1 Texas Housing Time Analysis

By: Brian Lee

▼ 1.1 Business problem:

As multiple markets like the streaming and tech companies are interested in Texas due to relatively low house prices and no income tax. We have been hired by a housing agency that is looking into investing into Houston, Texas early. This will allow for the company to better expect price jumps early, allowing for earlier buys at lower prices and selling at higher prices.

1.2 Data Preparation

```
In [1]: # Import necessary packages
        import pandas as pd
        import numpy as np
        import matplotlib as mpl
        from matplotlib import pyplot as plt
        %matplotlib inline
        plt.style.use('seaborn-whitegrid')
        import warnings
        warnings.filterwarnings('ignore')
        import itertools
        import statsmodels.api as sm
        from statsmodels.tsa.seasonal import seasonal_decompose
        from statsmodels.graphics.tsaplots import plot acf,plot pacf
        from pandas.plotting import autocorrelation_plot,lag_plot
        from statsmodels.tsa.statespace.sarimax import SARIMAX
        executed in 2.29s, finished 02:00:41 2021-08-08
```

```
In [2]: df = pd.read_csv('time-series/zillow_data.csv')
    df.head()
    executed in 453ms, finished 02:00:41 2021-08-08
```

Out[2]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05	
0	84654	60657	Chicago	IL	Chicago	Cook	1	334200.0	335400.0	
1	90668	75070	McKinney	TX	Dallas- Fort Worth	Collin	2	235700.0	236900.0	
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	212200.0	
3	84616	60614	Chicago	IL	Chicago	Cook	4	498100.0	500900.0	
4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	77300.0	

5 rows × 272 columns

Out[3]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05
1	90668	75070	McKinney	TX	Dallas- Fort Worth	Collin	2	235700.0	236900.0
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	212200.0
4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	77300.0
5	91733	77084	Houston	TX	Houston	Harris	6	95000.0	95200.0
8	91940	77449	Katy	TX	Houston	Harris	9	95400.0	95600.0

5 rows × 272 columns

We will use **Return on Investment (ROI)** in order to determine whether the home value in the area is best for the model.

Calculated (Final Value - Initial Value) / Cost of Investment

```
In [5]: # 5 year ROI
houston_df['ROI_5_years'] = round((houston_df['2018-04'] - houston_df['2013-01'])
# 3 year ROI
houston_df['ROI_10_years'] = round((houston_df['2018-04'] - houston_df['2008-01']
houston_df.head()
executed in 31ms, finished 02:00:41 2021-08-08
```

Out[5]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05	
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	212200.0	•
5	91733	77084	Houston	TX	Houston	Harris	6	95000.0	95200.0	
8	91940	77449	Katy	TX	Houston	Harris	9	95400.0	95600.0	
22	92036	77573	League City	TX	Houston	Galveston	23	141400.0	141000.0	
23	92045	77584	Pearland	TX	Houston	Brazoria	24	138500.0	138700.0	

5 rows × 274 columns

```
In [6]: # Reshape from Wide to Long Format
def melt_data(df):
    melted = pd.melt(df, id_vars=['RegionName', 'City', 'CountyName', 'ROI_5_year
    melted['Date'] = pd.to_datetime(melted['Date'], infer_datetime_format=True')
    melted = melted.dropna(subset=['value'])
    return melted

executed in 14ms, finished 02:00:41 2021-08-08
```

```
In [7]: # Remove unnecessary columns
houston_df.drop(columns=['RegionID','State','Metro','SizeRank'], inplace=True)
executed in 14ms, finished 02:00:41 2021-08-08
```

In [8]: houston_df.head()

executed in 28ms, finished 02:00:41 2021-08-08

Out[8]:

	RegionName	City	CountyName	1996-04	1996-05	1996-06	1996-07	1996-08	1996-
2	77494	Katy	Harris	210400.0	212200.0	212200.0	210700.0	208300.0	205500
5	77084	Houston	Harris	95000.0	95200.0	95400.0	95700.0	95900.0	96100
8	77449	Katy	Harris	95400.0	95600.0	95800.0	96100.0	96400.0	96700
22	77573	League City	Galveston	141400.0	141000.0	140600.0	140500.0	140400.0	140500
23	77584	Pearland	Brazoria	138500.0	138700.0	139200.0	139900.0	140700.0	141600

