(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-60076

(P2001-60076A)

(43)公開日 平成13年3月6日(2001.3.6)

(51) Int.Cl.7	識別記 号	FI	テーマコート*(参考)
G 0 9 G 3/30		G 0 9 G 3/30	J 5C080
			K
3/20	6 2 4	3/20	6 2 4 B
	6 4 2	6 4 2 Z	
			6 4 2 L
		審查請求 未請求	: 請求項の数46 OL (全 17 頁)
(21)出願番号	特顧2000-166170(P2000-166170)	(71) 出願人 000002	185
		ソニー	株式会社
(22)出顧日	平成12年6月2日(2000.6.2)	東京都品川区北品川6丁目7番35号	
		(72)発明者 関谷	光信
(31)優先権主張番号	· 特願平11-170577	東京都	品川区北品川6丁目7番35号 ソニ
(32)優先日	平成11年6月17日(1999.6.17)	一株式	会社内
(33)優先権主張国	日本(JP)	(72)発明者 湯本 昭	
		東京都	品川区北品川6丁目7番35号 ソニ
		一株式	会社内
		(74)代理人 100092	336
		弁理士 鈴木 晴敏	
		Fターム(参考) 50080 AA06 BB05 CC03 DD01 DD22	
		DD28 EE28 EE30 FF11 JJ02	
]]03]]04]]06

(54) 【発明の名称】 画像表示装置

(57)【要約】

【課題】 画素内部の能動素子の設計自由度を増して良好な設計を可能たらしめるとともに、表示輝度を自在且つ簡便に調整する。

【解決手段】 各画素PXLは、供給される電流量によ って輝度が変化する発光素子OLEDと、走査線Xによ って制御され且つデータ線Yから与えられた輝度情報を 画素に書き込む機能を有するTFT1と、書き込まれた 輝度情報に応じてOLEDに供給する電流量を制御する 機能を有するTFT2とを含む。各画素PXLへの輝度 情報の書き込みは、走査線Xが選択された状態で、デー タ線Yに輝度情報に応じた電気信号を印加することによ って行われる。各画素に書き込まれた輝度情報は走査線 Xが非選択となった後も各画素に保持され、各画素の発 光素子は保持された輝度情報に応じた輝度で点灯を維持 可能である。同一の走査線Xに接続された各画素の発光 素子を少なくとも走査線単位で強制的に消灯する停止制 御線Zを有し、各画素に輝度情報が書き込まれてから次 に新たな輝度情報が書き込まれる一走査サイクルの間に 発光素子を点灯状態から消灯状態にする。

【特許請求の範囲】

【請求項1】 所定の走査サイクルで画素を選択するための走査線と、画素を駆動するための輝度情報を与えるデータ線とがマトリクス状に配設され、

1

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持された輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、

同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が 20 書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることを特徴とする画像表示装置。

【請求項2】 前記制御手段は、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間で、発光素子を点灯状態から消灯状態に切り換える時点を調整可能であることを特徴とする請求項1記載の画像表示装置。

【請求項3】 前記制御手段は、絶縁ゲート型電界効果トランジスタからなる該第二の能動素子のゲートに接続された第三の能動素子を含み、該第三の能動素子に与える制御信号により該第二の能動素子のゲート電位を制御して該発光素子を消灯することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えられることを特徴とする請求項1記載の画像表示装置。

【請求項4】 前記制御手段は、該発光素子と直列に接続された第三の能動素子を含み、該第三の能動素子に与える制御信号に応じて該発光素子に流れる電流を遮断することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えられることを特徴とする請求項1記載の画像表示装置。

【請求項5】 各発光素子は整流作用を有する二端子素子からなり、一方の端子は対応する第二の能動素子に接続され、他方の端子は同一走査線上の各画素では共通接続され且つ走査線間では電気的に分離されており、

前記制御手段は、各二端子素子の共通接続された他方の 端子の電位を制御して各二端子素子を消灯することを特 50 徴とする請求項1記載の画像表示装置。

【請求項6】 前記制御手段は、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に、再度走査線を選択して各画素にデータ線から輝度ゼロを表す情報を書き込んで各画素の発光素子を消灯することを特徴とする請求項1記載の画像表示装置。

[請求項7]各画素は、該発光素子に流れる電流量を制御する第二の能動素子を構成する絶縁ゲート型電界効果 10 トランジスタのゲートに一端が接続された容量素子を含み

前記制御手段は、該容量素子の他端の電位を制御することにより前記第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートの電位を制御して該発光素子を消灯することを特徴とする請求項1記載の画像表示装置。

【請求項8】 前記制御手段は、各画素に輝度情報が書き込まれた後一走査サイクル内で、各画素に含まれる発光素子の点灯時点及び消灯時点を少なくとも走査線単位で制御することを特徴とする請求項1記載の画像表示装置。

【請求項9】 同一の走査線に赤、緑、青の各画素を共 通に接続する一方、前記制御手段は、赤、緑、青の各画 素に含まれる発光素子を別々の時点で消灯することを特 徴とする請求項1記載の画像表示装置。

【請求項10】 前記発光素子は有機エレクトロルミネッセンス素子であるととを特徴とする請求項1記載の画像表示装置。

【請求項11】 所定の走査サイクルで画素を選択する ための走査線と、画素を駆動するための輝度情報を与え るデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発 光素子と、走査線によって制御され且つデータ線から与 えられた輝度情報を画素に書き込む機能を有する第一の 能動素子と、該書き込まれた輝度情報に応じて該発光素 子に供給する電流量を制御する機能を有する第二の能動 素子とを含む画像表示装置の駆動方法であって、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す 40 ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持し、

同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯可能であり、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることを特徴とする画像表示装置の駆動方法。

[請求項12] 各画素に輝度情報が書き込まれてから 次に新たな輝度情報が書き込まれる一走査サイクルの間 で、発光素子を点灯状態から消灯状態に切り換える時点 を調整可能であることを特徴とする請求項11記載の画 像表示装置の駆動方法。

【請求項13】 絶縁ゲート型電界効果トランジスタからなる該第二の能動素子のゲートに第三の能動素子を接続し、該第三の能動素子に与える制御信号により該第二の能動素子のゲート電位を制御して該発光素子を消灯することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に 10 与えることを特徴とする請求項 1 1 記載の画像表示装置の駆動方法。

【請求項14】 該発光素子と直列に第三の能動素子を接続し、該第三の能動素子に与える制御信号に応じて該発光素子に流れる電流を遮断することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えることを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項15】 各発光素子は整流作用を有する二端子 20 素子からなり、一方の端子は対応する第二の能動素子に 接続され、他方の端子は同一走査線上の各画素では共通 接続され且つ走査線間では電気的に分離されており、

各二端子素子の共通接続された他方の端子の電位を制御 して各二端子素子を消灯することを特徴とする請求項1 1記載の画像表示装置の駆動方法。

【請求項16】 各画素に輝度情報が書き込まれてから 次に新たな輝度情報が書き込まれる一走査サイクルの間 に、再度走査線を選択して各画素にデータ線から輝度ゼロを表す情報を書き込んで各画素の発光素子を消灯する ことを特徴とする請求項11記載の画像表示装置の駆動 方法。

【請求項17】各画素は、該発光素子に流れる電流量を 制御する第二の能動素子を構成する絶縁ゲート型電界効 果トランジスタのゲートに一端が接続された容量素子を 含み、

該容量素子の他端の電位を制御することにより前記第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートの電位を制御して該発光素子を消灯することを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項18】 各画素に輝度情報が書き込まれた後一 走査サイクル内で、各画素に含まれる発光素子の点灯時 点及び消灯時点を少なくとも走査線単位で制御すること を特徴とする請求項11記載の画像表示装置の駆動方 法。

【請求項19】 同一の走査線に赤、緑、青の各画素を 共通に接続する一方、赤、緑、青の各画素に含まれる発 光素子を別々の時点で消灯することを特徴とする請求項 11記載の画像表示装置の駆動方法。 【請求項20】 前記発光素子は有機エレクトロルミネッセンス素子を用いることを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項21】 所定の走査サイクルで画素を選択する ための走査線と、画素を駆動するための輝度情報を与え るデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、

6 各走査線に接続された各画素の発光素子を強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にする画像表示装置であって。

同一の走査線に赤、緑、青の各画素を共通に接続する一方、前記制御手段は、赤、緑、青の各画素に含まれる発 光素子を別々の時点で消灯することを特徴とする画像表 示装置。

【請求項22】 所定の走査サイクルで画素を選択する ための走査線と、画素を駆動するための輝度情報を与え るデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含む画像表示装置の駆動方法であって、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す 40 ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持し、

各走査線に接続された各画素の発光素子を強制的に消灯可能であり、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にする駆動方法であって

同一の走査線に赤、緑、青の各画素を共通に接続する一 50 方、赤、緑、青の各画素に含まれる発光素子を別々の時

点で消灯することを特徴とする画像表示装置の駆動方

【請求項23】 画素に第一の輝度情報が書込まれてか ら新たな第二の輝度情報が書込まれる一走査サイクル期 間内で輝度情報に応じ画素を点灯する画像表示装置にお

所定の走査サイクルでそれぞれの画素を選択する走査線 と、

該走査線に直交する方向に形成され、上記画素を点灯す る為の輝度情報を与えるデータ線と、

上記走査線により制御され、上記輝度情報を取り込む第 一の能動素子と、

上記輝度情報を、上記画素の駆動に用いる電気信号に転 換する第二の能動素子とを有し、

上記一走査サイクル期間内で上記画素を点灯状態から消 灯状態にする制御手段を有していることを特徴とする画 像表示装置。

【請求項24】 上記制御手段は、上記一走査サイクル 期間内で、上記点灯状態から上記消灯時間までの間の時 間を可変可能であることを特徴とする請求項23記載の 20 画像表示装置。

【請求項25】 上記第二の能動素子は、絶縁ゲート型 電界効果トランジスタであり、

上記制御手段は、該絶縁ゲート型電界効果トランジスタ のゲートに接続された第三の能動素子を有し、

該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御されることを特徴とする請求項23 記載の画像表示装置。

【請求項26】 上記制御手段は、上記第二の能動素子 に直列に設けられた第三の能動素子を有し、

該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御されることを特徴とする請求項23 記載の画像表示装置。

【請求項27】 上記画素は発光素子を含み、

上記発光素子は第一及び第二の端子を有し、上記第一の 端子は上記第二の能動素子に接続されるとともに、上記 第二の端子は所定の参照電位に接続され、

上記制御手段は、上記参照電位を可変制御することによ り上記発光素子を消灯させることを特徴とする請求項2 3記載の画像表示装置。

【請求項28】 上記制御手段は、上記走査線が選択さ れた後、上記一走査サイクル期間内で上記走査線を再選 択し、上記データ線から輝度ゼロを表す輝度情報を画素 に供給することにより、該画素を消灯することを特徴と する請求項23記載の画像表示装置。

【請求項29】 各画素は、該第二の能動素子を構成す る絶縁ゲート型電界効果トランジスタのゲートに一端が 接続された容量素子を含み、

上記制御手段は、該容量素子の他端の電位を制御すると とにより前記第二の能動素子を構成する絶縁ゲート型電 50 動に用いる電気信号に転換する手順と、

界効果トランジスタのゲートの電位を制御して画素を消 灯することを特徴とする請求項23記載の画像表示装

6

【請求項30】 上記制御手段は、上記走査線毎に上記 画素を消灯することを特徴とする請求項23記載の画像 表示装置。

【請求項31】 上記画素は、青、緑、赤色の発光素子 を有し、

上記制御手段は、該青、緑、赤色の発光素子を異なる時 10 間で消灯可能であることを特徴とする請求項23記載の 画像表示装置。

【請求項32】 上記第二の能動素子は、輝度情報を画 素の駆動に用いる電流に転換し、

各画素は、電流によって発光する有機物を利用した発光 素子を有することを特徴とする請求項23記載の画像表 示装置。

【請求項33】 上記走査線を順次選択する為の垂直ク ロックが入力される走査線駆動回路を備え、

上記制御手段は、上記垂直クロックを所定の期間遅延し た垂直クロックが入力され、上記走査線又はこれと平行 に設けた制御線を選択する制御回路を有し、

上記走査線は、上記走査線駆動回路により上記垂直クロ ックに同期して順次選択され、上記画素を点灯するとと もに、

該点灯後、該制御回路により上記遅延された垂直クロッ クに同期して、上記一走査期間内で上記制御線を介し該 画素を消灯することを特徴とする請求項23記載の画像 表示装置。

【請求項34】 上記データ線に輝度情報を与えるデー 30 タ線駆動回路を有し、

上記走査線駆動回路の出力は、上記走査線に出力端子が 接続された論理和回路の一方の入力端子に接続されると

上記制御回路の出力が上記論理和回路の他方の入力端子 に接続された論理積回路の一方の入力端子に接続され、 該論理積回路の他方の入力端子に上記垂直クロックが入 力されることを特徴とする請求項33記載の画像表示装

【請求項35】 画素に第一の輝度情報が書込まれてか 40 ら新たな第二の輝度情報が書込まれる一走査サイクル期 間内で輝度情報に応じ画素を点灯する画像表示装置の駆 動方法において、

走査線を介し、所定の走査サイクルでそれぞれの画素を 選択する手順と、

該走査線に直交する方向に形成されたデータ線を介し、 上記画素を点灯する為の輝度情報を与える手順と、

上記走査線により制御される第一の能動素子で上記輝度 情報を画素に取り込む手順と、

第二の能動素子により、上記輝度情報を、上記画素の駆

上記一走査サイクル期間内で上記画素を点灯状態から消 灯状態にする制御手順段とを行なうことを特徴とする画 像表示装置の駆動方法。

7

【請求項36】 上記制御手順は、上記一走査サイクル 期間内で、上記点灯状態から上記消灯時間までの間の時 間を可変可能であるととを特徴とする請求項35記載の 画像表示装置の駆動方法。

【請求項37】 上記第二の能動素子は、絶縁ゲート型 電界効果トランジスタを用いており、

上記制御手順は、該絶縁ゲート型電界効果トランジスタ 10 もに、 のゲートに接続された第三の能動素子を用いて行ない、 該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御することを特徴とする請求項35記 載の画像表示装置の駆動方法。

【請求項38】 上記制御手順は、上記第二の能動素子 に直列に設けられた第三の能動素子を用い、

該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御されることを特徴とする請求項35 記載の画像表示装置の駆動方法。

【請求項39】 上記画素は発光素子を含み、上記発光 20 素子は第一及び第二の端子を有し、上記第一の端子は上 記第二の能動素子に接続されるとともに、上記第二の端 子は所定の参照電位に接続されており、

上記制御手順は、上記参照電位を可変制御することによ り上記発光素子を消灯させることを特徴とする請求項3 5記載の画像表示装置の駆動方法。

【請求項40】 上記制御手順は、上記走査線が選択さ れた後、上記一走査サイクル期間内で上記走査線を再選 択し、上記データ線から輝度ゼロを表す輝度情報を画素 に供給することにより、該画素を消灯することを特徴と する請求項35記載の画像表示装置の駆動方法。

【請求項41】 各画素は、該第二の能動素子を構成す る絶縁ゲート型電界効果トランジスタのゲートに一端が 接続された容量素子を含み、

上記制御手順は、該容量素子の他端の電位を制御すると とにより前記第二の能動素子を構成する絶縁ゲート型電 界効果トランジスタのゲートの電位を制御して画素を消 灯することを特徴とする請求項35記載の画像表示装置 の駆動方法。

【請求項42】 上記制御手順は、上記走査線毎に上記 40 画素を消灯することを特徴とする請求項35記載の画像 表示装置の駆動方法。

【請求項43】 上記画素は、青、緑、赤色の発光素子 を有し、

上記制御手順は、該青、緑、赤色の発光素子を異なる時 間で消灯可能であることを特徴とする請求項35記載の 画像表示装置の駆動方法。

【請求項44】 上記第二の能動素子は、輝度情報を画 素の駆動に用いる電流に転換し、

素子を有することを特徴とする請求項35記載の画像表 示装置の駆動方法。

【請求項45】 上記走査線を順次選択する為の垂直ク ロックを入力する走査線駆動手順と、

上記垂直クロックを所定の期間遅延した垂直クロックを 入力して、上記走査線又は来れたと平行に設けた制御線 を選択する制御手順とを行ない、

上記走査線は、上記走査線駆動手順により上記垂直クロ ックに同期して順次選択され、上記画素を点灯するとと

該点灯後、該制御手順により上記遅延された垂直クロッ クに同期して、上記一走査期間内で上記走査線又は制御 線を介し該画素を消灯することを特徴とする請求項35 記載の画像表示装置の駆動方法。

【請求項46】 上記データ線に輝度情報を与えるデー タ線駆動手順を含み、

上記走査線駆動手順の出力は、上記走査線に出力端子が 接続された論理和回路の一方の入力端子に接続されると ともに.

