Matemática para Computação

Prof. Marco Antônio M. Silva Ramos e Prof. José Henrique Carneiro de Araujo Introdução

Cálculo ou Matemática das Variações

Descoberta do Cálculo (séc. XVII):

- Isaac Newton (1642-1727), Inglaterra;
- Gottfried W. Leibniz (1646-1716), Alemanha.

Motivações:

- Reta tangente a uma curva;
- Área de uma região genérica;
- Máximos e mínimos;
- Deslocamento, velocidade e aceleração.

Aplicações modernas:

- Impressões digitais;
- Música;
- Ruídos em dados;
- Fluxo de ar em torno de automóveis ou aviões;
- Previsão do tempo.

Processos infinitos

Alguns processos não podem ser terminados após um número finito de passos. Por exemplo:

$$\frac{1}{8} = 0.125$$
 e $\sqrt{2} = 1.414213562373.....$

O primeiro tem representação decimal finita e o segundo infinita. Pode-se melhorar quanto se deseja a aproximação para $\sqrt{2}$. Usando o seguinte Algoritmo:

$$y_0 = 1$$

$$y_{n+1} = \frac{1}{2} \left(y_n + \frac{2}{y_n} \right)$$

Que gera uma seqüência de aproximações para $\sqrt{2}$, $y_0, y_1, y_2, y_3,, y_n, y_n + 1,$ Entretanto o valor exato só seria obtido após a geração de infinitas aproximações.

Seqüência de aproximações para $\sqrt{2}$

Sequencia de aproximações para 17.2					
n	$y_0 = 1, \qquad y_{n+1} = \frac{1}{2} \left(y_n + \frac{2}{y_n} \right)$	Aproximação Decimal			
	yo = 1 (Valor inicial)	1,00000000000			
0	$y_1 = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2}$	1,50000000000			
1	$y_2 = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{3/2} \right) = \frac{17}{12}$	1,416666666667			
2	$y_3 = \frac{1}{2} \left(\frac{17}{12} + \frac{2}{17/12} \right) = \frac{577}{408}$	1,41421568627			
3	$y_4 = \frac{1}{2} \left(\frac{577}{408} + \frac{2}{577/408} \right) = \frac{665.857}{470.832}$	1,41421356237			
4	$y_5 = \frac{1}{2} \left(\frac{665.857}{470.832} + \frac{2}{665.857/470.832} \right) = \frac{886.731.088.897}{627.013.566.048}$	1,41421356237			

<u>cederj</u>

Funções de uma Variável

<u>cederj</u>

Em quase todo tipo de atividade humana, encontramos dois tipos de *variáveis*: aquelas as quais podemos controlar diretamente e as que não podemos.

Felizmente, as variáveis que não podemos controlar diretamente, respondem frequentemente de alguma forma às que podemos. Por exemplo, a aceleração de um carro responde à forma pela qual controlamos o fluxo de gasolina para o motor, a taxa de inflação de uma economia responde à forma pela qual o governo controla a oferta de dinheiro e o nível de um antibiótico na corrente sanguínea de uma pessoa responde à dosagem e à escolha do momento oportuno de uma receita de um médico.

Ao entender quantitativamente como as variáveis as quais não podemos controlar diretamente respondem àquelas que podemos, é possível esperarmos por predições sobre nosso ambiente e ganhar algum domínio sobre ele.

Um dos temas importantes em Cálculo é a análise das relações entre as quantidades físicas ou matemáticas. Tais relações podem ser descritas em termos de gráficos, de fórmulas, de dados numéricos ou de palavras.

Nesta aula, vamos desenvolver o conceito de *função de uma variável*, que é a idéia básica subjacente a quase todas relações matemáticas e físicas, não importando como elas são expressas. Definição 1.1: Se uma variável y depende de uma variável x, de forma que cada valor de x determina exatamente um valor de y, então dizemos que y é uma função de x.

Exemplo 1.1

Denotando-se por x o raio de um círculo e por y a área desde círculo, então y depende de x de um modo bem definido, ou seja

$$y = \pi x^2$$

Por conseguinte, diz-se que a área de um círculo é função de seu raio.■

Notação e Terminologia Utilizadas no Contexto das Funções

- 1) As letras (minúsculas e maiúsculas) do alfabeto (latino e, também, do grego) são utilizadas para simbolizar as funções. As mais usadas, do alfabeto latino, são f, g, h (ou F, G, H).
- 2) Se f é uma função, representa-se o valor de y que corresponde a x como f(x) (lê-se "f de x"), ou seja y = f(x).
- 3) A equação y = f(x) expressa y como função de x. A variável x é chamada *independente* (ou *argumento*) de f, e a variável y é chamada de variável *dependente* de f.

(Esta terminologia tem o propósito de sugerir que x está livre para variar, mais uma vez especificado o valor de x, um correspondente valor de y está determinado.)

4) Denomína-se função real de uma variável real ou função de uma variável real a valores reals as funções com um argumento nas quais as variáveis dependente e independente são números reals.

5) Se y = f(x), então o conjunto de todos possíveis valores da variável x é chamado domínio de f, e o conjunto de todos possíveis valores de y (os quais resultam da variação de x no domínio de f) é chamado de *imagem* de f.

6) Se f é uma função real de uma variável real, então o *gráfico* de f no plano xy é definido como sendo o conjunto de pontos (x,y) do plano que verificam a equação y = f(x).

Exemplo 1.2 – Domínio, imagem e gráfico de função

Considere a função real de uma variável real:

restrição

$$f(x) := \sqrt{x-1}$$
, com $x \le 2$

Esboce o gráfico de f e determine seu domínio e imagem.

Solução:

domínio de f

$$\forall x \in D(f) \subset \mathbb{R}, \quad y = f(x) = \sqrt{x-1} \in \mathbb{R} \quad \Rightarrow \quad x-1 \ge 0 \quad \Rightarrow \quad x \ge 1.$$

Logo:
$$D(f) = \{x \in \mathbb{R}, 1 \le x \le 2\}.$$

lei da

função g

Observação:

As funções reais de uma variável real

função f

são funções diferentes (mesmo tendo a mesma *lei* ou fórmula) pois os domínios são diferentes:

$$D(f) = \{x \in \mathbb{R}, \quad 1 \le x \le 2\} \quad \mathbf{e} \quad D(g) = \{x \in \mathbb{R}, \quad 1 \le x\}$$
domínio natural de g

Para definirmos uma função além de especificarmos a lei (a qual relaciona a variável dependente com a independente) é necessário indicar, também, qual é o domínio (ou, alternativamente, a imagem).

<u>cederj</u>

Exemplo 1.3 – Função definida por partes

A lei de f muda nos pontos x = -1 e x = 1(pontos denominados, por alguns autores, *pontos de*^{-2,00}

mudança).

1,5

Exemplo 1.4 – O efeito de operações algébricas sobre o domínio

Considere uma função real de uma variável real f cuja lei é:

$$f(x) = \frac{x^2 - 4}{x - 2}$$

Logo, o domínio natural de fé: $D(f) = \{x \in \mathbb{R}, x \neq 2\}$

Entretanto, fatorando o numerador e cancelando o fator comum ao numerador e ao denominador, obtemos a expressão

$$f(x) = \frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{x - 2} = x + 2$$

que está definida em x=2, ou seja, a simplificação algébrica alterou o domínio natural da função !!

<u>cederj</u>

Álgebra de Funções

Definição 1.2: Sejam $f \in g$ duas funções reais de um variável real cujos domínios tem uma interseção não-vazia. As funções reais de uma variável real simbolizadas por f+g, f-g, fg e fg são definidas pelas equações:

Em cada caso, o domínio da função definida consiste de todos os valores de x da interseção dos domínios de f e g, exceto que para a função f/g os valores o para os quais g(x)=0 serão excluídos.

Exemplo 1.5 – Álgebra de funções

Considere as funções: $f(x) = x^2 + 3$ e g(x) = 2x - 1

Determine a lei e o domínio das funções: f+g, f-g, fg e f/g.

Solução:

$$D(f) = D(g) = \mathbb{R}$$

1)
$$(f+g)(x) := f(x)+g(x) = (x^2+3)+(2x-1)=x^2+2x+2$$
 e $D(f+g) = \mathbb{R}$

2)
$$(f-g)(x) := f(x) - g(x) = (x^2 + 3) - (2x - 1) = x^2 - 2x + 4$$
 e $D(f-g) = \mathbb{R}$

3)
$$(fg)(x) := f(x)g(x) = (x^2 + 3)(2x - 1) = 2x^3 - x^2 + 6x - 3$$
 e $D(fg) = \mathbb{R}$

4)
$$(f/g)(x) := f(x)/g(x) = \frac{x^2+3}{2x-1}$$
 e $D(f/g) = \mathbb{R} - \left\{ \frac{1}{2} \right\}$

Composição de Funções

Definição 1.3: Sejam $f \in g$ duas funções reais de uma variável real. Se o conjunto constituído pelos números que pertencem a interseção da imagem de g com o domínio de f não é vazio, então a composição de f e g, simbolizada por $f \circ g$, é a função definida pela equação

$$(f \circ g)(x) := f[g(x)]$$

O domínio natural desta função é:

$$D(f \circ g) = \{x \in D(g) \text{ tal que } g(x) \in D(f)\}$$

imagem de g

domínio de f

 \longrightarrow imagem de f

cederj

Exemplo 1.6 – Composição de funções

Considere as funções: f(x) = 3x - 1 e $g(x) = x^3$.

Calcule a lei das funções $f \circ g$ e $g \circ f$.

Solução:

1)
$$(f \circ g)(x) = f[g(x)] = 3(x^3) - 1 = 3x^3 - 1$$

2)
$$(g \circ f)(x) := g[f(x)] = (3x-1)^3 = 27x^3 - 27x^2 + 9x - 1$$

Obs:

Neste caso
$$D(f \circ g) = D(g \circ f) = \mathbb{R}$$
.

Funções Inversas

Definição 1.4: Sejam f e g duas funções reais de uma variável real. Se

- i) a imagem de g está contida no domínio de f,
- ii) para todo número real x no domínio de g, $(f \circ g)(x) = x$,
- iii) a imagem de f está contida no domínio de g,
- iv) para todo número real x no domínio de f, $(g \circ f)(x) = x$,

então $f \in \mathcal{G}$ são denominadas *inversas*. Neste caso, $f \in \text{dita invertivel}$ e $\mathcal{G} \in \text{denominada sua inversa}$ (analogamente, $\mathcal{G} \in \text{dita invertivel}$ e sua inversa $\mathcal{G} \in \mathcal{G}$).

Obs:

Se f é uma função invertível sua inversa é simbolizada por f^{-1} .

Exemplo 1.7 – Funções inversas

Considere as funções: f(x) = 3x e $g(x) = \frac{x}{3}$.

Mostre que f e g são inversas.

Solução:

Verifique graficamente que $\operatorname{Im}(g) = D(f) = \mathbb{R}$ e $\operatorname{Im}(f) = D(g) = \mathbb{R}$.

Logo as condições i e iii da Definição 1.4 são satisfeitas. Por outro lado,

$$(f \circ g)(x) := f[g(x)] = 3\left(\frac{x}{3}\right) = x \quad \mathbf{e}$$

$$(g \circ f)(x) := g[f(x)] = \frac{(3x)}{3} = x$$

cederi

Método algébrico para determinar f⁻¹:

Passo 1: Escrever a equação y = f(x) que define f.

Passo 2: Resolver a equação do Passo 1 para x em função de y para obter $x = f^{-1}(y)$. Esta equação define f^{-1} .

Passo 3: Troque x por y na equação obtida no passo 2. (opcional)

Exemplo 1.8 – Determinação de f^{-1}

Determine, pelo método algébrico, a inversa da função f(x) = 2x + 1.

Solução:

Passo 1
$$y = 2x + 1 \Rightarrow 2x = y - 1 \Rightarrow x = \frac{y - 1}{2}$$

Passo 3:
$$y = f^{-1}(x) = \frac{x-1}{2}$$

Tipos de Funções Reais de uma Variável Real

1) Função polinomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

na qual n é um número natural e os coeficientes $a_0, a_1, ..., a_n$ são números reais constantes. Se a_n é diferente de zero diz-se que a função polinomial é de *grau* n.

Obs: Funções polinomiais particulares

$$f(x) = a_0 \rightarrow \text{função constante},$$

 $f(x) = a_0 + a_1 x \rightarrow \text{função afim},$
 $f(x) = x \rightarrow \text{função identidade}.$

2) Função racional

$$f(x) = \frac{p(x)}{q(x)}$$

na qual p e q são funções polinomiais e q não é uma função constante.

3) Função algébrica elementar

São funções cujas leis envolvem, apenas, um número finito das seguintes operações: adição, subtração, multiplicação, divisão e radiciação com índice inteiro positivo.

$$f(x) = \sqrt{x^3}, \quad g(x) = \frac{x}{\sqrt[3]{\sqrt{x^2 + 5}}}$$

3) Função transcendente

São aquelas funções que não são algébricas. Por exemplo as funções trigonométricas (sen, cos, tan, sec, csc, cot), as funções exponenciais, logarítmicas e hiperbólicas.

cederj

Limites

- Limites
- · Propriedades de limites
- · Limites Laterais
- · Limites infinitos
- · Limites no infinito

Motivações:

- · Reta tangente a uma curva;
- · Área de uma região genérica;
- · Deslocamento, velocidade e aceleração.

cederi

2/7

2/5

Definição 2.2: Seja W um conjunto de números reais. Um número real a é denominado ponto de acumulação de W quando todo intervalo aberto $(a - \delta, a + \delta)$, de centro a, contém algum ponto x de W diferente

A condição de a ser um ponto de acumulação de W pode ser expressa do seguinte modo:

para cada número real $\delta > 0$, dado arbitrariamente. existe um número x de W tal que $0 < d(x, a) < \delta$.

Exemplo 2.2

Seja
$$W = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}$.

- todos os números de X e o número 2 são pontos de acumulação de W,
- os números 3 e 4 não são pontos de acumulação de W. ■

Limites

Definição 2.1: Considere um conjunto W. Uma métrica em W é uma função, que associa a cada par ordenado (u,v) de elementos de W um número real d(u,v), chamado **distância** de u a v, que verifica as seguintes condições: para quaisquer elementos u, v e w de W

- 1) d(u,u) = 0,
- 2) se $u \neq v$ então d(u,v) > 0,
- 3) d(u,v) = d(v,u),
- 4) $d(u, w) \le d(u, v) + d(v, w)$.

Exemplo 2.1

Se $W = \mathbb{R}$, então d(x, y) := |x - y|.

Distância do número x ao número v.

cederi

2/8

Definição 2.3: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que o limite de f(x) quando x tende a $a \in L$, e escrevemos

$$\lim_{x \to a} f(x) = L,$$

se para cada número real $\varepsilon > 0$, dado arbitrariamente, existir um número $\delta > 0$ de modo que se tenha:

 $d(f(x), L) < \varepsilon$ sempre que $x \in D(f)$ e $0 < d(x, a) < \delta$.

Recordamos que d(f(x), L) = |f(x) - L| e d(x, a) = |x - a|e, também, que a condição $0 < d(x,a) < \delta$ significa que x se encontra no intervalo $(a - \delta, a + \delta)$, mas é diferente de a. Analogamente, a condição $d(f(x), L) < \varepsilon$ significa que f(x) se encontra no intervalo aberto $(L-\varepsilon, L+\varepsilon)$.

ceder

Geometricamente, $\lim_{x\to a} f(x) = L$ significa que, para $x\neq a$ podemos garantir que f(x) se encontra em qualquer pequeno intervalo aberto em torno de L, desde que x se encontre em um intervalo aberto escolhido em torno de a.

cederj

2/11

Ressalta-se que se $\lim_{x\to a} f(x) = L$ então, exatamente um dos três casos abaixo é válido:

Caso 1 - f está definida em a e f(a) = L.

Caso 2-f não está definida em a.

Caso 3 – f está definida em a e $f(a) \neq L$.

cederi

Exemplo 2.3

Usando a Definição 2.3 vamos provar que $\lim_{x\to -2} (3x+7) = 1$.

Solução:

Neste exemplo f(x) = 3x+7, L = 1, a = -2 e devemos mostrar que:

existe

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ tal que } x \in D(f) \text{ e } 0 < d(x, -2) < \delta \Rightarrow d(f(x), 1) < \varepsilon.$ qualquer que seja

Para isto notamos, em primeiro lugar, que:

$$d(f(x),1) = |(3x+7)-1| = |3x+6| = 3|x+2|.$$

Seja $\delta = \frac{\varepsilon}{3}$, na qual ε é um número real positivo arbitrário, e seja x um número arbitrário do domínio de $f(D(f) = \mathbb{R})$ tal que $x \neq -2$ e $d(x,-2) < \delta$. Logo:

$$0 < d(x, -2) = |x + 2| < \delta = \frac{\varepsilon}{3} \Rightarrow \varepsilon > 3|x + 2| = d(f(x), 1).$$

cederj

Caso 2-f não está definida em a. 2/12

Exemplo 2.4

Nestes três casos

$$\lim_{x\to 2} f(x) = 4.$$

Entretanto, ...

Caso 1-f está definida em $a \in f(a) = L$. Caso 3-f está definida em $a \in f(a) \neq L$.

Propriedades dos Limites de Funções

Teorema 2.1: Sejam f e g duas funções reais de um variável real.

Suponha que $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$, então:

1)
$$\lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M \text{ e}$$
$$\lim_{x \to a} \left[f(x) - g(x) \right] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M;$$

- 2) $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x) = cL$ (c é uma constante qualquer);
- 3) $\lim_{x \to a} [f(x)g(x)] = [\lim_{x \to a} f(x)] [\lim_{x \to a} g(x)] = LM;$
- 4) se $M \neq 0$, então $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$;
- 5) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n = L^n$ (*n* é um inteiro positivo qualquer);

cederj

2/15

Exemplo 2.5

Seja $\lim_{x\to 3} f(x) = 9$ e $\lim_{x\to 3} g(x) = 4$. Logo:

a)
$$\lim_{x \to 3} \left[f(x) + g(x) \right] = \lim_{x \to 3} f(x) + \lim_{x \to 3} g(x)$$
 (Teorema 2.1, prop. 1)
= 9 + 4 = 13.

b)
$$\lim_{x \to 3} \left[3f(x) - 2g(x) \right] = \lim_{x \to 3} 3f(x) - \lim_{x \to 3} 2g(x)$$
 (Teorema 2.1, prop. 1)
$$= 3\lim_{x \to 3} f(x) - 2\lim_{x \to 3} g(x)$$
 (Teorema 2.1, prop. 2)
$$= 3(9) - 2(4) = 19.$$
 C) $\lim_{x \to 3} \sqrt{f(x)g(x)} = \sqrt{\lim_{x \to 3} \left[f(x)g(x) \right]}$ (Teorema 2.1, prop. 6)

$$= \sqrt{\lim_{x \to 3} f(x)} \left[\lim_{x \to 3} g(x) \right]$$
 (Teorema 2.1, prop. 3)
$$= \sqrt{9(4)} = \sqrt{36} = 6.$$

cederj

Continuação do Teorema 2.1

- 6) se L > 0 e n é um inteiro positivo ou se $L \le 0$ e n é um inteiro positivo ímpar, então $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L}$;
- 7) $\lim_{x \to a} |f(x)| = \lim_{x \to a} f(x) = |L|;$
- 8) $\lim_{x \to a} c = c$ (c é uma constante qualquer);
- 9) $\lim_{x \to a} x = a$.

