

Cryptography and System Security

Advanced Encryption
Standard (AES)
Symmetric and
Asymmetric key
Cryptography and Key
management

Sejal Chopra
Assistant Professor - Dept. of Computer Engineering
Don Bosco Institute of Technology, Mumbai

Contents to be discussed

- AES Structure
- AES Parameters
- AES encryption and decryption
- AES Transformation functions
- AES Key Scheduling
- Comparison of AES and DES

AES Structure

No. of rounds	Key size (in bits)
10	128
12	192
14	256

AES Parameters

AES Parameters

	AES-128	AES-192	AES-256
Key Size	128	192	256
Plaintext Size	128	128	128
Number of rounds	10	12	14
Round Key Size	128	128	128

AES Encryption and decryption

AES Encryption and decryption

AES Encryption and decryption

Key Expansion

 Round keys are derived from the cipher key using Rijndael's key schedule

Initial Round

 AddRoundKey: Each byte of the state is combined with the round key using bitwise xor

Rounds

• SubBytes : non-linear substitution step

ShiftRows : transposition step

• MixColumns : mixing operation of each column.

AddRoundKey

Final Round

SubBytes

ShiftRows

AddRoundKey

No MixColumns

AES Transformation functions

- ★ Substitute Bytes
- ★ Shift Rows
- ★ Mix Columns
- ★ Add Round Key

Substitute byte Formation

Changing Plain text to State

Substitute byte Formation

- A simple substitution of each byte
 - provide a confusion
- Uses one S-box of 16x16 bytes containing a permutation of all 256 8-bit values
- Each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 - eg. byte {95} is replaced by byte in row 9 column 5
 - which has value {2A}
- The SubBytes operation involves 16 independent byte-to-byte transformations.

Substitute byte Formation

			y														
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	Dθ	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DI
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	SB	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	EI	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DI
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	BO	54	BB	16

Shift Rows and Mix Columns

ShiftRows and MixColumns provide diffusion to the cipher

Each column is processed separately

Each byte is replaced by a value dependent on all 4 bytes in the column

- Ist row is unchanged
- 2nd row does I byte circular shift to left
- 3rd row does 2 byte circular shift to left
- 4th row does 3 byte circular shift to left

Shift Rows and Mix Columns

New matrix

Constant matrix

Old matrix

The MixColumns transformation operates at the column level; it transforms each column of the state to a new column.

Add Round Key operation

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	s _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

Wi	W _{i+1}	W _{i+2}	W _{i+3}
----	------------------	------------------	------------------

s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

AES Key Scheduling

takes 128-bits (16-bytes) key and expands into array of 44
 32-bit words

Round		8	Words	
Pre-round	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
1	\mathbf{w}_4	\mathbf{w}_5	\mathbf{w}_6	\mathbf{w}_7
2	\mathbf{w}_8	\mathbf{w}_9	\mathbf{w}_{10}	\mathbf{w}_{11}
N_r	\mathbf{w}_{4N_r}	\mathbf{w}_{4N_r+1}	\mathbf{w}_{4N_r+2}	\mathbf{w}_{4N_r+3}

AES Key Expansion

AES Key Substitution box

			у														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	CO
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	Dθ	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DE
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	SB	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	EI	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	BO	54	BB	16

AES Key Round constant

- RCON is a word in which the three rightmost bytes are zero
- It is different for each round and defined as:

$$RCon[j] = (RCon[j],0,0,0)$$

where $RCon[1] = 1$, $RCon[j] = 2 * RCon[j-1]$

Note: Initial Transformation takes (00000000)₁₆ as the RC.

Round	Constant (RCon)	Round	Constant (RCon)
1	(<u>01</u> 00 00 00) ₁₆	6	(<u>20</u> 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(10 00 00 00) ₁₆	10	(<u>36</u> 00 00 00) ₁₆

Comparison of AES and DES

Basis For Comparison	DES (Data Encryption Standard)	AES (Advanced Encryption Standard)
Basic	The data block in DES is split into two halves.	The entire block in AES is processed as a single matrix.
Principle	It works on Feistel Cipher structure.	The substitution and permutation principles are used in AES.
Year of Creation	DES (Data Encryption Standard) creation year is 1976.	AES (Advanced Encryption Standard) creation year is 1999.
Designed By	DES (Data Encryption Standard) was designed by IBM.	AES (Advanced Encryption Standard) was designed by Vincent Rijmen and Joan Daeman.
Rounds	16 rounds	10 rounds for 128-bit algo 12 rounds for 192-bit algo 14 rounds for 256-bit algo
Speed	DES is slower than AES.	AES is faster than DES.
Security	Because DES uses a smaller key, it is <i>less secure</i> .	Because AES uses a large secret key, it is <i>more secure</i> .
Key size	In comparison to AES, the key size of DES is lower.	In comparison to DES, AES has a larger key size,
Rounds Names	Expansion Permutation, Xor, S-box, P-box, Xor and Swap.	Subbytes, Shiftrow, Mix columns, Add roundkeys.
Plaintext	Plaintext is of 64 bits.	Plaintext can be of 128,192, or 256 bits.
Identified Attacks	Linear crypt-analysis, Differential crypt-analysis, and Brute-force.	There is no identified attack.
Block Size	128 bits	64 bits
Originate From	DES originate from the Lucifer cipher.	AES originate from the square cipher.

Key Differences Between DES and AES

References

- William Stallings, "Cryptography and Network Security, Principles and Practice", 6th Edition, Pearson Education, March 2013
- Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill

THANK YOU