# Lecture -02: Introduction to Neural Networks

#### What are Neural Networks?

#### Biological Neuron vs. Artificial Neuron

| Biological Neuron         | <b>Artificial Neuron</b> |
|---------------------------|--------------------------|
| Dendrites (input)         | Input                    |
| Soma (cell body)          | Node                     |
| Axon (output)             | Output                   |
| Synapse                   | Interconnections         |
| Adaptation-based learning | Model-based learning     |

## **Neural Network Learning Algorithms (1)**

- Two main algorithms:
  - **Perceptron:** Initial algorithm for learning simple neural networks (with no hidden layer) developed in the 1950's.
  - **Backpropagation:** More complex algorithm for learning multi-layer neural networks developed in the 1980's.

## **Neural Network Learning Algorithms (2)**

- Neural Netwoks are one the most important class of learning algorithms in ML.
- The learned classification model is an algebraic function.
- The function is *linear* for Perceptron algorithm, *non-linear* for Backpropagation algorithm
- Both features and the output classes are allowed to be real valued

**Perceptron: The First Neural Network** 

## **Types of Artificial Neural Networks**

 ANN can be categorized based on number of hidden layers contained in ANN architecture

One Layer Neural Network (Perceptron) 01 Contains 0 hidden layers Multi Layer Neural Network Regular Neural Network 02 Contains 1 hidden layer Deep Neural Network Contains >1 hidden layers

#### One layer Artificial Neural Network (Perceptron)

- Multiple input nodes
- Single output node
  - Takes weighted sum of the inputs
  - Unit function calculates the output for the network



#### **Unit Function**

- Linear Function
  - Simply output the weighted sum



#### **Unit Function**

- Linear Function
  - Weighted sum followed by an activation function



- To categorize a 2x2 pixel binary image to:
  - "Bright" and "Dark"
- The rule is:
  - If it contains 2, 3 or 4 white pixels, it is "**bright**"
  - If it contains 0 or 1 white pixels, it is "dark"
- Perceptron architecture:
  - Four input units, one for each pixel
  - One output unit: +1 for bright, -1 for dark



Image of 4 pixels



 $S = 0.25*x_1 + 0.25*x_2 + 0.25*x_3 + 0.25*x_4$ 

- Calculation (Step-1):
  - $X_1 = 1$
  - $X_2 = 0$
  - $X_3 = 0$
  - $X_4 = 0$

$$S = 0.25*(1) + 0.25*(0) + 0.25*(0) + 0.25*(0) = 0.25$$

- 0.25 > 0, so the output of ANN is +1
  - So the image is categorized as "Bright"
  - Target: "Dark"



#### Perceptron Training Rule (How to update weights)

- When t(E) is different from o(E)
  - Add Δ<sub>i</sub> to weight w<sub>i</sub>
  - Where  $\Delta_i = \eta(t(E) o(E)) x_i \rightarrow \eta$  is learning rate (Usually very small value)
  - Do this for every weight in the network
  - Let n=0.1

#### **Calculating the error values**

$$\Delta_1 = \eta (t(E) - o(E)) * x_1$$
  
= 0.1 (-1-1) \* 1 = -0.2

$$\Delta_2 = \eta (t(E) - o(E))^* x_2$$
  
= 0.1 (-1-1) \* 0 = 0

$$\Delta_3 = \eta (t(E) - o(E)) * x_3$$
  
= 0.1 (-1-1) \* 0 = 0

$$\Delta_4 = \eta (t(E) - o(E)) * x_4$$
  
= 0.1 (-1-1) \* 0 = 0

#### **Calculating the New Weights**

$$w'_1 = w_1 + \Delta_1 = 0.25 - 0.2 = 0.05$$

$$w'_2 = w_2 + \Delta_2 = 0.25 + 0 = 0.25$$

$$w'_3 = w_3 + \Delta_3 = 0.25 + 0 = 0.25$$

$$w'_{a} = w_{a} + \Delta_{a} = 0.25 + 0 = 0.25$$

- Calculation (Step-2):
  - $X_1 = 1$
  - $X_2 = 0$
  - $X_3 = 0$
  - $X_4 = 0$

$$S = 0.05*(1) + 0.25*(0) + 0.25*(0) + 0.25*(0) = 0.05$$

- 0.05 > 0, so the output of ANN is +1
  - So the image is categorized as "Bright"
  - Target: "Dark"



