Определения и формулировки по алгебре Линейная алгебра II семестр

Тамарин Вячеслав

8 июня 2020 г.

Оглавление

Вопрос 1	Аксиоматизация объема параллелепипеда. Полилинейное отображение, кососимметричность.	_
	Свойства	2
Вопрос 2	Определитель как форма объема. Формы объема, связанные с выбором базиса и их свойства.	3
Вопрос 3	Свойства определителя. Примеры вычисления. Ориентация и объем	3
Вопрос 4	Ориентация. Невозможность смены ориентации при непрерывном изменении базиса. Опреде-	
	литель оператора. Сохранение ориентации.	4
Вопрос 5	Разложение определителя по столбцу. Формула Крамера	5
Вопрос 6	Формула для обратной матрицы. Присоединенная матрица. Соотношение для присоединенной	
	матрицы.	5
Вопрос 7	Понятие алгебры над полем. Примеры. Групповая алгебра. Теорема Кэли	5
Вопрос 8	Многочлен от элемента. Минимальный многочлен. Нетривиальность минимального многочле-	
	на для элемента конечномерной алгебры. Дихотомия для элементов конечномерной алгебры	6
Вопрос 9	Матрица линейного оператора. Инвариантные подпространства и как заметить по матрице	
	линейного оператора. Примеры	6
Вопрос 10	Собственные числа и собственные вектора. Характеристический многочлен и его связь с соб-	
	ственными числами. Вычисление характеристического многочлена сопровождающей матрицы.	7
Вопрос 11	След и определитель оператора. Диагонализация. Алгебраическая и геометрическая кратно-	
	сти. Неравенство между ними. Линейная независимость собственных векторов	7
Вопрос 12	Критерий диагонализируемости. Случай отсутствия кратный собственных чисел. Последова-	
	тельности, удовлетворяющие линейному рекурентному соотношению	8
Вопрос 13	Многочлен от оператора. Разложение пространства в прямую сумму ядер многочленов от ис-	
	ходного оператора. Блочная структура матрицы оператора, связанная с подобным расположе-	
	нием.	8
Вопрос 14	Факторизация по подпространству. Оператор на факторпространстве. Блочная структура ис-	
	ходного оператора. Теорема Гамильтона-Кэли.	9
Вопрос 15	Жорданова клетка. Теорема о жордановой форме: единственность	9
Вопрос 16		10
Вопрос 17	Возведение жордановой клетки в степень. Поведение коэффициентов матрицы A^n в зависимо-	
	сти от n . Линейное рекурентное соотношение с постоянными коэффициентами общего вида 1	10

Вопрос 1 Аксиоматизация объема параллелепипеда. Полилинейное отображение, кососимметричность. Свойства.

Определение 1: Параллелепипед

Пусть V — векторное пространство размерности n над полем $\mathbb R$. Тогда для набора $v_1,\dots v_n\in V$ определим параллелепипед

 $D(v_1, \dots v_n) = \left\{ \sum_{i=1}^n \lambda_i v_i \mid \lambda_i \in [0, 1] \right\}.$

Свойства (Аксиоматизация в \mathbb{R}^n). *Будем записывать векторы в матрицу.*

- θ . Vol $(E_n) = 1$
- 1. $\operatorname{Vol}(\ldots, \lambda v, \ldots) = |\lambda| \operatorname{Vol}(\ldots, v, \ldots)$
- 2. $Vol(\ldots, v, \ldots, u, \ldots) = Vol(\ldots, v, \ldots, u + \lambda v, \ldots)$ (исходя из принципа Кавальери)
- 3. Vol(..., v, ..., v, ...) = 0

Свойства (Аксиоматизация в поле K).

- 1. $w(\ldots, \lambda v, \ldots) = \lambda w(\ldots, v, \ldots)$
- 2. $w(\ldots, u+v, \ldots) = w(\ldots, u, \ldots) + w(\ldots, v, \ldots)$
- 3. w(..., v, ..., v, ...) = 0

Определение 2: Полилинейное отображение

Пусть $U_1, \dots U_l, V$ — векторные пространства над полем K. Отображение $w \colon U_1 \times \dots \times U_l \to V$ называется полилинейным, если

$$w(v_1, \dots, v_i + \lambda u_i, \dots, v_l) = w(v_1, \dots, v_i, \dots, v_l) + \lambda w(v_1, \dots, u_i, \dots, v_l).$$

Обозначение. $\text{Ноm}_K(U_1, \dots U_l; V)$ — множество всех полилинейный отображений.

