Lab 8: Classification

EECS 16B Spring 2023

https://links.eecs16b.org/lab9-slides

Classification Lab!

Note: many SVD/PCA concepts are new and won't be covered in lecture until next week, so please pay close attention to the presentation & ask any questions as needed!

Today's Lab

- Read <u>lab note</u> before starting lab!
- Long lab!
 - a. Front end verification
 - b. Voice data collection record 6 different words!
 - c. Data preprocessing
 - d. Use SVD and PCA to find PCA basis to project data onto
 - e. Find mean clusters to distinguish between words
 - f. Implement and test classifier
 - g. Tuning Hyperparameters for Best Performance achieve 80% accuracy on 4 chosen words
 - h. Arduino implementation of PCA Classify to classify words live

Part 1: Mic board Circuit Verification

- Check the voltage at each node of mic board:
 - o VDD: 5 V
 - VSS: Ground
 - OUT: centered ~2.5 V
 - o OS2: ~2.5 V
 - OS1: ~ <2.5 V
- Check signal at front end audio circuit output:
 - Output of non-inverting amplifier for low-pass filter
 - Centered ~2.5 V
 - > 2.5 V Vpp when making noise at mic

Part 2: Data Collection and Speech Patterns

- SIXT33N will know four voice commands
 - O Correspond to go straight far, straight close, turn left, turn right
- Make recordings of each of our word commands
 - record 6 words to be safe, choose the best 4 later
 - You may choose any words you want!

Word Choice Guidelines

- Speech pattern recognition, not word recognition
 - Actual word doesn't matter, but the speech pattern for the word does!
 - Enunciate syllables well to make clear distinctions
- Generally, try to use words with:
 - Different syllables (e.g. pear, apple, banana, watermelon)
 - o different endings (hard vs. soft, , e.g back vs. shoe)
- Remember the way you say each word, as you'll have to replicate it later!
 - Can record yourself with your phone so you have a record of how you said each word

Data Collection Guidelines

- The Arduino will record ~2 seconds of micboard output every few seconds
 - When (any) Arduino LEDs are ON, then it is RECORDING
 - The three Arduino LEDs will count up over the ~2 second duration
 - Data is then passed to your computer, saved to a csv file
- Try to say each word the same way at the same distance from the mic
- Make sure your entire word gets captured by the recording window
- You will only be powering your Arduino through the USB this week
 - Ensure that you are using the PSU for front-end power, and not your batteries

Data Collection Guidelines (continued)

- Collect ~40-45 recordings for each of 6 words
 - recommend checking your words by a TA/ASE to make sure they are distinct enough
 - o don't spend too much time choosing words! This is a long lab
- Manually delete outliers to have exactly 40 recordings per word
 - Tip: check for outliers by making line plots of .csv file in Excel
 - o If you don't have any major outliers, delete any rows from the start/end until you reach 40

Part 3: Data Preprocessing/ Word Alignment

- Trim and align each recording to locate and isolate the spoken word
 - Threshold percentage of the max value for the sample counts as a spoken command
 - Pre-length how many timesteps before we hit this threshold did we start speaking the word
 - Length how long the sample is

Word example: "meat"

Part 4: Computing SVD on our Data

- split our data into (70%) training and (30%) testing data
 - Use training data for the steps below, save testing data for Part 6
- stack the aligned words in a data matrix
- Zero-mean ("demean") the data using the mean of each timestep (each "feature") in preparation for SVD

SVD and PCA

- **PCA** = <u>Principal Component Analysis</u>
 - Principal components: basis vectors that maximize variation
 - Oftentimes, we can capture most of the data's behavior with just a few principal components!
 - Fewer dimensions is easier to work with, especially on Arduino
- **SVD** = Singular Value Decomposition
 - o gives us a way to find the principal components of a data set
 - Most significant principal components correspond to largest sigma/singular value
 - Numpy has useful functions for us: numpy.linalg.svd()

Principal Components of Data Example

Sigma Values Example

Part 5: Mean Centroid Classification

- From Part 4, we now have:
 - Labelled training data
 - Axes of most variation (PCA basis vectors)
- Project data onto basis vectors
- Find projected centroid (mean) for each word
 - Classify new, unlabelled data by projecting it onto these basis vectors and finding which centroid it is closest to

Part 6: Testing your classifier + Tuning

- From Part 4: we saved 30% of our data as test data
- Verify the accuracy of our classifier
 - project test data onto our PCA vectors
 - subtract projected mean vector
 - o assign to closest centroid in 3D space
 - o check if classified centroid is the same as the data label
- Aiming for 80% accuracy

Part 7: Arduino Implementation

- Two additional parameters in classify.ino:
 - EUCLIDEAN_THRESHOLD
 - The classified word must be within EUCLIDIAN_THRESHOLD distance of the centroid in order to be successfully classified
 - Otherwise, it is considered noise
 - Refer to centroid plots from SVD/PCA for reasonable values
 - LOUDNESS_THRESHOLD (typically >100)
 - Minimum volume needed for the Arduino to attempt to classify
 - Ensure that the Arduino doesn't attempt to classify background noise

Tips, Tricks, and Warnings

- Make sure the pins used in your code are the same as on your Arduino!
- Do NOT plug in your batteries in this lab
- You have free reign over choosing your words, but choose them in an educated manner according to the guidelines!
 - You don't want to have to keep recording words because they sound too similar
 - Note that you will have to use your words in front of course staff!
- If the word isn't classifying properly, you can add print statements to help debug what's happening in classify.ino!

Forms & Information

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Extension Requests: https://eecs16b.org/extensions
- Makeup Lab: https://makeup.eecs16b.org
- Slides: https://links.eecs16b.org/lab9-slides
- Anon Feedback: https://eecs16b.org/lab-anon-feedback
- Lab Grades error: https://links.eecs16b.org/lab-checkoff-error