Міністерство освіти і науки України

Національний університет «Львівська політехніка»

Кафедра ЕОМ

Звіт

до лабораторної роботи № 1

з дисципліни: «Моделювання комп'ютерних систем»

«Інсталяція та ознайомлення з середовищем розробки Ознайомлення зі стендом. Elbert V2 – Spartan 3A FPGA» Варіант 13

Виконав:

ст. гр. КІ-201

Костюк І. В.

Прийняв:

Козак Н. Б.

Завдання

Створення облікового запису на Xilinx - Adaptable. Intelligent | together we advance

Інсталяція та отримання ліцензії

Побудова дешифратора 3 -> 7 за допомогою ISE WebPack Schematic Capture та моделювання його роботи за допомогою симулятора ISim

Генерування Bit файла та тестування за допомогою стенда Elbert V2 – Spartan 3A FPGA

Виконання:

Рис. 1. Схема дешифратора 3 -> 7

Лістинг програми

#+++++++++++++++++++++++++++++++++++++	+++++++++++++	+++++++++++++++++++++++++++++++++++++++
# This file is a .ucf for ElbertV2 Development Board	#	
# To use it in your project :	#	
# * Remove or comment the lines corresponding to unused pins in the project		#
# * Rename the used signals according to the your project	#	

```
+++++++++++++++#
#**********************************
******************
             UCF for ElbertV2 Development Board
*****************
CONFIG VCCAUX = "3.3";
# Clock 12 MHz
#NET "Clk"
           LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
####
#
           LED
####
 NET "OUT 1"
           LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT 2"
           LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT 3"
           LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT 4"
           LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT 5"
           LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT 6"
           LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT 7"
           LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
####
#
          DP Switches
####
 NET "IN 0"
         LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "IN 1"
         LOC = P69 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "IN 2"
         LOC = P68 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
```


Рис. 2. Скріншот діаграми симуляції

Рис. 3. Успішно виконані процеси

Рис. 4. Успішно виконані процеси для решти видів симуляції

Висновок: інсталював та ознайомився із середовищем для моделювання комп'ютерних систем Xilinx. Зробив та дослідив схему дешифратора 3 -> 7.