STIC-ILL

From: Sent: T :

STIC-Biotech/ChemLib Friday, October 03, 2003 12:36 PM STIC-ILL FW: Reference

Subject:

----Original Message-----

Fr m:

Qazi, Sabiha

Sent:

Friday, October 03, 2003 12:34 PM STIC-Biotech/ChemLib

т:

Subject:

Reference

Please provide:

Schindler et al. (Biol. Neonate (1975), 27(3-4), 192-207).

Thank you.

Sabiha N. Qazi, Ph.D. Primary Examiner

Mailbox 2D19

Art Unit 1616

Room 3B07

(703) 305-3910

published so found to be quantities (8 otic fluid ster Since the dat discrepancies, in newborn uroids, three Δ

Materials
Urine from

Melsungen) for urine was stored and obtained fro Trivial nam (P-diol) = 5β-pre nanolone (Pa) 4,16-pregnandier nenedien-20-one 17α-hydroxyrog pregnenolone (I (16OH-P) = 16 3β,16α-dihydrox 3β,16α-dihydrox sten-17-one.

Reference s gas-liquid chrome tives: Pi (Ikaphal pharm); 160H-P

Radioactive
the various stero
purity of all the r
raphy prior to us
terone-7α-3 H, sp
1,2-3 H, spec. act
6.9 C/mM (Radio
(New England h
(Radiochemical
19.5 C/mM (Radi
52.8 mC/mM (Dr
Siiteri).

Determination spect polyethylene vial mixing 40 ml Pacactive internal sta

Biol. Neonate 27: 192-207 (1975)

Studies on Steroids in Urine of the Male Newborn

A.E. Schindler and J. Wuchter
Universitäts-Frauenklinik, Tübingen

Key Words. Urine of the newborn · Steroids · Chromatography · Hydrolysis

Abstract. Four different methods of isolation and purification were utilized to study steroids in urine of male newborns which was collected during the first 5 days of life. These methods included celite column, ion exchange column and thin-layer chromatography, solvolysis and enzyme hydrolysis with β-glucuronidase and aryl sulfatase. Procedural losses were evaluated by using radioactive internal standards. Final quantitation of each steroid was achieved by comparison of its chromatographic and quantitative behavior with the respective standard steroids on various gas-liquid chromatography systems, either as parent compound or as trimethylsilyl ether derivative. The following steroids were found in the amounts indicated: progesterone, 2.1 µg/l (pool I), 4.6 µg/l (pool III); pregnanediol, 625.0 μ g/l (pool IIa), 605.0 μ g/l (pool IIb glucuronide), 25.4 μ g/l (pool IIb sulfate), 4.2 μ g/l (pool IIb free), 729.0 μ g/l (pool III); 16α -hydroxyprogesterone, 713.0 μ g/l (pool III); 16α-hydroxypregnenolone, 14,000.0 µg/1 (pool III); 16α-hydroxydehydroepiandrosterone, 2,350.0 µg/l (pool III); 16-dehydroprogesterone, 155.0 µg/l (pool I), 21.2 µg/l (pool 11b glucuronide), 97.5 µg/l (pool 11b sulfate), 5.3 µg/l (pool 111); 16-dehydropregnenolone, 382.0 µg/1 (pool I), 1,380 µg/1 (pool II b glucuronide), 172.0 µg/1 (pool IIb sulfate), 174.0 µg/1 (pool III); 16-dehydropregnanolone, 8.3 µg/1 (pool I), 239.0 μg/l (pool IIb sulfate). Pregnenolone, pregnanolone, 17α-hydroxyprogesterone and 17a-hydroxypregnenolone could not be detected. The results support the concept that the steroid patterns of urine of the newborn and amniotic fluid are very similar and that the amniotic fluid steroid content is mainly dependent on fetal urinary steroid excretion. The data on Δ^{16} -C₂₁-steroids are discussed.

Introduction

Studies on amniotic fluid have demonstrated a high concentration of 16-hydroxylated steroids compared with the respective precursors (1, 2). In cord blood, however, these precursors are present in rather large quantities (3-5). This has been confirmed by our own investigations (6, 7). Newborn urine data

orn

/ · Hydrolysis

on were utilized to study first 5 days of life. These in-layer chromatography, ilfatase. Procedural losses antitation of each steroid itative behavior with the systems, either as parent teroids were found in the (pool III); pregnanediol, μg/l (pool II b sulfate), progesterone, 713.0 µg/1); 16\a-hydroxydehydroine, 155.0 μg/l (pool l), 5.3 µg/1 (pool III); 16-deglucuronide), 172.0 µg/1 olone, 8.3 µg/l (pool I), hydroxyprogesterone and port the concept that the very similar and that the ary steroid excretion. The

high concentration of ecursors (1, 2). In cord large quantities (3-5).

1). Newborn urine data

published so far indicate that, as in amniotic fluid, 16-hydroxylated steroids are found to be present in high concentrations and the precursors in only minute quantities (8–10). Based upon these results, we have postulated that the amniotic fluid steroid pattern is mainly dependent on fetal urinary excretion (2, 6). Since the data published on newborn urine steroid concentrations show some discrepancies, we have isolated, identified and quantitated a number of steroids in newborn urine using different methodological approaches. Among these steroids, three Δ^{16} -C₂₁-steroids will be described.

Materials and Methods

Urine from 50 normal male newborns was collected overnight in plastic bags (Braun, Melsungen) for the first 5 days of life. There was no contamination of urine by feces. The urine was stored frozen at -20 °C until processed. All solvents used were of reagent grade and obtained from Merck (Darmstadt), except for isooctane (Fluka).

Trivial names and abbreviations. Progesterone (P) = 4-pregnen-3,20-dione; pregnanediol (P-diol) = 5β -pregnan-3 α ,20 α -diol; pregnenolone (Pe) = 3β -hydroxy-5-pregnen-20-one; pregnanolone (Pa) = 3α -hydroxy-5 β -pregnan-20-one; 16-dehydroprogesterone (16-DP) = 4,16-pregnandien-3,20-dione; 16-dehydropregnenolone (16-DPe) = 3β -hydroxy-5,16-pregnenedien-20-one; 16-dehydropregnanolone (16-DPa) = 3β -hydroxy-16,(5β)-pregnen-20-one; 17 α -hydroxyprogesterone (170H-P) = 17α -hydroxy-4-pregnen-3,20-dione; 17 α -hydroxypregnenolone (170H-Pe) = 3β ,17 α -dihydroxy-5-pregnen-20-one; 16 α -hydroxypregnenolone (160H-Pe) = 3β ,16 α -dihydroxy-5-pregnen-20-one; 16 α -hydroxy-dehydroxy-5-pregnen-20-one; 16 α -hydroxy-dehydroxy-5-androsten-17-one; dehydroxy-5-androsterone (D) = 3β -hydroxy-5-androsten-17-one; dehydroperandrosterone (D) = 3β -hydroxy-5-androsten-17-one;

Reference steroids. The purity of the following reference steroids was evaluated by gas-liquid chromatography (GLC) analysis, if possible, as trimethylsilyl ether (TMSi) derivatives: Pi (Ikapharm); Pa (Mann Research Laboratory); Pe, P-diol, 170H-P, 170H-Pe (Ikapharm); 160H-P, 160H-Pe, 160H-D, 16-DPe, 16-DPe, 16-DPa (Steraloids).

