

Gulafshan, Prof. Nima Taherinejad gulafshan@ziti.uni-heidelberg.de Eclectx Team, Institut für Technische Informatik (ZITI)

MemSim+: Realistic Behavioral Model for ReRAMs Capturing Non-Idealities

Case studies in

Vacuum-processed SDC memristor Experimental data output Schematics of workflow. MemSim+ Modeling data Workflow. Modeling data Workflow. Modeling data Modeling data Workflow. Modeling data Modeling data

MemSim+: It captures cycle-to-cycle (C2C) and device-to-device (D2D) variations in key parameters, such as high and low resistance states, threshold voltages, resistance drift, and switching dynamics.

2) MemSim+ model descriptions

Inkjet-printed ECM memristor

3) Fitting: key parameters (R_{on}, R_{off}, v_{on}, v_{off}, etc.)

Distribution functions to fit R_{on}, and R_{off} of the SDC technology

Table 1. Values of MemSim+ model parameters of two memristor technologies

Technology	SDC Technology				ECM Technology			
Parameters	μ	σ	CP or Range	Type	μ	σ	CP or Range	Type
$R_{ m off}$	$118.40\mathrm{k}\Omega$	$99.70\mathrm{k}\Omega$	$> 40\mathrm{k}\Omega$	$cG_{R_{ m off}}^{ m SDC}$	1933.15Ω	648.62Ω	>1300 Ω	$cG_{R_{ m off}}^{ m ECM}$
R_{on1}	$13.87\mathrm{k}\Omega$	$2.61\mathrm{k}\Omega$		$G_{R_{ m on}}^{ m SDC}$	248.25Ω	167.92Ω	[116.32, 230.00] Ω	$G_{R_{ m on 1}}^{ m ECM}$
$R_{ m on2}$					170.57Ω	26.28Ω		$G_{R_{ m on 2}}^{ m ECM}$
$R_{\text{on}3}$					413.56Ω	216.15Ω	[100, 500] Ω	$G_{\mathbf{D}}^{\mathbf{ECM}}$

4) Data comparison: experiments and the model

5) Case study: circuit-technology co-design

Overall correctness of simulated logical operations

6) Conclusions

- Bridging ideal and real memristor
- MemSim+ capture C2C and D2D variations and resistance drift in memristor
- Accurate modeling using clipped Gaussian and multiple Gaussian approach
- Variation-aware circuit-technology co-design significantly enhance the correctness probability

upto ↑ 35.25% for SDC FELIX-OR

References

[1]. **Gulafshan Gulafshan**, Hongrong Hu, David Raber-Radakovits, Luke Vassallo, Gabriel Cadilha Marques, JasminAghassi-Hagmann, and Nima Taherinejad. Realistic behavioral model for rerams capturing non-idealities. **Communications Materials**, 6(1):1–13, 2025.