Productivity and Efficiency Analysis

5) Contextual variables

5d) Semi-nonparametric approach

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Banker & Natarajan (2008)

• Semi-nonparametric model $\ln y_i = \ln f(\mathbf{x}_i) + \delta' \mathbf{z}_i - u_i + v_i$

where the noise term v is double-truncated:

$$-V^M \leq v \leq V^M$$
.

• We next relax the truncation of the noise term and develop a more efficient one-stage estimator and statistical inferences.

- Introduce the one-stage StoNED estimator
- Show statistical properties of the estimator
- Monte Carlo simulations

StoNEZD problem

$$\min_{\substack{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\delta}, \hat{\boldsymbol{\phi}} \ i=1}} \sum_{i=1}^{n} (\ln y_i - \ln \hat{\boldsymbol{\phi}}_i - \mathbf{z}_i' \boldsymbol{\delta})^2 \\
s.t. \\
\hat{\boldsymbol{\phi}}_i = \alpha_i + \mathbf{x}_i \boldsymbol{\beta}_i \ \forall i = 1, \dots, n \\
\alpha_i + \mathbf{x}_i \boldsymbol{\beta}_i \leq \alpha_h + \mathbf{x}_i \boldsymbol{\beta}_h \ \forall h, i = 1, \dots, n \\
\boldsymbol{\beta}_i \geq \mathbf{0} \ \forall i = 1, \dots, n$$

Note: equivalent to 1-DEA where V^M approaches to infinity.

Theorem 1 If the data-generating process satisfies the maintained assumptions stated in Sect. 2, the StoNEZD-estimator for the coefficients of the contextual variables $(\hat{\delta}^S)$ is statistically unbiased:

$$E(\hat{\boldsymbol{\delta}}^S) = \boldsymbol{\delta}.\tag{4}$$

asymptotically normally distributed according to:

$$\hat{\boldsymbol{\delta}}^{S} \sim_{a} N(\boldsymbol{\delta}, (\sigma_{v}^{2} + \sigma_{u}^{2})(\mathbf{Z}'\mathbf{Z})^{-1}). \tag{5}$$

Theorem 3 If the conditions stated in Theorem 2 are satisfied and the skewness of the inefficiency terms u_i is finite such that $E(|u_i - \mu|^3) = \gamma < \infty$, then the StoNEZD-estimator for the coefficients of the contextual variables $(\hat{\delta}^S)$ converges to the true δ at the standard parametric rate on the order of $n^{-1/2}$. Specifically, there exist a positive constant C such that for all n,

$$|\hat{\boldsymbol{\delta}}^{S} - \boldsymbol{\delta}| \le \frac{C\gamma}{\sqrt{n}(\sigma_{\nu} + \tilde{\sigma}_{u})^{3}} \mathbf{1}. \tag{6}$$

Theorem 3 If the conditions stated in Theorem 2 are satisfied and the skewness of the inefficiency terms u_i is finite such that $E(|u_i - \mu|^3) = \gamma < \infty$, then the StoNEZD-estimator for the coefficients of the contextual variables $(\hat{\delta}^S)$ converges to the true δ at the standard parametric rate on the order of $n^{-1/2}$. Specifically, there exist a positive constant C such that for all n,

$$|\hat{\boldsymbol{\delta}}^{S} - \boldsymbol{\delta}| \le \frac{C\gamma}{\sqrt{n}(\sigma_{\nu} + \tilde{\sigma}_{u})^{3}} \mathbf{1}. \tag{6}$$

Theorem 4 If the conditions stated in Theorem 2 are satisfied, then the StoNEZD-estimator for the coefficients of the contextual variables $(\hat{\delta}^S)$ is asymptotically efficient. That is,

$$AsyVar(\hat{\boldsymbol{\delta}}^{S}) \le AsyVar(\hat{\boldsymbol{\delta}}) \tag{7}$$

for any other consistent, asymptotically normally distributed estimator $\hat{\delta}$.

Monte Carlo simulations

Table 3 Performance (by RMSD) of alternative methods in estimating the effect of contextual variable (δ) varying the number of firms (n) and the correlation of x and z (ρ) . Triple signal scenario

Scenario	Correlation (ρ)	Estimation method	
		Two-stage DEA	StoNEZD
n = 50	-0.8	71.5	13.8
	-0.4	28.9	9.60
	0.0	12.6	8.96
	0.4	15.7	9.73
	0.8	44.6	15.0
n = 100	-0.8	66.7	9.73
	-0.4	23.3	6.81
	0.0	7.66	6.81
	0.4	15.6	6.95
	0.8	46.9	9.28
n = 200	-0.8	67.9	5.78
	-0.4	20.6	3.77
	0.0	4.28	3.46
	0.4	11.1	3.77
	0.8	39.1	5.95

Case: $\delta = -0.6$, $\sigma_u = 0.15$, $\sigma_v = 0.04$, M = 100

Statistical inferences in StoNEZD

A simple trick to compute standard errors for $\hat{\delta}^{StoNEZD}$ is to run OLS regression where the contextual variables \mathbf{Z} are regressors and the dependent variable is the difference between the natural log of observed output subtracting the natual log of the input aggregation plus 1, specifically $\ln y_i - \ln (\hat{\phi}_i + 1) = \hat{\delta}' \mathbf{z}_i + \hat{\varepsilon}_i^{CNLS}$. This OLS regression will yield the same coefficients $\hat{\delta}'$ that were obtained as the optimal solution to problem (7.46),²⁵ but also return the standard errors and other standard diagnostic statistics such as t-ratios, p-values, and confidence intervals.

²⁵ Note that this two-stage regression procedure is not subject to the problems of the 2-DEA procedure because we do control for the effects of the contextual variables in the first stage CNLS

Statistical inferences in StoNEZD: Finnish electricity distribution firms

Table 3

Parameter estimates of the z variable (proportion of underground cables in the total length of network).

Parameter	Estimate
δ coefficient	0.3600
Standard error	0.0581
t-statistic	6.1942
p-value	0.0000
95% lower limit	0.2443
95% upper limit	0.4752
Partial R ²	0.3060

Next lesson

6) Multiple outputs

