riducibilità

l'idea di riduzione

- il metodo effettivamente utilizzato per dimostrare l'indecidibilità di problemi
- una tecnica per convertire un problema A in un altro problema B, in modo tale che una soluzione di B possa essere usata per risolvere A
- molti esempi possibili, sia dalla vita quotidiana, sia dall'esperienza informatica

l'idea di riduzione

- in primo luogo faremo uso dell'idea di riduzione in modo informale, dimostrando l'indecidibilità di alcuni problemi
- poi daremo ed useremo una definizione formale di riduzione

HALT_{TM} è indecidibile

- è il vero e proprio problema della fermata
- linguaggio HALT_{TM} = {<M,w> | M è una MT e M si ferma quando ha in input la stringa w}
- sappiamo che A_{TM} è indecidibile
- usiamo l'indecidibilità di A_{TM} per dimostrare quella di $HALT_{TM}$

il problema A_{TM} (pro memoria)

 linguaggio A_{TM} = {<M,w> | M è una MT che accetta la stringa w}

HALT_{TM} è indecidibile

- teorema: HALT_{TM} è indecidibile
- · idea di dimostrazione:
 - per assurdo: assumiamo che $HALT_{TM}$ sia decidibile e mostriamo che se è vero allora anche A_{TM} è decidibile
 - l'idea chiave è quella di mostrare che A_{TM} è riducibile a $HALT_{TM}$
 - in altri termini, mostriamo che se sappiamo risolvere $HALT_{TM}$ allora sappiamo risolvere anche A_{TM}

HALT_{TM} è indecidibile

dimostrazione:

- supponiamo esista una MT R che decide $HALT_{TM}$
- usando R costruiamo una MT S che decide A_{TM} come segue
- eseguiamo R sull'input < M, w>
- se R rifiuta allora S rifiuta
- se R accetta, allora simuliamo M fino a quando si ferma
- se M accetta, allora S accetta, altrimenti S rifiuta

HALT_{TM} è indecidibile

· dimostrazione:

- se R decide HALT_{TM} allora S decide A_{TM}
- ma A_{TM} è indecidibile
- abbiamo un assurdo

E_{TM} è indecidibile

- E_{TM} = {<M> | M è una MT e L(M)=∅}
- teorema: E_{TM} è indecidibile
- idea di dimostrazione:
 - per assurdo: assumiamo che E_{TM} sia decidibile e mostriamo che se è vero allora A_{TM} è decidibile
 - l'idea chiave è quella di mostrare che A_{TM} è riducibile a E_{TM}
 - in altri termini, mostriamo che se sappiamo risolvere E_{TM} allora sappiamo risolvere anche A_{TM}

E_{TM} è indecidibile lemma preliminare

- lemma: siano M una MT e w una stringa (tale che non necessariamente w∈L(M)); è sempre possibile costruire una MT M₁ che riconosca la sola stringa w se e solo se w∈L(M)
- · dimostrazione:
 - costruiamo M₁ come segue
 - confrontiamo la stringa x in ingresso con w
 - se x≠w allora rifiuta
 - se x=w allora esegui M su w e accetta se M accetta

E_{TM} è indecidibile lemma preliminare

- L(M₁)=L(M)∩{w}
- caso L(M)∩{w}=Ø; M₁ non riconosce nessuna stringa

caso L(M)∩{w}={w}; riconosce solo w

E_{TM} è indecidibile

- teorema: E_{TM} è indecidibile
- · dimostrazione:
 - supponiamo esista una MT R che decide E_{TM}
 - usando R costruiamo una MT S che decide A_{TM}
 - ricordiamo che A_{TM}= {<M,w> | M è una MT che accetta la stringa w}
 - costruiamo M₁ come nel lemma precedente
 - M₁ riconosce la sola stringa w se e solo se w∈L(M)
 - usiamo M₁ per costruire S

E_{TM} è indecidibile

- · dimostrazione:
 - eseguiamo R su M₁
 - se R accetta rifiutiamo, se R rifiuta accettiamo
 - se R decide E_{TM} allora S decide A_{TM}
 - ma A_{TM} è indecidibile, quindi abbiamo un assurdo

