Package 'phenofit'

January 23, 2024

Type Package

Title Extract Remote Sensing Vegetation Phenology

Version 0.3.9

Description The merits of 'TIMESAT' and 'phenopix' are adopted. Besides, a simple and growing season dividing method and a practical snow elimination method based on Whittaker were proposed. 7 curve fitting methods and 4 phenology extraction methods were provided. Parameters boundary are considered for every curve fitting methods according to their ecological meaning.

And 'optimx' is used to select best optimization method for different curve fitting methods.

Reference:

Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>;

Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. <doi:10.1029/2020JG005636>;

Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine.

ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24;

Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013).

Agric. For. Meteorol. 248, 408–417. <doi:10.1016/j.agrformet.2017.10.026>.

License GPL-2 | file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

LinkingTo Rcpp, RcppArmadillo

Depends R (>= 3.1)

Imports Rcpp, purrr, dplyr (>= 1.1.0), stringr, magrittr, lubridate, data.table, zoo, gridExtra, ggplot2, optimx, ucminf, numDeriv, methods, zeallot

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

URL https://github.com/eco-hydro/phenofit

 ${\bf BugReports}\ {\tt https://github.com/eco-hydro/phenofit/issues}$

VignetteBuilder knitr **NeedsCompilation** yes

Author Dongdong Kong [aut, cre],

Mingzhong Xiao [aut],

Yongqiang Zhang [aut],

Xihui Gu [aut],

Jianjian Cui [aut]

Maintainer Dongdong Kong <kongdd.sysu@gmail.com>

Repository CRAN

Date/Publication 2024-01-23 06:50:02 UTC

R topics documented:

A_NS6	. 3
heck_input	
heck ylu	
, urvefit	
urvefits	
urvefits_LocalModel	. 10
ndpeaks	
itDL	. 14
_goal	. 16
et_fitting	. 17
et_GOF	. 17
et_param	. 19
et_pheno	
60F	. 22
nput_single	. 23
ogistic	. 23
OD13A1	. 25
novmean	. 26
ptim_pheno	. 26
pt_FUN	. 28
henoDeriv	
henoGu	. 31
henoKl	
henoTrs	. 34
lot_curvefits	
lot_input	. 37
lot_season	. 38
cFUN	. 39
c_sentinel2	
wSG	. 41

CA_NS	6																								3
	season_mov set_options smooth_wHANTS smooth_wSG smooth_wWHIT . whit2 wSELF																· · · · · ·				 · · · · · ·	 	 	 	45 48 49 50 52
Index																									55
CA_N	 S6	MOD	13A	11	EVI	! ol	osei	rva	ati	on	s c	ıt j	flи	x s	sit	e (CA	-N	Se	<u> </u>		 	 		

Description

Variables in CA-NS6:

- site: site name
- y: EVI
- date: date of image
- t: date of compositing image
- w: weights of data point
- QC_flag: QC flag of y, in the range of c("snow", "cloud", "shadow", "aerosol", "marginal", "good")

Usage

```
data('CA_NS6')
```

Format

An object of class data. table (inherits from data.frame) with 161 rows and 6 columns.

check_input	check_input		
-------------	-------------	--	--

Description

Check input data, interpolate NA values in y, remove spike values, and set weights for NA in y and w.

4 check_input

Usage

```
check_input(
  t,
 у,
 w,
 QC_flag,
 nptperyear,
  south = FALSE,
 wmin = 0.2,
 wsnow = 0.8,
 ymin,
 missval,
 maxgap,
 alpha = 0.02,
 alpha_high = NULL,
 date_start = NULL,
 date_end = NULL,
 mask_spike = TRUE,
 na.rm = FALSE,
)
```

Arguments t

У	Numeric vector, vegetation index time-series
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0.
QC_flag	Factor (optional) returned by qcFUN, levels should be in the range of c("snow", "cloud", "shadow", "aerosol", "marginal", "good"), others will be categoried into others. QC_flag is used for visualization in get_pheno() and plot_curvefits().
nptperyear	Integer, number of images per year.
south	Boolean. In south hemisphere, growing year is 1 July to the following year 31 June; In north hemisphere, growing year is 1 Jan to 31 Dec.
wmin	Double, minimum weight of bad points, which could be smaller the weight of snow, ice and cloud.
wsnow	Doulbe. Reset the weight of snow points, after get ylu. Snow flag is an important flag of ending of growing season. Snow points is more valuable than marginal points. Hence, the weight of snow should be great than that of marginal.
ymin	If specified, ylu[1] is constrained greater than ymin. This value is critical for bare, snow/ice land, where vegetation amplitude is quite small. Generally, you can set ymin=0.08 for NDVI, ymin=0.05 for EVI, ymin=0.5 gC m-2 s-1 for GPP.
missval	Double, which is used to replace NA values in y. If missing, the default value is $ylu[1]$.

Numeric vector, Date variable

check_input 5

Integer, nptperyear/4 will be a suitable value. If continuous missing value nummaxgap bers less than maxgap, then interpolate those NA values by zoo::na.approx; If false, then replace those NA values with a constant value ylu[1]. Replacing NA values with a constant missing value (e.g. background value ymin) is inappropriate for middle growing season points. Interpolating all values by na.approx, it is unsuitable for large number continous missing segments, e.g. in the start or end of growing season. alpha Double, in [0,1], quantile prob of ylu_min. alpha_high Double, [0,1], quantile prob of ylu_max. If not specified, alpha_high=alpha. date_start, date_end starting and ending date of the original vegetation time-sereis (before add_HeadTail) Boolean. Whether to remove spike values? mask_spike Boolean. If TRUE, NA and spike values will be removed; otherwise, NA and na.rm spike values will be interpolated by valid neighbours. Others will be ignored.

Value

A list object returned:

- t : Numeric vector
- y0: Numeric vector, original vegetation time-series.
- y : Numeric vector, checked vegetation time-series, NA values are interpolated.
- w: Numeric vector
- Tn: Numeric vector
- ylu: = [ymin, ymax]. w_critical is used to filter not too bad values.

If the percentage good values (w=1) is greater than 30\

The else, if the percentage of $w \ge 0.5$ points is greater than $10\ w_critical = 0.5$. In boreal regions, even if the percentage of $w \ge 0.5$ points is only $10\$

We can't rely on points with the wmin weights. Then,

```
y_good = y[w >= w_critical],
ymin = pmax( quantile(y_good, alpha/2), 0)
ymax = max(y_good).
```

6 curvefit

check_ylu

check_ylu

Description

Curve fitting values are constrained in the range of ylu. Only constrain trough value for a stable background value. But not for peak value.

Usage

```
check_ylu(yfit, ylu)
```

Arguments

```
yfit Numeric vector, curve fitting result ylu limits of y value, [ymin, ymax]
```

Value

yfit, the numeric vector in the range of ylu.

Examples

```
check_ylu(1:10, c(2, 8))
```

curvefit

Fine curve fitting

Description

Curve fit vegetation index (VI) time-series of every growing season using fine curve fitting methods.

```
curvefit(
   y,
   t = index(y),
   tout = t,
   methods = c("AG", "Beck", "Elmore", "Gu", "Klos", "Zhang"),
   w = NULL,
   ...,
   type = 1L,
   use.cpp = FALSE
)
```

curvefit 7

Arguments

у	Vegetation time-series index, numeric vector
t	The corresponding doy of x
tout	The output interpolated time.
methods	Fine curve fitting methods, can be one or more of c('AG', 'Beck', 'Elmore', 'Gu', 'Klos', 'Zhang').
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be \mbox{wmin} , the others will be 1.0.
	other parameters passed to curve fitting function.
type	integer, 1 or -1
	• 1: trough-to-trough curve fitting
	• -1: peak-to-peak curve fitting
use.cpp	(unstable, not used) boolean, whether to use c++ defined fine fitting function? If FALSE, R version will be used.

Value

```
fFITs S3 object, see fFITs() for details.
```

Note

'Klos' have too many parameters. It will be slow and not stable.

See Also

```
fFITs()
```

```
library(phenofit)
# simulate vegetation time-series
FUN = doubleLog.Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t          <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout = tout, methods)</pre>
```

8 curvefits

curvefits	Fine Curve fitting	

Description

Fine Curve fitting for INPUT time-series.

Usage

```
curvefits(INPUT, brks, options = list(), ...)
```

Arguments

INPUT	A list object with the elements of 't', 'y', 'w', 'Tn' (optional) and 'ylu', returned by check_input.
brks	A list object with the elements of 'fit' and 'dt', returned by season or season_mov, which contains the growing season division information.
options	see section: options for fitting for details.
	other parameters to curvefit()

Value

List of phenofit fitting object.

options for fitting

- methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more 'Beck', 'Elmore', 'Zhang', 'Gu', 'Klos')'. Note that 'Gu' and 'Klos' are very slow.
- iters (default 2): max iterations of fine fitting.
- wFUN (default wTSM): Character or function, weights updating function of fine fitting function.
- wmin (default 0.1): min weights in the weights updating procedure.
- use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input? If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If true, original input y will be used (rough fitting is used to divide growing seasons and update weights.
- use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note that not for curve fitting. y0 is the original value before the process of check_input.
- nextend (default 2): Extend curve fitting window, until nextend good or marginal points are found in the previous and subsequent growing season.
- maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent maxExtendMonth period.
- minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth, should be no shorter than minExtendMonth. When all points of the input time-series are good value, then the extending period will be too short. In that situation, we can't make sure the connection between different growing seasons is smoothing.

curvefits 9

• minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is less than minPercValid, curve fiting result is set to NA.

• minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

See Also

```
FitDL()
```

```
data("CA_NS6")
d = CA_NS6
nptperyear <- 23
INPUT <- check_input(d$t, d$y, d$w, QC_flag = d$QC_flag,</pre>
     nptperyear = nptperyear, south = FALSE,
     maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)
# plot_input(INPUT)
# Rough fitting and growing season dividing
wFUN <- "wTSM"
brks2 <- season_mov(INPUT,</pre>
    options = list(
        rFUN = "smooth_wWHIT", wFUN = wFUN,
        r_{min} = 0.05, ypeak_{min} = 0.05,
        lambda = 10,
        verbose = FALSE
    ))
# plot_season(INPUT, brks2, d)
# Fine fitting
fits <- curvefits(</pre>
    INPUT, brks2,
    options = list(
        methods = c("AG", "Beck", "Elmore", "Zhang"), #,"klos", "Gu"
        wFUN = wFUN,
        nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2
    )
)
r_param = get_param(fits)
r_pheno = get_pheno(fits)
r_gof = get_GOF(fits)
d_fit = get_fitting(fits)
g <- plot_curvefits(d_fit, brks2)</pre>
grid::grid.newpage(); grid::grid.draw(g)
```

10 curvefits_LocalModel

curvefits_LocalModel curvefits by local model functions of TIMESAT

Description

Local model functions $f_L(t)$, $f_C(t)$ and $f_R(t)$ describe the VI variation in intervals around the left minima, the central maxima and the right minima.

Local model function are merged into global model function via merge_LocalModels() and Per Λ "onsson et al. (2004; their Eq. 12), where cut-off function sharply drop from 1 to 0 in small intervals around $(t_L + t_C)/2$ and $(t_C + t_R)/2$.

$$F(t) = \begin{cases} \alpha(t)f_L(t) + [1 - \alpha(t)]f_C(t), t_L < t < t_C \\ \beta(t)f_C(t) + [1 - \beta(t)]f_R(t), t_C < t < t_R \end{cases}$$

Usage

```
curvefits_LocalModel(INPUT, brks, options = list(), ...)
merge_LocalModels(fits)
```

Arguments

INPUT	A list object with the elements of 't', 'y', 'w', 'Tn' (optional) and 'ylu', returned by check_input.
brks	A list object with the elements of 'fit' and 'dt', returned by season or season_mov, which contains the growing season division information.
options	see section: options for fitting for details.
	other parameters to curvefit()
fits	List objects returned by curvefits LocalModel() (not curvefits()).

options for fitting

- methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more 'Beck', 'Elmore', 'Zhang', 'Gu', 'Klos')'. Note that 'Gu' and 'Klos' are very slow.
- iters (default 2): max iterations of fine fitting.
- wFUN (default wTSM): Character or function, weights updating function of fine fitting function.
- wmin (default 0.1): min weights in the weights updating procedure.
- use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input? If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If true, original input y will be used (rough fitting is used to divide growing seasons and update weights.
- use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note that not for curve fitting. y0 is the original value before the process of check_input.

curvefits_LocalModel

• nextend (default 2): Extend curve fitting window, until nextend good or marginal points are found in the previous and subsequent growing season.

11

- maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent maxExtendMonth period.
- minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth, should be no shorter than minExtendMonth. When all points of the input time-series are good value, then the extending period will be too short. In that situation, we can't make sure the connection between different growing seasons is smoothing.
- minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is less than minPercValid, curve fiting result is set to NA.
- minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

References

1. Per J\"onsson, P., Eklundh, L., 2004. TIMESAT - A program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833-845. doi:10.1016/j.cageo.2004.05.006.

See Also

```
curvefits()
```

```
## Not run:
library(phenofit)
data("CA_NS6")
d = CA_NS6
nptperyear <- 23
INPUT <- check_input(d$t, d$y, d$w, QC_flag = d$QC_flag,</pre>
     nptperyear = nptperyear, south = FALSE,
     maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)
# plot_input(INPUT)
# Rough fitting and growing season dividing
wFUN <- "wTSM"
brks2 <- season_mov(INPUT,</pre>
    options = list(
        rFUN = "smooth_wWHIT", wFUN = wFUN,
        r_{min} = 0.05, ypeak_{min} = 0.05,
        lambda = 10,
        verbose = FALSE
# plot_season(INPUT, brks2, d)
# Fine fitting
fits <- curvefits_LocalModel(</pre>
    INPUT, brks2,
```

12 findpeaks

```
options = list(
       methods = c("AG", "Beck", "Elmore", "Zhang", "Gu"), #,"klos", "Gu"
       wFUN = wFUN,
       nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2
   ),
   constrain = TRUE
# merge local model function into global model function
fits_merged = merge_LocalModels(fits)
l_fitting = map(fits %>% guess_names, get_fitting) #%>% melt_list("period")
d_merged = get_fitting(fits_merged[[2]]) %>% cbind(type = "Merged")
d_{raw} = l_{fitting[2:4]} \%\% set_{names(c("Left", "Central", "Right")) \%\%
   melt_list("type")
d_{obs} = d_{raw[, .(t, y, QC_flag)] \%}\% unique()
d_fit = rbind(d_merged, d_raw)[meth == "Zhang"]
levs = c("Left", "Central", "Right", "Merged")
levs_new = glue("({letters[1:4]}) {levs}") %>% as.character()
d_fit$type %<>% factor(levs, levs_new)
p = ggplot(d_obs, aes(t, y)) +
   geom_point() +
   geom_line(data = d_fit, aes(t, ziter2, color = type)) +
   facet_wrap(~type) +
   labs(x = "Date", y = "EVI") +
   scale_x_date(date_labels = "%b %Y", expand = c(1, 1)*0.08) +
   theme_bw(base_size = 13) +
   theme(legend.position = "none",
         strip.text = element_text(size = 14))
p
## End(Not run)
```

findpeaks

findpeaks

Description

Find peaks (maxima) in a time series. This function is modified from pracma::findpeaks.

```
findpeaks(
    x,
    nups = 1,
    ndowns = nups,
    zero = "0",
```

findpeaks 13

```
peakpat = NULL,
minpeakheight = -Inf,
minpeakdistance = 1,
h_min = 0,
h_max = 0,
npeaks = 0,
sortstr = FALSE,
include_gregexpr = FALSE,
IsPlot = F
```

Arguments

	NT	
X	Numeric	vector.

nups minimum number of increasing steps before a peak is reached

ndowns minimum number of decreasing steps after the peak

zero can be +, -, or 0; how to interprete succeeding steps of the same value: increas-

ing, decreasing, or special

peakpat define a peak as a regular pattern, such as the default pattern [+]{1,}[-]{1,}; if

a pattern is provided, the parameters nups and ndowns are not taken into account

minpeakheight The minimum (absolute) height a peak has to have to be recognized as such

minpeakdistance

The minimum distance (in indices) peaks have to have to be counted. If the distance of two maximum extreme value less than minpeakdistance, only the

real maximum value will be left.

h_min h is defined as the difference of peak value to the adjacent left and right trough

value (h_left and h_right respectively). The real peaks should follow min(h_left,

h_right) >= h_min.

h_max Similar as h_min, the real peaks should follow max(h_left, h_right) >= h_min.

npeaks the number of peaks to return. If sortstr = true, the largest npeaks maximum

values will be returned; If sortstr = false, just the first npeaks are returned in

the order of index.

sortstr Boolean, Should the peaks be returned sorted in decreasing oreder of their max-

imum value?

include_gregexpr

Boolean (default FALSE), whether to include the matched gregexpr?

IsPlot Boolean, whether to plot?

Note

In versions before v0.3.4, findpeaks(c(1, 2, 3, 4, 4, 3, 1)) failed to detect peaks when a flat pattern exit in the middle.

From version v0.3.4, the peak pattern was changed from [+]{%d,}[-]{%d,} to [+]{%d,}[0]{0,}[-]{%d,}. The latter can escape the flat part successfully.

14 FitDL

Examples

```
x <- seq(0, 1, len = 1024)
pos <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81)
hgt <- c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
wdt <- c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005)
pSignal <- numeric(length(x))
for (i in seq(along=pos)) {
    pSignal <- pSignal + hgt[i]/(1 + abs((x - pos[i])/wdt[i]))^4
}
plot(pSignal, type="1", col="navy"); grid()
x <- findpeaks(pSignal, npeaks=3, h_min=4, sortstr=TRUE)
points(val~pos, x$X, pch=20, col="maroon")</pre>
```

FitDL

Fine fitting

Description

Fine curve fitting function is used to fit vegetation time-series in every growing season.

