

- Sometimes using simple models (linear regression) is not enough
 - Too simple → more flexible models are needed

Example: Ambient Assisted Living

- digitally connected and controlled devices for support of people with special needs
- emergency buttons, pressure emergency services with connection to a broader smart home

https://bstassen.files.wordpress.com/2015/01/aal.png

- Ambient Assisted Living
 - Person's movement is detected by Radio Signal Strength (RSS) measurements → how to remove noise?

Attempt 1: 5th degree polynomial

Model underfits data → need more flexible models

Using smoothing splines

Basis function expansion

If
$$y = w_0 + w_1 x_1 + w_2 x_1^2 + w_3 e^{-x_2} + \epsilon$$
,

Model becomes linear if to recompute:

$$\phi_1(x_1) = x_1
\phi_2(x_1) = x_1^2
\phi_3(x_1) = e^{-x_2}$$

• Any model of the type $Ey = \sum_i w_i \phi_i(x)$ can be fit by linear regression!

Constructing a piecewise linear function

Method A. Introduce linear functions on each interval and a set of constraints

Continuous Piecewise Linear

(4 free parameters)

$$\begin{cases} y_1 = \alpha_1 x + \beta_1 \\ y_2 = \alpha_2 x + \beta_2 \\ y_3 = \alpha_3 x + \beta_3 \end{cases}$$
$$\begin{cases} y_1(\xi_1) = y_2(\xi_1) \\ y_2(\xi_2) = y_3(\xi_2) \end{cases}$$

Method B. Use a basis expansion (4 free parameters)

$$h_1(X) = 1, h_2(X) = X, h_3(X) = (X - \xi_1)_+, h_4(X) = (X - \xi_2)_+$$

Theorem. The two methods are equivalent.

Splines

- A piecewise polynomial is called an **order-M** (or degree *M*-1) **spline** if it is continuous and has continuous derivatives up to order *M*-2 at the knots.
- Equivalent: An order-*M* spline with *K* knots:

$$h_j(X) = X^{j-1}, j = 1, ..., M$$

 $h_{M+l}(X) = (X - \xi_l)_+^{M-1}, l = 1, ..., K$

An order-4 (degree-3) spline is called a cubic spline

In cubic splines, knot discontinuity is not visible

Natural cubic spline

• A cubic spline f is called **natural cubic spline** if its 2^{nd} and 3^{rd} derivatives are zero at a and b

Note that f is linear on extreme intervals

Basis functions of natural cubic splines

$$N_1(X) = 1, N_2(X) = X, N_{k+2} = d_k(X) - d_{K-1}(X), k = 1, ..., K-2$$

where
$$d_k(X) = \frac{(X - \xi_k)_+^3 - (X - \xi_K)_+^3}{\xi_K - \xi_k}$$

⁷32A99

Variance of spline estimators – boundary effects

Fitting smooth functions to data

Minimize

$$RSS(f,\lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int \{f''(t)\}^2 dt$$

where λ is **smoothing parameter**.

 $\lambda = 0$: any function interpolating data

 $\lambda = +\infty$: least squares line fit

Optimality of smoothing splines

- The function f minimizing RSS for a given λ is a natural cubic spline with knots at all unique values of x_i (NOTE: N knots!)
- Minimizing sum of squares:

$$f(x) = \sum_{j=1}^{N} N_{j}(x) \theta_{j} = N(x)^{T} \Theta$$

$$RSS(\Theta, \lambda) = (\mathbf{y} - \mathbf{N}\Theta)^{T} (\mathbf{y} - \mathbf{N}\Theta) + \lambda \Theta^{T} \Omega_{N} \Theta$$

$$\{\mathbf{N}\}_{ij} = N_{j}(x_{i}) \quad \{\Omega_{N}\}_{ij} = \int N_{i}^{"}(t) N_{j}^{"}(t) dt$$

$$\hat{\Theta} = (\mathbf{N}^{T} \mathbf{N} + \lambda \Omega_{N})^{-1} \mathbf{N}^{T} \mathbf{y}$$

A smoothing spline is a linear smoother

Smoothing spline

$$\hat{f} = \mathbf{N} (\mathbf{N}^T \mathbf{N} + \lambda \Omega_N)^{-1} \mathbf{N}^T \mathbf{y} = \mathbf{S}_{\lambda} \mathbf{y}$$

is a linear smoother.

Compare with other smoothers, such as linear regression.

Degrees of freedom

It can be shown that

$$\mathbf{S}_{\lambda} = (\mathbf{I} + \lambda \mathbf{K})^{-1}$$

where **K** is **penalty matrix**

ullet Eigenvalue decomposition of ${f K}$:

$$\mathbf{S}_{\lambda} = \sum_{k=1}^{N} \rho_{k}(\lambda) \mathbf{u}_{k} \mathbf{u}_{k}^{T}$$

$$\rho_k(\lambda) = \frac{1}{1 + \lambda d_k}$$

• d_k and \mathbf{u}_k are eigenvalues and eigenvectors

Smoothing splines and shrinkage

$$\mathbf{S}_{\lambda}\mathbf{y} = \sum_{k=1}^{N} \mathbf{u}_{k} \rho_{k}(\lambda) \mathbf{u}_{k}^{\mathsf{T}} \mathbf{y}$$

 Smoothing spline decomposes vector y with respect to basis of eigenvectors and shrinks respective contributions

• The eigenvectors ordered by ρ increase in complexity. The higher the complexity, the more the contribution is shrunk.

