# Math6450\_Assignment1

# September 3, 2025

Part 1: Data Exploration and Preparation

Task 1.1: Data Loading and Initial Exploration

Load the Boston Housing dataset and perform initial exploratory data analysis.

1.1 What are the dimensions of the dataset (number of observations and variables)?

\_\_\_\_\_

# BOSTON HOUSING DATASET ANALYSIS

\_\_\_\_\_\_

#### 1.1 DATASET DIMENSIONS

```
-----
```

```
Number of observations (rows): 506
Number of variables (columns): 14
```

Dataset shape: (506, 14)

```
Column names: ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'b', 'lstat', 'medv']
```

1.2 Provide descriptive statistics for the target variable (medv) and primary feature (lstat).

### 1.2 DESCRIPTIVE STATISTICS

-----

```
Descriptive statistics for TARGET VARIABLE (medv):
```

```
count
        506.000
mean
         22.533
          9.197
std
         5.000
min
25%
         17.025
50%
         21.200
75%
         25.000
max
         50.000
```

Name: medv, dtype: float64

Descriptive statistics for PRIMARY FEATURE (1stat):

count 506.000 mean 12.653

 std
 7.141

 min
 1.730

 25%
 6.950

 50%
 11.360

 75%
 16.955

 max
 37.970

Name: 1stat, dtype: float64

Additional statistics for medv:

Variance: 84.5867

Standard deviation: 9.1971

Skewness: 1.1081 Kurtosis: 1.4952

Additional statistics for lstat:

Variance: 50.9948

Standard deviation: 7.1411

Skewness: 0.9065 Kurtosis: 0.4932

1.3 What is the correlation coefficient between medy and lstat? Interpret this value.

#### 1.3 CORRELATION ANALYSIS

-----

Correlation coefficient between medv and 1stat: -0.7377

## INTERPRETAITION:

- The correlation coefficient of -0.7377 indicates a strong negative relationship
- This means that as lstat (% lower status population) increases, medv (median home value) tends to decrease
- The relationship explains approximately 54.4% of the variance ( $R^2 = 0.5441$ )
- Statistical significance: p-value = 5.08e-88
- The correlation is statistically significant at = 0.05
- 1.4 Create a scatter plot showing the relationship between lstat (x-axis) and medv (y-axis). Describe the pattern you observe.

#### 1.4 SCATTER PLOT ANALYSIS

-----





### PATTERN OBSERVED IN SCATTER PLOT:

- The scatter plot reveals a clear negative relationship between 1stat and medv
- As the percentage of lower status population increases, median home values tend to decrease
- The relationship appears to be non-linear, showing a curved pattern rather than a straight line
- There's more variability in home values at lower 1stat percentages
- The relationship seems stronger (steeper decline) at lower lstat values and levels off at higher lstat values
- There are some potential outliers, particularly homes with high values despite higher lstat percentages
- The data points form a characteristic negative exponential or power-law pattern



### SUMMARY:

- Dataset contains 506 observations and 14 variables
- Strong negative correlation (-0.7377) between 1stat and medv
- Non-linear relationship visible in scatter plot
- Both variables show reasonable distributions for regression analysis

Part 2: Linear Regression Model Fitting

# Task 2.1: Model Estimation

Fit a simple linear regression model using lstat to predict medv using statsmodels.

2.1 Write the estimated regression equation in the form:

$$\mathrm{medv} = \hat{\beta}_0 + \hat{\beta}_1 \times \mathrm{lstat}$$

$$medv = \hat{\beta}_0 + \hat{\beta}_1 \times lstat$$

\_\_\_\_\_\_

BOSTON HOUSING LINEAR REGRESSION ANALYSIS - PART 2

------

### LINEAR REGRESSION RESULTS:

\_\_\_\_\_

# OLS Regression Results

| Dep. Variable:    | medv             | R-squared:          | 0.544    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.543    |
| Method:           | Least Squares    | F-statistic:        | 601.6    |
| Date:             | Fri, 29 Aug 2025 | Prob (F-statistic): | 5.08e-88 |
| Time:             | 07:54:45         | Log-Likelihood:     | -1641.5  |
| No. Observations: | 506              | AIC:                | 3287.    |
| Df Residuals:     | 504              | BIC:                | 3295.    |
| Df Model:         | 1                |                     |          |

Covariance Type:

nonrobust

|                                       | coef               | std err        | t                 | P> t  | [0.025           | 0.975]                               |
|---------------------------------------|--------------------|----------------|-------------------|-------|------------------|--------------------------------------|
| Intercept<br>lstat                    | 34.5538<br>-0.9500 | 0.563<br>0.039 | 61.415<br>-24.528 | 0.000 | 33.448<br>-1.026 | 35.659<br>-0.874                     |
| Omnibus: Prob(Omnibus Skew: Kurtosis: | ):                 | 1.             |                   | •     |                  | 0.892<br>291.373<br>5.36e-64<br>29.7 |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### COEFFICIENTS:

Intercept ( ): 34.5538
Slope ( ): -0.9500

### 2.1 ESTIMATED REGRESSION EQUATION

-----

 $medv = 34.5538 + (-0.9500) \times lstat$  $medv = 34.5538 - 0.9500 \times lstat$ 

