Alphabet : Σ = ensemble de lettres ou symboles.

 $mot sur \Sigma = suite finie de lettres$

 Σ^* = tous les mots sur Σ

 $\epsilon = \text{mot vide } (\epsilon \in \Sigma^*)$

Langage = partie de Σ^* (contient ou non ϵ)

Concaténation : $(\Sigma^*,.)$ est un monoïde libre (loi interne associative avec élément neutre)

Homomorphisme: $h: \Sigma^* \to \Gamma^*$ tel que: $\begin{cases} h(\epsilon) = \epsilon \\ h(uv) = h(u)h(v) \end{cases}$

Synthaxe = écriture des mots

Sémantique = signification des mots

LOGIQUE Nº 2 ARBRES (DÉF PAR LES GRAPHES)

Arbre libre : Graphe non orienté connexe et sans circuit

Feuille = un seul voisin

Etiquette = A un ensemble et (V, Γ) un arbre libre, à chaque élément de V on associe un élément de A.

Arbre enraciné : Arbre libre tel que $\exists r \in V \mid \forall x \in V \exists ! c$ chemin entre x et r

Arité d'un sommet = nombre d'enfants

Hauteur de l'arbre = longueur du plus grand chemin entre la racine et une feuille.

Arbre ordonné : Arbre dans lequel l'ensemble des enfants de chaque sommet est totalement ordonné.

Définition inductive : Soit E un ensemble, on définit X le plus petit sous ensemble de E tel que :

$$\begin{cases} (B): B \subset X \\ (I): (r_i::E^{n_i} \to E) \\ B \text{ est la base et } I \text{ l'ensemble des règles d'induction.} \end{cases}$$

Notations (exemples)

$$\mathbb{N} = \begin{cases} (B) : 0 \in \mathbb{N} \\ (I) : \forall n \in \mathbb{N}, n+1 \in \mathbb{N} \end{cases} = \left\{ \frac{n}{0} \frac{n}{n+1} \right\}$$

$$\Sigma^* = \begin{cases} (B) : \epsilon \in \Sigma^* \\ (I) : \forall w \in \Sigma^*, a \in \Sigma, wa \in \Sigma^* \end{cases} = \left\{ \frac{w}{e^{wa}} \right\}$$

$$\left\{ a^n b c^n \right\} = \left\{ \frac{x}{b a x c} \right\}$$

Preuve par induction \mathcal{P} est vraie sur X si et seulement si :

$$\begin{cases} \mathcal{P} \text{ vraie sur } B \\ \mathcal{P} \text{ stable par } (I) \end{cases}$$

Fonction définie inductivement :

On définit f sur B

$$\forall x = r_i(x_1, \dots, x_{n_i}) \in X, f(x) = r_i(f(x_1), \dots, f(x_{n_i}))$$

Arbre ordonné

$$\emptyset \in V$$

 $\forall (x_1, \dots, x_n) \in X \text{ liste ordonnee}, \forall v \in V, (v, x_1, \dots, x_n) \in X$

Arbre binaire

Arbre binaire
$$\begin{cases}
\varnothing \in A \\
\forall A_g, A_d \in A, r \in X, (A_g, r, A_d) \in A
\end{cases}$$

Arbre binaire étiqueté par un ensemble A

$$\begin{cases} \varnothing \in AB \\ \forall g, d \in AB, \forall a \in A, (g, a, d) \in AB \end{cases}$$

ATTENTION Les deux arbres ci-dessous sont les mêmes arbres ordonnés, mais pas les mêmes arbres binaires:

Arbre de gauche : $(((\varnothing, 3, \varnothing), 2, \varnothing), 1, \varnothing)$

Arbre de droite : $(\varnothing, 1, ((\varnothing, 3, \varnothing), 2, \varnothing)$

LOGIQUE Nº 5 ARBRES BINAIRES (DÉF EXPLICITE)

Définition par récurrence :

$$AB_{0} = \{\varnothing\}$$

$$AB_{n+1} = AB_{n} \bigcup \{(g, a, d), a \in A, g, d \in AB_{n}\}$$

$$Rappel :$$

$$\{ (B) : \varnothing \in AB$$

$$(I) \forall g, d \in AB, \forall a \in A, (g, a, d) \in AB$$

Propriété : $AB_{rec} = AB$

Preuve:

- Montrons que AB_{rec} ⊂ AB, (montrons que AB_n ⊂ AB∀n)
 AB₀ = {Ø} ⊂ AB
 Supposons AB_n ⊂ AB et montrons que AB_{n+1} ⊂ AB
 Soit x ∈ AB_{n+1} = AB_n ∪{(g, a, d), a ∈ A, g, d ∈ AB_n}
 Si x ∈ AB_n alors x ∈ AB par hypothèse de récurrence
 Sinon x = (g, a, d), g, d ∈ AB_n ⊂ AB et a ∈ A donc x ∈ AB
 d'après (I)
- 2. Montrons que $AB \subset AB_{rec}$ (il suffit de montrer que AB_{rec} respecte (B) et (I)) $\varnothing \in AB_0 \subset AB_{rec} \text{ donc } AB_{rec} \text{ vérifie } (B).$ Soient $g, g \in AB_{req}, \exists p \in \mathbb{N} \mid g, d \in AB_p$ Donc $\forall a \in A, (g, a, d) \in AB_{p+1} \subset AB_{rec}$ Donc AB_{rec} respecte (I)

Définition

$$\begin{cases} (B): (\varnothing, a\varnothing) \in ABS \forall a \in A \\ (I): \forall g, d \in ABS, \forall a \in A, (g, a, d) \in ABS \end{cases}$$

Propriété : n = 2f - 1 (n = nombre de sommets, f = nombre de feuilles)

Preuve;

- 1. Montrons que \mathcal{P} est vraie sur BPour $(\varnothing, a, \varnothing)$, on a n = 1 et f = 1 donc \mathcal{P} vraie $(2 \times 1 - 1 = 1)$
- 2. Supposons \mathcal{P} vraie pour g et d dans ABS et montrons que \mathcal{P} est vraie pour (g, a, d).

$$f = f_g + f_d$$
 et $n = n_g + n_d + 1$
Donc $n = 2f_g - 1 + 2f_d - 1 + 1 = 2f - 1$

Soit $F = \{f_0, \ldots, f_n, \ldots\}$ un ensemble de **symboles de fonctions** (prenant un certain nombre d'**arguments**, pas le même nombre pour chaque fonction).

Soit $\varphi : F \to \mathbb{N}$ qui à une fonction associe le **nombre d'arguments** qu'elle prend (aussi appelé **arité** de la fonction)

 $F_n = \{ f \in F \mid \varphi(f) = n \}$ ($F_0 = \text{les constantes (on peut donc les utiliser comme arguments des autres fonctions).}$

Termes sur F: On définit T inductivement : $\begin{cases} (B): F_0 \subset T \\ (I): \forall t_1, \dots, t_n \in T, f \in F_n, f(t_1, \dots, t_n) \in T \\ \text{Lien avec les arbres ordonnés étiquetés par } F \end{cases}$ $F = \{0, 1, f, g\} \ F_0 = \{0, 1\} \} \ F_1 = \{g\} \ F_2 = \{f\} \}$ Donnons une liste (non exhaustive!) d'éléments de T: $0 \ ; \ 1 \ ; \ g(0) \ ; \ g(1) \ ; \ f(0, 1) \ ; \ f(1, 0) \ ; \ f(0, g(f(0, 1))) \dots$

Soit X définit **inductivement** par une base (B) et un ensemble de règles (I). On peut aussi définir X par **récurrence** :

$$X_0 = B$$
 $X_{n+1} = X_n \bigcup \{r_i(x_1, \dots, x_{n_i}), x_1, \dots, x_{n_i} \in X_n\}$
 $X = \bigcup_{\mathbb{N}} X_n$
(pour la preuve, voir l'exemple des arbres binaires définis par récurrence)

Lien avec les termes

$$F = B \bigcup I \ (B = F_0)$$

Ensemble des dérivations de X = D = termes sur F

$$D \longrightarrow X$$
On pose $h: b \in B \longrightarrow b$

$$r_i(t_1, \dots, t_{n_i}) \longrightarrow r_i(h(t_1), \dots, h(t_{n_i}))$$

La propriété $X = \bigcup X_n$ se réécrit alors

$$X = h(D) = \{h(d), d \in D\}$$

Si h est **injective**, on parle de définition **non ambigüe** (le chemin pour atteindre un élément est unique.