Нисходящий разбор

Теория формальных языков *2021 г*.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Определение

КС-грамматика G неоднозначная, если существует слово $w \in L(G)$ такое, что в G у него больше одного дерева разбора. КС-язык L существенно неоднозначен, если всякая его грамматика неоднозначна.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Определение

КС-грамматика G неоднозначная, если существует слово $w \in L(G)$ такое, что в G у него больше одного дерева разбора. КС-язык L существенно неоднозначен, если всякая его грамматика неоднозначна.

Существование однозначной грамматики не гарантирует существования DPDA: см. $\{\alpha^n b^n\} \cup \{\alpha^n b^{2n}\}$.

Алгоритм Кока-Янгера-Касами — таблица $\mathsf{T}_{i,j} = \{A \,|\, \alpha_{i+1} \dots \alpha_j \in \mathsf{L}_\mathsf{G}(A)\}$; изменим её на $T_i'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}.$

Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$; изменим её на $T_i'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$.

Идея алгоритма СТ

Читаем очередной символ, вычисляем множество $T_j'[A]$ для всех $A\in N$, постепенно достраивая его как список, упорядоченный по возрастанию. Если $A\to BC$, тогда если $k\in T_j'[C]$, то для всех $x\in T_k'[B]$ выполнено $x\in T_j'[A]$.

Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$; изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$.

```
\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \dots n \\ \text{for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \dots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \text{ } T_j'[A] = T_j'[A] \cup \{i\} \end{split}
```


Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$; изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$.

```
\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \dots n \\ \text{for all } A \in N \text{ if } A \to \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \dots 1 \\ \text{for all } A \to BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \text{ } T_j'[A] = T_j'[A] \cup \{i\} \end{split}
```

Для однозначных грамматик ACT работает за $O(n^2)$.

$$S o G_AA\,|\,G_BB\,|\,a\,|\,b$$
 $A o a\,|\,SG_A$ $B o b\,|\,SG_B$ $G_A o a$ слово авьа

$$\begin{split} \forall j, \mathbf{A}(T_j'[\mathbf{A}] = \varnothing) \\ \text{for } j = 1 \dots n \\ \text{for } k = j - 1 \dots 1 \\ \text{for all } A \to BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

Инициализация таблицы:

	S	A	В	G_A	$G_{\rm B}$
1 - a					
2 – b					
3 – b					
4 — a					

$$S o G_A A \, | \, G_B B \, | \, {f a} \, | \, {f b} \quad A o {f a} \, | \, S G_A \quad B o b \, | \, S G_B \ G_A o {f a} \quad G_B o b \quad$$
 слово аbba

$$\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \dots n \ \ \, \backslash \ \, j = 1 \\ \text{for all } A \in N \text{ if } A \to \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \dots 1 \\ \text{for all } A \to BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

j=1, проход по терминальным правилам, цикла по нетерминальным нет, т.к. k=0:

	S	Α	В	G_A	G_{B}
1 – a	0	0		0	
2 – b					
3 – b					
4 — a					

$$S o G_A A \, | \, G_B B \, | \, \alpha \, | \, {f b}$$
 $A o \alpha \, | \, SG_A$ $B o {f b} \, | \, SG_B$ $G_A o \alpha$ $G_B o {f b}$ слово abba

$$\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \ldots n \ \, \backslash \ \, j = 2 \\ \text{for all } A \in N \text{ if } A \to \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \ldots 1 \\ \text{for all } A \to BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

j = 2, проход по терминальным правилам:

	S	A	В	G_A	$G_{\rm B}$
1 - a	0	0		0	
2 – b	1		1		1
3 – b					
4 – a					

$$\mathbf{S} o G_A A \, | \, \mathbf{G_B B} \, | \, a \, | \, b \quad A o a \, | \, SG_A \quad \mathbf{B} o b \, | \, \mathbf{SG_B}$$
 $G_A o a \quad G_B o b \quad$ слово abba

$$\forall j, A(T_j'[A] = \varnothing)$$
 for j=1..n \\ j=2 for k=j-1..1 \\ k=1 for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 2 с индексом 1 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку второй строки для левого нетерминала содержимое ячейки первого нетерминала в строке 1

Подходящие правила есть для B и G_B . Но для нетерминала G_B (правило $S \to G_B B$) ячейка в первой строке пуста, так что добавляем только содержимое ячейки для S в ячейку B.

	S	Α	В	G_A	$G_{\rm B}$
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b					
4 – a					

$$S o G_A A \, | \, G_B B \, | \, a \, | \, {f b}$$
 $A o a \, | \, SG_A$ $B o {f b} \, | \, SG_B$ $G_A o a$ слово $abba$

$$\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \ldots n \ \setminus j = 3 \\ \text{for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \ldots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

ј = 3, проход по терминальным правилам:

	S	Α	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 - b	2		2		2
4 – a					

$$\mathbf{S} o G_A A \, | \, \mathbf{G_B B} \, | \, a \, | \, b \quad A o a \, | \, SG_A \quad \mathbf{B} o b \, | \, \mathbf{SG_B} \ G_A o a \qquad G_B o b \qquad$$
 слово аbba

$$\forall j, A(T_j'[A] = \varnothing)$$
 for j=1..n \\ j = 3 for k=j-1..1 \\ k = 2 for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 3 с индексом 2 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку третьей строки для левого нетерминала содержимое ячейки первого нетерминала в строке 2

Подходящие правила: $S \to G_B B$, $B \to S G_B$, причём во второй строке ячейки G_B и S обе не пустые. Добавляем их содержимое в ячейки левых частей, S и B:

	S	Α	В	G_{A}	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 – a	, 0				

$$\mathbf{S} o G_A A \, | \, \mathbf{G_B B} \, | \, a \, | \, b \quad A o a \, | \, SG_A \quad B o b \, | \, SG_B \ G_A o a \qquad G_B o b \qquad$$
 слово $abba$

$$\forall j, A(T_j'[A] = \varnothing)$$
 for j=1..n \\ j = 3 for k=j-1..1 \\ k = 1 for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 3 с индексом 1 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку третьей строки для левого нетерминала содержимое ячейки первого нетерминала в строке 1

1 в третьей строке есть у нетерминалов S и B, но первый никогда не бывает вторым в правой части. Остаётся правило $S \to G_B B$, оно также ничего не даёт, т.к. в первой строке ячейка G_B пуста.

	S	Α	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 – a	, 0				

$$S o G_A A \, | \, G_B B \, | \, {f a} \, | \, {f b} \quad A o {f a} \, | \, S G_A \quad B o {f b} \, | \, S G_B \ G_A o {f a} \quad G_B o {f b} \quad$$
 слово аbba

$$\begin{split} \forall j, A(T_j'[A] = \varnothing) \\ \text{for } j = 1 \dots n \setminus \mathbf{j} = \mathbf{4} \\ \text{for all } A \in N \text{ if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \dots 1 \\ \text{for all } A \rightarrow BC \in R \\ \text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ T_j'[A] = T_j'[A] \cup \{i\} \end{split}$$

j = 4, проход по терминальным правилам:

	S	A	В	G_A	$G_{\rm B}$
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 – a	3, 0	3		3	

$$\mathbf{S} o \mathbf{G_A} \mathbf{A} \, | \, G_B B \, | \, a \, | \, b$$
 $\mathbf{A} o a \, | \, \mathbf{SG_A}$ $B o b \, | \, SG_B$ $G_A o a$ слово $abba$

$$\forall j, A(T_j'[A] = \varnothing)$$
 for $j=1...n$ \\ $j=4$ for $k=j-1...1$ \\ $k=3$ for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 4 с индексом 3 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку 4-ой строки для левого нетерминала содержимое ячейки первого нетерминала в строке 3

Подходящие правила: $S \to G_A A$, $A \to S G_A$, однако ячейка G_A в третьей строке пуста. Добавляем содержимое ячейки S в ячейку A в четвёртой строке.

	S	A	В	G_A	G_B
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 — a	3, 0	3, 2, 1		3	

$$\mathbf{S} o \mathbf{G_A} \mathbf{A} \, | \, G_B \, B \, | \, a \, | \, b \quad A o a \, | \, SG_A \quad B o b \, | \, SG_B \ G_A o a \qquad G_B o b \qquad$$
 слово abba

$$\forall j, A(T_j'[A] = \varnothing)$$
 for $j=1..n$ \\ $j=4$ for $k=j-1..1$ \\ $k=2$ for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 4 с индексом 2 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку 4-ой строки для левого нетерминала содержимое ячейки первого нетерминала в строке 2

Подходящее правило: $S \to G_A A$, однако ячейка G_A во второй строке пуста. На этом шаге таблица не меняется.

