

FIGURE 19 An even function

FIGURE 20 An odd function

SYMMETRY

If a function f satisfies f(-x) = f(x) for every number x in its domain, then f is called an **even function**. For instance, the function $f(x) = x^2$ is even because

$$f(-x) = (-x)^2 = x^2 = f(x)$$

The geometric significance of an even function is that its graph is symmetric with respect to the y-axis (see Figure 19). This means that if we have plotted the graph of f for $x \ge 0$, we obtain the entire graph simply by reflecting this portion about the y-axis.

If f satisfies f(-x) = -f(x) for every number x in its domain, then f is called an **odd function**. For example, the function $f(x) = x^3$ is odd because

$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

The graph of an odd function is symmetric about the origin (see Figure 20). If we already have the graph of f for $x \ge 0$, we can obtain the entire graph by rotating this portion through 180° about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or neither even nor odd.

(a)
$$f(x) = x^5 + x$$

(b)
$$q(x) = 1 - x^4$$

(b)
$$q(x) = 1 - x^4$$
 (c) $h(x) = 2x - x^2$

SOLUTION

(a)
$$f(-x) = (-x)^5 + (-x) = (-1)^5 x^5 + (-x)$$
$$= -x^5 - x = -(x^5 + x)$$
$$= -f(x)$$

Therefore f is an odd function.

(b)
$$q(-x) = 1 - (-x)^4 = 1 - x^4 = q(x)$$

So g is even.

FIGURE 21

(c)
$$h(-x) = 2(-x) - (-x)^2 = -2x - x^2$$

Since $h(-x) \neq h(x)$ and $h(-x) \neq -h(x)$, we conclude that h is neither even nor odd.

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the graph of h is symmetric neither about the y-axis nor about the origin.

Some limits are best calculated by first finding the left- and right-hand limits. The following theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided limit exists if and only if both of the one-sided limits exist and are equal.

THEOREM $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$

When computing one-sided limits, we use the fact that the Limit Laws also hold for one-sided limits.

EXAMPLE 7 Show that $\lim_{x\to 0} |x| = 0$.

SOLUTION Recall that

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Since |x| = x for x > 0, we have

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0$$

For x < 0 we have |x| = -x and so

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} (-x) = 0$$

Therefore, by Theorem 1,

$$\lim_{x \to 0} |x| = 0$$

EXAMPLE 8 Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

SOLUTION

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1$$

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} (-1) = -1$$

Since the right- and left-hand limits are different, it follows from Theorem 1 that $\lim_{x\to 0} |x|/x$ does not exist. The graph of the function f(x) = |x|/x is shown in Figure 4 and supports the one-sided limits that we found.

EXAMPLE 9 If

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$$

determine whether $\lim_{x\to 4} f(x)$ exists.

SOLUTION Since $f(x) = \sqrt{x-4}$ for x > 4, we have

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x - 4} = \sqrt{4 - 4} = 0$$

■ The result of Example 7 looks plausible

FIGURE 3

from Figure 3.

FIGURE I

V EXAMPLE 1 The graph of a function f is given in Figure 1. Use it to sketch the graph of the derivative f'.

SOLUTION We can estimate the value of the derivative at any value of x by drawing the tangent at the point (x, f(x)) and estimating its slope. For instance, for x = 5 we draw the tangent at P in Figure 2(a) and estimate its slope to be about $\frac{3}{2}$, so $f'(5) \approx 1.5$. This allows us to plot the point P'(5, 1.5) on the graph of f' directly beneath P. Repeating this procedure at several points, we get the graph shown in Figure 2(b). Notice that the tangents at A, B, and C are horizontal, so the derivative is 0 there and the graph of f' crosses the x-axis at the points A', B', and C', directly beneath A, B, and C. Between A and B the tangents have positive slope, so f'(x) is positive there. But between B and C the tangents have negative slope, so f'(x) is negative there.

Visual 3.2 shows an animation of Figure 2 for several functions.

FIGURE 2

V EXAMPLE 2

- (a) If $f(x) = x^3 x$, find a formula for f'(x).
- (b) Illustrate by comparing the graphs of f and f'.

TEC Visual 3.4 shows an animation of Figure 1.

FIGURE I

Ι

Let's try to confirm our guess that if $f(x) = \sin x$, then $f'(x) = \cos x$. From the definition of a derivative, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \left[\frac{\sin x \cos h - \sin x}{h} + \frac{\cos x \sin h}{h} \right]$$

$$= \lim_{h \to 0} \left[\sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) \right]$$

$$= \lim_{h \to 0} \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \lim_{h \to 0} \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

■ We have used the addition formula for sine. See Appendix D.

