Ciphertext-Policy, Attribute-Based Encryption

John Bethencourt
CMU

Amit Sahai
UCLA

Brent Waters
SRI International

What is Ciphertext-Policy Attribute-Based Encryption (CP-ABE)?

- □ Type of identity-based encryption
 - One public key
 - Master private key used to make more restricted private keys
- But very expressive rules for which private keys can decrypt which ciphertexts
 - Private keys have "attributes" or labels
 - Ciphertexts have decryption policies

Remote File Storage: Interesting Challenges

Remote File Storage: Server Mediated Access Control

Remote File Storage: Encrypting the Files

More secure, but loss of flexibility New key for each file:

- Must be online to distribute keys
- Many files with same key:
- Fine grained access control not possible

Remote File Storage: We Want It All (Access Control + Encryption)

- Wishlist:
 - Encrypted files for untrusted storage
 - Setting up keys is offline
 - No online, trusted party mediating access to files or keys
 - Highly expressive, fine grained access policies
- Ciphertext-policy attribute-based encryption does this!
 - User private keys given list of "attributes"
 - Files can encrypted under "policy" over those attributes
 - Can only decrypt if attributes satisfy policy

Remove File Storage: Access Control via CP-ABE

Collusion Attacks:

The Key Threat

- □ Important potential attack
- Users should not be able to combine keys
- Essential, almost defining property of ABE
- Main technical trick of our scheme: preventing collusion

Vojlo accedere a film, devo papare e aurre +18 anni. Porso forla fore ad annica che rispetta l'étà!

Collusion Attacks: A Misguided Approach to CP-ABE

Collusion attacks rule out some trivial schemes ...

$$PK_A PK_B PK_C PK_D$$

 $SK_A SK_B SK_C SK_D$

$$M = M_1 + M_2$$

$$C = ((E_A(M_1)) E_B(M_2))$$

Highlights From Our Scheme: Background (PARNG)

$$|G| = |G_T| = p \qquad g \in G, \langle g \rangle = G$$

$$e:G\times G\to G_T$$

$$\forall a, b \in \mathbb{Z}^p, \quad e(g^a, g^b) = e(g, g)^{ab}$$

Highlights From Our Scheme: Public Key and Master Private Key

$$\alpha, \beta \stackrel{R}{\longleftarrow} \mathbb{Z}^p$$

Prime era of
$$PK = (g, g)^{\beta}, e(g, g)^{\alpha}$$
 at Authority generator punti $prime era$'s' $MSK = (\beta, g^{\alpha})$ più complene per via del Collusion Attack

Highlights From Our Scheme: Private Key Generation

desired attributes: $x_1, x_2, \dots x_n \in \{0, 1\}^*$

$$(r,r_{x_1},r_{x_2},\dots,r_{x_n} \leftarrow \mathbb{Z}^p$$
 \square $\mathsf{SK} = \left(g^{(lpha+r)/eta}, \dots, g^{r_{\mathsf{X}}}_{\mathsf{M}(x_1)}, g^{r_{\mathsf{X}}}, g^{r_{\mathsf{X}}}, \dots, g^{r_{\mathsf{X}}}_{\mathsf{N}}, \dots, g^{r_{\mathsf{X}}}\right)$

"Binds" key components to each other

Makes components from different keys incompatible

Key to preventing collusion attacks

(GB addition): Encrypt Simpler case of AND policy

AND policy

- \square s \leftarrow random
- ☐ Shares (AND example)
 - = s1 = s-d
 - = s2 = d (rand)
- □ For each attr:

$$C_j = g^{s_j}, H(x_j)^{s_j}$$

☐ For the whole message:

$$C = g^{\beta \cdot s}, \widetilde{C} = Me(g,g)^{\alpha \cdot s}$$

$$NB \qquad N = p^{\times}, \ V = p^{\times}$$

$$e(M \cdot V, g^{5}) = e(g^{\times}, y^{\times}, z^{5}) = e(g^{\times}, y^{5}) = e(g, g)^{(\times + y) \cdot 5} = e(g, g)^{\times 5} + e(g, g)^{\times 5} = e(g^{\times}, y^{5}) \cdot e(g^{\times}, z^{5}) = e(u, z^{5}) \cdot e(u, z^{5}) \cdot e(u, z^{5})$$

(GB addition): Decrypt (1)

