Performance Characterization

- Delay analysis
- Transistor sizing
- Logical effort
- Power analysis

Delay Definitions

- **t**_{pdr}: rising propagation delay
 - From input to rising output crossing $V_{DD}/2$
- **t**_{pdf}: falling propagation delay
 - From input to falling output crossing $V_{DD}/2$
- \mathbf{t}_{pd} : average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing $0.2 V_{DD}$ to $0.8 V_{DD}$
- **t**_f: fall time
 - From output crossing $0.8 V_{DD}$ to $0.2 V_{DD}$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_{i}$$

$$= R_{1}C_{1} + (R_{1} + R_{2})C_{2} + \dots + (R_{1} + R_{2} + \dots + R_{N})C_{N}$$

$$\begin{array}{c} R_{1} & R_{2} & R_{3} & R_{N} \\ \hline \end{array}$$

$$\begin{array}{c} R_{1} & R_{2} & R_{3} & R_{N} \\ \hline \end{array}$$

$$\begin{array}{c} C_{1} & C_{2} & C_{3} & C_{3} \end{array}$$

• Estimate worst-case rising and falling delay of 2-input NAND driving *h* identical gates.

$$t_{pdf} = (2C)(\frac{R}{2}) + \left[(6+4h)C\right](\frac{R}{2} + \frac{R}{2})$$

$$= (7+4h)RC$$

Delay Components

- Delay has two parts
 - Parasitic delay
 - 6 or 7 RC
 - Independent of load
 - Effort delay
 - 4h RC
 - Proportional to load capacitance

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If both inputs fall simultaneously

Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Resizing the Inverter

poly

To get equal rise and fall times, $\beta_n = \beta_p \Rightarrow W_p = 3W_n$, assuming that electron mobility is three times that of holes

$$W_p = 9\lambda$$

Sometimes the function being implemented makes resizing unnecessary!

Analyzing the NAND Gate

$$\beta_{\text{n, eff}} = \frac{1}{\frac{1}{\beta_{\text{n1}}} + \frac{1}{\beta_{\text{n2}}} + \frac{1}{\beta_{\text{n3}}}}$$

Resistances are in series (conductances are in parallel)

If
$$\beta_{n1} = \beta_{n2} = \beta_{n3} = \beta_n$$
 then $\beta_{n, eff} = \beta_n/3$

• Pull-down circuit has three times resistance,

Why not consider resistances in parallel? re-third times the conductance

For pull-up, only one transistor has to be on, $\beta_{p, eff} = \min{\{\beta_{p1}, \beta_{p2}, \beta_{p3}\}}$

If
$$\beta_{p1} = \beta_{p2} = \beta_{p3} = \beta_p = \beta_n/3$$
 then $\beta_{n, eff} = \beta_p \implies$ no resizing is necessary

Analyzing the NOR Gate

$$\beta_{p, eff} = \frac{\frac{1}{1} + \frac{1}{\beta_{p1}} + \frac{1}{\beta_{p2}} + \frac{1}{\beta_{p3}}}{\beta_{p3}}$$

Resistances are in series (conductances are in parallel)

$$\beta_{n3}$$
 If $\beta_{p1} = \beta_{p2} = \beta_{p3} = \beta_p$ then $\beta_{p,\,eff} = \beta_p/3$

• Pull-up circuit has three times resistance, one-third times the conductance

For pull-down, only one transistor has to be on, $\beta_{n, eff} = \min{\{\beta_{n1}, \beta_{n2}, \beta_{n3}\}}$

If
$$\beta_{n1} = \beta_{n2} = \beta_{n3} = \beta_n = 3\beta_p$$
 then $\beta_{n,eff} = 9\beta_{p,eff} \Rightarrow$ considerable resizing is $W_p = 9W_n!$

Effect of Series Transistors

Effect of Series Transistors

Transistor resizing example

Resize the pull-up transistors to make pull-up times equal

After resizing:

a: $2\beta_p$, b: $2\beta_p$, c: β_p

Transistor Placement (Series Stack)

How to order transistors in a series stack?

Body effect: $\delta V_t \propto$

$$\sqrt{V_{sb}}$$

• Ideally
$$V_{ta} = V_{tb} = V_{tc} \approx 0.8V$$

Gnd

- However, $V_{ta} > V_{tb} > V_{tc}$ because of body effect
- If a, b, c become 1 at the same time, which transistor will switch on first?
- t_c will switch on first (V_{sb} for t_c is zero), C_c will discharge, pulling V_{sb} for t_b to zero
- If signals arrive at different times, how should the transistors be ordered?
- Design strategy: place latest arriving signal nearest to output-early signals will discharge internal nodes

Some Design Guidelines

- Use NAND gates (instead of NOR) wherever possible
- Placed inverters (buffers) at high fanout nodes to improve drive capability
- Avoid use of NOR completely in high-speed circuits: $A_1 + A_2 + ... + A_n = A_1.A_2...A_n$

