Let R be a ring.

Definition 1. Let $M \in \mathsf{Mod}_R$ and $N \in {}_R\mathsf{Mod}$ and A an abelian group,

- (a) A map $f: M \times N \to A$ is called R-balanced if
 - its left \mathbb{Z} -linear, i.e. $f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n)$.
 - its right \mathbb{Z} -linear, i.e. $f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2)$
 - $\forall r \in R : f(mr, n) = f(m, rn).$
- (b) $\operatorname{Bal}_{M,N}^R(A) = \{ f : M \times N \to A \mid f \text{ is } R\text{-balanced} \}$ is an abelian group.
- (c) $\operatorname{Bal}_{M,N}^R(-): \operatorname{\mathsf{Ab}} \to \operatorname{\mathsf{Ab}}$ is a functor via

$$M \times N \xrightarrow{f} A$$

$$\text{Bal}_{M,N}^{R}(\varphi) \xrightarrow{\downarrow} \varphi$$

$$A'$$

Idea: R-balaned (bilinear) maps appear naturally, but one needs to treat them seperately (they don't live in Ab). To fix this we want to turn these R-balanced maps $M \times N \xrightarrow{f} A$ into a usual group homomorphism

$$\begin{array}{c} M\times N \stackrel{f}{\longrightarrow} A \\ -\otimes - \bigvee_{\in \mathsf{Ab}} \\ M\otimes N \end{array}$$

Theorem 2. With the notation from definition 1, the functor $\operatorname{Bal}_{M,N}^R:\operatorname{\mathsf{Ab}}\to\operatorname{\mathsf{Ab}}$ is representable, we denote the universal pair by

$$(M \otimes_R N, - \otimes - : M \times N \to M \otimes N)$$

More concretely, $-\otimes -: M \times N \to M \otimes N$ is an R-balanced map, such that

$$\operatorname{Bal}_{M,N}^{R}(A) \cong \operatorname{Hom}_{\mathbb{Z}}(M \otimes_{R} N, A)$$
$$\varphi \circ (- \otimes -) \longleftrightarrow \varphi$$

Definition 3. $M \otimes_R N$ is called the *tensor product* of M and N and elements $m \otimes n$ in the im $(- \otimes - : M \times N \to M \otimes_R N)$ are called *tensors*.

Remark. Its easy to see from the universal property that $m \otimes n$'s generate the group $M \otimes_R N$ (exercise)

$$M \times N \xrightarrow{-\otimes -} M \otimes N$$

$$q \downarrow \downarrow 0 \\ M \otimes N / \langle \operatorname{im}(-\otimes -) \rangle$$

$$\Rightarrow q = 0$$

we have

$$M \otimes_R N = \bigoplus_{(m,n) \in M \times N} \mathbb{Z}(m \otimes n) / \left\langle \begin{array}{c} (m_1 + m_2) - m_1 \otimes n - m_2 \otimes n \\ m \otimes (n_1 + n_2) - m \otimes n_1 - m \otimes n_2 \\ mr \otimes n - m \otimes rn \end{array} \right| \left. \begin{array}{c} m, m_1, m_2 \in M \\ n, n_1, n_2 \in N \\ r \in R \end{array} \right\rangle$$

Proposition 4. $-\otimes_R - : \mathsf{Mod}_R \times_R \mathsf{Mod} \to \mathsf{Ab}$ is a bifunctor. More explicitly, for $M, M', M'' \in \mathsf{Mod}_R$ and $N, N', N'' \in {}_R \mathsf{Mod}$, the following holds:

- (a) For any $\varphi \in \operatorname{Hom}_{\mathsf{Mod}_R}(M, M')$ and $\psi \in \operatorname{Hom}_{RMod}(N, N') \exists !$ homomorphism $\varphi \otimes \psi \in \operatorname{Hom}_{\mathsf{Ab}}(M \otimes_R N, M' \otimes_R N')$ such that $(\varphi \otimes \psi)(m \otimes n) = \varphi(m) \otimes \psi(n)$
- (b) If additionally we have $\varphi' \in \operatorname{Hom}_{ModR}(M', M'')$ and $\psi' \in \operatorname{Hom}_{R\mathsf{Mod}}(N', N'')$, then $(\varphi' \circ \varphi) \otimes (\psi' \circ \psi) = (\varphi' \otimes \psi') \circ (\varphi \otimes \psi)$.
- (c) $id_M \otimes id_N = id_{M \otimes N}$.

Proof. TODO.
$$\Box$$

Proposition 5. For $M \in Mod_R$ and $N \in {}_RMod$

one has

- (a) $M \to M \otimes_R R$ given by $m \mapsto m \otimes 1_R$ is an isomorphism in Ab.
- (b) $N \to R \otimes_R N$ given by $n \mapsto 1_R \otimes n$ is an isomorphism in Ab.

