Exercise 18.3. Suppose you had an (s,t)-flow f. We know that there exists an (s,t)-path packing of the same size as f; here we are interested in algorithms that take f and compute such a path packing. Such a path packing is called a *flow decomposition* of f.

Design and analyze an algorithm that, in $O(m^2)$ time, computes a maximum path packing x of the same size as f, such that:

- 1. There are at most m distinct paths (with nonzero value) in x.
- 2. If f is integral, then x is also integral.

Solution. \Box

Josh Park, Amy Kang, Diya Singh Prof. Kent Quanrud $\begin{array}{c} \text{CS 390ATA} \\ \text{Homework 7 (18.4)} \end{array}$

Spring 2025 Page 2

Exercise 18.4. This exercise develops a $O((m^2 + mn \log(n)) \log(\lambda))$ -time algorithm for maximum (s, t)-flow and builds on ideas from exercise 18.3.

Exercise 18.4.1. Prove the following: Given any (s,t)-flow problem with max flow value $\lambda > 0$, there exists an (s,t)-path where the minimum capacity edge is at least λ/m .

 \Box

 $\begin{array}{c} \text{CS 390ATA} \\ \text{Homework 7 (18.4)} \end{array}$

Spring 2025 Page 3

Exercise 18.4.2. Describe an $O(m + n \log(n))$ -time algorithm to find the path described above.⁴

 $\overline{{}^4O(m\log n)}$ time is a little easier and this running time would still get partial credit. Even if the $O(m+n\log(n))$ -running time eludes you, you can assume it as a black box for the next part.

Solution. \Box

Josh Park, Amy Kang, Diya Singh Prof. Kent Quanrud $\begin{array}{c} \text{CS 390ATA} \\ \text{Homework 7 (18.4)} \end{array}$

Spring 2025 Page 4

Exercise 18.4.3. Prove the following: Given any (s,t)-flow problem with max flow value $\lambda > 0$, there exists an (s,t)-path where the minimum capacity edge is at least λ/m .

Solution.