МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

И.В. КОРОГОДИН

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ МЕТОДОМ НЕСУЩЕЙ

Лабораторная работа №1

Методическое пособие по курсу «Математическое моделирование радиотехнических устройств и систем»

для студентов, обучающихся по направлению «Радиотехника»

K 001

Утверждено учебным управлением МЭИ Подготовлено на кафедре радиотехнических систем Рецензент: проф., д.т.н. А.И. Перов

Корогодин И.В.

К001 Моделирование электрических цепей методом несущей. Лабораторная работа №1: методическое пособие / И.В. Корогодин – М.: Издательство МЭИ, 2014. – 32 с.

В лабораторной работе изучается метод несущей в приложении моделирования радиотехнических устройств и методология компьютерного моделирования в целом. В качестве объекта моделирования используется электрическая цепь. Ставится задача поиска характеристик цепи и её реакции на различные входные воздействия.

Пособие содержит основные теоретические сведения, описание последовательности выполнения работы, пример оформления отчета, контрольные вопросы. Оно может быть использовано студентами при выполнении исследовательских и выпускных работ.

Предназначено для студентов, обучающихся по направлению «Радиотехника».

© Национальный исследовательский университет «МЭИ», 2014

ОГЛАВЛЕНИЕ

1 Цели работы	4
2 Краткие теоретические сведения	
2.1 Метод несущей	4
2.2 Процедура моделирования	5
3 Задание	
4 Контрольные вопросы	8
Приложение 1. Пример оформления отчета	

1 Цели работы

Учебные цели выполнения лабораторной работы:

- получить опыт исследования радиотехнических устройств посредством компьютерного моделирования;
- опробовать метод несущей на примере моделирования аналогового устройства;
 - развить навыки моделирования в MATLAB/Octave.

2 Краткие теоретические сведения

2.1 Метод несущей

По способу описания входных воздействий и переменных состояния методы построения математических моделей радиосистем можно разделить на:

- метод несущей;
- метод комплексных амплитуд;
- метод статистических эквивалентов;
- метод информационного параметра.

При использовании метода несущей аналоговые сигналы описываются своими отсчетами, сформированными в соответствии с теоремой Котельникова. Цифровые сигналы воспроизводятся в темпе их поступления с АЦП или формирования цифровыми схемами.

При этом методе сигналы воспроизводятся в моделях в форме мгновенных значений напряжений, токов и т.п. параметров. Для преобразования сигналов используются дифференциальные уравнения, функциональные (спектральные, временные) преобразования.

2.2 Процедура моделирования

Последовательность действий, производимых при проведении компьютерного моделирования, представлена на рисунке 1. Схема определяет как ход выполнения лабораторной работы, так и структуру итогового отчета.

Рисунок 1 – Процедура компьютерного моделирования

Проведение любого исследования начинается с <u>постановки задачи</u>. Это один из наиболее сложных и ответственных этапов. Определяется объект моделирования, после чего формулируется цель исследования — на какие вопросы должно ответить моделирование? Обладая априорными знаниями об объекте, с учетом поставленной цели определяются рамки объекта, в которых его должна воспроизводить модель. Формируется математическая модель объекта с необходимой степенью детализации и допущениями, влияние которых на результат, по мнению исследователя, пренебрежимо мало.

Математическая модель отображается в компьютерную. После чего производится проверка соответствия компьютерной модели математической в частных случаях, допускающих аналитическое решение. При необходимости вносятся правки в компьютерную модель.

Когда компьютерная модель приведена в соответствие математической, при моделировании сложных устройств и систем проверяют подобие поведения компьютерной модели объекту исследования в установленных рамках. Выявляют тем самым недостатки математической модели, при необходимости вносят коррекции. На этом же этапе выбирают параметры модели так, чтобы она максимально соответствовала объекту исследования.

После согласования объекта, математической и компьютерной модели планируют и проводят непосредственные <u>исследования</u>. Выбирают диапазоны и шаг варьируемых параметров, объем статистики. Выполняют компьютерную симуляцию.

После получения результатов моделирования проводят их интерпретацию. Если исследование ответило на поставленные вопросы, а принятые допущения не привели к противоречиям, то оформляется отчет о результатах моделирования. В противном случае корректируется постановка задачи и исследование повторяется.

