Machine Learning

Non-parametric Algorithms: k-NN Classifier and Parzen Window

Indian Institute of Information Technology
Sri City, Chittoor

This week's Agenda

- Recap to KNN
- KNN Properties and Training
- Evaluation Metrics for a Classification model
- Advantages and Disadvantages of KNN
- r-fold cross validation for KNN
- Improving KNN
- K-NN from Computation Perspective
- Parzen Window
- Defining Rn
- Two different approaches fixed volume vs. fixed number of samples in a variable volume
- Example 3D hypercunbde
- The window function and estimation
- Critical parameters of the Parzen-window technique: window width and kernel
- Selecting Window
- Selecting Kernel

K-Nearest Neighbour (KNN) Classifier

Algorithm

- For each test point, x, to be classified, find the K-nearest samples in the training data.
- Classify the point, x, according to the majority vote of their class labels.
- applicable to multi-class case

e.g.
$$K = 3$$

A sampling assumption: Train and Test Data

- Assume that the training examples are drawn independently from the set of all possible examples.
- This makes it very unlikely that a strong regularity in the training data will be absent in the test data.

• Measure classification error as $=\frac{1}{N}\sum_{i=1}^{N}[\mathbf{y}_i \neq f(\mathbf{x}_i)]$ The "risk" loss function

Testing data

Training data

KNN Properties and Training:

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation:

- Split training data into training and validation
- Hold out validation data and measure error on this

KNN Properties and Training:

- MNIST data set
- Distance = raw pixel distance between images
- 60K training examples
- 10K testing examples
- K-NN gives 5% classification error

Train Set

$$D(\mathbf{A}, \mathbf{B}) = \sum_{ij} \sqrt{\left(a_{ij} - b_{ij}\right)^2}$$

Distance Metric

Test Samples

Advantages:

- K-NN is a simple but effective classification procedure.
- Applies to multi-class classification.
- Decision surfaces are non-linear.
- Quality of predictions automatically improves with more training data.
- Only a single parameter, K; easily tuned by cross-validation.

Disadvantages

- What does nearest mean? Need to specify a distance metric.
- Computational cost: must store and search through the entire training set at test time.
- Can alleviate this problem by thinning, and use of efficient data structures like KD trees.

r-fold Cross Validation

- **Cross Validation Method**: Cross-validation involves partitioning a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (Validation set).
- To reduce variability, in most methods multiple rounds of cross-validation are performed using different partitions, and the validation results are combined (e.g. averaged) over the rounds to give an estimate of the model's predictive performance.

$$n = 8$$

Test

Train

Model 1

Data Sampling Methods

r-fold Cross validation: This procedure has a single parameter called "r" that refers to the number of groups that a given data sample is to be split into.

The general procedure is as follows:

- 1. Shuffle the dataset randomly.
- 2. Split the dataset into r groups
- 3. For each unique group:
 - 1. Take the group as a hold out or test data set
 - 2. Take the remaining groups as a training data set
 - 3. Fit a model on the training set and evaluate it on the test set
 - 4. Retain the evaluation score and discard the model
- 4. Summarize the skill of the model using the sample of model evaluation scores

r-fold Cross validation:

r-fold Cross validation for K-NN

<u>r-fold cross validation:</u>

- 1. Partition the training set into r blocks. Let these are $D_1, D_2, ..., D_r$.
- 2. For i = 1 to r do
 - I. Consider D D_i as the training set and D_i as the validation set.
 - II. For a range of k values (say from 1 to m) find the error rates on the validation set.
 - III. Let these error rates are e_{i1} , e_{i2} , ..., e_{im}
- 3. Take e_i = mean of $\{e_{1i}, e_{2i}, ..., e_{ri}\}$, for i = 1 to m.
- 4. k value = argmin $\{e_1, e_2, ..., e_j, ..., e_m\}$

r-fold Cross validation for K-NN

- One should not use the test set to decide the value of k.
- Test set should be used only after fixing k, to get the final error-rate for the classifier.
- Cross validation is only to fix the value of parameters like k . So the error rates on validation sets should be called validation error rates.

