```
In [4]: import os
        gee files = [f for f in os.listdir('.../Data/GEE') if f.endswith('.csv')]
        print(gee files)
       ['dewpoint temperature 2m.csv', 'evaporation from vegetation transpiration sum.csv', 'potential evaporation sum.csv',
       'prcp.csv', 'skin temperature.csv', 'snow depth.csv', 'snow depth water equivalent.csv', 'soil temperature level 1.cs
       v', 'soil temperature level 2.csv', 'soil temperature level 3.csv', 'soil temperature level 4.csv', 'srad.csv', 'sub
       surface_runoff_sum.csv', 'surface_latent_heat_flux_sum.csv', 'surface_net_solar_radiation_sum.csv', 'surface_net_ther
       mal radiation sum.csv', 'surface pressure.csv', 'surface runoff sum.csv', 'surface solar radiation downwards sum.cs
       v', 'temperature_2m.csv', 'tmax.csv', 'tmin.csv', 'total_precipitation_sum.csv', 'u_component_of_wind_10m.csv', 'volu
       metric soil water layer 1.csv', 'volumetric soil water layer 2.csv', 'vp.csv', 'v component of wind 10m.csv']
In [1]: import os
        import pandas as pd
        # Paths
        gee folder = '../Data/GEE'
        discharge_folder = '../Data/Discharge'
        output_folder = '../Data/Required Data'
        # Create the output folder if it doesn't exist
        os.makedirs(output_folder, exist_ok=True)
        # Get list of GEE files
        gee_files = [f for f in os.listdir(gee_folder) if f.endswith('.csv')]
        # Extract column identifiers from GEE files
        gee column identifiers = [col for col in pd.read_csv(os.path.join(gee_folder, gee_files[0])).columns if col.isdigit()
        # Process each column identifier
        for col_id in gee_column_identifiers:
            # Initialize a dataframe for this column identifier
            combined_data = pd.DataFrame()
            # Add Date column from any GEE file (Dates will be consistent across GEE files)
            first_gee_file = pd.read_csv(os.path.join(gee_folder, gee_files[0]))
            combined_data['Date'] = pd.to_datetime(first_gee_file['Date'], errors='coerce')
            # Load discharge file corresponding to the column identifier
            discharge file path = next((f for f in os.listdir(discharge folder) if f.startswith(f"{col id}. ")), None)
```

```
if not discharge file path:
                print(f"No discharge file found for column {col id}")
                continue
            discharge data = pd.read csv(os.path.join(discharge folder, discharge file path))
            discharge data['Date'] = pd.to datetime(discharge data['Date'], errors='coerce')
            discharge_data['Q (ft3/s)'] = discharge_data['Q (ft3/s)'].str.replace(',', '', regex=True).astype(float, errors=
            discharge_data.rename(columns={'Q (ft3/s)': 'Discharge'}, inplace=True)
            # Merge Discharge data with the Date column from GEE files
            combined data = pd.merge(combined data, discharge data[['Date', 'Discharge']], on='Date', how='left')
            # Add GEE parameters to the dataframe
            for gee file in gee files:
                param_name = os.path.splitext(gee_file)[0] # Extract parameter name from file
                gee data = pd.read csv(os.path.join(gee folder, gee file))
                gee_data['Date'] = pd.to_datetime(gee_data['Date'], errors='coerce')
                # Merge with the combined dataframe based on Date
                combined_data = pd.merge(combined_data, gee_data[['Date', col_id]].rename(columns={col_id: param_name}),
                                         on='Date', how='left')
            # Save the combined data to a new CSV file
            output path = os.path.join(output folder, f'{col id}.csv')
            combined data.to csv(output path, index=False)
            print(f"Saved: {output path}")
        print("Processing complete!")
       Saved: ../Data/Required Data\5.csv
       Saved: ../Data/Required Data\6.csv
       Saved: ../Data/Required Data\7.csv
       Saved: ../Data/Required Data\8.csv
       Saved: ../Data/Required Data\10.csv
       Saved: ../Data/Required Data\11.csv
       Processing complete!
In [2]: def look multi colinear(num):
            import seaborn as sns
            import matplotlib.pyplot as plt
            # Load the dataset
            file path = f'../Data/Required Data/{num}.csv' # Example file
```

```
data = pd.read csv(file path)
# Preprocessing for correlation analysis
data['Date'] = pd.to datetime(data['Date'], errors='coerce')
data['day_of_year'] = data['Date'].dt.dayofyear # Add day of year as a feature
data['month'] = data['Date'].dt.month # Add month as a feature
data['week'] = data['Date'].dt.isocalendar().week # Add week as a feature
# Drop the original Date column (if not needed) and rows with missing Discharge
data.drop(columns=['Date'], inplace=True)
data clean = data.dropna(subset=['Discharge']) # Only use rows with Discharge for correlation analysis
# Select only numeric columns
numeric_data = data_clean.select_dtypes(include=['number'])
# Compute correlation matrix
correlation matrix = numeric data.corr()
# Extract pairs with high correlations
high corr pairs = correlation matrix.unstack().reset index()
high corr pairs.columns = ['Feature1', 'Feature2', 'Correlation']
# Filter out duplicate pairs and self-correlations
high corr pairs = high corr pairs[
    (high corr pairs['Feature1'] != high corr pairs['Feature2']) &
    (abs(high_corr_pairs['Correlation']) > 0.95)
].drop_duplicates(subset=['Correlation'])
# Sort by absolute correlation value
high_corr_pairs = high_corr_pairs.sort_values(by='Correlation', ascending=False)
# Display the pairs
print("Highly Correlated Feature Pairs (|Correlation| > 0.95):")
print(high corr pairs)
# Save the result to a CSV file
#high corr pairs.to csv('../Data/Required Data/high correlation pairs.csv', index=False)
# Plot correlation heatmap for visualization
plt.figure(figsize=(10, 8))
sns.heatmap(
    correlation matrix,
```

```
annot=False,
                fmt=".2f",
                cmap="coolwarm",
                cbar=True,
                square=True,
                linewidths=0.5
            plt.title("Feature Correlation Heatmap")
            plt.tight_layout()
            # Save the plot
            plt.savefig(f'../Figures/{num}_corr_heatmap.png')
In [3]: def clean_correlated(num):
            import pandas as pd
            # Load the dataset
            file_path = f'../Data/Required Data/{num}.csv' # Example file
            data = pd.read_csv(file_path)
            # Columns to remove
            columns_to_remove = [
                 'dewpoint_temperature_2m',
                'soil temperature level 1',
                'soil_temperature_level_2',
                'soil_temperature_level_3',
                'temperature 2m',
                'tmin',
                'month',
                 'week',
                 'volumetric_soil_water_layer_2'
            # Preprocessing for feature removal
            data['Date'] = pd.to_datetime(data['Date'], errors='coerce')
            data['day_of_year'] = data['Date'].dt.dayofyear # Add day of year as a feature
            # Drop the specified columns
            data_cleaned = data.drop(columns=columns_to_remove, errors='ignore')
            # Save the cleaned dataset
            output_path = f'../Data/Required Data/{num}_cleaned.csv'
            data_cleaned.to_csv(output_path, index=False)
```

```
print(f"Cleaned dataset saved to {output_path}")

In [4]: def do_machine_learning(num):
    import pandas as pd
    from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model, plot_model

# Stap 1: Load the Cleaned Dataset
```

```
# Step 1: Load the Cleaned Dataset
file_path = f'../Data/Required Data/{num}_cleaned.csv' # Cleaned dataset path
data = pd.read csv(file path)
data.drop(columns=['Date'], inplace=True)
# Ensure Discharge is numeric
data['Discharge'] = pd.to_numeric(data['Discharge'], errors='coerce')
# Drop Date column if not needed
# Step 3: Setup PyCaret Regression Environment
# Only use rows with valid 'Discharge' for training
train_data = data.dropna(subset=['Discharge'])
print("Setting up PyCaret environment...")
regression_setup = setup(
    data=train_data,
   target='Discharge',
    session_id=42,
    normalize=True, # Normalize features
   feature_selection=True, # Perform feature selection
   log_experiment=False, # Disable experiment logging
# Step 4: Compare Models
print("Comparing models...")
best_model = compare_models()
# Step 5: Tune the Best Model
print("Tuning the best model...")
tuned_model = tune_model(best_model)
# Step 6: Finalize the Model
print("Finalizing the model...")
final model = finalize model(tuned model)
```

```
# Step 7: Evaluate Model
            # Residual Plot
            print("Generating residual plot...")
            plot_model(final_model, plot='residuals', save=True)
            # Feature Importance Plot
            print("Generating feature importance plot...")
            plot model(final model, plot='feature', save=True)
            # Step 8: Predict Missing Values
            # Predict Discharge for rows with missing target values
            missing_data = data[data['Discharge'].isnull()] # Extract rows with missing Discharge
            missing_data.drop(columns = ['Discharge'], inplace = True)
            print("Predicting missing values...")
            predicted = predict model(final model, data=missing data)
            # Assign predictions to the missing Discharge column
            if 'prediction label' in predicted.columns:
                missing data['Discharge'] = predicted['prediction label']
            else:
                print(predicted.head()) # Debugging: Show a sample of the output
                raise KeyError("No valid prediction column ('prediction label') found in the output of predict model.")
            # Combine predicted rows with the original dataset
            filled data = pd.concat([train data, missing data]).sort index()
            # Save the filled dataset
            filled data.to csv(f'../Data/Required Data/{num} filled.csv', index=False)
            print(f"Saved the filled dataset as '../Data/Required Data/{num}_filled.csv'")
In [4]: def making_filled_plots(num):
            # File paths
            cleaned_file = f'../Data/Required Data/{num}_cleaned.csv'
            filled_file = f'../Data/Required Data/{num}_filled.csv'
            # Load datasets
            cleaned_data = pd.read_csv(cleaned_file) # Original cleaned data with 'Date'
            filled_data = pd.read_csv(filled_file) # Filled data without 'Date'
            # Ensure Discharge column is numeric in both datasets
            cleaned_data['Discharge'] = pd.to_numeric(cleaned_data['Discharge'], errors='coerce')
            filled_data['Discharge'] = pd.to_numeric(filled_data['Discharge'], errors='coerce')
```

```
# Check for remaining invalid or missing values in observed and filled datasets
#invalid observed = cleaned data[cleaned data['Discharge'].isnull()]
#invalid filled = filled data[filled data['Discharge'].isnull()]
# Print the number of invalid rows in each dataset
#print(f"Invalid rows in observed data: {len(invalid observed)}")
#print(f"Invalid rows in filled data: {len(invalid filled)}")
# Plotting (after ensuring 'Date' column exists in filled data)
filled data['Date'] = cleaned data['Date'] # Add Date from cleaned data if missing
filled data['Date'] = pd.to datetime(filled data['Date'], errors='coerce')
cleaned data['Date'] = pd.to_datetime(cleaned_data['Date'], errors='coerce')
# Separate observed and filled data
observed data = cleaned data
filled data nonnull = filled data
# Plottina
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.plot(observed data['Date'], observed data['Discharge'], label='Observed Data', marker='o', linestyle='-', alk
plt.plot(filled data nonnull['Date'], filled data nonnull['Discharge'], label='Machine Learning Prediction', mark
plt.title('Observed vs. Filled Discharge Time Series')
plt.xlabel('Date')
plt.ylabel('Discharge')
plt.legend()
plt.grid()
plt.tight_layout()
# Save the plot
plot path = f'../Figures/{num}Observed vs Filled Discharge Cleaned.png'
plt.savefig(plot path, dpi=300)
plt.show()
print(f"Time series plot saved to: {plot path}")
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model, plot_model
```

```
numbers = ['5','6', '7', '8', '10', '11']
for num in numbers:
    look_multi_colinear(num)
```

```
Highly Correlated Feature Pairs (|Correlation| > 0.95):
                            Feature1
                                                                    Feature2 \
                    skin_temperature
                                                             temperature_2m
143
                          snow_depth
                                                 snow_depth_water_equivalent
161
897
                         day_of_year
     surface_net_solar_radiation_sum
                                     surface_solar_radiation_downwards_sum
452
225
            soil_temperature_level_1
                                                    soil_temperature_level_2
                    skin_temperature
                                                    soil_temperature_level_1
131
            soil_temperature_level_1
                                                              temperature_2m
236
145
                    skin_temperature
                                                                        tmin
610
                      temperature_2m
                                                                        tmin
             dewpoint_temperature_2m
21
                                                                        tmin
609
                      temperature_2m
                                                                        tmax
                                                             temperature_2m
19
             dewpoint_temperature_2m
4
             dewpoint_temperature_2m
                                                            skin_temperature
            soil_temperature_level_1
238
                                                                        tmin
144
                    skin_temperature
                                                                        tmax
898
                         day_of_year
                                                                        week
929
                               month
                                                                        week
677
                                tmin
                                                                          vp
                    skin_temperature
                                                    soil_temperature_level_2
132
            soil_temperature_level_2
                                                              temperature_2m
267
            soil_temperature_level_2
269
                                                                        tmin
            soil_temperature_level_1
243
                                                                          vp
237
            soil_temperature_level_1
                                                                        tmax
     Correlation
143
        0.999306
161
        0.997454
897
        0.996558
452
        0.996084
225
        0.991703
131
        0.985267
236
        0.982629
145
        0.981970
610
        0.979839
21
        0.979338
609
        0.978020
19
        0.975006
4
        0.973875
238
        0.973589
144
        0.973566
```

```
0.971572
898
929
        0.970187
677
        0.966839
132
        0.960553
267
