Silesian University of Technology Faculty of Automatic Control, Electronic and Computer Science Major: Makro sem.4 Gliwice Academic year 2018/2019

Numerical Methods Laboratory Exercise

Ex.4 Numerical differentiation

1. Analyze the value of maximum absolute and relative differentiation error for different functions

$$f_1(x) = 10x^5 - 4x^4 + 24x^3 - 190x^2 + 4.5x$$

$$f_2(x) = arctg(x)$$

$$f_3(x) = e^{2\sin(x-2)}$$

The analysis is performed with respect to number of forward difference terms

And the value of the step h:

The analysis is performed in interval {a,b} in which: $f_i' \neq 0$ and $f_i'' \neq 0$, i=1, 2

$$f_1(x) = 10x^5 - 4x^4 + 24x^3 - 190x^2 + 4.5x$$

	Differentiated function $f_1(x)$, $n=2$												
			First derivative	f' ₁ (x)			9	Second derivative	f" ₁ (x)				
h	X 0	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical			
10-1	1	2,45	0,00909091	-269,5	-271,95	1	11,32	0,134762	-84	-95,32			
10-3	1	0,000216276	8,02509E-07	-269,5	-269,5	1	0,00101342	1,20645E-05	-84	-84,001			
10-6	1	1,59098E-08	5,90345E-11	-269,5	-269,5	1	0,0138486	0,000164865	-84	-83,9862			
10-9	1	7,89954E-06	2,93118E-08	-269,5	-269,5	1	28505,7	339,354	-84	28421,7			
10-12	1	nan	nan	-269,5	nan	1	nan	nan	-84	nan			

				Dif	ferentiated t	function $f_1(x)$, $n=5$						
			First derivative	f' ₁ (x)			Second derivative f" ₁ (x)					
h	x ₀	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical		
10-1	1	2,6716E-12	9,91332E-15	-269,5	-269,5	1	8,5322E-11	1,01574E-12	-84	-84		
10-3	1	3,12866E-10	1,16091E-12	-269,5	-269,5	1	1,78565E-06	2,12577E-08	-84	-84		
10-6	1	2,56432E-09	9,5151E-12	-269,5	-269,5	1	0,102838	0,00122427	-84	-84,1028		
10-9	1	2,71539E-05	1,00757E-07	-269,5	-269,5	1	127982	1523,59	-84	127898		
10-12	1	0,231496	0,000858985	-269,5	-269,731	1	1,2534E+12	1,49214E+10	-84	1,2534E+12		

				Diff	erentiated f	unct	ion f ₁ (x), n=10			
			First derivative	f' ₁ (x)			;	Second derivative	f" ₁ (x)	
h	X 0	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X ₀	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical
10-1	1	0	0	-269,5	-269,5	1	6,90932E-10	8,22538E-12	-84	-84
10-3	1	4,47363E-09	1,65998E-11	-269,5	-269,5	1	4,17087E-05	4,96533E-07	-84	-84
10-6	1	3,34658E-07	1,24178E-09	-269,5	-269,5	1	5,78009	0,0688106	-84	-89,7801
10-9	1	0,00072054	2,67362E-06	-269,5	-269,499	1	9,10357E+06	108376	-84	9,10365E+06
10-12	1	0,263854	0,000979051	-269,5	-269,764	1	2,78088E+12	3,31057E+10	-84	·2,78088E+12

$$f_2(x) = arctg(x)$$

				Dif	ferentiated	function $f_2(x)$, $n=2$						
			First derivative	f' ₁ (x)			Second derivative f" ₁ (x)					
h	X 0	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical		
10-1	1	0,00163737	0,00327474	0,5	0,498363	1	0,00214953	0,00429905	-0,5	-0,49785		
10-3	1	1,66666E-07	3,33333E-07	0,5	0,5	1	3,48282E-09	6,9665E-09	-0,5	-0,5		
10-6	1	6,9889E-11	1,39778E-10	0,5	0,5	1	4,44503E-05	8,89006E-05	-0,5	-0,500044		
10-9	1	9,68813E-08	1,93763E-07	0,5	0,5	1	332,567	665,134	-0,5	-333,067		
10-12	1	9,99614E-05	0,000199923	0,5	0,5001	1	3,33067E+08	6,66134E+08	-0,5	-3,33067E+08		

	Differentiated function f _s (x), n=5												
			First derivative	e f' ₁ (x)			Second derivative f" ₁ (x)						
h	x ₀	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical			
10-1	1	1,1361E-05	2,27221E_0 5	0,5	0,500011	1	0,00018454	0,000369081	-0,5	-0,500185			
10-3	1	6,58196E-13	1,31639E-12	0,5	0,5	1	3,97256E-09	7,94511E-09	-0,5	-0,5			
10-6	1	1,14298E-10	2,8596E-10	0,5	0,5	1	0,00090549	0,00181098	-0,5	-0,500905			
10-9	1	3,20776E-07	6,41553E-07	0,5	0,5	1	915,434	1830,87	-0,5	-915,934			
10-12	1	0,000462634	0,000925269	0,5	0,500463	1	2,7478E+09	5,4956E+09	-0,5	-2,7478E+09			

