MATH 162, SHEET 7: THE RATIONAL NUMBERS Jeffrey Zhang IBL Script 7 Journal

In this script, we define the rational numbers \mathbb{Q} and show that they form an ordered field. At the end of this script, we show that any ordered field contains a canonical copy of the rational numbers.

Definition 7.1. Let $X = \{(a, b) \mid a, b \in \mathbb{Z}, b \neq 0\}$. We define a relation \sim on X as:

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$

Lemma 7.2. 1. The relation \sim is reflexive. That is, $(a,b) \sim (a,b)$ for every $(a,b) \in X$.

- 2. The relation \sim is symmetric. That is, if $(a,b) \sim (c,d)$, then $(c,d) \sim (a,b)$.
- 3. The relation \sim is transitive. That is, if $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then $(a,b) \sim (e,f)$.

Proof. Let $(a,b) \neq (a,b)$, then by Definition 7.1, $ab \neq ab$ for $a,b \in \mathbb{Z}$, which we know to be false. So $(a,b) \sim (a,b)$.

Let $(a, b) \sim (c, d)$, then ad = bc. We know that multiplication is commutative on \mathbb{Z} , so we have da = cb, which by Definition 7.1 gives that $(c, d) \sim (a, b)$.

Let $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$, then we have that ad = bc and cf = de. Multiplying both sides by ad and bc respectively, we get acdf = bcde. By the cancellation law on \mathbb{Z} , we get that af = be. Then by Definition 7.1 it follows that $(a, b) \sim (e, f)$.

Remark 7.3. A relation on any set that is reflexive, symmetric, and transitive is called an equivalence relation. Thus, the preceding lemmas show that \sim is an equivalence relation on X.

Remark 7.4. A partition of a set is a collection of non-empty disjoint subsets whose union is the original set. Any equivalence relation on a set creates a partition of that set by collecting into subsets all of the elements that are equivalent (related) to each other. When the partition of a set arises from an equivalence relation in this manner, the subsets are referred to as *equivalence classes*.

Remark 7.5. If we think of the set X as representing the collection of all fractions whose denominators are not zero, then the relation \sim may be thought of as representing the equivalence of two fractions.

Definition 7.6. As a set, the *rational numbers*, denoted \mathbb{Q} , are the equivalence classes in the set X under the equivalence relation \sim . If $(a,b) \in X$, we denote the equivalence class of this element as $\frac{a}{b}$. So

$$\frac{a}{b} = \{(x_1, x_2) \in X \mid (x_1, x_2) \sim (a, b)\} = \{(x_1, x_2) \in X \mid x_1 b = x_2 a\}.$$

Then,

$$\mathbb{Q} = \left\{ \frac{\underline{a}}{b} \mid (a, b) \in X \right\}.$$

Exercise 7.7. $\frac{a}{b} = \frac{a'}{b'} \iff (a,b) \sim (a',b').$

Proof. Let $\frac{a}{\overline{b}} = \frac{a'}{\overline{b'}}$ for $a, b \in \mathbb{Z}$ and $\frac{a}{\overline{b}}, \frac{a'}{\overline{b'}} \in \mathbb{Q}$. We know that $(a', b') \sim (a', b')$ by Lemma 7.2, so $(a', b') \in \frac{a'}{\overline{b'}}$ by Definition 7.6. Similarly, $(a, b) \in \frac{a}{\overline{b}}$. $\frac{a}{\overline{b}} = \frac{a'}{\overline{b'}}$, so it follows that $(a', b') \in \frac{a}{\overline{b}}$. $(a, b), (a', b') \in \frac{a}{\overline{b}}$, so we have by 7.6 that $(a, b) \sim (a', b')$.

Let $(a,b) \sim (a',b')$ for $a,b \in \mathbb{Z}$ and $\frac{a}{b}, \frac{a'}{b'} \in \mathbb{Q}$. Let $(x,y) \in \mathbb{Q}$ be arbitrary such that $(x,y) \in \frac{a}{b}$. Then we know that $(x,y) \sim (a,b)$ by Definition 7.6, and that $(x,y) \sim (a',b')$ by Lemma 7.2 because $(x,y) \sim (a,b)$ and $(a,b) \sim (a',b')$. So by 7.6 again, we have that $(x,y) \in \frac{a'}{b'}$. It follows then that $\frac{a}{b} \subset \frac{a'}{b'}$. Applying the same logic in reverse, we get that $\frac{a'}{b'} \subset \frac{a}{b}$, so we know that $\frac{a}{b} = \frac{a'}{b'}$.

