Fluxograma e Pseudocódigo

MATA37: Introdução à Lógica de Programação

Prof.: Rafael A. Melo (melo@dcc.ufba.br)
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal da Bahia

Representação de Algoritmos

- Fluxograma ou Diagrama de Blocos
 - Forma universal de representação
 - Utiliza formas geométricas bem definidas para representar os diferentes passos de um algoritmo.
- Pseudocódigo
 - Significado: código falso
 - Algo entre a linguagem natural e a linguagem de programação
 - Facilita descrever o algoritmo antes de escrever um código em linguagem de programação

Fluxograma

Símbolo	Nome	Função
	Terminador	Representar a saida para ou entrada do ambiente externo, por exemplo, inicio ou final de programa.
	Processo	Representar qualquer tipo de processo, geralmente utilizado para definir cada passo sequencial do algoritmo.
	Linha basica	Representar o fluxo dos dados ou controle. Pode-se usar pontas de setas para indicar a direção do fluxo.
	Entrada manual	Representar os dados que sejam fornecidos manualmente em tempo de processamento.
	Exibicao	Representar dados que devem ser exibidos para uso humano, como em um monitor ou impressora.
	Decisao	Representar uma decisão ou um desvio de fluxo.
	Repeticao	Uma decisão combinada com um fluxo (linha básica) de retorno.

• Escreva um algoritmo (fluxograma e pseudocódigo) para calcular a média de quatro números informados pelo usuário.

 Escreva um algoritmo (fluxograma e pseudocódigo) para calcular a média de quatro números informados pelo usuário.

 Escreva um algoritmo (fluxograma e pseudocódigo) para calcular a média de quatro números informados pelo usuário.

 Escreva um algoritmo (fluxograma e pseudocódigo) para calcular a média de quatro números informados pelo usuário.


```
real: p1, p2, p3, p4, media
Inicio
Leia p1
Leia p2
Leia p3
Leia p4
media ← (p1 + p2 + p3 + p4)/4
Escreva ' A media final e ' media
Fim
```

- Escreva um algoritmo (fluxograma e pseudocódigo) para calcular a média de quatro números informados pelo usuário.
 - Simplificando


```
real: p1, p2, p3, p4, media
Inicio
Leia p1, p2, p3, p4
media ← (p1 + p2 + p3 + p4)/4
Escreva 'A media final e ' media
Fim
```

Itens fundamentais de um pseudocódigo

- 1.Constantes
- 2. Variáveis
- 3. Comentários
- 4. Expressões aritméticas
- 5. Expressões lógicas
- 6. Comando de atribuição
- 7. Comandos de entrada e saída

1. Constantes

- Representam valores fixos que n\u00e3o variam no decorrer do algoritmo.
- Constante numérica
 - Ex.: 10, 3.5, 1.5 x 10^3
- Constante lógica
 - verdadeiro, falso
- Constante literal
 - "teste", "1234", "1abc3*"

2. Variáveis

- São locais de armazenamento com um identificador associado, contendo algum valor (ou conteúdo) conhecido ou desconhecido.
- São utilizadas para armazenar valores que são modificados ao longo da execução do algoritmo
- O conceito de variável, na verdade, corresponde a "posições de memória RAM", onde serão armazenados os dados manipulados pelo programa.

2.1. Tipos de dados

- Em linguagens de programação é importante classificar constantes, variáveis, expressões e funções de acordo com certas características, as quais indicam o seu tipo de dados
- Este tipo deve caracterizar o conjunto de valores a que uma constante pertence, ou que podem ser assumidos por uma variável ou expressão, ou que podem ser gerados por uma função
- Tipos simples de dados: grupos básicos de dados
 - Real, Inteiro, ...
- Tipos estruturados de dados: definem coleções de valores simples
 - Vetor, Matriz, ...

2.1. Tipos simples (primitivos) de dados

- Tipos primitivos são os grupos de valores indivisíveis, como os seguintes grupos básicos:
 - Inteiro
 - Ex: 1, -4, 100, 0, -905
 - Real
 - Ex: 1.3, 816.97, 3.0, -0.0055
 - Caractere
 - Ex: 'C', 'a', '1', '3'
 - Lógico (boolean)
 - Falso (False), Verdadeiro (True)

2.2. Identificadores

- Nome de um local onde se pode colocar qualquer valor do conjunto de valores possíveis de um tipo associado.
 - Nome de uma variável;
 - Nome de uma constante.
- Regras para formação de um identificador
 - deve começar por um caracter alfabético (uma letra);
 - pode ser seguido de letras e/ou dígitos;
 - só é permitido o uso do caracter especial "_" situado entre letras e/ou dígitos.

2.2. Identificadores

- Exemplos de identificadores válidos
 - Nome, X, y, ENDERECO, Aluno_01, Media
- Exemplos de identificadores inválidos
 - 5X, E(13), A:B, X-Y, Nota/2
- O identificador deve representar de forma significativa o conteúdo que irá armazenar.
 - Ex.: é natural usar o identificador media para representar a média entre valores.

2.3. Declaração de Variáveis

• É a criação (ou definição) de locais na memória rotulados com o identificador da variável (ou constante) que será utilizada no algoritmo para a manipulação de um determinado tipo de informação.

Representação em Pseudocódigo

Tipo: Lista de Variáveis;

OU

Lista de Variáveis: Tipo;

2.4. Declaração de Variáveis

Exemplos

```
inteiro: NUM, X;
real: parcela;
lógico: resposta;
real: PI;
literal: NOME, ENDEREÇO;
caractere: CONCEITO;
```

- Neste momento, as variáveis ainda não contém nenhum valor associado a elas.
- A declaração de variáveis deve ser feita antes da definição das ações do algoritmo.

