DPort 系列评估板

DS01010101 0.92 Date:2024/4/26

概述

EPC6450-DP 是广州致远电子股份有限公司推出的一款基于HPM6450系列处理器开发的 DPort 模块评估单板。评估单板接口主要有1路标准 DPort 接口、2路 CAN接口、1路 Type-C接口、1路高速 TF 卡接口、1路 JATG 调试接口,扩展 IO接口包含5个 UART、SPI、I²C、ADC、PWM等。

EPC6450-DP 是基于国内自主研发的 HPM6450 系列超高性能处理器的 DPort 模块评估单板。工作温度范围-40 $^{\circ}$ ~+85 $^{\circ}$ 、支持 9V~24V 宽压电源输入,可应用于评估 DPort 系列模块。

产品应用

- ◆ 工业控制
- ◆ 医疗电子
- ◆ 智能仪表

产品特性

- ◆ 工作温度-40℃ ~+85℃;
- ◆ 支持 9V~24V 宽压供电;
- ◆ 支持一路标准 DPort 接口;
- ◆ 支持两路 CAN 接口:
- ◆ 支持一路 Type-C 接口;
- ◆ 支持一路 RS485 接口;
- ◆ 支持扩展硬件 I²C 接口;
- ◆ 支持独立硬件看门狗;
- ◆ 支持一路 GPIO 接口。
- ◆ 支持五路 UART 通信串口;
- ◆ 支持一路高速 TF 卡;
- ◆ 支持四路 PWM 接口;
- ◆ 支持一路 SPI 通信接口;
- ◆ 支持一路 JTAG 调试接口;
- ◆ 支持四路 12 位/16 位精度 ADC。

订购信息

型号	温度范围	安装方式
EPC6450-DP	-40°C ∼+85°C	-

产品图片

修订历史

版本	日期	原因	
V0.90	2023/12/28	文档发布	
V0.91	V0.91 2024/4/12 修改 Type-C 接口供电描述		
V0.92	2024/4/26	RTC 电池图片更新;新增 JtagLink-Pack 配件说明	

DPort 系列评估板

目 录

1.	产品介绍	1
	1.1 产品简介	1
	1.2 产品特性	1
2.	外观尺寸	2
3.	接口说明	3
	3.1 电源接口	
	3.2 JTAG 接口	3
	3.3 CAN 接口	4
	3.4 DPort 接口	5
	3.5 Type-C 接口	5
	3.6 RTC 电池接口	
	3.7 TF 卡接口	7
	3.8 扩展 IO 接口	
4.	免责声明	

1. 产品介绍

1.1 产品简介

EPC6450-DP 是基于 HPM6450 系列处理器开发的 DPort 模块评估单板,评估单板接口主要有 1 路标准 DPort 接口、2 路 CAN 接口、1 路 Type-C 接口、1 路高速 TF 卡接口、1 路 JATG 调试接口,扩展 IO 接口包含 5 个 UART、SPI、I²C、ADC、PWM 等。

EPC6450-DP 是基于国内自主研发的 HPM6450 系列超高性能处理器的 DPort 模块评估单板,工作温度范围-40℃ ~+85℃,支持 9V ~ 24V 宽压电源输入,可应用于评估 DPort 系列模块。

1.2 产品特性

EPC6450-DP产品的特性如下:

- 硬件特性:
 - ▶ 32 位高性能 RISC-V 内核, 816MHz 主频 CPU;
 - ▶ 支持 9V~24V 宽压供电,典型工作电流 200mA;
 - ▶ 支持一路标准 DPort 接口;
 - ▶ 支持两路 CAN 接口;
 - ▶ 支持一路 Type-C 接口;
 - ▶ 支持一路 RS485 接口;
 - ▶ 支持扩展硬件 I²C 接口;
 - ▶ 支持独立硬件看门狗;
 - ▶ 支持五路 UART 通信串口:
 - ▶ 支持一路高速 TF 卡;
 - ▶ 支持四路 PWM 接口;
 - ▶ 支持一路 SPI 通信接口;
 - ▶ 支持一路 JTAG 调试接口:
 - ▶ 支持一路 GPIO 接口;
 - ▶ 支持四路 12 位/16 位精度 ADC;
 - ▶ 工作温度: -40℃ ~+85℃。

