Set Theory

Ji, Yong-hyeon

October 2, 2024

Terminology

- Set; Collection; Family.
- Tabular (or Roster) Form

$$A = \{0, 2, 4, 8\}$$
.

• Set-builder Form

 $A = \{x : \text{ is even and } x < 10\}.$

Example.

- $\mathbb{N} = \{1, 2, \dots\}$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\}, \gcd(p, q) = 1 \right\}$
- $\mathbb{R} = \{x : x \text{ is a real number}\}$
- $\mathbb{C} = \{z : z \text{ is a complex number}\}$

Exercise. Show that $\sqrt{2}$ is irrational.

Sol. Assume $\sqrt{2} \in \mathbb{Q}$, i.e., $\exists p, q \in \mathbb{Z}$ such that $\sqrt{2}q = p$, $g \neq 0$ and $\gcd(p, q) = 1$. Then $2q^2 = p^2$. Since p^2 is even $\Rightarrow p$ is even,

$$p = 2k$$
 for some $k \in \mathbb{Z}$

By substituting p = 2k into $2q^2 = p^2$, we have

$$2q^2 = (2k)^2 \implies 2q^2 = 4k^2 \implies q^2 = 2k^2$$

Since q^2 is even $\Rightarrow q$ is even,

$$q = 2m$$
 for some $m \in \mathbb{Z}$

Thus, p and q are both even $\implies \gcd(p,q) \ge 2$, which contradicts the assumption $\gcd(p,q) = 1$. \square

Subset and Set Equality

Definition. Let *A* and *B* are sets.

- $B \subseteq A \stackrel{\text{def}}{\Longleftrightarrow} (x \in B \Rightarrow x \in A)$.
- Set Equality:

$$A = B \iff A \subseteq B \land B \subseteq A$$
$$\iff (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A).$$

Power Set

Definition. The power set of a set *X* is the set of all subsets of *X*.

$$\mathcal{P}(X) = 2^X := \{S : S \subseteq X\}.$$

Cartesian Product

Definition. Let *A* and *B* are sets. The **cartesian product** of *A* and *B* is the set

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Union, Intersection and Complement

Definition. Let *U* is a universal set, and let $A, B \subseteq U$.

• The **union** of *A* and *B* is the set

$$A \cup B := \{x : x \in A \lor x \in B\}.$$

Note that $x \in A \cup B \iff x \in A \lor x \in B$.

• The **intersection** of *A* and *B* is the set

$$A \cap B := \{x : x \in A \land x \in B\}.$$

Note that $x \in A \cap B \iff x \in A \land x \in B$.

• The **complement** of *A* is the set

$$A^{\mathcal{C}} := \left\{ x : \neg(x \in A) \right\} = \left\{ x : x \notin A \right\}.$$

Note that $x \in A^C \iff x \notin A$.

Proposition 1 *Let* A, B, $C \subseteq U$.

- $(1) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $(2) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- (3) $(A \cup B)^C = A^C \cap B^C$.
- (4) $(A \cap B)^C = A^C \cup B^C$.

Proof. (1)

(2)

- (3) $(A \cup B)^C = \{x : \neg [x \in A \lor x \in B]\} = \{x : x \notin A \land x \notin B\} = A^C \cap B^C.$
- **(4)** $(A \cap B)^C = \{x : \neg [x \in A \land x \in B]\} = \{x : x \notin A \lor x \notin B\} = A^C \cup B^C.$

Exercise. Let *A* has *n* elements. Show that $\mathcal{P}(A)$ has 2^n elements.

Sol.

- (pf 1) For each element of A, there are two choices:
 - 1 Include the element in the subset
 - 2. Exclude the element from the subset.

Since we have two independent choices (include or exclude), the total number of subsets is:

$$\underbrace{2 \times 2 \times \cdots 2}_{n \text{ times}} = 2^n.$$

(pf 2) We use mathematical induction.

