Lecture 8

ANNOUNCEMENTS

- A summary of frequently misunderstood/missed concepts is now posted on the class website, and will be updated regularly.
- Graded HW assignments can be picked up in lab (353 Cory).
 - → Please indicate your lab section on your HW assignments!

OUTLINE

- BJT Amplifiers (cont'd)
 - Common-emitter topology
 - CE stage with emitter degeneration
 - Impact of Early effect (r_0)

Reading: Finish Chapter 5.3.1

EE105 Fall 2007 Lecture 8, Slide 1 Prof. Liu, UC Berkeley

Emitter Degeneration

- By inserting a resistor in series with the emitter, we "degenerate" the CE stage.
- This topology will decrease the gain of the amplifier but improve other aspects, such as linearity, and input impedance.

EE105 Fall 2007 Lecture 8, Slide 2 Prof. Liu, UC Berkeley

Small-Signal Analysis

• The gain of a degenerated CE stage = the total load resistance seen at the collector divided by $1/g_{\rm m}$ plus the total resistance placed in series with the emitter.

EE105 Fall 2007 Lecture 8, Slide 3 Prof. Liu, UC Berkeley

Emitter Degeneration Example 1

Note that the input impedance of Q_2 is in parallel with R_E .

$$A_{v} = -\frac{R_{C}}{\frac{1}{g_{m1}} + R_{E} \| r_{\pi 2}}$$

EE105 Fall 2007 Lecture 8, Slide 4 Prof. Liu, UC Berkeley

Emitter Degeneration Example 2

Note that the input impedance of Q_2 is in parallel with R_C .

$$A_{v} = -\frac{R_{C} \| r_{\pi 2}}{\frac{1}{g_{m1}} + R_{E}}$$

EE105 Fall 2007 Lecture 8, Slide 5 Prof. Liu, UC Berkeley

Input Impedance of Degenerated CE Stage

• With emitter degeneration, the input impedance is increased from r_{π} to r_{π} + $(\beta+1)R_{\rm E}$ — a desirable effect.

EE105 Fall 2007 Lecture 8, Slide 6 Prof. Liu, UC Berkeley

Output Impedance of Degenerated CE Stage

 Emitter degeneration does not alter the output impedance, if the Early effect is negligible.

EE105 Fall 2007 Lecture 8, Slide 7 Prof. Liu, UC Berkeley

Degenerated CE Stage as a "Black Box"

$$(V_A = \infty)$$

$$(V_A = \infty)$$
 $i_{out} = g_m \frac{v_{in}}{1 + (r_{\pi}^{-1} + g_m)R_E}$

$$G_m \equiv \frac{i_{out}}{v_{in}} \approx \frac{g_m}{1 + g_m R_E}$$
 • If $g_m R_E >> 1$, G_m is more linear.

Degenerated CE Stage with Base Resistance

$$(V_{A} = \infty) \qquad v_{\text{in}} \sim \frac{R_{B}}{R_{C}} \qquad v_{\text{out}}$$

$$\frac{v_{out}}{v_{in}} = \frac{v_{A}}{v_{in}} \cdot \frac{v_{out}}{v_{A}} \qquad R_{E} \qquad (\beta + 1) R_{E}$$

$$\frac{v_{out}}{v_{in}} = \frac{-\beta R_{C}}{r_{\pi} + (\beta + 1) R_{E} + R_{B}}$$

$$A_{v} \approx \frac{-R_{C}}{\frac{1}{g_{m}} + R_{E} + \frac{R_{B}}{\beta + 1}}$$

EE105 Fall 2007

Lecture 8, Slide 9

Prof. Liu, UC Berkeley

Degenerated CE Stage: Input/Output Impedances

• R_{in1} is more important in practice, because R_B is often the output impedance of the previous stage.

EE105 Fall 2007 Lecture 8, Slide 10 Prof. Liu, UC Berkeley

Emitter Degeneration Example 3

EE105 Fall 2007 Lecture 8, Slide 11 Prof. Liu, UC Berkeley

Output Impedance of Degenerated CE Stage with $V_{\Delta} < \infty$

- Emitter degeneration boosts the output impedance.
 - This improves the gain of the amplifier and makes the circuit a better current source.

