

International Baccalaureate® Baccalauréat International Bachillerato Internacional

FÍSICA NIVEL MEDIO PRUEBA 2

Jueves 10 de mayo de 2012 (tarde)

1 hora 15 minutos

INI	umer	o ae	con	voca	toria	dei a	lumi	10
0	0							

Código del examen

2	2	1	2	_	6	5	2	9

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste todas las preguntas.
- Sección B: conteste una pregunta.
- Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del *cuadernillo de datos de Física* para esta prueba.
- La puntuación máxima para esta prueba de examen es [50 puntos].

SECCIÓN A

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas.

A1. Pregunta de análisis de datos.

Las vigas metálicas se utilizan con frecuencia en edificios construidos para resistir terremotos (sismos). Para facilitar el diseño de estos edificios, se llevan a cabo experimentos en los que se mide cómo varía la frecuencia f natural de las oscilaciones horizontales de las vigas metálicas en función de sus dimensiones. En un experimento, se midió f para vigas dispuestas en vertical con igual área de sección transversal pero con diferentes alturas h.

(Pregunta A1: continuación)

En la gráfica se muestran los datos representados para este experimento. No se muestran las incertidumbres de los datos.

	< >	D'1 '	1/ 1	•	• ,	1 1 4
1	(a)	l Dibilie lina	linea de	meior	annste i	para los datos.
٨	u	Dibuje una	IIIIca ac	1110101	ajuste	puru ros autos.

[1]

(b) Se asume la hipótesis de que la frecuencia f es inversamente proporcional a la altura h.

Mediante la elección de **dos** puntos bien separados sobre la línea de mejor ajuste que ha dibujado en (a), demuestre que esta hipótesis es incorrecta. [4]

 	•
 	•

(Esta pregunta continúa en la siguiente página)

Véase al dorso

(Pregunta A1: continuación)

(c) Otra sugerencia es que la relación entre f y h sea de la forma mostrada a continuación, donde k es una constante.

$$f = \frac{k}{h^2}$$

La gráfica muestra una representación de f frente a h^{-2} .

Las incertidumbres en h^{-2} no se muestran por ser demasiado pequeñas.

- (i) Dibuje una línea de mejor ajuste para los datos que justifique la relación $f = \frac{k}{h^2}$. [2]
- (ii) Determine, a partir de la gráfica, la constante k. [3]

 • • •	 																						
					•	 	 •	• •	 	•	• •	 	•	•	 	•	 •	 	 	•	 ٠	 •	
 • • •	 				•	 	 •		 	•		 		•	 	•		 	 	•	 ٠	 •	
 • •	 		٠.	٠.		 	 -		 ٠.	•		 		•	 	•		 	 	•	 ٠	 •	
 	 		٠.			 	 •		 			 		•	 	•		 	 	•	 ٠	 -	
 	 	٠.	٠.			 	 -		 ٠.			 			 			 	 			 -	

(Pregunta A1: continuación)

(d)	Indique una razón por la cual los resultados del experimento no se podrían utilizar para predecir la frecuencia natural de oscilación para las vigas de altura 50 m.	[1]

A2. Esta pregunta trata de la cinemática.

(a)	Indique	la diferencia	entre rapi	dez media v	z rapidez	instantánea
١	u	, marque	ia airciciicia	chuc rupi	acz meara	rapiacz	mistantanca.

[2]

(b) En la gráfica se muestra cómo varía con el tiempo t la aceleración a de una partícula.

En el tiempo t=0 la rapidez instantánea de la partícula es cero.

(Pregunta A2: continuación)

,	4	Coloula la ra	nidaz inatan	támas da la	martíaula an	+ 750
١	(i)	Calcule la ra	piucz mstan	tanea ue ia	particula cii	$\iota \iota = \iota, \iota \circ \circ$.

[2]

	_	_					_		_	_	_	_	_	_	_	_	_				_	_	_			_	_			_
						 		 								 						 		 					_	

(ii) Utilizando los siguientes ejes, esquematice una gráfica que muestre como varía $\cot t$ la rapidez instantánea v de la partícula.