Определение 3: Форма

Полилинейное отображение $w\colon V^l o K$ называется полилинейной формой степени l на V.

Определение 4

Полилинейная форма $w\colon V^l\to K$ на пространстве V над полем K называется

- антисимметричной или кососимметричной, если $w(v_1, \dots, v, \dots, v_l) = 0$;
- симметричной, если $w(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_l) = w(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_l)$.

Лемма 1

Пусть V — векторное пространство размерности n. Для полилинейного отображения $w:V^l\to K$ и любого $e_1,\ldots e_n$ базиса V выполнено

$$w(v_1,\dots v_l)=\sum_{1\leqslant i_1,\dots i_l\leqslant n}w(e_{i_1},\dots,e_{i_l})\prod_{j=1}^la_{i_j,j},\qquad \text{где }a_{ij}-i\text{-ая координата вектора }v_j\text{ в базисе }e.$$

Лемма 2

Пусть V — векторное пространство размерности n. Для полилинейного отображения $w\colon V^l\to K$ выполнено:

- 1. если w кососимметрично, то w(..., u, ..., v, ...) = -w(..., v, ..., u, ...);
- 2. если char $K \neq 2$, из результата первого свойства следует кососимметричность;
- 3. если w кососимметрично, то для любой перестановки $\sigma \in S_l$ верно $w(v_{\sigma(1)}, \dots v_{\sigma(l)}) = \operatorname{sgn}(\sigma)w(v_1, \dots v_l);$
- 4. если w кососимметрично, $w(\ldots v, \ldots, u, \ldots) = w(\ldots, v, \ldots, u + \lambda v, \ldots)$;

5. если w кососимметрично и l=n, для набора векторов $v_1, \ldots v_n$ и базиса $e_1, \ldots e_n$ выполнено

$$w(v_1, \dots v_n) = w(e_1, \dots e_n) \sum_{\sigma \in S_n} \operatorname{sgn}(sigma) \prod_{j=1}^n a_{\sigma(j),j} = w(e_1, \dots e_n) \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

Вопрос 2 Определитель как форма объема. Формы объема, связанные с выбором базиса и их свойства.

Определение 5: Форма объема

Пусть $n = \dim V$. Антисимметричная полилинейная форма $w \colon V^n \to K$ называется формой объема на V. Если такая форма не равна 0, то будем говорить, что она невырожденная.

Определение 6: Определитель

Определителем det называется отображение det: $M_n(K) \to K$ такое, что

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{1 \leqslant i \leqslant n} a_{i\sigma(i)}.$$

Определение 7

Пусть $e_1, \ldots e_n$ — базис пространства V. Определим отображение $\operatorname{Vol}_e \colon V^n \to K$ такое, что

$$Vol_e(v_1, \dots v_n) = \det(e(v_1), \dots, e(v_n)),$$

где $e: V \to K^n$ — отображение сопоставления координат.

Теорема 1: Свойства форм

- 1. Определитель является формой объема на K^n , при этом $\det E = 1$.
- 2. Если V пространство размерности n, то любая форма объема на V имеет вид

$$w = w(e_1, \dots e_n) \operatorname{Vol}_e$$
.

В частности, если e, f — базисы, то $Vol_f = \det(C_{f \to e}) Vol_e$.

- 3. Пространство форм объема одномерно.
- 4. Для любой невырожденной формы объема w верно утверждение:

$$w(v_1, \ldots v_n) = 0 \iff v_1, \ldots v_n$$
 линейно зависимы.

Вопрос 3 Свойства определителя. Примеры вычисления. Ориентация и объем.

