Automata and Computability

There are a total of five problems. You have to solve the first four. Problem 5 is optional.

DFA Set A

Problem 1 (CO1): DFA and Regular Languages (15 points)

We define the last two digits of your Student ID to be AB [e.g: If your Student ID is 2102895, then A = 9, B = 5] Given, $\Sigma = \{A, B, \#\}$. Consider the following languages over Σ .

$$L_1 = \{w : w \text{ starts with A}\}\$$

 $L_2 = \{w : w \text{ contains AB# as a substring}\}$

$$L_3 = L_1 \circ L_2$$

Now solve the following problems. For questions (a)-(f), you must use your specific Σ to answer.

- (a) If $\Sigma = \{A, B, \#\}$, then **define** Σ according to your Student ID. (1 point)
- (b) **Give** the state diagram for a DFA that recognizes L_1 . (3 points)
- (c) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (d) **Find** all the four-letter strings in $L_1 \cap L_2$. (2 points)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language $L_1 \cap L_2$, how many states would it have? (1 point)
- (f) **Prove** L_3 is a regular language by giving the state diagram for a DFA or an NFA that recognizes L_3 . (2 points)

Now, let $\Sigma = \{0,1\}$. Consider the following diagram of the NFA to answer the questions (g)-(h) defined for Σ .

- (g) Choose the language recognized by this NFA? (1 point)
 - (i) $\{w : w \text{ has a length equal to or more than three.}\}$
 - (ii) $\{w: w = (010)^n, n \ge 0\}$
 - (iii) $\{w : w \text{ contains 010 as a subsequence}\}$
 - (iv) $\{w : w \text{ contains 010 as a substring}\}$
- (h) **Select** the paths that accepts 010110 in the given NFA? There can be more than one path that accepts the string. (2 points)
 - (i) $a \rightarrow b \rightarrow b \rightarrow b \rightarrow c \rightarrow d$
 - (ii) $a \rightarrow b \rightarrow c \rightarrow d \rightarrow d \rightarrow d \rightarrow d$
 - (iii) $a \rightarrow b \rightarrow b \rightarrow b \rightarrow b \rightarrow b \rightarrow b$
 - (iv) $a \rightarrow a \rightarrow b \rightarrow b \rightarrow c \rightarrow c \rightarrow d$
 - (v) $a \rightarrow a \rightarrow a \rightarrow b \rightarrow c \rightarrow c \rightarrow d$

DORATION: 05 MINUT

Problem 1 (CO1): DFA and Regular Languages (15 points)

We define the last two digits of your Student ID to be AB [e.g. If your Student ID is 2102895, then A = 9, B = 5] Given, $\Sigma = \{A, B, \#\}$. Consider the following languages over Σ .

$$L_1 = \{w : w \text{ ends with A}\}$$

 $L_2 = \{w : w \text{ contains B#A as a substring}\}$

$$L_3 = L_1 \circ L_2$$

Now solve the following problems. For questions (a)-(f), you must use your specific Σ to answer.

- (a) If $\Sigma = \{A, B, \#\}$, then **define** Σ according to your Student ID. (1 point)
- (b) **Give** the state diagram for a DFA that recognizes L_1 . (3 points)
- (c) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (d) **Find** all the four-letter strings in $L_1 \cap L_2$. (2 points)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language $L_1 \cap L_2$, how many states would it have? (1 point)
- (f) **Prove** L_3 is a regular language by giving the state diagram for a DFA or an NFA that recognizes L_3 . (2 points)

Now, let $\Sigma = \{0,1\}$. Consider the following diagram of the NFA to answer the questions (g)-(h) defined for Σ .

