Universidade do Minho Mestrado Integrado em Engenharia Informática Segurança de Sistemas Informáticos

TP1 - Parte B Threat Modelling

Diana Ribeiro Barbosa A78679 Francisco José Moreira de Oliveira A78416

Índice

Modelação do Sistema	2
Ameaças	
Spoofing	
Tampering	
Repudiation	
Information Disclosure	
Denial of Service (DoS)	4
Elevation of Privilege	5
Bibliografia	5

Modelação do Sistema

O primeiro passo do "4 steps framework" de Threat Modelling é a modelação do sistema. Para este caso, consideramos que a modelação mais adequada que nos permitiria uma melhor compreensão do seu funcionamento envolveria um *Data Flow Diagram*. Estes são especialmente úteis na medida em que facilitam o processo de deteção de vulnerabilidades uma vez que permitem compreender o movimento dos dados pelo sistema e, portanto, perceber onde ataques podem ser realizados.

Na figura abaixo é possível visualizar o diagrama de data flow do sistema a ser estudado.

Figura 1 Data Flow Diagram do Precision Agriculture System

Ameaças

O segundo passo de Threat Modelling é a identificação de ameaças, isto é, identificar as vulnerabilidades do sistema relevantes no contexto da sua aplicação e como estas podem ser exploradas.

Um dos modelos de ameaças mais utilizados é o STRIDE (desenvolvido pela Microsoft). Cada letra deste acrónimo é a inicial de um dos seis tipos de ameaças, sendo que cada uma delas (*Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service e Elevation of Privilege*) é o oposto das propriedades de um sistema seguro (Autenticação, Integridade, Nãorepúdio, Confidencialidade, Disponibilidade, Autorização).

Spoofing

Um ataque de *Spoofing* acontece quando há comunicação com um utilizador, na qual a origem personifica uma fonte (sistema ou pessoa) que é conhecida ao recetor, violando a propriedade Autenticação.

Utilizando o modelo STRIDE, a identificação de vulnerabilidades que possam ser exploradas desta forma passa pela resposta à pergunta "É possível um atacante ganhar acesso ao sistema usando uma identidade falsa?".

A nível de requisitos de segurança do sistema, no que toca a autenticação, é requerido que este consiga evitar a injeção de pacotes adicionais e que não permita que os nodos aceitem falsas tarefas administrativas como por exemplo a reprogramação da rede.

As várias possibilidades de spoofing passam por:

- Spoofing do *gateway*, isto é, o atacante fingir ser o *gateway* e enviar ordens maliciosas aos actuators uma vez que é o *gateway* de uma WSN que ajusta as suas operações.
- Spoofing do Analytics Module enviando regras de aplicação maliciosas aos gateways.

Tampering

Um ataque de Tampering consiste da modificação não autorizada de dados através da sua destruição, manipulação ou edição violando a propriedade de Integridade de um sistema. Isto pode acontecer durante a transmissão de dados podendo o atacante intercetar mensagens não protegidas e modificar o seu conteúdo, mas também por exemplo com *data* em memória.

Utilizando o modelo STRIDE, a identificação de vulnerabilidades que possam ser exploradas desta forma passa pela resposta à pergunta "É possível um atacante alterar dados do sistema?". No caso de estudo, a nível de Integridade, os requisitos de segurança passam por impossibilitar a corrupção de dados de modo a não permitir que os serviços prestados sejam afetados.

Ameaças que comprometam a integridade do sistema por Tampering são:

- Tampering com os sensores das WSN. Os sensores recolhem e enviam dados ao gateway que são analisados para ir ajustando o comportamento de vários devices no campo (e.g. o sistema de rega).
 - Redirecionando o data flow para a máquina do atacante, o gateway não recebe informação atualizada e, por conseguinte, não vai enviar ordens adequadas aos actuators.
 - As consequências seriam semelhantes caso o atacante modificasse os dados durante o seu envio para o *qateway*.
- Tampering com o Gateway.
 - Uma das tarefas dos gateways é correr aplicações de para o controle dos dispositivos de IoT (Internet of things) e análise dos dados. Um dos ataques

- possíveis seria a modificação desse código o que por sua vez iria afetar negativamente o bom funcionamento do sistema.
- Outro possível ataque seria a modificação ou redireccionamento das indicações de ajustes enviadas às WSNs.

