Bootstrap-Assisted Inference for Generalized Grenander-type Estimators

Matias D. Cattaneo¹, Michael Jansson², and Kenichi Nagasawa³

April 2023

¹Princeton University.

²UC-Berkeley.

³University of Warwick.

Setup: Grenander-Type Estimators [Westling & Carone, 2020]

Monotone function estimators $\widehat{\theta}_n(x)$ at interior point x exhibit:

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}\big(\widehat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})\big) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}^\mathfrak{q}_\mathsf{x})(0),$$

$$\mathcal{M}_{\mathbf{x}}^{\mathfrak{q}}(v) = \frac{\partial^{\mathfrak{q}} \theta_0(\mathbf{x}) \partial \Phi_0(\mathbf{x})}{(1+\mathfrak{q})!} v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min \big\{ j \in \mathbb{N} : \partial^j \theta_0(\mathbf{x}) \neq 0 \big\}.$$

as $n \to \infty$, where:

- \triangleright $\theta_0(\cdot)$ is density, regression or hazard function, among other possibilities.
- $\blacktriangleright \ \mathcal{G}_x$ is zero-mean Gaussian process (nonstationary, rough cov kernel).
- $ightharpoonup \mathcal{M}_x^{\mathfrak{q}}$ is non-random drift function (usually quadratic, but not always).
- $ightharpoonup \Phi_0$ unknown non-decreasing and càdlàg function.
- ▶ $GCM_I(f)$ is greatest convex minorant of function f on interval I.

Motivation: Conducting inference can be challenging.

Setup: Grenander-Type Estimators [Westling & Carone, 2020]

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}\big(\widehat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})\big) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})}\partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}_\mathsf{x}^\mathsf{q})(0),$$

$$\mathcal{M}_{\mathbf{x}}^{\mathfrak{q}}(v) = \frac{\partial^{\mathfrak{q}}\theta_{0}(\mathbf{x})\partial\Phi_{0}(x)}{(1+\mathfrak{q})!}v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min\big\{j \in \mathbb{N}: \partial^{j}\theta_{0}(\mathbf{x}) \neq 0\big\}.$$

Examples:

- ▶ Isotonic density [Grenander, 1956] and extensions (censoring, covariates).
- ▶ Isotonic regression [Brunk, 1970] and extensions (censoring, covariates).
- ▶ Monotone Hazard [Rao, 1970] and extensions (censoring, covariates).
- ► Current Status [Ayer et al. 1955] and extensions (censoring, covariates).

Problem: bootstrap inconsistent [Kosorok, 2008; Sen, Banerjee & Woodroofe, 2010].

- Restore bootstrap validity: modifying the distribution used when resampling (subsampling, m-out-of-n bootstrap, smooth bootstrap).
- ► This paper: Modifying ("reshaping") functional form estimator [CJN, 2020].

Leading Example (Today): Isotonic Density Estimation

Model:

- $ightharpoonup X_1, \ldots, X_n$ i.i.d. with support [0, 1].
- $ightharpoonup F(x) = \mathbb{P}[X_i \le x]$ absolutely continuous.
- $ightharpoonup \partial F(x) = f(x)$ monotone (e.g., non-decreasing).

Estimand: $\theta_0(x) = f(x)$ for interior point x.

Estimator: for \mathcal{F} the class of non-decreasing densities supported on [0,1],

$$\widehat{\theta}_n(\cdot) = \underset{f \in \mathcal{F}}{\arg \max} \sum_{i=1}^n \log f(X_i)$$

$$\implies \widehat{\theta}_n(\mathsf{x}) = \partial_- \mathrm{GCM}_{[0,1]}(\widehat{\Gamma}_n)(\mathsf{x}), \qquad \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x)$$

Asy Dist: under regularity, $\mathfrak{q} = 1$ and $\Phi_0(x) = x$,

$$\sqrt[3]{n} \big(\widehat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x}) \big) \rightsquigarrow \partial_- \mathrm{GCM}_{\mathbb{R}} (\mathcal{G}_\mathsf{x} + \mathcal{M}_{\mathsf{x},1})(0) \sim \sqrt[3]{4f(\mathsf{x})} \operatorname*{argmin}_{v \in \mathbb{R}} \big\{ \mathcal{G}(v) + v^2 \big\}$$

Second Example: Isotonic Regression Estimation

Model:

- $ightharpoonup (Y_1, X_1), \ldots, (Y_n, X_n)$ i.i.d. with X_i on support I, and $F(x) = \mathbb{P}[X_i \leq x]$.
- $ightharpoonup \mu(x) = \mathbb{E}[Y_i|X_i=x]$ differentiable and monotone (e.g., non-decreasing).

