ELTE IK - Programtervező Informatikus BSc

Záróvizsga tételek

2.1 Differenciálegyenletek

1 A kezdeti érték probléma

Differenciál egyenlet

 $0 < n \in \mathbb{N}, \ I \subset \mathbb{R}$ nyílt intervallum, $\Omega := I_1 \times ... \times I_n \subset \mathbb{R}^n$, ahol $I_1, ..., I_n \subset \mathbb{R}$ nyílt intervallum $f: I \times \Omega \to \mathbb{R}^n, \ f \in C$

Határozzuk meg a $\varphi \in I \to \Omega$ függvényt úgy, hogy:

- D_{φ} nyílt intervallum
- $\varphi \in D$
- $\varphi'(x) = f(x, \varphi(x)) \quad (x \in D_{\varphi})$

Ezt a feladatot nevezzük differenciál egyenletnek.

Kezdeti érték probléma

Ha az előzőekhez még adottak: $\tau \in I$, és $\xi \in \Omega$ Illetve a φ függvényre még teljesül:

•
$$\tau \in D_{\varphi}$$
 és $\varphi(\tau) = \xi$

Akkor kezdeti érték problémának (Cauchy feladatnak) nevezzük.

2 Lineáris, ill. magasabb rendű lineáris differenciálegyenletek

2.1 Lineáris differenciálegyenletek

Definíció

A lineáris differenciálegyenlet olyan differenciálegyenlet, melyre: $n=1, \quad I, I_1 \subset \mathbb{R}$ nyílt intervallumok, $f:I \times I_1 \to \mathbb{R}$, ahol $g,h:I \to \mathbb{R}, \ g,h \in C, \ I_1:=\mathbb{R}$ és $f(x,y):=g(x)\cdot y + h(x) \quad (x \in I, y \in I_1=\mathbb{R})$ $\Rightarrow \varphi'(x)=f(x,\varphi(x))=g(x)\cdot \varphi(x) + h(x) \quad (x \in D_{\varphi})$

Homogenitás

A lineáris differenciálegyenlet homogén ha $h\equiv 0$ (különben inhomogén)

Kezdeti érték probléma

- Minden lineáris differenciálegyenletre vonatkozó kezdeti érték probléma megoldható és $\forall \varphi, \psi$ megoldásokra: $\varphi(t) = \psi(t) \quad (t \in D_{\varphi} \cap D_{\psi})$
- Minden homogén lineáris differenciálegyenlet $(\varphi: I \to \mathbb{R})$ megoldása a következő alakú: $c\varphi_0$, ahol $c \in \mathbb{R}$ és $\varphi_0(t) = e^{G(t)}$ $(G: I \to \mathbb{R}, G \in D,$ és G' = g)
- Állandók variálásának módszere: $\exists m: I \to \mathbb{R}, \ m \in D: m \cdot \varphi_0$ megoldása az (inhomogén) lineáris differenciálegyenletnek

• Partikuláris megoldás:

$$\begin{aligned} M &:= \{ \varphi : I \to \mathbb{R} : \varphi'(t) = g(t) \cdot \varphi(t) + h(t) \ (t \in I) \} \\ M_h &:= \{ \varphi : I \to \mathbb{R} : \varphi'(t) = g(t) \cdot \varphi(t) \ (t \in I) \} \\ \Rightarrow \forall \psi \in M : M = \psi + M_h = \{ \varphi + \psi : \varphi \in M_h \} \\ \text{(És itt } \psi \text{ az előzőek alapján } m \cdot \varphi_0 \text{ alakban írható)} \end{aligned}$$

• Példa: Radioaktív bomlás:

$$m_0 > 0$$
 - kezdeti anyagmennyiség

$$m \in \mathbb{R} \to \mathbb{R}$$
 - tömeg-idő függvénye, ahol

m(t) - a meglévő anyag mennyisége

$$m \in D \Rightarrow \frac{m(t) - m(t + \Delta t)}{\Delta t}$$
 $(\Delta t \neq 0)$ - átlagos bomlási sebesség

$$m \in D \Rightarrow \frac{m(t) - m(t + \Delta t)}{\Delta t} \quad (\Delta t \neq 0) \text{ - átlagos bomlási sebesség}$$

$$\frac{m(t) - m(t + \Delta t)}{\Delta t} \xrightarrow{\Delta t \to 0} -m'(t), \text{ ami megfigyelés alapján} \approx m(t)$$

$$m'(t) = -\alpha \cdot m(t) \quad (t \in \mathbb{R}, 0 < \alpha \in \mathbb{R})$$

