JET EXCAVATION - PHASE I

FINAL REPORT

Contract No. H0210034

Amount of Con ra : 1000

Effective: 30 Ap. I 1971

Terminates: 31 May 1972

Principal Investigator:
Michael C. Kurko (313) 352-7705
Bendix Research Laboratories
Southfield, Michigan 48076

Project Engineer: Ray F. Chadwick (313) 352-6239

The views and conclusions contained in this do ment are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

Sponsored by:

Advanced Research Projects Agency ARPA Order No. 1579, Amend. 2 Program Code 1F10

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Cammerce
Springfield VA 22151

Approved for public release:
Distribution Unlimited

BEST AVAILABLE COPY

Security Classification		
(Security elevellication of title, body of abetrect and inc	CONTROL DATA - R&D	d when the overall report is cicesified)
1. ORIGINATING ACTIVITY (Corporate author) Bendix Research Laboratories		REPORT SECURITY C LASSIFICATION Unclassified
20800 Civic Center Drive Southfield, Michigan 48076	26	GROUP .
3. REPORT TITLE CONTINUOUS HIGH VELOCITY JET EXCAVAT		
4. DESCRIPTIVE NOTES (Type of report and inclusive detect) Final Report 30 April 1971 to 31 Ma		
S. AUTHOR(S) (Last name, first name, initial)		
Chadwick, Ray F., Kurko, Michael C.		
6. REPORT DATE	74- TOTAL NO. OF PAGE	76. NO. OF REFS
May 1972	85	4
Bureau of Mines H0210034	90. ORIGINATOR'S REPOR	T NUMBER(S)
Advanced Research Projects Agency	Report No. 624	l
ARPA Order No. 1579, Amend. 2	Sb. OTHER REPORT NO(S	(Any other numbers that may be seeighed
* Program Code 1F10		
Distribution of this Document is unl	imited	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY	ACTIVITY
	Advanced Resear Washington, D.(ch Projects Agency 2. 20301

13. ABSTRACT

The objective of this program was to assess the feasibility of rapid excavation of hard rock by means of continuous fluid jets produced by pressures in the range of 20,000 to 80,000 pounds per square inch. A total of eight rock types representative of sedimentary, metasedimentary and igneous groups were selected and appropriate quantities of test specimens were procured. Cutting tests were performed using Bendix-owned pumping equipment and Bendix-designed and developed nozzles. Test data was analyzed to determine optimum settings of jet parameters within experimental ranges that result in rapid and efficient excavation of rock. Power requirements and excavation rates were estimated for a theoretical continuous jet excavation system and compared with those of a conventional system.

DD . FORM. 1473

UNCLASSIFIED

Security Classification

Security Classification

Security Classification 4.	LIN	KA	LIN	KB	LIN	KC
KEY WORDS	ROLE	WT	ROLE	wt	ROLE	WT
Rock, Disintegration						
Jets, Liquid						
Jets, High Pressure			1 1		1	
Impact, Liquid			11	Yi -		
				00		

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., Interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OI REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and disaemination of this report by DDC Is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indisate this fact and enter the price, if known

- 11. SUPFLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (p.sying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS) (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is nptional.

UNCLASSIFIED
Security Classification

CONTINUOUS HIGH VELOCITY JET EXCAVATION - PHASE I

FINAL REPORT

Contract No. H0210034 Amount of Contract: \$21,800 Effective: 30 April 1971 Terminates: 31 May 1972

Principal Investigator:

Michael C. Kurko (313) 352-7705 Bendix Research Laboratories Southfield, Michigan 48076

Project Engineer:

Ray F. Chadwick (313) 352-6239

The views end conclusions conteined in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advenced Research Projects Agency or tha U.S. Government.

Sponsored by:

Advanced Research Projects Agency ARPA Order No. 1579, Amend. 2 Program Code 1F10

TABLE OF CONTENTS

	<u>Page</u>
SECTION 1 - SUMMARY	1-1
SECTION 2 - INTRODUCTION	2-1
SECTION 3 - PROGRAM BACKGROUND	3-1
SECTION 4 - TEST SETUP	4-1
SECTION 5 - PROGRAM EXPERIMENTAL PLAN	5-1
SECTION 6 - TEST SEQUENCE	6-1
SECTION 7 - DATA AND ANALYSIS	7-1
SECTION 8 - FLUID JET EXCAVATION SYSTEMS	8-1
SECTION 9 - CONCLUSIONS AND RECOMMENDATIONS	9-1
SECTION 10 - REFERENCES	10-1
APPENDIX A - SUMMARY OF ROCK PROPERTIES	A-1
APPENDIX B - COMPUTER PROGRAMS AND DATA SUMMARY	B-1
APPENDIX C - TEST RESULTS - CHARCOAL GRANITE (NO. 1)	C-1
APPENDIX D - TEST RESULTS - WESTERLY GRANITE (NO. 2)	D-1
APPENDIX E - TEST RESULTS - BARRE GRANITE (NO. 3)	E-1
APPENDIX F - TEST RESULTS - DRESSER BASALT (NO, 4)	F-1
APPENDIX G - TEST RESULTS - SIOUX QUARTZITE (NO. 5)	G-1
APPENDIX H - TEST RESULTS - BEREA SANDSTONE (NO. 6)	H-1
APPENDIX I - TEST RESULTS - TENNESSEE MARBLE (NO. 7)	I-1
APPENDITY I - TECT DECITITE - CALEM I THE CHONE (NO. 0)	7.1

LIST OF ILLUSTRATIONS

Figure No.	<u>Title</u>	Page
4-1	High Pressure Intensifier Pumping System	4-2
4-2	High Pressure Intensifier System Schematic	4-2
4-3	Test Set Up	4-3
4-4	Cutting Test on Barre Granite	4-4
5-1.	Kerf Measurement Technique	5-6
5-2	Effect of Weakened Edge in Dresser Basalt	5-7
7-1	Single Cut Run on Berea Sandstone	7-4
7-2	Maximum Single Cut Specific Energy Run	7-4
7-3	Specific Energy as a Function of Feedrate for Barre Granite	7-6
7–4	Specific Energy as a Function of Feedrate for Sioux Quartzite	7-6
7-5	Specific Energy as a Function of Pressure for Sioux Quartzite, Barre Granite and Salem	
	Limestone	7-7
7-6	Kerfing Effect on Salem Limestone	7-9
7-7	Kerfing Effect on Barre Granite	7-9
8-1	Mechanically Assisted Fluid Jet Excavation	
	Concept	8-3

LIST OF TABLES

Table No.	Title	Page
7-1	Relutive Significances of Main Effects for 2 ⁴ Factorial Fragmentation Test Data	7-2
7-2	Average Minimum Specific Energies for Each Rock Type	7-5
8-1	Comparison of Performance of Various Excavation Systems	8-1
8-2	Operating Costs for 5000' Tunnel	8-7

SUMMARY

The objective of this program was to investigate the feasibility of rapid excavation systems for hard rock using high-velocity continuous fluid jets. Both single-cut and kerfing excavation modes were experimentally investigated in order to minimize the specific energy (i.e., energy input per volume excavated) of jet fragmentation. Ranges of variables were nozzle supply pressures from 50,000 to 80,000 psi (34.5 to 55.2 KN/cm²), feedrates from 50 to 900 inches per minute (2 to 38 cm/sec), standoff distances from 0.5 to 1.5 inches (1.27 to 3.81 cm), and nozzle diameters of 0.008 to 0.0136 inch (0.20 to 0.35 mm). The rock types used in fragmentation tests were Berea Sandstone, Salem Limestone, Tennessee Marble, Westerly Granite, Barre Granite, Charcoal Granite, Sioux Quartzite and Dresser Basalt.

Initial fragmentation tests, employing a 24 factorial design, were completed on all rock types to perform screening of the four independent variables. Analyses of variance were completed upon the 24 factorial data to determine the two most significant main effects for each rock type, which were then investigated at a third level. Randomization was applied to the sequence of test runs as well as the selection of samples within each rock type. Additional testing was undertaken at higher feedrates than those originally planned, up to a maximum of 38 cm/sec (900 inches per minute) based on predictions from the variance analyses.

Within the experimental range, the minimum specific energies for single cuts were obtained for most rock types at 50,000 psi (34.5 KN/cm²), at 900 inches per minute (38 cm/sec), using a 0.008 inch (0.20 mm) diameter nozzle. Kerfing tests were conducted for each rock type using the parameters which produced the minimum single-cut specific energy. Minimum specific energies for kerfing runs ranged from 6611 joules/cc, (79,900 ft-lb/in³) for Sioux Quartzite to 1215 joules/cc (14,685 ft-lb/in³) for Berea Sandstone.

The kerfing specific energy was found to be too high to justify the use of an excavation system utilizing jet action alone instead of a conventional tunnel excavator. Test data was utilized, however, in the generation of a mechanically assisted fluid jet excavation machine concept having a significantly reduced overall specific energy. The specific energy calculated for the hybrid system does not, however, represent the optimum specific energy for such a system since the jet operating parameters employed in the analysis were those which gave the minimum specific energy for pure jet excavation. These parameters were also observed to give the smallest kerf depths. As kerf depth is increased, the spacing

between kerfs can also be increased, thereby increasing the volume of material removed by mechanical action. Since the jet excavation energy constitutes the majority of the energy input to the rock, the maximum overall efficiency for a hybrid system may be obtained at the operating parameters which produce the deepest kerf, even though the jet excavation portion of the process is not operating at its minimum specific energy.

Further investigation is indicated to determine specific energy for excavation of in situ rock structures as well as for optimization of jet operating parameters in combination with mechanical breakage methods. Combination of the more favorable stress condition of in situ rock with optimization of the specific energy of a mechanically assisted jet excavator is expected to reduce the overall system specific energies to levels comparable to those demonstrated by conventional excavation systems operating in hard rocks while preserving the major advantages of the jet approach.

INTRODUCTION

Increasing emphasis in both urban and defense systems planning has focused upon the desirability of locating many utilities and transportation systems underground. Such a location frees valuable land space within city centers and allows greater flexibility in planning for urban development. In many population centers, tunneling is the only viable method of building mass transportation systems due to the high degree of utilization of surface space. Underground location of facilities has a great advantage from the military standpoint due to decreased vulnerability to attack and sabotage. Additionally, underground systems and structures are impervious to weather conditions and may be maintained in a controlled environment which will reduce both construction and maintenance costs. Protection from weather is a basic requirement for planned future high speed ground transportation systems.

Implementation of a large scale relocation of surface facilities underground will require major advances in present tunneling technology, resulting in the evolution of efficient, cost effective, rapid excavation systems. Present tunneling methods are generally too slow, expensive and not versatile enough for use in other than certain specific applications.

The foremost problem of any mining or tunneling system is to break the material out of the solid matrix at the cutting face of the tunnel and reduce it to a size suitable for removal. Presently, there are two basic material removal methods, the cyclic drill-blast method and the continuous cutting machine method.

The drill-blast method, in which the material is removed by the detonation of explosives loaded into small diameter holes drilled in the face, is the method most commonly used, as it can be used in any rock from sedimentary to the hardest igneous. Disadvantages of this method include explosives hazards, generation of dust and fumes and weakening of the rock strata due to concussion, with attendant overbreakage and rock falls. Although the actual specific energy of the blasting process is low, the fact that the process is cyclic, with the various operations of drilling, charging, blasting, clearing of fumes and muck removal occurring sequentially instead of continuously, contributes to the disproportionately high cost and low excavation rate of the overall operation as compared with continuous excavation processes.

The continuous cutting machine method, wherein material removal is effected by means of mechanical excavating machines with cutter bits mounted on endless chains or rotary drill bits, is in the early development stages and is presently limited to medium hard rock applications.

Within these applications, however, the continuous cutting machine method is comparable to the drill-blast method in both cost and speed of tunneling and mining. In addition to the disadvantage of dust generation by the cutters, the rate of material removal by the continuous excavating machine is limited by the thrust which must be developed in order to push the bits against the work face, in many contemporary machines exceeding one million pounds. The machine structure required to generate forces of this magnitude results in high capital cost, low maneuverability and difficulties in performing maintenance. In the harder or more abrasive rock excavation applications rapid cutter wear occasioned by high loading and cutter bearing failures due to contamination by abrasive particles make the continuous excavation machine uneconomical in comparison with the drill-blast method, in spite of the advantages of continuous operation and superior control of tunnel line, grade and size. appears, therefore, that the success of any efforts toward increasing the speed with which tunnels or mines can be excavated will depend upon the development of new methods of excavating material at a much faster rate with less part wear.

A novel method of material excavation which is presently under investigation is the use of high pressure fluid jets, a process which, in combination with certain areas of present tunneling and excavation technology, has the potential of producing higher excavation rates than present methods, while simultaneously eliminating or reducing many of their major disadvantages.

The basic technique is not new, since jets of water at low pressures were used for eroding terrain in placer maining in the California gold fields as early as 1870. Within the past several years, hydraulic mining of coal using water pressures of 3000 to 5000 psi has been successfully developed and is now being used extensively in the USSR. As materials and equipment improved, practical generation of higher pressures became possible and investigations were begun into the drilling and breaking of harder rocks. To date, only limited data was available on the use of continuous water jets at pressures above 25,000 psi.

When a moving column of fluid is allowed to impinge on a solid body, the surface of the body at the point of jet impingement is subjected initially to a short-duration high-pressure transient resulting from the water hammer effect; this is followed by decay to some steady-state pressure level. The magnitude of the high-pressure transient is a function of the jet velocity and fluid properties and can be twice the nozzle supply pressure; the steady-state pressure may approach the nozzle supply pressure. For example, a water jet produced by a nozzle supplied at a pressure of 50,000 psi could theoretically generate water hammer and steady state surface pressures of 100,000 and 50,000 psi, respectively. Comparison of these values with the average ultimate compression strengths of some rock and earth materials indicates the merit of investigating high-velocity fluid jets as a means of cutting and fracturing.

Advantages of the water jets for excavation of rock as opposed to conventional tunneling methods are decreased tool wear and decreased reaction forces against the work face. In addition, the fluid jet is safer than conventional methods. The jet action does not weaken the surrounding material, as does blasting, and eliminates the sparking and attendant gas explosion dangers experienced with mechanical cutters. The material and water slurry resulting from continuous jet action also minimizes dust hazards to workers and opens possibilities for material removal by pipeline transport. Establishing the feasibility of fluid jet rock excavation is expected to provide a base for development of efficient and economical systems for tunneling and excavation.

PROGRAM BACKGROUND

As a part of the Advanced Research Projects Agency (ARPA) Military Geophysics program, the Bendix Research Laboratories has conducted an experimental study to determine the feasibility of a continuous jet excavation system for hard rock using jet supply pressures of 20,000 to 80,000 psi. Efforts were performed under Contract No. H0210034, which was administered by the U.S. Bureau of Mines. Project officers at the Twin Cities Mining Research Center were initially Mr. John Chester and, subsequently, Dr. Peter Lohn.

The primary objective of the program was to generate data in a statistically designed experiment to determine the most optimum operating conditions for a continuous jet excavation system. Existing companyowned high pressure pumping equipment and nozzles were utilized to permit in-depth experimentation in a range of pressures and nozzle diameters beyond that of previous investigations utilizing continuous jets. in the present effort were purchase of samples, preparation of a test plan, fracture tests, data compilation. analysis and presentation of results for eight different rock types. Both single cut and kerfing excavation modes were investigated in order to minimize the specific energy (i.e., energy input per volume excavated). Process parameters employed were pressures from 50,000 to 80,000 psi, feedrates from 50 to 900 inches per minute, standoff distances from 0.5 to 1.5 inches, and nozzle diameters of 0.009 to 0.0136 inch. The rock specimens used in fragmentation tests were Berea Sandstone, Salem Limestone, Tennessee Marble, Westerly Granite, Barre Granite, Charcoal Granite, Sioux Quartzite and Dresser Basalt. Compression strengths for the rock types ranged from 8,600 to 54,000 psi.

Early in the program, a specific test plan, described in Sections 5 and 6, was generated, purchase orders were placed for samples of the rock types specified, and fragmentation testing scheduled to commence following receipt of the rock samples. Delays were encountered in both the procurement of rock test specimens and in maintenance of the BRL high pressure intensifier. Due to late deliveries of samples from several vendors, the initiation of fragmentation tests were delayed. In addition, during periodic maintenance of the high pressure pumping system to be used for the fracturing tests, severe scoring of the high pressure pistons and cylinders was discovered. The intensifier was removed from the high pressure facility and shipped to the manufacturer for determination of both the severity of the damage and the length of time required to complete repairs.

Since the repair and return of the intensifier unit was essential to the continuation of the testing, the program was delayed by an amount of time equal to that required for completion of repairs. In the interim,

other program tasks were carried as far as possible in order to minimize schedule slippage due to the intensifier failure. After repairs were completed, the high pressure intensifier was returned to Bendix. Rock samples were moved into the test area and initial runs were completed on several rock samples for use in evaluating various methods of determining the material volume removed by the jet.

Fragmentation tests were begun in early January 1972. Samples were fixtured to a traverse mechanism under a stationary fluid jet, with supply pressure, traverse speed and standoff distance as recorded variables. The equipment and test setup is described in Section 4.

Initial fragmentation tests employing a 2⁴ factorial design were completed on all rock types to perform screening of the four independent variables. Analyses of variance were completed upon the 2⁴ factorial data to determine the most significant main effects, for each rock type, which were then investigated at a third level. Randomization was applied to the sequence of test runs as well as the selection of samples within each rock type. Additional testing was undertaken at higher feedrates than those originally planned, up to a maximum of 900 inches per minute, based on predictions from the variance analyses. Although the variance analyses indicated that further reductions in specific energy value could be obtained at lower pressures and nozzle diameters than those used in the test program, full exploration of this range was beyond the scope of the current contract.

Within experimental ranges, the minimum specific energies for single cuts were obtained for most rock types at the lowest supply pressure, highest feedrate, and smallest nozzle diameter, that is 50,000 psi, 900 inches per minute, and 0.008 inches respectively. Following determination of the minimum specific energy for single cuts, spacing between successive cuts was decreased until kerfing, or excavation of the material between the cuts, was observed, which indicates the condition of minimum overall specific energy. Kerfing tests were conducted for each rock type using the parameters which produced the minimum single-cut specific energy. Specific energies for kerfing runs ranged from 6611 joules/cc (79,900 ft-1b/in³) for Sioux Quartzite to 1215 joules/cc (14,685 ft-1b/in³) for Berea Sandstone.

Program test data was utilized in the generation of a mechanically assisted fluid jet excavation machine concept, described in Section 8, for use in an economic comparison with conventional excavation systems. Conclusions and recommendations for further development are presented in Section 9.

SECTION 4 TEST SETUP

Equipment employed in conducting fragmentation testing included a high pressure intensifier with its hydraulic power supply and control system, and a calibrated traversing mechanism for moving the samples under the stationary jet nozzle. All equipment is owned by Bendix Research Laboratories and is employed in investigations of the feasibility of using high pressure jets for cutting and machining of industrial materials.

The high pressure intensifier, shown in Figure 4-1 and schematically in Figure 4-2 is a commercially available double-acting device capable of an output of 1.4 GPM at 80,000 psi, driven by a conventional hydraulic power supply. The high pressure fluid, generally water or water with soluble oil, is plumbed through the outlet check valves into a surge vessel mounted below the intensifier unit. The surge vessel acts as an accumulator, using the compressibility of the water at high pressure to minimize output pressure fluctuations during intensifier piston reversals. The cycling reversals are controlled by a directional control valve, actuated by two limit switches which signal the end of each stroke.

The high pressure fluid is plumbed from the surge vessel to the nozzle assembly, shown projecting from the wall in Figure 4-3, which is a view of the test cell in which the fragmentation tests were run. The nozzles used in all testing were of proprietary Bendix design. The traversing table is capable of moving samples below the nozzle assembly through a 10 inch stroke at feedrates of up to 950 ipm. Feedrates were controlled by means of a calibrated flow control valve in series with the traverse table drive cylinder. The remaining system controls, including the system output pressure gauge, are mounted in a control console shown directly behind the traversing table. Figure 4-4 (a) and (b) are pictures of a cutting test at 50,000 psi conducted upon a sample of Barre Granite.

Figure 4-1 - High Pressure Intensifier Pumping System

Figure 4-2 - High Pressure Intensifier System Schematic

Figure 4-3 - Test Set Up

(a) Starting Cut

(b) Partially Complete Cut

Figure 4-4 - Cutting Test on Barre Granite

PROGRAM EXPERIMENTAL PLAN

Four major independent variables associated with the fluid jet process were investigated, each at three levels. The two levels of the variable used in 2^4 factorial design experiments for significance determinations are denoted by lower case letters, with upper case letters used to denote the levels used for 3^2 and 3^4 factorial design experiments.

The following independent variables were investigated:

Pressure (P) (psi)
$$P_1 = 50,000 = P_0$$
 $P_2 = 65,000$ $P_3 = 80,000 = P_1$

Pressure was recorded directly from the system supply pressure gauge.

Feed Rate (F)
$$F_1 = 50 = f_0$$
 (inches/per minute) $F_2 = 100$ $F_3 = 150 = f_1$

Feed rate was set using a calibrated flow control valve to drive the hydraulic cylinder which powers the specimen traversing table. Additional tests were completed at higher feedrates up to 900 ipm.

Standoff (S) (inches)
$$S_1 = 0.5 = s_0$$
 $S_2 = 1.0$ $S_3 = 1.5 = s_1$

Standoff distance was determined by leveling the sample and mounting it at the desired distance relative to the jet nozzle.

Nozzle Diameter (N)
$$N_1 = 0.008 = n_0$$
 (inches) $N_2 = 0.012$ $N_3 = 0.0136 = n_1$

The 0.0136-inch diameter nozzle was sized to utilize maximum flow capacity of the Bendix high-pressure pumping system at 80,000 psi.

In order to minimize the effects of extraneous or unknown variables, the order of test runs as well as the order of rock type for each run was randomized. Each test combination was accorded a combination number, which specified a particular set of test conditions. The test number, indicating the order of completion of each test combination, was determined by selection of combination numbers from a random number table, with the exception of the various levels of nozzle diameter, which were run sequentially due to the greater difficulty involved in changing nozzle size as opposed to changing other operating parameters.

The following eight rock types were used in the experimental effort. Sample size was approximately $8 \times 8 \times 6$ inches in most cases.

- Charcoal Granite (Cold Springs, Minnesota)
- Westerly Granite (Westerly, Rhode Island)
- Barre Granite (Barre, Vermont)
- Dresser Basalt (Dresser, Wisconsin)
- Sioux Quartzite (Jasper, Iowa)
- Berea Sandstone (Amhurst, Ohio)
- Tennessee Marble (Knoxville, Tennessee)
- Salem Limestone (Bedford, Indiana)

Contacts were made with operators of quarries recommended by the Contracting Agent as sources of the rock types listed above, and purchase orders placed for samples in 20-piece lots for all rocks except Westerly Granite, for which only five samples were ordered due to high cost, and Dresser Basalt, which was acquired directly from the Bureau of Mines. Tables of properties for each rock type have been obtained from either the Bureau of Mines or the quarry operators. Since no measurement of rock properties was performed under this test program, rock properties are presented in Appendix A for reference only. The effects of rock property differences between specific samples within each rock type was minimized by randomization of the selection of samples for use. The samples were numbered during uncrating and randomly selected for each test run.

The dependent variable of the experiment was specific energy, the amount of energy required to remove a unit volume of rock. Specific energy was determined for both single cuts and for kerfing, wherein interaction between successive cuts results in the excavation of the material between.

Specific energy was calculated from system operating parameters, sample size and material volume removed, based on the calculated actual power level at the nozzle rather than hydraulic system input power, and therefore is not affected by the inefficiencies of the particular hydraulic system and intensifier used.

Derivation of the specific energy equation is as follows:

Specific Energy =
$$\frac{\text{Power x Time}}{\text{Volume of Material Removed}}$$
 (1)

The intensifier power delivered to the nozzle is given as

Power = 5 (Q x
$$\Delta$$
P) (2)

Where power is expressed in ft-lb/min

$$Q = flow, in^3/sec$$

ΔP = nozzle pressure drop, psi

Since the system flow is governed by the nozzle area

$$Q = C_d A \sqrt{\frac{2g (\Delta P)}{\rho}}$$
 (3)

where

 $Q = flow, in^3/sec$

g = gravitational constant = 386 in/sec²

ρ = fluid density = 0.0361 lb/in³ for water (assumed incompressible)

ΔP = nozzle pressure drop, psi

C_d = assumed discharge coefficient = 0.75

A = nozzle orifice area, in²

Since the total pressure head of the high-pressure fluid is converted to velocity head during its passage through the nozzle, the pressure drop is given as

$$\Delta P = (P - P_{ambient}) = P \tag{4}$$

whore

P = nozzle supply pressure, psig

Pambient = 0 psig

Also,

$$A = \frac{\pi}{4} \left(N \right)^2 \tag{5}$$

where

N = nozzle diameter, inches

By combining equations (3), (4), and (5) and substituting into (2)

Power = 5
$$C_d \left(\frac{\pi}{4} N^2\right) \left(\frac{2g P}{\rho}\right)^{1/2}$$
 (P)

Substituting numerical values gives

Power =
$$430.7 \text{ N}^2 \text{ p}^{1.5}$$
 (6)

The time during which power is delivered is determined as follows:

Time =
$$\frac{L}{F}$$
 (7)

where

L = length of cut, inches

F = feedrate, ipm

By substituting equations (6) and (7) into equation (1)

SE = 430.7
$$\frac{N^2 p^{1.5} L}{F V}$$

where

SE = specific energy, ft-lb/in³

N = nozzle diameter, inches

P = nozzle supply pressure, psig

L = length of cut, inches

F = feedrate, ipm

V = volume of material removed, in 3

The volume removed was determined by measuring the volume of material required to fill in the kerf. For the irregular kerf depths and widths obtained in the cutting tests, especially on rocks prone to spalling, measurement of the kerf dimensions and calculation of the volume would be grossly inaccurate as well as extremely time consuming. A variety of materials were used in attempts to fill sample kerfs cut in limestone but were rejected either because of handling difficulties or, in the case of liquids, incomplete kerf filling due to excess surface tension or absorption of the liquid by the rock. The material finally used for the volume measurements was 120 grit emery (aluminum oxide) powder, which has a maximum dimension of approximately 0.004 inch, allowing it to penetrate to the bottom of deep narrow kerfs, but still having sufficient size to permit the material to be poured without caking.

The kerf filling sequence is illustrated in Figure 5-1 for a sample of Dresser Basalt. The ends of the kerf were blocked with tape or putty

(a) Ends of Kerf Prepared for Measurement

(b) Filling Kerf With Powdered Emery Figure 5-1 - Kerf Measurement Technique

(a) depending upon the regularity of the kerf at the end of the rock. The emery material was poured from a graduated cylinder (b) into the kerf in order to fill the kerf level with the top surface of the rock. For deeper kerfs, the rock was agitated to insure settling of the emery material to the bottom of the kerf. Kerf volume was then equal to the difference between the volume of material in the graduated cylinder before and after filling the kerf. In some cases interaction of the jet with material at the sample edge which had been weakened during sawing or handling resulted in splitting off of a large chunk of material, as shown in Figure 5-2 for a Dresser Basalt sample. In these cases, the kerf was blocked with putty at the ends of the undamaged portion of the sample. Kerf volume and length measurements were taken for the central portion only, eliminating the possibility of the data being influenced or biased by sample stresses induced by the sawing or handling operations.