        0.956409
        0.955277
269
243
        0.954205
237
        0.950341
Highly Correlated Feature Pairs (|Correlation| > 0.95):
                            Feature1
                                                                    Feature2 \
143
                    skin_temperature
                                                              temperature_2m
     surface_net_solar_radiation_sum
                                     surface_solar_radiation_downwards_sum
452
                          snow_depth
                                                 snow_depth_water_equivalent
161
897
                         day_of_year
                                                                       month
131
                    skin_temperature
                                                    soil_temperature_level_1
            soil_temperature_level_1
                                                    soil_temperature_level_2
225
            soil_temperature_level_1
                                                              temperature_2m
236
             dewpoint_temperature_2m
21
                                                                        tmin
                    skin_temperature
145
                                                                        tmin
677
                                tmin
                                                                          vp
                      temperature_2m
610
                                                                        tmin
898
                         day_of_year
                                                                        week
609
                      temperature_2m
                                                                        tmax
929
                               month
                                                                        week
132
                    skin_temperature
                                                    soil_temperature_level_2
238
            soil_temperature_level_1
                                                                        tmin
                    skin_temperature
144
                                                                        tmax
            soil_temperature_level_2
                                                              temperature_2m
267
             dewpoint_temperature_2m
                                                            skin_temperature
4
19
             dewpoint_temperature_2m
                                                              temperature_2m
     Correlation
        0.999078
143
452
        0.998583
161
        0.998146
897
        0.996515
131
        0.991193
225
        0.991091
236
        0.988407
21
        0.978428
145
        0.975217
677
        0.973405
```

```
0.971546
610
898
        0.971113
609
        0.970935
929
        0.969746
132
        0.967634
238
        0.967270
144
        0.964555
267
        0.962979
4
        0.961138
19
        0.961125
Highly Correlated Feature Pairs (|Correlation| > 0.95):
                                                                     Feature2 \
                             Feature1
180
                    skin_temperature
                                                              temperature_2m
                         day_of_year
958
                                                                        month
265
            soil_temperature_level_1
                                                    soil_temperature_level_2
                    skin_temperature
182
                                                                         tmin
662
                      temperature_2m
                                                                         tmin
     surface_net_solar_radiation_sum surface_solar_radiation_downwards_sum
499
             dewpoint_temperature_2m
54
                                                                         tmin
661
                      temperature_2m
                                                                         tmax
199
                           snow_depth
                                                 snow_depth_water_equivalent
             dewpoint_temperature_2m
52
                                                              temperature_2m
181
                    skin temperature
                                                                         tmax
37
             dewpoint_temperature_2m
                                                            skin_temperature
959
                          day_of_year
                                                                         week
991
                               month
                                                                         week
168
                    skin_temperature
                                                    soil_temperature_level_1
                                                              temperature_2m
276
            soil_temperature_level_1
694
                                                                         tmin
278
            soil_temperature_level_1
                                                                         tmin
            soil_temperature_level_2
298
                                                    soil_temperature_level_3
            soil_temperature_level_1
283
                                                                           vp
53
             dewpoint_temperature_2m
                                                                         tmax
277
            soil_temperature_level_1
                                                                         tmax
169
                    skin_temperature
                                                    soil_temperature_level_2
       volumetric_soil_water_layer_1
826
                                               volumetric_soil_water_layer_2
     Correlation
180
        0.999082
958
        0.996501
265
        0.993839
182
        0.989314
```

```
0.989216
662
499
        0.986091
54
        0.985914
661
        0.984495
199
        0.983972
52
        0.982413
181
        0.981860
37
        0.979339
959
        0.971759
991
        0.970326
168
        0.969528
276
        0.966345
694
        0.958508
278
        0.955622
298
        0.954393
283
        0.954294
53
        0.953172
277
        0.952131
169
        0.950609
826
        0.950167
Highly Correlated Feature Pairs (|Correlation| > 0.95):
                            Feature1
                                                                    Feature2 \
                                                              temperature 2m
143
                    skin temperature
     surface_net_solar_radiation_sum
                                      surface_solar_radiation_downwards_sum
452
897
                         day_of_year
                                                                       month
                                                 snow_depth_water_equivalent
161
                          snow_depth
                                                    soil_temperature_level_1
131
                    skin_temperature
            soil_temperature_level_1
                                                    soil_temperature_level_2
225
            soil_temperature_level_1
                                                              temperature_2m
236
677
                                tmin
                                                                           vp
145
                    skin temperature
                                                                        tmin
610
                      temperature_2m
                                                                        tmin
898
                         day_of_year
                                                                        week
609
                      temperature_2m
                                                                        tmax
929
                               month
                                                                        week
            soil_temperature_level_1
238
                                                                        tmin
                                                    soil_temperature_level_2
132
                    skin_temperature
144
                    skin_temperature
                                                                        tmax
             dewpoint_temperature_2m
21
                                                                        tmin
267
            soil_temperature_level_2
                                                              temperature_2m
            soil_temperature_level_1
237
                                                                        tmax
            soil_temperature_level_1
243
                                                                           vp
```

```
19
             dewpoint_temperature_2m
                                                              temperature_2m
150
                    skin_temperature
                                                                          vp
       volumetric_soil_water_layer_1
                                              volumetric_soil_water_layer_2
769
     Correlation
        0.999059
143
452
        0.998983
897
        0.996464
        0.995594
161
131
        0.993644
225
        0.991504
236
        0.989960
677
        0.979391
145
        0.978012
        0.977600
610
898
        0.973253
609
        0.972997
929
        0.971653
238
        0.971259
132
        0.971129
144
        0.969117
        0.968891
21
267
        0.964849
237
        0.953827
243
        0.951607
19
        0.951598
150
        0.951326
769
        0.951230
Highly Correlated Feature Pairs (|Correlation| > 0.95):
                            Feature1
                                                                    Feature2 \
                    skin_temperature
                                                              temperature_2m
180
                         day_of_year
958
                                                                       month
            soil_temperature_level_1
                                                    soil_temperature_level_2
265
                      temperature_2m
662
                                                                        tmin
182
                    skin_temperature
                                                                        tmin
54
             dewpoint_temperature_2m
                                                                        tmin
661
                      temperature_2m
                                                                        tmax
     surface_net_solar_radiation_sum surface_solar_radiation_downwards_sum
499
168
                    skin_temperature
                                                    soil_temperature_level_1
181
                    skin_temperature
                                                                        tmax
959
                         day_of_year
                                                                        week
52
             dewpoint_temperature_2m
                                                              temperature_2m
```

```
991
                               month
                                                                        week
            soil_temperature_level_1
                                                              temperature_2m
276
                                                 snow_depth_water_equivalent
199
                          snow_depth
             dewpoint_temperature_2m
37
                                                            skin_temperature
694
                                                                        tmin
                    skin_temperature
169
                                                    soil_temperature_level_2
            soil_temperature_level_1
278
                                                                        tmin
            soil_temperature_level_2
                                                    soil_temperature_level_3
298
308
            soil_temperature_level_2
                                                              temperature_2m
     Correlation
180
        0.997758
958
        0.996472
265
        0.994324
        0.991089
662
182
        0.989561
54
        0.986072
661
        0.984965
499
        0.981267
168
        0.979811
        0.978556
181
959
        0.973616
52
        0.972311
991
        0.972014
276
        0.971884
199
        0.971745
37
        0.969459
694
        0.965488
        0.963794
169
278
        0.962730
298
        0.955285
308
        0.954017
Highly Correlated Feature Pairs (|Correlation| > 0.95):
                            Feature1
                                                                    Feature2 \
180
                    skin_temperature
                                                              temperature_2m
                         day_of_year
958
                                                                       month
            soil temperature_level_1
                                                    soil_temperature_level_2
265
                    skin_temperature
                                                    soil_temperature_level_1
168
                                                snow_depth_water_equivalent
199
                          snow_depth
499
     surface_net_solar_radiation_sum surface_solar_radiation_downwards_sum
            soil_temperature_level_1
                                                              temperature_2m
276
662
                      temperature_2m
                                                                        tmin
```

```
182
                    skin_temperature
                                                                       tmin
278
            soil_temperature_level_1
                                                                       tmin
                     temperature_2m
661
                                                                       tmax
169
                    skin_temperature
                                                   soil_temperature_level_2
54
             dewpoint_temperature_2m
                                                                       tmin
181
                    skin_temperature
                                                                       tmax
308
            soil_temperature_level_2
                                                             temperature_2m
959
                        day_of_year
                                                                       week
310
            soil_temperature_level_2
                                                                       tmin
991
                                                                       week
298
                                                   soil_temperature_level_3
            soil_temperature_level_2
            soil_temperature_level_1
277
                                                                       tmax
731
                                                                         vp
                                tmin
     Correlation
        0.998012
180
        0.996295
958
        0.993986
265
        0.992904
168
        0.992236
199
        0.991593
499
```

