

2. OSI 참조모델, TCP/IP, 서브넷팅

ICT폴리텍대학

강 상 희

2. OSI 참조모델, TCP/IP, 서보넷팅

목차

- OSI(Open Systems Interconnection) 참조모델
- TCP/IP(Transmission Contro Protocol/ Internetwork Protocol)
- 서브넷팅(Subnetting)

1947년 창설된 ISO에서 제안(OSI 7계층)

7계층	응용계층 (Application Layer)		응용계층 (Application Layer)	7계층
6계층	표현계층 (Presentation Layer)		표현계층 (Presentation Layer)	6계층
5계층	세션계층 (Session Layer)		세션계층 (Session Layer)	5계층
4계층	전송계층 (Transport Layer)		전송계층 (Transport Layer)	4계층
3계층	네트워크계층 (Network Layer)		네트워크계층 (Network Layer)	3계층
2계층	데이터링크계층 (Data Link Layer)	네트워크 장치를	데이터링크계층 (Data Link Layer)	2계층
1계층	물리계층 (Physical Layer)	통해 데이터 전송 및 수신	물리계층 (Physical Layer)	1계층

- 물리 계층(Physical Layer) 1계층
 - 전기적 특성:통신 신호로 변환하여 전송, 리피드
 - RJ45: 다이렉트 케이블, 크로스 케이블, 콘솔케이블 구성 사용
- 데이터링크 계층(Data link Layer) 2계층
 - MAC 주소(48bit), MAC Table만들어 놓고 참조하여 프레 임 전송
 - MAC 주소 : 물리주소 또는 하드웨어 주소
 - 전송단위: 프레임
 - 장비:스위치,브리지
 - 역할:

프레이밍: 프레임 단위로 크기의 데이터 유닛을 만듬

흐름제어: 데이터 흐름을 적절히 제어

오류제어: 오류 복원 또는 제전송 접근제어: 통신 장비가 여럿존재할때 데이터 전송 결정

- 🔵 네트워크 계층(Network Layer) 3계층
 - 상위계증(전송계증) 데이터를 패킷 단위로 규격화
 - 장치:라우터
 - 전송단위:패킷
 - 역할

패킷 전달: 종단 간의 패킷 전달

라우팅: 라우팅 프로토콜 기반으로 가장 효율적인 경로 선택

논리적인 주소 사용: IP주소 사용하여 데이터를 목적지 장치

까지 전달

- 전송 계층(Transport Layer) 4계층
 - 송수신 장치 간의 데이터 전송을 위한 종단 간 통신 제어

- 전송단위: 세그먼트 - 역할 종단 간(End-to-End) 데이터 통신 보장: 흐름제어,오류제어 통해 전체적인 데이터 통신 보장

지연에 따른 왜곡 및 대역폭 부족 문제 해결 동시에 여러 개의 논리적 연결 지원

사용자 데이터 분할과 재조립: 전송가능한 고정크기(세그먼트)로 분할하여 순서번호 할당, 수신쪽에는 재조립

- 세션계층(Session Layer) 5계층
 - 종단간의 통신 세션의 시작과 종료 정의
 - 전송단위:메시지(message)

- 표현 계층(Presentation Layer) 6계층
 - 데이터를 어떻게 표현할지 정의
 - 역할 송수신 장치간 데이터 변환 역할 수행 데이터 암호화(데이터 보안성 높임)

- 응용계층(Application Layer) 7계층
 - 응용프로그램과 통신 프로그램 사이 연결
 - FTP, SMTP, SNMP, HTTP, HTTPS, TELNET 등

캡슐화 및 역캡술화

- OSI 7 Layer: 표준 모델
 교육(학습)
 장비 개발
 장애 처리: 전기적 개념(전원여부),케이블 연결→
 2계층으로 -> 3계층(IP주소확인) -> 4계층확인
- TCP/IP: 비표준 모델(사실상 표준) 7 계층을 참조하여 개발

인터넷 사용하는 모든 통신의 기본 프로토콜

OSI 7 Layer 모델과 TCP/IP 모델

7계층	응용계층 (Application Layer)			
6계층	표현계층 (Presentation Layer)		응용계층 (Application Layer)	HTTP, HTTPS &
5계층	세션계층 (Session Layer)			
4계층	전송계층 (Transport Layer)		전송계층 (Transport Layer)	TCP, UDP
3계층	네트워크계층 (Network Layer)		인터넷 계층 (Internet Layer)	IP, ICMP
2계층	데이터링크계층 (Data Link Layer)		네트이그 저소 게츠	
		(1	네트워크 접속 계층 Network Access Laye	r) ARP, RARP
1계층	물리계층 (Physical Layer)			

