Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- $(1) \dots$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta\colon V\times V\to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- $(2) \ldots$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta\colon V\times V\to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

→ Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- $(3) \dots$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta\colon V\times V\to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) ...

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Jede Bilinearform β auf K^n liefert eine Matrix	Jede Bilinearform β auf K^n liefert eine Matrix $M(\beta) \in \operatorname{Mat}_K(n \times n)$ der Gestalt
	$M(\beta) \colon = \beta(\mathbf{e}_i, \mathbf{e}_j)_{ij}$
	\rightarrow Satz 10.2

Jede Matrix $A \in Mat_K(n \times n)$ liefert eine wie folgt:	Jede Matrix $A \in \operatorname{Mat}_K(n \times n)$ liefert eine Bilinearform auf K^n wie folgt:
	$\beta_A: K^n \times K^n \longrightarrow K$

 $\rightarrow \mathrm{Satz} \ 10.2$

Die Menge der Bilinearformen auf K^n und die Menge der $n \times n$ Matrizen über K sind Die Menge der Bilinearformen auf K^n und die Menge der $n \times n$ Matrizen über K sind isomorph. \to Satz 10.2

Die darstellende Matrix einer Bilinearform β bezüglich einer Basis B ist gegeben durch ...

Die darstellende Matrix einer Bilinearform β bezüglich einer Basis B ist gegeben durch

 $M_B(\beta) \colon = \beta(\mathbf{b}_i, \mathbf{b}_j)_{ij}$

 \rightarrow Def. 10.3

Zwei Matrizen A, A' sind kongruent , falls es	Zwei quadratische Matrizen A,A' sind kongruent , falls es eine invertierbare Matrix S gibt mit $A' = S^T A S$
	\rightarrow Def. 10.5