Figure 5-2 - Effect of Weakened Edge in Dresser Basalt

TEST SEQUENCE

Fragmentation tests and analysis were conducted in the following sequence:

- Testing was completed to perform 2⁴ factorial experiments for all eight rock types, using the high and low levels of the variables listed previously. Randomization was applied to both the selection of the rock samples and the sequence of the 128 test runs.
- Test data from the 2⁴ factorial experiments was processed using Yates algorithm and analysis of variance performed for each rock type to determine the relative significance of main effects and interactions.
- The 2⁴ factorial experiments were expanded into 3⁴ factorial experiments for both Jasper quartzite, which is the hardest rock specified for the test program, and Barre Granite, which is a relatively common granite for which a variety of information exists.
- Testing was continued to perform, in randomized order, the runs required to complete 3² factorial design experiments for the remaining rock types, using the two most significant factors as determined by previous analysis of variance. The remaining two factors were set at the values for which minimum specific energy was obtained.
- Additional test runs were completed for all rock types at higher feedrates up to 900 ipm in order to reduce the single cut specific energy based upon the relatively large significances of the negative feedrate effect as determined from the analyses of variance.
- Kerfing tests were conducted using the minimum specific energy point obtained in the previous testing. Parallel runs across the target face were completed, with spacing between the cuts successively decreased until kerfing occurred between cuts. The kerfing tests were replicated on two additional samples of the same rock type selected at random to minimize the effects of variations in samples within each rock type.

The following number of test runs were completed for each portion of the testing sequence.

2⁴ factorial: 2⁴ runs x 8 rocks x 2 replications = 256

 3^4 factorial: $(3^4 - 2^4)$ runs x 2 rocks x 2 replications = 260

 3^2 factorial: $(3^2 - 2^2)$ runs x 6 rocks x 2 replications = 60

Additional:

 $(2 \times 2 \times 3)$ runs x 2 rocks x 2 replications = 48

2 runs x 6 rocks x 2 replications = 48

18 extra runs, 2 rocks = 18

Kerfing:

2 runs x 8 rocks x 3 replications = 48

Total number of runs = 738

DATA AND ANALYSIS

Due to the large amount of data collected for the 738 test runs completed, extensive use was made of the time share computer for data manipulation, calculation of specific energies for each test run and completion of analyses of variance. Computer programs utilized in the test program are listed in Appendix B. Data files are presented so that input data can be retrieved for any run conducted under the test program, if further data analysis is required in future efforts. As mentioned previously, the present effort is devoted specifically to determining for each rock type, the minimum specific energy associated with the jet excavation process within the experimental ranges rather than determination of correlations between specific energy and rock properties. this reason, as well as the fact that the number of replications is statistically small, regression analyses were not performed on the rock test data. Analysis of the test data will be presented in detail for Barre Granite, which is illustrative of data trends present in most of the rock samples investigated. Due to the total volume of data gathered, however, other rock types will be discussed only with regard to deviations from the established trends. Summaries of process parameters, test conditions, specific energies and analyses of variance are presented for all rock types in Appendices C through J.

As described previously, 2⁴ factorial experiments were completed for all rock types for use as screening experiments to determine the relative significances of the jet process independent variables. The results of analyses of variance conducted on the 2⁴ factorial data are presented in Table 7-1, with process parameter main effects listed for each rock type in decreasing order of significance. A positive effect, that is, one where the slope of the curve of specific energy versus an independent variable is positive, is denoted by a plus sign before the letter ascribed to the independent variable; a negative effect by a minus. Letters indicating the independent variables are P for pressure, F for feedrate, S for standoff distance and N for nozzle diameter.

The trend for all rock types was for negative feedrate (F) effect, that is, decreasing specific energy with increasing feedrate and a positive nozzle (N) effect. Feedrate was one of the two most significant effects for seven of the eight rock types. The pressure effect was positive for seven rock types, including the three rocks, Barre Granite, Charcoal Granite and Sioux Quartzite, for which it was one of the most significant effects. The standoff effect was positive for the majority of rock types, but was of relatively minor significance compared with the other main effects. Actual significance tests and effect values are presented for each rock type, along with the 2⁴ factorial experiment data, in the Appendices.

Table 7-1 - Relative Significances of Main Effects for 2⁴
Factorial Fragmentation Test Data

Rock No.	Rock Type	σ comp. (psi)	(Decr	MAIN E		cance)
6	Berea Sandstone	8600	- F	+N	-P	+s
8	Salem Limestone	9500	-F	+N	+P	+s
7	Tennessee Marble	16900	+N	-F	+P	+s
2	Westerly Granite		+N	- F	+s	+P
3	Barre Granite	23900	-F	+P	+S	+N
1	Charcoal Granite	35100	+P	+N	-F	-s
5	Sioux Quartzite	54000	+P	+N	- F	- s
4	Dresser Basalt	50000	- F	+N	+s	+P

The 2^4 factorial experimental design was expanded to a 3^4 design for both Barre Granite and Sioux Quartzite, as specified in the test sequence, and into a 3^2 factorial design for the remaining rock types, investigating the two most significant main effects as determined by the previous analyses of variance, in order to provide a better indication of the shape of the specific energy response curves.

Previous research by W. C. McLain et. al., had indicated that above a certain supply pressure, 12000 psi for Indiana Limestone, and lower for Berea Sandstone, the specific energies became equal for jet impingement both parallel and perpendicular to the specimen bedding planes. Based upon this information, the sample bedding plate orientation was ignored in the current test program, since anticipated supply pressure levels were well above 12000 psi. Berea Sandstone and Salem Limestone samples were ordered with half cut perpendicular and half paraliel to the bedding planes, and orientations were distributed among the test sequence by the randomization of the order of sample usage. In order to confirm the validity of this approach, a series of cuts were completed for combination #192 on Indiana Limestone, with two replications each for three faces of the sample to insure impingement both parallel and perpendicular to the bedding plane. The average specific energy for the six tests was 19396 joules/cc and sample variance was 1146 joules/cc. Because of the small differences in the specific energy values obtained in this experiment for three orthogonal rock faces, it appears reasonable to conclude that the orientation of

the jet with respect to the rock bedding plane has no effect upon the specific energy values at the pressure levels used in the present test program.

Of particular interest is the extremely high specific energy values associated with the tests conducted in the 2^4 , and 3^4 and 3^2 factorial experiments. The minimum specific energy obtained with this series was 5571 joules/cc (67,348 ft-1b/in3) for Berea Sandstone. A typical cut is shown in Figure 7-1. The maximum value, however, was 386,191 joules/cc (4,667,923 ft-lb/in3) for Charcoal Granite, shown in Figure 7-2 Additional testing at different operating parameters was indicated in order to bring the specific energy values down to a point where they could be reasonably competitive with conventional processes. nozzle diameter and feedrate had the greatest significances, investigation was begun upon methods of lowering the specific energy by variation of these parameters. The smallest nozzle size presently used and stocked by Bendix is a 0.005 inch diameter, use of which would provide a 60 percent area reduction, and a comparable specific energy decrease, providing the volume excavated remained constant with the smaller nozzle. Previous experience in cutting tests (but not data analysis) conducted for the Bureau of Mines indicated, however, that a lower volume removed could be expected when using the smaller nozzle, so consideration of use of a smaller nozzle for the additional test runs was terminated. By increasing the feedrate up to the practical limit of the sample traversing table, 900 ipm, an 85 percent reduction in energy input to the rock could be realized. A much smaller percentage decrease in excavated volume was expected, since jet efficiency increases at higher feedrates, due to reduced interference between the penetrating jet and the spent jet rebounding from the bottom of the kerf. Additional tests were run at increased feedrates, resulting in a decrease in single cut specific energy to the values presented in Table 7-2.

Analyses of variance were performed upon data from the additional test runs. All rock types exhibited main factor effects having the same sense, but much lower magnitudes, than the effects determined from the 24 factorial analyses of variance, indicating that increasing feedrates past 900 ipm will have a decreasing negative effect upon the specific energy. This fact is evident from graphs of specific energy versus feedrate, presented in Figure 7-3 for Barre Granite, with pressure effect illustrated, and Figure 7-4 for Sioux Quartzite, with both pressure and nozzle effects shown. Since feedrates higher than those shown would be of limited utility for a continuous mining machine, it appears that the data presented constitutes a practical minimum single cut specific energy for fluid jet excavation in the experimental range.

Additional testing was completed upon Salem Limestone at pressures as low as 5000 psi in order to determine how well the specific energy data for that rock type matched that presented by McLain¹. This data presented in Figure 7-5 closely matches at the lower pressures, with the

Figure 7-1 - Single Cut Run on Beres Sandstone

Figure 7-2 - Maximum Single Cut Specific Energy Run

P-84-623-2

Table 7-2 - Average Minimum Specific Energies for Each Rock Type

100		,		Minimum Spec	Minimum Specific Energy			
No.	Rock Type	comp.	Single	e Cut	Kerfing Cut	ig Cut	Kerf S	Kerf Spacing
			(joules/cc)	(ft-1b/1n ³)	(jonjes/cc)	(ft-1b/1n ³)	CB.	ä
9	Berea Sandstone	8600	2976	35,977	1215	14,686	0.236	0.093
∞	Salem Limestone	9500	9609	72,961	2484	30,028	0.236	0.093
7	Tennessee Marble	16900	5130	62,003	3427	41,417	0.317	0.125
7	Westerly Granite	-	6895	83,343	4289	51,843	0.254	0.100
е	Barre Granite	23900	6985	84,425	3857	46,623	0.236	0.093
A	Charcoal Granite	35100	4249	51,355	3963	47,901	0.317	0.125
2	Sloux Quartzite	24000	10834	130,955	6611	79,708	0.317	0.125
4	Dresser Basalt	20000	9579	115,788	3868	46,748	0.317	0.125

Figure 7-3 - Specific Energy as a Function of Feedrate for Barre Granite

Figure 7-4 - Specific Energy as a Function of Feedrate for Sioux Quartzite

Figure 7-5 - Specific Energy as a Function of Pressure for Sloux Quartzite, Barre Granite and Salem Limestone

decreasing feedrate effect evident in the fact that little additional decrease in specific energy is obtained by increasing feedrate from 900 ipm to 1650 ipm.

Data is also presented in Figure 7-5 for Barre Granite, which the explored at pressures as low as 10,000 psi, and for Sioux Quartzite. The curve for Barre Granite indicates that the minimum specific energy point for this rock occurs at approximately 30,000 psi. The pressure effect curve for Sioux Quartzite is positive, as are the curves for other rock types, indicating that the absolute minimum specific energy point occurs below 50,000 psi for most rock types. Since the pressure effect was not among the two most significant main effects for the majority of rocks, further investigation of specific energies at lower pressures was not pursued.

The minimum specific energy values, within the experimental ranges, determined as described above, were obtained at the following process parameters.

Pressure: 34.5 KN/cm² (50,000 psi)

Nozzle Dia: 0.2 mm (0.008 inch)

Feedrate: 19 cm/sec (450 ipm) for Dresser Basalt

38 cm/sec (900 ipm) for all others.

Standoff: 3.81 cm (1.5 inch) for Charcoal Granite

and Sioux Quartzite, 1.27 cm (0.5 inch)

for all others.

Following determination of the minimum specific energy for single cuts as above, tests were completed to determine the spacing between successive cuts for which kerfing, or excavation of the material between the cuts, was observed, approximating the condition of minimum overall specific energy for fluid excavation at the test conditions employed. The kerfing tests were conducted for each rock type using the parameters listed above which produced the minimum single-cut specific energy. Specific energies for kerfing runs are presented in Table 7-2, along with the maximum cut spacing at which kerfing between cuts would occur. Figures 7-6 and 7-7 show the results of kerfing cuts conducted on Salem Limestone and Barre Granite, respectively.

Figure 7-6 - Kerfing Effect on Salem Limestone

Figure 7-7 - Kerfing Effect on Barre Granite

SECTION 8 FLUID JET EXCAVATION SYSTEMS

Economic comparison between fluid jet excavation systems and conventional continuous excavation systems is hampered by the fact that very little actual tunneling has been completed in hard rock structures for which the use of a fluid jet system is proposed. Bruce and Morrell² list a total of only twelve tunnels in the United States which have been machine bored since 1955 in rocks of over 20,000 psi compressive strength. In half of these applications, the use of the continuous excavation machine was discontinued in favor of conventional tunneling techniques. The present limit of economic boreability for most rocks using conventional systems appears to be 30,000 psi compressive strength.

Sufficient data exists from the above source, however, to determine the economics of conventional tunneling systems in two specific hard rock applications, one in argillites having 35000 to 45000 psi compressive strength, in the Dorchester Water Tunnel, Boston, Massachusetts, the second in a section of quartzite of 49000 psi compressive strength in the Magma Copper Mine, Superior, Arizona. Both tunnels were bored by 12.5-foot diameter Lawrence HRT-12 excavators of 600 horsepower capacity with 1,500,000 pounds of thrust upon the tungsten carbide cutters. System cost was approximately \$600,000 in both cases. Comparative performance for both systems are presented in Table 8-1. The

Table 8-1 - Comparison of Performance of Various Excavation Systems

To the Country of the	Power	Excavation	tion Specific Ener	
Excavation System	Required (hp)	Rate (yd ³ /hr)	(ft-lb/in ³)	(joules/cc)
	Argillites (σ = 35000 psi)		
Lawrence HRT-12	600	22.7	1122	93
Fluid Jet	51100	22.7	47901	3963
Jet/Mechanical	16450	22.7	15409	1275
	Quartzite (g = 50000 psi)		
Lawrence HRT-12	600	4.5	5608	464
Fluid Jet	17100	4.5	79708	6611
Jet/Mechanical	4096	4.5	19145	1584

33

jet specific energy for kerfing cuts in Sioux quartzite and Charcoal granite were used to predict jet excavator performance in quartzite and argillite, respectively.

As is evident from the comparative performance data, the pure fluid jet excavation system, utilizing fluid induced kerfing alone, is at an extreme disadvantage due to its higher specific energy, which is approximately 14 times that for the Lawrence miner operating in quartzite, and 43 times the value for operation in argillites. Assuming an overall machine efficiency of 50 percent, a pure fluid jet excavator would require an installed horsepower of 17,100 to equal the performance of the Lawrence miner in quartzite. Since generation and application of such power levels is impractical in a mobile underground excavation system, it is evident that the use of a hybrid system, combining jet kerf cutting ability with some more efficient method of rock removal, will be required to decrease the overall system specific energy.

The use of a hybrid system utilizing high pressure fluid jets for kerf cutting, with removal of material between kerfs by mechanical means, appears to offer advantages over both pure fluid jet and conventional excavation systems. Such a system, shown schematically in Figure 8-1, will eliminate the high cutter loading and thrust requirements of present conventional excavation systems, as well as minimizing the effect of the high specific energy associated with the pure fluid jet cutting process. Present excavation systems for hard rock use rely on inducing rock spallation due to localized loading of the rock in excess of its compressive strength. Due to the excellent compressive properties of rock in situ extremely high cutter loadings are required, with attendant high wear. Also, the spalled material from the rock face tends to contaminate the cutter bearings, resulting in reduced life for these parts. The jet process on the other hand, can remove small kerfs, albeit at high specific energy values, without the need for excessive loading because the machine does not contact the work face. A mechanical device can be inserted into a kerf, as shown, breaking off one rib into the adjacent kerf, and the other rib into the kerf removed by previous passes of the jets and wheel. Although an additional jet kerf' must be cut for the first pass in order to insure the removal of two ribs, the extra energy required for the initiating kerf cut will be small when averaged over many succeeding passes, so that, in effect, only one jet excavated kerf will be required for each rib removed. The ribs left in the rock after scoring by the jets are unrestrained, as shown in Figure 8-1, Section A. When loaded by the wheel, the ribs will react similar to end loaded cantilever beams, with a tensile bending load resulting in fracture at the base of the rib, shown in Section B, where the bending moment is largest. Reduced loading and specific energy are required to effect fracture of the rib due to the low tensile strengths of most rocks. In tests to date, Summers and Henry have reported specific energies as low as 0.05 joules/cc for mechanical removal of ribs left between water jet kerfs cut in Berea

Figure 8-1 - Mechanically Assisted Fluid Jet Excavation Concept

Sandstone. In the tests described, mechanical breakage energy values were determined by dropping weights from a known height, and therefore, a known specific energy, upon wedges set in the jet kerfs, and measuring the material volume.

The strain energy, u, for breakage of a cantilever beam subjected to end loading is given as follows.4

$$u = \frac{1}{18} D S L \frac{\left(\sigma_{\text{max}}\right)^2}{E}$$

where

 σ_{max} = maximum tensile strength of the beam material

D = length of beam = depth of kerf

S = depth of beam = spacing between cuts

L = width of beam in direction of cut

Since volume removed = V = D S L

$$SE_{theo} = \frac{U}{V} = \frac{(\sigma_{max})^2}{18 E}$$

For Berea Sandstone, $\sigma_{\text{tensile}} = 580 \text{ psi}$ and $E = 9.5 \times 10^6 \text{ psi}$. Therefore

$$SE_{theo} = 1.9 \times 10^{-3} \text{ psi} = 1.6 \times 10^{-4} \text{ ft-lb/in}^3 = 1.4 \times 10^{-5} \text{ joules/cc}$$

for the mechanical breakage above.

The simplified case described is accurate for conditions where kerfing cuts have been completed in two directions perpendicular to each other, forming an array of free standing cantilever beams, and does not take into account the more complicated stress condition present when fracturing a rib which is fixed both at the bottom, between the cuts, and in the direction of cut, as was the case for the tests by Summers and Henry, described above. In addition, the mechanical wedge, due to friction, imparts a compressive load to the rock which tends to combat the bending load by reducing the tensile stress in the outer fiber of the cantilever beam.

A gross estimate of the actual mechanical specific energy of removal for a specific rock can be made, however, by multiplying that value recorded in the literature for Berea Sandstone by the ratio of theoretical specific energies as determined above.

For Charcoal Granite, $\sigma = 1300 \text{ psi}$, $E = 9.67 \times 10^6 \text{ psi}$

$$SE_{theo} = 9.7 \times 10^{-3} \text{ psi} = 8.1 \times 10^{-4} \text{ ft-ib/in}^3 = 6.69 \times 10^{-5} \text{ joules/cc}$$

For Sioux Quartzite, $\sigma = 1300$ psi, $E = 8.5 \times 10^6$ psi

$$SE_{theo} = 11. \times 10^{-3} \text{ psi} = 9.2 \times 10^{-4} \text{ ft-lb/in}^3 = 7.6 \times 10^{-5} \text{ joules/cc}$$

Data reported by Summers and Henry indicates that, for Berea Sandstone, mechanical breakage specific energies of approximately 0.5 joule/cc may be realized in removing ribs where the spacing between kerfs is approximately equal to the depth of the kerf.

The following actual specific energies therefore may be realized for mechanical breakage of other materials where the kerf spacing is equal to the kerf depths. For Charcoal Granite:

SE = 0.5 x
$$\frac{6.69 \times 10^{-5}}{1.4 \times 10^{-5}}$$
 = 2.39 joules/cc

For Sioux Quartsite:

SE = 0.5 x
$$\frac{7.6 \times 10^{-5}}{1.4 \times 10^{-5}}$$
 = 2.71 joules/cc

Although a correlation between jet process parameters and kerf depth was not within the scope of the present research, measurement of several test samples has shown that, at the minimum specific points used, a minimum cut depth of 0.125 inch was obtained for the hardest material, Sioux Quartzite. Cut depth generally increased with increasing supply pressure and nozzle diameter, and decreased with increasing feedrate and rock compressive strength.

A projected overall specific energy for a mechanically assisted fluid jet excavation machine can be determined from specific energy values for each process, the kerf depth and the jet kerf volume. Specific energy and kerf volume for the jet cuts will be as determined from the minimum specific energy runs for each rock type.

For comparison of Charcoal Granite with argillites, the minimum single cut specific energy of 4248.75 joules/cc was the average value obtained for the two test runs on the Granite conducted as combination number 373. Data file ROCKS6, 1ine 125 (presented in Appendix B) indicates that the length of cut for both test runs was 8 inches, and that kerf volumes of 0.85 and 0.9 cc, respectively, were removed. The average volume removed, therefore, was 0.875 cc for a cut length of 8 inches. Kerf depth was approximately 0.125 inch, so that, assuming a comparable spacing between kerfs, the rib volume for the 8 inch cut would be $0.125 \times 0.125 \times 8 = 0.125 \text{ in}^3 = 2.048 \text{ cc.}$ The two jets and cutter wheel depicted in Figure 8-1 wr 1d then remove two kerfs, having volumes of 0.875 cc each, by jet action at a specific energy of 4248.75 joules/cc, and two ribs, having volumes of 2.048 cc each, by mechanical action at 2.39 joules/cc. Total energy input would be 7444 joules to remove a total wolume of 5.84 cc, therefore, the overall specific energy would be 1275 joules/cc.

The minimum single cut specific energy for Sioux Quartzite was 10,384.32 jcutes/cc, determined from the data for combination number 411, listed in data file ROCKS7, line 225. Cut length for this combination was 8 inches, and the average volume removed by the jet was 0.35 cc. Kerf depth was also 0.125 inch. The hybrid system would, therefore, remove 2 kerfs having volumes of 0.35 cc each by jet at 10,834.32 joules/cc, and 2 ribs having volumes of 2.048 cc each mechanically at 2.71 joules/cc. Total energy input would be 7596 joules to remove 4.796 cc of material for an overall specific energy of 1584 joules/cc.

These projected specific energy values are presented in Table 8-1 for comparison with those of the conventional and unassisted jet excavators. Since no correlation of kerf depth with jet operating parameters was completed in this program, further investigation will be required in order to determine whether lower overall specific energies can be attained by adjusting jet parameters to give greater kerf depth, thereby increasing the percentage of total material which is removed by mechanical breaking. For the jet operating parameters used, however, which were those required for minimum jet specific energy, the above analysis indicates potential minimum energy values for a hybrid jet/mechanical excavation system. Using the predicted specific energies above, a comparison between the hybrid system and a Lawrence HRT-12 excavator is presented in Table 8-2 for excavation of a 5000 foot tunnel. Horsepower for the hybrid system (using a 50 percent overall efficiency) was determined in order to equalize the penetration rates of the two systems, thereby equalizing their total operating time, direct labor costs, machine amortization costs, and the required muck removal equipment capacity. Comparisons are made on power

Table 8-2 - Operating Costs for 5000' Tunnel

Excavation	Power	Advance Rate	Cutter	Total	Costs	Grand
System	(hp)	(hp) (ft/hr)	\$	Cutter	Power	Total
	A	rgillites (σ = 35000 psi)		
Lawrence HRT-12	600	5	\$6.30/yd ³	\$143,171	\$ 16,200	\$159,371
Jet/Mechanical	16450	5	\$3.00/yd ³	68,176	444,139	512,315
		uartzite (s = 50000 psi)			
Lawrence HRT-12	600	1	\$9.50/yd ³	215,893	81,000	296,893
Jet/Mechanical	4096	1	\$3.00/yd ³	68,176	553,035	621,211

Volume removed = $\frac{\pi}{4}$ (12.5) 2 x 5000 = 613,600 ft³ = 22,725 yd³ Power @ \$.02/KWHR = 0.027/(hp-hr)

requirements and cutter costs alone. Machine purchase, indirect overhead, roof support and material haulage costs are assumed to be equal. In both of the cases described above, however, 1.5 cc of water is required to remove either 0.366 cc of granite or 0.296 cc of quartzite, resulting in formation of a slurry of rock and water having a concentration of 40 percent or 33 percent, respectively, by weight. These concentrations are within ranges suitable for use in slurry transport by pipeline, which indicates that this mode of muck removal will be suitable for use with jet/mechanical excavators, resulting in cost benefits over systems used with present excavators. Direct maintenance costs of the excavation system itself are not considered, due to a lack of information regarding maintenance of high pressure pumping equipment. Cutter costs given are based on values given by Bruce and Morell.

As shown in Table 8-2, significant savings in cutter costs are gained by use of the hybrid jet/mechanical excavator, however, overall operating costs are higher due to power charges occasioned by the hybrid excavator's higher specific energy.

The specific energy obtained for the hybrid system does not, as mentioned previously, represent the optimum specific energy for such a system. The jet operating parameters employed in the analysis of the hybrid system specific energy were those determined for the minimum specific energy for pure jet excavation. Although no correlation between specific energy and kerf depth were included within the scope of this research, it was observed that kerf depth increased with increasing supply pressure and nozzle diameter, and decreased with increasing feedrate. The jet parameters used to obtain the minimum specific energy, therefore, also produce the smallest kerf depth.

Optimization of the specific energy of excavation for a mechanical/fluid jet excavator depends upon maximizing the proportion of material removed by mechanical action. This will require further testing to determine the jet operating parameters required to maximize jet kerf depth for a given energy input. As karf depth is increased, the spacing between kerfs can also be increased, so that the volume of material removed by mechanical action increases with the square of the kerf depth. Since the jet excavation energy constitutes the majority of the energy input to the rock, the maximum overall efficiency for a hybrid system may be obtained at the operating parameters which produce the deepest kerf, even though the jet excavation portion of the process is not operating at its minimum specific energy.

In addition, the specific energy data determined in this program for fluid jet excavation was obtained through testing conducted upon unstressed laboratory samples. Further reduction in excavation specific energy can be expected in testing upon in situ cock structures due to the compressive stress field underground. Further testing will be required on in situ rock either in a tunnel or a quarry in order to further minimize the specific energy both for the jet excavation and the mechanical breakage processes.

Further investigation both of mechanical breakage, maximization of jet kerf depth, and interaction between the two processes both in the laboratory and in situ is expected to lead to the evolution of hybrid rapid excavation systems having comparable or lower specific energies than those exhibited by conventional excavators working in hard rock, with the additional advantages of reduced machine and cutter loading, increased mobility, reduced cutter costs, no dust generation and ease of integration with systems for muck removal by slurry transport.

SECTION 9

CONCLUSIONS AND RECOMMENDATIONS

 Within the experimental range employed, the minimum specific energies for single cuts were obtained at the following jet process parameters:

Pressure: 34.5 KN/cm² (50,000 psi)

Nozzle Dia: 0.2 mm (0.008 inch)

Feedrate: 19 cm/sec (450 ipm) for Dresser Basalt

38 cm/sec (900 ipm) for all others

Standoff: 3.81 cm (1.5 inch) for Charcoal Granite

and Sioux Quartzite

1.27 cm (0.5 inch) for all others

Minimum single cut specific energies, listed in Table 7-2, ranged from 10,834 joules/cc (130,955 ft-lb/in³ for Sioux Quartzite to 2976 joules/cc (35,977 ft-lb/in³) for Berea Sandstone.

