EXERCICE 1.

Soit G un groupe. Notre but est de montrer que G est isomorphe à un sous-groupe de S(G).

1. Pour cela considérons pour tout $g \in G$ l'application translation à gauche par g

$$\phi_g: G \to G, h \mapsto gh$$
.

Montrer que $\phi_q \in S(G)$.

2. Montrer que $G \longrightarrow S(G), g \longmapsto \phi_q$, est un morphisme injectif. Conclure.

EXERCICE 2.

Soient E un ensemble et $x \in E$. On pose

$$S(x) = {\sigma \in \mathfrak{S}(E), \sigma(x) = x}$$

Montrer que S(x) est un sous-groupe de $\mathfrak{S}(E)$.

EXERCICE 3.

Soit $G = \mathbb{R}^* \times \mathbb{R}$. On pose pour tous éléments (x,y) et (x',y') de G:

$$(x,y) * (x',y') = (xx',xy'+y)$$

- 1. Vérifier que * est une loi interne associative sur G.
- 2. Vérifier que (G,*) est un groupe. Est-il commutatif?
- 3. Donner une expression de $(x,y)^{*n}$.

EXERCICE 4.

Soit G =]-1,1[. On pose pour tous éléments x et y de G:

$$x * y = \frac{x + y}{1 + xy}$$

- 1. Vérifier que * est une loi interne associative sur G.
- 2. Vérifier que (G,*) est un groupe. Est-il commutatif?
- 3. Donner une expression de x^{*n} .

EXERCICE 5.

Soient G un groupe et H, K deux sous-groupes de G.

- 1. Montrer que $H \cap K$ est un sous-groupe de G.
- 2. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

EXERCICE 6.★

Soit G un groupe. Etant donné un élément a de G on définit l'application :

$$\phi_{\alpha}: \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & \alpha x \alpha^{-1} \end{array} \right.$$

- 1. Soit $a \in G$. Montrer que ϕ_a est un automorphisme de G.
- 2. On pose $\mathfrak{I}(G)=\{\phi_{\alpha},\alpha\in G\}$. Montrer que l'ensemble $\mathfrak{I}(G)$ est un sous-groupe de Aut(G).
- 3. Montrer que $\varphi : \left\{ \begin{array}{ccc} G & \longrightarrow & \mathfrak{S}(G) \\ a & \longmapsto & \varphi_a \end{array} \right.$ est un morphisme de groupes.

EXERCICE 7.

Soit G un groupe. Montrer que f : $\begin{cases} G & \longrightarrow & G \\ \chi & \longmapsto & \chi^{-1} \end{cases}$ est un automorphisme de G si et seulement si G est commutatif.

EXERCICE 8.

Déterminer les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

EXERCICE 9.

Soit G un groupe d'élément neutre e tel que $\forall x \in G$, $x^2 = e$. Montrer que G est commutatif.

EXERCICE 10.

Montrer que les endomorphismes de groupe de $(\mathbb{R}, +)$ continus sont les homothéties i.e. les applications $x \mapsto \lambda x$ avec $\lambda \in \mathbb{R}$.

EXERCICE 11.

Soit (G,.) un groupe. On définit le centre de G par

$$Z(G) = \{ a \in G \mid \forall x \in G, ax = xa \}$$

i.e. l'ensemble des éléments de G qui commutent avec tous les éléments de G. Montrer que Z(G) est un sous-groupe de G.

EXERCICE 12.

On munit \mathbb{R} de la loi interne * définié par : $\forall a, b \in \mathbb{R}$, a * b = a + b + ab. (\mathbb{R} , *) est-il un groupe?

EXERCICE 13.

Soit G un sous-groupe de $(\mathbb{R}, +)$. On suppose G non trivial i.e. $G \neq \{0\}$.

- 1. Question préliminaire : soient $\alpha \in \mathbb{R}_+^*$ et $\beta \in \mathbb{R}$. Montrer qu'il existe $n \in \mathbb{Z}$ tel que $n\alpha \leq \beta < (n+1)\alpha$.
- 2. Justifier que $G \cap \mathbb{R}_+^*$ possède une borne inférieure que l'on notera \mathfrak{a} .
- **3.** On suppose que a > 0.
 - a. On suppose que $a \notin G$. Justifier l'existence de deux éléments distincts x et y de G appartenant à l'intervalle]a, 2a[.
 - **b.** Aboutir à une contradiction et en déduire que $a \in G$.
 - **c.** En déduire que $\mathfrak{a}\mathbb{Z} \subset G$.
 - **d.** Soit $z \in G$. En utilisant la question 1, montrer qu'il existe $n \in \mathbb{Z}$ tel que z = na.
 - **e.** En déduire que $G = \mathfrak{a}\mathbb{Z}$.
- **4.** On suppose que a = 0.
 - $\textbf{a.} \ \ \mathrm{Soient} \ \ t \in \mathbb{R} \ \mathrm{et} \ \ \epsilon > 0. \ \mathrm{En} \ \mathrm{utilisant} \ \ \mathrm{la} \ \mathrm{question} \ \ \mathbf{1}, \ \mathrm{montrer} \ \mathrm{qu'il} \ \mathrm{existe}$ $g \in G \ \ \mathrm{tel} \ \mathrm{que} \ |g-t| < \epsilon.$
 - **b.** En déduire que G est dense dans \mathbb{R} .

