Formulas

1. Kernel definition

$$k(x, x') = \phi(x)^{\top} \phi(x')$$

2. Regularized least-squares error (primal)

$$J(w) = \frac{1}{2} \sum_{n=1}^{N} (w^{\top} \phi(x_n) - t_n)^2 + \frac{\lambda}{2} w^{\top} w$$

3. Dual representation of w

$$w = \sum_{n=1}^{N} a_n \, \phi(x_n)$$

4. Coefficients a_n

$$a_n = -\frac{1}{\lambda} \left(w^{\top} \phi(x_n) - t_n \right)$$

5. Primal→dual objective

$$J(a) = \frac{1}{2} a^{\mathsf{T}} \Phi \Phi^{\mathsf{T}} \Phi \Phi^{\mathsf{T}} a - a^{\mathsf{T}} \Phi \Phi^{\mathsf{T}} t + \frac{1}{2} t^{\mathsf{T}} t + \frac{\lambda}{2} a^{\mathsf{T}} \Phi \Phi^{\mathsf{T}} a$$

6. Gram matrix

$$K_{nm} = \phi(x_n)^{\top} \phi(x_m) = k(x_n, x_m)$$

7. Objective in kernel form

$$J(a) = \frac{1}{2} a^{\top} K K a - a^{\top} K t + \frac{1}{2} t^{\top} t + \frac{\lambda}{2} a^{\top} K a$$

8. Dual solution

$$a = (K + \lambda I_N)^{-1} t$$

9. Prediction formula

$$y(x) = k(x)^{\top} (K + \lambda I_N)^{-1} t$$
, $k(x)_n = k(x_n, x)$

10. Kernel via explicit features

$$k(x, x') = \sum_{i=1}^{M} \phi_i(x) \,\phi_i(x')$$

11. Polynomial-square kernel

$$k(x,z) = (x^{\top}z)^2$$

12. Linear kernel special case

$$\phi(x) = x \implies k(x, x') = x^{\top} x'$$

13. Stationary kernel

$$k(x, x') = k(x - x')$$

14. Homogeneous (RBF) kernel

$$k(x, x') = k(||x - x'||)$$

15. Feature map for $(x^{\top}z)^2$

$$\phi(x) = \left(x_1^2, \sqrt{2} x_1 x_2, x_2^2\right)^{\top}$$

Derivations

Derivation of the Gram Matrix from Regularized Least Squares

Step	Equation	Reason
1	$J(w) = \frac{1}{2} \sum_{n=1}^{N} (w^{\top} \phi(x_n) - t_n)^2 + \frac{\lambda}{2} w^{\top} w$	Primal regularized least-squares objective
2	$\nabla_w J = \sum_{n=1}^N (w^\top \phi(x_n) - t_n) \phi(x_n) + \lambda w =$	Stationarity: set derivative to zero 0
3	$w = -\frac{1}{\lambda} \sum_{n=1}^{N} (w^{\top} \phi(x_n) - t_n) \phi(x_n) = \sum_{n=1}^{N} a_n$	Define dual coefficients $a_n = -\frac{1}{\lambda}(w^{\top}\phi(x_n) - t_n)$ $a_n = -\frac{1}{\lambda}(w^{\top}\phi(x_n) - t_n)$
4	$\Phi = egin{bmatrix} \phi(x_1)^{ op} \ dots \ \phi(x_N)^{ op} \end{bmatrix}, w = \Phi^{ op} a$	Stack feature vectors into design matrix
5	$\sum_{n=1}^{N} (w^{\top} \phi(x_n) - t_n)^2 = w^{\top} \left(\sum_{n=1}^{N} \phi(x_n) \phi(x_n)\right)^2$	Expand $(x-y)^2 = x_N^2 - 2xy + y^2$ $(x-y)^T \left(\sum_{n=1}^{N} t_n \phi(x_n)\right) + \sum_{n=1}^{N} t_n \phi(x_n)$
6	$\sum_{n=1}^{N} \phi(x_n)\phi(x_n)^{\top} = \Phi^{\top}\Phi, \sum_{n=1}^{N} t_n\phi(x_n) =$	Rewrite sums in matrix form $\Phi^\top t, \sum_{n=1}^N t_n^2 = t^\top t$

 $J(w) = \tfrac{1}{2} \, w^\top (\Phi^\top \Phi) w - w^\top \Phi^\top t + \tfrac{1}{2} \, t^\top t + \tfrac{\lambda}{2} \, w^\top \text{regularization}$ Collect terms after substitution and include

