Assignment 2

GOVIND MORE

August 2024

1 HTTP

Q1)Total number of packets-39 Total number of GET REQUEST - 30 Total number of GET REQUEST for the text - 1 Total number of GET REQUEST for embedded content - 29

Figure 1: destination

Figure 2: destination

Figure 3: Source

Figure 4: Source

```
Q2) HTTP GET /index.php?pid=css_bootstrapminHTTP/1.1 – 715 

HTTPGET/index.php?pid = css_styleHTTP/1.1 – 708 

HTTPGET/index.php?pid = css_bootstrap_selectHTTP/1.1 – 719 

HTTPGET/index.php?pid = css_fontawesomeminHTTP/1.1 – 717 

HTTPGET/index.php?pid = js_searchHTTP/1.1 – 694 

HTTPGET/index.php?pid = js_jqueryminHTTP/1.1 – 697 

HTTPGET/index.php?pid = js_bootstrap_selectHTTP/1.1 – 704 

HTTPGET/index.php?pid = img_logoHTTP/1.1 – 753 

HTTPGET/index.php?pid = independence_day_78thHTTP/1.1 – 766 

HTTPGET/index.php?pid = Technology_Prioritization_WorkshopHTTP/1.1 – 779 

HTTPGET/index.php?pid = meraz_24_1HTTP/1.1 – 755 

HTTPGET/index.php?pid = WorldEnvironmentDay_2024HTTP/1.1 – 768 

HTTPGET/index.php?pid = js_bootstrapminHTTP/1.1 – 700 

Q3)
```


Figure 6: hex to image

Q4.a)No,I didn't saw any "IF-MODIFIED-SINCE" in any HTTP GET. Q4.b)Yes, the server giving the content explicitly as I can see "200 OK" in packets info.

0.	Time	Source	Destination	Protocol	Lengtl Info
	3214 5.463008	10.10.70.88	3.5.23.121	HTTP	607 GET /favicon.ico HTTP/1.1
	3224 5.793699	3.5.23.121	10.10.70.88	HTTP	377 HTTP/1.1 403 Forbidden (text/html)
	3239 7.733065	10.10.70.88	3.5.23.121	HTTP	775 GET / HTTP/1.1
	3240 8.046296	3.5.23.121	10.10.70.88	HTTP	443 HTTP/1.1 304 Not Modified
	3244 8.089307	10.10.70.88	3.5.23.121	HTTP	607 GET /favicon.ico HTTP/1.1
	3256 8.353989	3.5.23.121	10.10.70.88	HTTP	377 HTTP/1.1 403 Forbidden (text/html)
	3401 9.848383	10.10.70.88	3.5.23.121	HTTP	775 GET / HTTP/1.1
	3421 10.108104	3.5.23.121	10.10.70.88	HTTP	443 HTTP/1.1 304 Not Modified
	3430 10.158000	10.10.70.88	3.5.23.121	HTTP	607 GET /favicon.ico HTTP/1.1
	3455 10.401377	3.5.23.121	10.10.70.88	HTTP	153 HTTP/1.1 403 Forbidden (text/html)
	3919 11.510499	10.10.70.88	3.5.23.121	HTTP	775 GET / HTTP/1.1
	4201 11.746547	3.5.23.121	10.10.70.88	HTTP	443 HTTP/1.1 304 Not Modified
	4270 11.793104	10.10.70.88	3.5.23.121	HTTP	607 GET /favicon.ico HTTP/1.1
	4656 12.035775	3.5.23.121	10.10.70.88	HTTP	377 HTTP/1.1 403 Forbidden (text/html)

Figure 7: MODIFIED-SINCE

Q4.c)Yes, I saw this on wire shark during packet capture. "IF-MODIFIED-SINCE"- It defines the date and time. And the date represents the last time the resource was modified. And by this the server determines if the requested resource has changed since that time.

Q4.d)Here HTTP status code 304(Not modified) represents the requested resource has not been modified since the last time accessed. The server didn't returned the contents explicitly instead it informed the client that the cached version is still valid and can be used.

