Functional Analysis, Stein-Shakarchi Chapter 1 L^p spaces and Banach Spaces

Yung-Hsiang Huang*

2018.05.21

Abstract

Many problems are cited to my solution files for Folland [4] and Rudin [6] post here.

1 Exercises

- 1. The details and generalizations are discussed in my solution files for Folland [4, Exercise 6.6] and Rudin [6, Exercise 3.4-3.5].
- 2. Proof. (a) follows from the hint by noting the concavity of x^p on $(0,1), 0 . (b) Assume <math>l \neq 0$, then there exists $f \in L^p$ such that $|l(f)| \geq 1$. Let $g_1 = f\chi_{(-\inf,x)}$ such that $||g_1||_p^p = \frac{1}{2}||f||_p^p$, $g_2 = f g_1$, then $|l(2g_i)| \geq 1$ for some i. Let $f_1 = 2g_i$, then $||f_1||_p = 2^{1-1/p}||f||_p$ and $|l(f_1)| \geq 1$. Repeat the previous process inductively, we have f_n with $||f_n||_p = 2^{1-1/p}||f_{n-1}||_p = \cdots = 2^{n(1-1/p)}||f||_p \to 0$ and $1 \leq |l(f_n)| \to 0$ by the continuity of l, which is a contradiction. \square
- 3. Track back the condition for the equality in (2), page 4. See also Folland [4, Exercise 6.1].
- 4. Proof. (a) If g = 0 a.e., then we are done. If not, then apply Hölder's inequality to $f^p = (fg)^p g^{-p}$ (b) Try to mimic the proof for $p \ge 1$ and use the inequality in Hint of Exercise 2(a). (c) The triangle inequality is proved by using the same inequality we used in (b).
- 5. Proof. For each $k \in \mathbb{N}$, there exists n_k such that $||f_{n_k} f||_p \leq 2^{-k}$. We may assume n_k increasing and note that for each k, $||f_{n_k} f_{n_{k+1}}||_p \leq ||f_{n_k} f||_p + ||f_{n_{k+1}} f||_p \leq 2^{1-k}$. Define $h(x) = \sum_{k=1}^{\infty} f_{n_k} f_{n_{k-1}}$, then by the proof in completeness of L^p , it's finite a.e. and the partial sum f_{n_k} converges to h a.e. and in L^p . So h = f and f_{n_k} converges to f a.e.

^{*}Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

- 6. As Hints, (b) is proved by apply LDCT.
- 7. Proof. (Sketch) (a) Cut-off the domain, approximation by simple function, using outer and inner regularity of Lebesgue measure, and then use Urysohn's lemma. (b) Mollify the C_c functions you construct in (a). See Folland [4, Proposition 7.9 and 8.17]
- 8. As Hints. For $p = \infty$ consider $\chi_{[0,1]^d}$.
- 9. Suppose X is a measure space and $1 \le p_0 < p_1 \le \infty$. (a) Consider $L^{p_0} \cap L^{p_1}$ equipped with

$$||f||_{L^{p_0}\cap L^{p_1}} = ||f||_{L^{p_0}} + ||f||_{L^{p_1}}.$$

Show that $(L^{p_0} \cap L^{p_1}, \|\cdot\|_{L^{p_0} \cap L^{p_1}})$ is a Banach space.

(b) Show that $(L^{p_0} + L^{p_1}, \|\cdot\|_{L^{p_0} + L^{p_1}})$ is a Banach space, where

$$||f||_{L^{p_0}+L^{p_1}} := \inf\{||f_0||_{L^{p_0}} + ||f_1||_{L^{p_1}} : f = f_0 + f_1 \in L^{p_0} + L^{p_1}\}.$$

(c) Show that $L^p \subset L^{p_0} + L^{p_1}$ if $p_0 \leq p \leq p_1$.

Remark 1. Also see Exercise 24 (as an example of Orlicz space) and Folland [4, Exercise 6.3-6.4 and papers cited there].

