Einführung in die Astronomie Studium Generale

Ausschnitte des Kapitels 1.1 auch als Video auf uwudl.de:

Ausschnitte des Kapitels 1.3 auch als Video auf uwudl.de: https://t1p.de/nhc2s

- → 1 Motivation der Astronomie Einführung
 - 1.1 Himmelsbeobachtungen
 - 1.2 Bedeutung der Astronomie / Sinnfragen
 - 1.3 Der astronomische Erkenntnisprozess
 - II Orientierung am Himmel
 - III Beobachtungsmittel
 - IV Erkenntnisse aus den Positionsveränderungen der Gestirne
 - V Erkenntnisse aus dem Licht der Gestirne
 - VI Astronomischer Wissensstand
 - 1. Astronomisches Grundverständnis zum Aufbau der Welt schaffen 2. Orientierung am Himmel erlernen
 - 3. Verständnis der zeitlichen Veränderung der Himmelsobjekte erlernen 4. Differenzierung der Entfernungs- und Zeitskalen im Universum

1 (Einige Folien sind ausgeblendet)

1 Motivation der Astronomie

1.1 Himmelsbeobachtungen

1.1.1 Bloßes Auge

Abgeleitete Erkenntnisse

- Tag und Nachtzyklus
- Es drehen sich scheinbar um die Erde:
 - □ Sonne (inkl. Sonnenflecken)
 - Mond (inkl. Phasen)
 - Planeten
 - Sterne, Sternbilder
 - daher historisches Weltbild:
 - Erde im Zentrum, alles dreht sich um die Erde
 - → von katholischer Kirche gefördert:
 - Mensch = Krone der Schöpfung = im Zentrum der Welt

Bloßes Auge

- ◆ Sternbilder (Fixsterne!) → 2.5
 - Auf- und Untergang der Sternbilder
- Bewegung der hellen Himmelsobjekte:
 - Sonne, Mond, Planeten laufen auf etwa gleicher Linie am Himmel
 - □ durch Tierkreissternbilder auf "Ekliptik" → 2.6

Ost-West-Bewegung von Sonne und Mond

Bewegung der Planeten (Wandelsterne!)

Habe Milchstraße schon einmal gesehen? SS2025

- A. Ja, sicher
- B. Bin unsicher, evtl?
- c. Nein, leider nicht

Bloßes Auge

- Milchstraße
 - wir sind in Mitten eines "Licht-Tellers"
 - Fernrohr → besteht aus vielen Sternen
 - □ wir sind nicht im Zentrum,
 - → Sommermilchstraße beeindruckender

- "Nebel" und Sternhaufen am Himmel
 - Andromedanebel (Galaxis, Fernrohr zeigt: besteht aus Sternen)
 - □ Orionnebel (große Wasserstoffwolke)
 - □ h und chi im Perseus, Plejaden, Hyaden, Praesaepe (Sternhaufen)

Bloßes Auge

- unregelmäßige Ereignisse:
 - □ Sternschnuppen, Feuerkugeln (z.B. 24.05.2004 FH Rosenheim)
 - □ Kometen (z.B. Hale-Bopp 1996, Machholz 2005, Neowise 2020, Tsuchinshan-ATLAS 2024)
 - □ Helligkeitsschwankungen von Sternen (Algol: Teufelsstern)
 - Mond- & Sonnen-Finsternisse, Transits von Merkur und Venus
 - □ Neue Sterne "Novae"
 - Supernovae:
 - 1054 im Krebs (China)
 - 1987A (in großer Magellansche Wolke)
 - » siehe Bilder rechts \rightarrow 14.6; \rightarrow 16.5
 - O Novae:
 - 2025 in der ,Nördlichen Krone", siehe <u>Newsletter 181</u>
 - □ seit 1957: auch Satellitenüberflüge