Radioactive steroids. In order to correct for procedural losses and to trace and identify the various steroids throughout the extensive isolation and purification procedures, the purity of all the radioactive steroids was evaluated by ceitte column or thin-layer chromatography prior to use as internal standards. The following labelled steroids were used: Progesterone-7α-3H, spec. act. 9.6 C/mM (Radiochemical Centre, Amersham); pregnanolone-1,2-3H, spec. act. 32.7 C/mM (New England Nuclear Corp.); pregnenolone-7α-3H, spec. act. 6.9 C/mM (Radiochemical Centre, Amersham); pregnanodiol-1,2-3H, spec. act. 50.3 C/mM (New England Nuclear Corp.); 17α-hydroxyprogesterone-7α-3H, spec. act. 14.8 C/mM (Radiochemical Centre, Amersham); 17α-hydroxyprogenenolone-7α-3H, spec. act. 19.6 C/mM (Radiochemical Centre, Amersham); 16α-hydroxyprogesterone-4-14 C, spec. act. 52.8 mC/mM (Dr. Sitteri), 16α-hydroxypregnenolone-4-14 C, spec. act. 52.4 mC/mM (Dr. Sitteri).

Determination of radioactivity. The radioactivity was measured in Packard liquid scintillation spectrometers model 3380, 2002 and 314 EX. Counting was carried out in polyethylene vials (NEN Plastic LSC Vial NeF-938). Liquid scintillator was prepared by mixing 40 ml Packard Permafluor 25 x with 1 liter of reagent grade toluene. Using radioactive internal standards, procedural losses were corrected by counting an aliquot prior to

Table I. Solvent systems for chromatography

Chromatography system	Composition	Ratio	Number of develop- ments
Celite column			
C-1	ethylene glycol:isooctane: ethylene acetate (gradient)		
Thin-layer (Silica gel	G)		
T-I	ethyl acetate	_	1
T-2	ethyl acetate:benzene	9:1	2
T-3	ethyl acetate: cyclohexane	6:4	1
T-4	benzene:ethyl acetate	2:1	1
T-5	benzene:ethyl acetate	9:1	1
T-6	chloroform	-	2
T-7	chloroform	-	3
T-8	chloroform:acetone	8:2	1
T-9	chloroform:acetone	8:2	2
T-10	chloroform:acetone	9:1	2
T-11	chloroform:ethanol	9:1	2
T-12	chloroform:ethyl acetate	13:1	1
T-13	chloroform:ethyl acetate	13:1	2
T-14	chloroform:benzene	8:2	1
T-15	chloroform:benzene	8:2	3
T-16	chloroform:dioxane	94:6	1
T-17	cyclohexane:ethyl acetate	1:1	1
T-18	cyclohexane:ethyl acetate	6:4	1
T-19	methylene chloride:ether	96:4	1
T-20	methylene chloride:ether	96:4	2
T-21	methylene chloride:ether	9:1	1
T-22	methylene chloride:acetone	4:1	1
T-23	methylene chloride:dioxane	19:1	1

quantitation. To localize the radioactivity coming off the columns, 1/50 of every second fraction was counted. On thin-layer plates radioactivity was located with the thin-layer scanner Berthold LB 2723.

Chromatography. Celite column chromatography was carried out as described by Silteri (11) and detailed recently by Schindler (2). Amberilte column chromatography was performed according to Bradlow (12) and Shackleton et al. (13). Plates for thin-layer chromatography were prepared as previously described (14). The solvent systems used for chromatography are summarized in table I.

Gas-liquid chromatography. A Packard gas chromatograph 7401/564 and a Hewlett Packard gas chromatograph 5750 were used for GLC. The columns were coiled with a length of 180 cm and an internal diameter of 4 mm. The support material consisted of Gas-Chrom Q and was coated with 2-3 % XE-60, QF-1, OV-1, OV-3, OV-7 or OV-17. The

Studies of

Experime

Three ser The second applied is ind It is imp pools I and II

Table II. Outlin

Pool I 2,850 ml

Extraction according to Tanner and Gup Enzyme hydroly

Additi

carrier gas con 230 °C, inject cording to Adl described befo carried out as d

- 1 9:1 2 6:4 1 2:1 1 9:1 1 - 2 - 3 8:2 1 8:2 2 9:1 2 9:1 2 13:1 1 13:1 2 8:2 3 94:6 1 1:1 1 6:4 1 96:4 1 96:4 2 9:1 1 4:1 1 19:1 1	Ratio	Number of develop- ments
	6:4 2:1 9:1 - 8:2 8:2 9:1 9:1 13:1 13:1 8:2 8:2 94:6 1:1 6:4 96:4 96:4 96:4 9:1 4:1	2 1 1 1 2 3 1 2 2 2 1 3 1 2 1 2 1 3 1 1 2 1 1 1 1

amns, 1/so of every second located with the thin-layer

urried out as described by plumn chromatography was (13). Plates for thin-layer he solvent systems used for

h 7401/564 and a Hewlett ns were coiled with a length material consisted of Gas-)V-3, OV-7 or OV-17. The carrier gas consisted of nitrogen. The operating temperatures were as follows: column 210-230 °C, injector 240-260 °C, dedector 240-250 °C. Quantitation was carried out according to Adlercreutz and Luukkainen (15). TMSi derivative formation was performed as described before (2). For final identification gas chromatograph — mass spectrometry was carried out as described elsewhere (16).

Experimental and Results

Three separate pools of unne from newborns were used in this investigation. The second pool was subdivided into two parts. An outline of the procedures applied is indicated in table II.

It is important to note that the strong acid and alkaline conditions used on pools I and II have been completely avoided when processing pool III.

Table II. Outline of the investigation

Pool I 2,850 ml	Pool II 1,650 ml		Pool III 2,600 ml
	pool IIa 400 ml	pool II b 1,250 ml	_
Extraction according to Tanner and Gupta (17)		(1) Extraction of free steroids (2) β-Glucuronidase	
Enzyme hydrolysis	Enzyme hydrolysis	enzyme hydrolysis (3) Solvolysis	Enzyme hydrolysis
Sepa	tration of the phenolic s	teroids	
	Celite column chroma	ntography	
	 Multiple thin-layer ch	romatography	
	Removal of aliquots t	o correct for procedu	ral losses
	Gas-liquid chromatog	raphy	
	Gas-liquid chromatog	raphy – mass spectror	metry

