Gradient Descent Method in Learning

online vs. batch a

Yuan Yao

Department of Mathematics, University of California, Berkeley

^aSome joint work with Andrea Caponnetto, Lorenzo Rosasco, Steve Smale, Pierre Tarrès, with help from Yiming Ying and D.-X. Zhou, etc.

Batch vs Online learning

- Batch vs Online learning
- Gradient Descent Method in both settings

- Batch vs Online learning
- Gradient Descent Method in both settings
- How to do regularizations

- Batch vs Online learning
- Gradient Descent Method in both settings
- How to do regularizations
- Lower and Upper Bounds

- Batch vs Online learning
- Gradient Descent Method in both settings
- How to do regularizations
- Lower and Upper Bounds
- Exponential Rates for Plug-in Classifiers

- Batch vs Online learning
- Gradient Descent Method in both settings
- How to do regularizations
- Lower and Upper Bounds
- Exponential Rates for Plug-in Classifiers
- "Random Connections" with Random Projections

- Batch vs Online learning
- Gradient Descent Method in both settings
- How to do regularizations
- Lower and Upper Bounds
- Exponential Rates for Plug-in Classifiers
- "Random Connections" with Random Projections
- Future Directions

Batch vs. Online

Given a sequence of examples $(z_i)_{i\in\mathbb{N}}\in(\mathcal{X}\times\mathcal{Y})^{\infty}$

Batch Learning: truncation set $\mathbf{z}_T = (z_i)_{i=1}^T$, find a mapping

$$\mathbf{z}_T \mapsto f_{\mathbf{z}_T}$$

Online Learning: a Markov Decision Process

$$f_{t+1} = T_t(f_t, z_{t+1})$$

where f_t only depends on z_1, \ldots, z_t .

Why Online?

- Low computational cost: online needs $\geq O(t)$ steps batch typically needs $\geq O(T^3)$ (inverting a matrix)
- Fast convergence: order optimality
- Temporal dependence of samples: *Markov Chain sampling*: large-scale networks *Mixing processes*: exponential-mixing and
 polynomial-mixing *Games*: competitive (non-statistical) analysis

Where we start: Penalizations

$$\min_{f \in \mathcal{H}} \frac{1}{T} \sum_{i=1}^{T} V(y_i, f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$$

where we choose the loss V(y, f(x)):

- $\blacksquare L_2$ loss: for order optimality analysis
- L₁ loss (soft margin): for sparsity, e.g. Basis Pursuit and SVM regression

Where we start: Penalizations

$$\min_{f \in \mathcal{H}} \frac{1}{T} \sum_{i=1}^{T} V(y_i, f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$$

where we choose the loss V(y, f(x)):

- $\blacksquare L_2$ loss: for order optimality analysis
- L₁ loss (soft margin): for sparsity, e.g. Basis Pursuit and SVM regression

and $\mathcal{H} = \mathcal{H}_K$ a reproducing kernel Hilbert space (RKHS).

Why RKHS

 \mathcal{H}_K can be dense in continuous function space $\mathscr{C}(X)$

Why RKHS

- \mathcal{H}_K can be dense in continuous function space $\mathscr{C}(X)$
- **the** gradient takes a simple form in \mathcal{H}_K :

$$\operatorname{grad}_f V = V_f'(y, f(x)) K_x$$

Why RKHS

- \mathcal{H}_K can be dense in continuous function space $\mathscr{C}(X)$
- the gradient takes a simple form in \mathcal{H}_K :

$$\operatorname{grad}_f V = V_f'(y, f(x)) K_x$$

super-fast convergence rate for plug-in classifiers...

Exponential Rates in Classifications

Assume that

- The regression function $f_{\rho} \in \mathcal{H}_{K}$
- f_{ρ} has margin $\gamma > 0$:

$$\mathbf{Prob}\{x \in X : |f_{\rho}(x)| \le \gamma\} = 0$$

Then there is a $f_t:(z_i)_1^t\to\mathscr{H}_K$, s.t.

$$\mathbb{E}R(f_t) - R(f_\rho) \le O(\exp(-c\gamma t^{1/4}))$$

where R(f) is the misclassification error of the *plug-in* classifier sign(f).

