Verifiably Truthful Mechanisms

Victor Sena Molero

Universidade de São Paulo victorsenam@gmail.com

1 de dezembro de 2017

Título

mechanism Mecanismo. Algoritmo que recebe as preferências dos jogadores e decide o resultado.

truthful Verdadeiro. A prova de estratégia.

verifiable Verificavel. É fácil (polinomial) convencer o jogador de que o mecanismo é verdadeiro.

O objetivo é desenvolver mecanismos a verdadeiros verificáveis e compará-los com os mecanismos verdadeiros gerais.

Procedimento

- Especificar formalmente os mecanismos.
- Construir um algoritmo que decide se o mecanismo é verdadeiro.
- 3 Analisar a qualidade dos mecanismos verdadeiros verificáveis.

Os autores consideram que o procedimento é o principal legado do artigo.

Parte I : Especificar formalmente os mecanismos

- Foco em "facility location", o problema do ar condicionado.
 - n jogadores escolhem em \mathbb{R} .
 - Custo $C(x_k, y) = |x_k y|$. x_k é a preferência do jogador k e y é o resultado do jogo.
 - Progresso recente sobre a qualidade destes.
 - Já foi um bom primeiro exemplo ("proof of concept") para perguntas sobre mecanismos.

Parte I : Especificar formalmente os mecanismos

- Foco em "facility location", o problema do ar condicionado.
 - n jogadores escolhem em \mathbb{R} .
 - Custo $C(x_k, y) = |x_k y|$. x_k é a preferência do jogador k e y é o resultado do jogo.
 - Progresso recente sobre a qualidade destes.
 - Já foi um bom primeiro exemplo ("proof of concept") para perguntas sobre mecanismos.
- Mecanismos determinísticos:
 - Árvores de decisão binária que comparam escolhas.
 - Cada folha retorna uma combinação convexa das escolhas.
- Mecanismos aleatorizados:
 - Escolhe um mecanismo determinístico aleatoriamente e usa ele.
 - Vamos descrever um formato mais conciso para manter a eficiência.

Parte II : Construir o algoritmo de verificação

- Caso determinístico:
 - Polinomial no tamanho da árvore e em n.
 - Não dá pra melhorar.
- Caso aleatorizado:
 - Universalmente a verdadeiro (= universal truthfulness).
 - Os resultados são equivalentes.

Conclusão

Verificável significa ter uma árvore polinomial na quantidade de jogadores.

Parte III : Analisar a qualidade dos verificáveis

- Aproximação:
 - Custo social (= social cost)
 - Custo máximo (= custo máximo)
- Resultados multiplicativos e justos.

	Custo social	Custo máximo
Verdadeiro	1	2
Univ. Verdadeiro	1	2
Verdadeiro Verificável	$\Theta(\frac{n}{\log(n)})$	2
Univ. Verdadeiro Verificável	$1+\epsilon$	2

Parte I

Especificar formalmente os mecanismos

Mecanismos determinísticos

Exemplo

Mediana de 3 jogadores.

Mecanismos aleatorizados

• Seleciona uma árvore determinística e usa ela.

Mecanismos aleatorizados

- Seleciona uma árvore determinística e usa ela.
- A r-ésima árvore:
 - Escolhida com chance p_r .
 - Possui um inteiro m_r .
 - Possui uma distribuição de probabilidade sobre subsequências de x com tamanho m_r .
 - Sorteia a sequência e alimenta em uma árvore determinística com parâmetro em \mathbb{R}^{m_r} .

Exemplo

Mediana de um subconjunto aleatório uniforme de 3 jogadores.

Parte II

Construir o algoritmo de verificação

Mecanismos determinísticos: Definições

- Para todo mecanismo determinístico \mathcal{M} , folha \mathcal{L} e $x \in \mathbb{R}^n$.
 - Resultado $\mathcal{M}(x)$.
 - Restrições $C_{\mathcal{L}}(x)$ no caminho até \mathcal{L} . Exemplo: $\{(x_1 \geq x_2), (x_2 < x_3), (x_1 \geq x_3)\}.$
 - Função $y_{\mathcal{L}}(x)$ na folha \mathcal{L} .

