CS 135 Spring 2018: Problem Set 2.

Problem 1. (10 points) Let Fool(x, y, d) be a predicate that represents the statement "x makes a fool of y on day d." Thus, for example, $\exists x \ \forall d \ Fool(x, Lem, d)$ means that there is someone who fools Lem every day.

Express each of the following statements as a quantified predicate.

- a. Every day Lem fools someone.
- b. There is a person who, on each day, fools someone other than himself.
- c. Everyone fools someone someday.
- d. On any day a person who is fooled does not fool anyone that day.
- e. Lem never fools himself.

Now, let Wise(x), $Future(d_1, d_2)$ respectively denote the predicates "x is wise" and "on day d_1 , day d_2 lies in the future" (i.e., day d_2 comes after day d_1). Use these in addition to Fool(x, y, d) to express the following statements.

- f. A wise person never fools himself.
- g. If Lem fools a wise person someday then he never fools that person on any future day.
- h. If someone fools Lem someday then Lem fooled himself someday in the past.
- i. Anyone who is fooled by the same person on more than one day is not wise.
- j. Lem was fooled two different people other than himself, each on a different day.

Problem 2. (10 points) In this problem we explore the use of logic in computer arithmetic. As you know, computers represent numbers using the bits (binary digits) 0 and 1. These bits represent (obviously!) the numbers zero and one respectively. The number two is represented as 10, three is 11, and four is 100. The four bit sequence $b_3b_2b_1b_0$ represents the number $2^0b_0 + 2^1b_1 + 2^2b_2 + 2^3b_3$. As examples, the sequence 1001 represents $(2^3 \times 1) + (2^0 \times 1) = 8 + 1 = 9$, while the number thirteen is represented as 1101.

Suppose we have to design an addition circuit to add three one-bit numbers a_0 , b_0 , c_0 . The possible values for the sum are 0, 1, 2, and 3. So the sum will be represented by a 2-bit number s_1s_0 . For example, 0+1+1=10, while 1+0+0=01.

To see the connection to logic, let us correspond the bit value 1 with the logical value T (True) and 0 with F (False). So we can consider a_0 , b_0 , c_0 , s_1 , s_0 to be logical variables.

- a. Construct the truth tables for s_1 and s_0 in terms of the inputs a_0 , b_0 , c_0 . For example, when $a_0 = T$, $b_0 = T$, $c_0 = F$, the truth values of $s_1 = T$ and $s_0 = F$.
- b. Express s_0 as a proposition using the variables a_0, b_0, c_0 and the logical connectives

- \neg , \land , \lor . Write a similar expression for s_1 .
- c. Express s_0 and s_1 using only the NAND connective discussed in lecture.
- d. Next, let's see how to add two 2-bit numbers a_1a_0 , b_1b_0 to produce the 3-bit result $s_2s_1s_0$. Recall how we usually add numbers we first add the lowest order bits $(a_0 \text{ and } b_0)$ to get the value s_0 as well as a "carry bit" which when added with a_1 and b_1 produces s_1 and a carry bit (which is s_2 for 2-bit numbers). Express each of s_2 , s_1 , s_0 in terms of a_1 , a_0 , b_1 , b_0 using the NAND connective.