GRUPPI (IV PARTE)

Def: (G, ·) è un gruppo. H un sottogruppo di G. Fissato geG, si dice

1) laterale sínistro di H definito da g il sottoinsieme gH = {gh | heH} = G

2) laterale destro "Hq = {hg| heH} = G

g si dice rappresentante del laterale.

2)
$$(G_1, \cdot) = (Z_1 +)$$
 $H = nZ_1$, fissiamo $K \in \mathbb{Z}$
 $H + K = nZ + K = \{ ., -2\eta + k, -\eta + k, k, \eta + k, 2\eta + k, ... \}$

(laterale (destro) definito da K

Sono le classi di resto mod 5

(laterali destri = laterali sinistri)

perché (Z/,+) è abeliano

3)
$$G=(S_{3,0})$$
 $H=\{id,(12)\}$ $g=(123)$
 $g\circ H=\{(123)\circ id,(123)\circ (12)\}=\{(123),(13)\}$
 $H\circ g=\{id\circ (123),(12)\circ (123)\}=\{(123),(23)\}$

Prop: Sia (G,·) un gruppo. H un sottogruppo di G. Allora

1) ∀g∈G, f: H →gH f(h)=gh è una bierione;

2) ∀g₁,g₂∈G g₁H=g₂H se e solo se g₂¹g₁∈H;

3) i laterali sinistri di H formano una partizione di G.

- le stesse cose valgono per i laterali destri
- Dim: 1) f injettiva: f(h)=f(h') ⇔ gh=gh' ⇔ g gh=g'gh' ⇔ h=h'.

 f surjettiva: se xegH allora ∃h∈H +.c. x=g.h = f(h).
 - 2) i) Prima mostriamo che tre G ret = H => x = H

 Infatti "=>": se xH=H allora, poiché eget, anche x eg = x = H

 "=" se x = H allora the H perché H è un settogruppo, quindi xH=H, quindi xH=H

Teorema di Lagrange: Sia (G,·) un gruppo finito di ordine (= cardinalità) n e Hun sottogruppo di G di ordine d. Allora d'n.

Dim: Abbiamo visto (proposizione precedente) che i laterali sinistri di H formano una partizione di G. Quindi esistono s laterali distinti tali che:

G=g1HUg2HU-...UgsH & poiché giHngjH=Ø per i+j

 $n = |G| = |g_1H| + |g_2H| + ... + |g_5H|$

Inoltre, poiché ti gitt è in biezione con H, allara |gitt|=d (gitt |gitt - gitt)

n = d+d+ -.. +d = S.d.

Semplici consequence:

 $\underline{E_S1}: (\mathbb{Z}_{5,}+)$ her ordine 5, the \tilde{e} primo \Rightarrow non ha softogruppi non banali.

 $E_{5.2}(5_{4})$ $|S_{4}| = 4! = 24$ i divisori sono: 2,3,4,6,8,12

Ma ciù non significa che esista un sottogruppo di ordine pari a ciascun divisore... $H_1 = \{id_1(123)\} \subseteq S_4$ $H_2 = \{id_1(123), (132)\} \subseteq S_4$...

Per esempio, non ci sono sottograppi di ordine 8.

Sottogruppi ciclici

Sia (G, ,) un gruppo.

 $\forall n \in IN$ $\forall g^n := g \cdot g \cdot g \cdot \dots \cdot g$ $\forall g \in G$ $\forall g$

$$\underline{oss}: (g^n)^{-1} = g^{-n}$$

 $\forall g \in G$ $\langle g \rangle = \{g^n \in G \mid n \in \mathbb{Z}\}$

Prop: (G,·) gruppo. Yg E G <g> è un sottogruppo di G, delto sottogruppo ciclico generato da g

<u>Dim</u>: Siano gr,gs ∈ <g> => gr.(gs)⁻¹ = gr.g⁻⁵ = g.g...g...g. g⁻¹·g⁻¹·...g⁻¹ = g^{r-5} ∈ <g> ⊠

Se un certo sottogruppo $H \leq G$ è tale che $H = \langle g \rangle$ per un certo $g \in G$, allora si dice che H = g generato da g e che g è un generatore di H. In tal caso H si dice ciclico.

Esempi: 1) (Z,+) è un gruppo <u>ciclico</u> perché è generato da 1 : Z=<1> infatti agni nezz è multiple di 1.

2) $(\mathbb{Z}_{5,+})$ è un gruppo ciclico generato da $\overline{2}$: $\mathbb{Z}_{5}=\langle \overline{2}\rangle$ $\overline{2} = \overline{2}$, $\overline{4} = \overline{2} + \overline{2}$, $\overline{1} = \overline{2} + \overline{2} + \overline{2}$, $\overline{3} = \overline{2} + \overline{2} + \overline{2} + \overline{2}$, $\overline{G} = \overline{2} + \overline{2} + \overline{2} + \overline{2} + \overline{2}$ l'esempio mostra che il generatore di un grappo ciclico non è unico (Z5 è generato anche da T)

OSServation

- 1) (G, \cdot) gruppe, $g \in G$. $\langle g \rangle$ è simpre abeliano: $g^{r} \cdot g^{s} = g^{r+s} = g^{s+r} = g^{s} \cdot g^{r}$. (anche & G non b è)
- 2) (G,.) non abeliano non può essere eiclico. Es. (5n,0) non è cicliu per n>2.
- 3) Non tutti i gruppi abeliani sono ciclici. Es. (ZxZ,+).