Theorem If $\{I_n\}$ is a sequence of finite closed intervals in $\mathbb R$ such that $I_n \supset I_{n+1}$ $(n=1,2,3,\cdots)$, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof Let $I_n = [a_n, b_n]$ and let E be the set of all a_n . Then $E \neq \emptyset$ and bounded above by b_1 . Let $x = \sup E$. If $m, n \in \mathbb{N}$, then

$$a_n \le a_{m+n} \le b_{m+n} \le b_m,$$

so that $x \leq b_m$ for each m. Since $a_m \leq x$, we see that

$$x \in I_m \text{ for } m = l, 2, 3, \cdots$$

Thus $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Theorem Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_{n+1}$ $(n=1,2,3,\cdots)$, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Proof Let I_n consist of all points $x=(x_1,\cdots,x_k)$ such that

$$a_{n,j} \le x_j \le b_{n,j} \ (1 \le j \le k; n = 1, 2, 3, ...),$$

and put $I_{n,j}=[a_{n,j},b_{n,j}].$ For each j, the sequence $\{I_{n,j}\}$ satisfies the hypotheses of the above theorem. Hence there are real numbers $x_j^\star(l\leq j\leq k)$ such that

$$a_{n,j} \le x_j^* \le b_{n,j} \ (1 \le j \le k; n = I, 2, 3, ...),$$

Setting $x^\star=(x_1^\star,...,x_k^\star)$, we see that $x^\star\in I_n$ for $n=1,2,3,\cdots$. The theorem follows.

Theorem Every k-cell is compact.

Proof Let I be a k-cell, consisting of all points $x=(x_1,\cdots,x_k)$ such that $a_i\leq x_i\leq b_i (1\leq i\leq k)$. Observe that there is a $\delta>0$ such that $|x-y|<\delta$ for all $x,y\in I$.

Suppose \exists an open cover $\{G_a\}$ of I which contains no finite subcover of I. Put $c_j = (a_j + b_j)/2$. The intervals $[a_j, c_j]$ and $[c_j, b_j]$ determine 2^k k-cells Q_i whose union is I. At least one of these sets Q_i , call it I_1 , cannot be covered by any finite subcollection of $\{G_a\}$ (otherwise I could be so covered). We next subdivide I_1 and continue the process. The sequence $\{I_n\}$ satisfies (a) $I_1 \supset I_2 \supset \cdots$;

- (a) $I_1 \supset I_2 \supset \cdots$;
- (b) I_n is not covered by any finite subcollection of $\{G_a\}$;
- (c) if $x, y \in I_n$, then $|x y| \le 2^{-n} \delta$.

There is a point x^* which lies in every I_n . For some $b, x^* \in G_b$. Since G_b is open, $\exists r > 0$ such that $|y - x^*| < r \Rightarrow y \in G_b$. If n is so large that $2^{-n}\delta < r$, then (c) implies that $I_n \subset G_b$, which contradicts (b).

Theorem Let E be a subset of \mathbb{R}^k . The following conditions are equivalent.

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Proof If (a) holds, then $E \subset I$ for some k-cell I. Since a k-cell is compact and any closed subset of a compact set in a metric space is compact, we know that (b) is true. If (b) is true, then (c) is also true since every infinite subset of a compact set C in a metric space has a limit point in C.

Let us prove that (c) implies (a). If E is not bounded, then E contains infinitely many points x_k with

$$|x_k| > n_k \ (n = 1, 2, 3, ...),$$

where $n_k \in \mathbb{N}, k=1,2,3,\cdots$, and $n_1 < n_2 < \cdots \to \infty$. The set S consisting of these points x_k is infinite and has no limit point in \mathbb{R}^k . This is a contraction. Thus (c) implies that E is bounded.

If E is not closed, then there is a point $x_0 \in \mathbb{R}^k$ which is a limit point of E but not a point of E. For n=1,2,3,..., there are points $x_n \in E$ such that $|x_n-x_0|<1/n$. Let S be the set of these points x_n . Then S is infinite (otherwise there exists $\epsilon_0>0$ such that $|x_n-x_0|\geq \epsilon_0$ for any $n\in\mathbb{N}$), S has x_0 as a limit point, and S has no other limit point in \mathbb{R}^k . For if $y\in\mathbb{R}^k,\ y\neq x_0$ then

$$|x_n - y| \ge |x_0 - y| - |x_n - x_0|$$

 $\ge |x_0 - y| - \frac{1}{n} \ge \frac{1}{2}|x_0 - y|$

for sufficiently large n; this shows that y is not a limit point of S. Thus S has no limit point in E. This is a contradiction.

Theorem (Weierstrass) Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Theorem A nonempty perfect set P in \mathbb{R}^k is uncountable.

Proof Since P has limit points, P is infinite. Assume P is countable and denote the points of P by x_1, x_2, \cdots . We construct a sequence $\{V_n\}$ of neighborhoods, as follows.

Let V_1 be any neighborhood of x_1 . Since x_1 is a limit point of P, V_1 contains a point of P which is different from x_1 . Thus there is a neighborhood V_2 such that $\overline{V_2} \subset V_1, \ x_1 \notin \overline{V_2}$ and $\overline{V_2} \cap P \neq \emptyset$. Continuing in this way, we can find neighborhoods V_{n+1} such that i) $\overline{V}_{n+1} \subset V_n$, ii) $x_n \notin \overline{V}_{n+1}$ and iii) $\overline{V}_{n+1} \cap P \neq \emptyset$. \overline{V}_n is compact since it is bounded and closed. Set $K_n = \overline{V}_n \cap P$. Since $x_n \notin K_{n+1}$, no point of P lies in $\cap_{n=1}^\infty K_n$. Since $K_n \subset P$, this implies that $\bigcap_{n=1}^\infty K_n = \emptyset$. But each K_n is compact and nonempty, by (iii), and $K_n \supset K_{n+1}$. Thus $\bigcap_{n=1}^\infty K_n \neq \emptyset$. This is a contradiction.

Corollary Every interval [a,b](a < b) is uncountable. In particular, the set of all real numbers is uncountable.

Definition Two subsets A and B of a metric space X are said to be separated if both $A\cap \overline{B}$ and $\overline{A}\cap B$ are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A. A set $E\subset X$ is connected if E is not a union of two nonempty separated sets.

Remark Separated sets are disjoint, but disjoint sets need not be separated. For example, the interval [0,1] and the segment (1,2) are not separated. However, the segments (0,1) and (1,2) are separated.

Theorem A subset E of $\mathbb R$ is connected if and only if it has the following property: If $x \in E, \ y \in E$, and x < z < y, then $z \in E$.