But de ce cours

Automates à pile 1

Mirabelle Nebut

Bureau 223 - extension M3 mirabelle.nebut at lifl.fr

2009-2010

On sait maintenant écrire une grammaire algébrique. . . mais pas l'analyseur syntaxique qui va avec !

langage	spécification	modèle exécutable	
régulier	expression régulière	AFD	
algébrique	grammaire algébrique	automate à pile	

Dans un premier temps : découverte des automates à pile.

Plus tard : comment on s'en sert pour l'analyse syntaxique.

Plan du cours

Automates à pile généraux

Définitions

Les critères d'acceptation

Langages et automates déterministes

L'automate des items

Les différents types d'analyse syntaxique

Reconnaître un langage algébrique, intuition - 1

Pour reconnaître $\{a^nb^n \mid n \geq 0\}$:

- ▶ un automate à nombre fini d'états pour lire des a puis des b;
- ▶ un compteur c pour compter les a et décompter les b;
- ▶ arrêt quand le ruban est vide et état final **et** c vaut 0 .

Reconnaître un langage algébrique, intuition - 2

Pour reconnaître $\{m \in \Sigma^* \mid m \text{ est un palindrome } \}$:

- ▶ un compteur ne suffit pas!
- ▶ il faut mémoriser les symboles lus puis les consulter;
- ▶ mémorisation par empilement, vérification par dépilement.

Mirabelle Nebut Automates à pile 7

Reconnaître un langage algébrique, intuition - 3

Ça marche aussi pour reconnaître $\{a^nb^n|n\geq 0\}$:

- ▶ on empile *luA* quand on lit un *a*;
- ▶ on dépile *luA* quand on lit un *b*;
- ▶ arrêt quand le ruban est vide et état final **et** la pile est vide.

Automate à pile, intuition

Automates à pile généraux Définitions

es critères d'acceptation

L'automate des items

Les différents types d'analyse syntaxique

un automate à nombre fini d'états classique + une pile non bornée

Et voilà notre mémoire non bornée!

〈母 〉 〈き〉 〈き〉 〈き〉 〈き〉 〈き〉 〈き〉 〈き〉 〉き へんき〉 ま かん(Mirabelle Nebut Automates à pile 8

Automate à pile, intuition

Transitions, intuition - 1

Automate à nombre fini d'états

▶ ensemble d'état Q;

ex des palindromes :

ex : $\{q_1, q_2\}$

▶ état initial *q*₀;

ex : q₁

▶ ensemble d'états finaux $F \subseteq Q$; alphabet d'entrée Σ.

ex : $\{q_2\}$ $ex: \{a,b\}$

▶ contient des éléments de l'alphabet de pile Z ex : {luA, luB}

Relation de transition?

Pour un AF, une transition c'est :

- ▶ quand je suis dans l'état $q \in Q$
- ▶ et que j'ai $a \in \Sigma$ sous la tête de lecture
- ▶ ou que je transite sur €
- ▶ alors je passe dans l'état $q' \in Q$

$$q, a \rightarrow q'$$

 $q, \epsilon \rightarrow q'$

Automates à pile généraux

Automates à pile 9

Mirabelle Nebut Automates à pile généraux Automates à pile 10

Transitions, intuition - 2

Pour un automate à pile, une transition c'est :

Mirabelle Nebut

- lacktriangle quand je suis dans l'état $q\in Q$
- lacktriangle et que j'ai $a \in \Sigma$ sous la tête de lecture
- ightharpoonup ou que je transite sur ϵ
- ▶ et que le sommet de pile est $z \in Z$
- ▶ je passe dans l'état $q' \in Q$
- ▶ et je modifie le sommet de pile en le remplaçant par des éléments de Z ou ϵ .

$$q, a, z \rightarrow q', z_1 z_2$$

$$q, \epsilon, z \rightarrow q', z$$

$$q, a, z \rightarrow q, \epsilon$$

Automates à pile 11 Mirabelle Nebut Automates à pile généraux

Exemple des palindromes - 1

- ▶ dans l'état $q_2 \in Q$;
- ▶ avec $a \in \Sigma$ sous la tête de lecture (Σ -transition);
- ▶ et avec $luA \in Z$ en sommet de pile;
- ▶ alors on reste dans l'état $q_2 \in Q$;
- ightharpoonup et on dépile : on remplace luA par ϵ .

