Számelmélet összefoglaló

Monday, December 11, 2023 10:34 PM

Definíció

Adott ítéletváltozók egy előre rögzített megszámlálhatóan végtelen $Var = \{x_1, x_2, ...\}$ halmaza. Az ítéletlogikai formulák Form halmaza a legszűkebb halmaz melyre

- Minden x ∈ Var esetén x ∈ Form,
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form,
- Ha φ , $\psi \in$ Form, akkor $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi) \in$ Form.

konjukció (A) diszjunkció (V)

Definíció

Egy $I : Var(\varphi) \rightarrow \{i, h\}$ függvényt φ egy **interpretációjának** (változókiértékelésének) nevezünk.

Ha \mathcal{F} egy formulahalmaz, akkor egy $I: Var(\mathcal{F}) \to \{i, h\}$ függvényt \mathcal{F} egy **interpretációjának** (változókiértékelésének) nevezünk.

A formulák igazságértéke

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (helyettesítési értékét, Boole értékét) a következő rekurzóval definiáljuk:

Definíció

- ha $x \in \text{Var akkor } \mathcal{B}_I(x) := I(x),$
- ha φ ∈ Form formula, akkor B_I(¬φ) := ¬B_I(φ),
- ha φ, ψ ∈ Form formulák, akkor B_I(φ ∘ ψ) := B_I(φ) ∘ B_I(ψ), ahol ∘ ∈ {∧, ∨, →},

ahol a műveletek eredményét az alábbi táblázat definiálja.

$\mathcal{B}_I(\varphi)$	$\mathcal{B}_{I}(\psi)$	$\mathcal{B}_{I}(\neg \varphi)$	$\mathcal{B}_I(\varphi \wedge \psi)$	$\mathcal{B}_I(\varphi \vee \psi)$	$\mathcal{B}_{I}(\varphi \to \psi)$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Definíció

Egy φ ítéletlogikai formula **ítélettáblája** egy $2^n \times (n+1)$ -es táblázat, ahol $n = |\operatorname{Var}(\varphi)|$. A sorok megfelelnek a lehetséges interpretációknak. Az I interpretációnak megfelelő sor az első n oszlopban tartalmazza az ítéletváltozók I szerinti kiértékelését, míg utolsó, n+1. oszlopa $\mathcal{B}_I(\varphi)$ -t.

- Egy / interpretáció kielégít egy φ formulát (/ |=0 φ) ha a formula helyettesítési értéke i az / interpretációban.
- Egy φ formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy φ formula kielégíthetetlen, ha egyetlen interpretáció sem elégíti ki.
- Egy φ formula tautologia (ítéletlogikai törvény) (|=0 φ), ha minden interpretáció kielégíti.
- Egy φ formulának a ψ formula tautologikus következménye(φ ⊨₀ ψ), ha minden φ-t kielégítő interpretáció kielégíti ψ-t is.
- φ és ψ tautologikusan ekvivalensek (φ ~₀ ψ), ha φ ⊨₀ ψ és ψ ⊨₀ φ is teljesül.

Állítás

Legyen φ egy formula és φ_0 egy részformulája. Tegyük fel, hogy $\varphi_0 \sim_0 \psi_0$ valamely ψ_0 formulára és legyen ψ az a formula, amit φ -ból úgy kapunk, hogy a φ_0 részformulát ψ_0 -val helyettesítjük. (Például φ szerkezeti fájában az φ_0 -nak megfelelő részfát ψ_0 szerkezeti fájával helyettesítjük.) Ekkor $\varphi \sim_0 \psi$.

Definíció

- Egy / interpretáció kielégít egy F formulahalmazt (/ |=0 F), ha a formulahalmaz minden formuláját kielégíti.
- Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy F formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, ami egyszerre minden F-beli formulát kielégít.
- Egy F formulahalmaznak a φ formula tautologikus következménye(F ⊨₀ φ), ha minden F-t kielégítő interpretáció kielégíti φ-t is.

Tétel

Legyen $\mathcal F$ egy formulahalmaz és φ egy formula. Akkor a következők teljesülnek.

vo akkor és csak akkor kielégíthetetlen, ha ¬vo tautológia

Legyen $\mathcal F$ egy formulahalmaz és φ egy formula. Akkor a következők teljesülnek.

- φ akkor és csak akkor kielégíthetetlen, ha $\neg \varphi$ tautológia.
- $\mathcal{F} \models_0 \varphi$ akkor és csak akkor, ha $\mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen.

