Definición

Dados los conjuntos A y B, se llama **relación** de A **en** B a todo subconjunto de $A \times B$.

Definición

Dados los conjuntos A y B, se llama **relación** de A **en** B a todo subconjunto de $A \times B$.

Definición

Dados los conjuntos A y B, se llama relación de A en B a todo subconjunto de $A \times B$.

Notación

Si R es una relación de A en B (o sea, $R \subset A \times B$) esto se denota como $R:A \to B$.

2/26

Notación

Si R es una relación de A en B (o sea, $R \subset A \times B$) esto se denota como $R:A \to B$.

Notación

 $a\,R\,b$ denota el hecho de que el par (a,b) pertenece a la relación R, esto es: $(a,b)\in R$.

Notación

 $a \ R \ b$ denota el hecho de que el par (a,b) pertenece a la relación R, esto es: $(a,b) \in R$.

Notación

 $a\,R\,b$ denota el hecho de que el par (a,b) pertenece a la relación R, esto es: $(a,b)\in R$.

3/26

Definición

En lo anterior, si B=A se dice que R es una relación sobre A.

Definición

En lo anterior, si B = A se dice que R es una relación sobre A.

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

 $\forall a \in A, \ (a, a) \in R.$

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

 $\forall a \in A, \ (a, a) \in R.$

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

$$\forall a \in A, \ (a, a) \in R.$$

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

$$\forall a \in A, \ (a, a) \in R.$$

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

$$\forall a \in A, \ (a, a) \in R.$$

relación reflexiva

Simetría

Simetría

Una relación $R:A\to A$ es simétrica cuando el hecho de que el par (a,b) pertenece a la relación R implica que el par (b,a) también pertenece a dicha relación, o sea, cuando

 $\forall a, b \in A, \ (a, b) \in R \Rightarrow (b, a) \in R.$

Simetría

Una relación $R:A\to A$ es simétrica cuando el hecho de que el par (a,b) pertenece a la relación R implica que el par (b,a) también pertenece a dicha relación, o sea, cuando

 $\forall a, b \in A, \ (a, b) \in R \Rightarrow (b, a) \in R.$

Simetría

Una relación $R:A\to A$ es simétrica cuando el hecho de que el par (a,b) pertenece a la relación R implica que el par (b,a) también pertenece a dicha relación, o sea, cuando

 $\forall a, b \in A, \ (a, b) \in R \Rightarrow (b, a) \in R.$

Simetría

$$\forall a, b \in A, \ (a, b) \in R \Rightarrow (b, a) \in R.$$

Simetría

$$\forall a, b \in A, \ (a, b) \in R \Rightarrow (b, a) \in R.$$

Transitividad

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R.$$

Transitividad

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R.$$

Transitividad

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R.$$

Transitividad

$$\forall a, b, c \in A, \ (a, b) \in R \ \land \ (b, c) \in R \ \Rightarrow (a, c) \in R.$$

Transitividad

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R.$$

a) relación $R = \{(a, b), (a, d), (b, c)\}$, b) clausura reflexiva, c) clausura simétrica, d) clausura transitiva.

8/26

Relaciones: definiciones

Relación de equivalencia

Una relación es de equivalencia, cuando es reflexiva, simétrica y transitiva.

Propiedad:

Una relación de equivalencia sobre un conjunto A particiona al mismo en subconjuntos disjuntos a los cuales se los llama clases de equivalencia.

Relaciones: definiciones

Relación de equivalencia

Una relación es de equivalencia, cuando es reflexiva, simétrica y transitiva.

Propiedad:

Una relación de equivalencia sobre un conjunto A particiona al mismo en subconjuntos disjuntos a los cuales se los llama clases de equivalencia.

Relaciones: definiciones

Relación de equivalencia

Una relación es de equivalencia, cuando es reflexiva, simétrica y transitiva.

Propiedad:

Una relación de equivalencia sobre un conjunto A particiona al mismo en subconjuntos disjuntos a los cuales se los llama **clases de equivalencia**.

Ejemplo de relación de equivalencia

Composición de relaciones:

Sean A, B y C tres conjuntos, y sean R y G dos relaciones tales que $R:A\to B$ y $G:B\to C$, se define la relación de composición $G\circ R$ como

 $G \circ R = \{(a, c), a \in A, c \in C : \exists b \in B \text{ tal que } aRb \land bGc\}$

Composición de relaciones:

Sean A, B y C tres conjuntos, y sean R y G dos relaciones tales que $R:A\to B$ y $G:B\to C$, se define la relación de composición $G\circ R$ como

$$G\circ R=\left\{ \left(a,c\right),a\in A,c\in C:\exists b\in B\text{ tal que }aRb\wedge bGc\right\} .$$

Relación de identidad:

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \Leftrightarrow a = b.$$

Propiedad

la relación de identidad es el elemento neutro de la composición.

Relación de identidad:

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \Leftrightarrow a = b.$$

Propiedad:

la relación de identidad es el elemento neutro de la composición.

Composición de relaciones

Relación de identidad:

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \Leftrightarrow a = b.$$

Propiedad

la relación de identidad es el elemento neutro de la composición.

Composición de relaciones

Relación de identidad:

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \Leftrightarrow a = b.$$

Propiedad:

la relación de identidad es el elemento neutro de la composición.