EQ_{TM} è indecidibile

- EQ_{TM} = {<M₁,M₂> | M₁ e M₂ sono MT e L(M₁)=L(M₂)}
 - è il problema dell'equivalenza tra due MT
- teorema: EQ_{TM} è indecidibile
- · dimostrazione:
 - per assurdo: assumiamo che EQ_{TM} sia decidibile e mostriamo che se è vero allora E_{TM} è decidibile

EQ_{TM} è indecidibile

- dimostrazione:
 - se EQ_{TM} è decidibile possiamo usare la MT che lo decide per decidere E_{TM}, semplicemente invocandola per confrontare un linguaggio e il linguaggio vuoto

formalizzazione dell'idea di riduzione

calcolabilità di funzioni

calcolo di funzioni parziali di stringa:
 una funzione parziale f:∑*→∑* è
 calcolabile se esiste una MT tale che:
 q₀x |—* xq_Ff(x) ⇔ f è definita su x∈∑*
 (per tutti gli x su cui f non è definita, la MT o termina in uno stato non finale o non termina)

formalizzazione dell'idea di riduzione

- abbiamo usato riduzioni tra problemi per varie dimostrazioni di indecidibilità
- ora formalizziamo il concetto di riduzione
- una riduzione di un problema A in un problema B è una funzione f calcolabile che trasforma ogni istanza x di A in una istanza f(x)=y_x di B, in modo tale che trovare una soluzione per il problema B con istanza y_x equivale a trovare una soluzione per il problema A con istanza x; se tale riduzione (funzione) esiste si scrive anche A<B

formalizzazione dell'idea di riduzione

- un linguaggio A è riducibile a un linguaggio B
 (A≤B) se esiste una funzione calcolabile
 f:∑*→∑*, tale che per ogni w, w∈A⇔f(w)∈B
- la funzione f è la riduzione da A a B

riduzioni e decidibilità

- teorema: se A≤B e B è decidibile ⇒ A è decidibile
- dimostrazione:
 - sia M la MT che decide B ed f la riduzione da A a B; costruiamo una MT N che decide A come segue
 - dato un input w, N prima calcola f(w) e poi eseque M su f(w)
 - se w∈A allora f(w)∈B, infatti f è una riduzione da A a B; quindi M accetta f(w) se e solo se w∈A

riduzioni e decidibilità

corollario: se A≤B e A è indecidibile ⇒ B è indecidibile

riduzioni e decidibilità

- tecnica per dimostrare che un problema P
 è decidibile: cerco un problema Q
 decidibile tale che P≤Q
- tecnica per dimostrare che un problema P
 è indecidibile: cerco un problema Q
 indecidibile tale che Q≤P

uso di riduzioni per dimostrare la decidibilità di problemi

uso di una riduzione per dimostrare che un problema è decidibile

- si considerino i due seguenti problemi:
 - problema PATH: dato un grafo orientato H e due suoi vertici x ed y, esiste un cammino diretto da x ad y?
 - problema A_{CFG} : date una grammatica G non contestuale ed una stringa $w \in \Sigma^*$, w appartiene ad L(G)?

uso di una riduzione per dimostrare che un problema è decidibile

- problemi e linguaggi:
 - il linguaggio PATH è quello delle stringhe che rappresentano un grafo e due vertici tali che tra i due vertici ci sia un cammino
 - il linguaggio A_{CFG} è quello delle stringhe che rappresentano una grammatica non contestuale e una stringa tali che la stringa appartiene al linguaggio generato dalla grammatica

riduzioni e decidibilità (pro memoria)

tecnica per dimostrare che un problema P
è decidibile: cerco un problema Q
decidibile tale che P≤Q

uso di una riduzione per dimostrare che un problema è decidibile

- sapendo che il problema A_{CFG} è decidibile, dimostrare la decidibilità del problema PATH
- Soluzione:
 - cerchiamo una f calcolabile, tale che $PATH \rightarrow_f A_{CFG}$
 - un' istanza di PATH è una tripla <H,x,y>
 - un' istanza di A_{CFG} è una coppia <G,w>

un esempio di riduzione

- definiamo una funzione f che a partire da una istanza <H,x,y> di PATH produce una istanza <G,w> di A_{CFG}
 - $G = \langle V_T, V_N, S, P \rangle$:
 - V_T ha un simbolo z per ogni vertice z di H
 - V_N ha un simbolo Z per ogni vertice z di H più l'assioma S
 - P è formato dalle seguenti produzioni:
 - w è la stringa "xy"
- f (<H,x,y>) = <G,w> è calcolabile, poiché è una semplice "traslitterazione" (traduzione meccanica in numero finito di passi)

