WSI

Laboratorium 3

Bartosz Czerwiński - 331165

13kwietnia $2025\,$

Spis treści

1.	Wstęp	2
2.	Implementacja gry	2
3.	Implementacja algorytmu	2
4.	Testy	2
5.	Podsumowanie	3
Źr	ódła	3

1. Wstęp

Celem laboratorium było zaimplementowanie algorytmu alfa-beta dla gry Connect Four, a następnie porównanie jakości algorytmu dla różnych głębokości przeszukiwania.

2. Implementacja gry

Do wykonania laboratorium skorzystano z gotowej implementacji gry Connect Four dostępnej w repozytorium https://github.com/lychanl/two-player-games.

3. Implementacja algorytmu

W celu poprawnego działania algorytmu zdefiniowano funkcję heurystyczną:[1]

$$wynik = \sum_{i=0}^{n} w_i - \sum_{i=0}^{n'} w_i$$

- \bullet n liczba grup żetonów gracza max
- n' liczba grup żetonów gracza min
- $\bullet \ i$ numer grupy żetonów
- w waga grupy żetonów.

Waga grupy żetonów zależy od tego, ile żetonów jest ustawionych w linii:

Tabela 1: Przypisanie wag

Liczba żetonów w linii	Waga (w)		
2	1		
3	10		
4	1000		

Dodatkowo w przypadku znalezienia się w stanie terminalnym w funkcji heurystycznej uwzględniona jest ilość ruchów - dzięki temu w przypadku znalezienia kilku ruchów, które prowadzą do zwycięstwa, wybierany jest ten, który doprowadzi do niego najszybciej; analogicznie w przypadku, gdy wszystkie ruchy prowadzą do porażki, wybierany jest ten, który przegrywa najpóźniej.

4. Testy

Testy przeprowadzono dla głębokości z zakresu 1 - 6. Każda możliwa para głębokości (AI1 vs AI2) rozgrywała ze sobą 10 gier. W kolejnych partiach następowały zmiany rozpoczynającego grę.

Tabela 2: Wyniki pojedynków AI1 vs AI2 przy różnych głębokościach (format: AI1 — AI2 — Remis)

AI1\AI2	1	2	3	4	5	6
1	5 - 5 - 0	2 - 8 - 0	0 — 10 — 0	2 - 8 - 0	1 - 9 - 0	1 - 9 - 0
2		6 - 3 - 1	4 - 6 - 0	3 - 5 - 2	1 — 9 — 0	0 - 10 - 0
3			6 - 3 - 1	2 - 7 - 1	2 — 8 — 0	1 — 9 — 0
4				2 - 6 - 2	3 - 2 - 5	1 - 8 - 1
5					5 - 5 - 0	4 - 4 - 2
6						6 - 2 - 2

Można zaobserwować, że w przypadku, gdy gracze komputerowi są na tym samym poziomie głębokości lub różni ich tylko jeden poziom, wyniki są wyrównane. Natomiast gdy różnica głębokości wynosi co najmniej 2, widać przewagę gracza z większym poziomem głębokości.

5. Podsumowanie

Wykonanie laboratorium pozwoliło na poznanie algorytmu minimax z odcięciem. Wyniki pokazały, że zwiększanie głębokości analizy ruchów znacząco poprawia jakość gry.

Źródła

[1] https://www.scirp.org/journal/paperinformation?paperid=125554