

CNN desenvolvida com Tensorflow/MNIST Profa. Dra. Roseli Aparecida Francelin Romero Disciplina: SCC 0270 - Redes Neurais

Introdução

As redes neurais convolucionais (Convolutional neural network) ganharam força após Alex Krizhevsky ganhar uma competição de processamento de imagens utilizando a rede que ficou conhecida como AlexNet. Após ela conseguir um erro significamente menor comparado às outras técnicas, vários pesquisadores e empresas começaram a investir nas redes neurais profundas (Deep Learning) acreditando que ela resolverá diversos problemas de aprendizado no futuro.

Objetivos

O objetivo deste documento é ilustrar a confecção de uma CNN utilizando a API do Google chamada Tensorflow. O código produzido é baseado neste tutorial:

https://www.tensorflow.org/tutorials/estimators/cnn

A partir dele faremos as seguintes mudanças para que haja um aprendizado do Tensorflow e de uma CNN:

- Alteração da quantidade de mapas de características.
- Alteração nos tamanhos dos filtros das camadas de convolução.
- Adição de uma nova camada totalmente conectada.

Após isso serão realizados testes para avaliar o poder de generalização do algoritmo.

Arquitetura da rede

A arquitetura final da rede será bem parecida com a AlexNet (figura abaixo), alterando apenas os parâmetros entre elas:

Figura 1: Arquitetura da rede.

Parâmetros

Dada a arquitetura da nossa rede descrita na seção anterior, nós temos as alterações nos seguintes parâmetros:

- Filtro da primeira camada convolucional: [7,7]
- Filtro da segunda camada convolucional: [7,7]
- Primeira camada convolucional: 16 neurônios
- Segunda camada convolucional: 32 neurônios
- Primeira camada densa: 128 neurônios
- Segunda camada densa: 64 neurônios
- Número de épocas: 10

O resto da topologia assim como os outros parâmetros ficaram iguais ao do tutorial descrito na seção de objetivos deste documento.

Teste

Nesta etapa nós utilizamos os dois dataset's do MNIST para treinamento e teste. No último conjunto de dados nós obtivemos uma acurácia de aproximadamente 82%. Após essa etapa nós utilizamos as imagens abaixo para verificar o poder de generalização do classificador em dados que não são do MNIST.

Figura 2: Imagens utilizadas para teste.

Nos testes realizados foi possível obter uma acurácia de 75%. Esse valor obtido é razoável dado que nossa máquina não possui um poder de processamento muito grande, logo, não houve uma grande convergência na parte de treinamento. Além disso os resultados são parecidos com o teste do próprio MNIST.

Conclusão

A API do Google (Tensorflow) facilita bastante o desenvolvimento de uma rede neural profunda, sendo que sua utilização é bem simples assim como seu entendimento. Com ela foi possível gerar um classificador razoável dado o poder computacional da nossa máquina.

Com a acurácia de 75% obtida, concluímos que a CNN implementada é um bom classificador, faltando apenas uma convergência maior na parte de treinamento para melhores resultados.