О-символика. Таблица эквивалентных функций.

Определение 1:

f(x)=o(g(x)) при х
$$\rightarrow$$
а, если $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$

Определение 2:

f, g:
$$\dot{U}$$
(a) $\rightarrow \mathbb{R}$ эквивалентны при х \rightarrow a, если $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$ (f(x) \sim g(x))

Таблица эквивалентных функций:

1.	$\sin x \sim x$	6.	$\ln(1+x)\sim x$
2.	$\arcsin x \sim x$	7.	$\log_a x \sim \frac{x}{\ln a}$
3.	$tgx \sim x$	8.	$a^x - 1 \sim x \ln a$
4.	$arctgx \sim x$	9.	$e^x - 1 \sim x$
5.	$1-\cos x \sim \frac{x^2}{2}$	10.	$(1+x)^m - 1 \sim mx$

Лемма:

Если $f(x) \sim g(x)$ при $x \to a$, то $\lim_{x \to a} f(x) \gamma(x) = \lim_{x \to a} g(x) \gamma(x)$, если хотя бы один из указанных пределов существует.

Таблица асимптотических формул:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}),$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}),$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1}), \quad (6.81)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n} \frac{x^{n}}{n} + o(x^{n}),$$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!} x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \dots$$

$$\dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^{n} + o(x^{n}),$$

$$\operatorname{arctg} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}).$$

Задачи для самостоятельного выполнения:

- 1) Вычислить предел: $\lim_{x\to 0} \frac{1-\cos 4x}{5x}$
- 2) Вычислить предел: $\lim_{x\to 0} \frac{xtg^2 3x}{sin4x(1-cosx)}$
- 3) Вычислить предел: $\lim_{x\to 0} \frac{(1-cos\frac{x}{2})^2}{tg2x\ln(1+2x^3)}$