Q5)

5234 8.115343	10.10.70.88	192.168.10.115	TCP 66 60162 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
5235 8.119147	192.168.10.115	10.10.70.88	TCP 66 443 → 60162 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1250 SACK_PERM WS=128
5236 8.119219	10.10.70.88	192.168.10.115	TCP 54 60162 → 443 [ACK] Seq=1 Ack=1 Win=262400 Len=0
5237 8.119594	10.10.70.88	192.168.10.115	TLSv1.2 2055 Client Hello (SNI=www.iitbhilai.ac.in)
5238 8.121736	192.168.10.115	10.10.70.88	TCP 54 443 → 60162 [ACK] Seq=1 Ack=1251 Win=31744 Len=0
5239 8.121736	192.168.10.115	10.10.70.88	TCP 54 443 → 60162 [ACK] Seq=1 Ack=2002 Win=34304 Len=0
5240 8.124693	192.168.10.115	10.10.70.88	TLSv1.2 1304 Server Hello
5241 8.125371	192.168.10.115	10.10.70.88	TLSv1.2 900 Certificate, Server Key Exchange, Server Hello Done
5242 8.125406	10.10.70.88	192.168.10.115	TCP 54 60162 → 443 [ACK] Seq=2002 Ack=2097 Win=262400 Len=0
5243 8.126010	10.10.70.88	192.168.10.115	TLSv1.2 180 Client Key Exchange, Change Cipher Spec, Finished
5244 8.128260	192.168.10.115	10.10.70.88	TLSv1.2 328 New Session Ticket, Change Cipher Spec, Finished
5245 8.171127	10.10.70.88	192.168.10.115	TCP 54 60162 → 443 [ACK] Seq=2128 Ack=2371 Win=262144 Len=0
5268 8.363700	10.10.70.88	192.168.10.115	TCP 66 60165 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
5273 8.366387	192.168.10.115	10.10.70.88	TCP 66 443 → 60165 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1250 SACK_PERM WS=128
5274 8.366455	10.10.70.88	192.168.10.115	TCP 54 60165 → 443 [ACK] Seq=1 Ack=1 Win=262400 Len=0
5278 8.367519	10.10.70.88	192.168.10.115	TLSv1.2 1991 Client Hello (SNI=www.iitbhilai.ac.in)
5284 8.370664	192.168.10.115	10.10.70.88	TCP 54 443 → 60165 [ACK] Seq=1 Ack=1938 Win=33152 Len=0
5286 8.371303	192.168.10.115	10.10.70.88	TLSv1.2 191 Server Hello, Change Cipher Spec, Finished
5287 8.371727	10.10.70.88	192.168.10.115	TLSv1.2 105 Change Cipher Spec, Finished
5289 8.372634	10.10.70.88	192.168.10.115	HTTP 850 GET / HTTP/1.1
5298 8.413259	192.168.10.115	10.10.70.88	TCP 54 443 → 60165 [ACK] Seq=138 Ack=1989 Win=33152 Len=0
5299 8.414140	192.168.10.115	10.10.70.88	TCP 54 443 → 60162 [ACK] Seq=2371 Ack=2924 Win=36736 Len=0
5302 8.435645	192.168.10.115	10.10.70.88	TLSv1.2 1304 [TLS segment of a reassembled PDU]

The process begins at timestamp 8.115343 and concludes with the HTTP GET request at 8.372634. The time taken to establish the connection and send the GET request is approximately 0.257 seconds. The capture showing a single TCP connection established between 10.10.70.88 and 192.168.10.115 on port 443 that indicates the use of HTTPS.

```
Ethernet 1 (Pv4 - 1 (Pv6 TCP - 1 UDP)
Address A | Port A Address B | Port B | Packets | Pytes | Stream ID | Total Packets | Percent Filtered | Packets A - 8 | Pytes A - 8 | Packets B - A | Bytes B - A | Rel Start | Duration | Bits/s A - 8 | Bits/s B - A | Rel Start | Duration | Bits/s A - 8 | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits/s B - A | Rel Start | Duration | Bits
```

Figure 8: TCP

The connection is persistent as indicated by the use of TLS session tickets and the absence of connection terminators (FIN packets) before the HTTP GET request .The persistent connections allow multiple requests and responses over the same connection.