What is RKHS

- $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *Mercer* kernel, i.e. a *continuous*, symmetric and positive definite function
- $\mathcal{H}_K = \operatorname{span}\{K_x : x \in \mathcal{X}\}\$ where the closure is w.r.t. the inner product $\langle K_x, K_{x'} \rangle_K = K(x, x')$
- Reproducing property: $f(x) = \langle f, K_x \rangle_K$
- \mathcal{H}_K is a subspace (closed iff finite dimension) in $\mathcal{L}^2_{ox} \cap \mathcal{C}(\mathcal{X})$

Gradient Descent Algorithms

For L_2 loss and $\mathscr{H} = \mathscr{H}_K$,

■ Batch (L_2 Boost):

$$\hat{f}_{t+1} = \hat{f}_t - \eta_t \left[\frac{1}{T} \sum_{i=1}^{T} (\hat{f}_t(x_i) - y_i) K_{x_i} + \lambda_T \hat{f}_t \right]$$

Online:

$$f_{t+1} = f_t - \eta_t [(f_t(x_{t+1}) - y_{t+1}) K_{x_{t+1}} + \lambda_t f_t]$$

Our Theoretical Goal

Convergence of $(\hat{f}_t) \in \mathcal{H}_K$ and $(f_t) \in \mathcal{H}_K$ to the regression function

$$f_{\rho}(x) := \mathbb{E}[y|x] \in \mathscr{L}_{\rho_X}^2$$

and its rates when f_{ρ} takes some sparse form.

Our Theoretical Goal

Convergence of $(\hat{f}_t) \in \mathcal{H}_K$ and $(f_t) \in \mathcal{H}_K$ to the regression function

$$f_{\rho}(x) := \mathbb{E}[y|x] \in \mathscr{L}_{\rho_X}^2$$

and its rates when f_{ρ} takes some sparse form.

But, $\mathcal{L}_{\rho_X}^2$ is too large a space to search, so we need regularizations.

Regularization

Two parameters: λ_t (or λ_T) and η_t :

- $\lambda_T = 0$ and $\eta_t = c$: Landwebter iterations/ L_2 Boost
- $\lambda_T = 0$ and $\eta_t \downarrow 0$: Yao et al. (2005)
- $\lambda_t = \lambda > 0$ and $\eta_t \downarrow 0$: $f_t \rightarrow f_\lambda \neq f_\rho$, Smale and Yao (2005) etc.
- $\lambda_t \downarrow 0$ and $\eta_t \downarrow 0$: $f_t \rightarrow f_\rho$, Yao and Tarrès (2005)
- $\lambda_t = 0$ and $\eta_t \downarrow 0$: $f_t \rightarrow f_\rho$, Ying et al. (2006)

Sparsity of Regression Function

We are going to assume that the regression function is sparse/smooth w.r.t. the following *basis*

- roughly speaking, kernel principle components,
- or more precisely, the eigenfunctions of the covariance operator of $\rho_{\mathcal{X}}$ on \mathcal{H}_K .

Covariance operator

Define an integral operator

$$L_K: \mathscr{L}^2_{\rho_X} \to \mathscr{H}_K$$

$$f \mapsto \int_X f(x') K(x', \cdot) d\rho_X$$

Covariance operator

Define an integral operator

$$L_K: \mathscr{L}^2_{\rho_X} \to \mathscr{H}_K$$

$$f \mapsto \int_X f(x') K(x', \cdot) d\rho_X$$

The covariance operator, is the restriction

$$L_K|_{\mathscr{H}_K}:\mathscr{H}_K\to\mathscr{H}_K, \text{ i.e. } \mathbb{E}_x[\langle\ ,K_x
angle K_x]$$

