About the presenter

Alan Silva is a Statistician, has a Master and a PhD in Transportation and he is an Associate Professor of Statistics at University of Brasilia, Brazil. Working with SAS since 2002 and developing solutions using SAS/IML and SAS/AF.

SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

Alan Ricardo da Silva, PhD University of Brasilia, Brazil

Spatial Point Pattern

- The new PROC SPP (Spatial Point Pattern) deal with spatial data, which are a collection of locations of single events of a spatial process (SAS, 2014);
- It is possible to use PROC SSP to create a surface of the intensity of the point pattern process;
- The problem is that PROC SPP generates data only for a squared area, even the data are bordered by an irregular area.

Spatial Point Pattern

Spatial Point Pattern

 The first analysis in order to characterizing the intensity of the data points in an area can be done by a kernel estimator of the intensity function. The general form of this kind of estimator is given by (Cressie, 1991):

$$\hat{\lambda}_h(\mathbf{s}) = \frac{1}{\rho_h(\mathbf{s})} \left\{ \sum_{i=1}^n k_h(\mathbf{s} - \mathbf{s}_i) \right\}$$

$$\hat{\lambda}_h(s) = \frac{1}{\rho_h(s)} \left\{ \sum_{i=1}^n k_h(s - s_i) \right\} \qquad \qquad \hat{\lambda}_h(s) = \frac{1}{\rho_h(s)} \left\{ \sum_{i=1}^n h^{-2} k_h\left(\frac{s - s_i}{h}\right) \right\} \qquad \text{(PROC SPP)}$$

$$K(d) = \frac{e^{\frac{-d^2}{2h^2}}}{\sqrt{2\pi}}$$

$$d = \sqrt{(x_i - x_j)^2 + (y_i + y_j)^2}$$

 let us use an irregular shape from the Canchim farm (EMBRAPA) in São Carlos, São Paulo, Brazil. There are 85 data referring to the clay content.

The shape file (*.shp) can be imported by PROC MAPIMPORT.

 First, one can use PROC SQL to select the borders of the area named MINX, MINY, MAXX, MAXY.

```
proc sql noprint;
select min(x) into:minx from sao_carlos;
select min(y) into:miny from sao_carlos;
select max(x) into:maxx from sao_carlos;
select max(y) into:maxy from sao_carlos;
quit;
%put minx=&minx maxx=&maxx miny=&miny maxy=&maxy;
```


 After that, one can use that information about the borders of the area in the AREA= option of the PROCESS statement of PROC SPP. The b= option referred to the kernel bandwidth parameter of the kernel first-order intensity estimates and GRID= specifies a reference grid for computing the kernel estimate.

```
proc spp data=sao_carlos_pt plots(equate)=(trends observations);
   process AVG_Z = (x, y /area=(&minx, &miny, &maxx, &maxy)
   Event=AVG_Z) /
   kernel(type=gaussian b=500 out=kernel grid(90,90));
   #SASGF
run;
```

 To plot the results, one can use the ANNOTATE Facility from the dataset generated by KERNEL sub-option OUT= and PROC GMAP with ANNO= option in the CHORO statement.

Just remember to rename the variables GXC and GYC to X and Y, respectively

```
data anno; set kernel (rename=(GXC=x GYC=y));
 length function style $10. color $8.;
 retain line 1 xsys ysys '2' hsys '3' color 'red';
 function='label';text='U';position='5';style='marker';
 size=1;
run;
proc gmap data=a map=sao carlos all;
 id segment;
 choro v / anno=anno nolegend;
```


 Using SIZE=0.5 (small squares) we can see how the accrdinates are distributed on the area s) we can

see the on the a

>

> >

 Finally, to plot the continuous surface one can use the program described in the paper to color each coordinate (square created by the ANNOTATE Facility) and to create a continuous bar. This task can be done with %colorscale macro (SAS, 2003) with some adaptations. This macro is on Appendix I.

```
%colorscale(FFFFFF,,FF0000,&nc,clist,no);%patt;
%bar(FF3333,FFFFFFF,&min,&max,vertical,y_i=44,x_i=80);
#SASGF
```



```
proc gmap data=a map=sao_carlos all anno=anno_points;
 id segment;
 choro v / anno=anno nolegend;
run;
quit;
                                      4.803E-6
                                      5.18E-20
```


 Use PROC GINSIDE to show the intensity estimates only for the coordinates which are inside the polygon.

```
proc ginside data=anno map=Sao carlos
out=anno2 insideonly;
 id segment;
 run;
data anno2; set a anno2;
proc gmap data=a map=sao carlos all anno=anno
 id segment;
choro v / anno=anno2 nolegend;
run; quit;
```


Estimated Intensity of AVG_Z with Gaussian Kernel and Bandwidth = 500 7574000 0.000003 0.000002 0.000003 7572000 -0.000004 0.000001 0.000002 0.000003 7570000 -7568000 -0.000001 0.000003 7566000 206000 208000 210000

Much Better!!

SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

Acknowledgments: FAPDF, Brazil

Thank you!!

alansilva@unb.br

#SASGF