#### Perceptron Training Rule (How to update weights)

#### When t(E) is different from o(E)

- Add Δ<sub>i</sub> to weight w<sub>i</sub>
- Where  $\Delta_i = \eta(t(E) o(E)) x_i \rightarrow \eta$  is learning rate (Usually very small value)
- Do this for every weight in the network
- Let n=0.1

#### Calculating the error values

$$\Delta_1 = \eta (t(E) - o(E)) * x_1$$
  
= 0.1 (-1-1) \* 1 = -0.2

$$\Delta_2 = \eta (t(E) - o(E)) * x_2$$
  
= 0.1 (-1-1) \* 0 = 0

$$\Delta_3 = \eta (t(E) - o(E)) * x_3$$
  
= 0.1 (-1-1) \* 0 = 0

$$\Delta_4 = \eta (t(E) - o(E)) * x_4$$
  
= 0.1 (-1-1) \* 0 = 0

#### **Calculating the New Weights**

$$w'_1 = w_1 + \Delta_1 = 0.05 - 0.2 = -0.15$$

$$w'_2 = w_2 + \Delta_2 = 0.25 + 0 = 0.25$$

$$w'_3 = w_3 + \Delta_3 = 0.25 + 0 = 0.25$$

$$w'_4 = w_4 + \Delta_4 = 0.25 + 0 = 0.25$$

#### Calculation (Step-3):

- $X_1 = 1$
- $X_2 = 0$
- $X_3 = 0$
- $X_4 = 0$

$$S = -0.15*(1) + 0.25*(0) + 0.25*(0) + 0.25*(0) = -0.15$$

- - 0.15 < 0, so the output of ANN is -1
  - So the image is categorized as "Dark"
  - Target: "Dark"



## **Another Example (AND)**

|   | <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|---|-----------------------|----------------|-----------------------------------|
|   | 0                     | 0              | 0                                 |
| 1 | 0                     | 1              | 0                                 |
| Ī | 1                     | 0              | 0                                 |
|   | 1                     | 1              | 1                                 |



| • | <b>X1</b> | 0 |
|---|-----------|---|
|   |           |   |

• 
$$X2 = 1$$
,

• 
$$\eta = 0.1$$

• 
$$t(E) = -1$$

| Weights         | Step-1 | Step-2 | Step-3 | Step-4 |
|-----------------|--------|--------|--------|--------|
| w1              | 0.5    | 0.5    | 0.5    | 0.5    |
| w2              | 0.5    | 0.3    | 0.1    | -0.1   |
| Weighted Sum    | 0.5    | 0.3    | 0.1    | -0.1   |
| Observed Output | +1     | +1     | +1     | -1     |

#### **Another Example (AND)**

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|-----------------------|----------------|-----------------------------------|
| 0                     | 0              | 0                                 |
| 0                     | 1              | 0                                 |
| 1                     | 0              | 0                                 |
| 1                     | 1              | 1                                 |



| <ul><li>X1</li></ul> | = 1 |
|----------------------|-----|
|----------------------|-----|

• 
$$X2 = 0$$
,

• 
$$\eta = 0.1$$

• 
$$t(E) = -1$$

| Weights         | Step-1 | Step-2 | Step-3 | Step-4 |
|-----------------|--------|--------|--------|--------|
| w1              | 0.5    | 0.3    | 0.1    | -0.1   |
| w2              | -0.1   | -0.1   | -0.1   | -0.1   |
| Weighted Sum    | 0.5    | 0.3    | 0.1    | -0.1   |
| Observed Output | +1     | +1     | +1     | -1     |

#### **Another Example (AND)**

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|-----------------------|----------------|-----------------------------------|
| 0                     | 0              | 0                                 |
| 0                     | 1              | 0                                 |
| 1                     | 0              | 0                                 |
| 1                     | 1              | 1                                 |



| <b>Y</b> 1 | _ | 1 |
|------------|---|---|
| $\Lambda$  |   |   |

• 
$$X2 = 1$$
,

$$\eta = 0.1$$

• 
$$t(E) = +1$$

| Weights         | Step-1 | Step-2 |
|-----------------|--------|--------|
| w1              | -0.1   | 0.1    |
| w2              | -0.1   | 0.1    |
| Weighted Sum    | -0.2   | 0.2    |
| Observed Output | - 1    | +1     |

#### **Use of Bias**

• Bias is just like an intercept added in a linear equation.