Covariance operator

Define an integral operator

$$L_K: \mathscr{L}^2_{\rho_X} \to \mathscr{H}_K$$

$$f \mapsto \int_X f(x') K(x', \cdot) d\rho_X$$

- The covariance operator, is the restriction $L_K|_{\mathcal{H}_K}:\mathcal{H}_K\to\mathcal{H}_K, \text{ i.e. } \mathbb{E}_x[\langle\ ,K_x\rangle K_x]$
- $L_K: \mathscr{L}^2_{\rho_X} \to \mathscr{L}^2_{\rho_X} \text{ compact} \Rightarrow \text{orthonormal}$ eigen-system $(\lambda_i, \phi_i)_{i \in \mathbb{N}}, \phi_i \in \mathscr{L}^2_{\rho_X} \cap \mathscr{H}_K$ bi-orthogonal and

$$\sum_{x \in \mathcal{X}} \lambda_i \le \sup_{x \in \mathcal{X}} K(x, x) =: \kappa < \infty$$

Sparsity Assumption

Assume that

$$f_{\rho} = L_K^r g, \quad g \in \mathcal{L}_{\rho_X}^2, r > 0$$

i.e. f_{ρ} has at least *power-law decay* coordinates w.r.t. the basis of eigenfunctions of $L_K: \mathscr{L}^2_{\rho_X} \to \mathscr{L}^2_{\rho_X}$:

$$f_{\rho} = \sum_{i} \lambda_{i}^{r} g_{i} \phi_{i}, \quad \sum_{i} \lambda_{i} < \infty, \sum_{i} g_{i}^{2} < \infty$$

Sparsity Assumption

Assume that

$$f_{\rho} = L_K^r g, \quad g \in \mathcal{L}_{\rho_X}^2, r > 0$$

i.e. f_{ρ} has at least *power-law decay* coordinates w.r.t. the basis of eigenfunctions of $L_K: \mathscr{L}^2_{\rho_X} \to \mathscr{L}^2_{\rho_X}$:

$$f_{\rho} = \sum_{i} \lambda_{i}^{r} g_{i} \phi_{i}, \quad \sum_{i} \lambda_{i} < \infty, \sum_{i} g_{i}^{2} < \infty$$

Note: if K is a stochastic density kernel, L_K^r is used to construct diffusion wavelets by Coifman et al.

Lower Rates in Learning

Let $\mathbb{P}(b,r)$ $(b > 1 \text{ and } r \in (1/2,1])$ be the set of probability measure ρ on $\mathcal{X} \times \mathcal{Y}$, such that:

- the eigenvalues λ_i , arranged in a nonincreasing order, decay at $O(i^{-b})$
- $lacksq f_{
 ho} = L_K^r g$ for some $g \in \mathscr{L}^2_{\rho_X}$
- \blacksquare almost surely $|y| \leq M_{\rho}$

Minimax Lower Rates

[Caponnetto-DeVito'05] The minimax lower rate:

$$\liminf_{t \to \infty} \inf_{\mathbf{z}_t \mapsto f_t} \sup_{\rho \in \mathbb{P}(b,r)} \mathbf{Prob} \left\{ \mathbf{z}_t \in \mathbb{Z}^t : \frac{\|f_t - f_\rho\|_2}{t^{-\frac{rb}{2rb+1}}} > C \right\} = 1$$

where the inf is taken over all algorithms mapping $(z_i)_1^t \mapsto f_t$.

Minimax Lower Rates

[Caponnetto-DeVito'05] The minimax lower rate:

$$\liminf_{t \to \infty} \inf_{\mathbf{z}_t \mapsto f_t} \sup_{\rho \in \mathbb{P}(b,r)} \mathbf{Prob} \left\{ \mathbf{z}_t \in \mathbb{Z}^t : \frac{\|f_t - f_\rho\|_2}{t^{-\frac{rb}{2rb+1}}} > C \right\} = 1$$

where the inf is taken over all algorithms mapping $(z_i)_1^t \mapsto f_t$.