Definíció

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. x és ¬x komplemens literálpár. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- Elemi diszjunkciónak (vagy röviden klóznak) hívunk egy ℓ₁ ∨ · · · ∨ ℓ_n alakú formulát (n ∈ N), ahol ℓ₁, . . . ℓ_n páronként különböző alapú literálok.
- Konjunktív normálformának (röviden KNF-nek) nevezünk egy C₁ ∧ C₂ ∧ . . . ∧ C_m (m ≥ 1) alakú formulát, ahol minden 1 ≤ i ≤ m-re C_i egy klóz (a KNF egy tagja).
- Az elemi konjunkciót és a diszjunktív normálformát (DNF) ezzel analóg módon definiáljuk \(\times\) és \(\times\) szerepének felcserélésével.

Tétel

Minden φ ítéletkalkulusbeli formulához megadható egy vele tautológikusan ekvivalens DNF.

Tétel

Minden φ ítéletkalkulusbeli formulához megadható egy vele tautológikusan ekvivalens KNF.

Tehát DNF:

$$(x \wedge y \wedge z) \vee (x \wedge \neg y \wedge z) \vee (x \wedge \neg y \wedge \neg z) \vee (\neg x \wedge y \wedge z) \vee (\neg x \wedge \neg y \wedge z).$$

$$\mathsf{KNF} \colon (\neg x \vee \neg y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee z).$$

Rezolvens

Legyenek C_1 és C_2 pontosan 1 komplemens literálpárt tartalmazó klózok. Tehát $C_1 = C_1' \vee \ell_1$, $C_2 = C_2' \vee \ell_2$, ahol ℓ_1 és ℓ_2 komplemens literálpár, C_1' és C_2' viszont nem tartalmaz ilyet. A $\operatorname{res}(C_1,C_2):=C_1' \vee C_2'$ klózt (esetleges egyszerűsítés után) a (C_1,C_2) klózpár rezolvensének nevezzük. (Ha $C_1=\ell_1$, $C_2=\ell_2$, akkor $\operatorname{res}(C_1,C_2)=\square$.)

Rezolúciós levezetés

Egy S klózhalmazból a C klóz rezolúciós levezetése egy olyan véges $K_1, K_2, \ldots, K_m \ (m \ge 1)$ klózsorozat, ahol minden $j = 1, 2, \ldots, m$ -re:

- vagy $K_j \in S$,
- vagy van olyan $1 \leqslant s, t < j$, hogy $K_j = res(K_s, K_t)$,

és
$$K_m = C$$
.

Tétel

S klózhalmaz kielégíthetetlen \iff S-ből levezethető \square .

Lemma

Minden C_1 , C_2 klózra és I interpretációjukra igaz, hogy ha $I \models_0 \{C_1, C_2\}$, akkor $I \models_0 \operatorname{res}(C_1, C_2)$.

Definíció

Egy elsőrendű logika szimbólumhalmaza a következőkből áll

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- Ind = {x₁, x₂,...}, az individuumváltozók megszámlálhatóan végtelen halmaza
- {¬, ∧, ∨, →, ∀,∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor
- (,) és , (vessző).

Minden $s \in \text{Pred} \cup \text{Func} \cup \text{Cnst-hez hozzá van rendelve egy}$ $\text{ar}(s) \in \mathbb{N}$ szám, a szimbólum aritása (a konstansokhoz mindig 0).

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- minden x ∈ Ind esetén x ∈ Term
- minden c ∈ Cnst esetén c ∈ Term
- minden f ∈ Func és t₁,...t_{ar(f)} ∈ Term esetén f(t₁,...t_{ar(f)}) ∈ Term.

Definíció

Az elsőrendű formulák Form nyelve az a legszűkebb halmaz, amelyre

- minden p ∈ Pred és t₁,...t_{ar(p)} ∈ Term esetén p(t₁,...t_{ar(p)}) ∈ Form. Ezek az atomi formulák.
- ▶ Ha $\varphi \in$ Form, akkor $\neg \varphi \in$ Form.
- Ha φ , $\psi \in$ Form, akkor $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi) \in$ Form.
- ▶ Ha $\varphi \in \text{Form}, x \in \text{Ind akkor } \forall x \varphi \in \text{Form és } \exists x \varphi \in \text{Form}.$

Precedenciasorrend zárójelelhagyáshoz: \forall , \exists , \neg , \land , \lor , \rightarrow .

Definíció

Egy elsőrendű logikai szimbólumainak interpretációja alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- I_{Pred} minden p ∈ Pred-hez hozzárendel egy p^I ⊆ U^{ar(p)} ar(p)-változós relációt U felett,
- I_{Func} minden f ∈ Func-hez hozzárendel egy f¹: U^{ar(f)} → U ar(f)-változós műveletet U-n,
- I_{Cnst} minden c ∈ Cnst-hez hozzárendel egy c^I ∈ U-t.

