Extraction of Transverse Single Spin Asymmetry in J/ψ Production in $p\bar{p}$ Interactions at 120 GeV Beam Energy

Dinupa Nawarathne Dr. Vassili Papavassiliou Dr. Stephen Pate Forhad Hossain Dr. Abinash Pun

New Mexico State University Representing the E-1039/SpinQuest Collaboration

APS DNP Meeting October 29, 2022

Overview

- 1 J/ψ Particle
 - J/ψ Production
- 2 Transverse Single Spin Asymmetry
- 3 SpinQuest Experiment
- 4 Analysis Procedure
 - Data Generation
 - Gaussian Process Regression (GPR)
 - RooUnfold
- 5 Results and Discussion
- 6 Summary

J/ψ Particle

- $\blacksquare J/\psi$ is a vector meson which is a $c\bar{c}$ bound state.
- Discovered by Burton Richter and Samuel Ting in 1974. Awarded Nobel price for the discovery in 1976.
- In $p\bar{p}$ collisions, J/ψ particles are primarily produced by $q\bar{q}$ annihilation and gg fusion.

$J/\psi(1S)$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$
Mass $m = 3096.90$	
Full width $\Gamma = 92$. $\Gamma_{ee} = 5.53 \pm 0.10$	9 ± 2.8 keV (S = 1.1)
$\Gamma_{ee} < 5.4 \text{ eV, CL}$	

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_j/Γ) Co	Scale factor/ ponfidence level (MeV/c)
hadrons	(87.7 ± 0.5) %	_
virtual $\gamma ightarrow hadrons$	$(13.50 \pm 0.30)\%$	-
ggg	(64.1 ± 1.0) %	-
$\gamma g g$	(8.8 ± 1.1)%	-
e+ e-	(5.971± 0.032) %	1548
$e^+e^-\gamma$	[a] (8.8 ± 1.4)×10	3 1548
$\mu^{+} \mu^{-}$	(5.961 ± 0.033) %	1545

Figure 2: J/ψ properties.²

Figure 1: Mass spectrum showing the existence of J/ψ . 1

¹ J. J. Aubert et al., Adv. Exp. Phys. 5, 128 (1976).

²P. A. Zyla *et al.*, *PTEP* **2020**, 083C01 (2020).

J/ψ Production

Color evaporation model (CEM), Color Singlet model (CSM) and Color Octet model (COM) are three most prominent models developed to understand the production of J/ψ particle. All there models attempt to factorize the J/ψ production into a non relativistic part describing the production of $c\bar{c}$ $d\sigma_{c\bar{c}[n]}$, and a non-relativistic part describing the bound state of two quarks $F_{c\bar{c}[n]}(\Lambda)$;

$$d\sigma(J/\psi + X) = \sum_{n} \int d\Lambda \frac{d\sigma_{c\bar{c}[n]+X}}{d\Lambda} F_{c\bar{c}[n](\Lambda)}$$

where [n] is the quantum state of the $c\bar{c}$ pair and Λ is the energy scale³.

■ CEM: The non-relativistic part is assumed to be non-zero and constant between $4m_c^2$ and $4m_D^2$ and zero for all other energies, where m_c is the mass of the charm quark and m_D is the mass of D meson.

$$d\sigma(J/\psi + X) = \frac{F_{c\bar{c}[J/\psi]}}{9} \Sigma_n \int_{2mc_c}^{2m_D} dM \frac{d\sigma_{c\bar{c}[n]+X}}{dM}$$

 $^{^3\}mathrm{T.}$ Kempel, PhD thesis, Iowa State U., 2011, arXiv: 1107.1293 (nucl-ex).

