Ultragrafos com Relações

21 de julho de 2025

1 Introdução

Estive pensando nessa ideia há algum tempo. Comecei com "Hipergrafos com Dependências", mas logo percebi que havia relações mais interessantes e mais generalizáveis, como implicação e implicação com negação. Quis criar condições mais interessantes que dependessem do caminho escolhido, inventei a ideia de Ultra-Vértices (que é um conjunto de vértices). A ideia foi se expandindo e se tornou algo extremamente generalizável.

2 Definições

Um Ultragrafo com Relações é definido por $U = (V, H, E_V, R_V, M)$, onde:

- V é um conjunto finito de elementos chamados vértices (ou nós).
- $\bullet~H$ é um conjunto finito de conjuntos que é uma partição das vértices chamada de Ultra-vértices.
- E_V é um conjunto de Ultra-arestas direcionadas. Cada Ultra-aresta $e \in E_V$ é um par ordenado $e = (A_e, B_e)$, com $A_e, B_e \subseteq V$, $A_e \neq \emptyset$ e $B_e \neq \emptyset$.
- R_V , chamada de ultra-arestas de relação, é um conjunto de ultra-arestas direcionadas. Cada ultra-aresta de relação $d \in R_V$ é um triplo ordenado $d = (A_d, B_d, R_d)$, com $A_d, B_d \subseteq V$, $A_d \neq \emptyset$ e $B_d \neq \emptyset$, e $R_d \in \{\Longrightarrow, \not\Longrightarrow\}$.
- $M:V\to\mathbb{N}\cup\{\infty\}$, onde M(v) é o número máximo de visitas permitidas ao vértice v em um caminho.

Um Ultra-caminho P_H de um Ultra-vértice u para um Ultra-vértice v em U é uma sequência de Ultra-vértices em H:

$$P_H = (w_0, w_1, \dots, w_k)$$

onde:

- $w_0 = u \in w_k = v \pmod{k \ge 1}$ e $w_i \in H$,
- $\forall i \in \{1, \dots, k\}, \exists e \in E_V \text{ tal que } e = (A_e, B_e) \land A_e \subseteq w_{i-1} \land B_e \subseteq w_i.$

O conjunto de ultra-vértices no ultra-caminho P_H é $UVert(P_H)=\{w_0,w_1,\ldots,w_k\}$. Um Caminho P_V induzido por P_H é:

$$P_V = (v_0, \dots, v_k)$$

onde:

- $v_i \in w_i$ para todo i,
- $\forall i = 1, \ldots, k : \exists (A_e, B_e) \in E_V \text{ tal que } v_{i-1} \in A_e \subseteq w_{i-1}, v_i \in B_e \subseteq w_i.$

O conjunto de vértices no caminho P_V é $Vert(P_V) = \{v_0, v_1, \dots, v_k\}$.

Um ultra-caminho $P_H = (w_0, \dots, w_k)$ é válido em Ultragrafo com Relações se, além de satisfazer as condições de ultra-arestas em E_V , todos os seus prefixos consecutivos $P'_H = (w_0, \dots, w_j)$ (para cada $1 \le j \le k$) satisfazem, definindo $P''_H = (w_0, \dots, w_{j-1})$ se $j \ge 2$ (e P''_H vazio se j = 1, com $\bigcup_{w \in UVert(P''_H)} w = \emptyset$) as seguintes restrições:

- $\forall (A_d, B_d, \implies) \in R_V : (B_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset) \rightarrow (A_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset), \text{ e se } (B_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset) \land (B_d \cap \bigcup_{w \in UVert(P''_H)} w = \emptyset), \text{ então } (A_d \cap \bigcup_{w \in UVert(P''_H)} w \neq \emptyset).$
- $\forall (A_d, B_d, \not\Longrightarrow) \in R_V : (A_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset) \rightarrow (B_d \cap \bigcup_{w \in UVert(P'_H)} w = \emptyset).$
- $\forall v \in V : |\{w \in UVert(P'_H) \mid v \in w\}| \le M(v).$

