Metody probabilistyczne Rozwiązania zadań

4. Niezależność

17.10.2017

Zadanie 1. Pokaż, że dowolne zdarzenie na pierwszej kostce jest niezależne od dowolnego zdarzenia na drugiej kostce.

Odpowiedź: Niech $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$ będzie przestrzenią zdarzeń elementarnych ($|\Omega| = 36$). Niech A_1 oznacza dowolne zdarzenie związane z pierwszą z kostek, a A_2 – z drugą z kostek. Załóżmy, że zdarzenie A_1 obejmuje n_1 spośród 6 wyników na pierwszej kostce (i dowolny wynik na drugiej, bo nic o niej nie mówi); podobnie, niech zdarzenie A_2 obejmuje n_2 spośród 6 wyników na drugiej kostce (i dowolny wynik na pierwszej). Np. jeśli A_1 – "wypadło jedno lub dwa oczka na pierwszej kostce", to $n_1 = 2$. Ponieważ wtedy $A_1 = \{(1,1), (1,2), \dots, (1,6), (2,1), (2,2), \dots, (2,6)\}$, mamy więc $|A_1| = 6n_1$. Podobnie, $|A_2| = 6n_2$. Tym samym:

$$P(A_1) = \frac{6n_1}{36} = \frac{n_1}{6}, \qquad P(A_2) = \frac{6n_2}{36} = \frac{n_2}{6}.$$

Z kolei zdarzenie $A_1 \cap A_2$ obejmuje wszystkie zdarzenia elementarne, dla których wynik na pierwszej kostce jest wśród n_1 wartości obejmowanych przez A_1 , a wynik na drugiej kostce – wśród n_2 wartości obejmowanych przez A_2 . Mamy więc $|A_1 \cap A_2| = n_1 n_2$ i stąd:

$$P(A_1 \cap A_2) = \frac{n_1 n_2}{36} = \frac{n_1}{6} \cdot \frac{n_2}{6} = P(A_1)P(A_2).$$

Zadanie 2*. Pokaż, że jeśli A_1, \ldots, A_n – niezależne, to również są niezależne B_1, \ldots, B_n , gdzie $B_i = A_i$ lub $B_i = A'_i$ ($i = 1, \ldots, n$).

 $Odpowied\dot{z}$: Pokażemy wpierw, że jeśli A_1, \ldots, A_n są niezależne, to również:

$$A_1, \dots, A_{i-1}, A'_i, A_{i+1}, \dots, A_n$$
 są niezależne, (1)

dla dowolnego $i=1,\ldots,n$. Ponieważ problem jest zupełnie symetryczny ze względu na indeksy $1,\ldots,n$, wystarczy udowodnić własność (1) dla i=n, tzn. pokazać, że:

$$A_1, \dots, A_{n-1}, A'_n$$
 są niezależne, (2)

Zrobimy to przez indukcję po n. Przypadek bazowy dla n=2 został pokazany na wykładzie: z niezależności A_1 i A_2 wynika niezależność A_1 i A_2' . Załóżmy teraz, że własność (2) zachodzi dla dowolnych n-1 (lub mniej) zdarzeń (założenie indukcyjne) i udowodnimy ją dla n zdarzeń. Oznaczmy $B_i=A_i$ dla i< n, oraz $B_n=A_n'$. Musimy pokazać, że

$$P(B_{i_1} \cap B_{i_2} \dots \cap B_{i_k}) = P(B_{i_1}) \cdot P(B_{i_2}) \cdot \dots \cdot P(B_{i_k}),$$

dla dowolnych indeksów $1 \le i_1 < i_2 < \ldots < i_k \le n$ i dowolnego $k = 2, \ldots, n$. Ale biorąc k < n, ten wniosek wynika z założenia indukcyjnego, ponieważ wybrany ciąg B_{i_1}, \ldots, B_{i_k} składa się z k < n zdarzeń, o których wiemy (z założenia indukcyjnego), że są niezależne. Stąd jedyne, co musimy pokazać, to przypadek k = n, czyli (wracając do starej notacji):

$$P(A_1 \cap \ldots \cap A_{n-1} \cap A'_n) = P(A_1) \cdot \ldots \cdot P(A_{n-1}) \cdot P(A'_n).$$

Oznaczmy $C = A_1 \cap \ldots \cap A_{n-1}$. Ponieważ:

$$P(C \cap A_n) = P(A_1 \cap \ldots \cap A_n) = P(A_1) \cdot \ldots \cdot P(A_n) = P(A_1 \cap \ldots \cap A_{n-1}) \cdot P(A_n) = P(C) \cdot P(A_n),$$

czyli C i A_n są niezależne. A więc, używając niezależności dla dwóch zdarzeń, wynika z tego, że C i A_n' są również niezależne. Tym samym:

$$P(A_1 \cap ... \cap A_{n-1} \cap A'_n) = P(C \cap A'_n) = P(C) \cdot P(A'_n) = P(A_1) \cdot ... \cdot P(A_{n-1}) \cdot P(A'_n),$$

co kończy dowód własności (2). To z kolei przez symetrię implikuje (1).

Powyższy wynik wystarcza do zakończenia zadania, ponieważ można go stosować wielokrotnie, zamieniając kolejne A_i na A'_i , za każdym razem korzystając z faktu, że zbiór zdarzeń wciąż jest niezależny.