QAM system in which the constellation is modified in accordance with channel quality

Patent number:

JP6507763T

Publication date:

1994-09-01

Inventor: **Applicant:** Classification:

- international:

H04L27/34; H04B7/26

- european:

H04L1/00A1M; H04L1/08; H04L1/20

Application number: JP19920509872T 19920602

Priority number(s): GB19910011856 19910603; GB19910014556

19910705; WO1992GB00988 19920602

Also published as:

WO9222162 (A1)

EP0587620 (A1) US5828695 (A1)

EP0587620 (B1)

Report a data error here

Abstract not available for JP6507763T Abstract of corresponding document: US5828695 PCT No. PCT/GB92/00988 Sec. 371 Date Feb. 18, 1994 Sec. 102(e) Date Feb. 18, 1994 PCT Filed Jun. 2, 1992 PCT Pub. No. WO92/22162 PCT Pub. Date Dec. 10, 1992A radio system is so designed as to allow each of a pair of transceivers to assess the quality of the link, and to modify the signal constellation accordingly. Each transceiver monitors the quality of the channel by assessing the strength of the received signal, or the bit error rate, or both. The system is specifically adapted to time division duplex (TDD) transmission over fast fading channel. In each block of data, the first bit is a QPSK (4QAM) signal, which indicates which constellation is to be used.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平6-507763

第7部門第3区分

(43)公表日 平成6年(1994)9月1日

(51) Int.Cl.3

識別記号 庁内整理番号

H 0 4 B 7/26

C 7304-5K

H04L 27/34

9297-5K

H 0 4 L 27/00

FΙ

E

審査請求 未請求 予備審査請求 有 (全 11 頁)

(21)出願番号 特願平4-509872 平成4年(1992)6月2日 (86) (22)出願日 平成5年(1993)12月3日 (85)翻訳文提出日 PCT/GB92/00988 (86)国際出願番号 WO92/22162 (87)国際公開番号 平成4年(1992)12月10日 (87)国際公開日 (31)優先権主張番号 9111856.2 (32) 優先日 1991年6月3日 (33)優先権主張国 イギリス (GB) (31)優先権主張番号 9114556.5 1991年7月5日 (32)優先日 (33)優先権主張国 イギリス (GB)

(71)出願人 ブリテイッシュ・テレコミュニケーション ズ・パブリック・リミテッド・カンパニー イギリス国、イーシー1エー・7エージェ イ、ロンドン、ニューゲート・ストリート 81

(72)発明者 ウエブ、ウイリアム・ティモシー イギリス国、エスオー1・9キューエル、 サウザンプトン、ロードシル、ロウアー・ ブラウンヒル・ロード 66

(74)代理人 弁理士 鈴江 武彦 (外3名)

最終頁に続く

(54) 【発明の名称】 コンステレーションがチャネル品質に応じて変更されるQAMシステム

(57)【要約】

無線システムが一対のトランシーバの各々がリンクの 品質を評価して信号コンステレーションを変更できるように設計される。各々のトランシーパは受信信号の強さ とピットエラーレートの両方又は一方を評価することに よってチャネルの品質をモニタする。このシステムは早 いフェージングチャネルの時分割二重(TDD)送信に 特に適している。データの各ブロックにおいて、第1ピットはどのコンステレーションが使用されるかを示す QPSK(4QAM)信号である。

請求の範囲

1. 少なくとも1つが無級トランシーバを有する一対のステーションを具備する無線システムであって、

他のステーションからの信号を受信する無線受信機と、 受信した無線信号を評価する手段と、

受信信号の上記評価に基づいて送信変調状態を選択する手段と、

複数の変調状態を有する変調方法を用いて、信号を他のス テーションに送信する無線送信機と、

前記無線送信機の送信状態を選択された前記変調状態に調整する手段と、

前記他のステーションに遊信される信号に前記選択された 変調状態の表示を含めるための報知手段と、

を具備する無線システム。

- 2. 前記報知手段が、前記変調状態の所定の1つで前記選択された変調状態の表示を送信すべく、前記無線送信機の変調状態を調整する手段を具備する特許請求の範囲第1項に記載の無線システム。
- 3. 前紀無線システムが時分割二重動作を使用して動作する 特許請求の範囲第1又は2項に記載の無線システム。
- 4. 前紀トランシーバの前記変調方法がQAM (quidrature taplitude modulation) である特許請求の範囲第1、2又は 3項に記載の無線システム。
- 5. 受信無線信号を評価する前記手段が、受信信号の強さと
- 11. 早いフェージングを有する無線チャネルを介して動作 させるための移動体無線システムであって、変関レベルの数 が早いフェージングに零しいレートで可変される移動体無線 システム。
- 12. 無線信号を受信する無線受信機と、

