

REFA vs. MOST

Jan Vavruška

Studium práce

Studium práce

Studium metod

Efektivnější využití materiálu, prostoru, strojů a pracovníků

Měření práce

Lepší plánování a řízení, základna pro systém odměňování pracovníků

VYŠŠÍ PRODUKTIVITA

Přímé měření x systémy předem určených časů

Přímé měření

- Potřebujeme stopky
- Provádíme hodnocení výkonu pracovníka
- Není citlivá na Ergonomii
- Není citlivá na použité Metody

Systémy předem určených časů

- Stopky nejsou nutné
- Neprovádíme hodnocení výkonu pracovníka
- Citlivá na Ergonomii
- Citlivá na použité Metody

Přímé měření výkonnosti a analýzy na dílně

- >> Co je analýza a měření práce rozdíly a využití
- » Záznam pohybu materiálu
- » Souslednost aktivit u procesů
- >> Záznam časového průběhu

Co je analýza a měření práce

- Nastroj na odhalení a odstranění neefektivnosti při vykonávání práce
- Systematické přezkoumávání pracovních postupů s cílem zlepšit efektivnost

Metody na měření práce jsou systematické postupy záznamu a analýzy způsobu vykonávání práce, tak aby mohl být odhalen potenciál na zlepšení

Proč analyzovat a měřit práci?

- Zvyšování produktivity při malých nákladech
- Definovat časové normy
- Zvýšení bezpečnosti na pracovišti
- Úspory jsou viditelné ihned
- Relativně snadné použití a implementace
- Výbornou zbraní na neefektivnost kvantifikace plýtvání

Měření práce

- Aplikace technik pro určení času potřebného na vykonání specifické práce kvalifikovaným dělníkem na definované úrovni výkonu
- Slouží především pro účely normování práce
- Jsou zpravidla podkladem pro racionalizace pracovních procesů
- Nehodnotíme způsob, ale výkonnost nebo pracnost aktuálního způsobu práce

Studie metod práce = analýza práce

- Získávání informace o pracovních procesech, které jsou následně analyzovány s cílem objevit plýtvání
- Cílem je nalézt nejlepší cestu jak dělat požadované činnosti
- Přispívá k dosažení vyšší produktivity prostřednictvím eliminace plýtvání
- Analyzujeme jak je současný postup vhodný, které činnosti jsou nezbytné a kdy dochází k plýtvání.
- Nehodnotíme zapracovanost a výkonnost pracovníka

Jak naložit s neefektivitou?

 4 stádia zlepšování procesů na základě analýzy a měření práce

- »Zjednodušit, zlepšit
- » Přeuspořádat
- » Spojit
- » Eliminovat

0

Ν

М

Κ

Posuzování aktivit

ÚČEL CO - má být činností dosaženo?

» Proč je tato činnost potřebná?

MÍSTO KDE – má být činnost vykonána?

» Proč právě zde?

KDY – má být vykonána?

» Proč právě v tuto dobu?

KDO – má činnost vykonávat? **OSOBA**

» Proč právě tento pracovník?

JAK – má být činnost vykonávána?

» Proč právě tímto způsobem?

SEKVENCE

ZPŮSOB

Jak postupovat při analýze práce

- Vyberte práci, která má být zkoumána (úzké místo)
- Zaznamenejte vypovídající fakta o této práci
- Přezkoumejte způsobe jakým je práce vykonávána
- Navrhněte praktičtější, hospodárnější a ekonomičtější metodu jak práci vykonávat
- Zhodnoťte různé alternativy pro zlepšení vykonávané práce
- Definujte novou metodu
- Zaveďte novou metodu
- Udržujte nový stav, kontrolujte jako prevenci proti návratu k původnímu stavu

Metody pro analýzu práce

- Záznam pohybu materiálu
 - » Procesní diagram
 - » Nitkový diagram
 - » Špagety diagram
- Souslednost procesů
 - » Procesní diagram pracovníka, materiálu, zařízení
 - » Diagram obouručních činností
 - » Diagram vícenásobné obsluhy
- Záznam časového průběhu
 - » Snímek pracovního dne
 - » Chronometráž
 - » Videosnímek

Procesní diagram (analýza)

