

Desain Sistem Otomasi Pencahayaan Ruangan TN 1 Jurusan Teknik Fisika UGM Berbasis pada Metode Fuzzy Logic Controller (November 2018)

Anugerah Yoga Pratama (45981)¹, Mahatma Ageng Wisesa (45857)², and Nicolas Christianto (46005)³

ABSTRAK Paper ini menjelaskan desain sistem otomasi bangunan yang berbasis pada metode pengendalian *fuzzy logic* dengan menempatakan variasi arus pada lampu LED sebagai objek parameter kendali pertama yakni dimmer, serta besar bukaan jendela (*fascade*) pada bagian belakang ruang sebagai parameter kendali kedua yakni *daylight harvesting control*. Sistem pencahayaan ini akan menggabungkan dua parameter ini dalam satu cakupan pengendalian *fuzzy logic controller*. Studi ini di desain pada MATLAB dengan lingkungan pengembangan berupa Fuzzy Logic ToolBox dan Simulink Blocks. Keluaran dari hasil simulasi nantinya akan mampu mengurangi besar daya yang dikeluarkan lampu pada saat cahaya matahari yang masuk ke ruangan besar. Sensor utama yang akan digunakan adalah sensor cahaya hunian (indoor dan outdoor) serta *occupancy sensor*. Desain ini nantinya dapat meningkatkan nilai efikasi dari lampu dan mengefektikan konsumsi energi yang digunakan dengan mengendalikan *daylight harvesting* yang masuk ke dalam ruangan. Listrik dalam ruangan nantinya diharapkan akan digunakan hanya pada saat terdapat manusia dalam ruangan dan *daylight harvesting* yang sangat rendah.

KATA KUNCI Fuzzy Logic Controller, Membership Function, Pengendalian Pencahayaan, Daylight Harvesting, Fascade Control, Dimmer Lamp.

I. PENDAHULUAN

Kebutuhan akan listrik menunjukan peningkatan seiring penambahan tahun. Fenomena ini banyak disikapi oleh para peneliti tentang perlu penghematan jenis energi agar lebih efisien. Ruang kelas belajar dikombinasikan dengan meningkatnya biaya energi dan kenyaman ruang kelas, ruang kelas berkinerja tinggi saat menuntut pencahayaan yang fleksibel. Kontrol yang dapat memenuhi dan meningkatkan perubahan kebutuhan lingkungan yang terus berkembang dan juga memberikan penghematan energi. Tantangan dalam otomasi pencahayaan ruang kelas adalah untuk memberikan pencahayaan penuh untuk pengajaran ruang kelas serta berbagai tingkat peredupan dan distribusi cahaya untuk mengakomodasi metode pengajaran dalam ruang yang sama.

II. DASAR TEORI

A. PENCAHAYAAN RUANG

Sistem Kontrol Pencahayaan bertujuan untuk memenuhi kebutuhan ruang kelas yang berubah pada setiap waktunya, seperti fleksibilitas, kontrol optimal, penghematan energi dan pencahayaan berkualitas tinggi yang meningkatkan kenyamanan visual kontrol guru dan siswa.

Light-Emitting Diode (LED) dikembangkan untuk menekan perubahan pencahayaan pada ruang agar menjaga kualitas penerangan ruang belajar. Dalam sistem ini, intensitas lux ruang dipertahankan dengan secara otomatis fluks foton pengontrol *fuzzy*.

B. FUZZY LOGIC CONTROLLER

Merupakan salah satu metode kontrol dengan menggunakan variabel kebahasaan seperti; dim, bright, very bright dll, serta algoritma sebab akibat yang diakses lewat Fuzzy ToolBox. Teknik penjabaran dalam variabel kebahasaan tersebut membuat metode Fuzzy banyak dipakai. Fuzzy Logic merupakan metode yang sangat cocok untuk digunakan untuk hal-hal yang membutuhkan kecepatan dan keefektifannya tanpa harus mengindahkan presisi dan kelinieran hasil pengukuran terhadap pengambilan keputusan yang akan diambil.

 $\it Fuzzy\ logic\ controller\ tersusun\ atas\ empat\ komponen\ dasar:$

1. Fuzzyfication Interface

Mengkonversi input ke dalam variabel kebahasaan dengan menggunakan tools membership function.

