CSIR-UGC NET-June 2013-Problem(68)

Ayush Jha

CS20BTECH11006

Question

CSIR-UGC NET-June 2013-Problem(68)

Let X_1, \cdots, X_n be independent and identically distributed random variables with probability density function

$$f(x) = \frac{1}{2}\lambda^3 x^2 e^{-\lambda x}; x > 0; \lambda > 0$$

Then which of the following statements are true?

Definitions

What is estimator?

An estimator is a statistic that estimates some fact about the population. For example, the sample mean (\bar{X}) is an estimator for the population mean, μ . The quantity that is being estimated is called the **estimand**.

Bias of estimator

Let $\Theta = h(X_1, X_2, \dots, X_n)$ be a point estimator for θ . The **bias** of the estimator Θ is defined by

$$B(\Theta) = E[\Theta] - \theta \tag{1}$$

where $E[\Theta]$ is the expectation value of the estimator Θ and θ is the estimand.

Definitions Contd.

Unbiased estimator

Let $\Theta = h(X_1, X_2, \dots, X_n)$ be a point estimator for a parameter θ . We say that Θ is an **unbiased estimator** of θ if

$$B(\Theta) = 0$$
, for all possible values of θ . (2)

Consistent estimator

Let $\Theta_1, \Theta_2, \cdots, \Theta_n, \cdots$, be a sequence of point estimators of θ . We say that Θ_n is a **consistent** estimator of θ , if

$$\lim_{n \to \infty} \Pr(|\Theta_n - \theta| \ge \epsilon) = 0 \text{ ,for all } \epsilon > 0.$$
 (3)

Definitions Contd.

Mean Squared Error (MSE)

The **mean squared error (MSE)** of a point estimator Θ , shown by $MSE(\Theta)$, is defined as

$$MSE(\Theta) = E[(\Theta - \theta)^2]$$
 (4)

$$= Var(\Theta) + B(\Theta)^2 \tag{5}$$

where $B(\Theta)$ is the bias of Θ .

Theorem

Let $\Theta_1, \Theta_2, \cdots$ be a sequence of point estimators of θ . If

$$\lim_{n\to\infty} MSE(\Theta_n) = 0, \tag{6}$$

then Θ_n is a consistent estimator of θ .

Solution: Option 1

Now here we have our estimator Θ and estimand θ as,

$$\Theta = \frac{2}{n} \sum_{i=1}^{n} \frac{1}{X_i} \text{ and } \theta = \lambda$$
 (7)

To check if this is an unbiased estimator or not the bias needs to be calculated.

$$B(\Theta) = E[\Theta] - \theta \tag{8}$$

Option 1 Contd.

The expectation value of the estimator is given by,

$$E[\Theta] = E\left[\frac{2}{n} \sum_{i=1}^{n} \frac{1}{X_i}\right] \tag{9}$$

$$=\frac{2}{n}\sum_{i=1}^{n}E\left[\frac{1}{X_{i}}\right] \tag{10}$$

$$=\frac{2}{n}\sum_{i=1}^{n}\int_{-\infty}^{\infty}\frac{1}{x}f(x)\,dx\tag{11}$$

$$=\frac{2n}{n}\int_0^\infty \frac{1}{x}\frac{1}{2}\lambda^3 x^2 e^{-\lambda x} dx \tag{12}$$

$$= \lambda^3 \int_0^\infty x e^{-\lambda x} \, dx \tag{13}$$

$$=\lambda \tag{14}$$

Option 1 Contd.

From above calculations we can say,

$$E\left[\frac{1}{X}\right] = \frac{\lambda}{2} \tag{15}$$

So the bias of estimator is given by,

$$B(\Theta) = E[\Theta] - \theta \tag{16}$$

$$=\lambda-\lambda=0\tag{17}$$

Therefore $\frac{2}{n}\sum_{i=1}^{n}\frac{1}{X_{i}}$ is an unbiased estimator of λ .

Option 1 is correct.

Option 2

Here in this option, we have our estimator Θ and estimand θ as,

$$\Theta = \frac{3n}{\sum_{i=1}^{n} X_i} \text{ and } \theta = \lambda$$
 (18)

The expectation value of the estimator is given by,

$$E[\Theta] = E\left[\frac{3n}{\sum_{i=1}^{n} X_i}\right]$$
 (19)

$$=\frac{3n}{\sum_{i=1}^{n}}E\left[\frac{1}{X_{i}}\right] \tag{20}$$

Option 2 Contd.

