Os valores das tabelas valem para circuitos realizadas fisicamente e testados (-testar) remotamente.

Simulação de Systemverilog não vale centavos, mas é recomendado para acelerar o desenvolvimento da implementação física.

Simulação Falstad vale um quinto (1/5) dos valores das tabelas, se realizado com flip-flops (tipo D, claro) e oscilador em anel. Contador pronto vale um terço disso (1/5*1/3) e contador com oscilador sem ser aquele em anel vale metade disso (1/5*1/2) ou 1/5*1/3*1/2 respetivamente.

descrição	centavos
ontador 4 bits	45
reset SWI[0]	+5
contagem decrescente - SWI[1]	.+5
contagem com incremento de 3 - SWI[2]	.+5
contagem com reset, incremento de 1/3 e crescente/decrescente – SWI[0] + SWI[1] + SWI[2]	.+5
congelamento da contagem - SWI[3]	.+5
saturação (parada da contagem) quando chega em 15 ou 0 - SWI[4]	.+5
contagem com congelamento e saturação – SWI[3] + SWI[4]	.+5
contagem com reset, incremento de $1/3$, crescente/decrescente, congelamento e saturação – SWI[0] + SWI[1] + SWI[2] + SWI[3] + SWI[4]	.+5

- só pode ser usado flip-flop tipo D -tipo_D
- o circuito tem que ser síncrono -assíncrono