(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 21.04.2004 Bulletin 2004/17

(51) Int Cl.7: H01L 33/00

- (21) Application number: 03103767.4
- (22) Date of filing: 13.10.2003
- (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Designated Extension States: AL LT LV MK
- (30) Priority: 14.10.2002 US 272150
- (71) Applicant: Lumlleds Lighting U.S., LLC San Jose, California 95131 (US) Designated Contracting States: DE
- (72) inventors:

(54)

- Mueller, Gerd, O. c/o Lumileds Lighting, U.S., LLC San Jose, CA 95131 (US)
- Phosphor converted light emitting device
- A device includes a semiconductor light emitting device and a wavelength-converting material comprising Sr-SiON:Eu2+. The Sr-SiON:Eu2+ wavelengthconverting material absorbs light emitted by the light emitting device and emits light of a longer wavelength. The Sr-SiON:Eu2+ wavelength-converting material may be combined with other wavelength-converting materials to make white light. In some embodiments, the Sr-SION:Eu2+ wavelength-converting layer is combined

- · Mueller-Mach.Regina.B. c/o Lumileds Light.U.S.,LLC San Jose, CA 95131 (US) · Schmidt, Peter, J. c/o Lumileds Lighting, U.S., LLC
- San Jose, CA 95131 (US) · Juestel.Thomas.
- c/o Lumileds Lighting, U.S.,LLC San Jose, CA 95131 (US)
- . Sorce, Gerry, c/o Lumileds Lighting, U.S., LLC San Jose, CA 95131 (US)
- (74) Representative: van der Veer, Johannis Leendert Philips Intellectual Property & Standards, Prof. Holstlaan 6 5656 AA Eindhoven (NL)

with a red-emitting wavelength-converting layer and a blue light emitting device to generate emission in colors, which are not achievable by only mixing primary and secondary wavelengths. In some embodiments, the Sr-SiON:Eu2+ wavelength-converting layer is combined with a red-emitting wavelength-converting layer, a blueemitting wavelength-converting layer, and a UV light emitting device.

Description

FIELD OF INVENTION

5 [0001] The invention relates generally to wavelength-converted light emitting devices.

DESCRIPTION OF RELATED ART

[9002] Light emitting devices including light emitting diodes are well known solid state devices that can generate light having a peak wavelength in a specific region of the light spectrum. LEDs are spixely used as illuminators, indicators, and displays. LEDs based on the III-nitride materials system have been developed that can efficiently entiting in a relatively narrow band around a peak wavelength in the blue to UV range of the spectrum. Since blue -UV light has a higher photo energy relative to other colors of visible light, such light generated by III-litride LEDs can be readily converted to produce light having a longer wavelength. It is very leaf to the visible light several properties of the light having a longer peak wavelength if secondary light? can be converted into light having a longer peak wavelength if secondary light? using a process known as luminescence. The luminescence process involves absorbing the primary light? In the peak wavelength. Which sociles the stoms of the phosphor material, which sociles the stoms of the phosphor material which sociles the stoms of the phosphor material which sociles the stoms of the phosphor material light having a particular peak wavelength. Needed in the art as wavelength around the particular peak wavelength. Needed in the art as wavelength converters) that efficiently convert light in desired wavelength arranges and can withstand the same operating temperatures as the III-little light mitting light in desired wavelength arranges and can withstand the same operating temperatures as the III-little light mitting

SUMMARY

40

[0003] In accordance with embodiments of the invention, a device includes a semiconductor light emitting device and a wavelength-converting material comprising Sr-SiONEu2*. The Sr-SiONEu2* wavelength-converting material absorbs light emitted by the light emitting device and emits light of a longer wavelength. In some embodiments, the Sr-SiONEu2* wavelength-converting material is combined with a red-emitting wavelength-converting material and a

blue light emitting device. In some embodiments, the Sr-SiON:Eu²+ wavelength-converter is combined with a redemitting wavelength-converter, a blue-emitting wavelength-converter, and a UV light emitting device. [0004] The use of Sr-SiON:Eu²* as a green wavelength-converting material offers several advantages including high

themical and thermal stability, enhanced color rendering in white devices due to a relatively wide emission band, and potentially inexpensive synthesis.