Proof. (c)
$$f = f\chi_{\{|x|>1\}} + f\chi_{\{|x|<1\}}$$
.

- (a) it's easy to see this is a norm on the vector space. you can check the completeness through the one of L^p .
- (b) Scaling property is trivial. If ||f|| = 0, then for every $n \in \mathbb{N}$, there are $f_0^n \in L^{p_0}$ and $f_1^n \in L^{p_1}$ with the L^p norm less than $\frac{1}{n}$ respectively. Then there is a subsequence such that $f_0^{n_k} \to 0$ a.e. and a further subsequence $f_1^{n_{k_j}} \to 0$ a.e. So does f.

Given $f, g \in L^{p_0} + L^{p_1}$, for each $n \in \mathbb{N}$, there exist decompositions $f = f_0^n + f_1^n$, $g = g_0^n + g_1^n$ such that $||f_0^n|| + ||f_1^n|| < ||f|| + \frac{1}{n}$, $||g_0^n|| + ||g_1^n|| < ||g|| + \frac{1}{n}$. Therefore,

$$||f+g|| \le ||f_0^n + g_0^n|| + ||f_1^n + g_1^n|| \le ||f_0^n|| + ||g_0^n|| + ||f_1^n|| + ||g_1^n|| < ||f|| + ||g|| + \frac{2}{n}.$$

Letting $n \to \infty$, we see $||f + g|| \le ||f|| + ||g||$.

Given $\{f_k\}$ be a Cauchy sequence in $L^{p_0} + L^{p_1}$, and given $\epsilon > 0$, then there exists $N = N(\epsilon)$ such that $||f_k - f_j|| < \epsilon$ for all k, j > N and hence there exist $f_k^0, f_j^0, f_k^1, f_j^1$ such that $||f_k^0 - f_j^0||_{p_0} + ||f_k^1 - f_j^1||_{p_1} < 2\epsilon$. By completeness of L^p , there exist $f^0 \in L^{p_0}, f^1 \in L^{p_1}$ such that $f_k^0 \to f^0$ in L^{p_0} and $f_k^1 \to f^1$ in L^{p_1} . Then $0 \le ||f_k - (f^0 + f^1)|| \le ||f_k^0 - f^0||_{p_0} + ||f_k^1 - f^1||_{p_1} \to 0$.

- 10. See my solution files for Folland [4, Exercise 6.13, Additional Exercise 6.1 and Exercise 5.25].
- 11. The same as Exercise 10.
- 12. Proof. (a)(b) are standard. (c) Since $L^{p'}$ is separable, there exists a dense subset $\{x_n\}$ in $L^{p'}$. For x_1 , since $|(f_k, x_1)| = |\int f_k x_1| \le M||x_1||$, where $M = \sup ||f_n||_p$, by Bolzano-Weierstrauss, there exists a subsequence $f_{k,1}$ such that $(f_{k,1}, x_1) \to a_1$, some constant. Inductively in x_n , we conclude that for each k, there exists $\{f_{k,n}\} \subseteq \{f_{k-1,n}\}$ such that $(f_{k,n}, x_n) \to a_n$. Choose $\{f_{k,k}\}$ as the desired subsequence and we are going to prove that it converges weakly.

Given $l \in (L^p)^*$, by Riesz's theorem, it is represented by some $x \in L^{p'}$. Then there are $\{x_n\} \ni x_j \to x$ in $L^{p'}$. Note that

$$|l(f_{k,k}) - l(f_{m,m})| \le (I) + (II) + (III) :=$$

$$\le \int |x(t)f_{k,k}(t) - x_j(t)f_{k,k}(t)| + \int |x_j(t)f_{k,k}(t) - x_j(t)f_{m,m}(t)| + \int |x(t)f_{m,m}(t) - x_j(t)f_{m,m}(t)|.$$

