Linear Regression Section 3.1

Cathy Poliak, Ph.D. cpoliak@central.uh.edu

Department of Mathematics University of Houston

Beginning Example

The goal is to predict the *stock_index_price* (the dependent variable) of a fictitious economy based on two independent/input variables:

- Interest Rate
- Unemployment Rate

The data is in the *stock_price.csv* data set in BlackBoard. This is from https://datatofish.com/multiple-linear-regression-in-r/

Questions We Want To Answer

- 1. Is there a relationship between *stock index price* and *interest rate*?
- 2. How strong is the relationship between stock index price and interest rate?
- 3. Is the relationship linear?
- 4. How accurately can we predict the stock index price?
- 5. Do both *interest rate* and *unemployment rate* contribute to the *stock index price*?
- 6. What is the statistical learning problem?

General Approach

- Stock index price is the response or output. We refer to the response usually as
 Y.
- Interest rate is an input or predictor, we will name it X_1 .
- Also, Unemployment rate is an input, we will name it X₂.
- Let $X = (X_1, X_2, \dots, X_p)$ be p different predictors (independent) variables.
- For this example we will have an input vector as

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

 We assume there is some sort of relationship between X and Y, which can be written in the general form thus our model is

$$Y = f(X) + \epsilon$$

- Where ϵ captures the measurement errors and other discrepancies.
- Statistical leaning refers to a set of approaches for estimating f.

Estimators

A statistic $\hat{\theta}$ used to estimate an unknown population parameter θ is called an **estimator**.

- Properties of an estimator $\hat{\theta}$
 - ► Accuracy measured by bias

$$\mathsf{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta$$

- Precision measured by its variance, $Var(\hat{\theta})$. The estimated standard deviation of an estimator θ is referred to as its **standard error (SE)**.
- ▶ The mean squared error (MSE) combines both measures.

$$\mathsf{MSE}(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = \mathsf{Var}(\hat{\theta}) + [\mathsf{Bias}(\hat{\theta})]^2$$

• In MATH 3339 we studied estimators for μ and p. In this class we will we will want estimators for f(X).

Example, Estimate of μ

independend identically distributed

Suppose we take a random sample of 4 from a Normal distribution with $\mu=$ 10 and $\sigma=$ 2.

• Let $\bar{x} = \frac{1}{4} \sum_{i=1}^{4} x_i$ be an estimator of μ . What is the expected value, bias, variance, and MSE of \bar{x} .

$$E(\bar{x}) = \mu = 10 \quad \text{Bias}(\bar{x}) = E(\bar{x}) - \mu = 10 - 10 = 0 \quad \text{unbiased}$$

$$\text{Var}(\bar{x}) = \frac{C^{8}}{N} = \frac{4}{4} = 1 \quad \text{MSE}(\bar{x}) = \text{Var}(\bar{x}) + \text{Bias}(\bar{x})^{2} = 1$$

$$\text{SE}(\bar{x}) = \frac{U}{N} = \frac{U}{N}$$

• Let 8 be an estimator of μ . What is the expected value, bias, variance, and MSE of 8?

$$E(8) = 8$$
 bias(8) = 8-10 = -2 $Var(8) = 0$
 $MSE(8) = 0 + (-2)^2 = 4$

For any itod random sample X, , X2, ..., Xn with mean μ and variance σ^2 let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \alpha_i n$ unbiased estimator with E(x)=M Var(x)=02.

E(x)=E(+ & x:) = + & E(x:) = + (n m)= m

Bias(x)=E(x)-M= M-M=0

 $\operatorname{Aul}(X) = \operatorname{Aul}(Y \stackrel{?}{\xi} X) = \frac{1}{T^2} \stackrel{?}{\xi} \operatorname{Aul}(X) = \frac{1}{T^2} (V G_5) = \frac{1}{G_5}$ $SE(\bar{x}) = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sigma}$

E(x, + x2) = E(x) = E(x2)

 $14M \hat{p}' = \hat{b} = \frac{v}{x} \times vB_i u(v'b) = E(x) = ub \wedge var(x) = ub \wedge var(x)$ E(\$)-E(\$/

Simple Linear Regression Model

 The data are n observations on an explanatory variable x and a response variable y,

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

 The statistical model for simple linear regression states that the observed response y_i when the explanatory variable takes the value x_i is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

- $\mu_y = \beta_0 + \beta_1 x_i$ is the mean response for y when $x = x_i$ a specific value of x.
- ϵ_i are the error terms for predicting y_i for each value of x_i .
- Notice in our general form that $f(X) = \beta_0 + \beta_1 X$.