Relación de identidad

Dada una relación $R:A\to B$ es cierto que

$$R \circ id_A = R$$

Relación de identidad

Dada una relación $R:A\to B$ es cierto que

$$id_B \circ R = R$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$\begin{array}{rcl} R^0 & = & id_A \\ R^1 & = & R \circ R^0 & = & R \circ id_A = R \\ R^n & = & R \circ R^{n-1} & = & \underbrace{R \circ R \dots \circ R}_{n} \end{array}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = \underbrace{R \circ id_{A} = R}_{r}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = \underbrace{R \circ id_{A} = R}_{r}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = \underbrace{R \circ R \dots \circ R}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^0 = id_A$$

 $R^1 = R \circ R^0 = R \circ id_A = R$
 $R^n = R \circ R^{n-1} = R \circ R \dots \circ R$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^0 = id_A$$

 $R^1 = R \circ R^0 = R \circ id_A = R$
 $R^n = R \circ R^{n-1} = \underbrace{R \circ R \dots \circ R}$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^0 = id_A$$

 $R^1 = R \circ R^0 = R \circ id_A = R$
 $R^n = R \circ R^{n-1} = R \circ R \dots \circ R$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = R \circ R \circ R$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^0 = id_A$$

 $R^1 = R \circ R^0 = R \circ id_A = R$
 $R^n = R \circ R^{n-1} = R \circ R \circ R$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$\begin{array}{ccccccc} R^0 & = & id_A \\ R^1 & = & R \circ R^0 & = & R \circ id_A = R \\ R^n & = & R \circ R^{n-1} & = & R \circ R & \circ R \end{array}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = \underbrace{R \circ id_{A} = R}_{R \circ R \dots \circ R}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$\begin{array}{cccccccc} R^0 & = & id_A \\ R^1 & = & R \circ R^0 & = & R \circ id_A = R \\ R^n & = & R \circ R^{n-1} & = & \underbrace{R \circ id_A = R}_{R \circ R \circ R \circ R} \end{array}$$

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = \underbrace{R \circ id_{A} = R}_{R \circ R \dots \circ R}$$

Ejamplo de relación potencia

$$R^+ = igcup_{i=1}^{\infty} R^i, ext{o sea}$$
 $R^+ = R \cup R^2 \cup R^3 \dots$

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
, o sea $R^+ = R \cup R^2 \cup R^3 \dots$

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
, o sea $R^+ = R \cup R^2 \cup R^3$...

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
, o sea $R^+ = R \cup R^2 \cup R^3 \dots$

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
, o sea $R^+ = R \cup R^2 \cup R^3$

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
, o sea $R^+ = R \cup R^2 \cup R^3 \dots$

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
, o sea $R^+ = R \cup R^2 \cup R^3 \dots$

$$\begin{array}{ll} R^+ & = & \displaystyle \bigcup_{i=1}^{\infty} R^i, \text{o sea} \\ \\ R^+ & = & R \cup R^2 \cup R^3 \dots \end{array}$$

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades

- \bullet $R \subseteq R^+$
- lacksquare para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades

- $\mathbf{0}$ $R \subseteq R^+$
- \mathbf{Q} R^+ es transitiva
- lacksquare para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- $\mathbf{0}$ $R \subseteq R^+$
- $oldsymbol{0}$ para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- ullet para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- \mathbf{Q} R^+ es transitiva
- ullet para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación $\it R$ posee las siguientes propiedades:

- \mathbf{Q} R^+ es transitiva
- $oldsymbol{0}$ para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- \mathbf{Q} R^+ es transitiva
- $oldsymbol{3}$ para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- \mathbf{Q} R^+ es transitiva
- $oldsymbol{3}$ para toda relación G sobre A

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- \mathbf{Q} R^+ es transitiva
- $oldsymbol{3}$ para toda relación G sobre A

Demostración: R^+ es transitiva

Queremos probar que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$.

Análogamente, como bR^+c entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $e_1Re_2,\ldots,e_{m-1}Re_m$, donde $e_1=b$ y $e_m=c$. Por lo tanto, $aR^{n+m}c$, lo que a su vez implica que aR^+c .

Queremos probar que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$.

Análogamente, como bR^+c entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $e_1Re_2,\ldots,e_{m-1}Re_m$, donde $e_1=b$ y $e_m=c$. Por lo tanto, $aR^{n+m}c$, lo que a su vez implica que aR^+c .

Queremos probar que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$.

Análogamente, como bR^+c entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $e_1Re_2,\ldots,e_{m-1}Re_m$, donde $e_1=b$ y $e_m=c$. Por lo tanto, $aR^{n+m}c$, lo que a su vez implica que aR^+c .

Queremos probar que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$.

Análogamente, como bR^+c entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $e_1Re_2,\ldots,e_{m-1}Re_m$, donde $e_1=b$ y $e_m=c$.

Por lo tanto, $aR^{n+m}c$, lo que a su vez implica que aR^+c .

Queremos probar que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$.

Análogamente, como bR^+c entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $e_1Re_2,\ldots,e_{m-1}Re_m$, donde $e_1=b$ y $e_m=c$. Por lo tanto, $aR^{n+m}c$, lo que a su vez implica que aR^+c .

si aR^+b , entonces existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n o sea aGb.

si aR^+b , entonces existe una secuencia de elementos c_1, \ldots, c_n tal que $c_1Rc_2, \ldots, c_{n-1}Rc_n$, donde $c_1 = a$ y $c_n = b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n , o sea aGb.

si aR^+b , entonces existe una secuencia de elementos c_1, \ldots, c_n tal que $c_1Rc_2, \ldots, c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n o sea aGb.

si aR^+b , entonces existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n o sea aGb.

si aR^+b , entonces existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n o sea aGb

si aR^+b , entonces existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n o sea aGb.

si aR^+b , entonces existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$. Como $R\subseteq G$ tenemos que $c_1Gc_2,\ldots,c_{n-1}Gc_n$, y como G es transitiva

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n , o sea aGb

si aR^+b , entonces existe una secuencia de elementos c_1, \ldots, c_n tal que $c_1Rc_2, \ldots, c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n , o sea aGb.

De lo anterior surge que \mathbb{R}^+ es la menor relación transitiva que incluye a la relación \mathbb{R} .

De lo anterior surge que R^+ es la menor relación transitiva que incluye a la relación R.

De lo anterior surge que R^+ es la menor relación transitiva que incluye a la relación R.

Definición

$$R^* = R^0 \cup R^+ = R^0 \cup R^1 \cup R^2 \dots = \bigcup_{i=0}^{\infty} R^i$$

donde R^0 es la relación identidad

Definición

$$R^* = R^0 \cup R^+ = R^0 \cup R^1 \cup R^2 \dots = \bigcup_{i=0}^{\infty} R^i.$$

donde R^0 es la relación identidad.