Mecanismos determinísticos: Definições

- Para todo mecanismo determinístico \mathcal{M} , folha \mathcal{L} e $x \in \mathbb{R}^n$.
 - Resultado $\mathcal{M}(x)$.
 - Restrições $C_{\mathcal{L}}(x)$ no caminho até \mathcal{L} . Exemplo: $\{(x_1 \geq x_2), (x_2 < x_3), (x_1 \geq x_3)\}.$
 - Função $y_{\mathcal{L}}(x)$ na folha \mathcal{L} .
- Verdadeiro: Para todo $x \in \mathbb{R}^n$, $k \in [n]$ e $x_k' \in \mathbb{R}$

$$C(x_k, \mathcal{M}(x)) \leq C(x_k, \mathcal{M}(x'_k, x)).$$

- Testar todos os jogadores k.
- Testar todos os pares de folhas \mathcal{L} , \mathcal{L}' .
- Existe um x e um x'_k tais que valem $\mathcal{C}_{\mathcal{L}}(x), \mathcal{C}_{\mathcal{L}'}(x'_k, x_{-k})$ e $\mathcal{C}(x_k, y_{\mathcal{L}}(x)) > \mathcal{C}(x_k, y_{\mathcal{L}'}(x'_k, x_{-k}))$?

- Testar todos os jogadores k.
- Testar todos os pares de folhas \mathcal{L} , \mathcal{L}' .
- Existe um x e um x'_k tais que valem $\mathcal{C}_{\mathcal{L}}(x), \mathcal{C}_{\mathcal{L}'}(x'_k, x_{-k})$ e $\mathcal{C}(x_k, y_{\mathcal{L}}(x)) > \mathcal{C}(x_k, y_{\mathcal{L}'}(x'_k, x_{-k}))$?

Vamos tentar colocar isso em um PL. O que atrapalha?

- Módulo na função de custo.
- Desigualdades estritas.

- Testar todos os jogadores k.
- Testar todos os pares de folhas \mathcal{L} , \mathcal{L}' .
- Existe um x e um x'_k tais que valem $\mathcal{C}_{\mathcal{L}}(x), \mathcal{C}_{\mathcal{L}'}(x'_k, x_{-k})$ e $\mathcal{C}(x_k, y_{\mathcal{L}}(x)) > \mathcal{C}(x_k, y_{\mathcal{L}'}(x'_k, x_{-k}))$?

Vamos tentar colocar isso em um PL. O que atrapalha?

- Módulo na função de custo. Testa tudo.
- Desigualdades estritas.

- Testar todos os jogadores k.
- Testar todos os pares de folhas \mathcal{L} , \mathcal{L}' .
- Existe um x e um x'_k tais que valem $\mathcal{C}_{\mathcal{L}}(x), \mathcal{C}_{\mathcal{L}'}(x'_k, x_{-k})$ e $\mathcal{C}(x_k, y_{\mathcal{L}}(x)) > \mathcal{C}(x_k, y_{\mathcal{L}'}(x'_k, x_{-k}))$?

Vamos tentar colocar isso em um PL. O que atrapalha?

- Módulo na função de custo. Testa tudo.
- Desigualdades estritas. Infla.

- Testar todos os jogadores k.
- Testar todos os pares de folhas \mathcal{L} , \mathcal{L}' .
- Existe um x e um x'_k tais que valem $\mathcal{C}_{\mathcal{L}}(x), \mathcal{C}_{\mathcal{L}'}(x'_k, x_{-k})$ e $\mathcal{C}(x_k, y_{\mathcal{L}}(x)) > \mathcal{C}(x_k, y_{\mathcal{L}'}(x'_k, x_{-k}))$?

Vamos tentar colocar isso em um PL. O que atrapalha?

