

平衡移动和图像问题

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

学习目标

1、运用勒夏特列原理解释实际问题。

&

重难点

2、应用勒夏特列原理讨论平衡移动影响因素及方向。

3、常见的几种平衡图像。

根深蒂固

一、运用勒夏特列原理解释实际问题

1. 勒夏特列原理

如果改变影响平衡的一个条件(如浓度、温度或压强等)时,平衡就能向减弱这种改变的方向移动。

- 2. 几个问题:
- (1) 气体在水中的溶解度随着温度的升高而降低,压强的增大而增大,为什么?
- (2) 为什么用饱和食盐水除去氯气中的 HCl 气体?

【练一练】

- 1. 下列事实不能用勒夏特列原理解释的是(
 - A. 饱和食盐水法收集 Cl₂
 - B. 温度控制在 500℃有利于合成氨反应
 - C. 加入催化剂有利于氨的合成
- D. 工业制取金属钾 Na(l)+ KCl(l) NaCl(l)+ K(g)选取适宜的温度,使 K 成蒸气从反应混合物中分离出来
- 2. 下列有关合成氨工业的叙述,可用勒沙特列原理来解释的是()
 - A. 使用铁触媒, 使 N₂ 和 H₂ 的混合气体有利于合成氨
 - B. 高压比常压条件更有利于合成氨的反应
 - C. 500℃左右比室温更有利于合成氨的反应
 - D. 合成氨时采用循环操作,可提高原料的利用率

二、应用勒夏特列原理讨论平衡移动影响因素及方向

1. 浓度

其他条件不变的条件下,增大反应物的浓度或减小生成物的浓度,平衡向_____方向移动。反之依然。

注意点:增加或减少<u>固态物质(或液态纯物质)</u>不能使平衡发生移动。

2. 温度

升高温度,平衡向______方向移动;降低温度,平衡向______方向移动注意点:对任何一个平衡体系,温度改变都会使平衡发生移动。

3. 压强

注意点:

- ① 因压强的影响<u>**实质是浓度**</u>的影响,所以只有当这些"改变"能造成浓度改变时,平衡才有可能移动。
 - ② 对反应前后气体体积不变的平衡体系,压强改变 使平衡态发生移动。
- ③ 恒温恒容下,向容器中充入惰性气体,平衡____。因压强虽增加,但各反应物和 生成物的浓度都不改变。

4. 催化剂

可以极大程度地改变反应的速率,缩短(或延缓)到达平衡所需的时间,因催化剂能同等程度改变正逆反应速率,故对平衡状态不影响,即使用催化剂不能改变可逆反应所能达到的最大限度,不能提高反应转化率,不能改变原有平衡的各组份含量。

三、常见的几种平衡图像 反应 mA(气)+nB(气) ← pC(气)+qD(气)+Q

1. 速率-时间图

①增大反应物浓度

③增大压强(m+n<p+q)

②升高温度

④加催化剂

2. 转化率-时间图

3. 含量-时间图

4. 转化率-温度-压强图

5. 含量-温度-压强图

【练一练】

- 1. 同压、不同温度下的反应: $A(g) + B(g) \Longrightarrow C(g)$; A 的含量和温度的关系如图 3 所示,下列 结论正确的是(

 - A. $T_1 > T_2$, Q<0 B. $T_1 < T_2$, Q<0
 - C. $T_1 > T_2$, Q > 0 D. $T_1 < T_2$, Q > 0

- 2. 现有可逆反应 A(g) + 2B(g) = nC(g); Q>0, 在相同温度、不同压强时, A 的转化率跟反应 时间(t)的关系如图 4,其中结论正确的是(
 - A. $p_1 > p_2$, n > 3
- B. $p_1 < p_2, n > 3$
- C. $p_1 < p_2, n < 3$
- D. $p_1 > p_2$, n=3