un esempio di riduzione

 esempio di applicazione di f: sia <H,x,y> la seguente istanza

• costruiamo l'istanza $f(\langle H,x,y\rangle) = \langle G,w\rangle$ $V_T=\{u,v,z,x,y\},\ V_N=\{U,V,Z,X,Y,S\},\ S$ assioma produzioni: $S\to uU\mid vV\mid zZ\mid xX\mid yY$

stringa w = xy

un esempio di riduzione

- dobbiamo dimostrare che esiste un cammino da x ad y in H ⇔ w=xy appartiene ad L(G)
 - supponiamo che esista un cammino da x ad y in H, indicato con: x,v₁,v₂,...,v_n,y; allora, per costruzione, esistono in G le seguenti produzioni: S→xX, X→V₁, V₁→V₂, ...,V_n→Y, Y→ y quindi, la stringa w=xy è generata da G, cioè w∈L(G)
 - supponiamo viceversa che w=xy∈L(G); una derivazione per w è necessariamente del tipo: S|—xX |—xV₁|—xV₂ |—, ..., |— xV_n |— xY |—xy, e dunque esistono in H gli archi (x,v₁), (v₁,v₂),...,(vₙ,y), che definiscono il cammino x,v₁,v₂,...,vₙ,y

- si considerino i due seguenti problemi:
 - problema PATH: dato un grafo orientato H e due suoi vertici x ed y, esiste un cammino diretto da x ad y?
 - problema IMPLICATION: dati un insieme di proposizioni $S=\{P_1,P_2,...,P_n\}$ ed un insieme di implicazioni logiche su S, $I=\{P_i\Longrightarrow P_j: i,j\in\{1,....,n\}\}$; date due proposizioni P_h e P_k di S, esiste una sequenza di implicazioni logiche del tipo:

$$P_h \Rightarrow P_{i1} \Rightarrow P_{i2} \Rightarrow \Rightarrow P_{ir} \Rightarrow P_k$$
?

il problema PATH ed il problema IMPLICATION

- riduciamo il problema IMPLICATION al problema PATH, il quale è noto essere decidibile
- un' istanza del problema PATH è una tripla <H,x,y>
- un' istanza del problema IMPLICATION è una quadrupla <S,I,P_h,P_k>

- definiamo la funzione f(<S,I,P_h,P_k>)=<H,x,y>
 - H ha un vertice r per ogni proposizione P_r di S
 - H ha un arco (i, j) per ogni implicazione P_i⇒P_i di I
 - -x = h
 - -y = k

il problema PATH ed il problema IMPLICATION

· esempio di costruzione tramite f

$$-S = \{P_1, P_2, P_3, P_4, P_5, P_6\}$$

$$-I = \{P_1 \Rightarrow P_2, P_5 \Rightarrow P_3, P_1 \Rightarrow P_3, P_6 \Rightarrow P_2, P_5 \Rightarrow P_1, P_4 \Rightarrow P_6, P_5 \Rightarrow P_6\}$$

$$-P_b = P_5$$

$$-P_k = P_2$$

- dimostriamo la correttezza della riduzione
 - dobbiamo provare che esiste una sequenza di implicazioni da Ph a Pk ⇔ esiste un cammino diretto da x ad y in G

il problema PATH ed il problema IMPLICATION

 supponiamo che esista una sequenza di implicazioni del tipo:

 $P_h \Rightarrow P_{i1} \Rightarrow P_{i2} \Rightarrow ... \Rightarrow P_{ir} \Rightarrow P_k$ allora in H esistono gli archi (h, i₁), (i₁, i₂), ... (i_r, k), e poiché x = h ed y = k, allora tali archi definiscono un cammino da x ad y in H

viceversa, supponiamo esista un cammino x, i₁, i₂, ..., i_r, y in H; questo implica che esistono gli archi (x, i₁), (i₁, i₂), ... (i_r, y) in H; poiché ad ogni arco di G corrisponde una implicazione in I, e poiché x=h ed y=k, allora valgono le seguenti implicazioni:

$$\mathsf{P}_\mathsf{h} \Rightarrow \mathsf{P}_\mathsf{i1} \Rightarrow \mathsf{P}_\mathsf{i2} \Rightarrow ... \Rightarrow \mathsf{P}_\mathsf{ir} \Rightarrow \mathsf{P}_\mathsf{k}$$

uso di riduzioni per dimostrare l'indecidibilità di problemi

rivisitazione di alcune dimostrazioni di indecidibilità usando il concetto di riduzione

