Confidence Intervals For Proportions And Probabilities

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

How to build confidence intervals for proportions and probabilities

Confidence intervals for Monte Carlo simulations

Limitations of the confidence-interval framework

Estimating a population proportion

COVID-19 prevalence in New York

Population proportion:

$$\theta_{\mathsf{pop}} = 0.05$$

1,000 random samples out of 8.8 million

Sample proportion = 0.055 ($\theta_{pop} = 0.05$)

1,000 random samples out of 8.8 million

Sample proportion = 0.049 ($\theta_{pop} = 0.05$)

1,000 random samples out of 8.8 million

Sample proportion = 0.052 ($\theta_{pop} = 0.05$)

Sample proportions of 10,000 subsets of size 1,000

Goal: Characterize probabilistic behavior of sample proportion

Confidence interval

Main idea: Report a range of values that contain parameter with high probability (e.g. 95%)

Sample proportion

Data: $a_1, a_2, ..., a_N$

 $a_i=1$ if *i*th data point satisfies a certain condition (e.g. person has COVID-19)

Random samples: \tilde{x}_1 , \tilde{x}_2 , ..., \tilde{x}_n

Sample proportion is just sample mean:

$$\tilde{m} := \frac{1}{n} \sum_{i=1}^{n} \tilde{x}_{i}$$

Confidence interval for the mean

If \tilde{x}_1 , \tilde{x}_2 , \tilde{x}_3 , ... are independent random variables with mean μ and variance σ^2

$$\tilde{m} := \frac{1}{n} \sum_{i=1}^{n} \tilde{x}_i$$

$$\mathrm{E}\left[\tilde{m}\right] = \mu$$

$$\operatorname{Var}\left[\tilde{m}\right] = \frac{\sigma^2}{n}$$

$$\widetilde{\mathcal{I}}_{1-lpha} := \left[\widetilde{m} - rac{c_lpha \sigma}{\sqrt{n}}, \widetilde{m} + rac{c_lpha \sigma}{\sqrt{n}}
ight] \qquad c_lpha := F_{\widetilde{z}}^{-1} \left(1 - rac{lpha}{2}
ight)$$

$$\widetilde{\mathcal{I}}_{0.95} := \left[\widetilde{a} - \frac{1.96\sigma}{\sqrt{n}}, \widetilde{a} + \frac{1.96\sigma}{\sqrt{n}} \right]$$

Confidence interval for a probability

If \tilde{b}_1 , \tilde{b}_2 , \tilde{b}_3 , ... are Bernoulli random variables with parameter θ

$$\tilde{m} := \frac{1}{n} \sum_{i=1}^{n} \tilde{b}_i$$

$$\mathrm{E}\left[\tilde{m}\right]=\theta$$

$$\operatorname{Var}\left[\tilde{m}\right] = \frac{\theta(1-\theta)}{n}$$

$$\widetilde{\mathcal{I}}_{1-lpha} := \left[\widetilde{m} - c_lpha \sqrt{rac{ heta(1- heta)}{n}}, \widetilde{m} + c_lpha \sqrt{rac{ heta(1- heta)}{n}}
ight]$$

Confidence interval for a probability

$$\widetilde{\mathcal{I}}_{1-lpha} := \left[\widetilde{m} - c_lpha \sqrt{rac{ heta(1- heta)}{n}}, \widetilde{m} + c_lpha \sqrt{rac{ heta(1- heta)}{n}}
ight]$$

$$h(\theta) := \theta(1 - \theta) \le 0.25$$

$$\frac{dh(\theta)}{d\theta} = 1 - 2\theta \qquad \frac{d^2h(\theta)}{d\theta^2} = -2$$

$$\widetilde{\mathcal{I}}_{1-\alpha} \subset \left[\tilde{\mathbf{m}} - \frac{0.5c_{\alpha}}{\sqrt{n}}, \tilde{\mathbf{m}} + \frac{0.5c_{\alpha}}{\sqrt{n}} \right]$$

$$\widetilde{\mathcal{I}}_{0.95} \subset \left[\widetilde{\textit{m}} - \frac{0.98}{\sqrt{\textit{n}}}, \widetilde{\textit{m}} + \frac{0.98}{\sqrt{\textit{n}}} \right]$$