$$q_2, a, luA \rightarrow q_2, \epsilon$$

Mirabelle Nebut Automates à pile généraux Lautomate des items Les différents types d'analyse syntaxique

Automates à pile 12 Définitions

Exemple des palindromes - 2

- ▶ dans l'état $q_1 \in Q$ et avec a sous la tête de lecture;
- et quel que soit le sommet de pile... quel peut-il être?
 - si je viens de lire un a (resp. b) : luA (resp. luB);
 - ▶ si je n'ai encore rien lu : pile initiale (vide)

Pas de transition sur pile vide : symbole initial de pile $z_{\perp} \in Z$

Exemple des palindromes - 3

- ▶ dans l'état $q_1 \in Q$, avec a sous la tête de lecture;
- ▶ et avec *luA*, *luB* ou z₁ en sommet de pile;

Mirabelle Nebut

a / empiler luA

- ▶ alors on reste dans $q_1 \in Q$;
- et on empile luA : on remplace le sommet x par x luA

$$q_1, a, luA \rightarrow q_1, luA luA$$
 $q_1, a, z_{\perp} \rightarrow q_1, z_{\perp} luA$ $q_1, a, luB \rightarrow q_1, luB luA$ (lecture bas vers haut de pile)

Mirabelle Nebut Automates à pile généraux Automates à pile 13

Automates à pile généraux

Exemple des palindromes - 5

Automates à pile 14

a [top = luA] / depiler luA

Exemple des palindromes - 4

- ▶ dans l'état $q_1 \in Q$;
- ▶ sans toucher la tête de lecture (ϵ -transition);
- ▶ et avec luA, luB ou z_{\perp} en sommet de pile;
- ▶ alors on passe dans $q_2 \in Q$ et on ne touche pas à la pile.

$$q_1, \epsilon, luA \rightarrow q_2, luA \quad q_1, \epsilon, z_{\perp} \rightarrow q_2, z_{\perp}$$

 $q_1, \epsilon, luB \rightarrow q_2, luB$

vide b [top = luB] / depiler luB b / empiler luB

Pour terminer on vide la pile (ϵ -transition):

$$q_2, \epsilon, \mathbf{z}_{\perp} \rightarrow q_2, \epsilon$$

Exemple des palindromes, récapitulatif

Définition formelle

Definition (Automate à pile (AP))

Un automate à pile A est un tuple $(\Sigma, Z, z_{\perp}, Q, q_0, F, \Delta)$ où :

- Σ est un alphabet d'entrée fini (les terminaux);
- Z est un alphabet de pile fini;
- ▶ $z_{\perp} \in Z$ est le symbole initial de pile,
- Q est un ensemble fini d'états,
- ▶ $q_0 \in Q$ est l'état initial;
- ▶ $F \subseteq Q$ est l'ensemble des états finaux;
- ▶ $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Z \times Q \times Z^*$ est la relation de transition.

NB : on pourrait choisir $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Z^* \times Q \times Z^*$.

Automates à pile généraux

Automates à pile 17

Mirabelle Nebut

Automates à pile généraux

Automates à pile 18

Exécution et configurations

Une exécution est une suite de configurations.

Mirabelle Nebut

Pour un AF, une configuration est :

- ▶ mot restant à lire $m \in \Sigma^*$;
- ▶ état courant $q \in Q$;

(abbb, q)

Pour un AP, configuration définie par :

- ▶ le mot restant à lire $m \in \Sigma^*$;
- ▶ l'état courant $q \in Q$;
- ▶ le contenu de la pile de Z^* , lu du bas vers le haut de la pile.

luA $\mathsf{Ex}: (abbb, q_1, z_{\perp} \mathsf{luA} \; \mathsf{luA})$ pour la pile luΑ

Definition (configuration)

Exécution et configurations

Une configuration c d'un AP $(\Sigma, Z, z_{\perp}, Q, q_0, F, \Delta)$ est un élément de $\Sigma^* \times Q \times Z^*$.