Definición

$$R^* = R^0 \cup R^+ = R^0 \cup R^1 \cup R^2 \dots = \bigcup_{i=0}^{n} R^i.$$

donde R^0 es la relación identidad

Definición

$$R^* = R^0 \cup R^+ = R^0 \cup R^1 \cup R^2 \dots = \bigcup_{i=0}^{\infty} R^i.$$

donde R^0 es la relación identidad

Definición

$$R^* = R^0 \cup R^+ = R^0 \cup R^1 \cup R^2 \dots = \bigcup_{i=0}^{\infty} R^i.$$

donde R^0 es la relación identidad.

Pregunta

Dada una relación $R:A\to A$, si el conjunto A es finito, la relación R puede ser infinita?

Respuesta:

No, porque $R\subseteq A\times A$ y porque como A es finito, $A\times A$ también lo es.

Pregunta

Puede darse que $R^* = R^+$?

Respuesta

Sí, si la relación R es reflexiva.

Pregunta:

Dada una relación $R: A \to A$, si el conjunto A es finito, la relación R puede ser infinita?

Respuesta

No, porque $R\subseteq A\times A$ y porque como A es finito, $A\times A$ también lo es

Pregunta

Puede darse que $R^* = R^+$?

Respuesta

Sí, si la relación R es reflexiva

Pregunta:

Dada una relación $R: A \to A$, si el conjunto A es finito, la relación R puede ser infinita?

Respuesta:

No, porque $R\subseteq A\times A$ y porque como A es finito, $A\times A$ también lo es.

Pregunta:

Puede darse que $R^* = R^+$?

Respuesta:

Sí, si la relación $\it R$ es reflexiva.

Pregunta:

Dada una relación $R: A \to A$, si el conjunto A es finito, la relación R puede ser infinita?

Respuesta:

No, porque $R\subseteq A\times A$ y porque como A es finito, $A\times A$ también lo es.

Pregunta:

Puede darse que $R^* = R^+$?

Respuesta:

Sí, si la relación R es reflexiva

Pregunta:

Dada una relación $R:A\to A$, si el conjunto A es finito, la relación R puede ser infinita?

Respuesta:

No, porque $R\subseteq A\times A$ y porque como A es finito, $A\times A$ también lo es.

Pregunta:

Puede darse que $R^* = R^+$?

Respuesta:

Sí, si la relación R es reflexiva.

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbccc, aaabbc, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a,b,c) (que es un conjunto ordenado) es notada abc.

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbece, aaabbe, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a, b, c) (que es un conjunto ordenado) es notada abc.

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbccc, aaabbc, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a,b,c) (que es un conjunto ordenado) es notada abc.

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbccc, aaabbc, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a,b,c) (que es un conjunto ordenado) es notada abc.

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbccc, aaabbc, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a,b,c)

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbccc, aaabbc, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a, b, c) (que es un conjunto ordenado) es notada abc.

Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto

$$\circ: \Sigma \times \{ \text{cadenas sobre } \Sigma \} \to \{ \text{cadenas sobre } \Sigma \} \,.$$

Ejemplo

Si el alfabeto es $\Sigma = \{a, b, c\}$, $\alpha = ab$ es una cadena, y entonces $a \circ ab = aab$ es también una cadena.

Cadena nula λ

$$\forall a \in \Sigma, \ a \circ \lambda = a$$

Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto

$$\circ: \Sigma \times \{ \text{cadenas sobre } \Sigma \} \to \{ \text{cadenas sobre } \Sigma \} .$$

Ejemplo

Si el alfabeto es $\Sigma=\{a,b,c\}$, $\alpha=ab$ es una cadena, y entonces $a\circ ab=aab$ es también una cadena.

Cadena nula λ

$$\forall a \in \Sigma, \ a \circ \lambda = a$$

Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto

$$\circ: \Sigma \times \{ \text{cadenas sobre } \Sigma \} \to \{ \text{cadenas sobre } \Sigma \} \,.$$

Ejemplo

Si el alfabeto es $\Sigma = \{a, b, c\}$, $\alpha = ab$ es una cadena, y entonces $a \circ ab = aab$ es también una cadena.

Cadena nula λ

$$\forall a \in \Sigma, \ a \circ \lambda = a$$

Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto

$$\circ: \Sigma \times \{ \text{cadenas sobre } \Sigma \} \to \{ \text{cadenas sobre } \Sigma \} \,.$$

Ejemplo

Si el alfabeto es $\Sigma = \{a, b, c\}$, $\alpha = ab$ es una cadena, y entonces $a \circ ab = aab$ es también una cadena.

Cadena nula

$$\forall a \in \Sigma, \ a \circ \lambda = a$$

Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto

$$\circ: \Sigma \times \{ \text{cadenas sobre } \Sigma \} \to \{ \text{cadenas sobre } \Sigma \} \,.$$

Ejemplo

Si el alfabeto es $\Sigma = \{a, b, c\}, \alpha = ab$ es una cadena, y entonces $a \circ ab = aab$ es también una cadena.

Cadena nula λ

Es el neutro de la concatenación:

$$\forall a \in \Sigma, \ a \circ \lambda = a$$

Teoría de Lenguajes

- \bullet $\lambda \in \Sigma^*$
- $\bullet \ \alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, \ a \in \Sigma$

Clausura positiva de $\Sigma\colon \Sigma^+$

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma = \{a, b, c\}$, entonces $ccba \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $a \circ \lambda = a \in \Sigma^*$, $b \circ a = ba \in \Sigma^*$, $c \circ ba = cba \in \Sigma^*$, $c \circ cba = ccba \in \Sigma^*$.

- \bullet $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de Σ : Σ^+

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma = \{a, b, c\}$, entonces $ccba \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $a \circ \lambda = a \in \Sigma^*$, $b \circ a = ba \in \Sigma^*$, $c \circ ba = cba \in \Sigma^*$. $c \circ cba = ccba \in \Sigma^*$.

