In [65]:

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import sklearn
import matplotlib.pyplot as plt
import seaborn as sns
import hvplot.pandas
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear model import LinearRegression
##cross validation
from sklearn.model_selection import cross_val_score
```

In [28]:

heart_data = pd.read_csv('C:/Users/vikas pawar/Downloads/heart_disease_data.csv')

In [29]:

heart_data.head()

Out[29]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targ
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
4														•

```
In [30]:
```

```
heart_data.tail()
```

Out[30]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	ta
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	
4														•

In [31]:

```
heart_data.shape
```

Out[31]:

(303, 14)

In [32]:

```
heart_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

D G C G	CO_U			, •
#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	int64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	int64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
المراد والمعالم	C1+C	1/1\	: -+ C1/12\	

dtypes: float64(1), int64(13)
memory usage: 33.3 KB

```
In [33]:
```

```
heart_data.isnull().sum()
Out[33]:
              0
age
              0
sex
              0
ср
              0
trestbps
chol
              0
fbs
              0
restecg
              0
thalach
              0
              0
exang
              0
oldpeak
slope
              0
ca
thal
              0
target
dtype: int64
In [34]:
heart_data.describe()
Out[34]:
                                                                        fbs
              age
                          sex
                                      ср
                                             trestbps
                                                            chol
                                                                                restecg
 count 303.000000
                   303.000000
                               303.000000
                                          303.000000
                                                      303.000000
                                                                 303.000000
                                                                             303.000000
 mean
        54.366337
                     0.683168
                                 0.966997
                                          131.623762 246.264026
                                                                   0.148515
                                                                               0.528053
         9.082101
                     0.466011
                                 1.032052
                                           17.538143
                                                                   0.356198
                                                                               0.525860
   std
                                                      51.830751
        29.000000
                     0.000000
                                 0.000000
                                           94.000000 126.000000
                                                                   0.000000
                                                                               0.000000
  min
  25%
        47.500000
                     0.000000
                                 0.000000
                                          120.000000
                                                      211.000000
                                                                   0.000000
                                                                               0.000000
  50%
        55.000000
                     1.000000
                                 1.000000
                                          130.000000 240.000000
                                                                   0.000000
                                                                               1.000000
  75%
        61.000000
                     1.000000
                                 2.000000
                                          140.000000
                                                                   0.000000
                                                                               1.000000
                                                     274.500000
        77.000000
                     1.000000
                                 3.000000
                                          200.000000
                                                     564.000000
                                                                   1.000000
                                                                               2.000000 1
  max
In [35]:
heart_data['target'].value_counts()
Out[35]:
      165
1
0
      138
Name: target, dtype: int64
In [36]:
X = heart_data.drop(columns='target', axis=1)
Y = heart_data['target']
```

In [37]:

```
print(X)
                                 chol
                                       fbs
                                                                          oldpeak
     age
           sex
                 ср
                     trestbps
                                             restecg thalach exang
\
0
      63
             1
                  3
                           145
                                  233
                                                    0
                                                            150
                                                                      0
                                                                              2.3
                                          1
1
      37
             1
                  2
                           130
                                  250
                                          0
                                                    1
                                                            187
                                                                      0
                                                                               3.5
2
      41
             0
                  1
                           130
                                  204
                                          0
                                                    0
                                                            172
                                                                      0
                                                                              1.4
3
                           120
                                  236
                                                    1
                                                            178
                                                                      0
      56
             1
                  1
                                          0
                                                                              0.8
4
      57
             0
                  0
                           120
                                  354
                                          0
                                                    1
                                                            163
                                                                       1
                                                                              0.6
                           . . .
                                  . . .
                                                            . . .
                                                                               . . .
298
      57
             0
                  0
                           140
                                  241
                                          0
                                                    1
                                                            123
                                                                      1
                                                                              0.2
299
      45
             1
                  3
                           110
                                  264
                                          0
                                                    1
                                                            132
                                                                      0
                                                                              1.2
300
      68
             1
                  0
                           144
                                  193
                                          1
                                                    1
                                                            141
                                                                      0
                                                                              3.4
             1
                  0
                           130
                                                    1
                                                                      1
                                                                              1.2
301
      57
                                  131
                                          0
                                                            115
302
      57
                  1
                           130
                                  236
                                                            174
                                                                              0.0
     slope
             ca
                  thal
0
              0
                     1
          0
1
              0
                     2
          0
2
          2
                     2
              0
3
          2
                     2
              0
          2
4
              0
                     2
                     3
298
          1
              0
299
          1
              0
                     3
                     3
300
          1
              2
          1
              1
                     3
301
                     2
302
          1
              1
[303 rows x 13 columns]
In [38]:
print(Y)
0
        1
        1
1
2
        1
3
        1
        1
       . .
298
        0
299
        0
300
        0
        0
301
302
Name: target, Length: 303, dtype: int64
In [39]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, rand
In [40]:
print(X.shape, X_train.shape, X_test.shape)
```

(303, 13) (242, 13) (61, 13)

```
In [41]:
```

```
model = LogisticRegression()
```

In [42]:

```
model.fit(X_train, Y_train)
```

C:\Users\vikas pawar\anaconda3\lib\site-packages\sklearn\linear_model_log
istic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown i
n:

https://scikit-learn.org/stable/modules/preprocessing.html (https://sc ikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)

n_iter_i = _check_optimize_result(

Out[42]:

LogisticRegression()

