Задание №8

График зависимости времени выполнения программы от размера матриц при их преремножении

График зависимости времени выполнения программы в микросекундах от размера матрицы для всех 15 вариантов программы:

transpose no - умножение квадратных матриц без транспонирования

transpose first - транспонирование только первой матрицы перед умножением

transpose second - транспонирование только второй матрицы перед

умножением

С уровнями оптимизации Os O1 O2 O3 O0 для каждого алгоритма

Рисунок 1: Кусочно-линейные графики

Количество экспериментов, по которым был построен график равно 1000 (для каждого случая, для каждого размера матрицы).

Мы видим, что при оптимизации **ОО** самым долгим алгоритмом является **transpose first**. Это происходит, так как при транспонировании первой матрицы умножение производится по солбцам обоих матриц. Матрицы в памяти хранятся последовательно одномерно по строкам, следовательно, обращение к элементам матриц по столбцам происходит дольше, чем при обращении по строкам. В свою очередь **transpose no** и **transpose second** работают проктически одинаково, хотя **transpose second** выглядит более эффективным методом, так как при транспонировании второй матрицы умножение производится по строкам. Можно сделать вывод, что время **transpose second** увеличилось за счёт двукратного транспонирования матрицы.

При включенной оптимизации наиболее быстрым методом явлется **transpose second**, так как производится умножение по строкам, происходит обращение к ячейкам памяти, находящимся рядом друг с другом.

2 Таблицы данных к графикам

Таблицы данных, по которым были построены графики, с точностью до десятых:

2.1 Таблицы значений для графика

Таблица 1: Таблица значений для графика (без транспонирования)

	среднее значение (мкс)						
размер	без транспонирования						
	00			O 3	Os		
1	1,1	1,1	1,1	3,2	1,1		
5	1,5	1,3	1,3	2,3	1,3		
10	4,3	3,0	2,6	3,8	2,8		
15	8,8	4,4	3,6	4,8	4,1		
20	18,3	8,2	5,9	7,3	7,5		
25	32,5	15,3	7,7	8,9	11,4		
30	54,5	20,4	12,3	13,4	18,4		
35	83,7	33,7	15,5	17,1	31,1		
40	132,6	48,3	20,5	22,2	44,9		
45	171,0	64,8	29,0	30,7	52,7		
50	232,4	74,6	36,6	38,6	70,3		
55	310,0	109,1	48,5	50,0	90,8		
60	399,0	138,9	59,0	60,8	116,5		
65	502,2	172,5	70,5	72,8	146,2		
70	635,2	211,9	93,4	93,6	183,7		
75	807,1	252,8	106,4	108,0	247,8		
80	968,9	304,6	123,0	125,6	308,2		
85	1167,0	364,8	154,3	155,3	362,1		
90	1325,4	427,4	175,6	177,1	428,5		
95	1593,3	499,9	212,0	214,9	485,5		
100	1881,2	568,7	238,3	242,2	554,7		

Таблица 2: Таблица значений для графика (транспонирование второй матрицы)

	среднее значение (мкс)						
размер	транспонирование второй матрицы						
	00	01	O 2	O 3	Os		
1	1,2	1,2	1,1	3,3	1,1		
5	1,7	1,3	1,4	2,4	1,4		
10	4,8	2,9	2,8	4,0	2,8		
15	9,5	4,0	3,8	5,1	3,9		
20	20,0	7,1	5,8	7,1	7,2		
25	34,6	10,3	7,0	7,9	10,2		
30	56,9	15,7	11,0	12,4	16,1		
35	86,5	29,7	12,8	13,9	29,5		
40	135,0	45,2	16,0	17,0	44,6		
45	175,5	43,0	22,2	24,1	42,5		
50	240,0	57,7	26,1	27,4	57,7		
55	312,4	73,3	35,5	38,2	73,8		
60	401,9	95,9	40,7	42,0	93,3		
65	516,9	118,5	45,4	46,3	118,1		
70	637,0	145,2	60,8	64,6	144,4		
75	809,5	205,9	68,0	67,6	203,5		
80	983,2	244,0	73,6	71,9	245,7		
85	1177,1	286,3	95,8	98,8	289,0		
90	1357,9	342,5	109,4	110,3	346,0		
95	1648,1	383,4	133,5	137,9	389,4		
100	1922,9	447,2	141,5	144,1	443,7		

