# Content of this lecture

# 1. What is plasmon?

- Plasmons (plasma) in universe
- Plasmons in metal

# 2. Metal optics

- Drude model
- Permittivity  $\varepsilon$  at plasma frequency

# 3. Volume plasmons

- Physical nature of volume plasmons
- Properties of volume plasmons
- Application of volume plasmons in nanophotonics

# 1. What is plasmon?

How many states of matter?

- Solid
- Liquid
- Gas
- Plasma hot ionized gas with free charges





## Plasmons (plasma) in universe

• Plasma: the 4<sup>th</sup> state of matter



99% of the matter in universe is in plasma state

• Different from ordinary neutral gas: strong interaction with EM fields





Solar corona with hot plasma

### Types of plasma according to temperature and density of charged particles



#### Plasmons in metal

- Solids, liquids, and gases are usually too cold and dense for classical plasma to exist.
- Can we get plasmons at room temperature?
- Let's think about metal: free electrons + ions→ plasmons?



- Yes (but not in its classical meaning), three types of plasmons:
  - Volume plasmons
  - Surface plasmon polaritons
  - Localized surface plasmons

# 2. Metal optics

- Metal response is determined by the behavior of free electrons.
- Under external field E, free electrons can be treated as harmonic oscillators without restoring force



Equation of motion of free electrons:

$$m\ddot{\mathbf{r}} + m\gamma\dot{\mathbf{r}} + K\mathbf{r} = -e\mathbf{E}$$

m – mass of electron  $\gamma$  – damping frequency (~100 THz)

### Can be solved similarly as the Lorentz model

For a time-harmonic stimulus  $\mathbf{E}(t) = \mathbf{E}_0 \exp(-i\omega t)$ , there is a time-harmonic solution  $\mathbf{r}(t) = \mathbf{r}_0 \exp(-i\omega t)$ , which is solved as:

$$\mathbf{r} = \frac{e/m}{\omega^2 + i\omega\gamma} \mathbf{E}$$

Then we can get the **macroscopic** polarization vector:

$$\mathbf{P} = -Ne\mathbf{r} = \frac{Ne^2 / m}{\omega^2 + i\omega\gamma} \mathbf{E}$$

N – density of electrons

Any problem???

Let's think about the polarization process:



Which one is correct?

However, 
$$\mathbf{P} = -Ne\mathbf{r} = -\frac{Ne^2/m}{\omega^2 + i\omega\gamma}\mathbf{E}$$

Question: **E** is out of phase with **P** by  $\pi$  (a depolarizing force!), why? – discussion topic

Then we can derive the permittivity:

$$\mathbf{P} = -Ne\mathbf{r} = -\frac{Ne^2 / m}{\omega^2 + i\omega\gamma}\mathbf{E} \quad \Longrightarrow \quad \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \varepsilon \mathbf{E}$$

At optical frequency  $\omega >> \gamma$ ,  $\varepsilon(\omega)$  can be simplified as

$$\varepsilon(\omega) \approx 1 - \frac{\omega_p^2}{\omega^2}$$



Let's discuss  $\varepsilon$  for different  $\omega$  ...

### High frequency ( $\omega >> \gamma$ ):

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + i\gamma\omega}$$

$$\varepsilon(\omega) \approx 1 - \frac{\omega_{\rm p}^2}{\omega^2}$$



① For very high frequency  $\omega > \omega_p$ :

$$\rightarrow \varepsilon > 0$$



→ metal is *transparent* (like dielectric)



High frequency (
$$\omega >> \gamma$$
):

High frequency (
$$\omega >> \gamma$$
):

$$\varepsilon(\omega) \approx 1 - \frac{\omega_{\rm p}^2}{\omega^2}$$





$$\rightarrow \varepsilon < 0$$



Electric field in metal:  $\mathbf{E} = \mathbf{E}_0 \exp(-n'' \mathbf{k}_0 \cdot \mathbf{r})$ , skin depth  $\delta = c/n'' \omega$ 

