

THÈSE DE DOCTORAT

Option Réseaux Informatiques

Thème

Contributions à l'amélioration de la détection des IXP sur la base de Traceroute

Présentée par :

Y. Raoul Frédéric KIENTEGA Sous la Direction de :

Pr Tounwendyam Frédéric OUEDRAOGO

Introduction (1/5)

Contexte

Les points d'échanges Internet (IXP) ont rendu l'Internet mondial plus efficace en permettant des échanges de trafics locaux entre ISP (Figure n°1) puis en réduisant ainsi la latence (Figure n°2).

Introduction (2/5)

Figure n°1: fonctionnement d'un IXP avec deux types de peering entre les ISP (A, B, C et D)

Introduction (3/5)

Figure N°2 : illustration de l'effet trombone.

Introduction (4/5)

Problématique

☐ IXP présents dans la plupart des pays mais difficiles à détecter.

☐ Absence d'outils efficaces

pour identifier les différents

pour les détecter;

membres connectés (AS);

pour faire l'appariement entre les adresses IP et AS.

Introduction (5/5)

Objectifs de la thèse

- ☐ Corriger l'outil TraIXroute.
- ☐ Concevoir un nouvel outil (**Burkina TralXroute**) de détection précis des IXP qui fournit des informations de géolocalisation.
- ☐ Améliorer l'appariement entre adresses IP et AS.

Travaux relatifs au IXP (1/5)

Pour mieux situer notre travail de recherche, nous allons commencer par une revue de l'état de l'art, qui permettra de présenter les travaux existants ainsi que leurs limites.

☐ Traceroute (Van Jacobson en 1987)

Outil permettant de répertorier les sauts du réseau et d'identifier si possible les IXP tout en analysant les adresses IP des routeurs.

Travaux relatifs au IXP (1/5)

Figure n°3: exemple de sortie de Traceroute traversant un IXP

Travaux relatifs au IXP (1/8)

L'utilisation de Traceroute pour la détection des IXP présente certaines limites :

- manque de précision dans l'appariement des adresses IP;

- absence de bases de données de référence.

Travaux relatifs au IXP (2/8)

☐ Approches basées sur les données BGP

Kimberly C. Claffy et al. (2003) analysent les informations du *Border Gateway Protocol* (BGP) de certains routeurs pour détecter les IXP qui attirent les systèmes autonomes (AS).

Travaux relatifs au IXP (3/8)

Figure n°4 : point de rencontre des AS

Travaux relatifs au IXP (4/8)

Les approches basées sur les données de BGP pour la détection des IXP présentent également des limites :

- masquage des relations de peering;
- dépendance aux bases de données externes.

Travaux relatifs au IXP (5/8)

☐ Paris Traceroute (Brice Augustin et al, 2012)

Outil développé pour analyser les routes sur Internet et surmontant les limites de Traceroute grâce à son algorithme amélioré capable de détecter les adresses IP des IXP sur son chemin.

Travaux relatifs au IXP (6/8)

Bien que Paris Traceroute améliore la précision Traceroute cette approche présente certaines limites :

de

- sensibilité aux routeurs silencieux ;
- manque de support natif pour la géolocalisation.

·

Travaux relatifs au IXP (7/8)

☐ TralXroute (George Nomikos, 2016)

Outil qui détecte si un chemin Traceroute traverse une structure IXP. Il est *open source* et son code source est disponible sur github.com.

Travaux relatifs au IXP (8/8)

L'outil TraIxroute comme ses prédécesseurs présente également des limites :

- précision limitée;
- temps de réponse élevé ;
- dépendances obsolètes.

Méthodologie (1/7)

La méthodologie utilisée pour améliorer la détection des IXP, est bâtie en quatre (04) points :

- 1- l'analyse des limites de TraIXroute;
- 2- la proposition d'un algorithme de gestion des dépendances de TraIXroute ;
- 3- la proposition d'un algorithme de BURKINA TraIXroute;
- 4- l'utilisation de nouvelles bases de données des IXP.

Méthodologie (2/7)

- ☐ L'analyse des limites de TraIXroute nous a permis de mettre en évidence les problèmes suivants :
- la rigidité de la gestion de ses dépendances ;
- le manque de précision dans la détection des IXP;
- l'inexistence de l'appariement entre adresses IP et AS.

