Dias T³ 2010/2011

ZONA CENTRO

Dados e Estatística na TI-nspire

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS

Os números "loucos" do futebol

"Em plena crise financeira, os clubes de futebol conseguem continuar a investir milhões nas contratações de novos jogadores e a aumentar o peso dos salários dos atletas na estrutura de custos. Este parece ser um mundo à parte, imune às dificuldades. Parece mas, na verdade, não é. Os clubes estão cada vez mais endividados e com estruturas de custos mais que desequilibradas. Se fossem empresas iguais a todas as outras, muitos clubes estariam já na falência ..."

Visão, 12 de Agosto de 2010

O que está a acontecer com as ligas de futebol será uma situação recente? Ou já se arrasta há algum tempo?

Iremos analisar, comparativamente, as receitas e salários das ligas alemã e italiana nos últimos dez anos.

1. Introduz os valores tabelados na aplicação Listas e Folha de cálculo que irá servir como base para as diversas análises que iremos efectuar.

	Alem	anha	Itália	
Época	Receita	Salários	Receita	Salários
1999/00	681	382	954	660
2000/01	880	447	1 027	868
2001/02	1 043	553	1 017	1 010
2002/03	1 108	556	1 042	884
2003/04	1 058	580	1 052	845
2004/05	1 236	576	1 219	830
2005/06	1 195	608	1 277	806
2006/07	1 379	620	1 064	722
2007/08	1 438	725	1 421	972
2008/09 1 575		803	1 494	1 093

^{*} Valores em milhões de euros (10⁶ €)

- 1.1. Qual foi a receita e a despesa total com salários, das duas ligas de futebol? E o valor médio?
- 1.2. Alguns especialistas recomendam que para garantir a sustentabilidade das ligas, os custos com salários não devem ultrapassar 55% das receitas, teremos as duas ligas a cumprir com estas recomendações?
- 2. Obtém um resumo dos parâmetros estatísticos calculados automaticamente pela aplicação, para cada uma das variáveis em estudo.
- 3. Constrói, em seguida, diversos tipos de gráficos que te permitam

^{**} Dados recolhidos dos relatórios da empresa de consultoria Deloitte

resumir e analisar, comparativamente, os valores tabelados, bem como as respectivas distribuições.

- 4. Abre um segundo problema.
 - 4.1. Cria uma tabela de frequências para registar o número de épocas, em que cada uma das ligas, seguiu/não seguiu a recomendação dos 55%.
 - 4.2. Representa, através de gráficos circulares, os valores obtidos para cada uma das ligas.

Como abrir a aplicação Listas e Folha de Cálculo?

Para aceder à aplicação Listas e Folha de Cálculo deves seleccionar no ecrã principal a figura que contém uma tabela (através do *touchpad* ou com recurso à tecla (tab) e premir (enter).

Nota: não te esqueças de gravar o documento de trabalho.

Como criar listas?

- 1. Na primeira linha escreve o nome dos campos que figuram na tabela inicial: *época, receitas da liga alemã, etc.*
- 2. Na célula a1 escreve 99/00 dentro de aspas e depois prime (enter).
- 3. Preenche a tabela.

Notas:

Podes encontrar os símbolos utilizados clicando na tecla 🕪.

Para introduzires caracteres acentuados deves, após a digitação do carácter, pressionar sucessivamente a tecla (P).

Como escrever uma fórmula?

Para não interferir com os dados introduzidos, calcula a partir da coluna **G**, o valor total das receitas e dos salários bem como as respectivas médias, para cada uma das ligas.

Compreender as referências a células nas fórmulas

Numa fórmula podes incluir:

- a letra de uma coluna e o número de uma linha para uma referência relativa.
- o símbolo \$ antes da letra da coluna e/ou do número da linha para especificar uma referência absoluta.
- dois pontos (:) entre duas referências de células para especificar um intervalo de células.

