CPSC-354 Report

Mitchell Toney Chapman University

September 21, 2025

Abstract

Contents

1	Introduction			
2	Week by Week			
	2.1 Week 1: HW1			
	2.2 Week 2: HW2			
	2.3 Week 3: HW3			
	2.3.1 Exercise 5			
	2.3.2 Semantic question			
	2.4 Week 4: HW4			
	2.4.1 HW4.1: Termination Proof for GCD			
	2.4.2 HW4.2: Termination Proof for Merge Sort			
3	Essay			
4	Evidence of Participation			
5	Conclusion			

1 Introduction

2 Week by Week

2.1 Week 1: HW1

The MU puzzle is a puzzle created by Douglas Hofstadter. It consists of four rules that can be applied to a string MI.

$$\begin{aligned} &1. \ xI \rightarrow xIU \\ &2. \ Mx \rightarrow Mxx \\ &3. \ xIIIy \rightarrow xUy \\ &4. \ xUUy \rightarrow xy \end{aligned}$$

When first approaching this puzzle, the first strategy that came to mind was to take advantage of rule number 2 to keep duplicating the I's until there is a multiple of three, then using rules 3 and 4 to get rid of the I's and leave a remaining U.

The issue with this is that $2^n \mod 3$ will never equal 0, it infinitely cycles between equaling 1 and 2, and without being able to get rid of all the I's, which would require them being a multiple of 3, you will never be able to get MU.

Thus, the puzzle is not solvable.

2.2 Week 2: HW2

1.
$$A = \emptyset$$
, $R = \emptyset$

$$2. \quad A = \{a\}, \ R = \emptyset$$

3.
$$A = \{a\}, R = \{(a, a)\}$$

$$\begin{array}{lll} 4. & A & = & \{a,b,c\}, & R & = & \\ \{(a,b),(a,c)\} & \end{array}$$

5.
$$A = \{a, b\}, R = \{(a, a), (a, b)\}$$

6.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c)\}$$

7.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c), (c, c)\}$$

#	Terminating	Confluent	Unique NFs
1	Yes	Yes	Yes
2	Yes	Yes	Yes
3	No	Yes	No
4	Yes	No	No
5	No	Yes	Yes
6	No	No	No
7	No	No	No

$\begin{array}{c} \textbf{Confluent True, Terminating True,} \\ \textbf{Unique NFs True} \end{array}$

Confluent True, Terminating False, Unique NFs True

Confluent False, Terminating True, Unique NFs True

Confluent False, Terminating False, Unique NFs True

2.3 Week 3: HW3

2.3.1 Exercise 5

Consider rewrite rules:

$$\begin{array}{c} ab \rightarrow ba \\ ba \rightarrow ab \\ aa \rightarrow \\ b \rightarrow \end{array}$$

Confluent True, Terminating True, Unique NFs False

Confluent True, Terminating False, Unique NFs False

$\begin{array}{c} {\bf Confluent\ False,\ Terminating\ True,}\\ {\bf Unique\ NFs\ False} \end{array}$

Confluent False, Terminating False, Unique NFs False

$$A = \{a,b,c\},\ R = \{(a,b),(a,c),(b,b),(c,c)\}$$

Example Reductions

Reducing abba:

$$abba o baba$$
 (using $ab o ba$)
 $baba o bbaa$ (using $ba o ab$)
 $bbaa o baa$ (using $b o \varepsilon$)
 $baa o aba$ (using $ba o ab$)
 $aba o baa$ (using $ab o ba$)

There is an infinite loop between aba and baa.

Reducing bababa:

```
bababa 	o ababab 	ext{ (using } ba 	o ab)

ababab 	o baabab 	ext{ (using } ab 	o ba)

baabab 	o ababab 	ext{ (using } ba 	o ab)
```

This is an infinite loop between ababab and baabab.

Why the ARS is not terminating The ARS is not terminating because the rules $ab \to ba$ and $ba \to ab$ create infinite cycles. These rules allow us to swap adjacent a and b characters indefinitely, leading to non-terminating reduction sequences.

Non-equivalent strings Two strings that are not equivalent: a and aa.

The string a cannot be reduced further, while as reduces to nothing using the rule $aa \rightarrow$. Since nothing $\neq a$, these strings are in different equivalence classes.

Equivalence classes The equivalence relation \leftrightarrow^* has infinitely many equivalence classes. Each equivalence class can be characterized by the number of a's modulo 2 and the number of b's modulo 1.

The equivalence classes are:

- $[\varepsilon]$: strings with even number of a's and no b's
- [a]: strings with odd number of a's and no b's
- [b]: strings with any number of a's and at least one b

The normal forms are: ε , a, and b.