Estimand: $\theta_0(x) = \mu(x)$ for interior point x.

Estimator: for \mathcal{F} the class of non-decreasing functions supported on I,

$$\begin{split} \widehat{\theta}_n(x) &= \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^n (Y_{(i)} - f(X_{(i)}))^2 \\ \Longrightarrow & \widehat{\theta}_n(\mathbf{x}) = \left(\partial_- \mathrm{GCM}_{[0,1]}(\widehat{\Gamma}_n \circ \widehat{\Phi}_n^-)\right) \circ \widehat{\Phi}_n^-(\mathbf{x}), \\ \widehat{\Gamma}_n(x) &= \frac{1}{n} \sum_{i=1}^n \mathbbm{1}(X_i \leq x) Y_i, \qquad \widehat{\Phi}_n^- &= \frac{1}{n} \sum_{i=1}^n \mathbbm{1}(X_i \leq x). \end{split}$$

Asy Dist: under regularity, $\mathfrak{q} = 1$ and $\Phi_0(x) = F(x)$,

$$\sqrt[3]{n} (\widehat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathbf{x})} \partial_- \mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_{\mathbf{x}} + \mathcal{M}_{\mathbf{x},1})(0) \sim \sqrt[3]{\frac{4\sigma^2(\mathbf{x})\partial\mu(\mathbf{x})}{f(\mathbf{x})}} \underset{v \in \mathbb{R}}{\operatorname{argmin}} \left\{ \mathcal{G}(v) + v^2 \right\}$$

Third Example: Covariate-Adjusted Isotonic Regression

Model:

- $ightharpoonup (Y_1, X_1, \mathbf{Z}'_1), \dots, (Y_n, X_n, \mathbf{Z}'_n)$ i.i.d. with X_i on support I, and $F(x) = \mathbb{P}[X_i \leq x]$.
- $\blacktriangleright \mu(x) = \mathbb{E}[\mathbb{E}[Y_i|X_i=x,\mathbf{Z}_i]]$ differentiable and monotone (e.g., non-decreasing).

Estimand: $\theta_0(x) = \mathbb{E}\left[\mathbb{E}[Y_i|X_i = x, \mathbf{Z}_i]\right]$.

Estimator:

$$\widehat{\theta}_n(\mathsf{x}) = \left(\partial_- \mathrm{GCM}_{[0,1]}(\widehat{\Gamma}_n \circ \widehat{\Phi}_n^-)\right) \circ \widehat{\Phi}_n^-(\mathsf{x})$$

$$\widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x) \left[\frac{Y_i - \widehat{\mu}(X_i, \mathbf{Z}_i)}{\widehat{f}(\mathbf{Z}_i | X_i)} + \frac{1}{n} \sum_{j=1}^n \widehat{\mu}(X_i, \mathbf{Z}_j) \right], \quad \widehat{\Phi}_n^-(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x).$$

Asy Dist: under regularity, $\mathfrak{q} = 1$ and $\Phi_0(x) = F(x)$,

$$\sqrt[3]{n} \left(\widehat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x})\right) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_{-} \mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_\mathsf{x} + \mathcal{M}_{\mathsf{x},1})(0) \sim c_0(\mathsf{x}) \operatorname*{argmin}_{v \in \mathbb{R}} \left\{ \mathcal{G}(v) + v^2 \right\}$$

Generalized Grenander-Type Estimators: Framework

Estimand: $\theta_0(x)$ at interior point x, a monotone function.

Estimator:

$$\widehat{\theta}_n(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n \circ \widehat{\Phi}_n^-)] \circ \widehat{\Phi}_n(\mathsf{x}),$$

for some (application specific) $\widehat{\Gamma}_n \to_{\mathbb{P}} \Gamma_0$ and $\widehat{\Phi}_n \to_{\mathbb{P}} \Phi_0$.

