Introdución al Álgebra Lineal (Strang): Revisión de Ideas Claves

Ciencias de la Computación V

10 de abril de 2016

1. Capitulo 1 Introducción a vectores

1.1. Vectores y convinaciones lienales

- Un vector v en el espacio de dos dimensiones tiene dos componentes v_1 y v_2 .
- $v + w = (v_1 + w_1, v_2 + w_2)$ y $cv = (cv_1, cv_2)$ se halla un componente por vez.
- La convinación lineal de tres vectores u, v y w es cu + cv + cw.
- Se toma todas las combinaciones lineales de u o u y v o u, v, w. En tres dimensiones estas combinaciones suelen ocupar una linea, luego un plano y todo el espacio \mathbb{R}^3 .

1.2. Longitud y producto punto

- El producto punto $v \cdot w$ multiplica cada componente v_i por w_i y adiciona todo $v_i w_i$.
- La longitud ||v|| de un vector es la raíz cuadrada de $v \cdot v$.
- u = v/||v|| es un vector unitario. Su longitud es 1.
- El producto punto es $v \cdot w = 0$ cuando el vector v y w son perpendiculares.
- El coseno de Θ (el angulo entre cualquier v y w distinto de cero) nunca excede 1:

 $cos\Theta = \frac{v \cdot w}{\|v\| \|w\|}$

Desigualdad de Schwarz

$$|v \cdot w| \le ||v|| ||w||$$

El problema 21 produce la desigualdad del triangulo $||v+w|| \le ||v|| + ||w||$

1.3. Matrices

- Matrix times vector: Ax = combinación de las columnas de A.
- La solución a Ax = b es $x = A^{-1}b$, cuando A es una matriz invertible.
- La matriz de diferencia A se invierte por la matriz suma $S0A^{-1}$.
- Las matrices cíclicas son no invertibles. Sus tres columnas se encuentran en el mismo plano. Estas columnas dependientes se adhieren al vector cero. Cx = 0 tiene muchas soluciones.

2. Capitulo 2 Solución de ecuaciones lineales

2.1. Vectores y ecuaciones lineales

- Las operaciones básicas sobre vectores son la multiplicación por escalar y la adición de vectores.
- La utilización de la multiplicación por escalar y la suma conforman una combinación lineal. Ej: cv+dw.
- La matriz de multiplicación Ax, puede ser computada utilizando productos puntos, una fila a la vez. Pero Ax debe ser entendido como una combinación de columnas de A.
- AX=b, "b" es una combinación lineal de las columnas de la matriz de A.
- \blacksquare Cada ecuación en Ax=b da una línea (n=2) o un plano (n=3) o un hiperplano cuando (n>3)

2.2. La idea de la eliminación

- Un sistema Ax=b se transforma en un sistema triangular Ux=c, luego de la eliminación.
- \bullet Se sustrae $l_{ij} = \frac{entrada eliminar en fila i}{pivot en fila j}$
- Un vector cero en una posición pivot puede ser reparado si hay un no cero abajo.
- Un sistema triangular superior es resuelto por sustitución hacia atrás.
- Cuando un corte es permanente, el sistema puede no tener solución o muchas soluciones.

2.3. Eliminación usando matrices

- $Ax = x_1$ veces las columnas $1 + \cdots + x_n$ veces la columna n. $\sum_{j=1}^n a_{ij}x_j$.
- Multiplicando Ax = b por E_{21} sustrae un múltiplo l_{21} de la ecuación 1 de la ecuación 2. El número $-l_{21}$ es la entrada (2,1) de la matriz de eliminación E_{21} .
- Para una matriz aumentada [Ab], el paso de eliminación da $[E_{21}AE_{21}b]$.
- Cuando se multiplica A por cualquier matriz B esta multiplica cada columna de B por separado.

2.4. Reglas para operaciones de metrices

- lacktriangle Las entradas (i,j) de AB es (fila de i de A) . (columna j de B).
- Una matriz de m x n veces por una matriz n x p usa mnp multiplicaciones separadas.
- AB es también la suma de estas matrices: (columna de j de A) veces (fila de j de B).
- La multiplicación por bloque es permitida cuando las figuras coinciden correctamente.
- La eliminación por bloque produce el complemento $D CA^{-1}B$.

