University of Rome "La Sapienza"

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2018/2019

Prof. Luca locchi

Luca locchi

17. Dimensionality reduction

1 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Sapienza University of Rome, Italy Master in Artificial Intelligence and Robotics Machine Learning (2018/19)

17. Dimensionality reduction

Luca locchi

Overview

- Continuous latent variables
- Principal Component Analysis (PCA)
- Probabilistic PCA
- Non-linear latent variable models
- Autoencoders

Reference

C. Bishop. Pattern Recognition and Machine Learning. Chapter 12.

Luca locchi

17. Dimensionality reduction

3 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Latent Variables

Example

USPS dataset: 64 rows by 57 columns

Luca locchi

Data space contains more than just digits

Luca locchi

17. Dimensionality reduction

5 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Latent Variables

Data space contains more than just digits

Data space contains more than just digits

Luca locchi

17. Dimensionality reduction

7 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Latent Variables

Prototype rotation (1 dof transformation)

Prototype rotation (1 dof transformation)

Luca locchi

17. Dimensionality reduction

9 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Latent Variables

Prototype rotation (1 dof transformation)

17. Dimensionality reduction

Prototype rotation (1 dof transformation)

Luca locchi

17. Dimensionality reduction

11 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Latent Variables

Manifold

Another example

3 degrees of freedom transformation (2D translation + rotation)

Luca locchi

17. Dimensionality reduction

13 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Latent Variables

For data with 'structure'*

- We expect fewer distortions than dimensions
- data live on a lower dimensional manifold

Conclusion: deal with high dimensional data by looking for lower dimensional embedding

^{*}from Raquel Urtasun's slides

Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique for various tasks as

- dimensionality reduction
- data compression (lossy)
- data visualization
- feature extraction

Luca locchi

17. Dimensionality reduction

15 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Variance Maximization

Given data $\{\mathbf{x}_n\} \in \mathbb{R}^D$

Goal: Maximize data variance after projection to some direction \mathbf{u}_1

Projected points:

$$\mathbf{u}_1^T \mathbf{x}_n$$

Note: $\mathbf{u}_1^T \mathbf{u}_1 = 1$

PCA - Variance Maximization

Mean value of data points:

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

Mean of projected points:

$$\mathbf{u}_1^T \bar{\mathbf{x}}$$

Variance of projected points:

$$\frac{1}{N} \sum_{n=1}^{N} [\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}}]^2 = \mathbf{u}_1^T S \mathbf{u}_1$$

with

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}})(\mathbf{x}_n - \bar{\mathbf{x}})^T$$

Luca locchi

17. Dimensionality reduction

17 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Variance Maximization

Problem definition

Maximize the projected variance

$$\max_{\mathbf{u}_1} \ \mathbf{u}_1^T S \mathbf{u}_1$$

subject to constraint $\mathbf{u}_1^T \mathbf{u}_1 = 1$

Equivalent to unconstrained maximization with a Lagrange multiplier

$$\max_{\mathbf{u}_1} \mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

Luca locchi 17. Dimensionality reduction

18 / 41

PCA - Variance Maximization

Solution

Setting derivative w.r.t. \mathbf{u}_1 to zero we have

$$S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

 ${f u}_1$ must be an eigenvector of S

Left-multiplying by \mathbf{u}_1^T and using $\mathbf{u}_1^T\mathbf{u}_1=1$, we have

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

which is the variance after the projection.

Luca locchi

17. Dimensionality reduction

19 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Variance Maximization

Solution

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

Variance is maximal when \mathbf{u}_1 is the eigenvector corresponding to the largest eigenvalue λ_1 .

This is called the first **principal component**.