Definíció

Változókiértékelés alatt egy κ : Ind $\rightarrow U$ leképezést értünk.

Egy $t \in \text{Term } \acute{\text{ert}}\acute{\text{ek}}\acute{\text{et}}$ egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- Ha $x \in Ind$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- Ha c ∈ Cnst, akkor |c|^{I,κ} := c^I,
- $|f(t_1, t_2, \dots, t_{ar(f)})|^{I,\kappa} := f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{ar(f)}|^{I,\kappa}).$

Definició

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula igazságértékét egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, ..., t_{ar(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, ..., |t_{ar(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa}$ $\circ \in \{\land, \lor, \rightarrow\}$
- $|\forall x \varphi|^{l,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{l,\kappa^*} = i \kappa \text{-nak minden } \kappa^* x \text{-variansara},$
- |∃xφ|^{I,κ} = i ⇔ ha |φ|^{I,κ*} = i κ-nak legalább egy κ*
 x-variánsára.

A ¬, ∧, ∨, → műveletek ugyanazok, mint az ítéletlogikánál.

Definíció

Legyen φ egy formula, és tekintsük $x \in Ind$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk. Egyébként a kormula nyitott.

Definíció

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa} = i$, egyébként **kielégíthetetlen**.
- La logikailag igaz (vagy éryényes) ha minden / K-ra

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.
- Az F formulahalmaz kielégíthető, ha van olyan I interpretáció és κ változókiértékelés, amelyre |φ|^{I,κ} = i teljesül minden φ ∈ F-re, egyébként kielégíthetetlen.
- Az \mathcal{F} formulahalmaznak φ logikai következménye (jelölés: $\mathcal{F} \models \varphi$) ha minden I, κ -ra ha minden $\psi \in \mathcal{F}$ -re $|\psi|^{I,\kappa} = i$ teljesül, akkor $|\varphi|^{I,\kappa} = i$ is teljesül.

Church-Turing tézis

Minden formalizálható probléma, ami megoldható algoritmussal, az megoldható Turing géppel is.

Definíció

A Turing gép (továbbiakban sokszor röviden TG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes , ahol

- Q az állapotok véges, nemüres halmaza,
- q₀, q_i, q_n ∈ Q, q₀ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy Σ ⊆ Γ és ⊔ ∈ Γ\Σ.
- δ: (Q\{q_i, q_n}) × Γ → Q × Γ × {L, S, R} az átmenet függvény.
 δ az egész (Q\{q_i, q_n}) × Γ-n értelmezett függvény.

Definíció

Az uqv szó az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ Turing gép egy konfigurációja ha $q \in Q$, $u, v \in \Gamma^*$ és $v \neq \varepsilon$.

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

- ► Ha $\delta(q, a) = (r, b, R)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$,
- ▶ ha $\delta(q, a) = (r, b, L)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

Definíció

 $A \vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$

- ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \leqslant i \leqslant n-1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

Az M TG által felismert nyelv

 $L(M) = \{ u \in \Sigma^* \mid q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \}.$

Definíció

Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha L = L(M) valamely M TG-re.

Definíció

Egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M TG, mely minden bemeneten megállási konfigurációba jut és L(M) = L.

Definíció

RE= $\{L \mid \exists M \text{ Turing gép, amelyre } L(M) = L\}.$

 $R=\{L \mid \exists M \text{ minden inputra megálló Turing gép, melyre } L(M)=L\}.$

Egy M TG futási ideje (időigénye) az u szóra t ($t \ge 0$), ha M az u-hoz tartozó kezdőkonfigurációból t lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u szóra végtelen.

Definíció

Legyen $f: \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M egy f(n) időkorlátos gép (vagy M f(n) időigényű), ha minden $u \in \Sigma^*$ input szóra M futási ideje az u szón legfeljebb f(|u|).

Definíció

Adott egy $k \ge 1$ egész szám. A **k-szalagos Turing gép** egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- q₀, q_i, q_n ∈ Q, q₀ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy Σ ⊆ Γ és ⊔ ∈ Γ\Σ,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, S, R\}^k$ az átmenet függvény.

 δ az egész $(Q \setminus \{q_i, q_n\}) \times \Gamma^k$ -n értelmezett függvény.

Definíció

k-szalagos TG konfigurációja egy $(q, u_1, v_1, \dots, u_k, v_k)$ szó, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$.

Definíció

Az u szóhoz tartozó **kezdőkonfiguráció**: $(q_0, u_1, v_1, \ldots, u_k, v_k)$, ahol $u_i = \varepsilon$ $(1 \le i \le k)$, $v_1 = u \sqcup$, és $v_i = \sqcup$ $(2 \le i \le k)$.

