

CND 211: Advanced Digital Design

Complete ASIC Flow of I2C communication protocol

Section #: 19

Submitted by:

Student Name	ID
Aya Reda Osman	V23010305
Hadeer Khaled	V23010623
Hayat Gamal	V23010201
Fatma Abdelmonsef	V23010243

Submitted to TA: Hossam

Date: 19/5/2024

I2C protocol Introduction:

- ➤ The I2C (Inter-Integrated Circuit) protocol is a serial communication protocol that allows multiple "peripheral" digital integrated circuits ("chips") to communicate with one or more "controller" chips
- ➤ I2C is a two wire serial communication protocol using a serial data line (SDA) and a serial clock line (SCL)
- ➤ Ideal for applications needing occasional communication over short distances
- Enables communication between multiple devices as a true multimaster bus.

Full flow:

Synthesis flow:

In this stage, the high-level RTL code is transformed into an optimized gate-level representation using a standard cell library and design constraints, reports on timing, power, and area are generated during this step Required Constraints:

Parmeter	Value
Clock_Uncertainty	0.3
Transition	0.2
Clock_latency	0.25
Input_delay	10 % Clk_period
Output_delay	10 %Clk_period

The Top module RTL after synthesis:

Blocks:

Byte block:

Bit block:

Timing Reports

Worst-case Setup path after synthesis:

Applications Places Text Editor				Mon 20	May, 05:37 ●	4 0€
Open ▼	setup.r ~/logic_project/syn/syn_r			Save	= -	•
Point	Fanout	Сар	Trans	Incr	Path	
clock clk (rise edge)				0.00	0.00	-
clock clk (Fise edge) clock network delay (ideal)			0.00	0.00	
input external delay	,			2.00	2.00 r	
wb rst i (in)			0.20	0.00	2.00 r	
wb_rst_i (net)	25	64.90	0.20	0.00	2.00 r	
wb_ist_i (Net) byte controller/rst (i2c m		04.50		0.00	2.00 r	
byte controller/rst (120_m	uster_byte_etric/	64.90		0.00	2.00 r	
byte controller/bit contro	ller/rst (i2c master hit d			0.00	2.00 r	
oyte controller/bit contro		64.90		0.00	2.00 r	
oyte controller/bit contro		01150	0.20	0.16	2.16 r	
oyte controller/bit contro			0.15	0.10	2.27 f	
oyte controller/bit contro		18.33	0.15	0.00	2.27 f	
yte controller/bit contro		10.55	0.15	0.09	2.35 f	
yte controller/bit contro			0.34	0.19	2.55 r	
yte controller/bit contro		40.11	0.5.	0.00	2.55 r	
yte controller/bit contro			0.34	0.16	2.71 r	
yte controller/bit contro			0.28	0.20	2.91 f	
yte controller/bit contro		31.99		0.00	2.91 f	
yte controller/bit contro			0.28	0.13	3.05 f	
yte controller/bit contro			0.35	0.20	3.24 r	
yte controller/bit contro		34.61		0.00	3.24 r	
yte controller/bit contro			0.35	0.13	3.37 r	
yte controller/bit contro			0.05	0.13	3.50 r	
yte controller/bit contro		1.49		0.00	3.50 r	
	ller/cnt reg 0 /D (DFFARX1	.)	0.05	0.03	3.54 r	
lata arrival time					3.54	
clock clk (rise edge)				20.00	20.00	
lock network delay (ideal)			0.00	20.00	
lock uncertainty				-0.30	19.70	
yte_controller/bit_contro	ller/cnt_reg_0_/CLK (DFFAF	X1)		0.00	19.70 r	
ibrary setup time				-0.07	19.63	
lata required time					19.63	
data required time					19.63	-
data arrival time	·				-3.54	
slack (MET)					16.10	-

Best-case Setup path after synthesis:

We can proceed with negative hold slack until CTS step

Clock report:

Area report after synthesis:

Power report after synthesis:

```
Library(s) Used:
     saed90nm_typ (File: /home/ICer/logic_project/DB/saed90nm_typ.db)
Operating Conditions: TYPICAL Library: saed90nm_typ
Wire Load Model Mode: enclosed
Desian
              Wire Load Model
                                              Library
i2c_master_top
                           16000
i2c_master_byte_ctrl
                          8000
                                               saed90nm_typ

        i2c_master_bit_ctrl
        8000
        saed90nm_typ

        i2c_master_bit_ctrl_DW01_dec_0
        8000
        saed90nm_typ

        i2c_master_bit_ctrl_DW01_dec_1
        8000
        saed90nm_typ

Global Operating Voltage = 1.2
Power-specific unit information :
    Voltage Units = 1V
     Capacitance Units = 1.000000ff
     Time Units = 1ns
     Dynamic Power Units = 1uW
                                    (derived from V,C,T units)
     Leakage Power Units = 1pW
                                                       Int Leak Total
Power Power Power
                                             Switch Int
Hierarchy
                                             Power
  i2c_master_top
```


Formality:

 In this step the RTL description is compared against the synthesized netlist using formal verification tools like Synopsys Formality

PnR Flow:

Library manager

• in this step we prepare the library files that ICC2 required to start PnR flow (.ndm) through using our technology files (.lib , .lef, .db,.tech)

Design setup:

in this step we only set all search paths we will need and create our library
"which is .ndm library we created in the previous step" then reading our netlist
from synthesis and link all this

Floor Planning:

- Floor planning is a critical step in the physical design process. It establishes the overall chip layout During the data set up and floor planning, the output of the icc2 from the GUI
- Utilization = 0.6

Initial placement:

- Initial placement, also known as global placement, is a crucial step in the physical design of an ASIC. It involves placing standard cells (the building blocks of the chip) within the core boundary.
- The goal is to find an optimal location for each standard cell, considering factors like timing, congestion, and area utilization.

Worst-case setup path after initial placement:

Open ▼ P setup_initial ~/logic_pro	l_placement. oject/PnR/report	rpt	Save	 	o x
Point	Fanout	Cap	Trans	Incr	Path
clock clk (rise edge)				0.00	0.00
clock network delay (ideal)				0.00	0.00
input external delay				2.00	2.00
wb_rst_i (in)			0.20	0.00	2.00 r
wb_rst_i (net)	25	108.19			
<pre>byte_controller/bit_controller/U7/INP (INVX0</pre>)		0.20	0.01	2.01 r
byte_controller/bit_controller/U7/ZN (INVX0)			0.23	0.15	2.16 f
<pre>byte_controller/bit_controller/n380 (net)</pre>	9	35.28			
byte_controller/bit_controller/U43/IN4 (NAND			0.23	0.00	2.16 f
byte_controller/bit_controller/U43/QN (NAND4			0.52	0.29	2.45 r
byte_controller/bit_controller/N66 (net)	19	63.84			
byte_controller/bit_controller/U49/IN2 (NOR2			0.52	0.00	2.45 r
byte_controller/bit_controller/U49/QN (NOR2X			0.45	0.32	2.77 f
byte_controller/bit_controller/n4 (net)	17	53.52	0.45		2 77 6
byte_controller/bit_controller/U27/IN1 (NOR2)			0.45	0.00	2.77 f
byte_controller/bit_controller/U27/QN (NOR2X		F4 22	0.53	0.30	3.07 r
byte_controller/bit_controller/n6 (net)	16	54.23	0.53	0.00	2 07
byte_controller/bit_controller/U14/IN4 (A022)			0.53	0.00	3.07 r
<pre>byte_controller/bit_controller/U14/Q (A0222X byte controller/bit controller/n173 (net)</pre>		4 20	0.07	0.16	3.23 r
byte_controller/bit_controller/cnt_reg_10 /D	(DEEABY1)	4.29	0.07	0.00	2 22 5
data arrival time	(DFFARAI)	'	0.07	0.00	3.23 r 3.23
clock clk (rise edge)				20.00	20.00
source latency				0.00	20.00
wb clk i (in)			0.20	0.00	20.00 r
wb_ctk_1 (iii) wb_ctk_i (net)	153	366.14	0.20	0.00	20.00 1
byte_controller/bit_controller/cnt_reg_10_/C			0.20	0.00	20.00 r
clock uncertainty				-0.30	19.70
library setup time				-0.07	19.63
data required time				0.07	19.63
data required time					19.63
data arrival time					-3.23
slack (MET)					16.40