知识点 1: 极端假设

【例1】(双选) 在密闭容器中进行 X(g) + 3Y(g) = 2Z(g)的反应,其中 $X \times Y \times Z$ 的起始浓度分别是 $0.1 \text{mol/L} \times Z$ 0.3mol/L 和0.2mol/L, 当反应达到平衡后, 各物质的浓度可能是()

- A. [X]=0.2 mol/L, [Y]=0.6 mol/L
- B. [Y]=0.5mol/L
- C. [X]=0.2 mol/L, [Z]=0.4 mol/L
- D. [Z]=0.4mol/L

变式 1: 在密闭容器中进行反应: $X_2(g)+Y_2(g)$ **===**2Z(g), 已知 X_2 、 Y_2 、Z 的起始浓度分别为 0.1 mol·L^{-1} 、0.3 $mol \cdot L^{-1}$ 、 $0.2 \, mol \cdot L^{-1}$,在一定条件下,当反应达到平衡时,各物质的浓度有可能是()

A. Z为 0.3 mol·L⁻¹

B. Y₂为 0.4 mol·L⁻¹

 $C. X_2 为 0.2 mol \cdot L^{-1}$

D. Z为 0.4 mol·L⁻¹

变式 2: 一定条件下,对于可逆反应 X(g)+3Y(g) === 2Z(g),若 $X \times Y \times Z$ 的起始浓度分别为 $c_1 \times c_2 \times c_3$ (均不 为零), 达到平衡时, $X \times Y \times Z$ 的浓度分别为 $0.1 \text{ mol·L}^{-1} \times 0.3 \text{mol·L}^{-1} \times 0.08 \text{ mol·L}^{-1}$, 则下列判断正确的是 ()

- A. $c_1: c_2=3:1$
- B. 平衡时, Y和Z的生成速率之比为2:3
- C. X、Y的转化率不相等
- D. c_1 的取值范围为 0 mol·L⁻¹< c_1 <0.14 mol·L⁻¹

【方法提炼】极端假设法确定各物质浓度范围

根据极端假设法判断,假设反应正向或逆向进行到底,求出各物质浓度的最大值和最小值,从而确定它们的浓度范围。

假设反应正向进行到底: $X_2(g) + Y_2(g) = 2Z(g)$

起始浓度 (mo I · L⁻¹) 0.

0.1 0.3

0. 2

改变浓度(mol·L⁻¹)

0.1 0.1

0. 1

终态浓度(mol·L⁻¹)

0 0.2

2 0.4

假设反应逆向进行到底: $X_2(g) + Y_2(g) = 2Z(g)$

起始浓度(mol·L⁻¹)

0. 1

0.3 0.2

改变浓度(mol·L⁻¹)

0.1 0.1

0. 2

终态浓度(mol • L⁻¹)

0. 2 0. 4

平衡体系中各物质的浓度范围为 $X_2 \in (0, 0.2)$, $Y_2 \in (0.2, 0.4)$, $Z \in (0, 0.4)$ 。

知识点 2: 平衡移动问题

【**例2**】可逆反应: 3A(气)——3B(?)+C(?); 开始向容器中冲入 A, 随着反应的进行, 气体平均相对分子质量变小,则下列判断正确的是()

A. B和C可能都是固体

B. B和C一定都是气体

C. B和C不可能都是气体

D. 若 C 为固体,则 B 一定是气体

变式 1: 在一定条件下,合成氨反应到达平衡状态,此时,再进行如下操作,平衡不发生移动的是(

A. 恒温、恒压时, 充入 NH₃

B. 恒温、恒容时, 充入 N₂

C. 恒温、恒压时,充入He

D. 恒温、恒容时,充入 He

变式 2: 在带活塞的圆筒内装入 NO₂气体,慢慢压缩,下列叙述正确的是()

