Question 1

Let $EQ_{DFA, REX} = \{ \langle A, R \rangle \mid A \text{ is a DFA, } R \text{ is a regular expression and } L(A) = L(R) \}$. The following TM E decides $EQ_{DFA, REX}$.

E ="On input <A, R>:

- 1. Convert regular expression, R to an equivalent DFA B.
- 2.Use the TM F for deciding EQ_{DFA} on input <A, B>.
- 3.If F accepts then accept. Else if F rejects then reject."

Question 2

There can be two ways to show ALL_{DFA} is decidable.

Answer a).

There is a Turing Machine TM decides ALL_{DFA} .

S= "on input $\langle A \rangle$, A is a DFA.

- 1. Construct a DFA D such that L(D) is complement of L(A).
- 2. Run the Turing machine TM on input <D>.
- 3. If TM accepts accept, else reject.

Answer b).

S= "on input $\langle A \rangle$, A is a DFA.

- 1. Construct a DFA D such that $L(D)=\sum^*$.
- 2. Run the Turing machine Tm on input <A,D>.
- 3. If TM accepts accept, else reject.

Question 3

Construct an algorithm A that decides AεCFG.

For the given input $\langle G \rangle$, First A converts the grammar G into CNF G' such that L(G) = L(G').

As the variables that other than the new start variable S0 cannot have ε rules in G', M checks if any rule of S0 is an ε rule. If M accepts <G> else M reject. So that M halt on all inputs and checks whether the grammar generate ε and it decides language A ε CFG.

Question 4:

- (b) f is not onto because there does not exist $x \in X$ such that f(1) = f(3) = f(5) = 6. f(2) = f(4) = 7. And those elements 8, 9 and 10 in set Y are left out without any elements in $x \in X$ such that y = f(x). So, therefore the function is not an onto function.
- (c) f is not some correspondence since f is not one-to-one or onto.
- (e) g is onto.

(f) g is some correspondence since g is one-to-one or onto.

Question 5:

Prove by contradiction. We assume that A is countable, i.e., we can give an enumeration f_1 , f_2 , f_3 , ... of A. To come to a contradiction, we construct a new function f' as $f'(x) = f_x(x) + 1$ for $x \in N$. The function f' is constructed from the diagonal of the function values of $f_i \in A$ as represented in the figure below. For each x, f' differs from f_x on input x. Hence, f' does not appear in the given enumeration. However, f' is a function and f': $N \rightarrow N$. Such an f' can be given for any chosen enumeration. This leads to a contradiction. Therefore, A cannot be enumerated. Hence, A is uncountable.

f_1	$f_1(1)$	$f_1(2)$	$f_1(3)$	
f_2	$f_2(1)$	$f_{2}(2)$	$f_{2}(3)$	
f_3	$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	
		•••	•••	

Question 6:

A set is countable if it is a subset of another countable set.

Here, T is the subset of Natural Numbers set N.

Consider the natural numbers, $N = \{1, 2, 3, 4, 5, ...\}$ an Let T will be $\{(1, 1, 2), (2, 3, 4), (1, 2, 4), ...\}$

Natural numbers are countable because, Let $F: N \to N$, then f(x) = x, which gives a one to one relationship. For a countable set, there will be a one-to-one relationship f from N to T. Another proof is cardinality of countable set can be finite number. Here, consider the triplet $T = \{1, 2, 4\}$ which has |T| = 3, which is a finite number, which is listable. Hence T is countable.

Ouestion 7:

We observe that L(R) belongs to L(S) if and only if L(R) intersects L'(S) (complement) is null. The following TM X decides A.

X = "On input $\langle R, S \rangle$ where R and S are regular expressions:

- 1. Construct DFA E such that L(E) = L(R) intersects L'(S).
- 2.Run TM T on $\langle E \rangle$, where T decides E_{DFA} .
- 3.If T accepts then accept. Else if T rejects, then reject."