問題 1.1. 次のベクトルを各図中に図示しなさい. ただし, 始点は原点でなくてもよい.

- (1) 図 1 のベクトル \vec{a} に対し、ベクトル $2\vec{a}$ および $-\frac{1}{2}\vec{a}$.
- (2) 図 2 のベクトル \vec{a} , \vec{b} に対し、ベクトル $\vec{a} \frac{1}{2}\vec{b}$.

問題 **1.2.** 平面ベクトル $\vec{a}=\begin{pmatrix}2\\1\end{pmatrix}$, $\vec{b}=\begin{pmatrix}1\\-2\end{pmatrix}$ に対し、次のベクトル \vec{u} を成分表示しなさい。また、 \vec{u} の長さ $|\vec{u}|$ を求めなさい。

- $(1) \ \vec{u} = -\vec{a} + \vec{b}$
- $(2) \ \vec{u} = \vec{b} + 3\vec{a}$
- $(3) \ \vec{u} = 2\vec{a} \vec{b}$

問題 1.3. 次のベクトル \vec{a} に対し, $c\vec{a}$ の長さが 1 になるような実数 c を求めなさい.

$$(1) \ \vec{a} = \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$$

$$(2) \ \vec{a} = \left(\begin{array}{c} \frac{1}{2} \\ -2 \end{array}\right)$$

$$(3) \ \vec{a} = \left(\begin{array}{c} \sqrt{3} \\ -3 \end{array} \right)$$

問題 **1.4.** 次のベクトル \vec{u} , \vec{v} の (i) 長さ $|\vec{u}|$, $|\vec{v}|$, (ii) 内積 $\vec{u} \cdot \vec{v}$ および (iii) \vec{u} と \vec{v} のなす 角 θ の余弦 ($\cos \theta$) の値を求めなさい.

$$(1) \ \vec{u} = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}, \ \vec{v} = \begin{pmatrix} -2 \\ 2\sqrt{3} \end{pmatrix}$$

(2)
$$\vec{a}=\left(\begin{array}{c}5\\3\end{array}\right),\; \vec{b}=\left(\begin{array}{c}2\\0\end{array}\right)$$
 に対し, $\vec{u}=\vec{a}-2\vec{b},\; \vec{v}=-\vec{a}+7\vec{b}$

$$(3) \ \vec{u} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 3\\-2\\4 \end{pmatrix}$$

$$(4) \quad \vec{u} = \begin{pmatrix} -1 \\ 3 \\ -2 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 5 \\ -2 \\ -7 \end{pmatrix}$$

(5)
$$\vec{a} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ に対し, $\vec{u} = 2\vec{a} - \vec{b}$, $\vec{v} = -2\vec{a} - \vec{b}$

問題 **1.5.** 空間ベクトル
$$\begin{pmatrix} 1 \\ c \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -2 \\ c \end{pmatrix}$ が直交するように c を定めなさい.

問題 **1.6.** ベクトル \vec{a} , \vec{b} を 2 辺とする三角形の面積が $\frac{1}{2}\sqrt{|\vec{a}|^2\,|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}$ に等しいことを示しなさい. *1

2 1.1

^{*1} ヒント: \triangle OAB の面積が $\frac{1}{2}$ |OA||OB| $\sin\theta$ と書ける(ただし $\theta=\angle$ AOB).これと内積の性質 $\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$ と三角関数の性質 $\sin^2\theta+\cos^2\theta=1$ を使って示しなさい.