受信した無線信号を評価する手段と、

受信信号の評価に基づいて送信変調状態を選択する手段と、

複数の変調状態を有する変調方法を使用して信号を送信する無線送信機と、

前紀無線送信機の送信状態を前記選択された変調状態に調整する手段と、

送信される信号に前記選択された変異状態の表示を含める 収知手段とを具領する無線トランシーパ。 これらの信号のピットエラーレートとの両方又は一方を評価する特許請求の範囲第1項乃至4項のいずれかに記載の無線システム。

- 6. 各ステーションが前記した特許請求の範囲のいずれかに おいて定義された無線トランシーバを有する特許請求の範囲 第1項乃至第5項のいずれかに記載の無線システム。
- 7. 送信すべく各シンポル上に符号化された2選デジットの 数が、浏定された受信信号の強さ、測定されたピットエラー レート (BER)、あるいはこれらの組み合わせに応じて可 変されることを特徴とするデジタル信号送信のための無線ト ランシーパ。
- 8. 受信信号の強さが所定の時間に渡って平均化されるとともに、次の送信に使用されるピット/シンポルの数がこの平均値に応じて決定されることを特徴とする無線トランシーパ。
- 9. 受倡復号化デジタル信号のエラーがエラー検出システム を使用して識別され、次の送信に使用されるピット/シンポルの数が、検出されたエラーの数と分布に基づいていること を特徴とする無線トランシーバ。
- 10. 無線通信が双方向性あるいは瞬時的単方向性であり、 データがパケット又はプロックの形で配置され、各プロック の初期シンボルがそのプロック内で使用されるピット/シン ボルの数を報知すべく保存される無線システム。

明 細 書

<u>コンステレーションがチャネル品質に応じて</u> 変更されるQAMシステム

本発明は無線システムに関し、特に、QAM (Quadrature Amplitate Modelation) を使用する移動体無線のための無線システムに関する。

レーリーフェージングのある移動体無線チャネルを介してのQAM伝送は、チャネルの個号対報音比(SNR)が高い場合でも、大きなフェージングによってパーストエラーが発生する。このため、チャネルの完全さに応じて変調レベルの飲を変えることが考えられる。すなわち、伝送にフェージングがないときは、QAMコンステレーション(toalillalloa) 点を増やすことによって変調レベルの数を増加させ、フェージングが発生しているときはコンステレーション点の数を、許容可能なピットエラーレート(BER)を提供できるには少させる。要求されたBERとスイッチレベルが特定された場合、データスループットが変化する。他方、スループットが適当に固定された場合はBERが変化する。

1つの方法は、二重伝送を有する可変レートシステムと、 的記無額リンクの他端に設けられた受信機によって情報が受 信されたときに、リンクの品質を無線リンクの一端に設けら れた送信機に知らせる方法を具備することである。送信機は 採用された品質基準に応じてQAMレベルの数を変化させることによって応答する。可変レート送信を実現させるためには、早いフェージングのチャネルがシンボル周期に比較してゆっくりと変化する必要がある。この条件が満たされない場合は、品質制御情報を頻繁に送信したときにシステムの必要帯域を大きく増大させてしまう。

そこで、本発明は送信が送信条件に適している無線システムを提供することにある。

本発明の第1側面によれば、少なくとも1つが無線トランシーバを有する一対のステーションを具備する無線システムであって、

他のステーションからの信号を受信する無線受信機と、 受信した無疑信号を評価する手段と、

受信信号の評価に基づいて、送信変調状態を選択する手段 と、

複数の変調状態を有する変調方法を用いて、信号を他のステーションに送信する無線送信機と、

前記無線送信機の送信状態を選択させた変調状態に調整する手段と、

附記他のスチーションに送信すべき信号に前記選択された 変調状態の表示を含めるための報知信手段とを具備する。

本発明の第2側面によれば、デジタル信号送信のための無線トランシーパであって、

送信すべく各シンボル上に符号化された2選デジットの数が、測定された受信信号の強さ、測定されたビットエラーレ

ート(BER)、あるいはこれらの組み合わせに応じて可変 させる。

本発明の第3個面によれば、無線トランシーパであって、 受信信号の強さが所定の時間に渡って平均化されるとともに、 次の送信に使用されるピット/シンボルの数がこの平均値に 応じて決定される。

本発明の第4側面によれば、無線トランシーパであって、 復号化された受信デジタル信号がエラー検出システムを使用 して識別され、次の送信に使用されるピット/シンポルの数 が、検出されたエラーの数と分布に基づいている。

