Sublabel-accurate α -expansion

Zhakshylyk Nurlanov^{1,2},
 Daniel Cremers², Florian Bernard¹
 ¹University of Bonn
 ²TU Munich

BACKGROUND:

The goal of multi-label energy minimization is to find a labeling u, which is both piecewise smooth and consistent with the observed data, i.e.

$$\underset{u: \Omega \to \mathcal{L}}{\operatorname{argmin}} E_{data}(u) + E_{smooth}(u), \text{ where}$$

$$E_{data}(u) = \sum_{i \in \Omega} E_i(u^i),$$

$$E_{smooth}(u) = \sum_{(i,j) \in \mathcal{E}} E_{ij}(u^i, u^j).$$

The given energy functions E_i , E_{ij} are defined on a discrete set of labels. However, we aim to find solutions inbetween labels, i.e. sublabel-accurate.

 α -expansion [1] is a fast approximate discrete solver based on graph cuts.

METHODS

- 1. Initialize with discrete solution u_d ,
- 2. Define its neighborhood $\Gamma(u_d)$ in continuous label space,
- 3. Approximate energies E_i , E_{ij} on $\Gamma(\boldsymbol{u}_d)$ with convex functions \hat{E}_i , \hat{E}_{ij} ,
- 4. Solve the convex problem $\rightarrow u^*$.

Theorem (Optimality preservation)

If the local convex approximations \hat{E}_i , \hat{E}_{ij} are continuations of the discrete functions E_i , E_{ij} on continuous label range $\Gamma(\boldsymbol{u}_d)$, then

$$E(\boldsymbol{u}^*) \leq E(\boldsymbol{u}_d).$$

Start simple, improve later:

on multi-label energy minimization problems

- ✓ Sublabel-accurate
- ✓ Efficient
- ✓ Optimality guarantees

VS

Full paper

✓ Sublabel-accurate

- Expensive
- No guarantees

Assuming the discretized label space $\mathcal{L}_d = \{l_1, ..., l_L\}$, we define the marginalization set \mathcal{M} :

$$\mathcal{M} = \{ \boldsymbol{\phi} | \Sigma_l \phi_i(l) = 1,$$

$$\Sigma_m \phi_{ij}(l, m) = \phi_i(l),$$

$$\Sigma_l \phi_{ij}(l, m) = \phi_{j(m)} \}$$

(LM): local linear data with marginalization constraint:

$$\min_{\boldsymbol{\phi}} \sum E_i(l)\phi_i(l) + \sum E_{ij}(l,m)\phi_{ij}(l,m),$$

$$s.t.\boldsymbol{\phi} \in [0,1]^N \cap \mathcal{M} \cap \mathcal{S}(\Gamma(\boldsymbol{u}_d))$$

(QM): local quadratic data with marginalization:

$$\min_{\boldsymbol{\phi}, X} \sum Q_i(X_i) + \sum E_{ij}(l, m) \phi_{ij}(l, m),$$

$$s. t. \boldsymbol{\phi} \in [0, 1]^N \cap \mathcal{M} \cap \mathcal{S}(\Gamma(\boldsymbol{u}_d)),$$

$$\sum_l \phi_i(l) \cdot l = X_i \in \Gamma_i(\boldsymbol{u}_d)$$

(QL): local quadratic data with convex kernel:

$$\min_{\mathbf{X}} \sum Q_i(X_i) + \sum \kappa_{ij}(|X_i - X_j|),$$

$$s.t.X_i \in \Gamma_i(\mathbf{u}_d)$$

Image Denoising

$$E_i(u^i) = \frac{\beta}{2} \min \left\{ \left(u^i - f(x_i) \right)^2, \nu \right\},$$

$$E_{ij}(u^i, u^j) = \lambda |u^i - u^j|.$$

Discontinuity Preserving Non-Convex Regularizers

$$E_{ij}(u^i, u^j) = \lambda \min(|u^i - u^j|^k, T)$$

Method	k = 1, T = 0.6 PSNR↑	$k=2,$ $T=0.7$ PSNR \uparrow
α -expansion [1]	23.93	23.43
Ours	25.13	25.59
Pock [2]	n/a	n/a
Moellenhoff [3]	n/a	n/a

References:

[1] Boykov et al., "Fast approximate energy minimization via graph cuts", 2001.

[2] Pock et al., "Global solutions of variational models with convex regularization", 2010.[3] Moellenhoff et al., "Sublabel-accurate

relaxation of nonconvex energies", 2016.