Docker

Traditional Deployment Architecture

server : application 1 : 1

26 February 2020 Containerization with Docker

Less Utilization in Traditional Architecture

3

Virtual Machine to the Rescue

Physical Machine

Virtual Machine provides better utilization

10 x Apps | 10 x Physical Machines | Less than 10% utilization

Physical Machine

Each VM needs a separate OS

Physical Machine

6

OS takes most of the Resources

Why use separate OS for each App?

26 February 2020 Containerization with Docker

Containers to the Rescue

Containers are more lightweight than Virtual Machines

Containers vs VM

Hypervisor Architecture Container Architecture

What is Docker?

Docker is an open-source project

Makes it easy to create containers

Automates the deployment of applications inside software containers

Quickly deploy and scale applications

Docker alternatives

- LXD Linux daemon by Ubuntu
- Containerd A simple yet robust container runtime
- Podman Open-source container engine for Linux
- Rkt Pod-native, app container engine

Docker Architecture

Practical