- Slouží k popisu účinnosti a výkonnosti procesů obsahující větší podílem přesunů, čekání a překážek
- Účinná pro popis výroby procházející několika dílčímy procesy
- Účinná pomůcka pří tvorbě a inovaci layoutu

POSTUP

- » Předběžná studie
- » Analýza toku
- » Záznam relevantních informací
- » Analýza současného stavu
- » Plán zlepšení
- » Implementace a hodnocení
- » Standardizace

Symboly procesní analýzy

č.	činnost	operace	transport	kontrola	skladování	čekání	vzdálenost (m)	doba trvání(min)	počet pracovníků
1	Vykládka kamionu - příjem zboží	0				6		0,25	0,5
2	transport		D				10		2000
3	skladování							7689	
4	transport						8		
5	skladování							456	
6	transport		B				35		
7	soustružení	Q						4,7	1
8	transport		T				26		
9	skladování					¥		1211	
10	transport						10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
11	frézování	O						3,6	1
12	transport		D)				12		
13	skladování		- 000		A			3456	
14	transport		1				36		
15	montáž	Q						5,2	0,5
16	transport		D	/			2		
17	skladování	14						1456	
18	transport						5		
21	skladování							457	
22	kontrola (100%)							1,5	1
	transport		SX.						į "
	skladování	77			A				
	balení, expedice	0							_1
	Celkem: - četnost	5	10	4	7	0			5
	- součet času (min)			(14740,25	
	- vzdálenost (m)	0.9					144		

Procesní schéma

http://www.grada.cz/dokums_raw/usn/borm_diagram.gif

Nitkový diagram

Špagetový diagram

- Zachycuje pohyb pracovníka nebo materiálu v určitém časovém období
- Do layoutu pracoviště se zakresluje jeho veškerý pohyb za daný časový úsek
- Tento způsob analýzy je často uskutečňován společně s se snímkováním průběhu práce. Odhalí tak množství chůze mimo pracoviště a může být dobrým podkladem pro inovaci Layoutu
- Díky špageti diagramu jednoduše vizualizujeme prostor, ve kterém se operátor pohybuje

Spaghetti diagram

Sankeyův diagram

Diagram vícenásobné obsluhy

0:03:28

Snímek pracovního dne

15

PP

Pracoviště	AMDZ Assembly Balení
Datum	16.7.2008
Směna	Denní
Čas pozorování	5:25
Začátek pozorování - reálný čas	6:08:00
Začátek pozorování - čas dle stopek	0:00:00

į	Začátek po	00:00					
	REÁLNÝ	ČAS	DLE STO	PEK		1	2
	ČAS	OD	DO	ROZDÍL	KATEGORIE	OS	В
	6:08:00	0:00:00	0:01:00	0:01:00	8		
	6:09:00	0:01:00	0:01:21	0:00:21	2		0:00:2
	6:09:21	0:01:21	0:02:08	0:00:47	13		
	6:10:08	0:02:08	0:03:10	0:01:02	3		
ĺ	6:11:10	0:03:10	0:03:28	0:00:18	11		

Zapracovaný pracovník, balení rámů AMDZ 16.7.08 6-13hod

6:11:58	0:03:58	0:05:10	0:01:12	3				13%
6:13:10	0:05:10	0:05:28	0:00:18	11				
6:13:28	0:05:28	0:06:37	0:01:09	3		L	0:01:09	\top
6:14:37	0:06:37	0:06:57	0:00:20	14				
6:14:57	0:06:57	0:07:24	0:00:27	2		0:00:27		\Vdash
6:15:24	0:07:24	0:07:30	0:00:06	8				
6:15:30	0:07:30	0:08:34	0:01:04	3			0:01:04	
6:16:34	0:08:34	0:09:10	0:00:36	11				
6:17:10	0:09:10	0:09:58	0:00:48	11				
6:17:58	0:09:58	0:10:20	0:00:22	1	0:00:22			
6:18:20	0:10:20	0:12:00	0:01:40	13				
6:20:00	0:12:00	0:13:30	0:01:30	11				
6:21:30	0:13:30	0:13:56	0:00:26	8				
6:21:56	0:13:56	0:16:02	0:02:06	13				
6:24:02	0:16:02	0:17:00	0:00:58	3			0:00:58	
			•		-		•	

