A quick introduction to machine learning Spyros Samothrakis Senior Lecturer, IADS University of Essex MiSoC .

June 22, 2022

Welcome/course contents

- ▶ What will this course cover?
 - ▶ Day 1: An intro to machine learning (ML)

Classic algorithms for joining those dots

- ► Day 1: ML labs
- ▶ Day 2: An intro to causal inference
- ▶ Day 2: ML and causal inference labs
- ► Textbooks?
 - ▶ Mitchell, T. M. (1997). Machine learning. 1
 - ▶ Bishop, C. M. (2006). Pattern recognition and machine learning. springer.²
 - ▶ Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science & Business Media.³

¹http://www.cs.cmu.edu/~tom/mlbook.html

²https://www.microsoft.com/en-us/research/publication/patternrecognition-machine-learning/

³http://www.stat.cmu.edu/~larry/all-of-statistics/index.html

BETTER SCIENCE THROUGH DATA

Hey, Tony, Stewart Tansley, and Kristin M. Tolle. "Jim Gray on eScience: a transformed scientific method." (2009).⁴

- ► Thousand years ago: empirical branch
 - ▶ You observed stuff and you wrote down about it
- ► Last few hundred years: theoretical branch
 - ► Equations of gravity, equations of electromagnetism
- ► Last few decades: computational branch
 - ▶ Modelling at the micro level, observing at the macro level
- ► Today: data exploration
 - ▶ Let machines create models using vast amounts of data

⁴http://languagelog.ldc.upenn.edu/myl/JimGrayOnE-Science.pdf

Better business through data

► There was a report by Mckinsey

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.⁵

- ► Urges everyone to monetise "Big Data"
- \blacktriangleright Use the data provided within your organisation to gain insights
- ► Has some numbers as to how much this is worth
- ▶ Proposes a number of methods, most of them associated with machine learning and databases

 $^{^5 \\ \}text{http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation}$

Why is it popular now?

- ightharpoonup Algorithms + data + tools
- ▶ Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.6

Classic algorithms for joining those dots

- ► Anderson, P. W. (1972). More is different. Science, 177(4047), 393 - 396.7
- ▶ Pedregosa, et.al. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830 8

⁶http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726%20 ⁷https:

^{//}www.tkm.kit.edu/downloads/TKM1_2011_more_is_different_PWA.pdf 8https:

^{//}www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

SO THIS COURSE COVERS TOOLS

- ► ML theory
 - ► Supervised learning Regression Classification
 - ► Understanding basic modelling
 - ► Confirming your model is sane
 - ► Tuning your model
 - ► All within a very applied setting
- ► Tools
 - ► Numpy
 - ► Scikit-learn

WHAT IS SUPERVISED LEARNING?

- ► Imagine someone gives you a group of smokers
 - ▶ And asks the question what is their life expectancy?
- ► Completely made up imaginary data

Some abstraction

- ▶ We are given inputs $x_0, x_1...x_n$ and we are looking to predict y
- ► Let's plot!

Regression - Link the dots (1) $$^{\rm training \; set}$$

Tuning

Regression - Link the dots (2) $_{\rm training\; set}$

Regression - Link the dots (3) $_{\mbox{\scriptsize training set}}$

Regression - Link the dots (4) $$\operatorname{training} \ \operatorname{set} \ $$

Regression - Link the dots (5) $_{\rm training\ set}$

Tuning

Regression - Link the dots (6) $$^{\rm training \; set}$$

CLASSIFICATION - DRAW A BOUNDARY (1) training set

CLASSIFICATION - DRAW A BOUNDARY (2) training set

$\begin{array}{c} {\rm CLASSIFICATION\mbox{ - DRAW\mbox{ A BOUNDARY}}} \ (3) \\ {\rm training\mbox{ set}} \end{array}$

CLASSIFICATION - DRAW A BOUNDARY (4) training set

Classification - draw a boundary (5) training set

CLASSIFICATION - DRAW A BOUNDARY (6) training set

Full data

Intuition

Introduction

- ► That's it we are given data, and we need to come up with an algorithm to join it up – but in high dimensions
 - ► Can can be binary, categorical, real-valued
- ► How well well a function joins the data is called the "loss"
- ► Very low loss is not good, it might not generalise that well to unseen data points – you can learn to memorise data instances

LINEAR REGRESSION AND CLASSIFICATION

- ► Linear and logistic regression
 - ► Logistic regression does classification
- ► You just assume everything is a line

Testin'

DECISION TREES

RANDOM FORESTS

Gradient boosting

BUT HOW DO WE KNOW THIS WILL GENERALISE WELL?

- ► Train/Validation/Test split
- ► Cross validation

Hyperparameters

- ► How many trees?
- \blacktriangleright Tree depth?
- **▶** 12?