

66/290
U.S.
500 U.S.
PRO

LAW OFFICES
LERNER, DAVID, LITTENBERG, KRUMHOLZ & MENTLIK, LLP

600 SOUTH AVENUE WEST
WESTFIELD, NEW JERSEY 07090-1497
(908) 654-5000
FAX: (908) 654-7866

PATENTS, TRADEMARKS AND COPYRIGHTS

JOHN P. MALDJIAN
THOMAS M. PALISI
STEPHEN F. ROTH
KIMBERLY V. FLUGGER
JASON I. GARBELL
RENÉE M. ROBESON
BRIAN K. JOHNSON
LYNNE A. BORCHERS
PETER A. CICALA

JU 525 U.S. PRO
09/338154
06/23/99

OF COUNSEL
LAWRENCE I. LERNER
DANIEL H. BOBIS
RAYMOND W. AUGUSTIN
HARVEY L. COHEN
*NORTH CAROLINA BAR ONLY
▲NEW YORK BAR ONLY

SIDNEY DAVID
JOSEPH S. LITTENBERG
ARNOLD H. KRUMHOLZ
WILLIAM L. MENTLIK
JOHN R. NELSON
ROY H. WEPNER
STEPHEN B. GOLDMAN
CHARLES P. KENNEDY
PAUL H. KOCHANSKI
MARCUS J. MILLET
BRUCE H. SALES
ARNOLD B. DOMPIERI
KEITH E. GILMAN
ROBERT B. COHEN
MICHAEL H. TESCHNER
GREGORY S. GEWIRTZ
JONATHAN A. DAVID
SHAWN P. FOLEY*

BOX PATENT APPLICATION
Assistant Commissioner For Patents
Washington, D.C. 20231

File No.: SONYJP 3.0-073
Inventor(s): Osawa et al.
Title : VIDEO REPRODUCING APPARATUS AND REPRODUCING METHOD

Dear Sir:

Enclosed herewith please find the following documents in the above-identified application for Letters Patent of the United States:

1	Pages of Abstract	Unexecuted Declaration (executed Declaration to follow)
24	Pages of Specification	One (1) return-addressed postcard
10	Number of Claims	<u>PLEASE PROVIDE FILING DATE AND SERIAL NUMBER</u>
3	Sheets of Drawings <input checked="" type="checkbox"/> A4 <input type="checkbox"/> 11"	

Please charge Deposit Account No. 12-1095 in the amount of \$760.00, calculated as follows:

Basic Fee \$ 760.00

Additional Fees:

Total number of claims (including multiple dependent claims):	10	
Total number of claims in excess of 20:	0 x \$18	0.00
Number of independent claims:	2	
Number of independent claims minus 3:	2 x \$78	0.00
Fee for multiple dependent claim(s) (\$260)		0.00
TOTAL FILING FEE		\$ 760.00

CONVENTION DATE: June 26, 1998 for Japanese Appln. S.N. P10-180926 is claimed.
Priority Document: Enclosed Will follow

In the event the actual fee is greater than the payment authorized above, the Patent Office is authorized to charge any deficiency to our Deposit Account No. 12-1095.

Respectfully submitted,

LERNER, DAVID, LITTENBERG,
KRUMHOLZ & MENTLIK, LLP

ROBERT B. COHEN Reg. No. 32,768

EXPRESS MAIL LABEL NUMBER: EM563239382US

VIDEO REPRODUCING APPARATUS AND REPRODUCING METHOD

BACKGROUND OF THE INVENTION

Field of the Invention

The invention especially relates to a video
reproducing apparatus and a reproducing method for
receiving and reproducing image data encoded by MPEG
(Moving Picture Experts Group) 2 like a digital
television broadcasting. More particularly, the
invention relates to such video reproducing apparatus
and method which can cope with a plurality of video
signals whose frame frequencies are slightly different.

Description of the Related Art

A satellite digital television broadcasting
for broadcasting a digital video signal by using a
satellite has been started. The development of a
ground wave digital television broadcasting for
broadcasting a digital video signal by using a ground
wave is also being progressed. In the digital
television broadcasting, it is expected to perform
various services such as high definition television
broadcasting, multichannel broadcasting, multimedia
broadcasting, and the like.

In the digital television broadcasting, for
example, MPEG2 is used as an image compression system.
According to the MPEG2 system, a video signal is
compression encoded by a motion compensation predictive
coding and a DCT (Discrete Cosine Transform). In the

MPEG2 system, three kinds of picture planes called an I
(Intra) picture, a P (Predicti) picture, and a B
(Bidirectionally Predictive) picture are sent. In the
I picture, a DCT encoding is performed by using pixels
of the same frame. In the P picture, a DCT encoding
using a motion compensation prediction is performed
with reference to the I picture or P picture which has
already been encoded. In the B picture, a DCT encoding
using a motion prediction is performed with reference
to the I pictures or P pictures before and after the
target B picture.