[1]

3.	Esta	pregu	inta trata de las reacciones nucleares.	
	(a)		úclido U-235 es un isótopo de uranio. Un núcleo de U-235 sufre desintegración activa a un núcleo de torio-231 (Th-231). El número de protones del uranio es 92.	
		(i)	Indique qué quieren decir los términos núclido e isótopo.	[2]
			Núclido:	
			Isótopo:	
		(ii)	Una de las partículas producidas en la desintegración de un núcleo de U-235 es un fotón gamma. Indique el nombre de otra partícula que también se produce.	[1]
	(b)		núcleos hijos del U-235 sufren desintegración radiactiva hasta que finalmente canza un isótopo estable de plomo.	
			lique por qué los núcleos del U-235 son inestables mientras que los núcleos del plomo estables.	[3]

[3]

(Pregunta A3: continuación)

(c) Los núcleos de U-235 bombardeados con neutrones de baja energía pueden sufrir fisión nuclear. La ecuación de la reacción nuclear para una fisión particular se muestra a continuación.

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{144}Ba + {}_{36}^{89}Kr + 3{}_{0}^{1}n$$

Demuestre, a partir de los datos siguientes, que la energía cinética de los productos de fisión está en torno a los 200 MeV.

Masa del núcleo de U-235 = 235,04393 u Masa del núcleo de Ba-144 = 143,922952 u Masa del núcleo de Kr-89 = 88,91763 u Masa del neutrón = 1,00867 u

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •
	•					•	•			•	•	•	•	•	•	•	•			 							 																																	
						•				•	•									 							 																																	

SECCIÓN B

Esta sección consta de tres preguntas: B1, B2 y B3. Conteste **una** pregunta. Escriba sus respuestas en las casillas provistas.

B1. Esta pregunta consta de **dos** partes. La **Parte 1** trata de los gases ideales y del calor específico. La **Parte 2** trata del movimiento armónico simple y las ondas.

Parte 1 Gases ideales y calor específico

(a)	Indique dos suposiciones del modelo cinético de un gas ideal.	[2]
(b)	El argón se comporta como un gas ideal para un gran rango de temperaturas y presiones. Un mol de argón se encuentra confinado en un cilindro por un pistón que se puede mover libremente.	
	(i) Defina qué quiere decir el término un mol de argón.	[1]

(Pregunta B1: parte 1 continuación)

(ii)	La temperatura del argón es 300 K. El pistón está fijo y el argón se calienta a volumen constante, de modo que su energía interna aumenta en 620 J. La temperatura del argón pasa a ser 350 K.	
	Determine el calor específico del argón en Jkg ⁻¹ K ⁻¹ bajo la condición de volumen constante. (El peso molecular del argón es 40)	[.
	temperatura de 350 K, se pasa a liberar el pistón de (b) y el argón se expande hasta su temperatura alcanza los 300 K.	
que Exp		1
que Exp	su temperatura alcanza los 300 K. lique, en términos del modelo molecular de un gas ideal, por qué la temperatura del	
que Exp	su temperatura alcanza los 300 K. lique, en términos del modelo molecular de un gas ideal, por qué la temperatura del	
que Exp	su temperatura alcanza los 300 K. lique, en términos del modelo molecular de un gas ideal, por qué la temperatura del	
Exp argó	su temperatura alcanza los 300 K. lique, en términos del modelo molecular de un gas ideal, por qué la temperatura del	
Exp argó	su temperatura alcanza los 300 K. lique, en términos del modelo molecular de un gas ideal, por qué la temperatura del n disminuye al expandirse.	
Exp argó	su temperatura alcanza los 300 K. lique, en términos del modelo molecular de un gas ideal, por qué la temperatura del n disminuye al expandirse.	

(Pregunta B1: continuación)

Parte 2 Movimiento armónico simple y ondas

(a) Se fija un extremo de un resorte (muelle) ligero a un soporte horizontal rígido.

Se cuelga un objeto W de masa $0,15 \,\mathrm{kg}$ del otro extremo del resorte. El alargamiento del resorte x es proporcional a la fuerza F que provoca la extensión. La fuerza por unidad de alargamiento del resorte k es de $18 \,\mathrm{N\,m^{-1}}$.

Un alumno tira de W hacia abajo de modo que el alargamiento del resorte se incrementa en 0,040 m. El alumno suelta W y, como consecuencia, W entra en movimiento armónico simple (MAS).

