SEQUENCE LISTING

SEQ ID NO: 1

SEQUENCE LENGTH: 21

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid

SEQUENCE DESCRIPTION:

CTC TAG CAT GCG AAA ATC TAG

SEQ ID NO: 2

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid

SEQUENCE DESCRIPTION:

CTG CAG GCC TGC AAG CTT GG

SEQ ID NO: 3

SEQUENCE LENGTH: 23

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid

SEQUENCE DESCRIPTION:

ATC CTT TGT ATT TGA TTA AAG

SEQ ID NO: 4

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid

SEQUENCE DESCRIPTION:

TCT AGA GTC GAC CTG CAG GC

SEQ ID NO: 5

SEQUENCE LENGTH: 552

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

ORIGINAL SOURCE: Luciola cruciata and Photinus pyralis

SEQUENCE DESCRIPTION:

Met Glu Asn Met Glu Asn Asp Glu Asn Ile Val Val Gly Pro Lys Pro Phe Tyr Pro Ile Glu Glu Gly Ser Ala Gly Thr Gln Leu Arg Lys Tyr Met Glu Arg Tyr Ala Lys Leu Gly Ala Ile Ala Phe Thr Asn Ala Val Thr Gly Val Asp Tyr Ser Tyr Ala Glu Tyr Leu 55 Lys Ser Cys Cys Leu Gly Lys Ala Leu Gln Asn Tyr Gly Leu Val Asp Gly Arg Ile Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe Phe lle Pro Val lle Ala Gly Leu Phe lle Gly Val Gly Val Pro Thr Asn Glu Ile Tyr Thr Leu Arg Glu Leu Val His Ser 110 115 Gly lle Ser Lys Pro Thr lle Val Phe Ser Ser Lys Lys Gly 125 130 Val Gln Lys Thr Val Thr Thr Ile Lys Asp Lys Val Ile Thr 145 lle Val Ile Leu Asp Ser Lys Val Asp Tyr Arg Gly Tyr Gln Cys Leu Asp Thr Phe lie Lys Arg Asn Thr Pro Pro Gly Phe Gln Ala 175 Ser Ser Phe Lys Thr Val Glu Val Asp Arg Lys Glu Gln Val

				185					190					195
Leu	I I e	Met	A s n	Ser	Ser	Gly	Ser	Thr	Gly I 205	.eu	Pro	Lys	Gly	Val 210
Gla	Leu	Thr	His	200 Glu	Asn	Thr	V a 1	Thr		Ph e	Ser	His	Ala	Arg 225
Asp	Pro	I l e	P h e	215 Gly	Asn	Gln	I l e	I l e		Asp	Thr	Ala	Ile	Leu 240
Ser	V a 1	V a 1	Pro		His	His	Gly	P h e	Gly N 250	de t	Phe	Thr	Thr	Leu 255
Gly	Tyr	Leu	I i e	245 Cys 260	Gly	Phe	Arg	Val		Leu	Met	Tyr	Arg	Phe 270
Glu	Glu	Glu	Leu	Phe 275	Leu	Arg	Ser	Leu		Asp	Tyr	Lys	Ile	Gln 285
Ser	Ala	Leu	Leu	Val 290	Pro	Thr	Leu	P h e		Phe	P h e	Ala	Lys	Ser 300
Tha	Leu	Ile	Asp	_	Tyr	Asp	Leu	Ser		Leu	His	Glu	Ile	A 1 a 3 1 5
Ser	Gly	Gly	Ala		Leu	Ser	Lys	Glu		G 1 y	Glu	Ala	V a l	Ala 330
Lys	Arg	P h e	His	Leu 335	Pro	Gly	lle	Arg		Gly	Tyr	Gly	Leu	Thr 345
Glu	Thr	Thr	Ser	A 1 a 3 5 0	Ile	Leu	I 1 e	Thr		Glu	Gly	Asp	Asp	Lys 360
Pro	Gly	Ala	V a 1		Lys	Val	Val	Pro		Phe	Glu	Ala	L y s	V a 1 3 7 5
Val	Asp	Leu	Asp		Gly	Lys	Thr	Leu		Val	Asn	Gln	Arg	Gly 390
Glu	Leu	Cys	Val		Gly	Pro	Met	I l e		Ser	Gly	Tyr	Val	Asn 405
Asn	Pro	Glu	Ala		Asn	Ala	Leu	Ile		Lys	Asp	Gly	Trp	Leu 420
His	Ser	G 1 y	Asp			Tyr	Trp	Asp		Asp	Glu	His	Phe	Phe 435
Ile	V a 1	Asp	Arg		Lys	Ser	Leu	Ile		Tyr	Lys	Gly	Tyr	Gln 450
V a l		Pro		G 1 u 4 5 5	Leu				Leu 460					465
Ile	Phe	Asp	Ala	Gly 470	Val	Ala	Gly	Leu	Pro 475	Asp	Asp	Ası	Ala	Gly 480
Glu	Leu	Pro	Ala		. Val	V a 1	V a 1	Lev		His	Gly	Lys	Thr	Met 495
Thr	Glu	Lys	Glu		. Val	Asp	Туп	Val		Ser	Glo	Va!	l Thr	
Ala	Lys	Lys	Leu		Gly	Gly	V a 1	V a 1		V a l	Asp	Gli	ı Val	Pro 525
Lys	Gly	Leu	Thr		Lys	Leu	ı Ası	Ala	A Arg	Lys	He	e Ar	g Glu	
Leu	116	e Lys	Ala		Lys	Gly	Gl	y Ly:		Lys	Le 1 552			