Repudiation

Um ataque de Repudiation acontece quando uma aplicação ou sistema não aplica medidas de controlo apropriadas de rastreio e registo das ações dos utilizadores tornando possível a um atacante forjar e/ou manipular a sua identificação, isto é, atribuir ações a outros utilizadores do sistema ou utilizadores fictícios.

Utilizando o modelo STRIDE, a identificação de vulnerabilidades que possam ser exploradas desta forma passa pela resposta à pergunta "É possível provar que o atacante foi a fonte do ataque?".

No Precision Agriculture System, não-repúdio não é um dos requisitos de segurança.

Information Disclosure

Um ataque de Information Disclosure ocorre quando um atacante consegue aceder a informação à qual não era suposto ter acesso, violando a confidencialidade do sistema.

Utilizando o modelo STRIDE, a identificação de vulnerabilidades que possam ser exploradas desta forma passa pela resposta à pergunta "É possível um atacante aceder a dados privados ou potencialmente prejudiciais?".

No sistema que ao qual este relatório se refere, um dos requisitos de segurança é que a localização e identidade dos nodos que geram informação deve ser secreta ou protegida. Assim, ataques de information disclosure podem ser:

- Aceder aos dados que os sensores enviam ao gateway, e extrair daí a sua identidade e localização. Este ataque pode ocorrer tanto durante o envio como ser um ataque diretamente aos dispositivos.
- Aceder à *cloud* na qual são guardadas periodicamente *data sumaries*.

Denial of Service (DoS)

Um ataque de Denial of Service (DoS) ocorre quando os atacantes interferem com a disponibilidade do sistema absorvendo os recursos necessários à prestação do serviço impedindo os utilizadores de lhe acederem. Na prática, o ataque geralmente consiste do envio em grande escala de pedidos de autenticação cujos return addresses são inválidos, o que leva a

que o servidor espere antes de fechar a conexão mantendo-o ocupado e indisponível quando isto acontece para um elevado número de mensagens.

Utilizando o modelo STRIDE, a identificação de vulnerabilidades que possam ser exploradas desta forma passa pela resposta à pergunta "É possível um atacante reduzir ou impedir a disponibilidade do sistema?".

No *Precision Agriculture System,* é essencial que os utilizadores sejam capazes de aceder aos serviços sempre que assim queiram. Assim, possíveis ameaças deste tipo são:

- Ataque DoS ao GUI impedindo os utilizadores (agricultores) de acederem aos dados.
- Ataque DoS impedindo o envio dos dados dos sensores ao gateway, consumindo os recursos da rede.
- Ataque DoS ao gateway, ocupando toda a memória impedindo que este guarde os dados recolhidos pelos sensores.

Elevation of Privilege

Um ataque de elevation of privilege consiste em o sistema permitir que um utilizador ganhe acesso a recursos aos quais não deveria ter acesso por ausência de autorização, por exemplo, privilégios que apenas administradores deveriam ter.

Utilizando o modelo STRIDE, a identificação de vulnerabilidades que possam ser exploradas desta forma passa pela resposta à pergunta "É possível um atacante assumir a identidade de um utilizador privilegiado?".

Ataques de elevation of privilege neste sistema podem ser:

- Elevation of privilege por data Tampering.
 - O sistema vai sendo melhorado por experts que lhe fazem updates regularmente, sendo que estes são os administradores do sistema e por conseguinte possuem os privilégios necessários para o fazer. Um atacante que altere em disco os updates fazendo com que o sistema aja de maneira do que o administrador pretendia, está a cometer um ataque de elevation of privilege.

Bibliografia

https://www.toreon.com/application-security-training/threat-modeling-in-4-steps/

https://www.techopedia.com/definition/5398/spoofing

https://nsarchive2.gwu.edu/NSAEBB/NSAEBB424/docs/Cyber-065.pdf

https://www.csoonline.com/article/2969402/microsoft-subnet/researchers-exploit-zigbee-security-flaws-that-compromise-security-of-smart-homes.html

https://www.owasp.org/index.php/Repudiation_Attack

https://www.techopedia.com/definition/24841/denial-of-service-attack-dos