Sequence Model and Recurrent Neural Network (RNN)

Outline

This lecture introduces sequence model. The goal is to know how RNN and LSTM work, have an idea of their applications.

- Why sequence model?
- ➤ Why RNN?
- Basic RNN
- > LSTM
- Applications
- Attention mechanism
- Self-attention based models

Why Sequence Model?

Some Example Tasks:

Why Sequence Model?

Some Example Tasks:

Input Output **Music Generation:** "A Woman is running" Image Captioning: "This movie $\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$ Sentiment Classification: is terrible" **Activity Recognition:** HighJump

Why RNN?

Slot Filling: Ticket booking system

Why RNN?

 \hat{y}_2^2 Solving slot filling by Feedforward network? Input: a word (Each word is represented as a vector) Oulu

One-hot encoding

How to represent each word as a vector?

One-hot Encoding lexicon = {apple, bag, cat, dog, elephant}

apple = $[1 \ 0 \ 0 \ 0]$ The vector is lexicon size. bag = $[0 \ 1 \ 0 \ 0]$ Each dimension corresponds cat = $[0 \ 0 \ 1 \ 0 \ 0]$ to a word in the lexicon $dog = [0 \ 0 \ 0 \ 1 \ 0]$ The dimension for the word elephant = $[0 \ 0 \ 0 \ 1]$

https://www.youtube.com/watch?v=xCGidAeyS4M

is 1, and others are 0

Why RNN?

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

https://www.youtube.com/watch?v=xCGidAeyS4M

Recurrent Neural Network (RNN)

output sequence:

time: 1

Example

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$$

output sequence:

t sequence:
$$\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix}$$

time: 2

Example

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$

Example

output sequence:

$$\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix} \dots$$

time: 3

Example

output sequence: $\begin{bmatrix} 8 \\ 8 \end{bmatrix} \begin{bmatrix} 20 \\ 20 \end{bmatrix} \begin{bmatrix} 44 \\ 44 \end{bmatrix}$...

time: 3

RNN

The same network is used again and again.

RNN Training

Forward Propagation:

$$a^{t} = g(w_{aa}a^{t-1} + w_{ax} x^{t} + b_{a})$$

$$\hat{y}^{t} = g(w_{ya}a^{t} + b_{y})$$

$$\hat{y}^{t} = g(w_{ya}a^{t} + b_{y})$$

$$\hat{y}^{t} = g(w_{ya}a^{t} + b_{y})$$

RNN Training

Backpropagation through time (BPTT)

Back Propagation:

$$w_a \leftarrow w_a - \alpha \frac{\partial L}{\partial w_a}$$
 α : learning rate

$$L^{t}(\hat{y}^{t}, y^{t}) = -y^{t} log \hat{y}^{t}$$
 (1)

$$L = \sum_{t=1}^{T_y} L^t(\hat{y}^t, y^t)$$
 (2)

$$\frac{\partial L}{\partial w_a} = \sum_{t=1}^{T_y} \frac{\partial L^t}{\partial w_a} \tag{4}$$

$$\frac{\partial L^t}{\partial w_a} = \sum_{k=1}^t \frac{\partial L^t}{\partial \hat{y}^t} \frac{\partial \hat{y}^t}{\partial a^t} \frac{\partial a^t}{\partial a^k} \frac{\partial a^k}{\partial w_a}$$
 (5)

Deep RNN

Bidirectional RNN (BRNN)

Bidirectional RNN

Advantage: take into account information from the past and from the future.

Disadvantage: need the entire sequence of data before you can make predictions anywhere

Vanishing gradients with RNNs

Vanishing gradients with RNNs

I will **arrive** Beijing, the capital of China and historical city, on November 2nd.

I will **leave** Beijing, the capital of China and historical city, on November 2nd.

Exploding gradients?

gradient clipping

Basic RNN unit

Gate Unit:

Copy

Memory Cell State:

Step 1:

$$f^t = \sigma(w_f[a^{t-1}, x^t] + b_f)$$

Step 2:

Step 3:

Step 4:

$$o^{t} = \sigma(w_{o}[a^{t-1}, x^{t}] + b_{o})$$
$$a^{t} = o^{t} * \tanh(c^{t})$$

Overall:

$$f^{t} = \sigma(w_{f}[a^{t-1}, x^{t}] + b_{f})$$

$$i^{t} = \sigma(w_{i}[a^{t-1}, x^{t}] + b_{i})$$

$$\tilde{c}^{t} = \tanh(w_{c}[a^{t-1}, x^{t}] + b_{c})$$

$$c^{t} = f^{t} * c^{t-1} + i^{t} * \tilde{c}^{t}$$

$$o^{t} = \sigma(w_{o}[a^{t-1}, x^{t}] + b_{o})$$

$$a^{t} = o^{t} * \tanh(c^{t})$$

Some Variants of LSTM:

[1] Gers F A, Schmidhuber J. Recurrent nets that time and count. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.

Some Variants of LSTM:

[1] Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2016, 28(10): 2222-2232.

Gated Recurrent Unit (GRU)

[1] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Other variants of RNN

Clockwise RNN:

Structually Constrained Recurrent Network(SCRN):

^[1] Koutnik J, Greff K, Gomez F, et al. A clockwork rnn. arXiv preprint arXiv:1402.3511, 2014.

^[2] Mikolov T, Joulin A, Chopra S, et al. Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753, 2014.

