

Sifat Koligatif Larutan

PENDAHULUAN

- 🦠 Sifat koligatif larutan adalah sifat larutan yang tidak bergantung kepada jenis zat, tetapi hanya bergantung pada konsentrasi larutan.
- 🦠 **Sifat koligatif** terdiri dari <mark>penurunan</mark> tekanan uap jenuh (ΔP), kenaikan titik didih larutan (ΔTb), penurunan titik beku larutan (ΔTf), dan tekanan osmotik larutan (π).

KONSENTRASI LARUTAN

- 🦠 Konsentrasi larutan adalah besaran yang menyatakan jumlah zat terlarut.
- 🔪 **Konsentrasi larutan** dapat dinyatakan dalam molaritas (M), molalitas (m), fraksi mol (X) dan
- 🔪 Molaritas (M) adalah jumlah mol zat terlarut dalam 1 liter larutannya.

$$M = \frac{n}{V}$$

M = molaritas (M) n = jumlah mol terlarut (mol) V = volume pelarut (L)

🦠 **Molaritas larutan** juga dapat diketahui <mark>dari</mark> kadar zat terlarut, dapat dirumuskan:

$$\mathbf{M} = \frac{\mathbf{p} \times \mathbf{K} \times \mathbf{10}}{\mathbf{m_m}}$$

$$\rho = \text{massa jenis larutan (kg/L)}$$

$$K = \text{persen kadar zat terlarut}$$

$$m_m = \text{massa molar/Ar/Mr (kg)}$$

Kemolaran larutan dapat diubah dengan ditambahkan zat terlarut atau ditambahkan pelarut, dan berlaku rumus pengenceran:

$$M_1.V_1 = M_2.V_2$$

Contoh:

Suatu larutan HNO₃ berkadar 94,5% dan bermassa jenis 1,25 gr/mL. Hitunglah:

Kemolaran larutan

Jumlah air yang harus ditambah ke dalam 100 mL HNO₃ agar M-nya menjadi 3 M

a.
$$M = \frac{1,25 \times 94,5 \times 10}{63} = \underline{18,75 \text{ M}}$$

b.
$$100.\ 18,75 = V_2.\ 3$$

Vair = $V_2 - V_1$

$$V_2 = 625 \text{ mL}$$

- a. Molaritas mula-mula
- b. Kemolaran jika 100 mL larutan ini ditambah
- c. Kemolaran jika larutan a dicampur larutan b sampai 4 L

Jawab:

a.
$$n = 4.9 : 98 = 0.05 \text{ mol}$$

$$M = 0.05 : 2 = 0.025 M$$

b.
$$100.0,025 = 500. M_2$$

$$M_2 = 0.005 M$$

c.
$$M_{camp} = \frac{M_1.V_1 + M_2.V_2}{V_{tot}} = \frac{2.0,025 + 0,5.0005}{4}$$

$$=\frac{2.0,025+0,5.0.00}{4}$$

$$M_{camp} = 0.013125 M$$

Nolalitas (m) adalah jumlah mol zat terlarut 🐧 dalam 1 kg pelarutnya.

$$m = \frac{n}{p}$$

m = molalitas (m)

n = jumlah mol terlarut (mol)

p = massa pelarut (kg)

4 gr NaOH dilarutkan dalam 400 gr air, tentukan molalitas larutan tersebut.

Jawab:

n = 4:40 = 0.1 mol

m = 0.1 : 0.4 = 0.25 m

🦠 Fraksi mol (X) adalah perbandingan jumlah mol zat X dengan total mol yang ada dalam larutan.

$$X_t = \frac{n_t}{n_t + n_p}$$

$$X_t = \frac{n_t}{n_t + n_p} \qquad X_p = \frac{n_p}{n_t + n_p} \label{eq:Xp}$$

Xt = fraksi mol terlarut Xp = fraksi mol pelarut

Nubungan fraksi mol terlarut dengan pelarut:

$$X_t + X_p = 1$$

Contoh:

Sebanyak 7,1 gr Na₂SO₄ (Mr = 142) dimasukkan ke dalam 36 gr air. Hitunglah fraksi mol Na₂SO₄, air, Na⁺ dan X SO₄²⁻.

