Participación puentes

José Angel Olmedo Guevara 11 de Marzo de 2025

Sea G una gráfica distinta de K_2 . Demuestre que si G tiene puentes, entonces también tiene vértices de corte.

Demostraremos por medio de inducción:

Caso base: Sea G es una gráfica de tres vértices, que forman una trayectoria, se puede observar que el vértice de grado 2 es un vértice de corte y cualquiera de las dos aristas de G son puentes.

Hipótesis inductiva: Si existe algún puente en una gráfica, implica la existencia de al menos un vértice de corte.

Paso inductivo: Sea G una gráfica con más de tres vértices y con al menos un puente e = uv, si removemos dicha arista, entonces tendremos dos componentes conexas (C_1, C_2) . Como G originalmente contiene más de tres vértices, entonces podemos asumir que alguna de sus dos componentes conexas (C_1, C_2) al eliminar el puente tiene más de un vértice.

Asumamos sin pérdida de generalidad que C_1 tiene más de un vértice, por lo que al eliminar u, es decir G_{-u} generariamos a C_2 , además, podría generar más componentes conexas dentro de C_1 , lo que implica necesariamente la existencia de un vértice de corte en G cuando existe una arista.