Notas:

Podes ter que alterar as definições gerais para visualizares os resultados dos cálculos efectuados:

1.No ecrã onde estão introduzidos os dados da tabela clica sobre o símbolo a existente no canto superior direito.

2. Selecciona **2:Definições** e **1:Geral**.

3. Define o modo de cálculo pretendido e o número de dígitos apresentados.

Como trabalhar com linhas e colunas de dados?

Seleccionar uma coluna ou linha

- Prime sem soltar ▲ para mover para além da célula superior: de modo análogo para seleccionar a linha.
- 2. Para alargar uma selecção às colunas ou linhas adjacentes, prime sem soltar ��shift e, simultaneamente, em ♠, ▶, ▲ou ▼.
- 3. Prime 🕪 para cancelar a selecção.

Redimensionar uma linha ou coluna

1. Através do menu de contexto, ctr) menu, selecciona

7:Redimensionar e 1:Largura da coluna.

- 2. Clica na seta de direcção do *Touchpad* respectiva, de forma a ajustar manualmente ao tamanho pretendido.
- 3. Termina pressionando (enter).

Apagar dados

- 1. Selecciona o conjunto de células que contém os dados a apagar
- 2. Clica sobre a tecla (e).

Inserir colunas

- Selecciona a coluna onde pretendes que surja uma nova coluna.
- 2. Através do menu de contexto, (ctr) (menu), selecciona **4:Inserir Coluna**.

Criar fórmulas baseadas em colunas

1. Na nova coluna, clica na célula cinzenta para introduzir a fórmula que dá o quociente entre o salário e a receita da liga alemã.

2.Clica sobre a tecla (var) para seleccionar as variáveis pretendidas.

₫	1.1 ▷	*Não guardado ▼ 🏭 🗷			
	rec_al	sal_alem	□rac_al	■rec_ital 🖀	
*			=('sal_aler		
1	681.	382.	56.094	954.	
2	880.	447.	50.795	1027.	
3	1043.	553.	53.02	1017.	
4	1108.	556.	50.181	1042.₩	
D	rac alem:= 'sal_alem 100 \				
D	ruo_utem	'rec_ale		< >	

3. Repete os procedimentos anteriores para os dados da liga italiana.

Como utilizar os dados da tabela para análise estatística?

Tal como acontecia na calculadora TI-84, podes obter um resumo dos parâmetros estatísticos associados a uma variável.

No menu 4:Estatística acede à opção 1:Cálculos estatísticos, 1: Estatística de uma variável.

Especifica na janela de diálogo a localização dos dados e a coluna onde pretendes que comecem a ser apresentados os resultados.

A aplicação Listas e Folha de Cálculo apresenta, em seguida, os resultados em colunas: uma para os nomes dos parâmetros; uma outra para o conjunto de parâmetros estatísticos calculados.

Como criar gráficos?

Com os dados introduzidos na aplicação Listas e Folha de Cálculo, abre uma nova página com a aplicação Dados e Estatística, clicando na tecla (a) e na área "Adicionar página a" selecciona o quinto símbolo.

Aparece uma nova página no problema activo, com uma representação gráfica predefinida do conjunto de dados.

Como seleccionar na janela gráfica as variáveis pretendidas?

Na janela gráfica, próximo do centro de cada um dos eixos horizontal e vertical, surge uma região identificada "Clicar para adicionar variável".

Deslocando o cursor para uma dessas zonas e clicando na caixa "Adicionar variável" que surge, podes ver uma lista de todas as variáveis associadas ao problema. Selecciona a variável que pretendes ver representada.

No caso de pretenderes representar uma segunda variável no outro eixo repete o processo anterior junto ao centro desse eixo.

- O gráfico predefinido para uma só variável é um gráfico de pontos.
- O gráfico predefinido para duas variáveis é um gráfico de dispersão.

Como alterar ou explorar os dados representados graficamente?

