rmap Cheat Sheet

Webpage: https://jgcri.github.io/rmap/ Github: https://github.com/JGCRI/rmap Cheat sheet

Structure

KEY INPUTS

myFile.csv file

subRegion	value
TX	32
4.7	F 4

OR **R Data Frame**

```
data = data.frame(
     subRegion = c("TX","AZ"),
     value = c(32,54))
```

Optional Columns: param, scenario, year, class, units

CODE

```
library(rmap);
map (data) # OR
map("path/To/myFile.csv")
```

KEY OUTPUTS

Maps saved in the working directory as follows:

Pre-loaded Maps (Automatically find maps for data if available)

US49

data = data.frame(subRegion = c("TX", "AZ"),

value = c(32, 54), year=c(2010, 2010))

map(data)

Countries and cropToBoundary

data = data.frame(subRegion = c("India", "China"), value = c(32,54)) map(data, cropToBoundary=T)

GCAM Basins

data = data.frame(subRegion = c("La_Plata","Amazon"), value = c(32,54)) map(data, cropToBoundary=T)

Multiple Scenarios, Years and Classes

Multi-scenario Diff plots

data = data.frame(subRegion = c("TX","TX", "AZ", "AZ"), scenario = c("scen1", "scen2", "scen1", "scen2"), value = c(32, 38, 54, 63)map(data, scenRef="scen1")

Multi-Year Animantion/Mean

data = data.frame(subRegion = c("TX","TX", "AZ", "AZ"), year = c("2050","2100","2050","2100"), value = c(32, 38, 54, 63)) map(data, folderName="multiyear")

Multi-Class

data = data.frame(subRegion = c("TX","TX", "AZ", "AZ"), class = c("class1", "class2", "class1", "class2"), value = c(32, 38, 54, 63)map(data)

Customize Scales, Colors, Background

Set scale ranges

data = data.frame(subRegion = c("TX","TX", "AZ", "AZ"), scenario = c("scen1","scen2","scen1","scen2"), value = c(32, 38, 54, 63)map(data, scaleRange = c(30,50), scaleRangeDiffPrcnt = c(10,30))

Change Palettes

data = data.frame(map(data, background = T)

subRegion = c("India","China"), value = c(32,54))

Extended Boundary