Given $\epsilon > 0$, there exists $J = J(\epsilon)$ such that $||x - x_J|| < \frac{\epsilon}{M}$. By Hölder, (I) and (III) are less than ϵ . For this J, we can choose a $N = N(\epsilon)$ such that (II) $< \epsilon$ for all k, m > N. This implies that, for each $l \in (L^p)^* \cong L^{p'}$, $l(f_{k,k}) \to c(l)$ as $k \to \infty$. Note that the map $l \mapsto c(l)$ is linear and $|c(l)| = \lim_{k \to \infty} |l(f_{k,k})| \le M||l||_{p'}$. By Riesz representation theorem, there is some $f \in L^p$ such that $\lim_{k \to \infty} l(f_{k,k}) = c(l) = l(f)$ for all $l \in L^{p'}$.

- **Remark** 2. The weak compactness theorem is true for any reflexive Banach space. The converse also hold, known as Eberlein- \check{S} mulian theorem, whose proof is put in my additional exercise 6.2.5 for Folland [4]. Also see Brezis [2, Theorem 3.19 and its remarks]
- 13. *Proof.* (a) This is Riemann-Lebesgue lemma, I think it's weak-* convergence in L^{∞} , not weak convergence; I put my comment on various proofs below:
 - (1) I think the easy way to understand is through Bessel's inequality. But this method does not work on L^p , except L^2 .
 - (2) The second way is through integration by parts, and one needs the density theorem (simple functions or C_c^{∞} functions). This method is adapted to our claim, except for weak convergence in L^1 . But for L^1 case, it's a simple consequence of squeeze theorem in freshman's Calculus.
 - (b) Apply Hölder's inequality and use the absolute continuity of the indefinite integral of L^1 function. (c) is easy.
- 14. Suppose X is a measure space, $1 , and suppose <math>\{f_n\}$ is a sequence of functions with $||f_n||_{L^p} \le M < \infty$.

- (a) Prove that if $f_n \to f$ a.e. then $f_n \to f$ weakly.
- (b) Show that the above result may fail if p=1
- (c) Show that if $f_n \to f_1$ a.e. and $f_n \to f_2$ weakly, then $f_1 = f_2$ a.e.

Proof. (a)'s hint is given in Folland [4, Exercise 20(a)] by using Egoroff's theorem.

- (b) $f_n = \chi_{(n,n+1)}$ in $L^1(\mathbb{R}, m)$.
- (c) We don't need to bother whether $||f_n||_p \leq M$ is a necessary assumption, since by Uniform Boundedness Principle, a weakly convergent sequence is bounded (cf: Exercise 4.13). So by (a), $f_n \to f_1$, that is, $f_n f_1 \to 0$. Next, we show the weak limit is unique as follows:

Note that $f_n - f_1
ightharpoonup f_2 - f_1$, too. Now let $E_j = \{|f_2 - f_1| > \frac{1}{j}\}$ which has finite measure by Chebyshev's inequality and hence $\operatorname{sgn}(f_2 - f_1)\chi_{E_j} \in L^{p'}$. The weak convergence to $f_2 - f_1$ and 0 implies E_j has zero measure for each j and hence $f_1 = f_2$ a.e.

15.
$$Proof.$$

- 16. Multiple Hölder inequality is proved by mathematical induction.
- 17. (a) Prove Young's convolution inequality, including the measurability, integrability of $f(x \cdot)g(\cdot)$ for each $x \in \mathbb{R}^d$
 - (b) A version of (a) applies when g is replaced by a finite Borel measure μ :

$$(f * \mu)(x) = \int_{\mathbb{R}^d} f(x - y) d\mu(y),$$

and show that $||f * \mu||_{L^p} \le ||f||_{L^p} |\mu|(\mathbb{R}^d)$

(c) Prove that if $f \in L^p$ and $g \in L^q$, where p,q are conjugated exponents, then $\|f * g\|_{L^\infty} \leq \|f\|_{L^p} \|g\|_{L^q}$. Moreover, f * g is uniformly continuous on \mathbb{R}^d , and if $1 , then <math>(f * g)(x) \to 0$ as $|x| \to \infty$.

