minimum mean absolute error i.e.
$$\partial_{MMAE} = Argain \left(E[|\Theta - \hat{\theta}|] \times \right)$$

$$\partial_{MMAE} := Med \left(\Theta | \times \right) = a \quad \text{S.t.} \quad P(\Theta | \times) d\Theta = \frac{1}{2}$$

Using our model: iid bern(θ) and data x = <0,1,1>, we can compute the MMAE Bayesian point estimate:

$$\int_{0}^{4} 12\theta^{2}(1-\theta) d\theta = 12\left[\frac{\theta^{3}}{3} - \frac{\theta^{4}}{4}\right]_{0}^{1} = 12\left(\frac{\eta^{3}}{3} - \frac{\eta^{4}}{4}\right) \stackrel{\text{Sex}}{=} \frac{1}{12} \frac{1}{12} = 12\left(\frac{\eta^{3}}{3} - \frac{\eta^{4}}{4}\right) \stackrel{\text{Sex}}{=} \frac{1}{12} \frac{1}{12} = 12\left(\frac{\eta^{3}}{3} - \frac{\eta^{4}}{4}\right) \stackrel{\text{Sex}}{=} \frac{1}{12$$

This is a "quartic equation" and has a formulaic solution. You can look it up. The answer is \longrightarrow

These are the three bayesian point estimates we will use for the rest of the class i.e.

Type something

The data x = <0,1,1> was a specific case. We will now solve this generally for any dataset $x = <x_1, ..., x_n>$. Also using Laplace's prior of indifference, $\theta \sim U(0, 1)$.

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)} = \frac{P(X|\theta)P(\theta)}{\int_{0}^{\infty} P(X|\theta)P(\theta)} = \frac{e^{\sum x_{i}}(1-e)^{x_{i}-\sum x_{i}}}{\int_{0}^{\infty} P(X|\theta)P(\theta$$

This integral in the denominator is a special integral and is known as the "beta function": $B(\alpha, \beta) := \int e^{\alpha-1} (1-\epsilon)^{\beta-1} d\epsilon$ recision using a scientific calculator.

$$= \frac{1}{B(\Sigma_{x_i+1}, h-\Sigma_{x_i+1})} = \frac{1}{B(\Sigma_{x_i+1}, h-\Sigma_{x_i+1})} = Beta(\Sigma_{x_i+1}, h-\Sigma_{x_i+1})$$

We just derived that the posterior for the iid bernoulli likelihood is a beta distribution. Let's go back to probability class and examine the beta distribution...

Y~Beta(
$$x,\beta$$
):= $\frac{1}{B(x,\beta)}$ $y = (1-y)^{\beta-1} = p(y)$
Supp(y) = (0,1). $\int_{0}^{1} \frac{1}{C(x,\beta)} y = \frac{1}{(1-y)^{\beta-1}} dy = \frac{1}{(1-y)^{\beta-1}} dy = 1$
 $x \in ?$, $\beta \in ?$ $x > 0$, $\beta > 0$.
 $x = 0$, $y = 1$ $y = 1$

$$E[Y] = \int_{0}^{\infty} y(x) dy = \int_{0}^{\infty} y(x) dy$$

$$\Rightarrow \frac{\langle -1 \rangle}{\gamma} - \frac{\beta - 1}{1 - \gamma} \stackrel{\text{get}}{=} 0 \Rightarrow \gamma_{4} = \frac{\langle -1 \rangle}{\langle + \beta - 2 \rangle}$$

If we take the second derivative to check if it's negative, we find it's only negative if both alpha and beta are greater than or = 1.

has no closed form expression and thus must be done with a computer. We will denote the answer to this using notation from the R programming language: qbeta(0.5, alpha, beta).

