Лекция 3 План лекции

- 1. Понятие отношения
- 2. Определение отношения
- 3. Область определения и множество значений
- 4. Срез отношения через элемент
- 5. Способы задания бинарных отношений
- 5.1. Задание перечислением и предикатом
- 5.2. Задание графом
- 5.3. Задание матрицей (таблично)

6. Операции над отношениями

- 6.1. Объединение, пересечение, разность, дополнение
- 6.2. Операции объединения и пересечения произвольных семейств отношений

7. Дополнительные операции

- 7.1. Обратное отношение
- 7.2. Композиция отношений (Умножение отношений)
- 7.2.1. Свойства композиции отношений

Понятие отношения

Отношение между парой объектов называется бинарным. Бинарное отношение используется для указания характера вида связи между парой объектов, рассматриваемых в определенном порядке. При этом отношение дает критерий для отличия одних упорядоченных пар от других. Таким образом, понятие «отношения» представляет собой дальнейшее развитие понятий упорядоченного множества, «соответствия» и «отображения».

В математике для обозначения связи между объектами или понятиями часто пользуются термином «отношения».

Пример. Такие неполные предложения (или так называемые предикаты, утверждения) могут быть рассмотрены как отношения:

- X меньше (или больше), чем Y,
- X выше (или ниже), чем Y,
- X делится на Y,
- X происходит раньше (или позже), чем Y,
- X включается (или входит) в Y,
- Х параллельно (или перпендикулярно) Ү,
- X равно (или эквивалентно) Y,
- X является братом Y,
- X связан (электрически или иным образом) с Y и т. д.

Определение отношения

Отношением R множеств X и Y называется произвольное подмножество $X \times Y$. Если $(x,y) \in R$, это записывают как xRy; при этом говорят, что x и y находятся в отношении R, или просто, что x

относится к y. Если X=Y, то отношение есть подмножество $X\times X$. Такое отношение называют **бинарным отношением** на X.

Примеры бинарных отношений.

- 1. Все множество $X \times Y$ есть отношение множеств X и Y.
- 2. Если X множество действительных чисел, то

$$\left\{\left(a,b
ight)\in X imes X\left|a^2+b^2=4
ight\}$$

является бинарным отношением на X.

- 3. Пусть X множество товаров в магазине, а Y множество действительных чисел. Тогда $\{(a,b) \in X \times Y | a \ price b\}$ отношение множеств X и Y.
- 4. Пусть X множество женщин, а Y множество мужчин, тогда $\{(a,b)|b$ является мужем $a\}$ есть отношение множеств X и Y.
- 5. Если A множество людей, то $\{\, \big(\, a,b\, \big) \in \, A^2 \, \big| \, b \, \text{ является родственником } \, a \, \}$ есть бинарное отношение на A .

Область определения и множество значений

Область определения отношения R на X и Y есть множество всех $x \in X$ таких, что для некоторых $y \in Y$ имеем $(x,y) \in R$. Другими словами, область определения R есть множество всех первых координат упорядоченных пар из R.

Множество значений отношения R на X и Y есть множество всех $y \in Y$ таких, что $(x,y) \in R$ для некоторого $x \in X$. Другими словами, множество значений R есть множество всех вторых координат упорядоченных пар из R.

С каждым отношением R на $X \times Y$ связано отношение R^{-1} на $Y \times X$.

Способы задания бинарных отношений

1. Бинарное отношение можно задать, перечисляя все входящие в него пары (если отношение состоит из конечного числа пар) или указав общее свойство пар, принадлежащих этому отношению, т. е. предикатом (вспомните способы задания множеств).

