OPERATOR-POTENTIALS IN SYMBOLIC SEARCH: FROM FORWARD TO BI-DIRECTIONAL SEARCH

Daniel Fišer, Álvaro Torralba, Jörg Hoffmann

danfis@danfis.cz, alto@cs.aau.dk, hoffmann@cs.uni-saarland.de

POTENTIAL HEURISTICS

A **potential function** is a function P mapping facts to numerical values, $P: \mathcal{F} \mapsto \mathbb{R}$.

A potential heuristic for P maps each state $s \in \mathcal{R}$ to the sum of potentials of facts in s, i.e.,

$$h^{\mathbf{P}}(s) = \sum_{f \in s} \mathbf{P}(f).$$

The potential function is typically inferred by solving a linear program with a set of constraints ensuring goal-awarness:

$$\sum_{V \in \mathcal{V}} \max_{f \in \mathcal{D}(V)} P(f) \le 0,$$

and consistency:

$$\sum_{\substack{V \in \text{vars}(\text{eff}(o))}} \max_{f \in \mathcal{D}(o,V)} P(f) - \sum_{\substack{f \in \text{eff}(o) \\ \text{potential of deleted facts}}} P(f) - \sum_{\substack{f \in \text{eff}(o) \\ \text{potential of added facts}}} P(f) \leq c(o)$$

OPERATOR-POTENTIAL HEURISTICS

Given a potential function P, operator-potential function assigns a numerical value to each operator:

$$\mathbb{Q}(o) = \sum_{f \in \text{eff}(o)} \mathbb{P}(f) - \sum_{V \in \text{vars}(\text{eff}(o))} \max_{f \in \mathcal{D}(o, V)} \mathbb{P}(f).$$

If preconditions on all affected variables are known exactly for all operators, an **operator-potential heuristic** for a given state s reached by a sequence of operators $\langle o_1, \ldots, o_n \rangle$ is defined as:

$$h^{\mathbb{Q}}(s) = \sum_{f \in I} P(f) + \sum_{i \in [n]} \mathbb{Q}(o_i)$$

and then it holds that $h^{\mathbb{Q}}(s) = h^{\mathbb{P}}(s)$ for all reachable states s.

BI-DIRECTIONAL SYMBOLIC SEARCH

Symbolic search utilizes Binary Decision Diagrams (BDDs) to concisely represent sets of states. With heuristics, sets of states are partitioned by their g-value and h-value which allows to use A^* . Bidirectional: perform a backward and a forward search—generally less effort, as search effort often scales exponentially with search depth

OPERATOR-POTENTIAL HEURISTICS IN BACKWARD DIRECTION

Operator-potentials allow us to partition operators by their cost and the change of the heuristic value they induce (Δh) . And this in turn allows us to partition sets of states by both g-value and h-value because for each operator we know how g and h-values of the successor states change.

It turns out, the very same operator-potential heuristics inferred in the forward direction can be used without change in the backward direction as well.

Estimated init-to-goal distance h=2 h=1 h=2 h=1

$$h=2$$

$$h = 1$$

$$I \xrightarrow{\Delta h = -1} s_1 \xrightarrow{\Delta h = 1} s_2 \xrightarrow{\Delta h = 0} s_3 \xrightarrow{\Delta h = -1} s_4 \xrightarrow{\Delta h = -1} G$$

Estimated goal-to-init distance h = 0 h = 1 h = 0 h = 0 h = 1

$$h = 0$$

$$h = 1$$

$$= 1$$
 $h =$

However, the operator-potential heuristics in backward direction may be **inconsistent** whenever there are multiple goal states with \rightarrow different heuristic values.

Experimental Results

	Domain	b	$\overleftarrow{\mathtt{A+I}}$	Ţ	$\dot{s}_{1k}+I$	M_2+I
st	agricola (20)	6	4	3	2	4
cost	barman (34)	13	6	6	6	6
with non-unit	data-network (20)	8	4	3	4	4
	elevators (50)	16	10	10	10	10
	floortile (40)	34	31	27	31	31
	parcprinter (50)	41	33	35	33	32
	petri-net-align (20)	16	1	1	1	1
		43	38	38	38	38
Domains	woodwork (50)	49	36	33	36	36
	pegsol (50)	22	25	27	26	25
	scanalyzer (50)	21	23	23	23	23
	tetris (17)	6	11	10	10	11
	hiling (20)	15	12	11	1 /	12
unit cost	hiking (20)	15 13	12	11	14 12	12
	rovers (40)	23	25	25	23	23
	airport (50)	$\frac{25}{24}$	23	32	23 22	23
	blocks (35)	19	23 19	3 <i>2</i> 24	19	19
	logistics (63)	19 12	19 13	44	19	19 13
			19	11	10	19
Domains with	parking (40)	6	6	4 6	7	6
		9	10	10	10	10
	freecell (80)	20	21	29	21	21
	nomystory (20)	13	$\frac{21}{14}$	17	13	14
	nomystery (20) trucks (30)	10	12 12	12	10	12
	visitall (40)	16	19	18	18	19
	V1510a11 (40)	10	19	10	10	19
	••••					
	Σ (1697)	785	727	739	714	720

Coverage of variants of symbolic backward search Blind search is superior

	Ø	\overleftarrow{b}	$\overleftarrow{\mathtt{A+I}}$	Ţ	$\overleftarrow{S_{1k}+I}$	$\overleftarrow{\mathtt{M}_2 + \mathtt{I}}$	$\frac{\leftarrow}{\text{oracle}}$
$\overset{\emptyset}{ ext{b}}$		785	727	739	714	720	843
\overrightarrow{b}	936	1025	950	961	934	951	1 047
$\overrightarrow{\overline{\mathtt{A}+\mathtt{I}}}$	1 109	1 128	1 100	1087	1093	1099	1 139
Ī	996	1032	985	1 000	987	988	1 058
$\overrightarrow{S_{1k}+1}$	1 081	1 110	1073	1 066	1062	1074	1 121
$\overrightarrow{\mathtt{M}_2 + \mathtt{I}}$	1 103	1 120	1092	1076	1 085	1097	1 132
$\overrightarrow{\text{oracle}}$	1 131	1 151	1 1111	1 103	1 112	1 114	1 162

Coverage of combinations of forward and backward symbolic

Oracle: predicts what is the best forward/backward search per instance