276

662

182

278

661

169

54

181

308

959 310

991

298277

731

0.9877950.985816

0.985283

0.979054

0.978226

0.977261

0.972807

0.971822

0.969231

0.962977

0.9628560.961954

0.956736

0.9554130.953812

evapora

--

evapora

--


```
In [7]: numbers = ['5','6', '7', '8', '10', '11']
        for num in numbers:
            clean correlated(num)
       Cleaned dataset saved to ../Data/Required Data/5 cleaned.csv
       Cleaned dataset saved to ../Data/Required Data/6 cleaned.csv
       Cleaned dataset saved to ../Data/Required Data/7 cleaned.csv
       Cleaned dataset saved to ../Data/Required Data/8 cleaned.csv
       Cleaned dataset saved to ../Data/Required Data/10 cleaned.csv
       Cleaned dataset saved to ../Data/Required Data/11 cleaned.csv
In [8]: import pandas as pd
        from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model, plot_model
        # Step 1: Load the Cleaned Dataset
        file_path = '../Data/Required Data/5_cleaned.csv' # Cleaned dataset path
        data = pd.read csv(file path)
        data.drop(columns=['Date'], inplace=True)
        # Ensure Discharge is numeric
        data['Discharge'] = pd.to_numeric(data['Discharge'], errors='coerce')
          # Drop Date column if not needed
        # Step 3: Setup PyCaret Regression Environment
        # Only use rows with valid 'Discharge' for training
        train_data = data.dropna(subset=['Discharge'])
        print("Setting up PyCaret environment...")
        regression_setup = setup(
            data=train_data,
            target='Discharge',
            session id=42,
            normalize=True,
                                  # Normalize features
            feature selection=True, # Perform feature selection
            log_experiment=False, # Disable experiment logging
        # Step 4: Compare Models
```

```
print("Comparing models...")
best_model = compare_models()

# Step 5: Tune the Best Model
print("Tuning the best model...")
tuned_model = tune_model(best_model)

# Step 6: Finalize the Model
print("Finalizing the model...")
final_model = finalize_model(tuned_model)

# Step 7: Evaluate Model
# Residual Plot
print("Generating residual plot...")
plot_model(final_model, plot='residuals', save=True)

# Feature Importance Plot
print("Generating feature importance plot...")
plot_model(final_model, plot='feature', save=True)
```

Setting up PyCaret environment...

	Description	Value
0	Session id	42
1	Target	Discharge
2	Target type	Regression
3	Original data shape	(3715, 23)
4	Transformed data shape	(3715, 5)
5	Transformed train set shape	(2600, 5)
6	Transformed test set shape	(1115, 5)
7	Numeric features	22
8	Rows with missing values	0.1%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Normalize	True
14	Normalize method	zscore
15	Feature selection	True
16	Feature selection method	classic
17	Feature selection estimator	lightgbm
18	Number of features selected	0.200000
19	Fold Generator	KFold
20	Fold Number	10
21	CPU Jobs	-1

	Description	Value
22	Use GPU	False
23	Log Experiment	False
24	Experiment Name	reg-default-name
25	USI	f999

Comparing models...