5 rows × 270 columns

In [9]: houston_df.isna().sum().sort_values(ascending=False)

executed in 14ms, finished 02:00:41 2021-08-08

0

Out[9]: ROI_10_years 2003-01

2003-01 0 2004-03 0

2004-02 0 2004-01 0

• •

2010-07 0 2010-06 0

2010-05 0 2010-04 0

RegionName

Length: 270, dtype: int64

In [10]: melt_df = melt_data(houston_df)
 melt_df.head()

executed in 46ms, finished 02:00:41 2021-08-08

Out[10]:

	RegionName	City	CountyName	ROI_5_years	ROI_10_years	Date	value
0	77494	Katy	Harris	0.2842	0.2983	1996-04-01	210400.0
1	77084	Houston	Harris	0.4617	0.2494	1996-04-01	95000.0
2	77449	Katy	Harris	0.5021	0.2908	1996-04-01	95400.0
3	77573	League City	Galveston	0.4130	0.3189	1996-04-01	141400.0
4	77584	Pearland	Brazoria	0.3783	0.2749	1996-04-01	138500.0

In [11]: melt_df.rename(columns = {"RegionName": "Zipcode", "CountyName": "County", "time"
melt_df.head()
executed in 14ms, finished 02:00:41 2021-08-08

Out[11]:

	Zipcode	City	County	ROI_5_years	ROI_10_years	Date	Price
0	77494	Katy	Harris	0.2842	0.2983	1996-04-01	210400.0
1	77084	Houston	Harris	0.4617	0.2494	1996-04-01	95000.0
2	77449	Katy	Harris	0.5021	0.2908	1996-04-01	95400.0
3	77573	League City	Galveston	0.4130	0.3189	1996-04-01	141400.0
4	77584	Pearland	Brazoria	0.3783	0.2749	1996-04-01	138500.0

```
In [12]: # Zipcode type to string
    melt_df['Zipcode'] = melt_df['Zipcode'].astype(str)

# 'Date' column to datetime format
    melt_df['Date'] = pd.to_datetime(melt_df['Date'], format='%m/%y')

# 'Date' column as dataframe index
    melt_df.set_index('Date', inplace=True)

executed in 62ms, finished 02:00:41 2021-08-08
```

In [13]: melt_df
executed in 14ms, finished 02:00:41 2021-08-08

Out[13]:

	Zipcode	City	County	ROI_5_years	ROI_10_years	Price
Date						
1996-04-01	77494	Katy	Harris	0.2842	0.2983	210400.0
1996-04-01	77084	Houston	Harris	0.4617	0.2494	95000.0
1996-04-01	77449	Katy	Harris	0.5021	0.2908	95400.0
1996-04-01	77573	League City	Galveston	0.4130	0.3189	141400.0
1996-04-01	77584	Pearland	Brazoria	0.3783	0.2749	138500.0
2018-04-01	77514	Anahuac	Chambers	0.3933	0.2795	136400.0
2018-04-01	77050	Houston	Harris	0.5695	0.2468	115200.0
2018-04-01	77650	Port Bolivar	Galveston	0.2758	0.1968	247500.0
2018-04-01	77534	Danbury	Brazoria	0.3290	0.2795	164800.0
2018-04-01	77577	Liverpool	Brazoria	0.4772	0.2110	149200.0

49555 rows × 6 columns

1.3 EDA and Visualization

Questions we can ask:

- 1. How have Houston housing prices generally trended over time?
- 2. Which counties have higher home prices?
- 3. Which counties have the highest ROIs?
- 4. Which Zipcodes in Houston have the highest home prices?

1.3.1 How have Houston housing prices generally trended over time?

```
In [15]: yearly_df = melt_df['Price'].resample(rule='A').mean()
    yearly_df.plot.line(color='green')
    plt.title('Average Houston Home Value By Year')
    plt.ylabel('Value ($)')
    plt.show()

executed in 222ms, finished 02:00:42 2021-08-08
```


Outside of the dip in housing prices between 2007 and 2011, the average price of a Texas

▼ 1.3.2 Which counties have higher home prices?

```
In [16]: county_df = melt_df.copy()
    county_df = county_df.groupby('County').Price.mean().sort_values(ascending=False)
    executed in 26ms, finished 02:00:42 2021-08-08

In [17]: county_df.plot.barh(color='teal')
    plt.title('Average Value of Home by County Area')
    plt.xlabel('Value ($)')
    plt.show()
    executed in 169ms, finished 02:00:42 2021-08-08
```


• Harris, Fort Bend, and Montgomery have clearly the highest average home values in the past 20 years.