A decoding circuit of MPEG2 is provided for a
digital television receiver to receive a digital
television broadcasting which is transmitted by using
the MPEG2 system. The decoding circuit of MPEG2 can be
constructed as shown in, for example, Fig. 1.

In Fig. 1, a bit stream of MPEG2 is supplied
to an input terminal 101. The bit stream is once
stored in a buffer memory 102.

An output of the buffer memory 102 is
supplied to a variable length decoding circuit 103. A
decoding is performed in the variable length decoding
circuit 103 on a macroblock unit basis. Coefficient
data of DCT and a motion vector are outputted from the
variable length decoding circuit 103. Further, various
control data indicative of a frame frequency of a video
signal and data such as predictive mode, quantization

scale, and the like are outputted from the variable length decoding circuit 103.

DCT coefficient data consisting of (8 x 8) pixels is supplied to an inverse quantizing circuit 104. A quantization scale of the inverse quantizing circuit 104 is set in accordance with quantization scale information from the variable length decoding circuit 103. Motion vector information and predictive mode information are supplied to a motion compensating circuit 107.

The DCT coefficient data is inversely quantized by the inverse quantizing circuit 104. An output of the inverse quantizing circuit 104 is supplied to an IDCT circuit 105. An output of the IDCT circuit 105 is supplied to an adding circuit 106. An output of the motion compensating circuit 107 is supplied to the adding circuit 106.

In the I picture, since the DCT encoding is performed by using pixels of the same frame, in case of the I picture, image data of a picture plane of one frame is derived from the IDCT circuit 105. The image data is outputted from an output terminal 111 via the adding circuit 106 and a buffer memory 110. The image data in this instance is stored as data of a reference picture plane into an image memory 108.

In the P picture, a DCT encoding using a motion compensation prediction is performed by

referring to the I picture or P picture. Therefore,
differential data between the relevant picture and the
reference picture plane is outputted from the IDCT
circuit 105. The data of the reference picture plane
is stored in the image memory 108. A motion vector is
supplied from the variable length decoding circuit 103
to the motion compensating circuit 107. In case of
decoding the P picture, an image of a reference frame
from the image memory 108 is motion compensated by the
motion compensating circuit 107 and supplied to the
adding circuit 106. In the adding circuit 106, the
data of the motion compensated reference image and the
differential data from the IDCT circuit 105 are added.
Thus, data of the picture plane of one frame is
derived. The image data is outputted from the output
terminal 111 through the buffer memory 110. The image
data in this instance is stored into the image memory
108 as data of the reference picture plane.

In the B picture, a DCT encoding using the
motion prediction is performed by referring to the I
pictures or P pictures before and after the target B
picture. Therefore, differences between the target
picture and the reference picture planes before and
after it are outputted from the IDCT circuit 105. The
data of the reference picture planes before and after
the target picture is stored in the image memory 108.
In case of decoding the B picture, the images of the

reference frames before and after a target frame from
the image memory 108 are motion compensated by the
motion compensating circuit 107 and supplied to the
adding circuit 106. In the adding circuit 106, the
5 data of the motion compensated reference images before
and after the target image and the differential data
from the IDCT circuit 105 are added. Thus, the data of
the picture plane of one frame is derived. The image
data is outputted from the output terminal 111 via the
10 buffer memory 110.

As mentioned above, the digital video signal
of the MPEG2 system is decoded by the variable length
decode circuit 103, inverse quantizing circuit 104, and
IDCT circuit 105 and is outputted from the output
15 terminal 111 via the buffer memory 110.

In the digital television broadcasting of the
MPEG2 system, there is a possibility such that signals
of a plurality of standards whose frame frequencies are
slightly different are sent. Hitherto, therefore, it
20 is necessary to prepare two clock generating circuits
121 and 122 for the buffer memory 110 and to switch the
two clock generating circuits 121 and 122 in accordance
with the frame frequency of the received television
broadcasting.

25 That is, in a system mainly used as a
standard to digitize the existing NTSC system, there is
a standard in which the number of horizontal pixels of

the video signal is set to 858 pixels, the number of scanning lines in one frame is set to 525 lines, and a clock frequency is set to 13.5 MHz. In this case, the frame frequency is obtained by

5 $13.5 \text{ MHz} / (858 \times 525)$

and its value is equal to 29.97 Hz.

On the other hand, as a standard of a digital NTSC system which will be newly standardized in future, there is a standard such that a horizontal frequency of the video signal is set to 858 pixels, the number of scanning lines in one frame is set to 525 lines, and a clock frequency is set to 13.5 MHz. According to this standard, the frame frequency is equal to just 30 Hz.

As mentioned above, in the digital television broadcasting of the MPEG2 system, there are the standard having the frame frequency of 29.97 Hz and the standard having the frame frequency of 30 Hz.

