# TFM - Kaggle House Prices: Advanced Regression Techniques with caret

05 Selección del modelo definitivo y presentación de resultados

Juan Carlos Santiago Culebras 2019-09-22

## Primeros pasos

#### Librerías

Realizamos la carga de las librerías necesarias

```
if(!is.element("dplyr", installed.packages()[, 1]))
      install.packages("dplyr", repos = 'http://cran.us.r-project.org')
library(dplyr)
if(!is.element("tidyr", installed.packages()[, 1]))
      install.packages("tidyr", repos = 'http://cran.us.r-project.org')
library(tidyr)
if(!is.element("ggplot2", installed.packages()[, 1]))
      install.packages("ggplot2", repos = 'http://cran.us.r-project.org')
library(ggplot2)
if(!is.element("grid", installed.packages()[, 1]))
      install.packages("grid", repos = 'http://cran.us.r-project.org')
library(grid)
if(!is.element("gridExtra", installed.packages()[, 1]))
      install.packages("gridExtra", repos = 'http://cran.us.r-project.org')
library(gridExtra)
if(!is.element("readr", installed.packages()[, 1]))
      install.packages("readr", repos = 'http://cran.us.r-project.org')
library(readr)
if(!is.element("caret", installed.packages()[, 1]))
      install.packages("caret", repos = 'http://cran.us.r-project.org')
library(caret)
if(!is.element("ggpubr", installed.packages()[, 1]))
      install.packages("ggpubr", repos = 'http://cran.us.r-project.org')
library(ggpubr)
```

#### **Funciones**

```
fnEstudioModelo <- function ( modelo , estudioParam = TRUE){</pre>
  # modelo
  # modelo$finalModel
 p1 <- ggplot(data = modelo$resample, aes(x = RMSE)) +
        geom_density(alpha = 0.5, fill = "gray50") +
        geom_vline(xintercept = mean(modelo$resample$RMSE),
                   linetype = "dashed") +
        theme bw()
 p2 <- ggplot(data = modelo$resample, aes(x = 1, y = RMSE)) +
        geom boxplot(outlier.shape = NA, alpha = 0.5, fill = "gray50") +
        geom jitter(width = 0.05) +
        labs(x = "") +
        theme bw() +
        theme(axis.text.x = element_blank(), axis.ticks.x = element_blank())
  #Estudio de hiperparámtros
  if (estudioParam){
    p3 <- plot(modelo)
  # Error de test
  predicciones <- predict(modelo</pre>
                           , newdata = dsTrain.CV
                           , type = "raw")
  # RMSE(predicciones, dsTrain.CV$SalePrice)
  # MAE(predicciones, dsTrain.CV$SalePrice)
  # R2(predicciones, dsTrain.CV$SalePrice, form = "traditional")
  t1 <- capture.output(summary(modelo$resample$RMSE, digits=3))</pre>
  t1 <- paste("Summary resample$RMSE", " ", paste(t1, collapse="\n"), sep = "\n")
  t1 \leftarrow text_grob(t1, size = 10)
  t2 <- capture.output(postResample(pred = predicciones, obs = dsTrain.CV$SalePrice))
  t2 <- paste("Error de test", " ", paste(t2, collapse="\n"), sep = "\n")
  t2 \leftarrow text\_grob(t2, size = 10)
  t3 <- capture.output(modelo$finalModel)
  t3 <- text_grob(paste(t3, collapse="\n"), size = 9)
  grid.arrange(t3, top="Modelo final")
  grid.arrange(p1, p2, t1, t2, nrow = 2, top="RMSE obtenido en la validación")
  if (estudioParam){
    grid.arrange(p3, nrow = 1, top="Evolución del RMSE del modelo en función de hiperparámetros")
```

}

#### Cargamos datos

En este caso partimos de las métricas guardadas en etapas anteriores.

