Automated Weight Windows for Global MC Transport Calculations

Abstract

- Method provides flux solution over entire system (not just at detectors)
- Uses weight window
 - Distributes MC particles uniformly throughout system
 - * All subregions are adequately sampled
 - * Particle weights are controlled, even far from the source.
 - Constructed from forward transport solution
 - * More appropriate for global problems.
 - * Does not use adjoint.
 - Can be used with Eddington factors from deterministic solutions to update weight windows for MC.

Introduction

- Previous methodology for VR was applied to local flux solutions with detectors.
- $\bullet\,$ Problems with global flux solution
 - Only have survival biasing as a form of VR
 - * Large statistical errors occur away from source regions.
 - * long run times
- New method
 - Is general, can be applied to neutrons, photons, charged-particles
 - Especially adept for neutrons with deep penetration (where flux varies by OOM)
 - * Classically done with survival biasing and weights, but ends up with large variances.
 - Utilizes forward transport problem generated weight window
 - * Not adjoint.
 - * Distributes the MC particles uniformly throughout the system.
 - * Improves the point wise FOM.
 - * Generated with diffusion solution
 - · Diffusion is faster than other deterministic methods
 - · MC is slow, and errors in MC can bias weights away from interesting areas.
 - · Not Sn or PN, as accuracy is not required to generate WWs, they are expensive, and Sn are susceptible to ray effects.
 - Quasi-diffusion method
 - * Used to improve accuracy of initial diffusion WW.
 - · MC process can be used to obtain estimates of Eddington factors; can be used in quasi-diffusion method to improve flux estimates; improves WW.
 - * Better accuracy than traditional diffusion, but faster than Sn or Pn.

- Two types of Weight Windows

- * Isotropic
 - \cdot Computed only from scalar fluxes
 - \cdot Russian Roulette and splitting performed independently of particle direction and flight
- * Angular
 - \cdot Employs scatter fluxes and currents
 - \cdot Russian Roulette and splitting performed based of particle direction and flight
 - \cdot Implemented in MCNP using AVATAR method.