SEQ ID NO: 6

SEQUENCE LENGTH: 1656

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: CDNA to mRNA

ORIGINAL SOURCE: Luciola cruciata and Photinus pyralis

SEQUENCE DESCRIPTION:

ATTGTAGAATTAACTAGCAATGCTACTCGGTTTTTGCGCAACTGCTACTCGAAAAGCAAAAAAAA	TAGGGGTTCCAAGTTGATTGGATTTTTTAATTGGGGTTCAATTGATTG	CCGTACTTACTCGCCCGATCCGACCTTATTGTCCGCCCGC	ATATT GGAATAAATTTTATTATTGCGAAGAAGAAGAGAGCTTATTAATAAAGAAGAAGAAGAGAAGAAGAAGAAGAAGAA	GGAAATTAAATTCAAAATTCGGGGGGAACTCGGGGGAACTTCGGGGGAACTTCGGGGGGAACTTCGGGGGGAACGGCGGGGAACGGCGGGGGAACGGCGGGGGAACGGCGG	GAATTACCCCGCTTTTTAGGTTAGCTTCCTTTTTAGGTTAGCTTCCTTTTTAGGTTAGGTTATTAGGTTAGGTTATTAGGTTAGGTTAGGTTATTA	GCTATGGTATCCAATCAATAAGGTTAAGGTTCGGGGTTCGAGTTAAGGTTAAGGTTAAGGTTAAGGTTCGGGGGGGG	TGGCTAATATCAATCGGCAGCAAGATCGGTTAATCGGTTAATCAAGAGAAGAAGAAAAAGGCAAGTGAATCAAAAAAAA	GGAGTAAATTCGATTCGATGGAGGGTGCGAAATTCCGATTCTGGATTCATTC	GATACGTTAAAGTTAAACCTAAGGGGCGACCTTCGAGTCAAGACGTTAGTAAAGTTAAAGAGAGAG	AGTTGTTATAAATTGGAAATTTACCCAAAAGAACGAAATTTACCCAAA	CATTGTTTAAACCATTCATCCACCGTTGCAAACCAAAAAAAA	TAAAATTGAAACCTAAACGCTAAAACGCTAAAAACCAGGTTCGGCTAAAACCGTAAACCAGGTTCGGCTGAAAACCG	CATACATT AGCTCGATT ACCGCAAAAGTCAACGCAAAAGTTAACAACGAAAAAAAAA	AAA CAC GCC ATG GCG GGT	TGTTTTCTAGCCAAACAAACAAACCAAAGCCCCCTTGGAAACCAAACCAAAGCCCCCTTGGAAACCAAACCAAACCTAAAGGCCGAAACT	494420864208642086420864208642086420864208
---	--	--	---	---	--	---	---	--	--	--	--	---	---	--	--	--

SEQ ID NO: 7

SEQUENCE LENGTH: 552

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

ORIGINAL SOURCE: Luciola cruciata and Photinus pyralis

SEQUENCE DESCRIPTION:

Met	Glu	A s n	Met	Glų	Asn	Asp	Glu	A s n	Ile	V a 1	V a 1	Gly	Pro	Lys 15
Pro	Phe	Tyr	Pro		Glu	Glu	Gly	Ser	Ala	Gly	Thr	Gln	Leu	Arg
Lys	Tyr	Met	Glu	20 Arg	Tyr	Ala	Lys	Leu	25 Gly	Ala	I I e	Ala	Phe	30 Thr
Asn	Ala	Vai	Thr		V a 1	Asp	Tyr	Ser	Tyr	Ala	Glu	Tyr	Leu	
Lys	Ser	Cys	Cys	Leu	Gly	Lys	Ala	Leu		Asn	Tyr	Gly	Leu	60 Val
Val	Asp	Gly	Arg	lle	Ala	Leu	Cys	Ser		A s n	Cys	Glu	Glu	75 Phe
Phe	I I e	Pro	V a 1	80 Lle	Ala	Gly	Leu	P h e		Gly	V a l	Gly	V a l	90 Ala
Pro	Thr	Asn	Glu		Туг	Thr	Leu	Arg		Leu	Val	His	Ser	105 Leu
Gly	I l e	Ser	Lys		Thr	I l e	Val	Phe		Ser	Lys	Lys	Gly	120 Leu
Asp	Lys	V a 1	Ile	125 Thr	V a 1	Gln	Lys	Thr		Thr	Thr	Ile	Lys	135 Thr
Ile	Val	lle	Leu	140 Asp	Ser	Lys	V a 1	Asp		Arg	Gly	Tyr	Gln	150 Cys
Leu	Asp	Thr	Phe	155 11e	Lys	Arg	Asn	Thr		Pro	Gly	Phe	Gln	165 Ala
Ser	Ser	Phe	Lys	170 Thr	V a l	Glu	Val	Asp		Lys	Glu	Gln	V a l	180 Ala
Leu	I l e	Met	Asn		Ser	Gly	Ser	Thr	190 Gly	Leu	Pro	Lys	Gly	
Gln	Leu	Thr	His	200 Glu		Ile	Val	Thr		Phe	Ser	His	Ala	
Asp	Pro	Ile	Tyr	215 Gly		Gla	Val	Ser		Gly	Thr	Ala	Val	225 Leu
Thr	Val	V a l	Pro	230 Phe		His	Gly	Phe	235 Gly	Met	Phe	Thr	Thr	240 Leu
Gly	Tyr	Leu	lle	245 Cys		Phe	Arg	V a l	250 Val	Met	Leu	Thr	Lys	255 Phe
Asp	Glu	Glu	. Thr	260 Phe		Lys	Thr	Leu	265 Gln		Tyr	Lys	Суѕ	270 Thr
Ser	Vai	l l e	. Leu	275 Val	; ;		Leu		280		Leu	Asn	Lys	285 Ser
			Asn	290)		Leu		295	_	Val			3 0 0
			Ala	305	;		Lys		310 Val	G1y	Glu	ı Ala	ı Val	
	·	-	e Aso	320)		v Val		3 2 5)			Leu	330
	•	•	Ser	335	;	lle		The	340	}			Asp	345
3.0	1			350					3 5 5		,	,	P	360

Pro Gly Ala Ser Gly Lys Val Val Pro Leu Phe Lys Ala Lys Val 375 365 370 lle Asp Leu Asp Thr Lys Lys Ser Leu Gly Pro Asn Arg Arg Gly 385 380 390 Glu Val Cys Val Lys Gly Pro Met Leu Met Lys Gly Tyr Val Asn 395 405 Asn Pro Glu Ala Thr Lys Glu Leu Ile Asp Glu Glu Gly Tro Leu 415 410 420 His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu Glu Lys His Phe Phe 425 430 435 lle Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln 440 445 Val Ala Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Asn 455 465 lle Phe Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Asp Ala Gly 470 475 480 Glu Leu Pro Ala Ala Val Val Leu Glu His Gly Lys Thr Met 485 490 495 Thr Glu Lys Glu lle Val Asp Tyr Val Ala Ser Gln Val Thr Thr 500 505 510 Ala Lys Lys Leu Arg Gly Gly Val Val Phe Val Asp Glu Val Pro 515 520 525 Lvs Gly Leu Thr Gly Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile 530 535 Leu Ile Lys Ala Lys Lys Gly Gly Lys Ser Lys Leu 550