The capture isn't showing the number of objects transferred since it ends with GET request. From the capture the first object took approximately 0.06445 seconds to download. Q6)

Figure 9: BURP

 $\label{eq:GET_index_php} $$\operatorname{GET/index.php}$; pid=js_bootstrap_select HTTP/1.1: it is an HTTPGET request for a resource located at/index.php. \\ Host: iit bhilai.ac.in: It is the domain of the server that has been requested.$

 $Cookie: PHPSESSID = 7ou424281147 plhnthtbehff 24: Contains a session identifier formaintaining a user's session. \\ Sec-Ch-Ua: \Chromium"; v = \127", \NotA; Brand"; v = \99": Providing information about the browser of the user. \\ Accept - Language: en - US: Indicating the language that preferred for the response.$

Sec-Ch-Ua-Mobile: ?0: It is indicating that if the user is using mobile or not.

```
It is Providing the details about the user's browser and operating system.\\
Accept: /: It says that any type of content is acceptable.
Sec-Fetch-Site: same-origin: Indicates that the request is for a resource from the same origin.
Sec-Fetch-Mode: no-cors: It identifies the mode of the request.
Sec-Fetch-Dest: script: It indicates the destination of the fetched resource.
Referer: https://iitbhilai.ac.in/: Itistheurlthat made the request.
Accept - Encoding: qzip, deflate, br: Liststheen coding formats that are acceptable for the response.
(1) https://github.com/flutter/flutter/issues/23465. https://github.com/flutter/flutter/issues/23465.
(2)https://turreta.com/blog/2018/02/16/log-unencrypted-soapfault-messages-in-apache-cxf.
https://turreta.com/blog/2018/02/16/log-unencrypted-soapfault-messages-in-apache-cxf/.
(3)https://sourceforge.net/p/grampc/discussion/general/thread/607aa6fb2a.
https://sourceforge.net/p/grampc/discussion/general/thread/607aa6fb2a/.
(4) https://github.com/Microsoft/vscode-python/issues/5081. https://github.com/Micro
python/issues/5081.
(5)https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/microsoft/vscode-python/issues/11465.https://github.com/micros
python/issues/11465.
(6)CS39006: NetworksLabAssignment1-IITKgp.
https://cse.iitkqp.ac.in/sandipc/courses/cs39006/notes/CS39006<sub>A</sub>ssignment<sub>12</sub>021.pdf.
(7)3.8.8Lab - Explore DNSTraffic (Answers) - ITExam Answers. https://itexamanswers.net/3--
8-8-lab-explore-dns-traffic-answers.html.\\
(8) How Does DNS Resolve Domain Names to IPA ddresses?. https://www.geeksforgeeks.org/how-does-properties-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-forget-like-september-fo
dns - resolve - domain - names - to - ip - addresses/.
(9) undefined. https://www.cornell.edu/.
(10) undefined. https://www.cornell.edu.\\
(11)DNSA nalysis Using Wireshark. https://www.networkcomputing.com/backbone-networking/dns-networkcomputing.com/backbone-networking/dns-networkcomputing.com/backbone-networking/dns-networkcomputing.com/backbone-networking/dns-networkcomputing.com/backbone-networking/dns-networkcomputing.com/backbone-networking/dns-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.com/backbone-networkcomputing.c
analysis - using - wireshark.
(12) How to Use Wire shark: Comprehensive Tutorial + Tips-Varonis. https://www.varonis.com/blog/how-Paronis. https://www.paronis.com/blog/how-Paronis. htt
to-use-wireshark.
(13) Packet Capture (PCAP) Analysis - DNS stuff. https://www.dnsstuff.com/pcap-analysis.
(14) BasicPacketAnalysisUsingWireshark0xElshazly|MohamedAyman....
```

