Stochastic block models for random graphs

Catherine MATIAS

CNRS, Laboratoire Statistique & Génome, Évry (Soon: Laboratoire de Mathématiques et Modélisation d'Évry (LaMME))

 $http://stat.genopole.cnrs.fr/{\sim}cmatias$

Outline

Brief introduction to stochastic block models

Parameter estimation and node clustering Identifiability
Parameter estimation
Clustering convergence results

Data: Biological networks

Different networks types

- Protein-protein interaction networks (PPI),
- Metabolic networks
- Genes co-expression networks
- Genes regulation networks
- **.** . . .

Some challenges

- Analyse big data sets, noisy data,
- Identify structures (topological patterns, cliques, nodes groups, etc),
- Compare networks between different species,
- Modelling evolution of these networks,
- **.** . . .

Some models for biological networks

Some existing models, advantages and drawbacks

- Erdös-Rényi, simple and mathematically well-understood, too homogeneous;
- Models based on degree distribution, scale-free property, only a partial descriptor of the graph, greedy numerical simulations with fixed-degrees models;
- ► Generative processes (like preferential attachment), dynamic model, depends on parameters (initialisation, stop, ...), can we caracterize the result?
- Exponential random graph
- **.** . . .

We would like to cluster the nodes into groups.

Mixture model approach

Idea: probability model based clustering

Assume that the nodes of the graph belong to unobserved groups, that describe their connectivity to the other nodes.

Advantages

- Induces heterogeneity in the data, keeping it simple,
- Clustering of the nodes groups induced by the model,
- ► Model encompasses the community detection framework.

Motivation/Justification: Szemerédi regularity Lemma [Szemerédi 78]

Every large enough graph can be divided into subsets of about the same size so that the edges between different subsets behave almost randomly.

Stochastic block model (binary graphs)

$$n = 10, Z_{5\bullet} = 1$$
$$Y_{12} = 1, Y_{15} = 0$$

Binary case (parametric model with $heta=(oldsymbol{\pi},oldsymbol{\gamma})$)

- ▶ K groups (=colors •••).
- ▶ $\{Z_i\}_{1 \leq i \leq n}$ i.i.d. vectors $Z_i = (Z_{i1}, \ldots, Z_{iK}) \sim \mathcal{M}(1, \pi)$, with $\pi = (\pi_1, \ldots, \pi_K)$ groups proportions. Z_i not observed (latent).
- ▶ Observations: presence/absence of an edge $\{Y_{ij}\}_{1 \leq i < j \leq n}$,
- ▶ Conditional on $\{Z_i\}$'s, the r.v. Y_{ij} are independent $\mathcal{B}(\gamma_{Z_iZ_j})$.

Stochastic block model (weighted graphs)

Weighted case (parametric model with $heta=(oldsymbol{\pi},oldsymbol{p},oldsymbol{\gamma})$

- Latent variables: idem
- lacksquare Observations: weights Y_{ij} , where $Y_{ij}=0$ or $Y_{ij}\in\mathbb{R}^s\setminus\{0\}$,
- ▶ Conditional on the $\{Z_i\}$'s, the random variables Y_{ij} are independent with distribution

$$\mu_{Z_i Z_j}(\cdot) = p_{Z_i Z_j} f(\cdot, \gamma_{Z_i Z_j}) + (1 - p_{Z_i Z_j}) \delta_0(\cdot)$$

(Assumption: f has continuous cdf at zero).

SBM clustering vs other clusterings

SBM clustering

- ► Nodes clustering induced by the model reflects a common connectivity behaviour;
- ► Many clustering methods try to group nodes that belong to the same clique (ex: community detection)
- Toy example

SBM cluster

Clustering based on cliques

Particular cases and generalisations

Particular cases

lacktriangle Affiliation model: connectivity matrix γ has only 2 parameters

$$\gamma = \begin{pmatrix} \alpha & \dots & \beta \\ \vdots & \ddots & \vdots \\ \beta & \dots & \alpha \end{pmatrix} \qquad \alpha \neq \beta$$

▶ Affiliation $+ \alpha \gg \beta \implies$ community detection (cliques clustering).

