### 0.1. Lección 8

#### 0.1.1. Propiedades artiméticas de los límites.

**Proposición 1.** Si  $\lim_{x\to a} f(x) = L$  y  $\lim_{x\to a} g(x) = M$  entonces:

- 1.  $\lim_{x \to a} f(x) + g(x) = L + M$ .
- 2.  $\lim_{x \to a} f(x)g(x) = LM.$
- 3. Si  $M \neq 0$   $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$ .

**Observación 2.** Todas las propiedades aritméticas se siguen verificando si consideramos límites laterales  $\lim_{x\to a^+} f(x)$ ,  $\lim_{x\to a^-} f(x)$ .

**Observación:** Utilizando el resultado  $\lim_{x\to a} x = a$  y aplicando las propiedades anteriores se sigue que en el caso de funciones f(x) que sean polinomios, o más generalmente funciones racionales, se tiene que  $\lim_{x\to a} f(x) = f(a)$  siempre que a pertenezca al dominio. Más generalmente,

⊳ Todos los límites de las funciones elementales: racionales, trigonométricas, exponenciales, logarítmicas, existen en los puntos del dominio de la función.

#### 0.1.2. Composición de funciones

(Composición de funciones:) Sea  $f: A \to B$  y  $g: B \to C$ , de modo que  $Im(f) \subset B$  definimos la función composición de f con g, denotada por  $g \circ f$  a la función

$$(g \circ f)(x) = g(f(x)).$$

**Observación 3.** Nótese que para que la composición de f con g esté bien definida  $Im(f) \subset Dom(g)$ .

**Observación 4.** En general no es cierto que  $f \circ g = g \circ f$ . Para verlo, consideramos el siguiente ejemplo  $f(x) = x^2$  y  $g(x) = \operatorname{sen} x$ ; es claro que  $(g \circ f)(x) = g(f(x)) = \operatorname{sen} x^2$  y  $(f \circ g)(x) = f(g(x)) = \operatorname{sen}^2 x$  y no coinciden.



 $\boxtimes$  Calcula  $f\circ g$ y  $g\circ f$ si:

$$f(x) = \begin{cases} x \ si \ x \ge 0 \\ 0; si \ x < 0 \end{cases} \qquad g(x) = \begin{cases} 0 \ si \ x \ge 0 \\ -x^2; si \ x < 0 \end{cases}$$

Sobre la composición de funciones tenemos el siguiente resultado:

**Proposición 5.** Sean f, g funciones, f definida en  $(a - r, a + r) \setminus \{a\}$  y g definida en  $(L - s, L + s) \setminus \{L\}$  y de modo que  $f(x) \neq L$  para todo x. Si  $\lim_{x \to a} f(x) = L$  y  $\lim_{x \to L} g(x) = M$  entonces  $\lim_{x \to a} g \circ f(x) = M$ .

#### 0.1.3. Límites infinitos y en el infinito.

En esta sección analizaremos los límites infinitos.

Sea f definida en  $(a-r, a+r) \setminus \{a\}$ .

1. Diremos que  $\lim_{x\to a} f(x) = \infty$  si para todo R>0 existe  $\delta>0$  tal que si  $0<|x-a|<\delta$  se tiene que

$$f(x) > R$$
.

2. Diremos que  $\lim_{x\to a} f(x) = \infty$  si  $\lim_{x\to a} -f(x) = \infty$ , es decir, si para todo R<0 existe  $\delta>0$  tal que si  $0<|x-a|<\delta$  se tiene que

Interpretación gráfica: Dado R > 0, consideramos la recta horizontal y = R y tenemos que encontrar  $\delta > 0$  de modo que si  $x \in (a - \delta, a + \delta) \setminus \{a\}$  se tiene que la gráfica de función en dicho conjunto tiene que estar contenido en el semiplano superior limitado por la recta horizontal.

Observación 6. De forma análoga se definen

$$\lim_{x \to a^+} f(x) = \infty (o - \infty, \lim_{x \to a^-} f(x) = \infty (o - \infty)$$

 $ightharpoonup El resultado que afirma que si <math>\lim_{x \to a^+} f(x) = L \neq M = \lim_{x \to a^-} f(x)$  sigue siendo cierto cuando estos límites son  $\infty$  o  $-\infty$ .

