Compiler - Exam

Task 1 - Grammar transformation for LL(1)

We have the following grammar $G_{T_{UP}}$ with the 4 terminals: id (),

$$S \rightarrow id$$

$$S \rightarrow (T)$$

$$T \rightarrow S, T$$

$$T \rightarrow S$$

for tuple expressions for LL(1) parsing.

a

Give a short reason why this grammar is not LL(1), and transform the grammar (using a well-known transformation) to obtain a grammar $G'_{T_{UP}}$ suitable for LL(1) parsing.

To make the grammer LL(1), we want to

- 1. Eliminate ambiguity
- 2. Eliminate left-recursion
- 3. Perform left factorisation where required

Since the two productions for T begins with the same symbol, this means they have overlapping FIRST sets and is not LL(1). Therefore we need to left-factor T by making the a simple production with the same common prefix, S and creating another nonterminal, so we get the following grammar $G'_{T_{UP}}$

$$\begin{split} S &\to id \\ S &\to (T) \\ T &\to S\,R \\ R &\to,\, T \\ R &\to \varepsilon \end{split}$$

b

For $G'_{T_{UP}}$, determine FIRST sets for all right-hand sides.

We calculate these through fixed-point iteration using the rules from Algorithm 2.5^1 .

Right-hand side	Initialisation	Iteration 1	Iteration 2	Iteration 3
id	Ø	{id}	{id}	{id}
(T)	Ø	{(}	{(}	{(}
SR	Ø	Ø	{id, (}	{id, (}
, T	Ø	{ , }	{ , }	{ , }
arepsilon	Ø	Ø	Ø	Ø

And then we reach a fixed point.

So we have the following FIRST sets

$$FIRST(id) = \{id\}$$

$$FIRST((T)) = \{ (\}$$

$$FIRST(SR) = \{id, (\}$$

$$FIRST(, T) = \{ , \}$$

$$FIRST(\varepsilon) = \emptyset$$

 \mathbf{c}

Add a start production $S' \to S\$$ and determine FOLLOW sets for all non-terminals.

This yields the grammar

$$S' \rightarrow S\$$$

$$S \rightarrow id$$

$$S \rightarrow (T)$$

$$T \rightarrow SR$$

$$R \rightarrow T$$

$$R \rightarrow \varepsilon$$

¹Torben Ægidius Mogensen, Introduction to Compiler Design, page 55

To calculate the FOLLOW sets, we follow an algorithm² and get the following constraints

For the production $S' \to S$ \$ we add the following constraint since '\$' is seen as a terminal and is therefore the FIRST set of what follows S but '\$' is not nullable.

$$\{\$\} \subseteq \{S\}$$

For the production $S \to id$ there are no nonterminals, so no constraints are added.

For the production $S \to (T)$ we add the following constraint since ')' is the FIRST set of what follows T but is not nullable.

$$\{\ \}\ \subseteq \{T\}$$

For the production $T \to SR$ we make a split for each occurrence. Looking at the nonterminal S we get the constraint

$$\{\ ,\ \}\subseteq \{S\}$$

since it is the FIRST set of R. Furthermore, since R is nullable, we add the following constraint

$$\{T\} \subseteq \{S\}$$

Now looking at R there is nothing in the FIRST set, so no constraint is added. However, that nothing follows means that it is nullable, so we add the constraint

$$\{T\} \subseteq \{R\}$$

For the production $R \to T$ we get nothing in the FIRST set for what follows T meaning it is the same case as above so we add the following constraint

$$\{R\} \subseteq \{T\}$$

For the last production $R \to \varepsilon$ there are no nonterminals, so no constraints are added.

²Torben Ægidius Mogensen, Introduction to Compiler Design, page 59

Now we need to solve these constraints. For each constraint on the form $terminal \subseteq nonterminal$ we put those into FOLLOW(nonterminal) so we get

$$FOLLOW(S) = \{\$, ', '\}$$

 $FOLLOW(T) = \{\}$
 $FOLLOW(R) = \emptyset$

Now for each constraint on the form $nonterminal \subseteq nonterminal$ we add the content from the FOLLOW set of the first nonterminal to the second until a fixed point is reached and we get

$$FOLLOW(S) = \{\$, ',', \}$$

$$FOLLOW(T) = \{\}$$

$$FOLLOW(R) = \{\}$$

Whereas a fixed point is reached and we have our *FOLLOW* sets.

 \mathbf{d}

Determine the look-ahead sets for all productions and point out that $G'_{T_{UP}}$ is LL(1).

Having calculated FIRST and FOLLOW we can use the following rules to determine look-ahead (LA) sets.

$$LA(X \rightarrow \alpha) = \begin{cases} FIRST(\alpha) \cup FOLLOW(X) & \text{if NULLABLE(X)} \\ FIRST(\alpha) & \text{otherwise} \end{cases}$$

So we get the following look ahead sets (disregarding the added start production)

$$LA(S \to id) = \{id\}$$

Since the right hand side is not nullable.

$$LA(S \rightarrow (T)) = \{ (\}$$

Since the right hand side is not nullable.

$$LA(T \rightarrow S R) = \{id, (\}$$

Since the right hand side is not nullable.

$$LA(R \rightarrow , T) = \{ , \}$$

Since the right hand side is not nullable.

$$LA(R \to \varepsilon) = \{\ \}$$

Since the right hand side is nullable.

Since for each nonterminal X in the grammar, the look ahead sets for each production for this nonterminal are disjoint, it means the grammar is LL(1).

Task 2 - Extend the equality operation in Paladim to work on arrays