Documento de Diagrama de Classes

Autor:

Luís Campos

Março, 2023

Índice

1. Intr	odução	4				
1.1.	Descrição do Sistema	4				
1.2.	Objetivo do Diagrama de Classes	4				
2. Diagrama de Classes 5						
3. Descrição das Classes						
3.1.	Classe Organizador	6				
3.2.	Classe Alerta	6				
3.3.	Classe Sensor	7				
3.4.	Classe Espaco	7				
4. Rela	1. Relações					

ĺ	nd	lice	de	Figu	ıras
				0	

1. Introdução

1.1. Descrição do Sistema

O Sistema de Monitoramento de Eventos é um sistema web que permite monitorar eventos em tempo real. O sistema coleta dados de sensores de temperatura, humidade, qualidade do ar e ruído, e os apresenta em um dashboard para os organizadores do evento. Os organizadores também podem configurar alertas para serem notificados quando os valores dos sensores ultrapassam limites predefinidos.

1.2. Objetivo do Diagrama de Classes

O diagrama de classes documenta as classes principais do sistema e seus relacionamentos. O objetivo do diagrama é descrever a estrutura do sistema, facilitar a comunicação entre os membros da equipe de desenvolvimento e documentar as regras de negócio do sistema.

2. Diagrama de Classes

Figura 1 - Diagrama de Classes

3. Descrição das Classes

3.1. Classe Organizador

• Descrição:

Representa a entidade que vai gerir os alertas e dados para assim agir conforme o necessário para manter as condições de conforto.

Atributos

- id: integer : Identificador único do organizador.
- nome: string : Nome do organizador.
- email: string: E-mail do organizador.
- password: string : Password do organizador

Métodos

- criarAlertas(alerta) : Alerta:
- listarAlertas():
- atualizarAlerta(alerta) : Alerta :
- eliminarAlerta(alerta) : Alerta :

3.2. Classe Alerta

• Descrição:

Representa um alerta e o seu tipo que é exibido ocorra alguma variação nas condições de conforto e tambem fornece a data e hora do ocorrido.

Atributos:

- id: int : Identificador único do Alerta.
- tipo: string: Define o tipo de alerta.
- data_hora: datetime : data e a hora que ocorreu o alerta

Métodos:

- exibirAlerta(): Exibe um alerta caso algum dado dos sensores esteja fora do normal.
- verificarCondicoes(): verifica se os dados estam fora do normal recebidos dos sensores estam fora do normal.

3.3. Classe Sensor

Descrição:

Representa um dispositivo que coleta dados do ambiente.

Atributos:

- tipo: string: Tipo do sensor (ex: temperatura, ruído, etc..).
- valor_atual_temp: float : valor medido pelo sensor exclusivamente de temperatura.
- valor_atual_hum: integer: valor medido exclusivamente pelo sensor de humidade.
- valor_atual_qualiAr: integer: valor medido exclusivamente pelo sensor de qualidade do ar.
- valor_atual_ruido: float : valor medido exclusivamente pelo sensor de ruido.
- timestamp: datetime: o timestamp das medições feitas pelo sensor.
- localizacao: Espaco: localização do sensor em um espaco especifico do evento.

Métodos:

- obterValorTemperatural(valor atual temp): float :
- obterValorHumidadel(valor atual hum): float :
- obterValorQualidadeArl(valor_atual_qualAr): integer :
- obterValorRuido(valor_atual_ruido): float :

3.4. Classe Espaco

• Descrição:

Representa um espaço físico dentro do evento (ex: sala, corredor) onde estam instalados os sensores.

Atributos:

- id: integer : Identificador único do evento.
- nome: string : Nome do evento.

Métodos:

- adicionarSensor(sensor): Sensor : Adiciona um sensor ao espaço.
- removerSensor(sensor): Sensor : Remove ao espaço.

4. Relações

Organizador <-> Alerta

- Relação: 1 -> 0..*
- Descrição: Um organizador pode criar e gerir vários alertas. Esta relação é representada pela multiplicidade 1 para "Organizador" e 0..* para "Alerta", indicando que um organizador deve criar pelo menos um alerta, mas pode criar vários, enquanto um alerta pode estar associado a um ou mais organizadores.

Espaco <-> Sensor

- Relação: 1 -> 0..*
- Descrição: Um espaço pode ter um ou mais sensores. A multiplicidade 1 para "Espaco" e 0..* para "Sensor" sugere que cada espaço possui vários sensores, mas cada sensor está associado a um único espaço.

Sensor <-> Alerta

- Relação: 1..* -> 0..*
- Descrição: Um sensor pode gerar vários alertas e cada alerta pode estar associado a um ou mais sensores. A multiplicidade 1..* para "Sensor" e 0..* para "Alerta" indica que cada sensor pode gerar um ou mais alertas, enquanto um alerta pode ser gerado por um ou mais sensores.