		l	
kat	Symbol	Činnost	trvání
1	os	Fixace dílů	0:17:32
2	В	Balení	0:18:06
3	Н	Hledání	0:19:46
4	ČS	Čekání na ukončení aut. chodu stroj.	0:00:00
5	VV	Výměna výrobků, součástek	0:00:00
6	VN	Výměna nástrojů, přípravků	0:00:00
7	KM	Kontrola a měření	0:01:00
8	DO	Dokumentace - studium, zápis	0:57:33
9	PS	Přestavení stroje	0:00:00
10	UČ	Úklid, čištění	0:01:00
11	MA	Manipulace	0:43:28
12	MP	Mimo pracoviště	0:41:55
13	R	Rozhovor	0:44:04
14	ČNČ	Čekání (nečinnost)	0:59:36

Přestávka pracovníka

Délka

0:21:00

Design pracoviště a vliv na metodu práce 31/3/2015

Chronometráž

- Plynulá chronometráž po dobu pozorování se měří čas všech úkonů operace. Úkolem je zjistit skutečnou spotřebu času na jednotlivé úkony a na celou operaci, pokud se úkony zkoumané operace pravidelně opakují.
- Výběrová chronometráž je druh chronometráže, při kterém jsou předmětem pozorování a měření pouze určité, dopředu vybrané prvky operace. Používá se k určení skutečné spotřeby času na vybrané pravidelně i nepravidelně se opakující, předem známé úkony.
- Obkročném chronometráž se používá v případech, kdy je třeba zjišťovat délku trvání velmi krátkých, pravidelně se opakujících prvků operace. Protože v tomto případě je obtížné měřit délku každého prvku jednotlivě, měří se časy celých skupin pracovních úkonů, z nichž se dodatečně vypočítává délka každého z nich.

Videosnímek

Zkoumané oblasti činností a procesů

- Účel operace
 - » Možnost eliminace nebo sloučení operací
- Konstrukce výrobku
 - » Unifikace dílů
 - » Počet komponent
- Tolerance a specifikace kvality
 - » Požadavky na přesnost
 - » PokaYoke
- Používaný materiál
 - » Nejekonomičtější varianty
 - » Standardizovaný materiál

Zkoumané oblasti činností a procesů

- Výrobní proces
 - » Počet operací
 - » Přepravní vzdálenosti
 - » Automatizace
- Nastavení a používání nástrojů
 - » Přetypování, opakovatelnost výroby
- Manipulace s materiálem
 - » Vzdálenost
- Layout dílny
 - » Materiálové toky
- Úroveň ergonomie pracoviště
 - » Zatížení pracovníku

Metody měření spotřeby času

- Z historického vývoje známe několik způsobu měření práce a definice časových norem.
 - » Hrubý odhad
 - » Využití historických údajů
 - » Kontinuální časové studie přímím měřením
 - » Systémy předem určených časů

Výběr vhodné metody měření spotřeby času

		OBJEM VÝROBY					
		Vysoký	Střední	Nízký			
	Dlouhý	Momentkové pozorování Kontinuální čas. Studie	Momentkové pozorování Kontinuální čas. Studie	Expertní odhady Momentkové pozorování Historická data			
CELKOVÝ ČAS	Střední	Momentkové pozorování Kontinuální čas. Studie Systém předem urč. časů	Momentkové pozorování Kontinuální čas. Studie	Expertní odhady Historická data Kontinuální čas. Studie			
	Nízký	Systém předem urč. časů	Kontinuální čas. Studie Systém předem urč. časů	Kontinuální čas. Studie Expertní odhady			

- Měřit spotřebu času můžeme za předpokladu
 - » Pracovník je kvalifikovaný
 - » Vykonává se stanoveným pracovním postupem
 - » Má dostatečný objem produkce

Důvod k měření času práce

- Cíl měření
 - » Racionalizace práce
 - » Definice norem spotřeby času
- Důvody měření
 - » Nová práce, výrobek, postup
 - » Změna v postupu, materiálu, podmínek práce
 - » Reklamace časových norem
 - » Potřeba optimalizovat úzké místo
 - » Porovnání alternativních metod
 - » Redukce nákladu
 - » Odměňování pracovníku