 $m(0) = m_0$

Homogén lineáris differenciálegyenlet (kezdeti érték probléma):

$$g \equiv -\alpha, \ \tau := 0, \ \xi := m_0$$

$$\Rightarrow G(t) = -\alpha t \quad (t \in \mathbb{R}) \Rightarrow \varphi_0(t) = e^{-\alpha t} \quad (t \in \mathbb{R})$$

$$\Rightarrow \exists c \in \mathbb{R} : m(t) = c \cdot e^{-\alpha t} \quad (t \in \mathbb{R}), \text{ ahol}$$

$$m(0) = c = m_0 \Longrightarrow m(t) = m_0 e^{-\alpha t} \quad (t \in \mathbb{R})$$

Ha
$$T \in \mathbb{R} : m(T) = \frac{m_0}{2}$$
 (felezési idő)

$$m(0) = C - m_0 \longrightarrow m(c) - m_0 c \qquad (c \in \mathbb{R})$$

$$\text{Ha } T \in \mathbb{R} : m(T) = \frac{m_0}{2} \text{ (felezési idő)}$$

$$\Rightarrow \frac{m_0}{2} = m_0 e^{-\alpha T} \Rightarrow \frac{1}{2} = e^{-\alpha T} \Rightarrow e^{\alpha T} = 2$$

$$\Rightarrow T = \frac{\ln(2)}{\alpha}$$

2.2Magasabb rendű lineáris differenciálegyenletek

Definíció

 $0 < n \in \mathbb{N}, I \subset \mathbb{R}$ nyílt, $a_0, ..., a_{n-1} : I \to \mathbb{R}$ folytonos és $c : I \to \mathbb{R}$ folytonos. Keressünk olyan $\varphi \in I \to \mathbb{K}$ függvényt, melyre:

- $\varphi \in D^n$
- D_{φ} nyílt intervallum

•
$$\varphi^{(n)}(x) + \sum_{k=0}^{n-1} a_k(x) \cdot \varphi^{(k)}(x) = c(x) \quad (x \in D_{\varphi})$$

Ezt n-edrendű lineáris differenciálegyenletnek nevezzük. (n=1 esetben Lineáris diff. egyenlet). Ha még:

$$\tau \in I, \ \xi_0, ..., \xi_{n-1} \in \mathbb{K} \text{ és}$$

•
$$\tau \in D_{\omega}$$
 és $\varphi^{(k)}(\tau) = \xi_k$ $(k = 0...n - 1)$

Akkor Kezdeti érték problémáról beszélünk.

Homogenitás

Amennyiben c(x) = 0 homogén n-edrendű lineáris differenciálegyenletről beszélünk. Tehát homogén és inhomogén egyenletek megoldásainak halmazai:

$$M_h := \{ \varphi : I \to \mathbb{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = 0 \}$$

$$M_h := \{ \varphi : I \to \mathbb{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = 0 \}$$

$$M := \{ \varphi : I \to \mathbb{K} : \varphi \in D^n, \ \varphi^{(n)} + \sum_{k=0}^{n-1} a_k \cdot \varphi^{(k)} = c \}$$

(Itt M_h n-dimenziós lineáris tér, így valamilyen $\varphi_1,...,\varphi_n\in M_h$ bázist, más néven alaprendszert alkot.)

Állandó együtthatós eset

Ebben az esetben $a_0, ..., a_{n-1} \in \mathbb{R}$

• Karakterisztikus polinom szerepe

Legyen
$$P(t):=t^n+\sum\limits_{k=0}^{n-1}a_kt^k\quad (t\in\mathbb{K})$$
 karakterisztikus polinom és $\varphi_\lambda(x):=e^{\lambda x}\quad (x\in\mathbb{R},\lambda\in\mathbb{K})$

Ekkor:
$$\varphi_{\lambda} \in M_h \iff P(\lambda) = 0$$

Sőt ha λ r-szeres gyöke P -nek, és

$$\varphi_{\lambda,j}(x) := x^j e^{\lambda x} \ (j = 0..r - 1, x \in \mathbb{R}), \text{ akkor: } \varphi_{\lambda,j} \in M_h \iff \varphi_{\lambda,j}^{(n)} + \sum_{k=0}^{n-1} a_k \varphi_{\lambda,j}^{(k)}$$

azaz
$$P(\lambda)^{(j)} = 0$$
 $(j = 0..r - 1)$

• Valós megoldások

Legyen
$$\lambda = u + iv \quad (u, v \in \mathbb{R}, v \neq 0, i^2 = -1)$$

 \Rightarrow az $x \mapsto x^j e^{ux} cos(vx)$, és $x \mapsto x^j e^{ux} sin(vx)$ függvények valós alaprendszert (bázist) alkotnak $(M_h$ -ban)