Remark 3. The last assertion is not true for endpoint exponents, e.g. $g(x) = \frac{\overline{f(x)}}{|f(x)|}$, then $(f * g)(x) \equiv ||f||_1$. However, it's true for the case $f \in L^1$ and $g \in L^1 \cap L^\infty$. See Exercise 2.24 in Book III.

Proof. (a) For p=1, this is the Fubini-Tonelli theorem. We consider $1 now. If <math>f, g \ge 0$, then Tonelli's theorem implies f * g(x) exists a.e. and measurable. For $1 , by Hölder's inequality, we have <math>(f * g)(x) \le \|g\|_1^{1/p'} (f^p * g)(x)^{1/p}$. Then we integrate both sides and use Minkowski's integral inequality to conclude the desired inequality; for $p = \infty$,

 $(f*g)(x) \leq \|f\|_{\infty} \|g\|_{1}$. For general f, g, then by Minkowski's inequality $|f|*|g| \in L^{p}(\mathbb{R}^{d})$. And then $|f|*|g| < \infty$ a.e., that is, for a.e. $x, f(x-\cdot)g(\cdot) \in L^{1}$ and hence f*g exists and finite a.e. To see its measurability, Consider $f_{N} = f\chi_{\{|x| < N\}} \in L^{1}$, then $f_{N}*g$ is measurable by Tonelli's theorem. Fixed $x, f_{N}(x-t)g(t) \to f(x-t)g(t)$ a.e. t and $|f_{N}(x-\cdot)g(\cdot)| \leq |f(x-\cdot)g(\cdot)| \in L^{1}$. By LDCT, $f_{N}*g(x) \to f*g(x)$ for a.e. x, and therefore f*g is measurable.

(b)

(c) The inequality is just Hölder's inequality.

WLOG, we assume $f \in L^p$ with $p < \infty$. Given $\epsilon > 0$, by translation is continuous in L^p norm (Exercise 8), there is $\delta > 0$ such that, $||f(\cdot + h - f(\cdot))||_{L^p} < \epsilon/||g||_{L^q}$ whenever $h < \delta$. Then for all $x \in \mathbb{R}^d$,

$$|(f * g)(x + h) - (f * g)(x)| \le ||f(\cdot + h - f(\cdot))||_{L^p} ||g||_{L^q} < \epsilon$$

whenever $h < \delta$.

The vanishing properties is proved as follows: One consider the case of functions with compact support and then use the density argument. \Box

Remark 4. On 2017.09.23, I saw this problem. One of the answer states a less explicit fact: "Salem and Zygmund proved that convolution map $L^1(\mathbb{T}) \times L^1(\mathbb{T}) \to L^1(\mathbb{T})$ is onto.

This was shown to hold for all locally compact groups by Paul Cohen in 1959. This result was the starting point of an entire industry establishing "factorization theorems".

A nice survey on this topic is Jan Kisynski, On Cohen's proof of the Factorization Theorem, Annales Polonici Mathematici 75, 2 (2000), 177-192."

18.
$$Proof.$$

$$20. \ Proof.$$

- 22. The proof for Young's inequality for products is immediate if you draw a correct picture.
- 23. Let (X, μ) be a measure space and suppose $0 \not\equiv \Phi(t)$ is a continuous convex and increasing function on $[0, \infty)$, with $\Phi(0) = 0$. Define the Orlicz space

$$L^\Phi:=\{f \text{ measurable}: \int_X \Phi(|f(x)|/M)\,d\mu<\infty \ \text{ for some } M>0\},$$

and

$$||f||_{\Phi} = \inf_{M>0} \int_{X} \Phi(|f(x)|/M) d\mu \le 1.$$

Prove that : (a) L^{Φ} is a vector space. (b) $\|\cdot\|_{L^{\Phi}}$ is a norm. (c) L^{Φ} is complete in this norm.

