# Une approximation de la probabilité de ruine ultime du modèle de ruine de Cramer-Lundberg via un développement polynomial

P.O. Goffard<sup>1</sup> X. Guerrault<sup>2</sup> S. Loisel<sup>3</sup> D. Pommerêt<sup>4</sup>

<sup>1</sup>Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille

<sup>2</sup>Axa France

<sup>3</sup>Institut de Sciences financières et d'assurance Université de Lyon, Université de Lyon 1

<sup>4</sup>Institut de mathématiques de Luminy Université de Aix-Marseille

Aout 2013 / 5<sup>eme</sup> rencontre des jeunes statisticiens

### Sommaire

- Introduction
- 2 Le modèle de ruine de Cramer-Lundberg
- 3 Familles Exponentielles Naturelles Quadratiques (FENQ)
- 4 Illustrations numériques

## Executive summary

#### Objectif

Mettre en place une nouvelle méthode numérique afin d'approcher les probabilités de ruine.

#### Idée

Projection orthogonale d'une densité de probabilité sur une base de polynômes.

- ← Choisir une mesure de probabilité appartenant aux Familles
   Exponentielles Naturelles Quadratiques (FENQ).
- Construire une base de polynômes orthogonaux par rapport à cette mesure.

#### Résultats

Approximation de la probabilité de ruine ultime pour des montants de sinistres suivant une distribution à queue légère.

#### **Notations**

Soit dF une mesure de probabilité univariée.

- *F* la fonction de répartition,
- f = F' la densité de probabilité par rapport à une mesure positive,
- $\widehat{F}(\theta) = \int e^{\theta x} dF(x)$  la fonction génératrice des moments,
- $\kappa(\theta) = ln(\widehat{F}(\theta))$  la fonction génératrice des cumulants,

Soit  $L^2(F)$  l'espace des fonction de carré intégrable par rapport à dF.

• 
$$f \in L^2(F)$$
 si  $\int f^2(x)dF(x) < \infty$ .

 $L^2(F)$  est un espace vectoriel normé avec :

$$||f||^2 = \langle f, f \rangle = \int f^2(x) dF(x).$$

## Definition et hypothèses

Soit  $\{R(t); t \ge 0\}$  le processus de réserve financière :

$$R(t) = u + pt - \sum_{i=1}^{N(t)} U_i,$$

où

- *u* est la réserve initiale,
- p est le montant des primes reçues par unité de temps,
- N(t) est un processus de Poisson simple d'intensité  $\beta$ ,
- $\{U_i\}_{i\in\mathbb{N}^*}$  est une suite de variables aléatoires positives, **i.i.d.**, de fonction de répartition  $F_U$  et de moyenne  $\mu$ .

Soit  $\{S(t); t \ge 0\}$  le processus de surplus :

$$S(t) = u - R(t).$$

 $\eta > 0$  le chargement de sécurité définie par :

$$p = (1 + \eta)\beta\mu.$$

# Visualisation des processus de réserve et de surplus



#### Probabilité de ruine ultime

Soit  $M = Sup\{S(t); t > 0\}$ , la probabilité de ruine ultime est définie par :

$$\psi(u) = P(M > u) = \overline{F_M}(u).$$

#### La formule de Pollaczek-Khinchine

Dans le cadre du modèle de Cramer-Lundberg, la probabilité de ruine peut s'écrire :

$$\psi(u) = (1-\rho) \sum_{n=0}^{+\infty} \rho^n \overline{F_{U^I}^{*n}}(u),$$

$$M \stackrel{D}{=} \sum_{i=1}^{N} U_i^I, \qquad F_{U^I}(x) = \int_0^x \overline{F_{U}(y)} dy,$$

où N suit une loi géométrique de paramètre  $\rho=\frac{\beta\mu}{p}<1$  et  $F_{U^I}^{*n}$  correspond à  $F_{U^I}$  convolué n fois avec elle-même.

Voir Ruin probabilities par Asmussen et Albrecher [2001] [1].



### Evaluation de la probabilité de ruine : une brève revue

- L'algorithme de Panjer, Panjer (1981) [8]
- Inversion numérique de la transformée de Laplace
  - → Fast Fourrier Transform, Embrecht et al. (1993) [5]
  - → Laguerre method, Weeks (1966) [10]
- Développement en une somme pondérée de densité gamma, Bowers (1966) [4]
  - → Approximation de Beekman-Bowers, Beekman (1969) [3]
- Méthode de simulation, Kaasik (2009) [6]

## Famille Exponentielle Naturelle Quadratique

Soit dF une mesure de probabilité admettant fonction génératrice des moments au voisinage de 0.

•  $\{F_{\mu}; \mu \in \mathcal{M}\}$  definit une FEN générée par dF, telle que

$$dF_{\mu}(x) = exp(\phi(\mu)x - \kappa(\phi(\mu)))dF(x).$$

La fonction de variance est dite quadratique si :

$$V(\mu) = a\mu^2 + b\mu + c$$

Les FENQ sont générées par six distributions :

- Normal
- Gamma
- Hyperbolic

- Binomiale
- Binomiale Négative
- Poisson

## Polynômes orthogonaux associés aux FENQ

Soit  $\{F_{\mu}; \mu \in M\}$  une FENQ générée par dF de moyenne  $\mu_0$ .

