概率论与数理统计(12-2)

清华大学

2020 年春季学期

似然比检验

• 设 x_1, \ldots, x_n 是来自密度函数为 $p(x; \theta)$, $\theta \in \Theta$ 的总体的样本,考虑如下检验问题:

$$H_0: \ \theta \in \Theta_0 \quad \text{vs} \quad H_1: \ \theta \in \Theta_1 = \Theta - \Theta_0.$$

似然比定义为

$$\Lambda(x_1,\ldots,x_n) = \frac{\sup_{\theta\in\Theta} p(x_1,\ldots,x_n;\theta)}{\sup_{\theta\in\Theta_0} p(x_1,\ldots,x_n;\theta)} = \frac{p(x_1,\ldots,x_n;\theta)}{p(x_1,\ldots,x_n;\hat{\theta}_0)}.$$

4□ > 4□ > 4 = > 4 = > = 90

2 / 13

似然比检验

• 设 x_1, \ldots, x_n 是来自密度函数为 $p(x; \theta)$, $\theta \in \Theta$ 的总体的样本,考虑如下检验问题:

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1 = \Theta - \Theta_0.$$

似然比定义为

$$\Lambda(x_1,\ldots,x_n) = \frac{\sup_{\theta\in\Theta} p(x_1,\ldots,x_n;\theta)}{\sup_{\theta\in\Theta_0} p(x_1,\ldots,x_n;\theta)} = \frac{p(x_1,\ldots,x_n;\hat{\theta})}{p(x_1,\ldots,x_n;\hat{\theta}_0)}.$$

- (Wilk 定理) 对于假设检验: $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. 在 原假设成立的情况下, $2 \ln \Lambda(x_1, \ldots, x_n) \to \chi^2(1)$ 当 $n \to \infty$.
- 似然比检验:选取似然比为参考统计量,取拒绝域为

$$W = \{\Lambda(x_1, \dots, x_n) \geqslant c\}$$

选定显著水平 α , 近似地, $c = \chi_{1-\alpha}^2(1)$.

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$$

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$$

- δ 数空间 $\Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R}\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.

3 / 13

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$$

- 参数空间 $\Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R} \}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0 \}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : (μ, σ^2) 的最大似然估计: \bar{x} , $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$.

2020

3 / 13

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$$

- 参数空间 $\Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R} \}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0 \}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : (μ, σ^2) 的最大似然估计: \bar{x} , $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\mu} = \bar{x}$

3 / 13

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$$

- δ 数空间 $\Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R}\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : (μ, σ^2) 的最大似然估计: \bar{x} , $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\mu} = \bar{x}$
- 似然比: $\Lambda = \frac{(2\pi s_n^2)^{-n/2} \exp(-\frac{n}{2})}{(2\pi \sigma_0^2)^{-n/2} \exp(-\frac{n s_n^2}{2\sigma_0^2})} = \left[\frac{s_n^2}{\sigma_0^2} \exp(-\frac{s_n^2}{\sigma_0^2})\right]^{-\frac{n}{2}} \exp(-\frac{n}{2}).$

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$$

- δ 数空间 $\Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R} \}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0 \}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : (μ, σ^2) 的最大似然估计: \bar{x} , $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\mu} = \bar{x}$
- % % $: \Lambda = \frac{(2\pi s_n^2)^{-n/2} \exp(-\frac{n}{2})}{(2\pi\sigma_0^2)^{-n/2} \exp(-\frac{ns_n^2}{2\sigma_0^2})} = \left[\frac{s_n^2}{\sigma_0^2} \exp(-\frac{s_n^2}{\sigma_0^2})\right]^{-\frac{n}{2}} \exp(-\frac{n}{2}).$
- $\{\Lambda \geqslant c\}$ 等价于 $\{\frac{ns_n^2}{\sigma_0^2} \leqslant d_1 \text{ 或者} \frac{ns_n^2}{\sigma_0^2} \geqslant d_2\}$

2020

3 / 13

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本,用似然比检验 $H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$

- $\delta \otimes \Omega \cap \Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R}\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : (μ, σ^2) 的最大似然估计: \bar{x} , $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\mu} = \bar{x}$
- % % $: \Lambda = \frac{(2\pi s_n^2)^{-n/2} \exp(-\frac{n}{2})}{(2\pi\sigma_0^2)^{-n/2} \exp(-\frac{ns_n^2}{2\sigma_0^2})} = \left[\frac{s_n^2}{\sigma_0^2} \exp(-\frac{s_n^2}{\sigma_0^2})\right]^{-\frac{n}{2}} \exp(-\frac{n}{2}).$
- $\{\Lambda \geqslant c\}$ 等价于 $\{\frac{ns_n^2}{\sigma_0^2} \leqslant d_1 \text{ 或者} \frac{ns_n^2}{\sigma_0^2} \geqslant d_2\}$ 因为函数 xe^{-x} 在 (0,1) 增,在 $[1,\infty)$ 减。

