1 Lectures

This section records key facts presented in lectures in roughly chronological order.

Singular value decomposition. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$. We can write $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$, where

- U is an orthogonal $n \times n$ matrix
- V is an orthogonal $p \times p$ matrix
- $D_{ij} = 0$ for all $i \neq j$ and in non-decreasing order $D_{ii} \geq 0$ for all $i \leq \min(n, p)$.

Some facts about SVDs are

- A singular value decomposition is unique up to the signs of columns of U and V
- All matrices have SVDs whereas only symmetric matrices have spectral decompositions
- We can construct compact SVDs.

Subspace. A subspace is contained in a larger vector space and is a vector space itself. Vector spaces are closed under addition and scalar multiplication. An orthogonal complement of a subspace of a vector space is the set of all vectors in the vector space orthogonal to every vector in the subspace. We can decompose $\mathbf{Y} = \mathbf{Y}_{\mathcal{V}} + \mathbf{Y}_{\mathcal{V}^{\perp}}$. $\hat{\mathbf{Y}} \in \mathbf{Y}_{\mathcal{V}}$ and $\hat{\mathbf{e}} \in \mathbf{Y}_{\mathcal{V}^{\perp}}$.

Generalized inverse. Let $\mathbf{F} \in \mathbb{R}^{n \times p}$. Then generalized inverse \mathbf{F}^- satisfies $\mathbf{F}\mathbf{F}^-\mathbf{F} = \mathbf{F}$.

- Every matrix has a generalized inverse.
- A matrix can have more than 1 generalized inverse.
- The inverse of an invertible matrix is unique and is a generalized inverse.

Pseudoinverse. For any matrix \mathbf{F} , \exists a unique Moore-Penrose inverse \mathbf{F}^+ satisfying

- \mathbf{F}^+ is a generalized inverse of \mathbf{F}
- \mathbf{F} is a generalized inverse of \mathbf{F}^+
- ullet **FF**⁺ and **F**⁺**F** are symmetric

This pseudoinverse is often implemented in computer programs.

Estimability. Consider model $\mathbf{Y} = \mathbf{X}\beta + \varepsilon$ where $\mathbb{E}[\varepsilon|\mathbf{X}] = \mathbf{0}$. $a^T\beta$ is estimable if a is in the row space of \mathbf{X} .

- For $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^- \mathbf{X}^T \mathbf{Y}$, $a^T \hat{\beta}$ is unbiased estimator of $a^T \beta$. If $Var(\varepsilon | \mathbf{X}) = \sigma^2 \mathbf{I}_n$, then $Var(a^T \hat{\beta} | \mathbf{X}) = \sigma^2 a^T (\mathbf{X}^T \mathbf{X})^- a$ (exercise 8).
- $a^T \hat{\beta}$ is BLUE if $a^T \beta$ is estimable (Gauss-Markov theorem).
- There are connections to identifiability, defined as $\theta \neq \theta_0 \implies f_{\theta} \neq f_{\theta_0}$.

Rank deficiency.

- Reduce to full rank.
 - Best. Easiest. Most common.
 - If $\mathbf{X} = \begin{bmatrix} \mathbf{Z}_1 & \mathbf{Z}_2 \end{bmatrix}$, columns of \mathbf{Z}_1 are linearly independent, and columns of \mathbf{Z}_2 are linear combinations of columns of \mathbf{Z}_1 , then $\hat{\beta} = \begin{bmatrix} (\mathbf{Z}_1^T \mathbf{Z}_1)^{-1} \mathbf{Z}_1^T \mathbf{Y} \\ \mathbf{0} \end{bmatrix}$.
- Use a generalized inverse ($\hat{\beta}$ still satisfies normal equations).
- Impose identifiability constraints.
 - $-\mathbf{H}\beta = \mathbf{0}_s$ is an identifiability constraint if
 - 1. The rows of \mathbf{H} are linearly independent of \mathbf{X}
 - 2. $\operatorname{rank}\left(\begin{bmatrix} \mathbf{X} \\ \mathbf{H} \end{bmatrix}\right) = p.$
 - $\operatorname{rank}(\mathbf{H}) = p \operatorname{rank}(\mathbf{X}).$
 - $-\hat{\beta} = (\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T \mathbf{Z}$, where $\mathbf{W} = \begin{bmatrix} \mathbf{X} \\ \mathbf{H} \end{bmatrix}$, $\mathbf{Z} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{0} \end{bmatrix}$, and \mathbf{H} corresponds to an identifiability constraint, is a unique solution to constrained least squares.