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	54885.6300	7053244082.5100	83568.0454	0.8809	0.2701	0.2157	0.1340
xgboost	Extreme Gradient Boosting	63410.6258	8864499968.0000	93870.7758	0.8503	0.2940	0.2391	0.2210
catboost	CatBoost Regressor	66176.8098	8932701878.2136	94124.5527	0.8494	0.2968	0.2507	0.3630
rf	Random Forest Regressor	63605.8277	8962408452.7192	94353.5927	0.8486	0.2943	0.2415	0.1520
lightgbm	Light Gradient Boosting Machine	69290.8177	9922395329.2040	99314.5920	0.8323	0.3101	0.2616	0.2240
knn	K Neighbors Regressor	78361.9844	12555371417.6000	111742.7133	0.7876	0.3516	0.3034	0.1160
gbr	Gradient Boosting Regressor	83602.7086	13298971524.2669	114996.4313	0.7755	0.3541	0.3143	0.1450
dt	Decision Tree Regressor	74212.6538	15231408588.4615	122818.3954	0.7413	0.3786	0.2793	0.1140
ada	AdaBoost Regressor	118692.3961	20380221314.9227	142565.3570	0.6550	0.5262	0.5891	0.1230
ridge	Ridge Regression	106919.9919	21171799229.7640	145340.7426	0.6415	0.4876	0.4042	0.3410
lasso	Lasso Regression	106916.8075	21172428831.7118	145342.5162	0.6415	0.4882	0.4042	0.3480
lar	Least Angle Regression	106916.8092	21172430711.5443	145342.5215	0.6415	0.4882	0.4042	0.1120
llar	Lasso Least Angle Regression	106916.8064	21172428924.0833	145342.5164	0.6415	0.4882	0.4042	0.1120
br	Bayesian Ridge	106929.1019	21170933328.3444	145338.6458	0.6415	0.4863	0.4043	0.1130
lr	Linear Regression	106916.8092	21172430711.5443	145342.5215	0.6415	0.4882	0.4042	0.3820
huber	Huber Regressor	105121.5995	21675950906.2372	146966.0327	0.6331	0.4772	0.3754	0.1130
par	Passive Aggressive Regressor	105054.1528	21769267673.3691	147326.0420	0.6317	0.4412	0.3661	0.1240
en	Elastic Net	113729.1387	23071678808.6841	151706.8344	0.6097	0.4517	0.4446	0.2410
omp	Orthogonal Matching Pursuit	120342.9829	25163007978.6819	158355.3986	0.5744	0.5157	0.5190	0.1150
dummy	Dummy Regressor	195191.7094	59221011660.8000	243184.2188	-0.0023	0.7860	0.9802	0.1050

Tuning the best model...

		MAE	MSE	RMSE	R2	RMSLE	MAPE
	Fold						
	0	81155.8427	11835335956.7429	108790.3303	0.8043	0.3456	0.3102
	1	80671.2066	12541369687.1477	111988.2569	0.7993	0.3512	0.2969
	2	77978.5897	10776937865.3658	103812.0314	0.7901	0.3486	0.3152
	3	84113.6663	13800955129.9666	117477.4665	0.7574	0.3516	0.3193
	4	74423.6201	10612416203.7911	103016.5822	0.8103	0.3361	0.3030
	5	77833.1201	11417398283.6982	106852.2264	0.8060	0.3148	0.2805
	6	81268.4350	12040938858.9725	109731.2119	0.7928	0.3107	0.2737
	7	90386.1520	16142178405.2562	127051.8729	0.7398	0.3909	0.3606
	8	87391.1128	12692647530.3097	112661.6507	0.7744	0.3654	0.3465
	9	91239.5648	15397325577.1495	124085.9604	0.7750	0.3504	0.3246
	Mean	82646.1310	12725750349.8400	112546.7589	0.7849	0.3465	0.3130
	Std	5282.0789	1767430145.9630	7679.6745	0.0218	0.0219	0.0256
Fitting 10 folds for each of 10 candidates, totalling 100 fits Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the tur d model (not the original one). Finalizing the model Generating residual plot Generating feature importance plot [8]: 'Feature Importance.png'							
9]	<pre> : # Step 8: Predict Missing Values # Predict Discharge for rows with missing target values missing_data = data[data['Discharge'].isnull()] # Extract rows with missing Discharge if missing_data.empty:</pre>						
	else	print("No m:	issing values to p	·], inpl	ace = Tr	ue)

```
print("Predicting missing values...")
     # Use PyCaret's predict model to predict missing values
     predicted = predict_model(final_model, data=missing_data)
     # Check for the prediction column and assign values
     if 'prediction label' in predicted.columns:
         missing data['Discharge'] = predicted['prediction label']
     else:
         print(predicted.head()) # Debugging: Show a sample of the output
         raise KeyError("No valid prediction column ('prediction_label') found in the output of predict_model.")
     # Combine predicted rows with the original dataset
     filled_data = pd.concat([train_data, missing_data]).sort_index()
     # Save the filled dataset
     filled data.to csv('../Data/Required Data/5 filled.csv', index=False)
     print("Saved the filled dataset as '../Data/Required Data/5_filled.csv'")
Predicting missing values...
Saved the filled dataset as '../Data/Required Data/5_filled.csv'
 from pycaret.regression import setup, compare models, tune model, finalize model, predict model, plot model
 # Step 1: Load the Cleaned Dataset
 file path = '.../Data/Required Data/6 cleaned.csv' # Cleaned dataset path
 data = pd.read csv(file path)
```

```
In [10]: import pandas as pd
from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model,
# Step 1: Load the Cleaned Dataset
file_path = '../Data/Required Data/6_cleaned.csv' # Cleaned dataset path
data = pd.read_csv(file_path)

data.drop(columns=['Date'], inplace=True)
# Ensure Discharge is numeric
data['Discharge'] = pd.to_numeric(data['Discharge'], errors='coerce')
# Drop Date column if not needed

# Step 3: Setup PyCaret Regression Environment
# Only use rows with valid 'Discharge' for training
train_data = data.dropna(subset=['Discharge'])

print("Setting up PyCaret environment...")
regression_setup = setup(
    data=train_data,
    target='Discharge',
```

```
session_id=42,
     normalize=True,
                          # Normalize features
     feature selection=True, # Perform feature selection
     log_experiment=False, # Disable experiment Logging
 # Step 4: Compare Models
 print("Comparing models...")
 best_model = compare_models()
 # Step 5: Tune the Best Model
 print("Tuning the best model...")
 tuned_model = tune_model(best_model)
 # Step 6: Finalize the Model
 print("Finalizing the model...")
 final_model = finalize_model(tuned_model)
 # Step 7: Evaluate Model
 # Residual Plot
 print("Generating residual plot...")
 plot_model(final_model, plot='residuals', save=True)
 # Feature Importance Plot
 print("Generating feature importance plot...")
 plot_model(final_model, plot='feature', save=True)
Setting up PyCaret environment...
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.001325 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 5602
[LightGBM] [Info] Number of data points in the train set: 1306, number of used features: 22
[LightGBM] [Info] Start training from score 64967.764165
```

	Description	Value
0	Session id	42
1	Target	Discharge
2	Target type	Regression
3	Original data shape	(1867, 23)
4	Transformed data shape	(1867, 5)
5	Transformed train set shape	(1306, 5)
6	Transformed test set shape	(561, 5)
7	Numeric features	22
8	Rows with missing values	0.1%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Normalize	True
14	Normalize method	zscore
15	Feature selection	True
16	Feature selection method	classic
17	Feature selection estimator	lightgbm
18	Number of features selected	0.200000
19	Fold Generator	KFold
20	Fold Number	10
21	CPU Jobs	-1

	Description	Value
22	Use GPU	False
23	Log Experiment	False
24	Experiment Name	reg-default-name
25	USI	6407

Comparing models...

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	12659.5997	595555425.0883	24004.7215	0.8097	0.2668	0.2002	0.1350
catboost	CatBoost Regressor	14697.4373	674507200.2571	25606.5211	0.7839	0.3013	0.2380	0.3280
xgboost	Extreme Gradient Boosting	14434.2301	721625865.6000	26591.5438	0.7707	0.3098	0.2367	0.1510
rf	Random Forest Regressor	14593.6359	750964679.6191	27066.9409	0.7603	0.3026	0.2320	0.1450
lightgbm	Light Gradient Boosting Machine	16317.1010	822689314.9751	28406.0007	0.7364	0.3292	0.2620	0.2340
gbr	Gradient Boosting Regressor	17916.8413	919257471.3496	30103.7514	0.7070	0.3532	0.2930	0.1300
knn	K Neighbors Regressor	19055.5597	1231328499.2000	34846.2090	0.6165	0.3532	0.2861	0.1190
dt	Decision Tree Regressor	16512.9859	1247170416.9701	34469.5480	0.6069	0.3811	0.2595	0.1330
br	Bayesian Ridge	25503.9205	1781513468.9456	42054.7425	0.4374	0.4592	0.4141	0.1170
lr	Linear Regression	25481.6632	1781643221.6252	42053.3495	0.4373	0.4587	0.4132	0.1080
lasso	Lasso Regression	25481.7851	1781631332.6777	42053.2453	0.4373	0.4587	0.4132	0.1130
lar	Least Angle Regression	25481.6632	1781643221.6252	42053.3495	0.4373	0.4587	0.4132	0.1300
llar	Lasso Least Angle Regression	25481.7857	1781631336.8641	42053.2453	0.4373	0.4587	0.4132	0.1150
ridge	Ridge Regression	25486.5331	1781526742.8979	42052.6676	0.4373	0.4588	0.4134	0.1180
omp	Orthogonal Matching Pursuit	25835.9168	1784977081.3814	42114.1922	0.4370	0.4668	0.4208	0.1170
huber	Huber Regressor	23894.9337	1845275211.3966	42831.6053	0.4194	0.4362	0.3266	0.1160
par	Passive Aggressive Regressor	23839.9961	1852397455.2435	42916.9631	0.4174	0.4367	0.3215	0.1160
ada	AdaBoost Regressor	33323.3325	1871191516.1738	42932.2539	0.4158	0.5984	0.7293	0.1220
en	Elastic Net	28117.8596	1940365191.4971	43946.4939	0.3942	0.5059	0.4893	0.1170
dummy	Dummy Regressor	40398.2145	3224343731.2000	56653.2766	-0.0023	0.7008	0.7732	0.1030