	Differentiated function $f_2(x)$, $n=10$												
			First derivative	f' ₁ (x)		Second derivative f" ₁ (x)							
h	x ₀	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical			
10-1	1	3,16959E-08	6,33918E-08	0,5	0,5	1	1,48381E-06	2,96762E-06	-0,5	-0,499999			
10-3	1	7,20973E-12	1,44195E-11	0,5	0,5	1	6,55817E-08	1,31163E-07	-0,5	-0,5			
10-6	1	3,33165E-09	6,66331E-09	0,5	0,5	1	0,0290444	0,0580887	-0,5	-0,529044			
10-9	1	3,65422E-06	7,30844E-06	0,5	0,499996	1	44628,1	89256,1	-0,5	44627,6			
10-12	1	0,00205417	0,00410835	0,5	0,502054	1	2,16593E+09	4,33185E+09	-0,5	-2,16593E+09			

				Dif	ferentiated	function f ₄ (x), n=2						
			First derivative	f' ₁ (x)			Second derivative f" ₁ (x)					
h	X 0	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X ₀	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical		
10-1	1	0,00779954	0,00539982	-1,44441	-1,45221	1	0,051993	0,180542	0,287983	0,339976		
10-3	1	9,19591E-07	6,36657E-07	-1,44441	-1,44441	1	5,05431E-06	1,75507E-05	0,287983	0,287988		
10-6	1	3,86403E-10	2,67517E-10	-1,44441	-1,44441	1	0,00132384	0,00459694	0,287983	0,28666		
10-9	1	5,78595E-07	4,00576E-07	-1,44441	-1,44441	1	1998,11	6938,29	0,287983	1998,4		
10-12	1	0,000104606	7,24218E-05	-1,44441	-1,4451	1	8,88178E+08	3,08413E+09	0,287983	8,88178E+08		

	Differentiated function f ₄ (x), n=5												
			First derivative	f' ₁ (x)		Second derivative f" ₁ (x)							
h	X 0	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical			
10-1	1	4,77817E-05	3,30805E-05	-1,44441	-1,44436	1	0,000729135	0,00253187	0,287983	0,287254			
10-3	1	2,22511E-12	1,5405E-12	-1,44441	-1,44441	1	1,47778E-08	5,13149E-08	0,287983	0,287983			
10-6	1	1,28198E-09	8,8755E-10	-1,44441	-1,44441	1	0,00365531	0,0126928	0,287983	0,284328			
10-9	1	2,19952E-06	1,52278E-06	-1,44441	-1,44441	1	9328,05	32390,9	0,287983	9328,34			
10-12	1	0,00110381	0,000764194	-1,44441	-1,44551	1	6,4948E+09	2,25527E+10	0,287983	6,4948E+09			

