

GraphSAGE论文阅读

报告人: 王云攀

时间: 2019.12.6

汇报内容

Abstract

- 1 Introduction
- 2 Related work
- 3 Proposed method: GraphSAGE^[1]
- 4 Experiments

1. Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive Representation Learning on Large Graphs. NIPS, 2017-Decem(Nips), 1025–1035. Retrieved from http://arxiv.org/abs/1706.02216

Abstract

Content

- Background
 - Low-dimensional embeddings of nodes in large graphs have proved useful
- Problem:
 - Most existing approaches require that all nodes in the graph are present during training of the embeddings: these approaches are transductive and do not naturally generalize to unseen nodes
- Solution
 - Present GraphSAGE, a general inductive framework that leverages node feature information to generate node embeddings for previously unseen data.
 - Learn a function that generates embeddings by sampling and aggregating features from a node' s local neighborhood.
- Result
 - Outperforms strong baselines on three inductive node-classification benchmarks.
 - Dataset: citation and Reddit post data, a multi-graph dataset of protein-protein interactions

1.1 Previous work about node-embedding: [5, 11, 28, 35, 36]

Ideas

 use dimensionality reduction techniques and distill the highdimensional information about a node's graph neighborhood into a dense vector embedding.

Problem

 focused on embedding nodes from a single fixed graph. And many real-world applications require embedding to be quickly generated for unseen nodes, or entirely new (sub)graphs.

Solution

increase the inductive capability.

1.2 Inductive Approaches

Inductive Capability

Inductive

- Advantages:
 - high-throughput, production machine learning systems, which operate on evolving graphs and constantly encounter unseen nodes.
- Usage:
 - facilitate generalization across graphs with the same form of features.
- Why difficult?
 - Generalizing to unseen nodes requires "aligning" newly observed subgraphs to the node embedding that the algorithm has already optimized on.
- Transductive [5, 11, 23, 28, 35, 36, 37, 39]
 - Majority of them using matrixfactorization-based objectives.
 - How to be Inductive?
 - They can be modified to operate in an inductive setting, but computationally expensive, requiring additional rounds of gradient descent before new predictions can be made.

1.3 Present work

- GraphSAGE(SAmple and aggreGatE), a general framework.
- Incorporate node features, the topological structure of each node's neighborhood as well as the distribution of node features in the neighborhood.

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

1.3 Present work

Creative:

- Instead of training a distinct embedding vector for each node, we train a set of aggregator functions that learn to aggregate feature information from a node' s local neighborhood
- Each aggregator function aggregates information from a different number of hops, or search depth, away from a given node.
- At test, use trained system to generate embedding for entirely unseen nodes by applying the learned aggregation functions.

Benchmarks

- Three node-classification benchmarks
- Two evolving document graphs (citation data and Reddit post data) and a multigraph generalization experiment based on a dataset of protein-protein interactions(predicting protein functions.)

Results

- Improves classification F1-scores by an average of 51% compared to using node features alone.
- Compared to transductive baseline, taking ~100x faster to run on unseen nodes.

2 Related work

Content

- Node-embedding approaches: Factorization-based embedding approaches
 - Random walk statistics and matrix factorization-based [5, 11, 28, 35, 36]
- General supervised approaches to learning over graphs
 - Kernel-based approaches [32]
 - Supervised learning over graph structures [7, 10, 21, 31]
- Recent advancements in applying convolutional neural networks to graph-structured data
 - Several convolutional neural network architectures [4, 9, 8, 17, 24]
 - Our approach is closely related to the graph convolutional network,
 GCN, semi-supervised learning in a transductive setting.

Key idea

Graph Neural Networks

Each node defines a computation graph

 Each edge in this graph is a transformation/aggregation function

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.

