HARDWARE ASSIGNMENT-2

EE24BTECH11029 - SHRETHAN REDDY March 24, 2025

1 Objective

A scientific calculator is an essential tool for engineers and students, capable of performing complex mathematical operations. This project aims to develop a scientific calculator using an embedded system, specifically the Arduino Uno, programmed with AVR-GCC.

2 System Design

The calculator system comprises three main components:

- 1. Input Module: 23-button keypad matrix
- 2. Processing Unit: Arduino Uno (ATmega328P)
- 3. Output Module: 16×2 LCD display

Figure 2.1: System Block Diagram

3 Hardware Implementation

3.1 Components Specification

Component	Quantity	Specification
Arduino Uno	1	ATmega328P @ 16MHz
$16 \times 2 \text{ LCD}$	1	HD44780 controller
Tactile switches	23	$6 \text{mm} \times 6 \text{mm}$
Resistors	3	$1k\Omega$ (2), $1.5k\Omega$ (1)
Breadboard	2	840 tie-points
Jumper wires	30	Male-to-male

Table 3.1: Component Specifications

3.2 Circuit Connections

The complete pin configuration is shown in Table 3.2.

Arduino Pin Connected To Function Push Button 16 Digital 0 Addition (+) Digital 1 Subtraction (-) Push Button 17 Digital 2 LCD Pin 4 (RS) Register Select Digital 3 LCD Pin 6 (E) Enable Digital 4 LCD Pin 11 (D4) Data Bit 4 Digital 5 LCD Pin 12 (D5) Data Bit 5 Digital 6 LCD Pin 13 (D6) Data Bit 6 Digital 7 LCD Pin 14 (D7) Data Bit 7 Digital 8 Multiplication (x) Push Button 18 Digital 9 Push Button 19 Diision (÷) Digital 10 Push Button 20 Equals (=) Digital 11 Push Button 21 All Clear (AC) Sine (sin) Push Button 22 Digital 12 Digital 13 Push Button 23 Cosine (cos) Push Buttons 1-10 Analog AO Digit Buttons (0-9) Analog A1 Push Button 15 Exponential (e^x) Analog A2 Push Button 14 Power of $10(10^x)$ Analog A3 Push Button 13 Arctangent (tan^{-1}) Arccosine (cos^{-1}) Push Button 12 Analog A4 Arcsine (sin^{-1}) Push Button 11 Analog A5

Table 3.2: Complete Connection Table for Scientific Calculator

4 Software Implementation

4.1 Core Algorithms

The calculator implements several numerical methods:

4.1.1 Trigonometric Functions

Solved using the harmonic oscillator equation:

$$\frac{d^2y}{dt^2} + y = 0\tag{4.1}$$

4.1.2 Exponential Function

Implemented via Euler's method:

$$\frac{dy}{dt} = y \tag{4.2}$$

4.1.3 Logarithmic Function

Computed through numerical integration:

$$\ln(x) = \int_1^x \frac{1}{t} dt \tag{4.3}$$

4.2 Key Code Snippets

Listing 1: LCD Initialization

```
double evaluate(char* expr) {
    if(strncmp(expr, "sin(", 4) == 0) {
        double angle = evaluate(expr+4);
        return sin(angle * M_PI/180.0);
}

// Additional function handling...
return parseExpression(expr);
}
```

Listing 2: Expression Evaluation

REFERENCES 5

5 Testing and Results

5.1 Performance Metrics

Table 5.1: Operation Timings

Time (ms)
5-10
15-25 20-30

6 Conclusion

The implemented scientific calculator successfully meets all design requirements:

- Accurate computation of mathematical functions
- Responsive user interface
- Efficient memory usage

Future enhancements could include:

- Complex number support
- Graphing capabilities
- Battery-powered operation

References

Online resourses.