EXERCICE (CCP)

a et b étant deux fonctions continues sur \mathbb{R} , on note l'équation différentielle :

(E):
$$x^2y'' + a(x)y' + b(x)y = 0$$

On note S^+ l'espace vectoriel des solutions de (E) sur l'intervalle $I =]0, +\infty$ et S^- l'espace vectoriel des solutions de (E) sur l'intervalle $J =]-\infty, 0[$.

L'objectif de cet exercice est d'étudier la dimension de l'espace vectoriel S des fonctions y de classe C^2 sur \mathbb{R} vérifiant (E) sur \mathbb{R} tout entier.

- 1. Donner la dimension des espaces S^+ et S^- .
- 2. On note φ l'application linéaire de S vers $S^+ \times S^-$ définie par $\varphi(f) = (f_I, f_J)$ où f_I désigne la restriction de f à l'intervalle I et f_J désigne la restriction de f à l'intervalle J. Donner le noyau de l'application φ et en déduire que dim $S \leq 4$.
- 3. Dans cette question, on considère a(x) = x et b(x) = 0, d'où

(E):
$$x^2y'' + xy' = 0$$
.

Determiner S^+ et S^- .

Determiner ensuite S et donner sans détails la dimension de S .

4. Dans cette question (E): $: x^2y'' - 6xy' + 12y = 0.$

Déterminer deux solutions sur I de cette équation de la forme $x \mapsto x^{\alpha}$ (α réel).

En déduire S^+ puis S^- .

Determiner S et donner la dimension de S.

5. Donner un exemple d'équation différentielle du type (E): $x^2y'' + a(x)y' + b(x)y = 0$ tel que dim S = 0 (on détaillera).

On pourra, par exemple, s'inspirer de la question précédente.

Problème : Le flot de Toda (d'aprés Mines PC PSI)

On note \mathbb{R} l'ensemble des nombres réels, I la matrice unité d'ordre m et e_j le j-ième vecteur de la base canonique de \mathbb{R}^m dont les composantes sont les $\delta_{i,j}$, i=1,m (on rappelle que $\delta_{i,j}$ est nul si $i\neq j$ et vaut 1 si i=j).

On note (u|v) le produit scalaire des vecteurs u et v de \mathbb{R}^m . Les vecteurs de \mathbb{R}^m seont assimilés à des matrices colonnes. tu note le transposé du vecteur u.

L'expression i=1,m signifie "pour tout i entier tel que $1 \le i \le m$.

1 Matrices de Jacobi.

Une matrice tridiagonale symétrique réelle est encore appelée matrice de Jacobi. Soit

$$T_{0} = \begin{pmatrix} b_{1} & a_{1} & 0 & \dots & 0 \\ a_{1} & b_{2} & a_{2} & \ddots & \vdots \\ 0 & a_{2} & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & a_{m-1} \\ 0 & \dots & 0 & a_{m-1} & b_{m} \end{pmatrix}$$
 (2)

une matrice de Jacobi d'ordre m. On pose $a_0 = a_m = 0$ et on suppose que $a_i \neq 0$, i = 1, m. On note $\sigma(T_0)$ le spectre de T_0 , c'est à dire l'ensemble de ses valeurs propres.

- **Q.7.** Soit $\lambda \in \sigma(T_0)$ et x un vecteur propre associé de composantes ξ_j , j=1,m. En raisonnant par l'absurde, montrer que $\xi_m \neq 0$.
- **Q.8.** Démontrer que les sous-espaces propres de T_0 sont de dimension 1. Quel est le cardinal de $\sigma(T_0)$?

2 Paires de Lax.

On remplace désormais les a_i et les b_i par des fonctions à valeurs réelles α_i et β_i de la variable réelle t. On pose alors

$$T(t) = \begin{pmatrix} \beta_1(t) & \alpha_1(t) & 0 & \dots & 0 \\ \alpha_1(t) & \beta_2(t) & \alpha_2(t) & \ddots & \vdots \\ 0 & \alpha_2(t) & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \alpha_{m-1}(t) \\ 0 & \dots & 0 & \alpha_{m-1}(t) & \beta_m(t) \end{pmatrix}$$
(3)

ainsi que

$$U(t) = \begin{pmatrix} 0 & \alpha_1(t) & 0 & \dots & 0 \\ -\alpha_1(t) & 0 & \alpha_2(t) & \ddots & \vdots \\ 0 & -\alpha_2(t) & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \alpha_{m-1}(t) \\ 0 & \dots & 0 & -\alpha_{m-1}(t) & 0 \end{pmatrix}$$
(4)

et on étudie le système différentiel non linéaire suivant :

$$\begin{cases}
T'(t) = U(t)T(t) - T(t)U(t), & t \in \mathbb{R} \\
T(0) = T_0 & \text{donné par (2)}
\end{cases}$$
(5)

dont on admettra qu'il possède une solution et une seule T(t) définie sur \mathbb{R} . Le couple (T(t), U(t)) constitue une paire de Lax.