	S	A	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 - b	2, 1		2, 1		2
4 — a	3, 0	3, 2, 1		3	

$$S o G_AA\,|\,G_BB\,|\,\alpha\,|\,b$$
 $A o \alpha\,|\,SG_A$ $B o b\,|\,SG_B$ $G_A o \alpha$ слово abba

$$\forall j, A(T_j'[A] = \varnothing)$$
 for $j=1..n \setminus j=4$ for $k=j-1..1 \setminus k=1$ for all $A \to BC \in R$ \\ если второй нетерминал правой части есть в строке 4 с индексом 1 if $k \in T_j'[C]$ then for all $i \in T_k'[B]$ $T_j'[A] = T_j'[A] \cup \{i\}$ \\ тогда добавляем в ячейку 4-ой строки для левого нетерминала содержимое ячейки первого нетерминала в строке 1

Подходящее правило опять $S \to G_A A$, и на сей раз нужная ячейка G_A не пуста. То, что теперь $0 \in T_4'[S]$, показывает, что $abba \in L(G)$, поскольку $T_4'[S] = \{i \mid a_{i+1} \dots a_4 \in L_G(S)\}$, где $a_1 a_2 a_3 a_4 = abba$.

	S	A	В	G_A	G_{B}
1 - a	0	0		0	
2 – b	1		1, 0		1
3 – b	2, 1		2, 1		2
4 — a	3, 0	3, 2, 1		3	

Нисходящий разбор

Пусть PDA-анализатор хранит пару $\langle \alpha, \alpha_i \dots \alpha_{i+k} \rangle$, где α — сент. форма, $\alpha_i \dots \alpha_{i+k}$ — k следующих символов в строке.

- Если $\alpha = A\alpha'$, тогда по правилу $A \to \beta$ стековый анализатор переходит в $\langle \beta\alpha', \alpha_i \dots \alpha_{i+k} \rangle$, либо сообщает об ошибке.
- Если $\alpha = \alpha_i \alpha'$, тогда α_i одновременно снимается со стека и читается во входной строке.

LL(k)-грамматики

Определение

Грамматика G называется LL(k) (left-to-right, leftmost derivation) \Leftrightarrow в ситуации, когда существуют выводы $S \to^* w_1 A \alpha \to w_1 \xi \alpha \to^* w_1 c w_2$, $S \to^* w_1 A \beta \to w_1 \eta \beta \to^* w_1 c w_3$, причём $c \in \Sigma^k$, $w_1, w_2, w_3 \in \Sigma^*$, или $c \in \Sigma^{< k}$, $w_2 = w_3 = \varepsilon$, всегда $\eta = \beta$.

LL(k)-грамматики

Определение

Грамматика G называется LL(k) (left-to-right, leftmost derivation) \Leftrightarrow в ситуации, когда существуют выводы $S \to^* w_1 A \alpha \to w_1 \xi \alpha \to^* w_1 c w_2$, $S \to^* w_1 A \beta \to w_1 \eta \beta \to^* w_1 c w_3$, причём $c \in \Sigma^k$, $w_1, w_2, w_3 \in \Sigma^*$, или $c \in \Sigma^{< k}$, $w_2 = w_3 = \varepsilon$, всегда $\eta = \beta$.

Неформально: неоднозначность в выборе правила грамматики при разборе сверху вниз устраняется заглядыванием вперёд на k букв.

Критерий LL(k)-грамматики

Определим

- FIRST_k(η) = { $a_1 \dots a_j \mid (j < k \& \eta \rightarrow a_1 \dots a_j) \lor (j = k \& \eta \rightarrow a_1 \dots a_k \alpha)$ } \cup { $\epsilon \mid \eta \rightarrow^* \epsilon$ }
- FOLLOW_k(η) = { $\alpha_1 \dots \alpha_j \mid (j < k \& S \rightarrow^* \beta \eta \alpha_1 \dots \alpha_j) \lor (j = k \& S \rightarrow^* \beta \eta \alpha_1 \dots \alpha_k \alpha)$ } \cup {\$ $|S \rightarrow^* \beta \eta$ }

Тогда G - LL(k)-грамматика $\Leftrightarrow \forall A \to \alpha, A \to \beta$ (FIRST $_k(\alpha \, FOLLOW_k(A)) \cap FIRST_k(\beta \, FOLLOW_k(A)) = \varnothing)$.