- $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de $\Sigma\colon \Sigma^+$

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma = \{a, b, c\}$, entonces $ccba \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $a \circ \lambda = a \in \Sigma^*$, $b \circ a = ba \in \Sigma^*$, $c \circ ba = cba \in \Sigma^*$. $c \circ cba = ccba \in \Sigma^*$.

- $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de Σ : Σ^+

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma = \{a, b, c\}$, entonces $ccba \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $a \circ \lambda = a \in \Sigma^*$, $b \circ a = ba \in \Sigma^*$, $c \circ ba = cba \in \Sigma^*$. V $c \circ cba = ccba \in \Sigma^*$.

- $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de Σ : Σ^+

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma = \{a, b, c\}$, entonces $ccba \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $a \circ \lambda = a \in \Sigma^*$, $b \circ a = ba \in \Sigma^*$, $c \circ ba = cba \in \Sigma^*$. $c \circ cba = ccba \in \Sigma^*$.

- $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de Σ : Σ^+

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma = \{a, b, c\}$, entonces $ccba \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $a \circ \lambda = a \in \Sigma^*$, $b \circ a = ba \in \Sigma^*$, $c \circ ba = cba \in \Sigma^*$, y $c \circ cba = ccba \in \Sigma^*$.

- $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de Σ : Σ^+

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma=\{a,b,c\}$, entonces $ccba\in\Sigma^*$ porque $\lambda\in\Sigma^*$, $a\circ\lambda=a\in\Sigma^*$, $b\circ a=ba\in\Sigma^*$, $c\circ ba=cba\in\Sigma^*$, y $c\circ cba=ccba\in\Sigma^*$.

Ejemplo:

- ullet ϕ es un lenguaje
- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
- Dado $\Sigma = \{0, 1\}, \{0, 01, 011, 0111, 01111, \dots \}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},$$

Ejemplo:

- ullet ϕ es un lenguaje
- $\{\lambda\}$ es un lenguaje $(\neq$ de $\phi)$
- Dado $\Sigma=\{0,1\}$, $\{0,01,011,0111,01111,\dots\}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

Ejemplo:

- ullet ϕ es un lenguaje
- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
 - Dado $\Sigma = \{0, 1\}, \ \{0, 01, 011, 0111, 01111, \dots \}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

Ejemplo:

- ullet ϕ es un lenguaje
- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
 - Dado $\Sigma = \{0,1\}, \ \{0,01,011,0111,01111,\dots \}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

Ejemplo:

- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
- Dado $\Sigma = \{0, 1\}$, $\{0, 01, 011, 0111, 01111, \dots \}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

Ejemplo:

- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
- Dado $\Sigma=\{0,1\},$ $\{0,01,011,0111,01111,\dots\}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

Ejemplo:

- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
- Dado $\Sigma=\{0,1\},$ $\{0,01,011,0111,01111,\ldots\}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1 L_2 = \{ xy : x \in L_1 \land y \in L_2 \},\,$$

Ejemplo:

- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
- Dado $\Sigma=\{0,1\},$ $\{0,01,011,0111,01111,\ldots\}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

Se define por:

- $L^0 = \{\lambda\}$
- $\bullet \ L^n = LL^{n-1} \ \mathrm{para} \ n \geq 1$
- $\bullet L^* = \bigcup_{n \ge 0} L^n.$

Clausura positiva L^{+}

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$.

También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L\subseteq \Sigma$

Se define por:

•
$$L^0 = \{\lambda\}$$

•
$$L^n = LL^{n-1}$$
 para $n \ge 1$

$$L^* = \bigcup_{n>0} L^n.$$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$.

28 / 26

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n>0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaie definido sobre Σ , entonces, $L \subseteq \Sigma^*$

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n > 0} L^n$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n \ge 0} L^n$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaie definido sobre Σ , entonces, $L \subseteq \Sigma^*$

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n>0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$

Clausura de Kleene L^{st}

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n>0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \in \mathbb{N}} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n \ge 0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$.

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n>0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n > 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$.

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n>0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$.

También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L\subseteq$

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $\bullet \ L^* = \bigcup_{n \ge 0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$.

Definición

Una gramática es una 4-upla $G=< V_N, V_T, P, S>$ donde

- ullet V_N es un conjunto de símbolos llamados no-terminales (o también, variables o categorías sintácticas)
- V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- ullet P es el conjunto de "producciones", el cual es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*,$$

estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.

• $S \in V_N$ es el símbolo distinguido de V_N .

Definición

Una gramática es una 4-upla $G = \langle V_N, V_T, P, S \rangle$ donde

- V_N es un conjunto de símbolos llamados no-terminales (o también, variables o categorías sintácticas)
- V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- P es el conjunto de "producciones", el cual es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$
,

- estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.
- $S \in V_N$ es el símbolo distinguido de V_N

Definición

Una gramática es una 4-upla $G = \langle V_N, V_T, P, S \rangle$ donde

- V_N es un conjunto de símbolos llamados no-terminales (o también, variables o categorías sintácticas)
- V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- P es el conjunto de "producciones", el cual es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$

- estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.
- $S \in V_N$ es el símbolo distinguido de V_N .

Definición

Una gramática es una 4-upla $G = \langle V_N, V_T, P, S \rangle$ donde

- V_N es un conjunto de símbolos llamados no-terminales (o también, variables o categorías sintácticas)
- V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- P es el conjunto de "producciones", el cual es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*,$$

estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.

• $S \in V_N$ es el símbolo distinguido de V_N .

Definición

Una gramática es una 4-upla $G = \langle V_N, V_T, P, S \rangle$ donde

- V_N es un conjunto de símbolos llamados no-terminales (o también, variables o categorías sintácticas)
- V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- P es el conjunto de "producciones", el cual es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*,$$

estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.

• $S \in V_N$ es el símbolo distinguido de V_N .

