

What is model fit? ● Example: Assume that the outcome values, y, for 5 subjects with covariate pattern "age=50, Gender=Male, Smoking=Yes" are 1, 1, 0, 1, 0 Average of y values = 3/5 = 0.6 <l> <l> </

Questions

- Does the model fit overall?
 - → Summary goodness-of-fit tests

- Are there any individual observations that don't fit?
 - → Logistic regression diagnostics

Summary goodness-of-fit tests

J = # covariate patterns, n = sample size

Pearson X² test and Deviance test

- Use when there are few different covariate patterns, J, i.e. when J << n
- Example:
 - n=200 study subjects, Outcome=y
 - Model covariates: Exposure (yes/no) and gender
 - (J=4)covariate patterns
 - j=1: Exposed male; j=2: Exposed female;
 - j=3: Unexposed male; j=4: Unexposed female

Summary goodness-of-fit tests

J = # covariate patterns, n = sample size

Hosmer-Lemeshow test

- Use when there are many different covariate patterns, J, i.e. when √ ≈ n
- Example:
 - n=200 study subjects, Outcome=y
 - Model covariates: Age, systolic blood pressure, heart rate
 - √≈ 200 covariate patterns
 - (Almost) everyone will have a different combination of age, systolic blood pressure and heart rate

Summary goodness-of-fit tests

J = # covariate patterns, n = sample size

Osius-Rojek test

• Use in all other cases if the sample size is "reasonably large"

The Pearson Chi-square test

Use when there are FEW covariate patterns (J) relative to the sample size (n)

- Calculates the difference between the observed and the predicted value for each covariate pattern
- Standardizes and squares each difference
- Adds the squared standardized differences over all covariate patterns

The Pearson Chi-square test

- If J << n, the resulting test statistic is X^2 distributed with J-p-1 degrees of freedom
- (J = # covariate patterns, p = # model covariates)
- P-value ≤ 0.05 → evidence of lack of model fit
- P-value > 0.05 → evidence of model fit

The Deviance test

Use when there are

FEW covariate patterns (J) relative to the sample size (n)

- Calculates the deviance for each covariate pattern and squares it
- Adds the squared deviances over all covariate patterns

The Deviance test

 If J << n, the resulting test statistic is X² distributed with J - p - 1 degrees of freedom

(J = # covariate patterns, p = # model covariates)

- P-value ≤ 0.05 → evidence of lack of model fit
- P-value > 0.05 → evidence of model fit

What if J≈n?

• If $J \approx n$, the X^2 test assumption is violated WHY?

- If J≈n, then each study subjects has his or her own covariate pattern (with a few exceptions)
- The person with the covariate pattern either has the outcome or doesn't have the outcome
- If we cross-classify outcome vs. exposure (i.e. covariate pattern), we have many zero cells
- $\,\,$ This violates the X^2 test assumption that expected cell frequencies are "large"

The Hosmer-Lemeshow test

Use when there are

MANY covariate patterns (J) relative to the sample size (n)

Groups covariate patterns using 10 groups

A. The deciles of risk method

- Group 1 = 10% of study subjects with the lowest $\hat{\pi}$ s
- Group 2 = 10% of study subjects with the next higher $\hat{\pi}$ s
- ...
- Group 10 = 10% of study subjects with the highest $\hat{\pi}$ s

The Hosmer-Lemeshow test, cont.

B. The fixed cutpoints method

- Group 1 = all study subjects with $0 < \hat{\pi} \le 0.1$
- Group 2 = all study subjects with $0.1 < \hat{\pi} \le 0.2$
- ...
- Group 10 = all study subjects with $0.9 < \hat{\pi} < 1.0$

The Hosmer-Lemeshow test, cont.

- \bullet Calculates the Pearson $\it X^2$ test based on groups rather than individuals
- The resulting test statistic is X² distributed with g-2 degrees of freedom (g = # groups; in most cases g=10)

The Hosmer-Lemeshow test, cont.