3 Задание

Объектом исследования является электрическая цепь, описанная в виде принципиальной схемы (см. таблицы 1, 2) и спецификации элементов.

В ходе лабораторной работы требуется:

- 1) для линейных цепей:
- построить график амплитудно-частотной характеристики, подавая в качестве входного воздействия гармонические колебания различной частоты и наблюдая амплитуду отклика;

- построить график отклика цепи на воздействие в виде белого шума.
- 2) для нелинейных цепей:
- построить серию осциллограмм выходного напряжения при синусоидальном входном воздействии с амплитудами от 0 до 3 В;
 - построить график отклика цепи на воздействие в виде белого шума.

Из методических соображений необходимо использовать метод несущей для описания сигналов и элементов.

При подготовке к лабораторной работе студент выполняет первые этапы процедуры компьютерного моделирования и оформляет соответствующие разделы отчета. При выполнении домашней подготовки требуется разработать и занести в отчет (см. разделы 1-4 примера оформления отчета о лабораторной работе в Приложении 1):

- формулировку задачи, предлагаемые допущения;
- математическую модель электрической цепи и входного воздействия;
- математические модели тестовых воздействий и условий, с помощью которых предлагается проверять соответствие компьютерной модели математической, а также результаты аналитических расчетов предполагаемых откликов;
- алгоритм компьютерной модели, написанный на псевдокоде или в нотации MATLAB/Octave/Cu.

В лаборатории:

- 1. На основании подготовленного алгоритма составьте программу на языке используемой среды моделирования.
- 2. Проверьте программу на соответствие выбранной математической модели, сформировав тестовые воздействия и условия, предложенные в ходе домашней подготовки. При выявлении расхождения результатов моделирования и аналитических расчетов проведите отладку программы.

- 3. Последовательно выполните моделирование по плану:
- построение АЧХ (для линейных цепей);
- построение серии осциллограмм выходного напряжения (для нелинейных цепей);
 - построение графика реакции на шумовое входное воздействие.
- 4. Оцените адекватность полученных результатов, их соответствие общетеоретическим соображениям.
- 5. Составьте отчет о проведенном моделировании. В состав отчета должны входить:
 - постановка задачи;
 - используемая математическая модель и обоснование её выбора;
- аналитический расчет результата тестовых воздействий, сопоставленный с соответствующими результатами проверки компьютерной модели;
 - листинг используемых в процессе исследования программ;
- полученные результаты и их интерпретация, вывод о достижении или не достижении цели исследования.

4 Контрольные вопросы

- 1. Составьте математическую модель для электрической цепи, заданной преподавателем.
- 2. Как составить алгоритм для численного интегрирования дифференциальных уравнений?
 - 3. Что такое переходный процесс и установившийся режим?
- 4. Как задаются начальные условия для моделирования электрической цепи?

- 5. Поясните функционирование компьютерной модели и назначение используемых в ней команд.
- 6. Что есть метод несущей при моделировании радиотехнических устройств и цепей?
- 7. Из каких этапов состоит процедура компьютерного моделирования? В чем назначение каждого этапа?

Таблица 1 – Варианты заданий

Вариант	Схема	Номиналы
1	10	$R = 47 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
2	6	$R = 120 \ \text{Ом}, \ L = 100 \ \text{мк} \Gamma$
3	22	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
4	21	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
5	3	$R = 220 \text{ Ом, } C = 33 \text{ пк}\Phi$
6	17	$R = 220$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
7	2	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
8	2	$R = 47 \text{ Ом, } C = 33 \text{ пк}\Phi$
9	4	$R = 220 \; \text{Ом, C} = 33 \; \text{пк}\Phi, L = 100 \; \text{мк}\Gamma$
10	13	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
11	3	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
12	15	$R = 220 \; \text{Ом, C} = 33 \; \text{пк}\Phi, L = 100 \; \text{мк}\Gamma$
13	20	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
14	8	$R = 47 \; \text{Ом}, C = 33 \; \text{пк}\Phi, L = 100 \; \text{мк}\Gamma$
15	1	$R = 220 \text{ Ом, } C = 33 \text{ пк}\Phi$
16	14	$R = 220 \; \text{Ом, C} = 33 \; \text{пк}\Phi, L = 100 \; \text{мк}\Gamma$
17	19	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
18	15	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
19	7	$R = 220 \; \text{Ом}, L = 100 \; \text{мк} \Gamma$
20	25	С = 33 пкФ
21	4	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$