The ρ in $\sup_{\rho \in \mathbb{P}(b,r)}$ depends on sample size t!

Minimax Lower Rates

[Caponnetto-DeVito'05] The minimax lower rate:

$$\liminf_{t \to \infty} \inf_{\mathbf{z}_t \mapsto f_t} \sup_{\rho \in \mathbb{P}(b,r)} \mathbf{Prob} \left\{ \mathbf{z}_t \in \mathbb{Z}^t : \frac{\|f_t - f_\rho\|_2}{t^{-\frac{rb}{2rb+1}}} > C \right\} = 1$$

where the inf is taken over all algorithms mapping $(z_i)_1^t \mapsto f_t$.

- The ρ in $\sup_{\rho \in \mathbb{P}(b,r)}$ depends on sample size t!
- Suitable for online learning, instead of batch learning.

Individual Lower Rates

[Caponnetto-DeVito'05] The individual lower rate: for each B > b,

$$\inf_{((z_i)_1^t \mapsto f_t)_{t \in \mathbb{N}}} \sup_{\rho \in \mathbb{P}(b,r)} \limsup_{t \to \infty} \frac{\|f_t - f_\rho\|_2}{t^{-\frac{rB}{2rB+1}}} > 0.$$

Individual Lower Rates

[Caponnetto-DeVito'05] The individual lower rate: for each B > b,

$$\inf_{((z_i)_1^t \mapsto f_t)_{t \in \mathbb{N}}} \sup_{\rho \in \mathbb{P}(b,r)} \limsup_{t \to \infty} \frac{\|f_t - f_\rho\|_2}{t^{-\frac{rB}{2rB+1}}} > 0.$$

Note: taking b = 1 and B = 1, it suggests eigenvalue independent minimax and individual lower rates:

$$t^{-\frac{r}{2r+1}}$$

Upper Bounds for Batch Learning

Theorem (Yao-Rosasco-Caponnetto'05). Assume that $f_{\rho} = L_K^r g$ (r > 0). There exist λ_T , η_t and an early stopping rule $t^* : \mathbb{N} \to \mathbb{N}$, such that

$$\| \mathbf{f} \|_{r} > 0, \| \hat{f}_{t^*(T)} - f_{\rho} \|_{2} \le O(T^{-\frac{r}{2r+2}})$$

$$\blacksquare$$
 if $r > 1/2$, $\|\hat{f}_{t^*(T)} - f_\rho\|_K \le O(T^{-\frac{r-1/2}{2r+2}})$

In fact, one may choose $\lambda_T=0,$ $\eta_t=\frac{1}{\kappa^2(t+1)^{\theta}}$ and $t^*(T)=$

$$\lceil T^{-\frac{1}{(2r+2)(1-\theta)}} \rceil.$$

Improvements

[Bauer-Pereverzev-Rosasco'06] For $\theta = 0$ and r > 1/2,

$$\|\hat{f}_{t^*(T)} - f_\rho\|_2 \le O(T^{-\frac{r}{2r+1}})$$

which meets the lower rates.

Upper Bounds for Online Learning

Theorem (Tarrès-Yao'06). Assume that $f_{\rho} = L_K^r g$ (r > 0). There exist λ_t and η_t such that

$$\blacksquare$$
 if $r > 0$, $||f_t - f_\rho||_2 \le O(t^{-\max\{\frac{r}{2r+1},1/3\}})$

$$\blacksquare$$
 if $r > 1/2$, $||f_t - f_\rho||_K \le O(t^{-\max\{\frac{r-1/2}{2r+1},1/4\}})$

In fact,
$$\lambda_t \sim O(t^{-1/(2r+1)})$$
 and $\eta_t \sim O(t^{-2r/(2r+1)})$.