A. 体积减半, 压强为原来的 2 倍

B. 体积减半, 压强比原来大 2 倍

C. 体积减半, 压强增大, 但小于原来的 2 倍

D. 体积减半,达到平衡后,则有一半 NO₂

【方法提炼】解析化学平衡移动题目的一般思路

速率不变:如容积不变,充入惰性气体,平衡不移动变条件。

程度相同 使用催化剂 气体体积无变化的反 平衡不移动应改变压强 定率改变 程度不同 (浓度) 平衡移动 温度

知识点 3: 图像问题

【例 1】A(g)+3B(g) \Longrightarrow 2C(g)+Q(Q>0) 达到平衡,改变下列条件,正反应速率始终增大,直达到新平衡的是 ()

A. 升温

- B. 加压
- C. 增大 c(A)

D. 降低 c(C)

E. 降低 c(A)

变式 1: 对达到平衡状态的可逆反应 X+Y ==== Z+W, 在其他条件不变的情况下, 增大压强, 反应速率变化 图象如图 1 所示,则图象中关于 X、Y、Z、W 四种物质的聚集状态为()

- A. Z、W 均为气体, X、Y 中有一种是气体
- B. Z、W中有一种是气体,X、Y皆非气体
- C. X、Y、Z、W 皆非气体
- D. X、Y均为气体, Z、W中有一种为气体

变式 2: (双选) 对于反应 2A(g) + B(g) = 2C(g); Q > 0,下列图象正确的是(

知识点 4: 综合题

<u>高温</u> 催化剂 2B(s) + 6HBr(g) 来制取晶体硼。 【例1】1200℃时可用反应 2BBr₃(g)+3H₂(g)=

完成下列填空:

- (1) 下列说法能说明该反应达到平衡的是 (选填序号,下同)。
 - a. $v_{\mathbb{E}}(BBr_3)=3v_{\mathbb{E}}(HBr)$
- b. $2c(H_2) = c(HBr)$
- c. 密闭容器内压强不再变化
- d. 容器内气体平均摩尔质量不再变化
- (2) 若密闭容器体积不变,升高温度,晶体硼的质量增加,下列说法正确的是

 - a. 在平衡移动时正反应速率先增大后减小 b. 在平衡移动时逆反应速率始终增大
 - c. 正反应为放热反应

- d. 达到新平衡后反应物不再转化为生成物
- (3) 若上述反应在 10L 的密闭容器内反应, 5min 后, 气体总质量减少 1.1 g, 则该时间段内氢气的平均反应 速率为
- (4) 往容器中充入 0.2 mol BBr₃ 和一定量 H₂, 充分反应达到平衡后, 混合气体中 HBr 百分含量与起始通入 H₂ 的物质的量有如图关系。

在 a、b、c 三点中, H₂ 的转化率最高的是 (选填字母)。

b点达到平衡后,再充入 H₂使平衡到达 c点,此过程中平衡移动的方向为 (填"正向"、"逆向"或"不移动")。

变式1: 工业上高纯硅可以通过下列反应制取:

$$SiCl_4(g) + 2H_2(g) \Longrightarrow Si(s) + 4HCl(g) -236kJ$$

完成下列填空:

- (1) 在一定温度下进行上述反应,若反应容器的容积为 2L, H_2 的平均反应速率为
 - 0.1mol/(L·min), 3min 后达到平衡,此时获得固体的质量 g。
- (2) 该反应的平衡常数表达式 K=。可以通过使 K 增大。
- (3) 一定条件下,在密闭恒容容器中,能表示上述反应一定达到化学平衡状态的是。
 - a. $2v_{\#}(SiCl_4) = v_{\#}(H_2)$
 - b. 断开 4molSi-Cl 键的同时, 生成 4molH-Cl 键
 - c. 混合气体密度保持不变
 - d. $c(SiCl_4)$: $c(H_2)$: $c(HCl_4) = 1:2:4$
- (4) 若反应过程如右图所示,纵坐标表示氢气、氯化氢的物质的量(mol),横坐标表示时间(min),若整个反应过程没有加入或提取各物质,则第1.5分钟改变的条件是_____,第3分钟改变的条件是_____,

