

Республиканская физическая олимпиада (III этап) 2009 год.

Экспериментальный тур.

Задание 1. «Какая кривая куда загибается?»

Приборы и оборудование: источник питания 4,5 B, амперметр, вольтметр, реостат 6 Ом, лампочка на подставке (3,5 B), ключ, графитовый стержень в держателе, соединительные провода.

Предупреждение! Если в качестве источника Вы используете батарейку, то помните, что она разряжается, особенно при больших силах тока. Поэтому подключайте цепь к источнику только во время проведения измерений, для этого вам выдан электрический ключ!

Вам необходимо провести измерения в максимально возможном диапазоне напряжений. Не забудьте нарисовать электрические схемы, использованные вами при проведении измерений.

- **1.1** Исследуйте зависимость силы тока через графитовый стержень от напряжения на нем. Постройте вольтамперную характеристику графита (зависимость силы тока через графит от напряжения на нем).
- 1.2 Исследуйте зависимость силы тока через лампочку от напряжения на нем. Постройте вольтамперную характеристику лампочки.
- **1.3** Объясните качественно вид полученных в пп. 1.1 1.2 зависимостей. Достаточно двух предложений.
- **1.4** Используя результаты, полученные в п. 1.1 и 1.2 постройте график зависимости силы тока от напряжения для параллельно соединенных графитового стержня и лампочки. Исследуйте экспериментально и постройте экспериментальный график вольтамперной характеристики этой пары. Сравните результаты теоретических расчетов и ваших измерений.

1.5 Используя результаты, полученные в п. 1.1 и 1.2 постройте график зависимости силы тока от напряжения для последовательно соединенных графитового стержня и лампочки. Исследуйте экспериментально и постройте экспериментальный график вольтамперной

характеристики этой пары. Сравните результаты теоретических расчетов и ваших измерений.

Задание 2. «Тянуть и плющить!»

Вам необходимо изучить деформацию пластикового кольца, вырезанного обычной литровой бутылки. В качестве нагрузки используется пластиковый стаканчик, который постепенно добавляется вода. Единицей измерения массы в данном эксперименте служит столовая ложка - то есть масса воды измеряется в «ложках».

Закрепите кольцо в лапке штатива, как показано на рисунке. Обвяжите его ниткой. К нижнему краю нитки привяжите пластиковый стаканчик. Длина нити должна быть примерно такой, как показано на рисунке. Вам необходимо исследовать деформацию кольца при увеличении массы воды в стакане. В качестве параметров деформации используются:

a,b - длины большой и малой осей деформированного кольца;

h - опускание стаканчика, относительно начального положения пустого стакана.

Вам предстоит измерять малые изменения, как размеров кольца a,b, так и опускания стаканчика h, поэтому проводите измерения очень тщательно.

Для точного измерения размеров кольца используйте миллиметровую бумагу, которую прикрепите к картонке. Саму картонку закрепляйте в лапке штатива вместе с кольцом (сделайте для этого на картонке небольшой выступ). Дополнительно закрепите картонку с помощью нитки, привязанной к штативу. К картонке прикрепите линейку для измерения опускания стаканчика.

Напоминаем, что измерения можно проводить с точностью до половины цены деления, то есть в данном случае до 0,5 мм.

Часть 1. Крепление сверху.

Закрепите кольцо с картонкой в лапке штатива, как показано на рисунке (крепление сверху). Обозначим вертикальную (более длинную) ось - a, горизонтальную - b.

1.1 Измерьте зависимости параметров a, b, h от числа налитых в стакан ложек воды.

Не забудьте измерить эти же величины при пустом стаканчике - a_0, b_0, h_0 .

1.2 Постройте график зависимости опускания стаканчика $(h-h_0)$ от числа налитых ложек воды. Можно ли считать, что эта величина прямо пропорциональна числу налитых в стакан ложек воды?