Generalisations

- Overlapping groups [Latouche et al. 11, Airoldi et al. 08] for binary graphs;
- Adding covariates [Zanghi et al. 10b];
- Latent block models (LBM), for array data.

From SBM to LBM

- ► A graph is encoded through its adjacency matrix.
- Clustering the nodes corresponds to simultaneous and identical clustering of the rows and columns.

Generalise this to non square array data, without constraining identical rows and columns groups. Models bi-partite graphs.

Latent block models I

LBM notation

- $lackbox{ Observations: array } \mathbf{Y}_{n,m} := \{Y_{ij}\}_{1 \leq i \leq n, 1 \leq j \leq m} \text{ with } Y_{ij} \in \mathcal{Y}$,
- ▶ $K \ge 1$ and $L \ge 1$ number of row and column groups, respectively.
- ▶ Groups prior distributions $\pi = (\pi_1, \dots, \pi_K)$ over $\mathcal{K} = \{1, \dots, K\}$ and $\rho = (\rho_1, \dots, \rho_L)$ over $\mathcal{L} = \{1, \dots, L\}$, such that $\sum_k \pi_k = \sum_l \rho_l = 1$.
- Latent variables $\mathbf{Z}_n := Z_1, \dots, Z_n$ iid $\sim \pi$ over \mathcal{K} and $\mathbf{W}_m := W_1, \dots, W_m$ i.i.d. $\sim \boldsymbol{\rho}$ over \mathcal{L} .

Latent block models II

Two models in the same framework

2 cases occur

```
LBM : \{Z_i\}_{1\leq i\leq n} and \{W_j\}_{1\leq j\leq m} independent.
SBM : n=m, \mathcal{K}=\mathcal{L}, \ Z_i=W_i \ \text{for all} \ 1\leq i\leq n \ \text{and} \ \boldsymbol{\pi}=\boldsymbol{\rho}.
```

- ▶ Connectivity parameters $\gamma = (\gamma_{kl})_{(k,l) \in \mathcal{K} \times \mathcal{L}}$,
- ▶ Conditional on $\{Z_i, W_j\}$, random variables $\{Y_{ij}\}$ are independent, with distribution

$$Y_{ij}|Z_i=k, W_j=l\sim f(\cdot;\gamma_{kl}).$$

Outline

Brief introduction to stochastic block models

Parameter estimation and node clustering Identifiability
Parameter estimation
Clustering convergence results

Outline

Brief introduction to stochastic block models

Parameter estimation and node clustering Identifiability

Parameter estimation Clustering convergence results

Parameter's identifiability

Problem

- Obviously, the model may only be identifiable up to a permutation on the group's labels.
- ▶ But whether one may uniquely recover the parameter up to label switching is a delicate task.

Existing identifiability results

- ► Undirected SBM, binary or weighted [Allman et al. 09, Allman et al. 11],
- Directed and binary SBM [Celisse et al. 12],
- Overlapping SBM [Latouche et al. 11],
- ▶ Binary LBM [Keribin et al. 13].

Stating the identifiability problem

Identifiability if $\mathbb{P}_{\theta_1} = \mathbb{P}_{\theta_2} \Rightarrow \theta_1 = \theta_2$ (injectivity of the map $\theta \mapsto \mathbb{P}_{\theta}$).

On a simple example: binary SBM with two groups

Parameters:
$$\boldsymbol{\pi} = (\pi_1, 1 - \pi_1)$$
 and $\boldsymbol{\gamma} = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{12} & \gamma_{22} \end{pmatrix}$.

Write down equations such as:

$$\mathbb{E}_{\theta}(Y_{ij}) = \sum_{1 \leq k, l \leq K} \pi_k \pi_l \gamma_{kl}, \quad \mathbb{E}_{\theta}(Y_{ij} Y_{il}) = \sum_{1 \leq k \leq l} \pi_k (\sum_l \pi_l \gamma_{kl})^2 \dots$$

We end up with a set of polynomial equations and want to know if the solution is unique.

