Probabilistic Programming Languages

M2 MPRI 2021-2022

Guillaume BAUDART (guillaume.baudart@ens.fr) Christine TASSON (christine.tasson@lip6.fr)

Semantics of Probabilistic Programming

Continuous probability

Probabilistic PCF - Discrete Probability

Syntax

$$M, N, P := \underbrace{x \mid \lambda x \ M \mid (M) \ N \mid (M, N)}_{\lambda\text{-calculus}} \mid \underbrace{\text{fix} \ M}_{\text{Recursion}}$$

$$\mid \underbrace{0 \mid \text{succ} \ M \mid \text{true} \mid \text{false} \mid \text{if} \ M \text{ then } N \text{ else} \ P}_{\text{Conditionnal}}$$

$$\mid \underbrace{\text{let} \ x = \text{sample}(\text{bernoulli} \ p) \text{ in} \ M}_{\text{Discrete Probability}} \forall p \in [0, 1]$$

$$Types$$

$$\frac{\Gamma, x : \text{bool} \vdash M : B}{\Gamma \vdash \text{let} \ x = \text{sample}(\text{bernoulli} \ p) \text{ in} \ M : B}$$

Semantics

Operational: $M \stackrel{p}{\to} M'$ **Denotational**: $\llbracket \Gamma \vdash M : A \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$

Probabilistic Coherent Spaces

Soundness : $[\![\Gamma \vdash M : A]\!] = \sum_{M'} \text{Proba}(M, M') [\![\Gamma \vdash M' : A]\!].$

Probabilistic PCF - Continuous Probability

Syntax

$$M, N, P := \underbrace{x \mid \lambda x \ M \mid (M) \ N \mid (M, N)}_{\lambda \text{-calculus}} \mid \underbrace{\text{fix} \ M}_{\text{Recursion}}$$

$$\mid \underbrace{\underline{n}, \mid \text{succ} \ M \mid}_{\text{Arithmetics}} \mid \underbrace{\text{true} \mid \text{false} \mid \text{if} \ M \text{ then } N \text{ else} \ P}_{\text{Conditionnal}}$$

$$\mid \underbrace{\text{Dirac} \ M \mid \text{Uniform a} : 0. \ b : 1. \mid \text{let} \ x = \text{sample} \ M \text{ in} \ N}_{\text{Continuous Probability}}$$

$$\mid \underline{r} \mid \underline{f}(M_1, \dots, M_n) \ \forall r \text{ float} \ \forall f : \mathbb{R}^n \to \mathbb{R} \text{ measurable}$$

Types

Operational Semantics : The evaluation of a program is a markov process described by the probability of reduction from M to N.

Operational Semantics - Discrete Probability

If $\vdash M$: nat, then $\mathbf{Proba}^{\infty}(M,_)$ is the discrete distribution over $\mathbb N$ computed by M.

Proba(sample Bernoulli
$$p, \underline{0}$$
) = $\frac{1}{2}$

Transition Matrix : Proba(M, M') a stochastic matrix indexed by terms.

$$\mathbf{Proba}(M, M') = \begin{cases} p & \text{if } M \xrightarrow{p} M' \\ 1 & \text{if } M \text{ normal and } M = M' \\ 0 & \text{otherwise.} \end{cases}$$

Iterated Transition Matrix:

Proba^k(M, N) is the probability that M reduces to N in at most k steps.

 $\mathbf{Proba}^{\infty}(M,N)$ when N is normal is the probability that M reduces to N in any number of steps

Adequation Lemma : If M closed term of type nat, then for every n, $[\![M]\!]_n = \mathbf{Proba}^{\infty}(M, \underline{n})$

If $\vdash M$: float, then $\mathbf{Proba}^{\infty}(M,_)$ is the continuous distribution over \mathbb{R} computed by M. $\mathbf{Proba}(\text{sample Uniform a}: 0. b: 1., U) = \int_{x \in U} dx$

The probability to observe U after at most one reduction step applied to M is **Proba**(M, U)

```
Proba : \Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+ is a stochastic Kernel, i.e : for all M \in \Lambda^{\Gamma \vdash A}, Proba(M,\_) is a measure; for all U \in \Sigma_{\Lambda^{\Gamma \vdash A}}, Proba(\_,U) is a measurable function.
```

If $\vdash M$: float, then $\mathbf{Proba}^{\infty}(M,_)$ is the continuous distribution over \mathbb{R} computed by M. $\mathbf{Proba}(\text{sample Uniform a}: 0. b: 1., U) = \int_{x \in U} dx$

The probability to observe $\it U$ after at most one reduction step applied to $\it M$ is ${\bf Proba}(\it M,\it U)$

 $\Lambda^{\Gamma \vdash A}$: the set of terms M s.t. $\Gamma \vdash M : A$.