Metody přímého měření

- Poskytují informace o struktuře a využití časového fondu
- Poskytuje informace o době trvání jednotlivých pracovních i nepracovních dějů
- Slouží pro účel normování i racionalizace práce
- Nástroje pro realizaci: papír, tužka, stopky (kamera software atd.)

$$n = \left(\frac{z * s}{k * X}\right)^2$$

$$\bar{X} = \frac{\sum_{i=1}^{N} X_{i}}{N}$$

$$s = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N - 1}}$$

Stanovení počtu měření

- n –počet měření
- $n = \left(\frac{z * s}{l}\right)^{-1}$ z vychází z tabulky spolehlivosti, konfidenční interval (z=1,96 pro 95% spolehlivost)
 - s směrodatná odchylka
 - k přípustná chyba v procentech
 - X aritmetický průměr z měření

Typ výroby	Délka úkonu	Koeficient rozpětí K _r pro časy ruční a strojně ruční
kusová a malosériová	do 0,15 min.	2,0
	do 0,50 min.	1,7
	nad 0,55 min.	1,5
sériová	do 0,1 min.	2,0
	do 0,3 min.	1,8
	nad 0,3 min.	1,5
hromadná	do 0,3 min.	1,5
	nad 0,3 min.	1,3

- Snímek operace
- Snímek pracovního dne
 - » Jednotlivce
 - » Hromadný
 - » Čety
 - » Vlastní
- Snímek dvojstranného pozorování
- Snímek průběhu práce (snímek prac. dne)
- Filmový snímek
- Chronometráž (úseky a měřící body)
 - » Plynulá
 - » Výběrová (transporty)
 - » Obkročná (nepravidelné činnosti)

Přímécměřenípmadný

Počet sledovaných	Interval pozorování a		
pracovníků	zápis		
3-6	1 minuta		
7-12	2 minuty		
13-18	3 minuty		
19-25	5 minut		

Činnosti	Počet a spotřeba času v min						
	5	6-10	11-15	16-25	26 víc		
Porady					40		
Telefony							
Pošta							
Návštěvy					65		
Studium							
atd.							

Prostředky pro měření

- Stopky
- Pozorovací listy
- Fotoaparát
- Videokamera
- PDA, Notebook s předdefinovanými zkratkami

Systémy předem určených časů (PTS)

- » Přímé měření x systémy předem určených časů
- » Principy systémů předem určených časů
- » V praxi používané systémy
- » Porovnání systémů
- » Výhody a nevýhody předem určených časů

Přímé měření x systémy předem určených časů

Přímé měření

- Potřebujeme stopky
- Provádíme hodnocení výkonu pracovníka
- Není citlivá na Ergonomii
- Není citlivá na použité Metody

Systémy předem určených časů

- Stopky nejsou nutné
- Neprovádíme hodnocení výkonu pracovníka
- Citlivá na Ergonomii
- Citlivá na použité Metody

Systémy předem určených časů (PTS)

První systém předem určených časů byl vyvinut A. B. Segurem okolo roku 1925

Segur definoval, že:

- Existuje souvislost mezi pohybem a časem
- Časy, které potřebují odborníci (kvalifikovaní dělníci) na vykonání jednotlivých pohybů jsou shodné
- Čas potřebný na vykonání záleží na tom, jakým způsobem je práce vykonána

Methods Time Analysis

Systémy předem určených časů

Technika časových studií

Systémy předem určených (pohybových) časů Predetermined (Motion) Time Systems

... spočívá ve využití časových studií a pohybových (mikropohybových) technik za účelem určení a přiřazení časů specifikovaným základním pohybům ...pohyby a jejich příslušné časy byly zaznamenány do (datových) tabulek.

Systémy předem určených časů

Měření práce se tak stalo záležitostí:

- Stanovení nejlepšího vzorce základních pohybů potřebných k vykonání určitého výkonu
- Přiřazení příslušného předem určeného času (z datové tabulky) každému základnímu pohybu v tomto vzorci
- Stopky jsou zapotřebí jen k měření strojního času

V praxi používané systémy PTS:

- The Work-Factor System
- MODAPTS (Modular Arrangement of Predetermined Time Standards)
- MTM (Methods Time Measurement)
- UMS (Universal Maintenance Standards)
- USD (Unified Standard Data)
- UAS (Universelles Analysier System)
- MOST (Maynard Operation Sequence Technique)
 ...a další

