CONNECTOR

Publication number: JP8124635

Publication date: 1996-05-17

Inventor: NAKAMURA TORU

Applicant: MATSUSHITA ELECTRIC WORKS LTD

Classification:

- International: H01R24/00; H01R12/04; H05K1/18; H05K3/36;

H05K3/34; H01R24/00; H01R12/00; H05K1/18;

H05K3/36; H05K3/34; (IPC1-7): H01R23/02; H01R9/09;

H05K1/18; H05K3/36

- european:

Application number: JP19940257221 19941024 Priority number(s): JP19940257221 19941024

Report a data error her

Abstract of JP8124635

PURPOSE: To provide a connector in which no crack is formed even in the case the connector is used in the environments where cooling and heating cycles are repeated by dividing a connector substrate into small blocks and joining the small blocks while keeping stress relaxation gap among them. CONSTITUTION: Regarding a connector, terminals 2 are installed upright in a connector substrate 1, the connector substrate 1 is mut on a printed substrate 3 and at the same time one ends of the terminals 2 are made to penetrate the printed substrate 3 and the projected parts 2a of the terminals 2 are soldered 2c with the printed substrate 3. The connector substrate 1 is formed by dividing the substrate into small blocks 4 and joining the small blocks one another while keeping a stress relaxation gap (e.g., cut part 5) between neighboring blocks.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-124635

(43)公開日 平成8年(1996)5月17日

技術表示箇所	FI	庁内整理番号	識別記号		(51) Int.Cl. ⁶
		6901-5B	D	23/02	H 0 1 R
		6901 - 5B	Z	9/09	
		8718-4E	U	1/18	H05K
			Z	3/36	
未請求 請求項の数5 OL (全 6 頁	審査請求				
000005832	(71)出願人		特願平6-257221	 号	(21) 出願番号
松下電工株式会社	į.				
大阪府門真市大字門真1048番地]24日	平成6年(1994)10月		(22)出願日
中村 透	(72)発明者				(==) ======
大阪府門真市大字門真1048番地松下電工校					
式会社内					
弁理士 佐藤 成示 (外1名)	(74)代理人				

(54) 【発明の名称】 コネクタ

(57)【要約】

【目的】 冷熱サイクルの発生する環境下で使用される 場合であっても、クラックの発生しないコネクタの提 供。

【構成】 コネクタ基板 1 に端子 2 が突設されてなり、コネクタ基板 2 をプリント基板 3 に載置するとともに、端子 2 の一端をプリント基板 3 に貫通させて、端子 2 の突出部がプリント基板 3 に半田付されるコネクタにおいて、コネクタ基板 1 を小プロック 4 に分割するとともに、この小プロック 4 を応力緩和隙間として切り欠き 5 を介して連結している。

1937 - 10 -

1

【特許請求の範囲】

【請求項1】 コネクタ基板に端子が突設されてなり、コネクタ基板をプリント基板に載置するとともに、端子の一端をプリント基板に貫通させて、端子の突出部がプリント基板に半田付けされるコネクタにおいて、コネクタ基板を小プロックに分割するとともに、この小プロックを応力緩和隙間を介して連結してなることを特徴とするコネクタ。

【請求項2】 応力緩和隙間として、切り欠きを有してなることを特徴とする請求項1記載のコネクタ。

【請求項3】 応力緩和隙間として、溝を有してなることを特徴とする請求項1記載のコネクタ。

【請求項4】 応力緩和隙間として、緩い嵌合部を備えてなることを特徴とする請求項1記載のコネクタ。

【請求項5】 カセットにそれぞれの小ブロックを、小ブロック間に隙間を開けて配するとともに、カセットと小ブロックとに遊嵌部を備えて、応力緩和隙間としてなることを特徴とする請求項1記載のコネクタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はコネクタに関し、詳しく は端子をプリント基板に貫通させて、半田付けされるコ ネクタに関する。

[0002]

【従来の技術】従来のコネクタとしては、図11の斜視図に示すようなものがある。このコネクタは、樹脂製のコネクタ基板1に端子2が突設されてなるものである。また、このコネクタは、プリント基板3に搭載されて用いられるものであって、プリント基板3に載置されるとともに、端子2の一端をプリント基板3に貫通させ、この端子2の貫通して突出した部分をプリント基板3に半田付けし、プリント基板3の回路と接続している。

【0003】そして、上方に突出している端子2から、他の電子部品またはこのプリント板3に搭載される電子部品などに配線接続される。

[0004]

