# CL205: AI & DS Conditional Probability, Independence (Summary)

#### Mani Bhushan

Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India-400076

mbhushan@iitb.ac.in

13 Aug 2024

#### Conditional Probability and Independence Ideas

- Consider probability space  $(\Omega, \mathcal{F}, P)$ .
- Let A and B represent two events in  $\mathcal{F}$ .
- Conditional Probability: Knowing that an event B has occurred sometimes forces us to reassess the probability of event A. The new probability is the conditional probability.
- Independence: If the conditional probability of A equals what the probability of A was before, then events A and B are called independent.

#### Conditional Probability Formally

 Conditional probability of event A given event B has occurred is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

provided P(B) > 0.

 The conditional probability function satisfies all the axioms of probability, and, thus, is a valid probability function in itself.

#### Multiplication Rule

Multiplication Rule: For events A and B

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• Further Implication: Consider event A, which can be expressed as

$$A = (A \cap B) \cup (A \cap B^*)$$

 $\Rightarrow$  Probability of event A:

$$P(A) = P(A \cap B) \cup P(A \cap B^*)$$
  
=  $P(A \mid B)P(B) + P(A \mid B^*)P(B^*)$ 

### Example

- Mad Cow Disease:
  - Consider a test in which a cow is tested to determine infection with the "mad cow disease." It is known that, using the specified test, an infected cow has a 70% chance of testing positive, and a healthy cow just 10%. It is also known that 2% cows are infected. Find probability that an arbitrary cow tests positive.
- Event B: A randomly picked cow is infected; Event T: Test comes positive.

$$P(T \mid B) = 0.7 \text{ and } P(T \mid B^*) = 0.1$$

 Note: As no test is 100% accurate, most tests have the problem of false positives and false negatives. A false positive means that according to the test the cow is infected, but in actuality it is not. A false negative means an infected cow is not detected by the test.

#### Example Cont.

• Since  $\Omega = B \cup B^*$ 

$$P(B) = 0.02 \Rightarrow P(B^*) = 0.98$$

- Problem is to find P(T).
- Since  $T = (T \cap B) \cup (T \cap B^*)$

$$P(T) = P(T \cap B) + P(T \cap B^*)$$

$$P(T) = P(T \mid B)P(B) + P(T \mid B^*)P(B^*)$$

$$= 0.7 \times 0.02 + 0.1 \times 0.98 = 0.112$$

This is application of the law of total probability.

#### Law of Total Probability

- Computing a probability through conditioning on several disjoint events that make up the whole sample space.
- Suppose  $C_1, C_2, \ldots, C_m$  are disjoint events such that  $C_1 \cup C_2 \cup \ldots \cup C_m = \Omega$
- Then, the probability of an arbitrary event A can be expressed as:

$$P(A) = P(A \cap C_1) + P(A \cap C_2) + ... + P(A \cap C_m)$$
  
=  $P(A \mid C_1) P(C_1) + P(A \mid C_2) P(C_2) + ... + P(A \mid C_m) P(C_m)$ 

#### Illustration: Law of Total Probability



Figure: Law of Total Probability Illustration (m = 5) (Dekking et al., 2005)

#### Mad Cow Example (contd.)

- A more pertinent question about the mad cow disease test is the following:
  - Suppose a cow tests positive; what is the probability it really has the mad cow disease?
- In mathematical terms, what is  $P(B \mid T)$  ?

$$P(B \mid T) = \frac{P(T \cap B)}{P(T)} = \frac{P(T \cap B)}{P(T \cap B) + P(T \cap B^*)}$$
$$= \frac{P(T \mid B)P(B)}{P(T \mid B)P(B) + P(T \mid B^*)P(B^*)}$$
$$= \frac{0.7 \times 0.02}{0.7 \times 0.02 + 0.1 \times 0.98} = 0.125$$

(Dekking et al., 2005)

#### Mad Cow Disease Interpretation

- If we know nothing about a cow, we would say that there is a 2% chance it is infected.
- However, if we know it tested positive, then we can say there is a 12.5% chance the cow is infected.
- Finding  $P(B \mid T)$  using  $P(T \mid B)$  is an application of Bayes Rule derived by English clergyman Thomas Bayes in the 18th century.

#### Bayes Rule

• For events A and B:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

assuming P(B) > 0.

## Bayes Rule and Law of Total Probability

- Suppose  $C_1, C_2, \ldots, C_m$  are disjoint events such that  $C_1 \cup C_2 \cup \ldots \cup C_m = \Omega$
- Then, the conditional probability of  $C_i$ , given an arbitrary event A, can be expressed as :

$$P(C_i \mid A) = \frac{P(A \mid C_i) P(C_i)}{P(A \mid C_1) P(C_1) + \ldots + P(A \mid C_m) P(C_m)}$$
$$= \frac{P(A \mid C_i) P(C_i)}{P(A)}$$

#### Independence of Events

An event A is independent of B if

$$P(A \mid B) = P(A)$$

• Result 1: A independent of  $B \Leftrightarrow A^*$  independent of B

$$P(A^* \mid B) = 1 - P(A \mid B) = 1 - P(A) = P(A^*)$$

• Result 2: A independent of  $B \Leftrightarrow P(A \cap B) = P(A)P(B)$ . By application of the multiplication rule, if A is independent of B

$$P(A \cap B) = P(A \mid B)P(B) = P(A)P(B)$$

#### Independence (Cont.)

• Result 3 : A independent of  $B \Leftrightarrow B$  independent of A

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

 To show that A and B are independent it suffices to prove just one of the following

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

(A may be replaced by  $A^*$  and B may be replaced by  $B^*$ .)

- If one of the above statements holds, all of them are true.
- If two events are not independent, they are called dependent.

#### Independence: Multiple Events

• Events  $A_1, A_2, \ldots, A_n$  are called independent if

$$P(A_i \cap A_j \cap ... \cap A_m) = P(A_i) P(A_j) ... P(A_m)$$
  
for every subset of events  $A_i, A_j, ..., A_m$ ;  $m \le n$ 

 Note: If A and B are independent and B and C are independent, then it does NOT imply that A and C are independent.

#### References

- Papoulis, A. Probability, Random Variables and Stochastic Processes, MacGraw-Hill International, 1991.
- Dekking, F.M., Kraaikamp, C., Lopuhaa, H.P., Meester, L. E., A Modern Introduction to Probability and Statistics: Understanding Why and How, Springer, 2005.
- Montgomery, D. C. and G. C. Runger, Applied Statistics and Probability for Engineers, John Wiley and Sons, 2004.
- Ross, S. M., Introduction to Probability and Statistics for Engineers and Scientists, Elsevier, 4th Edition, 2009.