2 DNS

(15) undefined.https://tryhackme.com/

Q1.a)

```
90 Standard query 0xc802 A edge.microsoft.com
                      90 Standard query 0xccc0 HTTPS edge.microsoft.com
DNS
                    210 Standard query response 0xccc0 HTTPS edge.microsoft.com CNAME edge-microsoft-com.dual-a-0036.a-msedge.net CNAME dual-a-0036.a-ms.
DNS
                    904 Standard query response 0xc802 A edge.microsoft.com CNAME edge-microsoft-com.dual-a-0036.a-msedge.net CNAME dual-a-0036.a-msedg...
DNS
                     88 Standard query 0x91c3 HTTPS web.whatsapp.com
                      88 Standard query 0x4cb8 A web.whatsapp.com
                    172 Standard query response 0x91c3 HTTPS web.whatsapp.com CNAME mmx-ds.cdn.whatsapp.net SOA a.ns.whatsapp.net
DNS
                    852 Standard query response 0x4cb8 A web.whatsapp.com CNAME mmx-ds.cdn.whatsapp.net A 163.70.144.60 NS h.gtld-servers.net NS b.gtld...
DNS
                      89 Standard query 0x387c A fonts.gstatic.com
DNS
                     87 Standard query 0x5e49 HTTPS www.gstatic.com
                      87 Standard query 0x6fed A www.gstatic.com
DNS
                      89 Standard query 0x5242 HTTPS fonts.gstatic.com
                    362 Standard query response 0x387c A fonts.gstatic.com A 142.250.183.195 NS ns2.google.com NS ns3.google.com NS ns1.google.com NS ns.
DNS
DNS
                    146 Standard query response 0x5e49 HTTPS www.gstatic.com SOA ns1.google.com
DNS
                    148 Standard query response 0x5242 HTTPS fonts.gstatic.com SOA ns1.google.com
DNS
                    360 Standard query response 0x6fed A www.gstatic.com A 142.250.67.195 NS ns4.google.com NS ns1.google.com NS ns3.google.com NS ns3.google.
                     86 Standard query 0x3fd6 HTTPS lh3.google.com
DNS
                      86 Standard query 0xff75 A lh3.google.com
DNS
                    372 Standard query response 0xff75 A lh3.google.com CNAME lh2.l.google.com A 142.250.71.110 NS ns4.google.com NS ns2.google.com NS ns
DNS
                      96 Standard query 0x2127 A www.googleadservices.com
DNS
                      96 Standard query 0x6f24 HTTPS www.googleadservices.com
                    369 Standard query response 0x2127 A www.googleadservices.com A 142.250.76.194 NS ns2.google.com NS ns3.google.com NS ns1.google.com
DNS
                    378 Standard query response 0x6f24 HTTPS \www.googleadservices.com HTTPS NS ns4.google.com NS ns2.google.com NS ns3.google.com NS ns...
```

https: //0xelshazly.github.io/tools/wireshark/packet-analysis-using-wireshark/.

Figure 10: DNS

Domain Name	IP Address
edge.microsoft.com	13.107.42.16
web.whatsapp.com	163.70.144.60
fonts.gstatic.com	142.250.183.195
www.gstatic.com	142.250.67.195
1h3.google.com	142.250.71.110
www.googleadservices.com	142.250.76.194

Table 1: Domain Name and IP Address Table

Q1.b)