Note that in the special case $\Phi(t) = t^p, 1 \le p < \infty$, then $L^{\Phi} = L^p$.

Remark 5. I think we should assume $\Phi \not\equiv 0$. one also note that the property that there is A > 0 so that $\Phi(t) \geq At$ for all $t \geq 0$ may not be true for small t, e.g. $\Phi(t) = t^2$.

Proof. (a)(b) Given $f, g \in L^{\Phi}$ and $s \in \mathcal{K}$, where $\mathcal{K} = \mathbb{R}$ or \mathbb{C} . Then it's obvious that $sf \in L^{\Phi}$ and $\|sf\|_{L^{\Phi}} = |s| \|f\|_{L^{\Phi}}$. Moreover, for each $\epsilon > 0$, there exists $0 < M_f < \|f\|_{L^{\Phi}} + \epsilon$ and $0 < M_g < \|g\|_{L^{\Phi}} + \epsilon$ such that $\int_X \Phi(|f(x)|/M_f) d\mu \le 1$, and $\int_X \Phi(|g(x)|/M_g) d\mu \le 1$. Then by the convexity and monotone increasing property,

$$\int_{X} \Phi(\frac{|f(x) + g(x)|}{M_{f} + M_{g}}) d\mu \leq \int_{X} \Phi(\frac{|f(x)| + |g(x)|}{M_{f} + M_{g}}) d\mu = \int_{X} \Phi(\frac{|f(x)|}{M_{f}} \frac{M_{f}}{M_{f} + M_{g}} + \frac{|g(x)|}{M_{g}} \frac{M_{g}}{M_{f} + M_{g}}) d\mu = \int_{X} \Phi(\frac{|f(x)|}{M_{f}} \frac{M_{f}}{M_{f} + M_{g}} + \frac{|g(x)|}{M_{g}} \frac{M_{g}}{M_{f} + M_{g}}) d\mu = \int_{X} \Phi(\frac{|f(x)|}{M_{f}} \frac{M_{f}}{M_{f} + M_{g}} + \frac{|g(x)|}{M_{g}} \frac{M_{g}}{M_{f} + M_{g}}) d\mu = \int_{X} \Phi(\frac{|f(x)|}{M_{f}} \frac{M_{f}}{M_{f} + M_{g}} + \frac{|g(x)|}{M_{g}} \frac{M_{g}}{M_{f} + M_{g}}) d\mu = \int_{X} \Phi(\frac{|f(x)|}{M_{f}} \frac{M_{f}}{M_{f} + M_{g}} + \frac{|g(x)|}{M_{g}} \frac{M_{g}}{M_{f} + M_{g}}) d\mu$$

That is, $f+g \in L^{\Phi}$ and $||f+g||_{L^{\Phi}} \leq ||f||_{L^{\Phi}} + ||g||_{L^{\Phi}} + 2\epsilon$. Since $\epsilon > 0$ is arbitrary, $||f+g||_{L^{\Phi}} \leq ||f||_{L^{\Phi}} + ||g||_{L^{\Phi}} + ||g||_{L^{\Phi}}$. Finally, if $||f||_{L^{\Phi}} = 0$, then for each $k \in \mathbb{N}$, there exists $0 < \epsilon_k < \frac{1}{k}$ such that $\int_X \Phi(\frac{|f(x)|}{\epsilon_k}) d\mu \leq 1$. Since $\Phi(0) = 0$, for each $\lambda > 0$ and $m \in \mathbb{N}$, pick k large such that $\lambda \epsilon_k < \frac{1}{m}$

$$\int_X \Phi(\lambda|f(x)|) \, d\mu = \int_X \Phi(\lambda \epsilon_k \frac{|f(x)|}{\epsilon_k} + (1 - \lambda \epsilon_k)0) \, d\mu \le \lambda \epsilon_k \int_X \Phi(\frac{|f(x)|}{\epsilon_k}) \, d\mu < \frac{1}{m}.$$

So $\int_X \Phi(\lambda|f(x)|) d\mu = 0$, then $\Phi(\lambda|f(x)|) = 0$ for μ -a.e. x.