Лемма 3: Свойства определителей квадратных матриц

- 1. $\det A = \det A^{\top}$
- 2. (а) При элементарных преобразованиях первого типа для строк и столбцов определитель не меняется.
 - (b) При смене строк местами меняется знак.
 - (c) При домножении строки на λ определитель домножается на λ .
- 3. $\det(AB) = \det(A) \det(B)$.
- 4. $\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A) \det(C)$

5.

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} = \det \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \prod_{i=1}^{n} a_{ii}.$$

- 6. $\det(A^{-1}) = (\det A)^{-1}$.
- 7. det: $\operatorname{GL}(V) \to K^*$ гомоморфизм групп.

Пример 1

1.
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$
.

2. Определитель Вандермонда

$$\det\begin{pmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix} = \prod_{i>j} (\lambda_i - \lambda_j).$$

Утверждение. Пусть отображение Volume: $M_n(\mathbb{R}) \to \mathbb{R}$, обладает следующими свойствами:

- 1. Volume $(E_n) = 1$
- 2. Volume $(\ldots, u + \lambda v, \ldots, v, \ldots) = \text{Volume}(\ldots, u, \ldots, v, \ldots)$
- 3. Volume $(\ldots, \lambda v, \ldots) = |\lambda| \text{ Volume}(\ldots, v, \ldots)$

Torдa Volume(A) = |det A|

Вопрос 4 Ориентация. Невозможность смены ориентации при непрерывном изменении базиса. Определитель оператора. Сохранение ориентации.

Определение 8

Будем говорить, что два базиса пространства V над $\mathbb R$ одинаково ориентированы, если матрица перехода между ними имеет положительный определитель.

Определение 9

Выбор одного из классов эквивалентности базисов векторного пространства V называется заданием ориентации.

Утверждение. Пусть есть два базиса $e_1, \dots e_n$ и $f_1, \dots f_n$ в пространстве V над \mathbb{R} . Если они имеют разную ориентацию, то их нельзя продеформировать один в другой (внутри пространства базисов).

Определение 10: Линейный оператор

Пусть V — пространство. Тогда линейное отображение $L\colon V\to V$ называется (линейным) оператором на пространстве V. Пусть $e_1,\ldots e_n$ — базис V, тогда матрицей оператора L в базисе e называется матрица $[L]_e^e$.

Определение 11

Пусть $L\colon V\to V$ — линейный оператор. Тогда определим $\det L=\det A$, где A — матрица перехода в каком-то базисе.

Замечание. Определитель корректно определен.

Определение 12

Пусть V — векторное пространство над \mathbb{R} . Будем говорить, что линейный оператор $L\colon V\to V$ сохраняет ориентацию, если $\det L>0$, и не сохраняет, если $\det L<0$.

Лемма 4

Сохраняющее ориентацию отображение переводит одинаково ориентированные базисы в одинаково ориентированные.

Определение 13

Определим группу операторов $SL(V) := \{L \colon V \to V \mid \det L = 1\}$. Если V — вещественное векторное пространство, то это операторы, которые сохраняют понятие объема и выбор ориентации пространства. $SL_n(K)$ называется группой матриц с определителем 1.

Вопрос 5 Разложение определителя по столбцу. Формула Крамера.

Определение 14: Минор

Пусть $A \in M_{m \times n}(K)$, $I \subseteq \{1, ... m\}$, $J \in \{1, ... n\}$.

Подматрица $A_{I,J}$ — матрица, составленная из элементов A, стоящих в строках из I и столбцах из J. Минор порядка k матрицы A — определитель квадратной подматрицы $M_{I,J} = \det A_{I,J}$, где |I| = |J| = k. Если $A \in M_n(K)$, то алгебраическим дополнением элемента a_{ij} называется $A^{ij} = (-1)^{i+j} M_{\bar{i},\bar{j}}$.

Лемма 5

При разложении по j-ому столбцу имеет место формула

$$\det(A) = \sum_{i=1}^{n} a_{ij} A^{ij}.$$

Теорема 2: Формула Крамера

Пусть дана система линейных уравнений Ax = b с квадратной матрицей A над полем K. Если A обратима, то единственное решение этой системы имеет вид

$$x_i = \frac{\Delta_i}{\Delta}, \qquad \Delta = \det A, \; \Delta_i = \det \left(\text{матрица A}, \; \text{где вместо i-го столбца стоит столбец } b \right).$$

Вопрос 6 Формула для обратной матрицы. Присоединенная матрица. Соотношение для присоединенной матрицы.

