Završni ispit iz Kvantnih računala (7. veljače 2018.) v.2

Ime, prezime i JMBAG:

Uputa: Odgovore označite (zaokružite) *na ovom papiru*, a u praznom prostoru pored ponuđenih odgovora ili na dodatnim praznim papirima, za svaki zadatak napišite *kratko obrazloženje ili računski postupak*. Točno riješeni zadaci donose tri boda (nema "negativnih bodova").

Notacija i terminologija: Vektori $|0\rangle=\begin{pmatrix} 1\\0 \end{pmatrix}$ i $|1\rangle=\begin{pmatrix} 0\\1 \end{pmatrix}$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$. Pri realizaciji qubita stanjima polarizacije fotona, vektori $|0\rangle=|x\rangle$ i $|1\rangle=|y\rangle$ odgovaraju stanjima linearne polarizacije u x-smjeru i u y-smjeru, bazu $\{|x\rangle,|y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle\pm|y\rangle)\}$ obilježavamo simbolom \bigotimes . Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$. Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle=|i\rangle\otimes|j\rangle$; $i,j=0,1\}$.

Zadaci:

- 1 Hadamardov operator (zaokruži sve istinite tvrdnje)
 - (a) je unitaran operator. **točno**
 - (b) je Hermistski operator. točno
 - (c) rotira stanje qubita Blochovoj sferi (BS) za π oko x-osi.
 - (d) rotira stanje qubita na BS za $\pi/2$ oko z-osi.
 - (e) rotira stanje qubita na BS za $\pi/4$ oko z-osi.
- 2 Razmatramo kvantni logički krug

$$|0\rangle$$
 H ϕ H

gdje je operator ϕ definiran s $|0\rangle \to |0\rangle$ i $|1\rangle \to e^{i\phi} |1\rangle$ pri čemu je faza ϕ realan broj. Kolika je vjerojatnost da u mjerenju dobijemo vrijednost 0 tj. da qubit bude izmjeren u stanju $|0\rangle$? (Podsjetnik: $e^{i\phi} = \cos \phi + i \sin \phi$)

- (a) 0
- (b) $\frac{1}{2}(1-\cos\phi)$
- (c) $\frac{1}{2}(1 + \cos \phi)$ **točno**
- (d) $\cos \phi$
- (e) $\cos^2 \phi$

3 Mjerenjem stanja qubita na izlazu iz logičkog kruga

$$|0\rangle$$
 — H — ?

vrijednost 0 dobivamo u 50% slučajeva. Iz toga možemo zaključiti da operator označen upitnikom sigurno *nije* operator

- (a) X
- (b) Y
- (c) Z
- (d) H točno
- (e) S

4 Na izlazu iz logičkog kruga

$$|0\rangle$$
 H Z S H

stanje qubita istovjetno je stanju

- (a) $|0\rangle$
- (b) $|1\rangle$
- (c) $|+\rangle$
- (d) $|-\rangle$
- (e) nijednom od navedenih točno

5 Stanje sustava na izlaznoj (desnoj) strani kvantnog logičkog kruga

je

- (a) $\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$
- (b) $\frac{1}{\sqrt{2}} (|00\rangle |11\rangle)$
- (c) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- (d) $\frac{1}{\sqrt{2}} (|01\rangle |10\rangle)$
- (e) $\frac{1}{\sqrt{2}} (|00\rangle + |01\rangle)$ točno

6 Shvatimo li kvantni logički krug

kao jedan operator, njegov matrični prikaz je

- (a) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ **točno**
- (d) $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
- (e) $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

7 Na desnoj (izlaznoj) strani kvantnog logičkog kruga

dobivamo stanje

- (a) $|01\rangle$
- (b) $\frac{1}{2} (|00\rangle |01\rangle + |10\rangle |11\rangle)$
- (c) $\frac{1}{2} \left(\left. |00\rangle |01\rangle |10\rangle + |11\rangle \right)$ točno
- (d) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- (e) $\frac{1}{\sqrt{2}} (|01\rangle |10\rangle)$

8 U kvantnom logičkom krugu na slici vrata U_f predstavljaju implementaciju konstantne funkcije f.

Stanje drugog (donjeg) qubita na izlaznoj (desnoj) strani je

- (a) $|0\rangle$
- (b) $|1\rangle$
- (c) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ točno
- (d) $\frac{1}{\sqrt{2}} (|0\rangle |1\rangle)$
- (e) nije moguće prikazati vektorom stanja
- 9 Ako vrata U_f predstavljaju implementaciju funkcije f sa svojstvom f(0) = f(1) = 1 te ako na izlaznoj (desnoj) strani kvantnog logičkog kruga

imamo stanje $|01\rangle$, možemo zaključiti da na ulazu u krug imamo stanje

- (a) $|00\rangle$ točno
- (b) $|01\rangle$
- (c) $|10\rangle$
- (d) |11>
- (e) situacija sa slike nije moguća
- 10 U kvantnom logičkom krugu na slici vrata U_f su implementacija funkcije f za koju vrijedi f(0) = f(1) = 1.

Stanje sustava na izlaznoj (desnoj) strani kruga je

- (a) $|00\rangle$
- (b) $|01\rangle$
- (c) $|10\rangle$
- (d) $|11\rangle$ točno
- (e) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$

- 11 Na izlazu iz logičkog kruga
- $|0\rangle H$ $|0\rangle H$ $|0\rangle H$

dobivamo stanje

- (a) $\frac{1}{2} \left(|000\rangle + |100\rangle + |010\rangle + |001\rangle \right)$
- (b) $\frac{1}{2} (|000\rangle + |100\rangle + |010\rangle + |111\rangle)$
- (c) $\frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |110\rangle)$
- (d) $\frac{1}{2}$ $\left(|000\rangle + |010\rangle + |101\rangle + |111\rangle \right)$
- (e) $\frac{1}{2} \left(\left. |000\rangle + \left|011\rangle + \left|101\rangle + \left|110\rangle \right. \right) \right.$

točno

12 Na izlazu iz logičkog kruga

stanje ciljnog bita je

- (a) $|0\rangle$
- (b) $|1\rangle$
- (c) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- (d) $\frac{1}{\sqrt{2}} (\ket{0} \ket{1})$
- (e) nije moguće prikazati vektorom stanja **točno**

13 Matrični prikaz operatora

je

(a)
$$\begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}$$
 točno

(c)
$$\begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- 14 Pretražujemo li bazu veličine 10^{10} Groverovim algoritmom potrebno nam je kvantno računalo s približno
 - (a) 10 qubita.
 - (b) 17 qubita.
 - (c) 34 qubita. **točno**
 - (d) 10^{10} qubita.
 - (e) $\sqrt{10^{10}}$ qubita.