Some Design Guidelines

- Use limited fan-in (<10): high fan-in ⇒ long series stacks
- Use minimum-sized gates on high fan-out nodes: minimize load presented to driving gate

Logical Effort

- Chip designers face a bewildering array of choices ? ?
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Example

4:16 Decode

16

Register File

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

 A[3:0] A[3:0] A[3:0]

 12 bits
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Delay in a Logic Gate

• Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$\tau = 3RC$$

≈ 12 ps in 180 nm process 40 ps in 0.6 μ m process

Delay in a Logic Gate

• Express delays in process-independent unit

$$\frac{d}{\tau} = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

• Express delays in process-independent unit $d = \frac{d_{abs}}{\tau}$

Delay has two components

$$d = f + p$$

- Effort delay f = gh (a.k.a. stage effort)
 - Again has two components

• Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

• Delay has two components

$$d = f + p$$

- Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - $-g \equiv 1$ for inverter

• Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

- Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout

• Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

- Delay has two components d = f + p
- Parasitic delay p
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

Delay Plots

$$d = f + p$$
$$= gh + p$$

$$h = C_{\text{out}} / C_{\text{in}}$$

Delay Plots

$$d = f + p$$
$$= gh + p$$

What about NOR2?

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

Catalog of Gates

• Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2

Catalog of Gates

- Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

• Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Frequency: $f_{osc} =$

Example: Ring Oscillator

• Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$

31 stage ring oscillator in

 $0.6\;\mu m$ process has

frequency of ~ 200 MHz

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

The FO4 delay is about

200 ps in 0.6 μm process

60 ps in a 180 nm process

f/3 ns in an $f \mu m$ process

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
- Path Effort

$$F = \prod f_i = \prod g_i h_i$$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort

$$F = \prod f_i = \prod g_i h_i$$

• Can we write F = GH?

Paths that Branch

• No! Consider paths that branch:

$$G =$$

$$H =$$

$$GH =$$

$$h_1 =$$

$$h_2 =$$

$$F = GH?$$

Paths that Branch

No! Consider paths that branch:

$$F = g_1g_2h_1h_2 = 36 = 2GH$$

Branching Effort

- Introduce branching effort
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

- Now we compute the path effort
 - F = GBH

Multistage Delays

$$D_F = \sum f_i$$

$$P = \sum p_i$$

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

• Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

• Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Gate Sizes

• How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

• Select gate sizes x and y for least delay from A to

Logical Effort G =

Electrical Effort H =

Branching Effort B =

Path Effort F =

Best Stage Effort f =

Parasitic Delay P =

Delay D =

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

Delay

$$G = (4/3)*(5/3)*(5/3) = 100/27$$

$$H = 45/8$$

$$B = 3 * 2 = 6$$

$$F = GBH = 125$$

$$\hat{f} = \sqrt[3]{F} = 5$$

$$P = 2 + 3 + 2 = 7$$

$$D = 3*5 + 7 = 22 = 4.4 \text{ FO}4$$

Work backward for sizes

$$X = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x \\ y \\ - \end{bmatrix}$$

$$A = \begin{bmatrix} x$$

Work backward for sizes

$$y = 45 * (5/3) / 5 = 15$$

$$x = (15*2) * (5/3) / 5 = 10$$

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

D =

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

D =
$$NF^{1/N} + P$$

= $N(64)^{1/N} + N$

Derivation

Consider adding inverters to end of path

- How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\sum_{i=1}^{N-n_1} P_{inv} = \sum_{i=1}^{N-n_1} P_{inv} = \sum_{i=1}^{$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

• Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

Best Stage Effort

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

• has no closed-form solution

- Neglecting parasitics ($p_{inv} = 0$), we find $\rho = 2.718$ (e)
- For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

1) Compute path effort

$$F = GBH$$

2) Estimate best number of stages

$$N = \log_4 F$$

3) Sketch path with N stages

$$D = NF^{\frac{1}{N}} + P$$

$$\hat{f} = F^{\frac{1}{N}}$$

5) Determine best stage effort

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

6) Find gate sizes

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master

Power and Energy

• Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

$$P(t) = i_{DD}(t)V_{DD}$$

• Instantaneous Power:

$$E = \int_{0}^{T} P(t)dt = \int_{0}^{T} i_{DD}(t)V_{DD}dt$$

• Energy:

$$P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

Average Power:

Dynamic Power

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
- On rising output, charge $Q = CV_{DD}$ is required
- On falling output, charge is dumped to GND
- This repeats Tf_{sw} times over an interval of T

Dynamic Power Cont.

$$P_{\text{dynamic}} =$$

Dynamic Power Cont.

$$P_{\text{dynamic}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} [Tf_{\text{sw}} CV_{DD}]$$

$$= CV_{DD}^{2} f_{\text{sw}}$$

Activity Factor

- Suppose the system clock frequency = f
- Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 - Dynamic gates:
 - Switch either 0 or 2 times per cycle, $\alpha = \frac{1}{2}$
 - Static gates:
 - Depends on design, but typically $\alpha = 0.1$
- Dynamic power: $P_{\text{dynamic}} = \alpha C V_{DD}^2 f$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output

Example

- 200 Mtransistor chip
 - 20M logic transistors
 - Average width: 12 λ
 - 180M memory transistors
 - Average width: 4λ
 - 1.2 V 100 nm process
 - $-C_g = 2 \text{ fF/}\mu\text{m}$

Dynamic Example

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks!)
- Estimate dynamic power consumption per MHz.
 Neglect wire capacitance and short-circuit current.