•

Méthodologie (3/7)

☐ Algorithme proposé pour la gestion des dépendances de TraIXroute

```
Début de l'algorithme principal

E 

create_env ()

OS 

detect_OS()

activate_env(E, OS)

update_packages ({"pip","setuptools","wheel"})

install_and_check_dependencies(D)

generate_requirement_and_test(D)

Fin de l'algorithme principal
```

Figure n°5 : algorithme de gestion des dépendances

Méthodologie (4/7)

☐ Algorithme proposé pour BURKINA TraIXroute

```
Début

    Déclarer les bases de données des IXP utilisées.

   (IXPDB1, IXPDB2, IXPDB3, ...)
2. Exécuter traceroute et récupérer les informations de
   sauts dans tableau T
3. Pour chaque saut indice i :
       Si saut d'indice i+1 existe:
                Si un IXP connu existe entre i et i+1:
                      Ajouter l'IXP aux résultats
                FinSi
            FinSi
     FinPour
4. Si les IXP sont trouvés :
         Retourner les IXP trouvés
     Sinon
          Retourner « aucun IXP trouvé »
   FinSi
Fin
```

21

Méthodologie (5/7)

☐ Utilisation de nouvelles bases de données

-MaxMindDB: fournit des informations géographiques sur une adresse IP, incluant le pays, la région, la ville, le code postal, et les coordonnées latitude/longitude.

-IP2LocationDB: permet de mapper des adresses IP à des informations géographiques. Elle offre des détails comme le pays, la région, la ville, l'ISP.

Méthodologie (6/7)

Cas pratique de détection des IXP par BURKINA TraIxroute

Exemple de quatre AS avec un IXP entre B et E.

Figure n°7: présentation d'un IXP sur le chemin de Traceroute

Méthodologie (7/7)

Tableau 3

Figure n°8 : diagramme de détection des IXP par Burkina TraIXroute

24

Résultats (1/18)

Dans le cadre de cette thèse, nous avons développé et évalué de nouvelles approches aboutissant à des résultats :

- la gestion et la correction des dépendances de TraIXroute ;
- la conception d'un nouvel outil de détection des IXP qui améliore TraIXroute;
- l'optimisation de l'appariement des AS et des adresses IP.

Résultats (2/18)

```
aoul@raoul-HP-mt41:-/Bureau/Trace_stable$ sh ./trace.sh
Veuillez saisir l'adresse IP:
196,60,76,12
                                                                          196.60.76.12
IPV4
PING 196.60.76.12 (196.60.76.12) 56(84) bytes of data.
64 bytes from 196.60.76.12: icmp seq=1 ttl=248 time=82.9 ms
--- 196.60.76.12 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 82.882/82.882/82.882/0.000 ms
                                                                       BFIX de Bobo-Dioulasso
Le teste du Ping a réussi, veuillez patienter...
                                                                       avec @IPv4 = 196.60.76.7
Resultat:
               gateway (192.168.43.121) 3.013 ms 3.017 ms 3.177 ms
    AS*
    AS*
               10.152.124.74 (10.152.124.74) 32.126 ms 32.116 ms 32.105 ms
               172.25.27 70 (172.25.27.76) 31.915 Ms 31.899 Ms
    AS*
               172 25.31.33 (172.25.31.33) 32.086 ms 32.099 ms 32.023 ms
    AS*
               10.152.136.21 (10.152.136.21) 32.098 ms 25.228 ms 27.454 ms
    AS*
   (BFIX Bobo-Dioulasso)->AS37577
                                     196.60.76.7 (196.60.76.7) 32.822 ms 34.606 ms 36.725 ms
    (BFIX Bobo-Dioulasso)->AS328316
                                     196.60.76.12 (196.60.76.12) 36.800 ms 36.777 ms 36.667 ms
IXP hops:
Rule: 9 --- 8) 196.60.76.7 (AS37577) <--- BFIX Bobo-Dioulasso (BF.Bobo-Dioulasso) ---> 9) 196.60.76.12 (AS328316)
Rule: 10 --- 8) 196.60.76.7 (AS37577) <--- BFIX Bobo-Dioulasso (BF.Bobo-Dioulasso) ---> 9) 196.60.76.12 (AS328316)
Possible IXP hops:
Rule: 12 --- 7) * (AS*) <--- BFIX Bobo-Dioulasso (BF,Bobo-Dioulasso) ---> 8) 196.60.76.7 (AS37577)
```