Вариант	Схема	Номиналы
22	5	$R = 220 \; \text{Ом}, L = 100 \; \text{мк} \Gamma$
23	4	$R = 47 \; \text{Ом, C} = 33 \; \text{пк}\Phi, L = 100 \; \text{мк}\Gamma$
24	11	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
25	5	$R=47~\mathrm{Om},L=100~\mathrm{mk}\Gamma$
26	16	$R = 220$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
27	7	$R = 47 \; \mathrm{Om}, L = 100 \; \mathrm{mk} \Gamma$
28	24	С = 33 пкФ
29	13	$R = 220$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
30	23	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
31	17	$R = 120$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
32	12	$R = 220$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
33	2	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
34	10	$R = 120 \; \text{Ом}, \; C = 33 \; \text{пк}\Phi, \; L = 100 \; \text{мк}\Gamma$
35	18	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
36	16	$R = 120 \; \text{Ом}, \; C = 33 \; \text{пк}\Phi, \; L = 100 \; \text{мк}\Gamma$
37	21	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
38	9	$R = 47 \; \text{Ом, C} = 33 \; \text{пк}\Phi, L = 100 \; \text{мк}\Gamma$
39	19	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
40	5	$R=120~{ m Om},L=100~{ m mk}\Gamma$
41	6	$R=47~\mathrm{Om},L=100~\mathrm{mk}\Gamma$
42	1	$R = 120 \text{ Ом, } C = 33 \text{ пк} \Phi$
43	8	$R = 220 \; \text{Ом}, \; C = 33 \; \text{пк}\Phi, \; L = 100 \; \text{мк}\Gamma$
44	6	$R=220~{ m Om},L=100~{ m mk}\Gamma$
45	11	$R = 220 \; \text{Ом}, \; C = 33 \; \text{пк}\Phi, \; L = 100 \; \text{мк}\Gamma$
46	7	$R=120~{ m Om},L=100~{ m mk}\Gamma$
47	18	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
48	23	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi$
49	24	$C=68$ пк Φ
50	12	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
51	9	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
52	14	$R = 120 \text{ Ом, } C = 33 \text{ пк}\Phi, L = 100 \text{ мк}\Gamma$
53	1	R = 47 Ом, C = 33 пкФ
54	8	$R = 120 \ \text{Ом}, \ C = 33 \ \text{пк}\Phi, \ L = 100 \ \text{мк}\Gamma$

Вариант	Схема	Номиналы
55	22	$R = 220 \; \text{Ом}, \; C = 33 \; \text{пк}\Phi, \; L = 100 \; \text{мк}\Gamma$
56	10	$R = 220$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
57	20	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
58	9	$R = 220$ Ом, $C = 33$ пк Φ , $L = 100$ мк Γ
59	3	$R = 220 \text{ Om, } C = 33 \text{ пк}\Phi$
60	25	С = 68 пкФ

Таблица 2 – Принципиальные схемы электрических цепей

$\mathcal{N}_{\underline{0}}$	Принципиальная схема	№	Принципиальная схема
1	$ \begin{array}{c c} R & C \\ \hline R & \end{array} $	2	
3	R C C	4	
5		6	
7		8	

Продолжение таблицы 2

№	Принципиальная схема	№	Принципиальная схема
9	$\begin{array}{c c} C \\ \hline R \\ \hline \end{array}$	10	R C R C
11	R L C	12	R C C
13		14	$\begin{array}{c c} R & R \\ \hline \\ C \\ \hline \\ \end{array}$
15	R R C R	16	
17		18	$ \begin{array}{c c} R & VD \\ \hline C \\ \hline \end{array} $
19	$ \begin{array}{c c} R & VD \\ \hline C \\ R \\ \hline \end{array} $	20	$ \begin{array}{c c} R & VD \\ \hline C \\ \hline \end{array} $

Окончание таблицы 2

21	$ \begin{array}{c c} R & VD \\ \hline C \\ R \\ \hline \end{array} $	22	
23	$\begin{array}{c c} R & C \\ \hline \\ C \\ \hline \\ \end{array}$	24	
25		26	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Приложение 1. Пример оформления отчета

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Отчет

о выполнении лабораторной работы №1 «Моделирование электрических цепей методом несущей»

Студент гр. ЭР-77-15

Иванов Иван Иванович

Вариант 60

Преподаватель

Сидоров Сидр Сидорович

1 Постановка задачи

Участок электрической цепи описан принципиальной схемой 26, приведенной на рисунке П1.1.