Consistency. The Gauss-Markov theorem is a result that holds for finite samples. We now discuss under which conditions we have asymptotically (weakly) consistent $\hat{\beta}$.

• An estimator $\hat{\theta}$ is consistent for θ if

$$\lim(P(|\hat{\theta} - \theta| < \varepsilon)) = 1,$$

or, equivalently,

$$\lim(P(|\hat{\theta} - \theta| \ge \varepsilon)) = 0.$$

Note that $|\hat{\theta} - \theta|$ is a random quantity and $P(\cdot)$ is a deterministic quantity.

• We often argue consistency using Chebyshev's inequality:

$$P\left(\frac{|X-\mu|}{\sigma} \ge \varepsilon\right) \le \frac{\sigma^2}{\varepsilon^2},$$

where X is a random variable with $\mathbb{E}[X] = \mu$ and $\sigma^2 < \infty$, and this inequality holds for any $\varepsilon > 0$.

• $\lim a_n = a$ if for all $\varepsilon > 0$ there exists m such that, for all n > m,

$$|a_n - a| < \varepsilon.$$

• Suppose we have a linear model with a full rank design matrix. If $\lambda_{\min}(\mathbf{X}'\mathbf{X}) \to \infty$, then $\hat{\beta} \stackrel{p}{\to} \beta$.

2 Exercises

This section records the facts presented the in-class exercises in chronological order.

- 1. Any solution $\hat{\beta}$ to $\underset{\beta}{\operatorname{arg\,min}} (\mathbf{Y} \mathbf{X}\beta)^T (\mathbf{Y} \mathbf{X}\beta)$ satisfies that $\mathbf{X}^T \mathbf{X} \hat{\beta} = \mathbf{X}^T \mathbf{Y}$.
- 2. Let $\mathbf{A} \in \mathbb{R}^{s \times s}$, rank $(\mathbf{A}) = s$, and $\mathbf{B} \in \mathbb{R}^{s \times t}$. Then, rank $(\mathbf{AB}) = \text{rank}(\mathbf{B})$.
- 3. (a) The columns of \mathbf{U} in the SVD of \mathbf{X} are the eigenvectors of $\mathbf{X}\mathbf{X}^T$.
 - (b) The columns of V in the SVD of X are the eigenvectors of X^TX .
 - (c) The diagonal elements of **D** in the SVD of **X** are the square roots of the eigenvalues of $\mathbf{X}^T\mathbf{X}$ and $\mathbf{X}\mathbf{X}^T$.
- 4. (a) $\operatorname{rank}(\mathbf{X}'\mathbf{X}) = \operatorname{rank}(\mathbf{X})$. (Full rank \mathbf{X} is a sufficient condition for LSE to be unique.)
 - (b) If $\operatorname{rank}(\mathbf{X}) = p \leq n$, then $\mathbf{X}'\mathbf{X}$ is positive definite. (Full rank \mathbf{X} is sufficient condition for SSE to be strictly convex.)
- 5. Let $\mathbf{P}_{\mathbf{X}}$ be the projection matrix onto \mathbf{X} where $\mathbf{X} \in \mathbb{R}^{n \times p}$.
 - (a) $\mathbf{P}_{\mathbf{X}}$ can be written $\mathbf{U}\mathbf{A}\mathbf{U}'$ using SVD.
 - (b) P_X has eigenvalue 1 of multiplicity p and eigenvalue 0 of multiplicity n-p.
 - (c) $\operatorname{rank}(\mathbf{P}_{\mathbf{X}}) = p$.
- 6. Every matrix has a generalized inverse.
- 7. If **G** and **H** are generalized inverses of X'X, then XGX' = XHX'.