[0005] The designator Sr-SiON:Eu2+ is used here and in the following for materials of the general formula

$$(Sr_{1-a-b}Ca_bBa_c)Si_xN_yO_z$$
: Eu_a (a = 0.002 - 0.2, b = 0.0 - 0.25, c = 0.0 - 0.25, x = 1.5 - 2.5, y = 1.5 - 2.5, z = 1.5 - 2.5).

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Fig. 1 Illustrates the excitation and emission spectra of Sr-SiON:Eu2+.

[0007] Fig. 2 illustrates the emission intensity as a function of temperature for Sr-SiON:Eu²⁺, relative to the intensity at room temperature.

[0008] Fig. 3 illustrates an embodiment of a light emitting device incorporating a light emitting diode and Sr-SiON: Eu²⁺.

[0009] Fig. 4 illustrates an alternative embodiment of a light emitting device incorporating a light emitting diode and Sr-SiON:Eu²⁺.

[0010] Fig. 5-7 illustrate calculated emission spectra of several white devices including SiON: Eu²⁺; showing emission in arbitrary units versus wavelength in nanometers.

[0011] Fig. 8 illustrates an observed emission spectrum of a white device including a blue light emitting diode, Sr-SION:Eu²⁺ and Sr₂Si_SN₈:Eu²⁺.

DETAILED DESCRIPTION

[0012] In accordance with embodiments of the invention, a light source includes a luminescent material for emitting

green light. The luminescent material is Eu^{2+} activated Sr-SiON having the formula $(Sr_{1+2} b C_{0_2} Be_c) Si_k N_y O_z \cdot Eu_k$ (a = 0.002 · 0.2, b = 0.0 · 0.25, $c = 0.0 \cdot 0.25$, $c = 1.5 \cdot 2.5$, $y = 1.5 \cdot 2.5$) and excitable by light with a wavelength randing from UV through blue. Fig. It illustrates the emission and excitation spectrum of Sr-SiON-Eu in the second of the contraction of the second of the contraction of the contraction of the second of the contraction of

[0013] Sr-SION-ELP* has several advantages. Sr-SION-ELP* has low thormal quenching and is stable at high temperature, proceemiting is use with light sources that operated thigh temperatures. For example, at 170°C Sr-SION-ELP* still exhibits nearly 100% of the room temperature emission intensity in contrast, other green phosphors are quenched to 50% of the room temperature emission intensity at 170°C. Fig. 2 litustrates the emission intensity frommalized to room temperature emission intensity at 170°C. Fig. 2 litustrates the emission intensity throughout to room temperature emission intensity) as a function of temperature of Sr-SION-ELP* also has excellent chemical stability and is potentially inexpensive to synthesize. In addition, in white light applications, Sr-SION-ELP* has a relatively wide emission bend which enhances color rendering. The turnen equivalent is about 550 in What and leads a relatively wide emission bend which enhances color rendering. The turnen equivalent is about 550 in What and leads

a relatively wide emission band which enhances color rendering. The lumen equivalent is about 550 in/W and leads to high overall funinous conversion efficiency of the respective devices. The partly-allowed relative treation in the $\mathbb{E} u^2$ -ion is fast decaying (decay time less than 1 microsecond, which is advantageous for many applications. 0014] The S-SiON-Eu 44 renderial is suitable for use with any light course entiting light having a wavelength capable

