Processing Sequences

Chapter 14

Recurrent Neuron

Recurrent Neuron

Single neuron being reused

Recurrent Neuron Layer

Recurrent Neuron Layer

BatchSize x 2 x 1

Time Series

4 x batchsize x 1

Time Series

Dense vs Recurrent

Output = 1 neuron

N+1 inputs(parameters) to neuron (+1 is bias neuron)

Last time step output captured

All time series outputs captured

I/O Recurrent Layer

I/O Recurrent Layer

1 of 32 time series in batch

I/O Recurrent Layer

Forecast next sample(s) in Time Series

Predict next values consecutively

Forecasts next value after last sample

Dense(1) Y_{pred} Y_{pred}

Y_{pred}

 X_{in}

Forecast Several Steps in Time Series

Forecasts next 10 values after last sample

 X_{in}

Forecasts next 10 values after every sample

Convolutional Layer

Sequence

Feature maps size equal to input size

Each kernel trains its 15 +1 weight parameters (+1 is bias neuron, depicted as small gray dot adjacent to neuron

Stride = 2
Kernels

Input

Truncate(valid padding)

Feature Map

 $neuron_{index} = 5$

Kernels(i.e. Filters)

Receptive Field

 $neuron_{index} \times stride \ to \ neuron_{index} \times stride + kernel_{size} - 1 = Input_{10} \ to \ Input_{13}$

1D Convolution: Wavenet

Classify Video

Classification Strokes

Drawing-0, Not Drawing-1

Max instance sequence length(i.e. sequence is a list of vectors)vary between 100-200 samples. 1D convolutional layers will be used to help learn longer patterns.

Classification Strokes