上記制御手順の出力が上記論理和回路の他方の入力端子 に接続された論理積回路の一方の入力端子に接続され、 該論理積回路の他方の入力端子に上記垂直クロックが入 力されることを特徴とする請求項45記載の画像表示装 置の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、信号によって輝度 が制御される画素を備えた画像表示装置に関する。例え ば、有機エレクトロルミネッセンス(EL)素子等の、 電流によって輝度が制御される発光素子を各画素毎に備 えた画像表示装置に関する。より詳しくは、各画素内に 設けられた絶縁ゲート型電界効果トランジスタ等の能動 素子によって発光素子に供給する電流量が制御される、 所謂アクティブマトリクス型の画像表示装置に関する。 [0002]

【従来の技術】一般に、アクティブマトリクス型の画像 表示装置では、多数の画素をマトリクス状に並べ、与え られた輝度情報に応じて画素毎に光強度を制御すること によって画像を表示する。電気光学物質として液晶を用 いた場合には、各画素に書き込まれる電圧に応じて画素 の透過率が変化する。電気光学物質として有機エレクト ロルミネッセンス材料を用いたアクティブマトリクス型 の画像表示装置でも、基本的な動作は液晶を用いた場合 と同様である。しかし液晶ディスプレイと異なり、有機 ELディスプレイは各画素に発光素子を有する、所謂自 発光型であり、液晶ディスプレイに比べて画像の視認性 が高い、バックライトが不要、応答速度が速い等の利点 を有する。個々の発光素子の輝度は電流量によって制御 される。即ち、発光素子が電流駆動型或いは電流制御型

各画素は、電流によって発光する有機物を利用した発光 50 であるという点で液晶ディスプレイ等とは大きく異な

(6)

る.

【0003】液晶ディスプレイと同様、有機ELディス プレイもその駆動方式として単純マトリクス方式とアク ティブマトリクス方式とが可能である。前者は構造が単 純であるものの大型且つ高精細のディスプレイの実現が 困難であるため、アクティブマトリクス方式の開発が盛 んに行われている。アクティブマトリクス方式は、各画 素に設けた発光素子に流れる電流を画素内部に設けた能 動素子(一般には、絶縁ゲート型電界効果トランジスタ の一種である薄膜トランジスタ、以下TFTと呼ぶ場合 がある)によって制御する。このアクティブマトリクス 方式の有機ELディスプレイは例えば特開平8-234 683号公報に開示されており、一画素分の等価回路を 図10に示す。画素PXLは発光素子OLED、第一の 薄膜トランジスタTFT1、第二の薄膜トランジスタT FT2及び保持容量Csからなる。発光素子は有機エレ クトロルミネッセンス (EL) 素子である。有機EL素 子は多くの場合整流性があるため、OLED(有機発光 ダイオード)と呼ばれることがあり、図では発光素子() LEDとしてダイオードの記号を用いている。但し、発 20 光素子は必ずしもOLEDに限るものではなく、素子に 流れる電流量によって輝度が制御されるものであればよ い。また、発光素子に必ずしも整流性が要求されるもの ではない。図示の例では、TFT2のソースSを基準電米

> Ids = $(1/2) \cdot \mu \cdot Cox \cdot (W/L) \cdot (Vgs-Vth)^{2}$ = $(1/2) \cdot \mu \cdot \text{Cox} \cdot (\text{W/L}) \cdot (\text{Vdata-Vth})^2 \cdots (1)$

CCでCoxは単位面積辺りのゲート容量であり、以下 の式で与えられる。

 $Cox = \varepsilon \cdot 0 \cdot \varepsilon r / d \cdots (2)$

式(1)及び(2)中、VthはTFT2の閾値を示 し、μはキャリアの移動度を示し、Ψはチャネル幅を示 し、Lはチャネル長を示し、εΟは真空の誘電率を示 し、εrはゲート絶縁膜の比誘電率を示し、dはゲート 絶縁膜の厚みである。

【0006】式(1)によれば、画素PXLへ書き込む 電位VdataによってIdsを制御でき、結果として 発光素子〇LEDの輝度を制御できることになる。ここ で、TFT2を飽和領域で動作させる理由は次の通りで ある。即ち、飽和領域においてはIdsはVgsのみに よって制御され、ドレイン/ソース間電圧Vdsには依 40 存しないため、OLEDの特性ばらつきによりVdsが 変動しても、所定量の電流 IdsをOLEDに流すこと ができるからである。

【0007】上述したように、図10に示した画素PX Lの回路構成では、一度Vdataの書き込みを行え ば、次に書き換えられるまで一走査サイクル(一フレー ム)の間、OLEDは一定の輝度で発光を継続する。C のような画素PXLを図11のようにマトリクス状に多 数配列すると、アクティブマトリクス型画像表示装置を 構成することができる。図11に示すように、従来の画 50 この従来例ではPチャネル型の電界効果トランジスタを

*位(接地電位)とし、発光素子OLEDのアノードA (陽極)はVdd (電源電位)に接続される一方、カソ ードK(陰極)はTFT2のドレインDに接続されてい る。一方、TFT1のゲートGは走査線Xに接続され、 ソースSはデータ線Yに接続され、ドレインDは保持容 量Cs及びTFT2のゲートGに接続されている。

【0004】PXLを動作させるために、まず、走査線 Xを選択状態とし、データ線Yに輝度情報を表すデータ 電位Vdataを印加すると、TFT1が導通し、保持 容量Csが充電又は放電され、TFT2のゲート電位は データ電位Vdataに一致する。走査線Xを非選択状 態とすると、TFT1がオフになり、TFT2は電気的 にデータ線Yから切り離されるが、TFT2のゲート電 位は保持容量Csによって安定に保持される。TFT2 を介して発光素子OLEDに流れる電流は、TFT2の ゲート/ソース間電圧Vgsに応じた値となり、発光素 子OLEDはTFT2から供給される電流量に応じた輝 度で発光し続ける。

【0005】本明細書では、走査線Xを選択してデータ 線Yの電位を画素内部に伝える操作を、以下「書き込 み」と呼ぶ。さて、TFT2のドレイン/ソース間に流 れる電流をIdsとすると、これがOLEDに流れる駆 動電流である。TFT2が飽和領域で動作するものとす ると、Idsは以下の式で表される。

像表示装置は、所定の走査サイクル(例えばNTSC規 格に従ったフレーム周期)で画素PXLを選択するため の走査線X1乃至XNと、画素PXLを駆動するための 輝度情報 (データ電位 V d a t a) を与えるデータ線 Y とがマトリクス状に配設されている。走査線X1乃至X Nは走査線駆動回路21に接続される一方、データ線Y はデータ線駆動回路22に接続される。走査線駆動回路 21によって走査線X1乃至XNを順次選択しながら、 データ線駆動回路22によってデータ線YからVdat aの書き込みを繰り返すことにより、所望の画像を表示 することができる。単純マトリクス型の画像表示装置で は、各画素PXLに含まれる発光素子は、選択された瞬 間にのみ発光するのに対し、図11に示したアクティブ マトリクス型画像表示装置では、書き込み終了後も各画 素PXLの発光素子が発光を継続するため、単純マトリ クス型に比べ発光素子のビーク輝度(ビーク電流)を下 げられるなどの点で、取り分け大型髙精細のディスプレ イでは有利となる。

【0008】図12は、従来の画素構造の他の例を示す 等価回路図であり、図10に示した先の従来例と対応す る部分には対応する参照番号を付して理解を容易にして いる。先の従来例がTFT1及びTFT2としてNチャ ネル型の電界効果トランジスタを使っていたのに対し、

使っている。従って、図10の回路構成とは逆に、0L EDのカソードKが負電位のVddに接続し、アノード AがTFT2のドレインDに接続している。

11

【0009】図13は、図12に示した画素PXLの断 面構造を模式的に表している。但し、図示を容易にする ため、OLEDとTFT2のみを表している。OLED は、透明電極10、有機EL層11及び金属電極12を 順に重ねたものである。透明電極10は画素毎に分離し ておりOLEDのアノードAとして機能し、例えばIT 〇等の透明導電膜からなる。金属電極12は画素間で共 10 通接続されており、OLEDのカソードKとして機能す る。即ち、金属電極12は所定の電源電位Vddk共通 接続されている。有機EL層11は例えば正孔輸送層と 電子輸送層とを重ねた複合膜となっている。例えば、ア ノードA (正孔注入電極) として機能する透明電極10 の上に正孔輸送層としてDiamyneを蒸着し、その 上に電子輸送層としてAla3を蒸着し、更にその上に カソードK(電子注入電極)として機能する金属電極1 2を成膜する。尚、Alq3は、8-hydroxy quinoline aluminumを表している。 とのような積層構造を有するOLEDは一例に過ぎな い。かかる構成を有するOLEDのアノード/カソード 間に順方向の電圧(10V程度)を印加すると、電子や 正孔等キャリアの注入が起こり、発光が観測される。〇 LEDの動作は、正孔輸送層から注入された正孔と電子 輸送層から注入された電子より形成された励起子による 発光と考えられる。

【0010】一方、TFT2はガラス等からなる基板1 の上に形成されたゲート電極2と、その上面に重ねられ たゲート絶縁膜3と、このゲート絶縁膜3を介してゲー 30 ト電極2の上方に重ねられた半導体薄膜4とからなる。*

> チャネル幅: W=5μm チャネル長: L= $\{W \cdot / (2 \cdot Ip)\} \cdot \mu \cdot Cox \cdot Vp^2 = 270 \mu m$ (3)

【0012】 ここでまず問題なのは、式(3)で与えら れるチャネル長しが、画素サイズ(S=200μm×2 $00\mu m$) に匹敵するか乃至はこれを上回る寸法である ということである。式(3)に示すように、ピーク電流 I p はチャネル長しに反比例する。上記例ではピーク電 流 I pを動作に必要十分な O. 8 μ A 程度に抑えるた め、チャネル長しを270μmまで長くしなければなら ない。これでは、画素内におけるTFT2の占有面積が 大きくなり、発光領域を狭める結果となるため好ましく ないばかりでなく、画素の微細化が困難になる。本質的 な問題は、要求される輝度(ビーク電流)と半導体プロ セスのパラメータ等が与えられると、TFT2の設計自 由度は殆ど無いということである。即ち、上記例でチャ ネル長しを小さくするためには、式(3)から明らかな ようにまずチャネル幅Wを小さくすることが考えられ る。しかし、プロセス上チャネル幅Wの微細化に限界が 50 することは一般に困難であり、そもそも設計しようとす

* この半導体薄膜 4 は例えば多結晶シリコン薄膜からな る。TFT2はOLEDに供給される電流の通路となる ソースS、チャネルCh及びドレインDを備えている。 チャネルChは丁度ゲート電極2の直上に位置する。 と のボトムゲート構造のTFT2は層間絶縁膜5により被 覆されており、その上にはソース電極6及びドレイン電 極7が形成されている。これらの上には別の層間絶縁膜 9を介して前述したOLE Dが成膜されている。 [0011]

【発明が解決しようとする課題】上述したアクティブマ トリクス型のELディスプレイを構成する上で、解決す べき第一の課題は、OLEDに流れる電流量を制御する 能動素子であるTFT2の設計自由度が小さく、場合に よっては画素寸法に合わせた実用的な設計が困難にな る。又、解決すべき第二の課題は画面全体の表示輝度を 自在に調整することが困難であることである。これらの 課題を、図10乃至13に示した従来例について具体的 な設計パラメータを挙げながら説明する。典型的な設計 例では、画面寸法が20cm×20cm、行の数(走査 線本数)が1000、列の数 (データ線の本数)が10 00、画素寸法が $S = 200 \mu m \times 200 \mu m$ 、ピーク 輝度がBp=200cd/m'、発光素子の効率がE= 10cd/A、TFT2のゲート絶縁膜の厚みがd=1 00nm、ゲート絶縁膜の比誘電率が $\epsilon r = 3.9$ 、キ ャリア移動度が $\mu = 100 \text{ cm}^2 / \text{V · s}$ 、画素当たり のピーク電流が $Ip = Bp/E \times S = 0$. $8\mu A$ 、 Vgs-Vth | (駆動電圧)のピーク値がVp=5Vで ある。このような設計例でビーク電流Ipを供給するた め、TFT2の設計例としては、前述した式(1)及び (2)から、以下のようになる。

あり、現在の薄膜トランジスタプロセスにおいては上記 程度より大幅に微細化することが困難である。別の方法 として、駆動電圧のピーク値V p を小さくすることが考 えられる。しかし、その場合、階調制御を行うために は、OLEDの発光強度を極めて小さな駆動電圧幅で制 40 御する必要が生じる。例えばVp=5Vの場合において も、発光強度を64階調で制御しようとすれば、1階調 当たりの電圧ステップは平均で5V/64=80mV程 度となる。これを更に小さくすることは、僅かなノイズ やTFT特性のばらつきによって、画像の表示品質が影 響される結果となる。従って、駆動電圧のピーク値Vp を小さくすることにも限界がある。別の解決法として は、式(3)に表れるキャリア移動度μ等のプロセスバ ラメータを適当な値に設定することが考えられる。しか し、プロセスパラメータを都合のよい値に精度よく制御

