

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO

DEPARTAMENTO DE CIÊNCIAS DE COMPUTAÇÃO

JOSÉ MARIA CLEMENTINO JUNIOR 11357281

Projeto 3- Programação Dinâmica

Apresentação

Analisar séries temporais, medir a similaridade não é uma tarefa trivial, deste modo vem sendo desenvolvidas técnicas capazes de lidar com dados discretos que sofrem variações por meio do tempo e que possuem diferentes características dos dados mais simples. Para isso, o algoritmo <u>Dynamic Time Warping (DTW)</u> foi proposto, ele é capaz de encontrar e comparar o alinhamento entre duas séries temporais, sendo assim, o DTW é fortemente utilizado para realizar a classificação de sequências que se encontram em diferentes frequências.

Portanto o objetivo deste trabalho é desenvolver um algoritmo capaz de realizar a classificação entre as séries temporais, por meio do uso da distância de DTW, à partir dos dados encontrados por acelerômetros, mais especificamente extraídos de movimentos realizados por um controle de videogame Wii.

Execução:

Para executar o código, após a instalação do NodeJS, basta executar o comando "node main.js < teste.txt" no prompt de comando. De modo que é responsável por executar a classificação dos pontos presentes no arquivo "teste.txt" com os pontos contidos no arquivo "treino.txt".

Implementação: A implementação divi-se nos seguintes arquivos:

- ./main.js: Arquivo principal que lê o arquivo "treino.txt" e faz a comparação do vizinho mais próximo com o arquivo lido do stdin. Após encontrar o vizinho mais próximo para cada entrada do arquivo de teste o programa salva um relatório em um arquivo de texto com um resumo do processamento.
- ./node_modules/dtw.js: Este arquivo define a classe "dtw". Na qual é responsável
 pela comparação das sequências temporais. A implementação baseia-se no
 algoritmo disponível na <u>Wikipédia</u>, no qual foi adaptado para atender as
 especificações proposta pelo trabalho.

./node_modules/utils.js: Neste arquivo contém a função "saveToFile" responsável por guardar os arquivos gerados em um arquivo chamado "_Result.csv".

Análise dos Resultados e Conclusões

Com o intuito de obter os resultados, por meio da acurácia deve-se classificar cada uma das séries temporais presentes no arquivo "treino". Em seguida após obter os resultados, fez-se necessário realizar a comparação com o tipo de movimento utilizado presente no arquivo "teste", deste modo para os movimentos distintos encontrados, fica evidente que aconteceu um erro na classificação da série analisada. A taxa de acurácia obtida foi de **84.4791%.** A matriz de confusão é apresentada na Figura 1, na qual as linhas referem-se ao tipo de movimento de teste apresentando a quantidade de cada tipo de movimento ao qual foram classificados os possíveis movimentos(coluna).

Deste modo é possível observar quais movimentos foram classificados corretamentes e erroneamente, os movimentos que mais foram classificados incorretamente são os seguintes:

- Movimento 6 classificado como movimento 11 e 1;
- Movimento 9 classificado como movimento 1 e 11;
- Movimento 11 classificados como movimento 6;
- ❖ Movimento 12 classificado como movimento 7;
- Entre outros resultados que podem ser observados na Figura 1.

	Movimentos Preditos											
Movimentos	1	2	3	4	5	6	7	8	9	10	11	12
1	72	0	0	0	0	0	0	0	2	0	0	0
2	0	78	0	0	0	0	0	0	0	0	0	0
3	0	0	76	1	0	0	0	1	0	0	0	0
4	0	0	0	70	0	1	0	4	0	4	0	0
5	0	0	0	0	86	0	0	0	0	0	0	0
6	10	0	0	0	0	56	1	0	0	0	16	0
7	0	6	0	0	0	0	63	0	0	3	0	2
8	0	0	0	1	0	2	0	76	0	3	0	0
9	20	0	0	0	0	0	0	0	60	0	10	0
10	0	0	0	0	0	0	9	1	0	69	0	1
11	1	0	0	2	0	18	0	4	0	0	53	0
12	0	7	0	0	0	0	16	0	0	3	0	52

Figura 1: Matriz de Confusão

Também é possível afirmar que os movimentos que tiveram as maiores taxas de acertos foram os **Movimentos 5, 2, 3 e 10**.

De modo geral, o algoritmo proposto acertou **811** movimentos e errou **149**, com uma taxa de acerto de **84.4791**% e uma taxa de erro de **15,5209**% em um total de

960(100%) movimentos. O tempo médio de execução encontrado foi de 8,568 segundos. O arquivo de resultado pode ser encontrado no seguinte <u>repositório</u> juntamente com a implementação. Na imagem a seguir são apresentado os resultados aproximado e também é apresentado o tempo médio para realizar a classificação de um movimento 9,3 (ms), os resultados de tempo são apresentados na Figura 2 estão na medida milisegundos.

Resultados							
Nº Acertos	Taxa Acertos	Nº Erros	Taxa Erros				
811	84.50%	149	15.50%				
Tempo N	lédio para Classif	icacar um Po	nto (ms)				
	9.3						
	Tempo Total de E	xecução(ms)	1.0				
	8973						

Figura 2: Resultados

Referências: https://en.wikipedia.org/wiki/Dynamic_time_warping