Chomsky Normal Form for Context-Free Gramars

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

23 September 2011

Outline

CNF

- 2 Converting to CNF
- 3 Correctness

Chomsky Normal Form

A Context-Free Grammar G is in Chomsky Normal Form if all productions are of the form

$$X \rightarrow YZ \text{ or } X \rightarrow a$$

Its a "normal form" in the sense that

CNF

Every CFG G can be converted to a CFG G' in Chomsky Normal Form, with $L(G') = L(G) - \{\epsilon\}$.

Why is CNF useful?

• Gives us a way to do parsing: Given CFG G and $w \in A^*$, does $w \in L(G)$?

Why is CNF useful?

- Gives us a way to do parsing: Given CFG G and $w \in A^*$, does $w \in L(G)$?
 - If G is in CNF, then length of derivation of w (if one exists) can be bounded by 2|w|.

Why is CNF useful?

- Gives us a way to do parsing: Given CFG G and $w \in A^*$, does $w \in L(G)$?
 - If G is in CNF, then length of derivation of w (if one exists) can be bounded by 2|w|.
- Makes proofs of properties of CFG's simpler.

Example

CFG G4

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

"Equivalent" grammar in CNF:

CFG G'_4 in CNF

$$S \rightarrow LX \mid SS \mid LR$$

$$X \rightarrow SR$$

$$L \rightarrow ($$

$$R \rightarrow)$$

Procedure to convert a CFG to CNF

- Main problem is "unit" productions of the form $A \to B$ and ϵ -productions of the form $B \to \epsilon$.
- Once these productions are eliminated, converting to CNF is easy.

Procedure to remove unit and ϵ -productions

Given a CFG G = (N, A, S, P).

- Repeatedly add productions according to the steps below till no more new productions can be added.
 - **1** If $A \to \alpha B\beta$ and $B \to \epsilon$ then add the production $A \to \alpha\beta$.
 - ② If $A \to B$ and $B \to \gamma$ then add the production $A \to \gamma$.
- Let resulting grammar be G' = (N, A, S, P').
- Let G'' be grammar (N, A, S, P''), where P'' is obtained from P' by dropping unit- and ϵ -productions.
- Return G''.

Example

Apply procedure to the grammar below:

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Correctness claims

• Algorithm terminates.

Correctness claims

- Algorithm terminates.
 - Notice that each new production added has a RHS that is a subsequence of RHS an original production in P.

Correctness claims

- Algorithm terminates.
 - Notice that each new production added has a RHS that is a subsequence of RHS an original production in P.
- G' generates same language as G.
 - Let G'_i be grammar obtained after *i*-th step, with $G'_0 = G$.
 - Then clearly $L(G'_{i+1}) = L(G'_i)$.

Correctness of G''

Claim

$$L(G'') = L(G) - \{\epsilon\}.$$

Subclaim

Let $w \in L(G')$ with $w \neq \epsilon$. Then any minimal-length derivation of w in G' does not use unit or ϵ -productions.

Proof of Subclaim

Subclaim

Let $w \in L(G')$ with $w \neq \epsilon$. Then any minimal-length derivation of w in G' does not use unit or ϵ -productions.

Consider a derivation of w in G' which uses a production $B \to \epsilon$. It must be of the form

$$S \stackrel{l}{\Rightarrow} \alpha X \beta \stackrel{1}{\Rightarrow} \alpha \gamma B \delta \beta \stackrel{m}{\Rightarrow} \alpha' \gamma' B \delta' \beta' \stackrel{1}{\Rightarrow} \alpha' \gamma' \delta' \beta' \stackrel{n}{\Rightarrow} w.$$

Proof of Subclaim

Subclaim

Let $w \in L(G')$ with $w \neq \epsilon$. Then any minimal-length derivation of w in G' does not use unit or ϵ -productions.

Consider a derivation of w in G' which uses a production $B \to \epsilon$. It must be of the form

$$S \stackrel{f}{\Rightarrow} \alpha X \beta \stackrel{1}{\Rightarrow} \alpha \gamma B \delta \beta \stackrel{m}{\Rightarrow} \alpha' \gamma' B \delta' \beta' \stackrel{1}{\Rightarrow} \alpha' \gamma' \delta' \beta' \stackrel{n}{\Rightarrow} w.$$

$$S \stackrel{f}{\Rightarrow} \alpha X \beta \stackrel{1}{\Rightarrow} \alpha \gamma \delta \beta \stackrel{m}{\Rightarrow} \alpha' \gamma' \delta' \beta' \stackrel{n}{\Rightarrow} w.$$

Now consider a derivation of w in G' which uses a production $A \rightarrow B$. It must be of the form

$$S \stackrel{l}{\Rightarrow} \alpha A \beta \stackrel{m}{\Rightarrow} \alpha' A \beta' \stackrel{1}{\Rightarrow} \alpha' B \beta' \stackrel{n}{\Rightarrow} \alpha'' B \beta'' \stackrel{1}{\Rightarrow} \alpha'' \gamma \beta'' \stackrel{p}{\Rightarrow} w.$$

Proof of Subclaim

Subclaim

Let $w \in L(G')$ with $w \neq \epsilon$. Then any minimal-length derivation of w in G' does not use unit or ϵ -productions.

Consider a derivation of w in G' which uses a production $B \to \epsilon$. It must be of the form

$$S \stackrel{f}{\Rightarrow} \alpha X \beta \stackrel{1}{\Rightarrow} \alpha \gamma B \delta \beta \stackrel{m}{\Rightarrow} \alpha' \gamma' B \delta' \beta' \stackrel{1}{\Rightarrow} \alpha' \gamma' \delta' \beta' \stackrel{n}{\Rightarrow} w.$$

$$S \stackrel{f}{\Rightarrow} \alpha X \beta \stackrel{1}{\Rightarrow} \alpha \gamma \delta \beta \stackrel{m}{\Rightarrow} \alpha' \gamma' \delta' \beta' \stackrel{n}{\Rightarrow} w.$$

Now consider a derivation of w in G' which uses a production $A \rightarrow B$. It must be of the form

$$S \stackrel{f}{\Rightarrow} \alpha A \beta \stackrel{m}{\Rightarrow} \alpha' A \beta' \stackrel{1}{\Rightarrow} \alpha' B \beta' \stackrel{n}{\Rightarrow} \alpha'' B \beta'' \stackrel{1}{\Rightarrow} \alpha'' \gamma \beta'' \stackrel{P}{\Rightarrow} w.$$

$$S \stackrel{f}{\Rightarrow} \alpha A \beta \stackrel{m}{\Rightarrow} \alpha' A \beta' \stackrel{1}{\Rightarrow} \alpha' \gamma \beta' \stackrel{n}{\Rightarrow} \alpha'' \gamma \beta'' \stackrel{P}{\Rightarrow} w.$$