Digitális technika

V.

Egyszerűsítés 2. Logikai függvények realizálása

Függvény negáltjának egyszerű alakja:

a '0'-kat tartalmazó cellákat kell összevonni

$$\overline{Y} = \overline{A} * C + B * D$$

Y=
$$\overline{A}*C+B*D = \overline{A}*C*B*D$$
Y=(A+ \overline{C})*(\overline{B} + \overline{D})

Konjunktív alak!

Konjunktív egyszerű alak kiolvasása:

a '0'-kat tartalmazó cellákat kell összevonni és a változók ponált/negált értelmezése fordított, és összegeket kapunk !

Karnaugh táblában

Konjunktív egyszerű alak kiolvasása:

a '0'-kat tartalmazó cellákat kell összevonni és a változók ponált/negált értelmezése fordított, és összegeket kapunk !

<u>Veitch táblában</u>

pl.

Konjunktív egyszerű alak kiolvasására másik megoldás:

maxterm táblákat használunk \rightarrow a változók ponálása/negálása ellentétes, új_index=maxindex-index, kimenet értékei is fordítva (tehát lényegében megcsináljuk grafikusan a $\Sigma \rightarrow \Pi$ átalakítást)

minterm táblák

maxterm táblák

A BC	00	01	11	10
0	0	1	3	2
1	4	5	7	6

A BC	; 11	10	00	01
1	7	6	4	5
0	3	2	0	1

			B		
	0	1	3	2	
A	4	5	7	6	
		С			

	В			
A	7	6	4	5
	3	2	0	1
	С			С

minterm táblák

CI AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

				С	
	0	1	3	2	
	4	5	7	6	B
_	12	13	15	14	
A	8	9	11	10	
					•

maxterm táblák

CI AB	11	10	00	01
11	15	14	12	13
10	11	10	8	9
00	3	2	0	1
01	7	6	4	5

Minta feladat

5.2. Nem teljesen határozott logikai függvény

határozatlan vagy tiltott bemeneti kombinációk is vannak (vagy nem érdekes mindig, hogy mi a kimenet)

Egyszerűsítésnél a kedvezőbb értékként célszerű figyelembe venni !!

Egyszerűsítsd a függvényeket!

1. feladat

2. feladat

CE AB	00	01	11	10
00	1 o	0 1	X 3	0 2
01	X 4	0 5	0 7	1 ₆
11	0 12	1 13	1 15	0 14
10	0 8	1 9	1 11	X ₁₀

3. feladat

 $Y^4 = \Sigma^4$ (0,2,3,5,10,11, határozatlan:1,7,12)

Egyszerűsítsd a függvényeket, mindkét alakban! (diszjunktív, konjunktív)

1. feladat	CE AB	00	01	11	10
	00	1 ₀	0 1	- 3	0 2
	01	1 4	0 5	0 7	0 6
	11	- 12	0 13	1 15	1 14
	10	1 8	- 9	1 11	1 10

2. feladat
$$Y^4 = \Sigma^4 (0,1,2,3,5,8,10,11)$$

3. feladat
$$Y^4 = \Pi^4 (0,2,6,8,10,11,14,15)$$

4. feladat
$$Y^4 = \Pi^4$$
 (1,3,10,11,13,14határozatlan: 7,9,15)

Megvalósítás (realizálás) logikai kapuáramkörökkel de háromféle rendszer létezik! → funkcionálisan teljes rendszerek, mert bármilyen kombinációs hálózatot képesek megvalósítani

1. NÉV rendszer (NEM-ÉS-VAGY)

ezt használtuk eddig

AND kapu, OR kapu és NOT kapu (inverter) alkalmazása

pl.
$$Y = \overline{B}*\overline{C}+\overline{A}*C*\overline{B}$$

2. NAND rendszer

csak NAND kapuk alkalmazásával is megvalósítható bármilyen kombinációs hálózat! mert univerzális elem

NAND rendszer

az $A+B=\overline{A+B}=\overline{A}*\overline{B}$ azonosság felhasználásával

3. NOR rendszer

csak NOR kapuk alkalmazásával is megvalósítható bármilyen kombinációs hálózat ! Mert univerzális elem ez is. Viszont a konjunktív alakból kell kiindulni !

5.6. Minta feladat

$$Y^4 = \Sigma^4 (0,1,2,3,10,11)$$

5.6. Minta feladat

Ugyanaz a feladat megoldása NOR kapukkal

5.7. Bemenetek száma

Ha a kapu bemenetek száma túl kevés több lépésben végezzük el a műveletet

akár logikai szorzásról, akár logikai összeadásról van szó → a műveleti sorrend bárhogyan felcserélhető! A+B+C= B+A+C= C+A+B= ...

A*B*C= B*A*C=...

5.7. Bemenetek száma

Ha a kapu bemenetek száma túl kevés több lépésben végezzük el a műveletet

NAND és NOR kapuk esetén az invertálás miatt további plusz kapuk kellenek!!

5.7. Bemenetek száma

<u>Ha a kapu bemenetek száma túl sok</u>

üresen ne maradjanak mert hibás működést eredményezhetnek!!

