$12a_{0506} \ (K12a_{0506})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{90} + 24u^{88} + \dots + u + 1 \rangle$$

 $I_2^u = \langle u^2 - u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 92 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{90} + 24u^{88} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{17} - 4u^{15} - 7u^{13} - 4u^{11} + 3u^{9} + 6u^{7} + 2u^{5} - u \\ u^{17} + 5u^{15} + 11u^{13} + 12u^{11} + 5u^{9} - 2u^{7} - 2u^{5} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{36} - 9u^{34} + \dots - u^{2} + 1 \\ u^{36} + 10u^{34} + \dots + u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} - u^{3} \\ -u^{13} - 3u^{11} - 5u^{9} - 4u^{7} - 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{30} + 7u^{28} + \dots - 2u^{12} + 1 \\ u^{32} + 8u^{30} + \dots + 12u^{8} + 4u^{6} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{79} - 20u^{77} + \dots + 4u^{5} - 2u \\ -u^{81} - 21u^{79} + \dots - 2u^{5} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{89} 96u^{87} + \cdots 8u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{90} + 48u^{89} + \dots + u + 1$
c_2, c_7	$u^{90} + 24u^{88} + \dots - u + 1$
c_3, c_6	$u^{90} - 36u^{88} + \dots + 35u + 1$
c_4, c_{11}	$u^{90} - 36u^{88} + \dots - 35u + 1$
c_5, c_{10}	$u^{90} + 24u^{88} + \dots + u + 1$
<i>c</i> ₈	$u^{90} + 12u^{89} + \dots + 355u + 29$
<i>c</i> ₉	$u^{90} - 48u^{89} + \dots - u + 1$
c_{12}	$u^{90} - 12u^{89} + \dots - 355u + 29$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{90} - 12y^{89} + \dots + 5y + 1$
c_2, c_5, c_7 c_{10}	$y^{90} + 48y^{89} + \dots + y + 1$
c_3, c_4, c_6 c_{11}	$y^{90} - 72y^{89} + \dots - 767y + 1$
c_8, c_{12}	$y^{90} + 8y^{89} + \dots + 16481y + 841$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.556433 + 0.835324I	-7.18763 + 2.08490I	0
u = -0.556433 - 0.835324I	-7.18763 - 2.08490I	0
u = -0.024996 + 0.994939I	3.43520 + 2.09623I	8.58300 + 0.I
u = -0.024996 - 0.994939I	3.43520 - 2.09623I	8.58300 + 0.I
u = -0.123552 + 0.999729I	1.18678 + 2.46011I	0
u = -0.123552 - 0.999729I	1.18678 - 2.46011I	0
u = 0.548923 + 0.847737I	-3.24727 - 6.11532I	0
u = 0.548923 - 0.847737I	-3.24727 + 6.11532I	0
u = -0.557501 + 0.853846I	-6.39706 + 10.87620I	0
u = -0.557501 - 0.853846I	-6.39706 - 10.87620I	0
u = 0.183246 + 1.004240I	-2.41430 + 1.30442I	0
u = 0.183246 - 1.004240I	-2.41430 - 1.30442I	0
u = -0.451800 + 0.860540I	0.69661 + 2.01708I	0
u = -0.451800 - 0.860540I	0.69661 - 2.01708I	0
u = 0.128657 + 1.032900I	-1.77995 - 7.01061I	0
u = 0.128657 - 1.032900I	-1.77995 + 7.01061I	0
u = 0.510603 + 0.767949I	-3.43520 - 2.09623I	-8.58300 + 4.19142I
u = 0.510603 - 0.767949I	-3.43520 + 2.09623I	-8.58300 - 4.19142I