Определение 15: Присоединенная матрица

Присоединенная матрица к матрице A — матрица $(\mathrm{Adj}\,A)_{ij} = A^{ij}$, где A^{ij} — алгебраическое дополнение элемента a_{ij} .

Теорема 3

Пусть $A \in M_n(K)$. Тогда $\operatorname{Adj} A \cdot A = A \cdot \operatorname{Adj} A = \det(A) \cdot E$.

Вопрос 7 Понятие алгебры над полем. Примеры. Групповая алгебра. Теорема Кэли.

Определение 16: Алгебра над полем

Пусть K- поле. Кольцо S вместе с отображением $K \times S \to S$ называется алгеброй, если

- 1. $\forall k \in K, \ \forall u, v \in S : (ru)v = u(rv)$
- $2. \, S$ является векторным пространством над K относительно указанных операций.

Пример 2

- 1. Поле K есть алгебра над собой.
- 2. Если L расширение поля K, то L алгебра над K.
- 3. \mathbb{C} алгебра над \mathbb{R}
- 4. Кольцо эндоморфизмов $\operatorname{End}_K(V)$ векторного пространства V над полем K является алгеброй над K.
- 5. Кольцо многочленов $K[x_1, \dots x_n]$ алгебра над K.
- 6. Любой фактор кольца многочленов $K[x_1, \dots x_n]/I$ алгебра над K.
- 7. Пусть V векторное пространство с базисом $e_1, \dots e_n$. Перемножение двух произвольных элементов

$$\left(\sum_{i=1}^{n} \lambda_i e_i\right) \cdot \left(\sum_{j=1}^{n} \mu_j e_j\right) = \sum_{i,j} \lambda_i \mu_j (e_i \cdot e_j).$$

Поэтому произведение достаточно определить только на элементах базиса, что дает структуру кольца. Для ассоциативности кольца достаточно ассоциативности умножения на базисных элементах $(e_i \cdot e_j)$.

$$e_k = e_i \cdot (e_i \cdot e_k)$$
:

$$\left(\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) \cdot \left(\sum_{j=1}^{n} \mu_{j} e_{j}\right)\right) \cdot \sum_{k=1}^{n} \nu_{k} e_{k} = \sum_{i,j,k} \lambda_{i} \mu_{j} \nu_{k} (e_{i} \cdot e_{j}) \cdot e_{k} =$$

$$= \sum_{i,j,k} \lambda_{i} \mu_{j} \nu_{k} e_{i} \cdot (e_{j} \cdot e_{k}) = \sum_{i=1}^{n} \lambda_{i} e_{i} \cdot \left(\left(\sum_{j=1}^{n} \mu_{j} e_{j}\right) \cdot \left(\sum_{k=1}^{n} \nu_{k} e_{k}\right)\right)$$

Теперь приведем конкретный пример. Пусть G — группа, |G|=3.

Определение 17: Групповая алгебра

Групповой алгеброй K[G] над полем K назовем следующую алгебру: возьмем пространство столбцов размера n, занумеруем элементы стандартного базиса элементами группы G; соответствующий $g \in G$ базисный вектор обозначим e_g ; умножение $e_g \cdot e_h = e_{gh}$.

3амечание. K[G] некоммутативна тогда и только тогда, когда G некоммутативна.

Определение 18: Гомоморфизм К-алгебр

Отображение $f\colon S_1\to S_2$, где S_1,S_2-K -алгебры, называется гомоморфизмом K-алгебр, если f — гомоморфизм колец и линейное отображение.

Теорема 4: типа Кэли

Любая конечномерная алгебра A над полем K вкладывается в $\operatorname{End}_k(A)$.

Вопрос 8 Многочлен от элемента. Минимальный многочлен. Нетривиальность минимального многочлена для элемента конечномерной алгебры. Дихотомия для элементов конечномерной алгебры.

