

CHANDRAMOULI GNANASAMBANDHAM

Bromenlandweg 10 71034 Böblingen

- **658 8043**
- chandramouli681990@gmail.com

SPRACHEN

fließend | Deutsch fließend | Englisch Muttersprache | Tamil fortgeschritten | Hindi

PREISE

Best Presentation Award

Title: Optimization of Vehicle Parameters based on Lap-Time Simulations using Multiobjective Evolutionary Algorithm

Der Preis wurde 2015 von der Firma ALTEN GmbH gestiftet und war mit **500**€ dotiert.

Best Presentation Award

Title: An Adaptive Approach to Real-Time Estimation of Vehicle Dynamics Parameters using Kalman Filtering

Der Preis wurde 2014 von der Firma ALTEN GmbH gestiftet und war mit 500€ dotiert.

WEB

https://github.com/chandramouli6890

https://linkedin.com/in/gnanasambandhamc

Medium https://chandramoulig.medium.com

Matlab

TECHNISCHE QUALIFIKATIONEN

Programmiersprachen:

■ ■ ■ ■ 8 Jahre | C/C++ ■ ■ ■ ■ 8 Jahre | Matlab ■ ■ ■ □ 5 Jahre | BASH ■ ■ □ □ 3 Jahre | Python

Betriebssystem

■ ■ ■ ■ Linux (Debian, Ubuntu) ■ ■ ■ □ Microsoft Windows

Programm-Kenntnisse:

- Matlab/Simulink: Modellierung, Simulation, Optimierung, C/C++ MEX API, SiL/HiL Simulationen
- Python: Flask, Plotly, Dash GUI Programmierung, Pandas Datenanlyse Bibliothek, Paho MQTT Client Bibliothek
- Mehrkörper-Simulation: LMS Virtual.Lab Motion, Neweul-M², MSC Adams
- sonstige Programme: COMSOL Multiphysics, OpenSCAD, Blender mit Python scripting, OptiSlang

Software Entwicklung:

- Technologien: CUDA GPU Programmierung, PETSc, EIGEN, objektorientierte Programmierung (OOP), OpenGL
- Versionierung: Gitlab, Github, Gitflow Branching-Modell
- Entwicklungsumgebung: vim, Visual-Studio Code, Eclipse
- **Debuggers/Profilers:** gdb, valgrind, calgrind, Intel VTune

BERUFLICHER WERDEGANG

April 2021

Einreichung der Dissertationsschrift

Particle Dampers- Enhancing Energy Dissipation using Fluid/Solid Interactions and Rigid Obstacle-Grids

• voraussichtlicher Termin der Doktorprüfung: 13.07.2021

SONSTIGE PROJEKTE

Juni 2014

Driver-in-the-Loop Simulator

Im Rahmen meiner freiwilligen Tätigkeit für das KaRaT Formula Student Rennteam habe ich einen Driver-in-the-Loop Simulator basierend auf einer Kommunikationsschnittstelle zwischen IPG CarMaker und Matlab/Simulink entwickelt.

Juni 2015

Machine Learning Suite

Implementierung eines Deep Convolution Neural Network (Deep ConvNet) zur optischen Zeichenerkennung im Rahmen eines freelancer Softwareentwicklungsprojektes. Zur Steigerung der Effizienz wurde das Matlab MEX-API verwendet.

Iuli 2020

Raspberry Pi NAS

Aufbau und Einrichtung eines vielseitig einsetzbaren Raspberry-Pi Heimnetzwerkspeichers (NAS) mit vielen Funktionen, wie z.B. ssh-Zugriff über das Interet, automatische Backups mit rsync, DNS-server mit integriertem Pi-Hole Werbeblocker und VPN-Server.

