PRÁCTICA: ELECTRÓLISIS, FARADAY Y NÚMERO DE AVOGADRO

1. Objetivos

- Determinar la constante de Faraday y el número de Avogadro mediante la aplicación de las leyes de Faraday.
- Aplicar los conceptos aprendidos en gases.

2. Aspectos teóricos

Leyes de Faraday

Luego de una serie de observaciones en cuidadosos experimentos en donde se hacía pasar corriente eléctrica sobre sustancias o soluciones Michael Faraday estableció las siguientes leyes:

- 1. La cantidad de sustancia depositada sobre un electrodo en el proceso de electrólisis es proporcional a la cantidad de electricidad que pasa por la solución.
- Las masas de diferentes sustancias depositadas por la misma cantidad de electricidad son directamente proporcionales a las masas equivalentes de las sustancias; entendiéndose como masa equivalente la relación entre su peso atómico y su valencia.

Matemáticamente podemos expresar las leyes de Faraday como:

$$n = \frac{Q}{zF} = \frac{It}{zF}$$
 (Ecuación 1)

Donde:

n = Número de moles depositados o liberados

Q = Carga eléctrica que pasa a través de la solución

I = Intensidad de corriente

t = tiempo

z = número de electrones que intercambia la sustancia

F = Constante de Faraday = 96484 C mol⁻¹ = carga del electrón x número de Avogadro

 $= e N_A$

e = carga del electrón o carga fundamental= 1,602176487 × 10⁻¹⁹ C

3. Materiales y Reactivos

- Vaso de precipitado de 250 o 400 mL
- Bureta de 50 o 100 mL
- Probeta de 25 mL
- Frasco lavador
- Lámina de cobre
- Ácido sulfúrico 1M
- Alambre de cobre
- Multímetro (2)

4. Parte experimental

• Arme el montaje experimental diseñado para el desarrollo de la práctica.

Figura 1. Montaje Experimental

- Pese 0.5 g de cobre en lámina en una balanza cuya incertidumbre sea \pm 0.0001 g.
- Sujete con un alambre la lámina de cobre al extremo positivo del circuito y fijelo dentro del vaso de precipitado luego inserte otro alambre de cobre dentro de la bureta, la cual debe estar invertida.
- Arme el circuito eléctrico recordando que el amperímetro debe estar conectado en serie y que la lámina de cobre debe actuar como electrodo positivo y el alambre dentro de la bureta como electrodo negativo. Pida ayuda a su profesor.

- Agregue aproximadamente 150 mL de solución de H₂SO₄ 1M al vaso de precipitado y por succión llene toda la bureta. Asegúrese que la lámina no esté completamente sumergida y que el alambre que la sostiene no esté en contacto con la solución.
- Conecte la fuente de poder (voltaje óptimo 7.5 a 9.0 V) y de inmediato empiece a registrar el tiempo al igual que la intensidad de corriente en amperios hasta obtener un volumen de gas dentro de la bureta del orden de los 20 mL.
- Apague la fuente y espere unos 60 segundos. Registre el volumen de gas producido, la temperatura y la altura de la columna, h, de la solución (distancia entre el menisco dentro de la bureta y el nivel de la solución en el vaso).
- Saque la lámina de cobre, lávela con agua, séquela y registre su peso.
- Determine el volumen de la parte no graduada de la bureta, parte cercana a la llave, con la ayuda de una probeta.
- Realice un duplicado del experimento.

5. Cálculos

5.1 Escriba las semirreacciones de oxidación y reducción que ocurrieron en los dos electrodos (identifique el ánodo y el cátodo).

Parte 1. Cálculos a partir de las moles de gas de H, producido

Determine el volumen total de gas producido.

- 5.2. Determine la presión del gas teniendo en cuenta la presión ejercida por la columna de agua, la presión de vapor de agua a la temperatura de trabajo y la presión atmosférica. La primera la deben calcular, la segunda la deben consultar en la tabla 1 y la última el profesor les indicará el valor.
- 5.3. Calcule el número de moles de gas producido, usando la ecuación de gas ideal.
- 5.4. Usando la ecuación 1, calcule el valor de la constante de Faraday, F, y el número de Avogadro, $N_{\scriptscriptstyle A}$.
- 5.5. Con base en los resultados del numeral 5.4. calcule el porcentaje de error relativo tanto para la constante de Faraday como para el número de avogadro.

Parte 2. Cálculos a partir de las moles de cobre que reaccionaron.

