Projektdaten

Projekt: Bauteil: Leistungsphase:

Position: S-201 Verfasser: CM

DIN EN 1995-1-1: 6.3 Stabilität von Bauteilen

6.3.1 Allgemeines

(1) Die Biegespannungen infolge spannungsloser Vorverformungen und Anfangskrümmungen, Ausmittigkeiten und eingeprägter Durchbiegungen sind zusätzlich zu solchen infolge Querlasten zu

Eingangswerte

Geometrie

L = 3,00 m b = 0,50 m h = 0,40

Bemessungswerte der Einwirkung

 $N_{ed} = 2.000 \text{ kN}$ $M_{vd} = 50 \text{ kNm}$ $M_{zd} = 30$

Charakteristische Festigkeitswerte

Güte:

 $f_{c,0,k}$ = 28.000 kN/m² $f_{m,y,k}$ = 28.000 kN/m²

 $E_{mean} = 12.500.000 \text{ kN/m}^2$

Widerstandsbeiwerte

 $k_{mod} = 0.60$ - $\gamma_m = 1.30$ -

Berechnung

Querschnittsparameter

w_y	=	0,013	m^3	W_Z	=	0,017	m^3
i_y	=	0,115	m ⁴	i_z	=	0,144	m ⁴
I_{y}	=	0,003	m²	I_z	=	0,004	m²

Bemessungswerte der Festigkeit

 $f_{c,0,d}$ = 12.923 kN/m² $f_{m,y,d}$ = 12.923 kN/m²

 $E_{meand} = 9.615.385 \text{ kN/m}^2$

9/22/2022 1

Schnittgrößenermittlung

Schnittgrößen nach Theorie I. Ordnung

$$\theta$$
 = 0,0025 angesetzt in y e0 = θ * L = 0,0075 m M0 = e0 * Ned = 15,0 kNm

Schnittgrößen nach Theorie II. Ordnung

Iteration um die y-Achse

$$\text{mit} \qquad e_i = \frac{M_i * L_{eff}^2}{E_{0.05} * I * \pi^2} \qquad \qquad \text{und} \quad M_i = e_i * N_{ed} + M_{yd}$$

į	ei	Mi	е	M_{yd}
-	mm	kNm	mm	kNm
0	7,500	65,0	7,500	65,0
1	2,400	4,8	9,900	69,8
2	0,200	0,3	10,100	70,1
3	0,000	0,0	10,100	70,1
4	0,000	0,0	10,100	70,1
5	0,000	0,0	10,100	70,1
6	0,000	0,0	10,100	70,1
7	0,000	0,0	10,100	70,1
8	0,000	0,0	10,100	70,1
9	0,000	0,0	10,100	70,1
SUM	10,1	70,1	10,1	70,1

 σ_{myd} = 5.260 kN/m²

Iteration um die z-Achse

i	ei	Mi	е	M_{zd}
-	mm	kNm	mm	kNm
0	0,0	30,0	0,00	30,0
1	0,7	1,4	0,70	31,4
2	0,0	0,1	0,70	31,5
3	0,0	0,0	0,70	31,5
4	0,0	0,0	0,70	31,5
5	0,0	0,0	0,70	31,5
6	0,0	0,0	0,70	31,5
7	0,0	0,0	0,70	31,5
8	0,0	0,0	0,70	31,5
9	0,0	0,0	0,70	31,5
SUM	0,7	31,5	0,7	31,5

 σ_{mzd} = 1.888 kN/m²

9/22/2022 2

Spannungen

$$\sigma_{cd}$$
 = ##### kN/m²

$$\sigma_{myd}$$
 = 5.260 kN/m²

$$\sigma_{mzd}$$
 = 1.888 kN/m²

Nachweis

Gl. (6.19)

$$\eta = \left(\frac{10.000}{12.923}\right)^2 + \frac{5.260 * 0.7}{12.923} + \frac{1.888 * 1}{12.923} = 1.03$$

9/22/2022 3