Dynamic Example

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks!)
- Estimate dynamic power consumption per MHz. Neglect wire capacitance.

$$C_{\text{logic}} = (20 \times 10^{6})(12\lambda)(0.05\mu m/\lambda)(2 fF/\mu m) = 24 nF$$

$$C_{\text{mem}} = (180 \times 10^{6})(4\lambda)(0.05\mu m/\lambda)(2 fF/\mu m) = 72 nF$$

$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.05C_{\text{mem}}\right](1.2)^{2} f = 8.6 \text{ mW/MHz}$$

Static Power

- Static power is consumed even when chip is quiescent.
 - Ratioed circuits burn power in fight between ON transistors
 - Leakage draws power from nominally OFF devices

$$I_{ds} = I_{ds0}e^{\frac{V_{gs}-V_t}{nv_T}} \left[1 - e^{\frac{-V_{ds}}{v_T}} \right]$$

$$V_{t} = V_{t0} - \eta V_{ds} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

Ratio Example

- The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline pullups
 - On average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM
 - $\beta = 75 \mu A/V^2$
 - $-V_{tp} = -0.4V$

Ratio Example

- The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline pullups
 - On average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM

$$- \beta = 75 \,\mu\text{A/V}^2$$

$$-V_{tp} = -0.4V$$

Solution:
$$I_{\text{pull-up}} = \beta \frac{\left(V_{DD} - \left|V_{tp}\right|\right)^2}{2} = 24 \mu A$$

$$P_{\text{pull-up}} = V_{DD}I_{\text{pull-up}} = 29\mu\text{W}$$

$$P_{\text{static}} = (31 + 24)P_{\text{pull-up}} = 1.6 \text{ mW}$$

Leakage Example

- The process has two threshold voltages and two oxide thicknesses.
- Subthreshold leakage:
 - 20 nA/ μ m for low V_t
 - -0.02 nA/ μ m for high V_t
- Gate leakage:
 - -3 nA/ μ m for thin oxide
 - -0.002 nA/ μ m for thick oxide
- Memories use low-leakage transistors everywhere
- Gates use low-leakage transistors on 80% of logic

Leakage Example Cont.

• Estimate static power:

Leakage Example Cont.

• Estimate static power:

```
- High leakage: (20 \times 10^6)(0.2)(12\lambda)(0.05\mu m/\lambda) = 2.4 \times 10^6 \mu m

- Low leakage: (20 \times 10^6)(0.8)(12\lambda)(0.05\mu m/\lambda) +

(180 \times 10^6)(4\lambda)(0.05\mu m/\lambda) = 45.6 \times 10^6 \mu m

I_{static} = (2.4 \times 10^6 \mu m)[(20nA/\mu m)/2 + (3nA/\mu m)] +

(45.6 \times 10^6 \mu m)[(0.02nA/\mu m)/2 + (0.002nA/\mu m)]

= 32mA

P_{static} = I_{static}V_{DD} = 38mW
```

Leakage Example Cont.

- Estimate static power: $(20 \times 10^6)(0.2)(12\lambda)(0.05 \mu m/\lambda) = 2.4 \times 10^6 \mu m$
 - High leakage: $(20 \times 10^6)(0.8)(12\lambda)(0.05 \mu m / \lambda) +$
 - Low leakage: $(180 \times 10^6)(4\lambda)(0.05 \mu m / \lambda) = 45.6 \times 10^6 \mu m$

$$I_{static} = (2.4 \times 10^{6} \,\mu m) [(20nA/\,\mu m)/2 + (3nA/\,\mu m)] + (45.6 \times 10^{6} \,\mu m) [(0.02nA/\,\mu m)/2 + (0.002nA/\,\mu m)]$$

$$= 32mA$$

$$P_{static} = I_{static} V_{DD} = 38mW$$

• If no low leakage devices, $P_{\text{static}} = 749 \text{ mW} (!)$

- Reduce dynamic power
 - α:
 - C:
 - $-V_{DD}$:
 - f:
- Reduce static power

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C:
 - $-V_{DD}$:
 - f:
- Reduce static power

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - $-V_{DD}$:
 - f:
- Reduce static power

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - V_{DD}: lowest suitable voltage
 - f:
- Reduce static power

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - V_{DD}: lowest suitable voltage
 - f: lowest suitable frequency
- Reduce static power

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - V_{DD}: lowest suitable voltage
 - f: lowest suitable frequency
- Reduce static power
 - Selectively use ratioed circuits
 - Selectively use low V_t devices
 - Leakage reduction:
 stacked devices, body bias, low temperature