Exponential Series:

Exponential Series is a series which is used to find the value of e^x. The formula used to express the e^x as Exponential Series is

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Analysis 1: Calculation of exponential function for different values of x

х	(Value calculated by Keil)	(Expected value)	no. of iteration	
0	1	1	60	
1	2.71828	2.7183	60	
2	7.38906	7.3891	60	
3	20.0855	20.0855	60	
4	54.5982	54.5982	60	
5	148.413	148.4132	60	
10	22026.5	22026.4688	60	
20	4.85E+08	485165216	60	
30	1.07E+13	1.07E+13	60	
40	2.35E+17	2.35E+17	60	
50	4.81E+21	4.81E+21	60	
60	6.10E+25	6.10E+25	60	
65	4.97E+27	4.97076E+27	60	
70	3.19E+29	3.19E+29	60	
75	1.62E+31	1.62E+31	60	

In the above curve, value of exponential function for different values of x has been calculated according the program compiled in Kiel. The curve more or less follows the exponential nature of the function.

Analysis 2: Deviation of curve from the actual one for different values of iteration

No. of		Value by	
iterations		Kiel	Value by C
	5	100599	100598.9219
	10	4.22E+07	4.22E+07
	15	1.61E+09	1605206784
	20	1.34E+10	1.333560E+10
	25	3.98E+10	39813054464

Exponential Value calculated by Keil

Exponential Value calculated by C program

Tan(x) series:

Given two integers N and X. The task is to find the sum of tan(x) series up to N terms.

The series: x + x3/3 + 2x5/15 + 17x7/315 + 62x9/2835...

In our ARM program, implementation of tan(x) series is done by dividing sine(x) and cosine(x) to achieve the same accurate results with more simplicity.

Sine(x) series by Taylor's expansion is given by:

$$\sin x = \sum_{x=0}^{\infty} \left(-1\right)^n \frac{x^{2n+1}}{(2n+1)!}$$

Expanding the above notation, the formula of Sine Series is;

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Cosine(x) series by Taylor's expansion is given by:

$$\cos x = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{x^{2n}}{(2n)!}$$

Expanding the above notation, the formula of Cosine Series is

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Analysis 1: Calculation of tangent function for different values of x

x(in	tan(x) (Value
= -	calculated by Keil)
0	0
30	0.57735
45	1
60	1.73205
89	57.2921
90	NaN
91	-57.2879
120	-1.73205
135	-1
	-0.577349
	-0.267948
	0.00E+00
	0.577352
	1
	1.73206
	57.2947
	NaN
	-57.286
	-1.42814
	-0.839094
	-0.36397
	0.00E+00
	30 45 60 89 90

tan(x) using keil

In the above curve, we are observing that the curve follows the ideal tan(x) curve as per the nature of wave shape and values at different angles are to be considered.

Analysis 2: Deviation of curve from the one obtained by C program

	x(in	tan(x) (Value	tan(x)(Value calculated	
S.no.	degrees)	calculated by Keil)	by C program)	Error
1	0	0	0	0
2	30	0.57735	0.5773	5E-05
3	45	1	1	0
4	60	1.73205	1.73205	0
5	89	57.2921	57.2858	0.0063
6	90	NaN	NaN	NaN
7	91	-57.2879	-57.2858	0.0021
8	120	-1.73205	-1.73205	0
9	135	-1	-1	0
10	150	-0.577349	-0.5773	4.9E-05
11	165	-0.267948	-0.26794	8E-06
12	180	0.00E+00	0	0
13	210	0.577352	0.5773	5.2E-05
14	225	1	1	0
15	240	1.73206	1.73205	1E-05
16	269	57.2947	57.2858	0.0089
17	270	NaN	NaN	NaN
18	271	-57.286	-57.301	0.015
19	305	-1.42814	-1.4281	4E-05
20	320	-0.839094	-0.83909	4E-06
21	340	-0.36397	-0.3639	7E-05
22	360	0.00E+00	0	0

Deviation of tan(x) values from C program

The values of tan(x) obtained by Keil much likely follows the actual values which were obtained by C program