

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electromagnetic 3: Induction Part A

Instructor: Dikun Yang Feb – May, 2019

Quasi-static Maxwell's Equations

$$\nabla \times E = -\mu \frac{\partial H}{\partial t}$$

$$\nabla \times H = \sigma E + \epsilon \frac{\partial E}{\partial t}$$

$$\nabla \times E = -i\omega \mu H$$

$$\nabla \times H = \sigma E + i\omega \epsilon E$$

Wires and Loops

Electrical dipole (a *small* piece of wire)

Closed loop

- Magnetic field (dB/dt)
- Non-contact (divergence free)
- Inductive coupling

Grounded wire

- Electrical field (E)
- End points in contact with ground
- Galvanic and inductive coupling

Loop-loop System in Frequency Domain

EM =

Magnetics

- Magnetic dipole
- Magnetic flux (B)

Electric Resistivity

- Electric dipole
- Electric current (J)

Electrical energy transmission

Galvanic (electric current)

DC resistivity (electric resistivity tomography)

Electrical energy transmission

Inductive (magnetic flux B)

- 1. Change of current in the primary
- 2. Change of magnetic flux in the core
- 3. Induced current in the secondary

A transformer:

- No direct connection between primary and secondary windings
- Energy goes through in the forms of electric, magnetic then electric
- Magnetic flux linkage only in AC (requires non-stationary current)

Electrical energy transmission

Inductive (magnetic flux B)

Security scan

Metal detector

Ampere's law

J generates B
$$\nabla imes \mu^{-1} \mathbf{B} = \mathbf{J} = \sigma \mathbf{E}$$

Ampere's law

J generates B

$$\nabla \times \mu^{-1} \mathbf{B} = \mathbf{J} = \sigma \mathbf{E}$$

A small solenoid generates a magnetic field that can be approximated by a magnetic dipole (or a small bar magnet)

Still remember the magnetic dipole?

Faraday's law

Change of B generates J

$$\nabla \times \sigma^{-1} \mathbf{J} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Induced current depends on

- How fast B changes
- How many B-field lines go through
- How conductive the object is

Communicate with the Earth without Contact

Transmitter loop

Ampere: timevarying current and changing primary magnetic field

Target/Ground

Faraday: current induced by the changing primary field; **Ampere**: induced current generates a secondary magnetic field

Receiver loop

Faraday: measurable current induced in the loop by the changing secondary field

Notebook: Loop, dipole and field lines

"MagDipole2LoopsCoupling.ipynb"

Task 1: Loop orientation

- "Run All" to get the default result
- Shown is a loop wire carrying an 1A current. The equivalent dipole moment is calculated as the product of loop area and current. Your estimate of the dipole moment is ______.
- The straight line perpendicular to the loop surface indicates the direction of the dipole moment. The plot you see represents a horizontal or vertical loop with a horizontal or vertical dipole moment. (circle one of the two choices)
- Adjust the declination and inclination of Loop 1, so the dipole moment points to the +x direction. Now the loop represents a *horizontal* or *vertical* dipole. (circle one of the two choices)

Task 2: Loop-loop coupling

- Check "Show Loop 2" to turn on the second loop.
- Keep the orientation of Loop 2 unchanged and adjust the location of Loop 2 to a
 point where it has the best geometric coupling with Loop 1 through the magnetic
 flux linkage (tangential direction of field lines is parallel to the dipole moment
 direction of a loop).
- Change the orientation of Loop 2, so the dipole moment points to the +x direction.
- Move Loop 2 around to find two locations where (1) Loop 1 and 2 are fully coupled and (2) Loop 1 and Loop 2 are null coupled.

3-loop Model

3-loop Model: Primary H^p

3-loop Model: Secondary Hs

Question: Is the data positive or negative for the scenario on this page? Hint: Think about the positive and negative anomalies in total field magnetics.

Data (Hs/Hp) Sign Convention

Positive primary and secondary in same direction

Negative primary and secondary in opposite directions

Coupling between Two Loops Through Magnetic Flux Linkage

Coupling between Two Loops Through Magnetic Flux Linkage

Coupling between Two Loops Through Magnetic Flux Linkage

Null coupled

H^s/H^p: Positive or Negative?

H^s/H^p: Positive or Negative?

Hs/Hp Profile

walk

Verify using Demo Notebook

"MagDipole3LoopsCoupling.ipynb"

https://github.com/sustechgem/geophysics-demo-notebooks/blob/master/MagDipole3LoopsCoupling.ipynb

Drawing lines only helps qualitative understanding.

We need more math to do a quantitative interpretation.

3-loop Model

0.6

Decompose Secondary Field

primary field $H_3^p \cos(\omega t)$

secondary field

$$H_3^s \cos(\omega t - \frac{\pi}{2} - \phi)$$

or $H_3^s \cos(\omega t - \psi)$

- Hs swings in the third quadrant: $0 < \phi < 90^{\circ}$
- ϕ depends on the induction number α
- α is a function of frequency ω , self inductance L and resistance R of Loop 2

Decompose Secondary Field

$$\phi = tan^{-1}(\frac{\omega L}{R}) = tan^{-1}(\alpha)$$

Question: What happens to the H^s (red arrow) for a very conductive or very resistive target?

Decompose H^s to two orthogonal components then normalize by H^p:

90° phase lag: called "out-of-phase", "quadrature", "imaginary"

$$\frac{H^s \cos(\phi)}{H^p}$$

180° phase lag: called "in-phase", "real"

$$\frac{H^s \sin(\phi)}{H^p}$$

Response Function

Question: How would the real and imaginary data change with the induction number α ?

Response Function

$$Q(\alpha) = \frac{i\alpha}{1 + i\alpha} = \frac{\alpha^2 + i\alpha}{1 + \alpha^2} \qquad \alpha = \frac{\omega I}{R}$$

Resistive limit:

- low frequency
- low conductivity

Inductive limit:

- high frequency
- high conductivity

Expected Data From a Loop Target

A Smaller Induction Number

$$\frac{H_3^s}{H_3^p} = -\frac{M_{12}M_{23}}{M_{13}L} \left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2} \right]$$

Coupling

- location, orientation
- overall magnitude

Induction

- properties of loop 2
- how much in Re & Im

EM-31

- Frequency = 9.8 kHz
- Tx-Rx spacing = 3.66 m
- Horizontal or vertical coplanar
- "Ground conductivity meter"

EM-31 Data Frequency = fcurrent Re, Im time W-E oriented transmitter receiver horizontal co-planar instrument observation grid Northing target loop (inclination, declination) Easting (E, N, Depth) **↓** Depth

EM-31 Data

EM-31 Field Data

Data Feature 1: Uniform, smooth and small

EM-31 Data at Low Induction

Small **Re** and small **Im** on the data maps, α big or small?

Low induction number:

- H^s data mostly in quadrature, Im > Re ≈ 0
- Very small induced current
- Subdivide the earth into many pieces; each piece interacts with Tx-Rx independently without interaction between any two pieces (recall low induced magnetization in magnetics, easy calculation using superposition!)

Apparent Conductivity

$$\sigma_a = \frac{4}{\omega \mu_0 s^2} \mathbf{Im}$$

Question: Which area on the maps is the most likely to have a reliable estimate of the ground conductivity?

EM-31 Data Interpretation

Data Feature 1:

Uniform, smooth and small

Data Feature 2:

Abrupt change Positive and negative Large **Re** and small **Im**

EM-31 Data at High Induction

Large **Re** and small **Im** on the data maps, α big or small?

High induction number:

- H^s data mostly in in-phase, Re > Im ≈ 0
- Very strong induced current
- Cannot use apparent conductivity, but if the target is a good compact conductor, use the 3loop model

Vertical Target Loop

45 Degree Dipping Target Loop

Horizontal Target Loop

Equiaxed Target

Easting (m)

Question: Can you find those features on the data map and infer the geometry and orientations of the targets?

Summary

- EM induction: Quasi-static
- Loop-loop system in FD: Three loop model
 - Ampere's Law and Faraday's Law
 - Coupling
 - Induction number and response function
- EM-31 as an example
 - Positive or negative?
 - Compare in-phase with quadrature