- Kerfing tests were conducted for each rock type using the parameters within the experimental range which produced the minimum single-cut specific energy. Specific energies for kerfing runs ranged from 6611 joules/cc, (79,900 ft-1b/in³) for Sioux Quartzite to 1215 joules/cc (14,685 ft-1b/in³) for Berea Sandstone, and are presented in Table 7-2.
- The kerfing run specific energies described above were found to be higher than those exhibited by conventional tunnel excavation systems described in the literature (2). The jet excavation specific energy was approximately 14 times that for a Lawrence HRT-12 excavator operating in quartzite, and 43 times the value for operation in argillites.
- A much lower machine specific energy than that for a pure jet system can be obtained in a system utilizing both jet action to cut kerfs in the rock face and mechanical devices to break the material out between the kerfs. Such a system would have the advantages of reduced machine and cutter loading, increased mobility, reduced cutter costs, no dust generation and ease of integration with systems for muck removal by slurry transport.
- Optimization of the specific energy of excavation for a mechanical/ fluid jet excavator depends upon maximizing the proportion

of material removed by mechanical action. This will require further testing to determine the jet operating parameters required to maximize jet kerf depth for a given energy input. In general, kerf depth increases with increasing nozzle diameter and supply pressure, and the volume of material removed by mechanical action increases with the square of the kerf depth. Since the jet excavation energy constitutes the majority of the energy input to the rock, the maximum overall efficiency for a hybrid system may be obtained at the operating parameters which produce the deepest kerf, even though the jet excavation portion of the process is not operating at its minimum specific energy.

- Mechanical breakage energies should be determined for harder rock structures both in the laboratory and in situ for eventual incorporation in the design of a mechanically assisted fluid jet excavator. Relationships between specific energy, kerf depth and spacing between kerfs should be explored in detail.
- Further investigation is recommended to determine jet excavator performance upon in situ rock structures rather than upon unstressed laboratory specimens. Lower specific energies of excavation can be expected for in situ rock since the compressive stress field underground favors rock fracturing by the jet kerfing mode.
- Development of a mobile excavation test rig should be completed to facilitate in situ testing both in tunnels and quarries. The device should include both jet and mechanical modes of rock fracturing, allowing it to be used for investigation of operating parameters required for a hybrid jet/mechanical excavation system. Pressure and flow capabilities of the jet excavation portion should be comparable to those used in the present test program, that is, 80,000 psi and 1.4 GPM, allowing the device to be used for investigations regarding specific energy minimization or kerf depth maximization; provision should also be included for mounting various mechanical frac uring devices to determine relative effectiveness of each.

SECTION 10

REFERENCES

- W. C. McClain, et. al., <u>Examination of High Pressure Water Jets</u> for Use in Rock Tunnel <u>Excavation</u>, ORNL-HUD-1, UC-38, January 1970, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- 2. Bruce, William E. and Morrell, Roger J.; "Rapid Excavation in Hard Rock A State-of-the-Art Report," Proceedings of the Conference on Deep Tunnels in Hard Rock A Solution to Combined Sewer Overflow and Flooding Problems, University of Wisconsin, Milwaukee, Wisconsin, November 1970.
- 3. Summers, D. A. and Henry, R. L., <u>V.ter Jet Cutting of Rock With and Without Mechanical Assistance</u>, SPE 3533, New Orleans, La.,

 October 1971.
- 4. Timoshenko, S. and Young, D. H., Elements of Strength of Materials, 4th Ed., Van Nostrand Co., Inc., Princeton, N. J., 1962, pp 219-221.

APPENDIX A SUMMARY OF ROCK PROPERTIES

CHARCOAL GRANITE

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$35.1 \times 10^3 \text{ lb/in}^2$	244 MN/m ²
Density (apparent)	170.5 lb/ft ³	2.72 g/cm^3
Hardness (Shore scleroscope)	95	95
Poisson's ratio (dynamic)	0.28	0.28
Tensile strength (pull)	1300 lb/in ²	9 MN/m ²
Tensile strength (indirect)	1570 lb/in ²	12.8 MN/m^2
Young's modulus (dynamic)	$9.67 \times 10^6 \text{ lb/in}^2$	$66.7 \mathrm{GN/m}^2$
Young's modulus (static)	$9.3 \times 10^6 \text{ lb/in}^2$	64.1 GN/m^2

WESTERLY GRANITE

Property	Test Results (English Units)	Test Results (SI Units)
Density (apparent)	165 1b/ft ³	2.64 g/cm ³
Poisson's ratio (dynamic)		0.24
Poisson's ratio (static)		0.20
Shear modulus (dynamic)	$2.6-4.6 \times 10^6 \text{ lb/in}^2$	$18-32 \mathrm{GN/m}^2$
Shear modulus (static)	$3.83 \times 10^6 \text{ lb/in}^2$	26.4 GN/m^2
Velocity (longitudinal pulse)	1955 ft/sec $\times 10^3$	$5930 \text{ m/sec} \times 10^3$
Velocity (shear)	11,000 ft/sec x 10 ³	$3360 \text{ m/sec} \times 10^3$
Young's modulus (dynamic)	$5.8-11.6 \times 10^6 \text{ lb/in}^2$	39.9-80 GN/m ²
Young's modulus (static)	$8.26 \times 10^6 \text{ lb/in}^2$	56.9 GN/m ²

BARRE GRANITE

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$23.9 \times 10^3 \text{ lb/in}^2$	167 MN/m ²
Density (apparent)	166 lb/ft ³	2.66 g/cm ³
Shear modulus (dynamic)	$2.44 \times 10^6 \text{ lb/in}^2$	16.8 GN/m ²
Shear modulus (static)	$2.2-2.4 \times 10^6 \text{ lb/in}^2$	15.2-16.9 GN/m ²
Young's modulus (dynamic)	$4.41 \times 10^6 \text{ lb/in}^2$	30.4 GN/m^2
Young's modulus (static)	$3.96-6.41 \times 10^6 \text{ lb/in}^2$	27.3-44.2 GN/m ²

DRESSER BASALT

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$50 \times 10^3 \text{ lb/in}^2$	350 MN/m ²
Density (apparent)	187 lb/ft ³	2.99 g/cm ³
Hardness (Shore scleroscope)	90	90
Poisson's ratio (dynamic)	0.285	0.285
Porosity	0.20 percent	: '
Shear modulus (dynamic)	$5.85 \times 10^6 \text{ lb/in}^2$	40 GN/m ²
Tensile strength (pull)	2100 lb/in ²	14 MN/m ²
Tensile strength (indirect)	2750 lb/in ²	19 MN/m ²
Velocity (longitudinal bar)	19.1 ft/sec x 10 ³	5.82 m/sec x 10 ³
Velocity (longitudinal pulse)	21.7 ft/sec x 10 ³	6.62 m/sec x 10 ³
Velocity (shear)	11.9 ft/sec x 10 ³	$3.63 \text{ m/sec} \times 10^3$
Young's modulus (dynamic)	$14.5 \times 10^6 \text{ lb/in}^2$	100 GN/m ²
Young's modulus (static)	$12.5 \times 10^6 \text{ lb/in}^2$	86.2 GN/m ²

SIOUX QUARTZITE

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$54 \times 10^3 \text{ lb/in}^2$	350 MN/m ²
Density (apparent)	150 1b/ft ³	2.39 g/cm ³
Hardness (Shore scleroscope)	. 99	89
Poisson's ratio (dynamic)	0.13-0.28	0.13-0.28
Porosity	<1 percent	
Shear modulus (dynamic)	$4.2-5.0 \times 10^6 \text{ lb/in}^2$	29-35 GN/m ²
Tensile strength (pull)	1300 lb/in ²	9 MN/m ²
Tensile strength (indirect)	2900 lb/in ²	20 MN/m ²
Velocity (longitudinal bar)	14.6 ft/sec x 10 ³	$4.45 \text{ m/sec} \times 10^3$
Velocity (longitudinal pulse)	$16.2 \text{ ft/sec} \times 10^3$	$4.9 \text{ m/sec} \times 10^3$
Velocity (shear)	11.0 ft/sec x 10 ³	$3.35 \text{ m/sec} \times 10^3$
Young's modulus (dynamic)	$8.5 \times 10^6 \text{ lb/in}^2$	58 GN/m ²
Young's modulus (static)	$10.1 \times 10^6 \text{ lb/in}^2$	69.6 GN/m ²

BEREA SANDSTONE

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$8.6 \times 10^3 \text{ lb/in}^2$	59 MN/m ²

TENNESSEE MARBLE

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$16.9 \times 10^3 \text{ lb/in}^2$	118 MN/m ²
Density (apparent)	167 1b/ft ³	2.69 g/cm ³
Hardness (Shore scleroscope)	56.5	56.5
Poisson's ratio (dynamic)	0.292	0.292
Shear modulus (dynamic)	$4.2 \times 10^6 \text{ lb/in}^2$	28.8 GM/m ²
Tensile strength (pull)	1300 lb/in ²	9.2 MN/m ²
Tensile strength (indirect)	745 lb/in ²	5.13 MN/m^2
Velocity (longitudinal bar)	$16,850 \text{ ft/sec} \times 10^3$	5140 m/sec : 10 ³
Velocity (longitudinal pulse)	20,050 ft/sec \times 10^3	$6100 \text{ m/sec} \times 10^3$
Velocity (shear)	$10,600$ ft/sec x 10^3	$3140 \text{ m/xec} \times 10^3$
Young's modulus (dynamic)	$10.6 \times 10^6 \text{ lb/in}^2$	73.0 GN/m ²
Young's modulus (static)	$9.0 \times 10^6 \text{ lb/in}^2$	$62.0 \mathrm{GN/m}^2$

SALEM LIMESTONE

Property	Test Results (English Units)	Test Results (SI Units)
Compressive strength	$9.5 \times 10^3 \text{ lb/in}^2$	65.9 MN/m ²
Density (apparent)	149 lb/ft ³	2.39 g/cm ³
Hardness (Shore scleroscope)	29.5	29.5
Poisson's ratio (dynamic)	0.299	0.299
Shear modulus (dynamic)	$2.2 \times 10^6 \text{ lb/in}^2$	15.2 GN/m ²
Tensile strength (pull)	580 lb/in ²	3.9 MN/m^2
Velocity (longitudinal bar)	$12,550 \text{ ft/sec} \times 10^3$	$3800 \text{ m/sec} \times 10^3$
Velocity (longitudinal pulse)	14,550 ft/sec x 10^3	4447 m/sec x 10 ³
Velocity (shear)	10,000 ft/sec x 10^3	$3000 \text{ m/sec} \times 10^3$
Young's modulus (dynamic)	$4.8 \times 10^6 \text{ lb/in}^2$	34.2 GN/m ²
Young's modulus (static)	$3.92 \times 10^6 \text{ lb/in}^2$	27.2 GN/m ²

APPENDIX B COMPUTER PROGRAMS AND DATA SUMMARY

ENERGY

```
100 PRØGRAM LANGUAGE: FØRTRAN (FØR)
105 INPUT FILE FORMAT: COMBINATION .TEST .SAMPLE .PRESSURE
110 (50000=-1,65000=0,80000=1),FEEDRATE(50=-1,100=0,150=1),
115 STANDOFF(.5=-1,1.0=0,1.5=1), NOZZLE(.008=-1,.012=0,.0136=1),
120 LENGTH OF CUT(IN.), VOLUME REMOVED(CUBIC CM.)
125 SFILE (LIST OUTPUT FILES #1, .... #8, INPUT FILES #9, ....)
130 DIMENSIONSE(100), SJ(100), SP(100), SB(100)
135 REAL L
140 25 FORMAT(56H2+4 FACTORIAL FRAGMENTATION TEST DATA, ROCK TY
145
    +PE NUMBER: 14)
                                             TREATMENT COMBINATION
                                SAMPLE
                         TEST
150 30 FORMAT(68HCOMB.
                    SPECIFIC)
155
                                                    RATE
                                                           STAND
                                         PRESSURE
160 35 FØRMAT(67H
                                    .
                        ENERGY)
    +OFF NOZZLE
165
                                            P
                                                     F
                                                               S
170 36 FØRMAT(53H
175
              N)
180 40 FORMAT(14,18,16,111,18,F8.1,F10.4,F15.2)
185 50 FORMAT(129, 18, F8.1, F10.4, F15.2)
190 60 FURMAT(F11.2,F19.2,F19.2)
195 N=0
200 B=0
205 J=1
210 K=9
215 I=0
220 A=2
225 CI=0
230 90 READ (K)J
235 IF(J) 410, 410, 95
240 95 PRINT 25,J
245 PRINT
250 PRINT
255 PRINT 30
260 PRINT 35
265 PRINT 36
270 PRINT
275 100 READ (K)C
280 IF (C)410,340,105
285 105 IF(C-CI) 112,112,106
290 106 IF(A-1)107,107,110
295 107 B=B+1
300 SB(B)=SE(I)
305 110 A=0
310 112 READ (K) T.R.P.F.S.D.L.V
315 IF(1-P)155
320 IF(P) 120, 130, 140
325 120 P=50000
330 GØTØ155
335 130 P=65000
340 G0T0155
345 140 P=80000
```

ENERGY CONTINUED

```
350 155 IF(1-F)195
355 IF(F) 160, 170, 180
360 160 F=50
365 GØTØ195
370 170 F=100
375 GØTØ195
380 180F=150
385 195 IF(S)200,210,220
390 200 S= • 5
395 GØTØ230
400 210 S=1.0
405 G9T9230
410 220 S=1.5
415 230 IF(D)240,250,260
420 240 D= . 008
425 G0Y0285
430 250 D= · 012
435 G0T0285
440 260 D= · 0136
445 285 1=1+1
450 B=B+1
455 SE(1) = 7059 . 173 + D++2+P+SQRT(P)+L/F/V
460 SB(B)=SE(I)
465 A=A+1
470 IF(C-C1)300,290,300
475 290 PRINT50, P.F. S. D. SE(1)
480 GØTØ310
485 300 PRINT40, C. T. R. P. F. S. D. SE(1)
490 310 C1=C
495 G3T3100
500 340 PRINT
505 PRINT
510 PRINT
515 IF(A-1) 342, 342, 343
520 342 B=B+1
525 SB(B)=SE(1)
                           SPECIFIC ENERGY"
530 343 PRINT"
535 PRINT
                                                        PSI"
540 PRINT"FT.-LB./CU.IN. JOULES/CU.CM.
545 PRINT
 550 N=1
 555 D0390I=1,N
 560 SJ(1)=.082733*SE(1)
 565 SP(1)=12*SE(1)
 570 390 PRINT60, SE(1), SJ(1), SP(1)
 575 P=B
 580 REWINDJ
 585 DØ 395B=1.P
 590 395 WRITE(J) SB(B)
 595 J=J+1
```

ENERGY CONTINUED

```
600 N=0
605 A=2
610 I=0
615 B=0
620 CI=0
625 PRINT
630 PRINT
630 PRINT
640 PRINT
640 PRINT
645 IF (ENDFILEK) 405, 400
650 400 K=K+1
655 405 GØTØ90
660 410 END
```

ANG VA

```
100 PRØGRAM LANGUAGE: ADVANCED BASIC (XBAS)
105 FILES (LIST INPUT FILES #11....)#8)
110 LET Q1=1
115 PRINT
120 PRINT
125 PRINT
130 PRINT
135 PRINT"ANALYSIS OF VARIANCE, ROCK TYPE NUMBER: ", Q1
140 PRINT
145 PRINT
                             MEAN SPECIFIC ENERGY VALUES"
150 PRINT"
155 PRINT
160 PRINT
165 PRINT"COMBINATION #", "MEAN SPECIFIC ENERGY (FT.-LB./CU.IN.)"
170 DIM X(100)
175 DIM Q(100)
180 DIM S(100)
185 DIM A(100)
190 DIM C(100)
195 DIM U(100)
200 DIM P(100)
205 DIM Z(64,6)
210 MAT Z= ZER
215 LET N=(INPUT: NUMBER OF VARIABLES)
220 LET R=(INPUT: NUMBER OF REPLICATIONS)
225 LET V=0
230 LET A(1)=0
235 LET A(2)=0
240 FOR X = 1 TO2+N
245 LET W=0
250 FØR K =1 TØ R
255 READ # Q1,X(K)
260 LET S(K)=X(K)+A(K)
265 LET A(K)=S(K)
270 LET W=X(X)+W
275 LET. V=X(K)+2+V
280 LET Z=X(K)+Z
285 NEXT K
290 LET C(X)=W
295 LET 92=(INPUT: STATEMENT FOR COMBINATION NUMBER)
300 IF R=1 THEN 310
305 PRINT
           92.C(X)/R
310 NEXTX
315 DEF FNX(X) = (X+1)/2
320 DEF FNY(X)=(X+1)/2+(2+N/2)
325 FOR J = 1 TO N
330 FØRX=1 TØ 2+N STEF 2
335 LET P(FNX(X))=C(X)+C(X+1)
340 LET P(FNY(X))=C(X+1)-C(X)
345 NEXT X
```

ANOVA CONTINUED

```
350 FØR X=1 TØ2+N
355 LET C(X)=P(X)
360 NEXT X
365 NEXT J
370 LET L=0
375 FOR X=2 TO 2+N
360 LET U(X)=C(X)+2/(R+2+N)
385 LET L=(C(X)+2/(R+2+N))+L
390 NEXT X
395 FOR I = 1 TO N
400 LET K=1-1
405 FOR S = (2+K)+1 TO 2+N STEP 2+1
410 FOR J=$ TO (S+(2+K-1))
415 LET Z(J, I)=1
420 NEXT J
425 NEXT S
430 NEXT I
435 IF R=1 THEN 460
440 LET B=(A(1)+2+A(2)+2)/2+N-(C(1)+2/(R+2+N))
445 LET E=V-(C(1)+2/(R+2+N))-L-B
450 LET D=(2+N+(R-1))-1
455 LET M=E/D
460 PRINT
465 PRINT
470 PRINT "
                             ANALYSIS OF VARIANCE TABLE"
475 PRINT
480 PRINT
485 IF R=1 THEN 595
490 PRINT"SOURCE OF", "SUMS OF", "DF", "F RATIO", "TREATMENT"
495 PRINT"VARIATION", "SQUARES", " ", " ", "EFFECTS"
500 FØR X=2 TØ 2+N
505 GØSUB 645
510 LET Q(X)=C(X)/(R*2*(N-1))
515 PRINT " ",U(X),"1",U(X)/M,Q(X)
520 NEXT X
525 PRINT
530 PRINT "REPLICATE", B, (R-1), B/(M*(R-1))
535 PRINT
540 PRINT "ERROR", E, D
545 PRINT
550 PRINT "TOTAL", V-(C(1)+2/(R+2+N)), 2+N+R-1
555 PRINT
560 PRINT "ERROR MEAN SQUARE=",M
565 LET G=SQR(M)/SQR(R)
570 PRINT
575 PRINT GJ"IS THE SQUARE ROOT OF THE RATIO OF THE MEAN"
580 PRINT "SQUARE ERROR TO THE NUMBER OF REPLICATIONS PER CELL."
590 GØ TØ 625
595 PRINT "SOURCE OF", "SUMS OF"
600 PRINT "VARIATION", "SQUARES"
```

58 B-6

ANGVA CONTINUED

```
605 FØR X=2 TØ 2+N
610 GØSUB 645
615 PRINT " ", U(X)
620 NEXT X
625 PRINT
630 LET 91=91+1
635 IF(INPUT: CRITERIA FOR NOT ENDING PROGRAM) THEN115
640 STOP
645 IF Z(X, 1)=1 THEN 670
650 IF Z(X, 2) 1 THEN 690
655 IF Z(X, 3)=1 THEN 690
660 IF Z(X, 4)=1 THEN 700
665 GØ TØ 705
670 PRINT "P";
675 GØ TØ 650
680 PRINT "F"3
685 GØ TØ 655
690 PRINT "S"J
695 GØ TØ 660
700 PRINT "N"3
705 RETURN
710 STØP
715 DATA 0
720 END
```

KERF

```
100 PRØGRAM LANGUAGE: FØRTRAN (FOR)
 105 SFILE ROCKS8
 110 DIMENSION SE(4,10), SM(4,10), SUM(4), A(4), DIF(4), DIFM(4)
 115 REAL L
 120 10 FORMAT(SOHKERFING FRAGMENTATION TEST DATA, ROCK TYPE
 125 + NUMBER: , 14)
 130 15 FORMA ( 204
                            PRESSURE =, 16, 6H PSI =, F9.2, 15H NEWTONS
 135 */ SQ. CM.)
 140 20 FØRMAT(20H
                             FEEDRATE =, 16, 6H IPM =, F6.2, 9H CM./SEC.)
 145 25 FØRMAT(20H
                             STANDOFF =, F6.1, 6H IN. =, F6.3, 4H CM.)
 150 30 FØRMAT(20H
                             NOZZLE =, F6.4, 6H IN. =, F6.5, 4H MM.)
 155 35 FØRMAT(32H
                             SPACING BETWEEN CUTS = F5.3,6H IN. =,
 160 +F5.3,4H CM.)
 165 70 FORMAT(56H
                      CUT NUMBER
                                            AVERAGE SPECIFIC ENERGY
 170 +PER CUT)
 175 75 FORMAT(57H
                                           FT.LB./CU.IN.
 180 +JØULES/CU.CM.)
 185 80 FØRMAT(110,F24.2,F20.2)
 190 90 FØRMAT(14H
                      AVERAGE, 2F20.2)
 195 40 FORMAT(56HCOMB.
                           TEST SAMPLE NUMBER
                                                              SP
200 +ECIFIC ENERGY)
205 45 FØRMAT(68H
                    OF CUTS FT.LB./CU.
210 +IN.
                JUULES/CU.CM.)
215 50 FØRMAT(14,19,17,18,F17.2,F20.2)
220 60 FØRMAT(120,18,F17.2,F20.2)
225 95 READ(1)J
230 X1=0
235 IF(J) 300, 300, 100
240 100 READ(1)P,F,S,D,Q
245 P1= . 68966*P
250 F1=.04233333*F
255 S1=2.54*S
260 D1=D+25.4
265 01=2.54+0
270 PRINTIO, J
275 PRINT
280 PRINT
285 PRINTIS, P. PI
290 PRINT20, F, F1
295 PRINT 25, S, S1
300 PRINT 30, D, D1
305 PRINT
310 PRINT 35, 9, 91
315 PRINT
320 PRINT
325 PRINT 40
330 PRINT 45
335 PRINT
340 120 READ(1)C
345 IF(C)180,180,125
```