Retira ou altera a variável dum eixo, utilizando os comandos respectivos no em 2:Propriedades do gráfico.

Utiliza outro tipo de gráfico, compatível com os dados introduzidos, seleccionando-o entre os gráficos possíveis no (1:Tipos de gráficos:

- Gráfico de pontos (uma variável)
- Gráfico de extremos e quartis (uma variável)
- Histograma (uma variável)
- Probabilidade normal (uma variável)
- Gráfico de dispersão (duas variáveis)
- Linha X-Y (duas variáveis)

Em qualquer destes tipos de gráfico podes:

 Passar com o cursor sobre os pontos/regiões representadas e observar as informações apresentadas.

 Mover os pontos representados num gráfico estatístico alterando automaticamente os dados introduzidos

Na área de trabalho Dados e Estatística, ao colocares o cursor sobre a representação gráfica de um ou mais dados (que não estejam bloqueados ou dependentes de uma fórmula), o apontador muda para uma mão fechada, e podes arrastar o ponto seleccionado para explorar como a alteração desse ponto afecta o gráfico.

Nota:

Sempre que queiras anular a última acção realizada, podes clicar no conjunto de teclas (ctr) (esc).

Como construir Diagramas de extremos e quartis?

Adiciona uma nova página de Dados e Estatística e selecciona a variável que pretendes representar através de um diagrama de extremos e quartis.

Seleccionando no **1:Tipo de gráfico** e **2:Diagrama de extremos e quartis** é representado o conjunto de dados de uma variável num diagrama de extremos e quartis modificado.

Podes visualizar o conjunto de dados de forma a poderes alterar qualquer um dos valores em (menu) 3: Acções e 5:Seleccionar todos os pontos.

Para eliminar a selecção de pontos efectuada, deves clicar na zona livre da página.

Para comparar dois ou mais conjuntos de dados que utilizem a mesma escala, podes adicionar novos gráficos do mesmo tipo, coloca o cursor abaixo do eixo dos xx e através do menu de contexto, (ctr) (menu), selecciona **2:Adicionar variável X**.

Nota:

No caso de aparecerem desenhados "outliers" e pretenderes alterar para um gráfico de extremos e quartis padrão, selecciona (menu) 2:Propriedades do gráfico e 3:Alargar desenho da caixa dos bigodes, passando a incluir os "outliers" no próprio gráfico.

Os "outliers" são desenhados como pontos exteriores ao diagrama quando representam valores superiores/inferiores a 1,5*intervalo interquartil além/aquém do quartil respectivo.

Como construir Histogramas?

- 1. Insere uma nova página de Dados e estatística.
- 2. Selecciona a variável que pretendes ver representada através de um histograma.
- 3. Clica em (menu) 1:Tipo de gráfico e 3:Histograma.

O número de barras apresentadas depende do número de dados e da distribuição dos respectivos pontos.

Explora os dados nas barras do histograma passando sobre cada uma das barras para ver as informações respectivas.

Para modificar as barras do histograma

Clica em en 2:Propriedades do gráfico, 2:Propriedades do histograma e selecciona 2:Definições das barras.

Surge uma caixa de diálogo:

- 1. Escreve os valores para definir a largura e o alinhamento (valor para início da construção das barras que representam os dados do histograma).
- 2. Clica em OK.

Poderás ter necessidade de ajustar a janela do gráfico de forma a visualizar todos os dados.

Para isso a maneira mais rápida é através menu de contexto (ctr) (menu), 6:Zoom e 2:Zoom-Dados.

Notas:

Podes também modificar as barras, clicando e agarrando a extremidade de qualquer barra e arrastando-a para o tamanho desejado.

Recorda que caso queiras anular a última acção realizada, podes clicar no conjunto de teclas (ctr) (esc).

Como representar graficamente o valor da média?