- (g) Choose the language recognized by this NFA? (1 point)
 - (i) $\{w : w \text{ has a length equal to or more than three.}\}$
 - (ii) $\{w: w = (010)^n, n \ge 0\}$
 - (iii) $\{w : w \text{ ends with 010}\}$
 - (iv) $\{w : w \text{ contains 010 as a substring}\}$
- (h) Select the paths that accepts 010110 in the given NFA? There can be more than one path that accepts the string. (2 points)
 - (i) $a \rightarrow b \rightarrow b \rightarrow b \rightarrow b \rightarrow c \rightarrow d$
 - (ii) $a \rightarrow b \rightarrow c \rightarrow d \rightarrow d \rightarrow d \rightarrow d$
 - (iii) $a \rightarrow a \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow d$
 - (iv) $a \rightarrow b \rightarrow b \rightarrow b \rightarrow b \rightarrow b$
 - (v) $a \rightarrow a \rightarrow b \rightarrow b \rightarrow c \rightarrow c \rightarrow d$

Problem 1 (CO1): DFA and Regular Languages (15 points)

We define the last two digits of your Student ID to be AB [e.g. If your Student ID is 2102895, then A = 9, B = 5] Given, $\Sigma = \{A, B, \#\}$. Consider the following languages over Σ .

$$L_1 = \{w : w \text{ starts with #}\}$$

 $L_2 = \{w : w \text{ contains \#BA as a substring}\}\$

$$L_3 = L_1 \circ L_2$$

Now solve the following problems. For questions (a)-(f), you must use your specific Σ to answer.

- (a) If $\Sigma = \{A, B, \#\}$, then **define** Σ according to your Student ID. (1 point)
- (b) **Give** the state diagram for a DFA that recognizes L_1 . (3 points)
- (c) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (d) **Find** all the four-letter strings in $L_1 \cap L_2$. (2 points)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language $L_1 \cap L_2$, how many states would it have? (1 point)
- (f) **Prove** L_3 is a regular language by giving the state diagram for a DFA or an NFA that recognizes L_3 . (2 points)

Now, let $\Sigma = \{0,1\}$. Consider the following diagram of the NFA to answer the questions (g)-(h) defined for Σ .

- (g) Choose the language recognized by this NFA? (1 point)
 - (i) $\{w : w \text{ has a length equal to or more than three.}\}$
 - (ii) $\{w: w = (110)^n, n \ge 0\}$
 - (iii) $\{w : w \text{ contains } 110 \text{ as a substring}\}$
 - (iv) $\{w : w \text{ contains 010 as a substring}\}$
- (h) **Select** the paths that accepts 010110 in the given NFA? There can be more than one path that accepts the string. (2 point)
 - (i) $a \rightarrow b \rightarrow b \rightarrow b \rightarrow c \rightarrow d$
 - (ii) $a \rightarrow a \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow d$
 - (iii) $a \rightarrow b \rightarrow c \rightarrow d \rightarrow d \rightarrow d \rightarrow d$
 - (iv) $a \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow c \rightarrow d$
 - (v) $a \rightarrow a \rightarrow b \rightarrow b \rightarrow c \rightarrow c \rightarrow d$

MIDTERM EXAM TOTAL MARKS: 50 **DURATION: 85 MINUTES**

Automata and Computability

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Give regular expressions for each of the languages (a)-(f) over Σ .

- (a) $\{w : w \text{ contains } 11 \text{ or } 101 \text{ as a substring.}\}$ (2 points)
- (b) $\{w : w \text{ contains exactly four 1s.}\}$ (2 points)
- (c) $\{w : \text{The length of } w \text{ is two more than multiple of five.} \}$ (2 points)
- (d) $\{w : w \text{ consists of any combination of 01 and 110.}\}$ (2 points)
- (e) $\{w : w \text{ doesn't end with 01}\}\$ (2 points)
- (f) $\{w : \text{Number of 01 substring is more than number of 10 substrings in } w\}$ (2 points)
- (g) You write a regular expression $0(0+1)^*1^*0^*0$. Your friends write another regular expression $01^*0^*(0+1)^*0$. Are they the same? Write Yes or No only. (1 point)
- (h) You write a regular expression (1+01)*. Your friends write another regular expression 1*(011*)*. Are they the same? **Give** justification for your answer. (2 points)

RE Set B

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Give regular expressions for each of the languages (a)-(f) over Σ .

