ADDITIONAL TOPICS (1): p-ADIC TOPOLOGY

The usual topology on \mathbb{R} induces a topology on $\mathbb{Q} \subset \mathbb{R}$. Now we consider another topology on \mathbb{Q} called the p-adic topology.

Let p be a prime number. For any $0 \neq a \in \mathbb{Q}$, write a as

$$a = p^m \frac{b}{c}$$
, $\gcd(bc, p) = 1$.

Define the p-adic valuation

$$v_p: \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$$

as $v_p(a) = m$ and $v_p(0) = \infty$. Then the p-adic absolute value $|\cdot|_p$ is defined as

$$|a|_p = p^{-v_p(a)}.$$

- (1) Show that $v_p(ab) = v_p(a)v_p(b)$.
- (2) Show that $v_p(a+b) \ge \min\{v_p(a), v_p(b)\}.$
- (3) Can you obtain a stronger form of the triangle inequality for $|\cdot|_p$ from the inequality in (2)?
- (4) Let $\sum_{i=1}^{\infty} a_i$ be a series in \mathbb{Q} . Can you give a criterion for this series to be convergent under the p-adic absolute value $|\cdot|_p$?
- (5) Under the usual absolute the value, the rational field \mathbb{Q} is not complete and \mathbb{R} is the completion of \mathbb{Q} . Can you construct a completion of \mathbb{Q} for the p-adic absolute value $|\cdot|_p$? This completion is called the **field of** p-adic **numbers** and is denoted by \mathbb{Q}_p .

The usual absolute value for \mathbb{Q} is also denoted by $|\cdot|_{\infty}$.

(1) Show that for any $0 \neq a \in \mathbb{Q}$

$$\prod_{p} |a|_p = 1$$

where p varies over all the prime numbers as well as the symbol ∞ .

The reason why we denote the usual absolute value for \mathbb{Q} by $|\cdot|_{\infty}$ is the following. The motivation comes from the analogy of the field Q: the field of rational functions k(t), where k is a field. Let p(t) be a irreducible polynomial in k[t]. For any $a(t) \in k(t)$, we write a(t) as

$$a(t) = p(t)^m \frac{b(t)}{c(t)}, \quad \gcd(bc, p) = 1.$$

Define a valuation v_p by

$$v_p(a) = m$$

Define an absolute value $|\cdot|_p$ by

$$|a|_p = q^{-v_p(a)\deg p},$$

where q is a fixed real number greater than 1. This defines a metric on k(t). When $p(t) = t - \alpha$ for $\alpha \in k$, $v_p(\alpha)$ is the order of zero of a(t) at α . On the other hand, we define

$$v_{\infty}: k(t) \to \mathbb{Z} \cup \{\infty\}$$

as

$$v_{\infty}(a(t)) = \deg(h(t)) - \deg(g(t)),$$

where $a = \frac{g}{h}$. Then $v_{\infty}(a(t))$ is the order of zero of a(t) at ∞ . Moreover, if we let $|a|_{\infty} = q^{-v_{\infty}(a)}$ we still have the equality

$$\prod_{p} |a|_p = 1$$

where p varies over all the irreducible polynomials as well as the symbol ∞ .