2.5. Matriz inversa

- La matriz inversa esta dada por $AA^{-1} = I$ y $A^{-1}A = I$.
- A es invertible si y solo si tiene n pivots (con intercambios de filas permitios).
- Si Ax = 0 para un vector x distinto de 0, entonces A no es invertible.
- La inversa de AB es el producto de $B^{-1}A^{-1}$. Y $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.
- El método Gauss-Jordan resuelve $AA^{-1} = I$ para encontrar las n columnas de A^{-1} . La matriz aumentada [AI] esta reducida a la fina $[IA^{-1}]$.

2.6. Factorización A=LU

- La eliminación gaussiana(sin cambio de filas) factorea A en L veces U.
- La matriz triangular inferior L contiene los números l_{ij} que multiplica las filas pivots, desde A produciendo U. El producto LU agrega las filas para recuperar A.
- En el lado derecho se resuelve Lc = b (forward) yUx = c (backward).

- Factor: Existe un $\frac{1}{3}(n^3 n)$ multiplicaciones y substracciones del lado izquierdo.
- Solución:Existe un n^2 multiplicaciones y substracciones en el lado derecho. Para una matriz banda, cambiar $\frac{1}{3}n^3$ a nw^2 y cambia n^2 a 2wn.

2.7. Transpuesta

La transpuesta coloca las filas de A en columnas de A^T . Entonces $(A_{ij}^T=A_{ji})$. Las transpuesta de AB es B^TA^T . La transpuesta de A^{-1} es la inversa de A^T . El producto punto es $x\cdot y=x^Ty$. Entonces $(Ax)^Ty$ es igual al producto punto de $x^T(A^Ty)$. Cuando una matriz es simétrica $(A^T=A)$, su factorización LDU es simétrica: $A=LDL^T$. Una matriz de permutación P tiene uno en una fila y columna y $P^T=P^{-1}$. Existen n! matrices de permutaciones del tamaño de n. Mitad par y mitad impar. Si A es invertible, entonces la permutación P reordenando sus filas es PA=LU.

3. Capitulo 3 Vectores y Subespacios

Autor: Luis Esteban Martínez Lailla stban06@gmail.com, Facultad Politécnica - Universidad Nacional de Asunción.

3.1. 3.1 - Espacios de Vectores

Definición 1 El espacio \mathbb{R}^n consiste en todos los vectores columnas con n componentes.

 $M \Rightarrow$ El espacio vector de todas las matrices 2x2. $F \Rightarrow$ El espacio vector de todas las funciones reales (f(x)). $Z \Rightarrow$ El espacio vector que consiste en solo el vector cero.

Definición 2 Un subespacio de un espacio vector es un grupo de vectores (incluyendo 0) que satisfaga 2 requerimientos:

- 1. V + W está en el subespacio.
- 2. cV está en el subespacio.

Un subespacio que contiene V y W, debe contener todas las combinaciones lineales cV + dW.

Definición 3 El espacio columna consiste en todas las combinaciones lineales de las columnas. Las combinaciones son todos los posibles vectores Ax. Estos llenan el espacio columna C(A)

"Ax=b tiene solución si y solo si b está en el espacio columna de A."

3.2. El espacio nulo de A: Resolviendo Ax=0

- 1. El espacio nulo de A "N(A)" contiene todas las soluciones tales que Ax=0.
- 2. La eliminación produce una matriz echelon U, y entonces una fila reducida R, con columnas pivots y columnas libres.
- 3. Cada columna libre de U o R lleva a una solución especial. La variable libre se iguala a 1 y las otras variables libres a 0. La sustitución por atrás resuelve Ax=0.
- La solución completa a Ax=0 es una combinación de las soluciones especiales.
- 5. Si n > m entonces A tiene al menos una columna sin pivot, dando una solución especial. Por lo que hay vectores x diferentes de cero en el espacio nulo de esta matriz A rectangular.

3.3. El rango y la forma reducida de fila

- 1. El rango (r) de A es el número de pivots después de la eliminación.
- 2. El rango es la dimensión del espacio columna. r = dim(C(A))
- 3. Las columnas pivots no son combinaciones de otras columnas.
- 4. Las columnas libres son combinaciones de otras columnas. Estas combinaciones son las soluciones especiales.
- 5. Ax=0 tiene r pivots y n-r variables libres.
- 6. La matriz del espacio nulo N contiene las n-r soluciones especiales. Entonces $\mathrm{AN}{=}0.$

3.4. La solución completa de Ax=b

X particular soluciona $Ax_p = b$.

X null soluciona $Ax_n = 0$

La solución completa $X = x_p + x_n$.

3.4.1. Full column rank (r=n)

- Todas las columnas de A son columnas pivot.
- No hay variables libres o soluciones especiales.
- El espacio nulo N(A) contiene solo el vector cero.
- Si Ax=b tiene solución (puede no tener) entonces es única.

