

LECTURE 11 OF 42

Propositional Logic

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3 Course web site: http://www.kddresearch.org/Courses/CIS730 Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Section 8.1 - 8.2, p. 240 - 253, Russell & Norvig 2nd edition

LECTURE OUTLINE

- Reading for Next Class: Sections 8.1 8.2 (p. 240 253), R&N 2e
- Last Class: Intro to KR and Logic, Sections 7.1-7.4 (p. 194-210), R&N 2e
- Today: Prop. Logic Syntax, Semantics, Proofs, 7.5-7.7 (211-232), R&N
 - * Propositional calculus aka propositional logic
 - * Syntax: propositions and connectives
 - * Semantics: models, truth assignments (relation to Boolean algebra)
 - * Proof procedures: enumeration, forward/backward chaining
 - * Clausal form (conjunctive normal form, aka CNF)
- **Properties**
 - * of sentences: entailment and provability, satisfiability and validity
 - * of proof rules: soundness and completeness
- This Month: Alternative Knowledge Representations
 - * Elements of logic: ontology and epistemology
 - * Section III: Propositional (Ch. 7), first-order (8 9), temporal logics (10
 - * Section V: Probability (Chapters 13 15), fuzzy logic (Chapter 14)
- Coming Weeks: KR/Reasoning in First-Order Logic (Ch.

SIMPLE KNOWLEDGE-BASED AGENT: REVIEW

function KB-AGENT(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB, Make-Percept-Sentence(percept, t)) $action \leftarrow \text{Ask}(KB, \text{Make-Action-Query}(t))$ Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t+1$ return action

The agent must be able to:

Represent states, actions, etc.

Incorporate new percepts

Update internal representations of the world

Deduce hidden properties of the world

Deduce appropriate actions

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730

ECTURE 11 OF 42

WUMPUS WORLD — PEAS DESCRIPTION: REVIEW

- Performance measure
 - * gold +1000, death -1000
 - * -1 per step, -10 for using the arrow
- Environment
 - * Squares adjacent to wumpus are smelly
 - * Squares adjacent to pit are breezy
 - * Glitter iff gold is in the same square
 - * Shooting kills wumpus if you are facing it
 - * Shooting uses up the only arrow
 - * Grabbing picks up gold if in same square
 - * Releasing drops the gold in same square
- SSENCE SENCE PIT

 START

 START

 SSENCE

 SINCE

 START

 STAR
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors: Stench, Breeze, Glitter, Bump, Scream

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

WUMPUS WORLD EXAMPLE: REVIEW

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

ARTIFICIAL INTELLIGENCE

ECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCE

POSSIBLE WORLDS SEMANTICS: REVIEW

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB = Giants won and Reds won

 $\alpha = \mathsf{Giants} \; \mathsf{won}$

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

WUMPUS MODELS [4]

KB = wumpus-world rules + observations $\alpha_2 =$ "[2,2] is safe", $KB \not\models \alpha_2$

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730

LECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCES

INFERENCE

 $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$

Consequences of KB are a haystack; α is a needle. Entailment = needle in haystack; inference = finding it

Soundness: i is sound if

whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if

whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $KB. \ \ \,$

© 2004 S. Russell & P. Norvig. Reused with permission.

JIS 530 / 730 Artificial Intelligence LECTURE 11 OF 42

PROPOSITIONAL LOGIC: SYNTAX

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCES

PROPOSITIONAL LOGIC: SEMANTICS

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$

TRUTH TABLES FOR CONNECTIVES

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCE

WUMPUS WORLD SENTENCES

Let $P_{i,j}$ be true if there is a pit in [i,j]. Let $B_{i,j}$ be true if there is a breeze in [i,j].

$$\neg P_{1,1}$$

 $\neg B_{1,1}$
 $B_{2,1}$

"Pits cause breezes in adjacent squares"

$$\begin{array}{lcl} B_{1,1} & \Leftrightarrow & (P_{1,2} \vee P_{2,1}) \\ B_{2,1} & \Leftrightarrow & (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \end{array}$$