PCA - Variance Maximization

Repeat to find other directions which

- maximize variance of projected data
- are orthogonal to the previous directions

Summary:

To perform PCA in a M-dimensional projection space, with M < D

- ullet compute $ar{\mathbf{x}}$: mean of the data
- compute S: covariance matrix of the dataset
- ullet find M eigenvectors of S corresponding to the M largest eigenvalues

Luca locchi

17. Dimensionality reduction

21 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Error minimization

Consider a complete orthonormal D-dimensional basis such that

$$\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

with
$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Each data point can be written as

$$\mathbf{x}_n = \sum_{i=1}^D \alpha_{ni} \mathbf{u}_i$$

Using the orthonormality property we have $\alpha_{nj} = \mathbf{x}_n^T \mathbf{u}_j$, hence

$$\mathbf{x}_n = \sum_{i=1}^D (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

Luca locchi

17. Dimensionality reduction

PCA - Error minimization

Goal: Approximate \mathbf{x}_n using a lower-dimensional representation.

We can write

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i$$

Evaluate approximation error as

$$J = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2$$

Minimize w.r.t. z_{nj} we get

$$z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, \ j = 1, \dots, M$$

Minimize w.r.t. b_j we get

$$b_j = \bar{\mathbf{x}}^T \mathbf{u}_j, \ j = M + 1, \dots, D$$

Luca locchi

17. Dimensionality reduction

23 / 41

24 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Error minimization

Using these expression we get

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=M+1}^{D} [(\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i] \mathbf{u}_i$$

Hence, the residual lies in the space orthogonal to the principal subspace.

The overall approximation error becomes

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} (\mathbf{x}_n^T \mathbf{u}_i - \bar{\mathbf{x}}^T \mathbf{u}_i)^2 = \sum_{i=M+1}^{D} \mathbf{u}_i^T S \mathbf{u}_i$$

PCA - Error minimization

Minimize the approximation error subject to constraint $\mathbf{u}_i^T \mathbf{u}_i = 1$:

$$\tilde{J} = \sum_{i=M+1}^{D} \mathbf{u}_i^T S \mathbf{u}_i + \lambda_i (1 - \mathbf{u}_i^T \mathbf{u}_i)$$

Setting derivative of a \mathbf{u}_i to zero we have:

$$S\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Hence \mathbf{u}_i is an eigenvector of S with eigenvalue λ_i .

Luca locchi

17. Dimensionality reduction

25 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Error minimization

The approximation error is then given by

$$J = \sum_{i=M+1}^{D} \lambda_i$$

This is minimized by selecting \mathbf{u}_i as the eigenvectors corresponding to the D-M smallest eigenvalues.

Note: Choosing D-M smallest eigenvalues of S corresponds to finding M highest eigenvalues of S as in the maximum variance formulation.

PCA - Algorithms

- Full eigenvalue decomposition of S (slow)
- $oldsymbol{2}$ Efficient eigenvalue decomposition only M eigenvectors
- $oldsymbol{\circ}$ Singular value decomposition of centered data matrix ${f X}$

Luca locchi

17. Dimensionality reduction

27 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA - Example

Eigenvalue spectrum

Sum of discarded eigenvalues (error)

PCA - Example

Reconstruction with a limited number of components

Luca locchi

17. Dimensionality reduction

29 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA for high-dimensional data

What if number of points is smaller than the dimensionality, i.e. N < D? At least D-N+1 eigenvalues are zero.

Example: small set of high-resolution images.

In this case finding eigenvalues of S ($D \times D$ matrix) is inefficient.

Luca locchi

PCA for high-dimensional data

Solution for N < D:

Define ${\bf X}$ as the $N \times D$ centered data matrix whose n-th row is $({\bf x}_n - \bar{\bf x})^T$

The covariance matrix can be written as

$$S = \frac{1}{N} \mathbf{X}^T \mathbf{X}$$

The corresponding eigenvector equations is

$$\frac{1}{N} \mathbf{X}^T \mathbf{X} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Luca locchi

17. Dimensionality reduction

31 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

PCA for high-dimensional data

By left-multiplying by X we obtain

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T (\mathbf{X} \mathbf{u}_i) = \lambda_i (X \mathbf{u}_i)$$

By defining $\mathbf{v}_i = \mathbf{X}\mathbf{u}_i$ we have

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

 $\mathbf{X}\mathbf{X}^T$ has the same N-1 eigenvalues of $\mathbf{X}^T\mathbf{X}$ (the others are 0).