【発明が解決しようとする課題】しかしながら、上記の従来のコネクタにあっては、コネクタ基板1の熱膨張率は、通常、プリント基板3よりも約5倍程度大きいものである。また、このようなコネクタの使用される環境下 40においては、電源がオンになっている状態では電子部品が発熱して、電源がオフの時との間に冷熱サイクルが繰り返される場合が多い。そして、コネクタの端子2がプリント基板3と半田接合されているため、半田接合部に大きな熱応力の発生が繰り返され、熱的な疲労によるクラックが発生することがある。

【0005】本発明は、以上のような問題点を解決するためになされたものであり、その目的は、冷熱サイクルの発生する環境下で使用される場合であっても、クラックの発生しないコネクタの提供にある。

[0006]

【課題を解決するための手段】上記課題を解決する請求項1記載の発明は、コネクタ基板1に端子2が突設されてなり、コネクタ基板2をプリント基板3に載置するとともに、端子2の一端をプリント基板3に貫通させて、端子2の突出部がプリント基板3に半田付されるコネクタにおいて、コネクタ基板1を小プロック4に分割するとともに、この小プロック4を応力緩和隙間を介して連結してなることを特徴として構成している。

2

10 【0007】請求項2記載の発明は、請求項1記載の発明において、応力緩和隙間として、切り欠き5を有してなることを特徴として構成している。

【0008】請求項3記載の発明は、請求項1記載の発明において、応力緩和隙間として、溝6を有してなることを特徴として構成している。

【0009】請求項4記載の発明は、請求項1記載の発明において、応力緩和隙間として、緩い嵌合部7を備えてなることを特徴として構成している。

【0010】請求項5記載の発明は、請求項1記載の発 の 明において、カセット8にそれぞれの小プロック4を、 小プロック4間に隙間9を開けて配するとともに、カセット8と小プロック4とに遊嵌部9を備えて、応力緩和 隙間としてなるなることを特徴として構成している。

[0011]

【作用】請求項1記載の発明では、冷熱サイクル環境下において発生する応力が、応力緩和隙間によって緩和されるので、前記の応力は、この応力緩和隙間を介して連結される個々の小プロック4に、影響することが少なくなっている。

30 【0012】請求項2記載の発明では、コネクタ基板1 の切り欠き5の延長線に当たる部分が小さく、この部分 で変形しやすくなっているため、応力が緩和されてい る。

【0013】請求項3記載の発明では、コネクタ基板1 の溝6が形成された部分が薄く、この部分で変形しやす くなっているため、応力が緩和されている。

【0014】請求項4記載の発明では、小プロック4が たがいに遊びを有して連結されているので、この遊び 分、小プロック4が移動できて、応力が緩和される。

【0015】請求項5記載の発明では、それぞれの小プロック4間に隙間があり、移動可能になっているとともに、小プロック4がカセット8に遊びを有して取り付けられているので、この遊び分、小プロック4が移動できて、応力が緩和される。

[0016]

【実施例】本発明の一実施例を以下に添付図を参照して 説明する。

【0017】実施例1を図1および図2に基づいて説明 する。図1はこの実施例のコネクタを示す斜視図であ り、図2はこのコネクタをプリント基板に取り付けた状 20

3

態を示す側面図である。

【0018】図1において、1は樹脂製のコネクタ基板 である。このコネクタ基板1には、四角柱形状をなす端 子2が表裏に突出した状態で多数並設される。また、こ のコネクタ基板1には、切り欠き5が形成されている。 この切り欠き5は、コネクタ基板1のそれぞれの端子2 を分離する方向に形成され、それぞれの端子2を一個づ つ有する小プロック4に分割している。また、この切り 欠き5は応力緩和隙間となるものであって、各小プロッ ク4は、この応力緩和隙間を介して連結されてコネクタ 10 を構成している。

【0019】以上のようなコネクタは、図2に示すよう に、プリント基板3上に載置されるとともに、端子2の 一端をプリント基板3に形成される端子孔に貫通させ、 端子2の突出部2aがプリント基板3に半田付けされて 使用される。この半田付けされた部分2cで、プリント 基板3の回路パターンと電気的な導通が行われるのであ る。また、端子2の表側への突出部2bから、その他の 電子部品またはこのプリント基板3の他の部分などに配 線接続される。

