

BCS401

Fourth Semester B.E./B.Tech. Degree Examination, Dec. 2024/Jan. 2025 Analysis and Design of Algorithms

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

a.	Module 1 Explain the various steps in algorithm design and analysis process with the	M 08	L L1	C
a.	Explain the various steps in algorithm design and analysis process with the	08	T 1	001
	flow diagram.	,	LI	CO1
b.	Give formal and informal definitions of asymptotic notations.	06	L1	CO1
c.	Explain the general plan of mathematical analysis of recursive algorithm with an example	06	L1	CO1
9		10	T.1	CO1
				COI
	Discuss the best case, worst case and average case efficiency of this algorithm.		21	
a.	Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency.	10	L2	CO2
b.	Design quick sort algorithm and obtain its best, average and worst case efficiency.	10	L2	CO2
a.	Write merge sort algorithm and sort the list E X A M P L E.	08	L2	CO ₂
b.		06	L3	CO ₂
4	Fig.04(b)	-	1	
c.	Write algorithm for pre-order, post order and in order traversals of a tree.	06	L2	CO2
	Fig.Q4(c)			-
1				
	b. a. b.	with an example. OR a. Design algorithm for tower of Hanoi problem and obtain time complexity. b. Write an algorithm to search an element in an array using sequential search. Discuss the best case, worst case and average case efficiency of this algorithm. Module 2 a. Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency. b. Design quick sort algorithm and obtain its best, average and worst case efficiency. OR a. Write merge sort algorithm and sort the list E X A M P L E. b. Apply the DFS based algorithm to solve the topological sorting problem for the following graph, Fig.Q4(b) C. Write algorithm for pre-order, post order and in order traversals of a tree. Write pre-order, in-order and post order for the given tree.	with an example. OR a. Design algorithm for tower of Hanoi problem and obtain time complexity. b. Write an algorithm to search an element in an array using sequential search. Discuss the best case, worst case and average case efficiency of this algorithm. Module – 2 a. Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency. b. Design quick sort algorithm and obtain its best, average and worst case efficiency. OR a. Write merge sort algorithm and sort the list EXAMPLE. Apply the DFS based algorithm to solve the topological sorting problem for the following graph, Fig. Q4(b) C. Write algorithm for pre-order, post order and in order traversals of a tree. Write pre-order, in-order and post order for the given tree.	with an example. OR a. Design algorithm for tower of Hanoi problem and obtain time complexity. b. Write an algorithm to search an element in an array using sequential search. Discuss the best case, worst case and average case efficiency of this algorithm. Module = 2 a. Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency. b. Design quick sort algorithm and obtain its best, average and worst case officiency. OR a. Write merge sort algorithm and sort the list E X A M P L E. Apply the DFS based algorithm to solve the topological sorting problem for the following graph, Fig.Q4(b) Fig.Q4(b) C. Write algorithm for pre-order, post order and in order traversals of a tree. Write pre-order, in-order and post order for the given tree. O6 L2

				ВС	S401
	V	* \Q			
0.5		Module – 3 Define AVI tree Construct AVI tree for the list 5 6 9 2 3 4 7	10	12	CO2
Q.5	a.	Define AVL tree. Construct AVL tree for the list 5, 6, 8, 3, 2, 4, 7.	10	L3	CO3
	b.	Define heap. Sort the following lists by heapsort:	10	L3	CO ₃
		H E A P S O R T (in alphabetical order)			
0.6		OR OR	40	T 0	00.4
Q.6	a.	Write the algorithm for comparison counting sort Discuss its efficiency.	10	L2	CO4
	b.	Design Horspools algorithm for string matching. Apply Horspools	10	L3	CO ₄
		algorithm to find the pattern BARBER on the text			
		JIM_SAW_ME_IN_BARBERSHOP			
0.5		Module - 4	10	T 2	000
Q. 7	a.	Write Warshall's algorithm and apply the same to compute transitive	10	L3	CO ₃
		closure of a directed graph.			
		a b o d e		- V	
		a[1 0 0 1 0]	5	V 1	
	-	b 0 1 0 0 0			
		d 1 0 0 0 0		-	
		e 0 1 0 0 1			
	b.	Construct minimum cost spanning tree using Kruskal's algorithm for the	10	L3	CO4
		following graph, Fig. Q7(b).	10		001
		600			
		40	_		
	- 1	10 70 20		- "	
		(a) 17 (b) (c)	×		= =
		30			
	1.5	80 (5)		7-4	g = "= ,
		Fig.Q7(b)			1
		OR			1
Q.8	a.	Solve the following single source shortest path problem assuming vertex	10	L3	CO4
	- 7.5	'5' as the source.			
		745			
		15 0 20 34			
		1 35 Th			
		20 10 15 10 30			
		3 = 5			
		20 4			
	1 E	Fig.Q8(a)			
	b.	Write Huffman's algorithm. Construct Huffman tree and resulting code	10	L4	CO4
		word for the following:	8		
		Character A B C D E -			
		Probability 0.5 0.35 0.5 0.1 0.4 0.2	la constant		
		Encode the text DAD_CBE.			
		Module – 5			
Q.9	a.	Explain the following with example: (i) P problem (ii) NP problem	06	L1	CO5
	b.	What is decision tree? Construct decision tree for the three element	08	L2	CO5
		insertion sort.			
	c.	Construct state space tree to solve 4 queens problem.	06	L3	CO5

Q.10 a. What is backtracking? Apply back tracking to solve the befow instance of low sum of subset problem; s = {3, 5, 6, 7}, d = 15 b. Solve the following instance of knapsack problem using branch and bound technique knapsack capacity = 10. Item Weight Value	-\					
Q.10 a. What is backtracking? Apply back tracking to solve the below instance of sum of subset problem: s = {3, 5, 6, 7}, d = 15					BC	S401
Q.10 a. What is backtracking? Apply back tracking to solve the below instance of sum of subset problem: s = {3, 5, 6, 7}, d = 15 b. Solve the following instance of knapsack problem using branch and bound technique knapsack capacity = 10. Item						
sum of subset problem: s = {3, 5, 6, 7}, d = 15 b. Solve the following instance of knapsack problem using branch and bound technique knapsack capacity = 10. Item Weight Value 1	0.10	1	I Comb			
b. Solve the following instance of knapsack problem using branch and bound technique knapsack capacity = 10. Item Weight Value	Q.10	a.		10	L3	CO6
technique knapsack capacity = 10. Item Weight Value 1		b.		10	L4	CO6
			technique knapsack capacity = 10.			
2 7 42 3 5 25 4 3 12 *****						
			4 3 12			
					41	
			A'0" .0			
		4				