

Introduction to Data Mining 04 - Principal Component Analysis

Benjamin Paaßen

WS 2023/2024, Bielefeld University

Registration for Presentations

▶ Registration for homework presentations is open.

Link: Registration

Registration for Presentations

- ▶ Registration for homework presentations is open.
- First come-first serve principle.

Link: Registration

Registration for Presentations

- ▶ Registration for homework presentations is open.
- First come-first serve principle.
- Submit other questions for the tutorials: Link

Link: Registration

Moodle

▶ Moodle available now in Lernraum, including groups and submissions

Moodle

- ▶ Moodle available now in Lernraum, including groups and submissions
- ► Voluntary for now; your feedback is appreciated!

Outline for this lecture

- ► (Almost) Full derivation of PCA, based on Ren and MacKay (2019)
- ► Factor analysis
- Factor rotations

ightharpoonup Explain data as a linear combination of basis vectors (or factors) v_1, \ldots, v_n

- ightharpoonup Explain data as a linear combination of basis vectors (or factors) v_1, \ldots, v_n

- ightharpoonup Explain data as a linear combination of basis vectors (or factors) v_1, \ldots, v_n

Examples:

- \triangleright Explain data as a linear combination of basis vectors (or factors) v_1, \ldots, v_n

Examples:

Underlying skills in educational data

- ightharpoonup Explain data as a linear combination of basis vectors (or factors) v_1, \ldots, v_n

Examples:

- Underlying skills in educational data
- Fourier transform

- ightharpoonup Explain data as a linear combination of basis vectors (or factors) v_1, \ldots, v_n

Examples:

- Underlying skills in educational data
- Fourier transform
- Eigenfaces

Spooky example

Assume we are detectives and try to find the underlying patterns behind a serious of deaths

Spooky example

Assume we are detectives and try to find the underlying patterns behind a serious of deaths

mysterious loss of blood	1	1	0	1	1	1	1	1	1	1	1	0
two punctures on the neck	1	1	0	1	1	1	1	1	1	1	1	0
slash and bite wounds	0	0	1	0	0	0	0	0	0	0	0	1
paw prints	0	0	1	0	0	0	0	0	0	0	0	1
animal hair	0	0	1	0	0	0	0	0	0	0	0	1
full moon	0	0	1	0	0	0	0	0	0	0	0	1
age	78	49	44	24	29	31	50	63	73	27	62	49

Spooky example

Assume we are detectives and try to find the underlying patterns behind a serious of deaths

mysterious loss of blood	1	1	0	1	1	1	1	1	1	1	1	0
two punctures on the neck	1	1	0	1	1	1	1	1	1	1	1	0
slash and bite wounds	0	0	1	0	0	0	0	0	0	0	0	1
paw prints	0	0	1	0	0	0	0	0	0	0	0	1
animal hair	0	0	1	0	0	0	0	0	0	0	0	1
full moon	0	0	1	0	0	0	0	0	0	0	0	1
age	78	49	44	24	29	31	50	63	73	27	62	49

Which patterns jump out at you?

Spooky example (continued)

feature	v_1	v_2
mysterious loss of blood	0.00	-0.41
two punctures on the neck	0.00	-0.41
slash and bite wounds	0.00	0.41
paw prints	0.00	0.41
animal hair	0.00	0.41
full moon	0.00	0.41
age	1.00	0.00

Principal Component Analysis

Setup

observable data

x

Setup

Setup

Let $x_1, \ldots, x_N \in \mathbb{R}^m$ be our example data set

- Let $x_1, \ldots, x_N \in \mathbb{R}^m$ be our example data set
- We try to find encoding function ϕ and decoding function ψ s.t. reconstruction error is minimized:

$$\min_{\phi,\psi} \quad \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2$$

- Let $x_1, \ldots, x_N \in \mathbb{R}^m$ be our example data set
- We try to find encoding function ϕ and decoding function ψ s.t. reconstruction error is minimized:

$$\min_{\phi,\psi} \quad \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2$$

But both ϕ and ψ are affine maps

$$z = \phi(x) = \boldsymbol{U} \cdot x + a$$
 where $\boldsymbol{U} \in \mathbb{R}^{n \times m}, a \in \mathbb{R}^n$ $\hat{x} = \psi(z) = \boldsymbol{V} \cdot z + b$ where $\boldsymbol{V} \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

- Let $x_1, \ldots, x_N \in \mathbb{R}^m$ be our example data set
- We try to find encoding function ϕ and decoding function ψ s.t. reconstruction error is minimized:

$$\min_{\phi,\psi} \quad \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2$$

But both ϕ and ψ are affine maps

$$z = \phi(x) = \boldsymbol{U} \cdot x + a$$
 where $\boldsymbol{U} \in \mathbb{R}^{n \times m}, a \in \mathbb{R}^n$ $\hat{x} = \psi(z) = \boldsymbol{V} \cdot z + b$ where $\boldsymbol{V} \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

▶ Trick question: What is the solution for $n \ge m$?

