Übungsgruppe 42 $17.\ \mathrm{Juni}\ 2017$

Programmierung

Abgabe: 17. Juni 2017

Autor Eins 1701 Autor Zwei 74656

Inhaltsverzeichnis

B)

Aufgabe I	1		S_2
Aufgabe I.1	1	$S_2 \rightarrow A.S_2$	$A.S_2$
Aufgabe I.2		$A \rightarrow B : -B$	$B:-B.S_2$
		$B \rightarrow q$	$q:-B-S_2$
Aufgabe III	2	$B \rightarrow p$	$q:-p.S_2$
Aufgabe III.1	2	$S_2 \to A$.	q:-p.A.
Aufgabe III.2		$A \rightarrow B : -B$	q:-p.B:-B.
Aufgabe III.3		$B \rightarrow p$	q:-p.p:-B.
Aulgabe III.5	2	$B \rightarrow q$	q:-p.p:-q.

Der Ausdruck wird akzeptiert.

Aufgabe I

Aufgabe I.1

A)

	S_2
$S_2 \rightarrow A.S_2$	$A.S_2$
$A \rightarrow B$	$B.S_2$
$B \rightarrow p$	$p.S_2$
$S_2 \rightarrow A.S_2$	$p.A.S_2$
$A \rightarrow B$	$p.B.S_2$
$B \rightarrow q$	$p.q.S_2$
$S_2 \to A$.	p.q.A.
$A \rightarrow B : -B$	p.q.B:-B.
$B \rightarrow r$	p.q.r:-B.
$B \rightarrow q$	p.q.r:-q.

 $\mathcal{W}(q:-p.p:-q.) = \mathcal{W}(q:-p.)$

$$\mathcal{W}(q:-p.p:-q.) = \mathcal{W}(q:-p.)$$

= \emptyset

C)

$$S_2$$

$$S_2 \rightarrow A.S_2$$

$$A \rightarrow B : -B$$

$$B \rightarrow q$$

$$B \rightarrow q$$

$$B \rightarrow p$$

$$A \rightarrow B$$

$$S_2$$

$$A \rightarrow B$$

Der Ausdruck wird Akzeptiert.

$$\mathcal{W}(q:-p.p.) = \mathcal{W}(q:-p.) \cup \{p\}$$
$$= \emptyset \cup \{p\}$$
$$= \{p\}$$

Der Ausdruck wird akzeptiert.

$$\mathcal{W}(p.q.r:-q) = \mathcal{W}(p.q.) \cup \{r\}$$
$$= \mathcal{W}(p.) \cup q \cup \{r\}$$
$$= \{p\} \cup \{q\} \cup \{r\}$$
$$= \{p,q,r\}$$

D)

Der Ausdruck wird nicht Akzeptiert, da »t« kein Symbol des Alphabetes ist.

Aufgabe I.2

Sei \mathcal{S} eine Sprache und \mathcal{P} ein Programm. Zu zeigen:

Aufgabe III.3

 $\mathcal P$ ist semantisch korrekt bzgl. $\mathcal S \Rightarrow \mathcal P$ ist syntaktisch korrekt (enespricht Def.) \mathcal{P} ist syntaktisch Falsch $\Rightarrow \mathcal{P}$ ist semantisch falsch qed

c)

Seien \mathcal{A}_1 und \mathcal{A}_2 zwei Ausdrcke in einer Sprache und es gelte:

Abbildung 1: Regel S_1

Abbildung 2: Regel S_2

 $\mathcal{W}(\mathcal{A}_1) \neq \mathcal{W}(\mathcal{A}_2) \Rightarrow \mathcal{A}_1 \neq \mathcal{A}_2$ $\mathcal{A}_1 = \mathcal{A}_2 \Rightarrow \mathcal{W}(\mathcal{A}_1) = \mathcal{W}(\mathcal{A}_2)$

dann gilt auch:

Aufgabe III

Aufgabe III.1

 $G = (\{S, A, B\}, \{a, b\}, P, S\}$ mit den Produktionsregeln P:

$$S \rightarrow A$$

$$S \rightarrow B$$

$$A \rightarrow aAb$$

$$A \to\!\! AA$$

$$A \rightarrow a$$

$$B\to\!\!\varepsilon$$

$$B \to\!\! Bb$$

Aufgabe III.2

$$S_1 = (\{b\}|S_2)$$

$$S_2 = [[S_2]a[S_2]b[S_2]] \\$$