

AESOP Planning and Complexity

Manchester 16-17 January 2014

Rent and Transport in the Polycentric City

Robin Morphet

r.morphet@ucl.ac.uk

- 1. Show the link between von Thunen Rent and the Spatial Interaction Model
- 2. Relate the determination of rent to complexity thinking and the new economic geography
- 3. Examine the performance of the model and its inherent fractality

The point to emphasise is that in any entropy maximising transportation model the von Thunen land rent is automatically calculated

Boltzman

Helmholtz

Gibbs

Jaynes

Aims

Laplace

Lagrange

Legendre

location

Launhardt, Weber, Christaller spatial interaction

Reilly, Tobler, Wilson

The Doubly Constrained TransportationModel

This equation is dimensionless: β converts cost to information

It gives
$$p_{ij} = e^{-\lambda_0 - \lambda_i - \lambda_j - \beta c_{ij}}$$

which is the spatial interaction model (in slightly unfamiliar form)

Destination rent
$$\frac{\lambda_j}{\beta}$$

Origin rent:
$$\frac{2}{3}$$

Level	Model	Effective Distance	Rent	Economy
1	Von Thunen	c_{id}	$c_{id}^{ m max}-c_{id}$	Perfect competition
2	Singly(origin) constrained	$U - TS = -\left\langle \frac{\lambda_i}{\beta} \right\rangle - \frac{1}{\beta} \ln(Z_1)$	λ_i / eta	Mixed competitive and monopolistic competition
3	Doubly constrained	$U - TS + \left\langle \frac{\lambda_j}{\beta} \right\rangle = -\left\langle \frac{\lambda_i}{\beta} \right\rangle - \frac{1}{\beta} \ln(Z_2)$	$\lambda_i / \beta^i / \beta$	Monopolistic competition
4	Dynamic Interaction	Not defined		Oligopolistic competition

