SimpleOrdinaryDE

9 Octobre, 2023

Lucas Duchet-Annez

· link:

https://www.youtube.com/watch?v=BjvkBLfvkqY&list=PLMrJAkhIeNNTYaOnVI3QpH7jgULnAmv PA&index=4

Simple Ordinary Differential Equation

First Order Linear Ordinary D.E

Let's say that bunnies are procreating let x = bunny population and the population grows at a rate λ

$$\dot{x} = \frac{dx}{dt} = \lambda x, x(0)$$
 initial pop size

We ask the question what is the population as a function of time ? $\mathbf{x}(t)$?

Method 1: $\frac{dx}{dt} = \lambda x$ $\frac{dx}{dt} = \lambda dt$ $\int \frac{dx}{x} = \int \lambda dt$ $\Rightarrow \ln(x(t)) = \lambda t + C$ $\Rightarrow x(t) = e^{\lambda t + C} e^{a+b} = e^a e^b$ $x(t) = e^{\lambda t} + K$ $K? X(0) = e^0 K \Rightarrow K = x(0)$

Second Order ODE

Example

The differential equation you've written down is a second-order linear differential equation with constant coefficients, which can be written in the standard form $\frac{d^2x}{dt^2} + \frac{k}{m}\frac{dx}{dt} + \frac{g}{m}x = 0$. To solve this type of differential equation, you can use the characteristic equation, which is given by the equation $\lambda^2 + \frac{k}{m}\lambda + \frac{g}{m} = 0$. The solutions to this equation are the so-called characteristic roots, which are the values of λ that satisfy the equation. In this case, the characteristic roots are given by the quadratic formula:

$$\lambda = \frac{-\frac{k}{m} \pm \sqrt{\left(\frac{k}{m}\right)^2 - 4 \cdot \frac{g}{m}}}{2}.$$

Once you have the characteristic roots, you can find the general solution to the differential equation by writing it in the form $x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$, where c_1 and c_2 are constants and c_1 and c_2 are constants and c_3 and c_4 are constants and c_4 and c_5 are constants are constants.

are the characteristic roots. To find the specific solution to the equation, you need to use initial conditions, which specify the values of x and \dot{x} at a particular time t_0 . Using these initial conditions, you can solve for the constants c_1 and c_2 and obtain the specific solution to the differential equation.

Maths