B = 128

Naïve: 0.000228; version 0: 0.000231

Version 1: 0.000424; version2: 0.00158

Version 3: 0.000469; Version 4: 0.000438

B = 256

Naïve: 0.000222; version 0: 0.000230

Version 1: 0.000360; version2: 0.00181:

Version 3: 0.000379; Version 4: 0.000365

B = 512

Naïve: 0.000221; version 0: 0.000228:

Version 1: 0.000312; version2: 0.00249:

Version 3: 0.000342; Version 4: 0.000334

B = 800

Naïve: 0.000235; version 0: 0.000235:

Version 1: 0.000300; version2: 0.00291:

Version 3: 0.000309; Version 4: 0.000303

B = 1024

Naïve: 0.000229; version 0: 0.000208:

Version 1: 0.000292; version2: 0.00284:

Version 3: 0.000299; Version 4: 0.000281

	naive	V0	V1	V2	V3	V4
128	0.000228	0.000231	0.000424	0.00158	0.000469	0.000438
256	0.000222	0.000230	0.000360	0.00181	0.000379	0.000365
512	0.000221	0.00228	0.000312	0.00249	0.000342	0.000334
800	0.000235	0.000235	0.000300	0.00291	0.000309	0.000303
1024	0.000229	0.000208	0.000292	0.00284	0.000299	0.000281

Performance:

V2< naïve = V0 < V1 = V4 < V3

V1, V3, V4 all decrease with B increase,

V2 very special, very large cosine similarity but very bad performance. Also cosine similarity increase with B increase

For now, V3 is the best.

V1 and V2's cosine similarity trend change:

For V2: A bug, sorry

For V1: Just a guess. Change of scale (which shouldn't effect the cosine similarity which is the direction), but unlike other method, convergence performance effect the direction of this method

Some random exploration:

Row-wise correlation of the gradient matrix

Cifar-10:

Layer 0:

Layer 1:

Layer 3:

Mnist:

Layer 0:

Layer 1:

Layer 2:

Layer 3:

