Metody optymalizacji L1

Gabriel Budziński 254609

April 29, 2023

1 Zadanie 1

1.1 Opis Modelu

w - wektor szerokości desek, d - wektor zapotrzebowań, p - macierz podziałów postaci $\mathbb{N}^{|w|\times k},$ gdzie $k\in\mathbb{N}.$

1.1.1 Zmienne decyzyjne

Zmienne decyzyjne mają postać wektora x spełniającego nierówność $x \ge 0$ o długości odpowiadającej liczbie możliwych cięć deski.

1.1.2 Ograniczenia

W modelu występuje tylko jeden typ ograniczeń:

$$(\forall i \in [|w|]) (x \cdot p_{*i} \geqslant d_i)$$

gdzie · to iloczyn skalarny

1.1.3 Funkcja celu

W zadanym problemie staramy się minimalizować odpady z cięcia, co sprowadza się do minimalizacji zużycia standardowych desek, a w takim razie funkcja celu, którą minimalizujemy ma postać

$$\sum_{i=1}^{k} x_i$$

1.2 Wyniki i interpretacja

Optymalnym rozwiązaniem jest

liczba sztuk	liczba desek szerokości 7	liczba desek szerokości 5	liczba desek szerokości 3
37	2	1	1
28	1	3	0
9	1	0	5

co daje odpowiednio 111,121 oraz 82 deski zadanych szerokości, a odpad wyniósł 18 cali.