> Two of these four limits are easy to evaluate. Since we regard x as a constant when computing a limit as $h \rightarrow 0$, we have

$$\lim_{h \to 0} \sin x = \sin x \qquad \text{and} \qquad \lim_{h \to 0} \cos x = \cos x$$

The limit of $(\sin h)/h$ is not so obvious. In Example 3 in Section 2.2 we made the guess, on the basis of numerical and graphical evidence, that

 $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ 2

We now use a geometric argument to prove Equation 2. Assume first that θ lies between 0 and $\pi/2$. Figure 2(a) shows a sector of a circle with center O, central angle θ , and

$$v = \frac{ds}{dt} = \frac{d}{dt} (4\cos t) = 4\frac{d}{dt} (\cos t) = -4\sin t$$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(-4\sin t \right) = -4\frac{d}{dt} \left(\sin t \right) = -4\cos t$$

The object oscillates from the lowest point (s = 4 cm) to the highest point (s = -4 cm). The period of the oscillation is 2π , the period of $\cos t$.

The speed is $|v| = 4|\sin t|$, which is greatest when $|\sin t| = 1$, that is, when $\cos t = 0$. So the object moves fastest as it passes through its equilibrium position (s = 0). Its speed is 0 when $\sin t = 0$, that is, at the high and low points.

The acceleration $a = -4 \cos t = 0$ when s = 0. It has greatest magnitude at the high and low points. See the graphs in Figure 6.

FIGURE 6

EXAMPLE 4 Find the 27th derivative of $\cos x$.

SOLUTION The velocity and acceleration are

SOLUTION The first few derivatives of $f(x) = \cos x$ are as follows:

$$f'(x) = -\sin x$$

$$f''(x) = -\cos x$$

$$f'''(x) = \sin x$$

$$f^{(4)}(x) = \cos x$$

$$f^{(5)}(x) = -\sin x$$

We see that the successive derivatives occur in a cycle of length 4 and, in particular, $f^{(n)}(x) = \cos x$ whenever *n* is a multiple of 4. Therefore

$$f^{(24)}(x) = \cos x$$

and, differentiating three more times, we have

$$f^{(27)}(x) = \sin x$$

Our main use for the limit in Equation 2 has been to prove the differentiation formula for the sine function. But this limit is also useful in finding certain other trigonometric limits, as the following two examples show.

EXAMPLE 5 Find
$$\lim_{x\to 0} \frac{\sin 7x}{4x}$$
.

SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying and dividing by 7:

$$\frac{\sin 7x}{4x} = \frac{7}{4} \left(\frac{\sin 7x}{7x} \right)$$

If we let $\theta = 7x$, then $\theta \to 0$ as $x \to 0$, so by Equation 2 we have

$$\lim_{x \to 0} \frac{\sin 7x}{4x} = \frac{7}{4} \lim_{x \to 0} \left(\frac{\sin 7x}{7x} \right) = \frac{7}{4} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{7}{4} \cdot 1 = \frac{7}{4}$$

Look for a pattern.

Note that $\sin 7x \neq 7 \sin x$.

is $y = \sqrt{r^2 - x^2}$. So the cross-sectional area is

$$A(x) = \pi y^2 = \pi (r^2 - x^2)$$

Using the definition of volume with a = -r and b = r, we have

$$V = \int_{-r}^{r} A(x) dx = \int_{-r}^{r} \pi(r^2 - x^2) dx$$

$$= 2\pi \int_{0}^{r} (r^2 - x^2) dx \qquad \text{(The integrand is even.)}$$

$$= 2\pi \left[r^2 x - \frac{x^3}{3} \right]_{0}^{r} = 2\pi \left(r^3 - \frac{r^3}{3} \right)$$

$$= \frac{4}{3}\pi r^3$$

Figure 5 illustrates the definition of volume when the solid is a sphere with radius r=1. From the result of Example 1, we know that the volume of the sphere is $\frac{4}{3}\pi \approx 4.18879$. Here the slabs are circular cylinders, or *disks*, and the three parts of Figure 5 show the geometric interpretations of the Riemann sums

$$\sum_{i=1}^{n} A(\bar{x}_i) \, \Delta x = \sum_{i=1}^{n} \, \pi(1^2 - \bar{x}_i^2) \, \Delta x$$

TEC Visual 6.2A shows an animation of Figure 5.

when n = 5, 10, and 20 if we choose the sample points x_i^* to be the midpoints \bar{x}_i . Notice that as we increase the number of approximating cylinders, the corresponding Riemann sums become closer to the true volume.