Podes representar, num gráfico já existente, um determinado valor, por exemplo, o valor médio num diagrama de extremos e quartis. Este valor aparecerá como uma recta vertical na área de trabalho.

1: Tipo de gráfico 2: Propriedades do gráfico

B: Traçar valor

Adicionar linha amovível
 Bloquear ordenada na or
 Traçar função

lombrear abaixo da curva

No exemplo da imagem, regressa à página 1.3.

No (menu) 4:Analisar, selecciona 8:Traçar valor.

Aparece uma caixa de texto com uma expressão predefinida na área de trabalho.

Escreve o valor que pretendes representar graficamente e prime enter. Neste exemplo seria a média das receitas da liga alemã e o valor é **v1**:= mean(**rec_alem**).

Clica na recta para ver o valor.

Notas:

- ➤ Podes alterar o valor fazendo um duplo clica e editando a expressão.
- ➤ Podes observar todas as variáveis disponíveis clicando na tecla (var).
- > Para remover a recta desenhada, selecciona-a e, no menu contexto (ctr) (menu), clica sobre **1:Remover valor desenhado**.

Como criar gráficos com mais de uma variável?

• Gráfico de dispersão

Um gráfico de dispersão mostra a relação entre duas variáveis. Deves por isso seleccionar em cada um dos eixos a variável que pretendes ver representada.

• Gráfico de linha X-Y

Um gráfico de linha X-Y é um gráfico de dispersão em que os pontos são representados graficamente ligados.

A coluna de dados mais à esquerda é representada no eixo horizontal.

Começa por criar um gráfico de dispersão.

No menu de contexto (ctr) (menu) selecciona **2:Unir pontos**.

Os pontos são ligados através de segmentos pela ordem constante na lista representada no eixo dos XX.

Como inserir um novo problema?

Clica na tecla (docr) e selecciona a opção **4:Inserir** seguido de **1:Problema**

Selecciona a opção **4:Adicionar Listas e folha de cálculo**

Como criar gráficos de barras e gráficos circulares?

Na nova tabela do Problema 2 insere os dados relativos ao cumprimento, ou não, da recomendação dos 55%, em cada uma das ligas.

Em seguida introduz uma nova página de Dados e Estatística.

Como neste problema a variável "recomendação" tem associada uma lista de frequências, podes construir:

• Gráfico de barras

A partir do gráfico de pontos, no en 2:Propriedades do gráfico selecciona 5:Adicionar variável X com frequência.

- Clica na seta pendente da Lista de dados e selecciona a variável associada às categorias e prime (tab) para ir para o campo seguinte.
- Clica na seta pendente da Lista de frequências e selecciona a variável associada às respectivas frequências.
- 3. Clica em OK.

Gráfico circular

1. Clicando no menu contexto (ctr) (menu) selecciona 1:Gráfico circular

Como agrupar numa só janela de visualização mais do que um gráfico?

Para agrupares duas ou mais aplicações (por exemplo gráficos) de páginas consecutivas numa só página:

- 1. Passa para o Gestor de Páginas através da conjugação de teclas 🚾 🔺
- 2. Selecciona o primeiro gráfico que pretendes agrupar.
- 3. Utiliza do menu contexto (ctr) (menu) o comando **6:Grupo**.

Notas:

- > Só podem ser agrupadas, sucessivamente, até ao máximo de quatro páginas.
- > Para voltares a ter as páginas separadas basta seleccionar o comando **7:Dividir** também do menu contexto.

Mais cidadãos mais ladrões?!!