Вычисление FIRST_k

- FIRST_k(A) = { $a_1 \dots a_k | A \rightarrow a_1 \dots a_k \alpha$ } $\cup \{a_1 \dots a_j | j < k \& A \rightarrow a_1 \dots a_j\};$
- До исчерпания: $\forall A \to B_1 \dots B_n$, $\mathsf{FIRST}_k(A) = \mathsf{FIRST}_k(A) \cup \mathsf{first}_k(\mathsf{FIRST}_k(B_1) \dots \mathsf{FIRST}_k(B_n)$), где first_k это k первых символов строки.

Вычисление FIRST_k

- FIRST_k(A) = { $a_1 \dots a_k | A \rightarrow a_1 \dots a_k \alpha$ } $\cup \{a_1 \dots a_j | j < k \& A \rightarrow a_1 \dots a_j\};$
- До исчерпания: $\forall A \to B_1 \dots B_n$, $\mathsf{FIRST}_k(A) = \mathsf{FIRST}_k(A) \cup \mathsf{first}_k(\mathsf{FIRST}_k(B_1) \dots \mathsf{FIRST}_k(B_n))$, где $\mathsf{first}_k \mathsf{это}\ k$ первых символов строки.

Алгоритм задаёт фундированный порядок на множестве конфигураций $\mathsf{FIRST}_k(A_i)$, поэтому рано или поздно множества FIRST_k перестанут изменяться.

Вычисление FOLLOW_k

Добавляем правило из нового стартового символа $S_0 \to S\$.$

- $\mathsf{FOLLOW}_k(A) = \emptyset$ для всех $A \neq S$.
- До исчерпания: $\forall B \to \beta$ и разбиений $\beta = \eta_1 A \eta_2$, FOLLOW $_k(A) =$ FOLLOW $_k(A) \cup first_k(\mathsf{FIRST}_k(\eta_2)\mathsf{FOLLOW}_k(B))$, где $first_k$ это k первых символов строки.

Алгоритм также задаёт wfo на множестве конфигураций $\mathsf{FOLLOW}_k(A_i)$.

Таблица LL(k)-разбора

Таблица $T_k(A, x)$ по нетерминалу A и lookahead-символам xвычисляет правило для парсинга.

```
for all A \rightarrow \alpha
   for all x \in first_k(FIRST_k(\alpha) FOLLOW_k(A))
     if \mathsf{T}_k(\mathsf{A},\mathsf{x}) не задано, тогда \mathsf{T}_k(\mathsf{A},\mathsf{x})=\mathsf{A}\to \alpha
            else объявление о конфликте
```


LL(k)-грамматики без ε -правил

Пример

Стандартный алгоритм удаления ε -правил приводит к разрушению LL-свойств:

 $S \rightarrow ABC$

 $\begin{array}{ccc} A & \rightarrow & \alpha A \mid d \\ B & \rightarrow & b \mid \epsilon \end{array}$

 $C \rightarrow c | \epsilon$

_____ LL(k)-грамматики без ε-правил

Утверждение (Куроки-Суонио)

Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику без ε -правил.

LL(k)-грамматики без ε -правил

Утверждение (Куроки-Суонио)

Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику без ε -правил.

Идея доказательства

Сначала избавимся от всех правил, начинающихся с nullable-нетерминала, путём введения notnull-двойников.

Затем присоединим все nullable-нетерминальные отрезки, стоящие в правых частях, к предшествующим им notnull-нетерминалам, и объявим полученные строки новыми нетерминалами.