- Motivation alle diese Beobachtungen n\u00e4her zu erforschen
 - → Teleskope

1.1.2 Teleskope

- Kleinteleskope (1609ff), Großteleskope (1900ff), Weltraumteleskope (Hubble 1989, Webb 2022)
- Galilei (1609ff):
 - Jupitermonde
 - Wolken auf Jupiter
- Planeten: Oberflächendetails / Saturnringe
- Viele Sterne = Doppel- / Mehrfachsterne
- Milchstraße = viele Sterne
- Nebel = Gas oder viele Sterne
- Genauere Positionsänderungen von Gestirnen
- Motivation alle diese Beobachtungen näher zu erforschen
 - Raumsonden

1.1.3 Raumsonden (Auswahl)

- Lunar
- Apollo
- Erdbeobachtung (Raumstationen: Skylab, Mir, ISS, Tiangong)
- Voyager 1 & 2
- Helios, Ulysses, Stereo A+B
- Mariner, Viking, Mars Express, Curiosity, Perserverance
- Galileo
- Cassini & Huygens
- Dart, Deep Impact, Rosetta & Philae
- New Horizons
- Planck, eROSITA und mehr
- **•**

1.2 Bedeutung der Astronomie / Sinnfragen Rolle und Bedeutung: historisch

- Direkte und praktische Bedeutung astronomischen Wissens
 - □ Jahreszeiten → Landwirtschaft (Nilschwemme...)
 - □ Zeitbestimmung → Kalender
 - □ Navigation
 (→Längengradmessung indirekt → Harris Uhren H1-H4 18. Jh.)
- und auch noch heute:
 - □ Astronomie als (älteste) Grundlagenwissenschaft
 - Motiviert durch Neugierde und Drang das Universum und unseren Platz darin zu verstehen
- • jedoch: Naturwissenschaftliche Methode des Erkenntnisgewinns (→ 1.3)

Rolle und Bedeutung: kulturell

- Philosophische Bedeutung
 - Erkenntnis um ihrer selbst willen
 - □ Weltbild: Rolle des Menschen im Kosmos
 - Ursprung des Kosmos und des Lebens
 - Ästhetik des Sternhimmels
- Sinnfragen
 - Vorhersagen, basierend auf genauer Kenntnis
 - der Positionen von Himmelskörpern
 - Deutung der Punkte am Himmel
 - □ wo kommen wir her? wo gehen wir hin?
 - Kleinheit des Menschen im Kosmos
 - Verhältnis Astronomie zu Astrologie
 - Babylon: →Astronomie = Astrologie
 - heute: Astronomie=Naturwissenschaft, Astrologie=Glaube (und/oder Lebenshilfe)

⇒ Öffentliches Interesse, Amateure, populärwissenschaftliche Literatur

Rolle und Bedeutung: wissenschaftlich

Wichtiger Teil der Grundlagenforschung

- Ursprung vieler Erkenntnisse der modernen Physik
 - Newtonsche Mechanik
 - Lichtgeschwindigkeit (Ole Rømer)
 - Atomphysik (Spektroskopie)
 - Kernphysik
 - Elementarteilchenphysik (Kosmologie)
 - Relativitätstheorie
 - Plasmaphysik, (Kernfusion)
 - etc.
- Viele Nobelpreise für astronomische Entdeckungen / Methoden / Beiträge zur Wissenschaft
 - 1936: kosmische Strahlung;; 2013: Higgs-Teilchen, 2015: Neutrinos, 2017: Gravitationswellen, 2020 Schwarze Löcher

Nobelpreise Astro-Physik

Year	Laureates	Citation
1936	V.F. Hess	Discovery of cosmic radiation
1967	H.A. Bethe	Nuclear reactions, energy production in stars
1974	M. Ryle A. Hewish	Contributions to radio astrophysics, discovery of pulsars Physik-
1978	A.A. Penzias R.W. Wilson	Discovery of the Cosmic Microwave Background Nobelpreise mit Bezug zur
1983	S. Chandrasekhar W.A. Fowler	Evolution of stars, nuclear reactions Astrophysik
1993	R.A. Hulse J.H. Taylor	Discovery of binary pulsar, gravitational waves
2002	R. Davis M. Koshiba R. Giacconi	Contributions to Neutrino and X-ray astrophysics
2006	J. C. Mather G.F. Smoot	Blackbody form and anisotropy of the Cosmic Microwave Background
2011	S. Perlmutter B.P. Schmidt A.G. Riess	Discovery of the accelerated expansion of the Universe
2015	T. Kajita A.B. McDonald	Discovery of neutrino oscillations (solution to the solar neutrino problem)
2017	R. Weiss K. Thorne B. Barish	First direct observation of gravitational waves
2019	J. Peebles M. Mayor D. Queloz	Contributions to cosmology and discovery of exogenets
2020	R. Penrose R. Genzel A. Ghez	Black hole formation and discovery of a supermassive compact object at the centre of the Milky Ways