Parameters of the Simple Regression Model

- The intercept: β_0 .
- The slope: β_1 .
- The goal is to obtain coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ such that for each observed y_i , $y_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$, for i = 1, 2, ..., n.
- The most common approach is by the minimizing the least squares criterion.

Principle of Least Squares

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the ith value of X.
- Then $e_i = y_i \hat{y}_i$ be the *i*th residual, the difference between the *i*th observed response value and the *i*th predicted value by our linear equation.
- The residual sum of squares (RSS) is defined by

$$RSS = e_1^2 + e_2^2 + \cdots + e_n^2$$

• The point estimates of β_0 and β_1 , denoted by $\hat{\beta}_0$ and $\hat{\beta}_1$ and called the **least squares estimates**, are those values that minimize the RSS.

Cathy Poliak, Ph.D. cpoliak@central.uh.edu

The Least - Squares Estimates

- The method of **least squares** selects estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimizes the residual sum of squares (RSS).

• Where the estimate of the slope coefficient
$$\beta_1$$
 is:
$$\frac{\cos(x,y) = \frac{2}{\sqrt{2}} \frac{(x_i - \bar{x})\cos(x_i - \bar{y})}{\sqrt{2}}}{\sqrt{2}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \cos(x_i - \bar{y}) = \cos(x_i - \bar{y})$$
• The estimate for the intercept β_0 is:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

• Where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} = \sum_{i=1}^{n} x_i$.

Stock Prices Example

- Use the stock_price.csv data.
- We want to predict *stock index price* based on *interest rate*.
 - 1. Determine if it is a linear relationship. How can we tell?
 - 2. Get an estimate of the model.
 - 3. Is this a good fit for the data?

Do We Have A Linear Relationship?

The Estimate of the Model

```
> stock.lm <- lm(Stock Index Price~Interest Rate, data = stock price)
> summarv(stock.lm)
Call:
lm(formula = Stock_Index_Price ~ Interest_Rate, data = stock_price)
Residuals:
     Min
             10 Median 30 Max
-183.892 -30.181 4.455 56.608 101.057
Coefficients:
              Estimate Std. Error t value Pr(>|t|)

-99.46 9 95.21 -1.045 0.308

564.20 45.32 12.450 1.95e-11 ***
(Intercept)
Interest_Rate
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 75.96 on 22 degrees of freedom
Multiple R-squared: 0.8757, Adjusted R-squared: 0.8701
F-statistic: 155 on 1 and 22 DF, p-value: 1.954e-11
```

$$Cor(x,y) = 6.9357$$
, $\tilde{X} = 2.0729$, $S_{\chi} = 0.3495$, $\tilde{y} = 1070.0833$
 $S_{\chi} = 210.7353$

$$\hat{\beta}_{1} = \text{cor(x, 4)} \frac{s_{4}}{s_{x}} = 0.9357 \left(\frac{210.7353}{0.3495} \right) = 564.2039$$

$$\hat{\beta}_{2} = \bar{y}_{1} - \hat{\beta}_{2} = 10.70.0833 - 564.2039(2.0729) = -99.46415$$

Confidence Intervals for β_1

If we want to know a range of possible values for the slope we can use a confidence interval. The confidence interval for β_1 is

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \times SE(\hat{\beta}_1)$$

where

$$SE(\hat{\beta}_1) = \sqrt{\frac{s^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

and $s^2 = \hat{Var}(\epsilon)$.

Given the following excerpt from the $\ensuremath{\mathtt{R}}$ output, determine a 95% confidence interval for the slope.

```
Coefficients:

Estimate Std. Error t value Pr(>|t|) N=24

(Intercept) -99.46 95.21 -1.045 0.308

Interest_Rate 564.20 45.32 12.450 1.95e-11 ***

95% CI for \beta, \dot{\beta}, \dot{\pm} t_{0.025, 32} SF(\ddot{\beta}, \dot{\beta})

544.7 \dot{\pm} 9t(1.95/2, 22)(45.32) = [470.22, 458.1844]
```

R Function for Confidence Intervals

t Test for Significance of β_1

Hypothesis

$$H_0: \beta_1 = 0$$
 versus $H_a: \beta_1 \neq 0$

Or we can think about it in this way

 H_0 : There is no relationship between X and Y

versus

 H_0 : There is a relationship between X and Y

Test statistic

$$S = \sqrt{\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}}$$

With degrees of freedom df = n - 2.