- 1.3 Можно ли считать, что сумма длин осей a+b остается приблизительно постоянной при увеличении нагрузки?
- 1.4 В качестве степени растяжения кольца примем величину равную разности длин осей d=a-b. Постройте график зависимости изменения растяжения кольца $(d-d_0)=(a-b)-(a_0-b_0)$ от числа налитых в стаканчик ложек воды.
- 1.5 Придумайте простую функцию, которая примерно описывает график, построенный Вами в п.1.4.

Часть 2. Упор снизу.

Закрепите кольцо с картонкой в лапке штатива, как показано на рисунке (крепление снизу). Обозначим горизонтальную (более длинную) ось - a, вертикальную - b.

Проведите все измерения и обработку их результатов, как в

части 2:

2.1 Измерьте зависимости параметров a, b, h от числа налитых в стакан ложек воды.

Не забудьте измерить эти же величины при пустом стаканчике - a_0, b_0, h_0 .

- 2.2 Постройте график зависимости опускания стаканчика $(h-h_0)$ от числа налитых ложек воды. Можно ли считать, что эта величина прямо пропорциональна числу налитых в стакан ложек воды?
- 2.3 Можно ли считать, что сумма длин осей a+b остается приблизительно постоянной при увеличении нагрузки?
- 2.4 В качестве степени сжатия кольца примем величину равную разности длин осей d=a-b. Постройте график зависимости изменения сжатия кольца $(d-d_0)=(a-b)-(a_0-b_0)$ от числа налитых в стаканчик ложек воды.
- 2.5 Придумайте простую функцию, которая примерно описывает график, построенный Вами в п.1.4.

Наконец, последнее задание:

3. Сравните полученные вами зависимости в п. 1.5 и в п.2.5. В каком случае деформация кольца и опускание стаканчика оказывается больше?

Попытайтесь объяснить полученное различие.

<u>Задание 1</u>. «Мертвая петля»

Приборы и оборудование: штатив с лапкой; линейка деревянная 40 см; набор грузов 6х100 г; линейка для измерений; кольцо резиновое; нитки.

Часть1. Исследование деформации резинки.

Деформация резины зависит не только от приложенной силы, но и от ее предшествующей деформации (явление гистерезиса). Поэтому при проведении измерений нагрузку изменяйте в нужной последовательности. После снятия нагрузки дайте резинке «отдохнуть» около минуты в свободном состоянии.

- **1.1** Подвесьте резиновое колечко на стержень лапки. Измерьте зависимость длины резинки от приложенной к нему силы. Измерения проведите в следующей последовательности:
- 1. «нагрузка»- сначала последовательно увеличивайте нагрузку: подвесили один груз измерили длину, добавили второй измерили длину и т.д.;
- 2. максимальная деформация: после того как вы подвесили 6 грузов (и измерили длину), растяните резинку еще немного (осторожно не порвите!) и медленно отпустите;
- 3. «разгрузка» измерьте длину резинки при 6 подвешенных грузах, снимите один измерьте длину и т.д.
- 1.2 Постройте график зависимости длины (не удлинения!) резинки от приложенной силы при нагрузке и при разгрузке.

Можно считать, что сила тяжести одного груза равна 1 Н.

Соберите установку, показанную на фото. Резинка должна крепиться к стержню штатива на высоте, равной высоте линейки. Нижний край линейки упирается в стержень штатива. Вам необходимо провести исследования зависимости отклонения линейки от массы подвешенного груза.

Часть 2 «Теоретическая»

Для описания эксперимента будем использовать следующие обозначения (см. рис.):

- длина линейки OA и высоты точки крепления OB L:
- длина резинки AB l;
- расстояние от нижнего края линейки до резинки OD d;
- горизонтальное отклонение конца линейки АС х.

В эксперименте вам необходимо измерять и использовать в качестве меры отклонения именно величину x - отклонение, измеренное по горизонтали.