Mirabelle Nebut Automates à pile généraux

Automates à pile 19 Définitions Les critères d'acceptatio Langages et automates d

Mirabelle Nebut Automates à pile généraux Les différents types d'analys

Automates à pile 20 Définitions

Transiter d'une configuration à une autre

Le passage dans A d'une configuration c_1 à une configuration c_2 s'écrit :

 $c_1 \vdash_{\mathcal{A}} c_2$

On note \vdash_A^* la clôture réflexive et transitive de \vdash_A .

Deux modes de transition pour changer de configuration :

- sur une Σ-transition;
- ▶ sur une e-transition.

Changement de configuration sur Σ -transition : exemple

Transition q_1 , b, $luA \rightarrow q_1$, luA luBConfiguration (bba, q_1 , z_{\perp} luA)

On aura alors:

(bba, q_1 , z_{\perp} luA) \vdash_A (ba, q_1 , z_{\perp} luA luB)

Mirabelle Nebut Automates à pile 21 Automates à pile généraux

Automates à pile généraux

Automates à pile 22 Définitions

Changement de configuration sur Σ -transition

Definition $(c_1 \vdash_A c_2 \text{ sur } \Sigma\text{-transition})$

A passe d'une config $c_1=(m_1,q_1,\alpha_1)$ à $c_2=(m_2,q_2,\alpha_2)$ si :

- ▶ il existe une transition $(q_1, x, z) \rightarrow (q_2, \beta_2) \in \Delta$;
- $ightharpoonup m_1$ est de la forme xm_2 ;
- $\triangleright \alpha_1$ est de la forme $\beta_1 z$;
- $\triangleright \alpha_2$ est de la forme $\beta_1\beta_2$.

$$\left(\begin{array}{cccc} \mathsf{x} m_2 & , & q_1 & , & \boxed{\frac{\mathsf{z}}{\mathsf{g}_1}} \end{array}\right) \vdash_{\mathsf{A}} \left(\begin{array}{cccc} m_2 & , & q_2 & , & \boxed{\frac{\mathsf{g}_2}{\mathsf{g}_2}} \\ & & & & & \boxed{\frac{\mathsf{g}_2}{\mathsf{g}_1}} \end{array}\right)$$

Changement de configuration sur Σ -transition - exemple

Mirabelle Nebut

Transition $q_1, b, luA \rightarrow q_1, luA luB$

Configuration (bba, q_1 , z_{\perp} luA)

$$(\underbrace{\overset{m_1}{b}\underbrace{ba}_{m_2}}, q_1, \underbrace{\overset{\beta_1}{z_{\perp}}\underbrace{luA}}_{\alpha_1}) \vdash (\underbrace{\overset{ba}{ba}}_{m_2}, q_1, \underbrace{\overset{\beta_1}{z_{\perp}}\underbrace{\overset{\beta_2}{luA}\underbrace{luB}}}_{\alpha_2})$$

$$\left(\begin{array}{cccc} \times m_2 & , & q_1 & , & \boxed{\frac{\alpha_1}{z}} \\ \beta_1 \end{array}\right) \vdash_A \left(\begin{array}{cccc} m_2 & , & q_2 & , & \boxed{\beta_2} \\ \beta_1 \end{array}\right)$$

Mirabelle Nebut Automates à pile 24

Changement de configuration sur ϵ -transition - exemple

Transition q_1 , ϵ , $luB \rightarrow q_2$, luB

Configuration (ba, q_1 , $z_{\perp}luA luB$)

On aura alors:

$$(ba, q_1, z_{\perp}luA luB) \vdash (ba, q_2, z_{\perp}luA luB)$$

On ne touche pas à la tête de lecture.