1.3.3 Which counties have the highest ROIs?

```
In [18]: # 5 year ROI
ROI_5_df = melt_df.copy()
ROI_5_df = ROI_5_df.groupby('County').ROI_5_years.mean().sort_values(ascending=Fa)
executed in 14ms, finished 02:00:42 2021-08-08
```

```
In [19]: ROI_5_df.plot.barh(color='teal')
   plt.title('Average ROI of Home in 5 Years by County Area')
   plt.xlabel('Investment gained (%)')
   plt.show()

executed in 142ms, finished 02:00:42 2021-08-08
```



```
In [20]: # 10 year ROI
ROI_10_df = melt_df.copy()
ROI_10_df = ROI_10_df.groupby('County').ROI_10_years.mean().sort_values(ascending
executed in 15ms, finished 02:00:42 2021-08-08
```

```
In [21]: ROI_10_df.plot.barh(color='teal')
plt.title('Average ROI of Home in 10 Years by County Area')
plt.xlabel('Investment gained (%)')
plt.show()

executed in 205ms, finished 02:00:42 2021-08-08
```


1.3.4 Which Zipcodes in Houston have the highest home prices?

```
In [22]: zip_df = melt_df.copy()
zip_df = zip_df.groupby('Zipcode').Price.mean().sort_values(ascending=False).head
executed in 15ms, finished 02:00:42 2021-08-08
```

```
In [23]: zip_df.plot.barh(color='teal')
    plt.title('Average Value of Home by Zipcode')
    plt.xlabel('Value ($)')
    plt.show()

executed in 185ms, finished 02:00:42 2021-08-08
```


• 77024 appears to be the zipcode with the Highest average home value in the past 20 years.

```
In [24]: zip_df = melt_df.copy()
zip_df = zip_df.groupby('Zipcode').ROI_10_years.mean().sort_values(ascending=False)
executed in 14ms, finished 02:00:42 2021-08-08
```

```
In [25]: zip_df.plot.barh(color='teal')
   plt.title('ROI of Home by Zipcode')
   plt.xlabel('Value ($)')
   plt.show()
   executed in 173ms, finished 02:00:43 2021-08-08
```


1.4 Time Series Modeling

Type *Markdown* and LaTeX: α^2

	77486	77021	77030	77541	77077	77035	77018	77080	77092	7
Date										
1996- 04-01	67000.0	45500.0	559900.0	45600.0	177100.0	118800.0	182500.0	107400.0	95600.0	1234
1996- 05-01	66700.0	45200.0	563500.0	45500.0	180000.0	119700.0	185900.0	106100.0	96900.0	1233
1996- 06-01	66500.0	44900.0	567200.0	45400.0	182700.0	120900.0	189100.0	105100.0	98400.0	1233
1996- 07-01	66200.0	44800.0	570900.0	45300.0	185100.0	122300.0	191700.0	104200.0	99900.0	1235
1996- 08-01	66100.0	44600.0	574500.0	45200.0	187100.0	124100.0	193400.0	103500.0	101500.0	1238
4										•

Let's start with our first Zipcode

```
In [30]: ts = ts_df[zip_1].copy()
    ax = ts.plot()
    ax.legend()
    plt.show()

executed in 174ms, finished 02:00:43 2021-08-08
```



```
In [31]: def plot_autocorr(ts, figsize=(8,8),lags=24):
    fig, ax = plt.subplots(nrows=3, figsize=figsize)

## Plot ts
    ts.plot(ax=ax[0])

## Plot acf, pacf
plot_acf(ts,ax=ax[1],lags=lags)
plot_pacf(ts, ax=ax[2],lags=lags)
fig.tight_layout()

fig.suptitle(f"Zipcode {ts.name}",y=1.1,fontsize=15)

for a in ax[1:]:
    a.xaxis.set_major_locator(mpl.ticker.MaxNLocator(min_n_ticks=lags, intege a.xaxis.grid()
    return fig, ax

executed in 15ms, finished 02:00:43 2021-08-08
```

In [32]: plot_autocorr(ts,lags=20);
executed in 547ms, finished 02:00:43 2021-08-08

Zipcode 77486

10 11 12 13

15 16 17 18

20 21

0

```
In [33]: # Let's do a difference to remove trends
d = 1
plot_autocorr(ts.diff(d).dropna(),lags=20);
executed in 546ms, finished 02:00:44 2021-08-08
```