Therefore, while the digital television broadcasting having the frame frequency of 29.97 Hz is being received, it is necessary to control the reading operation from the buffer memory 110 so as to set the frame frequency to 29.97 Hz. While the digital television broadcasting having the frame frequency of 30 Hz is being received, it is necessary to control the reading operation from the buffer memory 110 so as to set the frame frequency to 30 Hz.

For this purpose, hitherto, two clock

generating circuits 121 and 122 are provided and the two clock generating circuits 121 and 122 are switched in accordance with the frame frequency of the received video signal.

5 That is, in Fig. 1, an output of the clock generating circuit 121 is supplied to a terminal 123A of a switching circuit 123. An output of the clock generating circuit 122 is supplied to a terminal 123B of the switching circuit 123. The clock generating circuit 121 generates a clock to the buffer memory 110 so that the video data is read out at a frame frequency 29.97 Hz. The clock generating circuit 122 generates a clock to the buffer memory 110 so that the video data is read out at a frame frequency 30 Hz. The clock generating circuits 121 and 122 generate the clocks on the basis of a system clock from a system clock generating circuit 120. An output of the switching circuit 123 is supplied to the buffer circuit 110.

20 Various control data showing the frame frequencies of the video signals are included in the output of the variable length decoding circuit 103. The control data is supplied to a frame frequency decoder 124. In the frame frequency decoder 124, the frame frequency of the received video signal is discriminated and a switch change-over signal is generated from the frame frequency decoder 124 in accordance with the frame frequency.

5

When the received video signal has the frame frequency of 29.97 Hz, the switching circuit 123 is set to the terminal 123A side. Therefore, the video data is read out from the buffer memory 110 at the frame frequency of 29.97 Hz.

10

When the received video signal has the frame frequency of 30 Hz, the switching circuit 123 is set to the terminal 123B side. Therefore, the video data is read out from the buffer memory 110 at the frame frequency 30 Hz.

15

As mentioned above, in the digital television broadcasting, since there is a possibility such that a plurality of video signals whose frame frequencies are slightly different are transmitted, hitherto, it is necessary to prepare a plurality of clock generating circuits 121 and 122 corresponding to the frame frequencies.

20

Although it is also considered to, for example, generate clocks of two frame frequencies from one oscillating circuit, as mentioned above, the necessary frame frequencies are very close frequencies such as 29.97 Hz and 30 Hz. A ratio of those two frequencies is equal to (1000/1001). It is very difficult to stably generate the clocks corresponding to two frequencies from one oscillating circuit.

25

As mentioned above, if a plurality of clock generating circuits are prepared in accordance with the

frame frequencies of the video signals which are received, a problem that a circuit scale increases and the costs rise occurs. When the digital television receiver is realized as an integrated circuit,
5 particularly, it is difficult to mount the clock generating circuit including the oscillating circuit onto the same chip as that of the decoding circuit. Therefore, if a plurality of clock generating circuits are provided, the circuit scale is increased and the
10 costs are raised.

2009/6/26 10:39:50 AM

SUMMARY OF THE INVENTION

It is, therefore, an object of the invention to provide a video reproducing apparatus and a
15 reproducing method which can output an image by the same clock for a plurality of video signals whose frame frequencies are slightly different.

According to the invention, there is provided a video reproducing apparatus for reproducing a plurality of digital video signals having different
20 frame frequencies, comprising:

frame frequency discriminating means for discriminating a frame frequency of an inputted digital video signal; and

25 pixel number converting means for replacing differences among the frame frequencies by differences among the numbers of horizontal pixels for the

plurality of digital video signals having the different frame frequencies and performing a conversion of the number of pixels so that the plurality of digital video signals having the different frame frequencies can be
5 processed by a common clock frequency,

wherein the number of horizontal pixels of the pixel number converting means is properly set in accordance with an output of said frame frequency discriminating means.

10 According to the invention, there is provided a video reproducing method of reproducing a plurality of digital video signals having different frame frequencies, comprising the steps of:

discriminating the frame frequency of said digital video signal;

15 replacing differences among the frame frequencies by differences among the numbers of horizontal pixels for the plurality of digital video signals having the different frame frequencies and
20 performing a conversion of the number of pixels so that the plurality of digital video signals having the different frame frequencies can be processed by a common clock frequency; and

properly setting the number of horizontal pixels after completion of the conversion of the number of pixels in accordance with the discriminated frame frequency.

As standards of digitizing the video signal of the existing NTSC system, there are the standard in which the frame frequency is equal to 29.97 Hz and the standard in which the frame frequency is equal to 30 Hz. The numbers of component pixels of two kinds of images are the same number of pixels, there are 858 pixels in the horizontal direction and there are 525 lines in the vertical direction. As mentioned above, as for the two kinds of images in which the numbers of pixels are equal and the frame frequencies are different, by replacing the difference of the frame frequencies to the difference of the numbers of pixels and by converting those images into images in which the frame frequencies are equal and the numbers of pixels are different, the same frame frequency is obtained and the signals can be processed by the same clock. Since the images can be outputted by the same clock for a plurality of video signals whose frame frequencies are slightly different, a plurality of clock generating circuits are unnecessary and the reduction of the circuit scale and the decrease in costs can be realized.