u = -0.565146 + 0.686956I	-7.60942 + 2.39548I	-8.03590 - 3.45801I
u = -0.565146 - 0.686956I	-7.60942 - 2.39548I	-8.03590 + 3.45801I
u = -0.570856 + 0.661159I	-6.94292 - 6.37762I	-6.79931 + 3.36470I
u = -0.570856 - 0.661159I	-6.94292 + 6.37762I	-6.79931 - 3.36470I
u = 0.556299 + 0.668324I	-3.75583 + 1.68060I	-3.85601 - 0.15656I
u = 0.556299 - 0.668324I	-3.75583 - 1.68060I	-3.85601 + 0.15656I
u = -0.362656 + 0.775470I	0.22941 + 1.46786I	2.13380 - 4.56718I
u = -0.362656 - 0.775470I	0.22941 - 1.46786I	2.13380 + 4.56718I
u = 0.804947 + 0.154678I	-3.05581 + 11.52890I	-3.10731 - 7.64918I
u = 0.804947 - 0.154678I	-3.05581 - 11.52890I	-3.10731 + 7.64918I
u = -0.798246 + 0.151160I	-6.69000I	0. + 4.60895I
u = -0.798246 - 0.151160I	6.69000I	0 4.60895I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.791540 + 0.160688I	-4.06433 + 2.78100I	-4.82687 - 1.51453I
u = 0.791540 - 0.160688I	-4.06433 - 2.78100I	-4.82687 + 1.51453I
u = -0.793161 + 0.120606I	3.24727 - 6.11532I	2.14726 + 6.93728I
u = -0.793161 - 0.120606I	3.24727 + 6.11532I	2.14726 - 6.93728I
u = 0.482440 + 1.099170I	-3.44119 + 0.81536I	0
u = 0.482440 - 1.099170I	-3.44119 - 0.81536I	0
u = 0.784724 + 0.103510I	3.75583 + 1.68060I	3.85601 - 0.15656I
u = 0.784724 - 0.103510I	3.75583 - 1.68060I	3.85601 + 0.15656I
u = -0.479940 + 1.114160I	-0.05773 + 3.67296I	0
u = -0.479940 - 1.114160I	-0.05773 - 3.67296I	0
u = 0.493654 + 1.117110I	-3.67430 - 7.96529I	0
u = 0.493654 - 1.117110I	-3.67430 + 7.96529I	0
u = -0.776515 + 0.033180I	0.05773 + 3.67296I	-0.34241 - 3.66459I
u = -0.776515 - 0.033180I	0.05773 - 3.67296I	-0.34241 + 3.66459I
u = 0.469286 + 0.612610I	-0.69661 + 2.01708I	-2.53308 - 3.61771I
u = 0.469286 - 0.612610I	-0.69661 - 2.01708I	-2.53308 + 3.61771I
u = -0.406847 + 1.161990I	2.41430 + 1.30442I	0
u = -0.406847 - 1.161990I	2.41430 - 1.30442I	0
u = 0.758452 + 0.064597I	2.47004 + 0.60077I	3.44076 - 0.47239I
u = 0.758452 - 0.064597I	2.47004 - 0.60077I	3.44076 + 0.47239I
u = 0.365897 + 1.197990I	-1.05575I	0
u = 0.365897 - 1.197990I	1.05575I	0
u = -0.371458 + 1.204960I	4.06433 - 2.78100I	0
u = -0.371458 - 1.204960I	4.06433 + 2.78100I	0
u = 0.367726 + 1.209060I	1.05381 + 7.61321I	0
u = 0.367726 - 1.209060I	1.05381 - 7.61321I	0
u = 0.422336 + 1.195770I	6.11748 - 3.54885I	0
u = 0.422336 - 1.195770I	6.11748 + 3.54885I	0
u = -0.391217 + 1.206550I	7.18763 - 2.08490I	0
u = -0.391217 - 1.206550I	7.18763 + 2.08490I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.493698 + 1.168560I	1.77995 + 7.01061I	0
u = -0.493698 - 1.168560I	1.77995 - 7.01061I	0
u = 0.401574 + 1.204250I	7.60942 - 2.39548I	0
u = 0.401574 - 1.204250I	7.60942 + 2.39548I	0
u = -0.716511 + 0.137526I	-1.18678 - 2.46011I	-5.77540 + 3.61513I
