Computabilità e Algoritmi (Computabilità) Prova Intermedia - 29 Novembre 2016

Esercizio 1

Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive e, utilizzando esclusivamente la definizione, dimostrare che è primitiva ricorsiva la funzione $p_2 : \mathbb{N} \to \mathbb{N}$ definita da $p_2(y) = |y-2|$.

Soluzione: Per la definizione di \mathcal{PR} si veda il libro. Per la seconda parte, si osserva che se definiamo $p_1(y) = |y - 1|$ allora

$$\begin{cases} p_1(0) = 1 \\ p_1(y+1) = |y+1-1| = |y| = y \end{cases}$$

e quindi

$$\begin{cases} p_2(0) = 2 \\ p_2(y+1) = |y+1-2| = |y-1| = p_1(y) \end{cases}$$

Quindi p_2 definita per ricorsione primitiva a partire dalle funzioni di base è in \mathcal{PR} .

Esercizio 2

Dimostrare che esiste una funzione calcolabile totale $k : \mathbb{N} \to \mathbb{N}$ tale che per ogni $n \in \mathbb{N}$ vale $W_{k(n)} = \mathbb{P} = \{x \in \mathbb{N} \mid x \text{ pari}\} \in E_{k(n)} = \{x \in \mathbb{N} \mid x \geqslant n\}.$

Soluzione: Si inizia definendo una funzione calcolabile di due argomenti f(n,x) che rispetti le condizioni quando vista come funzione di x, con n considerato come parametro, ad es.

$$f(n,x) = \begin{cases} x/2 + n & \text{se } x \text{ pari} \\ \uparrow & \text{altrimenti} \end{cases} = qt(2,x) + n + \mu z.rm(2,x)$$

Per il teorema smn esiste una funzione totale calcolabile $k : \mathbb{N} \to \mathbb{N}$ tale che $\varphi_{k(n)}(x) = f(n, x)$ per ogni $n, x \in \mathbb{N}$. Pertanto:

•
$$W_{k(x)} = \{x \mid f(n,x) \downarrow\} = \{x \mid x \text{ pari}\}$$

•
$$E_{k(x)} = \{f(n, x) \mid x \in \mathbb{N}\} = \{n + x/2 \mid x \text{ pari}\} = \{n + x \mid x \ge 0\} = \{y \mid y \ge \mathbb{N}\}$$
 come desiderato.

Esercizio 3

Può esistere una funzione totale, non calcolabile, tale che $img(f) = \{f(x) \mid x \in \mathbb{N}\}$ sia l'insieme Pr dei numeri primi? Motivare la risposta.

Soluzione: Si esiste. Ad esempio, basta considerare:

$$f(x) = \begin{cases} p & \text{se } x \in W_x \text{ e } p = \min\{p' \in Pr \mid p' > \varphi_x(x)\} \\ 2 & \text{altrimenti} \end{cases}$$

Allora la funzione f

- è totale;
- non è calcolabile in quanto per ogni $x \in \mathbb{N}$ si ha che $f(x) \neq \varphi_x(x)$; infatti, se $\varphi_x(x) \downarrow$ si ha che f(x) è un primo maggiore di $\varphi_x(x)$, e se invece $\varphi_x(x) \uparrow$ allora f(x) = 2;
- chiaramente $img(f) \subseteq Pr$. Per l'inclusione inversa si consideri un qualunque numero primo $p \in Pr$ e la funzione costante g(x) = p 1 per ogni $x \in \mathbb{N}$. La funzione g è calcolabile, quindi $g = \varphi_n$ per un opportuno indice n. Si conclude notando che $f(n) = \min\{p' \in Pr \mid p' > \varphi_n(n)\} = \min\{p' \in Pr \mid p > p 1\} = \min\{p' \in Pr \mid p' \geqslant p\} = p$ e quindi $p \in img(f)$.