Замечание. Пусть K — поле, A — алгебра над K. Заметим, что для $y \in A$ и многочлена $p(x) = a_0 + \ldots + a_n x^n \in K[x]$ можно определить элемент $p(y) = a_0 + \ldots + a_n y^n \in A$. Соответствие $p(x) \to p(y) \in A$ определяет единственный гомоморфизм K-алгебр $\varphi \colon K[x] \to A$, $\varphi(x) = y$.

Замечание. Пусть a, b — два элемента алгебры A, которые не коммутируют между собой. Тогда не существует гомоморфизма $K[t_1, t_2]$, переводящего $t_1 \to a, t_2 \to b$.

Утверждение. Для любого элемента y конечномерной алгебры A существует $p(x) \in K[x], \ p(x) \neq 0$ такой, что p(y) = 0.

Определение 19: Аннуляторы

Ядро гомоморфизма $K[x] \to A$, переводящего $x \to y$, является идеалом $Ann_y \leqslant K[x]$. Его элементы называют аннуляторами для элемента $y \in A$. Если этот идеал не 0 (есть нетривиальные многочлен, аннулирующий y), то образующую этого идеала (со старшим коэффициентом 1) называют минимальным многочленом для элемента $y \in A$ и обозначают $\mu_y(x)$.

По другому, это многочлен минимальной степени со старшим коэффициентом, аннулирующий у.

Теорема 5

Любой элемент конечной алгебры A над полем K либо обратим, либо делитель нуля (с любой стороны).

Вопрос 9 Матрица линейного оператора. Инвариантные подпространства и как заметить по матрице линейного оператора. Примеры.

Определение 20

Две матрицы $A, B \in M_n(K)$ подобны, если существует матрица $C \in \mathrm{GL}_n(K)$, что $A = CBC^{-1}$.

Замечание. Матрицы одного оператора в разных базисах подобны.

Определение 21: Инвариантное подпространство

Пусть V — пространство с опрератором L. Пусть $U \leqslant V$. Тогда U называется инвариантным подпространством, если $L(U) \leqslant V$.

 $\it Замечание.$ Это условие позволяет сузить оператор $\it L$ с $\it V$ на $\it U$. Наличие инвариантных подпространств не зависит от выбора системы координат.

Лемма 6

Пусть $U \leqslant V$ — подпространство, $L\colon V \to V$ — линейный оператор. Тогда U инвариантно относительно L тогда и только тогда, когда в базисе $e_1, \ldots e_k, e_{k+1}, \ldots, e_n$, где $e_1, \ldots e_k$ — базис U, матрица оператора имеет блочно диагональный вид

 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$.

Вопрос 10 Собственные числа и собственные вектора. Характеристический многочлен и его связь с собственными числами. Вычисление характеристического многочлена сопровождающей матрицы.

Определение 22: Собсвенные число и вектор

Пусть V — пространство с оператором L. Тогда вектор $0 \neq v \in V$ называется собственным вектором с собственным числом λ относительно оператора L, если $Lv = \lambda v$.

Определение 23: Характеристический многочлен

Характеристический многочлен оператора $L-\chi_L(t)=\det(A-tE_n)$, где A- матрица L некотором базисе.

Замечание. Характеристический многочлен корректно определен.

Утверждение. Элемент $\lambda \in K$ является собственным числом оператора L тогда и только тогда, когда λ — корень $\chi_L(t)$.

Определение 24: Сопровождающая матрица

Пусть $f(x) \in K[x]$ — многочлен степени больше 1. Тогда сопровождающей матрицей к $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ называется

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}.$$

Утверждение. Характеристический многочлен сопровождающей матрицы равен $(-1)^n f(t)$

Вопрос 11 След и определитель оператора. Диагонализация. Алгебраическая и геометрическая кратности. Неравенство между ними. Линейная независимость собственных векторов.

Определение 25: След

Пусть A — матрица размера n, тогда след матрицы равен $\operatorname{Tr} A = \sum_{i=1}^n a_{ii}$.

