Proprietati de inchidere ale limbajelor regulare

• Teorema:

Daca L_1 , L_2 sunt limbaje regulare peste alfabetul Σ atunci: L_1UL_2 , $L_1\cap L_2$, L_1L_2 , L_1^* , complement(L_1) sunt limbaje regulare

 L_1UL_2, L_1L_2, L_1^*

echiv. AF si mult/expr. regulare

Proprietati de inchidere ale limbajelor regulare

$L_1 \cap L_2$

- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$
- $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$
- ? $M = (Q, \Sigma, \delta, q_0, F)$

PP. ca aut. M₁ si M₂ sint deterministe, complet definite!

(alg. de constr. !!)

- $\delta((q_1,q_2),a) = (\delta_1(q_1,a),\delta_2(q_2,a))$
- $M = (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1 \times F_2)$

Proprietati de inchidere ale limbajelor regulare

 $complement(L_1)$

- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$
- $? M = (Q, \Sigma, \delta, q_0, F)$

- PP. ca aut. M₁ este determinist complet definit! (alg. de constr.)
- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, Q_1 F_1)$