# Statistical Reasoning Week 8

Sciences Po - Louis de Charsonville

Spring 2018

## Outline

Research Paper

Correlation

Simple linear regression

**Practice** 

# Research Paper

# Research Paper

#### **Timeline**

| $1^{st}$ draft        | Done                       |  |  |  |  |  |
|-----------------------|----------------------------|--|--|--|--|--|
| Coming weeks          | Improve the $1^{st}$ draft |  |  |  |  |  |
|                       | based on feedback.         |  |  |  |  |  |
| 2 <sup>nd</sup> draft | 10 April                   |  |  |  |  |  |
| Final draft           | 24 April                   |  |  |  |  |  |

#### Feedback

#### Research

- Choose multiple independent variables, not just one.
- Discuss your findings.
- Question your hypotheses.
- Do not oversell your work. Be humble and specific.

#### **Coding**

- Code should run.
- Graphs should not be overwritten.

#### Writing

- Avoid general statements, be accurate.
- ▶ Use scientific term, *normal* means the variable is following the normal distribution.
- Avoid jargon and subjective terms.
- ► If you include graphs, tables, always *comment* them.

## Outline for do-file

#### 1. DV Choice

- Summary statistics
- Variable manipulation (rename / recode)
- Visualisation

#### 2. IV Choice

- Summary statistics
- ► Recode & Visualisation
- 3. Dealing with missing values
- 4. DV : further analysis
  - Normality tests (the more the better)
  - ► Transformation → normality tests agains (+ discussion).
  - Exploration of hypothesis: first intuitions by display DV over IV's.

# Correlation

#### What it does?

- ► Measure association as the linear dependence of two variables
- Used to examin the strength of association between two quantitative variables

#### **Descriptive statistics**

- Visualize the correlation by creating a scatterplot;
- Identify the strengh of the correlation by calculating a Pearson'R

#### Inferential statistics

► Significance test using a t-test for Pearson's R

### Positive vs Negative correlation

- ► A positive correlation indicates that the values on the two variables being analyzed move in the same direction.
- A negative correlation indicates that the values on the two variables being analyzed move in opposite directions

### Strength of relationship - Rule of thumb

▶ Perfect correlation : |r| = 1

► High :  $|r| \ge 0.7$ 

► Moderate :  $0.3 \le |r| \ge 0.7$ 

▶ Low:  $|r| \le 0.3$ 

# Compute Pearson's Correlation coefficient

#### Formula

#### **Population**

$$\rho = \frac{Cov(X,Y)}{Var_X Var_Y} \tag{1}$$

#### Sample

$$r = \frac{1}{n-1} \sum_{i=1}^{n} (\frac{X_i - \bar{X}}{s_X}) (\frac{Y_i - \bar{Y}}{s_Y})$$
 (2)

#### Remember

- ▶ Pearson's correlation coefficient detects linear correlation
- ► Uncorrelated ≠ unrelated
- ▶ Correlated ≠ unconfounded

#### Covariance

#### Mathematical formula

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
 (3)

#### In plain language

- How changes in one variable are associated with changes in a second variable
- ► Degree of linear association

## **Graphically**





# Significance Test

## Significance test

- ▶ Null hypothesis  $H_0$ : r = 0
- ► Test statistic  $T = r\sqrt{\frac{n-2}{1-r^2}}$
- ► Test the probability of getting a correlation coefficient different from zero (if H<sub>0</sub> were true

#### Stata Command

- ► Add the sig option to pwcorr : pwcorr y x, sig
- ▶ Add a star if significant at the  $\alpha$ : pwcorr y x, star(0.05)

## Visualise the correlation

### Stata

► Scatter plot : sc x y or plot x y

Visualisation is important!

## Visualise the correlation

#### Stata

► Scatter plot : sc x y or plot x y

## Visualisation is important!





# Matrix graphs

#### Stata

Plot matrix graphs

gr mat y x z, half



gr mat wdi\_fr bl\_asy25mf wdi\_gdpc undp\_hdi ti\_cpi, half scheme(plottig) mcolor(plr1) scale(0.8)

# Coefficient of determination

#### Coefficient of determination

- $R^2 = \rho^2$
- ▶  $R^2$  reflects the percentage of variance explained in each of the two correlated variables by the other variable.

#### In Stata

- ▶ pwcorr y x
- di r(rho)^2

# Correlation does not imply causation

- Correlations can exist without a cause and effect relationshiph between the variables
- A correlation can exist :
  - X is causing Y
  - ► Y is causing X (reverse causality)
  - Z is causing both X and Y (missing variable)
  - Random chance!
- Theoretical explanations are critical to understand the correlations observed.