KERF CONTINUED

```
350 125 READ(1) T. R. L. V. X
355 IF(X-X1)135,135,130
360 130 Y=1
365 135 SE(X,Y)=7059.173+D++2+P+SQRT(P)+X+L/F/V
370 SM(X_0Y) = .082733 + SE(X_0Y)
375 IF (%-X1) 150, 150, 140
380 140 PRINT 50, C, T, R, X, SE(X, Y), SM(X, Y)
385 X1=X
390 GØTØ160
395 150 IF(R-R1)160,160,155
400 155 PRINT 60, R, X, SE(X, Y), SM(X, Y)
405 160 2(X)=Y
410 Y=Y+1
415 GØTØ120
420 180 PRINT
425 PRINT
430 D#230 X=1,3
435 SUM(X)=0
440 Z=A(X)
445 DØ 220Y=1.Z
450 220 SUM(X)=SE(X,Y)+SUM(X)
455 230 SUM(X)=SUM(X)/A(X)
460 X=1
465 PRINT 70
470 DIF(X)=SUM(X)
475 DIFM(X)=.082733+SUM(X)
480 PRINT 75
485 PRINT
490 PRINT 80, X, DIF(X), DIFM(X)
495 DØ250X=2,3
500 DIF(X)=X/SUM(X)-(X-1)/SUM(X-1)
505 DIF(X)=1/DIF(X)
510 DIFM(X)=.082733*DIF(X)
515 PRINT
520 250 PRINT 80, X, DIF(X), DIFM(X)
525 PRINT
530 DIFA=(DIF(2)+DIF(3))/2
535 DIFB=(DIFM(2)+DIFM(3))/2
540 PRINT 90, DIFA, DIFB
545 PRINT
550 PRINT
555 PRINT
560 PRINT
565 GØTØ95
570 300 END
```

```
100 SDATA'2'4 FACTORIAL FRAGMENTATION TEST INPUT DATA'
105 SDATA CHARCOAL GRANITE'
110 1
115 1,25,12,-1,-1,-1,-1,8.0,1.1,1,25,12,-1,-1,-1,-1,-1,8.0,1.0
120 2,48,2,1,-1,-1,-1,8,1,1,1,2,48,2,1,-1,-1,-1,8,1,1,2
125 3,38,19,-1,1,-1,-1,8.0,1.2,3,38,19,-1,1,-1,-1,8.,.8
130 4,28,5,1,1,-1,-1,8.05,.95,4,28,5,1,1,-1,-1,8.05,1.0
135 5, 15, 13, -!, -1, 1, -1, 8.0, 1.1, 5, 15, 13, -1, -1, 1, -1, 8.0, 1.4
140 6, 46, 15, 1, -1, 1, -1, 7, 95, 1, 5, 6, 46, 15, 1, -1, 1, -1, 7, 95, 1, 3
145 7, 17, 1, -1, 1, 1, -1, 7, 95, 1, 7, 17, 1, -1, 1, 1, -1, 7, 95, 9
150 8,32,14,1,1,1,-1,8.0,.4,8,32,14,1,1,1,-1,8...3
155 9,77,20,-1,-1,-1,1,8,,2,5,9,77,20,-1,-1,-1,1,8,,2,3
160 10, 104, 16, 1, -1, -1, 1, 7, 9, 1, 2
165 10, 104, 16, 1, -1, -1, 1, 7.9, 1.0, 11, 102, 6, -1, 1, -1, 1, 7.9, .6
170 11,102,6,-1,1,-1,1,7.9,.8,12,111,3,1,1,-1,1,8,,10,12
175 102-3-1-1-1-1-8--1-1-13-70-7-1-1-1-1-7-95-1-9
180 13,70,7,-1,-1,1,1,7,95,1,9,14,86,9,1,-1,1,1,8,06,1,5
185 14,86,9,1,-1,1,1,8.06,1.6,15,87,11,-1,1,1,1,7.95,.8
190 15,87,11,-1,1,1,1,7,95,1,16,105,8,1,1,1,1,8,,1,1
195 16, 105, 8, 1, 1, 1, 1, 8, , 1.
200 0
205 SDATA 'WESTERLY GRANITE'
210 2
215 17,18,2,-1,-1,-1,-1,7.85,1.,17,18,2,-1,-1,-1,-1,7.85,1.
220 18, 7, 5, 1, -1, -1, -1, 7, 9, 1, 4, 19, 8, 4, -1, 1, -1, -1, 8, 1, 6
225 20,51,3,1,1,-1,-1,8,,1,,20,51,3,1,1,-1,-1,8,,1.1
230 21, 3, 1, -1, -1, 1, -1, 7.9, .8, 22, 5, 3, 1, -1, 1, -1, 8 . , 1 . 4
235 22,5,3,1,-1,1,-1,8,,1,4,23,23,5,-1,1,1,-1,7,95,,9
240 23, 23, 5, -1, 1, 1, -1, 7.95, .6, 24, 20, 1, 1, 1, 1, -1, 6, , .8
245 24,20,1,1,1,1,-1,6,,.65,25,96,4,-1,-1,-1,1,8.1,.8
250 25,96,4,-1,-1,-1,1,8.1,1.1,26,92,2,1,-1,-1,1,7.85,2.0
260 27,124,1,-1,1,-1,1,8.,.5,28,72,2,1,1,-1,1,7.95,3.2
265 28, 72, 2, 1, 1, -1, 1, 7, 95, 3, 1, 29, 123, 3, -1, -1, 1, 1, 8, , , 95
270 29,123,3,-1,-1,1,1,8,,.8,30,91,4,1,-1,1,1,8,1,1.5
275 30,91,4,1,-1,1,1,8,1,1,5,31,113,1,-1,1,1,1,7,9,,8
280 31,113,1,-1,1,1,1,7,9,,5,32,121,5,1,1,1,1,8,,1,
285 32,121,5,1,1,1,1,8,,1.1
290 0
295 SDATA BARRE GRANITE'
300 3
     33, 11, 7, -1, -1, -1, -1, 8, 15, 8, 33, 11, 7, -1, -1, -1, -1, 8, 15, 8
305
310 +34, 13, 17, 1, -1, -1, -1, 8, 2, 1, 3, 34, 13, 17, 1, -1, -1, -1, 8, 2, 1, 3
315 +35,22,11,-1,1,-1,-1,8.2,.9,35,22,11,-1,1,-1,-1,8.2,1.0
320 +36,43,10,1,1,-1,-1,8.2,1.35,36,43,10,1,1,-1,-1,8.2,1.0
325 +37,50,19,-1,-1,1,-1,8.2,.8,37,50,19,-1,-1,1,-1,8.2,.9
330 +38,31,1,1,-1,1,-1,8.2,1.2,38,31,1,1,+1,1,-1,8.2,1.2
335 +39, 19, 3, -1, 1, 1, -1, 8, 15, , 3, 39, 19, 3, -1, 1, 1, -1, 8, 15, , 5
340 +40, 37, 2, 1, 1, 1, -1, 8, 1, 1, 0, 40, 37, 2, 1, 1, 1, -1, 8, 1, .95
345 +41,81,6,-1,-1,-1,1,7.95,2.6,41,81,6,-1,-1,-1,1,7.95,2.7
```

```
350 +42,76,8,1,-1,-1,1,8.0,4.4,42,76,8,1,-1,-1,1,8.0,4.4
355 +43,89,16,-1,1,-1,1,7.9,.7
360 +43,89,16,-1,1,-1,1,7.9,.7
365 +44,68,20,1,1,-1,1,7.5,3.0,44,68,20,1,1,-1,1,7.5,2.8
370 +45,82,18,-1,-1,1,1,8.0,2.3,45,82,18,-1,-1,1,1,8.0,2.0
375 +46,85,4,1,-1,1,1,8.0,1.4,46,85,4,1,-1,1,1,8.0,1.4
380 +47,74,5,-1,1,1,1,8.0,1.6,47,74,5,-1,1,1,1,8.0,1.8
385 +48,100,14,1,1,1,1,8.0,1.0,48,100,14,1,1,1,1,8.0,1.2
390 0
395 SDATA 'DRESSER BASALT'
400 4
405 49,54,14,-1,-1,-1,-1,6.0,2.0
410 50,34,19,1,-1,-1,-1,6.0,6.1,50,34,19,1,-1,-1,-1,6.0,3.6
415 51,29,8,-1,1,-1,-1,6.0,1.5,51,29,8,-1,1,-1,-1,6.0,.8
420 52,41,1,1,1,-1,-1,5,0,8,0,53,57,3,-1,-1,1,-1,6,0,1,4
425 54,58,12,1,-1,1,-1,6.0,5.8,55,9,20,-1,1,1,-1,6.05,1.1
430 55,9,20,-1,1,1,-1,6.05,1.0,56,35,5,1,1,1,-1,6.15,1.4
435 57,94,13,-1,-1,-1,1,6.1,1.6,57,94,13,-1,-1,-1,1,6.1,1.5
440 58, 75, 6, 1, -1, -1, 1, 4, 125, 5, 0, 59, 109, 2, -1, 1, -1, 1, 7, 95, 2, 0
445 59,109,2,-1,1,-1,1,7,95,2,7,60,106,10,1,1,-1,1,5,3,4,6
450 60, 106, 10, 1, 1, -1, 1, 5, 7, 3, 4, 61, 116, 15, -1, -1, 1, 1, 5, 5, 1, 22
455 61, 116, 15, -1, -1, 1, 1, 5, 6, 1, 3, 62, 90, 16, 1, -1, 1, 1, 4, 55, , 7
460 62,90,16,1,-1,1,1,4.5,.6,63,117,7,-1,1,1,1,5.75,1.8
465 63,117,7,-1,1,1,1,5.75,1.5,64,67,17,1,1,1,1,5.25,9.8
470 0
475 SDATA'SIØUX QUARTZITE'
480 5
485 65, 24, 10, -1, -1, -1, -1, 9, 6, .9, 65, 24, 10, -1, -1, -1, -1, 9, 6, 1, 1
490 66, 36, 2, 1, -1, -1, -1, 10.0, 1.8, 66, 36, 2, 1, -1, -1, -1, 10.0, 1.5
495 67,21,20,-1,1,-1,-1,9.5,1.2,67,21,20,-1,1,-1,-1,-1,9.6,1.1
500 68, 42, 3, 1, 1, -1, -1, 9, 25, 1, 2, 68, 42, 3, 1, 1, -1, -1, 10, 2, 1, 1
505 69,60,8,-1,-1,1,-1,7.9,.7,69,60,8,-1,-1,1,-1,7.9,.8
510 70, 26, 18, 1, -1, 1, -1, 9, 5, 1, 1, 70, 26, 18, 1, -1, 1, -1, 9, 5, 1, 25
515 71, 4, 4, -1, 1, 1, -1, 10.0, . 7, 71, 4, 4, -1, 1, 1, -1, 11.25, .8
520 72, 16, 7, 1, 1, 1, -1, 11.8, 1.0, 72, 16, 7, 1, 1, 1, -1, 11.8, .8
    73, 65, 5, -1, -1, -1, 1, 10 · 0, 2 · 8, 73, 65, 5, -1, -1, -1, 1, 10 · 0, 2 · 8
525
530 74,88,13,1,-1,-1,1,10.0,1.5,74,88,13,1,-1,-1,1,10.0,1.6
535 75, 73, 1, -1, 1, -1, 1, 7, 7, 1, 6, 75, 73, 1, -1, 1, -1, 1, 9, 7, 1, 7
    76, 126, 12, 1, 1, -1, 1, 9, 2, 1, 3, 76, 126, 12, 1, 1, -1, 1, 9, 2, 1,
540
545 77,83,6,-1,-1,1,1,8.4,1.8,77,83,6,-1.-1,1,1,8.9,2.3
550 78, 71, 17, 1, -1, 1, 1, 9, 0, 3, 25, 78, 71, 17, 1, -1, 1, 1, 9, 0, 3, 25
555 79,93,11,-1,1,1,1,10.8,.8,79,93,11,-1,1,1,1,10.8,.9
560 80,98,16,1,1,1,1,10.8,1.0,80,98,16,1,1,1,1,10.8,1.0
565 0
570 SDATA BEREA SANDSTONE
575 6
550 81,6,9,-1,-1,-1,-1,7,9,2,6,81,6,9,-1,-1,-1,-1,7,9,2,9
585 82,53,13,1,-1,-1,-1,8,,7.8,82,53,13,1,-1,-1,-1,8,,7.6
590 83,55,4,-1,1,-1,-1,8,,4,,83,55,4,-1,1,-1,-1,8,,4
595 84, 14, 17, 1, 1, -1, -1, 8., 5.1, 84, 14, 17, 1, 1, -1, -1, 8., 5.3
```

ROCKS1 CONTINUED

```
600 85, 1, 18, -1, -1, 1, -1, 8, 3, 2, 85, 1, 18, -1, -1, 1, -1, 8, 3, 8
605 86, 2, 14, 1, -1, 1, -1, 8, 7, 5, 86, 2, 14, 1, -1, 1, -1, 8, 7, 8
610 87, 10, 2, -1, 1, 1, -1, 8, 05, 2, 5, 87, 10, 2, -1, 1, 1, -1, 8, 05, 2, 7
615 88, 61, 1, 1, 1, 1, -1, 8, 05, 4, 7, 88, 61, 1, 1, 1, 1, -1, 8, 05, 4, 5
620 89, 110, 11, -1, -1, -1, 1, 8, 3, 2, 89, 110, 11, -1, -1, -1, 1, 1, 8, 3, 6
625 90, 118, 10, 1, -1, -1, 1, 8, 7, 2, 90, 118, 10, 1, -1, -1, 1, 8, 6, 4
630 91, 103, 5, -1, 1, -1, 1, 8, 2, 4, 91, 103, 5, -1, 1, -1, 1, 8, 2, 6
635 92, 80, 12, 1, 1, -1, 1, 8, 05, 20, 7, 92, 80, 12, 1, 1, -1, 1, 8, 05, 18, 1
640 93, 107, 16, -1, -1, 1, 1, 1, 8, 3, 4, 93, 107, 16, -1, -1, 1, 1, 1, 8, 3, 2, 6
645 94, 97, 15, 1, -1, 1, 1, 7, 95, 5, 5, 94, 97, 15, 1, -1, 1, 1, 7, 95, 5, 4
650 95, 99, 3, -1, 1, 1, 1, 1, 8, 2, 5, 95, 99, 3, -1, 1, 1, 1, 1, 8, 2, 75
655 96, 84, 6, 1, 1, 1, 1, 1, 8, 17, 9, 96, 84, 6, 1, 1, 1, 1, 1, 8, 15, 6
660 0
```

RØCK S2

```
100 SDATA '2+4 FACTORIAL FRAGMENTATION TEST INPUT DATA .
 105 SDATA 'TENNESSEE MARBLE'
 110 7
 115 97,59,6,-1,-1,-1,-1,3.0,1.3,97,59,6,-1,-1,-1,-1,8.0,1.2
 120 98, 47, 20, 1, -1, -1, -1, 8.0, 1.3, 98, 47, 20, 1, -1, -1, -1, 8.0, 1.3
 125 99,64,11,-1,1,-1,-1,8.0,.85,99,64,11,-1,1,-1,-1,8.0,.85
 130 100, 12, 1, 1, 1, -1, -1, 8.05, .8, 100, 12, 1, 1, 1, -1, -1, 8.05, .7
 135 101,63,4,-1,-1,1,-1,8.0,1.9,101,63,4,-1,-1,1,-1,8.0,1.3
 140 102, 49, 7, 1, -1, 1, -1, 8.0, .8, 102, 49, 7, 1, -1, 1, -1, 8.0, 1.0
 145 103, 39, 3, -1, 1, 1, -1, 8, 1, -8, 103, 39, 3, -1, 1, 1, -1, 8, 1, 1, 6
 150 104, 62, 18, 1, 1, 1, -1, 8, 1, .9, 104, 62, 18, 1, 1, 1, -1, 8, 1, .7
 155 105, 108, 13, -1, -1, -1, 1, 8.0, .5, 105, 108, 13, -1, -1, -1, 1, 8.0, 1.0
 160 106, 79, 19, 1, -1, -1, 1, 8, 1, 3, 1, 106, 79, 19, 1, -1, -1, 1, 8, 1, 2, 9
165 107, 66, 9, -1, 1, -1, 1, 8, 1, 1, 3, 107, 66, 9, -1, 1, -1, 1, 8, 1, 1, 8
170 108, 125, 8, 1, 1, -1, 1, 8, 0, .9, 108, 125, 8, 1, 1, -1, 1, 8, 0, .9
175 109, 112, 10, -1, -1, 1, 1, 8.0, 1.6, 109, 112, 10, -1, -1, 1, 1, 8.0, 2.0
180 110, 119, 17, 1, -1, 1, 1, 7, 9, 1, 2, 110, 119, 17, 1, -1, 1, 7, 9, 1, 1
185 111, 122, 2, -1, 1, 1, 1, 7, 95, 1, 5, 111, 122, 2, -1, 1, 1, 7, 95, 1, 8
190 112, 127, 15, 1, 1, 1, 1, 8, 1, . 7, 112, 127, 15, 1, 1, 1, 1, 8, 1, . 7
195 0
200 SDATA SALEM LIMESTONE
205 8
210 113,27,13,-1,-1,-1,-1,8.1,2.5,113,27,13,-1,-1,-1,-1,8.1,2.2
215 114, 30, 3, 1, -1, -1, -1, 8, 1, 16, 8, 114, 30, 3, 1, -1, -1, -1, 8, 1, 8, 5
220 115, 44, 10, -1, 1, -1, -1, 8, , 1, , 115, 44, 10, -1, 1, -1, -1, 8, , 1, 1
225 116, 33, 9, 1, 1, -1, -1, 8, 1, 2, 7, 116, 33, 9, 1, 1, -1, -1, 8, 1, 3, 2
230 117,52,4,-1,-1,1,-1,8,,1,,117,52,4,-1,-1,1,-1,8,,.9
235 118, 40, 11, 1, -1, 1, -1, 8, , 2, 4, 118, 40, 11, 1, -1, 1, -1, 8, , 2, 5
240 119, 45, 1, -1, 1, 1, -1, 8, , 1, 1, 119, 45, 1, -1, 1, 1, -1, 8, , 1, 3
245 120, 56, 15, 1, 1, 1, -1, 8, 05, 1, 6, 120, 56, 15, 1, 1, 1, -1, 8, 05, 1, 4
250 121,69,14,-1,-1,-1,1,8.1,18.,121,69,14,-1,-1,-1,1,8.1,17.4
255 122,95,17,1,-1,-1,1,7.95,1.2,122,95,17,1,-1,-1,1,7.95,2.9
260 123, 101, 18, -1, 1, -1, 1, 8, 1, 1, 8, 123, 101, 18, -1, 1, -1, 1, 8, 1, 2, 1
265 124, 120, 5, 1, 1, -1, 1, 8, , 3, 1, 124, 120, 5, 1, 1, -1, 1, 8, , 3,
270 125, 115, 19, -1, -1, 1, 1, 8, 1, 1, 8, 125, 115, 19, -1, -1, 1, 1, 8, 1, 1, 75
275 126, 114, 2, 1, -1, 1, 1, 8, , 5, 1, 126, 114, 2, 1, -1, 1, 1, 8, , 5, 9
280 127, 128, 6, -1, 1, 1, 1, 8, 09, 1, 5, 127, 128, 6, -1, 1, 1, 1, 8, 09, 1, 6
285 128, 78, 12, 1, 1, 1, 1, 8.05, 12.1, 128, 78, 12, 1, 1, 1, 1, 8.05, 13.7
290 G
295 -1
```

RØCK S3

```
100 SDATA 3+2 FACTORIAL FRAGMENTATION TEST INPUT DATA
105 SDATA CHARCOAL GRANITE
110 1
115 140, 38, 19, -1, 1, -1, -1, 8., 1.2, 140, 38, 19, -1, 1, -1, -1, 8., .8
120 141, 144, 17, 0, 1, -1, -1, 8., . 5, 141, 144, 17, 0, 1, -1, -1, 8., . 8
125 142, 28, 5, 1, 1, -1, -1, 8.05, .95, 142, 28, 5, 1, 1, -1, -1, 8.05, 1.
130 143, 150, 10, -1, 1, -1, 0, 8, 1, 1, 5, 143, 150, 10, -1, 1, -1, 0, 8, 1, 1, 6
1.65 (-80,1-1,0,18,0,1,-1,0,8,,1,0,14,149,18,0,1,-1,0,8,,1,65
140 145, 152, 4, 1, 1, -1, 0, 8, 1, 2, 3, 145, 152, 4, 1, 1, -1, 0, 8, 1, 2,
145 146, 102, 6, -1, 1, -1, 1, 7.9, .6, 146, 102, 6, -1, 1, -1, 1, 7.9, .8
150 147, 166, 13, 0, 1, -1, 1, 8, 1, 2, 3, 147, 166, 13, 0, 1, -1, 1, 8, 1, 2,
155 148, 111, 3, 1, 1, -1, 1, 8, , 1, , 148, 111, 3, 1, 1, -1, 1, 8, , 1, 1
160 0
165 $DATA 'WESTERLY GRANITE'
170 2
175 149, 7, 5, 1, -1, -1, -1, 7, 9, 1, 4
180 150, 141, 2, 1, 0, -1, -1, 7, 9, 1, 2, 150, 141, 2, 1, 0, -1, -1, 7, 9, 1,
185 151, 51, 3, 1, 1, -1, -1, 8, , 1, , 151, 51, 3, 1, 1, -1, -1, 8, , 1, 1
190 152, 151, 3, 1, -1, -1, 0, 8, 06, 2, 9, 152, 151, 3, 1, -1, -1, 0, 8, 06, 2, 7
195 153, 161, 1, 1, 0, -1, 0, 6, 1, 2, 6, 153, 161, 1, 1, 0, -1, 0, 6, 1, 2, 4
200 154, 162, 3, 1, 1, -1, 0, 8, 06, 4, 5, 154, 162, 3, 1, 1, -1, 0, 8, 06, 4, 6
205 155,92,2,1,-1,-1,1,7.85,2.,155,92,2,1,-1,-1,1,7.85,1.9
210 156, 165, 5, 1, 0, -1, 1, 6, 1, 3, 1, 156, 165, 5, 1, 0, -1, 1, 6, 1, 2, 6
215 157, 72, 2, 1, 1, -1, 1, 7, 95, 3, 2, 157, 72, 2, 1, 1, -1, 1, 7, 95, 3, 1
220 0
225 $DATA 'DRESSER BASALT'
230 4
235 158, 34, 19, 1, -1, -1, -1, 6., 6.1, 158, 34, 19, 1, -1, -1, -1, 6., 3.6
240 159, 143, 18, 1, 0, -1, -1, 4., 3., 159, 143, 18, 1, 0, -1, -1, 4.6, 2.9
245 160, 41, 1, 1, 1, -1, -1, 5, 8.
250 161, 153, 4, 1, -1, -1, 0, 4, 7, 6, 2, 161, 153, 4, 1, -1, -1, 0, 4, 1, 2, 8
255 162, 148, 9, 1, 0, -1, 0, 4, 11, 6
260 163, 156, 20, 1, 1, -1, 0, 6, 15, 4, 5, 163, 156, 20, 1, 1, -1, 0, 6, 15, 5, 9
265 164, 75, 6, 1, -1, -1, 1, 4, 125, 5.
270 165, 167, 19, 1, 0, -1, 1, 6, , 10, 7, 165, 167, 19, 1, 0, -1, 1, 5, 9, 6, 7
275 166, 106, 10, 1, 1, -1, 1, 5, 3, 4, 6, 166, 106, 10, 1, 1, -1, 1, 5, 7, 3, 4
280 0
285 SDATA BEREA SANDSTONE
290 6
295 167, 53, 13, 1, -1, -1, -1, 8., 7.8, 167, 53, 13, 1, -1, -1, -1, 8., 7.6
300 168, 140, 8, 1, 0, -1, -1, 8, , 4, 5, 168, 140, 8, 1, 0, -1, -1, 8, , 4,
305 169, 14, 17, 1, 1, -1, -1, 8, 5, 1, 169, 14, 17, 1, 1, -1, -1, 8, 5, 3
310 170, 163, 7, 1, -1, -1, 0, 8, 06, 16, 6, 170, 163, 7, 1, -1, -1, 0, 8, 06, 19,
315 171, 158, 20, 1, 0, -1, 0, 7, 95, 17, 1, 171, 158, 20, 1, 0, -1, 0, 7, 95, 17, 5
320 172, 159, 19, 1, 1, -1, 0, 7, 95, 12, 1, 172, 159, 19, 1, 1, -1, 0, 7, 95, 10, 4
325 173, 118, 10, 1, -1, -1, 1, 8., 7.2, 173, 118, 10, 1, -1, -1, 1, 8., 6.4
330 174, 168, 18, 1, 0, -1, 1, 8, , 20, 9, 174, 168, 18, 1, 0, -1, 1, 8, , 18, 9
335 175,80,12,1,1,-1,1,8.05,20.7,175,80,12,1,1,-1,1,8.05,18.1
340 0
345 $DATA 'TENNESSEE MARBLE'
```

RØCKS3 CØNTINUED

```
350 7
355 176,47,20,1,-1,-1,-1,8,,1.3,176,47,20,1,-1,-1,-1,8,,1.3
360 177,142,5,1,0,-1,-1,7,9,,7,177,142,5,1,0,-1,-1,7,9,1,2
365 178, 12, 1, 1, 1, -1, -1, 8, 05, 8, 178, 12, 1, 1, 1, -1, -1, 8, 05, 07
370 179, 155, 12, 1, -1, -1, 0, 7, 6, 2, 3, 179, 155, 12, 1, -1, -1, 0, 8, 2, 7
385 182,79,19,1,-1,-1,1,8.1,3.1,182,79,19,1,-1,-1,1,8.1,2.9
390 183, 169, 1, 1, 0, -1, 1, 8, 2, 2, 183, 169, 1, 1, 0, -1, 1, 8, 2, 2, 2
395 184,125,8,1,1,-1,1,8,,,9,184,125,8,1,1,-1,1,8,,,9
400 0
405 SDATA'SALEM LIMESTONE'
410 8
415 185, 30, 3, 1, -1, -1, -1, 8, 1, 16, 8, 185, 30, 3, 1, -1, -1, -1, 8, 1, 8, 5
420 186, 145, 16, 1, 0, -1, -1, 8, 1, 4, 5, 186, 145, 16, 1, 0, -1, -1, 8, 1, 3, 7
425 187, 33, 9, 1, 1, -1, -1, 8, 1, 2, 7, 187, 33, 9, 1, 1, -1, -1, 8, 1, 3, 2
430 188, 154, 7, 1, -1, -1, 0, 8, 1, 13, 188, 154, 7, 1, -1, -1, 0, 8, 1, 11.
435 189, 160, 13, 1, 0, -1, 0, 8, , 9, 6, 189, 160, 13, 1, 0, -1, 0, 8, , 9, 5
440 190, 157, 8, 1, 1, -1, 0, 8, , 5, 4, 190, 157, 8, 1, 1, -1, 0, 8, , 4, 7
445 191,95,17,1,-1,-1,1,7,95,1.2,191,95,17,1,-1,-1,1,7,95,2.9
450 1921642921202-12188211-1219221642921202-121280210-6
455 192,164,9,1,0,-1,1,8,,10,,192,164,9,1,0,-1,1,8,,9.8
460 192,164,9,1,0,-1,1,6,,6,9,192,164,9,1,0,-1,1,6,,7,5
465 193,120,5,1,1,-1,1,8,,3,1,193,120,5,1,1,-1,1,8,,3.
470 0
475 -1
```

```
100 $DATA '3' 4 FACTORIAL FRAGMENTATION TEST INPUT DATA .
105 $DATA BARRE GRANITE
110 3
115 201, 11, 7, -1, -1, -1, -1, 8, 15, 8, 201, 11, 7, -1, -1, -1, -1, 8, 15, 8
120 202,231,8,0,-1,-1,-1,7,9,1,202,231,8,0,-1,-1,-1,7,9,1.
125 203, 13, 17, 1, -1, -1, -1, 8, 2, 1, 3, 203, 13, 17, 1, -1, -1, -1, 8, 2, 1, 3
130 204, 235, 4, -1, 0, -1, -1, 8., .5, 204, 235, 4, -1, 0, -1, -1, 8., .5
135 205,212,7,0,0,-1,-1,8,,.8,205,212,7,0,0,-1,-1,8,,.8
140 206, 229, 5, 1, 0, -1, -1, 8, , 1, , 206, 229, 5, 1, 0, -1, -1, 8, , , 9
145 207, 22, 11, -1, 1, -1, -1, 8, 2, .9, 207, 22, 11, -1, 1, -1, -1, 8, 2, 1.
150 208, 224, 19, 0, 1, -1, -1, 8.1, 85, 208, 224, 19, 0, 1, -1, -1, 7.5, .6
155 209, 43, 10, 1, 1, -1, -1, 8, 2, 1, 35, 209, 43, 10, 1, 1, -1, -1, 8, 2, 1,
160 210, 233, 18, -1, -1, 0, -1, 8, , . 75, 210, 233, 18, -1, -1, 0, -1, 8, , . 8
165 211,216,11,0,-1,0,-1,8.2,.9,211,216,11,0,-1,0,-1,8.2,1.
170 212, 236, 16, 1, -1, 0, -1, 7, 8, 1, 212, 236, 16, 1, -1, 0, -1, 8, , 1, 1
175 213,221,2,-1,0,0,-1,8.2,.6,213,221,2,-1,0,0,-1,7.5,.4
180 214,223,10,0,0,0,-1,8.2,.8,214,223,10,0,0,0,-1,8.2,.7
185 215,210, 12, 1, 0, 0, -1, 5, 5, 7, 215, 210, 12, 1, 0, 0, -1, 5, 5, . 4
190 216,225,20,-1,1,0,-1,7,9,.6,216,225,20,-1,1,0,-1,7,9,.5
195 217,214,17,0,1,0,-1,8.2,.5,217,214,17,0,1,0,-1,8.2,.75
200 218,209,13,1,1,0,-1,7,9,.7,218,209,13,1,1,0,-1,7,9,.8
205 219, 50, 19, -1, -1, 1, -1, 8, 2, 8, 219, 50, 19, -1, -1, 1, -1, 8, 2, .9
210 220, 232, 6, 0, -1, 1, -1, 7, 9, , 7, 220, 232, 6, 0, -1, 1, -1, 7, 9, 1.
215 221, 31, 1, 1, -1, 1, -1, 8, 2, 1, 2, 221, 31, 1, 1, -1, 1, -1, 8, 2, 1, 2
220 222,208,15,-1,0,1,-1,8,,.5,222,208,15,-1,0,1,-1,d.,.8
225 223,217,1,0,0,1,-1,6.8,.5,223,217,1,0,0,1,-1,6.25,.4
230 224,215,3,1,0,1,-1,8,1,.8,224,215,3,1,0,1,-1,8,1,.9
235 225, 19, 3, -1, 1, 1, -1, 8, 15, , 3, 225, 19, 3, -1, 1, 1, -1, 8, 15, , 5
240 226, 205, 9, 0, 1, 1, -1, 7, 95, .5, 226, 205, 9, 0, 1, 1, -1, 7, 95, .5
245 227, 37, 2, 1, 1, 1, -1, 8, 1, 1, , 227, 37, 2, 1, 1, 1, -1, 8, 1, .95
250 0
255 3
260 228,290,12,-1,-1,-1,0,5.7,1.8,228,290,12,-1,-1,-1,0,5.7,1.5
265 229, 278, 16, 0, -1, -1, 0, 6, 1, 2, 0, 229, 278, 16, 0, -1, -1, 0, 6, 1, 2, 1
270 230, 250, 17, 1, -1, -1, 0, 6, 3, 2, 4, 230, 250, 17, 1, -1, -1, 0, 6, 2, 6
275 231, 247, 12, -1, 0, -1, 0, 6, 2, 1, 4, 231, 247, 12, -1, 0, -1, 0, 6, 2, 1.
280 232,241,9,0,0,-1,0,6,,2,3,232,241,9,0,0,-1,0,6,,1.8
285 233,273,6,1,0,-1,0,6,1,2,2,233,273,6,1,0,-1,0,6,1,2,3
290 234, 245, 13, -1, 1, -1, 0, 6, 1, 1, 234, 245, 13, -1, 1, -1, 0, 6, 1, 1,
295 235, 279, 14, 0, 1, -1, 0, 6, , 1, 4, 235, 279, 14, 0, 1, -1, 0, 6, , 1, 4
300 236, 267, 20, 1, 1, -1, 0, 6, 2, 1, 6, 236, 267, 20, 1, 1, -1, 0, 6, 2, 1, 8
305,237,261,2,-1,-1,0,0,6.2,1.3,237,261,2,-1,-1,0,0,6.2,1.35
310 238, 266, 19, 0, -1, 0, 0, 5, 4, 1, 7, 238, 266, 19, 0, -1, 0, 0, 5, 5, 1, 8
315 239,239,14,1,-1,0,0,7.9,3.3,239,239,14,1,-1,0,0,7.9,3.
320 240, 272, 8, -1, 0, 0, 0, 6, 1, 1, 2, 240, 272, 8, -1, 0, 0, 6, 1, 1,
325 241,291,7,0,0,0,6,3,1,6,241,291,7,0,0,0,6,3,1,5
330 242,260,1,1,0,0,0,6.2,1.9,242,260,1,1,0,0,0,5.5,1.5
335 243, 252, 3, -1, 1, 0, 0, 6, 3, 1, 9, 243, 252, 3, -1, 1, 0, 0, 6, 3, 1, 9
340 244,277,4,0,1,0,0,6,1,1,3,244,277,4,0,1,0,0,6,1,1,1
345 245, 285, 15, 1, 1, 0, 0, 6, 1, 1, 4, 245, 285, 15, 1, 1, 0, 0, 6, 1, 1, 7
```