各平衡态中氢气转化率最小的时间段是

变式 2: 已知反应: 3I-(aq)+S₂O₈²⁻(aq) === I₃-(aq)+2SO₄²⁻(aq)+Q

- (1) 写出反应的平衡常数表达式: K= 。
- (2) 右图表示反应过程中有关物质的能量,

则反应过程中的 Q 0 (填>、<、=);

(I)、(II) 两曲线中, 使用催化剂的是 曲线。

(3) 反应的速率可以用 I_3 与加入的淀粉溶液反应显蓝色的时间 t 来度量,t 越小,反应速率越大。下表是在 20 C进行实验时所记录的数据

实验编号	1	2	3	4)	5
$c(I^-)/\text{mol} \cdot L^{-1}$	0.040	0.080	0.080	0160	0.160
$c(S_2O_8^{2^-})/\text{mol}\cdot L^{-1}$	0.040	0.040	0.080	0.080	0.040
t/s	88	44	22	11	t_1

从表中数据分析,该实验的目的是______;

表中显色时间 t_1 =_____s; 最终得出的结论是_____。

瓜熟蒂落

1. 下列实验不能用勒沙特列原理解释的是(

	A. 工业生产硫酸的过程中使用过量氧气,以提高 SO_2 的转化率
	B. 合成氨工厂通常采用 20MPa-50MPa 压强,以提高原料的利用率
	C. 实验室用排饱和食盐水的方法收集氯气
	D. 在铁和硫酸反应液中加入少量硫酸铜溶液,反应明显加快
2.	对于是 $CO_2(g) + C(s)$ —— $2CO(g) + Q$,下列各条件变化时两项均能使平衡向右移动的()
	A. 加压 升温 B. 加压 降温 C. 减压 降温 D. 减压 升温
3.	(双选)一定温度下,在一恒容的密闭容器中,可逆反应有 $2NO_2(g)$ \longrightarrow N_2O_4 (正反应为放热) 达到平衡
	时,升高温度,发生的平衡移动对容器中混合气体的正确影响是()
	A. 混合气体的压强增大 B. 混合气体颜变浅的
	C. 混合气体的密度变小 D. 混合气体的总质量不变
4.	下列反应达到平衡后,增大压强或升高温度,平衡都向正反应方向移动的是()
	A. 2NO ₂ —— N ₂ O ₄ (正反应放热反应)
	B. 3O ₂ = 2O ₃ (正反应为吸热反应)
	C. H ₂ (g) + I ₂ (g) = 2 HI(g)(正反应为放热反应)
	D. NH ₄ HCO ₃ (s) — NH ₃ + H ₂ O + CO ₂ (正反应为吸热反应)
5.	某温度下,反应 S_2Cl_2 (液) $+Cl_2$ (气) $\rightarrow 2SCl_2$ (液),该反应放热,在密闭容器中达到平衡,
	(橙黄色) (鲜红色)
	下列说法错误的是()
	A. 温度不变,增大容器的体积,S ₂ Cl ₂ 的转化率降低
	B. 温度不变,缩小容器的体积,液体颜色加深
	C. 压强不变,升高温度,液体的颜色变浅
	D. 体积不变,降低温度,氯气的转化率降低
6.	压强变化不会使下列化学反应的平衡发生移动的是()
0.	
	A. $H_2(g) + I_2(g) = 2HI(g)$ B. $3H_2(g) + N_2(g) = 2NH_3(g)$
	C. $2SO_2(g) + O_2(g) = 2SO_3(g)$ D. $C(s) + CO_2(g) = 2CO(g)$

