INF5130 - Algorithmique

Solution série d'exercices - 2

Exercice 1. Par définition du maximum de deux nombres, $f(n) \leq \max(f(n), g(n))$ et $g(n) \leq \max(f(n), g(n))$. Donc $f(n) + g(n) \leq 2\max(f(n), g(n))$ pour tout n et nous concluons que $f(n) + g(n) \in O(\max(f(n), g(n)))$ par définition de la notation O.

D'un autre côté, au moins un des deux nombres f(n) et g(n) doit être égal à $\max(f(n), g(n))$, et comme $f(n) \geq 0$ et $g(n) \geq 0$, nous concluons que $f(n) + g(n) \geq \max(f(n), g(n))$ pour tout n et donc que $f(n) + g(n) \in \Omega(\max(f(n), g(n)))$. Par définition de la notation Θ , $f(n) + g(n) \in \Theta(\max(f(n), g(n)))$.

Exercice 2. Comme a est positif, $(n+a)^b \ge (n^b)$ et donc $(n+a)^b \in \Omega(n^b)$.

D'un autre côté, il existe un nombre naturel n_0 tel que $a \le n_0$. Les inégalités suivantes sont donc valides pour tout $n \ge n0$.

$$(n+a)^b \le (n+n_0)^b \le (n+n)^b = (2n)^b = 2^b n^b$$

Comme b est une constante, nous pouvons conclure que $(n+a)^b \in O(n^b)$ et donc que $(n+a)^b \in O(n^b)$.

Exercice 3. Soit x le nombre $a^{\log_b(n)}$ et y le nombre $n^{\log_b(a)}$. Alors $\log_b(x) = \log_b(n) \times \log_b(a)$ et $\log_b(y) = \log_b(a) \times \log_b(n)$. Comme les logarithmes de x et y sont égaux, nous concluons que x est égal à y.

Exercice 4. Voici le classement de ces fonctions.

$$\sqrt{\log(n)}, \ \log^2(n), \ 2^{\log(n)}, \ \log(n!), \ 4^{\log(n)}, \ n^3, \ (\log(n))^{\log(n)}, \ (\sqrt{n})^{\log(n)}, \left(\frac{3}{2}\right)^n, \ n!, \ 2^{2^n}$$

Exercice 5.

(a) $\Theta(2n) = \Theta(n)$.

Vrai, $\Theta(2n)$ et $\Theta(n)$ représentent la même classe de fonctions puisque 2n croît exactement au même rythme que n.

(b)
$$\left(\frac{n}{\log(n)}\right)^2 \in o\left(\frac{n^2}{\log(n)}\right)$$
.

Vrai, comme $\log^2(n)$ croît plus vite que $\log(n)$, $\frac{n^2}{\log^2(n)}$ croît plus lentement que $\frac{n^2}{\log(n)}$.

(c) $n^{\frac{1}{2}} \in \omega(\sqrt{n})$.

Faux, comme $n^{\frac{1}{2}}$ et \sqrt{n} sont une seule et même fonction, $n^{\frac{1}{2}}$ ne croît pas plus lentement que \sqrt{n} .

(d) $\log(4^n) \in \Theta(n)$.

Vrai, quelle que soit la base du logarithme, $\log(4^n)$ est égal à $n \log(4)$, c'est-à-dire au produit de n et d'une constante.

(e) $2^n \in \Omega(3^n)$.

Faux, la fonction 2^n croît plus lentement (et non plus vite) que 3^n . En effet, pour toutes les constantes réelles a et b telles que 1 < a < b, a^n croît plus lentement que b^n .

Exercice 6. Chacun des énoncés ci-dessous est faux. Montrez-le en donnant un contre-exemple, c'est-à-dire en remplaçant f(n) et g(n) par des fonctions particulières pour lesquelles l'énoncé est faux.

(a) Si $f(n) \in O(g(n))$, alors $2^{f(n)} \in O(2^{g(n)})$.

Supposons que f(n) est la fonction 2n et g(n) la fonction n. Alors $2^{f(n)} = 2^{2n} = 4^n$ et $2^{g(n)} = 2^n$. Comme 4^n croît plus rapidement que 2^n , $2^{f(n)}$ n'appartient pas à $O\left(2^{g(n)}\right)$.

(b) $f(n) + g(n) \in \Theta(\min(f(n), g(n))).$

Supposons que f(n) est la fonction n^2 et g(n) la fonction n. Alors f(n) + g(n) est la fonction $n^2 + n$ tandis que la fonction $\min(f(n), g(n))$ est la fonction n. Nous concluons que f(n) + g(n) n'appartient pas à $\Theta(\min(f(n), g(n)))$.