The value of $E\left[\frac{1}{X_i}\right]$ can be obtained from (15) as so we have,

$$E[\Theta] = \frac{3n}{\sum_{i=1}^{n} \frac{\lambda}{2}} \tag{21}$$

$$=\frac{3n}{n}\frac{\lambda}{2} = \frac{3\lambda}{2} \tag{22}$$

So the bias of estimator is given by,

$$B(\Theta) = E[\Theta] - \theta \tag{23}$$

$$=\frac{3\lambda}{2}-\lambda\neq0\tag{24}$$

Therefore $\frac{3n}{\sum_{i=1}^{n} X_i}$ is not an unbiased estimator of λ

Option 2 is not correct.

Option 3

Now here we have our estimator Θ and estimand θ as,

$$\Theta = \frac{2}{n} \sum_{i=1}^{n} \frac{1}{X_i} \text{ and } \theta = \lambda$$
 (25)

Now the variance of Θ is calculated as

$$Var(\Theta) = Var\left(\frac{2}{n}\sum_{i=1}^{n}\frac{1}{X_i}\right)$$
 (26)

$$= \frac{4}{n^2} \sum_{i=1}^n Var\left(\frac{1}{X_i}\right) \tag{27}$$

$$=\frac{4n}{n^2}\left(E\left[\frac{1}{X_i}^2\right]-E\left[\frac{1}{X_i}\right]^2\right) \tag{28}$$

$$=\frac{4}{n}\left(\int_{-\infty}^{\infty}\frac{1}{x^2}f(x)\,dx-\left(\frac{\lambda}{2}\right)^2\right)\tag{29}$$

4 D > 4 D > 4 D > 4 D > 3

Option 3 Contd.

$$Var(\Theta) = \frac{4}{n} \left(\int_0^\infty \frac{1}{x^2} \frac{1}{2} \lambda^3 x^2 e^{-\lambda x} dx - \frac{\lambda^2}{4} \right)$$
 (30)

$$=\frac{\lambda^2}{n}\tag{31}$$

The bias of Θ from option 1 is given as $B(\Theta) = 0$ So we have,

$$MSE(\Theta_n) = Var(\Theta) + B(\Theta)^2$$
 (32)

$$=\frac{\lambda^2}{n}\tag{33}$$

$$\lim_{n \to \infty} MSE(\Theta_n) = \lim_{n \to \infty} \frac{\lambda^2}{n}$$
 (34)

$$=0 (35)$$

Therefore, $\frac{2}{n}\sum_{i=1}^{n}\frac{1}{X_i}$ is a consistent estimator of λ .

Option 3 is correct.

Option 4

Now here we have our estimator Θ and estimand θ as,

$$\Theta = \frac{3n}{\sum_{i=1}^{n} X_i} \text{ and } \theta = \lambda$$
 (36)

Now the variance of Θ is calculated as

$$Var(\Theta) = Var\left(\frac{3n}{\sum_{i=1}^{n} X_i}\right)$$
 (37)

$$=\frac{9n^2}{\sum_{i=1}^n Var\left(\frac{1}{X_i}\right)} \tag{38}$$

(39)

Now the value of $Var\left(\frac{1}{X_i}\right)$ from (28) is substituted, we have

Option 4 Contd.

$$Var(\Theta) = \frac{9n^2}{\sum_{i=1}^n \lambda^2}$$
 (40)

$$=\frac{9n^2\lambda^2}{4n}\tag{41}$$

$$=\frac{9n\lambda^2}{4}\tag{42}$$

The bias of Θ from option 2 is given as $B(\Theta) = \frac{\lambda}{2}$ So we have,

$$MSE(\Theta_n) = Var(\Theta) + B(\Theta)^2$$
 (43)

$$=\frac{9n\lambda^2}{4} + \left(\frac{\lambda}{2}\right)^2 \tag{44}$$

$$=\frac{\lambda^2}{4}(9n+1)\tag{45}$$

Option 4 Contd.

Now,

$$\lim_{n \to \infty} MSE(\Theta_n) = \lim_{n \to \infty} \frac{\lambda^2}{4} (9n + 1)$$
 (46)

(47)

Clearly as n grows larger 9n + 1 also grows larger, so

$$\lim_{n \to \infty} MSE(\Theta_n) \neq 0 \tag{48}$$

Therefore, $\frac{3n}{\sum_{i=1}^{n} X_i}$ is not a consistent estimator of λ .

Option 4 is not correct.

Therefore option 1 and option 3 are correct.