${ m [CYBER1][2024\text{-}2025]}$ Partiel (Sujet A) CORRECTION ${ m (1h30)}$

Architecture des Ordinateurs 1

NOM:	PRÉNOM:
74	

Vous devez respecter les consignes suivantes, sous peine de 0:

- Lisez le sujet en entier avec attention
- Répondez sur le sujet
- Ne détachez pas les agrafes du sujet
- Écrivez lisiblement vos réponses (si nécessaire en majuscules)
- Écrivez lisiblement votre nom et votre prénom sur la copie dans les champs prévus au dessus de cette consigne
- Ne trichez pas

1 Conversions Binaires d'Entiers (5 points)

1.1 (1 point) Rappelez les 14 premières puissances de 2 :

2^{0}	2^1	2^2	2^3	2^4	2^5	2^{6}	2^7	2^8	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}
1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192

1.2 (2 points) Convertissez ces nombres vers le format décimal. Vous donnerez leur interprétation sur 12 bits en tant que nombre signé, puis non-signé.

	signé	non-signé
\$ 4A5	1189	1189
\$ 936	-1738	2358

1.3 (2 points) Convertissez ces nombres décimaux en binaire sur 12 bits, puis en hexadécimal.

		binaire											hexadécimal
1914	0	1	1	1	0	1	1	1	1	0	1	0	\$ 77A
-356	1	1	1	0	1	0	0	1	1	1	0	0	\$ E9C

2 Flottants IEEE 754 (8 points)

2.1 (2 points) Rappelez les formats IEEE 754 des flottants, ainsi que leurs biais :

simple précision	(<u>32</u> bits)	Signe : 1 bit	Exposant: 8 bits	Mantisse : 23 bits
double précision	(<u>64</u> bits)	Signe : 1 bit	Exposant : 11 bits	Mantisse : 52 bits

	biais
simple précision	127
double précision	1023

2.2 (4 points) Reportez en binaire l'exposant biaisé trouvé dans ces flottants IEEE 754, puis cochez à quelle(s) catégorie(s) ils correspondent :

Flottant IEEE 754	Exposant biaisé	Caté	égorie(s)
	% 1111 1111	□ + Zéro	$\Box + \infty$
\$ FF82 A420	/0 1111 1111	\square – Zéro	$\Box -\infty$
9 FF02 A420	(255)	\square Normalisé	\square Supranormalisé
	(200)	\square Dénormalisé	✓ NaN
	% 0000 0000	□ + Zéro	$\Box + \infty$
\$ 8000 0000	70 0000 0000	✓ – Zéro	$\Box -\infty$
\$ 8000 0000	(0)	\square Normalisé	\square Supranormalisé
	(0)	☐ Dénormalisé	\square NaN
	% 0000 0000	\Box + Zéro	$\Box + \infty$
\$ 007F 8A90	70 0000 0000	\square – Zéro	$\Box -\infty$
\$ 007F 8A90	(0)	\square Normalisé	\square Supranormalisé
	(0)	✓ Dénormalisé	\square NaN
	% 1101 0100	□ + Zéro	$\Box + \infty$
\$ 6A78 2100	/0 1101 0100	\Box – Zéro	$\Box -\infty$
\$ 0A78 2100	(010)	✓ Normalisé	\square Supranormalisé
	(212)	☐ Dénormalisé	□ NaN

2.3 (2 points) Convertissez ces valeurs décimales vers le format IEEE 754 simple précision tout en indiquant le signe et l'exposant biaisé en binaire :

Nombre	S		Exposant biaisé							H	Iexao	décin	nal (l	EEE	754)	
42,015625	0	1	0	0	0	0	1	0	0	\$ 4	2	2	8	1	0	0	0
-56,375	1	1	0	0	0	0	1	0	0	\$ С	2	6	1	8	0	0	0

- 3 Circuits Logiques (7 points)
- 3.1 (1 point) Écrivez la formule associée à ce schéma :

$$X = ((a \text{ NON-ET } b) \text{ OU } (b \text{ OU } c))$$

NON-ET
(NON $(B \text{ OU } C)$)

$$X = \overline{(\overline{(A \cdot B)} + (B + C)) \cdot \overline{(B + C)}}$$

- 3.2 (2 points) Remplissez la table de 3.3 vérité de la formule précédente :
 - $\overline{\mathbf{C}}$ \mathbf{A} \mathbf{B} \mathbf{X}

3.3 (2 points) Déduisez-en la formule des mintermes, ainsi que la formule des maxtermes :

Mintermes:

$$X = (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

Maxtermes:

$$X = (A + B + C) \cdot (\overline{A} + B + C)$$

3.4 (2 points) Remplissez le tableau de Karnaugh, formez les groupes, et déduisezen la formule réduite :

<u>B</u> <u>C</u>

A

	00	01	11	10
0	0	1	1	1
1	0	1	1	1

$$X = C + B$$

SUJET A CORRECTION ARCHITECTURE DES ORDINATEURS 1