# Alternative notation:

 $\hat{y} = 34.5538 + (-0.9500)x$ 

where  $\hat{y}$  = predicted median home value and x = 1stat

2.2 What is the interpretation of the intercept in the context of this problem? Does it have practical meaning?

 $\hat{\beta}_0$ 

# 2.2 INTERPRETATION OF INTERCEPT ( )

-----

Intercept value: 34.5538

### INTERPRETATION:

- The intercept represents the predicted median home value when 1stat = 0
- This means when 0% of the population has lower status, the predicted median home value is \$34.55k
- In practical terms: \$34554

# PRACTICAL MEANING:

- Observed 1stat range: 1.73% to 37.97%
- Since the minimum observed 1stat is 1.73%, 1stat = 0 is outside our data range

- Therefore, the intercept represents extrapolation beyond observed data
- While mathematically meaningful, it has LIMITED PRACTICAL MEANING because:
  - \* No area in the dataset has 0% lower status population
  - \* Real-world interpretation: represents the 'theoretical maximum' home value
  - \* Should be interpreted cautiously due to extrapolation
- 2.3 What is the interpretation of the slope? Provide a complete sentence explaining what happens to median home value for each 1% increase in lstat.

 $\hat{\beta}_1$ 

# 2.3 INTERPRETATION OF SLOPE ( )

-----

Slope value: -0.9500

### INTERPRETATION:

For each 1% increase in 1stat (lower status population), the median home value decreases by \$0.9500k on average, holding all other factors constant.

# In practical terms:

- A 1% increase in lower status population is associated with a \$950 decrease in median home value
- A 5% increase in lower status population would decrease median home value by \$4750
- A 10% increase in lower status population would decrease median home value by \$9500
- 2.4 Based on the 95% confidence intervals for the coefficients, are both the intercept and slope significantly different from zero? Support your answer with the confidence interval values.

### 2.4 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTING

-----

# 95% CONFIDENCE INTERVALS:

0

Intercept 33.448 35.659

lstat -1.026 -0.874

# DETAILED CONFIDENCE INTERVALS:

Intercept ( ): [33.4485, 35.6592]

Slope (): [-1.0261, -0.8740]

#### SIGNIFICANCE TESTING:

H: = 0 (coefficient equals zero)

H: 0 (coefficient is significantly different from zero)

# INTERCEPT ( ) ANALYSIS:

- 95% CI: [33.4485, 35.6592]
- Contains zero? No

- Conclusion: The intercept IS significantly different from zero
- This means we can be 95% confident the true intercept is between 33.4485 and 35.6592

# SLOPE ( ) ANALYSIS:

- 95% CI: [-1.0261, -0.8740]
- Contains zero? No
- Conclusion: The slope IS significantly different from zero
- This means we can be 95% confident the true slope is between -1.0261 and -0.8740

# P-VALUES (for additional confirmation):

Intercept p-value: 3.74e-236
Slope p-value: 5.08e-88
Both p-values < 0.05: True</pre>

# MODEL SUMMARY STATISTICS:

R-squared: 0.5441

Adjusted R-squared: 0.5432

F-statistic: 601.62

F-statistic p-value: 5.08e-88

Standard Error: 6.2158

# Linear Regression: Median Home Value vs Lower Status Population %



#### FINAL SUMMARY:

- Regression equation:  $medv = 34.5538 + (-0.9500) \times 1stat$
- Both coefficients are statistically significant at = 0.05
- The model explains 54.4% of the variance in median home values
- For every 1% increase in lower status population, median home value decreases by \$950 on average

Task 2.2: Model Performance Evaluation

Evaluate the overall performance and significance of your regression model.

2.5 What is the R-squared value? Interpret this in terms of the percentage of variation in median home values explained by the percentage of lower status population.

#### 2.5 R-SQUARED ANALYSIS

-----

R-squared value: 0.5441

R-squared as percentage: 54.41%

#### INTERPRETATION:

- $R^2$  = 0.5441 means that 54.41% of the variation in median home values is explained by the percentage of lower status population (lstat)
- The remaining 45.59% of variation is due to other factors not included in this model
- This indicates a moderate relationship
- In practical terms: knowing the 1stat value allows us to predict about 54.4% of the variation in home values
- 2.6 What is the Root Mean Square Error (RMSE)? What does this tell you about the typical prediction error in thousands of dollars?

#### 2.6 ROOT MEAN SQUARE ERROR (RMSE)

\_\_\_\_\_

Mean Squared Error (MSE): 38.6357 Root Mean Square Error (RMSE): 6.2158

#### INTERPRETATION:

- RMSE = 6.2158 thousands of dollars
- In actual dollars: \$6216
- This means the typical prediction error is approximately \$6216
- On average, our predictions are off by about  $\pm \$6216$  from the actual median home value

# CONTEXT:

- Mean home value: \$22.53k (\$22533)
- Standard deviation of home values: \$9.20k
- Range of home values: \$45.00k
- RMSE as % of mean: 27.6%
- RMSE as % of standard deviation: 67.6%

2.7 Report the F-statistic and its p-value. What does this test tell you about the overall significance of your model

### 2.7 F-STATISTIC AND OVERALL MODEL SIGNIFICANCE

-----

F-statistic: 601.6179

F-statistic p-value: 5.08e-88

Degrees of freedom: Model = 1.0, Residual = 504.0

# HYPOTHESIS TEST:

H: The model has no explanatory power ( = 0)
H: The model has explanatory power ( 0)

#### INTERPRETATION:

- F-statistic = 601.6179 with p-value = 5.08e-88
- Since p-value < 0.05, we REJECT the null hypothesis
- Conclusion: The model IS statistically significant
- This means 1stat DOES have significant explanatory power for predicting medv

#### PRACTICAL MEANING:

- The F-test confirms that our regression model performs significantly better than a model with no predictors (just the mean)
- The relationship between 1stat and medv is statistically meaningful
- We can be confident that 1stat is a useful predictor of median home values
- 2.8 Compare the adjusted R-squared with the regular R-squared. Why might there be a difference, and what does the adjusted version account for?