→ We rely on a general method for identifying parameters of latent structure models with many observed variables [Allman *et al.* 09].

A general method I

Toy model $\mathcal{M}(r; \kappa_1, \kappa_2, \kappa_3)$

- ▶ Z is a latent variable with r states, $Z \sim \pi = (\pi_1, \dots, \pi_r)$;
- ▶ For j = 1, 2, 3, X_j is observed with κ_j states ;
- ▶ $\{X_1, X_2, X_3\}$ independent conditional on Z and $X_j | Z = i \sim \boldsymbol{p}_{i,j} = (p_{i,j}(1), \dots, p_{i,j}(\kappa_j)).$
- ► The distribution of (X_1, X_2, X_3) is the multivariate mixture $\mathbb{P}_{\theta}(X_1 = u, X_2 = v, X_3 = w) = \sum_{i=1}^r \pi_i p_{i,1}(u) p_{i,2}(v) p_{i,3}(w)$.
- ▶ Goal: Recover the parameters $\pi_i, p_{i,j}(u)$ from the mixture \mathbb{P}_{θ} (up to label swapping).

A general method II

Kruskal's result

For stochastic matrices M_j of size $r \times \kappa_j$ and a vector π of size r, define the three-way table $[\pi, M_1, M_2, M_3]$ of size $\kappa_1 \times \kappa_2 \times \kappa_3$ by

$$[\boldsymbol{\pi}, M_1, M_2, M_3]_{u,v,w} = \sum_{i=1}^r \pi_i M_1(i, u) M_2(i, v) M_3(i, w).$$

The Kruskal rank, $\operatorname{rank}_K M$, of a matrix M, is the largest number I such that every set of I rows of M are independent.

Theorem [Kruskal 76]

Let $I_j = rank_K M_j$. If $I_1 + I_2 + I_3 \geq 2r + 2$, then $[\pi, M_1, M_2, M_3]$ uniquely determines the M_j and π , up to simultaneous permutation of the rows.

• Why 3 variates ? Because otherwise: matrix product.

A general method III

Corollary

The parameters of the model $\mathcal{M}(r; \kappa_1, \kappa_2, \kappa_3)$ are generically identifiable, up to label swapping.

Applications of this result [Allman et al. 09]

Parameters' identifiability in many different models

- Binary SBM with 2 classes;
- Multivariate Bernoulli mixtures;
- Multivariate non parametric mixtures;
- (Finite state space) HMMs;
- ► HMMs with non parametric emission distribution [Gassiat *et al.* 13].

Outline

Brief introduction to stochastic block models

Parameter estimation and node clustering

Identifiability

Parameter estimation

Clustering convergence results

Parameter estimation I

Parameter estimation issue

em algorithm not feasible because latent variables are not independent conditional on observed ones.

Ex (SBM) :
$$\mathbb{P}(\{Z_i\}_i|\{Y_{ij}\}_{i,j}) \neq \prod_i \mathbb{P}(Z_i|\{Y_{ij}\}_{i,j})$$

- Alternatives:
 - Gibbs sampling or Variational approximation to em.
 - Composite likelihood approaches for affiliation valued graphs [Ambroise & Matias 10];

About LBM case

- Variational methods for binary, Gaussian or Poisson data arrays [Govaert & Nadif 03, Govaert & Nadif 08, Govaert & Nadif 10].
- Bayesian framework and Gibbs sampling for binary and Gaussian data [Wyse & Friel 12]
- sem Gibbs approach (for categorical data) [Keribin et al. 13].

Parameter estimation II

Model selection

- ► Maximal likelihood is not available (thus neither AIC or BIC),
- ▶ ICL criterion is used [Daudin et al. 08, Keribin et al. 13].
- MCMC approach to select number of LBM groups [Wyse & Friel 12].

Node clustering

Automatically performed by the previous algorithms.

