

Group1

108024522 劉軒成 108024503 莊仕祺

108024466 劉倍銘

108024703 陳昱瑋

108024520 林敬皓

108024507 張文騰

- 1.能否收到物料的COA時就知道inline會異常?
- 2.每天收到這麼多批原物料的COA資料,能不能從中盲測出哪一批料會有問題?

Inline 1 CoA vs Inline

- *IC*為inline值正常的9個批次、*OC*代表inline出現異常的第2批次的數值
- 可以發現在CoA 1、2、10、12、13上,CoA的 值與Inline有線性的pattern

Inline 1 CoA boxplot

• 第2批次在CoA 1、2、10、12、13的數值和其 他9個批次較有差異

Inline 2 CoA vs Inline

- IC為inline正常的9個批次、OC代表inline異常的第10、11、12批次的數值
- 可以發現在CoA 8、19上,CoA的值與Inline有 線性的pattern

Inline 2 CoA boxplot

- 在CoA 8上有明顯數值分佈差異
- 在進行inline1、2兩組資料判別時,上述較有 差異的CoA可能會有較大的影響

Material 1 批次vs CoA

• 紅點代表該批次在這個CoA中**數值距離平均超** 過兩個標準差,因此我們認定其為異常值並特 別挑出

Missing CoA

- · 此方法會挑出數值較為極端的批次,或是在較多固定值的CoA中挑出少數偏離的點
- CoA3、7為Material1缺值的變數,發現數值都 判定為*IC*

Material 2 批次vs CoA

- 隨批次增加,前後的CoA數值有很大的趨勢變化
- 從CoA_6發現: 當CoA值為兩組固定數值時,兩個標準差的方法會 將比例較少的一方視為異常值
- 從CoA_5發現: 當數值分散比例接近時,兩個標準差的方法會使 所有批次皆被視為正常
- ▶ 兩個標準差的判定方法可能需要視CoA不同而調整

Material 3 批次vs CoA

- 在CoA 18中同樣出現隨批次而改變趨勢的 現象
- 在最後幾組CoA中,數值大多集中在某些特定值上

Missing CoA

• 上圖為Material3缺值的CoA,發現缺的批號都不同,可以發現出現*OC*的批號較多出現在前段

Material 4 批次vs CoA

- CoA 4的數值隨批次增加而下降
- CoA 25的數值在前半段較常出現較大值,但整體來說都落在0.003左右
- 其他CoA皆為幾組固定數值,並出現 少數偏離固定值的批次

Material 5 批次vs CoA

• CoA 1的數值隨批次出現上下的變動

Missing Value Treatment

1. 只對 Material3 的 CoA23 建模插值,其餘皆使用平均數插值

Missing Value Treatment

- 2. Material3: n = 277
 - 使用 kNN, Random Forest 做插值

• Problem1.

> Linear model

• Problem2.

- > Isolation Forest
- ➤ Hierarchical Clustering
- ➤ Multivariate SPC

- Forward selection via Orthogonal Greedy Algorithm(OGA)
- 因資料筆數不足,OGA只對變數的主效應挑選,並不考慮交乘效應
- 適配出的模型如下:

$$\hat{y}_{inline1} = 47.78 - 3.11x_{CoA_3} - 7.98x_{CoA_1} + 1.18x_{CoA_7}$$

$$\hat{y}_{inline2} = -39.56 - 0.22 \, x_{CoA_8} - 146.15 \, x_{CoA_{13}}$$

- Cross Validation:
 - 模型固定下,給定某個cut point,leave one out做配適
 - 對所有的批號記錄預測結果正確與否,算出平均的accuracy和1-FDR
 - 找出令accuracy與1-FDR加總最高的cut point

Inline1

$R^2=0.941$	$\widehat{oldsymbol{eta}}$	β 標準差	T value	p-value
截距	47.7864	8.1809	5.841	0.001110
CoA_3	-3.1106	0.5166	-6.021	0.000947
CoA_1	-7.9880	1.5680	-5.094	0.002234
CoA_7	1.1816	0.4426	2.670	0.037048