Since $\Phi \not\equiv 0$, $A = \sup\{x : \Phi(x) = 0\} \in [0, \infty)$. Therefore $\lambda |f(x)| \leq A$ for μ -a.e. x for all $\lambda > 0$. Hence |f(x)| = 0 for μ -a.e. x.

(c)(Simplfied the proof on Rao-Ren [5, Theorem 3.3.10].)

Given $\{f_n\}$ be a Cauchy sequence in L^{Φ} , then there exists $0 < \epsilon_{nm} \le 2||f_n - f_m||_{L^{\Phi}} \to 0$ as $n, m \to \infty$ (we omit the trivial case that $||f_n - f_m||_{L^{\Phi}} = 0$ for all large n, m) such that

$$\int_X \Phi(\frac{|f_n - f_m|}{\epsilon_{nm}}) \, d\mu \le 1.$$

For each $\epsilon > 0$, we note that, by monotonicity of Φ , $\{|f_m - f_n| \ge \epsilon\} \subseteq \{\Phi(\frac{|f_m - f_n|}{\epsilon_{nm}}) \ge \Phi(\frac{\epsilon}{\epsilon_{nm}})\}$. Hence

$$\mu(\{|f_m - f_n| \ge \epsilon\}) \le \mu(\{\Phi(\frac{|f_m - f_n|}{\epsilon_{nm}}) \ge \Phi(\frac{\epsilon}{\epsilon_{nm}})\}) \le \frac{1}{\Phi(\frac{\epsilon}{\epsilon_{nm}})} \int_X \Phi(\frac{|f_m - f_n|}{\epsilon_{nm}}) d\mu \le \frac{1}{\Phi(\frac{\epsilon}{\epsilon_{nm}})}$$

Let A be the same as the above. Note that

$$0 < \Phi(2A) = \Phi(t\frac{2A}{t} + 0 \cdot (1 - \frac{2A}{t})) \le \frac{2A}{t}\Phi(t)$$

for $t \geq 2A$, so $\Phi(t) \geq t \frac{\Phi(2A)}{2A} \to \infty$ as $t \to \infty$. So $\mu(\{|f_m - f_n| \geq \epsilon\}) \to 0$ as $n, m \to \infty$. Therefore, $\{f_n\}$ is Cauchy in measure and hence there exists a measurable function f and a subsequence $\{f_{n_i}\}$ such that $f_{n_i} \to f$ a.e. on X.

Since $|||f_n||_{L^{\Phi}} - ||f_m||_{L^{\Phi}}| \le ||f_n - f_m||_{L^{\Phi}}$, $\{||f_n||_{L^{\Phi}}\}$ forms a Cauchy sequence in \mathbb{R} , and then $||f_n||_{L^{\Phi}} \to \rho$ for some $\rho \ge 0$. If $\rho > 0$, then $f \in L^{\Phi}$ since by Fatou's lemma, the definition of $||\cdot||_{L^{\Phi}}$ and the continuity and convexity of Φ ,

$$\int_X \Phi(\frac{|f|}{2\rho}) d\mu \leq \liminf_{i \to \infty} \int_X \Phi(\frac{|f_{n_i}|}{2\|f_{n_i}\|_{L^\Phi}}) d\mu \leq 1.$$

If $\rho = 0$, then there exists $0 < \epsilon_{n_i} \to 0$ as $i \to \infty$ such that $\int_X \Phi(\frac{|f_{n_i}(x)|}{\epsilon_{n_i}}) d\mu \le 1$. Using Fatou's lemma, we have $f \in L^{\Phi}$ since

$$0 \leq \int_{X} \Phi(|f(x)|) d\mu \leq \liminf_{i \to \infty} \int_{X} \Phi(|f_{n_{i}}(x)|) = \liminf_{i \to \infty} \int_{X} \Phi(\epsilon_{n_{i}} \frac{|f_{n_{i}}(x)|}{\epsilon_{n_{i}}} + (1 - \epsilon_{n_{i}})0) d\mu$$

$$\leq \liminf_{i \to \infty} \epsilon_{n_{i}} \int_{X} \Phi(\frac{|f_{n_{i}}(x)|}{\epsilon_{n_{i}}}) d\mu \leq 0.$$

Finally, given $\{f_{n_k}\}_k \subset \{f_n\}$, there is a further subsequence $\{f_{n_{k_m}}\}_m$ that converges to f a.e. (the limit function must be f). For each $k, j \in \mathbb{N}$, $\Phi(k|f_{n_{k_m}} - f_{n_{k_j}}|) \to \Phi(k|f - f_{n_{k_j}}|)$ as $m \to \infty$. Moreover, since $||f_{n_m} - f_{n_j}||_{L^{\Phi}} \to 0$ as $m, j \to \infty$, there exists $N(k) \in \mathbb{N}$ such that if m, j > N(k), there exists $\epsilon_{m,j} < \frac{1}{k}$ such that $\int_X \Phi(\frac{|f_{n_{k_m}} - f_{n_{k_j}}|}{\epsilon_{m,j}}) \le 1$.

So $||f - f_{n_{k_j}}||_{L^{\Phi}} < \frac{1}{k}$ if j > N(k) since

$$\begin{split} &\int_X \Phi(\frac{|f - f_{n_{k_j}}|}{1/k}) \, d\mu \leq \liminf_{m \to \infty} \int_X \Phi(\frac{|f_{n_{k_m}} - f_{n_{k_j}}|}{1/k}) \, d\mu = \liminf_{m \to \infty} \int_X \Phi(\frac{|f_{n_{k_m}} - f_{n_{k_j}}|}{\epsilon_{m,j}} \frac{\epsilon_{m,j}}{1/k}) \, d\mu \\ &\leq \liminf_{m \to \infty} \frac{\epsilon_{m,j}}{1/k} \int_X \Phi(\frac{|f_{n_{k_m}} - f_{n_{k_j}}|}{\epsilon_{m,j}}) \leq 1. \end{split}$$

Therefore $||f - f_{n_{k_j}}||_{L^{\Phi}} \to 0$ as $j \to \infty$. Since every subsequence of $\{f_n\}$ contains a further convergent subsubsequence, f_n converges to f in L^{Φ} .

25. A Banach space is a Hilbert space if and only if it satisfies the parallelogram law. As a consequence, prove that if $L^p(\mathbb{R}^d)$ with Lebesgue measure is a Hilbert space, then p=2. Generalizations of parallelogram law are stated in Problem 6.

	Exercise 6.12] which works not only for Lebesgue measure but also for general measure space	ce.
26.	Proof.	
27.	Proof.	
28.	Proof.	
29.	Proof.	
30.	Proof.	
31.	Proof.	
32.	If the dual space \mathscr{B}^* of a Banach space \mathscr{B} is separable, then \mathscr{B} is separable. (The converse is not true, see Exercise 11.)	he
	<i>Proof.</i> Let $\{y_n^*\}$ be a countable dense subset of \mathscr{B}^* and $x_n \in \mathscr{B}$ such that $ x_n = 1$ at $ y_n^*(x_n) \ge \frac{1}{2} y_n^* $. Let us denote by L the vector space over \mathbb{Q} generated by $\{x_n\}$, which is eat to see it's countable.	
	Suppose L is not dense in \mathscr{B} , then by Hahn-Banach Theorem, there is $y^* \in \mathscr{B}^*$ such th $y^*(L) = \{0\}$ and $ y^* = 1$. Then for each $n \in \mathbb{N}$,	ıat
	$\frac{1}{2} y_n^* \le y_n^*(x_n) = y_n^*(x_n) - y^*(x_n) \le y_n^* - y^* .$	
	Hence $1 = \ y^*\ \le \ y^* - y_n^*\ + \ y_n^*\ \le 3\ y_n^* - y^*\ \to 0$ by picking a suitable subsequence, whi is a contradiction. Therefore L is dense in \mathcal{B} , that is, \mathcal{B} is separable.	ch
33.	Proof.	
34.	Proof.	
35.	Proof.	
36.	Proof.	

