NAG C Library Function Document

nag forecast garchGJR (g13ffc)

1 Purpose

nag_forecast_garchGJR (g13ffc) forecasts the conditional variances, h_t , $t = 1, ..., \tau$ from a GJR GARCH(p, q) sequence, where τ is the forecast horizon (see Glosten, et al. (1993)).

2 Specification

3 Description

Assume the GARCH(p, q) process can be represented by:

$$\epsilon_t | \psi_{t-1} \sim N(0, h_t)$$

$$h_t = \alpha_0 + \sum_{i=1}^q (\alpha_i + \gamma S_{t-i}) \epsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i}, \quad t = 1, \dots, T.$$

where $S_t=1$, if $\epsilon_t<0$, and $S_t=0$, if $\epsilon_t\geq 0$ has been modelled by nag_estimate_garchGJR (g13fec) and the estimated conditional variances and residuals are contained in the arrays **ht** and **et** respectively. Then nag_forecast_garchGJR will use the last $\max(p,q)$ elements of the arrays **ht** and **et** to estimate the conditional variance forecasts, $h_t|\psi_T$, where $t=T+1,\ldots,T+\tau$ and τ is the forecast horizon.

4 Parameters

1: **num** – Integer Input

On entry: the number of terms in the arrays ht and et from the modelled sequence.

Constraint: $\max(\mathbf{p},\mathbf{q}) \leq \mathbf{num}, \mathbf{num} \geq 0.$

2: \mathbf{nt} - Integer Input

On entry: the forecast horizon, τ .

Constraint: $\mathbf{nt} > 0$.

3: **p** – Integer Input

On entry: the GARCH(p, q) parameter p.

Constraint: $0 < \max(\mathbf{p}, \mathbf{q}) \le \mathbf{num}, \mathbf{p} \ge 0$.

4: \mathbf{q} - Integer Input

On entry: the GARCH(p, q) parameter q.

Constraint: $0 < \max(\mathbf{p}, \mathbf{q}) \le \mathbf{num}, \mathbf{q} \ge 1$.

5: theta[q+p+1] - const double Input

On entry: the first element contains the coefficient α_o , the next \mathbf{q} elements contain the coefficients α_i , $i=1,\ldots,q$. The remaining \mathbf{p} elements are the coefficients β_j , $j=1,\ldots,p$.

[NP3491/6] g13ffc.1

6: **gamma** – double *Input*

On entry: the asymmetry parameter γ for the GARCH(p,q) sequence.

7: **fht[nt]** – double Output

On exit: the forecast values of the conditional variance, h_t , $t = 1, \dots, \tau$.

8: **ht[num]** – const double

Input

On entry: the sequence of past conditional variances for the GARCH(p,q) process, h_t , $t=1,\ldots,T$.

9: **et[num]** – const double

Input

On entry: the sequence of past residuals for the GARCH(p,q) process, ϵ_t , $t=1,\ldots,T$.

10: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE INT ARG LT

On entry, **num** must not be less than 0: **num** = $\langle value \rangle$.

On entry, **p** must not be less than 0: $\mathbf{p} = \langle value \rangle$.

On entry, **q** must not be less than 1: $\mathbf{q} = \langle value \rangle$.

On entry, **nt** must not be less than 1: $\mathbf{nt} = \langle value \rangle$.

NE_2_INT_ARG_LT

On entry, $\mathbf{num} = \langle value \rangle$ while $\max(\mathbf{p}, \mathbf{q}) = \langle value \rangle$. These parameters must satisfy $\mathbf{num} \geq \max(\mathbf{p}, \mathbf{q})$.

NE ALLOC FAIL

Memory allocation failed.

6 Further Comments

6.1 Accuracy

Not applicable.

6.2 References

Engle R (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation *Econometrica* **50** 987–1008

Bollerslev T (1986) Generalised Autoregressive Conditional Heteroskedasticity *Journal of Econometrics* **31** 307–327

Engle R and Ng V (1993) Measuring and Testing the Impact of News on Volatility *Journal of Finance* 48 1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the Expected Value and the Volatility of Nominal Excess Return on Stocks *Journal of Finance* **48** 1779–1801

g13ffc.2 [NP3491/6]

7 See Also

None.

8 Example

See the example for nag_estimate_agarchII (g13fcc).

[NP3491/6] g13ffc.3 (last)