# CME 307 / MS&E 311: Optimization

# Newton and quasi-Newton methods

Professor Udell

Management Science and Engineering Stanford

January 24, 2024

### **Questions from Ed**

- well-conditioned vs ill-conditioned
- why approximate Hessian with  $\frac{1}{t}$  !?

### **Outline**

### Quadratic approximation

Newton's method

Quasi-Newton methods

**BFGS** 

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

# Minimize quadratic approximation

minimize 
$$f(x)$$

Suppose  $f : \mathbf{R} \to \mathbf{R}$  is twice differentiable. For any  $x \in \mathbf{R}$ , approximate f about x:

$$f(x) \approx f(x^{(k)}) + \nabla f(x^{(k)})^{T} (x - x^{(k)}) + \frac{1}{2} (x - x^{(k)})^{T} \nabla^{2} f(x^{(k)}) (x - x^{(k)}) \approx f(x^{(k)}) + \nabla f(x^{(k)})^{T} s + \frac{1}{2} s^{T} B_{k} s =: m_{k}(x)$$

where  $s = x - x^{(k)}$  is the search direction and  $B_k \approx \nabla^2 f(x^{(k)})$  is the **Hessian approximation**.

If  $B_k \succeq 0$ ,  $m_k$  is convex. to minimize,

$$B_k s + \nabla f(x^{(k)}) = 0$$

if  $B_k$  is invertible,

$$s = -B_k^{-1} \nabla f(x^{(k)})$$

$$x^{(k+1)} = \underset{x}{\operatorname{argmin}} m_k(x) = \underset{x}{\operatorname{argmin}} f(x) + \nabla f(x^{(k)})^T s + \frac{1}{2} s^T B_k s$$

$$x^{(k+1)} = \operatorname*{argmin}_{x} m_k(x) = \operatorname*{argmin}_{x} f(x) + \nabla f(x^{(k)})^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} B_k s$$

**Q:** What happens if  $B_k$  is indefinite?

$$x^{(k+1)} = \operatorname*{argmin}_{x} m_k(x) = \operatorname*{argmin}_{x} f(x) + \nabla f(x^{(k)})^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} B_k s$$

**Q:** What happens if  $B_k$  is indefinite?

**A:** Go in the direction of negative curvature; but not clear how far to go.

$$x^{(k+1)} = \operatorname*{argmin}_{x} m_k(x) = \operatorname*{argmin}_{x} f(x) + \nabla f(x^{(k)})^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} B_k s$$

**Q:** What happens if  $B_k$  is indefinite?

**A:** Go in the direction of negative curvature; but not clear how far to go.

**Q:** What happens if  $B_k$  is not invertible?

$$x^{(k+1)} = \operatorname*{argmin}_{x} m_k(x) = \operatorname*{argmin}_{x} f(x) + \nabla f(x^{(k)})^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} B_k s$$

**Q:** What happens if  $B_k$  is indefinite?

**A:** Go in the direction of negative curvature; but not clear how far to go.

**Q**: What happens if  $B_k$  is not invertible?

**A:** Not clear how far to go in flat directions.

### Why do we need $B_k \succ 0$ ?

$$x^{(k+1)} = \operatorname*{argmin}_{x} m_k(x) = \operatorname*{argmin}_{x} f(x) + \nabla f(x^{(k)})^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} B_k s$$

**Q:** What happens if  $B_k$  is indefinite?

**A:** Go in the direction of negative curvature; but not clear how far to go.

**Q**: What happens if  $B_k$  is not invertible?

A: Not clear how far to go in flat directions.

### in practice

- **make it psd.** modify  $B_k$  to be positive definite
- **trust region method.** minimize nonconvex  $m_k$  over a ball

# Which quadratic approximation?

▶ **Gradient descent.** use  $B_k = \frac{1}{t}I$  for some t > 0.

$$s = -t\nabla f(x)$$

▶ **Newton's method.** use  $B_k = \nabla^2 f(x)$ .

$$s = -(\nabla^2 f(x))^{-1} \nabla f(x)$$

**Quasi-Newton methods.** use  $B_k \approx \nabla^2 f(x^{(k)})$ .

$$s = -B_k^{-1} \nabla f(x)$$

global convergence as long as  $m_k(x) \ge f(x)$  for all x. but how fast?