The above, and other, objects, features and advantage of the present invention will become readily apparent from the following detailed description thereof which is to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of an example of a conventional encoder circuit;

5 Fig. 2 is a block diagram of an example of an encoder circuit to which the invention is applied; and

10 Fig. 3 is a block diagram of an example of a pixel number converting circuit in the encoder circuit to which the invention is applied.

10 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An embodiment of the invention will now be described hereinbelow with reference to the drawings.

15 Fig. 2 shows an example of a decoding circuit of MPEG2 to which the invention is applied. In Fig. 2, a bit stream of MPEG2 is supplied to an input terminal 1. This bit stream is once stored in a buffer memory 2.

20 In the MPEG2 system, three kinds of picture planes called an I picture, a P picture, and a B picture are sent. In the I picture, a DCT encoding is performed by using the pixels of the same frame. In the P picture, a DCT encoding using a motion compensation prediction is performed with reference to the I picture or P picture which has already been 25 encoded. In the B picture, a DCT encoding using a motion prediction is performed with reference to the I pictures or P pictures before and after the target

picture.

An output of the buffer memory 2 is supplied to a variable length decoding circuit 3. In the variable length decoding circuit 3, encoded information of a macroblock is decoded.

Coefficient data of DCT and data such as motion vector, predictive mode, quantization scale, and the like are outputted from the variable length decoding circuit 3. Various control data showing frame frequencies of video signals is outputted from the variable length decoding circuit 3.

The DCT coefficient data of (8 x 8) pixels from the variable length decoding circuit 3 is supplied to an inverse quantizing circuit 4. A quantization scale of the inverse quantizing circuit 4 is set in accordance with quantization scale information from the variable length decoding circuit 3. Motion vector information and predictive mode information are supplied to a motion compensating circuit 7.

The data of the frame frequency from the variable length decoding circuit 3 is detected by a frame frequency value decoder 11. The frame frequency information is supplied to a pixel number converting circuit 9. Display pixel number information from the variable length decoding circuit 3 is detected by a display pixel number decoder 12. The display pixel number data is supplied to a display clock generating

circuit 13. The clock generating circuit 13 generates a clock on the basis of a system clock from a system clock generating circuit 10.

The DCT coefficient data is inversely quantized by the inverse quantizing circuit 4. An output of the inverse quantizing circuit 4 is supplied to an IDCT circuit 5. An output of the IDCT circuit 5 is supplied to an adding circuit 6. An output of the motion compensating circuit 7 is supplied to the adding circuit 6.

In the I picture, a DCT encoding is performed by using the pixels of the same frame. In case of the I picture, data of the picture plane of one frame is derived from the IDCT circuit 5. The image data is supplied to the pixel number converting circuit 9 via the adding circuit 6. The image data in this instance is stored into an image memory 8 as data of a reference picture plane.

In the P picture, a DCT encoding using a motion compensation prediction is performed with reference to the I picture or P picture. Therefore, differential data between the target picture and the reference picture plane is outputted from the IDCT circuit 5. The data of the reference picture plane has been stored in the image memory 8. A motion vector is supplied from the variable length decoding circuit 3 to the motion compensating circuit 7.

In case of decoding the P picture, an image
of a reference frame from the image memory 8 is motion
compensated by the motion compensating circuit 7 and is
supplied to the adding circuit 6. The data of the
5 motion compensated reference image and the differential
data from the IDCT circuit 5 are added by the adding
circuit 6. Thus, the data of the picture plane of one
frame is obtained. The image data is supplied to the
pixel number converting circuit 9. The image data at
10 this time is stored into the image memory 8 as data of
the reference picture plane.

In the B picture, a DCT encoding using a
motion prediction is performed with reference to the I
pictures or P pictures before and after the target
picture. Therefore, the differential data between the
target picture and the reference picture planes before
and after the target picture plane is outputted from
the IDCT circuit 5. The data of the reference picture
planes before and after the target picture plane has
20 been stored in the image memory 8.

In case of decoding the B picture, the images
of the reference frames before and after the target
frame from the image memory 8 are motion compensated by
the motion compensating circuit 7 and supplied to the
adding circuit 6. In the adding circuit 6, the data of
25 the motion compensated reference images before and
after the target image and the differential data from

the IDCT circuit 5 are added. Thus, data of the picture plane of one frame is derived. The image data is supplied to the pixel number converting circuit 9.

