Coordination Number Six

Octahedral is a very important geometry. It is the starting point for the shapes of most transition metal complexes.

- 1. Regular octahedron all distances are EQUIVALENT
- 2. DistortedOctahedron(axial distortion)a ≠ b

3. DistortedOctahedron(Rhombic distortion)

4. DistortedOctahedron(trigonal distortion)

Trigonal prism is not as stable as the regular octahedron, because L-L distances are not maximized in the trigonally distorted geometry. This is a very rare geometry for ML₆ complexes

Higher Coordination numbers

Seven

Pentagonal	Octahedron	Trigonal
bipyramid	+ an	prism
	extra	+ an
	ligand	extra
	_	ligand

Eight

1. Cube → square antiprism twist of face

rotate the corners of once face until it is 45° out of phase

Cube → <u>dodecahedron</u>

pull corners away

from each other

(Grab opposite ends & pull up & down)

Nomenclature of Coodination Complexes

Follow IUPAC rules very specific

Examples

- 1. mer Trichlorotris (triphenylphosphine) Rhodium (I)
- 2. potassium tetrabromocuprate (II)
- 3. trans Dichlorotetraaquachromium (II) chloride

key aspects of these names

- 1. prefix cis, trans, mer, fac
- 1 define
- 2. Which ligands come first in a mixed ligand complex
- 3. Which type of prefix bi, bis, tri, tris, tetra, tetrakis etc.,

- 4. oxidation state of the metal
- 5. Special issues such as
 - Optical isomers
 - Bridging vs. non-bridging
 - Endings for ligands "ite" "ide" "ate" "o"
 - Special names for ligands
 - Charge on the compound

Book gives 11 rules

Distill them down

No spaces in name except if it is a salt, put a space between cation and anion and cation is first.

Name is organized according to:

Anionic Ligands/Neutral Ligands/CationicLigands/Metal Name/Oxidation state of Metal

Within these categories we must establish rules of:

- (a) alphabetical order
- (b) prefixes and suffixes for ligands
- (c) suffix or not for the metal
- Prefixes and Suffixes

<u>Prefixes</u>		use di, tri etc.,
di	bis	unless the ligand
Tri	tris	name already has
Tetra	tetrakis	one of these as part
Penta	pentakis	of it's name
Hexa	hexakis	

then use bis, tris etc.

Suffixes

(a) anionic ligands

end in "o"

 $\begin{array}{ccc} \underline{ate} & \rightarrow ato & acet\underline{ate} & \rightarrow acet\underline{ato} \\ \underline{ide} & \rightarrow ido & nitr\underline{ide} & \rightarrow nitr\underline{ido} \\ \underline{ite} & \rightarrow ito & sulf\underline{ite} & \rightarrow sulfito \end{array}$

 $CH_3CO_2^-$ acetato N_3^- nitrido SO_3^{-2} sulfito

(b) neutral ligands same as molecule name with a few exceptions:

 $NH_3 \rightarrow M-NH_3$ ammine

 $H_2O \rightarrow M-OH_2$ water aqua

NO → M-NO nitrogen nitrosyl monoxide CO → M-CO carbonyl monoxide

(c) organic groups (keep same name)

CH₃ M-CH₃ Methyl methyl

$$C_6H_5$$
 phenyl

- (d) metal suffix
 - (i) if compound is neutral or cationic $[RuL_6]^{3+}$ no suffix ruthenium \rightarrow ruthenium
 - (ii) if compound is anionic, then metal name is changed to ate ending

 $[RuL_6]^{3-}$ ruthenium \rightarrow ruthenate

Within each category of ligand, alphabetize the ligands within each group if more than one type is present (anions first, neutral second, cationic third) (NOTE: don't count bi, tri etc., in alphabetizing)

4

Metal oxidation state is written in parentheses in Roman numerals at the end

- 5 Special Characters and abbreviations
 - (a) Geometrical isomers cis, trans

fac, mer

- (b) optical isomers use symbols Δ and Λ
- (c) bridging ligands- use prefix μ"mu"

$$M$$
 μ -Cl

- if two of the same kind di- μ

di-
$$\mu$$
-Cl $M < Cl > M$

M-NO₂ nitro M-ONO nitrite

- (a) H₂O (hydrate)
 Water can be in a formula like this MCI₆·nH₂O
 (Number of water molecules of hydration)
 - H₂O monohydrate
 - 2H₂O dihydrate etc.