Definíció

A $(q, u_1, v_1, \ldots, u_k, v_k)$ konfiguráció, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*$, $v_i \neq \varepsilon$ $(1 \le i \le k)$,

- elfogadó konfiguráció, ha q = q_i,
- elutasító konfiguráció, ha q = q_n,
- megállási konfiguráció, ha $q = q_i$ vagy $q = q_n$.

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ k-szalagos Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen $C=(q,u_1,a_1v_1,\ldots,u_k,a_kv_k)$ egy konfiguráció, ahol $a_i\in\Gamma,\ u_i,v_i\in\Gamma^*\ (1\leqslant i\leqslant k)$. Legyen továbbá $\delta(q,a_1,\ldots,a_k)=(r,b_1,\ldots,b_k,D_1,\ldots,D_k)$, ahol $q,r\in Q$, $b_i\in\Gamma,D_i\in\{L,S,R\}\ (1\leqslant i\leqslant k)$. Ekkor $C\vdash(r,u_1',v_1',\ldots,u_k',v_k')$, ahol minden $1\leqslant i\leqslant k$ -ra

- ▶ ha $D_i = R$, akkor $u'_i = u_i b_i$ és $v'_i = v_i$, ha $v_i \neq \varepsilon$, különben $v'_i = \sqcup$,
- ha $D_i = S$, akkor $u'_i = u_i$ és $v'_i = b_i v_i$,
- ha D_i = L, akkor u_i = u'_ic (c ∈ Γ) és v'_i = cb_iv_i ha u_i ≠ ε, különben u'_i = ε és v'_i = □b_iv_i.

Definíció

A k-szalagos TG-ek többlépéses konfigurációátmenet relációját ugyanúgy definiáljuk, mint az egyszalagos esetben, az egylépéses konfigurációátmenet reláció reflexív, tranzitív lezártjaként.

Jelölés:

-

Definíció

Az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ k-szalagos TG által felismert nyelv: $L(M) = \{ u \in \Sigma^* \mid (q_0, \varepsilon, u \sqcup, \varepsilon, \sqcup, \ldots, \varepsilon, \sqcup) \vdash^* (q_i, x_1, y_1, \ldots, x_k, y_k),$ valamely $x_1, y_1, \ldots, x_k, y_k \in \Gamma^*, y_1, \ldots, y_k \neq \varepsilon$ -ra $\}$.

Definíció

Egy k-szalagos Turing gép **futási ideje** egy u szóra a hozzá tartozó kezdőkonfigurációból egy megállási konfigurációba megtett lépések száma.

Az időigény (f(n)) időkorlátos TG) definíciója megegyezik az egyszalagos esetnél tárgyalttal.

Definíció

Két TG ekvivalens, ha ugyanazt a nyelvet ismerik fel.

Minden M k-szalagos Turing géphez megadható egy vele ekvivalens M' egyszalagos Turing gép. Továbbá, ha M legalább lineáris időigényű f(n) időkorlátos gép (azaz $f(n) = \Omega(n)$), akkor M' $O(f(n)^2)$ időkorlátos.

Tétel

Minden egyszalagos M Turing géphez van vele ekvivalens egy irányban végtelen szalagos M" Turing gép.

Nemdeterminisztikus Turing gép (NTG)

Az egyszalagos nemdeterminisztikus Turing gép (továbbiakban röviden NTG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- q₀, q_i, q_n ∈ Q, q₀ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy Σ ⊆ Γ és □ ∈ Γ\Σ,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, S, R\}).$

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

- ► Ha $(r, b, R) \in \delta(q, a)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ▶ ha (r, b, S) ∈ δ(q, a), akkor uqav ⊢ urbv,
- ▶ ha $(r, b, L) \in \delta(q, a)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

Definíció

A $\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$

- ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \leq i \leq n-1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

A $\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$

- ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \leqslant i \leqslant n-1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

Definíció

Az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ nemdeterminisztikus Turing gép által felismert nyelv

$$L(M) = \{ u \in \Sigma^* \mid q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \}.$$

Definíció

Egy M TG egy $u \in \Sigma^*$ inputjához tartozó **nemdeterminisztikus** számítási fa egy gyökeres fa, melynek csúcsai M konfigurációival címkézettek. $q_0u \sqcup$ a gyökér címkéje. Ha C egy csúcs címkéje, akkor $|\{C' \mid C \vdash C'\}|$ gyereke van és ezek címkéi éppen $\{C' \mid C \vdash C'\}$ elemei.

Definíció

Az M NTG felismeri az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet, ha felismeri továbbá minden $u \in \Sigma^*$ input szóhoz tartozó nemdeterminisztikus számítási fa véges és a fa minden levele elfogadó vagy elutasító konfiguráció.

