단답형 문제 정답

1	2	3	4	5
$\frac{1}{2\pi f C}, 2\pi f L,$ $\sqrt{R^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}$	$rac{B^2L^2v}{R}$	100,000 (V)	^{30 cm, 4 cm,} 도립	300 m
6	7	8	9	10
0.4 mm	오른쪽, 7.5 (cm)	$\frac{\lambda}{2n_2}$	$h(\nu\!-\!\nu_0)/e$	$9 \times 10^{13} (J),$ $2.7 \times 10^{7} (kg)$
$\frac{5h}{3\lambda}$	$ \begin{array}{c} 2.75 \text{nm} \\ (2.75 \times 10^{-9} \text{m}) \end{array} $	※ 4, 5, 6, 12 번은 단위 표기※ 1, 4, 7, 10번-순서가 맞으면 정답.둘 중 하나라도 틀리면 오답.		

주관식 1.

$$(7) \ \gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = \frac{1}{\sqrt{1 - \left(\frac{3c}{5}\frac{1}{c}\right)^2}} = \frac{1}{\sqrt{\frac{16}{25}}} = \frac{5}{4}$$

제트기 안에서 측정한 시간 간격을 $\Delta t'$, 거리간격을 $\Delta L'$ 이라하고, 지상에서 측정한 시간 간격을 Δt , 거리간격을 ΔL 이라하면 제트기 안 관측자가 측정한 거리 $\Delta L'$:

$$\Delta L' = v\Delta t' = \frac{v\Delta t}{\gamma} = \frac{L}{\gamma} = \frac{L}{5/4}$$
 (또는 $\Delta L = \gamma \Delta L'$ 이므로)
$$\Delta L = \Delta L' \times \frac{5}{4} = 125 \, km$$

(나)
$$E = KE + Mc^2$$

$$E = \gamma Mc^2$$

$$KE = (\gamma - 1)Mc^2 = \frac{1}{4}Mc^2$$

(다) 물질파 파장은
$$\lambda = \frac{h}{p}$$
 이며,
상대론적 운동량은 $p = \gamma mv$ 이므로
이 입자의 파장은 $\lambda = \frac{h}{\left(\frac{5}{4} \cdot m \cdot \frac{3}{5}c\right)} = \frac{4h}{3mc}$

주관식 2

(가) 전자와 핵 간의 전자기력
$$F_{\text{전자기력}} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2}$$

원운동의 구심력
$$F_{\text{구심력}} = m \frac{v^2}{r}$$

전자기력=구심력으로 작용하므로
$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r^2}=m\frac{v^2}{r}$$

전자의 운동에너지는
$$K = \frac{1}{2}mv^2 = \frac{1}{8\pi\varepsilon_0}\frac{e^2}{r}$$

따라서 총 에너지(E) =운동에너지(K)+위치에너지(U) 이므로

$$E\!=\!K\!+\,U\!=\frac{1}{2}mv^2+(-)\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r}\!=\!-\,\frac{1}{8\pi\varepsilon_0}\frac{e^2}{r}$$

(나) (가)의 전자기력=구심력과 주어진 보어의 가정을 이용하면
$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r^2}=m\frac{v^2}{r}=\frac{(rmv)^2}{mr^3}=\frac{L^2}{mr^3}$$

즉 반지름
$$r_n = \frac{4\pi\varepsilon_0}{me^2}L^2 = \frac{\varepsilon_0 h^2}{\pi me^2}n^2 \ (n=1,2,3,\cdots)$$

(다) (가), (나)의 결과를 종합하면 총에너지 E는

$$E_n = -\,\frac{1}{8\pi\varepsilon_0} \frac{e^2}{r_n} = -\,\frac{me^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2} \quad (n=1,\,2,\,3,\,\,\cdots)$$

(라) (다)의 결과를 이용하면, 바닥상태 (n=1) 에서 첫 번째 들뜬상태 (n=2)로 여기하기 위해 필요한 에너지는

$$E_2 - E_1 = -\frac{me^4}{8\varepsilon_0^2h^2}(\frac{1}{2^2} - \frac{1}{1^2}) = \frac{3me^4}{32\varepsilon_0^2h^2}$$