EXERCICE 14.

Soit ${\sf G}$ un groupe abélien fini d'ordre impair. Calculer le produit des éléments de ${\sf G}.$

EXERCICE 15.

Soient (G,*) un groupe et H un ensemble. On suppose qu'il existe une bijection f de G sur H. On définit la loi . sur H de la manière suivante :

$$\forall (x,y) \in H^2, x.y = f(f^{-1}(x) * f^{-1}(y))$$

Montrer que (H,.) est un groupe.

EXERCICE 16.

Soient (G,*) un groupe et (H,.) un ensemble muni d'une loi interne. On suppose qu'il existe une surjection de G sur H vérifiant

$$\forall (x,y) \in G^2, f(x*y) = f(x).f(y)$$

Montrer que (H,.) est un groupe. Que peut-on dire de f?

EXERCICE 17.

Soit G un groupe. On définit une relation binaire ~ sur G par

$$\forall (x,y) \in G^2, \ x \sim y \iff \exists g \in G, y = g^{-1}xg$$

Montrer que ~ est une relation d'équivalence.

EXERCICE 18.

Soient G un groupe et H un sous-groupe de G. On définit une relation binaire \sim sur G par

$$\forall (x,y) \in G^2, x \sim y \iff \exists h \in H, y = xh$$

Montrer que ~ est une relation d'équivalence.

EXERCICE 19.

Dans cette exercice, on pourra identifier le plan à $\mathbb C$ via un repère orthonormé. On pourra en particulier identifier une transformation du plan à une application de $\mathbb C$ dans $\mathbb C$.

- 1. On note G l'ensemble des translations et des similitudes directes du plan. Montrer que G muni de la loi de composition est un groupe.
- 2. On note H l'ensemble des translations et des rotations du plan. Montrer que H est un sous-groupe de G.

EXERCICE 20.

Montrer que l'ensemble des nombres décimaux

$$\mathbb{D} = \left\{ \frac{k}{10^n} : (k, n) \in \mathbb{Z} \times \mathbb{N} \right\}$$

est un sous-anneau de \mathbb{Q} . Est-ce aussi un sous-corps?

EXERCICE 21.

Montrer que tout anneau commutatif intègre fini est un corps.

EXERCICE 22.

On note $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$

- 1. Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif.
- 2. Déterminer les éléments inversibles de Z[i].

EXERCICE 23.

Soit $(A, +, \times)$ un anneau. Un élément $\mathfrak a$ de A est dit nilpotent s'il existe $\mathfrak n \in \mathbb N$ tel que $\mathfrak a^{\mathfrak n} = \mathfrak 0$.

- 1. Soit $(x, y) \in A^2$. Montrer que si xy est nilpotent, alors yx est nilpotent.
- 2. Soit $(x,y) \in A^2$. Montrer que si x et y commutent et que l'un des deux est nilpotent, alors xy est nilpotent.
- 3. Soit $(x,y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x+y est nilpotent.
- 4. Soit $x \in A$. Montrer que si x est nilpotent, alors 1-x est inversible et calculer son inverse.

EXERCICE 24.

Soit A un anneau tel que $\forall x \in A, \ x^2 = x$ (on dit que les éléments de A sont idempotents).

- 1. Montrer que $\forall x \in A, 2x = 0$.
- **2.** Montrer que A est commutatif.

EXERCICE 25.★★

Soit f un endomorphisme de corps de \mathbb{R} .

- 1. Montrer que $f_{|\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$.
- 2. Montrer que f est croissant.
- **3.** Montrer que $f = Id_{\mathbb{R}}$.

EXERCICE 26.

Soit E un ensemble non vide. Pour $A, B \in \mathcal{P}(E)$, on définit la différence de A et B par $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

- 1. Montrer que $(\mathcal{P}(\mathsf{E}), \Delta, \cap)$ est un anneau commutatif. Préciser les éléments neutres pour Δ et \cap .
- **2.** Quels sont les éléments de $\mathcal{P}(\mathsf{E})$ inversibles pour \cap ?
- **3.** L'anneau $(\mathcal{P}(\mathsf{E}), \Delta, \cap)$ est-il intègre?

EXERCICE 27.

On note $\mathbb{Q}[\sqrt{3}]$ l'ensemble des réels de la forme $\mathfrak{a}+\mathfrak{b}\sqrt{3}$ avec $(\mathfrak{a},\mathfrak{b})\in\mathbb{Q}^2$. Montrer que $\mathbb{Q}[\sqrt{3}]$ est un corps.

EXERCICE 28.

Soit A un anneau intègre commutatif fini.

- 1. Soit a un élément non nul de A. Montrer que l'application ϕ : $\left\{ \begin{array}{ccc} A & \longrightarrow & A \\ x & \longmapsto & ax \end{array} \right. \text{ est bijective.}$
- 2. En déduire que A est un corps.