Assessing suitable days: rainless days

```
In [1]: import matplotlib
   import numpy as np
   import matplotlib.dates as mdates
   import matplotlib.pyplot as plt
   #%matplotlib notebook
   %matplotlib inline
   import csv
   import bisect
   import datetime
   from scipy import interpolate
   from matplotlib.dates import DateFormatter

# User defined functions
   from load_precip_irrad_from_csv import *
```

Remarks:

- HSLU pyranometer data is avaiable from 2017 01.01 to 2018 01.03
- Images from sky-cameras range from 2017 11.17 to 2018 11.13
- Camera 1 worked from 2017 02.11 to 2018 11.13
 - SW version 1 from 2017 01.01 to 2018 04.02
 - SW version 2 from 2018 04.03 to 2018 10.08
 - SW version 3 from 2018 10.09 to 2018 11.13
- Camera 2 worked from 2017 02.11 to 2018 11.13
 - SW version 1 from 2018 01.09 to 2018 04.03
 - SW version 2 from 2018 04.03 to 2018 06.10
 - SW version 3 from 2018 11.12 to 2018 11.14

Import Precipitation

```
In [2]: luz_precip = r'../weather_data/precipitation_luz_2017_2018.csv'

df_precip = process_LUZ_Precip(luz_precip)
df_precip.set_index(df_precip.datetime, inplace=True)
s_precip = df_precip['rka150d0'] # daily precipitation in mm

#df_precip.head(n=2)
```

Import sunshine duration, relative to the absolute possible daily sum

```
In [3]: dur_csv = r'../weather_data/sunshine_duration_2017_2018.csv'

df_rel_insol = process_LUZ_dur(dur_csv)
    df_rel_insol.set_index(df_rel_insol.datetime, inplace=True)
    df_rel_insol['sremaxdv'] = pd.to_numeric(df_rel_insol['sremaxdv'], errors='coerc e')
    s_rel_insol = df_rel_insol['sremaxdv']  # in percent
```

Precipitation and overlayed insolination 2017 from 11-01 to 12-31 near Lucern at Long: 8°18' Lat: 47°02'

```
In [4]: | year = '2017-'
        s day = '11-01' # beginning of observation
        e_day = '12-31' # end of observation
        start = year + s day
        end = year + e day
        s_precip_17 = s_precip.loc[start:end]
        s_rel_insol_17 = s_rel_insol.loc[start:end]
        fig, ax = plt.subplots(figsize=(20,5))
        ax.bar(s_rel_insol_17.index, s_rel_insol_17.values, label='rel. Insolination', c
        olor= 'orange')
        ax.bar(s precip 17.index, s precip 17.values, label='Precipitation', color= 'blu
        ax.set xlabel('[Month Day]', fontsize=12)
        ax.set ylabel('relative sunshine durration [%]', fontsize=12)
        ax.set title('Sunshine duration in {} from {} to {}'.format(year.strip('-'),s da
        y,e day))
        ax.legend(loc='upper left')
        ax.grid(b=None, which='major', axis='both')
        ax.xaxis.set major locator(mdates.WeekdayLocator())
        #ax.xaxis.set major locator(mdates.DayLocator())
        ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
        fig.autofmt xdate()
```


Insolination and overlayed precipitation in 2017: 9.30 - 10.31

```
In [5]: year = '2017-'
        s_day = '11-17' # beginning of observation
        e_day = '12-15' # end of observation
        start = year + s day
        end = year + e day
        s_precip_17 = s_precip.loc[start:end]
        s_rel_insol_17 = s_rel_insol.loc[start:end]
        fig, ax = plt.subplots(figsize=(20,5))
        ax.bar(s rel insol 17.index, s rel insol 17.values, label='rel. Insolination', c
        olor= 'orange')
        ax.bar(s precip 17.index, s precip 17.values, label='Precipitation', color= 'blu
        ax.set xlabel('[Month Day]', fontsize=12)
        ax.set ylabel('relative sunshine durration [%]', fontsize=12)
        ax.set title('Sunshine duration in {} from {} to {}'.format(year.strip('-'),s da
        y,e day))
        ax.legend(loc='upper left')
        ax.grid(b=None, which='major', axis='both')
        #ax.xaxis.set major locator(mdates.WeekdayLocator())
        ax.xaxis.set major locator(mdates.DayLocator())
        ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
        fig.autofmt xdate()
```


Detail view 2018 January to March

Remark: Time span where pyranometer data from HSLU is avaiable in 2018: from 1.01 to 3.01

```
In [6]: year1 = '2017-'
        year2 = '2018-'
        s_day = '12-29' # beginning of observation
        e day = '03-01' # end of observation
        start = year1 + s day
        end = year2 + e day
        s_precip_18 = s_precip.loc[start:end]
        s_rel_insol_18 = s_rel_insol.loc[start:end]
        fig, ax = plt.subplots(figsize=(20,5))
        ax.bar(s_rel_insol_18.index, s_rel_insol_18.values, label='rel. Insolination', c
        olor= 'orange')
        ax.bar(s precip 18.index, s precip 18.values, label='Precipitation', color= 'blu
        e')
        ax.set xlabel('[Month Day]', fontsize=12)
        ax.set ylabel('relative sunshine durration [%]', fontsize=12)
        ax.set title('Sunshine duration in {} from {} to {}'.format(year2.strip('-'),s d
        ay, e day))
        ax.legend(loc='upper left')
        ax.grid(b=None, which='major', axis='both')
        ax.xaxis.set major locator(mdates.WeekdayLocator())
        #ax.xaxis.set major locator(mdates.DayLocator())
        ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
        fig.autofmt xdate()
```


