Nombre:

Examen Parcial Economía Financiera

Instructor: Miguel Cantillo

Instrucciones: Tiene 2:45 horas para completar este examen, que consiste de una sección de falso y verdadero, y de un problema. Puede usar una calculadora y una hoja de apuntes por los dos lados. Enseñe todo su trabajo: respuestas que sólo contengan frases escuetas y sin explicación recibirán muy poco crédito. ¡Buena Suerte!

Parte I: Falso o Verdadero (40 puntos)

La parte de falso o verdadero contiene 10 proposiciones. Decida si son verdaderas o falsas. De ser falsas, explique porqué en un par de líneas.

1. _____ Con agentes amantes al riesgo y una distribución de ubicación y escala, existen preferencias de media y varianza. V2. _____ Con una perpetuidad creciente, el q de una empresa es mayor que uno siempre y cuando ROE > g. **F debe ser** ROE > k - g3. _____ El valor del negocio de una empresa puede ser negativo. F. por la responsabilidad limitada siempre es mayor que cero. 4. _____ Es empíricamente imposible determinar si una persona es globalmente más aversa al riesgo que otra. F. Por ejemplo, se puede ver la disponibilidad de pagar seguros $\pi_{i1} > \pi_{i2}$ que sí es observable. 5. _____ Un proyecto que tiene repagos $f_s(k_0)$ estocásticos, pero si $f'_s(k_0)$ es fijo, los flujos de caja se pueden descontar a la tasa libre de riesgo. V. 6. La varianza de XOM mensual es de 31.31 p.b., mientras que la semestral es de 178.68 p.b., y el error estándar es de 0.1616. Si el valor crítico al 5 % es de 1.96, puedo rechazar la hipótesis de la caminata aleatoria para esta empresa. $VR_6 = \frac{\frac{178,68}{6}}{31,31} = 0,9511$ y $z=\frac{0.9511-1}{0.1616}=-0.3024$ que es menos que el valor crítico, por lo que no se puede rechazar la hipótesis de la caminata aleatoria. 7. _____ Una oportunidad que paga $cf_{j0} > 0$ y $cf_{js} \ge 0$ con desigualdad estricta para algún s es más atractiva que el arbitraje 1 o 2. \mathbf{V} . 8. _____ Dos variables aleatorias x y z tienen distribuciones acumuladas de F(x)y G(t) = k(t)F(t) respectivamente. Si $k(t) \leq 1$, entonces $x \succ_{DESO} z$. F. ya que $G(t) \leq F(t)$ por lo que $z \succ_{DEPO} x$. 9. _____ Un bono con cupones variables de $y \times FV$ se vende a un precio menor que el valor facial. F. en ese caso, el precio es igual al valor facial.

10. _____ En una economía donde todos los agentes tienen la misma utilidad y expectativas heterogéneas, hay separabilidad en una cartera **F. cuando las expectativas son heterogéneas, no hay separabilidad en una cartera, aún cuando los agentes tengan las mismas utilidades.**

Parte II: Problema (60 puntos)

- 1. Considere los siguientes repagos: $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5$ y las siguientes relaciones de indiferencia:
 - $l(x_1, x_3, 10\%) \sim l(x_2, x_4, 75\%)$
 - $l(x_3, x_5, 90\%) \sim l(x_2, x_4, 25\%)$
 - $l(x_1, x_5, 20\%) \sim l(x_4, x_5, 50\%)$
 - a) Explique el supuesto de medibilidad y su importancia para la construcción de la utilidad cardinal. ¿hay excepciones para ese supuesto? (15 puntos) El supuesto de medibilidad dice que si $l_a \succ l_b \succ l_c$ entonces existe un único $\pi \epsilon(0,1)$ tal que $l(l_a,l_c,\pi) \sim l_b$. Este supuesto es clave para la construcción de la utilidad esperada, ya que construimos una utilidad "ancestral" usando esa propiedad, de manera que $u(l_z) \equiv \pi_z$ donde $l_z \sim l(x_1,x_m,\pi_z)$. Este supuesto no se cumple cuando hay preferencias lexicográficas
 - b) Construya la utilidad cardinal de esta persona, es decir $u(x_i)$ para i=1,...,5. (15 puntos) En este caso primero suponemos que $x_{j+1} \succ x_j$, es decir, que el agente prefiere más a menos. Seguidamente, ya que hay dos grados de libertad, tenemos $u(x_1) = 0$ y $u(x_5) = 1$. Resolviendo las relaciones de indiferencia de arriba, encontramos que $u(x_2) = 0.40$, $u(x_3) = 0.50$ y $u(x_4) = 0.60$
 - c) Compare los siguientes tres pares de loterías y explique cuál es preferida para cada par (15 puntos):
 - 1) $l_a(x_1, x_3, 50\%)$ vs. $l_b(x_2, x_4, 100\%)$, $u(l_a) = 0.25 < u(l_b) = u(x_2) = 0.40$, por lo que $l_b > l_a$
 - 2) $l_c(x_3, x_5, 50\%)$ vs. $l_d(x_2, x_4, 0\%)$, $u(l_c) = 0.75 > u(l_d) = u(x_4) = 0.60$ por loque $l_c > l_d$
 - 3) $l_e(x_1, x_5, 50\%)$ vs. $l_f(x_3, x_5, 100\%)$ $u(l_e) = 0.50 = u(l_f) = u(x_3)$ por lo que $l_e \sim l_f$
 - d) En base a los resultados encontrados en el inciso (c) explique cuál es la actitud ante el riesgo de esta persona. (15 puntos). Vemos que para bajos repagos (menores que x_3), el agente es averso al riesgo ya que escoge la cosa segura l_b versus una lotería con el mismo valor esperado. Para niveles de repago más alto, el agente se vuelve amante al riesgo, ya que prefiere la lotería l_c al repago con el mismo valor esperado. Dentro de todo el espectro de repagos, el agente es neutral al riesgo. Esta utilidad es parecida a la postuladad por Friedman y Savage (1948), donde, si la riqueza inicial el 3, compraría seguros para evitar pérdidas, al mismo tiempo que compraría lotería por las ganancias.