₩ MATH 5350 ₩ 1 ₩

Homework VI

Michael Nameika

Section 3.1 Problems

4. If an inner product space X is real, show that the condition ||x|| = ||y|| implies $\langle x + y, x - y \rangle = 0$. What does this mean geometrically if $X = \mathbb{R}^2$? What does the condition imply if X is complex?

Proof: Begin with $\langle x+y, x-y \rangle$:

$$\langle x + y, x - y \rangle = \langle x, x \rangle + \langle y, x \rangle - \langle x, y \rangle - \langle y, y \rangle$$
$$= \|x\|^2 + \langle y, x \rangle - \langle x, y \rangle - \|y\|^2$$

Since X is a real space, we have that $\langle y, x \rangle = \langle x, y \rangle$, so that the above equation becomes

$$||x||^2 + \langle y, x \rangle - \langle x, y \rangle - ||y||^2 = ||x||^2 - ||y||^2$$

= 0

since $||x|| = ||y|| \implies ||x||^2 = ||y||^2$. If $X = \mathbb{R}^2$, this relationship geometrically means that the diagonals of the parallelogram formed by two vectors of equal length are orthogonal.

If X is complex, we have that $\langle x,y\rangle=\overline{\langle x,y\rangle}$, so that $\overline{\langle x,y\rangle}-\langle x,y\rangle=-2i\mathrm{Im}(\langle x,y\rangle)$. Thus,

$$\langle x + y, x - y \rangle = -2i \operatorname{Im}(\langle x, y \rangle)$$

Ω

Section 3.2 Problems

8. Show that in an inner product space, $x \perp y$ if and only if $||x + \alpha y|| \geq ||x||$ for all scalars α .

Proof: If y=0, the result is immediate. Let $y\neq 0$ and first suppose $\langle x,y\rangle=0$. Let α be an arbitrary scalar and notice

$$||x + \alpha y||^2 = \langle x + \alpha y, x + \alpha y \rangle$$

$$= \langle x, y \rangle + \langle x, \alpha y \rangle + \langle \alpha y, x \rangle + \langle \alpha y, \alpha y \rangle$$

$$= ||x||^2 + \overline{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle + |\alpha|^2 ||y||^2$$

but since $\langle x, y \rangle = 0$, the above equation becomes

$$||x||^2 + \overline{\alpha}\langle x, y \rangle + \alpha \langle y, x \rangle + |\alpha|^2 ||y||^2 = ||x||^2 + |\alpha|^2 ||y||^2$$

and since $|\alpha|^2, ||y||^2 \ge 0$, $|\alpha|^2 ||y||^2 \ge$, so that

$$||x||^2 + |\alpha|^2 ||y||^2 \ge ||x||^2$$

$$\implies ||x + \alpha y||^2 \ge ||x||^2$$

$$\implies ||x + \alpha y|| \ge ||x||.$$

We must now show that for any scalar α , $||x + \alpha y|| \ge ||y||$ implies $\langle x, y \rangle = 0$. Notice

$$||x + \alpha y||^2 = \langle x + \alpha y, x + \alpha y \rangle$$

$$= \langle x, x \rangle + \overline{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle + \overline{\alpha} \alpha \langle y, y \rangle$$

$$= ||x||^2 + \overline{\alpha} \langle x, y \rangle + \alpha [\langle y, x \rangle + \overline{\alpha} \langle y, y \rangle]$$

₩₩ MATH 5350 ♦₩

in particular, take $\overline{\alpha} = \frac{-\langle y, x \rangle}{\langle y, y \rangle}$. Then the above equation becomes

$$\begin{aligned} \|x\|^2 + \overline{\alpha}\langle x, y \rangle + \alpha [\langle y, x \rangle + \overline{\alpha}\langle y, y \rangle] &= \|x\|^2 - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \left[\langle y, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle y, y \rangle \right] \\ &= \|x\|^2 - \frac{|\langle x, y \rangle|^2}{\|y\|^2} \ge \|x\|^2 \\ \Longrightarrow - \frac{|\langle x, y \rangle|^2}{\|y\|^2} \ge 0 \end{aligned}$$

but since $\frac{|\langle x,y\rangle|^2}{\|y\|^2} \geq 0$, we have

$$0 \le \frac{|\langle x, y \rangle|^2}{\|y\|^2} \le 0$$

$$\implies \frac{|\langle x, y \rangle|^2}{\|y\|^2} = 0$$

$$\implies |\langle x, y \rangle|^2 = 0$$

 \mathbb{U}

hence, $\langle x, y \rangle = 0$, and so $x \perp y$, which is what we sought to show.

10. (Zero Operator) Let $T: X \to X$ be a bounded linear operator on a complex inner product space X. If $\langle Tx, x \rangle = 0$ for all $x \in X$, show that T = 0. Show that this does not hold in the case of a *real* inner product space.

Proof: Let $x, y \in X$ and consider v = x + iy. Then $\langle Tv, v \rangle = 0$ and notice

$$\begin{split} \langle Tv,v\rangle &= \langle T(x+iy),x+iy\rangle \\ &= \langle Tx,x\rangle + i\langle Ty,x\rangle - i\langle Tx,y\rangle + \langle Ty,y\rangle \\ &= i\langle Ty,x\rangle - i\langle Tx,y\rangle = 0 \end{split}$$

so that we have $\langle Ty, x \rangle - \langle Tx, y \rangle = 0$. Now consider z = x + y. Then $\langle Tz, z \rangle = 0$ and we have

$$\begin{split} \langle Tz,z\rangle &= \langle T(x+y),x+y\rangle \\ &= \langle Tx,x\rangle + \langle Ty,x\rangle + \langle Tx,y\rangle + \langle T,y\rangle \\ &= \langle Ty,x\rangle + \langle Tx,y\rangle = 0 \end{split}$$

and so we have $\langle Ty, x \rangle = 0$ for any $x, y \in X$ since our initial choice of x, y was arbitrary. Then in particular, take x = Ty so that

$$\langle Ty, Ty \rangle = ||Ty||^2 = 0$$

Thus, for any $y \in X$, Ty = 0, so that T = 0.

To see that this result does not hold for real inner product spaces, consider the real inner product space $X = \mathbb{R}^2$ and the linear operator T represented in matrix form as

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Note that T rotates vectors in \mathbb{R}^2 by $\frac{\pi}{2}$ radians counter clockwise. Then for any $x = (x_1, x_2)^T \in \mathbb{R}^2$, notice

$$Tx = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$

♦₩♦ MATH 5350 ♦₩♦

and that

$$\langle Tx, x \rangle = (-x_2, x_1) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= -x_2 x_1 + x_1 x_2$$
$$= 0$$

but clearly, $T \neq 0$.

 \square

Section 3.3 Problems

8. Show that the annihilator M^{\perp} of a set $M \neq \emptyset$ in an inner product space X is a closed subspace of X.

Proof: Let $\{x_n\}$ be a sequence in M^{\perp} converging to $x \in X$. That is, for any $y \in M$,

$$\langle x_n, y \rangle = 0$$

for all n. Then notice

$$\lim_{n \to \infty} \langle x_n, y \rangle = \langle x, y \rangle = 0$$

hence $x \in M^{\perp}$, so that M^{\perp} is closed.

 \square

10. If $M \neq \emptyset$ is any subset of a Hilbert space H, show that $M^{\perp \perp}$ is the smallest closed subspace of H which contains M, that is, $M^{\perp \perp}$ is contained in any closed subspace $Y \subset H$ such that $Y \supset M$.

Proof: Let Y be an arbitrary closed subspace containing M. That is,

$$M \subseteq Y$$
.

By problem 7 b)*, we have

$$Y^\perp \subseteq M^\perp$$

and by problem 7 b) again,

$$M^{\perp\perp} \subset Y^{\perp\perp}$$

and since Y is a closed subspace of a Hilbert space, we have that

$$Y = Y^{\perp \perp}$$

and also, since $M \subseteq M^{\perp \perp}$, we have

$$M \subseteq M^{\perp \perp} \subseteq Y$$

thus, since Y was chosen arbitrarily, $M^{\perp \perp}$ is the smallest closed subset containing M.

 \square

(*) Proof of problem 7 b):

Let A and B be nonempty subsets of an inner product space X where $A \subseteq B$. Let $x \in B^{\perp}$. Then $x \perp B$ by definition, and since $A \subseteq B$, we have that $x \perp A$. Thus $x \in A^{\perp}$ so that

$$B^{\perp} \subseteq A^{\perp}$$

which is what we sought to show.

 \square