2. 外观尺寸

EPC6450-DP 评估板尺寸: 100.00mm×65.00mm(长×宽)。 外观尺寸如图 2.1-2.2 所示。

图 2.1 EPC6450-DP 评估板 A 面

图 2.2 EPC6450-DP 评估板 B 面

DataSheet

3. 接口说明

3.1 电源接口

EPC6450-DP 评估单板电源输入电压典型值为 12V DC, 电源接口连接器的物理形式为 5.08mm-3PIN 间距 OPEN 座子接口,如图 3.1 所示,输入电源规格如表 3.1 所示。

图 3.1 电源接口图

表 3.1 输入电源规格

参数	最小	典型	最大	单位
工作电压	9	12	24	V
工作电流	_	200	_	mA

3.2 JTAG 接口

EPC6450-DP 评估单板采用 1.27mm-10PIN 的 JTAG 座,如图 3.2 所示,JTAG 座引脚定义如表 3.2 所示。为方便使用,可选用如图 3.3 所示的 JtagLink-Pack 配件,具体使用说明可参考 https://manual.zlg.cn/web/#/p/5319e2127a8c4a186be2070c304f8110

图 3.2 JTAG 接口图

©2024 Guangzhou ZHIYUAN Electronics Co., Ltd.

表 3.2 JT	「AG 座引	脚定义表
----------	--------	------

引脚	名称	说明
1	3.3V	+3.3V 电源
2	TMS	测试模式控制
3	GND	电源地
4	TCK	测试串口时钟
5	GND	电源地
6	TDO	测试数据输出
7	NC	悬空
8	TDI	测试数据输入
9	nTRST	测试复位信号
10	RST	系统复位信号

图 3.3 JtagLink-Pack 配件

3.3 CAN 接口

EPC6450-DP 评估单板提供 2 路 CAN 接口,最大通信速率可达到 5Mbps,如图 3.4 所示,CAN 接口引脚定义如表 3.3 所示。

图 3.4 CAN 接口图

©2024 Guangzhou ZHIYUAN Electronics Co., Ltd.

引脚	名称 说明		
1	CAN0_H	CAN0 高信号	
2	CAN0_L	CAN0 低信号	
3	GND	信号地	
4	CAN3_H	CAN3 高信号	

CAN3_L

CAN3 低信号

表 3.3 CAN 接口引脚定义

3.4 DPort 接口

EPC6450-DP 评估单板提供 1 路 DPort 接口,可以兼容 DPort-MM、DPort-ETC 模块,模块有关资料,请在官网查看,DPort 接口如图 3.5 所示。

图 3.5 DPort 接口图

3.5 Type-C 接口

EPC6450-DP 评估单板提供 1 路 Type-C 接口,作为系统供电和程序下载,仅用于程序下载、系统调试使用,系统长期运行需要连接电源接口供电,Type-C 接口如图 3.6 所示,接口引脚定义如表 3.4 所示。

图 3.6 Type-C 接口图

表34	Type-C	接口引	脚定り	ノ夫

引脚	名称	功能	备注
1	USB_VBUS	5V 电源输入	仅供调试时使用
2 LIGD D M		USB Device 数据引脚	
2	USB_D_N	DATA (-)	
3	LICD D D	USB Device 数据引脚	
3	USB_D_P	DATA (+)	
4	GND	电源地	系统电源地

3.6 RTC 电池接口

EPC6450-DP 评估单板的 RTC 电池接口采用 1.25mm 间距的插座,接口如图 3.7 所示,接口引脚定义如表 3.5 所示。

图 3.7 RTC 电池接口图

图 3.8 RTC 电池示意图

表 3.5 RTC 电池接口引脚定义

工位号	标识	功能	信号	说明
DT1	DAT	外部 RTC 供电	1: BAT_VDD	电池电压 3V
DII	BT1 BAT 外		2: BAT_GND	电框电压 3 V

