Hörmander's L^2 -estimate in dimension one

Let Ω be an open set in \mathbf{C} . Every real-valued continuous and non-negative function ϕ in Ω gives the Hilbert space \mathcal{H}_{ϕ} whose elements are Lebesgue measurable functions f in Ω such that

$$(0.0) \qquad \int_{\Omega} |f|^2 \cdot e^{-\phi} \, dx dy < \infty$$

and equipped with a norm defined by the square root above. Notice that \mathcal{H}_{ϕ} contain the space of test-functions with compact support in Ω as a dense subspace. Let ψ be another continuous and non-negative function which gives the Hilbert space \mathcal{H}_{ψ} where the norm of an element g is denoted by $||g||_{\psi}$. The $\bar{\partial}$ -operator sends a test-function f to $\bar{\partial}(f)$. Consider the equation

$$\bar{\partial}(f) = w : w \in H_{\psi}$$

where f belongs to \mathcal{H}_{ϕ} with the additional condition that its $\bar{\partial}$ -derivative belongs to \mathcal{H}_{ψ} , i.e this puts a constraint on f. Notice that f is not unique since every holomorphic function in Ω with a finite norm in (0.0) belongs to the $\bar{\partial}$ -kernel. conversely, since $\bar{\partial}$ is an elliptic differential operator this means the kernel of the densely defined linear operator

$$\bar{\partial} \colon \mathcal{H}_{\phi} \to \mathcal{H}_{\psi}$$

consists of holomorphic functions for which (0,0) is finite. We shall find condions on the pair ϕ, ψ such that there exists a constant C where (5.0) has a solution f with

$$||f||_{\phi} \le C \cdot ||w||_{\psi} \quad : \forall w \in H_{\psi}$$

A sufficent condition to obtain solutions in (*) with a constant C is that the *adjoint* operator in (0.1) has special properties. Denote this adjoint by $\bar{\partial}^*$. Notice that it is densely defined since it contains the space of test-funtions in Ω . Suppose there exists a positive contant c_0 such that

$$(0.2) ||\bar{\partial}^*(g)||_{\phi} \ge c_0 \cdot ||g||_{\psi} : g \in \mathcal{D}(\bar{\partial}^*)$$

where $\mathcal{D}(\bar{\partial}^*)$ is the domain of defintion for the adjoint operator. Then standard Hilbert space theory gives (*) where our can take $C = c_0^{-1}$. To ensure that (0.2) we give:

1.1 Definition. The pair ϕ, ψ satisfies the Hörmander condition if there exists some positive constant c_* such that

(1.1.1)
$$\Delta(\psi) - 2 \cdot (\psi_x^2 + \psi_y^2) + \psi_x \phi_x + \psi_y \phi_y \ge 2 \cdot c_* \cdot e^{\psi - \phi}$$

1.2 Theorem. If (1.1.1) holds then (*) has solutions with

$$C \leq \frac{1}{\sqrt{c_*}} : \forall w \in \mathcal{H}_{\psi}$$

Proof. Let w be in the domain of definition for the adjoint operator $\bar{\partial}^*$. If $f \in C_0^{\infty}(\Omega)$ one has

(i)
$$\langle \bar{\partial}(f), w \rangle = \int \bar{\partial}(f) \cdot \bar{w} \cdot e^{-\psi} dx dy = -\int f \cdot \left[\bar{\partial}(\bar{w}) - \bar{w} \cdot \bar{\partial}(\psi) \right] \cdot e^{-\psi} dx dy$$

where Stokes theorem gives the last equality. Since ψ is real-valued, $\bar{\partial}(\bar{w}) - \bar{w} \cdot \bar{\partial}(\psi)$ is equal to the complex conjugate of $\partial(w) - w \cdot \partial(\psi)$. Hence (i) and the construction of adjoint operators give

(ii)
$$\bar{\partial}^*(w) = -\left[\partial(w) - w \cdot \partial(\psi)\right] \cdot e^{\phi - \psi}$$