Jawab:

n Na₂SO₄ = 7.1 : 142 = 0.05 mol

 $n H_2O = 36:18 = 2 mol$

 $n Na^{+} = 0.1 mol$

 $n SO_4^{2-} = 0.05 mol$

a.
$$X Na_2SO_4 = \frac{0.05}{0.05+2}$$
 $X Na_2SO_4 = 0.024$

b.
$$X H_2O = 1 - 0.024$$
 $X H_2O = 0.976$

c.
$$X Na^+ = \frac{n Na^+}{n Na^+ + n SO_4^{2+} + n Na_2 SO_4}$$

$$X Na^{+} = \frac{0.1}{0.1 + 0.05 + 0.05} = 0.5$$

d.
$$X SO_4^{2-} = \frac{n SO_4^{2-}}{n Na^+ + n SO_4^{2-} + n Na_2 SO_4}$$

 $X SO_4^{2-} = \frac{0,05}{0,1+0,05+0,05} = \underline{0,25}$

Kadar zat terlarut (%) dapat berupa:

1) Kadar terlarut massa (%m/m)

$$\%^{m}/_{m} = \frac{m_{t}}{m_{t} + m_{p}}$$
 mt = massa terlarut mp = massa pelarut

2) Kadar terlarut volume (%^V/_v)

$$%V/_V = \frac{V_t}{V_t + V_p}$$
 $Vt = volume terlarut Vp = volume pelarut$

3) Kadar terlarut massa-volume (%m/_v)

$$\%^{m}/_{V} = \frac{m_{t}}{V_{t} + V_{p}}$$

4) Kadar terlarut volume-massa (%V/m)

Adalah presentase volume terlarut dari massa total larutan.

$$\%^{V}/_{m} = \frac{V_{t}}{m_{t} + m_{p}}$$

Contoh:

Sebanyak 100 mL C_2H_6O ($\rho = 0.8$ gr/mL) ditambahkan ke 400 mL air. Jika p larutan = 0,9 gr/mL, tentukan 4 macam kadar zat terlarutnya! Jawab:

V etanol = 100 mL

 $m etanol = 0.8 \times 100 = 80 gr$

V larutan etanol = 500 mL

m larutan etanol = $0.9 \times 500 = 450 \text{ gr}$

a.
$$\%^{\text{m}}/_{\text{m}} = \frac{80}{450} \times 100\% = \underline{17,7\%}$$

b.
$$\%$$
V/ $_{V} = \frac{100}{500} \times 100\% = 20\%$

c.
$$\%^{\text{m}}/_{\text{V}} = \frac{80}{500} \times 100\% = \underline{16\%}$$

d.
$$%V/_{m} = \frac{100}{450} \times 100\% = 22,2\%$$

DIAGRAM FASE (P-T)

Niagram fase (P-T) menunjukkan sifat koligatif larutan berupa penurunan tekanan uap, kenaikan titik didih, dan penurunan titik beku.

- AO: kesetimbangan padat-gas pelarut (garis sublimasi)
- BO: kesetimbangan cair-padat pelarut (garis beku)
- CO: kesetimbangan cair-gas pelarut (garis didih)
- AO': kesetimbangan padat-gas larutan (garis sublimasi)
- BO': kesetimbangan cair-padat larutan (garis beku)
- CO': kesetimbangan cair-gas larutan (garis didih)
- : titik tripel pelarut
- O': titik tripel larutan

T (°C)

PENURUNAN TEKANAN UAP

- 🦠 Penurunan tekanan uap (ΔP) adalah penurunan tekanan uap pelarut yang ditimbulkan oleh zat terlarut, pada suhu konstan.
- 🥄 **Tekanan uap larutan** adalah tekanan yang ditimbulkan uap jenuh larutan.
- 🔌 Uap jenuh terbentuk dalam suatu ruangan jika ruangan dipenuhi uap air sampai terjadi kesetimbangan antara air dengan uap air (laju penguapan = laju pengembunan).

- 🔦 Semakin besar tekanan uap, semakin mudah suatu larutan menguap membentuk uap jenuh.
- 🥄 Tekanan uap larutan didasarkan atas tekanan uap pelarut, yang dipengaruhi:
 - 1) Konsentrasi zat terlarut (berbanding terbalik)
 - 2) Gaya tarik-menarik antar-partikel (berbanding terbalik)
 - 3) Suhu dan energi kinetik molekul (berbanding lurus)

→ Hukum Raoult menjelaskan bahwa fraksi mol pelarut mempengaruhi tekanan uap larutan.

$$P_{lar} = X_p \times P^o$$

Plar = tekanan uap larutan (mmHg atau atm)

Xp = fraksi mol pelarut

Po = tekanan uap pelarut murni (mmHg atau atm)

Penurunan tekanan uap dapat dirumuskan:

$$\Delta P = P^{\circ} - P$$

$$\Delta P = X_t \times P^o$$

 ΔP = penurunan tekanan uap (mmHg atau atm) Xt = fraksi mol terlarut

Contoh:

Diketahui X etanol adalah 0,25. Jika pada suhu tersebut tekanan uap air adalah 80 mmHg, tentukan P dan ΔP larutan.