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本,用似然比检验 $H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2.$

- δ 数空间 $\Theta_0 := \{(\mu, \sigma_0^2) | \mu \in \mathbb{R}\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : (μ, σ^2) 的最大似然估计: \bar{x} , $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\mu} = \bar{x}$
- % % $: \Lambda = \frac{(2\pi s_n^2)^{-n/2} \exp(-\frac{n}{2})}{(2\pi\sigma_0^2)^{-n/2} \exp(-\frac{ns_n^2}{2\sigma_0^2})} = \left[\frac{s_n^2}{\sigma_0^2} \exp(-\frac{s_n^2}{\sigma_0^2})\right]^{-\frac{n}{2}} \exp(-\frac{n}{2}).$
- $\{\Lambda \geqslant c\}$ 等价于 $\{\frac{ns_n^2}{\sigma_0^2} \leqslant d_1 \text{ 或者} \frac{ns_n^2}{\sigma_0^2} \geqslant d_2\}$ 因为函数 xe^{-x} 在 (0,1) 增,在 $[1,\infty)$ 减。
- 卡方检验。

◆□▶◆□▶◆壹▶◆壹▶ 壹 かなで

3 / 13

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$$

• 设 $x_1, ..., x_n$ 为来自 $N(\mu, \sigma^2)$ 的样本,用似然比检验 $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$

- $\Theta_0 := \{(\mu_0, \sigma^2) | \sigma^2 > 0\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$.

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$$

- $\Theta_0 := \{(\mu_0, \sigma^2) | \sigma^2 > 0\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu_0)^2$

4 / 13

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$$

- $\Theta_0 := \{(\mu_0, \sigma^2) | \sigma^2 > 0\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu_0)^2$
- 似然比 $\Lambda = \frac{[2\pi \frac{1}{n}\sum_{i=1}^n (x_i \bar{x})^2]^{-n/2}}{[2\pi \frac{1}{n}\sum_{i=1}^n (x_i \mu_0)^2]^{-n/2}} = \left[\frac{\sum_{i=1}^n (x_i \bar{x})^2 + n(\bar{x} \mu_0)^2}{\sum_{i=1}^n (x_i \bar{x})^2}\right]^{n/2} = (1 + \frac{1}{n-1}(\frac{\sqrt{n}(\bar{x} \mu_0)}{s})^2)^{n/2}.$

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$$

- $\Theta_0 := \{(\mu_0, \sigma^2) | \sigma^2 > 0\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu_0)^2$
- 似然比 $\Lambda = \frac{[2\pi \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2]^{-n/2}}{[2\pi \frac{1}{n} \sum_{i=1}^{n} (x_i \mu_0)^2]^{-n/2}} = \left[\frac{\sum_{i=1}^{n} (x_i \bar{x})^2 + n(\bar{x} \mu_0)^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}\right]^{n/2} = (1 + \frac{1}{n-1} (\frac{\sqrt{n}(\bar{x} \mu_0)}{s})^2)^{n/2}. \{\Lambda \geqslant c\} \Leftrightarrow \{|\frac{\sqrt{n}(\bar{x} \mu_0)}{s}| \geqslant d\}$

4 / 13

(清华大学) 概率论

• 设 x_1, \ldots, x_n 为来自 $N(\mu, \sigma^2)$ 的样本, 用似然比检验

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$$

- $\Theta_0 := \{(\mu_0, \sigma^2) | \sigma^2 > 0\}, \ \Theta := \{(\mu, \sigma^2) | \mu \in \mathbb{R}, \sigma^2 > 0\}.$
- 似然函数 $\frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_i^n \frac{(x_i-\mu)^2}{2\sigma^2}}$.
- Θ : $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 \cdot \Theta_0$: $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu_0)^2$
- 似然比 $\Lambda = \frac{[2\pi \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2]^{-n/2}}{[2\pi \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2]^{-n/2}} = \left[\frac{\sum_{i=1}^{n} (x_i \bar{x})^2 + n(\bar{x} \mu_0)^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}\right]^{n/2} = (1 + \frac{1}{n-1} (\frac{\sqrt{n}(\bar{x} \mu_0)}{s})^2)^{n/2}. \{\Lambda \geqslant c\} \Leftrightarrow \{|\frac{\sqrt{n}(\bar{x} \mu_0)}{s}| \geqslant d\}$
- t-检验。

