SVM – Support Vector Machine

The goal

- Find a linear classifier that can separate the data set (we will talk only on 2 classes)
- SVM is based on 3 ideas:
 - The Kernel trick map data to high dimensional space where it is easier to classify with linear decision surfaces
 - Max Margin for linearly separable problem, the maximal margin hyperplane is the optimal linear classifier
 - Soft Margin and Regularization extend the above definition for non-linearly separable problems. introduce term for misclassifications

Definitions

- Linear classifier:
 - A linear function (a hyperplane plane in the features space) that can separate d dimensional data set

$$f(\vec{x}, \vec{w}, b) = sign(\vec{w} \cdot \vec{x} + b)$$

- Margin (x_i) = the distance between the decision boundary and x_i
- Margin(\overrightarrow{w} , b) = min Margin(x_i)
- Maximal margin classifier $-\vec{w}, b = arg \max Margin(\vec{w}, b)$

Non-linearly separable problems

- What can we do with nonlinear separable data?
 - Instance based?
- Transformation \ Mapping?

- We want to map the instances to a different feature space where the data is linearly separable
- Then, we will be able to separate the data with a linear hyper-plane

© Ben Galili

Figure 3: Moving a dataset into a different dimension where instances are separable

 \mathcal{R}^2 Space

Feature Space

What is the problem with mapping?

large time complexity

- The time that takes to map the instances to the new space is not efficient (and therefore not practical)
- We need to find a way to avoid the mapping and still save the benefit of it

© Ben Galili

Kernel Trick

- Let's assume that we need only the inner product in the mapping space (we will see later that this assumption is correct)
- Meaning, we only want the result of

$$\varphi(x) \cdot \varphi(y)$$

- * Where φ is the mapping
- If we can find a function that get the same result "without" the mapping, we will reduce the time complexity
- This function called Kernel, and the Kernel Trick is to avoid the mapping

- 2-D vectors $-x = (x_1, x_2)$
- $\varphi(x) = (x_1^2, \sqrt{2} \cdot x_1 x_2, x_2^2)$
- $\varphi(x) \cdot \varphi(y) = ?$

$$x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$

$$= (x_1 y_1 + x_2 y_2)^2$$

$$= (x \cdot y)^2 = K(x, y)$$

- 4-D vectors $-x = (x_1, x_2, x_3, x_4)$
- $\varphi(x) = (1,$ $\sqrt{2} \cdot x_1, \sqrt{2} \cdot x_2, \sqrt{2} \cdot x_3, \sqrt{2} \cdot x_4, \\
 x_1^2, x_2^2, x_3^2, x_4^2, \\
 \sqrt{2} \cdot x_1 x_2, \sqrt{2} \cdot x_1 x_3, \sqrt{2} \cdot x_1 x_4, \\
 \sqrt{2} \cdot x_2 x_3, \sqrt{2} \cdot x_2 x_4, \sqrt{2} \cdot x_3 x_4)$

•
$$\varphi(x) \cdot \varphi(y) = ?$$

$$\varphi(x) = (1,$$

$$\sqrt{2} \cdot x_1, \sqrt{2} \cdot x_2, \sqrt{2} \cdot x_3, \sqrt{2} \cdot x_4,$$

$$x_1^2, x_2^2, x_3^2, x_4^2,$$

$$\sqrt{2} \cdot x_1 x_2, \sqrt{2} \cdot x_1 x_3, \sqrt{2} \cdot x_1 x_4,$$

$$\sqrt{2} \cdot x_2 x_3, \sqrt{2} \cdot x_2 x_4, \sqrt{2} \cdot x_3 x_4)$$

• 1

•
$$\varphi(x) \cdot \varphi(y) =$$

$$1 + \sum_{i=1}^{4} 2x_i y_i + \sum_{i=1}^{4} x_i^2 y_i^2 + \sum_{i=1}^{3} \sum_{j=i+1}^{4} 2x_i x_j y_i y_j$$

