CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 6651: Algorithm Design Techniques

Winter 2022

Quiz # 1

Question 1

What is the complexity for computing the following sum: $1^3 + 2^3 + \cdots + n^3$:

- $\square \Omega(n^2)$
- $\Box \ \theta(n^4)$
- $\square \Omega(n^3)$
- $\square O(n^2)$

Solution

$$1^{3} + 2^{3} + \dots + n^{3} = \sum_{i=1}^{n} i^{3} = (1 + 2 + \dots + n)^{2} = \left(\frac{n(n+1)}{2}\right)^{2}.$$

The first part of the identity is sometimes called Nicomache's theorem, see Figure 1 for an illustration of it.

Answers are therefore as follows:

- \square $\Omega(n^2)$
- \square $\theta(n^4)$
- \square $\Omega(n^3)$
- $\boxtimes O(n^2)$

Figure 1: Visualisation graphique de l'égalité

Question 2

Assume that algorithm A and another algorithm B take $\log_2 n$ and \sqrt{n} microseconds, respectively, to solve a problem. What is the largest size n of a problem these algorithms can solve, respectively, in one second?

- $\Box \ 2^{10^6} \ {\rm and} \ 10^6$
- $\Box~2^{10^6}$ and 10^{12}
- $\square \ 2^{10^6} \ {\rm and} \ 6 \times 10^6$
- $\square \ 2^{10^3}$ and 3×10^6
- $\square \ 2^{10^3} \ {\rm and} \ 3 \times 10^3$
- $\Box~2^{10^3}$ and 6×10^6
- $\square \ 2^{10^3}$ and 6×10^3

Solution

A microsecond is 10^{-6} seconds. Hence, a second = 10^{6} microseconds.

One hour = $60 \times 60 \times 10^6 = 3.6 \times 10^9$ microseconds.

One month (30 days) = 2.592×10^{12} microseconds.

One century = 3.1104×10^{15} microseconds.

 $f(n) = \log n$ in this case, the largest value n such that $\log_2 n \le 10^6$.

We rewrite as, $2^{\log n} \le 2^{10^6}$, thus $\log_2(n)$ and \sqrt{n} , in one second

 2^{10^6} and 10^{12} the value will be 10^6 and 10^6

Question 3

Consider the following algorithm

$$\begin{aligned} \text{Integer } j, n \\ \text{While } j \leq n \\ \leftarrow j \times j \end{aligned}$$

Assume initial value of j such that $j \geq 2$ The number of comparisons made in the execution of the loop for any > 0 is

 $\Box \lfloor \log_2 n \rfloor \times \log n$

 \square n

 $\square \ \lfloor \log_2 n \rfloor$

 $\mathbb{Z} \lfloor \log_2 n \rfloor + 1$

Solution

Assume n is a power of 2

For every iteration of while loop, velue of j becomes half, hence after $\log n$ comparisons, it will become 1.

There is the need of a last comparison to terminate the whole loop

Hence total number of comparisons = $\log n + 1$

If number is not the power of 2, then we have to take the floor of $\log n$

Hence $\lfloor \log_2 n \rfloor + 1$ is the correct answer

Question 4

What is the solution to the recurrence relation T(n) = 9T(n/3) + O(n) ?

- $\square \ n^2$
- $\square n^{\log_2 9}$
- \square $O(n^2)$
- \square $O(n^{\log_2 9})$

Solution

 $n^2 = n^{\log_2 9}$!!!