(1)	Indique que quiere decir la expresion "W entra en MAS".	[2]
(ii)	Determine la aceleración máxima de W.	[2]
(ii)	Determine la aceleración máxima de W.	[2]
(ii)	Determine la aceleración máxima de W.	[2]
(ii)	Determine la aceleración máxima de W.	[2]
(ii)	Determine la aceleración máxima de W.	[2]
(ii)	Determine la aceleración máxima de W.	[2]
(ii)	Determine la aceleración máxima de W.	[2]

(Pregunta B1: parte 2 continuación)

(iv) Determine la energía cinética máxima de W. W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir amortiguamiento crítico.		
(iv) Determine la energía cinética máxima de W. W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
(iv) Determine la energía cinética máxima de W. W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
(iv) Determine la energía cinética máxima de W. W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
W (a) se sumerge en un vaso de aceite. Como consecuencia de esta inmersión las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir	(iv)	Determine la energía cinética máxima de W.
las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
las oscilaciones de W se amortiguan críticamente. Describa qué quiere decir		
	las	oscilaciones de W se amortiguan críticamente. Describa qué quiere decir
	las	oscilaciones de W se amortiguan críticamente. Describa qué quiere decir
	las	oscilaciones de W se amortiguan críticamente. Describa qué quiere decir
	las	oscilaciones de W se amortiguan críticamente. Describa qué quiere decir
	las	oscilaciones de W se amortiguan críticamente. Describa qué quiere decir

(Pregunta B1: parte 2 continuación)

(c)	Se estira un resorte, como el de (a), en horizontal y se forma una onda progresiva
	(o viajera) longitudinal en el resorte, desplazándose hacia la derecha.

(1)	longitudinal.	a [2
		•
		•

(Pregunta B1: parte 2 continuación)

(ii) La gráfica muestra cómo varía con el tiempo *t* el desplazamiento *x* de una espira C del resorte.

La velocidad de la onda es de 3,0 cm s⁻¹. Determine la longitud de onda. [2]

(iii) Dibuje, sobre la gráfica de (c)(ii), el desplazamiento de una espira del resorte que se encuentra a 1,8 cm de C en la dirección y sentido de desplazamiento de la onda, justificando su respuesta.

[2]

B2.	. Esta pregunta consta de dos partes. La	a Parte 1 trata de la cinemática y la mecánica
	La Parte 2 trata de la diferencia de potenci	al eléctrico y de los circuitos eléctricos.

D 4 1	O. 71.	, .
Parte 1	Cinemática y	mecanica

(a)	Defina momento lineal.	[1]
(b)	Indique, en términos del momento, la segunda ley de Newton del movimiento.	[1]
(c)	Demuestre, utilizando su respuesta a (b), cómo el impulso de una fuerza F está relacionado con la variación del momento Δp provocada por la fuerza.	[1]

(Pregunta B2: parte 1 continuación)

(d) Un vagón de ferrocarril sobre una vía recta y plana se encuentra inicialmente en reposo. Una máquina da un empujón rápido y horizontal al vagón, de modo que este pasa a rodar sobre la vía.

La máquina está en contacto con el vagón durante un tiempo de T = 0.54 s y la velocidad inicial del vagón tras el empujón es de $4.3 \,\mathrm{m\,s^{-1}}$. La masa del vagón es de $2.2 \times 10^3 \,\mathrm{kg}$.

Debido al empujón, la máquina ejerce una fuerza de módulo F sobre el vagón. El esquema muestra cómo varía F en función del tiempo de contacto t.

(i) Determine el módulo de la fuerza máxima $F_{\rm max}$ ejercida por la máquina sobre el vagón. [4]

(Esta pregunta continúa en la siguiente página)

Véase al dorso

(Pregunta B2: parte 1 continuación)

(ii)	Tras el contacto con la máquina (t =0,54s) el vagón se mueve una distancia de 15 m a lo largo de la vía. Tras desplazarse esta distancia, la velocidad del vagón es de 2,8 m s ⁻¹ . Suponiendo una aceleración uniforme, calcule el tiempo que llevará al vagón desplazarse 15 m.	[2]
(iii)	Calcule el ritmo medio al que se disipa la energía cinética del vagón mientras este se desplaza a lo largo de la vía.	[2]
(iv)	Cuando la velocidad del vagón alcanza los $2.8 \mathrm{ms^{-1}}$, este colisiona con otro vagón en reposo de masa $3.0 \times 10^3 \mathrm{kg}$. Los dos vagones pasan a moverse juntos con una velocidad V . Demuestre que la velocidad $V = 1.2 \mathrm{ms^{-1}}$.	[2]

(Pregunta B2: parte 1 continuación)

v)	Resuma las transformaciones de energía que tienen lugar durante la colisión d dos vagones.	le los	[2