Рисунок П1.1 – Принципиальная схема изучаемого участка электрической цепи

Согласно спецификации номиналы резисторов R составляют 120 Ом, ёмкость конденсаторов С - 33 п Φ , индуктивность дросселя - 100 мк Γ , что соответствует элементам, изображенным на рисунке Π 1.2.

Рисунок П1.2 – Резистор, конденсатор и катушка моделируемой цепи

Тип диода не задан, будем считать его кремниевым с напряжением отпирания 0.6 В. При моделировании примем допущение о кусочнолинейном виде вольтамперной характеристики (ВАХ) диода, вид которой определим в следующем разделе.

Паразитными ёмкостями, индуктивностями, сопротивлениями элементов пренебрежем.

Требуется:

- построить серию осциллограмм выходного напряжения при синусоидальном входном воздействии с амплитудами от 0 до 3 В;
 - построить график отклика цепи на воздействие в виде белого шума.

2 Математические модели

2.1 Описание электрической цепи

Перед составлением математических моделей преобразуем принципиальную схему к эквивалентному виду, см. рисунок П1.3.

Рисунок П1.3 – Эквивалентная схема цепи

На эквивалентной схеме C_1 - эквивалентная емкость двух последовательно включенных конденсаторов C :

$$C_1 = \left(\frac{1}{C} + \frac{1}{C}\right)^{-1} = \frac{C}{2}$$

напряжение $U_{\scriptscriptstyle c}\,$ - удвоенное искомое напряжение

$$U = \frac{U_c}{2}$$
,

сопротивление $R_{\scriptscriptstyle 1}$ соответствует двум последовательно включенным резисторам R

$$R_1 = 2R$$
.

После преобразования схема соответствует хорошо знакомому студентам последовательному LC-контуру, к которому последовательно же подключен диод.

Согласно постановке задачи, допустимо использовать кусочнолинейную ВАХ (см. рисунок П1.4). Наклон кривой в области проводимости соответствует кремниевому диоду 2Д103А:

$$r_d = 1.25 \text{ Om},$$

а в при закрытом диоде

$$R_d = 40000 \,\mathrm{Om}.$$

Рисунок П1.4 – Вольтамперная характеристика диода

Если диод открыт, то эквивалентная схема упрощается до вида, изображенного на рисунке П1.5. Этому случаю соответствует условие:

$$E - U_L - U_C \ge U_o,$$

где $U_o \approx 0.6\,$ В — напряжение отпирания кремниевого диода.

Рисунок П1.5 – Эквивалентная схема цепи при открытом диоде

Если диод закрыт, то эквивалентная схема упрощается до вида, изображенного на рисунке П1.6. Этому случаю соответствует условие:

$$E - U_L - U_C < U_o.$$

Рисунок П1.6 – Эквивалентная схема цепи при закрытом диоде

Для моделирования цепи необходимо найти отображение E в $U_{\scriptscriptstyle c}$.

Математические модели элементов цепи:

- эквивалентный конденсатор

$$i = C_1 \frac{dU_C}{dt} ,$$

- катушка индуктивности

$$U_L = L \frac{di}{dt},$$

- резистор

$$U_R = iR_1$$

- ДИОД

$$\begin{split} \boldsymbol{U}_{\boldsymbol{d}} &= i\boldsymbol{R}_{\boldsymbol{d}}, & \boldsymbol{E} - \boldsymbol{U}_{\boldsymbol{L}} - \boldsymbol{U}_{\boldsymbol{c}} < \boldsymbol{U}_{\boldsymbol{o}}, \\ \boldsymbol{U}_{\boldsymbol{d}} &= i\boldsymbol{r}_{\boldsymbol{d}} + \boldsymbol{U}_{\boldsymbol{o}}, & \boldsymbol{E} - \boldsymbol{U}_{\boldsymbol{L}} - \boldsymbol{U}_{\boldsymbol{c}} \geq \boldsymbol{U}_{\boldsymbol{o}}. \end{split}$$

Связь входного напряжения с напряжением на элементах цепи задается вторым законом Кирхгофа:

$$E = U_d + U_R + U_L + U_C.$$

В рассматриваемой системе можно выделить ряд внутренних фазовых переменных:

- ток i и его производная $\frac{di}{dt}$,
- напряжение на конденсаторе $U_{\it C}$ и его производная $\frac{dU_{\it C}}{dt}$

и т.д. Но согласно приведенным выражениям лишь три переменных оказываются независимыми.

