Problem 2

How to run code

- My submissions are live-scripts of matlab
- They are in zip format, don't unzip them
- Open matlab go to the folder of that zip and open the *.mlx files from matlab
- They would appear as jupyter notebook with markdown, codeblock and outputs.
- Press ctrl + enter to run each code block

Part 1

(i) The Empirical function cannot be shown in the text, it is obtained in the code as a function.

7	$\hat{\mathbf{D}}(\mathbf{Z} = \mathbf{I})$
k	$\hat{P}(Z=k)$
0	0.0009
1	0.0063
2	0.0224
3	0.0518
4	0.0915
5	0.1279
6	0.1492
7	0.1489
8	0.1299
9	0.1018
10	0.0708
11	0.0452
12	0.0265
13	0.0141
14	0.0070
15	0.0034
16	0.0015
17	0.0006
18	0.0002
19	0.0001
20	0.0000
21	0.0000
22	0
23	0
24	0
25	0

G2) (a) (ii)

$$P_{x}(x=\kappa) = \frac{\lambda_{x}^{K}e^{-\lambda_{x}}}{\kappa!} \qquad P_{y}(y=b) = \frac{\lambda_{y}^{b}e^{-\lambda_{y}^{b}}}{b!}$$

$$P_{z}(z=t) = \sum_{k=0}^{t} P(x=k) P(y=t-k)$$

$$= \sum_{k=0}^{t} P(x=k) P(y=t-k) \qquad (x \text{ and } y \text{ ave independent})$$

$$= \sum_{k=0}^{t} \frac{e^{-\lambda_{x}} \cdot \lambda_{x}^{k}}{k!} \cdot \frac{e^{-\lambda_{y}^{b}} \cdot \lambda_{x}^{k}}{(t-k)!}$$

$$= \frac{e^{-(\lambda_{x}+\lambda_{y}^{b})}}{t!} \cdot \frac{\lambda_{x}^{b}}{k!} \cdot \frac{\lambda_{x}^{b}}{k!} \cdot \frac{\lambda_{x}^{b}}{k!}$$

$$= \frac{e^{-(\lambda_{x}+\lambda_{y}^{b})} \cdot (\lambda_{x}+\lambda_{y}^{b})^{t}}{t!}$$

We expect $P(z)$ to be a Poisson distribution with parameter $\lambda_{x}+\lambda_{y}$.

k	$\hat{P}(Z=k)$	P(Z=k)		
0	0.0009	0.0009		
1	0.0063	0.0064		
2	0.0224	0.0223		
3	0.0518	0.0521		
4	0.0915	0.0912		
5	0.1279	0.1277		
6	0.1492	0.1490		
7	0.1489	0.1490		
8	0.1299	0.1304		
9	0.1018	0.1014		
10	0.0708	0.0710		
11	0.0452	0.0452		
12	0.0265	0.0263		
13	0.0141	0.0142		
14	0.0070	0.0071		
15	0.0034	0.0033		
16	0.0015	0.0014		
17	0.0006	0.0006		
18	0.0002	0.0002		
19	0.0001	0.0001		
20	0.0000	0.0000		
21	0.0000	0.0000		
22	0	0.0000		
23	0	0.0000		
24	0	0.0000		
25	0	0.0000		

The values obtained for various k is almost similar for the estimate $\hat{P}(Z)$ and for the PMF P(Z)

Part 2

(i) The Empirical function cannot be shown in the text, it is obtained in the code as a function.

k	$\hat{P}(Z=k)$				
0	$P(Z = \kappa)$ 0.0413				
1	0.1309				
2	0.2082				
3	0.2217				
4	0.1769				
5	0.1146				
6	0.0608				
7	0.0276				
8	0.0111				
9	0.0040				
10	0.0013				
11	0.0004				
12	0.0001				
13	0.0000				
14	0.0000				
15	0.0000				
16	0.0000				
17	0.0000				
18	0.0000				
19	0.0000				
20	0.0000				
21	0.0000				
22	0				
23	0				
24	0				
25	0				
23	U				

(b) (ii)

$$P(Z=k) = \sum_{j=k}^{\infty} P(y=j), Z=k) = \sum_{j=k}^{\infty} P(Z=k|y=j) P(Y=j)$$

$$= \sum_{j=k}^{\infty} \frac{e^{-j} \lambda^{j}}{j!} \left(\sum_{k}^{j} p^{k} (1-p)^{j-k} \right)$$

$$= e^{-j} \sum_{j=k}^{\infty} \frac{e^{-j} \lambda^{j}}{j!} \left(\sum_{k}^{\infty} p^{k} (1-p)^{j-k} \right)$$

$$= e^{-j} (\lambda p)^{k} \sum_{j=k}^{\infty} \frac{(\lambda(1-p))^{j-k}}{(j-k)!}$$

$$= e^{-j} (\lambda p)^{k}$$
We expect $P(Z)$ to be a poisson distribution with parameter λp .

(iii)

k	$\hat{P}(Z=k)$	P(Z=k)	
0	0.0413	0.0408	
1	0.1309	0.1304	
2	0.2082	0.2087	
3	0.2217	0.2226	
4	0.1769	0.1781	
5	0.1146	0.1140	
6	0.0608	0.0608	
7	0.0276	0.0278	
8	0.0111	0.0111	
9	0.0040	0.0040	
10	0.0013	0.0013	
11	0.0004	0.0004	
12	0.0001	0.0001	
13	0.0000	0.0000	
14	0.0000	0.0000	
15	0.0000	0.0000	
16	0.0000	0.0000	
17	0.0000	0.0000	
18	0.0000	0.0000	
19	0.0000	0.0000	
20	0.0000	0.0000	
21	0.0000	0.0000	
22	0	0.0000	
23	0	0.0000	
24	0	0.0000	
25	0	0.0000	

The values obtained for various k is almost similar for the estimate $\hat{P}(Z)$ and for the PMF P(Z)