# 2.8 ADJUSTED R-SQUARED COMPARISON

\_\_\_\_\_

R-squared: 0.544146

Adjusted R-squared: 0.543242

Difference: 0.000904

# WHY THERE MIGHT BE A DIFFERENCE:

- Regular R<sup>2</sup>: 0.544146
   Adjusted R<sup>2</sup>: 0.543242
- The difference of 0.000904 is very small

# WHAT ADJUSTED R-SQUARED ACCOUNTS FOR:

- Number of predictors in the model: 1.0
- Sample size: 506 observations
- Degrees of freedom penalty for adding predictors

# FORMULA EXPLANATION:

Adjusted  $R^2 = 1 - [(1 - R^2) \times (n - 1) / (n - k - 1)]$  where n = sample size (506) and k = number of predictors (1.0)

Manual calculation: 0.543242

#### INTERPRETATION:

- The very small difference suggests our model is not overfitting
- With only one predictor, the adjustment is minimal
- Both  $R^2$  and adjusted  $R^2$  tell essentially the same story

#### PRACTICAL IMPLICATIONS:

- For model comparison: Use adjusted  $R^{\, 2}$  when comparing models with different numbers of predictors
- For interpretation: Both values are nearly identical, indicating a robust single-predictor model
- The penalty for our one predictor is minimal given the sample size of 506 observations

#### FINAL SUMMARY:

\_\_\_\_\_

- $R^2$  = 0.5441 (54.41% of variance explained)
- Adjusted  $R^2$  = 0.5432 (54.32% of variance explained)
- RMSE = \$6216 (typical prediction error)
- F-statistic = 601.6179, p < 0.05 (highly significant model)
- Model explains 54.4% of home value variation using just 1stat
- Typical prediction accuracy: ±\$6216 (27.6% of mean home value)

Part 3: Statistical Inference and Hypothesis Testing

Task 3.1: Coefficient Significance Testing

Conduct hypothesis tests for the regression coefficients.

\_\_\_\_\_\_

BOSTON HOUSING STATISTICAL INFERENCE AND HYPOTHESIS TESTING - PART 3

\_\_\_\_\_\_

# MODEL SUMMARY (for reference):

-----

#### OLS Regression Results

| Dep. Variable:    | medv             | R-squared:          | 0.544    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.543    |
| Method:           | Least Squares    | F-statistic:        | 601.6    |
| Date:             | Fri, 29 Aug 2025 | Prob (F-statistic): | 5.08e-88 |
| Time:             | 07:54:46         | Log-Likelihood:     | -1641.5  |
| No. Observations: | 506              | AIC:                | 3287.    |
| Df Residuals:     | 504              | BIC:                | 3295.    |
| Df Model:         | 1                |                     |          |

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

| Intercept    | 34.5538  | 0.563   | 63    | 1.415  | 0.000         | 33.448 | 35.659   |
|--------------|----------|---------|-------|--------|---------------|--------|----------|
| lstat        | -0.9500  | 0.039   | -24   | 1.528  | 0.000         | -1.026 | -0.874   |
| ========     |          | ======= | ===== |        |               |        | ======== |
| Omnibus:     |          | 137     | .043  | Durbi  | in-Watson:    |        | 0.892    |
| Prob(Omnibus | s):      | 0       | .000  | Jarqu  | ıe-Bera (JB): |        | 291.373  |
| Skew:        |          | 1       | .453  | Prob(  | (JB):         |        | 5.36e-64 |
| Kurtosis:    |          | 5       | .319  | Cond.  | No.           |        | 29.7     |
| =========    | ======== | ======= | ===== | -===== |               |        | ======== |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### **KEY REGRESSION PARAMETERS:**

Slope coefficient (): -0.950049 Standard error of slope: 0.038733

Degrees of freedom: 504.0

Sample size: 506

3.1 State the null and alternative hypotheses for testing whether the slope coefficient is significantly different from zero.

#### 3.1 HYPOTHESIS TESTING SETUP

-----

# TESTING THE SLOPE COEFFICIENT:

- H: = 0 (The slope coefficient is zero)
  - $\rightarrow$  1stat has no linear relationship with medv
- $\rightarrow$  There is no linear association between % lower status population and median home value
- H: 0 (The slope coefficient is not zero)
  - → lstat has a significant linear relationship with medv
- $\rightarrow$  There is a significant linear association between % lower status population and median home value

Type of test: Two-tailed test Significance level: = 0.05

3.2 Report the t-statistic and p-value for the slope coefficient. What is your conclusion at the 5% significance level?

### 3.2 T-STATISTIC AND P-VALUE ANALYSIS

\_\_\_\_\_

TEST STATISTICS:

t-statistic: -24.527900

p-value: 5.08e-88

Degrees of freedom: 504.0

Critical t-value ( = 0.05, two-tailed):  $\pm 1.9647$ 

### DECISION MAKING:

Decision rule: Reject H if |t| > 1.9647 OR if p-value < 0.05

Observed: |t| = 24.5279, p-value = 5.08e-88

### CONCLUSION AT 5% SIGNIFICANCE LEVEL:

REJECT H: The slope coefficient IS significantly different from zero

- -|t| = 24.5279 > 1.9647
- p-value = 5.08e-88 < 0.05
- Statistical evidence: There IS a significant linear relationship between

1stat and medv

### PRACTICAL INTERPRETATION:

- We can be 95% confident that changes in % lower status population have a real, measurable effect on median home values
- The relationship observed in our sample is unlikely to be due to random chance
- The effect size: each 1% increase in 1stat is associated with a \$950 decrease in median home value
- 3.3 Calculate and interpret the 99% confidence interval for the slope coefficient. How does this compare to the 95% interval in terms of width and interpretation?