Zipcode 77486

1.4.1 Model 1

```
In [34]: # selected params
d = 1
p = 1
q = 1
executed in 15ms, finished 02:00:44 2021-08-08
```

```
In [35]: # Train Test SpLit
    train_size = 0.8
    split_idx = round(len(ts)* train_size)
    split_idx

## SpLit
    train = ts.iloc[:split_idx]
    test = ts.iloc[split_idx:]

## Visualize spLit
    fig,ax= plt.subplots()
    kws = dict(ax=ax,marker='o')
    train.plot(**kws)
    test.plot(**kws)
    ax.legend(bbox_to_anchor=[1,1])
    plt.show()

executed in 186ms, finished 02:00:44 2021-08-08
```



```
In [36]: # Baseline model from eye-balled params
model = SARIMAX(train,order=(p,d,q),).fit()
display(model.summary())
model.plot_diagnostics(figsize=(10,8));
plt.show()
executed in 828ms, finished 02:00:45 2021-08-08
```

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep.	Dep. Variable:			7486	No. Observations:			tions:	212
	Model:	SAF	RIMAX(1	1, 1)		Log Li	ikel	ihood	-1600.990
	Date:	Sun	, 08 Aug	2021				AIC	3207.980
	Time:		02:	00:44	BIC			BIC	3218.036
	Sample:			04-01-1996				HQIC	3212.045
			- 11-01	-2013					
Covariance Type:				opg					
	coe	f	std err	;	z	P> z		[0.025	0.975]
ar.L1	0.6493	3	0.052	12.49	9	0.000		0.548	0.751
ma.L1	-0.4618	3	0.058	-7.992	2	0.000		-0.575	-0.349
sigma2	sigma2 1.672e+05			14.90	5	0.000	1.4	15e+05	1.89e+05
Ljung-Box (L1) (Q):			69.61	Jarqu	e-B	Bera (JE	3):	354.53	
Prob(Q):			0.00		F	Prob(JE	3):	0.00	

2.95

0.00

Warnings:

Heteroskedasticity (H):

Prob(H) (two-sided):

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Skew:

Kurtosis:

-0.95

9.06


```
In [37]: # Obtain forecast
    from sklearn import metrics
    forecast = model.get_forecast(steps=len(test))
    executed in 468ms, finished 02:00:46 2021-08-08

In [38]: def forecast_to_df(forecast,zipcode):
        test_pred = forecast.conf_int()
        test_pred[zipcode] = forecast.predicted_mean
        test_pred.columns = ['lower','upper','prediction']
        return test_pred

executed in 14ms, finished 02:00:46 2021-08-08

In [39]: pred_df = forecast_to_df(forecast,zip_1)
```

executed in 14ms, finished 02:00:46 2021-08-08

```
In [40]: def plot_train_test_pred(train,test,pred_df):
    fig,ax = plt.subplots()
    kws = dict(marker='o')

ax.plot(train,label='Train',**kws)
    ax.plot(test,label='Test',**kws)
    ax.plot(pred_df['prediction'],label='prediction',ls='--',**kws)

ax.fill_between(x=pred_df.index,y1=pred_df['lower'],y2=pred_df['upper'])
    ax.legend(bbox_to_anchor=[1,1])
    fig.tight_layout()
    return fig,ax

executed in 15ms, finished 02:00:46 2021-08-08
```

In [41]: plot_train_test_pred(train,test,pred_df) plt.show() executed in 191ms, finished 02:00:46 2021-08-08

1.4.2 Model 2

In [42]: !pip install --user pmdarima import pmdarima as pm from pmdarima import auto arima

executed in 2.15s, finished 02:00:48 2021-08-08

Requirement already satisfied: pmdarima in c:\users\leebr\appdata\roaming\pytho n\python38\site-packages (1.8.2)

Requirement already satisfied: numpy~=1.19.0 in c:\users\leebr\anaconda3\envs\l earn-env\lib\site-packages (from pmdarima) (1.19.5)

Requirement already satisfied: joblib>=0.11 in c:\users\leebr\anaconda3\envs\le arn-env\lib\site-packages (from pmdarima) (0.17.0)

Requirement already satisfied: statsmodels!=0.12.0,>=0.11 in c:\users\leebr\ana conda3\envs\learn-env\lib\site-packages (from pmdarima) (0.12.2)

Requirement already satisfied: urllib3 in c:\users\leebr\anaconda3\envs\learn-e nv\lib\site-packages (from pmdarima) (1.25.10)

