

# Redes Generativa Adversarias

PhD(e). MsC. Ing. Jonnatan Arias Garcia

- Ian Goodfellow et al.
- NeurlPS 2014



## Generative Adversarial Network



### Idea detrás de las GANs

• se basa en un enfoque de aprendizaje adversarial en el que dos redes neuronales compiten entre sí en un juego de suma cero

Player 2 Heads Tails Heads Tails

Player 1

Suma cero: ganancias o pérdidas de un participante son exactamente iguales a las pérdidas o ganancias del otro participante.

### Entrenamiento de la GAN

#### **Generador (Generator, G)**:

- •El generador toma una muestra de ruido aleatorio y la transforma en datos falsos que intentan imitar los datos reales del conjunto de entrenamiento.
- •Su objetivo es generar datos que no puedan ser distinguidos de los datos reales por el discriminador.



• Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 - D \left( G \left( z^{(i)} \right) \right) \right)$$



The Generator makes the first (terrible) fake dollar

Output

### Entrenamiento de la GAN

#### **Discriminador (Discriminator, D):**

- •El discriminador recibe tanto datos reales como datos generados (falsos) y trata de clasificarlos correctamente como reales o falsos.
- •Su objetivo es maximizar la precisión en distinguir entre datos reales y generados.



• Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[ \log D \left( \boldsymbol{x}^{(i)} \right) + \log \left( 1 - D \left( G \left( \boldsymbol{z}^{(i)} \right) \right) \right) \right]$$
 From minibatch of data From minibatch of noise



The Discriminator levels up! It now can spot very bad fake dollars.

### Entrenamiento de la GAN

El generador crea versiones (falsas) mejores



The Generator makes a very slightly better counterfeit dollar

### Funcionamiento de la GAN

#### Inicialización

Comúnmente con pesos aleatorio tanto en el discriminador como el en generador

#### 2. Entrenamiento Alternante

Se realiza alternando entre los pasos del generador y el discriminador:

#### Actualizar el Discriminador:

- Se entrena el discriminador con un mini-lote de datos reales y un mini-lote de datos generados por el generador.
- El discriminador ajusta sus pesos para minimizar la pérdida en la clasificación de datos reales y generados.

#### Actualizar el Generador:

- Se entrena el generador usando la retropropagación a través del discriminador.
- El generador ajusta sus pesos para maximizar la probabilidad de que el discriminador clasifique los datos generados como reales.
- Esto se hace tratando de "engañar" al discriminador.

### Funcionamiento de la GAN

### 3. Objetivo de Minimización y Maximización:

- El objetivo del generador es minimizar la función de pérdida que representa cuán bien puede el discriminador identificar los datos falsos.
- El objetivo del discriminador es maximizar la función de pérdida que representa su capacidad para distinguir entre datos reales y generados.

```
\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]
```

#### Donde:

- D(x) es la probabilidad de que x provenga de los datos reales.
- G(z) es el dato generado a partir del ruido z.
- $p_{data}(x)$  es la distribución de los datos reales.
- $p_z(z)$  es la distribución del ruido.

### Funcionamiento de la GAN

### Actualización de discriminador y generador

#### k times

Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[ \log D\left( \boldsymbol{x}^{(i)} \right) + \log \left( 1 - D\left( G\left( \boldsymbol{z}^{(i)} \right) \right) \right) \right]$$



• Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 - D \left( G \left( \boldsymbol{z}^{(i)} \right) \right) \right)$$

## En la practica

- D1 = D(x) ← (D wants it to be near 1)
- D2 = D(G(z)) ← (D wants it to be near 0)

```
loss_d = tf.reduce_mean(-tf.log(D1) - tf.log(1 - D2))
loss_g = tf.reduce_mean(-tf.log(D2))
```

- También conocido como escenario Helvetica
- Problema donde el generador produce una variedad limitada de muestras y queda atrapado en pocas modas del conjunto de datos de train., por ende crea copias de una pequeña cantidad.

• El generador aprende a mapear muchas entrada diferentes del valor z para el mismo punto de salida

No parece ser causado por ninguna función de costo en particular



Figure 9: Comparison to Generative Adversarial What-Where Networks (Reed et al., 2016a). GAN samples have very low diversity, whereas our samples are all quite different.

- Ocurre debido a:
  - Desequilibrio en el Train.
    - Discriminador mejora mas rápido que el generador.
  - Gradientes Faltantes
    - Gradiente que se retropropagan desde el discriminador al generador pueden ser insuficientes o débiles para impulsar al generador a explorar.
  - Inestabilidad del Train
    - Pequeñas modificaciones en el discriminador pueden hacer variar mucho al generador

- Mejoras para evitar el colapso
  - Wasserstein GAN (WGAN): Usa métricas para diferencias entre reales y generadas
  - Minibatch Discrimination: Mini batches
  - Feature Matching: Se entrena el generador para igualar estadísticas de una capa intermedia de discriminador en lugar de engañarlo.
  - Unrolled GANs: extender en train gel generador previo a actualizar el discriminador
  - Latent Space Regularization: regularización de z
  - Ensembles of Discriminators: múltiples discriminadores

## Aplicaciones

**Generación de Imágenes:** Crear imágenes realistas a partir de ruido, estilo de transferencia, superresolución de imágenes, etc.

**Generación de Datos Sintéticos:** Crear datos sintéticos para entrenar otros modelos de aprendizaje automático.

Video y Animación: Generar videos realistas o animaciones a partir de un conjunto de imágenes estáticas.

Música y Arte: Generar música, pinturas y otros tipos de arte digital.

Modelado 3D: Crear modelos tridimensionales realistas de objetos.

# Desafíos y Mejoras

**Estabilidad del Entrenamiento:** El entrenamiento puede ser inestable y puede llevar a problemas como el colapso del modo, donde el generador produce una variedad limitada de muestras.

**Equilibrio entre G y D**: Mantener un equilibrio adecuado entre las capacidades del generador y el discriminador es crucial para el éxito del entrenamiento.