Appl. No. 10/673,951 Amdt. dated April 26, 2006 Reply to Office action of Jan. 1, 2006 Docket No. 99SC083US1

Amendments to the Claims:

This listing of claims below is believed to accurately reproduce the pending claims, but does not further amend those claims.

Listing of Claims:

- (Original) A tunable optical filter for transmitting light in a first band of wavelengths centered about a bandpass wavelength that is tunable over a second wider band, comprising: first and second reflectors held in substantially parallel alignment and separated by a variable air gap; a partitioned cavity including a first dielectric layer on the first reflector, the variable air gap and a second dielectric layer on the second reflector, said partitioned cavity having an effective optical thickness substantially equal to an integral multiple of one half the bandpass wavelength and having an effective refractive index greater than one, said first and second dielectric layers each having an optical thickness less than one fourth of the shortest wavelength within the second wider band; and a tuning mechanism for moving at least one of said reflectors to vary the air gap and tune the bandpass wavelength.
- 2. (Withdrawn) The tunable optical filter of claim 1, wherein said first and second reflectors each comprise a quarter-wave stack including a plurality of layers of alternating high and low refractive index each having an optical thickness equal to one fourth of a reference wavelength within the second wider band.
- (Withdrawn) The tunable optical filter of claim 2, wherein said first and second
 dielectric layers each comprise the same material as the high refractive index layer in the
 quarter-wave stack.
- 4. (Withdrawn) The tunable optical filter of claim 1, wherein said first and second reflectors each comprise a metal film.

04/25/2006 16:45 18053734672 ROCKWELL SCIENTIFIC PAGE 06/12

Appl. No. 10/673,951 Amdt. dated April 26, 2006 Reply to Office action of Jan. 1, 2006 Docket No. 99SC083US1

- 5. (Withdrawn) The tunable optical filter of claim 1, wherein said first and second reflectors each comprise a gradient index rugate reflector having continuously modulated refractive index.
- 6. (Original) The tunable optical filter of claim 1, wherein said first and second dielectric layers are of equal optical thickness.
- 7. (Original) The tunable optical filter of claim 6, wherein said first and second dielectric layers each comprise a single material having a constant refractive index throughout its thickness.
- 8. (Withdrawn) The tunable optical filter of claim 1, wherein said first and second dielectric layers each comprise a gradient index layer having a refractive index that varies monotonically from a low value proximate the air gap to a high value proximate the reflector.
- 9. (Withdrawn) The tunable optical filter of claim 8, wherein said filter also transmits light at wavelengths in a fixed band of wavelengths outside of the second wider band.
- 10. (Withdrawn) The tunable optical filter of claim 1, wherein said partitioned cavity has an effective optical thickness equal to one half the bandpass wavelength.
- 11. (Withdrawn) The tunable optical filter of claim 1, wherein the variable air gap has an optical thickness less than one half the bandpass wavelength, said partitioned cavity having an effective refractive index greater than one.
- 12. (Withdrawn) The tunable optical filter of claim 1, wherein the tuning mechanism comprises one of a piezoelectric, electrostatic or electromagnetic actuator.
- 13. (Withdrawn) A tunable optical filter, comprising: first and second reflectors held in substantially parallel alignment and separated by a variable air gap to transmit light in a first band of wavelengths centered about a bandpass wavelength that is tunable over a

Appl. No. 10/673,951 Amdt. dated April 26, 2006 Reply to Office action of Jan. 1, 2006 Docket No. 99SC083US1

second wider band; a first dielectric layer on the first reflector, and a second dielectric layer on the second reflector, said first and second dielectric layers each having an optical thickness less than one fourth wavelength the shortest wavelength within the second wider range.

- 14. (Withdrawn) The tunable optical filter of claim 13, wherein said first and second reflectors each comprise one of (a) a quarter-wave stack including a plurality of layers of alternating high and low refractive index or (b) a gradient index rugate reflector having continuously modulated refractive index.
- 15. (Withdrawn) The tunable optical filter of claim 14, wherein said first and second dielectric layers each comprise a single material having a constant refractive index throughout its thickness.
- 16. (Withdrawn) The tunable optical filter of claim 15, wherein said first and second dielectric layers each comprise the same material as the high refractive index layer in the quarter-wave stack.
- 17. (Withdrawn) The tunable optical filter of claim 14, wherein said first and second dielectric layers each comprise a gradient index layer having a refractive index that varies monotonically from a low value proximate the air gap to a high value proximate the reflector.
- 18. (Withdrawn) The tunable optical filter of claim 17, wherein said filter also transmits light at wavelengths in a fixed band of wavelengths outside of the second wider band.
- 19. (Withdrawn) The tunable optical filter of claim 13, wherein said partitioned cavity has an effective optical thickness equal to one half the bandpass wavelength and the variable air gap has an optical thickness less than one half the bandpass wavelength to define a lowest order filter, said partitioned cavity having an effective refractive index greater than one.

Docket No. 99SC083US1

ROCKWELL SCIENTIFIC PAGE 08/12 18053734672 04/26/2006 16:45

Appl. No. 10/673,951 Amdt. dated April 26, 2006 Reply to Office action of Jan. 1, 2006

- (Withdrawn) A tunable optical filter for transmitting light in a first band of wavelengths 20. centered about a bandpass wavelength that is tunable over a second wider band, comprising: an optical substrate; a first reflector on said optical substrate; a first dielectric layer on a top surface of said first reflector; a second reflector; a second dielectric layer on a bottom surface of said second reflector; and a tuning mechanism on the optical substrate that holds said second reflector in substantially parallel alignment with said first reflector and separated by an air gap to form a lowest order filter, said air gap being variable to tune the first band over the second wider band, said first and second dielectric layers each having an optical thickness less than one fourth wavelength of the shortest wavelength within the second wider band.
- (Withdrawn) The tunable optical filter of claim 20, wherein said first dielectric layer, the 21. variable air gap and the second dielectric layer define a partitioned cavity having an effective optical thickness substantially equal to one half the bandpass wavelength and having an effective refractive index greater than one.
- (Withdrawn) The tunable optical filter of claim 21, wherein said first and second 22. reflectors each comprise one of (a) a quarter-wave stack including a plurality of layers of alternating high and low refractive index or (b) a gradient index rugate reflector having continuously modulated refractive index.
- (Withdrawn) The tunable optical filter of claim 22, wherein said first and second 23. dielectric layers each comprise a single material having a constant refractive index throughout its thickness.
- (Withdrawn) The tunable optical filter of claim 23, wherein said first and second 24. dielectric layers each comprise the same material as the high refractive index layer in the quarter-wave stack.
- (Withdrawn) The tunable optical filter of claim 22, wherein said first and second 25. dielectric layers each comprise a gradient index layer having a refractive index that varies

Docket No. 99SC083US1

Appl. No. 10/673,951 Amdt. dated April 26, 2006 Reply to Office action of Jan. 1, 2006

18053734672

monotonically from a low value proximate the air gap to a high value proximate the reflector.

(Withdrawn) The tunable optical filter of claim 25, wherein said filter also transmits 26. light at wavelengths in a fixed band of wavelengths outside of the second wider band.