Excluyo el modelo KNN que claramente está muy alejado del resultado de los demás modelos

```
# Conjunto seleccionado en paso anterior
load('./F04_Modelos/F04_200_metricas.RData')

metricas <- metricasGuardadas %>%
    filter(modelo!='KNN') %>%
    mutate_if(is.character, as.factor)

head(arrange(metricas,Test),10)
```

```
##
                                                  OrigenF2
      modelo
                         Training
                  Test
        SVMR 0.1114359 0.08632997 F02_03_dsDataAll_Recipe
## 1
## 2
        SVMR 0.1125683 0.10668322 F02 03 dsDataAll Recipe
## 3
       SVMR 0.1127808 0.09661025
                                         F02_01_dsDataAll
## 4
        SVMR 0.1142498 0.10157601
                                          F02_01_dsDataAll
## 5
        SVMR 0.1152299 0.09849094
                                          F02_01_dsDataAll
        SVMR 0.1155539 0.09393204 F02_03_dsDataAll_Recipe
## 6
## 7
        SVMR 0.1156660 0.10630596
                                          F02_01_dsDataAll
## 8
     GLMNET 0.1159645 0.11149980 F02_03_dsDataAll_Recipe
## 9
         GLM 0.1172617 0.10981097 F02_03_dsDataAll_Recipe
## 10
         LM 0.1172617 0.10981097 F02_03_dsDataAll_Recipe
##
                                     OrigenF3
## 1
                 F03_15_dsDataSelVar_Completo 2019-09-20
## 2
                F03_14_dsDataSelVar_mezcla_31 2019-09-20
## 3
                 F03_15_dsDataSelVar_Completo 2019-09-20
## 4
     F03_12_dsDataSelVar_rfe_MenorRMSE_top60 2019-09-19
## 5
                F03_13_dsDataSelVar_ga_100_46 2019-09-20
     F03_12_dsDataSelVar_rfe_MenorRMSE_top55 2019-09-20
## 6
## 7
                F03_14_dsDataSelVar_mezcla_31 2019-09-20
## 8
                 F03_15_dsDataSelVar_Completo 2019-09-20
## 9
                 F03_15_dsDataSelVar_Completo 2019-09-20
## 10
                 F03_15_dsDataSelVar_Completo 2019-09-20
```

## Selección del mejor modelo

En total se han estudiado 11 modelos y se han realizado 100 entrenamientos distintos.

Seguidamente presento una gráfica con el error de Test obtenido en las distintas ejecuciones realizadas,

#### Estudio comparativo

Comparativa gráfica

```
ggplot(metricas,aes(x=Test, y=modelo,shape=OrigenF2,color=OrigenF3 )) +
  geom_point()
```



También presento las medias de RMSE por tipo de ingeniería de características usada, selección de predictores y tipo de modelo:

```
metricas %>%
  group_by(modelo) %>%
  summarise(media = mean(Test)) %>%
  arrange(media)
```

```
## # A tibble: 9 x 2
##
     modelo media
             <dbl>
     <fct>
##
## 1 SVMR
             0.116
## 2 GLMNET
            0.122
## 3 LASSO
             0.123
## 4 GLM
             0.123
## 5 LM
             0.123
## 6 SVM
             0.123
## 7 GBM
             0.126
## 8 XGBoost 0.127
## 9 RF
             0.131
```

```
metricas %>%
  group_by(OrigenF2) %>%
  summarise(media = mean(Test)) %>%
  arrange(media)
## # A tibble: 3 x 2
##
     OrigenF2
                             media
##
     <fct>
                             <dbl>
## 1 F02_03_dsDataAll_Recipe 0.122
## 2 F02_01_dsDataAll
                             0.124
## 3 F02_02_dsDataAll_PCA
                             0.129
metricas %>%
  group_by(OrigenF3) %>%
  summarise(media = mean(Test)) %>%
  arrange(media)
## # A tibble: 7 x 2
     OrigenF3
                                                     media
     <fct>
##
                                                     <dbl>
## 1 F03_15_dsDataSelVar_Completo
                                                     0.120
## 2 F03_12_dsDataSelVar_rfe_MenorRMSE_top55
                                                     0.122
## 3 F03_13_dsDataSelVar_ga_100_46
                                                     0.123
## 4 F03_12_dsDataSelVar_rfe_MenorRMSE_top60
                                                     0.124
## 5 F03_14_dsDataSelVar_mezcla_31
                                                     0.124
## 6 F03_11_dsDataSelVar_rfe_MejorRendimiento_top18 0.126
## 7 F03_1_dsDataAllVarSel_PCA
                                                     0.129
```

Seleccionamos el modelo con mejor Error de Test

Modelo Support Vector Machines with Radial Basis Function Kernel como mejor modelo y como conjunto de predictores todos los generados con Recipe

Cargamos los datos del modelo seleccionado, de los predictores y el conjunto original

```
dir <- './F04_Modelos/F02_03_dsDataAll_Recipe/F03_15_dsDataSelVar_Completo/'
load(paste(dir, 'modelo_svmRadial.RData', sep=''))

load('./F03_SelPredictores/F02_03_dsDataAll_Recipe/F03_15_dsDataSelVar_Completo.RData')
load('./F01_Datos/F01_dsDataAll.RData')

modeloSel <- modelo_svmRadial

# Guardo resultado del calculo
save(modeloSel, file = './F04_Modelos/F04_100_modeloSel.RData')</pre>
```