(清华大学) 概率论与数理统计 2020 4 / 13

• 总体被分为 r 类: A_1, \ldots, A_r , 检验假设为

$$H_0: P(A_i) = p_i, \quad i = 1, \dots, r,$$

其中
$$p_1 + \cdots + p_r = 1$$
。

• 总体被分为 r 类: A_1, \ldots, A_r , 检验假设为

$$H_0: P(A_i) = p_i, \quad i = 1, \dots, r,$$

其中 $p_1 + \cdots + p_r = 1$ 。考虑

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i}.$$

5 / 13

总体被分为 r 类: A₁,..., A_r, 检验假设为

$$H_0: P(A_i) = p_i, \quad i = 1, \dots, r,$$

其中 $p_1 + \cdots + p_r = 1$ 。考虑

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i}.$$

• (K. 皮尔逊) 在原假设成立下, 当 $n \to \infty$ 时, $\chi^2 \to \chi^2(r-1)$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ 9000

• 总体被分为 r 类: A_1, \ldots, A_r , 检验假设为

$$H_0: P(A_i) = p_i, \quad i = 1, \dots, r,$$

其中 $p_1 + \cdots + p_r = 1$ 。考虑

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i}.$$

• (K. 皮尔逊) 在原假设成立下, 当 $n \to \infty$ 时, $\chi^2 \to \chi^2(r-1)$.给定显著水平 $\alpha \in (0,1)$, 可以选择拒绝域为

$$W = \{ \chi^2 \geqslant \chi_{1-\alpha}^2(r-1) \}.$$

• 掷一颗骰子 60 次, 结果下:

1 11111				, - , .			
点数	1	2	3	4	5	6	
出现次数	7	8	12	11	9	13	-

在显著水平 (近似) 为 0.05 下检验 这颗骰子是否均匀。

• 掷一颗骰子 60 次, 结果下:

		/		• •		
点数	1	2	3	4	5	6
出现次数	7	8	12	11	9	13
	_		,			

在显著水平 (近似) 为 0.05 下检验这颗骰子是否均匀。

• $H_0: p_1 = \cdots = p_6 = \frac{1}{6}$,

• 掷一颗骰子 60 次, 结果下:

2 22				<u> </u>		
点数	1	2	3	4	5	6
出现次数	7	8	12	11	9	13

在显著水平 (近似) 为 0.05 下检验 这颗骰子是否均匀。

• $H_0: p_1 = \cdots = p_6 = \frac{1}{6}$, 拒绝域为 $\{\chi^2 \ge \chi^2_{0.05}(5)\}$, $\chi^2_{0.05}(5) = 11.0705$.

• 掷一颗骰子 60 次, 结果下:

		/		• •		
点数	1	2	3	4	5	6
出现次数	7	8	12	11	9	13
	_		,			

在显著水平 (近似) 为 0.05 下检验这颗骰子是否均匀。

- $H_0: p_1 = \cdots = p_6 = \frac{1}{6}$, 拒绝域为 $\{\chi^2 \geqslant \chi^2_{0.05}(5)\}$, $\chi^2_{0.05}(5) = 11.0705$.
- 计算统计量 $\chi^2 = \frac{(7-10)^2}{10} + \frac{(8-10)^2}{10} + \dots + \frac{(13-10)^2}{10} = 2.8 \leqslant \chi^2_{0.05}(5).$
- 接受原假设。

• 掷一颗骰子 60 次, 结果下:

点数	1	2	3	4	5	6
出现次数	7	8	12	11	9	13

在显著水平(近似)为0.05下检验这颗骰子是否均匀。

- $H_0: p_1 = \cdots = p_6 = \frac{1}{6}$, 拒绝域为 $\{\chi^2 \geqslant \chi^2_{0.05}(5)\}$, $\chi^2_{0.05}(5) = 11.0705$.
- 计算统计量 $\chi^2 = \frac{(7-10)^2}{10} + \frac{(8-10)^2}{10} + \dots + \frac{(13-10)^2}{10} = 2.8 \leqslant \chi^2_{0.05}(5).$
- 接受原假设。
- (近似) p-值为 $p = P(\chi^2(5) \ge 2.8) = 0.7308$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

