Chapter 1. The Foundations

- 1.2 Propositional Equivalences
- 1.3 Predicates and Quantifiers

1.2 Propositional Equivalence

- A tautology is a compound proposition that is true no matter what the truth values of its atomic propositions are!
 - e.g. $p \lor \neg p$ ("Today the sun will shine or today the sun will not shine.") [What is its truth table?]
- A contradiction is a compound proposition that is false no matter what!
 - e.g. $p \land \neg p$ ("Today is Wednesday and today is not Wednesday.") [Truth table?]
- A contingency is a compound proposition that is neither a tautology nor a contradiction.
 - e.g. $(p \lor q) \rightarrow \neg r$

Logical Equivalence

- Compound proposition p is *logically* equivalent to compound proposition q, written $p \equiv q$ or $p \Leftrightarrow q$, iff the compound proposition $p \leftrightarrow q$ is a tautology.
- Compound propositions p and q are logically equivalent to each other iff p and q contain the same truth values as each other in all corresponding rows of their truth tables.

Proving Equivalence via Truth Tables

• Prove that $\neg(p \land q) \equiv \neg p \lor \neg q$. (De Morgan's law)

p q	$p \land q$	$\neg p$	$\neg q$	$\neg p \vee \neg q$		$\neg (p \land q)$			
TT	T	F	F		F			F	
TF	F	F	T		T			T	
FT	F	T	F		T			T	
FF	F	$\mid T \mid$	T		T			T	
					V			V	

- Show that Check out the solution in the textbook!
 - $\neg(p \lor q) \equiv \neg p \land \neg q$ (De Morgan's law)
 - $p \rightarrow q \equiv \neg p \lor q$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (distributive law)

Equivalence Laws

- These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.
- They provide a pattern or template that can be used to match part of a much more complicated proposition and to find an equivalence for it and possibly simplify it.

Equivalence Laws

• Identity:
$$p \wedge T \equiv p$$
 $p \vee F \equiv p$

■ Domination:
$$p \lor T \equiv T$$
 $p \land F \equiv F$

• Idempotent:
$$p \lor p \equiv p$$
 $p \land p \equiv p$

■ Double negation:
$$\neg \neg p = p$$

■ Commutative:
$$p \lor q = q \lor p$$
 $p \land q = q \land p$

■ Associative:
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

 $(p \land q) \land r \equiv p \land (q \land r)$

More Equivalence Laws

■ Distributive: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

De Morgan's:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Absorption

$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

Trivial tautology/contradiction:

$$p \vee \neg p \equiv \mathbf{T}$$
 $p \wedge \neg p \equiv \mathbf{F}$

See Table 6, 7, and 8 of Section 1.2

Defining Operators via Equivalences

Using equivalences, we can *define* operators in terms of other operators.

■ Exclusive or:
$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

 $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

■ Implies:
$$p \rightarrow q \equiv \neg p \lor q$$

■ Biconditional:
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

 $p \leftrightarrow q \equiv \neg (p \oplus q)$

This way we can "normalize" propositions

An Example Problem

■ Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

$$\neg (p \rightarrow q)$$
 [Expand definition of \rightarrow]
$$\equiv \neg (\neg p \lor q)$$
 [DeMorgan's Law]
$$\equiv \neg (\neg p) \land \neg q$$
 [Double Negation]
$$\equiv p \land \neg q$$

Another Example Problem

Check using a symbolic derivation whether

$$(p \land \neg q) \to (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

$$(p \land \neg q) \rightarrow (p \oplus r)$$
 [Expand definition of \rightarrow]
$$\equiv \neg (p \land \neg q) \lor (p \oplus r)$$
 [Expand definition of \oplus]
$$\equiv \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$$
[DeMorgan's Law]
$$\equiv (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$$

$$cont.$$

Example Continued...

$$(p \land \neg q) \rightarrow (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

$$(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \ [\lor Commutative]$$

$$\equiv (q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r)) \ [\lor Associative]$$

$$\equiv q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r))) \ [Distribute \lor over \land]$$

$$\equiv q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r)))) \ [\lor Assoc.]$$

$$\equiv q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r))) \ [Trivial taut.]$$

$$\equiv q \lor ((T \lor r) \land (\neg p \lor \neg (p \land r))) \ [Domination]$$

$$\equiv q \lor ((\neg p \lor \neg (p \land r))) \ [Identity]$$

$$\equiv q \lor ((\neg p \lor \neg (p \land r)))$$

End of Long Example

$$(p \land \neg q) \to (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

$$q \lor (\neg p \lor \neg (p \land r))$$
 [DeMorgan's Law]
 $\equiv q \lor (\neg p \lor (\neg p \lor \neg r))$ [\lor Associative]
 $\equiv q \lor ((\neg p \lor \neg p) \lor \neg r)$ [Idempotent]
 $\equiv q \lor (\neg p \lor \neg r)$ [Associative]
 $\equiv (q \lor \neg p) \lor \neg r$ [\lor Commutative]
 $\equiv \neg p \lor q \lor \neg r$

Review: Propositional Logic (1.1-1.2)

- Atomic propositions: p, q, r, ...
- Boolean operators: ¬ ∧ ∨ ⊕ → ↔
- Compound propositions: $(p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \Leftrightarrow \equiv \neg (p \to q)$
- Proving equivalences using:
 - Truth tables
 - Symbolic derivations (series of logical equivalences) p = q = r = ···

1.3 Predicate Logic

Consider the sentence

"For every x, x > 0"

If this were a true statement about the positive integers, it could not be adequately symbolized using only statement letters, parentheses and logical connectives.

The sentence contains two new features: a predicate and a quantifier

Subjects and Predicates

- In the sentence "The dog is sleeping":
 - The phrase "the dog" denotes the subject the object or entity that the sentence is about.
 - The phrase "is sleeping" denotes the *predicate* a property that the subject of the statement can have.
- In predicate logic, a predicate is modeled as a proposional function P(·) from subjects to propositions.
 - P(x) = "x is sleeping" (where x is any subject).
 - P(The cat) = "The cat is sleeping" (proposition!)

More About Predicates

- Convention: Lowercase variables x, y, z...
 denote subjects; uppercase variables P, Q,
 R... denote propositional functions (or
 predicates).
- Keep in mind that the result of applying a predicate P to a value of subject x is the proposition. But the predicate P, or the statement P(x) itself (e.g. P = "is sleeping" or P(x) = "x is sleeping") is not a proposition.
 - e.g. if P(x) = "x is a prime number", P(3) is the proposition "3 is a prime number."

Propositional Functions

- Predicate logic generalizes the grammatical notion of a predicate to also include propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take.
 - e.g.:
 let P(x,y,z) = "x gave y the grade z"
 then if
 x = "Mike", y = "Mary", z = "A",
 then
 P(x,y,z) = "Mike gave Mary the grade A."

Examples

- Let P(x): x > 3. Then
 - P(4) is TRUE FALSE
 - P(2) is TRUE FALSE |2>3|

4 > 3

- Let Q(x, y): x is the capital of y. Then
 - Q(Washington D.C., U.S.A.) is TRUE
 - Q(Hilo, Hawaii) is FALSE
 - Q(Massachusetts, Boston) is FALSE
 - Q(Denver, Colorado) is TRUE
 - Q(New York, New York) is FALSE
- Read EXAMPLE 6 (pp.33)
 - If x > 0 then x = x + 1 (in a computer program)