Theory of Computation, Fall 2021 Assignment 5 (Due November 12 Friday 9:35am)

- Q1. Let a,b,c be three distinct symbols. Use pumping theorem to show that $A=\{wcw:w\in\{a,b\}^*\}$ is not context-free. a^p b^p c a^p b^p
- Q2. Let A be a context-free language. Let B be a regular language. Prove that $A \cap B$ is context-free. You may assume that A and B are defined over the same alphabet Σ . (Hint: let P_A be a PDA accepting A. Let M_B be an NFA accepting B. Construct a PDA P_{\cap} that conceptually runs P_A and M_B in parallel.)
- Q3. Let $A = \{w \in \{a, b, c\}^* : w \text{ has same number of } a$'s, b's, and c's $\}$.
 - (a) Prove that A is not context-free. (Hint: It is not necessary to use pumping theorem. You may try the conclusion of Q2.) a*b*c* is regular \bigcup: a^nb^nc^n is not cfl
 - (b) Show that \overline{A} is context-free. (Hint: it suffices to show that \overline{A} is a union of serveral context-free languages) i \neq i \neq k
- Q4. Fix an alphabet Σ contians \triangleright and \sqcup . Given a precise definition for the head-moving machine M_{\rightarrow} , which, regardless of the symbol it reads, always moves its head to the right and then halt immediately. \delta(s, a)=(h, \right) a\in \Sigma-\{\\}
- Q5. What happens if you run the machine L_{\perp} on the tape $\triangleright ba \perp$?
- Q6. Design a right-shifting machine S_{\to} that transforms $\triangleright \sqcup w \sqcup \text{ into } \triangleright \sqcup \sqcup w \sqcup$, where w is a string that contains no blank symbol. You may use the machines and the diagrams we presented in class.

 L \to (a\neq\sqcup) \sqcupRaL_\sqcup

References

- [1] Sipser M.. Introduction to the Theory of Computation. CENGAGE Learning (2013)
- [2] Lewis H., Papadimitriou C., Elements of the Theory of Computation, Prentice-Gall (1998)