Supplementary material for "Multi-step Sensor Attackability in Cyber-Physical Systems"

Wenli Duo, *Graduate Student Member*, *IEEE*, Shouguang Wang, *Senior Member*, *IEEE*, and MengChu Zhou, *Fellow*, *IEEE*

I. NOMENCLATURE

N	Set of natural numbers
\mathbb{N}^+	Set of positive integers
G	$(X, \Sigma, \delta, x_0, X_m)$, physical plant
S	$(X_S, \Sigma, \delta_S, x_{0,S}, X_{m,S})$, supervisor
R	$(X_R, \Sigma_R, \delta_R, x_{0,R}, X_{m,R}), 1A$ automaton
L(G)	language generated by G
$L_m(G)$	language marked by G
V/G	Closed-loop system
$\Sigma_{ar{o}}$	Set of unobservable events
Σ_o	Set of observable events
Σ_{RD}	Set of replacement and deletion operations
Σ_I	Set of insertion operations
Σ_A	Set of all events and possible actions under attacks
G_A	$(X_A, \Sigma_A, \delta_A, x_{0,A}, X_{m,A})$, general attack structure
G_P	$(X_P, \Sigma_A, \delta_P, x_{0,P}, X_{m,P})$, refined and stealthy attack
17	structure
X_u	Set of unsafe states
X_{dead}	Set of dead states
$Ac(\cdot)$	Accessible part of an automaton
$Trim(\cdot)$	Accessible and coaccessible part of an automaton
$\Gamma(x)$	Set of active events at state <i>x</i> in <i>G</i>
$P_G(s)$	$P_G: \Sigma_A^* \to \Sigma^*$, actual generation of G with respect to s
$P_{S}(s)$	$P_S: \Sigma_A^* \to \Sigma_o^*$, observation of S with respect to s
$P_A(s)$	$P_A: \Sigma_A^* \to (\Sigma_{RD} \cup \Sigma_I)^*$, attack operations required by s
s	Length of a string s
$L_k(G_P)$	$\{s \in L_m(G_P) P_A(s) \le k\}$, set of strings in $L_m(G_P)$ that requires within k attack operations
$G_{AR}(G)$	$(X_{AR}, \Sigma_{AR}, \delta_{AR}, x_{0,AR}, X_{m,AR})$, attack recognizer for G
$G_{AR}^k(G)$	$(X_{AR}^k, \Sigma_{AR}^k, \delta_{AR}^k, x_{0,AR}^k, X_{m,AR}^k)$, k-step attack recognizer for G
G_K	$(X_K, \Sigma_K, \delta_K, x_{0,K}, X_{m,K})$, automaton that recognizes $L_k(G_P)$
$\widetilde{N}(x)$	$\{x' \in X_P (\exists s \in \Sigma^*) \ \delta_P(x, s) = x'\}, \text{ set of normal reach of } r$

II. ALGORITHMS

of x

In this section, explanations of Algorithms 1 and 2 as well as their computational analysis are provided.

