#### 1

# 5 V Charger Using a Low Pass Filter

## Gautam Singh

#### **CONTENTS**

| 1<br>2<br>3 | Materials Used Circuit Diagram Working |           | 1<br>1<br>1 |  |     |                              |   |
|-------------|----------------------------------------|-----------|-------------|--|-----|------------------------------|---|
|             |                                        |           |             |  | 3.1 | Step-down Transformer        | 1 |
|             |                                        |           |             |  | 3.2 | Full-wave Bridge Rectifier . | 1 |
|             | 3.3                                    | Capacitor | 1           |  |     |                              |   |
|             | 3.4                                    | Regulator | 1           |  |     |                              |   |
| 4           | Observations                           |           | 2           |  |     |                              |   |

#### **Observations** 4

#### 5 Result 2

Abstract—This is a lab report on the realization of a 5 V charger using a low pass analog filter.

#### 1 Materials Used

The key components of the charging circuit are:

- 1) Step-down transformer (12-0-12)
- 2) Full-wave bridge rectifier
- 3) RC filtering circuit
- 4) 5 V Regulator (7805)
- 5) 4 diodes and a 100  $\mu$ F capacitor
- 6) Multimeter
- 7) Cathode Ray Oscilloscope

#### 2 CIRCUIT DIAGRAM

The schematic diagram of the entire circuit is shown in Fig. 2.1.

#### 3 Working

### 3.1 Step-down Transformer

The step-down transformer was used to convert the 230 V AC mains voltage to 12 V AC. The transformed voltage is given by

$$v(t) = 12\sqrt{2}\sin(100\pi t + \phi) V$$



Fig. 2.1: Schematic diagram of the circuit.



Fig. 3.1: Transformer Readings

# 3.2 Full-wave Bridge Rectifier

The full-wave bridge rectifier was used to convert the AC voltage to DC.

$$v(t) = 12 \sqrt{2} |\sin(100\pi t + \phi)| \text{ V}$$

#### 3.3 Capacitor

The capacitor is used as a low-pass filter to choose only the zero frequency component converting the signal into a pure DC voltage  $12\sqrt{2}$  V.

#### 3.4 Regulator

The regulator is used to convert the DC voltage to a fixed voltage of 5 V.



Fig. 3.2: Half Wave Rectified Voltage



Fig. 3.3: Fully Rectified Voltage

## 4 Observations

- 1) Peak voltage after transformer and rectifier stage,  $V_p = 18 \text{ V}$ .
- 2) DC component after filter stage,  $V_{DC} = 18 \text{ V}$ .
- 3) DC component after regulator stage,  $V'_{DC} = 5 \text{ V}$ .

#### 5 Result

Once the circuit is assembled and soldered and the output voltage is measured to be 5 V DC, the circuit is ready to be used.

Using a USB cable, the circuit can be used to charge a mobile phone or any other device. An image of the circuit being used to charge a mobile phone is shown in Fig. 5.1.



Fig. 5.1: Mobile Charging