557 IL6b no. 29

STATE OF ILLINOIS

STATE GEOLOGICAL SURVEY

FRANK W. DEWOLF, Director

BULLETIN No. 29

PURCHASE AND SALE

OF

Illinois Coal on Specification

BY

S. W. PARR

Work in cooperation with Illinois Coal Mining Investigations, and University of Illinois

ILLINOIS STATE GEOLOGICAL SURVEY
UNIVERSITY OF ILLINOIS
URBANA
1914

ILLINOIS GEOLOGICAL SURVEY LIBRARY

MAY 7 1958

STATE OF ILLINOIS

STATE GEOLOGICAL SURVEY

FRANK W. DEWOLF, Director

BULLETIN No. 29

PURCHASE AND SALE

OF

Illinois Coal on Specification

BY

S. W. PARR

Work in cooperation with Illinois Coal Mining Investigations, and University of Illinois

ILLINOIS STATE GEOLOGICAL SURVEY
UNIVERSITY OF ILLINOIS
URBANA
1914

SCHNEPP & BARNES, STATE PRINTERS
SPRINGFIELD, ILL.
1915

STATE GEOLOGICAL COMMISSION.

Edward F. Dunne, Chairman Governor of Illinois

THOMAS C. CHAMBERLIN, Vice-Chairman

EDMUND J. JAMES, Secretary President of the University of Illinois

Frank W. DeWolf, Director

Fred H. Kay, Asst. State Geologist

LETTER OF TRANSMITTAL.

STATE GEOLOGICAL SURVEY,

University of Illinois, October, 15, 1914.

Governor E. F. Dunne, Chairman, and Members of the Geological Commission.

GENTLEMEN: I submit herewith a report by Prof. S. W. Parr of the University of Illinois, Consulting Chemist of the Geological Survey, entitled: "Purchase and sale of Illinois coal on specification," and recommend that it be published as Bulletin No. 29.

This subject is one of growing interest to producers, sellers, and users of Illinois coal; and Professor Parr's work as a pioneer investigator has commanded respect everywhere.

The report reviews some of the work published by the Illinois Coal Mining Investigations, Cooperative Agreement, as well as extensive experiences in purchase of coal by the State Board of Administration, to both of which organizations we are greatly indebted.

Very respectfully,

Frank W. DeWolf, Director

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

CONTENTS.

PAGE

Introduction	9
Increased use of heat-unit basis	9
Opportunity for securing data	10
Principles of coal sampling	11
Care in sampling	11
A representative sample	11
Material to be taken	11
Amount	11
Ratio of size to mass	12
Mill for crushing	13
Mixing and subdividing	14
Moisture control.	16
Conditions that facilitate loss of moisture	16
Precautionary measures.	
Illustrative methods of coal sampling.	17
Face sampling.	
Directions for collecting face samples in the mine.	17
Sampler's kit.	
Shipment of sample.	20
Samples taken from commercial supplies	
Use of grinder and riffle	20
Sampling car during unloading	
Sampling car without unloading	25
Composite samples	25
Dust or duff determination	26
Moisture changes	
Moisture conditions and nomenclature	28
Calculations	28
Commercial valuation as affected by chemical and physical properties	29
Moisture	29
Relation of coal-bed moisture to commercial moisture	29
Loss of moisture on shipping.	31
Use of coal-bed moisture content as a basis	34
Range of variation for moisture factors referred to geographical location	35
Ash	35
Causes of variation in ash	35
Controlling the quality of the output	38
Necessity for mine operators to know the ash values of their coal	
Volatile matter, fixed carbon, and sulphur	
Duff or dust.	
Calorific value.	40
Relation between quantity of heat contained and true value	
Most favorable conditions for determination.	
Unit coal	
	40
Meaning and application	
Calculation of commercial values	41
Analytical data	43
Analyses of mine samples	
Average analyses by mines and by counties	58
Purchase and sale of coal under specification	
Use of double standard of reference	72
Bids and awards	
Price and payment	74
Specific directions for sampling	
Taking the sample	
Taking the sample	76 76
· · · · · · · · · · · · · · · · · · ·	76 76
Reducing the sample	76 76 77 77
Reducing the sample	76 76 77 77

ILLUSTRATIONS.

Figure		AGE.
1.	Grinding surfaces of coal crusher	13
2.	Coal grinder of the coffee-mill type.	.14
3.	Riffle	16
4.	Sampler's kit.	18
5.	Coal grinder showing method for attaching legs.	19
	Container for coal sample.	
7.	Equipment for grinding commercial samples	21
	Closed mechanical mixer.	
9.	Side view of mixer.	23
10.	An automatic riffling device	24
Plate.		
I.	Districts for classification of coal samples.	43

THE PURCHASE AND SALE OF ILLINOIS COAL ON SPECIFICATION.

By S. W. Parr.

INTRODUCTION.

INCREASED USE OF THE HEAT-UNIT BASIS.

Information concerning the composition and properties of Illinois coal is in constant and growing demand. Requests for such information come from many market centers and are by no means confined to the State of Illinois. They represent specifically the needs of the community at large, and are perhaps characterized chiefly by the fact that they indicate a marked tendency on the part of users of coal to scrutinize all available data with the ultimate purpose of making their purchases of this commodity on some basis other than that of simple tonnage. The coal operators are not so eager in this movement for the obvious reason that the mining of coal must be paid for by the ton. It does not simplify the lot of the coal producer, therefore, to be obliged to pay for mining the output on a weight basis, and to sell the product on an entirely different basis. Here again, it is believed that a fuller knowledge of the facts relating to the composition of Illinois coals will materially reduce the prejudice of the operator and be of assistance in the making of fuel contracts by enabling him to formulate his proposals more intelligently.

It is inevitable that large users of coal will insist more and more upon contracting for their fuel supplies on some basis other than that of a set price per ton. In spite of certain objectionable features and some opposition, which is not without cause for its existence, there is evidence of a steady increase in the use of what is generally termed the "heat-unit basis" for the purchase of coal. A simple illustration may serve as an explanation of this tendency: Three Illinois state institutions with substantially the same shipping rate received bids on coal supplies from dealers A, B and C, their respective prices being \$1.45, \$1.72 and \$1.43 pton. Now, as subsequently proved to be the case. A was able to deliver, and did deliver, coal with an ash and moisture content of 21 per cent and a heat-unit value which entitled him to a settlement price under

the contract of \$1.55 per ton. The deliveries by B, contained an ash and moisture total of 30 per cent and a heat-unit value which resulted in a settlement price of \$1.12 per ton. Similarly, C with a total ash and moisture content of 33 per cent was entitled to a settlement price of \$0.97. These items are more conveniently shown in tabular form thus:

Bidder	Total per cent of non- combustible in coal as delivered	Bidding price	Settlement price	Difference
A	21	\$1.45	\$1.55	\$0.10
B	30	1.72	1.12	0.60
C	33	1.43	0.97	0.46

Table 1.—Difference between the estimated and actual value of coal.

It is seen from this table that dealers A and C estimated their coals at substantially the same price, say \$1.45 per ton. The intrinsic values, however, which are at least relatively indicated by the settlement price, are shown to have a difference of substantially 60 cents per ton. Similarly, dealer B, who estimated his coal as worth \$1.72 per ton finds its actual value, or at least its settlement value according to the terms of the contract, to be \$1.12 or 60 cents less per ton. The table shows also that a dealer may name his price per ton with very little knowledge as to the intrinsic value of the material. There is little if any relation between the price asked and the actual heat value to be delivered. Illustrations of such discrepancies could be multiplied indefinitely.

OPPORTUNITY FOR SECURING DATA.

During the year 1912 the Illinois Coal Mining Investigations, Cooperative Agreement, sampled over 100 mines at three or more widely separated working faces. This work has afforded an unusual opportunity for studying sampling and analytical methods and also for making a comparative study of the variables and constants in individual mines or districts. Furthermore, the writer has been in charge of coal inspection and analysis as conducted for several years by the State Board of Administration with a view to business-like purchase of coal for the State Charitable Institutions. Similarly, a great mass of data has come into our possession through the purchase of coal on specification by the University of Illinois for many years.

It is the purpose of this report to present such results and data as may have a direct bearing upon the methods of inspection and the purchase and sale of coal by contract.

PRINCIPLES OF COAL SAMPLING.

CARE IN SAMPLING.

Without question, the critical point in the entire range of coal inspection and analysis is in the sampling. If the sample taken is truly representative of the entire lot, the results, if accurate in themselves, furnish correct information as to the larger mass of which the sample is a part. If, on the other hand, the sample is in error, the results of the analysis though correct in themselves will be in error so far as they relate to the mass under consideration. Throughout the process of sampling two points must be observed with scrupulous care:

First—The sample taken must be representative of the whole, that is, the distribution of the various substances which go to make up the original mass must be maintained without any change in the relative amount of the various constituents.

Second—The moisture content, which changes readily, must be under exact control so that at any stage the ratio of moisture present to the original moisture of the mass may be definitely known.

A REPRESENTATIVE SAMPLE.

MATERIAL TO BE TAKEN.

As stated above, the first essential in a sample is that it shall truly represent the mass of which it is a part. To secure this result a few fundamental conditions must be observed, as follows:

The gross sample must be representative of the various kinds of material present. That is to say, a mass of coal conists of fine stuff, lump, bone, slate, pyrites, and other constituents. As a rule the "fines" differ in composition from the lump, hence the sample must have these two sorts of material in their proper proportion. The same is even more true of slate or pyrites, of which the composition differs so widely from that of the major part of the mass. An undue amount of such material would cause a serious disturbance in the accuracy of the sample.

AMOUNT.

In procuring a representative sample a large element of safety resides in the quantity taken. In general, the larger the amount, the more representative it will be. However, conditions differ. It is easier, for example, to procure an even sample from the face of a working vein or from a carload of screenings than from a carload or other mass of lump or of run-of-mine coal. In the latter cases larger amounts should be taken than in the former.

The limits of practicability for the proper handling of the sample must however be considered. In general, the gross sample should weigh approximately from 200 to 600 pounds. Doubtless 200 pounds of screenings, taken with fairly good distribution throughout the unloading of a 40- or 50-ton car, will yield a very true sample. The difficulties increase greatly with the increase of the size of the particles, as in the case of lump or mine-run coal. If mechanical appliances for grinding are available, the larger amount should be taken, but a smaller sample well crushed down before quartering is better than a greater mass quartered down while the particles are still in larger pieces.

RATIO OF SIZE TO MASS.

Assuming that the sample as taken is made up of the various kinds of material in proper proportion, the next important item is to maintain these variables in their ratios throughout the process of reducing the gross amount to a small working or laboratory sample. To insure this result, there must be maintained a certain ratio of size of the particles to size or weight of the mass. This, as a rule, is based on a formula which provides that the weight of the largest piece of impurity shall have a ratio to the weight of the mass of about 2: 10,000. For example, a mass weighing 10,000 grams, or about 22 pounds, should contain no particles weighing more than 2 grams. This would mean that the largest particle, as for example, a piece of iron pyrites, must not be over ½ inch in its greatest diameter.

The final ratio of sizes, however, should be determined by the methods available for grinding. With mechanical appliances for obtaining the smaller sizes, a table of ratios with greater safety limits can be adopted than is perhaps practicable where the crushing is done by hand. If a power crusher is available, the entire sample should be passed through the mill and reduced to a size which will pass a ¼-inch screen. If the crushing must be done by hand, the first reduction in size of the particles should be such that the entire mass will pass through a 1-inch screen. When by quartering, the sample is reduced to 100 pounds, the size of the particles should be further reduced to a size that will pass a ½-inch screen, and with a 50-pound sample in hand the crushing should be carried to ¼-inch mesh. The subdivisions with their respective sizes are shown in tabular form as follows:

Table 2.—Size of mesh for different subdivisions of sample.

Weight of subdivisions of sample (pounds).	Size of mesh to which each subdivision should be broken (inches).
500	1
250	3/4
125	1/2
60	1/4
30	1/8

MILL FOR CRUSHING.

Illinois coals are easily crushed in mills which are available at little expense. Hence it is entirely reasonable to require that gross samples, when reduced in mass to 50 or 75 pounds, shall be passed through a mill set for grinding to approximately ½ inch. For this work, a mill which

Figure 1—GRINDING SURFACES OF COAL CRUSHER.

is not of the jaw-crusher or roller type is preferred, since these types produce too large a percentage of fine material, and the harder pieces of slate, especially those of flaky or plate-like structure, are liable to pass in pieces having inadmissably large dimensions in two directions, even though the adjustment used would seem to be fine enough to prevent the passage of such material. A grinder of the coffee-mill type or one with projecting teeth on the grinding surfaces will be found to produce a more uniform size and the minimum amount of dust. The grinding surfaces of such a machine are shown in figure 1, and the same type of mill is shown set up in figure 2.

MIXING AND SUBDIVIDING.

As a further precaution in maintaining a correct distribution of the various constituents, emphasis is placed upon the necessity of thorough mixing, followed by even selection of the remaining subdivisions. It is true that fine grinding contributes materially to this end but further care is necessary. It is entirely practicable to mix a 50-pound sample,

Figure 2.—COAL GRINDER OF THE COFFEE-MILL TYPE.

ground as above described, by rolling in an oilcloth about five feet square. This is accomplished by taking one corner of the cloth and carrying it over the pile towards the diagonally opposite corner so as to cause the mass to roll over upon itself, then reversing the motion and repeating the process with the other two corners. Fifteen or twenty such alternations, depending somewhat upon the size of the sample, should be sufficient to effect an even mixture. Where available, however, especially in commercial sampling, a mixer is to be preferred. Such a device is most conveniently made in the form of a drum having cone-shaped ends capable of being closed air-tight, and mounted so as to revolve endwise. (See figs. 8 and 9).

The subdividing of the larger sample, to reduce it to a convenient size for transmission to the laboratory, requires special consideration as having an important bearing on the maintenance of the correct ratio of constituents. This may be best shown by the data given in Table 3.

Note in this table that series 1 and 2 are 3-pound samples taken by subdividing in the same manner the same gross sample of about 30

pounds. Each sample was ground to 8-mesh and sized. It will be seen that in series 1, duplicates a and b had 16.6 and 13.7 per cent of the 60-mesh size, whereas in series 2 the duplicates a and b had 22.5 and 23.1 per cent respectively. Note further the great increase in ash in the fine size as compared with the ash in the coarse material. For example,

Table 3.—Ash variations in different sizes obtained from duplicate 3-pound samples.

Series	Mesh	Dupli- cate halves	Per cent of each size	CO ₂ in "dry coal"	Ash corrected for CO ₂ in "dry coal"	a and b composited by calculation
1,	On 20	a b	41.7 48.4	.40 .37	14.11 14.00	
12	Through 20 On 60	a b	41.7 37.9	.85 1.00	15.55 15.42	$a \dots 16.32$
13	Through 60	a b	16.6 13.7	1.31 1.38	23.89 23.65	b15.86 Average16.09
2,	On 20	а b	29.1 25.0	.53 .46	15.91 15.68	
2_2	Through 20 On 60	a b	48.4 51.9	.94	16.23 16.06	a17.90
2_3	Through 60	a b	22.5 23.1	1.32 1.28	24.09 23.98	b17.80 Average17.85

series 1 having an average of 14 per cent of ash in the coarse size has an average of 23.75 per cent in the fine portion. A similar increase in ash is seen in the corresponding sizes in series 2. The ultimate ash average for series 1 is 16.09 per cent and for series 2 it is 17.85 per cent. These values vary consistently with the variation in the percentages of fine material in the respective series. On the other hand, the duplicate halves a and b throughout, because of their uniformity resulting from the sizing process, show results in the several pairs which check very closely.

The values as presented in the table, therefore, show clearly that in the process of subdividing the gross sample and in the further reduction of the sample as received at the laboratory, great care must be exercised to see that no part of the manipulation is of such a nature as will promote segregation of the constituents.

A riffle constructed according to the pattern shown in figure 3 may be

used to advantage after the sample has been reduced by quartering to about 30 pounds. At this stage the sample is ground to ½-inch size, hence the riffle openings may be ½-inch in width. With this variation in the openings the riffle as shown in figure 3 is substantially the one described in the Bulletin of the Ohio Geological Survey, No. 9, p. 313, 1908.

Figure 3.—RIFFLE.

MOISTURE CONTROL.

The second essential in taking and preparing a sample relates to the free moisture present, and requires that the changes in moisture content "must be under exact control so that at any stage the ratio of the moisture present to the original moisture of the mass may be definitely known."

CONDITIONS THAT FACILITATE THE LOSS OF MOISTURE.

In coals of this region especially, where the moisture in the coal as it comes from the mine averages from 10 to 15 per cent the tendency toward moisture changes is very marked. For example, the process of crushing down the larger sizes affords an opportunity for the escape of moisture. Again, if the coal is spread out on the floor of a hot boiler room or left exposed to currents of air for any length of time there will be a serious change in the moisture factor. Another practice sometimes

followed is that of assembling the various increments of the gross sample in a sack or other receptacle permitting a relatively free transmission of air. Samples kept in this manner for any length of time or shipped in such containers will have a moisture content quite different from the original.

PRECAUTIONARY MEASURES.

The methods employed, therefore, in collecting and reducing a gross sample must have special reference to this tendency on the part of the free moisture to escape. The work should be done rapidly in a room at or below the normal temperature and, so far as possible, with the use of closed apparatus which admits of the least possible exchange of the contained air. Precautionary measures of this sort should be made at the very outset. The gross sample, which is made up of small increments collected usually over a considerable length of time, should be enclosed in a tight box or clean garbage can having a tightly fitting cover which can be closed and locked against the possibility of change until the time for grinding and reducing.

HLLUSTRATIVE METHODS OF COAL SAMPLING.

FACE SAMPLING.

Since the procedure for obtaining the face samples described in this report serves as a good illustration of methods adapted to meet the principles above enumerated concerning the uniformity of composition and control of moisture, the details of the process for collecting, and subsequent preparation for shipment in the small container are here given in full. The methods thus described are applicable in principle to the collection of any and all samples from whatever source.

DIRECTIONS FOR COLLECTING FACE SAMPLES IN THE MINE.

Selection of the face

Choose three faces in the mine as widely separated as possible in order to give a good average of the coal for that mine. An attempt should always be made to get faces which have not been exposed more than 48 hours.

Preparation of the face

- (a). Fresh faces
 - 1. With a pick remove all loose coal (that which sounds hollow when tapped with the pick) and square up the face.
 - 2. Brush off the loose coal, dust and powder stains from the face for a distance equal to the length of the blanket (5 to 7 feet).
- (b). Exposed faces

For exposed faces the procedure is the same as above, except that before brushing the face, a strip of the coal one to two inches in

¹ Substantially as given in Bureau of Mines Technical Paper No. 1 with the exception of the preparation, grinding, etc., of the sample.

thickness and about a foot wide is cut down the full vertical height of the face. This is done to give a comparatively fresh face for the sample.

Cutting down the sample

- 1. Spread the blanket at the base of the clean portion of the face, taking care that it fits close at the bottom.
- 2. With a pick cut down a strip of coal six inches wide and two inches deep, the full vertical height of the seam. At least six pounds of coal should be cut down for each foot in thickness. All partings of sulphur, bone or slate over 3/8 inches thick are rejected as these are supposed to be thrown out by the miner.

Preparation of the sample

1. The blanket containing the sample as cut down should be spread upon a smooth hard place on the floor and the lumps all cracked

Figure 4.—SAMPLER'S KIT.

down with a pick to a size suitable for readily passing into the grinder. This can be done directly upon the blanket.

- 2. Pass all of the sample through the grinder.
- 3. The sample is then riffled down until just enough remains to fill the sample can when the material is well shaken down and the can filled full so as to displace as much air as possible.
- 4. After filling as indicated under (3) the can is sealed with electrician's tape.

SAMPLER'S KIT.

The sampler's kit is shown in figure 4. The outfit together with sample cans and labels make up a total weight of 23 to 25 pounds.

Where a portable mill is not available the crushing of the larger lumps must be accomplished by tamping. This is a slow and tedious process. With the mill, the grinding of the average gross sample can

Figure 5.—COAL GRINDER SHOWING METHOD FOR ATTACHING LEGS.

be accomplished in thirty minutes. The mill employed in this work was of cast aluminium except the grinding parts and supports, and weighed complete about 18 pounds. The method of assembling and operating is shown in figures 4 and 5.

By the use of this outfit a 5-pound sample in the best possible condition as to size, evenness of mixture, and accuracy of moisture content,

is obtained. Where power and the mechanical accessories are available the time required for delivering the 5-pound sample may be further reduced by one-half or more.

SHIPMENT OF SAMPLE.

After thus reducing the sample to about five pounds, it is placed in a can, such as is shown in figure 6, and forwarded to the laboratory. The particular feature of the container is the skirted screw cap, which by use of electrician's tape wound about the base of the cover affords further security in sealing. On the inside it should contain a suitable ticket giving all the necessary data.

Figure 6.—CONTAINER FOR COAL SAMPLE.

Samples Taken From Commercial Supplies.

USE OF GRINDER AND RIFFLE.

It should be a comparatively simple matter at any power plant to duplicate in principle the methods for sampling at the mine, and even to improve the conditions for preserving the moisture values. The first essential is a power mill through which the entire gross sample can be quickly run. An illustration of such an equipment is shown in figure 7.

Figure 7.—EQUIPMENT FOR GRINDING COMMERCIAL SAMPLES.

In place of the blanket for rolling the samples, a closed mechanical mixer, such as is shown in figures 1 and 2 is preferred.

Figure 8.—CLOSED MECHANICAL MIXER.

Figure 9.—SIDE VIEW OF MIXER.

The next essential is some form of automatic riffling device, and here it is possible to improve upon the field apparatus by enclosing a series of riffles in a chute thus reducing the accessibility of air currents and other drying conditions. Such a device is shown in diagrammatic form in figure 10. Specific conditions under which samples are most frequently taken are discussed below.

Figure 10.—AN AUTOMATIC RIFFLING DEVICE.

SAMPLING THE CAR DURING UNLOADING.

A car of coal may be sampled to the best advantage in the process of unloading. An occasional half shoveful should be thrown into a proper receptacle (see page 17) so that by the time the car is unloaded approximately 200 pounds, evenly distributed throughout the load will have been taken. This will mean about one-half shovelful for every

ten full scoops. They are best taken in the process of shoveling from the bottom of the car, since the top coal rolls down and mixes fairly evenly with the bottom. It should be kept in mind that in taking a sample there must be obtained the different sizes of coal, fine and coarse in their proper proportions from the entire cross-section of the mass, and also an even distribution of the same lengthwise of the car. Even greater care must be taken to guard against loss of moisture in the process of collecting and in reducing the gross sample for the reason that as a rule the relative humidity outside of the mine is lower and the tendency of the moisture to leave the coal is correspondingly increased.

SAMPLING THE CAR WITHOUT UNLOADING.

It has been shown in Table 3, that the finer particles of a coal mass are higher in ash and hence have a greater specific gravity. They are therefore more likely to separate by gravity from the coarser material. On this account, if a car is to be sampled without unloading, it is necessary to dig well toward the bottom in order to obtain a representative sample. Three trenches should be dug crosswise of the load, one near each end and one near the middle of the car. These trenches should go down nearly to the bottom of the mass and each size be taken as nearly as possible in its proper proportion. Lump and run-of-mine lots are much more difficult to sample than screenings, but it should be noted that screenings may vary greatly, for not infrequently a car is partially loaded from one bin and finished from another which may be of a different size and composition. After obtaining the gross sample, the methods to be followed are the same as those already given.

