Retículos. Parte 2.

Silvio Reggiani

Complementos de Matemática II (LCC) Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

5 de octubre de 2020

Álgebras de Boole

Definición

Un **álgebra de Boole** es un retículo acotado, distributivo con complementos:

$$(B, \vee, \wedge, 0, 1, ()^c).$$

(Recordar que la distributividad implica que la función () c es única.)

Las álgebras de Boole son importantes porque:

- ▶ capturan la estructura fundamental de la lógica clásica: $\lor = \mathsf{OR}, \ \land = \mathsf{AND}, \ 0 = \bot, \ 1 = \top, \ (\)^c = \mathsf{NOT};$
- modelan la teoría de conjuntos (en la cual se basa toda la matemática).

Ejemplo

$$(\mathcal{P}(X), \cup, \cap, \varnothing, X, ()^c)$$
 es un álgebra de Boole.

Ejemplo

 $(D_n, \text{mcm}, \text{mcd}, 1, n)$ admite una estructura de álgebra de Boole $\iff n = p_1 \cdot p_2 \cdots p_s$ es producto de primos distintos.

Subejemplo D_{12}

No es álgebra de Boole pues 2 no tiene complementos.

Subejemplo

Si n es tal que $p^2 \mid n$ (con p primo) entonces p no tiene complementos en D_n . Por lo tanto D_n no es álgebra de Boole si n no es producto de primos distintos (faltaría probar la otra implicación). En efecto,

$$mcm(p, x) = n \implies p \mid x \implies p \mid mcd(p, x) \neq 1.$$

Ejemplo
$$D_p\simeq \mathcal{P}(\{p\})$$
 Ejemplo $D_{pq}\simeq \mathcal{P}(\{p,q\})$ p p p q

Ejemplo $D_{pqr} \simeq \mathcal{P}(\{p,q,r\})$

Caso general

- ▶ D_n con $n = p_1 \cdot p_2 \cdots p_s$ (primos distintos).
- ▶ $x \in D_n \iff x = p_{i_1} \cdots p_{i_k}$ para algún subconjunto $\{i_1, \dots, i_k\} \subset \{1, \dots, s\}.$

- Es decir, $\frac{n}{x}$ es el complemento de x.

Ejercicio

La función $f: D_n \to \mathcal{P}(\{p_1, \dots, p_s\})$ definida como

$$f(x) = \{p_{i_1}, \ldots, p_{i_k}\}$$

es un isomorfismo de retículos.

Morfismos de álgebras de Boole

 Los (iso)morfismos de álgebras de Boole pueden definirse abstractamente como las funciones (biyectivas)

$$f: (B, \vee, \wedge, 0, 1, ()^c) \to (B', \vee, \wedge, 0, 1, ()^c)$$

tales que $\forall x, y \in B$,

- $f(x \vee y) = f(x) \vee f(y),$
- $f(x \wedge y) = f(x) \wedge f(y),$
- ightharpoonup f(0) = 0,
- ightharpoonup f(1) = 1,
- $f(x^c) = f(x)^c.$
- ➤ Ya vimos que las dos primeras condiciones implican las otras tres. Es decir, los isomorfismos de álgebras de Boole no son otra cosa que los isomorfismos de retículos.

Eiercicio*

Si (B, \leq) es un álgebra de Boole finita, entonces

$$(B,\leq)\simeq (\mathcal{P}(X),\subset)$$

para algún conjunto finito X. ¿Quién debería ser el conjunto X?

Corolario

Si $(B, \vee, \wedge, 0, 1, ()^c)$ es un álgebra de Boole finita, entonces $|B|=2^n$ para algún $n\in\mathbb{N}_0$.

Contraejemplo

El resultado anterior deja de valer si B tiene infinitos. Por ejemplo, si $(B, \vee, \wedge, 0, 1, ()^c)$ es un álgebra de Boole numerable, entonces $B \not\simeq \mathcal{P}(X)$ para todo conjunto X. En efecto, B no puede estar en biyección con $\mathcal{P}(X)$ pues

- ▶ si X es finito, entonces $\mathcal{P}(X)$ es finito de cardinal $2^{|X|}$ y
- ▶ si X es numerable (no puede ser más grande), entonces $|\mathcal{P}(X)| = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}| > |\mathbb{N}| = |B|$ (¿por qué?).

