CheatSheet di Ricerca Operativa e Pianificazione delle Risorse

Fabio Ferrario

@fefabo

2022/2023

Indice

1	Ottimizzazione Non Lineare				
	1.1	Algoritmo del Gradiente			
	1.2	Algoritmo di Newton			
2	Ott	Ottimizzazione Non Lineare Vincolata			
	2.1	Condizioni di KKT			
		2.1.1 Differenza tra max e min			

Capitolo 1

Ottimizzazione Non Lineare

1.1 Algoritmo del Gradiente

Data una funzione a piú variabili f(X) e un punto x^0 , ogni passo del metodo del gradiente si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$, con la direzione di crescita $d^k = \pm \nabla f(x^k)$ (+ max e min)
- 2. Calcolo $x^{k+1} = x^k \pm \alpha^k \cdot d^k$
- 3. In cui α^k é il max di $f(x^k \pm \alpha^k \cdot d^k)$. ovvero Valuto f nel nuovo punto e massimizzo la funzione risultante $g(\alpha)$, generalmente in modo analitico $(g'(\alpha) = 0)$.
- 4. Sostituisco α trovato in x^{k+1} .
- 5. Valuto i criteri di arresto (Con epsilon o con un numero predefinito di iterazioni, e nel caso ripeto)

Per verificare che il punto trovato sia un punto di ottimo, semplicemente controllo che $\nabla f(x^*) = 0$.

1.2 Algoritmo di Newton

Data una funzione a piú variabili f(X) e un punto x^0 , una iterazione del metodo di Newton si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$ e $H(x^k)$.
- 2. Calcolo il vettore spostamento, ponendo: $H_f(x^0)V = -\nabla f(x^0)$ e risolvendo il sistema di equazioni.
- 3. trovo $x^{k+1} = x^k + V$, in cui V é il vettore spostamento.

Capitolo 2

Ottimizzazione Non Lineare Vincolata

2.1 Condizioni di KKT

In un problema di ottimizzazione vincolata definito come:

opt
$$f(x_1,...,x_n)$$
,
 $g_m(x_1,...,x_n) = 0$ Vincoli di Uguaglianza,
 $h_l(x_1,...,x_n) \leq 0$ Vincoli di Disguaglianza,

Generiamo la Lagrangiana cosí definita:

$$L(V) = f(X) \pm \sum_{i=0}^{m} \lambda_i \cdot g_i(X) \pm \sum_{j=0}^{l} \mu_j \cdot h_j(X)$$
 Per i problemi di MIN

in cui \pm diventa + per i problemi di MIN e – per i problemi di MAX, Abbiamo che λ sono i moltiplicatori lagrangiani associati ai vincoli di Uguaglianza, e μ quelli associati ai vincoli di Disuguaglianza.

con $V = \{x_1, ..., x_n, \lambda_1, ..., \lambda_m, \mu_1, ..., \mu_l\}$, ovvero tutte le variabili e $X = \{x_1, ..., x_n\}$, ovvero tutte le variabili originiali.

La tabella e il sistema Avendo questo, bisogna quindi generare un sistema che avrá n+m+l incognite utilizzando le KKT, riportate qui in modo semplificato:

Stazionarietá Problemi di MIN (-)			
$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$			
Stazionarietá Problemi di MAX (+)			
$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$			
Ammissibilitá Vincoli Uguaglianza	\forall $g_i = 0$		
Ammissibilitá Vincoli Disuguaglianza	$\forall \qquad h_j \le 0$		
Condizione di Complementarietá	$\forall \qquad \qquad \mu_j \cdot h_j = 0$		
Non Negativitá di μ	$\forall \qquad \qquad \mu_j \geq 0$		

Dove con \forall si intende chiaramente tutti quelli presenti.

2.1.1 Differenza tra max e min

Abbiamo due possibilitá per differenziare i punti di max dai punti di min: Per il max, o mettiamo la prima condizione come somma di elementi negativi $(-\sum \lambda g - \sum \mu h)$ con i $\mu \geq 0$, oppure mettiamo la prima condizione uguale al min (come somma di elementi positivi) e tutti i $\mu \leq 0$.

Per il min invece, la prima condizione é positiva e i μ sono maggiori o uguali a zero.