4 Espais Vectorials

Prob 4.1 Digueu quins dels següents conjunts són subespais vectorials. En el cas que ho siguin trobau un sistema generador i indicau si aquests vectors són linealment dependents o independents (una base i la dimensió).

- a) $V_1 = \{(x, y, z, t) \in \mathbb{R}^4 \mid y = 2x, t = x + z\}$
- b) $V_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = z, y = t, x, y \in \mathbb{Z}\}$
- c) $V_3 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y z = 0\}$
- d) $V_4 = \{A \in M_{2 \times 2}(\mathbb{R}) \mid \text{els elements de la diagonal sumen } 0\}$
- e) $V_5 = \{A \in M_{2\times 2}(\mathbb{R}) \mid \text{els elements de la 1a fila sumen 1} \}$
- f) $V_6 = \{P(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathbb{R}_3[x] \mid a_0 = 0\}$
- g) $V_7 = \{P(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathbb{R}_3[x] \mid a_2 = 2\}$
- h) $V_8 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 2y z = 1\}$

Prob 4.2 Demostrau que el conjunt de les matrius sobre \mathbb{R} de la forma:

$$\begin{pmatrix}
a+c & 2a+b & a-c \\
a-b+2c & 0 & a+2b \\
2b+c & a+b & a-b
\end{pmatrix}$$

formen un subespai vectorial de $M_3(\mathbb{R})$. Trobau una base.

Prob 4.3 Considerem el conjunt $E = \{M(a,b) \mid a,b \in \mathbb{R}\}$ on M(a,b) és una matriu quadrada d'ordre 3 sobre \mathbb{R} , donada per $m_{ii} = a$ per a i = 1, 2, 3 i $m_{ij} = b$ sempre que $i \neq j$.

- a) Provau que existeixen dues matrius $I, J \in E$ independents de a i b tals que M(a, b) = aI + bJ.
- b) Demostrau que E és un subespai vectorial de $\mathcal{M}_n(\mathbb{R})$ i trobau-ne una base i la dimensió.

Prob 4.4 Calculau la dimensió i donau una base de U, V, U + V en els casos següents:

- a) U = <(1,3,-1),(2,1,4)>, V = <(2,-1,1),(1,-4,2)>
- b) $U = \langle (1, 2, -1, -3), (2, 1, 1, -1) \rangle, V = \langle (-1, 1, 1, 2), (0, 3, 0, 1), (1, 2, -1, 1) \rangle$
- c) U = <(2, -1, 3), (8, -1, 1) >, V = <(2, 2, 1) >
- d) $U = \langle (1, 2, -1, 2), (0, 2, 4, 3) \rangle, V = \langle (3, 1, 1, 2), (2, 3, -1, 2), (3, -1, -3, -1) \rangle$

Prob 4.5 Del problema anterior calculau una base i la dimensió de $U \cap V$

Prob 4.6 Donades les bases

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}\ i\ B' = \{(1,1,1), (0,1,1), (0,0,1)\}\$$

calculau les equacions del canvi de base de B a B'.

Prob 4.7 Considereu el conjunt $B = \{(a, b, c, d) \in \mathbb{R}^4 | a - b + c + d = 0\}$

- a) Determineu si B és un subespai vectorial de \mathbb{R}^4 .
- b) Completeu a una base de $B: \{(0,0,-1,1)\}.$
- c) Trobeu, si existeix, un altre subespai A tal que $A \bigoplus B = \mathbb{R}^4$.

(Examen, febrer 2000)

Prob 4.8 Considerem els subespais vectorials W_1 i W_2 de \mathbb{R}^4 generats pel $\{(1, 1, 1, 1), (1, -1, 1, -1)\}$ i $\{(1, 1, 0, 1), (1, 2, -1, 2), (3, 5, -2, 5)\}$.

- a) Calculau bases i dimensions de W_1 , W_2 i $W_1 + W_2$.
- b) Calculau una base i la dimensió de $W_1 \cap W_2$.
- c) Completau una base de $W_1 \cap W_2$ a una base de \mathbb{R}^4 .

(Examen, febrer 2001)

Prob 4.9 Sigui U un pla definit per l'equació x + 2y - 3z = 0.

- a) Demostrau que el nombre mínim de vectors de \mathbb{R}^3 necessaris per generar el pla U és 2.
- b) Donau un exemple de dos vectors generadors de U.
- c) Trobau un subespai vectorial V tal que $U \bigoplus V = \mathbb{R}^3$.

(Examen, febrer 2002)

Prob 4.10 Sigui $\mathbb{R}_2[x] = \{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$ l'espai vectorial dels polinomis de grau ≤ 2 amb coeficients reals. Sigui el subconjunt U de $\mathbb{R}_2[x]$: $U = \{ax^2 + bx + c | a + 2b - c = 0\}$.

- a) Demostrau que U és un subespai vectorial de $\mathbb{R}_2[x]$.
- b) Trobau una base de U.
- c) Estendre la base de U a una base de $\mathbb{R}_2[x]$. (Indicació: els polinomis $\{1, x, x^2\}$ són base de $\mathbb{R}_2[x]$

(Examen, juny 2002)

Prob 4.11 Considerem en \mathbb{R}^3 els conjunts $W_1 = \{(x,y,z)/x + y + z = 0\}$ i $W_2 = \{(t,2t,3t)/t \in \mathbb{R}\}$

- a) Demostrar que són subespais vectorials de \mathbb{R}^3 .
- b) Calcular $W_1 + W_2$ i donar la seva dimensió.
- c) Calcular $W_1 \cap W_2$ i donar la seva dimensió.
- d) Podem dir que W_1 i W_2 són suplementaris? Per què?.