本発明の第5例面によれば、無線システムであって、無線 延信が双方向性あるいは瞬時的に単方向性であり、データが パケット又はブロックの形で配置され、各ブロックの初期シ ンボルがそのブロック内で使用されるピット/シンボルの数 を観知すべく保存される。

本発明の第6個面によれば、早いフェージングを有する無 線チャネルを介して動作させるための移動体無線システムで あって、定潟レベルの数が早いフェージングに等しいレート で可変させる。

本発明の第7個面によれば、無線トランシーパであって、 無線信号を受信する無線受信機と、

受信無線信号を評価する手段と、

受信信号の評価に基づいて、送信変調状態を選択する手段 と、

複数の変調状態を有する変調方法を使用して送信信号を送

信する無線送信機と、

前記無線送信機の送信状態を選択された変調状態に隣整する手段と、

送信すべき信号に前記選択された変調状態の表示を含める 復知手段とを具備する。 早いフェージングの問題を低減するために、データレートを増大させてチャネルが大きく変化する前により多くのシンボルを送信できるようにする。移動体がゆっくりであればあるほどフェージングレートが遅くなり、そのチャネルに適合するのに要する親知レートが遅くなる。

フェージング状態に応答してQAMレベルの数を変化させるとピットレートが変化し、長期間に減ってほぼ一定であっても、ピットレートが平均レートの4倍ほど瞬時に変化する。したがって、音声以外のデータを送信する場合、通応型又はマルチレベルQAMを使用することを考慮することが適当である。データ送信においては、BERが十分低ければ、スループットが変化したり、相対的に大きな遅延があっても許容できる。コンピュータファイルの送信を完璧に行うためには、BERはOでなければならない。

以下に本発明の望ましい実施例を図面を参照して例に基づいて説明する。

第1図は、可変レベルのQAM方法とともに使用されるフレーム構造を示す図であり、

第2図は、可変レベルのQAM方法とともに使用される一 連のQAMコンステレーションを示す図であり、

第3図は、本発明の望ましい実歴例の無線トランシーバを 示す図であり、

第4回は、ビット/シンボルがフェージングレベルによっ て変化するようすを示すグラフであり、

第5図は、ピットノシンボルがフェージングレベルによっ

て変化するようすを示すグラフであり、

第6図は、BERを固定変調方法を用いた場合と可変変調 方法を用いた場合とで比較して示すグラフであり、

第7図は、本発明の好ましい実施例に係る無線トランシー バを示す図であり、

第8図は、ビット/シンボルがフェージングレベルによって変化するようすを示すグラフであり、

第9図は、DECTに類似したシステムのパフォーマンス を示すグラフである。

可変レートモデム動作の一番簡単な二重構成は、時分割二 重(TDD)であり、基地ステーション(BS)と移動ステ ーション(MS)とが異なる時間に同じチャネルを介して送 信する。この場合、BSとMSとは送信が模して二名の間で TDDフレームの半分だけ離れているので、同じようなチャ ネルフェージング状態となる。MSによって受信される送信 は、MS送信機によって使用されるQAMレベルの数を表す チャネルの完全さを推定するのに使用される。同様に、BS によって受信された送信によって、QAMレベルの数が次の BS送信において使用される。BSとMSは送信機によって 使用されるQAMレベルの数を他に知らせ、QAM復調を正 しく実行できるようにチャネルによって破壊されないように している。シミュレーションにおいてデータがタイムスロッ トを占有するプロック又はパケットに分割され、各プロック の最初の2、3のシンボルが報知用として保存される。チャ ネルがブロック周期に渡って大きく変化しないので、ブロッ

に対する符号化が使用される。16レベルの基準日AMでは、 シンポルを構成する4 ピットのうちの 3 ピットが位相上にグ レイ差分符号化され、残りのピットはフェーザの振幅上に差 分符号化される。これによってAGCと搬送波復元が不要と なるので受信機を簡略化できる。シミュレーションによれば、 位相と振幅が変調器によってランダムに変化し、かつ急速に 変化するレイリーフェージング伝授チャネルによって影響を 受けるとき、受信機が信号の位相と振幅の絶対値を正確に推 定するのが困難となる方形コンステレーションに比較して、 BERパフォーマンスが実質的に改善された。屋型QAMは シンポルを構成している4ピットの各々が同じBERを有し ており、音声とデータのマッピングがまっすぐになるので、 方形QAMに対してさらなる利点を有する。すなわち、方形 QAMの場合は、16レベルのグレイ符号化コンステレーシ *ン上にマッピングされたピットの半分が他の半分に比較し てはるかに高いBERを有する。シミュレーションにおいて、 1 ピット/シンボル (BPSK) から6 ピット/シンボルが 使用された。受信機のノイズが十分低く、実行上の複雑さが それほど大きくない場合は、6ピット/シンポル以上が使用 される。ピット/シンボルの数が増大するとき、接幅リング の数と位相点の数は交互に2倍される。 2ピット/シンポル に対するBPSKで開始するときは、位相点の数はQPSK を得るために2倍される。3ピット/シンボルの場合は、振 軽レベルの数は2レベルQPSKを得るために2倍される。 4 ピット/シンボルの場合は、位相点の数は16 レベルの量