Por lo tanto: No existe  $\lim_{x\to 0} \frac{1}{x}$  Esto es debido a que:

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty\neq -\infty=\lim_{x\to 0^-}\frac{1}{x}.$$

# **0.1.4.** Indeterminaciones del tipo $\left[\frac{K}{0}\right]$ , $K \neq 0$

Pregunta: Supongamos que  $\lim_{x\to 0} f(x) = 0$ ,  $\xi$  es cierto que  $\lim_{x\to 0} \frac{1}{f(x)}$ ?

Cuando consideramos  $\lim_{x\to a} \frac{1}{f(x)}$  con  $\lim_{x\to a} f(x) = 0$  no podemos afirmar, en general, que dicho límite sea  $\infty$  o  $-\infty$ . Por ejemplo, la función  $f(x) = \frac{1}{x}$  no tiene límite  $\infty$  ni  $-\infty$  en 0.

\* Busca el error en la siguiente demostración:

$$\lim_{x \to 0} f(x) = 0 \Rightarrow \lim_{x \to 0} \frac{1}{f(x)} = \infty???$$

Suponemos que  $\lim_{x\to 0} f(x) = 0$ : dado  $\epsilon > 0$  existe  $\delta > 0$  tal que si  $|x| < \delta$  entonces  $|f(x)| < \epsilon$ .

Tenemos que probar que dado R>0 existe  $\delta>0$  tal que si  $0<|x|<\delta$  entonces

$$\frac{1}{f(x)} > R \Leftrightarrow f(x) < \frac{1}{R}$$

Eligiendo  $\epsilon = \frac{1}{R} > 0$  existirá  $\delta > 0$  tal que si  $0 < |x| < \delta$  se tiene que

$$f(x) < \frac{1}{R} \Rightarrow \frac{1}{f(x)} > R.$$

5

# **0.1.5.** Límites del tipo $[\frac{1}{0^+}], [\frac{1}{0^-}]$

.

Proposición 7. Supongamos que

- 1.  $\lim_{x\to a} f(x) = 0$
- 2. existe algún r > 0 tal que f(x) > 0 para todo  $x \in (a r, a + r) \setminus \{a\}$ .

Entonces,

$$\lim_{x \to 0} \frac{1}{f(x)} = \infty.$$

Demostración. Partimos de que  $\lim_{x\to a} f(x) = 0$ , es decir, para todo  $\epsilon > 0$  existe  $\delta > 0$  tal que si  $0 < |x-a| < \delta$  entonces  $|f(x)| < \epsilon$ . Puesto que f(x) > 0 si  $x \in (a-r,a+r)$ , eligiendo  $\delta < r$  podemos suponer que  $0 < f(x) < \epsilon$ .

Sea ahora R > 0, tenemos que encontrar  $\delta > 0$  tal que si  $0 < |x - a| < \delta$  se tenga que f(x) > R. Ahora bien, siempre que consideremos  $\delta < r$  sabemos que f(x) > 0 por lo que

$$f(x) > R \Longleftrightarrow \frac{1}{f(x)} < \frac{1}{R}$$
 [todos positivos]

Por lo tanto, basta aplicar la definición de  $\lim_{x\to a} f(x) = 0$  a  $\epsilon = \frac{1}{R} > 0$  y para dicho  $\epsilon > 0$  tendremos  $\delta > 0$  (que podemos elegir menor que r) de modo que  $f(x) < \frac{1}{R}$  y por tanto f(x) > R.

Observación 8. De forma análoga, si  $\lim_{x\to a} f(x) = 0$  y f(x) < 0 en algún intervalo  $(a-r,a+r)\setminus\{a\}$  con r>0 se tiene que  $\lim_{x\to 0}\frac{1}{f(x)}=-\infty$ .

 $\boxtimes$  Estudia si existe  $\lim_{x\to 0} \frac{e^{1/x}}{1+e^{1/x}}$ 

#### 0.1.6. Límite cuando x tiende a infinito.

Sea f definida en  $[r, \infty)$  para algún  $r \in \mathbb{R}$ . Diremos que  $\lim_{x \to \infty} f(x) = L \in \mathbb{R}$  si para todo  $\epsilon > 0$  existe R > 0 tal que para todo x > R se tiene que

$$|f(x) - L| < \epsilon.$$

De forma análoga se define  $\lim_{x \to -\infty} f(x) = L, L \in \mathbb{R}$ .