Definition 7.8. We define addition and multiplication in \mathbb{Q} as follows. If $\frac{a}{b}$ and $\frac{c}{d}$ are in \mathbb{Q} , then:

$$\frac{\underline{a}}{b} +_{\mathbb{Q}} \frac{\underline{c}}{d} = \frac{\underline{ad + bc}}{\underline{bd}}$$
$$\frac{\underline{a}}{b} \cdot_{\mathbb{Q}} \frac{\underline{c}}{d} = \frac{\underline{ac}}{\underline{bd}}.$$

We use the notation $+_{\mathbb{Q}}$ and $\cdot_{\mathbb{Q}}$ to represent addition and multiplication in \mathbb{Q} so as to distinguish these operations from the usual addition (+) and multiplication (\cdot) in \mathbb{Z} .

Theorem 7.9. Addition in \mathbb{Q} is well-defined. That is, if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then

$$\frac{\underline{a}}{b} +_{\mathbb{Q}} \frac{\underline{c}}{d} = \frac{\underline{a'}}{b'} +_{\mathbb{Q}} \frac{\underline{c'}}{d'}.$$

Proof. Let $a,b,c,d,a',b',c',d' \in \mathbb{Z}$ such that $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. We have that: (ad+bc)(b'd') = ab'dd' + bb'cd' (Distributivity on \mathbb{Z})

- = (ab')dd' + bb'(cd') (Associativity of multiplication on \mathbb{Z})
- = (a'b)dd' + bb'(c'd) (Definition 7.1)
- = (a'd' + b'c')(bd) (Distributivity on \mathbb{Z})

. So we have that (ad+bc)(b'd')=(a'd'+b'c')(bd). Applying 7.1, we get that $(ad+bc,bd)\sim (a'd'+b'c',b'd')$. Then by Exercise 7.7 it follows that $\frac{ad+bc}{bd}=\frac{a'd'+b'c'}{b'd'}$. Then applying Definition 7.8, we get that $\frac{a}{b}+\mathbb{Q}$ $\frac{c}{d}=\frac{a'}{b'}+\mathbb{Q}$ $\frac{c'}{d'}$.

Theorem 7.10. (Homework)

Multiplication in \mathbb{Q} is well-defined. That is, if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then

$$\frac{\underline{a}}{b} \cdot_{\mathbb{Q}} \frac{\underline{c}}{d} = \frac{\underline{a'}}{b'} \cdot_{\mathbb{Q}} \frac{\underline{c'}}{d'}.$$

Theorem 7.11. The rational numbers \mathbb{Q} with $+_{\mathbb{Q}}$ and $\cdot_{\mathbb{Q}}$ are a field.

In-class Axioms 3,4,7,8,9

Homework Axioms 1,2,5,6,10

Proof. Axiom 3: Let the additive identity $e = \frac{0}{1}$. We know that $0, 1 \in \mathbb{Z}$ so $\frac{0}{1} \in \mathbb{Q}$ so $e \in \mathbb{Q}$. Let $\frac{x}{y} \in \mathbb{Q}$ be arbitrary for some $x, y \in \mathbb{Z}$. Then $\frac{x}{y} +_{\mathbb{Q}} \frac{0}{1} = \frac{x \cdot 1 + 0 \cdot y}{y \cdot 1}$ by the definition of addition on \mathbb{Q} . It follows then by the properties of the integers that $\frac{x \cdot 1 + 0 \cdot y}{y \cdot 1} = \frac{x \cdot 1}{y \cdot 1} = \frac{x}{y}$. So we have that e is the additive identity on \mathbb{Q} because $\frac{x}{y} +_{\mathbb{Q}} e = \frac{x}{y}$.