VOLUME XX, 2017 1

2. Knowledge Base

Menyimpan *database* yang berisi nilai kebahasaan tersebut untuk didefinisikan dalam satu set algoritma kontrol.

3. Inference Engine

Mensimulasikan proses pengambilan keputusan untuk memberikan kesimpulan yang merupakan hasil sistem fuzzy. Merupakan hubungan antara premis yang diberikan dan control rules.

4. Deffuzification Interface

Mengkonversi output hasil pengendalian fuzzy, menggunakan *membership function*, menjadi variabel nonfuzzy (sinyal aksi kontrol).

Konfigurasi dasar dari Fuzzy Logic Control dapat diilustrasikan pada gambar 2.1. U_1 dan U_2 pada diagram tersebut merepresentasikan masing-masing sinyal input pertama dan kedua. Sinyal keluaran merupakan nilai referensi untuk generator pulsa PWM.

Gambar 2.1 Diagram Illustrasi pada Fuzzy Logic Controller

III. KOMPONEN DESAIN PENCAHAYAAN

Strategi kontrol yang diusung pada sistem ini memerlukan beberapa komponen sebagai berikut ;

1. Sensor Occupancy

Occupancy Sensor mendeteksi gadget dan memberdayakan kerangka kontrol untuk mematikan lampu saat tidak diperlukan. Sensor ini bekerja berdasarkan sensitivitasnya. Jika sensitivitas sensornya tinggi, maka dapat gagal menghemat energi dan ketika rendah, mungkin menyebabkan waktu tunda yang mengganggu penghuni

2. Radar Motion Sensor

Radar Motion Sensor digunakan untuk menyelamatkan sistem energi dan untuk mengurangi kehilangan daya ketika tidak ada gerakan di lingkungan dalam ruangan untuk waktu tertentu.

3. Fascade Motor

Fascade Motor/motor penggerak pada jendela sebagai poros aktuator / pergerakan pada salah satu objek kendali yakni fascade, parameter kendali adalah daylight harvesting.

4. Lux Sensor

Lux Sensors digunakan untuk merasakan dan mengukur jumlah insiden cahaya ringan di tempat kerja.

5. Dimming Drivers

Dimming Drivers digunakan untuk mempertahankan kecerahan sumber pencahayaan buatan berdasarkan siang hari yang tersedia.

IV. METODOLOGI

Pada paper ini fuzzy diusulkan sebagai skema dasar untuk pengendalian pencahayaan pada ruang TN 1 Jurusan Teknik Fisika UGM dimana objek lampu pijar adalah sebagai objek yang dikendalikan. Sebagian besar paper tentang pengendalian pencahayaan menggunakan metode *Fuzzy Logic* sebagai kontrolnya, misalnya untuk *switching* on off pada lampu dengan jumlah lebih dari satu [1][3]. Selain itu dapat juga digunakan untuk mekanisme dimmer pada lampu pijar [2] dan mengatur homogenitas intensitas cahaya lampu pada LED [5]. Sebagian lain metode fuzzy logic juga digunakan untuk mengendalikan daylight harvesting [4].

Sebelumnya perlu menjadi perhatian bahwa studi ini tidak lain merupakan studi perancangan dan simulasi pada sistem pengendalian pencahayaan. Blok yang digunakan merupakan perangkat lunak Simulink pada lingkungan MATLAB, tidak mencapai pada perancangan *hardware* dan lain sebagainya. Namun untuk skema implemetasi fisik menggunakan komponen yang disebutkan juga perlu diteliti dan diusulkan sebagai pekerjaan di masa depan.

