MNIST Classification on FPGA

MNIST Benchmark

- Images of Handwritten Digits (28 x 28 pixes)
- 60K Training Samples
- 10K Test Samples
- Widely used for benchmarking Classifiers

PYNQ Platform

- SoC : Zynq 7020 series SoC
 - Processing System : Dual-core ARM Cortex-A9 @ 667 MHz
 - Programming Logic : 85K Programmable Logic Cells, 53.2K LUTs, 140 X 36KB BRAMs
- Memory: 512MB DDR3 / FLASH
- Design Tool: Vivado HLS, Vivado Synthesis and Place and Route Tools

Classifier Performance (8K Batch size)

- Classification Accuracy (Misclassification Rate %)
- Inference Latency (in ms)

Classification Algorithms

- Linear Classifiers
 - compute Ax + b during classification
 - find A and b during training
 - Weight Matrix
 - Offset Vector
- Non-Linear Classifiers (like Neural Network)
- We consider only Linear Classifiers here

Overview of Classification in FPGA

```
stream in offset vector  // T_offset (Can be statically stored)
stream in weight vector  // T_weight (Can be statically stored)
for each sample in batch {  // T_tile
    stream in input  // T_input
    compute the label (classify) // T_compute
    stream out output  // T_output
}
```

Baseline Implementation

Linear Ridge Classification : alpha = 1.0

16x16 image size : 256 Features

Classification Accuracy (Python model) : 19.08%

8 bit inputs, 8 bit Classifier weights and 32 bit output (Labels and Offsets)

TILING : 1024

ARRAY PARTITION : 64

Baseline Implementation Performance

Classification Accuracy - 79.86 %

Inference Latency - 89.5ms

Speedup - 3.13x

Optimization I

Linear Ridge Classification : alpha = 140.0

12x12 image size : 144 Features

Classification Accuracy (Python model) : 18.48%

8 bit inputs, 8 bit Classifier weights and 32 bit output (Labels and Offsets)

TILING : 1024

ARRAY PARTITION : 72

Optimization I - Performance

Classification Accuracy - 80.53%

Inference Latency - 53.3ms

Speedup - 3.04x

Latency Breakdown

Component	Latency (Clock Cycles)	Iteration Latency	#(Iteration)
T_offset	22	-	
T_weight	3440	-	
T_tile	3260496	407562	8
T_input	352256	-	
T_compute	10245	-	
T_output	45056	-	

Optimization II

Linear Ridge Classification : alpha = 140.0

12x12 image size : 144 Features

Classification Accuracy (Python model) : 18.48%

8 bit inputs, 8 bit Classifier weights and 32 bit output (Labels and Offsets)

TILING : 1024

ARRAY PARTITION : 72

Pipelining Input, Output and Weight Streams

Latency Breakdown

Component	Latency (Clock Cycles)	Iteration Latency	#(Iteration)
T_offset	22	-	
T_weight	760	-	
T_tile	270472	33809	8
T_input	18432	-	
T_compute	10245	-	
T_output	5125	-	

Optimization II - Performance

Classification Accuracy - 80.53%

Inference Latency - 5.4ms

Speedup - 29.62x