1. Do some geometry to understand decoding better – and why $m{V}$ can be (semi-)orthogonal without loss of generality

- 1. Do some geometry to understand decoding better and why $m{V}$ can be (semi-)orthogonal without loss of generality
- 2. Understand why a can have a special form without loss of generality

- 1. Do some geometry to understand decoding better and why $m{V}$ can be (semi-)orthogonal without loss of generality
- 2. Understand why a can have a special form without loss of generality
- 3. Find optimal \boldsymbol{b} to minimize reconstruction error

- 1. Do some geometry to understand decoding better and why $m{V}$ can be (semi-)orthogonal without loss of generality
- 2. Understand why a can have a special form without loss of generality
- 3. Find optimal b to minimize reconstruction error
- 4. Find optimal $oldsymbol{U}$ to minimize reconstruction error

- 1. Do some geometry to understand decoding better and why $m{V}$ can be (semi-)orthogonal without loss of generality
- 2. Understand why a can have a special form without loss of generality
- 3. Find optimal b to minimize reconstruction error
- 4. Find optimal $oldsymbol{U}$ to minimize reconstruction error
- 5. Do some more geometry to find an easier optimization target for $oldsymbol{V}$

- 1. Do some geometry to understand decoding better and why $m{V}$ can be (semi-)orthogonal without loss of generality
- 2. Understand why a can have a special form without loss of generality
- 3. Find optimal b to minimize reconstruction error
- 4. Find optimal $oldsymbol{U}$ to minimize reconstruction error
- 5. Do some more geometry to find an easier optimization target for $oldsymbol{V}$
- 6. Find optimal $oldsymbol{V}$

Assume m=3 and n=2, and let v_1,v_2 be the columns of V.

UNIVERSITÄT BIELEFELD
Faculty of Technology

Assume m=3 and n=2, and let v_1, v_2 be the columns of \boldsymbol{V} .

UNIVERSITÄT BIELEFELD
Faculty of Technology

Assume m=3 and n=2, and let v_1, v_2 be the columns of V.

UNIVERSITÄT BIELEFELD

Assume m=3 and n=2, and let v_1, v_2 be the columns of V.

UNIVERSITÄT BIELEFELD

Assume m=3 and n=2, and let v_1, v_2 be the columns of \boldsymbol{V} .

Assume m=3 and n=2, and let v_1, v_2 be the columns of \boldsymbol{V} .

Assume m=3 and n=2, and let v_1, v_2 be the columns of V.

Assume m=3 and n=2, and let v_1, v_2 be the columns of \boldsymbol{V} .

Assume m=3 and n=2, and let v_1, v_2 be the columns of \boldsymbol{V} .

UNIVERSITÄT BIELEFELD

Faculty of Technology

Assume m=3 and n=2, and let v_1, v_2 be the columns of V.

UNIVERSITÄT BIELEFELD

Faculty of Technology

Assume m=3 and n=2, and let v_1, v_2 be the columns of V.

In summary:

- lacktriangle Columns of $oldsymbol{V}$ span a hyperplane that contains all possible decoded points
- lacktriangle Without loss of generality, we can assume V to be (semi-)orthogonal
- lacksquare ... which means $oldsymbol{V}^Toldsymbol{V}=oldsymbol{I}$ (but $oldsymbol{V}oldsymbol{V}^T
 eq oldsymbol{I}!)$

Let's inspect the equation for \hat{x}_i :

$$\hat{x}_i = \boldsymbol{V}z_i + b$$

Let's inspect the equation for \hat{x}_i :

$$\hat{x}_i = \mathbf{V}z_i + b = \mathbf{V}\mathbf{U}x_i + \mathbf{V}a + b$$

Let's inspect the equation for \hat{x}_i :

$$\hat{x}_i = Vz_i + b = VUx_i + Va + b$$

 \Rightarrow We can set a however we want, because b can correct for it

▶ Let's inspect the equation for \hat{x}_i :

$$\hat{x}_i = \mathbf{V}z_i + b = \mathbf{V}\mathbf{U}x_i + \mathbf{V}a + b$$

- \Rightarrow We can set a however we want, because b can correct for it
- \Rightarrow Without loss of generality, set $a=-m{U}\mu$, where μ is the mean: $\mu=rac{1}{N}\sum_{i=1}^N x_i$

Let's optimize reconstruction error w.r.t. b

UNIVERSITÄT BIELEFELD

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

UNIVERSITÄT BIELEFELD

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}(\mathbf{U}x_i - \mathbf{U}\mu) + b - x_i\|^2$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}(\mathbf{U}x_i - \mathbf{U}\mu) + b - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i\|^2$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$

$$= \sum_{i=1}^{N} \|\mathbf{V}(\mathbf{U}x_i - \mathbf{U}\mu) + b - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i\|^2$$

$$\Rightarrow \nabla_b \ell(b) = 2 \sum_{i=1}^{N} \mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$

$$= \sum_{i=1}^{N} \|\mathbf{V}(\mathbf{U}x_i - \mathbf{U}\mu) + b - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i\|^2$$

$$\Rightarrow \nabla_b \ell(b) = 2\sum_{i=1}^{N} \mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i$$

$$= 2\mathbf{V}\mathbf{U}(\sum_{i=1}^{N} x_i - N\mu) + 2Nb - 2\sum_{i=1}^{N} x_i$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$

$$= \sum_{i=1}^{N} \|\mathbf{V}(\mathbf{U}x_i - \mathbf{U}\mu) + b - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i\|^2$$

$$\Rightarrow \nabla_b \ell(b) = 2\sum_{i=1}^{N} \mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i$$

$$= 2\mathbf{V}\mathbf{U}(\sum_{i=1}^{N} x_i - N\mu) + 2Nb - 2\sum_{i=1}^{N} x_i = 2Nb - 2\sum_{i=1}^{N} x_i$$

