Computation of Fundamental Time-eigenvalue of the Neutron Transport Equation

Information

Authors: Huayun Shen, Bin Zhong, and Huipo Liu

Organization: Institute of Applied Physics and Computational Mathematics, Department 6

Methods

Modified α -k Power Iteration Method

$$\hat{\Omega} \cdot \nabla(\phi_{\alpha} - \phi_{k}) + \Sigma_{t}(\phi_{\alpha} - \phi_{k}) + \frac{\alpha}{v}\phi_{\alpha} = \int_{0}^{\infty} dE' \int_{4\pi} d\Omega' \Sigma_{s}(\vec{r}, E' \to E, \hat{\Omega}' \cdot \hat{\Omega}) (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \phi_{k}(\vec{r}, E', \hat{\Omega}')) + \frac{\chi(E)}{4\pi} \int_{0}^{\infty} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k}) dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \int_{4\pi} d\hat{\Omega}' (\phi_{\alpha}(\vec{r}, E', \hat{\Omega}') - \frac{\phi_{k}(\vec{r}, E', \hat{\Omega}')}{k} dE' \nu_{p} \Sigma_{f} \nabla_{f} \nabla_{f}$$

Assume $\phi_{\alpha} \approx \phi_k$. The previous expression simplifies to

$$\alpha \approx \frac{1}{\phi_k/v} \frac{k-1}{k} \frac{\chi(E)}{4\pi} \int_0^\infty dE' \nu_p \Sigma_f \int_{4\pi} d\Omega' \phi_k(\vec{r}, E', \hat{\Omega}')$$

 α can be estimated at any point where $\Sigma_f \neq 0$.

Using the following relationship:

$$\int_0^\infty dE \int_{4\pi} d\Omega \frac{\chi(E)}{4\pi} = 1$$

we can approximate α as

$$\alpha \approx \frac{k-1}{k} \frac{\int_0^\infty dE' \nu_p \Sigma_f \int_{4\pi} d\hat{\Omega}' \phi_k(\vec{r}, E', \hat{\Omega}')}{\int_0^\infty \int_{4\pi} d\hat{\Omega} \frac{\phi_k}{\nu}}$$

If problem has symmetry, better to calculate α at central point if there is fissionable material at that point. Better estimate by integrating over everywhere where there is fissionable material:

$$\alpha \approx \frac{k-1}{k} \frac{\int_{\Sigma_f \neq 0} dV \int_0^\infty dE' \nu_p \Sigma_f \int_{4\pi} d\hat{\Omega}' \phi_k(\vec{r}, E', \hat{\Omega}')}{\int_{\Sigma_f \neq 0} dV \int_0^\infty \int_{4\pi} d\hat{\Omega} \frac{\phi_k}{v}}$$

Subcritical Problem $\alpha < 0$

Method is unstable when $\alpha < 0$ (i.e. when the system is subcritical). α -eigenvalue equation rewritten with an arbitrary parameter η that is greater than zero.

$$\hat{\Omega} \cdot \phi_{\alpha} + \left(\Sigma_{t} - \eta \frac{\alpha}{v}\right) \phi_{\alpha} = \int_{0}^{\infty} dE' \int_{4\pi} d\hat{\Omega}' \Sigma_{s}(\vec{r}, E' \to E, \hat{\Omega}' \cdot \hat{\Omega}) \phi_{\alpha}(\vec{r}, E', \hat{\Omega}') + \frac{1}{k} \frac{\chi(E)}{4\pi} \int_{0}^{\infty} dE' \nu_{p} \Sigma_{f}(\vec{r}, E') \int_{4\pi} d\hat{\Omega}' \phi_{\alpha}(\vec{r}, E', \hat{\Omega}' - (1 + \eta) \frac{\alpha}{v} \phi_{\alpha}(\vec{r}, E', \hat{\Omega}')$$

Default is usually $\eta = 1$.

Modified Iterative Method

Iterative Method Algorithm:

- 1. Solve k-effective TE with $\alpha = 0$ for k_0 and ϕ_0 .
- 2. Estimate the value $\alpha_{n-1/2}$ from α expressions seen above.
- 3. Let $\alpha_n = \alpha_{n-1} + \alpha_{n-1/2}$ and solve α -NTE to find new k_n and ϕ_n .
- 4. Repeat steps 2 and 3 until $k_n=1$. α_n will be desired eigenvalue.