SEQ ID NO: 8

SEQUENCE LENGTH: 1656

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE: Luciola cruciata and Photinus pyralis

SEQUENCE DESCRIPTION:

ATG GAA AAC ATG GAA AAC GAT GAA AAT ATT GTA GTT GGA CCT AAA CCG 48 GCT GGA ACA GAA GAG GGA TCT CAA TTA CGC TTT TAC CCT ATC AAA TAC 96 GCA ATT GCT ATG GAG CGA TAT GCA AAA CTT GGC TTT ACA AAT GCA GTT TAC TTG ACT GGT GTT GAT TAT TCT TAC GCC GAA GAG AAA TCA TGT TGT 192 TTG CAA GGT CTA GGA AAA GCT AAT TAT TTG GTT GTT GAT GGC AGA ATT 240 TGT GAA TTT TTT GCG TTA TGC AGT GAA AAC GAA ATT CCT GTA 288 ATA GCC ATA GGT GTA GGT GTT GCA CCC ACT AAT GAG ATT GGA CTG TTT TAC ACT 336 CAC GGT ATC TCT AAA CCA ACA ATT GTA GAA CTG GTT AGT TTA 384 TTA CGT TTA GAT AAA GTT ATA ACA GTA CAG AAA ACA TCT AAA AAA GGC 432 TTT AGT GTA ACT ACT ATT AAA ACC GTA ACT ACT ATT AAA ACC ATT GTT CGA GGA TAT CAA TGT CTG GAC ACC ATA CTA GAT AGC AAA GTT GAT TAT 480 TTT ATA AAA AGA AAC ACT CCA CCA

GGTA GGA ACTTA TGATT GATT GAA CAA GAA GAA GAA	ACA GTAC TTCA TCAT ACG GTTC CATC CATC CA	GCAAGTTTTCGAAATTGTTCCGAGTTTCCGAGTTTCCGAGTTTCCGAGTTCCAGAGTTCAGAGTTCAGAGTTCCAGAGTTCCAGAGTTCCAGAGTTCAGAG	CTTTTACCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ACT TTGGAGGGGGGGCGCGGGGGGGGGGGGGGGGGGGGG	ATGCGGTTTACTTACTTACTTACTTACTTACTTACTTACT	AAC CAAC CCGAAAC CCGCAAAC CCGCAAAC CCGCAAAC CCGCAAAC CCGCAAAC CCGCAAAC CCGCCGCCAAC CCGCCCCCCCC	TAAATTAATTTAATGGATTCGTTC	TCG ACTT GCTGGTCACCATTGAAAATGGGTGC ACCATTGAAAATGGGTGC	GGTCATGTCTAAATTTAAATTTAAATTTCTAAGTTCTAGT	TCTACCATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TTCATTCCATCCAATCCAATTCGGAATTCGCAATTCGCAATTCGCAATTCGCAATTCGCAATTCGCGAATTCGCGAATTCGCGAATTCGCGAATTCGCGAATTCGCAATTCAATTCGCAATTCGCAATTCAATTCGCAATTCAATTCGCAATTCAATTCGCAATTCAATTCGCAATTCAATTCGCAATTCAA	GTTCCTAAAAAACAACCTTTCGAACTTTGAAAAAACAACAACAACAACAACAACAACAACAACAACAA	TTGTTCTTCTAGTAACCAACCAACCAACCAACCAACCAAC	CCATTATTCATTCATTCAAAACCGATGCATGCGATGCATGC	AAA GCTAGGATTTGGAAGCCGTTGAAAAAAACCCGTTGAAGACCCGGGAAAAAAAA	576 6720 8667 7768 8662 10056 11150 11224 11339 11448 11536
	AAA TTG GGA	GAG CGC AAA	ATC GGA	GTG GGA GAC	GAT GTT GCA	TAC GTG	GTC TTT	GCC GTG	AGT GAC	CAA GAA	GTA	A C A C C G		GCG GGT	AAA	1488 1536 1584 1632 1656