Teorema 2.2: Sejam f e g funções reais de uma variável real cujos domínios têm uma interseção, não vazia, W. Se f(x) = g(x) em W exceto no ponto de acumulação a de W e se

$$\lim_{x \to a} f(x) = L, \text{ então } \lim_{x \to a} g(x) = L$$

cederi

2/16

continuação do Exemplo 2.5.

d)
$$\lim_{x \to 3} \left| \frac{f(x)}{g(x)} \right| = \lim_{x \to 3} \frac{f(x)}{g(x)}$$
 (Teorema 2.1, prop. 7)
$$= \frac{\lim_{x \to 3} f(x)}{\lim_{x \to 3} g(x)}$$
 (Teorema 2.1, prop. 4)
$$= \frac{9}{4} = \frac{9}{4}.$$

Exemplo 2.6

Calcular $\lim_{t\to 2} (4t^2 + 5t - 7)$.

Solução: Em primeiro lugar, temos que:

$$\lim_{\to 2} (-7) = -7$$
 (Teorema 2.1, prop. 8) e

$$\lim_{t\to 2} t = 2 \text{ (Teorema 2.1, prop. 9),}$$

logo.

 $\lim_{t \to 2} 5t = 5 \lim_{t \to 2} t = 5(2)$ (Teorema 2.1, prop. 2),

$$\lim_{t \to 2} t^2 = \left(\lim_{t \to 2} t\right)^2 = 2^2$$
 (Teorema 2.1, prop. 5),

$$\lim_{t\to 2} 4t^2 = 4\lim_{t\to 2} t^2 = 4(4)$$
 (Teorema 2.1, prop. 2),

e portanto

$$\lim_{t \to 2} \left(4t^2 + 5t - 7 \right) = \lim_{t \to 2} 4t^2 + \lim_{t \to 2} 5t + \lim_{t \to 2} (-7) \text{ (Teorema 2.1, prop. 1)}$$
$$= 16 + 10 - 7 = 19.$$

cederj

2/19

Exemplo 2.7

Calcular
$$\lim_{y\to 3} \sqrt[3]{\frac{y^2+5y+3}{y^2-1}}$$
.

Solução:

Notamos que:

$$\lim_{y \to 3} (y^2 + 5y + 3) = 3^2 + 5(3) + 3 = 27$$
 (Teorema 2.3) e

$$\lim_{y \to 3} (y^2 - 1) = 3^2 - 1 = 8$$
 (Teorema 2.3).

Logo,

$$\lim_{y \to 3} \frac{y^2 + 5y + 3}{y^2 - 1} = \frac{\lim_{y \to 3} (y^2 + 5y + 3)}{\lim_{y \to 3} (y^2 - 1)} = \frac{27}{8}$$
 (Teorema 2.1, prop. 4) e

$$\lim_{y \to 3} \sqrt[3]{\frac{y^2 + 5y + 3}{y^2 - 1}} = \sqrt[3]{\lim_{y \to 3} \frac{y^2 + 5y + 3}{y^2 - 1}} = \sqrt[3]{\frac{27}{8}} = \frac{3}{2} \text{ (Teorema 2.1, prop. 6)}.$$

cederi

Teorema 2.3: Seja f uma função real de uma variável real e seja a um ponto de acumulação do domínio de f. Se f é uma função polinomial então:

$$\lim_{x \to a} f(x) = f(a)$$

OBS: Função polinomial

$$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n$$

na qual n é um número natural e os coeficientes a_0 , a_1 , ..., a_n são números reais constantes. Se a_n é diferente de zero diz-se que a função polinomial é de grau n.

<u>cederj</u>

<u>, ao.</u> j

2/20

Exemplo 2.8

Calcular
$$\lim_{x\to 7} \frac{x^2-49}{x-7}$$
.

Solução:

Notamos, em primeiro lugar, que

$$\underbrace{\lim_{x \to 7} \frac{x^2 - 49}{x - 7}}_{\text{x} \to 7} \neq \underbrace{\frac{\lim_{x \to 7} (x^2 - 49)}{\lim_{x \to 7} (x - 7)}}_{\text{x} \to 7} \text{ pois } \underbrace{\lim_{x \to 7} (x - 7) = 7 - 7}_{\text{Teorema 2.3}} = 0.$$

Entretanto,

$$\frac{x^2 - 49}{x - 7} = \frac{(x - 7)(x + 7)}{x - 7} = \frac{-f(x)}{x + 7} \text{ e, portanto, } f(x) = g(x) \text{ para todo}$$

 $x \in \mathbb{R}$, exceto em x = 7. Logo, usado o Teorema 2.2 concluímos que:

$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} = \lim_{x \to 7} (x + 7).$$

Finalmente, $\lim_{x\to 7} (x+7) = 14$ (Teorema 2.3).

cederi

Solução:

Observamos que:

$$\frac{\sqrt{4+x}-2}{x} = \frac{\left(\sqrt{4+x}-2\right)\left(\sqrt{4+x}+2\right)}{x\left(\sqrt{4+x}+2\right)}$$

$$= \frac{\left(\sqrt{4+x}\right)^2 - 2^2}{x\left(\sqrt{4+x}+2\right)} = \frac{4+x-4}{x\left(\sqrt{4+x}+2\right)}$$

$$= \frac{x}{x\left(\sqrt{4+x}+2\right)} = \frac{1}{\sqrt{4+x}+2} \text{ para } x \neq 0.$$

Logo, pelo Teorema 2.2:

$$\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x} = \lim_{x \to 0} \frac{1}{\sqrt{4+x} + 2}.$$

cederj

2/23

Resumo

Limites

- Limites
- · Propriedades de limites

cederi

Continuação do Exemplo 2.9

$$\lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = ?$$

Mas,

 $\lim_{x\to 0} 1 = 1$ (Teorema 2.1, prop. 8),

 $\lim_{x\to 0} 2 = 2$ (Teorema 2.1, prop. 8),

 $\lim_{x\to 0} (4+x) = 4 \text{ (Teorema 2.3) e}$

load

$$\lim_{x\to 0} \sqrt{4+x} = \sqrt{\lim_{x\to 0} (4+x)} = \sqrt{4} = 2 \text{ (Teorema 2.1, prop. 6)},$$

$$\lim_{x\to 0} \left(\sqrt{4+x} + 2 \right) = \lim_{x\to 0} \sqrt{4+x} + \lim_{x\to 0} 2 = 2+2 = 4 \text{ (Teorema 2.1, prop. 1) e}$$

$$\lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = \frac{\lim_{x \to 0} 1}{\lim_{x \to 0} (\sqrt{4+x}+2)} = \frac{1}{4} \text{ (Teorema 2.1, prop. 4).} \blacksquare$$

<u>cederj</u>

2/22

Limites e Continuidade de Funções

<u>cederj</u>

Limites (continuação)

- Limites Laterais
- · Limites infinitos
- · Limites no infinito

Continuidade

- Continuidade em um ponto
- · Continuidade em um intervalo
- Propriedades básicas das funções contínuas

Limites Laterais

Definição 2.4: Seja W um conjunto de números reais. Um número real a é denominado *ponto de acumulação à direita de W* quando todo intervalo aberto $(a, a + \delta)$ contém algum ponto x de W diferente de a.

A condição de a ser um ponto de acumulação à direta de W pode ser expressa do seguinte modo:

para cada número real $\delta > 0$, dado arbitrariamente, existe um número x > a de W tal que $0 < d(x,a) < \delta$.

Exemplo 2.10

Seja
$$W = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

Os números de X são pontos de acumulação à direita de $W \blacksquare$

Definição 2.5: Seja f uma função real de uma variável real. Seja a um ponto de acumulação à direita do domínio de f, D(f).

Diz-se que *o limite à <u>direita</u> de f(x) quando x tende a a \in L*, e escrevemos

$$\lim_{x \to a^+} f(x) = L,$$

se para cada número real $\ arepsilon>0,\$ dado arbitrariamente, existir um número $\ \delta>0$ de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x > a$ e $0 < d(x, a) < \delta$.

Notamos que, as condições x > a e $0 < d(x,a) < \delta$ significam que x se encontra no intervalo $(a,a+\delta)$ e é diferente de a.

Geometricamente, $\lim_{x\to a^+} f(x) = L$ significa que, para $x \neq a$ podemos garantir que f(x) se encontra em qualquer pequeno intervalo aberto em torno de L, desde que x se encontre em um intervalo aberto $(a,a+\delta)$.

Definição 2.6: Seja W um conjunto de números reais. Um número real a é denominado ponto de acumulação à esquerda de W quando todo intervalo aberto $(a-\delta,a)$ contém algum ponto x de W diferente de a.

A condição de a ser um ponto de acumulação à esquerda de W pode ser expressa do seguinte modo:

para cada número real $\delta > 0$, dado arbitrariamente, existe um número x < a de W tal que $0 < d(x,a) < \delta$.

Exemplo 2.11

Seja
$$W = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

Os números de X, com exceção de 1, e o número 2 são pontos de acumulação à esquerda de $W \blacksquare$

Definição 2.7: Seja f uma função real de uma variável real. Seja a um ponto de acumulação à esquerda do domínio de f, D(f).

Diz-se que *o limite* à <u>esquerda</u> de f(x) quando x tende a $a \in L$, e escrevemos

$$\lim_{x \to a^{-}} f(x) = L,$$

se para cada número real $\varepsilon>0$, dado arbitrariamente, existir um número $\delta>0$ de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x < a$ e $0 < d(x, a) < \delta$.

Notamos que, as condições $x < a \in 0 < d(x,a) < \delta$ significam que x se encontra no intervalo $(a - \delta, a)$ e é diferente de a.

Geometricamente, $\lim_{x\to a^-} f(x) = L$ significa que, para $x \neq a$ podemos garantir que f(x) se encontra em qualquer pequeno intervalo aberto em torno de L, desde que x se encontre em um intervalo aberto $(a-\delta,a)$.

Teorema 2.4: Seja f uma função real de uma variável real. Seja a um ponto de acumulação à direita e à esquerda do domínio de f, D(f).

Então existe $\lim_{x\to a} f(x) = L$ se, e somente se, existem e são iguais a L os limites laterais $\lim_{x\to a^-} f(x)$ e $\lim_{x\to a^+} f(x)$.

Para cada caso vamos determinar os limites à esquerda e à direita de f(x) quando x tende a a e, posteriormente, determinaremos, caso exista, o limite f(x) quando x tende a a utilizando o Teorema 2.4.

(a)
$$a = 3$$
 e $f(x) = \begin{cases} 2x + 1 & \text{se } x < 3 \\ 10 - x & \text{se } x \ge 3 \end{cases}$.

Conseqüência do Teorema a f $\Rightarrow \lim_{x \to 3} f(x) = 7$ Conseqüência do Teorema 2.3

ceder

(b)
$$a = 2 e f(x) = \begin{cases} |x-2| & \text{se } x \neq 2 \\ 1 & \text{se } x = 2 \end{cases}$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} |x - 2|$$

$$= \left| \lim_{x \to 2} (x - 2) \right| \quad \text{(Teorema 2.1 prop. 7)} \Rightarrow \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} f(x) = 0$$

$$= |0| = 0 \quad \text{(Teorema 2.3)}$$
Consequência do Teorema 2.3

cederi

(c)
$$a = 1$$
 e $f(x) = \begin{cases} 3 - x^3 & \text{se } x \le 1 \\ 1 + x^2 & \text{se } x > 1 \end{cases}$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(3 - x^{2} \right)$$

$$= 3 - 1^{2} = 2 \quad \text{(conseqüencia doTeorema 2.3),}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \left(1 + x^{2} \right)$$

$$= 1 + 1^{2} = 2 \quad \text{(conseqüencia doTeorema 2.3),}$$

$$\Rightarrow \lim_{x\to 1} f(x) = 2.$$

cederi

Limites infinitos

Definição 2.8: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que o *limite de f(x) quando* x *tende a a* é mais infinito, e escrevemos

$$\lim_{x \to a} f(x) = +\infty,$$

se para todo número real M>0 dado, existir um número $\delta>0$, de modo que se tenha:

$$f(x) > M$$
 sempre que $x \in D(f)$ e $0 < d(x, a) < \delta$.

Definição 2.9: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que o *limite de f(x) quando x tende a a* é menos infinito, e escrevemos

$$\lim_{x \to a} f(x) = -\infty,$$

se para todo número real M>0 dado, existir um número $\delta>0$, de modo que se tenha:

$$f(x) < -M$$
 sempre que $x \in D(f)$ e $0 < d(x, a) < \delta$.

Teorema 2.5: Sejam f e g duas funções reais de uma variável real.

Suponha que $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$.

Se
$$L \neq 0$$
 e $M = 0$, então $\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$.

Teorema 2.6:

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty\quad \text{e}\quad \lim_{x\to 0^-}\frac{1}{x}=-\infty$$

Como

$$\lim_{x \to 3} (2x^2 + 5x + 1) = 2(3)^2 + 5(3) + 1 = 34 \text{ (Teorem a 2.3) e}$$

$$\lim_{x \to 3} (x^2 - x - 6) = (3)^2 - 3 - 6 = 0 \text{ (Teorema 2.3)},$$

logo

$$\lim_{x \to 3} \left| \frac{2x^2 + 5x + 1}{x^2 - x - 6} \right| = +\infty \text{ (Teorema 2.5)}.$$

No exemplo anterior concluímos que

$$\lim_{x \to 3} \left| \frac{2x^2 + 5x + 1}{x^2 - x - 6} \right| = +\infty.$$

Vamos agora estudar o sinal de $\frac{2x^2+5x+1}{x^2-x-6}$ quanto $x \to 3^+$,

ou seja, quando x tende a 3 pela direta (assumindo valores maiores que 3). Notamos que:

$$2x^2 + 5x + 1 > 0$$
 para todo $x > 3$ e

$$x^2 - x - 6 = (x - 3)(x + 2) > 0$$
 para todo $x > 3$.

Logo

$$\lim_{x \to 3^{+}} \frac{2x^{2} + 5x + 1}{x^{2} - x - 6} = +\infty. \quad \blacksquare$$

No Exemplo 2.13 concluímos que

$$\lim_{x \to 3} \left| \frac{2x^2 + 5x + 1}{x^2 - x - 6} \right| = +\infty.$$

Vamos agora estudar o sinal de $\frac{2x^2+5x+1}{x^2-x-6}$ quanto $x \to 3^-$,

ou seja, quando x tende a 3 pela esquerda (assumindo valores menores que 3). Notamos que:

$$2x^2 + 5x + 1 > 0$$
 para todo $-0, 21 < x$ e

$$x^2 - x - 6 = (x - 3)(x + 2) < 0$$
 para todo $-2 < x < 3$.

Logo

$$\lim_{x \to 3^{-}} \frac{2x^2 + 5x + 1}{x^2 - x - 6} = -\infty. \quad \blacksquare$$

Definição 2.10: Seja f uma função real de uma variável real. Seja a um ponto de acumulação, à direita e/ou à esquerda, do domínio de f.

A linha reta vertical x = a é chamada de assintota vertical do gráfico de f se pelo menos uma das seguintes condições for verificada:

$$i) \quad \lim_{x \to a^+} f(x) = +\infty,$$

ii)
$$\lim_{x\to a^-} f(x) = +\infty$$
,

$$\lim_{x \to a^+} f(x) = -\infty,$$

$$\mathsf{iv}) \lim_{x \to a^{-}} f(x) = -\infty.$$

Limites no infinito

Definição 2.11: Seja f uma função real de uma variável real e suponha que o domínio de f, D(f), é ilimitado superiormente.

Diz-se que o limite de f(x) quando x tende a mais infinito é L, e escrevemos

$$\lim_{x\to+\infty}f(x)=L,$$

se para cada número real $\varepsilon>0$, dado arbitrariamente, existir um número N>0 de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x > N$.

Definição 2.12: Seja f uma função real de uma variável real e suponha que o domínio de f, D(f), é ilimitado inferiormente.

Diz-se que o limite de f(x) quando x tende a menos infinito é L, e escrevemos

$$\lim_{x \to -\infty} f(x) = L,$$

se para cada número real $\varepsilon > 0$, dado arbitrariamente, existir um número N > 0 de modo que se tenha:

$$d(f(x), L) < \varepsilon$$
 sempre que $x \in D(f)$, $x < -N$.

Teorema 2.7: Sejam $f \in \mathcal{G}$ duas funções reais de um variável real.

Suponha que $\lim_{x \to \pm \infty} f(x) = L$ e $\lim_{x \to \pm \infty} g(x) = M$, então:

1)
$$\lim_{x \to \pm \infty} \left[f(x) + g(x) \right] = \lim_{x \to \pm \infty} f(x) + \lim_{x \to \pm \infty} g(x) = L + M \mathbf{e}$$

$$\lim_{x \to \pm \infty} \left[f(x) - g(x) \right] = \lim_{x \to \pm \infty} f(x) - \lim_{x \to \pm \infty} g(x) = L - M;$$

2)
$$\lim_{x \to +\infty} \left[cf(x) \right] = c \lim_{x \to +\infty} f(x) = cL$$
 (c é uma constante qualquer);

3)
$$\lim_{x \to \pm \infty} \left[f(x)g(x) \right] = \left[\lim_{x \to \pm \infty} f(x) \right] \left[\lim_{x \to \pm \infty} g(x) \right] = LM;$$

4) se
$$M \neq 0$$
, então $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{L}{M}$;

5)
$$\lim_{x \to \pm \infty} [f(x)]^n = \lim_{x \to \pm \infty} f(x)^n = L^n$$
 (*n* é um inteiro positivo qualquer);

Continuação do Teorema 2.7

- 6) se L>0 e n é um inteiro positivo ou se $L\leq 0$ e n é um número ímpar (positivo), então $\lim_{x\to\pm\infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to\pm\infty} f(x)} = \sqrt[n]{L};$
- 7) $\lim_{x \to \pm \infty} |f(x)| = \left| \lim_{x \to \pm \infty} f(x) \right| = |L|.$

Teorema 2.8:

2)
$$\lim_{x \to +\infty} \left(\frac{1}{x}\right)^n = \lim_{x \to +\infty} \frac{1}{x^n} = 0$$
, n é um inteiro positivo qualquer, e

$$\lim_{x\to\infty}\left(\frac{1}{x}\right)^n=\lim_{x\to\infty}\frac{1}{x^n}=0;$$

3) $\lim_{x \to +\infty} x^n = +\infty$, *n* é um inteiro positivo qualquer, e

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty \text{ se } n \text{ \'e um n\'umero par,} \\ -\infty \text{ se } n \text{ \'e um n\'umero \'impar;} \end{cases}$$

4) se $a \neq 0$ e n é um inteiro positivo qualquer,

então
$$\lim_{x \to +\infty} \left(a_o + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n \right) = a_n \lim_{x \to +\infty} x^n$$
 e

$$\lim_{x \to -\infty} \left(a_{o} + a_{1}x + a_{2}x^{2} + \dots + a_{n-1}x^{n-1} + a_{n}x^{n} \right) = a_{n} \lim_{x \to -\infty} x^{n}.$$

OBS: Ao trabalharmos com limites no infinito de *funções racionais ou* de quocientes de funções é bastante útil dividirmos o numerador e o denominador pela variável independente elevada à maior potência que apareça na fração.

