Data Analysis in R

@dustinvtran Engineering and Applied Sciences @ Harvard University

1. introduction

What is R?

• R is a language developed for statistical computing and visualization

What is R?

- R is a language developed for statistical computing and visualization
- It is free and open source

What is R?

- R is a language developed for statistical computing and visualization
- It is free and open source
- It is a dynamic, lazy, functional, and object-oriented language

THE REASON I AM SO INEFFICIENT

R...

• has an enormous number of packages for statistical modelling, machine learning, visualization, and importing and manipulating data

R...

- has an enormous number of packages for statistical modelling, machine learning, visualization, and importing and manipulating data
- is designed to interface with high-performance computing languages such as Fortran and C++.

Bottlenecks

• The biggest bottleneck in data analysis is cognitive.

Bottlenecks

- The biggest bottleneck in data analysis is cognitive.
- You need tools (domain specific languages) to help you define the problem and express solutions programmatically.

2. fundamentals

```
2 * pi
7 + runif(1)
sqrt (4<sup>4</sup>)
log(10)
log(100, base=10)
23 %% 2 # 23 mod 2
23 %/% 2 # floor(23/2)
5e9 * 1e3 # 5000000000 * 1000
```

```
val <- 3
val
print(val)
val = 1:6
val
```

• Vector: vector of some type (all entries are same type)

```
nums < c(1.1, 3, -5.7)
devs <- rnorm(2)
devs
ints <- c(1L, 5L, -3L)
ints
```

```
chars <- c('arthur', "marvin's",
           "marvin\"s")
chars
bools <- c(TRUE, FALSE, TRUE)
bools
```

```
vals < seq(2, 12, by=2)
vals
vals[3]
vals[3:5]
vals[c(1, 3, 6)]
vals[-c(1, 3, 6)]
vals[c(rep(TRUE, 3), rep(FALSE, 4))]
```

```
set.seed(42)
vals <- rnorm(3)</pre>
vals
vals[1:2] <- 0
vals
```

```
vals[vals != 0] <- 5
vals
## [1] 0 0 5
```

```
vec1 <- 1:3
vec2 <- 3:5
vec1 + vec2
vec1 * vec2
vec1 >= vec2
## [1] FALSE FALSE FALSE
vec1 <= 3
```

- Vector: vector of some type (all entries are same type)
- Matrix: matrix of some type (all entries are same type)

```
mat \leftarrow matrix(1:9, nrow = 3)
dim(mat)
class(mat)
t(mat) %*% mat
```

- Vector: vector of some type (all entries are same type)
- Matrix: matrix of some type (all entries are same type)
- Data frame: collection of columns (each column can be a different type)

```
dat <- data.frame(ints=1:3,
   chars=c("hello", "world", "foo"))
dat
## ints chars
## 1    1 hello
## 2    2 world
## 3    3    foo</pre>
```

- Vector: vector of some type (all entries are same type)
- Matrix: matrix of some type (all entries are same type)
- Data frame: collection of columns (each column can be a different type)
- List: collection of objects

```
list(stuff = 3,
    mat = matrix(1:4, nrow = 2),
    moreStuff = "china",
    list(5, "bear"))
```

help(lm)

?lm

3. demo

4. closer

Resources

Guides

- Text: Hadley Wickham's "Advanced R"
- Videos: 2013 R bootcamp at UC Berkeley
- Interactive: DataCamp

Community & Help

- mailing lists
- #rstats
- useR!
- Stack Overflow, Google, Github, ...

Resources

Guides

- Text: Hadley Wickham's "Advanced R"
- Videos: 2013 R bootcamp at UC Berkeley
- Interactive: DataCamp

Help/Community

- mailing lists
- #rstats
- useR!
- · Stack Overflow, Google, Github, ...