J/ψ Production

■ CSM: In this model, the $c\bar{c}$ pair emerging from the relativistic scattering diagram is is assumed to be in the same quantum state as the produced J/ψ , and the non-relativistic amplitude is the real-space J/ψ wave function evaluated at the origin;

$$d\sigma(J/\psi + X) = \int_0^\infty dM \frac{d\sigma_{c\bar{c}}[{}^3S_1] + X}{dM} \psi_{J/\psi}(r=0)$$

■ COM: This model attempts to formalize the factorization of relativistic and non-relativistic effects.

$$d\sigma(J/\psi + X) = \sum_{n} \int_{0}^{\infty} dM \frac{d\sigma_{c\bar{c}}[^{3}S_{1}] + X}{dM} \left\langle \mathcal{O}_{[n]}^{J/\psi} \right\rangle$$

Technique of non-relativistic QCD is apply to calculate the $\left\langle \mathcal{O}_{[n]}^{J/\psi}\right\rangle$ parameters in power of v, relativistic velocity between c and \bar{c} .

Transverse Single Spin Asymmetry

- In $p\bar{p}$ collisions, the transverse single spin asymmetry (TSSA), A_N , is defined as the amplitude of the azimuthal angular modulation of the outgoing particle's scattering cross section with respect to the transverse spin direction of the polarized proton.
- The asymmetry can be written as function of azimuthal angle ϕ_S^4 :

$$A(\phi_S) = \frac{N^{\uparrow}(\phi_S) - N^{\downarrow}(\phi_S)}{N^{\uparrow}(\phi_S) + N^{\downarrow}(\phi_S)} = A_N \sin(\phi_S)$$

Figure 3: PHENIX results for $A_N^{J/\psi}$ vs. x_F .⁵

Using this equation we can remove the detector acceptance dependency from the A_N .

 $^{^4\}phi_S$ is the angle between $\vec{S}_{\mathrm{target}}$ and $\vec{p}_{TJ/\psi}$.

⁵C. Aidala et al., Phys. Rev. D 98, 012006, arXiv: 1805.01491 (hep-ex) (2018).

SpinQuest Experiment

- SpinQuest is a fixed-target Dimuon experiment at Fermilab, using an unpolarized 120 GeV proton beam incident on a polarized solid ammonia target.
- SpinQuest measurements will allow us to test models for the internal transverse momentum and angular momentum structure of the nucleon.
- In the SpinQuest experiment J/ψ production should be dominated by the $q\bar{q}$ annihilation.
- Our goal is to measure A_N with an absolute error $\mathcal{O}(10^{-2})$ for a few p_T and/or x_F bins.
- In this presentation, we demonstrate the analysis procedure and extraction of single spin asymmetry (A_N) for a few p_T and x_F bins.

Anticipated Precision of J/ψ TSSA

Figure 4: Anticipated Precision of J/ψ TSSA for p_T bins.

Figure 5: Anticipated Precision of J/ψ TSSA for x_F bins.

■ For one week of dedicated data taking, a precision of ~ 0.1 is expected.

⁶K. Nakano, DocDB: 9460-v1 (SEAQUEST) (July 2021).

SpinQuest Spectrometer

Figure 6: SpinQuest spectrometer.⁷

⁷ A. Chen et al., PoS SPIN2018, ed. by P. Lenisa et al., 164, arXiv: 1901.09994 (nucl-ex) (2019).

Data Generation

- Simulated data were generated with kinematics:
 - J/ψ events were considered as signal events.

$$xF = [-0.2, 1.0]$$

where x_F is the the Feynman x.

■ Drell-Yan events were considered as background events.

$$xF = [-0.2, 1.0]$$

mass = [1.0, 6.0]

■ Asymmetry was introduced by weighting the data ⁸:

$$w_{A_N} = 1 + A_N \sin(\phi_S - \phi_{\text{phase}})$$

 $w_{\text{Total}} = w_{\text{Gen.}}(mass, x_F) \times w_{A_N}$

Figure 7: ϕ_S definition in the target rest frame.

Asymmetry values are set as $A_N^{J/\psi}=0.2$ for J/ψ events and $A_N^{BG}=0.1$ for Drell-Yan events.

 $^{^{8}\}phi_{\rm phase} = 0$. for spin up and $\phi_{\rm phase} = \pi$ for spin down.

⁹R. Longo, *EPJ Web Conf.* **137**, ed. by Y. Foka *et al.*, 05013 (2017).

