Задача А. Число сочетаний

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

По данным натуральным n и k вычислите значение $C_n^k = \frac{n!}{k!(n-k)!}$ (число сочетаний из n элементов по k).

Формат входных данных

Вводятся 2 числа - n и k $(n, k \le 30)$.

Формат выходных данных

Необходимо вывести значение C_n^k .

стандартный ввод	стандартный вывод
2	2
1	

Задача В. Калькулятор с восстановлением ответа

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Имеется калькулятор, который выполняет три операции:

- 1. Прибавить к числу X единицу.
- 2. Умножить число X на 2.

Определите кратчайшую последовательность операций, необходимую для получения из числа 1 заданное число N.

Формат входных данных

Программа получает на вход одно число N, не превосходящее 10^6 .

Формат выходных данных

Выведите строку, состоящую из цифр "1", "2" или "3", обозначающих одну из трех указанных операций, которая получает из числа 1 число N за минимальное число операций. Если возможных минимальных решений несколько, выведите любое из них.

стандартный ввод	стандартный вывод
1	
5	121
562340	3333312222122213312

Задача С. Попытка к бегству

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

Узник пытается бежать из замка, который состоит из $N \times M$ квадратных комнат, расположенных в виде прямоугольника $N \times M$. Между любыми двумя соседними комнатами есть дверь, однако некоторые комнаты закрыты и попасть в них нельзя. В начале узник находится в левой верхней комнате и для спасения ему надо попасть в противоположную правую нижнюю комнату. Времени у него немного, всего он может побывать не более, чем в N+M-1 комнате на своем пути, то есть перемещаться он должен только вправо или вниз. Определите количество маршрутов, которые ведут к выходу.

Формат входных данных

Первая строчка входных данных содержит натуральные числа N и M, не превосходящих 1000. Далее идет план замка в виде N строчек из M чисел в каждой. Одно число соответствует одной комнате: 1 означает, что в комнату можно попасть, 0 — что комната закрыта.

Формат выходных данных

Программа должна напечатать количество маршрутов, ведущих узника к выходу и проходящих через M+N-1 комнату, или слово Impossible, если таких маршрутов не существует.

Входные данные подобраны таким образом, что искомое число маршрутов не превосходит 2.000.000.000.

стандартный ввод	стандартный вывод
3 5	3
1 1 1 1 1	
1 0 1 0 1	
1 1 1 1 1	

Задача D. Ход конём-2

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дана прямоугольная доска $N \times M$ (N строк и M столбцов). В левом верхнем углу находится шахматный конь, которого необходимо переместить в правый нижний угол доски. При этом конь может ходить только так, как показано на рисунке:

 ${
m Heofxo}$ димо определить, сколько существует различных маршрутов, ведущих из левого верхнего в правый нижний угол.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M $(1 \le N, M \le 15)$.

Формат выходных данных

В выходной файл выведите единственное число количество способов добраться конём до правого нижнего угла доски.

стандартный ввод	стандартный вывод
4 4	2
7 15	13309

Задача Е. Игра со спичками

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На столе лежит кучка из N спичек. Двое играют в такую игру. За один ход разрешается взять из кучки одну, две или три спички, так чтобы оставшееся количество спичек не было простым числом (Например, можно оставить в кучке 1 или 4 спички, но нельзя оставить 2 или 3). Выигрывает тот, кто забирает последнюю спичку. Требуется определить, кто из игроков имеет выигрышную стратегию.

Формат входных данных

Вводится одно число N ($1 \le N \le 10000$).

Формат выходных данных

Выведите число 1, если выигрышую стратегию имеет начинающий игрок, или число 2, если выигрышную стратегию имеет второй игрок.

стандартный ввод	стандартный вывод
1	1

Задача F. Шашку - в дамки

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На шахматной доске (8 × 8) стоит одна белая шашка. Сколькими способами она может пройти в дамки?

(Белая шашка ходит по диагонали. на одну клетку вверх-вправо или вверх-влево. Шашка проходит в дамки, если попадает на верхнюю горизонталь.)

Формат входных данных

Вводятся два числа от 1 до 8: номер номер столбца (считая слева) и строки (считая снизу), где изначально стоит шашка.

Формат выходных данных

Вывести одно число - количество путей в дамки.

стандартный ввод	стандартный вывод
3 7	2
1 8	1
3 6	4

Задача G. Взрывоопасность-2

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

При переработке радиоактивных материалов образуются отходы трех видов — особо опасные (тип A), неопасные (тип B) и совсем не опасные (тип C). Для их хранения используются одинаковые контейнеры. После помещения отходов в контейнеры последние укладываются вертикальной стопкой. Стопка считается взрывоопасной, если в ней подряд идет более одного контейнера типа A. Стопка считается безопасной, если она не является взрывоопасной. Для заданного количества контейнеров N определить число безопасных стопок.

Формат входных данных

Вводится одно число N ($1 \le N \le 20$).

Формат выходных данных

Одно число — количество безопасных вариантов формирования стопки.

Примеры

стандартный ввод	стандартный вывод
2	8

Пояснение к примеру

В примере из условия среди стопок длины 2 бывают безопасные стопки типов AB, AC, BA, BB, BC, CA, CB и CC. Стопки типа AA являются взрывоопасными.

Задача Н. Расстояние по Левенштейну

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Дана текстовая строка. С ней можно выполнять следующие операции:

- 1. Заменить один символ строки на другой символ.
- 2. Удалить один произвольный символ.
- 3. Вставить произвольный символ в произвольное место строки.

Например, при помощи первой операции из строки "СОК" можно получить строку "СУК", при помощи второй операции - строку "ОК", при помощи третьей операции - строку "СТОК".

Минимальное количество таких операций, при помощи которых можно из одной строки получить другую, называется стоимостью редактирования или расстоянием Левенштейна.

Определите расстояние Левенштейна для двух данных строк.

Формат входных данных

Программа получает на вход две строки, длина каждой из которых не превосходит 1000 символов, строки состоят только из заглавных латинских букв.

Формат выходных данных

Требуется вывести одно число – расстояние Левенштейна для данных строк.

стандартный ввод	стандартный вывод
ABCDEFGH	3
ACDEXGIH	

Задача I. Количество треугольников

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Рассмотрим фигуру, аналогичную показанной на рисунке (большой равносторонний треугольник, составленный из маленьких равносторонних треугольников). На рисунке приведена фигура, состоящая из 4-х уровней треугольников.

Напишите программу, которая будет определять, сколько всего в ней треугольников (необходимо учитывать не только "маленькие" треугольники, а вообще все треугольники— в частности, треугольник, выделенный жирным, а также вся фигура, являются интересующими нас треугольниками).

Формат входных данных

Вводится одно число N — количество уровней в фигуре (1 \leq $N \leq$ 100000).

Формат выходных данных

Выведите количество треугольников в такой фигуре.

стандартный ввод	стандартный вывод
1	1
2	5
4	27