MAT 240:

VECTOR SPACES

DEFINITION

A VECTOR SPACE V OVER A FIELD F IS A SET WITH TWO BINARY OPERATIONS:

+: Vx V -> V :: ADD ITTON

0: FXV -> V .. SCALAR MULTIPLICATION

WITH A DISTINGVISHED ELEMENT DEV SUCH THAT:

PROPERTIES

VI: #x,y EV: xfy = ythe

V2: Vx,y, E 6 V: (x+y)+2= x+(y+2)

VJ: Y x E V: x + 0 = x

V4: YxeV = yeV: xxy=0

V5: ∀ a, b ∈ F, x ∈ V: ae (bx) = (ab) x

V6° YXEV: NOX=X

V7: Yack Yx, y & V: a. (key) = a. x + a.y

V8: ∀a, b∈F, x∈V: (a+b). X= a.x+b.

OEF # OEV, OR OF 700

NOTE

EXAMPLE 1

FIETR ... X F IS A VECTOR n times

SPACE OVER F. DEN= (0,0,...,0) ELEMENTS ARE IN TYPIES (OI , an) a, ..., an 6 F.

+: (a, ..., an) + (bi, .., bu) = (a, +bi, , a2+bz,... a. (a,,,,,a,) = (aa,,,,, aan)

 $\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} a_1, \dots, a_n \end{pmatrix}$

EXAMPLE 2

Maxn (F): MXN-ONE MATTERCES WITH
COEFFICIENTS IN E.

any ame - - am) means.

OV= (000----

EXAMPLE 3

LUS BE & Se THEY

7 (S,T) - SET OF FUNCTIONS

fos -> F is A VECTOR

SPACE, WITH + AND . DEFINED AS:

(++g)(s)=f(s)+g(s)

(a) s = a. f 15

 $O_V = f(s)$

P(F) POLYNOMIALS WITH

COEFFICIENTIN

A SET OF FUNUTIONS P(x)=Zaixi+ao

FOR SOMEN, WITH alo, ..., an EF

+1. 10 AND THOSE FROM F(F,F)(4.Ex)

SEQUENCES OF ELEMENTS IN-F.

V= (a, a2, ...) | a,,a2,..,a6F

CONSIDER SEQUENCES SUCH MAT

ONLY FINITELY MANY a, az, .. &

ARE non-zero. GET NECTOR

Space NICN

CISILA VECTOR SPACE ONER R

IN FACT, C= IR

IR ISA VECTOR STORES EVER IR

@ 18 A VECTOR WACE OVER Q

EXAMPLE @

EXAMPLE 5

EXAMPLE 6

IN GENCENI,
1F. /R/ 18 A FIELD
CONTAINING F AS
A SUBFRELD, THEN
P IS A VECTOR

SPACE OVER F.

DEFINITION

F < K IS A SUBFIELD

OF THE FIELD K IF

F IS A SUBSET AND

ALSO A FIELD, BUT WITH

ADDITION, MULTIPZICATION,

O, I THOSE OF K.

EX低BC198

THE FIELD WITH 4 GLEMENTS CONTAINS 22 AS A EVEFIED.

PROPERTIES OF VECTOR SPACES V' OVER F

a) CANCELLATION
LAW

 $\forall x, x, y \in V: x + y = x' + y$ $\Rightarrow x = x \leq x \leq y$ $\forall a \in F, x, x' \in V: ax = ax' = 7x = x' \leq x'$

 $\alpha \neq 0$ \neq $\alpha, \alpha' \in F, x \in V$: $\alpha x = \alpha' x = 2\alpha = \alpha'$.

NEVTRAL ELEMENT

C

IF 0'GV WITH 1600ER FOR SOME XGV => 0'=0.

OF X= OV Y XEV a.Ov= Ov Ya6F d) (a) x = - (ax) = a. (-x) \ ac FxeV

e) a.x=0v (=> a=0 or x=0v -> LOOK INTO GROUPS

SUBSPACES OF VECTOR SPACES

A SUBSPACE W OF A VECTOR SPACE V (OVER FIELD F) IS A SUBSET WEV, WXØ, WHICH IS ALSO A VECTOR SPACE OUSE F WITH ADDITION AND SCALAR MULTIPLICATION AND NEUTRAL ELEMENT THOSE OF V.

THEOREM

A SUBSET WCY OF A VECTOR SPACE 15 A SUBSPACE IF AND ONCY IE, W/O, O x, ye W \$ x+4 6 W @ asF (KEW=) aKEW.

PROOF

IF WCV IS A EUBSPACE THEN BY DEFINITION OF SUBSPACE @ AND @ HOLD. CONVERSELY, IF DAND @ MOLD, WTS THAT W WITH THOSE OPERATONS OF 4 AND o es a vector space. IF XEW, THEN Y=-x SATISFIE OL + 4=0, AND GEW, SNCE y=(1) REW FROM (2), FOR 1 IN [1,8] \ [4] HOLD

top between of W beaute met

LIDED FOR ELEMENTS OF

마스가 있다면 살았다. 시원 하고 있는 것은 바로 있는 집을 보고 있다. 아이를 하는 것은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들
EXAMPLES
1) IF V IS ANY VECTOR SPACE, (O), VARE EVERPACES,
2) P(IF) POCHNOMIALS WITH COEFFICIENTS IN IF
IS A SUBSPACE OF J (F, E) =
$f_n(F)$ & polynomias of degree $\leq n$ is a subspace of $f(F)$.
A SUBSPACE OF $\mathfrak{J}(F)$.
$\mathcal{F}_n(F) \leq \mathcal{F}_n(F)$ is a wisspace for $m \leq n_0$
3) SEQUENCES OF FINITE LENGTH ARE SUBSPACE OF VECTOR SPACE OF ML SEQUENCES (a,, a2, a00)
4) FOR A MAIN MATRIES A EMMON (F)
A= (a) and DENOTE BY AT EMMIN (F) and and A DNE-TO-ONE CORRESPONDENCE BETWEEN AS
FOR ALL LE [1.7] FOR
SOWARE MATRICLES: V= Muxu (F) - MAVE SUBSPACES.

SUMMETRIC MOTRICES (AT-A) SKEW-SYMMETRIC MATRICES (ATE-A) DIAGONAL MATRICES (IE ONLY DIAGONAL ENTRIES
ARE NON -DEROD)

- FOR JZL, aij 70.
- FOR I AS A VECTOR SPACE OVER Q.