Bias  $x_0$   $0 \quad x_1 \quad 0.5$   $0 \quad x_1 \quad 0.5$   $1 \quad x_2 \quad 0.5$   $1 \quad x_2 \quad 0.5$ 

output = sum (weights \* inputs) + bias

• The output is calculated by multiplying the inputs with their weights and then passing it through an activation function like the Sigmoid function, etc. Here, bias acts like a constant which helps the model to fit the given data.

#### **Use of Bias**

A simpler way to understand bias is through a constant c of a linear function

• It allows us to move the line down and up fitting the prediction with the data better. If the constant c is absent then the line will pass through the origin (0, 0) and we will get a poorer fit.



|   | <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|---|-----------------------|----------------|-----------------------------------|
|   | 0                     | 0              | 0                                 |
| 1 | 0                     | 1              | 0                                 |
| Ī | 1                     | 0              | 0                                 |
|   | 1                     | 1              | 1                                 |



| <b>X1</b>   | _ | n |
|-------------|---|---|
| $\Lambda$ I |   | v |

• 
$$X2 = 1$$
,

• 
$$\eta = 0.1$$

• 
$$t(E) = -1$$

| Weights         | Step-1 | Step-2 | Step-3 | Step-4 |
|-----------------|--------|--------|--------|--------|
| w0              | 0.5    | 0.3    | 0.1    | -0.1   |
| w1              | 0.5    | 0.5    | 0.5    | 0.5    |
| w2              | 0.5    | 0.3    | 0.1    | -0.1   |
| Weighted Sum    | 1      | 0.6    | 0.2    | -0.2   |
| Observed Output | +1     | +1     | +1     | -1     |

|   | <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|---|-----------------------|----------------|-----------------------------------|
|   | 0                     | 0              | 0                                 |
|   | 0                     | 1              | 0                                 |
|   | 1                     | 0              | 0                                 |
| Ī | 1                     | 1              | 1                                 |



| • | <b>X1</b> | 1 |
|---|-----------|---|
|   |           |   |

• 
$$X2 = 0$$
,

• 
$$\eta = 0.1$$

• 
$$t(E) = -1$$

| Weights         | Step-1 | Step-2 |
|-----------------|--------|--------|
| w0              | -0.1   | -0.3   |
| w1              | 0.5    | 0.3    |
| w2              | -0.1   | -0.1   |
| Weighted Sum    | 0.4    | 0      |
| Observed Output | +1     | -1     |

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|-----------------------|----------------|-----------------------------------|
| 0                     | 0              | 0                                 |
| 0                     | 1              | 0                                 |
| 1                     | 0              | 0                                 |
| 1                     | 1              | 1                                 |



| • | <b>X1</b> | 1 |
|---|-----------|---|
|   | / \       |   |

• 
$$X2 = 1$$
,

$$\eta = 0.1$$

• 
$$t(E) = +1$$

| Weights         | Step-1 | Step-2 |
|-----------------|--------|--------|
| w0              | -0.3   | -0.1   |
| w1              | 0.3    | 0.5    |
| w2              | -0.1   | 0.1    |
| Weighted Sum    | 0      | 0.5    |
| Observed Output | -1     | +1     |

#### **After 2 Epochs**

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> AND X <sub>2</sub> |
|-----------------------|----------------|-----------------------------------|
| 0                     | 0              | 0                                 |
| 0                     | 1              | 0                                 |
| 1                     | 0              | 0                                 |
| 1                     | 1              | 1                                 |

- X1 = 0
- X2 = 1,
- $\eta = 0.1$
- t(E) = -1



#### **Final Weights**

| Weights |       |  |
|---------|-------|--|
| w0      | - 0.3 |  |
| w1      | 0.3   |  |
| w2      | 0.1   |  |

## **Learning in Perceptron**



#### **Need To Learn**

- Both the weights between input and output units
- And the value for the bias
- Make Calculations easier by:
  - Thinking of the bias as a weight from a special input unit where the output from the unit is always 1
- Exactly the same result:
  - But we only have to worry about learning weights

#### **New Representation for Perceptron**



## **Learning Algorithm**

- Weights are randomly initialized.
- For each training example E
  - Calculate the observed output from Perceptron, o(E)
  - If the target output t(E) is different to o(E)
    - Then update all the weights so that o(E) becomes closer to t(E)
- This process is done for every example
- It is not necessary to stop when all examples are used.
  - Repeat the cycle again (an epoch) until network produces the correct output

#### **Limitations of Perceptron**

- The perceptron can only learn simple problems. this is only useful if the problem is linearly separable.
- A linearly separable problem is one in which the classes can be separated by a single hyperplane.



## **Any Questions?**