Department of Computer Science and Engineering (CSE) BRAC University

CSE 251: Electronic Devices and Circuits

Fall 2023

Lecture 04: Operational Amplifier

→(i) Some More Configurations

→(ii) Design Problems

→(iii) A real life Application

Md. Jahin Alam Lecturer, Department of CSE BRAC University

From Last Lecture (Config-1,2)

$$v_0 = -\frac{R_F}{R_1} V_{in}$$

$$Gain = -\frac{R_F}{R_1}$$

Inverting Amplifier

$$v_0 = \left(1 + \frac{R_F}{R_1}\right) V_{in}$$

$$Gain = \left(1 + \frac{R_F}{R_1}\right)$$

Non-Inverting Amplifier

From Last Lecture (Config-3)

$$v_0 = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3 + \frac{R_f}{R_4}v_4\right)$$

Inverting Adder

Buffer Configuration (Config-4)

Non-Inverting Amplifier

$$v_0 = V_{in}$$

$$Gain = 1$$

A **buffer** is one that provides electrical impedance transformation from one circuit to another, with the aim of preventing the signal source from being affected by whatever currents (or voltages, for a current buffer) that the load may impose

Design Problems

Examples:

Construct the necessary circuit designs with op-amps that will take voltages as inputs and provide an output in the forms given below:

(i)
$$V_0 = -4V_1 + V_2/4$$

(ii) $V_0 = -3V_1 + 4V_2 + 0.5V_3$

Differentiator (Config-5)

& Circuit Configuration:

$$C: i_1 = C \frac{dv_c}{dt} = C \frac{d(V_i - 0)}{dt} = C \frac{dV_i}{dt}$$

$$R: \ i_2 = \frac{0 - v_0}{R} = -\frac{v_0}{R}$$

$$i_1 = i_2$$

$$\Rightarrow v_0 = -RC\frac{dV_i}{dt}$$

Integrator (Config-6)

***** Circuit Configuration:

R:
$$i_1 = \frac{(V_i - 0)}{R} = \frac{V_i}{R}$$

R:
$$i_2 = C \frac{dv_c}{dt} = C \frac{d(0 - v_0)}{dt} = -C \frac{dv_0}{dt}$$

$$i_1 = i_2 \Rightarrow \frac{dv_0}{dt} = -\frac{V_i}{RC}$$

$$\Rightarrow v_0 = -\frac{1}{RC} \int V_i \ dt$$

An Example

 \Leftrightarrow Determine v_0 , i_1 , i_2 :

Given, $V_i = 0.25 \sin(20t)$

An Important Example

\diamond Determine f:

Smoke Detector Circuit