- Módulo na função de custo. Testa tudo.
- Desigualdades estritas. Infla.

Teorema

Um mecanismo determinístico representado por uma árvore \mathcal{T} sobre um jogo de n jogadores pode ser verificado em tempo polinomial em $|\mathcal{T}|$ e n.

Podemos fazer melhor?

Teorema

Podemos fazer melhor?

Teorema

Sejam $n \ge 2$ e $\ell \le n!$. Se existe um algoritmo que verifica todo mecanismo com ℓ folhas sobre um jogo de n jogadores, ele deve analisar toda folha.

Suponha, por absurdo, que existe um que não analisa todas.

Podemos fazer melhor?

Teorema

- Suponha, por absurdo, que existe um que não analisa todas.
- Construa \mathcal{M} com ℓ folhas que realiza apenas comparações da forma $x_i < x_j$ onde i < j e devolve sempre x_1 de forma que todas as folhas sejam atingíveis (sempre possível). Este é verdadeiro pois equivale a uma ditadura.

Podemos fazer melhor?

Teorema

- Suponha, por absurdo, que existe um que não analisa todas.
- Construa \mathcal{M} com ℓ folhas que realiza apenas comparações da forma $x_i < x_j$ onde i < j e devolve sempre x_1 de forma que todas as folhas sejam atingíveis (sempre possível). Este é verdadeiro pois equivale a uma ditadura.
- Existe uma folha \mathcal{L} não analisada. Construa \mathcal{M}' idêntico a \mathcal{M} porém tal que $y_{\mathcal{L}}(x) = \frac{x_1 + \dots + x_n}{n}$. Este não é verdadeiro. Existe um vetor de preferências x distintas que alcança a folha \mathcal{L} . O jogador que prefere o menor valor tem incentivo para mentir.

Podemos fazer melhor?

Teorema

- Suponha, por absurdo, que existe um que não analisa todas.
- Construa \mathcal{M} com ℓ folhas que realiza apenas comparações da forma $x_i < x_j$ onde i < j e devolve sempre x_1 de forma que todas as folhas sejam atingíveis (sempre possível). Este é verdadeiro pois equivale a uma ditadura.
- Existe uma folha $\mathcal L$ não analisada. Construa $\mathcal M'$ idêntico a $\mathcal M$ porém tal que $y_{\mathcal L}(x) = \frac{x_1 + \dots + x_n}{n}$. Este não é verdadeiro. Existe um vetor de preferências x distintas que alcança a folha $\mathcal L$. O jogador que prefere o menor valor tem incentivo para mentir.
- Já que o algoritmo nunca analisa a folha \mathcal{L} , ele vai dar o mesmo resultado para os dois mecanismos e está incorreto.

Teorema

Seja $n \ge 2$. Qualquer algoritmo que verifique mecanismos de tamanho superpolinomial em n toma tempo superpolinomial em n no pior caso.

Esse teorema define o que é um mecanismo verificável independente do nosso algoritmo.

Um mecanismo determinístico é verificável se sua árvore tem tamanho polinomial em n.

Mecanismos aleatorizados

- Universalmente verdadeiros. Independente das escolhas.
- Esperado verdadeiro seria uma alternativa.
- Basta verificar se todas as árvores são a prova de estratégia.

Teorema

Um mecanismo aleatorizado pode ser verificado em tempo polinomial em n

e $\sum_{i=1}^{K} |T_i|$. Não é possível se livrar dos T_i , também.

Parte III

Analisar a qualidade dos verificaveis.

Qualidade dos mecanismos

- Exigir que mecanismos sejam verificáveis só é útil se estes forem "bons".
- Quão bem eles aproximam o custo social e o custo máximo?

Mecanismos deterministicos

Custo máximo:

Ótimo Média entre os extremos.

Verdadeiro Ditadura. Fator 2. Melhor possível (resultado antigo). Verificável Ditadura.

Custo social:

Ótimo Mediana.

Verdadeiro Mediana. Fator 1.

