COMP 330 Autumn 2021 McGill University

Assignment 4 Solutions

Question 1[25 points] A sequence of parentheses is a sequence of (and) symbols or the empty sequence. Such a sequence is said to be balanced if it has an equal number of (and) symbols and in every prefix of the sequence the number of left parentheses is greater than or equal to the number of right parentheses. Thus ((())()) is balanced but, for example, (A ciscuit balanced exemptioned there are entered to be balanced.

Consider the grammar

https://powcoder.com This grammar is claimed to generate balanced parentheses.

- 1. Prove that any string generated by this grammar is a properly balanced seque Active (10) hat powcoder
- 2. Prove that every sequence of balanced parentheses can be generated by this grammar. [15]

Solution

1. We can prove this by induction on the length of the derivation. The base case is a derivation that has a single step. There is only one derivation like that and it can only produce the empty string which is balanced. For the inductive case we proceed as follows. We assume that for all derivations of length up to n the claim that we are trying to prove is correct. Now consider a derivation of length n+1. There are two cases: (a) the first rule used is $S \to (S)$ and (b) the first rule used is $S \to SS$. In case (a) we get a string of the form (w) where w is generated from S by a derivation of length n. So w is a balanced string and hence clearly (w) is a balanced string. In case (b) we have a string of the form w_1w_2 where each of w_1 and w_2 are generated by S by derivations that are of length n or less. Thus each of w_1 and

 w_2 is a balanced string. Clearly every prefix of w_1 has either (i) more left parentheses than right parentheses or (ii) equal number of left and right parentheses. If we consider a prefix of w_1w_2 that includes all of w_1 and part of w_2 ; we see that the portion coming from w_1 has an equal number of left and right parentheses while the portion coming from w_2 has at least as many left parentheses. Taken together, such a prefix has at least as many left parentheses as right parentheses. Finally, the entire string w_1w_2 has equal number of left and right parentheses. Thus the string w_1w_2 is balanced.

2. We prove this by induction on the length of the string of parentheses. The empty string is balanced and can be generated by the grammar: the base case is done. For the induction case we assume that any string of balanced parentheses of length up to and including n can be generated by the grammar. Now we consider a string w of balanced

A special control of the parenthesis. Now define a function b(p) which is a function of the position in the string. This function is defined to be the number of left parentheses up to position p minus the number of right prefit has y to y to y to y and y and y and y to y and y and y and y and y and y and y are y are y and y are y are y and y are y are y are y and y are y are y and y are y are y are y are y and y are y are y and y are y are y are y are y and y are y are y and y are y are y are y are y and y are y are y and y are y are y are y are y are y and y are y and y are for every $p, b(p) \geq 0$. At the end of the string b(p) must be zero. We know that as we move right, the value of b(p) increases or decreases by exactly 1 at each step Let p_0 be the position where the function attains and far the first time \mathbf{a} this \mathbf{p}_0 happen \mathbf{a} the end of the string, for example in (((()))) or it may happen before the end as in ((()))(()). If p_0 is at the end of the word then we know that our string w has the form (w_1) where w_1 is a balanced string. Since w_1 has length n-1 by the induction hypothesis it can be generated by the grammar and thus w can be generated from the grammar by starting with the rule $S \to (S)$ and then using the S produced on the right hand side of this derivation to generate w_1 . If p_0 occurs inside the string w then we break the string into two pieces $w = w_1 w_2$ where p_0 is at the end of w_1 . Now, clearly, w_2 and w_1 both have to be balanced strings and they are both of length n or less so they can be generated by the grammar. Thus w can be generated by starting with the rule $S \to SS$ and then using the two S's generated to produce w_1 and w_2 .

Question 2[15 points] Consider the following context-free grammar

$$S \longrightarrow aS \mid aSbS \mid \varepsilon$$

This grammar generates all strings where in every prefix the number of a's

is greater than or equal to the number of b's. Show that this grammar is ambiguous by giving an example of a string and showing that it has two different derivations.

Solution Consider the string aab. This can be generated by

$$S \rightarrow aS \rightarrow aaSb \rightarrow aab$$

but also by

$$S \rightarrow aSbS \rightarrow aaSbS \rightarrow aabS \rightarrow aab.$$

Question 3[15 points] We define the language $PAREN_2$ inductively as follows:

1. $\varepsilon \in PAREN_2$,

2. if $x \in PAREN_2$ then so are (x) and [x], Assignment Preoject Exam Help

Describe a PDA for this language which accepts by empty stack. Give all the transitions.

Solution Please Pote that Phonyou are decognizing Cympty stack you do not need accept states. Note also that you must be at the end of the string in order to accept; this is true whether by empty stack or by accept WeChat powcoder state.

Here is a simple DPDA to recognise the language $PAREN_2$.

It pushes open parentheses and brackets onto the stack and pops them off only if the matching type is seen. The machine will jam if an unexpected symbol is seen. Since it accepts by empty stack, a word will be accepted only if every open parenthesis or bracket was closed.

Note that it rejects strings like [(]).

Question 4[20 points] Consider the language $\{a^nb^mc^p|n \leq p \text{ or } m \leq p\}$. Show that this is context free by giving a grammar. You need not give a

formal proof that your grammar is correct but you must explain, at least briefly, why it works.

Solution

The following grammar G generates the given language, which we will call L

$$S \rightarrow N \mid AM \mid SC$$

$$N \rightarrow aNc \mid B$$

$$M \rightarrow bMc \mid \epsilon$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

$$C \rightarrow cC \mid \epsilon$$

To see that any string generated by G is in L, we analyse the productions. The Start shifted twen the choice between the lavial deliver G than as $(n \leq p)$ in the question), and no fewer cs than bs $(m \leq p)$. The symbol N (respectively M) generates words with as many cs as there are as (bs), while allowing any number of bs as. The production as as as as as to be added.

Now we need to show that any word in L can be generated by G. Given a word $w = A^n b^m c^p$ in L, we can generate it with the above grammar as follows. Let A this (n,m) constant (n,m) be spiiled (n,m) and (n,m) be spiiled (n,m) and (n,m) be spiiled (n,m) of (n,m) is in (n,m) and (n,m) is generated by (n,m) is generated by (n,m) is generated by (n,m) will be generated by the rule (n,m) and (n,m) is generated by (n,m)

Suppose $n \leq m$, then $w_1 = a^n b^m c^n$. The symbol B generates b^m , and by using the production $N \to aNc$ n times, N can generate w_1 . Using the rule $S \to N$, this gives that w_1 is generated by G as required. If instead $m \leq n$, then $w_1 = a^n b^m c^m$. In this case, the symbol A generates a^n , while the symbol M generates $b^m c^m$. Using the rule $S \to AM$, this too gives that G generates w_1 , and so G generates w.

Question 5[25 points] A *linear* grammar is one in which every rule has exactly one terminal and one non-terminal on the right hand side or just a single terminal on the right hand side or the empty string. Here is an example

$$S \to aS|a|bB; B \to bB|b.$$

1. Show that any regular language can be generated by a linear grammar. I will be happy if you show me how to construct a grammar from a

DFA; if your construction is clear enough you can skip the straightforward proof that the language generated by the grammar and the language recognized by the DFA are the same.

2. Is every language generated by a linear grammar regular? If your answer is "yes" you must give a proof. If your answer is "no" you must give an example.

Solution

1. Suppose we have a regular language L, there has to be a DFA to recognize it. We fix the alphabet to be Σ . Let the DFA be

$$M = (S, s_0, \delta, F)$$

with the usual meanings of these symbols. We define a linear grammar as follows:

A Six hand thin the part Helt for the stax and the DFC part for any state $p \in S$ we introduce a nonterminal P in our grammar. The start state of the DFA is identified with the start symbol S of the grammar. New for every transition S(p) = q we have a rule written as $P \to qQ$ for every accept state $q \in P$ of the DFA we have a rule $Q \to \varepsilon$ in the grammar. It is easy to see that every run through the automaton exactly produces the sequence of rules needed to generate the strugt $Q \to Q$ where $Q \to Q$ is the grammar. It is easy to see that every run through the automaton exactly produces the sequence of rules needed to generate

2. The answer is "no". If we defined a *left*-linear grammar in which we insisted that the terminal symbol appears to the left of the nonterminal and then asked if left-linear grammars always produce regular languages then the answer would be "yes". The same could be said of right-linear grammars. But in the definition above I have allowed you to mix left and right rules. Consider the grammar below

$$S \to aA \mid \varepsilon \qquad A \to Sb.$$

This generates our old friend $\{a^nb^n|n\geq 0\}$.