Building Regression Models

Types of Machine Learning Problems

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Regression

Clustering

Dimensionality reduction

X Causes Y

Cause

Independent variable

Effect

Dependent variable

X Causes Y

Cause

Explanatory variable

Effect

Dependent variable

The "Best" Regression Line

The "Best" Regression Line

Linear regression involves finding the "best fit" line

The "Best" Regression Line

Let's compare two lines, Line 1 and Line 2

Drop vertical lines from each point to the lines 1 and 2

Drop vertical lines from each point to the lines 1 and 2

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines are minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines are minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines are minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors are minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors are minimum