Clase 18 Introducción a Modelos Lineales Mixtos

Diplomado en Análisis de Datos con R e Investigación reproducible para Biociencias.

Dr. José Gallardo Matus & Dra. María Angélica Rueda

Pontificia Universidad Católica de Valparaíso

12 November 2022

PLAN DE LA CLASE

1.- Introducción

- Modelos lineales mixtos (MLM).
- Efectos fijos y efectos aleatorios.
- Ecuación del modelo lineal mixto (MLM).
- ► Interpretación de MLM con R.

2.- Práctica con R y Rstudio cloud

- Ajustar modelos lineales mixtos.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

MODELOS LINEALES MIXTOS

Los modelos lineales mixtos (MLM) son una generalización del modelo lineal de regresión clásico, contemplando la posible existencia de observaciones correlacionadas (ej. Medidas repetidas en el mismo individuo) o con variabilidad heterogénea, vinculadas a la presencia de factores aleatorios.

$$Y = X\beta + Zu + \epsilon$$

Efectos fijos $(X\beta)$

Efectos aleatorios $(Zu + \epsilon)$

Los modelos lineales mixtos surgen cuando no se cumplen los siguientes supuestos:

- ▶ Que hayan observaciones correlacionadas.
- ▶ Que NO haya homogeneidad de varianzas.

¿QUÉ SON EFECTOS FIJOS?

- Los efectos fijos se asumen que son determinados a propósito por el analista de los datos, eso dependerá de las variables a las que se les desea estimar efectos promedios.
- Los efectos fijos solo estiman medias de las variables predictoras.
- En un modelo lineal mixto las variables cuantitativas continuas (e.g., Peso, Rendimiento) o factores (e.g., Dieta, Época de cosecha) pueden ser usadas como efectos fijos.

¿QUÉ SON EFECTOS ALEATORIOS?

- Los efectos aleatorios están asociados a grupos de observaciones. Los efectos aleatorios estiman varianzas.
- Para considerar una variable predictora cualitativa como un efecto aleatorio del modelo lineal mixto, dicha variable debe tener al menos 5 niveles (7 Familias, 8 Bloques).
- Una variable predictora categórica con dos niveles (binaria) NO puede ser un efecto aleatorio.
- Una variable aleatoria continua NO puede ser un efecto aleatorio.

ALGUNOS EJEMPLOS DE EFECTOS ALEATORIOS

- i) Medidas repetidas sobre un mismo individuo (hay repeticiones).
- ii) Respuestas observadas en grupos de unidades experimentales homogéneas (bloques), pueden ser piscinas o estanques.
- iii) Mediciones de los animales (individuos) de una misma familia.

¿CÓMO SE PODRÍA DECIDIR SI ES EFECTO FIJO O ALEATORIO?

- 1). ¿Cuál es el número de niveles?
 - ▶ Pequeño (Fijo) (e.g., Dieta con tres niveles D1, D2 y D3).
 - ► Grande o infinito (Posiblemente aleatorio) (e.g., Familia con 10 niveles F1, F2...F10).
- 2). ¿Son los niveles repetibles?
 - Sí (Fijo) (e.g., Dieta podrías aplicarlas en diferentes lugares).
 - ▶ No (Aleatorio) (e.g., Familia no podrías repetir las familias).
- **3).** ¿Se necesitan realizar inferencias para niveles no incluidos en el muestreo?
 - ▶ No (Posiblemente fijo) (e.g., **Dieta** D4 y D5).
 - ▶ Sí (Posiblemente aleatorio) (e.g., Familias F11, F12).

