# Lec8\_Hasing

#### **Dictionary Problem**

• Abstract Data Type(ADT) - maintain a set of items, each with a key, subject to

o insert(item) : add item to set

o delete(item): remove item from set

o search(key): return item with key if it exists

• Goal : O(1) time per operation

## **Python Dictionaries**

D[key] → search

• D[key] = val → insert

• del D[key] → delete

• Item = (key, value)

### Simple Approach : Direct Access Table

→ This means items would need to be stored in an array, indexed by key



- Problems
  - keys must be nonnegative integers ( or using two array, integers)
  - large key range ⇒ large space
- Solution to 1: "Prehash" keys to integers
  - o In theory, possible because keys are finite ⇒ set of keys is countable

- In Python: hash(object) (actually hash is misnomer should be "prehash") where object is a number, string, tuple etc. or object implementing \_\_hash\_\_ (default = id = memory address)
- o In theory,  $x == y \Leftrightarrow hash(x) == hash(y)$
- Python applies some heuristics for practicality: for example, hash('\0B') = 64 = hash('\0\0C')
- Object's key should not change while in table (else cannot find it anymore)
- No mutable objects like lists
- Solution to 2: Hashing
  - o Reduce universe U of all keys down to reasonable size m for table
  - <u>Idea</u>: m ~= n ( # keys stored in dictionary)
  - o <u>hash function</u> h : U  $\rightarrow$  {0,1,2, ..., m-1}



Figure 2: Mapping keys to a table

- two keys ki, kj  $\in$  K collide if h(ki) = h(kj)
  - How do we deal with collision? → chaining / open addressing

#### Chaining



Figure 3: Chaining in a Hash Table

- Search must go through whole list T[h(key)]
- Worst case : all n keys hash to same slot  $\Rightarrow \Theta(n)$  per operation

#### Simple Uniform Hashing

- $\rightarrow$  An assumption : Each key is equally likely to be hashed to any slot of table, independent of where other keys are hashed.
  - let n = # keys are hashed
    m = # slots in table
  - load factor a = n/m
    - = expected # keys per slot
    - = expected length of a chain
  - expected running time for search =  $\Theta(1+\alpha)$ 
    - 1 : apply hash function & random access to slot
    - $\alpha$  : search the list
  - O(1) if  $\alpha = O(1)$  i.e.)  $m = \Omega(n)$

#### **Hash Functions**

- Division method : h(k) = k mod m
  - o Practical when m i preme but not close to power of 2 or 10
- Multiplication Method : h(k) = [(a\*k) mod 2^w] >> (w-r)

a : random k : w bits m = 2^r

Practical when a is odd & 2<sup>(w-1)</sup> < a < 2<sup>w</sup> & not close



Figure 4: Multiplication Method

- ⇒ Hatched part is the key
- Universal Hashing: h(k) = [(ak+b) mod p] mod m
  where a and b are random ∈ { 0,1,2 ....p-1 } and p is a large prime (> |U|).
  This implies that for worst case keys k1 /= k2, (and for a,b choice of h):
  Pra,b{ event X k1k2 } = Pra,b { h(k1) = h(k2)} = 1/m