Lecture 2: Definitions and properties Gaussian Markov random fields

David Bolin Chalmers University of Technology January 20, 2015

Some basic notation

If
$$x=(x_1,\dots,x_n)$$
 and $A\subset I=\{1,\dots,n\}$, we let
$$x_A=\{x_i:i\in A\}$$

$$x_{-A}=\{x_i:i\in I\setminus A\}$$

If x and y are independent, we have

$$\pi(x,y) = \pi(x)\pi(y),$$

and denote this by $x \perp y$.

If x and y are conditionally independent given z, we have

$$\pi(x, y|z) = \pi(x|z)\pi(y|z),$$

and denote this by $x \perp y|z$.

x and y may be marginally dependent while being conditionally independent given x. We have

$$x \perp y | z \Leftrightarrow \pi(x, y | z) = f(x, z)g(y, z)$$

for some functions f and g for all z with $\pi(z) > 0$.

Intro Dav

Undirected graphs

We typically use undirected graphs to represent conditional independence.

An undirected graph ${\cal G}$ consists of

 \mathcal{V} A set of nodes, $1, \ldots, n$.

 \mathcal{E} A set of edges $\{i, j\}$, where $i \neq j \in \mathcal{V}$

Example for AR(1) process

We say that a graph is fully connected if $\{i, j\} \in \mathcal{E} \, \forall \, i \neq j \in \mathcal{V}$.

The neighbors of a node i are all nodes in \mathcal{G} having an edge to i:

$$ne(i) = \{ j \in \mathcal{V} : \{i, j\} \in \mathcal{E} \}.$$

We write $i \sim j$ if i and j are neighbors.

The formal definition of a GMRF

Definition

A random vector $\mathbf{x}=(x_1,\ldots,x_n)^{\top}\in\mathbb{R}^n$ is called a GMRF with respect to a labelled graph $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$ with mean μ and positive definite precision matrix \mathbf{Q} if and only if its density has the form

$$\pi(\mathbf{x}) = (2\pi)^{-n/2} |\mathbf{Q}|^{1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{Q}(\mathbf{x} - \boldsymbol{\mu})\right)$$

and

$$Q_{ij} \neq 0 \Longleftrightarrow \{i, j\} \in \mathcal{E} \text{ for all } i \neq j$$

Note that if \mathbf{Q} is dense, then \mathcal{G} is fully connected. Thus, any normal distribution is a GMRF and vice versa.

The interesting case is when G is *not* fully connected.

The graph connection

The graph $\mathcal G$ is used to represent the conditional independence properties of the GMRF.

We know that the covariance matrix only directly gives us information about *marginal* dependence structure, and not the conditional structure.

It turns out that the precision matrix ${\bf Q}$ plays a crucial role for the conditional structure.

Theorem 2.2

Let $x \sim N(\boldsymbol{\mu}, \mathbf{Q}^{-1})$. Then for $i \neq j$,

$$i \perp j | \mathbf{x}_{-ij} \Longleftrightarrow Q_{i,j} = 0.$$

Thus, the non-zero pattern of ${\bf Q}$ both determines ${\cal G}$ and the conditional structure: We can simply read of from ${\bf Q}$ whether two nodes are conditionally independent.

The precision matrix

The natural parametrisation of a GMRF is in terms of its precision matrix, which has nice conditional interpretations

Theorem 2.3

Let $x \sim N(\mu, \mathbf{Q}^{-1})$. Then

$$E(x_i|\mathbf{x}_{-i}) = \mu_i - \frac{1}{Q_{ii}} \sum_{j:j \sim i} Q_{ij}(x_j - \mu_j)$$

$$Prec(x_i|\mathbf{x}_{-i}) = Var(x_i|\mathbf{x}_{-i})^{-1} = Q_{ii}$$

$$Corr(x_i, x_j|\mathbf{x}_{-ij}) = -\frac{Q_{ij}}{\sqrt{Q_{ii}Q_{jj}}}$$

It should be noted that it basically is impossible to interpret the elements in \mathbf{Q} marginally, since $\mathbf{\Sigma} = \mathbf{Q}^{-1}$ holds the marginal information.

Markov properties

Let ${\bf x}$ be a GMRF wrt ${\cal G}=({\cal V},{\cal E}).$ Then the following are equivalent.

The pairwise Markov property:

$$x_i \perp x_j \mid \mathbf{x}_{-ij} \quad \text{if } \{i,j\} \not\in \mathcal{E} \text{ and } i \neq j.$$

Markov properties

Let ${\bf x}$ be a GMRF wrt ${\cal G}=({\cal V},{\cal E}).$ Then the following are equivalent.

The local Markov property:

$$x_i \perp \mathbf{x}_{-\{i, \mathsf{ne}(i)\}} \mid \mathbf{x}_{\mathsf{ne}(i)}$$
 for every $i \in \mathcal{V}$.