Forma sentencial de una gramática $G = \langle V_N, V_T, P, S \rangle$

- ullet s es una forma sentencial de G.
- Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G

$$\alpha\beta\gamma \xrightarrow{G} \alpha\delta\gamma$$

Forma sentencial de una gramática $G = \langle V_N, V_T, P, S \rangle$

- S es una forma sentencial de G.
- Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G

$$\alpha\beta\gamma \xrightarrow{G} \alpha\delta\gamma$$

Forma sentencial de una gramática $G = \langle V_N, \overline{V_T, P, S} \rangle$

- S es una forma sentencial de G.
- Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G

$$\alpha\beta\gamma \xrightarrow{G} \alpha\delta\gamma$$

Forma sentencial de una gramática $G = \langle V_N, V_T, P, S \rangle$

- S es una forma sentencial de G.
- Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G

$$\alpha\beta\gamma \xrightarrow{G} \alpha\delta\gamma$$

Forma sentencial de una gramática $G = \langle V_N, \overline{V_T, P, S} \rangle$

- S es una forma sentencial de G.
- Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G

$$\alpha\beta\gamma \xrightarrow{C} \alpha\delta\gamma$$

Denotaremos con $\frac{+}{G}$ y con $\frac{*}{G}$ a las clausura transitiva y a la clausura transitiva y reflexiva de $\frac{+}{G}$ respectivamente.

Definición

Denotaremos con $\stackrel{k}{\underset{G}{\longrightarrow}}$ a la potencia k de la relación $\stackrel{}{\underset{G}{\longrightarrow}}$

Definición

Lenguaje generado por una gramática $G = \langle V_N, V_T, P, S \rangle$, el cual se denotará como $\mathcal{L}(G)$,

$$\mathcal{L}\left(G\right) = \left\{\alpha \in V_{T}^{*} : S \xrightarrow{+}_{G} \alpha\right\}$$

Denotaremos con $\frac{+}{G}$ y con $\frac{*}{G}$ a las clausura transitiva y reflexiva de $\frac{+}{G}$ respectivamente.

Definición

Denotaremos con $\frac{k}{G}$ a la potencia k de la relación $\stackrel{}{\rightarrow}$

Definición

Lenguaje generado por una gramática $G = \langle V_N, V_T, P, S \rangle$, el cual se denotará como $\mathcal{L}\left(G\right)$,

$$\mathcal{L}\left(G\right) = \left\{\alpha \in V_{T}^{*}: S \xrightarrow{+}_{G} \alpha\right\}$$

Denotaremos con $\frac{+}{G}$ y con $\frac{*}{G}$ a las clausura transitiva y reflexiva de $\frac{+}{G}$ respectivamente.

Definición

Denotaremos con $\stackrel{k}{\underset{G}{\longrightarrow}}$ a la potencia k de la relación $\stackrel{\rightarrow}{\underset{G}{\longrightarrow}}$.

Definición

Lenguaje generado por una gramática $G = \langle V_N, V_T, P, S \rangle$, el cual se denotará como $\mathcal{L}(G)$,

$$\mathcal{L}\left(G\right) = \left\{\alpha \in V_{T}^{*} : S \xrightarrow{+}_{G} \alpha\right\}$$

Denotaremos con $\frac{+}{G}$ y con $\frac{*}{G}$ a las clausura transitiva y a la clausura transitiva y reflexiva de $\frac{+}{G}$ respectivamente.

Definición

Denotaremos con $\frac{k}{G}$ a la potencia k de la relación \xrightarrow{G} .

Definición

Lenguaje generado por una gramática $G = \langle V_N, V_T, P, S \rangle$, el cual se denotará como $\mathcal{L}(G)$,

$$\mathcal{L}\left(G\right) = \left\{\alpha \in V_{T}^{*}: S \xrightarrow{+}_{G} \alpha\right\}$$

4ロト 4団ト 4 団ト 4 団ト ■ 990

Gramáticas regulares (tipo 3)

- Si todas las producciones son de la forma $A \to xB$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a derecha".
- Si todas las producciones son de la forma $A \to Bx$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a izquierda".

Gramáticas regulares (tipo 3)

- Si todas las producciones son de la forma $A \to xB$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a derecha".
- Si todas las producciones son de la forma $A \to Bx$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a izquierda".

Gramáticas regulares (tipo 3)

- Si todas las producciones son de la forma $A \to xB$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a derecha".
- Si todas las producciones son de la forma $A \to Bx$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a izquierda".

Gramáticas regulares (tipo 3)

- Si todas las producciones son de la forma $A \to xB$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a derecha".
- Si todas las producciones son de la forma $A \to Bx$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a izquierda".

Gramáticas regulares (tipo 3)

Una forma alternativa de escribir las gramáticas regulares es el siguiente:

- Todas las producciones son de la forma $A \to aB$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a derecha"
- Todas las producciones son de la forma $A \to Ba$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a izquierda".

Gramáticas regulares (tipo 3)

Una forma alternativa de escribir las gramáticas regulares es el siguiente:

- Todas las producciones son de la forma $A \to aB$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a derecha".
- Todas las producciones son de la forma A oup Ba o A oup a, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a izquierda".

Gramáticas regulares (tipo 3)

Una forma alternativa de escribir las gramáticas regulares es el siguiente:

- Todas las producciones son de la forma $A \to aB$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a derecha".
- Todas las producciones son de la forma $A \to Ba$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a izquierda".

Gramáticas regulares (tipo 3)

Una forma alternativa de escribir las gramáticas regulares es el siguiente:

- Todas las producciones son de la forma $A \to aB$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a derecha".
- Todas las producciones son de la forma $A \to Ba$ o $A \to a$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a izquierda".

