Question. Given X, how to find P such that $\mathcal{M}_C(X) = \mathcal{M}_C(P)$?

Result. If $\Omega = \mathcal{M}_C(X)$, then $P_{\Omega} = X(X'X)^-X'$, where $X'X)^-$ is any generalized inverse of X'X.

Definition. If $B_{m \times n}$ is any matrix, a generalized inverse of B is any $n \times m$ matrix B^- satisfying $BB^-B = B$.

Existence. From singular value decomposition of B, there exist orthogonal matrices $P_{m \times m}$ and $Q_{n \times n}$ such that

$$P_{m \times m} B_{m \times n} Q_{n \times n} = \Delta_{m \times n} = \begin{pmatrix} D_{r \times r} & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{pmatrix},$$

where r = Rank(B). Define $\Delta_{n \times m}^- = \begin{bmatrix} D_r^{-1} & 0 \\ 0 & 0 \end{bmatrix}$ and let $B^- = Q\Delta^- P$. First,

$$\Delta\Delta^{-}\Delta = \begin{pmatrix} D_r & 0 \\ 0 & 0 \end{pmatrix} \begin{bmatrix} D_r^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} D_r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} D_r & 0 \\ 0 & 0 \end{pmatrix} = \Delta.$$

Further, $B = P'\Delta Q'$, so that

$$BB^{-}B = P'\Delta Q'Q\Delta^{-}PP'\Delta Q' = P'\Delta\Delta^{-}\Delta Q' = P'\Delta Q' = B.$$

Proof of Result. Let B = X'X. Find B^- such that $BB^-B = B$. For any $Y \in \mathcal{R}^n$, let c = X'Y, and let $\tilde{\beta}$ be any solution of $X'X\beta = X'Y$, or that of $B\beta = c$. Then

$$B(B^-c) = BB^-B\tilde{\beta} = B\tilde{\beta} = c,$$

so that $\hat{\beta} = B^-c$ is a particular solution of $B\beta = c$. Let $\hat{\theta} = X\hat{\beta} = XB^-c$. Then, $Y = \hat{\theta} + (Y - \hat{\theta})$, where

$$\hat{\theta}'(Y - \hat{\theta}) = \hat{\beta}'X'(Y - X\hat{\beta}) = \hat{\beta}'(X'Y - X'X\hat{\beta}) = 0.$$

Therefore we have an orthogonal decomposition of Y such that $\hat{\theta} \in \mathcal{M}_C(X)$ and $(Y - \hat{\theta}) \perp \mathcal{M}_C(X)$. Now note that $\hat{\theta} = X\hat{\beta} = X(X'X)^-X'Y$. i.e., for Y, its projection onto $\mathcal{M}_C(X)$ is given by $X(X'X)^-X'Y$. Therefore, $P_{\Omega} = X(X'X)^-X'$ since P_{Ω} is unique.

Techniques for finding B^- are needed: if B = X'X, then $P_{\Omega} = X(X'X)^-X'$; if we want to solve $X'X\beta = X'Y$, or $B\beta = c$, then $\hat{\beta} = B^-c$.

For $B_{p \times m}$ with rank r < p and $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$, where B_{11} (which is $r \times r$ of rank r) is nonsingular, if we take $B^- = \begin{pmatrix} B_{11}^{-1} & 0 \\ 0 & 0 \end{pmatrix}$, then note that

$$BB^{-}B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} B_{11}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} I_{r} & 0 \\ B_{21}B_{11}^{-1} & 0 \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{21}B_{11}^{-1}B_{12} \end{pmatrix}.$$

Now note that $(B_{21}|B_{22})$ is a linear function of $(B_{11}|B_{12})$, or $(B_{21}|B_{22}) = K(B_{11}|B_{12}) = (KB_{11}|KB_{12})$ for some matrix K. Therefore, $KB_{11} = B_{21}$, or $K = B_{21}B_{11}^{-1}$, so $B_{22} = KB_{12} = B_{21}B_{11}^{-1}B_{12}$.

Example. Let $B = \begin{pmatrix} 1 & 2 & 5 & 2 \\ 3 & 7 & 12 & 4 \\ 0 & 1 & -3 & -2 \end{pmatrix}$. Then rank of B is 2 since 2nd

row - 3× 1st row = 3rd row. Partition B as: $B = \begin{pmatrix} 1 & 2 & 5 & 2 \\ 3 & 7 & 12 & 4 \\ \hline 0 & 1 & -3 & -2 \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{12} & \cdots & B_{1n} & B_{1n} \end{pmatrix}$

$$\left(\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right). \text{ Take}$$

$$B^{-} = \left(\begin{array}{cc} B_{11}^{-1} & 0\\ 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 7 & -2 & 0\\ -3 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right).$$

Example. Consider the model:

$$y_1 = \beta_1 + \beta_2 + \epsilon_1$$

$$y_2 = \beta_1 + \beta_2 + \epsilon_2$$

$$y_3 = \beta_1 + \beta_2 + \epsilon_3$$

This is equivalent to

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix}.$$

$$X$$
 has rank 1; $X'X = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ \hline 3 & 3 \end{pmatrix}$, so choose $(X'X)^- = \begin{pmatrix} 1/3 & 0 \\ 0 & 0 \end{pmatrix}$.

Then check that $(X'X)(X'X)^{-}(X'X) = X'X$. We have then

$$\begin{split} X\hat{\beta} &= \hat{\theta} = X(X'X)^{-}X'Y \\ &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1/3 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} \\ &= \begin{pmatrix} 1/3 & 0 \\ 1/3 & 0 \\ 1/3 & 0 \end{pmatrix} \begin{pmatrix} y_{1} + y_{2} + y_{3} \\ y_{1} + y_{2} + y_{3} \end{pmatrix} = \begin{pmatrix} (y_{1} + y_{2} + y_{3})/3 \\ \bar{y} \\ \bar{y} \end{pmatrix} \\ &= \begin{pmatrix} \widehat{\beta_{1} + \beta_{2}} \\ \widehat{\beta_{1} + \beta_{2}} \\ \widehat{\beta_{1} + \beta_{2}} \end{pmatrix}. \end{split}$$

Only $\beta_1 + \beta_2$ can be estimated? Note $\beta_1 + \beta_2 = (1 \ 1) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ and $\mathcal{M}_C \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \mathcal{M}_C(X')$. More on this later.