- 네트워크 접속 계층(Network Access Layer)
 - 물리계층 + 데이터링크 계층 역할 수행
 - ARP: 목적지 MAC주소를 모를 경우 사용하는 프로토콜
 - RARP: 목적지 IP주소를 모를 경우 사용하는 프로토콜

- 인터넷 계층(Internet Layer)
 - 라우팅 기능 : 패킷(데이터)를 목적지IP주소를 확인 후 목적 지로 보내는 역활
 - 프로토콜: IP, ICMP(Ping, traceroute)
- 전송계층(Transport Layer)
 - 종단 간의 통신이 완성되는 계층
 - 프로토콜:TCP, UDP
 - TCP: 포트번호를 사용하여 프로세스간의 신뢰성 있는 통신 제공
 - UDP: 신뢰성 보장못함, 해더가 단순하여 처리속도가 빠름

- 🔵 응용 계층(Application Layer)

 - 응용프로그램으로 구성된 계층사용자와의 직접적인 인터페이스 제공하는 계층
 - 프로토콜: HTTP, HTTPS, FTP, SMTP, POP3, DNS

- TCP 해더
- 전송계층, 연결 지향형 서비스 제공- 전송계층,수신여부 응답X
- 신뢰성 있는 데이터 전송을 보장
 - 해더 필드 출발지 포트번호 목적지 포트 번호 순서번호 수신확인응답번호 헤더 길이 예약비트 **URG ACK PSH RST** SYN FIN 윈도우 크기 TCP 체크섬 긴급포인터

옵션

UDP 해더

- 흐름제어**X**

비연결형:데이터간 전후 관 계 고려한 전송을 하지 않음

해더 필드 출발지 포트번호 목적지 포트 번호 길이 체크섬

- IP 해더
- IP 프로토콜: 3계층, 패킷의 출발지/목적지 전달 기능
 TCP/UDP 패킷들을 인터넷 계층에서 IP 데이터그램으로 캡슐화 하여 순차적 전송
- 해더 필드 버전 헤더 길이 **TOS(Type of Service)** 전체길이 식별자 플래그 분할 위치 TTL, 프로토콜, 해더체크섬, 출발지IP주소 목적지 IP 주소, 옵션

- 내부망 트래픽 흐름과정
- 1단계: DNS를 이용하여 수신지 IP 주소 조회(L3)
 - . DNS 캐시 조회 : C:\ipconfig/displaydns
 - . Hosts.txt 파일 조회 : C:\windows\system32\drivers\etc\hosts
 - . DNS 서버 이용
- 2단계: 송신자 서브넷 마스크를 이용하여 수신지가 (내부망/외부망)에 존재하는지 확인
- 3단계: 수신지 MAC주소 조회(L2)
 - .ARP 캐쉬 조회
 - . ARP Request/Reply 를 이용
- 4단계: 수신지로 트래픽 전송

- 한정된 IP 주소자원 효율적 사용
- MASK: 0으로 변경코자 할 경우 '0"으로 AND 연산
- 하나의 네트워크 주소를 두개 이상의 서로 다른 네트워크 주소 로 분할
- 네트워크비트와 호스트 비트를 주어진 조건으로 계산 ex) /24 → 마스크 프리픽스(Prefix) 표기임 255.255.255.0 32bit 중 앞쪽 24bit는 네트워크ID, 나머지 8bit는 호스

巨ID

ex) 203.230.7.0/24: 네트워크 주소(203.230.7.0/24),

브로드케스트 주소(203.230.7.255/24)

주소: 203.230.7.1/24~254/24(총 254개)

- 클래스 A IP(1.0.0.0 ~ 126.255.255.255)
- 32bit 중 첫번째 비트를 "0"으로 시작하는 주소("00","01")
- 0,127으로 시작되는 주소는 사용할수 없음
- 기본 서브넷마스크 : **255.0.0.0**(프리픽스 /8)
- 주소 개수: 17백만개(2의 24승-2)
- 클래스 B IP(128.0.0.0 ~ 191.255.255.255)
- 32bit 중 앞비트를 "10"으로 시작하는 주소
- 기본 서브넷마스크: 255.255.0.0(프리픽스 /16)
- 16비트 네트워크ID와 16bit 호스트ID
- 클래스 C IP(192.0.0.0 ~ 223.255.255.255)
- 32bit 중 앞비트를 "110"으로 시작하는 주소
- 기본 서브넷마스크: 255.255.255.0(프리픽스 /24)
- 24비트 네트워크ID와 8bit 호스트ID