【0020】このように用いられる上記コネクタは、通 常、コネクタ基板1の熱膨張率がプリント基板3より も、約5倍程度大きいものになっている。そして、この コネクタの使用環境において、電源がオンになっている 状態では電子部品が発熱し、電源がオフの時との間に冷 熱サイクルが繰り返され、各半田接合部に応力の発生が 繰り返されている。

【0021】しかし、この実施例のコネクタは、各小プ ロック4を応力緩和隙間を介して連結しているので、上 記の応力は、この応力緩和隙間に吸収されて個々の小プ ロック4に影響しにくく、個々の半田接合部に熱的な疲 労の発生が少なくなっている。したがって、冷熱サイク ル環境下においても、半田接合部にクラックが発生しに くく、耐久性のあるコネクタになっているのである。つ まり、熱膨張率の大きい汎用の樹脂材料を用い、射出成 形などによってコネクタ基板1を形成しても、十分に耐 久性のあるコネクタになっているのである。

【0022】特に、この実施例のものでは、応力緩和隙 間として切り欠き5が形成され、コネクタ基板1の切り 欠き5の延長線に相当する部分が小さく、コネクタ基板 40 1はこの部分で変形しやすくなっている。このため、上 記の冷熱サイクルによる応力が緩和されているのであ

【0023】実施例2を、この実施例の斜視図である図 3に基づいて説明する。この図において、6は実施例1 において説明した応力緩和隙間として形成される溝であ る。この溝6は、コネクタ基板1を、それぞれが端子2 を一個づつ有する各小プロック 4 に分割するように、コ ネクタ基板 1 の表裏の対向する位置に形成されている。 したがって、コネクタ基板1の溝6が形成された部分が 50 の連結方向と平行な方向に垂直片8a、8bをそれぞれ

薄く、この部分で変形しやすくなっている。このため実 施例1と同様に、応力が緩和され、耐久性のあるコネク **夕になっているのである。**

【0024】実施例3を、図4ないし図7に基づいて説 明する。図4および図6は、それぞれこの実施例のコネ クタの斜視図を示している。図5および図7は、それぞ れ連結されて前記コネクタを構成する、独立した小プロ ック4を示す斜視図である。

【0025】この実施例のコネクタは、応力緩和隙間と して、緩い嵌合部7を備えてなることを特徴としている

【0026】図4および図5において、7は、凸部7a と凹部7 b とからなり、たがいに隙間7 c を開けて緩く 嵌合する嵌合部である。また、小ブロック4は一個の端 子2を有する長方形の板であり、この小ブロック4の連 結されるべき両辺にそれぞれ、突出部4a、切り欠き部 4 bが、嵌合してたがいにたがいに連結されるように、 ほぼ同形の矩形に形成されている。そして、突出部4 a の突出方向に平行な両辺に凸部7aが、また、切り欠き 部4 bの切り欠き方向に平行な両辺に凹部7 bが、それ ぞれ略半円形に形成され、緩く嵌合するようになってい

[0027] 図6および図7に示すものは、上記の図4 および図5とは異なる緩い嵌合部7を有するものであ り、前記の突出部4aおよび切り欠き部4bを、それぞ れ雄実4cおよび雌実4dとし、この雄実4cおよび雌 実4dに凸部7aおよび凹部7bをそれぞれ形成したも のである。

【0028】以上のような緩い嵌合部7を有する小プロ ック4は、たがいに遊びを有して連結されているので、 この遊び分、小ブロック4が移動できて応力が緩和さ れ、前記した実施例と同様に耐久性のあるコネクタにな っているのである。また、小ブロック4を任意の長さに 自在に連結できるものであって、好みの長さのコネクタ とすることもできるものである。

【0029】実施例4を、図8ないし図10に基づいて 説明する。図8はこの実施例のコネクタの斜視図を示し ている。図9および図10は、それぞれ前記コネクタを 構成する部材を示す斜視図であって、図9は小プロック 4を載置保持するカセット8を示し、図10は小プロッ ク4を示している。

【0030】この実施例のコネクタは、応力緩和隙間と しての実施例3に示した緩い嵌合部7を、カセット8に それぞれの小プロック4を、小プロック4間に隙間9c を開けて配するとともに、カセット8と小ブロック4と に遊嵌する凸部9aおよび凹部9bを備えて遊嵌部9と しているものである。

【0031】カセット8は、図9に示すように、絶縁性 の樹脂などで形成されるケースであって、小プロック4 .

