Data Analysis on Airbnb Dataset

in Los Angeles Area

COMM 557 Midterm Presentation

Kelly Choy Shih-Min (Julia) Huang Tongxin (Shirley) Ye

Project Details

- Analyze short-term rental markets in LA
- Dataset:
 - Provided by Inside Airbnb
 (http://insideairbnb.com/get-the-data/)
 - o Dataset time frame: 9/4/2023

Problem

- Individual look at these features when selecting which Airbnb to book:
 - o price, location, reviews, ratings of hosts, etc.
- One main factor that people look at is whether the homeowner is a Superhost
 - How do homeowners receive the "superhost" title?
 - If a new homeowner wants a higher chance of people selecting their home to stay in, they need to achieve that title and reputation
- Goal → to identify what makes a homeowner a Superhost

Methods

Mapping Spatial Distribution: Visualizing Geographic Patterns

- Utilize geographic visualizations to highlight high-density areas and identify hotspots effectively
- Analyzing and visualizing data pertaining to pricing, superhost rate, etc, across diverse neighborhoods

Utilizing Machine Learning (classification) for Superhost Prediction:

- Identifying the distinguishing factors that set Superhosts apart
 - Utilize tree-based methods, e.g. boosting
- Make predictions on whether a host will attain Superhost status or not

Average Airbnb Superhost Rates by Neighborhood

Average Airbnb Prices by Neighborhood - Geographic Mapping

Average Airbnb Prices by Neighborhood - Bar Chart

Neighborhood Price Distribution: Exploring the Variance

Exploratory Sentiment Analysis - Word Cloud

Word Cloud for Positive Reviews (Excluding Custom Stopwords)

Superhost **Prediction**

Machine learning

- Data Cleaning
 - o Drop
 - Less-informative/duplicated features
 - Rows having null values in host_is_superhost and scores
 - Price = 999/9999
 - Reformat
 - Str to float: '\$1,400' to 1400.00, '93%' to 0.9300
 - Date to date difference: 2023-06-18 to 4 (months)
 - Encode
 - Binary: t/f to 1/0
 - Category: dtype from object to category
 - Extract
 - Summarize the cnt of amenities/verifications

Training	20629
Testing	5158
Column	46
Superhost %	47.47%

Feature Selection

XGBoost Classifier

- Select Top20 features based on the average gain of splits which use the feature.
- Use the 20 features to train xgb classifier with 5-fold cross validation, mean accuracy = 0.8627, std = 0.0039

Backward Elimination

- Try to eliminate the num of features using backward elimination based on improved accuracy.
- In XGBoost classifier, no feature is eliminated.
- Plan to explore other models for further feature selection and interpretation.

NEXT STEPS

Data Cleaning

 Wide range of pricing, unable to determine if the prices are real or not...

Feature Selection Process

- Not sure if there's intercorrelation between the features
- SHAP library isn't compatible with categorical variables used in XGBoost

Data Visualization

 Try to implement dashboard with visualizations via Tableau Server

Machine Learning for Superhost Prediction

- Explore different ML models' explanatory powers
 - logistic regression
 - decision trees

THANK YOU

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**