(a) Using 5 disks, $V \approx 4.2726$

(b) Using 10 disks, $V \approx 4.2097$

(c) Using 20 disks, $V \approx 4.1940$

FIGURE 5 Approximating the volume of a sphere with radius 1

EXAMPLE 2 Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1. Illustrate the definition of volume by sketching a typical approximating cylinder.

SOLUTION The region is shown in Figure 6(a). If we rotate about the *x*-axis, we get the solid shown in Figure 6(b). When we slice through the point *x*, we get a disk with radius \sqrt{x} . The area of this cross-section is

$$A(x) = \pi(\sqrt{x})^2 = \pi x$$

and the volume of the approximating cylinder (a disk with thickness Δx) is

$$A(x) \Delta x = \pi x \Delta x$$

NOTE 1 Replacing a by the general number x in the formula of Theorem 7, we get

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

If we write $y = f^{-1}(x)$, then f(y) = x, so Equation 8, when expressed in Leibniz notation, becomes

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

NOTE 2 If it is known in advance that f^{-1} is differentiable, then its derivative can be computed more easily than in the proof of Theorem 7 by using implicit differentiation. If $y = f^{-1}(x)$, then f(y) = x. Differentiating the equation f(y) = x implicitly with respect to x, remembering that y is a function of x, and using the Chain Rule, we get

$$f'(y)\frac{dy}{dx} = 1$$

Therefore

Therefore

$$\frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{\frac{dx}{dy}}$$

EXAMPLE 6 Although the function $y = x^2$, $x \in \mathbb{R}$, is not one-to-one and therefore does not have an inverse function, we can turn it into a one-to-one function by restricting its domain. For instance, the function $f(x) = x^2$, $0 \le x \le 2$, is one-to-one (by the Horizontal Line Test) and has domain [0, 2] and range [0, 4]. (See Figure 12.) Thus f has an inverse function f^{-1} with domain [0, 4] and range [0, 2].

Without computing a formula for $(f^{-1})'$ we can still calculate $(f^{-1})'(1)$. Since f(1) = 1, we have $f^{-1}(1) = 1$. Also f'(x) = 2x. So by Theorem 7 we have

$$(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(1)} = \frac{1}{2}$$

In this case it is easy to find f^{-1} explicitly. In fact, $f^{-1}(x) = \sqrt{x}$, $0 \le x \le 4$. [In general, we could use the method given by (5).] Then $(f^{-1})'(x) = 1/(2\sqrt{x})$, so $(f^{-1})'(1) = \frac{1}{2}$, which agrees with the preceding computation. The functions f and f^{-1} are graphed in Figure 13.

SOLUTION Notice that f is one-to-one because

$$f'(x) = 2 - \sin x > 0$$

and so f is increasing. To use Theorem 7 we need to know $f^{-1}(1)$ and we can find it by inspection:

$$f(0) = 1 \quad \Rightarrow \quad f^{-1}(1) = 0$$

 $(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{2 - \sin 0} = \frac{1}{2}$

(a) $y = x^2$, $x \in \mathbb{R}$

(b)
$$f(x) = x^2$$
, $0 \le x \le 2$

FIGURE 12

FIGURE 13

FIGURE I

y = x. (See Figure 1.) The domain of exp is the range of ln, that is, $(-\infty, \infty)$; the range of exp is the domain of \ln , that is, $(0, \infty)$.

If r is any rational number, then the third law of logarithms gives

$$ln(e^r) = r ln e = r$$

Therefore, by (1),
$$\exp(r) = e^r$$

Thus $\exp(x) = e^x$ whenever x is a rational number. This leads us to define e^x , even for irrational values of x, by the equation

$$e^x = \exp(x)$$

In other words, for the reasons given, we define e^x to be the inverse of the function $\ln x$. In this notation (1) becomes

$$e^x = y \iff \ln y = x$$

and the cancellation equations (2) become

$$e^{\ln x} = x \qquad x > 0$$

$$\ln(e^x) = x \quad \text{for all } x$$

EXAMPLE 1 Find x if $\ln x = 5$.