Worst-case hold path after synthesis:

We will proceed with negative hold slack

Power Planning:

- Power planning focuses on managing power distribution within the chip. It ensures that power and ground connections are robust and that the chip operates reliably.
- Metal used for power planning: M9&M8
- M1 is used for rails

After Power Ring

After Mesh of power straps

After standard cell rail insertion

Place Opt.:

- We are hiding metals: M1,M8 and M9
- The place_opt command is used in the physical design flow of VLSI ASIC design, specifically during the placement and optimization stage. Here's a brief explanation of the commands:
 - 1. place_opt -from initial_place -to initial_place: This command performs coarse placement, high fanout net synthesis (HFNS), optimization, and legalization1. The tool determines an approximate location for each cell according to the timing, congestion, and multi-voltage constraints.
 - 2. place_opt -from initial_place -to initial_drc: This command likely performs the same operations as the previous command but with an additional step of Design Rule Checking (DRC). DRC is a process where the physical layout of a chip is checked for compliance with a series of manufacturing rules.

- 3. place_opt -from initial_drc -to initial_opto: This command takes the design from the initial DRC stage to the initial optimization stage. It likely involves further optimization of the design to improve timing, power, and area.
- 4. place_opt -from initial_opto -to final_place: This command takes the design from the initial optimization stage to the final placement stage. It likely involves final adjustments to the placement of cells to meet design constraints.
- 5. place_opt -from final_place -to final_opto: This command takes the design from the final placement stage to the final optimization stage. It likely involves final optimization of the design to meet all design constraints.

Worst-case setup path after place_opt. :

Worst-case hold path after place_opt. :

```
-max_paths 100
        -report by design
Design : i2c_master_top
Version: 0-2018.06-SP1
     : Mon May 20 01:00:04 2024
  Startpoint: byte_controller/bit_controller/cSDA_reg_0_ (rising edge-triggered flip-flop
clocked by clk)
  Endpoint: byte controller/bit controller/cSDA reg 1 (rising edge-triggered flip-flop
clocked by clk)
 Mode: default
  Corner: default
  Scenario: default
  Path Group: clk
  Path Type: min
  Point
                                                    Incr
                                                              Path
  clock clk (rise edge)
                                                    0.00
                                                              0.00
  clock network delay (ideal)
                                                    0.00
                                                              0.00
  byte_controller/bit_controller/cSDA_reg_0_/CLK (DFFARX1)
                                                              0.00 r
  byte_controller/bit_controller/cSDA_reg_0_/QN (DFFARX1)
                                                    0.16
                                                              0.16 r
                                                              0.20 f
  byte_controller/bit_controller/U87/QN (NOR2X0)
                                                    0.04
  byte_controller/bit_controller/cSDA_reg_1_/D (DFFARX1)
                                                              0.20 f
                                                    0.00
  data arrival time
                                                              0.20
  clock clk (rise edge)
                                                    0.00
                                                              0.00
  clock network delay (ideal)
                                                    0.00
                                                              0.00
  byte_controller/bit_controller/cSDA_reg_1_/CLK (DFFARX1)
                                                    0.00
                                                              0.00 r
                                                    0.30
  clock uncertainty
                                                              0.30
  library hold time
                                                              0.31
  data required time
                                                              0.31
  data required time
  data arrival time
  slack (VIOLATED)
```

We will proceed with negative hold slack

CTS:

- Clock Tree Synthesis (CTS) is a crucial step in the physical design flow of VLSI ASIC design. It involves the automatic insertion of buffers/inverters along the clock paths of the ASIC design to balance the clock delay to all clock inputs.
- Purpose: O The main goal of CTS is to ensure that all the clock elements present in the design switch at the same time O This is achieved by balancing the clock paths, which helps to maintain minimum insertion delay and balance the skew.