Ejemplo concreto (ejercicio)

$$lackbox{} \mathcal{P}(\mathbb{N})_{\mathsf{fin}} := \{A \subset \mathbb{N} : |A| < \infty\}$$
 (subconjuntos finitos de \mathbb{N}),

- ▶ $\mathcal{P}(\mathbb{N})_{\text{cofin}} := \{A \subset \mathbb{N} : |A^c| < \infty\}$, (subconjuntos de \mathbb{N} con complemento finito),
 - $ightharpoonup B := \mathcal{P}(\mathbb{N})_{\mathsf{fin}} \cup \mathcal{P}(\mathbb{N})_{\mathsf{cofin}},$
 - ► B es numerable.
 - ▶ $(B, \cup, \cap, \varnothing, \mathbb{N}, ()^c)$ es un álgebra de Boole (más aún, es una subálgebra de Boole de $\mathcal{P}(\mathbb{N})$).

Leyes de De Morgan

Proposición

Si $(B, \lor, \land, 0, 1, ()^c)$ es un álgebra de Boole entonces para todos $x, y \in B$ se cumplen:

- $(x \vee y)^c = x^c \wedge y^c;$
- $(x \wedge y)^c = x^c \vee y^c.$

En otras palabras: la función complemento es un antiisomorfismo de álgebras de Boole.

Demostración.

Para el primer ítem debemos chequear que

- $(x \lor y) \land (x^c \land y^c) = 0$
- $(x \lor y) \lor (x^c \land y^c) = 1$

y para el segundo debemos chequear que

- $(x \wedge y) \wedge (x^c \vee y^c) = 0$
- $(x \wedge y) \vee (x^c \vee y^c) = 1.$

Demostración (cont.)

$$(x \lor y) \land (x^c \land y^c) = [(x \lor y) \land x^c] \land y^c$$

$$= [(x \land x^c) \lor (y \land x^c)] \land y^c$$

$$= [0 \lor (y \land x^c)] \land y^c$$

$$= (y \land x^c) \land y^c = (y \land y^c) \land x^c$$

$$= 0 \land x^c = 0$$

$$(x \lor y) \lor (x^c \land y^c) = (x \lor y \lor x^c) \land (x \lor y \lor y^c)$$

= $(1 \lor y) \land (x \lor 1) = 1 \lor 1 = 1$

Ejercicio: completar las otras dos igualdades (se puede hacer bien fácil por dualidad, teniendo en cuenta una sutileza).

Idea de la demostración del teorema M₃-N₅

Retículos modulares

Un retículo (L, \vee, \wedge) se dice **modular** si

$$\forall x, y, z \in L, [x \ge z \implies x \land (y \lor z) = (x \land y) \lor z].$$

Observar que distributivo \implies modular.

Ejemplo

- ▶ $L = \{\text{subespacios vectoriales de } \mathbb{R}^n\},$
- ▶ (L, \subset) es retículo, pero no es subrretículo de $\mathcal{P}(\mathbb{R}^n)$ (pues la unión de subespacios no necesariamente es un subespacio),
- \triangleright $V \wedge W = V \cap W$,
- ▶ $V \lor W = V + W := \langle V \cup W \rangle$ (subespacio generado).
- L es modular. En efecto, debemos probar que

$$U\supset W\implies U\cap (V+W)=(U\cap V)+W.$$

Ejemplo (cont.)

- $ightharpoonup x \in U \cap (V + W) \implies x = v + w \in U \text{ con } v \in V, w \in W.$
- ▶ Luego $v = x w \in U$ pues $W \subset U \implies v \in U \cap V$
- ▶ y por ende $x \in (U \cap V) + W$.

Recíprocamente,

- $ightharpoonup x = u + w \text{ con } u \in U \cap V \subset V, w \in W \implies x \in U.$
- ▶ Luego $x \in U \cap (V + W)$.

Observación

- L no es distributivo.
- $U \cap (V + W) = U \cap \mathbb{R}^2 = U,$
- ► $(U \cap V) + (U \cap W) = \{0\}.$

Ejemplo

 M_3 es modular (no es distributivo): ídem ejemplo anterior.

Ejemplo

- $ightharpoonup N_5$ no es distributivo ni modular.
- ightharpoonup $a \geq c$,
- $ightharpoonup a \wedge (b \vee c) = a \wedge 1 = a$,
- $(a \wedge b) \vee c = 0 \vee c = c.$

Retículos libres

Partimos de una cantidad prefijada de elementos (podrían ser infinitos):

$$X = \{x, y, z, \ldots\}.$$

- ▶ Definimos las operaciones $x \land y$, $x \land z$, $y \lor z$, $x \land (y \lor z)$, etc. sin restricciones (de manera libre), agregando tantos elementos como sean necesarios, salvo por las restricciones que impone la estructura, por ejemplo
- $\blacktriangleright x \land x = x \lor x = x \lor (x \land z) = x$, etc.
- ▶ Formamos el **retículo libre** F(X) (siempre existe).
- ▶ F(X) tiene la siguiente **propiedad universal:** para todo retículo L tal que $X \subset L$ "monótonamente incluido" existe un único morfismo de retículos $\varphi : F(X) \to L$ tal que $\varphi(x) = x$ para todo $x \in X$.

