Cómputo evolutivo para la optimización de hiperparámetros en algoritmos de Aprendizaje Automático

Jorge Ramos-Frutos

27 de junio del 2025

Definitions

Evolutionary Computation

Bio-inspired optimization paradigm using:

- Natural selection
- Genetic recombination
- Random mutation

to evolve solutions iteratively.

Machine Learning

Algorithms that learn patterns from data through:

- Mathematical optimization
- Statistical generalization
- Parameter adjustment

Hyperparameter Optimization

What are Hyperparameters?

Parameters that are **not learned** during training but are **set before** the learning process begins. They control the model's architecture and learning behavior.

Some algorithms:

- XGBoost:
 - max_depth (tree complexity)
 - learning_rate (step size)
 - n_estimators (number of trees)
- Neural Networks:
 - learning rate
 - batch size
 - number of layers

SVM:

- C (regularization)
- kernel type
- gamma (RBF influence)
- Random Forest:
 - n_estimators
 - max_features
 - min_samples_leaf

Hyperparameter Optimization

Baking the Perfect Cake

- Like perfecting a recipe:
 - Oven temperature
 - Baking time
 - Ingredients ratio
- Poor ratios ⇒ Bad results

Optimization Techniques

- Grid Search: Exhaustive combinatorial
- Random Search: Stochastic sampling
- Bayesian Opt.: Gaussian processes
- Genetic Algorithms: Evolutionary approach (as implemented)

XGBoost: Overview

- Ensemble learning algorithm based on decision trees
- Gradient Boosting: builds models sequentially by correcting errors
- Regularized optimization to prevent overfitting
- Highly efficient and parallelizable

Objective Function in XGBoost

The general objective function:

$$\mathcal{L}(\phi) = \sum_{i=1}^{n} I(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

where:

- *I*: loss function (log-loss for classification)
- ullet Ω : regularization term
- f_k : k-th tree

For binary classification:

$$I(y_i, \hat{y}_i) = -[y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$

with
$$p_i = rac{1}{1+e^{-\hat{y}_i}}$$

Tree Construction

XGBoost uses second-order Taylor expansion:

$$\mathcal{L}^{(t)} pprox \sum_{i=1}^n [g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)$$

where:

- $\bullet \ g_i = \partial_{\hat{y}^{(t-1)}} I(y_i, \hat{y}^{(t-1)})$
- $h_i = \partial^2_{\hat{y}^{(t-1)}} I(y_i, \hat{y}^{(t-1)})$

The regularization term:

$$\Omega(f) = \gamma T + \frac{1}{2} \lambda \|w\|^2$$

with T number of leaves and w leaf scores.

Optimized Parameters

Parameters optimized by the GA and their mathematical meaning:

Parameter	Mathematical Meaning
max_depth learning_rate n_estimators gamma min_child_weight subsample colsample_bytree	Maximum depth d of each tree η : weight of each new tree K : total number of trees γ : minimum loss reduction w_{min} : minimum child node weight Fraction of data to train each tree Fraction of features for each tree

Exercise

Manual hyperparameter adjustment

Adjust XGBoost hyperparameter manually using the code given in the next address:

https://github.com/JARF1095/Delfines-2025-U-de-G

Basic Concepts

- Biological evolution inspiration (natural selection)
- Population algorithm (several vectors)
- Each individual contains a fitness that measures the solution quality
- Genetic operators:
 - **Selection**: Survival of the fittest
 - **Crossover**: Combine parent information
 - Mutation: Introduce variations within the individual

Mathematical Representation for Hyperparameter Optimization

In our code:

• Each individual is a 7-parameter vector:

$$\mathbf{x} = [d, \eta, n, \gamma, w, s_s, s_c]$$

where:

- d: max_depth (maximum tree depth)
- η: learning_rate (learning rate)
- n: n_estimators (number of trees)
- γ : min_split_loss (minimum loss reduction for split)
- w: min_child_weight (minimum child node weight)
- s_s: subsample (fraction of samples used)
- s_c: colsample_bytree (fraction of features used)

Fitness Function

The evaluation function in the code:

$$f(\mathbf{x}) = \mathsf{accuracy}(M(\mathbf{x}), X_{val}, y_{val})$$

where:

- M(x) is the XGBoost model with parameters x
- X_{val} , y_{val} are validation data
- accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$

Implemented constraints:

- $\gamma \geq 0$
- $\eta \ge 0.001$
- $s_s, s_c \in [0,5,1,0]$

Genetic Operators Used

- Selection: Tournament (selTournament)
- Crossover: Simulated Binary Crossover (cxSimulatedBinaryBounded)

$$c_1 = \frac{1}{2}[(1+\beta)p_1 + (1-\beta)p_2]$$

$$c_2 = \frac{1}{2}[(1-\beta)p_1 + (1+\beta)p_2]$$

 Mutation: Polynomial Bounded Mutation (mutPolynomialBounded)

$$x' = x + \delta(\bar{x} - x)$$

Optimization Strategy

- Random initial population (20 individuals)
- 15 generations
- Crossover probability: 70 %
- Mutation probability: 30 %
- Elitism (HallOfFame) preserves the best individual

Figura: Fitness evolution across generations

Program Flow

- Data preprocessing (normalization, encoding)
- Train/val/test split (60 %/20 %/20 %)
- Genetic algorithm configuration:
 - Parameter search space
 - Genetic operators
- Hyperparameter optimization
- Final model training
- Evaluation and metrics

Evaluation Metrics

The code calculates multiple metrics:

• AUC-ROC: Area Under the ROC Curve

$$AUC = \int_0^1 TPR(FPR^{-1}(x))dx$$

• Gini: Related to AUC

$$Gini = 2 \times AUC - 1$$

- Accuracy: Overall correctness
- Precision: $\frac{TP}{TP+FP}$
- Recall/Sensitivity: $\frac{TP}{TP+FN}$
- Specificity: $\frac{TN}{TN+FP}$
- F1-score: Harmonic mean of precision and recall

Exercise

Genetic algorithm configuration

Play with the next GA parameters:

- population size
- max generations
- cross probability
- mutation probability

using the code on the next address:

https://github.com/JARF1095/Delfines-2025-U-de-G

Key Takeaways

- The genetic algorithm provides systematic hyperparameter search
- XGBoost is a powerful model combining multiple trees with regularization
- The combination leverages both strengths:
 - GA for parameter space exploration
 - XGBoost for precise modeling with overfitting protection
- Multiple metrics provide comprehensive performance insight

Recommendations

- For further improvement:
 - Increase GA population and generations (with computational cost)
 - Consider alternative fitness functions (e.g., AUC instead of accuracy)
 - Add more parameters to optimize (e.g., reg_lambda, reg_alpha)
- Validate with additional medical datasets
- Clinically interpret the most important variables

References

- Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
- Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
- DEAP documentation: https://deap.readthedocs.io
- XGBoost documentation: https://xgboost.readthedocs.io