"A square is breezy if and only if there is an adjacent pit"

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 11 OF 42

TRUTH TABLES FOR INFERENCE

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
÷	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Enumerate rows (different assignments to symbols), if KB is true in row, check that α is too

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730

ECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCES

INFERENCE BY ENUMERATION

Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic $symbols \leftarrow$ a list of the proposition symbols in KB and α return TT-CHECK-ALL($KB, \alpha, symbols, []$)

function TT-CHECK-ALL(KB, α , symbols, model) returns true or false if EMPTY?(symbols) then if PL-TRUE?(KB, model) then return PL-TRUE?(α , model) else return true else do $P \leftarrow \text{FIRST}(symbols)$; $rest \leftarrow \text{REST}(symbols)$ return TT-CHECK-ALL(KB, α , rest, EXTEND(P, true, model)) and TT-CHECK-ALL(KB, α , rest, EXTEND(P, false, model))

 $O(2^n)$ for n symbols; problem is **co-NP-complete**

LOGICAL EQUIVALENCE

Two sentences are logically equivalent iff true in same models: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \text{
```

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCES

KANSAS STATE UNIVERSITY

LOGICAL EQUIVALENCE

Two sentences are logically equivalent iff true in same models:

```
\alpha \equiv \beta if and only if \alpha \models \beta and \beta \models \alpha (\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land
```

$$\begin{array}{ccc} (\alpha \vee \beta) \equiv (\beta \vee \alpha) & \text{commutativity of} \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of} \wedge \end{array}$$

$$((\alpha \vee \beta) \vee \gamma) \, \equiv \, (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee$$

$$\neg(\neg \alpha) \equiv \alpha$$
 double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$
 implication elimination

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$
 biconditional elimination

$$\begin{array}{l} \neg(\alpha \wedge \beta) \, \equiv \, (\neg\alpha \vee \neg\beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \, \equiv \, (\neg\alpha \wedge \neg\beta) \quad \text{De Morgan} \end{array}$$

$$(\alpha \wedge (\beta \vee \gamma)) \, \equiv \, ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of} \ \wedge \ \text{over} \ \vee \\$$

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 11 OF 42

VALIDITY AND SATISFIABILITY

A sentence is valid if it is true in all models,

e.g.,
$$True$$
, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

$$KB \models \alpha$$
 if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model

e.g.,
$$A \vee B$$
, C

A sentence is unsatisfiable if it is true in no models

e.g.,
$$A \wedge \neg A$$

Satisfiability is connected to inference via the following:

 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by reductio ad absurdum

© 2004 S. Russell & P. Norvig. Reused with permission.

PROOF METHODS

Proof methods divide into (roughly) two kinds:

Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

FORWARD AND BACKWARD CHAINING: MODUS PONENS SEQUENT RULE

Horn Form (restricted)

$$\mathsf{KB} = \mathbf{conjunction}$$
 of \mathbf{Horn} clauses

Horn clause =

♦ proposition symbol; or

 \Diamond (conjunction of symbols) \Rightarrow symbol

E.g.,
$$C \wedge (B \Rightarrow A) \wedge (C \wedge D \Rightarrow B)$$

Modus Ponens (for Horn Form): complete for Horn KBs

$$\frac{\alpha_1,\ldots,\alpha_n, \qquad \alpha_1\wedge\cdots\wedge\alpha_n \Rightarrow \beta}{\beta}$$

Can be used with forward chaining or backward chaining. These algorithms are very natural and run in **linear** time

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 11 OF 42

COMPUTING & INFORMATION SCIENCE

FORWARD CHAINING [1] INTUITION

Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

FORWARD CHAINING [2] ALGORITHM