Axiom 4: Let $\frac{x}{y} \in \mathbb{Q}$, so $x, y \in \mathbb{Z}$. Let $\frac{-x}{y}$ be the additive inverse. We know that $\frac{-x}{y} \in \mathbb{Q}$ because $x \in \mathbb{Z}$, so $-x \in \mathbb{Z}$. We have $\frac{x}{y} + \mathbb{Q} = \frac{xy + -xy}{yy}$ by the definition of addition on \mathbb{Q} . It follows then by the properties of the integers that $\frac{xy + -xy}{yy} = \frac{0}{yy}$, and we know that $\frac{0}{yy}$ is in the same equivalence class as $\frac{9}{1}$.

Axiom 7: Let the multiplicative identity $e = \frac{1}{1}$. We know that $\frac{1}{1} \in \mathbb{Q}$ because $1 \in \mathbb{Z}$. Let $\frac{x}{y} \in \mathbb{Q}$ be arbitrary for some $x, y \in \mathbb{Z}$. Then $\frac{x}{y} \cdot_{\mathbb{Q}} \frac{1}{1} = \frac{x \cdot 1}{y \cdot 1}$. By the properties of the integers we have then that $\frac{x\cdot 1}{y\cdot 1} = \frac{x}{y}$, so we have that $e = \frac{1}{1}$ is the multiplicative identity on \mathbb{Q} .

Axiom 8: Let $\frac{x}{y} \in \mathbb{Q}$, with $x, y \in \mathbb{Z}$. Then the multiplicative inverse of $\frac{x}{y}$ is $\frac{y}{x}$. We know that $\frac{y}{x} \in \mathbb{Q}$ because $x, y \in \mathbb{Z}$. We verify that $\frac{y}{x}$ is the multiplicative inverse of $\frac{x}{y}$ by checking that $\frac{x}{y} \cdot_{\mathbb{Q}} \frac{y}{x} = \frac{xy}{yx}$. Using commutativity of multiplication on Z, we have that $\frac{xy}{yx} = \frac{xy}{xy}$, which is in the same equivalence class as $\frac{1}{1}$ in \mathbb{Q} , so $\frac{1}{1} \in \mathbb{Q}$, and thus $\frac{y}{x}$ is the multiplicative inverse of $\frac{x}{y}$ in \mathbb{Q} .

Axiom 9: Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$, so $a, b, c, d, e, f \in \mathbb{Z}$. Consider

 $\begin{array}{l} \frac{\underline{a}}{\overline{b}} \cdot_{\mathbb{Q}} \left(\frac{\underline{c}}{\overline{d}} +_{\mathbb{Q}} \frac{\underline{e}}{\overline{f}} \right) = \frac{\underline{a}}{\overline{b}} \cdot_{\mathbb{Q}} \left(\frac{cf + de}{df} \right) \text{ (Definition of Addition on } \mathbb{Q} \right) \\ = \frac{acf + ade}{bdf} \text{ (Definition of Addition on } \mathbb{Q} \text{)}. \end{array}$

Note that (acf + ade)(bbdf) = (bdf)(bacf + bade) due to the properties of the integers, so we have that $(acf + ade, bdf) \sim (bacf + bade, bbdf)$. By Exercise 7.7 we have then that $\frac{acf + ade}{bdf} = \frac{bacf + bade}{bbdf} = \frac{bacf + bade}{bddf} = \frac{acbf + aeb}{bddf}$ by the properties of the integers, so it follows that $\frac{bacf + bade}{bbdf} = \frac{acbf + aeb}{bddf} = \frac{ac}{bd} + \mathbb{Q} \frac{ae}{bf}$. We have then that $\frac{ac}{bd} + \mathbb{Q} \frac{ae}{bf} = \frac{a}{b} \cdot \mathbb{Q} \frac{c}{d} + \mathbb{Q} \frac{a}{b} \cdot \mathbb{Q} \frac{e}{f}$ by the definition of multiplication on \mathbb{Q} . Thus we have that $\frac{a}{b} \cdot \mathbb{Q} \left(\frac{c}{d} + \mathbb{Q} \stackrel{e}{f} \right) = \frac{acf + ade}{bdf} = \frac{a}{b} \cdot \mathbb{Q} \stackrel{e}{d} + \mathbb{Q} \stackrel{a}{b} \cdot \mathbb{Q} \stackrel{e}{f}$, so Axiom 9 (Distributivity) holds on \mathbb{Q} .

Next, we define an ordering on \mathbb{Q} .

