第四章布置习题参考解

4-2 图 4-28 显示了使用型号为 74283 的集成电路实现的 4 位加法器的第一级逻辑图。 验证这个电路实现了全加器的功能。

解:

$$\begin{split} C_1 &= \overline{T_3 + T_2} = \overline{T_1 \overline{C}_0 + T_2} = \overline{\overline{A_0 B_0} \overline{C}_0 + \overline{A_0 + B_0}} = \overline{(\overline{A}_0 + \overline{B}_0) \overline{C}_0 + \overline{A}_0 \overline{B}_0} = (A_0 B_0 + C_0) (A_0 + B_0) \\ C_1 &= A_0 B_0 + A_0 C_0 + B_0 C_0 \\ S_0 &= C_0 \oplus T_4 = C_0 \oplus T_1 \overline{T}_2 = C_0 \oplus \overline{A_0 B_0} (A_0 + B_0) = C_0 \oplus (\overline{A}_0 + \overline{B}_0) (A_0 + B_0) = C_0 \oplus A_0 \overline{B}_0 + \overline{A}_0 B_0 \\ S_0 &= A_0 \oplus B_0 \oplus C_0 \end{split}$$

Unsigned					
1's Complement					
2's Complement	0110 0100	0110 0011	0101 1000	0000 0000	1000 0000

- 4-4 对下列无符号二进制数执行指定的减法,减法采用 2-补码形式。
 - (a) 11111-10000
- (c) 1011110-1011110
- (b) 10110-1111
- (d) 101-101000

4-11 设计一个组合电路来比较两个 4 位二进制数 $A \times B$,判断 B 是否大于 A,这个电路输出为 X,满足:当 A < B 时,X = 1; 当 $A \ge B$ 时,X = 0。

解:

1位比较器:

Γ	输	入	Zi	Yi	Wi
A	4i	Bi	Ai> Bi	Ai= Bi	Ai< Bi
	0	0	0	1	0
	0	1	0	0	1
	1	0	1	0	0
	1	1	0	1	0

$$A_{i} > B_{i} \quad Z_{i} = \underline{A_{i}\overline{B_{i}}}$$

$$A_{i} = B_{i} \quad Y_{i} = \overline{A_{i}\overline{B_{i}} + B_{i}\overline{A_{i}}}$$

$$A_{i} < B_{i} \quad W_{i} = B_{i}\overline{A_{i}}$$

4 位处理时从最高位开始逐位比较:

如果 $A_i < B_i$, $(\overline{A_i}B_i = 1)$ 且所有 j > i, $A_j = B_j$ $(\overline{A_i}\overline{B_i} = +A_jB_j = 1)$,则 A < B。

A3 <b3< th=""><th>A3=B3</th><th>A3=B3, A2=B2</th><th>A3=B3, A2=B2, A1=1</th><th>X</th></b3<>	A3=B3	A3=B3, A2=B2	A3=B3, A2=B2, A1=1	X
A3 <b< td=""><td>且 A2<b2< td=""><td>且 A1<b1< td=""><td>且 A0<b0< td=""><td>Λ</td></b0<></td></b1<></td></b2<></td></b<>	且 A2 <b2< td=""><td>且 A1<b1< td=""><td>且 A0<b0< td=""><td>Λ</td></b0<></td></b1<></td></b2<>	且 A1 <b1< td=""><td>且 A0<b0< td=""><td>Λ</td></b0<></td></b1<>	且 A0 <b0< td=""><td>Λ</td></b0<>	Λ
1	X	X	X	1
	1	X	X	1
		1	X	1
			1	1
				0

$$\begin{split} X &= \overline{A}_3 B_3 + (A_3 B_3 + \overline{A}_3 \overline{B}_3) \overline{A}_2 B_2 + (A_3 B_3 + \overline{A}_3 \overline{B}_3) (A_2 B_2 + \overline{A}_2 \overline{B}_2) \overline{A}_1 B_1 \\ &+ (A_3 B_3 + \overline{A}_3 \overline{B}_3) (A_2 B_2 + \overline{A}_2 \overline{B}_2) (A_1 B_1 + \overline{A}_1 \overline{B}_1) \overline{A}_0 B_0 \end{split}$$

补充 1: 假设教材 P197, 4-3 题中的二进制数都是负数,请求其反码及 2-补码。

真值	10011100	10011101	10101000	00000000	10000000
1 的补码	1 01100011	1 01100010	101010111	<mark>1</mark> 11111111	1 01111111
2 的补码	1 01100100	101100011	101011000	000000000	1 10000000

补充 2: 假设机器数的长度是 16 位, 重做教材 P197, 4-3 题。

真值	1的补码	2 的补码
10011100	0000000001100011	0000000001100100
10011101	0000000001100010	0000000001100011
10101000	0000000001010111	0000000001011000
00000000	0000000011111111	00000000000000000

10000000	0000000001111111	000000010000000
----------	------------------	-----------------

补充 3: 假设教材 P197, 4-3 题中的二进制数都是负数,并假设机器数的长度是 16 位,请求其反码及 2-补码。

真值	1的补码	2 的补码
10011100	1111111101100011	11111111 01100100
10011101	1111111101100010	1111111101100011
10101000	11111111010101111	1111111101011000
00000000	11111111 11111111	00000000000000000
10000000	11111111 01111111	11111111110000000