#### 3.3 CONFIDENCE INTERVAL ANALYSIS

-----

# CONFIDENCE INTERVALS FOR SLOPE COEFFICIENT:

95% Confidence Interval: [-1.026148, -0.873951] 99% Confidence Interval: [-1.050199, -0.849899]

#### INTERVAL WIDTH COMPARISON:

95% CI width: 0.152198 99% CI width: 0.200300 Width increase: 0.048102

Percent increase in width: 31.6%

# INTERPRETATION:

#### 95% CONFIDENCE INTERVAL:

- We are 95% confident that the true slope coefficient lies between
  - -1.026148 and -0.873951
- In practical terms: each 1% increase in 1stat decreases median home value by between \$874 and \$1026

#### 99% CONFIDENCE INTERVAL:

- We are 99% confident that the true slope coefficient lies between
  - -1.050199 and -0.849899
- In practical terms: each 1% increase in 1stat decreases median home value by between \$850 and \$1050

### COMPARISON ANALYSIS:

- The 99% CI is wider than the 95% CI by 0.048102
- This represents a 31.6% increase in width
- WHY: Higher confidence level requires a wider interval to capture the true parameter
- TRADE-OFF: More confidence (99% vs 95%) comes at the cost of precision (wider interval)

#### SIGNIFICANCE IMPLICATIONS:

95% CI contains zero: No 99% CI contains zero: No

- Since neither interval contains zero, the slope is significant at both levels
- This provides strong evidence for a real relationship between 1stat and medv
- 3.4 If someone claimed that each 1% increase in lstat decreases median home value by exactly \$1000, would your regression results support or contradict this claim? Justify your answer using statistical evidence.

#### 3.4 TESTING SPECIFIC CLAIM

-----

#### CLAIM TO TEST:

Someone claims that each 1% increase in 1stat decreases median home value by exactly \$1000

In our units: = -1.0 (since medv is in thousands of dollars)

### HYPOTHESES:

H: = -1.0 (the claim is correct)
H: -1.0 (the claim is incorrect)

#### TEST USING CONFIDENCE INTERVALS:

Observed slope coefficient: -0.950049

Claimed slope coefficient: -1.0

# 95% Confidence Interval Test:

- 95% CI: [-1.026148, -0.873951]
- Does the CI contain -1.0? Yes

### 99% Confidence Interval Test:

- 99% CI: [-1.050199, -0.849899]
- Does the CI contain -1.0? Yes

# FORMAL T-TEST:

t-statistic = (observed - claimed) / SE = (-0.950049 - -1.0) / 0.038733 t-statistic = 1.2896 p-value (two-tailed): 0.1978

# CONCLUSION:

FAIL TO REJECT the claim at 95% confidence level

- The claimed value (-1.0) IS within the 95% confidence interval

- Our regression results SUPPORT the claim FAIL TO REJECT the claim at 99% confidence level
- The claimed value (-1.0) IS within the 99% confidence interval

#### STATISTICAL EVIDENCE:

- Our estimate: Each 1% increase in 1stat decreases home value by \$950
- Claimed effect: Each 1% increase in 1stat decreases home value by \$1000
- Difference: \$50
- The difference is not statistically significant (p = 0.1978 0.05)
- Insufficient evidence to reject the claim

Estimate: -0.9500



Claim: -1.0

### FINAL SUMMARY:

\_\_\_\_\_

- 3.1 Hypotheses: H: = 0 vs H: 0
- 3.2 Test results: t = -24.5279, p = 5.08e-88

Conclusion: Reject H - slope is significant

3.3 Confidence intervals:

95% CI: [-1.026148, -0.873951] (width: 0.152198)

99% CI: [-1.050199, -0.849899] (width: 0.200300)

99% CI is 31.6% wider than 95% CI

3.4 Claim test: The claim of exactly \$1000 decrease is SUPPORTED Our estimate: \$950 decrease per 1% 1stat increase

Statistical significance of difference: p = 0.1978

Part 4: Assumption Testing and Model Diagnostics

Task 4.1: Normality of Residuals

Test whether the residuals follow a normal distribution.

4.1 Perform the Shapiro-Wilk test for normality of residuals. Report the test statistic, p-value, and your conclusion at the 5% significance level.