Algorithm 1: It is designed for construction of a refined and stealthy RDI attack structure, which extends the work in [1] and [2]. The algorithm first constructs a general attack structure based on Definition 2. After obtaining G_A , Algorithm 1 computes the 1A automaton R and the closed-loop system V/G. Then, it calls PruningGa to prune G_A . In PruningGa, let

```
Algorithm 1 Compotation of a refined and stealthy RDI attack structure G_P

Input: a plant G = (X, \Sigma, \delta, x_0, X_m), its supervisor S = (X_S, \Sigma, \delta_S, x_{0,S}, X_{m,S}), and a set of unsafe states X_u \subseteq X.

Output: A refined and stealthy RDI attack structure G_P = (X_P, \Sigma_A, \delta_P, x_{0,P}, X_{m,P}).

1. construct G_A based on Definition 2;
2. construct 1A automaton R;
3. V/G \leftarrow G||S;
4. G_P \leftarrow PruningGa(V/G, R, G_A);
Output: G_P.
```

```
Function G_P = PruningGa(V/G, R, G_A)
Input: A closed-loop system V/G = (X_{V/G}, \Sigma, \delta_{V/G}, x_{0,V/G}, X_{m,V/G}),
RDI attack structure G_A = (X_A, \Sigma_A, \delta_A, x_{0,A}, X_{m,A}), and 1A rule R =
(X_R, \Sigma_R, \delta_R, x_{0,R}, X_{m,R})
Output: A pruned automaton G_P = (X_P, \Sigma_A, \delta_P, x_{0,P}, X_{m,P}).
      Let X_{dead} \leftarrow \emptyset, B \leftarrow \emptyset, i \leftarrow 0;
        Y_0 \leftarrow Ac(G_A||R);
        for each x \in X_{Yi} \setminus (X_{m,Yi} \cup (X_{m,V/G} \times X_R)) do
4.
           if \Gamma_{Yi}(x) = \emptyset then
5.
               X_{dead} \leftarrow X_{dead} \cup \{x\};
            end if
7.
       end for
8.
       for each x \in X_{Y_i} do
           if \exists e \in \Sigma_{\bar{c}}, s. t. \delta_{Yi}(x, e) \in X_{dead} then
              X_{dead} \leftarrow X_{dead} \cup \{x\};
10.
11.
            else if P_G(\Gamma_{Yi}(x)) \neq P_G(\Gamma_{Y0}(x)) \wedge \Gamma_{Yi}(x) \cap \Sigma_I = \emptyset then
12.
               X_{dead} \leftarrow X_{dead} \cup \{x\};
13.
            end if
14. end for
15. Y_{i+1} \leftarrow Ac(Y_i, X_{dead});
16. if Y_{i+1} \neq Y_i then
           i \leftarrow i + 1;
           go to step 8;
18.
19. else
20. Y' \leftarrow Trim(Y_{i+1});
21. end if
        for each x \in X_Y do
23.
           if \exists e \in \Sigma, s. t. \delta_Y(x, e) \in X_{m,Y} then
24.
               B \leftarrow \bigcup_{\sigma \in \Gamma_Y(x) \cap \{\sigma \in \Sigma_{RD} | P_G(\sigma) = e\}} \delta_Y(x, \sigma);
25.
26. end for
27. G_P \leftarrow Trim(Y, B);
28. Output: G_P.
```

 X_{dead} be a set of dead states and B be a global variable. First, PruningGa initializes X_{dead} and B. Let i = 0 and we obtain an automaton by $Y_i = Ac(G_A||R) = (X_{Y_i}, \Sigma_A, \delta_{Y_i}, x_{0,Y_i}, X_{m,Y_i})$. This step removes strings that violate the 1A rule from G_A . Steps 3-7 compute X_{dead} in Y_i . Steps 8-21 adopt a pruning process from [2] to eliminate strings that can lead the system to dead states, which can be considered as a standard supervisory control problem. It iteratively removes dead states from Y_i as well as those that can reach dead ones via uncontrollable events. More details can be found in [2].

In practice, there is no need to launch any attack once an unsafe state is reached. For $x \in X_{Y'}$ and $e \in \Sigma$, $\delta_Y(x, e) \in X_{m,Y'}$ indicates that an unsafe state is reached when e occurs. Modifications on e are considered redundant. $\forall \sigma \in \Gamma_{Y'}(x) \cap \{\sigma \in \Sigma_{RD} | P_G(\sigma) = e\}$, $\delta_{Y'}(x, \sigma)$ is a redundant state and added to set B. Steps 20-27 of PruningGa remove all the states in B from Y', and derive an accessible and co-accessible automaton G_P , which is the refined and stealthy attack structure.

