

Applying k-means to non-vector data Medoid - A point which is closeste to all other points. K-medoid Computational Complexity of k-means. 0(1/1/2) +0(NK) = 0(NK)[N] 0(N/2) Stopping criteria Stop when cluster centers are not drogly. How to charse K R - cluster assignment matrix NXK > [100000

W ~ [0174]

S $W_{ij} = \begin{cases} Sim(x_i, x_j) / Y_i & \text{is nearest} \\ neighbor & x_j \end{cases}$ $0 & \text{otherwise} \end{cases}$ $W_{ij} = \begin{cases} 0 & \text{if } x_i \text{ is in} \\ p_e & \text{k-nearest} \\ 0 & \text{neighborhood} \\ q & x_j \end{cases}$

W will not be necessarily Symmetric

5+5"

Clustering -> Partition X into Kclusher (Hand)

Graph-W > finding k cuts in this graph

NP-Hard Problem (0-1 Knapsack)
OF Days
Find N binary vectors S.t Cij = 1 if i belags to cluster k 20 otherwise
Eigen veeter problem A X = X X N Scalar Then X is an eigen rectord A and X is the eigen value.
and x is the eigen. A adjacency matrix 2. December 2. Wiii

eigendues

Chaose k-smallest eigen-valu

Chose k-smallest eigen-valu

Perferm elus k-means

clustery an U.

And the state of t