P	Pa Pe	17OH-P	170H-Pe
T-8	T-7		
T-12	T-4	T-1	3
T-17		T-1	
T-21	1	T-1	6
T-19		T-21	T-21

Processing and Results of Pool I

For each 100 ml of newborn urine, 50 g of ammonium sulfate were added. The mixture was then extracted with ether/isopropanol 3:1 and further processed as described (17). The residue was dissolved in 0.2 M acetate buffer, pH 5.2 (18) and incubated with β-glucuronidase/aryl sulfatase (Boehringer, Mannheim). At first, 1 million Fishman units β -glucuronidase and 500,000 Whitehead units aryl sulfatase were added and the incubation carried out at 37 °C for 48 h. A second, 24-hour incubation followed after addition of the same amounts of enzymes. The extraction was performed with ethyl acetate after the addition of the radioactively labelled internal standards. Then separation of the phenolic steroids was accomplished with 1 N sodium hydroxide. The neutral residue was chromatographed on a 40-g celite column with system C-1. This gradient elution chromatography yielded three fractions. The first contained P, the second contained Pa and Pe, and the third zone contained the radioactivity of 170H-P and 170H-Pe. These fractions were further purified by thin-layer chromatography as shown in table III. Identification and quantitation were carried out by GLC on XE-60, QF-1, OV-3, OV-7 and OV-17 columns. Except for P, TMSi derivatives were made: The total amount of P measured was 2.24 µg with a recovery of 37.2 %. Therefore, the concentration of P in pool I was calculated to be 2.1 μ g/1 (table VI). Verification of identity was obtained by GLC - mass spectrometry comparison (16). Measurable amounts of Pa, Pe, 170H-P and 170H-Pe were not found. Taking the recovery and sensitivity of the procedure into account, it was calculated that the concentration of Pa and Pe had to be below 0.3 μ g/l, and for 170H-P and 170H-Pe less than 5 μ g/l.

Processing and Results of Pool IIa

The newborn urine was adjusted with conc. HCl to pH 5.2 and buffered with 0.1 vol of $0.2\,M$ acetate buffer (18). β -Glucuronidase/aryl sulfatase (Boehringer, Mannheim) was added to yield a concentration of 1,500 Fishman units β -glucuronidase and 750 Whitehead units aryl sulfatase per ml of urine. After

Studies on St

Table IV. Th

T-18 T-19

48 h of incubat was further ind extraction was residue was chi P-diol fraction T-19 and T-16 found on XE-6 was determined trometry has be

Processing a
The newbo
tracted with ett
0.2 M acetate b
incubated at 3
Heidelberg), the
same amounts
submitted to so
Pa, Pe, P-diol, I
column chroma
thin-layer chrom

Similar to cording to the of the method, 170H-P and 17 free fraction a obtained and si result. P-diol w with reference OV-7 and OV-1

Table IV. Thin-layer chromatography of steroids from pool IIb

P	Pa Pe	P-diol	17OH-P	17OH-Pe
T-18 T-19	T-23 T-7 T-4	T-21 T-12	T-9	T-19 T-17

T-8 T-13 T-10 T-16

ım sulfate were added. 3:1 and further pro-0.2 M acetate buffer, sulfatase (Boehringer, onidase and 500,000 ibation carried out at after addition of the ed with ethyl acetate andards. Then separaodium hydroxide. The umn with system C-1. ctions. The first cond zone contained the ere further purified by ation and quantitation and OV-17 columns. unt of P measured was ntration of P in pool I entity was obtained by e amounts of Pa, Pe, y and sensitivity of the intration of Pa and Pe s than $5 \mu g/l$.

pH 5.2 and buffered e/aryl sulfatase (Boehf 1,500 Fishman units per ml of urine. After 48 h of incubation, the same amounts of enzymes were added and the mixture was further incubated for 24 h. Tritium-labelled P-diol was then added and extraction was done with ethyl acetate. After phenolic extraction, the neutral residue was chromatographed on a 40-g celite column using system C-1. The P-diol fraction was then submitted to thin-layer chromatography in systems T-9, T-19 and T-16. Identical retention times for the P-diol TMSi derivative were found on XE-60, QF-1, OV-3 and OV-7 columns. The concentration of P-diol was determined to be 625 μ g/l (table VI). Identification by GLC — mass spectrometry has been described elsewhere (16).

Processing and Results of Pool II b

The newborn urine was brought to pH 8, and the free steroids were extracted with ether. The extract was adjusted to pH 5.2 with HCl and 0.1 vol of 0.2 M acetate buffer (pH 5.2) added (18). During the first 48 h the mixture was incubated at 37 °C with 500,000 Fishman units of β -glucuronidase (Serva, Heidelberg), then the incubation continued for 24 h after the addition of the same amounts of enzyme. Following an ether extraction, the water phase was submitted to solvolysis (19). As radioactive internal standards tritium-labelled P, Pa, Pe, P-diol, 170H-P and 170H-Pe were added to the three residues and celite column chromatography with system C-1 carried out separately followed by thin-layer chromatography as shown in table IV.

Similar to pool I, Pa, Pe, 170H-P and 170H-Pe were not detectable. According to the recovery of the radioactive internal standards and the sensitivity of the method, the concentration of Pa and Pe had to be below $2 \mu g/l$, and for 170H-P and 170H-Pe below $5 \mu g/l$. This refers to the glucuronide, sulfate and free fraction as well. Also P was not measurable. A recovery of 10.5% was obtained and since the pool size was smaller than before, this could explain the result. P-diol was measured in the free, glucuronide and sulfate fraction. Identity with reference steroid was found as TMSi derivative on XE-60, QF-1, OV-3, OV-7 and OV-17 columns. The quantitative results are listed in table VI. GLC —

50-g celite co fractions were

Since union the same throughout the and 16-DPe. I and OV-7 coli quantitative of published else not be measur of Pa and Pe 1.5 µg/l.

Table VI. S

Steroid/po

P/1 P/III P-dioi/IIa P-diol/IIb P-diol/IIb P-diol/IIbf P-dio1/III 160H-P/III 16OH-Pe/11 160H-D/III 16-DP/I 16-DP/IIb 16-DP/IIb 16-DP/III 16-DPe/I 16-DPe/II! 16-DPe/IIb 16-DPe/III 16-DPa/I 16-DPa/IIb 16-DPa/IIb

16-DPa/III

mass spectrometry agreement was established (16). The GLC analysis of the P and Pa/Pe fractions obtained from pools I and II b revealed several peaks with slightly different retention times compared with the reference steroids. GLC — mass spectrometric analysis demonstrated the presence of 16-DP, 16-DPa and 16-DPe (16). It is known that formation of such steroids can be acid-catalyzed (20). Therefore, pool III was collected and any strong acid or alkaline conditions were avoided during the isolation and identification procedures.

Processing and Results of Pool III

The first step of the purification procedure was by means of an Amberlite XAD-2 ion exchange column according to Bradlow (12). The glass column was 120 cm long and had an internal diameter of 15 cm. The conical outlet was regulated by a stopcock. Above a thick glass wool plug, 3,000 g Amberlite XAD-2 (Serva, Heidelberg) were suspended in distilled water and the surface stabilized with a layer of glass wool. The 2.6 liters of newborn urine were allowed to percolate slowly through this column. The column was washed with 10 liters of distilled water until the effluent was nearly colorless. Then the steroids were eluted with 12 liters of methanol. After evaporation of the methanol the residue was resuspended with 0.2 M acetate buffer pH 5.2 (18) and incubated for 48 h at 37 °C with 100,000 Fishman units β -glucuronidase and 50,000 Whitehead units aryl sulfatase. The same amounts of enzymes were again added and the incubation continued further for 24 h. Before extraction with ethyl acetate, measured amounts of radioactively labelled P, Pa, Pe, P-diol, 17OH-Pe, 16OH-P and 16OH-Pe were added as internal standards. A