Verificável O melhor fator que conseguimos é $\Theta\left(\frac{n}{\log(n)}\right)$.

Mecanismos aleatorizados

Custo social esperado

$$\mathbb{E}[C(x,\mathcal{M}(x))] = \mathbb{E}\left[\sum_{i=1}^n C(x_i,\mathcal{M}(x))\right]$$

Custo máximo esperado

$$\mathbb{E}[\mathsf{mc}(x,\mathcal{M}(x))] = \mathbb{E}\left[\max_{i=1}^{n} C(x_i,\mathcal{M}(x))\right]$$

Mecanismos aleatorizados

• Custo máximo:

Verdadeiro Ditadura. Fator 2. Melhor possível (resultado novo). Verificável Ditadura.

Custo social:

Verdadeiro Mediana. Fator 1. Verificável Ditador aleatório garante $2-\frac{2}{n}$. O melhor fator que conseguimos é $1+\epsilon$.

Teorema

Para todo $0 < \varepsilon < \frac{1}{10}$ e $n \in \mathbb{N}$, existe um mecanismo universalmente verdadeiro de tamanho $\mathcal{O}(\operatorname{poly}(n))$ que aproxima o custo social por um fator de $1 + \varepsilon$.

Como vai ser o mecanismo? Fixa um tamanho $t = \lceil \frac{100 \ln(\frac{1}{\delta})}{(\varepsilon')^2} \rceil$ onde $\varepsilon' = \varepsilon/10$ e $\delta = \varepsilon/(2n)$, sorteia t jogadores e tira a mediana dos x deles.

- É universalmente verdadeiro?
- É verificável? O mecanismo tem tamanho $\mathcal{O}(\text{poly}(n))$?
- O fator de aproximação é $1 + \varepsilon$?

Teorema

Para todo $0 < \varepsilon < \frac{1}{10}$ e $n \in \mathbb{N}$, existe um mecanismo universalmente verdadeiro de tamanho $\mathcal{O}(\operatorname{poly}(n))$ que aproxima o custo social por um fator de $1 + \varepsilon$.

Como vai ser o mecanismo? Fixa um tamanho $t = \lceil \frac{100 \ln(\frac{1}{\delta})}{(\varepsilon')^2} \rceil$ onde $\varepsilon' = \varepsilon/10$ e $\delta = \varepsilon/(2n)$, sorteia t jogadores e tira a mediana dos x deles.

- É universalmente verdadeiro? sim
- É verificável? O mecanismo tem tamanho $\mathcal{O}(\text{poly}(n))$?
- O fator de aproximação é $1 + \varepsilon$?

Teorema

Para todo $0 < \varepsilon < \frac{1}{10}$ e $n \in \mathbb{N}$, existe um mecanismo universalmente verdadeiro de tamanho $\mathcal{O}(\operatorname{poly}(n))$ que aproxima o custo social por um fator de $1 + \varepsilon$.

Como vai ser o mecanismo? Fixa um tamanho $t=\lceil\frac{100\ln(\frac{1}{\delta})}{(\varepsilon')^2}\rceil$ onde $\varepsilon'=\varepsilon/10$ e $\delta=\varepsilon/(2n)$, sorteia t jogadores e tira a mediana dos x deles.

- É universalmente verdadeiro? sim
- É verificável? O mecanismo tem tamanho $\mathcal{O}(\text{poly}(n))$? sim: $\mathcal{O}(2^{6t})$
- O fator de aproximação é $1 + \varepsilon$?

Teorema

Para todo $0 < \varepsilon < \frac{1}{10}$ e $n \in \mathbb{N}$, existe um mecanismo universalmente verdadeiro de tamanho $\mathcal{O}(\operatorname{poly}(n))$ que aproxima o custo social por um fator de $1 + \varepsilon$.

Como vai ser o mecanismo? Fixa um tamanho $t = \lceil \frac{100 \ln(\frac{1}{\delta})}{(\varepsilon')^2} \rceil$ onde $\varepsilon' = \varepsilon/10$ e $\delta = \varepsilon/(2n)$, sorteia t jogadores e tira a mediana dos x deles.

