Problem 1

$$\frac{1}{2} \int_{1}^{1} \frac{1-h^{2}}{(1+h^{2}-\lambda h_{M}a)^{2}} d\mu a \qquad 1+h^{3}-\lambda h_{M}a = P$$

$$= \frac{1}{4} \frac{1-h^{2}}{h} \int_{1}^{1} \frac{1}{P^{2}a} dP \qquad d\mu = \frac{dP}{\lambda h}$$

$$= \frac{1}{4} \frac{1-h^{2}}{h} \int_{1}^{1} \frac{1}{P^{2}a} dP \qquad d\mu = \frac{dP}{\lambda h}$$

$$= \frac{1-h^{2}}{2h} \left(\frac{1}{1+h^{2}-\lambda h_{M}a} \right)_{-1}^{1}$$

$$= \frac{1-h^{2}}{2h} \left(\frac{1-h^{2}}{1+h} \right) - \frac{1}{h^{2}a}$$

$$= \frac{1-h^{2}}{2h} \left(\frac{1-h^{2}}{1+h} \right) - \frac{1}{h^{2}a}$$

$$= \frac{1-h^{2}}{2h} \left(\frac{1-h^{2}}{1-h^{2}} \right) - \frac{h^{2}}{2h} = \frac{1-h^{2}}{2h^{2}} \left(\frac{1-h^{2}}{2h} \right) + \frac{2h^{2}}{1-h^{2}}$$

$$= \frac{(1-h^{2})}{4h^{2}} \left(\frac{1-h^{2}}{2h} \right) - \frac{h^{2}}{2h} = \frac{(1-h^{2})}{2h^{2}} \left(\frac{2}{2h} \right) + \frac{2h^{2}}{1-h^{2}}$$

$$= \frac{(1-h^{2})}{4h^{2}} \left(\frac{1-h^{2}}{2h} \right) - \frac{h^{2}}{2h} = \frac{(1-h^{2})}{2h^{2}} \left(\frac{2}{2h} \right) + \frac{2h^{2}}{2h} + \frac{2h^{2}}{1-h^{2}}$$

$$= \frac{(1-h^{2})}{4h^{2}} \left(\frac{1-h^{2}}{2h} \right) + \frac{2h^{2}}{1-h^{2}} + \frac{2h^{2}}{1-h^{2}} = h$$

- | --}y

Ma =
$$\frac{1}{4h^a} \left[p^a - 2P(1+h^a) + h^4 + 2h^a + 1 \right]$$

Man I call it a second moment without a tensor?
Second Moment: $\frac{1}{2} \int_{1}^{1} \frac{(1-h^2)\mu o^2}{(1+h^a-2h\mu o)^2} d\mu o$

$$= \frac{(h^2 - 1)}{16h^3} \left[\frac{2}{3} p^{3} a \left(\frac{h^{-1}}{h^2} \right) + 4(1 + h^2) \sqrt{p} \left(\frac{h^{-1}}{h^2} \right) - \frac{2(h^2 + h^2)}{(h^2 + h^2)^2} \left(\frac{h^2 + h^2}{h^2} \right) + \frac{16h^3}{24h^3} \left[\frac{h^2 + h^2}{24h^3} \left(\frac{h^2 + h^2}{h^2} \right) + \frac{16h^2}{24h^3} \left(\frac{h^2 + h^2}{h^2} \right) \right] + \frac{16h^2}{24h^3} \left[\frac{h^2 + h^2}{24h^3} \left(\frac{h^2 + h^2}{h^2} \right) + \frac{16h^2}{24h^3} \left(\frac{h^2 + h^2}{h^2} \right) \right]$$

: :	CaseD	case(2)	cuse(§)	Lase (D)
Term D	213+6h	-612-2	-2h3-6h	Ghat2
×/3-1	215+413-6h	1-6h +4h2+2	-215-413+6h	6h -4ha-2
Tesm Q	lah3+lah	-12K2-12	1-8K3-12h	12h2 +12
× h2-1	12h5-12h	-B14+12	-12h5 +12h	124-12
Tesn(3)			-615-1213-6h	-644-124a-6
***************************************	$\left(y_{3}-1\right)$	(P_g-1)	Charles and the second of the	(Yg-1)

$$\frac{1}{24h^{3}} \left[12h^{3} - 12h + 6h^{5} + 12h^{3} + 6h - 2h^{5} - 4h^{3} + 6h \right]$$

$$\frac{1}{3} \left[2h^{2} + 1 \right] \sim Sorry \quad \text{couldn't get } h^{2}$$