3.4.2. Full row rank (r=m)

- Todas las filas tienen pivots, y R no tiene fila de cero.
- Ax=b tiene una solución por cada lado derecho b.
- El espacio columna es todo el espacio R^m .
- Existen n-r=n-m soluciones especiales en el espacio nulo de A.

3.5. Independencia, bases y dimensión

Cada vector en el espacio es una combinación única de los vectores bases.

Definición 4 Las columnas de A son linealmente independientes cuando la única solución a Ax=0 es x=0. Ninguna otra combinación Ax de las columnas dan el vector cero.

Definición 5 La secuencia de vectores V_1, V_2, \ldots, V_n es linealmente independiente si la única combinación que genera el vector cero es $0V_1 + 0V_2 + \ldots + 0V_n$.

Definición 6 Un conjunto de vectores generan un espacio si las combinaciones lineales llenan el espacio.

Definición 7 El espacio fila de una matriz es el subespacio de \mathbb{R}^n generado por las filas.

El espacio fila de A es $C(A^T)$. Esto es el espacio columna de A^T .

- Los vectores bases son L.I y ellos generan el espacio.
- Los vectores $V_1, ..., V_n$ son bases para \mathbb{R}^n exactamente cuando ellos son las columnas de una matriz invertible nxn. Entonces \mathbb{R}^n tiene infinitas y diferentes bases.
- Las columnas pivots son una base para su espacio columna. Las filas pivots de A son una base para su espacio fila.

Definición 8 La dimensión de un espacio es el número de vectores de la base.

3.6. 3.6 - Dimensiones de los cuatro subespacios

- 1. El espacio fila es $C(A^T)$, un subespacio de \mathbb{R}^n .
- 2. El espacio columna es C(A), un subespacio de R^m .
- 3. El espacio nulo es N(A), un subespacio de \mathbb{R}^n .
- 4. El espacio nulo izquierdo es $N(A^T)$, un subespacio de R^m .

Obs. Ver el big picture.

3.6.1. Teorema fundamental del Algebra Lineal, Parte I

C(A) y $C(A^T)$ tienen la misma dimensión r. N(A) y $N(A^T)$ tienen dimensiones n-r y m-r.

4. Capitulo 4 Ortogonalidad

4.1. La ortogonalidad de los cuatro subespacios

- Subespacios V y W son ortogonales si cada v en V es ortogonal a cada w en W.
- V y W son complementos ortogonales si W contiene todos los vectores perpendiculares a V (y viceversa). Dentro \mathbb{R}^n , las dimensiones de complementos V y W se suman a n.
- El espacio nulo N (A) y el espacio de la fila C (A^T) son complementos ortogonales, de Ax = 0. Del mismo modo N (A^T) y C (A) son complementos ortogonales.
- n vectores independientes en \mathbb{R}^n abarcarán (span) \mathbb{R}^n .
- Cada x en \mathbb{R}^n tiene un componente x_n en el espacio nulo y un componente x_r en el espacio fila.

4.2. Proyecciones

- La proyección de b sobre a es $p = a\hat{x} = a(a^Tb/a^Ta)$
- El rango de una matriz de proyección $P = aa^T/a^Ta$ multiplica b para producir p.
- b proyectar sobre un subespacio deja e=b-p perpendicular al subespacio.
- La matriz de proyección $P = A(A^TA)^{-1}A^T$ tiene $P^T = P$ y $P^2 = P$.

4.3. Aproximaciones por mínimos cuadrados

- La solución por mínimos cuadrados \hat{x} ocurre cuando se minimiza $E = \|Ax b\|^2$. Esta es la suma de los cuadrados de los errores en las m ecuaciones (m > n).
- La mejor \hat{x} proviene de las ecuaciones normales $A^T A \hat{x} = A^T b$.
- \blacksquare Para encajar m
 puntos por una línea b=C+Dt,las ecuaciones normales estan dadas por
 Cy D.

- Las alturas de la mejor línea son $p = (p_1, \dots, p_m)$. Las distancias verticales a los puntos de datos son los errores $e = (e_1, \dots, e_m)$.
- Si tratamos de encajar m puntos por la combinación de n < m funciones, las m ecuaciones Ax = b son generalmente insolubles. Las n ecuaciones $A^T A \widehat{x} = A^T b$ dan la solución de mínimos cuadrados.

