BEST AVAILABLE COPY

Fig. 1

Fig. 2

BEST AVAILABLE COPY

Fig. 4

BEST AVAILABLE COPY

Fig. 5

BEST AVAILABLE COPY

Fig. 6

BEST AVAILABLE COPY

Fig. 7

Fig. 8

BEST AVAILABLE COPY

Fig. 9

Fig. 10

BEST AVAILABLE COPY

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

50KGy

Fig. 27

100KGy

Fig. 28

Fig. 29

0 4

×

Valve

Fig. 30A

× 4 0

Treatment : PEG + γ -ray 100kGy Magnification : X40 Object : valve

Treatment : PEG + γ -ray 100kGy

Magnification: X40

Object : valve

100 ×

Treatment : PEG + γ -ray 100kGy Magnification: X100 Object : valve

Treatment : PEG + γ -ray 100kGy Object : valve

× 100

Magnification : X100

Fig. 30B

Treatment : PEG + γ -ray 100kGy Object : valve cusp Magnification : X100

0

4

×

Treatment : PEG + Y-ray 100kGy

Object : valve cusp Magnification : X40

valve cusp

PEG + γ :decellularization effects

Fig. 31
PEG Results of tensile strength tests

Testing machine	RTC seri	les			Type of testing	Extensio	n	
Load in full-scale	5 kgf			Rated capacity of load cell	100 N			
Range of load	40) %RO			Rated capacity of the extensometer	20	cm.	
Range of the extensometer	unapplie	ed			Test Speed	10.0	mm/min	
Recording speed off	1				Rigidity of the testing machine	0	mm/kgf	
Midpoint (load)	C			0	Midpoint	0	50	6(
N	C			0	(extension) cn		0	C
Analysis of	Interval	1		50	Initial length Distance h			mm
Elastic moduli	Pitch	1	Xmex		origin in extension initi	al load point	0.03	N ·
slack correction	applied	- -	.#i t + + + + + + + + + + + + + + + + + +		Determination of rupture point	0.5	N	
Storing SS curve	ON				• ·			

TestID=120	Maximum load	Maximum load	Rupture load	Rupture load	Maximum Extension	Elastic Modulus
Test No.	kgf	N	kgf	N	r/m	MPa
1	1.3522	13.260	1.0889	10.678	16.227	2,3930
2	1.3049	. 12.797	1.0265	10.066	20.987	1.8916
3	0.9980	9.7870	0.9281	9,1012	14.327	1.8013
4	1.0020	9,8281	0.7277	7.1365	16,367	1.5761
5	0.7636	7.4879	0,7340	7.1981	4.2267	4,7653
Average	1,0841	10.832	0.9010	8.8360	14.427	2.4855
JIS weighted avg	1.2675	12.430	1.0186	9.9888	18,459	3.4698
Median	1.0020	9.8261	0.9281	9.1012	16.227	1.8916
Maximum	1.3522	13,260	1.0889	10,678	20.987	4.7653
:SD(n-1)	0,2437	2.3897	0.1656	1.6239	6.2066	1,3090
SD(n)	0.2180	2.1374	0.1481	1.4525	5.5513	1,1708

Fig. 32
Results of tensile test of native canine aorta.

Testing machine	RTC series		1-75	Extension				
Load in full-scale	5 kgf			Rated capacity of load cell	100	N		
Range of load		0 %RO			Rated capacity of the extensometer	20	óm	
Range of the extensometer	unapplie	ed	١.		Test Speed	10.0	mm/min	
Recording speed off			***************************************		Rigidity of the testing machine	0	mm/kgf	
Midpoint (load)		0	0	0	Midpoint	0	50	60
N		0	0	Q	(extension) cm		20 om .0 mm/min 0 mm/kgf 0 50 0 0	
Analysis of	Interval		1	50	Initial length Distance be	ween chunks	10	mm
Elastic moduli	Pitch		1 Kmax		origin in extension initial	load point	0.03	N
slack correction	applied				Determination of rupture point	0.5	N.	
Storing SS curve	ON							

TestiD≕37	Maximum load	Maximum load	Rupture load	Rupture load	Maximum Extension	Elastic Modulus
Test No.	kgf	N	kgf	N	mm	MPa
1	0.7591	7,4445	0.5038	4.9404	27.887	1.0918
Average	0.7591	7.4445	0.5038	4.9404	27.887	1.0918
JIS weighted avg	0,7591	7,4445	0.5038	4,9404	27,887	1.0918
Median	0.7591	7,4445	0.5038	4.9404	27.887	1.0918
Maximum ;	0.7591	7,4445	0.5038	4.9404	27,887	1.0918

Fig. 33

results of tensile test of conventional artificial valves by means of decellularization cell method by SDS

Testing machine					Extension				
Load in full-scale	5 kgf			Rated capacity of load cell	100	N		***********	
Range of load	40 400		Rated capacity of the extensometer	20 cm		***************************************			
Range of the extensometer	unapplie	d •			Test Speed	10.0	mm/min		
Recording speed off			~ ~~~~~		Rigidity of the testing machine	o	mm/kgf	******	
Midpoint (load)	Q	0		a	Midpoint	0	50		80
N	0	0		0	(extension)	0	0 0		Q
Analysis of	Interval	1		50	Initial length Distance be	etween chunks	10	mm .	
Elastic moduli	Pitch	1	%max		origin in extension initial	l load point	0.03	N	
slack correction	applied				Determination of rupture point	0.5	N		
Storing SS curve	ON						***************************************	.,.,.,,.,.,	

TestID=17	Maximum	Maximum	Rupture	Rupture	Elastic
	load	load	load	load	Modulus
Test No.	kgf	N	kgf	N	MPa
1	1.0401	10.200	1.0284	10.085	2.5168
2	0.7095	6.9574	0.6856	6.7231	1.4561
3	0.7142	7.0038	0.6339	8.2164	1.4976
4	0.8572	8.4063	0.8503	8.3387	1,6630
5	0.6693	8.5839	0.8813	6,4847	1,1928
Average	0.7981	7.8263	0.7718	7.5696	1,6653
JIS weighted avg	0.9198	9.0180	0.9040	8.8649	2.0527
Median	0,7142	7.0038	0.6856	6.7231	1,4976
Maximum	1,0401	. 10,200	1.0284	10.085	2.5188
SD(n-1)	0.1529	1.4996	0,1883	1.8313	0,6050
SD(n)	0.1368	1.3413	0,1488	1.4591	.0.4517

Fig. 34

Fig. 35

Fig. 36

Fig. 37

Fig. 38

Fig. 39

Fig. 40

Fig. 41

Fig. 42

Fig. 43

Fig. 44

No remaining cells gamma-irradiation: 15kGy No remaining cells No remaining cells X200, staining, remaining cells native observed * HE

Fig. 45A

substantially free of remaining gamma-irradiation: 15kGy 2.5 2.0 1.5 1.0 0.5 substantially free of remaining DNA 2.5 2.0 1.5 1.0 0.5 assay/sample (µg/mg), No remaining DNA 2.5 2.0 1.5 1.0 0.5 DNA native remaining observed * DNA 2.0 1.5 0, 0.5

Fig. 45B

kGy		<u>ب</u>		.		4	substantially free of remaining DNA
151		2.5	2.0	+	1.0	0.5	sub of DNA
(μg/mg), gamma-irradiation: 15kGy		2.5 ┌	2.0	£:	1.0	0.5	substantially free of remaining DNA
		2.5	2.0	5.	1.0	0.5 –	remaining DNA observed
* DNA assay/sample	native	2.5	2.0 –	1.5	1.0 –	0.5 –	remaining DNA observed
₩ ₩				•			

Fig. 46

15kGy No remaining gamma-irradiation: proteins 9.0 0.5 0.4 0.2 0.3 No remaining proteins observed proteins 0.4 0.3 0.1 assay/sample (mg/mg), remaining 9.0 0.4 0.3 proteins observed native *protein remaining 0.4 0.3 0.1

Fig. 48

Fig. 49

*HE staining,	one week after	week after transplantation,		gamma-irradiation:15kGy
native	Glutaraldehyde (horse heart valve)			
Immunological rejection reaction observed	Immunological rejection reaction observed	No immunological rejection reaction	No immunological rejection	No immunological rejection reaction

:.. ·

Fig. 50

rejection reaction No immunological two months after transplantation, gamma-irradiation: 15kGy rejection reaction rejection reaction No immunological No immunological rejection reaction (horse heart valve) Glutaraldehyde Immunological observed rejection reaction staining, native Immunological observed * HE

Fig. 51

two months after transplantation, gamma-irradiation:15kGy No calcification reaction No calcification reaction No calcification reaction Calcification reaction observed Glutaraldehyde (horse heart valve) *von Kossa staining, No calcification native reaction

Fig. 52

No calcification *Investigation of the calcification/sample (mg/mg), two months after reaction 2.5 2.0 1.5 1.0 0.5 No calcification reaction 2.5 2.0 1.5 0. 0.5 No calcification gamma-irradiation:15kGy reaction 2.5 2.0 1.5 1.0 0.5 reaction observed Glutaraldehyde (horse heart valve) Calcification 2.5 2.0 1.5 0.5 1.0 transplantation, No calcification native reaction 2.5 2.0 1.5 1.0

Fig. 53

Fig. 54

Fig. 55

553bp

(1) native porcine valve (n=5)

Fig. 56

Fig. 57

 $553 \mathrm{bp}$

(1) native porcine valves

(2) the decellularized porcine valves removed from the host thirty days after transplantation

Marker (3) (4) (1)

(3) the decellularized porcine valves removed from fifty-six days after transplantation

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.