Proba : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e : for all $M \in \Lambda^{\Gamma \vdash A}$, **Proba** $(M,_)$ is a measure; for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Proba** $(_,U)$ is a measurable function.

If $\vdash M$: float, then $\mathbf{Proba}^{\infty}(M,_)$ is the continuous distribution over \mathbb{R} computed by M. $\mathbf{Proba}(\text{sample Uniform a}: 0. b: 1., U) = \int_{x \in U} dx$

The probability to observe $\it U$ after at most one reduction step applied to $\it M$ is ${\bf Proba}(\it M,\it U)$

 $\Lambda^{\Gamma \vdash A}$: the set of terms M s.t. $\Gamma \vdash M : A$.

 $\Sigma_{\Lambda^{\Gamma \vdash A}}$, i.e. U is measurable : $\forall n, \forall S, \ \{\vec{r} \ s.t. \ S\vec{\underline{r}} \in U\}$ meas. in \mathbb{R}^n

Proba : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e : for all $M \in \Lambda^{\Gamma \vdash A}$, **Proba** $(M,_)$ is a measure; for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Proba** $(_,U)$ is a measurable function.

If $\vdash M$: float, then $\mathbf{Proba}^{\infty}(M,_)$ is the continuous distribution over \mathbb{R} computed by M. $\mathbf{Proba}(\text{sample Uniform a}: 0. b: 1., U) = \int_{x \in U} dx$

The probability to observe $\,U$ after at most one reduction step applied to $\,M$ is ${\bf Proba}(\,M\,\,,\,\,U\,\,)$

 $\Lambda^{\Gamma \vdash A}$: the set of terms M s.t. $\Gamma \vdash M : A$.

 $\Sigma_{\Lambda^{\Gamma \vdash A}}$, i.e. U is measurable : $\forall n, \forall S, \ \{\vec{r} \ s.t. \ S\vec{\underline{r}} \in U\}$ meas. in \mathbb{R}^n

Proba : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e : for all $M \in \Lambda^{\Gamma \vdash A}$, **Proba** $(M, _)$ is a measure; for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Proba** $(_, U)$ is a measurable function.

Measurable sets and kernels constitute the category Kern.

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and the value 0 with probability 1 - p.

$$p\delta_1 + (1-p)\delta_0$$
 bernoulli $p := \text{let } x = \text{sample in } x \le p$ tests if sample draws a value within $[0, p]$.

The exponential distribution is specified by its density e^{-x} .

exp ::= let x=sample in $-\log(x)$ by the inversion sampling method.

The standard normal distribution defined by its density $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

gauss ::= let x=sample in let y=sample in $\sqrt{-2\log(x)}\cos(2\pi y)$ by the Box Muller method.

Denotational Semantics - First order

Discrete: PCOH

```
For \vdash M: nat, [M] a distribution over \mathbb{N}
```

For
$$\vdash \underline{n}$$
: nat, $\llbracket n \rrbracket_p = \delta_{p,n}$

[Bern p]_b=
$$p\delta_{true,b}+(1-p)\delta_{false,b}$$

For
$$\vdash N$$
: bool, $\vdash P: A$, $\vdash Q: A$, [if N then P else Q] _{a} = $[\![N]\!]_{\mathrm{true}}[\![P]\!]_{a} + [\![N]\!]_{\mathrm{false}}[\![Q]\!]_{a}$

For
$$\vdash N : \text{nat}, \vdash P : A, \vdash Q : A,$$

$$[[let x = N \text{ in } P]]_a = \sum_{n=0}^{\infty} [[N]_n \widehat{[P]}(n)_a]$$