る画像表示装置の仕様に合わせて製造プロセスを構築することは経済的に全く現実的でない。このように、従来のアクティブマトリクス型ELディスプレイでは、画素設計の自由度が乏しく、実用的な設計を行うことが困難である。

13

【0013】上述した第一の問題点とも関連するが、第二の問題点として、アクティブマトリクス型のELディスプレイでは画面全体の表示輝度を任意に制御することが困難である。一般に、テレビジョン等の画像表示装置においては画面全体の表示輝度を自在に調整し得るといりたとが、実用上欠くことのできない要件である。例えば周囲が明るい状況下で画像表示装置を使用する場合には画面輝度を高くし、逆に暗い状況下で画像表示装置を使用する場合には画面輝度を低く抑えることが自然である。とのような画面輝度の調節は、例えば液晶ディスプレイにおいてはバックライトの電力を変化させることにより容易に実現できる。又、単純マトリクス型のELディスプレイにおいては、アドレス時の駆動電流を調整することにより、比較的簡単に画面輝度を調節可能である。といより、比較的簡単に画面輝度を調節可能である。

【0014】ところが、アクティブマトリクス型の有機ディスプレイにおいては、画面全体としての表示輝度を任意に調節することは困難である。前述したように、表示輝度はピーク電流Ipに比例し、IpはTFT2のチャネル長しに反比例する。従って、表示輝度を下げるためにはチャネル長しを大きくすればよいが、これは使用者が任意に表示輝度を選ぶ手段とはなりえない。実現可能な方法として、輝度を下げるために駆動電圧のピーク値Vpを小さくすることが考えられる。しかし、Vpを下げるとノイズ等の原因で画質の劣化を招く。逆に輝度 30を上げたい場合に、駆動電圧のピーク値Vpを大きくしようとしても、TFT2の耐圧等による上限があることは言うまでもない。

[0015]

【課題を解決する為の手段】上述した従来の技術の課題 に鑑み、本発明は画素内部の能動素子の設計自由度を増 して良好な設計を可能たらしめるとともに、画面輝度を 自在且つ簡便に調整することが可能な画像表示装置を提 供することを目的とする。かかる目的を達成するために 以下の手段を講じた。即ち、所定の走査サイクルで画素 を選択するための走査線と、画素を駆動するための輝度 情報を与えるデータ線とがマトリクス状に配設され、各 画素は、供給される電流量によって輝度が変化する発光 素子と、走査線によって制御され且つデータ線から与え られた輝度情報を画素に書き込む機能を有する第一の能 動素子と、該書き込まれた輝度情報に応じて該発光素子 に供給する電流量を制御する機能を有する第二の能動素 子とを含み、各画素への輝度情報の書き込みは、走査線 が選択された状態で、データ線に輝度情報に応じた電気 信号を印加することによって行われ、各画素に書き込ま 50 れた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持された輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることを特徴とする。

【0016】好ましくは、前記制御手段は、各画素に輝 度情報が書き込まれてから次に新たな輝度情報が書き込 まれる一走査サイクルの間で、発光素子を点灯状態から 消灯状態に切り換える時点を調整可能である。一実施形 態では、前記制御手段は、絶縁ゲート型電界効果トラン ジスタからなる該第二の能動素子のゲートに接続された 第三の能動素子を含み、該第三の能動素子に与える制御 信号により該第二の能動素子のゲート電位を制御して該 発光素子を消灯することが可能であり、該制御信号は、 各走査線と平行に設けた停止制御線を介して同一走査線 上の各画素に含まれる第三の能動素子に与えられる。他 の実施形態では、前記制御手段は、該発光素子と直列に 20 接続された第三の能動素子を含み、該第三の能動素子に 与える制御信号に応じて該発光素子に流れる電流を遮断 することが可能であり、該制御信号は、各走査線と平行 に設けた停止制御線を介して同一走査線上の各画素に含 まれる第三の能動素子に与えられる。別の実施形態で は、各発光素子は整流作用を有する二端子素子からな り、一方の端子は対応する第二の能動素子に接続され、 他方の端子は同一走査線上の各画素では共通接続され且 つ走査線間では電気的に分離されており、前記制御手段 は、各二端子素子の共通接続された他方の端子の電位を 制御して各二端子素子を消灯する。更に別の実施形態で は、前記制御手段は、各画素に輝度情報が書き込まれて から次に新たな輝度情報が書き込まれる一走査サイクル の間に、再度走査線を選択して各画素にデータ線から輝 度ゼロを表す情報を書き込んで各画素の発光素子を消灯 する。更に別の実施形態では、各画素は、該発光素子に 流れる電流量を制御する第二の能動素子を構成する絶縁 ゲート型電界効果トランジスタのゲートに一端が接続さ れた容量素子を含み、前記制御手段は、該容量素子の他 端の電位を制御することにより前記第二の能動素子を構 成する絶縁ゲート型電界効果トランジスタのゲートの電 位を制御して該発光素子を消灯する。更に別の実施形態 では、前記制御手段は、各画素に輝度情報が書き込まれ た後一走査サイクル内で、各画素に含まれる発光素子の 点灯時点及び消灯時点を少なくとも走査線単位で制御す る。更に別の実施形態では、同一の走査線に赤、緑、青 の各画素を共通に接続する一方、前記制御手段は、赤、 緑、青の各画素に含まれる発光素子を別々の時点で消灯 する。なお、好ましくは、前記発光素子は、有機エレク トロルミネッセンス素子である。

【0017】本発明は、又、画素に第一の輝度情報が書 込まれてから新たな第二の輝度情報が書込まれる一走査 サイクル期間内で輝度情報に応じ画素を点灯する画像表 示装置において、所定の走査サイクルでそれぞれの画素 を選択する走査線と、該走査線に直交する方向に形成さ れ、上記画素を点灯する為の輝度情報を与えるデータ線 と、上記走査線により制御され、上記輝度情報を取り込 む第一の能動素子と、上記輝度情報を、上記画素の駆動 に用いる電気信号に転換する第二の能動素子とを有し、 上記一走査サイクル期間内で上記画素を点灯状態から消 10 灯状態にする制御手段を有していることを特徴とする。 好ましくは、上記制御手段は、上記一走査サイクル期間 内で、上記点灯状態から上記消灯時間までの間の時間を 可変可能である。又、上記第二の能動素子は、絶縁ゲー ト型電界効果トランジスタであり、上記制御手段は、該 絶縁ゲート型電界効果トランジスタのゲートに接続され た第三の能動素子を有し、該第三の能動素子は、上記走 査線と略平行に設けられた制御線によって制御される。 又、上記制御手段は、上記第二の能動素子に直列に設け られた第三の能動素子を有し、該第三の能動素子は、上 記走査線と略平行に設けられた制御線によって制御され る。又、上記画素は発光素子を含み、上記発光素子は第 一及び第二の端子を有し、上記第一の端子は上記第二の 能動素子に接続されるとともに、上記第二の端子は所定 の参照電位に接続され、上記制御手段は、上記参照電位 を可変制御するととにより上記発光素子を消灯させる。 又、上記制御手段は、上記走査線が選択された後、上記 一走査サイクル期間内で上記走査線を再選択し、上記デ ータ線から輝度ゼロを表す輝度情報を画素に供給すると とにより、該画素を消灯する。又、各画素は、該第二の 能動素子を構成する絶縁ゲート型電界効果トランジスタ のゲートに一端が接続された容量素子を含み、上記制御 手段は、該容量素子の他端の電位を制御することにより 前記第二の能動素子を構成する絶縁ゲート型電界効果ト ランジスタのゲートの電位を制御して画素を消灯する。 又、上記制御手段は、上記走査線毎に上記画素を消灯す る。又、上記画素は、青、緑、赤色の発光素子を有し、 上記制御手段は、該青、緑、赤色の発光素子を異なる時 間で消灯可能である。又、上記第二の能動素子は、輝度 情報を画素の駆動に用いる電流に転換し、各画素は、電 40 流によって発光する有機物を利用した発光素子を有す る。又、上記走査線を順次選択する為の垂直クロックが 入力される走査線駆動回路と、上記垂直クロックを所定 の期間遅延した垂直クロックが入力され、上記走査線又 はこれと平行に設けた制御線を選択する制御回路とを有 し、上記走査線は、上記走査線駆動回路により上記垂直 クロックに同期して順次選択され、上記画素を点灯する とともに、該点灯後、該制御回路により上記遅延された 垂直クロックに同期して、上記一走査期間内で上記走査 線又は制御線を介し該画素を消灯する。更に、上記デー

15

タ線に輝度情報を与えるデータ線駆動回路を有し、上記 走査線駆動回路の出力は、上記走査線に出力端子が接続 された論理和回路の一方の入力端子に接続されるととも に、上記制御回路の出力が上記論理和回路の他方の入力 端子に接続された論理積回路の一方の入力端子に接続さ れ、該論理積回路の他方の入力端子に上記垂直クロック が入力される。

【0018】本発明によれば、画像表示装置は走査線単 位で輝度情報を各画素に書き込んだあと、次の走査線サ イクル (フレーム) の輝度情報が新たに書き込まれる以 前に、走査線単位で各画素に含まれる発光素子を一括し て消灯する。とれによれば、輝度情報の書き込み後発光 素子の点灯から消灯するまでの時間を調節できることに なる。即ち、一走査サイクルにおける発光時間の割合 (デューティー)を調節できることになる。発光時間 (デューティー) の調節は等価的に各発光素子のピーク 電流 I pを調節することに相当する。よって、デューテ ィーを調節することにより簡便且つ自在に表示輝度を調 整することが可能である。更に重要な点は、デューティ ーを適切に設定することで、等価的にIpを大きくする ことができる。例えば、デューティーを1/10にする と、Ipを10倍にしても同等の輝度が得られる。Ip を10倍にすればTFTのチャネル長しを1/10にす ることができる。このように、デューティーを適当に選 ぶことで画素に含まれるTFTの設計自由度が増し、実 用的な設計を行うことが可能になる。

[0019]

【発明の実施の形態】以下図面を参照して本発明の実施 の形態を詳細に説明する。図1は、本発明にかかる画像 表示装置の第一実施形態の一例を表しており、一画素分 の等価回路図である。尚、図10に示した従来の画素構 造と対応する部分には対応する参照番号を付して理解を 容易にしている。図示するように、本画像表示装置は、 所定の走査サイクル(フレーム)で画素PXLを選択す るための走査線Xと、画素PXLを駆動するための輝度 情報を与えるデータ線Yとがマトリクス状に配設されて いる。走査線Xとデータ線Yの交差部に形成された画素 PXLは、発光素子OLEDと、第一の能動素子である TFT1と、第二の能動素子であるTFT2と、保持容 量Csとを含む。発光素子OLEDは供給される電流量 によって輝度が変化する。TFT1は走査線Xによって 制御され且つデータ線Yから与えられた輝度情報を画素 PXLに含まれた保持容量Csに書き込む。TFT2は Csに書き込まれた輝度情報に応じて発光素子OLED に供給する電流量を制御する。PXLへの輝度情報の書 き込みは、走査線Xが選択された状態で、データ線Yに 輝度情報に応じた電気信号 (データ電位Vdata)を 印加するととによって行われる。画素PXLに書き込ま れた輝度情報は走査線Xが非選択となったあとも保持容 50 量Csに保持され、発光素子OLEDは保持された輝度 (10)

情報に応じた輝度で点灯を維持可能である。本発明の特 徴事項として、同一の走査線Xに接続された各画素PX Lの発光素子OLEDを少なくとも走査線単位で強制的 に消灯する制御手段を有し、各画素PXLに輝度情報が 書き込まれてから次に新たな輝度情報が書き込まれる一 走査サイクルの間に発光素子を点灯状態から消灯状態に する。本実施形態では制御手段が、TFT2のゲートG に接続されたTFT3 (第三の能動素子)を含み、TF T3のゲートGに与える制御信号によりTFT2のゲー ト電位を制御して、OLEDを消灯することが可能であ る。この制御信号は、走査線Xと平行に設けた停止制御 線Zを介して対応する走査線上の各画素PXLに含まれ るTFT3に与えられる。制御信号に応じてTFT3を オン状態にすることにより、保持容量Csが放電され て、TFT2のVgsが0Vとなり、OLEDに流れる 電流を遮断することができる。 TFT3のゲートGは走 査線Xに対応した停止制御線Zに共通接続されており、 停止制御線2単位で発光停止制御を行うことができる。 【0020】図2は、図1に示したPXLをマトリクス 上に配列した画像表示装置の全体構成を示す回路図であ 20 る。図示するように、走査線X1, X2, …, XNが行 状に配列され、データ線Yが列状に配列されている。各 走査線Xとデータ線Yの交差部に画素PXLが形成され ている。又、走査線X1, X2, …, XNと平行に、停 止制御線 Z 1, Z 2, …, Z N が形成されている。走査 線Xは走査線駆動回路21に接続されている。走査線駆 動回路21はシフトレジスタを含んでおり、垂直クロッ クVCKに同期して垂直スタートパルスVSP1を順次 転送することにより、走査線X1, X2, …, XNを一 走査サイクル内で順次選択する。一方、停止制御線 Z は 30 停止制御線駆動回路23に接続されている。この駆動回 路23もシフトレジスタを含んでおり、VCKに同期し て垂直スタートパルスVSP2を順次転送することによ り、停止制御線スに制御信号を出力する。尚、VSP2 は遅延回路24により所定時間だけVSP1から遅延処 理されている。データ線Yはデータ線駆動回路22に接 続されており、走査線Xの線順次走査に同期して、各デ ータ線Yに輝度情報に対応した電気信号を出力する。と の場合、データ線駆動回路22は、いわゆる線順次駆動 を行ない、選択された画素の行に対して一斉に電気信号 を供給する。或いは、データ線駆動回路22は、いわゆ る点順次駆動を行ない、選択された画素の行に対して順 次電気信号を供給しても良い。いずれにしても、本発明 は、線順次駆動と点順次駆動の両者を包含している。

17

【0021】図3は、図2に示した本発明の第一実施形態にかかる画像表示装置の動作説明に供するタイミングチャートである。まず、垂直スタートバルスVSP1が走査線駆動回路21及び遅延回路24に入力される。走査線駆動回路21はVSP1の入力を受けたあと、垂直クロックVCKに同期して走査線X1、X2、…、XN

