视频图形子系统

文件标识: RK-SYS1-MPI-VGS

发布版本: V0.2.1

日期: 2021.4

文件密级: □绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

VGS(Video Graphics Sub-System)视频图形子系统,主要是对输入的图像进行缩放、旋转、打OSD、打COVER、画线等操作。

产品版本

芯片名称	内核版本
RK356X	4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
v0.1.0	黄晓明	2021-1-4	初始版本
v0.2.0	黄晓明	2021-1-23	完善结构定义,新增马赛克接口
v0.2.1	黄晓明	2021-4-28	添加Crop接口

目录

```
视频图形子系统
   目录
   基本概念
      task
      job
      HANDLE
   功能描述
      缩放
      旋转
      打OSD
      打COVER
      画线
      打mosaic
   硬解规格
      输入数据
      输出数据
      分辨率
      图像格式对齐说明
   API 参考
      RK_MPI_VGS_BeginJob
      RK_MPI_VGS_EndJob
      RK_MPI_VGS_CancelJob
      RK_MPI_VGS_AddScaleTask
      RK_MPI_VGS_AddCropTask
      RK_MPI_VGS_AddDrawLineTask
      RK_MPI_VGS_AddCoverTask
      RK_MPI_VGS_AddOsdTask
      RK_MPI_VGS_AddRotationTask
      RK_MPI_VGS_AddMosaicTask
      RK_MPI_VGS_AddDrawLineTaskArray
      RK_MPI_VGS_AddCoverTaskArray
      RK_MPI_VGS_AddOsdTaskArray
      RK_MPI_VGS_AddMosaicTaskArray
   数据类型
      VGS_HANDLE
      VGS_TASK_ATTR_S
      VGS_CROP_COORDINATE_E
      VGS_CROP_INFO_S
      VGS_DRAW_LINE_S
```

VGS_COVER_TYPE_E

VGS_ADD_COVER_S
VGS_COLOR_REVERT_MODE_E
VGS_OSD_REVERT_S
VGS_ADD_OSD_S
VGS_MOSAIC_BLK_SIZE_E
VGS_MOSAIC_S
错误码

基本概念

task

对一幅图像完成具体的一个或多个操作,比如打 OSD、缩放或旋转等。VGS默认的最大的task数为 200。

job

VGS管理task的结构,一个job里可以包含多个task,VGS保证task按照添加到job的顺序一次性提交硬件执行。

VGS默认的最大的job数为100。

HANDLE

任务句柄,标识一个 job。

功能描述

VGS的功能有缩放、旋转、打osd、打cover、画线、打mosaic。

缩放

VGS 支持对一幅图像进行缩放,最大支持图像宽高放大和缩小32倍。

旋转

VGS 支持对一幅图像进行0、90、180、270角度的旋转。

打OSD

VGS支持在一幅图像上面叠加一张位图。

打COVER

VGS支持对一幅图像进行遮挡操作,遮挡的形状为矩形。

画线

VGS支持对一幅图像进行画线操作。

打mosaic

VGS支持对一幅图像进行打mosaic操作。

硬解规格

输入数据

- ARGB/RGB888/RGB565/RGB4444/RGB5551
- YUV420/YUV422/YVYU422/YVYU420/YUV422SP10bit/YUV420SP10bit

输出数据

- ARGB/RGB888/RGB565/RGB4444/RGB5551
- YUV420/YUV422/YUV400/Y4/YVYU422/YVYU420

分辨率

• 源的最大分辨率: 8192x8192, 目标分辨率为: 4096x4096

图像格式对齐说明

Format	Alignment
YUV420/422 YUV400/Y4 YVYU422/YUYV420	所有参数均须2对齐
YUV420/422 10bit	width stride须要16对齐,其余参数须2对齐
RGB888	width stride须4对齐

API 参考

该功能模块为用户提供以下 MPI:

- RK_MPI_VGS_BeginJob: 启动一个 job。
- RK_MPI_VGS_AddScaleTask: 往一个已经启动的 job 添加缩放 task。
- RK_MPI_VGS_AddCropTask: 往一个已经启动的 job 添加裁剪 task。
- RK_MPI_VGS_AddDrawLineTask: 往一个已经启动的 job 添加画线 task。
- RK_MPI_VGS_AddCoverTask: 往一个已经启动的 job 添加打 COVER task。
- RK_MPI_VGS_AddOsdTask: 往一个已经启动的 job 添加打 OSD task。
- RK_MPI_VGS_AddRotationTask: 往一个已经启动的 job 里添加旋转任务。
- RK_MPI_VGS_AddMosaicTask: 往一个已经启动的 job 里添加打马赛克任务。
- RK_MPI_VGS_AddDrawLineTaskArray: 往一个已经启动的 job 里添加批量画线的任务。
- RK_MPI_VGS_AddCoverTaskArray: 往一个已经启动的 job 里添加批量打COVER的任务。
- RK_MPI_VGS_AddOsdTaskArray: 往一个已经启动的 job 里添加批量打OSD的任务。
- RK_MPI_VGS_AddMosaicTaskArray: 往一个已经启动的 job 里添加批量打马赛克的任务。

RK_MPI_VGS_BeginJob

【描述】

启动一个 job。

【语法】

RK_S32 RK_MPI_VGS_BeginJob(VGS_HANDLE *phHandle);

参数名称	描述	输入\输出
phHandle	返回的job handle	输出

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 可一次启动多个 job,但必须判断 RK_MPI_VGS_BeginJob 函数返回成功后才能使用phHandle 返回的 HANLDE。
- phHandle 不能为空指针或非法指针。

【举例】

```
RK_S32 s32Ret = RK_SUCCESS;
VGS_HANDLE hHandle;
VGS_TASK_ATTR_S stTask;
s32Ret = RK_MPI_VGS_BeginJob(&hHandle);
if (s32Ret != Rk_SUCCESS)
    VGS_ERROR_PROCESS(s32Ret);
}
s32Ret =RK_MPI_VGS_AddScaleTask(hHandle, &stTask, VGS_SCLCOEF_NORMAL);
if (s32Ret != RK_SUCCESS)
    RK_MPI_VGS_CancelJob(hHandle);
   VGS_ERROR_PROCESS(s32Ret);
}
s32Ret = RK_MPI_VGS_EndJob(hHandle);
if (s32Ret != RK_SUCCESS)
    RK_MPI_VGS_CancelJob(hHandle);
    VGS_ERROR_PROCESS(s32Ret);
}
```

RK_MPI_VGS_EndJob

【描述】

提交一个 job。

【语法】

```
RK_S32 RK_MPI_VGS_EndJob(VGS_HANDLE hHandle);
```

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入

【返回值】

返回值	描述
0	成功
非0	失败,见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job

RK_MPI_VGS_CancelJob

【描述】

取消一个 job。

【语法】

RK_S32 RK_MPI_VGS_CancelJob(VGS_HANDLE hHandle);

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

• hHandle 标识的 job 必须是已经启动的 job。

RK_MPI_VGS_AddScaleTask

【描述】

往一个已经启动的job里添加缩放task。

【语法】

RK_S32 RK_MPI_VGS_AddScaleTask(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S
*pstTask, VGS_SCLCOEF_MODE_E enScaleCoefMode);

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
enScaleCoefMode	缩放系数模式,暂不支持	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 输入图像的宽高, stride 参考硬解规格中的图像格式对齐说明

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddCropTask

【描述】

往一个已经启动的job里添加缩放task。

【语法】

RK_S32 RK_MPI_VGS_AddCropTask(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S *pstTask, const VGS_CROP_INFO_S *pstVgsCrop)

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
pstVgsCrop	需要裁剪的区域	输入

【返回值】

返回值	描述
0	成功
非0	失败,见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 输入图像的宽高, stride 参考硬解规格中的图像格式对齐说明

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddDrawLineTask

【描述】

往一个已经启动的job里添加画线task。

【语法】

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
pstVgsDrawLine	VGS 画线属性配置指针	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddCoverTask

【描述】

往一个已经启动的job里添加打COVER task。

【语法】

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
pstVgsAddCover	VGS 打 COVER 属性配置指针	输入