of exciting the Sr-SiON-EU material, including, for example, discharge lamps and blue- and UV-emitting semiconductor I light emitting devices such as lag the mitting diodes and laser diodes. Fig. 3 Blustrates at first embodiment of a device incorporating a Sr-SiON-Eu^{24*} material. Sr-SiON-Eu^{24*} super 44 covers a light emitting diode including an n-type region 40, and active region 38, and a p-type region Si formed over a substant 42. Contacts 44 are formed on the n-and ptype regions, then the light emitting diode is flipped over and electrically and physically connected to a submount 30 by Interconnects 23. Sr-SiON-Eu^{26*} layer 44 may be deposited by to example, electrophoretic deposition, stenciling, or acreen printing. Stenciling is described in "Stenciling Phosphor Coatings On File Chip Phosphor-LED Devices." U. S. Application Serial No. 0/988 6/05, and electrophoretic deposition is described in "Using Electrophoresia" for Produce A Conformally Coasted Phosphor-Convorted Light Emitting Semiconductor Structure, "U. S. Application Serial No. 0/988 are inconcorated the region by reference. The light emitting device need not be a file chip of the size of the productor structure." In the mitting device need not be a file chip

and may be oriented such that light is extracted from the device through the semiconductor device layers, rather than through the substrate.

[0015] Fig. 4 Illustrates a second embodiment of a device incorporating a Sr-SiON:Eu²⁺ material. The device of Fig. 4 is a packaged light emitting diode including a light emitting diode 24 optionally mounted on a submount (not shown), supported by a base 25, and electrically connected to leads 21. A lens 22 protects light emitting diode 24.5-rsiON: Eu²⁺ may be dispersed in an encapsulant material 26 that is injected in a space between lens 22 and light emitting

30 diode 24. The encapsulant may be, for example, silicone, epoxy, or any other organic or alroyanic material, which is suitable for incorporating the light converter(s) and adheres to the primary light emitting device.

[0018] In some embodiments of the devices illustrated in Figs. 3 and 4, the Sr-SION.Eu²⁺ material is the only wavelength-converting material. The amount of unconverted light from the light emitting diode mixing with the light emitted by the Sr-SION.Eu²⁺; is determined by the characteristics, such as thickness and amount of Sr-SION.Eu²⁺; of the layer 32 containing the Sr-SION.Eu²⁺; in some embodiments, a filter material such as a dye may be incorporated into the device for filtering out any light unconverted by the Sr-SION.Eu²⁺. The use of a filter material is described in more detail in Application Sartal No. 10/260,030, titled "Selective Filtering of Wavelength-Converted Semiconductor Light Emitting Devices," filed September 27, 2002, and incorporated herein by reference. For a blue-emitting light emitting diddo, the light may range from billish-green (some unconverted light from the light emitting didoe allowed to ascape) to green

(no unconverted light allowed to escape). Such devices may be useful for applications requiring green light, such as, for example, green traffic lights or a backlight for a display. In one embodiment, the device is designed to generate green light of a centroid wavelength of 556 m.

[0017] In some embodiments of the devices illustrated in Figs. 3 and 4, the 5R-SION.Eu[®] is imixed with one or more additional wevelength-converting materials. Such devices may be used to create white light or to create light of a color that is difficult to achieve with a single wavelength-converting material. Each wavelength-converting material may be pumped by either light emitted by the light emitting discored by the light emitting discored by the discordance wavelength-converting materials. In some embodiments, S-SiONEu® has be used in combination with a red-milting phospher and as blue light emitting discored to produce white light. Examples of sultable red-emitting phosphers include nitrido silicate phosphers and sulfide phosphers which as such as

($Sr_{1-a-b-c}Ba_bCa_c)_2Si_5N_8$: Eu_a (a = 0.002 - 0.2, b = 0.0 - 1.0, c = 0.0 - 1.0);

(Ca_{1-x-a}Sr_x)S:Eu_a (a = 0.0005...0.01, x = 0.0 - 1.0);

 $Ca_{1-a}SiN_2$: Eu_a (a = 0.002 - 0.2); and $(Ba_{1-x-a}Ca_x)Si_7N_{10}$: Eu_a (a = 0.002 - 0.2, x = 0.0 - 0.25).