(Basic Step) Let $A = \emptyset$ (so |A| = 0). Then $\mathcal{P}(A) = \{\emptyset\}$ and so $|\mathcal{P}(A)| = |\{\emptyset\}| = 1$. (Inductive Step) Assume that $|\mathcal{P}(A)| = 2^k$ where |A| = k for some $k \in \mathbb{Z}_{\geq 0}$. Let $A' = A \cup \{x\}$ where |A| = k and $x \notin A$. That is, |A'| = k + 1. Then

$$\mathcal{P}(A') = \mathcal{P}(A) \cup \{S \cup \{x\} : S \in \mathcal{P}(A)\}\$$
.

This implies $|\mathcal{P}(A')| = |\mathcal{P}(A)| + |\mathcal{P}(A)|$. Therefore, by assumption, $|\mathcal{P}(A')| = 2^k + 2^k = 2^{k+1}$.

Function

Definition. Let *A* and *B* are sets. A **function** $f \subseteq A \times B$ **from** *A* **to** *B* is a relation on $A \times B$ satisfying as follows:

(i) Every element of *A* relates to some element of *B*.

$$\forall a \in A : \exists b \in B \text{ such that } (a, b) \in f.$$

(ii) Every element of *A* relates to no more than one element of its *B*.

$$\forall a \in A : \forall b_1, b_2 \in B : (a, b_1), (a, b_2) \in f \implies b_1 = b_2.$$

Remark. A relation $f \subseteq A \times B$ is a function if

$$\forall a \in A : \exists ! b \in B : (a, b) \in f.$$

- The **domain** of f is Dom(f) = A.
- The **codomain** of f is Cdm(f) = B.
- The **image** of *f* is the set

$$\operatorname{Img}(f) = f[A] := \left\{ b \in B : \exists a \in A \text{ s.t. } (a, b) \in f \right\}$$
$$= \left\{ b \in B : \exists a \in A \text{ s.t. } f(a) = b \right\}$$
$$= \left\{ b \in B : b = f(a) \text{ for some } a \in A \right\}.$$

Simply we can express it as $f[A] = \{f(a) \in B : a \in A\}$. Note that $f[A] \subseteq B = \operatorname{Cdm}(f)$.

Note that

$$b \in f[A] \iff b = f(a) \text{ for some } a \in A.$$

• The **preimage** of *f* is the set

$$\operatorname{Img}^{-1}(f) = f^{-1}[B] := \left\{ a \in A : \exists b \in B \text{ s.t. } b = f(a) \right\}$$
$$= \left\{ a \in A : f(a) = b \text{ for some } b \in B \right\}.$$

Simply we can express it as $f^{-1}[B] = \{a \in A : f(a) \in B\}$. Note that $f^{-1}[B] \subseteq A = \text{Dom}(f)$. Note that

$$a\in f^{-1}[B]\iff f(a)\in B.$$

Proposition 2 *Let* $f: A \to B$ *be a function from A to B, and let* $A_1, A_2 \subseteq A$.

- (1) $f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$.
- (2) $f[A_1 \cap A_2] \subseteq f[A_1] \cap f[A_2]$.

Proof. Recall that

$$b \in f[A] \iff b = f(a) \text{ for some } a \in A.$$

(1) (\subseteq) Let $b \in f[A_1 \cup A_2]$. By the definition of the image, b = f(a) for some $a \in A_1 \cup A_2$. Then, either $a \in A_1$ or $a \in A_2$.

(Case 1)
$$a \in A_1 \Rightarrow f(a) \in f[A_1] \subseteq f[A_1] \cup f[A_2]$$
).
(Case 2) $a \in A_2 \Rightarrow f(a) \in f[A_2] \subseteq f[A_1] \cup f[A_2]$).

Thus, $b = f(a) \in f[A_1] \cup f[A_2]$, and so $f[A_1 \cup A_2] \subseteq f[A_1] \cup f[A_2]$.

 (\supseteq) Let $b \in f[A_1] \cup f[A_2]$. Then either $b \in f[A_1]$ or $b \in f[A_2]$.

