Birkbeck College, University of London

Department of Economics, Mathematics and

Statistics

André Bueno Rezende de Castro

Is the inflation rate normally distributed? An empirical investigation

Abstract: The purpose of this project is to determine whether the inflation rate of a specific set

of countries and regions can be described by a normal distribution and how their descriptive

statistics - such as mean, standard deviation, kurtosis, skewness - behave. A secondary

purpose of this project is to determine whether the consumer prices index (CPI) and the gross

domestic product (GDP) deflator differ in this regard. Finally this project will test both the CPI

and the GDP deflator for autocorrelation of order 1, using E-Views.

Word count: 3.004

London, UK - April, 2013

Joint graph of the time series evolution of the CPI and GDP deflator

Behaviour of the descriptive statistics of the inflation rate indexes

Firstly and foremost, it is important to clarify that both the Consumers Price Index (CPI) and the Gross Domestic Product (GDP) deflator have been computed in EViews in level, not in log, simply because many of the countries and set of countries analysed had deflation during the period. Since it is not possible to take logs of negative numbers, we treated the variables in level.

The CPI is a weighted average of the price level of the main goods consumed in the economy and the inflation rate reads as follows:

$$\pi_t = 100. \frac{(P_t - P_{t-1})}{P_{t-1}}$$

The GDP deflator is the implicit price deflator of the GDP, being a measure of prices of all final and domestically produced goods and services in the economy. It doesn't represent what a typical family consumes, because it evaluates all the goods in the economy, contrary to the CPI. The GDP deflator is as follows:

$$P_{t} = 100. \frac{Nominal \ GDP}{Real \ GDP} = 100. \frac{\sum_{i=1}^{N} P_{it}. \ Q_{it}}{\sum_{i=1}^{N} P_{io}. \ Q_{it}}$$

Below follows an interpretation of the descriptive statistics estimated for the two indexes of the inflation rate considered in this project: the CPI and the GDP deflator.

- **1. Mean (Average):** obtained by adding all the observations of each country or series of countries and dividing by the number of observations as in $\mu = \frac{\sum_{i=1}^{i=N} Xi}{N}$. Since we are measuring the mean from a sample, not from the population, the more appropriate formula is as follows: $\bar{X} = \frac{\sum X}{N-1}$; (BARROW, 2009, p. 25)
- **2. Standard Deviation:** the bigger the standard deviation is, the bigger the volatility of inflation will be, bringing about unpredictability to the policy makers and to the consumers inflation expectations tend to be wrong. In arithmetical terms, the standard deviation, which is a measure of dispersion, is the squared root of the variance. The purpose of taking the square root of the variance is to yield a number in a definite measure, not in its squared form. The formula is as follows: $\sigma = \sqrt{\frac{\sum (x-\mu)^2}{N}}$. Since we are measuring the standard deviation from a sample, not from the population, the more appropriate formula is as follows: $s = \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}$; (BARROW, 2009, p. 36)

- **3. Skewness:** a certain distribution is generally skewed either to the left (negatively skewed) or to the right (positively skewed), meaning that it has a long tail to the left(right)-hand side of the distribution. The skewness measures the asymmetry of a distribution, whose coefficient are a cubed deviation from the mean. A negatively skewed distribution would have a negative coefficient for a left-skewed one and vice versa, yielding a zero coefficient for a symmetric distribution, considering that it is normal. The formula of the coefficient is as follows: $S = \frac{\sum_{i=1}^{n}(x_i-\bar{x}_i)^3}{N.\sigma^3}$. (BARROW, 2009, p. 42) The importance of the skewness for the inflation rate lies on the irregularity of rates lying too far away from the zero symmetric standard, which could be interpreted as if the inflation has an irregular process, with many variations. A positively or negatively skewed inflation rate indicates the following
- 3.1. A volatile business cycle which has so many fluctuations in the product affecting the inflation through its impact on unemployment (the Okun's Law inserted in a Phillips Curve). The Phillips Curve being: $\pi_t = \pi_t^e + \bar{\nu}.\widetilde{Yt} + \bar{o}$, with $\pi_t^e = \pi_{t-1}$ with adaptative expectations. The term $\bar{\nu}.\widetilde{Yt}$ is the current state of the economy (aggregate demand), and \bar{o} being prices shocks to inflation, affecting hence the aggregate supply. Then, to complete the model, the Okun's Law is: $u \bar{u} = -1/2.\widetilde{Yt}$, in which the first two terms denote the unemployment gap, i.e., the difference between current unemployment and the natural rate of unemployment, and the second term being the effect of the unemployment gap to the GDP. A volatile business cycle would have a sufficient number of price shocks and aggregate demand shocks impacting the inflation rate, yielding an asymmetric distribution and a bigger standard deviation. It is important to state that this volatility in the business cycle might be due to successive government interventions or by disrupting market forces, which is not the object of analysis in this project.
- **4. Kurtosis:** as well as the skewness, the kurtosis measures the shape of a probability distribution with the following formula: $K = \frac{\sum_{i=1}^{n}(x_i \bar{x})^4}{N.\sigma^4}$, with the upper term being the fourth moment of the mean. (DECARLO, 1997, p. 292) This coefficient can be standardised for a normal distribution: by subtracting three from it, we obtain the excess kurtosis. It there is excess kurtosis for either side, then the coefficient will deviate from nullity: a low kurtosis distribution has shorter and thinner tails and a rounded peak whereas a high kurtosis distribution has the opposite. For a symmetric distribution (as said, with zero skewness), kurtosis evaluates how heavy the tails of the distribution are as well as how high the level of its peaks can be. The implications of the kurtosis for the inflation rate are quite similar to those of the skewness.