4.4. Base ortogonal y Gram-Schmidt

- Si los vectores ortonormales q_1, \ldots, q_n son las columnas de Q, entonces $q_i^T q_i = 0$ y $q_i^T q_i = 1$ se traducen en $Q^T Q = I$.
- Si Q es cuadrada (una matriz ortogonal), entonces $Q^T = Q^{-1}$: transpuesta = inversa.
- La longitud de Qx es igual a la longitud de x: ||Qx|| = ||x||.
- La solución de mínimos cuadrados de Qx = b es $\hat{x} = Q^T b$. La proyección sobre el espacio columna que es abarcado por las q es $P = QQ^T$.
- Q también preserva los productos punto: $(Qx)^T(Qy) = x^TQ^TQY = x^Ty$.
- Si Q es cuadrada entonces P = I y todos los $b = q_1(q_1^T b) + \ldots + q_n(q_n^T b)$.
- Gram-Schmidt produce vectores ortonormales q_1, q_2, q_3Q1 , Q2, Q3 de ser independiente a, b, c. La factorización de la matriz es A = QR = (Q ortogonal) (R triangular).
- El proceso de Gram-Schmidt: Primero se elige A = a. La siguiente dirección B debe ser perpendicular a A. Se inicia con b y se substrae la proyección sobre A. Ésto es:

$$B = b - \frac{A^T b}{A^T A} A.$$

A es ortogonal a B. Siguiente paso:

$$C = c - \frac{A^T c}{A^T A} A - \frac{B^T c}{B^T B} B.$$

Finalmente, dividir los vectores ortogonales A, B, C... por sus longitudes. Los vectores resultantes $q_1, q_2, ...$ son ortonormales.

5. Capitulo 5 Determinante

5.1. Propiedades de las determinates

- El determinante se define por $det\ I=1$, inversión de signo y la linealidad en cada fila.
- Después de de la eliminación $\det A$ es \pm (producto de los pivots).
- \blacksquare La determinante es exactamente cero cuando A es no invertible.
- Dos propiedades notables son det AB = (det A)(det B) y $det A^T = det A$.

5.2. Permutaciones y cofactores

- Sin intercambio de filas $det A = (producto \ de \ pivots)$. En la esquina superior izquierda $det \ A_k = (producto \ de \ los \ primeros \ k \ pivots)$.
- Cada término en la gran fórmula (8) utiliza cada fila y columna de una vez. La mitad de los n! términos tienen signos + (cuando $det\ P=+1$) y la otra mitad tiene signo menos.
- El cofactor c_{ij} es $(-1)^{i+j}$ veces la determinante más pequeña que omite la fila i y columna j (debido al uso de la columna y fila a_{ij}).
- La determinante es el producto punto de cualquier fila de A con las filas del cofactor. Cuando la fila de A tiene muchos ceros, solo necesitamos unos pocos cofactores.

5.3. Regla de Cramer, inversos y volumenes

- La regla de Cramer resuelve Ax = b por relaciones del tipo $x_1 = |B_1|/|A| = |ba_1...a_n|/|A|$.
- Cuando C es la matriz cofactor para A, la inversa es $A^{-1} = C^T/\det A$.
- \blacksquare El volumen de una caja es $|\det A|$, cuando los bordes de la caja son la fila de A
- Área y volumen son necesarios para cambiar las variables en integrales dobles y triples.
- En \mathbb{R}^3 , el producto cruz $u \times v$ es perpendicular a $u \neq v$.

6. Capitulo 6 Valorespropios y vectorespropios

6.1. Introducción a valorespropios

- $Ax = \lambda x$ dice que el vectorpropio x mantiene la misma dirección cuando se multiplica por A.
- $Ax = \lambda x$ también dice que $det(A \lambda I) = 0$. Esto determina n valores propios.
- Los valores propios de A^2yA^{-1} son λ^2 y λ^{-1} , con igual vectorpropio.
- La suma de $\lambda's$ es igual a la suma de la diagonal principal de A (The trace). El producto de $\lambda's$ es igual a la determinante.
- Matriz de proyección P, motriz de reflexión R, matriz de rotación 90° Q tiene valorespropios especiales 1, 0, −1, i, -i. Una matriz singular tiene $\lambda = 0$. Una matriz triangular tiene $\lambda's$ en su diagonal.