• Lets look at the function $(x \cdot y + 1)^2 = (x \cdot y)^2 + 2x \cdot y + 1$

$$= 1 + \sum_{i=1}^{4} 2x_i y_i + \left(\sum_{i=1}^{4} x_i y_i\right)^2$$

$$= 1 + \sum_{i=1}^{4} 2x_i y_i + \sum_{i=1}^{4} \sum_{j=1}^{4} x_i y_i x_j y_j$$

$$= 1 + \sum_{i=1}^{4} 2x_i y_i + \sum_{i=1}^{4} x_i^2 y_i^2 + \sum_{i=1}^{3} \sum_{j=i+1}^{4} 2x_i x_j y_i y_j$$

• Time complexity – O(d) (We need to calculate only $(x \cdot y + 1)^2$)

• We saw that for

$$\varphi(x) = (1, \\ \sqrt{2} \cdot x_1, \sqrt{2} \cdot x_2, \sqrt{2} \cdot x_3, \sqrt{2} \cdot x_4, \\ x_1^2, x_2^2, x_3^2, x_4^2, \\ \sqrt{2} \cdot x_1 x_2, \sqrt{2} \cdot x_1 x_3, \sqrt{2} \cdot x_1 x_4, \\ \sqrt{2} \cdot x_2 x_3, \sqrt{2} \cdot x_2 x_4, \\ \sqrt{2} \cdot x_3 x_4)$$

We have the kernel function $(x \cdot y + 1)^2$

Kernel functions

- There are some known Kernel function
- We don't need to know the space that the kernel is mapping to

© Ben Galili 17

Kernel functions

Polynomial Kernel with degree d:

$$K(x,y) = (\alpha x^T y + \beta)^d$$

• Radial Basis Function (RBF):

$$K(x,y) = \exp(\frac{-\|x - y\|^2}{2\sigma^2})$$

• We can replace
$$\frac{1}{2\sigma^2}$$
 with $\gamma \to \exp(-\gamma ||x - y||^2)$

- The radius of the "balls" is determined by the parameter $\gamma = \frac{1}{2\sigma^2}$
 - A smaller γ means a larger radius, a lower "model complexity"
 - A larger γ means a smaller radius, a finer grain coverage but may lead to an overfitt

^{*} You can find more function in this link

RBF Kernel SVM Example

$$\sigma = 0.25$$

Notice that:

Decreasing sigma, moves towards nearest neighbor classifier

Kernel functions - RBF

- What is the dimension for the space in RBF kernel?
- Let's assume $\sigma = 1/\sqrt{2}$ and that the dimension of the original vectors is 2

$$K(x,y) = exp(-\|x-y\|^2)$$

$$= exp(-(x_1 - y_1)^2 - (x_2 - y_2)^2)$$

$$= exp(-x_1^2 + 2x_1y_1 - y_1^2 - x_2^2 + 2x_2y_2 - y_2^2)$$

$$= exp(-\|x\|^2)exp(-\|y\|^2)exp(2x^Ty)$$
Using Taylor series (you can check if you want...)
$$= exp(-\|x\|^2)exp(-\|y\|^2)\sum_{n=0}^{\infty} \frac{(2x^Ty)^n}{n!}$$

Now, what is the dimension?

Kernel Trick – summarize

- We can check if non separate data is separate in higher dimension
- Mapping to higher dimension is not efficient
- We could calculate the result of the $\varphi(x) \cdot \varphi(y)$ without calculating the mapping itself if we had a function that give the same result
 - * even if the mapping space is infinite
- This called the Kernel Trick
- We still have to see why we only need the result of the dot product $\varphi(x)\cdot \varphi(y)$

- Regular Perceptron algorithm:
 - Initialize weights to some small random number
 - Repeat until convergence (no error = no weight update):
 - For each x_d in D compute:
 - $o_d = \operatorname{sgn}(w \cdot x_d)$
 - For each w_i do:
 - $\Delta w_i = -\eta (o_d t_d) x_{id}$
 - $w_i = w_i + \Delta w_i$

Which perceptron is it?

- Non-Linear Perceptron algorithm:
 - Initialize weights to some small random number
 - Repeat until convergence (no error = no weight update):
 - For each x_d in D compute:
 - $o_d = \operatorname{sgn}(w \cdot \varphi(x_d))$
 - For each w_i do:
 - $\Delta w_i = -\eta(o_d t_d)\varphi(x_d)_i$
 - $w_i = w_i + \Delta w_i$

Problem?

