

EL 1207 - Rangkaian Listrik 2

Frekuensi Kompleks, Respon Frekuensi, dan Resonansi

Mifta Nur Farid, S.T., M.T.

November 25, 2019

Teknik Elektro - Institut Teknologi Kalimantan Karang Joang, Balikpapan

- Frekuensi kompleks = Fungsi Sinusoidal + Konstanta Peredam
- Fungsi Sinusoidal

$$V_m \cos(\omega t + \theta)$$

· Konstanta Peredam

$$e^{\sigma t}$$

dimana σ adalah faktor peredam atau frekuensi Neper dengan satuan $\mathit{Np/s}$

 Fungsi Sinusoidal dengan berbagai konstanta peredam dapat digambarkan dalam bentuk kurva

1

• Nilai $\sigma=0$ dan $\omega=0$ maka $\mathbf{v}(t)=\mathbf{V}_{\mathit{m}}$

• Nilai $\sigma = 0$ maka $v(t) = V_m \cos(\omega t + \theta)$

• Nilai $\sigma >$ 0 dan $\omega =$ 0 maka $v(t) = V_m e^{\sigma t}$

• Nilai $\sigma <$ 0 dan $\omega -$ 0 maka $v(t) = V_m e^{\sigma t}$

• Nilai $\sigma > 0$ maka $v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$

• Nilai $\sigma < 0$ maka $v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$

Fasor sinyal AC

$$egin{aligned} \mathbf{v}(t) &= \mathbf{V}_m \cos(\omega t + heta) \ \mathbf{V} &= \operatorname{Re}\left[\mathbf{V}_m \mathbf{e}^{j(\omega t + arphi)}
ight] \ \mathbf{V} &= \operatorname{Re}\left[\mathbf{V}_m \mathbf{e}^{j(arphi)} \mathbf{e}^{j\omega t}
ight] \ \mathbf{V}(j\omega) &= \mathbf{V}_m \mathbf{e}^{jarphi} \ \mathbf{V}(j\omega) &= \mathbf{V}_m \angle arphi \end{aligned}$$

Fasor sinyal frekuensi kompleks

$$\begin{aligned} & v(t) = V_m e^{\sigma t} \cos(\omega t + \theta) \\ & V = \text{Re} \left[V_m e^{\sigma t} e^{j(\omega t + \varphi)} \right] \\ & V = \text{Re} \left[V_m e^{j(\varphi)} e^{(\sigma + j\omega t)} \right] \leftrightarrow s = \sigma + j\omega \\ & V = \text{Re} \left[V_m e^{j\varphi} e^{st} \right] \\ & V(s) = V_m e^{j\omega} \\ & V(s) = V_m \angle \varphi \end{aligned}$$

Impedansi dalam frekuensi kompleks

$$V(s) = \frac{Z(s)}{I(s)}$$

$$\begin{split} Z_R(s) &= R & Y_R(s) = \frac{1}{R} \\ Z_L(s) &= sL & Y_L(s) = \frac{1}{sL} \\ Z_C(s) &= \frac{1}{sC} & Y_C(s) = sC \end{split}$$

Contoh Soal

Tentukan nilai i(t) dari rangkaian berikut ini.

Figure 1:

$$s = \sigma + j\omega$$

$$= -1 + j2$$

$$Z_R(s) = 5\omega$$

$$Z_L(s) = sL = 2s\omega$$

$$Z_T(s) = 5 + 2s\omega$$

$$V = 25e^{-t}\cos(2t) = 25\angle 0^{\circ}v$$

$$i(s) = \frac{V(s)}{Z_T(s)} = \frac{25\angle 0^{\circ}}{5 + 2s} = \frac{25\angle 0^{\circ}}{5 + 2(-1)}$$

$$= 5e^{-t}\cos(2t - 53, 1^{\circ})A$$

