Laboratorio N.2

Introduccion a Los Metodos Estadisticos Generacion de Estimadores

Diana Carolina Arias Sinisterra Cod. 1528008 Kevin Steven Garcia Chica Cod. 1533173 Cesar Andres Saavedra Vanegas Cod. 1628466

Universidad Del Valle

Facultad De Ingenieria Estadistica Octubre 2017

${\bf \acute{I}ndice}$

1.	Situación 1
	1.1. Punto a
	1.2. Punto b
	1.3. Punto c
2.	Situación 2
	2.1. Punto a
	2.2. Punto b
	2.3. Punto c
3.	Situación 3
٠.	3.1. Punto a
4.	Situación 4
	4.1. Punto a
	4.2. Punto b
	4.3. Punto c
5.	Situación 5
	5.1. Punto a
	5.1. I tilito a
6.	Situación 6
	6.1. Punto a
	Situación 7
	7.1. Punto a
	7.2. Punto b.

Índice de figuras

- 1.1. Punto a.
- 1.2. Punto b.
- 1.3. Punto c.

- 2.1. Punto a.
- 2.2. Punto b.
- 2.3. Punto c.

3.1. Punto a.

- 4.1. Punto a.
- 4.2. Punto b.
- 4.3. Punto c.

5.1. Punto a.

6.1. Punto a.

Sean $Y_1, Y_2, Y_3, ..., Y_n$ una muestra aleatoria extraida de una poblacion con funcion de densidad:

$$f(x) = \frac{1}{2\theta + 2}; -1 < Y < 2\theta + 1$$

7.1. Punto a.

Un estimador maximo verosimil para θ y σ^2 son:

Para θ :

$$\begin{split} L(y;\theta) &= \prod_{i=1}^n \big(\frac{1}{2\theta+2}\big) \\ L(y;\theta) &= \big(\frac{1}{2\theta+2}\big)^n \\ Ln(L(y;\theta)) &= Ln\big(\big(\frac{1}{2\theta+2}\big)^n\big) \\ L(y;\theta) &= n\big[Ln\big(\big(\frac{1}{2\theta+2}\big)\big] \\ L(y;\theta) &= n\big[Ln(1) - Ln(2\theta+2)\big] \\ L(y;\theta) &= n\big[-Ln(2\theta+2)\big] \\ \frac{dL(y;\theta)}{\theta} &= \frac{d}{\theta}\big(n\big[-Ln(2\theta+2)\big)\big] \end{split}$$

Donde el parametro es el limite superior de la variacion de la funcion de distribucion.

$$\therefore \hat{\theta} = Maximo = Y = [Y_1, Y_2, Y_3, ..., Y_n]$$

Para σ^2 :

 $\hat{\theta} = \frac{n}{\theta + 1}$

7.2. Punto b.

Universidad Del Valle

9