Práctico 2

Asistentes de pruebas para lógicos y matemáticos Cálculo de Predicados y Cálculo de Predicados con Igualdad

Cálculo de Predicados

Objetivos

Hacer pruebas formales en cálculo predicados, para ello se debe aprender a manejar las nociones de proposición, predicado, cuantificador, etc. Utilizar tácticas automáticas de búsqueda de pruebas para el cálculo predicados (se usarán tácticas tales como auto y trivial). Utilizar estructuradores de tácticas (tacticals) en las pruebas.

Principales tácticas a utilizar en estos ejercicios

apply <term>: puede usarse para eliminar un cuantificador universal.

exists <term>: para probar un existencial indicando que <term> es el testigo (witness) del mismo.

Section <nombre>: para estructurar las pruebas (permite declarar variables y lemas de forma local).

Predicados

En lógica de primer orden deben considerarse dos categorías de expresiones: aquellas que denotan objetos (los términos) y las que denotan propiedades de los objetos (las fórmulas). En *Coq* hacemos esta diferencia explícita definiendo un conjunto U al cual pertenecerán los objetos. Esto se hace declarando la variable U: Set en el contexto.

Un predicado unario P se representa como una función proposicional que depende de un objeto en U (en símbolos: P:U->Prop), un predicado binario R se representa como una función proposicional que depende de dos objetos de U (en símbolos: R:U->U->Prop). En general, un predicado n-ario P se representa como una función proposicional que depende de n objetos de U.

Cuantificador universal

La fórmula $\forall x \in U$. B se escribe en Coq como (forall x:U, B) (donde x puede aparecer libre en B). En cálculo de predicados se tiene usualmente un solo dominio de objetos, por lo cual, se suele escribir sólo $\forall x$ B. Sin embargo, en Coq los objetos pueden pertenecer a diferentes dominios (tipos), por lo cual debemos "tipar" las variables.

El alcance del cuantificador universal en (forall x:U, B) es B. Las nociones de ocurrencia libre y ligada son las usuales.

Convención de parentización: las implicancias \rightarrow y los cuantificadores universales se asocian a la derecha. Por ejemplo forall x:U, B->C denota $\forall x \in U$. (B \rightarrow C).

La táctica para eliminar un cuantificador universal es apply <term>. Por ejemplo si hay una hipótesis H: forall (x1:A1)...(xn:An), B en el contexto y el objetivo a probar es G, la aplicación de la regla de eliminación puede ser de una de las siguientes formas:

- apply H (si la cabeza de B unifica con G),
- apply (H a1...an) (si Coq no puede resolver la unificación de B y G y es necesario instanciar manualmente el lema H con los valores a1:A1,... an:An).

Ejercicio 2.1. Considere las siguientes declaraciones de variable.

```
Variable U: Set.
Variable A B: U->Prop.
Variable P Q: Prop.
Variable R S: U->U->Prop.
```

Demuestre en Coq los siguientes teoremas:

- 1. $(\forall x \in U. A(x)) \rightarrow \forall y \in U. A(y)$
- 2. $(\forall x,y \in U. R(x,y)) \rightarrow \forall x,y \in U. R(y,x)$
- 3. $(\forall x \in U. (A(x) \rightarrow B(x))) \rightarrow ((\forall y \in U. A(y)) \rightarrow (\forall z \in U. B(z)))$

Ejercicio 2.2. Demuestre en Coq los siguientes teoremas.

- 1. $\forall x \in U. (A(x) \rightarrow \neg \forall x \in U. \neg A(x))$
- 2. $\forall x,y \in U. R(x,y) \rightarrow \forall x \in U. R(x,x)$
- 3. $(\forall x \in U. (P \rightarrow A(x))) \rightarrow (P \rightarrow \forall x \in U. A(x))$
- 4. $(\forall x \in U. (A(x) \land B(x))) \rightarrow ((\forall x \in U. A(x)) \rightarrow (\forall x \in U. B(x)))$

Ejercicio 2.3. Sea R una relación binaria sobre elementos de un Set A. Pruebe que:

- 1. Si R satisface: $\forall x \ R(x,x) \ y \ \forall x \forall y \forall z (\ R(x,y) \land R(x,z) \rightarrow R(y,z))$ entonces R es una relación de equivalencia.
- 2. Si R es una relación asimétrica entonces esa relación es irreflexiva. Donde: R es *irreflexiva* si y solamente si ningún objeto está relacionado consigo mismo, y R es *asimétrica* si y solamente si en caso de que x esté relacionado con y entonces y no lo está con x, cualesquiera sean los objetos x e y.