Table 1: CPI Descriptive Statistics	Mean	SD	Skewness	Kurtosis	Jarque- Bera	P-value
Argentina	192,61	537,87	4,37	21,9	921,38	0
OECD	5,04	3,26	1,09	3,18	10,14	0,006292
India	7,73	5,22	0,84	7,35	46,24	0
Latin America & Caribbean	9,55	6,26	0,89	2,9	6,81	0,033185
Japan	3,43	4,38	2,06	9,36	122,12	0
South Africa	8,54	4,74	0,19	1,89	2,94	0,229828
USA	4,09	2,84	1,5	5,06	28,05	0,000001

Table 2: GDP Deflator Descriptive Statistics	Mean	SD	Skewness	Kurtosis	Jarque- Bera	P-value
Argentina	187,02	516,91	4,45	23,08	1024,82	0
OECD	5,13	3,33	1,25	3,82	14,74	0,000628
India	7,49	3,87	0,43	3,53	2,15	0,341475
Latin America & Caribbean	9,2	5,69	0,89	3,1	6,75	0,034179
Japan	2,95	5,04	2,12	8,51	102,93	0
South Africa	9,81	5,2	0,37	2,97	1,18	0,553368
USA	3,63	2,33	1,2	3,58	13,02	0,001488

These tables above summarise the main data from the descriptive statistics of the CPI and the GDP deflator of each country or set of countries.

The values of the descriptive statistics computed for the Argentinian CPI and the GDP deflator are remarkably similar, however the CPI is slightly higher, both in mean and standard deviation.

For both, we reject H₀, at the 5% significance level, that their distributions are normal.

The values of the descriptive statistics computed for the OECD CPI and the GDP deflator are remarkably similar, however the CPI is slightly smaller, both in terms of mean and standard deviation. Again, for both, we reject, at the 5% significance level, that their distributions are normal.

The values of the descriptive statistics computed for the Indian CPI and the GDP deflator are similar, however the CPI is slightly higher, both in mean and standard deviation. It is important to notice that the difference of the standard deviations is more pronounced in the Indian case, indicating a higher volatility of the inflation rate. We reject H₀, at the 5% significance level, that the CPI distribution is normal, however, we do not reject normality in the case of the GDP deflator. It clearly bodes well for the GDP deflator as a more efficient inflation measure, considering this discrepancy.

The values of the descriptive statistics computed for Latin America and Caribbean's CPI and GDP deflator are quite similar, however the CPI is slightly higher, both in mean and standard deviation – again with a bigger difference in the latter statistic. For both, we reject H₀, at the 5% significance level, that their distributions are normal.

The values of the descriptive statistics computed for Japan's CPI and GDP deflator are similar, however the CPI has a slightly higher mean and has a smaller standard deviation. Again, for both, we reject H₀, at the 5% significance level, that their distributions are normal.

The values of the descriptive statistics computed for South Africa's CPI and GDP deflator are quite similar, however the CPI is slightly smaller, both in terms of mean and standard deviation. For both, we do not reject H₀, at the 5% significance level, that their distributions are normal.

The values of the descriptive statistics computed for the USA's CPI and GDP deflator are very much similar, however the CPI is slightly higher, both in mean and in standard deviation. For both, we reject H₀, at the 5% significance level, that their distributions are normal.