7.	改变化学平衡体系中的一个	条件后,某一	生成物的浓度	增大,则该平衡()	
	A. 一定没有移动		В	一定向正方向移动		
	C. 一定向逆方向移动		D. 5	无法确定		
8.	对已建立化学平衡的某可证	逆反应,当改变	条件使化学平	产衡向正反应方向和	多动时,下列有	关叙述正确的是
	()					
	①生成物的百分含量一定增		②生成物的产			
	③反应物的转化率一定增力	(④反应物的浓	度一定降低		
	⑤正反应速率一定大于逆反	反应速率 (⑥使用了适宜	的催化剂		
	A. 25 B. 12	C. (§	3)(5)	D. 46		
9.	合成氨所需的氢气可用煤和	T水作原料经多	步反应制得,	其中的一步反应为	J	
	$CO(g)+H_2O(g)$ \longrightarrow $CO(g)+GO(g)$	$O_2(g) + H_2(g) + Q$				
	反应达到平衡后,为提高(CO 的转化率,	下列措施中正	确的是 ()	
	A. 增加压强	В. 🛭	峰低温度			
	C. 增大 CO 的浓度	D. (1	使用催化剂			
10.	$COCl_2(g) \longrightarrow CO(g) + Cl_2(g)$					
	③增加 CO 浓度	④减压 (5加催化剂	⑥恒压通入惰	所性气体,能提高	COCl ₂ 转化率的
	是 ()					
	A. 1124	B. 146		C. 235	D. 356	
11.	反应速率v和反应物浓度的	的关系是用实验法	方法测定的。(化学反应 H₂+Cl₂-	→ 2HCl 的反应速	[率 v 可表示为 v
	$=k[c(H_2)]^m[c(Cl_2)]^n$, $\sharp + k$: 为常数, <i>m、n</i>	值可用下表中	型数据确定之。	1	
		С	c (Cl ₂)	v [mol/(L·s)]		
		(H ₂)(mol/L)	(mol/L)			
		1.0	1.0	1.0k		
		2.0	1.0	2.0k		
		2.0	4.0	4.0 <i>k</i>		
	由此可推得, m 、 n 值正确	的是()			
	A. $m=1, n=1$	1	B. $m = \frac{1}{2}$, $n =$	$\frac{1}{2}$		
	C. $m = \frac{1}{2}$, $n = 1$]	D. $m=1$, $n=\frac{1}{2}$	<u> </u>		

12. (双选)反应: L (固) +aG (气) $\rightarrow bR$ (气) 达到平衡时,温度和压强对该反应的影响图所示: 图中: 压强 $p_1 > p_2$, x 轴表示温度,y 轴表示平衡混合气中 G 的体积分数。据此可判断(

- A. 上述反应是放热反应
- B. 上述反应是吸热反应

C. a>b

- D. $a \le b$
- 13. 在一定温度不同压强($P_1 < P_2$)下,可逆反应 $2X(g) \longleftrightarrow 2Y(g) + Z(g)$ 中,生成物 Z 在反应混合物中的体积分数(ψ)与反应时间(t)的关系有以下图示,正确的是(

- 14. 在 $mA(g) + nB(g) \longrightarrow pC(g) + qD(g)$ 反应中,达到平衡后,的质量分数 D%随温度、压强的变化曲 线如下图所示正确的结论是(
 - A. 正反应放热,且 m+n>p+q
 - B. 正反应放热,且 m+n < p+q
 - C. 正反应吸热,且 m+n>p+q
 - D. 正反应吸热,且 m+n < p+q

15. 将 3molO_2 加入到 V 升的反应器中,在高温下放电,经 $t_1 s$ 建立了平衡体系: $3 O_2$ \longrightarrow $2 O_3$,此时测知 O_2 的转化率为 30%,下列图象能正确表示气体的物质的量浓度(m)跟时间(t)的关系的是(

- 16. 一定条件下的密闭容器中有如下反应: $4NH_3(g)+5O_2(g)$ 4 $NO(g)+6H_2O(g)+905.9$ kJ·mol $^{-1}$,下列叙述正确的是
 - A. 4 mol NH₃和 5 mol O₂反应,达到平衡时放出热量为 905.9 kJ

