LOGICAL ENCODING OF PROGRAMS

E.g.
$$x := x + 1$$
, $V = \{x\}$

$$V' = \{x'\}$$

$$V' = \{x'\}$$

$$V' = \{x'\}$$

$$V' = \{x''\}$$

$$V'$$

FOL formules in LIA (linear integer crithmetic)

$$\varphi := \alpha_1 = \alpha_2$$

$$| \alpha_1 \le \alpha_2$$

$$| \alpha_1 \le \alpha_2$$

$$| \alpha_2 \le \alpha_3$$

$$| \alpha_1 \le \alpha_3$$

$$| \alpha_2 \le \alpha_4$$

$$| \alpha_1 \le \alpha_2$$

$$| \alpha_2 \le \alpha_3$$

$$| \alpha_1 \le \alpha_4$$

$$| \alpha_2 \le \alpha_3$$

$$| \alpha_1 \le \alpha_4$$

$$| \alpha_2 \le \alpha_4$$

$$| \alpha_1 \le \alpha_3$$

$$| \alpha_2 \le \alpha_4$$

$$| \alpha_1 \le \alpha_4$$

$$| \alpha_2 \le \alpha_4$$

$$| \alpha_2 \le \alpha_4$$

$$| \alpha_3 \le \alpha_4$$

$$| \alpha_4 \le \alpha_4$$

E.g.
$$x+y>0$$

$$m = \{x \mapsto 1 \ y \mapsto 2\}$$

$$m \models x+y>0$$

Encoding the transition relation

$$\frac{x}{0} = \frac{x}{1}$$

$$\frac{x}{0} = \frac{x}{1}$$

$$\frac{x}{1} = \frac{x}{1}$$

Encoding
$$\alpha := \alpha$$
 enc $(\alpha := \alpha)$

$$T(x_i g_i x', y') = x' = x + y \wedge y' = y$$

 $T_1(\alpha_1, \gamma_1, \alpha'', \gamma'') \wedge T_2(\alpha'', \gamma'', \alpha', \gamma')$

General form:

enc
$$(P_i; P_2) \equiv$$

$$\exists V''. T_i(V_iV'') \wedge T_2(V''_iV')$$
where $T_i(V_iV') = enc(P_i)$

$$T_2(V_iV') = enc(P_2)$$

Soundness / completeness of encoding $S,S':V \rightarrow Z$ Soundness: Fix a program P. $m:VUV' \rightarrow Z$ Let $m \models enc(P)$ $S = \{V \mapsto m(V) \mid V \in V\}$ $S' = \{V \mapsto m(V) \mid V \in V\}$

Corpleteness: Let $\langle P, S \rangle \rightarrow S'$ Let $M = \{V \mapsto S(V) | V \in V \}$ $U\{V' \mapsto S'(V) | V \in V \}$

m = enc(P)

VERIFICATION ZØJPZWZ represented in LIA 1 e.g. 20>0 for any state SEØ, if <P,5> >> +hu 5'E W $\phi \wedge enc(P) \Longrightarrow \psi'$ | is VALID JOBPEYED is VALID/TRUE \mathcal{E} . \mathcal{I} \mathcal{I}

 $(x>0 \land x'=x+1) \Longrightarrow x'>1$

programs of the form Ppre ; while b do Poody loop free Tore (V, V') \wedge ($\bigwedge_{i=1}^{n}$ b^{i} \wedge Tbody ($\bigvee_{j=1}^{i+1}$) "Symbolic execution" "bounded model checks ?"