47.8. PROBLEMS 1639

(b) There is some vector, $c \in \mathbb{R}^d$, so that $c^{\top}V > 0$, which means that $c^{\top}v_j > 0$, for $j = 1, \ldots, n$.

Problem 47.2. Check that the dual in maximization form (D'') of the Dual Program (D') (which is the dual of (P) in maximization form),

maximize
$$-b^{\top}y^{\top}$$

subject to $-A^{\top}y^{\top} \le -c^{\top}$ and $y^{\top} \ge 0$,

where $y \in (\mathbb{R}^m)^*$, gives back the Primal Program (P).

Problem 47.3. In a General Linear Program (P) with n primal variables x_1, \ldots, x_n and objective function $\sum_{j=1}^n c_j x_j$ (to be maximized), the m constraints are of the form

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i,$$

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i,$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i,$$

for i = 1, ..., m, and the variables x_j satisfy an inequality of the form

$$x_j \ge 0,$$

$$x_j \le 0,$$

$$x_j \in \mathbb{R},$$

for j = 1, ..., n. If $y_1, ..., y_m$ are the dual variables, show that the dual program of the linear program in standard form equivalent to (P) is equivalent to the linear program whose objective function is $\sum_{i=1}^{m} y_i b_i$ (to be minimized) and whose constraints are determined as follows:

if
$$\begin{cases} x_j \ge 0 \\ x_j \le 0 \\ x_j \in \mathbb{R} \end{cases}$$
, then
$$\begin{cases} \sum_{i=1}^m a_{ij} y_i \ge c_j \\ \sum_{i=1}^m a_{ij} y_i \le c_j \\ \sum_{i=1}^m a_{ij} y_i = c_j \end{cases}$$
,