Chapter 10

Analog details

Some of the material is out of the textbook. Additional resources include Appendix B of Brown and Vranesic book, "Fundamentals of digital logic."

Objectives 10.1

- 1. Describe how tri-state and open-collector outputs are different from totem-pole outputs
- 2. Compute noise margin of one device driving the same time

(a) General structure of an FPGA

array: (a) symbol, (b) function

Definition 10.1 (Random Access Memory (RAM)). Structure of a RAM is as follows: How can we arrange singl bit memory cells into an addressable memory? How many location combe encoded in a n-bit address bus? Data (a) 2 Address 210 = 1024 = 103 depth 1024-word × 32-bit Address - 10 Array (b) Data - Bistuble Figure 5.39 4 × 3 memory Figure 5.40 32 Kb array: depth =

 $2^{10} = 1024$ words, width = 32 bits

A $2^m \times n$ read-only memory (ROM) block. Figure B.72

Example 10.1. <u>Draw a Multiplexer</u> using sum of products form. Already (over ed

CHAPTER 10. ANALOG DETAILS

Logic levels and Noise Margins 10.3

Bookean 1

Boolen 1)

Definition 10.3 (Supply Voltage $(V_{DD}/V_{CC}/V_{CC})$). The highest DC voltage that drives a digital circuit. As chips have progressed to smaller ransistors, V_{DD} has dropped from 5V to 1.2V or even Dham (alledon lower to save power.

Definition 10.4 (Ground Voltage (V_{GND})). The lowest DC voltage that drives a digital circuit, typically 0V. Jes = Source

Definition 10.5 (Input high (V_{IH}) and Input Low (V_{IL}) of a gate). V_{IH} is the voltage level, such that an input voltage to a gate between V_{DD} and V_{IH} is considered HIGH. Similarly, input voltage to a gate between V_{IL} and V_{GND} is considered LOW.

Definition 10.6 (Output high (V_{OH}) and Output low (V_{OL}) of gate). V_{OH} is the voltage level, such that an output voltage to a gate between V_{DD} and V_{OH} is considered HIGH. Similarly, output voltage to a gate between V_{OL} and V_{GND} is considered LOW.

Definition 10.7 (Positive logic and Negative logic). What we have considered so far is Positive logic where HIGH voltage is equated to Boolean logic TRUE or 1 and LOW is considered FALSE or 0. In negative logic these are reversed. Same physical circuit can represent different logical circuits in positive logic and negative logic.

Definition 10.8 (Noise margins $(NM_L \text{ and } NM_H)$ of a channel). The maximum amount of noise that can be added (or substracted) to a channel without exceeding the logic level specifications of a gate. $NM_L = V_{IL} - V_{OL}$

$$NM_H = V_{OH} - V_{IH}$$

Example 10.2.

If $V_{DD} = 5V$, $V_{IL} = 1.35V$, $V_{IH} = 3.15V$, $V_{OL} = 0.33V$ and $V_{OH} = 3.84V$ for both the "inverters", then what are the low and high noise margins? Can the circuit tolerate 1V of noise at the channel?

 $NM_{L} = 1.02 = 1.35 - 0.33 = V_{1L} - V_{6L}$ NNH= 0.69 = 3.84-3.15= VOH-VTH

10.4 Semiconductors and Doping

10.5 MOSFET: Metal Oxide Field Effect Transistors

Not in syllabus but good to know

10.6 DC Transfer characteristic

Example 10.3. Draw a NOT gate using nMOS transistors.

Example 10.4. Draw a NOT gate using pMOS transistors.

pull down

Remark 10.1. nMOS transistors pass 0's well (output between 0 and $V_{DD} - V_t$). pMOS transistors pass 1's well (output between V_t and V_{DD}).

Example 10.5. Draw CMOS NOT Gate. complimentary MOS

rn-MOS behaves well when gate voltage is opposite to the substrate voltage (V_GND).

p-MOS behaves well when gate voltage is opposite to the substrate voltage (V DD/supply)

Definition 10.9 (Negative logic).

1) Design bull down usmy n-MIS switches

1 = A.B = A+B

Design pull up side as De Morgan er negative logic. inverse of pull down f

Example 10.7. Analyze the above circuit under negative logic.

VA	V.B	\	4
L	L		1+
L	H	١	17
1+	レ	١	11
11	11	ď	L

A	B	f
1	1	٥
١	O	0
٥	(0
D	0	ı

NORgale f = A+B

Example 10.8. Draw a three input NAND using CMOS.

two input XOK gate using (MOS Example 10.9. Draw a three input NOR us

Parallel

Example 10.10. Draw a two input AND gate using CMOS.

- Design pMOS pull up
- 1. Use AND gate == Switches in series and OR gate == Switches in parallel to design the nMOS pull-down network and the pMOS pull-up network
- 2. When nMOS network is ON, then the output is low. So you need to design nMOS network for the inverted function.
- 3. You can take DeMorgan's inverse of nMOS network to create the pMOS network.

∠>Voo April 18, 2025 pmos Design a complex (Mos gate Jos: \bigcirc 4 VOD PM05 AB+AC+AB +B). (A+C). (Ā+B) ~ MOS down 9= AB+ ABC $S = (\overline{A} + B) \cdot (A + \overline{B} + \overline{C})$ We cannot expect the inverted inputs to come for free on a low-level CMOS design. So we count the number of transistors needed for inverting inputs. (6 Joh in versions /12 fordisign)t rungistons

10.6.1 Gates with floating output

Definition 10.10 (Transmission gate). Draw a schematic of transmission gate and truth table for transmission gate. What is its commonly used symbol?

Definition 10.11 (Tristate buffer). What is tristate buffer? Draw it's symbol and truth table? Where is it used?

Example 10.11. Draw a Multiplexer using transmission gates.

Example 10.12. Draw a Multiplexer using tristate buffers.

Do It your set [

open collector / Tristate

Definition 10.12 (Totem-pole). Draw a Push-pull (or Totem-pole) output NAND gate using CMOS. Can you connect this gate to a shared bus?

Definition 10.13 (Tristate). Draw a Tristate output NAND gate using CMOS with an output enable (OE) input. Can you connect this gate to a shared bus? at least some output must be found

Definition 10.14 (Open-collector). Draw a open-collector output NAND gate. Can you connect this gate to a shared bus?

wre A = 2;

10.7 Verilog truth tables

Bibliography

- [1] Sarah L Harris and David Harris. *Digital design and computer architecture*. Morgan Kaufmann, 2022.
- [2] Randy Katz and Gaetano Barriello. Contemporary Logic Design. Prentice Hall, 2004.
- [3] Brown Stephen and Vranesic Zvonko. Fundamentals of digital Logic with Verilog design. McGraw Hill, 2022.