Fez-se um estudo para averiguar a relação existente entre o número de veículos roubados por cada mil habitantes e a densidade populacional na cidade de Chicago. Seleccionaram-se, para o efeito, 18 distritos dessa cidade. Registou-se, para cada distrito, a sua densidade populacional (DP) e o número de veículos aí roubados (NVR) por cada mil habitantes, tendose obtido os seguintes resultados:

DP	NVR
33445	10,5
24182	14,9
20993	16,7
15401	20,0
19749	14,2
19487	13,5
19581	16,5
14077	22,2
18137	15,8

DP	NVR	
22919	13,3	
24534	15,1	
24987	16,2	
21675	12,5	
22315	11,8	
18402	19,6	
3235	132,8	
27345	10,1	
15358	19,0	

- 1. Copia para a folha de cálculo da TI-nspire os dados da tabela acima e ordena-os segundo a variável DP. Apenas por observação dos dados, que podes afirmar quanto à relação existente entre a densidade populacional (DP) e o número de veículo roubados (NVR)?
- 2. No estudo está considerado o distrito correspondente ao Centro de Chicago, local essencialmente de comércio e escritórios. Quais os valores de DP e NVR, da tabela, que corresponderão a esse distrito?
- Calcula a equação da recta de regressão de NVR em função de DP e classifica a correlação existente com base no valor do coeficiente de correlação.
- 4. Representa, na aplicação de Gráficos, o diagrama de dispersão das variáveis DP e NVR e a recta de regressão determinada na alínea anterior. Comenta.
- 5. Supõe que um 19º distrito, não contemplado neste estudo, tinha uma densidade populacional de 14500. Estima qual o número de veículos roubados naquele distrito. Compara-o com os valores de distritos com aproximadamente a mesma densidade populacional.

Dias T³ - 2010/2011

- 6. Na aplicação Dados e Estatística, representa o diagrama de dispersão e mostra a recta de regressão linear para as variáveis DP e NVR, retirando o distrito Centro de Chicago.
- 6.1. Que valor julgas que terá, agora, o coeficiente de correlação?
- 6.2. Estima o valor do NVR para o 19º distrito considerado na alínea 5.

(Adaptado da Brochura de Estatística 10ºano – DES – ME)

Como ordenar dados na Folha de Cálculo?

Após teres copiado os valores da tabela para as colunas A e B, previamente designadas por DP e NVR, selecciona estas duas colunas.

Com a(s) coluna(s) seleccionadas prime menu e em **1:Acções** selecciona a opção **6:Ordenar**.

Surgirá uma janela indicando qual o conjunto de listas que vão ser alteradas em função da lista que queres que seja ordenada de forma crescente ou decrescente.

Como obter uma regressão?

Para obteres a equação de uma qualquer regressão entre duas variáveis precisas que os dados estejam inseridos numa folha de cálculo, devendo ser atribuídas

designações às colunas respectivas.

Prime e em 4:Estatística acede 1:Cálculos estatísticos e selecciona 3:Regressão linear (mx+b).

Surgirá uma nova janela onde deverás indicar a variável independente e a variável dependente, em que função deverá ser guardada a expressão analítica da regressão e ainda, em que colunas da folha de cálculo devem ser inseridos os resultados da regressão.

Para indicar, por exemplo, a Lista X (variável independente) podes escrever o nome da lista/coluna, neste caso **dp**, ou a letra da coluna, neste caso a[]. Podes ainda, deslocando o cursor para baixo, seleccionar a variável a partir da lista existente.

Por defeito, a equação da regressão ficará guardada na primeira função vazia, neste caso em **f1**.

Um dos resultados da regressão linear, para além dos parâmetros \mathbf{m} e \mathbf{b} , é o \mathbf{r} - coeficiente de correlação linear.

Como representar o diagrama de dispersão na aplicação Gráficos?

Na TI-nspire a aplicação adequada à representação de gráficos estatísticos é a aplicação Dados e Estatística. No entanto, quando se trata da representação simultânea de diagrama de dispersão e de funções obtidas por regressão, por vezes é necessário usar a aplicação de Gráficos.

Para representar um gráfico de dispersão na aplicação Gráficos, prime consecutivamente as teclas (tr) e (doc) e selecciona a opção **2:Adicionar Gráficos** para abrir uma nova página com a aplicação Gráficos.

