PRISONER'S DILEMMA

ARVID LUNNEMARK

Definition 1. The *prisoner's dilemma* is a symmetric two-player game with two actions, cooperate (C) and defect (D), where, if player 1 plays a and player 2 plays b, player 1 gets payoff

$$p(a,b) = \begin{cases} R & \text{if } a = C, b = C \\ T & \text{if } a = D, b = C \\ S & \text{if } a = C, b = D \\ P & \text{if } a = D, b = D \end{cases}$$

We have T > R > P > S, and typically, we have the concrete values T = 5, R = 3, P = 1 and S = 0.

Definition 2. A strategy is a Moore machine (finite automaton with outputs) over the input and output alphabet $\{C, D\}$, with probability 1 - p of following the correct transition and probability p of following the incorrect transition.

Note: this models an error probability in *perception*. One could also think of an error probability in *outcome*, but it is easy to see that the two are equivalent up to a change of the values of R, S, T, P.

Definition 3. Suppose strategy s_1 plays strategy s_2 . This defines a s_1 - s_2 graph which is a Markov chain where each node represents a pair of states (c_1, c_2) where c_1 is a state in s_1 and c_2 is a state in s_2 . The transition probabilities are defined in the obvious way.

Definition 4. Let π be the stationary distribution achieved by starting in the start state of the s_1 - s_2 graph. The payoff of strategy s_1 when played against strategy s_2 is

$$v_{s_1}(s_2) = \sum \pi_{c_1,c_2} \cdot p(c_1,c_2).$$

Note: The graph might be periodic in which case we we will not get a stationary distribution. I need to think about this special case but my intuition is that it shouldn't matter.

Definition 5. A population of strategies P = (S, f) is a set S of strategies and a function $f: S \to (0, 1]$ such that $\sum_{s \in S} f(s) = 1$, representing the frequency of each strategy in the population.

FIGURE 1. TFT.

Figure 2. Pavlov.

Definition 6. The *fitness* of a strategy s in a population P = (S, f) is

$$F(s) = \sum_{s' \in S} f(s')v_s(s').$$

Definition 7. A strategy s_1 is ϵ -invadable if there exists a strategy s_2 such that in all populations P with $S = \{s_1, s_2\}$ and $f(s_2) \ge \epsilon$, we have

$$(1) F(s_2) > F(s_1)$$

Definition 8. A strategy s_1 is *evolutionary stable* if there exists an $\alpha \in (0,1)$ such that for all $\epsilon < \alpha$, s_1 is not ϵ -invadable.

Note: it is easy to see that this is just equivalent to saying that there exists some ϵ for which s_1 is not ϵ -invadable.

Theorem 1. Suppose s_1 is evolutionary stable. Then $v_{s_1}(s_1) \geq \frac{S+T}{2}$.

Theorem 2. Suppose s_1 is evolutionary stable as p goes to 0 (i.e., that it is evolutionary stable if condition 1 is replaced by $\lim_{p\to 0} (F(s_2) - F(s_1)) > 0$). Then $v_{s_1}(s_1) = R$. In other words, s_1 is utilitarian.

Theorem 3. The Pavlov strategy, displayed in Figure ??, is evolutionary stable as p goes to 0.

Remark. TFT, displayed in Figure ??, is not evolutionary stable as p goes to 0. It has the stationary distribution (1/4, 1/4, 1/4, 1/4) which is smaller than R.