→ Fields *decay exponentially* in metal

Reflectance (normal incidence): 
$$R = \frac{(n'-1)^2 + n''^2}{(n'+1)^2 + n''^2} \approx 1$$



metal

- → *High reflectance* on metal surface
- $\rightarrow$  When  $\gamma = 0 \rightarrow$  ideal metal, R = 1

High frequency (
$$\omega >> \gamma$$
):

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + i\gamma\omega}$$



- 3 For very low frequency  $\omega \ll \gamma$ :  $\varepsilon(\omega) = \varepsilon'(\omega) + i\varepsilon''(\omega)$ 
  - $\rightarrow \varepsilon'' >> \varepsilon'$  (derive it by yourself)
  - → refractive index  $n' \approx n'' \approx \sqrt{\frac{\varepsilon''}{2}}$  (derive it by yourself)

Electric field in metal:  $\mathbf{E} = \mathbf{E}_0 \exp(i n' \mathbf{k_0} \cdot \mathbf{r}) \exp(-n'' \mathbf{k_0} \cdot \mathbf{r})$ , skin depth  $\delta = c/n'' \omega$ 

→ Fields *decay rapidly* in metal

Reflectance (normal incidence):  $R = \frac{(n'-1)^2 + n''^2}{(n'+1)^2 + n''^2} \approx 1$ 



- → *High reflectance* on metal surface
- $\rightarrow$  When  $\omega$  is very low  $\rightarrow$  perfect conductor

metal

### High frequency ( $\omega >> \gamma$ ):

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + i\gamma\omega}$$

$$\varepsilon(\omega) \approx 1 - \frac{\omega_{\rm p}^2}{\omega^2}$$



**4** At plasma frequency  $\omega \approx \omega_p$ :

$$\rightarrow \varepsilon \approx 0$$

- $\rightarrow$  Refractive index  $n = (\varepsilon \mu)^{1/2} \approx 0$
- $\rightarrow$  Wave number  $k = nk_0 \approx 0$

What does this mean??? No wave propagation?

Let's review the wave equation in Lecture 2...

#### Harmonic field

Solution to wave equation:

$$\nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{\varepsilon \mu}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Henceforth, we consider only nonmagnetic media ( $\mathbf{M}$ =0,  $\mu$ =1)

→ time- and spatial-harmonic field:

k – wave vector

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \exp(i\mathbf{k} \cdot \mathbf{r} - i\omega t)$$
 (check this is a solution)

In this case,  $\nabla \rightarrow i\mathbf{k}$ ,  $\partial / \partial t \rightarrow -i\omega$  (derive by yourself)

Therefore, the wave equation turns to

$$\mathbf{k}(\mathbf{k} \cdot \mathbf{E}) - k^2 \mathbf{E} = -\varepsilon \frac{\omega^2}{c^2} \mathbf{E}$$

• If transverse wave  $\rightarrow \mathbf{k} \cdot \mathbf{E} = 0 \rightarrow$ 

$$k = \sqrt{\varepsilon} \, \frac{\omega}{c} \equiv nk_0$$



• If longitudinal wave  $\rightarrow \mathbf{k}(\mathbf{k} \cdot \mathbf{E}) = k^2 \mathbf{E}$ 

$$\rightarrow \varepsilon = 0$$

# Let's have a closer look at $\omega \ge \omega_p$ :



$$\varepsilon(\omega) \approx 1 - \frac{\omega_{\rm p}^2}{\omega^2} \longrightarrow$$

for transverse wave:

$$k = \sqrt{\varepsilon} \, \frac{\omega}{c}$$

$$\Rightarrow \omega^2 = \omega_p^2 + k^2 c^2$$

## Draw the k- $\omega$ plot (dispersion relation):



# $\varepsilon$ at plasma frequency ( $\omega = \omega_p$ )

$$\varepsilon(\omega) = \varepsilon'(\omega) + i\varepsilon''(\omega)$$

$$\varepsilon'(\omega) \approx 1 - \frac{\omega_p^2}{\omega^2} = 0$$

$$\varepsilon''(\omega) \approx \frac{\omega_p^2 \gamma}{\omega^3}$$

$$\therefore n' = n'' = \sqrt{\frac{\varepsilon''(\omega)}{2}}$$

Check these by yourself

### **Example: permittivity of Sb**



## **Example: refractive index of Sb**



$$n' = n'' = \sqrt{\frac{\varepsilon''(\omega)}{2}}$$

#### For real metals, especially noble metals (e.g., Ag):



- Measurement shows a peak in  $\varepsilon$ ' and  $\omega_p$  is shifted, why?
- **Interband transition** (excitation of bound electrons)



