Partial Differential Equations

(Semester II; Academic Year 2024-25)

Indian Statistical Institute, Bangalore

Instructor: Renjith Thazhathethil renjitht_pd@isibang.ac.in

Assignment - 7

Given Date: April 2, 2025 Number of questions: 4

Submission Date: April 20, 2025 Maximum Marks: 20

- 1. Is there an f in $L^1(\mathbb{R})$ such that f * f = f? What about $L^2(\mathbb{R})$ (5)
- 2. For $\delta > 0$, let $f_{\delta}(x) = f(\delta x)$. Compute the Fourier transform of f. Hence or otherwise show the following:
 - If $\|\hat{f}\|_q \leq \|f\|_p$ for all $f \in L^p$, then $\frac{1}{p} + \frac{1}{q} = 1$.
 - If $\|\hat{f}\|_p \leq \|f\|_p$ for all $f \in L^p$, then p = 2.
- 3. Compute the Fourier transform of $\chi_{[-n,n]}$. Let $f_n(x) = \frac{\sin x \sin nx}{x^2}$. Show that $||f_n||_1 \to \infty$ as $n \to \infty$. Hence or otherwise prove that the map $f \to \hat{f}$ is **not onto** from $L^1(\mathbb{R})$ to $C_0(\mathbb{R})$. Prove that the range of the Fourier transform is dense in $C_0(\mathbb{R})$.
- 4. If $f, g \in C_c^{\infty}(\mathbb{R})$ and f * g = 0, prove that either f or g is zero. Prove that there exist f and g in $S(\mathbb{R})$ such that f * g = 0.