Markov properties

Let ${\bf x}$ be a GMRF wrt ${\cal G}=({\cal V},{\cal E}).$ Then the following are equivalent.

The global Markov property:

$$\mathbf{x}_A \perp \mathbf{x}_B \mid \mathbf{x}_C$$

for all disjoint sets $A,\,B$ and C where C separates A and B, and A and B are non-empty.

(Induced) subgraph

Let $A \subset \mathcal{V}$

 \mathcal{G}^A denote the graph restricted to A.

- remove all nodes not belonging to A, and
- ullet all edges where at least one node does not belong to A

Example

$$\mathcal{A} = \{1, 2\}$$
, then

$$V^A = \{1, 2\}$$
 and $\mathcal{E}^A = \{\{1, 2\}\}$

Conditional distributions

Theorem 2.5

Let $\mathcal{V} = A \cup B$ where $A \cap B = \emptyset$, and let \mathbf{x} be a GMRF wrt \mathcal{G} , with

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_A \\ \mathbf{x}_B \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_A \\ \boldsymbol{\mu}_B \end{pmatrix}, \quad \mathbf{Q} = \begin{pmatrix} \mathbf{Q}_{AA} & \mathbf{Q}_{AB} \\ \mathbf{Q}_{BA} & \mathbf{Q}_{BB} \end{pmatrix}.$$

 ${f x}_A|{f x}_B$ is then a GMRF wrt the subgraph ${\cal G}^A$ with parameters ${m \mu}_{A|B}$ and ${f Q}_{A|B}>0$, where

$$oldsymbol{\mu}_{A|B} = oldsymbol{\mu}_A - \mathbf{Q}_{AA}^{-1}\mathbf{Q}_{AB}(\mathbf{x}_B - oldsymbol{\mu}_B)$$
 and $\mathbf{Q}_{A|B} = \mathbf{Q}_{AA}$.

Conditional distributions II

$$\boldsymbol{\mu}_{A|B} = \boldsymbol{\mu}_A - \mathbf{Q}_{AA}^{-1}\mathbf{Q}_{AB}(\mathbf{x}_B - \boldsymbol{\mu}_B) \quad \text{and} \quad \mathbf{Q}_{A|B} = \mathbf{Q}_{AA}.$$

- ullet We have explicit knowledge ${f Q}_{A|B}$ as the principal matrix ${f Q}_{AA}.$
- The subgraph \mathcal{G}^A does not change the structure, only removes nodes and edges in A.
- The conditional mean only depends on nodes in $A \cup ne(A)$.
- If \mathbf{Q}_{AA} is sparse, then $oldsymbol{\mu}_{A|B}$ is the solution of a sparse linear system

$$\mathbf{Q}_{AA}(\boldsymbol{\mu}_{A|B} - \boldsymbol{\mu}_A) = -\mathbf{Q}_{AB}(\mathbf{x}_B - \boldsymbol{\mu}_B)$$

This result should be compared to the standard covariance-based formula

$$\mathbf{x}_A|\mathbf{x}_B \sim \mathsf{N}(\boldsymbol{\mu}_A + \boldsymbol{\Sigma}_{AB}\boldsymbol{\Sigma}_{BB}^{-1}(\mathbf{x}_B - \boldsymbol{\mu}_B), \boldsymbol{\Sigma}_{AA} - \boldsymbol{\Sigma}_{AB}\boldsymbol{\Sigma}_{BB}^{-1}\boldsymbol{\Sigma}_{BA})$$

The induced subgraph

The induced subgraph

The induced subgraph

The canonical parameterisation

Definition

A GMRF ${\bf x}$ wrt ${\cal G}$ having a canonical parameterisation $({\bf b},{\bf Q}),$ has density

$$\pi(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} + \mathbf{b}^T\mathbf{x}\right)$$
 (1)

ie, precision matrix ${\bf Q}$ and mean $\mu={\bf Q}^{-1}{\bf b}$. We write this as

$$\mathbf{x} \sim \mathsf{N}_C(\mathbf{b}, \mathbf{Q}).$$
 (2)

The relation to the Gaussian distribution, is that

$$\mathcal{N}(\boldsymbol{\mu}, \mathbf{Q}^{-1}) = \mathsf{N}_C(\mathbf{Q}\boldsymbol{\mu}, \mathbf{Q})$$

The canonical parameterisation II

The following properties of the canonical parameterisation are highly useful in practise

• If $\mathbf{x} \sim N_C(\mathbf{b}, \mathbf{Q})$, then

$$\mathbf{x}_A|\mathbf{x}_B \sim \mathsf{N}_C(\mathbf{b}_A - \mathbf{Q}_{AB}\mathbf{x}_B, \mathbf{Q}_{AA})$$

• Let $\mathbf{x} \sim \mathsf{N}_C(\mathbf{b}, \mathbf{Q})$ and $\mathbf{y} | \mathbf{x} \sim \mathsf{N}(\mathbf{x}, \mathbf{P}^{-1})$, then

$$\mathbf{x}|\mathbf{y} \sim \mathsf{N}_C(\mathbf{b} + \mathbf{P}\mathbf{y}, \mathbf{Q} + \mathbf{P})$$

During successive conditioning, we can update the canonical parameterisation without explicitly computing the mean.