Jawab:

X etanol = 0.25

X pelarut = 0.75

 $P = 0.75 \times 80 = 60 \text{ mmHg}$

 $\Delta P = 80 - 60 = 20 \text{ mmHg}$

E. KENAIKAN TITIK DIDIH DAN PENURUNAN TITIK BEKU

- Titik didih adalah titik dimana air mendidih, sedangkan titik beku adalah titik dimana air mulai membeku.
- Titik didih terjadi pada saat tekanan uap larutan sama dengan tekanan udara luar.
- Semakin rendah tekanan udara luar, maka semakin rendah titik didih, sehingga air lebih cepat mendidih di tempat tinggi.
- Nerbedaan menguap dan mendidih:

Menguap	Mendidih
perubahan wujud air	naik dan pecahnya uap
dari cair menjadi uap	air ke permukaan air
terjadi di seluruh	terjadi di permukaan
bagian air	air
terjadi pada suhu berapapun	terjadi pada titik didih

- ▲ Air memiliki titik didih normal 100°C, karena pada suhu tersebut tekanan uap air sama dengan 760 mmHg atau 1 atm (tekanan udara di permukaan laut).
- **▼ Titik beku** terjadi pada saat tekanan uap larutan sama dengan tekanan uap padat.
- Titik beku tidak terlalu dipengaruhi oleh tekanan udara luar.
- ▲ Air memiliki titik beku normal 0°C, karena pada suhu tersebut tekanan uap air sama dengan tekanan uap es.

Nenaikan titik didih (ΔTb) adalah selisih titik didih larutan dengan pelarutnya pada P konstan.

$$\Delta Tb = Tb_l - Tb_p$$

$$\Delta Tb = Kb \times m$$

ΔTb = kenaikan titik didih (°C)

Tbl = titik didih larutan (°C)

Tbp = titik didih pelarut (°C)

Kb = tetapan kenaikan titik didih molal (°C/m)

m = molalitas larutan (m)

Penurunan titik beku (ΔTf) adalah selisih titik didih pelarut dengan larutannya pada P konstan, dapat dirumuskan:

$$\Delta Tf = Tf_p - Tf_l$$

$$\Delta Tf = Kf \times m$$

ΔTf = penurunan titik beku (°C)

Tfl = titik beku larutan (°C)

Tfp = titik beku pelarut (°C)

Kf = tetapan penurunan titik beku molal (°C/m)

m = molalitas larutan (m)

Contoh:

Suatu larutan non-elektrolit mendidih pada suhu $100,2^{\circ}$ C. Tentukan titik beku larutan, jika Kf air = $1,8^{\circ}$ C/m, dan Kb air = $0,5^{\circ}$ C/m.

Jawab:

 $\Delta Tb = 100,2 - 100 = 0,2$ °C

 $0.2 = 0.5 \times m$

m = 0.4 molal

 $\Delta Tf = 1.8 \times 0.4 = 0.72$ °C

Tf = 0 - 0.72 = -0.72°C

Contoh:

Jika CH_3COOH mendidih pada $80,2^{\circ}C$, tentukan titik didih 2,56 gr naftalena (Mr = 128) dalam 400 gram asam cuka. (Kb cuka = $2,54^{\circ}C/m$)

Jawab:

n naftalena = 2,56 : 128 = 0,02 mol

m = 0.02 : 0.4 = 0.05 molal

 $\Delta Tb = 2.54 \times 0.05 = 0.127$ °C

Tb = 80.2 + 0.127 = 80.327°C

F. TEKANAN OSMOTIK LARUTAN

- Osmosis adalah perpindahan air dari pelarut murni (hipotonik) ke larutannya (hipertonik) melalui membran semipermeabel.
- Osmosis menghasilkan dua buah sistem yang sama konsentrasi (isotonik).
- ▼ Tekanan osmotik adalah tekanan hidrostatik yang mempertahankan kesetimbangan osmotik larutan dengan pelarut murninya agar osmosis terhenti.
- **Tekanan osmotik larutan** dapat dirumuskan:

$$\pi$$
.V = n. R. T

$$\pi = M. R. T$$

Contoh:

Tekanan osmotik darah manusia pada 36°C adalah 7,725 atm. Berapa gram glukosa (Mr = 180) diperlukan untuk membuat 820 mL larutan glukosa yang isotonik dengan darah?