Normality Test of the Inflation Rate Indexes

The purpose of this project is to determine if the inflation rate (CPI and GDP deflator) can be determined by a normal distribution. The question whether this is valid or not is important for monetary policy, in the sense that the more "well behaved" the inflation is, the easier it is to implement an inflation targeting macroeconomic programme and, as well, the less toll the inflation tends to exact from the consumers, both in terms of inflation tax – defined by $\pi.M/P$,

or the inflation rate (the "tax rate") times the monetary base (the "tax base") –, and of diminishing purchasing power.

The empiric statistical test used will be the Jarque-Bera test for normality, which measures how good the fit of sample data of the statistical model described is regarding values of kurtosis and skewness matching a normal distribution, as said, 0 and 3, respectively. (GUJARATI and PORTER, 2008, p. 148) The statistic of the test is

 $JB = \frac{n-k}{6}$. $[S^2 + \frac{1}{4}.(K-3)^2]$, where n is the number of observations, S is the sample skewness, K is the sample kurtosis, and k is the number of regressors, with both S and K defined as:

• Kurtosis ->
$$K = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{N \cdot \sigma^4}$$
;

• Skewness ->
$$S = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{N \cdot \sigma^3}$$
.

Null Hypothesis, H₀: joint hypothesis of excess kurtosis and skewness being zero, indicating normality.

Alternative Hypothesis, H_A : either or both excess kurtosis and skewness being different from zero, excluding normality.

For the CPI, according to the data extracted from the descriptive statistics tables in the annex, for Argentina, India, Japan, OECD, USA and Latin America & Caribbean we reject H_0 , at the 5% significance level, that their distributions are normal. However, we do not reject H_0 , at the 5% significance level, that the distribution of South Africa is normal.

For the GDP deflator, according to the data extracted from the descriptive statistics tables in the annex, for Argentina, Japan, OECD, Latin America & Caribbean and the USA we reject H_0 , at the 5% significance level, that their distributions are normal. However, we do not reject H_0 , at the 5% significance level, that the distributions of India and South Africa are normal.

The only inconsistency found was in India, which has a normally distributed GDP deflator, but not a normally distributed CPI, indicating that the GDP deflator is a better inflation rate index, with respect to normality.

AR(1) Unit Root Test:

The unit root test checks the stationarity of a time series. Testing the CPI and the GDP deflator for autocorrelation of order 1 explains if this inflation measures have a memory, if they are

correlated with themselves, i.e., past variables are carried on to future variables and explain them in a certain amount – in this case, it is expected that it would explain less than 100%, indicating a non-explosive process. The model for an AR(1), in which the output variable depends linearly on its own previous values, is a random walk with drift (a constant):

$$\pi_t = \alpha + \beta . t + \phi_1 . \pi_{t-1} + E_t$$

With α being the drift, t being the linear time trend, β being the parameter of the linear time trend, π_t being the rate of inflation today (in time t), π_{t-1} being the rate of inflation yesterday (in time t-1) and with φ_1 being the autoregressive parameter. Finally, E_t is the random term, the white noise, with $E[E_t] = 0$, $Var(E_t) = E[E_t^2] = \sigma_E^2$ (constant variance), $Cov(E_t, E_{t-k}) = E[E_t.E_{t-k}] = 0$, for $k \neq 0$. For this AR(1) process to be weakly stationary, the absolute value of the autoregressive parameter has to be less than 1: $|\varphi_1| < 1$. (ENDERS, 2009, p. 55) Being stationary means that the AR(1) process feeds itself with its previous values up to a point, i.e., it is not an explosive process. More formally, a weakly stationary process has to follow certain necessary conditions:

- $E[\pi_t] = \mu$, constant mean;
- Var $[\pi_t] = E[\pi_t \mu] = \sigma^2$, constant variance;
- Cov $(\pi_{t,}\pi_{t-k}) = E[(\pi_t \mu).(\pi_{t-k} \mu)]$, autocovariance depends on the distance between the points, not on the time of them.

Considering the AR(1) process as a random walk, $\pi_t = \varphi_1$. $\pi_{t-1} + E_t$, we shall apply a simple unit root test to determine if this process is integrated: the Dickey-Fuller Test. This procedure must be done to avoid a spurious regression, that is, a regression with high R² and significant t-statistics, but its results do not have any economic meaning. We can make the following modification in the random walk model, so it becomes integrated of order 1 [I(1)], as follows:

- $\pi_t \pi_{t-1} = \alpha + \beta \cdot t + \phi_1 \cdot \pi_{t-1} \pi_{t-1} + E_t$
- $\Delta \pi_t = \alpha + \beta \cdot t + (\phi_1 1) \cdot \pi_{t-1} + E_t$
- $\Delta \pi_t = \alpha + \beta \cdot t + \gamma \cdot \pi_{t-1} + E_t$

Now we proceed to define the hypothesis:

- Null hypothesis, H_0 : y = 0 (likewise, $\phi_1 = 1$, hence the "unit root" name);
- Alternative hypothesis, H_A : $\gamma < 0$, with $\gamma = \phi_1 1$.

