PROJET 5 – PRODUIRE UNE ÉTUDE DE MARCHÉ

Quelles sont les pays les plus propices pour accueillir notre développement à l'international?

<u>Sommaire</u>

- 1. Introduction aux enjeux
- Explications de l'étude de marché
- 2. Les données utilisées
- Nos données devront répondre à ces questions
- La composition de notre échantillon de travail
- Corrélations entre nos variables
- 3. Restriction du choix des pays
- Découpage des pays selon les variables de notre dataframe
- Explication des différents clusters
- Comment les pays les plus intéressants ont-ils été choisis ?
- Résumé
- 4. Les tests statistiques
- Nos valeurs suivent-elles une loi normale?
- Nos clusters sont-ils distincts?
- 5. Conclusion

Les enjeux & la méthode de notre développement à l'international

Les enjeux

La méthode

Promouvoir les volailles françaises à l'international

Optimiser le choix des pays pour notre développement

Rechercher la croissance

Minimiser le risque d'échec

Augmentation du chiffre d'affaire

Ne rien laisser au hasard

Mes données devront répondre à ces questions : Quels sont les pays qui ont le plus de disponibilité alimentaire ?

Quels pays sont les plus gros consommateurs de viande de volailles ?

Quels pays sont les plus gros importateurs de viande de volaille ?

Quels sont les pays au PIB/hab le plus élevé?

La composition de notre échantillon de travail

pays	variance de la population 2014-2018	PIB/hab en dollar	Disponibilité alimentaire (Kcal/personne/jour)	Disponibilité de protéines en quantité (g/personne/jour)	Taux de disponibilité en protéines animales par rapport aux total	Taux de disponibilité en protéines de type volaille par rapport aux total	Taux de dépendance à l'importation de viande de volaille par rapport au total	Taux d'autosuffisance de viande de volaille par rapport au total
Afghanistan	11.39	483.89	2038.0	55.50	19.44	0.92	47.17	54.72
_	11.00	400.00	2000.0	55.50	10.44	0.02	47.17	04.72
Afrique du Sud	5.96	6369.23	2895.0	84.37	42.72	18.06	23.11	79.08
Albanie	-0.47	5254.38	3361.0	115.67	53.38	3.04	44.44	59.26
Algérie	8.49	4153.96	3321.0	91.82	26.92	2.31	0.00	100.00
Allemagne	2.06	47684.76	3554.0	105.15	60.89	7.07	52.28	94.30

- Des variables qui vont répondre à nos questions précédentes
 - Des valeurs qui correspondent à chaque pays
 - Source des données : www.fao.org

Restriction du choix des pays

Partitionnement – Classification hiérarchique

Création de 5 clusters

- Clustering selon un algorithme de 'minimisation de la 5 différents groupes ont bien été crée variance'

Restriction du choix des pays

Quelles sont les caractéristiques de nos clusters?

- Cluster 1 : variance de population élevée et un PIB/hab faible
- Cluster 2 : similaire au cluster 1 et un taux d'autosuffisance élevé
- Cluster 3 : un PIB/hab élevé et un régime alimentaire basé sur la viande de volaille convenable
- Cluster 4 : Similaire au cluster 3 avec un PIB/hab plus faible mais un régime alimentaire basé sur la viande de volaille très élevé
- Cluster 5 : un taux d'autosuffisance trop élevé

Corrélations entre nos variables

- Permet de visualiser la corrélations entre nos variables
- Permet de conserver et d'expliquer le plus de variance possible de nos individus
- L'ACP permet de réduire le nombre de dimension

- Les pays situés le plus à droite ont une disponibilité alimentaire et un PIB/hab plus important
- Les pays situés le plus haut ont une dépendance à l'importation plus élevée

Restriction du choix des pays

Résumé

- Un total de 37 pays
- Les clusters 3 & 4 ont été retenus comme candidats
- Taux de dépendance à l'importation élevé
- Consommation de viande de volailles élevée
- PIB/hab élevé

Test d'adéquation de Shapiro-Wilk

Recommandé pour tester la normalité dans le cas de petits échantillons.

