Problem statement

 $\,$ A real state agents want help to predict the house price for region in the USA.He gave you the dataset to

work on and you decided to use the Linear Regression Model.Create a model that will help him to estimatedata.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

df=pd.read_csv(r"C:\Users\91720\Downloads\USA_Housing.csv")
df

Out[2]:

	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michae 674\nLau	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johr Suite Kath	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
912 Stravenue\nE \	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnet	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raym	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
USNS Willi AP 3	1.060194e+06	22837.361035	3.46	6.137356	7.830362	60567.944140	4995
PSC 8489\nAPO	1.482618e+06	25616.115489	4.02	6.576763	6.999135	78491.275435	4996
4215 Tra Suite 076\nJ	1.030730e+06	33266.145490	2.13	4.805081	7.250591	63390.686886	4997
USS Wallace	1.198657e+06	42625.620156	5.44	7.130144	5.534388	68001.331235	4998
37778 Geo Apt. 509\n	1.298950e+06	46501.283803	4.07	6.792336	5.992305	65510.581804	4999

5000 rows × 7 columns

In [3]:

df.head()

Out[3]:

Αι	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fe 674\nLaurabı	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnsor Suite 079 Kathleer	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eli Stravenue∖nDani WI 0	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nF	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymonc AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [5]:

df.describe()

Out[5]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [6]:

df.columns

Out[6]:

EXPLORATORY DATA ANALYSIS

In [7]:

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x14598d1e490>

In [8]:

```
sns.displot(df['Price'])
```

Out[8]:

<seaborn.axisgrid.FacetGrid at 0x1459c5b3a90>

In [9]:

```
sns.displot(df['Area Population'])
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x1459c651450>

In [10]:

Housedf=df[['Avg. Area Income','Avg. Area House Age','Avg. Area Number of Rooms','Avg. A

In [11]:

sns.heatmap(Housedf.corr())

Out[11]:

<Axes: >

In []:

In [21]:

```
x=Housedf[['Avg. Area Income','Avg. Area House Age','Avg. Area Number of Rooms','Avg. Ar
y=df['Price']
```

In [22]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)
```

In [14]:

```
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(x_train,y_train)
```

Out[14]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [15]:

```
print(lm.intercept_)
```

-2641372.6673013885

In [16]:

```
coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficent'])
coeff_df
```

Out[16]:

	coefficent
Avg. Area Income	21.617635
Avg. Area House Age	165221.119872
Avg. Area Number of Rooms	121405.376596
Avg. Area Number of Bedrooms	1318.718783
Area Population	15.225196

In [17]:

```
predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[17]:

<matplotlib.collections.PathCollection at 0x145a125d190>

In [19]:

```
sns.displot((y_test-predictions),bins=50);
```


In [20]:

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 81257.55795855928 MSE: 10169125565.897568 RMSE: 100842.0823163503