分类数据的卡方拟合

- 如果 pin 依赖于 k 个未知参数?
- (费希尔) 寻找这 k 个参数的最大似然估计, 再算出 p_{i_0} 的估计值 \hat{p}_{i_1} 则

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \to \chi^2(r - k - 1).$$

4□ > 4□ > 4 = > 4 = > = 90

7 / 13

分类数据的卡方拟合

- 如果 pio 依赖于 k 个未知参数?
- (费希尔) 寻找这 k 个参数的最大似然估计, 再算出 p_{i_0} 的估计值 \hat{p}_{i_1} 则

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \to \chi^2(r - k - 1).$$

• 譬如: $p_1 = \theta^2$, $p_2 = 2\theta(1-\theta)$, $p_3(1-\theta)^2$.

2020

7 / 13

	$A \setminus B$	1	 j	 c	和
	1	$n_{1,1}$	 $n_{1,j}$	 $n_{1,c}$	$\overline{n_1}$
	:	:	:	÷	:
•	i	$n_{i,1}$	 $n_{i,j}$	 n_{ic}	n_i
	:	:	÷	:	:
	r	$n_{r,1}$	 $n_{r,j}$	 $n_{r,c}$	n_r
	列和	N_1	 N_{j}	 N_c	\overline{N}

	$A \setminus B$	1	 j	 c	和
	1	$n_{1,1}$	 $n_{1,j}$	 $n_{1,c}$	$\overline{n_1}$
	:	:	:	÷	:
•	i	$n_{i,1}$	 $n_{i,j}$	 n_{ic}	n_i
	:	:	÷	:	:
	r	$n_{r,1}$	 $n_{r,j}$	 $n_{r,c}$	n_r
	列和	N_1	 N_{j}	 N_c	\overline{N}

• $p_{i-} = P(A_i)$, i = 1, ..., r, $p_{-j} = P(B_j)$, j = 1, ..., c, $p_{ij} = P(A_iB_j)$.

	$A \setminus B$	1	 j	 c	和
	1	$n_{1,1}$	 $n_{1,j}$	 $n_{1,c}$	n_1
	:	:	÷	÷	:
•	i	$n_{i,1}$	 $n_{i,j}$	 n_{ic}	n_i
	:	:	÷	:	:
	r	$n_{r,1}$	 $n_{r,j}$	 $n_{r,c}$	n_r
	列和	N_1	 N_j	 N_c	\overline{N}

- $p_{i-} = P(A_i)$, i = 1, ..., r, $p_{-j} = P(B_j)$, j = 1, ..., c, $p_{ij} = P(A_iB_j)$.
- 假设检验: $H_0: p_{ij} = p_{i-}p_{-j}$, i = 1, ..., r, j = 1, ..., c. 即 A_i 与 B_j 相互独立。

4□ > 4□ > 4 = > 4 = > = 90

	$A \setminus B$	1	 j	 c	和
	1	$n_{1,1}$	 $n_{1,j}$	 $n_{1,c}$	n_1
	:	:	:	÷	:
•	i	$n_{i,1}$	 $n_{i,j}$	 n_{ic}	n_i
	:	:	÷	÷	÷
	r	$n_{r,1}$	 $n_{r,j}$	 $n_{r,c}$	n_r
	列和	N_1	 N_{j}	 N_c	\overline{N}

- $p_{i-} = P(A_i)$, i = 1, ..., r, $p_{-j} = P(B_j)$, j = 1, ..., c, $p_{ij} = P(A_iB_j)$.
- 假设检验: $H_0: p_{ij} = p_{i-}p_{-j}$, i = 1, ..., r, j = 1, ..., c. 即 A_i 与 B_j 相互独立。
- 统计量: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{i,j} N\hat{p}_{i,j})^2}{N\hat{p}_{i,j}}$, $\hat{p}_{i,j} = \frac{n_i}{N} \frac{N_j}{N}$.