Conditional autoregressions (CAR models)

• Recall the conditional specification of the AR(1) process:

$$x_t = \phi x_{t-1} + \epsilon_t, \qquad t = 1, 2, \dots, \qquad \epsilon_t \sim \mathcal{N}(0, 1)$$

 \bullet The joint density for ${\bf x}$ could then be calculated using

$$\pi(\mathbf{x}) = \pi(x_0)\pi(x_1|x_2)\cdots\pi(x_{n-1}|x_{n-2})$$
 (3)

- Often, there is no natural ordering of the nodes in x. For example if x_i is the value of pixel i in an image or the relative risk of a disease in county i.
- It is then no longer useful to use a formulation like (3) to specify the joint distribution.
- A common approach is then to implicitly specify the GMRF through the full conditionals

$$\{\pi(x_i|\mathbf{x}_{-i}), i = 1,\dots, n\}$$

 These models are called conditional autoregressions, or CAR models, and was pioneered by Julian Besag in the mid 70s.

In general

Specify the full conditionals as normals with

$$\mathsf{E}(x_i \mid \mathbf{x}_{-i}) = \mu_i - \sum_{j:j \sim i} \beta_{ij} (x_j - \mu_j) \quad \text{and}$$

$$\operatorname{Prec}(x_i \mid \mathbf{x}_{-i}) = \kappa_i > 0 \tag{5}$$

for $i=1,\ldots,n$, for some $\{\beta_{ij}, i\neq j\}$, and vectors μ and κ . Clearly, \sim is defined implicitly by the nonzero terms of $\{\beta_{ij}\}$.

- Even though the "full conditionals" are well defined, are we sure that the joint density exists and is unique?
- What are the compatibility conditions required for a joint GMRF to exists with the prescribed Markov properties?

Theorem 2.6

The normal conditionals with means and precisions

$$\mathsf{E}(x_i \mid \mathbf{x}_{-i}) = \mu_i - \sum_{j:j \sim i} \beta_{ij}(x_j - \mu_j) \quad \text{and} \quad \operatorname{Prec}(x_i \mid \mathbf{x}_{-i}) = \kappa_i > 0$$

specify a GMRF ${\bf x}$ with mean ${\boldsymbol \mu}$ and precision ${\bf Q}$ with elements $Q_{ii}=\kappa_i$, and $Q_{ij}=\kappa_i\beta_{ij}$ given that $\kappa_i\beta_{ij}=\kappa_j\beta_{ji}$ for all $i\neq j$ and that ${\bf Q}$ is positive definite.

Intro — CAR David Bolin

A proof based on Brook's lemma

Lemma (Brook's lemma)

Let $\pi(\mathbf{x})$ be the density for $\mathbf{x} \in \mathbb{R}^n$ and define $\Omega = \{ \mathbf{x} \in \mathbb{R}^n : \pi(\mathbf{x}) > 0 \}$. Let $\mathbf{x}, \mathbf{x}' \in \Omega$, then

$$\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}')} = \prod_{i=1}^{n} \frac{\pi(x_i|x_1, \dots, x_{i-1}, x'_{i+1}, \dots, x'_n)}{\pi(x'_i|x_1, \dots, x_{i-1}, x'_{i+1}, \dots, x'_n)}$$
$$= \prod_{i=1}^{n} \frac{\pi(x_i|x'_1, \dots, x'_{i-1}, x_{i+1}, \dots, x_n)}{\pi(x'_i|x'_1, \dots, x'_{i-1}, x_{i+1}, \dots, x_n)}.$$

David Bolin

The valid parameter space

- Positive definiteness requires $\kappa_i > 0$ for all i but also further complicated contraints on β_{ij} .
- In general, if $\mathbf{Q}(\theta)$ depends on parameters $\theta \in \Theta$, we need to restrict θ to the valid parameter space

$$\mathbf{\Theta}^+ = \{ \boldsymbol{\theta} \in \mathbf{\Theta} : \mathbf{Q}(\boldsymbol{\theta}) > 0 \}$$

- We can always check if $oldsymbol{ heta} \in \Theta^+$ by direct verification, but this is expensive.
- Finding Θ^+ is in general difficult.
- A common approach is to demand that \mathbf{Q} is diagonal dominant: $Q_{ii} > \sum_{j:j\neq i} |Q_{ij}|$ for each i.
- This sufficient but *not* necessary for positive definiteness, thus it gives a subspace of Θ^+ .

Intro — CAR David Bolin