Changement de configuration sur ϵ -transition

Definition $(c_1 \vdash_A c_2 \text{ sur } \epsilon\text{-transition})$

A passe d'une config $c_1 = (m, q_1, \alpha_1)$ à $c_2 = (m, q_2, \alpha_2)$ si :

- ▶ il existe une transition $(q_1, \epsilon, z) \rightarrow (q_2, \beta_2) \in \Delta$;
- \triangleright α_1 est de la forme $\beta_1 z$ (z sommet de pile);
- $ightharpoonup \alpha_2$ est de la forme $\beta_1\beta_2$.

$$\left(\begin{array}{ccccc} \mathbf{m} & , & q_1 & , & \boxed{\frac{\mathbf{z}}{\beta_1}} \end{array}\right) \vdash_A \left(\begin{array}{ccccc} \mathbf{m} & , & q_2 & , & \boxed{\beta_2} \\ & & & & \boxed{\beta_1} \end{array}\right)$$

Automates à pile généraux

Mirabelle Nebut

Automates à pile 25

Mirabelle Nebut

Automates à pile généraux

Automates à pile 26

Les critères d'acceptation

Exécution - exemple

Pour le langage $\{a^n b^n \mid n \ge 0\}$:

$$\Delta = \left\{ egin{array}{ll} q_a, a, z_ot
ightarrow q_a, z_ot luA & q_a, a, luA
ightarrow q_a, luA \; luA \ q_a, b, luA
ightarrow q_b, \epsilon & q_a, \epsilon, z_ot
ightarrow q_a, \epsilon \ q_b, b, luA
ightarrow q_b, \epsilon & q_b, \epsilon, z_ot
ightarrow q_b, \epsilon \end{array}
ight.$$

 $(q_a, aabb, z_{\perp}) \vdash_A^* (q_b, \epsilon,)$

 $(q_a, \epsilon, z_{\perp}) \vdash_A^* (q_a, \epsilon,)$

Automates à pile généraux

Les critères d'acceptation

L'automate des items

Les différents types d'analyse syntaxique

Mirabelle Nebut Automates à pile généraux Automates à pile 27 Les critères d'acceptation

Mirabelle Nebut Automates à pile généraux Les différents types d'analyse

Automates à pile 28

Critère d'acceptation

Dans nos exemples, on accepte un mot si ruban vide et état final et pile vide.

Ce sont des cas particuliers.

Il y a deux critères d'acceptation possibles :

- acceptation par état final (pour toute pile quand on s'arrête);
- > acceptation par pile vide (pour tout état quand on s'arrête).

Ces deux critères sont équivalents.

Acceptation par état final - exemple

L'exemple des palindromes sans vider la pile en q_2 :

On supprime $q_2, \epsilon, \mathbf{z}_{\perp} \rightarrow q_2, \epsilon$.

 $(q_1, abba, z_{\perp}) \vdash^* (q_2, \epsilon, \underline{z_{\perp}})$: acceptation.

Mirabelle Nebut Automates à pile généraux

Automates à pile 29

Mirabelle Nebut Automates à pile généraux Automates à pile 30

Acceptation par état final - définition

Definition (Acceptation par état final)

Un mot $m \in \Sigma^*$ est accepté par état final par un AP $A = (\Sigma, Z, z_{\perp}, Q, q_0, F, \Delta)$ si pour la configuration (m, q_0, z_{\perp}) , il existe un état $q_f \in F$ et un mot $\mathbf{z} \in Z^*$ tel que $(m, q_0, z_{\perp}) \vdash_A^* (\epsilon, q_f, \mathbf{z})$

Definition (Langage accepté)

Le langage accepté par état final par un AP est l'ensemble des mots acceptés par cet automate.

$$\mathbf{L}^{F}(A) = \{ m \in \Sigma^* \mid (m, q_0, z_{\perp}) \vdash_{A}^* (\epsilon, q_f, \mathbf{z}) \}$$

Acceptation par pile vide - exemple

Reconnaître $\{m \in \{a,b\}^* \mid |m|_a = |m|_b \}$?

$$(q,a,z_\perp)
ightarrow (q,z_\perp \ luA)$$
 empiler luA empiler luB empiler luA empiler luB empiler empi

Acceptation par pile vide - définition

Automates à pile et langages algébriques

Definition (Acceptation par pile vide)

Un mot $m \in \Sigma^*$ est accepté par pile vide par un AP $A=(\Sigma,Z,z_{\perp},Q,q_0,F,\Delta)$ si pour la configuration (m,q_0,z_{\perp}) , il existe un état $q \in Q$ tel que $(m, q_0, z_\perp) \vdash_A^* (\epsilon, q, \epsilon)$

Definition (Langage accepté)

Le langage accepté par pile vide par un AP est l'ensemble des mots acceptés par cet automate.

$$L^{V}(A) = \{ m \in \Sigma^* \mid (m, q_0, z_{\perp}) \vdash_A^* (\epsilon, q, \epsilon) \}$$

Theorem

L est un langage algébrique si et seulement s'il existe un AP A (acceptant par pile vide) tel que $L = L^{V}(A)$.