4回▶ 4団▶ 4団▶ 4団▶ 3目 からで

8 / 13

	$A \setminus B$	1	 j	 c	和
	1	$n_{1,1}$	 $n_{1,j}$	 $n_{1,c}$	$\overline{n_1}$
	÷	:	÷	÷	:
•	i	$n_{i,1}$	 $n_{i,j}$	 n_{ic}	n_i
	:	:	:	÷	:
	r	$n_{r,1}$	 $n_{r,j}$	 $n_{r,c}$	n_r
	列和	N_1	 N_j	 N_c	\overline{N}

- $p_{i-} = P(A_i)$, i = 1, ..., r, $p_{-j} = P(B_j)$, j = 1, ..., c, $p_{ij} = P(A_iB_j)$.
- 假设检验: $H_0: p_{ij} = p_{i-}p_{-j}, i = 1, ..., r, j = 1, ..., c.$ 即 A_i 与 B_j 相互独立。
- 统计量: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{i,j} N\hat{p}_{i,j})^2}{N\hat{p}_{i,j}}$, $\hat{p}_{i,j} = \frac{n_i}{N} \frac{N_j}{N}$.
- 在原假设成立的情况下, 当 N 很大, $\chi^2 \sim \chi^2 \Big((r-1)(c-1) \Big)$.

(清华大学) 概率论与数理统计 2020 8 /

• 在研究某种新措施对非洲猪瘟的防治效果,获得一下数据:

	存活数	死亡数	合计
对照组	114	36	150
新措施	132	18	150
合计	246	54	300

在显著水平(近似)为0.05下检验该措施是否有效。

2020

9 / 13

• 在研究某种新措施对非洲猪瘟的防治效果,获得一下数据:

	存活数	死亡数	合计
对照组	114	36	150
新措施	132	18	150
合计	246	54	300

在显著水平(近似)为0.05下检验该措施是否有效。

H₀: 措施与防疫无关。

2020

9 / 13

• 在研究某种新措施对非洲猪瘟的防治效果,获得一下数据:

	存活数	死亡数	合计
对照组	114	36	150
新措施	132	18	150
合计	246	54	300

在显著水平(近似)为0.05下检验该措施是否有效。

- *H*₀: 措施与防疫无关。
- 自由度 r = c = 2, 拒绝域为 $\{\chi^2 \ge \chi^2_{0.05}(1) = 3.8415\}$.

9 / 13

例子

• 在研究某种新措施对非洲猪瘟的防治效果,获得一下数据:

	存活数	死亡数	合计
对照组	114	36	150
新措施	132	18	150
合计	246	54	300

在显著水平(近似)为 0.05 下检验该措施是否有效。

- H₀: 措施与防疫无关。
- 自由度 r = c = 2, 拒绝域为 $\{\chi^2 \ge \chi^2_{0.05}(1) = 3.8415\}$.
- 统计量: $n_{11}=114$, $n_{12}=36$, $n_1=150$, $n_{21}=132$, $n_{22}=18$, $n_2=150$, $N_1=246$, $N_2=54$, N=300, $\hat{p}_{11}=\frac{1}{2}\frac{246}{300}$, $\hat{p}_{12}=\frac{1}{2}\frac{54}{300}$, $\hat{p}_{21}=\frac{1}{2}\frac{246}{300}$, $\hat{p}_{22}=\frac{1}{2}\frac{54}{300}$.

$$\chi^2 = \frac{(114 - \frac{300 \cdot 246}{2 \cdot 300})^2}{300 \cdot \frac{246}{2 \cdot 300}} + \frac{(36 - \frac{300 \cdot 54}{2 \cdot 300})^2}{300 \cdot \frac{54}{2 \cdot 300}} + \frac{(132 - 123)^2}{123} + \frac{(18 - 27)^2}{27}$$

• $\chi^2 = 7.31$, 拒绝原假设。 p-值为 $P(\chi^2(1) \ge 7.31) = 0.0068$.

(清华大学) 概率论与数理统计 2020 9 / 13

• 检验样本是否来自分布函数为 F(x) 的总体。

10 / 13

- 检验样本是否来自分布函数为 *F(x)* 的总体。
- *H*₀: 是; *vs H*₁: 不是.

10 / 13

- 检验样本是否来自分布函数为 F(x) 的总体。
- *H*₀: 是; *vs H*₁: 不是.
- 统计量: $F_n(x)$ 是经验分布函数:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{[-\infty, x_{(i)}]}(x),$$

考虑 $D_n = \sup_x |F_n(x) - F(x)|$. 当 $n \to \infty$, $\sqrt{n}D_n \to \mathcal{K}$, \mathcal{K} 服 从 Kolmogorov 分布。

4□ > 4□ > 4 = > 4 = > = 90

10 / 13

- 检验样本是否来自分布函数为 F(x) 的总体。
- *H*₀: 是; *vs H*₁: 不是.
- 统计量: $F_n(x)$ 是经验分布函数:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{[-\infty, x_{(i)}]}(x),$$

考虑 $D_n = \sup_x |F_n(x) - F(x)|$. 当 $n \to \infty$, $\sqrt{n}D_n \to \mathcal{K}$, \mathcal{K} 服 从 Kolmogorov 分布。

• 给定显著水平 α , 拒绝域为 $\sqrt{n}D_n > \mathcal{K}_{\alpha}$.

