Proyecto Integrador

Autor Gomez, Gomez - Lovaisa Michelini Valeria

Tema

Implementación de un sistema SoC con microprocesado OpenRisc con soporte Linux

ÍNDICE GENERAL

1.	INT	RODUCCIÓN	3
	1.1.	Descripción General	3
	1.2.	Objetivos	3
		1.2.1. Objetivo General	
		1.2.2. Objetivo Especifico	
	1.3.	Motivación	
	1.4.	Metodologia	4
	1.5.	Importancia del Problema	4
	1.6.	Alcance de Estudio	5
	1.7.	Modelo de Desarollo	5
		Metodologia	
		Organización del Proyecto Integrador	

ÍNDICE DE FIGURAS

CAPÍTULO 1

INTRODUCCIÓN

1.1. Descripción General

1.2. Objetivos

1.2.1. Objetivo General

Implementar un system on chip OpenSource con un microprocesador embebido Soft-core que soporte un sistema operativo libre, con la finalidad de entregar un sitema integral FPGA-SoC-Sistema Operativo completamente funcional y bajo licencia GPL v2.

1.2.2. Objetivo Especifico

- Seleccionar, analizar y determinar un microprocesador Sof-Core.
- Establecer un system on chip Open Source donde poder implementar un Soft-Core.
- Determinar sistemas operativo con licencia GPL v2 que tengan las prestaciones funcionales adecuadas.

1.3. Motivación

Existe un grupo de cores Sof-Core de código abierto que no están limitados por la tecnología. Los cores destacados de microprocesadores de 32 bits, son los procesadores SPARC LEON OpenRISC 1200 , y el core de LatticeMico32. Usar cores de codigo abierto, va unido a una serie de conceptos como:

- Flexibilidad. Si el codigo fuente está disponible, los desarrolladores pueden modificar el codigo de acuerdo a sus necesidades. Adémas, se produce un flujo constante de ideas que mejora la calidad del codigo.
- Fiabilidad y seguridad. Con muchos programadores a la vez escrutando el mismo trabajo, los errores se detectan y corrigen antes, por lo que el producto resultante es mas fiable y eficaz que el comercial.
- Rapidez de desarrollo. Las actualizaciones y ajustes se realizan a través de una comunicación constante vía Internet.
- Relación con el usuario. El programador se acerca mucho mas a las necesidades reales de su cliente, y puede crear un producto especifíco para él

Obtener un sitema integral de código abierto en donde hay código HDL, assembler y C. Con la principal ventaja del acceso al código pudiendo personalizarlo como por ejemplo en la descripción RTL del SoC para implementar la optimización o funcionalidad deseada y la ausencia de restricciones sobre lo que se puede hacer sobre el sistema final. Ademas de la portabilidad con la que obtengo la capacidad de migrar de una plataforma a otra. Logrando menor dependencia entre el código fuente y la plataforma objetivo. Pudiendo ser usado sobre una ASICs (Application-specific integrated circuit) o con modificaciones menores en cualquier FPGA (Field Programmable Gate Array) de Xilinx, Altera, Lattice, etc. Estos tres de los más grandes proveedores de FPGA, Xilinx, Altera y Lattice, ofrecen sus propios micro core RISC de 32bits los dos mayores proveedores de dispositivos FPGA, Altera y Xilinx, proporcionan el micro core Nios y Microblaze, respectivamente. Son micro cores en donde el codigo fuente RTL no se encuera disponible y solo pueden ser implementados en sus respectivas FPGA.

1.4. Metodologia

1.5. Importancia del Problema

El softcore OpenRisc que se encuentra en el SoC OrpSoc y MinSoc se tiene que implementado en una Spartan 3A de Xilinx. Tenemos como fin montar un Linux para validar y verificar el sistema global entregando un sistema funcional bajo licencia libre. Actualmente las FPGAs nos birndan la posibilidad de implementar estos proyectos, donde el Hardware y el Software son una misma entidad. Este nuevo enfoque nos permite aprovechar la facilidad de implementar soluciones por Hardware.

1.6. Alcance de Estudio

1.7. Modelo de Desarollo

1.8. Metodologia

1.9. Organización del Proyecto Integrador

Una vez detalladas las motivaciones y expuestas las ventajas que un receptor coherente puede aportar a las comunicaciones ópticas, el presente proyecto tiene como principal objetivo el estudio, diseño y la simulación de los diferentes métodos de recuperación de portadora de un receptor digital coherente para lo cual se organiza su contenido de la siguiente manera:

BIBLIOGRAFÍA

- [1] Claude Herard and Alain Lacourt, 1991. New multiplexing technique using polarization of light.
- [2] Wikipedia, the free encyclopedia, Free and open source software. http://en.wikipedia.org