Requirement already satisfied: scikit-learn>=0.22 in c:\users\leebr\anaconda3\e nvs\learn-env\lib\site-packages (from pmdarima) (0.23.2)

Requirement already satisfied: scipy>=1.3.2 in c:\users\leebr\anaconda3\envs\le arn-env\lib\site-packages (from pmdarima) (1.5.0)

Requirement already satisfied: Cython!=0.29.18,>=0.29 in c:\users\leebr\anacond a3\envs\learn-env\lib\site-packages (from pmdarima) (0.29.21)

Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\users\leebr\an aconda3\envs\learn-env\lib\site-packages (from pmdarima) (50.3.0.post20201103) Requirement already satisfied: pandas>=0.19 in c:\users\leebr\anaconda3\envs\le

arn-env\lib\site-packages (from pmdarima) (1.1.3) Requirement already satisfied: patsy>=0.5 in c:\users\leebr\anaconda3\envs\lear

n-env\lib\site-packages (from statsmodels!=0.12.0,>=0.11->pmdarima) (0.5.1) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\leebr\anaconda3

\envs\learn-env\lib\site-packages (from scikit-learn>=0.22->pmdarima) (2.1.0)

Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\leebr\anacond a3\envs\learn-env\lib\site-packages (from pandas>=0.19->pmdarima) (2.8.1)

Requirement already satisfied: pytz>=2017.2 in c:\users\leebr\anaconda3\envs\le arn-env\lib\site-packages (from pandas>=0.19->pmdarima) (2020.1)

Requirement already satisfied: six in c:\users\leebr\anaconda3\envs\learn-env\l ib\site-packages (from patsy>=0.5->statsmodels!=0.12.0,>=0.11->pmdarima) (1.15. 0)

```
In [43]: auto_model = auto_arima(train,start_p=0,start_q=0)
    display(auto_model.summary())
    auto_model.plot_diagnostics(figsize=(10,8));
    executed in 1.40s, finished 02:00:49 2021-08-08
```

SARIMAX Results

Dep. Variable:	У	No. Observations:	212
Model:	SARIMAX(1, 1, 0)	Log Likelihood	-1583.510
Date:	Sun, 08 Aug 2021	AIC	3173.019
Time:	02:00:49	BIC	3183.075
Sample:	0	HQIC	3177.084
	- 212		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
intercept	180.8387	25.951	6.968	0.000	129.975	231.702
ar.L1	0.2309	0.008	27.555	0.000	0.214	0.247
sigma2	1.45e+05	9471.287	15.309	0.000	1.26e+05	1.64e+05

Ljung-Box (L1) (Q): 61.20 **Jarque-Bera (JB):** 377.38

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 3.15 Skew: -0.88

Prob(H) (two-sided): 0.00 Kurtosis: 9.31

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

▼ 1.4.3 Model 3

```
In [44]: model3 = SARIMAX(ts,order=auto model.order,
                                 seasonal order=auto model.seasonal order).fit()
          display(model3.summary())
          model3.plot diagnostics(figsize=(10,8));
          executed in 678ms, finished 02:00:50 2021-08-08
```

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base \tsa_model.py:524: ValueWarning: No frequency information was provided, so infe rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base \tsa_model.py:524: ValueWarning: No frequency information was provided, so infe rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep.	Dep. Variable:		7	7486	No. Observations:			265
	Model:	SAF	RIMAX(1,	1, 0)	Log L	ikeliho	od	-2081.875
	Date:	Sun	, 08 Aug	2021		4	AIC .	4167.751
	Time:		02:0	00:49	BIC			4174.903
	Sample:		04-01-	-1996		нс	SIC	4170.625
			- 04-01-	-2018				
Covariance Type:				opg				
	coe	f	std err	z	. P> z	[0.	025	0.975]
ar.L1	0.265	I	0.006	45.176	0.000	0.	254	0.277
sigma2	2.882e+05	5 1.	82e+04	15.807	0.000	2.52e	+05	3.24e+05
Ljung-Box (L1) (Q):			71.94	Jarque	e-Bera (J	B): 25	542.4	4
	Prob	(Q):	0.00	Prob(JB): 0			0.0	0
Heterosl	Heteroskedasticity (H):			Skew: -1.			-1.7	6
Prob(H) (two-sid	ed):	0.00		Kurtos	is:	17.7	9

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).


```
In [45]: pred = model3.get_forecast(steps=12)
    pred_df = forecast_to_df(pred,zip_1)
    display(plot_train_test_pred(train,test,pred_df));
    plt.show()
    executed in 206ms, finished 02:00:50 2021-08-08
```