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

- $S \rightarrow aA \rightarrow aaB$
 - $ightarrow aabbB \longrightarrow aabbbB$
 - ightarrow aabba ightarrow aabba ightarrow aabba

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Ejemplo: derivación de la cadena aabbbbccc

 $\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$S \rightarrow aA \rightarrow aaB \rightarrow aabB \rightarrow aabbbC \rightarrow aabbbbC \rightarrow aabbbbC \rightarrow aabbbbcC \rightarrow aabbbbcC \rightarrow aabbbbccC \rightarrow aabbbbccC \rightarrow aabbbbccC$$

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbC & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{ccccc} S \rightarrow aA & B \rightarrow bB & C \rightarrow cC \\ A \rightarrow aA & B \rightarrow bC & C \rightarrow c \\ A \rightarrow aB & \end{array}$$

$$S \rightarrow aA \rightarrow aaB \rightarrow aabB \rightarrow aabbB \rightarrow aabbbB \rightarrow aabbbbC \rightarrow aabbbbC \rightarrow aabbbbcC \rightarrow aabbbbcC \rightarrow aabbbbcC$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$S \rightarrow aA \rightarrow aaB \rightarrow aabB$$

 $\rightarrow aabbB \rightarrow aabbbB \rightarrow aabbbbC$
 $\rightarrow aabbbbC \rightarrow aabbbbcC \rightarrow aabbbbcC$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$S \to aA$$
 $B \to bB$ $C \to cC$
 $A \to aA$ $B \to bC$ $C \to c$
 $A \to aB$

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbC & \rightarrow aabbbbcC & \rightarrow aabbbbcC \end{array}$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbbcC & \rightarrow aabbbbbcC \end{array}$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$$

Gramática

Gramática para generar
$$\left\{a^nb^mc^k:m,n,k\geq 1\right\}$$
, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$$

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$\begin{array}{cccc} S \rightarrow aA & B \rightarrow bB & C \rightarrow cC \\ A \rightarrow aA & B \rightarrow bC & C \rightarrow c \\ A \rightarrow aB & \end{array}$$

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaB & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccc \end{array}$$

Gramáticas independientes del contexto (libres de contexto, tipo 2)

Cada producción es de la forma A o lpha, donde $A \in V_N$ y $lpha \in (V_N \cup V_T)^*$

De la definición anterior puede inferirse que toda gramática regular es independiente de (o libre del) contexto

Gramáticas independientes del contexto (libres de contexto, tipo 2)

Cada producción es de la forma $A \to \alpha$, donde $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

De la definición anterior puede inferirse que toda gramática regular es independiente de (o libre del) contexto

Clasificación de gramáticas (Chomsky)

Gramáticas independientes del contexto (libres de contexto, tipo 2)

Cada producción es de la forma $A \to \alpha$, donde $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

De la definición anterior puede inferirse que toda gramática regular es independiente de (o libre del) contexto

Gramática

 $G = \\ \left<\left\{E,T,F\right\},\left\{a,+,*,(,)\right\},E,P\right>, \\ \text{donde } P \text{ est\'a dado por }$

$$E \to E + 1$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

derivación de a*(a+a)

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right> \text{,} \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

derivación de a * (a + a)

 $E \rightarrow T \rightarrow T * F$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$\begin{split} E &\to T \to T * F \\ &\to T * (E) \to F * (E) \\ &\to a * (E) \to a * (E+T) \\ &\to a * (T+T) \to a * (F+T) \\ &\to a * (a+T) \to a * (a+F) \end{split}$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \rightarrow T \rightarrow T * F$$

$$\rightarrow T * (E) \rightarrow F * (E)$$

$$\rightarrow a * (E) \rightarrow a * (E + T)$$

$$\rightarrow a * (T + T) \rightarrow a * (F + T)$$

$$\rightarrow a * (a + T) \rightarrow a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left\langle \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right\rangle \text{,} \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$G = \left\langle \left\{E,T,F\right\}, \left\{a,+,*,(,)\right\}, E,P\right\rangle \text{,}$$
 donde P está dado por

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left<\left\{E,T,F\right\},\left\{a,+,*,(,)\right\},E,P\right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$\begin{split} E &\to T \to T * F \\ &\to T * (E) \to F * (E) \\ &\to a * (E) \to a * (E+T) \\ &\to a * (T+T) \to a * (F+T) \\ &\to a * (a+T) \to a * (a+F) \end{split}$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E+T)$$

$$\to a * (T+T) \to a * (F+T)$$

$$\to a * (a+T) \to a * (a+F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

derivación de a*(a+a)

 $E \to T \to T * F$

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G = \\ \left<\left\{E,T,F\right\},\left\{a,+,*,(,)\right\},E,P\right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E+T)$$

$$\to a * (T+T) \to a * (F+T)$$

$$\to a * (a+T) \to a * (a+F)$$

Gramática

$$\begin{split} G = \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E+T)$$

$$\to a * (T+T) \to a * (F+T)$$

$$\to a * (a+T) \to a * (a+F)$$

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

$$\to a * (a + A)$$

Gramática

$$\begin{split} G = \\ \left<\left\{E,T,F\right\},\left\{a,+,*,(,)\right\},E,P\right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

$$\begin{split} E &\to T \to T * F \\ &\to T * (E) \to F * (E) \\ &\to a * (E) \to a * (E+T) \\ &\to a * (T+T) \to a * (F+T) \\ &\to a * (a+T) \to a * (a+F) \\ &\to a * (a+a) \end{split}$$

E

ピート

Arbol de derivación

Arbol de derivación

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al) contexto

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al) contexto

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al)

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al) contexto

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al)

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al) contexto

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S o aSBC \quad CB o BC \quad bB o bb \quad cC o cc$$
 $S o abC \qquad bC o bc$

Gramática

$$G = \langle \left\{S,B,C\right\}, \left\{a,b,c\right\}, S,P
angle$$
, donde P está dado por

$$\begin{array}{ccccc} S \rightarrow aSBC & CB \rightarrow BC & bB \rightarrow bb & cC \rightarrow cc \\ S \rightarrow abC & bC \rightarrow bc \end{array}$$

$$S \rightarrow$$

Gramática

$$G = \langle \left\{S,B,C\right\}, \left\{a,b,c\right\}, S,P \rangle$$
, donde P está dado por

$$\rightarrow aSBC$$

$$\rightarrow aaSBCBC$$

$$\rightarrow aaabCBCBC$$

$$\rightarrow aaabBCCBC$$

$$\rightarrow aaabBCBC$$

$$\rightarrow aaabBBCCC$$

$$\rightarrow aaabbBCCC \longrightarrow$$

$$\rightarrow aaabbbCCCC$$

$$\rightarrow aaabbbcCCC$$

$$\rightarrow aaabbbccC$$
 -

$$\rightarrow aaabbbccc$$

Gramática

$$G = \langle \left\{S,B,C\right\}, \left\{a,b,c\right\}, S,P \rangle \text{, donde } P \text{ est\'a dado por }$$