u = -0.716511 - 0.137526I	-1.18678 + 2.46011I	-5.77540 - 3.61513I
u = -0.433989 + 1.202730I	3.67430 + 7.96529I	0
u = -0.433989 - 1.202730I	3.67430 - 7.96529I	0
u = 0.478981 + 1.188060I	5.71402 - 5.12960I	0
u = 0.478981 - 1.188060I	5.71402 + 5.12960I	0
u = -0.466527 + 1.195460I	3.44119 + 0.81536I	0
u = -0.466527 - 1.195460I	3.44119 - 0.81536I	0
u = 0.495551 + 1.192980I	6.94292 - 6.37762I	0
u = 0.495551 - 1.192980I	6.94292 + 6.37762I	0
u = 0.516466 + 1.184590I	-1.05381 - 7.61321I	0
u = 0.516466 - 1.184590I	-1.05381 + 7.61321I	0
u = -0.502991 + 1.193330I	6.39706 + 10.87620I	0
u = -0.502991 - 1.193330I	6.39706 - 10.87620I	0
u = -0.514902 + 1.189080I	3.05581 + 11.52890I	0
u = -0.514902 - 1.189080I	3.05581 - 11.52890I	0
u = 0.517655 + 1.190580I	-16.3978I	0
u = 0.517655 - 1.190580I	16.3978I	0
u = 0.645018 + 0.270245I	-6.11748 + 3.54885I	-7.14499 - 3.21882I
u = 0.645018 - 0.270245I	-6.11748 - 3.54885I	-7.14499 + 3.21882I
u = 0.619550 + 0.309895I	-5.71402 - 5.12960I	-6.45992 + 3.90146I
u = 0.619550 - 0.309895I	-5.71402 + 5.12960I	-6.45992 - 3.90146I
u = -0.607875 + 0.278085I	-2.47004 + 0.60077I	-3.44076 - 0.47239I
u = -0.607875 - 0.278085I	-2.47004 - 0.60077I	-3.44076 + 0.47239I
u = -0.376707 + 0.399911I	-0.22941 + 1.46786I	-2.13380 - 4.56718I
u = -0.376707 - 0.399911I	-0.22941 - 1.46786I	-2.13380 + 4.56718I

II.
$$I_2^u = \langle u^2 - u + 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u - 2 \\ -u + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u + 2 \\ u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 12u 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_4 \\ c_7, c_{11}, c_{12}$	$u^2 + u + 1$
c_3, c_5, c_6 c_8, c_9, c_{10}	$u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^2 + y + 1$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I	-6.08965I	0. + 10.39230I
u = 0.500000 - 0.866025I	6.08965I	0 10.39230I

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + u + 1)(u^{90} + 48u^{89} + \dots + u + 1)$
c_2, c_7	$(u^2 + u + 1)(u^{90} + 24u^{88} + \dots - u + 1)$
c_3, c_6	$(u^2 - u + 1)(u^{90} - 36u^{88} + \dots + 35u + 1)$
c_4, c_{11}	$(u^2 + u + 1)(u^{90} - 36u^{88} + \dots - 35u + 1)$
c_5,c_{10}	$(u^2 - u + 1)(u^{90} + 24u^{88} + \dots + u + 1)$
c ₈	$(u^2 - u + 1)(u^{90} + 12u^{89} + \dots + 355u + 29)$
<i>c</i> 9	$(u^2 - u + 1)(u^{90} - 48u^{89} + \dots - u + 1)$
c_{12}	$(u^2 + u + 1)(u^{90} - 12u^{89} + \dots - 355u + 29)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_9	$(y^2 + y + 1)(y^{90} - 12y^{89} + \dots + 5y + 1)$
c_2, c_5, c_7 c_{10}	$(y^2 + y + 1)(y^{90} + 48y^{89} + \dots + y + 1)$
c_3, c_4, c_6 c_{11}	$(y^2 + y + 1)(y^{90} - 72y^{89} + \dots - 767y + 1)$
c_8, c_{12}	$(y^2 + y + 1)(y^{90} + 8y^{89} + \dots + 16481y + 841)$