Definition 7.12. Note that, given an element in \mathbb{Q} is is always possible to choose a representative (a,b) with b>0. If $\frac{a}{b}$, $\frac{c}{d} \in \mathbb{Q}$ and b,d>0 in \mathbb{Z} , we say that $\frac{a}{b} <_{\mathbb{Q}} \frac{c}{d}$ if and only if ad < bc. Note that we use the symbol $<_{\mathbb{Q}}$ to denote our ordering relation in \mathbb{Q} so as to distinguish it from the usual ordering < in \mathbb{Z} .

Theorem 7.13. Ordering in \mathbb{Q} is well-defined. That is, if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then

$$\frac{a}{b} <_{\mathbb{Q}} \frac{c}{d}$$
 if and only if $\frac{a'}{b'} <_{\mathbb{Q}} \frac{c'}{d'}$.

Proof. Let $a, b, c, d, a', b', c', d' \in \mathbb{Z}$ such that $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$.

We know by Definition that 7.12 that b, b', d, d' can always be represented such that they are positive. Note also that $(a,b) \sim (a',b')$ so ab' = a'b. b,b' are positive, so we have that a and a' have the same sign. Similarly, c and c' have the same sign. We then consider two cases: where $a \cdot c$, $a' \cdot c'$ are negative and where $a \cdot c$, $a' \cdot c'$ are positive.

Assume $\frac{a}{b} <_{\mathbb{Q}} \frac{c}{d}$. Then we have that ad < bc by Definition 7.12.

Let $a \cdot c$, $a' \cdot c'$ be positive. Because $a', b', c', d' \in \mathbb{Z}$, we know that ad(a'b'c'd') < bc(a'b'c'd'). So it follows by the properties of \mathbb{Z} that a'd'(ab')(c'd) < b'c'(a'b)(cd'). We have that $(a,b) \sim$ (a',b') and $(c,d) \sim (c',d')$, so ab'=a'b and cd'=c'd by Definition 7.1. It follows then by substituting that a'd'(ab')(cd') < b'c'(ab')(cd'). Rearranging using the properties of the integers, we get that a'd'(ac)(b'd') < b'c'(ac)(b'd'). We know that ac, b', d' are positive, so by cancelling we get a'd' < b'c'. It follows then by Definition 7.12 that $\frac{a'}{b'} <_{\mathbb{Q}} \frac{c'}{d'}$.

Let $a \cdot c$, $a' \cdot c'$ be negative. We have then that ad(a'b'c'd') > bc(a'b'c'd') because we are multiplying both sides by $a' \cdot c'$, which is negative. Similar to the positive case, we substitute and rearrange using the properties of the integers to get a'd'(ac)(b'd') > b'c'(ac)(b'd'). Here we have that $a \cdot c$ is negative, so when we cancel we get a'd' < b'c'. It follows then by Definition 7.12 that $\frac{a'}{b'} <_{\mathbb{Q}} \frac{c'}{d'}$. Assume $\frac{a'}{b'} <_{\mathbb{Q}} \frac{c'}{d'}$. Then we have that a'd' < b'c' by Definition

Let $a \cdot c$, $a' \cdot c'$ be positive. Because $a, b, c, d \in \mathbb{Z}$, we know that a'd'(abcd) < b'c'(abcd). Similarly, substituting and rearranging using the properties of \mathbb{Z} , we get that ad(ac)(b'd') <bc(ac)(b'd'). It follows then by cancelling that ad < bc because ac, b', d' are all positive. Then by applying Definition 7.12, we get that $\frac{a}{b} <_{\mathbb{Q}} \frac{c}{d}$.

Let $a \cdot c$, $a' \cdot c'$ be negative. Because $a, b, c, d \in \mathbb{Z}$, we know that a'd'(abcd) > b'c'(abcd)because $a \cdot c$ is negative, and b, d, are positive. Similarly substituting and rearranging using the properties of \mathbb{Z} , we get that ad(ac)(b'd') > bc(ac)(b'd'). It follows then by cancelling that ad < bc because $a \cdot c$ is negative and b', d' are positive. Then by applying Definition 7.12, we get that $\frac{a}{b} <_{\mathbb{Q}} \frac{c}{d}$.

Theorem 7.14. (Homework)

The relation $<_{\mathbb{Q}}$ is an ordering on the rational numbers \mathbb{Q} .

