{-1} .

Exercice 63 Soit $H = L^2([a,b]), (a < b),$ l'espace des classes des fonctions $x : [a,b] \to \mathbb{C}$ de carré sommable et soit $f : [a,b] \to \mathbb{C}$, une fonction continue fixée.

Soit $T: H \to H$ l'aplication qui à la fonction $x \in H$ fait correspondre la fonction Tx définie sur [a,b] par

$$(Tx)(t) = f(t)x(t)$$

- 1. Montrer que cet application est un opérateur linéaire continu: $T \in \mathcal{L}(H)$
- 2. Calculer l'opérateur T^* (l'opérateur adjoint de l'opérateur T)

Exercice 64 Soit $E = C([0,1] \text{ muni de la norme } \|\|_{\infty} \text{ et pour } f \in E, \text{ on définit}$

$$Tf(x) = \int_{0}^{x} K(x,t) f(t) dt$$

 $où, K(,) \in C([0,1] \times [0,1])$. Soit $M = \sup_{0 \le x,t \le 1} |K(x,t)|$.

- 1. Montrer que $T \in \mathcal{L}(E)$.
- 2. Montrer que pour tout $n \ge 1$, on a $|T^n f(x)| \le \frac{M^n}{n!} x^n ||f||_{\infty}$ En déduire que, pour tout $n \ge 1$, $||T|| \le \frac{M^n}{n!}$
- 3. Déterminer le spectre de T.
- 4. Calculer l'opérateur adjoint T*

Exercice 65 On désigne par H l'espace de Hilbert complexe $L^2\left(\left[0, \frac{\pi}{2}\right], \mu\right)$ où μ est la mesure de Lebegue sur $\left[0, \frac{\pi}{2}\right]$.

Pour toute $f \in H$, on définit une fonction Tf sur $\left[0, \frac{\pi}{2}\right]$ par:

$$\forall t \in \left[0, \frac{\pi}{2}\right], (Tf)(t) = \cos(t) \int_{a}^{b} \sin(s) f(s) ds$$

- 1. Montrer que pour toute $f \in H$, la fonction Tf est continue sur $\left[0, \frac{\pi}{2}\right]$. Calculer les valeurs de Tf aux points t = 0 et $t = \frac{\pi}{2}$.
- 2. Montrer que l'application T définit une application linéaire continue de H dans H
- 3. Déterminer l'adjoint T*

Exercice 66 Soit $E = L^2([0,1])$ muni de sa structure hilbertienne naturelle.

Soit φ une fonction continue sur [-1, 1]. Pour $x \in [0, 1]$, on définit

$$f * \varphi(x) = \int_{0}^{1} \varphi(x-t) f(t) dt$$

- 1. Montrer que $T:f\to f*\varphi$ définit un opérateur borné sur E
- 2. Quelle condition doit verifier φ pour que T soit auto- adjoint ?

Exercice 67 Montrer que si $T \in \&(E)$ et E de dimension infinie alors $0 \in \sigma(T)$.

Exercice 68 On considère l'espace $E = C([0,1], \mathbb{R})$ muni de la norme uniforme $\|f\|_{\infty} = \sup_{0 \le x,t \le 1} |f(x)|, f \in E$

On considère l'opérateur linéaire T définie sur E par:

$$\forall f \in E, \forall x \in [0, 1], Tf(x) = xf(0) + x^2f(1)$$

Montrer que $T \in k(E)$, en deduire $0 \in \sigma(T)$.

Bibliography

- [1] Brézis H., Analyse fonctionnelle, Masson 1993.
- [2] BENDOUKHA, B., INTRODUCTION A LA THEORIE DES OPER-ATEURS LINEAIRES, polycopié.pdf, centre universitaire de Naama Année universitaire 2018/2019
- [3] Emmanuel Fricain, ANALYSE FONCTIONELLE ET TH EORIE DES OP ERATEURS COURS et EX ERCICES, polycopié.pdf .2009/2010.
- [4] Kolmogorov A., Fomine S.. Eléments de la théorie des fonctions et de l'analyse fonctionnelle. Edition "MIR", Moscow, 1974 (traduit de la langue russe).
- [5] Mme Saidi Soumia, "Cours sur la théorie spectrale des opérateurs", polycopié.pdf, Année universitaire 2016/2017
- [6] Harstad, K. and Bellan, J., "The Lewis number under supercritical conditions", Int. J. Heat Mass Transfer, in print
- [7] Josette C., Mostafa M., Hervé Q., ANALYSE FONCTIONNELLE ET THÉORIE DES OPÉRATEURS EXERCICES CORRIGÉS, Dunod, Paris, 2010 . ISBN 978-2-1005-5453-9.
- [8] BRIAN DAVIES. E., LINEAR OPERATORS AND THEIR SPECTRA, United States of America by Cambridge University Press, New York, 2007.

[9]