Přehled metod MTM

MTM 1

- » Základní systém, ze kterého vychází většina řešení v oblasti předem uřčených časů
- » Vyžaduje detailní popis a rigidní definici jednotlivých aktivit, pohybů a pod
- » Výhodné použití zejména ve velkosériové a hromadné výrobě (velmi časté činnosti s krátkým trváním - do 30 sekund).
- MTM-SD standard daten : MTM pro velkosériovou výrobu detailní
- MTM-UAS (Uviveselles Analysier-System):
 - » Druhá generace údajů MTM-1
 - » Výhodný pro dávkovou výrobu s dlouhými operačními časy (víc než 4 minuty)
- MTM MEK (MTM für die Einzel- und Kleinserienfürtigung)
 - » Třetí generace systémů založených na statistické analýze údajů MTM-1
 - » Navržen pro měření malého počtu opakovaných činností v kusové výrobě (oneof-kind production), kde je dlouhý operační čas (víc než 21 minut)

Principy předem určených časů

Nepřímé metody měření práce umožňují na základě předem určených časů stanovit plánované časy "připravené k použití"

- Pohybové postupy lidí se dají popsat základními/elementárními pohyby
- 60% pohybů ovlivňujících čas v pracovních postupech lze popsat jako sáhnout, uchopit, přinést, umístit, uvolnit
- Jsou definované veličiny, na kterých závisí potřeba času nutná pro jejich vykonání, např. délka pohybu, kontrola pohybu (obtížnost uchopení nebo uložení)

Druh aktivity

Index spotřeby času

1

Způsob stanovení indexů

Experimentálně, to znamená, že data byly získány praktickou zkušeností, tj. pozorováním a experimenty.

Jsou stanoveny pro dostatečně kvalifikovaného pracovníka, pracujícího s normálním výkonem, za optimálních pracovních podmínek.

Používané časové jednotky

TMU = Time Measurement Units

1 hodina = 100 000 TMU

1 minuta = 1 667 TMU

1 sekunda = 27,78 TMU

1 TMU = 0,00001 hod

1 TMU = 0,0006 min

1 TMU = 0.036 s

Systémy předem určených časů

Výhody PTS

- » Odpadnutí problému subjektivity stanovení úrovně výkonnosti (předem určené časy základních pohybů představují průměrný výkon průměrného dělníka, tj. úroveň výkonnosti 100%)
- » Zajišťují stejnou úroveň a vysokou přesnost norem času
- » Možné použití i pro stanovení časů budoucích, projektovaných operací
- » Možné použití pro racionalizaci pracovního postupu, organizaci a uspořádání pracoviště

Omezení PTS

- » Zjišťování času operací ovlivňovaných strojem (strojní časy – stopky)
- » Systémy nejsou univerzálně použitelné pro všechny typy operací
- » Podmínkou pro kvalitní analýzu je kvalitní trénink a příprava pozorovatele

MOST (Maynard Operation Sequence Technique)

- » Co je MOST
- » Postup při tvorbě modelu
- » Produktivní x neproduktivní časy
- » Koncepce a rodina MOST
- » Basic MOST

MOST

MOST = Maynard Operation Sequence Technique

- » Systém předem definovaných časových hodnot
- » Citlivá metoda
- » Simulace před implementací
- » Přesné standardy
- » Aplikace v různých odvětvích průmyslu
- » Používá základní aktivity (kombinace pohybů)
- » Analyzuje přemísťování objektů
- » Přemísťování popisuje Sekvenčním modelem
- » Časové indexy jsou přiděleny k základním aktivitám

ABGABPA

MOST

- Autorem koncepce je Kjell Zandin (Švédsko)
- Koncepce MOST vychází z toho, že práce je v podstatě vydávání energie za účelem splnění určitého úkolu

 Jednoduše řečeno: práce je přemísťování hmoty či objektu

Postup při tvorbě modelu

Odpověď na následující otázky:

1. Jaký předmět přemísťujeme

- » Lehký
 - 40 cm x 40 cm x 40 cm a méně
 - do 7 kg
- » Těžký
 - při uchopení předmětu lze pozorovat váhání nebo pauzu, potřebnou k dosažení dostatečné svalové síly k přemístění objektu.

