Math 207: Statistics

Dr. Ralph Wojtowicz Mathematics Department

- Introduction
 - Descriptive Statistics
 - Reading a Histogram
- Drawing a Histogram
 - Drawing a Histogram from a Distribution Table
 - Generating a Histogram from Data
- The Density Scale
 - The Density Scale
- 4 Variables
 - Variables

Introduction

Graphical tools (e.g., histograms and pie charts) can be used for

- summarizing and presenting data. These show the manner in which the data values are distributed.
- Numerical tools (mean, standard deviation, median and percentiles) are also used for describing data.

Variables

Reading a Histogram

- A histogram is a graph used to summarize data.
- The total area under the curve is 1 (that is, 100%).
- The horizontal axis is divided into class intervals.
- The area of a rectangle is proportional to the percentage of data values in the class interval.

Income Level	Percent
\$0-\$1,000	1
\$1,000-\$2,000	2
\$2,000-\$3,000	3
\$3,000-\$4,000	4
\$4,000-\$5,000	5
\$5,000-\$6,000	5
\$6,000-\$7,000	5
\$7,000-\$10,000	15
\$10,000-\$15,000	26
\$15,000-\$25,000	26
\$25,000-\$50,000	8
\$50,000 and over	1

Math 207: Statistics

Drawing a Histogram from a Distribution Table

- A distribution table shows the percentage of data in each class interval.
- Choose an endpoint convention (e.g., put left endpoints in class intervals).
- Use the class intervals to draw horizontal axis.

Introduction

• To figure out the height of a block over a class interval, divide the percentage by the length of the interval.

Generating a Histogram from Data

- Toss a fair coin n = 4 times and count the number of heads.
- Repeat this experiment N = 10 times.
- Example: 3, 1, 3, 2, 0, 2, 1, 4, 2, 0 heads in the 10 trials gives the histogram below left.
- If we repeat the experiment N = 1000 times, we get a histogram such as the one shown below right.

• Simulate rolling 20 dice:

Simulate rolling 20 dice:

```
> sample(1:6, 20, replace=T)
[1] 3 6 4 5 2 6 3 4 5 4 5 3 2 3 6 3 2 1 2 3
```


- Simulate rolling 20 dice:
 - > sample(1:6, 20, replace=T)
 [1] 3 6 4 5 2 6 3 4 5 4 5 3 2 3 6 3 2 1 2 3
- Create a distribution table:

Simulate rolling 20 dice:

> sample(1:6, 20, replace=T)

[1] 3 6 4 5 2 6 3 4 5 4 5 3 2 3 6 3 2 1 2 3

Create a distribution table:

_	Number of Dots	Number of Rolls	Percent
	1	1	$\frac{1}{20} = 0.05 = 5\%$
	2	4	$\frac{4}{20} = 0.20 = 20\%$
	3	6	$\frac{6}{20} = 0.05 = 30\%$
	4	3	$\frac{3}{20} = 0.05 = 15\%$
	5	3	$\frac{3}{20} = 0.05 = 15\%$
	6	3	$\frac{3}{20} = 0.05 = 15\%$

Simulate rolling 20 dice:

> sample(1:6, 20, replace=T)

[1] 3 6 4 5 2 6 3 4 5 4 5 3 2 3 6 3 2 1 2 3

• Create a distribution table: Ni

• Draw the histogram (called a bar plot since the variable isn't continuous):

Number of Dots	Number of Rolls	Percent
1	1	$\frac{1}{20} = 0.05 = 5\%$
2	4	$\frac{4}{20} = 0.20 = 20\%$
3	6	$\frac{6}{20} = 0.05 = 30\%$
4	3	$\frac{3}{20} = 0.05 = 15\%$
5	3	$\frac{3}{20} = 0.05 = 15\%$
6	3	$\frac{3}{20} = 0.05 = 15\%$

Simulate rolling 20 dice:

> sample(1:6, 20, replace=T)

[1] 3 6 4 5 2 6 3 4 5 4 5 3 2 3 6 3 2 1 2 3

• Create a distribution table:

of Dots	of Rolls	Percent
1	1	$\frac{1}{20} = 0.05 = 5\%$
2	4	$\frac{4}{20} = 0.20 = 20\%$
3	6	$\frac{6}{100} = 0.05 = 30\%$

Number

• Draw the histogram (called a bar plot since the variable isn't continuous):

4 5 6

6

5

Number

3 $\frac{3}{20} = 0.05 = 15\%$ 3 $\frac{3}{20} = 0.05 = 15\%$

 $\frac{3}{20} = 0.05 = 15\%$

SHENANDOAH UNIVERSITY

Percent of Rolls

30

25 -

20 -15 -10 -5 -

1

2

4 □ ▶

Number of Dots

The Density Scale

Introduction

- The histogram below shows years of school completed by persons age 25 and older in the U.S. in 1991.
- Endpoint convention: years of school completed (e.g., people who dropped out part way through ninth grade are in the 8–9 block)
- Units on the vertical axis are percent (of people) per year (of schooling).

Variables

Variables

- A (random) variable is a measurement that depends on the outcome of a (random) event.
- Quantitative variables have numeric values.
 - Continuous variables can assume a continuum of values: Examples include income, temperature, pressure, mass, and speed.
 - A discrete variable can assume only finitely (or countably) many values.
 Examples include: family size, and number of engine cylinders.
- Qualitative variables are non-numeric.
 - They can be **Ordered**: good, better, best; or sometimes, always, never
 - or they can be Unordered such as eye color, marital status or automobile transmission type

Math 207: Statistics The