След оператора $L - {\rm след}$ его матрицы.

Замечание. Это определение не зависит от выбора базиса.

Замечание. Tr $A = (-1)^{n-1} a_{n-1}$, где $\chi_A(t) = \sum a_i t^i$.

Лемма 7: Свойства следа

- 1. Пусть A квадратная матрица. Тогда $\operatorname{Tr} CAC^{-1} = \operatorname{Tr} A$ для обратимой C.
- 2. Tr AB = Tr BA для $A \in M_{n \times m}(K), B \in M_{m \times n}(A)$.

- 3. След равен сумме собственных чисел с учетом их кратностей, как корней характеристического многочлена.
- 4. Tr $A = \operatorname{Tr} A^{\top}$.
- 5. $\operatorname{Tr}(A + \lambda B) = \operatorname{Tr}(A) + \lambda \operatorname{Tr}(B)$

Определение 26: Диагонализируемость

Оператор называется диагонализируемым, если в некотором базисе его матрица диагональна.

Матрица $A \in M_n(K)$ называется диагонализируемой, если соответствующий оператор $x \to Ax$ диагонализируем. То есть должна существовать обратимая матрица $C: CAC^{-1}$ — диагональна.

Лемма 8

Матрица оператора L в базисе $v_1, \ldots v_n$ диагональна тогда и только тогда, когда все v_i — собственные вектора L. В этом случае на диагонали стоят собственные числа оператора L.

Лемма 9

Пусть $v_1, \dots v_n$ — собственные вектора L с собственными числами $\lambda_1, \dots \lambda_n$. Пусть λ_i попарно различны. Тогда v_i линейно независимы.

Определение 27: Алгебраическая и геометрическая кратности

Пусть L — оператор на пространстве V.

Алгебраическая кратность собственного числа λ — его кратность как корня $\chi_L(t)$.

Геометрическая кратность λ — размерность $\ker L - \lambda \mathrm{id}$.

Лемма 10: Неравенство

Пусть L — линейный оператор на пространстве V, λ — его собственное число. Тогда алгебраическая кратность λ не менее его геометрической кратности.

Вопрос 12 Критерий диагонализируемости. Случай отсутствия кратный собственных чисел. Последовательности, удовлетворяющие линейному рекурентному соотношению.

Теорема 6: Критерий диагонализируемости

Пусть K — поле и все корни $\chi_L(t)$ лежат в K. Тогда оператор L диагонализуем тогда и только тогда, когда для любого собственного числа алгебраическая и геометрическая кратности равны.

Следствие 1: Случай без кратных корней

Пусть K — алгебраически замкнутое поле. Если $\chi_L(t)$ не имеет кратных корней, то оператор L диагонализируем.

Следствие 2

Пусть дана последовательность $x_n \in \mathbb{C}$, удовлетворяющая линейному рекурентному соотношению

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_0x_n = 0,$$

где $a_i \in \mathbb{C}$. Рассмотрим многочлен $f(t) = t^k + a_{k-1}t^{k-1} + \ldots + a_0$. Пусть у f(t) нет кратных корней. Тогда $x_n = c_1\lambda_1^n + \ldots + c_k\lambda_k^n$, где λ_i — корни f(t).

Вопрос 13 Многочлен от оператора. Разложение пространства в прямую сумму ядер многочленов от исходного оператора. Блочная структура матрицы оператора, связанная с подобным расположением.

Лемма 11

Пусть L — оператор на пространстве V, многочлен g(t)=p(t)q(t) аннулирует L (g(L)=0). Причем

(p(t), q(t)) = 1. Тогда пространство V раскладывается в прямую сумму инвариантных подпространств

$$V = \ker p(L) \oplus \ker q(L).$$

Утверждение. Пусть L — оператор на V, пространство $V = U_1 \oplus U_2$, где U_1, U_2 инвариантны. Если $e_1, \dots e_k$ и $f_1, \dots f_l$ — базисы U_1, U_2 , то матрица L в базисе $e_1, \dots e_l, f_1, \dots f_l$ имеет вид $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

Вопрос 14 Факторизация по подпространству. Оператор на факторпространстве. Блочная структура исходного оператора. Теорема Гамильтона-Кэли.

