Assignment 2

 ${\bf Jonas\ Trepiakas\ -\ jtrepiakas@berkeley.edu}$

p. 35

17: Let \mathbb{R}_{fc} denote the set of all real numbers with the finite-complement topology, and define $f: \mathbb{R} \to \mathbb{R}_{fc}$ by f(x) = x. Show that f is continuous, but is not a homeomorphism.

Solution: Let U be any open set in \mathbb{R}_{fc} . Then $f^{-1}(U) = U$ by definition of f, so the first part of the problem can be reformulated as: show that the finite-complement topology is coarser than the standard topology on \mathbb{R} .

Now, let U be open in \mathbb{R}_{fc} and let $x \in U$ be any point.

By definition, the complement of U in \mathbb{R} is a finite set, say $\{x_1, \ldots, x_n\}$ and $x \neq x_i$ for all $i = 1, \ldots, n$. Let $\delta_i = |x - x_i| > 0$. Then $\delta = \min_i \{\delta_i\} > 0$, and we claim that $B(x, \delta) \subset U$ where the open ball is taken in the standard metric on \mathbb{R} .

Let $y \in B(x, \delta)$. Then

$$|y - x_i| \ge \underbrace{|x - x_i|}_{\ge \delta} - \underbrace{|y - x|}_{<\delta} > 0,$$

so $y \in U$. Hence $B(x, \delta) \subset U$. Since x was arbitrary, we can find such a $\delta_x = \delta$ for any x, so we can write $U \subset \bigcup_{x \in U} \{x\} \subset \bigcup_{x \in U} B(x, \delta_x) \subset U$, and thus $U = \bigcup_{x \in U} B(x, \delta_x)$, so U is open in the standard topology on \mathbb{R} . Therefore f is continuous.

To see that this is not a homomorphism, note that $(0,\infty)$ is open in the standard topology as the union $\bigcup_{x\in(0,\infty)} B(x,|x|)$, however, $(0,\infty)^c = \mathbb{R} - (0,\infty) = (-\infty,0]$ is not finite, so $(0,\infty)$ is not open in \mathbb{R}_{fc} , and since $f((0,\infty)) = (0,\infty)$, we find that f does not map open sets of \mathbb{R} in the standard topology to open sets in \mathbb{R}_{fc} , hence f^{-1} is not continuous, so f is not a homeomorphism.

21: Define the maps $f: I^n = [-1,1]^n \to D^n = \{x \mid ||x|| \le 1\}$ and $g: D^n \to I^n$, with the euclidean norm, by

$$f(x) = \begin{cases} \frac{\max_{i} |x_{i}|}{\|x\|} x, & x \neq 0\\ 0, & x = 0. \end{cases}$$

and

$$g(x) = \begin{cases} \frac{\|x\|}{\max_i |x_i|} x, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

f is continuous on $[-1,1]^n - \{0\}$ since it is the composition of continuous functions there - where $\max_i |x_i|$ is the maximal norm, and g is continuous on $D^n - \{0\}$ since it is the composition of continuous functions there as well.

For x = 0, let $\varepsilon > 0$. Then let $\delta = \varepsilon$. For $||x|| < \delta$, we have

$$\left| \max_{i} |x_i| \right|^2 \le \sum_{i=1}^n x_i^2$$

so $|\max_i |x_i|| \le ||x||$, and thus

$$||f(y_1,\ldots,y_n)|| = \left|\max_i |x_i|\right| \le ||x|| < \delta = \varepsilon.$$

Thus f is continuous at 0 too.

For given $\varepsilon > 0$, we can for g choose $\delta = \frac{\varepsilon}{\sqrt{n}}$, where we then get for $0 < ||x|| < \delta$ that since $\sum_{i=1}^{n} x_i^2 \le n \max_i \{x_i^2\}$, we have

$$\|g(x_1,\ldots,x_n)\| = \frac{1}{\max_i |x_i|} \sum_{i=1}^n x_i^2 = \sqrt{\frac{\sum_{i=1}^n x_i^2}{\max_i x_i^2}} \sqrt{\sum_{i=1}^n x_i^2} < \sqrt{n} \frac{\varepsilon}{\sqrt{n}} = \varepsilon.$$

Thus g is continuous at 0 as well.

Since $f \circ g = \mathbb{1}_{D^n}$ and $g \circ f = \mathbb{1}_{I^n}$, we have that f is a homeomorphism.

p. 41:

28: If A, B are disjoint closed subsets of a metric space, find disjoint open sets U, V such that $A \subset U$ and $B \subset V$.

Solution: By lemma 2.14, we have that since A, B are disjoint closed subsets of a metric space X, there exists a continuous real-valued function on X which takes value 1 on A and -1 on B and values strictly in (-1,1) on $X-(A\cup B)$.

Let f denote this function. Then $A \subset f^{-1}((-\infty,0)) = U$ and $B \subset f^{-1}((0,\infty)) = V$. Furthermore, since f is continuous and $(-\infty,0)$ and $(0,\infty)$ are open, we have that $U = f^{-1}((-\infty,0))$ and $V = f^{-1}((0,\infty))$ are open. Assume $y \in U \cap V$. Then $f(y) \in (-\infty,0) \cap (0,\infty) = \emptyset$, so $U \cap V = \emptyset$. So U,V are open disjoint sets such that $A \subset U$ and $B \subset V$.