第二十六讲 行列式的性质

一、引言

二、行列式的性质

三、应用

一、引言

从上一节学习的行列式的定义我们可以看到, 利用定义来计算行列式时非常繁琐的,特别 是当行列式的阶数较大时,涉及的计算量非常 大。但我们也看到有些行列式的计算非常简单, 如三角行列式。所以我们自然有下面的问题:

是否任意一个行列式都可以通过"某些变换" 转化成三角行列式?

对该问题的回答具有基本的重要性,如果回答是肯定的,则可大大降低行列式的运算量。

二、行列式的性质

性质1 行列式与其转置行列式相等,即

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \cdot \begin{vmatrix} a_{1n} & a_{2n} & \cdots & a_{nn} \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

说明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.

性质2 行列式的某一行(列)中所有的元素都乘以同一数 k ,等于用数 k 乘此行列式.

行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.

性质3 行列式中如果有两行(列)元素对应成比例,则此行列式为零.

证明

$ a_{11} $	<i>a</i> ₁₂	•••	a_{1n}		$\begin{vmatrix} a_{11} \\ \dots \end{vmatrix}$	<i>a</i> ₁₂	•••	a_{1n}	
a_{i1}	a_{i2}	• • •	a_{in}	= k	a_{i1}	<i>a</i> _{i2}	• • •	a_{in}	- 0
ka_{i1}	ka_{i2}	• • • •	ka _{in}		a_{i1}	a_{i2}	•••	a_{in}	- 0.
a_{n1}	a_{n2}	••••	a_{nn}		a_{n1}	a_{n2}	•••	a_{nn}	

性质4 若行列式的某一列(行)的元素都是两数之和,则此行列式可以表示成两个新行列式之

和.
$$D = \begin{bmatrix} a_{11} & a_{12} & \cdots & (a_{1i} + a_{1i}) & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & (a_{2i} + a_{2i}) & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & (a_{ni} + a_{ni}) & \cdots & a_{nn} \end{bmatrix}$$

则D等于下列两个行列式之和:

$$D = \begin{vmatrix} a_{11} & \cdots & a_{1i} \\ a_{21} & \cdots & a_{2i} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{ni} \end{vmatrix} \cdots a_{nn} \begin{vmatrix} a_{11} & \cdots & a_{1i} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{ni} \end{vmatrix} \cdots a_{nn} \begin{vmatrix} a_{11} & \cdots & a_{1i} \\ \vdots & \cdots & \vdots \\ \vdots$$

性质5 互换行列式的两行(列),行列式变号.

$$\begin{vmatrix} 1 & 7 & 5 & | 1 & 7 & 5 & | 1 & 7 & 5 & | 7 & 1 & 5 \\ 6 & 6 & 2 & | -3 & 5 & 8 & | 6 & 6 & 2 & | & 3 & 5 & 8 & | & 5 & 3 & 8 \end{vmatrix}$$

推论 如果行列式有两行(列)完全相同,则 此行列式为零.

互换相同的两行,有D=-D

$$\therefore D=0.$$

$$D = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & 0 & 0 \\ a_{n1} & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$= \underbrace{\begin{pmatrix} a_{11} & a_{22} & \cdots & a_{2,n-1} & \cdots & a_{n1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n1} & 0 & \cdots & 0 & 0 \end{bmatrix}}_{2}$$

$$= (-1)^{\overline{2}} a_{1n} a_{2,n-1} \cdots a_{n1}$$

性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.

例如

$$\begin{vmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

$$\underbrace{c_{i} + kc_{j}} \begin{vmatrix} a_{11} & \cdots & (a_{1i} + ka_{1j}) & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & \cdots & (a_{2i} + ka_{2j}) & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & (a_{ni} + ka_{nj}) & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & ka_{1j} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2j} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & ka_{nj} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

$$=\begin{vmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

证明

a_{11}	a_{12}	• • •	a_{1n}		a_{11}	a_{12}	• • •	a_{1n}
•••	• • •	• • •	• • •		•••	• • •	• • •	• • •
$ a_{i1} $	a_{i2}	• • •	a_{in}	 性质6	$a_{i1} + a_{k1}$	$a_{2i} + a_{k2}$	• • •	$a_{in} + a_{kn}$
• • •	• • •	• • •	• • •		•••	• • •	• • •	• • •
$ a_{k1} $	a_{k2}	• • •	a_{kn}	$r_i + r_k$	a_{k1}	a_{k2}	• • •	a_{kn}
•••	• • •	• • •	• • •		• • •	• • •	• • •	• • •
a_{n1}	a_{n2}	• • •	a_{nn}		a_{n1}	a_{n2}	• • •	a_{nn}