を順次選択し、走査線単位で輝度情報が画素PXLに書き込まれていく。各画素PXLは書き込まれた輝度情報に応じた強度で発光を開始する。VSP1は遅延回路24で遅延され、VSP2として停止制御線駆動回路23に入力される。停止制御線駆動回路23はVSP2を受けたあと、垂直クロックVCKに同期して停止制御線Z1、Z2、…,ZNを順次選択し、発光が走査線単位で停止していく。

【0022】図1乃至図3に示した第一実施形態によれば、各画素PXLが発光するのは輝度情報が書き込まれてから発光停止制御信号によって発光が停止するまでの間、即ち概ね遅延回路24によって設定された遅延時間分である。その遅延時間をてとし、一走査サイクル(一フレーム)の時間をTとすると、画素が発光している時間的割合即ちデューティーは概ねて/Tとなる。発光素子の時間平均輝度はこのデューティーに比例して変化する。従って、遅延回路24を操作して遅延時間で変更することにより、ELディスプレイの画面輝度を簡便且つ幅広い範囲で可変調整することができる。

【0023】更に、輝度の制御が容易になることは、画素回路の設計自由度を増し、より良好な設計を行うことが可能になる。図10に示した従来の画像表示装置の画素設計例では、TFT2のサイズを以下のように決めていた。

チャネル幅: W=5µm

チャネル長: L= {W·/(2·Ip)} · μ·Cox ·Vp² = 270μm

これらのTFT2のサイズは、発光素子のデューティーが1の場合に相当している。これに対し、本発明にかかる画像表示装置では上述したようにデューティーを予め所望の値に設定しておくことができる。例えば、デューティーを0.1とすることができる。この場合本発明による設計例として、図1に示したTFT2のサイズを以下のように縮小できる。

チャネル幅: $W=5 \mu m$

チャネル長: $L=270\mu$ m×0. $1=27\mu$ m その他のパラメータは図10に示した従来例と同一とする。 との場合、発光時に0LEDに流れる電流は式

(1)に従って10倍となるが、デューティーを0.1としているため、時間平均での駆動電流は、従来例と同じになる。有機EL素子では、電流と輝度とは通常比例関係にあるので、時間平均の発光輝度は、従来例と本発明とで同等になる。一方、本発明の設計例においては、TFT2のチャネル長上が従来例の1/10と大幅に小型化されている。これにより、画素内部に於けるTFT2の占有率が大幅に下がり、その結果有機EL素子の占有面積(発光領域)を大きく取ることができるので、画像品位が向上する。又、画素の微細化も容易に実現可能となる。

クロックVCKに同期して走査線X1, X2, …, XN 50 【0024】図4は、本発明にかかる画像表示装置の第

30

二実施形態の一例を示す全体回路構成図である。図2に 示した第一実施形態と対応する部分には対応する参照番 号を付して理解を容易にしている。第一実施形態がモノ クロの画像表示装置であるのに対し、本実施形態はカラ -の画像表示装置であり、RGB三原色が割り当てられ た画素PXLが集積形成されている。本実施形態では、 同一の走査線Xに赤、緑、青の各画素PXLを共通に接 続する一方、停止制御線ZR、ZG、及びZBに赤、 緑、青の各画素を別々に接続している。これにより、 赤、緑、青の各画素に含まれる発光素子を別々の時点で 10 消灯できるようにしている。具体的には、RGB三色の 画素 P X L に対応して、三個の停止制御線駆動回路 2 3 R, 23G, 23Bが別々に設けられている。又、これ らの停止制御線駆動回路23R,23G,23Bに対応 して、夫々別々に遅延回路24R, 24G, 24Bが設 けられている。従って、RGB別々に、VSP1の遅延 時間を設定でき、VSP2R, VSP2G, VSP2B を対応する停止制御線駆動回路23R, 23G, 23B に供給可能である。停止制御線駆動回路23Rによって 制御される停止制御線 ZRには、赤色画素(R)が接続 20 され、停止制御線駆動回路23Gによって制御される停 止制御線ZGには、緑色画素(G)が接続され、停止制 御線駆動回路23Bによって制御される停止制御線2B には、青色画素(B)が接続される。かかる構成によれ ば、RGBの各色毎に、輝度を調節できる。従って、遅 延回路24R,24G,24Bの遅延時間を適切に調整 することで、カラー画像表示装置の色度調節が容易にな り、カラーバランスを簡単にとることが可能である。即 ち、画面を観察して赤み成分が強すぎる場合には、遅延 回路24Rの遅延時間を調節し、赤色に対応するデュー ティーを相対的に小さくすることで、赤み成分を弱める ことが可能である。

19

【0025】図5は本発明にかかる画像表示装置の第三 実施形態の一例を示す一画素分の等価回路図であり、図 1 に示した第一実施形態と対応する部分には対応する参 照番号を付して理解を容易にしている。本実施形態は発 光素子OLEDと直列に接続されたTFT3 (第三の能 動素子)を含み、TFT3に与える制御信号に応じて発 光素子〇LEDに流れる電流を遮断することが可能であ る。制御信号は、走査線Xと平行に設けた停止制御線Z を介して同一走査線上の各画素PXLに含まれるTFT 3のゲートGに与えられる。本実施形態では、接地電位 とTFT2との間にTFT3が挿入されており、TFT 3のゲート電位の制御によって、OLEDに流れる電流 をオン/オフすることができる。尚、TFT3を、TF T2とOLEDの間、或いはOLEDとVddとの間に 挿入することも可能である。

【0026】図6は、本発明にかかる画像表示装置の第 四実施形態の一例を示す一画素分の等価回路図である。 図10に示した従来例と対応する部分には対応する参照 50 る。各アンドゲート回路28の他方の端子にはVCKが

番号を付して理解を容易にしている。本実施形態では発 光素子OLEDは整流作用を有する二端子素子からな り、一方の端子(カソードK)はTFT2に接続され、 他方の端子(アノードA)は停止制御線Zに接続されて いる。同一走査線上の各画素では二端子素子のアノード Aは停止制御線Zに共通接続され、異なる走査線間では 電気的に分離されている。この場合、二端子素子の共通 接続された他方の端子 (アノードA) の電位を停止制御 線Zにより制御して、各OLEDを消灯する。但し、O LEDのアノードAは従来のように一定電位のVddに 接続されるのではなく、停止制御線Zを介して外部から その電位が制御される。アノード電位を十分高い値とす れば、OLEDにはTFT2によって制御される電流が 流れるが、OLEDは二端子素子で整流作用があるた め、アノード電位を十分低い電位 (例えば接地電位) と することにより、OLEDに流れる電流をオフすること ができる。

【0027】図7は、図6に示した第四実施形態の制御 例を示すタイミングチャートである。一走査サイクル (一フレーム)をTで表している。一走査サイクルTの 先頭に位置する書き込み期間 (RT) で、全画素に対す る輝度情報の書き込みを線順次で行う。即ち、この例で は、一走査サイクルの一部を利用して高速に輝度情報を 全ての画素に書き込んでいる。書き込みが完了したあ と、停止制御線Zを一斉に制御して、各画素に含まれる OLEDをオンする。これにより、各画素のOLEDは 書き込まれた輝度情報に応じて夫々発光を開始する。そ のあと所定の遅延時間でが経過すると、全ての停止制御 線Zを介して全てのOLEDのアノードAを接地電位に 落とす。これにより、発光がオフになる。以上のような 制御により、全画素単位でデューティーで/Tを調整可 能である。尚、本発明はこれに限られるものではなく、 少なくとも走査線単位で各画素のオン/オフを制御する ようにしてもよい。以上のように、本制御例では、各画 素に輝度情報が書き込まれたあと一走査サイクル内で、 各画素に含まれる発光素子の点灯時点及び消灯時点を画 面単位若しくは走査線単位で制御できる。

【0028】図8は、本発明にかかる画像表示装置の第 五実施形態の一例を示す全体回路構成図であり、図11 に示した従来例と対応する部分には対応する参照番号を 付して理解を容易にしている。本実施形態は先の実施形 態と異なり、特別の停止制御線を設けること無く、走査 線X1乃至XNを利用して各画素PXLのデューティー 制御を行っている。このために、走査線駆動回路21と は別に制御回路23'を設けている。制御回路23'の 各出力端子は対応する各アンドゲート回路28の一方の 入力端子に接続されている。各アンドゲート回路28の 出力端子は次段のオアゲート回路29の一方の入力端子 を介して各走査線X1,X2,…,XNに接続してい

供給されている。なお、走査線駆動回路21の各出力端 子は対応する各オアゲート回路29の他方の入力端子を 介して各走査線X1, X2, …, XNに接続している。 又、VSP1は先の実施形態と同様に遅延回路24を介 してVSP2となり、制御回路23'に供給される。-方、各データ線YはPチャネル型のTFT26を介して データ線駆動回路22に接続されている。TFT26の ゲートにはVCKが供給されている。又、各データ線Y の電位はNチャンネル型のTFT27によっても制御で きる。TFT27のゲートにもVCKが供給されてい る。このように、本画像表示装置の周辺回路構成は図1 1に示した従来例と異なるが、個々の画素 PXLの回路 構成は、図10に示した従来の画素回路構成と同一であ る。かかる構成により、制御回路23'は、各画素PX しに輝度情報が書き込まれてから次に新たな輝度情報が 書き込まれる一走査サイクルの間に、再度走査線Xを選 択して各画素PXLにデータ線Yから輝度0を表す情報 を書き込んで各画素PXLの発光素子OLEDを消灯す ることができる。

21

説明に供するタイミングチャートである。図示するよう に、垂直スタートパルスVSP1は走査線駆動回路21 及び遅延回路24に入力される。走査線駆動回路21は VSP1を受け入れたあと、垂直クロックVCKに同期 して走査線 X1, X2, …, XNを順次選択し、走査線 単位で各画素PXLに輝度情報を書き込んでいく。各画 素は書き込まれた輝度情報に応じた強度で発光を開始す る。但し、本実施形態ではTFT26,27を設けたこ とにより、各データ線YはVCK=H(ハイレベル)の 期間で輝度0に相当する電位(との例では接地電位)と なり、VCK=L(ローレベル)の期間において本来の 輝度情報が与えられるようになっている。この関係は図 9のVCKの波形にL. Hを付し、データ線の波形にハ ッチングを付して模式的に表してある。VSP1は遅延 回路24で遅延されたあと、VSP2として制御回路2 3' に入力される。制御回路23' はVSP2を受け入 れたあと、垂直クロックVCKに同期して動作するが、 その出力はアンドゲート回路28に入力される。各アン ドゲート回路28にはVCKが同時に入力されているの で、制御回路23'の出力がH(ハイレベル)で且つV 40 CK=H(ハイレベル)の時に走査線Xが選択される。 前述したように、VCK=Hの期間は各データ線Yに輝 度0に相当する電位が与えられているので、制御回路2 3' によって選択された走査線Xに接続された画素は輝 度0 に相当する情報により発光が停止する。

【0030】図14は本発明にかかる画像表示装置の第 六実施形態の一例を示す一画素分の等価回路図であり、 図1に示した第一実施形態と対応する部分には対応する 参照番号を付して理解を容易にしている。先の各実施形 態では、画素の消灯を行うためにトランジスタを追加す 50

る必要のあるものが多いが、本実施形態は、追加のトラ ンジスタが不要で、より実用的な構成になっている。図 示するように、発光素子〇LEDに供給する電流量を制 御するトランジスタTFT2のゲートGに接続された容 量素子Csの他方の端子が発光停止制御線Zに接続され る。書き込み終了後、発光停止線2の電位を(との図の 例では)下げる。例えば、容量素子Csの容量がTFT 2のゲート容量等に比べ十分大きい場合は、発光停止制 御線スの電付変化がすなわちTFT2のゲート電位の変 化となる。従って、書き込み時のTFT2のゲート電位 の最大値をVgmaxとした場合、発光停止制御線Zの 電位を、書き込み時よりVgmax-Vth以上下げる ことによって、TFT2のゲート電位をVth以下にす ることができ、従って発光素子OLEDは消灯する。実 際にはTFT2のゲート容量等を考慮し、もう少し大き な振幅で制御することが望ましい。

限して各画素PXLにデータ線Yから輝度0を表す情報 【0031】図15は、図14に示した第六実施形態の を書き込んで各画素PXLの発光素子OLEDを消灯す 助作説明に供するタイミングチャートである。図示する ることができる。 ように、停止制御線は、走査線選択と概ね同時に高レベルとされ、書き込み終了後高レベルが保たれている期間、発光素子は書き込まれた輝度情報に応じた輝度にて で、垂直スタートバルスVSP1は走査線駆動回路21 発光状態となる。次のフレームで新たなデータが書き込 及び遅延回路24に入力される。走査線駆動回路21は まれる以前に停止制御線を低レベルにすると、発光素子は消灯する。

> 【0032】ところで、CRTにおいては表示画像はμ secオーダで輝度が減衰するのに対し、アクティブマ トリクス型のディスプレイでは一フレームの間画像を表 示し続ける保持型の表示原理となっている。との為、動 画表示を行なう場合、動画の輪郭に沿った画素はフレー ムの切り換わる直前まで画像を表示しており、これが人 間の目の残像効果と相まって、次のフレームでもそこに 像が表示されているかの如く感知する。これが、アクテ ィブマトリクス型ディスプレイにおける動画表示の画質 がCRTに比較し低くなる根本原因である。との解決策 として、本発明にかかる駆動方法が効果的であり、画素 を強制的に消灯して人間の目で感ずる残像を断ち切る技 術を導入することで、動画質の改善を図ることが出来 る。具体的には、アクティブマトリクス型のディスプレ イにおいて、一フレームの前半で画像を表示する一方、 ーフレームの後半はあたかもCRT輝度が減衰するかの 如くに、画像を消灯する方法を採用している。動画質改 善の為には、フレーム当たり、点灯と消灯のデューティ ーを50%程度に設定する。更に高い動画質改善の為に は、フレーム当たり、点灯と消灯のデューティーを25 %以下に設定すると良い。

[0033]

【発明の効果】以上説明したように、本発明によれば、 各画素に輝度情報が書き込まれて発光が開始したあと、 次のフレームの書き込みが行われる前に画素の発光を停止できるので、一フレーム内での発光時間の割合(デュ (13)

ーティー)を変えることができ、これにより時間平均の表示輝度を簡便に調節することが可能である。更に重要なことは、デューティーを自由に設定できることにより、時間平均の表示輝度を同じに保ったまま、発光時に発光素子に流れる電流量を適宜に設定する自由度が生じるため、発光素子に流れる電流量を制御する能動素子の設計に自由度が生ずる。この結果、より高品位な画像を提供可能な画像表示装置や、より小さな画素サイズの画像表示装置を設計することが可能になる。