$$\int_{1}^{1} K(\mu_{0}, v' - \theta v) d\mu = 1 ; \int_{1}^{1} K(\mu_{0}, v' - \theta v) \mu_{0}^{2} d\mu = \frac{1}{3} [2h^{2} + 1]$$

$$K_{Q}(E'-DE) = \int_{1}^{1} d\mu_{0} K(\mu_{0}, E'-DE) \frac{1}{2^{Q}Q_{0}^{2}} \frac{1}{2^{M_{0}}} \left[(\mu_{0}^{2} - 1)^{Q} \right]$$

$$K_{Q}(E'-DE) = \int_{1}^{1} d\mu_{0} K(\mu_{0}, E'-DE) \frac{1}{2^{Q}Q_{0}^{2}} \frac{1}{2^{M_{0}}} \left[(\mu_{0}^{2} - 1)^{Q} \right]$$

$$K_{0} = \int K = \prod$$

$$K_{1} = \int \frac{1}{2} \sum_{k=1}^{\infty} 2m^{2} \int K M d^{2} = k$$

$$K_{2} = \int \frac{1}{2} \sum_{k=1}^{\infty} \frac$$

Problem 2

Law of cosines

$$V_{L}^{10} = V_{C}^{10} + V_{CN}^{2} - 2 V_{C}^{1} V_{CM} \cos \delta_{C}
 V_{L}^{10} = \frac{1}{(A+1)^{2}} + \frac{1}{(A+1)^{2}} - \frac{2}{(A+1)^{2}} \cos \delta_{C}
 V_{L}^{1} = \sqrt{2(1-\cos \delta_{C})}
 V_{L} (A+1)$$

OL (be) sinte die Ocm (be) sin te die

$$\cos \theta_{L} = \frac{V_{c} \cos \theta_{c} + V_{cM}}{V_{L}^{2}} = \frac{V_{c}^{2} \cos \theta_{c} + V_{cM}}{V_{L}^{2}}$$

$$= \frac{A \cos \theta_{c} + 1}{A + 1} \frac{V_{c}}{V_{L}^{2}}$$

$$= \frac{A \cos \theta_{c} + 1}{A + 1} \frac{A + 1}{A + 1}$$

$$= \frac{A \cos \theta_{c} + 1}{A + 1} \frac{A + 1}{A + 1}$$

$$= \frac{A \cos \theta_{c} + 1}{A + 1 + 2A \cos \theta_{c}}$$

$$= \frac{A \cos \theta_{c} + 1}{A^{2} + 1 + 2A \cos \theta_{c}}$$

$$\frac{\cos V_{L} = \sqrt{\cos V_{C} \cos V_{C}}}{\sqrt{1 + \cos V_{C}}} = \frac{V_{L} \left(1 - \cos V_{C}\right)}{\sqrt{1 + \cos V_{C}}} = \frac{\left(1 - \cos V_{C}\right)}{\sqrt{2(1 - \cos V_{C})}}$$

$$\frac{\sqrt{\cos V_{L}}}{\sqrt{(\cos V_{C})}} = \frac{1 - V_{LL}}{\sqrt{(\cos V_{C})}} = \frac{\sqrt{1 - \cos V_{C}}}{\sqrt{(\cos V_{C})}} = \frac{\left(1 - \cos V_{C}\right)}{\sqrt{2(1 - \cos V_{C})}}$$

$$\frac{\sqrt{\cos V_{L}}}{\sqrt{(\cos V_{C})}} = \frac{1 - V_{LL}}{\sqrt{(\cos V_{C})}} = \frac{\sqrt{1 - \cos V_{C}}}{\sqrt{(\cos V_{C})}} = \frac{\left(1 - \cos V_{C}\right)}{\sqrt{(\cos V_{C})}} = \frac{\left$$

$$\frac{\cos\theta_{\perp} \circ v_{\perp} - v_{CM}}{v_{\perp} \cdot v_{c}} = \cos\theta_{c} = \frac{\cos\theta_{c} \cdot v_{\perp}^{2} - \frac{1}{1+A}v_{c}}{Av_{\perp}v_{c}}$$

$$\cos\theta_{c} = \cos\theta_{c} \cdot \frac{v_{\perp}^{2} - \frac{1}{1+A}v_{c}}{A}$$

Conservation of momentum. In y direction LAB

$$\frac{V'_{L}}{V_{L}} = \frac{\sin \theta_{c}}{\sin \theta_{L}} \frac{A}{A+1} \qquad V'_{L} \leq \ln \theta_{L} = V_{L} \leq \ln \theta_{L} = V_{L} \leq \ln \theta_{L}$$

