BI-ZNS - Neurčitost ve znalostních systémech, její vyjadřování a zpracování.

Vastl Martin

May 27, 2019

Z důvodu toho, že poznatky, které získáváme ze složitých systémů, jsou neurčité a vágní nebo jsou nepřesně vyjádřeny, musíme tyto neurčitosti být schopni modelovat.

Příčiny neurčitosti můžou být z důvodu dat:

- chybějící nebo nerelevantní data
- nedůvěryhodná data (chyba měření, nedůvěryhodný zdroj)
- nepřesná nebo nekonzistentní reprezentace dat (např. kódování)

nebo z důvodu nejistých znalostí:

- Znalost nemusí být platná ve všech případech.
- Znalost může obsahovat vágní pojmy.

1 Vyjádření neurčitosti

Neurčitost bývá obvykle vyjádřena za pomocí nějaké numerické hodnoty. Využívá se např. váhy, pravděpodobnosti, stupně důvěry a podobně, které většinou nabývají hodnot od 0 od 1 nebo od -1 do 1. Dost často se neurčitost reprezentuje za pomocí dvou čísel, která např. reprezentuje střední hodnotu a rozptyl.

Přístupy v znalostních systémech můžou být založené na ad-hoc metodách jako jsou faktory jistoty nebo pseudobayesovských přístupech nebo na metodách založené na teoretických principech jako je teorie pravděpodobnosti, fuzzy množin nebo fuzzy míry.

1.1 Problémy při zpracování neurčitosti

Mezi hlavní problémy při zpracování neurčitosti patří jak kombinovat neurčitá pravidla, jak kombinovat neurčitost předpokladu s neurčitostí pravidla jako celku a jak stanovit neurčitost závěru k němuž vede několik pravidel se svou mírou neurčitosti.

2 Vyjádření pomocí trojhodnotové logiky

Do klasické logiky 1 a 0 se přidá nová hodnota X, která značí hodnotu unknown. Příklad operací:

A¬A		$A \wedge B$	0 X	1	
0 1		0	0 0	0	
XX		X	0 X	X	
1 0		1	0 X	1	
		·			
$A \lor B$	0 X 1		A	$\Rightarrow B$	0 X 1
0	0 X 1			0	1 1 1
X	X X 1			X	X X 1
1	1 1 1			1	0 X 1

3 Vyjádření neurčitosti pomocí vah

Využívá se algebraické teorie, kde jsou pravidla ve tvaru:

$$A \to B(w),$$
 (1)

kde A (předpoklad pravidla) je pravidlo tvořené kombinací konjunkcí výroků a jejich negací, B je závěr pravidla tvořen jedním výrokem a w je váha pravidla a nabývá hodnot od -1 do 1, kde -1 znamená určitě ne, 0 nevím a 1 určitě ano.

4 Bayesovský přístup ke zpracování neurčitosti

Tento přístup je nejstarší a nejlépe definovanou technikou pro zpracování neurčitosti. Mějme pravidlo $E \to H$, která říká, že předpoklad E podporuje závěr H, který lze vyjádřit za pomocí podmíněné pravděpodobnosti P(H|E) a Bayseův vzorec pro výpočet podmíněné pravděpodobnosti je

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}. (2)$$

4.1 Zpracování neurčitosti Šance

Apriorní pravděpodobnostní šance je definována vztahem

$$O(H) = \frac{P(H)}{P(\neg H)} = \frac{P(H)}{1 - P(H)}$$
(3)

Aposteriorní pravděpodobnostní šance je definována

$$O(H|E) = \frac{P(H|E)}{P(\neg H|E)} \tag{4}$$

a pravděpodobnost lze ze šance vypočítat podle $P = \frac{O}{O+1}$

4.2 Míry postačitelnosti a nezbytnosti

Z Bayesova vzorce pro aposteriorní pravděpodobnost plyne, že

$$O(H|E) = L \cdot O(H), \tag{5}$$

kde $L=\frac{P(E|H)}{P(E|\neg H)}$, která se nazývá míra postačitelnosti a velká hodnota $L\gg 1$ říká, že předpoklad E je postačující pro dokázání závěru H. Míru postačitelnosti L zadává expert. Obdobně platí pro míru nezbytnosti $O(H|\neg E)=\bar{L}\cdot O(H)$, kde $\bar{L}=\frac{P(\neg E|H)}{P(\neg E|\neg H)}$ a malá hodnota \bar{L} říká, že předpoklad E je nezbytný pro dokázání závěru H.

4.3 Váhy pravidel

Pravidlo $E \to H(L)$ chápeme jako pravidlo if E then H with weight L else H with weight \bar{L} . Místo uvedených měr mohou být expertem zadány pravděpodobnosti P(H|E) a $P(H|\neg E)$ z nichž se tyto míry vypočtou

$$L = \frac{P(H|E)}{1 - P(H|E)} \cdot \frac{1 - P(H)}{P(H)}.$$
 (6)

Pokud bychom chtěli pravidla $E_1 \to H, E_2 \to H, \dots, E_n \to H$ Pak aposteriorní šance při nezávislosti předpokladů E_i se vypočte podle vztahu:

$$O(H|E_1 \wedge E_2 \wedge \ldots \wedge E_n) = L_1 \cdot \ldots \cdot L_n \cdot O(H). \tag{7}$$

