Wstęp do Modelu Standardowego – zadania 4

1. Rozważ lagranżian pola fermionowego Diraca:

$$\mathcal{L} = \bar{\psi} (i \gamma^{\mu} \mathcal{D}_{\mu} - m) \psi$$

- a) Pokaż, że jest on niezmienniczy względem lokalnej transformacji: $\mathcal{D}_{\mu}\psi \to e^{i\alpha(x)}\mathcal{D}_{\mu}\psi$. b) Jak interpretujemy transformację $\psi \to e^{i\alpha}\psi$ w języku grupy U(1)?
- 2. Ładunek elektryczny dla pól symetrii SU(2)xU(1) dany jest relacją Gell-Manna Nishiijmy:

$$Q = T_3 + \frac{Y}{2}$$

Oblicz wartość hiperładunku Y dla dubletu leptonów $L = \begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$

3. Mamy dublet fermionowy $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$, który transformuje się względem symetrii SU(2) jak: $\psi \rightarrow \psi' = U(x) \psi, U(x) = e^{\frac{i}{2}\theta^a(x)\tau^a}$

Zaproponuj odpowiednią pochodną kowariantną dla pól cechowania $\mathit{W}^{a}_{\!\mu}.$

Jaka jest interpretacja pól W_{μ}^{a} ?

Pokaż, że macierz U jest unitarna.