Modifying the ARS to be terminating To make the ARS terminating without changing equivalence classes, we can remove the symmetric rules and keep only one direction:

$$ba \to ab$$

$$aa \to \varepsilon$$

$$b \to \varepsilon$$

This eliminates the infinite cycles while preserving the same equivalence relation.

2.3.2 Semantic question

Parity of a's: "Does this string contain an odd number of a's?" Answer: Yes if the normal form is a, No if the normal form is ε .

Exercise 5b

Consider rewrite rules:

$$ab \to ba$$

$$ba \to ab$$

$$aa \to a$$

$$b \to$$

Reducing abba:

$$abba o baba$$
 $baba o abba$

Reducing bababa:

$$bababa o ababab$$
 $ababab o bababa$

Why not terminating. The symmetric swaps $ab \leftrightarrow ba$ allow infinite rewriting.

Non-equivalent strings. a and ε are not equivalent.

Equivalence classes. Exactly two: $[\varepsilon]$ (no a's; all b's delete) and [a] (at least one a; since $aa \sim a$). Normal forms (under a terminating orientation): ε and a.

Terminating variant.

$$\begin{array}{c} ba \rightarrow ab \\ aa \rightarrow a \\ b \rightarrow \end{array}$$

This gives a complete semantics to the ARS: it computes the invariant for any input string.

2.4 Week 4: HW4

2.4.1 HW4.1: Termination Proof for GCD

Consider the following algorithm:

```
while b != 0:
    temp = b
    b = a mod b
    a = temp
return a
```

Assume: Work over integers with Euclidean division: inputs $a \in \mathbb{Z}$, $b \in \mathbb{N}$; if $b \neq 0$ then $0 \leq a \mod b < b$.

Model: States $A = \mathbb{Z} \times \mathbb{N}$. One step $(a, b) \to (a', b')$ is one loop iteration.

Measure: $\phi: A \to \mathbb{N}, \ \phi(a,b) = b.$

Show:
$$(a,b) \rightarrow (a',b') \Rightarrow \phi(a',b') < \phi(a,b)$$
.

If $b \neq 0$, the update sets $b' = a \mod b$ with $0 \leq b' < b$; hence $\phi(a', b') = b' < b = \phi(a, b)$.

 ϕ strictly decreases in \mathbb{N} , so there is no infinite \rightarrow -chain; eventually b=0 and the loop stops. Thus the algorithm terminates under the stated conditions.

2.4.2 HW4.2: Termination Proof for Merge Sort

Consider the following fragment of an implementation of merge sort:

```
function merge_sort(arr, left, right):
    if left >= right:
        return
    mid = (left + right) / 2
    merge_sort(arr, left, mid)
    merge_sort(arr, mid+1, right)
    merge(arr, left, mid, right)
Prove that
\phi(\text{left}, \text{right}) = \text{right} - \text{left} + 1
is a measure function for merge sort.
Show: For
merge_sort(arr, left, right):
  if left >= right: return
    mid = floor((left + right)/2)
  merge_sort(arr, left, mid)
  merge_sort(arr, mid+1, right)
  merge(arr, left, mid, right)
```

the function $\phi(\text{left}, \text{right}) = \text{right} - \text{left} + 1$ is a strictly decreasing measure, hence merge_sort terminates.

Assume: left,right $\in \mathbb{Z}$ with $0 \le \text{left} \le \text{right} < |arr|$. Division for mid is integer. If left $\le \text{right}$, then left $\le \text{mid} < \text{right}$. merge makes no recursive calls.

Model: States are intervals $A = \{(l, r) \in \mathbb{Z}^2 \mid l \leq r\}$. A "step" is a recursive edge from (l, r) (with l < r) to each child (l, mid) and (mid + 1, r).

```
Measure: \phi: A \to \mathbb{N}, \quad \phi(l,r) = r - l + 1.
```

Let l < r and mid = $\lfloor (l+r)/2 \rfloor$ so $l \le \text{mid} < r$.

First child: $\phi(l, \text{mid}) = \text{mid} - l + 1 \le (r - 1) - l + 1 = r - l = \phi(l, r) - 1 < \phi(l, r)$.

Second child: $\phi(\text{mid} + 1, r) = r - \text{mid} < r - l = \phi(l, r) - 1 < \phi(l, r)$.

Every recursive edge strictly decreases ϕ in \mathbb{N} , which is well-founded. Thus no infinite recursion is possible; the calls bottom out at states with $\phi \in \{0,1\}$ (i.e., left \geq right), where the function returns. Therefore $\phi(\text{left}, \text{right}) = \text{right} - \text{left} + 1$ is a valid measure and merge_sort terminates under the stated conditions.

- 3 Essay
- 4 Evidence of Participation
- 5 Conclusion

References

[BLA] Author, Title, Publisher, Year.