Quantum Communication and Quantum Algorithms

The Content

Introduction

- 1. Quantum Communication protocols,
- 2. Quantum algorithms

Basic Literature

- 1. Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and Quantum Information Cambridge University Press, 2000
- 2. Gregg Jaeger, Quantum Information, An Overview, Springer Science+Business Media, LLC, 2007
- 3. Christopher Gerry, Peter Knight, Introductory Quantum Optics, Cambridge University Press, 2005
- 4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
- 5. D. F. Walls, Gerard J. Milburn, Quantum Optics Springer Science & Business Media, 2008.
- 6. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics, Oxford, 1997
- 7. Anthony Sudbery. Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians Cambridge University Press 1986

Quantum Algorithms

Bennett's laws of quantum information

Charles Bennett

- \checkmark 1 qubit \geqslant 1 bit (classical),
- √ 1 qubit ≥ 1 ebit (entanglement bit),
- √ 1 ebit + 1 qubit ≥ 2 bits (i.e. superdense coding),
- \checkmark 1 ebit + 2 bits \geqslant 1 qubit (i.e. quantum teleportation),

Quantum Teleportation (of unknown state)

Alice wants to send her qubit to Bob. She does not know the quantum state of her qubit.

Alice

classical communication

Bob

$$|\Phi_C
angle = a|0_C
angle + b|1_C
angle$$
 Unknown qubit state!

Suppose these bits contain information about $|\Phi_C
angle$

Then Bob would have information about $|\Phi_C
angle=a|0_C
angle+b|1_C
angle$

This would be a procedure for extracting information from $|\Phi_C\rangle$ without effecting the state

Quantum Teleportation Algorithm

- 1. To prepare entangled state $|\Psi_{AB}\rangle=\sqrt{1/2}\;(|0_A0_B\rangle+|1_A1_B\rangle)$
- 2. To share $|\Psi_{AB}\rangle$ with $|\Phi_{C}\rangle$

Quantum Teleportation Algorithm

2. To share $|\Psi_{AB}\rangle$ with $|\Phi_{C}\rangle$

$$\begin{split} |\Phi_{ABC}\rangle &= |\Phi_{C}\rangle \otimes |\Psi_{AB}\rangle = \left(a|0_{C}\rangle + b|1_{C}\rangle\right) \otimes \sqrt{1/2} \left(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle\right) = \\ &= \frac{1}{2} \left(|\Phi_{AC}^{+}\rangle \otimes \left(a|0_{B}\rangle + b|1_{B}\rangle\right) + |\Phi_{AC}^{-}\rangle \otimes \left(a|0_{B}\rangle - b|1_{B}\rangle\right) + \\ &+ |\Psi_{AC}^{+}\rangle \otimes \left(a|1_{B}\rangle + b|0_{B}\rangle\right) + |\Psi_{AC}^{-}\rangle \otimes \left(a|1_{B}\rangle - b|0_{B}\rangle\right), \end{split}$$

where
$$|\Phi_{AC}^{\pm}\rangle=\sqrt{1/2}\Big(|0_A0_C\rangle\pm|1_A1_C\rangle\Big),\qquad \text{are Bell states}$$

$$|\Psi_{AC}^{\pm}\rangle=\sqrt{1/2}\Big(|0_A1_C\rangle\pm|1_A0_C\rangle\Big)$$

Quantum Teleportation Algorithm

3. Alice perform Bell measurement with $|\Phi_{ABC}
angle$

Output state

$$\begin{split} |\Phi_{ABC}\rangle &= \frac{1}{2} \Big(|\Phi_{AC}^{+}\rangle \otimes \Big(a|0_{B}\rangle + b|1_{B}\rangle \Big) + |\Phi_{AC}^{-}\rangle \otimes \Big(a|0_{B}\rangle - b|1_{B}\rangle \Big) + \\ &+ |\Psi_{AC}^{+}\rangle \otimes \Big(a|1_{B}\rangle + b|0_{B}\rangle \Big) + |\Psi_{AC}^{-}\rangle \otimes \Big(a|1_{B}\rangle - b|0_{B}\rangle \Big) \Big), \end{split}$$

- \checkmark Bob obtain qubit $a|0_B
 angle + b|1_B
 angle$ if Alice measures $\left<\Phi_{AC}^+\left|\Phi\right|_{ABC}
 ight>$
- \checkmark Bob obtain qubit $a|0_B
 angle b|1_B
 angle$ if Alice measures $\left\langle \Phi_{AC}^- \left|\Phi_{ABC}
 ight
 angle b|1_B
 ight
 angle$
- \checkmark Bob obtain qubit $a|1_B
 angle + b|0_B
 angle$ if Alice measures $\left\langle \Psi_{AC}^+ \left| \Phi_{ABC}
 ight
 angle$
- \checkmark Bob obtain qubit $a|1_B
 angle b|0_B
 angle$ if Alice measures $\left\langle \Psi_{AC}^- \left| \Phi_{ABC}
 ight
 angle
 ight.$

Quantum Teleportation Algorithm

4. Alice tells Bob by classical channel (cell phone) what type of measurement he should do to recover initial qubit $a|0_B\rangle+b|1_B\rangle$