Usage

```
FitDL.Zhang(y, t = index(y), tout = t, method = "nlm", w, type = 1L, ...)
FitDL.AG(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)
FitDL.AG2(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)
FitDL.Beck(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)
FitDL.Elmore(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)
FitDL.Gu(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)
FitDL.Klos(y, t = index(y), tout = t, method = "BFGS", w, type = 1L, ...)
```

Arguments

```
y input vegetation index time-series.

t the corresponding doy(day of year) of y.

tout the time of output curve fitting time-series.

method method passed to optimx or optim function.

w weights

type integer, 1 or -1
```

FitDL 15

- 1: trough-to-trough curve fitting
- -1: peak-to-peak curve fitting

... other paraters passed to optim_pheno().

Value

- tout: The time of output curve fitting time-series.
- zs : Smoothed vegetation time-series of every iteration.
- ws : Weights of every iteration.
- par : Final optimized parameter of fine fitting.
- fun: The name of fine fitting.

References

- Beck, P.S.A., Atzberger, C., Hogda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2005.10.021.
- 2. Elmore, A.J., Guinn, S.M., Minsley, B.J., Richardson, A.D., 2012. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Chang. Biol. 18, 656-674. https://doi.org/10.1111/j.1365-2486.2011.02521.x.
- 3. Gu, L., Post, W.M., Baldocchi, D.D., Black, TRUE.A., Suyker, A.E., Verma, S.B., Vesala, TRUE., Wofsy, S.C., 2009. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types, in: Noormets, A. (Ed.), Phenology of Ecosystem Processes: Applications in Global Change Research. Springer New York, New York, NY, pp. 35-58. https://doi.org/10.1007/978-1-4419-0026-5_2.
- 4. https://github.com/cran/phenopix/blob/master/R/FitDoubleLogGu.R

```
# simulate vegetation time-series
t     <- seq(1, 365, 8)
par     <- c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
y     <- doubleLog.Beck(par, t)
data <- data.frame(t, y)
# methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang")
tout <- seq(1, 365, 1)
r <- FitDL.Elmore(y, t, tout)

plot(r, data)
get_GOF(r, data)
get_param(r)</pre>
```

16 f_goal

Goal function of fine curve fitting methods

Description

Goal function of fine curve fitting methods

Usage

```
f_goal(par, fun, y, t, pred, w, ylu, ...)
```

Arguments

par	A vector of parameters
fun	A curve fitting function, can be one of doubleAG, doubleLog.Beck, doubleLog.Elmore, doubleLog.Gu, doubleLog.Klos, doubleLog.Zhang, see Logistic() for details.
у	Numeric vector, vegetation index time-series
t	Numeric vector, Date variable
pred	Numeric Vector, predicted values
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0.
ylu	[ymin, ymax], which is used to force ypred in the range of ylu.
	others will be ignored.

Value

RMSE Root Mean Square Error of curve fitting values.

get_fitting 17

get_fitting

getFittings

Description

Get curve fitting data.frame

Usage

```
get_fitting(x)
## S3 method for class 'list'
get_fitting(x)
## S3 method for class 'fFITs'
get_fitting(x)
```

Arguments

x

fFITs object returned by curvefit(), or list of fFITs objects

Examples

get_GOF

get_GOF

Description

Goodness-of-fitting (GOF) of fine curve fitting results.

get_GOF

Usage

```
get_GOF(x, ...)
## S3 method for class 'list'
get_GOF(x, ...)
## S3 method for class 'fFITs'
get_GOF(x, ...)
## S3 method for class 'fFIT'
get_GOF(x, data, ...)
```

Arguments

```
x fFITs object returned by curvefit(), or list of fFITs objects
... ignored.

A data.frame with the columns of c('t', 'y')
```

Value

- meth: The name of fine curve fitting method
- RMSE: Root Mean Square Error
- NSE: Nash-Sutcliffe model efficiency coefficient
- R: Pearson-Correlation
- R2: determined coefficient
- pvalue: pvalue of R
- n: The number of observations

References

- 1. https://en.wikipedia.org/wiki/Nash-Sutcliffe_model_efficiency_coefficient
- 2. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

See Also

```
curvefit()
```

```
library(phenofit)
# simulate vegetation time-series
FUN = doubleLog.Beck
par = c( mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t         <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)</pre>
```

get_param 19

get_param

Get parameters from curve fitting result

Description

Get parameters from curve fitting result

Usage

```
get_param(x)
## S3 method for class 'list'
get_param(x)
## S3 method for class 'fFITs'
get_param(x)
## S3 method for class 'fFIT'
get_param(x)
```

Arguments

Χ

fFITs object returned by curvefit(), or list of fFITs objects

Value

A list of tibble with the length being equal to the number of methods. Each line of tibble cotains the corresponding parameters of each growing season.

```
library(phenofit)
# simulate vegetation time-series
FUN = doubleLog.Beck
par = c( mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t      <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object</pre>
```

20 get_pheno

```
fits <- list(`2001` = fit, `2002` = fit) # multiple years

l_param <- get_param(fits)
d_GOF <- get_GOF(fits)
d_fitting <- get_fitting(fits)
l_pheno <- get_pheno(fits, "AG", IsPlot=TRUE)</pre>
```

get_pheno

get_pheno

Description

Get yearly vegetation phenological metrics of a curve fitting method

```
get_pheno(x, ...)
## S3 method for class 'rfit'
get_pheno(x, TRS = c(0.2, 0.5), asymmetric = TRUE, ...)
## S3 method for class 'list'
get_pheno(
 х,
 method,
 TRS = c(0.2, 0.5, 0.6),
  analytical = FALSE,
  smoothed.spline = FALSE,
  IsPlot = FALSE,
  show.title = TRUE,
)
## S3 method for class 'fFITs'
get_pheno(
  Х,
 method,
 TRS = c(0.2, 0.5),
  analytical = FALSE,
  smoothed.spline = FALSE,
  IsPlot = FALSE,
  title.left = "",
  show.PhenoName = TRUE,
)
```

get_pheno 21

Arguments

x	One of:
	 rfit (rought fitting object), returned by brks2rfit().
	• fFITs (fine fitting object), return by multiple curve fitting methods by curvefit() for a growing season.
	• list of fFITs() object, for multiple growing seasons.
	ignored.
TRS	Threshold for PhenoTrs.
asymmetric	If true, background value in spring season and autumn season is regarded as different.
method	Which fine curve fitting method to be extracted?
analytical	If true, numDeriv package grad and hess will be used; if false, D1 and D2 will be used.
smoothed.spline	e
	Whether apply smooth.spline first?
IsPlot	Boolean. Whether to plot figure?
show.title	Whether to show the name of fine curve fitting method in top title?
title.left	String of growing season flag.
show.PhenoName	Whether to show phenological methods names in the top panel?
fFITs	fFITs object returned by curvefits()

Value

List of every year phenology metrics

22 GOF

GOF GOF

Description

Good of fitting

Usage

```
GOF(Y_obs, Y_sim, w, include.r = TRUE, include.cv = FALSE)
```

Arguments

Y_obs Numeric vector, observations
Y_sim Numeric vector, corresponding simulated values

W Numeric vector, weights of every points. If w included, when calculating mean, Bias, MAE, RMSE and NSE, w will be taken into considered.

include.r If true, r and R2 will be included.

include.cv If true, cv will be included.

Value

- RMSE root mean square error
- · NSE NASH coefficient
- MAE mean absolute error
- AI Agreement index (only good points (w == 1)) participate to calculate. See details in Zhang et al., (2015).
- Bias bias
- Bias_perc bias percentage
- n_sim number of valid obs
- · cv Coefficient of variation
- R2 correlation of determination
- R pearson correlation
- pvalue pvalue of R

References

Zhang Xiaoyang (2015), http://dx.doi.org/10.1016/j.rse.2014.10.012

```
Y_obs = rnorm(100)
Y_sim = Y_obs + rnorm(100)/4
GOF(Y_obs, Y_sim)
```

input_single 23

input_single

input object with one growing season per year

Description

Variables in input_single:

- t: date of compositing image
- y: EVI
- w: weights of data point
- ylu: lower and upper boundary
- nptperyear: points per year
- south: boolean, whether in south Hemisphere?

Usage

```
data('input_single')
```

Format

An object of class list of length 6.

Logistic

Fine fitting functions

Description

double logistics, piecewise logistics and many other functions to curve fit VI time-series.

```
Logistic(par, t)

doubleLog.Zhang(par, t)

doubleLog.AG(par, t)

doubleLog.AG2(par, t)

doubleLog.Beck(par, t)

doubleLog.Elmore(par, t)

doubleLog.Gu(par, t)

doubleLog.Klos(par, t)
```

24 Logistic

Arguments

par A vector of parameters
t A Date or numeric vector

Details

- Logistic The traditional simplest logistic function. It can be only used in half growing season, i.e. vegetation green-up or senescence period.
- doubleLog. Zhang Piecewise logistics, (Zhang Xiaoyang, RSE, 2003).
- doubleAG Asymmetric Gaussian.
- doubleLog.Beck Beck logistics.
- doubleLog.Gu Gu logistics.
- doubleLog.Elmore Elmore logistics.
- doubleLog.Klos Klos logistics.