Confidence interval for population proportion θ_{pop}

Data: $a_1, a_2, ..., a_N$

 $a_i = 1$ if *i*th data point satisfies a certain condition (e.g. person has COVID-19)

Random samples: $\tilde{x}_1, \, \tilde{x}_2, \, \ldots, \, \tilde{x}_n$

Bernoulli random variables with parameter θ_{pop}

$$\widetilde{\mathcal{I}}_{1-lpha} \subset \left[\widetilde{m} - rac{0.5c_{lpha}}{\sqrt{n}}, \widetilde{m} + rac{0.5c_{lpha}}{\sqrt{n}}
ight]$$

$$\widetilde{\mathcal{I}}_{0.95} \subset \left[\widetilde{m} - \frac{0.98}{\sqrt{n}}, \widetilde{m} + \frac{0.98}{\sqrt{n}}\right]$$

Prevalence of COVID-19

Goal: Estimate prevalence θ_{pop} of COVID-19 in New York City

How many tests so error $\leq 1\%$ with probability at least 0.95?

$$\widetilde{\mathcal{I}}_{0.95} \subset \left[\tilde{\textbf{m}} - \frac{0.98}{\sqrt{n}}, \tilde{\textbf{m}} + \frac{0.98}{\sqrt{n}}\right]$$

$$\frac{0.98}{\sqrt{n}} < 0.01 \implies n \ge 9604$$

The Monte Carlo method

Idea: Estimate P(A) by simulating outcomes and checking how many are in A

Key question: Have we done enough simulations?

Use confidence intervals!

2021 Tokyo Olympics

3x3 basketball tournament

Participants: Belgium, China, Japan, Latvia, the Netherlands, Poland, the Russian Olympic Committee (ROC), and Serbia

Goal: Estimate probability that each team wins

Tournament

Group stage followed by bracket

Monte Carlo method

To estimate probability θ that a team wins:

- 1. We simulate the tournament *n* times independently
- 2. In each simulation, $P(\text{team wins}) = \theta$
- 3. Compute the fraction of simulations $\widetilde{P}_{\text{MC}}$ in which team wins

Sample mean of n Bernoulli random variables with parameter θ

$$\widetilde{\mathcal{I}}_{1-\alpha} \subset \left[\widetilde{\mathrm{P}}_{\mathsf{MC}} - \frac{0.5c_{\alpha}}{\sqrt{n}}, \widetilde{\mathrm{P}}_{\mathsf{MC}} + \frac{0.5c_{\alpha}}{\sqrt{n}}\right]$$

$$\widetilde{\mathcal{I}}_{0.95} \subset \left[\widetilde{\mathrm{P}}_{\mathsf{MC}} - \frac{0.98}{\sqrt{n}}, \widetilde{\mathrm{P}}_{\mathsf{MC}} + \frac{0.98}{\sqrt{n}}\right]$$

Results

1,000 simulations: Latvia wins more often

Have we done enough simulations? No

2021 Tokyo Olympics

100,000 simulations: Serbia wins more often

Have we done enough simulations? Yes

Real poll (Pennsylvania)

Data: 281 people intend to vote for Trump, 300 for Biden

Parameter: Fraction of Trump voters in population θ

$$\widetilde{\mathcal{I}}_{0.95} \subset \left[\widetilde{m} - \frac{0.98}{\sqrt{n}}, \widetilde{m} + \frac{0.98}{\sqrt{n}} \right]$$

$$= \left[0.484 - \frac{0.98}{\sqrt{581}}, 0.484 + \frac{0.98}{\sqrt{581}} \right] = [0.444, 0.524]$$

Probability that Trump wins, $P(\theta \ge 0.5)$?

Bayesian model

Bayesian model

Precipitation

Goal: Estimate fraction of time that it rains in Coos Bay

Ground truth: 11.3%

Data: 500 hourly measurements

0.95 confidence interval

$$\widetilde{\mathcal{I}}_{0.95} \subset \left[\widetilde{\textit{m}} - \frac{0.98}{\sqrt{\textit{n}}}, \widetilde{\textit{m}} + \frac{0.98}{\sqrt{\textit{n}}} \right]$$

Sequential measurements

Randomized measurements

How to build confidence intervals for proportions and probabilities

Confidence intervals for Monte Carlo simulations

Limitations of the confidence-interval framework