Supervised Machine Learning: Pattern Classification

Classification

- Problem of identifying to which of a set of categories a new observation belongs
- Predicts categorical labels
- Example:
 - Predicting a person as adult or child (2-class)
 - Predicting the raise in salary based on the year of experience and salary (2-class)
 - Identify an email as spam or not (2-class)
 - Predicting the presence or absence of disease (2-class)
 - Pima Indians Diabetes Database: predict whether a patient has diabetes or not based on diagnostic measurements
 - Categorising the disease according to symptoms (Multi-class)
 - Categorizing the Iris flowers (Multi-class)

Classification

- Classification is a two step process
 - Step1: Building a classifier (data modeling)
 - Learning from data (training phase)
 - Supervised learning: In supervised learning, each example is a *pair* consisting of an input example and a desired output value (class label)
 - Training phase or learning phase is viewed as the learning of a mapping or function that can predict the associated class label of a given training example

$$y_n = f(\mathbf{x}_n)$$

- \mathbf{x}_n is the n^{th} training example and \mathbf{y}_n is the associated class label
- Step2: Using classification model for prediction
 - Testing phase Predicting class label for the unseen data
- Accuracy of a classifier: Percentage of test examples that are correctly classified by the classifier
- Target of learning techniques: Good generalization ability

2-class Classification

Example: Classifying a person as child or adult

Illustration of Training Set: Adult-Child

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

- Number of training examples (N) = 20
- Dimension of a training example = 2
- Class label attribute is 3rd dimension
- Class:
 - Child (0)
 - Adult (1)

Step1: Building a Classification Model (Training Phase)

Step2: Classification (Testing Phase)

Data Preparation for the Classification

- Divide the data into training set and test set
- Approach 1: When the number samples from each class are almost equal (Balanced data)
 - Most common split is 70-30 split:
 - Training data contain 70% of samples from each class
 - Test data contain remaining 30% of samples from each class
 - One can use other splits like 50-50 or 60-40 or 80-20 or 90-10

Data Preparation for the Classification: Approach 1

- Suppose that we are doing 70-30 split
- Suppose the data set has 3000 samples
- Each sample is belonging to one of the 3 classes
- Suppose each class has 1000 samples
 - Step1: From class1, 70% i.e. 700 samples considered as training samples and remaining 30% i.e. 300 samples are considered as test samples
 - Step2: From class2, 70% i.e. 700 samples considered as training samples and remaining 30% i.e. 300 samples are considered as test samples
 - Step3: From class3, 70% i.e. 700 samples considered as training samples and remaining 30% i.e. 300 samples are considered as test samples
 - Step4: Combine training examples from each class
 - Training set now contain 700+700+700=2100 samples
 - Step5: Combine test examples from each class
 - Test set now contain 300+300+300=900 samples

Data Preparation for the Classification

- Divide the data into training set and test set
- Approach 1: When the number samples from each class are almost equal (Balanced data)
 - Example:
 - Training data contain 70% of samples from each class
 - Test data contain remaining 30% of samples from each class
- Approach 2: When the number samples from each class are not equal (Imbalanced data)
 - One class may have large number of samples and another has small number of samples
 - 70%-30% division may cause learned model to be bias to class with larger number of training samples
 - Solution:
 - Consider 70% or 80% of the samples from the class with least number of samples as training data from that class
 - Consider the same number of samples from other class as training examples
 - Each class will have same number of training examples

Data Preparation for the Classification: Approach 2

- Suppose the data set has 3000 samples
- Each sample is belonging to one of the 3 classes
- Suppose class1 has 700 samples, class2 has 300 samples and class3 has 2000 samples
 - Step1: From class2, 70% i.e. 210 samples considered as training samples and remaining 30% i.e. 90 samples are considered as test samples
 - Step2: From class1, 210 samples considered as training samples and remaining 490 samples are considered as test samples
 - Step3: From class3, 210 samples considered as training samples and remaining 1790 samples are considered as test samples
 - Step4: Combine training examples from each class
 - Training set now contain 210+210+210=630 samples
 - Step5: Combine test examples from each class
 - Test set now contain 490+90+1790=2370 samples

