ЛАБОРАТОРНА РОБОТА № 5

Дослідження методів ансамблевого навчання

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити методи ансамблів у машинному навчанні

Хід роботи:

Завдання 2.1. Створення класифікаторів на основі випадкових та гранично випадкових лісів.

Використовувати файл вхідних даних: data_random_forests.txt, побудувати класифікатори на основі випадкових та гранично випадкових лісів.

```
import argparse
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.model_selection import train_test_split
from utilities import visualize classifier
# Парсер аргументів def build_arg_parser():
    parser = argparse.ArgumentParser(description='Classify data using Ensemble Learning techniques')
    return parser
if __name__ == '__main__':

# BMAYWEHHE EXIGHE APPLMENTIE

args = build_arg_parser().parse_args()
     classifier_type = args.classifier_type
# <u>Завантаження вхідних даних</u>
input_file = 'Task/data_random_forests.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]
# Розбиття вхідних даних на три класи class_0 = np.array(X[y == 0])
class_1 = np.array(X[y == 1])
class_2 = np.array(X[y == 2])
part.lags()
scatter_params = {'s': 75, 'facecolors': 'white', 'edgecolors': 'black', 'linewidths': 1, 'marker': 's'}
plt.scatter(class_0[:, 0], class_0[:, 1], **scatter_params)
plt.scatter(class_1[:, 0], class_1[:, 1], **scatter_params)
plt.scatter(class_2[:, 0], class_2[:, 1], **scatter_params)
plt.title('Вхідні дані')
plt.show()
# Розбивка даних на навчальний та тестовий набори
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=5)
# Класифікатор на основі ансамблевого навчання
params = { in_estimators': 100, 'max_depth : 4, 'random_state': 0}
```

Рис. 1. Код програми

					ДУЖП.22. <mark>121.19</mark> .000 – Лр5			
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	0 б.	Хіміч В.О.				Літ.	Арк.	Аркушів
Пере	евір.	Пулеко І.В.			Звіт з		1	14
Кері	зник							
Н. контр.					лабораторної роботи	ФІКТ Гр. ПІ-60[2		71-60[2]
Зав.	каф.							

```
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
if classifier_type == 'rf':
    classifier = RandomForestClassifier(**params)
    classifier = ExtraTreesClassifier(**params)
classifier.fit(X_train, y_train)
visualize_classifier(classifier, X_train, y_train, 'Training dataset')
y_test_pred = classifier.predict(X_test)
visualize_classifier(classifier, X_test, y_test, 'Test dataset')
# Перевірка роботи класифікатора
class_names = ['Class-0', 'Class-1', 'Class-2']
print('\n' + '#' * 40)
print('Classifier performance on training dataset')
print(classification_report(y_train, classifier.predict(X_train), target_names=class_names))
print('\n' + '#' * 40)
print('Classifier performance on test dataset')
print(classification_report(y_test, y_test_pred, target_names=class_names))
# Обчислення параметрів довірливості
test_datapoints = np.array([[5, 5], [3, 6], [6, 4], [7, 2], [4, 4], [5, 2]])
print('\nConfidence measure:')
for datapoint in test_datapoints:
    probabilities = classifier.predict_proba([datapoint])[0]
    predicted_class = 'Class-' + str(np.argmax(probabilities))
    print('Datapoint:', datapoint)
    print('Predicted class:', predicted_class)
# Візуалізація точок даних
visualize_classifier(Classifier, test_datapoints, [0]*len(test_datapoints), 'Test data points')
```

Рис. 2. Код програми

Дані з типом класифікатора rf:

Рис. 3. Графік вхідних даних

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 4. Графік тренувальних даних

Рис. 5. Графік тестових даних

Рис. 6. Тестові точки

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

######################################							
Classifier pe	rformance on	training	dataset				
	precision	recall	f1-score	support			
Class-0	0.91	0.86	0.88	221			
Class-1	0.84	0.87	0.86	230			
Class-2	0.86	0.87	0.86	224			
accuracy			0.87	675			
macro avg	0.87	0.87	0.87	675			
weighted avg	0.87	0.87	0.87	675			
***********	*****	*********	#####				
Classifier pe							
Classifier pe				cumment			
	precision	recall	f1-score	support			
Class-0	0.92	0.85	0.88	79			
Class-1	0.86	0.84	0.85	70			
Class-2	0.84	0.92	0.88	76			
accuracy			0.87	225			
macro avg	0.87	0.87	0.87	225			
weighted avg	0.87	0.87	0.87	225			

Рис. 7. Рівні довіри та оцінка класифікатора

Confidence measure:
Datapoint: [5 5]
Predicted class: Class-0
Datapoint: [3 6]
Predicted class: Class-0
Datapoint: [6 4]
Predicted class: Class-1
Datapoint: [7 2]
Predicted class: Class-1
Datapoint: [4 4]
Predicted class: Class-2
Datapoint: [5 2]
Predicted class: Class-2

Рис. 8. Передбачені класи

Дані з типом класифікатора erf:

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 9. Графік вхідних даних

Рис. 10. Графік тренувальних даних

Рис. 11. Графік тестових даних

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 12. Тестові точки

Classifier performance on training dataset								
	precision	recall	f1-score	support				
Class-0	0.89	0.83	0.86	221				
Class-1	0.82	0.84	0.83	230				
Class-2	0.83	0.86	0.85	224				
accuracy			0.85	675				
macro avg	0.85	0.85	0.85	675				
weighted avg	0.85	0.85	0.85	675				

Classifier pe	rformance on	test data	aset					
	precision	recall	f1-score	support				
Class-0	0.92	0.85	0.88	79				
Class-1	0.84	0.84	0.84	70				
Class-2	0.85	0.92	0.89	76				
accuracy			0.87	225				
macro avg	0.87	0.87	0.87	225				
weighted avg	0.87	0.87	0.87	225				

Рис. 13. Рівні довіри та оцінка класифікатора

		Хіміч В.О.				Арк.
		Пулеко І.В.			ДУЖП.22. <mark>121.19</mark> .000 – Лр5	6
Змн.	Арк.	№ докум.	Підпис	Дата	·	U

```
Confidence measure:
Datapoint: [5 5]
Predicted class: Class-0
Datapoint: [3 6]
Predicted class: Class-0
Datapoint: [6 4]
Predicted class: Class-1
Datapoint: [7 2]
Predicted class: Class-1
Datapoint: [4 4]
Predicted class: Class-2
Datapoint: [5 2]
Predicted class: Class-2
```

Рис. 14. Передбачені класи

За графіками можна зробити висновок, що при типі класифікатора erf присутні більш плавні переходи, але рівень довіри та оцінки вищі для типу rf. Класи визначені однаково і обох випадках.

Завдання 2.2. Обробка дизбалансу класів.

Використовуючи для аналізу дані, які містяться у файлі data_imbalance.txt проведіть обробку з урахуванням дисбалансу класів.

```
import sys
import numpy as np
 from sklearn.metrics import classification_report
from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import train_test_split
 rom utilities import visualize_classifier
# <u>Завантаження вхідних</u>
input_file = 'Task/data_imbalance.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]
# Поділ вхідних даних на два класи на підставі міток class_0 = np.array(X[y == 0]) class_1 = np.array(X[y == 1])
 # Візуалізація вхідних даних
partings ('s': 75, 'edgecolors': 'black', 'linewidths': 1}
plt.scatter(class_0[:, 0], class_0[:, 1], facecolors='black', marker='x', **scatter_params)
plt.scatter(class_1[:, 0], class_1[:, 1], facecolors='white', marker='o', **scatter_params)
plt.title('Вхідні дані')
# <u>Розбиття даних</u> на <u>навчальний</u> та <u>тестовий набори</u>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=5)</u>
# Класифікатор на основі гранично випадкових лісів
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
 if len(sys.argv) > 1:
    params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0, 'class_weight': 'balanced'}
     raise TypeError("Invalid input argument; should be 'balance'")
classifier = ExtraTreesClassifier(**params)
classifier.fit(X_train, y_train)
visualize_classifier(classifier, X_train, y_train, 'Training dataset')
y_test_pred = classifier.predict(X_test)
visualize_classifier(classifier, X_test, y_test, 'Test data')
```

Рис. 15. Код програми

		Хіміч В.О.		
		Пулеко І.В.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

```
# Обчислення показників ефективності класифікатора
class_names = ['Class-0', 'Class-1']
print('\n' + '#' * 40)
print('Classifier performance on training dataset')
print(classification_report(y_train, classifier.predict(X_train), target_names=class_names))
print('\n' + '#' * 40)
print('Classifier performance on test dataset')
print(classification_report(y_test, y_test_pred, target_names=class_names))
```

Рис. 16. Код програми

Результати виконання програми з використанням параметру balance

Рис. 17. Графік вхідних даних

Рис. 18. Графік тренувальних даних

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 19. Графік тестових даних

##############	***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	######	
Classifier pe	rformance on	training	dataset	
	precision	recall	f1-score	support
_				
Class-0	0.44	0.93	0.60	181
Class-1	0.98	0.77	0.86	944
accuracy			0.80	1125
macro avg	0.71	0.85	0.73	1125
weighted avg	0.89	0.80	0.82	1125
************	######################################	#########	######	
Classifier pe	rformance on	test dat	aset	
	precision	recall	f1-score	support
Class-0	0.45	0.94	0.61	69
Class-1	0.98	0.74	0.84	306
accuracy			0.78	375
macro avg	0.72	0.84	0.73	375
weighted avg	0.88	0.78	0.80	375

Рис. 20. Показники ефективності класифікатора Результат виконання програми без параметру balance

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 21. Графік вхідних даних

Рис. 22. Графік тренувальних даних

Рис. 23. Графік тестових даних

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

######################################						
	precision	recall	f1-score	support		
Class-0	1.00	0.01	0.01	181		
Class-1	0.84	1.00	0.91	944		
accuracy			0.84	1125		
macro avg	0.92	0.50	0.46	1125		
weighted avg	0.87	0.84	0.77	1125		
Class-0	0.00	0.00	0.00	69		
Class-1	0.82	1.00	0.90	306		
accuracy			0.82	375		
macro avg	0.41	0.50	0.45	375		
weighted avg	0.67	0.82	0.73	375		

Рис. 24. Показники ефективності класифікатора

При використанні класифікатора balance можемо бачити кращі показники ефективності, що також показують і графіки.

