Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Bloque Temático 3: Gestión de Archivos Unidad Temática 7

Implementación de Archivos o Ficheros ("Implementing file systems")

Objetivos

- Introducir el concepto de archivo como una abstracción de la memoria secundaria
- Explicar la función de los sistemas de archivos
- Describir los niveles de abstracción del sistema de archivos
- Analizar las técnicas de asignación de bloques de disco a archivos

Contenido

- Arquitectura del sistema de archivos
- Concepto de archivo
- Asignación de bloques a archivos

Bibliografía

 A. Silberschatz, P.B. Galvin: "Fundamentos de Sistemas Operativos", McGraw-Hill, 7º ed. 2006 (Capítulos 10 y 11)

- La estructura del sistema de archivos tiene tres aspectos:
 - 1. La forma en que están **organizados los archivos** desde el punto de vista del usuario
 - La forma en que se almacenan los archivos en el sistema de almacenamiento secundario (normalmente el disco)
 - La forma en que se manipulan los archivos. Es decir, como realizar lecturas, escrituras, etc.

Sistema de archivos proporciona mecanismos para:

- Almacenamiento persistente de la información
 - la información permanece aunque el sistema informático no este en marcha, el dispositivo más habitual es el disco
- Acceder a la información
 - Ofrece una interfaz al usuario compuesta básicamente por dos tipos de elementos:
 - Archivo: unidad lógica de almacenamiento persistente
 - Estructura de directorios: mecanismo para organizar todos los archivos
- Consideraciones importantes
 - Mantiene datos críticos para el sistema
 - Condiciona las prestaciones globales
 - Es el aspecto más visible y utilizado de un SO

Llamadas al sistema (Bibliotecas de usuario) Facilitan la gestión de ficheros y directorios desde el punto de vista del programador

Gestor de Archivos:

- •Utiliza manejador de dispositivo para realizar transferencias de información entre disco y memoria
- •Implementa mecanismos para ofrecer coherencia, seguridad y protección
- Optimiza prestaciones
- Crea los elementos básicos de la interfaz con los usuarios: archivos y directorios

Manejador de dispositivo (driver)

- •Dialoga con el controlador de dispositivo
- •Inicia las operaciones físicas y procesa el fin de la E/S

Nivel físico:

Dispositivo + controlador

- Dispositivo de bloques
- •Geometría de disco:

Disco = Vector de bloques

Arquitectura del sistema de archivos: Visión Usuario

Bibliotecas Usuario (para operar con archivos)

Interfaz con las llamadas al sistema sobre ficheros y directorios

Operaciones sobre archivos:

- Abrir y cerrar archivos
- •Leer/Escribir sobre archivo
- Posicionarse dentro de un archivo

Operaciones sobre directorios:

- Crear/Borrar entradas a directorio
- Renombrar archivos
- Buscar por nombre
- •Recorrer el sistema de archivos

Visión jerárquica

Organización jerárquica en archivos y directorios

Directorio Abstracciones de Archivo **Nivel Usuario**

Apertura de un archivo

- Llamada al sistema que permite acceder al contenido del archivo
 - Los procesos tienen que abrir un archivo para leer o escribir en él
 - El proceso obtiene un identificador de archivo necesario para referenciar al archivo en sus operaciones de lectura, escritua y accesos.
- Define los métodos de acceso (leer, escribir o ambos) y fija una posición inicial del puntero de lectura/escritura
 - Ejemplo: un proceso puede abrir un archivo para escritura
 - posicionando el puntero de escritura al principio del archivo se reescribir el contenido
 - posicionando el puntero de escritura al final se añade nuevo contenido al ya existente
 - Las transferencias posteriores irán referidas al puntero y lo desplazarán
- Los permisos de acceso del proceso se verifican en la apertura
 - Sólo permitirá la apertura si el proceso tiene los permisos apropiados
 - La llamada open() falla si el modo especificado es inconsistente con los permisos del archivo

Fundamentos de los Sistemas Operativos

Operaciones sobre archivos

El SO ofrece un conjunto de llamadas para trabajar con archivos

Arquitectura del sistema de archivos

- Crear archivo
 - Requiere espacio libre en disco y crear una entrada nueva en un directorio
- Abrir archivo
 - Operación necesaria antes de leer o escribir
- Leer archivo
 - Requiere un identificador de archivo y puntero de posición de lectura
- Escribir archivo
 - Requiere un identificador de archivo, datos a escribir y puntero de escritura
- Posicionamiento del puntero de acceso (seek)
 - Operación que permite avanzar o retroceder punteros de lectura/escritura
- Cerrar archivo
 - Operación inversa a abrir, libera las estructuras del SO que soportan el acceso a archivo acceder
- Borrado de archivo
 - Libera el espacio en disco asociado al archivo y borra la entrada de directorio asociada

Contenido

- Arquitectura del sistema de archivos
- Concepto de archivo

Implementación de archivos

Asignación de bloques a archivos

Un archivo es:

- Un tipo abstracto de datos
- Una colección de información relacionada por su creador
- El elemento necesario para escribir/almacenar información en memoria secundaria

```
main() {
  int x; /*variable entera*/
  int y;/*variable entera*/
  int *px; /* puntero a entero*/
  x=5;
  px=&x;/*px=direccion de x*/
  y=*px;/* y contiene el dato apuntado por px*/

  printf("x=*d\n",x);
  printf("y=*d\n",y);
  printf("px = %p\n", px);
}
```

Concepto de archivo

Archivo = Atributos + Datos

Atributos de un archivo

Varían de un sistema operativo a otro

- Tipo
- Tamaño
- Información de protección
- Propietario
- Fecha y hora de creación
- Datos del archivo
 - El SO ve el contenido del archivo como un vector de bytes, y son las aplicaciones las encargadas de interpretarlos
 - Un archivo puede almacenar distintos tipos de información: programa fuente, texto, código, gráficos, grabaciones sonoras, etc.
 - Los datos de un archivo, pueden tener una estructura determinada que depende del tipo de archivo
 - Un archivo ejecutable es una serie de secciones de código que el sistema es capaz de cargar y ejecutar

METADATOS Atributos

necesarios para gestionar el sistema de archivos

DATOS

Contenido del archivo. Ejemplo: caracteres, contenido binario, etc.

a Otro
gandreu@shell-labs:~/sisop/FSO/ejemplosC\$ ls = thi
total 136K
11928522 -rw-r--r-- 1 gandreu disca-upvnet 470 sep 20 2013 aritmetica_punteros.c.
11930469 -rw-r--r-- 1 gandreu disca-upvnet 8,8K sep 26 2011 aritmetica_punteros.c.
11930470 -rw-r--r-- 1 gandreu disca-upvnet 193 sep 22 2011 circulo.c
11928236 -rw-r--r-- 1 gandreu disca-upvnet 193 sep 22 2011 circulo.c
11930472 -rw-r-xr-x 1 gandreu disca-upvnet 8,9K sep 20 2011 circulo.c
11928433 -rw-r-x 1 gandreu disca-upvnet 8,9K sep 20 2011 cuadrado
11928433 -rw-r--r-- 1 gandreu disca-upvnet 214 sep 22 2011 cuadrado.c
11928418 -rw-r--r-- 1 gandreu disca-upvnet 214 sep 22 2011 cuadrado.c
11928418 -rw-r--r-- 1 gandreu disca-upvnet 3,9K sep 20 2011 cuadrado.c
11928439 -rw-r--r-- 1 gandreu disca-upvnet 8,9K sep 20 2011 cuadrado.c
11930471 -rw-r--r-- 1 gandreu disca-upvnet 8,9K sep 20 2011 cuadrado.c
11930471 -rw-r--r-- 1 gandreu disca-upvnet 8,9K sep 20 2011 cuadrado.c
11930471 -rw-r--r-- 1 gandreu disca-upvnet 8,9K sep 20 2011 cuadrado.c
11930471 -rw-r--r-- 1 gandreu disca-upvnet 579 sep 26 2011 hipotenusa.c
11930480 -rw-r--r-- 1 gandreu disca-upvnet 453 sep 26 2011 hipotenusa.c
1192809 -rw-r--r--- 1 gandreu disca-upvnet 424 jun 27 2014 hola.c-

Listado de algunos atributos de los archivos contenidos

en un directorio

```
main() {
  int x; /*variable entera*/
  int y;/*variable entera*/
  int *px; /* puntero a entero*/
  x=5;
  px=6x;/*px=direccion de x*/
  y=*px;/* y contiene el dato apuntado por px*/
  printf("x=%d\n", x);
  printf("y=%d\n", y);
  printf("px = %p\n", px);
}

Contenido de
  un archivo
```

Métodos de acceso a los datos (contenido) del archivo

Existen tres modos de acceso a la información de un archivo:

Secuencial

Concepto de archivo

- La información se procesa (ya sea para leer o escribir) en orden
- En cada operación de lectura/escritura se utiliza y actualiza implícitamente un puntero de posición

Directo

- Se considera al archivo compuesto de registros lógicos
- En cada operación se indica como argumento el registro sobre el que se trabaja

Mapeado en memoria

- Se asocia al archivo un rango de direcciones de memoria lógica de uno (o varios procesos)
- De esta forma las lecturas/escrituras sobre el archivo se transforman en lecturas/escrituras sobre memoria principal
- El SO es el encargado de actualizar la información en disco

Contenido

- Arquitectura del sistema de archivos
- Concepto de archivo

Implementación de archivos

Asignación de bloques a archivos

Asignación de bloques a archivos

- ¿Cómo asignar espacio de disco a los archivos?
 - Los sistemas operativos modernos perciben los discos como un conjunto numerado de bloques de tamaño fijo
 - Tamaños de bloque habituales entre 512 Bytes y 4 KB
 - Se requiere
 - utilización eficiente del espacio de disco
 - acceso a los archivos de forma rápida
 - Existen tres alternativas:
 - Asignación Contigua
 - Asignación Enlazada
 - Asignación Indexada

Asignación Contigua

- A cada archivo se le asignan un conjunto de bloques del disco consecutivos
- Definida para cada archivo por el primer bloque del archivo y la longitud en bloques

Directorio					
Archivo	Inicio	longitud			
count	2	2			
tr	8	3			
mail	16	6			
list	24	5			

Bloques lógicos de un disco o partición

Asignación Enlazada

 Los datos se almacenan en una lista enlazada de bloques, donde cada bloque apunta al siguiente

reservado

reservado 9 **Eof** 19

• FAT - variante de asignación enlazada

Las referencias no se guardan en los bloques, sino en un área de disco dedicada

•	EOF marca	el fin	de	cada	lista
---	------------------	--------	----	------	-------

Directorio				
Archivo	Inicio			
prova	4			
otro	14			

Asignación Indexada

 Un bloque índice contiene punteros a los bloques que contienen los datos

Asignación de bloques a archivos

Indexación multinivel

- Es una variante de asignación indexada
- Motivación
 - Implementar archivos grandes requiere varios bloques índice
- Solución

Una referencia puede apuntar a un bloque de datos o a otro

bloque de índices

Asignación de bloques a archivos

Análisis de tipos de asignación

	Ventajas	Inconvenientes		
Contigua	Es el más eficiente Soporta acceso secuencial y directo Velocidad de acceso estable Ideal con dispositivos de sólo lectura (CD, DVD, etc)	Gestión de espacio compleja (ej determinación del mejor hueco, problemas cuando crece el archivo,) problemas de fragmentación externa (necesidad de compactación)		
Enlazada	No limita el crecimiento de los archivos	No soporta acceso directo Poco robusta ante fallos		
Fat	Si se copia la FAT a memoria, soporta acceso directo Facilita la gestión de espacio libre	Si la FAT no cabe en RAM, no presenta ninguna ventaja -> sólo útil para dispositivos de baja capacidad Poco robusta ante fallos		
Indexada	Soporta acceso secuencial y directo	Limita el crecimiento (índice de talla limitada)		
Indexada No limita el crecimiento de los archivos multinivel		Para localizar un bloque pueden ser necesarios varios accesos a disco		

NOTA.- en todos los casos aparece **fragmentación interna**, desperdiciando por término medio la mitad del último bloque