Homework 7

Problem 1. Fill in the blanks with either true (\checkmark) or false (\times)

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	×	✓	×
$50n + \log n$	$10n + \log \log n$	✓	✓	✓
$50n \log n$	$10n \log \log n$	×	✓	×
$\log n$	$\log^2 n$	✓	×	×
n!	5 ⁿ	×	✓	×

Problem 2. 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

2. Furthermore, we say a function $h : \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \Rightarrow h(x) \le h(y)$ '. Find two monotonically increasing functions f(x) and g(x) such that $f(x) \ne h(y)$

O(g(x)) and $g(x) \neq O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Problem 3. Prove that

- (a) $\left(1+\frac{1}{n}\right)^n \le e \text{ for all } n \ge 1.$
- (b) $\left(1 + \frac{1}{n}\right)^{n+1} \ge e \text{ for all } n \ge 1.$
- (c) Using (a) and (b), conclude that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Problem 4. *Prove* Bernoulli's inequality: for each natural number n and for every real $x \ge -1$, we have $(1 + x)^n \ge 1 + nx$.

Problem 5. Prove that for n = 1, 2, ..., we have

$$2\sqrt{n+1}-2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

Problem 6.

- a) Show that the product of all primes p with $m is at most <math>\binom{2m}{m}$.
- b) Using a), prove the estimate $\pi(x) = O(\frac{x}{\ln x})$, where $\pi(x)$ denote the number of primes not exceeding the number x.