LTL and Past LTL on Finite Traces for Planning and Declarative Process Mining

Francesco Fuggitti

Master of Science in Engineering in Computer Science Sapienza, University of Rome

Advisor: Prof. Giuseppe De Giacomo

A.Y. 2017/2018

Outline

- Introduction
- Objectives
- 3 LTL_f 2DFA
- 4 FOND4LTL_f/PLTL
- **5** JANUS
- 6 Conclusions

Introduction

Introduction

- Linear Temporal Logic (LTL) is a simple formal language for expressing temporal specifications both in Artificial Intelligence (AI) and in Business Process Management (BPM)
 - LTL on finite traces (LTL_f) (De Giacomo and Vardi, 2013)
 - Past LTL on finite traces (PLTL) (Lichtenstein et al. 1985)
- In AI: planning for temporally extended goals from Bacchus and Kabanza, (1998) to Camacho et al. (2017/2018)
- In BPM: temporal specification of the constraint formula in Declarative Process Mining from Pesic and van der Aalst (2006) to Cecconi et al. (2018)

Objectives

- Provide a new efficient technique to transform LTL_f/PLTL formulas into Deterministic Finite-state Automaton (DFAs)
- Provide an approach to (FOND) Planning for LTL_f/PLTL goals:
 - o reducing the problem to standard (FOND) planning
 - o working with (FOND) domains instead of automata
- Provide a generalization of an approach to declarative process mining:
 - o generalization of the constraint formula representation
- Implementation of all above-mentioned topics

PLTL and LTL $_f$ (De Giacomo and Vardi, 2013)

- Linear Temporal Logic on finite traces: LTL_f
 - exactly the same syntax of LTL
 - o interpreted over finite traces
 - next: Ohappy

- until: reply U acknowledge

- eventually: *◊rich*

- always: □*safe*
- Past Linear Temporal Logic: PLTL
 - \circ same syntax of LTL_f, but looks into the past

- since: reply S acknowledge

- once: *♦rich*

- hystorically: ⊟*safe*

- Reasoning in LTL_f/PLTL:
 - \circ transform formulas arphi into DFAs \mathcal{A}_{arphi}
 - \circ for every trace π , an LTL_f/PLTL formula φ is such that:

$$\pi \models \varphi \iff \pi \in \mathcal{L}(\mathcal{A}_{\varphi})$$

- Technique based on a translation procedure:
 - 1. starting from an LTL_f/PLTL formula φ , we translate it to FOL on finite sequences (De Giacomo and Vardi 2013; Zhu et al. 2018) through $fol(\varphi,x)$ and $fol_p(\varphi, x)$ translation functions:
 - LTL_f formulas evaluated in x=0, hence $fol(\varphi,0)$, since they look at the future
 - PLTL formulas evaluated in x = last, hence $fol_p(\varphi, last)$ with $last = |\pi| 1$, since they look at the past
 - 2. apply the highly optimized tool MONA able to transform Monadic Second Order Logic (and hence FOL as well) on finite strings to minimum DFA automata

$LTL_f 2DFA$: the implementation of the translation procedure

Python package supporting:

- parsing of LTL $_f/PLTL$ formulas
- translation to FOL, DFA
- option for DECLARE assumption (De Giacomo et al. 2014)
- available online at http://ltlf2dfa.diag.uniroma1.it

Output examples:

FOND Planning for Extended Temporal Goals

- A fully observable non-deterministic (FOND) domain with initial state is a tuple $\mathcal{D} = \langle 2^{\mathcal{F}}, A, s_0, \rho, \alpha \rangle$ where:
 - \circ \mathcal{F} is a set of *fluents* (atomic propositions);
 - A is a set of actions (atomic symbols);
 - \circ 2^F is the set of states:
 - o s₀ is the initial state (initial assignment to fluents);
 - $\alpha(s) \subseteq A$ represents action preconditions;
 - \circ $(s, a, s') \in \rho$ with $a \in \alpha(s)$ represents action effects (including frame)
- ullet Specified in PDDL as domain ${\cal D}$ and problem ${\cal P}$
- Actions effects are non-deterministic: who chooses what?
 - the Agent chooses the action to execute
 - the Environment chooses the successor state
- Goals, planning and plans
 - Goal: an LTL_f/PLTL formula φ
 - Planning: a game between the two players
 - Plan: *strategy* to *win* the game

The FOND4LTL $_f$ /PLTL approach:

- Idea: reduce the problem to standard FOND planning
- How to deal with LTL_f/PLTL goal:
 - 1. transform the goal φ into the DFA $\mathcal{A}_{\varphi} = \langle \Sigma, Q, q_0, \delta, F \rangle$, through LTL_f2DFA
 - 2. to capture the general representation of \mathcal{A}_{φ} in the \mathcal{D} , we modify \mathcal{A}_{φ} to \mathcal{A}_{φ}'

The parametrization of \mathcal{A}_{φ} : \mathcal{A}_{φ}'

- from $\Sigma = \{a_0(\vec{o}), \dots, a_n(\vec{o})\}$ to $\Sigma' = \{a'_0, \dots, a'_n\} = \{a_0(\vec{x}), \dots, a_n(\vec{x})\}$
- from $Q = \{q_0, \dots, q_n\}$ to $Q' = \{q'_0(\vec{x}), \dots, q'_n(\vec{x})\}$

where $\vec{o} = (o_0, \dots, o_k)$ are objects of interest and $\vec{x} = (x_0, \dots, x_k)$ are the corresponding variables

- 3. introduce the *turnDomain* predicate that enables to perform a step on the domain and another step on the DFA alternatively
- 4. encode δ' of \mathcal{A}_φ' in PDDL as a new operator:

Action trans: encoding of δ' into domain ${\cal D}$

parameters: (x_0, \ldots, x_k) , where $x_i \in \mathcal{V}$

precondition: ¬turnDomain

effect:

when
$$(q_i(x_0,...,x_k) \land a'_j)$$
 then $(\delta'(q'_i,a'_j) = q''_i(x_0,...,x_k) \land (\neg q, \forall q \in Q \text{ s.t. } q \neq q''_i) \land turnDomain), \forall i,j:0 < i < m,0 < j < n$

5. in problem \mathcal{P} , produce a new initial state and new goal state accordingly

New initial state

$$s_0 \wedge turnDomain \wedge q_0(o_0, \ldots, o_k)$$

New goal specification

$$turnDomain \wedge (\bigvee_{g \in F} q(o_0, \dots, o_k))$$

Implementation and Results

- FOND4LTL_f/PLTL Python package using FOND-SAT planner
- soon available online at http://fond4ltlfpltl.diag.uniroma1.it

Example: the Triangle Tireworld domain

Objective: Drive from one location to another. A tire may be going flat. If there is a spare tire in the location of the car, then the car can use it to fix the flat tire.

Goal: $\varphi = vehicleAt(122) \land \Diamond(vehicleAt(131))$

(Strong) Plan: any path from state 0 to state 5 achieves to the goal

The Janus approach for Declarative Process Mining

Declarative Process Mining is the set of techniques aimed at determining if a trace t is *interesting* wrt a given temporal specification φ , called a constraint.

- **Problem**: "ex falso quod libet", i.e. a constraint can be satisfied even though it is never activated
- **Solution**: the Janus approach (Cecconi et al. 2018) proposed the reactive constraint (RCon) as $\Psi \doteq \alpha \mapsto \varphi$ where:
 - \circ α is the activation condition
 - $\circ \varphi$ is an LTLp_f formula (i.e. LTL_f augmented with PLTL) for computing the *interestingness degree* function $\zeta(\Psi,t)$

Example: $\Psi = a \mapsto (\ominus b \lor \Diamond c)$

Given a trace $t = \langle d, f, a, f, c, a, f, b, a, f \rangle$, the $\zeta(\Psi, t) = \frac{2}{3} = 0.667$

Two main drawbacks:

lpha only a single task and implementation limited to <code>DECLARE</code> constraints

Our generalization of the Janus approach extends the original approach:

New constraint representation - RCon

$$\Psi \doteq \bigvee_{j=1}^{m} (\varphi^{\blacktriangleleft} \wedge \varphi^{\blacktriangledown} \wedge \varphi^{\blacktriangleright})_{j}$$

where $\varphi^{\blacktriangleleft}$ is a pure past formula, $\varphi^{\blacktriangledown}$ is a propositional formula on the current instant that triggers potential interest and $\varphi^{\blacktriangleright}$ is a pure future formula

