PART

Mecánica Newtoniana

Section 1

Vectores

Esto ya deberían saberlo y probablemente se actualice de último :)

Section 2

Mecánica Newtoniana para una partícula

A continuación se expresará la mecánica de partículas.

Subsection 2.1

Leyes de Newton

Comenzando con algunos conceptos claves para el desarrollo de las leyes de Newton:

Definition 1

(Fuerza) Fuerza es el nombre que se le da a la interacción entre un cuerpo y su entorno, la cual es capaz de afectar el estado del cuerpo. Las fuerzas son cantidades vectoriales, por lo que poseen magnitud y dirección; su magnitud es dada en unidades de newton N.

Definition 2

(Momentum Lineal) Momentum lineal o cantidad de movimiento, ambos se refieren a una cantidad vectorial dada por la siguiente ecuación:

$$\vec{p} = m\vec{v} \tag{2.1}$$

Las leyes de Newton tal y como se expresarán a continuación son unicamente válidas para sistemas de referencias **inerciales**, es decir, sistemas de referencia que no poseen ningun tipo de aceleración.

Definition 3

(**Primera Ley de Newton o Ley de la Inercia**) Un cuerpo mantiene su estado de equilibrio a menos de que una fuerza neta lo perturbe. Dicho de otra forma, un cuerpo siempre mantendrá su estado de equilibrio a menos de que una fuerza neta llegue a afectarlo.

$$\sum \vec{F} = \vec{0} \tag{2.2}$$

Definition 4

(Segunda Ley de Newton) Un cuerpo que experimenta una fuerza neta diferente de cero, tendrá como resultado un cambio en su momentum lineal.

$$\sum \vec{F} = \frac{d\vec{p}}{dt} = \dot{\vec{p}} \tag{2.3}$$

Suponiendo que la masa es constante para el cuerpo de interés, la primera ley de Newton también se puede escribir de la forma:

$$\sum \vec{F} = m\vec{a} \tag{2.4}$$

Definition 5

(Tercera Ley de Newton o Ley de Acción-Reacción) Considere dos cuerpos denotados como A y B que presentan algún tipo de interacción entre sí, se dice que: Toda acción que realice el cuerpo A sobre el cuerpo B le corresponde una reacción que proveniente del cuerpo B. Estas acciones y reacciones corresponden a fuerzas internas del sistema (cuerpos A y B) debido a su interacción, dichas fuerzas poseen la misma magnitud y su dirección es contraria.

$$\vec{F}_{AB} = -\vec{F}_{BA} \tag{2.5}$$

Un estado de **equi**l refiere a que el cuer tema de interés se e movientodose con vilineal constante (**equinámico**) o se e en reposo (**equilibrico**).

strongthirdlaw.jpeg

Figura 1. Situación del enunciado fuerte

2

Para trabajar con esta ley hay que tomar cuenta cierta ambiguedad que nos lleva a los siguientes enunciados de la tercera ley:

- Enunciado Fuerte: Los vectores correspondientes a las fuerzas de acción y reacción se encuentran sobre una misma recta, es decir, sí se conocen las direcciones de las fuerzas de acción y reacción es posible trazar una recta (conocida como línea de acción) que una los vectores de fuerzas y sea paralela a estos.
- Enunciado Débil: No ocurre lo anterior. Es imposible unir los vectores de las fuerzas de acción y reacción por medio de una recta que sea paralela a ambos vectores.

Además de lo anterior, es preciso destacar que la **Tercera Ley de Newton no es una ley general de la naturaleza** y se puede establecer que toda fuerza que dependa de velocidades no obedecerá esta ley.

Subsection 2.2

Trabajo y Energía

Definition 6

(**Trabajo**) Corresponde a la cantidad generada al tomar el producto punto de la fuerza ejercida sobre un cuerpo a lo largo de todo su desplazamiento desde una punto A a un punto B.

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{r} \tag{2.6}$$

Definition 7

(Fuerza conservativa) Una fuerza \vec{F} es conservativa si se puede escribir de la forma:

$$\vec{F} = -\vec{\nabla}V\tag{2.7}$$

A partir de las ecuaciones ?? y ??:

$$W = \int_A^B \vec{F} \cdot d\vec{r} \; = \; \int_A^B \frac{d\vec{p}}{dt} \cdot d\vec{r}$$

Ejerciendo el producto punto y trabajando por índices:

$$W = \int_{A}^{B} \sum_{i=1}^{3} \frac{dp_i}{dt} dr_i$$

Suponiendo que la masa es constante, la derivada temporal del momentum lineal es de la forma: $\frac{dp_i}{dt}=m\frac{dv_i}{dt}$:

$$W = \sum_{i=1}^{3} m \int_{A}^{B} \frac{dv_{i}}{dt} dr_{i} = \sum_{i=1}^{3} m \int_{A}^{B} \frac{dv_{i}}{dt} dr_{i} \frac{dt}{dt}$$

$$= \sum_{i=1}^{3} m \int_{A}^{B} dv_{i} \underbrace{\frac{dr_{i}}{dt}}_{=v_{i}} \frac{dt}{dt}$$

$$= \sum_{i=1}^{3} m \int_{A}^{B} v_{i} dv_{i} = \sum_{i=1}^{3} \frac{1}{2} m v_{i}^{2} \Big|_{A}^{B} = \sum_{i=1}^{3} \frac{1}{2} m v_{iB}^{2} - \sum_{i=1}^{3} \frac{1}{2} m v_{iA}^{2}$$