#### **Outline**

Quadratic approximation

#### Newton's method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

### **Convergence rates**

linear convergence.

$$\lim_{k \to \infty} \frac{\|x^{(k)} - x^{\star}\|}{\|x^{(k-1)} - x^{\star}\|} = c \in (0, 1)$$

superlinear convergence.

$$\lim_{k \to \infty} \frac{\|x^{(k)} - x^*\|}{\|x^{(k-1)} - x^*\|} = 0$$

quadratic convergence.

$$\lim_{k \to \infty} \frac{\|x^{(k)} - x^*\|}{\|x^{(k-1)} - x^*\|^2} < M$$

### Newton's method converges quadratically

### Theorem (Local rate of convergence)

Suppose f is twice ctsly differentiable and  $\nabla^2 f(x)$  is L-Lipschitz in a neighborhood of a strict local minimizer  $x^* \in \operatorname{argmin} f(x)$ . Then Newton's method converges to  $x^*$  quadratically near  $x^*$ .

recall an operator F is L-Lipschitz if

$$||F(x) - F(y)|| \le L||x - y||$$

### Taylor's theorem

since f is twice continuously differentiable,

$$\nabla f(y) - \nabla f(x) = \int_0^1 \nabla^2 f(x + t(y - x))(y - x) dt$$

 ${\color{red} \textbf{source: https://www.cambridge.org/core/books/optimization-for-data-analysis/C02C3708905D236AA354D1CE1739A6A2}$ 

# Newton's method converges quadratically (I)

**proof:**  $x^*$  is strict local min, so  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*) > 0$ .

$$\begin{array}{rcl} x^{(k+1)} - x^{\star} & = & x^{(k)} + s^{(k)} - x^{\star} \\ & = & x^{(k)} - x^{\star} - B_k^{-1} \nabla f(x^{(k)}) \rhd (\text{Newton's method}) \\ & = & (B^{(k)})^{-1} \left( B^{(k)} (x^{(k)} - x^{\star}) - \nabla f(x^{(k)}) \right) \end{array}$$

by taylor's theorem,

$$\nabla f(x^{(k)}) = \int_0^1 \nabla^2 f(x^* + t(x^{(k)} - x^*))(x^{(k)} - x^*) dt$$
, so

$$B^{(k)}(x^{(k)} - x^{\star}) - \nabla f(x^{(k)}) = \int_{0}^{1} \left( \nabla^{2} f(x^{(k)}) - \nabla^{2} f(x^{\star} + t(x^{(k)} - x^{\star})) \right) (x^{(k)} - x^{\star}) dt$$

$$\|B^{(k)}(x^{(k)} - x^{\star}) - \nabla f(x^{(k)})\| \leq \int_{0}^{1} \|\nabla^{2} f(x^{(k)}) - \nabla^{2} f(x^{\star} + t(x^{(k)} - x^{\star}))\| \|x^{(k)} - x^{\star}\| dt$$

$$\leq \int_{0}^{1} Lt \|x^{(k)} - x^{\star}\|^{2} dt$$

 $\leq \frac{L}{2} ||x^{(k)} - x^*||^2$ 

### Newton's method converges quadratically (II)

now choose  $r \in \mathbf{R}$  small enough that for  $||x^{(k)} - x^*|| \le r$ ,  $||(\nabla^2 f(x^{(k)}))^{-1}|| \le 2||(\nabla^2 f(x^*))^{-1}|| \triangleright (\text{possible since } \nabla^2 f(x^*) \succ 0)$  then complete the proof:

$$||x^{(k+1)} - x^*|| \le \frac{L}{2} ||(\nabla^2 f(x^{(k)}))^{-1}|| ||x^{(k)} - x^*||^2$$

$$\le \underbrace{L||(\nabla^2 f(x^*))^{-1}||}_{\text{constant}} ||x^{(k)} - x^*||^2$$

#### **Outline**

Quadratic approximation

Newton's method

Quasi-Newton methods

**BFGS** 

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

### **Quasi-Newton methods**

what's the problem with Newton's method?  $\nabla^2 f(x)$  is

- expensive to compute
- expensive to invert
- not always positive definite

### **Quasi-Newton methods**

what's the problem with Newton's method?  $\nabla^2 f(x)$  is

- expensive to compute
- expensive to invert
- not always positive definite

**quasi-Newton method:** use a matrix  $B_k \approx \nabla f^2(x^{(k)})$  (or  $H_k = B_k^{-1}$ ) that is

- easy to update
- easy to invert

update  $B_k$  at each iteration to improve/maintain approximation

### **Quasi-Newton methods**

what's the problem with Newton's method?  $\nabla^2 f(x)$  is

- expensive to compute
- expensive to invert
- not always positive definite

**quasi-Newton method:** use a matrix  $B_k \approx \nabla f^2(x^{(k)})$  (or  $H_k = B_k^{-1}$ ) that is

- easy to update
- easy to invert

update  $B_k$  at each iteration to improve/maintain approximation can still get superlinear convergence!