Um caminho $P_V = (v_0, \ldots, v_k)$ é válido se todos os seus prefixos consecutivos $P'_V = (v_0, \ldots, v_j)$ (para cada $1 \leq j \leq k$) satisfazem, definindo $P''_V = (v_0, \ldots, v_{j-1})$ se $j \geq 2$ (e P''_V vazio se j = 1, com $\{v_i \mid i \in \emptyset\} = \emptyset$) as seguintes restrições:

- $\forall (A_d, B_d, \Longrightarrow) \in R_V : (B_d \cap \{v_0, \dots, v_j\} \neq \emptyset) \rightarrow (A_d \cap \{v_0, \dots, v_j\} \neq \emptyset)$, e se $(B_d \cap \{v_0, \dots, v_j\} \neq \emptyset) \land (B_d \cap \{v_0, \dots, v_{j-1}\} = \emptyset)$, então $(A_d \cap \{v_0, \dots, v_{j-1}\} \neq \emptyset)$.
- $\forall (A_d, B_d, \not\Longrightarrow) \in R_V : (A_d \cap \{v_0, \dots, v_i\} \neq \emptyset) \rightarrow (B_d \cap \{v_0, \dots, v_i\} = \emptyset).$
- $\forall v \in V : |\{i \mid 0 \le i \le j, v_i = v\}| \le M(v).$

3 Teoremas

Teorema 1 (Contradição por Dependência Cíclica).

Seja
$$S_R = \bigcup_{(A_d, B_d, \Longrightarrow) \in R_V} \{A_d, B_d\}.$$

 $Seja \ G_{+} = (S_{R}, E_{R}) \ o \ grafo \ dirigido \ com \ E_{R} = \{(A_{d}, B_{d}) \mid (A_{d}, B_{d}, \Longrightarrow) \in R_{V}\}.$

Se G_+ contém um ciclo dirigido, então não existe P_H válido nem P_V válido em U que comece de um ultra-vértice u ou vértice v_0 tal que os vértices ativados no início não pertençam aos conjuntos do ciclo (i.e., $u \cap \left(\bigcup_{S_i \in C} S_i\right) = \emptyset$ para P_H , ou $v_0 \notin \bigcup_{S_i \in C} S_i$ para P_V , onde C é o ciclo).

Demonstração. Por absurdo. Foco em P_H (análoga para P_V).

Suponha $P_H = (w_0, \dots, w_k)$ válido com $w_0 \cap (\bigcup_{S_i \in C} S_i) = \emptyset$, e suponha que o caminho ativa algum $S_l \in C$ em algum $t_{S_l} > 0$.

Como o caminho entra no ciclo de fora, seja S_l o primeiro conjunto do ciclo ativado, com $t_{S_l} = \min\{t_S \mid S \in C\}$.

Pela estrutura do ciclo, existe $S_m \to S_l$ (pois todo vértice em ciclo tem dependência), então pela condição estrita para $(S_m, S_l, \Longrightarrow)$, em $j = t_{S_l}, S_m \cap \bigcup_{l=0}^{j-1} w_l \neq \emptyset$.

Mas $t_{S_m} < t_{S_l}$, contradizendo a minimalidade de t_{S_l} (pois $S_m \in C$).

Propagando para trás no ciclo, a entrada de fora requer uma ativação prévia dentro do ciclo, impossível sem violar a minimalidade ou a estrita precedência.

Assim, nenhum caminho de fora pode entrar no ciclo sem contradição, implicando ausência de tais P_H válidos.