Now, start practicing!

dichlorotetraaquachromium(III) chloride

four ligands four ligands cation anion /Ex #2 [Pt(py)₄] [PtCl₄] tetrapyridineplatinium(II) tetrachloroplatinate(II)

normal ending ate ending

molecule is neutral

Ex #3 Pt(acac)(NH₃)(Cl) \uparrow Anionic neutral Anionic ligand

acetylacetonatochloroammineplatinum(II)

cation anion

Ex #4 K[FeCl₄] Fe is Fe(III)

†
anionic ligand

potassium tetrachloroferrate(III)

(iron is not written as ironate!)

neutral ligand \downarrow Ex #5 [Co(en)₃]₂(SO₄)₃
Cation anion

Ratio of cation to anion is 2:3
three ethylenediamine (en) ligands

tris(ethylenediamine)cobalt(III) sulfate

water
$$\downarrow$$
 Ex #6 [Fe(H₂O)₆]Br₂ cation anion

hexaaquairon(II) bromide

chloropentaamminerhodium(III) chloride
Practice drawing the structure based on a formula
mer-trihydrotris(triphenylphosphine)rhodium(III)

fac-trihydrotris(triphenylphosphine)rhodium(III)

Stability of Complexes in Solution

Stepwise formation of metal ligand complexes involve Equilibria

(1)
$$\mathbf{M} + \mathbf{L} \leftrightarrow \mathbf{ML}$$

$$K_1 = \frac{[ML]}{[M][L]}$$

(2) ML + L
$$\leftrightarrow$$
 ML₂

$$K_2 = \frac{[ML_2]}{[ML][L]}$$
(6) ML₅ + L \leftrightarrow ML₆

$$K_6 = \frac{[ML_6]}{[ML_5][L]}$$

- <u>Six equilibria</u> are <u>involved</u> in the <u>formation</u> of ML₆ from M and 6L.
- Each K_i is a step-wise formation constant
- Concentration of [L] determines the relative concentrations of products

Overall (rather than stepwise) Equilibrium Constants are:

$$M + L \leftrightarrow ML$$

$$b_{1} = \frac{[ML]}{[M][L]}$$

$$M + 2L \leftrightarrow ML_{2}$$

$$b_{2} = \frac{[ML_{2}]}{[M][L]^{2}}$$

$$M + 3L \leftrightarrow ML_{3}$$

$$b_{3} = \frac{[ML_{3}]}{[M][L]^{3}}$$

$$b_{6} = \frac{[ML_{6}]}{[M][L]^{6}}$$

Take β_3 for example:

$$b_{3} = \frac{[ML_{3}]}{[M][L]^{3}} \cdot \frac{[ML][ML_{2}]}{[ML][ML_{2}]}$$
 multiply num. & denom. by
$$b_{3} = \frac{[ML]}{[M][L]} \cdot \frac{[ML_{2}]}{[ML][L]} \cdot \frac{[ML_{3}]}{[ML_{2}][L]}$$
 this (really just 1)

Then $\beta_3 = K_1 \cdot K_2 \cdot K_3$

or the product of all three step-wise

Equilibrium Constants

in general: $\beta_K = K_1 \cdot K_2 \cdot K_3 \dots K_k$

overall formation constants

stepwise formation constants

Usually K_i decreases with each subsequent step.

As ligand is added to the metal ion Mⁿ⁺, M L forms first, then when more ligand is added, [ML₂] rises sharply & [ML] drops. With more added L, [ML₂] drops and [ML₃] rises etc., etc.,

Since the ligand addition to form a new complex is always reversible, an ML_n progresses with greater n values, there are more ligands to fall back off and fewer places to put the new ligands in the coordination sphere, so it is expected that Step – wise K_i 's would drop.

$$Cd^{2+} + NH_3 \leftrightarrow [Cd(NH_3)]^{2+}$$
 $K_1 = 10^{2.65}$ [$Cd(NH_3)_3$]²⁺ $K_4 = 10^{0.93}$ formation of $[Cd(NH_3)_4]^{2+}$ illustrates

the drop in equilibrium constant with added L groups.

- Q. What are formation constants useful for?
- A. Separation of ions in the presence of each other Ex. EDTA²⁻ selectively pulls CO²⁺ out of water in the presence of more highly charged cations such as Th⁴⁺

The hexadentate ligand "wraps itself" around the Co²⁺ center. EDTA²⁻ has less affinity for the 4+ cations

EDTA²⁻ brings up another important stability issue, namely the "Chelate Effect"

Why?

To reverse the reaction of M + en is more difficult than for M_n+2NH_3 . If one of the NH_2 groups "falls off" there is still another bond to hold it onto the metal

easy to reverse "partial dissociation"

 $[Ni(en)_3]^{2+}$ is 10^{10} times more stable!