• La densité  $f(x, \mu)$ , par rapport à dF d'une distribution appartenant à la FENQ est proportionnelle à  $exp(\phi(\mu)x - \kappa(\phi(\mu)))$ .

$$Q_n(x,\mu) = V^n(\mu) \left\{ \frac{\partial^n}{\partial \mu^n} f(x,\mu) \right\} / f(x,\mu),$$

est un polynôme de degré n en  $\mu$  et en x.

•  $f(x, \mu_0) = 1$  et

$$Q_n(x) = Q_n(x, \mu_0) = V^n(\mu_0) \left\{ \frac{\partial^n}{\partial \mu^n} f(x, \mu) \right\}_{\mu = \mu_0}.$$

 $\{Q_n\}$  forment une famille de polynômes orthogonaux telle que :

$$< Q_n(x), Q_m(x) > = \int Q_n(x)Q_m(x)dF(x) = ||Q_n||^2 \delta_{nm}.$$

Pour une description exhaustive des FENQ c.f. Barndorf-Nielsen (1978) [2] et Morris (1982) [7].

## Développement polynomial et troncature

- L'ensemble des polynômes est dense dans L<sup>2</sup>(F).

   → {Q<sub>n</sub>} est donc une base orthogonale de L<sup>2</sup>(F).
- Soit  $dF_X$  une mesure de probabilité associée à une variable aléatoire X.  $\Leftrightarrow \frac{dF_X}{dF}$  est la densité par rapport à dF
- Si  $\frac{dF_X}{dF} \in L^2(F)$  alors :

$$\frac{dF_X}{dF}(x) = \sum_{n \in \mathbb{N}} \left\{ \frac{dF_X}{dF}, \frac{Q_n}{||Q_n||} > \frac{Q_n(x)}{||Q_n||} = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{Q_n(x)}{||Q_n||^2}.$$

• La fonction de répartition  $F_X$  est alors :

$$F_X(x) = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

L'approximation s'obtient alors par troncature de la série infinie :

$$F_X^K(x) = \sum_{n=0}^K E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$



# Développement polynomial pour la probabilité de ruine ultime

La mesure de probabilité associée à  $M = \sum_{i=1}^{N} U_i^I$  s'écrit :

$$dF_M(x) = (1 - \rho)\delta_0(dx) + (1 - \rho)\sum_{n=1}^{+\infty} \rho^n dF_{U'}^{*n}(x)$$
  
=  $(1 - \rho)\delta_0(dx) + dG_M(x).$ 

Si  $\frac{dG_M}{dF} \in L^2(F)$  alors :

$$\frac{dG_M}{dF}(x) = \sum_{n \in \mathbb{N}} \left\langle \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} \right\rangle \frac{Q_n(x)}{||Q_n||}.$$

Ce qui donne pour la probabilité de ruine ultime :

$$\psi(u) = \sum_{n \in \mathbb{N}} \left\langle \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} \right\rangle \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||}.$$



# Approximation de la probabilité de ruine via la troncature du développement polynomial

#### Approximation de la probabilité de ruine

- $\{F_{\mu}; \mu \in M\}$  est une FENQ générée par F de moyenne  $\mu_0$ ,
- $f(x,\mu) \propto exp(\phi(\mu)x \kappa(\phi(\mu)))$  est la densité de  $F_{\mu}$  par rapport F.

Si  $\frac{dG_M}{dF} \in L^2(dF)$  alors:

$$\psi^{K}(u) = \sum_{n=0}^{K} V_{F}(\mu_{0})^{n} \left[ \frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \left( \widehat{G}_{M}(\phi(\mu)) \right) \right]_{\mu=\mu_{0}}$$

$$\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}(x)||^{2}}$$

 $dG_M$  est une mesure de probabilité défaillante de support  $[0, +\infty[$ . Parmi les FENQ, la seule supportée sur  $[0, +\infty[$  est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö (1939) [9]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$ . où  $\gamma$  est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$ 



 $dG_M$  est une mesure de probabilité défaillante de support  $[0, +\infty[$ . Parmi les FENQ, la seule supportée sur  $[0, +\infty[$  est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegő (1939) [9]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$ . où  $\gamma$  est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$ 



 $dG_M$  est une mesure de probabilité défaillante de support  $[0, +\infty[$ . Parmi les FENQ, la seule supportée sur  $[0, +\infty[$  est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegő (1939) [9]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$ . où  $\gamma$  est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

 $\hookrightarrow \xi < 2\gamma$ 



 $dG_M$  est une mesure de probabilité défaillante de support  $[0, +\infty[$ . Parmi les FENQ, la seule supportée sur  $[0, +\infty[$  est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegő (1939) [9]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$ . où  $\gamma$  est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$





 $dG_M$  est une mesure de probabilité défaillante de support  $[0, +\infty[$ . Parmi les FENQ, la seule supportée sur  $[0, +\infty[$  est générée par la distribution exponentielle.

