

Introduction to flow-based models

Michał Stypułkowski, Maciej Zięba, Maciej Zamorski

Generative models

Goal given unsupervised data the **model** should sample data from the same distribution.

training data from true distribution

data sampled from model distribution

Generating realistic images

Compressing, inpainting and reconstructing

Conditional image generation of realistic samples for e.g. image search

this bird is red with white and has a very short beak

long sleeve shirt black. spread collar. zip closure vertical zippered welt pockets

Various face manipulation tricks

image-to-image translation

generating 3D points

Inference using Bayesian rule

We have access to true samples from data distribution

Our goal is to find some approximation of true data distribution

$$p(\mathbf{x})$$

Standard approach assumes

- Select some well known distribution as true data approximation.
- Get the parameters by ML/MAP estimation.
- Sample examples from approximation

$$\mu_0 = [176.00, 64.86]$$

$$\Sigma_0 = \begin{vmatrix} 49.67 & 17.29 \\ 17.29 & 17.13 \end{vmatrix}$$

$$\mu_1 = [184.29, 91.14]$$

$$\Sigma_1 = \begin{bmatrix} 29.57 & 13.39 \\ 13.39 & 31.14 \end{bmatrix}$$

$$\mu_0 = [176.00, 64.86]$$

$$\Sigma_0 = \begin{vmatrix} 49.67 & 17.29 \\ 17.29 & 17.13 \end{vmatrix}$$

$$\mu_1 = [184.29, 91.14]$$

$$\Sigma_1 = \begin{vmatrix} 29.57 & 13.39 \\ 13.39 & 31.14 \end{vmatrix}$$

$$\mu_0 = [176.00, 64.86]$$

$$\Sigma_0 = \begin{vmatrix} 49.67 & 17.29 \\ 17.29 & 17.13 \end{vmatrix}$$

$$\mu_1 = [184.29, 91.14]$$

$$\Sigma_1 = \begin{bmatrix} 29.57 & 13.39 \\ 13.39 & 31.14 \end{bmatrix}$$

Standard approach assumes

- We need to choose particular rather simple distribution for approximation
- Usually, there are too many parameters to be estimated

for 32x32x3 image space we need 4 720 128 parameters for covariance matrix !!!!

Solution - assume some low dimensional latent representation **z** with simple prior

but

$$p(x) = \int p_{\theta}(x|z)p(z)dz$$

Solution - assume some low dimensional latent representation **z** with simple prior

but

$$p(x) = \int p_{\theta}(x|z)p(z)dz$$

we can try to sample from p(x) without knowing the explicit form - GAN is some solution

Generative Adversarial Networks (GANs)

Generator transforms random noise into a sample from an artificial distribution

Discriminator outputs likelihood in (0, 1) that image comes from the real distribution

Generative Adversarial Networks (GANs)

Blue dashed line denotes discriminator (D) scores, green solid represents true distribution, and black dots are generated samples (G); z denotes the domain of latent variable, x the domain of training data.

Source: Goodfellow, Ian, et. al. "Generative Adversarial Nets" arXiv preprint arXiv:1406.2661 (2014).

$$\min_{\theta_g} \max_{\theta_d} V(D_{\theta_d}, G_{\theta_g}) = \mathbb{E}_x \big[\log D_{\theta_d}(x) \big] + \mathbb{E}_z \big[\log (1 - D_{\theta_d}(G_{\theta_g}(z))) \big]$$

$$\min_{ heta_g} \max_{ heta_d} V(D_{ heta_d}, G_{ heta_g}) = \mathbb{E}_x \big[\log D_{ heta_d}(x) \big] + \mathbb{E}_z \big[\log (1 - D_{ heta_d}(G_{ heta_g}(z)) \big]$$

Discriminator output for real data

Discriminator output for generated data

$$\min_{\theta_g} \max_{\theta_d} V(D_{\theta_d}, G_{\theta_g}) = \mathbb{E}_x \big[\log D_{\theta_d}(x) \big] + \mathbb{E}_z \big[\log (1 - D_{\theta_d}(G_{\theta_g}(z))) \big]$$

Discriminator output for real data

Discriminator output for generated data

Discriminator wants to **maximize** it's values for real data and minimize its values for the generated data

Generator wants to minimize 1 minus the discriminators output for generated data

Source: Goodfellow, Ian, et. al. "Generative Adversarial Nets" arXiv preprint arXiv:1406.2661 (2014).

