Penentuan Rute (Route/Path Planning)

Bagian 1: BFS, DFS, UCS, Greedy Best First Search

Bahan Kuliah IF2211 Strategi Algoritma

Oleh: Nur Ulfa Maulidevi

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 2021

Referensi

- 1. Materi kuliah IF3170 Inteligensi Buatan Teknik Informatika ITB, Course Website:
 - <u>http://kuliah.itb.ac.id</u> → STEI → Teknik Informatika → IF3170
- 2. Stuart J Russell & Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice-Hall International, Inc, 2010, Textbook
 - Site: http://aima.cs.berkeley.edu/ (2nd edition)
- 3. Free online course materials | MIT OpenCourseWare Website: Site: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- 4. Lecture Notes in Informed Heuristic Search, ICS 271 Fall 2008, http://www.ics.uci.edu/~dechter/courses/ics-271/fall-08/lecture-notes/4.InformedHeuristicSearch.ppt

Route Planning

Source: Russell's book

Search

(a part of graph of Romania)

S: set of cities

i.s: A (Arad)

g.s: B (Bucharest)

Goal test: s = B?

Path cost: time ~ distance

Uninformed Search

- BFS (Breadth First Search)
 DFS (Depth First Search)
 DLS (Depth Limited Search)
 IDS (Iterative Deepening Search)
 UCS (Uniform Cost Search)

Breadth-First Search (BFS)

Treat agenda as a queue (FIFO)

Path: $A \rightarrow S \rightarrow F \rightarrow B$, Path-cost = 450

Pohon BFS
A
T
O
O
F
R
L
Goal
B
C
P
M

Simpul-E	Simpul Hidup
Α	Z_A, S_A, T_A
Z_A	S_A, T_A, O_{AZ}
S_A	T _A ,O _{AZ} ,O _{AS} ,F _{AS} ,R _{AS}
T_A	O_{AZ} , O_{AS} , F_{AS} , R_{AS} , L_{AT}
O _{AZ}	O_{AS} , F_{AS} , R_{AS} , L_{AT}
O_{AS}	F_{AS} , R_{AS} , L_{AT}
F _{AS}	R _{AS} ,L _{AT} ,B _{ASF}
R_{AS}	L _{AT} , B _{ASF} , D _{ASR} , C _{ASR} , P _{ASR}
L _{AT}	B_{ASF} , D_{ASR} , C_{ASR} , P_{ASR} , M_{ATL}
B_{ASF}	Solusi ketemu

IF2211/NUM/29Mar2016

Depth-First Search (DFS)

Treat agenda as a stack (LIFO)

Path: $A \rightarrow Z \rightarrow O \rightarrow S \rightarrow F \rightarrow B$

Path-cost = 607

IF2211/NUM/29Mar2016

Simpul-E	Simpul Hidup
Α	Z_A, S_A, T_A
Z_A	O_{AZ} , S_A , T_A
O_{AZ}	S _{AZO} ,S _A ,T _A
S_{AZO}	F_{AZOS} , R_{AZOS} , S_A , T_A
F _{AZOS}	B_{AZOSF} , R_{AZOS} , S_A , T_A
B_{AZOSF}	Solusi ketemu

Iterative Deepening Search (IDS)

Pohon IDS

Depth

Depth=0: A: cutoff

Depth=1: A $\rightarrow Z_A, S_A, T_A \rightarrow Z_A$: cutoff, S_A : cutoff, T_A : cutoff

 $Depth=2: A \rightarrow Z_A, S_A, T_A \rightarrow O_{AZ}, \ S_A, T_A \rightarrow O_{AZ}: \ cutoff \rightarrow F_{AS}, \ R_{AS}, T_A \rightarrow F_{AS}: \ cutoff \rightarrow R_{AS}: \ cutoff \rightarrow L_{AT}: \ cutoff \rightarrow L_{AS}: \ cut$

 \rightarrow L_{AT}: cutoff

Depth=3: A \rightarrow Z_A,S_A,T_A \rightarrow O_{AZ}, S_A,T_A \rightarrow S_{AZO},S_A,T_A \rightarrow S_{AZO}: cutoff \rightarrow F_{AS}, R_{AS},T_A \rightarrow B_{ASF}, R_{AS},T_A \rightarrow B_{ASF}

