ArrayStack: Amortized Analysis

Open Data Structures

Amortized analysis of resize()

Theorem

An ArrayStack implements the List interface.

Ignoring the time spent in calls to resize(),

- get(i) and set(i, x) each run in O(1) time; and
- add(i, x) and remove(i) each run in O(1 + n i) time.

Amortized analysis of resize()

Theorem

An ArrayStack implements the List interface.

Ignoring the time spent in calls to resize(),

- get(i) and set(i, x) each run in O(1) time; and
- add(i, x) and remove(i) each run in O(1 + n i) time.

Amortized analysis of resize()

Theorem

An ArrayStack implements the List interface.

Ignoring the time spent in calls to resize(),

- get(i) and set(i, x) each run in O(1) time; and
- add(i, x) and remove(i) each run in O(1 + n i) time.

Furthermore, if we start with an empty ArrayStack and perform any sequence of m add(i, x) and remove(i) operations, then the total time spent in all calls to resize() is O(m).

resize() during add(i, x)

resize() during add(i, x)

n=length(a)

resize() during remove(i)

resize() during remove(i)

n < length(a)/3

resize() during remove(i) n < length(a)/3 $\downarrow \downarrow$

2n

resize() during remove(i)

Plan

Show that the total number of items copied by resize() is at most 2m.

Resize triggered by add(i, x)

• At least n/2 add(i, x) operations between then and now

Resize triggered by remove(i)

Resize triggered by remove(i)

Now:

n < length(a)/3

Resize triggered by remove(i)

Resize triggered by remove(i)

• At least n/2 remove(i) operations between then and now

Summary

Operations Between Resizes

If a resize() operation copies n elements, then there have been at least n/2 add(i, x) or remove(i) operations since the preceding resize() operation.

• $n_i = \text{number of items copied by the } i^{\text{th}} \text{ resize() operation}$

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

• Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

$$\underbrace{ \stackrel{n_1}{\circ} \circ \circ \circ \stackrel{n_2}{\bullet} \circ \circ \circ \circ \stackrel{n_2}{\bullet} \circ \circ \circ \circ \circ \circ \circ \circ \stackrel{n_3}{\bullet} \circ \circ \circ \circ \circ \circ \stackrel{n_4}{\bullet} \circ \circ \circ \stackrel{n_5}{\bullet} \circ \circ \circ \circ }_{m_1 \geq n_1/2 \quad m_2 \geq n_2/2 \quad m_3 \geq n_3/2 \quad m_4 \geq n_4/2 \quad m_5 \geq n_5/2}$$

- Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$
- ullet Total number of add/remove operations: $m \geq m_1 + m_2 + m_3 + \cdots$

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

- Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$
- Total number of add/remove operations: $m \ge n_1/2 + n_2/2 + n_3/2 + \cdots$

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

- Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$
- Total number of add/remove operations: $m \ge N/2$

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

$$\underbrace{ \stackrel{n_1}{\circ} \circ \circ \circ \stackrel{n_2}{\bullet} \circ \circ \circ \circ \stackrel{n_2}{\bullet} \circ \circ \circ \circ \circ \circ \circ \circ \stackrel{n_3}{\bullet} \circ \circ \circ \circ \circ \circ \stackrel{n_4}{\bullet} \circ \circ \circ \stackrel{n_5}{\bullet} \circ \circ \circ \circ }_{m_1 \geq n_1/2 \quad m_2 \geq n_2/2 \quad m_3 \geq n_3/2 \quad m_4 \geq n_4/2 \quad m_5 \geq n_5/2}$$

- Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$
- Total number of add/remove operations: $N \le 2m$

- n_i = number of items copied by the i^{th} resize() operation
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

- Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$
- Total number of add/remove operations: $N \le 2m$
- The total number, N, of items copied by resize() is at most 2m.

- $n_i = \text{number of items copied by the } i^{\text{th}} \text{ resize() operation}$
- ullet $m_i=$ number of add/remove operations between the $(i-1)^{ ext{th}}$ and $i^{ ext{th}}$ resize()

- Total number of items copied: $N = n_1 + n_2 + n_3 + \cdots$
- Total number of add/remove operations: $N \le 2m$
- The total number, N, of items copied by resize() is at most 2m.
- The total time spent in all calls to resize() is O(m)

Summary

Theorem

An ArrayStack implements the List interface.

Ignoring the time spent in calls to resize(),

- get(i) and set(i, x) each run in O(1) time; and
- add(i, x) and remove(i) each run in O(1 + n i) time.

Furthermore, if we start with an empty ArrayStack and perform any sequence of m add(i, x) and remove(i) operations, then the total time spent in all calls to resize() is O(m).

End of Lesson