Presented by Saasha Joshi July 31, 2025

INTRODUCTION TO QUANTUM MACHINE LEARNING

ABOUT ME

Staff Scientist in Quantum Computing at CMC Microsystems, Canada

- Research in QML and quantum software development.
- MSc degree in Computer Science with a focus on QC from the University of Victoria.
- Actively involved in open-source development and educating and mentoring students.

CONTENT

- 1. Machine Learning
- 2. Quantum Machine Learning
- 3. Types of QML Algorithms
- 4. Applications of QML
- 5. Hands-on Coding Session

MACHINE LEARNING

TRADITIONAL VS MACHINE LEARNING

TRADITIONAL VS MACHINE LEARNING

MACHINE LEARNING

SUPERVISED LEARNING: CLASSIFICATION

• The model helps in the classification of unseen data.

SUPERVISED LEARNING: CLASSIFICATION

 The model helps in the classification of unseen data.

Given training labelled data,

$$\chi=(x_i,y_i)$$

Supervised model learns a function that generalizes to unseen data.

$$f:x\mapsto y$$

WHAT HAPPENS IF DATA IS NON-LINEAR?

Fix: High-dimensional feature mapping.

REAL WORLD DATA

SUPPORT VECTOR MACHINE

- The data is non-linearly mapped to a high-dimensional space, called the feature space, where a
 hyperplane is constructed to separate the samples.
- SVM utilizes kernels and the kernel trick to build this hyperplane.

Original feature space

Enlarged feature space

Non-linear decision boundary

Image source: https://bradleyboehmke.github.io/HOML/svm.html

CLASSICAL NEURAL NETWORK

 With each layer, the neural network transforms the data, creating a new representation.

+ b₂ Weights W_2 Wı $\sigma(\Sigma)$ $\sigma(\Sigma)$ Wf X_1 $+ b_3$ $\sigma(\Sigma)$ $\sigma(\Sigma)$ Input X_2 Layer $\sigma(\Sigma)$ $\sigma(\Sigma)$ Output Layer X_3 $\sigma(\Sigma)$ $\sigma(\Sigma)$

Bias Vector

CLASSICAL NEURAL NETWORK

- With only one input layer, you can visualize the network as it attempts to separate the data by drawing a line through it.
- More hidden layers learn a representation such that the data is linearly separable.
- Each hidden layer corresponds to increase in the dimension.

Refer: https://colah.github.io/posts/2014-03-NN-Manifolds-Topology

QUANTUM MACHINE LEARNING

QUANTUM MACHINE LEARNING

- QML lies at the intersection of quantum information and machine learning.
- It leverages quantum mechanical properties such as *superposition*, *entanglement*, *and interference*.

WE ALREADY HAVE A HIGHER-DIMENSIONAL SPACE!

• With quantum computers, we can map classical data to high-dimensional quantum states.

$$x\mapsto \ket{\phi(x)}$$

WE ALREADY HAVE A HIGHER-DIMENSIONAL SPACE!

• With quantum computers, we can map classical data to high-dimensional quantum states.

$$x\mapsto \ket{\phi(x)}$$

• Formally, a *Quantum Feature Map* is defined as a function that,

$$x\mapsto
ho(x)$$

$$ho(x) = |\phi(x)
angle \langle \phi(x)|$$

TYPES OF DATA EMBEDDING

Basis Encoding

$$\Phi: x \mapsto \ket{x_3x_2x_1} \qquad x_i \in [0,1]$$

Angle Encoding

$$\Phi: x \mapsto U(x) |\psi_0
angle$$

Amplitude Encoding

$$\Phi: x \mapsto \sum_i x_i |i
angle$$

And other feature maps

• ZZ Feature Map
$$U_{\phi(x)} = \exp\Bigl(i \sum_{S\subseteq [n]} \phi_S(x) \prod_{i\in S} Z_i\Bigr)$$

TYPES OF QML ALGORITHMS

VARIATIONAL QUANTUM ALGORITHMS

Variational quantum algorithms consist of tunable unitary operations called Parameterized Quantum Circuits (PQC).

VARIATIONAL QUANTUM ALGORITHMS

Variational quantum algorithms consist of tunable unitary operations called Parameterized Quantum Circuits (PQC).

QUANTUM KERNEL METHODS

Kernel methods provide a similarity measure between data features. This similarity measure is expressed as the inner product of the data features, known as the kernel.

QUANTUM NEURAL NETWORKS

Quantum counterpart of classical neural network architecture.

For example, a quantum convolutional neural network.

Refer: Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15(12), 1273–1278.

APPLICATIONS OF QML

APPLICATIONS OF QML

Provide acceleration to Al and Generative modelling:

QGANs [1], Quantum CNNs [2], Quantum Tensor

Networks [3]

^[1] Dallaire-Demers, P. L., & Killoran, N. (2018). Quantum generative adversarial networks. Physical Review A, 98(1), 012324

^[2] Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15(12), 1273-1278.

^[3] Biamonte, J. (2019). Lectures on quantum tensor networks. arXiv preprint arXiv:1912.10049.

OTHER APPLICATIONS

Applications in Chemistry and Material Science:
 Generative Quantum Eigensolver (GQE) to find ground state energy [1],
 Quantum Boltzmann Machine [2]

[1] Nakaji, K., Kristensen, L. B., Campos-Gonzalez-Angulo, J. A., Vakili, M. G., Huang, H., Bagherimehrab, M., ... & Aspuru-Guzik, A. (2024). The generative quantum eigensolver (GQE) and its application for ground state search. arXiv preprint arXiv:2401.09253.
[2] Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyv, B., & Melko, R. (2018). Quantum boltzmann machine. Physical Review X, 8(2), 021050.

OTHER APPLICATIONS

Applications in High-Energy Physics and Error Correction:
 High-dimensional modeling [1], Parameter estimation, Anomaly detection [2],

 Noise modeling, Adaptive error correction

[1] Guan, W., Perdue, G., Pesah, A., Schuld, M., Terashi, K., Vallecorsa, S., & Vlimant, J. R. (2021). Quantum machine learning in high energy physics. Machine Learning: Science and Technology, 2(1), 011003.

^[2] Belis, V., Woźniak, K. A., Puljak, E., Barkoutsos, P., Dissertori, G., Grossi, M., ... & Vallecorsa, S. (2024). Quantum anomaly detection in the latent space of proton collision events at the LHC. Communications Physics, 7(1), 334.

OTHER APPLICATIONS

To solve Optimization and Game Theory problems:

Combinatorial optimization,

Financial Portfolio optimization, Risk analysis, Supply Chain optimization

Quantum Bayesian Optimization for hyperparameter optimization [1]

[1] Rapp, F., & Roth, M. (2024). Quantum gaussian process regression for bayesian optimization. Quantum Machine Intelligence, 6(1), 5.

HANDS-ON CODING SESSION

THANK YOU

Reach out to me:

saasha.joshi@cmc.ca; saashajoshi08@gmail.com