Vamos utilizar esta técnica para calcular os limites dos próximos exemplos.

Notamos que para todo
$$x \neq 0$$
: $\frac{5x^2}{2x^2 - 3} = \frac{\frac{5x^2}{x^2}}{\frac{2x^2 - 3}{x^2}} = \frac{5}{2 - \frac{3}{x^2}}$.

Portanto,
$$\lim_{x \to +\infty} \frac{5x^2}{2x^2 - 3} = \lim_{x \to +\infty} \frac{5}{2 - \frac{3}{x^2}}$$
.

Por outro lado,

Exemplo 2.17

$$\lim_{x \to +\infty} 5 = 5$$
 e $\lim_{x \to +\infty} 2 = 2$ (Teorema 2.8, prop. 1),

$$\lim_{x\to+\infty}\frac{5x^2}{2x^2-3}=?$$

$$\lim_{x \to +\infty} \frac{5x^2}{2x^2 - 3} = ? \quad \lim_{x \to +\infty} \frac{1}{x^2} = 0 \quad \text{(Teorema 2.8, prop. 2),}$$

logo,

$$\lim_{x \to +\infty} \frac{3}{x^2} = 3 \lim_{x \to +\infty} \frac{1}{x^2} = 3(0) = 0 \text{ (Teorema 2.7, prop. 2),}$$

$$\lim_{x \to +\infty} \left(2 - \frac{3}{x^2} \right) = \lim_{x \to +\infty} 2 - \lim_{x \to +\infty} \frac{3}{x^2} = 2 - 0 = 2 \quad \text{(Teorema 2.7, prop.1)}$$

que implica que,
$$\lim_{x \to +\infty} \frac{5}{2 - \frac{3}{x^2}} = \frac{\lim_{x \to +\infty} 5}{\lim_{x \to +\infty} \left(2 - \frac{3}{x^2}\right)} = \frac{5}{2}$$
 (Teorema 2.7, prop. 4).

cederi

Notamos que, para todo $x \neq 0$:

Exemplo 2.18

$$\lim_{x \to +\infty} \frac{5x}{\sqrt[3]{7x^3 + 3}} = ?$$

$$\frac{5x}{\sqrt[3]{7x^3+3}} = \frac{\frac{5x}{x}}{\frac{1}{x}\sqrt[3]{7x^3+3}} = \frac{5}{\sqrt[3]{\frac{1}{x^3}(7x^3+3)}} = \frac{5}{\sqrt[3]{7+\frac{3}{x^3}}}.$$

e, portanto,

$$\lim_{x \to +\infty} \frac{5x}{\sqrt[3]{7x^3 + 3}} = \lim_{x \to +\infty} \frac{5}{\sqrt[3]{7 + \frac{3}{x^3}}}.$$

Entretanto, como:

$$\lim_{x \to +\infty} 5 = 5 \text{ e } \lim_{x \to +\infty} 7 = 7 \text{ (Teorema 2.8, prop.1)} e$$

$$\lim_{x \to +\infty} \frac{1}{x^3} = 0 \quad \text{(Teorema 2.8, prop. 2)},$$

logo,

$$\lim_{x \to +\infty} \frac{3}{x^3} = 3 \lim_{x \to +\infty} \frac{1}{x^3} = 3(0) = 0 \text{ (Teorema 2.7, prop. 2),}$$

$$\lim_{x \to +\infty} \left(7 + \frac{3}{x^3} \right) = \lim_{x \to +\infty} 7 - \lim_{x \to +\infty} \frac{3}{x^3} = 7 - 0 = 7 \quad \text{(Teorema 2.7, prop. 1)}$$

cederi

temos que:

$$\lim_{x \to +\infty} \sqrt[3]{7 + \frac{3}{x^3}} = \sqrt[3]{\lim_{x \to +\infty} \left(7 + \frac{3}{x^3}\right)} = \sqrt[3]{7} \text{ (Teorema 2.7, prop. 6)}.$$

Logo,

$$\lim_{x \to +\infty} \frac{5}{\sqrt[3]{7 + \frac{3}{x^3}}} = \frac{\lim_{x \to +\infty} 5}{\lim_{x \to +\infty} \sqrt[3]{7 + \frac{3}{x^3}}} = \frac{5}{\sqrt[3]{7}} \text{ (Teorema 2.7, prop. 4).}$$

Definição 2.13: Seja f uma função real de uma variável real.

A linha reta horizontal y = b é chamada de assíntota horizontal do gráfico de f se pelo menos uma das seguintes condições for verificada:

- $\mathbf{i)} \quad \lim_{x \to +\infty} f(x) = b,$
- ii) $\lim_{x \to -\infty} f(x) = b$.

Parte 2

Continuidade de Funções

cederj

Continuidade em um Ponto

Definição 2.14: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que a função f é contínua em um número a se, e somente se, as seguintes condições forem verificadas :

- i) $a \in D(f)$,
- ii) $\lim_{x \to a} f(x)$ existe (é igual a um número),
- iii) $\lim_{x \to a} f(x) = f(a)$.

OBS: Se qualquer uma das condições da Definição 2.12 não é verificada, dizemos que f é descontínua em a.

Continuidade em um Intervalo

1) Se f for contínua em todos os pontos de um intervalo aberto (a,b), então dizemos que f é contínua em (a,b). Esta definição se aplica também a intervalos abertos infinitos da forma:

$$(a,+\infty),(-\infty,b),(-\infty,+\infty).$$

- 2) Se f é contínua em $(-\infty, +\infty)$ dizemos que f é contínua em toda parte.
- 3) Diz-se que f é contínua em um intervalo fechado [a,b] quando
 - i) f é continua em (a,b) e
 - ii) $\lim_{x \to a^+} f(x) = f(a)$ e $\lim_{x \to b^-} f(x) = f(b)$.

Exemplo 2.21 (ver Exemplo 2.7)

Verifique se a função
$$f(y) = \sqrt[3]{\frac{y^2 + 5y + 3}{y^2 - 1}}$$
 é contínua em 3.

Solução:

O domínio natural de f é: $D(f) = \{y \in \mathbb{R}, y \neq \pm 1\}$.

Logo, $3 \in D(f)$ e

$$f(3) = \sqrt[3]{\frac{3^2 + 5(3) + 3}{3^2 - 1}} = \sqrt[3]{\frac{27}{8}} = \frac{3}{2}.$$

Por outro lado, no Exemplo 2.7 concluímos que

$$\lim_{y\to 3} f(y) = \frac{3}{2}.$$

Portanto, f é contínua em 3.

Exemplo 2.22 (ver o Exemplo 2.12)

Nos casos a seguir vamos verificar se a função f é contínua em a.

a)
$$a = 3$$
 e $f(x) = \begin{cases} 2x + 1 & \text{se } x < 3 \\ 10 - x & \text{se } x \ge 3 \end{cases}$.

O domínio natural de f, D(f), é \mathbb{R} e, portanto, $3 \in D(f)$. Além disso,

$$f(3) = 10 - 3 = 7.$$

No Exemplo 2.12 verificamos que:

$$\lim_{x\to 3} f(x) = 7.$$

Portanto, f é contínua em 3.

Verificar que f é contínua em toda parte!

b b)
$$a = 2$$
 e $f(x) = \begin{cases} |x-2| & \text{se } x \neq 2 \\ 1 & \text{se } x = 2 \end{cases}$.

O domínio natural de f, D(f), é \mathbb{R} e, portanto, $2 \in D(f)$. Além disso,

$$f(2) = 1$$
.

No Exemplo 2.12, item b, verificamos que:

$$\lim_{x\to 2} f(x) = 0.$$

Portanto, f é descontínua em 2.

Verificar que f é contínua nos intervalos: $(-\infty,2)$ e $(2,+\infty)$.

Propriedades Básicas de Funções Contínuas

Teorema 2.9: Sejam $f \in g$ duas funções reais de um variável real cujos domínios tem uma interseção não-vazia W. Se $f \in g$ são contínuas em um ponto a de W, então:

- 1) f + g, f g e fg são também contínuas em a;
- 2) se $g(a) \neq 0$, então f/g é contínua em a.

Teorema 2.10: Sejam $f \in \mathcal{G}$ duas funções reais de um variável real e suponha que o conjunto W, constituído pelos números que pertencem a interseção da imagem de \mathcal{G} com o domínio de f, não é vazio. Se $f \in \mathcal{G}$ são contínuas em um ponto a de W, então $f \circ \mathcal{G}$ é contínua em a.

Teorema 2.11: Seja f uma função real de um variável real e seja a um ponto do domínio de f.

- 1) Se f é uma função polinomial então f é contínua em a.
- 2) Se f é uma função racional então f é contínua em a.

Teorema 2.12 – Teorema do Valor Intermediário:

Seja f uma função contínua no intervalo fechado [a,b] e suponha que f(a) < f(b) (ou que f(a) > f(b)). Se y é um número arbitrário do intervalo aberto (f(a), f(b)) (ou (f(b), f(a))), então existe pelo menos um número x do intervalo (a,b) tal que y = f(x).

Resumo

Limites

- · Limites laterais, infinitos e no infinito
- · Continuidade de funções

A Derivada

<u>cederj</u>

Reta tangente a uma curva

cederj

A partir da **Definição 2.2** concluímos que um número real a é um *ponto de acumulação de* D(f) (D(f) é o domínio de uma função real de uma variável real f) quando todo intervalo aberto $(a - \delta, a + \delta)$, de centro a, contém algum número de D(f) diferente de a.

Logo, se

$$D(f) := X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

- todos os números de X e o número 2 são pontos de acumulação de $\mathcal{D}(f)$,
- os números 3 e 4 não são pontos de acumulação de D(f).

Notação:
$$\widehat{D}(f) := \{x \in \mathbb{R}; 1 \le x \le 2\}$$

Conjunto dos ponto de acumulação de D(f)

Definição 3.1: Seja f uma função real de uma variável real. A função real de uma variável denotada por f com a regra

$$f'(x) := \lim_{w \to x} \frac{f(w) - f(x)}{w - x}.$$

é denominada *derivada de f*. O domínio natural desta função, D(f), é constituído pelos números do conjunto $D(f) \cap \widehat{D}(f)$ para os quais o limite existe (ou seja, é um número).

Se o número real a pertence a D(f') diz-se que $f \in derivavel$ em a e o valor da derivada de $f \in m(a)$, f'(a), f'(a),

$$f'(a) := \lim_{w \to a} \frac{f(w) - f(a)}{w - a}.$$

Interpretação Geométrica da Derivada

Reta secante ao gráfico da função nos pontos (a, f(a)) e (w, f(w)).

$$\tan \alpha = \frac{\Delta y}{\Delta x} = \frac{f(w) - f(a)}{w - a}$$

y

f(w)

y = f(x)

f(a) x cederi

Interpretação Geométrica da Derivada

Reta secante ao gráfico da função nos pontos (a, f(a)) e (w, f(w)).

$$\tan \alpha = \frac{f(w) - f(a)}{w - a}$$

Reta tangente ao gráfico da função no ponto (a, f(a)).

1

y

f(w)

f(a)

ceder

X

 α

y = f(x)

Interpretação Geométrica da Derivada

Reta secante ao gráfico da função nos pontos (a, f(a)) e (w, f(w)).

$$\tan \alpha = \frac{f(w) - f(a)}{w - a}$$

Reta tangente ao gráfico da função no ponto (a, f(a)).

$$\tan \beta = f'(a) = \lim_{w \to a} \frac{f(w) - f(a)}{w - a}$$

y

f(w)

f(a) x

 α

ceder

y = f(x)

Interpretação Geométrica da Derivada

Reta secante ao gráfico da função nos pontos (a, f(a)) e (w, f(w)).

$$\tan \alpha = \frac{\Delta y}{\Delta x} = \frac{f(w) - f(a)}{w - a}$$

Reta tangente ao gráfico da função no ponto (a, f(a)).

$$\tan \beta = f'(a) = \lim_{w \to a} \frac{f(w) - f(a)}{w - a}$$

f(a)

f(w)

cede

 \boldsymbol{x}

 α

Introduzindo-se a variável h tal que h := w - x, tem-se que w = x + h e, consequentemente, $w \rightarrow x$ quando $h \rightarrow 0$. Logo,

$$f'(x) := \lim_{w \to x} \frac{f(w) - f(x)}{w - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Exemplo 3.1

Usando a Definição 3.1 calcularemos a derivada da função $f(x) = x^3$.

Solução:
$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$
.

Mas
$$(x+h)^3 = (x+h)^2(x+h) = (x^2 + 2xh + h^2)(x+h)$$

= $x^3 + 2x^2h + xh^2 + x^2h + 2xh^2 + h^3$
= $x^3 + 3x^2h + 3xh^2 + h^3$.

Logo

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{\left(x^3 + 3x^2h + 3xh^2 + h^3\right) - x^3}{h}$$
$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \to 0} \left(3x^2 + 3xh + h^2\right).$$

Além disso,

$$\lim_{h \to 0} 3x^2 = 3x^2 \lim_{h \to 0} 1 = 3x^2, \quad \lim_{h \to 0} 3xh = 3x \lim_{h \to 0} h = 0 \quad \mathbf{e} \quad \lim_{h \to 0} h^2 = \left(\lim_{h \to 0} h\right)^2 = 0,$$

e portanto:

$$f'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2) = \lim_{h \to 0} 3x^2 + \lim_{h \to 0} 3xh + \lim_{h \to 0} h^2 = 3x^2.$$
cederj

Exemplo 3.2

Usando a Definição 3.1 calcularemos a derivada da função $f(x) = \frac{1}{3x-2}$.

$$f(x) = \frac{1}{3x - 2}.$$

Solução:

Solução:

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{3(x+h) - 2} - \frac{1}{3x - 2}}{h} = \lim_{h \to 0} \frac{\frac{(3x - 2) - [3(x+h) - 2]}{[3(x+h) - 2](3x - 2)}}{h}$$

$$= \lim_{h \to 0} \frac{(3x - 2) - [3(x+h) - 2]}{[3(x+h) - 2](3x - 2)h} = \lim_{h \to 0} \frac{-3h}{[3(x+h) - 2](3x - 2)h}$$

$$= \lim_{h \to 0} \frac{-3}{9x^2 - 6x + 9xh - 6h - 6x + 4} = \lim_{h \to 0} \frac{-3}{9x^2 - 12x + 9xh - 6h + 4}.$$

Mas

$$\lim_{h\to 0} 3 = 3, \lim_{h\to 0} 9x^2 = 9x^2, \lim_{h\to 0} 12x = 12x, \lim_{h\to 0} 9xh = 0, \lim_{h\to 0} 6h = 0, \lim_{h\to 0} 4 = 4,$$

e portanto:

$$f'(x) = \lim_{h \to 0} \frac{-3}{9x^2 - 12x + 9xh - 6h + 4} = \frac{-\lim_{h \to 0} 3}{\lim_{h \to 0} 9x^2 - \lim_{h \to 0} 12x + \lim_{h \to 0} 9xh + \lim_{h \to 0} 6h + \lim_{h \to 0} 4 = 4}$$
$$= \frac{-3}{9x^2 - 12x + 4} = \frac{-3}{(3x - 2)^2}.$$

Derivadas Laterais

A partir da **Definição 2.4** concluímos que um número real a é um *ponto de acumulação à direita de* D(f) (D(f)) é o domínio de uma função real de uma variável real f) quando todo intervalo aberto $(a, a + \delta)$ contém algum número de D(f) diferente de a.

Logo, se

$$D(f) = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

todos os números de X são pontos de acumulação à direita de $\mathcal{D}(f)$.

Notação:
$$\widehat{D}_+(f) := \{x \in \mathbb{R}; 1 \le x < 2\} = X$$

Conjunto dos pontos de acumulação à direita de $\mathcal{D}(f)$

Definição 3.2: Seja f uma função real de uma variável real. Seja a um número do conjunto $D(f) \cap \widehat{D}_{+}(f)$.

Define-se a derivada à direita de f no ponto a, $f'_{+}(a)$, como sendo o limite (se existir):

$$f_{+}'(a) := \lim_{w \to a^{+}} \frac{f(w) - f(a)}{w - a} = \lim_{h \to 0^{+}} \frac{f(a + h) - f(a)}{h}.$$

A partir da **Definição 2.6** concluímos que um número real a é um *ponto de acumulação à esquerda de* D(f) (D(f) é o domínio de uma função real de uma variável real f) quando todo intervalo aberto $(a - \delta, a)$ contém algum número de D(f) diferente de a.

Logo, se

$$D(f) = X \cup Y$$
 no qual $X = \{x \in \mathbb{R}; 1 \le x < 2\}$ e $Y = \{3, 4\}.$

os números de X, com exceção de 1, e o número 2 são pontos de acumulação à esquerda de $\mathcal{D}(f)$.

Notação:
$$\widehat{D}_{-}(f) := \{x \in \mathbb{R}; 1 < x \le 2\}$$

Conjunto dos pontos de acumulação à esquerda de $\mathcal{D}(f)$

Definição 3.3: Seja f uma função real de uma variável real. Seja a um número do conjunto $D(f) \cap \widehat{D}_{-}(f)$.

Define-se a derivada à <u>esquerda</u> de f no ponto a, $f'_{-}(a)$, como sendo o limite (se existir):

$$f_{-}'(a) := \lim_{w \to a^{-}} \frac{f(w) - f(a)}{w - a} = \lim_{h \to 0^{-}} \frac{f(a + h) - f(a)}{h}.$$

Então existe f'(a) se, e somente se, existem, e são iguais, as derivadas laterais f'(a) e f'(a).

Exemplo 3.3

Usando o Teorema 3.1, vamos verificar se a função f, definida a seguir, tem derivada em x = 3.

$$f(x) = \begin{cases} 2x + 1 & \text{se } x < 3 \\ 10 - x & \text{se } x \ge 3 \end{cases}.$$

$$f_{-}'(3) = \lim_{h \to 0^{-}} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0^{-}} \frac{\left[2(3+h) + 1\right] - \left[2(3) + 1\right]}{h}$$

$$= \lim_{h \to 0^{-}} \frac{\left[2h + 7\right] - \left[7\right]}{h} = \lim_{h \to 0^{-}} \frac{2h}{h} = 2,$$

$$f_{+}'(3) := \lim_{h \to 0^{+}} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{\left[10 - (3+h)\right] - \left(10 - 3\right)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{\left[7 - h\right] - \left(7\right)}{h} = \lim_{h \to 0^{+}} \frac{-h}{h} = -1,$$

Logo, pelo Teorema 3.1, a função f não tem derivada em x = 3.

cederi

Notação para Derivada

Seja f uma função real de uma variável real.

- 1) Notação de Lagrange para a função derivada de f ———— f
- 2) Notação de *Newton*: se x é um número do domínio da derivada de f e y = f(x) \longrightarrow y := f'(x)
- 3) Notação de *Leibniz*: se x é um número do domínio da derivada de f e y = f(x) \longrightarrow $\frac{dy}{dx} := f'(x)$

Diferenciação - Diferenciabilidade - Diferenciável

1) A operação de calcular a derivada f de uma função f (ou calcular o valor f(x)) é denominado diferenciação.

O símbolo incompleto $\frac{d}{dx}$ é usado como uma instrução para diferenciar o que lhe acompanhar.

