

SERVIÇO PÚBLICO FEDERAL · MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE VIÇOSA · UFV CAMPUS FLORESTAL

INTRODUÇÃO AOS SISTEMAS LÓGICOS TRABALHO PRÁTICO 1

Grupo 6

MARIA EDUARDA DUARTE LACERDA[5920] ANA CLARA SOARES OLIVEIRA [5896]

Sumário

1. INTRODUÇAO	2
2. TABELA DA VERDADE	3
3. MAPAS DE KARNAUGH E EXPRESSÕES BOOLEANAS	4
3.1 BIT DE PARIDADE	4
3.2 SAÍDA A	4
3.3 SAÍDA B	5
3.4 SAÍDA C	5
3.5 SAÍDA D	6
3.6 SAÍDA E	6
3.7 SAÍDA F	7
3.8 SAÍDA G	7
4. DIAGRAMAS DE PORTAS LÓGICAS	8
4.1 GERADOR DE BIT DE PARIDADE	8
4.2 SAÍDA A	9
4.3 SAÍDA B	9
4.4 SAÍDA C	10
4.5 SAÍDA D	10
4.6 SAÍDA E	11
4.8 SAÍDA G	12
5. COMPILAÇÃO E EXECUÇÃO	12
6. CONCLUSÃO	13
7.REFERÊNCIAS	13

1. INTRODUÇÃO

No trabalho prático da disciplina Introdução aos Sistemas Lógicos, o objetivo era desenvolver um circuito combinacional que, ao receber 6 bits aciona um display de sete segmentos que representa um caractere, também usando um bit de paridade para conferir a integridade da passagem da mensagem, acendendo o display com um caractere de erro escolhido pelo grupo.

Para a implementação do circuito, cada grupo foi instruído a seguir uma linha da tabela apresentada na Especificação, de forma que as combinações de bits indo do 00000 ao 10011 representavam um caractere diferente e, caso a combinação esteja fora do intervalo, o display deve ficar apagado. Sendo assim, foi necessária a montagem de uma tabela da verdade para achar o bit de paridade e os casos onde cada segmento deve ou não acender, também usando a representação instruída pela Especificação. Após isso, foram feitos mapas de Karnaugh e diagramas com portas lógicas para cada bit de saída e para o de paridade, sua expressão booleana minimizada.

2. ORGANIZAÇÃO E IMPLEMENTAÇÃO

A organização do nosso projeto foi feita a partir da criação de um repositório criado no Github[3], denominado "CircCombinacional" onde as integrantes puderam contribuir na composição da implementação de Verilog. As outras partes do projeto foram devidamente organizadas na documentação, seguindo a ordem pedida na especificação.

A figura a seguir mostra a organização da implementação em Verilog:

Figura 1 - Repositório com a implementação em Verilog

O módulo de verificação de paridade foi implementado utilizando a função lógica XOR(ou exclusivo), pois ao montarmos a tabela da verdade do bit de paridade gerado, foi perceptível que o XOR seria suficiente para calcular a paridade e depois compará-la ao que era esperado.

Figura 2 - Módulo de verificação de paridade

Em relação ao módulo de mapeamento para o Display de 7 segmentos, ele foi implementado após a verificação de paridade e trata das entradas corretas, entradas com paridade errada e fora do intervalo, e as correspondentes saídas no Display por meio dos comandos always e if(condicional).

```
input [4:0] entrada,
     input erropar,
    output reg [6:0] segmentos
always @(*) begin
     if (!erropar) begin
          segmentos = 7'b1011110; // Erro de Paridade
     end else begin
          case (entrada)
                5'd0: segmentos = 7'b1010100; // M
5'd1: segmentos = 7'b0111011; // Y
5'd2: segmentos = 7'b011100; // V
5'd3: segmentos = 7'b0110111; // H
                  'd4: segmentos = 7'b0001111; //
                   d5: segmentos = 7'b1111110; //
                   d6: segmentos = 7'b1110111; //
                   d7: segmentos = 7'b1011011; //d8: segmentos = 7'b1110011; //
                   d9: segmentos = 7'b0101010; //d10: segmentos = 7'b0001110; /
                   d11: segmentos = 7'b1111111;
                      2: segmentos = 7'b0111101;
3: segmentos = 7'b1111001;
                      4: segmentos = 7'b1101101;
                      5: segmentos = 7'b1001111; //
                   d16: segmentos = 7'b0110111; //
                   d17: segmentos = 7'b0110011; //
                         segmentos
```