A. TUNTUTAN DESAIN

Tuntutan desain dibuat untuk mendefinisikan variabel kontrol, parameter, target, dan batasan dari desain yang dibuat berdasar pada kondisi objek yang dikendalikan. Parameter yang diperhatikan dapat dijabarkan sebagai berikut:

1. Penentuan Minimum Level Illuminansi : level illuminansi merupakan besar kuantitas atau jumlah cahaya pada suatu area tertentu (lux atau lumen/m²). Pada paper ini, pengamatan dilakukan untuk mengendalikan besar illuminansi pada ruangan TN 1 Jurusan Teknik Fisika UGM sebagai objek pengendalian dimana level minimum yakni 250 Lux, tidak lain merupakan Standar Nasional Indonesia untuk pencahayaan ruang kelas [7]

2. Denah Ruang Uji

Gambar 4.1 Denah 3D TN 1 Dengan Software Dial Lux

Gambar 4.2 Denah Tampak Atas TN 1

Gambar 4.3 Denah Bangunan TN 1

Gambar 4.4 Sketch Denah TN 1

Gambar 4.5 Sketch Dimensi TN 1

Batasan Pengujian: pada percobaan desain ini diasumsikan bahwa jumlah dan cacah dari lampu LED adalah cukup untuk memberikan illuminansi ke seluruh ruangan secara *uniform* dan sesuai dengan jumlah cahaya yang dibutuhkan. Bukaan jendela juga diasumsikan cukup besar sehingga dapat memungkinkan cahaya matahari untuk memberikan illuminansi ke seluruh ruangan secara *uniform* dan sesuai dibutuhkan. Besar bukaan jendela yang dikontrol nanti diharapkan dapat membendung sinar matahari yang masuk, begitu juga jumlah cahaya yang masuk akan sesuai dengan kebutuhan illuminansi dari ruangan TN 1 tersebut.

4. Skema Kontrol: berikut adalah contoh skema kontrol yang disusun dalam diagram blok.

Gambar 4.6 Skema Pengendalian Pencahayaan Ruang TN 1

B. PENGAMBILAN DATA

Data diambil secara manual dengan menggunakan sensor lux meter pada aplikasi google store. Aplikasi Lux Light pada Google Play Store dapat diunduh secara gratis. Pengukuran dilakukan dengan menggunakan smartphone yang sama. Kondisi pengambilan data diambil pada siang hari pukul 12:48:00 PM – 13:13:00 PM pada kondisi jendela terbuka, dan pukul 13:14:00 PM - 13.45 PM pada kondisi jendela tertutup. Mekanisme pengambilan data dilakukan dengan meletakan smartphone pada kursi satu per satu sampai diperoleh data dari masing-masing penempatan lux meter. Hasil dari nilai lux yang diperoleh dimasukkan dalam Excel (pada bagian lampiran).

daya lampu diberikan rentang 0 - 100 % terhadap jenis LED dan daya pasokannya.

Hasil pengujian menggunakan Fuzzy Logic System yang diusung dapat dijabarkan dengan skema berikut;

Sumber sinyal pembangkitan (*outdoor intensity*) yang diuji merupakan Sampled Gaussian Noise dengan frekuensi 10 div/sec. Pengaruh ini sama juga digunakan pada Pseudorandom Noise atau Poisson Random Noise untuk sumber tak teraktur dan tak dapat diprediksi.

Gambar 4.7 Skema Pengendalian Pencahayaan Ruang TN 1

Nilai movement juga akan diolah dalam memori sebagai ada tidaknya pergerakan dalam ruang. Nilai diatas 0 berarti mengindikasikan adanya gerakan, input nilai 0 berarti tidak ada pergerakan. Nilai okupansi masuk dan keluar juga akan tersimpan dalam memori yang mengindikasikan jumlah penghuni dalam ruang.

V. SKEMA PENGUJIAN

Dari data yang diambil diperoleh nilai range untuk *outdoor intensity* memiliki rentang lux pada 0 lux - 160 lux, rentang *indoor intensity* 25 lux - 444 lux, optimasi bukaan jendela dari $0^{\circ} - 90^{\circ}$, *rate of change* dari cahaya berkisar 0 - 1, dan

Kontrol Fuzzy yang digunakan antara lain terdapat dua jenis yakni FLC Window Shade untuk pengendalian bukaan jendela dan FLC LED Adjust untuk mengatur jumlah cahaya dimmer / arus LED yang perlu dibangkitkan menyesuaikan kondisi ruang.

