$$u_{1}[\rho_{-}, b_{-}] := \rho e^{-b \rho}$$

 $u_{2}[\rho_{-}, b_{-}] := \frac{\rho}{b^{2} + \rho^{2}}$
 $u_{3}[\rho_{-}, b_{-}] := \rho^{2} e^{-b \rho}$

$$u_1[\rho, b] \left(-\partial_{\{\rho,2\}} u_1[\rho, b] - \frac{2 u_1[\rho, b]}{\rho} \right), \{\rho, 0, \infty\}, \text{Assumptions} \rightarrow b > 0 \&\& b \in \mathbb{R} \right] /$$

Integrate [$u_1[\rho, b]$ $u_1[\rho, b]$, $\{\rho, 0, \infty\}$, Assumptions $\rightarrow b > 0 \&\& b \in \mathbb{R}$]

Out[
$$\circ$$
]= $\left(-2+b\right)b$

$$u_2[\rho, b] \left(-\partial_{\{\rho,2\}} u_2[\rho, b] - \frac{2 u_2[\rho, b]}{\rho} \right), \{\rho, 0, \infty\}, \text{ Assumptions } \rightarrow b > 0 \&\& b \in \mathbb{R} \right] /$$

Integrate $[u_2[\rho, b] \ u_2[\rho, b], \{\rho, 0, \infty\}, Assumptions \rightarrow b > 0 \&\& b \in \mathbb{R}]$

Out[•]=
$$\frac{-8 b + \pi}{2 b^2 \pi}$$

$$u_3[\rho, b] \left(-\partial_{\{\rho,2\}} u_3[\rho, b] - \frac{2 u_3[\rho, b]}{\rho} \right), \{\rho, 0, \infty\}, \text{ Assumptions } \rightarrow b > 0 \&\& b \in \mathbb{R} \right] / (1 + b)$$

Integrate [$u_3[\rho, b]$ $u_3[\rho, b]$, $\{\rho, 0, \infty\}$, Assumptions $\rightarrow b > 0 \&\& b \in \mathbb{R}$]

Out[
$$\circ$$
]= $\frac{1}{3}(-3+b)b$

Out[
$$\bullet$$
]= $\{-1, \{b \rightarrow 1\}\}$

Out[*]=
$$\left\{-\frac{8}{\pi^2}, \left\{b \to \frac{\pi}{4}\right\}\right\}$$

Out[
$$\circ$$
]= $\left\{-\frac{3}{4}, \left\{b \to \frac{3}{2}\right\}\right\}$

$$ln[\sigma] = \int_{0}^{\infty} \mathbf{u_1}[\rho, 1] \rho^2 \mathbf{u_1}[\rho, 1] d\rho$$

$$Out[\bullet] = \frac{3}{4}$$

$$In[\sigma] = \int_{0}^{\infty} u_{2} \left[\rho, \frac{\pi}{4}\right] \rho^{2} u_{2} \left[\rho, \frac{\pi}{4}\right] d\rho$$

Integrate: Integral of $\frac{\rho^4}{\left(\frac{\pi^2}{16} + \rho^2\right)^2}$ does not converge on $\{0, \infty\}$.

$$\text{Inleg:=} \int_0^\infty \! u_3 \! \left[\rho, \, \frac{3}{2} \right] \rho^2 \, u_3 \! \left[\rho, \, \frac{3}{2} \right] \, \mathrm{d} \rho$$

$$Out[\bullet] = \frac{80}{243}$$