Untitled

The PDB database

```
db <- read.csv("Data Export Summary.csv", row.names=1)
head(db)</pre>
```

##		X.ray	NMR	EM	${\tt Multiple.methods}$	Neutron	Other	Total
##	Protein (only)	142419	11807	6038	177	70	32	160543
##	Protein/Oligosaccharide	8426	31	991	5	0	0	9453
##	Protein/NA	7498	274	2000	3	0	0	9775
##	Nucleic acid (only)	2368	1378	60	8	2	1	3817
##	Other	149	31	3	0	0	0	183
##	Oligosaccharide (only)	11	6	0	1	0	4	22

Q1. What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
(sum(db$X.ray)/ sum(db$Total)) *100
```

[1] 87.52836

How about doing this over every method? (i.e. column in the little table)

```
(colSums(db) / sum(db$Total))*100
```

##	X.ray	NMR	EM	Multiple.methods
##	87.52836071	7.35991033	4.94686958	0.10555353
##	Neutron	Other	Total	
##	0.03917451	0.02013134	100.00000000	

Q2: What proportion of structures in the PDB are protein?

```
(db$Total[1] / sum(db$Total)) *100
```

```
## [1] 87.3499
```

```
(db[1,ncol(db)] / sum(db$Total)) *100
```

[1] 87.3499

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

23,409 structures

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

Otherwise they would be so small and hard to visualize so it simplifies it some.

Q5: There is a conserved water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have (see note below)?

Within the conserved Aspertate...?

Using Bio3D in R for structural bioinformatics

Do a Normal Mode Analysis (NMA) a prediction of the conformational variability and intrinsic dynamics of this protein.

```
library(bio3d)
pdb <- read.pdb("1hel")

## Note: Accessing on-line PDB file

m <- nma(pdb)

## Building Hessian... Done in 0.034 seconds.
## Diagonalizing Hessian... Done in 0.077 seconds.

plot(m)</pre>
```


Make a little movie (trajectory) for viewing in VMD.

```
mktrj(m, file="nma.pdb")
```