Corps perfectoides

1 Perfections

Je note $Ring_{p,sperf}$ (resp. $Ring_{p,perf}$) la catégorie des anneaux commutatifs semi-parfaits (resp. parfaits) de caractéristique p>0. Étant donné un anneau commutatif unitaire semi-parfait R, y'a deux adjonctions

$$(_)_{perf}: Ring_{p,sperf} \leftrightharpoons Ring_{p,perf}: Forget$$

et

$$Forget: Ring_{p,perf} \leftrightharpoons Ring_{p,sperf}: (_)^{perf}$$

où la première est donnée par l'universalité de $R \to (R)_{perf} := \varinjlim_{\varphi} R$ (R est le dernier terme du diagramme $\mathbb{N} \to Ring$ où $i+1 \to i$ est donné par φ et $i \mapsto R$).

Et la deuxième par l'universalité de $R^{perf} \to R$.

1.1 Description usuelle

On a toujours $R^{perf} = \{(x_n)_{n \geq 0} | x_{n+1}^p = x_n\}$. Les lois sont termes à termes.

2 Corps perfectoide

Un corps non-archimédien (NA) $(E, |.|_E)$ est perfectoide si

- 1. $|.|_E$ est pas discrète.
- 2. E est complet.
- 3. \mathcal{O}_E/p est semi-parfait.

Y'a une prop qui dit (en char= 0) que $E=\widehat{F}$ est la complétion d'un corps profondément ramifié F.

3 Tilt

Le tilt d'un anneau commutatif semi-parfait est donné par $(R/p)^{perf}$. Dans le cas de E perfectoide de caractéristique 0, on déf E^{\flat} comme $Frac((\mathcal{O}_E/p)^{perf})$.

3.1 Étude de $\mathcal{O}_{E^{\flat}}$

Pour $(x_n)_n \in \mathcal{O}_{E^{\flat}}$ on lift x_n en \widehat{x}_n . Alors $\lim_{m\to\infty} \widehat{x}_{n+m}^{p^m}$ converge en $x^{(n)}$ tels que

$$(x^{(n+1)})^p = x^{(n)}$$

Maintenant la limite ensembliste

$$\varprojlim_{x\mapsto x^p} \mathcal{O}_E$$

a une structure d'anneau via

$$(x^{(n)})_n + (y^{(n)})_n = (\lim_{m \to \infty} (x^{(n+m)} + y^{(n+m)})^{p^m})_n$$

et $(x^{(n)})_n(y^{(n)})_n=(x^{(n)}y^{(n)})_n$. Ça donne un isomorphisme

$$\mathcal{O}_{E^{\flat}} o \varprojlim_{x o x^p} \mathcal{O}_E$$

et on définit (par extension multiplicative)

$$|x/y|_{E^{\flat}} := |x^{(0)}|_E / |y^{(0)}|_E$$

on a alors

$$|x|_{E^{\flat}} \le |p|^{p^n} \Leftrightarrow x_n = 0$$

simplement parce que $x^{(n)}=0 \mod p$ d'où

$$(x^{(n)})^{p^n} = 0 \mod p^{p^n}$$

3.2 Valeur absolue

On a

- 1. $|E^{\flat}| = |E|$ de manière évidente.
- 2. |E| est p-divisible.
- 3. \mathfrak{m}_E est plat.
- 4. $\mathfrak{m}_E^2 = \mathfrak{m}_E$.

3.2.1 Anneaux de valuations et ordre sur les idéaux

En fait si $|x| \leq |y|, xy^{-1} \in \mathcal{O}_E$ de sorte que

$$x = (xy^{-1})y \in y\mathcal{O}_E$$

d'où $(x) \subset (y)$. Pour les idéaux de type fini c'est facile aussi. En général ca se fait bien aussi je pense.

3.2.2 p-divisibilité

L'idée est bête on a $x=y^p+pz$ et si |x|>|p| la p-divisibilité. Pour les autres cas voir le Bhatt.