Surgirá uma nova página, estando o cursor na linha de edição de funções em f2, já que em f1 se encontra a regressão linear já determinada. Para activar/representar a regressão linear (ou outra qualquer função) desloca o cursor para f1 (linha de edição correspondente) e pressiona a tecla enter). É possível que a recta de regressão não fique visível devido à janela de visualização

Para representar o diagrama de dispersão é necessário mudares no menu o 3:Tipo de Gráfico para 4:Gráfico de dispersão.

A linha de edição de funções surgirá alterada, devendo agora serem colocados os nomes das variáveis que se pretendem representar. Os nomes das variáveis podem ser escritos, ficando a negrito quando associados a uma variável, ou então seleccionados a partir da lista de variáveis que surge quando se prime a tecla (var).

O diagrama de dispersão pode não ser visível. Isto deve-se ao desajustamento da janela de visualização. Para visualizares adequadamente o diagrama de dispersão deves seleccionar a opção **9:Zoom – Dados** acessível a partir de **4:Janela** do (menu) desta aplicação.

Para alterar o tipo de gráfico a representar, podes ainda usar o menu de contexto pressionando, sempre que o cursor se encontrar na linha de edição, consecutivamente as teclas (etr) e (menu).

Como estimar valores a partir da regressão?

A partir do momento em que se calculou uma dada regressão e esta foi guardada como função, suponhamos em f1, pode-se fazer todos os cálculos possíveis com funções: cálculo de imagens ou objectos, extremos ou extremantes, zeros, ...

Para além das aplicações Gráficos e Calculadora, já realizado anteriormente, também podemos fazer alguns destes cálculos na aplicação Listas e Folha de Cálculo, desde que no mesmo problema!

Assim, numa qualquer célula livre (que não interfira com as colunas já utilizadas) insere a expressão "=f1(14500)" e prime (enter) para obteres a imagem de 14500 por f1.

Como reduzir dados na aplicação Listas e Folha de Cálculo?

Nesta situação interessa-nos manter os dados originais de DP e NVR e noutras colunas, ou até noutra aplicação de Listas e Folha de Cálculo, criar novas variáveis para DP e NVR, respectivamente DP_SCC e NVR_SCC, sem os dados do distrito do Centro de Chicago.

No exemplo abaixo optou-se por inserir os dados numa nova aplicação de Listas e Folha de Cálculo.

Após inserires uma nova aplicação de Lista e Folha de Cálculo designa as colunas a[] e b[] por DP_SCC e NVR_SCC, respectivamente.

Nota: o símbolo _ obtém-se pressionando as teclas (ctrl) e ___

Na linha a cinzento (linha de fórmulas para listas) escreve o nome das variáveis DP e NVR para inserires todos os dados destas duas variáveis. De seguida apaga, pressionando a tecla (49), as duas células a cinzento, removendo desta forma a dependência destas duas novas variáveis às anteriores variáveis.

Selecciona a linha correspondente aos valores do distrito do Centro de Chicago, neste caso a 1ª linha, e elimina-a pressionando a tecla (el) (ou seleccionando a opção eliminar linha do menu de contexto).

De seguida calcula a regressão linear para as variáveis DP_SCC e NVR_SCC, guardando-a na função f2.

Verifica qual o valor do coeficiente de correlação e compara com o da regressão anterior.

4	1.1 1.2 1	.3 ▶ *Não	guardado 🔻	· 41 ×
	nvr_scc	C	D	
*				=LinRegM
3	20		m	-0.0005
4.	15.8		b	27.3639
5	19.6		r²	0.628093
6,	13.5		r	-0.7925
7	16.5		Resid	{2.72845
Ē	E6 =-0.79252337518735			

Como representar as duas rectas de regressão e o diagrama de dispersão?