Postup při tvorbě modelu

2. Jakým způsobem tento předmět přemísťujeme

- » přemístění volně prostorem
 - ABGABPA
- » v kontaktu, ve spojení nebo v omezení s jiným objektem
 - ABGMXIA
- » s použitím nějakého ručního nástroje
 - ABGABP ABPA

Postup při tvorbě modelu

- 3. Co dělá operátor, aby získal předmět?
- » A B G
- 4. Co dělá operátor, aby odložil předmět?
- » A B P
- 5. Co dělá operátor po odložení předmětu?
- » A
- 6. Je nezbytné danou aktivitu vykonávat?
- » A B G

MOST - nástroj ke zlepšení

 Operátor jde 6 kroků pro součástku, která je umístěna v přepravce na zemi, blokována ostatními součástkami, vezme ji, navrací se 6 kroků zpět na pracoviště a umístí ji s lehkým tlakem do sestavy

Produktivní x neproduktivní časy

- Metodika MOST umožňuje identifikovat produktivní a neproduktivní časy a následně určovat poměr "přidané hodnoty" dané činnosti
- Za neproduktivní činnosti jsou považovány pohyby těla, které jsou popsány parametry A a B
- Produktivní jsou všechny ostatní činnosti

 Poměr Produktivní/Neproduktivní: 6 (3+3)/15 (6+3+6)= 0,4

MOST x přímé měření

MOST	Přímé měření
Objektivita - systémy jsou tvořeny se zabudovanou	
100% výkonností, zahrnujeme pouze činnosti	Subjektivita - nutno posoudit výkonnost
nutné na vykonání operace	operátora, zahrnuje činnosti tak, jak je operátoři
	vykonávají (záleží na zkušenostech analytika)
Časová náročnost - při Basic MOST stačí na kameru	Časová náročnost - nároky na dostatečné
zaznamenat 2 cykly a mít informace o tom, zda	množství náměrů (nároky na to, aby výroba
všechny činnosti jsou nezbytné pro vykonání dané	skutečně probíhala a za stejných podmínek)
práce	
Standardy - v případě, že známe činnosti, které je	Standardy - je třeba, aby operátoři byli dostatečně
třeba vykonat a v jakém pořadí a rozmístění na	zapracovaní - nemožno tvořit v předstihu
pracovišti, možno tvořit standardy v předstihu	
Zlepšování - Vysoké indexy poukazují na vysokou	Zlepšování - pouze odráží stávající stav, neukazuje
spotřebu času (především pohyb těla a akce na	potenciál na zlepšení
určitou vzdálenost) a jsou podnětem na zlepšení	

Koncepce a rodina MOST

- primární jednotky práce již nejsou pohyby, ale aktivity (soubory pohybů) zabývající se přemisťováním objektů
- univerzální sekvenční modely na základě standardních sekvencí (pohybových prvků)

Rodina: MOST

MINI MOST
Délka operací
2-10 s

10 s - 10 min
nejpoužívanější
1 hodina měřené
práce
10 hodin analytické
práce
přesnost ±5% již při
čase 1,9 min

MAXI MOST
Pracovní cykly
2 min
1 hodina měřené práce
10 hodin analytické
práce

Rodina MOST – jednoduchý přehled

Mini MOST

- » Opakující se operace s krátkým cyklem (2 10s)
- » Četnost více než 1500 x za týden

Basic MOST

- » Nejčastěji požívaný, všeobecně použitelný u operací v trvání 10s – 10 min
- » Četnost asi 150 1500 x za týden

Maxi MOST

- » Neopakující se operace s dlouhým cyklem (desítky minut až hodiny)
- » Četnost méně než 150 x týdně

Admin MOST

» Administrativní operace, obdoba basic MOST

Basic MOST

- » Přehled sekvenčních modelů pro Basic MOST
- » Sekvence obecné přemístění
- » Sekvence řízené přemístění
- » Sekvence použití nástroje
- » Sekvence ruční jeřáb
- » Formulář pro Basic MOST

- 1. Obecné přemístění
- manuální přemístění objektu z jednoho místa na druhé

		získat <u>ABG</u>	položit <u>ABP</u>	návrat <u>A</u>	
	A	_	akce na u	ırčitou vzdá	lenost
•	В	_	pohyb tě	la	
•	G	_	získání k	ontroly	
•	P	_	umístění		