- Going back to regular Perceptron algorithm:
 - Initialize weights to some small random number
 - Repeat until convergence (no error = no weight update):
 - For each x_d in D compute:
 - $o_d = \operatorname{sgn}(w \cdot x_d)$
 - For each w_i do:
 - $\Delta w_i = -\eta(o_d t_d)x_{id}$
 - Update $w_i = w_i + \Delta w_i$

We add a small part of x_d if it is misclassified

25

- In practice we only need some of the instances
- Why?

$$\Delta w_i = -\eta (o_d - t_d) x_{id}$$

0	t	o-t	x_i	Δw_i	$x_i \cdot w_i$
-1	+1	<0	>0	>0	increased
-1	+1	<0	<0	<0	increased
+1	-1	>0	>0	<0	decreased
+1	-1	>0	<0	>0	decreased

- Hence, we always add a fraction of $t_d x_d$ (if its misclassified)
- We get in the end, that the weights are linear combination of some training examples

$$w = \sum_{d} \alpha_{d} t_{d} x_{d}$$

• Where $\alpha_d \geq 0$

Now, we can convert the decision function:

$$f(x) = \vec{w} \cdot \vec{x} = \left(\sum_{d} \alpha_{d} t_{d} x_{d}\right) \cdot \vec{x} = \sum_{d} \alpha_{d} t_{d} (\vec{x}_{d} \cdot \vec{x})$$

$$f(x) = \sum_{d} \alpha_{d} t_{d} (\vec{x}_{d} \cdot \vec{x})$$

- It is look like instance base...
- But we only need the instances \vec{x}_d whose $\alpha_d \neq 0$
- These are called "support vectors"
- In order to use this form we need to rewrite the update function:

if
$$\left(t_i \sum_{d} \alpha_d t_d (\vec{x}_d \cdot \vec{x}_i)\right) < 0$$
:
$$\alpha_i = \alpha_i + \eta$$

- The Dual Perceptron algorithm:
 - Initialize each α_i to zero
 - Repeat until convergence (no error):
 - For each x_i in D compute:
 - $o_i = \sum_{d \in D} \alpha_d t_d (\vec{x}_d \cdot \vec{x}_i)$
 - If $t_i o_i < 0$
 - $\alpha_i = \alpha_i + \eta$

- The Kernel Perceptron algorithm:
 - Initialize each α_i to zero
 - Repeat until convergence (no error):
 - For each x_i in D compute:

•
$$o_i = \sum_{d \in D} \alpha_d t_d (\varphi(\vec{x}_d) \cdot \varphi(\vec{x}_i)) = \sum_{d \in D} \alpha_d t_d K(\vec{x}_d, \vec{x}_i)$$

- If $t_i o_i < 0$
 - $\alpha_i = \alpha_i + \eta$
- This is the first step toward SVM

Kernel Perceptron – Example

x_1	x_2	t	
1	1	1	
-1	1	-1	
-1	-1	1	
1	-1	-1	

•
$$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j) = (x_i \cdot x_j)^2$$

K	x^1	x^2	x^3	x^4
x^1	4	0	4	0
x^2	0	4	0	4
x^3	4	0	4	0
x^4	0	4	0	4

• Init
$$(\eta = 1)$$
:

$$\alpha = [\alpha^1, \alpha^2, \alpha^3, \alpha^4] = [0,0,0,0]$$

$$\sum_{d \in D} \alpha_d t_d K(\vec{x}_d, \vec{x}_i) = 0 * 4 - 0 * 0 + 0 * 4 - 0 * 0 = 0$$
$$sgn(0) = -1 \rightarrow \alpha^1 += 1$$

$$\sum_{d \in D} \alpha_d t_d K(\vec{x}_d, \vec{x}_i) = 1 * 0 - 0 * 4 + 0 * 0 - 0 * 4 = 0 sqn(0) = -1$$

$$\sum_{d \in D} \alpha_d t_d K(\vec{x}_d, \vec{x}_i) = 1 * 4 - 0 * 0 + 0 * 4 - 0 * 0 = 4$$

$$sgn(4) = 1$$

■ i=4

$$\sum_{d \in D} \alpha_d t_d K(\vec{x}_d, \vec{x}_i) = 1 * 0 - 0 * 4 + 0 * 0 - 0 * 4 = 0 san(0) = -1$$