COMPOSITE SAMPLES.

It is often desirable to composite a number of samples. In this way a single sample may be made to represent a much larger quantity of coal and thus cut down the time and expense involved in procuring the analytical data. In this procedure, however, it must be remembered that even greater care should be exercised in taking the several component samples. The amount of each sample entering into the composite must be in proportion to the mass which it represents, and finally a thorough and positive mixing of the composited mass must be effected before riffling down the same to the usual 5-pound quantity.

It is convenient to determine the amount of each sample to be taken by employing an aliquot system of weights. For illustration: Suppose we adopt 1 gram to the 100 pounds as the unit which shall enter into the composite. Then a 100,000-pound car of coal should be represented by 1,000 grams. In compositing, therefore, the entire content of each can will not be taken, but instead an aliquot proportion which will give to each car lot its due amount. It is preferable to use such a factor as shall utilize the major part of the several 5-pound samples. In this way the gross composite from 10 cars would aggregate 20 or 30 pounds in weight. It should be put into the mixer and revolved until a thoroughly homogeneous mass is obtained and then riffled down to a 5-pound sample as already described. For this procedure it is obvious that the necessary data should accompany the various samples. A ticket inserted in the can before sealing should give the data needed. The form shown below will be found suitable.

DUST OR DUFF DETERMINATION.

Specifications usually prescribe the maximum amount of dust allowed. This is designated as the material which will pass through a screen with ½-inch openings. Obviously this item is not taken into account in mine samples, but should be determined in samples taken from commercial supplies. A determination of the percentage of dust is best made on one of the rejected quarters of the first subdivision. For example, a gross sample of 200 pounds is mixed and quartered. One of the quarters is taken and weighed. This is screened by shaking small portions at a time in a sieve with ¼-inch openings, preferably a sieve with circular perforations ¼-inch in diameter. The fine material is collected and weighed. These two weights together with the other necessary data as above noted should be entered on a ticket and enclosed in the shipping can. A suggested form for this information is as follows:

Rec	ceived by
Date	191
Car initial and number	· · · · · · · · · · · · · · · · · · ·
Weight of car content	
Weight of quarter for dust determination	
Weight of dust net	
Shipping point*	
Shipper or dealer* *Where bill of lading is accessible the place from the place of the plac	om which shipment is made should be indicated.

The assembling of the data thus supplied by the several shipments should be made in tabular form at the laboratory. A sample will illustrate further the method of keeping the record and the use made of the data in compositing the final sample.

FUEL LABORATORY REPORT.

University of Illinois.

Lot No.	Car Initial	Car No.	Source: Mine or operator	Weight of Car content	Weight of quarter taken for dust determina- tion	Weight dust: net	Sampled by	Date of sampling
1 .								••••
2			<u></u>	, <u></u>		; 		
3 .		***************************************	- 	,	-	' <u></u>		
5			\ <u></u>					
6				*	-			
7 8		·						
9								
10				***************************************				
Com	posited b	у	t quartering Date co	ompositing.	ALYSIS	t. of con		
Com	posited b	у	Date co	ompositing.	ALYSIS Lab	t. of con	No	t coal"
Com	posited b	у	Date co	ent of An.	ALYSIS Lab	t. of con	No	
Air-	posited b	· -	REF	Proximate An	ALYSIS Lab	t. of com	No	t coal" e, ash and r free)
Air-	posited b	y	Coal	Proximate An	ALYSIS Lab alysis d" "moi	t. of com	No	t coal" e, ash and r free)
Air-	dry loss	ter	Coal "air dried"	PORT OF AN. Proximate An. Coal. "as receive	ALYSIS Lab	t. of com	No	t coal" e, ash and r free)
Air- Moi:	dry loss sture	ter	Coal "air dried"	Proximate An Coal "as receive	ALYSIS Lab	t. of com	No	t coal" e, ash and r free)
Air- Mois Vola	dry loss sture	ter	Coal "air dried"	Proximate An Coal "as receive	ALYSIS Lab alysis d'' ''moi	t. of com	No	t coal" e, ash and r free)
Com Air- Moi: Wola Fixe Ash Fota	sture atile maticed carbon	ter	Coal "air dried"	Proximate An Coal "as receive	ALYSIS Lab alysis d'' ''moi	t. of com	No	t coal" e, ash and r free)
Air- Moi: Fixe Ash Fota Sull	sture	ter	Coal "air dried"	Proximate An Coal "as receive	ALYSIS Lab alysis d'' "moi	t. of com	No	t coal" e, ash and r free)

Table 4.—Data for compositing 10 samples.

Laboratory No. 6280.

From-Watertown State Hospital.

Lot No.	Car initial	Car No.	Source: Mine or Operator	Date of taking sample	Weight of car content (pounds)	Weight taken for the com- posite (grams)		Net Weight dust (pounds)
1 2 3 4 5 6 7 8 9	M.C.St.L. do do M. O. C. I. M. M. C. R, do I. C. do L. S.	384979 20313 12201 12935 657 358482 4288 14027 13654 34081	A & B	1/22/13 1/24/13 1/22/13 do do do 1/24/13 1/22/13 do	69400 88100 56100 86200 86700 49400 69100 87100 87700 84600	694 881 561 862 867 494 691 871 877 846	50 50 50 50 50 50 50 50 50 50	10 10 8 7 8 6 8 12 6

Composite Total-7644.

MOISTURE CHANGES.

MOISTURE CONDITIONS AND NOMENCLATURE.

The topic of moisture control has already been discussed, emphasis having been laid upon the fact that at any stage of the processes the exact ratio of the moisture present to the moisture of the original mass must be definitely known. This implies that moisture changes do occur. Indeed three moisture conditions exist and, since under each condition all of the accompanying factors are modified to meet the specific change in moisture, a special designation is applied to the coal for each one of these conditions.

Coal with all of the normal moisture present is designated as "wet" coal or coal "as received." It relates to the moisture at the time of taking the sample. All of the detail of the processes for collecting and reducing the gross sample up to and including the item of sealing and shipping the 5-pound sample involve the preservation of this initial moisture without loss.

The second moisture status is that wherein the "wet" or "asreceived" coal has been dried to a point of substantial equilibrium with the moisture of the air, so that in an atmosphere of average humidity it would take on or lose additional moisture very slowly or not at all. In this condition the coal sample is said to be "air dry." This is the condition to which the chemist must bring the sample in order that the processes of finer grinding and weighing may be carried on without change in the moisture factor. Obviously the amount of moisture lost in passing from the "wet" or "as-received" condition to the "air-dry" condition must be carefully measured. The factor thus determined is designated as the "loss on air drying." By use of it all of the values obtained from analysis of the coal in the "air-dry" state may be calculated to the "wet" or "as-received" condition.

The third condition recognized is that of "dry" coal. This is sometimes designated as the "oven-dry" or "moisture-free" state. All of the values found for the coal in the "air-dry" condition may be transferred by calculation and made to apply to the coal as "oven dry." The necessary factor in this case is the loss of moisture obtained from drying the "air-dry" sample at or slightly above steam temperature, as 220°F. for one hour. It is not intended here to give directions for carrying out these processes. The terms employed, however, are of so frequent occurrence, and in many cases enter so vitally into a correct understanding of the methods upon which certain values are based in the making of estimates and arriving at fuel settlements that at least a brief reference seems desirable.

CALCULATIONS.

To calculate the percentage values obtained on "air-dry" coal to the "dry-coal" basis, divide each constituent by (1-w) in which w is the moisture present in the "air-dry" sample. The moisture factor for the "dry" coal is omitted of course, and the sum of the resulting constituents should total 100 per cent.

To calculate from the "air-dry" values to the "wet," or "as-received," condition multiply each percentage for the "air-dry" state by (1-l) in which l is the loss on air drying. The moisture factor thus derived plus the loss on air drying equals the total moisture in the "wet" coal. This and the other factors calculated as described should equal 100 per cent.

COMMERCIAL VALUATION AS AFFECTED BY CHEMICAL AND PHYSICAL PROPERTIES.

Moisture.

RELATION OF COAL-BED MOISTURE TO COMMERCIAL MOISTURE.

In comparison with Eastern and European coal the coal-bed moisture of coals of the Illinois type is high and requires special consideration for a proper understanding of many conditions surrounding the handling of this material.

In perhaps the majority of cases coal is purchased on the basis of its weight at the mine. As a rule, the first purchaser, at least, is obliged to make settlement on the basis of what is known as the railroad or mine weights. Accordingly the total moisture as found in the vein sample probably represents as accurately as is possible the moisture condition of the coal as weighed in the loaded cars just before shipment from the mine. The chipping, grinding, and riffling process, it is true exposes the coal for about an hour and subjects it to the possibility of a slight loss of moisture; so also does the process of breaking out, loading, hauling, hoisting, and screening, require a number of hours. These two lots, therefore—the coal-bed sample and the car ready for market—are represented practically by the same moisture factor. This would be a reasonable conclusion on theoretical grounds alone, but it is supported also by experimental results, though more data might be desirable on the point.

In the table below are given moisture figures obtained on coal-bed samples taken in the usual manner as described above, and, for comparison, in the same column are given the moisture amounts for coal from the tipple or chutes as it passed to the railroad cars. These results show a very close agreement in the mine-run and screened-lump samples. The greatest variations would be expected in the screenings where the floor material and other foreign matter enter into the output, but even here the agreement is quite close.

Table 5.—Moisture in face samples compared with moisture in shipping samples taken at the mine.

Lab.		No. of	Moisture in	Moisture in commercial samples			
No.	County	coal bed	face samples (per cent)	Screened lump (per cent)	Mine run (per cent)	Screenings (per cent)	
5130 5131 5132	Sangamon	6	15.22 13.10 14.43 Av.—14.25		14.75 14.14 14.44		
6016 6017 6018	Macoupin	6	14.29 15.51 13.81 Av.—14.54		13.40 13.39 13.39	13.79	
5517 5518 5515	Madison	6	12.44 12.11 13.88 Av.—12.81	11.89		12.41 13.42 12.91	

Table 5.—Moisture in face samples compared with moisture in shipping samples taken at the mine.—Concluded.

Lab. No.		No of	No. of Moisture in face samples (per cent)	Moisture in commercial samples			
	County	coal		Screened lump (per cent)	Mine run (per cent)	Screenings (per cent)	
6023 6026	Madison	6	12.52 12.71	11.99	10.09	11.78	
			Av.—12.61	11.99	10.09	11.78	
5988 5990 5993	Williamson.	6	9.76 8.28 8.72 Av.— 8.92		7.92 7.40 7.66	8.25	
5984 5991 5983	Williamson.	6	7.86 6.95 8.08 Av.— 7.63		7.17 7.45 7.31	8.73	

LOSS OF MOISTURE ON SHIPPING.

In the process of shipping and marketing coals of the Illinois type there is frequently a shrinkage in weight due to the loss of the excess moisture. This may be from 2 to 4 per cent of the gross weight, depending upon weather conditions, the length of time in transit, and other factors. This shrinkage in weight, however, is not a real loss, since increase of the heat value per pound is almost directly proportional to the loss of moisture. When screenings are subjected to extreme weather conditions, such as heavy rains, snow, or sleet, there may indeed be a gain in weight instead of a loss. Obviously this high moisture is a disturbing element, and much more so with coals of this type than with those of the eastern bituminous variety, where the coal-bed moisture does not vary widely from the amount which would be in practical equilibrium with the moisture of the atmosphere.

To illustrate the amount of variation in moisture due to weather conditions there is presented below the average of a number of moisture values on shipments received at the University of Illinois steam-heating plant during approximately four years and coming from two distinct fields. It is to be noted that shipment from the Danville district is direct. The distance is about 30 miles, and the time between the breaking out of the coal at the working face to the delivery and sampling at the power station was not more than two or three days. The distance from Christian County is approximately three times as great, and shipments consume on the average two or three times the length of time in transit.

Table 6 .- Moisture values in commercial samples at point of delivery compared with coal-bed moisture.

(All samples made on screenings.)

Ta- ble No.		Dates covered by shipments	No. cars sam- pled	Moisture in car samples (av- erage of per- centages)	Moisture in face samples (per cent)	Variation from mine moisture (per cent)
1	Christian	Sept., Oct., Nov., 1907	17	12.67	15.01 Oct., 1908	-2.34
2	Christian	Dec., Jan., Feb., 1907-1908	24	13.67		1.34
3	Christian	March, April, May, 1908	19	13.89		-1.12
4	Christian	June, July, Aug., 1908	9	14.40		61
		Average 12 months		13.58		1.43
5	Vermilion	Sept., Oct., Nov., 1908	19	13.71	12.89 (Av. of seven²)	+ .82
6	Vermilion	Dec., Jan., Feb., 1908-1909	19	13.26	• • • • • • • • • • • • • • • • • • • •	+ .37
7	Vermilion	March, April, May, 1909	17	13.37		+ .48
8	Vermilion	June, July, Aug., 1909	6	11.44		-1.45
9	Vermilion	Sept., Oct., Nov., 1909	17	13.32		+ .43
		Average 15 months		13.21		+ .32

^{*} Note-There have been taken in the Danville district from the one mine seven face samples as follows:

^{13.14} Sept., 1908. 12.76 March, 1912. 12.20 12.70 13.53 13.27 12.67

Av. 12.89

Table 6.—Moisture values in commercial samples at point of delivery compared with coal-bed moisture—Concluded.

(All samples made on screenings.)

Fire-Box	***************************************					
Ta ble No	County	Dates covered by shipments	No. cars sam- pled.	Moisture in car samples (av- erage of per- centages)	Moisture in face samples (per cent)	Variation from mine moisture (per cent)
10	Vermilion	Dec., Jan., Feb., 1909-1910	28	12.04		— .85
11	Vermilion	March, April, May, 1910	12	12.24		— .65
12	Vermilion	June, July, Aug., 1910	4	12.84		05
		Average 9 months		12.17		— .72
13	Vermilion	Dec., Jan., Feb., 1910-1911	31	12.69		— .20
14	Vermilion	March, April, May, 1911	20	12.20	••••	69
15	Vermilion	June, July, Aug., 1911	4	13.03		+ .14
16	Vermilion	Sept., Oct., Nov., 1911	23	13.42		+ .53
		Average 12 months		12.79	•••••	— .10
17	Vermilion	Dec., Jan., Feb., 1911-1912	35	13.24	12.89 Av. of seven	+ .35
18	Vermilion	March, April, May, 1912	18	13.99		+1.10
19	Vermilion	June, July, Aug., 1912	9	11.70		-1.19
20	Vermilion	Sept., Oct., Nov., 1912	11	13.80		+ .91
21	Vermilion	December, 1912	• • • • • •	12.76		— .13
		Average 12 months		13.80		+.91

USE OF THE COAL-BED MOISTURE CONTENT AS A BASIS.

From the data presented it seems evident that the controlling factors are weather or season, and distance from the mine to the delivery point. The greater the time between the mining of the coal and its delivery, the greater the variation in moisture from the normal. Furthermore, mine weights are based upon a moisture content which corresponds quite closely to the normal or coal-bed moisture. Although it is true that the moisture content in the mine itself varies to a certain extent at the different working faces, and that there may be further variations due to moisture conditions in the mine and to the extent to which finely divided foreign matter from the floor and roof are allowed to mix with the coal, yet the moisture factor for the regular output of a mine is remarkably uniform.

This uniformity in moisture content indicates the practicability of adopting the normal or coal-bed moisture factor of a given mine as the moisture percentage present in the coal weighed at the mine, on the assumption, of course, that conditions of mining are those which ordinarily attend the handling of coal in Illinois. Indeed, when one examines the variations due to shipping under all sorts of weather conditions, it is seen at once that where settlement is based upon mine weights this method is entirely practicable, and indeed is probably subject to smaller factors of error than the usual sampling methods as carried out at the point of delivery.

Under the system of sampling the coal at the point of delivery loss of moisture is disregarded. The coal is brought to the "air-dry" condition, and the moisture determined on the laboratory sample in the usual manner. The values thus obtained on the "air-dry" sample are calculated to the "dry-coal" basis by dividing each percentage by 1.00 minus the "air-dry" moisture. To derive the values on the wet or mine weight basis, the values for the "dry" basis are multiplied by 1.00 minus the total moisture as established for the coal-bed or normal moisture. The same result in slightly different form may be calculated directly from the "air-dry" to the "wet" coal by multiplying the values obtained from the "air-dry" sample by a factor derived from the expression:

$$\frac{1-W}{1-w}$$

in which W is the total per cent of water assumed to be present in the "wet" coal and w is the per cent of water in the "air-dry" sample.

Of course, if the factor thus derived is applied to the moisture content of the air-dry sample, the resulting value represents the equivalent

percentage of that moisture when referred to the "wet" basis. The total moisture of the "wet" coal, therefore, minus the percentage of moisture in the "air-dry" coal gives the moisture loss which would have occurred if a mine sample of the coal had been brought to the same "air-dry" condition and the loss on such air drying obtained by direct weighing. In such a case, however, where a total moisture factor at the mine is recognized, there is no need of determining what would have been the loss on air drying.

RANGE OF VARIATION FOR MOISTURE FACTORS REFERRED TO GEOGRAPHICAL LOCATION.

A study of the tabulated results of coal analysis (Table 9) shows that a certain limited range of variation exists in the vein moisture over certain fairly well defined areas. For example, north and west from Williamson and Jackson Counties the percentage of vein moisture is greatest and averages from 12 to 15 per cent. In that part of coal No. 6 southeast of the Duquoin anticline, the percentage of coal-bed moisture drops appreciably to an average of 7 to 10 per cent, whereas in Saline County a still lower figure is reached for coal No. 5.

Ash.

CAUSES OF VARIATION IN ASH.

The ash in the commercial output of Illinois coals is subject to even greater variations than is the moisture, and, although it is not possible to arrive at so definite a factor for the product of a given mine as can be done for moisture, there is all the more need for acquainting ourselves with certain definite and well-established facts. A few of these facts may be emphasized as follows:

- *1st.* The ash content obtained from selected-lump or hand-picked samples does not necessarily bear any relation to the ash of the average output of the mine.
- 2d. The ash values obtained for coal-bed samples represent approximately the normal ash of the seam. It is most nearly duplicated in the commercial output of the mine by the ash content of the screened lump.
- 3d. The greatest divergence in ash percentages is found in the fine stuff or screenings which often contain double, and sometimes even more than double, the ash of the coal-bed sample. The results seldom fall below $1\frac{1}{2}$ times the normal ash of the bed.

In Table 7 ash values are given for a number of mines in each of which face samples were collected at widely separated points. The variations in the ash content of these samples do not exceed 3.5 per cent

in any one mine. This extreme variation probably is due not so much to a variation in the coal as to the impracticability of excluding from each sample exactly the same proportion of the parting, slate, etc. However, the average of the three face samples doubtless constitutes a fair average of the normal or coal-bed ash for any given mine.

Table 7.—Ash in face samples compared with ash in commercial shipping samples taken at the mine.

	pec	Ash in face	Ash	in Comme	ercial samp	les "Dry co	al''
County	Coal bed	samples "dry coal"	Screened lump	Washed nut	Nut 3-inch	Mine run	Screen- ings
A—Chris- tian	6	7.57 9.44 6.84 10.71 9.82 9.45 Av.— 8.97			6		19.13
3—Madison	6	11.71 14.00 12.53 Av.— 12.75	13.12	14.95 16.23 15.59			25.82 25.82
C—Madison	6	14.15 12.43 12.02 Av.— 12.87	,	· vote the		15.15 15.15	25.72 25.72
O—Sanga- mon	6	10.84 12.42 12.10 Av.—11.79				14.71 15.60 15.15	
E—Sanga- mon	6	11.57 12.14 14.13 Av.— 12.61	•••••				17.96 17.96
r—Sanga- mon	5	14.73 13.09 11.48 11.91 Av.— 12.80			17.87		17.13

Table 7.—Ash in face samples compared with ash in commercial shipping samples taken at the mine.—Concluded.

	ed	Ash in face	Ash	in Comme	ercial samp	les "Dry co	oal"
County	Coal bed	samples "dry coal"	Screened	Washed nut	Nut 3-inch	Mine run	Screen- ings
G—Sanga- mon	5	9.94 10.01 Av.— 9.98					Av. 83 samples 16.02
HVermilion	6	11.95 Av.— 11.95			13.71 13.71		15.35 15.35
I—William- son	6	9.39 10.48 8.20 Av.— 9.36				14.06 13.81 13.93	15.36 15.36
J—William- son	6	12.46 12.01 12.48 Av.—12.33				17.05 16.43 16.74	17.72
K—Wil- liamson	6	10.65 Av.—10.65					

With this value as a basis it is of interest to note that the commercial output will most nearly approach this factor for ash in the screened lump. Probably the next closest agreement is found in the washed nut, the next in the mine-run, and the greatest divergence is naturally in the screenings.

The regular mining processes account for these conditions. The floor underneath the coal bed is composed of earthy matter. With the present-day methods of mining, blasting, and basis of settlement, there is a constant tendency to include this earthy material along with the coal, and since it is in a finely divided form it is not readily seen. In shoveling from the floor, therefore, especially at the clean-up of a room, more or less of this earth or shaly matter goes out as coal. It is obvious, therefore, that the finer material will always be higher in ash, and any other grade will be modified in proportion to the amount of fine stuff present.

CONTROLLING THE QUALITY OF THE OUTPUT.

It is evident from the foregoing that an improvement in quality is possible by exercising care in the various processes of mining and preparation of the output. For example, by careful screening, washing, picking, and other processes, the ash content may be lowered materially, even below the normal factor, just as an increase of dust, dirt, and earthy matter will augment the ash factor. Although it is known that mining methods, such as excessive blasts, basis of settlement, and other factors, directly encourage the mining of this refuse and inert material, it seems evident that the average operator is not aware of the extent to which his output is thus contaminated.

Some misapprehension is evident also with regard to other grades than screenings. Washing of coal, for example, if carefully done, may and should reduce the ash content from these abnormally high figures down to and even below the normal coal-bed ash, but too rapid work or other careless conditions may leave the coal with practically the same ash after passing through the washer as upon entering it. Moreover, the finer the size, the greater the possibility of ash reduction by washing, but there is also greater possibility, and in too many cases the greater probability, that the output from the washer will still retain an unfortunately high ash content.

The ash factor for the run-of-mine output is also subject to wide variations. The first material loaded from a pile just shot down consists chiefly of coarse material and corresponds to a good quality of screened lump. If a number of such mine cars are dumped into the same railway car, such a car when sampled shows a low ash factor, possibly lower than the average normal or vein percentage. On the contrary, if a number of mine cars come to the dump containing a large percentage of clean-up from a room or a number of rooms, such material coming simultaneously into a railway car will cause an ash content for that car to run much above the normal. Doubtless in the long run an average will be maintained which is fairly constant.

NECESSITY FOR MINE OPERATORS TO KNOW THE ASH VALUES OF THEIR COAL.