#### Separamos los datos

Optenemos 4 dataset

dsTrain - Que a su vez se divide en dsTrain.training dsTrain.CV

dsTest

```
dsTrain <- dsDataAllVarSel %>%
  filter(indTrain == 1) %>%
  select(SalePrice, everything()) %>%
  select(-c(Id,indTrain))

dim(dsTrain)

## [1] 1458 87

set.seed(123)
iTrain <- createDataPartition(y=dsTrain$SalePrice, p=0.7, list=F)

dsTrain.training <- dsTrain[iTrain, ]
dsTrain.CV <- dsTrain[-iTrain, ]

dsTest <- dsDataAllVarSel %>%
  filter(indTrain == 0) %>%
  select(SalePrice, everything())
```

#### Presentación de resultados

Una vez seleccionado el modelo, lo ejecutamos contra el conjunto de test, para verificar el resultado, también he verificado la conversión a dólares.

```
prediccionPrecioVentaLog <- predict(modeloSel, newdata = dsTrain.CV, type = "raw")

dsTrainOriginal.CV <- dsDataAll %>%
    filter(indTrain == 1) %>%
    select(Id,SalePrice)

dsTrainOriginal.CV <- dsTrainOriginal.CV[-iTrain, ]

dsTrainOriginal.CV <- dsTrainOriginal.CV %>%
    mutate(SalePrice.log = log(SalePrice))

dsTrainOriginal.CV <- cbind(dsTrainOriginal.CV, prediccionPrecioVentaLog)

dsTrainOriginal.CV <- mutate(dsTrainOriginal.CV, p = exp(prediccionPrecioVentaLog))

RMSE(dsTrainOriginal.CV$prediccionPrecioVentaLog, dsTrainOriginal.CV$SalePrice.log)

## [1] 0.1114359

# Compruebo el RMSE sobre el precio real (aunque en la competición se utilizará sobre los logaritmos)

RMSE(dsTrainOriginal.CV$p, dsTrainOriginal.CV$SalePrice)

## [1] 22574.91</pre>
```

```
dsSubmission <- select(dsTrainOriginal.CV, Id, p)</pre>
```

### Entrega

Generamos las predicciones para el conjunto de Test original Aplicamos la función exp a la predicción para cálcular la predicción el dolares Generamos el fichero con las predicciones

```
prediccionPrecioVentaLog <- predict(modeloSel, newdata = dsTest, type = "raw")

p <- exp(prediccionPrecioVentaLog)

dsSubmission <- cbind(select(dsTest, Id), SalePrice=p)

dsSubmission %>%
    write_csv(path = './output/submission.csv')

# Entrega 1
# Model Support Vector Machines with Radial Basis Function Kernel set of predictors generated with Reci
# Score 0.12401 Posición 1454 / 4548
```

### Mejora

### Support Vector Machines with Radial Basis Function Kernel

```
, method = "svmRadial"
, tuneGrid = hiperparametros
, metric = "RMSE"
, trControl = fitControl)
proc.time()-t  # Detiene el cronómetro

## user system elapsed
## 911.31  6.15  935.30

# Guardo resultado del calculo
save(modelo_svmRadial, file ='./F04_Modelos/modelo_svmRadial.RData')

# Presento estudio
fnEstudioModelo(modelo_svmRadial)
```

#### Modelo final

Support Vector Machine object of class "ksvm"

SV type: eps-svr (regression) parameter: epsilon = 0.1 cost C = 12

Gaussian Radial Basis kernel function. Hyperparameter : sigma = 0.001

Number of Support Vectors: 655

Objective Function Value : -985.6482 Training error : 0.046788

### RMSE obtenido en la validación



Summary resample\$RMSE

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.093 0.109 0.119 0.116 0.122 0.136

Error de test

RMSE Rsquared MAE 0.11123715 0.91722662 0.07995376

# Evolución del RMSE del modelo en función de hiperparámetros



plot(modelo\_svmRadial)

```
Sigma
4e-04
6e-04
8e-04
                                         0.001
0.0012
0.0014
                                                                                   0.0016
0.0018
0.002
              0
                                                         0
                                                         0
                                                                                                   0
RMSE (Repeated Cross-Validation)
      0.121
      0.120
      0.119
      0.118
      0.117
      0.116
                                                                           10
                                                       8
                                  6
                                                                                                12
                                                                                                                    14
                                                                         Cost
```

```
# RMSE 0.116 sigma = 0.001 and C = 10
# RMSE 0.116 sigma = 0.001 and C = 13
# RMSE 0.114 sigma = 0.001 and C = 14
```