Stop: B=goal, path: $A \rightarrow S \rightarrow F \rightarrow B$, path-cost 450^{2016}

Uniform Cost Search (UCS)

- BFS & IDS find path with fewest steps (A-S-F-B)
- If steps ≠ cost, this is not relevant (to optimal solution)
- How can we find the shortest path (measured by sum of distances along path)?
- g(n) = path cost from root to n

Path: $A \rightarrow S \rightarrow R \rightarrow P \rightarrow B$ Path-cost = 418 \rightarrow optimal solution

IF2211/NUM/29Mar2016

Simpul-E	Simpul Hidup
А	Z _{A-75} , T _{A-118} , S _{A-140}
Z _{A-75}	T _{A-118} , S _{A-140} , O _{AZ-146}
T _{A-118}	S _{A-140} ,O _{AZ-146} ,L _{AT-229}
S _{A-140}	O _{AZ-146} , R _{AS-220} , L _{AT-229} , F _{AS-239} , O _{AS-291}
O _{AZ-146}	R _{AS-220} , L _{AT-229} , F _{AS-239} , O _{AS-291}
R _{AS-220}	L _{AT-229} , F _{AS-239} , O _{AS-291} , P _{ASR-317} , D _{ASR-340} , C _{ASR-366}
L _{AT-229}	F _{AS-239} , O _{AS-291} , M _{ATL-299} , P _{ASR-317} , D _{ASR-340} , C _{ASR-366}
F _{AS-239}	O _{AS-291} , M _{ATL-299} , P _{ASR-317} , D _{ASR-340} , C _{ASR-366} , B _{ASF-450}
O _{AS-291}	M _{ATL-299} , P _{ASR-317} , D _{ASR-340} , C _{ASR-366} , B _{ASF-450}
M _{ATL-299}	P _{ASR-317} , D _{ASR-340} , D _{ATLM-364} , C _{ASR-366} , B _{ASF-450}
P _{ASR-317}	D _{ASR-340} , D _{ATLM-364} , C _{ASR-366} , B _{ASRP-418} , C _{ASRP-455} , B _{ASF-450}
D _{ASR-340}	D _{ATLM-364} , C _{ASR-366} , B _{ASRP-418} , C _{ASRP-455} , B _{ASF-450}
D _{ATLM-364}	C _{ASR-366} , B _{ASRP-418} , C _{ASRP-455} , B _{ASF-450}
C _{ASR-366}	B _{ASRP-418} , C _{ASRP-455} , B _{ASF-450}
B _{ASRP-418}	Solusi ketemu

Informed Search

- Greedy Best First Search
 A*

Greedy Best-First Search

- Idea: use an evaluation function f(n) for each node
 - $f(n) = h(n) \rightarrow estimates of cost from n to goal$
 - e.g., $h_{SID}(n)$ = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giur gi u	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Straight-line distance to Bucharest Arad 366 Bucharest 0 Craiova 160 Dobreta 242 Eforie 161 Fagaras 176 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj 244 Mehadia 241Neamt 234 Oradea 380 Pitesti 10 Rimnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374

Straight-line distanto Bucharest	ce
Arad	366
Bucharest	-~(
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	
Neamt	241
Oradea	234
Pitesti	380
Rimnicu Vilcea	10
Sibiu	193
Timisoara	253
Urziceni	329
	- 80
Vaslui	199

Path: Arad→ Sibiu → Fagaras → Bucharest,
Path-cost = 450 → not optimal solution

366 160 242 Eforie 161 Fagaras 176 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj Mehadia 241Neamt 234 Oradea 380 Pitesti 10 Rimnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374

Problems with Greedy Best First Search

1. Not complete

Problems with Greedy Best First Search

2. Get stuck with local minima/plateu

3. Irrevocable (not able to be reversed/changed)

4. Can we incorporate heuristics in systematic search?

(Bersambung pada Bagian 2)