Exemplo 3.3:
$$\frac{d}{dx}(x^3) = 3x^2$$
 (ver Exemplo 3.1).

Uma notação alternativa para $\frac{d}{dx}$ é o símbolo D_x que é chamado *operador diferenciação*.

Exemplo 3.4:
$$D_x \left(\frac{1}{3x-2} \right) = \frac{d}{dx} \left(\frac{1}{3x-2} \right) = \frac{-3}{\left(3x-2 \right)^2}$$
 (ver Exemplo 3.2).

<u>cederj</u>

Os pontos do domínio natural da derivada de uma função f (real de uma variável real) são denominados *pontos de diferenciabilidade* para f, e os pontos do domínio natural de f que não pertencem a $\mathcal{D}(f)$ são chamados *pontos de não-diferenciabilidade* para f.

3) Se a é um ponto de diferenciabilidade de f dizemos que f é diferenciável em a (ou que f é derivável em a, ou ainda que a derivada de f existe em a). Se a é um ponto de não-diferenciabilidade de f dizemos que a derivada de f não existe em a.

4) Geometricamente:

pontos de diferenciabilidade de uma função f

pontos do gráfico de f que têm uma reta tangente

pontos de não-diferenciabilidade de uma função f

pontos do gráfico de f que não têm uma reta tangente

<u>cederj</u>

Teorema 3.2: Seja f uma função real de uma variável real.

Se f é diferenciável em um número a, então f é contínua em a.

Recordamos a definição de função contínua:

Definição 2.12: Seja f uma função real de uma variável real. Seja a um ponto de acumulação do domínio de f, D(f).

Diz-se que a função f é contínua em um número a se, e somente se, as seguintes condições são verificadas:

- i) $a \in D(f)$,
- ii) $\lim_{x\to a} f(x)$ existe (é igual a um número),
- iii) $\lim_{x \to a} f(x) = f(a)$.

Diferenciabilidade em um Intervalo

- Se uma função f é diferenciável em todos os pontos de um intervalo aberto (a,b), então dizemos que f é diferenciável em (a,b). Esta definição se aplica para intervalos abertos infinitos da forma: $(a,+\infty), (-\infty,b), (-\infty,+\infty)$.
- 2) Se f é diferenciável em $(-\infty, +\infty)$ dizemos que f é diferenciável em toda parte.
- 3) Dizemos que $f \in diferenciável$ em intervalos da forma [a,b], [a,b), (a,b], $[a,+\infty)$ ou $(-\infty,b]$ se for diferenciável nos pontos internos do intervalo e nos extremos à esquerda ou à direita, conforme apropriado.

Técnicas de Diferenciação

Teorema 3.3:

- 1) Regra da constante: $\frac{d}{dx}(c) = 0$, na qual $c \in \mathbb{R}$ é constante.
- 2) Regra da potência: $\frac{d}{dx}(x^{\alpha}) = \alpha x^{\alpha^{-1}}$, na qual $\alpha \in \mathbb{R}$.

Teorema 3.4: Sejam f e g duas funções reais de um variável real.

- 1) Regra da homogeneidade: (cf)' = cf', na qual $c \in \mathbb{R}$ é constante.
- 2) Regra da soma: (f+g)'=f'+g',
- 3) Regra da diferença: (f-g)' = f'-g'.
- 4) Regra do produto: (fg)' = fg' + gf'.
- 5) Regra do quociente: $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Exemplo 3.4

$$\frac{d}{dx}\Big[\big(3x^2+1\big)\big(7x^3+x\big)\Big] = ?$$

$$= \big(3x^2+1\big)D_x\big(7x^3+x\big)+\big(7x^3+x\big)D_x\big(3x^2+1\big) \leftarrow \text{regra do produto}$$

Mas:

1)
$$D_x (7x^3 + x) = D_x (7x^3) + D_x (x) \leftarrow$$
 regra da soma,
$$= 7D_x (x^3) + D_x (x) \leftarrow$$
 regra da homogeneidade,
$$= 7(3x^2) + (1x^0) \leftarrow$$
 regra da potência,

2)
$$D_x(3x^2+1) = D_x(3x^2) + D_x(1) \leftarrow$$
 regra da soma,
= $3D_x(x^2) + (0) \leftarrow$ regras da homogeneidade e da constante,
= $3(2x^1) \leftarrow$ regra da potência.

Logo:

$$\frac{d}{dx} \Big[(3x^2 + 1)(7x^3 + x) \Big] = (3x^2 + 1)(21x^2 + 1) + (7x^3 + x)6x. \blacksquare$$

<u>cederj</u>

Exemplo 3.5

Mas:

1)
$$D_x(x^2) = 2x \leftarrow \text{regra da potência}$$
,

2)
$$D_x(x^3 + 7) = D_x(x^3) + D_x(7) \leftarrow \text{regra da soma},$$

= $3x^2 + (0) \leftarrow \text{regras da potência e da constante}.$

Logo:

$$D_{x}\left(\frac{x^{2}}{x^{3}+7}\right) = \frac{\left(x^{3}+7\right)\left(2x\right)-x^{2}\left(3x^{2}\right)}{\left(x^{3}+7\right)^{2}}. \quad \blacksquare$$

Teorema 3.5: – Derivadas das funções trigonométricas

2)
$$D_{x}(\cos x) = -\sin x$$
.

3)
$$D_x(\tan x) = \sec^2 x$$
.

4)
$$D_{x}(\sec x) = (\sec x)(\tan x)$$
.

5)
$$D_x(\cot x) = -\csc^2 x$$
.

6)
$$D_x(\csc x) = -(\csc x)(\cot x)$$
.

Resumo

Derivadas

- Definição;
- Derivada como limite da inclinação da reta secante;
- Derivadas laterais;
- Notação para derivadas;
- Diferenciabilidade;
- Diferenciabilidade em intervalos;
- · Técnicas de diferenciação (regras de diferenciação).

- Regra da cadeia, derivada de funções compostas;
- Derivadas de ordem superior.

Análise de Funções:

- Teorema do valor médio;
- Funções crescentes e decrescentes;
- Concavidade e pontos de inflexão;
- · Pontos de máximo e mínimo.

A Derivada (continuação)

cederj

Sejam $f \in g$ duas funções reais de um variável real.

Se g é diferenciável no ponto a e se f for diferenciável no ponto g(a), então a função composta $f \circ g$ é diferenciável no ponto a. Além disso,

$$(f \circ g)'(a) = f'(g(a))g'(a).$$

A regra da cadeia na notação de Leibniz:

denotando-se
$$y := f(u)$$
 sendo $u := g(x)$, então
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Exemplo 3.6
$$D_x(\sqrt{x^2+1}) = ?$$

Vamos definir: $y := f(u) := \sqrt{u}$ e $u := g(x) = x^2 + 1$. Logo, $D_{x}\left(\sqrt{x^{2}+1}\right) = D_{y}\left(\sqrt{u}\right)D_{x}\left(x^{2}+1\right) \leftarrow \text{regra da cadeia.}$

Mas

1)
$$D_u\left(\sqrt{u}\right) = D_u\left(u^{\frac{1}{2}}\right) = \frac{1}{2}u^{\frac{1}{2}-1} \leftarrow \text{regra da potência}$$
$$= \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2\sqrt{u}}.$$

2)
$$D_x(x^2+1) = D_x(x^2) + D_x(1) \leftarrow \text{regra da soma}$$

= $2x + (0) \leftarrow \text{regras da potência e da constante}$.

Logo:

$$D_{x}\left(\sqrt{x^{2}+1}\right) = \left(\frac{1}{2\sqrt{u}}\right)2x$$
$$= \frac{x}{\sqrt{x^{2}+1}}.$$

Vamos definir:

Exemplo 3.7

$$D_{x} \left[\left(\sqrt{x^2 + 1} \right)^3 \right] = ?$$

$$z := h(y) := y^3$$
, $y := f(u) := \sqrt{u}$ **e** $u := g(x) = x^2 + 1$,

e portanto,
$$z = (h \circ f \circ g)(x) = (\sqrt{x^2 + 1})^3$$
. Por outro lado,

$$(h \circ f \circ g)'(x) = (h \circ f)'(g(x))g'(x) \leftarrow \text{regra da cadeia}$$
$$= h'(f(g(x)))f'(g(x))g'(x) \leftarrow \text{regra da cadeia},$$

ou
$$D_x \left[\left(\sqrt{x^2 + 1} \right)^3 \right] = D_y \left(y^3 \right) D_u \left(\sqrt{u} \right) D_x \left(x^2 + 1 \right).$$

Mas

1)
$$D_u(\sqrt{u})D_x(x^2+1) = \frac{x}{\sqrt{x^2+1}}$$
 (ver a Exemple 3.6).

2)
$$D_y(y^3) = 3y^2 \leftarrow \text{regra da potência}$$

$$=3\left(\sqrt{u}\right)^2=3\left(\sqrt{x^2+1}\right)^2.$$

Logo:

$$D_{x} \left[\left(\sqrt{x^{2} + 1} \right)^{3} \right] = 3 \left(\sqrt{x^{2} + 1} \right)^{2} \left(\frac{x}{\sqrt{x^{2} + 1}} \right) = 3x \sqrt{x^{2} + 1}.$$

Derivadas de Ordem Superior

Seja f uma função real de uma variável real e suponha que f é diferenciável em um intervalo aberto (a,b). Neste caso, em algumas situações, queremos saber se f é diferenciável no intervalo (a,b). Se o for, então sua derivada, (f^*) , é denotada, por simplicidade, como f (lê-se f duas linhas).

 $f'' \Rightarrow$ derivada de segunda ordem de f ou derivada segunda de f.

Exemplo 3.8

$$f(x) := x^5 + x^3 - 1$$
 para todo $x \in (0,9)$,
 $\Rightarrow f'(x) = 5x^4 + 3x^2$ para todo $x \in (0,9)$,
 $\Rightarrow f''(x) = 20x^3 + 6x$ para todo $x \in (0,9)$ regra da potência e da constante.

Se f" for diferenciável no intervalo (a,b) podemos calcular a derivada de terceira ordem de f, ou derivada terceira de f, f"":=(f")"; se f"" for diferenciável no intervalo (a,b) podemos calcular a derivada de quarta ordem de f, ou derivada quarta de f, f"":=(f""), e assim por diante.

Exemplo 3.9

$$f(x) := x^5 + x^3 - 1$$
 para todo $x \in (0, 9)$,

$$\Rightarrow f'(x) = 5x^4 + 3x^2$$
 para todo $x \in (0,9),$

$$\Rightarrow f''(x) = 20x^3 + 6x$$
 para todo $x \in (0,9)$,

$$\Rightarrow f'''(x) = 60x^2 + 6$$
 para todo $x \in (0,9)$,

$$\Rightarrow f''''(x) = 120x$$
 para todo $x \in (0,9)$,

$$\Rightarrow f'''''(x) = 120$$
 para todo $x \in (0,9)$,

$$\Rightarrow f'''''(x) = 0$$
 para todo $x \in (0,9)$, regra da constante.

∤regra da potência e da constante

Notação:

$$y = f(x)$$

Lagrange

Leibniz

$$\mathbf{O}_{y}$$

$$\frac{dy}{dx} = \frac{d}{dx} [f(x)]$$

$$\frac{d^2 y}{d x^2} = \frac{d^2}{d x^2} [f(x)]$$

$$\frac{d^3 y}{d x^3} = \frac{d^3}{d x^3} [f(x)]$$

$$f^{(n)}(x)$$

$$\frac{d^n y}{dx^n} = \frac{d^n}{dx^n} [f(x)]$$

<u>cederj</u>

Análise de Funções

<u>cederj</u>

Seja ƒ uma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b], então existe pelo menos um número w no intervalo (a,b) tal que:

$$f'(w) = \frac{f(b) - f(a)}{b - a}.$$

Sejafuma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b], então existe pelo menos um número w no intervalo (a,b) tal que:

$$f'(w) = \frac{f(b) - f(a)}{b - a}.$$

y = f(x)

Seja ƒ uma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b], então existe pelo menos um número w no intervalo (a,b) tal que:

$$f'(w) = \frac{f(b) - f(a)}{b - a}.$$

f(b)f(a)

Reta secante ao gráfico da função nos pontos (a, f(a)) e (b, f(b)).

$$y = f(x)$$

Seja ƒ uma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b], então existe pelo menos um número w no intervalo (a,b) tal que:

$$f'(w) = \frac{f(b) - f(a)}{b - a}.$$

f(b)f(a)

Reta secante ao gráfico da função nos pontos (a, f(a)) e (b, f(b)).

y = f(x)

Seja *f* uma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b], então existe pelo menos um número w no intervalo (a,b) tal que:

$$f'(w) = \frac{f(b) - f(a)}{b - a}.$$

Reta secante ao gráfico da função nos pontos (a, f(a)) e (b, f(b)).

$$y = f(x)$$

Teorema 4.1 — Teorema do Valor Médio: Seja ∫uma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b], então existe pelo menos um número w no intervalo (a,b) tal que:

$$f'(w) = \frac{f(b) - f(a)}{b - a}.$$

f(w)f(b)f(a) $\tan \alpha = \frac{f(b) - f(a)}{b}$

Reta secante ao gráfico da função nos pontos (a, f(a)) e (b, f(b)).

ceder

y = f(x)

Um caso especial do Teorema do Valor Médio:

Teorema 4.2 – Teorema de Rolle:

Seja f uma função real de uma variável real.

Se f é diferenciável em um intervalo aberto (a,b) e é contínua no intervalo fechado [a,b]. Se f(a) = f(b), então existe pelo menos um número w no intervalo (a,b) tal que f'(w) = 0.

- Definição 4.1: Seja f uma função real de uma variável real e seja I um intervalo (aberto ou fechado) contido no domínio de f.
- 1) A função f é denominada <u>crescente</u> no intervalo I se, para todos os números x_1 e x_2 de I, $f(x_1) \le f(x_2)$ quando $x_1 \le x_2$.
- 2) A função f é denominada decrescente no intervalo I se, para todos os números x_1 e x_2 de I, $f(x_1) > f(x_2)$ quando $x_1 < x_2$.
- 3) A função f é denominada *constante no intervalo I* se, para todos os números x_1 e x_2 de I, $f(x_1) = f(x_2)$.

Exemplo 4.1

- [a,b]-fé crescente
- [b,c]-fé decrescente
- [c,d]-fé crescente
- [d,e]-fé constante

cederj

Teorema 4.3: Seja f uma função real de uma variável real, diferenciável no intervalo aberto (a,b) e contínua no intervalo fechado [a,b].

- 1) Se $f'(x) \ge 0$ para todo número x em (a,b), então f é crescente em [a,b].
- 2) Se $f'(x) \le 0$ para todo número x em (a,b), então f é decrescente em [a,b].
- 3) Se f'(x) = 0 para todo número x em (a,b), então f é constante em [a,b].

Exemplo 4.2

Vamos determinar os intervalos nos quais a função $f(x) = x^3 - 3x + 1$ é monótona (isto é, ou crescente ou decrescente).

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1)$$

е

1)
$$x^2 - 1 > 0 \Leftrightarrow x^2 > 1 \Leftrightarrow |x| > 1 \Leftrightarrow x < -1$$
 ou $x > 1$,

2)
$$x^2 - 1 < 0 \Leftrightarrow x^2 < 1 \Leftrightarrow |x| < 1 \Leftrightarrow -1 < x < 1$$
,

3)
$$x^2 - 1 = 0 \Leftrightarrow x^2 = 1 \Leftrightarrow |x| = 1 \Leftrightarrow x = -1 \text{ ou } x = 1.$$

Portanto

1) se $x \in (-\infty, -1]$ então $f'(x) > 0 \Rightarrow f$ é crescente,

Teorema 4.3

2) se
$$x \in [-1,1]$$
 então $f'(x) < 0 \Rightarrow f$ é decrescente,

Teorema 4.3
3) se $x \in [1, +\infty)$ então $f'(x) > 0 \implies f$ é crescente.

<u>cederj</u>

Definição 4.2: Seja f uma função real de uma variável real. Se f é diferenciável em um intervalo aberto I, então f é classificada em:

- 1) $c\hat{o}ncava para cima quando <math>f$ é crescente no intervalo I,
- 2) côncava para baixo quando f' é decrescente no intervalo I.

[a,b]-fé côncava para baixo

[b,c]-fé côncava para cima

Teorema 4.3: Seja f uma função real de uma variável real, duas vezes diferenciável no intervalo aberto (a,b).

- 1) Se $f''(x) \ge 0$ para todo número x em (a,b), então f é côncava para cima em (a,b).
- 2) Se $f''(x) \le 0$ para todo número x em (a,b), então f é côncava para baixo em (a,b).

Definição 4.3: Seja f uma função real de uma variável real. Se f é uma função contínua em um intervalo aberto que contém o ponto a e se f muda de concavidade neste ponto, dizemos, então, que f tem um *ponto de inflexão* em a e chamamos o ponto (a, f(a)) do gráfico de f um *ponto de inflexão* de f.

[a,b]-fé côncava para baixo

[b,c] – f é côncava para cima

Exemplo 4.4

Vamos determinar os intervalos nos quais a função $f(x) = x^3 - 3x + 1$ é côncava para cima e para baixo.

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1) \Rightarrow f''(x) = 6x$$

е

- 1) $6x > 0 \Leftrightarrow x > 0$,
- 2) $6x < 0 \Leftrightarrow x < 0$,
- **3**) $6x = 0 \Leftrightarrow x = 0$.

Portanto

1) se $x \in (-\infty,0)$ então $f''(x) < 0 \implies f$ é côncava para baixo,

Teorema 4.4

Z) se $x \in (0, +\infty)$ então $f''(x) > 0 \Rightarrow f$ é côncava para cima,

e f tem um ponto de inflexão em x = 0.

<u>cederj</u>

<u>cederj</u>

Definição 4.4: Seja f uma função real de uma variável real.

- 1) Diz-se que uma função f tem um máximo relativo em a quando existe um intervalo aberto, I, contendo a e contido no domínio de f, tal que $f(a) \ge f(x)$, para todo número x de I.
- 2) Diz-se que uma função f tem um minimo relativo em a quando existe um intervalo aberto, I, contendo a e contido no domínio de f, tal que $f(a) \le f(x)$, para todo número x de I.

Quando f tem um máximo ou mínimo relativo em a, diz-se que f tem um extremo relativo em a.

Teorema 4.4: Seja f uma função real de uma variável real. Se f tem extremos relativos, então eles ocorrem ou em pontos onde f'(x) = 0 ou em pontos de não-diferenciabilidade.

OBS:

Os pontos do domínio de uma função f nos quais f'(x) = 0 ou f é não diferenciável são denominados de *pontos críticos* de f.

- **Teorema 4.5 Teste da Derivada Primeira**: Seja f uma função real de uma variável real, contínua no intervalo aberto (a,c) e seja b um ponto deste intervalo. Suponha que f é diferenciável em todos os pontos do intervalo (a,c) exceto, possivelmente, no ponto b e suponha, também, que b é um *ponto crítico* de f.
- 1) Se $f'(x) \ge 0$ para todo ponto x de (a,b) e se $f'(x) \le 0$ para todo ponto x de (b,c), então f tem um máximo relativo em b.
- 2) Se $f'(x) \le 0$ para todo ponto x de (a,b) e se $f'(x) \ge 0$ para todo ponto x de (b,c), então f tem um mínimo relativo em b.
- 3) Se f preservar o sinal nos intervalos (a,b) e (b,c), então f não tem extremos relativos em b.