Detail view 2018 April to May

```
In [7]: | year = '2018-'
        s day = '03-15' # beginning of observation
        e_day = '05-31' # end of observation
        start = year + s day
        end = year + e day
        s_precip_4 = s_precip.loc[start:end]
        s_rel_4 = s_rel_insol.loc[start:end]
        fig, ax = plt.subplots(figsize=(20,5))
        ax.bar(s_rel_4.index, s_rel_4.values, label='rel. Insolination', color= 'orange'
        ax.bar(s precip 4.index, s precip 4.values, label='Precipitation', color= 'blue'
        ax.set xlabel('[Month Day]', fontsize=12)
        ax.set ylabel('relative sunshine durration [%]', fontsize=12)
        ax.set title('Sunshine duration in {} from {} to {}'.format(year.strip('-'),s da
        y,e day))
        ax.legend(loc='upper left')
        ax.grid(b=None, which='major', axis='both')
        ax.xaxis.set major locator(mdates.WeekdayLocator())
        #ax.xaxis.set major locator(mdates.DayLocator())
        ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
        fig.autofmt xdate()
```


Detail view 2018 Jun to July

```
In [8]: | year = '2018-'
        s_day = '05-22' # beginning of observation
        e_day = '07-30' # end of observation
        start = year + s day
        end = year + e day
        s_precip_5 = s_precip.loc[start:end]
        s_rel_5 = s_rel_insol.loc[start:end]
        fig, ax = plt.subplots(figsize=(20,5))
        ax.bar(s rel 5.index, s rel 5.values, label='rel. Insolination', color= 'orange'
        ax.bar(s precip 5.index, s precip 5.values, label='Precipitation', color= 'blue'
        ax.set xlabel('[Month Day]', fontsize=12)
        ax.set ylabel('relative sunshine durration [%]', fontsize=12)
        ax.set title('Sunshine duration in {} from {} to {}'.format(year.strip('-'),s da
        y,e day))
        ax.legend(loc='upper left')
        ax.grid(b=None, which='major', axis='both')
        ax.xaxis.set major locator(mdates.WeekdayLocator())
        #ax.xaxis.set major locator(mdates.DayLocator())
        ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
        fig.autofmt xdate()
```


Detail view 2018 August to September

```
In [9]: | year = '2018-'
        s day = '07-05' # beginning of observation
        e_day = '09-30' # end of observation
        start = year + s day
        end = year + e day
        s_precip_6 = s_precip.loc[start:end]
        s_rel_6 = s_rel_insol.loc[start:end]
        fig, ax = plt.subplots(figsize=(20,5))
        ax.bar(s rel 6.index, s rel 6.values, label='rel. Insolination', color= 'orange'
        ax.bar(s precip 6.index, s precip 6.values, label='Precipitation', color= 'blue'
        ax.set xlabel('[Month Day]', fontsize=12)
        ax.set ylabel('relative sunshine durration [%]', fontsize=12)
        ax.set title('Sunshine duration in {} from {} to {}'.format(year.strip('-'),s da
        y,e day))
        ax.legend(loc='upper left')
        ax.grid(b=None, which='major', axis='both')
        ax.xaxis.set major locator(mdates.WeekdayLocator())
        #ax.xaxis.set major locator(mdates.DayLocator())
        ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
        fig.autofmt xdate()
```


Detail view 2018 October

```
In [10]: year = '2018-'
         s day = '09-25' # beginning of observation
         e_day = '11-10' # end of observation
         start = year + s day
         end = year + e day
         s_precip_7 = s_precip.loc[start:end]
         s_rel_7 = s_rel_insol.loc[start:end]
         fig, ax = plt.subplots(figsize=(20,5))
         ax.bar(s rel 7.index, s rel 7.values, label='rel. Insolination', color= 'orange'
         ax.bar(s precip 7.index, s precip 7.values, label='Precipitation', color= 'blue'
         ax.set xlabel('[Month Day]', fontsize=12)
         ax.set ylabel('relative sunshine durration [%]', fontsize=12)
         ax.set title('Sunshine duration in {} from {} to {}'.format(year.strip('-'),s da
         y,e day))
         ax.legend(loc='upper left')
         ax.grid(b=None, which='major', axis='both')
         ax.xaxis.set major locator(mdates.WeekdayLocator())
         #ax.xaxis.set major locator(mdates.DayLocator())
         ax.xaxis.set major formatter(mdates.DateFormatter('%b %d'))
         fig.autofmt xdate()
```


Longest dry periodes in 2018

21.06.2018 - 03.07.2018 -> 11 days 28.07.2018 - 08.08.2018 -> 11 days 10.02.2018 - 27.10.2018 -> 25 days