|   | Class #8                                                        |
|---|-----------------------------------------------------------------|
|   | Class #8 Friday, February 14, 2025 10:17 AM                     |
|   | $f \in C' (\Omega_N) \Rightarrow f : S \vdash Smooth$           |
| ( | Function is Smooth (or non-smooth)                              |
|   | Quadratic Function $f(x) = \frac{1}{2}x^{2}Qx + \sqrt{7}x + r$  |
|   | Centrally, we focus on f(x) being convex                        |
|   | Simple On 75 Positive Semi definite or Positive definite        |
|   | & (w) = ax otherwoise                                           |
|   | Scorner when a >0 concave.                                      |
|   | Special can: F(x) = 1 x Qx; Qx; Q 75 3.D.                       |
|   |                                                                 |
|   | S(x) in this cas is L-Smooth                                    |
|   |                                                                 |
|   | Linear algebra review (Appendix A.1.5)                          |
|   | Eigenvalue Decomposition: only for "symmetric" "square" matrix. |
|   | 6 Stryuler Value Decomposition of a matrix 50th                 |
|   | Every matrix A & R has a Singular value all                     |
|   | decombosition Vis                                               |
|   | more xistem axa & T.                                            |
|   |                                                                 |
|   | giognal maters) ~ singular                                      |
|   | MXW glodong majex) Sindon                                       |



| operator norm: when it operates on a vector, how much it inflate the size of the vector?                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| .   A   = Sup }   A x   2 :   x  2 = 1 }                                                                                                       |
| $\ A\ _2 = G_{max}(A) \Rightarrow maximum Singular value of$                                                                                   |
| = [] max (AA) = [] max (AA)                                                                                                                    |
| maximum eigen value of AA                                                                                                                      |
| Submultiplicative property operator norm is the worst case elongation.                                                                         |
| General Definition of Operator Norm                                                                                                            |
| 11A11 = Sup 3   Ax   :   x   = 15                                                                                                              |
| Special Cases: $a = b$ this is the worst elongation that A will cause to X in the a norm, when X is bounded by 1 in the b norm $a = b$ $a = b$ |
| $  A  _1 = m_{\alpha x} \sum_{i=1}^{\infty}  A_{ij} $ The euclueudian op. norm                                                                 |
| $  A  _{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n}  A_{ij}  \qquad \max_{j=1}^{n} \text{L1 norm of the columns}$                              |
| Problem: Let $f(x) = \pm x^T \Theta x$ with $\Theta \in S$ .  Might not be convex $S \to DD$                                                   |
| Prove that &(x) is L-smooth and derine the                                                                                                     |

ent enish bus alrows-1 2; (x) & tent enorg Value of L. RECL 77(n) = Qx Let x and y ERM the smoothness parameter (L)

the smoothness parameter (L) is defined by eignevale the growth of the gradient is a  $= \|\Im(\chi - \chi)\|_{2}$ function of the max eigenvaule of Q the bigger the eigenavlue,  $\leq ||Q||_2 ||x-y||_2$ the bigger the L, the faster the gradienet are growing, the smaller step size to be taken (1/L), cause now the function is changing fast! = (2 mox (O2) = (2) Jus (a) A WITH END A= UNUT B= UNUT 46 min & ESN Does cradient Descent Convergo stor test les, cook +i fZ Assume  $f \in C'_{L}(\mathbb{R}^{n})$  and f = argmin f(x) exists.

Class Notes Page 4

 \( \frac{2}{3} \) \( \frac{1}{3} \) \( \frac{1} \) \( \frac{1}{3} \) \( \frac{1}{3} \) \( \fr Put y = x = x - t 7f(x (x)) F = 7  $\frac{1}{2}(x_{1}) \leq \frac{1}{2}(x_{(n)}) - \frac{1}{2} \left\| \Delta \xi(x_{(n)}) \right\|_{2}^{2} + \frac{1}{2} \left\| \Delta \xi(x_{(n)}) \right\|_{2}^{2}$ \$(x ) = \$(x ) - \frac{5}{7} |\frac{5}{4}(x )\\\_5 5 Descent lemma with the I and gradient \$ 2(x,) - 2(x,) < - 1 1/26(x,0) 1/5 Add the above expression for K=0,1,..., a  $\sum_{\infty} \left| \xi(x_{(n+1)}) - \xi(x_{n}) \right| \leq -\frac{1}{7} \sum_{\infty} \left| \left| \Delta \xi(x_{n}) \right| \right|_{5}$ Jelescoping Sum  $= \frac{1}{2}(x^{(n)}) = \frac{1}{2}(x^{(n)})$ E (anti-an) => feles caping sum  $= \lim_{N \to \infty} \sum_{n \geq 0} (\alpha_{n+1} - \alpha_n)$ 

····

Class Notes Page 5