- . H0: Ma variable suit une loi normale
- . H1: Ma variable ne suit pas une loi normale

```
Entrée [43]: # Test plus optimal concernant des petits échantillons allant jusqu'a 5000 échantillon(source : https://lemakistatheux.com)
stat, p = shapiro(df_analyse_cluster['pib_hab'])

print('Statistics=%.3f, p=%.3f' % (stat, p))

#Interprétation
alpha = 0.05
if p > alpha:
    print('On ne peut pas rejeter H0 pour des niveaux de test de 5%')
else:
    print('H0 est rejetée pour des niveaux de test de 5%')

Statistics=0.958, p=0.170
On ne peut pas rejeter H0 pour des niveaux de test de 5%'
```

Le Test de Shapiro-Wilk est plus précis que celui de Kolmogorov-Smirnov, et également plus adapté dans notre cas de petit échantillonnage. La variable 'pib/hab' suit une loi normale.

• Notre variable suit bien une loi normale

Test de l'égalité de la variance de bartlett

```
La variable 'pib_hab' suit une loi normale et sera par conséquent choisie pour le test.
               • H0 : Mon cluster 3 a le même niveau de PIB/hab que le cluster 4
               • H1: Mon cluster 3 n'a pas le même niveau de PIB/hab que le cluster 4
Entrée [44]: # Sélection de deux différents clusters pour les comparées dans un cas gaussien
              cluster_test3 = df_analyse_cluster[df_analyse_cluster['Groupe'] == 3]['pib_hab']
              cluster test4 = df_analyse_cluster[df_analyse_cluster['Groupe'] == 4]['pib_hab']
Entrée [45]: #On teste tout d'abord l'égalité des variances à l'aide de la commande
              stat, p = bartlett(cluster_test3, cluster_test4)
              print('Statistics=%.3f, p=\overline{\pi}.3f' % (stat, p))
              #Interprétation
              alpha = 0.05
              if p > alpha:
                  print('On ne rejette donc pas H0, l'égalité des variances au niveau de test 5%')
              else:
                  print('H0 est rejetée au niveau de test 5%')
              Statistics=4.213, p=0.040
              H0 est rejetée au niveau de test 5%
```

• Nos clusters ont des variances distinct

Test de l'égalité de la moyennes de Student

La variable 'pib hab' suit une loi normale et sera par conséquent choisie pour le test.

- H0: Mon cluster 3 a la même moyenne dans ma variable PIB/hab que le cluster 4
- H1: Mon cluster 3 n'a pas la même moyenne dans ma variable PIB/hab que le cluster 4

```
#On teste ensuite l'égalité des moyennes à l'aide de la commande(t-test)
stat, p = ttest_ind(cluster_test3, cluster_test4, equal_var=True)
print('Statistics=%.3f, p=%.9f' % (stat, p))

#Interprétation
alpha = 0.05
if p > alpha:
    print('On ne rejette donc pas H0, l'égalité des moyennes de nos 2 clusters au niveau de test 5%')
else:
    print("H0 l'hypothèse d'égalité des moyennes est rejetée au niveau de test 5%")

Statistics=5.419, p=0.000004503
H0 l'hypothèse d'égalité des moyennes est rejetée au niveau de test 5%

H0 l'hypothèse d'égalité des moyennes est rejetée au niveau de test 5%
```

• La moyenne de nos clusters sont bien distinct

CONCLUSION

	pays	d_i	Groupe
0	Pays-Bas	67.584329	3
1	Chine - RAS de Hong-Kong	33.894540	3
2	Luxembourg	33.815931	3
3	Belgique	29.408971	3
4	Islande	25.919180	3
5	Malawi	25.435774	2
6	Irlande	20.442021	3
7	Chine - RAS de Macao	20.418656	3
8	Gambie	19.808839	1
9	États-Unis d'Amérique	17.812332	3
10	Israël	16.156967	3
11	Norvège	16.057685	3
12	Saint-Vincent-et-les Grenadines	15.517083	4
13	Suisse	15.507045	3
14	Ouganda	15.272202	2
15	Lituanie	15.020342	5
16	Danemark	13.592463	3
17	Îles Salomon	13.487001	1
18	Madagascar	13.338935	2
19	Samoa	13.091356	4

- 1. Pays-Bas
- 2. Luxembourg
- 3. Belgique
- 4. Irlande
- 5. Danemark

- 1. Hong-Kong
- 2. Islande
- 3. Macao
- 4. États-Unis d'Amérique
- 5. Israël