50% veškeré manuální činnosti

2. <u>Řízené přemístění</u>

 přemístění objektu, který v průběhu přemístění zůstává v kontaktu s nějakým povrchem nebo je připojen k jinému objektu

		získat <u>ABG</u>	přemístit / spustit <u>MXI</u>	návrat <u>A</u>
	М	_	přesun řízený	
•	Χ	_	strojní čas	
•	Ι	-	vyrovnání	

33% činností ve strojní dílně

3. Použití nástroje

- kombinace obecného a řízeného přemístění
- pro zjednodušující analýzu aktivit spojených s použitím nástroje

ABG

ABP

F;L;C;S;M;R;T

ABP

A

získat objekt nebo nástroj položit objekt nebo nástroj

použít nástroj

odložit objekt nebo nástroj

návrat

4. Ruční jeřáb

 přemísťování objektu s pomocí ručního jeřábu pro manipulaci s těžkými objekty

<u>ATKFVLVPTA</u>

A – akce na určitou vzdálenost
 T – transport
 K – zaháknout a vyháknout
 F – uvolnit objekt
 V – vertikální přemístění
 L – transport s břemenem
 P – umístění

Data karta používaná pro Basic MOST

Sekvence Obecné přemístění

Položit objekt Návrat operátora Získat objekt **ABG ABP**

A – Akce na určitou vzdálenost

- Action Distance
- Používá se k analýze všech prostorových přemístění či akcí prstů, rukou č chodidel, a to buď se zatížením nebo bez zatížení
- Jakékoli řízení těchto akcí ze strany okolí vyžaduje použití jiných parametrů

	ABG AE Získat Polo		Obecné Př	emístění	
index x10	Akce na určitou vzdálenost A	Pohyb těla B	Získání kontroly G	Umístění P	index x10
0	≤ 2 in. (5 cm)	ádný pohyb těla	Bez získání kontroly Držet	Bez umístění Držet Hodit	0
1	Na dosah		Uchopit lehký objekt Uchopit lehký objekt Simo	Odložit Volné tolerance	1
3	1 – 2 kroky	ednout bez ustavení stát bez ustavení ehnout se a napřímit 50 %	Získat Ne-simo Získat těžký/objemný Získat neviděný Získat blokovaný Promichaný Rozpojit,Shromáždit	Volné toleranoe při nevidění Umístit s ustavneím Umístit s lehkým tlakem Umístit s dvojím umístěním	3
6	3 – 4 kroky	ehnout se a napřímit		Uložit s pěčí Uložit s přeností Uložit neviděný Uložit blokovaný Uložit velkým tlakem Uložit s mezipohyby	6
10	5 – 7 kroků	ednout Vstát			10
16	8 – 10 kroků	ehnout se a sednout, Vylézt ahoru, Slézt dolů, Vstát a ehnout se, Dveřmi			16

Akce na určítou zdálenost Doplňkové A hodnoty			
Index	Kroky	Vzdálen (ft)	Vzdálen(m)
24	11-15	38	12
32	16-20	50	15
42	21-26	65	20
54	27-33	83	25
67	34-40	100	30
81	41-49	123	38
96	50-57	143	44
113	58-67	168	51
131	68-78	195	59
152	79-90	225	69
173	91-102	255	78
196	103-115	288	88
220	116-128	320	98
245	129-142	355	108
270	143-158	395	120
300	159-174	435	133
330	175-191	478	146

A – Akce na určitou vzdálenost

- A₀ - Blízko

- » Jakékoli přemístění prstů, rukou nebo nohou na vzdálenost menší nebo rovnou 5 cm
- » Časy překonání těchto krátkých vzdáleností jsou zahrnuty v rámci parametrů Získání kontroly a Umístění

lacksquare lacksquare - Na dosah

- » Akce jsou omezeny na oblast vymezenou obloukem natažené paže, otáčené kolem ramene
- » Tato oblast se rozšiřuje o krátké sehnutí nebo otočení těla v pase

• **A**1 - Na dosah

- » Hodnota A1 se také vztahuje k akcím celé nohy či části nohy pod kotníkem, které představují sáhnutí po nějakém objektu - páce či pedálu
- » Posune-li se však trup těla, musí být akce považována za krok (A₃)

Děkuji za pozornost

