PSALTer results panel

 $\mathcal{S} = \\ \int \int \int \int \left(-\frac{1}{2} \left(\alpha_{0} - 4 \beta_{1} \right) \, \mathcal{R}^{\alpha\beta}_{\ \alpha} \, \mathcal{R}^{\ \chi}_{\beta} + \, \mathcal{R}^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} + \, f^{\alpha\beta}_{\ \alpha} \, \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} - \, \alpha_{0}^{} \, f^{\alpha\beta}_{\ \beta} \, \partial_{\beta} \mathcal{R}^{\ \chi}_{\alpha} + \, \alpha_{0}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\alpha} - \, 4 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} f^{\alpha\beta}_{\ \alpha} + \, \alpha_{0}^{} \, f^{\alpha\beta}_{\ \alpha} \, \partial_{\gamma} \mathcal{R}^{\beta\gamma}_{\alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} f^{\alpha\beta}_{\ \alpha} + \, 4 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\ \alpha} - \, 2 \, \beta_{1}^{} \, \partial_{\beta} \mathcal{R}^{\alpha\beta}_{\$

Wave operator

	${}^{0^{+}}_{\cdot}\mathcal{F}^{\parallel}$	$0.^+f^{\parallel}$	$0.^+f^{\perp}$	$^{0}\mathcal{H}^{\parallel}$										
^{0,+} ℋ [∥] †	$\frac{\alpha}{2}$ - 2 β ₁ + α ₆ k^2	$-\frac{i(\alpha4\beta.)k}{\sqrt{2}}$	0	0										
^{0,+} f [∥] †	$\frac{i(\alpha4\beta.)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0										
0.+ f +	0	0	0	0										
^{0.} 'Æ"†	0	0	0	$\frac{1}{2}(\alpha_{0}-4\beta_{1})$	$\overset{1^{+}}{\cdot}\mathcal{F}^{\parallel}{}_{\alpha\beta}$	$^{1.}\mathcal{F}^{\perp}_{lphaeta}$	$\overset{1^+}{\cdot}f^{\parallel}_{\alpha\beta}$	${}^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}_{\alpha}$	$ f _{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$\frac{\alpha4\beta.}{2\sqrt{2}}$	$\frac{i\left(\alpha4\beta.\right)k}{2\sqrt{2}}$	0	0	0	0			
				$^{1.}\mathcal{H}^{\perp}\dagger^{lphaeta}$	$\frac{\overset{\alpha4 \beta.}{\overset{0}{0}}}{2 \sqrt{2}}$	0	0	0	0	0	0			
				$\overset{1^+}{\cdot}f^{\parallel} \stackrel{lphaeta}{+}$	$-\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	0	0	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}$ † $^{\alpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\overset{\alpha4 \beta.}{\overset{0}{0}}}{2 \sqrt{2}}$	0	$-\frac{1}{2}i(\alpha_{0}-4\beta_{1})k$			
				$^{1}\mathcal{H}^{\perp}\dagger^{lpha}$	0	0	0	$-\frac{\overset{\alpha4}{\overset{\beta.}{0}}\overset{\beta.}{1}}{2\sqrt{2}}$	0	0	0			
				$\frac{1}{2}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{1}{2}i(\alpha_{0}-4\beta_{1})k$	0	0	0	$^{2^{+}}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2.^+f^{\parallel}_{\alpha\beta}$	${}^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$-\frac{\alpha}{4}^{\alpha} + \beta_{1}$	$\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	0
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	$2\beta_1 k^2$	0
											$2^{-}\mathcal{A}^{\parallel} + ^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_{\cdot}}{4} + \beta_{\cdot}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities	
0 ⁺ τ [±] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1	
$2ik \cdot 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$\frac{1}{2} \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3	
$\bar{i} k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{$	3	
Total expected gauge generators:			

Massive spectrum

Massive particle

Pole residue:	$\frac{1}{\alpha_{\cdot}} + \frac{1}{\alpha_{\cdot}} - \frac{1}{4\beta_{\cdot}} > 0$				
Square mass:	$-\frac{\binom{\alpha. (\alpha4 \beta.)}{0 \ 0 \ 1}}{8 \alpha. \beta.}_{6 \ 1} > 0$				
Spin:	0				
Parity:	Even				

Massless spectrum

Massless particle

Pole residue:	$\left \frac{p^2}{\alpha_{\cdot}} > 0\right $			
Polarisations:	2			

Unitarity conditions

 $\alpha_{.} > 0 \&\& \alpha_{.} > 0 \&\& (\beta_{.} < 0 || \beta_{.} > \frac{\alpha_{.}}{4})$