Improving KNN

- k-NNC gives equal importance to the first NN and to the last NN.
- S.A. Dudani (1976) has given a method where we give weights to the NNs.
- Voting is done according to these weights.
- Let the distances (with given pattern) of k NNs be an ordered set = { d₁, d₂, ..., d_k}
- For i th NN the weight is, w_i = (d_k-d_i)/(d_k-d₁)
- Use these weights as vote values and classify accordingly.
- This is called modified k-NNC or weighted k-NNC, and is found to improve the performance in almost all cases.

Improving KNN

- Another promising improvement is to regenerate the training set, so that the training patterns belonging to different classes are separated well.
- Hamamoto(1997) proposed the following:
- For each training pattern y do:
 - 1. Find r NNs of y in the training set that belongs to the same class as y.
 - 2. Find the mean of these r NNs. Let this is y_r
 - 3. Replace y by y_r

K-NN from Computation Perspective:

- Let n be the number of training patterns.
- Let k be a small constant when compared with n
- The time and space complexity of k-NNC are both equal to O(n).
- To reduce the computational burden of k-NNC is another important direction of research.
 - Prototype selection.
 - Not all training patterns are important for k-NNC, so remove those which are unimportant.

Parzen window

- The Parzen-window method (also known as Parzen-Rosenblatt window method) is a widely used non-parametric approach to estimate a probability density function p(x) for a specific point p(x) from a sample $p(x_n)$.
- It doesn't require any knowledge or assumption about the underlying distribution.
- A popular application of the Parzen-window technique is to estimate the class-conditional densities (or also often called 'likelihoods').
- Likelihoods, $p(x \mid \omega_i)$ in a supervised pattern classification problem from the training dataset (where p(x) refers to a multi-dimensional sample that belongs to particular class ω_i)).

Where would this method be useful?

 Imagine that we are about to design a Bayes classifier for solving a statistical pattern classification task using Bayes' rule:

$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w_i) \cdot P(\omega_i)}{p(\mathbf{x})}$$

$$\Rightarrow posterior\ probability = \frac{likelihood \cdot prior\ probability}{evidence}$$

- If the parameters of the the class-conditional densities (also called likelihoods) are known, it is pretty easy to design the classifier.
- Imagine we are about to design a classifier for a pattern classification task where the parameters of the underlying sample distribution are not known.
- Therefore, we wouldn't need the knowledge about the whole range of the distribution; it would be sufficient to know the probability of the particular point, which we want to classify, in order to make the decision.

Parzen Window

- In parzen window we are going to see how we can estimate this probability from the training sample.
- However, the only problem of this approach would be that we would seldom have exact values - if we consider the histogram of the frequencies for a arbitrary training dataset.
- Therefore, we define a certain region (i.e., the Parzenwindow) around the particular value to make the estimate.

[1] Parzen, Emanuel. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics 33 (1962), no. 3, 1065 1076.
[2] Rosenblatt, Murray. Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics 27 (1956), no. 3, 832–837.

Defining the Region Rn

 The basis of this approach is to count how many samples fall within a specified region Rn (or "window" if you will). Our intuition tells us, that (based on the observation), the probability that one sample falls into this region is:

$$p(x) = \frac{\text{# of samples in } R}{\text{total samples}}$$

 To tackle this problem from a more mathematical standpoint to estimate "the probability of observing k points out of n in a Region R "we consider a binomial distribution:

$$p_k = \begin{bmatrix} n \\ k \end{bmatrix} \cdot p^k \cdot (1-p)^{n-k}$$

 Make the assumption that in a binomial distribution, the probability peaks sharply at the mean

Defining the Region Rn

 The basis of this approach is to count how many samples fall within a specified region Rn (or "window" if you will). Our intuition tells us, that (based on the observation), the probability that one sample falls into this region is:

$$p(x) = \frac{\text{# of samples in } R}{\text{total samples}}$$

 To tackle this problem from a more mathematical standpoint to estimate "the probability of observing k points out of n in a Region R "we consider a binomial distribution:

$$p_k = \begin{bmatrix} n \\ k \end{bmatrix} \cdot p^k \cdot (1-p)^{n-k}$$

 Make the assumption that in a binomial distribution, the probability peaks sharply at the mean

$$E[k] = n \cdot p \sim k = n \cdot p$$

Defining the Region Rn

 And if we think of the probability as a continuous variable, we know that it is defined as:

$$p(\mathbf{x}) = \int_{R} dx = p(\mathbf{x}) \cdot V,$$

where V is the volume of the region R, and if we rearrange those terms, so that we arrive at the following equation, which we will use later:

$$\frac{k}{n} = p(\mathbf{x}) \cdot V$$
$$\Rightarrow p(\mathbf{x}) = \frac{k/n}{V}$$

 This simple equation above (i.e, the "probability estimate") lets us calculate the probability density of a point x by counting how many points k fall in a defined region (or volume).