RNN, LSTM, GRU in Pytorch

Main Arguments:

input_size: the dimension of x^t

hidden_size: the dimension of a^t and c^t

num_layers: number of recurrent layers

bias: the layer use bias or not

bidirectional: unidirectional or bidirectional

More Applications

Probability of Probability of Probability of "arrive" in each slot "Oulu" in each slot "on" in each slot y^2 V^1 Input and output are both sequences a^3 with the same length RNN can do more than that! χ^1 x^3 χ^2 arrive November 2nd

Applications

(a) Sequence output (e.g. image captioning). (b) Sequence input (e.g. sentiment analysis). (c) Synced sequence input and output (e.g. speech recognition) (d) Sequence input and sequence output (e.g. Machine Translation).

One to Many (Image Captioning)

• Input an image, but output a sequence of words

One to Many (Image Captioning)

Input an image, but output a sequence of words

One to Many (Image Captioning)

• Reference paper list:

- [1] Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention. ICML 2015.
- [2] Karpathy A, Fei-Fei L. Deep visual-semantic alignments for generating image descriptions. CVPR 2015.
- [3] You Q, Jin H, Wang Z, et al. Image captioning with semantic attention. CVPR 2016.
- [4] Gan Z, Gan C, He X, et al. Semantic compositional networks for visual captioning. CVPR 2017.
- [5] Anderson P, He X, Buehler C, et al. Bottom-up and top-down attention for image captioning and visual question answering. CVPR 2018.
- [6] Dai B, Fidler S, Lin D. A neural compositional paradigm for image captioning. NIPS 2018.

Many to One (Video Classification)

• Input an video, but output a class score

Activity Recognition

Sequences in the Input

[1] Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description. CVPR 2015.

Many to One (Video Classification)

Input an video, but output class scores

Figure 1: Overview of our approach.

[1] Yue-Hei Ng J, Hausknecht M, Vijayanarasimhan S, et al. Beyond short snippets: Deep networks for video classification. CVPR 2015.

Many to One (Video Classification)

Reference paper list:

- [1] Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description. CVPR 2015.
- [2] Yue-Hei Ng J, Hausknecht M, Vijayanarasimhan S, et al. Beyond short snippets: Deep networks for video classification. CVPR 2015.
- [3] Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition. NIPS 2015.
- [4] Feichtenhofer C, Pinz A, Zisserman A. Convolutional two-stream network fusion for video action recognition. CVPR 2016.
- [5] Wang L, Xiong Y, Wang Z, et al. Temporal segment networks: Towards good practices for deep action recognition. ECCV 2016.
- [6] Xu H, Das A, Saenko K. R-c3d: Region convolutional 3d network for temporal activity detection. ICCV 2017.

Many to Many (Synced)

- Both input and output are sequences, <u>Synchronizing in temporal.</u>
- Output sequence is shorter or the same length as input sequence.

many to many

Same length: slot filling

different length: speech recognition

 Both input and output are both sequences, <u>but the output</u> is shorter.

Problem?

"Helo", Why can't it be "Hello"

- Both input and output are both sequences, <u>but the output</u> <u>is shorter.</u>
- Connectionist Temporal Classification (CTC)

[1] Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. ICML 2006.

CTC: Training

Acoustic Features:

Label: H I

All possible alignments are considered as correct.

CTC: example

Many to Many (Lip Reading)

[1] Assael Y M, Shillingford B, Whiteson S, et al. Lipnet: End-to-end sentence-level lipreading. arXiv:1611.01599, 2016.

Many to Many (Lip Reading)

	Unseen Speakers		Overlapped Speakers	
Method	CER	WER	CER	WER
Hearing-Impaired Person (avg)	_	47.7%	_	_
Baseline-LSTM	38.4%	52.8%	15.2%	26.3%
Baseline-2D	16.2%	26.7%	4.3%	11.6%
Baseline-NoLM	6.7%	13.6%	2.0%	5.6%
LipNet	6.4 %	11.4 %	1.9 %	4.8 %

Many to Many (Lip Reading)

- Reference paper list:
- [1] Assael Y M, Shillingford B, Whiteson S, et al. Lipnet: End-to-end sentence-level lipreading. arXiv:1611.01599, 2016.
- [2] Chung J S, Senior A, Vinyals O, et al. Lip reading sentences in the wild. CVPR 2017.
- [3] Stafylakis T, Tzimiropoulos G. Combining residual networks with LSTMs for lipreading. arXiv:1703.04105, 2017.
- [4] Afouras T, Chung J S, Senior A, et al. Deep audio-visual speech recognition. IEEE TPAMI, 2018.
- [5] Shillingford B, Assael Y, Hoffman M W, et al. Large-scale visual speech recognition. arXiv:1807.05162, 2018.
- [6] Zhang X, Cheng F, Wang S. Spatio-Temporal Fusion based Convolutional Sequence Learning for Lip Reading. ICCV 2019.

Many to Many (Seq2seq)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→机器学习)

[1] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. Advances in NIPS, 2014.

Many to Many (Seq2seq-Att)

[1] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014.

Many to Many (Seq2seq-Att)

Attention layer:

[1] Chaudhari S, Polatkan G, Ramanath R, et al. An attentive survey of attention models. arXiv:1904.02874, 2019.

Demo: Chat-bot

Demo: Visual Question Answering

source: http://visualqa.org/

Some drawbacks of RNN

- Memory cost
- Can't train in parallel
- Short-term dependency

Output Probabilities Beyond RNN Softmax Linear Add & Norm Feed Transforme Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right)

[1] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. NIPS 2017.

Thank you!