Q.9. Etant donnée T(t) solution de (5), et donc U(t), démontrer que le système différentiel

$$\begin{cases} V'(t) = U(t)V(t), \ t \in \mathbb{R} \\ V(0) = I \end{cases}$$
 (6)

admet une solution et une seule V(t) sur \mathbb{R} .

- **Q.10.** Montrer que pour tout $t \in \mathbb{R}$, la matrice V(t) solution de (6) est orthogonale.
- **Q.11.** Montrer que ${}^tV(t)T(t)V(t)$ est une matrice constante que l'on déterminera. Les valeurs propres de T(t) dépendent-elles de t?

On montre facilement, et on admettra, que le système différentiel (5) peut s'écrire sous la forme suivante :

$$\begin{cases} \alpha_i'(t) = \alpha_i(t)(\beta_{i+1}(t) - \beta_i(t)), \ i = 1, m - 1\\ \beta_i'(t) = 2(\alpha_i^2(t) - \alpha_{i-1}^2(t)), \ i = 1, m \end{cases}$$
(7)

avec $\alpha_i(0) = a_i$, i = 1, m - 1, $\beta_i(0) = b_i$, i = 1, m et $\alpha_0(t) = 0 = \alpha_m(t)$, $\forall t \in \mathbb{R}$. C'est le système de Toda.

3 Etude asymptotique.

Pour tout réel t, on pose

$$L(t) = \sum_{i=1}^{m-1} \alpha_i^2(t) + \frac{1}{2} \sum_{i=1}^{m} \beta_i^2(t)$$
 (8)

- **Q.12.** Montrer que la fonction L est constante. En déduire que les fonctions β_i sont bornées sur \mathbb{R} , soit par D.
- **Q.13.** Pour $1 \le i \le m-1$, montrer que $2 \int_0^t \alpha_i^2(t) dt = \sum_{j=1,i} (\beta_j(t) b_j)$ et en déduire que les α_i^2 sont intégrables sur \mathbb{R} .
- **Q.14.** En déduire que les $\beta_i(t)$, i=1,m, possèdent une limite lorsque $t\to\pm\infty$.
- **Q.15.** Déduire des résultats des questions précédentes que la fonction $\alpha_i \alpha_i'$ est intégrable sur \mathbb{R} . En déduire la limite de $\alpha_i(t)$ lorsque $t \to \pm \infty$.

On note $\chi_t(\lambda) = \det(\lambda I - T(t))$ le polynôme caractéristique de la matrice T(t) et λ_i , i = 1, m, les valeurs propres de T(t) rangées dans l'ordre décroissant.

Les limites de $\beta_i(t)$ pour $t \to +\infty$ ou $t \to -\infty$ seront respectivement notées β_i^+ et β_i^- ; l'ensemble des β_i^+ , i = 1, m, sera noté B^+ et celui des β_i^- sera noté B^- .

- **Q.16.** Montrer que pour tout $\lambda \in \mathbb{R}$, $\chi_t(\lambda)$ tend vers $\prod_{i=1,m} (\lambda \beta_i^+)$ (respectivement vers $\prod_{i=1,m} (\lambda \beta_i^-)$) lorsque $t \to +\infty$ (respectivement $-\infty$).
- **Q.17.** En déduire que $\sigma(T) = B^+ = B^{\circ}$.

On rappelle que, par hypothèse, $\alpha_i(0) = a_i \neq 0, i = 1, m - 1$.

Pour i fixé compris entre 1 et m-1, on note $A^+=\{t>0/\alpha_i(t)=0\}$ et $A^-=\{t<0/\alpha_i(t)=0\}$.

- **Q.18.** On suppose que A^+ n'est pas vide et on pose $\tau = \inf\{t/\ t \in A^+\}$. Déterminer la valeur de $\alpha_i(\tau)$ et montrer que pour $t \in]0, \tau[, \alpha_i(t)$ est du même signe que a_i .
- **Q.19.** En supposant toujours que A^+ n'est pas vide, montrer que

$$\forall t \in [0, \tau[, |\ln |\alpha_i(t)| - \ln |\alpha_i(0)|] \le 2D\tau$$

En déduire que nécessairement $A^+ = \emptyset$, puis que α_i ne s'annule en aucun point de \mathbb{R} .

- **Q.20.** En raisonnant par l'absurde, montrer que $\beta_{i+1}^+ < \beta_i^+$, i = 1, m 1. En déduire que $\beta_i^+ = \lambda_i$, i = 1, m.
- **Q.21.** Montrer que si δ est choisi tel que $0 < \delta < \beta_i^+ \beta_{i+1}^+, \ i = 1, m-1$, alors il existe S et C strictement positifs tels que $\forall s > S, \ |\alpha_i(s)| < Ce^{-\delta s}, \ i = 1, m-1$. En déduire quil existe C' > 0 tel que pour $t > S, \ |\lambda_i \beta_i(t)| < C'e^{-2\delta t}, \ i = 1, m$.