23

【図面の簡単な説明】

【図1】本発明にかかる画像表示装置の第一実施形態を 示す画素回路図である。

【図2】第一実施形態の全体回路構成図である。

【図3】第一実施形態のタイミングチャートである。

【図4】本発明にかかる画像表示装置の第二実施形態の 全体回路構成図である。

【図5】本発明にかかる画像表示装置の第三実施形態を 示す画素回路図である。

【図6】本発明にかかる画像表示装置の第四実施形態を 示す画素回路図である。

【図7】第四実施形態のタイミングチャートである。

【図8】本発明にかかる画像表示装置の第五実施形態を米

* 示す全体回路構成図である。

【図9】第五実施形態のタイミングチャートである。

【図10】従来の画像表示装置の一例を示す画素回路図 である。

【図11】従来の画像表示装置の全体回路構成図である。

【図12】従来の画像表示装置の他の例を示す画素回路 図である。

【図13】従来の画像表示装置の構造を示す断面図であ 10 る。

【図14】本発明にかかる画像表示装置の第六実施形態の一例を示す一画素分の等価回路図である。

【図15】図14に示した第六実施形態の動作説明に供するタイミングチャートである。

【符号の説明】

PXL・・・ 画素、OLED・・・発光素子、TFT1・・・第一能動素子、TFT2・・・第二能動素子、TFT3・・・第三能動素子、Cs・・・保持容量、X・・・走査線、Y・・・データ線、Z・・・停止制御線、2021・・・走査線駆動回路、22・・・データ線駆動回路、23・・・停止制御線駆動回路、24・・・遅延回

【図1】

【図5】

【図6】

【図7】

【図2】

【図3】

【図10】

【図12】

【図4】

[図8]

【図14】

【図11】

【図13】

【図15】

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第2区分 【発行日】平成14年7月31日(2002,7.31)

【公開番号】特開2001-60076(P2001-60076A)

【公開日】平成13年3月6日(2001.3.6)

【年通号数】公開特許公報13-601

【出願番号】特願2000-166170 (P2000-166170)

【国際特許分類第7版】

G09G 3/30

3/20 624 642

[FI]

G09G 3/30 J K 3/20 624 B 642 Z

【手続補正書】

【提出日】平成14年5月10日(2002.5.10)

642 L

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 画像表示装置

【特許請求の範囲】

【請求項1】 所定の走査サイクルで画素を選択するための走査線と、画素を駆動するための輝度情報を与えるデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、

同一の走査線に接続された各画素の発光素子を少なくと も走査線単位で強制的に消灯する制御手段を有し、各画 素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることによって、該発光素子の時間平均輝度を制御することを特徴とする画像表示装置。

【請求項2】 前記制御手段は、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間で、発光素子を点灯状態から消灯状態に切り換える時点を調整可能であることを特徴とする請求項1記載の画像表示装置。

【請求項3】 前記制御手段は、絶縁ゲート型電界効果トランジスタからなる該第二の能動素子のゲートに接続された第三の能動素子を含み、該第三の能動素子に与える制御信号により該第二の能動素子のゲート電位を制御して該発光素子を消灯することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えられることを特徴とする請求項1記載の画像表示装置。

【請求項4】 前記制御手段は、該発光素子と直列に接続された第三の能動素子を含み、該第三の能動素子に与える制御信号に応じて該発光素子に流れる電流を遮断することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介 して同一走査線上の各画素に含まれる第三の能動素子に 与えられることを特徴とする請求項1記載の画像表示装 置

【請求項5】 各発光素子は整流作用を有する二端子素 子からなり、一方の端子は対応する第二の能動素子に接 続され、他方の端子は同一走査線上の各画素では共通接 続され且つ走査線間では電気的に分離されており、

前記制御手段は、各二端子素子の共通接続された他方の 端子の電位を制御して各二端子素子を消灯することを特 徴とする請求項1記載の画像表示装置。

【請求項6】 前記制御手段は、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に、再度走査線を選択して各画素にデータ線から輝度ゼロを表す情報を書き込んで各画素の発光素子を消灯することを特徴とする請求項1記載の画像表示装置。

【請求項7】各画素は、該発光素子に流れる電流量を制御する第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートに一端が接続された容量素子を含み、

前記制御手段は、該容量素子の他端の電位を制御するととにより前記第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートの電位を制御して該発光素子を消灯するととを特徴とする請求項1記載の画像表示装置。

【請求項8】 前記制御手段は、各画素に輝度情報が書き込まれた後一走査サイクル内で、各画素に含まれる発光素子の点灯時点及び消灯時点を少なくとも走査線単位で制御するととを特徴とする請求項1記載の画像表示装置。

【請求項9】 同一の走査線に赤、緑、青の各画素を共 通に接続する一方、前記制御手段は、赤、緑、青の各画 素に含まれる発光素子を別々の時点で消灯することを特 徴とする請求項1記載の画像表示装置。

【請求項10】 前記発光素子は有機エレクトロルミネッセンス素子であることを特徴とする請求項1記載の画像表示装置。

【請求項11】 所定の走査サイクルで画素を選択するための走査線と、画素を駆動するための輝度情報を与えるデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含む画像表示装置の駆動方法であって、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持し、

同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯可能であり、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込ま

れる一走査サイクルの間に発光素子を点灯状態から消灯 状態に<u>することによって、該発光素子の時間平均輝度を</u> 制御することを特徴とする画像表示装置の駆動方法。

【請求項12】 各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間で、発光素子を点灯状態から消灯状態に切り換える時点を調整可能であることを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項13】 絶縁ゲート型電界効果トランジスタからなる該第二の能動素子のゲートに第三の能動素子を接続し、該第三の能動素子に与える制御信号により該第二の能動素子のゲート電位を制御して該発光素子を消灯することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介 して同一走査線上の各画素に含まれる第三の能動素子に 与えることを特徴とする請求項11記載の画像表示装置 の駆動方法。

【請求項14】 該発光素子と直列に第三の能動素子を接続し、該第三の能動素子に与える制御信号に応じて該発光素子に流れる電流を遮断することが可能であり、

該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えることを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項15】 各発光素子は整流作用を有する二端子素子からなり、一方の端子は対応する第二の能動素子に接続され、他方の端子は同一走査線上の各画素では共通接続され且つ走査線間では電気的に分離されており、

各二端子素子の共通接続された他方の端子の電位を制御 して各二端子素子を消灯することを特徴とする請求項1 1記載の画像表示装置の駆動方法。

【請求項16】 各画素に輝度情報が書き込まれてから 次に新たな輝度情報が書き込まれる一走査サイクルの間 に、再度走査線を選択して各画素にデータ線から輝度ゼロを表す情報を書き込んで各画素の発光素子を消灯する ことを特徴とする請求項11記載の画像表示装置の駆動 方法。

【請求項17】各画素は、該発光素子に流れる電流量を 制御する第二の能動素子を構成する絶縁ゲート型電界効 果トランジスタのゲートに一端が接続された容量素子を 含み、

該容量素子の他端の電位を制御するととにより前記第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートの電位を制御して該発光素子を消灯することを特徴とする請求項11記載の画像表示装置の駆動方法

【請求項18】 各画素に輝度情報が書き込まれた後一走査サイクル内で、各画素に含まれる発光素子の点灯時点及び消灯時点を少なくとも走査線単位で制御することを特徴とする請求項11記載の画像表示装置の駆動方

法。

【請求項19】 同一の走査線に赤、緑、青の各画素を共通に接続する一方、赤、緑、青の各画素に含まれる発光素子を別々の時点で消灯することを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項20】 前記発光素子は有機エレクトロルミネッセンス素子を用いることを特徴とする請求項11記載の画像表示装置の駆動方法。

【請求項21】 所定の走査サイクルで画素を選択する ための走査線と、画素を駆動するための輝度情報を与え るデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、

各走査線に接続された各画素の発光素子を強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態に<u>することによって、該発光素子の時間平均輝度を制御</u>する画像表示装置であって、

同一の走査線に赤、緑、青の各画素を共通に接続する一方、前記制御手段は、赤、緑、青の各画素に含まれる発 光素子を別々の時点で消灯することを特徴とする画像表 示装置。

【請求項22】 所定の走査サイクルで画素を選択する ための走査線と、画素を駆動するための輝度情報を与え るデータ線とがマトリクス状に配設され、

各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含む画像表示装置の駆動方法であって、

各画素への輝度情報の書き込みは、走査線が選択された 状態で、データ線に輝度情報に応じた電気信号を印加す ることによって行われ、

各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持され た輝度情報に応じた輝度で点灯を維持し、

各走査線に接続された各画素の発光素子を強制的に消灯

可能であり、各画素に輝度情報が書き込まれてから次に 新たな輝度情報が書き込まれる一走査サイクルの間に発 光素子を点灯状態から消灯状態に<u>することによって、該</u> 発光素子の時間平均輝度を制御する駆動方法であって、 同一の走査線に赤、緑、青の各画素を共通に接続する一 方、赤、緑、青の各画素に含まれる発光素子を別々の時 点で消灯することを特徴とする画像表示装置の駆動方 法。

【請求項23】 画素に第一の輝度情報が書込まれてから新たな第二の輝度情報が書込まれる一走査サイクル期間内で輝度情報に応じ画素を点灯する画像表示装置において

所定の走査サイクルでそれぞれの画素を選択する走査線 と

該走査線に直交する方向に形成され、上記画素を点灯す る為の輝度情報を与えるデータ線と、

上記走査線により制御され、上記輝度情報を取り込む第 一の能動素子と、

上記輝度情報を、上記画素の駆動に用いる電気信号に転換する第二の能動素子とを有し、

上記一走査サイクル期間内で上記画素を点灯状態から消灯状態に<u>することによって、該発光素子の時間平均輝度</u>を制御する制御手段

を有していることを特徴とする画像表示装置。

【請求項24】 上記制御手段は、上記一走査サイクル期間内で、上記点灯状態から上記消灯時間までの間の時間を可変可能であることを特徴とする請求項23記載の画像表示装置。

【請求項25】 上記第二の能動素子は、絶縁ゲート型 電界効果トランジスタであり、

上記制御手段は、該絶縁ゲート型電界効果トランジスタ のゲートに接続された第三の能動素子を有し、

該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御されることを特徴とする請求項23 記載の画像表示装置。

【請求項26】 上記制御手段は、上記第二の能動素子 に直列に設けられた第三の能動素子を有し、

該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御されることを特徴とする請求項23 記載の画像表示装置。

【請求項27】 上記画素は発光素子を含み、

上記発光素子は第一及び第二の端子を有し、上記第一の端子は上記第二の能動素子に接続されるとともに、上記第二の端子は所定の参照電位に接続され、

上記制御手段は、上記参照電位を可変制御することにより上記発光素子を消灯させることを特徴とする請求項2 3記載の画像表示装置。

【請求項28】 上記制御手段は、上記走査線が選択された後、上記一走査サイクル期間内で上記走査線を再選択し、上記データ線から輝度ゼロを表す輝度情報を画素

に供給することにより、該画素を消灯することを特徴とする請求項23記載の画像表示装置。

【請求項29】 各画素は、該第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートに一端が接続された容量素子を含み、

上記制御手段は、該容量素子の他端の電位を制御することにより前記第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートの電位を制御して画素を消灯することを特徴とする請求項23記載の画像表示装置。

【請求項30】 上記制御手段は、上記走査線毎に上記 画素を消灯することを特徴とする請求項23記載の画像 表示装置。

【請求項31】 上記画素は、青、緑、赤色の発光素子を有し

上記制御手段は、該青、緑、赤色の発光素子を異なる時間で消灯可能であることを特徴とする請求項23記載の画像表示装置。

【請求項32】 上記第二の能動素子は、輝度情報を画素の駆動に用いる電流に転換し、

各画素は、電流によって発光する有機物を利用した発光 素子を有することを特徴とする請求項23記載の画像表 示装置。

【請求項33】 上記走査線を順次選択する為の垂直クロックが入力される走査線駆動回路を備え、

上記制御手段は、上記垂直クロックを所定の期間遅延した垂直クロックが入力され、上記走査線又はとれと平行 に設けた制御線を選択する制御回路を有し、

上記走査線は、上記走査線駆動回路により上記垂直クロックに同期して順次選択され、上記画素を点灯するとともに、

該点灯後、該制御回路により上記遅延された垂直クロックに同期して、上記一走査期間内で上記制御線を介し該 画素を消灯することを特徴とする請求項23記載の画像 表示装置。

【請求項34】 上記データ線に輝度情報を与えるデータ線駆動回路を有し、

上記走査線駆動回路の出力は、上記走査線に出力端子が 接続された論理和回路の一方の入力端子に接続されると ともに、

上記制御回路の出力が上記論理和回路の他方の入力端子 に接続された論理積回路の一方の入力端子に接続され、 該論理積回路の他方の入力端子に上記垂直クロックが入 力されることを特徴とする請求項33記載の画像表示装 置。

【請求項35】 画素に第一の輝度情報が書込まれてから新たな第二の輝度情報が書込まれる一走査サイクル期間内で輝度情報に応じ画素を点灯する画像表示装置の駆動方法において、

走査線を介し、所定の走査サイクルでそれぞれの画素を

選択する手順と、

該走査線に直交する方向に形成されたデータ線を介し、 上記画素を点灯する為の輝度情報を与える手順と、

上記走査線により制御される第一の能動素子で上記輝度 情報を画素に取り込む手順と、

第二の能動素子により、上記輝度情報を、上記画素の駆動に用いる電気信号に転換する手順と、

上記一走査サイクル期間内で上記画素を点灯状態から消灯状態に<u>することによって、該発光素子の時間平均輝度を制御</u>する制御手順とを行なうことを特徴とする画像表示装置の駆動方法。

【請求項36】 上記制御手順は、上記一走査サイクル期間内で、上記点灯状態から上記消灯時間までの間の時間を可変可能であることを特徴とする請求項35記載の画像表示装置の駆動方法。

【請求項37】 上記第二の能動素子は、絶縁ゲート型 電界効果トランジスタを用いており、

上記制御手順は、該絶縁ゲート型電界効果トランジスタのゲートに接続された第三の能動素子を用いて行ない、該第三の能動素子は、上記走査線と略平行に設けられた制御線によって制御することを特徴とする請求項35記載の画像表示装置の駆動方法。

【請求項38】 上記制御手順は、上記第二の能動素子 に直列に設けられた第三の能動素子を用い、

該第三の能動素子は、上記走査線と略平行に設けられた 制御線によって制御されることを特徴とする請求項35 記載の画像表示装置の駆動方法。

【請求項39】 上記画素は発光素子を含み、上記発光素子は第一及び第二の端子を有し、上記第一の端子は上記第二の能動素子に接続されるとともに、上記第二の端子は所定の参照電位に接続されており、

上記制御手順は、上記参照電位を可変制御することにより上記発光素子を消灯させることを特徴とする請求項3 5記載の画像表示装置の駆動方法。

【請求項40】 上記制御手順は、上記走査線が選択された後、上記一走査サイクル期間内で上記走査線を再選択し、上記データ線から輝度ゼロを表す輝度情報を画素に供給することにより、該画素を消灯することを特徴とする請求項35記載の画像表示装置の駆動方法。