クの最適なサイズは移動体の速度に関係している。 100シ ンポルのプロックが512kシンポル/s、30mphの移 動体速度、1.9GHェの搬送波を使用して送信された。各 ブロックの開始で、そのブロックで使用されるレベルの数を 表す信号が送信された。これは4レベルのQAMすなわちQ PSKシステムの2つのシンポル上に符号化され、これら2 つのシンボルの各々は3回送信された。現在のブロックにお いて復興するためのQAMレベルの数を決定すべく、受信機 例で多数決が行われた。ブロックサイズが大きい場合は、よ り高い完全さを有するコードが、スループットを大きく減少 することなしに、そのレベルの数を含む情報に関して使用さ れる。第1回は1チャネル当たり1つの搬送波を使用する道 応型QAMのためのTDDフレーム構成を示している。搬送 故当たり N チャネルが使用された場合は、同図に示す Q A M シンポルはN倍早く送信されるが、フェージングチャネルが 変化しない時間は実質的に同一である。これはセルが平坦な レイリーフェージングを適用するのに十分小さいことに基づ いている。QAMコンステレーションはレベルの数の変化に 応じて変化する。フェージング環境における搬送波復元が困 難なために方形のコンステレーションを有するQAMは使用 されない。そのかわりに、前回のシミュレーションにおいて 良い結果が得られたので、円形の昼型コンスチレーションを 有する量型QAMが異なる符号化に関連して使用される。屋 型QAMの原理は差分符号化が効率よくオーバレイされるコ ンステレーションを提供することである。差分位相及び扱幅

型コンステレーションを得るために 2 倍される。これが 6 ピット/シンボルになるまで反復され、リング当たり 1 6 点をもつ4 つのリングが得られる。

2レベル乃至64レベル屋型QAMに対するコンステレーションが第2図に示されている。リング間の実際の距離とリングのサイズとは一定の平で縮尺したものではない。各コンステレーションは同じ平均エネルギを育し、8及び16レベルのコンステレーションにおけるリングの半径は3対1である。

を分符号化は第1データシンボル以前の点が0度で最も内部の振幅リング上に送信されるという条件を使用して正確に開始され、このフェーザからを分符号化されたデータが計算される。

送信機のブロック図が第3図に示される。受信機(RXX) 削端部1によってベースパンド信号を復元した後で、QPS K信号と是型QAM信号とを分離すべく、デマルチブレクサ 2によって信号分離が実行される。QAM復調において使用 されるQAMレベルの数を得るためにQPSK復調がQPS K複調器3によって実行される。次に、復元されたデータを 得るためにQAM復調器4によってQAM復調される。プロ ック上のベースパンド信号レベルの平均の大きさは、無線チャネルの短期間パスの損失を要すべく平均モニタユニッが大 によって測定される。この平均が大変低い場合は移動体が きなフェージングを受けているか又はセルの建部に位置して いる。いずれの場合であっても比較的小さいQAMレベルを 使用して送信することがより適当である。逆に平均が高い場合はチャネルは比較的良く次の送信においてより大きいQAMレベルを使用できる。ブロックの平均はブロックの辞鑑に向かってより大きい重みを信号レベルに付加する指数関数的スムージング方法を使用して計算される。この平均は量子化器6によって量子化される。ここで、各量子化された出力は次の送信において使用されるQAMレベルの特定数を表す。

第3図のトランシーバの送信機において、量子化器6の出力はレベル選択ユニット7に供給される。レベル選択ユニット7は入力データのストリームを変調すべく可変レベルQAM変異器8を制削する。レベル選択ユニット7は選択されたQAMレベルをフレームの開始に行号化するレベル符号化ユニット9を制御する。QAM変異器8及びレベル符号化ユニット9からの出力はマルチプレクサ10に供給され、マルチプレクサ10はRF送信ユニット11を給電する。

第3図のベースパンド信号は、RFにおける受信信号の強度指示器(RSSI)に関連している。ベースパンドRSSI指示器ではなくRF RSSIがブロック上で平均化された場合はシステムは同様に機能する。ベースパンド信号に基づいてQAMレベルをスイッチングするこのような方法はベースパンドRSSIスイッチング、又はRSSIスイッチングと呼ばれている。