- prima riprendiamo alcune dimostrazioni di indecidibilità di linguaggi e le riformuliamo in termini di riduzioni
- poi dimostriamo l'indecidibilità di altri linguaggi usando il concetto di riduzione in modo più articolato

riduzioni e decidibilità (pro memoria)

tecnica per dimostrare che un problema P
è indecidibile: cerco un problema Q
indecidibile tale che Q≤P

HALT_{TM} è indecidibile

- teorema: HALT_{TM} è indecidibile
- dimostrazione: costruiamo una riduzione f da A_{TM} a HALT_{TM} come segue
 - data una coppia <M,w>, f deve calcolare una coppia <M',w'> tale che
 - <M,w> \in A_{TM} se e solo se <M',w'> \in HALT_{TM}

HALT_{TM} è indecidibile

- · dimostrazione:
 - la MT che calcola f ha come input la coppia <M,w> e costruisce la macchina M' tale che se M accetta M' accetta, se M rifiuta M' entra in un loop
 - f restituisce come output la coppia <M',w>

EQ_{TM} è indecidibile

- teorema: EQ_{TM} è indecidibile
- dimostrazione: costruiamo una riduzione f da E_{TM} a EQ_{TM} come segue
 - data una M, f calcola una coppia <M,M₁> tale che M₁ è la macchina che rifiuta qualunque input

INCLUSION_{TM} è indecidibile

- INCLUSION_{TM}: {<M₁,M₂> | M₁ e M₂ sono MT e L(M₁) ⊆ L(M₂)}
- teorema: INCLUSION_{TM} è indecidibile
- · dimostrazione:
 - dimostriamo che A_{TM} è riducibile a INCLUSION_{TM}
 - analizziamo le istanze dei due problemi:
 - un' istanza di A_{TM} è costituita da una MT M e da una stringa w
 - un' istanza di INCLUSION $_{\rm TM}$ è costituita da due MT, ${\rm M_1}$ ed ${\rm M_2}$

INCLUSION_{TM} è indecidibile

- definiamo la funzione f(<M,w>)=<M₁,M₂>:
 - M₁ è una MT che riconosce solo w (è costruita come un ASF)
 - $M_2 = M$
- · la funzione f è ovviamente calcolabile
- dimostriamo che decidere se L(M₁)⊆L(M) equivale a decidere se M si ferma quando calcola w
- per la costruzione fatta, decidere se L(M₁)⊆L(M) equivale a decidere se w∈L(M) (perché L(M₁)={w}); d'altronde, decidere se w∈L(M) equivale a decidere se M si ferma accettando w oppure no

riduzioni da PCP

il problema PCP

Problema delle Corrispondenze di Post:
è dato un insieme finito C = {(u₁,v₁) , (u₂,v₂), ..., (uₙ,vո)} di coppie di stringhe sull'alfabeto ∑; esiste una sequenza i₁, i₂, ..., ik di indici in {1,...,n}, anche ripetuti, tale che: uᵢ₁ uᵢ₂ uᵢ₃ ... uᵢk = vᵢ₁ vᵢ₂ vᵢ₃ ... vᵢk?
nota: la sequenza può essere di lunghezza

k qualunque

PCP

un' istanza di PCP è data da un insieme finito di tipologie di tessere, su ciascuna delle quali sono riportate due stringhe, una in alto e una in basso

il problema consiste nel verificare se è possibile costruire una lista di tessere (le ripetizioni sono ammesse) tali che la stringa letta in alto coincide con quella letta in basso

a	b	ca	a	abc
ab	ca	a	ab	c

PCP per alcune istanze di PCP, non c'è nessuna soluzione abc ab a acc cca c

il problema PCP

• teorema: PCP è indecidibile

DISJOINTNESS_{CFG} è indecidibile

- DISJOINTNESS_{CFG}: $\{ \langle G_1, G_2 \rangle \mid G_1 \in G_2 \text{ sono} \}$ grammatiche CF e L(G₁) \cap L(G₂)= $\emptyset \}$
- teorema: DISJOINTNESS_{CFG} è indecidibile
- dimostrazione: cerchiamo una riduzione: PCP→_f DISJOINTNESS_{CFG}
- istanze dei due problemi:
 - istanza di PCP: C = $\{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\}$ su Σ
 - istanza di DISJOINTNESS_{CFG}: due CFG, G₁ e G₂