Teorema 4.6 – Teste da Derivada Segunda: Seja f uma função real de uma variável real. Suponha que f é duas vezes diferenciável no ponto b e suponha, também, que f(b) = 0.

- 1) Se $f''(b) \le 0$, então f tem um máximo relativo em b.
- 2) Se $f'(b) \ge 0$, então f tem um mínimo relativo em b.

Exemplo 4.5

Para a função $f(x) = x^3 - 3x + 1$ vamos determinar, analiticamente, os pontos críticos e os pontos nos quais a f têm mínimo e máximo relativo.

Notamos, em primeiro lugar, que o domínio natural de f é a reta real e que f é contínua e diferenciável em todo seu domínio, uma vez que é uma função polinomial. f também é uma função polinomial e portanto também é diferenciável em \mathbb{R} . Além disso,

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1)$$

e

$$x^2 - 1 = 0 \Leftrightarrow x^2 = 1 \Leftrightarrow |x| = 1 \Leftrightarrow x = -1 \text{ ou } x = 1$$

e portanto f tem apenas dois pontos críticos: em x = -1 e em x = 1. Logo, de acordo com o **Teorema 4.4**, se f tiver extremos locais eles ocorrem nesse pontos.

Como

$$f'(x) = 3\left(x^2 - 1\right)$$

е

a)
$$x^2 - 1 > 0 \Leftrightarrow x^2 > 1 \Leftrightarrow |x| > 1 \Leftrightarrow x < -1 \text{ ou } x > 1$$
,

b)
$$x^2 - 1 < 0 \Leftrightarrow x^2 < 1 \Leftrightarrow |x| < 1 \Leftrightarrow -1 < x < 1$$
,

concluímos que:

1)

para todo
$$x \in (-\infty, -1], f'(x) > 0$$
 \Rightarrow $f \text{ tem um } \underline{\text{máximo relativo}} \text{ em } x = -1,$ para todo $x \in [-1, 1], f'(x) < 0$

2)

para todo
$$x \in [-1,1], \quad f'(x) < 0$$
 \Rightarrow $f \text{ tem um } \underline{\min \text{minimo relativo}} \text{ em } x = -1.$ para todo $x \in [1,+\infty), \quad f'(x) > 0$

Como

$$f''(x) = 6x$$

e

a)
$$6x > 0 \Leftrightarrow x > 0$$
,

b)
$$6x < 0 \Leftrightarrow x < 0$$
,

concluímos que:

1) para todo
$$x \in (-\infty, 0), \ f''(x) < 0 \Rightarrow f''(-1) < 0$$

Teorema 4.6

 f tem um máximo relativo em $x = -1$,

2) para todo
$$x \in (0, +\infty)$$
, $f''(x) > 0 \Rightarrow f''(1) > 0$

Teorema 4.6

 $\Rightarrow f$ tem um mínimo relativo em $x = 1$.

- Definição 4.5: Seja f uma função real de uma variável real. Seja I um intervalo contido no domínio de f e seja a um ponto de I.
- 1) Diz-se que uma função f tem um máximo absoluto no intervalo I em a quando para todo número x de I, f(a) > f(x).
- 2) Diz-se que uma função f tem um *minimo absoluto no intervalo I* em a quando para todo número x de I, $f(a) \le f(x)$.

Quando f tem um máximo ou mínimo absoluto no intervalo I em a, diz-se que f tem um extremo absoluto no intervalo I.

Teorema 4.7 – Teorema do Valor Extremo: Seja f uma função real de uma variável real. Se f é contínua em um intervalo fechado finito [a,b], então f tem um mínimo e um máximo absolutos em [a,b].

Teorema 4.8: Seja f uma função real de uma variável real. Se f tem um extremo absoluto em um intervalo aberto (a,b), então ele ocorre em um ponto crítico de f.

Procedimento para Encontrar os Extremos Absolutos de uma Função Contínua f em um Intervalo Finito Fechado [a,b]

- **Passo 1**: Ache os pontos críticos de f em (a,b).
- Passo 2: Ache o valor de f em todos os pontos críticos e nos extremos a e b.
- Passo 3: O maior, entre os valores calculados no Passo 2, é o valor máximo absoluto de f em [a,b] e o menor valor é o mínimo absoluto.

Exemplo 4.6

Vamos encontrar os extremos absolutos da função $f(x) = x^3 - 3x + 1$ no intervalo fechado [-1,8; 2,4].

f é contínua e diferenciável em [-1,8; 2,4] uma vez que é uma função polinomial. Além disso, recordamos que

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1)$$

e

$$|x^2-1=0 \Leftrightarrow x^2=1 \Leftrightarrow |x|=1 \Leftrightarrow x=-1 \text{ ou } x=1,$$

e portanto f tem apenas dois pontos críticos: em x = -1 e em x = 1.

Por outro lado,

$$f(-1,8) = (-1,8)^3 - 3(-1,8) + 1 = 0,568$$
$$f(-1) = (-1)^3 - 3(-1) + 1 = 3$$
$$f(1) = (1)^3 - 3(1) + 1 = -1$$
$$f(2,4) = (2,4)^3 - 3(2,4) + 1 = 7,624$$

<u>ceder</u>j

Exemplo 4.6

Vamos encontrar os extremos absolutos da função $f(x) = x^3 - 3x + 1$ no intervalo fechado [-1,8; 2,4].

f é contínua e diferenciável em [-1,8; 2,4] uma vez que é uma função polinomial. Além disso, recordamos que

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1)$$

e

$$|x^2-1=0 \Leftrightarrow x^2=1 \Leftrightarrow |x|=1 \Leftrightarrow x=-1 \text{ ou } x=1,$$

e portanto f tem apenas dois pontos críticos: em x = -1 e em x = 1.

Por outro lado,

$$f(-1,8) = (-1,8)^{3} - 3(-1,8) + 1 = 0,568$$

$$f(-1) = (-1)^{3} - 3(-1) + 1 = 3$$

$$f(1) = (1)^{3} - 3(1) + 1 = -1$$

$$f(2,4) = (2,4)^{3} - 3(2,4) + 1 = 7,624$$

mínimo absoluto máximo absoluto cederi

Resumo

Derivadas

- · Regra da Cadeia;
- Derivadas de ordem superior;

Análise de funções

- Comportamento de funções;
- Uso da derivada no estudo do comportamento de funções;
- Função: crescente, decrescente, concavidade, máximo, mínimo, etc.

Introdução

Cálculo de áreas: Seja o seguinte problema

Dada f(x) continua, $f(x) \ge 0$ em [a,b], achar a área entre o gráfico de f(x) no intervalo [a,b] e o eixo x.

<u>ceder</u>j

Método das antiderivadas.

Método dos retângulos

Método das antiderivadas.

Método das antiderivadas

$$A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h}$$

cederj

Método das antiderivadas.

Método das antiderivadas

$$A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h}$$

<u>cederj</u>

Método das antiderivadas.

Método das antiderivadas

$$\frac{A(x+h)-A(x)}{h} \approx \frac{f(c).h}{h} = f(c)$$

$$A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = \lim_{h \to 0} f(c)$$

$$\mathbf{mas}, \ \lim_{b\to 0} f(c) = f(x)$$

$$A'(x) = f(x)$$

<u>cederj</u>

Método das antiderivadas.

Método das antiderivadas

Vimos da relação $\underline{A'(x)} = f(x)$ que a derivada da função área A(x) é a função f(x).

Portanto, se encontrarmos a função cuja derivada é f(x) saberemos a expressão para a área A(x).

Veremos, a partir de agora, como isto é feito.

A Integral Indefinida

Definição 5.1: Seja f uma função real de uma variável real. Uma função F é chamada *antiderivada de* f *em um intervalo* F se F'(x) = f(x) para todo F em F.

Exemplo 5.1

As funções
$$F(x) = \frac{x+1}{x-1}$$
 e $G(x) = \frac{x+1}{x-1} + 6$

são antiderivadas da função $f(x) = \frac{-2}{(x-1)^2}$ no intervalo $(-\infty,1) \cup (1,+\infty)$.

De fato, para todo x no intervalo $(-\infty,1) \cup (1,+\infty)$

$$F'(x) = G'(x) = \frac{(x-1)-(x+1)}{(x-1)^2} \leftarrow \text{regra do quociente e da constante}$$
$$= \frac{-2}{(x-1)^2}.$$

<u>cederj</u>

Teorema 5.1: Seja f uma função real de uma variável real. Se \underline{F} é uma antiderivada de \underline{f} no intervalo I, então para qualquer constante c a função cuja lei é F(x)+c é também uma antiderivada de f em I. Além disso, cada antiderivada de f no intervalo I pode ter sua lei expressa na forma F(x)+c, escolhendo-se apropriadamente a constante c.

O processo de encontrar antiderivadas é chamado <u>integração</u> ou *antidiferenciação*.

Logo se, para todo x no intervalo I, $\frac{d}{dx}[F(x)] = f(x)$, então integrando-se (ou antidiferenciando-se) f(x), obtém-se as antiderivadas F(x) + c, para todo x em I. Denota-se este procedimento do seguinte modo:

integração de f(x) em relação a x

 $\int f(x)dx = F(x) + c, \text{ para todo } x \text{ em } I$

sinal de integração ou integral indefinida

constante de integração

integrando

"a integração de f(x) em relação a x é igual a F(x) + c"

<u>cederj</u>

Exemplo 5.2

No Exemplo 5.1 verificamos que

$$\frac{d}{dx} \left[\frac{x+1}{x-1} \right] = \frac{-2}{(x-1)^2}, \text{ para todo } x \text{ em } \left(-\infty, 1 \right) \cup \left(1, +\infty \right).$$

Logo,

$$\int \frac{-2}{(x-1)^2} dx = \frac{x+1}{x-1} + c, \text{ para todo } x \text{ em } (-\infty,1) \cup (1,+\infty).$$

Ressaltamos que:

$$\forall x \in I, \frac{d}{dx}[F(x)] = f(x) \Rightarrow \int f(x) dx = F(x) + c, \forall x \in I.$$

Regra de Diferenciação

Regra de Integração

Exemplo 5.3

Pela regra da potência (Teorema 3.3) sabemos que:

$$\frac{d}{dx}(x^{\alpha}) = \alpha x^{\alpha^{-1}}, \text{ na qual } \alpha \in \mathbb{R}.$$

Logo, tomando $\alpha := \beta + 1$, na qual $\beta \in \mathbb{R}$ com $\beta \neq -1$, obtém-se

$$\frac{d}{dx}\left(\frac{x^{\beta+1}}{\beta+1}\right) = \frac{\left(\beta+1\right)x^{\left(\beta+1\right)-1}}{\beta+1} = x^{\beta},$$

e portanto a regra da potência para integração é:

$$\int x^{\beta} dx = \frac{x^{\beta+1}}{\beta+1} + c, \text{ na qual } \beta \in \mathbb{R} \text{ com } \beta \neq -1.$$

Exemplo 5.4

Vamos aplicar a regra da potência para integração.

1)
$$\int x^3 dx = \frac{x^{3+1}}{3+1} + C$$
$$= \frac{x^4}{4} + C.$$

2)
$$\int 1 dx = \int x^0 dx = \frac{x^{0+1}}{0+1} + c \qquad \longrightarrow \int 1 dx \text{ pode ser escrito como } \int dx$$
$$= x + c.$$

3)
$$\int \frac{1}{\sqrt{t}} dt = \int t^{-\frac{1}{2}} dt = \frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c \longrightarrow \int \frac{1}{\sqrt{t}} dt \text{ pode ser escrito como } \int \frac{dt}{\sqrt{t}}$$
$$= \frac{t^{\frac{-1+2}{2}}}{-\frac{1+2}{2}} + c = \frac{t^{\frac{1}{2}}}{\frac{1}{2}} + c = 2\sqrt{t} + c.$$

Teorema 5.1: Sejam f e g duas funções reais de um variável real.

- 1) Regra da homogeneidade: $\int cf(x)dx = c\int f(x)dx$, na qual $c \in \mathbb{R}$ é constante.
- 2) Regra da adição: $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx.$
- 3) Regra da diferença: $\int [f(x) g(x)] dx = \int f(x) dx \int g(x) dx.$

Notamos, em primeiro lugar que

$$\frac{x^4 + 3x^2 + 5}{x^2} = \frac{x^4}{x^2} + \frac{3x^2}{x^2} + \frac{5}{x^2} = x^2 + 3 + 5x^{-2}$$

e portanto

$$\int \frac{x^4 + 3x^2 + 5}{x^2} dx = \int (x^2 + 3 + 5x^{-2}) dx$$
$$= \int x^2 dx + \int 3 dx + \int 5x^{-2} dx \leftarrow \text{ regras da adição}.$$

Mas:

1)
$$\int x^2 dx = \frac{x^3}{3} + c_1 \leftarrow \text{regra da potência}$$
,

2)
$$\int 3 dx = 3 \int dx$$
 regra da homogeneidade,
= $3(x+c_2)$ regra da potência (ver Exemplo 5.4),

3)
$$\int 5x^{-2} dx = 5 \int x^{-2} dx \leftarrow \text{regra da homogeneidade},$$

= $5 \left(\frac{x^{-1}}{-1} + c_3 \right) \leftarrow \text{regra da potência}.$

Logo, obtém-se

$$\int \frac{x^4 + 3x^2 - 5}{x^2} dx = \frac{x^3}{3} + 3x - \frac{5}{x} + c.$$
 cederi

Exemplo 5.5

$$\int \frac{x^4 + 3x^2 + 5}{x^2} dx = ?$$

Integração por Substituição

Suponha que conhecemos a função real de uma variável real \hat{f} e que sabemos calcular a função \hat{F} tal que $\hat{f}(u)du = \hat{F}(u) + c_{_1}, \text{ para todo } u \text{ em } \hat{I}.$

Suponha, também, que conhecemos a função real de uma variável real f e que queremos calcular a função F tal que

$$\int f(x) dx = F(x) + c_2, \text{ para todo } x \text{ em } I.$$

Se *encontramos* uma função real de uma variável real *g,*

$$g: I \to \hat{I}$$

 $x \mapsto u = g(x),$

diferenciável em I, tal que

$$f(x) = (\hat{f} \circ g)(x)g'(x)$$
, para todo x em I ,

então

$$F(x) = (\hat{F} \circ g)(x)$$
, para todo x em I .

De fato. Para todo x em I

$$\hat{F} \circ g)'(x) = \hat{F}'(g(x))g'(x) \leftarrow \text{Regra da Cadeia (Teorema 3.6)}$$

$$= \hat{f}(g(x))g'(x) \leftarrow \text{pois } \hat{f}(u)du = \hat{F}(u) + c$$

$$= (\hat{f} \circ g)(x)g'(x).$$

Consequentemente

$$\int (\hat{f} \circ g)(x) g'(x) dx = (\hat{F} \circ g)(x) + c.$$

Logo, **uma vez que**
$$f(x) = (\hat{f} \circ g)(x)g'(x)$$
, para todo x em I ,

então

$$\int (\hat{f} \circ g)(x)g'(x)dx = \int f(x)dx = (\hat{F} \circ g)(x) + c.$$

Vamos escolher $u = g(x) := 7x + 2 \implies g'(x) = 7$.

Vamos definir $\hat{f}(u) := \frac{\sqrt{u}}{7}$, porque com esta escolha

$$(\hat{f} \circ g)(x)g'(x) = \left[\frac{\sqrt{(7x+2)}}{7}\right]_{g'(x)}^{7} = f(x).$$

Por outro lado,

$$\int \frac{\sqrt{u}}{7} du = \frac{1}{7} \int \sqrt{u} du \leftarrow \text{regra da homogeneidade}$$

$$= \frac{1}{7} \int u^{\frac{1}{2}} du = \frac{1}{7} \frac{u^{\frac{1}{2}+1}}{\left(\frac{1}{2}+1\right)} + c_1 \leftarrow \text{regra da potência}$$

$$= \frac{2}{21}u^{\frac{3}{2}} + c_1 \implies \hat{F}(u) := \frac{2}{21}u^{\frac{3}{2}}$$

e portanto

$$\int \sqrt{7x+2} \, dx = \left(\hat{F} \circ g\right)(x) + c = \frac{2}{21} \left(7x+2\right)^{\frac{3}{2}} + c = \frac{2}{21} \sqrt{\left(7x+2\right)^{3}} + c.$$
cederi

Exemplo 5.6

$$\int \sqrt{7x+2}\,dx = ?$$

Neste caso
$$f(x) = \frac{x^2}{(x^3 + 4)^5}$$
.

Vamos escolher $u = g(x) := x^3 + 4 \implies g'(x) = 3x^2$.

Vamos definir $\hat{f}(u) := \frac{1}{3u^5}$, porque com esta escolha

$$(\hat{f} \circ g)(x)g'(x) = \underbrace{\left[\frac{1}{3(x^3 + 4)^5}\right]}_{(\hat{f} \circ g)(x)} \underbrace{3x^2}_{g'(x)} = f(x).$$

Por outro lado,

$$\int \frac{1}{3u^5} du = \frac{1}{3} \int \frac{1}{u^5} du \leftarrow \text{regra da homogeneidade}$$

$$= \frac{1}{3} \int u^{-5} du = \frac{1}{3} \frac{u^{-5+1}}{(-5+1)} + c_1 \leftarrow \text{regra da potência}$$

$$= -\frac{1}{12} u^{-4} + c_1 \implies \hat{F}(u) := -\frac{1}{12} u^{-4}$$

e portanto

$$\int \frac{x^2}{\left(x^3 + 4\right)^5} dx = \left(\hat{F} \circ g\right)(x) + c = -\frac{1}{12} \left(x^3 + 4\right)^{-4} + c = -\frac{1}{12 \left(x^3 + 4\right)^4} + c.$$

Exemplo 5.7

$$\int \frac{x^2 dx}{\left(x^3 + 4\right)^5} = ?$$

A Integral Definida

Definição 5.2: Seja f uma função real de uma variável real. Se f é contínua em I = [a,b] e $f(x) \ge 0$ para todo x em I, então a <u>área</u> sob a curva y = f(x) no intervalo I é definida por

$$A := \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f(x_k) = \lim_{n \to \infty} \frac{b-a}{n} \Big[f(x_1) + f(x_2) + \dots + f(x_n) \Big].$$

Na figura:

$$h = \frac{b-a}{5}$$

Definição 5.3: Seja f uma função real de uma variável real. Se f é contínua em I = [a,b], então

é chamado <u>área líquida com sinal</u> da curva y = f(x) no intervalo I.

Uma partição de um intervalo [a,b] é o conjunto constituído por todos os intervalos fechados obtidos ao subdividir-se [a,b] em n subintervalos.

Denotaremos por $h_{\bf k}$ o comprimento do k-ésimo subintervalo da partição. Denotaremos por h_{max} o maior $h_{\bf k}$ da partição. h_{max} é chamado tamanho da malha da partição.

Exemplo de uma partição de um intervalo [a,b], mostrando os retângulos construídos a partir dela para aproximar a área sob a curva y = f(x) de x = a até x = b, é ilustrado abaixo.