(Case 1)
$$b \in f[A_1] \Rightarrow b = f(a_1)$$
 for some $a_1 \in A_1$.
(Case 2) $b \in f[A_1] \Rightarrow b = f(a_2)$ for some $a_2 \in A_2$.

That is, $\exists a \in A_1 \cup A_2$ such that f(a) = b and $a \in \{a_1, a_2\}$. Thus, $b \in f[A_1 \cup A_2]$.

(2) Let $b \in f[A_1 \cap A_2]$. By the definition of the image, b = f(a) for some $a \in A_1 \cap A_2$. Since $a \in A_1 \cap A_2$, we have $a \in A_1$ and $a \in A_2$. Then *both* of the following hold:

(i)
$$a \in A_1 \implies f(a) \in f[A_1]$$

(ii)
$$a \in A_2 \implies f(a) \in f[A_2]$$

Therefore, $b = f(a) \in f[A_1] \cap f[A_2]$.

Proposition 3 Let $f: A \to B$ be a function from A to B, and let $B_1, B_2 \subseteq B$.

$$(1)\ f^{-1}[B_1\cup B_2]=f^{-1}[B_1]\cup f^{-1}[B_2].$$

(2)
$$f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2].$$

(3)
$$f^{-1}[B_1^C] = (f^{-1}[B_1])^C$$
.

Proof. Recall that

$$a \in f^{-1}[B] \iff f(a) \in B.$$

(1) (\subseteq) Let $a \in f^{-1}[B_1 \cup B_2]$. By the definition of the preimage, we have $f(a) \in B_1 \cup B_2$. That is, either $f(a) \in B_1$ or $f(a) \in B_2$.

(Case 1)
$$f(a) \in B_1 \implies a \in f^{-1}[B_1]$$

(Case 2)
$$f(a) \in B_2 \implies a \in f^{-1}[B_2].$$

Thus, $a \in f^{-1}[B_1] \cup f[B_2]$.

(⊇) Let $a \in f^{-1}[B_1] \cup f^{-1}[B_2]$. Then either $a \in f^{-1}[B_1]$ or $a \in f^{-1}[B_2]$.

(Case 1)
$$a \in f^{-1}[B_1] \implies f(a) \in B_1$$

(Case 2)
$$a \in f^{-1}[B_2] \implies f(a) \in B_2$$
.

That is, $f(a) \in B_1 \cup B_2$. Thus, $a \in f^{-1}[B_1 \cup B_2]$.

(2) (\subseteq) Let $a \in f^{-1}[B_1 \cap B_2]$. By the definition of the preimage, $f(a) \in B_1 \cap B_2$ and so $f(a) \in B_2$ and $f(a) \in B_2$. Then both of the following hold:

(i)
$$f(a) \in B_1 \implies a \in f^{-1}[B_1]$$
.

(ii)
$$f(a) \in B_2 \implies a \in f^{-1}[B_2].$$

Thus, $a \in f^{-1}[B_1] \cap f[B_2]$.

- (\supseteq) Let $a \in f^{-1}[B_1] \cap f^{-1}[B_2]$. Then $a \in f^{-1}[B_1]$ and $a \in f^{-1}[B_2]$. Then both of the following hold:
 - (i) $a \in f^{-1}[B_1] \implies f(a) \in B_1$.
 - (ii) $a \in f^{-1}[B_2] \implies f(a) \in B_2$

That is, $f(a) \in B_1 \cap B_2$. Thus, $a \in f^{-1}[B_1 \cap B_2]$.

(3) (⊆) Let $a \in f^{-1}[B_1^C]$. By the definition of the preimage, thus,

$$f(a) \in B_1^C \implies f(a) \notin B_1 \implies a \notin f^{-1}[B_1] \implies a \in (f^{-1}[B_1])^C.$$

(⊇) Let $a \in (f^{-1}[B_1])^C$. By the definition of the preimage and the complement, thus,

$$a \notin f^{-1}[B_1] \implies f(a) \notin B_1 \implies f(a) \in B_1^C \implies a \in f^{-1}[B_1^C].$$

Proposition 4 *Let* $f : A \rightarrow B$ *be a function from A to B. Let* $A_1 \subseteq A$ *and* $B_1 \subseteq B$.