[0018]. Figs. 5-7 illustrate calculated emission spectra of white light emitting devices that combine a blue light emitting dides, Sr-SiON.Eu²+, and a red-emitting phosphor. Each figure is accompanied by a table listing, for each spectrum, the color temperature CCT, the average color rendering index Ra, and the x and y coordinates on a chromaticity diagram. In each of Figs. 5-7, the top most spectrum corresponds to the lowest color temperature and the bottom most spectrum corresponds to the highest color temperature.

[0019] Fig. 5 illustrates emission spectra of white light emitting devices with SrS:Eu2+ as the red emitting phosphor.

The devices illustrated in Fig. 5 exhibit no tint and have very high color rendering indices, for example between 85 and 90, at low color temperature. The table below lists CCT, Ra, and x and y for each of the spectra illustrated in Fig. 5:

x	у	сст,к	Ra
0.4599	0.4107	2709	90
0.4369	0.4042	3001	89
0.4171	0.3964	3301	88
0.3999	0.3882	3601	86
0.3850	0.3798	3900	85
0.3721	0.3716	4200	84
0.3609	0.3639	4498	84
0.3511	0.3566	4797	83
0.3425	0.3499	5096	82

10

15

25

30

35

2002 Fig. 6 illustrates emission spectra of white light entiting devices with Casi Stu² as the rod emitting phosphor. The devices listrated in Fig. 6 also exhibit not into, but have significantly lower color rendering indices, or example between 62 and 72, at low color temperature. The table below lists CCT, Ra, and x and y for each of the spectra illustrated in Fig. 5:

x	у	сст,к	Ra
0.4599	0.4107	2709	62
0.4369	0.4042	3001	66
0.4171	0.3964	3300	68
0.3999	0.3881	3600	70
0.3850	0.3798	3900	72
0.3721	0.3716	4199	74
0.3609	0.3639	4499	75
0.3511	0.3566	4797	76
0.3424	0.3498	5097	77

0 [0021] The use of (S_CCa)s-Eu² as the red emitting phosphor is expected to offer better color rendering than CaS: Eu²⁺ devices Illustrated in Fig. 6 and worse color rendering than SrS-Eu²⁺ devices illustrated in Fig. 5. [1022] Fig. 7 Illustrates emission spectra of white light emitting devices with Sr₂S₃\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\) as the red emitting phosphor. The devices illustrated in Fig. 7 exhibit no tirt and have color rendering indices comparable to those of the SrS. Eu²⁺ devices discussed above in reference to Fig. 5. In some devices, Srg.S₃\(\frac{1}{2}\)\(\frac{1}{2}\) is davored as the red emitting sphosphor due to its favorable chemical properties. The table below lists CCT, Ra, and x and y for each of the spectra illustrated in Fig. 7:

x	у	сст,к	Ra
0.4599	0.4107	2709	87
0.4442	0.4065	2901	86
0.4300	0.4017	3101	86
0.4171	0.3964	3300	85
0.3999	0.3881	3600	84
0.3721	0.3717	4200	82

[0023] Fig. 8 illustrates an observed emission spectrum for a device including a blue light emitting diode, Sr-SiON: Eu²⁺ and Sr₂Si₈N₆:Eu²⁺.

[0024] In some embodiments, Sr-SiON:Eu2+ may be used in combination with a red-emitting phosphor, a blue-emitting phosphor, and a UV light emitting diode to produce white light. Examples of suitable blue-emitting phosphors are

 $(Sr_{1.x.a}Ba_x)_3MgSi_2O_8$:Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0); $(Sr_{1.x.a}Ba_x)_2P_2O_7$:Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0);

 $(Sr_{1-x-a}Ba_x)_2P_2O_7$: Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0); $(Sr_{1-x-a}Ba_x)_2AI_{14}O_{25}$: Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0);

 $(Sr_{1-x-a}Ba_x)_4Al_{14}O_{25}:Eu_a$ (a = 0.00 $La_{1-a}Si_3N_5:Ce_a$ (a = 0.002 - 0.5);

 $(Y_{1-a})_2SiO_5:Ce_a$ (a = 0.002 - 0.5);

