ENM 360: Introduction to Data-driven Modeling

Lecture #2: Primer on Linear Algebra and Scientific Computing

Lecture outline

Scientific computing

Linear algebra

Matrix/vector calculus/operations

Vectors

- Basic definitions
- Vector operations (e.g. addition, subtraction, multiplication, etc.)
- Linear combinations
- Dot products
- **Norms**
- Vector/Linear spaces
- Linear (in)dependance
- Bases

(b) Polynomials.

Useful resources:

- Gilbert Strang's lectures at MIT OCW: https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra- spring-2010/video-lectures/
- Pavel Grinfeld's series on linear algebra: https://www.youtube.com/playlist? list=PLIXfTHzgMRUKXD88Idz\$14F4NxAZudSmv

Matrices

- Basic definitions
- · Matrix operations (e.g. addition, subtraction, multiplication, etc.)
- Unit matrices, transposes, inverses
- Basic properties
- Norms
- Linear transformation of vectors
- Eigenvalues and eigenvectors
- Linear systems

- (a) Original data.
- (b) Rotation by 45° .
- (c) Stretch along the (d) General linear horizontal axis. mapping.

$$\underbrace{A}_{n\times k}\underbrace{B}_{k\times m}=\underbrace{C}_{n\times m}$$
 For $A=\begin{bmatrix}1&2&3\\3&2&1\end{bmatrix}\in\mathbb{R}^{2\times 3}, B=\begin{bmatrix}0&2\\1&-1\\0&1\end{bmatrix}\in\mathbb{R}^{3\times 2}$, we obtain

$$m{AB} = egin{bmatrix} 1 & 2 & 3 \ 3 & 2 & 1 \end{bmatrix} egin{bmatrix} 0 & 2 \ 1 & -1 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 2 & 3 \ 2 & 5 \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

$$2x_1 + 3x_2 + 5x_3 = 1$$
$$4x_1 - 2x_2 - 7x_3 = 8$$
$$9x_1 + 5x_2 - 3x_3 = 2$$

$$\begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & -7 \\ 9 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}$$

Useful resources:

- Gilbert Strang's lectures at MIT OCW: https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
- Pavel Grinfeld's series on linear algebra: https://www.youtube.com/playlist? list=PLIXfTHzgMRUKXD88IdzSI4F4NxAZudSmv

Linear systems

- Direct solvers:
 - Gauss elimination/LU decomposition
 - Cholesky decomposition (SPD matrices)
 - QR decomposition
 - SVD
- Iterative solvers:
 - Jacobi iterations
 - Gauss-Seidel
 - Successive over-relaxation (SOR)
 - Krylov subspace methods (conjugate gradients, etc.)

$$2x_1 + 3x_2 + 5x_3 = 1$$
$$4x_1 - 2x_2 - 7x_3 = 8$$
$$9x_1 + 5x_2 - 3x_3 = 2$$

$$\begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & -7 \\ 9 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}$$

Useful resources:

- Gilbert Strang's lectures at MIT OCW: https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
- Pavel Grinfeld's series on linear algebra: https://www.youtube.com/playlist?
 list=PLIXfTHzgMRUKXD88IdzSI4F4NxAZudSmv

Example #1:Atmospheric science

	δ_K					
Latitude	K = 0.67	K = 1.5	K = 2.0	K = 3.0		
65	-3.1	3.52	6.05	9.3		
55	-3.22	3.62	6.02	9.3		
45	-3.3	3.65	5.92	9.17		
35	-3.32	3.52	5.7	8.82		
25	-3.17	3.47	5.3	8.1		
15	-3.07	3.25	5.02	7.52		
5	-3.02	3.15	4.95	7.3		
- 5	-3.02	3.15	4.97	7.35		
-15	-3.12	3.2	5.07	7.62		
-25	-3.2	3.27	5.35	8.22		
-35	-3.35	3.52	5.62	8.8		
- 45	-3.37	3.7	5.95	9.25		
-55	-3.25	3.7	6.1	9.5		

Table 3.1. Variation of the average yearly temperature on the Earth for four different values of the concentration K of carbon acid at different latitudes

Example #2: Finance

Fig. 3.1. Price variation of a stock over two years

Example #3: Biomechanics

Fig. 3.2. A schematic representation of an intervertebral disc

test	stress σ	stress ϵ	test	stress σ	stress ϵ
1	0.00	0.00	5	0.31	0.23
2	0.06	0.08	6	0.47	0.25
3	0.14	0.14	7	0.60	0.28
4	0.25	0.20	8	0.70	0.29

Table 3.2. Values of the deformation for different values of a stress applied on an intervertebral disc

Local approximation with Taylor series

```
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
 4 Created on Tue Aug 28 12:27:37 2018
6 @author: paris
9 import autograd.numpy as np
10 from autograd import grad
11 from scipy.special import factorial
12 import matplotlib.pyplot as plt
14 if __name__ == '__main__':
15
      def f(x):
16
17
           return np.sin(x) + np.cos(x)
18
      def TaylorSeries(f, x, x0, n = 2):
19
          T = f(x0)*np.ones like(x)
20
21
          grad f = grad(f)
22
          for i in range(0, n):
23
               T += grad_f(x0)*(x-x0)**(i+1) / factorial(i+1)
               grad_f = grad(grad_f)
24
25
           return T
26
27
28
      N = 100
      x = np.linspace(-4.0, 4.0, N)
      y = f(x)
30
31
32
      x0 = 0.0
33
      n = [0, 1, 5, 10]
34
35
      plt.figure(1)
      plt.plot(x, y, 'k-', label = 'f')
36
      for i in range(0, len(n)):
37
          T = TaylorSeries(f, x, x0, n[i])
38
           plt.plot(x, T, '--', label = '$T_{%d}$' % (n[i]))
39
40
      plt.xlabel('$x$')
      plt.ylabel('$y$')
41
      plt.legend()
42
```


$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Interpolation with Lagrange polynomials

$$f(x) = \sum_{k=1}^{n} y_k \phi_k(x), \quad \phi_k(x) = \prod_{\substack{0 \le k \le n \\ k \ne j}} \frac{x - x_j}{x_k - x_j}$$

This image shows, for four points ((-9, 5), (-4, 2), (-1, -2), (7, 9)), the (cubic) interpolation polynomial L(x) (dashed, black), which is the sum of the scaled basis polynomials $y_0 \ell_0(x)$, $y_1 \ell_1(x)$, $y_2 \ell_2(x)$ and $y_3 \ell_3(x)$. The interpolation polynomial passes through all four control points, and each scaled basis polynomial passes through its respective control point and is 0 where x corresponds to the other three control points.

Runge's phenomenon

Fig. 3.6. Two examples of Runge's phenomenon: to the left, Π_{12} computed for the data of Table 3.1, column K = 0.67; to the right, $\Pi_{12}f$ (solid line) computed on 13 equispaced nodes for the function $f(x) = 1/(1+x^2)$ (dashed line)

Interpolation with trigonometric polynomials

Fig. 3.9. The effects of aliasing: comparison between the function $f(x) = \sin(x) + \sin(5x)$ (solid line) and its trigonometric interpolant (3.11) with M = 3 (dashed line)

Nyquist-Shannon sampling theorem