实验三 放大器的频率特性研究

CastleStar14654

实验日期: 2020 年 10 月 12 日 提交日期: 2020 年 10 月 19 日

1 实验目的

研究单级放大器的幅频特性以及相关参数。

2 实验原理

由于放大器中含有耦合电容、旁路电容、分布电容及晶体管极间电容等与频率相关的阻抗项, 其放大效应与信号的频率 f 有关。这种关系称为放大器的频率特性,分为幅频特性和相频特性。 本实验主要测量幅频特性。单管共射极交流放大器如图 1 所示。

典型的放大电路在一个较宽的频率范围内(**中频段**)放大倍数相等,放大倍数记为 $A_{\rm um}$ 。在两侧,放大倍数都将下降。将功率降为一半(放大倍数降为 $\frac{1}{\sqrt{2}}$)的两个频率分别称为放大器的下界(下限)频率 f_L 和上界(上限)频率 f_H 。两者间的频率差称为放大器的通频带(带宽),以 BW 表示, $f_{\rm BW}=f_H-f_L$ 。

2.1 单级放大器的低频特性

低频段,耦合电容 C_1, C_2 和旁路电容 C_e 的容抗不能忽略,三者等效电路如图 2 所示。相应的下界频率分别为

$$f_{LC_1} = \frac{1}{2\pi(R_i + R_S)C_1}, f_{LC_2} = \frac{1}{2\pi(R_C + R_L)C_2}, f_{LC_e} = \frac{\beta}{2\pi(R_S' + R_{be})C_e}.$$
 (1)

这些值可与实验实测值比较。

2.2 单级放大器的高频特性

在高频段,串联的耦合电容的可以忽略,但与有关电阻并联的电容、极间电容和分布电容必须考虑。由于输入回路的时间常数往往远大于输出回路,因此可以只考虑输入回路。示意电路见图 3。

根据诺顿等效,可得上界频为

$$f_H = \frac{1}{2\pi R C'_{b'e}},\tag{2}$$

其中 $R = (R_S + r_{bb'}) \parallel r_{b'e}, C'_{b'e} = C_{b'e} + (1 + g_m R'_L) C_{b'e}$ 。

图 1: 单管共射极交流放 大器示意图

图 2: 单级放大器的低频等效示意图

图 3: 单级放大器的高频等效示意图

图 4: 实验电路图。仅使用右侧的一级放大电路(T₂ 三极管)

3 实验仪器及设计

使用 AFG3051C 任意波形发生器,TDS1012C 数字存储示波器。

实验电路图见图 4,使用的电路板见图 5。将通过测量不同的电容参数下的幅频特性来研究 其影响。 R_1, R_2 为使输入电压调整更为精细的分压电路。

T₂ 放大器的参数如下: 型号 3AX21,特征频率 $f_T=1$ MHz, $I_C=2$ mA。 $R_e=1$ kΩ, $R_{b1}=20$ kΩ, $R_{b2}=10$ kΩ, $R_c=1.8$ kΩ, $R_L=1.8$ kΩ。 $C_{11}=4.7$ μF, $C_{12}=0.47$ μF, $C_{21}=4.7$ μF, $C_{22}=0.47$ μF, $C_{e1}=47$ μF, $C_{e2}=470$ μF,偏置电压 $E_c=-9$ V, $C_L=1200$ pF。

4 实验步骤

- **1.** 将 T_1 放大器脱开,只测量实验板右边放大器。用直流电源给放大器加上 -9 V 的偏压 V_{CC} 。
- **2.** 将开关 K_3 、 K_4 、 K_5 、 K_6 、 K_7 均合向位置 1。此时元件参数取 $C_1=C_{11}=4.7$ μF, $C_2=C_{21}=4.7$ μF, $C_e=C_{e1}=47$ μF, C_L 不接入电路。

