Measuring natural selection in populations

Introduction to Evolution and Scientific Inquiry Dr. Spielman; spielman@rowan.edu

Recall...

Evolution by natural selection will happen if these are **true**:

- 1. There is **variation** in natural populations
- 2. The variation is **heritable**
- 3. More offspring are produced than will survive each generation, because there is a **struggle for existence**

→ Natural selection tries to maximize the fitness of a population (making the <u>average individual</u> really good at surviving and making babies)

How do populations of organisms evolve?

- A population is a group of organisms of the same species that live in a particular geographic area at the same time and interbreed
- We can ask..
 - What causes natural selection to act?
 - Which traits are favored in a population?
 - What mode of natural selection is acting?
 - How strong is selection in a population?
 - What is the average fitness of a population?
 - What other evolutionary forces affect the population?
 - Is a trait in a population evolving?

What causes natural selection to act?

 Natural selection is the process by which organisms adapt to their environment

How would natural selection act on a brown bear in the forest? A brown bear in the Arctic? Vice versa?

The origin and future of polar bears

- They evolved ~150,000 years ago from a brown bear ancestor
- Polar bears are *specialized* (highly adapted!) to their environment:
 - Hunt for seals with the "sit and wait" approach
 - They have not evolved to be efficient at walking long distances to hunt
- ...What now?

Modes of natural selection

Modes of selection: Formal definitions

Directional selection

Individuals at one trait extreme are favored.

Balancing selection

- o Individuals with an **intermediate** trait value are favored
- AKA stabilizing selection

Disruptive selection

o Individuals at **both** extremes are favored, i.e. **selection against the mean**

Continuous vs. discrete variation

Natural selection affects different types of traits differently, so we study them

differently

Height in inches

Modes of natural selection on continuous quantitative traits

Modes of natural selection on discrete traits (like alleles!)

Consider a population where a gene has two alleles, "A" and "a". At the beginning, all is equal: 1/3 are AA 1/3 are Aa 1/3 are aa

Table discussion: What happens to the frequency of <u>genotypes</u> after many generations experiencing...

- Directional selection?
- Balancing selection?
- Disruptive selection?

Modes of natural selection on discrete traits

- Directional selection?
 - Selection will make "AA" the most common genotype (or aa)
 - Eventually, all individuals will be homozygous

Does variation remain in the populations?

- Balancing selection?
 - Selection will make "Aa" the most common genotype

- Disruptive selection?
 - Selection will make "AA" and "aa" the most common, with very few "Aa"

Example: Directional selection

Before (early stages of) selection pressure

DDT resistance in mosquitoes

- RR = resistant genotype
 - mosquitoes survive DDT
- R+ and ++ = susceptible genotypes
 - DDT kills mosquitoes
- Which genotype is better for mosquito fitness?

change?

Example: Disruptive selection

Example: Disruptive selection (could be viewed as directional too!)

Desert environment

Lava pit environment

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC154334/

Example: Balancing selection

- Sickle cell anemia is a recessive genetic disorder caused by S allele (A is the "wild type")
 - SS = sickle cell
 - SA, AA = healthy (but what is SA?)
- SS is up to 20% in certain regions...?????

Quantifying selection in populations

How strong is natural selection in a population?

• We measure fitness using <u>survival or fecundity</u>.

Scenario:

There are 1,000 dragonflies in a population. Some dragonflies are blue and some are red. On average, birds eat 50% of blue dragonflies and 25% of red dragonflies.

 \rightarrow 50% of blue survive. 75% of red survive.

We quantify selection using *relative fitness* and *selection coefficients* 75% of red survive. 50% of blue survive.

	Red morph	Blue morph	Notes
Absolute Fitness	0.75	0.50	The actual measurements
Relative fitness, w (normalized survivorship)	0.75 / 0.75 = 1.0	0.5 / 0.75 = 0.67	Divide by the largest value in the population
Selection coefficient, s	1 - 1 = 0	1 - 0.67 = 0.33	s = 1 - w

Survival of these two phenotypes, *relative to each other*. For every 10 surviving red dragonflies, we expect ~6.7 blue dragonflies will survive.

The strength of selection acting against the trait.

 $S = 0 \rightarrow relatively$, no selection against the trait (most fit phenotype)

 $S = 1 \rightarrow \text{complete selection against the trait (no survivors)}$

Mean fitness of populations

Imagine a population with 1 blue morph and 1 red morph. What is the mean fitness of the population?

$$(1.0 + 0.67) / 2 = 0.833$$

Imagine a population with 2 red morphs and 1 blue morph (so N=3). What is the mean fitness of the population?

$$(1.0 + 1.0 + 0.67) / 3 = 0.89$$

	Red morph	Blue morph
Absolute Fitness	0.75	0.50
Relative fitness, w	1.0	0.67
Selection coefficient, s	0	0.33

Mean fitness of populations

$$\bar{w} = \sum_{i}^{N} F_i w_i$$

N = total number of phenotype

i = each phenotype (genotype)

F = frequency of phenotype.

w = fitness of phenotype

Population with 2 red morphs and 1 blue morph. Fitness?

$$(1.0 + 1.0 + 0.67) / 3 = 0.89$$

$$2/3 \times 1.0 + 1/3 \times 0.67 = 0.89$$

Over time, natural selection will act to *increase the POPULATION fitness*.

A classic example: peppered moths (Biston betularia)

Melanic

"Typical"

- Melanic form was first seen in 1848.
 - Frequency of 1-10% in industrial areas by 1890
 - Frequency >99% in Manchester by 1948.
 - Typical form remained common in rural areas

Kettlewell asked, "Does color affect survival?"

Kettlewell's capture/recapture results (1955)

Polluted Area

	White	Black
Number released	137	447
Number recaptured	18	123
Percent recaptured	13.1%	27.5%

Unpolluted Area

•	White	Black	
Number released	393	406	
Number recaptured	54	19	
Percent recaptured	13.7%	4.7%	

	White morph	Black morph
Polluted	13.1%	27.5%
Unpolluted	13.7%	4.7%

These survival measurements represent "ABSOLUTE FITNESS"