DPort 系列评估板 DataSheet

3.7 TF 卡接口

EPC6450-DP 评估单板提供了一路 TF 卡接口,连接器物理形式为标准 TF 插座,单板标志为 "TF Card",如图 3.9 所示。

图 3.9 TF 卡接口图

3.8 扩展 IO 接口

EPC6450-DP 评估单板提供 40PIN 扩展接口,已在板上预留了 2.54mm-2×20PIN 的孔位,如图 3.10 所示,可根据实际应用情况在主板的正面或者背面焊接排针或者排母,引脚定义如表 3.6 所示。

图 3.10 扩展 IO 接口图

表 3.6 扩展 IO 接口引脚定义

引脚号	名称	默认功能	参考电平	输入/输出	处理器对应引脚
1	5V	5V	5V	输出	-
2	GND	GND	-	-	-
3	3.3V	3.3V	3.3V	输出	-
4	GND	GND	-	-	-
5	RS485_A	RS485 A 线	-	输入/输出	-
6	RS485_B	RS485 B 线	-	输入/输出	-
7	UART9_TXD	UART9 发送数据	3.3V	输出	G1
8	UART9_RXD	UART9 接收数据	3.3V	输入	G2

9	UART12 TXD	UART12 发送数据	3.3V	输出	F14
10	UART12_RXD	UART12 接收数据	3.3V	输入	F13
11	UART13 TXD	UART13 发送数据	3.3V	输出	G3
12	UART13_TXD	UART13 接收数据	3.3V	输入	E1
13	UART14 TXD	UART14 发送数据	3.3V	输出	E4
14	UART14_TXD	UART14 接收数据	3.3V	输入	F4
15	UART15 TXD	UART15 发送数据	3.3V	输出	D3
16	UART15_IXD	UART15 及达数据	3.3 V 3.3 V	输入	D3
17	_	CAN1 发送数据			
	CAN1_TXD		3.3V	输出	J4
18	CAN1_RXD	CAN1 接收数据	3.3V	输入	K1
19	CAN2_TXD	CAN2 发送数据	3.3V	输出	D1
20	CAN2_RXD	CAN2 接收数据	3.3V	输入	D2
21	I ² C0_SCL	I ² C0_时钟	3.3V	输出	C2
22	I ² C0_SDA	I ² C0_数据	3.3V	输入/输出	C3
23	SPI1_MOSI	SPI1 主出从入	3.3V	输出	K4
24	SPI1_MISO	SPI1 主入从出	3.3V	输入	H4
25	SPI1_CS	SPI1 芯片选择	3.3V	输出	K2
26	SPI1_SCLK	SPI1 时钟	3.3V	输出	J2
27	GND	GND	-	-	-
28	GND	GND	-	-	-
29	ADC0	ADC0 输入,支持 12 位	3.3V	输入	N14
30	ADC1	ADC1 输入,支持 12 位	3.3V	输入	H14
31	ADC2	ADC2 输入,支持 12 位	3.3V	输入	J11
32	ADC3	ADC3 输入,支持 16 位	3.3V	输入	N13
33	PWM0	PWM 通道 0 输出	3.3V	输出	J1
34	PWM1	PWM 通道 1 信号输出	3.3V	输出	H2
35	PWM2	PWM 通道 2 信号输出	3.3V	输出	F13
36	PWM3	PWM 通道 3 信号输出	3.3V	输出	H13
37	GPIO_PA17	通用 GPIO	3.3V	输入/输出	K3
38	NC	悬空	-	-	-
39	NC	悬空	-	-	-
40	NC	悬空	-	-	-

DPort 系列评估板

4. 免责声明

本着为用户提供更好服务的原则,广州致远电子股份有限公司(下称"致远电子")在本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时效性,致远电子不能完全保证该文档在任何时段的时效性与适用性。致远电子有权在没有通知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬的用户定时访问致远电子官方网站或者与致远电子工作人员联系。感谢您的包容与支持!

诚信共赢,持续学习,客户为先,专业专注,只做第一