【請求項41】 各画素は、該第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートに一端が接続された容量素子を含み、

上記制御手順は、該容量素子の他端の電位を制御することにより前記第二の能動素子を構成する絶縁ゲート型電界効果トランジスタのゲートの電位を制御して画素を消灯することを特徴とする請求項35記載の画像表示装置の駆動方法。

【請求項42】 上記制御手順は、上記走査線毎に上記 画素を消灯することを特徴とする請求項35記載の画像 表示装置の駆動方法。 【請求項43】 上記画素は、青、緑、赤色の発光素子を有し、

上記制御手順は、該青、緑、赤色の発光素子を異なる時間で消灯可能であることを特徴とする請求項35記載の画像表示装置の駆動方法。

【請求項44】 上記第二の能動素子は、輝度情報を画素の駆動に用いる電流に転換し、

各画素は、電流によって発光する有機物を利用した発光 素子を有することを特徴とする請求項35記載の画像表 示装置の駆動方法。

【請求項45】 上記走査線を順次選択する為の垂直クロックを入力する走査線駆動手順と、

上記垂直クロックを所定の期間遅延した垂直クロックを 入力して、上記走査線又は来れたと平行に設けた制御線 を選択する制御手順とを行ない、

上記走査線は、上記走査線駆動手順により上記垂直クロックに同期して順次選択され、上記画素を点灯するとともに、

該点灯後、該制御手順により上記遅延された垂直クロックに同期して、上記一走査期間内で上記走査線又は制御線を介し該画素を消灯することを特徴とする請求項35記載の画像表示装置の駆動方法。

【請求項46】 上記データ線に輝度情報を与えるデータ線駆動手順を含み、

上記走査線駆動手順の出力は、上記走査線に出力端子が接続された論理和回路の一方の入力端子に接続されるとともに、

上記制御手順の出力が上記論理和回路の他方の入力端子 に接続された論理積回路の一方の入力端子に接続され、 該論理積回路の他方の入力端子に上記垂直クロックが入 力されることを特徴とする請求項45記載の画像表示装 置の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、信号によって輝度が制御される画素を備えた画像表示装置に関する。例えば、有機エレクトロルミネッセンス(EL)素子等の、電流によって輝度が制御される発光素子を各画素毎に備えた画像表示装置に関する。より詳しくは、各画素内に設けられた絶縁ゲート型電界効果トランジスタ等の能動素子によって発光素子に供給する電流量が制御される、所謂アクティブマトリクス型の画像表示装置に関する。【0002】

【従来の技術】一般に、アクティブマトリクス型の画像表示装置では、多数の画素をマトリクス状に並べ、与えられた輝度情報に応じて画素毎に光強度を制御することによって画像を表示する。電気光学物質として液晶を用いた場合には、各画素に書き込まれる電圧に応じて画素の透過率が変化する。電気光学物質として有機エレクトロルミネッセンス材料を用いたアクティブマトリクス型

の画像表示装置でも、基本的な動作は液晶を用いた場合と同様である。しかし液晶ディスプレイと異なり、有機 E L ディスプレイは各画素に発光素子を有する、所謂自 発光型であり、液晶ディスプレイに比べて画像の視認性 が高い、バックライトが不要、応答速度が速い等の利点を有する。個々の発光素子の輝度は電流量によって制御 される。即ち、発光素子が電流駆動型或いは電流制御型 であるという点で液晶ディスプレイ等とは大きく異なる。

【0003】液晶ディスプレイと同様、有機ELディス プレイもその駆動方式として単純マトリクス方式とアク ティブマトリクス方式とが可能である。前者は構造が単 純であるものの大型且つ高精細のディスプレイの実現が 困難であるため、アクティブマトリクス方式の開発が盛 んに行われている。アクティブマトリクス方式は、各画 素に設けた発光素子に流れる電流を画素内部に設けた能 動素子(一般には、絶縁ゲート型電界効果トランジスタ の一種である薄膜トランジスタ、以下TFTと呼ぶ場合 がある) によって制御する。このアクティブマトリクス 方式の有機ELディスプレイは例えば特開平8-234 683号公報に開示されており、一画素分の等価回路を 図10に示す。画素PXLは発光素子OLED、第一の 薄膜トランジスタTFT1、第二の薄膜トランジスタT FT2及び保持容量Csからなる。発光素子は有機エレ クトロルミネッセンス (EL) 素子である。有機EL素 子は多くの場合整流性があるため、OLED(有機発光 ダイオード)と呼ばれることがあり、図では発光素子〇 LEDとしてダイオードの記号を用いている。但し、発 光素子は必ずしもOLEDに限るものではなく、素子に 流れる電流量によって輝度が制御されるものであればよ い。また、発光素子に必ずしも整流性が要求されるもの ではない。図示の例では、TFT2のソースSを基準電 位(接地電位)とし、発光素子OLEDのアノードA (陽極)はVdd(電源電位)に接続される一方、カソ ードK(陰極)はTFT2のドレインDに接続されてい る。一方、TFT1のゲートGは走査線Xに接続され、 ソースSはデータ線Yに接続され、ドレインDは保持容 量Cs及びTFT2のゲートGに接続されている。

【0004】PXLを動作させるために、まず、走査線 Xを選択状態とし、データ線Yに輝度情報を表すデータ 電位Vdataを印加すると、TFT1が導通し、保持 容量Csが充電又は放電され、TFT2のゲート電位は データ電位Vdataに一致する。走査線Xを非選択状態とすると、TFT1がオフになり、TFT2は電気的 にデータ線Yから切り離されるが、TFT2のゲート電 位は保持容量Csによって安定に保持される。TFT2 を介して発光素子OLEDに流れる電流は、TFT2の ゲート/ソース間電圧Vgsに応じた値となり、発光素 子OLEDはTFT2から供給される電流量に応じた輝 度で発光し続ける。 【0005】本明細書では、走査線Xを選択してデータ線Yの電位を画素内部に伝える操作を、以下「書き込み」と呼ぶ。さて、TFT2のドレイン/ソース間に流*

* れる電流を I d s とすると、これがOLEDに流れる駆動電流である。 TFT2が飽和領域で動作するものとすると、 I d s は以下の式で表される。

I d s = $(1/2) \cdot \mu \cdot \text{Cox} \cdot (\text{W/L}) \cdot (\text{Vgs-Vth})^2$ = $(1/2) \cdot \mu \cdot \text{Cox} \cdot (\text{W/L}) \cdot (\text{Vdata-Vth})^2 \cdots (1)$

ことでCoxは単位面積辺りのゲート容量であり、以下の式で与えられる。

 $C \circ x = \varepsilon \circ \cdot \varepsilon r / d \cdots (2)$

式(1)及び(2)中、VthはTFT2の閾値を示し、 μ はキャリアの移動度を示し、Wはチャネル幅を示し、Lはチャネル長を示し、 ε 0は真空の誘電率を示し、 ε rはゲート絶縁膜の比誘電率を示し、dはゲート絶縁膜の厚みである。

【0006】式 (1) によれば、画素 PX Lへ書き込む電位 V dataによって I ds を制御でき、結果として発光素子OLE Dの輝度を制御できることになる。ここで、TFT2を飽和領域で動作させる理由は次の通りである。即ち、飽和領域においては I ds は Vgsのみによって制御され、ドレイン/ソース間電圧 V ds には依存しないため、OLE Dの特性ばらつきにより V ds が変動しても、所定量の電流 I ds をOLE Dに流すことができるからである。

【0007】上述したように、図10に示した画素PX Lの回路構成では、一度Vdataの書き込みを行え ば、次に書き換えられるまで一走査サイクル (一フレー ム)の間、OLEDは一定の輝度で発光を継続する。と のような画素PXLを図11のようにマトリクス状に多 数配列すると、アクティブマトリクス型画像表示装置を 構成することができる。図11に示すように、従来の画 像表示装置は、所定の走査サイクル(例えばNTSC規 格に従ったフレーム周期)で画素PXLを選択するため の走査線X1乃至XNと、画素PXLを駆動するための 輝度情報 (データ電位 V d a t a) を与えるデータ線 Y とがマトリクス状に配設されている。走査線X1乃至X Nは走査線駆動回路21に接続される一方、データ線Y はデータ線駆動回路22に接続される。走査線駆動回路 21によって走査線X1乃至XNを順次選択しながら、 データ線駆動回路22によってデータ線YからVdat aの書き込みを繰り返すことにより、所望の画像を表示 することができる。単純マトリクス型の画像表示装置で は、各画素PXLに含まれる発光素子は、選択された瞬 間にのみ発光するのに対し、図11に示したアクティブ マトリクス型画像表示装置では、書き込み終了後も各画 素PXLの発光素子が発光を継続するため、単純マトリ クス型に比べ発光素子のピーク輝度(ピーク電流)を下 げられるなどの点で、取り分け大型高精細のディスプレ イでは有利となる。

【0008】図12は、従来の画素構造の他の例を示す 等価回路図であり、図10に示した先の従来例と対応す る部分には対応する参照番号を付して理解を容易にして いる。先の従来例がTFT1及びTFT2としてNチャネル型の電界効果トランジスタを使っていたのに対し、この従来例ではPチャネル型の電界効果トランジスタを使っている。従って、図10の回路構成とは逆に、OLEDのカソードKが負電位のVddに接続し、アノードAがTFT2のドレインDに接続している。

【0009】図13は、図12に示した画素PXLの断 面構造を模式的に表している。但し、図示を容易にする ため、OLEDとTFT2のみを表している。OLED は、透明電極10、有機EL層11及び金属電極12を 順に重ねたものである。透明電極10は画素毎に分離し ておりOLEDのアノードAとして機能し、例えばIT ○等の透明導電膜からなる。金属電極12は画素間で共 通接続されており、OLEDのカソードKとして機能す る。即ち、金属電極12は所定の電源電位Vddに共通 接続されている。有機EL層11は例えば正孔輸送層と 電子輸送層とを重ねた複合膜となっている。例えば、ア ノードA(正孔注入電極)として機能する透明電極10 の上に正孔輸送層としてDiamyneを蒸着し、その 上に電子輸送層としてAlq3を蒸着し、更にその上に カソードK (電子注入電極) として機能する金属電極1 2を成膜する。尚、Alq3は、8-hydroxy quinoline aluminumを表している。 このような積層構造を有するOLEDは一例に過ぎな い。かかる構成を有するOLEDのアノード/カソード 間に順方向の電圧(10V程度)を印加すると、電子や 正孔等キャリアの注入が起こり、発光が観測される。O LEDの動作は、正孔輸送層から注入された正孔と電子 輸送層から注入された電子より形成された励起子による 発光と考えられる。

【0010】一方、TFT2はガラス等からなる基板1の上に形成されたゲート電極2と、その上面に重ねられたゲート電極2と、このゲート絶縁膜3を介してゲート電極2の上方に重ねられた半導体薄膜4とからなる。この半導体薄膜4は例えば多結晶シリコン薄膜からなる。TFT2はOLEDに供給される電流の通路となるソースS、チャネルChは丁度ゲート電極2の直上に位置する。このボトムゲート構造のTFT2は層間絶縁膜5により被覆されており、その上にはソース電極6及びドレイン電極7が形成されている。これらの上には別の層間絶縁膜9を介して前述したOLEDが成膜されている。

[0011]

【発明が解決しようとする課題】上述したアクティブマトリクス型のELディスプレイを構成する上で、解決す

べき第一の課題は、OLEDに流れる電流量を制御する能動素子であるTFT2の設計自由度が小さく、場合によっては画素寸法に合わせた実用的な設計が困難になる。又、解決すべき第二の課題は画面全体の表示輝度を自在に調整することが困難であることである。これらの課題を、図10乃至13に示した従来例について具体的な設計パラメータを挙げながら説明する。典型的な設計例では、画面寸法が20cm×20cm、行の数(走査線本数)が1000、列の数(データ線の本数)が1000、画素寸法が $S=200\mu$ m×200 μ m、ピーク*

チャネル長: $L = \{W \cdot / (2 \cdot Ip)\} \cdot \mu \cdot Cox \cdot Vp^2 = 270 \mu m$ (3)

【0012】 ここでまず問題なのは、式(3)で与えら れるチャネル長Lが、画素サイズ (S=200μm×2 00μm) に匹敵するか乃至はこれを上回る寸法である ということである。式(3)に示すように、ピーク電流 Ipはチャネル長しに反比例する。上記例ではピーク電 流 I pを動作に必要十分な 0.8 μ A 程度に抑えるた め、チャネル長しを270μmまで長くしなければなら ない。これでは、画素内におけるTFT2の占有面積が 大きくなり、発光領域を狭める結果となるため好ましく ないばかりでなく、画素の微細化が困難になる。本質的 な問題は、要求される輝度(ビーク電流)と半導体プロ セスのパラメータ等が与えられると、TFT2の設計自 由度は殆ど無いということである。即ち、上記例でチャ ネル長しを小さくするためには、式(3)から明らかな ようにまずチャネル幅∞を小さくすることが考えられ る。しかし、プロセス上チャネル幅♥の微細化に限界が あり、現在の薄膜トランジスタプロセスにおいては上記 程度より大幅に微細化することが困難である。別の方法 として、駆動電圧のピーク値Vpを小さくすることが考 えられる。しかし、その場合、階調制御を行うために は、OLEDの発光強度を極めて小さな駆動電圧幅で制 御する必要が生じる。例えばVp=5Vの場合において も、発光強度を64階調で制御しようとすれば、1階調 当たりの電圧ステップは平均で5V/64=80mV程 度となる。これを更に小さくすることは、僅かなノイズ やTFT特性のばらつきによって、画像の表示品質が影 響される結果となる。従って、駆動電圧のピーク値Vp を小さくすることにも限界がある。別の解決法として は、式(3)に表れるキャリア移動度μ等のプロセスパ ラメータを適当な値に設定することが考えられる。しか し、プロセスパラメータを都合のよい値に精度よく制御 することは一般に困難であり、そもそも設計しようとす る画像表示装置の仕様に合わせて製造プロセスを構築す ることは経済的に全く現実的でない。このように、従来 のアクティブマトリクス型ELディスプレイでは、画素 設計の自由度が乏しく、実用的な設計を行うことが困難 である。

