Progress Presentation-I

e-Yantra Summer Intership-2016 Formation Control of Multiple Swarm Robots

> Om Singh Chirag Shah

Mentor 1: Abhinav Sarkar

Mentor 2: Avinash Dubey

IIT Bombay

June 6, 2017

Overview of Task Task Accomplised Next Tasks Challenges Faced Future Plans Thank You

Overview of Project

Project Name: Formation Control of Multiple Swarm Robots **Objectives:**

- Implement formation control over a group of Spark V robot using overhead camera and aruco markers for localization of the robot
- 2. Implement swarm behaviors like disperse, follow the leader etc

Deliverables:

- Robots capable of making any desired formation
- Robots capable of implementing Swarm behaviors

Overview of Task

No.	Task	Deadline
1.	Python,Spark V ,OpenCV	2days
	introduction interface Xbee	
2.	Position and orientation	3 Days
	calculation of multiple Spark V robots	
3.	Go-to-goal for a single Spark V	4 Days
4.	Formation testing for 2-3 robots	2 Days
5.	Algorithm for formation control of	3 Days
	multiple robots	
6.	Avoid obstacle controller	3 Days
7.	Algorithm testing and fine tuning	3 Days
	Scaling up the number of robots	
8.	Local Swarm behaviors	8 Days

Overview of Task Task Accomplised Next Tasks Challenges Faced Future Plans Thank You

Task Accomplished

Task Completed

- Cropping and transforming the arena area inside the black border
- ▶ The position and orientation (x, y, Φ) of multiple robots can be found using aruco markers placed on the robot

Opencv-Contrib-python (aruco library) https://github.com/opencv/opencv_contrib

rerview of Project 🛮 Overview of Task 🦰 Task Accomplised 💮 Next Tasks 📉 Challenges Faced 💍 Future Plans 🤍 Thank You

Task Accomplished

Selected suitable equations for the differential drive robot

• (x, y, θ) of each robot is transmitted via XBee to the robot. The desired location (xg,yg,ϕ) is also transmitted. The XBees are configured in a star configuration

verview of Project Overview of Task Task Accomplised Next Tasks Challenges Faced Future Plans Thank You

Task Accomplished

► The robot can turn and move towards the required location using a P controller for differential drive

iew of Project Overview of Task Task Accomplised Next Tasks Challenges Faced Future Plans Thank You

Next Tasks

- Implementing a PID controller on the robot to increase the precision of Go-To-Goal
- Go-to-Goal for multiple robots

Overview of Task Task Accomplised Next Tasks Challenges Faced Future Plans Thank You

Challenges Faced

- Communication between computer(Master) and robot(Slave) to transmit the robots initial state and desired state (x, y, Φ)(Serial Communication Protocol)
- Developing an effective differential drive robot model for the Spark V
- Conversion from unicycle model to differential drive model
- Implementing Go-to-goal controller using P controller algorithm on the Spark V

roject Overview of Task Task Accomplised Next Tasks Challenges Faced Future Plans Thank You

Future Plans

- Communication of Master(PC) to Multiple slaves(Spark V)
- Multiple robots capable of moving to a point selected manually
- Multiple robots making pre-defined formation
- Swarm behaviors like "follow the leader"

Thank You

THANK YOU !!!