58

B-16

RØCKS4 CØNTINUED

```
350 246,243,15,-1,-1,1,0,6.1,1.1,246,243,15,-1,-1,1,0,6.1,.9
355 247,248,7,0,-1,1,0,6.3,2.1,247,247,7,0,-1,1,0,6.3,2.
360 248,274,18,1,-1,1,0,6.1,2.6,248,274,18,1,-1,1,0,6.1,2.7
365 249,283,9,-1,0,1,0,6.,.8,249,283,9,-1,0,1,0,6.,.9
370 250, 286, 13, 0, 0, 1, 0, 6, 1, 1, 4, 250, 286, 13, 0, 0, 1, 0, 6, 1, 1, 3
375 251,292,17,1,0,1,0,6.3,1.5,251,292,17,1,0,1,0,6.3,1.6
380 252,263,10,-1,1,1,0,6,2,,95,252,263,10,-1,1,1,0,6,2,,8
385 253,268,5,0,1,1,0,6.2,1.1,253,268,5,0,1,1,0,6.2,1.3
390 254, 259, 11, 1, 1, 1, 0, 6, 2, 1, 6, 254, 259, 11, 1, 1, 1, 0, 6, 2, 1, 5
395 0
400 3
405 255,81,6,-1,-1,-1,1,7.95,2.6,255,81,6,-1,-1,-1,1,7.95,2.
410 256, 304, 8, 0, -1, -1, 1, 6, 1, 2, , 256, 304, 8, 0, -1, -1, 1, 6, 1, 2, 1
415 257, 76, 6, 1, -1, -1, 1, 8, , 4, 4, 257, 76, 8, 1, -1, -1, 1, 8, , 4, 4
420 258, 315, 4, -1, 0, -1, 1, 6, 1, 1, 1, 258, 315, 4, -1, 0, -1, 1, 6, 1, 1,
425 259, 328, 7, 0, 0, -1, 1, 6, 2, 1, 5, 259, 328, 7, 0, 0, -1, 1, 6, 2, 1, 6
430 260, 299, 10, 1, 0, -1, 1, 6, 2, 2, 3, 260, 299, 10, 1, 0, -1, 1, 6, 2, 2, 3
435 261,89,16,-1,1,-1,1,7.9,.7,261,89,16,-1,1,-1,1,7.9,.7
440 262,321,9,0,1,-1,1,6.,1.5,262,321,9,0,1,-1,1,6.,1.6
445 263,68,20,1,1,-1,1,7.5,3.,263,68,20,1,1,-1,1,7.5,2.8
450 264,298,2,-1,-1,0,1,6.1,1.5,264,298,2,-1,-1,0,1,6.1,1.5
455 265, 316, 16, 0, -1, 0, 1, 6, 1, 1, 5, 265, 316, 16, 0, -1, 0: 1, 6, 1, 1, 3
460 266, 302, 5, 1, -1, 0, 1, 6, 2, 2, 9, 266, 302, 5, 1, -1, 0, 1, 5, 2, 2, 8
465 267, 313, 18, -1, 0, 0, 1, 6, 1, , 9, 267, 313, 18, -1, 0, 0, 1, 6, 1, 1,
475 269, 322, 15, 1, 0, 0, 1, 6, 1, 2, 5, 269, 322, 15, 1, 0, 0, 1, 6, 1, 2, 1
480 279, 319, 14, -1, 1, 0, 1, 6, 1, 3, 270, 319, 14, -1, 1, 0, 1, 6, , 1, 2
485 271, 300, 19, 0, 1, 0, 1, 6, 2, 1, 5, 271, 300, 19, 0, 1, 0, 1, 6, 2, 1, 5
490 272,323,13,1,1,0,1,6,1,1,9,272,323,13,1,1,0,1,6,1,1,6
495 273,82,18,-1,-1,1,1,8,,2,3,273,82,18,-1,-1,1,1,8,,2,
500 274, 301, 20, 0, -1, 1, 1, 6, 2, 2, 3, 274, 301, 20, 0, -1, 1, 1, 6, 2, 2, 3
505 275,85,4,1,-1,1,1,8,,1,4,275,85,4,1,-1,1,1,8,,1,4
510 276,295,3,-1,0,1,1,6.2,1.8,276,295,3,-1,0,1,1,6.2,1.5
515 277,296,11,0,0,1,1,6,2,1,7,277,296,11,0,0,1,1,6,2,1,6
520 278, 311, 6, 1, 0, 1, 1, 6, 1, 2, 2, 278, 311, 6, 1, 0, 1, 1, 6, 1, 2, 3
525 279,74,5,-1,1,1,1,8.,1.6,279,74,5,-1,1,1,1,8.,1.8
530 280, 297, 1, 0, 1, 1, 1, 6, 2, 1, 4, 280, 297, 1, 0, 1, 1, 1, 6, 2, 1, 6
535 281,100,14,1,1,1,1,8.,1.,281,100,14,1,1,1,1,1,8.,1.2
540 0
```

RØCK S5

```
100 $DATA'314 FACTORIAL FRAGMENTATION TEST INPUT DATA'
 105 $DATA'SIØUX CUARTZITE'
 110 5
 115 282,24,10,-1,-1,-1,-1,9.6,.9,282,24,10,-1,-1,-1,-1,9.6,1.1
 120 283, 237, 15, 0, -1, -1, -1, 7, 3, , 7, 283, 237, 15, 0, -1, -1, -1, 7, 3, , 7
 125 284, 36, 2, 1, -1, -1, -1, 10., 1.8, 284, 36, 2, 1, -1, -1, -1, 10., 1.5
 130 285, 202, 17, -1, 0, -1, -1, 7.6, .6, 285, 202, 17, -1, 0, -1, -1, 7.6, .6
 135 286,204,9,0,0,-1,-1,8.4,.7,286,204,9,0,0,-1,-1,8.4,.85
140 287,211,21,1,0,-1,-1,7,7,9,287,211,21,1,0,-1,-1,7,7,.95
 145 288,21,20,-1,1,-1,-1,9,5,1,2,288,21,20,-1,1,-1,-1,9,6,1,1
150 289, 206, 19, 0, 1, -1, -1, 8, 2, .5, 289, 206, 19, 0, 1, -1, -1, 8, 2, .6
155 290, 42, 3, 1, 1, -1, -1, 9, 25, 1, 2, 290, 42, 3, 1, 1, -1, -1, 10, 2, 1, 1
160 291,207, 15, -1, -1, 0, -1, 7, 7, 6, 291, 207, 15, -1, -1, 0, -1, 7, 7, .7
165 292,203,14,0,-1,0,-1,8.1,.8,292,203,14,0,-1,0,-1,8.2,.75
170 293,226,5,1,-1,0,-1,7.2,.8,293,226,5,1,-1,0,-1,7.1,.7
175 294,218,23,-1,0,0,-1,7.9,.5,294,218,23,-1,0,0,-1,8.1,.5
180 295, 234, 19, 0, 0, 0, -1, 8.2, .8, 295, 234, 19, 0, 0, 0, -1, 8.2, .8
185 296,201,5,1,0,0,-1,7.4,.6,296,201,5,1,0,0,-1,7.5,.7
190 297,219,22,-1,1,0,-1,8.1,.4,297,219,22,-1,1,0,-1,8.2,.5
195 298,230,9,0,1,0,-1,8.4,.6,298,230,9,0,1,0,-1,8.4,.6
200 299,238,21,1,1,0,-1,7.6,.7,299,238,21,1,1,0,-1,7.6,.7
205 300,60,8,-1,-1,1,-1,7.9,.7,300,60,8,-1,-1,1,-1,7.9,.8
210 301,220,26,0,-1,1,-1,8.,.8,301,220,26,0,-1,1,-1,8.,.65
215 302, 26, 18, 1, -1, 1, -1, 9, 5, 1, 1, 300 26, 18, 1, -1, 1, -1, 9, 5, 1, 25
220 303,227,17,-1,0,1,-1,7.8,.7,303,227,17,-1,0,1,-1,7.8,.7
225 304, 222, 24, 0, 0, 1, -1, 7, 85, , 4, 304, 222, 24, 0, 0, 1, -1, 7, 7, , 5
230 305,228,14,1,0,1,-1,8.2,.8,305,228,14,1,0,1,-1,8.2,.65
235 306, 4, 4, -1, 1, 1, -1, 10., . 7, 306, 4, 4, -1, 1, 1, -1, 11.25, .8
240 307,213,25,0,1,1,-1,7.9,.6,307,213,25,0,1,1,-1,7.9,.6
245 308, 16, 7, 1, 1, 1, -1, 11.8, 1., 308, 16, 7, 1, 1, 1, -1, 11.8, .8
250 0
255 5
260 309,254,14,-1,-1,-1,0,7.9,1.5,309,254,14,-1,-1,-1,0,8.1,1.7
265 310, 257, 15, 0, -1, -1, 0, 7.6, 1.55, 310, 257, 15, 0, -1, -1, 0, 7.7, 1.7
270 311,256,19,1,-1,-1,0,8,7,3,7,311,256,19,1,-1,-1,0,8,7,3.2
275 312,255,9,-1,0,-1,0,8.1,1.2,312,255,9,-1,0,-1,0,8.1,1.
280 313,265,22,0,0,-1,0,8,,1,5,313,265,22,0,0,-1,0,8,,1.7
285 314,275,17,1,0,-1,0,8,4,2,3,314,275,17,1,0,-1,0,8,4,2,2
290 315,258,21,-1,1,-1,0,8,,1,4,315,258,21,-1,1,-1,0,8,,1.2
295 316,281,19,0,1,-1,0,8,2,1,6,316,281,15,0,1,-1,1,8,2,2,1
300 317,249,24,1,1,-1,0,7.85,1.4,317,249,24,1,1,-1,0,5.2,1.
305 318,240,25,-1,-1,0,0,8.2,1.4,318,240,25,-1,-1,0,0,8.2,1.4
310 319,244,22,0,-1,0,0,7,2,2,,319,244,22,0,-1,0,0,7,9,2,7
315 320, 276, 14, 1, -1, 0, 0, 7, 65, 2, 6, 320, 276, 14, 1, -1, 0, 0, 7, 75, 2, 5
320 321,288,23,-1,0,0,0,8,2,1,2,321,288,23,-1,0,0,0,8,2,1,1
325 322, 251, 5, 0, 0, 0, 0, 7, 1, 6, 322, 251, 5, 0, 0, 0, 0, 7, 2, 1, 55
330 323, 264, 23, 1, 0, 0, 0, 8, 1, 1, 7, 323, 264, 23, 1, 0, 0, 0, 8, , 1, 6
335 324,269,26,-1,1,0,0,8,3,1,3,324,269,26,-1,1,0,0,8,2,1,4
340 325,271,5,0,1,0,0,7,2,1,35,325,271,5,0,1,0,0,7,,1,4
345 326, 287, 25, 1, 1, 0, 0, 8, 6, 1, 8, 326, 287, 25, 1, 1, 0, 0, 8, 6, 1, 95
```

70 B-18

RØCKS5 CØNTINUED

```
350 327,262,25,-1,-1,1,0,8.2,1.2,327,262,25,-1,-1,1,0,8.3,1.3
355 328, 246, 26, 0, -1, 1, 0, 8, 3, 1, 9, 328, 246, 26, 0, -1, 1, 0, 8, 3, 1, 85
360 329,280,9,1,-1,1,0,8.2,2.3,329,280,9,1,-1,1,0,8.2,2.6
365 330,282,15,-1,0,1,0,7.5,.9,330,282,15,-1,0,1,0,7.5,.85
370 331,253,17,0,0:1,0,8.1,1.3,331,253,17,0,0,1,0,8.1,1.2
375 332,270,24,1,0,1,0,7.7,1.7,332,270,24,1,0,1.0,7.8,1.6
380 333,242,23,-1,1,1,0,8.2,1.,333,242,23,-1,1,1,0,8.3,.9
385 334, 284, 21, 0, 1, 1, 0, 7.5, 1.2, 334, 284, 21, 0, 1, 1, 0, 7.3, 1.4
390 335,289,22,1,1,1,0,8.,1.6,335,289,22,1,1,1,0,8.,1.65
395 0
400 5
405 336,65,5,-1,-1,-1,1,20.,5.6
410 337, 326, 17, 0, -1, -1, 1, 7, 3, 2, 3, 337, 326, 17, 0, -1, -1, 1, 6, 6, 2,
415 338,88,13,1,-1,-1,1,10.,1.5,338,88,13,1,-1,-1,1,10.,1.6
420 339, 312, 25, -1, 0, -1, 1, 8, 7, 1, 4, 339, 312, 25, -1, 0, -1, 1, 5, 1,
425 340، 294، 24، 0، 0، -1، 1، 7، 5، 1، 4، 340، 294، 24، 0، 0، -1، 1، 7، 3، 1، 4
430 341,317,22,1,0,-1,1,8,1,2,5,341,317,22,1,0,-1,1,8,1,2,6
435 342, 73, 1, -1, 1, -1, 1, 7, 7, 1, 6, 342, 73, 1, -1, 1, -1, 1, 9, 7, 1, 7
440 343, 320, 24, 0, 1, -1, 1, 7, 7, 1, 2, 343, 320, 24, 0, 1, -1, 1, 7, 5, 1, 3
445 344, 126, 12, 1, -1, -1, 1, 9.2, 1.3, 344, 126, 12, 1, -1, -1, 1, 9.2, 1.
450 345,293,26,-1,-1,0,1,7,9,1,45,345,293,26,-1,-1,0,1,7,6,1,4
455 346, 318, 26, 0, -1, 0, 1, 8, 1, 2, 4
460 346, 318, 26, 0, -1, 0, 1, 8, 2, 4
465 347, 307, 9, 1, -1, 0, 1, 8, 4, 2, 8, 347, 307, 9, 1, -1, 0, 1, 8, 4, 2, 7
470 348, 306, 14, -1, 0, 0, 1, 8, 2, 1, 4, 348, 306, 14, -1, 0, 0, 1, 8, 2, 1, 5
475 349 327 14 0 0 0 0 0 1 7 85 1 5 349 327 14 0 0 0 0 1 7 85 1 35
480
    350, 310, 21, 1, 0, 0, 1, 7, 1, 2, 350, 310, 21, 1, 0, 0, 1, 7, 2, 2, 1
485 351,305,17,-1,1,0,1,8,1,1,3,351,305,17,-1,1,0,1,8,1,1,2
490 352, 308, 19, 0, 1, 0, 1, 6, 2, 1, 5, 352, 308, 19, 0, 1, 0, 1, 6, 3, 1, 5
495 353,330,19,1,1,0,1,8.2,2.,353,330,19,1,1,0,1,8.2,2.
500 354,83,6,-1,-1,1,1,8.4,1.8,354,83,6,-1,-1,1,1,8.9,2.3
505 355,303,5,0,-1,1,1,6.9,1.8,355,303,5,0,-1,1,1,6.9,1.8
510 356, 71, 17, 1, -1, 1, 1, 18, 6, 5
515 357,309,15,-1,0,1,1,7.8,1.,357,309,15,-1,0,1,1,7.6,1.
520 358, 314, 23, 0, 0, 1, 1, 8, 3, 1, 3, 358, 314, 23, 0, 0, 1, 1, 7, 1,
525 359, 325, 5, 1, 0, 1, 1, 7, 1, 5, 359, 325, 5, 1, 0, 1, 1, 7, , 1, 6
530 360,93,11,-1,1,1,1,10.8,.8,360,93,11,-1,1,1,1,10.8,.9
535 361,329,9,0,1,1,1,8,4,1,3,361,329,9,0,1,1,1,8,4,1,4
540 362,98,16,1,1,1,1,10.8,1,362,98,16,1,1,1,1,10.8,1.
545 0
550 -1
```

RØCKS6

335 -1

```
100 $DATA ADDITIONAL FRAGMENTATION TEST INPUT DATA
105 SCATA CHARCOAL GRANITE'
110 1
115 371,389, 12, -1,450,1, -1,8,,,65,371,389,12,-1,450,1,-1,8,,,6
120 372,390,12,1,450,1,-1,7.2,.6,372,390,12,1,450,1,-1,7.4,.4
125 373,378,1,-1,900,1,-1,8.,685,373,378,1,-1,900,1,-1,8.,.9
130 374,377, 1,1,900, 1,-1,8,,.8,374,377, 1,1,900, 1,-1,8,,.5
135 0
140 $DATA WESTERLY GRANITE
145 2
150 375, 381, 2, -1, 450, -1, -1, 6, 1, , 45, 375, 381, 2, -1, 450, -1, -1, 6, 1, , 4
155 376, 382, 2, 1, 450, -1, -1, 6, 1, , 6, 376, 382, 2, 1, 450, -1, -1, 6, 1, , 4
160 377,379,4,-1,900,-1,-1,8.1,.6,377,379,4,-1,900,-1,-1,8.1,.5
165 378,380,4,1,900,-1,-1,8.1,.55,378,380,4,1,900,-1,-1,8.1,.6
170 0
175 SDATA'DRESSER BASALT'
180 4
185 379, 385, 1, -1, 450, -1, -1, 5, 7, , 5, 379, 385, 1, -1, 450, -1, -1, 6, , , 65
190 380, 386, 1, 1, 450, -1, -1, 6, 2, 2, 4, 380, 386, 1, 1, 450, -1, -1, 6, 2, 1, 6
195 381,371,5,-1,900,-1,-1,6.,.25,381,371,5,-1,900,-1,-1,6.,.4
200 382,372,5,1,900,-1,-1,6.,.5,382,372,5,1,900,-1,-1,6.,.9
205 0
210 $DATA'BEREA SANDSTONE'
215 6
220 383,396,9,-1,450,-1,-1,8.,2.,383,396,9:-1,450,-1,-1,8.,1.5
225 384,395,9,1,450,-1,-1,8.,2.55,384,395,9,1,450,-1,-1,8.,3.9
230 385,393,14,-1,900,-1,-1,8.,1.2,385,393,14,-1,900,-1,-1,8.,1.3
235 386, 392, 14, 1, 900, -1, -1, 8., 2., 386, 392, 14, 1, 900, -1, -1, 8., 1.8
240 0
245 $DATA 'TENNESSEE MARBLE'
250 7
255 387, 388, 3, -1, 450, -1, -1, 7, 75, , 75, 388, 3, -1, 450, -1, -1, 8, , 1, 55
260 388, 387, 3, 1, 450, -1, -1, 8, , , 55, 388, 387, 3, 1, 450, -1, -1, 8, , , 5
265 389,400,20,-1,900,-1,-1,8.,.75,389,400,20,-1,900,-1,-1,8.,.7
270 390, 399, 20, 1, 900, -1, -1, 8., .65, 390, 399, 20, 1, 900, -1, -1, 8., .5
275 0
280 SDATA'SALEM LIMESTONE'
285 8
290 391,375,10,-1,450,-1,-1,8.,.7,391,375,10,-1,450,-1,-1,8.,.6
295 392,376,10,1,450,-1,-1,80,1015,392,376,10,1,450,-1,-1,80,095
300 393,373,11,-1,900,-1,-1,8.,.8,393,373,11,-1,900,-1,-1,8.,.5
305 394,374,11,1,900,-1,-1,8.,.8,394,374,11,1,900,-1,-1,8.,.9
310 434,433,7,5000,900,-1,-1,6.,.08,434,433,7,5000,900,-1,-1,6.,.05
315 435,435,8,10000,900,-1,-1,5.8,.05,435,435,8,10000,900,-1,-1,5.8,.1
320 436, 436, 16, 20000, 900, -1, -1, 6,, 15, 436, 436, 16, 20000, 900, -1, -1, 6,, 25
325 437, 432, 16, 35000, 900, -1, -1, 6., 6, 437, 432, 16, 35000, 900, -1, -1, 6., 6
330 0
```

RØCKS7

```
100 SDATA ADDITIONAL FRAGMENTATION TEST INPUT DATA
105 SDATA BARRE GRANITE'
110 3
115 395, 405, 14, -1, 300, -1, -1, 8,, 6, 395, 405, 14, -1, 300, -1, -1, 8,, 6
120 396, 402, 4, 1, 300, -1, -1, 8, , 8, 396, 402, 4, 1, 300, -1, -1, 8, , 8
125 397,406,9,-1,600,-1,-1,8.,.7,397,406,9,-1,600,-1,-1,8.,.65
130 398, 384, 6, 1, 600, -1, -1, 5, 5, 4, 398, 384, 6, 1, 600, -1, -1, 6, 1, 45
135 399, 403, 16, ~1, 900, -1, -1, 8., . 45, 399, 403, 16, -1, 900, -1, -1, 8., . 65
140 400, 397, 18, 1, 900, -1, -1, 6., . 45, 400, 397, 18, 1, 900, -1, -1, 6., . 3
145 401,412,14,-1,300,-1,1,80,102,401,412,14,-1,300,-1,1,80,1015
150 402,409,18,1,300,-1,1,6,,,65,402,409,18,1,300,-1,1,6,,,65
155 403,411,16,-1,600,-1,1,8,,.8,403,411,16,-1,600,-1,1,8,,1,1
165 405,417,9,-1,900,-1,1,8,,1,3,405,417,9,-1,900,-1,1,8,,1,4
170 406, 407, 6, 1, 900, -1, 1, 6, , 03, 406, 407, 6, 1, 900, -1, 1, 6, , 03
175 431,434,14,10000,900,-1,-1,6.,.01,431,434,14,10000,900,-1,-1,6.,.05
180 432, 437, 3, 20000, 900, -1, -1, 6, 1, 2, 432, 437, 3, 20000, 900, -1, -1, 6, 1, 2
190 0
195 SDATA'SIØUX QUARTZITE'
200 5
205 407, 404, 24, -1, 300, 1, -1, 7, 5, , 5, 407, 404, 24, -1, 300, 1, -1, 7, 5, , 3
210 408, 383, 15, 1, 300, 1, -1, 7, 8, , 55, 408, 383, 15, 1, 300, 1, -1, 7, 8, , 5
215 409, 391, 21, -1, 600, 1, -1, 8., . 45, 409, 391, 21, -1, 600, 1, -1, 8., . 4
220 410, 394, 25, 1, 600, 1, -1, 8 · 5, · 4, 410, 394, 25, 1, 600, 1, -1, 8 · 5, · 65
225 411,401,26,...1,900,1,-1,8,,.3,411,401,26,-1,900,1,-1,8,,.4
230 412,398,22,1,900,1,-1,8.75,.5,412,398,22,1,900,1,-1,8.75,1.1
235 413,418,24,-1,300,1,1,7,5,1,15,413,418,24,-1,300,1,1,7,5,,9
240 414,415,22,1,300,1,1,8.2,1.1,414,415,22,1,300,1,1,8.2,8
245 415,413,21,-1,600,1,1,8.7,1.,415,413,21,-1,(\)0,1,1,8.8,.8
    416, 414, 15, 1, 600, 1, 1, 7, 7, 9, 416, 414, 15, 1, 600, 1, 1, 7, 7, 6
250
255 417, 416, 26, -1, 900, 1, 1, 8, , 1, 45, 417, 416, 26, -1, 900, 1, 1, 3, , 1, 2
260 418,408,15,1,900,1,1,7,3,,7,418,408,15,1,900,1,1,7,75,55,.3
265 0
270 -1
```

RØCK S8

```
100 SDATA 'KERFING FRAGMENTATION TEST INPUT DATA'
105 SDATA 'CHARCUAL GRANITE'
110 1,50000,900,1.5,.008,.125
115 373,378,1,8,,,85,1,373,378,1,8,,,9,1
120 421, 421, 5, 7.9, 1.9, 2, 421, 421, 18, 7.9, 2., 2, 421, 421, 10, 7.8, 2., 2
125 421, 421, 5, 7.9, 2.7, 3, 421, 421, 18, 7.9, 2.6, 3, 421, 421, 10, 7.8, 3., 3
130 0
150 SDATA WESTERLY GRANITE'
155 2,50000,900,.5,.008, 100
160 377, 379, 4, 8, 1, , 6, 1, 377, 379, 4, 8, 1, , 5, 1
165 422, 422, 2, 6., . 8, 2, 422, 422, 4, 6., . 9, 2, 422, 422, 1, 6., 1.2, 2
170 422, 422, 2, 6., 1.8, 3, 422, 422, 4, 6., 1.7, 3, 422, 422, 1, 6., 1.8, 3
175 0
200 SDATA BARRE GRANITE'
205 3,50000,900,.5,.008,.093
210 399, 403, 16, 8., . 45, 1, 399, 403, 16, 8., . 65, 1
215 423, 423, 16, 7.7, 1.7, 2, 423, 423, 14, 7.9, 1.3, 2, 423, 423, 3, 8., 1.3, 2
220 423, 423, 16, 7.9, 2.6, 3, 423, 423, 14, 7.9, 2.6, 3, 423, 423, 3, 8., 2.2, 3
225 0
250 SDATA DRESSER BASALT
255 4,50000,450,.5,.008,.125
260 379, 385, 1, 5, 7, , 5, 1, 379, 385, 1, 6, , , 65, 1
265 424, 424, 18, 6., 1.8, 2, 424, 424, 4, 6., 1.6, 2, 424, 424, 20, 5.8, 2.7, 2
270 424, 424, 18, 6., 3.6, 3, 424, 424, 4, 6., 2. ), 3, 424, 424, 20, 5.8, 4., 3
275 0
300 SDATA 'SIUUX QUARTZITE'
305 5,50000,900,1.5,.008,.125
310 411,401,26,8.,.3,1,411,401,26,8.,.4,1
315 425, 425, 22, 8.3, 1., 2, 425, 425, 15, 7.7, 1., 2, 425, 425, 21, 7.1, 1., 2
320 425, 425, 22, 8, 3, 1, 5, 3, 425, 425, 15, 7, 7, 1, 3, 3, 425, 425, 21, 7, 1, 1, 6, 3
325 0
350 SDATA BEREA SANDSTONE
355 6,50000,900,.5,.008,.093
360 385, 393, 14, 8, , 1, 2, 1, 385, 393, 14, 8, , 1, 3, 1
365 426, 426, 2, 7.8, 3.9, 2, 426, 426, 8, 7.9, 4.4, 2, 426, 426, 20, 7.9, 3.7, 2
370 426, 426, 2, 7.8, 7.3, 3, 426, 426, 8, 7.9, 7.6, 3, 426, 426, 20, 7.9, 7.0, 3
375 0
400 SDATA TENNESSEE MARBLE
405 7,50000,900,.5,.008,.125
410 389, 400, 20, 8 . , . 75, 1, 389, 400, 20, 8 . , . 7, 1
415 427, 427, 5, 7.8, 1.9, 2, 427, 427, 14, 8., 2., 2, 427, 427, 16, 8., 1.9, 2
420 427, 427, 5, 7.8, 3., 3, 427, 427, 14, 8., 2.9, 3, 427, 427, 16, 8., 2.8, 3
425 0
450 SDATA 'SALEM LIMESTONE'
455 8,50000,900,.5,.008,.093
460 393, 373, 11, 8 . . . 8, 1, 393, 373, 11, 8 . . . 5, 1
465 428, 428, 16, 8, 3, 5, 2, 428, 428, 7, 7, 9, 2, 4, 2, 428, 428, 8, 7, 9, 1, 2, 2
470 428, 428, 16, 8, 5, 6, 3, 428, 428, 7, 7, 9, 5, 3, 428, 428, 8, 7, 9, 2, 2, 3
475 0
500 -1
```

