Mechanism of brood theft in an Indian ant

Bishwarup Paul & Sumana Annagiri

Behaviour & Ecology Lab
Dept. of Biological Sciences
IISER Kolkata

International Conference in Zoological Sciences and Ants (11th ANeT) 26-28 October, 2017 Punjabi University, Patiala

Theft in animal kingdom

Theft: The physical removal of an object that is capable of being stolen without the consent of the owner and with the intention of depriving the owner of it permanently.

Animal phylum	Group	Animal phylum	Group
Cnidaria Platyhelminthes Annelida	Hydroids	Mollusca	Slugs Snails
Arthropoda	Flies	Echinodermata	Sea stars, brittle stars
	Beetles Bees, wasps and ants	Chordata	Fish
	Mites and spiders		Turtles Lizards Birds
	Other insects		Birds
	Caprellids, copepods, and amphipods Crabs		Mammals

Items stolen:

- Food
- · Nest, nesting material
- Brood

lyengar 2007

Brood and its theft

Courtesy: www.alexanderwild.com

Context of brood theft:

- Consumption
- For founding new colony
- For slave workers

Observed in subfamilies Formicinae and Myrmicinae in **temperate** regions.

Diacamma indicum

Subfamily: Ponerinae.

Distribution: India, Sri Lanka,

Japan.

Body length: ~ 1 cm

Colony size: 12-261 adults.

Social characteristics:

Primitively eusocial, monodomous, monogynous.

Image Courtesy: AntWiki

Brood theft in *D. indicum*

- Conspecific brood theft present in D. indicum.
- Theft were observed both in laboratory environment as well as natural habitat.
- Relocation makes colonies vulnerable to theft.
- Thieves preferred to steal pupae.
- Stolen pupae integrated into thief colony.

Successful theft

Unsuccessful attempt

Objective

Question: Why are only some stealing attempts successful?

Objectives:

- How does the process of relocation affect brood theft?
- What are the defense mechanisms of the victim colonies?
- What are the strategies adopted by the thieves to bypass defense?

Experimental setup

Lab arena (1.75 m x 1.45 m)

The colonies and empty nest placed simultaneously in arena.

Stationary phase: Both undisturbed

Relocation phase: Both colonies disturbed by removing cover

Impact of relocation

Vulnerability of colonies during relocation impact theft, not the process of relocation.

Stationary vs relocation:

Wilcoxon paired-sample test n = 11, T = 0.0, p = 0.001

Sub-phases of relocation:

Friedman test $\chi^2 = 2.05$, df = 2, p = 0.35

Defence against theft

Behaviour	Description
Antennal Boxing (AB)	Ants face each other and repeatedly beat each other with antennae in quick succession.
Chase (CH)	One ant chases the other till the one being chased runs away.
Immobilization (IM)	One or more ants bite another ant, and drag or hold it down in one place while biting.

Aggressive interactions help to defend against intruders.

AB

CH

IM

Defence against theft

Immobilization was the most effective aggression, as it was displayed at a significantly higher rate when attempts of theft were high.

Wilcoxon paired-sample tests:

AB:

$$n = 10, T = 9, p = 0.064$$

CH:

$$n = 10, T = 20, p = 0.492$$

IM:

$$n = 10, T = 1, p = 0.004$$

Strategies of thieves

n = 82 attempts of theft

GLMM (p < 0.05):

- Duration of stay staying for shorter duration
- Aggression received avoiding immobilization
- Status of pupae stealing pupae not held in mandibles

Conclusions

- Exposed state during relocation makes colonies vulnerable to brood theft, but the process of relocation does not impact theft.
- Aggression towards thieves is key to defence mechanism.
- Thieves adopt various strategies for success acting quickly, staying furtive and stealing unattended brood items.

References

- Iyengar, E. V., 2008. Kleptoparasitic interactions throughout the animal kingdom and a reevaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. *Biological Journal of the Linnean Society*, 93(4), pp.745–762.
- Pollock, G. & Rissing, S., 1989. Intraspecific brood raiding, territoriality, and slavery in ants. *American naturalist*, 133(1), pp.61–70.
- Breed, M.D., Cook, C. & Krasnec, M.O., 2012. Cleptobiosis in Social Insects. *Psyche: A Journal of Entomology*, 2012, pp.1–7.
- Ward, P. S., 2007. Phylogeny, classification and species-level taxonomy of ants (Hymenoptera: Formicidae), *Zootaxa*, 1668, 549-563.
- Viginier, B. et al., 2004. Very low genetic variability in the Indian queenless ant *Diacamma indicum*. *Molecular ecology*, 13(7), pp.2095–100.
- Kaur, R., Anoop, K. & Sumana, A., 2012. Leaders follow leaders to reunite the colony: relocation dynamics of an Indian queenless ant in its natural habitat. *Animal Behaviour*, 83(6), pp.1345–1353.
- Paul, B., Paul, M. & Annagiri, S., 2016. Opportunistic brood theft in the context of colony relocation in an Indian queenless ant. *Scientific Reports*, 6 (36166).

Acknowledgement

- My supervisor, Dr. Sumana Annagiri
- Field assistant, Mr. Basudev Ghosh
- Lab members
- IISER Kolkata
- ANeT (International Network for the Study of Asian Ants)
- The Dept. of Zoology and Environmental Sciences, Punjabi University

