1. Determine a resposta ao degrau unitário de cada um dos sistemas indicados:

a)

b)

Indique também o ganho DC (K), a constante de tempo (τ) , o tempo de subida (T_r) e o tempo de estabelecimento a 2% (T_s) de cada um dos sistemas. Esboce as suas respostas ao degrau unitário.

2. Para cada uma das Funções de Transferência abaixo indicadas, localize os seus pólos e zeros, e determine a resposta ao degrau unitário, identificando o tipo de resposta.

a)
$$G(s) = \frac{10(s+7)}{(s+10)(s+20)}$$

b)
$$G(s) = \frac{4}{(s+2)(s+4)}$$

c)
$$G(s) = \frac{30(s+2)}{s^2 + 17s + 16}$$

d)
$$G(s) = \frac{(s+5)}{(s+10)^2}$$

- 3. Considere a forma canónica de um sistema de 2ª ordem. Localize os seus pólos para uma situação de Overshoot percentual máximo de 30% e um tempo de estabelecimento de 0,05 s. Obtenha a Função de Transferência G(s) em malha fechada.
- 4. Obtenha os valores de ζ , ω_h , T_s , T_p , T_r e *Overshoot* percentual (%OS) dos seguintes sistemas de 2^a ordem, quando submetidos a uma entrada em degrau unitário:

a)
$$G(s) = \frac{120}{s^2 + 12s + 120}$$

b)
$$G(s) = \frac{1000}{s^2 + 20s + 1000}$$

5. Para o sistema abaixo representado, determine o valor do ganho k necessário para obter um *Overshoot* percentual máximo de 10%.

6. Considere um sistema de realimentação unitária com a seguinte função de transferência no ramo directo:

$$G(s) = \frac{(s+2)}{s(s+4)}$$

Determine as constantes de erro de posição, velocidade e aceleração $(K_p,\ K_v,\ K_a)$ e o erro em regime permanente (e_{ss}) do sistema ao degrau, rampa e parábola unitária.