Folie von Jochen Liske, 30.10.22, DLR-Astroseminar

UWudL: https://www.youtube.com/watch?v=qgnjgUFi qY

Rolle und Bedeutung: technisch

- direkter Nutzen: kaum
 - □ Bsp: Relativitätstheorie/Quantentheorie:
 - 1918 reinste theoretische Physik heute: 20-30 % des BIP damit
- Technologieentwicklung
 - □ Forcierung von Neutechnologien → push
 - Ceranfelder
 - CCD-Bildsensoren seit 1983 in der Astronomie
 - Kernfusion
 - Entwicklungen für die Raumfahrt
 - □ aber auch Missbrauchsgefahr
 - Supernovae vs Explosion von Atombomben (siehe Astrophysik-Abteilung in Los Alamos und Livermore)
 - Erforschung der Erdmagnetosphäre vs Modelle des EMP (electromagnetic pulse)
 - → Verantwortung von Wissenschaftlern

Rolle und Bedeutung: Kosten

- Nutzen: kulturell, wissenschaftlich, technisch (s.o.)
- Kosten: bislang moderat Tendenz steigend
- Trend zur Großforschung (auf viele Haushaltsjahre & Staaten verteilt)
 - □ z.B. Hubble-Weltraumteleskop: 6,4 Mia \$ davon 15% ESA
 - □ James-Webb-Weltraumteleskop 2022: 10 Mia \$ (3% ESA)
 - □ sonst: Kleinmissionen unter 100 Mio €, Großmissionen um 2 Mia €
 - □ 4*ESO VLT (Very Large Telescope der Europäer 2004) ca. 0,5 Mia €
 - □ ESO EELT (European Extremely Large Telescope 2028) 1,5 Mia € Betrieb ca. 30 Mio €/a
- 750 Berufsastronomen in Deutschland 700 <u>IAU-Mitglieder</u>, 800 in <u>AG</u>
 - □ +ca. 200 Promovenden
- ca.12.500 aktive Astronomen weltweit (<u>IAU-Mitglieder</u>)
- Ökologische Belastung:
 - gering
 - Oft ähnliche Interesse (z.B. Reduktion der Lichtverschmutzung)

1.3 Der astronomische Erkenntnisprozess

1.3.1 Historisch

- Beobachtung -> Modell
 - □ Erde im Mittelpunkt (alles dreht sich um die Erde)
 - auch religiös unterstützt (Mensch als Krone der Schöpfung)
 - Verkomplizierungen um Modell unbedingt zu halten
 - "keine bessere Idee / kein besseres Modell"
- Kirche als Bremsklotz im Erkenntnisprozess
 - □ Kirchenvertreter lehnen es ab durch Galileis Fernrohr zu schauen
- Erst seit 17. Jahrhundert naturwissenschaftliche Methodik

