人工神经网络 第一次作业

MNIST Digits Classification with CNN

计 55 张卡尔 2015011025

2017年10月25日

实验内容

本实验将会使用卷积神经网络实现 MNIST 手写数字识别分类,对不同的网络结构以及不同的参数进行讨论,与 MLP 进行对比,探索优化方法及策略。

网络结构设计

本实验主要使用的网络结构如下:

- 输入层 (N * 28 * 28)
- 卷基层 (N*4*28*28, 卷积核大小3*3)
- Relu 层
- 池化层(N*4*14*14)
- 卷基层 (N*4*14*144, 卷积核大小3*3)
- Relu 层
- 池化层(N*4*7*7)
- 全连接层(N * 196 * 10)
- Softmax 交叉熵损失层

训练参数探究

损失函数函数

使用相同参数、相同结构的上述网络,分别使用 Euclidean 和 SoftmaxCrossEntropy 两种损失函数训练 100 个 epoch,对比结果如下。

策略	训练集 loss	测试集 loss	训练集 acc	测试集 acc	训练时间	参数个数
Euclidean	0.087	0.088	96.75%	96.78%	233 分钟	2158
SoftmaxCrossEntropy	0.046	0.043	98.56%	98.65	233 分钟	2158%

Table 1: 损失函数对比表

Figure 1: 损失函数对比图

通过对比,可以发现在使用相同的参数和网络结构对同一任务进行训练时,在训练相同数量的 epoch 的情况下,Relu 比 Sigmoid 收敛速度更快且最终精确度更高,损失值更小。分析其原因,我认为是 Sigmoid 函数本身的特点导致的。Sigmoid 函数在中间部分的梯度较高,在两侧梯度很低,导致训练到一定程度时,梯度越来越小,从而训练速度十分缓慢。而 Relu 函数在 $[0,\infty)$ 上的梯度为常数,不会出现梯度消失的问题,因而收敛速度更快,且能够在更少数量的 epoch 上达到比较高水平的精准度。

在训练时间方面, Sigmoid 网络花费了 51′53″, Relu 网络花费了 57′26″, 相差不大。

Learning Rate

初始权重

策略	训练集 loss	测试集 loss	训练集 acc	测试集 acc	训练时间	参数个数
init_std=0.1	0.045	0.047	98.66%	98.52%	233 分钟	2158
init_std=1	0.046	0.043	98.56%	98.65%	233 分钟	2158

Table 2: 初始权重对比

Figure 2: 初始权重对比图

Figure 3: 通道数对比图

策略	训练集 loss	测试集 loss	训练集 acc	测试集 acc	训练时间	参数个数
8 通道	0.029	0.028	99.08%	99.10%	540 分钟	4584
4 通道	0.046	0.043	98.56%	98.65%	233 分钟	2158

Table 3: 通道数对比表

通道数

其他参数

由于本次实验时间有限,之前几个参数的调整过程占用时间过长,其他参数的优化问题在本次实验中没有深入研究。batch_size 使用的是常规的 100, weight_decay 由于在其他参数尚未优化之前效果不明显,故暂取为 0。

实验总结

本次实验占用了我很多的时间,收获也是十分丰富的。我走了许多弯路,例如在一开始在寻找正常的高准确度上浪费了许多时间,由于有多个参数未调,因此有时候会同时修改了多个参数,导致找到了一个相对较优的参数就开始进行优化算法的实现。但其实后来才发现把 learning rate 调大以后甚至比现在做过优化的算法效果还好。总而言之,通过这次实验我真实体会到了网络结构、激励函数、参数这些对网络效果的影响。只有真正理解了每一个数值的具体含义和其对网络的影响,才能进行合理的调参。