- 10 and(5a,x,aSf,)MAI₁₀O₁₇:EU₈ (a = 0.01 · 0.5, x = 0.0 · 0.5). The amounts of Sr-SiON:Eu²*, red-emitting phosphor, and blue-emitting phosphor are adjusted to create white light and to milmize the amount of UV light escaping unconverted from the device. In embodiments with multiple wavelength-converting materials, the Sr-GiON:Eu²* and other wavelength-converting materials may be separate layers formed one over the other or may be mixed in a single wavelength-converting material layer. For example, in a UV device according to Fig. 3 with red-, green-, and blue-emitting phosphors, the different phosphors may be mixed and deposited in a single layer.
- phosphore, the different phosphore may be mixed and deposited in a single layer, or may be deposited in three separate layers, usually blue adjacent for the light entiting diode, then green, then red. In a device according to Fig. 4, the phosphore may be mixed in a single encapsulant layer, or three layers of encapsulant, each containing a different phosphor, may be deposited over the light entiting dode. The Sr-SION:Eu^{2,2} and any other wavelength-conventing material may also be deposited as a thin lift on and least one of the surfaces of the light entiting dovice.
- 20 [0025] In one example, Sr-SiON-Eu² may be synthesized as follows: 208.88 g (1.415 mol) SrCO₂ is mixed with 12.3 g (0.059 mol) EuF₃ and 206.8 g (4.428 mol) SiN₄Q (min. 98% purity) in dry ethanol under argon. The ethanol is removed in a stream of argon and the dried powder mixture is then lired at 1400°C for 1 hr in an H₂/N₂ atmosphere over charcoal in a tungsten boat. After milling, the powder is fired at 1500°C for 1 hr in an H₂/N₂ atmosphere, then milled and washed with water several times.
- 25 (0026) Having described the invention in detail, those skilled in the art will appreciate that, given the present disclosure, modifications may be made to the invention without depending from the spirit of the inventive oncept described herein. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments illustrated and described.

Claims

90

35

55

- 1. A device comprising:
 - a semiconductor light emitting device capable of emitting light of a first wavelength; and
 - a first wavelength-converting material comprising Sr-SiON:Eu²⁺, the first wavelength-converting material disposed to absorb light of the first wavelength;

wherein the first wavelength-converting material absorbs light of the first wavelength and emits light of a second wavelength longer than the first wavelength.

- 2. The device of Claim 1 wherein the first wavelength ranges from blue to UV.
- The device of Claim 1 wherein the second wavelength is green.
 - 4. The device of Claim 1 further comprising a second wavelength-converting material, wherein the second wavelength-converting material absorbs light of one of the first wavelength and the second wavelength, and emits light of a third wavelength longer than the second wavelength.
- The device of Claim 4 wherein the third wavelength is red.
 - The device of Claim 4 wherein the second wavelength-converting material is selected from the group consisting of (Sr_{1-a-b-c}Ba_cCa_c)₂Si₅N₈:Eu_a (a = 0.002 - 0.2, b = 0.0 - 1.0, c = 0.0 - 1.0);

 $(Ca_{1-x-a}Sr_x)S:Eu_a$ (a = 0.0005...0.01, x = 0.0 - 1.0); $Ca_{1-a}SiN_2:Eu_a$ (a = 0.002 - 0.2); and

 $(Ba_{1-x-a}Ca_x)Si_7N_{10}$:Eu_a (a = 0.002 - 0.2, x = 0.0 - 0.25).

7. The device of Claim 4 wherein the first wavelength is blue.

- The device of Claim 4 further comprising a third wavelength-converting material, wherein the third wavelengthconverting material absorbs light of the first wavelength and emits light of a fourth wavelength longer than the first wavelength and shorter than the second wavelength.
- 5 9. The device of Claim 8 wherein the first wavelength is UV, the second wavelength is green, the third wavelength is red, and the fourth wavelength is blue.
 - The device of Claim 8 wherein the third wavelength-converting material is selected from the group consisting of (Sr_{1-x-a}Ba_z)₃MgSi₂O₈:Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0);

(Sr_{1-x-a}Ba_x)₂P₂O₇:Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0);

(Sr_{1-x-a}Ba_x)₄Al₁₄O₂₅:Eu_a (a = 0.002 - 0.2, x = 0.0 - 1.0);

 $La_{1-a}Si_3N_5:Ce_a$ (a = 0.002 - 0.5); $(Y_{1-a})_2SiO_5:Ce_a$ (a = 0.002 - 0.5);

and $(Ba_{1-x-a}Sr_x)MgAl_{10}O_{17}$; Eu_a (a = 0.01 - 0.5, x = 0.0 - 0.5).

