

Good

Today's content

- O. Introduction
- 02. Fibonacii
- 03. Stair ways (Amazon, Google)
- 04. Minimum squares to reach N (Walmart.)
 Amazon

$$fib(n) = fib(n-1) + fib(n-2)$$

 $fib(0) = 0$ $fib(1) = 1$

int
$$fib(n)$$

If $(n \le 1)$ return;

SC: $O(2^n)$

Sc: $O(n)$

return $fib(n-1) + fib(n-2)$

optimal substructure - solving problems by solving

Smaller subproblems

Overlapping subproblems - s solving some problems
multiple lime

Solution + Storing the answer for already solved problem 4 reusing it again

n' fibonoccii
$$0 \rightarrow N$$

int () $dp = ne\omega$ int $(N+1)$ -intidise
it with -1

and fib(n)

If
$$(n \le 1)$$
 return n;

if $(dp(n)! = -1)$ return $dp(n)$
 $dp(n) = fib(n-1) + fib(n-2)$

return $dp(n)$;

calls

Tabulation

int
$$dp(N+1)$$

$$dp(0)=0;$$

$$dp(1)=1;$$

NO recursive

Space

return dp(n);

Stairs - No. of works to reach N stair

from 0 to 4 there are 5 ways, then from 0 to 5 as well there are 5 ways

from 0 to 3, there are 3 ways. Then

$$\omega_{oys}(n) = \omega_{oys}(n-1) = 1 + \omega_{oys}(n-2) + 1$$

$$\omega_{oys}(1) = 1 + \omega_{oys}(2) = 2$$

DP(i) = No. of ways to reach it ida from O ida

$$\mathcal{D}P(i) = \mathcal{D}P(i-i) + \mathcal{D}P(i-2)$$

$$\mathcal{D}P(0) = 1$$

$$\mathcal{D}P(i) = 1$$

10:07 pm -> 10:17 pm

Find minimum no. of perfect squares required to get sum = N (duplicate squares are allowed)

$$N = 6 = 1^{2} + 1^{2} + 1^{2} + 1^{2} + 1^{2} + 1^{2}$$

$$= 2^{2} + 1^{2} + 1^{2}$$

$$= 2^{2} + 1^{2} + 1^{2}$$

$$= 2^{2} + 1^{2} + 1^{2}$$

$$= 2^{2} + 1^{2} + 1^{2}$$

$$N = 10$$

$$= (^{2} + 1^{2} + ... - 10 + imed)$$

$$= 3^{2} + 1^{2} = 2 \text{ no. req} \qquad \text{ans} = 2$$

$$= 2^{2} + 2^{2} + 1 + 1^{2} = 4 \text{ no. req}$$

$$= 2^{2} + 1^{2} + 1 + 1^{2} + 1^{2} + 1^{2} = 7 \text{ no. req}$$

$$\frac{N=9}{2}$$
 ans=1

N - nearest perfect

Square

$$2^{2}+2^{2}+2^{2} \rightarrow Ans=3$$

N=12 = 12-3

= 3-12

= 2-12

= 1-12

Brute force - Try every possible way to form
this sum.

$$minsq(12) = 1 + min(minsq(11), minsq(8), minsq(3))$$

) minsq(i) = 1 + min (minsq(i-
$$x^2$$
) }
 $\forall x^2 \leq i$

```
int psquare (int N, int ()dp)

ons=\infty

of (n==0) return 0;

if (dp(N)=-1) return dp(N);

ans=\infty:

for (x=1; x*x1 \le n; x++) d

ans= min (ans, psquare (N-x2, dp))

db(N)= ans +1;

return dp(N);
```

int dp [N+1];

0	1	2	3	ч	5	6	<u> </u>
0	1	2	3	T.	2	3	4
	12	12+12	ا ² ز ² + ا ²	22	1 ² + 2 ²	1 ² + 2 ² + 1 ²	1 ² + 2 ² + 1 ²

TC: 0(N/4)

30:0(4)

$$dp(0) = 0;$$
 $for(i=1; i \le N; i++)i$
 $ans = \infty$
 $for(x=1; x * x \le i; x++)i$
 $ans = min(ans, dp(i-x^2));$
 $dp(i) = ans + 1;$

return dp(N)