Zadania z jednokładności

- 1. Rozłączne okręgi o_1 i o_2 o równych promieniach są styczne wewnętrznie do okręgu o w punktach odpowiednio A i B. Punkt P należy do okręgu o, proste PA i PB przecinają okręgi o_1 i o_2 odpowiednio w drugich punktach C i D. Udowodnij, że proste AB i CD są równoległe.
- 2. Okrąg o przecina bok AB trójkąta ABC w punktach P_1 , P_2 , bok BC w punktach R_1 i R_2 oraz bok AC w punktach S_1 i S_2 . Proste prostopadłe do AB przechodzące przez P_1 i P_2 oznaczamy odpowiednio k_1 i k_2 , prostopadłe do BC przechodzące przez R_1 i R_2 oznaczamy l_1 i l_2 , zaś prostopadłe do AC przechodzące przez S_1 i S_2 oznaczamy m_1 i m_2 . Wykaż, że jeśli proste k_1 , l_1 i m_1 przecinają się w jednym punkcie, to proste k_2 , l_2 i m_2 również przecinają się w jednym punkcie.
- 3. Wykazać, że w dowolnym trójkącie $R \geq 2r$, gdzie R jest promień okręgu opisanego na trójkącie ABC i r promień okręgu wpisanego w trójkąt ABC.