 - C. 平衡后减小压强,混合气体平均摩尔质量增大
 - D. 平衡后升高温度,混合气体中 NO 含量降低
- 17. 反应 $N_2O_4(g)$ \longrightarrow $2NO_2(g)$ 57 kJ·mol^{-1} ,在温度为 T_1 、 T_2 时,平衡体系中 NO_2 的体积分数随压强的变化曲线如图所示。下列说法正确的是(

- B. a、c 两点气体的颜色: a 深, c 浅
- C. 由状态 b 到状态 a,可以用加热的方法
- D. $a \times c$ 两点气体的平均相对分子质量: a > c

18. 某温度下,在一个 2 L 的密闭容器中加入 4 mol A 和 2 mol B 进行如下反应: 3A(g)+2B(g) ——4C(s)+D(g), 反应 2 min 后达到平衡, 测得生成 1.6 mol C, 下列说法正确的是

()

- A. 前 2 min D 的平均反应速率为 0.2 mol·L⁻¹·min⁻¹
- B. 此时, B 的平衡转化率是 40%
- C. 增大该体系的压强, 平衡不移动, 化学平衡常数不变
- D. 增加 B, 平衡向右移动, B 的平衡转化率增大
- 19. 在相同温度下,将 H_2 和 N_2 两种气体按不同比例通入相同的恒容密闭容器中,发生反应: $3H_2+N_2$ 2 NH_3 。 $n(H_2)$ 表示起始时 H_2 和 N_2 的物质的量之比,且起始时 H_2 和 N_2 的物质的量之和相等。下列图像正确的是 $n(N_2)$

()

混合气体的质量

20.	图 2 表示 800℃时 A、B、C 三种气体物质的浓度随时间的变化情况,t ₁ 是到达平 浓度 ↑ mol/t
	衡状态的时间. 试回答: 2.0 A
	(1) 该反应的反应物是; 0.8 C R
	(2) 反应物的转化率是;
	(3) 该反应的化学方程式为 图 2
21.	对于 A+2B(g) — nC(g), 在一定条件下达到平衡后,改变下列条件,请回答:
	(1)A 量的增减,平衡不移动,则 A 为态。
	(2)增压,平衡不移动,当 n=2 时,A 为态;当 n=3 时,A 为态。
	(3)若 A 为固态,增大压强, C 的组分含量增大, n=。
	(4)升温,平衡向右移动,则该反应的逆反应为
22.	某温度下,在密闭容器中 SO ₂ 、O ₂ 、SO ₃ 三种气态物质建立化学平衡后,改变条件对反应[2SO ₂ (g)+O ₂ (g)
	₹ 2SO₃(g)+Q]的正、逆反应速率的影响如图所示:
	v
	$v_{\scriptscriptstyle m IE}$ $v_{\scriptscriptstyle m IE}$ $v_{\scriptscriptstyle m IE}$
	$v_{i\pm}$
	A B
	$v_{ m L}$ $v_{ m E}$
	$v_{\mathbb{H}}$ $v_{\tilde{\mathbb{H}}}$ $v_{\tilde{\mathbb{H}}}$
	$O^{V_{\frac{10}{2}}}$ $O^{V_{\frac{10}{2}}}$
	C D
	(1)加催化剂对反应速率影响的图像是(填序号,下同),平衡移动。
	(2)升高温度对反应速率影响的图像是,平衡向方向移动。
	(3)增大反应容器体积对反应速率影响的图像是,平衡向方向移动。
	(4)增大 O ₂ 的浓度对反应速率影响的图像是,平衡向方向移动。
23.	在铂-铑"三效"催化剂作用下,以下反应可以将汽车尾气中2种有害气体转变成无害气体:
	$2NO(g)+2CO(g) \Longrightarrow N_2(g)+2CO_2(g)+Q(Q>0)$
(1))该反应的化学平衡常数表达式为
	发生如图所示的变化,则改变的条件可能是(选填编号)。
	①加入催化剂 ②降低温度 ③缩小容器体积 ④增加 CO ₂ 的量
(2))铂-铑"三效"催化剂还可帮助将汽车尾气中的烃类转变成无害气体,生成的无害气体是
(3))有文献报道,在铂-铑"三效"催化剂作用下,280℃时,NOx"转化率"达到 90%,这是否指铂-铑"三效"催
化	之剂能移动化学平衡?试作出分析。
(4))等物质的量的 NO 和 CO 气体反应时, 若 NO 的转化率为 90%, 所得混合气体的平均相对分子质量为
	(保留2位小数)。