If H₀ is not rejected (p-value greater than the level of significance), then there are no evidences

pointing to the fact that there is no unit root, therefore it is an integrated process. The critical value does not have a t-Student distribution, under the null hypothesis, hence Dickey-Fuller and MacKinnon derived asymptotic results whilst testing a group of critical values for different sample sizes, resulting in the following modified critical value:

$$\hat{\tau} = \frac{\hat{\gamma}}{se(\widehat{\gamma})}$$

where $\hat{\gamma}$ is the estimate of γ , and $se(\hat{\gamma})$ is the coefficient standard error. (ENDERS, 2009, p. 206) For evaluating the correct model, the Dickey-Fuller's critical values will be used (ENDERS, 2009, p. 488), considering a sample size of 50 and a 5% significance level. The estimates of the unit root test of the inflation's AR(1) process are in the annex, and below follows a summary of the main results.

Table 3: CPI Unit Root Test Data	Lagged Coefficient	t-statistic	p-value	Persistency
Argentina	-0,62375	-4,63	0,0027	0,37625
OECD	-0,16298	-2,34	0,4038	0,83702
India	-0,951415	-5,67	0,0001	0,048585
Japan	-0,422652	-3,59	0,0408	0,577348
Latin America & Caribbean	-0,208946	-2,36	0,3927	0,791054
South Africa	-0,106582	-1,67	0,7499	0,893418
USA	-0,302336	-3,35	0,0696	0,697664

Table 4: GDP Unit Root Test D		Lagged Coefficient	t-statistic	p-value	Persistency
Argentina		-0,626153	-4,59	0,003	0,373847
OECD		-0,157363	-2,31	0,4184	0,842637
India		-0,647154	-4,88	0,0013	0,352846
Japan		-1,162715	-4,07	0,0135	-0,162715
Latin Americ	a &	-0,234942	-2,53	0,3111	0,765058

Caribbean				
South Africa	-0,266665	-2,8	0,2047	0,733335
USA	-0,200615	-2,8	0,2034	0,799385

Regarding the CPI, according to these tables we will reject H_0 , so the process doesn't have a unit root implying stationarity, for the cases of Argentina, India and Japan. On the other hand, we will not reject H_0 , so the process has a unit root implying that it is integrated, for the cases of OECD, Latin America & Caribbean, South Africa and USA.

Regarding the GDP deflator, according to these tables we will reject H₀, so the process doesn't have a unit root implying stationarity, for the cases of Argentina, India and Japan. On the other hand, we will not reject H₀, so the process has a unit root implying that it is integrated, for the cases of OECD, Latin America & Caribbean, South Africa and USA.

The degree of persistency, ρ , is calculated by $\rho = \varphi_1 + 1$, with φ_1 being the coefficient computed by the EViews estimate for the lagged variable, and ρ being the variable of interest which is the *ceteris paribus* impact of the lagged variable in the current variable, i.e., in our case it indicates the percentage (if multiplied by 100) of the inflation of the last period which is carried on to the next period.

Conclusions

The case of Argentina is peculiar, because the country underwent a quasi-hyperinflationary process during the late 1980s and the beginning of the 1990s. This is evidenced by the graph, which doesn't even allow us to notice the significant difference between the CPI and the GDP deflator, because of the huge scale. As expected, the degree of persistency of the inflation is low for both the CPI and the GDP deflator, around 37%, which indicates that an AR(1) process is not a very good representation of the Argentinian inflation. Also India falls in this category, with low degrees of persistency, especially for the CPI.

Japan is an intermediary case regarding persistency of the CPI, with 58% approximately. Definitely it is not the case for the GDP deflator, which even has negative persistency, perhaps due to the deflationary process Japan is still trapped into. All other countries have degrees of persistency for both the CPI and the GDP deflator above the threshold of 70%, indicating that an AR(1) process is a good representation of these inflation

indexes.

There aren't significant differences in the descriptive statistics (majorly the mean and the standard deviation) of the CPI and the GDP deflator for all countries. However, there is one curiosity regarding India; it was the only country analysed whose results for normality of the CPI and GDP deflator's distributions were different. In the case of India, we rejected H_0 in the Jarque-Bera test for the CPI, indicating non-normality, but in the case of the GDP deflator, we didn't reject H_0 , indicating normality.