The pixel number converting circuit 9
5 replaces the differences of the frame frequencies to the differences of the numbers of horizontal pixels, thereby enabling the video signals of a plurality of images in which the numbers of pixels are common and the frame frequencies are different to be handled by the same clock. Frame frequency value information from the frame frequency value decoder 11, the display pixel number information from the display pixel decoder 12, and the display clock from the display clock generating circuit 13 are supplied to the pixel number converting circuit 9. The display clock generating circuit 13 generates the clock in accordance with the display pixel number data from the display pixel number decoder 12. The system clock generating circuit 10 supplies the clock to each section.

20 The digital video signal obtained by decoding the digital video data of MPEG2 is outputted from the pixel number converting circuit 9. The digital video signal is outputted from an output terminal 15.

As mentioned above, in the MPEG2 decoder to
25 which the invention is applied, in the pixel number converting circuit 9, the video signals of a plurality of images in which the numbers of pixels are common and

the frame frequencies are different can be handled by
the same clock by replacing the differences of the
frame frequencies to the differences of the numbers of
horizontal pixels. This process will now be described
5 further in detail.

As standards (hereinafter, referred to as SD)
to digitize the video signal of the existing NTSC
system, there are the standard whose frame frequency is
equal to 29.97 Hz and the standard whose frame
10 frequency is equal to 30 Hz. The numbers of pixels
constructing these two kinds of images are the same
number of pixels, there are 858 pixels in the
horizontal direction, and there are 525 lines in the
vertical direction.

15 As mentioned above, if the two kinds of
images in which the numbers of pixels are the same and
the frame frequencies are different are converted into
the images in which the frame frequencies are the same
and the numbers of pixels are different by replacing
20 the difference between the frame frequencies to the
difference between the numbers of pixels, those images
can be processed by the same clock.

That is, a ratio of the two kinds of frame
frequencies is equal to (1000/1001). Therefore, if it
25 is intended to perform the operation to convert the
number of pixels of the image whose frame frequency is
equal to 29.97 Hz to an integer times of 1001 pixels

and to convert the number of pixels of the image whose frame frequency is equal to 30 Hz to an integer times of 1000 pixels, those images can be processed by the same clock.

5 For example, when the frame frequency is equal to 29.97 Hz, by converting the number of pixels from 858 pixels to 1001 pixels, the clock frequency is equal to

$$30 \times (1000/1001) \text{ Hz} \times 1001 \text{ pixels} \times 525 \text{ lines}$$
$$= 15.7 \text{ MHz}$$

10 As for the operation clock frequency when the frame frequency is equal to 30 Hz, by converting the number of pixels from 858 pixels to 1000 pixels, the clock frequency is equal to

$$30 \text{ Hz} \times 1000 \text{ pixels} \times 525 \text{ lines} = 15.75 \text{ MHz}$$

15 As mentioned above, if the number of pixels of the image whose frame frequency is equal to 29.97 Hz is converted to 1001 pixels and the number of pixels of the image whose frame frequency is equal to 30 Hz is converted to 1000 pixels, those images can be processed by the same clock frequency (15.75 MHz).

20 When the frame frequency is equal to, for example, 29.97 Hz, by converting the number of pixels into 4004 pixels, the clock frequency is equal to

$$30 \text{ Hz} \times (1000/1001) \text{ Hz} \times 4004 \text{ pixels} \times 525 \text{ lines}$$
$$= 63 \text{ MHz}$$

25 When the frame frequency is equal to 30 Hz,

by converting the number of pixels into 4000 pixels,
the clock frequency is equal to

$$30 \times 4000 \text{ pixels} \times 525 \text{ lines} = 63 \text{ MHz}$$

As mentioned above, by converting the number
of pixels of the image whose frame frequency is equal
to 29.97 Hz into 4004 (= 1001 x 4) pixels and by
converting the number of pixels of the image whose
frame frequency is equal to 30 Hz into 4000 (= 1000 x
4) pixels, the images can be processed by the same
clock frequency (15.75 MHz).

Although the above example has been described
with respect to the SD image, even in case of a high
definition television system (hereinafter, referred to
as HD) image, it can be also similarly processed.

In case of the HD, there are an image whose
frame frequency is equal to 29.97 Hz and an image whose
frame frequency is equal to 30 Hz. The numbers of
pixels constructing the two kinds of images are equal
to the same number of pixels, there are 2200 pixels in
the horizontal direction, and there are 1125 scanning
lines in the vertical direction.

A ratio of the two kinds of frame frequencies
is equal to (1000/1001). Therefore, if the operation
to convert the number of pixels in case of the frame
frequency of 29.97 Hz to an integer times of 1001
pixels and to convert the number of pixels in case of
the frame frequency of 30 Hz to an integer times of

1000 pixels is performed, those images can be processed by the same clock.