Asy Dist:

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}\big(\widehat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})\big) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}^\mathfrak{q}_\mathsf{x})(0),$$

$$\mathcal{M}_{\mathsf{x}}^{\mathsf{q}}(v) = \frac{\partial^{\mathsf{q}} \theta_0(\mathsf{x}) \partial \Phi_0(x)}{(1+\mathsf{q})!} v^{1+\mathsf{q}}, \qquad \mathsf{q} = \min \big\{ j \in \mathbb{N} : \partial^j \theta_0(\mathsf{x}) \neq 0 \big\}.$$

Our Goals:

- ▶ Develop valid bootstrap-assisted & automatic distributional approximations.
- ▶ Develop valid inference procedures: e.g., confidence intervals for $\theta_0(x)$.

Isotonic Density Estimation: Distribution Theory

- $\theta_0(x) = f(x)$, a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\widehat{\theta}_n(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$

Switching Relation:

$$\mathbb{P}\left[\sqrt[3]{n} \left(\widehat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})\right) > t\right] = \mathbb{P}\left[\underset{v \in S_n}{\arg\max} \left\{ \widehat{G}_{\mathbf{x},n}(v) + t\widehat{L}_{\mathbf{x},n}(v) + M_{\mathbf{x},n}(v) \right\} < 0 \right],$$

where

$$\widehat{G}_{\mathbf{x},n}(v) = -n^{2/3} \left[\widehat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \Gamma_0(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n(\mathbf{x}) - \Gamma_0(\mathbf{x}) \right]$$

$$\widehat{L}_{\mathsf{x},n}(v) = v$$

$$M_{\mathbf{x},n}(v) = -n^{2/3} \left[\Gamma_0(\mathbf{x} + vn^{-1/3}) - \Gamma_0(\mathbf{x}) - \theta_0(\mathbf{x})vn^{-1/3} \right]$$

and

$$S_n = [-xn^{1/3}, \infty)$$
 with $\mathbb{1}(v \in S_n) \to \mathbb{1}(v \in I)$

Isotonic Density Estimation: Distribution Theory

- $\theta_0(x) = f(x)$, a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\widehat{\theta}_n(\mathsf{x}) = \partial_{-}\mathrm{GCM}_{J_n}(\widehat{\Gamma}_n)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$

Switching Relation:

$$\mathbb{P}\left[\sqrt[3]{n} \left(\widehat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})\right) > t\right] = \mathbb{P}\left[\arg\max_{v \in S_n} \left\{\widehat{G}_{\mathbf{x},n}(v) + t\widehat{L}_{\mathbf{x},n}(v) + M_{\mathbf{x},n}(v)\right\} < 0\right],$$

where

$$\widehat{G}_{\mathbf{x},n}(v) = -n^{2/3} \left[\widehat{\Gamma}_n(\mathbf{x} + v n^{-1/3}) - \Gamma_0(\mathbf{x} + v n^{-1/3}) - \widehat{\Gamma}_n(\mathbf{x}) - \Gamma_0(\mathbf{x}) \right] \rightsquigarrow \mathcal{G}_{\mathbf{x}}(v)$$

$$\widehat{L}_{\mathsf{x},n}(v) = v$$

$$M_{\mathbf{x},n}(v) = -n^{2/3} \left[\Gamma_0(\mathbf{x} + vn^{-1/3}) - \Gamma_0(\mathbf{x}) - \theta_0(\mathbf{x})vn^{-1/3} \right] \to -\mathcal{M}_{\mathbf{x}}^{\mathbf{q}}(v) = -\frac{\partial f(\mathbf{x})}{2}v^2$$

which implies

$$\underset{v \in S_n}{\arg\max} \left\{ \widehat{G}_{\mathsf{x},n}(v) + t\widehat{L}_{\mathsf{x},n}(v) + M_{\mathsf{x},n}(v) \right\} \leadsto \underset{v \in I}{\arg\max} \left\{ \mathcal{G}_{\mathsf{x}}(v) + tv - \mathcal{M}_{\mathsf{x}}^{\mathsf{q}}(v) \right\}$$

