Techniques for Wifi Locationing

Rhys Hewer

Outline

Project Goals
Data Science Process
Data Quality
Data Preprocessing
Modelling
Recommendations

Project Goals

Project Goals

Use "wifi fingerprinting" to determine a person's location in indoor spaces by using signals from multiple wifi hotspots.

Wifi Fingerprinting = using signal strengths of surrounding wifi access points, as received by device, as a 'fingerprint' of location.

Data Science Process

Data Science Process

Data Collection

Dataset Overview

Used <u>UJIIndoorLoc database</u> which covers three buildings of Universitat Jaume I (Valencia, Spain) with 4 or more floors and an area of almost 110.000m².

529 features: 520 related to wifi signal strength per location, 9 identify location, time and characteristics of collection.

The wifi intensity values are represented as negative integer values ranging -104dBm (extremely poor signal) to 0dbM. The positive value 100 is used to denote when a wifi signal was not detected.

During the database creation, 520 different wifi wireless access points (WAPs) were detected. Thus, the WiFi fingerprint is composed by 520 intensity values.

Split into Training (19937 obs.) & Validation (1111 obs.) - collected in different ways.

Data collection (simplified)

WAP1	WAP2	WAP3	WAP4	Location
-45	-65	-55	-30	X

Training Set:

- Pre-selected points used to collect data
- 10 readings per location taken (approx)

Validation Set:

- User defined locations
- 1 reading per location taken (approx)

Data Preprocessing

Data Preprocessing - no signal coding

Data Preprocessing - Outlier Values

Data Preprocessing - Zero Variance Features

194 zero-variance features removed from Training set

Data removed:

- Outliers: 475 observations x 520 features = 247,000 values
- Zero-variance: 194 features x 19,462 observations = 3,775,628 values

38% total Training Set data removed

Unsuccessful Preprocessing

Signal boosting (signal²)

Removing >95% correlated WAPS

Boruta feature selection (random forest variable importance)

Model tuning KNN

Aggregation

Normalisation of signal strength

Modelling

Algorithm choice - Classification

Dataset: sample of all data (original data, n = 2000)

Gradient Boosting
Machine

Building

Accuracy = 0.9978

Building.floor

Accuracy = 0.9508

K-Nearest Neighbour

Building

Accuracy = 0.9967

Building.floor

Accuracy = 0.849

Decision Tree

Building

Accuracy = 0.8856

Building.floor

Accuracy = not run

Test set: sample of training data

Algorithm choice - Regression

Dataset: subset (building 0 - floor 1, n = 1356)

Linear Regression

Latitude

RMSE = 7.5939909

Longitude

RMSE = 7.5706319

K-Nearest Neighbour

Latitude

RMSE = 4.5743112

Longitude

RMSE = 4.805804

Support Vector Machine

Latitude

RMSE = 11.5698076

Longitude

RMSE = 9.2211412

Test set: subset of training data

Model Splitting

Results

Model Metrics

Outcome Visualisation - Latitude & Longitude

Error Metric - Latitude & Longitude

Classification Errors - Building & Floor

Additional Error Hypotheses

User error introduced in confirming position for validation set.

Differing occupancy levels of buildings within & between training data and validation data collection (people as signal blockers).

Recommendations

Data Collection Recommendations

Collect more training data - ensure that every area within buildings are covered, including open areas.

Validate the validation set - using similar methodology to training set to choose fixed points to collect data (different from the training set).

Analytic Recommendations

Change WAP signal strengths from -105 - 0 to 0 - +105 to allow no signal to be represented by 0.

Consider per-floor modelling in addition to per-building modelling.

Thank-You