The burdensome parts of Algorithm 1 are construction and pruning of G_A . G_A has at most $|X| \times |X_S|$ states. For each state in X_A , we have to enumerate each event in Σ_A at it, where $|\Sigma_A|$ = $|\Sigma| + |\Sigma_{RD}| + |\Sigma_I| = |\Sigma| + |\Sigma_o| \times |\Sigma_o| + |\Sigma_o|$. The complexity to construct G_A is $O(|X| \times |X_S| \times (|\Sigma| + |\Sigma_o| \times |\Sigma_o| + |\Sigma_o|) \approx O(|X|^2 \times |\Sigma_o|)$ $|\Sigma|^2$). In *PruningGa*, steps 2-7 compute $G_A||R$ and find dead states, which takes $O(|X_A| \times |X_R|)$. There are at most $|X_A| \times |X_R|$ states in Y_i . For each state in X_{Y_i} , steps 9-13 check active events at it, which takes $O(|\Sigma_A|)$. The complexity of steps 8-14 is $O(|X_A| \times |X_R| \times |\Sigma_A|)$ and that of 15 is $O(|X_A| \times |X_R|)$. After removing dead states from Y_i , we check if $Y_{i+1} \neq Y_i$. If so, a "go to" procedure is called, which runs $|X_A| \times |X_R|$ times in the worst case. Then, steps 22-26 take $O(|X_A| \times |X_R|)$ to remove redundant states. The overall complexity of *PruningGa* is $O(|X_A| \times |X_R|) + O(|X_A|^2 \times |X_R|^2 \times |\Sigma_A|) + O(|X_A|^2 \times |X_R|^2) + O(|X_A|^2 \times |X_R|^2)$ $\times |X_R| \approx O(|X_A|^2 \times |X_R|^2 \times |\Sigma_A|) \approx O(|X|^4 \times |\Sigma|^2)$. Thus, the overall complexity of Algorithm 1 is $O(|X|^2 \times |\Sigma|^2) + O(|X|^4 \times |\Sigma|^2)$ $|\Sigma|^2$) $\approx O(|X|^4 \times |\Sigma|^2)$.

Algorithm 2: It is provided to compute $L_k(G_P)$ for a weakly k-step attackable system. Algorithm 2 starts with constructing the k-step attack recognizer $G_{AR}^k(G)$. It then initializes a set φ , and searches for states in $G_{AR}^k(G)$ at which the required number of attacks exceeds k. For each $(x_{AR}, \omega) \in X_{AR}^k$, (x_{AR}, ω) is added into φ if $\omega = -1$. Then, $Trim(G_{AR}^k(G), \varphi)$ is called to remove states in φ from $G_{AR}^k(G)$. It returns an automaton $H = (X_H, \Sigma_H, \delta_H, x_{0,H}, X_{m,H})$, which is a subautomaton of $G_{AR}^k(G)$, and $\forall (x_{AR}, \omega) \in X_H, \omega \geq 0$, if $H \neq \emptyset$. Namely, $\forall s \in L_m(H)$, $|s| \leq k$. Then, we perform $Trim(G_P \parallel H)$ to remove strings in G_P that require more than k attack operations. The resultant automaton is denoted as $G_K = (X_K, \Sigma_K, \delta_K, x_{0,K}, X_{m,K})$, from which $L_k(G_P)$ can be derived.

In Algorithm 2, we first construct $G_{AR}^k(G)$, which can be done in $O((k+2) \times 2^{2|X|^2+1} \times |\Sigma_o|)$. The computation of φ and the trim operation $Trim(G_{AR}^k(G), \varphi)$ take the same complexity of $O((k+2) \times 2^{2|X|^2})$, since there are at most $(k+2) \times 2^{2|X|^2}$ states in $G_{AR}^k(G)$. H is a subautomaton of $G_{AR}^k(G)$, which also

Algorithm 2 Computing $L_k(G_P)$ for a weakly k-step attackable system

Input: A plant G, an attack structure G_P , and $k \in \mathbb{N}^+$. **Output**: An automaton G_K that recognizes $L_k(G_P)$.

- 1) construct $G_{AR}^k(G)$;
- 2) let $\varphi \leftarrow \emptyset$;
- 3) for each $(x_{AR}, \omega) \in X_{AR}^k$ do
- 4) if $\omega = -1$ then
- 5) $\varphi \leftarrow \varphi \cup \{(x_{AR}, \omega)\};$
- 6) end if
- 7) end for
- 8) $H \leftarrow Trim(G_{AR}^k(G), \varphi);$
- 9) $G_K \leftarrow Trim(G_P \parallel H)$;
- 10) **Output**: G_K .

contains at most $(k+2) \times 2^{2|X|^2}$ states. The composition of G_P and H takes $|X_P| \times |X_H| = 2|X|^2 \times (k+2) \times 2^{|X|^2}$ operations. Thus, the total complexity of Algorithm 2 is $O((k+2) \times 2^{2|X|^2+1} \times |\Sigma_o| + (k+2) \times 2^{2|X|^2} + (k+2) \times 2^{2|X|^2} + 2|X|^2 \times (k+2) \times 2^{|X|^2})$, which is simplified to $O((k+2) \times 2^{|X|^2+1} \times |\Sigma_o|)$.

