Department of Electrical and Computer Engineering University of Victoria

ELEC 300 - Linear Circuits II

LABORATORY REPORT

Experiment No.: 3

Title: Time Domain Responses

Date of experiment: 4 March, 2016

Report submitted on: 11 March, 2016

To: H. Singh, B07

Names: M. Drinnan (V00755525)

T. Mulligan (V00819591)

T. Stephen (V00812021)

1 Objective

This lab will create an active realization of a second order system. The output of the circuit will be used to verify the system parameters.

2 Introduction

Inductors in second order systems can be replaced by amplifiers and capacitors. Fig. 1 shows an active second order system with a gain of $G = 1 + \frac{R_a}{R_b}$.

$$C_1 = C_2 = 16 \text{ nF} = C$$
, $R_1 = R_2 = 10 \text{ k}\Omega = R$, $R_b = 39 \text{ k}\Omega$, $R_a = 78(1 - \zeta) \text{ k}\Omega$

Figure 1: Active realization of a second order system

The transfer function of this system is:

$$H(s) = \frac{G\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \tag{1}$$

where

$$\omega_0 = \frac{1}{RC} \tag{2}$$

and

$$\zeta = 1 - \frac{R_a}{2R_b}. (3)$$

When the unit step function is applied to Fig. 1 it will produce an output similar to Fig. 2.

Figure 2: Step response of second order system

The system parameters ζ and ω_0 can be obtained from this graph since:

$$O_v = \exp\left(\frac{-\zeta\pi}{\beta}\right) \tag{4}$$

$$T_p = \frac{\pi}{\omega_0 \beta}.\tag{5}$$

 O_v can be obtained from Fig. 2 as:

$$O_v = \frac{V_{peak} - V_{steady}}{V_{steady}}.$$

3 Results and Discussion

Fig. 1 was realized with damping factor $\zeta = 0.1$. Using (3), $R_a = 70.2 \,\mathrm{k}\Omega$. The opamp supply power was set at $\pm 15 \,\mathrm{V}$. An input signal of 1 V_{pp} at 50 Hz square wave was applied to the circuit. One pulse of the square wave will behave locally like a unit step function.

The output of this circuit is shown in Fig. 3. The large overshoot corresponds to significant underdamping, which is consistent with $\zeta = 0.1$.

Figure 3: Measured response of second order system

The measured values are $O_v = \frac{2.225\,\mathrm{V}}{2.8\,\mathrm{V}} = 0.7946$ and $T_p = 460\,\mathrm{\mu s}$. As the transient response is damped, the value of the output settles to 2.8 V. This is consistent with G = 2.8 for an input of 1 V.

Using equation (4) and Fig. 3, Zeta could be solved for.

$$\frac{\ln(O_v)}{\pi} = \frac{\zeta}{\sqrt{1-\zeta^2}} \tag{6}$$

The experimentally determined value of ζ was found to be $\zeta = 0.07$. Next, ω_0 was solved for by rearranging (5).

$$\omega_0 = \frac{\pi}{T_p \beta} \tag{7}$$

Solving equation (7) gives an angular velocity of $\omega_0 = 6845 \text{ rad s}^{-1}$.

Figure 4: Some simulated time domain response values over the measured response of the second order system

Using the determined values for ζ and ω_0 , several simulated time domain response points were generated using equation 3.12a in the lab manual. The equation and resulting figure can be seen below.

$$a(t) = G(1 - \frac{1}{\beta}exp(-t\zeta\omega_0)sin(t\omega_0\beta + \theta))$$
(8)

4 Conclusion

We realized a second-order voltage amplifier, and found the response of the system using a unit-step input. Our results were consistent with our calculated values of ζ and ω , with zeta being slightly lower due to non-idealistic parameters such as resistive losses in the capacitors and the wide tolerances present in capacitors values. Overall, our results resembled the general response of a second order system.