Figura 3 - Módulo Mapeamento do Display

Em relação ao erro de paridade, o caractere escolhido pelo grupo foi a da figura a seguir:

Figura 4 - Saída erro de paridade

3. TABELA DA VERDADE

REP	X16	X8	X4	X2	X1	ВР	Α	В	С	D	Е	F	G
М	0	0	0	0	0	1	1	0	1	0	1	0	0
Y	0	0	0	0	1	0	0	1	1	1	0	1	1
v	0	0	0	1	0	0	0	0	1	1	1	0	0
н	0	0	0	1	1	1	0	1	1	0	1	1	1
Т	0	0	1	0	0	0	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1	1	1	1	1	0
Α	0	0	1	1	0	1	1	1	1	0	1	1	1
s	0	0	1	1	1	0	1	0	1	1	0	1	1
Q	0	1	0	0	0	0	1	1	1	0	0	1	1
w	0	1	0	0	1	1	0	1	0	1	0	1	0
L	0	1	0	1	0	1	0	0	0	1	1	1	0
8	0	1	0	1	1	0	1	1	1	1	1	1	1
D	0	1	1	0	0	1	0	1	1	1	1	0	1
3	0	1	1	0	1	0	1	1	1	1	0	0	1
2	0	1	1	1	0	0	1	1	0	1	1	0	1
E	0	1	1	1	1	1	1	0	0	1	1	1	1
K	1	0	0	0	0	0	0	1	1	0	1	1	1
4	1	0	0	0	1	1	0	1	1	0	0	1	1

R	1	0	0	1	0	1	0	0	0	0	1	0	1
9	1	0	0	1	1	0	1	1	1	1	0	1	1
-	1	1	0	1	0	0	0	0	0	0	0	0	0
-	0	1	0	1	0	1	0	0	0	0	0	0	0
-	0	1	0	1	1	0	0	0	0	0	0	0	0
-	1	1	0	1	1	1	0	0	0	0	0	0	0
-	1	1	1	0	0	0	0	0	0	0	0	0	0
-	0	1	1	0	0	1	0	0	0	0	0	0	0
-	0	1	1	0	1	0	0	0	0	0	0	0	0
-	1	1	1	0	1	1	0	0	0	0	0	0	0
-	0	1	1	1	0	0	0	0	0	0	0	0	0
-	1	1	1	1	0	1	0	0	0	0	0	0	0
-	1	1	1	1	1	0	0	0	0	0	0	0	0
-	0	1	1	1	1	1	0	0	0	0	0	0	0

Caractere sendo representado

Bits de entrada Bit de paridade

Segmentos do display

4. MAPAS DE KARNAUGH E EXPRESSÕES BOOLEANAS

Os Mapas de Karnaugh são essenciais para o sucesso no processo de minimização das expressões booleanas, eles foram feitos utilizando o site Canva[1] e preenchidos de acordo com a Tabela da Verdade mostrada anteriormente.

4.1 BIT DE PARIDADE

Mapa de Kaurnaugh bit de

X4			1					
X8 X	(1 000	001	011	010	110	111	101	100
X16	1	0	1 3	0 2	1 6	0 7	1	0 4
01	0 8	1	0	10	0 14	15 1	O 13	12
11	1 24	0 25	1 27	0 26	0 28	1 29	0 31	30
10	0 16	1 17	O 19	18	1	0 21	1 23	0 22

- Expressão Booleana Minimizada:

4.2 SAÍDA A

x4 x2 Mapa de Kaurnaugh saída A

X8 X	000	001	011	010	110	111	101	100
X16 00	1	0	0 3	0 2	1 6	1 7	5 1	0
	8	9	11	10	14	15	13	12
01	I	0	•	0	I	•	•	0
11	0 24	0 25	0 27	0 26	0 28	0 29	O 31	0 30
10	O 16	O 17	19	0 18	0 20	0 21	0 23	0 22

$$\neg X16 \cdot \neg X4 \cdot \neg X2 \cdot \neg X1 + \neg X16 \cdot X4 \cdot X1 + \neg X16 \cdot X4 \cdot X2 + \neg X16 \cdot X8 \cdot X2 \cdot X1 + X16 \cdot \neg X8 \cdot \neg X4 \cdot X2 \cdot X1$$