Models (Binary/weighted)

- $\{Z_i\}_{1 \leq i \leq n}$ i.i.d. latent vectors $Z_i = (Z_{i1}, \dots, Z_{iK}) \sim \mathcal{M}(1, \pi);$
- ▶ Conditional on $\{Z_i\}$'s, the Y_{ij} are independent;
- ► Binary case:

$$Y_{ij} \sim \left\{ egin{array}{ll} \mathcal{B}(\gamma_{\mathsf{in}}) & ext{if } Z_i = Z_j \ \mathcal{B}(\gamma_{\mathsf{out}}) & ext{if } Z_i
eq Z_j. \end{array}
ight.$$

► Weighted case:

$$Y_{ij} \sim \left\{ \begin{array}{ll} p_{\mathsf{in}} f(\cdot, \gamma_{\mathsf{in}}) + (1 - p_{\mathsf{in}}) \delta_0(\cdot) & \text{if } Z_i = Z_j \\ p_{\mathsf{out}} f(\cdot, \gamma_{\mathsf{out}}) + (1 - p_{\mathsf{out}}) \delta_0(\cdot) & \text{if } Z_i \neq Z_j. \end{array} \right.$$

Binary or Weighted Affiliation SBM [Ambroise & Matias 10] II Composite likelihood idea - Weighted case

▶ The present edges $Y_{ij} \neq 0$ follow a mixture distribution

$$Y_{ij}|Y_{ij} \neq 0 \sim \{\sum_{q=1}^Q \pi_q^2 p_{\mathsf{in}}\} f(Y_{ij};\gamma_{\mathsf{in}}) + \{\sum_{q \neq \ell} \pi_q \pi_\ell p_{\mathsf{out}}\} f(Y_{ij};\gamma_{\mathsf{out}})$$

- Parameters of a mixture of two continuous distributions are in general identifiable.
- ▶ We form a composite log-likelihood

$$\mathcal{L}_X^{\mathsf{c}}(\boldsymbol{\theta}) = \frac{1}{n(n-1)} \sum_{i < j} \log[\alpha_{\mathsf{in}} f(Y_{ij}; \gamma_{\mathsf{in}}) + \alpha_{\mathsf{out}} f(Y_{ij}; \gamma_{\mathsf{out}})].$$

▶ If this converges to $\mathbb{E}[\log(\alpha_{\mathsf{in}} f(Y_{ij}; \gamma_{\mathsf{in}}) + \alpha_{\mathsf{out}} f(Y_{ij}; \gamma_{\mathsf{out}})]$ then we can estimate the parameters with

$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}_X^{\mathsf{c}}(\boldsymbol{\theta}).$$

Moment methods idea - Binary case

- Same idea does not apply directly in the Binary case, because $Y_{ij} \sim \text{mixture of Bernoulli.}$ Not identifiable!
- ► However, mixtures of 3-variate Bernoulli distributions are identifiable (in many cases).
- ▶ Develop same methodology with $\mathcal{L}_X^{\mathsf{c}}(\boldsymbol{\pi}, \alpha, \beta) = \frac{1}{n(n-1)(n-2)} \sum_{(i,j,k) \in \mathcal{I}_3} \log \mathbb{P}(Y_{ij}, Y_{ik}, Y_{jk}).$
- For the two approaches to be valid, we need to know whether the composite log-likelihoods converge.

Binary or Weighted Affiliation SBM [Ambroise & Matias 10] IV

Notation

- ightharpoonup $\underline{\mathfrak{i}}=(i_1,\ldots,i_k)$ a k-tuple of nodes,
- ▶ $\mathbb{Y}^{\underline{i}} = (Y_{i_1 i_2}, \dots, Y_{i_1 i_k}, Y_{i_2 i_3}, \dots, Y_{i_{k-1} i_k})$ the vector of $p = \binom{k}{2}$ r.v. induced by the nodes \underline{i} ,
- ▶ $g: \mathcal{Y}^p \to \mathbb{R}^s$, a function and $\widehat{m}_g = \frac{(n-k)!}{n!} \sum_{\underline{\mathbf{i}} \in \mathcal{I}^k} g(\mathbb{Y}^{\underline{\mathbf{i}}})$ and $m_g = \mathbb{E}(g(\mathbb{Y}^{(1,...,k)}))$.