图 5: 实验实际使用的电路板图

表 1: 最基本参数的电路的放大倍数与频率关系。 $u_i = 60 \text{ mV}_{pp}$

f (Hz)	$u_o (V_{pp})$	A_u	f (Hz)	$u_o (V_{pp})$	A_u	f (Hz)	$u_o (V_{pp})$	A_u
100	0.82	13.7	2k	2.26	37.7	100k	1.98	33.0
150	1.14	19.0	4k	2.27	37.8	150k	1.84	30.7
200	1.36	22.7	5k	2.23	37.2	180k	1.72	28.7
250	1.56	26.0	7k	2.24	37.3	200k	1.58	26.3
300	1.68	28.0	10k	2.26	37.7	250k	1.38	23.0
350	1.80	30.0	20k	2.24	37.3	300k	1.22	20.3
400	1.92	32.0	30k	2.20	36.7	350k	1.11	18.5
600	2.16	36.0	40k	2.19	36.5	400k	0.98	16.3
800	2.26	37.7	60k	2.12	35.3	500k	0.82	13.7
1k	2.29	38.2	80k	2.08	34.7	600k	0.68	11.3

表 2: $C_1 = 0.47 \, \mu \text{F}$ 的电路的放大倍数与频率关系。 $u_i = 60 \, \text{mV}_{\text{pp}}$

f (Hz)	$u_o (V_{pp})$	A_u	f (Hz)	$u_o (V_{pp})$	A_u	f (Hz)	$u_o (V_{pp})$	A_u
9.0k	2.18	36.3	2.0k	2.06	34.3	900	1.68	28.0
7.0k	2.18	36.3	1.7k	2.02	33.7	800	1.60	26.7
6.0k	2.18	36.3	1.5k	1.94	32.3	700	1.52	25.3
5.0k	2.22	37.0	1.3k	1.92	32.0	600	1.36	22.7
4.0k	2.18	36.3	1.1k	1.82	30.3	500	1.24	20.7
3.0k	2.16	36.0	1.0k	1.76	29.3			

- **3.** 从 B 点输入频率为 5 kHz 的正弦信号(对地), $u_s = 200-300 \; \mathrm{mV_{pp}}$ 。用示波器监视放大器输入信号 u_i (电路图上 R_2 或电路板上 R_4 两端电压),调节信号源使有效值 $U_i = 10 \; \mathrm{mV_{rms}}$ (约 $30 \; \mathrm{mV_{pp}}$)。
- 4. 用示波器(或用毫伏表)监测放大器在 D 点的输出电压,作为测量值。
- **5.** 用逐点法测量放大器的幅频特性。从 5 kHz 分别向低端和高端改变放大器输入信号的频率。过程中,要微调信号源,始终保持输入 u_i 不变。注意选择一些有代表性的频率,测量并记录各频率及其放大器输出电压的相对幅度。
- **6.** 作出放大器的频率响应曲线,求出通频带的高低频截止频率 f_L, f_H ,并计算出此时放大器中频段的放大倍数 A_{20}
- 7. 更改参数, 重新测量低频截止频率 f_L 。三组参数如下:
 - $C_1 = C_{12} = 0.47 \ \mu\text{F}, \ C_2 = C_{21} = 4.7 \ \mu\text{F}, \ C_e = C_{e1} = 47 \ \mu\text{F};$
 - $C_1 = C_{11} = 4.7 \ \mu\text{F}, \ C_2 = C_{22} = 0.47 \ \mu\text{F}, \ C_e = C_{e1} = 47 \ \mu\text{F};$
 - $C_1 = C_{11} = 4.7 \ \mu\text{F}, \ C_2 = C_{21} = 4.7 \ \mu\text{F}, \ C_e = C_{e2} = 470 \ \mu\text{F}.$

另外,在第三组参数的基础上合上开关 K_7 ,接入 C_L ,测量高通截止频率 f_H 。将所得测量结果与先前的测量结果作比较。

5 实验数据与结果

各实验的数据列于表 1 至 5 中,绘成的幅频特性曲线见图 6 至 10。基本参数的界频为 $f_L=274~{\rm Hz}, f_H=194~{\rm kHz};~C_1=0.47~{\rm \mu F}$ 时 $f_L=759~{\rm Hz};~C_2=0.47~{\rm \mu F}$ 时 $f_L=316~{\rm Hz};~C_e=470~{\rm \mu F}$ 时 $f_L=88.5~{\rm Hz},~$ 接入 C_L 后 $f_H=98.8~{\rm kHz}.$