Denotational Semantics - First order Discrete: PCOH Continuous : KERN For $\vdash M$: nat. $\llbracket M \rrbracket$ a distribution over $\mathbb N$ For $\vdash n$: nat, $[r](U) = \delta_r(U)$ $[n]_p = \delta_{p,n}$ For ⊢ Bernoulli p : bool,

For
$$\vdash$$
 Bernoulli p : bool, $[Bern p]_b = p\delta_{true,b} + (1-p)\delta_{false,b}$

For
$$\vdash N$$
: bool, $\vdash P : A, \vdash Q : A$,

[if N then P else Q]_a =
$$[N]_{\text{type}}[P]_{a} + [N]_{\text{falce}}[Q]_{a}$$

$$[N]_{\text{true}}[P]_a + [N]_{\text{false}}[Q]_a$$
For $\vdash N : \text{nat}, \vdash P : A, \vdash Q : A,$
 $[\text{let } x = N \text{ in } P]_a =$

if
$$N$$
 then P else Q] $_a$ $[N]_{\text{true}}[P]_a + [N]_{\text{f}}$

For $\vdash M$: float.

$$\llbracket M \rrbracket$$
 a measure over $\mathbb R$
For $\vdash r$: float,

 $[\![\mathtt{Unif}\ \mathtt{0.}\ \mathtt{1.}]\!](\mathtt{U}) = \int_{\mathtt{x}\subset \mathbb{R}} \mathbb{1}_{\mathtt{U}}(\mathtt{x}) d\mathtt{x}$

For
$$\vdash R$$
: bool, $\vdash P, Q : A$,

If R then P else $Q \mathbb{I}(U) = \mathbb{I}(U)$

$$Q
bracket(U) = 0$$

$$extstyle{else} \, Q
bracket(U) = \ extstyle{else} \, Q
bracket(U) +
bracket(R) bracket(\{ extstyle{fal}\}) bracket(\{ extstyl$$

[if R then P else
$$Q$$
](U) =

$$\{ ext{true} \}) \llbracket ext{P}
right
ceil (ext{U}) + \llbracket ext{R}
right
ceil (\{ ext{U} \}) = 0$$

$$[true]$$
 $[P](U) + [R]({f}$

$$\{\text{true}\}$$
) \mathbb{P} \mathbb{P} (\mathbb{U}) + \mathbb{R} \mathbb{P} ($\{$

For
$$\vdash R$$
: float, $\vdash P, Q : A$,

$$[let x = R in P](U) =$$

Denotational Semantics - Higer-Order

The Program Synthesis problem

Given a data set in R^2 can we build the probabilistic program $\vdash M: \texttt{float} \rightarrow \texttt{float}$ that generated this data set? We need a distribution over float \rightarrow float.

Denotational Semantics - Higher-Order problem

Théorème (Aumann' 61)

There is no σ -algebra on $\mathbb{R}^{\mathbb{R}}$ such that **eval** : $\mathbb{R}^{\mathbb{R}} \times \mathbb{R} \to \mathbb{R}$ is measurable.

By contradiction, ascuse for all 7, 4 measurable space, 7 measurable and eval measurable: x x4 h: rx, y -> 1 if r=y

Assume $X = \mathbb{R}$, $\mathcal{P}(\mathbb{R})$ and $Y = \mathbb{R}$, $\mathcal{G}(\mathbb{R})$

all subsets of R courtable or cocountable subsets

Then X x 4 = RxR, P(R)&B(R)

0-algebra generated by L1 x V by -combable interes

Denotational Semantics - Higher-Order problem

Théorème (Aumann' 61)

There is no σ -algebra on $\mathbb{R}^{\mathbb{R}}$ such that **eval** : $\mathbb{R}^{\mathbb{R}} \times \mathbb{R} \to \mathbb{R}$ is measurable.

Denotational Semantics - Higher-Order problem

Théorème (Aumann' 61)

h: m, y m { o otherwise

Xx4 = RxR, P(R)&B(R)

Poralghora generated by LIXV by -combable unions
-combable interestions

If w & B(R) & E(IR) Then: 3 (bn) & IRV st if ln,y) & W and y & bn

Then Yzebn, (2,2) EW

S=2 (1, 1) | 1 EIR'y don not satisfy P: + (bn) ERN, + yebn, (9,5) EA (3,2) EA!

