Preview: PACE 2026

Alexander Leonhardt¹, Manuel Penschuck², Mathias Weller³

¹Goethe-Universität Frankfurt, Germany ²University of Southern Denmark, Odense, Denmark ³CNRS, Université Gustave Eiffel, Paris, France https://pacechallenge.org/

Definition

▶ A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.

Definition

- ► A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \ldots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")

Definition

- ▶ A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \ldots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+ "cleanup")

Definition

- ► A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+ "cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Definition

- A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Results for t = 2, MAF(T, T') = k

- ▶ NP-hard Bordewich & Semple, '04
- $O(2.35^k n)$ time Chen & Wang, '13 $O(2^k n)$ time claimed Whidden, '13
- ightharpoonup problem kernel with 28k taxa

Bordewich & Semple, '05

Definition

- A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Results for t = 2, MAF(T, T') = k

- ► NP-hard Bordewich & Semple, '04
- $O(2.35^k n)$ time Chen & Wang, '13 $O(2^k n)$ time claimed Whidden, '13
- ▶ problem kernel with 28k taxa

Bordewich & Semple, '05

Results for MAF $(T_1, T_2, ..., T_t) = k$

 $O(3^k nt)$ time Shi et al. '14 $O(2.42^k n^4 t^3)$ time Shi et al. '18

Definition

- A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \ldots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Results for t = 2, MAF(T, T') = k

- ► NP-hard Bordewich & Semple, '04
- $O(2.35^k n)$ time Chen & Wang, '13 $O(2^k n)$ time claimed Whidden, '13
- ▶ problem kernel with 28k taxa

Bordewich & Semple, '05

Results for MAF $(T_1, T_2, ..., T_t) = k$

 $O(3^k nt)$ time Shi et al. '14 $O(2.42^k n^4 t^3)$ time Shi et al. '18

Note: No other parameterization explored!

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Lower Bound Track

- 2 trees
- idea: score depends on quality and runtime
- ▶ idea: reach approximation as fast as possible

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Lower Bound Track

- 2 trees
- idea: score depends on quality and runtime
- idea: reach approximation as fast as possible

Real-World Data

expect few trees, small MAF, many leaves

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Lower Bound Track

- 2 trees
- idea: score depends on quality and runtime
- idea: reach approximation as fast as possible

Real-World Data

expect few trees, small MAF, many leaves

Generated Data

expect many trees, large MAF, many leaves

Timeline

mostly follows previous PACE-instances

September '25 Announcement of the challenge and tracks
October '25 Definition of input and output formats
November '25 Tiny test set and verifier are provided
January '26 Release of public instances and details about the benchmark
April '26 Submission via optil.io opens
July '26 Final submission deadline and results

Timeline

mostly follows previous PACE-instances

September '25 Announcement of the challenge and tracks
October '25 Definition of input and output formats
November '25 Tiny test set and verifier are provided
January '26 Release of public instances and details about the benchmark
April '26 Submission via optil.io opens
July '26 Final submission deadline and results

good luck and an enjoyable competition –