A 2.7.) (.)

Gesucht:
$$K_{0}p_{0} = 1494$$
 $\mathcal{C} \rightarrow \mathcal{O}$

$$C_{0} = \lim_{R \to \infty} \mathbb{B} \cdot (d(n + \frac{s}{x}))$$

$$= \lim_{R \to \infty} \mathbb{B} \cdot (d(1 + \frac{s}{2 \cdot \mathbb{B} \cdot w_{0}}))$$

$$= \frac{Ld(e)}{2} \cdot \frac{s}{w_{0}} \qquad | s = (\frac{s}{x})_{a,j} \cdot N_{a,j} \rangle$$

$$= \frac{Ld(e)}{2} \cdot (\frac{s}{x})_{a,j} \cdot 2 \cdot \mathbb{B}_{a,j} \cdot w_{0}$$

$$= \frac{Ld(e)}{2} \cdot (\frac{s}{x})_{a,j} \cdot 2 \cdot \mathbb{B}_{a,j} \cdot w_{0}$$

$$= \frac{Ld(e)}{2} \cdot (\frac{s}{x})_{a,j} \cdot \mathbb{B}_{a,j} \cdot \mathbb{B}_{a,j}$$

$$= \frac{Ld(e)}{2} \cdot (\frac{s}{x})_{a,j} \cdot \mathbb{B}_{a,j$$

$$N_2 \cdot R = C_{\infty}$$

$$=> N_2 = \frac{C_{\infty}}{R} = \frac{7213,48}{>34,42} = \frac{Mbst}{s} = 208,57$$

$$=> N_2 = 209$$

1.3.1.1 Codierung dishreter auellen
- Zielsetzung: Codierung etrer Menge
von Ereignissen mit untersch.

fullritts wahrsch., so zu koellerun,

dass die Datenrate möglichst gering wird. -> Grenzwert: withlere Intermations-

gehalt (i. A. wicht everilit)

- Vorgelen: - Zuterlung unterschiedlichten

langer Goberörter entsprechend

Auftritts wahrscheinlich kerten

- Jecle Pitstelle enthalt mög Uchst

greßen Intornations gehelt

-> Zuständle o" und "1" sollen

mög Uchst gleschnahrsch.

auftrefen.

a.) besucht: - Huffman Coole fir bejole Quellen - reletive Code redemdanzen,

Quelle 1: $S_{s}^{(1)} \mid P(S_{s}^{(1)}) \mid S_{s}^{(2)} \mid P(S_{s}^{(2)})$ $0, 5 \mid T \mid 0, 5 \mid T$ $0, 3 \mid T \mid 0, 5 \mid T$ $0, 2 \mid T \mid T$

· ;	p(S;)	X,	w;	p(s;) · w;
1	0,3	11	2	0,6
2	0,5	O	1	0,5
3	0,2	10	2	0,4

Mittlere Coclemant lange:
$$L_1 = E \{ u_i \}$$

$$= \{ \{ \{ \{ \{ \{ \} \} \} \} \} \}$$

$$= \{ \{ \{ \{ \{ \} \} \} \} \}$$

$$= \{ \{ \{ \{ \{ \} \} \} \} \}$$

$$= \{ \{ \{ \{ \} \} \} \}$$

Me Entrople:
$$W_n = -\frac{3}{2} P(s_i) \left(d \left(P(s_i) \right) \right)$$

$$= 1,486 \frac{b17}{symbolis}$$

Coole - Redundanz:
$$V_{c_1} = \frac{L_1 - W_1}{W_1} \cdot 100\%$$

$$= \frac{1.5 - 1.486}{7.486} \cdot 100\%$$

$$= 0.54\%$$

Quelle Z	p(s; (4))	5, (2)	P(s,(2))
6	0,4	Ī	0,677
5	0,357	6	0,4
4	0.52 7	多	

Entscheidengs bann:

S ;	X;	w.	vidlere Coolenot länge:
4	10	2	L2 = 7.0,25 + 7.0,35 + 0,4
5	11	2	= 1,6 bit symbol
6	0	1	

Entropte:
$$W_2 = 1,56 \frac{257}{5 \text{ symbol}}$$

Cocle-Redundanz: $V_{C_2} = \frac{1,6-7,56}{7,56} = 100\%$

= 2,56%

$$P(25) = P(2) \cdot P(5) = 0.5 \cdot 0.35 = 0.775$$

 $P(34) = P(2) \cdot P(4) = 0.7 \cdot 0.25 = 0.05$

$$[8(x,y)] = \frac{4 5 6}{10,075 0,705 0,72}$$

$$\frac{10,725 0,775 0,7}{10,05 0,07 0,08}$$

KT GÜZ

5;(1)	P(s; (-1)); (s)	p(s, (c))
76	0,2	76	0, 2
25	0,175	2 2	0,775
? 4	0,125	2 4	0,725
16	0,12	I	0,72
15	0,105	76	0,12
36	0,08	75	0,705
14	0,075	36	0,08 4
35	0,0 7 7	14	0,075 10
3 Y	0,07	*	
5; (3)	P(5,(21)	5, (4)	P(s; (4))
76	0,2	111	0,275
25	0,775	26	0, 2
I	0,155	75	0,775
24	0,125	M	0,755
I	0,12	74	0,725 17 10
16	0,705 10	$\widehat{\mathcal{J}}$	0,12 -0
15	0,765 10		
5,(5)	P(s;(s))	(6)	P(5:(6))
IN	0,245	V	0,33
III	0,225	IV	0,245
26	0,2	111	0,225 T 7 0,2 To
75	0,785] 7	56	0,2 10
1	0,755 10		

Ent schaleungs bources:

Sï	P(s;)	Xi	w;	P(s;) w;
76	0,2	00	7	0,4
2 5	0,775	111	3	0,525
24	0,125	101	3	0,375
16	0,72	011	3	0,36
15	0,705	010	I	0,315
36	0,08	1101	ч	0,32
14	0,075	1100	4	0,3
35	0,07	1001	4	0,28
34	0,05	1000	4	0,7
	1	1		

Kr Güz

d.) Cosedet: Welde Cooltering ist gunstiger?

Millere Coole wort lange des Cooles fin zuers tellige zahlen

Les = \(\rangle p(s;) \cdot w; = 3,075 \frac{217}{5ymbol}

restlere Coolenast Ginge der baiden Cooles fix et a stellige Zablen

La. = 1 - + 2= 3,7 Doppelsymbol

=> Dre Contreving von zneistelligen Zablen 18t etwas geinstigen, da La, < La, Addi Kir di