Definition 8

(Energía Cinética Traslacional) Corresponde al trabajo necesario para comenzar a mover un cuerpo desde el reposo hasta la rapidez \vec{v} .

$$T = \frac{1}{2}m\sum_{i=1}^{3}v_i^2 \tag{2.8}$$

Theorem 1

(Trabajo - Energía Cinética)
$$W = \Delta T \eqno(2.9)$$

Regresando a la definición ?? pero ahora tomando la fuerza que es ejercida sobre el cuerpo como una fuerza conservativa, ecuación ??.

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{r} = \int_{A}^{B} -\vec{\nabla}V \cdot d\vec{r} = -V_{B} + V_{A}$$

Definition 9

(**Energía Potencial**) Corresponde a la capacidad de un cuerpo de ejercer trabajo se denomina energía potencial. Ahora se presentan algunos ejemplos de energías potenciales.

$$V = \begin{cases} mgh \\ \frac{1}{2}kx^2 \\ \frac{-GMm}{r} \\ \frac{-Kq_1q_2}{r} \\ \vdots \end{cases}$$
 (2.10)

Theorem 2

(Trabajo - Energía Potencial)

$$W = -\Delta V \tag{2.11}$$

Subsection 2.3

Análogo rotacional de las leyes de Newton

Ahora se presentarán algunos conceptos importantes y ecuaciones para una descripción sencilla de la mecánica de partículas en rotación. Nuevamente se comenzará por

los conceptos básicos análogos a los usados en las leyes de Newton y posteriormente se darán las leyes análogas.

Primero deduciendo una relación entre la velocidad lineal \vec{v} y la velocidad angular $\vec{\omega}$:

Deducir la relación velocida Lineal - Angular

Definition 10 (Relación velocida Lineal - Angular)

$$\vec{v} = \vec{w} \times \vec{r} \tag{2.12}$$

Definition 11 (Torque)

$$\vec{N}_{\mathcal{O}} = \vec{r} \times \vec{F} \tag{2.13}$$

Definition 12 (Momentum Angular)

$$\vec{L}_{\mathcal{O}} = \vec{r} \times \vec{p} = m \ \vec{r} \times \vec{v} = m \ \vec{r} \times (\vec{\omega} \times \vec{r})^{1} = m \left[\vec{r}^{2} \vec{\omega} - \vec{r} (\vec{r} \cdot \vec{\omega}) \right]$$
(2.14)

En la amplia gama de casos en que se trabaja con partículas, se podrá reconocer que el producto $\vec{r} \cdot \vec{\omega} = 0$ y los vectores \vec{r} y $\vec{\omega}$ apuntan en una única dirección, por lo que el momentum angular tomará la siguiente forma:

$$L_{\mathcal{O}q} = mr^2 \omega_q \tag{2.15}$$

Definition 13

(Momentos de Inercia)

$$I_q^{\mathcal{O}} = \sum_i m_i r_i^2 \tag{2.16}$$

Theorem 3

(Teorema de Ejes paralelos)

$$I_{q'} = I_q^{cm} + Md^2 (2.17)$$

La demostración de este teorema tal y como se encuentra escrito aquí se le dejará al lector y se recomienda verlo como una simplificación del teorema de ejes paralelos real que se desarrollará más adelante.

Definition 14

(Primera Ley de Newton análoga rotacional)

Definition 15

(Segunda Ley de Newton análoga rotacional)

$$\sum \vec{N}_{\mathcal{O}} = \frac{d\vec{L}_{\mathcal{O}}}{dt} = \dot{\vec{L}}_{\mathcal{O}} \tag{2.18}$$

Manteniendo la inercia constante, la ecuación se escribe de la forma:

$$\sum N_q = I_q \alpha_q \tag{2.19}$$

Donde el subíndice denota el eje respecto al cual se está realizando la suma de torques.

momentos de ine tán intimamente re dos, ambos son me que tan difícil es n cuerpo de cierta for El termino inercial hacer una distinción masa inercial (La da por la aceleració cuerpo al estar bajo to de una fuerza) y sa gravitacional (determinada por la gravitacionales entre po de interés y otr pos), a pesar de qu cantidades son igu el princiopio de equi

La **masa** inercia

Definition 16 (Tercera Ley de Newton análoga rotacional)

Definition 17 (Energía Cinética Rotacional)

$$T_{rot} = \frac{1}{2} I_q \omega_q^2 \tag{2.20}$$

Subsection 2.4

Teoremas de Conservación

Theorem 4 (Conservación de Momentum Lineal)

Theorem 5 (Conservación de Momentum de Angular)

Theorem 6 (Conservación de la Energía)

Subsection 2.5

Problemas resueltos

Section 3

Sistemas de partículas

Section 4

Sistemas no inerciales