Automates à pile 33

Mirabelle Nebut Automates à pile généraux Automates à pile 34 Langages et automates déterministes

Automates à pile généraux

Automates déterministes

Automates à pile généraux

Mirabelle Nebut

Langages et automates déterministes

L'automate des items

Les différents types d'analyse syntaxique

Les AP définis précédemment sont indéterministes (APND) :

- un mot est accepté s'il existe au moins une suite de configurations conduisant à l'acceptation;
- mais il peut en avoir plusieurs;
- et il peut y avoir des suites conduisant à l'échec;

⇒ automate à pile déterministe?

Definition (intuitive, APD)

Un AP (acceptant par état final) est déterministe (APD) si, dans chaque configuration, il n'y a qu'une seule transition possible.

Mirabelle Nebut Automates à pile généraux

Automates à pile 35

Mirabelle Nebut Automates à pile généraux Les différents types d'analyse s

Langage algébrique déterministe

Automates à pile 36

Automates déterministes vs non déterministes

Les automates à pile non déterministes :

- sont strictement plus puissants que les APD;
- ne sont pas tous déterminisables.

Différent des AF : AFD ⇔ AFND.

Definition

Un langage algébrique L est déterministe s'il existe un AP A (acceptant par état final) déterministe tel que $L^F(A) = L$.

Exemple1 : $\{m \in (a+b)^* \mid m \text{ est un palindrome}\}\$ est algébrique, non ambigu, mais... n'est pas déterministe.

Intuitivement, on ne sait pas deviner où est le milieu du mot.

Exemple1 : $\{m_1cm_2 \mid m_1m_2 \in \{a,b\}^* \text{ est un palindrome } \}$ est un langage algébrique déterministe.

Mirabelle Nebut Automates à pile 40

Mirabelle Nebut Automates à pile généraux

Automates à pile 37

Mirabelle Nebut

Automates à pile 38

Associer un AP à une grammaire algébrique

- Les AP sont nécessaires pour reconnaître les langages algébriques...
- ... mais les AP ne sont pas si faciles à concevoir;
- et on ne voit pas bien le lien entre dérivations d'une grammaire et exécution d'un AP.

Les langages algébriques sont spécifiés par des grammaires algébriques :

- ▶ dériver automatiquement un AP à partir d'une grammaire algébrique?
- ▶ ⇒ automate des items (malheureusement pas déterministe).

L'automate des items

Mirabelle Nebut Automates à pile 39

Automate des items, présentation

Automate à pile particulier :

- dérivé à partir d'une grammaire algébrique;
- non déterministe donc inutilisable en pratique;
- permet de définir les automates réellement utilisés par les analyseurs syntaxiques:
 - analyse descendante par simplification;
 - surtout analyse ascendante.
- repose sur la notion d'item.

Un item d'une grammaire G est de la forme :

$$[X \to \alpha \bullet \beta]$$
 avec $X \to \alpha\beta \in P$ et $\alpha, \beta \in (V_N \cup V_T)^*$

Interprété comme :

Item, définition

"en cherchant à dériver de X un mot $m=uv\in V_T^*$, on a déjà dérivé un mot u de α , et il reste à dériver v de β "

L'ensemble des items de G est noté It_G .

Association des items aux productions de G

À
$$X \rightarrow \alpha$$
 on associe :

- ▶ $[X \to \bullet \alpha]$: « on cherche à reconnaître un mot pour X »;
- ▶ $[X \to \alpha \bullet]$ (item terminal) : « on a reconnu un mot pour X »

À
$$X \to \alpha\beta$$
 on associe $[X \to \alpha \bullet \beta]$.