Table V. Thin-layer chromatography of steroids from pool III

				•		
P	Pa Pe	P-diol	170H-P	17ОН-Ре	16OH-P	16OH-Pe 16OH-D
T-18	T-23		T-8		T-1	T-1
T-23	T-18		T-16		T-5	T-5
T-12	T-4			1	T-2	T-2
	T-8	T-9	.1	-7	T-11	
	T-22	T-19	7	-14	T-20	
	T-18	T-17	7	-9	T-18	
	T-21	T-13	7	·-3	T-21	
	T-16	T-21	Г	`-21	T-16	
		T-16	T	-16		
				J 		
			T-4	T-4		
			T-16	T-16		
			T-15	T-15		

^{- =} Measur
Losses on

² Because of

Recovery

GLC analysis of the P aled several peaks with rence steroids. GLC — of 16-DP, 16-DPa and s can be acid-catalyzed 1 or alkaline conditions dures.

means of an Amberlite . The glass column was The conical outlet was lug, 3,000 g Amberlite water and the surface of newborn urine were plumn was washed with rly colorless. Then the vaporation of the methouffer pH 5.2 (18) and its β -glucuronidase and of enzymes were again Before extraction with illed P, Pa, Pe, P-diol, is internal standards. A

ίI

16OH-Pe 16OH-D
T-1
T-5
T-2

50-g celite column with system C-1 was used for the first separation step. Five fractions were collected and further purified as indicated in table V.

Since unlabelled reference steroids were chromatographed simultaneously on the same plate each time, it is known that P and 16-DP migrated similarly throughout these extensive purifications. The same was found for Pa, Pe, 16-DPa and 16-DPe. Identity for all these steroids was obtained by GLC on QF-1, OV-3 and OV-7 columns. Except for P and 16-DP, TMSi derivatives were formed. The quantitative results are listed in table VI. GLC — mass spectrometric data are published elsewhere (16). Again in this pool Pa, Pe, 170H-P and 170H-Pe could not be measured. Using the same criteria as previously stated, the concentration of Pa and Pe had to be below $0.8 \,\mu\text{g/l}$, and for 170H-P and 170H-Pe below $1.5 \,\mu\text{g/l}$.

Table VI. Steroid concentration in urine of newborns

Steroid/pool	μ g found	Recovery, %	μg/liter
P/I	2.2	37.2	2.1
P/III	1.9	15.91	4.6
P-diol/II a	250.0	38.7	625.0
P-diol/II b glucuronide	490.0	65.0	605.0
P-diol/IIb sulfate	12.7	40.0	25.4
P-diol/11b free	2.6	49.8	4.2
P-diol/III	388.0	20.5	729.0
16OH-P/III	675.0	36.4	713.0
16OH-Pe/III	705.0	1.92	14,000.0
160H-D/III	768.0	12.5	2,350.0
16-DP/I	136.0	37.2 ³	155.0
16-DP/II b glucuronide	11.4	43.0 ³	21.2
16-DP/IIb sulfate	37.5	30.4 ³	97.5
16-DP/III	5.2	42.23	5.3
16-DPc/I	876.0	80.63	382.0
16-DPe/II b glucuronide	1,260.0	73.0³	1,380.0
16-DPe/IIb sulfate	58.0	26.5³	172.0
16-DPe/III	179.0	39.0³	174.0
16-DPa/I	18.5	80.63	8.3
16-DPa/IIb glucuronide	_		
16-DPa/IIb sulfate	. 79.0	26.5 ³	239.0
16-DPa/III	-		

^{- =} Measurable amounts were not found.

¹ Losses on the Amberlite ion exchange column are included.

² Because of the huge quantity of steroid present, only a small fraction was purified.

³ Recovery data are based upon the results of the corresponding nondehydrated steroids.

Discussion

The placenta is the main source of P within the feto-placental unit (21-23). P has been isolated and identified from amniotic fluid (1, 2). The concentration was found to be between 40 and 170 µg/l (1, 2, 24, 25). Recently, progestin levels measured by a competitive protein-binding technique were reported in amniotic fluid throughout pregnancy (26). We determined the P concentration in cord plasma and found an average concentration of $132 \,\mu\text{g}/100 \,\text{ml}$ (6, 7). Lower levels have been published previously (27-30), and an arteriovenous difference of cord plasma P concentrations has been demonstrated (28, 29, 31). We have now identified and quantitated P in newborn urine pools and determined a concentration between 2.1 and 4.6 ug/l (table VI). These levels are considerably lower than have been described for the first and second days of life by Lauritzen and Schaper (32). This same group also reported that on the third day, P could no longer be detected in most of the urine samples. Since the pools studied by us were collected from day 1 through 5 of life, a dilution effect has to be taken into account. However, part of the high concentration in the study by Lauritzen and Schaper (32) could have been caused by 16-DP as we shall demonstrate later. The lower concentration of P in newborn urine than in amniotic fluid is explained by the fact that the newborn is removed from the placenta, the main source of P biosynthesis. This finding also agrees with our concept that the amniotic fluid steroid pattern is mainly determined by fetal urinary steroid excretion. Since high concentrations of P are present in the fetal circulation, the excretion of this steroid will also be increased in fetal urine. Only trace amounts of P were found in meconium (33). This fact and our data on newborn urine allow us to postulate that P is not a major excretory product.

Pe has been found in the fetal circulation in large quantities (3, 5-7), and the concentration is higher in the umbilical artery than in the vein (5). This indicates fetal Pe production. Meconium and feces from infants throughout the first few weeks of life also contain relatively large amounts of Pe (33, 34). In spite of this, no Pe could be measured in newborn urine by us. The present investigation validates the findings in amniotic fluid in which we had been unable to detect Pe (1, 2).

A similar pattern has been established for D. Considerable quantities of this steroid are present in cord blood (3, 4, 6, 7, 30, 35-37). In amniotic fluid, however, only little was found (1, 2), and the same has also been confirmed for newborn urine (9).

Pa has been determined in newborn urine and measured in rather high quantities (38). We were unable to detect this steroid in three large pools of newborn urine which were collected during the first 5 days of life. In spite of extensive purifications (table V), the Pe/Pa-fraction revealed, after TMSi derivative formation and GLC, a number of compounds (fig. 1). Two of these have

been identified obtained by oth Neither 3α - no with any of the that Pa can at n with Pe is obvious

Early studie after considerable in newborn uring newborn uring that fractional has sulfatase) on the (table VI) and the amounts of enziamounts of P-d found. We deter >-placental unit (21-23). [1, 2). The concentration 25). Recently, progestin anique were reported in ined the P concentration of 132 µg/100 ml (6, 7). i), and an arteriovenous monstrated (28, 29, 31). n urine pools and deterble VI). These levels are st and second days of life eported that on the third samples. Since the pools life, a dilution effect has oncentration in the study ed by 16-DP as we shall newborn urine than in orn is removed from the ling also agrees with our inly determined by fetal P are present in the fetal increased in fetal urine.). This fact and our data major excretory product. quantities (3, 5-7), and an in the vein (5). This n infants throughout the iounts of Pe (33, 34). In irine by us. The present i which we had been un-

detable quantities of this -37). In amniotic fluid, s also been confirmed for

measured in rather high 1 in three large pools of 3 days of life. In spite of vealed, after TMSi derivig, 1). Two of these have

Fig. 1. Gas chromatogram of the Pe/Pa fraction of pool II b sulfate on a column packed with Gas-Chrom Q coated with 3 % QF-1. — — — = Standard steroids.

been identified (16-DPe, 16-DPa). This fact could explain the high values for Pa obtained by others (38) using less specific means of separation and quantitation. Neither 3α - nor 3β -hydroxy- 5β -pregnan-20-one had identical retention times with any of the other peaks. Therefore, from our studies we have to conclude that Pa can at most be present in small quantities in newborn urine. A similarity with Pe is obvious from our results.