 Drude model should be modified with additional Lorentz-oscillator terms:

$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} + \sum_j \frac{\omega_{jp}^2}{\omega_{j0}^2 - \omega^2 - i\gamma_j\omega}$$



A consequence is that  $\omega_p$  is red-shifted (to  $\lambda$ ~330 nm that we could utilize)



# 3. Volumn plasmons

# What happens at plasma frequency $\omega_p$ ?

- At plasma frequency  $\omega = \omega_p$ , we have  $\varepsilon(\omega_p) \approx 0$
- Let's see the wave equation:  $\mathbf{k}(\mathbf{k} \cdot \mathbf{E}) k^2 \mathbf{E} = -\varepsilon \frac{\omega^2}{c^2} \mathbf{E}$ 
  - If transverse wave,  $\mathbf{k} \cdot \mathbf{E} = 0 \rightarrow k = \sqrt{\varepsilon} \frac{\omega}{c}, \ \varepsilon \neq 0$
  - If longitudinal wave,  $\mathbf{k}/\mathbf{E} \to \mathbf{k}(\mathbf{k} \cdot \mathbf{E}) = k^2 \mathbf{E} \to \varepsilon = 0$

So, at  $\omega_p$ , only collective longitudinal oscillations of free electrons exist!

- which are called volume plasmons!

# The physical meaning of $\omega_p$

Let's consider a thin slab in the bulk metal at  $\omega_p$ :

Electron displacement u normal to surface  $\rightarrow$  surface charge  $\sigma$ 

- $\rightarrow$  a homogeneous electric field  $E = neu / \varepsilon_0$
- → restoring force

Then the motion equation of electrons:  $nm\ddot{u} = -ne\mathbf{E}$ 

So,  $\omega_p$  is the natural frequency of volume plasmons!

## Properties of volume plasmons

(1) Longitudinal wave **k**//**E** 



(2) No interplay between **E** and  $\mathbf{H} \rightarrow \text{no EM field}$ 

$$\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial t \rightarrow 0 = \mathbf{k} \times \mathbf{E} = \omega \mu \mathbf{H}$$

(3) Decay of oscillation occurs only via energy transfer to single electrons, known as Landau damping

## Application of volume plasmons in nanophotonics

### Example: Inverse metal wire-grid polarizer

Normal (classical) wire-grid polarizer:

•  $E_{//}$  reflected,  $E_{\perp}$  transmitted (form birefringence in Lecture 2)





### **Inverse** wire-grid polarizer:

-  $E_{//}$  transmitted,  $E_{\perp}$  reflected

#### **Permittivity of Ag**



### Transmittance of $\mathbf{E}_{//}$ and $\mathbf{E}_{\perp}$



Why the dual behavior?
Analyze it by yourself (by considering the form birefringence).

#### **Reference:**

A. Lehmuskero, B. Bai, P. Vahimaa, and M. Kuittinen, "Wire-grid polarizers in the volume plasmon region," Opt. Express 17, 5481-5489 (2009).

## Light-matter interaction in bulk metal

 $\varepsilon$   $\omega_p$   $\omega$ 

- When  $\omega > \omega_p$ , transverse mode (EM wave)
- When  $\omega = \omega_p$ , **longitudinal mode** (volume plasmons, non-EM wave)
- When  $\omega < \omega_p$ , no propagating wave (rapid drop of field, skin depth  $\delta$ )



# Summary

- Plasmons (plasma): lonized gas with free charges
- Plasmons in metal: Density waves of free electrons, three types
- Understand the EM response of metal with Drude model
- Volume plasmons: Longitudinal wave, physical meaning of  $\omega_p$ , non-EM wave, inverse wire-grid polarizer, two propagating modes in bulk metal