Definíció

Az M NTG f(n) időkorlátos (időigényű), ha minden $u \in \Sigma^*$ n hosszú szóra u számítási fája legfeljebb f(n) magas.

Definíció

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak hossz-lexikografikus (shortlex) rendezése alatt azt a $<_{\text{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\text{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k)$, ahol k a legkisebb olyan i, melyre $u_i \neq v_i$).

Minden $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Definíció

- ▶ A és B halmazoknak megegyezik a számosságuk, ha ∃ bijekció köztük. Jelölése: |A| = |B|.
- ► A-nak legalább annyi a számossága, mint B-nek, ha ∃ B-ből injekció A-ba. Jelölése: |A| ≥ |B|.
- A-nak nagyobb a számossága, mint B-nek, ha ∃ B-ből A-ba injekció, de ∄ bijeckió. Jelölése: |A| > |B|.

Cantor-Bernstein-Schröder tétel

Ha \exists injekció A-ból B-be és B-ből A-ba is, akkor \exists bijekció A és B között, azaz ha $|A| \leq |B|$ és $|A| \geqslant |B|$, akkor |A| = |B|.

Definíció

Egy A halmaz megszámlálhatóan végtelen számosságú, ha létezik A és $\mathbb N$ között bijekció.

Definíció

Egy A halmaz continuum számosságú, ha létezik A és \mathbb{R} között bijekció.

Tétel

 $|\mathbb{R}| > |\mathbb{N}|$

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Következmény

Minden számosságnál van nagyobb számosság, tehát végtelen sok számosság van.

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \ldots, p_k\}, \Gamma = \{X_1, \ldots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \ge 3$, $p_1 = q_0$, $p_{k-1} = q_i$, $p_k = q_n$
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \square$.
- Egy $\delta(p_i, X_j) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- (M) az átmenetek kódjainak felsorolása 11-el elválasztva.

Tétel

Létezik nem Turing-felismerhető nyelv.

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Univerzális nyelv: $L_u = \{\langle M, w \rangle | w \in L(M)\}.$

Tétel

 $L_u \in RE$

Tétel

 $L_{ii} \notin R$.

Tétel

Tétel

Ha L és $\overline{L} \in RE$, akkor $L \in R$. Ha $L \in R$, akkor $\overline{L} \in R$.

Definíció

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f : \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény kiszámítható, ha van olyan Turing-gép, ami kiszámítja. [lásd szófüggvényt kiszámító TG]

Definíció

 $L_1 \subseteq \Sigma^*$ visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leqslant L_2$

- ▶ Ha $L_1 \leqslant L_2$ és $L_2 \in RE$, akkor $L_1 \in RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_2 \in R$, akkor $L_1 \in R$.

 $L_h = \{\langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten} \} L_u \subseteq L_h$

Tétel Tétel

 $L_h \notin R$. $L_h \in RE$.

Definíció

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. \mathcal{P} triviális, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

$$L_{\mathcal{P}} = \{\langle M \rangle \mid L(M) \in \mathcal{P}\}.$$

Rice tétele

Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \notin R$.

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+\ (n\geqslant1)$. A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt dominókészletnek nevezzük.

Definíció

Az $\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$ dominósorozat $(m\geqslant 1,1\leqslant i_1,\ldots,i_m\leqslant n)$ a $D=\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\}$ dominókészlet egy **megoldása**, ha $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$.

Post Megfelelkezési Probléma (PMP):

 $L_{PMP} = \{\langle D \rangle | D\text{-nek van megoldása} \}.$

Tétel Tétel

 $L_{PMP} \in RE$. $L_{PMP} \notin R$.

 $L_{\text{MPMP}} = \{\langle D, d \rangle \mid d \in D \land D \text{-nek van } d \text{-vel kezdődő megoldása} \}.$

 $L_{\mathsf{ECF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

Tétel

L_{ECF} ∉ R

Eldönthetetlenek az alábbi, G_1 és G_2 környezetfüggetlen grammatikákkal kapcsolatos kérdések.

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} \Gamma^*$ valamely Γ ábécére
- (4) $L(G_1) \stackrel{?}{\subseteq} L(G_2)$

Definíció

ValidityPred := $\{\langle \varphi \rangle | \varphi \text{ logikailag igaz elsőrendű formula} \}$. UnsatPred := $\{\langle \varphi \rangle | \varphi \text{ kielégíthetetlen elsőrendű formula} \}$. SatPred := $\{\langle \varphi \rangle | \varphi \text{ kielégíthető elsőrendű formula} \}$. EqivPred := $\{\langle \varphi \rangle | \varphi, \psi \text{ elsőrendű formula} \}$.