Isotonic Density Estimation: Distribution Theory

$$\begin{split} \mathbb{P}\left[\sqrt[3]{n}\big(\widehat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})\big) > t\right] &= \mathbb{P}\left[\underset{v \in S_n}{\arg\max}\left\{\widehat{G}_{\mathbf{x},n}(v) + t\widehat{L}_{\mathbf{x},n}(v) + M_{\mathbf{x},n}(v)\right\} < 0\right] \\ &\to \mathbb{P}\left[\underset{v \in I}{\arg\max}\left\{\mathcal{G}_{\mathbf{x}}(v) + tv - \mathcal{M}_{\mathbf{x}}^{\mathbf{q}}(v)\right\} < 0\right] \\ &= \mathbb{P}\left[\partial_{-}\mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_{\mathbf{x}} + \mathcal{M}_{\mathbf{x}}^{\mathbf{q}})(0) > t\right] \end{split}$$

where

$$\mathcal{M}_{\mathsf{x}}^{\mathsf{q}} = \frac{\partial f(\mathsf{x})}{2} v^2$$

▶ In this stylized example,

$$\mathfrak{q}=1, \qquad Phi_0(x)=x, \qquad \mathcal{G}_{\mathsf{X}}(v)=\sqrt{f(x)}\mathcal{W}(v),$$

with $\mathcal{W}(\cdot)$ two-sided Wiener process.

Next: let's investigate what happens when we apply the nonparametric bootstrap...

Isotonic Density Estimation: Bootstrapping

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\widehat{\theta}_n(\mathsf{x}) = \partial_{-}\mathrm{GCM}_{J_n}(\widehat{\Gamma}_n)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$
- $\widehat{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n^*)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x).$

Switching Relation:

$$\mathbb{P}^*\left[\sqrt[3]{n}(\widehat{\theta}_n^*(\mathbf{x})-\widehat{\theta}_n(\mathbf{x}))>t\right]=\mathbb{P}^*\left[\underset{v\in S_n^*}{\arg\max}\left\{\widehat{G}_{\mathbf{x},n}^*(v)+t\widehat{L}_{\mathbf{x},n}^*(v)+\frac{\textit{\textit{M}}_{\mathbf{x},n}^*(v)}{}\right\}<0\right],$$

where

$$\widehat{G}_{\mathbf{x},n}^*(v) = -n^{2/3} \Big[\widehat{\Gamma}_n^*(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n^*(\mathbf{x}) - \widehat{\Gamma}_n(\mathbf{x}) \Big]$$

$$\widehat{L}_{\mathsf{x},n}^*(v) = v$$

$$\boldsymbol{M}_{\mathbf{x},\boldsymbol{n}}^*(v) = -n^{2/3} \left[\widehat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n(\mathbf{x}) - \widehat{\theta}_n(\mathbf{x}) vn^{-1/3} \right]$$

and

$$S_n^* = [-xn^{1/3}, \infty)$$
 with $\mathbb{1}(v \in S_n^*) \to \mathbb{1}(v \in I)$

Isotonic Density Estimation: Bootstrapping

•
$$\theta_0(x) = f(x)$$
 a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.

$$\widehat{\theta}_n(\mathsf{x}) = \partial_{-}\mathrm{GCM}_{J_n}(\widehat{\Gamma}_n)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$$

$$\blacktriangleright \ \widehat{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n^*)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbbm{1}(X_i^* \leq x).$$

NP Bootstrap Failure:

$$\underset{v \in S^*}{\arg\max} \left\{ \widehat{G}_{\mathsf{x},n}^*(v) + t \widehat{L}_{\mathsf{x},n}^*(v) + \underline{M}_{\mathsf{x},n}^*(v) \right\} \not \sim_{\mathbb{P}} \underset{v \in I}{\arg\max} \left\{ \mathcal{G}_{\mathsf{x},\alpha}(v) + tv + \mathcal{M}_{\mathsf{x},\alpha}(v) \right\}$$

because

$$\widehat{G}_{\mathbf{x},n}^*(v) = -n^{2/3} [\widehat{\Gamma}_n^*(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n^*(\mathbf{x}) - \widehat{\Gamma}_n(\mathbf{x})] \rightsquigarrow_{\mathbb{P}} \mathcal{G}_{\mathbf{x}}(v)$$

$$\widehat{L}_{\mathbf{v},n}^{*}(v) = v$$

$$\underline{M_{\mathbf{x},n}^*}(v) = -n^{2/3} [\widehat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \widehat{\Gamma}_n(\mathbf{x}) - \widehat{\theta}_n(\mathbf{x})vn^{-1/3}] \underset{\mathbb{R}}{\not\to_{\mathbb{P}}} - \mathcal{M}_{\mathbf{x},n}(v) = -\frac{\partial f(\mathbf{x})}{\partial v} v^2$$