derivación de aaabbbccc:

$$S \rightarrow aSBC$$

 $\rightarrow aaSBCBC$

 $\rightarrow aaabCBCBC$

 $\rightarrow aaabBCCBC$

 $\rightarrow uuu0DCDC$

 $\rightarrow aaabBBCCC$

- - - - 111 - - O

 $\rightarrow aa$

 $\rightarrow aaab$

 $\rightarrow aaabbbc($

4□▶ 4₫▶ 4½▶ 4½▶ ½ 900

Gramática

$$G=\left\langle \left\{ S,B,C\right\} ,\left\{ a,b,c\right\} ,S,P\right\rangle$$
, donde P está dado por

$$\begin{array}{cccc} S \rightarrow aSBC & CB \rightarrow BC & bB \rightarrow bb & cC \rightarrow cc \\ S \rightarrow abC & bC \rightarrow bc \end{array}$$

derivación de aaabbbccc:

$$S \rightarrow$$

 $\rightarrow aSBC$

- $\rightarrow aaSBCBC$
- $\rightarrow aaabCBCBC$

- $\rightarrow aaabBCCBC$
- $\rightarrow aaabBCBC$
- $\rightarrow aaabBBCCC$

- $\rightarrow aaabbBCC$
- $\rightarrow aaabb$

 $\rightarrow aaabbbcC$

ightarrow aaabbbccC
ightarrow aaabbbcc

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \end{array}$$

Gramática

$$G = \langle \{S, B, C\}, \{a, b, c\}, S, P \rangle$$
, donde P está dado por

$$\begin{array}{cccc} S \rightarrow aSBC & CB \rightarrow BC & bB \rightarrow bb & cC \rightarrow cc \\ S \rightarrow abC & bC \rightarrow bc \end{array}$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC \\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC\\ \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC \\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \\ \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbCCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad \begin{array}{c} CB \to BC \\ S \to abC \end{array} \quad \begin{array}{c} bB \to bb \quad cC \to cc \\ bC \to bc \end{array}$$

$$\begin{array}{lll} S \rightarrow & & & & & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabBCCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCCCC & \rightarrow aaabBBCCC \\ \rightarrow aaabbbcCC & \rightarrow aaabbbcCC & \rightarrow aaabbbcCC \\ \rightarrow aaabbbcCC & \rightarrow aaabbbcCC & \rightarrow aaabbbcCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCCCC & \rightarrow aaabBBCCCC & \rightarrow aaabbbCCCC & \rightarrow aaabbbcCCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad \begin{array}{c} CB \to BC \\ S \to abC \end{array} \quad \begin{array}{c} bB \to bb \quad cC \to cc \\ bC \to bc \end{array}$$

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCCCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbCCC\\ \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCCCC & \rightarrow aaabBBCCCC \\ \rightarrow aaabbBCCCC & \rightarrow aaabbbCCCC & \rightarrow aaabbbCCCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad \begin{array}{c} CB \to BC \\ S \to abC \end{array} \quad \begin{array}{c} bB \to bb \quad cC \to cc \\ bC \to bc \end{array}$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCCCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCCC & \rightarrow aaabbbCCCC & \rightarrow aaabbbCCCC & \rightarrow aaabbbcCCC\\ \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,,S,P
angle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbCCC & \\ \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad \begin{array}{c} bB \to bb \quad cC \to cc \\ S \to abC & bC \to bc \end{array}$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCCC & \rightarrow aaabBBCCCC & \rightarrow aaabbbbCCCC & \rightarrow aaabbbC$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCCC & \rightarrow aaabBBCCCC \\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbCCCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad \begin{array}{c} bB \to bb \quad cC \to cc \\ S \to abC & bC \to bc \end{array}$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCCC & \rightarrow aaabBBCCCC \\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbCCCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

derivación de aaabbbccc:

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \end{array}$$

ightarrow aaabbbccC
ightarrow aaabbbccc

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S o aSBC \quad CB o BC \quad bB o bb \quad cC o cc$$

$$S o abC \qquad \qquad bC o bc$$

derivación de aaabbbccc:

$$\begin{array}{lll} S \rightarrow & & \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \end{array}$$

ightarrow aaabbbccC
ightarrow aaabbbccc

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

derivación de aaabbbccc:

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \end{array}$$

4 D > 4 A > 4 B > 4 B > B 9 Q P

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC\\ \rightarrow aaabbbccC & \rightarrow aaabbbccC & \rightarrow aaabbbccC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBC\\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC\\ \rightarrow aaabbBCCC & \rightarrow aaabbbcCC & \rightarrow aaabbbcCC\\ \rightarrow aaabbbccC & \rightarrow aaabbbccC & \rightarrow aaabbbccC \end{array}$$

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P \rangle$$
, donde P está dado por
$$S \to aSBC \quad CB \to BC \quad bB \to bb \quad cC \to cc$$

$$S \to abC \qquad \qquad bC \to bc$$

$$\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCC & \rightarrow aaabBBCCC \\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \\ \rightarrow aaabbbccC & \rightarrow aaabbbccC \end{array}$$

Sin restricciones (tipo 0)

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

El conjunto de las gramáticas tipo 0 incluye a todas las gramáticas.

Sin restricciones (tipo 0)

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

El conjunto de las gramáticas tipo 0 incluye a todas las gramáticas.