Пример. Пусть дано множество $X = \{p, r, s, q\}$. Зададим отношение $R \subseteq X \times X$ перечислением пар $R = \{(p, r), (s, q), (r, p), (p, p), (s, r), (p, s)\}$

Пример. Пусть дано N- множество натуральных чисел. Зададим отношение, указав общее свойство пар, принадлежащих отношению:

$$R_1 = \{(n,m) \in N \times N | n$$
 является делителем $m\}$

2. Способ задания бинарного отношения с помощью графа. Пусть R — бинарное отношение на множестве X. Изобразим элементы множества X в виде точек на плоскости (их называют вершинами графа). Для двух точек x_i, x_j проводим стрелку \to из x_i в x_j тогда и только тогда, когда $\left(x_i, x_j\right) \in R$. При этом, если одновременно $\left(x_i, x_j\right) \in R$ и $\left(x_j, x_i\right) \in R$ то точки x_i и x_j соединяются стрелкой \leftrightarrow , а если $\left(x_j, x_j\right) \in R$, то в точке x_j изображается петля. На рисунке изображен граф бинарного отношения $R = \left\{ \left(p, r\right), \left(s, q\right), \left(r, p\right), \left(p, p\right), \left(s, r\right), \left(p, s\right) \right\}$.

$$-\{(p,r),(s,q),(r,p),(p,p),(s,r),(p,s)\}.$$

оного отношения с помощы
$$\{x_1,x_2,x_3,...,x_n\}$$
; $Y=\{y_1,y_2,x_3,...,y_n\}$

3. Способ задания бинарного отношения с помощью булевых матриц. Пусть $R\subseteq X\times Y$, где $X=\left\{x_1,x_2,x_3,...,x_n\right\}$; $Y=\left\{y_1,y_2,y_3,...,y_m\right\}$. Рассмотрим $n\times m$ -матрицу (таблицу), в которой в первый столбец выписаны элементы множества X, а в начальную строку — элементы множества Y. На пересечении строки элемента x_i и столбца элемента y_j записывается 1, если пара $\left(x_i,y_j\right)\in R$, и 0 — в противном случае. Такая таблица называется **булевой матрицей отношения.** Булева матрица отношения

$$R = \{(p,r),(s,q),(r,p),(p,p),(s,r),(p,s)\}$$
 имеет вид:

R	p	q	r	S
p	1	0	1	1
q	0	0	0	0
r	1	0	0	0
S	0	1	1	0

Срез отношения через элемент

Пусть R — произвольное бинарное отношение между элементами множеств X и Y, $x \in X$. Множество тех элементов, с которыми элемент x находится в отношении R, называется **срезом** (или **сечением)** отношения R через элемент x и обозначается R(x). Если бинарное отношение R представлено с помощью графа, то R(x) состоит из тех вершин, в которые из вершины x идет стрелка. Подчеркнем, что срез отношения через элемент — это некоторое множество, которое может содержать несколько элементов, один элемент и ни одного элемента (пустое).

Пример задания среза отношения R через элемент x_i

Пусть даны множества $X = \{x_1, x_2, x_3, x_4\}$ и $Y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$ и отношение $R \subset X \times Y$, заданное графом.

Срез отношения R через элемент x_1 : $R(x_1) = \{y_1, y_2, y_3, y_6\}$ Срез отношения R через x_2 : $R(x_2) = \{\emptyset\}$

Срез отношения R через x_3 : $R(x_3) = y_3$

Срез отношения R через x_4 : $R(x_4) = \{y_1, y_4\}$

Операции над отношениями

Так как бинарные отношения представляют множества (пар), то к ним применимы понятия равенства, включения, а также операции объединения, пересечения и дополнения.

Для двух бинарных отношений *R* и *S* определим такие операции:

Включение $R \subset S$ понимается таким образом, что всякая упорядоченная пара элементов, принадлежащая отношению R, принадлежит и отношению S.

Равенство R = S означает, что отношения R и S состоят из одних и тех же упорядоченных пар.

Объединение $R \cup S$ отношений R и S состоит из упорядоченных пар, принадлежащих хотя бы одному из этих отношений.

Пересечение $R \cap S$ отношений R и S есть новое отношение, состоящее из упорядоченных пар, принадлежавших обоим отношениям одновременно.

Разность R-S отношений R и S есть множество упорядоченных пар, принадлежащих отношению R и не принадлежащих отношению S.

Дополнение. Если R — бинарное отношение между элементами множеств X и Y, то его **дополнением** (относительно $X \times Y$) называется разность $(X \times Y) - R$

Операции объединения и пересечения произвольных семейств отношений

Если $(R_i)_{i\in I}$ — семейство отношений, то **объединение этого семейства** есть отношение $\bigcup_{i\in I} R_i$, состоящее из упорядоченных пар, принадлежащих хотя бы одному из отношений R_i .