- Let's optimize reconstruction error w.r.t. b
- ▶ note! Reconstruction error is convex ⇒ finding zero of gradient is sufficient

$$\ell(b) = \sum_{i=1}^{N} \|\psi(\phi(x_i)) - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + b - x_i\|^2$$

$$= \sum_{i=1}^{N} \|\mathbf{V}(\mathbf{U}x_i - \mathbf{U}\mu) + b - x_i\|^2 = \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i\|^2$$

$$\Rightarrow \nabla_b \ell(b) = 2\sum_{i=1}^{N} \mathbf{V}\mathbf{U}(x_i - \mu) + b - x_i$$

$$= 2\mathbf{V}\mathbf{U}(\sum_{i=1}^{N} x_i - N\mu) + 2Nb - 2\sum_{i=1}^{N} x_i = 2Nb - 2\sum_{i=1}^{N} x_i$$

Setting the gradient to zero yields $b = \mu$.

Now, let's optimize reconstruction error w.r.t. *U*.

Now, let's optimize reconstruction error w.r.t. U.

$$\ell(\boldsymbol{U}) = \sum_{i=1}^{N} ||\boldsymbol{V}z_i + \mu - x_i||^2$$

 \triangleright Now, let's optimize reconstruction error w.r.t. U.

$$\ell(\mathbf{U}) = \sum_{i=1}^{N} \|\mathbf{V}z_i + \mu - x_i\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_i - \mu) - (x_i - \mu)\|^2$$

UNIVERSITÄT BIELEFELD

 \triangleright Now, let's optimize reconstruction error w.r.t. U.

$$\ell(\mathbf{U}) = \sum_{i=1}^{N} ||\mathbf{V}z_{i} + \mu - x_{i}||^{2}$$

$$= \sum_{i=1}^{N} ||\mathbf{V}\mathbf{U}(x_{i} - \mu) - (x_{i} - \mu)||^{2}$$

$$= \sum_{i=1}^{N} (x_{i} - \mu)^{T} \mathbf{U}^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{U}(x_{i} - \mu) - 2(x_{i} - \mu)^{T} \mathbf{U}^{T} \mathbf{V}^{T} (x_{i} - \mu) + (x_{i} - \mu)^{T} (x_{i} - \mu)$$

UNIVERSITÄT BIELEFELD

 \triangleright Now, let's optimize reconstruction error w.r.t. U.

$$\ell(\mathbf{U}) = \sum_{i=1}^{N} \|\mathbf{V}z_{i} + \mu - x_{i}\|^{2}$$

$$= \sum_{i=1}^{N} \|\mathbf{V}\mathbf{U}(x_{i} - \mu) - (x_{i} - \mu)\|^{2}$$

$$= \sum_{i=1}^{N} (x_{i} - \mu)^{T} \mathbf{U}^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{U}(x_{i} - \mu) - 2(x_{i} - \mu)^{T} \mathbf{U}^{T} \mathbf{V}^{T} (x_{i} - \mu) + (x_{i} - \mu)^{T} (x_{i} - \mu)$$

$$= \sum_{i=1}^{N} (x_{i} - \mu)^{T} \mathbf{U}^{T} \mathbf{U}(x_{i} - \mu) - 2(x_{i} - \mu)^{T} \mathbf{U}^{T} \mathbf{V}^{T} (x_{i} - \mu) + (x_{i} - \mu)^{T} (x_{i} - \mu)$$

$$\nabla_{\boldsymbol{U}}\ell(\boldsymbol{U}) = \sum_{i=1}^{N} 2\boldsymbol{U}(x_i - \mu)(x_i - \mu)^T - 2\boldsymbol{V}^T(x_i - \mu)(x_i - \mu)^T$$

$$\nabla_{\boldsymbol{U}}\ell(\boldsymbol{U}) = \sum_{i=1}^{N} 2\boldsymbol{U}(x_i - \mu)(x_i - \mu)^T - 2\boldsymbol{V}^T(x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right) \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T$$

$$\nabla_{\boldsymbol{U}}\ell(\boldsymbol{U}) = \sum_{i=1}^{N} 2\boldsymbol{U}(x_i - \mu)(x_i - \mu)^T - 2\boldsymbol{V}^T(x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right) \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right)\boldsymbol{C}$$

Let's compute the gradient:

$$\nabla_{\boldsymbol{U}}\ell(\boldsymbol{U}) = \sum_{i=1}^{N} 2\boldsymbol{U}(x_i - \mu)(x_i - \mu)^T - 2\boldsymbol{V}^T(x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right) \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right)\boldsymbol{C}$$