À $X \to \epsilon$ est associé par convention l'unique item $[X \to \bullet]$.

$$\mathsf{Ex}: \mathit{S} \rightarrow \epsilon \,|\, \mathit{aSb}$$

$$It_{G} = \{ [S \overset{'}{\rightarrow} \bullet], \ [S \rightarrow \bullet aSb], \ [S \rightarrow a \bullet Sb], \ [S \rightarrow aS \bullet b], \\ [S \rightarrow aSb \bullet$$

Extension de la grammaire

$$\mathsf{Ex}: \mathcal{S} \to \epsilon \,|\, \mathsf{a} \frac{\mathsf{S}}{\mathsf{b}}$$

Récursivité sur l'axiome S.

- \Rightarrow reconnaître un mot pour S ne signifie pas forcément avoir fini!
- \Rightarrow extension de la grammaire avec un nouvel axiome S':

$$S' \rightarrow S$$
, $S \rightarrow aSb \mid \epsilon$

$$\begin{split} \mathit{It}_{G} = \{ [S' \to \bullet S], \ [S' \to S \bullet], \ [S \to \bullet], \ [S \to \bullet aSb], \\ [S \to a \bullet Sb], \ [S \to aS \bullet b], \ [S \to aSb \bullet] \} \end{split}$$

Automates à pile 43 Automates à pile 44 Mirabelle Nebut Mirabelle Nebut Automates à pile généraux L'automate des items Les différents types d'analyse syntaxique Les différents type

Exemple

Automate des items, intuition

Tout est item!

- ▶ les états de l'automate sont les items de lt_G;
- ▶ l'alphabet de pile est aussi l'ensemble It G ⇒ la pile sert à mémoriser des séquences d'états;
- ▶ l'état courant de l'automate est l'item de sommet de pile.

Pour le moment on n'explicitera pas l'automate à nombre fini d'états sous-jacent.

États particuliers :

- ▶ $[S' \rightarrow \bullet S]$: item initial = état initial, sert de z_{\perp} ;
- ▶ $[S' \rightarrow S \bullet]$: item final = unique état final (arrêt par état final).

$G = (V_T, V_N, S, P)$ avec $V_T = \{a, b, d\}, V_N = \{S, D\}$ et :

$$S' \to S$$

$$S \to aSbD \mid b$$

$$D \to d \mid \epsilon$$

Reconnaître abbd?

Reconnaître abb?

Lien avec dérivation / arbre syntaxique?

Configurations et transitions de l'automate - 1

État courant indiqué par sommet de pile :

$$\Rightarrow$$
 Configurations simplifiées du type $(m \in \Sigma^*, z_1 \dots z_n \in It^*)$

Trois types de transitions :

Lecture (Σ -transition) : lire a et avancer la tête de lecture ;

Expansion (ϵ -transition) par une production $X \to \alpha$: tenter de reconnaître X en reconnaissant α ;

Réduction (ϵ -transition) par une production $X \to \alpha$: indiquer qu'on a reconnu X en reconnaissant α .

Configurations et transitions de l'automate - 2

On simplifie / modifie un peu la forme de la relation de transition :

- ▶ AP classique : $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Z \times Q \times Z^*$;
- ▶ aut des items : $\Delta \subseteq (\Sigma \cup \{\epsilon\}) \times (Z \times Z) \times Z^*$

Trois types de transitions :

Lecture Σ -transition :

$$(a, [\cdots \bullet \ldots]) \rightarrow [\cdots \bullet \ldots] \ldots [\cdots \bullet \ldots]$$

Expansion ϵ -transition :

$$(\epsilon, [\cdots ullet \ldots])
ightarrow [\cdots ullet \ldots] \ldots [\cdots ullet \ldots]$$

Réduction ϵ -transition :

$$(\epsilon, \llbracket \cdots \bullet \ldots \rrbracket \llbracket \cdots \bullet \ldots \rrbracket) \to \llbracket \cdots \bullet \ldots \rrbracket \ldots \llbracket \cdots \bullet \ldots \rrbracket$$

qui fait intervenir le sous-sommet de pile.