Considering the other countries analysed, we rejected H_0 in the Jarque-Bera test for the CPI and the GDP deflator, indicating non-normality, for Argentina, OECD, Latin America & Caribbean, Japan and USA. Only for South Africa we didn't reject H_0 for both the indexes, indicating normality.

Finally, the analysis of the joint graphs of the time series evolution of the CPI and the GDP deflator allows us to notice a marked disconnection between these two indices mainly in the mid-1970s and in the beginning of the 1990s, a gap which is wider in the case of the USA, South Africa and India.

References

Barrow, Michael (2009). *Statistics for Economics, Accounting and Business Studies*. 5th Edition. Pearson Education Ltd.

DeCarlo, Lawrence T. "On the Meaning and Use of Kurtosis" (1997). In: Psychological Methods, v. 2, n. 3, p. 292-307.

Enders, Walter (2009). Applied Econometric Time Series. 3rd Edition. John Wiley & Sons.

Gujarati, Damodar N.; Porter, Dawn C. (2008). *Basic Econometrics*. 5th Edition. McGraw-Hill.

Jones, Charles I. (2011). *Macroeconomics*. 2nd Edition. W.W. Norton & Company.

Smith, Ron (2012). "Applied Statistics and Econometrics Notes and Exercises". Birkbeck College, University of London.

Wooldridge, Jeffrey M. (2008). *Introductory Econometrics: a Modern Approach.* 4th Edition. South Western College.

Annex A: CPI Descriptive Statistics

Series: ARGENTINA Sample 1961 2011 Observations 51		
Mean Median Maximum Minimum Std. Dev. Skewness	192.6079 24.89995 3079.810 -1.166895 537.8728 4.365936	
Kurtosis Jarque-Bera Probability	21.90351 921.3754 0.000000	

Series: HIGH_INCOME__OECD Sample 1961 2011 Observations 51 Mean 5.043425 Median 4.055026 Maximum 13.64932 Minimum 0.750149 Std. Dev. 3.264580 Skewness 1.088362 Kurtosis 3.179287 Jarque-Bera 10.13683 Probability 0.006292

Series: INDIA Sample 1961 2011 Observations 51		
Mean	7.728693	
Median	7.887271	
Maximum	28.60169	
Minimum	-7.634381	
Std. Dev.	5.218434	
Skewness	0.839462	
Kurtosis	7.352108	
Jarque-Bera	46.23921	
Probability	0.000000	

Series: LATIN_AMERICACARIBBEA Sample 1961 2011			
Observations	51		
Mean	9.550925		
Median	7.047339		
Maximum	25.96746		
Minimum	2.100840		
Std. Dev.	6.264510		
Skewness	0.893773		
Kurtosis	2.900008		
Jarque-Bera	6.811305		
Probability	0.033185		

Sample 1961 2011 Observations 51		
Mean	3.425250	
Median	2.276740	
Maximum	23.17623	
Minimum	-1.346719	
Std. Dev.	4.376236	
Skewness	2.063119	
Kurtosis	9.359390	
Jarque-Bera	122.1188	
Probability	0.000000	

Series: JAPAN

Sample 1961 2011 Observations 51 8.539770 Mean Median 8.597770 Maximum 18.65492 Minimum 1.246275 Std. Dev. 4.735916 Skewness 0.188665 Kurtosis 1.885751 Jarque-Bera 2.940845 Probability 0.229828

Series: SOUTH_AFRICA

Series: UNITES_STATES_OF_AMERICA Sample 1961 2011 Observations 51		
Mean	4.094084	
Median	3.225944	
Maximum	13.50937	
Minimum	-0.355546	
Std. Dev.	2.840258	
Skewness	1.495838	
Kurtosis	5.061085	
Jarque-Bera	28.04616	
Probability	0.000001	

Annex B: GDP Deflator Descriptive Statistics

Series: ARGENTINA Sample 1961 2011 Observations 51		
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis	187.0156 25.60346 3057.629 -1.836587 516.9088 4.448446 23.07774	
Jarque-Bera Probability	1024.824 0.000000	

Series: HIGH_INCOMEOECD Sample 1961 2011 Observations 51		
Mean	5.121839	
Median	4.228283	
Maximum	15.17096	
Minimum	1.056922	
Std. Dev.	3.334970	
Skewness	1.252196	
Kurtosis	3.816498	
Jarque-Bera Probability	14.74462 0.000628	