 $\mathbf{X}\mathbf{X}^T$ is an $N \times N$ matrix whose eigenvalues can be computed efficiently.

Luca locchi

17. Dimensionality reduction

PCA for high-dimensional data

Given the eigenvalues λ_i of $\mathbf{X}\mathbf{X}^T$, to find the eigenvectors we left-multiply by \mathbf{X}^T

$$\left(\frac{1}{N}\mathbf{X}^T\mathbf{X}\right)(\mathbf{X}^T\mathbf{v}_i) = \lambda_i(\mathbf{X}^T\mathbf{v}_i)$$

This makes clear that $(\mathbf{X}^T \mathbf{v}_i)$ is an eigenvector of S with eigenvalue λ_i .

To find \mathbf{u}_i we have to normalize these eigenvectors such that $\mathbf{u}_i^T\mathbf{u}_i=1$

$$\mathbf{u}_i = \frac{1}{\sqrt{N\lambda_i}} \mathbf{X}^T \mathbf{v}_i$$

Luca locchi

17. Dimensionality reduction

33 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Probabilistic PCA

Linear Latent Variable Model

- Represent data x with lower dimensional latent variables z
- Assume linear relationship

$$x = Wz + \mu$$

• Assume Gaussian distribution of latent variables z

$$P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

Assume Linear-Gaussian relationship between latent variables and data

$$P(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

Probabilistic PCA

Marginal distribution

$$P(\mathbf{x}) = \int P(\mathbf{x}|\mathbf{z})P(\mathbf{z})d\mathbf{z} = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{C})$$

with

$$\mathbf{C} = \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I}$$

Posterior distribution

$$P(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \mathbf{M}^{-1}\mathbf{W}^T(\mathbf{x} - \boldsymbol{\mu}), \sigma^2\mathbf{M})$$

with

$$\mathbf{M} = \mathbf{W}^T \mathbf{W} + \sigma^2 \mathbf{I}$$

Luca locchi

17. Dimensionality reduction

35 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Maximum likelihood PCA

Maximum likelihood: given data ${f X}$

$$\underset{\mathbf{W}, \boldsymbol{\mu}, \sigma}{\operatorname{argmax}} \ln P(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \sigma^2) = \sum_{n=1}^{N} \ln P(\mathbf{x}_n|\mathbf{W}, \boldsymbol{\mu}, \sigma^2)$$

Setting derivatives to 0, we have a closed form solution

$$\boldsymbol{\mu}_{ML} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

$$\mathbf{W}_{ML} = ...$$

$$\sigma_{ML}^2 = \dots$$

 \mathbf{W} depends on the eigenvalues and eigenvectors of S (not trivial proof)

Luca locchi

17. Dimensionality reduction

Maximum likelihood PCA

Maximum likelihood solution for the probabilistic PCA model can be obtained also with EM algorithm.

Luca locchi

17. Dimensionality reduction

37 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Non-Linear Latent Variable Models

Motivation: Linear representations are not sufficient for complex data

The 'Swiss Roll' dataset. Two dimensional manifold embedded in 3D space.

Luca locchi

Autoassociative Neural Networks (Autoencoders)

Neural networks with reduced sized hidden layers (bottleneck) which learn to reconstruct their input by minimizing a sum-of-squares error .

Luca locchi

17. Dimensionality reduction

39 / 41

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Autoencoders

Autoencoder example:

Input: 3-D, Hidden layer: 2-D, Output: 3-D

Non-linear PCA

Summary

- Dimensionality reduction aims at identifying the "real" degrees of freedom of a data set
- Analysis of latent variables helps in understanding the variability of the input data
- Deep associative neural networks provide a general tool for non-linear PCA

Luca locchi

17. Dimensionality reduction

41 / 41