Math 395

Homework 2

Due: 2/8/2024

Name: Avinash Iyer

Collaborators: Nate Hall

Problem 2

Let I, J be ideals in ring R. Define $I + J = \{i + j \mid i \in I, j \in J\}$. This is referred to as the sum of the ideals.

(a) We will prove that I + J is an ideal in R that contains I and J.

To start, since I and J are ideals in R, I and J are each subrings of R, meaning both I and J contain 0_R . Therefore, taking $j=0_R$, we find that $\{i+0_R\mid i\in I\}\subseteq I+J$, and similarly, taking $i=0_R$, we find that $\{0_R+j\mid j\in J\}\subseteq I+J$. These sets are, respectively, I and J, meaning I and J are both subsets of I+J.

We will show that I+J is an ideal in R by showing that I+J is a subring that is closed under multiplication by all elements of R. Firstly, I+J is non-empty since, as exhibited earlier, both I and J are subrings, meaning $0_R \in I$ and $0_R \in J$, so $0_R + 0_R = 0_R \in I + J$. Let $x, y \in I + J$. Then, $x = x_i + x_j$ and $y = y_i + y_j$ for some $x_i, y_i \in I$ and $x_j, y_j \in J$. Then,

$$x - y = (x_i + x_j) - (y_i + y_j)$$

= $(x_i - y_i) + (x_j - y_j),$

which is an element of I + J. Similarly,

$$xy = (x_i + x_j) + (y_i + y_j)$$

= $(x_iy_i) + (x_jy_j + x_iy_j + x_jy_i).$

Since $x_i y_i \in I$, as I is a subring, and $x_j y_j \in J$, as J is a subring, as well as $x_i y_j \in J$ and $x_j y_i \in J$ as J is an ideal, we have that $x_j y_j + x_i y_j + x_j y_i \in J$, so $xy \in I + J$.

Finally, we will show that I+J is closed under multiplication by elements from R. Let $r \in R$, $a \in I+J$. Then, $a = a_i + a_j$ for $a_i \in I$ and $a_j \in J$. So,

$$ra = r(a_i + a_j)$$
$$= ra_i + ra_j,$$

and

$$ar = (a_i + a_j)r$$
$$= a_i r + a_j r,$$

and since I and J are both ideals, $ra_i, a_i r \in I$ and $ra_i, a_i r \in J$, so $ar, ra \in I + J$.

Therefore, I + J is an ideal that contains I and J.

(b) Let $a, b \in \mathbf{Z}$. We will show that $a\mathbf{Z} + b\mathbf{Z} = \gcd(a, b)\mathbf{Z}$.

By Bezout's identity, it is the case that there are integers x and y such that $xa + yb = \gcd(a, b)$. Since $xa \in a\mathbf{Z}$, and $yb \in b\mathbf{Z}$, as $a\mathbf{Z}$ and $b\mathbf{Z}$ are ideals in \mathbf{Z} , it is the case that for any $n \in \mathbf{Z}$, $n(xa + yb) \in a\mathbf{Z} + b\mathbf{Z}$. Therefore, $\gcd(a, b)\mathbf{Z} \subseteq a\mathbf{Z} + b\mathbf{Z}$.

For any $na + mb \in a\mathbf{Z} + b\mathbf{Z}$, there exist $k, \ell \in \mathbb{Z}$ such that $na = k \gcd(a, b)$ and $mb = \ell \gcd(a, b)$, by definition of greatest common divisor. Therefore, $na + mb = (k + \ell) \gcd(a, b) \in \gcd(a, b)\mathbf{Z}$, so $a\mathbf{Z} + b\mathbf{Z} \subseteq \gcd(a, b)\mathbf{Z}$.

Since $gcd(a, b)\mathbf{Z} \subseteq a\mathbf{Z} + b\mathbf{Z}$, and $a\mathbf{Z} + b\mathbf{Z} \subseteq gcd(a, b)\mathbf{Z}$, it is the case that $a\mathbf{Z} + b\mathbf{Z} = gcd(a, b)\mathbf{Z}$.

(c) We will prove that if gcd(a, b) = 1, then $a\mathbf{Z} \cap b\mathbf{Z} = ab\mathbf{Z}$.

