L10 Cache Optimizations

Zonghua Gu, 2018

Optimizations for the Memory Hierarchy

- Write code that has locality!
 - Spatial: access data contiguously
 - Temporal: make sure access to the same data is not too far apart in time
- How can you achieve locality?
 - Adjust memory accesses in code (software) to improve miss rate (MR)
 - Requires knowledge of both how caches work as well as your system's parameters
 - Proper choice of algorithm
 - Loop transformations

Example: Matrix Sum

Consider the following two loops, which calculate the sum of the entries in a 3x4 matrix A of 32-bit integers:

```
Loop A

sum = 0;

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

sum += A[i][j];

Loop B

sum = 0;

for (j = 0; j < 4; j++)

for (i = 0; i < 3; i++)

sum += A[i][j];
```

 Matrix A is stored contiguously in memory in row-major order. Row major order means that elements in the same row of the matrix are adjacent in memory (A[i][j] resides in memory location [4*(64*i + j)]).

Note: 76 is just one possible starting address of A

Matrix Sum Loop A

Loop A sum = 0; for (i = 0; i < 3; i++) for (j = 0; j < 4; j++) sum += A[i][j];</pre>

Access Pattern: 1) a[0][0] stride = 1 2) a[0][1] 3) a[0][2] 4) a[0][3] 5) a[1][0] 6) a[1][1] 7) a[1][2] 8) a[1][3] 9) a[2][0] 10) a[2][1] 11) a[2][2] 12) a[2][3]

- Index j is incremented in the inner loop
- Good spatial locality for a[][]
- No temporal locality for a[][]
 - Each element is used only once

Layout in Memory

	а	а	a	a	а	a	a	а	а	а	а	a
ı	[0]	[0]	[0]	[0]	[1]	[1]	[1]	[1]	[2]	[2]	[2]	[2]
	[0]	[1]	[2]	[3]	[0]	[1]	[2]	[3]	[0]	[1]	[2]	[3]

Matrix Sum Loop B

Loop B sum = 0; for (j = 0; j < 4; j++) for (i = 0; i < 3; i++) sum += A[i][j];</pre>

- Index i is incremented in the inner loop
- Access Pattern: 1) a[0][0]
 stride = 4
 2) a[1][0]
 3) a[2][0]
 4) a[0][1]
 5) a[1][1]
 6) a[2][1]
 7) a[0][2]
 8) a[1][2]
 9) a[2][2]
 10) a[0][3]
 11) a[1][3]

12) a[2][3]

- Poor spatial locality for a[][]
- No temporal locality for a[][]
 - Each element is used only once

Layout in Memory

	a	а	a	a	a	a	a	а	a	а	а	a
ı	[0]	[0]	[0]	[0]	[1]	[1]	[1]	[1]	[2]	[2]	[2]	[2]
ı	[0]	[1]	[2]	[3]	[0]	[1]	[2]	[3]	[0]	[1]	[2]	[3]

Example: Matrix Multiplication

The mathematical cache miss analysis in this example will not be covered in the exam. You only need to grasp the basic concept of cache blocking.

Naïve Matrix Multiply

```
# move along rows of A
for (i = 0; i < n; i++)
  # move along columns of B
  for (j = 0; j < n; j++)
    # EACH k loop reads row of A, col of B
    # Also read & write c(i,j) n times
    for (k = 0; k < n; k++)
      C[i][j] += A[i][k] * B[k][j];
      //Equivalent form
      //C[i*n+j] += A[i*n+k] * B[k*n+j];
```

$$= \begin{bmatrix} C(i,j) \\ + \end{bmatrix} \times \begin{bmatrix} B(:,j) \\ B(:,j) \end{bmatrix}$$

Cache Miss Analysis (Naïve)

- Scenario Parameters:
 - Square matrix $(n \times n)$, elements are doubles
 - FA (Fully Associative) LRU cache, block size B = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)
- Each iteration:

- Each cache block holds 8 elements
- Reading one row of Matrix A
 - good spatial locality with stride 1
 - 1 cache miss every 8 elements; total cache misses due to reading one row of A is n/8
- Reading one column of Matrix B
 - poor spatial locality with stride n
 - 1 cache miss every element; total cache misses due to reading one column of B is n

- 1st cache miss brings 8 elements A[0][0], A[0][1] ... A[0][7] into cache
- 2nd cache miss brings 8 elements B[0][0], B[0][1]... B[0][7] into cache
- Compute A[0][0]*B[0][0]; Only B[0][0] is used

- 4th cache miss brings 8 elements B[2][0],
 B[2][1] ... B[2][7] into cache
- Compute A[0][2]*B[2][0]
- Only B[2][0] is used

- 3rd cache miss brings 8 elements B[1][0], B[1][1] ... B[1][7] into cache
- Compute A[0][1]*B[1][0]
- Only B[1][0] is used

- 9th cache miss brings 8 elements A[0][8], A[0][9] ... A[0][15] into cache
- 10th cache miss brings 8 elements B[8][0], B[8][1] ... B[8][7] into cache
- Compute A[0][8]*B[8][0]

At the end of multiplying 0th row of A[0][0...n-1] with 0th column of B[0...n-1][0], this is what the cache contains (assuming cache is quite small compared to matrix size)

By the time we get to 1st row of A[1][0...n-1], the top left elements of B have been evicted from the cache, so every element of B has to be fetched again from memory, even though they have been used before. So the process repeats.