■ i=1

$$\sum_{d \in D} \alpha_d t_d K(\vec{x}_d, \vec{x}_i) = 1 * 4 - 0 * 0 + 0 * 4 - 0 * 0 = 4 sgn(4) = 1$$

The goal

- Find linear classifier that can separate the data set
- SVM based on 3 ideas :
 - The Kernel trick map data to high dimensional space where it is easier to classify with linear decision surfaces √
 - Max Margin for linearly separable problem, the maximal margin hyperplane is the optimal linear classifier X
 - Soft Margin and Regularization extend the above definition for non-linearly separable problems. introduce term for misclassifications X

© Ben Galili 32

- f(x) is a linear function $f(x) = w^T x + w_0$
- A hyper-plane in the feature space
- (Unit-length) normal vector of the hyper-plane:

$$n = \frac{w}{\|w\|}$$

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!
- Which one is the best?

- The linear classifier with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point

- Why is this the best?
 - Robust to outliers and thus strong generalization ability
 - If there are no points near the decision surface, then there are no uncertain classification decisions

Given a set of data points:

$$\{(x_d, t_d)\}, d = 1, 2, \cdots, n$$

For $t_d = +1$, $w^T x_d + w_0 > 0$
For $t_d = -1$, $w^T x_d + w_0 < 0$

• With a scale transformation on both w and w_0 , the above is equivalent to

For
$$t_d = +1$$
, $w^T x_d + w_0 \ge 1$
For $t_d = -1$, $w^T x_d + w_0 \le -1$

• We know that:

$$w^{T}x^{+} + w_{0} = +1$$
$$w^{T}x^{-} + w_{0} = -1$$

• The margin width is:

$$M = (x^{+} - x^{-}) \cdot n$$

$$= (x^{+} - x^{-}) \cdot \frac{w}{\|w\|}$$

$$= \frac{2}{\|w\|}$$

• Our goal:

Maximize
$$\frac{2}{\|w\|}$$

For
$$t_d = +1, w^T x_d + w_0 \ge 1$$

For
$$t_d = -1$$
, $w^T x_d + w_0 \le -1$

• Our goal:

Maximize
$$\frac{2}{\|w\|}$$

$$t_d(w^T x_d + w_0) \ge 1$$

• Our goal:

Maximize
$$\frac{2}{\|w\|}$$

Is equivalent to find:

Minimize
$$\frac{1}{2} \cdot ||w||^2$$

$$t_d(w^T x_d + w_0) \ge 1$$

• Minimize

$$\frac{1}{2} \cdot ||w||^2$$

• Subject to:

$$t_d(w^T x_d + w_0) \ge 1$$

• This is an optimization problem can be solved with Quadratic Programing

Minimize

$$\frac{1}{2}||w||^2$$

Subject to:

$$t_d(w^T x_d + w_0) \ge 1$$

Minimize

$$\min_{w,w_o} \max_{\alpha_d} L(w, w_0, \alpha_d) = \min_{w,w_o} \max_{\alpha_d} \frac{1}{2} ||w||^2 - \sum_d \alpha_d (t_d(w^T x_d + w_0) - 1)$$

$$\alpha_d \ge 0$$

Minimize

$$\min_{w,w_o} \max_{\alpha_d} L(w, w_0, \alpha_d) = \min_{w,w_o} \max_{\alpha_d} \frac{1}{2} ||w||^2 - \sum_d \alpha_d (t_d(w^T x_d + w_0) - 1)$$

Subject to:

$$\alpha_d \ge 0$$

• Find ∇w , ∇w_0 :

$$\nabla w = 0 \to w = \sum_{d} \alpha_{d} t_{d} x_{d}$$

$$\nabla w_{0} = 0 \to \sum_{d} \alpha_{d} t_{d} = 0$$

Minimize

$$\min_{w,w_o} \max_{\alpha_d} L(w, w_0, \alpha_d) = \min_{w,w_o} \max_{\alpha_d} \frac{1}{2} \|w\|^2 - \sum_d \alpha_d (t_d(w^T x_d + w_0) - 1)$$