$$\min_{\theta_g} \max_{\theta_d} V(D_{\theta_d}, G_{\theta_g}) = \mathbb{E}_x \big[\log D_{\theta_d}(x) \big] + \mathbb{E}_z \big[\log (1 - D_{\theta_d}(G_{\theta_g}(z))) \big]$$

1. Update **D** by **ascending** its gradient

$$\max_{\theta_d} \mathbb{E}_x \big[\log D_{\theta_d}(x) \big] + \mathbb{E}_z \big[\log (1 - D_{\theta_d}(G_{\theta_g}(z))) \big]$$

2. Update G by descending its gradient:

$$\min_{ heta_g} \mathbb{E}_z ig[\log (1 - D_{ heta_d}(G_{ heta_g}(z)) ig]$$

Solution - assume some low dimensional latent representation **z** with simple prior

but

$$p(x) = \int p_{\theta}(x|z)p(z)dz$$

other solution - try to approximate the true posterior $\;p_{ heta}(z|x)\;$ with the inference network $\;q_{\phi}(z\,|\,x)\;$

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[\log p_{\theta}(x) \Big] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[\log p_{\theta}(x) \Big] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$= \mathbb{E}_z \Big[\log \frac{p_{\theta}(x|z)p(z)}{p(z|x)} \Big] \quad \text{(Bayes' Rule)}$$

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x) \right] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$= \mathbb{E}_{z} \left[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbb{E}_{z} \left[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)} \right] \quad (\text{Multiply by 1})$$

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x) \right] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$= \mathbb{E}_{z} \left[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbb{E}_{z} \left[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)} \right] \quad (\text{Multiply by 1})$$

$$=\mathbb{E}_z\left[\log \frac{1}{p(z\,|\,x)} \frac{1}{q_\phi(z\,|\,x)}\right]$$
 (Multiply by 1)

$$= \mathbb{E}_{z} \left[\log p_{\theta(x \mid z)} \right] - \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z \mid x)}{p(z)} \right] + \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z \mid x)}{p(z \mid x)} \right] \quad \text{(Logarithms)}$$

Iraining objective
$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[\log p_{\theta}(x) \Big] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$= \mathbb{E}_{z} \Big[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \Big] \quad (\text{Bayes' Rule})$$

$$= \mathbb{E}_{z} \Big[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)} \Big] \quad (\text{Multiply by 1})$$

$$= \mathbb{E}_{z} \Big[\log p_{\theta(x \mid z)} \Big] - \mathbb{E}_{z} \Big[\log \frac{q_{\phi}(z \mid x)}{p(z)} \Big] + \mathbb{E}_{z} \Big[\log \frac{q_{\phi}(z \mid x)}{p(z \mid x)} \Big] \quad (\text{Logarithms})$$

$$=\mathbb{E}_{z}ig[\log p_{ heta(x\,|\,z)}ig]-D_{KL}(q_{\phi}(z\,|\,x)\,||\,p(z))+D_{KL}(q_{\phi}(z\,|\,x)\,||\,p(z|x))ig]$$

Training objective
$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x) \right] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$= \mathbb{E}_{z} \left[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \right] \quad \text{(Bayes' Rule)}$$

$$= \mathbb{E}_{z} \left[\log \frac{p_{\theta}(x \mid z)p(z)}{p(z \mid x)} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)} \right] \quad \text{(Multiply by 1)}$$

 $\mathcal{L}(x,\theta,\phi)$

$$=\mathbb{E}_z egin{bmatrix} \log & p(z \,|\, x) & q_\phi(z \,|\, x) \end{bmatrix}$$
 (With Equation (1))

$$= \mathbb{E}_{z} \left[\log p_{\theta(x \mid z)} \right] - \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z \mid x)}{p(z)} \right] + \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z \mid x)}{p(z \mid x)} \right] \quad \text{(Logarithms)}$$

$$= \underbrace{\mathbb{E}_{z} \left[\log p_{\theta(x \mid z)} \right] - D_{KL}(q_{\phi}(z \mid x) \mid\mid p(z))}_{EL} + \underbrace{D_{KL}(q_{\phi}(z \mid x) \mid\mid p(z \mid x))}_{EL} \right] \quad \text{(Logarithms)}$$

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[\log p_{\theta}(x) \Big] \quad (p_{\theta}(x) \text{ is independent of } z)$$

$$= \mathbb{E}_z \left[\log \frac{p_{\theta}(x \mid z) p(z)}{p(z \mid x)} \right] \quad \text{(Bayes' Rule)}$$

$$= \mathbb{E}_z \left[\log \frac{p_{\theta}(x \mid z) p(z)}{p(z \mid x)} \frac{q_{\phi}(z \mid x)}{q_{\phi}(z \mid x)} \right] \quad \text{(Multiply by 1)}$$

$$= \mathbb{E}_{z} \left[\log p_{\theta(x \mid z)} \right] - \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z \mid x)}{p(z)} \right] + \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z \mid x)}{p(z \mid x)} \right] \quad \text{(Logarithms)}$$

$$egin{aligned} &= \mathbb{E}_zig[\log p_{ heta(x\mid z)}ig] - D_{KL}(q_{\phi}(z\mid x) \mid\mid p(z)) + D_{KL}(q_{\phi}(z\mid x) \mid\mid p(z\mid x)) ig] \end{aligned}$$

Evidence Lower Bound (ELBO)
$$\mathcal{L}(x,\theta,\phi)$$
 MLE training objective N $\theta^*,\phi^*=rg\max_{\theta,\phi}\sum_{i=1}^{N}\mathcal{L}(x_i,\theta,\phi)$

$$\log p_{\theta}(x) = \underbrace{\mathbb{E}_{z} \left[\log p_{\theta(x \mid z)} \right] - D_{KL}(q_{\phi}(z \mid x) \mid\mid p(z))}_{\mathcal{L}(x,\theta,\phi)} + \underbrace{D_{KL}(q_{\phi}(z \mid x) \mid\mid p(z \mid x))}_{\geq 0}$$

The KL divergence of the approximation and true posterior distribution, Is greater or equal to zero. We can't optimize directly.

$$\log p_{\theta}(x) \ge \mathcal{L}(x_i, \theta, \phi)$$

$$\log p_{\theta}(x) \ge \mathbb{E}_z \left[\log p_{\theta(x \mid z)} \right] - D_{KL}(q_{\phi}(z \mid x) || p(z))$$

Change of Variables rule

Consider density function for uniform distribution:

$$p_X(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

We create a new random variable using the following transformation:

$$Y = f(X) = 2 \cdot X + 3$$

What is density function for a new variable Y?

The new density function can be defined as:

$$p_Y(y) = \begin{cases} 0.5 & 3 \le y \le 5 \\ 0 & otherwise \end{cases}$$

Thanks to change of variable formula:

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{df^{-1}(y)}{dy} \right|$$

where:

$$f^{-1}(Y) = \frac{Y - 3}{2}$$

Let's consider N(0,1)

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}x^2\right\}$$

and the same transformation:

$$Y = f(X) = 2 \cdot X + 3$$

$$f^{-1}(Y) = \frac{Y - 3}{2}$$

Thanks to change of variable formula:

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{df^{-1}(y)}{dy} \right|$$

we have:

$$p_Y(y) = p_X(\frac{y-3}{2}) \cdot \frac{1}{2}$$

$$p_Y(y) = \frac{1}{\sqrt{2\pi \cdot 2^2}} \exp\left\{-\frac{1}{2} \frac{(y-3)^2}{2^2}\right\} = \mathcal{N}(3, 2^2)$$

Assuming the normal distribution:

$$p_X(x) = \mathcal{N}(\mu, \sigma^2)$$

and the variable transformation:

$$Y = a \cdot X + b$$

we have:

$$p_Y(y) = \mathcal{N}(a \cdot \mu + b, (a \cdot \sigma)^2)$$

Example 2

Assuming the normal distribution:

$$p_X(x) = \mathcal{N}(\mu, \sigma^2)$$

and the variable transformation:

$$Y = a \cdot X + b$$

we have:

shifting

$$p_Y(y) = \mathcal{N}(a \cdot \mu + b, (a \cdot \sigma)^2)$$

scaling scaling

Example 3

we consider again:

$$p_X(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

but more complex transformation

$$Y = f(X) = \sqrt{X}$$

$$f^{-1}(Y) = Y^2$$

Example 3

Recalling change of variable formula:

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{df^{-1}(y)}{dy} \right|$$

we have:

$$p(y) = \begin{cases} 2y & 0 <= y <= 1 \\ 0 & otherwise \end{cases}$$

Multidimensional case

for multidimensional case:

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{df^{-1}(y)}{dy} \right|$$

becomes:

$$p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{X}}(\mathbf{f}^{-1}(\mathbf{y})) |\det \mathbf{J}_{\mathbf{f}^{-1}}|$$

where:

$$\mathbf{J_{f^{-1}}} = \begin{bmatrix} \frac{\partial f_1^{-1}}{\partial y_1} & \dots & \frac{\partial f_1^{-1}}{\partial y_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_D^{-1}}{\partial y_1} & \dots & \frac{\partial f_D^{-1}}{\partial y_D} \end{bmatrix}$$

Multidimensional case

It also works for:

$$p_X(x) = p_Y(f(x)) \left| \frac{df(x)}{dx} \right|$$

where:

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x})) |\det \mathbf{J}_{\mathbf{f}}|$$

and:

$$\mathbf{J_f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_D}{\partial x_1} & \cdots & \frac{\partial f_D}{\partial x_D} \end{bmatrix}$$

Multidimensional case -example

we consider the multivariate Gaussian:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{D}{2}} (\det \mathbf{\Sigma})^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

and the following transformation:

$$y = Ax + b$$

$$\mathbf{x} = \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})$$

Multidimensional case -example

taking into account:

$$p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{X}}(\mathbf{f}^{-1}(\mathbf{y})) \det \mathbf{J}_{\mathbf{f}^{-1}}$$

we have:

$$p(\mathbf{y}) = \frac{|\det \mathbf{A}^{-1}|}{(2\pi)^{\frac{D}{2}}(\det \mathbf{\Sigma})^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}) - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}) - \boldsymbol{\mu})\right\}$$

after transformations we have:

$$p(\mathbf{y}) = \frac{1}{(2\pi)^{\frac{D}{2}} (\det(\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\mathrm{T}}))^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu})^{\mathrm{T}} (\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\mathrm{T}})^{-1} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu})\right\}$$

$$\mathcal{N}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathrm{T}})$$

Multidimensional case

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x})) |\det \mathbf{J_f}|$$

Challange for large dimensions

need of invertible transformation

$$\mathbf{J_f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_D}{\partial x_1} & \dots & \frac{\partial f_D}{\partial x_D} \end{bmatrix}$$

- Probabilistic model using the change of variables theorem
- Find invertible transformation between easy and complex probabilistic distributions

NICE - main idea

Inference transformation

NICE - main idea

Inference transformation

In other words, we can define the mapping as follows:

Inverting the mapping is trivial

$$\begin{cases} x_1 = y_1 \\ x_2 = y_2 - m(x_1) \end{cases}$$

Inverse mapping (sampling)

Model is trained by maximizing following likelihood

$$\log p_X(x) = \log p_H(f(x)) + \log \left| \det \frac{\partial f(x)}{\partial x} \right|$$

Assuming isotropic probability distribution we obtain

$$\log p_X(x) = \sum_{d=1}^{D} \log p_{H_d}(f_d(x)) + \log \left| \det \frac{\partial f(x)}{\partial x} \right|$$

NICE - main idea

Transformation Jacobian

$$\frac{\partial y}{\partial x} = \begin{bmatrix} I & 0 \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix}$$

NICE - main idea

Transformation Jacobian

$$\frac{\partial y}{\partial x} =$$

Matrices

Linear algebra review - computing 2x2 determinant

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Transformation of Jacobian

$$\det \frac{\partial y}{\partial x} = \det \begin{bmatrix} I & 0 \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix}$$

Transformation of Jacobian

$$\det \begin{bmatrix} I & 0 \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \det \frac{\partial y_2}{\partial x_2}$$

$$\det \frac{\partial y}{\partial x} = \det \frac{\partial y_2}{\partial x_2}$$

$$\det \frac{\partial y_2}{\partial x_2} = 1 \Rightarrow \det \frac{\partial y}{\partial x} = 1$$

$$\det \frac{\partial y_2}{\partial x_2} = 1 \Rightarrow \det \frac{\partial y}{\partial x} = 1$$

Transformation determinant of the Jacobian does not depend on m(·)

$$\det \frac{\partial y_2}{\partial x_2} = 1 \Rightarrow \det \frac{\partial y}{\partial x} = 1$$

- Transformation determinant of the Jacobian does not depend on m(·)
- Function m(·) can be arbitrarily complex, e.g. neural network

NICE - sampling

Inverse transformation

NICE - samples

(a) Model trained on MNIST

(b) Model trained on TFD

NICE - samples

(c) Model trained on SVHN

(d) Model trained on CIFAR-10

www.tooploox.com

