

Search For Displaced Photons Using Timing.

Tambe E. Norbert

Outline

Motivation

Production

and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Search For Displaced Photons Using Timing.

Tambe E. Norbert¹

Shih-Chuan Kao¹

Yuichi Kubota¹

¹University Of Minnesota

Long-Lived Meeting, September 26, 2014

Outline

Search For Displaced Photons Using Timing.

Tambe E.

Norbert

Motivation

Production

- Motivation
- Production and Decay
- Oataset and Trigger
- 4 Event Selection
 - Pre-Event Selection
 - Event Cleaning
 - Final Event Selection
- 5 Background Estimation
- 6 Systematics
- Limits
- 8 Remaining Completion

- Outline
- and Decay

 Dataset
 and
 Trigger
- Event Selection Background
- Estimation
 Systematics
 Limits
- Remaining Completion

Motivation

Search For Displaced Photons Using Timing.

Tambe E. Norbert

Outline

Motivation

Production

and Decay

and Trigger

Selection

Background
Estimation

Systematics

-,-----

Limits

Remaining Completion

How are we measuring the neutralino Lifetime?

 Calculate time from distance travelled by Neutralino before it decays

Definition (Distance Travelled)

$$L = c\tau \cdot \gamma \beta \quad \rightarrow \quad c\tau = \frac{|\Delta \vec{r}|}{\gamma \beta}$$

2 Extract time directly from MC

Definition (MC Time)

$$c\tau = \frac{ct}{\gamma}$$

Production and Decay

Displaced Photons Using Timing.

Search For

Norbert Outline

Motivation

Production

and Decay

Dataset and Trigger Event

Selection

Background

Estimation

Systematics

Limits

Remaining Completion Production and Decay Diagrams

Dataset and Trigger

Displaced Photons Using Timing.

Search For

Norbert

Outline

Motivation

Production and Decay

Dataset and Trigger

Event Selection Background

Estimation

Systematics

Limits

Remaining Completion Datasets and HLT Triggers used.

Event Selection

Search For Displaced Photons Using Timing.

Tambe E. Norbert

Outline

Motivation

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

| cτ_, = |dr|/γβ

Figure : 1/Slope = 3065.60 mm Figure : 1/Slope = 3083.56 mm Sample is $c\tau=6000$ mm but we measure $c\tau\approx3000$ mm

Background Estimation

Using Timing. Tambe E. Norbert

Search For Displaced Photons

Outline

Motivation

Production

and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion Have fun lets see!

Systematics

Displaced Photons Using Timing.

Norbert

Search For

Outline

Motivation

Production and Decay

Dataset and

Trigger Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

8 / 13

Limits

Displaced Photons Using Timing. Tambe E.

Norbert

Search For

Outline

Motivation

Production and Decay

Dataset and Trigger Event

Selection Background

Estimation
Systematics

Limits

Remaining Completion

Search For Displaced Photons Using Timing.

Tambe E. Norbert

Outline

Motivation

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation Systematics

Limits

Remaining Completion

Are we measuring the original $c\tau$ of the neutralino?

CMS Official GMSB Samples					
Λ [TeV]	mass[GeV]	C_{grav}	$c\tau[mm]$	Fit Value[mm]	
120	169	93.5	1000	657.89	
120	169	162	3000	1942.12	
140	198	162	3000	1550.38	
140	198	187	4000	2064.83	
140	198	229	6000	3083.56	
180	256	93.5	1000	378.64	
180	256	132	2000	749.45	
180	256	162	3000	1104.85	
180	256	229	6000	2203.61	

We seem to be measuring neutralino $c\tau$ by some factor off.

GMSB Sample c au Vs Measured c au

Search For Displaced Photons Using Timing.

Tambe E. Norbert

Outline

Motivation

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

By how much are we off in neutralino $c\tau$ measurements?

CMS Official GMSB Samples					
Λ [TeV]	c $ au$ [mm]	Fit Value[mm]	Factor Off		
120	3000	1942.12	1.54		
140	3000	1550.38	1.93		
180	3000	1104.85	2.71		
140	6000	3083.56	1.9		
180	6000	220361	2.7		

Factor is The SAME for different neutralino $c\tau$ with same Λ value. However, factor is NOT THE SAME for the same $c\tau$ with different Λ values.

Cause of this difference in $c\tau$ values?

Search For Displaced Photons Using Timing.

Tambe F Norbert

Outline

Motivation

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining

Completion

Is this due to how sample is generated?

Figure: 1/Slope = 3083.56 mm

Figure : 1/Slope = 3067.48 mm

Figure : 1/Slope = 3065.60 mm Figure : 1/Slope = 3037.66 mm

Private GMSB sample seems to show same offset measurements

To Be Completed

Search For Displaced Photons Using Timing.

Tambe F

Norbert Outline

Motivation

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics Limits

Remaining Completion • Offset in neutralino $c\tau$ seems to have a more subtle origin than expected. Probably how mass enters into the lifetime definition and implementation at MC generation level.

- GMSB samples with the same sample $c\tau$, hence C_{grav} , but with different Λ values have different offset factor.
- The observation that the $c\tau$ value for a given sample with Λ is different from the measured value is very unclear, even without looking at samples with different Λ values.
- Our next step involves understanding cause of this offset.