All of those function have par and formula attributes for the convenience for analytical D1 and D2

References

- Beck, P.S.A., Atzberger, C., Hogda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2005.10.021.
- 2. Elmore, A.J., Guinn, S.M., Minsley, B.J., Richardson, A.D., 2012. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Chang. Biol. 18, 656-674. https://doi.org/10.1111/j.1365-2486.2011.02521.x.
- 3. Gu, L., Post, W.M., Baldocchi, D.D., Black, TRUE.A., Suyker, A.E., Verma, S.B., Vesala, TRUE., Wofsy, S.C., 2009. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types, in: Noormets, A. (Ed.), Phenology of Ecosystem Processes: Applications in Global Change Research. Springer New York, New York, NY, pp. 35-58. https://doi.org/10.1007/978-1-4419-0026-5_2.
- 4. Peter M. Atkinson, et al., 2012, RSE, 123:400-417
- 5. https://github.com/cran/phenopix/blob/master/R/FitDoubleLogGu.R

MOD13A1 25

```
get_GOF(r, data)
get_param(r)
```

MOD13A1

MOD13A1

Description

```
A data.table dataset, raw data of MOD13A1 data, clipped in 10 representative points ('DE-Obe', 'IT-Col', 'CN-Cha', 'AT-Neu', 'ZA-Kru', 'AU-How', 'CA-NS6', 'US-KS2', 'CH-Oe2', 'CZ-wet').
```

Usage

```
data('MOD13A1')
```

Format

An object of class list of length 2.

Details

Variables in MOD13A1:

- dt: vegetation index data
 - system:index:imageindex
 - DayOfYear: Numeric, Julian day of year
 - DayOfYear: corresponding doy of compositing NDVI and EVI
 - DetailedQA: VI quality indicators
 - SummaryQA: Quality reliability of VI pixel
 - EVI: Enhanced Vegetation Index
 - NDVI: Normalized Difference Vegetation Index
 - date: Date, corresponding date
 - site: String, site name
 - sur_refl_b01: Red surface reflectance
 - sur_refl_b02: NIR surface reflectance
 - sur_refl_b03: Blue surface reflectance
 - sur_refl_b07: MIR surface reflectance
 - .geo: geometry
- st: station info
 - ID: site ID
 - site: site name
 - lat: latitude
 - lon: longitude
 - IGBPname: IGBP land cover type

26 optim_pheno

References

1. https://code.earthengine.google.com/dataset/MODIS/006/MOD13A1

Description

NA and Inf values in the yy will be ignored automatically.

Usage

```
movmean(y, halfwin = 1L, SG_style = FALSE, w = NULL)
```

Arguments

У	A numeric vector.
halfwin	Integer, half of moving window size
SG_style	If true, head and tail values will be in the style of SG (more weights on the center point), else traditional moving mean style.
W	Corresponding weights of yy, same long as yy.

Examples

```
x <- 1:100
x[50] <- NA; x[80] <- Inf
s1 <- movmean(x, 2, SG_style = TRUE)
s2 <- movmean(x, 2, SG_style = FALSE)</pre>
```

Description

Interface of optimization functions for double logistics and other parametric curve fitting functions.

optim_pheno 27

Usage

```
optim_pheno(
 prior,
  sFUN,
 у,
  t,
  tout,
 method,
 nptperyear,
 ylu,
  iters = 2,
 wFUN = wTSM,
 lower = -Inf,
  upper = Inf,
  constrain = TRUE,
  verbose = FALSE,
 use.cpp = FALSE
)
```

Arguments

use.cpp

prior	A vector of initial values for the parameters for which optimal values are to be found. prior is suggested giving a column name.
sFUN	The name of fine curve fitting functions, can be one of 'FitAG', 'FitDL.Beck', 'FitDL.Elmore', 'FitDL.Elmore', 'FitDL.Beck', 'FitDL.Elmore', 'FitDL.Elmore', 'FitDL.Beck', 'FitDL.Elmore', 'FitDL.Beck', 'FitDL.Beck
у	Numeric vector, vegetation index time-series
t	Numeric vector, Date variable
tout	Corresponding doy of prediction.
method	The name of optimization method to solve fine fitting, one of 'BFGS', 'CG', 'Nelder-Mead', 'L-BFGS-B and 'spg', 'Rcgmin', 'Rvmmin', 'newuoa', 'bobyqa', 'nmkb', 'hjkb'.
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0.
nptperyear	Integer, number of images per year, passed to wFUN. Only wTSM() needs nptperyear. If not specified, nptperyear will be calculated based on t.
ylu	[ymin, ymax], which is used to force ypred in the range of ylu.
iters	How many times curve fitting is implemented.
wFUN	weights updating function, can be one of 'wTSM', 'wChen' and 'wBisquare'.
lower, upper	vectors of lower and upper bounds, replicated to be as long as start. If unspecified, all parameters are assumed to be unconstrained.
constrain	boolean, whether to use parameter constrain
verbose	Whether to display intermediate variables?

(unstable, not used) boolean, whether to use c++ defined fine fitting function? If

other parameters passed to I_optim() or I_optimx().

FALSE, R version will be used.

28 opt_FUN

Value

A fFIT() object, with the element of:

- tout: The time of output curve fitting time-series.
- zs : Smoothed vegetation time-series of every iteration.
- ws : Weights of every iteration.
- par : Final optimized parameter of fine fitting.
- fun: The name of fine fitting.

See Also

```
fFIT(), stats::nlminb()
```

Examples

opt_FUN

Unified optimization function

Description

I_optimx is rich of functionality, but with a low computing performance. Some basic optimization functions are unified here, with some input and output format.

- opt_ncminf General-Purpose Unconstrained Non-Linear Optimization, see ucminf::ucminf().
- opt_nlminb Optimization using PORT routines, see stats::nlminb().
- opt_nlm Non-Linear Minimization, stats::nlm().
- opt_optim General-purpose Optimization, see stats::optim().

opt_FUN 29

Usage

```
opt_ucminf(par0, objective, ...)
opt_nlm(par0, objective, ...)
opt_optim(par0, objective, method = "BFGS", ...)
opt_nlminb(par0, objective, ...)
```

Arguments

par0 Initial values for the parameters to be optimized over.

Objective A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result.

Other parameters passed to objective.

method optimization method to be used in p_optim. See stats::optim().

Value

- convcode: An integer code. 0 indicates successful convergence. Various methods may or may not return sufficient information to allow all the codes to be specified. An incomplete list of codes includes
 - 1: indicates that the iteration limit maxit had been reached.
 - 20: indicates that the initial set of parameters is inadmissible, that is, that the function cannot be computed or returns an infinite, NULL, or NA value.
 - 21: indicates that an intermediate set of parameters is inadmissible.
 - 10: indicates degeneracy of the Nelder–Mead simplex.
 - 51: indicates a warning from the "L-BFGS-B" method; see component message for further details.
 - 52: indicates an error from the "L-BFGS-B" method; see component message for further details.
 - 9999: error
- value: The value of fn corresponding to par
- par: The best parameter found
- nitns: the number of iterations
- fevals: The number of calls to objective.

See Also

```
optim_pheno(), I_optim()
```

30 PhenoDeriv

Examples

```
library(phenofit)
library(ggplot2)
library(magrittr)
library(purrr)
library(data.table)
# simulate vegetation time-series
fFUN = doubleLog_Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
par0 = c(mn = 0.15, mx = 0.65, sos = 100, rsp = 0.12, eos = 200, rau = 0.12)
     <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- fFUN(par, t)</pre>
optFUNs <- c("opt_ucminf", "opt_nlminb", "opt_nlm", "opt_optim") %>% set_names(., .)
opts <- lapply(optFUNs, function(optFUN){</pre>
   optFUN <- get(optFUN)</pre>
   opt <- optFUN(par0, f_goal, y = y, t = t, fun = fFUN)
    opt$ysim <- fFUN(opt$par, t)</pre>
    opt
})
# visualization
df <- map(opts, "ysim") %>% as.data.table() %>% cbind(t, y, .)
pdat <- data.table::melt(df, c("t", "y"), variable.name = "optFUN")</pre>
ggplot(pdat) +
    geom\_point(data = data.frame(t, y), aes(t, y), size = 2) +
   geom_line(aes(t, value, color = optFUN), linewidth = 0.9)
```

PhenoDeriv

Phenology extraction in Derivative method (DER)

Description

Phenology extraction in Derivative method (DER)

```
PhenoDeriv(x, t, ...)
## S3 method for class 'fFIT'
PhenoDeriv(x, t = NULL, analytical = FALSE, smoothed.spline = FALSE, ...)
## Default S3 method:
PhenoDeriv(x, t, der1, IsPlot = TRUE, show.legend = TRUE, ...)
```

PhenoGu 31

Arguments

x numeric vector, or fFIT object returned by curvefit().

t doy vector, corresponding doy of vegetation index.

... Other parameters will be ignored.

analytical If true, numDeriv package grad and hess will be used; if false, D1 and D2 will

be used.

smoothed.spline

Whether apply smooth.spline first?

der1 the first order difference

IsPlot whether to plot?

show.legend whether show figure lelend?

References

1. Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., ... Richardson, A. D. (2016). Phenopix: A R package for image-based vegetation phenology. Agricultural and Forest Meteorology, 220, 141–150. doi:10.1016/j.agrformet.2016.01.006

See Also

```
PhenoTrs(), PhenoGu(), PhenoKl()
```

PhenoGu

Phenology extraction in GU method (GU)

Description

Phenology extraction in GU method (GU)

```
PhenoGu(x, t, ...)
## S3 method for class 'fFIT'
PhenoGu(x, t = NULL, analytical = FALSE, smoothed.spline = FALSE, ...)
## Default S3 method:
PhenoGu(x, t, der1, IsPlot = TRUE, ...)
```

32 PhenoGu

Arguments

Value

A numeric vector, with the elements of:

- UD: upturn date
- SD: stabilisation date
- DD: downturn date
- RD: recession date

References

- Gu, L., Post, W. M., Baldocchi, D. D., Black, T. A., Suyker, A. E., Verma, S. B., ... Wofsy, S. C. (2009). Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types. In A. Noormets (Ed.), Phenology of Ecosystem Processes: Applications in Global Change Research (pp. 35–58). New York, NY: Springer New York. doi:10.1007/9781441900265
- 2. Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., ... Richardson, A. D. (2016). Phenopix: A R package for image-based vegetation phenology. Agricultural and Forest Meteorology, 220, 141–150. doi:10.1016/j.agrformet.2016.01.006

```
# `doubleLog.Beck` simulate vegetation time-series
t     <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
par = c( mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
x <- fit$model$AG # one model

par(mfrow = c(2, 2))
PhenoTrs(x)
PhenoBeriv(x)
PhenoGu(x)
PhenoKl(x)</pre>
```

PhenoKl 33

PhenoK1

Phenology extraction in Inflection method (Zhang)

Description

Phenology extraction in Inflection method (Zhang)

Usage

```
PhenoKl(
    fFIT,
    t = NULL,
    analytical = FALSE,
    smoothed.spline = FALSE,
    IsPlot = TRUE,
    show.legend = TRUE,
    ...
)
```

Arguments

fFIT object return by curvefit()

t doy vector, corresponding doy of vegetation index.

analytical If true, numDeriv package grad and hess will be used; if false, D1 and D2 will be used.

smoothed.spline
Whether apply smooth.spline first?

IsPlot whether to plot?

show.legend whether show figure lelend?
... Other parameters will be ignored.

Value

A numeric vector, with the elements of: Greenup, Maturity, Senescence, Dormancy.

References

1. Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F. F., Gao, F., ... Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471–475. doi:10.1016/S00344257(02)001359

34 PhenoTrs

Examples

```
# `doubleLog.Beck` simulate vegetation time-series
t     <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
par = c( mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
x <- fit$model$AG # one model

par(mfrow = c(2, 2))
PhenoTrs(x)
PhenoBeriv(x)
PhenoGu(x)
PhenoKl(x)</pre>
```

PhenoTrs

Phenology extraction in Threshold method (TRS)

Description

Phenology extraction in Threshold method (TRS)

```
PhenoTrs(
  х,
  t = NULL,
  approach = c("White", "Trs"),
  trs = 0.5,
  asymmetric = TRUE,
  IsPlot = TRUE,
)
## S3 method for class 'fFIT'
PhenoTrs(x, t = NULL, ...)
## Default S3 method:
PhenoTrs(
  Х,
  t = NULL,
  approach = c("White", "Trs"),
  trs = 0.5,
  asymmetric = TRUE,
  IsPlot = TRUE,
)
```

plot_curvefits 35

Arguments

x numeric vector, or fFIT object returned by curvefit().

t doy vector, corresponding doy of vegetation index.

approach to be used to calculate phenology metrics. 'White' (White et al. 1997) or 'Trs' for simple threshold.

trs threshold to be used for approach "Trs", in (0, 1).

asymmetric If true, background value in spring season and autumn season is regarded as different.

IsPlot whether to plot?

other parameters to PhenoPlot

See Also

```
PhenoDeriv(), PhenoGu(), PhenoKl()
```

Examples

```
# `doubleLog.Beck` simulate vegetation time-series
t     <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
par = c( mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
x <- fit$model$AG # one model

par(mfrow = c(2, 2))
PhenoTrs(x)
PhenoBeriv(x)
PhenoGu(x)
PhenoKl(x)</pre>
```

plot_curvefits

plot_curvefits

Description

```
plot_curvefits
```

```
plot_curvefits(
  d_fit,
  seasons,
  d_obs = NULL,
```

36 plot_curvefits

```
title = NULL,
xlab = "Time",
ylab = "Vegetation Index",
yticks = NULL,
font.size = 14,
theme = NULL,
cex = 2,
shape = "point",
angle = 30,
show.legend = TRUE,
layer_extra = NULL,
...
)
```

Arguments

d_fit data.frame of curve fittings returned by get_fitting(). growing season division object returned by season() and season_mov(). seasons data.frame of original vegetation time series, with the columns of t, y and d_obs QC_flag. If not specified, it will be determined from d_fit. title String, title of figure. xlab, ylab String, title of xlab and ylab. ticks of y axis yticks font.size Font size of axis.text theme ggplot theme cex point size for VI observation. the shape of input VI observation? line or point shape angle text.x angle show.legend Boolean layer_extra (not used) extra ggplot layers ignored . . .

plot_input 37

```
options = list(
        rFUN = "smooth_wWHIT", wFUN = wFUN,
        r_{min} = 0.05, ypeak_{min} = 0.05,
        lambda = 10,
        verbose = FALSE
    ))
# plot_season(INPUT, brks2, d)
# Fine fitting
fits <- curvefits(</pre>
    INPUT, brks2,
    options = list(
        methods = c("AG", "Beck", "Elmore", "Zhang"), #,"klos", "Gu"
        wFUN = wFUN,
        nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2
    )
)
r_param = get_param(fits)
r_pheno = get_pheno(fits)
r_gof = get_GOF(fits)
d_fit = get_fitting(fits)
g <- plot_curvefits(d_fit, brks2)</pre>
grid::grid.newpage(); grid::grid.draw(g)
```

plot_input

Plot INPUT returned by check_input

Description

Plot INPUT returned by check_input

Usage

```
plot_input(INPUT, wmin = 0.2, show.y0 = TRUE, ylab = "VI", ...)
```

Arguments

INPUT	A list object with the elements of t , y , w , Tn (optional) and ylu , returned by $check_input()$.
wmin	double, minimum weigth (i.e. weight of snow, ice and cloud).
show.y0	boolean. Whether to show original time-series y0 or processed time-series y by check_input()?
ylab	y axis title
	other parameter will be ignored.

38 plot_season

Examples

plot_season

plot_season

Description

Plot growing season divding result.

Usage

```
plot_season(
   INPUT,
   brks,
   plotdat,
   IsPlot.OnlyBad = FALSE,
   show.legend = TRUE,
   ylab = "VI",
   title = NULL,
   show.shade = TRUE,
   margin = 0.35
)
```

Arguments

INPUT A list object with the elements of t, y, w, Tn (optional) and ylu, returned by

check_input().

brks A list object returned by season or season_mov.

plotdat (optional) A list or data.table, with t, y and w. Only if IsPlot=TRUE, plot_input()

will be used to plot. Known that y and w in INPUT have been changed, we sug-

gest using the original data.table.

IsPlot.OnlyBad If true, only plot partial figures whose NSE < 0.3.

show.legend Whether to show legend?

ylab y axis title

title The main title (on top)

show.shade Boolean, period inside growing cycle colored as shade?

margin ylim = c(ymin, ymax + margin * A); A = ymax - ymin.

qcFUN 39

qcFUN Initial weights according to qc

Description

- getBits: Extract bitcoded QA information from bin value
- qc_summary: Initial weigths based on Quality reliability of VI pixel, suit for MOD13A1, MOD13A2 and MOD13Q1 (SummaryQA band).
- qc_51: Initial weights based on Quality control of five-level confidence score, suit for MCD15A3H(LAI, FparLai_QC), MOD17A2H(GPP, Psn_QC) and MOD16A2(ET, ET_QC).
- qc_StateQA: Initial weights based on StateQA, suit for MOD09A1, MYD09A1.
- qc_FparLai: For MODIS LAI
- qc_NDVI3g: For AVHRR NDVI3g
- qc_NDVIv4: For AVHRR NDVIv4

Usage

```
getBits(x, start, end = start)

qc_summary(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_StateQA(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_FparLai(QA, FparLai_QC = NULL, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_51(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_NDVIv4(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_NDVI3g(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_SPOT(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
```

Arguments

X	Binary value
start	Bit starting position, count from zero
end	Bit ending position
QA	quality control variable
wmin	Double, minimum weigth (i.e. weight of snow, ice and cloud).
wmid	Dougle, middle weight, i.e. marginal
wmax	Double, maximum weight, i.e. good
FparLai_QC	Another QC flag of MCD15A3H

40 qc_sentinel2

Details

```
If FparLai_QC specified, I_margin = SCF_QC >= 2 & SCF_QC <= 3.
```

Value

A list object with

- weigths: Double vector, initial weights.
- QC_flag: Factor vector, with the level of c("snow", "cloud", "shadow", "aerosol", "marginal", "good")

Note

```
qc_51 and qc_NDVIv4 only returns weight, without QC_flag.
```

References

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A1 https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD15A3H Erwin Wolters, Else Swinnen, Carolien Toté, Sindy Sterckx. SPOT-VGT COLLECTION 3 PROD-UCTS USER MANUAL V1.2, 2018, P47

See Also

```
qc_sentinel2()
```

Examples

```
set.seed(100)
QA <- as.integer(runif(100, 0, 2^7))

r1 <- qc_summary(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r2 <- qc_StateQA(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r_51 <- qc_51(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r_NDVI3g <- qc_NDVI3g(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r_NDVIv4 <- qc_NDVIv4(QA, wmin = 0.2, wmid = 0.5, wmax = 1)</pre>
```

qc_sentinel2

Initial weights for sentinel2 according to SCL band

rcpp_wSG 41

Description

SCL Value	Description	Quality	weight
1	Saturated or defective	Bad	w_{min}
2	Dark Area Pixels	Bad	w_{min}
3	Cloud Shadows	Bad	w_{min}
4	Vegetation	Good	w_{max}
5	Bare Soils	Good	w_{max}
6	Water	Good	w_{max}
7	Clouds Low Probability / Unclassified	Good	w_{max}
8	Clouds Medium Probability	Marginal	w_{mid}
9	Clouds High Probability	Bad	w_{mid}
10	Cirrus	Good	w_{mid}
11	Snow / Ice	Bad	w_{mid}

Usage

```
qc_sentinel2(SCL, wmin = 0.2, wmid = 0.5, wmax = 1)
```

Arguments

wmin Double, minimum weigth (i.e. weight of snow, ice and cloud). wmid Dougle, middle weight, i.e. marginal wmax Double, maximum weight, i.e. good	SCL	quality control variable for sentinel2
	wmin	Double, minimum weigth (i.e. weight of snow, ice and cloud).
wmax Double, maximum weight, i.e. good	wmid	Dougle, middle weight, i.e. marginal
	wmax	Double, maximum weight, i.e. good

References

 $https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR$

Examples

```
qc_sentinel2(1:11)
```

rcpp_wSG	Weighted Savitzky-Golay written in RcppArmadillo

Description

NA and Inf values in the yy has been ignored automatically.

42 season_mov

Usage

```
rcpp_wSG(y, halfwin = 1L, d = 1L, w = NULL)
rcpp_SG(y, halfwin = 1L, d = 1L)
```

Arguments

y colvec

halfwin of Savitzky-Golay

d polynomial of degree. When d = 1, it becomes moving average.

w colvec of weight

Examples

```
y <- 1:15
w <- seq_along(y)/length(y)

frame = 5
d = 2
s1 <- rcpp_wSG(y, frame, d, w)
s2 <- rcpp_SG(y, frame, d)</pre>
```

season_mov

Moving growing season division

Description

Moving growing season division

Usage

```
season_mov(INPUT, options = list(), ..., years.run = NULL)
```

Arguments

INPUT A list object with the elements of t, y, w, Tn (optional) and ylu, returned by

check_input().

options see the following section options for season for details.

... others parameter to set_options()

years.run Numeric vector. Which years to run? If not specified, it is all years.

season_mov 43

options for season

(a) Parameters for rough fitting:

• rFUN: character (default smooth_wWHIT), the name of rough curve fitting function, can be one of c("smooth_wSG", "smooth_wWHIT", "smooth_wHANTS"), which are corresponding to smooth_wSG(), smooth_wWHIT() and smooth_wHANTS().

- wFUN: character (default wTSM), the name of weights updating functions, can be one of c("wTSM", "wChen", "wBisquare", "wSELF"). See wTSM(), wChen(), wBisquare() and wSELF() for details.
- iters: integer (default 2), the number of rough fitting iterations.
- wmin: double, the minimum weight of bad points (i.e. snow, ice and cloud).
- verbose : logical (default FALSE). If TRUE, options\$season will be printed on the console.
- lambda: double (default NULL), the smoothing parameter of smooth_wWHIT().
 - If lambda = NULL, V-curve theory will be employed to find the optimal lambda. See lambda_vcurve() for details.
- frame: integer (default NULL), the parameter of smooth_wSG(), moving window size.
 - If frame = NULL, frame will be reset as floor(nptperyear/5)*2 + 1 (refered by TIME-SAT).
- nf: integer (default 4), the number of frequencies in smooth_wHANTS().
- maxExtendMonth: integer (default 12), previous and subsequent maxExtendMonth (in month) data were added to the current year for rough fitting.
- nextend: integer (default NULL), same as maxExtendMonth, but in points.
 - If nextend provided, maxExtendMonth will be ignored.
 - If nextend = NULL, nextend will be reset as ceiling(maxExtendMonth/12*nptperyear)

(b) Parameters for growing season division:

- minpeakdistance: double (default NULL), the minimum distance of two peaks (in points). If the distance of two maximum extreme value less than minpeakdistance, only the maximum one will be kept.
 - If minpeakdistance = NULL, it will be reset as nptperyear/6.
- r_max : double (default 0.2; in (0, 1)). r_max and r_min are used to eliminate fake peaks and troughs.
 - The real peaks should satisfy:
 - 1. $max(h_{peak,L}, h_{peak,R}) > r_{max}A$
 - 2. $min(h_{peak,L}, h_{peak,R}) > r_{min}A$, where $h_{peak,L}, h_{peak,R}$ are height difference from the peak to the left- and right-hand troughs.
 - The troughs should satisfy:
 - 1. $max(h_{trough,L}, h_{trough,R}) > r_{max}A$, where $h_{trough,L}, h_{trough,R}$ are height difference from the trough to the left- and right-hand peaks.
- r_min: double (default 0.05; in (0, 1)), see above r_max for details. r_min < r_max.
- rtrough_max : double (default 0.6, in (0, 1)), $y_{peak} \le rtrough_max * A + ylu[1]$.
- ypeak_min : double 0.1 (in VI unit), $y_{peak}>=ypeak_min$.
- .check_season : logical (default TRUE). check the growing season length according to len_min and len_max. If FALSE, len_min and len_max will lose their effect.
- len_min: integer (default 45), the minimum length (in days) of growing season

44 season_mov

- len_max : integer (default 650), the minimum length (in days) of growing season
- adj.param: logical. If TRUE (default), if there are too many or too less peaks and troughs, phenofit will automatically adjust rough curve fitting function parameters. See MaxPeaksPerYear and MaxTroughsPerYear for details.
- MaxPeaksPerYear (optional): integer (default 2), the max number of peaks per year. If PeaksPerYear > MaxPeaksPerYear, then lambda = lambda*2.
- MaxTroughsPerYear (optional): integer (default 3), the max number of troughs per year. If TroughsPerYear > MaxTroughsPerYear, then lambda = lambda*2.
- calendarYear: logical (default FALSE). If TRUE, the start and end of a calendar year will be regarded as growing season division (North Hemisphere is from 01 Jan to 31 Dec; South Hemisphere is from 01 Jul to 30 Jun).
- rm.closed: logical (default TRUE). If TRUE, closed peaks (or troughs) will be further tidied. Only the maximum
- is.continuous (not used): logical (default TRUE). This parameter is for fluxnet2015 fluxsite data, where the input might be not continuous.

References

- Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. https://doi.org/10.1029/2020JG005636
- 2. Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13-24.

See Also

```
season()
```

Examples

```
data("CA_NS6")
d <- CA_NS6
nptperyear <- 23
INPUT <- check_input(d$t, d$y, d$w,</pre>
    QC_flag = dQC_flag,
    nptperyear = nptperyear, south = FALSE,
    maxgap = nptperyear / 4, alpha = 0.02, wmin = 0.2
)
# curve fitting by year
brks_mov <- season_mov(INPUT,</pre>
    options = list(
        rFUN = "smooth_wWHIT", wFUN = "wTSM",
        lambda = 10,
        r_{min} = 0.05, ypeak_{min} = 0.05,
        verbose = TRUE
   )
)
```

set_options 45

```
plot_season(INPUT, brks_mov)

rfit <- brks2rfit(brks_mov)
# Phenological Metrics from rough fitting
r <- get_pheno(rfit)</pre>
```

set_options

set and get phenofit option

Description

set and get phenofit option

Usage

```
set_options(..., options = NULL)
get_options(names = NULL)
```

Arguments

. . .

list of phenofit options FUN_season: character, season_mov or season rFUN: character, rough fitting function. $smooth_wWHIT$, $smooth_wSG$ or $smooth_wHANTs$.

options

If not NULL, options will overwrite the default parameters (get_options()).

- qcFUN: function to process qc flag, see qcFUN() for details.
- nptperyear : Integer, number of images per year.
- wFUN: character (default wTSM), the name of weights updating functions, can be one of c("wTSM", "wChen", "wBisquare", "wSELF"). See wTSM(), wChen(), wBisquare() and wSELF() for details.
 - If options\$season\$wFUN or options\$season\$wFUN is NULL, the options\$wFUN will overwrite it.
- wmin: double, the minimum weigth of bads points (i.e. snow, ice and cloud).
 - If options\$season\$wmin or options\$season\$wmin is NULL, the options\$wmin will overwrite it.
- season: See the following part: options for season for details.
- fitting: See the following part: options for fitting for details.

names

vector of character, names of options

options for season

(a) Parameters for rough fitting:

• rFUN: character (default smooth_wWHIT), the name of rough curve fitting function, can be one of c("smooth_wSG", "smooth_wWHIT", "smooth_wHANTS"), which are corresponding to smooth_wSG(), smooth_wWHIT() and smooth_wHANTS().

46 set_options

• wFUN: character (default wTSM), the name of weights updating functions, can be one of c("wTSM", "wChen", "wBisquare", "wSELF"). See wTSM(), wChen(), wBisquare() and wSELF() for details.

- iters: integer (default 2), the number of rough fitting iterations.
- wmin: double, the minimum weight of bad points (i.e. snow, ice and cloud).
- verbose: logical (default FALSE). If TRUE, options\$season will be printed on the console.
- lambda: double (default NULL), the smoothing parameter of smooth_wWHIT().
 - If lambda = NULL, V-curve theory will be employed to find the optimal lambda. See lambda_vcurve() for details.
- frame: integer (default NULL), the parameter of smooth_wSG(), moving window size.
 - If frame = NULL, frame will be reset as floor(nptperyear/5)*2 + 1 (refered by TIME-SAT).
- nf: integer (default 4), the number of frequencies in smooth_wHANTS().
- maxExtendMonth: integer (default 12), previous and subsequent maxExtendMonth (in month) data were added to the current year for rough fitting.
- nextend: integer (default NULL), same as maxExtendMonth, but in points.
 - If nextend provided, maxExtendMonth will be ignored.
 - If nextend = NULL, nextend will be reset as ceiling(maxExtendMonth/12*nptperyear)

(b) Parameters for growing season division:

- minpeakdistance: double (default NULL), the minimum distance of two peaks (in points). If the distance of two maximum extreme value less than minpeakdistance, only the maximum one will be kept.
 - If minpeakdistance = NULL, it will be reset as nptperyear/6.
- r_max : double (default 0.2; in (0, 1)). r_max and r_min are used to eliminate fake peaks and troughs.
 - The real peaks should satisfy:
 - 1. $max(h_{peak,L}, h_{peak,R}) > r_{max}A$
 - 2. $min(h_{peak,L}, h_{peak,R}) > r_{min}A$, where $h_{peak,L}, h_{peak,R}$ are height difference from the peak to the left- and right-hand troughs.
 - The troughs should satisfy:
 - 1. $max(h_{trough,L}, h_{trough,R}) > r_{max}A$, where $h_{trough,L}, h_{trough,R}$ are height difference from the trough to the left- and right-hand peaks.
- $r_min : double (default 0.05; in (0, 1)), see above <math>r_max for details. r_min < r_max.$
- rtrough_max : double (default 0.6, in (0, 1)), $y_{peak} <= rtrough_max * A + ylu[1]$.
- ypeak_min : double 0.1 (in VI unit), $y_{peak} >= ypeak_min$.
- .check_season : logical (default TRUE). check the growing season length according to len_min and len_max. If FALSE, len_min and len_max will lose their effect.
- len_min: integer (default 45), the minimum length (in days) of growing season
- len_max : integer (default 650), the minimum length (in days) of growing season
- adj.param: logical. If TRUE (default), if there are too many or too less peaks and troughs, phenofit will automatically adjust rough curve fitting function parameters. See MaxPeaksPerYear and MaxTroughsPerYear for details.
- MaxPeaksPerYear (optional) : integer (default 2), the max number of peaks per year. If PeaksPerYear > MaxPeaksPerYear, then lambda = lambda*2.

set_options 47

 MaxTroughsPerYear (optional): integer (default 3), the max number of troughs per year. If TroughsPerYear > MaxTroughsPerYear, then lambda = lambda*2.

- calendarYear: logical (default FALSE). If TRUE, the start and end of a calendar year will be regarded as growing season division (North Hemisphere is from 01 Jan to 31 Dec; South Hemisphere is from 01 Jul to 30 Jun).
- rm.closed: logical (default TRUE). If TRUE, closed peaks (or troughs) will be further tidied. Only the maximum
- is.continuous (not used): logical (default TRUE). This parameter is for fluxnet2015 fluxsite data, where the input might be not continuous.

options for fitting

- methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more 'Beck', 'Elmore', 'Zhang', 'Gu', 'Klos')'. Note that 'Gu' and 'Klos' are very slow.
- iters (default 2): max iterations of fine fitting.
- wFUN (default wTSM): Character or function, weights updating function of fine fitting function.
- wmin (default 0.1): min weights in the weights updating procedure.
- use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input? If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If true, original input y will be used (rough fitting is used to divide growing seasons and update weights.
- use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note that not for curve fitting. y0 is the original value before the process of check_input.
- nextend (default 2): Extend curve fitting window, until nextend good or marginal points are found in the previous and subsequent growing season.
- maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent maxExtendMonth period.
- minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth, should be no shorter than minExtendMonth. When all points of the input time-series are good value, then the extending period will be too short. In that situation, we can't make sure the connection between different growing seasons is smoothing.
- minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is less than minPercValid, curve fiting result is set to NA.
- minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

Examples

```
set_options(verbose = FALSE)
get_options("season") %>% str()
```

48 smooth_wHANTS

 ${\tt smooth_wHANTS}$

Weighted HANTS SMOOTH

Description

Weighted HANTS smoother

Usage

```
smooth_wHANTS(
   y,
   t,
   w,
   nf = 3,
   ylu,
   periodlen = 365,
   nptperyear,
   wFUN = wTSM,
   iters = 2,
   wmin = 0.1,
   ...
)
```

Arguments

у	Numeric vector, vegetation index time-series
t	Numeric vector, Date variable
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0.
nf	number of frequencies to be considered above the zero frequency
ylu	[low, high] of time-series y (curve fitting values are constrained in the range of ylu.
periodlen	length of the base period, measured in virtual samples (days, dekads, months, etc.). nptperyear in timesat.
nptperyear	Integer, number of images per year.
wFUN	weights updating function, can be one of 'wTSM', 'wChen' and 'wBisquare'.
iters	How many times curve fitting is implemented.
wmin	Double, minimum weigth (i.e. weight of snow, ice and cloud).
	Additional parameters are passed to wFUN.

Value

- ws: weights of every iteration
- zs: curve fittings of every iteration

smooth_wSG 49

Author(s)

Wout Verhoef, NLR, Remote Sensing Dept. June 1998 Mohammad Abouali (2011), Converted to MATLAB Dongdong Kong (2018), introduced to R and modified into weighted model.

Examples

```
library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu", ]

l <- check_input(d$t, d$y, d$w, nptperyear=23)
r_wHANTS <- smooth_wHANTS(1$y, 1$t, 1$w, ylu = 1$ylu, nptperyear = 23, iters = 2)</pre>
```

 ${\tt smooth_wSG}$

Weighted Savitzky-Golay

Description

Weighted Savitzky-Golay

Usage

```
smooth_wSG(
   y,
   w,
   nptperyear,
   ylu,
   wFUN = wTSM,
   iters = 2,
   frame = floor(nptperyear/5) * 2 + 1,
   d = 2,
   ...
)
```

Arguments

У	Numeric vector, vegetation index time-series	
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0.	
nptperyear	Integer, number of images per year.	
ylu	(optional) [low, high] value of time-series y (curve fitting values are constrained in the range of ylu.	
wFUN	weights updating function, can be one of 'wTSM', 'wChen' and 'wBisquare'.	
iters	How many times curve fitting is implemented.	
frame	Savitzky-Golay windows size	

50 smooth_wWHIT

```
d polynomial of degree. When d = 1, it becomes moving average.... Additional parameters are passed to wFUN.
```

Value

- ws: weights of every iteration
- zs: curve fittings of every iteration

References

- 1. Chen, J., J\"onsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 91, 332-344. https://doi.org/10.1016/j.rse.2004.03.014.
- 2. https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter

Examples

```
library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu", ]

l <- check_input(d$t, d$y, d$w, nptperyear=23)
r_wSG <- smooth_wSG(l$y, l$w, l$ylu, nptperyear = 23, iters = 2)</pre>
```

smooth_wWHIT

Weigthed Whittaker Smoother

Description

Weigthed Whittaker Smoother

Usage

```
smooth_wWHIT(
   y,
   w,
   ylu,
   nptperyear,
   wFUN = wTSM,
   iters = 1,
   lambda = 15,
   second = FALSE,
   ...
)
```

smooth_wWHIT 51

Arguments

У	Numeric vector, vegetation index time-series
W	(optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0 .
ylu	[low, high] of time-series y (curve fitting values are constrained in the range of ylu.
nptperyear	Integer, number of images per year.
wFUN	weights updating function, can be one of 'wTSM', 'wChen' and 'wBisquare'.
iters	How many times curve fitting is implemented.
lambda	scaler or numeric vector, whittaker parameter.
	• If lambda = NULL, V-curve theory will be applied to retrieve the optimal lambda.
	• If multiple lambda provided (numeric vector), a list of the smoothing results with the same length of lambda will be returned.
second	If true, in every iteration, Whittaker will be implemented twice to make sure curve fitting is smooth. If curve has been smoothed enough, it will not care about the second smooth. If no, the second one is just prepared for this situation. If lambda value has been optimized, second smoothing is unnecessary.
	Additional parameters are passed to wFUN.

Value

- ws: weights of every iteration
- zs: curve fittings of every iteration

Note

Whittaker smoother of the second order difference is used!

References

- 1. Eilers, P.H.C., 2003. A perfect smoother. Anal. Chem. doi:10.1021/ac034173t
- 2. Frasso, G., Eilers, P.H.C., 2015. L- and V-curves for optimal smoothing. Stat. Modelling 15, 91-111. doi:10.1177/1471082X14549288.

See Also

```
lambda_vcurve()
```

Examples

```
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu", ]

1 <- check_input(d$t, d$y, d$w, nptperyear=23)</pre>
```

52 whit2

```
r_wWHIT <- smooth_wWHIT(1$y, 1$w, 1$ylu, nptperyear = 23, iters = 2)

## Optimize `lambda` by V-curve theory
# (a) optimize manually
lambda_vcurve(1$y, 1$w, plot = TRUE)

# (b) optimize automatically by setting `lambda = NULL` in smooth_wWHIT
r_wWHIT2 <- smooth_wWHIT(1$y, 1$w, 1$ylu, nptperyear = 23, iters = 2, lambda = NULL) #</pre>
```

whit2

Weighted Whittaker smoothing with a second order finite difference penalty

Description

This function smoothes signals with a finite difference penalty of order 2. This function is modified from ptw package.

Usage

```
whit2(y, lambda, w = rep(1, ny))
```

Arguments

y signal to be smoothed: a vector

lambda smoothing parameter: larger values lead to more smoothing

w weights: a vector of same length as y. Default weights are equal to one

Value

A numeric vector, smoothed signal.

Author(s)

Paul Eilers, Jan Gerretzen

References

- 1. Eilers, P.H.C. (2004) "Parametric Time Warping", Analytical Chemistry, **76** (2), 404 411.
- 2. Eilers, P.H.C. (2003) "A perfect smoother", Analytical Chemistry, 75, 3631 3636.

wSELF 53

Examples

```
library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
y <- dt[site == "AT-Neu", ][1:120, y]

plot(y, type = "b")
lines(whit2(y, lambda = 2), col = 2)
lines(whit2(y, lambda = 10), col = 3)
lines(whit2(y, lambda = 100), col = 4)
legend("bottomleft", paste("lambda = ", c(2, 10, 15)), col = 2:4, lty = rep(1, 3))</pre>
```

wSELF

Weight updating functions

Description

- wSELF weigth are not changed and return the original.
- wTSM weight updating method in TIMESAT.
- wBisquare Bisquare weight update method. wBisquare has been modified to emphasis on upper envelope.
- wBisquare0 Traditional Bisquare weight update method.
- wChen Chen et al., (2004) weight updating method.
- wBeck Beck et al., (2006) weigth updating method. wBeck need sos and eos input. The function parameter is different from others. It is still not finished.

Usage

```
wSELF(y, yfit, w, ...)
wTSM(y, yfit, w, iter = 2, nptperyear, wfact = 0.5, ...)
wBisquare0(y, yfit, w, ..., wmin = 0.2)
wBisquare(y, yfit, w, ..., wmin = 0.2, .toUpper = TRUE)
wChen(y, yfit, w, ..., wmin = 0.2)
wKong(y, yfit, w, ..., wmin = 0.2)
```

Arguments

y Numeric vector, vegetation index time-series
yfit Numeric vector curve fitting values.
w (optional) Numeric vector, weights of y. If not specified, weights of all NA values will be wmin, the others will be 1.0.

54 wSELF

... other parameters are ignored. iter iteration of curve fitting.

nptperyear Integer, number of images per year.

wfact weight adaptation factor (0-1), equal to the reciprocal of 'Adaptation strength'

in TIMESAT.

wmin Double, minimum weight of bad points, which could be smaller the weight of

snow, ice and cloud.

. toUpper Boolean. Whether to approach the upper envelope?

Value

wnew Numeric Vector, adjusted weights.

Author(s)

wTSM is implemented by Per J\"onsson, Malm\"o University, Sweden <per.jonsson@ts.mah.se> and Lars Eklundh, Lund University, Sweden <lars.eklundh@nateko.lu.se>. And Translated into Rcpp by Dongdong Kong, 01 May 2018.

References

- 1. Per J\"onsson, P., Eklundh, L., 2004. TIMESAT A program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833-845. https://doi.org/10.1016/j.cageo.2004.05.006.
- 2. https://au.mathworks.com/help/curvefit/smoothing-data.html#bq_6ys3-3
- 3. Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational statistics & data analysis, 54(4), pp.1167-1178.
- 4. Chen, J., J\"onsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 91, 332-344. https://doi.org/10.1016/j.rse.2004.03.014.
- 5. Beck, P.S.A., Atzberger, C., Hogda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2005.10.021
- $6. \ https://github.com/kongdd/phenopix/blob/master/R/FitDoubleLogBeck.R$

Index

* datasets	GOF, 22
CA_NS6, 3	I_optim(), 27, 29
input_single, 23 MOD13A1, 25	I_optimx(), 27
MOD 13A1, 23	input_single, 23
brks2rfit(), <i>21</i>	11,540_011,810, 20
	lambda_vcurve(), 43, 46, 51
CA_NS6, 3	Logistic, 23
check_input, 3	Logistic(), 16
check_input(), <i>37</i> , <i>38</i> , <i>42</i>	
check_ylu, 6	merge_LocalModels
curvefit, 6	(curvefits_LocalModel), 10
curvefit(), 8, 10, 17–19, 21, 31–33, 35	merge_LocalModels(), 10
curvefits, 8	MOD13A1, 25
curvefits(), 10, 11, 21	movmean, 26
curvefits_LocalModel, 10	opt_FUN, 28
<pre>curvefits_LocalModel(), 10</pre>	opt_nlm(opt_FUN), 28
doubleLog.AG(Logistic), 23	opt_nlminb (opt_FUN), 28
doubleLog.AG2 (Logistic), 23	opt_optim (opt_FUN), 28
doubleLog.Beck (Logistic), 23	opt_ucminf (opt_FUN), 28
doubleLog.Elmore (Logistic), 23	optim_pheno, 26
doubleLog.Gu (Logistic), 23	optim_pheno(), 15, 29
doubleLog.Klos(Logistic), 23	
doubleLog.Zhang (Logistic), 23	PhenoDeriv, 30
doubletog. Zhang (togratio), 23	PhenoDeriv(), 35
f_goal, 16	PhenoGu, 31
fFIT(), 28	PhenoGu(), <i>31</i> , <i>35</i>
fFITs(), 7, 21	PhenoGu.default(), 32
findpeaks, 12	PhenoGu.fFIT(), 32
FitDL, 14	PhenoK1, 33
FitDL(),9	PhenoK1(), <i>31</i> , <i>35</i>
	PhenoTrs, 34
get_fitting, 17	PhenoTrs(), 31
get_fitting(), 36	plot_curvefits,35
get_GOF, 17	plot_curvefits(),4
<pre>get_options (set_options), 45</pre>	plot_input, 37
get_param, 19	$plot_input(), 38$
get_pheno, 20	plot_season, 38
get_pheno(), 4	51 (51N) 20
getBits (qcFUN), 39	qc_51 (qcFUN), 39

56 INDEX

```
qc_FparLai (qcFUN), 39
qc_NDVI3g (qcFUN), 39
qc_NDVIv4 (qcFUN), 39
qc_sentinel2, 40
qc_sentinel2(), 40
qc_SPOT (qcFUN), 39
qc_StateQA (qcFUN), 39
qc_summary (qcFUN), 39
qcFUN, 39
qcFUN(), 45
rcpp_SG (rcpp_wSG), 41
rcpp_wSG, 41
season(), 36, 44
season\_mov, 42
season_mov(), 36
set_options, 45
set_options(), 42
smooth_wHANTS, 48
smooth_wHANTS(), 43, 45, 46
smooth_wSG, 49
smooth_wSG(), 43, 45, 46
smooth_wWHIT, 50
smooth_wWHIT(), 43, 45, 46
stats::nlm(), 28
stats::nlminb(), 28
stats::optim(), 28, 29
ucminf::ucminf(), 28
wBisquare (wSELF), 53
wBisquare(), 43, 45, 46
wBisquare0 (wSELF), 53
wChen (wSELF), 53
wChen(), 43, 45, 46
whit2, 52
wKong (wSELF), 53
wSELF, 53
wSELF(), 43, 45, 46
wTSM (wSELF), 53
wTSM(), 27, 43, 45, 46
```