【返回值】

返回值	描述
0	成功
非0	失败,见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。

【举例】

参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddOsdTask

【描述】

往一个已经启动的job里添加打OSD task。

【语法】

 $\label{eq:rks32} $$RK_MPI_VGS_AddOsdTask(VGS_HANDLE\ hHandle,\ const\ VGS_TASK_ATTR_S\ *pstTask,\ const\ VGS_ADD_OSD_S\ *pstVgsAddOsd)$$

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
pstVgsAddOsd	VGS 打 OSD 属性配置指针	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddRotationTask

【描述】

往一个已经启动的job里添加旋转 task。

【语法】

RK_S32 RK_MPI_VGS_AddRotationTask(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S *pstTask, ROTATION_E enRotationAngle)

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
enRotationAngle	旋转角度	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddMosaicTask

【描述】

往一个已经启动的job里添加打马赛克 task。

【语法】

RK_S32 RK_MPI_VGS_AddMosaicTask(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S *pstTask, const VGS_MOSAIC_S* pstVgsMosaic)

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
pstVgsMosaic	Mosaic属性配置结构体	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 做mosaic任务的时候,输入和输出的图像为同一块buffer。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddDrawLineTaskArray

【描述】

往一个已经启动的job里添加批量画线task。

【语法】

RK_S32 RK_MPI_VGS_AddDrawLineTaskArray(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S
*pstTask,const VGS_DRAW_LINE_S astVgsDrawLine[], RK_U32 u32ArraySize);

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
astVgsDrawLine	VGS 画线属性配置结构体数组	输入
u32ArraySize	VGS 画线数目,范围[1,100]	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 做批量画线任务时,输入和输出的图像为同一块buffer。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddCoverTaskArray

【描述】

往一个已经启动的job里添加批量打COVER task。

【语法】

RK_S32 RK_MPI_VGS_AddCoverTaskArray(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S *pstTask,const VGS_ADD_COVER_S astVgsAddCover[], RK_U32 u32ArraySize)

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
astVgsAddCover	VGS 打 COVER 属性配置结构体数组	输入
u32ArraySize	VGS Cover数目,范围[1,100]	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 做批量画线任务时,输入和输出的图像为同一块buffer。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddOsdTaskArray

【描述】

往一个已经启动的job里添加批量打OSD task。

【语法】

RK_S32 RK_MPI_VGS_AddOsdTaskArray(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S *pstTask, const VGS_ADD_OSD_S astVgsAddOsd[], RK_U32 u32ArraySize)

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
astVgsAddOsd	VGS 打 OSD 属性配置结构体数组	输入
u32ArraySize	VGS OSD数目,范围[1,100]	输入

【返回值】

返回值	描述
0	成功
非0	失败, 见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 做批量叠加OSD任务时,输入和输出的图像为同一块buffer。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

RK_MPI_VGS_AddMosaicTaskArray

【描述】

往一个已经启动的job里添加批量打mosaic task。

【语法】

RK_S32 RK_MPI_VGS_AddMosaicTaskArray(VGS_HANDLE hHandle, const VGS_TASK_ATTR_S *pstTask, const VGS_MOSAIC_S astVgsMosaic[], RK_U32 u32ArraySize)

【参数】

参数名称	描述	输入\输出
hHandle	表示一个已启动 job 的 HANDLE。	输入
pstTask	VGS task 属性指针	输入
astVgsMosaic	VGS 打 mosaic 属性配置结构体数组	输入
u32ArraySize	mosaic 数目,范围[1,100]	输入

【返回值】

返回值	描述
0	成功
非0	失败,见错误码

【注意】

- 如果此接口返回失败,必须调用 RK_MPI_VGS_CancelJob 接口取消掉 hHandle 标识的 job。否则 会导致 hHandle 标识的 job 不能再被循环利用。
- hHandle 标识的 job 必须是已经启动的 job。
- 做批量mosaic任务时,输入和输出的图像为同一块buffer。

【举例】

• 参考RK_MPI_VGS_BeginJob的举例

数据类型

VGS 模块相关数据类型定义如下:

- VGS_HANDLE: 定义 VGS job 的句柄。
- VGS_TASK_ATTR_S: 定义 VGS task 的属性。
- VGS_CROP_COORDINATE_E: 定义 VGS 裁剪起始坐标的模式。
- VGS_CROP_INFO_S: 定义 VGS 裁剪所需要的相关配置。
- VGS_DRAW_LINE_S: 定义 VGS 画线操作的相关配置。
- VGS_COVER_TYPE_E: 定义 VGS 上的 COVER 类型。
- VGS_ADD_COVER_S: 定义 VGS 上 COVER 的配置。
- VGS_MOSAIC_S: 定义 VGS 上 MOSAIC 的配置
- VGS_COLOR_REVERT_MODE_E: 定义 VGS 上 OSD 的反色模式
- VGS_OSD_REVERT_S: 定义 VGS 上 OSD 反色的配置。

- VGS_ADD_OSD_S: 定义 VGS 上 OSD 的配置。
- VGS_SCLCOEF_MODE_E: 定义 VGS 缩放系数模式的配置。
- VGS_MOSAIC_BLK_SIZE_E: 定义 VGS mosaic 块大小的配置。

VGS_HANDLE

【说明】

定义 VGS job 的句柄。

【定义】

typedef RK_S32 VGS_HANDLE

【注意事项】

无。

【相关数据类型及接口】

无。

VGS_TASK_ATTR_S

【说明】

定义 VGS task 的属性。

【定义】

```
typedef struct rkVGS_TASK_ATTR_S
{
    VIDEO_FRAME_INFO_S stImgIn; /* Input picture */
    VIDEO_FRAME_INFO_S stImgOut; /* Output picture */
    RK_U64 au64privateData[4]; /* Private data of task*/
    RK_U32 reserved; /* Debug information, state of current picture*/
}VGS_TASK_ATTR_S;
```

【成员】

参数名称	描述
stlmgln	输入图像属性
stlmgOut	输出图像属性
au64privateData	与 task 相关的私有数据,VGS 不会使用和修改其中的数据。
reserved	保留项

VGS_CROP_COORDINATE_E

【说明】

定义 VGS 裁剪起始坐标的模式。

【定义】

【成员】

参数名称	描述
VGS_CROP_RATIO_COOR	相对坐标
VGS_CROP_ABS_COOR	绝对坐标

【注意事项】

相对坐标,即起始点的坐标值是以与当前图像宽高的比率来表示,使用时需做转换,具体请参见 VGS_CROP_INFO_S。

VGS_CROP_INFO_S

【说明】

定义 VGS 裁剪所需要的相关配置。

【定义】

```
typedef struct rkVGS_CROP_INFO_S {
   VGS_CROP_COORDINATE_E enCropCoordinate;
   RECT_S stCropRect;
} VGS_CROP_INFO_S;
```

【成员】

参数名称	描述
enCropCoordinate	CROP 起始点坐标模式
stCropRect	CROP 的矩形区域

【注意事项】

 若 enCropCoordinate 为 VPSS_CROP_RATIO_COOR (相对坐标模式),使用 stCropRect 的成员时应做转换,计算公式为:

s32X = 起始点坐标 x 原始图像宽度/1000,合法取值范围: [0,999],计算完成 后会进行取整操作和对齐操作。公式同样适用于纵坐标计算。

u32Width = 区域宽度 x 实际图像宽度/1000,区域宽度取值范围:[1,1000]。计算完成后会进行取整操作和对齐操作。公式同样适用于区域高度计算。

VGS_DRAW_LINE_S

【说明】

定义 VGS 画线操作的相关配置。

【定义】

【成员】

参数名称	描述
stStartPoint	线的起始点坐标。
stEndPoint	线的结束点坐标。
u32Thick	线的宽度。
u32Color	线的颜色,RGBA8888 格式,取值范围[0x0, 0xFFFFFFF]。

VGS_COVER_TYPE_E

【说明】

定义 VGS 上的 COVER 类型。

【定义】

```
typedef enum rkvGS_COVER_TYPE_E {
    COVER_RECT = 0,
    COVER_QUAD_RANGLE,
    COVER_BUTT
} VGS_COVER_TYPE_E;
```

【成员】

参数名称	描述
COVER_RECT	矩形 COVER。
COVER_QUAD_RANGLE	任意四边形 COVER。

VGS_ADD_COVER_S

【说明】

定义 VGS 上 COVER 的配置。

【定义】

【成员】

参数名称	描述
enCoverType	COVER 类型。
stDstRect	矩形 COVER 的位置和宽高。
stQuadRangle	任意四边形 COVER 的相关配置。四点坐标值和边框厚度。
u32Color	COVER的颜色,RGBA8888 格式,取值范围[0x0, 0xFFFFFFF]。