For example, when the frame frequency is equal to 29.97 Hz, by converting the number of pixels to 2002 pixels, the clock frequency is equal to

5
$$\begin{aligned} & 30 \times (1000/1001) \text{ Hz} \times 2002 \text{ pixels} \times 1125 \text{ lines} \\ & = 67.5 \text{ MHz} \end{aligned}$$

When the frame frequency is equal to 30 Hz, by converting the number of pixels to 2000 pixels, the clock frequency is equal to

10
$$\begin{aligned} & 30 \text{ Hz} \times 2000 \text{ pixels} \times 1125 \text{ lines} \\ & = 67.5 \text{ MHz} \end{aligned}$$

15 As mentioned above, if the number of pixels of the image whose frame frequency is equal to 29.97 Hz is converted to 2002 pixels and the number of pixels of the image whose frame frequency is equal to 30 Hz is converted to 2000 pixels, those images can be processed by the same clock frequency (67.5 MHz).

20 As mentioned above, in the SD, for example, when the frame frequency is equal to 29.97 Hz, the number of pixels is converted into 4004 pixels, and when the frame frequency is equal to 30 Hz, the number of pixels is converted into 4000 pixels, so that the images can be processed by the common clock frequency of 63 MHz. In the HD, for example, when the frame frequency is equal to 29.97 Hz, if the number of pixels is converted into 2002 pixels and, when the frame

frequency is equal to 30 Hz, if the number of pixels is converted into 2000 pixels, the images can be processed by the common clock frequency of 67.5 MHz. In this case, 63 MHz as a clock frequency to process the SD and 67.5 MHz as a clock frequency to process the HD are close. As mentioned above, if the clock frequency when the SD is processed and the clock frequency when the HD is processed are close, it is convenient when executing processes at the post stage.

That is, the digital video signal decoded as shown in Fig. 2 is finally converted into the analog video signal and is outputted. Therefore, an A/D converter and a low pass filter are arranged at the post stage of the output terminal 15. When the clock frequencies are close, characteristics of the low pass filter in this instance can be similarly set in both cases of the SD and HD.

Fig. 3 shows an example of a construction of the pixel number converting circuit 9. In Fig. 3, the decoded digital video signal is supplied to an input terminal 21. A clock of, for example, 63 MHz or 67.5 MHz is supplied to a clock input terminal 22. Information indicative of, for example, either the SD or the HD is supplied to an information input terminal 23. Information showing whether the frame frequency is equal to 29.97 Hz or 30 Hz is supplied to an information input terminal 24.

The digital video signal from the input terminal 21 is supplied to a cascade connection of delay circuits 31, 32, and 33. Outputs at the stages between the input terminal 21 and the delay circuits 31, 32, and 33 are supplied to multiplying circuits 34, 35, 36, and 37, respectively. Outputs of the multiplying circuits 34 and 35 are supplied to an adding circuit 38. An output of the multiplying circuit 36 and an output of the adding circuit 38 are supplied to an adding circuit 39. An output of the adding circuit 39 and an output of the multiplying circuit 37 are supplied to an adding circuit 40. Coefficients according to the number of display pixels are generated from a coefficient generating circuit 30 to the multiplying circuits 34 to 37. The delay circuits 31 to 33, multiplying circuits 34 to 37, and adding circuits 38 to 40 construct a digital filter.

An output of the adding circuit 40 is supplied to a register 41. A clock common to a plurality of video signals having different frame frequencies, for example, a clock of a frequency 63 MHz or 67.5 MHz is supplied from the terminal 22 to the register 41. In the register 41, the clock of the digital video signal transmitted through the digital filter comprising the delay circuits 31 to 33, multiplying circuits 34 to 37, and adding circuits 38 to 40 is transferred to the clock from the input

terminal 22.

An output of the register 41 is supplied to a blank adding circuit 42. The value of the number of pixels from the display pixel input terminal 23 and the value of the frame frequency from the frame frequency value input terminal 24 are supplied to the blank adding circuit 42. The blank adding circuit 42 adds blank data to the digital video signal so that the number of pixels in the horizontal direction is set to an integer times of 1001 in case of the frame frequency of 29.97 Hz and the number of pixels in the horizontal direction is set to an integer times of 1000 in case of the frame frequency of 30 Hz.

By the blank adding circuit 42, for example, in the SD, the blank data is added in a manner such that the number of pixels is equal to 4004 pixels in case of the frame frequency of 29.97 Hz and the number of pixels is equal to 4000 pixels in case of the frame frequency of 30 Hz. In the HD format, for example, the blank data is added in a manner such that the number of pixels is equal to 2002 pixels in case of the frame frequency of 29.97 Hz and the number of pixels is equal to 2000 pixels in case of the frame frequency of 30 Hz.

As mentioned above, the number of horizontal pixels is properly changed in accordance with the frame frequency and the video signal of a constant clock is outputted from the pixel number converting circuit 9.