Upper Bounds for Online Learning

Theorem (Tarrès-Yao'06). Assume that $f_{\rho} = L_K^r g$ (r > 0). There exist λ_t and η_t such that

$$\blacksquare$$
 if $r > 0$, $||f_t - f_\rho||_2 \le O(t^{-\max\{\frac{r}{2r+1},1/3\}})$

$$if r > 1/2, ||f_t - f_\rho||_K \le O(t^{-\max\{\frac{r-1/2}{2r+1}, 1/4\}})$$

In fact,
$$\lambda_t \sim O(t^{-1/(2r+1)})$$
 and $\eta_t \sim O(t^{-2r/(2r+1)})$.

Note: the upper rates *saturate* when $r \ge 1$ and $r \ge 3/2!$

Breaking Saturation

It is expected that with $\lambda_t = 0$ and suitable choices $\eta_t \to 0$ and $\sum_t \eta_t = \infty$, one has

$$||f_t - f_\rho||_2 \le O(t^{-\frac{r}{2r+1}})$$

for all r > 0.

Breaking Saturation

It is expected that with $\lambda_t = 0$ and suitable choices $\eta_t \to 0$ and $\sum_t \eta_t = \infty$, one has

$$||f_t - f_\rho||_2 \le O(t^{-\frac{r}{2r+1}})$$

for all r > 0.

A Positive Answer: Ying et al. (2006) give results suggesting its truth.

Plug-in Classifiers: Exponential Rates

Taking r = 1/2 or equivalently assuming that $f_{\rho} \in \mathcal{H}_K$, combining a recent result by Audibert & Tsybakov'05,

$$\mathbb{E}R(f) - R(f_{\rho}) \le \rho_X(x : |f(x) - f_{\rho}(x)| \ge \gamma)$$

we obtain that for online learning

$$\mathbb{E}R(f_t) - R(f_\rho) \le O(\exp(-c\gamma t^{1/4}))$$

where f_{ρ} has margin γ . Similar holds for batch learning.

Given $\mathbf{x}_T \in \mathcal{X}^T$, define a sampling operator on \mathcal{H}_K

$$S_{\mathbf{x}_T} : \mathscr{H}_K \to l_2(\mathbf{x}_T)$$

$$f \mapsto (f(x_i))_1^T = (\langle f, K_{x_i} \rangle_K)_1^T$$

Given $\mathbf{x}_T \in \mathcal{X}^T$, define a sampling operator on \mathcal{H}_K

$$S_{\mathbf{x}_T} : \mathscr{H}_K \to l_2(\mathbf{x}_T)$$

$$f \mapsto (f(x_i))_1^T = (\langle f, K_{x_i} \rangle_K)_1^T$$

 $S_{\mathbf{x}_T} f$ takes T random measurements/projections of f.

Given $\mathbf{x}_T \in \mathcal{X}^T$, define a sampling operator on \mathcal{H}_K

$$S_{\mathbf{x}_T} : \mathscr{H}_K \to l_2(\mathbf{x}_T)$$

$$f \mapsto (f(x_i))_1^T = (\langle f, K_{x_i} \rangle_K)_1^T$$

- $S_{\mathbf{x}_T} f$ takes T random measurements/projections of f.
- Adjoint operator $S_{\mathbf{x}_T}^* \mathbf{y} = \frac{1}{T} \sum_{i=1}^T y_i K_{x_i}$.

Given $\mathbf{x}_T \in \mathcal{X}^T$, define a sampling operator on \mathcal{H}_K

$$S_{\mathbf{x}_T} : \mathscr{H}_K \to l_2(\mathbf{x}_T)$$

$$f \mapsto (f(x_i))_1^T = (\langle f, K_{x_i} \rangle_K)_1^T$$

- $S_{\mathbf{x}_T} f$ takes T random measurements/projections of f.
- Adjoint operator $S_{\mathbf{x}_T}^* \mathbf{y} = \frac{1}{T} \sum_{i=1}^T y_i K_{x_i}$.
- $S_{\mathbf{x}_T} S_{\mathbf{x}_T}^*$ is the Gram matrix $(K(x_i, x_j))^{T \times T}$.