2020

10 / 13

• 两组样本 $x_1, ..., x_n$ 和 $y_1, ..., y_m$. 检验两种样本是否来自相同的总体分布 (不知)。

11 / 13

- 两组样本 x_1, \ldots, x_n 和 y_1, \ldots, y_m . 检验两种样本是否来自相同的总体分布 (不知)。
- *H*₀: 是; *vs H*₁: 不是.

11 / 13

- 两组样本 $x_1, ..., x_n$ 和 $y_1, ..., y_m$. 检验两种样本是否来自相同的总体分布 (不知)。
- *H*₀: 是; *vs H*₁: 不是.
- 经验分布函数分别为 $F_{1,n}(z)$, $F_{2,m}(z)$. 考虑统计量 $D_{m,n} = \sup_{z} |F_{1,n}(z) F_{2,m}(z)|$.

4□ > 4□ > 4 = > 4 = > = 90

11 / 13

- 两组样本 x_1, \ldots, x_n 和 y_1, \ldots, y_m . 检验两种样本是否来自相同的总体分布 (不知)。
- *H*₀: 是; *vs H*₁: 不是.
- 经验分布函数分别为 $F_{1,n}(z)$, $F_{2,m}(z)$. 考虑统计量 $D_{m,n} = \sup_{z} |F_{1,n}(z) F_{2,m}(z)|$.
- 给定显著水平 α , 拒绝域为 $\{D_{m,n} > c(\alpha)\sqrt{\frac{n+m}{nm}}\}$.
- 一般来说 $c(\alpha) = \sqrt{-\frac{1}{2} \ln \alpha}$.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 900

11 / 13

正态性检验: Shapiro-Wilk 检验

• X_1, \ldots, X_n 是样本。假设检验问题: H_0 : 样本来自正态总体 vs H_1 : 不是。

12 / 13

(清华大学) 概率论与数理统计 20.

正态性检验: Shapiro-Wilk 检验

- $X_1, ..., X_n$ 是样本。假设检验问题: H_0 : 样本来自正态总体 vs H_1 : 不是。
- 统计量: $W = \frac{(\sum_{i=1}^{n} a_i X_{(i)})^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}$,

$$(a_1,\ldots,a_n)=\frac{m^TV^{-1}}{C},$$

其中 $C = (m^T V^{-1} V^{-1} m)^{1/2}$, $m = (m_1, \ldots, m_n)^T$ 为来自标准正态总体的样本容量为 n 的样本次序统计量。 V 是该次序统计量的协方差矩阵。

• 当原假设成立时,W 靠近 1. 给定显著水平 α , 拒绝域为 $\{W \leqslant W_{\alpha}\}$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

12 / 13

正态性检验: Epps-Pulley 检验

• X_1,\ldots,X_n 是样本。假设检验问题: H_0 : 样本来自正态总体 vs H_1 : 不是。

13 / 13

正态性检验: Epps-Pulley 检验

- X_1, \ldots, X_n 是样本。假设检验问题: H_0 : 样本来自正态总体 vs H_1 : 不是。
- 统计量:

$$T_{EP} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{i=2}^{n} \sum_{j=1}^{i-1} e^{-\frac{(x_j - x_i)^2}{2s_n^2}} - \sqrt{2} \sum_{i=1}^{n} e^{-\frac{(x_i - \bar{x})^2}{4s_n^2}}.$$

13 / 13

正态性检验: Epps-Pulley 检验

- X_1, \ldots, X_n 是样本。假设检验问题: H_0 : 样本来自正态总体 vs H_1 : 不是。
- 统计量:

$$T_{EP} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{i=2}^{n} \sum_{j=1}^{i-1} e^{-\frac{(x_j - x_i)^2}{2s_n^2}} - \sqrt{2} \sum_{i=1}^{n} e^{-\frac{(x_i - \bar{x})^2}{4s_n^2}}.$$

• 给定显著水平 α , 拒绝域为 $\{T_{EP} \geqslant T_{1-\alpha,EP}(n)\}$.

13 / 13