SOLUTION | From (3) we see that

$$\ln x = 5 \qquad \text{means} \qquad e^5 = x$$

Therefore $x = e^5$.

SOLUTION 2 Start with the equation

$$\ln x = 5$$

and apply the exponential function to both sides of the equation:

$$e^{\ln x} = e^5$$

But (4) says that $e^{\ln x} = x$. Therefore $x = e^5$.

EXAMPLE 2 Solve the equation $e^{5-3x} = 10$.

SOLUTION We take natural logarithms of both sides of the equation and use (5):

$$\ln(e^{5-3x}) = \ln 10$$

$$5 - 3x = \ln 10$$

$$3x = 5 - \ln 10$$

$$x = \frac{1}{3}(5 - \ln 10)$$

FIGURE 1
A model for world population growth in the second half of the 20th century

RADIOACTIVE DECAY

Radioactive substances decay by spontaneously emitting radiation. If m(t) is the mass remaining from an initial mass m_0 of the substance after time t, then the relative decay rate

$$-\frac{1}{m}\frac{dm}{dt}$$

has been found experimentally to be constant. (Since dm/dt is negative, the relative decay rate is positive.) It follows that

$$\frac{dm}{dt} = km$$

where k is a negative constant. In other words, radioactive substances decay at a rate proportional to the remaining mass. This means that we can use (2) to show that the mass decays exponentially:

$$m(t) = m_0 e^{kt}$$

Physicists express the rate of decay in terms of **half-life**, the time required for half of any given quantity to decay.

EXAMPLE 2 The half-life of radium-226 is 1590 years.

- (a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the sample that remains after t years.
- (b) Find the mass after 1000 years correct to the nearest milligram.
- (c) When will the mass be reduced to 30 mg?

SOLUTION

(a) Let m(t) be the mass of radium-226 (in milligrams) that remains after t years. Then dm/dt = km and y(0) = 100, so (2) gives

$$m(t) = m(0)e^{kt} = 100e^{kt}$$

In order to determine the value of k, we use the fact that $y(1590) = \frac{1}{2}(100)$. Thus

$$100e^{1590k} = 50 \qquad \text{so} \qquad e^{1590k} = \frac{1}{2}$$

and

$$1590k = \ln \frac{1}{2} = -\ln 2$$

$$k = -\frac{\ln 2}{1590}$$

Therefore

$$m(t) = 100e^{-(\ln 2)t/1590}$$

would use

$$\frac{A_1}{a_1x+b_1}+\frac{A_2}{(a_1x+b_1)^2}+\cdots+\frac{A_r}{(a_1x+b_1)^r}$$

By way of illustration, we could write

$$\frac{x^3 - x + 1}{x^2(x - 1)^3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2} + \frac{E}{(x - 1)^3}$$

but we prefer to work out in detail a simpler example.

EXAMPLE 4 Find
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx$$
.

SOLUTION The first step is to divide. The result of long division is

$$\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} = x + 1 + \frac{4x}{x^3 - x^2 - x + 1}$$

The second step is to factor the denominator $Q(x) = x^3 - x^2 - x + 1$. Since Q(1) = 0, we know that x - 1 is a factor and we obtain

$$x^{3} - x^{2} - x + 1 = (x - 1)(x^{2} - 1) = (x - 1)(x - 1)(x + 1)$$
$$= (x - 1)^{2}(x + 1)$$

Since the linear factor x-1 occurs twice, the partial fraction decomposition is

$$\frac{4x}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$

Multiplying by the least common denominator, $(x - 1)^2(x + 1)$, we get

$$4x = A(x-1)(x+1) + B(x+1) + C(x-1)^{2}$$
$$= (A+C)x^{2} + (B-2C)x + (-A+B+C)$$

Now we equate coefficients:

$$A + C = 0$$

$$B - 2C = 4$$

$$-A + B + C = 0$$

Solving, we obtain A = 1, B = 2, and C = -1, so

$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx = \int \left[x + 1 + \frac{1}{x - 1} + \frac{2}{(x - 1)^2} - \frac{1}{x + 1} \right] dx$$

$$= \frac{x^2}{2} + x + \ln|x - 1| - \frac{2}{x - 1} - \ln|x + 1| + K$$

$$= \frac{x^2}{2} + x - \frac{2}{x - 1} + \ln\left|\frac{x - 1}{x + 1}\right| + K$$

■ Another method for finding the coefficients: Put x = 1 in (8): B = 2. Put x = -1: C = -1.

Put x = 0: A = B + C = 1.