Inhaltsverzeichnis

1	Norms Used	2
2	Functional Analysis Theorems	2
3	Fourier Transformation	2
4	Important Inequalities 4.1 Sobolev Embedding	2 2
5	Basic Analysis	3

Here everything can be written down that helps with understanding the Non-Linear Wave Equations Lecture and solving the exercises.

1 Norms Used

2 Functional Analysis Theorems

Theorem 1 (Arzelà-Ascoli theorem, source: Wiki). Consider a sequence of functions (f_n) defined on a compact interval. If this sequence is uniformly bounded and uniformly equicontinuous, then there exists a subsequence (f_{n_k}) that converges uniformly.

Definition 2 (uniformly equicontinuous). A sequence of functions (f_n) is said to be uniformly equicontinuous if, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f_n(x) - f_n(y)| < \varepsilon \tag{1}$$

whenever $|x-y| < \delta$ for all functions f_n in the sequence.

This is the version of Arzelà-Ascoli used on example sheet 6, problem*, in a specific norm:

Theorem 3 (Arzelà-Ascoli theorem, source: solution to sheet 5). Suppose there is a sequence (of solutions) $(\phi^{(i)})$ in $C^{k-1}([0,T]\times\mathbb{R}^n)$ that converges to ϕ in a $C^{k-1}([0,T]\times\mathbb{R}^n)$ -sense and is uniformly bounded, meaning $\|\partial^k\phi\|_{L^\infty}\leq A$ (A not dependent on i).

Then, there exists a subsequence $(\phi^{(i_{\lambda})})$ that converges in $C^{k}([0,T]\times\mathbb{R}^{n})$.

Theorem 4 (Banach-Alaoglu).

Theorem 5 (Riesz Representation thm).

3 Fourier Transformation

4 Important Inequalities

4.1 Sobolev Embedding

Theorem 6 (Sobolev embedding thm; source: sheet 1). There exists a constant C = C(n, s) > 0 such that for every $f \in H^s(\mathbb{R}^n)$ with $s > \frac{n}{2}$ we have

$$||f||_{L^{\infty}(\mathbb{R}^n)} \le C||f||_{H^s(\mathbb{R}^n)}. \tag{2}$$

Theorem 7 (second Sobolev embedding thm; source: Wiki). If n < pk and $r + \alpha = k - \frac{n}{p}$ with $\alpha \in (0,1)$, then one has the embedding

$$W^{k,p}(\mathbb{R}^n) \subset C^{r,\alpha}(\mathbb{R}^n). \tag{3}$$

5 Basic Analysis

Theorem 8 (Young's Inequality). Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Then, for any non-negative a and b it holds

$$ab = \frac{a^p}{p} + \frac{b^q}{q}. (4)$$