EE105 Fall 2007 Lecture 8, Slide 12 Prof. Liu, UC Berkeley

Two Special Cases

Stage with explicit depiction of r_0 :

2)
$$R_E << r_{\pi}: R_{out} \approx (1 + g_m R_E) r_O$$

EE105 Fall 2007 Lecture 8, Slide 13 Prof. Liu, UC Berkeley

Analysis by Inspection

 This seemingly complicated circuit can be greatly simplified by first recognizing that the capacitor creates an AC short to ground, and gradually transforming the circuit to a known topology.

$$R_{out} = R_1 \parallel R_{out1} \Longrightarrow R_{out1} = [1 + g_m(R_2 \parallel r_\pi)]r_o \Longrightarrow R_{out} = [1 + g_m(R_2 \parallel r_\pi)]r_o \parallel R_1$$

EE105 Fall 2007 Lecture 8, Slide 14 Prof. Liu, UC Berkeley

Example: Degeneration by Another BJT

• Called a "cascode", this circuit offers many advantages that we will study later...

EE105 Fall 2007 Lecture 8, Slide 15 Prof. Liu, UC Berkeley

Bad Input Connection

• Since the microphone has a very low resistance (connecting the base of Q_1 to ground), it attenuates the base voltage and renders Q_1 with a very small bias current.

Use of Coupling Capacitor

 A capacitor is used to isolate the DC bias network from the microphone, and to short (or "couple") the microphone to the amplifier at higher frequencies.

EE105 Fall 2007 Lecture 8, Slide 17 Prof. Liu, UC Berkeley

DC and AC Analysis

 The coupling capacitor is replaced with an open circuit for DC analysis, and then replaced with a short circuit for AC analysis.

EE105 Fall 2007 Lecture 8, Slide 18 Prof. Liu, UC Berkeley

Bad Output Connection

 Since the speaker has an inductor with very low DC resistance, connecting it directly to the amplifier would ~short the collector to ground, causing the BJT to go into deep saturation mode.

EE105 Fall 2007 Lecture 8, Slide 19 Prof. Liu, UC Berkeley

Use of Coupling Capacitor at Output

 The AC coupling indeed allows for correct biasing. However, due to the speaker's small input impedance, the overall gain drops considerably.

EE105 Fall 2007 Lecture 8, Slide 20 Prof. Liu, UC Berkeley

CE Stage with Voltage-Divider Biasing

$$A_{v} = -g_{m}(R_{C} || r_{O})$$

$$R_{in} = r_{\pi} || R_{1} || R_{2}$$

$$R_{out} = R_{C} || r_{O}$$

CE Stage with Robust Biasing

EE105 Fall 2007 Lecture 8, Slide 22 Prof. Liu, UC Berkeley

Elimination of Emitter Degeneration for AC Signals

• The capacitor C_2 shorts out R_E at higher frequencies to eliminate the emitter degeneration.

$$(V_A = \infty)$$
 $A_v = -g_m R_C$
 $R_{in} = r_\pi \parallel R_1 \parallel R_2$
 $R_{out} = R_C$

EE105 Fall 2007 Lecture 8, Slide 23 Prof. Liu, UC Berkeley

Complete CE Stage

$$V_{\text{in}} = \begin{bmatrix} R_{\text{S}} & X \\ W \\ R_{1} \parallel R_{2} \end{bmatrix} = \begin{bmatrix} R_{\text{C}} \parallel R_{\text{L}} \\ R_{\text{E}} \end{bmatrix}$$

$$A_{v} = \frac{-R_{C} \parallel R_{L}}{\frac{1}{g_{m}} + R_{E} + \frac{R_{s} \parallel R_{1} \parallel R_{2}}{\beta + 1}} \cdot \frac{R_{1} \parallel R_{2}}{R_{1} \parallel R_{2} + R_{s}}$$

EE105 Fall 2007 Lecture 8, Slide 24 Prof. Liu, UC Berkeley

Summary of CE Concepts

EE105 Fall 2007 Lecture 8, Slide 25 Prof. Liu, UC Berkeley