6. Условные математические ожидания и условные распределения II

1. Имеются серверы, которые периодически выходят из строя. Обозначим ξ_i время между i-м и (i+1)-м моментами выхода сервера из строя. Предполагается, что величины ξ_i независимы в совокупности и имеют экспоненциальное распределение с параметром λ .

Обозначим N_t — количество серверов, которые вышли из строя к моменту времени t (в начальный момент времени $N_0 = 0$). В курсе случайных процессов будет доказано, что для любых s < t величина $N_t - N_s \sim Pois(\lambda(t-s))$ и независима с N_s . При этом N_t как функция от t будет называться пуассоновским процессом интенсивности λ .

Необходимо узнать, сколько серверов нужно докупить к моменту времени t взамен вышедших из строя. В момент времени s предсказанием количества серверов, вышедших из строя к моменту времени t, будем считать величину $\mathsf{E}(N_t|N_s)$. Напишите программу, которая с момента запуска через каждые t_0 секунд (можно брать $t_0/100$, чтобы не спать перед компьютером) будет выводить уточненное значение предсказания, т.е. $\mathsf{E}(N_t|N_{kt_0})$ для $k\in\mathbb{N}$. В текстовых полях јируter-ноутбука напишите явно вывод формулы для $\mathsf{E}(N_t|N_s)$.

В файле 6.csv содержатся сообщения о выходе из строя серверов. По этим данным напишите программу, которая каждые t_0 секунд выдает значение предсказания. Значения параметров t_0 , t и λ также находятся в приложенном файле.