【0013】上述した第一の問題点とも関連するが、第

* 輝度が $Bp=200cd/m^2$ 、発光素子の効率がE=10cd/A、TFT2のゲート絶縁膜の厚みがd=100nm、ゲート絶縁膜の比誘電率が ε r=3.9、キャリア移動度が $\mu=100cm^2/V$ ・s、画素当たりのピーク電流が $Ip=Bp/E\times S=0$.8 μ A、|Vgs-Vth|(駆動電圧)のピーク値がVp=5Vである。このような設計例でピーク電流 Ipを供給するため、TFT2の設計例としては、前述した式(1)及び(2)から、以下のようになる。

fャネル幅: $W = 5 \mu m$) f · μ · Cox · V p² = 2.70 μ

二の問題点として、アクティブマトリクス型のELディスプレイでは画面全体の表示輝度を任意に制御することが困難である。一般に、テレビジョン等の画像表示装置においては画面全体の表示輝度を自在に調整し得るということが、実用上欠くことのできない要件である。例えば周囲が明るい状況下で画像表示装置を使用する場合には画面輝度を高くし、逆に暗い状況下で画像表示装置を使用する場合には画面輝度を低く抑えることが自然である。このような画面輝度の調節は、例えば液晶ディスプレイにおいてはバックライトの電力を変化させることにより容易に実現できる。又、単純マトリクス型のELディスプレイにおいては、アドレス時の駆動電流を調整することにより、比較的簡単に画面輝度を調節可能である

【0014】ところが、アクティブマトリクス型の有機ディスプレイにおいては、画面全体としての表示輝度を任意に調節することは困難である。前述したように、表示輝度はピーク電流Ipに比例し、IpはTFT2のチャネル長しに反比例する。従って、表示輝度を下げるためにはチャネル長しを大きくすればよいが、これは使用者が任意に表示輝度を選ぶ手段とはなりえない。実現可能な方法として、輝度を下げるために駆動電圧のピーク値Vpを小さくすることが考えられる。しかし、Vpを下げるとノイズ等の原因で画質の劣化を招く。逆に輝度を上げたい場合に、駆動電圧のピーク値Vpを大きくしようとしても、TFT2の耐圧等による上限があることは言うまでもない。

[0015]

【課題を解決する為の手段】上述した従来の技術の課題に鑑み、本発明は画素内部の能動素子の設計自由度を増して良好な設計を可能たらしめるとともに、画面輝度を自在且つ簡便に調整することが可能な画像表示装置を提供することを目的とする。かかる目的を達成するために以下の手段を講じた。即ち、所定の走査サイクルで画素を選択するための走査線と、画素を駆動するための輝度情報を与えるデータ線とがマトリクス状に配設され、各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与え

られた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、各画素への輝度情報の書き込みは、走査線が選択された状態で、データ線に輝度情報に応じた電気信号を印加することによって行われ、各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持された輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることによって、該発光素子の時間平均輝度を制御することを特徴とする。

【0016】好ましくは、前記制御手段は、各画素に輝 度情報が書き込まれてから次に新たな輝度情報が書き込 まれる一走査サイクルの間で、発光素子を点灯状態から 消灯状態に切り換える時点を調整可能である。―実施形 態では、前記制御手段は、絶縁ゲート型電界効果トラン ジスタからなる該第二の能動素子のゲートに接続された 第三の能動素子を含み、該第三の能動素子に与える制御 信号により該第二の能動素子のゲート電位を制御して該 発光素子を消灯するととが可能であり、該制御信号は、 各走査線と平行に設けた停止制御線を介して同一走査線 上の各画素に含まれる第三の能動素子に与えられる。他 の実施形態では、前記制御手段は、該発光素子と直列に 接続された第三の能動素子を含み、該第三の能動素子に 与える制御信号に応じて該発光素子に流れる電流を遮断 することが可能であり、該制御信号は、各走査線と平行 に設けた停止制御線を介して同一走査線上の各画素に含 まれる第三の能動素子に与えられる。別の実施形態で は、各発光素子は整流作用を有する二端子素子からな り、一方の端子は対応する第二の能動素子に接続され、 他方の端子は同一走査線上の各画素では共通接続され且 つ走査線間では電気的に分離されており、前記制御手段 は、各二端子素子の共通接続された他方の端子の電位を 制御して各二端子素子を消灯する。更に別の実施形態で は、前記制御手段は、各画素に輝度情報が書き込まれて から次に新たな輝度情報が書き込まれる一走査サイクル の間に、再度走査線を選択して各画素にデータ線から輝 度ゼロを表す情報を書き込んで各画素の発光素子を消灯 する。更に別の実施形態では、各画素は、該発光素子に 流れる電流量を制御する第二の能動素子を構成する絶縁 ゲート型電界効果トランジスタのゲートに一端が接続さ れた容量素子を含み、前記制御手段は、該容量素子の他 端の電位を制御することにより前記第二の能動素子を構 成する絶縁ゲート型電界効果トランジスタのゲートの電 位を制御して該発光素子を消灯する。更に別の実施形態 では、前記制御手段は、各画素に輝度情報が書き込まれ

た後一走査サイクル内で、各画素に含まれる発光素子の 点灯時点及び消灯時点を少なくとも走査線単位で制御す る。更に別の実施形態では、同一の走査線に赤、緑、青 の各画素を共通に接続する一方、前記制御手段は、赤、 緑、青の各画素に含まれる発光素子を別々の時点で消灯 する。なお、好ましくは、前記発光素子は、有機エレク トロルミネッセンス素子である。

【0017】本発明は、又、画素に第一の輝度情報が書 込まれてから新たな第二の輝度情報が書込まれる一走査 サイクル期間内で輝度情報に応じ画素を点灯する画像表 示装置において、所定の走査サイクルでそれぞれの画素 を選択する走査線と、該走査線に直交する方向に形成さ れ、上記画素を点灯する為の輝度情報を与えるデータ線 と、上記走査線により制御され、上記輝度情報を取り込 む第一の能動素子と、上記輝度情報を、上記画素の駆動 に用いる電気信号に転換する第二の能動素子とを有し、 上記一走査サイクル期間内で上記画素を点灯状態から消 灯状態にすることによって、該発光素子の時間平均輝度 を制御する制御手段を有していることを特徴とする。好 ましくは、上記制御手段は、上記一走査サイクル期間内 で、上記点灯状態から上記消灯時間までの間の時間を可 変可能である。又、上記第二の能動素子は、絶縁ゲート 型電界効果トランジスタであり、上記制御手段は、該絶 縁ゲート型電界効果トランジスタのゲートに接続された 第三の能動素子を有し、該第三の能動素子は、上記走査 線と略平行に設けられた制御線によって制御される。 又、上記制御手段は、上記第二の能動素子に直列に設け られた第三の能動素子を有し、該第三の能動素子は、上 記走査線と略平行に設けられた制御線によって制御され る。又、上記画素は発光素子を含み、上記発光素子は第 一及び第二の端子を有し、上記第一の端子は上記第二の 能動素子に接続されるとともに、上記第二の端子は所定 の参照電位に接続され、上記制御手段は、上記参照電位 を可変制御することにより上記発光素子を消灯させる。 又、上記制御手段は、上記走査線が選択された後、上記 一走査サイクル期間内で上記走査線を再選択し、上記デ ータ線から輝度ゼロを表す輝度情報を画素に供給すると とにより、該画素を消灯する。又、各画素は、該第二の 能動素子を構成する絶縁ゲート型電界効果トランジスタ のゲートに一端が接続された容量素子を含み、上記制御 手段は、該容量素子の他端の電位を制御することにより 前記第二の能動素子を構成する絶縁ゲート型電界効果ト ランジスタのゲートの電位を制御して画素を消灯する。 又、上記制御手段は、上記走査線毎に上記画素を消灯す る。又、上記画素は、青、緑、赤色の発光素子を有し、 上記制御手段は、該青、緑、赤色の発光素子を異なる時 間で消灯可能である。又、上記第二の能動素子は、輝度 情報を画素の駆動に用いる電流に転換し、各画素は、電 流によって発光する有機物を利用した発光素子を有す る。又、上記走査線を順次選択する為の垂直クロックが

入力される走査線駆動回路と、上記垂直クロックを所定の期間遅延した垂直クロックが入力され、上記走査線又はこれと平行に設けた制御線を選択する制御回路とを有し、上記走査線は、上記走査線駆動回路により上記垂直クロックに同期して順次選択され、上記画素を点灯するとともに、該点灯後、該制御回路により上記遅延された垂直クロックに同期して、上記一走査期間内で上記走査線又は制御線を介し該画素を消灯する。更に、上記データ線に輝度情報を与えるデータ線駆動回路を有し、上記走査線に出力端子が接続された論理和回路の出力は、上記走査線に出力端子が接続された論理和回路の出力が上記論理和回路の他方の入力端子に接続された論理積回路の一方の入力端子に接続された論理積回路の一方の入力端子に接続された論理積回路の一方の入力端子に上記垂直クロックが入力される。

【0018】本発明によれば、画像表示装置は走査線単 位で輝度情報を各画素に書き込んだあと、次の走査線サ イクル(フレーム)の輝度情報が新たに書き込まれる以 前に、走査線単位で各画素に含まれる発光素子を一括し て消灯する。これによれば、輝度情報の書き込み後発光 素子の点灯から消灯するまでの時間を調節できるととに なる。即ち、一走査サイクルにおける発光時間の割合 (デューティー)を調節できることになる。発光時間 (デューティー) の調節は等価的に各発光素子のピーク 電流【pを調節するととに相当する。よって、デューテ ィーを調節することにより簡便且つ自在に表示輝度を調 整することが可能である。更に重要な点は、デューティ ーを適切に設定することで、等価的にIpを大きくする ことができる。例えば、デューティーを1/10にする と、「pを10倍にしても同等の輝度が得られる。」p を10倍にすればTFTのチャネル長しを1/10にす ることができる。このように、デューティーを適当に選 ぶことで画素に含まれるTFTの設計自由度が増し、実 用的な設計を行うことが可能になる。

[0019]

【発明の実施の形態】以下図面を参照して本発明の実施の形態を詳細に説明する。図1は、本発明にかかる画像表示装置の第一実施形態の一例を表しており、一画素分の等価回路図である。尚、図10に示した従来の画素構造と対応する部分には対応する参照番号を付して理解を容易にしている。図示するように、本画像表示装置は、所定の走査サイクル(フレーム)で画素PXLを選択するための走査線Xと、画素PXLを駆動するための輝度情報を与えるデータ線Yとがマトリクス状に配設されている。走査線Xとデータ線Yの交差部に形成された画素PXLは、発光素子OLEDと、第一の能動素子であるTFT1と、第二の能動素子であるTFT2と、保持容量Csとを含む。発光素子OLEDは供給される電流量によって輝度が変化する。TFT1は走査線Xによって制御され且つデータ線Yから与えられた輝度情報を画素

PXLに含まれた保持容量Csに書き込む。TFT2は Cs に書き込まれた輝度情報に応じて発光素子OLED に供給する電流量を制御する。PXLへの輝度情報の書 き込みは、走査線Xが選択された状態で、データ線Yに 輝度情報に応じた電気信号(データ電位Vdata)を 印加することによって行われる。画素PXLに書き込ま れた輝度情報は走査線Xが非選択となったあとも保持容 量Csに保持され、発光素子OLEDは保持された輝度 情報に応じた輝度で点灯を維持可能である。本発明の特 徴事項として、同一の走査線Xに接続された各画素PX Lの発光素子OLEDを少なくとも走査線単位で強制的 に消灯する制御手段を有し、各画素PXLに輝度情報が 書き込まれてから次に新たな輝度情報が書き込まれる一 走査サイクルの間に発光素子を点灯状態から消灯状態に することによって、該発光素子の時間平均輝度を制御す る。本実施形態では制御手段が、TFT2のゲートGに 接続されたTFT3(第三の能動素子)を含み、TFT 3のゲートGに与える制御信号によりTFT2のゲート 電位を制御して、OLEDを消灯することが可能であ る。この制御信号は、走査線Xと平行に設けた停止制御 線Zを介して対応する走査線上の各画素PXLに含まれ るTFT3に与えられる。制御信号に応じてTFT3を オン状態にすることにより、保持容量Csが放電され て、TFT2のVgsがOVとなり、OLEDに流れる 電流を遮断することができる。TFT3のゲートGは走 査線Xに対応した停止制御線Zに共通接続されており、 停止制御線Z単位で発光停止制御を行うことができる。 【0020】図2は、図1に示したPXLをマトリクス 上に配列した画像表示装置の全体構成を示す回路図であ る。図示するように、走査線X1, X2, …, XNが行 状に配列され、データ線Yが列状に配列されている。各 走査線Xとデータ線Yの交差部に画素PXLが形成され ている。又、走査線X1, X2, …, XNと平行に、停 止制御線 Z 1, Z 2, …, Z N が形成されている。走査 線Xは走査線駆動回路21に接続されている。走査線駆 動回路21はシフトレジスタを含んでおり、垂直クロッ クVCKに同期して垂直スタートバルスVSP1を順次 転送することにより、走査線X1, X2, …, XNを一 走査サイクル内で順次選択する。一方、停止制御線乙は 停止制御線駆動回路23に接続されている。この駆動回 路23もシフトレジスタを含んでおり、VCKに同期し て垂直スタートパルスVSP2を順次転送することによ り、停止制御線乙に制御信号を出力する。尚、VSP2 は遅延回路24により所定時間だけVSP1から遅延処 理されている。データ線Yはデータ線駆動回路22に接 続されており、走査線Xの線順次走査に同期して、各デ ータ線Yに輝度情報に対応した電気信号を出力する。と の場合、データ線駆動回路22は、いわゆる線順次駆動 を行ない、選択された画素の行に対して一斉に電気信号 を供給する。或いは、データ線駆動回路22は、いわゆ

る点順次駆動を行ない、選択された画素の行に対して順次電気信号を供給しても良い。いずれにしても、本発明は、線順次駆動と点順次駆動の両者を包含している。

【0021】図3は、図2に示した本発明の第一実施形態にかかる画像表示装置の動作説明に供するタイミングチャートである。まず、垂直スタートバルスVSP1が走査線駆動回路21及び遅延回路24に入力される。走査線駆動回路21はVSP1の入力を受けたあと、垂直クロックVCKに同期して走査線X1、X2、…、XNを順次選択し、走査線単位で輝度情報が画素PXLに書き込まれたがは、各画素PXLは書き込まれた輝度情報に応じた強度で発光を開始する。VSP1は遅延回路24で遅延され、VSP2として停止制御線駆動回路23に入力される。停止制御線駆動回路23はVSP2を受けたあと、垂直クロックVCKに同期して停止制御線Z1、Z2、…、ZNを順次選択し、発光が走査線単位で停止していく。

チャネル長: $L = \{ \mathbb{W} \cdot / (2 \cdot Ip) \} \cdot \mu \cdot Cox \cdot Vp^2 = 270 \mu m$

これらのTFT2のサイズは、発光素子のデューティーが1の場合に相当している。これに対し、本発明にかかる画像表示装置では上述したようにデューティーを予め所望の値に設定しておくことができる。例えば、デューティーを0.1とすることができる。この場合本発明による設計例として、図1に示したTFT2のサイズを以下のように縮小できる。

チャネル幅:W=5μm

チャネル長: $L=270\mu m \times 0$. $1=27\mu m$ その他のパラメータは図10に示した従来例と同一とする。この場合、発光時にOLEDに流れる電流は式