Two different approaches - fixed volume vs. fixed number of samples in a variable volume

Case 1 - fixed volume:

 For a particular number n (= number of total points), we use volume V of a fixed size and observe how many points k fall into the region.

Two different approaches - fixed volume vs. fixed number of samples in a variable volume

Case 2 - fixed k:

 For a particular number n (= number of total points), we use a fixed number k (number of points that fall inside the region or volume) and adjust the volume accordingly..

Example 3D-hypercubes

- To illustrate this with an example and a set of equations, let us assume this region R_n is a hypercube.
- The volume of this hypercube is defined by $V_n = h_n^d$, where h_n is the length of the hypercube, and d is the number of dimensions.
- For an 2D-hypercube with length 1, for example, this would be $V_1 = 12$ and for a 3D hypercube $V_1 = 13$, respectively.

Example: A typical 3-dimensional unit hypercube ($h_1 = 1$) representing the region R_1 , and 10 sample points, where 3 of them lie within the hypercube (red triangles), and the other 7 outside (black dots).

The window function

- Once we visualized the region R1 like above, it is easy and intuitive to count how many samples fall within this region, and how many lie outside.
- To approach this problem more mathematically, we would use the following equation to count the samples k_n within this hypercube, where φ is our so-called window function.

$$\phi(\mathbf{u}) = \begin{bmatrix} 1 & |u_j| \le 1/2 ; & j = 1, \dots, d \\ 0 & otherwise \end{bmatrix}$$

for a hypercube of unit length 1 centered at the coordinate system's origin.

If we extend on this concept, we can define a more general equation that applies to hypercubes of any length h_n that are centered at x:

$$k_n = \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

where
$$\boldsymbol{u} = \left(\frac{\boldsymbol{x} - \boldsymbol{x}_i}{h_n}\right)$$

Parzen-window estimation

 we can now formulate the Parzen-window estimation with a hypercube kernel as follows:

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h^d} \phi \left[\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right]$$

where

$$h^d = V_n$$
 and $\phi \left[\frac{\mathbf{x} - \mathbf{x}_l}{h_n} \right] = k$

 And applying this to our unit-hypercube example above, for which 3 out of 10 samples fall inside the hypercube (into region R), we can calculate the probability p(x) that x samples fall within region R as follows:

$$\mathbf{x} = \frac{k/n}{h^d} = \frac{3/10}{1^3} = \frac{3}{10} = 0.3$$

Critical parameters of the Parzen-window technique: window width and kernel

The two critical parameters in the Parzen-window techniques are

- 1) the window width: Which window size should we choose (i.e., what should be the side length h of our hypercube)?
- 2) the kernel: Most commonly, either a hypercube or a Gaussian kernel is used for the window function. But how do we know which is better?

Selecting the window width

If we would choose a window width that is "too small", this would result in local spikes, and a window width that is "too big" would average over the whole distribution.

Selecting the kernel

- Hypercube or a Gaussian kernel?
 - It really depends on the training sample.
- Intuitively, it would make sense to use a Gaussian kernel for a data set that follows a Gaussian distribution.
 - But remember, the whole purpose of the Parzen-window estimation is to estimate densities of a unknown distribution!
- Gaussian kernel instead of the hypercube:
 - simply swap the terms of the window function, which we defined above for the hypercube.

Gaussian Kernel

The Parzen-window Gaussian kernel:

$$\frac{1}{(\sqrt{2\pi})^d h_n^d} exp \left[-\frac{1}{2} \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right)^2 \right]$$

The Parzen-window estimation would then look like this:

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h^d} \phi \left[\frac{1}{(\sqrt{2\pi})^d h_n^d} exp \left[-\frac{1}{2} \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right)^2 \right] \right]$$

Thank You: Question?