Figure n°9 : résultat de détection du BFIX situé dans la ville de Bobo-Dioulasso 26

Résultats (3/18)

```
raoul@raoul-HP-mt41:-/Bureau/Trace stable$ sh ./trace.sh
Veuillez saisir l'adresse IP:
196.223.47.195
IPV4
PING 196.223.47.195 (196.223.47.195) 56(84) bytes of data.
64 bytes from 196.223.47.195; icmp seq=1 ttl=54 time=28.1 ms
 --- 196.223.47.195 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
                                                                   BFIX de Ouagadougou avec
rtt min/avg/max/mdev = 28.117/28.117/28.117/0.000 ms
                                                                      @ IPv4 = 196.223.47.206
Le teste du Ping a réussi, veuillez patienter...
Resultat:
                 gateway (192.168.43.121) 2.046 ms 2.057 ms 2.269 ms
      AS*
                10.29.0.1 (10.29.0.1) 24.341 ms
                10.42.0.10 (10.42.0.10) 24.032 ms 24.021 ms 24.012 ms
      AS*
      AS*
                10.42.0.36 (10.42.0.36) 24.259 ms 24.246 ms 24.232 ms
      AS*
                 10.47 0.146 (10.47.0.146) 26.444 ms 26.478 ms 29.097 ms
      AS*
                10.152.136.24 (10.152.136.24) 34.602 ms 28.658 ms 28.705 ms
                 10.152.136.21 (10.152.136.21) 28.599 ms 30.569 ms 35.243 ms
      (BFIX Ouagadougou)->AS37577
                                    196.223.47.206 (196.223.47.206) 31.456 ms 39.795 ms 39.936 ms
      (BFIX Ouagadougou)->AS328534
                                    196.223.47.195 (196.223.47.195) 39.915 ms 38.563 ms 33.251 ms
IXP hops:
Rule: 9 --- 9) 196.223.47.206 (AS37577) <--- BFIX Ouagadougou (BF,Ouagadougou) ---> 10) 196.223.47.195 (AS328534)
Rule: 10 --- 9) 196.223.47.206 (AS37577) <--- BFIX Ouagadougou (BF.Ouagadougou) ---> 10) 196.223.47.195 (AS328534)
Possible IXP hops:
Rule: 12 --- 8) * (AS*) <--- BFIX Ouagadougou (BF,Ouagadougou) ---> 9) 196.223.47.206 (AS37577)
```

Figure n°10 : résultat détection du BFIX situé dans la ville de Ouagadougou

Résultats (4/18)

Figure n°11 : résultat de GR-IX situé en Russie

Résultats (5/18)

Figure n°12 : résultat de la détection de LINX (Royaume-Uni) en IPv6

Résultats (6/18)

Tableau 1: liste des IXP détectés en IPv4 avec Burkina TraIxroute

Adresse IP	ASN	Localisation de l'IXP	
192.168.1.1	AS12345	Paris, France	
203.0.113.5	AS67890	Londres, Royaume-Uni	
198.51.100.10	AS54321	New York, USA	
203.0.113.20	AS98765	Tokyo, Japon	
192.0.2.25	AS11111	Francfort, Allemagne	
203.0.113.30	AS22222	Amsterdam, Pays-Bas	
198.51.100.50	AS33333	Sydney, Australie	
192.0.2.75	AS44444	Mumbai, Inde	
196.60.8.1	AS37195	Johannesburg, Afrique du Sud	
196.1.18.1	AS37715	Nairobi, Kenya	
197.210.0.1	AS36915	Lagos, Nigeria	
196.3.96.1	AS37532	Maputo, Mozambique	
196.216.162.1	AS37468	Tanzanie	

Résultats (7/18)