Transition de lecture, définition

Transition d'expansion par $Y \rightarrow \gamma$, définition

- ▶ si le sommet de pile est $[X \to \alpha \bullet a\beta]$;
- ▶ et que a est sous la tête de lecture;
- ▶ alors remplacer le sommet de pile par $[X \to \alpha a \bullet \beta]$;
- ▶ et avancer la tête de lecture.

$$\left(\begin{array}{c} a\;,\; [X\to\alpha\bullet a\beta]\;\right)\to [X\to\alpha a\bullet\beta]$$

$$\left(\begin{array}{c} am\;,\; z_1\dots z_n\; [X\to\alpha\bullet a\beta]\;\right)\;\vdash\; \left(\begin{array}{c} m\;,\; z_1\dots\; z_n\; [X\to\alpha a\bullet\beta]\;\right)$$

- ▶ si le sommet de pile est $[X \to \alpha \bullet Y\beta]$;
- et que la production $Y \rightarrow \gamma$ appartient à la grammaire;
- ▶ alors remplacer le sommet de pile par $[X \to \alpha \bullet Y \beta] [Y \to \bullet \gamma]$

$$\left(\begin{array}{c} \epsilon \; , \; [X \to \alpha \bullet Y\beta] \; \right) \to [X \to \alpha \bullet Y\beta] \; [Y \to \bullet \gamma]$$

$$\left(\begin{array}{c} m \; , \; z_1 \dots z_n \; [X \to \alpha \bullet Y\beta] \; \right) \; \vdash \\ \left(\begin{array}{c} m \; , \; z_1 \dots z_n \; [X \to \alpha \bullet Y\beta] \; [Y \to \bullet \gamma] \; \right)$$

Mirabelle Nebut Les différents types

Automates à pile 49

Mirabelle Nebut Automates à pile 50

Transition d'expansion par $Y \rightarrow \gamma$, intuition

Remplacer le sommet de pile $[X \to \alpha \bullet Y\beta]$ par $[X \to \alpha \bullet Y \beta] [Y \to \bullet \gamma]$ pour une production $Y \to \beta$

Intuitivement:

- pour reconnaître un mot pour X il faut reconnaître un mot pour Y;
- on a le choix (non-déterministe) entre toutes les productions de la forme $Y \rightarrow \gamma$;
- on garde en mémoire dans la pile qu'on est en train de reconnaître un mot pour X.

- Transition de réduction par $Y \rightarrow \gamma$, définition
 - ▶ si la partie supérieure de pile est $[X \to \alpha \bullet Y\beta]$ $[Y \to \gamma \bullet]$;
 - ▶ alors la remplacer par $[X \to \alpha Y \bullet \beta]$.

$$(\epsilon, [X \to \alpha \bullet Y \beta] [Y \to \gamma \bullet]) \to [X \to \alpha Y \bullet \beta]$$

$$(m, z_1...z_n [X \to \alpha \bullet Y\beta] [Y \to \gamma \bullet]) \vdash (m, z_1...z_n [X \to \alpha Y \bullet \beta])$$

Mirabelle Nebut

Automates à pile généraux L'automate des items Les différents types d'analyse syntaxique

Automates à pile 51

Mirabelle Nebut Automates à pile généraux L'automate des items Les différents types d'analyse syntaxique

Automates à pile 52

Transition de réduction par $Y \rightarrow \gamma$, intuition

Lien avec L(G)

Remplacer la partie supérieure de pile $[X \to \alpha \bullet Y \beta] [Y \to \gamma \bullet]$

Intuitivement:

- ▶ si pour reconnaître un mot pour X il fallait reconnaître un mot pour Y;
- et qu'on a effectivement reconnu un mot pour Y;

Mirabelle Nebut

- ▶ alors on passe *Y*;
- et on continue la reconnaissance de X.

Theorem

Le langage reconnu par l'automate des items de G est L(G).

Automates à pile 53

Les différents types d'analyse syntaxique

Automates à pile 54

Qu'est-ce que l'analyse syntaxique?