Thus, even when the frame frequencies are equal to 29.97 Hz and 30 Hz and they are different from each other, the video signals can be processed by the clock of the same clock frequency.

5 According to the invention, for example, as for a plurality of images in which the numbers of pixels are the same and the frame frequencies are different, the differences of the frame frequencies are replaced to the differences of the numbers of pixels.

10 Thus, the signals can be processed by the same clock.

As mentioned above, since the image can be outputted by the same clock for a plurality of video signals whose frame frequencies are slightly different, a plurality of clock generating circuits are unnecessary and the reduction of the circuit scale and the costs can be realized.

Having described a specific preferred embodiment of the present invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to that precise embodiment, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or the spirit of the invention as defined in the appended claims.

WHAT IS CLAIMED IS:

1. A video reproducing apparatus for reproducing a plurality of digital video signals having different frame frequencies, comprising:

5 frame frequency discriminating means for discriminating a frame frequency of an inputted digital video signal; and

10 pixel number converting means for replacing differences among said frame frequencies by differences among the numbers of horizontal pixels for said plurality of digital video signals having the different frame frequencies and performing a conversion of the number of pixels so that said plurality of digital video signals having the different frame frequencies can be processed by a common clock frequency,

15 wherein the number of horizontal pixels of said pixel number converting means is properly set in accordance with an output of said frame frequency discriminating means.

20 2. An apparatus according to claim 1, wherein said pixel number converting means converts the number of pixels so that a ratio of the numbers of horizontal pixels of said plurality of digital video signals is set to a reciprocal number of a ratio of the frame frequencies of said plurality of digital video signals.

3. An apparatus according to claim 1, wherein
said frame frequency discriminating means discriminates
the frame frequency by extracting frame frequency
discrimination information included in a broadcasted
5 digital video signal.

4. An apparatus according to claim 1, wherein
said pixel number converting means sets the different
numbers of horizontal pixels in a case where said
10 inputted digital video signal is a standard video
signal and a case where it is a high definition video
signal, respectively.

5. An apparatus according to claim 4, wherein
the number of horizontal pixels which is set into said
pixel number converting means in case of the standard
video signal and the number of horizontal pixels which
is set into said pixel number converting means in case
of the high definition video signal are selected to
proper values at the time of designing of said video
reproducing apparatus, so that a clock frequency in
case of processing the standard video signal and a
clock frequency in case of processing the high
definition video signal are set to near frequencies.
20
25

6. A video reproducing method of reproducing a
plurality of digital video signals having different

frame frequencies, comprising the steps of:

discriminating the frame frequency of said digital video signal;

replacing differences among said frame frequencies by differences among the numbers of horizontal pixels for said plurality of digital video signals having the different frame frequencies and performing a conversion of the number of pixels so that said plurality of digital video signals having the different frame frequencies can be processed by a common clock frequency; and

properly setting the number of horizontal pixels after completion of the conversion of the number of pixels in accordance with said discriminated frame frequency.

7. A method according to claim 6, wherein the number of pixels is converted so that a ratio of the numbers of horizontal pixels of said plurality of digital video signals is set to a reciprocal number of a ratio of the frame frequencies of said plurality of digital video signals.

8. A method according to claim 6, wherein the frame frequency is discriminated by extracting frame frequency discrimination information included in a broadcasted digital video signal.

9. A method according to claim 6, wherein the number of horizontal pixels after completion of said pixel number conversion is set to the different numbers of horizontal pixels in a case where said inputted digital video signal is a standard video signal and a case where it is a high definition video signal, respectively.

10. A method according to claim 9, wherein the number of horizontal pixels which is set in case of the standard video signal and the number of horizontal pixels which is set in case of the high definition video signal are selected so that a clock frequency in case of processing the standard video signal and a clock frequency in case of processing the high definition video signal are set to near frequencies.

ABSTRACT OF THE DISCLOSURE

For a plurality of digital video signals

whose frame frequencies are different, a pixel number
converting circuit to convert the number of pixels is
provided so that differences of the frame frequencies
are replaced to differences of the numbers of pixels
and a plurality of digital video signals whose frame
frequencies are different can be processed by a common
clock frequency. The frame frequency is detected by a
frame frequency value decoder and the number of pixels
in the horizontal direction of the pixel number
converting circuit is properly set in accordance with
the frame frequency. As mentioned above, if the
differences of the frame frequencies are replaced to
the differences of the numbers of pixels and the images
are converted into the image in which the frame
frequencies are the same and the numbers of pixels are
different, the frame frequencies are equalized and the
signals can be processed by the same clock.