In theory

- P-value ≤ 0.05 → evidence of lack of model fit
- P-value > 0.05 → evidence of model fit
- However, the Hosmer-Lemeshow test is not very powerful and in most cases a p-value below ≈0.25 is indicative of lack of fit

The Hosmer-Lemeshow test Problems

Fixed cutpoint method (B)

- Leads to a test statistic that does not adhere to the $X^2(g-2)$ distribution very well
 - → P-values questionable
 - → Use deciles of risk method only

The Hosmer-Lemeshow test Problems

Deciles of risk method (A)

- After grouping, the expected cell frequencies may still be small
- The test is not very powerful, especially for n<400
- The test does not handle ties well (see next slides)

What if J<n?

- If J<n, ties occur
- A covariate pattern may be shared by several study subjects
- $\bullet\,$ Each of these study subjects has the same value of $\hat{\pi}$
- I.e., $\hat{\pi}$ is tied for these study subjects

The Hosmer-Lemeshow test Dealing with ties – Example

- Hypothetical study, n=100
 - Persons 1-8 each have their own covariate pattern
 - Persons 9-14 have the same covariate pattern
 - Persons 15-20 each have their own covariate pattern
 - Etc.
- Deciles of risk:
 - Group 1 = 10% of study subjects with the lowest $\hat{\pi}$ s

Example cont. Cov. pattern # Cov. pattern # 0.18 0.08 12 0.18 0.10 0.11 13 9 0.18 14 0.12 0.18 0.13 15 10 0.23 0.15 16 11 0.25 0.16 17 12 0.26 18 13 0.27 0.17 0.18 0.28 0.18 10% with the lowest $\hat{\pi}$ s 10% with the next lowest $\hat{\pi}$ s Same covariate pattern and $\hat{\pi}$ s

Option 1: Keep subjects 11-14 in group 2

- Pro
 - There are 10 groups each containing 10% of the observations
- Con
 - Persons with the same covariate pattern may be treated as different
 - Persons with different covariate patterns may be treated as if they were the same

Option 2: Move subjects 11-14 to group 1

- Pro
 - Persons with the same covariate pattern are not treated as different
- Cor
 - More than 10% of subjects are in group 1; there aren't enough subjects left to have 10% in all subsequent groups
 - In extreme cases there may be only 8 or 9 groups
 - In these cases, the Hosmer-Lemeshow test almost always (possibly erroneously) indicates model fit
 - SAS uses Option 2

The Osius-Rojek test

Use when there are FEWER covariate patterns (J) than the sample size (n) (but not too few)

- The Osius-Rojek test is a large sample normal approximation to the Pearson X² test
- → results may be incorrect when the sample size is small
- Osius-Rojek test results are also questionable in the presence of very small or very large π̂s (π̂ < 10⁻⁵ or π̂ > 1-10⁻⁵)

Caution

 Note that none of the goodness-of-fit tests are very powerful for sample sizes of less than approximately 400

The Stukel test

- Not a goodness-of-fit test
- Tests whether the model produces more or fewer small or large $\hat{\pi}$ s than the standard logistic regression model assumes
- Does this by comparing the standard logistic regression model to a generalized logistic regression model with 2 extra parameters that allow for the tails (small or large π̂s) to vary
- If neither extra parameter is significantly different from 0, the standard logistic regression model is OK

Example: Final GLOW500 model from chapter 4

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.7175	3.3217	0.2673	0.6051
PRIORFRAC	1	4.6117	1.8802	6.0163	0.0142
MOMFRAC	1	1.2465	0.3930	10.0630	0.0015
ARMASSIST	1	0.6441	0.2519	6.5370	0.0106
RATERISK 3 vs. 2,1	1	0.4690	0.2408	3.7935	0.0515
HEIGHT	1	-0.0467	0.0183	6.5005	0.0108
AGE	1	0.0573	0.0165	12.0578	0.0005
PRIORFRAC*AGE	1	-0.0553	0.0259	4.5423	0.0331
MOMFRAC*ARMASSIST	1	-1.2804	0.6230	4.2243	0.0398

