Description

This module converts any s/w variables with Q15 representation into the PWM signals in EPWM 5A & 6A for 2833x. Thus, it can be used to view the signal, represented by the variable, at the outputs of the PWM5A and PWM6A pins through the external low-pass filters.

Availability

This 16-bit module is available in one interface format:

1) The C interface version

Module Properties

Type: Target Dependent, Application Independent

Target Devices: x2833x Floating Point devices

C Version File Names: f2833xpwmdac.h (for x2833x)

IQmath library files for C: N/A

C Interface

Object Definition

The structure of PWMDAC object is defined by following structure definition

```
typedef struct {
    int16 *PwmDacInPointer0; // Input: Pointer to source data output on PWMDAC ch 0
    int16 *PwmDacInPointer1; // Input: Pointer to source data output on PWMDAC ch 1
    Uint16 PeriodMax; // Parameter: PWMDAC half period in number of clocks (Q0)
} PWMDAC;
```

typedef PWMDAC *PWMDAC handle;

Item	Name	Description	Format	Range(Hex)
Inputs	PwmDacInPoin terx (x=0,1)	These input variables contain the addresses of the desired s/w variables.	N/A	N/A
Outputs	PWMx (x=5,6)	Output signals from the PWM 5-6 pins in	N/A	0-3.3 V
PWMDAC parameter	PeriodMax	PWMDAC half period in number of clocks	Q0	8000-7FFF

Special Constants and Data types

PWMDAC

The module definition is created as a data type. This makes it convenient to instance an interface to the PWMDAC driver. To create multiple instances of the module simply declare variables of type PWMDAC.

PWMDAC_handle

User defined Data type of pointer to PWMDAC module

PWMDAC_DEFAULTS

Structure symbolic constant to initialize PWMDAC module. This provides the initial values to the terminal variables as well as method pointers.

Methods

PWMDAC_INIT_MACRO (PWMDAC *);
PWMDAC_MACRO (PWMDAC *);

This default definition of the object implements two methods – the initialization and the runtime compute macro for PWMDAC generation. This is implemented by means of a macro pointer, and the initializer sets this to PWMDAC_INIT_MACRO and PWMDAC_MACRO macros for x2833x. The argument to this macro is the address of the PWMDAC object.

Module Usage

Instantiation

The following example instances one PWMDAC object PWMDAC pwmdac1;

Initialization

To Instance pre-initialized objects
PWMDAC pwmdac1 = PWMDAC_DEFAULTS;

Invoking the computation macro

PWMDAC_INIT_MACRO(pwmdac1); PWMDAC_MACRO(pwmdac1);

Example

The following pseudo code provides the information about the module usage.

```
main()
{
    pwmdac1.PeriodMax = 2500;  // PWM frequency = 30 kHz, clock = 150 MHz
    pwmdac1.PwmDacInPointer0= &pwmdac_ch1_Q15;
    pwmdac1.PwmDacInPointer1= &pwmdac_ch2_Q15;
    PWMDAC_INIT_MACRO (pwmdac1);  // Call init macro for pwmdac1
}

void interrupt periodic_interrupt_isr()
{
    pwmdac_ch1_Q15 = (int)_IQtoIQ15(variable1_in_IQ);
    pwmdac_ch2_Q15 = (int)_IQtoIQ15(variable2_in_IQ);
    PWMDAC_MACRO(pwmdac1); // Call update macro for pwmdac1
}
```

Technical Background

This module converts any s/w variables with Q15 representation into the PWM signals in 2833x devices. The EPWM5-6 will be used. Therefore, the external low-pass filters are necessary to view the actual signal waveforms as seen in Figure 1. The (1^{st} -order) RC low-pass filter can be simply used for filter out the high frequency component embedded in the actual low frequency signals. To select R and C values, its time constant can be expressed in term of cut-off frequency (f_c) as follow:

$$\tau = RC = \frac{1}{2\pi f_c} \tag{1}$$

Figure 1: External RC low-lass filter connecting to PWM5 pin in x2833x DSP