11

6.6

a

Make an addition table for $E_5: Y^2 \equiv X^3 + X + 2 \pmod{5}$

✓ Answer ∨

Only 0, 1, 4 are possible quadratic residues $\mod 5$

When $X = 0, Y^2 = 2 \pmod{5}$, which has no solutions for Y

When $X=1,Y^2=4\pmod{5}\implies \{2,3\}\in Y$

When $X = 2, Y^2 = 2 \pmod{5}$, which has no solutions for Y

When $X = 3, Y^2 = 2 \pmod{5}$, which has no solutions for Y

When $X=4,Y^2=0\pmod{5}\implies \{0\}\in Y$

This gives us solution points of $\{\mathscr{O}, (1,2), (1,3), (4,0)\}$

+	0	(1,2)	(1, 3)	(4, 0)
0	0	(1,2)	(1,3)	(4, 0)
(1,2)	(1,2)	(4, 0)	0	(1, 3)
(1,3)	(1, 3)	Ø	(4, 0)	(1, 2)
(4, 0)	(4,0)	(1, 3)	(1, 2)	0

6.7

Let E be the elliptic curve $y^2=x^3+x+1$

Compute the number of points in the group $E(\mathbb{F}_p)$ and the trace of Frobenius $t_p=p+1-\#E(\mathbb{F}_p)$ and verify that $|t_p|$ is smaller than $2\sqrt{p}$

for each of the following primes:

a

$$p = 3$$

✓ Answer

Only 0, 1 are possible quadratic residues $\mod 3$

When $X=0,Y^2=1\pmod 3\implies\{1,2\}\in Y$ When $X=1,Y^2=0\pmod 3\implies\{0\}\in Y$ When $X=2,Y^2=2\pmod 3$, which has no solutions for Y This gives us solution points of $\{\mathscr O,(0,1),(0,2),(1,0)\}$ $\#E(\mathbb F_3)=4$ $t_3=0$ $0<2\sqrt{3}$

b

$$p = 5$$

✓ Answer

Only 0, 1, 4 are possible quadratic residues $\mod 5$

When $X = 0, Y^2 = 1 \pmod{5} \implies \{1, 4\} \in Y$

When $X = 1, Y^2 = 3 \pmod{5}$, which has no solutions for Y

When $X = 2, Y^2 = 1 \pmod{5} \implies \{1, 4\} \in Y$

When $X = 3, Y^2 = 1 \pmod{5} \implies \{1, 4\} \in Y$

When $X=4,Y^2=4 \pmod 5 \implies \{2,3\} \in Y$

This gives us solution points of $\{\mathscr{O}, (0,1), (0,4), (2,1), (2,4), (3,1), (3,4), (4,2), (4,3)\}$

$$\#E(\mathbb{F}_5)=9$$

$$t_5=-3$$

$$3 < 2\sqrt{5}$$

C

$$p = 7$$

✓ Answer

Only 0, 1, 2, 4 are possible quadratic residues $\mod 7$

When $X=0,Y^2=1\pmod{7} \implies \{1,6\} \in Y$

When $X = 1, Y^2 = 3 \pmod{7}$, which has no solutions for Y

When $X=2, Y^2=4 \pmod{7} \implies \{2,5\} \in Y$

When $X = 3, Y^2 = 3 \pmod{7}$, which has no solutions for Y

When $X = 4, Y^2 = 6 \pmod{7}$, which has no solutions for Y

When $X = 5, Y^2 = 5 \pmod{7}$, which has no solutions for Y

When $X = 46, Y^2 = 6 \pmod{7}$, which has no solutions for Y

This gives us solution points of $\{\mathscr{O},(0,1),(0,6),(2,2),(2,5)\}$ $\#E(\mathbb{F}_7)=5$ $t_7=3$ $3<2\sqrt{7}$

d

p = 11

✓ Answer

Only 0, 1, 3, 4, 5, 9 are possible quadratic residues $\mod 11$

When $X = 0, Y^2 = 1 \pmod{1} \implies \{1, 10\} \in Y$

When $X = 1, Y^2 = 3 \pmod{1}$ 1, which has no solutions for Y

When $X=2, Y^2=0 \pmod{1} 1 \implies \{0\} \in Y$

When $X=3,Y^2=9\pmod{1}1\implies \{3,8\}\in Y$

When $X = 4, Y^2 = 3 \pmod{1}$ 1, which has no solutions for Y

When $X = 5, Y^2 = 10 \pmod{1}$ 1, which has no solutions for Y

When $X = 6, Y^2 = 6 \pmod{3}$, which has no solutions for Y

When $X=7, Y^2=6 \pmod 10$, which has no solutions for Y

When $X=8,Y^2=6\pmod 4\implies \{2,9\}\in Y$

When $X = 9, Y^2 = 3 \pmod{4}$, which has no solutions for Y

When $X = 10, Y^2 = 3 \pmod{1}0$, which has no solutions for Y

This gives us solution points of $\{\mathcal{O}, (0,1), (0,10), (2,0), (3,3), (3,8), (8,2), (8,9)\}$

$$\#E(\mathbb{F}_7)=8$$

$$t_7=4$$

$$8 < 2\sqrt{11}$$