Project Development Phase

Delivery of Sprint 2

Date	01 November 2022
Team ID	PNT2022TMID36404
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Task 1:

Model Building:

Adding CNN Layers:

Code:

```
#ADDING CNN LAYERS

model.add(Conv2D(32,(3,3),input_shape=(64,64,3),activation='relu'))#con
volution layer
model.add(MaxPooling2D(pool_size=(2,2)))#MaxPooling2D for downsampling
the input

model.add(Conv2D(32,(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())#flatten the dimension of the image
```

Adding Dense Layers:

Code:

```
#ADDING DENSE LAYERS

model.add(Dense(32)) #deeply connected neural network layers.
model.add(Dense(6,activation='softmax'))
```

Model Summary:

Code:

```
#MODEL SUMMARY
model.summary() #summary of the model
```

Output:

Configure the Learning Process:

Code:

```
#CONFIGURE THE LEARNING PROCESS
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=
['accuracy'])
```

Train the Model:

Code:

Output:

```
| Comment | Sprint 2.jpynb | Sprint 2.jp
```

Save the Model:

Code:

```
#SAVE THE MODEL
model.save('ECG.h5')
```

Test the Model:

Code:

Output:

```
**Sprint 2.ipynb **

File Edit View insert Runtime Tools Help All changes sizeed

**Code + Text

**Code + Text

**PAMME AS INPUT ing = image.load_ing(r'/content/data/test/Premature Atrial Contraction/fig_100.png",target_size=(64,64))#loading of the image x = image.lmg.to_array/(sng)*image to array x = np.espand_ins(x,xasts = 0)*echanging the shape pred = model.predict(x)predicting the classes pred = model.predicting contractions', 'Bright Bundle Branch Block', 'Ventricular Fabrillation') result

**Insular Standard St
```