Třída přesnosti

1. Proud v měřeném obvodu se pohybuje v rozmezí od 0 do 3 A. Potřebujeme ho změřit s chybou ± 10 mA. Jaká je minimální podmínka na třídu přesnosti ampérmetru, který potřebujeme?

$$P = \frac{\Delta}{R} 100 = \frac{\sqrt{3}\sigma_B}{R} 100 = \frac{\sqrt{3} \cdot 0.01 \text{ A}}{3 \text{ A}} 100 = 0.57 \Rightarrow P = 1$$

2. Přesnost digitálního voltmetru s třímístným displejem na rozsahu střídavého napětí 0 – 10 V uvedená výrobcem je ± (1% + 4). Přístroj nám ukázal hodnotu napětí 8.77 V. Jaká bude systematická chyba (neurčitost typu B) této hodnoty?

$$\varepsilon_U = (8.77 \times 0.01 + 4 \times 0.01) \text{ V} = 0.13 \text{ V}$$

$$\sigma_B = \frac{\varepsilon_U}{\sqrt{3}} = 0.074 \text{ V}$$

$$U = (8.77 \pm 0.07) \text{ V}$$

Systematická chyba – Metex M-3270D

 $(32.1\pm0.4) \Omega$

Function	Range	Resolution	Accuracy	Test Current	Overload Protection	
Resistance	400 Ω	0.1 Ω	$\pm 0.8\% \pm 4$ digits	< 0.7mA		
	4 KQ	1 Ω		<0.13mA		
	40 №	10 Ω	$\pm 0.8\% \pm 2$ digits	< 13uA	500V rms	
	400 №	100 Ω		< 1.3uA		
	4 MΩ	1 KQ	$\pm 1.0\% \pm 4$ digits	< 0.13uA		
	40 MQ	10 №	$\pm 1.5\% \pm 5$ digits	12		
Diode	Range	Resolution	Accuracy	Test Current	Overload Protection	
	4V	1mV	±2.0% ±4 digits	1mA approx	500V rms	
Continuity	Range	Resolution	Accuracy	Continuity Beeper	Overload Protection	
	400 Ω	0.1 Ω	<approx. 50="" td="" ♀<=""><td><2.0mA</td><td>500V rms</td></approx.>	<2.0mA	500V rms	

naměřená hodnota: $R = 32.1 \ \Omega$

maximální chyba: $\varepsilon_R = (32.1 \times 0.008 + 4 \times 0.1) \; \Omega = 0.66 \; \Omega$

systematická chyba: $\sigma_B = \frac{\varepsilon_R}{\sqrt{3}} = 0.38 \; \Omega$

E. Resistance

		Acci	Overload Protection		
Range	Resolution	UT71A	UT71B	Overload i rotestion	
200Ω	0.01Ω	±(0.5%+20)+test leads open circuit value	±(0.4%+20)+test leads open circuit value		
2kΩ	0.0001kΩ	±(0.5%+20)	±(0.4%+20)	1000V	
20kΩ	0.001kΩ	±(0.576+20)			
200kΩ	0.01kΩ	±(1%+20)	±(0.8%+20)		
2ΜΩ	0.0001ΜΩ	±(1%+40)	±(1%+40)		
20ΜΩ	0.001ΜΩ	±(1.5%+40)	±(1.5%+40)	The property of the	

F. Continuity Test

Range Resolution		Overload Protection	
•11)	0.01Ω	1000V	

Remarks:

- Open circuit voltage approximate -1.2V.
- ullet The buzzer does not sound when the test resistance is > 60 Ω .
- The beeper comes on continuously for open conditions, that is test resistance is $\leq 40\Omega$.

naměřená hodnota: $R = 32.36 \ \Omega$

maximální chyba: $\varepsilon_R = (32.36 \times 0.004 + 20 \times 0.01) \ \Omega = 0.33 \ \Omega$

systematická chyba: $\sigma_B = \frac{\varepsilon_R}{\sqrt{3}} = 0.19 \ \Omega$

Maximální chyba

3. Jak přesně musí měřit čas stopky v kamerách používaných pro měření překročení rychlosti aut?

$$v = \frac{c(t_2 - t_1)}{2T}$$

$$\varepsilon_v = c \; \frac{\varepsilon_t T + \varepsilon_T t}{T^2} \qquad \varepsilon_t = \frac{2\varepsilon_T v + T\varepsilon_v}{c} \qquad \text{pro rychlost (50 ± 3) km/h a délku měření 2 s potřebujeme přesnost 5 ns}$$

4. Hustota vzorku se při studovaném efektu mění o 10 %. Měříme vzorek o výchozí hustotě 7874 kg m⁻³. Hustotu měříme Archimedovou metodou, tj. vážením ve vodě a na vzduchu při pokojové teplotě. Jaká musí být minimální přesnost měření hmotnosti (maximální relativní nejistota) aby bylo možné daný efekt spolehlivě detekovat?

$$\Delta m = m_0 - m_1 = \frac{\varrho_v}{\varrho_0} m_0$$

$$\varrho_0 = \varrho_v \frac{m_0}{m_0 - m_1} \qquad \eta_m = \eta_\varrho \left(1 + \frac{2\varrho_0}{\varrho_v} \right)^{-1}$$