První samostatná práce

Jakub Adamec B4B01JAG

27. listopadu 2024

Příklad 1.5. Pro uvedený automat nakreslete stavový diagram. Najděte vlastnost \mathcal{V} , která charakterizuje slova přijímaná daným automatem. Dokažte, že automat přijímá právě všechna slova s vlastností \mathcal{V} .

$$\begin{split} F &= \{q_1,q_2\}.\\ L(M) &= \{w \mid w \text{ končí 1 nebo } 10\}.\\ \text{Af } u &\in L. \end{split}$$

 $\begin{array}{ll} \text{D} \mathring{\text{u}} \text{kaz } u0 \not \in F: & \text{D} \mathring{\text{u}} \text{kaz } u1 \in F: \\ \delta(q_i,0) = q_0 \not \in F & \delta(q_i,1) = q_1 \\ i = 0,2. & i = 0,1,2. \end{array}$

 $\begin{array}{ll} \text{D} \| \text{Likaz} \ u00 \not \in F: & \text{D} \| \text{Likaz} \ u10 \in F: \\ \delta(q_i,00) = q_0 \not \in F & \delta(q_i,10) = q_2 \\ i = 0,1,2. & i = 0,1,2. \end{array}$

Důkaz $\varepsilon \notin F$: $\delta(q_1, \varepsilon) = q_1$.

Příklad 1.6. Jazyk L nad abecedou $\Sigma = \{a, b\}$ je dán induktivně

$$\varepsilon \in L$$

$$u \in L \implies aua \in L$$

$$u \in L \implies bub \in L$$

Charakterizujte slova jazyka L, tj. najděte vlastnost \mathcal{V} takovou, že $L = \{u \mid \text{slovo } u \text{ má vlastnost } \mathcal{V}\}$. Své tvrzení zdůvodněte.

 $\mathcal{V}=$ slovo u je sudé délky a $u=u^R($ tj. je palindrom). Označme $L_1=\{u\mid u^R=u, |u| \text{ je sudé}\}.$ Dokážeme, že $L=L_1.$

- a) $L \subseteq L_1$, indukcí podle definice množiny L.
 - i) ε je sudé délky a zároveň $\varepsilon^R = \varepsilon$, tedy $\varepsilon \in L_1$.
- ii) Mějme slovo u, které je sudé délky a platí $u^R = u$. Pak také slova $v_1 = aua$ a $v_2 = bub$ mají sudou délku a jsou palindromy, tj. $v_1^R = (aua)^R = au^Ra = aua = v_1$ a $v_2^R = (bub)^R = bu^Rb = bub = v_2$.
- b) $L_1 \subseteq L$, každé slovo, které palindrom sudé délky vzniklo dle pravidel, indukcí podle délky slova $u \in L_1$.

- i) Nejkratší slovo podle pravidel \mathcal{V} je ε , které patří do L.
- ii) Předpokládejme, že všechny palindromy v délky 2n vznikly podle pravidel jazyka L. Uvažujme libovolný palindrom u délky 2(n+1). Pak u nutně začíná buď písménem a nebo písmenem b. Jestliže u začíná a, pak musí končit a, protože je palindromem. Pak lze tedy říct, že u=ava, navíc platí $u^R=av^Ra=u$, proto $u^R=v$ a |v|=2n. Z indukčního předpokladu víme, že $v\in L$ a tedy i $u\in L$.

A analogicky platí to samé pro případ, že u začíná, a tedy i končí, písmenem b.

Takže platí, že $L = L_1$.