Theorem 7.15. The rational numbers \mathbb{Q} form an ordered field.

Proof. We have by Theorem 7.11 that \mathbb{Q} is a field. To show that \mathbb{Q} is ordered, we show that addition on \mathbb{Q} respects the ordering and that multiplication on \mathbb{Q} respects the ordering. Let $a, b, c, d, e, f \in \mathbb{Z}$ and $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in \mathbb{Q}$. Let $\frac{a}{b} <_{\mathbb{Q}} \frac{c}{d}$, then we have by 7.12 that ad < bc. We know that $f \in \mathbb{Z}$ such that f is positive by 7.12, so we know that adf < bcf. We know that addition respects the ordering on \mathbb{Z} , so adf + bde < bcf + bde. We also know that b, d, f are positive, so $\frac{adf + bde}{bdf} <_{\mathbb{Q}} \frac{bcf + bde}{bdf}$. Cancelling d on the left and b on the right, we get that $\frac{af+be}{bf} <_{\mathbb{Q}} \frac{cf+de}{df}$. Applying the definition of addition on \mathbb{Q} , we get that $\frac{a}{b} + \frac{e}{f} <_{\mathbb{Q}} \frac{c}{d} + \frac{e}{f}$, so it follows then that addition respects the ordering on \mathbb{Q} by 6.19. Let $a, b, c, d \in \mathbb{Z}$ such that $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ and $\frac{0}{1} <_{\mathbb{Q}} \frac{a}{b}, \frac{0}{1} <_{\mathbb{Q}} \frac{c}{d}$. It follows then that $0 \cdot b < a \cdot 1$ and

 $0 \cdot d < c \cdot 1$. Using the properties of the integers, we then get that 0 < c, 0 < a. We have

that 0 < 1, 0 < a, 0 < c, so because multiplication respects the ordering on \mathbb{Z} , we have that $0 < 1 \cdot a \cdot c$. We also know that $0 \cdot b \cdot d = 0$ for $b, d \in \mathbb{Z}$, so using the associative property of multiplication on \mathbb{Z} , we have that $0 \cdot (b \cdot d) < 1 \cdot (a \cdot c)$. Applying 7.12 then, we get that $\frac{0}{1} <_{\mathbb{Q}} \frac{ac}{bd}$. Using the definition of multiplication on \mathbb{Q} then, it follows that $\frac{0}{1} <_{\mathbb{Q}} (\frac{\underline{a}}{b} \cdot_{\mathbb{Q}} \frac{\underline{c}}{d})$. So then by 6.19 we know that multiplication respects the ordering on \mathbb{Q} .

There is an important sense in which every ordered field contains a "copy" of the rational numbers. Let F be an ordered field with additive identity 0_F and multiplicative identity 1_F . To prevent ambiguity, denote the additive identity in the rational numbers by $0_{\mathbb{Q}}$ and the multiplicative identity in the rational numbers by $1_{\mathbb{O}}$.

Theorem 7.16. Any ordered field F contains a copy of the rational numbers \mathbb{Q} in the following sense. There exists an injective map $i: \mathbb{Q} \longrightarrow F$ that respects all of the axioms for an ordered field. In particular:

- $i(0_{\mathbb{O}}) = 0_F$
- $i(1_{\mathbb{O}}) = 1_F$
- If $a, b \in \mathbb{Q}$, then i(a + b) = i(a) + i(b).
- If $a, b \in \mathbb{Q}$, then $i(a \cdot b) = i(a) \cdot i(b)$.
- If $a, b \in \mathbb{O}$ and a < b, then i(a) < i(b).

Since we know that \mathbb{Q} is an ordered field, this result says that \mathbb{Q} is the "minimal" ordered

Proof. We define a_F for a>0 such that $a_F=1_{F_0}+\cdots+1_{F_a}$. Then for a<0 we define a_F such that a_F is the additive inverse of $(-a)_F$. So we can then define $i:\mathbb{Q}\to F$ such that $i(\frac{a}{b}) = a_F b_F^{-1}$. Note that $(ad)_F = a_F d_F$ because $(ad)_F = i(ad)$, and we have that $i(a \cdot d) = 1_{F_0} + \cdots + 1_{F_{a \cdot d}}$ which is equal to $a_F \cdot d_F$.