- (a) $\{w : w \text{ starts with 00 or 010.}\}$ (2 points)
- (b) $\{w : w \text{ contains at least three 1s.}\}$ (2 points)
- (c) $\{w : \text{The length of } w \text{ is three more than multiple of five.} \}$ (2 points)
- (d) $\{w : w \text{ consists of any combination of 10 and 001.}\}$ (2 points)
- (e) $\{w : w \text{ doesn't end with } 11\}$ (2 points)
- (f) $\{w : \text{Number of 01 substring is less than number of 10 substrings in } w\}$ (2 points)
- (g) You write a regular expression 11*(0+1)*0*1. Your friends write another regular expression 10*1*(0+1)*1. Are they the same? Write Yes or No only. (1 point)
- (h) You write a regular expression (0+10)*. Your friends write another regular expression 0*(100*)*. Are they the same? **Give** justification for your answer. (2 points)

MIDTERM EXAM TOTAL MARKS: 50

DURATION: 85 MINUTES

RE Set C

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Give regular expressions for each of the languages (a)-(f) over Σ .

- (a) $\{w : w \text{ ends with 001 or 11.}\}\ (2 \text{ points})$
- (b) $\{w : w \text{ contains at most two 1s.}\}$ (2 points)
- (c) $\{w : \text{The length of } w \text{ is three more than multiple of four.} \}$ (2 points)
- (d) $\{w : w \text{ consists of any combination of 11 and 010.}\}$ (2 points)
- (e) $\{w : w \text{ doesn't end with 00}\}\$ (2 points)
- (f) $\{w : \text{Number of 01 substring and 10 substrings in } w \text{ is unequal}\}\ (2 \text{ points})$
- (g) You write a regular expression 01*(0+1)*0*1. Your friends write another regular expression 00*1*(0+1)*1. Are they the same? Write Yes or No only. (1 point)
- (h) You write a regular expression (1+01)*. Your friends write another regular expression 1*(011*)*. Are they the same? **Give** justification for your answer. (2 points)

Problem 3 (CO3): Converting Regular Expressions to NFAs (10 points)

Convert the following regular expression over $\Sigma = \{a, b, c\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$.

$$(bc)^*(a+c)+(bc^*+a)^*b$$

RE to NFA Set A

Problem 3 (CO2): Converting Regular Expressions to NFAs (10 points)

Convert the following regular expression over $\Sigma = \{0,1,2\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$.

$$(0*1+2)* + 0(12)*0$$

RE to NFA Set B

Problem 3 (CO2): Converting Regular Expressions to NFAs (10 points)

Convert the following regular expression over $\Sigma = \{0, 1, 2\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$.

$$1*0 + (0*2 + (20)*1)$$

MIDTERM EXAM TOTAL MARKS: 50 DURATION: 85 MINUTES

DFA to RE Set A

Problem 4 (CO2): Converting Finite Automata to Regular Expressions (10 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_3 , then q_2 , next q_4 , and finally q_1 . You must show work.

DFA to RE Set B

Problem 4 (CO2): Converting Finite Automata to Regular Expressions (10 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_4 , then q_2 , next q_3 , and finally q_1 . You must show work.

DFA to RE Set C

Problem 4 (CO2): Converting Finite Automata to Regular Expressions (10 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_4 , then q_2 , next q_3 , and finally q_1 . You must show work.

CSE331 Automata and Computability

MIDTERM EXAM TOTAL MARKS: 50 **DURATION: 85 MINUTES**

Problem 5 (Bonus): Even Odd (5 points)

Disclaimer: This is a bonus problem. Attempt it only after you are done with everything else. Even if you do not attempt it, you can get a perfect score. So, do not worry if you find it too hard!

Let $\Sigma = \{0, 1\}.$

 $L = \{w | \text{ 0s in even position of w are followed by odd numbers of 1s} \}$

Give a five state diagram for a DFA that recognizes *L*.