Tableau 2 : synthèse de la détection des IXP en IPv4

Caractéristique	Burkina TraIXroute	<i>TraIXroute</i>	
Taux de précision (%)	95	62	
Temps de réponse (s)	2	5	
Couverture	Globale, 50 pays couverts	Régionale, 10 pays couverts	
Taux de vrais positifs (%)	99,83	91,66	
Taux de faux positifs (%)	0,3	39,47	
Interface d'utilisation	Conviviale	Complexe	
Nombre d'IXP détectés	500	110	

Taux de Vrai Positif (TVP ou Sensibilité)

$$\mathrm{TVP} = \frac{\mathrm{VP}}{\mathrm{VP} + \mathrm{FN}} \qquad \qquad \mathrm{TFP} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{VN}}$$

VP = Nombre de vrais positifs (cas correctement détectés comme positifs)

FN = Nombre de faux négatifs (cas positifs mal détectés comme négatifs)

FP = Nombre de faux positifs (cas négatifs mal détectés comme positifs)

VN = Nombre de vrais négatifs (cas correctement détectés comme négatifs)

Résultats (8/18)

Tableau 3 : liste des IXP détectés en IPv6

Nom de l'IXP	Ville	Pays	Adresse IPv6
AMS-IX	Amsterdam	Pays-Bas	2001:7f8:1::a500:3265:1
DE-CIX Frankfurt	Francfort	Allemagne	2001:7f8::1
LINX (London)	Londres	Royaume-Uni	2001:7f8:4::1
Equinix IX	Paris	France	2001:7f8:43::1
HKIX	Hong Kong	Hong Kong	2001:7fa:0:1::ca28:1
JPNAP	Tokyo	Japon	2001:7fa:0:1::ca28:2
Netnod	Stockholm	Suède	2001:7f8:1::a500:3266:1
MSK-IX	Moscou	Russie	2001:7f8:20::1
SIX	Seattle	États-Unis	2001:504:16::a500:9:1
TORIX	Toronto	Canada	2001:504:d::a500:17:1
Terremark NAP	Miami	États-Unis	2001:500:2c::1
NPIX	Katmandou	Népal	2001:df0:2:1::1
SAIX	Johannesburg	Afrique du Sud	2001:43f8:1::1
IX.br	São Paulo	Brésil	2001:12f8:0:1::a500:65000:1

Résultats (9/18)

Tableau 4 : répartition des IXP en IPv6 dans le monde (2024)

Continents	Nombre d'IXP détectés
Amérique du Nord	120
Europe	100
Asie	80
Amérique du Sud	25
Afrique	15
Océanie	10
Nombre total d'IXP détectés	350

Résultats (10/18)

Tableau 5 : répartition des IXP africains en IPv6 (2024)

IXP	Localisation	Adresse IPv6
Cape Town Internet Exchange (CINX)	Afrique du Sud, Cape Town	2001:43f8:216::1
NAPAfrica IX Cape Town (NAPAfrica	Afrique du Sud, Cape Town	2001:43f8:150::1
CT1)		
Durban Internet Exchange (DINX)	Afrique du Sud, Durban	2001:43f8:180::1
NAPAfrica IX Durban (NAPAfrica DB1)	Afrique du Sud, Durban	2001:43f8:190::1
Johannesburg Internet Exchange (JINX)	Afrique du Sud, Johannesburg	2001:43f8:120::1
NAPAfrica IX Johannesburg (NAPAfrica	Afrique du Sud, Johannesburg	2001:43f8:130::1
JHB1)		
Djibouti Internet Exchange (DjIX)	Djibouti, Djibouti City	2001:43f8:218::1
Kenya Internet Exchange Point (KIXP)	Kenya, Nairobi	2001:43f8:120::2
Ghana Internet Exchange (GIX)	Ghana, Accra	2001:43f8:216::2
Cairo Internet Exchange (CAIX)	Egypte, Le Caire	2001:43f8:120::3

Résultats (11/18)

Tableau 5 : synthèse de la détection des IXP en IPv6 (2024)

Critère	Métrique	Valeur	Description	
Précision - (%)	Taux de Vrais Positifs (TVP)	95	Pourcentage d'IXP réels correctement détectés	
	Taux de Faux Positifs (TFP)	2	Pourcentage de non-IXP incorrectement détectés comme IXP	
Latence (s)	Latence moyenne de détection	3	Temps moyen pris pour détecter un IXP	
	Temps de réponse maximal	4	Temps maximum pris pour détecter un IXP.	
Couverture (%)	Nombre total d'IXP détectés	58,33	Pourcentage des IXP détectés par rapport au IXP présents dans les bases de données de référence	

Résultats (12/18)

Tableau 6 : liste des AS connectés au BFIX (2022)

Tableau obtenu grâce à un croisement des deux bases de données PCH et PDB par Burkina TraIXroute.

