C

	API ARDIII KALAM TECHNOLOGICAL	INIVERSITY	
Reg No.:	Name:_		1
		#\$\frac{\partial \text{s}}{\partial \text{s}} \text{s}	1

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Pages: 2

•	Course Code: CS204		
	Course Name: OPERATING SYSTEMS (CS)	ļie.	
Max. M	arks: 100 Duration: 3 H	oui	
	PART A Answer all questions. Each carries 3 marks.		
1	What is the need for system calls in Operating System?	3	
2	How does the hardware find the Operating System kernel after system switch-on?	3	
3	The long term scheduler directly affects the system performance. Explain how.	3	
4	Differentiate thread from a process.	3	
	PART B		
	Answer any two questions. Each carries 9 marks.		
5	Explain the Kernel data structures with suitable example.	9	
6	With the help of a diagram explain the different states of a process.		
7	A writer process like to send some bulk information to a reader process. Explain		
	the IPC mechanism that can be used for the purpose.		
	PART C		
	Answer all questions. Each carries 3 marks.		
8	What is the difference between counting and binary semaphores?	3	
9	Explain the syntax of a monitor.	3	
10	What is preemptive scheduling? Give one disadvantage of preemptive scheduling.	3	
11	What are the necessary conditions that cause deadlock in a system?	3	
	PART D		
12	Answer any two questions. Each carries 9 marks.	9	
12	Write an algorithm that satisfies all the critical-section requirements for n process.		
13	Find the average waiting time and average turnaround time for the processes given	9	
	in the table below using:- i) SRT scheduling algorithm ii) Priority scheduling		
	algorithm		

Process	Arrival Time (ms)	CPU Burst Time (ms)	Priority
P1	0	5	3
P2	2	4	1
P3	3	1	2
P4	5	2	4

14 Consider the following snapshot of a system with five processes P1, P2, P3, P4, 9
P5 and four resources A,B,C,D. Using Bankers Algorithm check whether the system is in safe state or not.

	F	Allocation			
	Α	В	С	D	
P1	1	0	2	2	
P2	0	2	1	2	
P3	2	4	5	0	
P4	3	0	0	0	
P5	4	2	1	3	

Max			
Α	В	С	D
3	2	5	2
3	4	1	2
2	7	7	3
5	5	0	7
6	2	1	4
PAI	RT I	₹.	

Available					
A	В	С	D		
3	0	0	1		

Answer any four questions. Each carries 10 marks.

15 a) Differentiate logical address and physical address with an example. b) What is dynamic storage-allocation problem with respect to contiguous memory allocation? Discuss the three strategies that act as a common solution to this problem. 4 16 a) What is demand paging? What are its advantages? Consider the reference string: 8 4 6 4 3 5 8 4 3 2 3 5 8. Assuming demand paging 6 with four frames, how many page faults would occur for:i) FIFO replacement algorithm ii) Optimal replacement algorithm With the help of an example explain the paging concept. 6 17 a) Does paging suffer from fragmentation? Explain. Compare sequential access and direct access methods of storage devices. 18 a) What is the significance of access rights associated with each file in a system? 6 5 19 How can we make a new magnetic disk ready for use (to store files)? a) 5 What is swap space? How is it managed in Linux system? Explain FCFS, SSTF and SCAN disk scheduling algorithms, using the given disk 20 queue of requests: - 20, 89, 130, 45 and 180. Assume that, the disk has 200

platters ranging from 0 to 199 and the current position of head is at cylinder 100.