Cuantificador Existencial

La fórmula $\exists x \in U$. B se escribe en Coq (exists x:U, B) (donde x puede aparecer libre en B).

El alcance del cuantificador existencial (exists x:A, B) es B. Las nociones de ocurrencia libre y ligada son las usuales.

La táctica correspondiente a la regla de *introducción* del cuantificador existencial es exists <term>. Por ejemplo, si el objetivo a probar es (exists x:A, B) y a es un elemento de A en el contexto, la táctica (exists a) devolverá como nuevo objetivo a probar la fórmula B[a/x] (o sea la fórmula B en la que las ocurrencias libres de la variable x fueron sustituidas por a). El término a es llamado el testigo (witness) de la prueba del existencial.

La táctica elim aplicada a una hipótesis (o lema) cuyo tipo es de la forma (exists x:A, B), transforma al objetivo original G en (forall x:A, B->G). Esto corresponde exactamente con la regla de eliminación del cuantificador existencial.

Ejercicio 2.4.

Usa exists (entre otros).

Demuestre en Coq los siguientes teoremas (tenga en cuenta que para probar un existencial, deberá proveer el testigo):

- 1. $\exists x \in U. \exists y \in U. R(x,y) \rightarrow \exists y \in U. \exists x \in U. R(x,y)$
- 2. $\forall x \in U. A(x) \rightarrow \neg \exists x \in U. \neg A(x)$
- 3. $\exists x \in U. \sim A(x) \rightarrow \sim \forall x \in U. A(x)$

Ejercicio 2.5.

Usa Section (entre otros).

Considere las siguientes declaraciones que definen al conjunto de los números naturales y a los predicados par (even) e impar (odd):

```
Section Naturales.
Variable nat: Set.
Variable S: nat->nat.
Variable a b c: nat.
Variable odd even: nat->Prop.
Variable P Q: nat->Prop.
Variable f: nat -> nat.
```

Demuestre bajo este contexto los siguientes teoremas:

- 1. $\forall x \in \text{nat. } \exists y \in \text{nat. } (P(x) \rightarrow P(y))$
- 2. $\exists x \in \text{nat. } P(x) \rightarrow (\forall y \in \text{nat. } P(y) \rightarrow Q(y)) \rightarrow \exists z \in \text{nat. } Q(z)$

```
3. \operatorname{even}(a) \to \forall x \in \operatorname{nat.} (\operatorname{even}(x) \to \operatorname{odd} (S(x))) \to \exists y \in \operatorname{nat.} \operatorname{odd}(y)
4. (\forall x \in \operatorname{nat.} P(x) \land \operatorname{odd}(x) \to \operatorname{even}(f(x)))
\to (\forall x \in \operatorname{nat.} \operatorname{even}(x) \to \operatorname{odd}(S(x)))
\to \operatorname{even}(a)
\to P(S(a))
\to \exists z \in \operatorname{nat.} \operatorname{even}(f(z))
End Naturales.
```

Ejercicio 2.6.

Considere el siguiente conjunto de declaraciones que definen al conjunto de naturales ordenados según el \leq (le).

```
Section NaturalesOrdenados.
Variable nat: Set.
Variable S: nat -> nat.
Variable le: nat -> nat -> Prop.
Variable f: nat -> nat.
Variable P: nat -> Prop.

Axiom le_n: forall n:nat, (le n n).
Axiom le_S: forall n m:nat, (le n m) -> (le n (S m)).
Axiom monoticity: forall n m:nat, (le n m) -> (le (f n) (f m)).
```

- 1. Demuestre los siguientes lemas
 - a. Lema le $\mathbf{x} \cdot \mathbf{S} \mathbf{x} : \forall \mathbf{x} \in \text{nat. } \mathbf{x} \leq \mathbf{x} + 1$.
 - b. Lema le x SSx: $\forall x \in \text{nat. } x \leq x+2$.
- 2. Dé tres pruebas diferentes la siguiente fórmula existencial, dando en cada caso un testigo diferente.

Teorema T1 : $\forall a \in \text{nat. } \exists b \in \text{nat. } f(a) \leq b.$

- a. Demuestre el teorema anterior dando como testigo del existencial el natural (S (S (S (S (f a))))). Reemplace en su prueba las primeras líneas de la forma apply le_S por repeat apply le_S.
- b. Lea la sección Tacticals del manual de referencia y rehaga la prueba utilizando el estructurador de tácticas do.

End NaturalesOrdenados.

