Exact system identification with missing data

Ivan Markovsky

Why missing data?

- sensor failures measurements are accidentally corrupted
- compressive sensing measurements are intentionally skipped
- model-free signal processing missing data is what we aim to find

This talk ...

- given data is exact
- data generating system is unknown but LTI
- problem is to interpolate the missing data (cf., polynomial interpolation)

- special case: partial realization
 - ▶ given data finite impulse response h(1),...,h(T)
 - ▶ missing data extension h(T+1),...

Example

6th order autonomous LTI system's trajectory
 missing data locations

Example

6th order autonomous LTI system's trajectory
 interpolated data

The problem

- notation:
 - \mathcal{I}_{data} given/specified elements of w $w|_{\mathcal{I}_{data}}$ selects the elements \mathcal{I}_{data} of w

- ▶ given: data $\mathscr{I}_{\text{data}}$ and $w|_{\mathscr{I}_{\text{data}}}$
- ▶ find: LTI system $\widehat{\mathscr{B}}$ of minimal order and \widehat{w} , such that

$$\widehat{\pmb{w}}|_{\mathscr{I}_{\mathsf{data}}} = \pmb{w}|_{\mathscr{I}_{\mathsf{data}}} \quad \mathsf{and} \quad \widehat{\pmb{w}} \in \widehat{\mathscr{B}}$$

Equivalence to matrix completion

the problem is equivalent to

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{w} & \text{rank} \left(\mathscr{H}_L(\widehat{w}) \right) \\ \text{subject to} & \widehat{w}|_{\mathscr{I}_{\mathsf{data}}} = w|_{\mathscr{I}_{\mathsf{data}}} \end{array}$$

where

$$\mathcal{H}_{L}(w) := \begin{bmatrix} w(1) & w(2) & \cdots & w(T-L+1) \\ w(2) & w(3) & \cdots & w(T-L+2) \\ w(3) & w(4) & \cdots & w(T-L+3) \\ \vdots & \vdots & & \vdots \\ w(L) & w(L+1) & \cdots & w(T) \end{bmatrix}$$

Hankel structured low-rank matrix completion

Special case: partial realization

•
$$\mathscr{I}_{data} = (1, \dots, T)$$

$$| w|_{\mathscr{I}_{data}} = (h(1), \dots, h(T))$$

Types of methods

convex relaxations (nuclear norm heuristic)

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{w} & \|\mathscr{H}_L(\widehat{w})\|_* \\ \text{subject to} & \widehat{w}|_{\mathscr{I}_{\text{data}}} = w|_{\mathscr{I}_{\text{data}}} \end{array}$$

replaces rank with the nuclear norm $\|\cdot\|_*$

- subspace methods
- local optimization based methods

Nuclear norm heuristic

Hankel matrix nuclear norm minimization

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{w} & \|\mathscr{H}_L(\widehat{w})\|_* \\ \text{subject to} & \widehat{w}|_{\mathscr{I}_{\mathsf{data}}} = w|_{\mathscr{I}_{\mathsf{data}}} \end{array}$$

is a semidefinite optimization problem

minimize over
$$\widehat{w}$$
, U , V trace(U) + trace(V) subject to $\widehat{w}|_{\mathscr{I}_{data}} = w|_{\mathscr{I}_{data}}$, $\begin{bmatrix} U & \mathscr{H}_{L}^{\top}(\widehat{w}) \\ \mathscr{H}_{L}(\widehat{w}) & V \end{bmatrix} \succeq 0$

 $ightharpoonup O(T^2)$ optimization variables (T - # of data points)

CVX code

```
function wh = hmc(w)
[T, q] = size(w); Idata = find(~isnan(w));
L = ceil((T + 1) / (q + 1));
cvx begin sdp;
  variable wh(size(w));
  minimize norm_nuc(hankel(hh(1:L), hh(L:end)));
  subject to
    wh(Idata) == w(Idata);
cvx_end
```

Numerical example: partial realization

```
rand('seed', 0); r = 3; T = 10;
sys0 = drss(r);

h0 = impulse(sys0, 2 * T); h0 = h0(2:end);
h = h0; h((T + 1):end) = NaN;

hh = hmc(h, T); err = norm(h0 - hh)
sv = svd(hankel(hh(1:T), hh(T:end)));
format long, first_sv = sv(1:(r + 1))
```

Output of CVX

0.014660904007509

```
Calling SDPT3: 210 variables, 91 equality constrain
number of iterations = 12
Total CPU time (secs) = 0.23
err =
9.250411145054003e-10
first sv =
0.798479261343370
0.400697013978696
```

Subspace method by example

- order: $\ell = 2$, complete trajectory: \bar{w}
- $ightharpoonup \implies R\mathscr{H}_3(\bar{w}) = 0$, for some $R \in \mathbb{R}^{1 \times 3}$
- ► data: w = (1,2, NaN, 4,5, NaN, 7,8, NaN, 10, 11)
- ▶ R can not be found from $\mathcal{H}_3(w)$

• consider the matrix $\mathcal{H}_4(w)$

and select the columns in blue and red

$$\widetilde{H}^{1} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ \text{NaN NaN NaN NaN} \\ 4 & 7 & 10 \end{bmatrix} \quad \widetilde{H}^{2} = \begin{bmatrix} 2 & 5 & 8 \\ \text{NaN NaN NaN NaN} \\ 4 & 7 & 10 \\ 5 & 8 & 11 \end{bmatrix}$$

removing the rows of Nan's

$$\underbrace{\begin{bmatrix} 1 & -3/2 & 1/2 \end{bmatrix}}_{R^1} \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 4 & 7 & 10 \end{bmatrix} = 0 \quad \underbrace{\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}}_{R^2} \begin{bmatrix} 2 & 5 & 8 \\ 4 & 7 & 10 \\ 5 & 8 & 11 \end{bmatrix} = 0$$

we have

$$\underbrace{\begin{bmatrix} 1 & -3/2 & 0 & 1/2 \end{bmatrix}}_{\widetilde{R}^1} \widetilde{H}^1 = 0, \quad \underbrace{\begin{bmatrix} 1 & 0 & -3 & 2 \end{bmatrix}}_{\widetilde{R}^2} \widetilde{H}^2 = 0$$

• by construction $\begin{bmatrix} \widetilde{R}^1 \\ \widetilde{R}^2 \end{bmatrix} \mathscr{H}_4(\bar{w}) = 0$, so that

$$\widetilde{R}(z) = \begin{bmatrix} \widetilde{R}^1(z) \\ \widetilde{R}^2(z) \end{bmatrix} = \begin{bmatrix} z^0 - 3/2z^1 + 1/2z^3 \\ z^0 - 3z^2 + 2z^3 \end{bmatrix}$$

is a (nonminimal) kernel repr. of the system

a minimal representation is given by

$$R(z) := GCD(\widetilde{R}^{1}(z), \widetilde{R}^{2}(z)) = z^{0} - 2z^{1} + z^{2}$$

▶ once R is computed, it is trivial to complete the data

$$\bar{w} = (1 \ 2 \ \text{NaN} \ 4 \ 5 \ \text{NaN} \ 7 \ 8 \ \text{NaN} \ 10 \ 11)$$

 $\hat{w} = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11)$

Current/future work

- ▶ generalization to MIMO systems ~> O(T) method
- reduction to minimal representation
- in case of noisy data, it is model reduction
- possible approach: approximate common divisor

On the choice of L