VGS_COLOR_REVERT_MODE_E

【说明】

定义 VGS 上 OSD 反色模式的配置。

【定义】

```
typedef enum rkvGs_COLOR_REVERT_MODE_E {
    VGS_COLOR_REVERT_NONE = 0,
    VGS_COLOR_REVERT_RGB,
    VGS_COLOR_REVERT_ALPHA,
    VGS_COLOR_REVERT_BOTH,
    VGS_COLOR_REVERT_BUTT
} VGS_COLOR_REVERT_MODE_E;
```

【成员】

参数名称	描述
VGS_COLOR_REVERT_NONE	不反色。
VGS_COLOR_REVERT_RGB	仅对 RGB 反色。
VGS_COLOR_REVERT_ALPHA	仅对 alpha 反色。
VGS_COLOR_REVERT_BOTH	对 RGB 和 alpha 反色。

VGS_OSD_REVERT_S

【说明】

定义 VGS 上 OSD 反色的配置。

【定义】

【成员】

参数名称	描述	
stSrcRect	OSD 反色的起始坐标及宽高。位置和宽高值均要求 2 对齐。	
enColorRevertMode	OSD 反色模式。	

VGS_ADD_OSD_S

【说明】

定义 VGS 上 OSD 的配置。

【定义】

【成员】

参数名称	描述
stRect	OSD 的起始坐标及宽高。
enPixelFmt	OSD 的像素格式。
pMbBlk	OSD 图像的物理地址。
u32FgAlpha	OSD 的前景 alpha 值。

VGS_MOSAIC_BLK_SIZE_E

【说明】

mosaic 块大小枚举。

【定义】

```
typedef enum rkVGS_MOSAIC_BLK_SIZE_E {
    RK_MOSAIC_BLK_SIZE_8 = 8, /* block size 8*8 of MOSAIC */
    RK_MOSAIC_BLK_SIZE_16 = 16, /* block size 16*16 of MOSAIC */
    RK_MOSAIC_BLK_SIZE_32 = 32, /* block size 32*32 of MOSAIC */
    RK_MOSAIC_BLK_SIZE_64 = 64, /* block size 64*64 of MOSAIC */
    RK_MOSAIC_BLK_SIZE_BUT
} VGS_MOSAIC_BLK_SIZE_E;
```

【成员】

参数名称	描述
RK_MOSAIC_BLK_SIZE_8	8x8 大小的Mosaic块。
RK_MOSAIC_BLK_SIZE_16	16x16 大小的Mosaic块。
RK_MOSAIC_BLK_SIZE_32	32x32 大小的Mosaic块。
RK_MOSAIC_BLK_SIZE_64	64x64 大小的Mosaic块。

VGS_MOSAIC_S

【说明】

定义 VGS 上 mosaic 的配置。

【定义】

```
typedef struct rkVGS_MOSAIC_S {
    VGS_MOSAIC_BLK_SIZE_E enBlkSize;
    RECT_S stDstRect;
} VGS_MOSAIC_S;
```

【成员】

参数名称	描述
enBlkSize	mosaic 块大小。
stDstRect	矩形坐标。

错误码

VGS API 错误码如下

错误代码	宏定义	描述
0xA007800E	RK_ERR_VGS_BUF_EMPTY	VGS的job,task 或node 节点已经使用完毕
0xA0078003	RK_ERR_VGS_ILLEGAL_PARAM	VGS 参数设置无效
0xA0078006	RK_ERR_VGS_NULL_PTR	输入参数空指针错误
0xA0078008	RK_ERR_VGS_NOT_SUPPORT	操作不支持
0xA0078009	RK_ERR_VGS_NOT_PERMITTED	操作不允许
0xA007800D	RK_ERR_VGS_NOBUF	分配内存失败
0xA0078006	RK_ERR_VGS_NULL_PTR	输入参数空指针错误
0xA0078010	RK_ERR_VGS_SYS_NOTREADY	系统未初始化
0xA007800F	RK_ERR_VGS_BUF_FULL	没有剩余 BUF