III. PROOFS

Proposition 1: Given a plant G, its supervisor S and a set of unsafe states X_u as inputs of Algorithm 1, the output G_P provides stealthy attacks that adhere to the 1A rule.

Proof: PruningGa shows that $Y_0 = Ac(G_A||R)$ and $\Sigma_A = \Sigma_R$. We have $L(Y_0) \subseteq L(G_A) \cap L(R) \Rightarrow L(Y_i) \subseteq L(G_A) \cap L(R)$, for $i \in \mathbb{N}$. When $Y_{i+1} = Y_i$, we have $Y' = Trim(Y_{i+1})$ and $G_P = Trim(Y', B)$. It holds that $L(G_P) \subseteq L(G_A) \cap L(R)$. Hence, G_P follows the 1A rule. As for stealthiness, it trivially holds due to the construction of G_A and pruning process in [2].

Proposition 2: If G is k-step attackable w.r.t. S and G_P , then G is k'-step attackable w.r.t. S and G_P for any k' > k, where k, $k' \in \mathbb{N}^+$.

Proof: Suppose that G is not k'-step attackable. By Definition 4, it implies that G is not k-step attackable for any k < k'. By contrapositive, the proposition is true.

Theorem 1: Given a plant G, its supervisor S, an attack structure G_P , there exists an integer $k \in \mathbb{N}^+$, such that G is k-step attackable w.r.t. S and G_P iff its attack recognizer $G_{AR}(G)$ is loop-free.

Proof: (\Rightarrow) By contrapositive, assume that there is a loop l_1 : $x_{1,AR} \xrightarrow{\sigma_1} x_{2,AR} \xrightarrow{\sigma_2} \dots x_{n,AR} \xrightarrow{\sigma_n} x_{1,AR}$ in $G_{AR}(G)$, where $n \in \mathbb{N}^+$, $\sigma_i \in (\Sigma_{RD} \cup \Sigma_I)$ for $i \in \{1, 2, ..., n\}$. Based on Definition 5, there exists a sequence l_2 in G_P :

$$x_{1,P} \xrightarrow{\sigma_1} x_{2,P} \xrightarrow{t_1} x_{2,P}' \xrightarrow{\sigma_2} x_{3,P} \xrightarrow{t_2} \dots \xrightarrow{t_{n-1}} x_{n,P}' \xrightarrow{\sigma_n} x_{n+1,P},$$

where $x_{1,P}$ is a component of $x_{1,AR}$, $t_m \in \Sigma^*$, $x_{j,AR} = \widetilde{N}(x_{j,P})$, for $m \in \{1, 2, ..., n-1\}$ and $j \in \{2, ..., n\}$. We have $\delta_P(x_{n,P}, t_{n-1}\sigma_n) = 0$

 $x_{n+1,P}$, and $x_{1,AR} = \widetilde{N}(x_{n+1,P})$. Since $x_{1,P}$ is a component of $x_{1,AR}$, $x_{1,P} \in \widetilde{N}(x_{n+1,P})$, $\exists w \in \Sigma^*$, such that $x_{1,P} = \delta_P(x_{P,n+1}, w)$, leading to l_2 :

$$x_{1,P} \xrightarrow{\sigma_1} x_{2,P} \xrightarrow{t_1} x_{2,P}' \xrightarrow{\sigma_2} x_{3,P} \xrightarrow{t_2} \dots \xrightarrow{t_{n-1}} x_{n,P}' \xrightarrow{\sigma_n} x_{n+1,P} \xrightarrow{w} x_{1,P},$$

which is a loop that contains attack operations in G_P . It implies that the system may stay in the loop when an attack strategy involving l_3 is performed, which results in an infinite number of attacks. It contradicts that G is k-step attackable w.r.t. G_P .

