EKSAMENDATABLAD VIR GEVORDERDEPROGRAM-FISIKA

Fisiese konstantes

Naam	Simbool	Waarde met eenheid
Swaartekragversnelling	g	9,81 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3,00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Universele swaartekragkonstante	G	6,67 × 10 ⁻¹¹ N·m ² ·kg ⁻²
Coulomb se konstante	k	8,99 × 10 ⁹ N·m ² ·C ⁻²
Grootte van lading op 'n elektron	е	1,602 × 10 ⁻¹⁹ C
Massa van 'n elektron	m _e	9,109 × 10 ⁻³¹ kg
Massa van 'n proton	m _p	1,673 × 10 ⁻²⁷ kg
Massa van 'n neutron	m _n	1,675 × 10 ⁻²⁷ kg
Verenigde atoommassa-eenheid	и	1,660 × 10 ⁻²⁷ kg
Avogadro-getal	N _A	$6,022 \times 10^{23} \text{ mol}^{-1}$
Absolute nulpunttemperatuur	T_0	−273,15 °C
1 ligjaar	ly	9,461 × 10 ¹⁵ m
Stefan-Boltzmann-konstante	σ	5,67 × 10 ⁻⁸ W·m ⁻² ·K ⁻⁴

Formules

Termiese fisika				
$\Delta L = \alpha L_0 \Delta T$	Q= <i>mc</i> ∆ <i>T</i>		$Q = mL_f$	
$\Delta V = \beta V_0 \Delta T$			$Q = mL_{\nu}$	
Moderne fisika				
$\lambda = \frac{\ln 2}{\frac{t_1}{2}}$	$\lambda = \frac{\ln 2}{\frac{t_1}{2}}$		$t = -\frac{\ln(\frac{A}{A_0})}{\lambda}$	
$\lambda_{maks}T = 2,90 \times 10^{-3} \text{ m} \cdot \text{K}$			$\frac{L_{ster}}{L_{son}} = \left(\frac{m_{ster}}{m_{son}}\right)^{a}$	

IEB Copyright © 2021 BLAAI ASSEBLIEF OM

Meganika						
$v = u + at$ of $v_f = v_i + a\Delta t$		$s = \left(\frac{v+u}{2}\right)t \text{ of } \Delta x = \left(\frac{v_f + v_i}{2}\right)t$				
$v^2 = u^2 + 2as \ of \ v_f^2 = v_i^2 + 2a\Delta x$		$s = ut + \frac{1}{2}at^2$ of $\Delta x = v_i \Delta t + \frac{1}{2}a(\Delta t^2)$				
$f = \frac{1}{T}$	$\omega = \frac{\theta}{t}$		$T = \frac{2\pi}{\omega}$			
$s = \theta r$	$v = \omega r$		$a = \frac{V^2}{r}$			
$g = \frac{GM}{r^2}$	$a = \omega^2 r$		$F = m\omega^2 r$			
$ au = r F_{\perp}$		$ au = r_{\perp} F$				
Gelaaide deeltjies in velde						
$E = \frac{F}{q}$	$E = \frac{V}{d}$		$F = qvB \sin \theta$			
Ossillasies						
$a = -\omega^2 x$	$x = x_0 \sin \omega t$		$x = x_0 \cos \omega t$			
$v = v_0 \cos \omega t$	$v = v_0 \sin \omega t$		$V = \pm \omega \sqrt{X_0^2 - X^2}$			
$E_{\kappa} = \frac{1}{2}m\omega^2 (x_0^2 -$	$E_{\kappa} = \frac{1}{2}m\omega^2(x_0^2 - x^2)$		$E_{P} = \frac{1}{2}m\omega^{2}x^{2}$			