

Localization and Mapping

Localization

What does it provide?

- Current location
- Current position

How is it done?

- Filtering sensor data
 - LiDAR
 - Stereocam
 - Odometer
 - GPS
 - IMU
 - Why so many? tunnel example
- Localization algorithms

Mapping

What does it provide?

- Map of the surrounding
 - Metric absolute coordinates
 - Topological distance relations

Why is it needed?

- For the robot to localize itself in the surrounding
- More importantly, for path planning

SLAM

What is it and more importantly why is it?

Map is required for localization

Position estimate is needed for mapping

Noisy dynamic system + Noisy measurements – use kalman

Applications in system having

Uncertain information

Can make an educated guess

Continuously changing

Optimal estimation algorithm

Estimating system state when direct observation is not possible

The temperature example – state observer

New concept – nah

Earliest usage dates back to trajectory planning in Apollo

State observer for stochastic systems (one or more modules having randomness associated with it)

State estimator

- How high the internal temperature of the engine
 - To regulate the fuel flow to your rocket
- Problem no internal access, possible mathematical model using Text
- Still problems, why?
 - Perfect model without any uncertainties
 - Real system and model have same initial conditions
 - Then your measurement and estimated output values would match
- Try to minimize the difference between the estimated and measured external temperature
- Optimal way of choosing the gain K is performed using Kalman filters

*To simplify graphic, each set of the black X's represents all 100 trials.

Two step process

Prediction step

• Priori state estimate and error covariance

Updating step

Posteriori state estimate and error covariance

Function of Kalman gain

 Kalman gain is calculated such that it minimizes the posteriori error covariance

Recursive process

Non-Linear State Estimators **Extended Kalman Filters**

Unscented Kalman Filters

Particle Filters

Kalman filter is only defined for linear systems

- Extended Kalman filters
 - Linearize the distribution around the mean of the current estimate
- Use this linearization in the predict and update states of the Kalman filter algorithm
- Linearization not possible in some regions

- EKF works on systems having differentiable model
- Not optimal for highly non-linear system

What if no Gaussian approximation ?!! A whole different story !!!!!

- Approximating nonlinear function ⊗
 - Approximate probability distribution ©
- Select minimal set of sample points (sigma points) having same mean and covariance as distribution – get empirical gaussian distribution – calculate new state estimate