Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri și m>n muchii. Să se afișeze punctele critice în care **nu** sunt incidente muchii critice. Pentru fiecare astfel de punct se va afișa numărul de componente biconexe care îl conțin, fără a memora componentele biconexe ale grafului și fără a memora muchiile critice. O(**m**)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt cate 2 numere naturale reprezentând extremitățile unei muchii

graf.in	lesire pe ecran (nu neaparat in aceasta ordine)
11 14	Puncte critice cerute:
12	1 – continut in 3 componente biconexe
13	4 - continut in 2 componente biconexe
2 3	
14	
15	
45	
5 6	
17	
78	
18	
4 9	
9 10	
10 4	
9 11	

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- Pe a doua linie din fișier sunt un număr natural k (0<k<n) și un șir de k vârfuri reprezentând vârfurile sursă ale grafului s₁,...,s_k
- Pe a treia linie a fișierului sunt trei vârfuri, reprezentând vârfurile destinație t₁, t₂, t₃ din G.
- Pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf

Notăm cu $S = \{s_1, ..., s_k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1, t_2, t_3\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din x în G dacă există un drum de la x la y. Să de determine pentru fiecare vârf destinație $t \in T$ un vârf sursă $s \in S$ cu proprietatea că t este accesibil din s și distanța de la s la t este minimă (s este o sursă din care se poate ajunge cel mai repede în t) și să se afișeze un drum minim de la s la t. Dacă nu există o astfel de sursă se va afișa un mesaj corespunzător. Complexitate O(mlog(n))

graf.in	Iesire pe ecran
6 8 2 1 2 3 4 6 1 2 3 6 1 10 6 2 2 2 4 1 4 3 1 5 3 4 1 5 5 3 2 7	t=3 s=2 drum minim 2 4 3 t=4 s=2 drum minim 2 4 t=6 nu exista s

k=2, $S = \{1, 2\}$

 t_1 =3, t_2 = 4, t_3 =6 \Rightarrow T={3,4,6}

t=3: distanta(1,3)=5, distanta(2,3)=2

Cea mai mică este distanta(2,3) \Rightarrow s=2, drum minim 2 4 3 t=4: distanta(1,4)=4, distanta(2,4)=1 \Rightarrow s=2, drum minim 2 4 t=6: distanta(1,6)= ∞ , distanta(2,6)= ∞ \Rightarrow nu există s

Subjectul 3

- a) Se dau un număr natural n și două șiruri de n numere naturale s_in și s_out. Folosind algoritmul de determinare a unui flux maxim într-o rețea de transport, să se determine, dacă există, un graf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s out. Se vor afișa arcele grafului dacă acesta există, și un mesaj corespunzător altfel.
- b) În cazul în care graful cerut la G nu există, să determine dacă există doua numere i, j cuprinse între 1 și n (nu neparat distincte) astfel încât se poate construi un graf G' cu secvența gradelor de intrare egală cu șirul obținut din s_in scăzând 1 din elementul i, și cu secvența gradelor de ieșire obținută din s_out scăzând 1 din elementul j. Se vor afișa arcele grafului G' dacă acesta există, și un mesaj corespunzător altfel.
- c) În cazul în care graful cerut la G nu există, determinați dacă există un multigraf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s_out fără bucle (arce cu extremitățile egale).

Secvențele s_in și s_out se vor citi din fișierul secvente.in cu următoarea structură: pe prima linie este n, pe a doua linie elementele lui s_in separate prin spațiu, iar pe a treia linie elementele lui s_out separate prin spațiu.

Complexitate $O(mn^2)$, unde m este suma numerelor din s_in

secvente.in	lesire pe ecran (solutia nu este unica)
3	a)
103	nu exista
220	b)
	13
	21
	2 3
	(i=3,j=1)
	c)
	13
	13
	21
	23