24. 氮化硅(Si ₃ N ₄)是一种新型陶瓷材料,它可在高温下的氮气流中E	由石英与焦炭通过以下反应制得:
$3SiO_2(s) + 6C(s) + 2N_2(g) \implies Si_3N_4(s) + 6CO(g) + Q(Q>0)$	
完成下列填空:	
(1)某温度下该反应在一容积为 2L 的密闭容器中进行,2min 后达到平衡	可,刚好有 2mol 电子发生转移,则 2mi
内反应的速率为: v(CO) =; 该反应的平衡常数表达式;	为。
(2)其它条件不变时仅增大压强,则。	
a. K 值减小,平衡向逆反应方向移动 ν▲	11 111
b. K 值增大, 平衡向正反应方向移动	
c. K 值不变, 平衡向逆反应方向移动	
d. K 值不变, 平衡向正反应方向移动	VE VE
(3)一定条件下能说明上述反应已达平衡的是。	E) V(逆)
	逆
c. 固体质量不再改变 d. 气体密度不再改变	11 12 13 14 15 16 17
(4)达到平衡后改变某一条件,反应速率 v 与时间 t 的关系如右图所示。	
若不改变 N2与 CO 的量,则图中 t4时引起变化的原因可能是	
时引起变化的原因可能是。	
由图可知,平衡混合物中 CO 含量最高的时间段是	0
25. Cl ₂ 合成有机物时会产生副产物 HC1。4HCl+O ₂ —— 2Cl ₂ +2H ₂ O	,可实现氯的循环利用。
完成下列填空:	
(1)该反应平衡常数的表达式 $K=$; 若	反应容器的容积为 2L, 8min 后达到平
衡,测得容器内物质由 2.5mol 减少至 2.25mol,则 HCl 的平均反应:	速率为mol/L·min。
(2)若该反应在体积不变的密闭容器中发生,当反应达平衡时,下列。	叙述正确的是。
a. $v \text{ (HCl)}=2 v \text{(Cl}_2)$	
b. $4v_{\mathbb{E}}(HCl) = v_{\mathbb{E}}(O_2)$	
c. 又加入 $1 \text{mol } O_2$,达新平衡时, HCl 的转化率增大	
d. 分离出 H ₂ O,达新平衡时,ν _≖ (HCl)增大	
(3)下图是该反应两种投料比[n (HCl): n (O ₂)分别为 4:1 和 2:1] 下,反	应温度对 HCl 平衡转化率影响的曲线。
下列叙述正确的是。	<u>T</u> 85
a. 该反应的正反应是放热反应	平80
b. 其他条件不变,升高温度,平衡常数 K 值增大	衡 转 ₇₅
c. 若平衡常数 K 值变大, 达新平衡前 $v_{\text{\tiny "}}$ 始终减小	化 _{率70} - b
d. 若平衡常数 K 值变大,则平衡向正反应方向移动	8
	1× 177 100 1 7 1 C

第 14 页 共 14 页

(4)投料比为 4:1、温度为 400℃时,平衡混合物中 Cl₂ 的物质的量分数是_____