Chap	9 特征	艮近似					
2022年11月							
盖尔圆盘	記定理						
	图特过程:	L++ & & Aug L++					
● 就是	自向量的正交化	恒的都值					
幂法:							
• λ ₁	$> \lambda_2 \ge \lambda_3 \ge$	$\geq \cdots \geq \lambda n \geq 0$)				
	过程:x _{k+1} = ^A / ₄ 「能找到λ2云云		分分子				
• 逆矩	阵幂法,用于找	最接近于特定		根.			
0	$q = \frac{x^{(0)t}Ax^{(0)t}}{x^{(0)t}x^{(0)t}}$)) 					
0	$x^{(m)} = \frac{(A - \frac{\lambda}{(\pm 1)})}{(\pm 1)}$ $\lambda_k = q + \frac{\lambda}{(-1)}$	$-qI)^{-1}x^{(m-1)}$	<u>\ </u> '				
0	$\lambda_{\nu} = a + \frac{1}{2}$	1					
) (H –	$qI)x^{(m-1)}$					