3. Comentários

- Texto delimitado por chaves { }
 - Ex.: {comentário}
- Ajuda na clareza do algoritmo
- Pode ser colocado em qualquer local onde se julgue necessário

4. Expressões Aritméticas

- Operações básicas
- + adição
- subtração
- * multiplicação
- / divisão
- Parênteses: usados para mudar prioridade

2 + 3 * 4 versus (2 + 3) * 4

- Funções
- div divisão inteira
 - 30 div 7 = 4, 5 div 7 = 0
- mod resto
 - $-30 \mod 7 = 2, 5 \mod 7 = 5$
- potenciação
 - pot(x, y)

→ x^y

- radiciação
 - rad(x)

 $\rightarrow \sqrt{x}$

Prioridade

- 1. potenciação, radiciação
- 2. div, mod, multiplicação, divisão
- 3. +, -

4.1 Exemplos de Expressões Aritméticas

$$m = \frac{a+b+c+d+e}{5}$$

$$m \leftarrow (a+b+c+d+e)/5$$

$$y = mx + b$$
$$y \leftarrow m * x + b$$

5. Expressões Lógicas

Relações

- > maior que
- >= maior ou igual a
- menor que
- <= menor ou igual a</p>
- = igual
- <> diferente
- 3 > 5 : falso
- 7 <= 7 : verdadeiro
- 3*4 5 < 2*3 4: falso

Operadores lógicos

- e (and)
 - (4>7) e (3<5) : falso
- ou (or)
 - (4>7) ou (3<5): verdadeiro
- não (not)
 - $n\tilde{a}o(5 > 3)$: falso

Prioridade

- 1. >, >=, <, <=, =, <>
- 2. não
- 3. e
- 4. ou

Prioridades das expressões

 Escreva o pseudocódigo das expressões à seguir e mostre a ordem de avaliação dos operadores

$$z = pr \, mod \, q + w / x - y$$
 $z = pr \, mod \, (q + w) / x - y$

$$z-5 \le 4 \land a > b+3*d$$

6. Comando de Atribuição

- Serve para atribuir (ou associar) um valor a uma variável
- Sintaxe em Pseudocódigo:

```
identificador ← expressão;
```

- onde expressão pode ser um(a):
 - constante,
 - variável,
 - expressão aritmética,
 - Expressão lógica, etc.
 - O resultado da expressão deve possuir o mesmo tipo de dados da variável representada pelo identificador

6. Comando de Atribuição

Exemplo

```
lógico: A, B, Erro;
inteiro: x;
caractere: Conceito;
x \leftarrow 8 + 13 \text{ div } 5;
B \leftarrow 5 = 3;
x \leftarrow 2;
A \leftarrow B;
Erro ← Verdadeiro;
Conceito ← 'A';
```

7. Comandos de Entrada e Saída

 Representam respectivamente as ações básicas de algoritmos para recebimento e apresentação de dados

7. Comandos de Entrada e Saída

- Entrada de Dados: informações que são fornecidas ao programa pelo "usuário" durante a resolução do problema.
- Representação em Portugol:
 Leia identificador1, identificador2, ...

• Ex:

Leia x

Leia altura, idade, sexo

7. Comandos de Entrada e Saída

- Saída de Dados: informações que são mostradas ao usuário como resposta ao problema.
- Representação em Portugol
 Escreva expressão1, expressão2, ...
- Ex:

```
Escreva 'Seu peso ideal eh : ', peso_ideal 
Escreva 'Media final = ', (P1 + P2)/2)
```

Esquema Genérico de um Algoritmo

```
{ declaração das variáveis }
Inicio {começo do algoritmo}
  { corpo do algoritmo }
 ação 1
 ação 2
Fim. { fim do algoritmo }
```

Exemplo de Algoritmo

 Algoritmo para calcular a média de quatro números informados pelo usuário

```
{declaração das variáveis}
real: p1, p2, p3, p4, media
Inicio {começo do algoritmo}
  {corpo do algoritmo}
 Leia p1, p2, p3, p4
 media ← (p1 + p2 + p3 + p4)/4 {atribuicao}
 Escreva ' A media final e ' media
```

Fim {final do algoritmo}

Idéia inicial sobre estruturas condicional e de repetição

Estrutura condicional

se A<= B então
 Código para se
senão
 Código para senão
fim-se</pre>

Estrutura de repetição

Método Chinês

- Utilizado para verificar a corretude de um algoritmo
- Ler o algoritmo do início ao fim, obedecendo cada uma das instruções
- Anotar os valores de cada variável para cada passo do algoritmo
- 3. Ao final, será possível identificar se alguma instrução está se comportando de forma inapropriada

Construa um algoritmo (fluxograma e pseudocódigo) para calcular as raízes de uma equação do 2º grau (ax² + bx + c), sendo que os valores a, b e c são fornecidos pelo usuário (considere que a equação possui duas raízes reais). Verifique o algoritmo utilizando o Método Chinês.

 Construa um algoritmo (fluxograma e pseudocódigo) que determine o algarismo da casa das unidades de um inteiro dado. Verifique o algoritmo utilizando o Método Chinês.

 Construa um algoritmo (fluxograma e pseudocódigo) que permuta os conteúdos de duas variáveis, utilizando uma variável auxiliar. Verifique o algoritmo utilizando o Método Chinês.

 Construa um algoritmo que, tendo como dados de entrada dois pontos quaisquer do plano, P(x₁, y₁) e Q(x₂, y₂), imprima a distância entre eles. Verifique o algoritmo utilizando o Método Chinês.

Fluxograma e Pseudocódigo

MATA37: Introdução à Lógica de Programação

Prof.: Rafael A. Melo (melo@dcc.ufba.br)
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal da Bahia