これらのスイッチングレベルすなわち、第3図における量子化器によって発生されるレベルに対して2つの基準が使用される。1つは、特定のBERを得るためにスイッチングレ

::: :T:

Rを受けている間、一定の平均ピットレートを連成した。上 記したしきい値は一定のBERシステムに対して使用され、 ごれらば各プロックの開始で同じ数によって乗算された。こ の数は多くのフェージングに渡って平均化されたペースパン ド信号から得られた。これは単に第3図のブロックに渡って 平均化するのに使用すべく増加される平均ウインドウに余分 の平均化回路に付加するのみであり、多くのブロックをカバ - している。それゆえ、平均信号レベルが上昇するとき、例 えば、基地ステーション近くに移動しているときはスイッチ ングしまい値は間接に増加してBERが変化していてもほぼ 一定の平均スループットを維持する。平均ピット/シンボル は長期間の平均入力に関連するスケーリングファクタを変え ることによって、最大数のピット/シンポル内のレベルに設 定される。平均ピットレートが上記した両方の選択基準に対 して同じ場合は、BERは同一となり、同一のシステムと見 なされる。第5図は前回のプロファイルに関するフェージン グチャネルの同一部分に渡る一定のスループット方法に対す るスイッチングプロファイルを示している。30dBのSN Rが再び使用される。平均を4ピット/シンポルに保持する 場合はより多くのレベル変化が発生する。両方のグラフに対 して低いSNRが選択された場合はより類似する。

チャネル符号化は上記した両方のシステムに付加されるが、この場合、システマチックなBCHコードが使用される。データは符号化され、第3図のQAM変調器の入力に供給される前に、15600ピットに渡ってインタリープされる。チ

ベルを選択して、可変データスループットを得ることである。 シミュレーションにより、QAM復期器に対する入力におけ るSNRの関数としてのBERのグラフが、2 (n=1、 2、…6)の固定レベルを有する屋型QAMモデムに対して 得られた。このシミュレーションにおいてはガウシアンチャ ネルが使用され、どの短期間においてもスイッチング時はチ ャネルは実質的に一定レベルブラスガウシアンノイズとなる。 当放BERに関連する直線が描かれ、曲線に交差する水平線 がスイッチングし合い値と一致した。SNRはその後、適応 型モデムにおける異なる数のQAMレベルに対応する量子化 ゾーンで量子化される。連続的なレベルの変化を防ぐべく、 いくつかのヒステリシスがスイッチングレベルに設けられた。 第3図のベースパンド信号はノイズによって汚染されるので、 平均化回路はプロックの終端でのQAMレベル選択に先立っ てこのノイズを大幅に減少させる。量子化出力レベルが要求 されたSNR値に対応することを確実にするために、QAM シンポルの平均値(プロックの終端における)が量子化に先 立って既知の受信機ノイズによってスケーリングされた。第 4 図はQAM復興器に印加される信号の任意の部分と、この 周期内に選択されたピット/シンボルの致とを示している。 この図は30dBかつ前記した他のパラメータを使用したシ ミュレーションによって生成された。比較的高いSNRのた めに、多くの時間においてモデムは最大6ピットノシンポル を連成した。

スイッチングしきい値を選択すべき第2の基単は可変BE

+ネル復号化が起こる前にバーストチャネルエラーをランダム化すべく復調器の出力でデインタリーブが実行される。可変QAM方法は、より少ないQAMレベルを品質の悪いチャネルで使用するために、エラーが小さいブロックで発生するという利点を固定QAM方法に対して有する。これによってチャネルコーデックがより効率よく実行される。チャネル符号化を有するRSSIスイッチングのパフォーマンスは低いものと見なされる。

固定の16レベル(4ピット/シンボル)の昼型QAMシステムと比較した場合のRSSIスイッチト可変レベル風型QAMシステムのパフォーマンスが第6図に示されている。選応型QAMシステムは4ピット/シンボルを得るれる。調整されたスイッチングしきい鍼を育する。使用されるQAMレベルの数に関する必要な報知情報がこのスループットを針算するのに考慮される。1.9GHェの伝鞭周波数、30mphの移動体速度、512Kシンボル/砂の送信シンボルレートでシミュレーションが行われ、平均して2048Kピット/砂のピットレートが得られた。伝搬環境はマイクロセルラであると仮定されたのでこの場合ISIは重要でない、フォーマンスに著しい改善が見られ、増大するSNRによってこれがさらに増長された。

