Let's Learn Some Machines

Josh Myers-Dean, Robin Cosbey

Let's Learn Some Machines

Josh Myers-Dean, Robin Cosbey

- > Name, pronouns
- > Year in school
- > Experience with machine learning

> Navigate to https://github.com/wwu-mentors/MachineLearning-Workshop

- > Navigate to https://github.com/wwu-mentors/MachineLearning-Workshop
- > Clone the repository

git clone <paste url here>

> Go into the repository directory

cd MachineLearning-Workshop

- > Navigate to https://github.com/wwu-mentors/MachineLearning-Workshop
- > Clone the repository

git clone <paste url here>

> Go into the repository

cd MachineLearning-Workshop

- > Run the setup.sh bash script
- . setup.sh

```
robin@Pauline: ~/School/ML Workshop/MachineLearning-Work... Q = _ robin@Pauline: ~/School/ML Workshop$ cd MachineLearning-Workshop/robin@Pauline: ~/School/ML Workshop/MachineLearning-Workshop$ . setup.sh
```

- > Navigate to https://github.com/wwu-mentors/MachineLearning-Workshop
- > Clone the repository

git clone <paste url here>

> Go into the repository

cd MachineLearning-Workshop

- > Run the setup.sh bash script
- . setup.sh
- > Activate the virtual environment

source venv/bin/activate

> Open the slides and/or pdf to follow along
evince ml_workshop.pdf &
evince slides &

> Did you get lost along the way? Raise your hand, we are here to help!

Introduction

Data

Iris Versicolor

Iris Setosa

Iris Virginica

Iris	Sepal.L (a_1)	Sepal.W (a_2)	Petal.L (a_3)	Petal.W (a_4)	Class
u_1	5.5 cm	4.2 cm	1.4 cm	0.2 cm	Setosa
u_2	5.0 cm	3.4 cm	1.5 cm	0.2 cm	Setosa
u_3	6.1 cm	2.9 cm	4.7 cm	1.4 cm	Versicolor
u_4	6.2 cm	2.2 cm	4.5 cm	1.5 cm	Versicolor
u_5	6.3 cm	2.7 cm	4.9 cm	1.8 cm	Virginica
u_6	6.0 cm	2.2 cm	5.0 cm	1.5 cm	Virginica

Bias and Data

Unsupervised and Supervised Learning

SUPERVISED

Supervised: Classification and Regression

Classification

Regression

The Umbrella of Al

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Machine Learning and Deep Learning

Traditional machine learning uses hand-crafted features, which is tedious and costly to develop.

Neural Networks

Deep learning learns hierarchical representation from the data itself, and scales with more data.

Machine Learning and Deep Learning

	Machine Learning	Deep Learning
Layered?	Sometimes	Yes
Scalable?	Sometimes	Yes (context dependent)
Data?	Small-Medium	Large
Hardware?	Less intensive (CPU)	More intensive (GPU)
Training Time?	Shorter training time (more feature extraction)	Longer training time
Interpretability?	Completely	Very difficult!

ML: Decision Trees Iris Dataset

Now let's try it out! But first: any questions?

> For more information about what we have covered as well as additional algorithms and approaches, check out **ml_workshop.pdf**