(⇐) By contrapositive, assume that there does not exist an integer $k \in \mathbb{N}^+$, such that G is k-step attackable w.r.t. G_P . It implies that $\exists s \in L_m(G_P)$ and s contains an infinite number of attack operations. We have $P_A(s) = w = \sigma_1 \sigma_2 \sigma_3...$, and $w \in L(G_{AR}(G))$, where $\sigma_i \in \Sigma_{RD} \cup \Sigma_I$ and $i \in \mathbb{N}^+$. Since $G_{AR}(G)$ is a finite state automaton, an infinite string w should be regular with the form $w = (\sigma_1 \sigma_2 \sigma_3...\sigma_i)^*$, which is a loop in $G_{AR}(G)$. It contradicts that $G_{AR}(G)$ is loop-free.

Lemma 1: For any string $s \in (\Sigma_{RD} \cup \Sigma_I)^*$ with $|s| \ge k + 1$, we have $\delta_{AR}^k((x_{0,AR}, k), s) = (\delta_{AR}(x_{0,AR}, s), -1)$ if $\delta_{AR}(x_{0,AR}, s)!$.

Proof: Let $s = \sigma_1 \sigma_2 ... \sigma_{k+1} \in L(G_{AR}^k(G))$, whe re $\sigma_i \in \Sigma_{RD} \cup \Sigma_I$ and $i \in \{1, 2, ..., k+1\}$. $\delta_{AR}^k((x_{0,AR}, k), s) = \delta_{AR}^k((\delta_{AR}(x_{0,AR}, \sigma_1), k-1), \sigma_2 ... \sigma_{k+1}) = ... = \delta_{AR}^k((\delta_{AR}(x_{0,AR}, \sigma_1 \sigma_2 ... \sigma_k), k-k), \sigma_{k+1}) = (\delta_{AR}(x_{0,AR}, \sigma_1 \sigma_2 ... \sigma_k \sigma_{k+1}), -1)$. It is intuitive that similar results can be obtained for any string $s' \in (\Sigma_{RD} \cup \Sigma_I)^*$ with $|s'| \ge |s|$.

Theorem 2: Given a plant G, its supervisor S, an attack structure G_P , and $k \in \mathbb{N}^+$, $G_{AR}^k(G)$ is the k-step attack recognizer. G is k-step attackable w.r.t. S and G_P iff $\forall (x_{AR}, \omega) \in X_{AR}^k$, $\omega \ge 0$.

Proof: (\Rightarrow) By contrapositive, suppose that $\exists (x_{AR}, \omega) \in X_{AR}^k$, $\omega = -1$. It implies that $\exists s \in L(G_{AR}^k(G))$, such that δ_{AR}^k (($x_{0,AR}, k$), s) = (x_{AR} , -1). It leads to a sequence ($x_{0,AR}, k$) $\xrightarrow{\sigma_1}$ ($x_{1,AR}, k$ -1) $\xrightarrow{\sigma_2}$... $\sigma_k(x_{k,AR}, 0) \xrightarrow{\sigma_{k+1}}$ ($x_{k+1,AR}, -1$) $\xrightarrow{\sigma_{k+2}}$... $\xrightarrow{\sigma_{|s|}}$ ($x_{AR}, -1$), where $\sigma_i \in \Sigma_{RD} \cup \Sigma_I$ and $i \in \{1, 2, ..., |s|\}$. It shows that $|s| = |\sigma_1 \sigma_2 ... \sigma_{k+1} ... \sigma_{|s|}| \ge k+1$. Since $L(G_{AR}^k(G)) = P_A(L(G_P))$, $\exists s' \in L(G_P)$, such that $P_A(s') = s$. Since G_P is a trim, $\exists v \in \Sigma_A^*$, such that $S'v \in L_m(G_P)$, and $|P_A(s'v)| \ge k+1$, which contradicts that G is k-step attackable.

(\Leftarrow) By contrapositive, assume that G is not k-step attackable w.r.t. S and G_P , which means $\exists s \in L_m(G_P)$ such that $|P_A(s)| \ge k+1$. Let $s' = P_A(s)$. We have $s' \in L(G_{AR}^k(G))$. By lemma 1, $\delta_{AR}^k((x_{0,AR}, k), s') = (\delta_{AR}(x_{0,AR}, s'), -1) \in X_{AR}^k$, which contradicts to $\forall (x_{AR}, \omega) \in X_{AR}^k$, $\omega \ge 0$.

