CS 535 Deep Learning Assignment 3

Zhou Fang

March 1, 2018

1

By adding a batch normalization layer after the first fully-connected layer, the validation accuracy improved. The best validation accuracy is 79.870%. The train loss, test loss, train accuracy and test accuracy are shown at Table 1, figure 1 and figure 2.

Table 1: Performance of CNN

epoch	train loss	test loss	train accuracy	test accuracy
1	1.00083	1.07245	64.114%	62.110%
2	0.63102	0.75911	77.968%	73.750%
3	0.46984	0.69301	83.856%	76.080%
4	0.35320	0.68844	88.020%	76.440%
5	0.25466	0.67288	91.876%	77.640%
6	0.15899	0.69485	95.334%	77.910%
7	0.11097	0.71265	96.808%	78.260%
8	0.07613	0.74200	98.094%	78.330%
9	0.04992	0.79638	98.768%	78.470%
10	0.03568	0.80564	99.224%	79.580%

2

By adding another fully connected layer with 512 nodes at the second-to-last layer, there is not much improve to the accuracy. The best validation accuracy is 78.130%. The train loss, test loss, train accuracy and test accuracy are shown at Table 2, figure 3 and figure 4.

Figure 1: Loss of Train and Validation Adding a batch Normalization Layer

Figure 2: Accuracy of Train and Validation Adding a batch Normalization Layer

Figure 3: Loss of Train and Validation Adding Another Full Connected Layer

Table 2: Performance of CNN

epoch	train loss	test loss	train accuracy	test accuracy
1	0.06453	0.91729	97.910%	77.550%
2	0.04420	0.90623	98.678%	77.940%
3	0.04261	0.97880	98.632%	77.820%
4	0.05613	1.05915	98.028%	77.750%
5	0.02536	1.03238	99.220%	78.310%
6	0.03367	1.07041	98.918%	78.150%
7	0.01846	1.06604	99.460%	78.210%
8	0.01350	1.10112	99.614%	78.270%
9	0.00946	1.14986	99.730%	78.780%
10	0.00931	1.15967	99.744%	78.640%

3

We try to use Adam to tune the learning rate. The best validation accuracy is 79.000%. The train loss, test loss, train accuracy and test accuracy are shown at Table 3, figure 5 and figure 6.

Figure 4: Accuracy of Train and Validation Adding Another Full Connected Layer

Table 3: Performance of CNN

epoch	train loss	test loss	train accuracy	test accuracy
1	0.76138	0.84599	73.318%	70.530%
2	0.54061	0.70342	81.264%	75.740%
3	0.40138	0.66040	86.904%	77.150%
4	0.34015	0.71322	88.330%	76.420%
5	0.23129	0.72879	92.362%	77.060%
6	0.11731	0.69897	96.628%	78.740%
7	0.07796	0.77749	97.798%	78.060%
8	0.08451	0.86791	97.262%	76.710%
9	0.04817	0.85502	98.636%	78.450%
10	0.03668	0.86739	99.010%	79.000%

4

Firstly, we tune our network by removing one full-connected layer. The best validation accuracy is 74.080%. The performance is worse than other situations. The train loss, test loss, train accuracy and test accuracy are shown at Table 4, figure 7 and figure 8.

Figure 5: Loss of Train and Validation Using Adam Adaptive Schedule

Figure 6: Accuracy of Train and Validation Using Adam Adaptive Schedule

Figure 7: Loss of Train and Validation Removing One Full-connected Layer

Table 4: Performance of CNN

epoch	train loss	test loss	train accuracy	test accuracy
1	0.97273	1.031 13	65.968%	63.700%
2	0.92708	1.02649	67.870%	64.990%
3	0.64235	0.81100	77.526%	71.980%
4	0.57500	0.78176	80.372%	73.160%
5	0.49232	0.79155	82.846%	74.080%
6	0.48822	0.84768	82.668%	72.510%
7	0.41128	0.83588	85.688%	73.190%
8	0.40781	0.86520	85.524%	72.190%
9	0.33942	0.87533	88.140%	73.230%
10	0.34000	0.94751	87.874%	72.250%

Secondly, we add two more convolution networks (128×128 filters and 256×256 filters) and decrease learning rate to 0.005. The best validation accuracy is 81.620%. This is the best performance I get by modifying the model. The train loss, test loss, train accuracy and test accuracy are shown at Table 5, figure 9 and figure 10.

Table 5: Performance of CNN

Figure 8: Accuracy of Train and Validation Removing One Full-connected Layer

epoch	train loss	test loss	train accuracy	test accuracy
1	1.61909	1.63849	46.800%	46.410%
2	0.86642	0.92777	69.500%	67.330%
3	0.75325	0.83897	73.508%	70.650%
4	0.63248	0.76828	77.874%	73.560%
5	0.50796	0.68751	82.418%	76.480%
6	0.50283	0.72261	82.610%	75.600%
7	0.34576	0.63078	88.022%	79.090%
8	0.29008	0.62489	90.142%	79.830%
9	0.21073	0.61290	92.906%	80.670%
10	0.16642	0.64821	94.572%	80.310%
11	0.12389	0.62689	96.150%	80.650%
12	0.10881	0.67680	96.520%	80.350%
13	0.09355	0.71792	96.872%	80.140%
14	0.08426	0.76288	97.210%	80.000%
15	0.09536	0.81763	96.652%	79.540%
16	0.06547	0.84122	97.700%	80.090%
17	0.05265	0.85279	98.308%	80.120%
18	0.01934	0.78001	99.500%	81.620%
19	0.02699	0.83229	99.198%	81.050%
20	0.032 54	0.86033	98.942%	80.520%

Figure 9: Loss of Train and Validation Removing One Full-connected Layer

Figure 10: Accuracy of Train and Validation Removing One Full-connected Layer