Subject to:

$$\alpha_d \ge 0$$

• Dual - maximize

$$\sum_{d} \alpha_{d} - 1/2 \sum_{d} \sum_{e} \alpha_{d} \alpha_{e} t_{d} t_{e} x_{d}^{T} x_{e}$$

$$\sum_{d} \alpha_{d} t_{d} = 0, \alpha_{d} \geq 0$$

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, the solution to the primal is:

$$w = \sum_{d} \alpha_d t_d x_d$$

$$w_0 = t_k - \sum_d \alpha_d t_d x_d^T x_k$$

• For any $\alpha_k > 0$

What can we achieve from the duality that wasn't in the primal?

$$\sum_{d} \alpha_{d} - 1/2 \sum_{d} \sum_{e} \alpha_{d} \alpha_{e} t_{d} t_{e} x_{d}^{T} x_{e}$$

We can switch to the mapping space "The Kernel Trick"

$$\sum_{d} \alpha_{d} - 1/2 \sum_{d} \sum_{e} \alpha_{d} \alpha_{e} t_{d} t_{e} K(x_{d}, x_{e})$$

The goal

- Find linear classifier that can separate the data set
- SVM based on 3 ideas :
 - The Kernel trick map data to high dimensional space where it is easier to classify with linear decision surfaces √
 - Max Margin for linearly separable problem, the maximal margin hyperplane is the optimal linear classifier √
 - Soft Margin and Regularization extend the above definition for non-linearly separable problems. introduce term for misclassifications X

© Ben Galili 53

Soft Margin

- What if the data is not linear separable? (noisy data, outliers, etc.)
- Slack variables ξ_d can be added to allow margin violations (not necessarily misclassification) of difficult or noisy data points

Soft Margin – optimization problem

Minimize

$$\frac{1}{2} \|w\|^2 + \gamma \sum_{d} \xi_d$$

Subject to:

$$t_d(w^T x_d + w_0) \ge 1 - \xi_d \quad \xi_d \ge 0$$

Minimize

$$\min_{\substack{w,w_o,\xi_d\\w,w_o,\xi_d}} \max_{\alpha_d,\mu_d} \frac{1}{2} \|w\|^2 + \gamma \sum_d \xi_d - \sum_d \alpha_d (t_d(w^Tx_d + w_0) - 1 + \xi_d) - \sum_d \mu_d \xi_d$$

$$\alpha_d \ge 0 \quad \mu_d \ge 0$$

Soft Margin – optimization problem

Minimize

$$\min_{\substack{w,w_o,\xi_d\\w,w_o,\xi_d}} \max_{\alpha_d,\mu_d} \frac{1}{2} \|w\|^2 + \gamma \sum_{d} \sum_{d} \xi_d - \sum_{d} \alpha_d (t_d(w^Tx_d + w_0) - 1 + \xi_d) - \sum_{d} \mu_d \xi_d$$

• Subject to:

$$\alpha_d \ge 0 \quad \mu_d \ge 0$$

• Dual - maximize

$$\sum_{d} \alpha_{d} - 1/2 \sum_{d} \sum_{e} \alpha_{d} \alpha_{e} t_{d} t_{e} \varphi(x_{d})^{T} \varphi(x_{e})$$

$$\sum_{d} \alpha_{d} t_{d} = 0 \quad 0 \le \alpha_{d} \le \gamma$$

Soft Margin – optimization problem

- The parameter γ balance between the violation penalty and $\frac{1}{2} ||w||^2$
- A smaller γ ?
 - Means larger margin, a lower "model complexity"
- A larger γ ?
 - Means less tolerance to violations, but may lead to an overfit
- As $\gamma \to \infty$? we get closer to the hard-margin solution

RBF Kernel SVM Example

$$\sigma = 1.0$$
 $\gamma = 100$

Notice that:

Decrease γ , gives wider (soft) margin

Examples

The goal

- Find linear classifier that can separate the data set
- SVM based on 3 ideas :
 - The Kernel trick map data to high dimensional space where it is easier to classify with linear decision surfaces √
 - Max Margin for linearly separable problem, the maximal margin hyperplane is the optimal linear classifier √
 - Soft Margin and Regularization extend the above definition for non-linearly separable problems. introduce term for misclassifications ∨

© Ben Galili 60

Questions

