CSE 250A. Assignment 8 Solutions

Out: Tue Nov 16
Due: Tue Nov 23

8.1 EM algorithm for binary matrix completion

(a) Sanity check

You may paste screenshot of output to cover these tables (instead of filling them).

Rec (%)	Title	Rec (%)	Title	Rec (%)	Title

(b) Likelihood

$$P\left(\left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) =$$

(c) E-step

$$P\left(Z = i \left| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right) \right| =$$

(d) M-step

(e) Implementation

iteration	log-likelihood $\mathcal L$
0	-27.0358
1	-17.5604
2	
4	
8	
16	-14.2638
32	
64	
128	
256	

(f) Personal movie recommendations

(g) Source code

8.2 Mixture model decision boundary

(a) Posterior probability

$$P(y=1|\vec{x}) =$$

(b) Decision boundary

(c) Shifting hyperplane

83	Gradient a	scent	versus	$\mathbf{E}\mathbf{M}$
()	CH auicht a	1366111	vc1503	12 I V

(a) Log likelihood

(b) Gradient

(c)	Noisy-OR
(d)	Chain rule

(e) Gradient ascent versus EM

84	Similarity	learning	with	logistic	regression
O. T	Sillillarity	icai iiiiig	WILLI	iogistic	regression

(a) Inference for similar examples

(b) Inference for dissimilar examples

(c) E-Step

- () $P(y=1|\vec{x}, \vec{x}', s=1) =$
- () $P(y'=1|\vec{x},\vec{x}',s=1) =$
- () $P(y=1|\vec{x},\vec{x}',s=0) =$
- () $P(y'=1|\vec{x}, \vec{x}', s=0) =$

(d) Log-likelihood

(e) M-step

8.5 Logistic regression across time

(a) Likelihood

$$\alpha_{j,t+1} =$$

(b) Most likely hidden states

$$\ell_{j,t+1}^* \ =$$

(c) **Prediction**

$$\begin{array}{l} \text{for } t=1 \text{ to } T-1 \\ \text{ for } j=0 \text{ to } 1 \\ \Phi_{t+1}(j) \ = \ \operatorname{argmax}_{i \in \{0,1\}} \left[\right. \\ \text{for } t=T-1 \text{ to } 1 \\ y_t^* \ = \left[\right. \end{array}$$