

Databricks & Fabric Better Together

Gerhard Brueckl, paiqo Marcel Franke, Microsoft

Marcel Franke Microsoft

- Technical Specialist Manager for Data & Al @Microsoft
- Team of 15 Technical Experts around Data Platform, Databases, Al & Machine Learning
- We cover all industries in Germany

https://github.com/marcelfranke

https://www.linkedin.com/in/marcelfranke/

marcel.franke@microsoft.com

- Azure Databricks & Fabric
- Passionate VSCode extension developer
 - Databricks Power Tools
 - Power BI Studio
 - Fabric Studio (preview)

https://github.com/gbrueckl

https://www.linkedin.com/in/gbrueckl

gerhard@gbrueckl.at

www.paigo.com

24-January-2025

- 6 parallel tracks
- 35 national and international speakers
- Sessions in German and English
- 300+ attendees
- FREE

Agenda

- Introduction
- Short overview Databricks
- Short overview Fabric
- Typical Scenarios & Considerations
- Outlook & Summary

Session Expectations

- We don't provide a deeper introduction into Databricks or Fabric
- We compare concepts and architecture patterns
- We look at the similarities and differences
- We show how both worlds can be integrated together

Introduction Databricks

What is Apache Spark?

Open-source Cluster computing framework

Massive Parallel Processing with linear scale

Built for:

- Speed/Scalability
- Ease-of-Use
- Extensibility

Support for multiple languages

• Java, Scala, Python, R, SQL, (.Net)

APACHE SPARK

An unified, open source, parallel, data processing framework for Big Data Analytics

Spark Unifies:

- Batch Processing
- Interactive SQL
- Real-time processing
- Machine Learning
- Deep Learning
- Graph Processing

What is Databricks?

Company that provides a Big Data processing solution in the Cloud based on Apache Spark

- Databricks on AWS
- Azure Databricks
- Databricks on Google Cloud
- No on-prem solution!

Creators of Apache® Spark™

Creators of Delta Lake

Spark & Databricks – A Brief History

What is Microsoft Fabric?

Reference Architecture Microsoft Data Platform

Customers enhancing their data estate face immense complexity

Microsoft Fabric

The data platform for the era of Al

From Multiple analytics services Unified stack Disconnected data sources **>>** All the data in one place Isolated application **>>** Entire estate Gen Al built on **>>>** Gen Al built in

Microsoft Fabric

What is needed for a Data Platform?

What is needed for a Data Platform?

- Storage Engine: Data Lake, Open Storage Format
- Processing Engine: Data Preparation, Transformations, Cleaning
- Analytics Engine: BI, Reporting, Querying
- Metastore / Catalog: Data Access Mgmt, Data Discovery, Data Sharing
- Governance & Security: User Access Management, Policies, Data Protection
- Machine Learning & Al: Feature Store, Model Hub & Registry, Logging

Feature Matrix

	Fabric	Databricks
Storage	OneLake	ADLS Gen2
Storage Format	Delta Lake	Delta Lake
Compute Engines	Spark, T-SQL, Dataflows,	Spark
Data Catalog	Lakehouse	Unity Catalog
Data Ingestion	Pipelines, Dataflows	LakeFlow Connect (Preview)
Scheduling & Orchestration	Pipelines	Workflows
Reporting	Power BI	Dashboards

Typical Scenarios

Real-life Examples

Reference Demo Scenario

Scenario 1: Databricks + Reporting in Fabric (Power BI)

Considerations

Which Power BI mode do you want to use?

• Import vs. Direct Query vs. Direct Lake

Where to implement the Semantic Layer?

Where to maintain Security? Data Governance?

Integrations - Reporting

Import	Direct Query	Direct Lake
✓	\checkmark	
\checkmark	\checkmark	✓
✓	✓	$\overline{\checkmark}$

Take-Aways

Databricks SQL Warehouse

Lakehouse + OneLake Shortcuts

Mirrored Azure Databricks
Catalog

Simple setup, no additional components

Robust and proven approach

Single security layer (UC)

Lake support (Low latency, no processing)

Direct Lake support (Low latency, no processing)

Semantic Layer close to Power BI

Automated sync of tables

Scenario 2: Mixed Teams and Responsibility (Central Lake)

Data Ingestion, Cleansing & Preparation

Querying, Reporting, AI & ML

Considerations

Why use different tools/technologies at all?

Which tool/technology for which layer?

Which storage technology to use?

ADLS Gen2 or OneLake?

Data Governance? Security? Linage?

Integrations – Mixed Teams

Databricks for lower layers Fabric for analytical layers

Fabric end-to-end Databricks for specific use-case

Databricks	Fabric		
Easier Raw Data Processing with Auto Loader + Delta Live Tables	Better Source Data Integration due various connectivity options		
Latest Spark + Delta Lake features	Integration with other Fabric components		
Higher Maturity	Better Reporting Performance for Power BI (V-Order / Direct Lake)		
[Machine Learning / Data Science]	End-to-End implementation in one Platform		
Professional Development	Business-User friendly (No-Code tools)		
Collaboration			
Different teams/responsibilities/skillsets			

Scenario 3: Mixed Teams and Responsibility (Data Mesh)

Data Source

Data Ingestion, Cleansing & Preparation

Querying, Reporting, AI & ML

Principles of Data Mesh

- Domains & Domain Ownership
- Data as a Product
- Self-serve data platform
- Federated governance

Scenario 3: Mixed Teams and Responsibility (Data Mesh)

Data Source

Data Ingestion, Cleansing & Preparation

Querying, Reporting, AI & ML

Considerations

- Are Data Mesh concepts supported?
- How do I design and publish Data Products?
- How can I exchange Data Products?
- How do I establish federated Data Governance?

Data Mesh support in Databricks

- Domains are represented logically
- Data Products can be created and consumed via Unity Catalog or Delta Sharing
- Cross-Region & Cross-Tenant support
- Federated Data Governance via Unity Catalog (one per region per tenant)

Data Mesh support in Fabric

- Domains are a key concept in the Product
- Data Products can be created and shared via Data Sharing
- Further Data Product functionality in Purview
- Cross-Region & Cross-Tenant support
- Data Products can be consumed via Fabric Data Sharing
- Central Data Governance via Purview

2024

Take-Aways

- Data Domains & Domain Ownership can be organized in both technologies but no further integration
- Data Products can be created in both technologies
- Data Sharing
 - Delta Shares can be consumed in Fabric (via Power BI, Dataflows & Spark)
 - Fabric Data Shares can not be consumed in Databricks
- Data Governance & Data Discovery
 - Unity Catalog does not integrate with Fabric
 - Purview can be extended with Unity Catalog objects via API

Summary

- Both are very capable data platforms on their own
- Both platforms have their strengths and weaknesses
- You can mix and match to get best of both worlds

What's next?

Databricks and Microsoft are working on even better compatibility:

- Better Integration with Unity Catalog in Fabric (Public Preview, readonly)
- Unity Catalog support for External Locations to OneLake (Private Preview Databricks)

Session Feedback