根据式 (1),下界频 f_L 反比于 C_1, C_2, C_e 。实验中分别减小 C_1, C_2 ,加大 C_e ,观察到 f_L 相应加大及减小。

根据式 (2), 上界频反比于 $C'_{h'e}$ 。实验中并入 C_L ,相当于增大 $C'_{h'e}$, f_H 相应减小。

图 6: 最基本参数的电路的放大倍数与频率关系。 $f_L=274~{\rm Hz}, f_H=194~{\rm kHz}$

图 7: $C_1=0.47~\mu \mathrm{F}$ 的电路的放大倍数与频率关系。 $f_L=759~\mathrm{Hz}$

表 3: $C_2=0.47~\mu \mathrm{F}$ 的电路的放大倍数与频率关系。 $u_i=60~\mathrm{mV_{pp}}$

f (Hz)	u_o (V _{pp})	A_u	f (Hz)	u_o (V _{pp})	A_u	f (Hz)	u_o (V _{pp})	A_u
15.0k	2.30	38.3	5.0k	2.25	37.5	700	2.14	35.7
12.0k	2.28	38.0	4.0k	2.24	37.3	600	2.06	34.3
10.0k	2.28	38.0	3.0k	2.26	37.7	500	1.96	32.7
9.0k	2.30	38.3	2.0k	2.24	37.3	400	1.80	30.0
8.0k	2.30	38.3	1.5k	2.24	37.3	350	1.72	28.7
7.0k	2.24	37.3	1.0k	2.22	37.0	300	1.58	26.3
6.0k	2.24	37.3	800	2.18	36.3	250	1.44	24.0

图 8: $C_2=0.47~\mu \mathrm{F}$ 的电路的放大倍数与频率关系。 $f_L=316~\mathrm{Hz}$

表 4: $C_e = 470~\mu \mathrm{F}$ 的电路的放大倍数与频率关系。 $u_i = 60~\mathrm{mV_{pp}}$

f (Hz)	$u_o (V_{pp})$	A_u	f (Hz)	$u_o (V_{pp})$	A_u	f (Hz)	$u_o (V_{pp})$	A_u
5k	2.50	41.7	150	2.20	36.7	80	1.69	28.2
3k	2.48	41.3	130	2.12	35.3	75	1.64	27.3
1k	2.52	42.0	110	1.98	33.0	70	1.56	26.0
500	2.52	42.0	100	1.88	31.3	60	1.42	23.7
300	2.48	41.3	90	1.80	30.0			
200	2.36	39.3	85	1.74	29.0			

图 9: $C_e=470~\mu \mathrm{F}$ 的电路的放大倍数与频率关系。 $f_L=88.5~\mathrm{Hz}$

表 5:	接入负载电容	C_L	的电路的放大倍数与频率关系。	$u_i = 60 \text{ mV}_{pr}$	n
------	--------	-------	----------------	----------------------------	---

f (kHz)	$u_o (V_{pp})$	A_u	f (kHz)	$u_o (V_{pp})$	A_u	f (kHz)	$u_o (V_{pp})$	A_u
5	2.42	40.3	25	2.34	39.0	80	1.90	31.7
7	2.42	40.3	30	2.32	38.7	90	1.80	30.0
10	2.40	40.0	40	2.24	37.3	100	1.70	28.3
13	2.38	39.7	50	2.16	36.0	110	1.62	27.0
16	2.36	39.3	60	2.08	34.7	120	1.56	26.0
20	2.34	39.0	70	1.98	33.0			

图 10: 接入负载电容 C_L 的电路的放大倍数与频率关系。 $f_H=98.8~\mathrm{kHz}$

6 思考题

- 1. 为了使得到的电压测量值不失真,均在测量仪器的同一放大倍数下测量,因此测量用的示波器频带需覆盖所测放大器的频带。如果示波器频带窄于所测放大器,将无法得到通频带的上下界。
- 2. 要将频率值 f 转换为 $\lg f$,此时,横纵坐标会有线性关系,即可通过线性插值等方法得到截止频率。保持输入电压等幅是为了使输出电压直观地反映放大倍数。保持输出电压等幅而进行测量理论上也是可以的,但实际操作中可能导致在截止频率附近需要在输入端加过大电压,不够安全。
- 3. 通频带指的是放大电路放大倍数基本不变的频率范围,取放大倍数为最大放大倍数的 ½ 倍以上的频率范围为通频带,两端点分别是高低截止频率。通过测量系统的幅频特性曲线,然后从曲线上确定系统放大倍数降为最高的 0.707 倍的频率即可得到高低截止频率。若要不测幅频特性曲线,则可先测得最大放大倍数,然后直接找到放大倍数为其 0.707 的频率即可。
- 4. 静态工作点没有变化,因为各级电路之间均有电容隔离直流分量。