

Investigating the Space Weather Impact of the 2003 Halloween Geomagnetic Storm by the Ground Magnetic Field Variations: a Global View

By: Hongyi Hu

Introduction

- * **Space Weather** is the phenomenon of solar storms and other events in space that can have an impact on Earth
- * Corona Mass Ejection (CME)
- * Solar Flare
- * Impact on our society

Purpose

- * Understanding the impact of space weather on the modern society and mitigate the hazards cause by space weather.
- * Power blackout on Hydro-Québec's power grid tripped by geomagnetic storm in March 1989
- * Starlink satellites falling caused by a minor geomagnetic storm hit Earth

Aurora over Colorado - October 29, 2003 (Photo by Ginger Mayfield)

Research question

- * How did the 2003 Halloween storm impact the regions of the Earth in the point of view of magnetic field variations?
- * What is the correlation between the magnitude of impact between the different latitude and longitude regions?
- * Are there regions impacted more than the others?

Methodology an

- * Global map of magnetic field variations
- * Cross-correlation
- * Data for geomagnetic variation: Magnetometer measurements, SuperMAG
 - * global map
 - * latitude and longitude chains
- * Data for solar storm/solar wind conditions: NASA satellite

\oplus

Results de Map

* Using data from 205
magnetometer observatories
(downloaded from SuperMAG)

-Generated global maps of the Halloween Storm on 29 Oct 2003.

\bigoplus

Results do Map

- * Started in high latitude
- * Expanded to mid and low latitude
- * High latitude is impacted the most

Result&Correlation

Storm-2 after midnight chain

- * correlation and delay show global effects in mid- and lowlatitude regions.
- * Impacts at high-latitude regions are different.

17:24 After Midnight X Correlation

17:24 After Midnight X Correlation Lag

Result& Correlation

* Localized patterns in highlatitude and regions of intense impact (Storm-1 Prenoon, Storm-2 Pre-midnight, high-latitude chains)

Result&Correlation

* Global patterns in mid and equatorial regions and regions of milder impact (Storm-1 Afternoon, Storm-2 After-midnight, equatorial chains)

Limitations

- * Sparse stations lead to less accurate Kriging Interpolation
- * Ideally 1-second temporal resolution with 100km-by-100km coverage
- * Number of Stations is decreasing every year due lack of funding

- * The global view shows where the impact starts, how large the regions of impact are, and where it affects the most during the 2003 Halloween Storm.
- * The global maps will be made available to the public as a tool for storm events study.

Discussion and Conclusion