Compressed Sensing

- -f is sparse w.r.t. certain basis/frames (unknown)
- $S_{\mathbf{x}_T}$ takes some random measurements of f such that the Uniform Uncertainty Principle holds, or equivalently, for small enough T_0 and all $T \leq T_0$, $S_{\mathbf{x}_T}S_{\mathbf{x}_T}^*$ has a *uniform lower bound* (depending on the sparsity of f) on the smallest eigenvalue.

Compressed Sensing

- $\blacksquare f$ is sparse w.r.t. certain basis/frames (unknown)
- $S_{\mathbf{x}_T}$ takes some random measurements of f such that the Uniform Uncertainty Principle holds, or equivalently, for small enough T_0 and all $T \leq T_0$, $S_{\mathbf{x}_T}S_{\mathbf{x}_T}^*$ has a *uniform lower bound* (depending on the sparsity of f) on the smallest eigenvalue.

However in Learning, since

$$\mathbb{E}[S_{\mathbf{x}_T}^* S_{\mathbf{x}_T}] = L_K|_{\mathscr{H}_K}$$

where L_K is a compact operator with eigenvalues convergent to 0, NO lower bound!

Learning vs. Compressed Sensing

To control the *condition number* (or smallest eigenvalue) of the Gram matrix $S_{\mathbf{x}_T} S_{\mathbf{x}_T}^*$:

- Learning uses regularization
- Scott & Nowak'05 uses Vapnik's structural risk minimization
- Donoho, Candès & Tao, use Random Matrix Theory

Learning vs. Compressed Sensing

To control the *condition number* (or smallest eigenvalue) of the Gram matrix $S_{\mathbf{x}_T} S_{\mathbf{x}_T}^*$:

- Learning uses regularization
- Scott & Nowak'05 uses Vapnik's structural risk minimization
- Donoho, Candès & Tao, use Random Matrix Theory

Moreover, there is another kind of "condition number" in machine learning:

margin

Margin (normalized)

Definitions.

 $f \in \mathcal{H}_K$ has margin $\gamma > 0$, if

$$\rho_X\{x \in X : |f(x)| \ge \gamma ||f|| ||K_x||\} = 1$$

 $f \in \mathcal{H}_K$ has margin $\gamma > 0$ with error $\epsilon \in [0, 1]$, if

$$\rho_X \{ x \in X : |f(x)| \ge \gamma ||f|| ||K_x|| \} \ge 1 - \epsilon$$

Margin and Random Projections

[Balcan-Blum-Vempala'05] If $f \in \mathcal{H}_K$ has margin γ , then with i.i.d. examples of number

$$t \ge \frac{8}{\epsilon} \max \left\{ \frac{1}{\gamma^2}, \ln \frac{1}{\delta} \right\}$$

there is a f_t such that with confidence $1 - \delta$, f_t has margin $\gamma/2$ with error ϵ .

Margin and Random Projections

[Balcan-Blum-Vempala'05] If $f \in \mathcal{H}_K$ has margin γ , then with i.i.d. examples of number

$$t \ge \frac{8}{\epsilon} \max \left\{ \frac{1}{\gamma^2}, \ln \frac{1}{\delta} \right\}$$

there is a f_t such that with confidence $1 - \delta$, f_t has margin $\gamma/2$ with error ϵ .

In fact, f_t can be realized by the Orthogonal Projections on to span $\{K_i : 1 \le i \le t\}$.

Future Directions

- Step-Size Adaptation
 Cross-Validation
 Averaging process acceleration
 Stochastic Meta-Descent (SMD)
- Dependent SamplingMarkov Chain samplingMixing process
- Various aspects of Random Projections