Q. Why? The bonds are very similar!

A. ΔG° is affected by <u>enthalpic</u> and <u>entropic</u> contributions.

$$\Delta G^{\circ} = RT \ln K = \Delta H^{\circ} - T \Delta S^{\circ}$$
 recall

in the $[Ni(NH_3)_6]^{2+}$ vs $[Ni(en)_3]^{2+}$ case, we can perform a reaction and determine K.

$$[Ni(NH_3)_6]^{2+} + 3(en) \leftrightarrow [Ni(en)_3]^{2+} + 6NH_3$$

$$H_2O \xrightarrow{\text{chelate}} \xrightarrow{\text{complex}}$$

$$K = 10^{9.7}$$

$$\Delta G^{\circ} = -Rt \ln K$$

$$= -67 \text{kJ/mol}$$

$$\Delta H^{\circ} = -T\Delta S^{\circ} = -67 \text{ kJ/mol}$$

If we know that ΔH° is: $\Delta H^{\circ} = -12 \text{ kJ/mol}$
 $\underline{Then} -T\Delta S = -55 \text{ kJ/mol}$

Note, both enthalpy and entropy considerations favor the <u>chelate complex</u>, but the entropy effect is much more important

Bottom line:

The Chelate Effect is Essentially an Entropic Effect.

In order to understand this: Ni rxn must be examined in more detail.

$$[Ni(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+} + 6H_2O$$

The number of "particles' hasn't changed from Reactant to products (7 in both cases)

$$[Ni(H_2O)_6]^{2+} + 3en \quad [Ni(en)_3]^{2+} + 6H_2O$$

4 particles 7 particles
to the right \rightarrow is more disordered!

Reactivity Patterns of Coordination Compounds

Covers a very large number of issues in transition metal chemistry.

Main ones to be highlighted in this course:

- Substitution
- Electron transfer
- Isomerization

*The correlation of these reactions with electronic and molecular structure is the essence of much of inorganic chemistry.

Octahedral Complexes

Substitution chemistry

1. <u>Labile</u> – ligands that are easily substituted

<u>Lability</u> – refers to the ability of a coordination complex to lose one or more of it's ligands with others in solution

- 2. <u>Inert</u> refers to the lack of ability of a coordination complex to lose one or more of its ligands with others in solution
- *" <u>labile</u> vs <u>inert</u>" is not the same as "unstable vs <u>stable</u>."

Stability refers to the tendency of a species to exist. **Thermodynamic issue**.

Labile vs. Inert is a Kinetic Issue

[Co(NH₃)₆]³⁺ is not a very "stable" compound thermodynamically judging by:

$$[\text{Co(NH}_3)_6]^{3+} + 6\text{H}_3\text{O}^+ \leftrightarrow [\text{Co(H}_2\text{O})_6]^{3+} + 6\text{NH}_4^+$$

 $K = 10^{25} \text{ for left to right!}$

But the reaction takes months because "inertness" of the compound. The reaction is <u>very slow.</u>

Working definition of inert and labile labile reactions <1 minute half-life (over in time of mixing)

inert reactions >1 minute half-life (can easily be studied by conventional means)

Two Types of Ligand Substitution:

- 1. Associative (A) (addition-elimination)
- 2. Dissociative (D)

(A)
1.
$$[L_5MX] + Y \xrightarrow{\text{slow}} [L_5M(X)Y] \xrightarrow{\text{fast}} [L_5MY] + X$$
 \uparrow
7-coord. intermediate

Y directly binds before X leaves

(**D**)
2.
$$[L_5MX] \xrightarrow{\text{slow}} [L_5M] + X \xrightarrow{\text{fast}} [L_5MY] + X$$

5-coord. intermediate

In both cases, the first step, which is slow, is ratedetermining.

- (A) is bimolecular process
- (D) is unimolecular process

(A) & (D) are just extremes of what can really happen

Associative may not involve a "real" 7-coordinate intermediate. Some "degree" of bond-breaking to X and bond-making to Y is happening in the intermediate (or transition state complex)

<u>Dissociative</u>, likewise, may also have most of the M-X bond broken (but not all) before the near M-Y bond forms.

Real life is rarely simple!

Dissociative

Types of Reactions in Octahedral Metal Complex Substitution Chemistry

- (1) Solvent interactions
- (2) ion-pair formation
- (3) conjugate-base formation
- (4) anation reactions
- (5) aquation reactions acid, base hydrolysis
- (6) ligand assisted reactions

Square-Planar Substitution Reactions

- (1) charge effects
- (2) steric effects
- (3) entering ligand effects
- (4) stereochemistry