Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 7 de febrero de 2019. Duración: 210 minutos

Ejercicio 1.

a. Sean (G, *, e) un grupo y sea $g \in G$. Definir orden de g en G (que se anota o(g) o bien |g|), sea finito o infinito.

Solución:

Ver la Definición 3.7.6 de las Notas de Teórico. Para facilitar al lector incluimos la definición aquí.

Sea (G, *, e) un grupo y $g \in G$. Definimos el **orden** del elemento g (y lo escribiremos o(g)) de la siguiente manera:

- si $g^n \neq e$ para todo $n \in \mathbb{Z}^+$, decimos que $o(g) = \infty$;
- en caso contrario, definimos $o(g) = \min \{ n \in \mathbb{Z}^+ : g^n = e \}.$
- **b.** Dados un grupo finito (G,*), y elementos $x,y \in G$, tales que xy = yx, con o(x) = a, o(y) = b, m = mcm(a,b) y d = mcd(a,b), entonces, probar que o(xy)|m, y que $\frac{m}{d}|o(xy)$.

Solución:

Recordar que $a \times b = m \times d$, según Proposición 1.2.15 de las Notas de Teórico. Luego, si $a' = \frac{a}{d}$ y $b' = \frac{b}{d}$, entonces $m = a' \times b = a \times b'$, recordando que $\operatorname{mcd}(a',b') = 1$. Por lo tanto $(xy)^m = x^m \times y^m = x^{a \times b'} \times y^{a' \times b} = (x^a)^{b'} \times (y^b)^{a'} = e \times e = e$, donde la

Por lo tanto $(xy)^m = x^m \times y^m = x^{a \times b'} \times y^{a' \times b} = (x^a)^{b'} \times (y^b)^{a'} = e \times e = e$, donde la primer igualdad se basa en que x e y conmutan. Por lo tanto $(xy)^m = e$, con lo cual o(xy) divide a m, obteniendo así lo primero que se pedía.

Ahora probaremos que $\frac{m}{d}$ divide al orden de xy:

Sea s=o(xy), entonces $x^s\times y^s=(xy)^s=e$, donde la primer igualdad se basa en que x e y conmutan. Luego $e=(xy)^{sb}=x^{sb}\times (y^b)^s=x^{sb}$, pues b=o(y), con lo cual $x^{sb}=e$. Entonces o(x)=a|sb, o sea $d\times a'|s\times d\times b'$, por lo tanto a'|b's. Como recordamos antes $\operatorname{mcd}(a',b')=1$, con lo cual, por Lema 1.2.10 de las Notas de Teórico, a'|s. En resumen, hasta aquí hemos probado que a' divide a s=o(xy), pero haciendo un razonamiento simétrico (elevando xy al exponente $s\times a$) obtendremos que b' divide a o(xy). Concluimos que a'|o(xy), b'|o(xy) y $\operatorname{mcd}(a',b')=1$, con lo cual $a'\times b'\mid o(xy)$. Pero $a'\times b'=\frac{m}{d}$, con lo cual hemos probado lo solicitado: $\frac{m}{d}\mid o(xy)$.

c. Considerar el grupo U(19) (también se usa la notación U(19) = \mathbb{Z}_{19}^*) y calcular el orden de 4, 18 y 4 × 18, usando la parte anterior.

Solución:

Es fácil calcular 4^i en U(19), para i=1,2,...: $4^0=1,\ 4^1=4,\ 4^2=16=-3,\ 4^3=-12=7,\ 4^4=9,\ 4^5=-2,\ 4^6=-8,\ 4^7=6,\ 4^8=5,\ 4^9=1$, con lo cual o(4) = 9 en U(19) (recordar que $|\text{U}(19)|=\varphi(19)=18$). Por otro lado 18=-1 en U(19), con lo cual o(18) = 2. Luego mcd(9,2)=1, y recordando que U(19) es conmutativo, entonces, usando la parte anterior, o(15) = o(4 × 18) = $\frac{mcm(9,2)}{mcd(9,2)}=18$. O sea, 15 es raíz primitiva en U(19).

Ejercicio 2.

a. Definir cuándo dos enteros, $x,y\in\mathbb{Z}$ son congruentes módulo $n\in\mathbb{N}^*.$

Enunciar el Teorema de Euler y el Teorema de Fermat.

Solución:

Ver la Definición 2.2.1 de las Notas de Teórico, y los enunciados del Teorema 2.6.5 (Euler) y del Corolario 2.6.6 (Fermat). Adjuntamos aquí, para facilitar la lectura, la definición y ambos enunciados:

Fijado $n \in \mathbb{Z}$, y dados $x,y \in \mathbb{Z}$, decimos que x es congruente con y módulo n y escribimos

$$x \equiv y \pmod{n}$$

si $n \mid x - y$.

En caso contrario escribiremos

$$x \not\equiv y \pmod{n}$$
.

[Teorema de Euler] Sean $n, a \in \mathbb{Z}$ tales que mcd(a, n) = 1, entonces

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

[Teorema de Fermat] Si p es primo y $a \in \mathbb{Z}$ es tal que $p \nmid a$, entonces

$$a^{p-1} \equiv 1 \pmod{p}$$
.

b. Sean p, a, b naturales tales que p es primo, $b \equiv 0 \mod(p-1)$ y p no divide a a. Encontrar (en función de p) el menor natural x que satisface las siguientes condiciones:

$$a^b x^3 + 8x \equiv 5x^2 + 4 \mod(p);$$

 $x \not\equiv 1 \mod(p);$
 $x > p.$

(Sug.: Factorizar el polinomio: $g(x) = x^3 - 5x^2 + 8x - 4$).

Solución:

Factorizamos primero, como sugiere la letra, al polinomio g(x). Es fácil ver que 1 es raíz de g(x) (la suma de los coeficientes es cero). Luego $g(x) = (x-1)(x-2)^2$.