В новых правилах nullable-кусок приписывается к самому последнему нетерминалу в правой части.

$$S \rightarrow ABC \mid Bk \quad A \rightarrow aA \mid d$$

 $B \rightarrow b \mid \varepsilon \quad C \rightarrow c \mid \varepsilon$

Сначала избавимся от обнуляемого нетерминала в начале правой части правила стандартным приёмом:

$$S \to ABC \mid B'k \mid k \quad A \to aA \mid d$$

$$B \to b \mid \epsilon \quad C \to c \mid \epsilon \quad B' \to b$$

$$\begin{array}{lll} S \rightarrow ABC \,|\, B'k \,|\, k & A \rightarrow \alpha A \,|\, d \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Теперь присоединим правый обнуляемый контекст к A и протащим его по правилу переписывания для A:

$$\begin{array}{ll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

$$\begin{array}{ll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Определяем правила переписывания для нетерминала [dBC], соответствующие коллапсу всего обнуляемого контекста, его префиксов, и непустой развёртке префикса.

$$\begin{array}{lll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ [dBC] \rightarrow d[bC] \,|\, dc \,|\, d & B \rightarrow b \,|\, \epsilon \\ C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

$$\begin{array}{lll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ [dBC] \rightarrow d[bC] \,|\, dc \,|\, d & B \rightarrow b \,|\, \epsilon \\ C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Аналогично обрабатываем нетерминал [bC] и удаляем все правила для обнуляемых нетерминалов из грамматики.

$$S \rightarrow [ABC] \mid B'k \mid k$$
 $[ABC] \rightarrow a[ABC] \mid [dBC]$
 $[dBC] \rightarrow d[bC] \mid dc \mid d$ $[bC] \rightarrow bc \mid b$ $B' \rightarrow b$

Лемма Розенкранца-Стирнса

Утверждение

Если G-LL(k)-грамматика, тогда вышеописанный алгоритм устранения ε -правил всегда завершается, поскольку ни на одном шаге не появляется новых нетерминалов, дважды присоединяющих в правый контекст один и тот же обнуляемый нетерминал грамматики G.

Покажем, что в общем случае алгоритм может и не завершаться. Рассмотрим следующую грамматику, не являющуюся однозначной (и следовательно, LL(k) ни для какого значения k).

$$S \rightarrow SS \mid \alpha \mid \varepsilon$$

Лемма Розенкранца-Стирнса

Утверждение

Если G — LL(k)-грамматика, тогда вышеописанный алгоритм устранения ε -правил всегда завершается.

Покажем, что в общем случае алгоритм может и не завершаться. Рассмотрим следующую грамматику, не являющуюся однозначной (и следовательно, LL(k) ни для какого значения k).

$$S \rightarrow SS \mid \alpha \mid \varepsilon$$

По алгоритму, устраним сначала обнуляемый правый нетерминал.

$$S \rightarrow S'S |S'| \alpha |\epsilon \quad S' \rightarrow S'S |S'| \alpha$$

Теперь присоединим обнуляемые контексты (это оставшиеся вхождения S) и посмотрим, какие правила получатся для нового нетерминала [S'S].

$$S \rightarrow [S'S] | S' | \alpha | \epsilon$$
 $S' \rightarrow [S'S] | S' | \alpha$ $[S'S] \rightarrow S'SS | S'S | \alpha S$

Лемма Розенкранца-Стирнса

Покажем, что в общем случае алгоритм может и не завершаться. Рассмотрим следующую грамматику, не являющуюся однозначной (и следовательно, LL(k) ни для какого значения k).

$$S \rightarrow SS \mid \alpha \mid \varepsilon$$

По алгоритму, устраним сначала обнуляемый правый нетерминал.

$$S \rightarrow S'S \,|\, S' \,|\, \alpha \,|\, \epsilon \quad S' \rightarrow S'S \,|\, S' \,|\, \alpha$$

Теперь присоединим обнуляемые контексты (это оставшиеся вхождения S) и посмотрим, какие правила получатся для нового нетерминала [S'S].

 $S \to [S'S] \,|\, S' \,|\, \alpha \,|\, \epsilon \quad S' \to [S'S] \,|\, S' \,|\, \alpha \quad [S'S] \to S'SS \,|\, S'S \,|\, \alpha S$ Видно, что нужно порождать новый нетерминал, потому что обнуляемый контекст у правила $[S'S] \to S'SS$ — это уже два вхождения S. После его порождения опять получим правило вида $[S'SS] \to S'SSS$, и вообще, для каждого нового $[S'S^n]$ — правило $[S'S^n] \to S'S^{n+1}$. Значит, ни на какой итерации процесс не сходится.