Numéro d'AS	IPv4	Nom	Source
328534	196.223.47.195	AFREENET	PDB
328010	196.223.47.194	BFIX Burkina Faso Ops	PDB
		BFIX Burkina Faso Route	
37716	196.223.47.193	Servers	PDB
15169	196.223.47.228	Google LLC	PDB
63293	196.223.47.227	Meta AS63293	PDB
37577	196.223.47.206	Orange Burkina Faso	PDB
3856	196.223.47.252	Packet Clearing House	PDB
42	196.223.47.248	Packet Clearing House AS42	PDB
328316	196.223.47.246	Point d'Atterissement Virtuel	PDB
37008	196.223.47.218	SANCFIS Faso	PDB
328716	196.223.47.237	VIPNET BURKINA FASO	PDB
		Virtual Technologies &	
37721	196.223.47.242	Solutions	PDB

Résultats (13/18)

Tableau 7 : statistiques des membres de l'IXP Equinix (SGIX)

IXP	PCH	PDB	PCH Unique	PDB Unique	PCH et PDB	Date
Equinix Singapore	586	471	129	9	458	21/05/2022

Tableau 8 : statistiques des membres de l'IXP Lisbon (DE-CIX)

IXP	PCH	PDB	PCH Unique	PDB Unique	PCH et PDB	Date
DE-CIX Lisbon	55	46	11	2	44	01/07/2023

Selon nos résultats, PCH compte un nombre de membres supérieur à celui de PDB, confirmant sa position dominante dans la collecte des données liées aux IXP.

Résultats (14/18)

```
www.yandex.ru ping statistics ---
 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 322.691/322.691/322.691/0.000 ms
Le teste du Ping a réussi, veuillez patienter...
/home/taphahadji/Downloads/Burkina-TraIXroute-main/aaa/Engine/lib/traixroute/application.py:24: DeprecationWarning: The distutils package is deprecated
and slated for removal in Python 3.12. Use setuptools or check PEP 632 for potential alternatives
 from distutils.dir_util
                             import copy tree
Resultat:
                                                                                                                   Les AS avec des
                      _gateway (192.168.69.85) 3.185 ms 4.013 ms 5.424 ms
     AS*
                       (*)
                                                                                                                étoiles sauf le saut 6
     AS*
                      172.16.16.1 (172.16.16.1) 82.062 ms 82.046 ms 82.034 ms
     AS*
                      ll81-2-57-254-192-81.ll81-2.iam.net.ma (81.192.254.57) 155.722 ms 236.226 ms 236.142 ms
     AS6713
     AS*
                       (*)
     AS*
                      ae1.16.edge1.Helsinki1.level3.net (4.69.161.102) 238.720 ms 236.103 ms 242.285 ms
     AS3356
                      be2816.ccr42.ham01.atlas.cogentco.com (154.54.38.210) 225.497 ms 242.206 ms 225.458 ms
     AS*
                      be2504.rcr21.cph01.atlas.cogentco.com (154.54.61.230) 225.406 ms 222.852 ms
     AS*
                      yandex.ru (5.255.255.60) 324.065 ms 263.306 ms 311.245 ms
     AS208722_13238
```