(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)


```
In [46]: RESULTS = {}
         for zc in zip list:
             print(zc)
             ## Make empty dict for district data
             zipcode d = {}
             ## Copy Time Series
             ts_final = ts_df[zc].copy()
              ## Train Test Split Index
             train size = 0.8
             split idx = round(len(ts)* train size)
             ## Split
             train = ts final.iloc[:split idx]
             test = ts_final.iloc[split_idx:]
             ## Get best params using auto arima
             gridsearch_model = auto_arima(ts_final,start_p=0,start_q=0)
             model3 = SARIMAX(ts final, order=gridsearch model.order,
                               seasonal order=gridsearch model.seasonal order).fit()
             ## Get predictions
              pred = model3.get forecast(steps=36)
             pred_df = forecast_to_df(pred,zip_1)
             ## Save info to dict
             zipcode_d['pred_df'] = pred_df
             zipcode d['model'] = model3
             zipcode_d['train'] = train
             zipcode_d['test'] = test
             ## Display Results
             display(model3.summary())
             plot_train_test_pred(train,test,pred_df)
             plt.xlabel('Year')
             plt.ylabel('Value in US Dollars ($)')
             plt.show()
              ## Save district dict in RESULTS
             RESULTS[zc] = zipcode d
             print('---'*20,end='\n\n')
         executed in 21.8s, finished 02:01:12 2021-08-08
```

77486

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\bas
e\tsa_model.py:524: ValueWarning: No frequency information was provided, so i
nferred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\bas
e\tsa_model.py:524: ValueWarning: No frequency information was provided, so i

nferred frequency MS will be used.
 warnings.warn('No frequency information was'

SARIMAX Results

Dep. Variable: 7	486 No. Observations:	265
------------------	-----------------------	-----

Model: SARIMAX(3, 2, 1) Log Likelihood -1955.294

Date: Sun, 08 Aug 2021 **AIC** 3920.588

Time: 02:00:52 BIC 3938.449

Sample: 04-01-1996 **HQIC** 3927.766

- 04-01-2018

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.9969	0.038	26.352	0.000	0.923	1.071
ar.L2	-0.2951	0.022	-13.594	0.000	-0.338	-0.253
ar.L3	0.1019	0.022	4.585	0.000	0.058	0.145
ma.L1	-0.9489	0.038	-24.815	0.000	-1.024	-0.874
sigma2	1 388e+05	8716 110	15 927	0.000	1 22e+05	1.56e+05

Ljung-Box (L1) (Q): 7.14 Jarque-Bera (JB): 58.35

Prob(Q): 0.01 **Prob(JB):** 0.00

Heteroskedasticity (H): 5.03 Skew: -0.02

Prob(H) (two-sided): 0.00 Kurtosis: 5.31

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

77021

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep.	Variable:			77021	N	o. Obser	vations:	265
	Model:	SAR	IMAX(2	2, 2, 0)		Log Lik	kelihood	-1949.797
	Date:	Sun,	08 Aug	2021			AIC	3905.594
	Time:		02	:00:53			BIC	3916.311
	Sample:		04-01	-1996			HQIC	3909.901
			- 04-01	-2018				
Covariar	nce Type:			opg				
	coef	;	std err		z	P> z	[0.025	0.975]
ar.L1	0.2115		0.024	8.9	914	0.000	0.165	0.258
ar.L2	-0.3114		0.017	-18.2	244	0.000	-0.345	-0.278
sigma2	1.411e+05	78	88.838	17.8	388	0.000	1.26e+05	1.57e+05
Ljun	g-Box (L1)	(Q):	1.94	Jarqu	ıe-B	era (JB):	76.05	
	Prob	(Q):	0.16		P	rob(JB):	0.00	
Heterosk	cedasticity	(H):	7.77			Skew:	-0.05	
Prob(H) (two-side	ed):	0.00		K	(urtosis:	5.63	

Warnings:

77030

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep. Variable: 77030 No. Observations: 265

