Frequency Regularized Deep Convolutional Dictionary Learning

I. Introduction

Convolutional Dictionary Learning:

- o Find optimal and data-driven basis for sparse representation
- o Convolutional structured dictionary

$$\min_{\{d^j\}, Z_i} \sum_{i=1}^{N} \frac{1}{2} \|y_i - \sum_{j=1}^{M} d^j * z_i^j\|_2^2 + \lambda \sum_{j=1}^{M} \|z_i^j\|_1$$

- o Solution via iterating between:
 - Sparse Coding
 - Dictionary Update
- o Slow!

- $d^{j} \rightarrow \text{dictionary filter}$
- $z_i^j \to \text{sparse code}$
- $y_i \rightarrow \text{noisy image}$
- Sparse Code every signal in dataset
- Dictionary changes every step

Use learnt convolutional sparse coding + dictionary learning to speed-up!

II. Convolutional Dictionary Learning Network (CDLNet)

o Approximate sparse coding: unrolled ISTA for *K* steps.

$$z^{(0)} = 0, z^{(k+1)} = S_{\theta^{(k)}} \left(z^{(k)} - A^{(k)} (B^{(k)} z^{(k)} - y) \right)$$

- o Linear convolutional dictionary (decoder):
 - o Use small-strided convolution.

o Training loss function:

$$\min_{\Theta} \|x - \hat{x}(y; \Theta)\|_2^2 \quad \text{s.t.:} \quad \theta^{(k)} \ge 0, \quad \|d^j\|_2^2 \le 1.$$
o Network parameters: $\Theta = \{\{A^{(k)}, B^{(k)}, \theta^{(k)}\}_{k=0}^{K-1}, \{d^j\}_{j=1}^M\}$

Nikola Janjušević[†], Amir Khalilian[†], Yao Wang[†]

[†]New York University, Tandon School of Engineering

III. Frequency Regularization of CDLNet

- Mutual coherence of the dictionary:
- Decreased mutual coherence → better representation.
- Low-pass atoms increase the mutual coherence.
- Natural images: piecewise smooth → require smooth filters.
- FCDLNet
 - Fix the low-pass channel.
 - Small stride: decrease mutual coherence while no need for shift processing.

$$d^1 = h, \quad d^j = g * \tilde{d}^j, \quad ||\tilde{d}^j||_2 \le 1, \quad \forall j \in \{2, \dots, M\}$$

• $h \to \text{lowpass filter} \quad g = \delta - h$

(a) Stride=1, No Freq. reg. $\mu(D) = 0.87$

(b) Stride=2, No Freq. reg. (c) Stride=2, with Freq. reg. $\mu(D) = 0.77$ $\mu(D) = 0.59$

Table 1: Denoising performance (PSNR) on BSD68 testset ($\sigma = \sigma_n^{\text{train}} = \sigma_n^{\text{test}}$).									
σ	BM3D	FFDNet	DnCNN	CSCNet	FCDLNet	Big FCDLNet			
15	31.07	31.63	31.72	31.40	31.45	<u>31.66</u>			
25	28.57	29.19	29.22	28.93	28.99	29.22			
50	25.62	<u>26.29</u>	26.23	26.04	26.11	26.30			
Params	-	486k	556k	64k	66k	510k			
CPU time (sec)	17.06	-	-	14.76	0.76	9.93			
GPU time (sec)	-	-	-	0.34	0.03	0.14			

o FCDLNet: M = 64, K = 10

o Big FCDLNet: M = 169, K = 30

NYU WIRELESS

IV. Blind Denoising: Noise-adaptive Thresholds

ISTA

- Soft-thresholding: $\theta \propto \text{Expected Sparsity}$
 - $\theta \propto \text{Noise Level}$

LISTA

• To get generalization across a noise range:

$$\theta^{(K)} = \nu^{(K)} \hat{\sigma}_n^2 \qquad \hat{\sigma}_n \approx \frac{\text{Median}(|\mathbf{c}|)}{0.6745}$$

• $c \rightarrow$ the diagonal-detail Wavelet subband of an input image

Table 2: Generalization of the network

		$\sigma_n^{\text{train}} = 20$	$\sigma_n^{\mathrm{train}} = [18, 22]$		
$\sigma_{\it n}^{ m test}$	ACSC	ConFirmNet	FCDLN et	FCDLNet	FCDLNet + Blind
5	32.02 (0.02)	32.23 (0.01)	32.17 (0.01)	<u>32.81</u> (0.01)	34.25 (0.02)
15	31.88 (0.03)	32.04 (0.03)	32.06 (0.03)	<u>32.30</u> (0.04)	32.45 (0.03)
30	22.89 (0.03)	23.13 (0.04)	23.70 (0.05)	<u>24.51</u> (0.05)	25.31 (0.06)

VI. CONCLUSION

- o Investigated unrolled convolutional sparse coding and dictionary learning frameworks.
- o Proposed small-strided convolutional dictionary with a fixed lowpass channel, and a set of learned frequency regularized filters.
- o Showed improved Denoising performance compared to other CDL methods.
- o Showed better generalization using the parameterization of thresholds.