### **BFGS**

BFGS is the most popular quasi-Newton method. idea:

▶ take step with length  $\alpha_k > 0$  chosen by line search

$$x^{(k+1)} = x^{(k)} + \alpha_{\nu}(-B_{\nu}^{-1}\nabla f(x^{(k)})) =: x^{(k)} + s^{(k)}$$

new model will be

$$m_{k+1}(x) = f(x^{(k+1)}) + \nabla f(x^{(k+1)})^T p + \frac{1}{2} p^T B_{k+1} p$$
  
where  $p = x - x^{(k+1)}$ 

want gradient of  $m_{k+1}$  to match f at  $x^{(k)}$  and  $x^{(k+1)}$ :

- ightharpoonup match at  $x^{(k+1)}$  by construction
- match at  $x^{(k)}$  if

$$\nabla f(x^{(k)}) = \nabla m_{k+1}(x^{(k)} - x^{(k+1)}) = \nabla f(x^{(k+1)})$$

$$\nabla f(x^{(k+1)}) - \nabla f(x^{(k)}) = B_{k+1}(x^{(k+1)} - x^{(k)})$$

$$y^{(k)} = B_{k+1}s^{(k)} \triangleright (\text{secant equation})$$

where  $y^{(k)} = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), \ s^{(k)} = x^{(k+1)} - x^{(k)}.$ 

### **Secant equation**

$$y^{(k)} = B_{k+1}s^{(k)}$$

where 
$$y^{(k)} = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), \ s^{(k)} = x^{(k+1)} - x^{(k)}.$$

- ▶ need  $s^{(k)T}y^{(k)} > 0$  (otherwise  $B_{k+1}$  is not positive definite)
- (\*) if f is strongly convex, then  $s^{(k)T}y^{(k)} > 0$  for all k (pf on next slide)
- ▶ for nonconvex f, can enforce  $s^{(k)T}y^{(k)} > 0$  by using a line search that satisfies Wolfe conditions:

$$f(x^{(k)} + \alpha p^{(k)}) - f(x^{(k)}) \geq \alpha c_1 \nabla f(x^{(k)})^T p^{(k)} \\ \nabla f(x^{(k)} + \alpha p^{(k)})^T p^{(k)} \geq c_2 \nabla f(x^{(k)})^T p^{(k)}$$

where  $p^{(k)} = -B_k^{-1} \nabla f(x^{(k)})$  is search direction and  $c_1, c_2 \in (0, 1)$  are constants.

# Proof of (\*)

# Lemma (\*)

if f is strongly convex, then  $y^{(k)T}s^{(k)} > 0$  for all k

# Proof of (\*)

# Lemma (\*)

if f is strongly convex, then  $y^{(k)T}s^{(k)} > 0$  for all k

**proof:** for f  $\mu$ -strongly convex, for any  $v, w \in \mathbb{R}^n$ ,

$$f(v) \geq f(w) + \nabla f(w)^{T} (v - w) + \frac{\mu}{2} \|v - w\|^{2}$$

$$f(w) \geq f(v) + \nabla f(v)^{T} (w - v) + \frac{\mu}{2} \|w - v\|^{2}$$

$$0 \geq (\nabla f(v) - \nabla f(w))^{T} (v - w) + \mu \|v - w\|^{2}$$

$$\Rightarrow (y^{(k)})^{T} s^{(k)} \geq \mu \|s^{(k)}\|^{2} > 0$$

setting 
$$v = x^{(k+1)}$$
,  $w = x^{(k)}$  and using  $s^{(k)} = x^{(k+1)} - x^{(k)}$ ,  $y^{(k)} = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$ .