A. FLC Window Shade

Gambar 5.2 Membership Function Oudoor Intensity

Input *outdoor light* diuji pada tiga jenis parameter, yakni nilai low untuk 0 – 48 lux, nilai mid untuk 32 – 128 lux, dan high untuk 112 sampai 160 lux. Skema grafik membership fuction adalah tipe triangle mf, selain cocok untuk penyesuaian jenis ini, triamf juga sering banyak dipakai untuk jenis pengendalian cahaya dalam bangunan [2].

Gambar 5.3 Membership Function Window Shade

Output *window shade* diuji pada tiga jenis rentang bukaan, yakni nilai low untuk 0 - 27 derajat, nilai mid untuk 18 - 72 derajat, dan high untuk 63,7 derajat sampai 90,7 derajat.

Gambar 5.4 Fuzzy Rule Window Control

Algoritma pengendalian pada fuzzy semua dipukul sama pada jenis if then, tiga rule yang kami pasang antara lain terlampir pada gambar di atas maupun pada tabel.

Outdoor Light	Low	Mid	High		
Shade Position State	Closed	Open	Mid		

Gambar 5.5 Fuzzy Surface Window Control

B. FLC LED Adjust

Gambar 5.6 Membership Function Indoor Light Intensity

Input *indoor light* ditinjau pada lima jenis parameter, yakni nilai very dim untuk 25 – 129,8 lux, nilai dim untuk 25 – 234.5 lux, nilai mid untuk 129,8 lux – 339,3 lux, nilai bright untuk 234,5 lux - 444 dan very bright untuk 339,3 lux - 444 lux. Skema grafik membership fuction yang diugnakan masih merupakan tipe triangle mf.

Gambar 5.7 Membership Function Rate of Change of Light

Input *Rate of Change of Light* diuji pada tiga jenis parameter, yakni nilai negativ untuk 0 - 0.5, nilai zero untuk 0.25 - 0.75, dan high untuk 0.5 - 1.

Gambar 5.8 Membership Function LED Light

Output *LED light* diuji pada lima jenis parameter, yakni nilai max low untuk 0 - 25 lux, nilai low untuk 0 - 50 lux, nilai mid untuk 25 - 75 lux, nilai high untuk 50 - 100 lux dan max bright untuk 75 - 100 lux.

1. If (Indoor_Light is very_dim) and (Rate_of_Change_of_Light is Negative) then (LED_light is Max_High) (1)
2. If (Indoor_Light is very_dim) and (Rate_of_Change_of_Light is Zero) then (LED_light is Max_High) (1)
3. If (Indoor_Light is very_dim) and (Rate_of_Change_of_Light is Positive) then (LED_light is High) (1)
4. If (Indoor_Light is Dim) and (Rate_of_Change_of_Light is Negative) then (LED_light is Max_High) (1)
5. If (Indoor_Light is Dim) and (Rate_of_Change_of_Light is Negative) then (LED_light is High) (1)
6. If (Indoor_Light is Dim) and (Rate_of_Change_of_Light is Positive) then (LED_light is Mid) (1)
7. If (Indoor_Light is Mid) and (Rate_of_Change_of_Light is Negative) then (LED_light is High) (1)
8. If (Indoor_Light is Mid) and (Rate_of_Change_of_Light is Zero) then (LED_light is Mid) (1)
9. If (Indoor_Light is Mid) and (Rate_of_Change_of_Light is Positive) then (LED_light is Low) (1)
10. If (Indoor_Light is Bright) and (Rate_of_Change_of_Light is Negative) then (LED_light is Mid) (1)
11. If (Indoor_Light is Bright) and (Rate_of_Change_of_Light is Zero) then (LED_light is Low) (1)
12. If (Indoor_Light is Bright) and (Rate_of_Change_of_Light is Positive) then (LED_light is Max_Low) (1)
13. If (Indoor_Light is Very_Bright) and (Rate_of_Change_of_Light is Negative) then (LED_light is Low) (1)
14. If (Indoor_Light is Very_Bright) and (Rate_of_Change_of_Light is Zero) then (LED_light is Max_Low) (1)
15. If (Indoor_Light is Very_Bright) and (Rate_of_Change_of_Light is Positive) then (LED_light is Max_Low) (1)