Завдання 2.3. Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку.

Використовуючи дані, що містяться у файлі data_random_forests.txt знайти оптимальних навчальних параметрів за допомогою сіткового пошуку.

Рис. 25. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Performance report						
	precision	recall	f1-score	support		
0.0	0.94	0.81	0.87	79		
1.0	0.81	0.86	0.83	70		
2.0	0.83	0.91	0.87	76		
accuracy			0.86	225		
macro avg	0.86	0.86	0.86	225		
weighted avg	0.86	0.86	0.86	225		

Рис. 26. Метрики класифікації

Завдання 2.4. Обчислення відносної важливості ознак

```
housing_data = datasets.load_boston()
# Перемішування даних
X, y = shuffle(housing_data.data, housing_data.target, random_state=7)
# Розбиття даних на навчальний та тестовий набори
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
# Модель на основі регресора AdaBoost
regressor = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=400, random_state=7)
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
evs = explained_variance_score(y_test, y_pred)
print('Adaboost regressor')
print('Mean squared error =', round(mse, 2))
print('Explained variance score =', round(evs, 2))
feature importances = regressor.feature importances
feature names = housing data.feature names
# Нормалізація значень важливості ознак
feature_importances = 100.0 * (feature_importances / max(feature_importances))
index_sorted = np.flipud(np.argsort(feature_importances))
pos = np.arange(index_sorted.shape[0]) + 0.5
plt.figure()
plt.bar(pos, feature_importances[index_sorted], align='center')
plt.xticks(pos, feature_names[index_sorted])
plt.ylabel('Relative importance')
plt.title('Оцінка важливості ознак, використовуючи регресор AdaBoost')
plt.show()
```

Рис. 27. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 28. Результат виконання програми

3 отриманого графіку можна зробити висновок, що найбільш важливими ϵ ознаки LSTAT та RM, ознаками середньої вартості ϵ DIS, TAX, CRIM, PTRATIO та NOX, всі інші ϵ неважливими.

Рис. 29. Показники

Завдання 2.5. Прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів.

Проведіть прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів.

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
from sklearn import preprocessing
 from sklearn.metrics import mean_absolute_error
 from sklearn.model_selection import train_test_split
 from sklearn.ensemble import ExtraTreesRegressor
# Завантажимо дані із файлу input_file = 'Task/traffic_data.txt'
with open(input_file, 'r') as f:
     for line in f.readlines():
        items = line[:-1].split(',')
         data.append(items)
data = np.array(data)
# Перетворення рядкових даних на числові label_encoder = []
X_encoded = np.empty(data.shape)
for i, item in enumerate(data[0]):
     if item.isdigit():
        X_encoded[:, i] = data[:, i]
         label_encoder.append(preprocessing.LabelEncoder())
         X_encoded[:, i] = label_encoder[-1].fit_transform(data[:, i])
X = X_encoded[:, :-1].astype(int)
y = X_encoded[:, -1].astype(int)
 # Розбиття даних на навчальний та тестовий набори
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=5)
# Perpetop на основі гранично випалкових лісів
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
regressor = ExtraTreesRegressor(**params)
regressor.fit(X_train, y_train)
```

Рис. 30. Код програми

```
# Обмислення характеристик ефективності регресора на тестових даних y_pred = regressor.predict(X_test)
print('Mean absolute error =', round(mean_absolute_error(y_test, y_pred), 2))

# Тестування кодування на одиночному прикладі
test_datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test_datapoint_encoded = [-1] * len(test_datapoint)
count = 0

for i, item in enumerate(test_datapoint):
    if item.isdigit():
        test_datapoint_encoded[i] = int(test_datapoint[i])
    else:
        test_datapoint_encoded[i] = int(label_encoder[count].transform([test_datapoint[i]]))
        count = count + 1

test_datapoint_encoded = np.array(test_datapoint_encoded)

# Прогнозування результату для тестової точки даних
print('Predicted traffic:', int(regressor.predict([test_datapoint_encoded])[0]))
```

Рис. 31. Код програми

```
Mean absolute error = 7.42
Predicted traffic: 26
```

Рис. 32. Результат виконання програми

Висновок: в ході виконання лабораторної роботи було досліджено методи ансамблів у машинному навчанні за допомогою мови програмування Python.

GitHub

		Хіміч В.О.			
		Пулеко І.В.			ДУЖП.2
Змн.	Арк.	№ докум.	Підпис	Дата	