DISJOINTNESS_{CFG} è indecidibile

- introduciamo n simboli ausiliari: a₁, a₂, ..., a_n
- G₁ è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita dalle produzioni: S₁ $\rightarrow u_i a_i$, S₁ $\rightarrow u_i S_1 a_i$ (i = 1,..., n)
- G_2 è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita dalle produzioni: $S_2 \rightarrow v_i a_i$, $S_2 \rightarrow v_i S_2 a_i$ (i = 1,..., n)

DISJOINTNESS_{CFG} è indecidibile

- dimostriamo che decidere se esiste una sequenza di indici i_1 , i_2 , ..., i_k tale che u_{i1} u_{i2} u_{i3} $u_{ik} = v_{i1}$ v_{i2} v_{i3} ... v_{ik} equivale a decidere se $L(G_1) \cap L(G_2) = \emptyset$ secondo la costruzione fatta
- si osserva che $L(G_1)=\{u_{i1}\;u_{i2}\;u_{i3}\;....\;u_{im}\;a_{im}\;....\;a_{i3}\;a_{i2}\;a_{i1}\;\;\forall m\in \textbf{N}$ ed ij $\in \{1,\;...,\;n\}$ } $L(G_2)=\{v_{i1}\;v_{i2}\;v_{i3}\;....\;v_{im}\;a_{im}\;....\;a_{i3}\;a_{i2}\;a_{i1}\;\;\forall m\in \textbf{N}$ ed ij $\in \{1,\;...,\;n\}$ }
- ne segue che $w \in L(G_1) \cap L(G_2) \Leftrightarrow w = u_{i1} \ u_{i2} \ u_{i3} \ \dots \ u_{im} \ a_{im} \ \dots \ a_{i3} \ a_{i2} \ a_{i1} = v_{i1} \ v_{i2} \ v_{i3} \ \dots \ v_{im} \ a_{im} \ \dots \ a_{i3} \ a_{i2} \ a_{i1} \Leftrightarrow u_{i1} \ u_{i2} \ u_{i3} \dots \ u_{im} = v_{i1} \ v_{i2} \ v_{i3} \dots \ v_{im}$

DISJOINTNESS_{CFG} è indecidibile

- quindi, L(G1)∩L(G2)=Ø ⇔ non esiste una sequenza di indici
 i1 , i2 , ..., ik tale che ui1 ui2 ui3 uik = vi1 vi2 vi3 ... vik;
- dunque, sulla particolare istanza costruita per il problema DISJOINTNESS, rispondere al problema PCP equivale a rispondere al problema DISJOINTNESS (o a <u>DISJOINTNESS</u> ?)

AMBIGUITY_{CFG} è indecidibile

- AMBIGUITY_{CFG}: {<G> | G è una grammatica CF ambigua}
- teorema: AMBIGUITY_{CFG} è indecidibile
- dimostrazione: cerchiamo una riduzione: PCP→_f
 AMBIGUITY_{CFG}
- analizziamo le istanze dei due problemi:
 - istanza di PCP: C = {(u_1 , v_1) , (u_2 , v_2), ..., (u_n , v)} su Σ
 - istanza di AMBIGUITY_{CFG}: una CFG G

AMBIGUITY_{CFG} è indecidibile

- definiamo la funzione f(C) = G nel seguente modo:
 - introduciamo n simboli ausiliari: a₁, a₂, ..., a_n
 - G è la CFG su Σ ∪{ a_1 , a_2 , ..., a_n } definita così:

$$S \to S_1 | S_2,$$

$$\begin{split} S_1 &\to u_i a_i, \ S_1 \to u_i S_1 a_i & (i = 1,..., \ n) \\ S_2 &\to v_i a_i, \ S_2 \to v_i S_2 a_i & (i = 1,..., \ n) \end{split}$$

osserviamo che L(G) =
$$\{u_{i_1} \ u_{i_2} u_{i_3} u_{i_m} a_{i_m} a_{i_3} a_{i_2} a_{i_1} \}$$

 v_{i_1} v_{i_2} v_{i_3} v_{i_m} a_{i_m} a_{i_3} a_{i_2} a_{i_1} \forall $m \in \mathbb{N}$ ed $i_j \in \{1, ..., n\}$ }