Mais uma vez a representação pretendida pode ser obtida em duas das aplicações da TI-nspire, na aplicação Gráficos e na aplicação Dados e Estatística. Vamos optar pela aplicação Gráficos por se tratar de duas funções e uma série de dados.

Voltando à página de Gráficos já criada e na linha de edição de funções, activa a função f2 pressionado a tecla (enter).

Surgirá a representação gráfica da função f2, regressão linear das variáveis DP_SCC e NVR_SCC.

Usa o traçado do gráfico para estimar o número de veículos roubados para um estado com densidade populacional de 14500, a partir desta nova regressão sem os dados do Centro de Chicago.

Nota que, por defeito, o número de dígitos apresentados na aplicação de Gráficos é Flutuante 3, isto é, 3 dígitos significativos (que não corresponde a 3 casas decimais!!!).

Daí que, ao escreveres 14500 surge no ecrã 1.45E+4.

Podes alterar esta definição através dos atributos do número, pressionando as teclas etro e menu e seleccionando a opção **2:Atributos**.

Surgirão dois atributos que podem ser alterados deslocando o cursor para a esquerda e para a direita, pressionando de seguida a tecla (enter).

Estatística com cheiro a probabilidades!

Na aula de Matemática, o professor, decidiu introduzir as tabelas de frequências e o cálculo de medidas estatísticas de uma dada variável com recurso à seguinte experiência aleatória, E1: "lançamento de dois dados cúbicos, com as faces numeradas de 1 a 6, e registo da soma das faces voltadas para cima".

Para esse efeito, solicitou a cada aluno que simulasse, usando a sua calculadora, 100 vezes a experiência aleatória e registasse os dados numa tabela de frequências absolutas e relativas.

- 1. Na aplicação Calculadora da TI-nspire simula <u>apenas um</u> lançamento de um dado. Compara o resultado que obtiveste com os dos teus colegas. Simula outro e volta a comparar. Que observas?
- 2. Simula, agora, o lançamento de dois dados e a obtenção da soma das faces voltadas para cima.
- Numa coluna de uma folha de cálculo efectua a simulação de 100 experiências aleatórias E1. Organiza os dados numa tabela de frequências absolutas e relativas.
- 4. Calcula, usando a tabela de frequências, as medidas estatísticas da variável em causa.
- 5. Representa o gráfico de barras e o diagrama de extremos e quartis da variável em causa.
- Investiga, agora, algumas das propriedades da média e do desviopadrão.
 - 6.1. Altera algumas frequências absolutas de forma a que a média se torne, aproximada às centésimas, um valor inteiro.
 - 6.2. Supõe que foram efectuadas mais 10 experiências aleatórias cujo resultado foi igual à média. O que acontece ao valor do desvio padrão?
 - 6.3. Supõe agora que se fizeram mais 11 experiências e se obteve 11 somas diferentes. Houve alteração da média? E do desvio padrão?

Que funções aleatórias existem na TI-nspire?

Na TI-nspire existem as habituais funções de números pseudo aleatórios que se podem obter através do Catálogo, tecla (a), ou escrever directamente o nome da função, por exemplo:

randint(1,6) - para obter um número inteiro de 1 a 6

Quando trabalhares com números aleatórios (pseudo), deverás ter o cuidado de garantir que a função aleatória foi inicializada em cada unidade portátil. Para isso deves usar a função *randseed*, como por exemplo:

Como simular o lançamento de dados cúbicos?

Para a simulação de dados cúbicos usamos a função aleatória inteira, *randint*, definindo os seus argumentos adequadamente. A sintaxe da função *randint* é:

Randint(limite inferior, limite superior, números simulações)

Por exemplo, para o lançamento de um dado cúbico com as faces numeradas de 1 a 6 fazemos randint(1,6). Para duas simulações (ensaios) fazemos randint(1,6,2).

Como simular a experiência aleatória E1?

