Tarefa 01: Desenvolva uma fórmula de derivada segunda na filosofia central de tal forma que o erro seja da ordem de $(\Delta x)^4$

$$f(x) = \sqrt{e^{3x} + 4x^2}$$

Desenvolvimento da derivada segunda por série de Taylor

$$\frac{4}{3\Delta x^2} \left[\left(-\frac{15}{8} \, f(x) + f(x + \, \Delta x) + f(x - \, \Delta x) - \frac{1}{16} f(x + 2 \, \Delta x) - \frac{1}{16} f(x - 2 \, \Delta x) \, \right) \right]$$

Desenvolvimento da derivada segunda por polinômio de interpolação de Newton

$$\frac{1}{\Delta x^2} \left[-\frac{1}{12} f(x - 2\Delta x) + \frac{4}{3} f(x - \Delta x) - \frac{5}{2} f(x) + \frac{4}{3} f(x + \Delta x) - \frac{1}{12} f(x + 2\Delta x) \right]$$

Resultados:

$$e(x) = \left| \frac{f''(\Delta^{(k)}) - f''(\Delta^{(k-1)})}{f''(\Delta^{(k)})} \right|$$

$\Delta^{(k)}$	Série de Taylor	e(x) Taylor	Interpolação de Newton	e(x) Newton
0.5	44.90436		44.90436	
0.25	45.06336	0.003528383	45.06336	0.003528383
0.125	45.07291	0.000211957	45.07291	0.000211957
0.0625	45.07350	1.3116609×10^{-5}	45.07350	$1.311660937 \times 10^{-5}$
0.03125	45.07354	8.1775722×10^{-7}	45.07354	$8.177571248 \times 10^{-7}$