Gambar 5.9 Fuzzy Rule LED Dimmer Control

	Low	Mid	High		
Very Dim	Max High	Max High	High		
Dim	Max High	High	Mid		
Mid	High	Mid	Low		
Bright	Mid	Low	Max Low		
Very Bright	Low	Max Low	Max Low		

Gambar 5.10 Fuzzy Surface LED Dimmer Control

Rule Viewer: LED control revisi П × Edit View Options Indoor_Light = 284 Rate_of_Change_of_Light = 0.586 2 5 10 12 13 14 15 25 Plot points: [284.5;0.5864] Opened system LED control revisi, 15 rules

Gambar 6.2 Hasil Fuzzy LED Dimmer Control

VI. HASIL DAN ANALISIS

Dari hasil pengujian yang dilakukan diperoleh hasil sebagai berikut;

Dalam simulasi diujikan untuk outdoor intensity pada nilai masukan 104 lux maka jendela akan memanipulasi bukaan pada sekitar angka 79,7 derajat.

Gambar 6.1 Hasil Fuzzy Window Control

Hasil pengujian lain yakni dengan menguji nilai indoor light intensity pada angka 284 lux dan rate of change pada 0,586, maka nilai LED light yang dikeluarkan sekitar 37,4% dari total daya yang dipasok lampu.

Respon total skema dari sistem diuji dengan *commisioning* awal dilakukan menggunakan fungsi step;

Gambar 6.3 Uji Respon Step

Perlu menjadi catatan bahwa nilai movement detector yang bukan nol (0) mengindikasikan tidak adanya pergerakan. Fungsi ini menjadi berlogika dan bersama-sama dengan occupancy sensor tidak mendeteksi adanya penghuni masuk dan keluar dalam TN 1.

Nilai occupancy awal yang 5 orang masuk dan 3 orang keluar, dengan menghadirkan adanya gerakan dalam ruang. Grafik keluaran dicacah terhadap offset = 0 dan T = 100. Respon yang diperoleh adalah sebagai berikut;

Gambar 6.4 Hasil Respon Step

Hasil fungsi undak 1 satuan dengan final value 1 menunjukan respon pada 50% daya keluaran LED dan 48 derajat sudut *adjust window shade*. Nilai memory 1 merupakan hasil *totalizer* dari hasil kedua fuzzyfikasi dengan lux rata-rata indoor berkisar pada angka 480 lux dan kemudian disimpan dalam memory 1 pada kondisi steady state. Nilai step menyesuaikan kondisi daylight yakni pada inisial 25 sampai 125.

Setelah pada respon step diperoleh, dilakukan pengujian fungsi gaussian random noise dengan frekuensi 10 div/s. Pada skema yang sama, input diganti dengan nilai random yang tidak prediktif. Hasil dari respon keluaran adalah sebagai berikut;

Nilai keluaran fuzzy window shade berada steady pada rentang 42 derajat, keluaran LED pada 50 persen dari daya total keluaran, dan hasil totalizer pada memory 1 menunjukan respon total intensitas indoor berada pada angka 450 lux.

Skema hasil terakhir adalah saat tidak adanya masukan occupancy dan movement detector.

Gambar 6.3 Hasil Respon tanpa Movement dan Occupancy

Saat tidak terdapat pergerakan dalam ruang (movement detector = 0), nilai indoor light akan dijaga tetap pada 220 lux. Nilai ini merupakan hasil dimming time. Hasil yang sama juga diperoleh dengan meng*adjust* nilai occupancy sensor dan atau kedua duanya.

VII. KESIMPULAN

Dari hasil penjabaran skema sistem yang diusulkan, dapat didemonstrasikan bahwa fuzzy logic controller dapat digunakan untuk mengendalikan daylight harvesting (outdoor intensity) sebagai sinyal kontrol otomatis bagi kondisi pencahayaan indoor. Parameter kerja yang dikendalikan adalah bukaan jendela (window shade) dan LED dimmer. Skema hasil pengujian juga menunjukan bahwa sistem ini dapat diimplementasikan untuk pengendalian cahaya dalam TN 1 serta adaptif terhadap nilai outdoor intensity yang random. Namun hasil ini masih belum memenuhi tuntutan desain dikarenakan nilai steady state masih ajeg di angka 450 Lux pada kondisi impuls random. Kesalahan ini mungkin disebabkan kesalahan dalam mengkorelasikan nilai hasil pengambilan data ke dalam elemen membership function pada fuzzy logic.