Theorem

For any $k,s\geq 1$ and $p={k\choose 2}$ and any measurable function $g:\mathcal{Y}^p\to\mathbb{R}^s$ such that $\mathbb{E}(\|g(\mathbb{Y}^{(1,\ldots,k)})\|^2)<+\infty$, the estimator \hat{m}_q is consistent

$$\hat{m}_g \underset{n \to \infty}{\longrightarrow} m_g$$
 almost surely,

as well as asymptotically normal $\sqrt{n}(\hat{m}_g - m_g) \leadsto_{n \to \infty} \mathcal{N}(0, \Sigma_q)$.

Outline

Brief introduction to stochastic block models

Parameter estimation and node clustering

Identifiability

Parameter estimation

Clustering convergence results

Convergence issues

Why does the variational approximation work?

- The variational approximation appears to be efficient, both for LBM and SBM.
- ▶ Variational approximation does not converge unless the true posterior $p(\mathbf{Z}|\mathbf{Y};\gamma)$ is degenerate [Gunawardana & Byrne 05].

Remaining issues

- What is the (asymptotic) behaviour of the groups posterior distribution? Is it degenerate?
- Is variational approximation somehow equivalent to em approach?
- Does maximum likelihood converge in this setting anyway?

Maximum likelihood and variational approach

Results from [Celisse et al. 12] in SBM case

- ► Variational em is asymptotically equivalent to classical em for SBM.
- Maximum likelihood is convergent in this setup.

Convergence of the groups posterior distribution (LBM or SBM)

Results from [Mariadassou & Matias 13]

- ▶ In general, the groups posterior distribution converges to a Dirac mass (when $n, m \to \infty$).
- However, when there exist equivalent configurations (=nodes groups inducing the same likelihood), the posterior converges to a mixture of Dirac located at these configurations.
- ▶ In some cases -in particular affiliation-, the number of equivalent configurations is larger than the number of label switching configurations.
- When there are equivalent configurations, the posterior converges to a Dirac mass at the configuration with largest prior.

Equivalent configurations in SBM or LBM

- Label switching corresponds to $\mathbb{P}_{(\sigma(\pi),\sigma(\gamma))} = \mathbb{P}_{(\pi,\gamma)}$ for any permutation σ of $\{1,\ldots,K\}$;
- ▶ In classical mixtures, identifiability requires that $\gamma_q \neq \gamma_q'$ for any $q \neq q'$;
- ▶ In SBM or LBM, one may have $\gamma_{ql} = \gamma_{q'l}$ for some $q \neq q'$;
- ▶ Then, if the matrix γ has symmetries, we may have $\sigma(\gamma) = \gamma$ with the model still identifiable if π has non equal entries. Namely $\mathbb{P}_{(\pi,\sigma(\gamma))} = \mathbb{P}_{(\pi,\gamma)}$;
- ▶ As a consequence, the ratios between the posterior distributions at $(\mathbf{Z}_n, \mathbf{W}_m)$ and $\sigma^{-1}(\mathbf{Z}_n, \mathbf{W}_m)$ does not depend on data

$$\begin{split} \mathbb{P}_{(\boldsymbol{\pi},\boldsymbol{\gamma})}(\mathbf{Z}_n,\mathbf{W}_m|\mathbf{Y}_{n,m}) &\propto \boldsymbol{\pi}(\mathbf{Z}_n,\mathbf{W}_m) \mathbb{P}_{\boldsymbol{\gamma}}(\mathbf{Y}_{n,m}|\mathbf{Z}_n,\mathbf{W}_m) \\ &\propto \boldsymbol{\pi}(\mathbf{Z}_n,\mathbf{W}_m) \mathbb{P}_{\sigma(\boldsymbol{\gamma})}(\mathbf{Y}_{n,m}|\mathbf{Z}_n,\mathbf{W}_m) \\ &\propto \frac{\boldsymbol{\pi}(\mathbf{Z}_n,\mathbf{W}_m)}{\boldsymbol{\pi}(\sigma^{-1}(\mathbf{Z}_n,\mathbf{W}_m))} \mathbb{P}_{(\boldsymbol{\pi},\boldsymbol{\gamma})}(\sigma^{-1}(\mathbf{Z}_n,\mathbf{W}_m)|\mathbf{Y}_{n,m}). \end{split}$$