New interestingness degree function $\eta(\Psi, t)$

$$\eta(\Psi,t) = \begin{cases} \frac{|\{t \models \bigvee_{j=1}^{m} (\varphi^{\blacktriangleleft} \wedge \varphi^{\blacktriangledown} \wedge \varphi^{\blacktriangleright})_{j}\}|}{|\{t \models \bigvee_{j=1}^{m} \varphi^{\blacktriangledown}\}|}, & \text{if } |\{t \models \bigvee_{j=1}^{m} \varphi^{\blacktriangledown}\}| \neq 0; \\ 0, & \text{otherwise} \end{cases}$$

Theorem

The $\eta(\Psi, t)$ function is a generalization of the $\zeta(\Psi, t)$ function

Implementation and Results

JANUS Python package:

- any type of constraint formula
- automata generation through LTL_f 2DFA

Results:

Example: the Sepsis¹ event log

Given an RCon:

$$\Psi = (\bigoplus ER \ Registration \land (Leucocytes \land LacticAcid) \land True) \lor (True \land (Leucocytes \land LacticAcid) \land \lozenge CRP)$$

- $t = \{ 'ER Registration', ('ER Triage', 'ER Sepsis Triage), ('LacticAcid', 'IV') \}$ Liquid'), ('Leucocytes', 'LacticAcid'), 'CRP', 'LacticAcid', ('Leucocytes', 'LacticAcid'), ('Leucocytes', 'IV Antibiotics'), 'IV Liquid', 'Release A'}
- $\eta(\Psi, t) = \frac{1}{2} = 0.5$

¹Sepsis reports trajectories of patients showing symptoms of sepsis in a Dutch hospital

Conclusions

Thesis results:

- Provided the LTL_f2DFA tool which implements the translation procedure from $LTL_f/PLTL$ to DFA
- Proposed and implemented the FOND4LTL_f/PLTL approach in compiling LTL_f/PLTL goals along with the original planning domain, specified in PDDL
- Extended the Janus approach both theoretically and practically

Future works

- Investigate the LTLp_f logic (i.e. LTL_f and PLTL merged) for dealing directly with mixed formulas
- Extend our research to Partially Observable Non Deterministic (POND) domains
- Provide a tool that automatically separates LTLp_f formulas
- Optimize and enrich all tools developed.

- Finite trace π : denotes a finite sequence of consecutive instants of time
- An LTL_f formula φ is true in π , in notation $\pi \models \varphi$, if $\pi, 0 \models \varphi$
- A PLTL formula φ is true in π , in notation $\pi \models \varphi$, if π , last $\models \varphi$

Example: translation procedure for $\varphi = \lozenge G$

FOL translation: $fol(\varphi,0) = \exists y.0 < y < last \land G(y)$

MONA program: m2l-str; var2 G; ex1 y: 0<=y & y<=max(\$) & y in G

Results

- an LTL_f formula can be reduced to DFA in double-exponential time
- a PLTL formula can be reduced to DFA in single exponential time

Appendix A1

 $LTL_f 2DFA$ vs FLLOAT:

Appendix B

Definition

We define a mapping function f as follows:

$$f: \mathcal{O} \to \mathcal{V}$$
 (1)

where \mathcal{O} is the set of objects $\{o_0, \ldots, o_k\}$ and \mathcal{V} is a set of variables $\{x_0, \ldots, x_k\}$

Example of parametric DFA: $\varphi = \Diamond vehicleAt(I22)$

Appendix B1

Strong Plan - Pure adversarial game

A strong plan is a strategy that is guaranteed to achieve the goal regardless of non-determinism.

Strong Cyclic Plan - Fairness

Strong cyclic solutions guarantee goal reachability only under the assumption of fairness. In the presence of fairness it is supposed that all action outcomes, in a given state, would occur infinitely often.

Theorem

Any propositional temporal formula φ can be rewritten as a boolean combination of pure temporal formulas. (Gabbay, 1989)

Definition of ζ

 $\zeta: \mathcal{R} \times \Sigma^* \to [0,1] \subseteq \mathbb{R}$ is defined as follows:

$$\zeta(\Psi,t) = \begin{cases} \frac{|\{i:t,i \models \alpha \text{ and } t,i \models \varphi\}|}{|\{i:t,i \models \alpha\}|}, & \text{if } |\{i:t,i \models \alpha\}| \neq 0; \\ 0, & \text{otherwise} \end{cases}$$

otherwise

Equivalence between reactive constraints

$$\alpha \mapsto \varphi \equiv \bigvee_{j=1}^{m} (\varphi^{\blacktriangleleft} \wedge (\varphi^{\blacktriangledown} \wedge \alpha) \wedge \varphi^{\blacktriangleright})_{j}$$