ESTUDIO DE CASO: ANALISIS DE PRODUCCIÓN Y CALIDAD

En este estudio de caso trabajaremos con un set de datos de salmón (n=354) publicado en la revista JOURNAL OF EVOLUTIONARY BIOLOGY

Las variables de estudio se describen a continuación:

Variable	Descripción
Tank	Estanque (58)
Days PI	Días de post-infección
Nbfemales	Cantidad de piojos presentes en el pez a la fecha de medición
Weight	Peso en la cosecha (g)
Status	Estado (Cultivado, Silvestre)

BASE DE DATOS

Tank	Weight	Nbfemales	DaysPI	Status
1	169	6	60	Farmed
1	183	6	70	Farmed
1	187	6	77	Farmed
1	194	6	84	Farmed
1	208	5	94	Farmed
1	219	5	103	Farmed
1	237	4	115	Farmed
2	190	3	56	Farmed
2	196	3	66	Farmed
2	204	2	75	Farmed

DISTRIBUCIÓN DE LA VARIABLE RESPUESTA (WEIGHT)

MODELO LINEAL

	Weight			
Predictors	Estimates s	td. Error	CI	p
(Intercept)	148.64	3.83	141.09 – 156.18	<0.001
Status [Wild]	-14.24	2.54	-19.25 – -9.24	<0.001
Nbfemales	-5.74	0.56	-6.84 – -4.64	<0.001
DaysPI	0.81	0.04	0.73 - 0.89	<0.001
Observations	354			
R^2 / R^2 adjusted	0.563 / 0.559			
AIC	3247.074			

Robustness of MLM

Our simulation analysis shows that the effect of violations of distributional assumptions of random effect variances and residuals is surprisingly small.

Independencia

```
##
## Durbin-Watson test
##
## data: Weight ~ Status + Nbfemales + DaysPI
## DW = 0.89858, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is not 0</pre>
```

Homogeneidad de varianzas

```
##
## studentized Breusch-Pagan test
##
## data: lm.datos
## BP = 33.753, df = 3, p-value = 2.234e-07
```

Normalidad

Normalidad

```
##
## Shapiro-Wilk normality test
##
## data: lm_residuals
## W = 0.98434, p-value = 0.0006903
```

Multicolinealidad

Dr. José Gallardo Matus & Dra. María Angélica Rueda

Clase 18 Introducción a Modelos Lineales Mixtos

Dr. José Gallardo Matus & Dra. María Angélica Rueda

Clase 18 Introducción a Modelos Lineales Mixtos

MODELOS LINEALES MIXTOS

library(lme4)

Función Imer

Cantidad de Tanques

58

► Tanque se puede considerar como efecto aleatorio.

MODELO LINEAL MIXTO

			Weight	ght	
Predictors	Estimates	std. Error	CI	p	
(Intercept)	148.79	4.17	140.51 - 157.07	< 0.001	
Status [Wild]	-10.15	5.22	-20.53 - 0.23	0.055	
Nbfemales	-5.57	0.37	-6.304.83	<0.001	
DaysPI	0.77	0.02	0.73 - 0.81	<0.001	
Random Effects					
σ^2	98.18				
$\tau_{00~Tank}$	449.23				
ICC	0.82				
N _{Tank}	58				
Observations	354				
$Marginal\ R^2\ /\ Conditional\ R^2$	0.533 / 0.	.916			
AIC	2824.480)			

Dr. José Gallardo Matus & Dra. María Angélica Rueda

Clase 18 Introducción a Modelos Lineales Mixtos

R^2 Marginal **y** R^2 Condicional

- $ightharpoonup R_{Marginal}^2$: proporción de la varianza explicada solo por los efectos fijos.
- ► R²_{Condicional}: proporción de la varianza explicada por todo el modelo.

```
r2_nakagawa(MLM)
```

```
## # R2 for Mixed Models
##
## Conditional R2: 0.916
## Marginal R2: 0.533
```

SELECCIÓN DE MODELOS (AIC)

Criterios de selección de modelos AIC

AIC %>% kable()

	AIC
Modelo lineal	3247.074
Modelo lineal mixto	2824.480

RESUMEN DE LA CLASE

- 1). Modelos lineales mixtos.
- 2). Construir y ajustar modelos lineales mixtos.