Computer Graphics: Vectors and Line drawing Introduction

Basic Definitions

- Points specify <u>location</u> in space (or in the plane).
- Vectors have <u>magnitude</u> and <u>direction</u> (like velocity).

Points ≠ Vectors

Basics of Vectors

Vector as displacement:

▼ is a vector from point P to point Q.

The **difference** between two points is a vector: **v** = Q - P

Another way:

The **sum** of a point and a vector is a point : P + v = Q

(

Operations on Vectors

Two operations

Addition

$$\mathbf{a} = (3,5,8), \mathbf{b} = (-1,2,-4)$$

$$\mathbf{a} + \mathbf{b} = (2,7,4)$$

Multiplication be scalars

sa

$$a = (3,-5,8), s = 5$$

$$5\mathbf{a} = (15, -25, 40)$$

operations are done componentwise

Operations on vectors

Multiplication by scalar

Properties of vectors

Length or size

$$\mathbf{W} = (\mathbf{W}_{1}, \mathbf{W}_{2}, ..., \mathbf{W}_{n})$$

$$| \mathbf{W} | = \sqrt{w_{1}^{2} + w_{2}^{2} + ... + w_{n}^{2}}$$

Unit vector

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

- The process is called normalizing
- Used to refer direction

The **standard unit vectors**: i = (1,0,0), j = (0,1,0) and k = (0,0,1)

Dot Product

The dot product \mathbf{d} of two vectors $\mathbf{v} = (v_1, v_2, ..., v_n)$ and $\mathbf{w} = (w_1, w_2, ..., w_n)$:

Properties

- Symmetry: **a**⋅**b** = **b**⋅**a**
- 2. Linearity: $(\mathbf{a}+\mathbf{c}) \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{b}$
- 3. Homogeneity: $(sa) \cdot b = s(a \cdot b)$
- 4. $|\mathbf{b}|^2 = \mathbf{b} \cdot \mathbf{b}$

Application of Dot Product

Angle between two unit vectors **b** and **c**

Two vectors **b** and **c** are <u>perpendicular</u> (orthogonal/normal) if $\mathbf{b} \cdot \mathbf{c} = 0$

Cross Product

- Also called vector product.
- Defined for 3D vectors only.

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Properties

- Antisymmetry: **a** X **b** = **b** X **a**
- Linearity: (a +c) X b = a X b + c X b
- 3. Homogeneity: (sa) X b = s(a X b)

Geometric Interpretation of Cross Product

- 1. **a**X**b** is perpendicular to both **a** and **b**
- 2. | **aXb** | = area of the parallelogram defined by **a** and **b**

2D perp Vector

Which vector is perpendicular to the 2D vector $\mathbf{a} = (a_x, a_y)$?

Let $\mathbf{a} = (a_x, a_y)$. Then $\mathbf{a}^{\perp} = (-a_y, a_x)$ is the counterclockwise perpendicular to \mathbf{a} .

Rotation in 2d

- We want to rotate a 2d vector v counterclockwise by an angle A
- First we determine perp(v), v[⊥]
- Then we scale v by cosA and scale v by sinA and take their sum

Rotation in 3d

- We want to rotate a 3d vector I counterclockwise with respect to a 3d unit vector r by an angle A, where I and r are perpendicular to each other
- First we determine the vector u, that is perpendicular to both I and r and have a length equal to that of I
- So, u = r X I
- Then we scale I by cosA and scale u by sinA and take their sum

* note that, this method is applicable only in cases where the axis of rotation and the vector which is to be rotated are perpendicular to each other

Scan Conversion

A line segment in a scene is defined by the coordinate positions of the line end-points

The Problem Of Scan Conversion

But what happens when we try to draw this on a pixel based display?

How do we choose which pixels to turn on?

Considerations

Considerations to keep in mind:

- The line has to look good
 - Avoid jaggies
- It has to be lightening fast!
 - How many lines need to be drawn in a typical scene?
 - This is going to come back to bite us again and again

Line Equations

Let's quickly review the equations involved in drawing lines

Slope-intercept line equation:

$$y = m \cdot x + b$$

where:

$$m = \frac{y_1 - y_0}{x_1 - x_0}$$

$$b = y_0 - m \cdot x_0$$

Line Equations

Let's quickly review the equations involved in drawing lines

Slope-intercept line equation:

$$y = m \cdot x + b$$

where:

$$m = \frac{6-2}{9-3} = \frac{4}{6} = \frac{2}{3}$$

$$b = 2 - (\frac{2}{3}).3 = 2 - 2 = 0$$

A Very Simple Solution

We could simply work out the corresponding ${\mathcal Y}$ coordinate for each unit ${\mathcal X}$ coordinate

