

PSY W1001 Section 2 MW 8:40-9:55 Fall 2012

Wednesday, September 12

Behavioral

Neuroscience

Announcements

- Mark your calendars
 - Psychology Department Colloquium
 - September 19th Malcolm Gladwell
 - Check the Psychology Department website for information about upcoming talks, locations and times.
- Experimental Participation
 - − Don't ask me − I really really really don't know.

Any questions from last lecture?

Why do neurons matter?

- Mirror Neurons
 - Basis for empathy?

The Organization of the Nervous System

- Central nervous system (CNS)
 - Brain and the spinal cord
- Peripheral nervous system(PNS)
 - Connects the CNS to organs and muscles
 - Somatic nervous system:
 - conveys information into and out of the CNS
 - Autonomic nervous systems (ANS)
 - carries involuntary and automatic commands that control blood vessels, body organs, and glands
 - Sympathetic nervous system (fight or flight)
 - » prepares the body for action in threatening situations
 - Parasympathetic nervous system (rest and digest)
 - » helps the body return to a normal resting state

Three major divisions of the brain

• Hindbrain:

- coordinates information coming into and out of the spinal cord, and controls the basic functions of life
 - Medulla, reticular formation, cerebellum, pons

Midbrain

- important for orientation and movement
 - Tectum, tegmentum

• Forebrain:

- highest level of brain; critical for complex cognitive, emotional, sensory, and motor functions
 - Cerebral cortex, subcortical structures

Subcortical Structures

- Basal Ganglia
 - Caudate, Putamen, Globus
 Pallidus, Subthalamic Nucleus,
 Substantia Nigra
 - Parkinson's Disease
- Hippocampus
 - Memory, integration
- Thalamus
 - Sensory relay

The Limbic System

- Limbic system
 - motivation, emotion,learning, and memory
 - Hypothalamus
 - regulates body temperature, hunger, thirst, and sexual behavior
 - Amygdala
 - Hippocampus
 - Also other structures...

Cerebral Cortex and Lobes

- Frontal
 - Judgment, decision. Motor planning, language
- Parietal
 - Motor, motion perception,
- Occipital
 - Vision
- Temporal
 - Object recognition, language, hearing

Size matters....but not the way you think

• Somatosensory and Motor Cortices

Who's the smartest of them all? (we are, of course)

Research in Neuroscience

Combination of animal and human studies

Brains are strikingly similar across

species

 Rat brain has basically the same structures as a human brain

- Invasive methods can be used in animal studies
 - Lesion (destroy) small areas of the brain
 - Apply drugs with specific pharmacological actions and observe resultant behavior
- Recent advances allow more human brain research

Studying damaged human brains

- Studying brains with specific injury
 - Traumatic brain injury can result in specific damage
 - Stroke can destroy or impair areas of the brain
 - We can begin to infer functions of these areas based on abilities lost after injury
- Not a specific method
 - Injury doesn't respect structural boundaries

Classic Trauma Case

- Phineas Gage
 - Reports of dramatic personality change
 - Possibly a function of inability to plan and execute non-risky decisions
- For an alternative view of the case of Phineas Gage, see the supplemental reading posted on Courseworks

Other Classic Findings

- Language and the Brain
 - Wernicke's (language comprehension) and Broca's (language production) areas

Studying intact human brains

• Structural methods

- Can correlate different size brain areas with different behavior
 - Larger lateral ventricles in patients with schizophrenia
 - Larger hippocampus in London cab drivers
- Caveat: These are correlations!!

Functional methods

- Can correlate activity in specific brain areas with behavior
 - Good for cognitive tasks
 - Not good for motor tasks
- Still Correlations!!
 - Mirror neuron studies in humans

A few notes

- Be on time
 - But, if you are a few minutes late, please sit at the edges –
 don't disrupt others
- Latecomers
 - Always get notes, especially check if there have been important announcements made at the beginning of lecture
- Classroom etiquette
 - Cell phones silent in the lecture, computers only for notes
 - Empty your own trash
 - Do not leave before 9:55 unless the lecture is over.

Study Questions

- Compare and contrast the CNS and PNS.
- You should be able to identify each of the brain structures discussed in lecture, and identify them correctly on a diagram.
- What area(s) and neurotransmitter(s) are affected by Parkinson's Disease?
- What is the Hypothalamus?
- Who was Phineas Gage? Did Gage suffer from the personality changes that are attributed to him? What is the evidence for your answer to the previous question? (hint: you will need the supplemental reading to accurately answer this question)
- Using examples such as Phineas Gage and the findings of Paul Broca, explain the concept of localized function in the brain is scientifically supported.
- Does size matter when it comes to the brain? Why or why not? Use evidence to support your answer.

More Questions

- How can we study the human brain? Include specifics on the methods, the strengths and the weaknesses of each method.
- Is it valid to study brain function by studying the behavior of people who suffered brain injury? Why and why not?