Перейдем от дифференциальных к разностным уравнениям для момента $t_k = kT$, где T - шаг дискретизации.

Напряжение $U_{\scriptscriptstyle D}$ определяется фактом открытия/закрытия диода

$$\begin{split} \boldsymbol{U}_{d,k} &= i_k R_d, & E_k - \boldsymbol{U}_{L,k} - \boldsymbol{U}_{c,k} < \boldsymbol{U}_o, \\ \boldsymbol{U}_{d,k} &= i_k r_d + \boldsymbol{U}_o, & E_k - \boldsymbol{U}_{L,k} - \boldsymbol{U}_{c,k} \geq \boldsymbol{U}_o. \end{split}$$

Напряжение на эквивалентном резисторе определяется током в цепи

$$U_{R,k} = i_k R_1 .$$

Любое изменение входного напряжения приводит, в первую очередь, к изменению напряжения на катушке индуктивности

$$U_{L,k} = E_k - U_{d,k-1} - U_{R,k-1} - U_{C,k-1},$$

что приводит к изменению производной тока

$$\left(\frac{di}{dt}\right)_k = \frac{U_{L,k}}{L},$$

$$i_k = i_{k-1} + \left(\frac{di}{dt}\right)_{k-1} T.$$

Конденсатор интегрирует этот ток, увеличивая своё напряжение

$$\left(\frac{dU_C}{dt}\right)_k = \frac{i_k}{C_1},$$

$$U_{C,k} = U_{C,k-1} + \left(\frac{dU_C}{dt}\right)_{k-1} T.$$

Искомое напряжение на конденсаторе составляет половину от напряжения на эквивалентном конденсаторе

$$U_k = \frac{U_{c,k}}{2}$$
.

Приведенные выражения задают отображение $E_{\scriptscriptstyle k}$ в $U_{\scriptscriptstyle k}$.

2.2 Описание входных воздействий

В качестве входных воздействий на цепь предполагаются гармоническое колебание и белый шум. Математические модели процессов в этих случаях:

- гармоническое колебание

$$E_k = A\cos(2\pi f t_k),$$

где A принимает значения 0, 1, 2, 3 B; f, для наглядности, выберем равной резонансной частоте

$$f = f_0 = \frac{1}{\sqrt{2}\pi\sqrt{LC}}$$

- белый шум

$$E_k = N(0, \sigma_n^2),$$

где $\sigma_n^2 = \frac{N_0}{2T}$ - дисперсия дискретного белого гауссовского шума с односторонней спектральной плотностью мощности N_0 . Характеристики шума не заданы, возьмем $\sigma_n^2 = 13$.

В обоих случаях $t_k = kT$, где T - интервал дискретизации, выберем так, чтобы частота дискретизации была значительно больше удвоенной резонансной частоты:

$$T = \frac{1}{10000 f_0}.$$

2.3 Выбор начальных условий

Состояние цепи можно определить тремя независимыми фазовыми переменными. В качестве таких троек можно выбирать различные параметры, но при выбранной записи разностных уравнений удобно использовать ток, его производную и начальное напряжение на конденсаторе. Положим их равными нулю.

3 Псевдокод компьютерной модели

С учетом выбранных математических моделей получаем следующий псевдокод компьютерной модели:

Подготовка среды

Ввод внутренних параметров (емкость, сопротивление, индуктивность, параметры модели диода)

Расчет резонансной частоты f0

Расчет интервала дискретизации Т

Создание вектора оси времени t

Ввод внешних параметров (Амплитуды гармоник, СКО шума)

Создание вектора входной фазовой переменной Е

Выделение памяти для сохранения внутренних фазовых переменных

Задание начальных условий

Цикл по внешним параметрам

Цикл по времени

Oтображение E в U

Конец цикла по времени

Конец цикла по внешним параметрам

Вывод результатов

4 Тестовое воздействие

Условия: Обнулим сопротивления R_d , r_d и напряжение U_o , подадим скачок уровнем 10 В.