VAGY kapu (vagy NOR) esetén az üres bemenetre vagy '0' szint kötendő, vagy egy másik bemenet lepárhuzamosítva (mert A+A=A)

ÉS kapu (vagy NAND) esetén az üres bemenetre vagy '1' szint kötendő, vagy egy másik bemenet lepárhuzamosítva (mert A*A=A)

1. feladat

Tervezzünk 4 bemenetű kombinációs hálózatot, amelynek kimenete akkor 1 értékű ha

- minimum egy,
- maximum két bemenete egyidejűleg 0-ás értékű.
- a, igazságtáblázat megadása
- b, diszjunktív és konjunktív normál alak megadása
- c, egyszerűsítés, majd a függvény megvalósítása (bármilyen kapu használható)

2. feladat

Írd fel az alábbi hálózat kimenetének (Y) logikai függvényét !

- a, egyszerűsítsd a függvényt, és valósítsd meg NAND kapukkal
- b, egyszerűsítsd a függvényt, és valósítsd meg NOR kapukkal

3. feladat

$$Y^4 = \Sigma^4 (0,1,2,3,5,8,10,11)$$

- Egyszerűsítsd a függvényt!
- Valósítsd meg a függvényt 2 bemenetű NAND kapuk felhasználásával!

4. feladat

$$Y^4 = \Pi^4 (0,2,6,8,10,11,14,15)$$

- Egyszerűsítsd a függvényt!
- Valósítsd meg a függvényt 2 bemenetű NAND kapuk felhasználásával!

5. feladat

$$Y^4 = \Pi^4$$
 (1,3,10,11,13,14 határozatlan: 7,9,15)

- Egyszerűsítsd a függvényt!
- Valósítsd meg a függvényt 2 bemenetű NOR kapuk felhasználásával!
- Valósítsd meg a függvényt csak NAND kapuk felhasználásával!

6. feladat

Tervezzünk 4 bemenetű kombinációs hálózatot, amelynek kimenete akkor 1 értékű ha a bemenetére érkező 4 bites szám (helyi értékek: A-8, B-4, C-2, D-1) → páratlan és kisebb 12-nél

- a, igazságtáblázat megadása
- b, diszjunktív normál alak megadása
- c, egyszerűsítés, majd a függvény megvalósítása NAND kapukkal

7. feladat

Írd fel az alábbi hálózat kimenetének (Y) logikai függvényét !

valósítsd meg a függvényt NOR kapukkal!

8. feladat

Tervezzünk 4 bemenetű kombinációs hálózatot, amelynek kimenete akkor 0 értékű ha a bemenetére érkező 4 bites szám nagyobb mint 2 és kisebb mint 11 (helyi értékek: A-8, B-4, C-2, D-1)

Feladatok:

- a, igazságtáblázat megadása
- b, egyszerűsítés
- c, a függvény megvalósítása NAND kapukkal!
- d, a függvény megvalósítása NOR kapukkal!

5.9. Hazárd mentes egyszerűsítés

Hazárd:

a kapuk és összeköttetések késleltetése átmenetileg hibás kimeneti állapotot okoz

De ha az 'r' kapu egy picit később vált át mint a 'p' kapu → 's' kapu mindkét bemenetére '0' kerül egy rövid ideig → Y értéke átmenetileg '0' lesz !!! → hibás működést okozhat

5.9. Hazárd mentes egyszerűsítés

Hazárd kiküszöbölése:

plusz tömbökkel!

→ minden szomszédos '1'-es értékű kimenet szerepeljen egy közös tömbben

pl. az előző
$$Y = A*B + \overline{A}*C$$
 függvény esetén

Legegyszerűbb hazárd mentes alak

5.10. Ismétlés, gyakorlás

1. feladat

$$Y = (A + \overline{B})*(B + D)*(C + D)$$

- igazságtáblázat megadása
- diszjunktív normál alak megadása
- egyszerűsítés, majd a függvény megvalósítása NAND kapukkal

2. feladat

Tervezzünk 4 bemenetű kombinációs hálózatot, amely egy egyszerű műveletvégző egység

- az 'A' és 'B' egy bites számokkal tud végezni különböző műveleteket
- M1 és M2 vezérlő bemenetekkel adjuk meg, hogy milyen műveletet végezzen

$$M_1=M_2=0$$
 \rightarrow $Y=\overline{A}$
 $M_1=0$ és $M_2=1$ \rightarrow $Y=\overline{A+B}$
 $M_1=1$ és $M_2=0$ \rightarrow $Y=\overline{A*B}$
 $M_1=M_2=1$ \rightarrow $Y=\overline{B}$

- add meg az igazságtáblázatot !
- egyszerűsítsd a függvényt!
- valósítsd meg a függvényt két bemenetű NOR kapukkal!

5.10. Ismétlés, gyakorlás

Egyszerűsítsd a függvényeket! Valósítsd meg az áramkört NAND kapukkal!

3. feladat

A 00 01 11 10
0 1₀ 0₁ 1₃ 1₂
1 0₄ 1₅ 1₇ 1₆

4. feladat

 $Y^3 = \Sigma^3$ (0,1,2,7 határozatlan: 3,4)

5.10. Ismétlés, gyakorlás

Egyszerűsítsd a függvényeket! Valósítsd meg az áramkört NOR kapukkal!

5. feladat

CE AB	00	01	11	10
00	1 o	0 1	- 3	0 2
01	1 4	0 5	0 7	0 6
11	- 12	0 13	1 15	1 14
10	1 8	- 9	1 11	1 10

6. feladat

$$Y^4 = \Sigma^4 (1,3,5,7,8,10,11)$$