Solution for Exercise sheet 5

Yikai Teng, You Zhou

Exercise session: Thu. 8-10

Exercise 5.1 We show that these are fibre bundles by using Exercise 5.2(b). We first consider the real case. Note that O(k) acts on both $V_n(\mathbb{R}^k)$ and $Gr_n(\mathbb{R}^k)$ transitively with an isotropy group O(k-n) and $O(n) \times O(k-n)$, respectively. So $V_n(\mathbb{R}^k) \cong O(k)/O(k-n)$ and $Gr_n(\mathbb{R}^k) \cong O(k)/O(n) \times O(k-n)$. From this we see that q and p are just the projections expressed in Exercise 5.2(b). Moreover, if U is a neighborhood of $I \cdot O(k-n)$ in $V_n(\mathbb{R}^k)$, then we can form a continuous section $U \cdot O(k-n) \to O(k)$ by the Gram-Schmidt method. If V is a neighborhood of $I \cdot O(n) \times O(k-n)$, then we can form a continuous section $V \to O(k)$ by just putting two matrices on the diagonal. Then the conclusion of Exercise 5.2(b) shows that q and p are fibre bundles and that their fibres are O(n) and $V_{n-m}(\mathbb{R}^{k-m})$, respectively. It can be proved similarly that in the complex cases q and p are still fibre bundles but their fibres are U(n) and $V_{n-m}(\mathbb{C}^{k-m})$, respectively.

Next we consider the long exact homotopy group sequences. Noting that $V_1(\mathbb{R}^n) = S^{n-1}$ and that $V_1(\mathbb{C}^n) = S^{2n-1}$, we have the following two exact sequences (corresponding to m = 1 in the definition of p)

$$\cdots \to \pi_i(S^{k-n}) \to \pi_i(V_n(\mathbb{R}^k)) \to \pi_i(V_{n-1}(\mathbb{R}^k)) \to \pi_{i-1}(S^{k-n}) \to \cdots$$
 (1)

$$\cdots \to \pi_i(S^{2k-2n+1}) \to \pi_i(V_n(\mathbb{C}^k)) \to \pi_i(V_{n-1}(\mathbb{C}^k)) \to \pi_{i-1}(S^{2k-2n+1}) \to \cdots$$
 (2)

Using induction on n and these two sequences give immediately that $\pi_i(V_n(\mathbb{R}^k)) = 0$ when $i \leq k - n - 1$ and that $\pi_i(V_n(\mathbb{C}^k)) = 0$ when $i \leq 2k - 2n$. So $V_n(\mathbb{R}^k)$ is (k - n - 1)-connected and $V_n(\mathbb{C}^k)$ is (2k - 2n)-connected.

Finally we compute the homotopy groups. Taking m=1 in the definition of p then gives us

$$\cdots \to \pi_{k-n+1}(S^{k-1}) \to \pi_{k-n}(V_{n-1}(\mathbb{R}^{k-1})) \to \pi_{k-n}(V_n(\mathbb{R}^k)) \to \pi_{k-n}(S^{n-1}) \to \cdots$$
 (3)

$$\cdots \to \pi_{2k-2n+2}(S^{2k-1}) \to \pi_{2k-2n+1}(V_{n-1}(\mathbb{C}^{k-1})) \to \pi_{2k-2n+1}(V_n(\mathbb{C}^k)) \to \pi_{2k-2n+1}(S^{2k-1}) \to \cdots$$
 (4)

So when n > 1 we have

$$\pi_{2k-2n+1}(V_n(\mathbb{C}^k)) \cong \pi_{2k-2n+1}(V_{n-1}(\mathbb{C}^{k-1})) \cong \cdots \cong \pi_{2k-2n+1}(V_1(\mathbb{C}^{k-n+1})) = \mathbb{Z}.$$

When n > 2 we have

$$\pi_{k-n}(V_n(\mathbb{R}^k)) \cong \pi_{k-n+1}(V_{n-1}(\mathbb{R}^{k-1})) \cong \cdots \cong \pi_{k-n}(V_2(\mathbb{R}^{k-n+2})).$$