Worst-case setup path after CTS :

Applications Places Text Editor			Mon 2	20 May, 08:04 ●	4 % €)
	etup_CTS.rpt		Save	■ -	. ×	:
Point	Fanout	сар	Trans	incr	Patn	-
clock clk (rise edge)				0.00	0.00	
clock network delay (ideal)				0.29	0.29	
input external delay				2.00	2.29	
wb_rst_i (in)			0.20	0.00	2.29	ı
wb_rst_i (net)	37	158.80				
HFSINV_242_3/INP (INVX0)			0.20	0.00	2.29	
HFSINV_242_3/ZN (INVX0)	17	60.05	0.39	0.25	2.54	1
HFSNET_3 (net)	17	69.85	0. 20	0.00	2 54	_
<pre>byte_controller/bit_controller/U43/IN4 (Na byte controller/bit controller/U43/QN (NA</pre>			0.39	0.00	2.54	
byte_controller/bit_controller/043/QN (NAI byte_controller/bit_controller/N66 (net)	19	65.50	0.57	0.34	2.88	١
byte controller/bit controller/U49/IN2 (N		05.50	0.57	0.00	2.88	
byte_controller/bit_controller/U49/QN (NO			0.45	0.32	3.21	
byte controller/bit controller/n4 (net)	17	52.11	0.45	0.32	3.21	
byte controller/bit controller/U27/IN1 (NO		52.11	0.45	0.00	3.21	1
byte controller/bit controller/U27/QN (NO			0.53	0.30	3.51	
byte controller/bit controller/n6 (net)	16	53.84	0.55	0.50	3.31	
byte controller/bit controller/U4/IN4 (AO		55.5.	0.53	0.00	3.51	
byte controller/bit controller/U4/Q (A022)			0.07	0.16	3.67	
byte controller/bit controller/n168 (net)	1	4.40				
byte controller/bit controller/cnt reg 15	/D (DFFARX1)		0.07	0.00	3.67	ı
data arrival time	-' ' '				3.67	
clock clk (rise edge)				20.00	20.00	
source latency				0.00	20.00	
wb_clk_i (in)			0.63	0.25	20.25	-1
wb_clk_i (net)	153	419.27				
byte_controller/bit_controller/cnt_reg_15	_/CLK (DFFARX	(1)	0.63	0.01	20.25	1
clock reconvergence pessimism				0.00	20.25	
clock uncertainty				-0.30	19.95	
library setup time				-0.09	19.87	
data required time					19.87	
data required time					19.87	
data arrival time					-3.67	
					•	
slack (MET)					16.20	

Worst-case setup path after CTS:

Startpoint: txr_reg_4_ (rising edge-triggered flip-flop clocked by clk)
Endpoint: txr_reg_4_ (rising edge-triggered flip-flop clocked by clk)

Mode: default Corner: default Scenario: default Path Group: clk Path Type: min

Point	Fanout	Сар	Trans	Incr	Path
clock clk (rise edge)				0.00	0.00
source latency				0.00	0.00
wb clk i (in)			0.63	0.25	0.25 r
wb_clk_i (net)	153	419.27			
txr_reg_4_/CLK (DFFARX1)			0.63	0.01	0.25 r
txr reg 4 /CLK (DFFARX1)			0.63	0.00	0.25 r
txr reg 4 /Q (DFFARX1)			0.05	0.24	0.50 f
txr[4] (net)	3	9.04			
U77/IN1 (A022X1)			0.05	0.00	0.50 f
U77/Q (A022X1)			0.03	0.08	0.58 f
n122 (net)	1	2.41			
txr_reg_4_/D (DFFARX1)			0.03	0.00	0.58 f
data arrival time					0.58
clock clk (rise edge)				0.00	0.00
source latency				0.00	0.00
wb_clk_i (in)			0.68	0.27	0.27 r
wb_clk_i (net)	153	459.80			
txr_reg_4_/CLK (DFFARX1)			0.68	0.01	0.28 r
clock reconvergence pessimism				-0.02	0.25
clock uncertainty				0.30	0.55
library hold time				0.02	0.58
data required time					0.58
data required time					0.58
data arrival time					-0.58
slack (MET)					0.00

