TOLLER CYCLOPS-PROJECT GRONOBOT EØEE

Rubén Espino San José

CYCLOPS-PROJECT

- Siguelíneas de competición <u>Open source hardware</u>
- Basado en tecnologías libres: Kicad, FreeCAD y Arduino

CYCLOPS: COMPOSICIÓN DEL KIT

- Partes del kit del taller:
 - Kit básico de velocista
 - Extra de bluetooth para comunicación inalámbrica
- Otras partes del kit que no se van a montar en el taller:
 - Morro de sensores de rastreador
 - Extra de sensores de distancia para carreras
 - Extra de cámara para seguimiento de línea experimental a distancia

CYCLOPS: KIT BÁSICO

- Kit básico de velocista:
 - Chasis autosoportado: el chasis es la propia PCB
 - Morro intercambiable con 6 sensores CNY70 multiplexados para seguimiento de línea
 - Batería Lipo 2S
 - Arduino nano
 - Pulsadores de selección de menú
 - Leds indicadores
 - Expansor I2C para poder soportar todos los periféricos incorporados
 - Driver de motores TB6612FNG
 - Micromotores 10:1 HP con encoders magnéticos en cuadratura
 - Ruedas de 32mm de diámetro

CYCLOPS: ELUETOOTH

- Extra de Bluetooth HC-05:
 - Configurable mediante comandos AT
 - Conectado por UART
 - Posibilidad de realizar telemetría en tiempo real

consejos de montaje

- Antes de montar los integrados DIP en sus zócalos, primero es mejor soldar los zócalos a las PCBs. Así se evita quemarlos o equivocarse irremediablemente con la orientación del integrado
- Para no conectar la Arduino y el driver del revés puedes intercambiar los conectores macho y hembra de uno de los lados, de tal manera que te obligue a conectarlo en la posición correcta
- ¡¡Pide supervisión para insertar las tuercas en los soportes de motores y para soldar los CNY70!!
- Para colocar los componentes, guiarse por el BOM y/o el esquemático de la PCB correspondiente

antes de empezar a soldar...

- Sobre el montaje:
 - Seguir el tutorial de montaje al pie de la letra para evitar errores.
 - No hacer suposiciones. Ante la duda, ¡preguntad!
 - No fiarse de los colores de las fotos, ya que pueden verse alterados y confundirse los colores de las resistencias.
 - La versiones de las PCBs son la "Main_board_V2" y la "Sensor_board".
 - "Sensor_board_V2" se corresponde con el morro de rastreador.

CURIOSIDADES: LA ALIMENTACIÓN

- El conversor DC-DC no es imprescindible para el funcionamiento del robot
- La Arduino Nano lleva un regulador lineal de 5V por debajo, el cual se puede habilitar puenteando el jumper JP1
- La ventaja del DC-DC es que aporta más corriente y resultará útil si se pretende montar más elementos como los sensores de distancia

CURIOSIDADES: INECESITO MÁS PINES!

- El multiplexor: actúa como un conmutador
- El expansor I2C: amplía la capacidad de pines de la Arduino

CURIOSIDADES: ICOLISIÓN EN EL PUERTO SERIEII

- ¿Qué ocurre cuando dos dispositivos intentan transmitir por el mismo canal?
 - Básicamente, que la información colisiona
- El diodo D4 sirve para cortar la transmisión del bluetooth hacia la Arduino cuando ésta está conectada por cable al ordenador, ya sea para cargar el programa o enviar y recibir datos

CURIOSIDADES: LECTURA DE BATERÍA

- Conviene monitorizar la batería lipo para evitar que baje demasiado la tensión
- Batería (VDD) = 8,4V máximo
- Entrada analógica de Arduino = +5V máximo
 - Divisor resistivo para bajar de 8,4V a 5V
 - El diodo D3 sirve para evitar que el pin BAT sobrepase 5V en caso de que el divisor esté dañado

Eaterias de Litio-polímero

- De obligada lectura el <u>tutorial de baterías lipo</u> para conocerlas y manejarlas sin sufrir percances
 - No cortocircuitarlas, ni golpearlas, ni perforarlas, ni dejarlas al sol,...
 - No dejar que cada una de sus celdas baje de 3V
 - Cargar de forma balanceada para que las celdas siempre estén a la misma tensión entre ellas
 - En largos periodos de reposo, mantener las baterías lipo a la tensión de almacenamiento (3,8V por celda)

CYCLOPS: FIRMUARE

- Comprobar el funcionamiento del robot siguiendo el <u>tutorial de</u> <u>primeras pruebas</u>
 - Instalar la librería SoftWire indicada en el tutorial
 - Ejecutar el programa de test
- Firmware básico:
 - Calibración inicial de sensores
 - PID de seguimiento de línea
 - Ajuste de parámetros de PID y velocidad en tiempo real por bluetooth

PRUEBAS DE BLUETOOTH

- Configuración del bluetooth HC-05 mediante comandos AT (<u>tutorial</u> HC-05)
- Comunicación entre el robot y el usuario vía bluetooth
 - Con el ordenador, mediante Monitor Serial de Arduino
 - Cargar programa "PID_seguimiento_linea.ino"
 - Con el móvil, mediante la App PIDfromBT, desarrollada por OPRobots
 - Cargar programa "PID_seguimiento_linea_PIDfromBT.ino"
 - Instalar App PIDfromBT en el móvil
- Variación del comportamiento del robot en función de los parámetros del PID

algorino pid: Teoria

- Algoritmo que se emplea para <u>contrarrestar los efectos de las</u> <u>perturbaciones</u> en un sistema lineal
- Compuesto de las siguientes partes:
 - Proporcional
 - Detecta el error proporcional
 - Corrección de posición
 - Integral
 - Detecta el error acumulado
 - Oposición a las perturbaciones
 - Derivativo
 - Detecta la variación del error proporcional
 - Corrección de velocidad

aleoritmo pid: calibración

- Pasos para calibrar un PID manualmente:
 - 1. Poner todas las K's a cero
 - 2. Ir aumentando poco a poco Kp
 - 3. Cuando el robot empiece a cabecear, bajar un poco el valor de Kp y dejarlo fijo
 - 4. Realizar los pasos 2 y 3 para calibrar Kd
- La respuesta varía si se modifica la velocidad lineal del robot, por lo que habrá que realizar el cálculo de las K's para cada velocidad
- Posibles respuestas:
 - <u>Subamortiguado</u>
 - Sobreamortiguado
 - Amortiguamiento crítico

más información de cyclops

- Retos de Cyclops-Project
- Wiki de Cyclops-Project
 - FAQ
 - Implementación de un PID para un robot siguelíneas
- Grupo de correo de Cyclops-Project
- Otras charlas relacionadas
 - Implementación de algoritmos PID (Malakabot 2017)
 - Cómo evolucionar un robot de velocistas a carreras (Granabot 2018)
 - Ideas para programar un robot rastreador (Malakabot 2019)

REFERENCIAS

- Proyectos relacionados en GitHub
 - Rubén Espino: Resaj
 - Cyclops-Project
 - Basic-circuit-maker
 - Circuit-maker
 - Time2time

- Facebook
 - @pumaprideteam
- Twitter
 - Rubén Espino: @RugidoDePuma

GRACIAS POR VUESTRA ATENCIÓN ©