		MAE	MSE	RMSE	R2	RMSLE	MAPE
	Fold						
	0	18895.6438	1024573734.2998	32008.9633	0.7626	0.3216	0.2867
	1	18473.0991	910075915.3727	30167.4645	0.7018	0.3321	0.2964
	2	15912.0626	709944372.5568	26644.7813	0.7518	0.3254	0.2764
	3	20237.3497	936849803.0444	30608.0023	0.6556	0.3606	0.3155
	4	22427.8679	1153593740.1507	33964.5954	0.6595	0.4252	0.4126
	5	18159.0944	828647043.7215	28786.2301	0.7110	0.3491	0.3107
	6	23033.2077	1158687597.9309	34039.5006	0.5829	0.4087	0.3931
	7	17968.6049	975397981.9146	31231.3622	0.7147	0.3151	0.2676
	8	19603.3030	1339529417.7604	36599.5822	0.6021	0.3585	0.2770
	9	20246.9808	1159235200.5764	34047.5432	0.6598	0.3528	0.3155
	Mean	19495.7214	1019653480.7328	31809.8025	0.6802	0.3549	0.3151
	Std	2015.0530	176726848.8511	2791.0473	0.0562	0.0347	0.0469
10]	Origin d mode Finali Genera Genera	nal model wa el (not the izing the mo ating residu	ual plot re importance plo	ne tuned mod		_	
11]	# Pr	edict Disch	ct Missing Value arge for rows wi data[data['Disch	th missing			t rows
	else	:	<pre>.empty: issing values to a.drop(columns =</pre>	,		place =	True)

```
print("Predicting missing values...")
     # Use PyCaret's predict model to predict missing values
     predicted = predict_model(final_model, data=missing_data)
     # Check for the prediction column and assign values
     if 'prediction label' in predicted.columns:
         missing data['Discharge'] = predicted['prediction label']
     else:
         print(predicted.head()) # Debugging: Show a sample of the output
         raise KeyError("No valid prediction column ('prediction_label') found in the output of predict_model.")
     # Combine predicted rows with the original dataset
     filled_data = pd.concat([train_data, missing_data]).sort_index()
     # Save the filled dataset
     filled_data.to_csv('.../Data/Required Data/6_filled.csv', index=False)
     print("Saved the filled dataset as '../Data/Required Data/6_filled.csv'")
Predicting missing values...
Saved the filled dataset as '../Data/Required Data/6_filled.csv'
 from pycaret.regression import setup, compare models, tune model, finalize model, predict model, plot model
 # Step 1: Load the Cleaned Dataset
 file path = '.../Data/Required Data/7 cleaned.csv' # Cleaned dataset path
```

```
In [12]: import pandas as pd
from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model

# Step 1: Load the Cleaned Dataset
file_path = '../Data/Required Data/7_cleaned.csv' # Cleaned dataset path
data = pd.read_csv(file_path)

data.drop(columns=['Date'], inplace=True)
# Ensure Discharge is numeric
data['Discharge'] = pd.to_numeric(data['Discharge'], errors='coerce')
# Drop Date column if not needed

# Step 3: Setup PyCaret Regression Environment
# Only use rows with valid 'Discharge' for training
train_data = data.dropna(subset=['Discharge'])

print("Setting up PyCaret environment...")
regression_setup = setup(
    data=train_data,
    target='Discharge',
```

```
session_id=42,
                        # Normalize features
   normalize=True,
   feature_selection=True, # Perform feature selection
   log_experiment=False, # Disable experiment logging
# Step 4: Compare Models
print("Comparing models...")
best_model = compare_models()
# Step 5: Tune the Best Model
print("Tuning the best model...")
tuned_model = tune_model(best_model)
# Step 6: Finalize the Model
print("Finalizing the model...")
final_model = finalize_model(tuned_model)
# Step 7: Evaluate Model
# Residual Plot
print("Generating residual plot...")
plot_model(final_model, plot='residuals', save=True)
# Feature Importance Plot
print("Generating feature importance plot...")
plot_model(final_model, plot='feature', save=True)
```

Setting up PyCaret environment...

	Description	Value
0	Session id	42
1	Target	Discharge
2	Target type	Regression
3	Original data shape	(16071, 23)
4	Transformed data shape	(16071, 5)
5	Transformed train set shape	(11249, 5)
6	Transformed test set shape	(4822, 5)
7	Numeric features	22
8	Rows with missing values	0.1%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Normalize	True
14	Normalize method	zscore
15	Feature selection	True
16	Feature selection method	classic
17	Feature selection estimator	lightgbm
18	Number of features selected	0.200000
19	Fold Generator	KFold
20	Fold Number	10
21	CPU Jobs	-1

	Description	Value
22	Use GPU	False
23	Log Experiment	False
24	Experiment Name	reg-default-name
25	USI	9a4a

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	41095.2506	4332172750.4051	65736.1580	0.8125	0.2359	0.1767	0.2080
rf	Random Forest Regressor	45730.4228	4978060200.8868	70479.5837	0.7845	0.2560	0.1980	0.3140
catboost	CatBoost Regressor	54317.0143	5975993750.0672	77287.0110	0.7412	0.2890	0.2406	0.5570
xgboost	Extreme Gradient Boosting	53476.0936	6065836100.9620	77849.2357	0.7374	0.2921	0.2354	0.1750
lightgbm	Light Gradient Boosting Machine	56472.3412	6451198101.9890	80290.0680	0.7207	0.2975	0.2494	0.2530
knn	K Neighbors Regressor	54992.4544	6753745188.3608	82134.4453	0.7074	0.2996	0.2398	0.1190
gbr	Gradient Boosting Regressor	63164.5833	7702474004.4043	87748.1930	0.6665	0.3243	0.2780	0.2380
dt	Decision Tree Regressor	54342.8561	9125617381.1973	95405.2226	0.6043	0.3446	0.2306	0.1220
lar	Least Angle Regression	73182.1888	9958689667.6073	99758.0529	0.5691	0.3724	0.3374	0.1170
ridge	Ridge Regression	73183.4273	9958688466.9593	99758.0456	0.5691	0.3724	0.3375	0.1280
llar	Lasso Least Angle Regression	73182.2780	9958689643.7035	99758.0523	0.5691	0.3724	0.3374	0.1290
br	Bayesian Ridge	73185.8409	9958688932.7525	99758.0453	0.5691	0.3725	0.3375	0.1140
lasso	Lasso Regression	73182.2765	9958689641.3316	99758.0523	0.5691	0.3724	0.3374	0.1140
lr	Linear Regression	73182.1888	9958689667.6073	99758.0529	0.5691	0.3724	0.3374	0.1150
omp	Orthogonal Matching Pursuit	74055.8888	10179411100.1151	100855.9278	0.5597	0.3801	0.3444	0.1320
huber	Huber Regressor	70470.6856	10184936990.3806	100887.3683	0.5593	0.3584	0.2937	0.1210
par	Passive Aggressive Regressor	70079.0350	10394277938.0883	101920.6066	0.5502	0.3581	0.2796	0.1390
en	Elastic Net	81484.1204	11473817825.7480	107073.6774	0.5039	0.4274	0.4143	0.1240
ada	AdaBoost Regressor	99272.9959	13574026775.4658	116364.9308	0.4133	0.5079	0.5781	0.1580
dummy	Dummy Regressor	120955.9593	23137470644.9114	152068.5269	-0.0004	0.6108	0.6569	0.1130