APPENDICES C THROUGH J
TEST RESULTS

TREATMENT PRESSURE RAT

· BME	TEST	SAMPLE	TREAT	MENT C	MBINATION		SPEC1 F	IC ENERGY
•		•	PRESSURE	RATE	STANDOFF	NJZZLE		
			•	F	5	N	FTL8-/CU-IN-	JOULES/CU-CH-
1	25	12	50000	50	• 5	-0080	734710-25	60784-78
			50000	50	• 5	-0080	806181-27	66863.26
2	48	2	80000	50	• 5	.0080	1505535-90	124557-50
			80000	50	• 5	- 0080	1360074-50	114177-71.
3	38	19	50000	150	• 5	-0080	224494.80	18573-13
			50000	150	• 5	.0080	336742-20	A 78 59 · 69
4	28	5	80000	150	• 5	.0080	577497-08	47778 • 07
			80000	150	• 5	- 0080	5 46 622 - 22	45389 - 16
5	15	13	50000	50	1.5	-0080	734710-25	50784-78
			50000	50	1.5	-0080	577272-34	47759 - 47
6	46	15	80000	50	1.5	.0C80	1083614-10	89650+64
			80000	50	1.5	.0080	1250323-90	103443-05
7	17	1	30000	150	1.5	-0080	267710-05	22148 - 46
			50000	150	1.5	.0080	297455-61	24609 - 39
8	32	14	80000	150	1.5	.0060	1363036-60	112748 - 11
			80000	150	1.5	.0080	1617362-10	150357-47
9	77	20	50000	50	• 5	.0136	934257-50	77293.93
			50000	50	• 5	.0136	1015497-30	84015-14
10	104	16	80000	50	• 5	-0136	3887936+00	321826-08
	_		80000	50	• 5	.0136	4667923.20	386191-29
11	102	6	50000	150	• 5	-0136	1281360-20	106010-77
		-	50000	150	.5	.0136	761020-15	79 508 - 08
12	111	3	80000	150	• 5	.0136	1573670 - 30	130359-93
		_	80000	150	• 5	.0136	1432427-50	118509 - 03
13	70	7	50000	50	1.5	.0136	1221603-20	101066-90
			50000	50	1.5	.0136	1221603-20	101066-90
14	8.6	,	80000	50	1.5	.0136	3174975.60	262675.26
• •		-	80000	50	1.5	-0136	2976539.70	246258.06
15	87	11	50000	150	1.5	0136	967102-55	80011-29
	•	- •	50000	1 50	1.5	.0136	773682-04	64009-04
16	105		80000	150	1.5	.0136	1432427-50	118509 - 03
		•	80000	150	1.5	.0136	1575670 - 30	130359.93

	ANALY515	F VARIAN	CE TABLE			
DURCE OF Ariation	SUMS OF SQUARES	OF	F RATIO	TREATMENT		j
	1.00064 E 13		273.26	1-11839 E 6		
	4.31037 E 18		117.71	-734028		
*	1 · 74281 E 18		47-5936	-466745.		
	4.05308 E 10		1.10684	-71178.3		
5	1 · 39690 E 10	_	• 38 1 473	-41786-6		
5 5 7 5	5-65016 E 11	-	15-4298	265758		
-	1.04131 E 18		28 • 4368	7 10 . 3 1		
3	7.59949 E 12		207-5-1	974647		
4	1 · 44698 E 12		39.515	42 70 1.		
	1.30472 E 12		35.63	-40 38 44		
FN .	2.58716 E 12		70 - 6518	-568679		
	4.25534 E 11		11-6207	-230633.		
CA)	5.32457 E 11		14.5407	-257987		
57 57	6 · 38 599 E 10		1.74392	-89344-8		
SN	3. 31682 E 10		905778	64389 . 7		
EPLI CATE	1.41017 E 10	1	• 38 50 98			
RROR	5 49278 E 11	15			1	
ITAL	3-22771 E 13	31				
IROR MEAN	SQUARE=	3.6618	5 E 10			

140	36	19	50000	
141	144	17	50000 65000	
, 141	177	1,	65000	
142	28	5	60000	
143	150	10	80000 50000	
143	130	10	50000	
144	1 49	18	65000	
145	152	4	65000 80000	
		•	80000	
146	102	6	50000	
147	166,	13	50000 65000	
			65000	
1 48	111	3	80000	
			80000	
				:
		:	1	
	1			
		1	·	
ADOLTI	NAL FR	AGMENTAT	ION TEST OF	ATA
		1		
COM8 .	TEST	SAMPLE	TREAT	1EN
•	•	•	PRESSURE	R
		,	P	
371	38 9	12	50000	
			50000	
372	390	12	80000	
373	378	1	80000 50000	
	1	- 1	50000	
374	377	1	80000	
			80000	
	1			
			1	
		AN	ALYSIS OF V	ARI

SUMS OF			OF
	E	10	1
4.24360	E	10	1
5.64180	E	9	i
6 • 29 398	E	9	1
7.00101	E	9	3
1-06025	E	11	
	4.24360 5.64180 6.29398 7.00101	59UARE5 4.46523 E 4.24360 E 5.64180 E 6.29398 E 1 7.00101 E	

ERROR MEAN SQUARE=

ST DATA, ROCK TYPE NUMBER:

TEST RESULTS - CHARCOAL GRANITE (NO.

ME	IT CO	HBINATION		SPECIFIC ENERGY				
1	TATE	STANOOFF	NGZZLE,					
	F	S	N	FTLP./CU-IN-	JAULES/CU.CM			
Ŧ	150	• 5	.0080	224494.80	18573-13			
	150	• 5	.0080	336742.20	27859.69			
	150	• 5	+0080	798605.97	66071-07			
	150	• 5	-0080	499128 - 73	41294.42			
	150	• 5	.0060	577497.08	47778.07			
	150	• 5	.0080	548622.22	45389 • 16			
	150	• • 5	.0120	409141 - 77	33849.53			
	150	le 5	e 0120	383570-41	31733.93			
	150	• 5	.0120	598>34-48	49553-30			
	150	• 5	-0120	544504-07	45048 + 46			
	150	• 5	-0120	540029 - 17	44678 - 23			
	150	• 5	.0120	621033-54	51379.97			
	150	• 5	-0136	1261360 • 20	106010-77			
	150	• 5	.0136	961020-15	79508-08			
	150	• 5	-0136	508004-55	42028 - 74			
	150	45	-0136	584205 • 23	48333.05			
	150	• 5	.0136	1575670 - 30	130359.93			
	150	• 5	.0136	1432427-50	118509-03			
					1			
					*			
		j						

OATA: ROCK TYPE NUMBER: 1

THENT CO	MBINATION		SPECIF	I C ENERGY
RATE	STANDOFF	NGZZLE	1	
F	\$, N	FTLB./CU.IN.	JOULES/CU, CM.
450	1 • 5	.0080	138150-65	11429 - 62
450	1 • 5	10080	149663-20	12382.09
450	1 • 5	0080	272607-32	22553-62
450	1 - 5	.0080	420269 - 61	34770 - 17
900	1.5	.0080	52822-31	4370 - 15
900	1 • 5	.0080	49887.73	4127-36
900	1 • 5	.0080	113586-38	9397-34
900	1.5	.0080	181738-21	15035-75
				1 1
			ļ.	
VARIANCE	TABLE			
•				
OF	F	RATIO	TREATMENT	
			EFFECTS	
1 ;	1 1	9 • 1 3 3 9	149419 •	

-145664. -53112-1

19 • 1339 18 • 18 42

2.69703

2.33367 E 9

```
PRESSURE = 50000 PS1 = 34483.00 NEWTANS/SQ.CM.
FEEDRATE = 900 IPM = 38.10 CM./SEC.
STANOAFF = 1.5 IN. = 3.810 CM.
NAZZLE = .0080 IN. = .20320 MM.
```

KERFING FRAGMENTATION TEST DATA, ROCK TYPE NUMBER:

SPACING BETWEEN CUTS = .125 IN. = .317 CM.

APPENDIX C

	SPACIF	AC DETME	EN COIS -	• 123 140	- •317 CH•	
CJMB.	TEST	SAMPLE	NUMBER	s	PECIFIC EN	EKGY
	•	•	JF CUTS	FT.LB./	CU-1N-	JJULES/CI
373	3 78	1	1	52822	• 31	4370-1
		1	1	49857	. 73	4127.
421	421	5	2	46671	•29	3861.2
,		18	2	44337	• 72	3665.
1		10	2	43776	. 49	3621.
421	421	5	3	49264	-14	4075 • 7
		18	3	51158	•91	4232 • 5
		10	3	43776	• 49	3621 • 1
		1				
Ŧ	CUT NUMBER		AVERAGE FI.LB./CU		ENERGY PER JJULES/C	
	1		51355•0	2	4248•	75
	2		39931•5	1	3303•	65
į	3		55871 • 1	0	4622.	38

47901 - 30

3963-02

AVERAGE

6-28412 E 11 15

2 · 47437 E 13 31

MEAN SQUARE=

4-18941 E 10

ERRØR 4.75837 E 9 3
TØTAL 5.04863 E 10 7

1 58612 E

ERROR MEAN SQUARE=

ERRØR

TEST	SAMPLE			MBINATION		SPECIF.	IC ENERGY	COM8.	TEST	SAMPLE		THENT COME
	,	PRESSURE		STANOPFF	NOZZLC	ba . a . a		•		•	PRESSURE	RATE S
		F	F	S	N	FTLB./CU.IN.	JOULES/CU.CM.				P	F
18	2	50000	50	• 5	•0080	793027-88	65609 - 58	1 49	7	5	80000	50
		50000	50	• 5	-0080	79 302 7 • 88	65609 • 58	150	141	2	80000	100
7	5	80000	50	• 5	.0080	1153713-10	95450+15				80000	100
8	4	50000	150	• 5	-0080	454601.97	37610.58	151	51	3	80000	150
51	3	80000	150	• 5	.0080	545214-63	45107-24			_	80000	150
		80000	150	• 5	-0080	495649.67	41006-58	152	151	3	80000	50
3	1	50000	50	1 - 5	.0080	997598 • 76	82534-34			-	80000	50
5	3	80000	50	1.5	.0080	1168317-10	96658 - 38	153	161	1	80000	100
	_	80000	50	1 • 5	·0080	1168317-10	96658.38				80000	100
23	5	50000	150	1 - 5	-0080	297455.6	24609 • 39	154	162	3	80000	150
		50000	150	1 • 5	-0080	446183-41	36914-09				80000	1 50
20	1	80000	150	1.5	· 0080	511138 • 72	42258 - 04	155	92	2	80000	50
_		80000	150	1.5	• (1080	629 09 3 - 81	52046-82				80000	50
96	4	50000	50	• 5	.0136	2956049.30	244562.83	156	165	5	80000	100
	-	50000	50	• 5	•0/36	2149854.00	177863-87				80000	100
42	2	80000	50	• 5	-0136	2319189 • 70	191873-52	157	72	2	80000	150
		80000	50	• 5	•0136	2441252 - 30	201972.13				80000	150
124	1	50000	150	• 5	.0136	1557095-90	126823-22					
	_	50000	150	• 5	-0136	1557095-90	128823-22					
72	2	80000	150	• 5	•0136	489 319 • 49	40482-87					
	_	80000	150	• 5	-0136	505103.99	41788 - 77					
123	3	50000	50	1.5	-0136	2458572.50	203405-08					
	4	50000	50	1.5	-0136	2919554-90	241543-53					
91	4	80000	50	1.5	.0136	3190732-30	263978-86					
110		80000	50	1.5	-0136	3190732-30	263978.86					
113	1	50000	150	1.5	-0136	961020-15	79508 • 08					
121	5	50000	150	1.5	-0136	1537632 - 20	127212-93					
121	3	80000 80000	150 150	1.5	·0136 ·0136	1575670 • 30 1432427 • 50	130359 • 93 118509 • 03	ADO.TIE	NAL FR	AGMENTAT	ION TEST O	ATA, ROCK
								#a*-		DAWE: -		MEME
								COM8.	TEST	SAMPLE	PRESSURE	MENT COMB
								•	•		PRESSURE	RATE S
	ANAL	LYSIS OF VA	ARIANCE	TABLE				375	38 1	2	50000	450
								313	30 1	•	50000	450
9F	CIME 4-			_	A-12	**************************************		376	382	2	80000	450
GN	SUMS OF SQUARES		1	FR	ATIO	TREATMENT				-	80000	450
					0.40.5	EFFECTS		377	379	4	50000	900
		46 E 10 1			0421	39913.4					50000	900
		33 E 11 1			0 • 672	-1.02512 E 6		378	380	4	80000	900
		21 E 11 1			85961	-175172.					80000	900
		6 E 11 1			•0115 •1315	228971.						
	3.1229				• 1315 45439	241440. -62479.5						
		35 E 11 1			45439 76494	120330						
		5 E 13 1			10494 4•465	1-19888 E 6				A1181	YSIS 0F V	ADTANCE -
	2.0217				4·465 82573	-158969.				ANAL	31 3 OF V	HALANUS T
		2 E 12 1			· 3025	-476198•						
	9 - 3923				84193	- 108353-		SOURCE	af	SUMS ØF	F OI	r
	2.6630				35661	182450 •		VARIATI		SQUARES		
	5.2352				.3964	255813.		AWIHII			79 E 10 1	
	2 - 78 78				65444 E-5	590 - 32		F			47 E 10 1	
	1 - 2623				01319	39723.2		PF		1.2531		
TE	6-1358	7 E 9 1	1	- 1 -	46462			REPL I CA	TE	2 - 3022	3 E 9	1
			_									

TEST OATA, ROCK TYPE NUMBER: 2

REAT	MENT CO	MBINATION		SPECIF	IC ENERGY
URE	RATE	STANOGFF	NUZZLE		
	F	S	N	FTLB./CU.IN.	JOULES/CU-C
00	50	• 5	.0080	1153713-10	95450-15
00	100	•5	.0080	672999 • 31	55679.25
00	100	• 5	- 0080	807599 • 17	66815.10
00	150	• 5	.0080	545214-63	45107-24
00	150	• 5	.0080	495649 • 67	41006 • 58
00	50	• 5	.0120	1278551.80	105778 • 43
00	50	• 5	.0120	1373259 - 40	113613-87
00	100	• 5	.0120	539644.53	44646 • 41
00	100	• 5	-0120	584614.91	48366+95
00	150	• 5	.0120	274651.87	22722.77
00	150	• 5	.0120	268681 - 18	22228 • 80
00	50	• 5	-0136	2319189.70	191873.52
00	50	• 5	• 0136	2441252 - 30	201972-13
00	100	•5	• 0136	581346-10	48096+51
00	100	• 5	.0136	693143.42	57345-83
00	150	• 5	-0136	489319-49	40482.87
00	150	• >	.0136	505103.99	41788 - 7?

ST OATA, RUCK TYPE NUMBER: 2

1.58612 E 9

		MBINATION		SPECIFIC ENERGY				
RE	RATE	STANOUFF	NØZZLE					
	F	S	N	FTLB-/CU-IN-	Jaules/Cu.cm.			
0	450	• 5	• 0080	152157-59	12588 • 45			
0	450	• 5	.0080	171177.28	14162-01			
0	450	• 5	.0080	230953.98	19107-93			
0	450	• 5	.0080	346438 • 46	-28661.39			
0	900	• 5	-0080	75766.99	6268 • 43			
0	900	• 5	.0080	90920-39	7522 - 12			
Ō	900	• 5	.0080	167281 - 76	13839 • 72			
0	900	• 5	.0080	153341-62	12686 - 41			
f VI	ARI ANCE	TABLE						
r V			ATIØ	TREATMENT				
			RATIØ	TREATMENT EFFECTS				
		FF	RATIØ 1•1187					
Oi		F F		EFFECTS				
OI		F F	-1187	EFFECTS 102000•				

APPENDIX D

TEST RESULTS - WESTERLY GRANITE (N

PRESSURE	=	50000	PSI	=	34483-00 NEWTJNS/SQ-CI
FEEORATE	=	900	IPM	×	38.10 CM./SEC.
STANOJFF		• 5	IN.	=	1.270 CM.
NJZZLE	=	-0080	1N-	=	.20320 MM.
CRACING	DE.	FLEEN	CLITE	_	-100 IN- = -254 CM-

KERFING FRAGMENTATION TEST DATA, RICK TYPE NUMBER: 2

CAMB.	TEST	SAMPLE	NUMBER	SPECIA	FIC ENERGY
	*		AF CUTS	FT-LB-/CU-IN	. JJULE:
377	3 7 9	4	1	75766.77	626
		4	1	90920-39	752
422	422	2	2	84185.55	696
		4	2	74831.60	619
		1	2	56123.70	464
422	422	2	3	56123.70	464
		4	3	59425-09	491
		1	3	56123.70	464
	CUT NUMBER		AVERAGE	SPECIFIC ENERG	Y PES CUT
	COT NO.IBEN		FT.LB./CU		JLE5/CU-CM-
	1		d3343+69	•	6895•2 7
	2		62931.88	s	5206-54
	3		40755-28	5	3371-61

AVERAGE 51843-58

4289-17

٠	FACTORIAL	FRAGHENTATION	TEST	OATA	RØCK	TYPE	NUMBER:	3

1B -	TEST	SAMPLE			MBINATI ON		SPECIF	IC ENERGY	CAMB.	TEST	SAMPLE		REATMENT
	•	•	PRESSURE P	RATE F	STANOUFF S	NƏZZLE N	FTL8-/CU-IN-	JOULES/CU-CM-	•	*	*	PRESSURE P	RATE
33	11	7	50000	50	• 5	•0080	1029168 • 30	85146-18	39 5	405	14	50000	300
			50000	50	• 5	-0080	1029168 • 30	85146-18				50000	300
34	13	17	80000	50	• 5	• 0080	1289642 • 30	106695.98	396	402	4	80000	300
			80000	50	• 5	• 6080	1289642 • 30	106695•98				80000	300
35	22	11	50000	150	• 5	- 00 8 0	306809 • 56	25383-28	397	406	9	50000	600
			50000	150	• 5	·0080	276128 • 60	22844.95				50000.	600
36	43	10	80000	150	• 5	-0080	413959-26	34248 • 09	398	38 4	6	80000	600
			80000	150	• 5	-0080	558845.00	46234.92				80000	600
37	50	19	50000	50	1 • 5	• 0080	1035482 • 30	85668.55	399	403	16	50000	900
			50000	50	1.5	-0080	920428 • 67	76149.83				50000	900
8	31	1	80000	50	1 • 5	- 0080	1397112.50	115587-31	400	397	18	80000	900
			80000	50	1.5	-0080	1397112.50	115587.31				80000	900
39	19	3	50000	150	1.5	.0080	914816-30	75685.50	401	4:2	14	50000	300
			50000	150	1.5	• 0080	548889 • 78	45411.30	_			50000	300
10	37	2	80000	150	1.5	•0080	552029 • 81	45671 • 08	402	409	18	80000	300
			80000	150	:-5	-0080	581084.02	48074.82				80000	300
11	81	6	50000	50	• 5	•0136	892710-04	73856 • 58	403	411	16	50000	600
			50000	50	• 5	.0136	859646 • 71	71121-15				50000	600
12	76	8	80000	50	• 5	.0136	1074320 - 70	88881 - 77	404	410	4	80000	600
			80000	50	• 5	.0136	1074320-70	88881 • 77				80000	600
13	69	16	50000	150	• 5	•0136	1098 308 • 70	90866 • 38	405	417	9	50000	900
			50000	1 50	• 5	.0136	1098308 • 70	90866 • 38	,,,,		-	50000	900
14	68	20	80000	150	• 5	-0136	492396.97	40737 • 48	406	407	6	80000	900
			80000	150	• 5	.0136	527568 • 18	43647.30			_	80000	900
15	82	18	50000	50	1 • 5	-0136	1015497-30	84015-14	431	434	14	10000	900
-			50000	50	1.5	.0136	1167821-90	96617-41				10000	900
16	85	4	80000	50	1.5	-0136	3376436 • 40	279342.71	432	437	3	20000	900
-		•	80000	50	1.5	.0136	3376436-40	279342 • 71			•	20000	900
7	74	5	50000	150	1.5	•0136	486592 • 48	40257-26	433	431	16	3 5 000	900
		-	50000	150	1.5	•0136	432526 • 65	35784-23				35000	900
15	100	14	80000	150	1.5	•0136	1575670 • 30	130359.93				22000	, ,
-	.00	•	80000	150	1.5	•0136	1313058 • 60	108633-28					

ANALYSIS OF VARIANCE TABLE

RCE OF	SUMS OF	OF	F RATIS	TREATMENT
MELTAL	SQUARES			EFFECTS
	1 - 60981 E 12	1	191-864	448583.
	3-81429 E 12	1	454-601	-690497.
	9 - 36008 E 11	1	111.557	-342054+
	1-43654 E 12	1	171.212	423753.
	1-49492 E 12	1	178 - 17	432278 •
	3-86182 E 11	1	46.0267	-219711.
•	1.33236 E 11	1	15.8796	-129053-
	1-24872 E 12	1	148-827	39 508 3 •
	5-88687 E 11	1	70 - 1619	271267.
	1.04248 E 10	1	1 - 2 4 2 4 7	-36098 - 5
)	2.57925 E 11	1	30 - 7405	-179557.
	6-25208 E 11	1	74-5147	279555.
1	1.86372 E 12	1	222-125	482664-
	9.01995 E 11	1	107-503	-335782 •
N.	3.65760 E 6	1	4-35927 E-4	676-166
LICATE	7-81140 E 9	1	•930992	
3R	1-25856 E 11	15		
AL	1-54413 E 13	31		
OR HEAN S	PUARE=	8 · 39 0 40 E 9		

ADDITIONAL FRAGMENTATION TEST DATA, R

CAMB	TEST	SAMPLE	TREATMENT C			
•	*	*	PRESSURE P	RATE		
395	405	14	50000	300		
-0.4			50000	300		
396	402	4	80000	300		
20.0	.04		80000	300		
397	406	9 .	50000	600		
-00			50000.	600		
398	38 4	6	80000	600		
200	40.0	• •	80000	600		
399	403	16	50000 50000	900		
400	397	18	80000	900		
400	37 1	10	80000	900		
40.1	410	14		300		
401	4:2	14	50000 50000	300		
400	409	18	80000	300		
402	409	10	80000	300		
403	411	16	50000	600		
403	411	10	50000	600		
404	410	4	80000	600		
404	410	4	80000	600		
405	417	9	50000	900		
403	41.	,	50000	900		
406	407	6	80000	900		
400	407	•	80000	900		
431	434	14	10000	900		
431	737	1-4	10000	900		
432	437	3	20000	900		
432	437	3	20000	900		
433	431	16	3 5 000	900		
433	431	10	35000	900		
			33000	900		

ANALYSIS OF VARIANCE, ROCK TYPE NUMBER

MEAN SPECIFIC ENERG

MEAN SPECIFIC	ENERGY CI
224495.	
340759 •	
84425.4	
331447.	
909041.	
96249 • 1	
656529•	
ANALYSIS JF	VARIANCE
SUMS 2F	OF
	Ų,
	1
205813129	i
3.33088 E 11	-
2-10096 E 11	
	1
168992768	1
3-29421 E 9	7
1.17002 E 12	15
1011002 2 12	
	224495. 340759. 84425.4 189311. 331447. 909041. 96249.1 656529. ANALYSIS JF SUMS JF SQUARES 4-61736 E 11 1-51799 E 11 205813129 3-33088 E 11 9-62276 E 9 8-80356 E 6 168992768 3-29421 E 9

OATA, RJCK TYPE NUMBER: 3

E	RATE	STANOJFF	NJZZLE		
_	F	5	N	FTLB./CU.IN.	JØULES/CU•CM
	300	•5	•0080	224494.80	18573-13
)	300	• 5	.0080	224494.80	18573.13
)	300	• 5	.0080	340759 - 15	28192.03
)	300	• 5	0080	340759 - 15	28192.03
)	600	• 5	• 0080	96212.06	7959 • 91
)	600	• 5	• 0080	103612-98	8572.21
	600	• 5	• 0080	234271.91	19382.02
)	600	• 5	• 0080	230958 • 98	19107.93
)	900	• 5	- 0080	99775.47	8254.72
	900	• 5	- 0080	69075.32	5714.81
)	900	• 5	.0080	151448.51	12529 • 79
	900	• 5	• 00à0	227172.76	18794.68
)	300	• 5	.0136	324394.99	26838 • 17
)	300	• 5	-0136	338499 • 12	28005.05
)	300	• 5	.0136	909040.55	75207.65
)	300	- 5	.0136	909040.55	75207-65
)	600	• 5	.0136	243296.24	20128 • 63
)	600	• 5	.0136	176942.72	14639.00
)	600	• 5	.0136	303013.52	25069 • 22
,	600	• 5	.0136	358106.89	29627.26
)	900	• 5	.0136	99813.84	8257.90
)	900	• 5	.0136	92684.28	7668 • 05
)	900	. 5	-0136	656529 • 29	54316.64
)	900	. 5	.0136	656529 • 29	54316.64
)	900	• 5	.0080	301191 • 38	24918 - 47
)	900	• 5	.0080	60238 • 28	4983 69
,	900	. 5	•0080	43304.81	3582 • 74
)	900	. 5	.0080	43304.81	3582 • 74
)	900	. 5	.0080	39 443 • 42	3263.27
)	900	• 5	.0080	39 443 • 42	3263-27

PE NUMBER:

TIC EMERGY VALUES

ENERGY (FT.-L8./CU-IN-)

VARIANCE TABLE

OF	F FATIS	TREATMENT
		EFFECTS
1	981-16	339756.
1	322 • 5 63	- 19 4807 •
1	• 43734	-7173.09
1	707 - 792	288569.
1	446.44	229181 -
1	20 - 4478	- 490 47 • 8
1	.018707	-1483-54
1	.359099	
7		
15		
4.70602 E	. 8	

APPENDIX E

TEST RESULTS - BARRE GRANITE (NO

KERFING FRAGMENTATION TEST DATA, ROCK TYPE NUMBER: 3

PRESSURE = 50000 PSI = 34483.00 NEWT3N5/50.Cm.
FEEORATE = 900 IPM = 38.10 CM./5EC.
STANOJFF = .5 IN. = 1.270 CM.
NJZLE = .0080 IN. = .20320 MM.