Theorem 3: Given a plant G and a supervisor S, G_P is the attack structure w.r.t. S. For any $k' > k = 2^{2|X|^2}-1$, G is k'-step attackable w.r.t. S and G_P , iff G is k-step attackable w.r.t. S and G_P .

Proof: (\Rightarrow) For any $k' > k = 2^{2|X|^2}$ -1, we prove that G is k-step attackable if G is k'-step attackable. Assuming that G is not k-step attackable, it implies that $\exists s \in L_m(G_P)$, such that $|P_A(s)| > k$. We have $\exists s' \in L_m(G_{AR}(G))$, such that $s' = P_A(s)$

and |s'| > k. Without loss of generality, let |s'| = k + 1, since the proof can be generalized inductively to any k' > k. The string s' leads to a sequence l in $G_{AR}(G)$: $x_{0,AR} \xrightarrow{\sigma_1} x_{1,AR} \xrightarrow{\sigma_2} \dots x_{k,AR} \xrightarrow{\sigma_{k+1}} x_{k+1,AR}$, where $s' = \sigma_1 \sigma_2 \dots \sigma_{k+1}$, and $|s'| = |\sigma_1 \sigma_2 \dots \sigma_{k+1}| = k + 1$. It is obvious that l contains k + 1 (= $2^{2|X|^2}$) attack operations and k + 2 (= $2^{2|X|^2} + 1$) states. Since $G_{AR}(G)$ contains at most $2^{2|X|^2}$ states, at least two states $x_{i,AR}$ and $x_{j,AR}$ exist in l, such that $x_{i,AR} = x_{j,AR}$, where $i, j \in \{0, 1, \dots, k\}$. It indicates that there is a loop in $G_{AR}(G)$. By Theorem 1 and Proposition 2, we conclude that G is not k'-step attackable.

 (\Leftarrow) It is obvious that G is k-step attackable if G is k-step attackable by Proposition 2.

Theorem 4: Given a plant G, its supervisor S, an attack structure G_P , and $k \in \mathbb{N}^+$, $G_{AR}^k(G) = (X_{AR}^k, \Sigma_{RD} \cup \Sigma_l, \delta_{AR}^k, x_{0,AR}^k, X_{m,AR}^k)$ is the k-step attack recognizer. G is weakly k-step attackable w.r.t. S and G_P iff $\exists (x_{AR}, \omega) \in X_{m,AR}^k, \omega \geq 0$.

Proof: (\Rightarrow) If G is weakly k-step attackable, $\exists s \in L_m(G_P)$, such that $|P_A(s)| \le k$, i.e., $\exists s' \in L_m(G_{AR}^k(G))$, such that $P_A(s) = s'$ and $|s'| \le k$. It leads to sequence in $G_{AR}^k(G)$: $(x_{0,AR}, k) \xrightarrow{\sigma_1} (x_{1,AR}, k-1) \xrightarrow{\sigma_2} \dots \xrightarrow{\sigma_{|s'|}} (x_{AT}, k-|s'|)$. Since $|s'| \le k$, we have k- $|s'| \ge 0$.

 (\Leftarrow) If $\exists (x_{AR}, \omega) \in X_{m,AR}^k$, $\omega \ge 0$, there exists a string $s \in L_m(G_{AR}^k(G))$, such that $\delta_{AR}^k((x_{0,AR}, k), s) = (x_{AR}, s)$ and $|s| \le k$. Since $L_m(G_{AR}^k(G)) = P_A(L_m(G_P))$, we have $\exists s' \in L_m(G_P)$, such that $P_A(s') = s$ and $|P_A(s')| \le k$. Hence, G is weakly k-step attackable w.r.t. S and G_P .

Proposition 3: Given a plant G, an attack structure G_P , and $k \in \mathbb{N}^+$, let G_K be the output of Algorithm 2 and $L_k(G_P) = \{s \in L_m(G_P) | |P_A(s)| \le k\}$. It holds that $L_m(G_K) = L_k(G_P)$.