 \Rightarrow Setting gradient to zero yields: $oldsymbol{U} = oldsymbol{V}^T$

$$\nabla_{\boldsymbol{U}}\ell(\boldsymbol{U}) = \sum_{i=1}^{N} 2\boldsymbol{U}(x_i - \mu)(x_i - \mu)^T - 2\boldsymbol{V}^T(x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right) \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T$$
$$= 2\left(\boldsymbol{U} - \boldsymbol{V}^T\right)\boldsymbol{C}$$

- \Rightarrow Setting gradient to zero yields: $oldsymbol{U} = oldsymbol{V}^T$
- ▶ attention! The last step is only valid because *C* is positive (semi-)definite and, hence, invertible

ightharpoonup We set $a=-{m U}\mu$

- ightharpoonup We set $a=-{m U}\mu$
- \Rightarrow Therefore, $b=\mu$

- ightharpoonup We set $a=-{m U}\mu$
- \Rightarrow Therefore, $b = \mu$
- \Rightarrow Therefore (and because $oldsymbol{V}$ is orthogonal), $oldsymbol{U} = oldsymbol{V}^T$

- ightharpoonup We set $a=-{m U}\mu$
- \Rightarrow Therefore, $b = \mu$
- \Rightarrow Therefore (and because $oldsymbol{V}$ is orthogonal), $oldsymbol{U} = oldsymbol{V}^T$
- \Rightarrow Only $oldsymbol{V}$ remains to be optimized for which we need some geometry, again

Geometric interpretation (continued)

Geometric interpretation (continued)

 x_i

 x_i

By construction: \hat{x}_i is projection of x_i onto the hyperplane spanned by the columns of V (and anchored in μ)

- By construction: \hat{x}_i is projection of x_i onto the hyperplane spanned by the columns of V (and anchored in μ)
- \Rightarrow The sides $\|\hat{x}_i x_i\|$, $\|\hat{x}_i \mu\|$, and $\|x_i \mu\|$ form a right triangle

- **B**y construction: \hat{x}_i is projection of x_i onto the hyperplane spanned by the columns of V (and anchored in μ)
- \Rightarrow The sides $\|\hat{x}_i x_i\|$, $\|\hat{x}_i \mu\|$, and $\|x_i \mu\|$ form a right triangle
- \Rightarrow Pythagoras: $\|\hat{x}_i x_i\|^2 + \|\hat{x}_i \mu\|^2 = \|x_i \mu\|^2$

$$\min_{\boldsymbol{V}} \quad \sum_{i=1}^{N} \|\hat{x}_i - x_i\|^2$$

$$\min_{\boldsymbol{V}} \quad \sum_{i=1}^{N} \|\hat{x}_i - x_i\|^2$$

$$\Leftrightarrow \min_{\boldsymbol{V}} \quad \sum_{i=1}^{N} \overbrace{\|x_i - \mu\|^2}^{\text{does not depend on } \boldsymbol{V}} - \|\hat{x}_i - \mu\|^2$$

$$\min_{\mathbf{V}} \quad \sum_{i=1}^{N} \|\hat{x}_i - x_i\|^2$$

$$\Leftrightarrow \min_{\mathbf{V}} \quad \sum_{i=1}^{N} \underbrace{\|\mathbf{x}_i - \mu\|^2}_{\|\mathbf{x}_i - \mu\|^2} - \|\hat{x}_i - \mu\|^2$$

$$\Leftrightarrow \min_{\mathbf{V}} \quad -\sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2$$

$$\min_{\mathbf{V}} \sum_{i=1}^{N} \|\hat{x}_i - x_i\|^2$$

$$\Leftrightarrow \min_{\mathbf{V}} \sum_{i=1}^{N} \underbrace{\|\mathbf{x}_i - \mu\|^2}_{\|\mathbf{x}_i - \mu\|^2} - \|\hat{x}_i - \mu\|^2$$

$$\Leftrightarrow \min_{\mathbf{V}} - \sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2$$

$$\Leftrightarrow \max_{\mathbf{V}} \sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2$$

$$\sum_{i=1}^{N} ||\hat{x}_i - \mu||^2 = \sum_{i=1}^{N} ||\mathbf{V}z_i + \mu - \mu||^2$$

$$\sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + \mu - \mu\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}\mathbf{V}^T(x_i - \mu)\|^2$$

$$\sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + \mu - \mu\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}\mathbf{V}^T(x_i - \mu)\|^2$$

lacktriangle Note: because $oldsymbol{V}$ is orthogonal, it preserves the norm of vectors.

$$\sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + \mu - \mu\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}\mathbf{V}^T(x_i - \mu)\|^2$$

lacktriangle Note: because V is orthogonal, it preserves the norm of vectors.

$$= \sum_{i=1}^{N} || V^{T}(x_i - \mu) ||^2$$

$$\sum_{i=1}^{N} \|\hat{x}_i - \mu\|^2 = \sum_{i=1}^{N} \|\mathbf{V}z_i + \mu - \mu\|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{V}\mathbf{V}^T(x_i - \mu)\|^2$$

lacktriangle Note: because V is orthogonal, it preserves the norm of vectors.