Then Yzebn, (2,2) EW

Then Yzebn, (2,3) EW

Then Yzebn, (2,3) EW

AND SETS Jy P, Hen U Was and new

AND SY P.

Semantics of Probabilistic Programming

Measurable Stable Cones

Measurable Stable Cones - Definition

CSTAB is a **CCC** based on Selinger's **cones** (dcpos with the order induced by addition and a convex structure).

Objects are cones and measurable spaces

Morphisms are stable and measurable functions

1 Complete cones (convex dcpos with the order induced by addition) with Scott continuous functions

However, the category is cartesian but not closed.

2 Complete cones and **Stable functions** (∞ -non-decreasing functions) is a CCC.

However, not every stable function is measurable.

3 Measurable Cones (complete cones with measurable tests). Measurable paths pass measurable tests and Measurable functions preserve measurable paths.

CSTAB is a CCC with measurability included!

Results

The category **CSTAB** is a CCC and a model of Real PPCF.

Invariance of the semantics

$$\llbracket M
rbracket_{\Gamma dash A} = \int_{\Lambda^{\Gamma dash A}} \llbracket t
rbracket_{\Gamma dash A} \mathsf{Proba}(M,dt)$$

Adequacy

$$\llbracket M
rbracket_{ exttt{real}}(U) = \mathbf{Proba}^\infty(M,U)$$

Conservative extension of PCOH

If X and Y are probabilistic coherence spaces and $f: X \to Y$ is a stable measurable map, then f is a map of probabilistic coherence spaces. (Crubille 2018).

Step 1 : Complete Cones

A Cone P is analogous to a real normed vector space, except that scalars are \mathbb{R}^+ and the norm $\|_\|_P : P \to \mathbb{R}^+$ satisfies :

$$\begin{aligned} x + y &= 0 \Rightarrow x, y = 0, & \|x + x'\|_{P} \le \|x\|_{P} + \|x'\|_{P}, & \|\alpha x\|_{P} &= \alpha \|x\|_{P} \\ x + y &= x + y' \Rightarrow y = y', & \|x\|_{P} &= 0 \Rightarrow x = 0, & \|x\|_{P} \le \|x + x'\|_{P} \end{aligned}$$

The Unit Ball is the set $\mathcal{B}P = \{x \in P \mid ||x||_P \le 1\}.$

Order $x \leq_P x'$ if there is a $y \in P$ such that x' = x + y. This unique y is denoted as y = x' - x.

A Complete Cone is s.t. any non-decreasing $(x_n)_{n\in\mathbb{N}}$ of $\mathcal{B}P$ has a lub and $\|\sup_{n\in\mathbb{N}} x_n\|_P = \sup_{n\in\mathbb{N}} \|x_n\|_P$.

Example of Complete Cones

Meas(X) with X a measurable space.

$$\widehat{\mathcal{X}} = \{ u \in (\mathbb{R}^+)^{|\mathcal{X}|} \mid \exists \epsilon > 0 \ \epsilon u \in \mathsf{PCOH}\mathcal{X} \} \text{ if } \mathcal{X} \in \mathsf{PCOH}.$$

Step 2: Stable functions

The category of **complete cones** and **Scott-continuous** functions is not cartesian closed as *currying* fails to be *non-decreasing*.

A function $f: \mathcal{B}P \to Q$ is **n-non-decreasing function** if :

n = 0 and f is non-decreasing

n>0 and $\forall u\in \mathcal{BP},\ \Delta f(x;u)=f(x+u)-f(x)$ is (n-1)-non-decreasing in x.

A function is **stable** if it is Scott-continuous and ∞ -non-decreasing, i.e. n-non-decreasing for all $n \in \mathbb{N}$.

Complete cones and stable functions constitute a CCC.

Weak Parallel Or

wpor : $[0,1] \times [0,1] \rightarrow [0,1]$ given as wpor(s,t) = s+t-st is Scott-continuous, but not Stable. Its currying is not Scott-continuous.

