SOCI 424: Networks & Social Structures

- Administrative
 Some measures of centrality
- 3. Complications: directed edges and weights

Administrative

Lab 1 feedback sent

: If you submitted (even late) but didn't get feedback, let me know!

Précis due Thursday by 10pm

: Make an appointment if you want to talk about your topic

General logistical questions?

: Project?: Class?: Readings?

Some measures of centrality

An Artificial Example

Degree Centrality

Degree Centrality

Eigenvector Centrality

$$? = (W + X + Y + Z) / \lambda$$

$$C_E(i) = \frac{1}{\lambda} \sum_{j \in N(i)} C_E(j)$$

Eigenvector Centrality

Degree vs eigenvector

Dolphins

Lusseau, David, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elisabeth Slooten, and Steve M. Dawson. 2003. "The Bottlenose Dolphin Community of Doubtful Sound Features a Large Proportion of Long-Lasting Associations." Behavioral Ecology and Sociobiology 54 (4) (September 1): 396–405.

Dolphins

Dolphins

Eigenvector Centrality

Eigenvector Centrality

Shortest path (geodesic) from **S** to **T**

Comparison

connected to many other vertices

connected to many other well connected vertices

on the shortest path connecting many pairs of vertices

Comparison

Complications: directed edges and weights

Directed edges

Directed edges affect degree

- in-degree: number of edges coming into a node
- i Out-degree: number of edges coming out of a node

Directed edges affect paths

- : Paths follow edge directions
- E Path from B to E is longer than the path from E to B

Edge weights

Edge weights affect degree

- Often want stronger edges contribute more to degree
- Node with a few strong relations can have the same "degree" as a node with many weak relations

Edge weights affect paths

- Often want stronger relations to be indicate "closer" nodes
- Large weights
 ⇒ short paths

Example

Example

Example

