Exercise Sheet 2

Exercise 1

Consider the algebraic equation $x^2 + \varepsilon x - 1 = 0$ with $0 < \varepsilon \ll 1$. Find a three-term approximation $x = x_0 + \varepsilon^{\alpha_1} x_1 + \varepsilon^{\alpha_2} x_2 + \dots$ for each root. Compare with the exact roots.

Exercise 2

To find approximations to the roots of the cubic equation $x^3 - 4.001x + 0.002 = 0$ why is it easier to examine the equation $x^3 - (4 + \varepsilon)x + 2\varepsilon = 0$? Find a two-term approximation to this equation.

Exercise 3

Find a three-term approximation for the root of $x=1+\varepsilon x^2,\,0<\varepsilon\ll 1$ near x=1. Compare it to the exact solution for $\varepsilon=0.1$ and $\varepsilon=0.001.$

Exercise 4

Find a three-term approximation for the quadratic equation $(1-\varepsilon)x^2-2x+1=0$.

Exercise 5

Consider the algebraic equation $g(x,\varepsilon)=0,\ 0<\varepsilon\ll 1$, where g is a function having derivatives of all order. Assuming g(x,0)=0 is solvable to obtain x_0 , show how to find a three-term perturbation approximation of the form $x=x_0+x_1\varepsilon+x_2\varepsilon^2$. What condition on g is required to determine x_1 and x_2 ? Find a three-term approximation to the roots of $e^{\varepsilon x}=x^2-1$.