SPACING BETWEEN CUTS = .093 IN. = .236 CM.

COM8 -	TEST	SAMPLE	NUMBER	5FECIFIC E	NEKGY
*			JF CUTS	FT.LB./CU.IN.	JJULE5/C
399	403	16	1	99775 • 47	6254.
		16	1	69075.32	5714.
423	423	16	2	52162.03	4315.
_		14	2	68211-88	:>643•
		3	5	69075.32	5714.
423	423	16	3	51158.91	4232 •
		14	3	51158-91	4232.
		3	3	61225.85	5065.
CI	JT NUMBE	_U	AUFFAGE	SPECIFIC ENERGY PE	OK CUT
	, NOMBE	`	FT.LB./CU		
	1		84425.3	9 698	4-77
	2		50438+8	8 4178	2.96
	3		42807 • 4	6 354:	1 • 59
	AVERAGE		46623 • 1	7 385	1.27

· 78

E-1

T

COMB.

.

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

65000

100

1.0

.0120

707514.98

58534.84

							epeci Ci	C ENERGY
COMB.	TEST	SAMPLE		ENT COME	SINATION STANOOFF	NOZZLE	SPECIFIC	C EMEKOI
•		•	PRESSURE P	F F	S	N	FTLB./CU.INo	JØULES/CU-CM-
				100	1.0	•0120	750566-86	62096 • 65
242	260	1	80000 80000	100	1.0	.0120	843378 - 89	69775•27 20784•80
243	252	3	50000	150	1.0	.0120	251227•40 251227•40	20784-80
240			50000	150	1.0	.0120 .0120	526964.76	43597.38
244	277	4	65000 65000	150 150	1 • 0 1 • 0	.0120	622776.53	51524-17
0.45	285	15	80000	150	1.0	.0120	668131.33	55276•51 45521• 8 3
245	203	1.5	80000	150	1.0	.0120	550225•80 1260487•30	104283.89
246	243	15	50000	50	1 • 5 1 • 5	.0120 .0120	1540595 • 60	127458 • 09
	0.40	,	50000 65000	50 50	1.5	-0120	1010735.70	83621-20
247	248	7	65000	50	1 • 5	.0120	1061272.50	87 8 02•26 89292•82
248	274	18	80070	50	1.5	•0120	1079289 • 10 1039315 • 40	85985 • 68
			80000	50 100	1 • 5 1 • 5	•0120 •0120	852378 • 69	70519 - 85
249	28 3	9	50000 50000	100	1.5	.0120	757669.95	62684-31
250	28 6	13	65000	100	1 • 5	.0120	733986-63	60724•92 65396•06
230			65000	100	1.5	•0120 •0120	790447•14 966052•18	79924.39
251	292	17	80000	100 100	1 • 5 1 • 5	.0120	905673.92	74929 • 12
05.0	0/2	10	84,000 50600	150	1.5	.0120	49 44 79 • 33	40909 • 76
252	263	10	50000	150	1 • 5	•0120	587194-21	48580 • 34 52368 • 83
253	268	5	65000	150	1.5	•0120 •0120	632985•99 535603•53	44312.09
			65000	150 150	1 • 5 1 • 5	-0120	59 4198 • 76	49159.85
254	259	11	80000 80000	150	1.5	~0120	633812-01	52437 • 17
255	8 1	6	50000	50	• 5	.0136	892710.04	73856•58 71121•15
			50000	50	• 5 • 5	•0136 •0136	859646•71 1319871•10	109 19 6 • 89
256	304	8	65000 65000	50 50	• 5	•0136	1257020 • 10	103997.04
257	76	8	80000	50	• 5	.0136	1074320 - 70	88881.77
231			80000	50	• 5	•0136	1074320 • 70	88881 • 77 66973 • 43
258	315	4	50000	100	• 5 • 5	•0136 •0136	809512•94 890464•23	73670 • 78
	-00	-	50000 65000	100 100	• 5	.0136	894338.87	73991-34
259	328	7	65000	100	• 5	•0136	838442.69	69 366 • 88
260	299	10	80000	100	• 5	•0136	796398•57 796398•57	65888•44 65888•44
			80000	100	• 5 • 5	.0136 .0136	1098308 • 70	90866 • 38
261	89	16	50000 50000	150 150	• 5	.0136	1098308 - 70	90866-38
262	321	9	65000	150	• 5	.0136	576992.82	47736•35 44752•83
202	QL.	•	65000	1 50	• 5	•0136 •0136	540930•77 492396•97	40737 • 48
263	68	20	80000	150 150	•5 •5	•0136	527568 • 18	43647 • 30
044	298	2	80000 50000	50	1.0	.0136	1187285-60	98227-70
264	270	-	50000	50	1.0	-0136	1187285.60	98227•70 145595•86
265	316	16	65000	50	1 • 0 1 • 0	•0136 •0136	1759828 • 10 2030570 • 90	167995-22
			65000 80000	50 50	1.0	•0136	1263252-90	104512-70
266	302	5	80000	50	1.0	-0136	1308369 • 10	108245•30 81856•42
267	313	18	50000	100	1.0	•0136	989404•70 890464•23	73670 • 78
-			50000	100 100	1 • 0 1 • 0	•0136 •0136	745282 • 39	61659 • 45
268	324	12	65000 65000	100	1.0	•0136	789122-53	65286 • 47
269	322	15	80000	100	1 • 0	•0136	720869 • 16	59639•67 70999•60
20,	-		80000	100	1.0	•0136 •0136	858177•57 449162•29	37160.54
270	319	14	50000 50000	150 150	1 • 0 1 • 0	•0136	486592•48	40257-26
271	300	19	65000	150	1.0	.0136	596225.91	49327.56
2/1	300	• •	65000	150	1.0	•0136	596225-91	49327•56 52315•50
272	323	13	80000	150	1 • 0 1 • 0	•0136 •0136	632341 · 37 750905 • 37	62124-65
			80000 50000	150 50	1.5	•0136	1015497.30	84015-14
273	82	18	50000	50	1 - 5	•0136	1167821-90	96617-41
274	301	20	65000	50	1.5	-0136	1166529 • 00	96510•44 96510•44
			65000	50 50	1 • 5 i • 5	•0136 •0136	1166529 • 00 3376436 • 40	279342.71
275	85	4	80000 80000	50	1.5	•0136		279342.71
276	295	3	50000	100	1 • 5	-0136	502812-23	41599 • 16 49919 • 00
210	2,70		50000	100	1.5	•0136		65286-47
277	29 6	11	65000	100	1.5	•0136 •0136		69366.88
		6	65000 80000	100 100	1.5	•0136		67772.35
278	311	. 5	80000	100	1.5	-0136	783553-44	64825 • 73
279	74	1 5	50000	150	1.5	•0136		40257•26 35784•23
			50000	150 150	1.5	•0136 •0136		52850 • 9 6
280	29	7 1	65000 65000	150	1.5	-0136		46244-59
261	100	14	80000	150	1.5	-0136	1575670 • 30	130359•93 108633•28
			80000	150	1 • 5	- 01 36	1313058 • 60	100000-20

TEST	SAMPLE	TRE/	ATMENT C	MBINATI ON		SPECIF	IC ENERGY	CØMB•	TEST	SAMPLE		THENT CO	
•	•	PRESSURI	E RATE	STANO9FF	NØZZLE N	FTLB./CU.1N.	JOULES/CU.CM.	•	•	•	PRESSURE	RATE F	STAN
								455			80000	50	
54	14	50000	50	• 5	• 0080	303067.98	25073 - 72	158	34	19	80000 80000	50	
34	19	80000	50	• 5	•0080	201103-76	16637-92	150	1.42	18	80000	100	
		80000	50	• 5	.0080	340759 • 15	28192.03	159	143	10	80000	100	
29	8	50000	150	• 5	• 00-80	134696-88	11143-88	140	41	1	80000	150	
		50000	150	• 5	+90F0	252556•65 42594•89	2089 4• 77 3524• 00	160	153	4	80000	50	
41	1	80000	150	. 5	• 0080	432954-25	35819 - 60	161	153	4	80000	50	
57	3	50000	50	1.5	• C 080			162	148	9	80000	100	
58	12	80000	50	1.5	• 0080	211575-68	17498 50 15322 83	163	156	20	80000	150	
9	20	50000	150	1.5	.0080	185208 • 21 203729 • 03	16855-11	163	130	20	80000	150	
	-	50000	150	1.5	• 0080 • 0080	299381.25	24768 • 71	164	75	6	80000	50	
35	. 5	50000 50000	1 50 50	1.5	• 0136	1113080-30	92088 - 47	165	167	19	80000	100	
94	13		50	• 5	•0136	1187285-60	98227.70	.63		• • •	80000	100	
75		50000 80000	50	• 5	.0136	487473.00	40330 - 10	166	106	10	30000	150	
109	6 2 .	50000	150	• 5	.0136	386841.02	32004-52				80000	150	
107	2,	50000	150	• 5	.0136	286548.90	23707.05				00000		
106	10	80000	150	.5	.0136	226930.78	18774-66						
106	10	80000	150		-0136	330195.61	27318.07						
116	15	50000	50	1.5	•0136	1316192-89	108892 • 58						
110	13	50000	50	1.5	•0136	1257654-40	104049 • 52						
90	16	80000	50		.0136	38 40 69 6 - 30	317752.33	ACCITI	GAIAL FD	ACMENTAT	ION TEST	0ATA - D2	CV TV
70	10	80000	50		•0136	4431572 • 70	366637.30	AUUTIT	ONAL PR	AGMENIAL	104 1521	UAIN, KE	CK III
117	7	50000	150		.0136	310878 - 53	25719.91						
***	•	50000	150		.0136	373054-23	30863.90	CØMB.	TEST	SAMPLE	TOFA	TMENT CO	MOTAIA
67	17	80000			•0136	105513-64	8729 • 46	Comb.	1631	SAMPLE	PRESSURE		STAN
) F IN	SUMS 6		VARIANC OF	F	RATIO 26.3894	TREATMENT EFFECTS 199027•		379 380 381 382	38 5 38 6 371 372	1 1 5 5	50000 50000 8 0000 8 0000 50000 50000 8 0000	450 450 450 450 900 900 900	
	5 · 259 6 · 461 1 · 9 46 1 · 445 1 · 772 1 · 316	711 E 12 169 E 11 1608 E 12 520 E 12 265 E 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		437-954 53-8099 162-06 120-35 147-635	-810795. -284203. 493213. 425030. -470751. -405624.					N SPECIFI	C ENERGY	
		81 E 12	1		396-907	771865-			ATION A		PECIFIC E	NERGY CF	TLB
		101 E 11	1		19 • 9 9 8 6	273953. -688698.		379		11578			
		44 E 12	1		315.983 75.2425	- 336069 -		: 380 381		73357 10944			
		63 E 12	;		12.64	411191.		382		10601		\	
		114 E 12	i		111-101	408 372		302		10601			
		280 E 12	i		78 • 443	-517543-							
		80 E 12	i		78 - 026	-516938				ANA	LYSIS OF	VARIANCE	E TABL
ΓE	2.806	81 E 10	1	Ì	2 - 33738								
	1 - 60 1	25 E 11	15			•		SØURCE VARIAT		SUMS 0	S	OF.	
	2,994	27 E 13	31					P				1 1	
AN SO	UARE=		1 - 2008	A F 10				PF		76059	2865	1	
.AN 34	UARE-		1.2000	4 2 10				REPL1 C	ATE	4 40	706 E 9	1	
								ERRØR		2 • 430)52 E 9	3	
								TO TAL		5.995	570 E 9	7	
								ERROR	MEAN S	DUARE=		8101719	809

OATA, ROCK TYPE NUMBER: 4

ENT CO	MBINATION		SPECIFIC	ENERGY
RATE	STANOGFF	NUZZLE		MAIN EC COLL CK.
F	5	N	FTL8./CU-1N.	JØULES/CU•CM•
50	• 5	•0080	201103-76	16637.92
50	• 5	.0080	340759 • 15	28192.03
100	• 5	•0080	136303-66	11276.81
100	. 5	.0080	162154-35	13415.52
150	• 5	• 0080	42594.89	3524.00
50	• 5	.0120	348 728 • 51	28851 • 36
50	• 5	.0120	673607-81	55729 • 60
100	• 5	.0120	79314-63	6561.94
150	• 5	.0120	209566.87	17338 • 10
150	• 5	.0120	159839 • 14	13223.97
50	• 5	.0136	48 7473 • 00	40330 • 10
100	.5	•0136	165666:27	13706-07
100	• 5	.0136	260161.98	21523.98
150	.5	.0136	226930.78	18774-66
150	• 5	.0136	330195-61	27318.07

ATA, RØCK TYPE NUMBER: 4

ENT COME	SINATION		SFACIFIC ENERGI				
RATE S	TANOOFF 5	MOZZLE N	FTLB./CU-1N.	JØULES/CU·CM·			
450	• 5	- 0080	127962.04	10586 - 68			
450	. • 5	• 0080	103612.98	8572-21			
450	• 5	.0080	58 68 6 • 30	4855-29			
450	• 5	.0080	88029 • 45	7282-94			
900	• 5	.0080	134696.88	11143-88			
900	• 5	.0080	84185.55	6964-92			
900	• 5	.0080	136303-66	11276-81			
900	• 5	.0080	75724-25	6264-89			

ENERGY VALUES

FRGY	LFT	LB	./CU.	IN. 3

ARIANCE TABLE

i			
F	F RATIO	TREATMENT EFFECTS	
	1.29778	-22928 • 4	
	. 427196	13154-9	
	.938804	19501+2	
1	1.73675		
3			
7			
810171908			

APPENDIX F

TEST RESULTS - DRESSER BASALT (NO. 4

KERFING	FRAGMENTATI JN	TEST	DATA.	RJCK	TYPE	NUMBER:	4

PRESSURE = 50000 PSI = 34483.00 NEWTJNS/SG.CM. FEEDHATE = 450 IPM = 19.05 CM./SEC. 5TANOUFF = .5 IN. = 1.270 CM. NOZZLE = .0080 IN. = .20320 MM.

SPACING BETWEEN CUTS = .125 IN. = .317 CM.

CZMB.	TEST	SAMPLE	NUMBER	SPECIFIC EN	IEKGY
#			ØF CUTS	FT.LB./CU.IN.	JJULES/CU+
379	385	1	1	127962.04	10586.68
3/7	555	i	i	103612.98	8572-21
424	424	18	2	74831.60	6191-04
464	727	4	2	84185.55	6964.92
		20	2	45224.81	3989.78
424	424	18	3	56123.70	4643-28
424	727	4	3	69670-80	5764.07
		20	3	48827-62	4039 • 66
			AUCDACE	SPECIFIC ENERGY PE	· CUT
CI	JT NUMBE	R	FT.LB./CU		

1	115787-51	9579 45
2	49224-33	4072+48
3	44270 • 91	3662 • 67
AVEPAGE	46747-62	3867.57

FACTORIAL FRAGMENTATION TEST DATA, ROCK TYPE NUMBER: 5

	TEST	SAMPLE	TREAT	MENT CO	MBINATION		SPECIF	IC ENERGY
		•	PRESJURE	RATE	STANOOFF	NØZZLE		
			P	F	S	N	FTLE./CU.IN.	Jaules/Cu-CM
5	24	10	50000	50	• 5	.0080	1077575.00	89151.02
			50000	50	• 5	.0080	881652+30	72941 • 74
	36	2	80000	50	• 5	.0080	1135863-80	93973-42
			80000	50	• 5	-0080	1363036 • 60	112768 • 11
7	21	20	50000	1 50	• 5	• 0080	266587.57	22955-59
			50000	150	• 5	- 0080	293884-10 .	24313-91
	42	3	80000	150	• 5	.0080	525337-02	43462 • 71
			80000	150	• 5	-0080	631953-32	52283.39
	60	8	50000	50	1 • 5	.0080	1140112-90	94324.96
			50000	50	1.5	· 0080	99 7598 • 76	82534+34
	26	18	80000	50	1.5	-0080	1765751.90	146085-95
		• -	80000	50	1.5	.0080	1553861 - 70	128555 . 64
	4	4	50000	150	1.5	.0080	481060-28	39799.56
			50000	150	1.5	.0080	473543-72	39177-69
	16	7	80000	150	1.5	.0080	804191.58	66533-18
			80000	150	1.5	-0080	1005239 - 50	83166-48
	65	5	50000	50	• 5	.0136	1042698 - 20	86265-55
			50000	50	• 5	.0136	1042698 - 20	86265.55
	88	13	80000	50	• 5	-0136	39 39 1 75 • 70	325899 • 83
	-		80000	50	• 5	.0136	3692977.20	305531 • 09
	73	1	50000	150	• 5	.0136	468345 • 26	38 74 7 • 61
	_	_	30000	150	• 5	-0136	555287.89	45940 • 63
	126	12	80000	150	• 5	.0136	1393862.20	115318-40
			80000	150	• 5	.0136	1812020-80	149913.92
	83	6	50000	50	1.5	.0136	1362458 • 90	112720 - 32
		_	50000	50	1 - 5	.0136	1129 740 - 80	93463-85
	71	17	80000	50	1.5	•0136	1636273.00	135373-77
			80000	50	1.5	.0136	1636273.00	135373.77
	93	1 1	50000	150	1.5	.0136	1313799 • 70	108694.59
	-		50000	150	1.5	.0136	1167821-90	96617-41
)	98	16	80000	150	1.5	.0136	2127154.90	175985 • 91
			80000	150	1.5	-0136	2127154.90	175985 • 91

ANALYSIS OF VARIANCE TABLE

RCE OF	SI'M'S OF	OF	F RATIO	TREATMENT
ATION	S&UARES			EFFECTS
	5.65761 E 12	1	323.009	840953.
	3-09415 E 12	1	176 - 654	-621908 •
	2.18146 E 11	1	12-4546	-165131.
	1 - 121 43 E 10	1	· 640255	37440 • 4
	5.71312 E 11	1	32 • 61 78	-267234.
	1 - 32288 E 12	1	75 • 52 69	406645
	4.93181 E 11	1	28 • 1571	248289 .
	4.53794 E 12	1	259-084	753155 •
	1.57923 E 12	1	90 - 1624	444301
	2.62656 E 10	1	1 - 49957	57299.2
	1 - 38108 E 11	1	7-88498	-131391 -
	3.81037 E 11	1	21 - 7545	-218242.
	1.15377 E 12	1	65-8718	-379764.
	1.28486 E 12	1	73.3563	400759 •
	7-02432 E 11	1	40 - 1038	296317.
I CATE	416874496	1	2.38005 E-2	
R	2-62730 E 11	15		
L	2.14353 E 13	31		
R MEAN S	QUARE"-	1.75153 E 10		

ADDITIONAL FRAGMENTATION TEST DATA, RO

P F 407 404 24 50000 3 50000 3	
407 404 24 50000 3 50000 3	TE
50000 3	
	00
408 383 15 80000 3	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
-	00
	00
	00
	00
	00
	00
	00
	00 00
MEAN SPECIFIC ENE COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810. 418 595175.	k GY
COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810.	(F
COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810. 418 595175. ANALYSIS OF VARIAN SOURCE OF SUMS OF VARIAN P 3.54620 E 11 1 F 3.66828 E 11 1	(F
COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810. 418 595175. ANALYSIS OF VARIAN SOURCE OF SUMS OF VARIAN FOR SOURCES P 3.54620 E 11 1 FF 3.06828 E 11 1 PF 7.31462 E 9 1 N 1.63008 E 11 1 PN 1.69095 E 11 1	(F
COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810. 418 595175. ANALYSIS OF VARIAN SOURCE OF SUMS OF VARIAN FOR SOURCE OF TOWNS OF T	(F
COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810. 418 595175. ANALYSIS OF VARIAN SOURCE OF SUMS OF VARIAN FOR SOURCE SUMS OF VARIAN SOURCE OF SUMS OF VARIAN SOURCE OF SUMS OF VARIAN 10 06828 E 11 1 PF 7.31462 E 9 1 N 1.63008 E 11 1 PN 1.69095 E 11 1	(F
COMBINATION # MEAN SPECIFIC ENERGY 407 336742. 408 507421. 411 130955. 412 144564. 413 361418. 414 871765. 417 98810. 418 595175. ANALYSIS OF VARIAN SOURCE OF SUMS OF VARIAN FOR SOURCE OF SOURCES P 3.54620 E 11 1 F 3.06828 E 11 1 PF 7.31462 E 9 1 N 1.63008 E 11 1 PN 1.69095 E 11 1 FN 2.16765 E 8 1	(F

TOTAL 1-19793 E 12 15

ERRAR MEAN SQUARE=

1.91849

TA. ROCK TYPE NUMBER: 5

NT Ca	N&ITAN18M		SPECIFIC	ENERGY
RATE	5 TANO FF	NØZZLE		
F	-	N	FT L8 - / CU - IN -	JOULES/CU-CM
300	1 • 5	•0080	252556-65	20894-77
300	1.5	.0080	420927-75	34824 62
300	1.5	• 0080	483258 • 42	39981 - 42
300	1 • 5	.0080	531584-27	439 79 • 56
600	1.5	.0080	149663.20	12382.09
600	1.5	.0080	168371-10	13929.85
600	1.5	.0080	362056.59	29954.03
600	1 • 5	•0080	222804.06	18433-25
900	1.5	.0080	149663-20	12382.09
900	1.5	.0080	112247-40	9286-56
900	1.5	• 0080	198776-17	16445+35
900	1.5	.0080	90352-80	7475-16
300	1.5	.0136	317342-92	26254.73
300	1 • 5	.0136	405493.73	33547.71
300	1 • 5	.0136	734119+11	60735.88
300	1.5	.0136	1009413-80	83511.63
600	1.5	.0136	211667-73	17511.91
600	1.5	.0136	267625-86	22141.49
600	1 • 5	.0136	421272.96	34853-18
600	1.5	.0136	631909 • 44	52279.76
900	1.5	.0136	89488-27	7403-63
900	1.5	.0136	108131-66	8946-06
900	1 • 5	.0136	342333-13	28322 - 25
900	1.5	.0136	8 48 01 7 • 00	70158.99

NUMBER: 5

ENERGY VALUES

RGY [FT.-LB./CU.IN.]

LIANCE TABLE

F KATIJ	TREATMENT
	EFFECT5
18 - 48 43	297750.
15.9932	-276960.
.38127	- 42762.8
8 • 49 6 68	201871.
8.81396	205606.
1.12988 E-2	7361 - 48
.266804	35772.2

2.99378

91849 E 10

APPENDIX G

TEST RESULTS - SIOUX QUARTZITE (NO. 5

KERFING FRAGMENTATION TEST DATA, ROCK TYPE NUMBER: 5

PRESSURE	=	50000	P51	=	34483.00 NEWTJNS/50.CM.
FEEORATE	=	900	IPM	=	38 - 10 CM - / 5EC -
5TANO2FF	=	1 • 5	IN.	=	3-810 CM.
NJZZLE	=	•0080	IN.	E	.20320 MM.

SPACING BETWEEN CUTS = .125 IN. = .317 CM.

Cams.	TE 5T	SAMPLE	NUMBER	SPECIFIC EN	NEKGY
	•		JF CUTS	FT.LB./CU.IN.	JJULES/CU.CM
411	401	26	1	149663.20	12382-09
		26	1	112247.40	9286.56
425	425	22	2	93165.34	7707.85
		15	2	86430.50	7150.65
		21	2	79695.65	6593.46
425	425	22	3	93165.34	7707.85
		15	3	99727.50	8250.76
		21	3	74714.68	6181 - 37
CI	T NUMBE		AUFHACE	SPECIFIC ENERGY PER	CUT
CO	I NOMBE		FT.LB./CU		
	1		130955 - 30	10834	32
	2		64500+3	7 5336	- 31
	3		95316.50	7885	82
	AVERAGE		79908 • 4	4 6611	06

Ţ

COMB.

0.7445							encor.	I C PUUD OU
COMB.	TEST	SAMPLE	PRESSURE	MENT CU Rate	MBINATION STANDOFF	NJZZLE	SPECIF	IC ENERGY
		~	P	F	S	N	FTLB./CU.IN.	JØULES/CU.CM.
282	24	10	50000	50	• 5	•0080	1077575.00	89151.02
202			50000	50	• 5	-0080	881652-30	72941.74
283	237	₄ 5	65000	50	• 5	.0080	1561559 • 90	129192.53
28 4	24	0	65000	50	• 5	•0080	1561559•90 1135863•80	129192.53
204	36	2	80000 80000	50 50	• 5 • 5	• 0080 • 0080	1363036-60	93973•42 112768•11
285	202	17	50000	100	• 5	•0080	639810 • 18	52933.42
00.4		_	50000	100	• 5	• 0080	639810 • 18	52933.42
286	204	9	65000 65000	100 100	• 5 • 5	•0080 •0080	898431•72 739884•94	74329.95 61212.90
287	211	21	80000	100	• 5	• 0080	ಟೆ 74615•14	72359 • 53
			80000	100	• 5	• 0080	828582.77	68551 • 14
288	21	20	50000 50000	150	• 5	•0080	266587.57	22055-59
289	206	19	65000	150 150	• 5 • 5	•0080 •0080	293884•10 818571•12	24313.91 67722.84
			65000	150	• 5	• 0080	682142.60	56435 • 70
290	42	3	80000	150	• 5	• 0080	525337.02	43462 • 71
291	207	15	80000 50000	150 50	•5 1•0	• 0080 • 0080	631953•32 1296457•50	52283•39 107259•81
	,	••	50000	50	1.0	•0080	1111249.30	91936.98
292	203	14	65000	50	1.0	.0080	1516103-50	125431.79
29 3	226	5	65000 80000	50 50	1.0	• 0080	1637142•20 1840099•40	135445 • 69
273	220	J	80000	50 50	1 • O 1 • O	• 0080 • 0080	2073762-80	152236•94 171568•62
294	218	23	50000	100	1.0	•0080	798079 • 01	66027-47
OGE	004	••	50000	100	1.0	- 0080	818283-54	67699.05
295	234	19	65000 65000	100	1.0 1.0	• 0080 • 0080	767410•43 767410•43	63490 • 17 63490 • 17
296	201	5	80000	100	1.0	•0080	1260808 • 80	104310.50
			80000	100	1 - 0	•0080	1095297.30	90617-23
29 7	219	22	50000	150	1.0	• 0080	681902•95 5 5225 7•20	56415.88
298	230	9	50000 65000	150 150	1 • 0 1 • 0	• 0080 • 0080	698780-22	45689•90 57812•18
		•	65000	150	1.0	.0080	698780-22	57812-18
299	238	21	80000	150	1.0	•0080	739934-15	61216-97
300	60	8	80000 50000	150 50	1 • 0 1 • 5	.0080 .0080	739934•15 1140!12•90	61216•97 94324•96
000	-	J	50000	50	1.5	-0080	997598 • 76	82534.34
30 1	220	26	65000	50	1 • 5	•0080	1497386.20	123883.25
200	0.4		65000	50	1.5	• 0080	1842936.90	152471 • 69
302	26	18	80000 80000	50 50	1 • 5 1 • 5	• 0080 • 0080	1765751•90 1553861•77	146085•95 128555•64
303	227	17	50000	100	1.5	• 0080	562840 • 53	46565•49
			50000	100	1 - 5	•0080	562840-53	46565 • 49
304	222	24	65000 65000	100 100	1 • 5 1 • 5	· 0080	1469310•20 1152987•40	121560 • 44 95390 • 10
305	228	14	80000	100	1.5	• 0080	1047834 40	86690 • 48
			80000	100	1 • 5	• 0080	1289642.30	106695.98
306	4	4	50000 50000	150 150	1 • 5 1 • 5	•0080 •0080	481060-28	39799.56
307	213	25	65000	150	1.5	• 0080	473543•72 657186•16	39177•69 54370•98
			65000	150	1 • 5	• 0080	657186.16	54370.98
308	16	7	80000	150	1 • 5	• 0080	804191-58	66533 • 18
309	254	14	80000 50000	150 50	1.5	.0080 .0120	1005239 • 50 1197118 • 50	83166•48
507	234	•-	50000	50	•5	·0120	1083022 • 30	99041•21 89601•69
310	257	15	65000	50	• 5	.0120	1651955 10	136671-20
211	0%4	10	65000	50	• 5	•0120	1526012 - 70	126251 • 61
311	256	19	80000 80000	50 50	• 5 • 5	.0120 .0120	1081680•00 1250692•50	89490 • 63 103473 • 55
312	255	5	50000	100	• 5	•0120	767140-82	63467.86
			50000	100	• 5	•0120	920568.98	76161 • 43
313	265	22	65000 65000	100 100	• 5 • 5	•0120	898431 • 72	74329 • 95
314	275	17	80000	100	• 5	•0120 •0120	792733•87 840045•37	65585•25 69499•47
			80000	100	• 5	.0120	8 78 229 • 25	72658 • 54
315	258	21	50000	150	• 5	•0120	432954-26	35819 • 60
316	281	19	50000 65000	150 150	• 5 • 5	•0120 •0120	505113·30 575557·82	41789.54
	20.	.,	65000	150	• 5	·0120	563254-89	47617•63 46599•77
317	249	24	80000	150	• 5	.0120	859808 • 35	71134-52
210	0.40	05	80000	150	• 5	•0120	79 7376 - 40	65969 • 34
318	240	25	50000 50000	50 50	1 • O 1 • O	·0120	1331334+30 1331334+30	110145•28 110145•28
319	2	22	65000	50	1.0	.0120	1212882-80	100345-43
000			65000	50	1.0	.0120	985779 • 25	81556-47
320	276	14	80000	50 50	1.0	• 0120	1353534-60	111981-98
321	288	23	50000	100	1.0	·0120	1426077•00 776611•69	117983•63 64251•42
			50000	100	1.0	.0120	847212.76	70092-45

								6 FUE 64
COMB.	TEST	SAMPLE		1ENT CO Rate	MBINATION STANOOFF	NOZZLE	SPECIFI	C ENERGY
ž.	•	•	PRESSURE P	F	S	N	FTLB./CU.IN.	JOULES/CU.CM.
000	251	5	65000	100	1.0	.0120	73699 4. 77	60973.79
322	221	3	65000	100	1.0	.0120	782505-05	64738 • 99
323	264	23	50000	100	1 - 0	-0120	1095941.50	90670-53
			80000	100	1.0	•0120	1150062-10	95148.09
324	269	26	50000 50000	150 150	1 • 0 1 • 0	•0120 •0120	483743•12 443778•11	40021 • 52 36715 • 09
325	271	5	65000	150	1.0	.0120	598954•48	49553.30
QL 5		•	65000	150	1.0	.0120	561519.83	46456-22
326	287	25	80000	150	1.0	-0120	732632-16	60612-86
20.7	262	25	80000 50000	150 50	1.0 1.5	•0120 •0120	676275•84 1553223•40	55950•33 128502•83
32 7	202	23	50000	50	1.5	•0120	1451229 • 40	120064.56
328	246	26	65000	50	1.5	.0120	1471773-00	121764-20
			65000	50	1.5	•0120	1511550 - 70	125055 12
329	280	9	80000 80000	50 50	1 • 5 1 • 5	•0120 •0120	1640088•6C 1450847•60	135689•45 120032•97
330	282	15	50000	100	1.5	.0120	9 4706 7 • 43	78355.38
300	LUL	.0	50000	100	1.5	.0120	1002798.50	82964.52
331	253	17	65000	100	1.5	•0120	1049610 • 10	86837.39
222	0.70	0.4	65000	100	1 • 5 1 • 5	•0120 •0120	1137077•60 1041821•00	94073•84 861 9 2•97
332	270	24	80000 80000	100	1.5	•0120	1121310-60	92769.39
333	242	23	50000	150	1 • 5	.0120	621289 - 35	51401-13
			50000	150	1 • 5	.0120	698740.06	57808 • 86
334	284	21	65000	150	1 • 5	•0120	701899 • 78	58070-27
225	289	22	65000 80000	150 150	1 • 5 1 • 5	•0120 •0120	58 5 58 4 • 9 <i>6</i> 76 6 70 8 • 0/3	48447•20 63432•06
335	207	~~	80000	150	1.5	•0120	743474-50	61509 • 88
336	65	5	50000	50	• 5	.0136	1042698,20	86265.53
337	326	17	65000	50	• 5	•0136	1373493-80	113633-26
			65000	50	• 5	•0136	1428057+20	118147-46
338	88	13	80000 80000	50 50	•5 •5	• 01 36 • 01 36	39 39 1 75 • 70 369 29 77 • 20	325899·83 305531·09
339	312	25	50000	100	•5	•0136	907147-41	75051.03
			50000	100	• 5	.0136	729888 • 72	60385.88
340	294	24	65000	100	• 5	.0136	1159137-40	95898.91
241	217	22	65000 80000	100	• 5 • 5	·0136	1128227•00 957219•70	93341·61 79193·66
341	317	22	80000	100	•5	•0136 •0136	920403.56	76147.75
342	73	1	50000	150	•5	•0136	468345.26	38747-61
			50000	150	• 5	•0136	555287-89	459 40 • 6 7
343	320	24	65000 65000	150 150	• 5	•0136	925592.64	76577.06
344	126	12	83000	50	•5 •5	•0136 •0136	832201•18 4181586•60	68850•50 345955•20
		•	80000	50	• 5	.0136	5436062+50	449741.76
345	293	26	50000	50	1.0	•0136	1590654-00	131599 • 58
346	219	26	50000 65000	50 50	1.0 1.0	•0136	1584901 • 20	131123•63 120832•63
340	. 7	20	65000	50	1.0	•0136 •0136	1460513•10 14 4 2482•00	119340-87
347	307	9	80000	50	1.0	.0136	1772629 • 10	146654.92
			80000	50	1.0	•0136	1838282.00	152086-59
345	306	14	50000	100	1.0	•0136	855012-50	70737.75
349	327	14	50000 65000	100	1 • O	•0136 •0136	798011•66 1132348•40	66021•90 93682•58
•		• •	65000	100	1.0	-0136	1258164-90	104091 • 76
350	310	21	80000	100	1.0	•0136	1048805 • 50	86770.83
			. 80000	100	1.0	•0136	1012930+90	83802 • 81
351	305	17	50000 50000	150	1 • 0 1 • 0	•0136 •0136	606369•09 656899•84	50166•73 54347•29
352	308	19	65000	150	1.0	.0136	596225.91	49327.56
			65000	150	1.0	.0136	605842+46	50123-16
353	330	19	80000	150	1.0	•0136	807531.03	66809 • 46
354	83	6	80000 50000	1 50 50	1 • 0 1 • 5	•0136	807531 • 03	66809 • 46 112720 • 32
334	63	•	50000	50	1.5	•0136 •0136	1362458•90 1129740•80	93466.85
355	303	5	65000	50	1 • 5	-0136	1658854-40	137242.00
			65000	50	1.5	-0136	1658854-40	137242.00
35 6 35 7	71 309	17 15	80000 50000	50 100	1.5	•0136	1636273.00	135373•77 94201•98
33 /	307	13	50000	100	1 • 5 1 • 5	•0136 •0136	1138626•40 1109430•80	91786.54
358	314	23	65000	100	1.5	.0136	1381454-00	114291.83
			65000	100	1 • 5	•0136	1514606 • 10	125307-91
359	325	5	80000	100	1.5	•0136	1378711.50	114064-94
360	93	11	80000 50000	100 150	1 • 5 1 • 5	•0136 •0136	1292542•00 1313799•70	106935•88 108694•59
200	73	• • •	50000	150	1.5	·0136	1167821.90	96617-41
361	329	9	65000	150	1 • 5	•0136	932065.32	77112-56
			65000	150	1.5	-0136	865489 • 22	71604.52
362	98	16	80000	150	1.5	•0136	2127154.90	175985.91
			80000	150	1 • 5	•0136	2127154.90	175985-91

BRIAL FRAGMENTATION TEST DATA, ROCK TYPE NUMBER:

TEST SAMPLE

9.88195 E 9

AN SQUARE=

658796407

TREATMENT COMBINATION

	JATICE	PRESSURE	RATE	STANOSFF	NOZZLE	J. 5011	
•	•	P	F	S	N	FTLB./CU.IN.	JOULES/CU-CM-
6	9	50000	50	•5	•0080	306953-47	25395-18
		50000	50	•5	- 0080	275199 • 66	22768 - 09
53	13	80000	50	• 5	.0080	209697.94	17348 • 94
-		80000	50	• 5	-0080	215216-36	17805-49
55	4	50000	150	• 5	.0080	67348 • 44	5571.94
55	-	50000	150	• 5	.0080	67348 • 44	5571 - 94
14	17	80000	150	• 5	.0080	106904-83	8844.56
	. ,	50000	150	• 5	• 0080	102870-69	8510-80
1	18	50000	50	1.5	-0080	252556-65	20894-77
•		50000	50	1.5	-0050	212679 . 28	17595-60
2	14	50000	50	1.5	.0080	218085-85	18042-90
-	•	80000	50	1.5	.0080	209697.94	17348 - 94
10	2	50000	150	1.5	•0080	105430-99	8970-82
. •	-	50000	150	1.5	-0080	100399.06	8306 • 32
61	1	80000	150	1.5	.0080	116728 - 13	9657-27
0.	•	50000	150	1.5	-0080	121916-05	10086 - 48
110	11	50000	50	• 5	•\$136	729888 • 72	60385.88
		50000	50	•5	.0136	648789.97	53676-34
118	10	80000	50	•5	.0136	656529 • 29	54316-64
110		80000	50	• 5	.0136	738595 - 45	\$1106.22
103	5	50000	150	• 5	-0136	324394-99	26838 • 17
103	•	50000	150	• 5	-0136	299441.52	24773.70
80	12	80000	150	• 5	.0136	76595.08	6336-94
60	12	80000	150	• 5	.0136	87597-69	7247-22
107	16	50000	50	1.5	.0136	686954.09	56833-77
10,	10	50000	50	1.5	-0136	729888 • 72	60385-88
97	15	80000	50	1.5	-0136	854084.92	70661 • 01
7,	15	80000	50	1.5	.0136	869901 • 31	71969 • 54
99	3	50000	150	1.5	•0136	311419 • 19	25764-64
77	3	50000	150	1.5	.0136	283108 • 35	23422-40
84	6	80000	150	1.5	.0136	88026-27	7282 • 68
04	•	80000	150	1.5	.0136	101004-51	8356 • 41
	ANA	LY515 ØF 1	VARI ANCE	TABLE			<u>:</u>
	SUMS 0	F I	D F	F	RATI Ø	TREATMENT	
	5QUARE					EFFECTS	į
			I		3.9077	- 39 459 - 3	i
	9 • 286		l		409 • 55	-340699•	
	2 - 470		i		7 - 5012	-55571 • 6	
	3.861		i		86099	21969.3	
	5 - 495	89 E 9	i	8 -	34231	26210.4	
	74543	4495	i		13151	-9652.94	
	5-040		1		6505	-25100-1	
	7-182				090-26	299637.	
	6.377				68056	-28234-5	
	3.270	19 E 11 1	i		96•388	-202182•	
	6.928	12 E 10	1	10	05-072	-93019.6	
	4.361	79 E 9	1	6	62085	23350•	
	2.283	56 E 9	1		46627	16895-1	
	1.052	46 E 10	i	10	6- 4308	-36784-1	
	15975	39 47	ì	• 2	242494	- +468 • 7	
	51092	608	1	• 1	23092		

3.2 FACTORIAL FRAGMENTATION TEST OATA, ROC

SAMPLE

TEST

COMB.

SPECIFIC ENERGY

TREATMENT COMBIN

			, P	F	
167	53	13	80000	50	
			80000	50	
168	140	8	80000	100	
		!	80000	100	
169	14	17	8,0000	150	
	1		80000	150	
1 70	163	7	80000	50	
171	158	20	80000	50 100	
	136	. 20	80000	. 100	
172	159	19	80000	150	
	,	••	80000	150	
173	118	10	80000	50	
			80000	50	
174	168	18	80000	100	
			80000	100	
175	80	12	80000	150	
			80000	150	
1				;	
ADDI TI	NAL FR		IØN TEST D		
COMB.	TE5T	SAMPLE		MENT COM	
1 P		•	PRESSURE P		ST
		1	, -	F	
383	396	9	50000	450	
363	376	. *	50000	450	
38 4	395	9	80000	450	
•			80000	450	1
38 5	393	14	50000	900	
-			50000	900	
386	392	14	80000	900	
			80000	900	
			1		
# # # # # # # # # # # # # # # # # # #		MEA	1	1	VA
COMBI N	ATION #		PECIFIC EN	ERGY (FT	• -
38 3		52382			
38 4 38 5		58934 35976			
386		47958			
•••		,,,,	•		
į		ANA	LYSIS OF V	ARI ANCE	TA
SOURCE	ØF	SUMS @)F . D	F	
VARIAT		SQUARE		_	
P		1 - 717		i	
F		3 - 748	71 E 8 1		
PF		1-473	90 E 7		
REPLICA	ATE	709 48	80	1 :	
	1			'	
ERRØR		42609	7850	3	
TOTAL		99456	7456	7	

ERROR MEAN SQUARE=

1-42033 E

TA. BUCK TYPE NUMBER!

CØ	MBINATION	1	SPECIF	C ENERGY
TE	STANDOFF	NOZZLE	ř	
	S	N	FTLB./CU.IN.	JØULES/CU-CM-
50	•5	.0080	209697.94	17348 - 94
50	•5	.0080	215216-30	1 7805 • 49
00	•5	.0080	181738-21	15035.75
00	• 5	.0080	204455 • 49	16915-22
		.0080	106904-83	8844.56
50	• 5	.0080	102870 • 69	8510-80
50		.0120	223361 • 46	18479 - 36
50	• 5	•0120	195147-38	16145-13
50	• 5		106935-60	8847-10
00	• 5	+0120		8644-88
00	• 5	.0120	104491-36	8335+29
50	• 5	.0120	100749 - 24	
50	• 5	.0120	117217-87	9697.79
50	•5	.0136	656529 • 29	5431 5 64
50	• 5	.0136	738595 • 45	61106-22
00	• 5	.0136	113086-38	9355-98
00	- 5	.0136	125053-20	10346-03
50	• 5	-0136	76595 • 08	6336-94
50	• 5	•0136	8 759 7 • 69	7247.22

DACK TYPE NUMBERS

T CO	MBINATION		SPECIFIC	ENERGY
ATE	STANORFF	NØZZLE		
F	S	N	FTLB./CU.IN.	JOULES/CU-CM-
450	• 5	.0080	44898 • 96	3714-63
450	• 5	.0080	59865-28	4952+83
450	• 5	.0080	71269.89	5896-37
450	• 5	-0080	46599 • 54	3855 • 32
900	1 • 5	.0080	37415-80	3095.52
900	• 5	.0080	34537-66	2857 • 40
900	• 5	.0080	45434-55	3758-94
900	• 5	.0080	50482-84	4176+60

ERGY VALUES

Y	CFT.	-LB./	CU-IN-	3	
---	------	-------	--------	---	--

ANCE TARE

F RATIO	TREATMENT
	EFFECTS
1 • 209 33	9267.28
2 . 63933	-13690 - 7
•103772	2714-69
A DOCCE E-O	

2033 E 8

APPENDIX H

TEST RESULTS - BEREA SANDSTONE (NO. 6)

KERFING FRAGMENTATION TEST DATA, ROCK TYPE NUMBER:								
MERFING PRAGRETATION TEST DATES	KERFING	FRAGMENTATI JN	TE5T	DATA,	RJCK	TYPE	NUMBER:	6

PRESSURE	=	50000	PSI	=	34463.00 NEWTJNS/56.CM.
FEEDRATE	=	900	1PM	=	38.10 CM./SEC.
STANDAFF	=	• 5	IN.	=	1.270 CM.
PAZZLE	=	.0080	IN.	=	.20320 MM.

SPACING BETWEEN CUTS = .093 IN. # .236 CM.

CAMB.	TEST	SAMPLE	NUMBER	SPECIFIC EN	LRGY
#			JF CUTS	FT.LB./CU.IN.	JAULES/CU•CM
385	393	14	1	37415.80	3095.52
303	0.0	14	1	34537.66	2857.40
426	426	2	2	22449 • 46	1657.31
42.0	720	8	2	20153.51	1667.36
		20	2	23966.34	1982.81
426	426	2	3	17970.34	1488 • 39
420	420	8	3	17501 • 73	1447.97
1		20	3	19001+88	1572.08

CUT NUMBER		AVERAGE SPECIFIC FT-LB-/CU-IN-	ENERGY PER CUT JJULES/CU+CM+
1	:	35976.73	2476.46
2		16042 • 13	1327-21
3		13329 • 01	1102.75
AVERAGE		14685 • 57	1214.98

TREATMENT COME PRESSURE RATE S P F

TEST SAMPLE

7EST	SAMPLE					SPECIFIC ENERGY		
		PRESSURE RATE STA		STANOGFF				
		P	F	S	N	FTLB./CU.IN.	JOULES/CU.CM.	
59	6	50000	50	•5	•0080	\$21677.90	51433-28	
		50000	50	• 5	•0080	673484 • 40	55719.38	
47	20	80000	50	• 5	•0080	1258187.60	104093.64	
		80000	50	• 5	• 0080	1258187 • 60	104093-64	
64	11	50000	150	• 5	.0080	316933.83	26220.89	
		50000	150	• 5	-0080	316933-83	26220.89	
12	1	80000	150	• 5	•0080	685777 - 78	56736-45	
	-	80000	150	• 5	.0080	783746.03	64841 • 66	
63	4	50000	50	1.5	•0080	425358 • 57	35191-19	
	-	50000	50	1.5	.0080	621677.90	51433-28	
49	7	80000	50	1 • 5	.0080	2044554.90	169152-16	
•		80000	50	1.5	.0080	1635643.90	135321.73	
39	3	50000	150	1 - 5	.0080	340951 - 47	28207.94	
•	•	50000	150	1.5	• 0080	170475.74	14103-97	
62	18	80000	150	1.5	.0080	613366-46	50745-65	
		80000	150	1.5	.0080	788614.02	65244-40	
108	13	50000	50	• 5	.0136	4671287.80	386469 • 65	
		50000	50	• 5	.0136	2335643.90	193234.83	
79	19	80000	50	. 5	.0136	1543902 • 70	127731 • 71	
	••	80000	50	.5	.0136	1650378+80	136540 • 79	
66	9	50000	150	.5	.0136	606369 • 09	50166-73	
		50000	150	. 5	.0136	437933-23	36231.53	
125	8	80000	150	. 5	.0136	1750744.80	144844.37	
		80000	150	• 5	.0136	1750744-80	144844.37	
112	10	50000	50	1.5	.0136	1459777 40	120771.77	
		50000	50	1.5	.0136	1167821-90	96617-41	
119	17	80000	50	1.5	.0136	3889936.00	321826.08	
	• •	80000	50	1.5	.0136	4243566.60	351082 • 99	
122	2	50000	150	1.5	.0136	515768 • 03	42672 - 69	
	-	50000	150	1.5	.0136	429823.36	35560 • 58	
127	15	80000	150	1.3	.0136	22 79 09 4 • 50	188556+03	
		80000	150	1.5	.0136	2279094.50	188556+33	

ANALYSIS OF VARIANCE TABLE

0F	SUMS OF	DF	F RATIO	TREATMENT
ION	SQUARES			EFFECTS
	5.56410 E 12	1	29 • 7754	833974.
	7-44470 E 12	1	39 • 8 39 1	-964670-
	1 - 57968 E 11	1	·845338	140520-
	1.57306 E 11	1	-841796	140226-
	4.45570 E 12	1	23-8439	746299 •
	1.56450 E 10	1	8.37216 E-2	-44222•4
	2.83232 E 12	1	15-1567	- 59 50 1 3 •
	1.06449 E 13	1	56-9643	1.15352 E 6
	1 - 46843 E 11	1	• 79651	136402•
	1.27631 E 12	1	6.82998	-399424.
	1.32220 E 12	1	7.07555	406541 •
	1.96123 E 10	1	104952	49513.
	2.53526 E 12	1	13.567	562945.
	7.06670 E 10	ì	.378163	93986-1
	1.44761 E 12	1	7.74663	-425383•
ATE	1.92191 E 11	1	1 • 028 48	
	2.80304 E 12	15		
	4.10863 E 13	31		
MEAN	SQUARE=	1-86869 E 11		

			P	•	
176	47	20	80000	50	
	* **	•	80000	50	
177	142	5	8 0000 8 00 00	100	
178	12	1	80000	150	
	•-	-	80000	150	
1 79	155	12	80000	50	
	_		80000	50	
180	147	16	80000	100	
181	146	14	80000 80000	100 150	
10:	170	17	80000	150	
82	79	19	1,0000	50	
			1,0000	50	
83	169	1	80000	100	
			80000	100	
84	125	8	80000 80000	150 150	
ni Tie	INAL FR	AGMENTAT	ION TEST D	ATA, RO	ck
ømB.	TEST	SAMPLE	TREAT	MENT CO	48
•	•	•	PRESSURE	RATE	S
			P	F	
87	388	3	50000	450	I
			50000	450	
88	38 7	' 3	80000	450	
			80000	450	
89	400	20	50000	900	
20	399	20	50000 80000	900	
90	377	20	80000	900	
		MEA	N SPECIFIC	C ENERGY	V
OMBIN	ATION .	MEAN S	PECIFIC ZN	FRGY (F	т.
35.7		86961	- 6	* Lari	•
388		34695			
389 390		62003			
390		1 60 76			
		ANA	LYSIS OF V	ARIANCE	T
URCE		SUMS 8		F	
ARIAT	1 Ø N	SQUARE			
		6 • 435			
		2 - 229	10 E 10 I		
PLI C	ATE	56201		1	
ROR		3.063	52 E 9	3	
OTAL		1.027	62 E 11	7	
RRØR N	MEAN SO	UARE=		1021172	30

APPENDIX I

TEST RESULTS - TENNESSEE MARBLE (NO

MENT COMBINATION			SPECIFIC ENERGY			
RATI	STANDOFF	NØZZLE				
F	S	N	FTL8./CU.IN.	JØULES/CU.CM.		
50	• 5	•0080	1258187•60	104093-64		
50	• 5	.0080	1258187-60	104093.64		
100	• 5	•0080	1153713-10	95450 • 15		
100	• 5	-0080	672999 • 31	55679 • 25		
150	• 5	• 0080	685777.78	56736.45		
150	• 5	0800	783746.03	64841 • 66		
50	• 5	.0120	1520082-10	125760.95		
50	• 5	.0120	1363036.60	112768 - 11		
100	• 5	.0120	876237.81	72 493 • 78		
100	• 5	.0120	1082411.40	89551 • 14		
150	• 5	.0120	532436-17	44050 • 04		
150	• 5	.0120	621033-54	51379.97		
50	• 5	.0136	1543902 • 70	127731 • 71		
50	• 5	.0136	1650378.80	136540 • 79		
100	• 5	.0136	1181752 • 70	97769.95		
100	• 5	.0136	1074320.70	88881.77		
150	• 5	.0136	1750744.80	144844.37		
150	• 5	.0136	1750744-80	144844.37		

OATA, ROCK TYPE NUMBER: 7

	MBINATION	M0771 F	SPECIFIC ENERGY			
RATE	STANDØFF	NØZZLE				
F	s	N	FTL8./CU.IN.	Jaules/CU.CM		
450	• 5	•0080	115988.98	9596-12		
450	• 5	• 0080	57934-14	4793.07		
450	• 5	•0080	330433-1	27337 • 72		
450	• 5	•0080	363476.~	30071.49		
900	• 5	•0080	59865.28	4952.83		
900	• 5	.0080	64141.37	5306 • 61		
900	• 5	.0080	139798.62	11565.96		
900	• 5	.0080	181738.21	15035 • 75		

C ENERGY VALUES

ENERGY (FTL8.	/CU-1N-3				
VARIANCE TABLE					
VARIANCE TABLE					
0.5					
OF	F RATIO		TREATMENT EFFECTS		
1	63-0195		179379.		
1	21.8289		-105572.		
1	12 - 72 78		-80614-1		
1	5.50367	E-5			
3					
7					
1021172309					

KERFING	FRAGMENTATI JN	TEST	DATA,	FACK	TYPE	NUMBER:	7

PRESSURE = 50000 PS1 = 34483.00 NEWTJN5/SG.CM. FEEDRATE = 900 IPM = 36.10 CM./SEC. STANDJFF = .5 IN. = 1.270 CM. NJZZLE = .0080 IN. = .20320 MM.

SPACING BETWEEN CUTS = .125 IN. = .317 CM.

C3MB.	TEST	SAMPLE	NUMBER	SPEC	IFIC ENERG	υY
*			JF CUTS	FT-LB-/CU-	IN.	JULES
369	400	20	1	59865.20		49 5
_	,	20	1	64141.37	1	530
427	427	S	2	46080 • 51		351
	5 Y	14	2	44898 • 96	•	371
	,	16	2	47262.06		39 1
427	427	S	3	43776 • 49	•	362
		14	3	46447.20	1	304
		16	3	46106.03	l .	397
CH	T NUMBER	R	AVERAGE	SPECIFIC ENE	RGY PER CI	JT
**			FT.LB./C	·In- J	JULES/CU-	CM •
	1		620 0 3-3	3	5129.72	
	2		36664 7	ıs	30 33 • 39	
	3		46168 8	0	3819 • 68	
	AVERAGE		41416.7	y	3426.54	