▶ Recall: for Asy Dist, we instead had

$$M_{x,n}(v) = -n^{2/3} [\Gamma_0(x + vn^{-1/3}) - \Gamma_0(x) - \theta_0(x)vn^{-1/3}] \to -\mathcal{M}_{x,n}(v) = -\frac{\partial f(x)}{\partial x} v^2$$

Isotonic Density Estimation: Recap and Intuition

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\widehat{\theta}_n(x) = \partial_- GCM_{J_n}(\widehat{\Gamma}_n)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$

Asymptotic Distribution:

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}[\sqrt[3]{n}(\widehat{\theta}_n(x) - \theta_0(x)) \le t] - \mathbb{P}\left[\partial_- \mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x} + \mathcal{M}_\mathsf{x}^{\mathsf{q}})(0) \le t] \right| \to 0$$

NP bootstrap: $\widehat{\theta}_n^*(x) = \partial_- GCM_{J_n}(\widehat{\Gamma}_n^*)(x)$ with $\widehat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x)$ is invalid,

$$\sup_{t\in\mathbb{R}} \left| \mathbb{P}^*[\sqrt[3]{n}(\widehat{\theta}_n^*(\mathsf{x}) - \widehat{\theta}_n(\mathsf{x})) \leq t] - \mathbb{P}[\sqrt[3]{n}(\widehat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x})) \leq t] \right| \not \to_{\mathbb{P}} 0$$

This paper: consistency can be achieved by reshaping $\widehat{\Gamma}_n^*$.

- ▶ Intuition:
 - ▶ around x, $\widehat{\Gamma}_n(x)$ has mean $\Gamma_0(x) \approx \Gamma_0(x) + f(x)(x-x) + \frac{1}{2}\partial f(x)(x-x)^2$
 - whereas the mean of $\widehat{\Gamma}_n^*(x)$ under the bootstrap distribution is given by $\widehat{\Gamma}_n(x)$.
- ▶ Reshaping: Let $\partial \tilde{f}_n(x)$ denote a consistent estimator of $\partial f(x)$, then

$$\widetilde{\Gamma}_{n}^{*}(x) = \widehat{\Gamma}_{n}^{*}(x) - \widehat{\Gamma}_{n}(x) + \widehat{\theta}_{n}(x)(x - x) + \frac{1}{2}\partial \widetilde{f}_{n}(x)(x - x)^{2}$$

Isotonic Density Estimation: Bootstrap Consistency

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\widehat{\theta}_n(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$
- $\blacktriangleright \ \widehat{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n^*)(\mathsf{x}) \text{ with } \widehat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x).$
- \bullet $\tilde{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\tilde{\Gamma}_n^*)(\mathsf{x})$ with

$$\widetilde{\Gamma}_n^*(x) = \widehat{\Gamma}_n^*(x) - \widehat{\Gamma}_n(x) + \widehat{\theta}_n(x)(x - x) + \frac{1}{2}\partial \widetilde{f}_n(x)(x - x)^2.$$

Bootstrap-Assisted Validity:

$$\sup_{t\in\mathbb{R}}\left|\mathbb{P}^*[\widetilde{\theta}_n^*(\mathsf{x})-\widehat{\theta}_n(\mathsf{x})\leq t]-\mathbb{P}[\widehat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})\leq t]\right|\to_{\mathbb{P}}0$$

provided that

$$\partial \tilde{f}_n(\mathsf{x}) \to_{\mathbb{P}} \partial f(\mathsf{x}).$$

- ▶ The consistency requirement is mild and easy to achieve automatically.
- ▶ Confidence intervals based on kernel estimator perform well in simulations.