Model: SARIMAX(0, 2, 0) Log Likelihood -2287.317

Date: Sun, 08 Aug 2021 **AIC** 4576.635

Time: 02:00:53 BIC 4580.207

Sample: 04-01-1996 **HQIC** 4578.071

- 04-01-2018

Covariance Type: opg

coef std err z P>|z| [0.025 0.975]

sigma2 2.081e+06 1.19e+05 17.486 0.000 1.85e+06 2.31e+06

Ljung-Box (L1) (Q): 12.28 Jarque-Bera (JB): 72.97

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 26.86 Skew: -0.02

Prob(H) (two-sided): 0.00 Kurtosis: 5.58

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\bas e\tsa_model.py:524: ValueWarning: No frequency information was provided, so i nferred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\bas
e\tsa_model.py:524: ValueWarning: No frequency information was provided, so i
nferred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\base\mo
del.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to con
verge. Check mle retvals

warnings.warn("Maximum Likelihood optimization failed to "

SARIMAX Results

Dep. Variable:	77541	No. Observations:	265
Model:	SARIMAX(3, 2, 1)	Log Likelihood	-1883.498
Date:	Sun, 08 Aug 2021	AIC	3776.995
Time:	02:00:56	BIC	3794.856
Sample:	04-01-1996	HQIC	3784.173
	- 04-01-2018		
Coverience Type:	ona		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	1.1351	0.054	20.896	0.000	1.029	1.242
ar.L2	-0.5915	0.033	-18.142	0.000	-0.655	-0.528
ar.L3	0.2897	0.036	8.081	0.000	0.219	0.360
ma.L1	-0.9409	0.037	-25.105	0.000	-1.014	-0.867
sigma2	8.091e+04	3707.794	21.820	0.000	7.36e+04	8.82e+04

Ljung-Box (L1) (Q): 1.42 Jarque-Bera (JB): 808.16

Prob(Q): 0.23 **Prob(JB):** 0.00

Heteroskedasticity (H): 5.09 Skew: -0.41

Prob(H) (two-sided): 0.00 Kurtosis: 11.55

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

77077

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

77 No. Observations:	Dep. Variable: 770	265
0) Log Likelihood	Model: SARIMAX(1, 2,	-2033.315
21 AIC	Date: Sun, 08 Aug 20	4070.630
57 BIC	Time: 02:00:	4077.774
96 HQIC	Sample: 04-01-19	4073.501
18	- 04-01-20	

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.0418	0.008	5.362	0.000	0.026	0.057
sigma2	2.954e+05	1.66e+04	17.841	0.000	2.63e+05	3.28e+05

Ljung-Box (L1) (Q): 60.48 Jarque-Bera (JB): 89.64

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 5.26 Skew: 0.11

Prob(H) (two-sided): 0.00 Kurtosis: 5.85

Warnings:

[11] Covariance matrix calculated using the outer product of gradients (complex stan)

77035

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep. Variable: 77035 No. Observations: 265 Model: SARIMAX(4, 1, 1) Log Likelihood -2255.734 Sun, 08 Aug 2021 AIC Date: 4523.469 Time: 02:01:01 BIC 4544.924 Sample: 04-01-1996 **HQIC** 4532.090

- 04-01-2018

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.7267	0.128	5.688	0.000	0.476	0.977
ar.L2	0.0047	0.012	0.400	0.689	-0.019	0.028
ar.L3	0.0064	0.014	0.458	0.647	-0.021	0.034
ar.L4	0.0238	0.014	1.665	0.096	-0.004	0.052
ma.L1	-0.6623	0.129	-5.142	0.000	-0.915	-0.410
sigma2	1.382e+06	3.07e-09	4.5e+14	0.000	1.38e+06	1.38e+06

Ljung-Box (L1) (Q): 184.19 Jarque-Bera (JB): 171.79

Prob(Q): 0.00 Prob(JB): 0.00

Heteroskedasticity (H): 2.26 Skew: 0.24

Prob(H) (two-sided): 0.00 **Kurtosis:** 6.92

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.83e+31. Standard errors may be unstable.

77018

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\base\mode
l.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converg
e. Check mle retvals

warnings.warn("Maximum Likelihood optimization failed to "

SARIMAX Results

Dep.	Variable:	-	77018	No.	Observ	ations:		265
		SARIMAX(1	1 1)		Log Likelihood			
	wodei.	SAKIIVIAA(I	, 1, 1)		LOG LIK	aiiiioou	-2	427.200
	Date:	Sun, 08 Aug			AIC	4	860.519	
	Time:	02:			BIC	4	871.247	
	Sample:	04-01	-1996			HQIC	4	864.830
		- 04-01	-2018					
Covariar	псе Туре:		opg					
	coef	std err		z	P> z	[0.02	!5	0.975]
ar.L1	1.0000	0.003	385.	086	0.000	0.99	15	1.005
ma.L1	-0.9995	0.028	-35.	761	0.000	-1.05	i4	-0.945
sigma2	5.674e+06	7.34e-10	7.73e	+15	0.000	5.67e+0	16	5.67e+06
Ljun	g-Box (L1) (Q): 225.15	Jaro	μe-B	Bera (JB): 14 .91	1	

Prob(Q):

Heteroskedasticity (H):

0.00

0.85

Prob(JB):

Skew:

0.00

0.50

Prob(H) (two-sided): 0.46 Kurtosis: 3.59

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 1.96e+31. Standard errors may be unstable.