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

Gramática

```
Gramática para generar \{ww: w \in \{a,b\}^*\} G = (\{S,A,B,C,D\},\{a,b\},S,P), donde P está dado por S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda C \to bCB
```

Gramática

Gramática para generar $\{ww:w\in\{a,b\}^*\}$ $G=(\{S,A,B,C,D\}\,,\{a,b\}\,,S,P)$, donde P está dado por

$$S \to CD$$
 $AD \to aD$ $Aa \to aA$ $Ba \to aB$ $C \to \lambda$ $C \to aCA$ $BD \to bD$ $Ab \to bA$ $Bb \to bB$ $D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

derivación de abaaabaa

Gramática

Gramática para generar $\{ww : w \in \{a, b\}^*\}$ $G = (\{S, A, B, C, D\}, \{a, b\}, S, P)$, donde P está dado por $S \to CD$ $AD \to aD$ $Aa \to aA$ $Ba \to aB$ $C \to \lambda$

$$C \rightarrow aCA \quad BD \rightarrow bD \quad Ab \rightarrow bA \quad Bb \rightarrow bB \quad D \rightarrow \lambda$$

 $C \rightarrow bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww : w \in \{a, b\}^*\}$ $G = (\{S, A, B, C, D\}, \{a, b\}, S, P)$, donde P está dado por $S \to CD$ $AD \to aD$ $Aa \to aA$ $Ba \to aB$ $C \to \lambda$

 $C \rightarrow aCA \quad BD \rightarrow bD \quad Ab \rightarrow bA \quad Bb \rightarrow bB \quad D \rightarrow \lambda$ $C \rightarrow bCB$

derivación de abaaabaa

 $\rightarrow CD$ $\rightarrow aCAD$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww : w \in \{a, b\}^*\}$ $G = (\{S, A, B, C, D\}, \{a, b\}, S, P)$, donde P está dado por $S \to CD$ $AD \to aD$ $Aa \to aA$ $Ba \to aB$ $C \to \lambda$

 $C \rightarrow aCA \quad BD \rightarrow bD \quad Ab \rightarrow bA \quad Bb \rightarrow bB \quad D \rightarrow \lambda$ $C \rightarrow bCB$

derivación de abaaabaa

 $\rightarrow CD$ $\rightarrow aCAD$ $\rightarrow abCBAD$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$

derivación de abaaabaa

 $C \rightarrow bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \rightarrow CD \quad AD \rightarrow aD \quad Aa \rightarrow aA \quad Ba \rightarrow aB \quad C \rightarrow \lambda$ $C \rightarrow aCA \quad BD \rightarrow bD \quad Ab \rightarrow bA \quad Bb \rightarrow bB \quad D \rightarrow \lambda$ $C \rightarrow bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad \begin{array}{ccc} AD \to aD & Aa \to aA & Ba \to aB & C \to \lambda \\ C \to aCA & BD \to bD & Ab \to bA & Bb \to bB & D \to \lambda \\ C \to bCB & \end{array}$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad {\color{blue}Ba} \to aB \quad C \to \lambda \\ C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda \\ C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad \begin{array}{ccc} AD \to aD & Aa \to aA & Ba \to aB & C \to \lambda \\ C \to aCA & BD \to bD & Ab \to bA & Bb \to bB & D \to \lambda \\ C \to bCB & \end{array}$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por $S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$ $C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$

derivación de abaaabaa

 $C \rightarrow bCB$

$$S \rightarrow CD \rightarrow aCAD \rightarrow abCBAD$$

$$\rightarrow abaCABAD \rightarrow abaaCAABAD \rightarrow abaaAABAD$$

$$\rightarrow abaaAABAD \rightarrow abaaAABD \rightarrow abaaAABD$$

$$\rightarrow abaaaAABD \rightarrow abaaaAABD \rightarrow abaaaAbAD$$

$$\rightarrow abaaabAAD \rightarrow abaaabAAD \rightarrow abaaabAAD$$

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \to CD \quad \begin{array}{ccc} AD \to aD & Aa \to aA & Ba \to aB & C \to \lambda \\ C \to aCA & BD \to bD & Ab \to bA & Bb \to bB & D \to \lambda \\ C \to bCB & \end{array}$

Gramática

Gramática para generar $\{ww:w\in\{a,b\}^*\}$ $G=(\{S,A,B,C,D\}\,,\{a,b\}\,,S,P)$, donde P está dado por

$$S \to CD$$
 $AD \to aD$ $Aa \to aA$ $Ba \to aB$ $C \to \lambda$ $C \to aCA$ $BD \to bD$ $Ab \to bA$ $Bb \to bB$ $D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww:w\in\{a,b\}^*\}$ $G=(\{S,A,B,C,D\}\,,\{a,b\}\,,S,P)$, donde P está dado por

$$S \to CD$$
 $AD \to aD$ $Aa \to aA$ $Ba \to aB$ $C \to \lambda$ $C \to aCA$ $BD \to bD$ $Ab \to bA$ $Bb \to bB$ $D \to \lambda$ $C \to bCB$

Gramática

Gramática para generar $\{ww:w\in\{a,b\}^*\}$ $G=(\{S,A,B,C,D\},\{a,b\},S,P)$, donde P está dado por

$$S \to CD \quad AD \to aD \quad Aa \to aA \quad Ba \to aB \quad C \to \lambda$$

$$C \to aCA \quad BD \to bD \quad Ab \to bA \quad Bb \to bB \quad D \to \lambda$$

$$C \to bCB$$

derivación de abaaabaa

S $\rightarrow CD$ $\rightarrow aCAD$ $\rightarrow abCBAD$ $\rightarrow abaCABAD$ $\rightarrow abaaCAABAD$ $\rightarrow abaaAABAD$ $\rightarrow abaaAABaD$ $\rightarrow abaaAAaBD$ $\rightarrow abaaAaABD$ $\rightarrow abaaaAABD$ $\rightarrow abaaaAAbD$ $\rightarrow abaaaAbAD$ $\rightarrow abaaabAAD$ $\rightarrow abaaabAaD$ $\rightarrow abaaabaAD$ $\rightarrow abaaabaaD$ $\rightarrow abaaabaa$

Jerarquía de Chomsky

GSR = Gram d ticus sin

Restrictiones - Tipo O

GDC = Gramaticas Dependientes

dul Contexto - Tipo 1

GIC = Gramaticas Independientes

del Contexto - Tipo 2

GR = Gramaticas Regulares
Tipo 3