Interpretación gráfica: Dado  $\epsilon > 0$ , consideramos la banda horizontal limitada por las rectas  $y = L - \epsilon$  y  $y = L + \epsilon$ ; podemos encontrar un R > 0 tal que la gráfica de la función en  $[R, \infty)$  queda contenida en la banda horizontal. Nótese que  $\left[\frac{K}{\infty}\right] = 0$  en el siguiente sentido:

**Proposición 9.** Supongamos que  $\lim_{x\to a} f(x) = \infty$ , entonces  $\lim_{x\to \infty} \frac{1}{f(x)} = 0$ .

\*\* Prueba utilizando la definición de límite la proposición anterior.

#### 0.1.7. Asintótas horizontales, verticales y oblícuas.

Recordamos las nociones de asíntotas:

- 1. Diremos que f tiene en x=a una as intota vertical si alguno de los límites laterates de f en a es  $\infty$  o  $-\infty$ , es decir,  $\lim_{x\to a^+} f(x) = L$  o  $\lim_{x\to a^+} f(x) = L$  para  $L=\infty$  o  $-\infty$ .
- 2. Diremos que y=L es una asíntota horizontal de f si  $\lim_{x\to\infty} f(x)=L$  o  $\lim_{x\to-\infty} f(x)=L$ .
- 3. Diremos que la recta y = Ax + B (con  $A \neq 0$ ) es una asíntota oblícua de f (en  $\infty$  o  $-\infty$ ) si

$$\lim_{x \to \infty} f(x) - (Ax + B) = 0 \text{ o } \lim_{x \to -\infty} f(x) - (Ax + B) = 0$$

Esto ocurre cuando  $\lim_{x\to\infty} \frac{f(x)}{x} = A$  y  $\lim_{x\to\infty} f(x) - Ax = B$ , y análogamente en  $-\infty$ .

### 0.2. Cálculo práctico de límites: Indeterminaciones.

#### 0.2.1. Indeterminaciones del tipo $\infty - \infty$

Algunas indeterminaciones del tipo  $\infty - \infty$ , es decir,  $\lim_{x\to a} f(x) - g(x)$  en las que aparecen raíces cuadradas se resuelven multiplicando y dividiendo por la expresión por g(x) + g(x) para convertirla en una indeterminación de tipo  $\frac{\infty}{\infty}$ . Veamos ejemplos:

$$\lim_{x \to \infty} \sqrt{x^2 + x} - \sqrt{x^2 + x} = \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} - \sqrt{x^2 + 2})(\sqrt{x^2 + x} + \sqrt{x^2 + 2})}{\sqrt{x^2 + x} + \sqrt{x^2 + 2}} = \lim_{x \to \infty} \frac{x^2 + x - (x^2 + 2)}{\sqrt{x^2 + x} + \sqrt{x^2 + 2}} = \lim_{x \to \infty} \frac{x - 2}{\sqrt{x^2 + x} + \sqrt{x^2 + 2}} = \frac{1}{2}.$$

# **0.2.2.** Indeterminación del tipo $\frac{\infty}{\infty}, \frac{0}{0}$ .

En los casos  $\left[\frac{0}{0}\right]$ ,  $\left[\frac{\infty}{\infty}\right]$  algunas de ellas se pueden resolver pasando al límite cuando  $x \to \infty$  y utilizando técnicas como la regla de L'Hopital (en lecciones posteriores se justificará el uso de esta regla).

 $\triangleright$  La indeterminación  $[0.\infty]$  se puede convertir en una del tipo  $[\frac{0}{0}], [\frac{\infty}{\infty}]$  manipulando la expresión. Vemos algunos ejemplos:

Ejemplo 10. Vemos dos ejemplos de indeterminaciones de este tipo:

1. Para calcular  $\lim_{x\to\infty}\frac{\log(x)}{x}$  que presenta una indeterminación del tipo  $\frac{\infty}{\infty}$ , utilizamos L'Hopital:

$$\lim_{x \to \infty} \frac{\log(x)}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0,$$

2. Para calcular  $\lim_{x\to\infty}x\sin(\frac{1}{x})$  que presenta una indeterminación del tipo  $\infty$  0 podemos convertirla en una indeterminación de tipo  $\frac{0}{0}$  como  $\lim_{x\to\infty}\frac{\sin(\frac{1}{x})}{1/x}$  y utilizar la regla de L'Hopital.

