MIDTERM EXAM 2023 FALL

Write your answers with detailed steps in the provided answer sheets. Partial answers can get partial credits.

Question 1 (20 points). Let $A, B \subset \mathbb{R}^n$. Suppose that $A \subset B$, and A is measurable. If $m(A) = m_*(B) < \infty$, then show that B is also measurable.

Question 2 (20 points). Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^d and that $\sum_{k=1}^{\infty} m(E_k) < \infty$. Let

 $E = \{ x \in \mathbb{R}^d \mid x \in E_k \text{ for infinitely many } k \}.$

Show that m(E) = 0.

Question 3 (20 points). Suppose that f is integrable on \mathbb{R}^d . Then for $\epsilon > 0$:

- (1) There exists a set of finite measure \underline{B} such that $\int_{B^c} |f| < \epsilon$.
- (2) There is a $\delta > 0$ such that $\int_{E} |f| < \epsilon$ whenever $m(E) < \delta$. (Hint: for (2), consider $E_N = \{x \mid f(x) < N\}$ and $f \cdot \chi_{E_N}$.)

Question 4 (20 points). Let f_i be measurable functions and $E \subset \mathbb{R}^n$ is a measurable set. Assume that $\operatorname{Supp} f_i \subset E$ and $\lim_{i \to \infty} f_i = \widehat{f}$ a.e.. Prove the following claims or give counterexamples:

- (1) If $m(E) < \infty$, then $\lim_{i \to \infty} \int f_i = \int f$.
- (2) If there exists $M \in \mathbb{N}$ such that $|f_i| < M$, then $\lim_{i \to \infty} \int f_i = \int f$.

Question 5 (20 points). Show that if f is integrable on \mathbb{R}^d and $\int_E f \geq 0$ for every measurable set E, then $f \geq 0$ a.e. x.