有している。そして、この垂直片8a、8bに、内側に 突出する凸部9aがそれぞれ形成されている。また、小 プロック4の載置されるカセット8の底面の部分は、く り抜かれて開口8cとなっている。

【0032】小ブロック4は、図10に示すように、一個の端子2を有する長方形の板であって、連結方向と平行な両辺に凹部9bがそれぞれ形成されている。

【0033】以上のようなコネクタは、それぞれの小ブロック4間に隙間9cがあり、移動可能になっているとともに、小ブロック4がカセット8に遊びを有して取りがけられているので、この遊び分、小ブロック4が移動できて応力が緩和される。したがって、前記した実施例と同様に耐久性のあるコネクタになっているのである。また、任意の長さのカセット8を用意し、この長さ分小ブロック4を連結して、好みの長さのコネクタとすることができる。

[0034]

【発明の効果】請求項1記載の発明では、冷熱サイクルによる応力が、個々の半田接合部にかかりにくく、熱的な疲労の発生が少なくなっている。したがって、冷熱サ 20イクル環境下においても、半田接合部にクラックが発生しにくく、耐久性のあるコネクタになっている。

【0035】請求項2記載の発明では、コネクタ基板の 切り欠きによって、応力が緩和され、請求項1記載の効 果が奏されている。

【0036】請求項3記載の発明では、コネクタ基板の 溝によって、応力が緩和され、請求項1記載の効果が奏 されている。

【0037】請求項4記載の発明では、小ブロック間の 緩い嵌合部によって、応力が緩和され、請求項1記載の 30 効果が奏されている。また、任意の数の小ブロックを連 結し、任意の長さに容易にコネクタを形成できる。

【0038】請求項5記載の発明では、小ブロックがカ

セットに遊びを有して取り付けられ、この遊び分、小ブロックが移動できて応力が緩和され、請求項1記載の効果が奏されている。また、任意の数の小ブロックを連結し、カセットの長さに合わせて任意の長さのコネクタを容易に形成できる。

【図面の簡単な説明】

【図1】本発明の実施例1のコネクタを示す斜視図である。

【図2】同上コネクタをプリント基板に取り付けた状態 を示す側面図である。

【図3】本発明の実施例2のコネクタを示す斜視図であ

【図4】本発明の実施例3のコネクタを示す斜視図であ

【図5】同上コネクタの一部材を示す斜視図である。

【図 6】同上実施例の別なコネクタを示す斜視図であ る。

【図7】同上コネクタの一部材を示す斜視図である。

【図 8】本発明の実施例 4 のコネクタを示す斜視図であ の る。

【図9】同上コネクタの一部材を示す斜視図である。

【図10】同上コネクタの一部材を示す斜視図である。

【図11】従来例のコネクタを示す斜視図である。

【符号の説明】

- 1 コネクタ基板
- 2 端子
- 3 プリント基板
- 4 小プロック
- 5 切り欠き
- 6 溝
 - 7 嵌合部
 - 8 カセット
 - 9 遊嵌部

【図1】

[図2]

[図3]

【手続補正書】

【提出日】平成6年12月21日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0006

【補正方法】変更

【補正内容】

[0006]

【課題を解決するための手段】上記課題を解決する請求項1記載の発明は、コネクタ基板1に端子2が突設されてなり、コネクタ基板1をプリント基板3に載置するとともに、端子2の一端をプリント基板3に貫通させて、端子2の突出部がプリント基板3に半田付されるコネクタにおいて、コネクタ基板1を小プロック4に分割するとともに、この小プロック4を応力緩和隙間を介して連結してなることを特徴として構成している。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

【0010】請求項5記載の発明は、請求項1記載の発明において、カセット8にそれぞれの小プロック4を、小プロック4間に隙間9 c を開けて配するとともに、カセット8と小プロック4とに遊嵌部9を備えて、応力緩和隙間としてな3 c とを特徴として構成している。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0026

【補正方法】変更

【補正内容】

【0026】図4および図5において、7は、凸部7aと凹部7bとからなり、たがいに隙間7cを開けて緩く 嵌合する嵌合部である。また、小ブロック4は一個の端 子2を有する長方形の板であり、この小ブロック4の連 結されるべき両辺にそれぞれ、突出部4a、切り欠き部

٠ ١٤٠٠

4 bが、嵌合してたがい<u>に連</u>結されるように、ほぼ同形の矩形に形成されている。そして、突出部4 a の突出方向に平行な両辺に凸部7 a が、また、切り欠き部4 b の切り欠き方向に平行な両辺に凹部7 b が、それぞれ略半円形に形成され、緩く嵌合するようになっている。