Системный анализ процессов переработки нефти и газа

Лабораторная работа №7

Введение в объектно-ориентированное программирование. Расчет XTC.

Задание 1

Используя объектную модель для описания материального потока, проведите расчет его теплоемкости при значениях температуры $\in [20,350]\ 100$ значений. Массовый расход потока можно принять равным $100\ \mathrm{kr/y}$. Результаты представьте в виде графика.

Состав материального потока, массовые доли:

6	0.0570	0.0076	0.0114	0.0418	0.0152	0.0342	0.0684	0.0152
6	0.0532	0.0342	0.0608	0.0608	0.0684	0.0380	0.0608	0.0608
6	0.0190	0.0494	0.0570	0.0646	0.0304	0.0228	0.0190	0.0494

Задание 2

Необходимо реализовать объектно-ориентированную модель смешения материальных потоков для расчета температуры, массового расхода и состава (в массовых долях) смесевого потока. Состав потоков, поступающих на смешение, представлен ниже.

Состав потока 1 (массовые доли):

0.0874	0.0273	0.0383	0.0219	0.0984	0.0437	0.0109	0.0546
0.0383	0.0437	0.0164	0.0984	0.0765	0.0055	0.0164	0.0219
0.0109	0.0656	0.0328	0.0984	0.0109	0.0164	0.0109	0.0546

Состав потока 2 (массовые доли):

0.0218	0.0306	0.0349	0.0742	0.0349	0.0524	0.0044	0.0830
0.0480	0.0437	0.0131	0.0393	0.0611	0.0655	0.0437	0.0742
0.0175	0.0349	0.0131	0.0393	0.0611	0.0437	0.0218	0.0437

Состав потока 3 (массовые доли):

0.04	141 0.009	8 0.0196	0.0343	0.0833	0.0147	0.0147	0.0049
0.04	141 0.039	2 0.0637	0.0539	0.0147	0.0098	0.0245	0.0343
0.06	86 0.053	9 0.0931	0.0735	0.0637	0.0245	0.0196	0.0931

Параметры потоков, поступающих на смешение:

Номер потока	Массовый расход, $\kappa \Gamma/\Psi$	Температура, °С
1	1000	150
2	1500	120
3	1200	115