CSDS503 / COMP552 – Advanced Machine Learning

Faizad Ullah

Breakthroughs in Deep Learning

Shortcoming

- Complex networks require a huge amount of memory and compute
- Portable devices have very limited resources in terms of memory and compute
- Deploying complex networks on portable devices is almost practically impossible since portable devices are not capable enough

Structured Pruning

- Unstructured Pruning
 - Weights
 - L1 Regularisation
 - Random Dropout

- Structured Pruning
 - Filter Pruning
 - Layer Pruning

Image courtesy of Song Han

N. Srivastava et al. 2014

Structured Networks & Structured Pruning

Figure 1: An illustration of filter pruning. The i-th layer has 4 filters (i.e. channels). If we remove one of the filters, the corresponding feature map will disappear, and the input of the filters in the (i+1)-th layer changes from 4 channels to 3 channels.

Image credits: S. Lin et al. IJCAI 2018

Global Filter Importance Ranking

(a) The Traditional Pruning Paradigm

Image credits: X. Dong et. al. NeurIPS2019

Correlation Based Filter Pruning

- 1. Remove highly correlated filter, fine tune
- 2. Train by introducing filter correlation term in loss function. This will result in network with highly correlated filters. Remove highly correlated filter, fine tune
- 3. Sparse Subspace Clustering of highly correlated filters

(b) cup

Image credits: D. Wang et. al., ICIG 2019

Pruning Filters for Efficient ConvNets (ICLR 2017)

- Procedure
 - 1. For each filter $F_{i,j}$, calculate the sum of its absolute kernel weights $s_j = \sum |F_{i,j}|$ i.e. its L1-norm
 - \triangleright 2. Sort the filters by s_j .
 - Solution 3. Prune m filters with the smallest sum values and their corresponding feature maps. The kernels in the next convolutional layer corresponding to the pruned feature maps are also removed.
 - 4. A new kernel matrix is created for both the i-th and i+1-th layers, and the remaining kernel weights are copied to the new model

- All of the previous approaches of filter pruning had a major shortcoming of not being able to do pruning while training, all of them had to stop training to prune and then start again and repeat this cycle many times.
- This may result in a pruned network that fails to achieve the same accuracy as compared to the original network.

Image credits: X. Dong et. al. NeurIPS2019

Prune while training

- Design a specialised network that can be pruned while training
- This network will have additional connections or on/off switches with filters and layers
- The on/off decision is a learnable parameter itself
 - Filter Pruning
 - Usually a custom dropout layer is added
 - Either the filter or its activation is multiplied with switch state (0, 1, between 0-1)
 - Structured Sparsity Regularization

- Layer Pruning
 - Usually a residual layer is added

- Criteria
 - Magnitude of filter
 - Magnitude of activations
 - Clustering of filters (to remove redundancy)
- Implementation of criteria via loss function
 - ▶ Loss = Error + λ Regulariser

Image credits: X. Dong et. al. NeurIPS2019

Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks, NeurIPS 2019

Problem Definition

- Let $\mathcal{L}(X,Y;\theta)$ denotes loss function
- ▶ X: Input data, Y: Output label,
- $m{ heta}$: model parameters, $m{ heta}_k^-$: removed params, $m{ heta}_k^+$: remaining params
- K: set of all filters of the network
- Filter Pruning: The key to global pruning methods is to solve the global filter importance ranking (GFIR) problem
- Using importance ranking, choose a subset of filters $k \subset \mathcal{K}$ and remove their parameters θ_k^- from the network
- lacktriangleright To minimise the loss increase, choose k^* by solving

$$k^* = \arg\min_{k} \left| \mathcal{L}(X, Y; \theta) - \mathcal{L}(X, Y; \theta_k^+) \right| \quad s.t. \ ||k||_0 > 0$$

Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks, NeurIPS 2019

$$k^* = \arg\min_{k} \left| \mathcal{L}(X, Y; \theta) - \mathcal{L}(X, Y; \theta_k^+) \right| \quad s.t. \ ||k||_0 > 0$$

Assuming that feature map z is the output of the filter k, we multiply z by a trainable scaling factor $\phi \in \mathbb{R}$ and use $\hat{z} = \phi z$ for further calculations. When the gate ϕ is zero, it is equivalent to pruning the filter k.

GBN with Tick-Tock				
Param	Finetune	Scratch		
69.0%	74.6	73.7		
85.5%	73.2	73.0		
94.7%	71.2	69.9		

Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks, NeurIPS 2019

(a) Baseline (mIoU: 62.84)

(b) Pruned (mIoU: 62.88)

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

Neural networks typically produce class probabilities by using a "softmax" output layer that converts the logit, z_i , computed for each class into a probability, q_i , by comparing z_i with the other logits.

$$q_i = \frac{exp(\frac{z_i}{T})}{\sum_{j} exp(\frac{z_j}{T})}$$

where T is a temperature that is normally set to 1. Using a higher value for T produces a softer probability distribution over classes.

$$q_i = \frac{exp(z_i)}{\sum exp(z_j)}$$
 $q_i = \frac{exp(z_i/T)}{\sum exp(z_j/T)}$

cow	dog	cat	car
10 ⁻⁶	.9	.1	10 ⁻⁹
cow	dog	cat	car
.05	.3	.2	.005

- Knowledge distillation otherwise also called student-teacher network refers to the idea of model compression by teaching a smaller network, step by step, exactly what to do using a bigger already trained network
- Knowledge distillation enables the smaller network to learn complex features, that the teacher has already gone through the effort of extracting
- Knowledge distillation transfers knowledge to the smaller model by training it on a transfer set that is obtained from the teacher network, it can further be improved when the ground truth is known