To start, since a divides all members of $ab\mathbf{Z}$, $ab\mathbf{Z} \subseteq a\mathbf{Z}$, and since b divides all members of $ab\mathbf{Z}$, $ab\mathbf{Z} \subseteq b\mathbf{Z}$, meaning $ab\mathbf{Z} \subseteq a\mathbf{Z} \cap b\mathbf{Z}$.

Let $k \in a\mathbf{Z} \cap b\mathbf{Z}$. Then, k is a common multiple of a and b. Therefore, k is an integer multiple of $\operatorname{lcm}(a,b)$, or $\frac{ab}{\gcd(a,b)}$. Since $\gcd(a,b)=1$, k is an integer multiple of ab. Therefore, $k \in ab\mathbf{Z}$, meaning $a\mathbf{Z} \cap b\mathbf{Z} \subseteq ab\mathbf{Z}$.

Since $ab\mathbf{Z} \subseteq a\mathbf{Z} \cap b\mathbf{Z}$, and $a\mathbf{Z} \cap b\mathbf{Z} \subseteq ab\mathbf{Z}$, it is the case that $ab\mathbf{Z} = a\mathbf{Z} \cap b\mathbf{Z}$.

Problem 3

Let p be a prime number and let T denote the set of rational numbers in reduced form whose denominators are not divisible by p.

(a) We will prove that T is a ring by showing closure under addition, identity and inverse under addition, commutativity of addition, closure under multiplication, associativity under multiplication, and distribution of multiplication over addition.

Let $\frac{a}{b}$, $\frac{c}{d} \in T$ denote such rational numbers in lowest terms that satisfy the condition that p does not divide b and d, meaning that p is not a prime factor of either b or d. Then,

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd},$$

and since the prime factors of bd are precisely the prime factors multiplied by the prime factors of d, and p is not a prime factor of b or d, p is not a prime factor of bd, meaning p does not divide bd. Therefore, T is closed under addition.

The additive identity in lowest terms in T is inherited from the rational numbers — namely, 0. Since p does not divide 0, it is the case that T contains the additive identity.

The additive inverse to $\frac{a}{b} \in T$ is $\frac{-a}{b} \in T$; since p does not divide b by definition, it is the case that $\frac{-a}{b}$ satisfies the necessary condition for T.

Since addition under T is inherited from addition under the rational numbers, addition in T is commutative, meaning T is an abelian group under addition.

Let $\frac{a}{b}, \frac{c}{d} \in T$, meaning p does not divide c and p does not divide d. Then,

$$\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd},$$

so by the same logic as with addition, p does not divide bd, meaning T is closed under multiplication.

Since multiplication is associative and distributive under the rational numbers, and T inherits these properties, it is the case that multiplication is associative and distributes over the rational numbers.

Therefore, T satisfies the necessary requirements for a ring.

(b) Let I be the set of elements in T such that the numerator is divisible by p. We will show that I is an ideal by showing that I is a subring and multiplication by any element of T yields an element of I.

Since $0 \in I$, as the rational number 0 is divisible by every number, it is the case that I is non-empty. Let $\frac{a}{b}, \frac{c}{d} \in I$. Then, a = pk and $c = p\ell$ for some k and ℓ . Thus,

$$\begin{split} \frac{a}{b} - \frac{c}{d} &= \frac{pk}{b} - \frac{p\ell}{d} \\ &= \frac{pkd - p\ell b}{bd} \\ &= \frac{p(kd - \ell b)}{bd}, \end{split}$$

meaning that I is closed under subtraction. Similarly,

meaning I is closed under multiplication.

(c) We will show that T/I has p distinct cosets.

By the definition of the equivalence relation of ideals,

$$\frac{a}{b} \sim \frac{c}{d}$$

if

$$\frac{a}{b} - \frac{c}{d} \in I.$$

Therefore, $\frac{ad-bc}{bd} \in I$, so p|ad-bc, so $ad-bc \equiv 0$ modulo p. Therefore, $ad \equiv bc$ modulo p, or $\frac{a}{b} \equiv \frac{c}{d}$ modulo p.

Since $\frac{a}{b} \equiv k$ modulo p for some $k \in \{0, \dots, p-1\}$ necessarily, the values that $\frac{a}{b}$ is congruent to, modulo p, form the cosets of T/I.