Figure n°13 : résultat de TraIXroute vers le site yander.ru

Résultats (15/18)

```
-- www.yandex.ru ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 322.691/322.691/322.691/0.000 ms
Le teste du Ping a réussi, veuillez patienter...
/home/taphahadji/Downloads/Burkina-TraIXroute-main/aaa/Engine/lib/traixroute/application.py:24: DeprecationWarning: The distutils package is deprecated
and slated for removal in Python 3.12. Use setuptools or check PEP 632 for potential alternatives
 from distutils.dir_util
                       import copy tree
Résumé de Burkina TraIXroute:
                                                                                                  Certains
     AS* 192.168.69.85
                                                                                             AS* corrigés
     AS* *
     AS* *
     AS25543 212.52.144 10 "Pool ADSL Bobo Onatel" Ouagadougou Burkina Faso Africa
     AS+ 172.16.16.1
     AS6713 81.192.254.57 "Maroc Telecom" Mohammedia Morocco Africa
     AS6453 80.231.158.98 "Tata Communications Ltd" New York City United States of America North America
     AS3356 4.69.161.98 "Level 3 Communications Inc." Monroe United States of America North America
    AS3356 4.69.161.102 "Level 3 Communications Inc." Monroe United States of America North America
    AS174 154.54.38.210 "FDCServers.net" Downers Grove United States of America North America
11-) AS174 154.54.61.230 "FDCServers.net" Downers Grove United States of America North America
12-) AS208722 5.255.255.60 Moscow Russia Europe
```

Figure n°14 : résultat de Burkina TraIXroute vers le site yander.ru

Résultats (17/18)

Figure n°15 : comparaison entre TraIXroute et Burkina TraIXroute lors de l'appariement AS et IP

Résultats (18/18)

Figure n°16 : Courbe montrant l'évolution de la détection des IXP avec Burkina TraIXroute et TraIXroute

Critiques

Bien que les résultats obtenus dans cette étude soient prometteurs, il est important de souligner certaines limites :

- la dépendance des bases de données externes, car notre outil repose principalement sur des bases de données publiques;
- le passage des IXP à IPv6 complique la détection avec Burkina TraIXroute en raison de la diversité des infrastructures et des méthodes de routage en IPv6.

Conclusion et perspectives (1/2)

Nos travaux de recherche ont permis:

- de comprendre le fonctionnement des IXP;
- d'analyser les techniques de détection des IXP et de cerner les défis associés à leur création ;
- de corriger TraIxroute;
- de réaliser l'outil Burkina TraIxroute capable d'une détection des IXP avec un taux de 95 % de vrais positifs et un taux de 2 % de faux positifs.

Conclusion et perspectives (2/2)

Suite aux contributions apportées pendant cette thèse de nouvelles perspectives se dessinent :

- l'amélioration de la détection des IXP avec des bases de données payantes qui sont beaucoup plus riches en informations;
- une analyse des flux « éléphant » au niveau des IXP qui consomment une grande partie de la bande passante disponible;
- une amélioration de la détection des IXP grâce à l'utilisation d'algorithmes prédictifs proposés par l'IA. 44

Publications de l'auteur (1/2)

 Kientega, R., Sidibe, M. H., & Traore, T. (2021). Toward an enhanced tool for Internet exchange point detection. In Proceedings of the 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC) (pp. 1-3). IEEE.

https://doi.org/10.1109/IMITEC52926.2021.9714675

 Raoul, K. Y., Ouedraogo Tounwendyam, F., Bikienga, M., & Sidibé, M. (2022). Comparative study between TraIXroute and Burkina TraIXroute on the way to traceroute. Journal of Advances in Computer Networks.

https://doi.org/10.18178/jacn.2022.10.2.201

Publications de l'auteur (2/2)

- 3. Frederic, K. Y. R., Ouedraogo, T. F., Bikienga, M., et al. (2022). Towards a method of reduction of stars by Burkina TraIXroute. In Proceedings of the ATTAYA 32nd International Conference on -Science, Engineering and Technology□ (PICSET-22) (scheduled on Dec. 19-21, Pattaya, Thailand). https://doi.org/10.17758/URUAE18
 - 4. Raoul, K. Y., Sidibe, M., & Salihou. (2023). State of the art of Internet exchange points. In Summer 2023 International Conference Proceedings BSHESS-23, PICEST-23, IIETH-23, ICABE-23, IL2ES2-23 & IBMEL-23. https://doi.org/10.17758/HEAIG14.UA0823105
- Kientega, Y. R. F., Sanou, D., & Salihou. (2024). Contribution to the detection of member ASes connected to IXPs and to the analysis of incoming and outgoing traffic. International Journal of Recent Engineering Research and Development, 9(5), 41-46.

http://www.ijrerd.com/current-issue.html

https://github.com/raoulfrederic/BF-Traixroute

Merci pour votre attention!