- 5.5. Calcule el número de moles de cobre disuelto durante el proceso.
- 5.6. Usando la ecuación 1 calcule el valor de la constante de Faraday, F, y el número de Avogadro, N_A.
- 5.7. Con base en los resultados del numeral 5.6. calcule el porcentaje de error relativo

tanto para la constante de Faraday como para el número de avogadro.

6. Discusión

- 6.1. Compare los valores obtenidos para las constante de Faraday y el número de Avogadro a partir de las moles del gas H₂ producido en el primer y segundo ensayo. Señale si hubo una alta o baja precisión entre los datos. ¿Cuál ensayo (1 ó 2) fue más exacto y por qué?. Nota realice lo mismo, pero esta vez teniendo en cuenta las moles de cobre que reaccionaron.
- 6.2. Analice y discuta las diferencias entre los valores obtenidos tomando las moles de hidrógeno y las moles de cobre y el valor aceptado para las constantes. ¿Cual método es más exacto (tomado las moles de hidrógeno o las del cobre) para determinar los valores de las constantes y ¿por qué?
- 6.3. Señale cuáles son las fuentes más importantes de error en este experimento.
- 6.4. Escriba una conclusión general de si se cumplio o no con los objetivos de la práctica.

7. Ecuaciones de trabajo y datos de presión de vapor del agua a diferentes temperaturas

7.1. Ecuaciones para calcular las moles de gas de H₂ producido

$$P_{gas\,(H2)} = P_{atmosf\'erica} - P_{vapor\,del\,agua} - P_{hidrost\'atica\,de\,la\,columna}$$

Todas las presiones deben estar en atmósferas, por lo tanto, se deben realizar las conversiones. 1 atm =760 mm de Hg; 101.325 Pa = 1 atm. Recuerde que el valor de la presión atmosférica es dada por el docente. La presión hidrostática de la columna se obtiene con la siguiente fórmula.

$$P_h = p * g * h$$

donde:

p=densidad del agua (1000kg/m³)

 $g=gravedad (9,8 m/s^2)$

h= altura en metros medida con la regla.

La presión hidrostática P_h se obtiene en pascales (Pa) y se debe hacer la conversión a atmósfera.

Una vez calculada la presión del gas H₂, se procede a hallar el número de moles.

$$n_{gas} = \frac{PV}{RT}$$

donde: R=0.082 atm*L/mol*K.

La constante de Faraday y el número de Avogadro se calcula con la ecuación 1.

$$n = \frac{Q}{zF} = \frac{It}{zF}$$
 (Ecuación 1)

7.2. Ecuación para hallar moles de cobre que reaccionaron.

7.3. Ecuación de porcentaje de error relativo

$$\%E_{relativo} = \left| \frac{V_{real} - V_{Experimental}}{V_{real}} \right| * 100$$

Tabla 1. Presión de vapor del agua a diferentes temperaturas.

T(K)	288	289	290	291	292	293	294
P (mm de Hg)	12.79	13.63	14.53	15.48	16.48	17.54	18.65
T(K)	295	296	297	298	299	300	301
P (mm de Hg)	19.83	21.07	22.38	23.76	25.21	26.74	28.35

Práctica: Electrólisis, Faraday y número de Avogadro

Fecha:		Vbo	Vbo profesor			
Sección:		Vbo	Vbo profesor			
Integrantes:						
Nombre			Código			
Nombre			Código			
Resultados						
Ecuaciones qui	micas:					
Electrodo posi	tivo:					
Electrodo nega	tivo:					
Parte 1. A part	ir de las moles (de gas de H ₂ prodi	ıcido.			
Tiempo(s):	inten	sidad de corriente	(A):			
Experimento	T (K)	V gas (L)	P gas (atm)	Moles de H ₂		
1	- (/	· 8 ···· (/	- 8 ()			
2						

Experimento	Moles de electrones transferidos	F (C mol ⁻¹)	% error relativo	N_A	% error relativo
-------------	--	--------------------------	------------------	-------	------------------

1			
2			

Parte 2. A partir de las moles de cobre que reaccionaron

Tiempo(s): _____ intensidad de corriente (A): _____

Experimento	Masa inicial de Cu (g)	Masa final de Cu (g)	Moles de Cu
1			
2			

Experimento	Moles de electrones transferidos	F (C mol ⁻¹)	% error relativo	N _A	% error relativo
1					
2					

6. Discusión

0.1.	
6.2.	
0.2.	

6.3.	 		
-			
-	 	 	
_			
-			
_			
-			
6.4.			
-			
-			
-			
-			
_			
-			
-			
-			
-	 	 	