Step 3: The Measurability Problem

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
Closed term \vdash M: real as a measure \mu and
Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

$$\llbracket \mathsf{let} \, x = M \, \mathsf{in} \, N \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \, \mu \, (dr)$$

Step 3: The Measurability Problem

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
Closed term \vdash M: real as a measure \mu and
Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

$$\llbracket \text{let } x = M \text{ in } N \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

$$\llbracket N \rrbracket$$

Step 3 : The Measurability Problem

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
Closed term \vdash M: real as a measure \mu and
Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \text{ let } x = M \text{ in } N \rightarrow N\{r/x\}$$

$$[\![\text{let} \, x = M \, \text{in} \, N]\!] = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

$$[\![N]\!] \qquad \text{Dirac measure}$$

Step 3: The Measurability Problem

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
Closed term \vdash M: real as a measure \mu and
Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \text{ let } x = M \text{ in } N \rightarrow N\{r/x\}$$

$$[\![\text{let } x = M \text{ in } N]\!] = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

$$[\![N]\!] \quad \text{Dirac measure}$$

Step 3: The Measurability Problem

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
Closed term \vdash M : real as a measure \mu and
Term x : real \vdash N : real as a stable f : Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \text{ let } x = M \text{ in } N \rightarrow N\{r/x\}$$

By Soundness

$$\llbracket \mathsf{let} \, x = M \, \mathsf{in} \, N \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \, \mu(dr)$$

Thus $f \circ \delta$ needs to be measurable.

There are non measurable stable functions We need to equip every cone with a notion of measurability

Step 3 : Measurability tests

Measurability tests of Meas($\mathbb R$) are given by measurable sets of $\mathbb R$:

$$\forall U \subseteq \mathbb{R}$$
 measurable, $\epsilon_U \in \mathsf{Meas}(\mathbb{R})' : \mu \mapsto \mu(U)$

For needs of CCC, we parameterized measurable tests of a cone :

Measurable Cone

A cone P with a collection $(M^n(P))_{n\in\mathbb{N}}$ with $M^n(P)\subseteq (P')^{\mathbb{R}^n}$ s.t. :

$$0\in \mathsf{M}^n(P),\quad \ell\in \mathsf{M}^n(P) \text{ and } h:\mathbb{R}^p\to\mathbb{R}^n\Rightarrow \ell\circ h\in \mathsf{M}^p(P)$$

$$\ell \in \mathsf{M}^n(P) \text{ and } x \in P \Rightarrow \left\{ egin{array}{ll} \mathbb{R}^n & \to & \mathbb{R}^+ \\ \operatorname{Vect} r & \mapsto & \ell(\operatorname{Vect} r)(x) \end{array}
ight.$$
 measurable.

Measurable Tests, Paths and Functions

CSTAB is the category of complete and measurable cones with stable and measurable functions.

Let P and Q be measurable and complete cones :

Measurable Test: $M^n(P) \subseteq (P')^{\mathbb{R}^n}$

Measurable Path: Pathⁿ(P) $\subseteq P^{\mathbb{R}^n}$ the set of bounded $\gamma: \mathbb{R}^n \to P$

such that $\ell * \gamma : \mathbb{R}^{k+n} \to \mathbb{R}^+$ is measurable with

$$\ell * \gamma : (\mathsf{Vect}\, r, \mathsf{Vect}\, s) \mapsto \ell(\mathsf{Vect}\, r)(\gamma(\mathsf{Vect}\, s))$$

Measurable Functions : Stable functions $f: P \rightarrow Q$ such that :

$$\forall n \in \mathbb{N}, \ \forall \gamma \in \mathsf{Path}_1^n(P), \quad f \circ \gamma \in \mathsf{Path}^n(Q)$$

If X is a measurable space, then $\operatorname{Meas}(X)$ is equipped with : $\operatorname{M}^n(X) = \{ \epsilon_U : \mathbb{R}^n \to \operatorname{Meas}(X)' \text{ s.t. } \epsilon_U(\operatorname{Vect} r)(\mu) = \mu(U), \ U \text{ meas.} \}$ $\operatorname{Path}^n_1(P) \text{ is the set of stochastic kernels from } \mathbb{R}^n \text{ to } X.$

Semantics of Probabilistic Programming

Quasi Borel Spaces

(Ohad Kammar Tutorial)

Measurable Stable Cones - Definition

```
Quasi Borel Space X = (|X|, \mathcal{R}(X)) such that
```

Random elements : $\mathcal{R}(X) \subset \mathbb{R} \to |X|$

Constants : if $x \in |X|$, then $\lambda r.x \in \mathcal{R}(X)$

Precomposition : if $\alpha \in \mathcal{R}(X)$ and $\varphi : \mathbb{R} \to \mathbb{R}$ measurable, then

 $\varphi \circ \alpha \in \mathcal{R}(X)$.