Ожидаемый результат: При обнулении параметров диода мы приходим к последовательному LC-контуру. Реакция на скачок – колебательный процесс с резонансной частотой (3.9 МГц), постепенно затухающий к уровню входного напряжения (т.е. напряжение U к уровню 10 В). Скорость затухания колебаний определяется добротностью контура.

5 Проверка модели

Код компьютерной модели:

<u>LC1.m</u>

```
clear all; close all; clc;
% Внутренние параметры
R = 120; \% OM
C = 33e-12; \% \Phi
L = 100e-6; \% \Gamma H
C1 = C/2;
R1 = 2*R;
Rd = 0; % Параметры диода
rd = 0;
Uo = 0;
omega0 = 1/sqrt(L*C1); % Резонансная частота
f0 = omega0 / 2 / pi;
fprintf('f0 = \%f MHz\n', f0/1e6);
% Ось времени
T = 1 / (10000*f0);
t = 0:T:(15 * 1/f0);
It = Iength(t);
```

```
% Выделение памяти
Uc = nan(1, lt);
UI = nan(1, It);
dUc = nan(1, lt);
Ud = nan(1, lt);
i = nan(1, lt);
di = nan(1, lt);
% Внешние параметры, внешние фазовые переменные
E = 10*ones(1, lt);
% Начальное состояние
Uc(1) = 0; % Начальное напряжение конденсатора
i(1) = 0; % В начальный момент ток в цепи отсутствует
di(1) = 0;
UI(1) = di(1) * L; % Напряжение на катушке
for k = 2:lt
  % Напряжение на диоде
  if (E(k-1) - UI(k-1) - Uc(k-1)) < Uo
     Ud(k-1) = Rd*i(k-1);
  else
     Ud(k-1) = rd*i(k-1) + Uo;
  end
  UI(k) = E(k) - Uc(k-1) - i(k-1)*R1 - Ud(k-1); % Напряжение на катушке
  di(k) = UI(k) / L; % вызывает приращение тока,
  i(k) = i(k-1) + di(k-1)*T;
  dUc(k) = i(k) / C1;% который определяет заряд конденсатора
  Uc(k) = Uc(k-1) + dUc(k)*T;
end
U = Uc / 2;
```

```
figure(1);
plot(t*1e9, [Uc; E; U]);
xlabel('t, ns')
ylabel('U_c, E, U, Volt')
legend('U(t)', 'E(t)', 'U(t)')
grid on
```

Вывод программы.

Command Window:

f0 = 3.918124 MHz

График (figure(1)) представлен на рисунке П1.7

Рисунок П1.7 – Отклик на тестовое воздействие

Средний период колебаний -256 нс, что соответствует ожидаемой частоте $3.9~\mathrm{M}\Gamma$ ц. Уровень стремится к ожидаемому (5В). Противоречий не выявлено.

6 Результаты моделирования

6.1 Отклик на гармоническое воздействие

Код компьютерной модели при синусоидальном входном воздействии:

LC2.m:

```
clear all; close all; clc;
% Внутренние параметры
R = 120; \% OM
C = 33e-12; \% \Phi
L = 100e-6; % Гн
C1 = C/2;
R1 = 2*R;
Rd = 40e3; % Параметры диода
rd = 1.25;
Uo = 0.6;
omega0 = 1/sqrt(L*C1); % Резонансная частота
f0 = omega0 / 2 / pi;
fprintf('f0 = \%f MHz\n', f0/1e6);
% Ось времени
T = 1 / (10000*f0);
t = 0:T:(15 * 1/f0);
It = Iength(t);
% Выделение памяти
Uc = nan(1, lt);
UI = nan(1, It);
dUc = nan(1, lt);
Ud = nan(1, lt);
i = nan(1, lt);
di = nan(1, lt);
```

```
% Внешние параметры, внешние фазовые переменные
f = f0;
A = [0; 1; 2; 3];
U = nan(length(A), lt);
for n = 1:length(A)
  E = A(n)*\cos(2*pi*f*t);
  % Начальное состояние
  Uc(1) = 0; % Начальное напряжение конденсатора
  і(1) = 0; % В начальный момент ток в цепи отсутствует
  di(1) = 0;
  UI(1) = di(1) * L; % Напряжение на катушке
  for k = 2:It
     % Напряжение на диоде
     if (E(k-1) - UI(k-1) - Uc(k-1)) < Uo
       Ud(k-1) = Rd*i(k-1);
     else
       Ud(k-1) = rd*i(k-1) + Uo;
     end
     UI(k) = E(k) - Uc(k-1) - i(k-1)*R1 - Ud(k-1); % Напряжение на
катушке
     di(k) = UI(k) / L; % вызывает приращение тока,
     i(k) = i(k-1) + di(k-1)*T;
     dUc(k) = i(k) / C1;% который определяет заряд конденсатора
     Uc(k) = Uc(k-1) + dUc(k)*T;
  end
  U(n, :) = Uc / 2;
end
figure(1);
plot(t*1e9, [E; U]);
xlabel('t, ns')
```

