Basic mathematical genomics

DNA

- deoxyribonucleic acid (DNA) is a molecule which we can represent as a string
- ▶ a *nucleotide* (or *base pair*) is one of adenine, thymine, cytosine, and guanine
 - we abbreviate the word "nucleotide" with "nt"
 - we represent each of the four nucleotides with letters A, T, C, and G
 - ▶ ribonucleic acid (RNA) has the nucleotide uracil (U) instead of thymine (T)
- ▶ a nucleotide string is a sequence in the set {A, T, C, G}; e.g, ATCGATCATC
 - ▶ in the "double helix" structure of DNA, A binds with T and C binds with G, forming "cross-bars"
 - ▶ we call A the *nucleotide complement* of T, and vice versa; same for C and G
 - ▶ as a result, we can represent the double helix DNA as a single nucleotide string

Proteins

- ▶ a protein is a molecule which we can represent as a string
- ▶ an amino acid (also residue) is one of

name	symbol	name	symbol	name	symbol	name	symbol
alanine	Α	arginine	R	asparagine	N	aspartate	D
cysteine	C	glutamine	Q	glutamate	E	glycine	G
histidine	Н	isoleucine	1	leucine	L	lysine	K
methionine	M	phenylalanine	F	proline	Р	serine	S
threonine	Т	tryptophan	W	tyrosine	Υ	valine	V

- ▶ an amino acid string is a sequence in {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}
 - lacktriangle we denote this set by ${\cal A}$, a mnemonic for "amino"
 - ▶ different amino acid strings correspond to different proteins
 - > as a result, we can represent a protein as a single amino acid string

Codons

- nucleotides have semantic meaning in non-overlapping sequences of three
- ▶ a nucleotide codon (or trinucleotide sequence) is a length 3 nucleotide string; e.g., ATC
 - ightharpoonup codons encode an element of ${\cal A}$ (an amino acid) or a "stop" (which we denote by \diamond)
 - \blacktriangleright we partition the set $\{A, T, C, G\}^3$ of $4^3 = 64$ codons into 61 amino codons and 3 stop codons
- ▶ a nucleotide string is codon-aligned if its length is a multiple of three
 - ▶ a codon-aligned nucleotide string can be interpreted as a sequence of codons
 - ▶ we know the *codon decoding function* $f: \{A, C, T, G\}^3 \rightarrow \mathcal{A} \cup \{\diamond\}$
 - \blacktriangleright for example, f(GCT) = A where the r.h.s. is the symbol for the amino alanine
 - ightharpoonup f is not injective since two distinct codons may map to the same amino (or to \diamond)
 - ▶ we call two codons with the same image under f synonyms
 - lacktriangledown for example, CAU and CAC are synonyms for histidine; i.e., $f(\mathsf{CAU}) = f(\mathsf{CAC}) = \mathsf{H}$

Codon Table

lacktriangleright it is easier to tabulate f^{-1} since its codomain is smaller than its domain

symbol	codons; i.e., f^{-1} (symbol)	symbol	codons
A	GCT, GCC, GCA, GCG	1	ATT, ATC, ATA
R	CGT, CGC, CGA, CGG, AGA, AGG	L	CTT, CTC, CTA, CTG, TTA, TTG
Ν	AAT, AAC	K	AAA, AAG
D	GAT, GAC	М	ATG
C	TGT, TGC	F	TTT, TTC
Q	CAA, CAG	Р	CCT, CCC, CCA, CCG
Е	GAA, GAG	S	TCT, TCC, TCA, TCG, AGT, AGC
G	GGT, GGC, GGA, GGG	Т	ACT, ACC, ACA, ACG
Н	CAT, CAC	W	TGG
♦	TAA, TGA, TAG	Y	TAT, TAC
		V	GTT, GTC, GTA, GTG

- lacksquare the domain of f is $\{\mathsf{A},\mathsf{T},\mathsf{C},\mathsf{G}\}^3$ and the codomain of f is $\mathcal{A}\cup\{\diamond\}$
- lacksquare $f^{-1}(x)$ is the set of domain elements of f (in this case, codons) which map to $x \in \mathcal{A} \cup \{ \diamond \}$

Nucleotide senses

lacktriangle naturally, we can extend f to codon-aligned nucleotide strings by defining $s=ar{f}(x)$ by

$$s_i = f(\underbrace{x_{3(i-1)+1}x_{3(i-1)+2}x_{3(i-1)+3}}_{\text{codon } i \text{ of } x})$$

 \blacktriangleright we call s the sense of x; for example, the sense of ATTCTTAAA is

$$\bar{f}(\underbrace{\mathsf{ATT}}_{\mathsf{I}}\underbrace{\mathsf{CTT}}_{\mathsf{L}}\underbrace{\mathsf{AAA}}_{\mathsf{K}}) = \mathsf{ILK}$$

- lacktriangle since f is not one-to-one, neither is ar f
 - lacktriangledown lacktriangledown lacktriangledown and lacktriangledown are sense-equivalent if they have the same sense; i.e., $ar{f}(x) = ar{f}(y)$
 - roughly speaking, x and y are sense-equivalent if they "spell out the same thing"
 - $lackbox{ e.g., CGTCGC and CGACGG are sense-equivalent because } \bar{f}(\underbrace{\text{CGT}}_{\text{R}}\underbrace{\text{CGC}}) = \bar{f}(\underbrace{\text{CGA}}_{\text{R}}\underbrace{\text{CGG}}) = \text{RR}$
 - ▶ in this case, because CGT, CGC, CGA, CGG are synonyms for arginine (R)

Nucleotide substitutions

- \blacktriangleright a (nucleotide) substitution (or point mutation) to a length m nucleotide string is a pair (j,b)
 - ▶ the index j is in $\{1, ..., m\}$ and the replacement nucleotide b is in $\{A, T, C, G\}$
 - \blacktriangleright the (j,b)-mutation of x is the nucleotide string y defined by $y_j=b$ and $y_i=x_i$ for all $i\neq j$
 - lacktriangleright i.e., y is the same as x except at index j, where it has nucleotide b
 - \blacktriangleright e.g., the (3, A)-mutation of CG \underline{T} is CG \underline{A} (we swapped T in position 3 with A)
- ▶ we classify substitutions on codon-aligned nucleotide sequences by their effect on the sense
 - ▶ a substitution is *synonymous* (*silent*) if it does not change the sense
 - ▶ e.g. (3, C) on CGT with result CGC, since f(CGT) = f(CGC) = R
 - ▶ a substitution is *nonsynonymous* if it changes the sense
 - ▶ a substitution is *missense* if an amino codon became a different amino codon
 - ▶ the missense variants of a protein are all proteins which differ with it by one amino in position
 - ▶ a substitution is *nonsense* (*readstop*) if an amino codon became a stop codon
 - ▶ a substitution is *nonstop* (*readthrough*) if a stop codon became amino codon