Série Nº6: Matrices, déterminants et systèmes

Exercice 1

Soit A la matrice donnée par

$$A = \left(\begin{array}{ccc} 2 & -2 & 2\\ 2 & 2 & 2\\ 1 & 1 & 2 \end{array}\right)$$

- 1. Trouver l'endomorphisme φ associé à A relativement à la base canonique de \mathbb{R}^3 .
- 2. Calculer le déterminant de A.
- 3. Déterminer la matrice inverse A^{-1} . φ est-il bijectif?
- 4. Déterminer φ^{-1} relativement à la base canonique de \mathbb{R}^3 .

Exercice 2

Soit (S) le système différentiel linéaire sans second membre

$$(S): \left\{ \begin{array}{lcl} x'(t) & = & x(t) - \frac{1}{2} \ y(t) \\ y'(t) & = & 2 \ x(t) - y(t) \end{array} \right.$$

où x et y sont des fonctions dérivables de $\mathbb R$ dans $\mathbb R$. Soit $t \in \mathbb R \longmapsto X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \in \mathbb R^2$.

- 1. Écrire (S) sous la forme matricielle X'(t) = BX(t) où B est une matrice à déterminer. La matrice B est-elle inversible?
- 2. Calculer B^2 et B^3 . Que peut-on déduire?
- 3. Calculer la matrice $A = \exp(tB)$ en fonction de t.
- 4. En déduire les expressions des fonctions $t \mapsto x(t)$ et $t \mapsto y(t)$ lorsque x(0) = 1 et y(0) = -1.

Exercice 3

Soit A la matrice donnée par

$$A = \left(\begin{array}{ccc} 8 & -1 & -5 \\ -2 & 3 & 1 \\ 4 & -1 & -1 \end{array}\right)$$

Soit φ l'endomorphisme de \mathbb{R}^3 associé à A relativement à la base canonique de \mathbb{R}^3 .

- 1. Déterminer l'expression de φ
- 2. Calculer A^2 et A^3 , puis déterminer φ^2 et φ^3 .
- 3. Calculer le déterminant de A, puis déterminer la matrice A^{-1} .

Exercice 4

Soit $\alpha \in \mathbb{R}$ et A_{α} la matrice carrée donnée par $A_{\alpha} = \begin{pmatrix} \alpha & 0 & -1 \\ 2 & \alpha & 1 \\ -4 & -1 & \alpha \end{pmatrix}$.

- 1. Déterminer l'ensemble \mathcal{I} des valeurs de α pour lesquelles la matrice A_{α} est inversible.
- 2. Calculer la matrice A_{α}^{-1} pour α appartenant à \mathcal{I} .
- 3. En déduire, lorsque $\alpha \in \mathcal{I}$, la solution du système (\mathcal{P}) : $\begin{cases} \alpha \ x + 0y z = -1 \\ 2x + \alpha \ y + z = 1 \\ -4x y + \alpha \ z = 1 \end{cases}$

Exercice 5

Soit A la matrice donnée par

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

On appelle la **trace** de A le nombre noté " $\operatorname{tr}(A)$ " défini par $\operatorname{tr}(A) = a_{11} + a_{22}$. Montrer que le polynôme caractéristique $P_A(x)$ de A s'écrit sous la forme

$$P_A(x) = x^2 - \operatorname{tr}(A)x + \det(A)$$

Exercice 6

On donne une matrice A carrée d'ordre n, A, dont le coefficients appartiennent à un corps commutatif \mathbb{K} ; on note P le polynôme caractéristique de A.

- 1. Montrer que A est inversible si et seulement si $P(0) \neq 0$
- 2. Montrer que le polynôme caractéristique R de A^{-1} s'écrit sous la forme suivante :

$$R(x) = \frac{(-1)^n x^n}{P(0)} P\left(\frac{1}{x}\right).$$

Exercice 7

Soit M la matrice donnée par

$$M = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{array}\right)$$

Soit φ l'endomorphisme de \mathbb{R}^4 associé à A relativement à la base canonique de \mathbb{R}^4 .

- 1. Déterminer l'expression de φ
- 2. Calculer A^2 et A^3 , puis déterminer φ^2 et φ^3 .
- 3. Calculer le déterminant de A, puis déterminer la matrice A^{-1} .

Exercice 8

Soit (S) le système différentiel linéaire sans second membre

$$(S): \begin{cases} x'(t) &= x(t) + 2y(t) + z(t) \\ y'(t) &= 2y(t) + 3z(t) \\ z'(t) &= 3z(t) \end{cases}$$

où x, y et z sont des fonctions dérivables sur \mathbb{R} . Soit $t \in \mathbb{R} \longmapsto X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \in \mathbb{R}^3$.

- 1. Écrire (S) sous la forme matricielle X'(t) = BX(t) où B est une matrice à déterminer. La matrice B est-elle inversible? Qu'appelle-t-on ce type de matrice?
- 2. Montrer que la matrice B s'écrit sous la forme D+N où D est une matrice diagonale à déterminer et N est une matrice nilpotente à déterminer. *Déterminer l'indice de nilpotence de N.
- 3. En utilisant l'écriture B = D + N, montrer que $\exp(tB) = \exp(tD) \left(I_3 + tN + \frac{1}{2}t^2N^2\right)$ pour tout $t \in \mathbb{R}$ où I_3 est la matrice identité de taille (3×3) .
- 4. Calculer les matrices $P = \exp(tD)$ et $Q = I_3 + tN + \frac{1}{2}t^2N^2$.
- 5. En déduire l'expression de la matrice $A = \exp(tB)$ en fonction de t.
- 6. En déduire les expressions des fonctions $t \mapsto x(t)$, $t \mapsto y(t)$ et $t \mapsto z(t)$ lorsque $x(0) = k_1$, $y(0) = k_2$ et $z(0) = k_3$.
 - *Déterminer les fonctions $t \mapsto x(t), t \mapsto y(t)$ et $t \mapsto z(t)$ lorsque $k_1 = 1, k_2 = -1$ et $k_3 = 2$.