Hold violation are resolved in CTS

Routing & Routing Optimization:

Final chip:

Cell density report:

Congestion report:

After this step, we did some checks to check design reliability and went to prime time to confirm that the design met timing finally, we created the GDS file

Final worst-case setup path after:

```
Startpoint: wb_rst_i (input port clocked by clk)
  Endpoint: byte controller/bit controller/cnt reg 0 (rising edge-triggered flip-flop clocked
by clk)
  Mode: default
  Corner: default
  Scenario: default
  Path Group: clk
  Path Type: max
  Point
                                                                 Path
                                                      Incr
  clock clk (rise edge)
                                                      0.00
                                                                 0.00
  clock network delay (ideal)
                                                      0.00
                                                                 0.00
  input external delay
                                                      2.00
                                                                 2.00
                                                      0.00
  wb_rst_i (in)
                                                                 2.00 r
  HFSINV 242 3/ZN (INVX0)
                                                      0.25
                                                                 2.25 f
  byte controller/bit controller/U43/QN (NAND4X0)
                                                                 2.58 r
                                                      0.33
  byte_controller/bit_controller/U49/QN (NOR2X0)
                                                      0.32
                                                                 2.90 f
 byte_controller/bit_controller/U27/QN (NOR2X0)
byte_controller/bit_controller/U34/Q (A0222X1)
                                                      0.29
                                                                 3.19 r
                                                      0.16
                                                                 3.35 r
  byte_controller/bit_controller/cnt_reg_0_/D (DFFARX1)
                                                                 3.35 r
  data arrival time
                                                                 3.35
  clock clk (rise edge)
                                                     20.00
                                                                20.00
  clock network delay (ideal)
                                                      0.00
                                                                20.00
  byte_controller/bit_controller/cnt_reg_0_/CLK (DFFARX1)
                                                                20.00 r
  clock uncertainty
                                                     -0.30
                                                                19.70
                                                                19.63
  library setup time
                                                     -0.07
  data required time
                                                                19.63
  data required time
                                                                19.63
  data arrival time
                                                                -3.35
  slack (MET)
                                                                16.28
```


Final worst-case setup path after:

Report : timing

-path_type full
-delay_type min
-max_paths 50
-report_by design

Design : i2c_master_top Version: 0-2018.06-SP1

Date : Mon May 20 01:01:17 2024

Startpoint: txr_reg_6_ (rising edge-triggered flip-flop clocked by clk) Endpoint: txr_reg_6_ (rising edge-triggered flip-flop clocked by clk)

Mode: default Corner: default Scenario: default Path Group: clk Path Type: min

Point	Incr	
clock clk (rise edge) clock network delay (ideal)	0.00 0.00	0.00
<pre>txr_reg_6_/CLK (DFFARX1) txr_reg_6_/Q (DFFARX1) U79/Q (A022X1) txr_reg_6_/D (DFFARX1) data arrival time</pre>	0.00 0.23 0.08 0.00	0.23 f 0.31 f
<pre>clock clk (rise edge) clock network delay (ideal) txr_reg_6_/CLK (DFFARX1) clock uncertainty library hold time data required time</pre>	0.00 0.00 0.00 0.30 0.01	0.00 0.00 r 0.30 0.31
data required time data arrival time		0.31 -0.31
slack (MET)		0.00

Finally, Our Design meets timing!!

We know that period is too much for this design and if we have a spec. on frequency, we must decrease it but we don't have a spec. now