Vector Space Models

Practical Approaches to Data Science with Text

Emory University

Jinho D. Choi

Document Representation

How to represent a document in a vector space?

dimension = size of the vocabulary

Bag-of-Words

Bag-of-Words

```
Jinho Choi is a professor at Emory University.

Prof. Choi teaches computer science.

Dr. Choi 's research is on natural language processing.
```


Are all words equally important?

Bag-of-Words

Jinho Choi is a professor at Emory University .

Prof. Choi teaches computer science .

Dr. Choi 's research is on natural language processing .

Out of 10 documents:

"" appears in IO documents"Choi" appears in I document"is" appears in 7 documents"Emory" appears in 2 documents

Document Frequency

TF-IDF

Given a set of documents D:

Term Frequency of w in $d \in D = \#$ of times that w appears in d

Document Frequency of $w \in D = \#$ of documents that w appears

$$\operatorname{tf} \cdot \operatorname{idf}_{w,d} = \operatorname{tf}_{w,d} \cdot \log \frac{|D|}{\operatorname{df}_w}$$

Inverse Document Frequency

normalized
$$\operatorname{ntf}_{w,d} = \alpha + (1 - \alpha) \frac{\operatorname{tf}_{w,d}}{\operatorname{tf}_{\max}(d)}$$

Document Similarity

Compare two documents in a vector space?

I like this movie very much

Euclidean distance

$$\|\mathbf{p} - \mathbf{q}\| = \sqrt{2}$$

Cosine similarity

$$\frac{p \cdot q}{\|p\| \|q\|} = \frac{4}{\sqrt{6} \cdot \sqrt{6}} = \frac{2}{3}$$

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I hate this movie so much

Document Similarity

I like this movie very much

I hate this movie so much

I like this movie very much I like this movie very much I like this movie very much

$$euc(p, q) = 2$$

 $euc(p, r) = 4.90$

$$cos(p, q) = 0.67$$

 $cos(p, r) = 1$

Document Similarity

I like this movie very much

I hate this movie so much vs. I love this movie so much

 $\operatorname{euc}(p,q) \approx \operatorname{euc}(p,r)$

$$\cos(p,q) \approx \cos(p,r)$$

Shouldn't this be more similar?

Represent documents using word embeddings!

Clustering

Group vectors together by their similarities.

Partition-based

K-means

Hierarchical

Agglomerative

Density-based

DBSCAN

K-Means Clustering

Expectation Maximization EM algorithm!

best we can do?

Pick random k vectors.

These represent centroids.

For each vector, group it with its nearest centroid.

Find centroids.

Centroids don't have to be the actual vectors.

Repeat until converges.

K-Means++ Clustering

Introduce a random vector c as the first centroid.

Measure the distance between every vertex x to its nearest centroid c.

$$D(x) = \min_{\forall c} dist(x, c)$$

Measure the distance probability for each vertex x.

$$P(x) = \frac{D(x)^2}{\sum_{\forall x} D(x)^2}$$

Measure the cumulative probability for each vertex x.

$$C(x_0) = 0$$
 $C(x_i) = \sum_{j=1}^{i} P(x_j)$

Pick a random number r in (0, 1].

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering

Initially, each vector becomes a cluster.

Measure the similarity between every pair of clusters.

Create a new cluster by merging two clusters that are most similar.

Measure the similarity between the new cluster and every other cluster.

Purity Score

How to evaluate clusters?

Count of the genre with the maximum documents

Purity =
$$(4 + 3 + 4) / 19$$