### **BFGS** update

- ▶  $B_{k+1} \in \mathbf{S}_+^n$  has n(n+1)/2 degrees of freedom
- ▶ secant equation gives *n*-dimensional linear system for  $B_{k+1}$   $\implies$  many solutions!
- ▶ BFGS update chooses rank 2 update

$$B_{k+1} = B_k + \frac{y^{(k)}y^{(k)T}}{y^{(k)T}s^{(k)}} - \frac{B_k s^{(k)}s^{(k)T}B_k}{s^{(k)T}B_k s^{(k)}}$$

• equivalently, can update the inverse Hessian approximation  $H_k = B_k^{-1}$ :

$$H_{k+1} = (I - \rho^{(k)} s^{(k)} y^{(k)T}) H_k (I - \rho^{(k)} y^{(k)} s^{(k)T})^T + \rho^{(k)} s^{(k)} s^{(k)T}$$
 where  $\rho^{(k)} = \frac{1}{v^{(k)T} s^{(k)}}$  (uses Sherman-Morrison-Woodbury)

▶ each iteration uses  $O(n^2)$  flops

### **Sherman Morrison Woodbury formula**

### Lemma

Sherman-Morrison-Woodbury formula for a matrix H = A + UCV (where dimensions match)

$$H^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

can derive from formula for 2x2 (block) matrix inverse special case:  $H = A + uv^T$  for  $u, v \in \mathbb{R}^n$ :

$$H^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

also called matrix inversion lemma or any subset of names

### **BFGS** convergence

demo: try on Rosenbrock function 
$$f(x, y) = (1 - x)^2 + 100(y - x^2)^2$$

https://github.com/stanford-cme-307/demos/blob/main/qn.jl

# **BFGS** in practice



### **BFGS** in practice



### Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store  ${\cal H}$  or  ${\cal B}$ 

Limited-memory BFGS (L-BFGS): don't store B explicitly!

ightharpoonup instead, store the m (say, m=30) most recent values of

$$s_j = x^{(j)} - x^{(j-1)}, \qquad y_j = \nabla f(x^{(j)}) - \nabla f(x^{(j-1)})$$

• evaluate  $\delta x = B_k \nabla f(x^{(k)})$  recursively, using

$$B_{j} = \left(I - \frac{s_{j}y_{j}^{T}}{y_{j}^{T}s_{j}}\right)B_{j-1}\left(I - \frac{y_{j}s_{j}^{T}}{y_{j}^{T}s_{j}}\right) + \frac{s_{j}s_{j}^{T}}{y_{j}^{T}s_{j}}$$

assuming  $B_{k-m} = I$ 

# Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store  ${\cal H}$  or  ${\cal B}$ 

### Limited-memory BFGS (L-BFGS): don't store B explicitly!

ightharpoonup instead, store the m (say, m=30) most recent values of

$$s_j = x^{(j)} - x^{(j-1)}, \qquad y_j = \nabla f(x^{(j)}) - \nabla f(x^{(j-1)})$$

• evaluate  $\delta x = B_k \nabla f(x^{(k)})$  recursively, using

$$B_{j} = \left(I - \frac{s_{j}y_{j}^{T}}{y_{j}^{T}s_{j}}\right)B_{j-1}\left(I - \frac{y_{j}s_{j}^{T}}{y_{j}^{T}s_{j}}\right) + \frac{s_{j}s_{j}^{T}}{y_{j}^{T}s_{j}}$$

assuming  $B_{k-m} = I$ 

- advantage: for each update, just apply rank 1 + diagonal matrix to vector!
- ightharpoonup cost per update is O(n); cost per iteration is O(mn)
- ightharpoonup storage is O(mn)

### L-BFGS: interpretations

only remember curvature of Hessian on active subspace

$$S_k = \operatorname{span}\{s_k, \ldots, s_{k-m}\}$$

▶ hope: locally,  $\nabla f(x^{(k)})$  will approximately lie in active subspace

$$\nabla f(x^{(k)}) = g^S + g^{S^{\perp}}, \quad g^S \in S_k, \ g^{S^{\perp}} \text{ small}$$

▶ L-BFGS assumes  $B_k \sim I$  on  $S^{\perp}$ , so  $B_k g^{S^{\perp}} \approx g^{S^{\perp}}$ ; if  $g^{S^{\perp}}$  is small, it shouldn't matter much.

#### **Outline**

Quadratic approximation

Newton's method

Quasi-Newton methods

**BFGS** 

L-BFGS

### Preconditioning

Variable metric methods

Trust region methods

### Three perspectives

- precondition the function
- change the quadratic approximation
- change the metric

### Three perspectives

- precondition the function
- change the quadratic approximation
- change the metric

#### three names:

- preconditioned
- quasi-Newton
- variable metric

### Recap: convergence analysis for gradient descent

minimize 
$$f(x)$$

**recall:** we say (twice-differentiable) f is  $\mu$ -strongly convex and L-smooth if

$$\mu I \preceq \nabla^2 f(x) \preceq LI$$

**recall:** if f is  $\mu$ -strongly convex and L-smooth, gradient descent converges linearly

$$f(x^{(k)}) - p^* \le \frac{Lc^k}{2} ||x^{(0)} - x^*||^2,$$

where  $c=(\frac{\kappa-1}{\kappa+1})^2$ ,  $\kappa=\frac{L}{\mu}\geq 1$  is condition number  $\implies$  want  $\kappa\approx 1$ 