Inline2

$R^2 = 0.8803$	$\widehat{oldsymbol{eta}}$	β 標準差 T value		p-value
截距	-39.5618	10.5992	-3.733	0.00468
CoA_8	-0.2268	0.0285	-7.956	0.000231
CoA_{13}	-146.1529	51.4725	-2.839	0.01942

Problem 1-Linear model

Inline1

▶ 配適值及預測信賴區間

▶交叉驗證以最小化FDR及最大化正確率

- ▶ 可以觀察到批號2的fitted value超過0.3,其他批號皆落在±0.3內
- ▶ 透過CV,把門檻定在±0.31~0.39(藍色虛線),則可以完全區分異常批號

Problem 1-Linear model

Inline2

▶ 配適值及預測信賴區間

▶交叉驗證以最小化FDR及最大化正確率

- ▶ 可以觀察到批號10、11、12的fitted value皆較其他批號大,紅線值為29
- ▶ 透過CV,把門檻定在15~21(藍色虛線),則可以完全區分異常批號

Problem1

- 在資料探索時,Inline1的 CoA_1 和 CoA_3 ,Inline2的 CoA_8 有線性的趨勢,且OGA 也將其選出作為重要變數
- 選擇這些解釋變數大致能解釋Inline的結果($R_1^2 = 0.941, R_2^2 = 0.8803$)

Problem 2-Isolation Forest

- 1. <u>方法假設</u>:異常資料是**少數** (10 20%) 且**特別**的
- 2. 想法:若一樣本x越早被切割出去,代表x越可能為異常點(不用計算距離)

3. 作法: **隨機**從 p 維中選取一維,再從那個維度的全距中**隨機**選取一值做切分

Problem 2-Isolation Forest

4. <u>路徑長度</u>:h(x)。如下示意:

- 5. $\underline{\text{Bagging}}$: 取後放回種 m 棵樹,計算每個樣本點的平均 h(x)
- 6. <u>異常分數</u>: $s(x,n) = 2^{-E(h(x))/c(n)}$ 其中 c(n) 是給定n下的平均 h(x),即為對h(x)做正規化
- 7. <u>決策法則</u>: $s(x,n) \in [0,1]$ 越接近1越可能為異常,s(x,n) > c, 其中 c 為切分點 (人為決定)

Problem 2-Isolation Forest

1. 以85分位點作為切分點

2. 最可能異常的批號 (95分位點):

$$3 - (18, 39, 126, 10, 8, 125, 233, 117, 274, 1, 41, 124, 40, 215)$$

3. 參數使用:

	總樣本數	樣本數/樹	種樹量	樹的深度
Material1	24	24	100	4.58
Material2	152	128	100	7
Material3	277	256	100	8
Material4	1031	256	100	8
Material5	271	256	100	8

• 資料處理:標準化

• 距離:歐式距離

• 群聚算法: single linkage

• Goal:小群的批號總數相加至多到15%

Problem 2-Hierarchical clustering

	m1	m2	m3	m4	m5
clusters	4	8	40	30	30
Anomalous %	12.50%	8.55%	14.80%	8.73%	15.13%

Problem 2-Multivariate SPC

• Multivariate SPC-Hotelling's T² Shewhart chart:

$$T_i^2 = (X_i - \bar{X})' (S^2)^{-1} (X_i - \bar{X})$$

 \bar{X} 為所有批號的CoA平均, S^2 為對應之共變異矩陣

• 定義p為CoA總數, M為批號總數量,則Control limit為:

Control limit =
$$\frac{(M-1)^2}{M} Beta_{1-\alpha}(\frac{p}{2}, \frac{M-p-1}{2})$$

Problem 2-Multivariate SPC

新批號預測:

• 移除前一階段的OC資料後,針對新進批號 X_{i+1} ,同樣計算:

$$T_{i+1}^2 = (X_{i+1} - \overline{X'})' (S'^2)^{-1} (X_{i+1} - \overline{X'})$$

 $\overline{X'}$ 為所有IC批號重新計算的CoA平均, S'^2 為對應之共變異矩陣

• 預測用的Control limit為:

Control limit =
$$\frac{p(M-1)(M+1)}{(M-p)M}F_{1-\alpha}(p, M-p)$$

index of batch

Problem 2-Multivariate SPC

index of batch

ightharpoons 每個Material找出的異常批號比例都不相同 算出的 T_i^2 值較容易受到常數型CoA's的影響

250

	Multivariate SPC	Isolation Forest	Hierarchical Clustering
耗時	短	依據森林大小	長(任兩資料點都要算)
挑選兩側極端值	可將	可	弱
單變量影響結果	嚴重	尚可	尚可
其他	變量分配不符下, Control Limit的power和 type I error不準確	以單變量分割,而無法 考慮多變量分割	將鄰近點圈入,未必具 有偵測outliers的效果

Information Summary-各方法異常批次比較

Material1

Material2

Material3

- 1. Material1批次較少,只有24個
- 2. Material2中偵測到的異常批號大 致相同,Isolation Forest偵測到 較多不同於其他方法的批次
- 3. Mateial3中,三方法偵測到的異常批號差異較大,僅有5個批號皆被偵測異常

Information Summary-各方法異常批次比較

Material4

Material5

	Material1	Material2	Material3	Material4	Material5
Hierarchical	12.5%	8.55%	14.8%	8.73%	15.13%
Isolation Forest	16.67%	15.13%	15.88%	15.03%	15.13%
MSPC	16.67%	11.18%	7.58%	9.41%	7.01%
Intersection	8.33%	8.55%	1.81%	8.73%	7.01%

- 1. Material4中偵測到的異常批號大 致相同,Isolation Forest偵測到 較多不同於其他方法的批次
- 2. Mateial5中,MSPC選到的異常批 次相對另外兩個方法少,另外兩 個方法則有偵測到各別不同的批 次
- 3. 把三個方法的異常批次取交集, 定義為我們認為最有可能異常的 批次

Information Summary-CoA Importance

圖片:

交集的異常批號,在各CoA上原本就是異常值的比例 比例高代表該CoA對Material整體分析的影響程度較大

Material 1:整體異常批次僅2筆,較無法判斷

Material 2:CoA 6達到92.3%

Material 3:CoA 25、26為60%,但整體異常批次僅5

筆,較難判斷

Material 4: CoA 13達到62.2%,數值較高

Material 5:CoA 2、3超過30%, CoA 5達到47.4%,

明顯高於CoA 1

Information Summary-異常批次趨勢

- 1. Material2、4、5, 三個方法找到的異常批次較接近
- 2. Material3三個方法找到的異常批次差異較大
- 3. Material2、4有較高比例的異常批次發生在前期

Decision making

- 未來資料預測:
 - > Problem 1:
 - Regression:預測response值後判斷是否異常
 - > Problem 2:
 - Isolation forest: 將新資料代入模型計算Anomaly score
 - Hierarchical clustering: 將資料label後,再採用KNN分類
 - Shewhart chart: 移除異常批號後重新建立 $control\ chart$, 並針對新批號計算 T^2 值
 - 共同監控,例如任一組出現異常即判定為異常批次

三種方法的異常批號取交集后列表:

Object	Abnormal data
Material 1	3,4
Material 2	2,3,5,6,7,8,11,13,21,25,29,55,94
Material 3	1,40,98,270,271
Material 4	3,4,7,8,9,11,12,14,15,16,19,20,24,34,37,44,54,55,56,57,58,59,60,61,62,70,71,72,73,75,77, 78,84,86,89,91,95,99,102,105,106,109,111,113,115,116,117,130,133,135,137,139,140,142, 143,146,176,205,213,223,225,233,238,266,267,308,319,322,330,346,353,361,381,384,484, 667,707,812,813,838,929,1002,1003,1004,1005,1006,1007,1008,1009,1010
Material 5	1,2,3,9,10,11,12,41,113,116,121,180,188,207,212,224,246,263,264