		MAE	MSE	RMSE	R2	RMSLE	MAPE		
	Fold							_	
	0	61424.4693	6900195573.9468	83067.4158	0.7069	0.3107	0.2779		
	1	59759.3640	6890293525.7369	83007.7920	0.6669	0.3204	0.2763		
	2	62841.4627	7385914704.3927	85941.3446	0.6706	0.3296	0.2922		
	3	64054.4813	7890857182.7767	88830.4969	0.6608	0.3307	0.2914		
	4	61374.8924	6981181990.4807	83553.4679	0.6981	0.3183	0.2819		
	5	63226.2262	7422785328.9456	86155.5879	0.6991	0.3273	0.2938		
	6	62394.1126	7443496033.3356	86275.6978	0.6683	0.3217	0.2796		
	7	61762.4251	7522717513.5144	86733.6008	0.6738	0.3151	0.2767		
	8	61975.6577	7331610491.6051	85624.8240	0.6879	0.3257	0.2858		
	9	62424.4332	7474673800.2628	86456.1958	0.6959	0.3268	0.2856		
	Mean	62123.7525	7324372614.4997	85564.6424	0.6828	0.3226	0.2841		
	Std	1114.1986	299446455.9690	1750.5978	0.0157	0.0062	0.0063		
Out[12]	Fitting 10 folds for each of 10 candidates, totalling 100 fits Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the tuned model (not the original one). Finalizing the model Generating residual plot Generating feature importance plot 12]: 'Feature Importance.png'								
in [13]]: # Step 8: Predict Missing Values # Predict Discharge for rows with missing target values missing_data = data[data['Discharge'].isnull()] # Extract rows with missing Discharge								
	else	:	<pre>.empty: issing values to a.drop(columns =</pre>		e'], in	place =	True)		

```
print("Predicting missing values...")

# Use PyCaret's predict_model to predict missing values
predicted = predict_model(final_model, data=missing_data)

# Check for the prediction column and assign values
if 'prediction_label' in predicted.columns:
    missing_data['Discharge'] = predicted['prediction_label']
else:
    print(predicted.head()) # Debugging: Show a sample of the output
    raise KeyError("No valid prediction column ('prediction_label') found in the output of predict_model.")

# Combine predicted rows with the original dataset
filled_data = pd.concat([train_data, missing_data]).sort_index()

# Save the filled dataset
filled_data.to_csv('../Data/Required Data/7_filled.csv', index=False)
print("Saved the filled dataset as '../Data/Required Data/7_filled.csv'")
```

No missing values to predict.

```
In [14]: import pandas as pd
         from pycaret.regression import setup, compare models, tune model, finalize model, predict model, plot model
         # Step 1: Load the Cleaned Dataset
         file path = '../Data/Required Data/8 cleaned.csv' # Cleaned dataset path
         data = pd.read csv(file path)
         data.drop(columns=['Date'], inplace=True)
         # Ensure Discharge is numeric
         data['Discharge'] = pd.to numeric(data['Discharge'], errors='coerce')
           # Drop Date column if not needed
         # Step 3: Setup PyCaret Regression Environment
         # Only use rows with valid 'Discharge' for training
         train data = data.dropna(subset=['Discharge'])
         print("Setting up PyCaret environment...")
         regression setup = setup(
             data=train data,
             target='Discharge',
             session_id=42,
```

```
normalize=True,
                        # Normalize features
     feature selection=True, # Perform feature selection
     log_experiment=False, # Disable experiment Logging
 # Step 4: Compare Models
 print("Comparing models...")
 best_model = compare_models()
 # Step 5: Tune the Best Model
 print("Tuning the best model...")
 tuned_model = tune_model(best_model)
 # Step 6: Finalize the Model
 print("Finalizing the model...")
 final_model = finalize_model(tuned_model)
 # Step 7: Evaluate Model
 # Residual Plot
 print("Generating residual plot...")
 plot_model(final_model, plot='residuals', save=True)
 # Feature Importance Plot
 print("Generating feature importance plot...")
 plot_model(final_model, plot='feature', save=True)
Setting up PyCaret environment...
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000626 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 5601
[LightGBM] [Info] Number of data points in the train set: 5035, number of used features: 22
[LightGBM] [Info] Start training from score 556473.088381
```

	Description	Value
0	Session id	42
1	Target	Discharge
2	Target type	Regression
3	Original data shape	(7194, 23)
4	Transformed data shape	(7194, 5)
5	Transformed train set shape	(5035, 5)
6	Transformed test set shape	(2159, 5)
7	Numeric features	22
8	Rows with missing values	0.1%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Normalize	True
14	Normalize method	zscore
15	Feature selection	True
16	Feature selection method	classic
17	Feature selection estimator	lightgbm
18	Number of features selected	0.200000
19	Fold Generator	KFold
20	Fold Number	10
21	CPU Jobs	-1

	Description	Value
22	Use GPU	False
23	Log Experiment	False
24	Experiment Name	reg-default-name
25	USI	cd77

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	70365.6709	12586366028.4313	112123.0722	0.8480	0.2073	0.1460	0.1530
rf	Random Forest Regressor	82960.0298	15795902717.0337	125619.8590	0.8090	0.2311	0.1716	0.1890
catboost	CatBoost Regressor	100029.2435	18981885065.3489	137740.6267	0.7709	0.2611	0.2130	0.4630
xgboost	Extreme Gradient Boosting	96536.9977	19485711872.0000	139543.7859	0.7649	0.2584	0.2006	0.1380
lightgbm	Light Gradient Boosting Machine	105835.8586	20864306991.1988	144408.3321	0.7479	0.2723	0.2250	0.2470
knn	K Neighbors Regressor	105935.2906	22702836531.2000	150575.2516	0.7260	0.2897	0.2324	0.1150
gbr	Gradient Boosting Regressor	125958.2541	28265359212.8189	168076.9680	0.6590	0.3107	0.2663	0.1550
dt	Decision Tree Regressor	94418.9877	29993201379.8163	172679.8945	0.6369	0.3115	0.1900	0.1050
ada	AdaBoost Regressor	153226.8233	36226990520.9609	190303.3658	0.5628	0.3555	0.3398	0.1190
ridge	Ridge Regression	161184.0684	45355874548.4038	212834.0435	0.4536	0.3906	0.3546	0.1160
lasso	Lasso Regression	161182.2050	45355955883.4688	212834.2010	0.4536	0.3906	0.3546	0.1160
lar	Least Angle Regression	161182.1114	45355958737.6257	212834.2062	0.4536	0.3906	0.3546	0.0940
llar	Lasso Least Angle Regression	161182.2073	45355955885.8773	212834.2010	0.4536	0.3906	0.3546	0.1090
br	Bayesian Ridge	161195.6719	45355529668.4440	212833.4402	0.4536	0.3907	0.3547	0.1110
lr	Linear Regression	161182.1114	45355958737.6257	212834.2062	0.4536	0.3906	0.3546	0.1050
huber	Huber Regressor	157112.8584	46933407950.8842	216378.3038	0.4349	0.3745	0.3207	0.1250
par	Passive Aggressive Regressor	156864.0084	47607449947.4426	217927.7492	0.4267	0.3726	0.3116	0.1170
en	Elastic Net	169302.1052	47639035304.1352	218177.7296	0.4260	0.4121	0.3867	0.1110
omp	Orthogonal Matching Pursuit	179319.2038	53635023284.5941	231505.6075	0.3537	0.4227	0.3953	0.1080
dummy	Dummy Regressor	237152.6453	83332943052.8000	288533.5000	-0.0023	0.5623	0.5906	0.1080