RSSIに関してQAMレベルをスイッチングする場合に 比較して、このスイッチングはチャネルコーデック、ここで はシステマチックBCHコーデックの命令に関して実行でき る。第7図はBERスイッチングトランシーバの簡略化されたプロック図である。第7図において、第3図のトランシーバと共通の部分は同様の番号が付きれている。第7図のトランシーバは受信部において復算器4の出力がBCHデコーダ21に供給されている点で第3図のそれと異なる。BCBデコーダ21は決定ユニット22に対してエラーを出力せず、検出されたエラーは決定ユニット23に供給される。決定ユニット22、23はレベル選択ユニット7を同様に制御する。第7図のトランシーバの送信邸において、入力データのストリームはQAM変調器8に供給される前にチャネルコーダ24に供給される。

各受信データバケットの間チャネルを捜定すべく、BCH(63、57、1)コードは各ブロック内の入力データの最後の57ピットにオーパレイされる。入力データはすでにチャネル符号化され、前記した同様のシステムを使用してインタリーブされ、付加的符号化はデータが存在するところにおけるインタリーブされないエラーによって圧倒されるのでおけ、エラーを訂正するには効果的でなく、この場合、チャネル状態が良くないことを受信機に報知する。このような符号化システムは平均400ピットを含むプロックの最後の57ピットに通用されるだけなので、ほとんどオーバへッドがない。符号化されたデータは通応型QAM変調器に供給され、変調された出力はアップコンパートされて送信される。QAM返調はRSSIスイッチトQAMシステムに関して説明したよう

散を知らせる。RSSTスイッチングシステムが使用された。 第9図は、異なる速度で移動するMSに対するDECTに類 似のシステムに対するチャネルSNRの関数としてのBER の変化を示している。チャネルどうしの干渉はなかった。D ECTフレーム方法は送信と受信が12スロット又は5m a 離れているので、チャネルはしばしばデータの送信と受信の 間で大きな変化を受けてレベルの不適当な数を生成する。M Sがより早く移動する場合はBERが悪化し、移動体の速度 が20mphの場合は適応型及び固定された4レベルのQA Mは類似のパフォーマンスを示した。しかしながら、移動体 の速度が20から5mphに減少したとき、BERの大きさ のオーダの改善が、20dBを越える所定のチャネルSNR に対して得られた。これはフェージングレートがより遅いた めであり、チャネルの推定をより正確にしている。可変数の 変調レベルを使用してレイリーフェージングチャネルに渡っ てデータを送信する適応展型DAMモデムが提案された。必 **娄なパフォーマンス特性を与えるべく、変闘レベルの飲をい** かにして変化させるかを決定する基準が提案された。適応型 QAMモデムはピットレートがしばしば変化しても、広い範 囲のチャネルSNRに渡ってほぼ一定のBERを提供すべく 配置可能である。このタイプのパフォーマンスはある程度の 遅延が許容されるデータサービスに対して適している。概し て、適応型モデムは特定の応用に適合するように所定の方法 でBERとピットレートを可変することに対して柔軟性を提 供する。適応型モデムはチャネルどうしの干渉のあるなしに

に、ヘッダから抽出された多くのQAMレベルを使用して夷 行される。ほとんどのデータは出力に供給されて、デインタ リープかつチャネル復号化される。しかしながら、回復され たビットストリームの最後の63ピットは出力に供給される 前にBCH(63、57、1)コーデックに供給される。こ のBCHコーデックによってエラーが検出されなかった場合 は、次のプロックにおいて使用されるQAMの数は2倍され、 検出された場合は半分にされる。第4及び第5図において使 用されるのと同じチャネルの部分に対するスイッチングプロ ファイルが第8回に示される。30dBのチャネルSNRが 再び使用された。この図は予期される通り、BERスイッチ トシステムが可変スループットのRSSIシステムと同様の レベルスイッチングプロファイルを育している。レベルスイ ッチングに関するヒステリヒスがないのが顕著であるが、付 加的な報知オーバヘッドを引き起こさずかつ大きなBERの 変更もない。

デジタル方式の欧州コードレス遠隔通信(DECT)システムはTDDを使用しており、機送被当たり12チャネルを支持する。12ダウンリンクと12のアップリンクチャネルは10ms継続する24のスロットフレームを構成している。パケットを含む各タイムスロットは0.417msの周期を育する。パケットのデータは320ビットからなり、1152kシンボル/sで送信される。シミュレーションでは、各ビットはシステム容量を増大すべくQAMシンボルによって置き換えられる。ヘッダは受信機にコンステレーション点の

かかわらず、固定モデムに比べてよりすぐれたパフォーマン スを有している。

Fig.1.

可染レベルス後の おって 使用される プレーム特定

Fig.6.

2

Fig. 2.

Fig. 4.