Let's consider the following example:

First work out m and b:

$$m = \frac{5-2}{7-2} = \frac{3}{5}$$
$$b = 2 - \frac{3}{5} * 2 = \frac{4}{5}$$

Now for each x value work out the y value:

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5}$$

$$y(4) = \frac{3}{5} \cdot 4 + \frac{4}{5} = 3\frac{1}{5}$$

$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5}$$

$$y(6) = \frac{3}{5} \cdot 6 + \frac{4}{5} = 4\frac{2}{5}$$

Now just round off the results and turn on these pixels to draw our line

$$y(3) = 2\frac{3}{5} = 2.6 \approx 3$$

$$y(4) = 3\frac{1}{5} = 3.2 \approx 3$$

$$y(5) = 3\frac{4}{5} = 3.8 \approx 4$$

$$y(6) = 4\frac{2}{5} = 4.4 \approx 4$$

Pixel

(3, 3)

(4,3)

(5,4)

(6,4)

However, this approach is just way too slow In particular look out for:

- ullet The equation y=mx+b requires the multiplication of m by ${oldsymbol{\mathcal{X}}}$
- ullet Rounding off the resulting ${\mathcal Y}$ coordinates

We need a faster solution

The DDA Algorithm

The digital differential analyzer (DDA) algorithm takes an incremental approach in order to speed up scan conversion

Simply calculate \mathcal{Y}_{k+1} based on \mathcal{Y}_k

The original differential analyzer was a physical machine developed by Vannevar Bush at MIT in the 1930's in order to solve ordinary differential equations.

BRAC UNIVERSITY

The DDA Algorithm (cont...)

Consider the list of points that we determined for the line in our previous example:

$$(2, 2), (3, 2^3/_5), (4, 3^1/_5), (5, 3^4/_5), (6, 4^2/_5), (7, 5)$$

Notice that as the \boldsymbol{x} coordinates go up by one, the \boldsymbol{y} coordinates simply go up by the slope of the line

This is the key insight in the DDA algorithm

The DDA Algorithm (cont...)

When the slope of the line is between -1 and 1 begin at the first point in the line and, by incrementing the x coordinate by 1, calculate the corresponding y coordinates as follows:

$$y_{k+1} = y_k + m$$

When the slope is outside these limits, increment the y coordinate by 1 and calculate the corresponding x coordinates as follows:

$$x_{k+1} = x_k + \frac{1}{m}$$

DDA Algorithm Example

Let's try out the following examples:

x(+1)	y(+m)	y(roundof f)	pixel
2	2		
3	2.6	3	(3, 3)
4	3.2	3	(4, 3)
5	3.8	4	(5, 4)
6	4.4	4	(6, 4)

The DDA Algorithm (cont...)

Again the values calculated by the equations used by the DDA algorithm must be rounded to match pixel values

The DDA Algorithm (cont...)

If -1<m<1 then

$$x_{k+1} = x_k + 1$$
$$y_{k+1} = y_k + m$$

Then roundoff y.

Otherwise,

$$y_{k+1} = y_k + 1$$
$$x_{k+1} = x_k + \frac{1}{m}$$

DDA Algorithm Example

Let's try out the following examples:

$$\frac{1}{m} = \frac{3}{5} = 0.6$$

		m - 3	
y(+1)	x(+1/m)	x(roundof f)	pixel
2	2		
3	2.6	3	(3, 3)
4	3.2	3	(3, 4)
5	3.8	4	(4, 5)
6	4.4	4	(4, 6)

DDA Algorithm Example

Let's try out the following examples:

$$\frac{1}{m} = -\frac{3}{5} = -0.6$$

<i>y</i> 🛉			m
(-1, 7)		y(+1)	x(+1/m)
		2	2
		3	1.4
		4	0.8
(2, 2)		5	0.2
$\frac{1}{2}$ $\frac{2}{7}$ -2	$\frac{}{2}$ 5 $\frac{}{7}$ x	6	-0.4
· -	_		

\mathcal{M} 3					
y(+1)	x(+1/m)	x(roundof f)	pixel		
2	2				
3	1.4	1	(1, 3)		
4	0.8	1	(1, 4)		
5	0.2	0	(0, 5)		
6	-0.4	0	(0, 6)		

The DDA Algorithm Summary

The DDA algorithm is much faster than our previous attempt

• In particular, there are no longer any multiplications involved

However, there are still two big issues:

- Accumulation of round-off errors can make the pixelated line drift away from what was intended
- The rounding operations and floating point arithmetic involved are time consuming