Analysis Procedure

Gaussian Process Regression (GPR)

■ Probability density function (PDF) of a multivariate normal distribution (MVN) with dimension D is;

$$\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma^{1/2}|} \exp\left[-\frac{1}{2} (x - \mu)^T \sigma^{-1} (x - \mu)\right]$$

where D is the number of dimensions, x is the variable, μ is the mean vector and Σ is the covariance matrix.

■ Gaussian processes are distributions over functions f(x) of which the distribution is defined by a mean function m(x) and positive definite covariance function k(x, x'), with x the function values and x, x' all possible pairs in the input domain:

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

where for any finite subset $X = x_1,, x_n$ of the domain of x, the marginal distribution is a multivariate Gaussian distribution:

$$f(X) \sim \mathcal{N}(m(X), k(X, X))$$

Gaussian Process Regression (GPR)

■ In this analysis, the Radial-Basis Function (RBF) kernel was used as the kernel function in GPR.

$$k(x_i, x_j) = \exp\left[-\frac{d^2(x_i, x_j)}{2l^2}\right]$$

where l is the length scale of the kernel and $d(\cdot, \cdot)$ is the Euclidean distance.¹⁰

■ We fit this kernel in side-band regions on either side of the J/ψ invariant mass peak. Then we used the trained kernel to predict the background in the J/ψ peak region.

Predicted Background

Figure 9: Mass histogram for 1st p_T bin and 1st ϕ bin. Predicted background is given in shaded red region. Side-bands are indicated in dashed blue lines.

Figure 10: J/ψ signal after subtracting the background.

RooUnfold

- Unfolding in high energy physics represents the correction of measured spectra in data for the finite detector efficiency, acceptance, and resolution from the detector to particle level.
- \blacksquare The equation of unfolding¹¹;

$$p = \frac{1}{\epsilon} M^{-1} \eta(D - B)$$

where D is the data spectrum, B is the background spectrum, η acceptance correction, M^{-1} is the migration matrix and ϵ is the detector efficiency.

- We used the RooUnfold package in the analysis. Some default algorithms are:
 - Iterative Bayesian
 - Singular value decomposition
 - Bin-by-bin (simple correction factors)

RooUnfold

- We trained the response matrix with Drell-Yan events without any asymmetry included.
- We used the iterative Bayesian method to unfold the ϕ distributions.¹²
- By using the unfolding method we will correct the bin-by-bin migration.

Response Matrix for p_T Bins

Figure 11: Reco. ϕ vs. true ϕ for $0.0 < p_T < 1.0.$

Figure 12: Reco. ϕ vs. true ϕ for 1.0 < p_T < 2.0.

Response Matrix for x_F Bins

Figure 13: Reco. ϕ vs. true ϕ for 0.4 < x_F < 0.6.

Figure 14: Reco. ϕ vs. true ϕ for $0.6 < x_F < 0.8$.

Unfolded $A_N^{J/\psi}$ in p_T Bins

Figure 15: Unfolded asymmetry in $0.0 < p_T < 1.0$.

Figure 16: Unfolded asymmetry in 1.0 $< p_T < 2.0$.

Unfolded $A_N^{J/\psi}$ in x_F Bins

 χ^2 / ndf 18.37 / 13 0.1988 ± 0.0181 φ [rad]

Monte-Carlo data

Figure 17: Unfolded asymmetry in $0.4 < x_F < 0.6$.

Figure 18: Unfolded asymmetry in $0.6 < x_F < 0.8$.

Extracted $\overline{A_N}$

Figure 19: Extracted asymmetry for p_T bins. Generated asymmetry is shown in red dashed line.

Monte-Carlo data

Figure 20: Extracted asymmetry for x_F bins. Generated asymmetry is shown in red dashed line.

Summary

- GPR is a supervised machine learning method can be to predict the background under the J/ψ peak.
- Using iterative Bayesian unfolding, the extracted asymmetry reproduces the generated asymmetry within 1- σ confidence interval.
- Acknowledgement:
 - This work is supported by the US Department of Energy, Office of Science, Medium Energy Nuclear Physics Program.