Using the CW structure on $V_n(\mathbb{R}^k)$ (explained in P302 of Hatcher's Algebraic Topology) we get

$$H_{k-n}(V_2(\mathbb{R}^{k-n+2})) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{if } k-n \text{ odd} \\ \mathbb{Z}, & \text{if } k-n \text{ even.} \end{cases}$$

This holds also for n=2. Since by the definition of p we have n>1, by Hurewicz's theorem we get

$$\pi_{k-n}(V_2(\mathbb{R}^{k-n+2})) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{if } k-n \text{ odd} \\ \mathbb{Z}, & \text{if } k-n \text{ even.} \end{cases}$$

Exercise 5.2

(a) We need the following lemma.

Lemma. If G is a topological group and $g \in G$, and U is a neighborhood of g, then there is a neighborhood V of e such that $V = V^{-1}$ and that $VgV^{-1} \subset U$.

Proof of the Lemma. Consider the following two functions

$$f \colon G \times G \to G$$

$$(v_1, v_2) \mapsto v_1 g v_2^{-1}$$

$$h \colon G \times G \to G$$

$$(v_1, v_2) \mapsto v_2 g v_1^{-1}$$

Then f and h are both continuous since G is a topological group. Set

$$W_1 := f^{-1}(U) \cap (f^{-1}(U))^{-1}, W_2 := h^{-1}(U) \cap (h^{-1}(U))^{-1}, W := W_1 \cap W_2.$$

(For a subset $Z \subset G \times G$, we define here $Z^{-1} := \{(z_1^{-1}, z_2^{-1}) \mid (z_1, z_2) \in Z\}$.) Then W is an open neighborhood of (e, e) and $W = W^{-1}$ since both W_1 and W_2 satisfy these two conditions. Moreover, let $p_1, p_2 : G \times G \to G$ be projection to the first and second coordinate, respectively, then by our construction $p_1(W) = p_2(W)$ and it is an open neighborhood of e. In addition, $V := p_1(W)$ satisfies that $V = V^{-1}$ and that $VgV^1 = f(W) \subset f(f^{-1}(U)) = U$. So V is our required neighborhood.

Now come back to this problem. Let xH and yH be different points in G/H. Then $y^{-1}x \notin H$. Since $G \setminus H$ is an open neighborhood of $y^{-1}x$, by the lemma there is an open neighborhood U of e such that $U = U^{-1}$ and that $Uy^{-1}xU^{-1} \cap H = \emptyset$. This implies that $y^{-1}xU \cap UH = \emptyset$. Thus xUH and yUH are neighborhoods of xH and yH, respectively, and they do not intersect.

(b) Following the hint, we first show that

$$\varphi \colon H/K \times U \to p^{-1}(U), \quad (hK, xH) \mapsto \sigma(xH) \cdot hK$$

is a homeomorphism by finding its inverse. Suppose that $xK \subset p^{-1}(U)$. Then $p(xK) = xH \in U$. From the following commutative diagram

$$G \longrightarrow G/K$$

$$\downarrow^{p}$$

$$U \longrightarrow G/H$$

(the top map is quotient map and the bottom is inclusion) we get that $xH = p(\sigma(xH)K) = \sigma(xH) \cdot H$. So $(\sigma(xH))^{-1}x \in H$ and we can define

$$\psi \colon p^{-1}(U) \to H/K \times U, \quad xK \mapsto (\sigma(xH))^{-1}xK, xH$$

This ψ is continuous by continuity of multiplication and inverse and the continuity of σ . It is also not hard to verify by expanding the definitions that $\psi \circ \varphi = \mathrm{id}$ and $\varphi \circ \psi = \mathrm{id}$. So we have shown that φ is a homeomorphism.

Now for every $gH \in G/H$, gU is a neighborhood of gH and we can prove in a similar way that the map

$$H/K \times gU \to p^{-1}(gU), \quad (hK, gxH) \mapsto \sigma(gxH) \cdot hK$$

is a homeomorphism. This finishes the proof.