Вывод программы.

Command Window:

f0 = 3.918124 MHz

График (figure(1)) представлен на рисунке П1.8

Рисунок П1.8 — Серия откликов на гармоническое воздействие разной амплитуды

6.2 Отклик на шумовое воздействие

Код компьютерной модели при синусоидальном входном воздействии:

LC3.m:

clear all; close all; clc;

```
% Внутренние параметры
R = 120; \% OM
C = 33e-12; \% \Phi
L = 100e-6; % Гн
C1 = C/2;
R1 = 2*R;
Rd = 40e3; % Параметры диода
rd = 1.25;
Uo = 0.6;
omega0 = 1/sqrt(L*C1); % Резонансная частота
f0 = omega0 / 2 / pi;
fprintf('f0 = \%f MHz\n', f0/1e6);
% Ось времени
T = 1 / (10000*f0);
t = 0:T:(15 * 1/f0);
It = length(t);
% Выделение памяти
Uc = nan(1, lt);
UI = nan(1, It);
dUc = nan(1, lt);
Ud = nan(1, lt);
i = nan(1, lt);
di = nan(1, lt);
% Внешние параметры, внешние фазовые переменные
stdn = sqrt(13);
E = stdn*randn(1, lt);
% Начальное состояние
```

```
Uc(1) = 0; % Начальное напряжение конденсатора
і(1) = 0; % В начальный момент ток в цепи отсутствует
di(1) = 0;
UI(1) = di(1) * L; % Напряжение на катушке
for k = 2:It
  % Напряжение на диоде
  if (E(k-1) - UI(k-1) - Uc(k-1)) < Uo
     Ud(k-1) = Rd*i(k-1);
  else
     Ud(k-1) = rd*i(k-1) + Uo;
  end
  UI(k) = E(k) - Uc(k-1) - i(k-1)*R1 - Ud(k-1); % Напряжение на катушке
  di(k) = UI(k) / L; % вызывает приращение тока,
  i(k) = i(k-1) + di(k-1)*T;
  dUc(k) = i(k) / C1;% который определяет заряд конденсатора
  Uc(k) = Uc(k-1) + dUc(k)*T;
end
U = Uc / 2;
figure(1);
plot(t*1e9, [Uc; E; U]);
xlabel('t, ns')
ylabel('U_c, E, U, Volt')
legend('U_c(t)', 'E(t)', 'U(t)')
grid on
Вывод программы.
Command Window:
f0 = 3.918124 \text{ MHz}
```


Рисунок П1.9 – Отклик на воздействие белого шума (в масштабе входного процесса)

Рисунок П1.10 – Отклик на воздействие белого шума

График (figure(1)) представлен на рисунках П1.9, П1.10 (в разных масштабах).

7 Анализ результатов моделирования

Формальные цели моделирования достигнуты – получены графики процессов в условии оговоренных в разделах 1 и 2 допущений.

Полученные результаты не противоречат ожиданиям. При гармоническом воздействии схема работает как выпрямитель благодаря схожей структуре. Результат воздействия белого шума — сложный коррелированный процесс, результат прохождения линейного фильтра и нелинейного элемента.

Учебное издание

Илья Владимирович Корогодин

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ МЕТОДОМ НЕСУЩЕЙ

Лабораторная работа №1

Методическое пособие по курсу «Математическое моделирование радиотехнических устройств и систем»

для студентов, обучающихся по направлению «Радиотехника»