Matching Networks for One Shot Learning

Yunhan Bai 2018.8.24

OUTLINE

- 1.Introduction
- 2.Model
- 3. Training Strategy
- 4.Experiments
- 5.Conclusion

1.Introduction

Learning from a few examples is a key challenge in machine learning.

- Deep learning is powerful, but also notorious for requiring large datasets.
- Non-parametric models allow novel examples to be rapidly assimilated, but the performance depends on the chosen metric.
- How to incorporate parametric deep learning model and non-parametric model, and providing excellent generalization from common examples?

The basic idea is: build a differentiable nearest neighbor

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

a is a attention kernel,

$$a(\hat{x}, x_i) = e^{c(f(\hat{x}), g(x_i))} / \sum_{j=1}^k e^{c(f(\hat{x}), g(x_j))}$$

 x_i and y_i comes from support set S, f and g are neural networks.

Use **f** and **g** to embed support set examples and test examples, train on it.

Full context embeddings

1. Embedding the training examples.

$$ec{h}_i, ec{c}_i = \operatorname{LSTM}(g'(x_i), ec{h}_{i-1}, ec{c}_{i-1})$$
 $ec{h}_i, ec{c}_i = \operatorname{LSTM}(g'(x_i), ec{h}_{i+1}, ec{c}_{i+1})$
 $g(x_i, S) = ec{h}_i + ec{h}_i + g'(x_i)$

It considers not only raw represent of xi, but also relationship with other examples.

2. Embedding the test examples.

$$f(\hat{x}, S) = \text{attLSTM}(f'(\hat{x}), g(S), K)$$

$$\hat{h}_{k}, c_{k} = \text{LSTM}(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1})$$

$$h_{k} = \hat{h}_{k} + f'(\hat{x})$$

$$r_{k-1} = \sum_{i=1}^{|S|} a(h_{k-1}, g(x_{i}))g(x_{i})$$

$$a(h_{k-1}, g(x_{i})) = \text{softmax}(h_{k-1}^{T} g(x_{i}))$$

The represent of test example is related to examples in support set.

3. Training Strategy

"one-shot learning is much easier if you train the network to do one-shot learning"

- 1. Define a task T as distribution over possible label sets L.
- 2. Sample L from T.
- 3. Use L to sample support set S and a batch B.
- 4. Training MN to minimize the error predicting the labels in the B conditioned on S.

$$\theta = \arg\max_{\theta} E_{L \sim T} \left[E_{S \sim L, B \sim L} \left[\sum_{(x,y) \in B} \log P_{\theta} (y|x, S) \right] \right].$$

• Task: **N-way k-shot learning task**. i.e. we're given k (e.g. 1 or 5) labelled examples for N classes that we have not previously trained on and asked to classify new instances into he N classes.

- Baseline:
 - 1. Raw pixels
 - 2. Base classifier(CNN based)
 - 3. MANN
 - 4. Convolutional Siamese Net

Use last layer feature of 2 and 3 to do nearest neighbor.

Omniglot experiments:

1623 characters of 50 different alphabets.

Stack of 4 cnn modules: 3 * 3 convolution with 64 filter followed by batch normlization, a Relu non-linearity and 2*2 max-pooling.

Model	Matching Fn	Fine Tune	5-way Acc 1-shot 5-shot	20-way Acc 1-shot 5-shot
PIXELS BASELINE CLASSIFIER BASELINE CLASSIFIER	Cosine Cosine Cosine	N N Y	41.7% 63.2% 80.0% 95.0% 82.3% 98.4%	26.7% 42.6% 69.5% 89.1% 70.6% 92.0%
BASELINE CLASSIFIER	Softmax	Y	86.0% 97.6%	72.9% 92.3%
MANN (No Conv) [21] Convolutional Siamese Net [11] Convolutional Siamese Net [11]	Cosine Cosine Cosine	N N Y	82.8% 94.9% 96.7% 98.4% 97.3% 98.4%	88.0% 96.5% 88.1% 97.0%
MATCHING NETS (OURS) MATCHING NETS (OURS)	Cosine Cosine	N Y	98.1% 98.9% 97.9% 98.7%	93.8 % 98.5% 93.5% 98.7 %

ImageNet experiments:

Model	Matching Fn	Fine Tune	ImageNet 5-way 1-shot Acc			
			L_{rand}	$\neq L_{rand}$	L_{dogs}	$\neq L_{dogs}$
PIXELS	Cosine	N	42.0%	42.8%	41.4%	43.0%
INCEPTION CLASSIFIER	Cosine	N	87.6%	92.6%	59.8%	90.0%
MATCHING NETS (OURS)	Cosine (FCE)	N	93.2%	97.0%	58.8%	96.4%
INCEPTION ORACLE	Softmax (Full)	Y (Full)	$\approx 99\%$	$\approx 99\%$	$\approx 99\%$	$\approx 99\%$

ImageNet experiments:

Table 3: Results on full ImageNet on rand and dogs one-shot tasks. Note that $\neq L_{rand}$ and $\neq L_{dogs}$ are sets of classes which are seen during training, but are provided for completeness.

Model	Matching Fn	Fine Tune	ImageNet 5-way 1-shot Acc			
			L_{rand}	$\neq L_{rand}$	L_{dogs}	$\neq L_{dogs}$
PIXELS	Cosine	N	42.0%	42.8%	41.4%	43.0%
INCEPTION CLASSIFIER	Cosine	N	87.6%	92.6%	59.8%	90.0%
MATCHING NETS (OURS)	Cosine (FCE)	N	93.2%	97.0%	58.8%	96.4%
INCEPTION ORACLE	Softmax (Full)	Y (Full)	$\approx 99\%$	$\approx 99\%$	$\approx 99\%$	$\approx 99\%$

LM experiments:

1. an experimental vaccine can alter the immune response of people infected with the aids virus a	prominent
<pre><blank_token> u.s. scientist said.</blank_token></pre>	
2. the show one of five new nbc <blank_token> is the second casualty of the three networks so far</blank_token>	series
this fall.	
3. however since eastern first filed for chapter N protection march N it has consistently promised	dollar
to pay creditors N cents on the <blank_token>.</blank_token>	
4. we had a lot of people who threw in the <blank_token> today said <unk> ellis a partner in</unk></blank_token>	towel
benjamin jacobson & sons a specialist in trading ual stock on the big board.	
5. it's not easy to roll out something that <blank_token> and make it pay mr. jacob says.</blank_token>	comprehensive
Query: in late new york trading yesterday the <blank_token> was quoted at N marks down from N</blank_token>	dollar
marks late friday and at N yen down from N yen late friday.	

5. Conclusion

Pros:

- 1. Use memory and neural network in a uniform structure.
- 2. A creative training strategy.
- 3. The non-parametric aspect of MN makes it easier for network to remember and adapt to new examples.

Cons:

- 1. When support set keeps growing, the speed will become a problem.
- 2. The label distribution has obvious biases.
- 3. It is not clear whether the order in support set matters?
- 4. More seriously, use LSTM make k fixed, how to expand k online?

Thank You