		MAE	MSE	RMSE	R2	RMSLE	MAPE		
	Fold								
	0	122680.5552	25786330972.5506	160581.2286	0.7267	0.2959	0.2607		
	1	123596.5201	26497630726.0432	162780.9286	0.6770	0.3075	0.2718		
	2	115372.6428	24220347831.2023	155628.8785	0.6896	0.2868	0.2467		
	3	123735.3725	26266509340.0279	162069.4584	0.6995	0.2928	0.2529		
	4	122726.6129	26821262401.9262	163771.9830	0.6638	0.2925	0.2472		
	5	123377.6950	25597571034.6899	159992.4093	0.6619	0.3136	0.2742		
	6	118963.4416	23305418400.4535	152661.1228	0.7093	0.2925	0.2578		
	7	124176.4313	26176807406.3422	161792.4825	0.6965	0.3071	0.2711		
	8	129855.7846	27927739150.3466	167115.9452	0.6541	0.3230	0.2847		
	9	123534.2538	26306525895.2368	162192.8664	0.6973	0.3019	0.2695		
	Mean	122801.9310	25890614315.8819	160858.7303	0.6876	0.3014	0.2637		
	Std	3520.8709	1238967949.5791	3883.7088	0.0219	0.0108	0.0119		
14]	Origin d mode Finali Genera Genera	nal model was el (not the c izing the mod ating residua	al plot e importance plot.	tuned model,	_				
15]	# Pr	edict Discha	t Missing Values rge for rows with ata[data['Dischar		_		ows wit		
	<pre>missing_data = data[data['Discharge'].isnull()] # Extract rows with missing Discharge if missing_data.empty: print("No missing values to predict.") else: missing_data.drop(columns = ['Discharge'], inplace = True)</pre>								

```
print("Predicting missing values...")
     # Use PyCaret's predict model to predict missing values
     predicted = predict_model(final_model, data=missing_data)
     # Check for the prediction column and assign values
     if 'prediction label' in predicted.columns:
         missing data['Discharge'] = predicted['prediction label']
     else:
         print(predicted.head()) # Debugging: Show a sample of the output
         raise KeyError("No valid prediction column ('prediction_label') found in the output of predict_model.")
     # Combine predicted rows with the original dataset
     filled_data = pd.concat([train_data, missing_data]).sort_index()
     # Save the filled dataset
     filled data.to csv('../Data/Required Data/8 filled.csv', index=False)
     print("Saved the filled dataset as '../Data/Required Data/8_filled.csv'")
Predicting missing values...
Saved the filled dataset as '../Data/Required Data/8_filled.csv'
 from pycaret.regression import setup, compare models, tune model, finalize model, predict model, plot model
 # Step 1: Load the Cleaned Dataset
 file path = '../Data/Required Data/10 cleaned.csv' # Cleaned dataset path
 data = pd.read csv(file path)
```

```
In [16]: import pandas as pd
from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model,
# Step 1: Load the Cleaned Dataset
file_path = '../Data/Required Data/10_cleaned.csv' # Cleaned dataset path
data = pd.read_csv(file_path)

data.drop(columns=['Date'], inplace=True)
# Ensure Discharge is numeric
data['Discharge'] = pd.to_numeric(data['Discharge'], errors='coerce')
# Drop Date column if not needed

# Step 3: Setup PyCaret Regression Environment
# Only use rows with valid 'Discharge' for training
train_data = data.dropna(subset=['Discharge'])

print("Setting up PyCaret environment...")
regression_setup = setup(
    data=train_data,
    target='Discharge',
```

```
session_id=42,
     normalize=True,
                          # Normalize features
     feature selection=True, # Perform feature selection
     log_experiment=False, # Disable experiment Logging
 # Step 4: Compare Models
 print("Comparing models...")
 best_model = compare_models()
 # Step 5: Tune the Best Model
 print("Tuning the best model...")
 tuned_model = tune_model(best_model)
 # Step 6: Finalize the Model
 print("Finalizing the model...")
 final_model = finalize_model(tuned_model)
 # Step 7: Evaluate Model
 # Residual Plot
 print("Generating residual plot...")
 plot_model(final_model, plot='residuals', save=True)
 # Feature Importance Plot
 print("Generating feature importance plot...")
 plot_model(final_model, plot='feature', save=True)
Setting up PyCaret environment...
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000852 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 5600
[LightGBM] [Info] Number of data points in the train set: 6072, number of used features: 22
[LightGBM] [Info] Start training from score 94096.245059
```

	Description	Value
0	Session id	42
1	Target	Discharge
2	Target type	Regression
3	Original data shape	(8675, 23)
4	Transformed data shape	(8675, 5)
5	Transformed train set shape	(6072, 5)
6	Transformed test set shape	(2603, 5)
7	Numeric features	22
8	Rows with missing values	0.1%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Normalize	True
14	Normalize method	zscore
15	Feature selection	True
16	Feature selection method	classic
17	Feature selection estimator	lightgbm
18	Number of features selected	0.200000
19	Fold Generator	KFold
20	Fold Number	10
21	CPU Jobs	-1

	Description	Value
22	Use GPU	False
23	Log Experiment	False
24	Experiment Name	reg-default-name
25	USI	b39c

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	18014.0343	1043026258.8662	32219.5301	0.7559	0.2819	0.2076	0.1660
rf	Random Forest Regressor	20342.6810	1209321058.5772	34683.8514	0.7179	0.3046	0.2344	0.2160
catboost	CatBoost Regressor	22798.9704	1288527268.5939	35837.7260	0.6992	0.3256	0.2694	0.4830
xgboost	Extreme Gradient Boosting	22263.3520	1296628089.6000	35952.7965	0.6976	0.3255	0.2605	0.1330
lightgbm	Light Gradient Boosting Machine	24142.9326	1456396085.7014	38103.6996	0.6604	0.3397	0.2827	0.2570
knn	K Neighbors Regressor	24027.8230	1612262080.0000	40089.7727	0.6236	0.3466	0.2768	0.1180
gbr	Gradient Boosting Regressor	27437.5182	1742942040.2837	41673.1570	0.5939	0.3758	0.3252	0.1970
dt	Decision Tree Regressor	24154.1820	2232314332.2504	47091.9734	0.4804	0.4009	0.2656	0.1180
lar	Least Angle Regression	33791.3233	2304532409.1416	47918.4558	0.4628	0.4547	0.4341	0.1060
ridge	Ridge Regression	33792.5520	2304531148.1052	47918.4584	0.4628	0.4547	0.4341	0.1190
llar	Lasso Least Angle Regression	33791.4679	2304532511.4635	47918.4606	0.4628	0.4547	0.4341	0.1230
br	Bayesian Ridge	33796.9138	2304534953.8522	47918.5516	0.4628	0.4548	0.4342	0.1100
lasso	Lasso Regression	33791.4674	2304532509.2228	47918.4606	0.4628	0.4547	0.4341	0.1050
lr	Linear Regression	33791.3233	2304532409.1416	47918.4558	0.4628	0.4547	0.4341	0.1010
huber	Huber Regressor	31762.8321	2391971376.1777	48812.9338	0.4425	0.4250	0.3528	0.1260
omp	Orthogonal Matching Pursuit	34953.6466	2421595537.0078	49135.2060	0.4355	0.4636	0.4451	0.1190
par	Passive Aggressive Regressor	31552.0808	2470437356.8410	49609.7602	0.4241	0.4238	0.3307	0.1240
en	Elastic Net	37148.0551	2526478759.8053	50190.6891	0.4121	0.4978	0.5028	0.1100
ada	AdaBoost Regressor	49125.8956	3508054241.4083	59077.2330	0.1775	0.6159	0.7655	0.1580
dummy	Dummy Regressor	50155.2215	4315202329.6000	65600.8117	-0.0029	0.6413	0.6968	0.0910