4.3 SAÍDA B

	X4 X		1apa	de K	aur	naug	h sa	ída E	3
х8	XI	000	001	011	010	110	111	101	100
X16	00	0	1	1	0 2	1 6	0 7	1	0 4
		8	9	11	10	14	15	13	12
	01	1	1	1	0	1	0	1	1
	11	0 24	0 25	0 27	0 26	0 28	0 29	O 31	0 30
	10	1 16	1 17	19	0 18	0	0 21	0 23	0 22

- Expressão Booleana Minimizada:

4.4 SAÍDA C

	X4)		Mapa	de K	Caur	naug	gh sa	ída (7
хв `	XI	000	001	011	010	110	111	101	100
X16	00	1 0	1	1	1	1	1 7	1	0
	01	1	9	1	O	0	0	13	12 1
	11	0 24	0 25	0 27	O 26	0 28	0 29	O 31	O 30
	10	16	1 17	19 1	O 18	0 20	0 21	0 23	o 22

4.5 SAÍDA D

	X4 X	-	Mapa	de K	Caur	naug	gh sa	ida l	
хв `	XI	000	001	011	010	110	111	101	100
X16	00	0 0	1	0 3	1 2	0 6	1 7	1	1 4
	01	0 8	1	1	10	14	15 1	13 1	12 1
	11	0 24	0 25	0 27	0 26	0 28	0 29	O 31	0 30
	10	O 16	O 17	19	0 18	0 20	0 21	0 23	0 22

- Expressão Booleana Minimizada:

$$\neg X16 \cdot \neg X2 \cdot X1 + \neg X16 \cdot \neg X4 \cdot X2 \cdot \neg X1 + \neg X16 \cdot X4 \cdot \neg X2 + \neg X16 \cdot X4 \cdot X1 + \neg X16 \cdot X8 \cdot \neg X2 + X16 \cdot \neg X8 \cdot \neg X4 \cdot X2 \cdot X1$$

4.6 SAÍDA E

	X4)	`	<i>lapa</i>	de K	Caur	naug	gh sa	ída E	7
х8	X1	000	001	011	010	110	111	101	100
X16	00	1 0	o 1	1 3	1	1 6	0 7	1 5	1
	01	0 8	9	1	10	14 1	15 1	0 13	12
	11	0 24	0 25	O 27	O 26	o 28	o 29	O 31	0 30
	10	1 16	O 17	O 19	18	0	0 21	0 23	0 22

4.7 SAÍDA F

	X4		Мара	a de F	Caur	naug	g h s a	ida I	7
х8	χ	1 000	001	011	010	110	111	101	100
X16	00	0	1	1 3	0 2	1 6	1 7	1 5	1
	01	1	1	1	10	0	15 1	0 13	0 12
	n	0 24	0 25	O 27	0 26	0 28	0 29	O 31	0 30
	10	16	1 17	19	O 18	0	0 21	0 23	0 22

- Expressão Booleana Minimizada:

4.8 SAÍDA G

	X4	X2 /	<i>Mapa</i>	de K	aur	naug	h sa	ída G	ř
х8	∕_x	1 000	001	011	010	110	111	101	100
X16	00	o °	1	1 3	0 2	1 6	1 7	0 5	1
	01	1 8	9	1	0	14	15 1	13	12
	11	0 24	0 25	0 27	0 26	0 28	0 29	O 31	0 30
	10	16	1 17	19	18	0 20	0 21	0 23	0 22

5. DIAGRAMAS DE PORTAS LÓGICAS

A construção dos diagramas de portas lógicas foi realizada utilizando o software Logisim[1] e as expressões booleanas minimizadas.

51 GERADOR DE BIT DE PARIDADE

5.2 SAÍDA A

5.3 SAÍDA B

5.4 SAÍDA C

5.5 SAÍDA D

5.6 SAÍDA E

5.7 SAÍDA F

5.8 SAÍDA G

7. COMPILAÇÃO E TESTE

Para executar a compilação e abrir o GtkWave, criamos um MakeFile com o caminho para os arquivos a serem compilados e executados, a fim de facilitar esse processo, portanto basta apenas digitar no terminal integrado o comando:

- mingw32-make compile

8.REFERÊNCIAS

- [1] Canva. < https://www.canva.com/">. Último acesso em 24 de novembro de 2024.
- [2] Logisim. < https://sourceforge.net/projects/circuit . Último acesso em 25 de novembro de 2024.
- [3] GitHub. < https://github.com/lacerdamadu/CircCombinacional >. Último acesso em 25 de novembro de 2024.