■ Complementary Subspaces

Subspaces $U,V\in\mathbb{R}^n$ are complementary if $U\cap V=\{0\}$ and $U+V=\mathbb{R}^n$

ullet $U+V=\mathbb{R}^n$ if any $x\in\mathbb{R}^n$ can be written as u+v

Proposition: Unique Decomposition

Suppose $U,V\in\mathbb{R}^n$ are complementary. Then any $x\in\mathbb{R}^n$ has a unique decomposition x=u+v.

Proof:

- Suppose we had another decomposition $x=u^\prime+v^\prime$
- ullet Then u-u'=v-v' but $u-u'\in U$ and v-v'=V
 - \circ The only thing in the intersection of U and V is 0, so the decompositions are the same

Proposition:

The vectors u,v that are the decomposition of x are the projections of x on U and V respectively

Proof Strategy

ullet Show that v and w are the closest points to x in V and W

Fundamental Theorem of Linear Algebra

N(A) and $C(A^t)$ are orthogonal complements