# Recap: convergence analysis for gradient descent

minimize 
$$f(x)$$

**recall:** we say (twice-differentiable) f is  $\mu$ -strongly convex and L-smooth if

$$\mu I \preceq \nabla^2 f(x) \preceq LI$$

**recall:** if f is  $\mu$ -strongly convex and L-smooth, gradient descent converges linearly

$$f(x^{(k)}) - p^* \le \frac{Lc^k}{2} ||x^{(0)} - x^*||^2,$$

where  $c=(\frac{\kappa-1}{\kappa+1})^2$ ,  $\kappa=\frac{L}{\mu}\geq 1$  is condition number  $\implies$  want  $\kappa\approx 1$ 

**idea:** can we minimize another function with  $\kappa \approx 1$  whose solution will tell us the minimizer of f?

### Preconditioning

for  $D \succ 0$ , the two problems

minimize 
$$f(x)$$
 and minimize  $f(Dz)$ 

have solutions related by  $x^* = Dz^*$ 

- gradient of f(Dz) is  $D^T \nabla f(Dz)$
- ▶ the second derivative (Hessian) of f(Dz) is  $D^T \nabla^2 f(Dz) D$

a gradient step on f(Dz) with step-size t > 0 is

$$z^{+} = z - tD^{T}\nabla f(Dz)$$
  

$$Dz^{+} = Dz - tDD^{T}\nabla f(Dz)$$
  

$$x^{+} = x - tDD^{T}\nabla f(x)$$

from prev analysis, gd on z converges fastest if

$$D^T \nabla^2 f(Dz) D \approx I$$
  
 $D \approx (\nabla^2 f(Dz))^{-1/2}$ 

# **Approximate inverse Hessian**

 $B = DD^T$  is called the **approximate inverse Hessian** can fix B or update it at every iteration:

- ▶ if B is constant: called **preconditioned** method (e.g., preconditioned conjugate gradient)
- ▶ if B is updated: called (quasi)-Newton method

how to choose B? want

- $ightharpoonup B pprox 
  abla^2 f(x)^{-1}$
- easy to compute (and update) B
- ► fast to multiply by *B*

#### **Outline**

Quadratic approximation

Newton's method

Quasi-Newton methods

**BFGS** 

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

### Variable metric

definition of the gradient:

$$f(x+h) = f(x) + \langle \nabla f(x), s \rangle + \frac{1}{2} \langle s, \nabla^2 f(x)s \rangle + o(s^3)$$

wrt Euclidean inner product  $\langle u, v \rangle = u^T v$ 

now define new inner product  $\langle u, v \rangle_A = u^T A v$  for some matrix  $A \in \mathbf{S}_{++}^n$ .

compute the gradient and Hessian wrt this inner product:

$$f(x+h) = f(x) + \langle \nabla f(x), s \rangle + \frac{1}{2} \langle s, \nabla^2 f(x) s \rangle + o(s^3)$$
  
=  $f(x) + \langle A^{-1} \nabla f(x), s \rangle_A + \frac{1}{2} \langle s, A^{-1} \nabla^2 f(x) s \rangle_A + o(s^3)$ 

so the gradient and Hessian wrt the new inner product is

$$\nabla_A f(x) = A^{-1} \nabla f(x), \qquad \nabla_A^2 f(x) = \frac{1}{2} \left[ A^{-1} \nabla^2 f(x) + \nabla^2 f(x) A^{-1} \right]$$

#### **Outline**

Quadratic approximation

Newton's method

Quasi-Newton methods

**BFGS** 

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

### Trust region methods

suppose  $B_k$  is indefinite. solution to model problem is unbounded!

$$\operatorname*{argmin}_{x} m_k(x) = \operatorname*{argmin}_{x} f(x) + \nabla f(x^{(k)})^T s + \frac{1}{2} s^T B_k s$$

trust region method limits step size by choosing  $x^{(k+1)}$  to solve trust region subproblem

minimize 
$$m_k(x)$$
  
subject to  $||x - x^{(k)}|| \le \delta_k$ 

- nonconvex quadratic problem
- can solve with generalized eigenvalue solver

source: https://www.math.uwaterloo.ca/ hwolkowi/henry/reports/previews.d/trsalgorithm10.pdf