

Aplicación del Análisis de Datos Simbólico a la Detección de Inusualidades

Dr. Oldemar Rodríguez Rojas

Inusualidad o atipicidad

Objetos Simbólicos:

- "Real-life objects are too complex to be represented by points in a vectorial space" [Bock&Diday, 2000]
- "Symbolic objects overcome this limitation by representing concepts rather than individuals" [Bock&Diday, 2000]
- "Knowledge extraction from large data bases is our main aim as in Data Mining" [Diday, 1998]
- En análisis simbólico de datos transforma la Minería de Datos una herramienta para "Big Data".

Tabla clásica:

Example 4.1.2: A classical data matrix with mixed variables

The classical data matrix in Table 4.2 describes characteristics of N=6 students in terms of p=4 variables:

$egin{array}{c} Person \ u \end{array}$	$Height \ Y_1$	$Weight \ Y_2$	$Subject \ Y_3$	Sex Y_4	, Ç	· · ·	e		
Anna	1.70	65.9	math	1	0		0		
Berta	1.62	61.4	med	1					
Claudia	1.65	60.1	phys	1					
Daniel	1.75	77.3	math	0				,	
Eric	1.80	74.3	med	0	0 3				
Fred	1.68	67.0	econ	0	0		57 0		c

Table 4.2: A classical data matrix $X = (x_{uj})$ with mixed variables

Symbolic Data Table:

$$\underline{X} = \left(\begin{array}{c|cccc} (80,100] & (D\ 0.4;\ C\ 0.3;\ S\ 0.2;\ N\ 0.1) & \{\text{CL, BNP}\} \\ (100,130] & (D\ 0.1;\ C\ 0.3;\ S\ 0.4;\ N\ 0.2) & \{\text{SPK, DB, BNP}\} \\ (10,13] & (D\ 0.3;\ C\ 0.3;\ S\ 0.3;\ N\ 0.1) & \{\text{CL, DB, BNP}\} \end{array} \right) \begin{array}{c} \leftarrow x_1' \\ \leftarrow x_2' \\ \leftarrow x_3' \\ \leftarrow x_4' \end{array}$$

where, e.g., the third row

$$x_3' = ((8, 10], (D 0.3; C 0.5; S 0.1; N 0.1), {SPK})$$

describes the town a_3 and could be equivalently displayed in a semi-graphical form such as

$$x_3' = \left((8, 10], \begin{array}{c} 0.5 \\ 0.5 \\ 0.0 \end{array} \right) \begin{array}{c} 0.5 \\ 0.1 \\ 0.1 \end{array}, \{ SPK \} \right)$$
 Symbolic Object

Creando tablas simbólicas:

Classical description of Schools

Schools	Town	Nb of pupils	Kind	Level
Jaurès	Paris	320	Public	1
Condorcet	Paris	450	Public	3
Chevreul	Lyon	200	Public	2
St Hélène	Lyon	380	Private	3
St Sernin	Toulouse	290	Public	1
St Hilaire	Toulouse	210	Private	2

Symbolic description of the towns by the schools variables

Town	Nb of pupils	Kind	Level
Paris	[320, 450]	(100%)Public	{1, 3}
Lyon	[200, 380]	(50%)Public , (50%)Private	{2, 3}
Toulouse	[210, 290]	(50%)Public, (50%)Private	{1, 2}

¿Cómo se construyen las tablas simbólicas?

Millones...

Análisis Clásico

Datos

Id-trx	Causal	Sucursal	Monto	# Tarjeta
3457	36	Curridabat	2,500.00	1000
1251	28	San Pedro	1,750.00	1001
3245	39	Grecia	2,400.00	1000
7635	35	San Pedro	1,900.00	1001
3245	35	Alajuela	1,850.00	1001
5367	27	Alajuela	1,900.00	1002
6486	34	Heredia	1,600.00	1002

Cientos...