Ejercicio 2.7. Utilice los estructuradores de tácticas (de la sección *Tacticals* del manual de referencia) para escribir una prueba de los siguientes teoremas en una sola línea:

- 1. $(\forall x \in U. (A(x) \land B(x))) \rightarrow (\forall x \in U. A(x)) \land (\forall x \in U. B(x))$
- 2. $(\exists x \in U. (A(x) \lor B(x))) \rightarrow (\exists x \in U. A(x)) \lor (\exists x \in U. B(x))$
- 3. $(\forall x \in U. A(x)) \lor (\forall x \in U. B(x)) \rightarrow (\forall x \in U. (A(x) \lor B(x)))$

Ejercicio 2.8. Sea R una relación binaria sobre elementos de un conjunto U y sean T y V relaciones unarias sobre U.

- 1. Pruebe sin usar tácticas automáticas el siguiente teorema: $\exists y \forall x \ R(x,y) \rightarrow \forall x \exists y \ R(x,y)$.
- 2. Pruebe el siguiente teorema:

```
Theorem T282: (exists y:U, True) / (forall x:U, (T x) // (V x)) \rightarrow (exists z:U, (T z)) // (exists w:U, (V w)).
```

3. Es necesaria la condición (exists y:U, True) en el teorema anterior? Justifique.

Ejercicio 2.9. Demuestre en Coq los siguientes teoremas de la lógica clásica:

- 1. Lemma not ex not forall: $(\sim \exists x \in U. \sim A(x)) \rightarrow (\forall x \in U. A(x)).$
- 2. Lemma not forall ex not: $(\sim \forall x \in U. \ A(x)) \rightarrow (\exists x \in U. \sim A(x)).$

Cálculo de predicados con igualdad

Objetivos

Comprender cómo realizar pruebas utilizando igualdades.

Principales tácticas a utilizar en estos ejercicios

[reflexivity] permite probar los objetivos de la forma a=a.

[symmetry] Si el objetivo corriente es de la forma a=b, entonces da como nuevo objetivo b=a.

[transitivity <term>] Se aplica a un objetivo de la forma a=b y lo reemplaza por los objetivos a=<term> y <term>=b.

[rewrite \rightarrow <term>] Si <term>:a=b entonces reescribe en el objetivo corriente todas las ocurrencias de a por b. Rewrite <- <term> hace lo contrario.

[replace a with b] Realiza el mismo trabajo que Rewrite pero pide probar la igualdad a=b.

[pattern ...] esta familia de tácticas permiten, al componerlas con las de la familia rewrite,

reescribir sólo ciertas ocurrencias (no serán necesarias en este práctico).

Ejercicio 2.10.

Considere las siguientes declaraciones en Coq:

```
Section Sec_Peano.
Variable nat: Set.
Variable O: nat.
Variable S: nat->nat.
Axiom disc: forall n:nat, ~O=(S n).
Axiom inj: forall n m:nat, (S n)=(S m) -> n=m.
Axiom allNat: forall n: nat, n = O \/ exists m: nat, S m = n.

Variable sum prod: nat->nat->nat.
Axiom sum0: forall n:nat, (sum n O)=n.
Axiom sumS: forall n m:nat, (sum n (S m))=(S (sum n m)).
Axiom prod0: forall n:nat, (prod n O)=O.
Axiom prodS: forall n m:nat, (prod n (S m))=(sum n (prod n m)).
```

Bajo este contexto, demuestre en Coq, los siguientes teoremas:

```
    Lemma L10_1: (sum (S O) (S O)) = (S (S O)).
    Lemma L10_2: forall n:nat, ~(O=n /\ (exists m:nat, n = S m)).
    Lemma prod_neutro: forall n:nat, (prod n (S O)) = n.
    Lemma diff: forall n:nat, ~(S (S n)) = (S O).
    Lemma L10_3: forall n: nat, exists m: nat, prod n (S m) = sum n n.
```

Ejercicio 2.11.

Considere las siguientes declaraciones:

7. Lemma L10 5: forall m n: Nat, sum m n = 0 \rightarrow m = 0 / n = 0.

6. Lemma L10 4: forall m n: Nat, n <> 0 -> sum m n <> 0.

Ejercicios a entregar:

Ver la fecha límite y los ejercicios requeridos en el sitio EVA del curso.

El archivo a entregar debe cargar correctamente en Coq. Si deja ejercicios sin resolver, debe delimitarlos como comentarios: (* ... *).

Al inicio del archivo deben estar los datos de cada integrante; se admiten entregas individuales o de a dos estudiantes.

Usar la plantilla publicada junto con el práctico para el desarrollo de los ejercicios requeridos; no es necesario entregar los ejercicios no solicitados.