```
function PL-FC-ENTAILS?(KB, q) returns true or false
   inputs: KB, the knowledge base, a set of propositional Horn clauses
               \ensuremath{q}\xspace , the query, a proposition symbol
  local variables: count, a table, indexed by clause, initially the number of premises
                          inferred, a table, indexed by symbol, each entry initially false
                          \ensuremath{\mathit{agenda}}\xspace , a list of symbols, initially the symbols known in \ensuremath{\mathit{KB}}\xspace
   while agenda is not empty do
         p \leftarrow \text{Pop}(agenda)
         unless inferred[p] do
               inferred[p] \leftarrow true
               for each Horn clause c in whose premise p appears \mathrm{do}
                    decrement count[c]
                    if count[c] = 0 then do
                          \text{if $\operatorname{\mathsf{HEad}}[c]=q$ then return $true$}
                          PUSH(HEAD[c], agenda)
   {\bf return}\; {\it false}
```

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 11 OF 42

PROOF OF COMPLETENESS

FC derives every atomic sentence that is entailed by KB

- 1. FC reaches a fixed point where no new atomic sentences are derived
- 2. Consider the final state as a model m, assigning true/false to symbols
- 3. Every clause in the original KB is true in mProof: Suppose a clause $a_1 \wedge \ldots \wedge a_k \Rightarrow b$ is false in mThen $a_1 \wedge \ldots \wedge a_k$ is true in m and b is false in mTherefore the algorithm has not reached a fixed point!
- 4. Hence m is a model of KB
- 5. If $KB \models q, q$ is true in **every** model of KB, including m

General idea: construct any model of KB by sound inference, check α

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence ECTURE 11 OF 42

LECTURE 11 OF 42

BACKWARD CHAINING [1]: INTUITION

Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1) has already been proved true, or
- 2) has already failed

© 2004 S. Russell & P. Norvig. Reused with permission.

JIS 530 / 730 Artificial Intelligence LECTURE 11 OF 42

FORWARD VS. BACKWARD CHAINING

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB

TERMINOLOGY

- Intro to Knowledge Representation (KR) and Logic
 - * Representations: propositional, first-order, temporal; probabilistic, fuzzy
 - * Propositional calculus (aka propositional logic)
 - * Syntax, semantics, proof rules aka rules of inference, sequent rules
 - * Boolean algebra: equivalent to classical propositional calculus & inference
 - * Properties of sentences (and sets of sentences, aka knowledge bases)
 - ⇒ entailment
 - ⇒ provability/derivability
 - ⇒ validity: truth in all models (aka tautological truth)
 - ⇒ satisfiability: truth in some models
 - * Properties of proof rules
 - \Rightarrow soundness: KB $\vdash \alpha \Rightarrow$ KB $\vdash \alpha$ (can prove only true sentences)
 - \Rightarrow completeness: KB $\vdash \alpha \Rightarrow$ KB $\vdash \alpha$ (can prove all true sentences)
- Next: Propositional and <u>First-Order Predicate Calculus</u> (<u>FOPC</u>)
 - * Ontology: what objects/entities, and relationships exist
 - * Epistemology: what knowledge an agent can hold

CIS 330 / 730 Artificial Intelligence LECTURE 11 OF 42

.2

SUMMARY POINTS

- Propositional Calculus (aka Propositional Logic)
 - * Relationship to Boolean algebra
 - * Sentences: syntax and semantics
 - * Proof procedures
 - ⇒ Truth table enumeration (very simple form of model checking)
 - **⇒** Forward chaining
 - ⇒ Backward chaining
- Properties
 - * of sentences: entailment, derivability/provability; validity, satisfiability
 - * of proof rules: soundness and completeness
- Overview of Knowledge Representation (KR) and Logic
 - * Elements of logic: ontology and epistemology
 - * Representations covered in this course, by ontology and epistemology
- Still to Cover in Chapter 7: Resolution, Conjunctive Normal Form (CNF)
- Next Class: Sections 8.1 8.2 (p. 211 232), R&N 2^e
 - * First-order predicate calculus (FOPC) aka first order logic (FOL)
 - * Syntax of FOL: constants, variables, functions, terms, predicates
 - * Semantics of FOL: objects, functions, relations

CIS 530 / 730

LECTURE 11 OF 42