	Třída:
CHOMUTOV	A4
	Příjmení:
	Lacek
	CHOMUTOV ování AMS – aktivní (Keysight VEE)

Zadání:

Pomocí programu Keysight VEE změřte amplitudově-frekvenční charakteristiku dolní propusti.

Schéma:

Dolní propust:

Tabulka přístrojů:

Název přístroje	OZN	Parametry	Inventární číslo
Zdroj	U	AUL 210	LE 4 1045
Generátor	G	HP 33120A	LE 100
Číslicový voltmetr	ČV	HP 34401A	LE 94
Operační zesilovač		MAA 741CN	LE 2382
Odporová dekáda	R ₁	100 kΩ L110	LE 1 1823
Odporová dekáda	R ₂	100 kΩ L110	LE 1 1830
Kondenzátor	С	0,01 μF	_

Teorie:

Dolní propusť se používá na omezení amplitudy pro frekvence vyšší, než je mezní frekvence daná převrácenou hodnotou součinu rezistoru a kondenzátoru ve zpětné vazbě. Amplituda klesá strmostí 20 dB/dek. I pro nízké frekvence vystačíme s malou kapacitou kondenzátoru. Změnou R₁ můžeme měnit amplitudu signálu dle potřeby. Dolní propusť s operačním zesilovačem má lepší vlastnosti, než dolní propusť tvořená rezistorem a paralelně zapojeným kondenzátorem.

Postup:

- 1. Podle velikosti kondenzátoru dopočítáme velikost R_2 a podle zadaného zesílení velikost R_1 . (f = 1 kHz, A = 1)
- 2. Zapojíme obvod. Symetrický zdroj vytvoříme tak, že spojíme + a dvou stejných, galvanicky oddělených zdrojů.
- 3. V programu Keysight VEE pro si nejprve naprogramujeme funkci, která nám do grafu vykreslí asymptoty.
- 4. Naprogramujeme funkce, které budou nastavovat frekvenci, měřit výstupní napětí a zanášet do grafu hodnoty.

Výpis programu:

Parametry DP

- 1. Dotaz na zadání velikosti odporu rezistorů.
- 2. Dotaz na zadání velikosti kapacity kondenzátoru.

Data pro asymptoty

- 3. Výpočet jedné desetiny mezní frekvence.
- 4. Výpočet mezní frekvence.
- 5. Výpočet desetinásobku mezní frekvence.
- 6. Zapsání všech frekvencí do pole.
- 7. Pole se vstupními hodnotami pro osu y grafu (0 dB, 0 dB, -20 dB).

Vstupní parametry generátoru

- 8. Nastavení rozsahu a kroku měření (100 Hz až 10kHz s krokem 5 měření na dekádu).
- 9. Nastavení napětí na generátoru (sinusový průběh, maximální zatěžovací výkon, efektivní hodnota napětí, 4 V).
- 10. Změna frekvence generátoru (změna frekvence na proměnnou f-vstupní hodnotu, dotázání generátoru na jeho napětí, zapsání napětí na výstup).

Měření výstupu

- 11. Zpoždění na ustálení obvodu.
- 12. Měření napětí (dotaz voltmetru na změření napětí, zapsání změřeného napětí na výstup).
- 13. Logaritmování napětí U1 a U2.

Zobrazení výsledku

- 14. Slučuje 2 signály do jednoho.
- 15. Slučuje 2 signály do jednoho.
- 16. Pole grafu (zobrazuje asymptoty, naměřený průběh a rozdíl v mezní frekvenci)

Výpočty:

$$R_2 = \frac{1}{\omega C} = \frac{1}{2\pi f C} = \frac{1}{2\pi 10^3 * 0.01 * 10^{-6}} = 15915,494 \,\Omega$$

$$R_1 = R_2 = 15915,494 \,\Omega$$

Grafy:

FCHVLS dolní propusti s asymptotami

Závěr:

Dle předpokladu se reálná charakteristika lišila v mezní frekvenci od reálné o 3 dB. Funkce reálné charakteristiky se přibližuje k asymptotám, ale nikdy je neprotne a ani se jich nedotkne. Teoretický dotek by nastal při 0 Hz a ∞ Hz.

Při měření jsme měli problém se správným zapisováním funkcí do programu. Správný zápis jsme si dokázali osvojit rychle.

Zadání jsme splnili.