CONSPRED := $\{\langle \varphi, \psi \rangle | \varphi, \psi \text{ elsorendu formulak, melyekre } \varphi \sim \psi\}$

 φ elsőrendű formula, $\mathcal{F} \models \varphi$.

Tétel

VALIDITYPRED ∉ R

Következmény

UNSATPRED, SATPRED, EQUIVPRED, CONSPRED ∉ R.

Tétel

Következmény

UNSATPRED∈RE.

SATPRED ∉ RE

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Tétel

Minden $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ determinisztikus TG-hez megadható egy L(M)-et generáló G grammatika.

A lineárisan korlátolt automata (LKA) olyan nemdeterminisztikus TG, melynek Σ bemeneti ábécéje két speciális szimbólumot tartalmaz ⊳-et (baloldali végejel/endmarker) és ⊲-et (jobboldali végejel/endmarkert). Ezen felül

- a bemenetek ▷(∑\{▷,¬⟩)*¬-beliek,
- ▶ b és < nem írhatók felül</p>
- ► tól balra illetve <-től jobbra nem állhat a fej.
- a fej kezdőpozíciója a ⊳ tartalmú cella jobb-szomszédja

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Tétel

Ha A LKA, akkor L(A) eldönthető.

\mathcal{L}_3	3-típusú grammatika determinisztikus véges automata nemdeterminisztikus véges automata reguláris kifejezés
	determinisztikus veremautomata
\mathcal{L}_2	2-típusú grammatika verematomata
\mathcal{L}_1	1-típusú grammatika lineárisan korlátolt automata
R	minden inputra megálló Turing gép
RE =	Turing gép nemdeterminisztikus Turing gép
\mathcal{L}_0	0-típusú grammatika

Tétel $\mathcal{L}_1 \subset \mathbb{R}$.

- ► TIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időkorlátos determinisztikus TG-pel}\}$
- NTIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időkorlátos NTG-pel}\}$
- \triangleright P= $\bigcup_{k\geq 1}$ TIME (n^k) .
- ▶ NP= $\bigcup_{k\geq 1}$ NTIME (n^k) .

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény polinom időben kiszámítható, ha van olyan polinom időkorlátos Turing gép, amelyik kiszámítja.

Definíció

 $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leqslant_p L_2$.

Tétel

- ▶ Ha $L_1 \leq_p L_2$ és $L_2 \in P$, akkor $L_1 \in P$.
- ▶ Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$.

Definíció

Legyen $\mathcal C$ egy bonyolultsági osztály. Egy L nyelv $\mathcal C$ -nehéz (a polinom idejű visszavezetésre nézve), ha minden $L' \in \mathcal C$ esetén $L' \leqslant_p L$.

Definíció

Legyen C egy bonyolultsági osztály. Egy L nyelv C-teljes, ha $L \in C$ és L C-nehéz.

NP-teljes nyelv

Egy L nyelv NP-teljes (a polinom idejű visszavezetésre nézve), ha

- ▶ L ∈ NP
- L NP-nehéz, azaz minden $L' \in NP$ esetén $L' \leq_p L$.

Tétel

Legyen L egy NP-teljes probléma. Ha $L \in P$, akkor P = NP.

Cook-Levin tétel

 $SAT := \{\langle \varphi \rangle \mid \varphi \text{ kielégíthető nulladrendű KNF} \}$

SAT NP-teljes.

Tétel

Ha L NP-teljes, $L \leq_p L'$ és $L' \in NP$, akkor L' NP-teljes.

Definíció

kKNF-nek nevezünk egy olyan KNF-t, ahol minden klóz pontosan k darab páronként különböző alapú literál diszjunkciója.

Példák 4KNF:

$$(\neg x_1 \lor x_3 \lor x_5 \lor \neg x_6) \land (\neg x_1 \lor \neg x_3 \lor x_4 \lor \neg x_6) \land (x_1 \lor x_2 \lor \neg x_4 \lor \neg x_6).$$

2KNF: $(\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_2 \lor x_3)$.

Definíció:

 $kSAT = \{\langle \varphi \rangle | \varphi \text{ kielégíthető } kKNF\}$

Tétel

Tétel

3SAT NP-teljes.

 $2SAT \in P$.

Definíció

Horn formula: olyan KNF, amelynek minden tagja legfeljebb egy pozitív (azaz negálatlan) literált tartalmaz.

Definíció

 $HORNSAT = \{\langle \varphi \rangle | \varphi \text{ kielégíthető Horn formula} \}$

Tétel

 $HORNSAT \in P$.