Пересечением этого семейства — отношение $\bigcap_{i \in I} R_i$, состоящее из упорядоченных пар, принадлежащих всем отношениям R_i .

Дополнительные операции

Для отношений вводятся некоторые дополнительные операции, которые связаны с их специфической структурой, проявляющейся в том, что все элементы отношений суть упорядоченные пары. Рассмотрим две такие операции.

1. Обратное отношение

Если в каждой упорядоченной паре, принадлежащей отношению R поменять местами первую и вторую компоненту, то получим новое отношение, которое называется **обратным** для отношения R и обозначается через R^{-1} . Например, для отношения R

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}$$

обратное отношение R^{-1} имеет вид:

$$R^{-1} = \{(r, p), (q, s), (p, r), (p, p), (r, s), (s, p)\}$$

Ясно, что тогда и граф отношения R^{-1} получается из графа отношения R путем переориентации всех стрелок; если же отношение R задано с помощью булевой матрицы, то, поменяв в ней строки и столбцы, получим булеву матрицу отношений R^{-1} .

Пусть $R\subseteq X\times Y$ есть отношение на $X\times Y$. Тогда отношение R^{-1} на $Y\times X$ определяется следующим образом:

$$R^{-1} = \{(y, x) | (x, y) \in R\}.$$

Другими словами, $(y,x) \in R^{-1}$ тогда и только тогда, когда $(x,y) \in R$ или, что равносильно, $yR^{-1}x$ тогда и только тогда, когда xRy.

Отношение R^{-1} называется *обратным отношением* к данному отношению R.

Пример.

Пусть
$$R = \{(1,r), (1,s), (3,s)\},$$

тогда $R^{-1} = \{(r,1), (s,1), (s,3)\}.$

Пусть $R = \{(a,b)|b$ является мужем $a\}$, тогда $R^{-1} = \{(b,a)|a$ является женой $b\}$

Пусть

$$R = \{(a,b)|b$$
 является родственником $a\}$, тогда $R = R^{-1}$

Пусть

$$R$$
 — отношение $\{(a,b)|a^2+b^2=4\}$, тогда также $R^{-1}=R$.

2. Композиция отношений (Умножение отношений)

Пусть
$$R \subseteq X \times Y$$
 — отношение на $X \times Y$, а $S \subseteq Y \times Z$ — отношение на $Y \times Z$.

Композицией отношений S и R называется отношение $T \subset X \times Z$,

определенное таким образом:

$$T = \{(x,z) | \text{существует такой элемент } y \in Y, \text{ что } (x,y) \in R \text{ и } (y,z) \in S \}.$$

Это множество обозначается $T = S \circ R$.

Пример.

Пусть
$$X = \{1, 2, 3\}, Y = \{a, b\}$$
 и $Z = \{\alpha, \beta, \lambda, \mu\}$.

Также заданы отношения

$$R = X \times Y \text{ if } S = Y \times Z \text{ . } R = \{(1, a), (2, b), (3, b)\},\$$

$$S = \{(a,\alpha), (a,\beta), (b,\lambda), (b,\mu)\},\$$

Тогда
$$S \circ R = \{(1,\alpha), (1,\beta), (2,\lambda), (2,\mu), (3,\lambda), (3,\mu)\}$$
 поскольку

из
$$(1,a) \in R$$
 и $(a,\alpha) \in S$ следует, что $(1,\alpha) \in S \circ R$,

из
$$(1,a) \in R$$
 и $(a,\beta) \in S$ следует, что $(1,\beta) \in S \circ R$,

.

из
$$(3,b) \in R$$
 и $(b,\mu) \in S$ следует, что $(3,\mu) \in S \circ R$.

Свойства композиции отношений

Композиция отношений **ассоциативна**; т. е., если X, Y, Z, D — множества и если $R \subseteq X \times Y$, $S \subseteq Y \times Z$ и $T \subseteq Z \times D$ тогда $R \circ (S \circ T) = (R \circ S) \circ T$.