Proof. (Sketch) Use standard polar identity. For L^p part, see my discussion in Folland [4,

2 Problems

1. Proof	f	
1. 1 1001	1.	

$$\square$$
 Proof.

$$\Box$$
 3. Proof.

4. Proof.
$$\Box$$

$$\Box$$
 5. Proof.

- 6. There are generalizations of the parallelogram law for L^2 (see Exercise 25) that hold for L^p . These are the Clarkson inequalities:
 - (a) For $2 \le p \le \infty$ the statement is that

$$\left\| \frac{f+g}{2} \right\|_{L^p}^p + \left\| \frac{f-g}{2} \right\|_{L^p}^p \le \frac{1}{2} \left(\left\| f \right\|_{L^p}^p + \left\| g \right\|_{L^p}^p \right).$$

(b) For 1 the statement is that

$$\left\| \frac{f+g}{2} \right\|_{L^p}^q + \left\| \frac{f-g}{2} \right\|_{L^p}^q \le \frac{1}{2} \left(\|f\|_{L^p}^p + \|g\|_{L^p}^p \right)^{\frac{q}{p}},$$

where $p^{-1} + q^{-1} = 1$. This is trickier to prove than (a).

- (c) As a result, L^p is uniformly convex when $1 . This means that there is a delta function <math>\delta = \delta_p(\epsilon)$, with $0 < \delta < 1$ and $\delta_p(\epsilon) \to 0$ as $\epsilon \to 0$, so that whenever $\|f\|_{L^p} = \|g\|_{L^p} = 1$, then $\|f g\|_{L^p} \ge \epsilon$ implies that $\|\frac{f+g}{2}\| \le 1 \delta$. This is stronger than the conclusion of strict convexity in Exercise 27.
- (d) Using (c) to prove the Radon-Riesz Theorem: suppose $1 , and the sequence <math>\{f_n\} \subset L^p$ or arbitrary uniformly convex Banach space X, converges weakly to f. If $||f_n||_X \to ||f||_X$, then $||f_n f||_X \to 0$ as $n \to \infty$.

Remark 6. Milman-Pettis Theorem states every uniformly convex space X is reflexive. See [2, Section 3.7].

Remark 7. A related result for (d) is the Brezis-Lieb theorem (refined Fatou lemma), see [3]. **Remark** 8. More discussions of Clarkson inequalities can be found in [1].

Proof. (c) is easy. (d) We may assume $f \not\equiv 0$. Let $F_n = ||f_n||^{-1} f_n$ and $F = ||f||^{-1} f$. So $F_n \rightharpoonup F$ weakly. It follows that

$$1 = ||F|| \le \liminf ||\frac{F_n + F}{2}|| \le 1.$$

Then the uniform convexity implies $||F_n - F|| \to 0$ as $n \to \infty$. So $||f_n - f|| \to 0$ as $n \to \infty$.

7. Proof.		
8. Proof.		
9. Proof.		

References

- [1] Keith Ball, Eric A Carlen, and Elliott H Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. *Inventiones mathematicae*, 115(1):463–482, 1994.
- [2] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.
- [3] Haïm Brézis and Elliott Lieb. A relation between pointwise convergence of functions and convergence of functionals. Proceedings of the American Mathematical Society, 88(3):486–490, 1983.
- [4] Gerald B Folland. Real analysis: Modern Techniques and Their Applications. John Wiley & Sons, 2nd edition, 1999.
- [5] Malempati Madhusudana Rao and Zhong Dao Ren. Theory of Orlicz spaces, volume 146. CRC Press, 1991.
- [6] Walter Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, third edition, 1987.