Graph Neural Networks

Intuition: Nodes aggregate information from their neighbors using neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

- 3.1 Embedding generation (i.e., forward propagation) algorithm
- 3.2 Learning the parameters of GraphSAGE
- 3.3 Aggregator Architectures

3.1 Embedding generation (i.e forward propagation) algorithm

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm Input : Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$; non-linearity σ ; differentiable aggregator functions AGGREGATE_k, $\forall k \in \{1, ..., K\}$; neighborhood function $\mathcal{N}: v \to 2^{\mathcal{V}}$ Output: Vector representations \mathbf{z}_v for all $v \in \mathcal{V}$ 1 $\mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V}$; 2 for k = 1...K do 3 | for $v \in \mathcal{V}$ do 4 | $\mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});$ 5 | $\mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)$ 6 | end 7 | $\mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}$ 8 end 9 $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$

- Relation to the Weisfeilier-Lehman
 Isomorphism Test (Test graph isomorphism)
 - Set K = |V|
 - Set the weight matrices as the identity
 - Use an appropriate hash function as an aggregator (with no non-linearity)
- Neighborhood definition
 - Uniformly sample a fixed-size set of neighbors
 - Draw different uniform samples at each iteration, k.
 - In the k iteration, the fix-sized of neighborhood is Sk.
 - K, S1, S2,... Sk, user-specified constants.
 - Our approach: K = 2, S1 * S2 <= 500

using aggregated information

3.1 Embedding generation (i.e forward propagation) algorithm

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

from neighbors

3.1 Embedding generation (i.e forward propagation) algorithm

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm Input : Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}

1 \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V};
2 for k = 1...K do
3 | for v \in \mathcal{V} do
4 | \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \mathrm{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
5 | \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \mathrm{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
6 | end
7 | \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

Idea: Aggregate Neighbors

3.1 Embedding generation (i.e forward propagation) algorithm

[NIPS '17]

Our Approach: GraphSAGE

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm Input : Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}} Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V} 1 \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V}; 2 for k = 1...K do 3 | for v \in \mathcal{V} do 4 | \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \mathsf{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\}); 5 | \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \mathsf{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right) 6 end 7 | \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k/\|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V} 8 end 9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```


3.2 Learning the parameters of GraphSAGE

[NIPS '17]

GraphSAGE: Training

- Aggregation parameters are shared for all nodes
- Number of model parameters is independent of |V|
- Can use different loss functions:
 - Classification/Regression: $\mathcal{L}(h_A) = ||y_A f(h_A)||^2$
 - Pairwise Loss: $\mathcal{L}(h_A, h_B) = \max(0, 1 dist(h_A, h_B))$

Jure Leskovec, Stanford University

Symbol Definition

- z_v , the output representations, u in V.
- Zv, a node that co-occurs near u on fixedlength random walk
- Pn(v): a negative sampling distribution
- Q: the number of negative samples

Content

- Encourage nearby nodes to have similar representations
- Enforce that the representations of disparate nodes are highly distinct

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$

3.3 Aggregator Architectures

Mean aggregator

- Content
 - Take the elementwise mean of the vectors
- Contrast
 - Between old convolutional aggregator and out is the concatenation operation in line 5 of Algorithm1

$$\mathbf{h}_v^k \leftarrow \sigma(\mathbf{W} \cdot \text{mean}(\{\mathbf{h}_v^{k-1}\} \cup \{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\}).$$

3.3 Aggregator Architectures

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}

Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}

1 \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V};
2 for k = 1...K do
3 | for v \in \mathcal{V} do
4 | \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \mathsf{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
5 | \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \mathsf{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
6 end
7 | \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k/\|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

LSTM aggregator

- Content
 - Based on LSTM architecture
- Contrast
 - Not inherently symmetric (i.e. they are not permutation invariant.

3.3 Aggregator Architectures

Pooling aggregator

- Content
 - an elementwise max-pooling operation
- Contrast
 - Symmetric and trainable

$$AGGREGATE_{k}^{pool} = \max(\{\sigma\left(\mathbf{W}_{pool}\mathbf{h}_{u_{i}}^{k} + \mathbf{b}\right), \forall u_{i} \in \mathcal{N}(v)\}),$$

4 Experiment

4.1 Inductive benchmarks

- Four baselines
 - A random classifer
 - A logistic regression feature-based classifier(that ignores graph structure)
 - The Deep Walk algorithm
 - A concatenation of the raw features and DeepWalk embedding.

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324	_	
DeepWalk + features	0.701	0.701	0.691	0.691	_	
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

4.2 Runtime and parameter sensitivity

Figure 2: **A**: Timing experiments on Reddit data, with training batches of size 512 and inference on the full test set (79,534 nodes). **B**: Model performance with respect to the size of the sampled neighborhood, where the "neighborhood sample size" refers to the number of neighbors sampled at each depth for K = 2 with $S_1 = S_2$ (on the citation data using GraphSAGE-mean).

谢谢