Teorema 2 (Troca de Relações Inversas em Caminhos Paralelos). Seja $U = (V, H, E_V, R, M)$ um ultragrafo com relações, onde:

- Existem vértices iniciais $i \in V$, finais $f \in V$, $e v_r \in V$ tal que caminhos de i para v_r passam obrigatoriamente por f.
- Existem dois caminhos paralelos de i para f: um via $v_1 \in V$ (i.e., arestas conectando $i \to v_1 \to f$), outro via $v_2 \in V$ (i.e., $i \to v_2 \to f$), sem arestas cruzadas ou alternativas.
- $R = \{(A_1, A_r, \Longrightarrow)\}$, onde $A_1 \subseteq V$ contém v_1 mas não v_2 , e $A_r \subseteq V$ contém v_r .
- M(v) = 1 para todo $v \in V$ (proibindo repetições).
- Arestas adicionais $f \to v_r$.

 $\textit{Seja } U' = (V, H, E_V, R', M), \textit{ com } R' = \{(A_2, A_r, \not\Longrightarrow)\}, \textit{ onde } A_2 \subseteq V \textit{ cont\'em } v_2 \textit{ mas } n\~ao \textit{ } v_1.$

Os conjuntos de ultra-caminhos válidos P_H e caminhos válidos P_V de ultra-vértices contendo i para ultra-vértices contendo v_r em U coincidem com os de U'.

Demonstração. Os possíveis ultra-caminhos candidatos de $\{i\}$ para $\{v_r\}$ são sequências passando por $\{v_1\}$ ou $\{v_2\}$, depois $\{f\}$, e $\{v_r\}$ (outros violam E_V ou M).

Em U: Para caminhos via v_1 , prefixos ativando A_r (i.e., v_r) já ativam A_1 (via v_1), satisfazendo \Longrightarrow . Para via v_2 , ativa A_r sem A_1 , violando \Longrightarrow .

Em U': Para via v_1 , A_2 não ativado, satisfazendo $\not\Longrightarrow$ (premissa falsa). Para via v_2 , ativa A_2 e A_r , violando $\not\Longrightarrow$.

Logo, apenas caminhos via v_1 são válidos em ambos. Análogo para P_V .

Teorema 3 (Ultra-Grafos com Relações Isomórficos a Ultragrafos sem Relações). *Um ultragrafo com* relações $U = (V, H, E_H, R, M)$ é tal que cada ultra-vértice em H contém apenas um elemento (singleton), correspondente ao seu vértice respectivo em V (i.e., $H = \{\{v\} \mid v \in V\}$), simulando um grafo direcionado padrão com relações lógicas sobre ativações de vértices.

Suponha que exista uma relação $(A_i, A_j, \Longrightarrow) \in R$, com $A_i = \{v_i\}$, $A_j = \{v_j\}$, tal que v_i é necessária para qualquer caminho válido que contenha v_j ou ative vértices além de v_j em subgrafos dependentes.

Suponha também que existam caminhos paralelos de um vértice inicial $s \in V$ para um vértice convergente $t \in V$ (fechamento de caminhos): um ramo passando por v_i (permitindo v_i e além), outro por $v_x \in V$ (sem v_i , e portanto incapaz de ativar v_j ou além devido à relação).

Os caminhos podem ser separados em com v_i (válidos para além de v_i) e sem v_i (limitados, não alcançando além de v_i).

Construa um ultragrafo $U' = (V', H', E'_H, \emptyset, M')$ sem relações, onde:

- $V' = V \cup V_d$, com V_d é inserido duplicata de vértices a partir do ponto de ramificação s e subgrafos além (incluindo duplicatas de v_i^d , t^d) até chegar no vértice convergente t.
- E'_H inclui ultra-arestas:

Ultra-arestas originais de E_H até a ramificação.

Para ramo com v_i : ultra-arestas para v_i , t, e subgrafo além.

Para ramo sem v_i (via v_x): ultra-arestas para duplicatas V_d de forma similar às vértices originárias conectadas com outras v^d e v_x , mas com corte abrupto (sem ultra-arestas além do correspondente a v_i^d , representando proibição estrutural).

- $\forall v \in V : |\{i \mid 0 \le i \le j, v_i = v\}| \le M(v).$
- M'(v) = M(v) para $v \in V$, $M'(v^d) = M(v)$ para $v^d \in V_d$.