## **0.2.3.** Indeterminaciones $[0^0]$ , $[\infty^0]$ .

 $\triangleright$  En el estudio de los límits del tipo  $\lim_{x\to a}{(f(x))^{g(x)}}$  con f(x)>0, utilizando la identidad  $x=e^{\log(x)}$  cuando x>0, :

$$\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} g(x) \log(f(x))$$

puede resolverse la indeteminación. El caso más sencillo sería si a>0 :

$$\lim_{x \to \infty} a^x = \begin{cases} 0 \text{ si } 0 < a < 1 \\ 1 \text{ si } a = 1 \\ \infty \text{ si } a > 1 \end{cases}$$

 $> Indeterminación \ del \ tipo \ \infty^0 : \ \mathrm{Del \ tipo \ } \lim_{x \to a} \left( f(x) \right)^{g(x)} \ \mathrm{con \ } \lim_{x \to a} f(x) = \infty \ \mathrm{y \ } \lim_{x \to a} g(x) = 0.$ 

$$\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} g(x) \log(f(x))$$

donde  $\lim_{x\to a}g(x)\log(f(x))$  presenta una indeterminación del tipo  $[0.\infty]$  tratada anteriormente.

Por ejemplo:

$$\lim_{x \to \infty} x^{1/x}$$

Se tiene que:

$$\lim_{x \to \infty} x^{1/x} = e^{\lim_{x \to \infty} \frac{1}{x} \log x} = e^0 = 1$$

 $\triangleright$  Indeterminación del tipo  $0^0$ 

Son las del tipo:  $\lim_{x\to a} (f(x))^{g(x)}$  con  $\lim_{x\to a} f(x) = 0$  y  $\lim_{x\to a} g(x) = 0$ . Utilizando la identidad  $x = e^{\log(x)}$  cuando x > 0, tenemos que:

$$\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} g(x) \log(f(x))$$

donde  $\lim_{x\to a}g(x)\log(f(x))$  presenta una indeterminación del tipo  $0.\infty$  tratada anteriormente. Vemos un ejemplo:

Ejemplo 11. Calculemos  $\lim_{x\to\infty} \left(\frac{1}{x}\right)^{\frac{1}{x^2+5}}$  que presenta una indeterminación de tipo  $0^0$ .

$$\lim_{x \to \infty} \left(\frac{1}{x}\right)^{\frac{1}{x^2 + 5}} = e^{\lim_{x \to \infty} \frac{1}{x^2 + 5} \log(\frac{1}{x})} = e^{\lim_{x \to \infty} \frac{-\log(x)}{x^2 + 5}} = e^0 = 1$$

puesto que lím $_{x\to\infty} \frac{-\log(x)}{x^2+5} = 0$  ya que utilizando L'Hopital:

$$\lim_{x \to \infty} \frac{-\log(x)}{x^2 + 5} = \lim_{x \to \infty} \frac{-1}{x(2x)} = 0.$$

#### 0.2.4. Indeterminación del tipo $1^{\infty}$ .

Una de las formas de definir el número e es como

$$e = \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x.$$

Para la resolución de esta indeterminación tenemos la siguiente fórmula que es muy útil.

**Proposición 12.** Sea f(x) una función tal que  $\lim_{x\to a} f(x) = 1$  y  $\lim_{x\to a} g(x) = \infty$ , entonces:

$$\left| \lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} g(x)(f(x) - 1) \right|$$

 $\boxtimes$  Calcula  $a \in \mathbb{R}$  para que

$$\lim_{x \to \infty} \left( \frac{x+a}{x} \right)^{\frac{x}{2}} = 6$$

 $\boxtimes$  En cada uno de los límites siguientes indica el tipo de indeterminación y calcula el límite, si existe.

1. 
$$\lim_{x\to\infty} \left( \tan(\frac{\pi}{4} + \frac{1}{x}) \right)^{3x}$$

2. 
$$\label{eq:sen} \lim x \to \infty \left( \mathrm{sen}(\frac{\pi}{2} + \frac{1}{x}) \right)^{1/x}$$

3. 
$$\lim_{x \to \infty} \left( \log(1 + \frac{1}{x}) + 1 \right)^{x+3}$$

4. 
$$\lim_{x\to\infty} \left(\frac{x^2+x}{x+1}\right)^{\frac{x+3}{3x^2+2}}$$

5. 
$$\lim_{x \to \infty} \left( \frac{x^2 + x}{x+1} \right)^{\frac{3x^2 + 2}{x+3}}$$

6. 
$$\lim_{x \to \infty} \left( \frac{x^2 + x}{x + 1} \right)^{\frac{x+3}{3x+2}}$$