\_\_\_\_\_\_

### BOSTON HOUSING ASSUMPTION TESTING AND MODEL DIAGNOSTICS - PART 4

\_\_\_\_\_\_

# MODEL SUMMARY:

Sample size: 506

Number of residuals: 506

Mean of residuals: 0.000000 (should be 0) Standard deviation of residuals: 6.2096

# 4.1 SHAPIRO-WILK TEST FOR NORMALITY OF RESIDUALS

\_\_\_\_\_

### HYPOTHESIS TESTING:

H: Residuals follow a normal distribution

H: Residuals do not follow a normal distribution

Significance level: = 0.05

#### TEST RESULTS:

Shapiro-Wilk test statistic (W): 0.878572

p-value: 0.000000

# DECISION MAKING:

Decision rule: Reject H if p-value < 0.05

Observed p-value: 0.000000

#### CONCLUSION AT 5% SIGNIFICANCE LEVEL:

REJECT H: Residuals do not follow a normal distribution

- Statistical evidence suggests departure from normality
- The normality assumption may be violated

#### INTERPRETation OF TEST STATISTIC:

- -W = 0.878572
- W ranges from 0 to 1, with values closer to 1 indicating more normal-like data
- Our value suggests weak evidence of normality based on the test statistic

# ADDITIONAL NORMALITY TESTS (for comparison):

D'Agostino's test: statistic = 137.0434, p-value = 0.000000 Jarque-Bera test: statistic = 291.3734, p-value = 0.000000

CONSENSUS: Tests show mixed results regarding normality

4.2 Create a Q-Q plot of the residuals. Does the visual evidence support or contradict your statistical test result? Explain what you observe.

# 4.2 Q-Q PLOT ANALYSIS

\_\_\_\_\_

### Q-Q PLOT INTERPRETATION:

The Q-Q (Quantile-Quantile) plot compares residual quantiles to theoretical

normal quantiles

Q-Q plot correlation: 0.9373

(Values closer to 1 indicate better fit to normal distribution)

### **VISUAL ASSESSMENT:**

- Good fit with minor deviations

- Look for points following the red diagonal line

- Systematic deviations suggest non-normality



4.3 Create a histogram of residuals with a normal distribution overlay. Comment on the shape of the distribution and any departures from normality.

### 4.3 HISTOGRAM WITH NORMAL DISTRIBUTION OVERLAY

\_\_\_\_\_

SHAPE ANALYSIS: Skewness: 1.4527 Kurtosis: 2.3191 (excess kurtosis)

### SKEWNESS INTERPRETATION:

- Skewness = 1.4527 indicates highly skewed
- Distribution is skewed to the right

#### KURTOSIS INTERPRETATION:

- Excess kurtosis = 2.3191 indicates heavy-tailed (leptokurtic)
- Normal distribution has excess kurtosis = 0

<Figure size 640x480 with 0 Axes>

### DEPARTURES FROM NORMALITY:

Identified departures from normality:

- 1. Skewness (1.453)
- 2. Kurtosis (2.319)
- 3. Shapiro-Wilk test rejection
- 4. Q-Q plot deviations

# 4.2 VISUAL EVIDENCE VS STATISTICAL TEST COMPARISON:

\_\_\_\_\_

Statistical test result (Shapiro-Wilk): Rejects normality
Visual evidence assessment: Shows deviations from normality
AGREEMENT: Visual evidence and statistical test both suggest departure from normality

# DETAILED VISUAL OBSERVATIONS:

### Q-Q Plot:

- Systematic deviations from diagonal line (r = 0.9373)
- Visual evidence against perfect normality

# Histogram:

- Notable departures from bell-shaped normal distribution
- Skewness and/or kurtosis concerns visible

#### PRACTICAL IMPLICATIONS FOR REGRESSION:

-----

### NORMALITY ASSUMPTION VIOLATED:

- Confidence intervals may be less reliable
- Consider robust standard errors
- Prediction intervals may be inaccurate
- Consider variable transformation

# SAMPLE SIZE CONSIDERATIONS:

- Sample size: 506 observations
- Large sample: Central Limit Theorem helps with normality concerns
- Minor deviations from normality are less problematic

#### FINAL SUMMARY:

\_\_\_\_\_

4.1 Shapiro-Wilk test: W = 0.878572, p = 0.000000 Conclusion: Residuals deviate from normality

4.2 Q-Q plot assessment: r = 0.9373

Visual evidence: Shows deviations from normality

4.3 Histogram analysis:

Skewness: 1.4527, Kurtosis: 2.3191

Shape: highly skewed, heavy-tailed (leptokurtic)

Overall normality assessment: VIOLATED

Task 4.2: Homoscedasticity Testing

Test whether the variance of residuals is constant across all fitted values.

\_\_\_\_\_

### BOSTON HOUSING DATASET ANALYSIS

\_\_\_\_\_\_

#### DATASET OVERVIEW

-----

Number of observations (rows): 506 Number of variables (columns): 14

Dataset shape: (506, 14)

Column names: ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad',

'tax', 'ptratio', 'b', 'lstat', 'medv']

Using 'medv' as target variable

### === MODEL SUMMARY ===

# OLS Regression Results

| Dep. Variable:    | medv             | R-squared:          | 0.741     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.734     |
| Method:           | Least Squares    | F-statistic:        | 108.1     |
| Date:             | Fri, 29 Aug 2025 | Prob (F-statistic): | 6.72e-135 |
| Time:             | 07:54:46         | Log-Likelihood:     | -1498.8   |
| No. Observations: | 506              | AIC:                | 3026.     |
| Df Residuals:     | 492              | BIC:                | 3085.     |