Early studies on P-diol in newborn urine failed to detect this steroid even after considerable load with P (39, 40). Later this metabolite has been measured in newborn urine by several groups (38, 40, 41). Our studies with the pooled newborn urine reveal a P-diol concentration of $625-729~\mu g/l$. It is noteworthy that fractional hydrolysis and combined enzyme hydrolysis (β -glucuronidase/aryl sulfatase) on the subdivided urine pool II yielded nearly identical results (table VI) and that the result obtained with pool III is also similar. The various amounts of enzymes used appear to have been sufficient since nearly equal amounts of P-diol with the different methodological approaches have been found. We determined that less than 1 % is present in the free fraction, about

3 % in the sulfate fraction, and 96 % were measured in the glucuronide fraction. For comparison, the glucuronide of P-diol seems to be the only conjugate present in the urine of pregnant women (42). In amniotic fluid, P-diol glucuronide appears to be the predominate conjugate (2). P-diol has also been measured in cord blood (6, 7, 29, 43). It exists there as sulfate and glucuronide in nearly equal concentrations (3), and in meconium mainly as sulfate (44). A similar pattern as we have found for the free and conjugated moieties of P-diol in newborn urine has been reported for estriol in fetal urine and amniotic fluid (45). This again confirms our findings that the steroid patterns in amniotic fluid and newborn urine are nearly equal and agree with recent data reported for corticosteroids (46). Therefore, the conclusion seems to be on firm grounds that toward the end of pregnancy the steroid content of amniotic fluid is mainly determined by fetal urinary steroid excretion. Since it was shown that there is a decrease of P-diol concentration in newborn urine for the first 5 days of life (38, 41), we compared our results with studies where urine was examined over the same period of time. This reveals a close agreement of the data from the literature and our study (38, 41).

Within the feto-placental unit, 170H-P and 170H-Pe are synthesized by the fetus. This has been shown by in vitro and in vivo experiments (47, 48). Also small amounts of 170H-Pe and 170H-P have been isolated from hydatidiform mole tissue in vitro (49), and 170H-Pe has been shown to be synthesized by the normal placenta (21). Measurements of 170H-P in cord venous and arterial plasma support these data (28). Similar to adult plasma (50), small amounts of these steroids are present in the fetal circulation (27, 28). This may explain the inability to detect 170H-P and 170H-Pe in newborn urine.

A very low concentration of 16OH-P has been described in cord blood (27); we have confirmed this (51). However, we did isolate relatively large amounts of 16OH-P from newborn urine (table VI). This also agrees with our own results on amniotic fluid in which a substantial quantity of this steroid was found (55). Again, the amounts of 16OH-P found in newborn urine correlate with the concept that amniotic fluid steroid content is determined by fetal urinary excretion and that the steroid patterns of amniotic fluid and newborn urine are similar. This is also borne out by our findings on 16OH-Pe and 16OH-D in this study. Both steroids were measured in large quantities (table VI). Previous studies have already shown this (8, 10, 52-54, 56). The same is true for amniotic fluid (1, 2). The concentration of 16OH-P in newborn urine is higher than that of 16OH-D (table VI). This agrees with results of others (52, 53, 56). In studies by Shackleton et al. (9) it was demonstrated that in the first 2-3 days of life, 16OH-D is higher in newborn urine. Later in life the reverse is true. Since our pools contained urine up to the 5th day of life, these data agree with our findings.

10 years ago, Francis et al. (58) isolated 16-DPe from meconium. It had been isolated before from equine urine (59). Recently, it was again described in

meconium and fec Trace amounts has utilized as precurso

16-DP has been It was also found placental unit (66 (16-DPa) has, to 3β-hydroxy-5α-pre been isolated (59, rally occurring me if this is true for are obtained by dence for the fact lites in newborn formed from 160 and free moieties? of the fetus, end methods used. W under most caref quantitated. Ther metabolites and t though recent dat (57), 16-DPa was this steroid might

We established different columns mass spectrometridentification of microbial metab remains to be excapable to form A

Acknowledg

The accurate
Tübingen are great
generous gift of se
contributed with s
Melsungen, for the
The study wa

Volkswagenwerk'.

a the glucuronide fraction. e the only conjugate preic fluid, P-diol glucuronide has also been measured in and glucuronide in nearly as sulfate (44). A similar ited moieties of P-diol in urine and amniotic fluid patterns in amniotic fluid recent data reported for to be on firm grounds that amniotic fluid is mainly t was shown that there is a the first 5 days of life (38, ne was examined over the if the data from the litera-

l-Pe are synthesized by the xperiments (47, 48). Also solated from hydatidiform n to be synthesized by the cord venous and arterial na (50), small amounts of 28). This may explain the rine.

scribed in cord blood (27); relatively large amounts of es with our own results on is steroid was found (55). ne correlate with the conby fetal urinary excretion newborn urine are similar. Ind 160H-D in this study. VI). Previous studies have e for amniotic fluid (1, 2), gher than that of 160H-D 56). In studies by Shackle-3 days of life, 160H-D is true. Since our pools conwith our findings.

'e from meconium. It had y, it was again described in

meconium and feces (34, 60, 74, 75) and isolated from human fetal bile (76). Trace amounts have been described in newborn urine (9) and it seems to be utilized as precursor in steroid biosynthesis (61).

16-DP has been described as a metabolite of 16OH-P in vivo in humans (63). It was also found in porcine ovarian tissue (64, 65) and in studies of the fetoplacental unit (66, 67). The third Δ^{16} -C₂₁-steroid identified in our studies (16-DPa) has, to our knowledge, not been described before, but the isomers, <3β-hydroxy-5α-pregn-16-en-20-one and 3α-hydroxy-5β-pregn-16-en-20-one, have been isolated (59, 72). It seems well established that Δ^{16} -C₁₉-steroids are naturally occurring metabolites in animal and man (68-70, 73), but it is not certain if this is true for Δ^{16} - C_{21} -steroids. We have demonstrated that Δ^{16} - C_{21} -steroids are obtained by procedural manipulation. However, our studies also give evidence for the fact that at least 16-DP and 16-DPe do occur as natural metabolites in newborn urine (table VI). It has been clearly shown that 16-DPe is formed from 160H-Pe by acid hydrolysis (71). This occurs with both the sulfate and free moieties. Since 16-hydroxylated steroids are major metabolic products of the fetus, enough substrate is present to form Δ^{16} -C₂₁-steroids by the methods used. We could demonstrate this by our study (table VI). But even under most careful handling (pool III), 16-DP and 16-DPe were isolated and quantitated. Therefore, we have to conclude that they are naturally occurring metabolites and that our results confirm previous findings (9, 58, 66, 67). Although recent data on biosynthesis of 16-DPe in fetal liver strengthen this point (57), 16-DPa was only found when strong acid conditions were used. Therefore this steroid might not be a naturally occurring metabolite.