Definíció

Legyen $k \ge 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G = (V, E) k-színezhető, ha $\exists f : V \to \{1, ..., k\}$ leképezés, melyre $\forall x, y \in V : f(x) = f(y) \Rightarrow \{x, y\} \notin E$.

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

Tétel

Tétel

3Színezés NP-teljes. 2Színezés ∈ P

Egy G egyszerű, irányítatlan gráf egy teljes részgráfját klikknek nevezzük.

KLIKK:= $\{\langle G, k \rangle | G$ -nek van k méretű klikkje $\}$

Példa:

{2, 3, 7, 8} és {4, 5, 9} klikk. {1, 2, 6, 7} nem klikk.

Definíció

Egy G egyszerű, irányítatlan gráf egy üres részgráfját független ponthalmaznak mondjuk.

Független Ponthalmaz:=

 $\{\langle G, k \rangle | G$ -nek van k méretű független ponthalmaza $\}$

Példa:

 $\{2,6,4\}$ független. $\{1,7,3,9\}$ nem független a $\{3,7\}$ él miatt.

Definíció

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz lefogja E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy lefogó ponthalmaz.

Megjegyzés: A fenti fogalom csúcsfedés néven is ismeretes.

LEFOCÓ PONTHALMAZ:=

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz lefogja E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy lefogó ponthalmaz.

Megjegyzés: A fenti fogalom csúcsfedés néven is ismeretes.

Lefogó ponthalmaz:=

 $\{\langle G, k \rangle | G$ -nek van k méretű lefogó ponthalmaza $\}$

Példa:

Tétel

Klikk, Független ponthalmaz, Lefogó ponthalmaz NP-teljes.

Definíció

S egy hipergráf (vagy halmazrendszer), ha $S = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ:= $\{\langle \mathcal{S}, k \rangle | \mathcal{S} \text{ egy hipergráf és van } k \text{ elemű } \mathcal{S}\text{-et lefogó ponthalmaz}\}.$

Tétel

HIPERGRÁF LEFOGÓ PONTHALMAZ NP-teljes.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat Hamilton útnak, egy a G összes csúcsát pontosan egyszer tartalmazó kört Hamilton körnek nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

 $H\dot{U} = \{\langle G, s, t \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

IHÚ= $\{\langle G, s, t \rangle | \text{van a } G \text{ irányítatlan gráfban } s \text{ és } t \text{ végpontokkal H-út} \}.$ IHK= $\{\langle G \rangle | \text{van a } G \text{ irányítatlan gráfban H-kör} \}.$

Tétel

Tétel

HÚ NP-telies

IHÚ NP-teljes

IHK NP-teljes

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leqslant K \text{ súlyú H-k\"or} \}.$

Tétel

TSP NP-teljes

Diophantoszi egyenlőtlenségrendszer=

 $\{\langle A, b \rangle \mid Ax \leqslant b \text{ egészegyütthatós egyenlőtlenségrendszernek}$ van egész megoldása $\}$.

Tétel

DIOPHANTOSZI EGYENLŐTLENSÉGRENDSZER NP-nehéz.

RÉSZLETÖSSZEG:= $\{\langle S, K \rangle | S \text{ egész számok egy halmaza, } K \in \mathbb{Z}, \text{ van } S\text{-nek egy olyan } S' \text{ részhalmaza, hogy az } S'\text{-beli számok összege } K\}.$

Példa: $S = \{5, 8, 9, 13, 17\}, K = 27$

Ekkor $\langle S, K \rangle \in \text{RÉSZLETÖSSZEG}$, mivel 5+9+13=27.

Tétel

RÉSZLETÖSSZEG NP-teljes.

A HÁTIZSÁK nyelv olyan $a_1, \ldots, a_n, b, p_1, \ldots p_n, k$ rendezett (2n+2)-esekből áll, ahol ezen számok mindegyike nemnegatív és van egy olyan $I \subseteq \{1, \ldots n\}$ halmaz, amelyre $\sum_{i \in I} a_i \leqslant b$ és $\sum_{i \in I} p_i \geqslant k$.

Tétel

HÁTIZSÁK NP-teljes.

PARTÍCIÓ:= $\{\langle B \rangle \mid B \text{ olyan pozitív számok multihalmaza, amely két egyenlő összegű részre particionálható}.$

Példa: A 2,2,2,3,3,4 multihalmaz ilyen, hiszen pl. 2+2+4=2+3+3.

Tétel

Partíció NP-teljes.

LÁDAPAKOLÁS:= $\{\langle s_1, \dots, s_n, k \rangle \mid s_i \in \mathbb{Q}^+ (1 \leqslant i \leqslant n) \text{ súlyok}$ particionálhatók $k \in \mathbb{N}^+$ részre úgy, hogy minden particióban a súlyok összege $\leqslant 1\}$.