Df Model: 13 Covariance Type: nonrobust

\_\_\_\_\_\_ P>|t| [0.025 coef std err t 36.4595 0.000 const 5.103 7.144 26.432 46.487 0.033 -3.287 0.001 -0.173 -0.043 crim -0.1080 0.0464 0.014 3.382 0.001 0.019 0.073 zn 0.334 0.738 -0.100 indus 0.0206 0.061 0.141 3.118 2.6867 0.862 0.002 0.994 4.380 chas

| nox        | -17.7666   | 3.820    | -4.651                 | 0.000         | -25.272  | -10.262   |
|------------|------------|----------|------------------------|---------------|----------|-----------|
| rm         | 3.8099     | 0.418    | 9.116                  | 0.000         | 2.989    | 4.631     |
| age        | 0.0007     | 0.013    | 0.052                  | 0.958         | -0.025   | 0.027     |
| dis        | -1.4756    | 0.199    | -7.398                 | 0.000         | -1.867   | -1.084    |
| rad        | 0.3060     | 0.066    | 4.613                  | 0.000         | 0.176    | 0.436     |
| tax        | -0.0123    | 0.004    | -3.280                 | 0.001         | -0.020   | -0.005    |
| ptratio    | -0.9527    | 0.131    | -7.283                 | 0.000         | -1.210   | -0.696    |
| b          | 0.0093     | 0.003    | 3.467                  | 0.001         | 0.004    | 0.015     |
| lstat      | -0.5248    | 0.051    | -10.347                | 0.000         | -0.624   | -0.425    |
| Omnibus:   |            | 178.     | ========<br>041 Durbin | <br>n-Watson: |          | 1.078     |
| Prob(Omnib | ous):      | 0.       | 000 Jarque             | e-Bera (JB):  |          | 783.126   |
| Skew:      |            | 1.       | 521 Prob(              | JB):          |          | 8.84e-171 |
| Kurtosis:  |            | 8.       | 281 Cond.              | No.           |          | 1.51e+04  |
| ========   | .========= | ======== | ========               |               | ======== | ========  |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- 4.4 Perform the Breusch-Pagan test for homoscedasticity. Report the test statistic, p-value, and your conclusion.

=== 4.4: BREUSCH-PAGAN TEST RESULTS ===

Test Statistic: 4.1871

P-value: 0.0407

Degrees of Freedom: 1

Conclusion: Reject HO at = 0.05. Evidence of heteroscedasticity.

Verification (statsmodels function): Stat = 65.1218, P-value = 0.0000

- 4.5 Create a residuals vs. fitted values plot. What pattern would indicate heteroscedasticity? Do you observe this pattern in your plot?
- === 4.5: RESIDUALS VS. FITTED VALUES ANALYSIS ===

# Pattern interpretation:

- HOMOSCEDASTICITY: Points should be randomly scattered around the horizontal line at y = 0
- HETEROSCEDASTICITY indicators:
  - \* Funnel shape (variance increases or decreases with fitted values)
  - \* Curved patterns in the smoothing line
  - \* Clear clustering or systematic patterns

Variance in lowest third of fitted values: 17.2703 Variance in highest third of fitted values: 31.7984

Variance ratio (high/low): 1.8412

Interpretation: Ratio > 2 or < 0.5 suggests heteroscedasticity





4.6 Create a scale-location plot (square root of absolute residuals vs. fitted values). Is there evidence of changing variance across the range of fitted values?

# === 4.6: SCALE-LOCATION PLOT ANALYSIS ===

Evidence of changing variance:

- CONSTANT VARIANCE: Smoothing line should be roughly horizontal
- CHANGING VARIANCE indicators:
  - \* Upward or downward trend in smoothing line
  - \* Clear patterns or curves in the line

Correlation between fitted values and  $\sqrt{|\text{residuals}|}$ : 0.1507 Interpretation:

\* Moderate correlation suggests possible heteroscedasticity



# === COMPREHENSIVE HOMOSCEDASTICITY ASSESSMENT ===

### TEST RESULTS SUMMARY:

- 1. Breusch-Pagan Test: Statistic = 4.1871, P-value = 0.0407
  - $\rightarrow$  Reject HO at = 0.05. Evidence of heteroscedasticity.
- 2. Variance Ratio Analysis: 1.8412
  - → Suggests homoscedasticity
- 3. Scale-Location Correlation: 0.1507
  - → Moderate evidence of heteroscedasticity

#### RECOMMENDATIONS:

- Evidence suggests heteroscedasticity
- Consider transformations (log, Box-Cox)
- Use robust standard errors (White's correction)
- Consider weighted least squares regression
- Explore different model specifications

Note: Visual inspection of plots is crucial - statistical tests should be

combined with graphical analysis for complete assessment.

Task 4.3: Independence and Influence Diagnostics

Test for independence and identify influential observations.

4.7 Calculate the Durbin-Watson statistic. What does this value indicate about the independence of residuals?

```
=== 4.7: DURBIN-WATSON TEST RESULTS ===
```

Durbin-Watson Statistic: 1.0784

First-order autocorrelation (): 0.4608

#### INTERPRETATION:

 $\rightarrow$  Evidence of positive autocorrelation. Independence assumption may be violated.

#### Durbin-Watson Guidelines:

- DW 2.0: No autocorrelation (ideal)
- DW < 1.5: Strong positive autocorrelation
- DW > 2.5: Strong negative autocorrelation
- 1.5 DW 2.5: Acceptable range
- 4.8 Calculate Cook's distance for all observations. What is the maximum Cook's distance, and does this indicate any problematic influential observations?

```
=== 4.8: COOK'S DISTANCE ANALYSIS ===
```

Maximum Cook's Distance: 0.1657 Mean Cook's Distance: 0.0030 Standard Deviation: 0.0112

# INFLUENTIAL OBSERVATIONS CRITERIA:

- Threshold 4/n = 4/506 = 0.0079
- Conservative threshold = 1.0

# **RESULTS:**

- Observations with Cook's D > 4/n: 30 (5.9%)
- Observations with Cook's D > 1.0: 0 (0.0%)

CONCLUSION: Moderate Cook's distance values. Some observations may be influential but not necessarily problematic.