- P-value: based on a t distribution with n-2 degrees of freedom.
- Decision: Reject H_0 if p-value $\leq \alpha$.
- Conclusion: If H_0 is rejected we conclude that the explanatory variable x can be used to predict the response variable y.

Given the following excerpt from the R output, Test H_0 : $\beta_1 = 0$ against $H_a: \beta_1 \neq 0.$

Coefficients:

Estimate Std. Error t value
$$Pr(>|t|)$$

(Intercept) -99.46 95.21 -1.045 0.308
Interest_Rate 564.20 45.32 12.450 1.95e-11 **
$$T = \frac{564.20}{45.32} = 12.45$$

Is this good at predicting the response?

- Once we have said that this model can help predict the output we want to quantify at how well the model fits the data.
- Two quantities that we use is the **residual standard error** (RSE) and the **coefficient of determination** (R^2) .
- These quantities are in the summary output of the lm() function.

Residual Standard Error

- The RSE is an estimate of the standard deviation of the ϵ .
- We can think about it as the average amount that the response will deviate from the true regression line.

RSE =
$$\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}e_i^2} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y} - i)^2}$$

• The lower the RSE the better our model fits the data.

R² Statistic

 R^2 is the percent (fraction) of variability in the response variable (Y) that is explained by the least-squares regression with the explanatory variable.

- This is a measure of how successful the regression equation was in predicting the response variable.
- The closer R^2 is to one (100%) the better our equation is at predicting the response variable.
- In the R output it is the Multiple R-squared value.

1. The **residual sum of squares**, denoted by *RSS* is

$$RSS = \sum (y_i - \hat{y}_i)^2$$

1. The **residual sum of squares**, denoted by *RSS* is

$$RSS = \sum (y_i - \hat{y}_i)^2$$

2. The **regression sum of squares**, denoted *SSR* is the amount of total variation that *is* explained by the model

$$SSR = \sum (\hat{y}_i - \bar{y})^2$$

1. The **residual sum of squares**, denoted by *RSS* is

$$RSS = \sum (y_i - \hat{y}_i)^2$$

2. The **regression sum of squares**, denoted *SSR* is the amount of total variation that *is* explained by the model

$$SSR = \sum (\hat{y}_i - \bar{y})^2$$

3. A quantitative measure of the total amount of variation in observed values is given by the **total sum of squares**, denoted by *SST*.

$$TSS = \sum (y_i - \bar{y})^2$$

Note: TSS = SSR + RSS

1. The **residual sum of squares**, denoted by *RSS* is

$$RSS = \sum (y_i - \hat{y}_i)^2$$

2. The **regression sum of squares**, denoted *SSR* is the amount of total variation that *is* explained by the model

$$SSR = \sum (\hat{y}_i - \bar{y})^2$$

3. A quantitative measure of the total amount of variation in observed values is given by the **total sum of squares**, denoted by *SST*.

$$TSS = \sum (y_i - \bar{y})^2$$

Note: TSS = SSR + RSS

4. The **coefficient of determination**, R^2 is given by

$$R^2 = \frac{\text{SSR}}{\text{TSS}} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

Information from the Summary in R

Residual standard error: 75.96 on 22 degrees of freedom
Multiple R-squared: 0.8757, Adjusted R-squared: 0.8701 MLP
F-statistic: 155 on 1 and 22 DF, p-value: 1.954e-1km, D

RSE and R²

- The RSE is considered a measure of the *lack of fit* of the model to the data. Recall this is the estimate of the standard deviation of the residuals $y_i \hat{y}_i$.
 - ▶ If \hat{y}_i s very far from y_i , then the RSE may be quite large.
 - ▶ This measurement depends on the units of the original values.

RSE and R²

- The RSE is considered a measure of the *lack of fit* of the model to the data. Recall this is the estimate of the standard deviation of the residuals $y_i \hat{y}_i$.
 - ▶ If \hat{y}_i s very far from y_i , then the RSE may be quite large.
 - ▶ This measurement depends on the units of the original values.
- The R^2 takes the form of a proportion of variance in y that is explained.
 - R² thus always takes on a value between 0 and 1.
 - ▶ If R² is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression.
 - Note: For a simple linear regression $R^2 = Cor(X, Y)^2$.

Assumptions about the Model

The linear regression model has assumptions that we need to prove is true. We use the acronym **LINE** to remember these assumptions.

- Linear relationship: can we determine a linear relationship between the response an other variables?
- Independent observations: are the observations a result of a simple random sample?
- Normal distribution: for any fixed value of X, Y is normally distributed.
- Equal variance: the variance of the residual is the same for any value of X.
- Be careful of extreme values.

Plots to Check Assumptions