Series: INDIA Sample 1961 2011 Observations 51		
Mean	7.486029	
Median	7.993818	
Maximum	17.82972	
Minimum	-1.648682	
Std. Dev.	3.868305	
Skewness	0.425980	
Kurtosis	3.534265	
Jarque-Bera	2.148959	
Probability	0.341475	

Series: LATIN_AMERICACARIBBEA Sample 1961 2011 Observations 51				
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis	9.200077 6.976528 23.78818 2.337117 5.688446 0.889885 3.099816			
Jarque-Bera Probability	6.752276 0.034179			

Sample 1961 2011 Observations 51		
Mean	2.954657	
Median	1.743513	
Maximum	22.66433	
Minimum	-2.120228	
Std. Dev.	5.039295	
Skewness	2.124403	
Kurtosis	8.512183	
Jarque-Bera	102.9276	
Probability	0.000000	

Series: JAPAN

Series: SOUTH_AFRICA Sample 1961 2011 Observations 51 9.806697 Mean Median 8.809545 Maximum 24.91463 0.318915 Minimum Std. Dev. 5.202696 Skewness 0.372834 Kurtosis 2.969972 Jarque-Bera 1.183463 Probability 0.553368

Series: UNITES_STATES_OF_AMERICA Sample 1961 2011 Observations 51 3.627866 Mean Median 2.952815 9.468233 Maximum Minim um 0.706319 Std. Dev. 2.328970 1.202704 Skewness Kurtosis 3.584240 Jarque-Bera 13.02057 Probability 0.001488

Annex C: Augmented Dickey-Fuller Unit Root Test for the CPI

Argentina

Null Hypothesis: ARGENTINA has a unit root

Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.626295	0.0027
Test critical values:	1% level	-4.156734	
	5% level	-3.504330	
	10% level	-3.181826	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(ARGENTINA) Method: Least Squares Date: 05/10/13 Time: 14:22 Sample (adjusted): 1963 2011 Included observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ARGENTINA(-1) D(ARGENTINA(-1)) C @TREND(1961)	-0.623760 0.344456 138.7189 -0.551213	0.134829 0.139987 136.3899 4.530014	-4.626295 2.460632 1.017076 -0.121680	0.0000 0.0178 0.3146 0.9037
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.323430 0.278326 448.2500 9041764. -366.6038 7.170664 0.000491	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.384780 527.6545 15.12669 15.28112 15.18528 1.863418

OECD

Null Hypothesis: HIGH_INCOME__OECD has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.343217	0.4038
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(HIGH_INCOME_OECD)
Method: Least Squares
Date: 05/10/13 Time: 14:25
Sample (adjusted): 1962 2011

Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HIGH_INCOMEOECD(-1) C @TREND(1961)	-0.162980 1.556090 -0.027632	0.069554 0.670487 0.015687	-2.343217 2.320834 -1.761473	0.0234 0.0247 0.0847
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.115980 0.078363 1.440517 97.52923 -87.65015 3.083120 0.055189	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.023700 1.500508 3.626006 3.740728 3.669693 1.796433

India

Null Hypothesis: INDIA has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.668387	0.0001
Test critical values:	1% level	-4.156734	
	5% level	-3.504330	
	10% level	-3.181826	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INDIA) Method: Least Squares Date: 05/10/13 Time: 14:26 Sample (adjusted): 1963 2011 Included observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INDIA(-1) D(INDIA(-1)) C @TREND(1961)	-0.951415 0.312097 7.953325 -0.017825	0.167846 0.139991 1.986352 0.049647	-5.668387 2.229410 4.003986 -0.359025	0.0000 0.0308 0.0002 0.7213
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.431478 0.393576 4.912175 1085.826 -145.4358 11.38420 0.000011	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	0.107790 6.307915 6.099418 6.253853 6.158011 1.992808

Japan

Null Hypothesis: JAPAN has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-3.590928	0.0408
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(JAPAN) Method: Least Squares Date: 05/10/13 Time: 14:27 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
JAPAN(-1) C @TREND(1961)	-0.422652 3.657700 -0.089899	0.117700 1.276696 0.035431	-3.590928 2.864974 -2.537317	0.0008 0.0062 0.0145
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.215633 0.182255 2.673097 335.8360 -118.5619 6.460446 0.003321	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.113761 2.956009 4.862477 4.977198 4.906164 1.877308

Latin America & Caribbean

Null Hypothesis: LATIN_AMERICA___CARIBBEA has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.364949	0.3927
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LATIN_AMERICA__ Method: Least Squares Date: 05/10/13 Time: 14:29

Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LATIN_AMERICACARIBBEA(-1) C @TREND(1961)	-0.208946 2.564585 -0.020298	0.088351 1.380910 0.038190	-2.364949 1.857170 -0.531494	0.0222 0.0696 0.5976
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic	0.113044 0.075301 3.893592 712.5227 -137.3666 2.995101 0.059663	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	0.034453 4.049022 5.614666 5.729387 5.658352 1.738125

South Africa

Null Hypothesis: SOUTH_AFRICA has a unit root Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.669776	0.7499
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SOUTH_AFRICA) Method: Least Squares Date: 05/10/13 Time: 14:30 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SOUTH_AFRICA(-1) C @TREND(1961)	-0.106582 1.468181 -0.019317	0.063830 0.765794 0.020828	-1.669776 1.917201 -0.927463	0.1016 0.0613 0.3584
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.081965 0.042899 2.102057 207.6762 -106.5459 2.098140 0.134029	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.057863 2.148650 4.381834 4.496556 4.425521 1.715890

USA

Null Hypothesis: UNITES_STATES_OF_AMERICA has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test sta	tistic	-3.354993	0.0696
Test critical values:	1% level	-4.156734	
	5% level	-3.504330	
	10% level	-3.181826	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(UNITES_STATES_OF_AMERICA)
Method: Least Squares Date: 05/10/13 Time: 14:32 Sample (adjusted): 1963 2011 Included observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
UNITES_STATES_OF_AMERICA(-1) D(UNITES_STATES_OF_AMERICA(-1)) C @TREND(1961)	-0.302336 0.302764 1.930431 -0.024234	0.090115 0.138608 0.702098 0.017294	-3.354993 2.184323 2.749517 -1.401306	0.0016 0.0342 0.0086 0.1680
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.227782 0.176300 1.632439 119.9186 -91.45531 4.424557 0.008263	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.041648 1.798675 3.896135 4.050570 3.954727 1.835258

Annex D: Augmented Dickey-Fuller Unit Root Test for the GDP Deflator

Argentina

Null Hypothesis: ARGENTINA has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-4.588509	0.0030
Test critical values:	1% level	-4.156734	
	5% level	-3.504330	
	10% level	-3.181826	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(ARGENTINA) Method: Least Squares Date: 05/10/13 Time: 15:04 Sample (adjusted): 1963 2011 Included observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ARGENTINA(-1) D(ARGENTINA(-1)) C @TREND(1961)	-0.626153 0.330842 135.7210 -0.558642	0.136461 0.140703 132.4864 4.397387	-4.588509 2.351351 1.024415 -0.127040	0.0000 0.0231 0.3111 0.8995
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.319341 0.273964 435.1453 8520815. -365.1499 7.037470 0.000559	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.236558 510.6874 15.06734 15.22178 15.12594 1.885974

India

Null Hypothesis: INDIA has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-4.879768	0.0013
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INDIA) Method: Least Squares Date: 05/10/13 Time: 15:07 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INDIA(-1) C @TREND(1961)	-0.647154 5.655864 -0.027484	0.132620 1.492502 0.035544	-4.879768 3.789518 -0.773262	0.0000 0.0004 0.4432
R-squared	0.337318	Mean depend		0.116968
Adjusted R-squared	0.309119	S.D. depende	ent var	4.345716
S.E. of regression Sum squared resid	3.612127 613.2307	Akaike info cr Schwarz crite	rion	5.464595 5.579317
Log likelihood F-statistic	-133.6149 11.96196	Hannan-Quin Durbin-Watso		5.508282 1.938438
Prob(F-statistic)	0.000063			

OECD

Null Hypothesis: HIGH_INCOME__OECD has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller t	est statistic	-2.314606	0.4184
Test critical values:	1% level	-4.156734	
	5% level	-3.504330	
	10% level	-3.181826	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(HIGH_INCOME__OECD)
Method: Least Squares Date: 05/10/13 Time: 15:06 Sample (adjusted): 1963 2011 Included observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HIGH_INCOME_OECD(-1) D(HIGH_INCOME_OECD(-1)) C @TREND(1961)	-0.157363 0.204271 1.514929 -0.028042	0.067987 0.142174 0.692234 0.015730	-2.314606 1.436767 2.188465 -1.782673	0.0253 0.1577 0.0339 0.0814
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.138381 0.080939 1.317887 78.15722 -80.96709 2.409081 0.079417	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.045955 1.374695 3.468045 3.622479 3.526637 1.991006