Nearest-Neighbour Method

• Training data with N samples: $D = \{\mathbf{x}_n, y_n\}_{n=1}^N$,

$$\mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1, 2, \mathbb{M}, M\}$$

- -d: dimension of input example
- − *M*: Number of classes
- Step 1: Compute Euclidean distance for a test example x with every training examples, $x_1, x_2, ..., x_n$

Nearest-Neighbour Method

• Training data:D = $\{\mathbf{x}_n, y_n\}_{n=1}^N$,

$$\mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1, 2, \mathbb{M}, M\}$$

- -d: dimension of input example
- *M*: Number of classes
- Step 1: Compute Euclidean distance for a test example x with every training examples, $x_1, x_2, ..., x_n$

- Step 2: Sort the examples in the training set in the ascending order of the distance to test example x
 - Step 3: Assign the class of the training example with the minimum distance to the test example, x

į	Height	Weight	ED
	90	21.5	66.68
	95	23.67	61.24
	100	32.45	53.19
	116	38.21	36.19
	98	28.43	56.53
	108	36.32	44.36
	104	27.38	51.53
	112	39.28	39.65
	121	35.8	32.56
	92	23.56	63.99
	152	46.8	4.294
	178	78.9	39.81
	163	67.45	21.28
	173	82.9	39.65
	154	52.6	4.472
1	168	66.2	23.82
	183	90	51.39
7	172	82	38.34
-	156	45.3	8.006
- 2	161	59	13.84

 Step 1: Compute Euclidean distance (ED) will each training examples

Height	Weight	ED
90	21.5	66.68
95	23.67	61.24
100	32.45	53.19
116	38.21	36.19
98	28.43	56.53
108	36.32	44.36
104	27.38	51.53
112	39.28	39.65
121	35.8	32.56
92	23.56	63.99
152	46.8	4.294
178	78.9	39.81
163	67.45	21.28
173	82.9	39.65
154	52.6	4.472
168	66.2	23.82
183	90	51.39
172	82	38.34
156	45.3	8.006
161	59	13.84

 Step 2: Sort the examples in the training set in the ascending order of the distance to test example

Class	Height	Weight	ED
0	90	21.5	66.68
0	95	23.67	61.24
0	100	32.45	53.19
0	116	38.21	36.19
0	98	28.43	56.53
0	108	36.32	44.36
0	104	27.38	51.53
0	112	39.28	39.65
0	121	35.8	32.56
0	92	23.56	63.99
1	152	46.8	4.294
1	178	78.9	39.81
1	163	67.45	21.28
1	173	82.9	39.65
1	154	52.6	4.472
1	168	66.2	23.82
1	183	90	51.39
1	172	82	38.34
1	156	45.3	8.006
1	161	59	13.84

- Step 3: Assign the class of the training example with the minimum distance to the test example
 - Class: Adult (1)

Nearest-Neighbour Method

• Training data:D = $\{\mathbf{x}_n, y_n\}_{n=1}^N$,

$$\mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1, 2, \mathbb{M}, M\}$$

- -d: dimension of input example
- *M*: Number of classes
- Step 1: Compute Euclidean distance for a test example \mathbf{x} with every training examples, $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$

- Step 2: Sort the examples in the training set in the ascending order of the distance to x
- Step 3: Assign the class of the training example with the minimum distance to the test example, \mathbf{x}

Height	Weight	ED
90	21.5	51.38
95	23.67	45.95
100	32.45	37.64
116	38.21	20.65
98	28.43	41.09
108	36.32	28.78
104	27.38	36.31
112	39.28	24.04
121	35.8	17.49
92	23.56	48.64
152	46.8	17.01
178	78.9	53.97
163	67.45	35.1
173	82.9	52.77
154	52.6	20.02
168	66.2	38.54
183	90	64.92
172	82	51.42
156	45.3	21.02
161	59	28.94

 Step 1: Compute Euclidean distance (ED) will each training examples

Height	Weight	ED
90	21.5	51.38
95	23.67	45.95
100	32.45	37.64
116	38.21	20.65
98	28.43	41.09
108	36.32	28.78
104	27.38	36.31
112	39.28	24.04
121	35.8	17.49
92	23.56	48.64
152	46.8	17.01
178	78.9	53.97
163	67.45	35.1
173	82.9	52.77
154	52.6	20.02
168	66.2	38.54
183	90	64.92
172	82	51.42
156	45.3	21.02
161	59	28.94

• Step 2: Sort the examples in the training set in the ascending order of the distance to test example