		MAE	MSE	RMSE	R2	RMSLE	MAPE			
	Fold									
	0	27151.2572	1724852006.6060	41531.3376	0.5829	0.3635	0.3173			
	1	29141.7283	2043609230.4188	45206.2964	0.5127	0.4095	0.3709			
	2	27695.2781	1657665207.8639	40714.4349	0.6167	0.3715	0.3334			
	3	28314.2956	1739906284.6580	41712.1839	0.6159	0.3628	0.3193			
	4	26309.4512	1535865326.5894	39190.1177	0.6209	0.3766	0.3387			
	5	28127.1664	1746477512.5288	41790.8783	0.6593	0.3621	0.3242			
	6	25476.2100	1511070217.7017	38872.4866	0.6243	0.3741	0.3387			
	7	24532.7064	1280604324.1712	35785.5323	0.6453	0.3478	0.3073			
	8	28554.8351	1918985889.9832	43806.2312	0.6189	0.3787	0.3368			
	9	27886.5332	1591801013.8256	39897.3810	0.6013	0.3862	0.3565			
	Mean	27318.9461	1675083701.4347	40850.6880	0.6098	0.3733	0.3343			
	Std	1384.3296	204012460.0730	2510.9742	0.0380	0.0158	0.0180			
Fitting 10 folds for each of 10 candidates, totalling 100 fits Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the d model (not the original one). Finalizing the model Generating residual plot Generating feature importance plot [16]: 'Feature Importance.png'										
[17]	<pre># Step 8: Predict Missing Values # Predict Discharge for rows with missing target values missing_data = data[data['Discharge'].isnull()] # Extract rows with missing Discharge</pre>									
	else	:	<pre>empty: issing values to a.drop(columns =</pre>		e'], inp	olace =	True)			

```
print("Predicting missing values...")
     # Use PyCaret's predict model to predict missing values
     predicted = predict_model(final_model, data=missing_data)
     # Check for the prediction column and assign values
     if 'prediction label' in predicted.columns:
         missing data['Discharge'] = predicted['prediction label']
     else:
         print(predicted.head()) # Debugging: Show a sample of the output
         raise KeyError("No valid prediction column ('prediction_label') found in the output of predict_model.")
     # Combine predicted rows with the original dataset
     filled_data = pd.concat([train_data, missing_data]).sort_index()
     # Save the filled dataset
     filled data.to csv('.../Data/Required Data/10 filled.csv', index=False)
     print("Saved the filled dataset as '../Data/Required Data/10_filled.csv'")
Predicting missing values...
Saved the filled dataset as '../Data/Required Data/10_filled.csv'
 from pycaret.regression import setup, compare models, tune model, finalize model, predict model, plot model
```

```
In [1]: import pandas as pd
from pycaret.regression import setup, compare_models, tune_model, finalize_model, predict_model, plot_model

# Step 1: Load the Cleaned Dataset
file_path = '../Data/Required Data/11_cleaned.csv' # Cleaned dataset path
data = pd.read_csv(file_path)

data.drop(columns=['Date'], inplace=True)
# Ensure Discharge is numeric
data['Discharge'] = pd.to_numeric(data['Discharge'], errors='coerce')
# Drop Date column if not needed

# Step 3: Setup PyCaret Regression Environment
# Only use rows with valid 'Discharge' for training
train_data = data.dropna(subset=['Discharge'])

print("Setting up PyCaret environment...")
regression_setup = setup(
    data=train_data,
        target='Discharge',
```

```
session id=42,
     normalize=True,
                           # Normalize features
     feature selection=True, # Perform feature selection
     log experiment=False, # Disable experiment Logging
 # Step 4: Compare Models
 print("Comparing models...")
 best_model = compare_models()
 # Step 5: Tune the Best Model
 print("Tuning the best model...")
 tuned_model = tune_model(best_model)
 # Step 6: Finalize the Model
 print("Finalizing the model...")
 final_model = finalize_model(tuned_model)
 # Step 7: Evaluate Model
 # Residual Plot
 print("Generating residual plot...")
 plot_model(final_model, plot='residuals', save=True)
 # Feature Importance Plot
 print("Generating feature importance plot...")
 plot_model(final_model, plot='feature', save=True)
Setting up PyCaret environment...
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000460 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 5604
[LightGBM] [Info] Number of data points in the train set: 957, number of used features: 22
[LightGBM] [Info] Start training from score 22166.060606
```

	Description	Value
0	Session id	42
1	Target	Discharge
2	Target type	Regression
3	Original data shape	(1368, 23)
4	Transformed data shape	(1368, 5)
5	Transformed train set shape	(957, 5)
6	Transformed test set shape	(411, 5)
7	Numeric features	22
8	Rows with missing values	0.1%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Normalize	True
14	Normalize method	zscore
15	Feature selection	True
16	Feature selection method	classic
17	Feature selection estimator	lightgbm
18	Number of features selected	0.200000
19	Fold Generator	KFold
20	Fold Number	10
21	CPU Jobs	-1

	Description	Value
22	Use GPU	False
23	Log Experiment	False
24	Experiment Name	reg-default-name
25	USI	d479

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	5618.8222	107207870.1966	10095.5470	0.7798	0.3866	0.3462	0.1190
catboost	CatBoost Regressor	6123.6250	109203658.2289	10253.8379	0.7719	0.4142	0.3710	0.3300
rf	Random Forest Regressor	6126.8337	124367308.2096	10929.2190	0.7436	0.4064	0.3638	0.1290
xgboost	Extreme Gradient Boosting	6042.7813	122734648.0000	10911.9280	0.7397	0.3910	0.3396	0.1800
lightgbm	Light Gradient Boosting Machine	6599.4307	133578413.4739	11347.7636	0.7227	0.4265	0.3837	0.2110
gbr	Gradient Boosting Regressor	8063.5306	163542860.9951	12656.2050	0.6581	0.5020	0.5030	0.1150
knn	K Neighbors Regressor	7933.2484	188439511.2000	13557.7296	0.6080	0.4921	0.4841	0.1110
dt	Decision Tree Regressor	6662.3566	207610702.4803	14069.2332	0.5793	0.4563	0.3477	0.0980
ada	AdaBoost Regressor	11983.0291	241848836.3326	15465.4817	0.4911	0.7391	1.0048	0.1210
br	Bayesian Ridge	13947.5948	364797759.3496	18995.7558	0.2409	0.8816	1.0085	0.1030
llar	Lasso Least Angle Regression	13968.4742	364691057.0135	18994.5470	0.2407	0.8551	1.0110	0.1060
lr	Linear Regression	13968.6568	364689367.6628	18994.5150	0.2407	0.8552	1.0110	0.3830
lasso	Lasso Regression	13968.4643	364691191.3971	18994.5527	0.2407	0.8551	1.0110	0.3400
lar	Least Angle Regression	13968.6568	364689367.6628	18994.5150	0.2407	0.8552	1.0110	0.1050
ridge	Ridge Regression	13966.2293	364696239.9465	18994.5487	0.2407	0.8542	1.0107	0.3380
en	Elastic Net	14135.8135	383640812.5192	19453.0781	0.2090	0.8211	1.0677	0.2320
omp	Orthogonal Matching Pursuit	14384.8636	401185225.5814	19920.4516	0.1673	0.8927	1.0448	0.1030
huber	Huber Regressor	12662.3610	422452184.8332	20342.2752	0.1416	0.7287	0.6665	0.0980
par	Passive Aggressive Regressor	12598.1583	451733547.2481	21022.1369	0.0841	0.7283	0.5801	0.1010
dummy	Dummy Regressor	16416.6977	493256568.0000	22071.7953	-0.0176	0.9954	1.4519	0.0980

MAE	MSE	RMSE	R2	RMSLE	MAPE

Fold						
0	11229.2062	266633084.8938	16328.9034	0.5440	0.6222	0.7520
1	9414.7895	188306467.1222	13722.4804	0.6127	0.5566	0.6151
2	5624.3746	73176311.0647	8554.3153	0.6914	0.4114	0.4062
3	8539.4971	159373921.4370	12624.3385	0.6898	0.5105	0.5451
4	9863.2616	216630543.6717	14718.3744	0.6257	0.5930	0.6750
5	8170.4965	146848733.4444	12118.1159	0.6384	0.5294	0.5941
6	9676.6679	219595314.5689	14818.7488	0.6223	0.5414	0.6014
7	9775.4712	248063874.7775	15750.0436	0.5370	0.5015	0.5002
8	8506.2738	202746132.5812	14238.8951	0.6356	0.4639	0.4412
9	9076.4225	184210705.6213	13572.4245	0.5290	0.5755	0.6583
Mean	8987.6461	190558508.9183	13644.6640	0.6126	0.5305	0.5789
Std	1396.0276	52414313.9818	2093.2401	0.0557	0.0592	0.1018

Fitting 10 folds for each of 10 candidates, totalling 100 fits
Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the tune d model (not the original one).
Finalizing the model...

Out[1]: '\nprint("Generating residual plot...")\nplot_model(final_model, plot=\'residuals\', save=True)\n\n# Feature Importa nce Plot\nprint("Generating feature importance plot...")\nplot_model(final_model, plot=\'feature\', save=True)\n'

```
In [2]: # Step 8: Predict Missing Values
    # Predict Discharge for rows with missing target values
    missing_data = data[data['Discharge'].isnull()] # Extract rows with missing Discharge

if missing_data.empty:
    print("No missing values to predict.")
else:
    missing_data.drop(columns = ['Discharge'], inplace = True)
    print("Predicting missing values...")
```

```
# Use PyCaret's predict_model to predict missing values
            predicted = predict_model(final_model, data=missing_data)
            # Check for the prediction column and assign values
            if 'prediction_label' in predicted.columns:
                missing_data['Discharge'] = predicted['prediction_label']
            else:
                print(predicted.head()) # Debugging: Show a sample of the output
                raise KeyError("No valid prediction column ('prediction_label') found in the output of predict_model.")
            # Combine predicted rows with the original dataset
            filled_data = pd.concat([train_data, missing_data]).sort_index()
            # Save the filled dataset
            filled_data.to_csv('.../Data/Required Data/11_filled.csv', index=False)
            print("Saved the filled dataset as '../Data/Required Data/11_filled.csv'")
       Predicting missing values...
       Saved the filled dataset as '../Data/Required Data/11_filled.csv'
In [5]: numbers = ['8', '10', '11']
        for num in numbers:
            making_filled_plots(num)
```


Time series plot saved to: ../Figures/80bserved_vs_Filled_Discharge_Cleaned.png

Observed vs. Filled Discharge Time Series

Time series plot saved to: ../Figures/100bserved_vs_Filled_Discharge_Cleaned.png

Observed vs. Filled Discharge Time Series

Time series plot saved to: ../Figures/110bserved_vs_Filled_Discharge_Cleaned.png

In []: