Appendix A CCD Details

Algorithm 1 Cyclic Causal Discovery (CCD)

Input: A conditional independent oracle for a distribution \mathcal{P} , satisfying global directed Markov property and faithfulness conditions with respect to a directed graph \mathcal{G} with vertex set \mathcal{V} .

Output: A PAG Ψ for the Markov equivalence class of DCGs, Equiv(G).

- 1: Step 1. Form a complete graph (Ψ) with the edge \circ between every pair of vertices in \mathcal{V} .
- 2: n = 0
- 3: repeat
- 4: repeat
- Select an ordered pair of variables X and Y that are adjacent in Ψ such that the number of vertices in $\mathbf{Adjacent}(\Psi, X) \setminus \{Y\} \ge n$, and select a subset S of $\mathbf{Adjacent}(\Psi, X) \setminus \{Y\}$ with n vertices.

If $X \perp\!\!\!\perp Y \mid S$, then delete the edge $X \circ \neg \circ Y$ and record S in **Sepset** $\langle X, Y \rangle$ and **Sepset** $\langle X, Y \rangle$.

6: **until** all pairs of adjacent variables X and Y such that the number of vertices in

Adjacent(Ψ , X)\{Y} $\geq n$ and all sets S such that the number of vertices in S = n have been tested.

$$n = n + 1$$
;

- 7: **until** for all ordered pairs of adjacent vertices X and Y, **Adjacent**(Ψ , X)\{Y} < n.
- 8: *Step 2.* For each triple of vertices A, B, C such that each of the pair of A, B and the pair B, C are adjacent in Ψ but the pair A, C are not adjacent in Ψ , then:
- 9: (i) orient A*-*B*-*C as $A \rightarrow B \leftarrow C$ iff $B \notin \mathbf{Sepset}(A, C)$.
- 10: (ii) orient A*-*B*-*C as A*-*B*-*C iff $B \in \mathbf{Sepset}(A, C)$.
- 11: *Step 3.* For each triple of vertices A, X, Y in Ψ such that (i) A is not adjacent to X or Y, (ii) X and Y are adjacent, (iii) $X \notin \mathbf{Sepset}(A, Y)$, then orient X*-*Y as $X \leftarrow Y$ if $A \not\perp \!\!\! \perp X \mid \mathbf{Sepset}(A, Y)$.
- 12: **Step 4.** For each vertex V in Ψ form the following set: $X \in \mathbf{Local}(\Psi, V)$ iff X is adjacent to V in Ψ , or there is a vertex Y such that $X \longrightarrow Y \longleftarrow V$ in Ψ .
- 13: m = 0
- 14: repeat
- 15: repeat
- Select an ordered triple $\langle A, B, C \rangle$ such that $A \rightarrow B \leftarrow C$, A and C are not adjacent, and $Local(\Psi, A) \setminus \{B, C\}$ has $\geq m$ vertices.

Select a set $T \subseteq \mathbf{Local}(\Psi, A) \setminus \{B, C\}$ with m vertices. If $A \perp \!\!\!\perp C \mid T \cup \{B\}$, then orient $A \longrightarrow B \leftarrow C$ as $A \longrightarrow B \leftarrow C$ and record $T \cup \{B\}$ in $\mathbf{Supset} \langle A, B, V \rangle$.