Conclusions

Modeling data

- ► SBM are natural and powerful models for handling networks data.
- ► Many variants, with overlapping groups or covariates. Data may be binary or weighted, sparse or not, directed or not ...;
- Natural generalisation of SBM for matrix data: LBM are handled in the same way.
- Model based clustering of the nodes of the graph (or the rows/columns of the array), that encompasses community detection approaches.

Theoretical results

- Convergence results are difficult to obtain but some exist.
- ► Variational em approximations provide good practical results but tend to depend on initialisation: there is room for improvement!

References I

[Airoldi et al. 08] E.M. Airoldi, D.M. Blei, S.E. Fienberg and E.P. Xing.

Mixed Membership Stochastic Blockmodels.

J. Mach. Learn. Res., 9:1981-2014, 2008.

[Allman et al. 09] E.S. Allman, C. Matias and J.A. Rhodes. Identifiability of parameters in latent structure models with many observed variables.

Ann. Statist., 37(6A):3099-3132, 2009.

[Allman et al. 11] E.S. Allman, C. Matias and J.A. Rhodes. Parameter identifiability in a class of random graph mixture models.

J. Statist. Planning and Inference, 141(5):1719-1736, 2011.

References II

[Ambroise & Matias 10] C. Ambroise and C. Matias. New consistent and asymptotically normal estimators for random graph mixture models.

Journal of the Royal Statistical Society: Series B, 74(1):3-35, 2012.

[Celisse et al. 12] A. Celisse, J.-J. Daudin, and L. Pierre. Consistency of maximum-likelihood and variational estimators in the stochastic block model.

Electron. J. Statist., 6:1847-1899, 2012.

[Daudin et al. 08] J.-J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs. Stat. Comput., 18(2):173–183, 2008.

References III

[Gassiat et al. 13] E. Gassiat, A. Cleynen, S. Robin. Finite state space non parametric Hidden Markov Models are in general identifiable.

arXiv:1306.4657, 2013.

[Govaert & Nadif 03] G. Govaert and M. Nadif. Clustering with block mixture models.

Pattern Recognition, 36(2):463–473, 2003.

[Govaert & Nadif 08] G. Govaert and M. Nadif. Block clustering with Bernoulli mixture models: Comparison of different approaches.

Computational Statistics and Data Analysis, 52(6):3233–3245, 2008.

References IV

[Gunawardana & Byrne 05] Gunawardana and Byrne. Convergence Theorems for Generalized Alternating Minimization Procedures.

JMLR, 6:2049-2073, 2005.

[Keribin *et al.* 13] C. Keribin, V. Brault, G. Celeux and G. Govaert.

Estimation and selection for the latent block model on categorical data.

INRIA Research report 8264, 2013.

References V

[Latouche et al. 11] P. Latouche, E. Birmelé and C. Ambroise. Overlapping Stochastic Block Models With Application to the French Political Blogosphere.

Annals of Applied Statistics, 5(1):309-336, 2011.

[Mariadassou & Matias 13] M. Mariadassou and C. Matias. Convergence of the groups posterior distribution in latent or stochastic block models.

To appear in Bernoulli. hal-00713120, 2013.

[Szemerédi 78] Szemerédi, Endre. Regular partitions of graphs.

Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, 260: 399-401, 1978.

References VI

- [Wyse & Friel 12] J. Wyse and N. Friel Block clustering with collapsed latent block models. Stat Comput 22:415–428, 2012.
- [Zanghi et al. 10b] H. Zanghi, S. Volant and C. Ambroise. Clustering based on random graph model embedding vertex features.

Pattern Recognition Letters 31(9):830-836, 2010.