

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany

 \square (<++>) <++>-<++> | \square yihu@pks.mpg.de | \uppha yipinghuang.github.io

Research Interests_

I am interested in the theoretical condensed matter physics with emergent quantum phenomena in/out of equilibrium. Emergent quantum phenomena appear mostly in strongly correlated systems including frustrated quantum magnetism, correlated electrons, and ultracold atoms. I enjoy exploring universal understanding of in/out of equilibrium physics for different quantum many-body systems such as topological phases protected/enriched by symmetries, disorder free localization and dynamical quantum phase transitions.

Education

University of Colorado Boulder

Boulder, Colorado, USA

DOCTOR OF PHILOSOPHY IN PHYSICS

2012 - 2017

- · Dissertation: Symmetries and Topological order: realizations and signals in correlated strong spin-orbit coupled materials
- Advisor: Professor Michael Hermele

University of Colorado Boulder

Boulder, Colorado, USA

MASTER OF SCIENCE IN PHYSICS

• Advisor: Professor Michael Hermele

2010 - 2012

National Tsing-Hua University

Hsinchu, Taiwan

2004 - 2008

BACHELOR OF SCIENCE IN PHYSICS

- · Project: Quantum phase diagrams of fermionic dipolar gases in a planar array of one-dimensional tubes
- · Advisor: Professor Daw-Wei Wang

Position Held _____

Max Planck Institute for the Physics of Complex Systems

Dresden, Germany

POSTDOCTORAL ASSOCIATE

Aug. 2017 - present

• Advisor: Prof. Dr. Roderich Moessner and Dr. Markus Heyl

Publications

2018	"Dynamical quantum phase transitions in $U(1)$ quantum link models"	arViv:1000 07071
	, Yi-Ping Huang Debasish Banerjee and Markus Heyl	arXiv:1808.07874
	"Tunneling-induced restoration of classical degeneracy in quantum kagome ice"	
201820172017	, Kai-Hsin Wu, Yi-Ping Huang and Ying-Jer Kao	arXiv:1806.08145
	"Building crystalline topological phases from lower-dimensional states (Editor's suggestion)"	Phys. Rev. B. 95 ,
	, Sheng-Jie Huang, Hao Song, Yi-Ping Huang and Michael Hermele	075130
	"Theory of quantum Kagome ice and vison zero modes"	Phys. Rev. B. 95 ,
2017	, Yi-Ping Huang and Michael Hermele	075130
	"High-energy electronic excitations in $\mathrm{Sr}_2\mathrm{IrO}_4$ observed by Raman scattering"	Phys. Rev. B. 91 ,
2013	, Jhih-An Yang, Yi-Ping Huang , Michael Hermele, Tongfei Qi, Gang Cao and Dmitry Reznik	195140
	"Quantum Spin Ices and Topological Phases from Dipolar-Octupolar Doublets on the Pyrochlore Lattice"	Phys. Rev. Lett. 112,
2009	, Yi-Ping Huang, Gang Chen and Michael Hermele	167203
	"Quantum phase diagrams of fermionic dipolar gases in a planar array of one-dimensional tubes"	Phys. Rev. A. 80 ,
	, Yi-Ping Huang and Daw-Wei Wang	053610

Conferences & scientific visits

NOVEMBER 16, 2018

2018	The Paul Scherrer Institute, Visiting condensed matter theory group	Villigen Switzerland
	Cargé se international workshop , Topological phases in condensed matter and cold atom systems	Institut Etude
2018		Scientifique
		Cargèse, France
2018	Visiting SISSA for three weeks , Summer school for condensed matter 2018 and discussion	Trieste, Italy
2018	International workshop at Max Planck Institute for the Physics of Complex Systems ,	Dresden, Germany
2018	Frustration, Orbital Fluctuations, and Topology in Kondo Lattices and their Relatives	
2010	669. WE-Heraeus-Seminar at Physikzentrum Bad Honnef , Quantum Gases and Quantum	Bonn, Germany
2018	Coherence	
2017	Yukawa Institute for Theoretical Physics, Novel Quantum States in Condensed Matter 2017	Kyoto, Japan
2017	International workshop at Max Planck Institute for the Physics of Complex Systems, Quantum	Drocdon Cormany
2017	Sensing with Quantum Correlated Systems	Dresden, Germany
2017	Max Planck Institute for the Physics of Complex Systems, Korrelationstage 2017	Dresden, Germany
2017	Kavli institute for theoretical physics, Order, Fluctuations, and Strong Correlations: New	Santa Barbara, USA
2017	Platforms and Developments	
2017	Gordon research conference , Topological and Correlated Matter: From Fundamentals to New	Hana Kana DDC
2017	Discoveries	Hong-Kong, PRC
2017	Aspen winter conference, Quantum Dynamics: From Models to Materials	Aspen, USA
2015	The Center for Emergent Materials , Spin-orbit coupling and magnetism in correlated transition	Columbus 115A
2015	metal oxides workshop	Columbus, USA
2009	International centre for theoretical physics, Research frontiers in ultracold atoms	Trieste, Italy
2010-now	March meetings and DFG meetings ,	USA and Germany

Invited Talks_____

2019	The Annual meeting of the Physics Society of Taiwan , Dynamical quantum phase transitions in $U(1)$ quantum link models	Hsinchu, Taiwan
2018	Condensed matter seminar at The Paul Scherrer Institute , From quantum spin ice to quantum Kagome ice	Villigen Switzerland
2018	MPI-PKS: Frustration, Orbital Fluctuations, and Topology in Kondo Lattices and their Relatives, Dynamical quantum phase transitions in $U(1)$ quantum link models	Dresden, Germany
2018	National center of theoretical physics, National Taiwan University, National Chiao Tung	Hsinchu and Taipei,
2018	University, Dynamical quantum phase transition in 1D quantum link model	Taiwan
2018	National Taiwan Normal University, Symmetry enriched topological order and vison zero modes in the XYZh model on the Kagome lattice	Taipei, Taiwan
2015	RIKEN, Dipolar-octupolar doublets and realization of quantum spin ice	RIKEN, Japan

Skills_

Theoretical physics

- Physics of correlated materials Ultracold atoms Effective theory Group theory Field theory
- Gauge theory Bosonization

Numerical methods • TEBD • Exact diagonalization

- **Programming** C/C++(boost graph library, intel Math Kernel Library, HDF5) Python Mathematica
 - **Other Tools** Git GNU make Inkscape Basic parallel computation

Operation System • Windows • Linux(Ubuntu and RHEL)

Languages • Mandarin(native speaker) • English(fluent, TOEFL iBT: 103)

Honors & Awards

2015-2017 Taiwan Ministry of Education scholarship, 16000USD/year for 2 years Outstanding poster presentation, Annual Meeting of the Physics Society of Taiwan

Reviewing Activities _____

• Nature Physics • Physical Review B • Physical Review A

NOVEMBER 16, 2018 2

References ____

Prof. Michael Hermele University of Colorado Boulder Condensed matter theory

Email: michael.hermele@colorado.edu

Prof. Gang Chen Fudan University Condensed matter theory

Email: chggst@gmail.com

Dr. Markus HeylMax Planck Institute for the Physics of Complex Systems Condensed matter theory

Email: heyl@pks.mpg.de

Prof. Ying-Jer Kao

National Taiwan University Condensed matter theory

Email: yjkao@phys.ntu.edu.tw

NOVEMBER 16, 2018 3