UNIVERSIDAD ADOLFO IBAÑEZ FACULTAD DE INGENIERÍA Y CIENCIAS

Tarea 1

ING560: Álgebra Lineal y Optimización para Data Science Profesor: Miguel Romero Ayudante: Dora Jimenez

Fecha de Entrega: 30 de Septiembre, 23:59 hrs

Indicaciones:

1. La tarea es de grupos de a lo más 3 personas.

- 2. Se aceptan a lo más 2 días de atrasos. Se descontará 1.0 pts por cada día de atraso.
- 3. Debe subir a Webcursos un informe con sus respuestas de la parte teórica, junto al Colab de la parte práctica.
- 4. Cada una de las dos partes tiene una nota de 1.0 a 7.0, y ambas valen lo mismo (50%).

Parte Teórica

En cada caso, explique claramente su respuesta. Cada pregunta vale lo mismo (0.75 pts).

- 1. Suponga que $\bar{w}_1, \ldots, \bar{w}_n$ es una base para \mathbb{R}^n . Explique por qué cualquier vector $\bar{x} \in \mathbb{R}^n$ se puede escribir de manera *única* como combinación lineal de $\bar{w}_1, \ldots, \bar{w}_n$.
- 2. Investigue en qué consiste el proceso o método de Gram-Schmidt. Debe explicar brevemente para qué sirve y cómo funciona.
- 3. Sabemos que una matriz de $n \times m$ representa una transformación lineal de \mathbb{R}^m a \mathbb{R}^n . En esta pregunta mostraremos que cualquier transformación lineal se puede representar con una matriz. Luego el estudio de matrices corresponde exactamente al estudio de transformaciones lineales. Una función $T: \mathbb{R}^m \to \mathbb{R}^n$ es una transformación lineal si:
 - $T(\bar{x} + \bar{y}) = T(\bar{x}) + T(\bar{y})$, para todo $\bar{x}, \bar{y} \in \mathbb{R}^m$.
 - $T(\alpha \bar{x}) = \alpha T(\bar{x})$, para todo $\bar{x} \in \mathbb{R}^m$ y $\alpha \in \mathbb{R}$.

Muestre que para cualquier transformación lineal de \mathbb{R}^m a \mathbb{R}^n existe una matriz A de $n \times m$ tal que $T(\bar{x}) = A\bar{x}$, para todo $\bar{x} \in \mathbb{R}^m$. (Hint: piense en la base canónica de \mathbb{R}^m).

- 4. Suponga que A y B son matrices de $n \times m$ y $m \times p$, respectivamente. Muestre que $rank(AB) \leq rank(A)$. (Hint: una posibilidad es mostrar que $Col(AB) \subseteq Col(A)$. Esto implica que la dimensión de Col(AB) es menor o igual que la dimensión de Col(A).)
- 5. Sea A una matriz de $n \times m$. Muestre que Null(A) y Row(A) son espacios ortogonales en \mathbb{R}^m .
- 6. Escriba el ejemplo de eliminación Gaussiana de la clase 04, slide 11, como multiplicación de matrices y deduzca una factorización A = LU donde L es una matriz triangular inferior y U es una matriz triangular superior.
- 7. Suponga que $\bar{w}_1, \ldots, \bar{w}_k$ son vectores en \mathbb{R}^n y generan un subespacio $V \subseteq \mathbb{R}^n$. Muestre que para todo vector $\bar{x} \in \mathbb{R}^n$, \bar{z} es la proyección ortogonal de \bar{x} sobre V si y sólo si $W(\bar{x} \bar{z}) = \bar{0}$, donde W es la matriz de $k \times n$ que tiene como filas los vectores $\bar{w}_1, \ldots, \bar{w}_k$.

8. Decimos que una matriz Q de $n \times n$ es ortogonal si sus columnas forman una base ortonormal de \mathbb{R}^n . Muestre que Q preserva la norma y el ángulo entre vectores, es decir, que para todo $\bar{x} \in \mathbb{R}^n$, se tiene $\|\bar{x}\| = \|Q\bar{x}\|$, y que para todo par de vectores $\bar{x}, \bar{y} \in \mathbb{R}^n$, se tiene $(Q\bar{x}) \cdot (Q\bar{y}) = \bar{x} \cdot \bar{y}$. (Hint: piense el producto punto como producto entre matrices.)