CSCI 4593: Homework 2

2.3

sub \$t0, \$s3, \$s4; \$t0 = i - j

add \$t0, \$s6, \$t0; \$t0 = &A + (i - j)*4

lw \$t1, \$0(\$t0); \$t1 = A[i-j]

sw \$t1, 32(\$s7); B[8] = A[i-j]

2.7

Little Endian

Low Memory \rightarrow High Memory

Hex Digit	12	ef	cd	ab
Address	0	4	8	12

Big Endian

Low Memory→High Memory

Hex Digit	ab	cd	ef	12
Address	0	4	8	12

instruction	type	opcode	rs	rt	rd	immed
addi \$t0, \$s6, 4	I-type	8	22	8		4
add \$t1, \$s6, \$0	R-type	0	22	0	9	
sw \$t1, 0(\$t0)	I-type	43	8	9		0
lw \$t0, 0(\$t0)	I-type	35	8	8		0
add \$s0, \$t1, \$t0	R-type	0	9	8	16	

2.12.3

 $\$s0 = 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

 $\$s1 = 1101\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

inverted $\$s1 = 0010\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111$

negated $\$s1 = 0011\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

	1000	0000	0000	0000	0000	0000	0000	0000
+	0011	0000	0000	0000	0000	0000	0000	0000
	1011	0000	0000	0000	0000	0000	0000	0000

 $\$t0 = 1011\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ \to 0xB0000000$

2.12.4

Yes, it is the desired result. Converting the operands to decimal numbers and subtracting returns a negative number as does the binary subtraction.

2.14

op (6 bits)	rs (5 bits)	rt (5 bits)	rd (5 bits)	shamt (5 bits)	funct (6 bits)
000000	10000	10000	10000	00000	100000
0	\$s0	\$s0	\$s0	0	32

Type = R-type

Assembly = add \$s0, \$s0, \$s0

op (6 bits)	rs (5 bits)	rt (5 bits)	rd (5 bits)	shamt (5 bits)	funct (6 bits)	address/const
43	\$t2	\$t1	n/a	n/a	n/a	32
101011	01010	01001	n/a	n/a	n/a	0000000000100000

Type = I-type

Binary = $1010\ 1101\ 0100\ 1001\ 0000\ 0000\ 0010\ 0000$

Hex = 0xAD490020

2.17

op (6 bits)	rs (5 bits)	rt (5 bits)	rd (5 bits)	shamt (5 bits)	funct (6 bits)	address/const
0x23	1	2	n/a	n/a	n/a	0x4
35	\$at	\$v0	n/a	n/a	n/a	4
100011	00001	00010	n/a	n/a	n/a	00000000000000100

Type	Instruction	Binary	Hex
I-type	lw \$v0, 4(\$at)	1000 1100 0010 0010 0000 0000 0000 0100	0x8C220004

2.19.2

 $t0 = 1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010$

sll \$t2, \$t0, $4 \rightarrow$ \$t2 = \$t0 << by 4 bits \$t2 = 1010 1010 1010 1010 1010 1010 1010 0000 = 0xAAAAAAA

andi \$t2, \$t2, $-1 \rightarrow $t2 = $t2 \& -1$

1010 1010 1010 1010 1010 1010 1010 0000 &1111 1111 1111 1111 1111 1111 1111 1111 1010 1010 1010 1010 1010 1010 1010 0000

t2 = 0xAAAAAAAA

\$t2 = 3

2.24

No, you cannot jump the pc from 0x20000000 to 0x40000000 with a jump instruction because a J-type instruction only allows for a jump address of 26 bits.

No, you cannot use beq to jump the pc from 0x20000000 to 0x40000000 because it only allows for an address change of 16 bits.

2.26.1

```
$t1 = 10
\$s2 = 0
                               \$0 < \$t1 ? \$t2 = 1 : \$t2 = 0
LOOP: slt $t2, $0, $t1
                               go to DONE if t2 == 0
        beq $t2, $0, DONE
                               \$t1 = \$t1 - 1
        subi $t1, $t1, 1
        addi $s2, $s2, 2
                               \$s2 = \$s2 + 2
j LOOP
DONE:
             7
 $t1
      9
          8
                 6
                               3
                                   2
                                             0
                     5
                          4
                                        1
```

12

14

16

18

20

10

Final Value for \$s2 = 20

 $6 \mid 8$

2

\$s2

t1 = 0x1000 0000

 $$t2 = 0x1000\ 0010$

Data at $0x1000\ 000 = 0x11223344$

lbu \$t0, 0(\$t1) \$t0

t0 = 0x11

sw \$t0, 0(\$t2)

Address of \$t2 has the data in \$t0 stored there.

\$t2 has the value 0x00000011

2.40

 $Address = 0010\ 0000\ 0000\ 0001\ 0100\ 1001\ 0010\ 0100 = 0x20014924$

No, if the PC starts at 0x00000000 it does not have enough bits to change to reach that address.

3.1

$$5ED4 - 07A4 = 5ED4 + (-07A4)$$

 $5ED4 = 0101 \ 1110 \ 1101 \ 0100$

 $07A4 = 0000\ 0111\ 1010\ 0100$

inverted $07A4 = 1111 \ 1000 \ 0011 \ 1011$

negated $07A4 = 1111\ 1000\ 0101\ 1100$

5ED4 - 07A4 = 5730

4365 - 3412 = 4365 + (-3412) $4362 = 100 \ 011 \ 110 \ 101$ $3412 = 011 \ 100 \ 001 \ 010$ inverted $3412 = 100 \ 011 \ 110 \ 101$ negated $3412 = 100 \ 011 \ 110 \ 101$ $100 \ 011 \ 110 \ 101$ $+ \ 100 \ 011 \ 110 \ 110$

101

011

4365 - 3412 = 0753

111

000

3.6

185 - 122 = 185 + (-122) 185 = 10111001 122 = 01111010inverted 122 = 10000101negated 122 = 10000110 10111001 + 10000110 001111111

185 - 122 = 63

Neither overflow or underflow occured.

3.12

62 * 12

 $62 = 110 \ 010$

 $12 = 001 \ 010$

Iteration	Step	Mulitplier	Multiplicand	Product
0	Initial Values	001 010	000 110 010	000 000 000
1	1a: $0 \Rightarrow \text{No operation}$	001 010	000 110 010	000 000 000
	2: Shift left Multiplicand	001 010	001 100 100	000 000 000
	3: Shift right Multiplier	000 101	001 100 100	000 000 000
2	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	000 101	001 100 100	001 100 100
	2: Shift left Multiplicand	000 101	011 001 000	001 100 100
	3: Shift right Multiplier	000 010	011 001 000	001 100 100
3	1a: $1 \Rightarrow \text{No operation}$	000 010	011 001 000	001 100 100
	2: Shift left Multiplicand	000 010	110 010 000	001 100 100
	3: Shift right Multiplier	000 001	110 010 000	001 100 100
4	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	000 001	110 010 000	111 110 100
	2: Shift left Multiplicand	000 001	001 100 100 000	111 110 100
	3: Shift right Multiplier	000 000	001 100 100 000	111 110 100

 $62 * 12 = 111 \ 110 \ 100 = 764$