주소클래 스	용도	시작비트	시작 IP 주 소	종료 IP 주 소	네트워크 부분	호스트 부 분	최대 할당 가능 IP 주 소 수
클래스 A	유니캐스 트 (대규모)	0	0.0.0.0	127.255.2 55.255	8bit	24bit	2의 24승 =16,777,2 14
클래스 B	유니캐스 트 (대규모)	10	128.0.0.0	192.255.2 55.255	16bit	16bit	2의 18승 =65,354
클래스 C	유니캐스 트 (대규모)	110	192.0.0.0	223.255.2 55.255	24bit	8bit	2의 8승 = 254
클래스 D	멀티캐스 트	1110	224.0.0.0	239.255.2 55.255	-	-	
클래스 E	연구,예약 용	1111	240.0.0.0	255.255.2 55.255	-	-	

ICT폴리텍대학 강상희

- 사설 IP Address
- 인터넷과 연동되지 않은 사적인 독립 네트워크에서 사용되는 사적인 주소
- 인터넷 상에서 사용할수 없음을 의미
- Class별 사설IP주소 대역
 - 1. A Class: 10.X.X.X
 - 2. B Class: 172.16.X.X ~ 172.31.X.X
 - 3. C Class: 192.168.X.X
- ISP업체(KT,SK,LG)의 Routing에 등록하지 않음(비용 없음)

- 서브넷팅 예제
- 맨처음 주소(네트워크주소)와 맨마지막주소(브로드케스팅주소)

203.230.7.0/27 11001011.11100110.00000111.00000000 AND 1111111.1111111.1111111.111100000 11001011.11100110.00000111.0000000(203.230.7.0)

서브넷팅 예제

203.230.7.1/27

11001011.11100110.00000111.00000001

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.00000000(203.230.7.0)

203.230.7.31/27

11001011.11100110.00000111.00011111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.00000000(203.230.7.0)

같은 네트워크 주소

서브넷팅 예제

203.230.7.32/27

11001011.11100110.00000111.00100000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.00100000(203.230.7.32)

203.230.7.63/27

11001011.11100110.00000111.00111111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.00100000(203.230.7.32)

서브넷팅 예제

203.230.7.64/27

11001011.11100110.00000111.01000000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.01000000(203.230.7.64)

203.230.7.95/27

11001011.11100110.00000111.01011111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.01000000(203.230.7.64)

서브넷팅 예제

203.230.7.96/27

11001011.11100110.00000111.01100000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.01100000(203.230.7.96)

203.230.7.127/27

11001011.11100110.00000111.01111111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.01100000(203.230.7.96)

서브넷팅 예제

203.230.7.128/27

11001011.11100110.00000111.10000000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.10000000(203.230.7.128)

203.230.7.159/27

11001011.11100110.00000111.10011111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.10000000(203.230.7.128)

같은 네트워크 주소

서브넷팅 예제

203.230.7.160/27

11001011.11100110.00000111.10100000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.10100000(203.230.7.160)

203.230.7.191/27

11001011.11100110.00000111.10111111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.10100000(203.230.7.160)

같은 네트워크 주소

서브넷팅 예제

203.230.7.192/27

11001011.11100110.00000111.11000000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.11000000(203.230.7.192)

203.230.7.223/27

11001011.11100110.00000111.11011111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.11000000(203.230.7.192)

서브넷팅 예제

203.230.7.224/27

11001011.11100110.00000111.11100000

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.11100000(203.230.7.224)

203.230.7.255/27

11001011.11100110.00000111.11111111

AND 11111111.11111111.11111111.11100000

11001011.11100110.00000111.11100000(203.230.7.224)

서브넷팅 예제

203.230.7.0/27 결론 (네트워크 분할: 2의 3승 = 8개)

203.230.7.0~31:0(네트워크 주소), 31(브로드케스트주소)

203.230.7.32~63: 32(네트워크 주소), 63(브로드케스트주소)

203.230.7.64~95:64(네트워크 주소), 95(브로드케스트주소)

203.230.7.96~127:96(네트워크 주소), 127(브로드케스트주소)

203.230.7.128~159: 128(네트워크 주소), 159(브로드케스트주소)