				Diff	erentiated f	function $f_4(x)$, $n=10$						
			First derivative	f' ₁ (x)		Second derivative f" ₁ (x)						
h	x ₀	Max absolute error	Max relative error	f' ₁ (x) analytical	f' ₁ (x) numerical	X 0	Max absolute error	Max relative error	f" ₁ (x) analytical	f" ₁ (x) numerical		
10-1	1	7,335173E-08	5,08981E+08	-1,44441	-1,44441	1	1,64086E-06	5,69776E-06	0,287983	0,287982		
10-3	1	2,90474E-11	2,01103E-11	-1,44441	-1,44441	1	2,64194E-07	9,17395E-07	0,287983	0,287983		
10-6	1	1,46402E-08	1,01358E-08	-1,44441	-1,44441	1	0,179827	0,624434	0,287983	0,46781		
10-9	1	2,74582E-06	1,901E-06	-1,44441	-1,44444	1	76613,5	266034	0,287983	-76613,2		
10-12	1	0,00349387	0,0024189	-1,44441	-1,4479	1	3,51707E+09	1,22128E+10	0,287983	-3,51707E+09		

```
2. Source code:
#include <iostream>
#include <cmath>
using std::cout;
using std::cin;
using std::endl;
double function(double x)
{
    //return exp(cos(x));
    return atan(x);
    //return 10*pow(x,5)-4*pow(x,4)+24*pow(x,3)-190*pow(x,2)+4.5*x;
}
double function_derivative1(double x)
    //return (sin(x)*(-exp(cos(x))));
return 1/(pow(x,2)+1);
    //return 50*pow(x,4)-16*pow(x,3)+72*pow(x,2)-380*x+4.5;
}
double function_derivative2(double x)
    //return (exp(cos(x)))*((sin(x)*sin(x))-cos(x));
    return -2/pow((1+pow(x,2)),2);
    //return\ 200*pow(x,3)-48*pow(x,2)+144*x-380;
}
double* difference_operators(int n, double h, double x0)
    double* x;
    double** operators;
    double* terms;
    x = new double[n+2];
    for (int i = 0; i < n+2; i++)
        x[i] = x0 + i*h;
        cout<<"x"<<i<<":"<<x[i]<<endl;
    }
    operators = new double*[n+1];
    for(int i = 0; i < n+1; i++)
        operators[i] = new double[n-i+1];
    }
    for(int i = 0; i < n+1; i++)
        operators[0][i] = function(x[i+1])-function(x[i]);
    }
    for (int i = 1; i < n+1; i++)
        for (int j = 0; j < n-i+1; j++)
            operators[i][j] = operators[i-1][j+1]-operators[i-1][j];
```

```
}
    terms = new double[n+1];
    for (int i = 0; i < n+1; i++)
        terms[i] = operators[i][0];
    for (int i = 0; i < n+1; i++)</pre>
        delete []operators[i];
    delete []operators;
    delete []x;
    return terms;
}
double derivative1(double n, double h, double x0)
    double* terms;
    double value;
    double absolute_error=0;
    double relative_error=0;
    cout<<"-----FIRST DERIVATIVE-----"<<endl;
        value = 0;
        terms = difference_operators(n, h, x0);
    for (int i = 0; i < n; i++)
        value += pow(-1,i)/(double)(i+1)*terms[i];
    }
        value = 1/h*value;
    cout<<"f'(x0) analytical: "<<function_derivative1(x0)<<endl;</pre>
    absolute_error=fabs((function_derivative1)(x0)-value);
    relative_error=fabs(absolute_error)/(fabs((function_derivative1)(x0)));
    cout<<"Absolute error "<<absolute_error<<endl;</pre>
    cout<<"Relative error "<<relative_error<<endl;</pre>
    delete []terms;
    cout<<"f'(x0) numerical: "<<value<<endl;</pre>
    cout<<endl;
    return value;
double derivative2(double n, double h, double x0){
    double* terms;
    double value=0;
    double absolute_error=0;
    double relative_error=0;
    cout<<"-
               -----SECOND DERIVATIVE-----"<<endl;
    double* b;
    double* a;
    a = new double[n];
    a[0] = 1;
    for (int i = 1; i < n; i++)
```

```
b = new double[i+1];
         for (int j = 0; j < i+1; j++)
             b[j] = pow(-1,j)/(j+1);
         a[i] = 0;
         for (int j = 0; j \le i; j++)
             a[i] += b[j]*b[i-j];
         delete []b;
    terms = difference_operators(n+1, h, x0);
    for (int i = 0; i < n; i++)
         value += a[i]*terms[i+1];
    value = 1/(h*h)*value;
    cout<<"f''(x0) analytical: "<<function_derivative2(x0)<<endl;</pre>
    absolute_error=fabs((function_derivative2)(x0)-value);
    relative_error=fabs(absolute_error)/(fabs((function_derivative2)(x0)));
    cout<<"Absolute error "<<absolute_error<<endl;
cout<<"Relative error "<<relative_error<<endl;</pre>
    delete []terms;
delete []a;
cout<<"f''(x0) numerical: "<<value<<endl;</pre>
    return value;
}
int main()
    double n, x0, h;
    cout<<"Give point x0: ";</pre>
    cin>>x0;
    cout<<endl<<"Give steps n: ";</pre>
    cin>>n;
    cout<<endl<<"Give fixed step h: ";</pre>
    cin>>h;
    cout<<endl;
    derivative1(n, h, x0);
    derivative2(n, h, x0);
    return 0;
}
```

3. Conclusions:

The overall (real) error of the method is as follows:

$$R_{n,h}^{(1)}(x) \approx \frac{\Delta^{n+1} f(x)}{n!h}$$

We can notice that in case of first derivative the overall error should decrease with increase a difference step h and with increase of difference operators n. Unfortunately together with increase the step and difference operators, values of the difference terms $\Delta^i f(x)$ also increases which affects of increase the error. To obtain the best result in given point, the iterative method need to be used to get the most optimal h.

The error changes significantly when it comes to find second derivative. The algorithm returned the unusefull result for each function for very small step $h=10^{-9}$, 10^{-12} . The error is also inaccurate, but acceptable when the step is too big h=0.1.

From testing tables above we can noticed that error for first and second derivative is the smallest when the step is between 10^{-3} , 10^{-6} .