We established the identity of these compounds by GLC on a number of different columns in part after TMSi derivative formation as well as by GLC — mass spectrometry (16). It is most likely that other isomers are present, but identification of the other GLC peaks (fig. 1) is not completed so far. Since microbial metabolism of Δ^{16} -C₂₁-steroids has been demonstrated (62), it remains to be evaluated whether intestinal microorganisms of the newborn are capable to form Δ^{16} -C₂₁-steroids.

Acknowledgement

The accurate urine collections by the nursing staff of the Universitäts-Frauenklinik Tübingen are greatly appreciated. We wish to thank Prof. Dr. Siiteri, Dallas, Tex., for the generous gift of some of the radioactive steroids used in this investigation. Miss I. Sellin contributed with skillful technical assistance. We express our gratitude to Messrs. Braun, Melsungen, for the supply of urine-collecting bags.

The study was supported in part by 'Deutsche Forschungsgemeinschaft' and 'Stiftung Volkswagenwerk'.

204

Studies on

- 21 Diczfalusy unit. Sym
- 22 Hellig, H., cental che humans, J
- 23 Little, B.; R.H.: Pre (1971).
- 24 Lurie, A.C maintenan
- 25 Wiest, W.d. women by
- 26 Younglai, length of g
- 27 Zander, J. lichem Pla
- 28 Runnebau progestero (1962).
- 29 Craft, I.; pregnaned (1969).
 - 30 Huhtanien sterois in l
- 31 Hagemana progestero
- 32 Lauritzen, und -208
- 33 Kinsella, l Metab. 32
- 34 Gustafssoi Acta endo
- 35 France, J. 29: 138-
- 36 Lefèbvre, androster
- 37 France, J. and pregn 17: 697-
- 38 Lauritzen, im Neuge Gynaek. 2
- 39 Zander, J Wschr. 31
- 40 Roby, C. o newborn
- 41 Ferris, B. infants. A
- 42 *Clarke, A* fluid. J. E

References

- 1 Schindler, A.E. and Siiteri, P.K.: Isolation and quantitation of steroids from normal human amniotic fluid. J. clin. Endocr. Metab. 28: 1189-1198 (1968).
- 2 Schindler, A.E.: Steroide im Fruchtwasser. Adv. Obstet. Gynacc., vol. 46, pp. 1-89 (Karger, Base! 1972).
- 3 Eberlein, W.R.: Steroids and sterols in umbilical cord blood. J. clin. Endocr. Metab. 25: 1101-1118 (1965).
- 4 Easterling, W.E.; Simmer, H.H.; Dignam, W.J.; Frankland, M.V., and Naftolin, F.: Neutral C₁₉-steroids and steroid sulfates in human pregnancy. II. Dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone and 16α-hydroxydehydroepiandrosterone sulfate in maternal and fetal blood of pregnancies with anencephalic and normal fetuses. Steroids 8: 157-178 (1966).
 - 5 Scommegna, A. and Bieniarz, J.: Measurement of pregnenolone sulfate after solvolysis in human pregnancy plasma. J. clin. Endocr. Metab. 33: 787-792 (1971).
 - 6 Schindler, A.E.; Friedrich, E.; Barth, R.; Sparke, H., and Wuchter, J.: Steroid profiles in amniotic fluid, cord plasma and newborn urine; in Scholler Application of hormone assays in pregnancy, pp. 603-613 (Sepe, Paris 1974).
 - 7 Schindler, A.E. and Sparke, H.: A method for the quantitation of steroids in umbilical cord plasma. Endocrinologie experimentalis (in press).
 - 8 Shackleton, C.H.L. and Mitchell, F.L.: The measurement of 3β-hydroxy-Δ³-steroids in human fetal blood, amniotic fluid, infant urine and adult urine. Steroids 10: 359-385 (1967).
- Shackleton, C.H.L.; Gustafsson, J. A., and Sjövall, J.S.: Steroids in newborns and infants. Identification of steroids in urine from newborn infants. Steroids 17: 265-280 (1971).
- 10 Horning, M.G.; Hung, A.; Hill, R.M., and Horning, E.C.: Variations in urinary steroid profiles after birth. Clin. Chim. Acta 34: 261-268 (1971).
- 31 Siiteri, P.K.: The isolation of urinary estrogens and determination of their specific activities following the administration of radioactive precursors to humans. Steroids 2: 762-772 (1963).
- 12 Bradlow, H.L.: Extraction of steroid conjugates with a neutral resin. Steroids 11: 265-272 (1968).
- 13 Shackleton, C.H.L.; Sjövall, J., and Wisen, O.: A simple method for the extraction of steroids from urine. Clin. Chim. Acta 27: 354-356 (1970).
- 14 Schindler, A.E.; Ratanasopa, V.; Lee, T.Y. and Herrmann, W.L.: Determination of steroids by gas-liquid chromatography. II. The overnight excretion of estriol as a means of evaluating ovarian function. Gynaecologia 164: 55-63 (1967).
- (15 Addercreutz, H. and Luukkainen, T.: Determination of urinary estrogens by gas chromatography; in Lipsett Gas chromatography of steroids in biological fluids, pp. 215-228 (Plenum Press, New York 1965).
- (16 Schindler, A.E.; Wuchter, J.; Hoppen, H.-O., and Siekmann, L.: Steroids in newborn urine. J. clin. Endocr. Metab. 39: 334-339 (1974).
- 17 Tanner, J.M. and Gupta, D.: A longitudinal study of the urinary excretion of individual steroids in children from 8-12 years old. J. Endocr. 41: 139-156 (1968).
- 18 Henry, R.J.: Clinical biochemistry (Harper & Row, New York 1966).
- 19 Burstein, S. and Liebermann, S.: Hydrolysis of ketosteroidhydrogen-sulfates by solvolysis procedures. J. biol. Chem. 233: 331-335 (1968).
- 20 Dorfmann, R.I. and Ungar, F.: in Dorfmann and Ungar Metabolism of steroid hormones, p. 59 (Academic Press, New York 1965).

ion of steroids from normal 198 (1968).

Gynaec., vol. 46, pp. 1-89

ood. J. clin. Endocr. Metab.

nd, M.V., and Naftolin, F.: ney. II. Dehydroepiandrostex-hydroxydehydroepiandrosnith anencephalic and normal

nolone sulfate after solvolysis 17-792 (1971).

