DTO1 Rec'd PCT/PTC 2 1 .IAM 2005

Claim 1. (Currently Amended): N-aryl-cycloalkylidenyl- α -hydroxy- and α -alkoxy acetic acid amides of the general formula I

s of the general formula
$$I$$

$$R_1 = 0 + R_3 + R_4 + R_5$$

$$R_1 = 0 + R_3 + R_5$$

$$R_1 = 0 + R_5$$

$$R_2 = 0 + R_5$$

$$R_3 = 0 + R_5$$

$$R_4 = 0 + R_5$$

$$R_5 = 0 + R_5$$

$$R_6 = 0 + R_5$$

including the optical isomers thereof and mixtures of such isomers, wherein

 $R_1 \text{ is hydrogen, } C_1\text{-}C_{12}\text{alkyl}; C_2\text{-}C_{12}\text{alkenyl; } C_2\text{-}C_{12}\text{alkynyl; } \underline{or} \ C_1\text{-}C_{12}\text{haloalkyl; } \\$

 $R_2 \text{ is hydrogen;} C_1 - C_4 \text{alkyl;} \ C_1 - C_4 \text{haloalkyl;} \ C_2 - C_6 \text{alkenyl or } C_2 - C_5 \text{alkynyl;}$

 $R_{\!\scriptscriptstyle 3}$ is anyl or heteroaryl, each optionally substituted with substituents selected from the group $\label{eq:consisting} \begin{tabular}{l} \begin{tabular}{l} \hline [eomprising] \begin{tabular}{l} consisting of \\ C_1,C_6 alkyl, \\ C_2,C_6 alkenyl, \\ C_2,C_6 alkynyl, \\ C_3,C_6 cycloalkyl, \\ C_3,C_6 cycloalkyl, \\ C_3,C_6 cycloalkyl, \\ C_4,C_6 alkyl, \\ C_6,C_6 cycloalkyl, \\ C_8,C_6 cycloalkyl, \\ C_8,C_8 cycloa$ $C_1.C_4$ alkyl, phenyl and phenyl $C_1.C_4$ alkyl, where all these groups may be substituted with one or $\label{eq:control_control_control} \text{more halogen atoms;} \ \ C_1.C_8 \\ \text{alkoxy,} \ \ C_3.C_8 \\ \text{alkenyloxy;} \ \ C_3.C_8 \\ \text{alkynyloxy;} \ \ C_1.C_8 \\ \text{alkoxy-} C_1.C_4 \\ \text{alkyl;} \\ \text{alkoxy-} C_1.C_8 \\ \text{alkoxy$ $C_1.C_8 \text{haloalkyl}, \ C_1.C_8 \text{alkylthio}; \ C_1.C_8 \text{haloalkylthio}, \ C_1.C_8 \text{alkylsulfonyl}; \text{formyl}; \ C_1.C_8 \text{alkanoyl}; \text{hydroxy}; \\ C_1.C_8 \text{alkylsulfonyl}; \text{formyl}; \ C_1.C_8 \text{alkanoyl}; \text{hydroxy}; \\ C_2.C_8 \text{alkylsulfonyl}; \text{formyl}; \ C_3.C_8 \text{alkanoyl}; \text{hydroxy}; \\ C_3.C_8 \text{alkylsulfonyl}; \text{formyl}; \ C_3.C_8 \text{alkanoyl}; \text{hydroxy}; \\ C_3.C_8 \text{alkanoyl}; \text{hydroxy}; \\ C_3.C_8 \text{alkylsulfonyl}; \text{formyl}; \ C_3.C_8 \text{alkanoyl}; \\ C_3.C_8 \text{alkylsulfonyl}; \text{hydroxy}; \\ C_3.C_8 \text{alkylsulfonyl}; \\ C_4.C_8 \text{alkylsulfonyl}; \\ C_5.C_8 \text{alkylsulfonyl}; \\ C_7.C_8 \text{alkylsulfonyl$ cyano; nitro; amino; $C_1.C_8$ alkylamino; $C_1.C_8$ dialkylamino; carboxyl; $C_1.C_8$ alkoxycarbonyl; $C_3.$ $C_8 alkenyloxy carbonyl and <math display="inline">C_3 \cdot C_8 alkynyloxy carbonyl;$ or