Class	Height	Weight	ED
0	90	21.5	51.38
0	95	23.67	45.95
0	100	32.45	37.64
0	116	38.21	20.65
0	98	28.43	41.09
0	108	36.32	28.78
0	104	27.38	36.31
0	112	39.28	24.04
0	121	35.8	17.49
0	92	23.56	48.64
1	152	46.8	17.01
1	178	78.9	53.97
1	163	67.45	35.1
1	173	82.9	52.77
1	154	52.6	20.02
1	168	66.2	38.54
1	183	90	64.92
1	172	82	51.42
1	156	45.3	21.02
1	161	59	28.94

- Step 3: Assign the class of the training example with the minimum distance to the test example
 - Class: Adult (1) ?

K-Nearest Neighbours (K-NN) Method

- Consider the class labels of the K training examples nearest to the test example
- Step 1: Compute Euclidean distance for a test example \mathbf{x} with every training examples, $\mathbf{x}_1, \, \mathbf{x}_2, \, ..., \, \mathbf{x}_n, \, \mathbf{x}_n$

K-Nearest Neighbours (K-NN) Method

- Consider the class labels of the K training examples nearest to the test example
- Step 1: Compute Euclidean distance for a test example \mathbf{x} with every training examples, $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$

- Step 2: Sort the examples in the training set in the ascending order of the distance to x
- Step 3: Choose the first K examples in the sorted list
 - K is the number of neighbours for text example
- Step 4: Test example is assigned the most common class among its K neighbours

Class	Height	Weight	ED
0	90	21.5	51.38
0	95	23.67	45.95
0	100	32.45	37.64
0	116	38.21	20.65
0	98	28.43	41.09
0	108	36.32	28.78
0	104	27.38	36.31
0	112	39.28	24.04
0	121	35.8	17.49
0	92	23.56	48.64
1	152	46.8	17.01
1	178	78.9	53.97
1	163	67.45	35.1
1	173	82.9	52.77
1	154	52.6	20.02
1	168	66.2	38.54
1	183	90	64.92
1	172	82	51.42
1	156	45.3	21.02
1	161	59	28.94

- Consider K=5
- Step 3: Choose the first K=5 examples in the sorted list

Class	Height	Weight	ED
0	90	21.5	51.38
0	95	23.67	45.95
0	100	32.45	37.64
0	116	38.21	20.65
0	98	28.43	41.09
0	108	36.32	28.78
0	104	27.38	36.31
0	112	39.28	24.04
0	121	35.8	17.49
0	92	23.56	48.64
1	152	46.8	17.01
1	178	78.9	53.97
1	163	67.45	35.1
1	173	82.9	52.77
1	154	52.6	20.02
1	168	66.2	38.54
1	183	90	64.92
1	172	82	51.42
1	156	45.3	21.02
1	161	59	28.94

- Consider K=5
- Step 4: Test example is assigned the most common class among its K neighbours
 - Class: Adult

Determining K, Number of Neighbours

- This is determined experimentally
- Starting with K=1, test set is used to estimate the accuracy of the classifier
- This process is repeated each time by incrementing K to allow for more neighbour
- The K value that gives the maximum accuracy may be selected
- Preferably the value of K should be an odd number and prime number.

Data Normalization

- Since the distance measure is used, K-NN classifier require normalising the values of each attribute
- Normalising the training data:
 - Compute the minimum and maximum values of each of the attributes in the training data
 - Store the minimum and maximum values of each of the attributes
 - Perform the min-max normalization on training data set
- Normalizing the test data:
 - Use the stored minimum and maximum values of each of the attributes from training set to normalise the test examples
- NOTE: Ensure that test examples are not causing out-of-bound error

Lazy Learning: Learning from Neighbours

- The K nearest neighbour classifier is an example of lazy learner
- Lazy learning waits until the last minute before doing any model construction to classify test example
- When the training examples are given, a lazy learner simply stores them and waits until it is given a test example
- When it sees the test example, then it classify based on its similarity to the stored training examples
- Since the lazy learns stores the training examples or instances, they also called instance based learners
- Disadvantages:
 - Making classification or prediction is computationally intensive
 - Require efficient huge storage techniques when the training samples are huge

Text Books

J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.

- 2. S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, Academic Press, 2009.
- 3. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.