$$= \sum_{i=1}^{N} ||V^{T}(x_i - \mu)||^2$$

ightharpoonup Trick: To achieve orthogonal V, optimize one column at a time

$$\sum_{i=1}^{N} ||\hat{x}_i - \mu||^2 = \sum_{i=1}^{N} ||\mathbf{V}z_i + \mu - \mu||^2$$
$$= \sum_{i=1}^{N} ||\mathbf{V}\mathbf{V}^T(x_i - \mu)||^2$$

lacktriangle Note: because V is orthogonal, it preserves the norm of vectors.

$$= \sum_{i=1}^{N} ||V^{T}(x_i - \mu)||^2$$

ightharpoonup Trick: To achieve orthogonal V, optimize one column at a time; search for next column in orthogonal subspace, etc.

$$\sum_{i=1}^{N} ||v^{T}(x_i - \mu)||^2$$

$$\sum_{i=1}^{N} ||v^{T}(x_{i} - \mu)||^{2} = \sum_{i=1}^{N} (v^{T}(x_{i} - \mu))^{2}$$

UNIVERSITÄT BIELEFELD
Faculty of Technoloav

$$\sum_{i=1}^{N} ||v^{T}(x_{i} - \mu)||^{2} = \sum_{i=1}^{N} (v^{T}(x_{i} - \mu))^{2}$$
$$= \sum_{i=1}^{N} v^{T}(x_{i} - \mu) \cdot (x_{i} - \mu)^{T} \cdot v$$

UNIVERSITÄT BIELEFELD

$$\sum_{i=1}^{N} ||v^{T}(x_{i} - \mu)||^{2} = \sum_{i=1}^{N} \left(v^{T}(x_{i} - \mu)\right)^{2}$$

$$= \sum_{i=1}^{N} v^{T}(x_{i} - \mu) \cdot (x_{i} - \mu)^{T} \cdot v$$

$$= v^{T} \left(\sum_{i=1}^{N} (x_{i} - \mu) \cdot (x_{i} - \mu)^{T}\right) \cdot v$$

UNIVERSITÄT BIELEFELD

$$\sum_{i=1}^{N} \|v^{T}(x_{i} - \mu)\|^{2} = \sum_{i=1}^{N} \left(v^{T}(x_{i} - \mu)\right)^{2}$$

$$= \sum_{i=1}^{N} v^{T}(x_{i} - \mu) \cdot (x_{i} - \mu)^{T} \cdot v$$

$$= v^{T} \left(\sum_{i=1}^{N} (x_{i} - \mu) \cdot (x_{i} - \mu)^{T}\right) \cdot v$$

$$= v^{T} C v$$

UNIVERSITÄT BIELEFELD

Recall: We need to set v to maximize

$$\sum_{i=1}^{N} \|v^{T}(x_{i} - \mu)\|^{2} = \sum_{i=1}^{N} \left(v^{T}(x_{i} - \mu)\right)^{2}$$

$$= \sum_{i=1}^{N} v^{T}(x_{i} - \mu) \cdot (x_{i} - \mu)^{T} \cdot v$$

$$= v^{T} \left(\sum_{i=1}^{N} (x_{i} - \mu) \cdot (x_{i} - \mu)^{T}\right) \cdot v$$

$$= v^{T} C v$$

Note: we also want $\|v\|=1$ such that $oldsymbol{V}$ is orthogonal

$$\sum_{i=1}^{N} \|v^{T}(x_{i} - \mu)\|^{2} = \sum_{i=1}^{N} \left(v^{T}(x_{i} - \mu)\right)^{2}$$

$$= \sum_{i=1}^{N} v^{T}(x_{i} - \mu) \cdot (x_{i} - \mu)^{T} \cdot v$$

$$= v^{T} \left(\sum_{i=1}^{N} (x_{i} - \mu) \cdot (x_{i} - \mu)^{T}\right) \cdot v$$

$$= v^{T} C v$$

- Note: we also want ||v|| = 1 such that V is orthogonal
- \Rightarrow Lagrangian is given as $\ell(v,\lambda) = -v^T C v \lambda \cdot (1 v^T v)$

$$\nabla_v \ell(v, \lambda) = -2\mathbf{C}v + 2\lambda v$$

$$\nabla_v \ell(v, \lambda) = -2\mathbf{C}v + 2\lambda v$$

Setting the gradient to zero yields:

$$Cv = \lambda v$$

$$\nabla_v \ell(v, \lambda) = -2\mathbf{C}v + 2\lambda v$$

Setting the gradient to zero yields:

$$Cv = \lambda v$$

 $\Rightarrow v$ needs to be an eigenvector of $\textbf{\emph{C}}!$ Lagrangian multiplier λ is the corresponding eigenvalue

$$\nabla_v \ell(v, \lambda) = -2\mathbf{C}v + 2\lambda v$$

Setting the gradient to zero yields:

$$Cv = \lambda v$$

- $\Rightarrow v$ needs to be an eigenvector of ${\pmb C}!$ Lagrangian multiplier λ is the corresponding eigenvalue
- \Rightarrow objective: $v^T C v = v^T \lambda v = \lambda$

$$\nabla_v \ell(v, \lambda) = -2\mathbf{C}v + 2\lambda v$$

Setting the gradient to zero yields:

$$Cv = \lambda v$$

- $\Rightarrow v$ needs to be an eigenvector of ${\pmb C}!$ Lagrangian multiplier λ is the corresponding eigenvalue
- \Rightarrow objective: $v^T C v = v^T \lambda v = \lambda$
- \Rightarrow choose eigenvector v corresponding to largest eigenvalue

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Compute eigenvalue decomposition $C = V \cdot \Lambda \cdot V^T$.