Generalized Grenander-Type Estimators: General Case

- \triangleright $\theta_0(x)$ at interior point x, a monotone function.
- $\blacktriangleright \ \widehat{\theta}_n(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n \circ \widehat{\Phi}_n^-)] \circ \widehat{\Phi}_n(\mathsf{x}), \ \mathrm{with} \ (\widehat{\Gamma}_n, \widehat{\Phi}_n) \to_{\mathbb{P}} (\Gamma_0, \Phi_0).$

Asymptotic Distribution: using their Generalized Switching Relation,

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}\big(\widehat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})\big) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}^\mathfrak{q}_\mathsf{x})(0),$$

$$\mathcal{M}_{\mathsf{x}}^{\mathsf{q}}(v) = \frac{\partial^{\mathsf{q}} \theta_0(\mathsf{x}) \partial \Phi_0(\mathsf{x})}{(1+\mathsf{q})!} v^{1+\mathsf{q}}, \qquad \mathsf{q} = \min \big\{ j \in \mathbb{N} : \partial^j \theta_0(\mathsf{x}) \neq 0 \big\}.$$

Bootstrap-assisted Inference using reshaped estimator:

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}^* [\tilde{\theta}_n^*(\mathsf{x}) - \widehat{\theta}_n(\mathsf{x}) \leq t] - \mathbb{P}[\widehat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x}) \leq t] \right| \to_{\mathbb{P}} 0$$

where

$$\tilde{\theta}_n^*(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\tilde{\Gamma}_n^* \circ (\widehat{\Phi}_n^*)^-)] \circ \widehat{\Phi}_n^*(\mathsf{x})$$

with

$$\widetilde{\Gamma}_n^*(x) = \widehat{\Gamma}_n^*(x) - \widehat{\Gamma}_n(x) + \widehat{\theta}_n(x)\widehat{\Phi}_n(x-x) + \widetilde{\mathcal{M}}_{x,q}(x-x),$$

and provided that

$$\tilde{\mathcal{M}}_{\mathsf{X},\mathfrak{q}}(v) \to_{\mathbb{P}} \mathcal{M}^{\mathfrak{q}}_{\mathsf{X}}(v).$$

Grenander-Type Estimators: Bootstrap-assisted Inference

Valid percentile CI for monotone function $\theta_0(x)$ at interior point x:

$$\mathbf{I}_{1-a}^*(\mathbf{x}) = \left[\widehat{\theta}_n(\mathbf{x}) - q_{1-a/2}^* \quad , \quad \widehat{\theta}_n(\mathbf{x}) - q_{a/2}^*\right]$$

where

$$\blacktriangleright \ \widehat{\theta}_n(\mathbf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\widehat{\Gamma}_n \circ \widehat{\Phi}_n^-)] \circ \widehat{\Phi}_n(\mathbf{x}), \qquad (\widehat{\Gamma}_n, \widehat{\Phi}_n) \to_{\mathbb{P}} (\Gamma_0, \Phi_0).$$

$$\tilde{\theta}_n^*(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\tilde{\Gamma}_n^* \circ (\widehat{\Phi}_n^*)^-)] \circ \widehat{\Phi}_n^*(\mathsf{x}),$$

$$\tilde{\Gamma}_n^*(x) = \widehat{\Gamma}_n^*(x) - \widehat{\Gamma}_n(x) + \widehat{\theta}_n(x)\widehat{\Phi}_n(x - x) + \tilde{\mathcal{M}}_{x,q}(x - x),$$

$$\tilde{\mathcal{M}}_{x,q}(v) \to_{\mathbb{P}} \mathcal{M}_{x}^{q}(v).$$

Key outstanding issue: How to construct $\tilde{\mathcal{M}}_{x,\mathfrak{q}}(v)$?

Bootstrap-assisted Inference: Drift Estimation

$$\begin{aligned} \mathbf{Recall:} \ \widehat{\theta}_n(\mathbf{x}) &= [\partial_{-}\mathrm{GCM}_{J_n}(\widehat{\Gamma}_n \circ \widehat{\Phi}_n^{-})] \circ \widehat{\Phi}_n(\mathbf{x}), \qquad (\widehat{\Gamma}_n, \widehat{\Phi}_n) \to_{\mathbb{P}} (\Gamma_0, \Phi_0), \\ \mathcal{M}^{\mathfrak{q}}_{\mathbf{x}}(v) &= \frac{\partial^{\mathfrak{q}} \theta_0(\mathbf{x}) \partial \Phi_0(x)}{(1+\mathfrak{q})!} v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min \big\{ j \in \mathbb{N} : \partial^j \theta_0(\mathbf{x}) \neq 0 \big\}. \end{aligned}$$

