# Cours - NSI Les arbres

## 1 Quelques Exemples



FIGURE 1 – Arbre phylogénétique



FIGURE 2 – Arbre Généalogique



FIGURE 3 – Arbre Léxicographique



Exercice 1
Dans l'arbre lexicographique, introduire les mots MALLE, PORTAIL ET POLAR



Figure 4 – Arbre d'une expression mathématiques  $\left(\frac{y}{2} - t\right)$  (75 + 2) utilisant la priorité des opérations



Représenter l'expression :  $3 + (73 - 1)^3$  avec un arbre.

Les arbres permettent de :

- hiérarchiser les informations;
- la représentation sous forme arborescente;
- Rendre efficace l'accés aux aux informations de données volumineuses.

2/9 www.math93.com /J.Courtois

## 2 Définitions

## 2.1 Les graphes

#### **Définition 1** (Graphe)

- Soit *V* un ensemble de sommets (aussi appelés nœuds, points ou vertex);
- Soit *E* un ensemble d'arêtes (ou arcs) qui relient des sommets de V :  $E \subseteq \{(x, y) \in V^2 \mid x \neq y\}$

Le couple (V, E) est un graphe





#### Remarque

Une arête (ou arc) est un couple de sommets.

#### **Définition 2** (Etiquette)

L'étiquette (ou nom du sommet) représente la "valeur" du noeud. Un arbre dont tous les noeuds sont nommés est dit étiqueté.

## **Définition 3** (Degré d'un noeud et degré d'un graphe)

Le **degré** d'un noeud est égal au nombre d'arréte qui partent de ce noeud.

Le degré d'un graphe est égal au plus grand des degrés de ses noeud.

Le **degré** d'un graphe vide est égal à 0.



| Noeud | 1 | 2 | 3 | 4 | 5 | Degré du graphe |
|-------|---|---|---|---|---|-----------------|
| Degré | 4 | 2 | 2 | 1 | 1 | 4               |

www.math93.com /J.Courtois 3/9

#### **Définition 4** (Chaîne ou Chemin)

Un chemin (chaîne) d'origine x et d'extrémité y , noté  $\mu[x,y]$  est défini par une suite finie d'arcs consécutifs, reliant x à y.

Une chaîne simple est une chaîne ne passant pas deux fois par une même arête, c'est-à-dire dont toutes les arêtes sont distinctes.

## **Définition 5** (Cycle)

Un cycle est une chaîne simple dont l'origine est égale à l'extrémité.



FIGURE 5 – Le chemin rouge est un cycle

#### **Définition 6** (Graphe connexe)

Un graphe connexe est un graphe dont tous les sommets peuvent être relié par un chemin.



FIGURE 6 – graphe non connexe



FIGURE 7 – graphe connexe

www.math93.com /J.Courtois 4/9

#### 2.2 Les arbres

#### Définition 7

Un arbre est un graphe connexe acyclique (qui ne contient pas de cycle)

La figure 5 n'est pas un arbre car elle contient un cycle.

La figure 6 n'est pas un arbre car elle n'est pas connexe.

La figure 7 est un arbre. Mais il faut déterminer sa racine.

Lorsqu'un sommet se distingue des autres, on le nomme **racine** de l'arbre et celui-ci devient alors une arborescence (par la suite on utilisera le mot **arbre** pour une arborescence).

Les trois graphes suivants représentent le même graphe mais pas le même arbre car la racine n'est pas même. On remarque, qu'en générale, on représente la **racine** en haut et les **branches** qui descendent vers le bas.



#### 2.3 Vocabulaire

**Définition 8** (Arbre, noeuds, pére, fils, feuille et branches)

Un **arbre** est un ensemble organisé de **noeuds** dans lequel chaque noeud a un **père**, sauf un **noeud** que l'on appelle la **racine**. Si le **noeud** n'a pas de **fils**, on dit que c'est une **feuille**. Les **noeuds** sont reliés par des **branches**.



www.math93.com /J.Courtois 5/9

#### **Définition 9** (Hauteur ou profondeur d'un noeud, **première définition**)

La **hauteur** (ou profondeur ou niveau ) d'un noeud X est égale au nombre d'arêtes qu'il faut parcourir à partir de la racine pour aller jusqu'au noeud X.



#### **Définition 10** (Hauteur d'un arbre, **première définition**)

La hauteur (ou profondeur) d'un arbre est égale à la profondeur du noeud le plus profond.

- La hauteur d'un arbre réduit à un nœud, c'est-à-dire la racine, est 0.
- La hauteur d'un arbre vide est -1 (par convention).

Dans l'exemple précédent, un des chemins le plus long est (1,3,5,10) donc la hauteur est 3. le noeud le plus profond est de **profondeur** 3, donc l'arbre est de **profondeur** 3.

#### **Définition 11** (Hauteur ou profondeur d'un noeud, **deuxième définition** )

La hauteur d'un noeud N est le nombre de nœuds du chemin qui joint le nœud racine à ce noeud N.



- La hauteur du noeud racine est 1.
- La hauteur du noeud 4 est 2.
- La hauteur du noeud 5 est 3.
- La hauteur du noeud 12 est 4.

#### **Définition 12** (Hauteur d'un arbre, **deuxième définition**)

La hauteur (ou profondeur) d'un arbre est égale à la profondeur du noeud le plus profond.

- La hauteur d'un arbre réduit à un nœud, c'est-à-dire la racine, est 1.
- La hauteur d'un arbre vide est 0.

Dans l'exemple précédent, un des chemins le plus long est (1,3,5,10) donc la hauteur est 4.

#### **Définition 13** (Taille d'un arbre)

La taille d'un arbre est égale au nombre de noeuds de l'arbre.

www.math93.com /J.Courtois 6/9

#### **Définition 14** (Degré d'un noeud et degré d'un arbre)

Le **degré** d'un noeud est égal au nombre de ses fils.