Wuchter, J.: Steroid profiles aller Application of hormone

ation of steroids in umbilical

of 3β-hydroxy-Δ⁵-steroids in urine. Steroids 10: 359-385

: Steroids in newborns and ifants. Steroids 17: 265-280

Variations in urinary steroid

termination of their specific ursors to humans. Steroids 2:

a neutral resin. Steroids 11:

method for the extraction of

unn, W.L.: Determination of excretion of extriol as a means (1967).

rinary estrogens by gas chroeroids in biological fluids,

ann. L.: Steroids in newborn

rinary excretion of individual 39-156 (1968). /ork 1966).

idhydrogen-sulfates by solvol-

r Metabolism of steroid hor-

- 21 Diezfalusy, E.: A modified theory of steroid synthesis in the human foeto-placental unit. Symp. dt. Ges. Endokrin. 16: 32-46 (1970).
- 22 Hellig, H.: Chatterean, D.; Lefèbvre, Y., and Bolté, E.: Steroid production from placental cholesterol. I. Conversion of plasma cholesterol to placental progesterone in humans. J. clin. Endocrin. Metab. 30: 624-631 (1970).
- 23 Little, B.; Billiar, R.B.; Halla, M.; Heinsons, A.; Jassani, M.; Kline, I.T., and Purdy, R.H.: Pregnenolone production in pregnancy. Am. J. Obstet. Gynec. 111: 505-514 (1971).
- 24 Lurie, A.O.; Reid, R.E., and Villee, C.A.: The role of the foetus and placents in maintenance of plasma progesterone. Am. J. Obstet. Gynec. 96: 670-675 (1966).
- 25 Wiest, W.G.: Estimation of progesterone in biological tissues and fluids from pregnant women by double isotope derivative assay. Steroids 10: 279-290 (1967).
- 26 Younglai, E.V. and Effer, S.B.: Amniotic fluid progestins and estrogens in relation to length of gestation. Am. J. Obstet. Gynec. 111: 833-839 (1971).
- 27 Zander, J.; Münstermann, A.-M. und Runnebaum, B.: Steroide im Plasma von menschlichem Plazentablut (Nabelschnurplasma). Acta endocr., Copenh. 41: 507-520 (1962).
- 28 Runnebaum, B. und Zander, J.: Progesteron, Δ⁴-Pregnen-2001-3-on und 17α-Hydroxy-progesteron im Plasma der Nabelvene und der Nabelarterien. Klin. Wschr. 40: 453-456 (1962).
- 29 Craft, I.; Wyman, H., and Sommerville, I.F.: Serial analysis of plasma progesterone and pregnanediol in human pregnancy. J. Obstet. Gynaec. Br. Commonw. 76: 1080-1089 (1969).
- (30) Huhtaniemi, I. and Vihko, R.: Determination of unconjugated and sulfated neutral sterois in human fetal blood of early and mid-pregnancy. Steroids 16: 197-205 (1970).
- 31 Hagemanas, F.C. and Kittinger, G.W.: The influence of fetal sex on the levels of plasma progesterone in the human fetus. J. clin. Endocr. Metab. 36: 389-391 (1973).
- 32 Lauritzen, Ch. und Schaper, H.: Ausscheidung von Progesteron sowie Progesterol-20α und -20β im Harn von Neugeborenen. Symp. dt. Ges. Endokrin. 16: 225-228 (1970).
- 33 Kinsella, R.A. and Francis, F.E.: Steroids and sterois in meconium. J. clin. Endocr. Mctab. 32: 801-818 (1971).
- 34 Gustafsson, J.-Ä.; Shackleton, C.H.L., and Sjövall, J.: Steroids in newborns and infants. Acta endocr., Copenh. 65: 18-28 (1970).
- 35 France, J.T. and Liggins, G.L.: Placental sulfatase deficiency. J. clin. Endocr. Metab. 29: 138-141 (1969).
- 36 Lefèhvre, Y.; Chapdelaine, A., and Bolté, E.: Effects of labor on plasma dehydroepiandrosterone sulfate and cortisol. Gynccol. Invest. 1: 57-68 (1970).
- (37) France, J.T.: Levels of 16α-hydroxydehydroepiandrosterone, dehydroepiandrosterone and pregnenolone in cord plasma of normal human and anencephalic fetuses. Steroids 17: 697-719 (1971).
- 38 Lauritzen, Ch. und Lehmann, W.D.: Ausscheidung von Pregnandiol und Pregnanolon im Neugeborenenharn. Stimulierung durch Choriongonadotropin und ACTH. Arch. Gynaek. 204: 197-211 (1967).
- 39 Zander, J. und Solth, K.: Die Ausscheidung der C21 Steroide bei Neugeborenen. Klin. Wschr. 31: 317-321 (1953).
- 40 Roby, C.C.: Ober, W.B., and Drorbaugh, J.E.: Pregnanediol excretion in the urine of newborn male infants. Pediatrics, Springfield 17: 877-881 (1966).
- 41 Ferris, B. and Green, O.C.: Pregnanediol excretion in the urine of newborn male infants. Am. J. Dis. Child. 115: 693-697 (1968).
- 42 Clarke, A. and Klopper, A.: The measurement of pregnanediol sulfate in amniotic fluid. J. Endocr. 46: 123-124 (1970).

Studies on St

- 43 Lauritzen, Ch. und Lehmann, W.D.: Pregnandiolbestimmungen im Plasma vor, während und nach der Entbindung. Z. Geburtsh. Gynäk. 162: 159-173 (1964).
- 44 Francis, F.E. and Kinseila, R.A.: Enteric excretion of metabolites of steroid hormones in the human subject. IV. Isolation of 5β-pregnane-3α, 20α-diol from meconium. J. clin. Endocr. Metab. 26: 128-132 (1966).
- 45 Klopper, A.: Oestriol in liquor amnii. Am. J. Obstet. Gynec. 112: 459-471 (1972).
- 46 Schweitzer, M.; Klein, G.P., and Giroud, C.J.P.: Characterization of 17-deoxy- and 17-hydroxycorticosteroids. J. clin. Endocr. Metab. 33: 605-611 (1971).
- 47 Solomon, S.; Ling, W.; Leung, K.; Merkatz, I.; Coutis, J.R.T., and MacNaughton, M.C.: in James and Martini Hormonal steroids, p. 504 (Excerpta Medica, Amsterdam 1971).
- 43 Solomon, S. and Fuchs, F.: Progesterone and related neutral steroids; in Fuchs and Klopper Endocrinology of pregnancy, pp. 66-100 (Harper & Row, New York 1971).
- 49 Leusden, H.A. van and Siemerink, M.: Formation of 17α-hydroxypregnenolone, 17α-hydroxyprogesterone and progesterone by hydatidiform moles in vitro. Acta endocr., Copenh. 61: 68-75 (1969).
- 50 Bermudez, J.A. and Lipsett, M.B.: Early adrenal response to ACTH: plasma concentrations of pregnenolone, 17-hydroxypregnenolone, progesterone and 17-hydroxyprogesterone, J. clin. Endocr. Metab. 34: 241-243 (1972).
- 51 Schindler, A.E.; Barth, R.; Voelter, W., and König, W.A.: Isolation, identification and quantitation of 16α-hydroxyprogesterone in cord plasma. Endokrinologie 62: 95-99 (1973).
- 52 Reynolds, J.W.: Excretion of two Δ^5 -3 β -OH-16 α -hydroxysteroids by normal infants and children. J. clin. Endocr. Metab. 25: 416-423 (1965).
- 53 Reynolds, J.W.: Excretion of 16α-hydroxysteroids by premature infants. J. clin. Endocr. Metab. 26: 1251-1256 (1966).
- 54 Cleary, R.E. and Pion, R.J.: Urinary excretion of 16α-hydroxydehydroepiandrosterone and 16-ketoandrostenediol during the early neonatal period. J. clin. Endocr. Metab. 28: 372-378 (1968).
- 55 Friedrich, E.; Siekmann, L., and Schindler, A.E.: Identification and quantitation of 16α-hydroxyprogesterone in human amniotic fluid. Clinica chim. Acta 56: 127-130 (1974).
- 56 Lauritzen, Ch.; Shackleton, C.H.L., and Mitchell, F.L.: The effect of exogenous corticotropin on steroid excretion in the newborn. Acta endocr., Copenh. 58: 655-663 (1968).
- 57 Huhtaniemi, I.: Metabolism of pregnenolone and pregnenolone sulfate in human foetal liver tissue in vitro. Acta endocr., Copenh. 76: 525-538 (1974).
- 58 Francis, F.E.; Shen, N.C., and Kinsella, R.A.: Enteric excretion of metabolites of steroid hormones in the human. III. Isolation of 3α-hydroxy-5β-pregn-16-en-20-one. Biochemistry, N.Y. 1: 1184-1186 (1962).
- 59 / Klyne, W.; Schachter, B., and Marian, G.F.: The steroids of pregnant mares' urine. Biochem. J. 43: 231-234 (1948).
- 60 Gustafsson, J.-Ä.; Shackleton, C.H.L., and Sjövall, J.: Steroids in newborns and infants. C₁₉ and C₂₁ steroids in faeces of infants. Eur. J. Biochem. 10: 302-311 (1969).
- 61 Francis, F.E.; Muelheims, G.H., and Kinsella, R.A.: Metabolism of 16-pregnenolone (3α-hydroxy-5β-pregn-16-en-20-one) in the pump perfused gravid canine uterus. Exerpta Med. Int. Congr. Ser. No. 256, p. 154 (1972).
- 62 Björkham, I.; Eriksson, H., and Gustafsson, J.-Ä.: Microbial formation of 17α-C₁₁ steroids. Stereochemistry of saturation of the Δ¹⁶-double bond. Eur. J. Biochem. 20: 340-343 (1971).
- 63 Calvin, H.I. and Liebermann, S.: Studies on the metabolism of 16α-hydroxyproges-