[']32A99 1

Penalty and degrees of freedom

•
$$df_{\lambda} = trace(\mathbf{S}_{\lambda}) \rightarrow df_{\lambda} = \sum_{k=1}^{N} \frac{1}{1 + \lambda d_{k}}$$

- λ increase $\rightarrow df_{\lambda}$ decrease
- higher $\lambda \rightarrow$ higher penalization.
- Smoother matrix is has banded nature
 local fitting method

Automated selection of smoothing parameters

What can be selected:

Regression splines

- Degree of spline
- Placement of knots

Smoothing spline

Penalization parameter

Automated selection of smoothing parameters

$$df_{\lambda} = trace(\mathbf{S}_{\lambda}) = \sum_{k=1}^{N} \frac{1}{1 + \lambda d_{k}}$$

- Use either df_{λ} or λ
 - − Given df_{λ} → solve equation → find λ
- Use holdout principle or cross validation for parameter tuning

Automated selection of smoothing parameters

Bias-variance tradeoff

Multidimensional splines

How to fit data smoothly in higher dimensions?

Formulate a new problem

$$\min \sum_{i} (y_i - f(x_i))^2 + \lambda J[f]$$

• The solution is thin-plate splines

 The solution in 2 dimensions is essentially sum of radial basis functions

$$f(x) = \beta_0 + \beta^T x + \sum \alpha_j \eta \left(\left\| x - x_j \right\| \right)$$

Splines: R code

- Smoothing splines : smooth.spline()
- Natural cubic splines: ns() in splines
- Thin plate splines: Tps() in fields

res1=smooth.spline(data\$Time,data\$RSS_anchor2,df=10)
predict(res1,x=data\$Time)\$y

Model

$$Y \sim EF(\mu, ...)$$

where

- $g(\mu) = \alpha + s_1(X_1) + s_2(X_2) + s_p(X_p)$
- $-s_i(X)$ smoothers, normally splines
- EF distribution from exponential family
- -g Link function
- Often linear terms are often included separately

$$EY = \alpha + s_1(X_1) + \dots + s_p(X_p) + \sum_{j=1}^q \beta_j X_{p+j}$$

Example: EF= normal, EF=Bernoulli (logistic)

Sometimes even higher orders are included (thin-plate splines)

$$g(\mu) = \alpha + s_1(X_1) + \dots + s_p(X_p) + \sum_{j=1}^{q} \beta_j X_{p+j} + s_{12}(X_1, X_2)$$

Method is reasonable to apply when additivity is observed or admissble

Example: Total Nitrogen level in Rhine river

Estimation of additive models

Estimation by MLE

$$g(\mu) = \alpha + f_1(x_1) + ... + f_p(x_p)$$

The backfitting algorithm for Normal model

1.Initialize:
$$\hat{\alpha} = \frac{1}{N} \sum_{i=1}^{N} y_i, \quad \hat{f}_j = 0, j = 1,..., p$$

2.Cycle:
$$j = 1,..., p,1,..., p,...,1,..., p$$

$$\hat{f}_j \leftarrow s_j \left[\left\{ (y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_{ik})) \right\} \right]$$

$$\hat{f}_j \leftarrow \hat{f}_j - \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij})$$

λ in each term can be estimated byCV

- Example: Modelling the concentration of total nitrogen at Lobith on the Rhine
 - There are seasonal trends (GAM reasonable)
 - Variables
 - Nitrogen level
 - Year
 - Month
- R: package mgcv (also package gam)
 - gam(formula, family,data,select, method)
 - Select allows for term (variable) selection
 - predict(), plot(), summary()...
 - s(k, sp)
 - k should be the same as the amount of unique values of this variable in smoothing splines
 - sp smoothing penalty.

R code


```
> res$sp
    s(Year) s(Month)
0.0001853275 0.0060877093
```

```
> summary(res)
Family: gaussian
Link function: identity
Formula:
TotN_conc ~ Year + Month + s(Year, k = length(unique(river$Year))) +
   s(Month, k = length(unique(river$Month)))
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0006039 0.0016063 0.376
                                          0.707
           0.0014321 0.0003277 4.370 2.31e-05 ***
Year
           0.2471508 0.1004312 2.461
Month
                                          0.015 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
           edf Ref.df F p-value
s(Year) 11.799 12.751 41.32 <2e-16 ***
s(Month) 4.551 5.819 36.51 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Rank: 25/27
R-sq.(adj) = 0.831 Deviance explained = 84.9%
GCV = 0.26856 Scale est. = 0.23935 n = 168
>
```

 Seeing trend and seasonal pattern plot(res)