Step Equation Reason

$$J(a) = \frac{1}{2} a^{\top} \Phi(\Phi^{\top} \Phi) \Phi^{\top} a - a^{\top} \Phi \Phi^{\top} t + \frac{1}{2} t^{\top} t + \frac{\lambda}{2} a^{\top} \Phi \Phi^{\top} a$$

Substitute $w = \Phi^{\top} a$ into $J(w)$

$$J(w)$$

$$K = \Phi \Phi^{\top}, \quad K_{nm} = \phi(x_n)^{\top} \phi(x_m)$$

Define Gram matrix via matrix multiplication

$$K = \Phi \Phi^{\top}, \quad K_{nm} = \phi(x_n)^{\top} \phi(x_m)$$

Final kernelized objective expressed entirely in terms of K

Kernel symmetry (Formula 1)

Step	Equation	Reason
1	$k(x, x') = \phi(x)^{\top} \phi(x')$	Definition
2	$k(x', x) = \phi(x')^{\top} \phi(x)$	Swap arguments
3	k(x, x') = k(x', x)	Dot-product symmetry: $a^{\top}b = b^{\top}a$

Primal to Dual for regularized LS (Formulas 2–8)

Step	Equation	Reason
1	$J(w) = \frac{1}{2} \sum_{n} (w^{\top} \phi_n - t_n)^2 + \frac{\lambda}{2} w^{\top} w$	Given (primal objective)
2	$\nabla_w J = \sum_n (w^{\top} \phi_n - t_n) \phi_n + \lambda w = 0$	Differentiate w.r.t. w
3	$\lambda w = -\sum_{n} (w^{\top} \phi_n - t_n) \phi_n$	Rearrange gradient $= 0$
4	$w = -\frac{1}{\lambda} \sum_{n}^{\infty} (w^{\top} \phi_n - t_n) \phi_n = \sum_{n} a_n \phi_n$	Define
		$a_n = -\frac{1}{\lambda}(w^{\top}\phi_n - t_n)$
5	Substitute $w = \Phi^{\top} a$ into $J(w) \implies$	Replace w in objective
	$J(a) = \frac{1}{2} a^{T} \Phi \Phi^{T} \Phi \Phi^{T} a - a^{T} \Phi \Phi^{T} t + \frac{1}{2} t^{T} t +$	Algebraic expansion
	$\frac{\lambda}{2} a^{T} \Phi \Phi^{T} a$	
6	Define $K = \Phi \Phi^{\top} \implies \text{replace in } J(a)$	Gram-matrix substitution
7	$J(a) = \frac{1}{2} a^{\top} K K a - a^{\top} K t + \frac{1}{2} t^{\top} t + \frac{\lambda}{2} a^{\top} K a$	Compact kernel form
8	$\nabla_a J = (KK + \lambda K) a - K t = 0 \implies$	Differentiate w.r.t. a ,
	$(K + \lambda I) a = t$	factor K
9	$a = (K + \lambda I_N)^{-1}t$	Solve linear system

Prediction formula (Formula 9)

Step	Equation	Reason
1	$y(x) = w^{\top} \phi(x)$	Model prediction
2	$w = \Phi^{\top} a$	From dual representation
3	$y(x) = a^{\top} \Phi \phi(x)$	Substitute w
4	$\Phi \phi(x) = k(x)$ with $k(x)_n = k(x_n, x)$	Definition of kernel vector
5	$y(x) = k(x)^{\top} a = k(x)^{\top} (K + \lambda I)^{-1} t$	Substitute dual solution for a

Kernel via features (Formula 10)

Step	Equation	Reason
1 2	$\phi(x) \in \mathbb{R}^M \text{ with } \phi_i(x)$ $k(x, x') = \phi(x)^\top \phi(x') =$ $\sum_{i=1}^M \phi_i(x) \phi_i(x')$	Assume M basis functions Dot-product expansion

Squared-dot-product kernel (Formulas 11 & 15)

Step	Equation	Reason
1	$k(x,z) = (x^{\top}z)^2$	Given polynomial kernel
2	Expand: $(x_1z_1 + x_2z_2)^2 =$	Algebraic square
	$x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$	
3	Choose $\phi(x) = (x_1^2, \sqrt{2} x_1 x_2, x_2^2)^{\top}$	So that $\phi(x)^{\top}\phi(z)$ matches
		above

Special kernels (Formulas 12–14)

Step	Equation	Reason
1	$\phi(x) = x$	Identity mapping
2	$k(x, x') = x^{\top} x'$	Linear kernel
3	k(x, x') = k(x - x')	Stationarity definition
4	$k(x, x') = k(\ x - x'\)$	Homogeneity (radial basis) definition