Занятие 3.

Тема: Кинематика вращательного движения.

- **1.** Точка движется, замедляясь, по окружности радиусом R так, что в каждый момент времени ее тангенциальное и нормальное ускорение по модулю равны друг другу. В начальный момент t=0 скорость точки равна \mathbf{v}_0 . Найти: а) скорость точки в зависимости от времени и от пройденного пути
- S; б) полное ускорение точки в функции скорости и пройденного пути. (a) $v = \frac{R v_0}{R + v_0 t}$;

$$v(S) = v_0 e^{-S/R}$$
; 6) $w = \frac{v^2}{R} \sqrt{2}$)

- **2.** Твердое тело вращается вокруг неподвижной оси по закону $\varphi = at bt^3$, где a = 6 рад/с, b = 2 рад/с³. Найти: а) средние значение угловой скорости и углового ускорения за промежуток времени от t = 0 до остановки; б) угловое ускорение в момент остановки тела. (a) $< \omega >= 2a/3$; $< \beta >= \sqrt{3ab}$; б) $|\beta_{_{KOH}}| = 2\sqrt{3ab}$)
- **3.** Колесо вращается вокруг неподвижной оси так, что угол φ его поворота зависит от времени как $\varphi = at^2$, где a = 0,2 рад/с². Найти полное ускорение w точки A на ободе колеса в момент t = 2,5 с, если линейная скорость A в этот момент v = 0,65 м/с. ($w = \sqrt{(2at \, v)^2 + v^2/t^2}$)
- **4.** Колесо вращается с постоянным угловым ускорением $\beta = 3$ рад/с. Определите радиус колеса, если через t = 1 с после начала движения полное ускорение колеса a = 7,5 м/с².
- 5. Путь, пройденный точкой по окружности радиуса R=2 м, выражен уравнением $S=at^2+bt$. Найти нормальное, тангенциальное и полное ускорения точки через t=0.5 с после начала движения, если a=3 м/с², b=1 м/с. ($w_n=6$ м/с², $w_\tau=8$ м/с², w=10 м/с²)
- **6.** Твердое тело вращается вокруг неподвижной оси так, что его угловая скорость зависит от угла поворота по закону $\omega = \omega_0 a \varphi$, где ω_0 и a положительные постоянные. В момент времени t=0 угол $\varphi=0$. Найти зависимости от времени: а) угла поворота; б) угловой скорости.

(a)
$$\varphi(t) = \frac{\omega_0}{\alpha} (1 - e^{-\alpha t}); \delta) \omega = \omega_0 e^{-\alpha t}$$

- 7. Точка движется по плоскости так, что ее тангенциальное ускорение $\mathbf{w}_{\tau}=a$, а нормальное $\mathbf{w}_n=bt^4$, где a и b положительные постоянные, t время. В момент t=0 точка покоилась. Найти зависимости от пройденного пути S радиуса кривизны R траектории точки и ее полного ускорения \mathbf{w} . ($R(S)=a^3/2bS$; $\mathbf{w}=a\sqrt{1+(4bS/a^3)^2}$)
- **8.** Частица движется в плоскости xy со скоростью $\vec{v} = a\vec{i} + bx\vec{j}$, где \vec{i} и \vec{j} орты осей, a и b постоянные. В начальный момент времени частица находилась в точке x = y = 0. Найти: а) уравнение траектории y(x); б) радиус кривизны траектории в зависимости от x.

(a)
$$y(x) = \beta x^2 / 2\alpha$$
; 6) $R = (\alpha^2 + \beta^2 x^2)^{3/2} / \alpha^2 \beta$)

- **9.** Частица движется по дуге окружности радиуса R по закону $l=A\sin\omega t$, где l смещение из начального положения, A и ω постоянные. Найти полное ускорение частиц в точках l=0 и $l=\pm A$. ($\mathrm{w}(l=0)=A^2\omega^2$ / R; $\mathrm{w}(l=\pm A)=|A\omega^2|$)
- **10**. Снаряд вылете со скоростью 320 м/с, сделав внутри ствола 2 оборота. Длина ствола 2 метра. Считая движение снаряда в стволе равноускоренным, найти его угловую скорость вращения вокруг оси в момент вылета ($\omega = 2\pi n v/L = 2 \cdot 10^3$ рад/с).
- 11. Точка вращается по окружности радиусом R согласно уравнению $\phi = 4t^2 + 2t + 8$ (рад). Напишите выражение для модуля тангенциального ускорения точки.

1

- **12.** Нормальное ускорение точки, движущейся по окружности радиусом R=4 м, изменяется по закону $w_n=a+bt+ct^2$. Найти тангенциальное ускорение точки, путь, пройденный точкой за время $t_1=6$ с после начала движения, и полное ускорение в момент времени $t_2=2/3$ с, если a=1 м/c², b=3 м/c³, c=2,25 м/c⁴. (S=66 м, w= 5 м/c²)
- 13. Диск радиусом R = 10 см, находящийся в состоянии покоя, начал вращаться с постоянным угловым ускорением $\beta = 0.5$ рад/с². Найти тангенциальное w_{τ} , нормальное w_n и полное ускорение точек на окружности диска в конце второй секунды после начала вращения.
- **14**. Маховик начал вращаться равноускоренно и за промежуток времени $\Delta t = 10$ с достиг частоты вращения $\nu = 300$ мин⁻¹. Определить угловое ускорение β маховика и число N оборотов, которое он сделал за это время.
- **15**. Колесо, которое вращается равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.
- **16**. Цилиндр вращается вокруг своей неподвижной оси по закону $\phi = 7t^2 6t + 8$ (рад). Определить угол между векторами скорости \vec{v} и полного ускорения \vec{w} точки на поверхности цилиндра в момент времени t=1 с