terone in hu 639-645 (19 64 *Kadis, B.*. G

Steroids 15

- (1964). 65 Armstrong,
- 66 Reynolds, J.
 lone and 17d
 tion. Acta en
- 67 Reynolds, J. by the midg (1969).
- 68 Gower, D.B. steroids and Endoct. 47:
- 69 Beery, K.E. ene and 5α-(1971).
- 70 Gower, D.B. biosynthesis adrenocortic
- 71 Bhavnani, B and a stud 1230-1237
- 72 Fukushima, Studies in steroids. J. b
- 73 Gower, D.B. 74 Gustafsson, born infants
- 75 Huhtaniemi, neutral stere 57: 143-15
- 76 Huhtaniemi, from early a

Prof. Dr. A.E. Sc.

igen im Plasma vor, während 173 (1964).

abolites of steroid hormones $!0\alpha$ -dio! from meconium. J.

2. 112: 459-471 (1972). terization of 17-deoxy- and -611 (1971).

T., and MacNaughton, M.C.:
1 Medica, Amsterdam 1971).
1 utral steroids; in Fuchs and
1 & Row, New York 1971).
17\(\alpha\)-hydroxyprognenolone,
1 iform moles in vitro. Acta

to ACTH: plasma concentrarone and 17-hydroxyproges-

Isolation, identification and Endokrinologie 62: 95-99

ysteroids by normal infants

premature infants. J. clin.

oxydehydroepiandrosterone iod. J. clin. Endocr. Metab.

ication and quantitation of 2a chim. Acta 56: 127-130

ne effect of exogenous cortiocr., Copenh. 58: 655-663

done sulfate in human foetal

974). excretion of metabolites of roxy-5β-pregn-16-en-20-one.

s of pregnant mares' urine.

ids in newborns and infants. 10: 302-311 (1969). abolism of 16-pregnenolone used gravid canine uterus.

obial formation of 17α - C_{21} bond. Eur. J. Biochem. 20:

lism of 16a-hydroxyproges-

terone in humans; conversion to urinary 17-isopregnanolone. Biochemistry, N.Y. 1: 639-645 (1962).

64 Kadis, B.: Oestriol biosynthesis by sow ovary. Biochemistry, N.Y. 3: 2016-2019 (1964).

65 Armstrong, A.A. and Kadis, B.: Steroid dehydrations in porcine subcellular fractions. Steroids 15: 737-749 (1970).

66 Reynolds, J.W.; Wiqvist, N., and Diezfalusy, E.: Metabolism of 16α-hydroxypregnenolone and 17α-hydroxypregnenolone in the foeto-placental unit and mother at midgestation. Acta endocr., Copenh. 61: 533-550 (1969).

67 Reynolds, J.W.; Wiqvist, N., nd Diczfalusy, E.: Formation of 16-dehydroprogesterone by the midgestation human placenta in vivo. Biochim. biophys. Acta 176: 886-888 (1969)

68 Gower, D.B.; Harrison, F.A., and Heap, R.B.: The identification of C₁₉-16-unsaturated steroids and estimation of 17-oxosteroids in boar spermatic vein plasma and urine. J. Endocr. 47: 357-368 (1970).

69 Beery, K.E. and Sink, J.D.: Isolation and identification of 3α-hydroxy-5α-androst-16-en and 5α-androst-16-en-3-one from porcine adipose tissue. J. Endoct. 51: 223-224 (1971).

Gower, D.B.; Daly, J.R.; Snodgrass, G.J.A.-I., and Stern, M.I.: Steroid excretion and biosynthesis with special reference to C₁, -Δ¹⁶-steroids in an infant with a virilizing adrenocortical carcinoma. Acta endocr., Copenh. 63: 562-566 (1970).

71 Bhavnani, B.R. and Solomon, S.: Formation of 16α-hydroxypregnenolone-3-sulfate and a study of its anomalous behavior during hydrolysis. Enducrinology 84: 1230-1237 (1969).

72 Fukushima, D.K.; Kemp, A.E.; Schneider, A.; Stokem, M.B., and Gallaghen, T.F.: Studies in steroid metabolism. XXV. Isolation and characterization of new urinary steroids. J. biol. Chem. 210: 129-137 (1954).

(73 Gower, D.B.: Review on Δ^{16} -steroids. J. steroid Biochem. 3: 45-89 (1972).

74 Gustafsson, J.-Ä. and Stenberg, Ä.: Steroids in meconium from male and female newborn infants. Eur. J. Biochem. 22: 246-256 (1971).

Huhtaniemi, I. and Vihko, R.: Identification and measurement of sulfate-conjugated neutral steroids in the intestinal contents of early and mid-term foetuses. J. Endocr. 57: 143-158 (1973).

76 Huhtaniemi, I.: Endogenous steroid sulphates and glucuronides in the gallbladder bile from early and mid-term human foetuses. J. Endocr. 59: 503-510 (1973).

Prof. Dr. A.E. Schindler, Universitäts-Frauenklinik, D-74 Tübingen (FRG)