Pokud místo přesných E_i jsou k dispozici pouze pozorování E'_i , pak aposteriorní šance vypočte podle vztahu:

$$O(H|E_1' \wedge E_2' \wedge \ldots \wedge E_n') = L_1' \cdot \ldots \cdot L_n' \cdot O(H), \tag{8}$$

kde $L'_i = \frac{O(H|E'_i)}{O(H)}$. Pokud chceme předpoklady kombinovat můžeme využít vztahů z fuzzy logiky.

$$P(E_1 \lor E_2) = \max\{P(E_1), P(E_2)\}\$$

$$P(E_1 \land E_2) = \min\{P(E_1), P(E_2)\}\$$
(9)

4.4 Výhody a nevýhody Bayesovských přístupů

Výhody

- Dobře podložené teoretické základy
- Dobře definovaná sémantika rozhodování

Nevýhody

- Potřeba stanovení velkého množství různých pravděpodobnostní
- Riziko neúplnosti a/nebo nekonzistence dat
- Předpoklady (evidence) E i by měly být nezávislé, což v praxi často nebývá splněno
- Riziko ztráty informace v důsledku popisu neurčitosti jedním číslem (nepřesnost vyjádření)

5 Přístup založený na faktorech jistoty

Faktory jistoty (Certainty Factors) byly poprvé použity v systému MYCIN. Jejich cílem je eliminovat některé slabiny čistě pravděpodobnostního přístupu. Znalosti jsou vyjádřeny opět ve tvaru pravidel $E \to H$, přičemž za každým pravidlem je připojen faktor jistoty CF.

Faktor jistoty (CF) nabývá hodnot z intervalu [-1,1], kde 1 je absolutní důvěra a -1 absolutní nedůvěra a je určen spojením dílčích měr důvěry MB a nedůvěry MD do jednoho vztahu:

$$CF = \frac{MB - MD}{1 - \min\{MB, MD\}},\tag{10}$$

Míra důvěry (Measure of Belief):

$$MB(H, E) = \begin{cases} 1 & \text{pro } P(H) = 1 \\ \frac{\max\{P(H \mid E), P(H)\} - P(H)}{1 - P(H)} & \text{jinak} \end{cases}$$

- Míra důvěry nabývá hodnot z intervalu (0,1).
- Vyjadřuje přírůstek "pravděpodobnosti" (důvěry) hypotézy H získané (podporované) evidencí E.
- Míra nedůvěry (Measure of Disbelief):

$$MD(H, E) = \begin{cases} 1 & \text{pro } P(H) = 0 \\ \\ \frac{P(H) - \min\{P(H \mid E), P(H)\}}{P(H)} & \text{jinak} \end{cases}$$

- Míra nedůvěry nabývá hodnot z intervalu (0,1).
- Vyjadřuje pokles "pravděpodobnosti" (důvěry) hypotézy H získané (podporované) evidencí E.

Kombinace více pravidel

Mějme pravidla E₁ → H, E₂ → H, ..., Eₙ → H. Označme CFₙ = CF(H, E₁, ..., Eₙ). Výpočet CFₙ se provede podle následujícího vzorce:

$$CF_{n-1} + CF(H, E_n) \cdot \underbrace{\left(1 - CF_{n-1}\right)}_{\text{pro } CF_{n-1}} \text{ váha přírůstku}$$

$$\operatorname{pro } CF_{n-1} > 0 \text{ a } CF(H, E_n) > 0$$

$$CF_n = \left\{ \begin{aligned} CF_{n-1} + CF(H, E_n) \cdot \left(1 + CF_{n-1}\right) & \\ & \operatorname{pro } CF_{n-1} < 0 \text{ a } CF(H, E_n) < 0 \end{aligned} \right.$$

$$\underbrace{\begin{aligned} CF_{n-1} + CF(H, E_n) & \\ 1 - \min \left\{ CF_{n-1} \middle| \left| CF(H, E_n) \middle| \right\} \end{aligned}}_{\text{pro } CF_{n-1}} \text{ jinak}$$

Pokud faktor jistoty není znám přesně nebo je zadán uživatelem, pak může být odvozen $CF_{NEW}(H,E) = CF_{OLD}(H,E) \cdot CF(E)$. Konjunkci a disjunkci předpokladů lze vypočítat jako

v případě fuzzy množin:

$$CF(E_1 \vee E_2) = \max\{CF(E_1), CF(E_2)\}\$$

$$CF(E_1 \wedge E_2) = \min\{CF(E_1), CF(E_2)\}\$$
(11)

5.1 Výhody a nevýhody faktorů jistoty

Výhody

- Jednoduchý a účinný výpočetní model
- Sběr potřebných dat pro výpočty je podstatně snazší než u jiných metod.
- Snazší implementace vysvětlovacího mechanismu.

Nevýhody

- Chybí pevné teoretické základy.
- \bullet Implicitní předpoklad nezávislosti evidencí E_i , což v praxi nebývá často splněno.

5.2 Nemonotónní usuzování

Nemonotónní usuzování se neopírá o vyjádření neurčitosti jako číselné hodnoty. Je to způsob inference, kdy dříve učiněný závěr může být zpochybněn ve světle nové informace. Př. "Každý pták létá" \rightarrow zpochybnění "tučňák nelétá" - přidání dodatečné formule.