A is a 1,2-cyclohexylidene or 1,2-cyclopropylidene bridge,

 $R_4 \text{ is hydrogen } C_1 - C_6 \text{alkyl}; \ C_2 - C_6 \text{alkenyl}; \ C_2 - C_6 \text{alkynyl}; \ C_3 - C_6 \text{cycloalkyl}; \ C_3 - C_6 \text{cycloalkyl}; \ C_3 - C_6 \text{cycloalkyl}; \ C_4 - C_4 \text{alkyl}; \ C_6 - C_6 \text{alkyl}; \ C_7 - C_8 \text{alkenyl}; \ C_8 - C_8 \text{cycloalkyl}; \ C_8 - C_8 \text{cycloalkyl$ $C_{1}\text{-}C_{8}\text{alkylthio; }C_{1}\text{-}C_{8}\text{alkylsulfonyl; }C_{1}\text{-}C_{8}\text{alkoxy; }C_{3}\text{-}C_{8}\text{alkenyloxy; }C_{3}\text{-}C_{8}\text{alkynyloxy; }C_{3}\text{-}C_{8}\text{alkylthio; }C_{1}\text{-}C_{8}\text{alkylthio; }C_{1}\text{-}C_{8}\text{alkylthio$ $C_{6} \\ \text{cycloalkoxy; } C_{1} \\ - C_{6} \\ \text{alkoxy-} \\ C_{1} \\ - C_{4} \\ \text{alkyl; } C_{1} \\ - C_{6} \\ \text{alkoxycarbonyl; } C_{3} \\ - C_{6} \\ \text{alkenyloxycarbonyl; } C_{6} \\ - C_{6} \\ C_{\theta} \\ alkynyloxycarbonyl; C_1 - C_{\theta} \\ alkanoyl; C_1 - C_{\theta} \\ dialkylamino \ or \ C_1 - C_{\theta} \\ alkylamino, \ wherein \ in \ turn \ the \\ C_{\theta} \\ alkynyloxycarbonyl; C_1 - C_{\theta} \\ alkylamino \ or \ C_2 - C_{\theta} \\ alkylamino \ or \ C_3 - C_{\theta} \\ alkylamino \ or \ C_4 - C_{\theta} \\ alkylamino \ or \ C_5 - C_{\theta} \\ alkylamino \ or \ C_7 - C_{\theta} \\ alky$

alkyl, alkenyl, alkynyl or cycloalkyl moieties may be partially or fully halogenated; or is carboxyl; formyl; halogen; nitro; cyano; hydroxy or amino; and

 $R_{\delta} \text{ is hydrogen; } C_1 - C_8 \text{alkyl; } C_2 - C_8 \text{alkenyl; } C_2 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_4 \text{alkyl; } C_2 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_4 \text{alkyl; } C_2 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_1 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_3 - C_8 \text{cycloalkyl-} C_1 - C_8 \text{alkynyl; } C_1 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_1 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_1 - C_8 \text{alkynyl; } C_2 - C_8 \text{alkynyl; } C_1 - C_$ $C_{1}\text{-}C_{8}\text{alkylthio; }C_{1}\text{-}C_{8}\text{alkylsulfonyl; }C_{1}\text{-}C_{8}\text{alkoxy; }C_{3}\text{-}C_{8}\text{alkenyloxy; }C_{3}\text{-}C_{8}\text{alkynyloxy; }C_{5}\text{-}C_{8}\text{alkylthio; }C_{1}\text{-}C_{8}\text{alkylthio; }C_{1}\text{-}C_{8}\text{alkylthio$ $C_{\text{s}}\text{cycloalkoxy; }C_{\text{t}}\text{-}C_{\text{s}}\text{alkoxy-}C_{\text{t}}\text{-}C_{\text{4}}\text{alkyl; }C_{\text{t}}\text{-}C_{\text{s}}\text{alkoxycarbonyl; }C_{\text{3}}\text{-}C_{\text{8}}\text{alkenyloxycarbonyl; }$ $C_3\text{--}C_8 alkynyloxycarbonyl; \ C_1\text{--}C_8 alkanoyl; \ C_1\text{--}C_8 dialkylamino or \ C_1\text{--}C_8 alkylamino, wherein in turn the constraints of the constraints$ alkyl, alkenyl, alkynyl or cycloalkyl moieties may be partially or fully halogenated; or is carboxyl; formyl; halogen; nitro; cyano; hydroxy or amino; and

R₆ is propargyl.

Claim 2. (Currently Amended): A compound according to claim 1 wherein $\ensuremath{R_2}$ is hydrogen.

Claim 3. (Currently Amended): A compound according to [elaims-1-or-2] claim 1, wherein R_4 is hydrogen; C_1 - C_8 alkyl; C_1 - C_8 haloalkyl; C_2 - C_8 alkenyl; C_2 - C_8 alkynyl; C_1 - C_8 alkylithio; C_1 - C_8 alkoxy; C_1 - C_1 -C

Claim 4. (Currently Amended): A compound according to [any-of-claims-1-te-3] claim 1, wherein R_1 is hydrogen, C_1 - C_4 alkyl, or C_2 - C_5 alkynyl; and R_2 is hydrogen and R_3 is phenyl or phenyl substituted with 1 to 3 substituents selected from C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl; C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy; C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy, and C_6 is propagatyl.

Claim 5. (Currently Amended): A compound according to [any-of-claims-1-to-4] claim 1, wherein R_1 is hydrogen or C_2 - C_6 alkynyl; and R_2 is hydrogen and R_3 is phenyl; C_1 -Aalkylphenyl or halophenyl; and A is 1,2-cyclohexylidene or 1,2-cyclopropylidene; and R_4 is hydrogen; methoxy or ethoxy; and R_5 is hydrogen; and R_6 is propargyl.