Definição 5.4: Seja f uma função real de uma variável real. Dizemos que f é *integrável à Riemann* ou, simplesmente, *integrável* em um intervalo finito e fechado [a,b], se o limite

$$\lim_{h_{\max}\to 0} \sum_{k=1}^n f(x_k) h_k$$

existir e não depender da escolha da partição de [a,b] ou do ponto $x_{\bf k}$ do k-ésimo subintervalos, de comprimento $k_{\bf k}$, da partição.

O limite da definição acima é denotado pelo símbolo

limite superior de integração f(x) dx

limite inferior de integração

integrando

que é chamado de *integral definida* de f de a até b.

<u>cederj</u>

Interpretação geométrica da *integral definida* de f de a até b

Geometricamente, a integral definida de f de a até b é a área líquida com sinal da curva y = f(x) no intervalo [a,b]. Se $f(x) \ge 0$ para todo x em [a,b], então a integral definida de f de a até b é a área sob a curva y = f(x) no intervalo [a,b].

Exemplo 5.8

Definição 5.5: Seja f uma função real de uma variável real.

a) Se a estiver no domínio de f, define-se:

$$\int_{a}^{a} f(x) dx := 0.$$

b) Se f for integrável em [a,b], então define-se:

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx.$$

Exemplo 5.9

$$\int_0^1 \sqrt{1-x^2} \, dx := -\int_1^0 \sqrt{1-x^2} \, dx = -\frac{\pi}{4}.$$

Definição 5.5 - b

Exemplo 5.8

Condições para a integrabilidade

Definição 5.6: Seja f uma função real de uma variável real. Dizemos que f é *limitada em um intervalo I* se existir um número M positivo tal que

$$-M \le f(x) \le M$$

para todo x em I.

Geometricamente, dizer que f é *limitada* em um intervalo I, significa que o gráfico de f no intervalo I fica entre as retas y = -M e y = M.

60

Exemplo 5.9

$$I = [a,b]$$
$$M = 40$$

y = f(x)

<u>lerj</u>

Teorema 5.2: Seja f uma função real de uma variável real e seja [a,b] um intervalo fechado contido no domínio de f.

- a) Se f é continua em [a,b], então f é integrável em [a,b].
- b) Se f tem um número finito de descontinuidades em [a,b], mas é limitada em [a,b], então f é integrável em [a,b].
- c) Se f não é limitada em [a,b], então f não é integrável em [a,b].

Propriedades da integral definida

Teorema 5.3: Sejam f e g funções reais de uma variável real e c uma constante. Se f e g são integráveis em [a,b], então as funções cf, f+g e f-g são também integráveis em [a,b] e

$$\mathbf{a)} \quad \int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx,$$

b)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx,$$

$$\mathbf{c}) \qquad \int_a^b \left[f(x) - g(x) \right] dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx.$$

Teorema 5.4: Seja f uma função real de uma variável real. Se f é integrável em um intervalo fechado que contém os pontos a,b e c, então

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx,$$

não importando como os pontos estão ordenados.

Teorema 5.5: Seja $f \in \mathcal{G}$ funções reais de uma variável real.

a) Se f é integrável em [a,b] e $f(x) \ge 0$ para do x em [a,b], então

$$\int_a^b f(x) \, dx \ge 0.$$

b) Se f e g são integráveis em [a,b] e $f(x) \ge g(x)$ para do x em [a,b],

então

$$\int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx.$$

Resumo

- Cálculo de áreas;
- Antiderivadas;
- Integração (antiderivação);
- Regras de integração;
- Integração por substituição;
- Integrais definidas;
- Integral de Riemann;
- Áreas e integrais definidas;
- Condições para integrabilidade;
- Propriedades da integral definida.

Integração

O Teorema Fundamental do Cálculo

Teorema 5.6 – Teorema Fundamental do Cálculo, Parte I :

Seja f uma função real de uma variável real. Se f é contínua em [a,b] e se F é a antiderivada de f em [a,b], então

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Relação entre a integral definida e a indefinida

Recordamos que: se, para todo x no intervalo [a,b],

$$\frac{d}{dx}[F(x)] = f(x)$$
, então antidiferenciando-se $f(x)$, obtém-se

integração de f(x) em relação a x

$$\int f(x)dx = F(x) + c, \text{ para todo } x \text{ em } [a,b]$$

integral indefinida

constante de integração

Neste caso,

$$\left[\int f(x) dx\right]_a^b := \left(F(b) + c\right) - \left(F(a) + c\right) = F(b) - F(a)$$

Portanto, se f é contínua em [a,b]:

$$\int_{a}^{b} f(x) dx = \left[\int f(x) dx \right]_{a}^{b}.$$

Exemplo 5.10

$$\int_0^1 (x^3 + 2x + 10) dx = ?$$

Em primeiro lugar, observamos que a função que queremos integrar, $f(x) := x^3 + 2x + 10$, é uma <u>função polinomial</u> e, portanto, pelo Teorema 2.11 é contínua em $(-\infty, +\infty)$. Logo, pelo Teorema Fundamental do Cálculo – Parte I,

$$\int_0^1 \left(x^3 + 2x + 10 \right) dx = \left[\int \left(x^3 + 2x + 10 \right) dx \right]_0^1$$

Agora, notamos que

7/5

Mas:

1)
$$\int x^3 dx = \frac{x^4}{4} + c_1 \leftarrow \text{regra da potência},$$

2)
$$\int 2x dx = 2 \int x dx \leftarrow \text{regra da homogeneidade},$$

$$=2\frac{x^2}{2}+c_2 \leftarrow \text{regra da potência},$$

3)
$$\int 10 dx = 10 \int dx \leftarrow \text{regra da homogeneidade},$$

= $10(x+c_3) \leftarrow \text{regra da potência}.$

Logo, obtém-se

$$\int (x^3 + 2x + 10) dx = \frac{x^4}{4} + x^2 + 10x + c$$

e portanto

$$\int_{0}^{1} (x^{3} + 2x + 10) dx = \left[\frac{x^{4}}{4} + x^{2} + 10x + c \right]_{0}^{1} = \left[\frac{(1)^{4}}{4} + (1)^{2} + 10.1 \right] - \left[\frac{(0)^{4}}{4} + (0)^{2} + 10.0 \right] = \frac{1}{4} + 1 = \frac{5}{4}$$
cederi

Exemplo 5.11
$$\int_{1}^{3} \sqrt{7x+2} \, dx = ?$$

Traçando o gráfico da função que queremos integrar concluímos que ela é contínua no intervalo [1,3].

Logo, pelo Teorema Fundamental do Cálculo – Parte I,

$$\int_{1}^{3} \sqrt{7x + 2} \, dx = \left[\int \sqrt{7x + 2} \, dx \right]_{1}^{3}$$

Neste caso $f(x) = \sqrt{7x + 2}$.

Vamos escolher $u = g(x) := 7x + 2 \implies g'(x) = 7$.

Vamos definir $\hat{f}(u) := \frac{\sqrt{u}}{7}$, porque com esta escolha

$$(\hat{f} \circ g)(x)g'(x) = \left[\frac{\sqrt{(7x+2)}}{7}\right]_{g'(x)}^{7} = f(x).$$

Por outro lado,

$$\int \frac{\sqrt{u}}{7} du = \frac{1}{7} \int \sqrt{u} du \leftarrow \text{regra da homogeneidade}$$

$$= \frac{1}{7} \int u^{\frac{1}{2}} du = \frac{1}{7} \frac{u^{\frac{1}{2}+1}}{\left(\frac{1}{2}+1\right)} + c_1 \leftarrow \text{regra da potência}$$

$$= \frac{2}{21} u^{\frac{3}{2}} + c_1 \implies \hat{F}(u) := \frac{2}{21} u^{\frac{3}{2}}$$

e portanto

$$\int \sqrt{7x+2} \, dx = \left(\hat{F} \circ g\right)(x) + c = \frac{2}{21} \left(7x+2\right)^{\frac{3}{2}} + c = \frac{2}{21} \sqrt{\left(7x+2\right)^{\frac{3}{2}}} + c.$$

Vamos refazer o Exemplo 5.6, para calcular

$$\int \sqrt{7x+2}\,dx.$$

Logo, obtém-se

$$\int_{1}^{3} \sqrt{7x+2} \, dx = \left[\frac{2}{21} \sqrt{(7x+2)^{3}} + c \right]_{1}^{3} = \frac{2}{21} \left\{ \sqrt{[7(3)+2]^{3}} - \sqrt{[7(1)+2]^{3}} \right\}$$

$$= \frac{2}{21} \left(23\sqrt{23} - 27 \right)$$

$$= 7.9337.$$

Como veremos a seguir, a resolução do exemplo anterior poderia ser um pouco simplificada. Para isto precisamos do próximo teorema.

Teorema 5.7 : Sejam $\hat{f} \in \mathcal{E}$ funções reais de uma variável real. Se

- 1) g é diferenciável no intervalo fechado [a,b],
- 2) g' é contínua em [a,b],
- 3) \hat{f} é contínua no intervalo fechado [g(a), g(b)],

então

$$\int_{a}^{b} (\hat{f} \circ g)(x) g'(x) dx = \int_{g(a)}^{g(b)} \hat{f}(u) du.$$

A utilização desse teorema no cálculo de integrais definidas é chamado, por alguns autores, de cálculo de integrais definidas por substituição.

Vamos revolver novamente o exemplo anterior mas sob a luz deste teorema.

Exemplo 5.12
$$\int_{1}^{3} \sqrt{7x + 2} \, dx = ?$$

No Exemplo 5.11 verificamos que

$$\int_{1}^{3} \sqrt{7x + 2} \, dx = \left[\int \sqrt{7x + 2} \, dx \right]_{1}^{3}.$$

Para calcularmos a integral indefinida $\int \sqrt{7x+2} \, dx$ utilizamos a técnica de substituição, para a qual escolhemos:

1)
$$u = g(x) := 7x + 2 \implies g'(x) = 7$$

$$\Rightarrow (\hat{f} \circ g)(x)g'(x) = \left[\frac{\sqrt{7x + 2}}{7} \right]_{g(x)}^{7}$$
2) $\hat{f}(u) := \frac{\sqrt{u}}{7}$

Observamos que g é diferenciável em [1,3], g' é contínua em [1,3] e

 \hat{f} é contínua no intervalo [g(1), g(3)] = [9,23] (verificar!). Logo

$$\int_{1}^{3} \sqrt{7x+2} \, dx = \int_{1}^{3} (\hat{f} \circ g)(x) g'(x) dx = \int_{9}^{23} \hat{f}(u) du = \int_{9}^{23} \frac{\sqrt{u}}{7} du.$$

por construção

Teorema 5.7

No exemplo anterior verificamos que $\int \frac{\sqrt{u}}{7} du = \frac{2}{21} u^{\frac{3}{2}} + c \quad e$

portanto, pelo Teorema Fundamental do Cálculo - Parte I,

$$\int_{9}^{23} \frac{\sqrt{u}}{7} du = \left[\int \frac{\sqrt{u}}{7} du \right]_{9}^{23} = \left[\frac{2}{21} u^{\frac{3}{2}} + c \right]_{9}^{23} = \frac{2}{21} \left[23^{\frac{3}{2}} - 9^{\frac{3}{2}} \right]$$
$$= \frac{2}{21} \left[23\sqrt{23} - 27 \right].$$

Seja f uma função real de uma variável real. Se f é contínua em um intervalo I, então f tem uma antiderivada em I. Em particular, se a é um ponto qualquer de I, então a função F definida por

$$F(x) := \int_{a}^{x} f(t) dt$$

é uma antiderivada de f em I, ou seja, para todo x em I

$$\left| \frac{d}{dx} \left[\int_{a}^{x} f(t) \, dt \right] = f(x).$$

Exemplo 5.13
$$\frac{d}{dx} \left[\int_0^x (2t^2 - t + 1) dt \right] = ?$$

O integrando, a função f definida por $f(t) = 2t^2 - t + 1$, é uma função polinomial e, portanto, é contínua (Teorema 2.11) em todo o seu domínio natural que é $(-\infty, +\infty)$. Logo, Teorema Fundamental do Cálculo – Parte II

$$\frac{d}{dx}\left[\int_0^x \left(2t^2-t+1\right)dt\right] = f(x) = 2x^2-x+1.$$

OBS: Neste exemplo a := 0.

Exemplo
$$\frac{d}{dx} \left[\int_3^{x^2} (5t + 7)^{25} dt \right] = ?$$

O integrando, a função f definida por $f(t)=(5t+7)^{25}$, é uma função polinomial e, portanto, é contínua (Teorema 2.11) em todo o seu domínio natural que é $(-\infty, +\infty)$. Entretanto, não podemos aplicar direto o Teorema Fundamental do Cálculo – Parte II porque no limite superior da integral aparece a variável x elevada à uma potência diferente de 1.

Vamos definir 3 funções auxiliares:

1)
$$F(x) := \int_{3}^{x^{2}} (5t + 7)^{25} dt$$

2) $u = g(x) := x^{2}$
3) $\hat{F}(u) := \int_{3}^{u} (5t + 7)^{25} dt$ $\Rightarrow F(x) = (\hat{F} \circ g)(x) \quad \forall x \in \mathbb{R}.$

Logo,

$$F'(x) = \frac{d}{dx} \left[\int_{3}^{x^{2}} (5t + 7)^{25} dt \right]$$
$$= \left(\hat{F} \circ g \right)'(x) = \hat{F}'(g(x))g'(x) \leftarrow \text{ regra da cadeia}$$

Além disso:

1)
$$\hat{F}'(u) = \frac{d}{du} \left[\int_3^u (5t+7)^{25} dt \right] = (5u+7)^{25} \leftarrow \text{teorema F.C. - Parte II,}$$

2) $g'(x) = 2x \leftarrow \text{regra da potência.}$

Portanto

$$\frac{d}{dx} \left[\int_{3}^{x^{2}} (5t+7)^{25} dt \right] = (5x^{2}+7)^{25} (2x).$$

Aplicações da Integral Definida

Áreas de Regiões Planas

Para o primeiro método que estudaremos – área por fatiamento - vamos considerar regiões do plano com as seguintes característica:

- a fronteira dessas regiões deve ser formada por um número finito de segmentos de linhas reta ou arcos suaves que devem se encontrar em um número finito de cantos ou vértices;
- as regiões devem ser limitadas no sentido de que deve existir um limite superior para as distâncias entre pontos das regiões.

Exemplo de uma região que verifica as duas condições citadas.

Teorema 6.1 - Área por Fatiamento: Seja Ω uma região do plano, com as característica descritas anteriormente, e seja \underline{S} um eixo de referência. Se a região Ω esta totalmente contida entre as linhas perpendiculares a S que passam pelos pontos a e b e que tangenciam a fronteira de Ω , então

$$Área(\Omega) = \int_a^b l(s) ds,$$

na qual l(s) é o comprimento total do segmento da linha perpendicular a S no ponto s.

Exemplo 6.1

Calcular a área da região do plano xy limitada pela: $y = \sqrt{x}$ e $y = x^3$.

$$Área(\Omega) = \int_0^1 \left(\underbrace{\sqrt{s} - s^3}_{l(s)} \right) ds = \int_0^1 s^{\frac{1}{2}} ds - \int_0^1 s^3 ds = \left[\frac{2}{3} s^{\frac{3}{2}} - \frac{s^4}{4} \right]_0^1 = \frac{5}{12}.$$

Exemplo 6.2

Calcular a área da região do plano xy limitada pela : $y = x^2$ e y = 4.

$$Área(\Omega) = \int_0^4 2\sqrt{s} \, ds = 2 \int_0^4 s^{\frac{1}{2}} \, ds = 2 \left[\frac{2}{3} s^{\frac{3}{2}} \right]_0^4 = \frac{32}{3}.$$

Teorema 6.2 - Área entre Duas Curvas: Sejam $f \in g$ duas funções reais de uma variável real. Se $f \in g$ são contínuas no intervalo fechado [a,b] e se $f(x) \ge g(x)$ para todo x em [a,b], então a área, A, da região limitada acima pela curva y = f(x), abaixo pela curva y = g(x) à esquerda pela reta x = a e à direita pela reta x = b é:

$$A = \int_a^b [f(x) - g(x)] dx.$$

Exemplo 6.3 Calcular a área da região do plano xy limitada pelas curvas:

Solução.

$$y = -\frac{x^2}{4}$$
 e $y = -2\sqrt{-x}$.

Seja:

$$f(x) := -\frac{x^2}{4}$$
 e $g(x) := -2\sqrt{-x}$.

Observamos que:

1)
$$f(x) = g(x) \Leftrightarrow \begin{cases} x = -4 \\ \text{ou} \\ x = 0, \end{cases}$$

2) para todo $y \in [-4,0]$, $f(x) \ge g(x)$.

Verificar !!

Mas:

1)
$$\int_{-4}^{0} x^2 dx = \left[\frac{x^3}{3} \right]_{-4}^{0} = -\frac{64}{3}$$
.

2) Definido-se, $\hat{f}(u) := -u^{\frac{1}{2}}$ e u = g(x) := -x, obtém-se

$$\int_{-4}^{0} \sqrt{-x} \, dx = \int_{-4}^{0} (\hat{f} \circ g)(x) g'(x) \, dx = \int_{4}^{0} \hat{f}(u) \, du = -\int_{4}^{0} u^{\frac{1}{2}} \, du$$
$$= -\left[\frac{2}{3}u^{\frac{3}{2}}\right]_{4}^{0} = \frac{2}{3}(4\sqrt{4}) = \frac{16}{3}.$$

Logo,

$$\hat{\mathsf{Area}}(\Omega) = 2 \int_{-4}^{0} \sqrt{-x} \, dx - \frac{1}{4} \int_{-4}^{0} x^2 \, dx = 2 \bigg(\frac{16}{3} \bigg) - \frac{1}{4} \bigg(-\frac{64}{3} \bigg) = \frac{16}{3}.$$

Calcular a área da região do plano xy limitada pelas curvas: Exemplo 6.4

$$x = y^2 - 2y$$

 $x = y^2 - 2y$ e x = 2y - 3.

Solução.

Seja:

$$f(x) := 2y - 3$$
 e $g(y) := y^2 - 2y$.

Observamos que:

1)
$$f(y) = g(y) \Leftrightarrow \begin{cases} y = 1 \\ \text{ou} \\ y = 3, \end{cases}$$

2) para todo $y \in [1,3], f(y) \ge g(y)$.

Verificar !!

$$Área(Ω) = \int_{1}^{3} [(2y-3)-(y^{2}-2y)] dy = \int_{1}^{3} (-y^{2}+4y-3) dx.$$
cederi

Mas

$$\int_{1}^{3} \left(-y^{2} + 4y - 3\right) dx = -\int_{1}^{3} y^{2} dx + 4 \int_{1}^{3} y dx - 3 \int_{1}^{3} dx e$$

1)
$$\int_{1}^{3} y^{2} dx = \left[\frac{y^{3}}{3} \right]_{1}^{3} = \frac{26}{3}$$
,

2)
$$4\int_{1}^{3} y \, dx = 4\left[\frac{y^{2}}{2}\right]_{1}^{3} = 4\left(\frac{8}{2}\right) = 16,$$

3)
$$3\int_{1}^{3} dx = 3[y]_{1}^{3} = 3(2) = 6.$$

Logo:

Área(Ω) =
$$\int_{1}^{3} (-y^{2} + 4y - 3) dx = -\frac{26}{3} + 16 - 6 = \frac{4}{3}$$
. ■

Teorema 6.3 - Volume por Fatiamento: Seja Ω um sólido, e seja S um eixo de referência. Se Ω está totalmente contida entre os planos perpendiculares a S que passam pelos pontos α e β e que tangenciam a fronteira de Ω , então

Volume(
$$\Omega$$
) = $\int_a^b A(s)ds$,

na qual A(s) é a área da seção transversal de Ω perpendicular ao eixo S no ponto s.

