Teorema de structură a multimilor deschise din \mathbb{R}

Orice multime deschisă se poate scrie ca o reuniune de sfere deschise cel mult numărabilă.

Demonstratie:

Fie
$$(\mathbb{R}, |\cdot|), M \in \tau_o$$
.
Știm:
 $|\mathbb{Q}| = |\mathbb{Q}^n| = \aleph_0, \forall n \in \mathbb{N} \quad (1)$
 $\forall x, y \in \mathbb{R}, \text{ cu } x < y, \exists \ q \in \mathbb{Q} \text{ a.î. } x < q < y. \text{ (Densitatea lui } \mathbb{Q} \text{ în } \mathbb{R}) \quad (2)$
Fie $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{Q}$,
 $\varphi(x, y) = q$, unde $x < q < y$ (Exista din (2)) (Bine definit?)
Considerăm funcția $f : M \to \mathbb{Q} \times \mathbb{Q}$ definită astfel:

Fie
$$\forall x \in M$$
.
 $M \in \tau_o$
 $x \in M$
 $\Rightarrow \exists r \in (0, \infty) \text{ a.î. } S(x, r) \subseteq M$.

Fie $\varepsilon \in (0, \frac{r}{2});$ $x' = \varphi (x - \varepsilon, x + \varepsilon);$ $r' = \varphi(\varepsilon, r - \varepsilon).$ $f(x) \stackrel{\text{def}}{=} (x', r').$

$$x-r$$
 $x-\varepsilon$ x $x+\varepsilon$ $x-\varepsilon$ Arătăm că $S(x',x')\subset S(x,r)\subset M$. (*)

Arătăm că
$$S(x',r') \subseteq S(x,r) \subseteq M$$
. (*)
Fie $y \in S(x',r') = (x'-r',x'+r')$.
Demonstrăm $y \in S(x,r)$.

$$\begin{split} \varepsilon &< r' < r - \varepsilon < r \implies r' < r - \varepsilon \iff r' + \varepsilon < r \quad (3) \\ x - \varepsilon &< x' < x + \varepsilon \quad (4) \\ y \in (x' - r', x' + r') \iff x' - r' < y < x' + r' \iff \\ &\iff \begin{cases} y < x' + r' \stackrel{(4)}{\Longrightarrow} y < x + \varepsilon + r' \implies y < x + (\varepsilon + r') \stackrel{(3)}{\Longrightarrow} y < x + r \quad (5) \\ x' - r' < y \stackrel{(4)}{\Longrightarrow} x - \varepsilon - r' < y \implies x - (\varepsilon + r') < y \stackrel{(3)}{\Longrightarrow} x - r < y \quad (6) \\ \text{Din (5) si (6)} \implies x - r < y < x + r \iff |y - x| < r \iff y \in S(x, r). \end{split}$$

Deci $S(x', r') \subseteq S(x, r)$.

Arătăm că
$$x \in S(x', r')$$
. (**)
 $x' = \varphi(x - \varepsilon, x + \varepsilon) \implies x - \varepsilon < x' < x + \varepsilon \iff$
 $-\varepsilon < x' - x < \varepsilon \iff |x' - x| < \varepsilon \implies d(x', x) < \varepsilon \stackrel{(3)}{<} r' \implies x \in S(x', r')$

Fie
$$F = \{f(x) \mid x \in M\}.$$

Fie $N = \bigcup_{p \in F} S(p).$

$$F \subseteq \mathbb{Q} \times \mathbb{Q} \implies |F| \le |\mathbb{Q} \times \mathbb{Q}| = |\aleph_0|$$

$$N = \bigcup_{p \in F} S(p)$$

$$\Rightarrow N \text{ este o reuniune cel mult numărabilă de sfere deschise.}$$

$$\begin{array}{l}
\text{Din (*) } S(f(x)) \subseteq M, \ \forall x \in M \implies N \subseteq M; \\
\text{Din (**) } x \in S(f(x)), \ \forall x \in M \implies \forall x \in M, \ x \in N \implies M \subseteq N.
\end{array}$$

În concluzie am scris M ca o reuniune cel mult numărabilă de sfere deschise.