性质 6 $r_k - r_i$	a_{11}		a_{12}	• • •		a_{1n}		a_{11}	a_{12}	• • •	a_{1n}
	• • •		• • •	• • •		• • •		• • •	• • •	• • •	•••
	$a_{i1} + a$	k1	• • •	• • •	a_{ir}	$a_{kn} + a_{kn}$		a_{k1}	a_{k2}	• • •	a_{kn}
	•••		• • •	• • •		• • •		• • •	• • •	• • •	•••
	$-a_{i1}$		•••	• • •		$-a_{in}$	$r_i + r_k$	$-a_{i1}$	$-a_{i2}$	• • •	$-a_{in}$
			• • •	• • • • •		• • •		• • •		• • •	•••
	a_{n1}		a_{n2}	• • •		a_{nn}		a_{n1}	a_{n2}	• • •	a_{nn}
	a_{11}	a_{12}	• •	•	a_{1n}						
	• • •	• • •	• •	•	• • •						
	a_{k1}	a_{n2}	• •	•	a_{kn}						
= -	• • •	• • •	• •	•	• • •						

 $\begin{bmatrix} - & \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$

二、应用举例

计算行列式常用方法:利用运算r_i+kr_j把行列式 化为上三角形行列式,从而算得行列式的值.

例 1
$$D = \begin{bmatrix} 1 & -1 & 2 & -3 & 1 & \times 3 \\ -3 & 3 & -7 & 9 & -5 \\ 2 & 0 & 4 & -2 & 1 \\ 3 & -5 & 7 & -14 & 6 \\ 4 & -4 & 10 & -10 & 2 \end{bmatrix}$$

$$\frac{r_3 - 3r_1}{r_4 - 4r_1} =
\begin{vmatrix}
1 & -1 & 2 & -3 & 1 \\
0 & 0 & -1 & 0 & -2 \\
0 & 2 & 0 & 4 & -1 \\
0 & -2 & 1 & -5 & 3 \\
0 & 0 & 2 & 2 & -2
\end{vmatrix}$$

$$\frac{r_2 \leftrightarrow r_4}{0} =
\begin{vmatrix}
1 & -1 & 2 & -3 & 1 \\
0 & -2 & 1 & -5 & 3 \\
0 & 2 & 0 & 4 & -1 \\
0 & 0 & -1 & 0 & -2 \\
0 & 0 & 2 & 2 & -2
\end{vmatrix}$$

$$\frac{r_5 - 2r_3}{-2r_3} = -\frac{\begin{vmatrix} 1 & -1 & 2 & -3 & 1 \\ 0 & -2 & 1 & -5 & 3 \\ 0 & 0 & 1 & -1 & 2 \\ \hline 0 & 0 & 0 & -1 & 0 \end{vmatrix} \times 4$$

$$\frac{r_5 + 4r_4}{-2r_5} = -\frac{\begin{vmatrix} 1 & -1 & 2 & -3 & 1 \\ 0 & -2 & 1 & -5 & 3 \\ 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -6 \end{vmatrix} = -(-2)(-1)(-6) = 12.$$

$$D_n = \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \cdots & \cdots & \cdots & \cdots & b \\ b & b & b & \cdots & a \end{vmatrix}$$

$$D_n = \frac{r_1 + r_2 + \cdots + r_n}{m}$$

$$= [a + (n-1)b] \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b & b & b & \cdots & a \end{vmatrix}$$

$$= [a + (n-1)b] \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ b & a-b & 0 & \cdots & 0 \\ b & a-b & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b & 0 & 0 & \cdots & a-b \end{vmatrix}$$

$$= [a + (n-1)b](a-b)^{n-1}$$

例3 求

$$D_1 = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$$

解

$$D_{1} = 10 \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 1 \\ 1 & 4 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & -3 \\ 0 & 2 & -2 & -2 \\ 0 & -1 & -1 & -1 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 0 & -4 \end{vmatrix} = 160$$

例4

若n级行列式 $D_n = |a_{ij}|$ 满足 $a_{ji} = -a_{ij}$, $i, j = 1, 2, \cdots n$ (称为反对称行列式),则当n为奇数时, $D_n = 0$.

证明

将行列式 $D_n = |a_{ij}|$ 的每一行提出(-1)得

$$D_n = (-1)^n |-a_{ij}| = (-1)^n |a_{ji}| = (-1)^n D_n^T = (-1)^n D_n.$$

由于n为奇数,所以

$$D_n = -D_n$$

即 $D_n = 0$.

小结

- 1)行列式与它的转置行列式相等,即 $D = D^{T}$.
- 2)互换行列式的两行(列),行列式变号.
- 3)如果行列式有两行(列)完全相同,则此行列式等于零.
- 4)行列式的某一行(列)中所有的元素都乘以同一数k,等于用数 k 乘此行列式.

- 5)行列式中某一行 (列)的所有元素的公因子可以 提到行列式符号的外面.
- 6)行列式中如果有两行(列)元素成比例,则此行列式为零.
- 7)若行列式的某一列(行)的元素都是两数之和,则此行列式等于两个行列式之和.
- 8)把行列式的某一列(行)的各元素乘以同一数,然 后加到另一列(行)对应的元素上去,行列式的值不变.

计算行列式常用方法: (1)利用定义; (2)利用性质把行列式化为上三角形行列式,从而算得行列式的值.