Assuming \circ $|\langle (M, E'-DE) = P(Dc) \circ P(E'-DE) \rangle$ where $P(Dc) = \frac{Ocn(Dc)}{Os} = \frac{Os}{4\pi} \circ \frac{1}{Os} = \frac{1}{4\pi} \circ \frac{1}{Os} = \frac{1$

Integrate over enough & Angle ~ 2TT SE; dEp S du P(DE) P(E; TOE)

= 4TT . [I-d)E; Ep = 1

HT (I-d)E;

July Sin Ded De = Och Sin De de

sometimes a psoblem in Right Direction Subrecutive When Starting in the middle of

3.)
$$\hat{D} \cdot \nabla Y + \sum_{i} Y = \frac{Q_{i}}{M_{i}}$$

 $(\hat{D} \times \frac{1}{2} \times \hat{D} \times$

53 d2 50 d2 51 d1 50

treck!
$$S_{\infty}$$
 S_{∞} S_{∞}

treck 2 (S) ds = 2+5, 4(5) - E+5, 4(52) = Sign E+5

$$\begin{aligned}
 &\mathcal{Y}(S_0, \hat{\Omega}) = e^{-\xi f d_0 - \xi f' d_0} & \mathcal{Y}(S_0, \hat{\Omega}) + \mathbb{I} \left[e - e \right] \\
 &\mathcal{Y}(S_0, \hat{\Omega}) = e^{-\xi f' d_0 - \xi f' d_0} & \mathcal{Y}(S_0, \hat{\Omega}) + \mathbb{I} \left[e - e \right] \\
 &\mathcal{Y}(S_0, \hat{\Omega}) = e^{-\xi f' d_0 - \xi f' d_0} & \mathcal{Y}(S_0, \hat{\Omega}) + \mathbb{I} \left[e - e \right]
 \end{aligned}$$

Make Sure code atternates Between Moderator & Fuel

and set "
$$P_1 = \sum_{j=1}^{n} \sum_{j=1}^{n} d_j$$

if
$$\Sigma_{t}^{i_{2}} = \text{odd} \Rightarrow \Sigma_{t}^{i_{3}} = \Sigma_{t}^{m}$$

if $\Sigma_{t}^{i_{3}} = \text{extn} \Rightarrow \Sigma_{t}^{i_{3}} = \Sigma_{t}^{m}$

This Makes

lets Make Sure we know our pattern: Fuel is next

Moderator :

then fuel

if we know all our di ~ this is trivial I could be over simplifying, But I assumed Because the Cylinder is infinitely tall that there will be no polar angle dependance (11/2 4 T/8 are the same)

How	do	NB	Know	we are	galno	S in	The.	right	direction?
unichi.	Ke &		_^	· < x	X_1	Ya=(ζ_L	20	

Multiple points on a circle?

take the shorter of the two that are heading in the right direction, and are real (not imaginary) If Both points are real to in the right direction, you could skip the next importive step

translation at Boundaries?

can either de

translation with the same

angle

or reflection 900

and

Keep the same

I think reflection would be easier because otherwise you need to hard code some geometric expectations.

With reflection you mimor every time you expectation a line

A.B= 11/4110 11/81/2057

Actually reflection is probably wans. I'm doing translation.

9- M= W (x-XV) x3-[w(x-x)+4]= 85 y= my (x-Xv)+ynx2+[mvx-mvx+yv][mvx-mvxv+yv]=R2 wym- 5x m+xxxm-wxxm+xxx Em- from +f yyfnx - ymfx+yv2=R2 2[1+m2] + X[-m2x +my-m2x+ym]+m2x2-mxxy-mxyy-mxy +y2-R2 a= Itm P= -3m3 X + 2m4 C= m2 x2+42-3mx44-Ra x2.142 = 1 X, = - b = 1 ba-4ac y-y~= m~ (x-Xv) Xv= Q mv= 1 y = mv (x1,2-X1)+y op t pints (1) 4 (-1,-1)

ωv=

R= 0.41 X=0.63

4[1]

How do we know we are going in the right direction.

withinker 1. A. (xa-x, ya-y,) >0

Multiple points on a circle?

take the shorter of the two that are heading in the right direction, and are real (not imaginary) if Both points are real is in the right direction, you could skip the next invitive step

translation at Boundaries &

translation with the same

reflection 900

I think reflection would be easier because athorivise you need to hard code some geometric expectations. With reflection you missor exery time you exounter a line

A-B= 11A11-11B11 cost

Actually reflection is probably

wrong. I'm doing translation.