In [43]:

```
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
```

In [44]:

```
print('Accuracy on Training data : ', training_data_accuracy)
```

Accuracy on Training data: 0.8512396694214877

In [45]:

```
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
```

In [46]:

```
print('Accuracy on Test data : ', test_data_accuracy)
```

Accuracy on Test data: 0.819672131147541

```
In [47]:
```

```
input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2)

# change the input data to a numpy array
input_data_as_numpy_array= np.asarray(input_data)

# reshape the numpy array as we are predicting for only on instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction[0] == 0):
    print('The Person does not have a Heart Disease')
else:
    print('The Person has Heart Disease')
```

[0]

The Person does not have a Heart Disease

C:\Users\vikas pawar\anaconda3\lib\site-packages\sklearn\base.py:450: User
Warning: X does not have valid feature names, but LogisticRegression was f
itted with feature names
 warnings.warn(

In [49]:

```
heart_data.mean
```

Out[49]:

<pre><bound method="" ndframeadd_numeric_operations.<locals="">.mean of</bound></pre>										age	s
ex	cp tre	stbp	s cho	1 fbs	restecg	th	nalach exang	; old	peak \		
0	63	1	3	145	233	1	0	150	0	2.3	
1	37	1	2	130	250	0	1	187	0	3.5	
2	41	0	1	130	204	0	0	172	0	1.4	
3	56	1	1	120	236	0	1	178	0	0.8	
4	57	0	0	120	354	0	1	163	1	0.6	
							• • •		• • •		
298	57	0	0	140	241	0	1	123	1	0.2	
299	45	1	3	110	264	0	1	132	0	1.2	
300	68	1	0	144	193	1	1	141	0	3.4	
301	57	1	0	130	131	0	1	115	1	1.2	
302	57	0	1	130	236	0	0	174	0	0.0	
	slope	ca	thal	target							

	slope	ca	thal	target
0	0	0	1	1
1	0	0	2	1
2	2	0	2	1
3	2	0	2	1
4	2	0	2	1
298	1	0	3	0
299	1	0	3	0
300	1	2	3	0
301	1	1	3	0
302	1	1	2	0

[303 rows x 14 columns]>

In [50]:

heart_data.mode

Out[50]:

<bound dataframe.mode="" method="" of<="" th=""><th>sex cp</th><th>trestbps</th><th>chol</th><th>fbs re</th></bound>							sex cp	trestbps	chol	fbs re
stec	g th	alach	exang	oldpea	ak \					
0	63	1	3	145	233	1	0	150	0	2.3
1	37	1	2	130	250	0	1	187	0	3.5
2	41	0	1	130	204	0	0	172	0	1.4
3	56	1	1	120	236	0	1	178	0	0.8
4	57	0	0	120	354	0	1	163	1	0.6
• •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
298	57	0	0	140	241	0	1	123	1	0.2
299	45	1	3	110	264	0	1	132	0	1.2
300	68	1	0	144	193	1	1	141	0	3.4
301	57	1	0	130	131	0	1	115	1	1.2
302	57	0	1	130	236	0	0	174	0	0.0

	slope	ca	thal	target
0	0	0	1	1
1	0	0	2	1
2	2	0	2	1
3	2	0	2	1
4	2	0	2	1
• •				
298	1	0	3	0
299	1	0	3	0
300	1	2	3	0
301	1	1	3	0
302	1	1	2	0

[303 rows x 14 columns]>

In [51]:

```
heart_data.notnull()
```

Out[51]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	tl
0	True	True	True	True	True	True	True	True	True	True	True	True	Tı
1	True	True	True	True	True	True	True	True	True	True	True	True	Tı
2	True	True	True	True	True	True	True	True	True	True	True	True	Tı
3	True	True	True	True	True	True	True	True	True	True	True	True	Tı
4	True	True	True	True	True	True	True	True	True	True	True	True	Tı
298	True	True	True	True	True	True	True	True	True	True	True	True	Tı
299	True	True	True	True	True	True	True	True	True	True	True	True	Tı
300	True	True	True	True	True	True	True	True	True	True	True	True	Tı
301	True	True	True	True	True	True	True	True	True	True	True	True	Tı
302	True	True	True	True	True	True	True	True	True	True	True	True	Tı
303 r	303 rows × 14 columns												

In [52]:

heart_data.values

Out[52]:

In [53]:

```
heart_data.isin([0]).any()
(heart_data==0).sum()
```

Out[53]:

age	0
sex	96
ср	143
trestbps	0
chol	0
fbs	258
restecg	147
thalach	0
exang	204
oldpeak	99
slope	21
ca	175
thal	2
target	138
dtype: int6	4

In [59]:

```
import seaborn as sns
#get correlations of each features in dataset
corrmat = heart_data.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20,20))
#plot heat map
g=sns.heatmap(heart_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")
```


In [60]:

```
heart_data.hist()
```

Out[60]:

In [61]:

```
y = heart_data['target']
X = heart_data.drop(['target'], axis = 1)
```

In [62]:

```
from sklearn.model_selection import cross_val_score
knn_scores = []
for k in range(1,21):
    knn_classifier = KNeighborsClassifier(n_neighbors = k)
    score=cross_val_score(knn_classifier,X,y,cv=10)
    knn_scores.append(score.mean())
```

In [63]:

```
plt.plot([k for k in range(1, 21)], knn_scores, color = 'red')
for i in range(1,21):
    plt.text(i, knn_scores[i-1], (i, knn_scores[i-1]))
plt.xticks([i for i in range(1, 21)])
plt.xlabel('Number of Neighbors (K)')
plt.ylabel('Scores')
plt.title('K Neighbors Classifier scores for different K values')
```

Out[63]:

Text(0.5, 1.0, 'K Neighbors Classifier scores for different K values')

