Different Factors that affect Hotel Reservation

Members -Mekhal Raj Rohan Gupta Shi Wang Zichen Wang Yilun Wang

About this project

Total_Sample_Number

This data set contains booking information for city hotels and resort hotels, and includes information such as when the booking was made, length of stay, the number guests, the number of bookings, and whether the booking was cancelled or not among other things.

The cancellation rate of the two types of hotels

	Hotel_Type	Total_Number_of_Booking	$Total_Number_of_Cancellation$	Cancellation_Rate
0	Resort Hotel	40060	11122	0.277634
1	City Hotel	79330	33102	0.417270

Cancellation Rate Graph

Countries with highest cancellation rates

	country	cancellation_rate
0	PRT	0.566351
1	GBR	0.202243
2	FRA	0.185694
3	ESP	0.254085
4	DEU	0.167147

Months with the highest booking

,	Month	Number_of_Booking	Proportion_of_Booking	$Number_of_Cancellation$	Cancellation_Rate
0	August	13877	0.116	5239	0.378
1	July	12661	0.106	4742	0.375
2	May	11791	0.099	4677	0.397

Months with the highest cancellation rate

	Month	Number_of_Booking	Proportion_of_Booking	Number_of_Cancellation	Cancellation_Rate
0	June	10939	0.092	4535	0.415
1	April	11089	0.093	4524	0.408
2	May	11791	0.099	4677	0.397

Average lead time for different types of hotel

Possible misunderstanding of average lead time

Cancellation Rate related to lead time

Cancellation Rate Related to unwanted change in Room Type

	Change_of_room_type	Cancellation_Rate
0	0	0.415629
1	1	0.053764

Cancellation rate related to whether a guest is a new customer or not

	is_repeated_guest	Cancellation_Rate
0	0	0.377851
1	1	0.144882

Customer composition: What are the different types of customers who make reservations

	customer_type Description		Number_of_Booking
0	Contract	The booking has a contract associated to it	4076
1	Group	The booking is associated to a group	577
2	2 Transient The booking is not part of a group		89613
3	Transient-Party	The booking is associated to other booking	25124

Different Customer types and their share in total number of bookings

Different distribution channels for different hotel types

Hotel	Distribution Channel	Cancellation rate	Is Canceled
City Hotel	Corporate	0.2306	786
	Direct	0.1817	1,232
	GDS	0.1917	37
	TA/TO	0.4503	31,043
	Undefined	1.0000	4
Resort Hotel	Corporate	0.2105	688
	Direct	0.1685	1,325
	TA/TO	0.3149	9,109
	Undefined	0.0000	0

Correlation Between Distribution channels and cancellation rates for different types of hotels

CONCLUSION

This dataset consists of hotel booking cases that are collected from all over the world, and divided into two hotel types: resort hotel and city hotel. We analyzed this dataset to determine the different variables that affected the booking and cancellation rate of the hotels. The variables that had the most impact on the hotel booking rate are **hotel type**, **peak season**, **lead time**, **repeated customers**.

During the peak season from June to August, people tend to book more hotels. The intended stay period is in August, which was indicated by the huge volume of bookings for August. People tend to book for the August season couple of months in advance and are more likely to change their plans as observed from the higher cancellation rate in June.

The next variable that impacts the cancellation rate of hotels is the lead time of booking. We observed from the dataset that a higher lead time leads to a tremendous increase in cancellation rate. For bookings with more than three weeks of lead time, the cancellation rates are almost 5 times than that of bookings with a lead time of 1 week.

The next variable that we investigated was the impact of a room change on the cancellation rate. We expected to see an increase in the cancellation rate when the hotel changed the room type of the customers. But the result was contradictory to our expectations. The cancellation rate of the people who didn't receive a room change was almost 8 times more than that of people who received a room change. This implies that the change in room type didn't compromise on the quality of the rooms and it still met the expectations of the majority of the customers. Additionally, this room change might have been an upgrade for some and hence the very low cancellation rate. We then investigated the booking behaviour of repeated customers. We found that repeated customers tend to be more satisfied with the hotel and have a lower cancellation rate.

Linear Regression

- $. \ \ regress \ \ is_canceled \ \ lead_time \ \ is_repeated_guest \ \ change_room_type \ \ previous_cancellations \ \ previous_$
- > ious_bookings_not_canceled

Source	SS	df	MS	Number of obs	=	119,390
				F(5, 119384)	=	3838.21
Model	3855.89419	5	771.178838	Prob > F	=	0.0000
Residual	23986.8161	119,384	.200921532	R-squared	=	0.1385
				Adj R-squared	=	0.1385
Total	27842.7103	119,389	.233210014	Root MSE	=	.44824

is_canceled	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lead_time is_repeated_guest change_room_type previous_cancellations previous_bookings_not_can~d _cons	.0011301 0849665 300206 .0512786 0099017 .289986	.0000124 .008187 .0039741 .0015636 .0009626	91.09 -10.38 -75.54 32.80 -10.29 147.59	0.000 0.000 0.000 0.000 0.000	.0011058 101013 3079952 .048214 0117885 .286135	.0011544 0689201 2924167 .0543432 008015 .293837

Bigquery Machine Learning

We divide the data according to the year, use data in 2015 & 2016 as training set and use 2017 as test set.

Aggregate Metrics Log loss 0.3841 ROC AUC 0.8976

Bigquery Machine Learning

	predicted_is_canceled	predicted_is_canceled_probs	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	stays_in_weekend_niç
0	0	[{'label': 1, 'prob': 0.3086404582589439}, {'l	City Hotel	1	56	2017	March	
1	0	[{'label': 1, 'prob': 0.4382903883846842}, {'l	City Hotel	1	95	2017	April	
2	0	[{'label': 1, 'prob': 0.1951686134395547}, {'l	City Hotel	0	1	2017	January	

3 rows × 25 columns

	Predicte	d
Actual	Cancel	Not Cancel
Cancel	66.79%	33.21%
Not Cancel	15.79%	84.21%

References & Materials

- Dataset Source: https://www.kaggle.com/jessemostipak/hotel-booking-demand
- Original Source: Hotel Booking Demand Datasets, written by Nuno Antonio, Ana Almeida, and Luis Nunes for Data in Brief, Volume 22, February 2019. https://www.sciencedirect.com/science/article/pii/S2352340918315191

Tableau Dashboard: https://www.sciencedirect.com/science/article/pii/S2352340918315191