Por otro lado, como $b \equiv 0 \mod(p-1)$, existe $t \in \mathbb{Z}$, tal que $b = (p-1) \times t$.

Luego $a^b = (a^{p-1})^t \equiv 1 \pmod{p}$, por Fermat.

Entonces $a^bx^3 + 8x \equiv 5x^2 + 4 \mod(p) \Leftrightarrow a^bx^3 - 5x^2 + 8x - 4 \equiv 0 \mod(p) \Leftrightarrow x^3 - 5x^2 + 8x - 4 \equiv 0 \mod(p) \Leftrightarrow (x-1)(x-2)^2 \equiv 0 \mod(p)$ por lo probado antes. Esto último es equivalente a que $p|(x-1)(x-2)^2$, con $x \in \mathbb{N}$. Como p es primo, es equivalente a que p|x-1 o p|x-2. Pero p no puede dividir a x-1 pues, por hipótesis, $x \not\equiv 1 \mod(p)$. Luego la única posibilidad es que p|x-2, con $x \in \mathbb{N}$, y esto es equivalente a que $x = h \times p + 2$, con h entero no negativo. Como se pide x > p, tenemos que h tiene que ser positivo. O sea $x = h \times p + 2$, con $h \ge 1$. El menor natural en esas condiciones es x = p + 2.

c. Sea x el natural hallado en la parte anterior. Calcular $(x-p)^{10325}$ mód(35).

Solución:

Como x=p+2, entonces $(x-p)^{10325}$ mód $(35)=(2)^{10325}$ mód(35). Ahora $\varphi(35)=\varphi(5)\varphi(7)=4\times 6=24$, y por otro lado $10325=430\times 24+5$, con lo cual $(2)^{10325}$ mód $(35)=((2)^{24})^{430}\times 2^5$ mód $(35)=(2)^5$ mód(35), por el Teorema de Euler. O sea $(2)^{10325}\equiv 32$ mód(35).

Ejercicio 3.

- a. i) Definir raíz primitiva.
 - ii) Probar que 2 y 22 son raíces primitivas en U(53) (también se usa la notación U(53) = \mathbb{Z}_{53}^*).

Solución:

La definición aparece en las Notas de Teórico, Definición 4.1.1:

Dado un $n \in \mathbb{Z}^+$, un entero $g \in \{1, \dots, n\}$ es raíz primitiva módulo n, si $\langle \overline{g} \rangle = U(n)$.

Para probar que 2 es raíz primitiva en U(53), simplemente calculamos las potencias en base 2.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
2^n	1	2	4	8	16	32	11	22	44	35	17	34	15	30	7	14	28	3	6	12	24	48	43	33	13	26	-1

Vemos que $2^i \not\equiv 1 \mod(53)$, para i=4;26. Pero $\varphi(53)=52=4\times13$. Luego, usando la Proposición 4.1.4 (parte 4) de las Notas de Teórico, concluimos que 2 e raíz primitiva.

A su vez $22 \equiv 2^7 \mod(53)$ según lo visto en la tabla anterior. Como 2 es raíz primitiva en U(53) y $\mod(7,52) = 1$, siendo 52 = |U(53)|, tenemos que $2^7 \equiv 22 \mod(53)$ es también un generador del grupo y por lo tanto raíz primitiva.

- b. Andrea y Basilio acuerdan comunicarse estableciendo una clave privada mediante el método de Diffie-Hellman. Deciden usar el módulo primo p=53 y como base g=22. Andrea elige el entero m=5, enviándole a Basilio g^m mód(53), mientras que Basilio envía a Andrea $20 \equiv g^n$ mód(53).
 - i) ¿Cuál es la clave privada que acuerdan Andrea y Basilio?

Solución:

Tenemos que calcular $20^5 \mod(53)$, pues 20 es el valor enviado por Basilio a Andrea (es decir $20 \equiv g^n \mod(53)$) y m = 5.

Así
$$20^5 = 4^5 \times 5^5 \mod(53) \equiv 100 \times 100 \times 80 \times 4 \equiv 47 \times 47 \times 27 \times 4 \equiv (-6) \times (-6) \times 27 \times 2 \times 2 \equiv 36 \times 1 \times 2 \equiv 72 \equiv 19 \mod(53)$$
. O sea la clave acordada es $k = 19$.

ii) ¿Es la clave acordada una raíz primitiva en U(53)? Jusitfique su respuesta.

Solución:

Sí, es una raíz primitiva, porque g=22 es raíz primitiva y la clave acordada es $k=(22^7)^5$ y $35=7\times 5$ es coprimo con $52=4\times 13=|\mathrm{U}(53)|$.

c. Andrea le envía a Basilio el siguiente mensaje:

LA GATA GATINA

Y Basilio le responde con un mensaje encriptado utilizando la clave hallada en b. i), y usando el método de cifrado César, con el alfabeto

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

EGRDMYWRDSMCCS

¿Cuál fue la respuesta de Basilio?

Solución:

Recordar el Método César, Sección 5.1.1 de las Notas de Teórico.

Lleva este nombre en honor a Julio César, que lo usaba para comunicarse con sus generales. Como primer paso el método enumera las letras del alfabeto, por ejemplo la letra A tiene asignado el 0, la letra B el 1, ..., la letra Z el 26 y a el espacio le asignamos el número 27. La enumeración se puede ver en la tabla. Luego definimos la clave k como un número entre 0 y 27. Para cifrar un mensaje lo que hacemos es sumarle a cada letra, la clave k y reducir módulo 28. Para descifrar el mensaje debemos restar k a cada letra y reducir módulo 28.

La respuesta de Basilio fue:

NO MUGE MAÚLLA