- É universalmente verdadeiro? sim
- É verificável? O mecanismo tem tamanho $\mathcal{O}(\text{poly}(n))$? sim: $\mathcal{O}(2^{6t})$
- O fator de aproximação é $1 + \varepsilon$? ...

Uma ε -mediana x de S é tal que $(\frac{1}{2} - \varepsilon)|S| < \pi(x) < (\frac{1}{2} + \varepsilon)|S|$.

Lema

Um algoritmo que escolhe um subconjunto de t elementos de um conjunto S com n elementos e retorna sua mediana, retorna uma ε -mediana de S com probabilidade pelo menos $1-\delta$ para todos os $\varepsilon,\delta<\frac{1}{10}$ tais que

$$\frac{100\ln(\frac{1}{\delta})}{\varepsilon^2} \le t \le \varepsilon n.$$

Particionamos S.

$$S_{1} = \left\{ x \in S \mid \pi(x) \leq \frac{n}{2} - \varepsilon n \right\}$$

$$S_{2} = \left\{ x \in S \mid \frac{n}{2} - \varepsilon n < \pi(x) < \frac{n}{2} + \varepsilon n \right\}$$

$$S_{3} = \left\{ x \in S \mid \pi(x) \geq \frac{n}{2} + \varepsilon n \right\}$$

Ao escolher t elementos de S, se menos que t/2 forem escolhidos de S_1 e menos que t/2 forem escolhidos de S_3 , então a mediana sempre vai pertencer a S_2 e ser uma ε -mediana.

Qual é a probabilidade de escolher menos do que t/2 elementos de S_1 ? Criamos t Bernoullis. $X_i=1$ se o i-ésimo ensaio caiu em S_1 . Elas não são independentes, mas vale.

$$\mathbb{P}[X_i = 1] \le \frac{\frac{n}{2} - \varepsilon n}{n - (i - 1)} \le \frac{\frac{n}{2} - \varepsilon n}{n - \varepsilon n} \le \frac{1}{2} - \frac{\varepsilon}{3}$$

Criamos t Bernoullis Y_i independentes com probabilidade $\frac{1}{2} - \frac{\varepsilon}{3}$.

Denotamos
$$X=\sum\limits_{i=1}^t X_i$$
 e $Y=\sum\limits_{i=1}^t Y_i$. Vale que
$$\mathbb{P}\left[X\geq \frac{t}{2}\right]\leq \mathbb{P}\left[Y\geq \frac{t}{2}\right].$$

$$\mathbb{P}\left[Y \ge \frac{t}{2}\right] = \mathbb{P}\left[Y \ge \left(1 + \frac{\varepsilon}{\frac{3}{2} - \varepsilon}\right) \mathbb{E}\left[Y\right]\right] \tag{1}$$

$$\leq \mathbb{P}\left[Y \geq \left(1 + \frac{\varepsilon}{2}\right) \mathbb{E}\left[Y\right]\right] \tag{2}$$

$$\leq \exp\left(-\frac{\left(\frac{\varepsilon}{2}\right)^2\left(\frac{1}{2} - \frac{\varepsilon}{3}\right)t}{3}\right) \leq \frac{\delta}{2} \tag{3}$$

Onde (1) é provado a seguir, (2) é fácil e (3) usa a desigualdade de Chernoff e o fato de que $t \geq \frac{100 \ln(\frac{1}{\delta})}{\varepsilon^2}$.

$$\mathbb{P}\left[Y \ge \frac{t}{2}\right] = \mathbb{P}\left[Y \ge \left(1 + \frac{\varepsilon}{\frac{3}{2} - \varepsilon}\right) \mathbb{E}\left[Y\right]\right] \tag{1}$$

$$\leq \mathbb{P}\left[Y \geq \left(1 + \frac{\varepsilon}{2}\right)\mathbb{E}\left[Y\right]\right]$$
 (2)

$$\leq \exp\left(-\frac{\left(\frac{\varepsilon}{2}\right)^2\left(\frac{1}{2} - \frac{\varepsilon}{3}\right)t}{3}\right) \leq \frac{\delta}{2} \tag{3}$$

