

### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

#### «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

| ФАКУЛЬТЕТ  | «Информатика, искусственный интелект и системы управления» |
|------------|------------------------------------------------------------|
| КАФЕДРА «П | рограммное обеспечение ЭВМ и информационные технологии»    |

# Отчёт по лабораторной работе № 2 по курсу «Моделирование»

| Тема Ма | арковские процессы  |
|---------|---------------------|
| Студент | Волков Г.В.         |
| Группа  | ИУ7-71Б             |
|         | баллы)              |
|         | ватель Рудаков И.В. |

#### Марковские процессы

Случайный процесс называется марковским, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящем и не зависит от того, когда и как система пришла в это состояние.

## Среднее относительное время пребывания системы

Предельная вероятность состояния показывает среднее относительное время пребывания системы в этом состоянии. Для их поиска используются уравнения Колмогорова, которые имею вид:

$$P_i'(t) = \sum_{j=1}^{n} \lambda_{ji} P_j(t) - P_i(t) \sum_{j=1}^{m} \lambda_{ij},$$
 (1)

где  $P_i(t)$  — вероятность того, что система находится в i-ом состоянии; n — число состояний в системе из которых можно перейти в i—е состояние; — число состояний в системе в которые можно перейти из i—го состояния;  $\lambda_{ij}$  — интенсивность перехода системы из i-ого состояния в j-ое. Одно из уравнений данной системы заменяется условием нормировки:

$$\sum_{i=1}^{n} P_i(t) = 1. (2)$$

В силу того, что предельные вероятности состояний постоянны, для их определения в уравнениях Колмогорова необходимо заменить их производные нулями и решить полученную систему линейных алгебраических уравнений.

### Точки стабилизации

Для определения точек стабилизации системы определяются вероятности состояний с некоторым малым шагом  $\Delta t$ . Точка стабилизации считается найденной, если приращение вероятности, а также разница между ранее найденной предельной вероятностью состояния и вычисленной вероятностью, достаточно малы, то есть выполняются соотношения:

$$|P_i(t + \Delta t) - P_i(t)| < \varepsilon, \tag{3}$$

$$|P_i(t) - \lim_{t \to \infty} P_i(t)| < \varepsilon, \tag{4}$$

где  $\varepsilon$  — заданная точность.