Ejemplo

 $F(\{a,b\}) \simeq \mathcal{P}(\{a,b\}).$

- ▶ $\{a,b\}$ se puede incluir monótonamente en $\mathcal{P}(\{x,y,z\})$ de varias formas distintas por ejemplo en $\{\{x\},\{y\}\}$ o en $\{\{x\},\{y,z\}\}$.
- Esto nos da distintas copias de $F(\{a,b\})$ dentro de $\mathcal{P}(\{x,y,z\})$ (como subrretículos).

Observación

- $\triangleright \mathcal{P}(\{x,y,z\})$ no es un retículo libre.
- Más adelante veremos una justificación precisa mostrando explícitamente quién es el retículo libre en tres elementos.
- ▶ Idea intuitiva: $\mathcal{P}(\{x,y,z\})$ es un álgebra de Boole y propiedades como la distributividad imponen fuertes restricciones a las operaciones \vee, \wedge , que no están presentes en un retículo libre.
- Notar sin embrago (ejemplo anterior) que $\mathcal{P}(\{x,y\})$ sí es un retículo libre (al comenzar con tan pocos elementos, propiedades como la distributividad y la existencia de complementos deben valer forzosamente).

Retículos libres con restricciones

Es posible formar retículos libres en un conjunto X imponiendo ciertas relaciones entre elementos de X o ciertas propiedades sobre el retículo a construir (por ejemplo que sea distributivo, modular, etc.).

Ejemplo/Ejercicio

El retículo libre en $\{a, b, c\}$ sujeto a la restricción b < a es:

Ejemplo/Ejercicio

El retículo libre en $\{a, b, c\}$ sujeto a la restricción b < a es:

Teorema

El retículo distributivo libre generado por $\{x, y, z\}$ tiene 18 elementos.

Teorema (Dedekind \sim 1900)

El retículo libre generado por $\{x, y, z\}$ tiene 28 elementos.

Corolario

 $\mathcal{P}(\{x,y,z\})$ no es un retículo libre.

Teorema

El retículo libre en $\{x, y, z, t\}$ tiene infinitos elementos.

 $F_{\mathsf{dist}}(3)$ X

Cocientes

- $ightharpoonup \varphi: L \to K$ morfismo de retículos.
- \blacktriangleright ker φ relación de equivalencia en L:

$$a \sim b \iff \varphi(a) = \varphi(b).$$

▶ $L/\ker \varphi$ es un retículo isomorfo a im φ (teorema de isomorfismo).

Teorema

Sea L un retículo. Entonces

- 1. L es modular \iff no tiene subrretículos isomorfos a N_5 .
- 2. Si L es modular entonces, L es distributivo \iff no tiene subrretículos isomorfos a M_3 .

Demostración

Lema (Ejercicio)

Un subrretículo de un retículo modular (resp. distributivo) es modular (resp. distributivo).

Prueba de 1.

- ▶ Sean $a, b, c, \in L$ tales que a > b y $a \land (b \lor c) \neq (a \lor b) \land c$.
- ▶ $\exists \varphi : F_{b < a}(3) \rightarrow L$ morfismo de retículos (inclusión).
- ▶ $N_5 \subset F_{b < a}(3)$ induce un morfismo de retículos φ : $N_5 \to L$.
- $\qquad \qquad \mathsf{im}(\varphi|) = N_5/\ker(\varphi|) = N_5.$
- ▶ Ejercicio: N_5 no tiene cocientes, es decir $\ker(\varphi|) = \Delta$ es la relación de igualdad.

Prueba de 2.

- Si *L* es modular y no distributivo entonces existen $x, y, z \in L$ tales que $x \land (y \lor z) \neq (x \land y) \lor (x \land z)$.
- ▶ $\exists \varphi : F(3) \rightarrow L$ morfismo de retículos.
- ▶ $M_3 \subset F$ induce un morfismo φ | : $M_3 \to L$.
- $\qquad \qquad |\mathsf{im}(\varphi|) = M_3/\ker(\varphi|) = M_3.$
- \triangleright Ejercicio: M_3 no tiene cocientes.