Recombination : if $\alpha \in \mathcal{R}(X)^{\mathbb{N}}$ and $\mathbb{R} = \uplus A_n$ and A_n measurable,

then $\lambda r.\alpha_n(r)$ (if $r \in A_n$) $\in \mathbb{R}(X)$

Examples

 $\mathsf{Reals}: (\mathbb{R}, \mathcal{M}\textit{eas}(\mathbb{R}, \mathbb{R}))$

 $\mathsf{Discrete}\ \mathsf{QBS}: \left(\left|X\right|, \sigma - \mathsf{simple}(\mathbb{R}, \left|X\right|)\right)$

Indiscrete QBS : $(|X|, |X|^{\mathbb{R}})$

Measurable Stable Cones - Definition

```
Quasi Borel Space X = (|X|, \mathcal{R}(X)) such that
```

Random elements : $\mathcal{R}(X) \subset \mathbb{R} \to |X|$

Constants : if $x \in |X|$, then $\lambda r.x \in \mathcal{R}(X)$

Precomposition : if $\alpha \in \mathcal{R}(X)$ and $\varphi : \mathbb{R} \to \mathbb{R}$ measurable, then

 $\varphi \circ \alpha \in \mathcal{R}(X)$.

Recombination : if $\alpha \in \mathcal{R}(X)^{\mathbb{N}}$ and $\mathbb{R} = \uplus A_n$ and A_n measurable, then $\lambda r.\alpha_n(r)$ (if $r \in A_n$) $\in \mathbb{R}(X)$

Morphism $f: X \rightarrow Y$

Function $f: |X| \to |Y|$ such that If $\alpha \in \mathcal{R}(X)$, then $f \circ \alpha \in \mathcal{R}(Y)$

Measurable Stable Cones - Properties

QBS is a category

Cartesian:
$$|X \times Y| = |X| \times |Y|$$
 and $\mathcal{R}(X \times Y) = \{\lambda r.(\alpha(r), \beta(r)) \mid \alpha \in \mathcal{R}(X), \beta \in \mathcal{R}(Y)\}$ Closed: $|Y^X| = \mathbf{QBS}(X, Y)$ and $\mathcal{R}(Y^X) = \{\alpha \mid \lambda(r, x).\alpha(r)(x) \in \mathbf{QBS}(\mathbb{R} \times X \to Y)\}$ Limits: Coproducts, Quotients, ... as in Sets

QBS is a conservative extension of Standard Borel Sets

One uniform distribution is sufficient to generate all probability measures on Borel spaces.

if $\vdash d: X$ dist, then there is $\alpha \in \mathcal{R}(X)$ such that sample d \sim let r = sample uniform a:0. b:1. in $\alpha(r)$

Measure μ on a QBS is a borel space Σ , a random element $\alpha \in \mathcal{R}(X)$ and a measure on Σ . If $f: X \to \mathbb{R}^+$, then its integral with respect to μ :

$$\int_X \mu f = \int_{\Sigma} \mu(dr)(f(\alpha(r)))$$

Take home

Semantics for (discrete) probabilistic programs

The operational semantics of continuous probability using kernels

The category **Meas** is not a CCC.

The Measurable Cones solution.

The Quasi Borel Spaces solution.

Both are sound models of probabilistic higher order programs

References

Semantics of probabilistic programs by Dexter Kozen

A convenient category for higher-order probability theory by Chris
Heunen, Ohad Kammar, Sam Staton, Hongseok Yang.

Probabilistic Coherent Spaces by V. Danos and T. Ehrhard
Measurable Cones and Stable, Measurable Functions Ehrhard, et al.
Borel structures for function spaces by Aumann

A lambda-calculus foundation for universal probabilistic
programming. by Johannes Borgström, Ugo Dal Lago, Andrew D.

Gordon, and Marcin Szymczak.