Jawab:

 π darah = π glukosa

$$n = \frac{7,725 \times 0,82}{0.082 \times 309} = 0,25 \text{ mol}$$

 $m glukosa = 0.25 \times 180 = 45 gram$

- 🦠 **Osmosis balik** adalah perpindahan pelarut dalam larutan ke pelarut murninya yang dibatasi membran semipermeabel.
- 🔪 **Osmosis balik** terjadi jika pada permukaan larutan diberi tekanan yang melebihi tekanan osmotik.

FAKTOR VAN'T HOFF

- 🦠 **Faktor van't Hoff (i)** adalah nilai yang mempengaruhi konsentrasi larutan perhitungan sifat koligatif larutan. Faktor van't Hoff terdapat pada larutan elektrolit.
- 🔪 Nilai faktor van't Hoff:

$$i = 1 + (n - 1)\alpha$$
 $\alpha = \text{jumlah ion}$ $\alpha = \text{derajat ionisasi}$

- 🔪 Faktor van't Hoff mempengaruhi jumlah mol zat terlarut dalam perhitungan sifat koligatif.
- Numus sifat koligatif untuk larutan elektrolit tunggal:

Penurunan tekanan uap

$$P_{\text{lar}} = \frac{n_p}{n_p + n_t \times i} \times P^{\circ} \qquad \Delta P = \frac{n_t \times i}{n_p + n_t \times i} \times P^{\circ}$$

Kenaikan titik didih dan penurunan titik beku

$$\Delta Tb = Kb \times m \times i$$
 $\Delta Tf = Kf \times m \times i$

Tekanan osmotik

$$\pi = M. R. T. i$$

Contoh:

21 gram suatu elektrolit biner yang berada dalam 300 gr air ternyata mendidih pada suhu 100,18°C. Jika elektrolit ini terion 80% (Kb air = 0,5°C/m, Kf air = 1.8° C/m), tentukan:

- a. Mr elektrolit
- b. Titik beku larutan
- c. Tekanan osmotik larutan pada suhu 127°C dan massa jenis larutan 0,642 gr/mL
- d. Tekanan uap jika pada suhu 127°C tekanan uap air adalah 80 mmHg

Jawab:

$$i = 1 + (2 - 1).0,8 = 1,8$$

a.
$$\Delta Tb = 100,18 - 100 = 0,18$$
°C

$$0.18 = m \times 0.5 \times 1.8$$

$$m = 0.2 \text{ molal}$$
 $n = 0.2 \times 0.3 = 0.6 \text{ mol}$

$$Mr = 21 : 0,6 = 350 \text{ gr/mol}$$

b.
$$\Delta Tf = 0.2 \times 1.8 \times 1.8 = 0.648$$
°C

$$Tf = 0 - 0.648 = -0.648$$
°C

c.
$$m = 300 + 21 = 321 gr$$

$$\pi = \frac{0.1 \times 0.082 \times 400}{0.5} = 6.56 \text{ atm}$$

$$n ter = 0,1 mol$$

$$x \text{ pel} = \frac{16.6}{16.6 + (0.1 \times 1.8)} = 0.98$$

$$P = 0.98 \times 80 = 78.4 \text{ mmHg}$$

Contoh:

Sebanyak 1,8 gram M(OH)₂ dilarutkan dalam 100 mL air, dan mendidih pada 100,2°C. Jika basa itu mengion 80%, hitung Ar logam pembentuk basa. Jawab:

$$i = 1 + (3 - 1).0,8 = 1 + 1,6 = 2,6$$

$$0.2 = 0.52 \times m \times 2.6$$

$$m = 0.15 m$$
 $n = 0.15 x 0.1 = 0.015 mol$

$$Mr M(OH)_2 = 1.8 : 0.015 = 120 gr/mol$$

Ar M =
$$120 - (16 \times 2 + 1 \times 2) = 86 \frac{\text{gr/mol}}{120}$$

Jika dianggap mengion sempurna, tentukan titik beku dan titik didih larutan 6,84 gram Al₂(SO₄)₃ dalam 800 mL air. (Ar Al = 27; S = 32, O = 16)

Jawab:

Contoh:

$$i = 1 + (5 - 1).1 = 5$$

$$n = 6.84 : 342 = 0.02 \text{ mol}$$

$$m = 0.02 : 0.8 = 0.025 \text{ molal}$$

$$\Delta Tb = 0.52 \times 0.025 \times 5 = 0.065$$
°C

$$Tb = 100 + 0.065 = 100.065$$
°C

$$\Delta Tf = 1.86 \times 0.025 \times 5 = 0.2325$$
°C

$$Tf = 0 - 0.2325 = -0.2325$$
°C

- Numus sifat koligatif untuk larutan elektrolit campuran (i berbeda-beda):
 - 1) Jika rumus menggunakan fraksi mol

$$X_p = \frac{n_p}{n_p + (n_1 \times i + n_2 \times i + ...)}$$

$$X_t = \frac{(n_1 \times i + n_2 \times i + ...)}{n_p + (n_1 \times i + n_2 \times i + ...)}$$

2) Jika rumus menggunakan molaliltas

$$m = \frac{(n_1 \times i + n_2 \times i + ...)}{p_{tot}}$$

3) Jika rumus menggunakan molaritas

$$M = \frac{(n_1 \times i + n_2 \times i + ...)}{V_{tot}}$$

Contoh:

Ke dalam 1 L air dilarutkan 60 gr urea, 11,7 gr NaCl, dan 11,1 gr CaCl₂. Tentukan Tf campuran dan π jika ρ = 2,1656 g/mL pada suhu 100 K.

Jawab:

$$n \text{ NaCl} = (11,7 \times 2) : 58,5 = 0,4 \text{ mol}$$

$$n CaCl_2 = (11,1 \times 3) : 111 = 0,3 \text{ mo}$$

$$n \text{ tot} = 1 + 0.4 + 0.3 = 1.7 \text{ mol}$$

$$m_{camp} = 1.7 : 1 = 1.7 \text{ molal}$$

$$\Delta Tb = 1.7 \times 0.5 = 0.85$$
°C

$$Tb = 100 + 0.85 = 100.85$$
°C

$$\pi = 1.7 \times 0.082 \times 100 : 0.5 = 27.88 \text{ atm}$$

Contoh:

26,7 gram AlCl₃ (Mr = 133,5) yang berada dalam 2 kg air mengalami ionisasi bertingkat dengan harga $\alpha_1 = 0.9$; $\alpha_2 = 0.8$; $\alpha_3 = 0.5$. Tentukan:

- a. Jumlah mol Al³⁺ setelah ionisasi bertingkat
- b. Jumlah mol AlCl²⁺ setelah ionisasi bertingkat
- c. Jumlah mol AlCl₂+ setelah ionisasi bertingkat
- d. Jumlah mol AlCl₃ setelah ionisasi bertingkat
- e. Jumlah mol Cl- setelah ionisasi bertingkat
- f. Jumlah seluruh partikel terlarut
- g. Titik beku larutan jika Kf air = 1,85°C/m

a.
$$n Al^{3+} = 0.072 mol$$

- b. $n \text{ AlCl}^{2+} = 0.072 \text{ mol}$
- c. $n AlCl_2^+ = 0.036 mol$
- d. $n AlCl_3 = 0.02 mol$
- e. $n Cl^{-} = 0.072 + 0.144 + 0.18 = 0.396 \text{ mol}$
- f. $n_{tot} = n Al^{3+} + n AlCl^{2+} + n AlCl^{2+} + n AlCl^{3+} + n Cl^{-}$ $n_{tot} = 0.596 \text{ mol}$
- g. m = 0.596 : 2 = 0.298 molal

$$\Delta Tf = 0.298 \times 1.85 = 0.5513$$
°C

$$Tf = 0 - 0.5513 = -0.5513$$
°C

H. PENERAPAN SIFAT KOLIGATIF

Nifat koligatif larutan digunakan dalam:

1) Campuran pendingin

Campuran pendingin dibuat dengan menambahkan garam-garaman ke dalam es, sehingga es mencair namun suhu campuran turun.

2) Cairan antibeku

Cairan antibeku akan menurunkan titik beku dan mencegah pembekuan. Cairan antibeku yang baik adalah larut dalam campuran pendinginnya, viskositas rendah, tidak korosif dan daya hantar panas yang baik.

3) Pencairan salju di jalan

Dilakukan dengan menaburkan garam dapur atau urea ke salju agar titik bekunya turun.

4) Membuat cairan fisiologis

Cairan fisiologis (infus, obat tetes mata, dll.) dibuat isotonik dengan cairan tubuh agar tidak terjadi osmosis.

5) Desalinasi air laut

Dilakukan berdasarkan prinsip osmosis balik dengan memberi tekanan pada permukaan air laut, sehingga terkumpul air murni.