1.3.2 Moderne Astronomie Naturwissenschaftliche Methodik

Beobachten,

d.h. Experimentieren, Messen, Vergleichen

Beschreiben,

d.h. Protokollieren, Auswerten, Visualisieren

Modellieren,

d.h. allg. mathematische Beschreibungen und deren Randbedingungen formulieren

Astrophysikalische Vorgehensweise

Gesetze

Theorie

Modell

- a) "Experiment"* -> Zusammenhang phys. Größen
- b) Induktionsschluss (n→n+1) = Verallgemeinerung (wichtig: Konstanz der Ausgangsparameter, Übertragung des deterministischen Prinzips in andere Gebiete schwier
 - z.B. hängt Interviewantwort von Art der Fragestellung ab
- c) Formulierung physikalischer Gesetze = Theorie (Einstein: physikalisches Gesetz = Messvorschrift)
 - → Überprüfung des Experimentes
 - → Bildung von Vorhersagen → Deduktion
 - z.B. Bahnkurven (z.B. Mondlandung)
 - wichtig für den Ingenieur: Vorhersage des künftigen Verhaltens von Maschinen und Schaltunge
- d) Verfikation/Falsifikation (Überprüfung) von Gesetzen in Experimenten
 - → evtl. Korrekturen an Gesetzen

- Beobachtung mit Auge/Fernrohr
 - Analyse des Lichtes

a) Ex-

periment*

- Analyse Positionsveränderungen

b) Induktion Verallgemeinerung

Bestätigung

Korrektur

Widerlegung

d) Verfikation/Falsifikation
Vorhersage

Biologie: Darwinismus

Geschichte: Marxismus, Determiniertheit Medizin: Isolierung von Krankheiten

BWL: OR (Operationsresearch), Betriebsinformatik,

Prozessabläufe in Betrieben

Einführung in die Astronomie – Studium Generale – 2024+2025

Träger astrophysikalischer Informationen

- Allgemeines Problem:
 - Meist Beobachtung ferner Systeme von Erde oder aus Erdorbit
 - Keine Manipulation des Systems durch Experimente möglich
 - Ausnahme: Naherkundung des Planetensystems durch Sonden / Lander.
- Träger der Informationen:
 - □ Erkenntnisse aus den <u>Positionsänderungen der Gestirne</u>
 - □ Erkenntnisse aus dem <u>Licht der Gestirne</u> (Hauptinfoquelle)
 - Photonen (sichtbares Licht, Infrarot, UV, Radiostrahlung etc)
 - □ Erkenntnisse aus anderen <u>Teilchen</u>
 - Neutrinos
 - Geladene Teilchen (kosmische Strahlung)
 - Staub / Meteorite
 - Gravitationswellen (Wellen in der Raumzeit)

Das elektromagnetische Spektrum

Überwiegend genutzte Informationsquelle

- historisch: nur sichtbares Licht (sehr kleiner Teil des Spektrums)
- □ heute: <u>alle</u> Wellenlängen (teils von der Erde, teils von Satelliten)
 - dies hat unser Wissen über das Universum vervielfacht

Teleskope anderer Spektralbereiche Astronomisch genutzte Teile des Spektrums

Das elektromagnetische Spektrum: heute durch Satelliten ganz für die Astronomie erschlossen

Gewonnene astronomische Erkenntnisse Beispiele

- Entfernungen
 - □ zu Planeten, Sternen, Galaxien
- Physikalische Größen von astronomischen Objekten (Planeten, Sternen, Galaxien, Staub, Gas etc)
 - Masse
 - □ absolute Helligkeit
 - Temperatur, Zusammensetzung, Entwicklung
- zeitliche Entwicklung von Sternen, Planeten, Galaxien
 - Leben, Altern und Sterben von Sternen Lebenkreislauf
- zeitliche Entwicklung des Universums
 - Urknall, Entstehung von Teilchen
 - □ Entstehung von Sternen und Galaxien, Zukunft des Universums

copyright-Hinweise

- Das Handout der Folien ist nur zum persönlichen Gebrauch für die Studierenden der Lehrveranstaltung bestimmt und darf nicht an Dritte weitergegeben (oder auf andere Plattformen hochgeladen) werden.
- Für die verwendeten Grafiken liegen Erlaubnisse der Urheber für diesen Zweck vor, oder sie sind gemeinfrei (z.B.: creative commons = CC) oder die Verwendung fällt unter das Zitierrecht.
- Details:
 - □ NASA-Fotos & ihrer Weltraummissionen sind gemeinfrei (www.nasa.gov)
 - □ ESO-Fotos fallen unter CC 4.0 (www.eso.org)