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

Les polynômes orthogonaux liés à la mesure exponentielle sont ceux de Laguerre, voir Szegö (1939) [9]

- Quelle valeur pour ξ faut-il choisir pour vérifier la condition d'intégrabilité mentionnée précedemment?
- $\psi(u) \le e^{-\gamma u}$ . où  $\gamma$  est l'unique solution positive de l'équation

$$\widehat{F_{U^I}}(s) = \frac{1}{\rho}$$

$$\hookrightarrow \xi < 2\gamma$$



#### Calibration des simulations

#### Concernant le modèle de ruine :

- Le montant des primes p est égal à 1,
- le chargement de sécurité  $\eta$  est égal à 20%.

Une visualisation graphique est proposée, avec en ordonnée :

$$\Delta\psi(u) = \psi(u) - \psi^K(u),$$

pour une réserve initiale u et un ordre de troncature K (en abscisse).

 $\hookrightarrow$  Differentes valeurs pour  $\xi$  sont testées dont une égale à  $\gamma$ .

## Montant de sinistres de loi exponentielle

$$f_U(x) = e^{-x} 1_{\mathbb{R}^+}(x)$$



## Montant de sinistres de loi $\Gamma(1/2, 1/2)$

$$f_U(x) = \frac{e^{-x/2}}{\Gamma(1/2)\sqrt{2x}} 1_{\mathbb{R}^+}(x)$$



 $\psi(0.1)$ 

0.810

# Montant de sinistres de loi $\Gamma(1/3, 1)$

$$f_U(x) = \frac{e^{-x}x^{-2/3}}{\Gamma(1/3)} 1_{\mathbb{R}^+}(x)$$





# Comparaison avec l'algorithme de Panger

| u   | Exact Value | Polynomials expansion  | Panjer's algorithm |
|-----|-------------|------------------------|--------------------|
|     |             | $\xi = \gamma$ , K=120 | h=0.01             |
| 0.1 | 0.821313    | 0.821424               | 0.821356           |
| 1   | 0.736114    | 0.736238               | 0.736395           |
| 5   | 0.47301     | 0.472944               | 0.473757           |
| 10  | 0.274299    | 0.274252               | 0.275131           |
| 50  | 0.00352109  | 0.00352476             | 0.00357292         |

| u   | Monte-Carlo simulations | Polynomials expansion     | Panjer's algorithm     |
|-----|-------------------------|---------------------------|------------------------|
|     |                         | $\xi = \gamma$ , K=120    | h=0.01                 |
| 0.1 | 0.8                     | 0.80505                   | 0.805454               |
| 1   | 0.624                   | 0.634979                  | 0.636315               |
| 5   | 0.232                   | 0.239601                  | 0.241442               |
| 10  | 0.076                   | 0.0712518                 | 0.0723159              |
| 50  | 0                       | $4.569555 \times 10^{-6}$ | $4.686 \times 10^{-6}$ |

#### Conclusion

- + Une méthode numérique efficace
  - → L'approximation peut-être aussi précise que souhaitée par l'utilisateur
- + Facile à comprendre et à implémenter
- + Il n'est pas nécessaire de discrétiser la distribution des montants.
- Limitée aux distributions à queue légère

#### Perspectives:

- Étude théorique de la sensitivité de l'approximation au paramètre  $\xi$ .
- Approximation de la fonction de répartition de distributions composées plus générale
  - → Extension statistique



S. Asmussen and H. Albrecher.

Ruin Probabilities, volume 14 of Advanced Series on Statistical Science Applied Probability.

World Scientific, 2010.



O. Barndorff-Nielsen.

Information and exponential Families in Statistical Theory. Wiley, 1978.



J.A. Beekman.

Ruin function approximation.

*Transaction of society of actuaries*, 21(59 AB) :41–48, 1969.



N.L. Bowers.

Expansion of probability density functions as a sum of gamma densities with applications in risk theory.

Transaction of society of actuaries, 18(52):125–137, 1966.



P. Embrechts, P. Grübel, and S. M. Pitts.

Some applications of the fast fourrier transform algorithm in insurance mathematics.

Statistica Neerlandica, 41:59–75, March. 1993.





#### A. Kaasik.

Estimating ruin probabilities in the Cramér-Lundberg model with heavy-tailed claims.

Mathematical statistics, University of Tartu, Tartu, October 2009.



#### Carl N. Morris.

Natural exponential families with quadratic variance functions. *The Annals of Mathematical Statistics*, 10(1):65–80, 1982.



#### H. H. Panjer.

Recursive evaluation of a family of compound distributions. *Astin Bulletin*, 12(1):22–26, 1981.



#### G. Szegö.

Orthogonal Polynomials, volume XXIII.

American mathematical society Colloquium publications, 1939.



#### W. T. Weeks.

Numerical inversion of laplace transforms using laguerre functions. *Journal of the ACM*, 13(3):419–429, 1966.