Université Mohammed 1er, Oujda

Année 2015/2016

ENSA d'Al-Hoceima

Semestre 1,

CP-II,

Analyse 3

Devoir surveillé 1

Mardi 22 décembre 2015, durée: 1h30.

Exercice 1: (5points)

Notons $A(\mathbb{R})$ l'ensemble des applications affines sur \mathbb{R} .

1- Pour f(x) = ax + b et g(x) = a'x + b' dans $A(\mathbb{R})$, on pose:

$$\begin{cases} d(f,g) = 2 \\ d(f,g) = 1 \\ d(f,a) = 0 \end{cases}$$

$$si a \neq a'
si a = a'et b \neq b'
si f = g$$

2pt

Montrer que d'est une distance sur $A(\mathbb{R})$.

2- On pose: $N_1(f) = |\mathbf{a}| + |\mathbf{b}|$ et $N_2(f) = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2}$ Montrer que N_1 et N_2 sont deux normes sur $A(\mathbb{R})$.

Exercice 2: (7points)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction définie par :

$$f(x,y) = \begin{cases} \frac{x\sqrt{y}}{x^2 + y^2} & si & (x,y) \neq (0,0) \\ 0 & si & (x,y) = (0,0) \end{cases}$$

0.5 1- Déterminer le domaine de définition D_f.

1pt	2- Etudier la continuité de f sur D _f .
1pt	3- Soit $x_0 > 0$ fixé. Etudier la dérivabilité de $f(x_0, .)$ en 0.
1,5	4- Soit $y_0 \neq 0$ fixé. Etudier la dérivabilité de $f(.,y_0)$ en 0 et en déduire $\frac{\partial f}{\partial x}(0,y_0)$.
3pt	5- Etudier la dérivabilité de f par rapport à x et à y en (x, y) tel que $x \neq 0$ et $y \neq 0$
	et calculer $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$.
	Exercice 3: (8points)
	Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 .
	1- Calculer les dérivées partielles des fonctions suivantes :
2pt	a- $f_1:\mathbb{R}^2 o \mathbb{R}$ définie par : $f_1(x,y)=f(x^2+y,y^3)$,
<u>2pt</u>	b- $f_2: \mathbb{R}^2 \to \mathbb{R}$ définie par : $f_2(x,y) = f(\cos x, \cos y)$,
<u>2pt</u>	c- $f_3: \mathbb{R}^2 \to \mathbb{R}$ définie par : $f_3(x,y) = f(e^{xy}, x-y)$.
<u>2pt</u> ,	2- Déterminer la matrice jacobienne de la fonction $g: \mathbb{R}^2 \to \mathbb{R}^2$ définie par : $g(x,y) = (f_1(x,y), f_2(x,y))$ avec $f(x,y) = xy$.