SET THEORY

Definition: A set S, is a collection of objects. The objects are called members of the set.

The elements of a set are found in the universal set U. The elements of a set S, are denoted by S. we describe the set S by the following way:

$$S = \{s \in U: P\}$$

Where P denotes a property.

You can consider **U** to be the University of Minnesota students and P to be students in the Math Review class.

A set can be described by listing elements in the set. For example the set of the first 4 positive integers is $S = \{1,2,3,4\}$

Union, Intersection and Complement

Union: $A \cup B = \{x \in U : x \in A \text{ or } x \in b\}$

Intersetion: $A \cap B = \{x \in U : x \in A \text{ and } x \in b\}$

Complement: $A^c = \{x \in U : x \notin A\}$

Set difference, subset, disjoint and partition

Union

Given two sets A and B in U, their difference, denoted A\B, is $A \backslash B = \{x \in U : x \in A \ and \ x \notin B\}.$

A B $A\B$

Subsets

If A and B are sets in U, then B is a subset of A, denoted $B \subset A$, $if [x \in B] \Rightarrow [x \in A]$. B is a proper subset of A if $B \subset A$ and $B \neq A$.

Disjoint sets

Sets A and B are disjoint sets if $A \cap B = \emptyset$

The union and intersection operators are commutative. For any sets A and B,

$$A \cup B = B \cup A \text{ and } A \cap B = B \cap A.$$

The are also associative. For any sets A, B, and C,

$$(A \cup B) \cup C = A \cup (B \cup C)$$
 and $(A \cap B) \cap C = A \cap (B \cap C)$

Exercise 1: Prove the commutative and associative properties described above.

de Morgan's laws and Cartesian Product

de Morgan's laws : If A_1, A_2, \dots, A_k are subsets, then:

$$\left[\bigcup_{i=1}^k A_i\right]^c = \bigcap_{i=1}^k A_i^c \quad \text{and} \quad \left[\bigcap_{i=1}^k A_i\right]^c = \bigcup_{i=1}^k A_i^c$$

Exercise: Verify that this is true for the 3 subsets of all real numbers :

$$A_1 = [0,1], A_2 = [0.5,3], and A_3 = [4,5]$$

Cartesian product

For 2 sets A and B, their cartesian product is $\{(a, b): a \in A, b \in B\}$

Exercise: What is the Cartesian product of a = [1,2] and b = [3,5]? Illustrate it on a diagram.

Cardinality and countability

Cardinality of a set A, denoted by #|A| is the number of elements in the set. For example, if $A = \{1,2,3\}$, then r#|A| = 3.

What is #|A| if $A = \{2,4,6,8,....\}$?

Indeed, some sets have infinite elements. There are 3 cases of cardinality: finite, countably infinite and uncountable.

Set A is finite if $\#|A| < \infty$

The set of counting integers or positive integers $N = \{1,2,3,4,...\}$.

A **countable set** is (a finite set or) any infinite set that can be placed in one-to-one correspondence with N.

The set of integers $Z = \{...., -2, -1, 0, 1, 2,\}$ is countable. How can we justify this?

Convex sets

Consider a set $X \subset \mathbb{R}^n$, the n-dimensional real numbers. X is convex if for all $t \in [0, 1]$ and all $x, y \in X$, the element xt = tx + (1 - t)y is in X.

Bounded sets in Rn

A set in \mathbb{R}^n is bounded if it is entirely contained within some ϵ -ball. The ball can either open or closed. That is, S is bounded if there exists some $\epsilon > 0$, such that $S \subset B_{\epsilon}(x)$ for some $x \in \mathbb{R}^n$. You can think of boundedness as meaning that a set if finite in size.

Compact sets

A set S in Rn is called compact if and only if it is closed and bounded.

The separating hyperplane theorem

Suppose the $B \subset R^n$ is a convex and closed set and that $x \notin B$. Then there is $p \in R^n$ and a value $c \in R$ such that $p \cdot x > c$ and $p \cdot y < c$ for every $y \in B$.

The separating hyperplane theorem is important in the **Second Welfare Theorem**.