- Receive ciphertext, parse policy & attr
- For each attr user has

 - Ciphertext $C_j = g^{s_j} H(x_j)^{s_j}$ Secret key $D_j = g^{r_{x_j}}, g^r \cdot H(x_j)^{r_{x_j}}$
- Hence:

$$\frac{e(g^r \cdot H(x_j)^{r_{x_j}}, g^{s_j})}{e(g^{r_{x_j}}, H(x_j)^{s_j})} = \frac{e(g^r, g^{s_j}) \cdot e(H(x_j)^{r_{x_j}}, g^{s_j})}{e(g^{r_{x_j}}, H(x_j)^{s_j})} = e(g, g)^{r \cdot s_j}$$

(GB addition): Decrypt (2)

- ☐ For the simpler AND policy example (generalization very easy, now..)
 - Multiply terms

$$A = \prod e(g,g)^{r \cdot s_j} = e(g,g)^{r \cdot (s-d)} \cdot e(g,g)^{r \cdot d} = e(g,g)^{r \cdot s}$$

- Remember that $C = g^{\beta \cdot s}, \widetilde{C} = Me(g,g)^{\alpha \cdot s}$
- And private key: $D = g^{(\alpha+r)/\beta}$
- Hence:

$$\frac{\widetilde{C}}{e(C,D)/A} = \frac{Me(g,g)^{\alpha \cdot s}}{e(g^{\beta s}, g^{(\alpha+r)/\beta})/e(g,g)^{r \cdot s}} =$$

$$= M \frac{e(g,g)^{\alpha \cdot s}}{e(g,g)^{\beta s(\alpha+r)/\beta} / e(g,g)^{r \cdot s}} = M \frac{e(g,g)^{\alpha \cdot s}}{e(g,g)^{s\alpha} e(g,g)^{sr} / e(g,g)^{r \cdot \frac{s}{15}}} = M$$

Highlights From Our Scheme: Policy Features

Highlights From Our Scheme: Encryption and Decryption

Encryption:

- Use general secret sharing techniques to model policy
- One ciphertext component per leaf node

Decryption:

Uses LaGrange interpolation "in the exponents"

Highlights From Our Scheme: Security

- Proven secure, including collusion resistance
 - Assumes random oracle model
 - Assumes generic group model
- Generic group model
 - "Black box" heuristic similar to random oracle model
 - Good future work: scheme without this assumption

Implementation: The cp-abe Toolkit

```
$ cpabe-setup
$ cpabe-keygen -o sarah priv key pub key master key \
     sysadmin it dept 'office = 1431' 'hire date = 2002'
$ cpabe-enc pub key security report.pdf
(sysadmin and (hire date < 2005 or security team)) or
2 of (executive level >= 5, audit group, strategy team))
```

Implementation: Performance

- Benchmarked on 64-bit AMD 3.7 GHz workstation
- Essentially no overhead beyond group operations in PBC library

Operation	Approximate Time	
Private key gen.	35 ms per attribute	
Encryption	27 ms per leaf node	
Decryption	0.5–0.8 ms per leaf node	

Implementation: Availability

- Available as GPL source at Advanced Crypto Software Collection (ACSC)
 - New project to bring very recent crypto to systems researchers
 - Bridge the gap between theory and practice
 - Total of 8 advanced crypto projects currently available
 - http://acsc.csl.sri.com

Attribute Based Encryption: Related Work

	Collusion resistant	Policies w/infinite attr. space	Policies w/ fixed attr. space	Attributes	Policy
[1,2]	Yes	Single thresh. gate	Single thresh. gate	In ciphertext	In key
[3]	Yes	Monotone formulas	All boolean formulas	In ciphertext	In key
This	Yes	Monotone formulas	All boolean formulas	In key	In ciphertext
[4]*	No	None	All boolean formulas	In key	In ciphertext

^{*} Has additional policy hiding property, but needs online, semi-trusted server to perform encryption

Attribute Based Encryption: Related Work

- [1] Sahai, Waters. Eurocrypt 2005.
- [2] Pirretti, Traynor, McDaniel, Waters. CCS 06.
- [3] Goyal, Pandey, Sahai, Waters. CCS 06.
- [4] Kapadia, Tsang, Smith. NDSS 07.

Thanks for Listening!

- □ bethenco@cs.cmu.edu
- http://acsc.csl.sri.com