- 8. For $\mathbf{Y} = \mathbf{X}\beta + \varepsilon$ and $\varepsilon | \mathbf{X} \sim (\mathbf{0}, \sigma^2 \mathbf{I}_n)$, if $a^T \beta$ is estimable, then $\operatorname{var}(a^T \hat{\beta} | \mathbf{X}) = \sigma^2 a^T (\mathbf{X}^T \mathbf{X})^- a$ where $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^- \mathbf{X}^T \mathbf{Y}$.
- 9. Gauss-Markov theorem for full rank **X**. $a^T \hat{\beta}$ is unique UMVUE for $a^T \beta$.
- 10. Using Chebyshev's inequality, we show that

$$P(|Y_n - \mu| \ge \delta) \le \frac{\sigma_n^2}{\delta^2}$$

where Y_1, \ldots, Y_n is a sequence of random variables with indexed variances and common expectation. If $\lim \sigma_n^2 = 0$, then $Y_n \stackrel{p}{\to} \mu$. We use this exercise to say that, if our estimator's variance goes to zero as the sample gets asymptotically large, then the estimator is asymptotically (weakly) consistent for μ .

3 Homeworks

This section records the facts presented in homeworks in roughly chronological order.

- 1. For any matrix \mathbf{A} , $\mathbf{A}\mathbf{A}' = \mathbf{0}$ implies $\mathbf{A} = 0$.
- 2. Projection matrices.
 - (a) For any matrix A, $P_A = A(A'A)^-A'$ is a projection matrix onto C(A).
 - (b) $\mathbf{P}_{\mathbf{A}}\mathbf{A} = \mathbf{A}$.
 - (c) $rank(\mathbf{P_A}) = rank(\mathbf{A})$.
- 3. Given two OLS estimates of β , $\mathbf{X}\hat{\beta}_1 = \mathbf{X}\hat{\beta}_2$.
- 4. Consider models $\mathbb{E}[\mathbf{Y}|\mathbf{X}] = \mathbf{1}\alpha_0 + \mathbf{W}\alpha$ and $\mathbb{E}[\mathbf{Y}|\mathbf{X}] = \mathbf{1}\beta_0 + \mathbf{X}\beta$. Suppose \mathbf{W} , a column centered version of design matrix \mathbf{X} , has full rank p < n. Then least squares estimates of α and β are unique and $\hat{\alpha} = \hat{\beta}$.
- 5. Let **P** be a $n \times n$ projection matrix and **R** be a $n \times n$ orthogonal matrix.
 - ullet P is positive semidefinite.
 - If $rank(\mathbf{P}) = r$, then \mathbf{P} has eigenvalue 1 with multiplicity r and eigenvalue 0 with multiplicity n r.
 - R has real eigenvalues ± 1 .
- 6. The (unique) least squares estimate is unbiased when the design matrix is full rank.
- 7. In simple linear regression, $\hat{\beta}_0$ and $\hat{\beta}_1$ are uncorrelated if and only if $\bar{x} = 0$.

4 Potpourri

Lemmas.

- Suppose AX'X BX'X = 0. Then AX' = BX'.
- $trace(\mathbf{P}) = rank(\mathbf{P})$ for any projection matrix \mathbf{P} .
- ullet Expected value of the residuals is $oldsymbol{0}$.
- For our standard LM setup, $\frac{1}{n-\text{rank}(\mathbf{X})}(\mathbf{Y}-\mathbf{X}\hat{\beta})^T(\mathbf{Y}-\mathbf{X}\hat{\beta})$ is unbiased estimator of $\hat{\sigma}^2$.

Aside. The only full rank projection matrix is the identity matrix.

STAT 512 Facts.

• $\mathbb{E}[\mathbf{Z}^T \mathbf{A} \mathbf{Z}] = \operatorname{trace}(\mathbf{A} \operatorname{Var}(\mathbf{Z})) + \mathbb{E}[\mathbf{Z}]^T \mathbf{A} \mathbb{E}[\mathbf{Z}].$

•