Proof. Only (a): This map is clearly \mathbb{Z} -linear, we construct the inverse map by TODO. \square

Proposition 6. Let I be a set and $(M_i)_{i \in I}$ a family $M_i \in \mathsf{Mod}_R$ and $N \in {}_R\mathsf{Mod}$ (or the opposite), then $\exists !$ isomorphism

$$\psi: \left(\bigoplus_{i\in I} M_i\right) \otimes N \xrightarrow{\cong} \bigoplus_{i\in I} (M_i \otimes N), (m_i)_i \otimes n \mapsto (m_i \otimes n)_i.$$

Proof. TODO.

Corollary 7. For sets I and J, $R^{(I)} \otimes_R R^{(J)} \cong R^{(I \times J)}$ given by $e_i \otimes f_j \mapsto e_{(i,j)}$ on the basis.

0.1 Tensor products over commutative rings

When R is commutative, $R \cong R^{\text{op}}$ and $\mathsf{Mod}_R \cong {}_R\mathsf{Mod}$, in this casse $M \otimes_R N$ admits further structures:

Proposition 8. Suppose that R is commutative and M, N are two R-modules, then

(a) $M \otimes_R N$ is an R-module with scalar multiplication given by

$$r(m\otimes n):=rm\otimes n=m\otimes rn$$

on pure tensors. For $A \in {}_{R}\mathsf{Mod}$ define

$$\operatorname{Bil}_{M \times N}^{R}(A) := \left\{ f : M \times N \to A \middle| \begin{array}{l} f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n) \\ f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2) \\ f(rm, n) = f(m, rn) = rf(m, n) \end{array} \right\}$$

to be the set of R-bilinear maps from $M \times N$ to A.

- (b) The functor $\operatorname{Bil}_{M\times N}^R: {_R\mathsf{Mod}}\to \mathsf{Set}$ is representable by $(M\otimes_R N, -\otimes -)$.
- (c) $-\otimes -: {}_{R}\mathsf{Mod} \times {}_{R}\mathsf{Mod} \to {}_{R}\mathsf{Mod}$ is a bifunctor.
- *Proof.* (a) Let $\ell_r: M \to M$ be given by $m \mapsto rm$, this gives $\ell_r \otimes \operatorname{id}_N: M \otimes_R N \to M \otimes_R N$ by proposition 4. We define scalar multiplication by r on $M \otimes_R N$ to be the above $r \cdot := \ell_r \otimes \operatorname{id}$. Check that this gives $M \otimes_R N$ on RMod structure.
- (b) and (c) exercises.

Remark. Note that we have less bilinear maps than balanced maps:

$$\operatorname{Hom}_R(M \otimes_R N, A) \cong \operatorname{Bil}_{M \times N}^R(A) \subseteq \operatorname{Bal}_{M \times N}^R(A) \cong \operatorname{Hom}_{\mathbb{Z}}(M \otimes_R N, A)$$

0.2 Tensor product of algebras

Let A be a commutative ring and R, R' two A-algebras via $\varphi: A \to R$ and $\varphi'A \to R'$ (where $\varphi(A) \subseteq Z(R), \varphi'(A) \subseteq Z(R')$).

Proposition 9. (a) $\exists !A\text{-}bilinear\ multiplication\ -\cdot -: (R \otimes_A R') \times (R \otimes_A R') \rightarrow R \otimes_A R'\ given\ by$

$$(r \otimes r') \cdot (s \otimes s') := rs \otimes r's'$$

on pure tensors.

- (b) $(R \otimes_A R', +, \cdot, 0_R \otimes 0_{R'}, 1_R \otimes 1_{R'})$ is a ring.
- (c) $R \otimes_A R'$ is an A-algebra via $\varphi_{\otimes} : A \to R \otimes_A R'$, $a \mapsto a \otimes 1 = 1 \otimes a = a(1 \otimes 1)$. Proof. TODO.

Examples. (a) If R is an A-algebra then $M_{n\times n}(A)\otimes_A R\cong M_{n\times n}(R)$.

- (b) $M_{n\times n}(A)\otimes_A M_{m\times m}(A)=M_{nm\times nm}(A)$.
- (c) $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \times \mathbb{C}$.
- (d) $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong M_{2\times 2}(\mathcal{C})$ where \mathbb{H} is Hamilton's quaternion algebra.

Definition 10. An (R, R')-bimodule is a tuple $(M, 0, +, \cdot, \cdot')$, where $(M, 0, +, \cdot) \in R$ and $(M, 0, +, \cdot) \in Mod_{R'}$ such that $\forall r \in R, r' \in R', m \in M$ we have

$$r\cdot (m\cdot' r') = (r\cdot m)\cdot' r'$$

We denote the category of bimodules by $_R\mathsf{Mod}_{R'}$.

