Week 2 - Logic

Student number:

570215

Assignment 2.1: Parking lot

Which gates do you need?

Two AND gates

Complete this table

Parking lot 1	Parking lot 2	Parking lot 3	Result (full)
0	0	0	0
0	0	1	0
0	1	0	0
1	0	0	0
1	1	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Assignment 2.2: Android/iPhone

Which gates do you need?

XOR gate

Complete this table

Android phone	iPhone	Result (Phone in possession)
0	0	0
0	1	1
1	0	1
1	1	0

IT FUNDAMENTALS 1

Assignment 2.3: Four NAND gates

Complete this table

A	В	Q
0	0	1
0	1	1
1	0	1
1	1	1

How can the design be simplified?

This design could be simplified by removing the bottom and right NAND gates. Connecting B to only the centre NAND gate

Assignment 2.4: Getting to know Logisim evolution

Screenshot of the design with your name and student number in it:

Ruben Hutten 570215

Bonus point assignment - week 2

Create a java program that accepts user input and presents a menu with options.

- 1. Is number odd?
- 2. Is number a power of 2?
- 3. Two's complement of number?

Implement the methods by using the bitwise operators you have just learned.

Organize your source code in a readable manner with the use of control flow and methods.

Paste source code here, with a screenshot of a working application.

```
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        System.out.println("Select Function");
        System.out.println("1. Check if number is odd");
        System.out.println("2. Check if number a power of two");
        System.out.println("3. Return two's complement to a number");

        Scanner scanner = new Scanner(System.in);
```

IT FUNDAMENTALS 2

```
int response = scanner.nextInt();
  switch (response) {
    case 1:
       checkIfNumberIsOdd(scanner);
       break;
    case 2:
       checkIfNumberIsPowerOfTwo(scanner);
       break;
    case 3:
       printTwosCompliment(scanner);
       break:
    default:
       System.out.println("Invalid Input. Try again");
       main(args);
public static void checklfNumberIsOdd(Scanner scanner)
  System.out.println("Give input number");
  int number = scanner.nextInt();
  if ((number & 1) == 1) System.out.println("number is odd");
  else System.out.println("number is even");
public static void checklfNumberlsPowerOfTwo(Scanner scanner)
  System.out.println("Give input number");
  int number = scanner.nextInt();
  if ((number & (number - 1)) == 0) System.out.println("number is a power of 2");
  else System.out.println("number isn't a power of 2");
public static void printTwosCompliment(Scanner scanner)
  System.out.println("Give input number");
  int number = scanner.nextInt();
  int twosComplementOutput = (~number) + 1;
  System.out.println("Input number: " + number);
  System.out.println("Two's complement output: " + twosComplementOutput);
```


3

Ready? Then save this file and export it as a pdf file with the name: week2.pdf

IT FUNDAMENTALS 4