(depende del sist. ref.)

CINEMATICA

100-100				
\sim	1 DIMENSION		2 DIMENSIONES	
	media	instantanea	weg:a	instantinea
Vel.	VM = Px/P4	~ 4×\9+	± 2° /∆†	ડ, [≈] 45,√94
ac.	0/w = 2v/2t	a = 84/81	am = 50/st	2 = 0"+04
		C).	a II 7	. 4 3

$$\left[\omega = 2\pi \sqrt{3} \right] \left[V = \omega R \right] \frac{C_{SR}}{C_{SR}} = 2\pi \sqrt{3} \sqrt{3} \pi \sqrt{3} \left[\sqrt{3} \left(\sqrt{3} + \frac{11}{3} \pi \sqrt{3} \right) \right]$$

		1
•	MRU	1
•	MRUA	1
•	MCU	{
	41000	ازا

E suman todos (as acclerations (sumst. + grav...)

| V = cte | [
$$x = x_0 + v_0 + v_1^2$$
 [$\alpha = \frac{dv}{dt}$]

| MRUA | [$v = v_0 + \frac{dv}{dt}$] [$\alpha = \frac{dv}{dt}$]

| MRUA | [$v = v_0 + \frac{dv}{dt}$] [$v = v_0 + v_0 + \frac{dv}{dt}$] [$v = v_0 + v_$

DINAMICA

$$\left[\begin{array}{c} E_{1-3}S = -E^{5-31} \end{array}\right] = \sum_{n=0}^{\infty} \left[\begin{array}{c} E_{n-3}S = -E$$

ENERGÍA

[dw=Fels cost] [W=A(Ec+Ep)] para F.cons: [W=AE,=-AEp] [Pad = W] [D=F.V)] Ec= 1/2 mv2] grav: [Ep= mgh] muelle: [Ep= 1/2 kx2] para F.cons: [Em, = Emz]

POTENCIAL MOLECULAR [F= dep of][ep=-De+De (1-e-x(r-ro)) 2][ep=-De (2 (reg)2)]

(circle)

(circle)

(circle)

$$V_{P} = \frac{F_{r}}{\mu} \left[V_{P} = \frac{B}{\mu} \right] \left[F = -Kx = -bv \right] = \frac{bv}{bv} \left[\frac{d^{2}y}{dx^{2}} = \frac{\mu}{f_{r}} \frac{d^{2}y}{dt^{2}} \right]$$

desired linear

Sistems De Partículas

Variación E con el tiempo - POTENCIA: [P= { NAMO AZ DX)