- 11. The device of Claim 8 wherein the amounts of first wavelength-converting material, second wavelength-converting material, and third wavelength-converting material are selected to prevent light of the first wavelength from escaping the device.
- 20 12. The device of Claim 1 further comprising a filter material capable of absorbing light of the first wavelength.
 - 13. The device of Claim 1 wherein the second wavelength comprises a centroid wavelength of 556 nm.
 - 14. The device of Claim 1 wherein the light emitting device is a III-nitride light emitting diode.
 - 15. The device of Claim 1 wherein the first wavelength-converting material is coated on a top surface and a side surface of the light emitting device.
 - The device of Claim 1 further comprising:
 - a pair of leads electrically connected to the light emitting device; and
 - a lens disposed over the light emitting device.
- 17. The device of Claim 16 wherein the first wavelength-converting material is dispersed in an encapsulant disposed between the light emitting device and the lens.
 - 18. The device of Claim 16 wherein the light emitting device is mounted such that light is extracted from the light emitting device through a transparent substrate.
- 40 19. A device comprising:
 - a III-nitride light emitting diode;
 - a green emitting phosphor comprising Sr-SiON: Eu²⁺; and
 - a red emitting phosphor;

wherein the green emitting phosphor and the red emitting phosphor are disposed over the III-nitride light emitting diode.

- The device of Claim 19 wherein the red emitting phosphor is selected from the group consisting of (Sr_{1-a-b-c}-Ba_bCa_c)₂Si₅N₈:Eu_a (a = 0.002 - 0.2, b = 0.0 - 1.0, c = 0.0 - 1.0);
 - $(Ca_{1-x-a}Sr_x)S:Eu_a$ (a = 0.0005...0.01, x = 0.0 1.0);

Ca_{1-a}SiN₂:Eu_a (a = 0.002 - 0.2); and

 $(Ba_{1-x-a}Ca_x)Si_7N_{10}:Eu_a$ (a = 0.002 - 0.2, x = 0.0 - 0.25).

- 21. The device of Claim 19 further comprising a blue emitting phosphor disposed over the III-nitride light emitting diode.
 - 22. The device of Claim 21 wherein the blue emitting phosphor is selected from the group consisting of (Sr_{1-x-n}Ba_x)₃MgSl₂O₈:Eu_n (a = 0.002 0.2, x = 0.0 1.0);

$$\begin{split} & (Sr_{1,x_{th}}Ba_{t})_{2}P_{2}O_{7}Eu_{n} \ (a=0.002\cdot0.2, x=0.0\cdot1.0); \\ & (Sr_{1,x_{th}}Ba_{t})_{2}Al_{1}O_{22};Eu_{n} \ (a=0.002\cdot0.2, x=0.0\cdot1.0); \\ & (a_{1,x_{th}}Ba_{t})_{3}O_{5}Ge_{n} \ (a=0.002\cdot0.5); \ (Y_{1-a})_{2}SiO_{5}Co_{n} \ (a=0.002\cdot0.5); \ and \\ & (Ba_{1,x_{th}}Sa_{1})_{1}MgAl_{1}O_{17};Eu_{n} \ (a=0.01\cdot0.5, x=0.0\cdot0.5). \end{split}$$

23. The device of Claim 19 wherein the green emitting phosphor absorbs light emitted by the blue emitting phosphor and emits green light.

Fig. 1

Fig. 2

ŧ

Fig. 3

9

Fig. 5

Fig. 6

Fig. 7