203.230.7.160~191:160(네트워크 주소), 191(브로드케스트주소)

203.230.7.192~223:192(네트워크 주소), 223(브로드케스트주소)

203.230.7.224~255: 224(네트워크 주소), 255(브로드케스트주소)

서브넷팅 예제

```
203.230.7.0/25 경우 (네트워크 분할: 2의 1승 = 2개)
203.230.7.0~127: 0(네트워크 주소), 127(브로드케스트주소)
 203.230.7.128~255 : 128(네트워크 주소), 255(브로드케스트주소)
203.230.7.1/25
      11001011.11100110.00000111.00000001
AND 11111111111111111111111111111110000000
      11001011.11100110.00000111.10000000(203.230.7.0)
203.230.7.128/27
      11001011.11100110.00000111.10000000
AND 11111111111111111111111111111110000000
      11001011.11100110.00000111.10000000(203.230.7.128)
```


서브넷팅 예제

문제) 클래스 B 주소 172.16.0.0/16을 한 구간에 300개 가용 \mathbf{IP} 주소를 할당할수 있도록 서브넷팅

300개 인경우 (2의 9승 = 512개) 로 분할.

- 즉 510개(네트워크주소/브로드케스트주소 제외)
- 서브넷마스크: 255.255.0.0 ---→ 255.255.254.0 변경

```
172.16.0.0/23~172.16.1.255/23
172.16.2.0/23~172.16.3.255/23
172.16.4.0/23~172.16.5.255/23
172.16.6.0/23~172.16.7.255/23
```

172.16.254.0/23~172.16.255.255/23

서브넷팅 예제

문제) 클래스 C 주소203.230.7.0/24을 3개의 서로 다른 네트워크 할당을 위한 서브넷팅

3개의 네트워크 ID로 2bit(2의 2승 = 4개) 로 분할.

- 서브넷마스크: 255.255.255.0 ---→ 255.255.255.192 변경

203.230.7.0/26~203.230.7.63/26

203.230.7.64/26~203.230.7.127/26

203.230.7.128/26~203.230.7.191/26

203.230.7.192/26~203.230.7.255/26

서브넷팅 예제

문제) 그림에서 네트워크 토폴로지 사용할수 있도록 203.230.7.0/24 서브넷팅

- 구간별 필요 IP 주소 수 파악
- Router0에 연결된 Switch0의 PC(25개), 디폴트GW(1개), 네트워크 주소(1개),브로드케스트주소(1개) == 28개
- Router0와 Router1간의 2개 주소
- Router1에 연결된 Switch1의 PC(15개), 디폴트GW(1개), 네트워크 주소(1개),브로드케스트주소(1개) == 18개
- Router0(28개): 호스트ID 5비트(2의5승=32개)
- Router1(18개): 호스트ID 5비트(2의5승=32개)
- → 결론: 네트워크 ID(3bit), 호스트ID(5비트) 255.255.255.0 -> 255.255.255.224 변경

- 203.230.7.0/27

203.230.7.0/27 ~ 203.230.7.31/27

203.230.7.32/27 ~ 203.230.7.63/27

203.230.7.64/27 ~ 203.230.7.95/27

203.230.7.96/27 ~ 203.230.7.127/27

203.230.7.128/27 ~ 203.230.7.159/27

203.230.7.160/27 ~ 203.230.7.191/27

203.230.7.192/27 ~ 203.230.7.223/27

203.230.7.224/27 ~ 203.230.7.31/27

- Router0와 Router1간의 2개 주소(30개 중 2개만 필요)
- VLSM 적용(IP주소를 최대한 효율적 사용)
- 203.230.7.0/27~203.230.7.31/27를 서브넷팅함
- 203.230.7.0/30
 - 203.230.7.0/30 ~ 203.230.7.3/30
 - 203.230.7.4/30 ~ 203.230.7.7/30
 - 203.230.7.8/30 ~ 203.230.7.11/30
 - 203.230.7.12/30 ~ 203.230.7.15/30
 - 203.230.7.16/30 ~ 203.230.7.19/30
 - 203.230.7.20/30 ~ 203.230.7.23/30
 - 203.230.7.24/30 ~ 203.230.7.27/30
 - 203.230.7.28/30 ~ 203.230.7.31/30
- 결과: 8개 주소 범위 중 1개 주소범위를 Router0와 Router1간 의 2개 주소 사용

Q&A

감사합니다`

호르는 강물처럼 ICT**폴리텍대학 강상희**