BERUFLICHER WERDEGANG (FORTSETZUNG)

Mai 2016 - April 2021

Universität Stuttgart

Wissenschaftlicher Mitarbeiter am Institut für Technische und Numerische Mechanik (ITM)

- Forschungsschwerpukte:
 - Modellierung und Simulation von Partikeldämpfern (PD) mittels gitterfreien Lagrange'schen Methoden
 - systematische Untersuchung der zugrundeliegenden Dissipationsmechanismen bei PD
- Planung und Durchführung messtechnischer Analysen schwingungsbehafteter Systeme mithilfe von Laser-Doppler Vibrometrie und Verfahren der experimentellen Modalanalyse
- Entwicklung und Administration der Partikelsimulationssoftware
 Pasimodo in C++:
 - Entwicklung und Implementierung von Algorithmen zur effizienten Berechnung der Fluid/Struktur Interaktionen
 - Verwaltung von Bugreports und Merge-Requests in Gitlab
 - Überwachung und Pflege des nächtlichen Build-Systems nach den Prinzipien der Continuous Integration (CI)
 - Pflege des verteilten C++ Kompilierungsystemes basierend auf distcc
 - Entwicklung und Pfege von Software Releases mithilfe des Gitflow Branching-Modells
- · Lehrtätigkeiten:
 - Organisation und Durchführung von Veranstaltungen für die Vorlesung "Fahrzeugdynamik"
 - Durchführung von Laborpraktika

Oktober 2015 - April 2016

Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM), Kaiserslautern

Werkstudententätigkeit

• Entwicklung eines POD basierenden Verfahrens zur Reduktion von nichtlinearen FE Systemen

Oktober 2014 - September 2015

Daimler AG, Böblingen

Praktikum und Werkstudententätigkeit in der Abteilung Vorentwicklung Gesamtfahrwerk

- Entwurf und Entwicklung einer parametrischen Kennlinie zur automatisierten Elastomerlageroptimierung in der Gesamtfahrzeugsimulation mit Hilfe des Programms optiSLang
- Entwicklung eines Verfahrens zur Überführung von Steifigkeitshysteresen in abgeleitete Kennlinie anhand Curve-Fitting Verfahren in **Python**
- Erstellung eines Programms in einem vorhandene Matlab-Workflow zur automatisierten Änderung von Gummilagerkennlinie

BERUFLICHER WERDEGANG (FORTSETZUNG)

Dezember 2013 - September 2014

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern

Wissenschaftliche Hilfskraft im Fachbereich Embedded Intelligence

 Implementierung eines Sensor-Fusion Algorithmus zur Orientierungsbestimung eines Systems mithilfe einer inertialen Messeinheit (IMU) in C++

AKADEMISCHER WERDEGANG

Oktober 2012- April. 2016

Master of Science Commercial Vehicle Technology

Technische Universität Kaiserslautern, Abschussnote: 1.9

Studienschwerpunkte: Regelungstechnik, Fahrdynamikregelung, Lastdatenanalyse, Echtzeitsysteme, Automotive Software

Development.

Juni 2008- April 2012

Bachelor of Engineering Fertigungstechnik

Anna University, Chennai, Indien, Abschussnote: 8.3/10 (sehr gut)

Juni 1996- April 2008

Gymnasium

DAV Hr. Sec. School, Chennai, Indien, Abschussnote: 93/100 (sehr gut)

AUSGEWÄHLTE PUBLIKATIONEN

Gnanasambandham, C.; Fleissner, F.; Eberhard, P.: Enhancing the Dissipative Properties of PDs using Rigid Obstacle-Grids. Journal of Sound and Vibration, Vol. 484, p. 115522, 2020.

Gnanasambandham, C.; Stender, M.; Hoffmann, N.; Eberhard, P.: Multi-Scale Dynamics of PDs using Wavelets: Extracting Particle Activity Metrics from Ring Down Experiments. Journal of Sound Vibration, Vol. 454, pp. 1-13, 2019.

Gnanasambandham, C.; Schönle, A.; Eberhard, P.: Investigating the Dissipative Effects of Liquid Filled PDs using Coupled DEM-SPH Methods. Computational Particle Mechanic, Vol. 6, pp. 257-169, 2019.

Böblingen, den 25. Mai 2021

Chandramouli Gnanasambandham

100.