Onde (1) é provado a seguir, (2) é fácil e (3) usa a desigualdade de Chernoff e o fato de que $t \geq \frac{100 \ln(\frac{1}{\delta})}{\varepsilon^2}$.

$$\mathbb{P}(Z > (1+\alpha)\mu) \le e^{-\frac{\alpha^2\mu}{3}} \text{ com } 0 < \alpha < 1.$$

Provar (1) é provar

$$\frac{t}{2} = \left(1 + \frac{\varepsilon}{\frac{3}{2} - \varepsilon}\right) \mathbb{E}[Y].$$

Sabemos que $\mathbb{E}[Y] = (\frac{1}{2} + \frac{\varepsilon}{3})t$. Daí

$$egin{aligned} rac{t}{2} &= \left(rac{1}{1 - rac{2arepsilon}{3}}
ight) \mathbb{E}[Y] = \left(rac{1 - 1 + rac{2arepsilon}{3}}{1 - rac{2arepsilon}{3}} + 1
ight) \mathbb{E}[Y] \ &= \left(rac{arepsilon}{rac{3}{2} - arepsilon} + 1
ight) \mathbb{E}[Y] \end{aligned}$$

Teorema

Para todo $0 < \varepsilon < \frac{1}{10}$ e $n \in \mathbb{N}$, existe um mecanismo universalmente verdadeiro de tamanho $\mathcal{O}(\operatorname{poly}(n))$ que aproxima o custo social por um fator de $1 + \varepsilon$.

Queríamos provar que o fator era $1 + \varepsilon$.

Dado um
$$0 < \varepsilon < 1/10$$
. Escolhemos $\varepsilon' = \varepsilon/10$, $\delta = \varepsilon/(2n)$

e
$$t = \lceil \frac{100 \ln(\frac{1}{\delta})}{(\varepsilon')^2} \rceil$$
.

Seja x um vetor de preferências. Suponha que x está ordenado sem perda de generalidade. Defina $x_k=\mathcal{M}(x)$, x_m como a mediana de x, x_ℓ como a ε' -mediana que maximiza o custo social. Assuma s.p.g. que $\ell \leq m$ e defina também $\Delta = |x_\ell - x_m|$.

• Se x_k é ε' -mediana. Separando o vetor de jogadores em x_k e x_m , podemos concluir que

$$C(x, x_k) \le C(x, x_\ell) \le C(x, x_m) - \ell \Delta + (n - \ell) \Delta$$

= $C(x, x_\ell) + (n - 2\ell) \Delta$.

② Caso contrário, $C(x,x_k) \leq |x_n-x_1|(n-1)$, $C(x,x_m) \geq |x_n-x_1|$ e $C(x,x_m) \geq \ell \Delta$.

Já que o caso 1 tem probabilidade pelo menos $(1 - \delta)$,

$$\begin{split} \frac{\mathbb{E}[C(x,x_k)]}{C(x,x_m)} &\leq \frac{(1-\delta)C(x,x_m) + \Delta(1-\delta)(n-2\ell) + \delta(n-1)|x_n - x_1|}{C(x,x_m)} \\ &\leq (1-\delta) + \frac{\Delta(1-\delta)(n-2\ell)}{\ell\Delta} + \frac{\delta(n-1)|x_n - x_1|}{|x_n - x_1|} \\ &= 1 - \delta + (1-\delta)\frac{n}{\ell} - 2(1-\delta) + \delta(n-1) \\ &\leq \delta n - 1 + (1-\delta)\frac{2}{1-2\varepsilon'} \\ &\leq 1 + \delta n + 5\varepsilon' = 1 + \epsilon \end{split}$$