

Name That POLYGON

By Ana Marie R. Nobleza

hat is a *hexahectaheptacontakaioctagon*? This sounds unfamiliar, right? But it is actually a polygon. Yes, it is! Let's find out how many sides it has.

What's in a Name

When someone asks your name, you definitely answer the word or combination of words by which you are called and by means of which you can be distinguished or identified. Same goes with everything in the universe. We call them names to identify or distinguish them from each other.

In math, we always deal with polygons and more often than not, we encounter problems in naming, especially those with more than 10 sides.

WORD BOOSTER

The word polygon comes from the late Latin word polygōnum and from the Greek word polygōnon, which means many-angled.

Naming Polygons

Individual polygons are named according to the number of sides. Their names are formed by combining a Greek-derived numerical prefix (which tells its number of sides) with the suffix *-gon* from the word polygon. This "gon" in polygon is said to have been derived from the Greek word *gonu* which means "knee," the joint in the middle part of a human's leg that resembles an angle when bent.

Now, to find out how many sides a *hexahectaheptacontakai-octagon* has, we need to know the appropriate Greek prefixes together with some rules for their use.

Greek Prefixes

PREFIX	MEANING			
Units Digit				
hena (or mono)	1			
di	2			
tri	3			
tetra	4			
penta	5			
hexa	6			
hepta	7			
octa	8			
ennea	9			
11 – 19				
hendeca	11			
dodeca	12			
trideca	13			
tetradeca	14			
pentadeca	15			
hexadeca	16			
heptadeca	17			
octadeca	18			
enneadeca	19			
Multiples of 10				
deca	10			
icosa/icosi*	20			
triaconta	30			
tetraconta	40			
pentaconta	50			
hexaconta	60			
heptaconta	70			
octaconta	80			
enneaconta	90			
hecta/hecto	100			
chilia	1000			
myria	10,000			
googol	10100			

*when used to form 21 - 29.

RULES IN FORMING NUMERICAL PREFIXES

For polygons with:	Form numerical prefix by:					
10 sides or less and multiples of 10	simply copy the prefixes for the	simply copy the prefixes for the units digit				
11 – 19 sides*	combine: units digit + kai **+ d	eca				
21 – 99	combining:					
	tens digit and units digit					
	multiples of 10 from kai units digit table		ts digit from the			
101 – 999	combining:					
	hundreds digit tens digit	and	units digit			
	units digit multiples o from the table + "hecta" multiples o to table		units digit from the table			

^{*} the word "kai" is often omitted for these numbers (see table for 11 – 19 at the right)

In Euclidean Geometry, the least number of sides for polygons is three. Thus, from the rules and prefixes above, we form the polygon with the least number of sides by combining tri and gon to have trigon. This polygon is what we commonly know as the *triangle*. The tetragon or the four-sided polygon is what we familiarly call *quadrilateral*.

To construct the names of the polygons in the exercises, it would be helpful to write the number of sides in expanded form and then find the equivalent prefixes for each number.

a. 26-sided	=	20	and (+)	6	
		icosi	kai	hexa	gon

= icosikaihexagon (sometimes named icosihexagon)

b. 45-sided	=	40	+	5	
		tetraconta	kai	penta	gon

= tetracontakaipentagon (sometimes tetracontapentagon)

c. 102-sided	=	100	+	0	+	2	
		hecta			kai	di	gon

= hectakaidigon

d. 400-sided	=	400	+	0	+	0	
		tetrahecta					gon

= tetrahectagon

e. 678-sided	=	600	+	70	+	8	
		hexahecta		heptaconta	kai	octa	gon

⁼ hexahectaheptacontakaioctagon

Challenge!

Name the following polygons:

- (a) 26-sided polygon
- (b) 45-sided polygon
- (c) 102-sided polygon
- (d) 400-sided polygon
- (e) 678-sided polygon

^{**} the word kai is a Greek word that stands for "and" and is used before the prefix for the units digit

So how many sides does a *hexahectaheptacontakaioctagon* have? Doing the same procedure, we see that it has 678 sides.

Take note that when you see the word *hecta* in a name, that means you are in the hundreds place, *conta* in the tens (30 - 90) place, and the *kai* in the ones place. However, sometimes the word *kai* is already omitted, just like in the names of polygons with 11 to 19 sides. For instance, to tell how many sides a *heptahectaheptacontaheptagon* has, we need to work backward—*hepta* before gon means 7, heptaconta means 70, and heptahecta means 700. Thus, the polygon has 777 sides.

Wow! What a name! Did the process confuse you? You probably just need practice in applying the rules. But don't worry, because as long as you understand what you are referring to when you say the name, that is all that matters. These days, professional mathematicians consider even prefixing the word "gon" with the number of sides (*n*-gons) for polygons beyond enneagons and decagons.

MORE OR LESS?

Matt and Geo is playing the more or less game but this time with the number of sides of polygons.

Each of them writes five polygons on a piece of paper. Your task now is to decide who wins between the two Matt and Geo.

Matt's List

- 1. icosikaienneagon
- 2. pentakaidecagon
- 3. hectaenneacontakaitrigon
- 4. octahectapentacontahenagon
- 5. tetrahectohexagon

Geo's List

- 1. tetracontakaidigon
- 2. pentadecagon
- 3. dihectagon
- 4. heptahectahexacontakaidigon
- 5. pentahectopentacontagon

WORKSHEET

A. Connect the polygons from the least to the greatest number of sides then back to the least. What kind of polygon is inscribed?

- B. Name the following polygons.
 - 1. 111-sided
 - 2. 222-sided
 - 3. 333-sided
 - 4. 444-sided
 - 5. 555-sided
 - 6. 666-sided
 - 7. 777-sided
 - 8. 888-sided
 - 9. 999-sided
 - 10. 10 100-sided

Answer to Activity

Matt's list		Geo's list
icosikaienneagon (29)	<	tetracontakaidigon (42)
pentakaidecagon (15)	=	pentadecagon (15)
hectaenneacontakaitrigon (193)	<	dihectagon (200)
octahectapentacontahenagon (851)	>	heptahectahexacontakaidigon (762)
tetrahectohexagon (406)	<	pentahectopentacontagon (550)

Geo wins!

Answer to Worksheet

A. The inscribed polygon is 18-sided or octadecagon.

- В.
- 1. hectahendecagon
- 2. dihectaicosikaidigon
- 3. trihectatricontakaitrigon
- 4. tetrahectatetracontakaitrigon
- 5. pentahectapentacontakaipentagon or pentahectapentacontapentagon
- 6. hexahectahexacontakaihexagon or hexahectahexacontahexagon
- 7. heptahectaheptacontakaiheptagon or heptahectaheptacontaheptagon
- 8. octahectaoctacontakaioctagon or octahectaoctacontaoctagon
- 9. enneahectaenneacontakaienneagon or enneahectaenneacontaenneagon
- 10. googolgon