EL RAZONAMIENTO APROXIMADO

- 1.-Proposiciones condicionales
- 2.- Interpretación de las proposiciones condicionales
- 3.- Modus Ponens Generalizado
- 4.- Sistemas basados en Reglas Difusas
- 5.- Inferencia a partir de Sistemas Basados en Reglas Difusas

EL RAZONAMIENTO APROXIMADO

El razonamiento aproximado trata de inferir conclusiones sobre una serie de proposiciones de naturaleza vaga.

Las proposiciones son meros enunciados acerca de un hecho. Para reproducirlos usaremos conjuntos difusos.

PROPOSICIONES CONDICIONALES

Estas son las proposiciones del razonamiento aproximado que revisten la mayor importancia. Son las que más adelante utilizaremos para formular 'reglas difusas'.

Su estructura es: 'Si A entonces B'.

A el antecedente

B el consecuente

A y B pueden ser cualquier proposición, tan complicada como se quiera.

Por simplicidad en la presentación nos vamos a centrar en el caso en A y B son subconjuntos difusos de sendos espacios unidimensionales X e Y que pueden ser iguales La idea de base en el Razonamiento Aproximado es que una proposición condicional induce una relación difusa R en XxY, a partir de la cual (como comentamos en una lección anterior) anse puede hacer la inferencia a partir de una proposición A' sobre X.

Ahora bien existen dos formas de interpretar la proposiciones condicionadas que dan lugar a dos formas diferentes de relación R.

{Si A entonces B} ≡ **{A se presenta emparejada con B}**

 ${Si A entonces B} \equiv {A implica (supone) B}$

La primera interpretación hace que la proposición

Si A entonces B ≡ {A se presenta emparejada con B}

equivalga a la proposición "A ∩ B" y por tanto que

R(x,y) = T[A(x),B(y)]: donde T es una t-norma.

 $R(x,y) = \min[A(x),B(y)].$

La segunda interpretación hace que la proposición

Si A entonces $B \equiv \{A \text{ implica (supone) } B\}$

aparezca como una extensión natural de la implicación material de la lógica de primer orden clásica y por tanto

 $R(x,y) = S\{N[A](x), B(y)\}$ siendo N una negación y S una t-conorma.

 $R(x,y) = Max\{ [1-A(x),B(y)]$

Two ways to interpret "If x is A then y is B":

"A se empareja con B" fue introducida por Mamdani en 1975 y se ha sido la mas empleada:

- Es facil de implementar
- Es intuitivamente correcta
- Proporciona prácticamente los mismos resultados que la otra.

EL MODUS PONENES GENERALIZADO

El denominado "Modus Ponens Generalizado", que será la clave del Razonamiento Aproximado se formula del siguiente modo

Supongamos que se tiene la REGLA "Si A entonces B", y una observación A' con A, A' s.d's. de un universo X y B un s.d. de otro Y. Se quiere obtener la conclusión B' como un s.d. de Y:

Si A entonces B

Α'		
	B'	

La regla genera una relación difusa en XxY que compuesta con A' genera B'

$$B'(y) = Pry\{R \cap EC(A') | X\}(y)$$

$$B'(y) = Max\{min[R(x,y) \cap EC(A')(x,y) | x\}(y)$$

SISTEMAS BASADOS EN REGLAS DIFUSAS

El Razonamiento Aproximado ha sido aplicado para el Control de Sistemas y procesos de decisión con un gran éxito.

En estos casos se supone que las proposiciones condicionales son de la forma (reglas difusas):

Si x es A entonces y es B

Donde x e y son variables lingüísticas y A, B valores etiqueta de estas variables lingüísticas.

- Si la presión es alta entonces el volumen es pequeño
- Si la velocidad es alta entonces aplicar una fuerza moderada al freno.

En estos casos y puesto que las variables de base son esencialmente numéricas se pueden obtener representaciones graficas ilustrativas de la diferencia entre las dos interpretaciones de la regla que vimos con anterioridad.

A se empareja con B

A se empareja con B

A implica B

A implica B

Ahora el Modus Ponens Generalizado toma la forma

Si x es A entonces y es B

Si empleamos la interpretación de Mamdani

$$B'(y) = Max\{min[min \{A(x),B(y)\}, A'(x)| x\}(y)$$

Gráficamente

Estos desarrollos pueden extenderse a casos mas complejos.

Reglas con antecedente múltiple

Inferencia a partir de múltiples reglas

El hecho a partir del cual se infiere puede ser un valor concreto de la variable del antecedente, interpretandolo como un conjunto difuso de grado 1 en el en el valor considerado y cero en el resto (un singleton)

Home Page 🛣