Every mine operator should come into possession of the data covering these values, and should develop a log of ash values for the various grades of output from his mine, if any attempt is to be made to submit bids in competition where guarantees as to ash values are required. If this knowledge were in hand, serious and very costly errors would be avoided in making contracts. For example, certain of the contracts with the State institutions for the fiscal year 1912-1913 guaranteed to maintain an ash content in screenings, "dry-coal" basis, of 12 and 13 per

cent. As a matter of fact, the deliveries frequently ran as high as 20 and 21 per cent and entailed a penalty of 25 to 35 cents per ton. Some of these discrepancies are doubtless due to a lack of information on the part of the operators regarding the possibility of the earthy contamination which usually accompanies screenings.

As a help toward a fuller knowledge of ash values from the various parts of the State, the analytical data presented at the end of this discussion will be found helpful. Over 100 mines have been sampled at their working faces in at least three diffrent points in each mine. Here is a valuable starting point for obtaining the necessary log of ash values for a given mine. Whereas in the tables only the counties are designated for the source of the various samples, the Survey will be glad to furnish the owners of the individual mines the factors for their own face samples, and as soon as further information concerning commercial averages becomes available they will also be willingly placed at the disposal of mine owners.

VOLATILE MATTER, FIXED CARBON, AND SULPHUR.

Volatile matter, fixed carbon, and sulphur, ordinarily do not enter into consideration in making contract specifications. Pound for pound, volatile matter, as a rule is likely to have quite as high or a higher heat value than the fixed carbon. Modern steam-generating appliances should be able to burn one form as efficiently as the other. House heating appliances, however, utilize a relatively low proportion of the volatile material. In the main, this constituent distils off into the air with but poor or partial combustion, and appears at the chimney top in the form of black smoke. For these reasons the higher fixed-carbon coals are better for domestic use than those high in volatile matter. Ash content, density, and sulphur also enter into the account.

Sulphur is present mainly in the form of iron pyrites, and is detrimental to the value of the coal, especially after its first stage of reduction to ferrous sulphide, FeS. This change occurs at relatively low temperatures, from 750° to 900°F, and produces an easily fusible ingredient which promotes slagging and the formation of clinker. Sulphur is not without some virtue as a heat-producing constituent, however, but its value is low, having a little over ½ the heat of an equal weight of carbon and about 1/14 the heat of an equal weight of hydrogen. Sulphur may be a constituent of coal varying in amount from one to six per cent, and, because of its chemical form and properties, should be looked upon as an ingredient essentially different from the organic matter or real combustible material. This feature is more fully discussed under the subsequent topic of "unit coal."

Duff or Dust.

Finely divided material above a certain per cent is more detrimental to the effective combustion of coal than is ordinarily realized. When the percentage of material passing through a screen having ¼-inch, round perforations exceeds a certain amount, the difficulties of operation are greatly increased due to the decreased amount of draft, the unevenness of the fire, the honeycombing of flues, the slagging of arches, and other objectionable conditions. A guaranteed maximum of duff should therefore be established. An excess over such maximum percentage should subject the coal to penalty or rejection at the option of the consumer.

CALORIFIC VALUE.

RELATION BETWEEN QUANTITY OF HEAT CONTAINED AND TRUE VALUE.

Almost without exception the value of a coal is directly proportional to the quantity of heat which it contains. Yet occasional installations are known where the type of boiler, the setting, draft, grate area, and other factors, may demand certain physical conditions in the fuel that may take precedence even over the actual heat content. But these cases are the exception rather than the rule. It becomes of prime importance therefore to have an accurate knowledge of the heat possibilities of a given coal, and, indeed, this is made the principal element in contracting and determining the settlement price for coals marketed on the heat-unit basis.

MOST FAVORABLE CONDITIONS FOR DETERMINATION.

The calorific values in British thermal units per pound of coal for all the face samples listed in these tables were determined within ten days at most from the time of collection. There is an appreciable loss in heat values of Illinois coals during the first four to six weeks after breaking out from the seam. Hence, for a fair indication of values it is desirable to obtain the heat values under average conditions of mining and shipment.

UNIT COAL.

MEANING AND APPLICATION.

Attention is specifically called to the heat values for the "unit coal," the pure substance free from ash, moisture, sulphur, and other minor impurities. This value like the coal-bed moisture may be regarded as the normal factor for the actual coal and does not vary in a given mine from year to year. If for example, the average unit value for a given mine is 14,350 British thermal units per pound of this material, any sample with whatever content of ash or moisture, when calculated to this "unit-coal" basis, will give the same average value within the range

of experimental error, or about 100 units in 14,000, a variation of less than 1 per cent. This value enables us to check the correctness of the various determinations, any one of which if seriously in error would vitiate the result. Conversely, by reversing the calculation we are enabled to obtain a close estimate of the heat value present for any given percentage of ash. This is of special value where it is desired to submit a bid for contracting in which a guaranteed heat value is to be indicated. We have given, therefore, in the tables these "unit-coal" values for each mine sampled. The formula by which this value is derived has already been fully discussed in a former bulletin³. Therefore the formula only is repeated here.

Unit B. t. u.
$$=\frac{\text{Dry B. t. u.} - 5000 \text{ S}}{1.00 - (1.08\text{A} + 55\text{S})}$$

In which A is the weight of ash per gram.

S is the weight of sulphur per gram.

If every mine operator were to obtain as often as possible this "unit" value for his product, he could very shortly derive from an average of his log of values, a basic factor which would be of great advantage to him in submitting propositions for coal supplies. An illustration of such a procedure is given below.

A special survey was recently made of certain mines in the five counties named. The average of the "unit-coal" values for each mine may be taken as a constant for the output of that mine. Attention is called to the close agreement between these values and the averages obtained in the more elaborate survey shown in Table 10.

Table 8.—Average heat value for unit coal in British thermal units per pound

No.	· County	Coal bed	Number of samples averaged	Average—B. t. u. "unit coal"
3	Sangamon. Sangamon. Macoupin. Madison. Vermilion Vermilion Williamson.	6 6	15 5 6 18 19 9 5	14424 14340 14310 14350 14597 14730 14750

CALCULATION OF COMMERCIAL VALUES.

The use which can be made of these "unit" values such as are shown in this table may be readily understood when it is remembered that each number represents material which is 100 per cent pure and that

³ Illinois State Geol. Survey, Bull. 16, p. 212, 1909. ⁴ Pillar and storage coal will have heat units from 1 per cent to 4 per cent below the values here given.

for each per cent of inert matter present, such as water and ash, there is a corresponding decrease in the number of heat units present. That is to say, if a coal has 20 per cent water and ash, then 80 per cent of the "unit" value will represent the heat units present per pound of coal as delivered. Indeed, it is possible by taking account of certain refinements, such as correction factors for sulphur and hydration of the shaly constituents, to make a calculation which will be of quite sufficient accuracy for basing bids and entering into contracts involving a guarantee as to heat values. The method of calculation is exceedingly simple and is based on the following expression:

Let A = weight of ash per pound of coal.

Let S = weight of sulphur per pound of coal.

Then-

"Dry" B.t.u. = "Unit" B.t.u. \times 1.00 - (1.08A + 0.55S) + 5000S.

To illustrate, take the "unit" value for coal from Vermilion County sample No. 6 in Table 8. Suppose we wish to know what heat values can be guaranteed on deliveries from a mine of this group on the basis that we can furnish material averaging as the "dry coal," 12 per cent ash, and 3 per cent sulphur, we will have our total non-combustible material corrected by the above formula as follows:

Per	
1.08A1	2.96
0.55S	1.65
Total1	4.61
100% - 14.61% = 85.	39%.
$14730 \times 85.39\% = 125$	MO

In this calculation the sulphur has been neglected. It has a small heat value equal to 5000 times the weight of sulphur present or 50 times the percentage number, thus:

$$50 \times 3 = 150$$
 units to be added to the above value, or
$$\begin{array}{c} -12578 \\ -150 \\ --- \end{array}$$

Deliveries from this mine, therefore, having ash, and sulphur as indicated above can be depended upon as carrying 12728 heat units per pound of "dry" coal, and this factor should be accurate within 100 units in 12000 or less than a variation of 1 per cent from values as they would be determined by direct reading from an instrument. Any other set of values for ash and sulphur would similarly admit of ready calculation and should be used as a basis for calculations involving guarantees of deliveries on a heat-unit basis. If the heat units on the "wet" coal basis are desired assuming, for example, a moisture factor of 15 per cent,

Compare sample 4741 Vermilion 6, p. 56.

the above value as derived for "dry" coal should be multiplied by .85, that is, 12728 B.t.u. \times .85 = 10818 B.t.u. per pound of the "wet" coal, assuming a moisture factor of 15 per cent as indicated. In this connection attention should be given to the assumed values which it is proposed to maintain for water and ash. Extended calculations are given in Table 12.

ANALYTICAL DATA.

Analyses of Mine Samples.

In Table 10 are given analyses from 345 coal-bed samples which were taken from 100 mines in the State. They are grouped by coal-beds and counties and represent all of the producing areas of the State. Table No. 9 showing counties and district classification is presented for cross reference. (See Plate I).

TABLE	9.—	Alpha	betica	t arran	gement	of	counties.	

For a given geological bed the counties represented are arranged alphabetically in Table 10. A further grouping is shown by use of the cooperative numbers, these represent samples from the same mine. Two sets of values are given for each sample—one showing the normal or coal-bed moisture, and the other calculated to the "dry-coal" or moisture-free basis. There is also given the value for the "unit-coal" in British thermal units as derived by means of the formula already presented on page 42.

Table 10.—Analyses of mine samples (not exactly indicative of commercial output *)

Lab. No.	o. No.	Date 1912	County	peq	m	nisture			hur	co ₂	r. u.	Unit coal
Lab	Co-0p.	Date	County	Coal	Moisture	Volatile matter	Fixed	Ash	Sulphur	Ö	B. t	Ö
				Co	oal No.	1.						
5229	21	7/12	Christian	1	11.27 Dry	$\frac{38.68}{43.59}$	$\frac{40.55}{45.70}$	$9.50 \\ 10.71$	2.07 2.33	.33	11445 12898	14666
5230	21	7/12	Christian	1	11.52 Dry	38.78 43.83	41.01 46.35	8.69 9.82	$\frac{2.42}{2.73}$.97 1.10	11648 13163	14707
5231	21	7/12	Christian	1	11.13 Dry	39.21 44.12	41.26 46.43	$8.40 \\ 9.45$	$\frac{2.56}{2.88}$. 61 . 69	11715 13183	14779
5338	19	8 /12	Mercer	1	13.23 Dry	40.29 46.43	37.20 42.88	9.28 10.69	4.37	.41	11104 12797	14641
5339	19	8/12	Mercer	1	15.24 Dry	37.66 44.44	35.73 42.15	11.37 13.41	4.80 5.66	1.47 1.73	10353 12214	14478
5340	19	8/12	Mercer	1	15.15 Dry	39.06 44.44	38.48 42.15	7.31 14.41	3.30 5.66	.17 1.73	11252 12214	14478
5363	19	8/12	Mercer	1	14.97	38.27 46.03	37.07	9.69	3.75	.33	9637 13260	14760
5364	19	8/12	Mercer	1	Dry 14.46	40.42	45.36 35.33	9.79	3.89 4.23	.69	10780	14712
5365	19	8 /12	Mercer	1	Dry 14.07	39.95 47.24	43.61 34.01	11.40	4.95	.43	12749 10525	
5359	18	8/12	Mercer	1	Dry 14.58	39.49	41.32 36.82	9.11	4.94 5.60	.59	12603 10894	14551
5360	18	8/12	Mercer	1	Dry 15.07	38.14 46.23	39.59 37.44	13.92 9.35	5.29 4.85	.91	12247 10790	14604
5361	18	8/12	Mercer	1	Dry 14.10	46.23 39.60	43.09 36.73	10.68	6.56 3.92	.18	12754 10956	14642
5371	17	8/12	Mercer	1	Dry 17.75	44.91 39.50	44.01 34.61	11.02 8.14	5.71	.23 .38	12705 10435	14618
5372	17	8/12	Mercer		Dry	48.03	42.08	9.89	6.72	1.05	12687 10238	14373
		0/12	incicci	1	17.50 Dry	38.78 47.00	33.66 40.80	$10.06 \\ 12.20$	4.51 5.46	.29	12409	14372
5324	10	. 0 /19	P		oal No.		00 50	0.44	0.40	0.77	- O ~ 40	4 4 1800
	10	8/12	Bureau	2	16.65 Dry	36.66 43.99	$ \begin{array}{r} 38.58 \\ 46.29 \end{array} $	8.11 9.72	$\frac{3.40}{4.07}$.67	10740 12884	14533
5325	10	8/12	Bureau	2	15.08 Dry	$\frac{40.12}{47.25}$	$\frac{36.35}{42.80}$	$8.45 \\ 9.95$	3.68 4.33	.91 1.07	$10831 \\ 12754$	14431
5326	10	8 /12	Bureau	2	16.83 Dry	36.54 43.93	39.19 47.12	7.44 8.95	$\frac{2.64}{3.17}$.89 1.07	10788 12970	14463
5312	10	8/12	Bureau	2	14.88 Dry	38.69 45.45	37.25 43.76	9.08 10.79	3.83 4.50	1.07 1.25	10685 12553	14357
5313	10	8/12	Bureau	2	17.43 Dry	$\frac{1}{38.07}$ $\frac{1}{46.10}$	39.44 47.76	5.06 6.14	2.68 3.25	.52	11070 13407	14462
5314	10	8 /12	Bureau	2	16.07 Dry	39.68 47.28	38.36 45.71	5.89 7.01	2.96 3.53	.57	11216 13363	14571
5348	8	8/12	Bureau	2	15.19	39.67	38.69	6.45	2.20	.99	11206	14480
					Dry	46.78	45.60	7.62	2.62	1.17	13213	144

 $^{^{\}rm 6}$ Republished from Bulletin 3, Illinois Coal Mining Investigations, Cooperative Agreement.

 $\begin{array}{ll} \textbf{Table 10.--} Analyses \ of \ mine \ samples \ (not \ exactly \ indicative \ of \ commercial \ output) \\ \textbf{--Continued.} \end{array}$

Lab. No.	p. No.	Date 1912	County	ped l	lst: "	nate an As reco oisture. Dry" or	l,'' with	n total	ohur	co.	t. u.	Unit coal
Lab	Co-Op.	Date	County	Coal	Moisture	Volatile	Fixed	Ash	Sulphui	Ō	œ.	Un
5349	8	8 /12	Bureau	2	17.34 Dry	37.12 44.90	$\frac{39.28}{47.52}$	$\frac{6.26}{7.58}$	2.80 3.38	.49	11006 13314	14612
5350	8	8/12	Bureau	2	16.97 Dry	$\frac{38.66}{46.56}$	$\frac{34.83}{41.95}$	$9.54 \\ 11.49$	$\frac{2.25}{2.71}$	$\substack{2.29\\2.91}$	$10397 \\ 12522$	14386
5205	21	7/12	Christian	2	12.07 Dry	$\frac{39.36}{44.77}$	$\frac{41.91}{47.66}$	$\frac{6.66}{7.57}$	$\frac{3.74}{4.26}$.07	11776 13393	14730
5206	21	7/12	Christian	2	12.53 Dry	$\frac{38.00}{44.12}$	$\frac{40.62}{46.44}$	$8.25 \\ 9.44$	$\substack{3.67\\4.22}$.31 .35	$\frac{11389}{13020}$	14641
5207	21	7 /12	Christian	2	14.30 Dry	$39.54 \\ 46.14$	$\frac{40.30}{47.02}$	5.86 6.84	$\frac{2.00}{2.33}$.24 .28	11609 13544	i4702
5367	6	8/12	Grundy	2	19.97 Dry	$\frac{38.16}{47.68}$	$37.45 \\ 46.79$	4.42 5.53	$\frac{1.82}{2.27}$.65 .79	$10936 \\ 13664$	14603
5368	6	8 /12	Grundy	2	18.95 Dry	$\frac{37.60}{46.39}$	$\frac{38.23}{47.16}$	$\frac{5.22}{6.45}$	$\frac{2.46}{3.04}$.64 .79	10787 13309	14400
5369	6	8/12	Grundy	2	19.66 Dry	37.01 46.06	$\frac{38.16}{47.50}$	$5.17 \\ 6.44$	$\frac{2.03}{2.53}$.83 1.03	10734 13360	14337
5373	5	8/12	Grundy	2	17.29 Dry	38.61 46.68	36.69 44.36	7.41 8.96	$\frac{2.87}{3.47}$	1.44 1.74	10708 12947	14447
5374	5	8/12	Grundy	2	13.73 Dry	$\frac{39.87}{46.22}$	$\frac{42.19}{48.90}$	4.21 4.88	$\frac{2.04}{2.37}$	$\frac{1.47}{1.71}$	11787 13662	14466
5377	5	8/12	Grundy	2	17.01 Dry	$\frac{39.48}{47.57}$	$\frac{36.74}{44.27}$	6.77 8.16	3.32 4.00	1.05 1.27	10834 13055	14446
5375	7	8/12	Grundy	2	16.84 Dry	38.37 46.13	41.19 49.53	$\frac{3.60}{4.34}$	$\frac{1.74}{2.09}$.04	11508 13838	14583
5376	7	8/12	Grundy	2	15.81 Dry	$\frac{39.28}{45.48}$	39.77 47.24	$\frac{6.13}{7.28}$	2.30 2.73	.24 .28	11212 13318	14545
5378	7	8/12	Grundy	2	16.23 Dry	$\frac{38.71}{46.22}$	40.61 48.47	4.45 5.31	$\frac{2.47}{2.94}$.32	11461 13683	14610
5225	14	7/12	Jackson	2	7.72 Dry	35.09 38.02	48.56 52.62	8.63 9.36	$\frac{2.01}{2.18}$.29 .31	12248 13272	14830
5226	14	7/12	Jackson	2	8.77 Dry	$\frac{32.78}{35.93}$	50.58 55.44	7.87 8.63	$\begin{bmatrix} 2.00 \\ 2.19 \end{bmatrix}$.02	12253 13430	14885
5228	14	7 /12	Jackson	2	9.18 Dry	34.70 38.20	51.58 56.80	4.54 5.00	.60	.05	12752 14040	, 14867
5248	13	7/12	Jackson	2	9.88 Dry	33.23 36.87	52.43 58.18	4.46 4.95	.70 .77	.33	12709 14103	14926
5249	13	7 /12	Jackson	2	10.91 Dry	33.51 37.61	$51.20 \\ 57.47$	4.38 4.92	1.14 1.28	.20	12503 14034	14863
5250	13	7 /12	Jackson	2	9.76 Dry	33.45 37.06	52.07 57.71	4.72 5.23	1.08 1.20	.51 .56	12629 13996	14874
5351	12	7/12	Jackson	2	9.51 Dry	33.13 36.62	52.12 57.59		.66	.94 1.03	12500 13814	14758
5252	12	7 /12	Jackson	2	9.37 Dry	33.39 36.48	49.29 54.38		$\frac{2.11}{2.32}$.94 1.03	11972 13208	14671
5253	12	7 /12	Jackson	2	9.99 Dry	$32.51 \\ 36.12$	51.88 57.63		.62	.20	12308 13673	14686

 $\begin{array}{ll} {\rm Table} \ 10. - Analyses \ of \ mine \ samples \ (not \ exactly \ indicative \ of \ commercial \ output) \\ -- {\rm Continued.} \end{array}$

No.	No.	912		peq	Proximate analysis of coal lst: "As reed," with total moisture. 2nd: "Dry" or moisture free.				CO ₂		it coal	
Lab. No.	Co-Op.	Date 1912	County	Coal	Moisture	Volatile	Fixed	Ash	Sulp	ŏ		Unit
5496	16	8/12	Jackson	2	9.25 Dry	34.67 38.20	50.53 55.68	$5.55 \\ 6.12$	1.41 1.56	.13	12528 13804	i4834
5497	16	8/12	Jackson	2	9.56 Dry	$\frac{34.52}{38.16}$	50.47 55.83	$5.45 \\ 6.01$	$\frac{1.32}{1.46}$.27	12483 13781	14811
5498	16	8 /12	Jackson	2	9.20 Dry	$\frac{34.48}{37.97}$	$50.54 \\ 55.66$	5.78 6.37	$\frac{1.44}{1.59}$.19 .21	12481 13746	14814
5286	15	8/12	Jackson	2	8.32 Dry	$\frac{35.28}{38.49}$	$51.10 \\ 55.74$	$5.30 \\ 5.77$	1.39 1.53	.19 .21	$12671 \\ 13822$	i479i
5287	15	8/12	Jackson	2	8.86 Dry	35.00 38.40	$\frac{49.74}{54.57}$	$\frac{6.40}{7.03}$	$\frac{1.69}{1.85}$.07	12436 13645	14830
5288	15	8 /12	Jackson	2	8.91 Dry	34.03 37.36	53.17 58.37	3.89 4.27	$\frac{1.15}{1.26}$.07	12844 14101	14823
5388	2	8/12	LaSalle	2	14.22 Dry	39.49 46.03	$\frac{36.94}{43.06}$	$9.35 \\ 10.91$	$\frac{4.46}{5.20}$.80	$10887 \\ 12691$	14562
5389	2	8/12	LaSalle	2	15.16 Dry	$\frac{40.13}{47.32}$	38.10 44.88	6.61 7.80	$\frac{2.99}{3.51}$.64 .70	11147 13138	14458
5390	2	8 /12	LaSalle	2	14.43 Dry	$\frac{40.01}{46.75}$	35.89 41.94	$9.67 \\ 11.31$	$\frac{4.47}{5.23}$	$\frac{1.03}{1.21}$	10678 12476	14404
5357	4		Marshall	2	16.46 Dry	38.48 46.06	$\frac{38.27}{45.80}$	6.79 8.14	$\frac{2.91}{3.48}$.28 .34	11162 13360	14764
5356	4		Marshall	2	16.79 Dry	36.81 44.23	40.34 48.49	6.06 7.28	$\frac{2.59}{3.11}$.41 .49	11130 13375	14 620
5358	4		Marshall	2	17.54 Dry	37.42 45.37	$\frac{40.11}{48.63}$	4.93 6.00	$\frac{2.19}{2.56}$.42 .50	11273 13669	147 03
5412	11	8/12	Marshall	2	12.92 Dry	$\frac{41.69}{47.87}$	$37.60 \\ 43.19$	7.78 8.94	$\frac{2.38}{2.73}$.64 .73	11597 13319	14836
5413	11	8/12	Marshall	2	13.10 Dry	$\frac{38.73}{44.56}$	$\frac{39.64}{45.61}$	8.53 9.83	3.47 3.99	.65 .75	11414 13134	14832
5414	11	8 /12	Marshall	2	13.82 Dry	$\frac{41.34}{47.97}$	$35.88 \\ 41.64$	$8.96 \\ 10.39$	$\frac{3.28}{3.81}$.50 .59	11296 13106	i490i
5232	22	7 /12	McDonough	2	19.35 Dry	$\frac{31.70}{39.35}$	$\frac{40.61}{50.40}$	$8.34 \\ 10.35$	$\frac{2.31}{2.87}$.37 .46	10392 12898	14605
5233	22	7 /12	McDonough	2	16.46 Dry	$\frac{33.94}{40.63}$	$\frac{42.46}{50.83}$	$7.14 \\ 8.54$	$\substack{1.71\\2.04}$.11	11064 13246	14660
5234	22	7/12	McDonough	2	16.39 Dry	$\frac{34.26}{40.97}$	$\frac{41.36}{49.47}$	$7.99 \\ 9.56$	$\substack{2.04\\2.44}$.33 .40	10977 13130	14725
5426	100	8 /12	McLean	2	10.13 Dry	$\frac{45.00}{50.07}$	$\frac{35.92}{39.97}$	8.95 9.96	$\frac{3.27}{3.59}$.74 .82	$11710 \\ 13029$	14723
5427	100	8/12	McLean	2	11.34 Dry	$\frac{40.05}{45.17}$	39.18 44.19	$9.43 \\ 10.64$	3.18 3.58	.90 1.01	$11394 \\ 12851$	1464 3
5428	100	8/12	McLean	2	10.61 Dry	41.87 46.84	$\frac{35.94}{40.21}$	$11.58 \\ 12.95$	$\frac{3.79}{4.24}$.92 1.03	11225 12557	1475 2
5429	100	8/12	McLean	2	12.31 Dry	$\frac{42.17}{48.09}$	38.03 43.37	$7.49 \\ 8.54$	2.69 3.07	.94 1.07	11636 13270	14722
54 30	100	8/12	McLean	2	12.00 Dry	$\frac{42.00}{47.73}$	37.96 43.14	$8.04 \\ 9.13$	$\frac{2.37}{2.70}$	1.23 1.40	11634 13220	i 4759

Table 10.—Analyses of mine samples (not exactly indicative of commercial output)
—Continued.

Š.	. No.	1912		peq				h total	ohur	CO ₂	it coal	
Lab.	Co-Op.	Date	County	Coal	Moisture	Volatile matter	Fixed	Ash	Sulphu	Ö	ë.	Unit
5433	100	8 /12	McLean	2	11.27 Dry	$\frac{42.17}{47.53}$	$\frac{39.27}{44.25}$	7.29 8.22	$\frac{2.91}{3.28}$	1.12 1.26	11784 13279	14684
				С	oal No.	5.						
5283 1	31	8/12	Fulton	5	15.18 Dry	$\begin{vmatrix} 37.17 \\ 43.82 \end{vmatrix}$	$\frac{35.17}{41.45}$	$12.48 \\ 14.73$	$\frac{3.45}{4.07}$	$\begin{bmatrix} 1.70 \\ 2.00 \end{bmatrix}$	$10201 \\ 12026$	14441
5284	31	8/12	Fulton	5	16.94 Dry	$35.68 \\ 42.95$	$\frac{37.15}{44.73}$	$10.23 \\ 12.32$	$\frac{2.98}{3.59}$	$\frac{1.31}{1.57}$	10314 12418	14446
5285	31	8 /12	Fulton	5	18.42 Dry	34.98 42.88	37.66 46.15	$\frac{8.94}{10.97}$	$\frac{2.33}{2.85}$.86 1.06	10270 12587	14371
5296	31	8/12	Fulton	5	16.82 Dry	$\frac{37.28}{44.81}$	$\frac{33.45}{40.23}$	$12.45 \\ 14.96$	$\frac{2.84}{3.42}$	$\frac{1.69}{2.02}$	10580 12038	14479
5298	31	8 /12	Fulton	5	16.52 Dry	$37.17 \\ 44.52$	36.54 43.78	$9.77 \\ 11.70$	3.91 4.69	.81 .97	10394 12451	14409
5341	31	8/12	Fulton	5	17.37 Dry	$35.71 \\ 43.22$	37.86 45.82	$9.06 \\ 10.96$	$\frac{2.34}{2.83}$	1.14 1.38	10420 12610	14398
5293	29	8/12	Fulton	5	17.13 Dry	$\frac{36.23}{43.72}$	$\frac{34.44}{41.55}$	$12.20 \\ 14.73$	3.03 3.66	$\frac{1.79}{2.16}$	9846 11882	14252
5297	29	8 /12	Fulton	5	16.59 Dry	35.98 43.14	37.20 44.61	$10.23 \\ 12.25$	4.07 4.88	$\substack{1.77 \\ 2.12}$	10271 12314	14354
5300	29	8/12	Fulton	5	15.41 Dry	$35.67 \\ 42.16$	$\frac{39.04}{46.15}$	9.88 11.69	3.31 3.92	.52 .61	$10579 \\ 12505$	14443
5292	28	8/12	Fulton	5	17.39 Dry	$\frac{37.00}{44.79}$	$35.69 \\ 43.20$	$9.92 \\ 12.01$	$\frac{2.74}{3.28}$	$\frac{1.14}{1.36}$	10273 12435	14416
5295	28	8/12	Fulton	5	16.33 Dry	$\frac{36.27}{43.34}$	$\frac{36.58}{43.72}$	$10.82 \\ 12.94$	$\frac{3.40}{4.06}$	$\frac{1.94}{2.32}$	10246 12247	i437i
5299	28	8/12	Fulton	5	16.33 Dry	$\frac{36.75}{43.92}$	$\frac{38.02}{45.44}$	8.90 10.64	$\frac{2.59}{3.10}$	$\frac{1.02}{1.22}$	10604 12674	14421
5342	32	8/12	Fulton	5	13.66 Dry	$\frac{38.46}{44.54}$	$\frac{37.06}{42.92}$	$10.82 \\ 12.54$	$\frac{3.64}{4.22}$	1.26 1.46	10689 12379	14462
5343	32	8/12	Fulton	5	14.53 Dry	37.46 43.83	$\frac{38.35}{44.87}$	$9.66 \\ 11.30$	$\frac{3.18}{3.72}$	1.60 1.87	10804 12641	14525
5344	32	8 /12	Fulton	5	15.80 Dry	$35.84 \\ 42.56$	37.67 44.74	$10.69 \\ 12.70$	$\frac{3.00}{3.57}$	$\frac{1.79}{2.12}$	10460 12423	i4520
5345	30	8/12	Fulton	5	16.36 Dry	$\frac{33.91}{40.54}$	38.19 45.66	$\frac{11.54}{13.80}$	$\frac{2.93}{3.50}$	$\frac{1.27}{1.51}$	10186 12179	14431
5346	30	8/12	Fulton	5	16.33 Dry	$\begin{array}{c} 35.50 \\ 42.42 \end{array}$	37.01 44.23	$\frac{11.16}{13.35}$	$\frac{2.89}{3.45}$	1.84 2.20	10220 12213	14389
5347	30	8/12	Fulton	5	15.85 Dry	36.12 42.92	$\frac{38.12}{45.30}$	$9.91 \\ 11.78$	3.36 4.00	1.47 1.75	10494 12471	14386
5025	47	6/12	Gallatin	5	5.37 Dry	$\frac{36.54}{38.62}$	$\frac{45.10}{47.65}$	12.99 13.73	3.99 4.22	1.38 1.45	11883 12558	14900
5029	47	6/12	Gallatin	5	5.57 Dry	35.49 37.59	48.53 51.39	$10.41 \\ 11.02$	3.12 3.31	.78 .83	12338 13066	14953
5032	47	6/12	Gallatin	5	6.21 Dry	35.29 37.61	46.49 49.57	$12.02 \\ 12.82$	3.30 3.52	.87	11938 12728	14903

 $\begin{array}{ll} \textbf{T}_{\textbf{ABLE}} \ 10. - A \, nalyses \, \, of \, \, mine \, \, samples \, \, (not \, \, exactly \, \, indicative \, \, of \, \, commercial \, \, output) \\ - - \text{Continued}. \end{array}$

o N	. No.	1912		peq	lst: '	mate an 'As rece oisture. Dry'' or	d," wit	h total	hur	co ₂	ب. د.	Unit coal
Lab. No.	Co-Op.	Date]	County	Coal	Moisture	Volatile matter	Fixed	Ash	Sulphur	ŏ	B.	
5492	7	8 /12	Gallatin	5	4.20 Dry	$\frac{34.41}{35.92}$	52.63 54.92	8.76 9.16	2.85 2.97	.01	12997 13566	15164
5493		8/12	Gallatin	5	4.07 Dry	$\frac{33.99}{35.43}$	$\frac{52.96}{55.21}$	8.98 9.36	$\frac{3.61}{3.76}$.03	$12975 \\ 13526$	i5i86
5512		8/12	Gallatin	5	3.68 Dry	$\frac{37.82}{39.26}$	$\frac{48.18}{50.02}$	$10.32 \\ 10.72$	4.55 4.73	.04	12818 13307	i5078
5521		8/12	Gallatin	5	3.94 Dry	$\frac{38.13}{39.70}$	$\frac{45.95}{47.82}$	11.98 12.48	3.53 3.67	.03	$12449 \\ 12958$	15117
5522		8/12	Gallatin	8	7.15 Dry	34.34 36.99	$53.32 \\ 57.42$	$5.19 \\ 5.59$.84	.03	13035 14038	14970
5523		8 /12	Gallatin		4.73 Dry	33.91 35.59	$\frac{48.65}{52.12}$	$11.71 \\ 12.29$	$\frac{4.78}{5.02}$.04	$12429 \\ 13045$	1524 0
5530		8/12	Gallatin		4.08 Dry	$\frac{33.71}{35.13}$	$51.84 \\ 54.01$	10.41 10.86	4.19 4.37	.02	12783 13319	i5256
5391	9	8/12	LaSalle	5	15.52 Dry	$\frac{41.56}{49.18}$	$\frac{32.57}{38.55}$	$10.35 \\ 12.27$	4.08 4.83	.27 .34	$10425 \\ 12400$	14384
5392	9	8/12	LaSalle	5	14.13 Dry	$\frac{39.42}{45.90}$	$\frac{35.96}{41.89}$	$10.49 \\ 12.21$	$\frac{3.22}{3.75}$.96 1.12	10636 12387	14393
5393	9	8/12	LaSalle	5	14.64 Dry	$\frac{43.01}{50.38}$	$\substack{34.25\\40.12}$	$8.10 \\ 9.50$	2.83 3.32	.56 .66	$10961 \\ 12841$	i4415
5263	33	8/12	Logan	5	14.64 Dry	$\frac{37.87}{44.36}$	$\frac{35.56}{41.66}$	$\frac{11.93}{13.98}$	$\frac{3.60}{4.22}$	$\substack{\textbf{1.10}\\\textbf{1.28}}$	$10400 \\ 12183$	14497
5264	33	8/12	Logan	5	13.98 Dry	$\frac{36.86}{42.84}$	$37.98 \\ 44.16$	$\frac{11.18}{13.00}$	$\frac{3.14}{3.65}$	$\frac{1.43}{1.67}$	$10549 \\ 12264$	i.i.i.i
5265	33	8 /12	Logan	5	13.99 Dry	$36.85 \\ 42.85$	$\frac{38.17}{44.37}$	$10.99 \\ 12.78$	$\frac{3.26}{3.79}$	$\frac{1.32}{1.53}$	$10519 \\ 12230$	14313
5200	42	7/12	Macon	5	13.52 Dry	$\begin{array}{c} 36.72 \\ 42.46 \end{array}$	$\frac{39.66}{45.86}$	$10.10 \\ 11.68$	$\frac{4.23}{4.95}$.09	$10646 \\ 12443$	14405
5201	42	7/12	Macon	5	13.62 Dry	$37.72 \\ 43.68$	$\frac{40.34}{46.70}$	$8.32 \\ 9.62$	3.39 3.93	.00	$11046 \\ 12788$	14403
5202	42	7 /12	Macon	5	14.36 Dry	38.06 43.88	$\frac{39.35}{45.37}$	$9.33 \\ 10.75$	$\frac{3.87}{4.46}$.19 .22	10963 12638	14447
5244	41	7/12	Macon	5	14.76 Dry	$35.46 \\ 41.60$	$\frac{38.08}{44.67}$	$\frac{11.70}{13.73}$	3.24 3.81	1.90 1.06	$10390 \\ 12189$	i 4443
5245	41	7 /12	Macon	5	14.54 Dry	$\frac{36.33}{42.51}$	38.01 44.47	$\frac{11.12}{13.01}$	$\frac{3.47}{4.06}$.68 .79	$10465 \\ 12244$	i4385
5346	41	7/12	Macon	5	14.14 Dry	$\frac{36.21}{42.18}$	$\frac{38.07}{44.34}$	$\frac{11.58}{13.48}$	$\frac{3.24}{3.77}$	$\frac{1.12}{1.31}$	$10493 \\ 12210$	144 33
51 90	34	8/12	Menard	5	16.29 Dry	36.66 43.80	$\frac{38.73}{46.26}$	$8.32 \\ 9.94$	3.65 4.36	.59 .71	$10747 \\ 12838$	14528
5191	34	7/12	Menard	5	15.44 Dry	36.38 43.03	$\frac{39.71}{46.96}$	$\substack{8.47\\10.01}$	$\frac{3.34}{3.95}$.26 .31	$10841 \\ 12820$	i4505

⁷ This and six following analyses are from country banks not in the orignal list of 100 mines.

⁸ This and the two following samples are from the "Ice House" coal of Kentucky reports.

⁹ From a mine not in the original list of 100.

 $\begin{array}{ll} \textbf{Table 10.} & -A \, nalyses \,\, of \,\, mine \,\, samples \,\, (not \,\, exactly \,\, indicativ \epsilon \,\, of \,\, commercial \,\, output) \\ & -- \text{Continued.} \end{array}$

2	No.	1912		peq	m	mate an As reco loisture. Dry" or			nur	02	;	coal
- 46	Co-Op. No.	Date 1	County	Coal	Moisture	Volatile	Fixed	Ash	Sulphur	CO	B. t.	Unit
519	02 34	7 /12	Menard	5	20.27 Dry	34.58 43.37	37.43 46.94	7.72 9.69	3.31 4.16	.63	9919 12441	14402
543	31 100	8/12	McLean	5	12.88 Dry	38.84 44.58	$\frac{35.80}{41.09}$	12.48 14.33	3.60 4.14	1.17 1.35	10601 12168	14544
54 3	2 100	8 /12	McLean	5	13.34 Dry	38.39 44.30	$\frac{36.72}{42.37}$	11.55 13.33	3.59 4.14	1.31 1.51	10743 12397	14629
54 3	4 100	8/12	McLean	5	13.73 Dry	$\frac{36.79}{42.64}$	36.14 41.89	13.34 15.47	3.99 4.62	1.19 1.30	$10399 \\ 12054$	14639
5 30	3 26	8/12	Peoria	5	16.00 Dry	36.06 42.93	37.54 44.69	10.40 12.38	$\frac{2.90}{3.46}$	$\frac{1.27}{1.51}$	$10515 \\ 12518$	14773
5 30	4 26	8 /12	Peoria	5	14.23 Dry	37.41 43.62	37.36 43.56	11.00 12.82	3.14 3.66	$\frac{2.17}{2.53}$	10573 12327	14433
5 30	5 26	8/12	Peoria	5	14.76 Dry	35.95 42.18	$35.34 \\ 41.46$	13.95 16.36	3.19 3.74	$\frac{2.00}{2.34}$	10173 11935	14636
498	5 43	6/12	Saline	5	6.34 Dry	$\frac{37.72}{40.27}$	$\frac{48.20}{51.46}$	$7.74 \\ 8.27$	2.03 2.16	.61	$12620 \\ 13474$	14869
498	6 48	6/12	Saline	5	6.40 Dry	37.11 39.65	$\frac{49.59}{52.97}$	$\frac{6.90}{7.38}$	$\frac{2.27}{2.43}$.40 .43	12678 13546	14800
498	7 43	6/12	Saline	5	8.85 Dry	32.53 35.65	51.52 56.57	7.10 7.78	.92 1.00	.66 .72	$12321 \\ 13502$	14774
498	9 43	6/12	Saline	5	6.80 Dry	35.06 37.61	50.39 54.07	7.75 8.32	$\frac{2.30}{2.46}$.03	12514 13428	14853
499	0 43	6/12	Saline	5	6.02 Dry	38.23 40.68	47.53 50.58	8.22 8.74	$\frac{2.67}{2.84}$.45 .48	12538 13341	14831
499	2 43	6/12	Saline	5	7.39 Dry	35.38 38.20	50.73 54.78	$\frac{6.50}{7.02}$	$\frac{2.15}{2.32}$.01	12642 13650	14848
499	1 44	6/12	Saline	5	6.49 Dry	35.85 38.34	$50.46 \\ 53.97$	7.20 7.69	2.82 3.02	.01	12634 13511	14841
499	3 44	6/12	Saline	5	6.71 Dry	$35.68 \\ 38.24$	$\frac{49.64}{53.21}$	7.97 8.55	$\frac{2.69}{2.88}$.00	12482 13379	14839
499	4 44	6/12	Saline	5	6.90 Dry	34.42 36.97	$\frac{48.55}{52.16}$	10.13 10.87	$\frac{2.16}{2.32}$.03	12088 12984	14793
499	7 45	6/12	Saline	5	6.71 Dry	35.59 38.14	49.98 53.59	7.72 8.27	2.38 2.55	.14 .16	12092 13332	14725
499	9 48	6/12	Saline	5	7.45 Dry	34.18 36.94	49.88 53.90	8.49 9.16	2.78 3.01	.01	12336 13329	14901
500	1 45	6/12	Saline	5	6.94 Dry	$\frac{34.56}{37.14}$	50.93 54.72	7.57 8.14	2.30 2.46	.16 .18	12485 13415	14792
499	05 48	6/12	Saline	5	7.57 Dry	34.36 37.18	48.30 52.25	$9.77 \\ 10.57$	2.42 2.62	1.75 1.89	11956 12934	1469 2
5 00	2 48	6 /12	Saline	5	7.45 Dry	$\frac{33.71}{36.42}$	$51.27 \\ 55.40$	7.57 8.18	2.63 2.84	.31 .35	12400 13398	14794
501	.0 48	6/12	Saline	5	7.99 Dry`	33.63 36.55	51.20 55.65	$\frac{7.18}{7.80}$	$2.61 \\ 2.84$.05	12346 13419	14732
501	2 49	6/12	Saline	5	5.19 Dry	38.37 40.47	45.92 48.43	$10.52 \\ 11.10$	4.06 4.28	.46	12260 12932	14847
_	1	T				1						12011

Table 10.—Analyses of mine samples (not exactly indicative of commercial output)
—Continued.

No.	No.	1912		peq	lst: "	'As reco oisture.		h total	hur		ż	coal
Lab.	Co-0p.	Date 1	County	Coal	Moisture	Volatile	Fixed	Ash	Sulphur	CO	B. t.	Unit
5015	49	6/12	Saline	5	5.52 Dry	36.89 39.04	45.89 48.58	11.70 12.38	4.97 5.26	.72 .76	11962 12662	14809
5016	49	6/12	Saline	5	4.90 Dry	$\frac{38.93}{40.94}$	$\frac{45.90}{48.26}$	$\frac{10.27}{10.80}$	$\frac{4.77}{5.01}$.47	$12355 \\ 12991$	14815
5019	46	6/12	Saline	5	8.08 Dry	35.26 38.35	$\frac{48.25}{52.50}$	$\frac{.}{8.41}$ 9.15	$\frac{2.60}{2.83}$.38	$12192 \\ 13263$	i4818
5020	46	6/12	Saline	5	7.70 Dry	$35.48 \\ 38.44$	$\frac{48.66}{52.72}$	8.16 8.84	$\frac{2.52}{2.74}$.32	12304 13331	i 4833
5021	46	6/12	Saline	5	8.25 Dry	$\frac{34.98}{38.12}$	47.73 52.03	9.04 9.85	$\frac{2.40}{2.61}$.85 .92	11964 13040	14684
5022	46	6/12	Saline	5	7.72 Dry	$\frac{34.09}{36.94}$	$\frac{49.22}{53.34}$	$8.97 \\ 9.72$	$\frac{3.31}{3.58}$.23 .25	$12050 \\ 13057$	i4716
5023	46	6/12	Saline	5	8.14 Dry	34.60 37.66	48.10 52.36	9.16 9.98	$\frac{2.42}{2.64}$.74 .80	11989 13051	14717
5024	46	6/12	Saline	5	7.85 Dry	$\frac{33.72}{36.59}$	49.30 53.50	9.13 9.91	$\frac{3.48}{3.78}$.24	11971 12990	14676
5118	36	7/12	Sangamon	5	16.05 Dry	$\frac{35.82}{42.66}$	37.14 44.25	10.99 13.09	$\frac{3.55}{4.22}$.67 .80	10330 12306	14476
5119	36	7/12	Sangamon	5	15.53 Dry	36.36 43.04	$\frac{38.05}{45.05}$	10.06 11.91	3.86 4.57	.55	10522 12457	14450
5120	36	7 /12	Sangamon	5	14.45 Dry	37.46 43.79	38.27 44.73	9.82 11.48	3.59 4.19	.55	$10704 \\ 12512$	14423
5128	37	7/12	Sangamon	5	14.08 Dry	37.38 43.51	$37.56 \\ 43.71$	$10.98 \\ 12.78$	$\frac{3.97}{5.17}$.38	9471 12337	14492
5129	37	7 /12	Sangamon	5	13.86 Dry	$\frac{37.11}{43.08}$	39.05 45.34	$9.98 \\ 11.58$	$\frac{2.57}{4.07}$.52	$10726 \\ 12451$	14365
5166	39	7/12	Sangamon	5	13.38 Dry	37.20 42.95	36.40 42.03	13.01 15.02	$\frac{4.78}{5.52}$.96 1.10	10338 11934	14439
5167	39	7 /12	Sangamon	5	13.35 Dry	$36.64 \\ 42.27$	37.12 42.85	12.89 14.88	4.80 5.53	.84 .97	10348 11942	14423
5168	39	7/12	Sangamon	5	13.19 Dry	38.44 44.28	$\frac{36.47}{42.00}$	11.90 13.72	4.61 5.31	$\frac{1.05}{1.20}$	10513 12110	14397
5187	40	7 /12	Sangamon	5	14.82 Dry	37.18 43.65	38.22 44.87	$9.78 \\ 11.48$	4.30 4.52	.72 .84	10683 12541	14483
5188	40	7/12	Sangamon	5	16.05 Dry	$\frac{35.58}{42.38}$	$\frac{38.04}{45.32}$	10.33 12.30	4.18 4.98	.17 .20	10413 12404	14476
5189	40	7 /12	Sangamon	5	14.31 Dry	37.31 43.54	$\frac{38.20}{44.58}$	10.18 11.88	$\frac{4.21}{4.91}$.90 1.05	$10655 \\ 12434$	14251
5196	38	7/12	Sangamon	5	14.25 Dry	$37.25 \\ 43.44$	37.07 43.24	11.43 13.32	$\frac{4.76}{5.55}$.98 1.15	10414 12147	14381
5197	38	7/12	Sangamon	5	14.10 Dry	$\frac{38.74}{45.09}$	37.66 43.85	$9.50 \\ 11.06$	$\frac{3.86}{4.50}$.75 .87	$10790 \\ 12564$	14415
5198	38	7 /12	Sangamon	5	14.44 Dry	38.22 44.67	37.68 44.04	$9.66 \\ 11.29$	$\frac{3.79}{4.43}$.63 .73	10746 12549	14435
5199	38	7/12	Sangamon	5	14.08 Dry	38.05 44.28	35.30 41.09	$12.57 \\ 14.63$	5.87 6.83	.60	10228 11903	14366

No.	No.	1912		ped	lst:	imate ar "As rec noisture "Dry" o	d,'' wit	h total	L 1	_01	,	coal
Lab.	Co-Op. No.	Date 1	County	Coal	Moisture	Volatile	Fixed	Ash	Sulphu	CO	B. t.	Unit
5289	25	8/12	Sangamon	5	14.23 Dry	36.65 42.73	37.04 43.18	12.08 14.09	3.39 3.96	1.55 1.81	10483 12220	14553
5290	25	8/12	Sangamon	5	14.54 Dry	$\frac{37.41}{43.77}$	37.32 43.67	$10.73 \\ 12.56$	$\frac{3.27}{3.82}$	1.18 1.38	10705 12526	14625
5291	25	8/12	Sangamon	5	16.00 Dry	$\frac{36.46}{43.41}$	37.28 44.38	$10.26 \\ 12.21$	3.65 4.35	.90 1.07	10583 12598	14664
5277	27	7/12	Tazewell	5	14.71 Dry	$\frac{37.46}{44.06}$	38.57 44.03	$10.26 \\ 11.91$	$\frac{3.51}{4.07}$	1.15 1.33	10801 12516	14500
5278	27	7 /12	Tazewell	5	13.88 Dry	$\frac{37.58}{43.64}$	$\frac{40.01}{46.45}$	8.53 9.91	$\frac{2.55}{2.96}$.95 1.10	11076 12860	i4499
5281	27	8 /12	Tazewell	5	15.56 Dry	37.60 44.53	$\frac{36.70}{43.46}$	$10.14 \\ 12.01$	3.23 3.83	$\frac{1.50}{1.78}$	$10552 \\ 12496$	14488
				Coa	l No.	6.						
5052	85	8/12	Clinton	6	12.60 Dry	$\frac{36.78}{42.07}$	$\frac{40.48}{46.32}$	10.14 11.61	$\frac{2.88}{3.29}$.77 .88	10827 12388	14269
5053	85	7 /12	Clinton	6	12.15 Dry	37.74 42.96	40.52 46.13	$9.59 \\ 10.91$	$\frac{3.51}{3.99}$.29	10949 12464	14256
5054	85	7/12	Clinton	6	12.43 Dry	$\frac{37.23}{41.28}$	39.93 46.84	10.41 11.88	$\frac{4.19}{4.79}$.38 .44	$10730 \\ 12253$	14211
5073	84	7 /12	Clinton	6	13.32 Dry	37.43 43.18	$\frac{39.02}{45.02}$	$\frac{10.23}{11.80}$	$\frac{4.06}{4.68}$.69	10726 12374	14336
5074	84	7 /12	Clinton	6	12.40 Dry	37.94 43.32	$\frac{39.04}{44.56}$	$10.62 \\ 12.12$	$\frac{4.24}{4.84}$.58	10796 12323	14380
4785	53	4/12	Franklin	6	10.57 Dry	33.37 37.30	$\frac{43.09}{48.19}$	$12.97 \\ 14.51$.83 .93	4.38 4.89	10714 11980	14236
4786	53	4 /12	Franklin	6	10.00 Dry	$\frac{32.80}{36.45}$	$50.92 \\ 56.59$	$\frac{6.27}{6.96}$.66 .73	.33	12001 13334	i4453
4787	53	4/12	Franklin	6	10.15 Dry	32.88 36.59	$50.56 \\ 56.27$	$\frac{6.41}{7.14}$. 59 . 65	.22 .25	12000 13356	14494
4789	53	4/12	Franklin	6	10.00 Dry	$\frac{32.08}{35.65}$	$\frac{50.93}{56.60}$	6.98 7.75	.47 .52	.17	11935 13261	14492
4791	58	4/12	Franklin	6	8.70 Dry	$\frac{34.62}{37.92}$	$\frac{48.92}{53.59}$	$7.76 \\ 8.49$.62	.31 .34	11945 13084	14426
4793	58	4/12	Franklin	6	9.04 Dry	$\frac{34.46}{37.88}$	$\frac{48.73}{53.59}$	$7.77 \\ 8.53$.68 .74	.23 .25	11946 13133	iiiiii
4794	58	4/12	Franklin	6	9.05 Dry	34.45 37.88	48.75 53.59	7.75 8.53	.91 1.00	.37 .41	11923 13108	14472
4810	52	4/12	Franklin	6	6.96 Dry	$\frac{38.42}{41.29}$	$\frac{44.16}{47.47}$	$\substack{10.46\\11.24}$	$\frac{2.98}{3.21}$.92 .99	11848 12733	14568
4811	52	4/12	Franklin	6	7.34 Dry	38.11 41.13	44.23 47.73	$10.32 \\ 11.14$	$\frac{3.26}{3.51}$	$\substack{\textbf{1.41}\\\textbf{1.53}}$	$11771 \\ 12703$	14561
4812	52	4 /12	Franklin	6	6.00 Dry	$\frac{38.55}{41.01}$	45.46 48.36	9.99 10.63	3.16 3.36	$\frac{1.20}{1.28}$	11998 12776	14534
5008	51	6/12	Franklin	6	10.63 Dry.	$\frac{33.23}{37.18}$	$48.79 \\ 54.59$	7.35 8.23	1.40 1.19	.38	11800 13207	14534

 $\begin{array}{c} {\rm T_{ABLE}\ 10.} \\ {\rm -A\it{\,nalyses}\ of\ mine\ samples\ (not\ exactly\ indicative\ of\ commercial\ output)} \\ {\rm --Continued.} \end{array}$

No.	No.	1912		ped	1st: ".	nate and As recd oisture. Dry'' or	," with	total	hur	24	'n.	coal
Lab.	Co-0p.	Date 1	County	Coal	Moisture	Volatile matter	Fixed	Ash	Sulphu	co	B. t.	Unit
5009	51	6 /12	Franklin	6	9.83 Dry	$\frac{33.91}{37.62}$	49.14 54.48	$\begin{bmatrix} 7.12 \\ 7.90 \end{bmatrix}$	1.13 1.25	.18	11942 13245	14522
5011	51	6/12	Franklin	6	10.39 Dry	33.13 36.97	$\frac{49.23}{54.93}$	$\substack{7.25\\8.10}$	$\frac{1.37}{1.53}$.06	11920 13303	14629
5208	56	7 /12	Franklin	6	6.43 Dry	37.62 40.20	44.77 47.85	$\frac{11.18}{11.95}$	$\frac{2.64}{2.82}$.64 .68	11834 12646	14620
5209	56	7/12	Franklin	e	10.15 Dry	35.55 39.56	$\frac{45.82}{51.01}$	$8.48 \\ 9.43$	$\frac{1.41}{1.57}$.80	11691 13011	14539
5211	56	7/12	Franklin	6	7.71 Dry	$\frac{35.75}{38.74}$	45.38 49.17	$\frac{11.16}{12.09}$	$\frac{3.50}{3.79}$.89 .96	11644 12616	14644
5222	50	7 /12	Franklin	6	9.66 Dry	$\frac{34.55}{38.24}$	$\frac{47.85}{52.97}$	7.95 8.79	$1.04 \\ 1.15$.31 .34	11916 13190	14613
5223	50	7 /12	Franklin	6	9.00 Dry	$\frac{35.10}{38.58}$	47.35 53.03	8.55 9.39	1.08 1.19	.40 .44	11973 13159	14684
5224	50	7 /12	Franklin	6	9.36 Dry	34.86 38.46	48.90 53.96	6.88 7.58	$1.01 \\ 1.12$.43 .48	12122 13373	14603
5507	57	8/12	Franklin	6	9.83 Dry	31.82 35.28	$\frac{49.78}{55.22}$	8.57 9.50	.79	.35	11702 12977	14490
5508	57	8/12	Franklin	6	9.44 Dry	32.57 35.97	50.09 55.31	7.90 8.72	.67 .74	.29	11914 13156	14547
5509	57	8/12	Franklin	6	9.75 Dry	32.33 35.83	48.77 54.03	$9.15 \\ 10.14$	1.39 1.54	.32 .35	11652 12911	14550
5528	10	8/12	Gallatin	6	10.82 Dry	33.83 37.94	42.43 47.57	12.92 14.49	4.93 5.53	.42 .47	11263 11609	15193
4773	55	4/12	Jackson	6	10.88 Dry	31.71 35.57	48.90 54.88	8.51 9.55	.65	.30	11594 13009	14531
4780	55	4/12	Jackson	6	7.17 Dry	36.36 39.18	45.25 48.74	$\frac{11.22}{12.08}$	3.92 4.22	.43 .47	11678 12581	14617
4784	55	4/12	Jackson	6	8.82 Dry	35.30 38.72	44.96 49.30	10.92 11.98	3.46 3.79	.50	11547 12663	14676
5086	66	7/12	Macoupin	6	4.29 Dry	39.09 45.60	$37.21 \\ 43.42$	9.41 10.98	4.13 4.82	.32	10635 12408	14234
5087	66	7/12	Macoupin	6	13.77 Dry	38.69 44.86	36.74 42.62	10.80 12.52	4.37 5.07	.62	10493 12169	14236
5088	66	7/12	Macoupin	6	14.73 Dry	38.33 44.95	37.24 43.69	9.70 11.36	4.50 5.28	.30	10522 12339	14237
5097	69	7/12	Macoupin	6	14.73 Dry	36.26 42.53	36.11 42.34	12.90 15.13	4.62 5.42	.28	10099 11843	
5098	69	7 /12	Macoupin	6	13.68 Dry		37.72 43.70	10.58 12.25	4.43 5.12	.21	10618 12300	
5099	69	7/12	Macoupin	6	14.19 Dry		37.03 43.15	10.86 12.66	4.21 4.91	.39		
5100	67	7/12	Macoupin	6	15.12 Dry	38.28 45.09	36.55 43.06	10.05	3.85	.31	10610 12501	14488

¹⁰ From country bank not included in list of 100 mines.

 $\begin{array}{ll} \textbf{Table 10.--} \textit{Analyses of mine samples (not exactly indicative of commercial output)} \\ \textbf{---Continued.} \end{array}$

No.	. No.	1912		peq	1st: " m	nate an As reco oisture. Dry'' or	l," witl	n total	hur	_81	ż	coal
Lab.	Co-0p.	Date	County	Coal	Moisture	Volatile	Fixed	Ash	Sulphu	CO ₂	B. t.	Unit
5101	67	7 /12	Macoupin	6	14.90 Dry	37.75 44.35	38.43 45.16	8.92 10.49	$\frac{3.67}{4.31}$.45 .53	10735 12614	14367
5102	67	7/12	Macoupin	6	14.67 Dry	$35.49 \\ 41.59$	38.83 45.50	$11.01 \\ 12.91$	4.15 4.86	.22	$10433 \\ 12227$	14370
5112	68	7/12	Macoupin	6	12.11 Dry	40.32 45.88	39.14 44.52	8.43 9.60	4.39 5.00	.38	$11170 \\ 12705$	14335
5113	68	7/12	Macoupin	6	13.27 Dry	38.58 44.48	38.15 43.99	10.00 11.53	4.89 5.64	.27	10790 12442	14400
5114	68	7 /12	Macoupin	6	13.23 Dry	38.85 44.77	38.91 44.84	$9.01 \\ 10.39$	4.39 5.06	.28	10935 12601	14359
5067	72	7/12	Madison	6	13.08 Dry	38.03 43.75	37.07 42.65	11.82 13.60	5.22 6.01	.25	10543 12129	14423
5068	72	7/12	Madison	6	13.53 Dry	37.26 43.84	$\frac{40.98}{45.53}$	8.23 10.63	$\frac{3.81}{4.37}$.30	10903 12587	14363
5069	72	7 /12	Madison	6	14.86 Dry	37.32 43.84	$\frac{38.76}{45.53}$	$9.06 \\ 10.63$	$\frac{3.73}{4.37}$.20	$10717 \\ 12587$	14363
5070	71	7 /12	Madison	6	12.99 Dry	37.73 43.36	36.89 42.40	$12.39 \\ 14.24$	$\frac{4.43}{5.09}$.72 .82	10499 12066	14440
5071	71	7/12	Madison	6	12.14 Dry	$\frac{41.13}{46.82}$	$\frac{38.00}{43.24}$	8.73 9.94	$\frac{3.52}{4.00}$.41 .47	$\begin{array}{c} 11206 \\ 12759 \end{array}$	14426
5072	71	7 /12	Madison	6	12.42 Dry	39.82 45.46	37.65 43.00	$10.11 \\ 11.54$	4.35 4.96	.72 .80	10909 12456	14398
5075	73	7/12	Madison	6	14.65 Dry	39.08 45.80	38.03 44.55	$8.24 \\ 9.65$	$\frac{3.59}{4.20}$.29	$10865 \\ 12730$	i4347
5076	73	7/12	Madison	6	14.31 Dry	38.35 44.75	38.32 44.72	$9.02 \\ 10.53$	$\frac{3.77}{4.40}$.31	$10739 \\ 12532$	14283
5078	73	7/12	Madison	6	15.18 Dry	$\frac{38.40}{45.27}$	38.30 45.16	$8.12 \\ 9.57$	3.94 4.64	.23	10751 12673	14284
5515	70	8 /12	Madison	6	13.88 Dry	37.60 43.65	37.74 43.82	$10.78 \\ 12.53$	4.21 4.89	.53	10551 12250	14330
5517	70	8/12	Madison	6	12.44 Dry	39.10 44.65	38.20 43.64	$10.26 \\ 11.71$	5.28 6.03	. 64	10818 12354	14343
5518	70	8 /12	Madison	6	12.11 Dry	39.32 44.74	36.27 41.26	12.30 14.00	4.92 5.60	.47	$10615 \\ 12076$	14421
5030	86	6/12	Marion	6	12.45 Dry	37.22 42.03	39.81 44.96	$\frac{11.52}{13.01}$	3.62 4.09	.67	10874 12281	14426
5033	86	6/12	Marion	6	10.24 Dry	39.06 43.51	39.79 44.33	10.91 12.16	4.18 4.65	.30	11180 12456	14499
5035	86	6/12	Marion	6	10.69 Dry	38.76 43.41		11.54	3.98 4.47		10963 12275	14418
5039	87	6/12	Marion	6	10.06 Dry	37.96 42.21	41.09 45.69	10.89 12.10	3.92 4.35		11289 12555	14589
5041	87	6 /12	Marion	6	10.35 Dry	36.04 40.20	42.81 47.75	10.80 12.05	4.10 4.57	.25	11227 12522	14551
5044	87	6/12	Marion	6	10.96 Dry	36.54 41.04	40.68 45.69	$\frac{11.82}{13.27}$	4.00 4.52		11002 12364	14583

 $\begin{array}{c} {\rm T_{ABLE}\ 10.} - A \, nalyses \,\, of \,\, mine \,\, samples \,\, (not \,\, exactly \,\, indicative \,\, of \,\, commercial \,\, output) \\ -- {\rm Continued.} \end{array}$

٧٥.	No.	912		Proximate analysis of coal lst: "As reed," with tota moisture. 2nd: "Dry" or moisture free			1 .		, i	coal		
Lab. No.	Co-Op.	Date 1912	County	Coal	Moisture	Volatile matter	Fixed	Ash	Sulphur	CO ₃	B. t.	Unit
5105	76	7/12	Montgomery	6	14.15 Dry	36.96 43.05	38.19 44.48	$10.70 \\ 12.47$	3.43 4.00		10547 12285	14329
5106	76	7/12	Montgomery	6	13.83 Dry	36.95 42.88	$\frac{39.22}{45.51}$	$10.00 \\ 11.61$	$\frac{3.72}{4.32}$.91 1.05	10728 12455	14382
5107	76	7 /12	Montgomery	6	13.70 Dry	$37.25 \\ 43.17$	37.93 43.94	$11.12 \\ 12.89$	$\frac{4.39}{5.08}$	1.04 1.20	10444 12102	14225
5516	77	8/12	Montgomery	6	14.00 Dry	$\frac{36.88}{42.88}$	$\frac{40.02}{46.54}$	$9.10 \\ 10.58$	$\frac{3.84}{4.47}$.48 .57	10761 12511	14268
5254	11	8/12	Moultrie	6	7.07 Dry	39.02 41.99	$\frac{43.01}{46.28}$	$10.90 \\ 11.73$	$\frac{3.69}{3.97}$.36 .39	11912 12819	14736
5255		8/12	Moultrie	6	7.18 Dry	$\frac{38.09}{41.03}$	$\frac{41.38}{44.59}$	13.35 14.38	$\frac{5.18}{5.58}$.46 .49	11573 12468	i4973
5256		8 /12	Moultrie	6	6.24 Dry	$\frac{40.34}{43.03}$	$\frac{42.55}{45.38}$	$10.87 \\ 11.59$	3.18 3.39	.89 .95	12149 12957	14937
4756	54	3/12	Perry	6	10.32 Dry	$\frac{34.03}{37.94}$	$\frac{46.19}{51.51}$	$\substack{9.46\\10.55}$	$1.07 \\ 1.18$	$.24 \\ .26$	11395 12705	14380
4759	54	3 /12	Perry	6	10.41 Dry	33.43 37.32	45.82 51.14	$10.34 \\ 11.54$.88 .98	.23 .25	11486 12822	14367
4760	54	3/12	Perry	6	10.22 Dry	$\frac{33.32}{37.11}$	47.60 53.03	8.86 9.86	$\frac{1.04}{1.15}$.23 .25	$\begin{array}{c} 11270 \\ 12553 \end{array}$	14383
4764	54	3/12	Perry	6	9.98 Dry	$\frac{33.71}{37.45}$	44.91 49.88	$11.40 \\ 12.67$.84 .93	.33	$\begin{array}{c} 11205 \\ 12447 \end{array}$	14452
4766	54	3/12	Perry	6	9.64 Dry	$\frac{33.49}{37.06}$	45.60 50.47	$11.27 \\ 12.47$.82 .90	.35 .39	$11230 \\ 12428$	i4394
4768	54	3/12	Perry	6	10.05 Dry	$\frac{33.24}{36.94}$	$\frac{45.85}{50.98}$	$\substack{10.86\\12.08}$	$\frac{.93}{1.04}$. 63 . 70	$\begin{array}{c} 11257 \\ 12513 \end{array}$	14424
5034	90	6/12	Perry	6	10.60 Dry	$\frac{37.03}{41.42}$	$\frac{42.32}{47.35}$	$10.05 \\ 11.23$	$\frac{3.73}{4.17}$.62 .70	$11175 \\ 12500$	14365
5037	90	6/12	Perry	6	11.20 Dry	$\frac{37.29}{42.00}$	$\frac{40.57}{45.69}$	$10.94 \\ 12.31$	$\frac{3.20}{3.60}$.34	$10911 \\ 12287$	i4288
5038	90	6/12	Perry	6	10.60 Dry	$\frac{35.99}{40.25}$	$\frac{43.05}{48.16}$	$10.36 \\ 11.59$	$\frac{4.18}{4.67}$.47 .53	$11012 \\ 12317$	14228
5040	90	6/12	Perry	6	11.60 Dry	$\frac{37.03}{41.89}$	$\frac{42.17}{47.71}$	$\begin{smallmatrix} 9.20\\10.40\end{smallmatrix}$	3.84 4.34	.38 .43	$11107 \\ 12570$	14301
5042	90	6/12	Perry	6	10.82 Dry	$37.83 \\ 42.42$	$\frac{41.52}{46.56}$	$9.83 \\ 11.02$	$\frac{2.98}{3.34}$.76 .85	$11210 \\ 12570$	i4380
5043	90	6/12	Perry	6	10.89 Dry	$\frac{36.81}{41.29}$	$\frac{41.23}{46.27}$	$\frac{11.07}{12.44}$	$\frac{3.71}{4.16}$.55	10826 12277	i4319
5048	88	7 /12	Perry	6	9.37 Dry	36.87 40.68	$\frac{41.05}{45.29}$	$\begin{bmatrix} 12.71 \\ 14.02 \end{bmatrix}$	4.62 4.83	.43 .47	10936 12067	14395
5049	88	7/12	Perry	6	9.34 Dry	37.97 41.88	$\frac{41.32}{45.58}$	$\frac{11.37}{12.54}$	3.16 3.48	$\frac{1.42}{1.56}$	11099 12243	$\dot{1}\dot{4}\dot{2}\dot{7}\dot{6}$
5050	88	7 /12	Perry	6	10.11 Dry	36.44 40.54	$\frac{41.45}{40.12}$	12.00 13.34	$\begin{bmatrix} 3.59 \\ 3.99 \end{bmatrix}$.75 .81	10915 12141	14321

¹¹ This and two following samples are from a mine not included in the list of 100.

 $\begin{array}{ll} \textbf{T_{ABLE 10.--} Analyses of mine samples (not exactly indicative of commercial output) \\ \textbf{---Continued.} \end{array}$

No.	. No.	1912 °		peq	lst: '	"As rec noisture	nalysis d," wit	h total		200	'n	coal
Lab.	Co-Op.	Date]	County	Coal	Moisture	Volatile	Fixed	Ash	Sulphu	CO	B. t.	Unit
5514	89	8/12	Perry	6	12.43 Dry	$35.55 \\ 40.59$	42.86 48.94	$9.16 \\ 10.47$	4.80 5.48	.21	11063 12632	14422
5519	89	8/12	Perry	6	12.76 Dry	$35.18 \\ 41.79$	44.32 49.34	7.74 8.87	1.66 1.90		11357 13018	14458
5520	89	8/12	Perry	6	12.17 Dry	$\frac{36.42}{41.46}$	42.41 48.28	$9.00 \\ 10.26$	1.96 2.23	.46 .52	$\begin{array}{c} 11200 \\ 12753 \end{array}$	14414
5045	83	8 /12	Randolph	6	11.38 Dry	$\frac{36.94}{41.68}$	$\frac{40.25}{45.41}$	$11.43 \\ 12.91$	4.16 4.69	.72 .81	10823 12212	14348
5046	83	8/12	Randolph	6	10.62 Dry	$\frac{38.10}{42.63}$	39.12 43.77	$\frac{12.16}{13.60}$	4.45 4.98	.42	10849 12137	14400
5047	83	8/12	Randolph	6	11.39 Dry	36.80 41.53	$\frac{41.04}{46.32}$	$10.77 \\ 12.15$	4.11 4.63	.60	10895 12294	14306
5115	75	8/12	Sangamon	6	14.97 Dry	$\frac{36.90}{43.39}$	38.36 45.12	9.77 11.49	3.53 4.16	.59	10598 12466	14361
5116	75	8 /12	Sangamon	6	14.51 Dry	$\frac{37.60}{43.98}$	39.69 46.43	8.20 9.59	$\frac{3.44}{4.02}$.22	10911 12763	14373
5117	7 5	8/12	Sangamon	6	12.98 Dry	$\frac{38.23}{43.94}$	$\frac{38.92}{44.72}$	9.87 11.34	4.32 4.96	.56 .65	10845 12463	14368
51 30	74	7/12	Sangamon	6	15.22 Dry	$\frac{38.23}{45.09}$	$37.36 \\ 44.07$	$9.19 \\ 10.84$	$\frac{4.38}{5.17}$.38	10579 12478	14301
5131	74	7 /12	Sangamon	6	13.10 Dry	$\frac{38.86}{44.72}$	37.25 42.86	$10.79 \\ 12.42$	$\frac{5.08}{5.86}$.41	10592 12187	14268
5132	74	7/12	Sangamon	6	14.43 Dry	$\frac{38.14}{44.58}$	$\frac{37.07}{43.32}$	10.36 12.10	$\frac{4.77}{5.58}$.40	10495 12265	14292
5056	79	7 /12	St. Clair	6	10.69 Dry	$\frac{40.16}{44.97}$	37.87 42.39	11.28 12.64	$\frac{4.55}{5.10}$.58 .65	11063 12387	14522
5058	79	7 /12	St. Clair	6	12.12 Dry	38.61 43.93	$\frac{40.61}{46.22}$	8.66 9.85	$\frac{3.10}{3.52}$.35	$\begin{array}{c} 11217 \\ 12764 \end{array}$	14399
5059	79	7/12	St. Clair	6	11.12 Dry	$\frac{40.54}{45.61}$	$\frac{38.27}{43.06}$	10.07 11.33	$\frac{4.18}{4.70}$.32 .36	$11145 \\ 12540$	14483
5055	78	7/12	St. Clair	6	13.06 Dry	$\frac{38.21}{43.95}$	37.36 42.96	11.37 13.09	$\frac{3.21}{3.70}$	1.17 1.35	10741 12354	14515
5060	78	7/12	St. Clair	6	11.44 Dry	$\frac{38.73}{43.73}$	38.11 43.04	$11.72 \\ 13.23$	$\frac{4.26}{4.81}$.56 .64	$10841 \\ 12242$	14447
5061	78	7/12	St. Clair	6	10.75 Dry	39.19 43.91	38.88 43.56	$\frac{11.18}{12.53}$	$\frac{3.41}{3.82}$.67 .75	$11041 \\ 12371$	14438
5077	81	7/12	St. Clair	6	11.35 Dry	39.68 44.75	38.59 43.54	10.38 11.71	$\frac{4.05}{4.57}$.58 .65	11036 12449	14404
5079	81	7/12	St. Clair	6	10.85 Dry	$\frac{40.75}{45.71}$	38.36 43.03	10.04 11.26	4.09 4.58	.58 .65	$\begin{array}{c} 11192 \\ 12554 \end{array}$	14445
5080	81	7 /12	St. Clair	6	11.50 Dry	40.68 45.96	37.91 42.84	9.91 11.20	3.96 4.47	.46	10908 12597	14482
5108	82	7 /12	St. Clair	6	10.99 Dry	38.96 43.77	58.79 43.59	11.26 12.64	4.36 4.90	.36	11047 12411	14544
5109	82	7/12	St. Clair	6	13.42 Dry	39.23 45.31	36.92 42.65	10.43 12.04	4.92 5.69	.26	10753 12419	14474

 $\begin{array}{ll} {\bf T}_{\rm ABLE~10.} - A\, nalyses \ of \ mine \ samples \ (not\ exactly\ indicative\ of\ commercial\ output) \\ -- {\bf Continued.} \end{array}$

	—Continued.											
No.	. No.	1912		peq	m	nate and As recd oisture. Dry" or			hur	22	'n	coal
Lab. No.	Co-Op.	Date 1	County	Coal	Moisture	Volatile matter	Fixed	Ash	Sulphur	CO	B. t.	Chrit
5110	82	7 /12	St. Clair	6	11.40 Dry	40.96 46.23	36.89 41.63	$10.75 \\ 12.14$	4.10 4.63	.57	$\begin{array}{c} 11052 \\ 12472 \end{array}$	i451 i
5524	80	7 /12	St. Clair	6	10.11 Dry	$\frac{39.72}{44.19}$	38.87 43.24	$\frac{11.30}{12.57}$	3.69 4.10	.78 .86	$\begin{array}{c} 11051 \\ 12294 \end{array}$	1436 1
5525	80	8 /12	St. Clair	6	9.83 Dry	39.84 44.19	$37.97 \\ 42.11$	$\frac{12.36}{13.70}$	$\begin{array}{c} 4.02 \\ 4.45 \end{array}$.87 .96	$\begin{array}{c} 10958 \\ 12152 \end{array}$	14415
5526	80	8/12	St. Clair	6	10.19 Dry	$\frac{38.44}{42.79}$	40.41 45.00	$\frac{10.96}{12.21}$	$\frac{3.95}{4.49}$.68 .78	11127 12388	14418
4670	93	2/12	Vermilion	6	13.68 Dry	$\frac{36.28}{42.03}$	41.37 47.92	$8.67 \\ 10.05$	2.78 3.23	$.45 \\ .52$	11101 12861	i4537
4671	93	2/12	Vermilion	6	15.50 Dry	33.32 39.43	$\frac{43.11}{51.03}$	$8.07 \\ 9.54$	$\frac{1.86}{2.20}$.46 .62	10976 12989	14558
4674	93	2/12	Vermilion	6	15.69 Dry	$34.52 \\ 40.95$	$\frac{42.22}{50.07}$	7.57 8.98	$\frac{1.56}{1.85}$.53 .63	11019 13085	14553
4676	93	2/12	Vermilion	6	14.56 Dry	35.04 41.01	41.82 48.95	8.58 10.04	2.09 2.45	.74 .86	11006 12881	14527
4678	93	2 /12	Vermilion	6	16.06 Dry	34.67 41.32	40.75 48.53	$8.52 \\ 10.15$	$\frac{1.79}{2.14}$.90 1.07	10810 12879	14537
4679	93	2/12	Vermilion	6	15.95 Dry	34.66 41.23	42.06 50.05	7.33 8.72	1.41 1.68	.39 .46	11041 13136	14557
4702	92	3 /12	Vermilion	6	15.53 Dry	33.60 39.78	39.46 46.70	$11.41 \\ 13.52$	$\frac{2.32}{2.75}$.98 1.15	10404 12317	14520
4703	92	3 /12	Vermilion	G	15.70 Dry	32.38 38.81	39.80 47.72	11.36 13.47	$2.57 \\ 3.04$	1.06 1.26	10392 12328	14535
4704	92	3 /12	Vermilion	6	15.27 Dry	33.98 40.10	40.88 48.24	9.87 11.66	$\frac{2.26}{2.66}$.69 .81	10718 12649	14563
4706	95	3/12	Vermilion	6	11.87 Dry	40.37 45.80	39.52 44.86	8.24 9.34	3.07 3.48	.74 .84	11416 12953	14525
4707	95	3 /12	Vermilion	6	13.14 Dry	38.81 44.69	38.11 43.87	9.94 11.44	4.18 4.82	.88 1.02	10949 12604	14549
4740	91	6/12	Vermilion	6	13.58 Dry	$35.20 \\ 40.73$	39.83 46.09	11.39 13.18	3.19 3.69	.83	10821 12521	14733
4741	91	6 /12	Vermilion	6	13.63 Dry	34.56 40.01	41.19 47.69	10.62 12.30	2.91 3.36	.78 .90	10954 12683	14747
4742	91	6 /12	Vermilion	6	14.50 Dry	35.98 42.09	40.49 47.35	9.03 10.56	$\frac{2.43}{2.83}$.44	11090 12971	14740
4743	91	6/12	Vermilion	6	14.20 Dry			7.96 9.28	1.83	.34	11295 13165	14703
4744	91	6/12	Vermilion	6	13.99 Dry		42.68 49.63	8.07 9.38	1.67	.98		14706
4745	91	6/12	Vermilion	6	14.79 Dry		42.69	8.08 9.48	1.72	.98	11053	14519
4746	91	6/12	Vermilion	6	15.14 Dry		40.19	10.97	2.50	.61	10663	
4998	65	6/12	Williamson	6	9.35 Dry		50.07	7.75	1.05	.26	12017	
	1	1	1			0						

 $\begin{array}{l} {\bf TABLE~10.--} Analyses \ of \ mine \ samples \ (not\ exactly\ indicative\ of\ commercial\ output) \\ {\bf --} {\bf Continued.} \end{array}$

No.	No.			ped	m	nate and As recd pisture. Dry'' or			ar	2)	r.	oal
Lab.	Co-Op.	Date 1	County	Coal h	Moisture	Volatile	Fixed	Ash	Sulphur	CO	B.	Unit coal
5004	65	6 /12	Williamson	6	9.99 Dry	33.79 37.53	48.56 53.96	7.66 8.51	.99 1.10	.06	11899 13218	14593
5005	65	6 /12	Williamson	6	8.58 Dry	$\frac{33.95}{37.14}$	$\frac{48.31}{52.84}$	$9.16 \\ 10.02$	3.10 3.39	.14	11845 12956	14644
4996	60	6/12	Williamson	6	8.32 Dry	$\frac{34.61}{37.75}$	47.56 51.88	$9.51 \\ 10.37$	2.25 2.46	.24	11978 13066	14801
5000	60	6 /12	Williamson	6	7.53 Dry	34.90 37.74	47.37 51.23	10.20 11.03	3.23 3.49	. 60 . 65	11799 12760	14607
5006	60	6/12	Williamson	6	8.81 Dry	$\frac{32.13}{35.62}$	51.85 56.38	7.21 8.00	1.00 1.11	.13	11962 13264	iii:
5121	61	6/12	Williamson	6	9.44 Dry	33.63 37.13	49.58 54.75	7.35 8.12	1.28 1.42	.19	12092 13354	14685
5133	61	7 /12	Williamson	6	8.99 Dry	$\frac{34.22}{37.62}$	49.51 54.39	7.28 7.99	1.70 1.87	.04	12149 13349	14674
5134	61	7/12	Williamson	6	9.38 Dry	33.62 37.10	$50.01 \\ 55.18$	$\frac{6.99}{7.72}$	$\frac{1.12}{1.24}$.14 .16	12138 13394	14654
5122	59	7 /12	Williamson	6	9.79 Dry	33.28 36.89	48.66 53.94	8.27 9.17	1.32 1.46	.44	11891 13181	14681
5123	59	7 /12	Williamson	6	10.67 Dry	$\frac{32.54}{36.42}$	47.32 52.97	$9.47 \\ 10.61$	1.53 1.71	.15 .17	11619 13006	i4748
5124	59	7 /12	Williamson	6	10.96 Dry	33. f 4 37.24	45.86 51.49	$\frac{10.04}{11.27}$	1.72 1.93	.55	11383 12784	14624
5125	62	7 /12	Williamson	6	9.97 Dry	32.20 35.76	49.62 55.12	8.21 9.12	1.47 1.63	.22	11814 13123	i4610
5126	62	7 /12	Williamson	6	8.37 Dry	34.19 37.31	50.18 54.77	7.26 7.92	1.03 1.12	.18	12254 13374	14663
5127	62	7 /12	Williamson	6	9.06 Dry	32.93 36.20	49.98 54.97	8.03 8.83	1.03 1.13	.24 .27	12010 13207	14637
5170	64	7 /12	Williamson	6	11.51 Dry	30.75 34.76	49.74 56.20	8.00 9.04	.84	.32 .36	11554 13057	14501
5169	64	7 /12	Williamson	6	9.13 Dry	32.03 35.25	51.06 56.20	7.77 8.55	$1.10 \\ 1.21$.33	12044 13254	14613
5172	-64	7 /12	Williamson	6	7.38 Dry	35.59 38.42	$47.56 \\ 51.35$	$9.47 \\ 10.23$.86 .93	.51 .55	12017 12974	14617
5180	63	7 /12	Williamson	6	10.38 Dry	$\frac{32.76}{36.56}$	48.10 53.67	8.76 9.77	1.50 1.67	.16	11735 13072	14672
5181	63	7 /12	Williamson	6	8.78 Dry	$\frac{34.25}{37.54}$	47.56 52.14	$9.41 \\ 10.32$	$\frac{2.49}{2.73}$.53 .58	11885 13029	i 4758
5182	63	7 /12	Williamson	6	9.26 Dry	33.36 36.76	48.70 53.68	8.68 9.56	1.83 2.01	.39 .43	11955 13176	14 761
				Coa	1 No.	7.						
5416	99	8/12	La Salle	7	13.82 Dry	41.42 48.06	35.90 41.67		3.95 4.58	.51	11174 12966	14744
5414	99	8 /12	La Salle	7	12.87 Dry	42.40 48.67	37.35 42.86	7.88	3.86 4.44	.00	11468	14635

Table 10.—Analyses of mine samples (not exactly indicative of commercial output)
—Concluded.

No.	Co-Op. No. Date 1912				lst: "	As reco	Dry" or moisture free			°00	t. u.	coal
Lab.	Co-Op.	Date.	County	Coall	Moisture	Volatile matter	Fixed	Ash	Sulphur	ŏ	B.	Unit coal
5417	99	8/12	La Salle	7	13.99 Dry	$\frac{38.81}{45.12}$	$\frac{40.12}{46.65}$	7.08 8.23	3.23 3.76	.00	11401 13255	14675
4711	94	3 /12	Vermilion	7	12.20 Dry	$\frac{39.53}{45.03}$	$\frac{38.38}{43.70}$	$9.89 \\ 11.27$	$\frac{3.76}{4.29}$	$.46 \\ .52$	11243 12804	14730
4713	94	3 /12	Vermilion	7	12.70 Dry	$\frac{39.20}{44.90}$	$\frac{39.24}{44.95}$	$8.86 \\ 10.15$	$\frac{2.79}{3.19}$	$.52 \\ .59$	$11399 \\ 13057$	14776
4714	94	3/12	Vermilion	7	12.76 Dry	$\frac{38.84}{44.53}$	$\frac{38.31}{43.91}$	$10.09 \\ 11.56$	$\frac{3.91}{4.48}$	$.61 \\ .70$	$\frac{11106}{12788}$	i4773
4716	94	3/12	Vermilion	7	12.67 Dry	$\frac{39.01}{44.67}$	$\frac{37.43}{42.86}$		$\frac{3.54}{4.06}$.84 .96	11041 12644	i4734
4722	94	3 /12	Vermilion	7	13.53 Dry	$37.39 \\ 43.24$	$\frac{39.57}{45.76}$	$\begin{smallmatrix}9.51\\11.00\end{smallmatrix}$	$\frac{3.20}{3.70}$	$.46 \\ .54$	$11045 \\ 12773$	14622
4724	94	3 /12	Vermilion	7	13.27 Dry	$\frac{37.25}{42.95}$	$\frac{40.65}{46.87}$	$\frac{8.83}{10.18}$	$\frac{3.27}{3.77}$.38 .44	$11209 \\ 12925$	14650
4727	97	3/12	Vermilion	7	12.92 Dry	$\frac{36.98}{42.46}$	$\frac{38.94}{44.73}$	$\frac{11.16}{12.81}$	2.90 3.33	.70 .80	$10924 \\ 12544$	14715
4734	97	3/12	Vermilion	7	13.10 Dry	38.42 44.22	$\frac{39.14}{45.03}$	$9.34 \\ 10.75$	$\frac{2.26}{2.59}$.56 .64	11281 12981	14778
4736	97	3/12	Vermilion	7	13.41 Dry	37.33 43.11	38.87 44.89	$10.39 \\ 12.00$	2.54 2.93	.46 .53	$\frac{11065}{12778}$	i4787

AVERAGE ANALYSES BY MINES AND BY COUNTIES.

In Table 11, the average of all of the values for each mine is given and these values for each county are assembled for more convenient reference. Further, since as a rule, the variations for "unit" values in a county are slight, the average for the county is calculated from the several mine averages. These values are therefore accurate for the various counties named, though, of course, the range of variation for each mine would be less than for the county as a whole.

By means of the preceding discussion of the meaning and application of these values and the analytical results as given in Tables 8, 10, 11, and 12, both the coal operator who wishes to formulate bids, and the contractor who wishes to meet safely present-day commercial requirements should be able to make practical application of the data. Table 12 especially furnishes calculations for typical samples from the entire area.

DISTRICT NO. 1. BUREAU CO., COAL NO. 2. LONGWALL MINING.

	5110101	NO. 1. L	OILEAU	00., COA	.11 1(0. 2.	HONG W	ALL MII	VIIVG.
Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit coal"
1	16 19 Dry	37.79 45.06	38.06 45.40	8.00 9.54	3.24 3.86	.82	10787 12869	14476
8	16.50 Dry	38.48 46.08	$37.59 \\ 45.02$	7.43 8.90	2.40 2.90	1.16 1.39	10868 13016	14493
1.0	16.13 Dry	38.82 46.28	38.36 45.74	6.69 7.98	3.15 3.76	.70	10994 13108	14463
Aver- age	16.27 Dry	38.35 45.80	38.00 45.39	7.38 8.81	2.93 3.50	. 89 1.40	10883 12997	14477
DIS	STRICT N	O. 1. LA	SALLE	CO., COA	L NO. 2.	LONGW	ALL MI	NING.
2	14.60 Dry	39.88 46.70	36.97 43.29	8.55 10.01	3.97 4.65	.81	10904 12768	14475
3	15.05 Dry	39.76 46.80	37.00 43.56	8.19 9.64	3.30 3.88	.59	$10899 \\ 12830$	14454
9	17.45 Dry	$38.98 \\ 47.22$	34.52 41.82	$9.04 \\ 10.95$	3.18 3.85	1.49 1.81	10391 12587	14403
Aver- age	15.70 Dry	39.54 46.91	36.17 42.89	$8.59 \\ 10.20$	3.48 4.12	.96 1.15	10731 12728	14444
DIS	STRICT N	IO. 1. MA	RSHALL	CO., CO.	AL NO. 2.	LONGW	ALL MIN	IING.
4	16.93 Dry	$37.57 \\ 45.22$	39.57 47.64	$\frac{5.93}{7.14}$	$\frac{2.53}{3.05}$.37	11188 13468	14696
11	13.28 Dry	40.58 46.80	37.71 43.48	$\substack{8.43\\9.72}$	$\frac{3.04}{3.51}$.60	11435 13186	14896
Aver- age	15.10 Dry	39.06 46.01	38.68 45.56	$7.16 \\ 8.43$	2.79 3.28	.48	11315 13327	14796
DIS	TRICT N	IO. 1. GI	RUNDY C	O., COAI	NO. 2.	LONGW	ALL MIN	ING.
5	16.01 Dry	39.32 46.83	38.51 45.84	$\frac{6.16}{7.33}$	2.75 3.28	$1.32 \\ 1.57$	11104 13221	14463
6 *	19.53 Dry	37.59 46.71	37.94 47.15	4.94 6.14	$\begin{smallmatrix}2.01\\2.61\end{smallmatrix}$.70 .87	10818 13444	14447
7	16.29 Dry	38.46 45.94	40.53 48.42	$\begin{array}{c} 4.72 \\ 5.64 \end{array}$	$\substack{2.17\\2.59}$.48	11394 13613	14579
Aver- age	17.28 Dry	38.48 46.49	39.02 47.14	$5.27 \\ 6.37$	2.33 2.82	.83 1.00	11113 13426	14496

 $\begin{array}{lll} {\rm TABLE~11.--A} verage~analytical~and~heat~values~for~separate~mines~and~by~counties\\ {\rm ---Grouped~according~to~districts.---Continued.} \end{array}$

DISTRICT NO. 2. JACKSON CO., COAL NO. 2. ROOM AND PILLAR MINING.

Co-op No.	Moist- ure	Volatile Matter	Fixed	Ash	Sulphur	CO_2	B. t. u.	"Unit coal"
12	9.62 Dry	33.02 36.53	51.09 56.53	6.27 6.94	1.13 1.25	.69	12260 13565	14705
13	10.18 Dry	33.40 37.18	51.90 57.79	$\frac{4.52}{5.03}$.97 1.08	. 29 . 32	12614 14044	14888
14	8.56 Dry	34.18 37.39	50.25 54.95	7.01 7.66	1.54 1.68	.09	12418 13581	14864
15	8.70 Dry	34.77 38.08	$\begin{array}{c} 51.34 \\ 56.23 \end{array}$	5.19 5.69	$\frac{1.42}{1.55}$.09 .12	12651 13856	14815
16	9.34 Dry	34.55 38.11	$50.52 \\ 55.72$	5.59 6.17	$\substack{1.40\\1.54}$. 26 . 29	12490 13777	14820
Aver- age	9.28 Dry	33.98 37.46	$51.02 \\ 56.24$	5.72 6.30	$\substack{1.29\\1.42}$.29	12488 13765	14818
DIS	STRICT	NO. 3. M	ERCER	CO., COA MINING	L NO. 1.	ROOM	AND PII	LLAR
17	17.63 Dry	39.13 47.51	34.13 41.44	$9.11 \\ 11.05$	5.02 6.09	.70 .85	10336 12548	14373
18	14.58 Dry	39.07 45.74	37.00 43.31	9.35 10.95	4.79 5.61	.21 .25	10880 12737	14640
19	14.52 Dry	39.26 45.93	36.32 42.49	9.90 11.58	4.24 4.96	. 68 . 80	$10809 \\ 12645$	14624
Aver- age	15.58 Dry	39.17 46.40	35.80 42.41	9.45 11.19	4.69 5.55	. 53 . 63	10673 12643	14546
DI	STRICT I	NO. 3. CI	HRISTIA	N CO., CC		. ROOM	AND PII	LLAR
21	11.31 Dry	38.89 43.85	40.94 46.16	8.86 9.99	$\frac{2.35}{2.65}$.43	11602 13081	14717
DI	STRICT	NO. 4.	PEORIA	CO., COA	L NO. 5.	CENTR	AL ILLI	NOIS.
25	14.92 Dry	36.92 43.30	37.21 43.74	$11.02 \\ 12.95$	3.44 4.04	1.21 1.42	10951 12448	* 14614
26	15.00 Dry	36.48 42.91	36.75 43.24	11.77 13.85	3.08 3.62	$\frac{1.80}{2.12}$	10421 12260	14614
Aver- age	14.96 Dry	36.65 43.10	36.99 43.49	11.40 13.40	3.26 3.83	1.50 1.77	$10506 \\ 12354$	14614

Table 11.—Average analytical and heat values for separate mines and by counties
—Grouped according to districts.—Continued.

DISTRICT NO. 4.	TAZEWELL (CO., COAL	NO. 5.	CENTRAL	ILLINOIS

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit coal"
27	14.38 Dry	37.74 44.08	38.23 44.65	9.66 11.28	3.10 3.62	1.20 1.40	10809 12624	14496
DIS	TRICT	NO. 4. I	LOGAN C	O., COAL	NO. 5.	CENTR.	AL ILLIN	NOIS.
33	14.20 Dry	37.19 43.35	37.44 43.40	11.37 13.25	3.34 3.89	$\begin{smallmatrix}1.42\\1.66\end{smallmatrix}$	10490 12226	14400
DIS	TRICT I	NO. 4. F	ULTON (CO., COAI	NO. 5.	CENTRA	AL ILLIN	NOIS.
28	16.68 Dry	36.68 44.02	36.76 44.12	9.88 11.86	2.90 3.48	1.36 1.63	$\begin{array}{c} 10375 \\ 12452 \end{array}$	14403
29	16.38 Dry	35.96 43.01	36.88 44.10	$10.78 \\ 12.89$	3.47 4.15	$1.02 \\ 1.22$	10230 12234	14349
30	16.18 Dry	35.17 41.96	37.77 45.06	10.88 12.98	3.06 3.65	1.53 1.82	10296 12284	14402
31	16.88 Dry	36.32 43.70	36.32 43.70	10.48 12.61	2.98 3.58	1.25 1.50	10269 12355	14424
32	14.66 Dry	37.24 43.64	37.71 44.18	10.39 12.18	3.28 3.84	1.54 1.81	10651 12481	14502
Aver- age	16.16 Dry	36.27 43.26	37.09 44.24	10.48 12.50	3.14 3.74	1.33 1.59	10363 12361	14416
DIS	TRICT I	NO. 4. M	ENARD (CO., COA	L NO. 5.	CENTR	AL ILLIN	NOIS.
34	17.33 Dry	35.88 43.40	38.62 46.72	8.17 9.88	3.44 4.16	.50	10499 12700	14478
DIS	TRICT I	NO. 4. SA	NGAMON	CO., CO2	AL NO. 5	. CENTR	AL ILLIN	NOIS.
36	15.34 Dry	36.54 43.16	37.83 44.68	10.29 12.16	3.67 4.33	.59	10519 12425	14450
37	13.78 Dry	37.82 43.86	37.69 43.71	10.73 12.14	4.11 4.77	.47 .55	$10625 \\ 12323$	14396
38	14.26 Dry	38.07 44.40	37.48 43.71	10.19 11.89	4.14 4.83	.37	10649 12420	14410

 $\begin{array}{ll} {\rm T_{ABLE}~11.--A} \textit{verage analytical and heat values for separate mines and by counties} \\ --grouped~according~to~districts.---Continued. \end{array}$

DISTRICT NO. 4, SANGAMON CO., COAL NO. 5, CENTRAL ILLINOIS —Concluded. $^{\circ}$

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit coal"
39	13.31 Dry	37.43 43.17	36.66 42.29	$12.60 \\ 14.54$	4.72 5.45	.94 1.09	10398 11995	14420
40	15.06 Dry	36.69 43.19	$\frac{38.15}{44.92}$	10.10 11.89	4.08 4.80	.59 .69	$10584 \\ 12460$	14403
Aver- age	14.35 Dry	37.30 43.55	37.57 43.86	10.78 12.59	4.16 4.86	.59 .69	10555 12323	14415

DISTRICT NO. 4. MACON CO., COAL NO. 5. CENTRAL ILLINOIS.

41	14.48 Dry	36.00 42.10	38.05 44.49	11.47 13.41	3.32 3.88	.90 1.05	10445 12214	14420
42	13.83 Dry	37.35 43.34	$\frac{39.62}{45.98}$	9.20 10.68	3.83 4.45	.09	10877 12623	14418
Aver- age	14.15 Dry	36.68 42.73	$\frac{38.83}{45.23}$	$10.34 \\ 12.04$	3.57 4.16	.52 .60	10661 12418	14419

DISTRICT NO. 5. SALINE CO., COAL NO. 5. SOUTHERN ILLINOIS.

43	6.97 Dry	35.98 38.68	49.69 53.41	7.36 7.92	$\begin{smallmatrix}2.05\\2.20\end{smallmatrix}$.32	12550 13490	14829
44	6.70 Dry	35.31 37.85	49.55 53.11	8.44 9.04	$\frac{2.56}{2.74}$.02	12401 13291	14824
45	7.03 Dry	34.78 37.41	$50.27 \\ 54.07$	7.92 8.52	$2.48 \\ 2.67$.26 .28	12420 13359	14806
46	7.96 Dry	34.68 37.68	48.54 52.74	8.82 9.58	$\begin{smallmatrix}2.79\\3.03\end{smallmatrix}$. 46 . 50	$12077 \\ 13122$	14741
48	7.67 Dry	33.90 36.72	50.26 54.43	8.17 8.85	$\frac{2.56}{2.77}$.70 .76	12234 13250	14739
49	5.20 Dry	38.06 40.15	45.90 48.42	10.84 11.43	4.60 4.85	.59 .62	12193 12862	14824
Aver- age	6.92 Dry	35.44 38.08	49.06 52.70	8.58 9.22	3.76 4.04	.39	$12314 \\ 13229$	14794

 $\begin{array}{lll} \textbf{TABLE 11.--A} verage \ analytical \ and \ heat \ values \ for \ separate \ mines \ and \ by \ counties \\ \hline --grouped \ according \ to \ districts.--- \textbf{Continued.} \end{array}$

DISTRICT NO. 5 GALLATIN CO., COAL NO. 5. SOUTHERN ILLINOIS.

Co-op No.	Moisture	Volatile matter	Fixed carbon	Ash	Sulphur	CO_2	B. t. u.	"Unit" coal
47	5.72 Dry	35.77 37.94	46.71 49.54	11.80 12.52	3.47 3.68	1.01 1.07	12053 12784	14919
Extra	4.13 Dry	$34.21 \\ 35.68$	52.80 55.07	8.86 9.25	3.23 3.37	.02	12987 13546	15175
Extra	3.68 Dry	37.82 39.26	48.18 50.02	$10.32 \\ 10.72$	4.55 4.73	$04 \\ .05$	12818 13307	15078
Extra	3.94 Dry	38.13 39.70	45.95 47.82	11.98 12.48	3.53 3.67	.03	12449 12958	15117
Extra	4.03 Dry	33.71 35.13	51.84 54.01	10.42 10.86	4.19 4.37	.02	12783 13319	15256
Aver- age	4.30 Dry	35.93 37.54	49.08 51.29	10.69 11.17	3.79 3.96	. 24	12616 13183	15109

DISTRICT NO. 6. FRANKLIN CO., COAL NO. 6. EAST OF DUQUOIN ANTICLINE.

9.34 Dry	34.84 38.42	48.03 52.99	7.79 8.59	$\frac{1.04}{1.15}$.38	12004 13241	14633
10.28 Dry	33.42 37.26	$49.05 \\ 54.66$	7.25 8.08	1.18 1.32	.10	$11890 \\ 13252$	14562
6.77	38.35 41.14	44.62 47.85	$10.26 \\ 11.00$	$\frac{3.13}{3.36}$.91 .98	11875 12737	14554
10.18 Dry	32.78 36.50	48.88 54.41	8.16 9.09	.64 .71	.61 .68	11661 12983	14419
8.10 Dry	36.30 39.50	45.34 49.34	10.26 11.16	2.51 2.73	.74	11826 12758	14601
9.67 Dry	35.69 32.24	49.55 54.86	8.54 9.45	$\begin{smallmatrix} .95\\1.05\end{smallmatrix}$.32 .35	11756 13015	14529
8.93 Dry	34.51 37.89	48.80 53.59	$7.76 \\ 8.52$.74 .81	.36	11937 13108	14463
9.04 Dry	34.62 38.06	47.78 52.53	8.56 9.41	1.45 1.59	.44	11837 13013	14538
	Dry 10.28 Dry 6.77 10.18 Dry 8.10 Dry 9.67 Dry 8.93 Dry 9.04	Dry 38.42 10.28 33.42 Dry 37.26 6.77 38.35 41.14 10.18 32.78 Dry 36.50 8.10 36.30 Dry 39.50 9.67 35.69 Dry 32.24 8.93 34.51 Dry 37.89 9.04 34.62	Dry 38.42 52.99 10.28 33.42 49.05 Dry 37.26 54.66 6.77 38.35 44.62 41.14 47.85 10.18 32.78 48.88 Dry 36.50 54.41 8.10 36.30 45.34 Dry 39.50 49.34 9.67 35.69 49.55 Dry 32.24 54.86 8.93 34.51 48.80 Dry 37.89 53.59 9.04 34.62 47.78	Dry 38.42 52.99 8.59 10.28 33.42 49.05 7.25 Dry 37.26 54.66 8.08 6.77 38.35 44.62 10.26 41.14 47.85 11.00 10.18 32.78 48.88 8.16 Dry 36.50 54.41 9.09 8.10 36.30 45.34 10.26 Dry 39.50 49.34 11.16 9.67 35.69 49.55 8.54 Dry 32.24 54.86 9.45 8.93 34.51 48.80 7.76 Dry 37.89 53.59 8.52 9.04 34.62 47.78 8.56	Dry 38.42 52.99 8.59 1.15 10.28 33.42 49.05 7.25 1.18 Dry 37.26 54.66 8.08 1.32 6.77 38.35 44.62 10.26 3.13 41.14 47.85 11.00 3.36 10.18 32.78 48.88 8.16 .64 Dry 36.50 54.41 9.09 .71 8.10 36.30 45.34 10.26 2.51 Dry 39.50 49.34 11.16 2.73 9.67 35.69 49.55 8.54 .95 Dry 32.24 54.86 9.45 1.05 8.93 34.51 48.80 7.76 .74 Dry 37.89 53.59 8.52 .81 9.04 34.62 47.78 8.56 1.45	Dry 38.42 52.99 8.59 1.15 .42 10.28 33.42 49.05 7.25 1.18 .10 Dry 37.26 54.66 8.08 1.32 .11 6.77 38.35 44.62 10.26 3.13 .91 41.14 47.85 11.00 3.36 .98 10.18 32.78 48.88 8.16 .64 .61 Dry 36.50 54.41 9.09 .71 .68 8.10 36.30 45.34 10.26 2.51 .74 Dry 39.50 49.34 11.16 2.73 .80 9.67 35.69 49.55 8.54 .95 .32 Dry 32.24 54.86 9.45 1.05 .35 8.93 34.51 48.80 7.76 .74 .36 Dry 37.89 53.59 8.52 .81 .40 9.04 34.62 47.78 8.56 </td <td>Dry 38.42 52.99 8.59 1.15 .42 13241 10.28 33.42 49.05 7.25 1.18 .10 11890 Dry 37.26 54.66 8.08 1.32 .11 13252 6.77 38.35 44.62 10.26 3.13 .91 11875 41.14 47.85 11.00 3.36 .98 12737 10.18 32.78 48.88 8.16 .64 .61 11661 Dry 36.50 54.41 9.09 .71 .68 12983 8.10 36.30 45.34 10.26 2.51 .74 11826 Dry 39.50 49.34 11.16 2.73 .80 12758 9.67 35.69 49.55 8.54 .95 .32 11756 Dry 32.24 54.86 9.45 1.05 .35 13015 8.93 34.51 48.80 7.76 .74 .36</td>	Dry 38.42 52.99 8.59 1.15 .42 13241 10.28 33.42 49.05 7.25 1.18 .10 11890 Dry 37.26 54.66 8.08 1.32 .11 13252 6.77 38.35 44.62 10.26 3.13 .91 11875 41.14 47.85 11.00 3.36 .98 12737 10.18 32.78 48.88 8.16 .64 .61 11661 Dry 36.50 54.41 9.09 .71 .68 12983 8.10 36.30 45.34 10.26 2.51 .74 11826 Dry 39.50 49.34 11.16 2.73 .80 12758 9.67 35.69 49.55 8.54 .95 .32 11756 Dry 32.24 54.86 9.45 1.05 .35 13015 8.93 34.51 48.80 7.76 .74 .36

 $\begin{array}{lll} {\bf T}_{\rm ABLE~11.} {\bf --} {\bf A} verage~analytical~and~heat~values~for~separate~mines~and~by~counties\\ {\bf --} grouped~according~to~districts.} {\bf --} {\bf Continued.} \end{array}$

DISTRICT NO. 6. WILLIAMSON CO., COAL NO. 6. EAST OF DUQUOIN ANTICLINE.

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit Coal"
59	10.47 Dry	32.99 36.85	47.27 52.80	$9.27 \\ 10.35$	1.52 1.70	.38	11630 12990	14684
60	8.22 Dry	34.00 37.04	48.79 53.16	8.99 9.80	$\frac{2.16}{2.35}$.33	11959 13030	14660
61	9.27 Dry	33.83 37.28	49.70 54.78	$7.20 \\ 7.94$	1.37 1.51	.13 .14	12127 13366	14671
62	9.13 Dry	33.09 36.42	49.94 54.95	7.84 8.63	$\frac{1.17}{1.29}$.22 .24	12028 13236	14637
63	9.47 Dry	33.45 36.96	48.13 53.16	8.95 9.88	$\begin{array}{c} 1.94 \\ 2.14 \end{array}$.36 .40	, 11852 13092	14730
64	9.34 Dry	32.77 36.15	49.48 54.58	8.41 9.27	.92 1.01	.52 .57	11872 13095	14577
65	9.31 Dry	33.52 36.96	48.98 54.01	8.19 9.03	1.70 1.88	.13 .14	11919 13143	14627
Aver- age	9.31 Dry	33.38 36.81	48.90 53.92	8.41 9.27	1.54 1.70	.36	11913 13136	14655
DIG	STRICT I	NO 6	PERRY (70 00 41	340.0	77 4 0 0	OF DUO	
DIS	311101	110. 0.		NTICLIN	NO. 6. E.	EAST	OF DUQ	UOIN
54	9.92 Dry	32.72 36.81				.25 .28	11335 12583	14407
54	9.92 Dry	32.72	46.97 52.15 ACKSON	10.39 11.53	.92 1.02 L. NO. 6.	.25	11335 12583	14407
54	9.92 Dry	32.72 36.81	46.97 52.15 ACKSON	10.39 11.53 CO., COA	.92 1.02 L. NO. 6.	.25	11335 12583	14407
DI:	9.92 Dry STRICT 8.96 Dry	32.72 36.81 NO. 6. J.	46.97 52.15 ACKSON 46.40 50.97	10.39 11.53 CO., COANTICLIN 10.20 11.20	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	.25 .28 EAST	11335 12583 OF DUQ 11609 12751	UOIN 14608
DI:	9.92 Dry STRICT 8.96 Dry	32.72 36.81 NO. 6. J. 34.44 37.83	46.97 52.15 ACKSON 46.40 50.97	10.39 11.53 CO., COANTICLIN 10.20 11.20	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	.25 .28 EAST	11335 12583 OF DUQ 11609 12751	UOIN 14608
54 DIS	9.92 Dry STRICT 8.96 Dry STRICT	32.72 36.81 NO. 6. J. 34.44 37.83 NO. 7. M.	46.97 52.15 ACKSON 46.40 50.97 ACOUPIN 4	10.39 11.53 CO., COANTICLIN 10.20 11.20 I CO., COANTICLIN 9.97	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	.25 .28 EAST .40 .44 WEST	11335 12583 OF DUQ 11609 12751 OF DUQ	14407 UOIN 14608
54 DIS	9.92 Dry STRICT 8.96 Dry STRICT 14.26 Dry 14.19	32.72 36.81 NO. 6. J. 34.44 37.83 NO. 7. M. 38.70 45.14 37.48	46.97 52.15 ACKSON 46.40 50.97 ACOUPIN 37.07 43.24 38.24	10.39 11.53 CO., CO.ANTICLIN 10.20 11.20 CO., CO.ANTICLIN 9.97 11.62 9.99	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	.25 .28 EAST .40 .44 WEST .41 .48	11335 12583 OF DUQ 11609 12751 OF DUQ 10549 12304 10558	14407 UOIN 14608 UOIN

Table 11.—Average analytical and heat values for separate mines and by counties—Grouped according to districts.—Continued.

DISTRICT NO. 7. MACOUPIN CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE—Concluded.

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	14349
Aver-	13.88	38.20	37.75	10.17	4.31	.34	10657	Coal"
age	Dry	44.36	43.83	11.81	5.00		12375	"Unit

DISTRICT NO. 7. MADISON CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

12.81 Dry	38.67 44.35	37.40 42.91	11.12 12.75	4.80 5.51	.44	10661 12227	14365
12.52 Dry	39.55 45.21	37.51 42.88	10.42 11.91	4.09 4.68	.61	10871 12427	14421
13.82 Dry	37.54 43.56	38.94 45.19	$9.70 \\ 11.25$	4.25 4.93	. 25 . 29	10722 12441	14391
14.71 Dry	38.61 45.27	38.22 44.81	8.46 9.92	3.76 4.41	.28	10785 12645	14305
13.47 Dry	38.59 44.60	38.03 43.95	9.91 11.45	4.22 4.88	.42	10760 12435	143′ 0
	Dry 12.52 Dry 13.82 Dry 14.71 Dry 13.47	Dry 44.35 12.52 39.55 Dry 45.21 13.82 37.54 Dry 43.56 14.71 38.61 Dry 45.27 13.47 38.59	Dry 44.35 42.91 12.52 39.55 37.51 Dry 45.21 42.88 13.82 37.54 38.94 Dry 43.56 45.19 14.71 38.61 38.22 Dry 45.27 44.81 13.47 38.59 38.03	Dry 44.35 42.91 12.75 12.52 39.55 37.51 10.42 Dry 45.21 42.88 11.91 13.82 37.54 38.94 9.70 Dry 43.56 45.19 11.25 14.71 38.61 38.22 8.46 Dry 45.27 44.81 9.92 13.47 38.59 38.03 9.91	Dry 44.35 42.91 12.75 5.51 12.52 39.55 37.51 10.42 4.09 Dry 45.21 42.88 11.91 4.68 13.82 37.54 38.94 9.70 4.25 Dry 43.56 45.19 11.25 4.93 14.71 38.61 38.22 8.46 3.76 Dry 45.27 44.81 9.92 4.41 13.47 38.59 38.03 9.91 4.22	Dry 44.35 42.91 12.75 5.51 .54 12.52 39.55 37.51 10.42 4.09 .61 Dry 45.21 42.88 11.91 4.68 .70 13.82 37.54 38.94 9.70 4.25 .25 Dry 43.56 45.19 11.25 4.93 .29 14.71 38.61 38.22 8.46 3.76 .28 Dry 45.27 44.81 9.92 4.41 .33 13.47 38.59 38.03 9.91 4.22 .42	Dry 44.35 42.91 12.75 5.51 .54 12227 12.52 39.55 37.51 10.42 4.09 .61 10871 Dry 45.21 42.88 11.91 4.68 .70 12427 13.82 37.54 38.94 9.70 4.25 .25 10722 Dry 43.56 45.19 11.25 4.93 .29 12441 14.71 38.61 38.22 8.46 3.76 .28 10785 Dry 45.27 44.81 9.92 4.41 .33 12645 13.47 38.59 38.03 9.91 4.22 .42 10760

DISTRICT NO. 7. SANGAMON CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

74	14.25 Dry	38.42 44.80	37 22 43.42	10.11 11.79	4.75 5.54	. 39	10556 12310	14287
75	14.15 Dry	37.58 43.77	38.99 45.42	9.28 10.81	3.76 4.38	. 45 . 52	10786 12564	14369
Aver- age	14.20 Dry	37.99 44.28	38.11 44.42	9.70 11.30	4.26 4.96	.42	10671 12437	14329

DISTRICT NO. 7. MONTGOMERY CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

76	13.89 Dry	37.05 43.04	38.44 44.64	10.62 12.32	3.85 4.47	.94 1.10	10574 12280	14312
77	14.40 Dry	36.70 42.88	39.84 46.54	$9.06 \\ 10.58$	3.83 4.47	.49 .57	10709 12511	14268
Aver- age	14.15 Dry	36.88 42.96	39.14 45.59	9.83 11.45	3.84 4.47	. 70 . 83	10642 12396	14290

Table 11.—Average analytical and heat values for separate mines and by counties—Grouped according to districts.—Continued.

DISTRICT NO. 7. CLINTON CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit Coal"
84	12.86 Dry	37.26 42.76	39.53 45.36	10.35 11.88	4.26 4.89	.58	10755 12342	14335
85	12.39 Dry	36.88 42.10	40.68 46.43	10.05 11.47	3.52 4.02	.72 .82	10836 12368	14245
Aver- age	12.62 Dry	37.08 42.43	40.10 45.90	10.20 11.67	3.90 4.46	. 66	10796 12355	14290

DISTRICT NO. 7. ST. CLAIR CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

78	11.75 Dry	38.71 43.86	38.12 43.19	11.43 12.95	3.63 4.11	.80 .91	10874 12322	14466
79	11.31 Dry	39.77 44.84	38.92 43.89	10.00 11.27	3.94 4.44	.63 .71	11143 12564	14468
80	10.04 Dry	39.33 43.72	39.09 43.45	$11.54 \\ 12.83$	3.91 4.35	.78 .87	11045 12278	14398
04	11.23 Dry	40.36 45.47	38.31 43.17	10.10 11.39	4.03 4.54	.54 .61	11126 12533	14444
81 82	11.94 Dry	39.72 45.10	37.53 42.62	10.81 12.27	4.46 5.07	.39	10949 12434	14510
Aver- age	11.25 Dry	39.57 44.59	38.39 43.26	$10.79 \\ 12.15$	3.99 4.50	.63 .71	11028 12426	14457

DISTRICT NO. 7. PERRY CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

88	9.61 Dry	37.09 41.03	41.27 45.66	12.03 13.30	3.70 4.10	.86 .95	10982 12150	14331
89	12.45 Dry	36.14 41.28	42.77 48.85	8.64 9.87	2.80 3.20	.27 .31	11207 12801	14431
90	10.95 Dry	$37.00 \\ 41.55$	41.82 46.96	$10.23 \\ 11.50$	3.61 4.05	.56 .63	$11060 \\ 12420$	14314
Aver- age	11.00 Dry	$36.75 \\ 41.29$	41.97 47.16	10.28 11.55	3.36 3.78	.56 .63	11087 12457	14359

Table 11.—Average analytical and heat values for separate mines and by counties—Grouped according to districts.—Continued.

DISTRICT NO. 7. MARION CO., COAL NO. 6. WEST OF DUQUOIN ANTICLINE.

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit Coal"
86	11.13 Dry	38.20 42.98	39.39 44.32	11.28 12.70	3.91 4.40	.50	10964 12337	14448
87	10.46 Dry	36.85 41.15	41.53 46.38	11.16 12.47	4.01 4.48	. 42 . 47	11174 12480	14574
Aver- age	10.79 Dry	37.53 42.07	40.46 45.35	11.22 12.58	3.96 4.44	. 45	11069 12408	14511

DISTRICT NO. 7. RANDOLPH CO., COAL NO. 6, WEST OF DUQUOIN ANTICLINE.

83	37.28 41.95		4.24 4.77	10855 12214	14351

DISTRICT NO. 8. VERMILION CO., COAL NO. 6. EASTERN ILLINOIS.

91	14.44 Dry	35.04 40.95	40.99 47.91	9.53 11.14	2.37 2.77	. 66 . 77	10982 12836	14697
92	15.59 Dry	33.47 39.65	40.16 47.58	10.78 12.77	2.33 2.76	. 89 1.06	10508 12449	14536
93	15.19 Dry	34.95 41.21	41.55 48.99	8.31 9.80	$2.04 \\ 2.41$. 65 . 77	10961 12925	14533
95	12.59 Dry	40.16 45.94	38.53 44.08	8.72 9.98	3.49 3.99	.80	11228 12845	14532
Aver- age	14.45 Dry	35.88 41.94	40.33 47.14	9.34 10.92	2.55 2.98	.75 .88	10920 12764	14575

DISTRICT NO. 8. VERMILION CO., COAL NO. 7. EASTERN ILLINOIS.

94	12.69 Dry	38.78 44.42	38.89 44.54	9.64 11.04	3.34 3.83	.52	11221 12852	14725
97	13.18 Dry	37.85 43.59	38.65 44.52	10.32 11.89	2.54 2.92	. 60	11080 12762	14754
Aver- age	12.99 Dry	38.28 44.00	38.75 44.53	9.98 11.47	2.93 3.37	.56	11143 12807	14740

 $\begin{array}{lll} \textbf{T}_{\texttt{ABLE}} \ 11. - \texttt{A} \textit{verage analytical and heat values for separate mines and by counties} \\ - \textit{Grouped according to districts.} - \textbf{Concluded.} \end{array}$

DISTRICT NO. 9. LA SALLE CO., COAL NO. 7.

Co-op No.	Moist- ure	Volatile matter	Fixed carbon	Ash	Sul- phur	CO_2	B. t. u.	"Unit
99	13.56 Dry	40.87 47.28	37.80 43.73	7.77 8.99	3.68 4.26	.17	11347 13127	14685
		DISTRIC	T NO. 9.	McLEA	N CO., CC	OAL NO.	5.	
100	13.32 Dry	38.00 43.84	36.21 41.78	12.47 14.38	3.73 4.30	1.20 1.39	10580 12206	14604
		DISTRIC	T NO. 9.	McLEAL	N CO., CC	OAL NO.	2.	
100	11.26 Dry	42.21 47.57	37.73 42.52	8.80 9.91	3.03 3.41	.98 1.10	11566 13034	1 4714
	I	EXTRA SA	AMPLE.	LA SALL	Æ CO., CO	OAL NO.	5.	
	14.76 Dry	41.33 48.49	34.26 40.19	$9.65 \\ 11.32$	3.38 3.97	.61 .71	10692 12543	14397
	Е	XTRA SA	AMPLE.	GALLAT	IN CO., C	OAL NO.	5.	
	3.72 Dry	34.44 35.77	52.91 54.96	8.93 9.27	3.76 3.90	.03	13032 13535	15187
	E	EXTRA SA	MPLE.	GALLAT	IN CO., C	OAL NO	. 6.	
	10.82 Dry	33.83 37.94	42.43 47.57	12.92 14.94	4.93 5.53	. 42 . 47	11263 12629	15193
	4.28 Dry	36.06 37.67	$\frac{49.06}{51.25}$	10.60 11.08	3.71 3.88	.05 .05	12583 13146	15079
Aver- age	7.54 Dry	34.96 37.81	45.68 49.41	11.82 12.78	4.34 4.70	. 23	11916 12888	15136
	E.	XTRA SA	MPLE.	MOULTR	IE CO., C	OAL NO.	. 6.	
	6.83 Dry	39.15 42.02	42.32 45.42	$11.70 \\ 12.56$	4.02 4.31	.57 .61	11877 12748	14882
	EXTRA	SAMPLE	. GALL	ATIN CO.	, COAL I	MARKED	"BELL."	,
	3.40 Dry	33.33 34.50	55.18 57.12	8.09 8.38	4.25 4.40	.03	13401 13872	15420
- '								

In Table 12 calculations have been made to illustrate the use which can be made of "unit-coal" values in estimating the possible guarantees for bidding and for letting of contracts. A range of values for ash and moisture has been assumed merely for the purpose of illustration. Variations from these values, especially those in the latter part of the table, should be allowed for or calculated directly from the formula on page 41.

Table 12.—Unit-coal values ranging from 14,300 to 15,000 B. t. u.

Calculated to the "as-received" basis having normal variations of moisture, ash and sulphur, as indicated 12.

Unit coal-14,300.

General location by counties	Ash	Sulphur	B. t. u. calculated to coal "as rec'd" with 12% moisture	B. t. u. calculated to coal "as rec'd" with 14% moisture		
Coal Sangamon south of Auburn Perry Randolph Clinton Madison Montgomery Macoupin	6 6 6 6	10 11 12 13 14 15 16 17 18 19 20	4 4 4 4 4 4 4 4 4 4	10925 10771 10616 10462 10308 10154 10000 9846 9692 9538 9384	10639 10484 10330 10176 10021 9867 9712 9558 9403 9250 9094	

-01111	t coal	17	TUU.

Logan	al bed 5				
Fulton	5				
Sangamon	5	10	4 4	11000 10844	10712 10556
Macon	5	12 13	4	$10644 \\ 10688 \\ 10532$	10401 10246
St. Clair	6	14	4 4	$10376 \\ 10220$	10091 9936
Randolph	6	16 17	4	10064 9908	9781 9626
Madison	6	18 19	4 4	9752 9596	9471 9316
Macoupin	6	20	4	9440	9161
La Salle	5				

¹² For "unit coal" and method of calculation to coal "as-received" see pp. 40-42.

Table 12.—Unit-coal values ranging from 14,300 to 15,000 B. t. u.—Continued. Unit coal—14,500.

General location by counties	Ash	Sulphur	B. t. u. calculated to coal "as rec'd" with 12% moisture	B. t. u. calculated to coal "as rec'd" with 14% moisture
Coal bed Mercer 1				
Bureau 2				
La Salle 2	10 11	4 4	11075 10918	$10785 \\ 10628$
Grundy 2	12 13	4 4	10762 10605	$ \begin{array}{r} 10028 \\ 10472 \\ 10315 \end{array} $
Tazewell 5	14 15	4 4	10449	10159
Menard 5	16 17	4	10292 10136	10002 9846
Marion 6	18 19	4 4	9979 9823 9666	9689 9533
Franklin, east of Duquoin anti- cline 6	20	4	9510	9376 9220
Vermilion 6		. (1
Unit coal—14,600.	Ī	1		10070
Peoria 5	10 11	4 4	$11150 \\ 10992$	10858 10700
McLean 5	12 13	4	10835 10677	10543 10385
Vermilion 6	14 15	4	10520 10362	10227 10070
Williamson 6	16 17	4	10205 10047	9912 9754
Jackson 6	18 19 20	4 4 4	9890 9732 9575	9597 9439 9281
Unit coal—14,700.				
Coal bed	1.0		11005	10007
La Salle 7	10 11	4	$\begin{array}{c} 11225 \\ 11066 \\ 10007 \end{array}$	10931 10772
McLean 2	12 13	4	10907 10748	10613 10454
Vermilion 7	14 15	4	10589 10430	10295 10136
Christian 2	16 17	4 4 4	$\begin{array}{c} 10271 \\ 10112 \\ 9953 \end{array}$	9977 9818 9659
Williamson 6	18 19	4	9953 9794	9500

Table 12.—Unit-coal values ranging from 14,300 to 15,000 B. t. u.—Concluded. Unit coal—14,800.

Unit coal—14,800.				
General location by counties	Ash	Sulphur	B. t. u. calculated to coal "as rec'd" with 8% moisture	B. t. u. calculated to coal "as rec'd" with 10% moisture
Coal bed Marshall 2 Jackson 2 Saline 5	10 11 12 13 14 15 16 17 18 19 20	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11973 11813 11654 11494 11335 11175 11016 10856 10697 10537 10378	11677 11517 11358 11198 11036 10877 10715 10555 10395 10235 10075
Unit coal—14,900.				
Coal bed	10 11 12 13 14 15 16 17 18 19 20	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	12003 11842 11683 11522 11361 11200 11038 10877 10716 10555 10394	11705 11544 11383 11222 11060 10898 10739 10578 10417 10256 10095
Unit coal—15,000.			4% moisture	6% moisture
Gallatin	10 11 12 13 14 15 16 17 18 19 20	4 4 4* 4 4 4 4 4 4 4	12650 12458 12326 12164 12002 11840 11678 11516 11354 11192 11030	12350 12188 12026 11864 11702 11540 11378 11216 11054 10892 10730

PURCHASE AND SALE OF COAL UNDER SPECIFICATION.

PRACTICE OF STATE BOARD OF ADMINISTRATION.

Present-day tendencies relating to the basis for coal contracts are reflected in the following quotations:

When a proper sample of the coal is secured, the chemical analyses and calorimeter determinations for B. t. u. are a better guide to the value of the coal than are one or two boiler tests for the same purpose. 13

The purchase of coal under specification is as advantageous as a definite understanding regarding the quality and other features of any other product, or of a building operation or engineering project. The man who buys under specification gets what he pays for and pays for what he gets.11

The heating value expressed in British thermal units per pound is the most direct measure of the value of coal. Contracts made on what is termed the "heat-unit basis" provide therefore that the amount of money paid shall be in direct proportion to the number of heat units delivered. It is evident also from what has preceded that the number of heat units varies inversely with the quantity of ash and moisture. That the bidder should be thoroughly familiar with these factors in their application to the coal which he proposes to furnish has already been emphasized. A thorough understanding of the methods of awarding contracts is also essential to the dealer who proposes to enter bids on a competitive basis.

The conditions under which bids are received, awards made, samples collected, and settlements reached, substantially as prepared for use of the Illinois State Board of Administration in the purchase of coal for the seventeen charitable institution of the State are given on page 78.

Use of a Double Standard of Reference.

The cost of a given lot of coal must be based upon the weight of the material. The sample taken should represent the coal "as delivered," and, as already emphasized, moisture changes in the sample are to be carefully guarded against. Variations in quality are taken into account by varying the price per ton directly in proportion to the number of heat units delivered. In the award of contracts and in computations for payment, therefore, the calculations are based upon the heat units per pound in the coal "as delivered."

Concerning the ash, if there were no other effect produced by ash variations than a corresponding variation in the heat units then no further account would be taken of that constituent since it would be taken care of in the calculations involving the heat units. However, on ac-

pages 10 and 11, 1909.

11 Pope, G. S., Purchase of coal by the government under specifications: U. S. Geol. Survey Bull. 428, page 10, 1910.

¹⁸ The Purchase of Coal: The Arthur D. Little Inc. Laboratory of Engineering Chemistry,

count of the expense in handling, and because of a lowering of efficiency resulting from excessive ash, an additional modification in price is made for this constituent. For greater convenience where comparisons are involved and to eliminate the moisture variable, it is found preferable to refer the ash values to the "dry-coal" basis. This involves the use of a double standard of reference; the heat units are referred to the "wet" or "as-received" basis and the ash is referred to the "dry" or "moisture-free" basis.

The methods of applying the various conditions involved, in the purchase of coal by the Illinois State Board of Administration are given as follows.

BIDS AND AWARDS.

- (1). Bidders are required to specify their coal offered in terms of British thermal units "as-received," but ash is specified on the "dry-coal" basis. These values become the standards for the coal of the successful bidder.
- (2). In order to compare bids, all proposals are adjusted to a common basis. The method used is to merge all three variables—ash, calorific value, and price bid per ton—into one figure. This figure will be the cost in cents of 1,000,000 British thermal units and is derived as follows.
- (a). All bids are adjusted to the same ash percentage by selecting as the standard for comparison the proposal that offers coal containing the highest percentage of ash. Each 1 per cent of ash content below that of this standard will be assumed to have a positive value of 2 cents per ton, and accordingly the price will be decreased 2 cents, which is the amount of premium allowed under the contract for 1 per cent less ash than the standard established in the contract. Fractions of a per cent will be given proportional values. The adjusted bids will be figured to the nearest tenth of a cent.
- (b). On the basis of the adjusted price, allowance will then be made for the varying heat values by computing the cost of 1,000,000 British thermal units for each coal offered. This determination will be made by multiplying the guaranteed British thermal units per pound by 2,000 and dividing the product by 1,000,000. This factor gives the guaranteed number of million units per ton of delivered coal. Dividing the adjusted price as found under (a) by this factor gives the cost per million heat units.

A convenient form for tabulating bids to indicate the various factors entering into the final computation of cost is shown below.

Table 13.—Convenient	form for	· tabulating	bids.
----------------------	----------	--------------	-------

		Gu	arantees	Price per t	on 2000 lbs.	Computed		
No.	Coal offered	Ash in "dry coal" (per- cent)	B. t. u. "as re- ceived"	As bid	As adjusted for ash	cost in cents per 1,000,000 B. t. u. (b)		
A	Vermilion Co. Screenings	17	10300	1.50	1.50	7.3		
В	Sangamon Co. Screenings	16	10400	1.35	1.33	6.4		
С	Williamson Co. Screenings	14	12500	2.00	1.94	7.8		

PRICE AND PAYMENT.

Payment for coal specified in the proposal will be made upon the basis of the price therein named, which has been corrected for variations in heating value and ash from the standards specified in the contract, as follows:

- (a). Considering the guaranteed heat units on the "as-received" basis, the correction in price will be a proportional one and is determined by the following formula:
 - $\frac{B.\ t.\ u.,\ delivered}{B.\ t.\ u.,\ guaranteed} \times bid\ price = price\ corrected\ for\ B.\ t.\ u.$

The correction is figured to the nearest tenth of a cent.

(b). For all coal that by analysis contains less ash on a dry-coal basis than the percentage guaranteed, a premium of 2 cents per ton for each whole per cent less will be paid. An increase in the ash content of 2 per cent above the standard established by the contractor is tolerated without exacting a penalty. When this excess is greater than 2 per cent, deductions are made in accordance with the following table:

Table 14.—Showing deductions for excess ash¹⁵.

Ash as	No	Cents per ton to be deducted														
estab- lished in pro-	estab- lished deduc- tion for		4	7	12	18	25	35	Maxi- mum limits							
posal	below		Perce	entage o	f ash in	a "dry o	coal"		for ash							
Per cent																
5	7	7- 8	8- 9	9-10	10-11	11-12	12-13	13-14	12							
6	1	8- 9	9-10	10-11	11-12	12-13	13-14	14-15	13							
7	9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	14							
8	10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	14							
9	11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	15							
10	12	12-13	13-14	14-15	15-16	16-17	17-18		16							
11	13	13-14	14-15	15-16	16-17	17-18	18-19		16							
12	14	14-15	15-16	16-17	17-18	18-19	19-20		17							
13	15	15-16	16-17	17-18	18-19	19-20	20-21		18							
14	16	16-17	17-18	18-19	19-20	20-21	21-22		19							
15	17	17-18	18-19	19-20	20-21	21-22			19							
16	18	18-19	19-20	20-21	21-22	22-23			20							
17		19-20	20-21	21-22	22-23				21							
18	20	20-21	21-22	22-23					22							

As an example of the method of determining the deduction in cents per ton for coal containing ash exceeding the standard by more than 2 per cent, suppose coal delivered on a contract guaranteeing 10 per cent ash on the "dry-coal" basis shows by analysis between 14.01 and 15 per cent (both inclusive), or, for instance, 14.55 per cent, the deduction according to the table is 7 cents per ton (reading to the right on line beginning with 10 per cent on the extreme left, which in this case is the standard, to the column containing "14.01-15," the deduction at the top of this column is seen to be 7 cents.)

Note—If the ash standard is an uneven percentage, the table will be revised in order to determine deductions on account of excessive ash. For example, if the ash standard is 6.53 per cent, each percentage value beginning with 6 in the left-hand column and all figures in the line reading to the right of 6 will be increased by 0.53. There would be no deduction then in price of ash in delivered coal up to and including 8.53 per cent, whereas for coal having an ash content, for instance, between 11.54 and 12.53 per cent the deduction would be 12 cents per ton.

Specific Directions for Sampling.

Since payment for coal is based upon the quality of the coal delivered as shown by analysis of representative samples, it is imperative that

¹⁵ Bulletin 378, United States Geological Survey, Results of Purchasing Coal under Government Specifications.

samples representing every invoice of coal be taken and that the proper officials of the various institutions see that such samples are obtained.

If desired by the coal contractor, permission will be given to him or his representative to be present and witness the collection and preparation of the sample.

TAKING THE SAMPLE.

The sample should be taken from the car during the process of unloading. An occasional half shovelful should be thrown into some receptacle such as a clean barrel or garbage can with cover so that by the time the car is unloaded, approximately 200 pounds evenly distributed throughout the load will have been taken. This will mean about one-half shovelful for every ten full scoops. They are best taken in the process of shoveling from the bottom of the ca1, since the top coal rolls down and mixes fairly evenly with the bottom. It should be kept in mind that in taking a sample there must be obtained the different sizes of coal, fine and coarse in their proper proportions from the entire cross section of the mass, and also an even distribution of the same lengthwise of the car. Especial care must be taken to guard against loss of moisture in the process of collecting and in reducing the gross sample.

REDUCING THE SAMPLE.

In the case of "run-of-mine" coal the largest pieces must be broken down. For this purpose empty the same upon a *clean* platform or concrete floor about 10 feet square, spread out in as thin a layer as possible, and crush with the tamper until all lumps are reduced so that none will exceed 1 inch in any diameter. Pieces of bone coal, pyrites, and other impurities should be crushed to at least ¼-inch size. Retain all of the sample on the platform, and shovel over three times in order to thoroughly mix the fine and coarse particles. Spread the coal again over the platform, and then pile into as sharp a cone as possible by throwing from the outer margin into the center. Now press out the cone with the shovel or a broom held firmly on top of the pile while moving around the same, till the mass is flattened into a circular shape about 4 inches deep. With a board or straight edge divide the mass into four equal sectors. Reject two diagonally opposite quarters.

In the case of screenings or slack no tamping to break down lumps is necessary; mix, cone and quarter as just described, throw one of the quarters into a box for determining the duff, as directed below. Thoroughly mix the sample again as at first and repeat the quartering and mixing until a sample of approximately 50 pounds has been obtained.

DETERMINATION OF PERCENTAGE OF DUFF OR DUST.

Ordinarily the percentage of fine material in screenings or slack is required; hence the determination must be made upon some part of the original sample which has not been crushed or reduced in size. this purpose, therefore, one of the first quarters should be taken as indicated above. This quarter should be placed in a box or tub, the weight of which is known or which has been counterpoised, and the weight of the quarter carefully taken. The weight of the sample without the box should be noted on a slip of paper. From this box the material should be sifted through a screen having 1/4-inch openings, and the fine material caught in a second box which has been counterpoised, or the weight of which is known. The sifted material is now weighed, and the weight of dust without the box noted on a slip of paper having the first weight. This slip bearing the two weights together with the additional memoranda note below should be inserted in the can on top of the fivepound sample before sealing, and transmitted in this form along with the coal sample.

OBTAINING A 5-POUND SAMPLE.

When the amount of the sample has been brought down by quartering to about 50 pounds the size of the particles of coal should be reduced again by grinding through a mill to 1/8-inch size. The entire 50 pounds is thus put through the mill and then through the riffle until about 5 pounds are obtained. This sample should entirely fill the can, and it is necessary to take all of a sample as obtained by the riffle. For example, if upon riffling for the last time, an amount is obtained which will more than fill the sample can, it should not be discarded, but the can should be. emptied and added to the excess and re-riffled. One-half thus obtained should be put into the sample can and the other half riffled again and one of the halves thus obtained added to the sample can. Riffling in this way should be continued until the sample can is nearly or completely Note especially that all dust made during grinding should receive the same treatment as the rest of the sample and not be discarded. When a sample has thus been obtained the memorandum slip showing the date. car initial and number, shipper, weight of car content, weight of quarter taken for dust, and weight of dust should be put inside of can. The cap should be screwed firmly in place and sealed with electrician's The name of the institution, date, number of car, kind of coal. should be carefully indicated on the can and transmitted at once to the chemical laboratory.

¹⁶ See suggested form for ticket on page 26.

COMPOSITING OF SAMPLES.

Compositing of the several 5-pound lots is accomplished preferably at the laboratory and should conform to the following schedule:

For contracts calling for less than 10,000 and more than 3,000 tons five car samples shall enter into the composite.

For contracts calling for less than 3,000 tons and more than 1,000 tons, samples will be taken and analyzed for each car.

The amount of each car sample taken for compositing shall be proportional to the gross car lot from which it comes, so that the assembled mass shall be composed of the same proportion of each of the several cars represented in the composite sample.

Summary of Coal Settlements under Specification For the Fiscal Year 1913-1914.

A summarized statement is given below in tabular form showing the kind of coal under contract, the guaranteed dry ash, and B.t.u. as received. The settlement prices, premiums, and penalties, as given represent the net results of the numerous settlements under each contract.

Table 15.—Summary of coal settlements Illinois State Board of Administration fiscal year 1913-14.

Institution	Kind of Coal	Guaran- teed ash "dry"	Guaran- teed B.t.u. "as rec'd"	Contract price per ton	Average settle- ment price per ton	Total premium	Total penalty
Anna	Slack Screenings Mine run Screenings Mine run Screenings Mine run Screenings Screenings	16.00 16.00 13.00 16.00 14.00 17.00 15.00 16.00 17.00	11,600 11,620 11,830 11,040 10,600 10,500 11,200 11,350 10,000	\$1.49 1.94 2.16 2.05 1.64 1.40 1.70 1.70	\$1.410 1.942 2.190 2.014 1.583 1.296 1.827 1.655 1.50	\$ 26.20 104.60	\$841.00
Orphans' Home Soldiers' and Sailors' Home	Mine run Slack	14.00	10,600 9,700	1.74	1.727	445.50	47.04
Soldiers' and Sailors' Home Soldiers' and Sailors Home	Mine run Screenings	14.00	10,600 9,700	1.95	1.991	10.04	295.44

Table 15.—Summary of coal settlements Illinois State Board of Administration fiscal year 1913-14—Concluded.

Institution	Kind of Coal	Guaran- teed ash "dry"	Guaran- teed B. t. u. "as rec'd"	Contract price per ton	Average settle- ment price per ton	Total premium	Total penalty
Girls' Train- ing School	Screenings	14.00	11,480	\$2.15	\$2.122		\$110.16
Boys' Train- ing School	Mine run	14.00	12,100	2.65	2.508		1,004.56
School for the Blind.	Mine run	15.00	10,700	1.70	1.685		28.30
School for the Deaf	Mine run	14.00	10,600	1.64	1.584		307.36
Lincoln School and Colony Lincoln School	Screenings	15.00	9,700	1.16	1.229	\$440.80	
and Colony Peoria	Mine run Mine run	14.00 15.00	10,600 10,500	1.35 1.48	1.272 1.504	168.00	46.60

Difference									\$3537.14
Totals .								.\$1195.14	4732.28

INDEX.

A				Pa	ge.
Ash, determination of Percentage of, in dry coal Variations of Award of contracts		ge. 35 75 35 73	McDonough County, analyses of samples from McLean County, analyses of samples from Unit-coal values for		46 68 70
Bids Bureau, analyses of samples from	, 45,	73 59 70	Unit-coal values for Mercer County, analyses of samples from Unit-coal values for Moisture, changes of Coal-bed, relation to commercial mois-	44,	70 60 70 28
Calorific value	, 45,	40 39 60 36 51 69	ture Control of Montgomery County, analyses of samples from	65, 54,	29 16 66 69 68 71
Unit-coal values for	25,	78 20 41	P Payments for coal Percentages of constituents on basis of		74
Duquoin anticline, moisture in coal near. Dust, determination of	40,	35 77	moisture Peoria County, analyses of samples from Unit-coal values for Perry County, analyses of samples	49,	29 60 70
E European coal, comparison with Illinois type		29	from	64,	66 69 74
Face samples, moisture in	25, 47,	70	R Randoph County, analyses of samples from. Unit-coal values for Riffle, use of Run-of-mine coal, reduction of sample of	55,	67 69 20 76
Gallatin County, analyses of samples from	63,	68 70 20	St. Clair County, analyses of samples from .55, Unit-coal values for		69
Grundy County, analyses of samples from Unit-coal values for	45, 9,	59 70 72	Sampling, care in. 17, Directions for. 17, Kit for. 17, Method of. 17, Principles of. 17,	75,	11 78 19 76 11
Institutions, coal contracts with		78	Sangamon County, analyses of samples from	62, 36,	65 37 30 69
Jackson County, from analyses of coal Unit-coal values for 45, 46, 52,	60, 70,	64 71	State Board of Administration, purchase of coal by		10 39
La Salle County, analyses of samples from	59, 69, 48,	70	Tazewell County, analyses of samples from 56, Unit-coal values for		70
М			\/ \(\)		
Macon County, analyses of samples from Unit-coal values for	48, 53, 53,	69 64 30 69 65	Vermilion County, analyses of samples from.56, Ash in coal from Determination of Moisture in coal from Unit-coal values for	58,	67 27 39 33 70
Ash in coal from	53, 46,	36 30 67 70 59	Williamson County, analyses of samples from	57,	64 37 70 31

