

A network-based model to explore the role of testing in the epidemiological control of the COVID-19 pandemic

Chathurya (202402004) Narayan Pai (202402012)

Semester III, M.Sc. Biostatistics Department of Data Science PSPH, MAHE, Manipal

November 9, 2021

Article Reference

 Title: A network-based model to explore the role of testing in the epidemiological control of the COVID-19 pandemic.

https://doi.org/10.1186/s12879-020-05750-9

• Authors: Cui, Yapeng and Ni, Shunjiang and Shen, Shifei

• Journal: BMC Infectious Diseases, Vol 21

• Published Online: January 12, 2021

Outline

- Introduction
- 2 Model
- Methods
- Model Validation
- Conclusion
- 6 References

INTRODUCTION

History

- Back in the 1990s, most epidemic models assumed uniform or homogeneous mixing.
- However there were some limitations of the homogeneous mixing in certain situations. Hence, non-homogeneous mixing was introduced.
- The non-homogeneous mixing is commonly used in case of disease outbreaks.
 This is called Network epidemiology
- Here links are used to model contact and nodes, to model actors. These
 'actors' may be in one state at a time: susceptible, infected, removed, or
 recovered.

Situations

- A network epidemic is a process of widespread and rapid propagation of a contagion through a network.
- Some examples of this process are :-
 - Spread of a disease among living organisms
 - Spread of malicious software
 - Spread of an idea, concept, news, or popular notion.

Models

• SIR Model: Susceptible, Infected and Recovered

Figure 1: SIR Model

SIR Model

Figure 2: SIR Model

SIS Model

• SIS Model: Susceptible-Infected-Susceptible Epidemics

Figure 3: SIS Model

- Actors are in one of two states—infected or susceptible.
- Susceptibles become infected at rate a.
- Infecteds recover at rate b.

SEIR Model

Susceptible-Exposed-Infectious-Recovered Model

- E: Exposed (latent) humans
- S: Susceptible humans
- I: Infectious humans
- R: Recovered humans

Figure 4: SEIR Model

Networks

- The presence of a relationship between individuals in a population is the issue of concern in the context of an epidemic.
- Networks can be defined in terms of how individuals are distributed in space (which may be geographical or social). They are:-
 - Small-world Networks
 - Spacial Networks
 - Scale-free Networks

Background

- The aim of this study was to determine how testing affects the spread of epidemics and the daily testing volume needed to control infectious diseases.
- Researchers have found that testing plays an important role in controlling the spread of infectious diseases.
- In order to analyze the covid data and study the role of testing on disease outbreaks, an epidemic transmission model was combined with a testing mechanism.

Method

1. Epidemic transmission model

- A network is composed of nodes and edges.
- The number of edges connected with a node is called the degree of the node.
- Power-law distribution Indicates that vast majority of individuals have small degrees.

Figure 5: Epidemic transmission Model

Methods

Figure 6: Epidemic transmission Model

Methods

2. Testing mechanism

- The current time step is greater than T will the testing mechanism be introduced into the epidemic transmission model.
- The change in daily testing volume is

$$V = \max(V_{\text{inc}} \times (t - T), V_{\text{limit}})$$
 (1)

where,

 V_{inc} is increase speed

 V_{limit} is upper bound of the daily testing volume.

Figure 7: Testing mechanism

Model Validation

- To validate the model, they have compared a simulated data with the real world data.
- The testing-positive rate can represent the actual infection scale in the population to some extent.
- Basic reproduction number $R_0 = 2.6$
- Model is validated when (v_i, p_i) curve is consistent with (V_i, P_i) curve.

- Barabasi-Albert (BA) scale-free networks were generated and used to describe the contact structure of population in real life
- Two indicators were considered: the peak value of infections, v_p , and the time when the peak arrives, t_p

- Barabasi-Albert (BA) scale-free networks were generated and used to describe the contact structure of population in real life
- Two indicators were considered: the peak value of infections, v_p , and the time when the peak arrives, t_p

Figure 8

Figure 9: The impact of changes in daily testing volume on infection scale.

Figure 10: The impact of testing preference on epidemic transmission

Figure 11: The effect of testing on epidemic transmission under different scenarios

Figure 12: The effect of basic reproductive number R0 and testing on infection scale under different scenarios

Figure 13: The impact of network scale

Discussion

Figure 14: The simulation data versus real data.

Conclusion

- Non-homogeneous mixing is preferred over homogeneous mixing in the context
 of disease outbreaks to account for the highly contagious individuals, proximity
 and frequency of contacts.
- It was discovered that early testing, increase in daily testing volume largely impacted the reduction in the infection scale.
- When the daily testing volume was large, testing preferences had little impact on the infection scale
- If the testing was combined with additional measures, the required daily testing volume to control the situation was reduced.

Bibliography

- [1] Yapeng Cui, Shunjiang Ni, and Shifei Shen. "A network-based model to explore the role of testing in the epidemiological control of the COVID-19 pandemic". In: *BMC Infectious Diseases* 21.1 (2021), pp. 1–12.
- [2] Leon Danon et al. "Networks and the epidemiology of infectious disease". In: *Interdisciplinary perspectives on infectious diseases* 2011 (2011).
- [3] Matt J Keeling and Ken TD Eames. "Networks and epidemic models". In: Journal of the royal society interface 2.4 (2005), pp. 295–307.
- [4] Ted G Lewis. *Network science: Theory and applications*. John Wiley & Sons, 2011.

THANK YOU