Quando se fazem simulações de experiências aleatórias, com recurso a funções aleatórias da calculadora ou do computador é indispensável: 1) haver uma correspondência biunívoca entre os espaços de resultados das experiências aleatórias e das simulações; 2) As simulações e as experiências aleatórias terem a mesma função de distribuição.

Por exemplo, existem simulações que têm o mesmo conjunto de resultados de uma dada experiência aleatória, no entanto a distribuição de probabilidades não é a mesma. Neste caso, não estaremos a simular a experiência aleatória pretendida.

Qual ou quais das situações ao lado tem o mesmo conjunto de resultados da experiência aleatória E1?

E qual ou quais têm a mesma função de distribuição que a variável aleatória da experiência E1?

Quais poderiam ser utilizadas como simulações da experiência aleatória E1?

E qual a mais adequada?

Como efectuar 100 simulações e guardar os resultados?

Para efectuar um número significativo de simulações, e principalmente guardar os resultados, será mais indicado usar a aplicação Listas e Folha de Cálculo da TI-nspire.

Assim, por exemplo, designa a coluna a[] por "simul" e na linha a cinzento (linha de fórmulas para listas) insere a sequência **seq(sum(randint(1,6,2)),x,1,100)** para as 100 simulações. Verifica qual o limite de simulações que podes obter por coluna!

Nota que podes efectuar 100 novas experiências aleatórias sem ter que executar, na linha de listas, novamente a instrução. Para isso utiliza a ferramenta **5:Recalcular** do menu **1:Acções** da aplicação ou então o atalho rápido com as teclas @ R.

Como construir uma tabela de frequências absolutas a partir dos dados simples?

Na folha de cálculo designa por **xi** uma das colunas, por exemplo a coluna c[], e insere nesta coluna todos valores possíveis da variável estatística em estudo.

◆ 1.1 1					
Asimu	B		Q _{xi}	□fi	
• =seq(s	umi		=seq(x,x,2		
1	6		7 2		
2	5		3		
3	10		4		
4	9		5		
5	6		6		
∠ xi:=s	eq(x,x,2,	12)			< >

1.1 1.2

Part(Pdf(

Designa, por exemplo, a coluna d[] por **fi** e usando a função **frequency** obtém a frequência absoluta de cada um dos valores da variável estatística.

frequency(simul, xi)

Como podes verificar a função *frequency* acrescenta, às frequências absolutas, uma célula com o valor zero!

frequency(Lista, ListaCategorias)

☐ ≪ Utilizar Assistente

Para corrigir esta situação vamos usar a função left.

Verifica, numa página com a aplicação Calculadora, qual o resultado da função **left**(lista, nº inteiro) em, por exemplo:

Assim, colocamos a fórmula left(frequency(simul, xi),11) para obter correctamente a frequência absoluta.

Usando a função recalcular, teclas etro **R**, obtém várias simulações de 100 experiências aleatórias e verifica o que acontece aos valores das frequências absolutas. Comenta.

Designa de forma apropriada as colunas e[], f[] e g[] e obtém, a partir das frequências absolutas, as restantes frequências da variável estatística.

Como calcular, individualmente, medidas estatísticas?

Coloca na coluna b[] as etiquetas (usar aspas para assumir como texto) "Média=" e "Desvio Padrão=", respectivamente nas células b4 e b6.

Nas células b5 e b7 insere as funções, respectivamente, **mean** e **stdevpop** para obteres a média e o desvio padrão da distribuição estatística.

Não te esqueças de colocar o símbolo "=" no início das fórmulas. Na média coloca a função *round* se pretenderes obter, por exemplo, um valor com apenas duas casas decimais.

Para poderes alterar os valores da frequência absoluta tens de apagar a fórmula da coluna d[], não perdendo os dados mas deixando de estar associados à frequência absoluta das 100 experiências aleatórias simuladas na coluna a[].

De seguida altera os dados das frequências absolutas e vai analisando os sucessivos valores da média e do desvio padrão.