Sample Test -2-

I- In the following table, only one of the proposed answers to each question is correct. Write the number of each question & the corresponding answer& justify.

N°	Questions		Answers		
14		A	В	C	
1-	$\lim_{x \to 4} \frac{\ln(x-3)}{x-4} =$	0	+∞	1	
2-	$\lim_{x \to +\infty} x^2 - 2x - \ln x =$	0	+∞		
3-	The domain of definition of the function f given by $f(x) = \frac{\ln(x^2 - 2x)}{x + 1}$ is:]-1;+∞[]-∞;0[∪]2;+∞[]- \infty;-1[\cup]-1;0[\cup]2;+\infty[
4-	The solutions in IR of the Equation $2(\ln(x))^2 - 3\ln(x) + 1 = 0$ are:	$x = 1$ & $x = \frac{1}{2}$	x = 1 & x =e	$x = e, x = \sqrt{e}$	
5-	The solution set in IR of the inequation ln(x)+ln(x-2)-ln3<0 is:]-1;3[]0;3[]2;3[

Sample Test -3-

I- In the following table, only one of the proposed answers to each question is correct. Write the number of each question & the corresponding answer& justify.

N°	Questions	Answers				
		a	b	c		
1	$f(x) = \ln\left(\frac{x+1}{x+2}\right)$ The domain of definition of f is:]-2;-1[]- 1;+∞[]-∞;-2[∪]-1;+∞[
2	$\lim_{x \to e} f(x) = \frac{\ln(x) - 1}{x - e}$	0	+∞	e^{-1}		
3	(C): $f(x) = \ln(x^3)$ An equation of the tangent at $x = 1$ to (C) is:	y = 3x - 1	y = 3x - 3	y = -3x + 3		

II-(9Pts)

Part-A-:

Consider a function f defined over]0;+ ∞ [by: $f(x) = x - 4 - 4 \ln \left(\frac{x}{x+2} \right)$

& denote by (C) its representative curve in an orthonormal system (O; \vec{i} ; \vec{j}).

1- Calculate: $\lim_{x\to 0^+} f(x) \& \lim_{x\to +\infty} f(x)$. Deduce an equation of an asymptote to (C).

2- Show that the line (D) of equation y = x - 4 is an oblique asymptote to (C).

3- Show that $f'(x) = \frac{(x-2)(x+4)}{x(x+2)}$ & set up the table of variations of f.

4- Trace (C).

Sample Test -4-

I- In the following table, only one of the proposed answers to each question is correct. Write the number of each question & the corresponding answer& justify.

N°	Questions	Answers			
		A	В	C	
ı	$f(x) = \ln(x^2 + x + 1)$ The domain of definition of f is:]0;+∞[IR]-∞;0[
2	$\lim_{x \to 1} f(x) = \frac{\ln(ex) - 1}{x^2 - 1}$	0	+∞	$\frac{1}{2}$	
3	The value of $A = \ln(e^3) - 4\ln(\sqrt{e}) + \ln(e^{-2})$ is:	-1	1	0	

Sample Test -7-

I-In the following table, only one of the proposed answers to each question is correct. Write the number of each question & the corresponding answer& justify.

No	Questions	Answers			
140	V	A	В	C	
1-	$\lim_{x \to +\infty} \ln \left(\frac{ex - 1}{x + 1} \right) =$	0	1	+∞	
2-	if $f(x) = (\ln x)^2$ then f'(x)=	2ln(x)	ln(2x)	$\frac{2\ln x}{x}$	
3-	The equation in x $ln(x-2) + ln(x-4) = 3 ln 2$ has:	One solution	Two solutions	No solutions	
4-	The value of $A = \ln(\sqrt{e^2 + 4} - 2) + \ln(\sqrt{e^2 + 4} + 2) + \ln(e^{-2})$	-1	1	- 0	
5-	is: The domain of definition of f defined by $f(x) = \ln(x^2 - 4x + 3)$ is:]1;3[IR]-∞;1[∪]3;+∞[

II-

Part-A-:

Consider a function g defined over $]0;+\infty[$ by: $g(x) = \frac{\ln x}{x} + e$ & denote by (C_g) its representative curve in an orthonormal system.

- 1- Calculate: $\lim_{x\to 0^+} g(x) \& \lim_{x\to +\infty} g(x)$. Deduce the equations of asymptotes to (C_g) .
- 2- a- Calculate g'(x) & set up the table of variations of g . b- Solve the equation: g(x) = e .
- 3- Calculate $g(\frac{1}{e})$. Deduce the sign of g(x) in terms of x .
- 4- Trace (Cg).

Part-B-:

Consider a function f defined over $]0;+\infty[$ by: $f(x) = \frac{1}{2}(\ln x)^2 + ex - e$ & denote by (C_f) its representative curve in an orthonormal system (Scale: 4 cm on x'ox & 2 cm on y'oy).

- 1. Calculate $\lim_{x\to 0^+} f(x)$ & $\lim_{x\to +\infty} f(x)$. Deduce the equation of an asymptote to (C_f) .
- 2. Verify that f'(x) = g(x).
- 3. Set up the table of variations of f.
- 4. Write the equation of the tangent (T) to (C_f) at the point of abscissa x = 1.
- 5. Study the position between (C) & (T).
- 6. Tracer (C) et (T).

III-

Consider a function f defined by:

$$f(x) = ax + b + \frac{cx}{\ln x}$$
 whose table of variations is on the right:

- 1-Calculate f'(x) in terms of a, c & x.
- 2- use the information in the table calculate a, b & c.

Part-A-:

The curve(C) below is the graphical representation of a function g defined over $]0;+\infty[$ by $:g(x)=x^2+a\ln x +b$.

(T) is the tangent at A(1;0) to (C) of equation y=3x-3.

2- Solve graphically:

$$g(x) = 0$$
; $g(x) > 0$; $g(x) < 0$.

Consider a function f defined over

$$]0;+\infty[$$
 by: $f(x) = x - \frac{\ln x}{x}$

Designate by (C ') its representative curve in an orthonormal system .

- 2- a) Show that the line (D) of equation y = x is an asymptote to (C') at $+\infty$. b) Study the position between (C') & (D).
- 3- a-Show that $f'(x) = \frac{g(x)}{x^2}$.

b-Set up the table of variations of f. (use part A-2).

4- Trace (C').

