Chapter 8 Random-Variate Generation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- H
 - Develop understanding of generating samples from a specified distribution as input to a simulation model.

- Illustrate some widely-used techniques for generating random variates.
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique

Uniform Distribution

[Inverse-transform]

 Histogram for 200 R_i: (empirical)

(theoretical)

Exponential Distribution

[Inverse-transform]

 Histogram for 200 X_i : (empirical)

(theoretical)

Inverse-transform Technique

- The concept:
 - \Box For cdf function: r = F(x)
 - ☐ Generate r from uniform (0,1)
 - ☐ Find x:

$$x = F^{-1}(r)$$

Exponential Distribution

[Inverse-transform]

- Exponential Distribution:
 - □ Exponential cdf:

$$r = F(x)$$

$$= 1 - e^{-\lambda x} \quad \text{for } x \ge 0$$

□ To generate $X_1, X_2, X_3 \dots$

$$X_i = F^{-1}(R_i)$$

= $-(1/\lambda) \ln(1-R_i)$ [Eq'n 8.3]

$$X_i = -\frac{1}{\lambda} \ln R_i$$

Exponential Distribution

[Inverse-transform]

Generate using the graphical view:

Figure: Inverse-transform technique for $exp(\lambda = 1)$

- Draw a horizontal line from R₁ (randomly generated), find to corresponding x to obtain X₁.
- We can see that:

 - $P(R_1 \sim U(0,1))$ So: $P(R_1 \leq F(x_0)) = F(x_0)$

Uniform distribution

$$X \sim U(a,b) \Rightarrow X = a + (b-a)R$$

■ Weibull distribution

$$f(x) = \begin{cases} \frac{\beta}{\alpha^{\beta}} x^{\beta - 1} e^{-(x/a)^{\beta}}, & x \ge 0\\ 0, & otherwise \end{cases}$$

$$F(X) = 1 - e^{-(x/\alpha)^{\beta}}, x \ge 0$$

$$\Rightarrow X = \alpha [-\ln(1-R)]^{1/\beta}$$

Other Distributions

[Inverse-transform]

Triangular distribution

$$f(x) = \begin{cases} x. & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2 \\ 0 & otherwise \end{cases}$$

$$\Rightarrow X = \begin{cases} \sqrt{2R}, & 0 \le R \le \frac{1}{2} \\ 2 - \sqrt{2(1-R)}, & \frac{1}{2} < R \le 1 \end{cases}$$

Empirical Continuous Dist'n

[Inverse-transform]

- When theoretical distribution is not applicable
- To collect empirical data:
 - □ Resample the observed data
 - □ Interpolate between observed data points to fill in the gaps
- For a small sample set (size n):
 - Arrange the data from smallest to largest

$$X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$$

□ Assign the probability 1/n to each interval $X_{(i-1)} \le X \le X_{(i)}$

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{(i-1)}{n} \right)$$

where
$$a_i = \frac{x_{(i)} - x_{(i-1)}}{i/n - (i-1)/n} = \frac{x_{(i)} - x_{(i-1)}}{1/n}$$

Empirical Continuous Dist'n [Inverse-transform]

□ 2.76

1.83

0.80

1.45

1.24

		Cumalative		
	Interval	Probability	Probability,	
i	(Hours)	1/n	i/n	Slope, a i
1	$0.0 \le x \le 0.80$	0.2	0.20	4.00
2	$0.8 \le x \le 1.24$	0.2	0.40	2.20
3	$1.24 \le x \le 1.45$	0.2	0.60	1.05
4	$1.45 \le x \le 1.83$	0.2	0.80	1.90
5	$1.83 \le x \le 2.76$	0.2	1.00	4.65

Empirical Continuous Dist'n

[Inverse-transform]

= 1.66

Response times

Empirical Continuous Dist'n [Inverse-transform]

- For a large sample set :
 - Summarize into frequency distribution with small number of intervals. (equal intervals)

 $x_{(i-1)} < x \le x_{(i)}$: i th interval

Fit a continuous empirical cdf to the frequency distribution. if $c_{i-1} < R \le c_i$ (ci : cumulative frequency)

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i(R - c_{i-1})$$

Where

$$a_i = \frac{x_{(i)} - x_{(i-1)}}{c_i - c_{i-1}}$$

Empirical Continuous Dist'n

[Inverse-transform]

	Interval		Relative	Cumulative	Slope,
i	(Hours)	Frequency	Frequency	Frequency, c _i	a _i
1	$0.25 \le x \le 0.5$	31	0.31	0.31	0.81
2	$0.5 \le x \le 1.0$	10	0.10	0.41	5.0
3	$1.0 \le x \le 1.5$	25	0.25	0.66	2.0
4	$1.5 \le x \le 2.0$	34	0.34	1.00	1.47

Discrete Distribution

[Inverse-transform]

- All discrete distributions can be generated via inverse-transform technique
- Method: numerically, table-lookup procedure, algebraically, or a formula
- Examples of application:
 - □ Empirical
 - □ Discrete uniform
 - □ Gamma

Discrete Distribution

[Inverse-transform]

- Example: Suppose the number of shipments, x, on the loading dock of IHW company is either 0, 1, or 2
 - □ Data Probability distribution:

X	p(x)	F(x)
0	0.50	0.50
1	0.30	0.80
2	0.20	1.00

Method - Given R, the generation scheme becomes:

$$x = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < R \le 1.0 \end{cases}$$

Consider
$$R_1 = 0.73$$
:
 $F(x_{i-1}) < R <= F(x_i)$
 $F(x_0) < 0.73 <= F(x_1)$
Hence, $x_1 = 1$

Acceptance-Rejection technique

- Useful particularly when inverse cdf does not exist in closed form, a.k.a. thinning
- Illustration: To generate random variates, X ~ U(1/4, 1)

Procedures:

Step 1. Generate R ~ U[0,1]

Step 2a. If $R \ge \frac{1}{4}$, accept X=R.

Step 2b. If R < 1/4, reject R, return to Step 1

- R does not have the desired distribution, but R conditioned (R') on the event $\{R \ge \frac{1}{4}\}$ does.
- Efficiency: Depends heavily on the ability to minimize the number of rejections.

Poisson Distribution

Poisson Distribution

$$\prod_{i=1}^{n} R_i \ge e^{-\alpha} > \prod_{i=1}^{n+1} R_i$$

- **Step 1:** Set n = 0, P = 1.
- Step 2: Generate a random number R_{n+1} , and replace P by P. R_{n+1} .
- **Step 3:** If $P < e^{-\alpha}$, then accept N = n, otherwise, reject the current n, increase n by one, and return to step 2.

Poisson Distribution

$$\alpha = 0.2 = e^{-\alpha} = 0.8187$$

n	R_{n+1}	P	Accept/Reject	Result
0	0.4357	0.4357	$P < e^{-\alpha}$ (accept)	N = 0
0	0.4146	0.4146	$P < e^{-\alpha}$ (accept)	N = 0
0	0.8353	0.8353	$P \ge e^{-\alpha}$ (reject)	
1	0.9952	0.8313	$P \ge e^{-\alpha}$ (reject)	
2	0.8004	0.6654	$P < e^{-\alpha}$ (accept)	N=2

Summary

- 30
 - Principles of random-variate generate via
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
 - Important for generating continuous and discrete distributions