Cache Miss Analysis (Naïve)

- Scenario Parameters:
 - Square matrix $(n \times n)$, elements are doubles
 - Cache block size B = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)

Each iteration:

* Total misses:
$$\frac{9n}{8} \times n^2 = \frac{9}{8}n^3$$

n iterations of the doubly-nested loop

Cache Blocking (1)

- Can get the same result of a matrix multiplication by splitting the matrices into smaller submatrices (matrix "blocks")
- For example, multiply two 4×4 matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \text{ with } B \text{ defined similarly.}$$

$$AB = \begin{bmatrix} (A_{11}B_{11} + A_{12}B_{21}) & (A_{11}B_{12} + A_{12}B_{22}) \\ (A_{21}B_{11} + A_{22}B_{21}) & (A_{21}B_{12} + A_{22}B_{22}) \end{bmatrix}$$

Cache Blocking (2)

C ₁₁	C ₁₂	C ₁₃	C ₁₄
C ₂₁	C ₂₂	C ₂₃	C ₂₄
C ₃₁	C ₃₂	C ₄₃	C ₃₄
C ₄₁	C ₄₂	C ₄₃	C ₄₄

A ₁₁	A ₁₂	A ₁₃	A ₁₄
A ₂₁	A ₂₂	A ₂₃	A ₂₄
A ₃₁	A ₃₂	A ₃₃	A ₃₄
A ₄₁	A ₄₂	A ₄₃	A ₁₄₄

B ₁₁	B ₁₂	B ₁₃	B ₁₄
B ₂₁	B ₂₂	B ₂₃	B ₂₄
B ₃₂	B ₃₂	B ₃₃	B ₃₄
B ₄₁	B ₄₂	B ₄₃	B ₄₄

Matrices of size $n \times n$, split into 4 blocks of size r (n=4r)

$$C_{22} = A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} + A_{24}B_{42} = \sum_{k} A_{2k} B_{k2}$$

- Multiplication operates on small "block" matrices
 - Choose size so that they fit in the cache!
 - This technique called "blocking"

Blocked Matrix Multiply

Blocked version of the naïve algorithm:

```
# move by rxr BLOCKS now
for (i = 0; i < n; i += r)
  for (j = 0; j < n; j += r)
    for (k = 0; k < n; k += r)
      # block matrix multiplication
      for (ib = i; ib < i+r; ib++)
        for (jb = j; jb < j+r; jb++)
          for (kb = k; kb < k+r; kb++)
            c[ib][jb] += a[ib][kb]*b[kb][jb];
            //Equivalently
            //c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];
```

 \blacksquare r = block matrix size (assume r divides n evenly)

Cache Miss Analysis (Blocked)

- Scenario Parameters:
 - Cache block size B = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - At least two blocks \blacksquare $(r \times r)$ fit into cache: $2r^2 < C$; r^2 is multiple of 8

 r^2 elements per block, 8 misses per cache block for each $r \times r$ block of A or B

- Each block iteration:
 - $r^2/4$ misses per block
 - $n/r \times r^2/4 = nr/4$
- * Total misses: n/r blocks in row and column

 $\frac{nr}{4} \times \left(\frac{n}{r}\right)^2 = \frac{n^3}{4r} \ll \frac{9}{8} n^3 \text{(naive approach)}$

X

Detailed Cache Miss Analysis (Blocked)

- * Consider one small $r \times r$ block of C. We first multiply one $r \times r$ block of A with one $r \times r$ block of B, cache misses:
 - $\frac{r^2}{8} + \frac{r^2}{8} = \frac{r^2}{4}$
- * Repeat this for all $n/r \times r$ blocks of A (the top most "thick row", and all $n/r \times r$ blocks of B (the leftmost "thick column"), # cache misses for computing the top left $r \times r$ block of C is:
 - $n/r \times r^2/4 = nr/4$
- * You need to do this for all $(n/r)^2 r \times r$ blocks of C in order to compute the big $n \times n$ matrix C, so total # cache misses is:

$$\frac{nr}{4} \times \left(\frac{n}{r}\right)^2 = \frac{n^3}{4r}$$

$$n/r \text{ blocks}$$

Cache Miss Analysis (Blocked)

After finishing 1st block matrix multiply: $r^2/8$ misses for A, and $r^2/8$ misses for

After finishing nth block matrix: $(r^2/8) * n/r$ misses for A, $(r^2/8) * n/r$ misses for B, with total of nr/4 misses.

After finishing 2nd block matrix multiply: $r^2/8$ misses for B

• Process repeats for $\left(\frac{n}{r}\right)^2$ times • Total misses: $\frac{nr}{4} \times \left(\frac{n}{r}\right)^2 = \frac{n^3}{4r}$

• Total misses:
$$\frac{nr}{4} \times \left(\frac{n}{r}\right)^2 = \frac{n^3}{4r}$$

Cache-Friendly Code

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique
- All systems favor "cache-friendly code"
 - Getting absolute optimum performance is very platform specific
 - Cache size, cache block size, associativity, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)
 - Focus on inner loop code

The Memory Mountain

Core i7 Haswell

2.1 GHz