Példa: Rezgések

Írjuk le egy egyenes mentén, rögzített pont körül rezgőmozgást végző m tömegű tömegpont mozgását, ha ismerjük a megfigyelés kezdetekor elfoglalt helyét és az akkori sebességét!

$$\varphi \in \mathbb{R} \to \mathbb{R}, \varphi \in D^2$$
: kitérés-idő függvény

$$m>0$$
: tömeg

$$F \in \mathbb{R} \to \mathbb{R}$$
: kitérítő erő

$$\alpha>0$$
: visszatérítő erő, mely arányos $\varphi\text{-vel}$

$$\beta \geq 0$$
: fékezőerő, mely arányos a sebességgel.

$$m \cdot \dot{\varphi''} = F - \alpha \varphi - \beta \dot{\varphi'}$$

$$\varphi(0) = s_0, \varphi'(0) = s_0'$$

Másodrendű lineáris differenciál egyenlet (kezdeti érték probléma)

Standard alakba írva:
$$\varphi'' + \frac{\beta}{m}\varphi' + \frac{\alpha}{m}\varphi = \frac{F}{m}$$

Tekintsük kényszerrezgésnek a periodikus külső kényszert, amikor:

$$\frac{F(x)}{m} = A sin(\omega x)$$
 [$A > 0$ (amplitúdó), $\omega > 0$ (kényszerfrekvencia)]

Ekkor
$$\omega_0 := \sqrt{\frac{\beta}{m}}$$
 - saját frekvencia

és
$$\varphi''(x) + \omega_0^2 \varphi(x) = A \sin(\omega x)$$

Melynek karakterisztikus polinomja :
$$P(t) = t^2 + \omega_0^2 \quad (t \in \mathbb{R})$$

Megoldásai:
$$\lambda = \pm \omega_0 i$$

Korábban láttuk, hogy ha $\lambda = u + iv$ akkor $x \mapsto x^j e^{ux} cos(vx)$, és $x \mapsto x^j e^{ux} sin(vx)$ függvények valós alaprendszert (bázist) alkotnak $(M_h$ -ban). Így $\varphi(x) = c_1 cos(\omega_0 x) + c_2 sin(\omega_0 x)$ alakban írható mely fázisszög segítségével: $d \cdot sin(\omega_0 x + \delta)$ $(d = \sqrt{c_1^2 + c_2^2}, \delta \in \mathbb{R})$ alakra átírható. Így: $M_h = \{d \cdot sin(\omega_0 x + \delta)\}$

Ekkor már könnyen megadhatunk egy partikuláris megoldást:

• $\omega \neq \omega_0$ esetén partikuláris megoldás:

$$x \to q \cdot sin(\omega x)$$

És
$$q = \frac{A}{\omega_0^2 - \omega^2}$$
 kielégíti a $-q\omega^2 sin(\omega x) + \omega_0^2 q \cdot sin(\omega x) = A sin(\omega x)$ egyenletet. Tehát:

$$\varphi(x) = d \cdot \sin(\omega_0 x + \delta) + \frac{A}{\omega_0^2 - \omega^2} \sin(\omega x)$$
 megoldás két harmonikus rezgés összege.

• $\omega = \omega_0$ (rezonancia) esetén partikuláris megoldás:

$$r \to ar \cdot cos(\omega r)$$

És
$$q = \frac{-A}{2\omega}$$
 kielégíti a $-2q\omega \cdot sin(\omega x) - q\omega^2 x \cdot cos(\omega x) + \omega^2 qx \cdot cos(\omega x) = Asin(\omega x)$ egyenletet. Tehát:

$$\varphi(x) = d \cdot \sin(\omega x + \delta) - \frac{A}{2\omega} x \cdot \cos(\omega x)$$
 megoldás egy harmonikus és egy aperiodikus rezgés összege.

(Ebben az esetben az idő (x) elteltével a φ értéke nő. Bizonyos modellekben ez a "rendszer szétesését" idézi elő)