Reg. No

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth and Seventh Semester

18MEO122J - ELECTRONICS THERMAL MANAGEMENT

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours			Max. Marks: 100			
	PART - A (20 × 1 = 20 M Answer all Questions		Marks	BL	CO	
1.		increase the thermal resistance decrease the pressure drop	1	1	1	
2.) W/mK) Wm/K	1	1	1	
3.	temperature	evices decrease with decrease in temperature never change with temperature	1	1	1	
4.		stors per microprocessor will double 18 years 1 year	1	1	1	
5.	decreases	decreases the heat transfer and then increases always decreases the heat transfer	1	1	2	
6.	· ,	through a wall of constant thermal) parabolic) exponential	1	1	2	
7.	number	sionless parameters are) Reynold's number and Prandtl number) Reynold's number and Nusselt number	1	1	2	
8.) decreases with temperature) are constant	1	1	2	
9.	packing (A) coefficient of thermal expansion (B)	issimilar materials used in electronic) atmospheric pressure) thermal conductivity	1	1	3	

1	not depend upon	elocities, then the Nusselt number (Nu) does	1	1	3
	(A) Reynolds Number (C) Prandtl Number	(B) Grashof's Number(D) Grashof's number and Reynolds's number			
11	. Natural convection heat transfer coeffic transfer coefficient	ient is the forced convection heat	1	1	3
	(A) lower than (C) equal to	(B) higher than (D) always higher			
12	Convection is defined as(A) Conduction + advection(C) Conduction + Radiation	(B) Advection alone(D) Advection + radiation	1	1	3
13	Emissive power of a black body depends(A) Fourth power of temperature(C) inverse of surface area	on (B) Square of temperature (D) Square of temperature difference	1	1	4
14	Emissive power of grey body is (A) 0.8 (C) 1.8	(B) 1 (D) -0.8	1	1	4
15	Good emitters of radiation are also wavelength bands. This fact is referred to (A) Kirchhoff's law (C) Fourier's Law	good absorbers of radiation at specific	1	1	4
16		(B) Bottzmann's law are to the larger sphere is if both are (B) 0.8 (D) >1	1	1	4
17	The thermocouples measures the temperat (A) Thermoelectric effect (C) Boltzmann's law	• •	1	1	5
18	The effective thermal conductivity of heat (A) Higher than copper (C) same as copper		1	1	5
19	The heat pipe works in the principle of (A) evaporation and condensation (C) convection and radiation	(B) Conduction and radiation (D) condensation and radiation	1	1	5
. 4	Liquid immersion cooling has (A) higher heat transfer coefficient than air cooling (C) same heat transfer coefficient as air	(B) lower heat transfer coefficient than air cooling(D) extremely higher heat transfer	1 =	1	5
	cooling $PART - B (5 \times 4 =$	coefficient than two cooling	Mark	s BL	со
	Answer any 5 Q	,			
	State Fourier's law of heat conduction and		4	2	1
	22. What is coefficient of thermal expansion, and how it affects the electron packaging?		4	3	1
	Discuss how increasing the length of the fi	•	4	3	2
	What are initial conditions and boundary c	· ·	4	2	2
25. Page 2 of 3	State the importance of Nusselt Number at	nd Reynolds number.	4	2 (DEF 7.1	3

04DF5,7-18MEO122J

26.	What is emissivity and emissive power?	4	3	4
	Explain how the thermal imaging works?	4	3	5
	PART - C (5 × 12 = 60 Marks) Answer all Questions	Mark	s BL	CO
28.	(a) Draw and explain in detail about the electrical equivalent of thermal resistance network for the below thermal system.	12	2	1
	TI T			
	• Tc • TI			
	(OR)			
	(b) Write the different types of thermal interface materials and explain how it helps in reducing the junction temperature?			
29.	(a) What is a heat sink, and explain how the heat sink helps in reducing the junction temperature of electronic components? (OR)	12	2	2
	(b) Explain how the heat sink is selected for electronic cooling application based on material, efficiency and effectiveness of fins.			
30.	(a) Discuss the advantages and disadvantages of natural and forced convection, and which one can be better for electronic cooling applications. (OR)	12	2	3
	(b) Explain the phenomenon of natural convection and how it can be applied for electronic cooling applications?			
31.	(a) What is radiation view factor and explain its influence in electronic cooling? (OR)	12	3	4
	(b) Explain the influence of radiation combined with natural convection and forced convection in cooling of electronic devices?			
32.	electronic cooling applications.	12	2	5
	(OR) (b) With neat sketch explain the working of heat pipes used in electronic cooling.			

04DF5,7-18MEO122J