Análisis Matemático II - Lic. en Computación

Primer Parcial – 28/09/16 – Comisión 1

Apellido:						Nombre	Nombre:		
	1	2	3	4	5	AutoEval	Total	Nota]

1) Resolver las siguientes integrales:

a)
$$\int \sqrt{x} \ln x \, dx$$

b)
$$\int_0^1 \frac{x+1}{x^2+2x+5} dx$$

2) Determinar si las siguientes integrales impropias son convergentes o no. Justificar.

a)
$$\int_{1}^{2} \frac{e^{x}}{x^{2}-1} dx$$

b)
$$\int_{2}^{\infty} \frac{(\sin x + 3)}{x} dx$$

3) Determinar si las siguientes sucesiones son o no convergentes y calcular el límite cuando sea posible. Justificar.

$$a) a_n = \frac{(-1)^n n}{n^2 + 4}$$

$$b) b_n = \ln\left(\frac{n^2 + n}{\sqrt{n}}\right)$$

4) Determinar si las siguientes afirmaciones son verdaderas o falsas y justificar.

i) Si $\{a_n\}$ es una sucesión decreciente y positiva, entonces $\lim_{n\to\infty} a_n = 0$.

ii) Sean $\{a_n\}$ y $\{b_n\}$ tales que $\sum_{n=1}^{\infty} a_n$ es convergente y $\sum_{n=1}^{\infty} (a_n + b_n)$ es convergente, entonces $\sum_{n=1}^{\infty} b_n$ es convergente.

iii) Existe una serie de potencias $\sum_{n=1}^{\infty} a_n x^n$ que converge si x=4 y diverge si x=-1.

1

5) Decidir si las siguientes series son convergentes o no. Justificar.

$$a) \sum_{n=1}^{\infty} \frac{n+2}{n^2+n}$$

$$b) \sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$$