77080

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\base\mode
l.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to convergence

e. Check mle_retvals

SARIMAX Results

Dep. Variable: 77080 No. Observations: 265

Model: SARIMAX(2, 2, 3) Log Likelihood -1969.833

Date: Sun, 08 Aug 2021 **AIC** 3951.666

Time: 02:01:08 **BIC** 3973.099

Sample: 04-01-1996 **HQIC** 3960.279

- 04-01-2018

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	1.8751	0.029	64.630	0.000	1.818	1.932
ar.L2	-0.9136	0.027	-34.004	0.000	-0.966	-0.861
ma.L1	-1.8423	0.033	-55.043	0.000	-1.908	-1.777
ma.L2	0.7805	0.046	16.990	0.000	0.690	0.871
ma.L3	0.0911	0.021	4.410	0.000	0.051	0.132
sigma2	1.455e+05	5577.154	26.094	0.000	1.35e+05	1.56e+05

Ljung-Box (L1) (Q): 20.10 Jarque-Bera (JB): 443.01

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 10.64 Skew: -1.17

Prob(H) (two-sided): 0.00 Kurtosis: 8.91

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

77092

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep.	Variable:		7	7092	No	. Obse	rva	tions:	265
	Model:	SAF	RIMAX(2,	2, 0)		Log Li	ikel	ihood	-1984.261
	Date:	Sun, 08 Aug 2021						AIC	3974.522
	Time:		02:0	01:09				BIC	3985.238
	Sample:		04-01-	1996				HQIC	3978.829
			- 04-01-	2018					
Covariar	nce Type:			opg					
	coef		std err	;	Z	P> z		[0.025	0.975]
ar.L1	0.0731		0.012	6.07	5	0.000		0.050	0.097
ar.L2	-0.0999		0.011	-8.89	3	0.000		-0.122	-0.078
sigma2	1.888e+05	1.	12e+04	16.85	3	0.000	1.6	67e+05	2.11e+05
Ljun	g-Box (L1)	(Q):	16.91	Jarqu	e-B	Bera (JE	3):	67.94	
	Prob	(Q):	0.00		F	Prob(JE	3):	0.00	
Heterosk	cedasticity	(H):	3.91			Ske	w:	0.28	
Prob(H) (two-side	ed):	0.00		ı	Kurtosi	is:	5.43	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

77043

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\base
\tsa_model.py:524: ValueWarning: No frequency information was provided, so infe
rred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep. Variable: 77043 No. Observations: 265

 Model:
 SARIMAX(2, 2, 1)
 Log Likelihood
 -2049.252

 Date:
 Sun, 08 Aug 2021
 AIC
 4106.504

Time: 02:01:12 BIC 4120.793

Sample: 04-01-1996 **HQIC** 4112.246

- 04-01-2018

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.9426	0.098	9.599	0.000	0.750	1.135
ar.L2	-0.0716	0.014	-5.097	0.000	-0.099	-0.044
ma.L1	-0.8973	0.098	-9.157	0.000	-1.089	-0.705
sigma2	3.275e+05	2.01e+04	16.317	0.000	2.88e+05	3.67e+05

Ljung-Box (L1) (Q): 42.77 Jarque-Bera (JB): 74.26

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 6.33 Skew: -0.26

Prob(H) (two-sided): 0.00 Kurtosis: 5.55

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Best 3 Zipcodes appear to be:

- 77043
- 77018
- 77541

Looking at the models, theses Zipcodes have less a chance of decline with still great possibilities of the home price increasing.

1.5 Results

1.6 Conclusion

Invest in 3 zipcode areas early before the price increase further:

- 77043
- 77018
- 77541

▼ 1.7 Next Steps

- Test time series with model using Facebook prophet
- Get another dataset looking the years in which historical oil prices are listed. Houston is known as an "oil industry" city. Would be interesting to see impact on home prices