# Simple linear regression

# Simple linear regression

- Statistical technique closely related to correlations
- Extension of correlation
- ▶ DV needs to be quantitative and continuous

#### Goals

- Provide direction of the relationship and strength
- Statistical significance
- Explanatory power of the independent variable
  - ► To what extent the total variation of the dependent variable can be explained by the variation of the independent variable
- Prediction

# Example: Trust and Economic performance

# To what extent can trust in government be predicted from variations in economic growth?

- Dependent Variable : Trust in Government
  - Share of respondents answering "Just about always / Most of the time"
- ► Independent Variable : Economic performance
  - ► Change in per capita disposable income



Dashed lines at averages. Pearson correlation  $\rho = .86$  significant at p < .01.



Dashed lines at averages. Pearson correlation  $\rho = .86$  significant at p < .01.



Dashed lines at averages. Pearson correlation  $\rho = .86$  significant at p < .01.

### Maths behind the hood

## **Equations**

$$Y = \alpha + \beta X + \epsilon$$
$$\hat{Y} = \hat{\alpha} + \hat{\beta} X$$
$$\epsilon = Y - \hat{Y}$$

#### **Parameters**

- ightharpoonup Y is the dependent variable and  $\hat{Y}$  its predicted value
- X is the independent variable used as predictor of Y
- $\triangleright \alpha$  is the **constant** (intercept)
- $\triangleright$   $\beta$  is the regression coefficient (slope)
- $ightharpoonup \epsilon$  is the **error term** (residuals)

## Warning

The model assumes a *linear*, additive relationship.







# Finding the regression line

- Goal : Find the line of best fit.
- ► Solution : minimize the error term

# Finding the regression line

- Goal : Find the line of best fit.
- Solution : minimize the error term

# Ordinary Least Squares

1. We minimize the sum of squared residuals.

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \epsilon^2$$

2. Get  $\beta$ 

$$\beta = \frac{Cov(X,Y)}{Var_X} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

3. Get  $\alpha$ 

$$\alpha = \bar{Y} - \beta \bar{X}$$

#### . regress trust income

| Source            | SS                       | df             | MS                       |      | Number of obs                |     | 12                        |
|-------------------|--------------------------|----------------|--------------------------|------|------------------------------|-----|---------------------------|
| Model<br>Residual | 1908.80221<br>643.906248 | 1<br>10        | 1908.80221<br>64.3906248 |      | F( 1, 10) Prob > F R-squared | =   | 29.64<br>0.0003<br>0.7478 |
| Total             | 2552.70846               | 11             | 232.064405               |      | Adj R-squared<br>Root MSE    |     | 0.7225<br>8.0244          |
| trust             | Coef.                    | Std. I         | Err. t                   | P> t | [95% Conf.                   | Int | erval]                    |
| income<br>_cons   | 8.639373<br>26.69501     | 1.586<br>3.888 |                          |      | 5.103836<br>18.03197         |     | .17491                    |

Goodness of fit or R<sup>2</sup>

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y}_{i})^{2}}$$
(4)

- ► As the fit improves  $RSS \rightarrow 0$  and  $R^2 \rightarrow 1$ .
- ► A regression coefficient estimates the variation in *Y* predicted by a change in one unit of *X*
- ▶ The **coefficient** is the slope  $\beta$  of the regression line
- ► The **constant** is the intercept of the regression line
- ► The standard error, *t*-value and *p*-value test whether the coefficient is significantly different from 0.

- Total number of observations
- F-value and p-value associated with F statistic which tests the null hypothesis that all of the model coefficients are equal to zero
- RMSE is Root Mean Squared Errors is the standard deviation of the residuals.

# Other relationship

## Linear-linear relationship

$$Y = \alpha + \beta X$$

An increase in one unit of X is associated with an increase of  $\beta$  units of Y.

# Log-linear relationship

$$ln Y = \alpha + \beta X$$

An increase in one unit of X is associated with an  $100 * \beta\%$  increase in Y.

## Linear-log relationship

$$Y = \alpha + \beta \ln X$$

A 1% increase in X is associated with an increase of  $0.01\beta$  units of Y.

# Log-log relationship

$$ln Y = \alpha + \beta ln X$$

A 1% in X is associated with an increase of  $\beta$ % in Y.

# **Practice**

#### **Practice**

## Fertility and Education, Part 1 & 2

- 1. Finish week7.do
  - ► Remember to comment run setup/require mkcorr renvars
- 2. Do week8.do