Claim 6. (Currently Amended): A compound according to [eny-ene-of-claims 1 to 5] claim 1, wherein R_1 is hydrogen or propargyl; and R_2 is hydrogen; and R_3 is phenyl optionally substituted by one to two substituents selected from the group comprising methyl, ethyl, methoxy, fluoro, chloro, bromo, phenyl, trifluoromethyl, trifluoromethylthio or trifluoromethoxy; and A is 1,2-cyclohexylidene; and R_4 is hydrogen or methoxy; and R_6 is hydrogen; and R_6 is propargyl.

Claim 7. (Cancelled).

Claim 8. (Currently Amended): A compound according to [any one of claims 1 to 7] claim 1, wherein R_1 is propargyl; and R_2 is hydrogen; and R_3 is phenyl optionally substituted by one to two substituents selected from the group [emprising] consisting of fluoro, chloro and bromo, or is phenyl optionally substituted by one substituent selected from the group comprising methyl, ethyl, methoxy, phenyl, trifluoromethyl, trifluoromethylthio [ef] and trifluoromethoxy; and A is 1,2-cyclohexylidene; and R_4 is hydrogen or methoxy; and R_6 is hydrogen; and R_6 is propargyl.

Claim 9. (Original): A compound according to claim 1 selected from the group comprising 2-hydroxy-N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-2-phenyl-acetamide, 2-(4-chlorophenyl)-2-hydroxy-N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-acetamide,

2-(4-bromophenyl)-2-hydroxy-N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-acetamide,

2-(3,4-dichlorophenyl)-2-hydroxy-N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-acetamide,

N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-2-phenyl-2-prop-2-ynyloxy-acetamide, N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-2-prop-2-ynyloxy-acetamide,

2-(4-bromophenyl)-N-[trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-2-prop-2-ynyloxy-acetamide, and

 $\hbox{$2$-(3,4$-dichlorophenyl)-N-$[$trans-2-(3-methoxy-4-prop-2-ynyloxy-phenyl)-cyclohexyl]-2-prop-2-ynyloxy-acetamide.}$

Claim 10. (Original): A process for the preparation of a compound of formula I according to claim 1, which comprises reacting an α -hydroxy- or α -alkoxy acid of formula II

$$\begin{array}{c} R_{\uparrow} \longrightarrow \begin{array}{c} R_{2} \\ R_{\uparrow} \end{array} \begin{array}{c} COOH \\ R_{3} \end{array} \end{array} \hspace{1cm} (\parallel)$$

wherein R_1 , R_2 and R_3 are as defined for formula I, or a carboxyl-activated derivative of the acid of formula II, is reacted with an amine of formula III wherein A, R_4 , R_5 and R_6 , are as defined for formula I, with an amine of formula III

$$H_2N \longrightarrow C \qquad \qquad \begin{array}{c} R_4 \\ \\ R_5 \end{array} \qquad \begin{array}{c} O-R_6 \end{array} \qquad \begin{array}{c} (111) \\ \end{array}$$

wherein A, $R_{4},\,R_{5}$ and $R_{6},$ are as defined for formula I.

Claim 11. (Original): A process for the preparation of a compound of formula I wherein R_1 is as defined in claim 1 with the exception of hydrogen, which process comprises reacting an α -hydroxy acid derivative of formula la

$$HO \xrightarrow[R_3]{R_2} N \xrightarrow[N]{Q} C \xrightarrow[R_3]{R_4} O-R_6 \tag{1a}$$

wherein A, R_2 , R_3 , R_4 , R_6 and R_6 are as defined for formula I, with an alkyl-, alkenyl- or alkynylhalide of formula IV

wherein R_1 is as defined for formula I, with the exception of hydrogen, and where X is a leaving group like a halide such as a chloride or bromide, or a sulfonic ester such as a tosylate, mesylate or triflate.

Claim 12. (Original): A process for the preparation of a compound of formula I wherein R_0 is as defined in claim 1 with the exception of hydrogen, which process comprises reacting a phenol of formula Ib

where A, R1, R2, R3, R4, and R5 are as defined for formula I, with a compound of formula V $Y-R_\kappa \qquad \qquad (V)$

where R_6 is as defined for formula I but is not hydrogen and where Y is a leaving group like a halide such as a chloride or bromide or a sulfonic ester such as a tosylate, mesylate or triflate.

Claim 13. (Original): A composition for controlling and protecting against phytopathogenic microorganisms, comprising a compound of formula I according to claim 1 as active ingredient together with a suitable carrier.

Claim 14. (Cancelled).

Claim 15. (Original): A method of controlling and preventing an infestation of crop plants by phytopathogenic microorganisms, preferably fungal organisms, which comprises the application of a compound of formula I according to claim 1 as active ingredient to the plant, to parts of plants or to the locus thereof.