VIII. DAFTAR PUSTAKA

- [1] Makkar D., dan Syal P., "Simulation of Intellegent Room Lightning Illuminance Control", 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 08 November 2018, Diakses pada 01 Desember 2019. [Online] Tersedia doi: 10.1109/ICCIC.2017.8524356
- [2] Sakaci H., Cetiner E., Chaouch H., and Yener S., "Smart Office for Managing Energy of Lightning Control System", 6th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), 12 July 2018. Diakses pada 01 Desember 2019. [Online] Tersedia doi: 10.1109/SGCF.2018.8408951
- [3] Mutua P.W., dan Mbutia M., "Intellegent Lighting System Design With Fuzzy Logic Controller", International Journal of Electronics & Communication Technology, vol. 6, issue 2, April June 2015, ISSN: 2230-9543. Diakses pada 02 Desember 2019. [Online] Tersedia di: https://www.researchgate.net/publication/281632754_Intelligent_Lighting_System_Design_With_Fuzzy_Logic_Controller
- [4] Gui-juan W., Zuo-xun W., dan Shuai G., "The Design of Fuzzy Control System for Power-Saving Lightning on MATLAB". *Sixth International Conference on Fuzzy Systems and Knowledge Discovery*. 6 Volumes. 14-16 Agustus 2009. Diakses pada 02 Desember 2019. [Online] Tersedia doi: 10.1109/FSKD.2009.413
- [5] Liu H., Duan F., dan Gao Y., "Study on Fuzzy Control of Inverted Pendulum System in the Simulink Environment", *International Conference on Mechatronics and Automation*, 24 September 2007. Diakses pada 01 Desember 2019. [Online] Tersedia doi: 10.1109/ICMA.2007.4303672
- [6] Cziker A., Chindris M., dan Miron, "Implementation Of A Lighting Contol System Based On Fuzzy Logic", *Science Direct Journal*, vol. 40, issue 8, 2007, page 135-140. Diakses pada 01 Desember 2019. [Online] Tersedia di: https://www.sciencedirect.com/science/article/pii/S1474667 015326483

IX. LAMPIRAN

Foto saat pengambilan data lux di TN 1 DTNTF FT UGM.

Tabel Excel hasil pengambilan data.

12:48:00 PM - 13.13 PM

PINTU											
175	213	220	204	170	132	101	69	51	38	32	30
202	227	240	240	207	163	124	80	65	40	25	30
172	218	223	214	192	154	119	93	77	65	54	40
172	199	224	273	228	228	219	214	204	187	163	151
184	218	247	268	277	285	284	289	288	277	244	195
278	209	241	249	265	274	268	275	280	262	338	195
268	292	310	313	302	295	293	298	284	281	255	215
345	386	395	390	377	363	342	340	320	309	285	234
303	357	367	357	338	340	334	335	325	304	275	224
242	281	287	280	304	314	314	306	297	284	254	214
255	297	319	330	344	336	324	291	277	295	278	224
384	401	444	401	384	332	342	354	343	336	303	221
	KONDISI JENDELA TERBUKA										

13:14:00 PM - 13.45 PM

PINTU											
155	179	193	180	150	121	97	60	40	32	28	25
194	223	235	223	186	140	100	66	47	36	31	30
162	208	221	208	181	150	116	90	75	64	54	40
158	187	219	223	219	208	206	203	194	181	157	151
177	208	244	262	271	274	282	284	278	266	236	191
167	203	230	236	252	258	258	266	266	252	230	191
257	278	275	291	301	270	278	276	280	266	246	210
341	381	386	379	367	350	339	325	316	302	271	233
300	360	369	358	341	334	311	315	306	285	259	216
247	282	295	298	290	292	290	282	270	261	230	194
229	262	280	289	297	293	287	283	267	257	234	196
243	266	284	296	312	318	303	297	280	255	244	222
	KONDISI JENDELA TERTUTUP										