10 2.049754	192.168.10.87	10.10.70.88	DNS	384 Standard query response 0xa3f9 A static.edge.microsoftapp.net CNAME edge-cloud-resource-static.azureedge.net CNAME edge-cloud-re.
25 2.088903	192.168.10.87	10.10.70.88	DNS	360 Standard query response 0x04fb HTTPS static.edge.microsoftapp.net CNAME edge-cloud-resource-static.azureedge.net CNAME edge-clou
391 4.164054	192.168.10.87	10.10.70.88	DNS	271 Standard query response 0xcbbb HTTPS functional.events.data.microsoft.com CNAME global.asimov.events.data.trafficmanager.net CNA.
398 4.164054	192.168.10.87	10.10.70.88	DNS	389 Standard query response 0xf4a5 A functional.events.data.microsoft.com CNAME global.asimov.events.data.trafficmanager.net CNAME o.
1017 5.116274	192.168.10.87	10.10.70.88	DNS	352 Standard query response 0x16bf A www.google.com A 142.250.192.4 NS ns1.google.com NS ns4.google.com NS ns3.google.com NS ns3.google.com NS ns2.goo.
1019 5.116643	192.168.10.87	10.10.70.88	DNS	361 Standard query response 0xfcd7 HTTPS www.google.com HTTPS NS ns4.google.com NS ns2.google.com NS ns3.google.com NS ns3.google.com NS ns3.google.com
1274 5.321139	192.168.10.87	10.10.70.88	DNS	395 Standard query response 0xeb8a A beacons.gcp.gvt2.com CNAME beacons-handoff.gcp.gvt2.com A 142.250.192.99 NS ns3.google.com NS n.
1275 5.321139	192.168.10.87	10.10.70.88	DNS	357 Standard query response 0xa12a HTTPS google.com HTTPS NS ns2.google.com NS ns3.google.com NS ns4.google.com NS ns1.google.com A
1276 5.321139	192.168.10.87	10.10.70.88	DNS	181 Standard query response 0x1f38 HTTPS beacons.gcp.gvt2.com CNAME beacons-handoff.gcp.gvt2.com SOA ns1.google.com
1277 5.321139	192.168.10.87	10.10.70.88	DNS	348 Standard query response 0xf4e9 A google.com A 142.250.183.206 NS ns4.google.com NS ns2.google.com NS ns3.google.com NS ns1.googl
2551 6.600642	192.168.10.72	10.10.70.88	DNS	542 Standard query response 0xb6c3 A msedge.b.tlu.dl.delivery.mp.microsoft.com CNAME star.b.tlu.dl.delivery.mp.microsoft.com.deliver.
2553 6.601703	192.168.10.87	10.10.70.88	DNS	550 Standard query response 0xb6c3 A msedge.b.tlu.dl.delivery.mp.microsoft.com CNAME star.b.tlu.dl.delivery.mp.microsoft.com.deliver.
3066 7.022836	192.168.10.87	10.10.70.88	DNS	553 Standard query response 0xd31c A www.bing.com CNAME www.bing.com.trafficmanager.net CNAME www.bing.com.edgekey.net CNAME e86.
3081 7.050415	192.168.10.87	10.10.70.88	DNS	254 Standard query response 0x1995 HTTPS www.bing.com CNAME www-www.bing.com.trafficmanager.net CNAME www.bing.com.edgekey.net CNAME.
4609 9.636179	192.168.10.87	10.10.70.88	DNS	185 Standard query response 0x08bd HTTPS lh5.googleusercontent.com CNAME googlehosted.l.googleusercontent.com SOA ns1.google.com
4610 9.636179	192.168.10.87	10.10.70.88	DNS	399 Standard query response 0xd919 A lh5.googleusercontent.com CNAME googlehosted.l.googleusercontent.com A 142.250.70.65 NS ns3.goo.
4933 11.612398	192.168.10.87	10.10.70.88	DNS	352 Standard query response 0x3b2b A www.google.com A 142.250.192.4 NS ns3.google.com NS ns4.google.com NS ns1.google.com NS ns2.goo.
4934 11.612398	192.168.10.87	10.10.70.88	DNS	139 Standard query response 0x7f6b HTTPS www.iitbhilai.ac.in SOA dns2.iitbhilai.ac.in
4935 11.612398	192.168.10.87	10.10.70.88	DNS	144 Standard query response 0xe571 A www.iitbhilai.ac.in A 192.168.10.115 NS dns2.iitbhilai.ac.in A 192.168.10.72
4936 11.612398	192.168.10.87	10.10.70.88	DNS	361 Standard query response 0x1c93 HTTPS www.google.com HTTPS NS ns4.google.com NS ns2.google.com NS ns3.google.com NS ns1.google.co.
5217 11.775638	192.168.10.72	10.10.70.88	DNS	179 Standard query response 0xf693 HTTPS google-ohttp-relay-safebrowsing.fastly-edge.com SOA ns1.fastly-edge.com
5219 11.775819	192.168.10.72	10.10.70.88	DNS	385 Standard query response 0x7c7a A google-ohttp-relay-safebrowsing.fastly-edge.com A 151.101.153.91 NS ns1.fastly-edge.com NS ns4
CEO2 42 247202	400 400 40 07	10 10 70 00	DMC	427 Chindred 0.0754 HTTDC

Figure 11: Source and destination

192.168.10.87 and 192.168.10.72 are the ip addresses of the sources and 10.10.70.88 is the ip address of the Destination.

Figure 12: Enter Caption

Figure 13: Enter Caption

Figure 14: Enter Caption

Figure 15: Enter Caption

Figure 16: Enter Caption

Figure 17: Enter Caption

Figure 18: Enter Caption

Figure 19: Enter Caption

Figure 20: Enter Caption