Tétel

LÁDAPAKOLÁS NP-teljes.

Definíció

L NP-köztes, ha $L \in NP$, $L \notin P$ és L nem NP-teljes.

Ladner tétele

Ha P ≠ NP, akkor létezik NP-köztes nyelv.

Definíció

A $G_i = (V_i, E_i)$ (i = 1, 2) irányítatlan gráfok izomorfak, ha van olyan $f : V_1 \to V_2$ bijekció, hogy $\forall u, v \in V_1$ esetén $\{u, v\} \in E_1 \Leftrightarrow \{f(u), f(v)\} \in E_2$.

GRÁFIZOMORFIZMUS = $\{\langle G_1, G_2 \rangle | G_1 \text{ és } G_2 \text{ irányítatlan} \}$ izomorf gráfok $\}$.

Példa:

és

izomorfak.

Tétel: GRÁFIZOMORFIZMUS ∈ QP, ahol

$$\mathsf{QP} = \bigcup_{c \in \mathbb{N}} \mathsf{TIME}(2^{(\log n)^c})$$

a "kvázipolinom időben" megoldható problémák osztálya.

RÉSZGRÁFIZOMORFIZMUS = $\{\langle G_1, G_2 \rangle | G_1 \text{ és } G_2 \text{ irányítatlan}$ gráfok és G_1 izomorf G_2 egy részgráfjával $\}$.

Tétel

RÉSZGRÁFIZOMORFIZMUS NP-teljes.

Prímfaktorizáció =

 $\{\langle n, k \rangle | n$ -nek van k-nál kisebb prímtényezője $\}$

Ha C egy bonyolultsági osztály $coC := \{L \mid \overline{L} \in C\}.$

Definíció

 \mathcal{C} zárt a polinomidejű visszavezetésre nézve, ha minden esetben ha $L_2 \in \mathcal{C}$ és $L_1 \leq_p L_2$ teljesül következik, hogy $L_1 \in \mathcal{C}$.

Tétel

Ha $\mathcal C$ zárt a polinomidejű visszavezetésre nézve, akkor co $\mathcal C$ is.

Következmény

coNP zárt a polinom idejű visszavezetésre nézve.

 $P = coP NP \neq coNP$

Tétel

L C-teljes $\iff \overline{L}$ coC-teljes.

UNSAT := $\{\langle \varphi \rangle | \varphi \text{ kielégíthetetlen nulladrendű formula} \}$.

TAUT := $\{\langle \varphi \rangle \mid a \varphi \text{ nulladrend} \tilde{u} \text{ formula tautol} \tilde{g}ia \}$.

Tétel

UNSAT és TAUT coNP-teljesek.

Tétel

Ha L coNP-teljes és $L \in NP$, akkor NP = coNP.

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Tétel

Minden TG-hez megadható vele ekvivalens offline TG.

Definíció

A nemdeterminisztikus offline Turing gép (NOTG) egy nemdeterminisztikusan működő offline Turing gép.

A számító offline Turing gép olyan legalább 2 szalagos számító Turing gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. Az első szalagot bemeneti szalagnak, utolsó szalagot kimeneti szalagnak, a többi szalagot munkaszalagnak nevezzük.

Definíció

Egy offline TG többlet tárigénye egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Definíció

Egy nemdeterminisztikus offline TG többlet tárigénye egy adott inputra a legnagyobb többlet tárigényű számításának az többlet tárigénye.

Egy nemdeterminisztikus offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) az többlet tárigénye.

- SPACE (f(n)) := {L | L eldönthető O(f(n)) többlet tárkorlátos determinisztikus offline TG-pel}
- NSPACE (f(n)) := {L | L eldönthető O(f(n)) többlet tárkorlátos nemdeterminisztikus offline TG-pel}
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- NPSPACE:=U_{k≥1}NSPACE (n^k).
- L:=SPACE (log n).
- NL:=NSPACE (log n).

 $EL\acute{E}R = \{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út} \}.$

Tétel

ELÉR \in TIME (n^2) .

Tétel

ELÉR \in SPACE($\log^2 n$).

Egy M NTG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Következmény

PSPACE = NPSPACE

Tétel Tétel

NL⊆P ELÉR € NL

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Tétel

Az L osztály zárt a logaritmikus tárral való visszavezetésre nézve.

Tétel

Elér NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Immerman-Szelepcsényi tétel

NL = coNL

EXPTIME:= $\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k}).$

Hierarchia tétel

- (I) NL ⊂ PSPACE és P ⊂ EXPTIME.
- (II) $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$