- ▶ Sometimes, $\partial^{\mathfrak{q}}\theta_0(x)$ and $\partial\Phi_0(x)$ easy to characterize (if \mathfrak{q} is known!) and estimate.
 - For example, $\pi_0(x) = \partial f(x)$ and $\partial \Phi_0(x) = 1$ in Isotonic Density Estimation.
- ▶ In general, if \mathfrak{q} is known, $\tilde{\mathcal{M}}_{x,\mathfrak{q}}(v)$ based on numerical derivative estimator:

$$\frac{\partial^{\mathfrak{q}} \theta_n \widehat{(\mathbf{x})} \widehat{\partial \Phi}_n (\mathbf{x})}{(\mathfrak{q}+1)!} = \epsilon_n^{-(\mathfrak{q}+1)} \sum_{k=1}^{\mathfrak{q}+1} (-1)^{k+\mathfrak{q}+1} \binom{\mathfrak{q}+1}{k} [\widehat{\Upsilon}_n (\mathbf{x}+k\epsilon_n) - \widehat{\Upsilon}_n (\mathbf{x})]$$

where

- $\blacktriangleright \ \widehat{\Upsilon}_n(v) = \widehat{\Gamma}_n(v) \widehat{\theta}_n(\mathsf{x}) \widehat{\Phi}_n(v) \qquad \text{and} \qquad \epsilon_n > 0 \text{ is a (small) tuning parameter}.$
- $\qquad \qquad \tilde{\mathcal{M}}_{\mathsf{x},\mathfrak{q}}(v) \to_{\mathbb{P}} \mathcal{M}^{\mathfrak{q}}_{\mathsf{x}}(v) \text{ requires } \epsilon_n \to 0 \text{ and } n\epsilon_n^{1+2\mathfrak{q}} \to \infty.$
- ▶ Under additional conditions, MSE-optimal ϵ_n can be obtained.
- Possible to develop estimator $\tilde{\mathcal{M}}_{x,q}(v)$ adaptive to unknown $q \leq \bar{q}$.

	DGP 1				DGP 2				DGP 3			
	$\tilde{D}_{1,n}$	$\tilde{D}_{3,n}$	Coverage	Length	$\tilde{\mathcal{D}}_{1,n}$	$\tilde{D}_{3,n}$	Coverage	Length	$\tilde{\mathcal{D}}_{1,n}$	$\tilde{\mathcal{D}}_{3,n}$	Coverage	Length
Standard												
			0.832	0.370			0.835	0.516			0.904	0.028
m-out-of-n												
$m = \lceil n^{1/2} \rceil$			0.900	0.413			0.909	0.583			0.940	0.031
$m = \lceil n^{2/3} \rceil$			0.872	0.399			0.879	0.556			0.921	0.029
$m = \lceil n^{4/5} \rceil$			0.856	0.391			0.862	0.544			0.913	0.029
Reshaped												
Oracle	1.000	0.000	0.942	0.393	1.00	0.000	0.943	0.549	0.000	1.000	0.943	0.029
ND known q	1.045	0.000	0.950	0.396	1.04	0.000	0.944	0.543	0.000	1.012	0.935	0.028
ND robust	1.045	0.633	0.951	0.398	1.04	0.981	0.953	0.556	0.014	1.012	0.959	0.030

Discussion and Conclusion

- ▶ Nonparametric bootstrap fails for Grenander-Type Estimators.
- ▶ Other valid resampling methods available change the bootstrap distribution.
- ► This paper:
 - Employs standard nonparametric bootstrap.
 - Reshapes estimator to deal with bootstrap inconsistency.
- ▶ Our method applies to many problems in econ, stats, biostats, ML and beyond:
 - ▶ Isotonic density [Grenander, 1956] and extensions (censoring, covariates).
 - ▶ Isotonic regression [Brunk, 1970] and extensions (censoring, covariates).
 - ▶ Monotone Hazard [Rao, 1970] and extensions (censoring, covariates).
 - ▶ Current Status [Ayer et al. 1955] and extensions (censoring, covariates).
- ▶ Coming soon: Smoothed pairwise maximum rank correlation and related problems.
 - ightharpoonup \sqrt{n} -consistent U-process optimizer but with Chernoff-type distribution