- (1) $f[f^{-1}[B_1]] \subseteq B_1$.
- (2) $A_1 \subseteq f^{-1}[f[A_1]].$

Proof. Recall that

$$f^{-1}[B_1] := \left\{ a \in A : f(a) \in B_1 \right\}, \qquad f[A_1] := \left\{ f(a) \in B : a \in A_1 \right\},$$

$$f[f^{-1}[B_1]] := \left\{ f(a) \in B : a \in f^{-1}[B_1] \right\}, \qquad f^{-1}[f[A_1]] := \left\{ a \in A : f(a) \in f[A_1] \right\}.$$

(1) Let $b \in f[f^{-1}[B_1]]$. By the definition of the image,

$$\exists a \in f^{-1}[B_1]$$
 such that $b = f(a)$.

From the definition of the preimage, $a \in f^{-1}[B_1] \Rightarrow f(a) \in B_1$. Thus $b = f(a) \in B_1$.

(2) Let $a \in A_1$. By the definition of the image, we know that $f(a) \in f[A_1]$. By the definition of the preimage, $f(a) \in f[A_1] \Rightarrow a \in f^{-1}[f[A_1]]$.

Example (Counterexample). Consider a function $f : A \rightarrow B$, where $A = \{1, 2\}$ and $B = \{a, b\}$.

(1) Let $B_1 = \{b\} \subseteq B$. Then

$$f^{-1}[B_1]=\varnothing \implies f[f^{-1}[B]]=f[\varnothing]=\varnothing\neq\{b\}=B_1.$$

(2) Let $A_1 = \{1\} \subseteq A$. Then

$$f[A_1] = f[\{1\}] = \{a\} \implies f^{-1}[f[A_1]] = f^{-1}[\{a\}] = \{1, 2\} \neq \{1\} = A_1.$$

Injection and Surjection

Definition. Let $f: A \rightarrow B$ is a function from A to B.

• A function *f* is **an injection** or **injective** (or **one-to-one**) if and only if

$$\forall a_1, a_2 \in A : [f(a_1) = f(a_2) \implies a_1 = a_2].$$

That is, an **injection** is a mapping such that the output uniquely determines its input.

• A function *f* is a surjection or surjective (or onto) if and only if

$$\forall b \in B : [\exists a \in A \text{ such that } f(a) = b].$$

That is, a **surjection** is a mapping such that every element of *B* is related to by some element of *A*.

Remark. A function *f* is **bijective** if and only if *f* is both injective and surjective.

Composition of Functions

Definition. Let $f_1 : A \to B$ and $f_2 : B \to C$ be functions such that $Cdm(f_1) = B = Dom(f_2)$. The **composition** $f_2 \circ f_1$ is defined as:

$$(f_2 \circ f_1)(a) := f_2(f_1(a)).$$

for all $a \in A$.

Remark.

- $f_2 \circ f_1 = \{(a,c) \in A \times C : (f_1(a),c) \in f_2\}.$
- $f_2 \circ f_1 = \{(a,c) \in A \times C : \exists b \in f_2 \text{ s.t. } f_1(a) = b \land f_2(b) = c\}.$

Note (Diagram).

Note (Illustration).

Theorem 1 Let A and B are sets. Let $f: A \to B$ be a function, and let $id_A: A \to A$ and id_B are identity functions on A and B, respectively.

- (1) f is one-to-one if and only if there exists the function $g: B \to A$ such that $g \circ f = id_A$.
- (2) f is onto if and only if there exists the function $g: B \to A$ such that $f \circ g = id_B$.

Remark.

Proof. (1) (\Rightarrow) Assume that $f: A \to B$ is injective. We need to construct a function $g: B \to A$ such that $g \circ f = \mathrm{id}_A$.

(2)