We begin by showing that i respects the axioms of an ordered field. First we consider $i(\frac{0}{1})$. By definition of i, we have that $i(\frac{0}{1}) = 0_F \cdot 1_F^{-1} = 0_F \cdot 1_F = 0_F$. So we have that $i(0_{\mathbb{O}}) = 0_{F}.$

We then consider $i(\frac{1}{1})$. We have that $i(\frac{1}{1}) = 1_F \cdot 1_F^{-1} = 1_F \cdot 1_F = 1_F$. So we have that $i(1_{\mathbb{Q}})=1_F.$

We then consider $i(\frac{a}{b} + \mathbb{Q} \frac{c}{d})$ for $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$. We have then that this equals $i(\frac{ad+bc}{bd})$ by the definition of addition on \mathbb{Q} .

- $=(ad+bc)_F(bd)_F^{-1}$

- $= (ad)_F (bd)_F^{-1} + (bc)_F (bd)_F^{-1}$ Distributivity $= (a_F d_F b_F^{-1} d_F^{-1}) + (b_F c_F b_F^{-1} d_F^{-1})$ Associativity $= (a_F b_F^{-1}) (d_F d_F^{-1}) + c_F d_F^{-1} (b_F b_F^{-1})$ Commutativity and Associativity

```
= a_F b_F^{-1}(1) + c_F d_F^{-1}(1) \text{ Multiplicative Inverse}
= a_F b_F^{-1} + c_F d_F^{-1} \text{ Multiplicative Identity}
Then we use the definition of i to get that a_F b_F^{-1} + c_F d_F^{-1} = i(\frac{a}{b}) + i(\frac{c}{d}). So we have that i(\frac{a}{b} + \mathbb{Q} \frac{c}{d}) = i(\frac{a}{b}) + i(\frac{c}{d}).
```

Consider $i(\frac{a}{b} \cdot_{\mathbb{Q}} \frac{c}{d})$. We have that this is equal to $i(\frac{ac}{bd})$ by the definition of multiplication on \mathbb{Q} . $i(\frac{ac}{bd}) = (ac)_F (bd)_F^{-1} = a_F c_F b_F^{-1} d_F^{-1}$. We have that $i(\frac{a}{b}) \cdot i(\frac{c}{d}) = a_F b_F^{-1} c_F d_F^{-1}$, so by commutativity we have that $i(\frac{a}{b}) \cdot i(\frac{c}{d}) = a_F c_F b_F^{-1} d_F^{-1}$. It follows then that $i(\frac{a}{b} \cdot_{\mathbb{Q}} \frac{c}{d}) = i(\frac{a}{b}) \cdot i(\frac{c}{d})$.

```
Let \frac{a}{b} < \frac{c}{d}, so we have that ad < bc. It follows then that a_F d_F < b_F c_F. So a_F d_F (1_F) < b_F c_F (1_F) Multiplicative Identity a_F d_F (b_F^{-1} b_F) < c_F b_F (d_F^{-1} d_F) Multiplicative Inverse a_F b_F^{-1} b_F d_F < c_F d_F^{-1} b_F d_F Associativity and Commutativity a_F b_F^{-1} < c_F d_F^{-1} (Note that b_F, d_F > 0 because b, d > 0) i(\frac{a}{b}) < i(\frac{c}{d}). So we have shown that if \frac{a}{b} < \frac{c}{d}, then i(\frac{a}{b}) < i(\frac{c}{d}).
```

```
To show that i is injective, we let i(\frac{a}{b}) = i(\frac{c}{d}). Then we have that a_F b_F^{-1} = c_F d_F^{-1} a_F b_F^{-1} (b_F d_F) = c_F d_F^{-1} (b_F d_F) a_F d_F (b_F^{-1} b_F) = c_F b_F (d_F d_F^{-1}) Associative and Commutative laws of multiplication a_F d_F (1_F) = c_F b_F (1_F) Multiplicative inverse a_F d_F = c_F b_F Multiplicative identity. a_F d_F = c_F b_F, so we have that ad = bc. Then by 7.1 we know that (a, b) \sim (c, d). Finally by 7.7 we have that \frac{a}{b} = \frac{c}{d}.
```