Remark. (a) If $M \in {}_{R}\mathsf{Mod}_{R'}$ then one has ring homomorphisms

$$R \to \operatorname{End}_{\operatorname{\mathsf{Mod}}_{R'}}(M), r \mapsto r \cdot -$$

 $(R')^{\operatorname{op}} \to \operatorname{End}_{RMod}(M), r' \mapsto - \cdot r'$

(b) We have an equivalence of categories ${}_{R}\mathsf{Mod}_{R'}\cong {}_{R\otimes_{\mathbb{Z}}(R')^{\mathrm{op}}}\mathsf{Mod}$. The $R\otimes_{\mathbb{Z}}(R')^{\mathrm{op}}$ -module structure comes from

$$R \times (R')^{\mathrm{op}} \to \mathrm{End}_{\mathbb{Z}}(M), (r, r') \mapsto r \cdot - \cdot r', r \otimes r' \in R \otimes_{\mathbb{Z}} (R')^{\mathrm{op}}$$

notice that this is bilinear.

Proposition 11. The bifunctor $-\otimes -$ extends to a bifunctor

$$-\otimes_{B'} - : {}_{B}\mathsf{Mod}_{B'} \times {}_{B'}\mathsf{Mod}_{B''} \to {}_{B}\mathsf{Mod}_{B''}$$

More explicitly for $M \in {}_{R}\mathsf{Mod}_{R'}$ and $N \in {}_{R'}\mathsf{Mod}_{R''}$ we define the (R,R'')-bimodule on $M \otimes_{R'} N$ by

$$r \cdot (m \otimes n) \cdot r'' := rm \otimes nr''$$

Proof. Exercise.

Remark. Similarly one has $-\otimes -: {_R}\mathsf{Mod}_{R'} \times {_{R'}}\mathsf{Mod} \to {_R}\mathsf{Mod} \text{ and } -\otimes -: \mathsf{Mod}_{R'} \times {_{R'}}\mathsf{Mod}_{R''} \to \mathsf{Mod}_{R''}.$

Examples.

1. Base change: Let $\varphi: R \to S$ be a ring homomorphism, then S is an (S,R)-bimodule. The functors ${}_R\mathsf{Mod} \to {}_S\mathsf{Mod}, M \mapsto S \otimes_R M$ and $\mathsf{Mod}_R \to \mathsf{Mod}_S, N \mapsto N \otimes_R S$ are called base change or base extension from R to S. These are left adjoints to restriction of scalars, for example:

$$S \otimes_R R = S, \quad S \otimes_R R^{(I)} = S^{(I)}$$

2. Associativity of \otimes : There exists a natural isomorphism

$$(-\otimes_R -)\otimes_S - \cong -\otimes_R (-\otimes_S -): {_T\mathsf{Mod}_R} \times_R \mathsf{Mod}_S \times_S \mathsf{Mod}_Q \to {_T\mathsf{Mod}_Q}$$

Remark. Let R be commutative and $M_1, \ldots, M_n \in R$ —Mod, then $\bigotimes_R^{1 \le i \le n} M_i = M_1 \otimes_R \cdots \otimes_R M_n$ represents the functor $\operatorname{Multi}_{M_1 \times \cdots \times M_n}^R(-)$ of R-multilinear maps on $\times_{1 \le i \le n} M_i$.

Proposition 12. Another functor on bimodules:

(a) For $M \in {}_{S}\mathsf{Mod}_R$ and $N \in {}_{T}\mathsf{Mod}_R$ the abelian group $\mathsf{Hom}_R(M,N)$ carries a natural (T,S)-bimodule structure defined by

$$(t \cdot f \cdot s)(x) = t \cdot f(sx)$$

for $f \in \operatorname{Hom}_R(M,N), s \in S, t \in T, x \in M$, this gives a bifunctor

$${}_{S}\mathsf{Mod}_{R}\times{}_{T}\mathsf{Mod}_{R}\to{}_{T}\mathsf{Mod}_{S}$$

(b) Similarly one has a bifunctor $_R\mathsf{Mod}_S\times _R\mathsf{Mod}_T\to {_S\mathsf{Mod}_T}$

Theorem 13 (Hom, \otimes adjunction, Jacobson Prop. 3.8). Let Let R, S, T, U be rings and $M \in {}_R\mathsf{Mod}_S, N \in {}_S\mathsf{Mod}_T, P \in {}_U\mathsf{Mod}_T$. There exists a natural isomorphism:

$$_{R}\mathsf{Mod}_{S}^{\mathrm{op}} imes _{U}\mathsf{Mod}_{T} \quad \Downarrow \quad {_{U}\mathsf{Mod}_{R}TODO}$$