Homework #9

Due Friday 25 March, 2022 at 11:59pm.

Submit as a single PDF via Gradescope; see the Canvas page canvas.alaska.edu/courses/7017

Textbook Problems from Strang, *Intro Linear Algebra*, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at

bueler.github.io/math314/resources.html

The **P** Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 4.2, pages 213–217: #1, 3, 8, 13, 16, 17, 21, 22

from Problem Set 4.3, pages 228–231: #1, 2, 3, 4, 8, 9

Put these **P** Problems next on your PDF, in this order.

P43. For each part: *i*) Draw the projection p of b onto a. *ii*) Compute it as $p = \hat{x}a$, where $\hat{x} = \frac{a^{\top}b}{a^{\top}a}$. *iii*) Compute the projection matrix $P = \frac{aa^{\top}}{a^{\top}a}$, and then p = Pb.

(a)
$$b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(b)
$$b = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(c)
$$b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $a = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ (For your drawing, just pick a generic θ .)

P44. For each part: *i*) Form and solve the normal equations $A^{T}A\hat{x} = A^{T}b$. *ii*) Compute the projection matrix $P = A(A^{T}A)^{-1}A^{T}$. (You can use technology for the inverse.) iii) Check that $P^{2} = P$ and $P^{T} = P$. *iv*) Compute p = Pb, and check it matches $A\hat{x}$ from the solution to the normal equations.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} 2 \\ 8 \\ 6 \end{bmatrix}$

P45. An overdetermined system you cannot solve (4 equations in 2 unknowns):

$$x_1 + x_2 = 1$$

$$x_1 = 0$$

$$2x_1 - x_2 = 2$$

$$3x_1 + 4x_2 = -1$$

- (a) Each equation is a line in the x_1, x_2 plane. Plot all 4 lines in one plot. They do not meet in a single point. (Feel free to use technology for this plot. Your plot box should at least include all the places where pairs of lines intersect.)
- **(b)** Write down *A* and *b* for the above system "Ax = b". Now form $A^{T}A$ and $A^{T}b$.
- (c) Solve the normal equations $A^{\top}Ax = A^{\top}b$. (Use technology as desired.) Add the solution point to your plot in part (a).

P46. (a) Consider the same A, b as in P45. Write out and simplify

$$E(x_1, x_2) = ||A\boldsymbol{x} - \boldsymbol{b}||^2 = (A\boldsymbol{x} - \boldsymbol{b})^{\top} (A\boldsymbol{x} - \boldsymbol{b}).$$

(Hint. This simplifies to a function which is quadratic in the two variables x_1, x_2 .)

- **(b)** Compute and simplify the partial derivatives of E.
- (c) Solve the linear system of two equations in two unknowns x_1, x_2 :

$$\frac{\partial E}{\partial x_1} = 0$$

$$\frac{\partial E}{\partial x_2} = 0$$

(Hint. The solution is the same as in P45 (c). The system is essentially the same.)