- 2.1 Запишите условие равновесия линейки, прикрепленной резинкой к штативу и с подвешенными грузами.
- 2.2 Покажите, что выполняются следующие геометрические соотношения

$$x = l\sqrt{1 - \left(\frac{l}{2L}\right)^2};$$

$$d = \frac{xL}{l} = L\sqrt{1 - \left(\frac{l}{2L}\right)^2}.$$
(1)

$$d = \frac{xL}{l} = L\sqrt{1 - \left(\frac{l}{2L}\right)^2} \ . \tag{2}$$

- 2.3 Используя экспериментальные данные, полученные в первой части, и пренебрегая массой линейки, рассчитайте зависимость момента силы упругости резинки в описанной экспериментальной установке, от величины горизонтального отклонения x при нагрузке и разгрузке установки. Постройте график этой зависимости. На этом же листе постройте графики зависимости момента силы тяжести подвешенных грузов (от 1 до 6) от x.
- 2.4 С помощью построенных графиков рассчитайте значения горизонтального отклонения линейки при различном числе подвешенных грузов (при разгрузке и нагрузке). Постройте график полученной зависимости.

Часть 3. «Сравнительная»

3.1 Проведите измерения горизонтального отклонения линейки x при различном числе подвешенных грузов при нагрузке и при разгрузке.

Не забудьте после подвешивания 6 грузов дополнительно деформировать резинку, как и в п.1.1

3.2 Дополните график, построенный в п. 2.4, графиком экспериментальной зависимости. Сравните эти графики, объясните причины возможных расхождений.

Задание 2. «Как устоять на иголке!»

В данной работе вам необходимо экспериментально исследовать два типа колебаний маятника с двумя спицами. Не увлекайтесь теоретическими расчетами – они сложны и громоздки (и не оцениваются!). От Вас требуются тщательные и аккуратные измерения и разумные качественные объяснения полученных результатов.

Часть 1. Изготовление маятника.

Изготовьте маятник, как показано на фотографиях. Проткните ластик спицами симметрично, так, чтобы спицы располагались под углом около горизонту (примерно прямым углом друг к другу). В качестве упора используйте

две пары булавок – одна в плоскости спиц; вторая в перпендикулярной плоскости.

Вдвигая и выдвигая эти пары, Вы можете изучать продольные (в плоскости спиц,

вокруг оси OX; будем обозначать период этих колебаний T_1) и поперечные (перпендикулярно плоскости спиц, вокруг оси OY, их период - T_2) колебания. Прикрепите к столу с помощью скотча деревянную линейку, так чтобы ее конец примерно на 7-10 см выступал над краем стола. Маятник поставьте на конец линейки. Убедитесь, что маятник может совершать как продольные, так и поперечные колебания (для этого нужно выдвигать нужные пары булавок — упоров).

Расстояние от концов булавок упоров до ластика примерно 1 см.

В качестве изменяемого (и легко измеряемого) параметра маятника используется длина свободной части спицы z - расстояние от ластика до конца спицы.

1.1 Измерьте длину спиц и угол между ними, приведите полученные значения в вашей тетради.

Часть 2. Изучение колебаний.

2.1 Измерьте зависимости периодов продольных T_1 и поперечных колебаний T_2 от длины свободной части спицы z . Постройте графики полученных зависимостей.

Оцените погрешность измерения периода. Достаточно для одного типа колебаний и одного значения z, для остальных значение погрешности будет приблизительно таким же.

При проведении измерений изменяйте длины нижних частей спиц (параметр z). Для каждой установки спиц измерьте периоды продольных и поперечных колебаний (вдвигать и выдвигать булавки легче, чем спицы).

Помните – оценивается диапазон изменения параметров!

2.2 При $z \approx 0.75L \div 0.85L$ функция зависимости периода колебаний от параметра z имеет слабый минимум. Проведите дополнительные экспериментальные исследования в этой области. Определите значение z^* , при котором период поперечных колебаний минимален и значение этого периода $T_{2 \min}$.

Постарайтесь получить значения этих величин с меньшей погрешностью. Оценивать сами погрешности в данном пункте не следует!

- **2.3** Постройте график зависимости отношения периодов колебаний $\frac{T_2}{T_1}$ от длины свободной части спицы z . Качественно объясните полученную зависимость.
- **2.4** При больших z отношение $\frac{T_2}{T_1}$ остается приблизительно постоянным. Укажите диапазон изменения z, в пределах которого это отношение можно считать постоянным. Определите значение этого отношения и его погрешность.