• dimostriamo che decidere se esiste una sequenza di indici i_1 ,

• dimostriamo che decidere se esiste una sequenza di indici i_1 , i_2 ,..., i_k tale che $u_{i_1}u_{i_2}u_{i_3}...u_{i_k}=v_{i_1}v_{i_2}v_{i_3}...v_{i_k}$ equivale a decidere se G è ambigua

AMBIGUITY_{CFG} è indecidibile

G è ambigua \Leftrightarrow esiste una stringa w di L(G) ottenibile con due derivazioni distinte; d'altronde, data una stringa $u_{i_1} u_{i_2} u_{i_3} u_{i_m} a_{i_m} a_{i_3} a_{i_2} a_{i_1}$ di L(G), esiste una sola derivazione che la genera a partire da S₁; tale derivazione è la seguente:

 $\begin{array}{l} S_1 \mid - u_{i_1} \, S_1 \, a_{i_1} \mid - u_{i_1} u_{i_2} \, S_1 \, a_{i_2} \, a_{i_1} \mid - ... \mid - u_{i_1} u_{i_2} ... \, u_{i_{m-1}} \, S_1 \, a_{i_{m-1}} ... \\ a_{i_2} \, a_{i_1} \mid - u_{i_1} \, u_{i_2} \, u_{i_3} \, \, u_{i_m} \, a_{i_m} \, \, a_{i_3} \, a_{i_2} \, a_{i_1} \\ analogamente, data una stringa \, v_{i_1} \, v_{i_2} \, v_{i_3} \, \, v_{i_m} \, a_{i_m} \, \, a_{i_3} \, a_{i_2} \, a_{i_1} \, di \\ L(G), \, \text{esiste una sola derivazione che la genera a partire da } S_2 \, ; \\ \text{quindi, esistono due derivazioni distinte per una stringa di } L(G) \\ w = x_{i_1} \, x_{i_2} \, x_{i_3} \, \, x_{i_m} \, a_{i_m} \, \, a_{i_3} \, a_{i_2} \, a_{i_1} \Leftrightarrow \text{una derivazione } \grave{\text{e}} \, \text{ottenuta} \\ \text{a partire da } S_1 \, \text{e } \, \text{l'altra a partire da } S_2 \, \Leftrightarrow x_{i_1} \, x_{i_2} \, x_{i_3} \, \, x_{i_m} = u_{i_1} \, u_{i_2} \\ u_{i_3} \, \, u_{i_m} = v_{i_2} \, v_{i_3} \, \, v_{i_m} \end{array}$

riduzioni e riconoscibilità

riduzioni e Turing-riconoscibilità

- teorema: se A≤B e B è Turingriconoscibile ⇒ A è Turing-riconoscibile
- · dimostrazione:
 - analoga alla dimostrazione data per la decidibilità

riduzioni e Turing-riconoscibilità

 corollario: se A≤B e A non è Turingriconoscibile ⇒ B non è Turingriconoscibile

riduzioni e Turing-riconoscibilità

- tecnica per dimostrare che un problema P
 è Turing-riconoscibile: cerco un problema
 Q Turing-riconoscibile tale che P≤Q
- tecnica per dimostrare che un problema P non è Turing-riconoscibile: cerco un problema Q che non è Turing-riconoscibile tale che Q<P

riduzioni e Turing-riconoscibilità

- strumenti a disposizione:
 - sappiamo che \underline{A}_{TM} non è Turing-riconoscibile
 - per come è stata definita la riduzione, A≤B ha lo stesso significato di <u>A</u>≤<u>B</u>

EQ_{TM} non è né Turing-riconoscibile né co-Turing-riconoscibile

- teorema: EQ_{TM} non è né Turingriconoscibile né co-Turing-riconoscibile
- dimostrazione:
 - $-A_{TM} \leq \underline{EQ}_{TM}$
 - costruiamo le macchine M₁: rifiuta sempre e M₂: esegue M su w, se M accetta M₂ accetta
 - $-A_{TM} \leq \underline{EQ}_{TM} = EQ_{TM}$
 - costruiamo le macchine M₁: accetta sempre e M₂: esegue M su w, se M accetta M₂ accetta