GNF для LL(k)-грамматики

Утверждения

- Ни одна леворекурсивная грамматика не LL(k) ни для какого k.
- Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику в GNF.

LL(k)-языки

Определение

CFL L — это LL(k)-язык, если для него существует LL(k)-грамматика.

LL(k)-языки

Определение

CFL L — это LL(k)-язык, если для него существует LL(k)-грамматика.

Существуют LL(k), но не LL(k-1)-языки.

Рассмотрим язык $\{a^n(b^kd|b|c)^n\}$. Это LL(k)-язык:

$$\begin{array}{ccc} S & \rightarrow & \alpha CA \\ C & \rightarrow & \alpha CA \,|\, \epsilon \\ A & \rightarrow & bB \,|\, c \\ B & \rightarrow & b^{k-1}d \,|\, \epsilon \end{array}$$

Неформально: не LL(k-1) потому, что иначе бы имелась LL(k)-грамматика в GNF для L. В стеке разбора для префикса \mathfrak{a}^n оказалось бы больше, чем 2k-1 символов. Подставляя варианты суффиксов к \mathfrak{a}^{n+k-1} , получаем противоречие (метод подмены).

Метод подмены

Общая схема метода

- Рассматриваем сразу LL(k)-грамматику в GNF.
- Показываем, что в её стеке в состоянии α должно находиться не меньше, чем f(k) разных символов при предъявлении тех же самых lookahead k символов.
- После данных k символов предъявляем длинный суффикс, отрезок которого должен контекстно-свободно выводиться из некоторого нетерминала в стеке.
- Предъявляем другой суффикс к тому же префиксу и lookahead, в котором не может быть такого отрезка, и подменяем вывод нетерминала.

Техника метода подмены

- Ищем такие два слова xfy, xfz, что |f|=k и при чтении префикса x стек мог неограниченно разрастись (т.е. есть синхронная накачка хотя бы одной из пар x и y и x и z). Предполагаем высоту стека равной хотя бы k+t (где t выбирается в зависимости от задачи).
- k символов в стеке при выталкивании точно распознают фрагмент f (lookahead). Рассматриваем, что может распознаться остальными t символами. Комбинируем распознанные фрагменты и показываем, что их комбинация не входит в язык.
- Либо если в стеке осталось t символов, а длина, например, у меньше t, тогда с этим стеком точно нельзя распознать у.

Пример подмены

Может ли язык $\{a^nb^n\}\cup\{a^nc^n\}$ задаваться LL(k)-грамматикой для некоторого k?

Пусть такое k нашлось (без ограничения общности — в GNF). Рассмотрим слово $a^{n+k}b^{n+k}$ и подберём такое n, что после чтения a^n LL-анализатор имеет в стеке не меньше k+2 символов. Пусть последний символ — это Y. Он распознает некоторое подслово суффикса b^{n+k} , а именно b^s . Теперь подменим строку на $a^{n+k}c^{n+k}$. В этом случае Y должен распознать некоторое c^t . Но значит, $a^{n+k}b^{n+k-s}c^t \in L$, что невозможно.

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$.

Dangling Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$. Положим $w=a^{n+k}b^{n+k}$, где n таково, что в стеке на момент чтения a^n не меньше, чем k+2 нетерминала. Тогда при подмене w на a^{n+k+1} из стека достанется только k нетерминалов, и слово a^{n+k+1} распознаться не сможет.

Dangling Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$. Положим $w=a^{n+k}b^{n+k}$, где n таково, что в стеке на момент чтения a^n не меньше, чем k+2 нетерминала. Тогда при подмене w на a^{n+k+1} из стека достанется только k нетерминалов, и слово a^{n+k+1} распознаться не сможет.

Следствие

Dangling else не парсится с помощью LL-разбора.

Свойства LL(k)-языков

<u>Утверждение</u>

- LL(k)-языки не замкнуты относительно объединения.
- LL(k)-языки не замкнуты относительно пересечения с регулярным языком (пример: $\{a^nba^nb\} \cup \{a^nca^nc\}$ не LL(k)-язык).
- Если L LL(k)- нерегулярный язык, то его дополнение — не LL(k) ни для какого k.