Mirabelle Nebut

Les différents types d'analyse syntaxique

Les différents types d'analyse syntaxique

Étant donnés une grammaire G (ou par ex. son automate des items) et un mot $m \in V_T^*$:

- ▶ a-t-on $m \in L(G)$?
- ▶ si oui : arbre syntaxique pour *m* / dérivation pour *m*?

Comment faire?

Mirabelle Nebut Automates à pile 56

Approche (très) naïve - 1

On essaie toutes les dérivations possibles partant de l'axiome, en essayant de tomber sur m.

Problème:

- ▶ quand s'arrête-t-on?
- ▶ le langage engendré peut être infini;
- et si ça boucle? Allongement inutile des dérivations.

Ex (td) :
$$A \rightarrow aSb \mid bSa \mid AA \mid \epsilon$$
 et $A \Rightarrow AA \Rightarrow A \Rightarrow AA \Rightarrow ...$

Ex :
$$S \to X \mid a, X \to S$$
 et $S \Rightarrow X \Rightarrow S \Rightarrow ...$

Approche (très) naïve - 2

On peut éliminer les productions qui « causent les boucles » :

- $X \to \epsilon$
- $\rightarrow X \rightarrow Y (Y \in V_N)$

On obtient alors une grammaire G' propre telle que :

$$L(G') = \begin{cases} L(G) \setminus \{\epsilon\} \text{ si } \epsilon \in L(G) \\ L(G) \text{ sinon} \end{cases}$$

Propriétés des grammaires propres = corrélation entre :

- ▶ longueur de *m*
- ▶ longueur de la dérivation pour *m*

si
$$S \Rightarrow^k m$$
 alors $k \le |m|$

Automates à pile 57 Mirabelle Nebut Lautomate des items Les différents types d'analyse syntaxique

L'automate des items Les différents types d'analyse syntaxique

Mirabelle Nebut Automates à pile 58

Approche (très) naïve - 3

Pour le mot m et la grammaire $G : m \in G$?

Si $m = \epsilon$, on regarde si $S \Rightarrow^* \epsilon$ (facile).

Si $m \neq \epsilon$:

- ▶ on transforme *G* en *G'* réduite et propre ;
- ▶ on essaye toutes les dérivations possibles de taille $\leq |m|$.

Complexité : $O(n^{|m|})$ avec n le nombre de règles de production.

Bref, c'est naïf et pas efficace du tout! Il faut chercher plus futé.

En pratique

On supprime tout indéterminisme.

Il faut savoir à tout instant quelle expansion effectuer.

Plus de tentatives inutiles :

construction d'une unique dérivation;

Analyses dédiées à certaines grammaires

▶ si la dérivation échoue, le mot est rejeté, il est accepté sinon.

2 approches:

- analyses universelles;
- > analyses dédiées à certaines classes de grammaires.

	< ロト < 個ト < 분ト < 분 > - 분 - 키익(연		4 🗆 > 4 🗗 > 4 🗏 > 4 💆 > 9 Q 🖰
Mirabelle Nebut	Automates à pile 59	Mirabelle Nebut	Automates à pile 60
Automates à pile généraux L'automate des items Les différents types d'analyse syntaxique		Automates à pile généraux L'automate des items Les différents types d'analyse syntaxique	

Analyses « universelles »

Fonctionnent pour toute grammaire algébrique :

- ▶ algorithme de Cocke-Younger-Kasami pour des grammaires en forme normale de Chomsky;
- ▶ algorithme de Earley pour des grammaires algébriques quelconques.

Complexité en $o(n^3)$, où n est la longueur du mot à analyser.

On préférerait o(n)... quitte à se restreindre à certains types de grammaires.

	Analyse descendante	Analyse ascendante
nom	LL(k)	LR(k)
dérivation construite	gauche	droite
ordre constr arbre	préfixe	postfixe
opérations	lecture et expansion	lecture et réduction
on part	de l'axiome	du mot à reconnaître
outil	javaCC	Cup

- plus efficaces;
- cas particulier de l'automate des items;
- ▶ ne fonctionnent que pour certaines classes de grammaires.

Mirabelle Nebut Automates à pile 62

4 D > 4 B > 4 B > 4 B > 9 Q @