Определение 28

Пусть U — подпространство V. Определим на факторе V/U структуру векторного пространства так $\lambda \overline{v} = \overline{\lambda v}$.

Определение 29

Пусть V — пространство с оператором L, U — инвариантное подпространство. Тогда определим оператор \overline{L} на V/U так $\overline{L}(\overline{v}) = \overline{L(v)}$.

Замечание. Если p(x) — многочлен, $v \in V$, то $p(\overline{L})\overline{v} = \overline{p(L)v}$.

Замечание. Так как подпространство инвариантно, в подходящем базисе матрица линейного оператора становится блочно-верхнетреугольной и верхний блок — это матрица сужения оператора.

Пусть $e_1, \dots e_n$ — базис V и $\langle e_1, \dots e_k \rangle$ — инвариантное подпространство относительно L. Если матрица L в этом базисе имеет вид

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
,

то C — матрица \overline{L} в базисе $\overline{e_{k+1}i}, \ldots \overline{e_n}$. Следовательно,

$$\chi_L(t) = \chi_{L|_{V'}}(t) \cdot \chi_{\overline{L}}(t).$$

Теорема 7: Гамильтон-Кэли

Пусть L — оператор на V. Пусть многочлен $\chi_L(L)$ раскладывается на линейные множители. Тогда $\chi_L(L)=0$.

Вопрос 15 Жорданова клетка. Теорема о жордановой форме: единственность.

Определение 30: Жорданова клетка

Жорданова клетка размера k с собственным числом λ — матрица вида

$$\begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}.$$

Теорема 8: О жордановой форме

Пусть $L: V \to V$ — оператор на конечномерном пространстве над алгебраическим замкнутым полем K. Тогда существует базис $e_1, \dots e_n$, в котором матрица L имеет вид

$$A = \begin{pmatrix} J_{k_1(\lambda_1)} & & & \\ & \ddots & & \\ & & J_{k_s(\lambda_s)} \end{pmatrix}$$

Более того такая матрица единственна с точностью до перестановки блоков.

Эта матрица называется матрицей оператора в форме Жордана. Базис, в котором матрица оператора имеет такой вид называется жордановым базисом.

Вопрос 16 Теорема о жордановой форме: существование. Лемма про нильпотентный оператор.

Теорема 9: про нильпотентный оператор

Для любого нильпотентного оператора N на пространстве V существует базис $e_1, \dots e_n$ в котором матрица N имеет вид

 $A = \begin{pmatrix} J_{k_1(0)} & & \\ & \ddots & \\ & & J_{k_s(0)} \end{pmatrix}.$

Вопрос 17 Возведение жордановой клетки в степень. Поведение коэффициентов матрицы A^n в зависимости от n. Линейное рекурентное соотношение с постоянными коэффициентами общего вида.

Лемма 12

$$J_k(\lambda)^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} & \dots & C_n^{k-1}\lambda^{n-k+1} \\ & \lambda^n & & \vdots \\ & & & n\lambda^{n-1} \\ & & & \lambda^n \end{pmatrix}.$$

Следствие 3

Пусть $A \in M_n(K)$. Тогда существует такая обратимая матрица C, что $A^n = CJ^nC^{-1}$, где J — жорданова форма A. Причем J^n составлена из блоков из прошлой леммы.

Следствие 4

Для любой матрицы A коэффициент ее степени A^n — сумма последовательностей вида $C_n^s \lambda^{n-s}$ с независящими от n коэффициентами. λ — произвольное СЧ, s менее максимального размера ЖК с этим СЧ.

Следствие 5

Пусть дана последовательность $x_n \in \mathbb{C}$, удовлетворяющая линейному рекурентному соотношению

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_0x_n = 0,$$

где $a_i \in \mathbb{C}$. Рассмотрим многочлен $f(t) = t^k + a_{k-1}t^{k-1} + \ldots + a_0$. Тогда x_n равно сумме последовательностей $n^s \lambda$, где λ — корень f(t) и s строго меньше кратности λ как корня f(t).