- \checkmark If Alice measures $\left\langle \Phi_{{\scriptscriptstyle A}{\scriptscriptstyle C}}^{\scriptscriptstyle +} \left| \Phi_{{\scriptscriptstyle A}{\scriptscriptstyle B}{\scriptscriptstyle C}} \right. \right
 angle$, its OK for Bob
- \checkmark If Alice measures $\langle \Phi_{Ac}^-|\Phi_{ABC} \rangle$, she tells Bob to do $\widehat{\sigma}_z\colon |0
 angle \Rightarrow |0
 angle, |1
 angle \Rightarrow -|1
 angle$ operation with his qubit
- \checkmark If Alice measures $ra{\Psi_{_{AC}}} \ket{\Phi_{_{ABC}}}$, she tells Bob to do $\mathrm{NOT} = \widehat{\sigma}_x \colon 0 \Rightarrow \ket{1}, \ket{1} \Rightarrow \ket{0}$ operation with his qubit
- \checkmark If Alice measures $\left\langle \Psi_{Ac}^{-} \middle| \Phi_{ABc} \right\rangle$, she tells Bob to do $\operatorname{NOT} = \widehat{\sigma}_{x}$: and $\widehat{\sigma}_{z}$ Alice uses 1ebit+2 bit (optional) information to teleport unknown state!

Experimental Realization

- UV pulse beam hits BBO crystal twice
- Photon 1 is prepared in initial state
- Photon 4 as trigger
- Alice looks for coincidences
- Bob knows that state is teleported and checks it.
- Threefold coincidence $f_1f_2d_1(+45^\circ)$ in absence of $f_1f_2d_2(-45^\circ)$
- Temporal overlap between photon 1,2

Dik Bouwmeester, Jian-Wei Pan, K. Mattle, M. Eibl, H. Weinfurter & A. Zeilinger , Experimental quantum teleportation Nature, 390, p. 575–579 (1997)

Quantum Teleportation: Outlook

- ▼ The teleportation process makes it possible to "reproduce" a qubit in a different location
- But the original qubit is destroyed!

1 qubit = 1 ebit + 2 bits

Quantum Cryptography BB84 protocol

- 2 conjugate basis
- Information encoded in photon's polarization

 Quantum & classical channels used for key exchange

Charles Bennett

Gilles Brassard

Single photon polarization: vital peculiarities

Single photon passing through crossed polarizers

Neither a vertically nor a horizontally polarized photon can go through two crossed polarizers

Inserting between the crossed polarizers another polarizer at 45 $^\circ$ allows the horizontally polarized photon to pass with probability 1/4 .

Quantum Cryptography nowadays

This is what the actual device looks like. The coil is of ordinary optical fiber.

Literature

- Bennett, C. H., G. Brassard and A. K. Ekert. "Quantum Cryptography", Scientific American. October 1992: pp. 752 753.
- Brassard, Gilles. "A Bibliography of Quantum Cryptography" (April 24,2002). [Online]
 Available at: www.cs.mcgill.ca/~crepeau/CRYPTO/Biblio-QC.html, April 13, 2004.
- DeJesus, Edmund. "Cryptography: Quantum Leap". Information Security Magazine (Aug 2001). [Online] Available at:

www.infosecuritymag.com/articles/august01/features_crypto.shtml, May 8, 2004.

- Hammond, Andrew. MagiQ. [Online] Available at: http://www.magiqtech.com/press/Magiq Navajo Launch.pdf, May 11, 2004.
- Kahn, David. "The Codebreakers". Macmillan, 1967.
- Nickels, Ian. Informal in-person interviews conducted in May 2004 at SRJC.
- The European Information Society Group. "Briefing 16 Annex 1: What is Cryptography?". [Online] Available at: www.eurim.org/briefings/brief16a.htm, April 15, 2004.
- Thornton, Stephen T. and Andrew Rex. "Modern Physics For Scientists and Engineers".
 Second Edition. United States of America: Thomson Learning, 2002.
- Unsigned. "Quantum leap for secret codes" BBC News (June 5, 2003). [Online] Available at: www.bbc.co.uk/1/hi/technology/2963138.stm, April 13, 2004.

Search Problem

In data base we have $N = 2^n$ entries

Variable x = 0,, N enumerates N entries

Our goal it to find entry with that fulfill to Eq. $\mathbf{x} = \boldsymbol{\omega}$

Moscow phone book, 1928

Then we introduce function that

$$f_{\omega}(x) = \begin{cases} 0, & \text{if } x \neq \omega \\ 1, & \text{if } x = \omega \end{cases}$$

Our Goal is to find **x** for which $f_{\omega}(x) = 1$.

Grover Quantum Search Algorithm

 Quantum search algorithm provides a <u>quadratic</u> <u>speedup</u> over best classical algorithm

Classical: **N** steps Quantum: **N** ^{1/2} steps

Lov Grover

- Maybe there is a better quantum search algorithm
- Imagine one that requires log N steps:
 - Quantum search would be exponentially faster than any classical algorithm
 - Used for NP problems: could reduce them to P by searching all possible solutions

NO: Quantum search algorithm is "optimal" Any search- based method for **NP** problems is slow

Some Important Conclusions about QC

Reversibility

In ideal QC the simulations are reversible

Quantum Supremacy

Al calculations that can be realized in classical Computer are realizable on QC

No Cloning Theorem

Unknown quantum state cannot be cloned

