



# **Data Driven Modeling 2: Classification**

Himaghna Bhattacharjee



"To be or not to be..."







### Classification



#### Regression

What is the temperature going to be tomorrow?





#### Classification

Will it be Cold or Hot tomorrow?



 Classification is the machine learning task where you want to predict a categorical output, called a 'class'

Examples

-----

Is a catalyst good, bad or average?

Classes

**Good Average Bad** 

Is the flow laminar or turbulent?

Classes

**Laminar Turbulent** 





# **Logistic Regression**



Logistic regression is a linear model for binary classification



### **Random Forest**



#### **A Random Forest**



- Random forest uses a collection of decision trees to classify a sample
- Can be used for multiclass classification





## **Confusion Matrix**







### **Measures and Metrics**

Accuracy:  $\frac{Correct\ Predictions}{Total\ Predictions}$ 

Precision and Recall curve are good measures for imbalanced datasets with lot of negatives



Precision:  $\frac{True\ Positive}{True\ Positive + False\ Positive}$ 









# **Problem Set-up**

• We will look at the California dataset and instead of predicting exact house price (regression), we will predict if a house has a high or low price (classification) based on some cutoff value.