Computer Networking

Access Networks

Addison-Wesley
March 2012

Computer

6th edition

Networking: A Top

Jim Kurose, Keith Ross

Down Approach

All material copyright 1996-2012 © J.F Kurose and K.W. Ross, All Rights Reserved

A closer look at network structure

network edge:

- hosts: clients and servers
- servers often in data centers
- access networks, physical media: wired, wireless communication links

- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access net: dial up via modem

- up to 56Kbps direct access to router (often less)
- Can't surf and phone at same time: can't be "always on"

Access net: Digital Subscriber Line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < I Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

Access net: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access net: cable network

- Uses cable TV infrastructure, rather than telephone infrastructure
- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Access net: Fiber To The Home (FTTH)

- Provides an optical fiber path from the CO directly to the home.
- Higher speed

Access net: home network

Enterprise access networks (Ethernet)

- Typically used in companies, universities etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): upto 54 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G, 5G

Wireless access networks

IEEE Standard	Year Adopted	Frequency	Max. Data Rate	Max. Range
802.11a	1999	5 GHz	54 Mbps	400 ft.
802.11b	1999	2.4 GHz	11 Mbps	450 ft.
802.11g	2003	2.4 GHz	54 Mbps	450 ft.
802.11n	2009	2.4/5 GHz	600 Mbps	825 ft.
802.11ac	2014	5 GHz	1 Gbps	1,000 ft.
802.11ac Wave 2	2015	5 GHz	3.47 Gbps	10 m.
802.11ad	2016	60 GHz	7 Gbps	30 ft.
802.11af	2014	2.4/5 GHz	26.7 Mbps – 568.9 Mbps (depending on channel)	1,000 m.
802.11ah	2016	2.4/5 GHz	347 Mbps	1,000 m.
802.11ax	2019 (expected)	2.4/5 GHz	10 Gbps	1,000 ft.
802.11ay	late 2019 (expected)	60 GHz	100 Gbps	300-500 m.
802.11az	2021 (expected)	60 GHz	Device tracking refresh rate 0.1- 0.5 Hz	Accuracy <1m to <0.1m

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely,e.g., radio

Twisted Pair (TP) Copper Wire

- two insulated copper wires
 - Category 5: 100 Mbps,I Gpbs Ethernet
 - Category 6: 10Gbps

Physical media: coax, fiber

Coaxial Cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

Fiber Optic Cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Physical media: Radio

- Signal carried in electromagnetic spectrum
- No physical "wire"
- Bidirectional
- Propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 11Mbps, 54 Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Network Security

- Field of Network Security:
 - -How bad guys can attack computer networks
 - -How we can defend networks against attacks
 - —How to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - -Original vision: "a group of mutually trusting users attached to a transparent network" ☺
 - -Internet protocol designers playing "catch-up"
 - -Security considerations in all layers!

Security Threats

- Malicious stuff—collectively known as Malware—that can also enter and infect our devices.
- Malware can get in host from:
 - Virus: self-replicating infection by receiving/ executing object
 - Viruses attach themselves to clean files and infect other clean files.
 - They can spread uncontrollably, damaging a system's core functionality and deleting or corrupting files.
 - They usually appear as an executable file (e.g. e-mail attachment).

- Worm: self-replicating infection by passively receiving object that gets itself executed
 - Worms are malware that can enter a device without any explicit user interaction.
 - Example: Michelangelo
- -Spyware: designed to spy on you.
 - It hides in the background and takes notes on what you do online, including your passwords, credit card numbers, surfing habits and more.
 - Can record keystrokes, web sites visited, upload info to collection site
 - Example: CoolWebSearch, Gator

- -Adware: advertising malware
 - Though not always malicious in nature, particularly aggressive advertising software can undermine your security just to serve you ads — which can give a lot of other malware a way in.
 - Pop-ups are really annoying (admit!).
- Botnets: Botnets are networks of infected devices that are made to work together under the control of an attacker.
 - Users are often unaware of a botnet infecting their system.
 - Example: 'Star Wars' Twitter Botnet

- -Trojans: This kind of malware disguises itself as legitimate software, or is included in legitimate software that has been tampered with.
 - It tends to act discretely and create backdoors in your security to let other malware in.
 - Types: Backdoor, Exploit, rootkit ...
- -Ransomware: Also called scareware.
 - Can lock down your computer and threaten to erase everything — unless a ransom is paid to its owner.
 - Cryptolocker, Bad rabbit

Bad guys: attack server, network infrastructure

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- I. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

Distributed Denial of Service (DDoS):

A Distributed Denial-of-service (DDoS) attack occurs when multiple systems flood the bandwidth or resources of a targeted system, usually one or more web servers

Bad guys can sniff packets

Packet "sniffing":

- Broadcast media (shared Ethernet, wireless)
- Promiscuous network interface reads/records all packets (e.g., including passwords!) passing by
- a packet sniffer is a program that can see all traffic flowing over the network back and forth.

Bad guys can masquerade as someone you trust

- IP spoofing: send packet with fake addresses
 - The ability to inject packets into the Internet with a false source address is known as IP spoofing, and is but one of many ways in which one user can masquerade as another user.

Security Solutions

- No single solution can protect the network.
- Should implemented in multiple layers.
- A home network security implementation Basic.
- Implement it on the end devices, router and put trust on ISP.
- Basic security components for a home or small office network:
 - Antivirus and antispyware These applications help to protect end devices from becoming infected with malicious software.
 - **Firewall filtering** Firewall filtering blocks unauthorized access into and out of the network. This may include a host-based firewall system that prevents unauthorized access to the end device, or a basic filtering service on the home router to prevent unauthorized access from the outside world into the network.

Security Solutions

Network security implementation for a corporate network or larger networks

- Consists of many components built into the network to monitor and filter traffic.
- Use antivirus, antispyware, and firewall filtering, but they also have other security requirements:
 - **Dedicated firewall systems** filter large amounts of traffic with more granularity.
 - Access control lists (ACL) filter access and traffic forwarding based on IP addresses and applications.
 - Intrusion prevention systems (IPS) These identify fastspreading threats, such as zero-day or zero-hour attacks.
 - Virtual private networks (VPN) These provide secure access into an organization for remote workers.