1. Понятие компьютерной сети.

Под компьютерной сетью понимают совокупность различных технических средств (то есть самих компьютеров и другого оборудования), предназначенная для передачи компьютерной информации на относительно большие расстояния (за пределы компьютеров).

В основе лежит сеть передачи данных (СПД), которая может задействовать различные среды передачи данных (СрПД).

СрПД соответствует физ. уровню. Модели OSI.

2. Классификация компьютерных сетей.

КС бывают:

- PAN персональные (подключение устройств к ПК/телефону)
- LAN локальные (охватывают территорию не более кампуса (eduroam))
- МАМ городские (по всему городу. Тв, передача новостей)
- WAN глобальные (континент или более)
- RAN Remote access. Подключение удалённого пользователя.
- Home networks
- Datacenters networks
- Industrial networks

С другой стороны,

- Intranets внутренние КС предприятий и организация
- Internets публичные сети.

Могут быть:

- Изолированными закрытыми для прослушивания
- Открытыми для прослушивания

С точки зрения взаимодействия:

- Сильносвязанными
- Слабосвязанными

3. Стандарты компьютерных сетей.

Все стандарты разбиваются на три группы: EN — Европейские, ANSI - Американские, ISO — международные. Стандарты лишь формализуют определённые требования к компьютерной сети. Могут носить предварительный (preliminary) или временный (interim) характер. Могут включать дополнения (annexes) и списки обнаруженных ошибок (errata). Также могут замещаться другими стандартами (obsolete).

802.Х – серия стандартов, посвящённая КС. Сейчас наиболее популярны и интересны:

- 802.3 Ethernet
- 802.11 WiFi
- 802.16 WiMax

Данные стандарты поддерживаются вплоть с 80-х годов.

4. Наиболее распространенные модели компьютерных сетей.

Наиболее распространенная – модель взаимодействия систем (open system interconnection), разработанная ISO.

Модель включает 7 уровней (физический, канальный, сетевой, транспортный, сессии, представления, приложения). На верхушке находится человек, но пользователями уровней всё так же являются программы.

Взаимодействие в OSI может быть вертикальным и горизонтальным.

- Интерфейс взаимодействие между соединениями на одном уровне (горизонтальное)
- Протокол взаимодействие между разными уровнями OSI (вертикальное).

Также существует модель ТСР/ІР. Связана с одноимённым протоколом.

Главная отличительная особенность – Network-access и application-уровни.

Cisco также на основе многолетнего опыта разработала собственную иерархическую модель.

Три уровня:

- 1) Access уровень доступа (подключение к КС оконечных пользователей)
- 2) Distribution уровень распределения (обеспечение взаимодействия в пределах групп пользователей)
- 3) Соге ядра (обеспечение высокоскоростной связи)

5. Физический уровень модели OSI.

На физическом уровне формализуют подключение сетевого устройства к КС. В пространстве представляется точкой подключения к КС. Специфические понятия: среда, разъём (физ. порт), несущая частота, модуляция, сигнал. Описывает способы передачи бит (а не пакетов!), через физические линии связи.

6. Канальный уровень модели OSI.

На канальном уровне формализуют взаимодействие между узлами (станциями), находящимися в одном сегменте сети.

Специфические понятия канального уровня:

- Сегмент множество станций (любое устройство, принимающее трафик), объединённых одной СрПД, которые видят друг друга непосредственно.
- Физ. и лог. топология сегмента
- Бит- байт- стаффинг
- Пакет (кадр)
- Канальный код
- Код проверки целостности
- Алгоритм доступа к моноканалу

Канальный уровень разделяют на два подуровня:

- MAC (Media Access Network) контроль доступа к СрПД.
- LLC (Logical Link Control) контроль логического соединения.

На подуровне МАС осуществляется взаимодействие с физическим уровнем, такие как формирование и распознавание пакетов, адресация, канальное кодирование.

На LLC осуществляется взаимодействие с сетевым уровнем, такие как разбиение на пакеты, сборка данных из пакетов, определение подсистемы и другие.

7. Сетевой уровень модели OSI.

Сетевой уровень позволяет «выйти» за пределы сегмента. Предназначается для определения пути передачи данных.

На сетевом уровне формализуют построение полноценной КС, охватывающей произвольное количество сегментов.

Специфическими понятиями сетевого уровня являются:

- пакет (собственно пакет);
- адресация в пределах всей КС;
- маршрутизация.

8. Транспортный и сеансовый уровни модели OSI.

Транспортный уровень позволяет перейти от оборудования к программам. На нём формализуют использование ПО сетевым оборудованием, т.е. как отдельно взятым программам использовать «транспорт». Предназначен для доставки данных

Спец. понятия: пакет (сегмент сообщения), программный порт, логическое соединение, надёжность доставки, алгоритм борьбы с заторами в СПД.

Уровень сессии позволяет предоставлять программам доступ к транспорту в промежутках длительного времени (сессии).

Кроме сессии есть ещё два основных понятия: программный порт, алгоритм мультиплексирования программ. В практических реализациях обычно совмещён с транспортным.

9. Прикладной уровень и уровень представления модели OSI

Уровень представления (presentation) адаптирует прикладную информацию в форму, пригодную для передачи по КС, т.е. это прослойка между программами и транспортом. Основные понятия: кодирование информации с целью обеспечения правильной интерпретации в последующем, шифрование информации с целью защиты при пересылке по открытым для прослушивания сетям.

Прикладной уровень (application) является интерфейсом обмена между приложением и компь.терной сетью. Специфических понятий множество, и они зависят от решаемой задачи, например, пересылка файлов, мгновенная пересылка голоса и видео, пересылка сообщений и т.д.

10. Семейство протоколов ТСР/ІР

Протоколы TCP/IP – сетевая модель, описывающая процесс передачи цифровых данных. Она названа по двум главным протоколам, по этой модели построена глобальная сеть интернет.

Также есть модель IPX/SPX, но в настоящее время TCP/IP полностью доминирует.

Application Presentation	FTP	Telne	t	SMTP		DNS	нттр	
Session Transport	TCP				UDP			
	ICMP	ICMP RIP OSF			F			
Network	IP							
	ARP				RARP			
Datalink Physical	Etherne	rnet Tok				FR		