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Compute eigenvalue decomposition $\overline{C} = V \cdot \Lambda \cdot V^T$.

Keep only the columns of $oldsymbol{V}$ corresponding to the n largest eigenvalues.

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Compute eigenvalue decomposition $\overline{m{C}} = m{V} \cdot m{\Lambda} \cdot m{V}^T$.

Keep only the columns of $oldsymbol{V}$ corresponding to the n largest eigenvalues.

return $\phi(x) = \mathbf{V}^T \cdot (x - \mu)$ and $\psi(z) = \mathbf{V} \cdot z + \mu$.

function PCA(data matrix \boldsymbol{X} with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Compute eigenvalue decomposition $C = V \cdot \Lambda \cdot V^T$.

Keep only the columns of $oldsymbol{V}$ corresponding to the n largest eigenvalues.

return $\phi(x) = \mathbf{V}^T \cdot (x - \mu)$ and $\psi(z) = \mathbf{V} \cdot z + \mu$.

end function

Implementation: sklearn.decomposition.PCA

lacktriangle Recall: Objective becomes variance of the data $\sum_{i=1}^N \lVert \hat{x}_i - \mu \rVert^2 = \lambda$

- ▶ Recall: Objective becomes variance of the data $\sum_{i=1}^{N} \|\hat{x}_i \mu\|^2 = \lambda$
- \Rightarrow Sum of eigenvalues after PCA quantifies the remaining variance

- ▶ Recall: Objective becomes variance of the data $\sum_{i=1}^{N} \|\hat{x}_i \mu\|^2 = \lambda$
- ⇒ Sum of eigenvalues after PCA quantifies the remaining variance
- \Rightarrow Quantify fraction of retained variance as $\sum_{j=1}^n \lambda_i / \sum_{j=1}^m \lambda_i$

- ▶ Recall: Objective becomes variance of the data $\sum_{i=1}^{N} ||\hat{x}_i \mu||^2 = \lambda$
- ⇒ Sum of eigenvalues after PCA quantifies the remaining variance
- \Rightarrow Quantify fraction of retained variance as $\sum_{j=1}^n \lambda_i / \sum_{j=1}^m \lambda_i$
- \Rightarrow Set *n* high enough to retain most of the variance (e.g. 95%)

Factor Analysis

Intro

ightharpoonup IQ tests and Spearman ightarrow see first lecture

Intro

UNIVERSITÄT BIELEFELD

- ightharpoonup IQ tests and Spearman ightarrow see first lecture
- "Modern" Factor Analysis: Probabilistic version of PCA

Intro

UNIVERSITÄT BIELEFELD

- ightharpoonup IQ tests and Spearman \rightarrow see first lecture
- "Modern" Factor Analysis: Probabilistic version of PCA
- ► Full derivation bit too complicated for this lecture ⇒ Refer to Barber (2012)

lacktriangle Assume data is generated as $x = Vz + b + \epsilon$

- ightharpoonup Assume data is generated as $x = Vz + b + \epsilon$
- Assume $p_Z(z)$ is Gaussian with mean 0 and covariance I

- ightharpoonup Assume data is generated as $x = Vz + b + \epsilon$
- Assume $p_Z(z)$ is Gaussian with mean 0 and covariance I
- Assume $p_E(\epsilon)$ is Gaussian with mean 0 and covariance Ψ

- ightharpoonup Assume data is generated as $x = Vz + b + \epsilon$
- Assume $p_Z(z)$ is Gaussian with mean 0 and covariance I
- lacktriangle Assume $p_E(\epsilon)$ is Gaussian with mean 0 and covariance $oldsymbol{\Psi}$
- $\Rightarrow p_{X|Z}(x|z)$ is Gaussian with mean $oldsymbol{V}z+b$ and covariance $oldsymbol{\Psi}$

- ightharpoonup Assume data is generated as $x = Vz + b + \epsilon$
- Assume $p_Z(z)$ is Gaussian with mean 0 and covariance I
- Assume $p_E(\epsilon)$ is Gaussian with mean 0 and covariance Ψ
- $\Rightarrow p_{X|Z}(x|z)$ is Gaussian with mean $\boldsymbol{V}z+b$ and covariance $oldsymbol{\Psi}$
- $\Rightarrow p_X(x)$ is Gaussian with mean b and covariance $oldsymbol{V}oldsymbol{V}^T+oldsymbol{\Psi}$