(Examen, juny 2003)

Prob 4.12 Sigui $\mathbb{R}_2[x]$ l'espai vectorial format pels polinomis de grau menor o igual a 2 amb coeficients reals:

$$\mathbb{R}_2[x] = \{ax^2 + bx + c : a, b, c \in \mathbb{R}\}\$$

Consideram el subconjunt $V \subseteq \mathbb{R}_2[x]$ definit com

$$V = \{ax^2 + bx + c \in \mathbb{R}_2[x] : 2a + b + c = 0\}$$

- a) Demostrar que V és un subespai vectorial?
- b) Calcular la dimensió de V.

(Examen, setembre 2003)

Prob 4.13 Donats els subespais vectorials

$$U = \{a + bx + cx^2 \in \mathbb{R}_2[x] | a + b + c = 0\} \text{ i } V = \{a + bx + cx^2 \in \mathbb{R}_2[x] | a - c = 0\}$$

cercau:

- a) Una base de U i de V així com les seves dimensions.
- b) U + V i $U \cap V$ donant una base de cada un i la seva dimensió.

(Examen, febrer 2004)

Prob 4.14 Sigui el conjunt de vectors de \mathbb{R}^3 : $S = \{(a, 1, 1), (1, a, 1), (1, 1, a)\}.$

- a) Calculau el rang d'aquest conjunt segons els valors de a.
- b) Per a cada un dels possibles valors de a trobau una base de l'espai vectorial que generen. Indicau-ne la dimensió.
- c) Sigui $U = \langle S \rangle$ quan a = 1 i sigui $V = \langle (1, 2, 3), (3, 4, 5) \rangle$. Cercau U + V indicant una base i la dimensió.

(Examen, juny 2004)

Prob 4.15 Sigui el següent subconjunt de $\mathcal{M}_2(\mathbb{R})$:

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) / a - b + c + d = 0 \right\}$$

- a) Demostrau que B és un subespai vectorial de $\mathcal{M}_2(\mathbb{R})$.
- b) Trobau una base i la dimensió de B.
- c) Trobau un conjunt A tal que $A \oplus B = \mathcal{M}_2(\mathbb{R})$.

(Examen, setembre 2004)

Prob 4.16 Donats els espais vectorials $V = \langle (1, 2, 3), (-1, 0, 2) \rangle$ i $W = \{(x, y, z) | y - 2x = 0\}$,

a) És W un subespai vectorial de \mathbb{R}^3 ? Raonau la resposta.

0.5 pt.

- b) Quina o quines equacions han de complir x, y i z per poder dir que $(x, y, z) \in V$?. Expressau l'espai vectorial V en una forma semblant a com està expressat l'espai vectorial W.

 0.5 pt.
- c) Trobau una base i la dimensió de V + W i $V \cap W$.

1 pt

d) Indicau si V + W és suma directa. En cas que no ho sigui trobau un espai vectorial U suplementari de W.

(Examen, febrer 2005)

Prob 4.17 A l'espai vectorial $\mathbb{R}_3[x]$ consideram els polinomis:

$$p_1(x) = 2x^3 + 5x^2 - 3x + 3; \ p_2(x) = x^2 - 5x + 5; \ p_3(x) = 2x^3 + 4x^2 + 5x + 2;$$

 $p_4(x) = -3x - 4; \ p_5 = 4x^3 + 8x^2 + x - 8$

i els subespais $F = \langle p_1(x), p_2(x) \rangle$ i $G = \langle p_3(x), p_4(x), p_5(x) \rangle$

a) Calculau la dimensió i donau una base de F.

0,25 pt

b) Calculau la dimensió i donau una base de G.

0,25 pt

c) Calculau la dimensió i donau una base de F + G.

- 1 pt
- d) Demostrau que el polinomi $q(x) = p_3(x) + p_4(x) = 2x^3 + 4x^2 + 2x 2$ és una base de $F \cap G$

(Examen, juny 2005)

Prob 4.18 Considerem els següents subespais vectorials de $\mathcal{M}_{2\times 3}(\mathbb{R})$

$$F = \left\{ \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix} \text{ amb } a, b, c \in \mathbb{R} \right\},$$

$$G = \left\langle \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right\rangle$$

a) Demostrau que F és un subespai vectorial de $\mathcal{M}_{2\times 3}(\mathbb{R})$.

0,5 pt.

b) Calculau una base i la dimensió de F i G.

- 0,5 pt.
- c) Cercau una base i la dimensió de F + G i la dimensió de $F \cap G$.
- 0,75 pt.
- d) Podem dir que $\mathcal{M}_{2\times 3}(\mathbb{R}) = F \bigoplus G$. Si no és així, cercau un subespai vectorial H tal que $\mathcal{M}_{2\times 3}(\mathbb{R}) = (F+G) \bigoplus H$. **0,25 pt.**

(Examen, febrer 2006)