Existe tal ultragrafo U' sem relações cujo conjunto de ultra-caminhos válidos P'_H coincide com o P_V e P_H de U via mapeamento bijetivo.

Exemplo: $P'_H = \delta(P_v)$ e $P'_H = \delta(\pi(P_H))$ dado π uma função que seleciona elemento em V dentro de w.

Demonstração. A construção de U' utiliza duplicatas nos ultra-vértices via δ para codificar "modos" de ativação: o modo original (v) para caminhos que satisfazem a relação \implies (i.e., passando por v_i), e o modo duplicado (v^d) para caminhos que tentam violar a relação (sem v_i). Os ultra-vértices compostos $\delta(v) = \{v, v^d\}$ permitem escolha implícita no caminho induzido P'_V , mas as ultra-arestas E'_H são definidas de forma a cortar progressão no modo duplicado após v_j^d , replicando a restrição lógica sem R.

Defina o mapeamento bijetivo $\phi: P_V(U) \to P'_H(U')$ (e similarmente para $P_H(U)$, pois H são singletons, $P_H(U) \equiv P_V(U)$ via $\pi(w) = v \in w$) como $\phi(P_V) = (\delta(v_0), \delta(v_1), \dots, \delta(v_k))$, onde para caminhos válidos em U (que passam por v_i para ativar v_j e além), a escolha no caminho induzido em U' usa o modo original v; para tentativas inválidas, o modo v^d é forçado pelo ramo via v_x , mas cortado.

Passo 1: Todo P_V válido em U mapeia para P'_H válido em U'.

Seja $P_V = (v_0 = s, \dots, v_k)$ válido em U. Como válido, se ativa v_j ou além, deve ter passado por v_i , satisfazendo \implies em prefixos. O ramo é via v_i , então em U', as ultra-arestas preservam conexões originais: E'_H inclui arestas de E_H para o modo original. Assim, $P'_H = \phi(P_V) = (\delta(v_0), \dots, \delta(v_k))$ satisfaz as condições de ultra-caminho em E'_H (arestas originais conectam subconjuntos nos modos v), e as visitas respeitam M' (idêntico a M). Como não usa modos v^d (forçados apenas no ramo sem v_i), não há corte, e P_H^\prime é válido.

Passo 2: Todo P'_H válido em U' mapeia para P_V válido em U. Seja $P'_H = (w_0, \dots, w_k)$ válido em U'. Como $R = \emptyset$, validade depende só de E'_H e M'. Defina o inverso $\phi^{-1}(P'_H) = (\pi'(w_0), \dots, \pi'(w_k)), \text{ onde } \pi'(w) = v \text{ se } w = \{v\} \text{ ou o componente original } v \in w = \{v, v^d\}$ (colapsando duplicatas para originais apenas se o caminho induzido usa modo válido). Para P_H^\prime válido que alcança além de v_j (e.g., subgrafos dependentes), deve usar o modo original nos ultra-vértices $\delta(v)$, pois o modo v^d é cortado em E'_H após v^d_j (sem arestas além). Caminhos que tentam modo v^d (via ramo v_x) param em v_i^d , não alcançando o final. Assim, P_H' válidos completos correspondem a caminhos usando modo v, que mapeiam para P_V em U via colapso, e como usam ramo v_i , satisfazem \implies e outras condições (edges e M preservados).

Passo 3: O mapeamento é bijetivo.

 ϕ é injetivo: caminhos distintos em U levantam para ultra-caminhos distintos em U' (modos originais preservam estrutura). Surjetivo sobre válidos: todo P'_H válido em U' usa modo original (como duplicados cortam), colapsando bijetivamente para P_V válido em U. Exemplo: $P'_H = \delta(P_V)$ preserva validade, e $\phi^{-1} = \pi \circ \delta^{-1}$ (selecionando original).

Portanto, os conjuntos coincidem via o mapeamento. \Box

TODO: Eu ainda tenho que verificar se todas as provas estão corretas e os teoremas e definições.