Proof: Consider the construction of G_K . Since $\Sigma_H = \Sigma_{RD} \cup \Sigma_I$ and $\Sigma_P = \Sigma_A = \Sigma_{RD} \cup \Sigma_I \cup \Sigma$, we have $L_m(G_K) = L_m(G_P \parallel H) = P_{(\Sigma_P \cup \Sigma_H)^* \to \Sigma_P^*}^{-1} L_m(G_P) \cap P_{(\Sigma_P \cup \Sigma_H)^* \to \Sigma_H^*}^{-1} L_m(H) = L_m(G_P) \cap P_A^{-1} L_m(H)$. We show that $L_m(G_K) \subseteq L_k(G_P)$. Since $\forall (x_{AR}, \omega) \in X_H$, $\omega \ge 0$, we have $\forall w \in L_m(H)$, $|w| \le k$. For any $s \in L_m(G_K)$, we have $s \in L_m(G_P) \cap P_A^{-1} L_m(H)$. Since $P_A(L_m(G_P) \cap P_A^{-1} L_m(H)) \subseteq P_A(L_m(G_P)) \cap L_m(H)$, we have $P_A(s) \in L_m(H) \Rightarrow |P_A(s)| \le k$. It is obvious that $\forall s \in L_m(G_K)$, $s \in L_k(G_P)$.

Then, we show that $L_k(G_P) \subseteq L_m(Q)$. Let $s \in L_k(G_P)$. By $s \in L_m(G_P)$ and $|P_A(s)| \le k$, we know that $P_A(s) \in L_m(G_{AR}^k(G))$ and $\delta_{AR}^k((x_{0,AR}, k), P_A(s)) = (x_{AR}, \omega) \in X_{m,AR}^k$, where $\omega \ge 0$. $P_A(s)$ is retained in H since (x_{AR}, ω) is not removed. Thus, we have $P_A(s) \in L_m(H) \Rightarrow s \in P_A^{-1}L_m(H) \Rightarrow s \in L_m(G_K)$.

In summary, $L_k(G_P) = L_m(G_K)$.

IV. SUPPLEMENTARY CONTENTS ON EXAMPLES

A. G_P in Example 1

B. Details of $G_{AR}(G)$ in Example 2

TABLE I DETAILS OF STATES IN $G_{AR}(G)$

State	Components
$\chi_{0,AR}$	$\{(0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 0, x_{1,R}), (5, 3, x_{0,R})\}$
$x_{1,AR}$	$\{(2, 1, x_{1,R}), (0, 3, x_{1,R}), (1, 4, x_{0,R}), (4, 3, x_{0,R}), (5, 4, x_{0,R}), (4, 4, x_{0,R})\}$
$x_{2,AR}$	$\{(0, 2, x_{1,R}), (3, 2, x_{1,R}), (5, 1, x_{0,R}), (4, 4, x_{0,R})\}$
$x_{3,AR}$	$\{(0, 1, x_{1,R}), (3, 1, x_{1,R}), (5, 4, x_{0,R}), (5, 4, x_{1,R}), (4, 4, x_{0,R})\}$
x_{4AR}	$\{(2, 1, x_{1,R}), (4, 3, x_{1,R}), (1, 4, x_{0,R}), (5, 4, x_{0,R}), (4, 4, x_{0,R})\}$
x_{5AR}	$\{(2, 0, x_{1,R}), (4, 2, x_{0,R}), (5, 1, x_{1,R}), (4, 4, x_{0,R})\}$
x_{6AR}	$\{(1,0,x_{0,R}),(5,2,x_{0,R}),(4,1,x_{0,R})\}$
$\chi_{7,AR}$	$\{(5,2,x_{1,R}),(4,1,x_{0,R})\}$
$\chi_{8,AR}$	$\{(2,4,x_{1,R}),(1,4,x_{0,R}),(5,4,x_{0,R}),(4,4,x_{0,R})\}$
$x_{9,AR}$	$\{(5,4,x_{1,R}),(4,4,x_{0,R})\}$
$x_{10,AR}$	$\{(1, 1, x_{0,R}), (5, 3, x_{0,R})\}\$
$x_{11,AR}$	$\{(1, 4, x_{1,R}), (5, 4, x_{0,R}), (4, 4, x_{0,R})\}$
$x_{12,AR}$	$\{(5,0,x_{1,R}),(4,3,x_{0,R})\}$
x_{13AR}	$\{(5, 1, x_{1,R}), (4, 4, x_{0,R})\}$
$x_{14,AR}$	$\{(5, 1, x_{0,R}), (4, 4, x_{0,R})\}\$