Le degré d'un arbre est égal au plus grand des degrés de ses noeud.

Le **degré** d'un arbre vide est égal à 0.



- Le noeud 1 est de degré 3.
- Le noeud 2 est de degré 0.
- Le noeud 3 de degré 4.
- Le noeud 4 de degré 1.
- ...
- Le noeud 3 est celui de plus grand degré donc l'arbre est de degré 4.



#### Remarque

Un arbre dont tous les noeuds n'ont qu'un seul fils est en fait une liste.



## 2.4 Exercices



#### **Exercice 3**

Déterminer les racines, profondeurs, hauteurs, tailles ,degrés et quelques feuilles, des arbres de l'introduction.

| Racine   | Profondeur | Hauteur | taille | Degré |
|----------|------------|---------|--------|-------|
|          |            |         |        |       |
| Feuilles |            |         |        |       |

Table 1 – Arbre phylogénétique

| Racine   | Profondeur | Hauteur | taille | Degré |
|----------|------------|---------|--------|-------|
|          |            |         |        |       |
| Feuilles |            |         |        |       |

Table 2 – Arbre Généalogique

| Racine   | Profondeur | Hauteur | taille | Degré |
|----------|------------|---------|--------|-------|
|          |            |         |        |       |
| Feuilles |            |         |        |       |

TABLE 3 – Arbre Léxicographique

www.math93.com /J.Courtois 7/9

| Racine   | Profondeur | Hauteur | taille | Degré |
|----------|------------|---------|--------|-------|
|          |            |         |        |       |
| Feuilles |            |         |        |       |

Table 4 – Arbre d'expression mathématique



#### Exercice 4, Arbre binaire sujet bac candidat libre 2 2021

Cet exercice porte sur les arbres binaires et la programmation orientée objet.

Un arbre binaire est composé de nœuds, chacun des nœuds possédant éventuellement un sous-arbre gauche et éventuellement un sous-arbre droit. Un nœud sans sous-arbre est appelé feuille. La taille d'un arbre est le nombre de nœuds qu'il contient; sa hauteur est le nombre de nœuds du plus long chemin qui joint le nœud racine à l'une des feuilles. Ainsi la hauteur d'un arbre réduit à un nœud, c'est-à-dire la racine, est 1.

Dans un arbre binaire de recherche, chaque nœud contient une clé, ici un nombre entier, qui est :

- strictement supérieure à toutes les clés des nœuds du sous-arbre gauche;
- strictement inférieure à toutes les clés des nœuds du sous-arbre droit.

Ainsi les clés de cet arbre sont toutes distinctes.

Un arbre binaire de recherche est dit « bien construit » s'il n'existe pas d'arbre de hauteur inférieure qui pourrait contenir tous ses nœuds

On considère l'arbre binaire de recherche ci-dessous.



- 1. (a) Quelle est la taille de l'arbre ci-dessus?
  - (b) Quelle est la hauteur de l'arbre ci-dessus?
  - (c) Représenter les sous arbres gauches et droits de chaque noeud qui en possèdent.
- 2. Cet arbre binaire de recherche n'est pas « bien construit ». Proposer un arbre binaire de recherche contenant les mêmes clés et dont la hauteur est plus petite que celle de l'arbre initial.
- 3. Les classes *Noeud* et *Arbre* ci-dessous permettent de mettre en œuvre en *Python* la structure d'arbre binaire de recherche. La méthode *insere* permet d'insérer récursivement une nouvelle clé.

www.math93.com /J.Courtois 8/9

```
class Noeud :
    def __init__ (self, cle):
        self.cle = cle
        self.gauche = None
        self.droit = None
    def insere(self, cle):
        if cle < self.cle :</pre>
            if self.gauche == None :
                self.gauche = Noeud(cle)
            else :
                self.gauche.insere(cle)
        elif cle > self.cle :
            if self.droit == None :
                self.droit = Noeud(cle)
            else :
                self.droit.insere(cle)
class Arbre :
    def __init__ (self, cle):
        self.racine = Noeud(cle)
    def insere(self, cle):
        self.racine.insere(cle)
```

Donner la représentation de l'arbre codé par les instructions ci-dessous.

```
a = Arbre(10)
a.insere(20)
a.insere(15)
a.insere(12)
a.insere(8)
a.insere(4)
a.insere(5)
```

4. Pour calculer la hauteur d'un arbre non vide, on a écrit la méthode ci-dessous dans la classe Noeud.

```
def hauteur(self):
    if self.gauche == None and self.droit == None:
        return 1
    if self.gauche == None:
        return 1+self.droit.hauteur()
    elif self.droit == None:
        return 1+self.gauche.hauteur()
    else:
        hg = self.gauche.hauteur()
        hd = self.droit.hauteur()
        if hg > hd:
            return hg+1
        else:
        return hd+1
```

- (a) Quelle est la méthode de programmation utilisée? Quelle est la condition d'arrêt?
- (b) Écrire la méthode *hauteur* de la classe *Arbre* qui renvoie la hauteur de l'arbre.
- 5. Écrire les méthodes taille des classes Noeud et Arbre permettant de calculer la taille d'un arbre.
- 6. On souhaite écrire une méthode *bien\_construit* de la classe Arbre qui renvoie la valeur *True* si l'arbre est « bien construit » et *False* sinon.
  - (a) Montrer que la taille maximale d'un arbre binaire de recherche de hauteur h est  $2^h 1$ .
  - (b) Quelle est la taille minimale, notée  $t_{min}$  d'un arbre binaire de recherche « bien construit » de hauteur h?
  - (c) Écrire la méthode bien\_construit demandée.

www.math93.com /J.Courtois 9/9