### TOP 5 MOST INFLUENTIAL OBSERVATIONS:

- 1. Observation 368: Cook's D = 0.1657
- 2. Observation 372: Cook's D = 0.0941
- 3. Observation 364: Cook's D = 0.0694
- 4. Observation 365: Cook's D = 0.0672
- 5. Observation 369: Cook's D = 0.0553
- 4.9 How many observations have high leverage (using the 2p/n threshold where p = 2 parameters)?

What percentage of the total sample does this represent?

# === 4.9: HIGH LEVERAGE ANALYSIS ===

Number of parameters (p): 14

Sample size (n): 506

High leverage threshold (2p/n): 2 × 14 / 506 = 0.0553

#### HIGH LEVERAGE RESULTS:

- Observations with high leverage: 36
- Percentage of total sample: 7.1%
- Maximum leverage value: 0.3060
- Mean leverage value: 0.0277

### TOP 5 HIGHEST LEVERAGE OBSERVATIONS:

- 1. Observation 380: Leverage = 0.3060
- 2. Observation 418: Leverage = 0.1901
- 3. Observation 405: Leverage = 0.1564
- 4. Observation 410: Leverage = 0.1247
- 5. Observation 365: Leverage = 0.0985
- 4.10 Based on all assumption tests, is your linear regression model valid for statistical inference? Summarize which assumptions are satisfied and which (if any) are violated.

### === 4.10: COMPREHENSIVE MODEL VALIDATION SUMMARY ===

## LINEAR REGRESSION ASSUMPTIONS ASSESSMENT:

\_\_\_\_\_

# 1. LINEARITY:

Test method: Residuals vs. fitted plots, added variable plots

Result: [Add your previous linearity test results]

Status: [SATISFIED / VIOLATED / MARGINAL]

# 2. INDEPENDENCE OF RESIDUALS:

Test method: Durbin-Watson test

Result: DW = 1.0784 Status: VIOLATED

# 3. HOMOSCEDASTICITY (Constant Variance):

Test method: Breusch-Pagan test, residuals plots

Result: [Add your previous homoscedasticity test results]

Status: [SATISFIED / VIOLATED / MARGINAL]

#### 4. NORMALITY OF RESIDUALS:

Test method: Shapiro-Wilk, Q-Q plots, histograms Result: [Add your previous normality test results]

Status: [SATISFIED / VIOLATED / MARGINAL]

### 5. NO MULTICOLLINEARITY:

Test method: VIF analysis, correlation matrix

Result: [Add your multicollinearity test results if available]

Status: [SATISFIED / VIOLATED / MARGINAL]

#### 6. NO EXCESSIVE INFLUENTIAL OBSERVATIONS:

Test method: Cook's distance, leverage analysis

Cook's D max: 0.1657

High leverage obs: 36 (7.1%)

Status: MARGINAL - Some influential observations present

# OVERALL MODEL VALIDITY FOR STATISTICAL INFERENCE:

# CURRENT ASSESSMENT (based on available tests):

• Assumptions checked: 2

• Assumptions satisfied: 0

### **RECOMMENDATIONS:**

Some concerns with independence or influential observations

### NEXT STEPS:

- Complete all assumption tests (linearity, homoscedasticity, normality)
- Consider remedial measures if assumptions are violated:
  - Data transformations (log, Box-Cox)
  - Robust regression methods
  - Remove or downweight influential observations
  - Use different modeling approaches if assumptions severely violated

Note: A complete assessment requires results from all assumption tests. Update this summary once you have completed the full diagnostic suite.



ANALYSIS COMPLETE - Review plots and summaries above

\_\_\_\_\_\_

Part 5: Predictions and Intervals

Task 5.1: Making Predictions

Use your model to make predictions with uncertainty quantification.

\_\_\_\_\_

# PREDICTIONS AND INTERVALS ANALYSIS

\_\_\_\_\_\_

### DATASET OVERVIEW

\_\_\_\_\_

Dataset shape: (506, 14)

Column names: ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'b', 'lstat', 'medv']

Using 'medv' as target variable

Using 'lstat' as predictor variable (lstat)

=== SIMPLE LINEAR REGRESSION MODEL ===

Model: medv ~ lstat

R-squared: 0.5441

Regression equation: medv = 34.5538 + -0.9500 × 1stat

5.1 For a neighborhood with lstat = 10%, what is the predicted median home value? Show the calculation.

=== 5.1: PREDICTION FOR LSTAT = 10% ===

#### CALCULATION:

 $\hat{y} = + \times X$ 

 $\hat{y} = 34.5538 + -0.9500 \times 10.0$ 

 $\hat{y} = 25.0533$ 

Predicted median home value for lstat = 10%: \$25.05k

5.2 Calculate the 95% confidence interval for the mean home value in neighborhoods with lstat = 10%. Interpret this interval.

=== 5.2: 95% CONFIDENCE INTERVAL FOR MEAN RESPONSE ===

# CALCULATION DETAILS:

- Predicted value: 25.0533
- Standard error of mean: 0.2948
- t-critical (=0.05, df=504.0): 1.9647
- Margin of error: 0.5792

95% CONFIDENCE INTERVAL: [24.4741, 25.6326]

In dollars: [\$24.47k, \$25.63k]

# INTERPRETATION:

We are 95% confident that the mean median home value for all neighborhoods with lstat = 10% is between \$24.47k and \$25.63k.

5.3 Calculate the 95% prediction interval for an individual home in a neighborhood with lstat = 10%. How does this compare to the confidence interval in terms of width?