Japan

Null Hypothesis: JAPAN has a unit root Exogenous: Constant, Linear Trend Lag Length: 7 (Automatic - based on SIC, maxlag=10)

	t-Statistic	Prob.*
ler test statistic	-4.068344	0.0135
1% level	-4.186481	
5% level	-3.518090	
10% level	-3.189732	
	1% level 5% level	ler test statistic -4.068344 1% level -4.186481 5% level -3.518090

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(JAPAN) Method: Least Squares Date: 05/10/13 Time: 15:08 Sample (adjusted): 1969 2011 Included observations: 43 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
JAPAN(-1)	-1.162715	0.285796	-4.068344	0.0003
D(JAPAN(-1))	0.183820	0.255563	0.719274	0.4770
D(JAPAN(-2))	0.113542	0.241632	0.469896	0.6415
D(JAPAN(-3))	0.226081	0.227833	0.992307	0.3283
D(JAPAN(-4))	0.728878	0.225032	3.239000	0.0027
D(JAPAN(-5))	0.574232	0.222901	2.576177	0.0147
D(JAPAN(-6))	0.568375	0.188893	3.008975	0.0050
D(JAPAN(-7))	0.379457	0.152062	2.495404	0.0178
C	13.29514	3.490690	3.808742	0.0006
@TREND(1961)	-0.342695	0.090683	-3.779021	0.0006
R-squared	0.652819	Mean depend	lent var	-0.163700
Adjusted R-squared	0.558133	S.D. dependent var		4.848650
S.E. of regression	3.223048	Akaike info criterion		5.378956
Sum squared resid	342.8053	Schwarz criterion		5.788537
Log likelihood	-105.6476	Hannan-Quinn criter.		5.529997
F-statistic	6.894573	Durbin-Watso	n stat	2.107114
Prob(F-statistic)	0.000016			

Latin America & Caribbean

Null Hypothesis: LATIN_AMERICA___CARIBBEA has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.534364	0.3111
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LATIN_AMERICA_ Method: Least Squares Date: 05/10/13 Time: 15:10 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LATIN_AMERICACARIBBEA(-1) C CTREAD(4064)	-0.234942 2.697783 -0.018663	0.092703 1.340764 0.036389	-2.534364 2.012123 -0.512863	0.0147 0.0500 0.6104
@TREND(1961)				
R-squared Adjusted R-squared	0.126853 0.089698	Mean depend S.D. depende		0.043289 3.887246
S.E. of regression	3.708811	Akaike info cri		5.517424
Sum squared resid	646.4981 -134.9356	Schwarz criter Hannan-Quin		5.632146 5.561111
Log likelihood F-statistic	3.414154	Durbin-Watso		1.883488
Prob(F-statistic)	0.041262			

United States of America

Null Hypothesis: UNITES_STATES_OF_AMERICA has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.802484	0.2034
Test critical values:	1% level	-4.156734	
	5% level	-3.504330	
	10% level	-3.181826	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(UNITES_STATES_OF_AMERICA) Method: Least Squares Date: 05/10/13 Time: 15:13 Sample (adjusted): 1963 2011 Included observations: 49 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
UNITES_STATES_OF_AMERICA(-1) D(UNITES_STATES_OF_AMERICA(-1))	-0.200615 0.284813	0.071585 0.141291	-2.802484 2.015782	0.0075 0.0498
C	1.246305	0.490927	2.538674	0.0147
@TREND(1961)	-0.018551	0.011546	-1.606747	0.1151
R-squared	0.194947	Mean depend		0.017588
Adjusted R-squared	0.141277	S.D. depende		1.130401
S.E. of regression Sum squared resid	1.047513 49.37773	Akaike info cr Schwarz crite		3.008822 3.163256
Log likelihood	-69.71613	Hannan-Quin		3.067414
F-statistic	3.632307	Durbin-Watso		1.799326
Prob(F-statistic)	0.019762			

South Africa

Null Hypothesis: SOUTH_AFRICA has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.798412	0.2047
Test critical values:	1% level	-4.152511	
	5% level	-3.502373	
	10% level	-3.180699	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SOUTH_AFRICA) Method: Least Squares Date: 05/10/13 Time: 15:11 Sample (adjusted): 1962 2011 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SOUTH_AFRICA(-1) C @TREND(1961)	-0.266665 3.002064 -0.009508	0.095292 1.270123 0.034313	-2.798412 2.363600 -0.277097	0.0074 0.0223 0.7829
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.151498 0.115391 3.453442 560.5341 -131.3686 4.195855 0.021055	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.134898 3.671778 5.374744 5.489466 5.418431 2.379540