Taking the squared L^2 -norm in \mathcal{H}_{ϕ} we obtain

$$||\bar{\partial}^*(w)||_{\phi}^2 = \int |\partial(w) - w \cdot \partial(\psi)|^2 \cdot e^{\phi - 2\psi} =$$

(iii)
$$\int \left(|\partial(w)|^2 + |w|^2 \cdot |\partial(\psi)|^2 \right) \cdot e^{\phi - 2\psi} - 2 \cdot \Re\left(\int \partial(w) \cdot \bar{w} \cdot \bar{\partial}(\psi) \cdot e^{\phi - 2\psi} \right)$$

By partial integration the last integral in (iii) is equal

(iv)
$$2 \cdot \Re \left(\int w \cdot \left[\partial(\bar{w}) \cdot \bar{\partial}(\psi) + \bar{w} \cdot \partial \bar{\partial}(\psi) - 2\bar{w} \cdot \bar{\partial}(\psi) \cdot \partial(\psi) + \bar{w} \cdot \bar{\partial}(\psi) \cdot \partial(\phi) \right] \cdot e^{\phi - 2\psi} \right)$$

Next, the Cauchy-Schwarz inequality gives

(v)
$$|2 \cdot \int w \cdot \partial(\bar{w}) \cdot \bar{\partial}(\psi) \cdot e^{\phi - 2\psi} | \leq \int (|\partial(w)|^2 + |w|^2 \cdot |\partial(\psi)|^2) \cdot e^{\phi - 2\psi}$$

Together (iii-v) give

$$(\mathrm{iv}) \qquad \qquad ||\bar{\partial}^*(w)||_\phi^2 \geq 2 \cdot \mathfrak{Re} \ \int \ |w|^2 \cdot \left[\ \partial \bar{\partial}(\psi) - 2 \cdot \bar{\partial}(\psi) \cdot \partial(\psi) + \bar{\partial}(\psi) \cdot \partial(\phi) \ \right] \cdot e^{\phi - 2\psi}$$

Now we recall that

$$\partial \bar{\partial}(\psi) = \frac{1}{4}\Delta(\psi)$$
 & $\bar{\partial}(\psi) \cdot \partial(\psi) = \frac{1}{4} \cdot (\psi_x^2 + \psi_y^2)$

It follows that (iv) is equal to

$$(\text{vi}) \qquad \qquad 2 \cdot \mathfrak{Re} \int |w|^2 \cdot \frac{1}{4} \left[\Delta(\psi) - 2 \cdot |\nabla(\psi)|^2 + \psi_x \phi_x + \psi_y \phi_y \right] \cdot e^{\phi - 2\psi}$$

Hence (1.1.1) gives

(vi)
$$|\bar{\partial}^*(w)|_{\phi}^2 \ge c_0^2 \cdot \int |w|^2 \cdot e^{\psi - \phi} \cdot e^{\phi - 2\psi} = c_* \cdot ||w||_{\psi}^2$$

This lower bound gives solutions to (*) by general facts about densely defined operators on Hilbert spaces. and Theorem 5.2 follows.

5.3 Remark. The full strength of L^2 -estimate appears in dimension $n \geq 2$ where one works with *plurisubharmonic functions* and impose the condition that Ω is a strictly pesudo-convex set in \mathbb{C}^n and solve inhomogeneous $\bar{\partial}$ -equations for differential forms of bi-degree (p,q). In addition to Hörmander's original article [Hörmander] we refer to his text-book [Hörmander] and Chapter XX in [Hömander XX-Vol 2] where bounds for $\bar{\partial}$ -equations are established with certain relaxed assumptions which are used to settle the fundamental principle for over-determined systems of PDE-equations in the smooth case.