(Pregunta B2: continuación)

Parte 2 Diferencia de potencial eléctrico y circuitos eléctricos

(a)	Se aceleran desde el reposo átomos de hidrógeno ionizados que se encuentran en el vacío entre dos placas conductoras paralelas verticales. La diferencia de potencial entre las placas es V . Como resultado de la aceleración cada ion gana una energía de $1,9 \times 10^{-18}$ J.				
	Calc	rule el valor de V .	[2]		
(b)	Se sustituyen las placas de (c) por una batería que tiene una f.e.m. de $12,0\mathrm{V}$ y resistencia interna de $5,00\Omega$. Se conecta un resistor de resistencia R en serie con la batería. La energía transferida por la batería a un electrón mientras este se desplaza a través del resistor es de $1,44\times10^{-18}\mathrm{J}$.				
	(i)	Defina resistencia de un resistor.	[1]		
	(ii)	Describa qué quiere decir resistencia interna.	[2]		

(Pregunta B2: parte 2 continuación)

(iii)	Demuestre que el valor de R es de $15,0\Omega$.	[4]
(iv)	Calcule la potencia total suministrada por la batería.	[1]

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

Esta pregunta consta de **dos** partes. La **Parte 1** trata de la energía solar y los modelos climáticos. **B3**. La Parte 2 trata de los campos gravitatorios y de los campos eléctricos.

Energía solar y modelos climáticos Parte 1

(a)	Distinga, en relación con los cambios de energía involucrados, entre un panel de calentamiento solar y una célula fotovoltaica.	[2]
(b)	Indique un uso doméstico adecuado para (i) un panel de calentamiento solar.	[1]
	(ii) una célula fotovoltaica.	[1]

(Pregunta B3: parte 1 continuación)

(c)	La potencia radiante del Sol es de $3,90 \times 10^{26}$ W. El radio medio de la órbita de la Tierra en torno al Sol es de $1,50 \times 10^{11}$ m. El albedo de la atmósfera es de $0,300$ y se puede suponer que no hay energía absorbida por la atmósfera.		
	Demuestre que la intensidad incidente sobre un panel de calentamiento solar sobre la superficie de la Tierra cuando el Sol está directamente encima es de 966 W m ⁻² .	[3]	
(d)	Demuestre, utilizando su respuesta a (c), que la intensidad media incidente sobre la superficie de la Tierra es de 242 W m ⁻² .	[3]	

(Pregunta B3: parte 1 continuación)

y energía absorbida por la atmósfera, utilice su respuesta a (d) para demostrar que temperatura media predicha para la superficie de la Tierra será de 256 K.
esuma, en relación con el efecto invernadero, por qué la temperatura media d superficie de la Tierra es mayor de 256 K.
superficie de la Tierra es mayor de 256K.
superficie de la Tierra es mayor de 256K.
superficie de la Tierra es mayor de 256 K.
superficie de la Tierra es mayor de 256 K.
superficie de la Tierra es mayor de 256 K.

(Pregunta B3: continuación)

Parte 2 Campos, diferencia de potencial eléctrico y circuitos eléctricos

(a) El módulo de la intensidad de campo gravitatorio *g* se define a partir de la ecuación que se muestra a continuación.

$$g = \frac{F_{\rm g}}{m}$$

El módulo de la intensidad del campo eléctrico E se define a partir de la ecuación que se muestra a continuación.

$$E = \frac{F_{\rm E}}{q}$$

Para cada una de estas ecuaciones de definición, indique el significado de los símbolos

(1)	$\Gamma_{\mathbf{g}}$.	[1]
(ii)	$F_{ m E}$.	[1]
(iii)	m.	[1]

(Pregunta B3: parte 2 continuación)

(1V)	y .
en u en e	un modelo simple del átomo de hidrógeno, se considera que el electrón se encuentra na órbita circular en torno al protón. El módulo de la intensidad de campo eléctrico l electrón debida al protón es $E_{\rm p}$. El módulo de la intensidad del campo gravitatorio l electrón debida al protón es $g_{\rm p}$.
(i)	Dibuje el patrón del campo eléctrico debido al protón en solitario.
	•

(Pregunta B3: parte 2 continuación)

(ii	Determine el orden de magnitud del cociente mostrado a continuación.	[3]
	$E_{\mathtt{p}}$	
	$\overline{g_{\mathfrak{p}}}$	
		\neg