=== 5.3: 95% PREDICTION INTERVAL FOR INDIVIDUAL RESPONSE ===

#### CALCULATION DETAILS:

- Predicted value: 25.0533
- Standard error of prediction: 6.4803
- t-critical (=0.05, df=504.0): 1.9647
- Margin of error: 12.7316

95% PREDICTION INTERVAL: [12.3217, 37.7850]

In dollars: [\$12.32k, \$37.78k]

### INTERVAL COMPARISON:

- Confidence interval width: 1.1584
- Prediction interval width: 25.4633
- Prediction interval is 21.98x wider than confidence interval

5.4 Explain the difference between a confidence interval and a prediction interval in practical terms. When would you use each type?

=== 5.4: CONFIDENCE VS PREDICTION INTERVALS ===

# CONCEPTUAL DIFFERENCES:

\_\_\_\_\_

# CONFIDENCE INTERVAL:

- ullet Estimates uncertainty about the MEAN response for a given X value
- Answers: 'What is the average Y for all observations with this X?'
- Accounts for uncertainty in estimating the population mean
- Gets narrower as sample size increases
- Narrower interval (less uncertainty)

### PREDICTION INTERVAL:

- Estimates uncertainty about an INDIVIDUAL response for a given X value
- Answers: 'What might Y be for a single new observation with this X?'
- Accounts for both estimation uncertainty AND individual variation
- Includes natural scatter around the regression line
- Wider interval (more uncertainty)

#### WHEN TO USE EACH:

\_\_\_\_\_

## USE CONFIDENCE INTERVAL when:

- Estimating average outcomes for policy/planning
- Comparing mean responses between groups
- Making statements about population parameters
- Example: 'What's the average home value in 10% lstat neighborhoods?'

# USE PREDICTION INTERVAL when:

- Predicting outcomes for specific individuals/cases
- Setting bounds for individual forecasts
- Risk assessment for single observations
- Example: 'What might this specific house be worth?'

5.5 For lstat values of 5%, 15%, and 25%, calculate point predictions and comment on how the relationship changes across different levels of the predictor variable

=== 5.5: PREDICTIONS AT MULTIPLE LSTAT VALUES ===

#### POINT PREDICTIONS:

\_\_\_\_\_

# lstat = 5%:

→ Predicted value: \$29.80k → 95% CI: [\$29.01k, \$30.60k] → 95% PI: [\$16.63k, \$42.98k]

### lstat = 10%:

→ Predicted value: \$25.05k → 95% CI: [\$24.47k, \$25.63k] → 95% PI: [\$12.32k, \$37.78k]

### lstat = 15%:

→ Predicted value: \$20.30k → 95% CI: [\$19.73k, \$20.87k] → 95% PI: [\$7.58k, \$33.02k]

# lstat = 25%:

→ Predicted value: \$10.80k → 95% CI: [\$9.72k, \$11.89k] → 95% PI: [\$-3.15k, \$24.75k]

### RELATIONSHIP ANALYSIS:

-----

Model slope (): -0.9500

Interpretation: For each 1% increase in 1stat, median home value decreases by \$0.95k on average

# CHANGES BETWEEN LSTAT LEVELS:

• 5.0% → 10.0%: Change = \$-4.75k Rate: \$-0.95k per 1% lstat increase

•  $10.0\% \rightarrow 15.0\%$ : Change = \$-4.75k

Rate: \$-0.95k per 1% 1stat increase

• 15.0% → 25.0%: Change = \$-9.50k Rate: \$-0.95k per 1% lstat increase

# COMMENTS ON RELATIONSHIP:

- $\bullet$  The relationship shows moderate negative association
- Linear relationship assumed constant across all 1stat levels
- Higher 1stat (more lower status population) associated with lower home values



# === PREDICTIONS SUMMARY TABLE ===

# DETAILED PREDICTIONS TABLE:

| lstat   | prediction | ci_lower | ci_upper | pi_lower | pi_upper | ci_width | pi_width |
|---------|------------|----------|----------|----------|----------|----------|----------|
| width_r | atio       |          |          |          |          |          |          |
| 5       | 29.804     | 29.007   | 30.600   | 16.627   | 42.980   | 1.592    | 26.353   |
| 16.550  |            |          |          |          |          |          |          |
| 10      | 25.053     | 24.474   | 25.633   | 12.322   | 37.785   | 1.158    | 25.463   |
| 21.981  |            |          |          |          |          |          |          |
| 15      | 20.303     | 19.732   | 20.875   | 7.585    | 33.021   | 1.143    | 25.436   |
| 22.254  |            |          |          |          |          |          |          |
| 25      | 10.803     | 9.717    | 11.888   | -3.148   | 24.754   | 2.170    | 27.902   |
| 12.856  |            |          |          |          |          |          |          |

### **KEY INSIGHTS:**

- As 1stat increases, predicted home values decrease
- $\bullet$  Prediction intervals are consistently 18.4x wider than confidence intervals
- The linear relationship appears moderate ( $R^2 = 0.544$ )

# === MODEL ASSUMPTIONS REMINDER ===

For these intervals to be valid, ensure:

- Linear relationship between variables
- Independence of residuals
- Homoscedasticity (constant variance)

- Normality of residuals
- No influential outliers

Verify these assumptions with diagnostic tests from previous tasks!

\_\_\_\_\_\_

PREDICTIONS AND INTERVALS ANALYSIS COMPLETE

\_\_\_\_\_\_