Análisis Multivariado Simbólico

Conceptos

# Tarjeta	Causal	Sucursal	Monto	Salario
1000	36(1/2),39(1/2)	{Curr-50%,Gre-50%}	[2.4,2.5]	255.4
1001	28(1/3),35(2/3)	{SP-66%,Al-33%}	[1.75,1.9]	122,2
1002	27(1/2),34(1/2)	{Al-50%,Her-50%}	[1.6,1.9]	534,5

From a Relational Database to a symbolic data table:

Symbolic Data Base:

Symbolic Data Base Relational Data Base 100% knowledge 90 % knowledge 15 Gigabyte 10.3 Megabyte

Perfil simbólico

Espacio con el Perfil Simbólico y sus Transacciones

Transacción Inusual

Transacción Usual

Comparación Vector Per	rsonal vs Transacción								
Concept		TablaAprendizajeA bril.duration		TablaAprendizajeA bril.indInternationa I	TablaAprendizajeA bril.diaSemana	Distancia Maxima	Desviacion Estandar Distancia Hausdorff	Promedio Distancias	Afinidad Ma
8102148			[0,240]			1.0396	0.0639	0.7624	0.8397
La Transaccion			[39,39]			0.7206	0	0.7206	0.5066
									>

Distancias entre Objetos Simbólicos

Cas 1

Cas 2

Fig. 4.3 - Comparaison d'intervalles

Distancias entre Objetos Simbólicos

Notation	Intervalle	Qualitatif		
A_k	$[a_l, a_u]$	$a_1,$		
B_k	$[b_l, b_u]$	$b_1,$		
inters ou $ A_kB_k $	longueur $(A_k \cap B_k)$	$\operatorname{card}\left(\mathbf{A}_{k}\cap\mathbf{B}_{k}\right)$		
l_s ou $ A_k + +B_k $	$ max(a_u, b_u) - min(a_l, b_l) $	$l_a + l_b - inters$		
l_a ou $ A_k $	$ a_u - a_l $	$\operatorname{card}(A_k)$		
$l_b \text{ ou } B_k $	$ b_u-b_l $	$card(B_k)$		
$ U_k $	longueur du domaine	cardinal du domaine		

Mesure proposée par Ichino [Ichino88]

En reprenant les notations du tableau 4.1 (page 146), la mesure s'écrit de la façon suivante:

$$\Phi(A_k, B_k) = |A_k + B_k| - |A_k - B_k| + \gamma(2|A_k - B_k| - |A_k| - |B_k|)$$

Distancias entre Objetos Simbólicos

Distance de Hausdorff [Bandemer et Nather92]

Entre deux ensembles A et B, la distance s'écrit :

$$D_h(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\}$$

La mesure du Khi2 est la suivante:

$$d(1,2) = \sum_{k=1}^{p} \left(\sum_{i=1}^{q} \frac{1}{f_{ik}^{1} + f_{ik}^{2}} \left(\frac{f_{ik}^{1}}{\sum_{i=1}^{q} f_{ik}^{1}} - \frac{f_{ik}^{2}}{\sum_{i=1}^{q} f_{ik}^{2}} \right)^{2} \right)^{\frac{1}{2}}$$

Índice de Afinidad

Now, if we weight the importance of a variable Y_j with a weight w_j (with $0 \le w_j \le 1$ and $\sum_{j=1}^p w_j = 1$), we define the (weighted) **affinity similarity coefficient** $aff(k, k') \equiv a(k, k')$ between the units (groups) $k, k' \in E$ by the weighted average:

$$a(k,k') := \sum_{j=1}^{p} w_j \cdot aff(\xi_{kj}, \xi_{k'j}) = \sum_{j=1}^{p} w_j \cdot \sum_{l=1}^{m_j} \sqrt{\frac{n_{kjl}}{n_{kj.}} \cdot \frac{n_{k'jl}}{n_{k'j.}}}.$$
 (8.68)

Perfil del Cliente

Inusualidad o atipicidad

Programa Iberoamericano de Formación en Minería de Datos

Gracias....