Calcule o volume de um cone circular reto de altura 30 cm e raio da base igual a 10 cm.

Solução.

Notamos que

$$A(s) = \pi \left(\overline{QR}\right)^2.$$

Por semelhança de triângulos obtemos:

$$\frac{\overline{QR}}{\overline{PQ}} = \frac{\overline{AB}}{\overline{PA}} \Rightarrow \frac{\overline{QR}}{S} = \frac{10}{30} \text{ ou sej a } \overline{QR} = \frac{1}{3}S.$$

Logo,

$$A(s) = \pi \left(\frac{1}{3}s\right)^2 = \frac{1}{9}\pi s^2$$

e portanto

Volume(
$$\Omega$$
) = $\int_{0}^{30} \frac{1}{9} \pi s^{2} ds = \frac{1}{9} \pi \int_{0}^{30} s^{2} ds$
= $\frac{1}{9} \pi \left[\frac{1}{3} s^{3} \right]_{0}^{30} = \frac{\pi}{27} (30)^{3} = 1000 \pi.$

cederi

Água é armazenada em um tanque esférico de raio igual a 10 m. Quantos metros cúbicos de água estão no tanque se a superfície da água está 3 metros abaixo do centro do tanque..

Solução.

Notamos que

$$A(s)=\pi\Big(\overline{QP}\Big)^2.$$

Pelo Teorema de Pitágoras obtemos:

$$(\overline{QP})^{2} + (\overline{QC})^{2} = (\overline{CP})^{2} \Rightarrow$$

$$(\overline{QP})^{2} = (\overline{CP})^{2} - (\overline{QC})^{2}$$

$$= \mathbf{10}^{2} - s^{2}.$$

Logo,

$$A(s) = \pi \left(\mathbf{10}^2 - s^2 \right)$$

e portanto

Volume(
$$\Omega$$
) = $\int_{-10}^{-3} \pi \left(100 - s^2\right) ds$
= $\pi \left[100s - \frac{s^3}{3}\right]_{-10}^{-3} = \frac{1127\pi}{3}$.

cederi

Um sólido de revolução é um sólido gerado pela rotação de uma região plana em torno de uma reta, que está no mesmo plano da região; a reta é chamada de eixo de revolução.

Exemplo 6.8

Seja R a região limitada acima pela reta y = 4 e dos lados pelo eixo γ e pela curva $\gamma = x^2$. Calcular o volume do sólido de revolução gerado pela rotação da região R em torno do eixo y.

Solução.

Notamos que:

$$y = x^2 \Rightarrow |x| = \sqrt{y}$$
.

Logo:

Volume(
$$\Omega$$
) = $\int_{a}^{b} \pi [f(y)]^{2} dy$
= $\int_{0}^{4} \pi [\sqrt{y}]^{2} dy$
= $\pi \int_{0}^{4} y dy$
= $\pi \left[\frac{y^{2}}{2}\right]_{0}^{4} = 8\pi$.

cederi

Resumo

- · Teorema Fundamental do Cálculo Parte I;
- Integrais por substituição;
- Teorema Fundamental do Cálculo Parte II;
- Aplicações da Integral Definida;

```
Cálculo de áreas;
```

Área por fatiamento;

Área entre curvas;

Cálculo de volumes;

Volume por fatiamento;

Volume por discos (sólidos de revolução);

Volume por anéis.

Funções Logarítmica e Exponencial

<u>cederj</u>

Introdução

É conhecido da álgebra, as potências (inteiras ou racionais) de um número *b*:

Inteiras:

$$b^n = b \times b \times b \times \dots \times b$$
 (*n* fatores), $b^{-n} = \frac{1}{b^n}$, $b^0 = 1$

Racionais:

$$b^{p/q} = \sqrt[q]{b^p} = (\sqrt[q]{b})^p, \qquad b^{-p/q} = \frac{1}{b^{p/q}}$$

Poderíamos pensar agora nas potências irracionais, por exemplo

$$2^{\pi}$$
, $3^{\sqrt{2}}$, e $\pi^{-\sqrt{7}}$.

Funções Exponenciais

Definição 7.1: Uma função da forma $f(x) = b^x$ onde b > 0 e $b \ne 1$, é chamada de *função exponencial de base* b.

Exemplo 7.1

$$f(x)=2^x$$
, $f(x)=\left(\frac{1}{2}\right)^x$, $f(x)=\pi^x$

Teorema 7.1: Se b > 0 e $b \ne 1$ então:

- a) A função $f(x) = b^x$ está definida para todo real x: logo o domínio natural é $(-\infty, +\infty)$.
- b) A função $f(x) = b^x$ é contínua no intervalo $(-\infty, +\infty)$ e sua imagem é $(0, +\infty)$.

Graficamente:

Na prática poucas bases b são usadas. Nunca veremos b=7 ou b=3,6.

As mais usadas são a decimal (b=10) que é uma escolha óbvia. O outro número candidato não é visto normalmente na aritmética, na geometria ou na álgebra.

Este novo candidato é o número "e" (de Euler).

Definição 7.2: O número e é a assíntota horizontal ao gráfico da equação

$$y = \left(1 + \frac{1}{x}\right)^x$$

Da definição de assíntota horizontal, visto na 3ª aula, isto pode ser expresso pelos limites.

Valores de $(1+1/x)^x$ aproximam e

x	1+1/x	$(1+1/x)^x$
1	2	2,000000
10	1,1	2,593742
100	1,01	2,704814
1.000	1,001	2,716924
10.000	1,0001	2,718146
100.000	1,00001	2,718268
1.000.000	1,000001	2,718280

Logo, as funções exponenciais mais utilizadas são:

$$y=e^x$$
 e $y=10^x$

A primeira dessas funções recebe o nome especial de função exponencial natural.

Veremos sua importância mais adiante.

Funções Logarítmicas

Os logaritmos de 1 e 10 e 100 e 1000 são 0 e 1 e 2 e 3.

Estes são os logaritmos de base 10, são as potências de 10.

Definição 7.3: Se b > 0 e $b \ne 1$ então para x > 0 o logaritmo na

base b de x é denotado por

$$\log_b x$$

é definido como sendo o expoente ao qual b deve ser elevado para produzir x.

OBS: Também conhecida como *função logarítmica de base b.*

<u>cederj</u>

Observações:

As funções *logarítmicas* são as *inversas* das funções *exponencias*.

Assim como nas funções exponenciais as bases utilizadas são 10 e e.

$$y = \log_{10} x$$
 e $y = \log_{e} x$

O logaritmo na base *e* é chamado de *logaritmo natural* e recebe uma notação especial:

$$\log_e x = \ln x$$

Lê-se ele ene de x.

Teorema 7.2 – <u>Comparação entre funções exponenciais e</u> <u>logarítmicas (b>1)</u>:

$$b^1 = b$$

imagem
$$b^x = (0, +\infty)$$

domínio
$$b^x = (-\infty, +\infty)$$

$$0 < b^x < 1$$
 se $x < 0$

$$\log_b 1 = 0$$

$$\log_b b = 1$$

domínio
$$\log_h x = (0, +\infty)$$

imagem
$$\log_b x = (-\infty, +\infty)$$

$$\log_b x < 0$$
 se $0 < x < 1$

Teorema 7.3 – Propriedades Algébricas dos Logaritmos

Produto $\rightarrow \log_b(ac) = \log_b a + \log_b c$

Quociente $\rightarrow \log_b(a/c) = \log_b a - \log_b c$

Potência $\rightarrow \log_b(a^r) = r \log_b a$

Recíproco $\rightarrow \log_b(1/c) = -\log_b c$

Mudança de base de logaritmos

Sabendo que

$$y = \log_b x$$
 \Rightarrow $b^y = x$

aplicando logaritmo a ambos os lados

$$\ln(b^y) = \ln x$$

das propriedades da funções logarítmicas

$$y \ln b = \ln x$$

substituindo o valor de $y = \log_b x$

$$\log_b x \ln b = \ln x$$

logo

$$\log_{B} x = \frac{\ln x}{\ln b}$$

Exemplo 7.1: (Propriedades dos logaritmos)

Expandindo expressões

$$\log \frac{xy^3}{\sqrt{z}} = \log xy^3 - \log \sqrt{z}$$
 propriedade do quociente $\log \frac{xy^3}{\sqrt{z}} = \log x + \log y^3 - \log \sqrt{z}$ propriedade do produto

$$\log \frac{xy^3}{\sqrt{z}} = \log x + 3\log y^3 - \log \sqrt{z}$$
 propriedade da potência

Condensando expressões

$$\frac{1}{3}\ln x - \ln(x^2 - 1) + 2\ln(x + 3) =$$

$$= \ln x^{\frac{1}{3}} - \ln(x^2 - 1) + \ln(x + 3)^2 \qquad \text{propriedade da potência}$$

$$= \ln \left(\frac{\sqrt[3]{x}}{(x^2 - 1)}\right) + \ln(x + 3)^2 \qquad \text{propriedade da quociente}$$

$$= \ln \left(\frac{\sqrt[3]{x}(x + 3)^2}{(x^2 - 1)}\right) \qquad \text{propriedade da produto}$$

<u>cederj</u>

Derivadas das Funções Exponenciais e Logarítmicas

Derivada da função logarítmica:

$$\frac{d}{dx}[\log_b x] = \lim_{h \to 0} \frac{\log_b (x+h) - \log_b x}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \log_b \left(\frac{x+h}{x}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \log_b \left(1 + \frac{h}{x}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \log_b \left(1 + \frac{h}{x}\right)$$

$$= \lim_{\nu \to 0} \frac{1}{\nu x} \log_b \left(1 + \nu\right)$$

$$= \frac{1}{x} \lim_{\nu \to 0} \frac{1}{\nu} \log_b \left(1 + \nu\right)$$

$$\lim_{n \to \infty} \frac{1}{\log_b} (1+\nu)$$
 1/x não varia com 1

$$= \frac{1}{x} \lim_{\nu \to 0} \log_{\delta} \left(1 + \nu \right)^{1/\nu}$$

$$= \frac{1}{x} \log_b \left[\lim_{\nu \to 0} \left(1 + \nu \right)^{1/\nu} \right]$$

$$=\frac{1}{x}\log_{\theta}e$$

Definição de derivada

propriedade do quociente

considerando
$$v = \frac{h}{x}$$
 e $v \to 0$ quando $h \to 0$

1/x não varia com ν

propriedade da potência

 $\log_{\delta}(x)$ é contínua

$$\frac{d}{dx}[\log_b x] = \frac{1}{x}\log_b e$$

mas da mudança de base

$$\log_b x = \frac{\ln x}{\ln b}$$

e daí podemos escrever

$$\log_b e = \frac{\ln e}{\ln b} = \frac{1}{\ln b}$$

e substituindo na expressão da derivada

$$\frac{d}{dx}[\log_b x] = \frac{1}{x} \frac{1}{\ln b} = \frac{1}{\ln b} \frac{1}{x}$$

quando b = e

$$\frac{d}{dx}[\log_e x] = \frac{d}{dx}[\ln x] = \frac{1}{\ln e} \frac{1}{x} = \frac{1}{x}$$

Derivada da função exponencial:

Para construir a derivada das funções exponenciais considere

$$y = b^x$$

reescrevendo

$$x = \log_b y$$

diferenciando e usando a derivada das funções logarítmicas e a regra da cadeia

$$1 = \frac{1}{y \ln b} \frac{dy}{dx}$$

que pode ser reescrita

$$\frac{dy}{dx} = y \ln b = b^x \ln b$$

quando b = e teremos

$$y = e^x$$
 \Rightarrow $\frac{dy}{dx} = y \ln e = e^x \ln e = e^x$

Obs: A derivada de $y = e^x$ é a própria função $y = e^x$.

Resumindo:

Função Logarítmica:

$$y = \log_b x$$
 \Rightarrow

$$\Rightarrow$$

$$\frac{d}{dx}[\log_b x] = \frac{1}{\ln b} \frac{1}{x}$$

Função Exponencial:

$$y = b^x$$

$$\Rightarrow$$

$$\frac{dy}{dx} = b^x \ln b$$

Quando b=e

Função Logarítmica Natural:

$$y = \ln x$$
 \Rightarrow

$$\Rightarrow$$

$$\frac{d}{dx}[\ln x] = \frac{1}{x}$$

Função Exponencial Natural:

$$y = e^{x}$$

$$\Rightarrow$$

$$\frac{dy}{dx} = e^x$$

Logaritmos e Integrais

No século XVII estudava-se a área sob a curva $\underline{y=1/t}$. O objetivo era encontrar os valores t_1, t_2, t_3, \ldots para os quais as áreas A_1, A_2, A_3, \ldots fossem iguais.

Logaritmos e Integrais

Definição 7.2: O logaritmo natural de x, denotado por $\ln x$ é definido pela integral

$$\ln x = \int_1^x \frac{1}{t} dt, \qquad x > 0$$

Que hoje é considerada a definição formal de logaritmo natural.

Aplicações

Sabemos como calcular a derivada das funções exponenciais, agora compare as equações

$$\frac{dy}{dx} = x \qquad \qquad \mathbf{e} \qquad \qquad \frac{dy}{dx} = y$$

A primeira questiona simplesmente qual é a antiderivada de x, logo $y=x^2/2$. A segunda iguala y e sua derivada. Este tipo de equação que envolve uma função e suas derivadas é chamada equação diferencial. Já vimos que a função cuja derivada é ela mesma é a função exponencial natural $(y=e^x)$.

As equações diferenciais são muito utilizadas para representar vários fenômenos reais. A equação diferencial acima é a que com maior freqüência aparece neste fenômenos. Daí podemos avaliar a importância das funções exponenciais.

Resumo

```
    Funções Exponenciais;
```

O número e;

Função Exponencial Natural;

Funções Logarítmicas;

Logaritmo Natural;

- Derivadas as Funções Logarítimicas e Exponenciais;
- · Logaritmos e Integrais;
- Aplicações;

Formas Indeterminadas do Tipo 0/0

Supondo que f e g são duas funções reais de uma variável real, recordamos que :

1) Teorema 2.1, item 4:

Se
$$\lim_{x \to a} f(x) = L$$
 e $\lim_{x \to a} g(x) = M$ e se $M \neq 0$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}.$$

2) Teorema 2.5:

Se
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$ e se $L \neq 0$ e $M = 0$, então

$$\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty.$$

3) **Teorema 2.7**, item 4:

Se
$$\lim_{x \to \pm \infty} f(x) = L$$
 e $\lim_{x \to \pm \infty} g(x) = M$ e se $M \neq 0$ então

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{L}{M}.$$

Sejam f e g duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = 0$ e $\lim g(x) = 0$, então denomina-se o limite

$$\lim \frac{f(x)}{g(x)}$$

de forma indeterminada do tipo 0/0.

Será que é *possível calcular* o valor de uma forma indeterminda 0/0 ?

É possível e já fizemos isto quando estudamos limites. Vamos recordar 2 exemplos.

Exemplo 7.1 (Exemplo 2.8)

Calcular
$$\lim_{x\to 7} \frac{x^2-49}{x-7}$$
.

Calcular
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7}$$
.

Forma indeterminada 0/0
$$\begin{cases} \lim_{x \to 7} (x^2 - 49) = 0, \\ \lim_{x \to 7} (x - 7) = 0. \end{cases}$$

Solução:

Notamos, em primeiro lugar, que

Teorema 2.1, prop. 4
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} \neq \frac{\lim_{x \to 7} (x^2 - 49)}{\lim_{x \to 7} (x - 7)} \text{ pois } \lim_{x \to 7} (x - 7) = 7 - 7 = 0.$$

Entretanto,

$$\frac{x^2 - 49}{x - 7} = \frac{(x - 7)(x + 7)}{x - 7} = x + 7 \text{ e, portanto}, f(x) = g(x) \text{ para todo}$$

 $x \in \mathbb{R}$, exceto em x = 7. Logo, usado o Teorema 2.2 concluímos que:

$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} = \lim_{x \to 7} (x + 7).$$

Finalmente, $\lim_{x\to 7} (x+7) = 14$ (Teorema 2.3).

Exemplo 7.1 (Exemplo 2.9)

Calcular
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$
.

Calcular
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$
. Forma indeterminada 0/0
$$\lim_{x\to 0} \sqrt{4+x}-2=0,$$
 Solução:

Solução:

Observamos que:

$$\frac{\sqrt{4+x}-2}{x} = \frac{\left(\sqrt{4+x}-2\right)\left(\sqrt{4+x}+2\right)}{x\left(\sqrt{4+x}+2\right)}$$

$$= \frac{\left(\sqrt{4+x}\right)^2 - 2^2}{x\left(\sqrt{4+x}+2\right)} = \frac{4+x-4}{x\left(\sqrt{4+x}+2\right)}$$

$$= \frac{x}{x\left(\sqrt{4+x}+2\right)} = \frac{1}{\sqrt{4+x}+2} \text{ para } x \neq 0.$$

Logo, pelo Teorema 2.2:

$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{x} = \lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = \frac{1}{4} \text{ (Teorema 2.1, prop. 4).}$$

cederi

Teorema 7.1 – Teorema de L'Hôpital para forma 0/0:

Sejamf e g duas funções reais de uma variável real.

Suponha que lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = 0$ e $\lim g(x) = 0$, se f e g são diferenciáveis e se

$$\lim \frac{f'(x)}{g'(x)}$$

tem um valor finito L ou se esse limite for $-\infty$ ou $+\infty$, então

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

OBS: Guillaume François Antoine de L'Hôpital (1661-1704) – Matemático françês.

Calcular
$$\lim_{x\to 7} \frac{x^2-49}{x-7}$$
.

$$\begin{cases} \lim_{x \to 7} (x^2 - 49) = 0, \\ \lim_{x \to 7} (x - 7) = 0. \end{cases}$$

Solução:

Em primeiro lugar, vamos diferenciar o numerador e o denominador da expressão:

$$f(x) := x^2 - 49 \Rightarrow f'(x) = 2x$$
 e $g(x) := x - 7 \Rightarrow g'(x) = 1$.

Logo,

$$\lim_{x \to 7} f'(x) = \lim_{x \to 7} 2x = 2\lim_{x \to 7} x = 2(7) = 14 \quad \mathbf{e} \quad \lim_{x \to 7} g'(x) = \lim_{x \to 7} 1 = 1$$

portanto,

Teorem a 2.1, prop. 4
$$\lim_{x \to 7} \frac{f'(x)}{g'(x)} = \frac{\lim_{x \to 7} f'(x)}{\lim_{x \to 7} g'(x)} = \frac{14}{1},$$

e pelo Teorema de L'Hôpital

$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} = \lim_{x \to 7} \frac{2x}{1} = 14.$$

Calcular
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$

$$\begin{cases}
\lim_{x \to 0} \sqrt{4 + x} - 2 = 0 \\
\lim_{x \to 0} x = 0.
\end{cases}$$

Solução:

Vamos diferenciar o numerador e o denominador da expressão:

$$f(x) := (4+x)^{\frac{1}{2}} - 2 \Rightarrow f'(x) = \frac{1}{2}(4+x)^{-\frac{1}{2}} \quad \mathbf{e} \quad g(x) := x \Rightarrow g'(x) = 1.$$

Logo,

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{1}{2\sqrt{4+x}} = \frac{1}{2} \lim_{x \to 0} \frac{1}{\sqrt{4+x}} = \frac{1}{2} \left(\frac{1}{\sqrt{4}}\right) = \frac{1}{4} \quad \mathbf{e} \quad \lim_{x \to 0} g'(x) = \lim_{x \to 0} 1 = 1$$
 portanto,

Teorema 2.1, prop. 4
$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{\lim_{x \to 0} f'(x)}{\lim_{x \to 0} g'(x)} = \frac{1}{4},$$

e pelo Teorema de L'Hôpital

$$\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{4+x}}}{1} = \frac{1}{4}.$$

Formas Indeterminadas do Tipo ∞/∞

Notação simplificada:

$$\lim_{x \to a^{+}} f(x) = \infty \quad \text{significa} \quad \lim_{x \to a^{+}} f(x) = +\infty \quad \text{ou} \quad \lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \infty \quad \text{significa} \quad \lim_{x \to +\infty} f(x) = +\infty \quad \text{ou} \quad \lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = \infty \quad \text{significa} \quad \lim_{x \to a} f(x) = \pm \infty \quad \text{e} \quad \lim_{x \to a} f(x) = \pm \infty$$

Sejam f e g duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = \infty$ e $\lim g(x) = \infty$, então denomina-se o limite

$$\lim \frac{f(x)}{g(x)}$$

de forma indeterminada do tipo ∞/∞ .

Teorema 7.2 – Teorema de L'Hôpital para forma ∞/∞ :

Sejamf e g duas funções reais de uma variável real.

Suponha que lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = \infty$ e $\lim g(x) = \infty$, se f e g são diferenciáveis e se

$$\lim \frac{f'(x)}{g'(x)}$$

tem um valor finito L ou se esse limite for $-\infty$ ou $+\infty$, então

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

Calcular
$$\lim_{x\to 0^+} \frac{1-\ln x}{e^{1/x}}$$
. Forma indeterminada ∞/∞
$$\begin{cases} \lim_{x\to 0^+} 1-\ln x = +\infty, \\ \lim_{x\to 0^+} e^{1/x} = +\infty. \end{cases}$$

Solução:

Diferenciando o numerador e o denominador da expressão obtemos:

$$f(x) := 1 - \ln x \Rightarrow f'(x) = -\frac{1}{x} \mathbf{e} \quad g(x) := e^{\frac{1}{x}} \Rightarrow g'(x) = -\frac{e^{\frac{1}{x}}}{x^2}.$$

Logo,

1)
$$\frac{f'(x)}{g'(x)} = \frac{-\frac{1}{x}}{-\frac{e^{\frac{1}{x}}}{x^2}} = \left(-\frac{1}{x}\right)\left(-\frac{x^2}{e^{\frac{1}{x}}}\right) = \frac{x}{e^{\frac{1}{x}}} = (x)\left(\frac{1}{e^{\frac{1}{x}}}\right),$$

2)
$$\lim_{x \to 0^+} x = 0$$
 e $\lim_{x \to 0^+} \frac{1}{e^{\frac{1}{x}}} = 0$,

portanto,

$$\lim_{x \to 0^{+}} \frac{f'(x)}{g'(x)} = \lim_{x \to 0^{+}} \left(x \frac{1}{e^{\frac{1}{2}}} \right) = \left(\lim_{x \to 0^{+}} x \right) \left(\lim_{x \to 0^{+}} \frac{1}{e^{\frac{1}{2}}} \right) = (0)(0) = 0,$$

Teorema 2.1, prop. 3

Do Teorema de L'Hôpital concluímos que:

$$\lim_{x \to 0^+} \frac{1 - \ln x}{e^{1/x}} = \lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = 0. \quad \blacksquare$$

$$\begin{cases} \lim_{x \to +\infty} e^x = +\infty, \\ \lim_{x \to +\infty} x^2 = +\infty, \end{cases}$$

Solução:

Diferenciando o numerador e o denominador da expressão 2 vezes obtemos:

$$f(x) := e^x \Rightarrow f'(x) = f''(x) = e^x \mathbf{e} \quad g(x) := x^2 \Rightarrow g'(x) = 2x \Rightarrow g''(x) = 2.$$

Logo,

$$\lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to +\infty} \frac{e^x}{2x}$$
 é uma forma indeterminada ∞/∞ ,

porque $\lim_{x \to +\infty} e^x = +\infty$ e $\lim_{x \to +\infty} 2x = +\infty$, e portanto, pelo Teorema 7.2,

$$\lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to +\infty} \frac{f''(x)}{g''(x)} = \lim_{x\to +\infty} \frac{e^x}{2} = +\infty.$$

Aplicando o Teorema 7.2 novamente concluímos que:

$$\lim_{x \to +\infty} \frac{e^x}{x^2} =: \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = +\infty. \quad \blacksquare$$

Formas Indeterminadas do Tipo 0.∞

Notação simplificada:

$$\lim_{\substack{x \to a^+ \\ x \to a^-}} f(x) = \infty \quad \text{significa} \quad \lim_{\substack{x \to a^+ \\ x \to +\infty}} f(x) = +\infty \quad \text{ou} \quad \lim_{\substack{x \to a^+ \\ x \to +\infty}} f(x) = -\infty$$

$$\lim_{\substack{x \to a \\ x \to a}} f(x) = \infty \quad \text{significa} \quad \lim_{\substack{x \to +\infty \\ x \to a}} f(x) = \pm\infty \quad \text{e} \quad \lim_{\substack{x \to a \\ x \to a}} f(x) = \pm\infty$$

Sejam $f \in g$ duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = 0$ e $\lim g(x) = \infty$, então denomina-se o limite

$$\lim [f(x)g(x)]$$

de forma indeterminada do tipo 0.∞

OBS: Sejam $f \in g$ duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ **OU** $\lim_{x\to -\infty}$,

Se $\lim f(x) = a$, sendo a um número diferente de zero, e $\lim g(x) = \infty$ então

$$\lim \left[f(x)g(x) \right] = \infty.$$

(Rever o último exemplo apresentado.)

Procedimento para calcular formas indeterminadas do tipo $0 \cdot \infty$:

reescrever a expressão f(x)g(x) como

$$\frac{g(x)}{1/f(x)}$$
 ou $\frac{f(x)}{1/g(x)}$,

o que conduz a forma indeterminada do tipo 0/0 ou ∞/∞ , conforme seja mais conveniente.

Calcular
$$\lim_{x\to 0^+} x^2 \ln x$$
.

Calcular
$$\lim_{x\to 0^+} x^2 \ln x$$
. Forma indeterminada $\infty \cdot 0$
$$\begin{cases} \lim_{x\to 0^+} x^2 = 0, \\ \lim_{x\to 0^+} \ln x = -\infty. \end{cases}$$
 olução:

Solução:

Notamos que:

para todo
$$x \ge 0$$
, $x^2 \ln x = \frac{\ln x}{x^{-2}} \Rightarrow \lim_{x \to 0^+} x^2 \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-2}}$.

Por outro lado $\lim_{x\to 0^+} \frac{\ln x}{x^{-2}}$ é uma forma indeterminada do tipo ∞/∞ , um vez que

$$\lim_{x\to 0^+} \ln x = -\infty \text{ e } \lim_{x\to 0^+} \frac{1}{x^2} = +\infty.$$

Além disso, como para todo x > 0, $D_x \left[\ln x \right] = \frac{1}{y}$ e $D_x \left[x^{-2} \right] = -2x^{-3}$ concluímos que

$$\lim_{x \to 0^{+}} \frac{D_{x} \left[\ln x \right]}{D_{x} \left[x^{-2} \right]} = \lim_{x \to 0^{+}} \frac{x^{-1}}{-2x^{-3}} = -\frac{1}{2} \lim_{x \to 0^{+}} x^{-1+3} = -\frac{1}{2} \lim_{x \to 0^{+}} x^{2} = 0.$$

Logo, aplicando o Teorema de L'Hôpital (Teorema 7.2) podemos afirmar que

$$\lim_{x \to 0^+} \frac{\ln x}{x^{-2}} = \lim_{x \to 0^+} \frac{D_x [\ln x]}{D_x [x^{-2}]} = 0.$$

Formas Indeterminadas do Tipo $\infty - \infty$

Sejam f e g duas funções reais de uma variável real. Suponha que $\underline{\lim}$ representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$.

1) Se
$$\lim f(x) = +\infty$$
 e $\lim g(x) = +\infty$ ou

se
$$\lim f(x) = -\infty$$
 e $\lim g(x) = -\infty$ então denomina-se o limite
$$\lim [f(x) - g(x)]$$

de forma indeterminada do tipo $\infty - \infty$.

2) Se
$$\lim f(x) = +\infty$$
 e $\lim g(x) = -\infty$ ou

se
$$\lim f(x) = -\infty$$
 e $\lim g(x) = +\infty$ então denomina-se o limite
$$\lim [f(x) + g(x)]$$

também de forma indeterminada do tipo $\infty - \infty$.

OBS: Sejam $f \in g$ duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$.

- 1) Se $\lim f(x) = +\infty$ e $\lim g(x) = +\infty$, então $\lim [f(x) + g(x)] = +\infty$.
- 2) Se $\lim f(x) = -\infty$ e $\lim g(x) = -\infty$, então $\lim [f(x) + g(x)] = -\infty$.
- 3) Se $\lim f(x) = +\infty$ e $\lim g(x) = -\infty$, então $\lim [f(x) g(x)] = +\infty$.
- 4) Se $\lim f(x) = -\infty$ e $\lim g(x) = +\infty$, então $\lim [f(x) g(x)] = -\infty$.

Procedimento para calcular formas indeterminadas do tipo $\infty - \infty$:

tentar reescrever a expressão $f(x) \pm g(x)$ visando produzir uma forma indeterminada do tipo 0/0 ou ∞/∞ .

Calcular
$$\lim_{x \to 0^+} \left(\csc x - \frac{1}{x} \right)$$
Forma indeterminada $\infty - \infty$

$$\begin{cases} \lim_{x \to 0^+} \csc = \infty, \\ \lim_{x \to 0^+} \frac{1}{x} = \infty. \end{cases}$$

$$\lim_{x \to 0^+} \csc = \infty,$$

$$\lim_{x \to 0^+} \frac{1}{x} = \infty.$$

Solução:

Notamos que para todo x > 0, esc $x = \frac{1}{1}$ e

$$\csc x - \frac{1}{x} = \frac{1}{\sec x} - \frac{1}{x} = \frac{x - \sec x}{x \sec x} \implies \lim_{x \to 0^+} \left(\csc x - \frac{1}{x} \right) = \lim_{x \to 0^+} \left(\frac{x - \sec x}{x \sec x} \right).$$

 $\lim_{x\to 0^+} \left(\frac{x - \sin x}{x \sin x} \right)$ também é uma forma indeterminada do tipo 0/0, uma vez que

$$\lim_{x\to 0^+} (x - \sec x) = 0$$
 e $\lim_{x\to 0^+} x \sec x = 0$.

Para todo x > 0, $D_x[x - \sin x] = 1 - \cos x$ e $D_x[x \sin x] = \sin x + x \cos x$ e portanto

$$\lim_{x \to 0^+} \frac{D_x \left[x - \operatorname{sen} x \right]}{D_x \left[x \operatorname{sen} x \right]} = \lim_{x \to 0^+} \frac{1 - \cos x}{\operatorname{sen} x + x \cos x}$$

é uma uma forma indeterminada do tipo 0/0, pois

$$\lim_{x \to 0^+} (1 - \cos x) = 0 \quad \text{e} \quad \lim_{x \to 0^+} (\sin x + x \cos x) = 0.$$

Por outro lado, como para todo x > 0, $D_x[1 - \cos x] = \sin x$ e

$$\lim_{x \to 0^+} \frac{D_x \left[1 - \cos x \right]}{D_x \left[\sec x + x \cos x \right]} = \lim_{x \to 0^+} \frac{\sec x}{2\cos x - x \sec x} = 0$$

uma vez que $\lim_{x\to 0^+} \operatorname{sen} x = 0$ e

$$\lim_{x \to 0^+} (2\cos x - x \sin x) = 2 \lim_{x \to 0^+} \cos x - \left(\lim_{x \to 0^+} x\right) \left(\lim_{x \to 0^+} \sec x\right) = 2.$$

Logo, aplicando 2 vezes o Teorema de L'Hôpital (Teorema 7.2) concluimos que

$$\lim_{x \to 0^+} \left(\csc x - \frac{1}{x} \right) = \lim_{x \to 0^+} \left(\frac{x - \sec x}{x \sec x} \right) = \lim_{x \to 0^+} \frac{1 - \cos x}{\sec x + x \cos x} = \lim_{x \to 0^+} \frac{\sec x}{2 \cos x - x \sec x} = 0.$$

ceder

Formas Indeterminadas do Tipo 0^0 , ∞^0 e 1^∞

Sejamf e g duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$.

1) Se $\lim f(x) = 0$ e $\lim g(x) = 0$ então denomina-se o limite

$$\lim f(x)^{g(x)}$$

de forma indeterminada do tipo 0^0 .

2) Se $\lim f(x) = \pm \infty$ e $\lim g(x) = 0$ então denomina-se o limite

$$\lim f(x)^{g(x)}$$

de forma indeterminada do tipo ∞^0 .

3) Se $\lim f(x) = 1$ e $\lim g(x) = \pm \infty$ então denomina-se o limite

$$\lim f(x)^{g(x)}$$

de forma indeterminada do tipo 1^{∞} .

Procedimento para calcular formas indeterminadas do tipo 0^0 , ∞^0 e 1^∞ :

 $\operatorname{se} f(x) > 0$, para todo x em um intervalo apropriado para cada caso, então

- 1) calculamos o limite $\lim [g(x) \ln f(x)]$
- 2) se este limite existir, isto é, se o limite $\lim [g(x) \ln f(x)] = L$ no qual L é um número real, então

$$\lim f(x)^{g(x)} = e^{I}.$$

OBS:

Sejam f e g duas funções reais de uma variável real. Quando f(x) > 0, por definição (ver função exponencial com base diferente de e),

$$f(x)^{g(x)} := e^{g(x)\ln f(x)} \quad \Rightarrow \quad \lim f(x)^{g(x)} = \lim e^{g(x)\ln f(x)} = e^{\lim[g(x)\ln f(x)]}$$

sendo a última igualdade verdadeira se $\lim [g(x) \ln f(x)]$ existir.

Calcular
$$\lim_{x\to 0^+} (\csc x)^{\sec x}$$
.

Calcular
$$\lim_{x\to 0^+} (\csc x)^{\sec x}$$
. Forma indeterminada ∞^0
$$\begin{cases} \lim_{x\to 0^+} \csc = \infty, \\ \lim_{x\to 0^+} \sec x = 0. \end{cases}$$
 Solução:

$$\begin{cases} \lim_{x \to 0^+} \csc = \infty, \\ \lim_{x \to 0^+} \sec x = 0. \end{cases}$$

Solução:

Notamos que para todo
$$x > 0$$
, esc $x = \frac{1}{\sin x}$ e portanto

$$\left(\csc x\right)^{\operatorname{sen} x} = \left(\frac{1}{\operatorname{sen} x}\right)^{\operatorname{sen} x} \implies \lim_{x \to 0^{+}} \left(\csc x\right)^{\operatorname{sen} x} = \lim_{x \to 0^{+}} \left(\frac{1}{\operatorname{sen} x}\right)^{\operatorname{sen} x}.$$

Vamos calcular o limite $\lim_{x\to 0^+} \left[\operatorname{sen} x \ln \left(\frac{1}{\operatorname{sen} x} \right) \right]$. Em primeiro lugar observamos que:

$$\ln\left(\frac{1}{\operatorname{sen} x}\right) = \ln 1 - \ln \operatorname{sen} x = 0 - \ln \operatorname{sen} x \Rightarrow \lim_{x \to 0^+} \left[\operatorname{sen} x \ln\left(\frac{1}{\operatorname{sen} x}\right)\right] = \lim_{x \to 0^+} \left(-\operatorname{sen} x \ln \operatorname{sen} x\right).$$

Mas:

$$-\lim_{x\to 0^+} \sec x = 0$$
 e $\lim_{x\to 0^+} (\ln \sec x) = \ln (\lim_{x\to 0^+} \sec x) = -\infty$

ou seja, $\lim_{x\to 0^+} (-\sin x \ln \sin x)$ é uma forma indeterminada do tipo $0\cdot \infty$.

Vamos reescrever a example -sen x ln sen x da seguinte forma:
$$\frac{-\ln \text{sen } x}{\underline{1}}$$
.

Logo
$$\lim_{x\to 0^+} (-\sin x \ln \sin x) = \lim_{x\to 0^+} \frac{-\ln \sin x}{\frac{1}{\sin x}}$$
, sendo este último limite uma forma

indeterminada do tipo ∞/∞ . Por outro lado, como para todo x > 0,

$$D_x \left[-\ln \operatorname{sen} x \right] = -\frac{\cos x}{\operatorname{sen} x} e D_x \left[\frac{1}{\operatorname{sen} x} \right] = -\frac{\cos x}{\left(\operatorname{sen} x \right)^2}, \text{ portanto}$$

$$\lim_{x \to 0^+} \frac{D_x \left[-\ln \operatorname{sen} x \right]}{D_x \left[\frac{1}{\operatorname{sen} x} \right]} = \lim_{x \to 0^+} \left(-\frac{\cos x}{\operatorname{sen} x} \right) \left[-\frac{\left(\operatorname{sen} x \right)^2}{\cos x} \right] = \lim_{x \to 0^+} \operatorname{sen} x = 0.$$

Logo, aplicando o Teorema de L'Hôpital (Teorema 7.2) concluimos que

$$\lim_{x \to 0^{+}} \left[\operatorname{sen} x \ln \left(\frac{1}{\operatorname{sen} x} \right) \right] = \lim_{x \to 0^{+}} \left(-\operatorname{sen} x \ln \operatorname{sen} x \right) = \lim_{x \to 0^{+}} \frac{-\ln \operatorname{sen} x}{\frac{1}{\operatorname{sen} x}} = \lim_{x \to 0^{+}} \frac{D_{x} \left[-\ln \operatorname{sen} x \right]}{D_{x} \left[\frac{1}{\operatorname{sen} x} \right]} = 0.$$

Teorema de L'Hôpital

cederi

 $\operatorname{sen} x$

Finalmente, uma
$$\lim_{x\to 0^+} \left[\operatorname{sen} x \ln \left(\frac{1}{\operatorname{sen} x} \right) \right] = 0,$$

$$\lim_{x\to 0^+} \left(\csc x\right)^{\operatorname{sen} x} = \lim_{x\to 0^+} \left(\frac{1}{\operatorname{sen} x}\right)^{\operatorname{sen} x} = e^{\lim_{x\to 0^+} \left[\operatorname{sen} x \ln\left(\frac{1}{\operatorname{sen} x}\right)\right]} = e^0 = 1.$$

Resumo

· Formas Indeterminadas:

Tipo 0/0;

Tipo ∞/∞ ;

Tipo 0⋅∞;

Tipo $\infty - \infty$;

Tipo $0^{\infty}, \infty^0$ e 1^{∞} .