- Assume data is generated as $x = Vz + b + \epsilon$
- ightharpoonup Assume $p_Z(z)$ is Gaussian with mean 0 and covariance I
- lacktriangle Assume $p_E(\epsilon)$ is Gaussian with mean 0 and covariance $oldsymbol{\Psi}$
- $\Rightarrow p_{X|Z}(x|z)$ is Gaussian with mean $\boldsymbol{V}z+b$ and covariance $oldsymbol{\Psi}$
- $\Rightarrow p_X(x)$ is Gaussian with mean b and covariance $VV^T + \Psi$ (this is not a trivial result! Follows from theory of Gaussians)

latent distribution p_Z

data distribution p_X

data distribution p_X

data distribution p_X

V rotates and stretches data distribution

- V rotates and stretches data distribution
- ightharpoonup columns of V can be interpreted as principal axes of the hyper-ellipse that forms the isoline of p_X (up to noise)

$$lacksquare$$
 Let $\Sigma = oldsymbol{V}oldsymbol{V}^T + oldsymbol{\Psi}$

$$ightharpoonup$$
 Let $\Sigma = oldsymbol{V}oldsymbol{V}^T + oldsymbol{\Psi}$

$$\Rightarrow p_X(x) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \cdot \exp\left(-\frac{1}{2}(x-b)^T \Sigma^{-1}(x-b)\right)$$

$$ightharpoonup$$
 Let $\Sigma = VV^T + \Psi$

$$\Rightarrow p_X(x) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \cdot \exp\left(-\frac{1}{2}(x-b)^T \Sigma^{-1}(x-b)\right)$$

⇒ negative log likelihood of the data:

$$\ell(\boldsymbol{V}, \boldsymbol{\Psi}, b) = \sum_{i=1}^{N} \frac{1}{2} \log \left[\det(2\pi \boldsymbol{\Sigma}) \right] + \frac{1}{2} (x_i - b)^T \Sigma^{-1} (x_i - b)$$

$$lacksquare$$
 Let $\Sigma = oldsymbol{V}oldsymbol{V}^T + oldsymbol{\Psi}$

$$\Rightarrow p_X(x) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \cdot \exp\left(-\frac{1}{2}(x-b)^T\Sigma^{-1}(x-b)\right)$$

⇒ negative log likelihood of the data:

$$\ell(\boldsymbol{V}, \boldsymbol{\Psi}, b) = \sum_{i=1}^{N} \frac{1}{2} \log \left[\det(2\pi \boldsymbol{\Sigma}) \right] + \frac{1}{2} (x_i - b)^T \Sigma^{-1} (x_i - b)$$

 \Rightarrow Optimal b is $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

- ightharpoonup Let $\Sigma = VV^T + \Psi$
- $\Rightarrow p_X(x) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \cdot \exp\left(-\frac{1}{2}(x-b)^T \Sigma^{-1}(x-b)\right)$
- ⇒ negative log likelihood of the data:

$$\ell(\boldsymbol{V}, \boldsymbol{\Psi}, b) = \sum_{i=1}^{N} \frac{1}{2} \log \left[\det(2\pi \boldsymbol{\Sigma}) \right] + \frac{1}{2} (x_i - b)^T \Sigma^{-1} (x_i - b)$$

- \Rightarrow Optimal b is $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.
- ightharpoonup Optimal V is much harder to determine, requires a few tricks (Barber 2012)

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix
$$C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$$
.

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C)$.

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C)$.

for desired number of iterations do

end for

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C).$

for desired number of iterations do Compute $ilde{C} \leftarrow \Psi^{-\frac{1}{2}}C\Psi^{-\frac{1}{2}}$

end for

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C)$.

for desired number of iterations do

Compute $ilde{m{C}} \leftarrow m{\Psi}^{-rac{1}{2}} m{C} m{\Psi}^{-rac{1}{2}}$.

Compute eigenvalue decomposition $\tilde{m{C}} = m{U} m{\Lambda} m{U}^T$.

end for

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C)$.

for desired number of iterations do

Compute $ilde{m{C}} \leftarrow m{\Psi}^{-rac{1}{2}} m{C} m{\Psi}^{-rac{1}{2}}$.

Compute eigenvalue decomposition $ilde{m{C}} = m{U} m{\Lambda} m{U}^T$.

Keep only the n largest eigenvalues in $oldsymbol{\Lambda}$ and the corresponding columns of $oldsymbol{U}.$

end for

function FA(data matrix X with N rows and m columns, desired latent dimensionality $n \leq m$)

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C)$.

for desired number of iterations do

Compute $ilde{m{C}} \leftarrow m{\Psi}^{-rac{1}{2}} m{C} m{\Psi}^{-rac{1}{2}}.$

Compute eigenvalue decomposition $ilde{m{C}} = m{U} m{\Lambda} m{U}^T$.

Keep only the n largest eigenvalues in Λ and the corresponding columns of U.

$$oldsymbol{V} \leftarrow oldsymbol{\Psi}^{rac{1}{2}} oldsymbol{U} oldsymbol{\Lambda}^{rac{1}{2}}.$$

end for


```
function FA(data matrix X with N rows and m columns, desired latent dimensionality n \leq m)
```

Compute mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.

Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T$.

Set initial noise to $\Psi \leftarrow \mathsf{diag}(C)$.

for desired number of iterations do

Compute $ilde{m{C}} \leftarrow m{\Psi}^{-rac{1}{2}} m{C} m{\Psi}^{-rac{1}{2}}$.

Compute eigenvalue decomposition $\tilde{m{C}} = m{U} m{\Lambda} m{U}^T$.