5

10

15

20

25

Fig. 1

Fig. 2

Fig. 3

DECLARATION FOR UTILITY OR DESIGN PATENT APPLICATION

ATTORNEY'S DOCKET NO.: SONYJP 3.0-073

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

VIDEO REPRODUCING APPARATUS AND REPRODUCING METHOD

the specification of which

is attached hereto

was filed on _____ as United States Application Number or PCT International Application Number _____ and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119(a)-(d) of any foreign application(s) for patent or inventor's certificate or § 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below any foreign application for patent or inventor's certificate, or any PCT international application having a filing date before that of the application on which priority is claimed:

PRIOR FOREIGN APPLICATION(S)			
COUNTRY	APPLICATION NUMBER	DATE OF FILING (month, day, year)	PRIORITY CLAIMED
JAPAN	P10-180926	June 26, 1998	YES <input checked="" type="checkbox"/> NO <input type="checkbox"/>
			YES <input type="checkbox"/> NO <input type="checkbox"/>
			YES <input type="checkbox"/> NO <input type="checkbox"/>
LISTING OF FOREIGN APPLICATIONS CONTINUED ON PAGE 3 HEREOF <input type="checkbox"/> YES <input checked="" type="checkbox"/> NO			

I hereby claim the benefit under Title 35, United States Code, § 119(e) of any United States provisional application(s) listed below:

Application Number: Filing Date:

Application Number: Filing Date:

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or § 365(c) of any PCT international application designating the United States of America, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

U.S. Parent Application Serial Number: Parent Filing Date: Parent Patent No.:

U.S. Parent Application Serial Number: Parent Filing Date: Parent Patent No.:

PCT Parent Number: Parent Filing Date:

LISTING OF US APPLICATIONS CONTINUED ON PAGE 3 HEREOF: YES NO

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following registered practitioner(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

Lawrence I. Lerner, Reg. No. 19,516; Sidney David, Reg. No. 22,768; Joseph S. Littenberg, Reg. No. 20,832; Arnold H. Krumholz, Reg. No. 25,428; William L. Mentlik, Reg. No. 27,108; John R. Nelson, Reg. No. 26,573; Roy H. Wepner, Reg. No. 28,350; Stephen B. Goldman, Reg. No. 28,512; Paul H. Kochanski, Reg. No. 29,660; Marcus J. Millet, Reg. No. 28,241; Bruce H. Sales, Reg. No. 32,793; Daniel H. Bobis, Reg. No. 16,694; Keith E. Gilman, Reg. No. 32,137; Robert B. Cohen, Reg. No. 32,768; Arnold B. Dompnier, Reg. No. 29,736; Michael H. Teschner, Reg. No. 32,862; Gregory S. Gewirtz, Reg. No. 36,522; Jonathan A. David, Reg. No. 36,494; Shawn P. Foley, Reg. No. 33,071; Thomas M. Palisi, Reg. No. 36,629; John P. Maldjian, Reg. No. 41,967; Kimberly V. Flugger, Reg. No. 43,612; Jason I. Garbell, Reg. No. 44,116; Renee M. Robeson, Reg. No. 41,777

SEND CORRESPONDENCE TO:	DIRECT TELEPHONE CALLS TO: (name and telephone number)
LERNER, DAVID, LITTENBERG, KRUMHOLZ & MENTLIK, LLP 600 South Avenue West Westfield, New Jersey 07090	ROBERT B. COHEN (908) 654-5000 Fax: (908) 654-7866

DECLARATION -- Page 2

ATTORNEY DOCKET NO. SONYJP 3.0-073

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor (given name, family name): **YOSHIHITO OSAWA**

Inventor's signature _____ **Date** _____

Residence: Saitama, Japan Citizenship: JAPAN

Post Office Address: c/o Sony Corporation, 7-35, Kitashinagawa 6-chome, Shinagawa-ku, Tokyo, Japan

Full name of second joint inventor, if any (given name, family name) **HIROSHI KATAYAMA**

Second Inventor's signature _____ **Date** _____

Residence: Chiba, Japan Citizenship: JAPAN

Post Office Address: c/o Sony Corporation, 7-35, Kitashinagawa 6-chome, Shinagawa-ku, Tokyo, Japan

Full name of third joint inventor, if any (given name, family name):

Third Inventor's signature _____ **Date** _____

Residence: Citizenship:

Post Office Address:

Full name of fourth joint inventor, if any (given name, family name):

Forth Inventor's signature _____ **Date** _____

Residence: Citizenship:

Post Office Address:

Full name of fifth joint inventor (given name, family name):

Fifth Inventor's signature _____ **Date** _____

Residence: Citizenship:

Post Office Address:

Full name of sixth joint inventor, if any (given name, family name):

Sixth Inventor's signature _____ **Date** _____

Residence: Citizenship:

Post Office Address:

Full name of seventh joint inventor, if any (given name, family name):

Seventh Inventor's signature _____ **Date** _____

Residence: Citizenship:

Post Office Address:

Full name of eighth joint inventor, if any (given name, family name):

Eighth Inventor's signature _____ **Date** _____

Residence: Citizenship:

Post Office Address:

Additional inventors are being named on separately numbered sheets attached hereto.