(1) に従って10倍となるが、デューティーを0.1 としているため、時間平均での駆動電流は、従来例と同じになる。有機EL素子では、電流と輝度とは通常比例関係にあるので、時間平均の発光輝度は、従来例と本発明とで同等になる。一方、本発明の設計例においては、TFT2のチャネル長Lが従来例の1/10と大幅に小型化されている。これにより、画素内部に於けるTFT2の占有率が大幅に下がり、その結果有機EL素子の占有面積(発光領域)を大きく取ることができるので、画像品位が向上する。又、画素の微細化も容易に実現可能となる。

【0024】図4は、本発明にかかる画像表示装置の第二実施形態の一例を示す全体回路構成図である。図2に示した第一実施形態と対応する部分には対応する参照番号を付して理解を容易にしている。第一実施形態がモノクロの画像表示装置であるのに対し、本実施形態はカラーの画像表示装置であり、RGB三原色が割り当てられた画素PXLが集積形成されている。本実施形態では、同一の走査線Xに赤、緑、青の各画素PXLを共通に接続する一方、停止制御線ZR、ZG、及びZBに赤、緑、青の各画素を別々に接続している。これにより、

*【0022】図1乃至図3に示した第一実施形態によれば、各画素PXLが発光するのは輝度情報が書き込まれてから発光停止制御信号によって発光が停止するまでの間、即ち概ね遅延回路24によって設定された遅延時間分である。その遅延時間をてとし、一走査サイクル(一フレーム)の時間をTとすると、画素が発光している時間的割合即ちデューティーは概ねて/Tとなる。発光素子の時間平均輝度はこのデューティーに比例して変化する。従って、遅延回路24を操作して遅延時間でを変更することにより、ELディスプレイの画面輝度を簡便且つ幅広い範囲で可変調整することができる。

【0023】更に、輝度の制御が容易になることは、画素回路の設計自由度を増し、より良好な設計を行うことが可能になる。図10に示した従来の画像表示装置の画素設計例では、TFT2のサイズを以下のように決めていた。

k チャネル幅:W=5μm

赤、緑、青の各画素に含まれる発光素子を別々の時点で 消灯できるようにしている。具体的には、RGB三色の 画素 P X L に対応して、三個の停止制御線駆動回路23 R, 23G, 23Bが別々に設けられている。又、これ らの停止制御線駆動回路23R, 23G, 23Bに対応 して、夫々別々に遅延回路24R, 24G, 24Bが設 けられている。従って、RGB別々に、VSP1の遅延 時間を設定でき、VSP2R, VSP2G, VSP2B を対応する停止制御線駆動回路23R, 23G, 23B に供給可能である。停止制御線駆動回路23Rによって 制御される停止制御線ZRには、赤色画素(R)が接続 され、停止制御線駆動回路23Gによって制御される停 止制御線ZGには、緑色画素(G)が接続され、停止制 御線駆動回路23Bによって制御される停止制御線ZB には、青色画素(B)が接続される。かかる構成によれ ば、RGBの各色毎に、輝度を調節できる。従って、遅 延回路24R,24G,24Bの遅延時間を適切に調整 することで、カラー画像表示装置の色度調節が容易にな り、カラーバランスを簡単にとることが可能である。即 ち、画面を観察して赤み成分が強すぎる場合には、遅延 回路24Rの遅延時間を調節し、赤色に対応するデュー ティーを相対的に小さくすることで、赤み成分を弱める ととが可能である。

【0025】図5は本発明にかかる画像表示装置の第三 実施形態の一例を示す一画素分の等価回路図であり、図1に示した第一実施形態と対応する部分には対応する参照番号を付して理解を容易にしている。本実施形態は発光素子OLEDと直列に接続されたTFT3(第三の能動素子)を含み、TFT3に与える制御信号に応じて発光素子OLEDに流れる電流を遮断することが可能である。制御信号は、走査線Xと平行に設けた停止制御線Zを介して同一走査線上の各画素PXLに含まれるTFT

3のゲートGに与えられる。本実施形態では、接地電位とTFT2との間にTFT3が挿入されており、TFT3のゲート電位の制御によって、OLEDに流れる電流をオン/オフすることができる。尚、TFT3を、TFT2とOLEDの間、或いはOLEDとVddとの間に挿入することも可能である。

【0026】図6は、本発明にかかる画像表示装置の第 四実施形態の一例を示す一画素分の等価回路図である。 図10に示した従来例と対応する部分には対応する参照 番号を付して理解を容易にしている。本実施形態では発 光素子〇LEDは整流作用を有する二端子素子からな り、一方の端子(カソードK)はTFT2に接続され、 他方の端子(アノードA)は停止制御線Zに接続されて いる。同一走査線上の各画素では二端子素子のアノード Aは停止制御線Zに共通接続され、異なる走査線間では 電気的に分離されている。との場合、二端子素子の共通 接続された他方の端子(アノードA)の電位を停止制御 線Zにより制御して、各OLEDを消灯する。但し、O LEDのアノードAは従来のように一定電位のVddに 接続されるのではなく、停止制御線Zを介して外部から その電位が制御される。アノード電位を十分高い値とす れば、OLEDにはTFT2によって制御される電流が 流れるが、OLEDは二端子素子で整流作用があるた め、アノード電位を十分低い電位 (例えば接地電位) と することにより、OLEDに流れる電流をオフすること

【0027】図7は、図6に示した第四実施形態の制御 例を示すタイミングチャートである。一走査サイクル (一フレーム)をTで表している。一走査サイクルTの 先頭に位置する書き込み期間 (RT) で、全画素に対す る輝度情報の書き込みを線順次で行う。即ち、この例で は、一走査サイクルの一部を利用して高速に輝度情報を 全ての画素に書き込んでいる。書き込みが完了したあ と、停止制御線Zを一斉に制御して、各画素に含まれる OLEDをオンする。これにより、各画素のOLEDは 書き込まれた輝度情報に応じて夫々発光を開始する。そ のあと所定の遅延時間でが経過すると、全ての停止制御 線Zを介して全てのOLEDのアノードAを接地電位に 落とす。これにより、発光がオフになる。以上のような 制御により、全画素単位でデューティーで/Tを調整可 能である。尚、本発明はこれに限られるものではなく、 少なくとも走査線単位で各画素のオン/オフを制御する ようにしてもよい。以上のように、本制御例では、各画 素に輝度情報が書き込まれたあと一走査サイクル内で、 各画素に含まれる発光素子の点灯時点及び消灯時点を画 面単位若しくは走査線単位で制御できる。

【0028】図8は、本発明にかかる画像表示装置の第 五実施形態の一例を示す全体回路構成図であり、図11 に示した従来例と対応する部分には対応する参照番号を 付して理解を容易にしている。本実施形態は先の実施形

態と異なり、特別の停止制御線を設けること無く、走査 線X1乃至XNを利用して各画素PXLのデューティー 制御を行っている。このために、走査線駆動回路21と は別に制御回路23'を設けている。制御回路23'の 各出力端子は対応する各アンドゲート回路28の一方の 入力端子に接続されている。各アンドゲート回路28の 出力端子は次段のオアゲート回路29の一方の入力端子 を介して各走査線X1, X2, …, XNに接続してい る。各アンドゲート回路28の他方の端子にはVCKが 供給されている。なお、走査線駆動回路21の各出力端 子は対応する各オアゲート回路29の他方の入力端子を 介して各走査線X1, X2, …, XNに接続している。 又、VSP1は先の実施形態と同様に遅延回路24を介 してVSP2となり、制御回路23'に供給される。一 方、各データ線YはPチャネル型のTFT26を介して データ線駆動回路22に接続されている。TFT26の ゲートにはVCKが供給されている。又、各データ線Y の電位はNチャンネル型のTFT27によっても制御で きる。TFT27のゲートにもVCKが供給されてい る。このように、本画像表示装置の周辺回路構成は図1 1に示した従来例と異なるが、個々の画素PXLの回路 構成は、図10に示した従来の画素回路構成と同一であ る。かかる構成により、制御回路23'は、各画素PX しに輝度情報が書き込まれてから次に新たな輝度情報が 書き込まれる一走査サイクルの間に、再度走査線Xを選 択して各画素PXLにデータ線Yから輝度Oを表す情報 を書き込んで各画素PXLの発光素子OLEDを消灯す ることができる。

【0029】図9は、図8に示した第五実施形態の動作 説明に供するタイミングチャートである。図示するよう に、垂直スタートパルスVSP1は走査線駆動回路21 及び遅延回路24に入力される。走査線駆動回路21は VSP1を受け入れたあと、垂直クロックVCKに同期 して走査線 X1, X2, …, XNを順次選択し、走査線 単位で各画素PXLに輝度情報を書き込んでいく。各画 素は書き込まれた輝度情報に応じた強度で発光を開始す る。但し、本実施形態ではTFT26、27を設けたと とにより、各データ線YはVCK=H(ハイレベル)の 期間で輝度0に相当する電位(との例では接地電位)と なり、VCK=L (ローレベル) の期間において本来の 輝度情報が与えられるようになっている。この関係は図 9のVCKの波形にし、Hを付し、データ線の波形にハ ッチングを付して模式的に表してある。VSP1は遅延 回路24で遅延されたあと、VSP2として制御回路2 3'に入力される。制御回路23'はVSP2を受け入 れたあと、垂直クロックVCKに同期して動作するが、 その出力はアンドゲート回路28に入力される。各アン ドゲート回路28にはVCKが同時に入力されているの で、制御回路23'の出力がH(ハイレベル)で且つV CK=H(ハイレベル)の時に走査線Xが選択される。

前述したように、VCK=Hの期間は各データ線Yに輝度0に相当する電位が与えられているので、制御回路23'によって選択された走査線Xに接続された画素は輝度0に相当する情報により発光が停止する。

【0030】図14は本発明にかかる画像表示装置の第 六実施形態の一例を示す一画素分の等価回路図であり、 図1 に示した第一実施形態と対応する部分には対応する 参照番号を付して理解を容易にしている。先の各実施形 態では、画素の消灯を行うためにトランジスタを追加す る必要のあるものが多いが、本実施形態は、追加のトラ ンジスタが不要で、より実用的な構成になっている。図 示するように、発光素子OLEDに供給する電流量を制 御するトランジスタTFT2のゲートGに接続された容 量素子Csの他方の端子が発光停止制御線Zに接続され る。書き込み終了後、発光停止線乙の電位を(この図の 例では)下げる。例えば、容量素子Csの容量がTFT 2のゲート容量等に比べ十分大きい場合は、発光停止制 御線乙の電位変化がすなわちTFT2のゲート電位の変 化となる。従って、書き込み時のTFT2のゲート電位 の最大値をVgmaxとした場合、発光停止制御線Ζの 電位を、書き込み時よりVgmax-Vth以上下げる ことによって、TFT2のゲート電位をVth以下にす ることができ、従って発光素子OLEDは消灯する。実 際にはTFT2のゲート容量等を考慮し、もう少し大き な振幅で制御することが望ましい。

【0031】図15は、図14に示した第六実施形態の動作説明に供するタイミングチャートである。図示するように、停止制御線は、走査線選択と概ね同時に高レベルとされ、書き込み終了後高レベルが保たれている期間、発光素子は書き込まれた輝度情報に応じた輝度にて発光状態となる。次のフレームで新たなデータが書き込まれる以前に停止制御線を低レベルにすると、発光素子は消灯する。

【0032】ところで、CRTにおいては表示画像はμ secオーダで輝度が減衰するのに対し、アクティブマ トリクス型のディスプレイでは一フレームの間画像を表 示し続ける保持型の表示原理となっている。この為、動 画表示を行なう場合、動画の輪郭に沿った画素はフレー ムの切り換わる直前まで画像を表示しており、これが人 間の目の残像効果と相まって、次のフレームでもそこに 像が表示されているかの如く感知する。これが、アクテ ィブマトリクス型ディスプレイにおける動画表示の画質 がCRTに比較し低くなる根本原因である。この解決策 として、本発明にかかる駆動方法が効果的であり、画素 を強制的に消灯して人間の目で感ずる残像を断ち切る技 術を導入することで、動画質の改善を図ることが出来 る。具体的には、アクティブマトリクス型のディスプレ イにおいて、一フレームの前半で画像を表示する一方、 ーフレームの後半はあたかもCRT輝度が減衰するかの 如くに、画像を消灯する方法を採用している。動画質改

善の為には、フレーム当たり、点灯と消灯のデューティーを50%程度に設定する。更に高い動画質改善の為には、フレーム当たり、点灯と消灯のデューティーを25%以下に設定すると良い。

[0033]

【発明の効果】以上説明したように、本発明によれば、各画素に輝度情報が書き込まれて発光が開始したあと、次のフレームの書き込みが行われる前に画素の発光を停止できるので、一フレーム内での発光時間の割合(デューティー)を変えることができ、これにより時間平均の表示輝度を簡便に調節することが可能である。更に重要なことは、デューティーを自由に設定できることにより、時間平均の表示輝度を同じに保ったまま、発光時に発光素子に流れる電流量を適宜に設定する自由度が生じるため、発光素子に流れる電流量を制御する能動素子の設計に自由度が生ずる。この結果、より高品位な画像を提供可能な画像表示装置や、より小さな画素サイズの画像表示装置を設計することが可能になる。

【図面の簡単な説明】

【図1】本発明にかかる画像表示装置の第一実施形態を 示す画素回路図である。

【図2】第一実施形態の全体回路構成図である。

【図3】第一実施形態のタイミングチャートである。

【図4】本発明にかかる画像表示装置の第二実施形態の 全体回路構成図である。

【図5】本発明にかかる画像表示装置の第三実施形態を 示す画素回路図である。

【図6】本発明にかかる画像表示装置の第四実施形態を 示す画素回路図である。

【図7】第四実施形態のタイミングチャートである。

【図8】本発明にかかる画像表示装置の第五実施形態を 示す全体回路構成図である。

【図9】第五実施形態のタイミングチャートである。

【図10】従来の画像表示装置の一例を示す画素回路図 である。

【図11】従来の画像表示装置の全体回路構成図である。

【図12】従来の画像表示装置の他の例を示す画素回路 図である。

【図13】従来の画像表示装置の構造を示す断面図である。

【図14】本発明にかかる画像表示装置の第六実施形態 の一例を示す一画素分の等価回路図である。

【図15】図14に示した第六実施形態の動作説明に供するタイミングチャートである。

【符号の説明】

PXL・・・画素、OLED・・・発光素子、TFT1・・・第一能動素子、TFT2・・・第二能動素子、TFT3・・・第三能動素子、Cs・・・保持容量、X・・・走査線、Y・・・データ線、Z・・・停止制御線、

21・・・走査線駆動回路、22・・・データ線駆動回路、23・・・停止制御線駆動回路、24・・・遅延回