34 Color of the ASSI ACTOR OF CITY RSSI ACTOR OF CITY ASSISTANCE OF CITY ASSISTA

補正書の翻訳文提出書(特許法第184条の8)

平成5年12月3日

特許庁長官 群生 渡 殿

1. 国際出願看号

PCT/GB92/00988

2. 発明の名称

コンステレーションがチャネル品質に応じて変更されるQAMシステム

3. 特許出期人

名 称 プリテイッシュ·テレコミュニケーションズ・パブリックリミテッド·カンパニー

4. 代理人

住所 東京都千代田区豊が間3丁目7番2号

鈴桑内外國特許事務所内 〒 100 電話03(3502)3181 (大代安)

氏名 (5847) 弁理士

81 (大(金) 戸却 発征 武彦 三方 (ほか3名) 50話

5. 補正の提出年月日

1993年5月7日

6. 添付き類の目録

(1) 補正書の翻訳文

القنا

2000 4000 6000 8000 10000 12000 14000 57 # IV

明 細 🛊

<u>コンステレーションがチャネル品質に応じて</u> 変更されるQAMシステム

本免明は無線システムに関し、特に、QAM(Quadrature Amplitude Nodwintion) を使用する移動体無線のための無線システムに関する。

レーリーフェージングのある移動体無線チャネルを介してのQAM伝送は、チャネルの信号対議音比(SNR)が高い場合でも、大きなフェージングによってパーストエラーが発生する。このため、チャネルの完全さに応じて変調レベルの数を変えることが考えられる。すなわち、伝送にフェージングがないときは、QAMコンステレーション(collicilities) 点を増やすことによって変調レベルの数を増加させ、フェージングが発生しているときはコンステレーション点の数を、許容可能なピットエラーレート(BER)を提供できるによって変調になど、アークングが発生しているときなる。要求されたBERとスイッチレベルが特定された場合、データスルーブットが変化する。他方、スルーブットが適当に固定された場合はBERが変化する。

1つの方法は、米国特許第4495619号に関示されているように、二重伝送を有する可変レートシステムと、前記無額リンクの他端に設けられた受信機によって情報が受信されたときに、リンクの品質を無線リンクの一端に設けられた送信機に知らせる方法を具備することである。送信機は

ート(BER)、あるいはこれらの組み合わせに応じて可変させる。

本発明の第3側面によれば、無線トランシーパであって、 受信信号の強さが所定の時間に渡って平均化されるとさもに、 次の送信に使用されるピット/シンボルの数がこの平均値に 応じて決定される。

本発明の第4 側面によれば、無線トランシーパであって、 復号化された受信デジタル信号がエラー後出システムを使用 して塩別され、次の送信に使用されるピット/シンボルの数 が、検出されたエラーの数と分布に基づいている。

無線通信が双方向性あるいは瞬時的に単方向性である無線システムにおいて、データがパケット又はプロックの形で配置され、各プロックの初期シンボルがそのプロック内で使用されるピット/シンボルの数を報知すべく保存される。

本発明の第5 側面によれば、早いフェージングを育する無 はチャネルを介して動作させるための移動体無線システムで あって、契約レベルの数が早いフェージングに等しいレート で可変させる。

本発明の第6側面によれば、無線トランシーパであって、 無線信号を受信する無線受信機と、

受信無線信号を評価する手段と、

受信信号の評価に基づいて、送信変調状態を選択する手段 と、

複数の変調状態を有する変調方法を使用して送信信号を送

信する無線送信機と、

前記無線送信機の送信状態を選択された変調状態に調整する主のと、

送信すべき信号に前記選択された変調状態の表示を含める 報知手段とを具備する。

請 求 の 輻 四

少なくとも1つが無線トランシーバを育する一対のステーションを具備する無線システムであって、

他のステーションからの信号を受信する無線受信機と、 受信した無線信号を評価する手段と、

受信信号の上記評価に基づいて送信要額状態を選択する手 役と、

複数の変調状態を有する変調方法を用いて、信号を他のス テーションに送信する無線送信機と、

前記無線送信機の送信状態を選択された前記変調状態に腐 整する手段と、

耐記他のステーションに送信される信号に向記選択された 変調状態の表示を含めるための報知手及と、 を具備する無線システム。

- 2. 前記製知手段が、前記変調状態の所定の1つで前記選択された変調状態の表示を送信すべく、前記無額送信機の変調状態を製整する手段を具備する特許請求の範囲第1項に記載の無線システム。
- 3. 前起無線システムが時分割二重動作を使用して動作する 特許請求の範囲第1又は2項に記載の無線システム。
- 4. 前記トランシーバの前記数網方法がQAM (quidritire implifite and alition) である特許請求の範囲第1、2又は3項に記載の無解システム。
- 5. 受信無線信号を評価する前記手段が、受信信号の強さと

