Modelos Gráficos Probabilísticos Solução da Lista 01

Questão 1.

Uma distribuição de probabilidade deve satisfazer as seguintes restrições:

$$0 \leq \mathbb{P}(a_i) \leq 1$$
, para todo evento a_i

$$\sum a_i = 1$$

As duas primeiras colunas não somam 1. A terceira coluna possui um número negativo. A quarta coluna possui um número maior que 1. Logo somente as duas últimas colunas representam uma distribuição de probabilidade.

Questão 2.

Utilizando os comandos:

data < - read.table("alunos3var.txt")
prop.table(table(data))

temos a seguinte estimativa da distribuição conjunta do vetor X = (I, D, G) é:

I	D	G	P(I=i, D=d, G=g)
i_0	d_0	g_1	0.1225
i_1	d_0	g_1	0.1627
i_0	d_1	g_1	0.0137
i_1	d_1	g_1	0.0578
i_0	d_0	g_2	0.1772
i_1	d_0	g_2	0.0126
i_0	d_1	g_2	0.718
i_1	d_1	g_2	0.0359
i_0	d_0	g_3	0.1208
i_1	d_0	g_3	0.0028
i_0	d_1	g_3	0.2003
i_1	d_1	g_3	0.219

Questão 3.

Vamos assumir que $\mathbb{P}(B|A) > \mathbb{P}(B)$. Com isso temos que:

$$\mathbb{P}(B|A) > \mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B| \sim A)\mathbb{P}(\sim A)$$

$$\mathbb{P}(B|A) - \mathbb{P}(B|A)\mathbb{P}(A) > \mathbb{P}(B| \sim A)\mathbb{P}(\sim A)$$

$$\mathbb{P}(B|A)(1 - \mathbb{P}(A)) > \mathbb{P}(B| \sim A)\mathbb{P}(\sim A)$$

$$\mathbb{P}(B|A)\mathbb{P}(\sim A) > \mathbb{P}(B|\sim A)\mathbb{P}(\sim A)$$

$$\mathbb{P}(B|A) > \mathbb{P}(B| \sim A)$$

Questão 4.

Temos que $\mathbb{P}(B|A) = \mathbb{P}(B)$. Logo:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B|A)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

Questão 5.

Falso. Um exemplo é a seguinte situação: seja A o evento que irá fazer sol. B o evento que irá chover e C o evento que o tempo está bastante nublado.

Temos que $\mathbb{P}(A) > \mathbb{P}(B)$, isto é, a probabilidade de fazer sol é maior do que a probabilidade de chover. Porém, $\mathbb{P}(A|C) < \mathbb{P}(B|C)$, isto é, dado que o tempo está nublado, a probabilidade de chover é maior do que a probabilidade de fazer sol.

Questão 6.

Temos que $\mathbb{P}(B|A) < \mathbb{P}(B)$. Logo:

$$\mathbb{P}(\sim B|A) = 1 - \mathbb{P}(B|A) > 1 - \mathbb{P}(B) = \mathbb{P}(\sim B)$$

Questão 7.

Sejam A e B eventos independentes.

• $\mathbb{P}(A) = \mathbb{P}(B)$

Falso

• $\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B)$

Falso

• $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

Verdadeiro.

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B|A) = \mathbb{P}(A)\mathbb{P}(B|A)$$

• $\mathbb{P}(B|A) = \mathbb{P}(B)$

Verdadeiro.