C. Details of $G_{AR}^{l}(G)$ in Example 5

 $\mbox{TABLE I} \\ \mbox{Details of States } x^1_{0,\mathcal{A}R} - x^1_{10,\mathcal{A}R} \mbox{ in } G^1_{AR}(G) \\$

State	XAR	ω
$x_{0,AR}^1$	$\{(0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (4, 4, x_{0,R})\}$	1
$x_{1,AR}^1$	$\{(0, 1, x_{1,R}), (2, 3, x_{1,R}), (5, 4, x_{0,R})\}$	0
$x_{2,AR}^1$	$\{(2, 1, x_{1.R}), (5, 4, x_{0.R}), (0, 4, x_{1.R}), (4, 0, x_{1.R}), (0, 4, x_{0.R}), (4, 0, x_{0.R})\}$	0
$x_{3,AR}^1$	$\{(2, 4, x_{1,R}), (5, 0, x_{0,R}), (0, 0, x_{1,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (4, 4, x_{0,R})\}$	0
$x_{4,AR}^1$	$ \{(1, 4, x_{1,R}), (2, 0, x_{0,R}), (3, 1, x_{0,R}), (4, 4, x_{0,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (3, 4, x_{1,R}), (0, 4, x_{0,R}), (4, 0, x_{0,R}), (4, 0, x_{1,R})\} $	0
$x_{5,AR}^1$	$ \{(1, 4, x_{1,R}), (2, 0, x_{0,R}), (3, 1, x_{0,R}), (4, 4, x_{0,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (3, 4, x_{1,R}), (0, 4, x_{0,R}), (4, 0, x_{0,R})\} $	0
$x_{6,AR}^1$	$ \{(2, 4, x_{1,R}), (5, 0, x_{0,R}), (0, 0, x_{1,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (4, 4, x_{0,R})\} $	-1
$x_{7,AR}^1$	$ \{(2, 4, x_{1,R}), (5, 0, x_{0,R}), (0, 4, x_{1,R}), (0, 4, x_{0,R}), (4, 0, x_{0,R}), (4, 0, x_{1,R}), (2, 1, x_{1,R}), (5, 4, x_{0,R}), (4, 4, x_{1,R}), (0, 0, x_{1,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (4, 4, x_{0,R})\} $	-1
$x_{8,AR}^1$	{ $(2, 1, x_{1,R}), (5, 4, x_{0,R}), (0, 1, x_{1,R}), (2, 3, x_{1,R}), (4, 1, x_{1,R}), (0, 2, x_{0,R}), (1, 3, x_{0,R}), (3, 3, x_{1,R}), (4, 4, x_{0,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R})}$	-1
$x_{9,AR}^1$	$\{(2, 0, x_{1,R}), (3, 1, x_{0,R}), (4, 4, x_{0,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (0, 0, x_{1,R}), (2, 4, x_{1,R}), (5, 0, x_{0,R}), (4, 0, x_{1,R}), (0, 4, x_{0,R}), (4, 0, x_{0,R})\}$	-1
$x_{10,AR}^1$	$ \{(2, 4, x_{1,R}), (5, 0, x_{0,R}), (0, 4, x_{1,R}), (0, 4, x_{0,R}), (4, 0, x_{0,R}), (4, 0, x_{1,R}), (4, 4, x_{1,R}), (0, 0, x_{1,R}), (0, 0, x_{0,R}), (1, 1, x_{0,R}), (2, 2, x_{0,R}), (3, 1, x_{1,R}), (3, 3, x_{0,R}), (4, 4, x_{0,R})\} $	-1

REFERENCES

- [1] R. Su, "Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations," *Automatica*, vol. 94, pp. 35-44, 2018.
- [2] R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, "Synthesis of sensor deception attacks at the supervisory layer of cyber-physical systems," *Automatica*, vol. 121, p. 109172, 2020.