これらの信号のピットエラーレートとの両方又は一方を評価 する特許請求の範囲第1項乃至4項のいずれかに記載の無線 システム。

- 6. 各ステーションが耐記した特許請求の範囲のいずれかに おいて定義された無線トランシーバを有する特許請求の範囲 第1項乃至第5項のいずれかに記載の無線システム。
- 7. 送信すべく各シンボル上に符号化された2選デジットの 数が、湖定された受信信号の強さ、測定されたビットエラー レート (BER)、あるいはこれらの組み合わせに応じて可 変されることを特徴とするデジタル信号送信のための無線ト ランシーパ。
- 8. 受信信号の独さが所定の時間に渡って平均化されるとと もに、次の送信に使用されるピット/シンボルの数がこの平 均磁に応じて決定されることを特徴とする無線トランシーバ。
- 9. 受信復号化デジタル信号のエラーがエラー検出システム を使用して識別され、次の送信に使用されるピット/シンポルの数が、検出されたエラーの数と分布に基づいていること を特徴とする無線トランシーパ。
- 10. 無線通信が双方向性あるいは瞬時的単方向性であり、データがパケット又はブロックの形で配置され、各ブロックの初期シンボルがそのブロック内で使用されるピット/シンボルの数を報知すべく保存される特許請求の範囲第1万至第6項のいずれかに記載の無線システム。

特表平6-507763 (10)

PCT/GB 92/00988

11. 早いフェージングを有する無線チャネルを介して動作させるための移動体無線システムであって、変調レベルの数が早いフェージングに等しいレートで可変される移動体無線システム。

12. 無線信号を受信する無線受信機と、

受信した無線信号を評価する手段と、

受信信号の評価に基づいて送信変闘状態を選択する手段と、

複数の変調状態を有する変調方法を使用して信号を送信する無線送信権と、

前記無線送信機の送信状態を前記選択された変調状態に顕 撃する平のと、

送信される信号に前記選択された変調状態の表示を含める 報知手段とを具備する無線トランシーバ。

CAMPACANO PO PLANET MATTE Ins.CT. 5 HO4LZ7/34; HD4L1/16 n. FULDS SCHOOLD int Cl. 5 HOLL Durk comments Supremer other than 14 premer (Destruction) to the Enter from their Destructions are discussed to the Finish Supremer Print Control of the Con CONTRACTO TO SE MILEN AND ! US.A. 4 495 619 (ACAPPORA) 22.January 1985 see abstract see column 2. line 68 - column 3. line 5 see column 3. line 18 - line 31 see column 6. line 35 - line 42 1-12 US,A.4 956 851 (WOLENSXY ET AL.) Il September 1990 1990
see abstract
see column 1, line 9 - line 15 Prodesdings of the 1928 [EEE Military Communica-tions Conference, 22 - 25 October, 1988, San Olege, US; pages 933 - 937; [EEE, Mew York, US; Jacobinsyer: / Schope for Bandwidth -Limited Kazer - Burst Channel; see page 914, left column, line 15 - line 21 see page 935, left column, line 1 - line 3 see right column, 1 no 5 - line 8 1-12 the second of the second and the second by 1 4. 00. 92 24 JULY 1992 10,000 EUROPEAN PATENT OFFICE

图解调查報告

PCT/G8 92/00988

Cassary * 1	Condense of Democrat, and Section 11, 12 (CONTROLLE) Figure 11 (CONTROLLE)	1000 to Comp. (c)
	IBM TECHNICAL DISCLOSURE BULLETIN vol. 23, no. 2, July 1980, page: 641 - 641; BARLET AND GODARD: 'Full speed recovery in high speed modems' ica page 641, line 8 - page 642, line 7	1-12
ļ	sem page 643, 11nm 5 - 1ine 7	1
- 1		İ
- 1		1
1		1
1		
- {]
		1 .
1		1
Į.		i
- {		
- {		1
1		1
- (1
- }		1
1		
1		
- 1		
		1
1		
		1
1		1
		Į.
1		i

图 异 词 主 报 告

GB 9200988 SA 59777

This came have the entire fracting continue relating to the point designation offset in the observational international manufactures.

The foreigness France Offset is in on any interface for the point of the point

22-01-85 [1-09-90	None	
L1-09-90		
	None	
		White Journal of the European Poisson Office, No., 1945

フロントページの続き

(81)指定国 EP(AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG), AU, BB, BG, BR, CA, CS, FI, GB, HU, JP, KP, KR, LK, MG, MW, NO, PL, RO, RU, SD, US

THIS PAGE BLANK (USPTO)