21. Независимость случайных величин

Случайные величины ξ_1, \dots, ξ_n независимы, если для любых измеримых подмножеств действительных чисел $B_1, \dots, B_n \subset R^1$ вополняется:

$$\mathbb{P}\{\xi_1\in B_1,\ldots,\xi_n\in B_n\}=\mathbb{P}\{\xi_1\in B_1\}\ldots\mathbb{P}\{\xi_n\in B_n\}.$$

22. Критерий независимости случайных величин через функцию плотности

Если случайный вектор (ξ_1,\ldots,ξ_n) имеет абсолютно непрерывное распределение с плотностью $f(x_1,\ldots,x_n)$, то компоненты этого вектора также имеют абсолютно непрерывное распределение и независимы тогда и только тогда, когда совместная плотность равна произведению плотностей компонент $f_{\xi_i}(x_i)$

$$f(x_1,\ldots x_n)=f_{\xi_1}(x_1)\ldots f_{\xi_n}(x_n).$$

23. Критерий независимости случайных величин через функцию распределения

Компоненты случайного вектора ξ_1, \dots, ξ_n независимы тогда и только тогда, когда совместная функция распределения $F(x_1, \dots, x_n)$ равна произведению функций распределения $F_{\xi_i}(x_i)$ компонент

$$F(x_1,\ldots,x_n)=F_{\xi_1}(x_1)\ldots F_{\xi_n}(x_n)$$

24. Линейная среднеквадратическая регрессия

Функция $y = \alpha + \beta x$ называется линейной среднеквадратической регрессией случайной величины η на случайную величину ξ , если на ней достигается минимум среднеквадратической ошибки прогноза η посредством линейной функции ξ :

$$\mathbb{E}[(\eta-lpha-eta\xi)^2]=\min_{a,\,b}\mathbb{E}[(\eta-a-b\xi)^2]$$

25. Коэффициент корреляции

Пусть $\mu_i = \mathbb{E}[\xi_i]$ — математические ожидания и $\mathbb{D}[\xi_i]$ — дисперсии случайных величин ξ_1, ξ_2 . Коэффициент

$$ho = rac{\mathbb{E}[\xi_1\,\xi_2] - \mu_1\,\mu_2}{\sqrt{\mathbb{D}[\xi_1]\,\mathbb{D}[\xi_2]}}$$

называется коэффициентом корреляции.