The case
$$n=2$$

The special case below may help the reader to pursue details from Hörmander's work, where I personally recomend his original article from 1962 in Acta matematica. Take n=2 and let D^2 be the 2-dimensional polydisc in \mathbb{C}^2 with coordinates $z=(z_1,z_2)$. Here $\bar{\partial}_1$ and $\bar{\partial}_2$ are pairwise commuting operators. Let $\phi(z)$ be a real-valued function in D^2 which is at least of class C^2 . We get the Hilbert space \mathcal{H} of locally square integraböe functions with finite norm:

$$||a||_{\phi} = \sqrt{\int_{D^2} |a(z)|^2 \cdot e^{-\phi(z)} d\lambda(z)}$$

where $d\lambda(z)$ is the 4-dimensional Lebesgue meaure. Now we consider the densely defined linear operator T from \mathcal{H} into $\mathcal{H} \oplus \mathcal{H}$ defined by

$$T(a) = \bar{\partial}_1(a) \oplus \bar{\partial}_2(a)$$

A. Exercise. Let T^* be the adjoint of T which sends a pair $(f,g) \in \mathcal{H} \oplus \mathcal{H}$ to \mathcal{H} . Show that

(A)
$$T^*(f,g) = -(\partial_1(f) - f \cdot \partial_1(\phi) + \partial_1(g) - g \cdot \partial_1(\phi)]$$

B. Exercise. Put

$$\delta_1(f) = \partial_1(f) - f \cdot \partial_1(\phi)$$
 : $\delta_2(g) = \partial_2(g) - g \cdot \partial_2(\phi)$

Use (A) to show that

(B.1)
$$||T^*(f,g)||^2 = ||\delta_1(f)||^2 + ||\delta_2(g)||^2 + 2 \cdot \Re \epsilon \int \delta_1(f) \cdot \overline{\delta_2(g)} \cdot e^{-\phi} d\lambda$$

Next, use Stokes theorem to show that

(B.2)
$$\int \delta_1(f) \cdot \overline{\delta_2(g)} \cdot e^{-\phi} d\lambda = -\int f \cdot \overline{\partial_1(\delta_2(g))} \cdot e^{-\phi} d\lambda$$

C. Exercise. Put

(C.0)
$$H(z) = \frac{\partial^2 \phi}{\partial z_1 \bar{\partial} z_2}$$

and by multiplication one identifies H with a zero-order differential operator. Show the following equality in the ring of differential operators in \mathbb{C}^2 :

$$(C.1) \partial_1 \circ \delta_2 = \delta_2 \circ \partial_1 - H$$

Conclude that (B.2) becomes

(C.2)
$$\int f \cdot \bar{g} \cdot \bar{H} \cdot e^{-\phi} d\lambda - \int f \cdot \overline{\delta_2 \partial_1((g))} \cdot e^{-\phi} d\lambda$$

D. The case $\bar{\partial}_1(g) = \bar{\partial}_2(f)$. Use the above to show that this equality gives

(D.1)
$$-2 \cdot \Re \mathfrak{e} \int \bar{f} \cdot \delta_2(\bar{\partial}_2((f)) \cdot e^{-\phi} d\lambda = -2 \cdot \Re \mathfrak{e} \int |\partial_2(f)|^2 \cdot e^{-\phi} d\lambda$$

E. Conclusion. Show that (A), (B.1-2) and (D.1) and the equality $\bar{\partial}_1(g) = \bar{\partial}_1(f)$ give:

(E.1)
$$||T^*(f,g)||^2 = ||\delta_1(f)||^2 + ||\delta_2(g)||^2 + 2 \cdot \Re \epsilon \int f \cdot \bar{g} \cdot H(z) \cdot e^{-\phi} \, d\lambda + ||\partial_2(f)||^2$$

Above the last term is always ≥ 0 . To ensure that there exists a constant c_0 such that

(E.2)
$$||f||^2 + ||g||^2 \le c_0^2 \cdot ||T^*(f,g)||^2$$

one must impose suitable conditions upon ϕ Above the mixed derivative which defines the H-function appears while norms $||\delta_1(f)||^2$ and $||\delta_2(g)||^2$ can be estimated as in the case n=1 applied with $\phi=\psi$. The reader is invited to contemplate upon conditions which give a constant c_0 in (E.2) where Hörmander's work can be consulted. further dertails. Above we treated a special case since we used the same weight function ϕ and not a pair as in the case n=1.