Masters Theorem - Recurrence Relation $\Rightarrow T(n) = \alpha T\left(\frac{m}{b}\right) + f(n)$ alb - Positive constants; a>1, b>1 $f(n) = \Theta(n^k \log^p n)$ $f(n) \rightarrow + ve function <math>-\Theta(n^k \log^p n)$ $\frac{\log \frac{1}{b} > k}{\Rightarrow} \frac{1}{\Rightarrow} \frac{\log \frac{1}{b}}{\Rightarrow} \frac{f(n)}{\Rightarrow} \frac{k=0}{\Rightarrow} \frac{\log \frac{1}{b}}{\Rightarrow} \frac{f(n)}{\Rightarrow} \frac{k=0}{\Rightarrow} \frac{\log \frac{1}{b}}{\Rightarrow} \frac{f(n)}{\Rightarrow} \frac{k=0}{\Rightarrow} \frac{\log \frac{1}{b}}{\Rightarrow} \frac{f(n)}{\Rightarrow} \frac{k=0}{\Rightarrow} \frac{\log \frac{1}{b}}{\Rightarrow} \frac{\log \frac{1}{b}}$ ez if $\log a = k$ p < -1 p < -1+(n) + (nklogpth) + (nkloglogn) 109 a < K case 3 -O(nklogph) P>0 $\Theta(nK)$ P < 0 $T(n) = 9T\left(\frac{n}{3}\right) + 1$ $\alpha = 9$ $0(n^{k} \log^{p} n)$ K = 0 P = 0case 1 a = 9 b = 3 $\log a = \log 3 = \log 3 = 2$ $\longrightarrow O(n^2)$

T(n) =
$$2T(\frac{n}{3}) + \frac{m}{m}$$
 $a = 2$
 $b = 2$
 $k = 1$
 $\log_b^a = \log_b^2 = 1$
 $\log_b^a = k = 1$
 $p = 0$
 $\log_b^{n+1} = 0$

T(n) = $8T(\frac{n}{2}) + \frac{m^3}{2}$
 $\log_b^a = \frac{3}{2}$
 \log_b^a

$$\underline{\Theta(n)} \in \Theta(n^k)$$