Таблица 3: Таблица значений для графика 1 (транспонирование первой матрицы)

,	,	1 1	1 1	1 1			
	среднее значение (мкс)						
размер	транспонирование первой матрицы						
	00	01	O 2	O 3	Os		
1	1.2	1.2	1.1	2.2	1.1		
5	1.6	1.4	1.4	2.4	1.4		
10	4.8	2.9	3.1	3.9	3.1		
15	10.0	3.9	4.5	4.9	4.4		
20	20.7	6.7	8.4	7.8	8.1		
25	36.0	9.6	12.3	11.0	12.1		
30	60.0	14.9	19.5	16.4	18.8		
35	91.7	28.2	27.9	22.7	33.5		
40	141.5	43.6	41.4	32.0	48.6		
45	187.0	38.1	53.9	41.9	53.2		
50	254.0	50.9	73.4	55.5	72.2		
55	339.4	65.5	95.0	70.9	91.0		
60	431.4	83.4	122.6	90.6	118.4		
65	545.1	103.4	150.5	111.3	145.7		
70	677.2	130.8	190.1	138.1	180.9		
75	869.9	196.1	226.8	168.0	248.8		
80	1051.1	230.4	275.5	200.4	300.7		
85	1250.2	270.3	324.9	241.2	355.5		
90	1445.9	318.3	390.4	281.8	415.8		
95	1716.9	349.4	447.5	323.7	481.0		
100	1990.2	405.6	521.7	381.4	556.4		

2.2 Таблица значений с формулами

 t_n^1 - время работы метода **transpose first** при уровне оптимизации ${f O2}$

 $t_n^2\,$ - время работы метода **transpose по** при уровне оптимизации **O2**

 t_n^3 - время работы метода **transpose second** при уровне оптимизации **O2**

$$f^{j} = \frac{\ln(t_{(i+1)}^{j}) - \ln(t_{i}^{j})}{\ln(n_{(i+1)}^{j}) - \ln(n_{i}^{j})}$$

Таблица 4: Таблица с формулами

namon	t_n^1	t_n^2	t_n^3	\mathbf{f}^1	f ²	£ 3
размер						1
1	1,1	1,1	1,1	0,14	0,10	0,11
5	1,4	1,3	1,4	1,16	1,02	1,04
10	3,1	2,6	2,8	0,89	0,75	0,76
15	4,5	3,6	3,8	2,19	1,76	1,43
20	8,4	5,9	5,8	1,75	1,18	0,82
25	12,3	7,7	7,0	2,50	2,58	2,52
30	19,5	12,3	11,0	2,33	1,50	0,99
35	27,9	15,5	12,8	2,96	2,10	1,64
40	41,4	20,5	16,0	2,24	2,94	2,79
45	53,9	29,0	22,2	2,94	2,21	1,55
50	73,4	36,6	26,1	2,70	2,94	3,22
55	95,0	48,5	35,5	2,93	2,27	1,58
60	122,6	59,0	40,7	2,56	2,21	1,37
65	150,5	70,5	45,4	3,15	3,80	3,92
70	190,1	93,4	60,8	2,56	1,89	1,63
75	226,8	106,4	68,0	3,01	2,25	1,22
80	275,5	123,0	73,6	2,72	3,74	4,35
85	324,9	154,3	95,8	3,21	2,25	2,33
90	390,4	175,6	109,4	2,52	3,49	3,68
95	447,5	212,0	133,5	2,99	2,27	1,13
100	521,7	238,3	141,5	-	-	-