Acute Myeloid Leukemia Outcome Prediction

Zhilin Yang Tsinghua University

Introduction

Motivation

Acute Myeloid Leukemia (AML) is a cancer of the bone marrow and the blood. There will be at least 18,860 new cases of AML and 10,460 deaths from AML in 2014. Accurately predicting AML outcome and identifying important features can contribute to better clinical treatment.

Data

We have 191 samples of patients, with 40 clinical covariates and 231 Reverse Phase Protein Array (RPPA) measurements.

Problems

We try to computationally identify discriminative features and statistically develop predictive models for the following tasks:

- 1. (Remission) Predict which AML patients will have Complete Remission or will be Primary Resistant.
- 2. (Remission Duration) Predict the remission duration for patients who have Complete Remission.
- 3. (Survival Time) Predict the overall survival time for each patient

Methods

ranking categorical features and Spearman's correlation

Dictionary learning for sparse coding: We learn the

latent states (dictionary) from the data and the sparse

linear combination of latent states for each sample[1].

coefficient for ranking numerical features.

Results

Conclusions

Learning Pathway Regulation States

We propose a novel idea of learning sparse latent representation for RPPA data with prior signaling pathway knowledge. We demonstrate that dictionary learning for sparse coding can effectively capture latent states that have both biological implications about pathway regulation and statistical power for remission prediction.

Hybrid Feature Selection

We propose a hybrid feature selection method to avoid mixing up numerical and categorical features. We demonstrate that the hybrid feature selection method significantly outperforms alternative methods.

Future Work

It is interesting to apply the feature learning method to more RPPA datasets for identifying novel pathway regulation.

References

[1] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. "Online dictionary learning for sparse coding." In *Proceedings of the 26th Annual International Conference on Machine Learning*, pp. 689-696. ACM, 2009.

Acknowledgements The work is supported by Stanford Undergraduate Visiting Researcher (UGVR) Program.