6.2. Diagonalizar una matriz

■ Si A tiene n vectorespropios independiente $x_1, ..., x_n$, estos entran en el espacio columna de S.

$$S^{-1}AS = \Lambda$$

$$A = S\Lambda S^{-1}$$

- Las potencias de A son $A^k = S\Lambda^k S^{-1}$. Los vectores propios de S no se han modificado.
- Los valores propios de A^k son $(\lambda_1)^k, ..., (\lambda_n)^k$ en la matriz Λ^k .
- La solución a $u_{k+1} = Au_k$ empezando desde u_0 es $U_k = A^k u_0 = S\Lambda S^{-1} u_0$:

$$u_k = c_1(\lambda)^k x_1 + \dots + c_n(\lambda)^k x_n$$

siempre que

$$u_0 = c_1 x_1 + \dots + c_n x_n$$

Esto muestran los pasos 1, 2, 3 (c's desde $S^{-1}u_0$, λ^k desde Λ^k y x's desde S).

• A es diagonalizable si cada valor propio tiene suficientes vectores propios (GM=AM).

6.3. Aplicación a ecuaciones diferenciales

- La ecuación u' = Au es lineal con coeficientes constantes, empezando desde u(0).
- \blacksquare Su solución es por lo general una combinación de exponenciales, implicando cada λ y x:

Vectorespropios independientes

$$u(t) = c_1 e^{\lambda_1 t} x_1 + \dots + c_n e^{\lambda_n t} x_n$$

- Las constantes $c_1, ..., c_n$ son determinadas por $u(0) = c_1 x_1 + \cdots + c_n x_n = Sc.$
- u(t) se aproxima a cero (estabilidad) si cada λ tiene parte real negativa.
- La solución es siempre $u(t) = e^{At}u(0)$, con la matriz exponencial e^{At} .
- Ecuaciones con y'' se reducen a u' = Au por combinación de y' e y en u = (y, y').

6.4. Matrices simetricas

- La matriz simétrica A tiene valorespropios real y vectorespropios perpendiculares.
- La diagonalización se convierte a $A = Q\Lambda Q^T$ con una matriz ortogonal Q.
- Todas las matrices simétricas son diagonalizables, incluso con valores propios repetidos.
- El signo del valorpropio coincide con el signo del pivots, cuando $A = A^T$.
- Toda matriz cuadrada puede ser "triagonalizada" por $A = QTQ^{-1}$.

6.5. Matriz defiida positiva

- Una matriz definida positiva tiene valoresprepios positivos y pivots positivos.
- Un test rápido esta dado por la determinante de la parte superior izquierda: a > 0 y $ac b^2 > 0$.
- La gráfica de $x^T A x$ es entonces un "bowl" subiendo desde $x = \mathbf{0}$:

$$x^T A x = ax^2 + 2bxy + cy^2$$

es positivo excepto en (x, y) = (0, 0).

- $A = R^T R$ es automáticamente positiva definida si R tiene columnas independientes.
- La elipse $x^T A x = 1$ tiene sus ejes a lo largo de los vectores propios de A. Con longitudes $1/\sqrt{\lambda}$.

6.6. Matrices similares

- B es similar a A si $B = M^{-1}AM$, para alguna matriz invertible M.
- Matrices similares tienen iguales valorespropios. Los vectorespropios se multiplican por M^{-1} .
- Si A tiene n vectorespropios independiente entonces A es similar a Λ (M=S).
- Cada matriz es similar a una matriz de Jordan *J* (que tiene *A* como su parte diagonal). *J* tiene un bloque para cada vectorpropio y 1's para los vectorespropios faltantes.

6.7. Descomposición en valor singular (SVD)

- El factor SVD de A en $V\Sigma V^T$ de r valores singulares $\sigma_1 \geq ... \geq \sigma_r > 0$.
- Los números $\sigma_1^2,...,\sigma_r^2$ son los vectorespropios distintos de cero de AA^T y A^TA .
- \blacksquare La columna ortonormal de U y V son vectorespropios de AA^T y A^TA .
- Esas columnas tiene bases ortonormales para los cuatro espacios fundamentales de A.
- Esas bases diagonalizan la matriz: $Av_i = \sigma_1 u_i$ para $i \leq r$. Esto es $AV = U\Sigma$.

Este material fue elaborado por:

Esteban Lailla stban06@gmail.com
Juan Carlos Miranda juancarlosmiranda81@gmail.com
Julio Mello prof.juliomello@gmail.com
Pastor Enmanuel Pérez-Estigarribia peperez.estigarribia@gmail.com
Luis G. Moré lmore@pol.una.py

Bibliografía consultada

[1] GILBERT STRANG. INTRODUCTION TO LINEAR ALGEBRA (Fourth Edition), ISBN 978-0-9802327-2-1