Общая постановка задачи

- Для выражения, соответствующего номеру вашего варианта, опишите функцию с именем y.
- Опишите программу в текстовом файле с именем task08-NN.lsp, где NN номер вашего варианта. Полученный файл загрузите на портал в качестве выполненного задания.

Пример выполнения задания

Заданное выражение:

$$y(N) = \sum_{i=1}^{N} \prod_{j=1}^{N} \left(\frac{i}{j} + \frac{i^2}{2}\right)$$

РЕШЕНИЕ: Содержимое файла task08-NN.lsp:

Варианты заданий

1.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} (i + \frac{j}{i})$$

2.
$$y(N) = \sum_{i=1}^{N} i!$$

3.
$$y(N) = \prod_{i=1}^{N} \sum_{j=1}^{N} (i+ji)$$

4.
$$y(N) = \prod_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{j}{i} - i\right)$$

5.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\cos i + \sin j)$$

6.
$$y(N) = \sum_{i=1}^{N} \sum_{j=2}^{N} \frac{\ln i}{\ln j}$$

7.
$$y(N) = \prod_{i=1}^{N} \prod_{j=1}^{N} \left(\frac{i}{j} + \frac{1}{i}\right)$$

8.
$$y(N) = \sum_{i=1}^{N} \prod_{j=1}^{N} \frac{\cos i}{\sin j}$$

9.
$$y(N) = \sum_{i=1}^{N} \sum_{j=2}^{N} \frac{\cos i}{\ln j}$$

10.
$$y(N) = \prod_{i=1}^{N} \prod_{j=1}^{N} \left(i + \frac{1}{j}\right)$$

11.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\lg i + \ln j)$$

12.
$$y(N) = \sum_{i=1}^{N} \prod_{j=2}^{N} \frac{\lg i}{\lg j}$$

13.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{j^i}$$

14.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\lg i + \frac{i}{j} \right)$$

15.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} (i^j - i)$$

16.
$$y(N) = \prod_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{i}{j} + \sqrt{j} \right)$$

17.
$$y(N) = \prod_{i=1}^{N} \prod_{j=2}^{N} \frac{i}{\ln j}$$

18.
$$y(N) = \sum_{i=1}^{N} \frac{1}{i!}$$

19.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\sqrt{i} + j^2)$$

20.
$$y(N) = \sum_{i=1}^{N} \prod_{j=1}^{N} (i - j^3)$$

21.
$$y(N) = \sum_{i=1}^{N} \prod_{j=1}^{N} \left(\sqrt{\frac{i}{j}} + 1 \right)$$

22.
$$y(N) = \prod_{i=1}^{N} \prod_{j=1}^{N} \frac{j}{i^2}$$

23.
$$y(N) = \sum_{i=1}^{N} \sum_{j=2}^{N} \frac{e^{i}}{\lg j}$$

24.
$$y(N) = \sum_{i=1}^{N} \sum_{j=1}^{N} (e^i - e^j)$$

25.
$$y(N) = \sum_{i=1}^{N} \prod_{j=1}^{N} \left(\frac{\sqrt{i}}{j} + 1 \right)$$