Keep only the n largest eigenvalues in $oldsymbol{\Lambda}$ and the corresponding columns of $oldsymbol{U}.$

$$oldsymbol{V} \leftarrow oldsymbol{\Psi}^{rac{1}{2}} oldsymbol{U} oldsymbol{\Lambda}^{rac{1}{2}}.$$

$$\Psi \leftarrow \mathsf{diag}(\boldsymbol{C}) - \mathsf{diag}(\boldsymbol{V}\boldsymbol{V}^T).$$

end for

Summary: FA procedure


```
function FA(data matrix \boldsymbol{X} with N rows and m columns, desired latent
dimensionality n < m)
     Compute mean \mu = \frac{1}{N} \sum_{i=1}^{N} x_i.
     Compute covariance matrix C = \frac{1}{N} \sum_{i=1}^{m} (x_i - \mu) \cdot (x_i - \mu)^T.
     Set initial noise to \Psi \leftarrow \operatorname{diag}(\boldsymbol{C}).
     for desired number of iterations do
           Compute 	ilde{m{C}} \leftarrow m{\Psi}^{-\frac{1}{2}} m{C} m{\Psi}^{-\frac{1}{2}} .
           Compute eigenvalue decomposition \tilde{\boldsymbol{C}} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T.
           Keep only the n largest eigenvalues in \Lambda and the corresponding columns of U.
           V \leftarrow \Psi^{\frac{1}{2}}II\Lambda^{\frac{1}{2}}
           \Psi \leftarrow \mathsf{diag}(\boldsymbol{C}) - \mathsf{diag}(\boldsymbol{V}\boldsymbol{V}^T).
     end for
     return V, \mu, \Psi.
end function
```


► Implementation: sklearn.decomposition.FactorAnalysis

- ▶ Implementation: sklearn.decomposition.FactorAnalysis
- lacktriangledown For $\Psi=0$ (i.e.: no noise), model becomes equivalent to PCA

- ▶ Implementation: sklearn.decomposition.FactorAnalysis
- lackbox For $oldsymbol{\Psi}=oldsymbol{0}$ (i.e.: no noise), model becomes equivalent to PCA
- ightharpoonup But: V is not normalized

- ► Implementation: sklearn.decomposition.FactorAnalysis
- lackbox For $oldsymbol{\Psi}=oldsymbol{0}$ (i.e.: no noise), model becomes equivalent to PCA
- But: V is not normalized
- ▶ Note: Encoding is **not** the focus of FA (it still works, though)

Factor Rotations

If $oldsymbol{R}$ is a rotation matrix, using $oldsymbol{V} oldsymbol{R}$ instead of $oldsymbol{V}$ has no effect

If $m{R}$ is a rotation matrix, using $m{V}m{R}$ instead of $m{V}$ has no effect

because
$$oldsymbol{V} oldsymbol{R} (oldsymbol{V} oldsymbol{R})^T = oldsymbol{V} oldsymbol{R} oldsymbol{T} oldsymbol{V}^T = oldsymbol{V} oldsymbol{V}^T$$

Varimax rotation

ightharpoonup Choose the rotation R that makes the factors "easiest to interpret"

Varimax rotation

- ightharpoonup Choose the rotation R that makes the factors "easiest to interpret"
- lacksquare Maximize variance in latent coordinates $\max_{m{R}} \sum_{i=1}^N \sum_{j=1}^n z_{i,j}^2$

Varimax rotation

- ► Choose the rotation R that makes the factors "easiest to interpret"
- lacktriangle Maximize variance in latent coordinates $\max_{m{R}} \sum_{i=1}^N \sum_{j=1}^n z_{i,j}^2$
- Nonlinear optmization, not discussed here, but implemented in Implementation: sklearn.decomposition.FactorAnalysis

▶ PCA is essentially eigenvalue decomposition of covariance matrix

- ▶ PCA is essentially eigenvalue decomposition of covariance matrix
- highly useful for efficiently discovering underlying factors and dimensionality reduction

- ▶ PCA is essentially eigenvalue decomposition of covariance matrix
- highly useful for efficiently discovering underlying factors and dimensionality reduction
- ► Selection of *n*: percentage of variance covered

- ▶ PCA is essentially eigenvalue decomposition of covariance matrix
- highly useful for efficiently discovering underlying factors and dimensionality reduction
- Selection of n: percentage of variance covered
- ▶ factor analysis is more robust to noise but needs more iterations

- ▶ PCA is essentially eigenvalue decomposition of covariance matrix
- highly useful for efficiently discovering underlying factors and dimensionality reduction
- Selection of n: percentage of variance covered
- factor analysis is more robust to noise but needs more iterations
- Interpretability can be enhanced with factor rotations

Literature I

Barber, David (2012). Bayesian Reasoning and Machine Learning. Cambridge, UK:

Cambridge University Press. url:

http://www.cs.ucl.ac.uk/staff/d.barber/brml/.

Ren, Mengye and Matthew MacKay (2019). **CSC 411 Lecture 12: Principal Component Analysis.** url: https:

//www.cs.toronto.edu/~mren/teach/csc411_19s/lec/lec12_matt.pdf.