Introduction to Artificial Intelligence

COMP307 Planning and Scheduling 1: Classic Planning

Yi Mei *yi.mei@ecs.vuw.ac.nz*

Outline

- Why Planning
- What is Planning
- Planning Domain Definition Language (PDDL)
 - State
 - Action
- Planning Algorithms as State-Space Search
 - Forward Search
 - Backward Search

Why Planning

- We make plans (mostly unintentionally) everyday
 - Change clothes
 - Make breakfast
 - Go from one place to another
 - **—** ...
- Robots
 - Clean/Housekeeping
 - Delivery
 - Game playing
- Sounds trivial?
 - Computers don't think so
 - World is complex and uncertain

What is Planning

- Find a plan, which is a sequence of actions to achieve the goal state from the initial state.
- Example: a vacuum cleaner's world
 - Two rooms (Left, Right)
 - Initial state: both rooms dirty, I am in room Left
 - Actions: {Suck, Move to Left, Move to Right}
 - Goal state: both rooms clean

State Space in Planning

- The state space is essentially a graph
- Each node stands for a state
- Each link (directed edge) stands for an action

Conceptual Model

- State-transition systems (discrete-event systems)
- $\Sigma = (S, A, E, \gamma)$
 - $S = \{s_1, s_2, ...\}$ is a finite set of states
 - $-A = \{a_1, a_2, ...\}$ is a finite set of actions
 - $-E = \{e_1, e_2, ...\}$ is a finite set of events
 - $\gamma: S \times A \times E \rightarrow 2^S$ is a state-transition function
- Represent as a directed graph
- Actions are transitions that are controlled
- Events are transitions that are contingent

- Planner: given Σ, initial state, objective, provide a plan for controller
- Controller: given a state and plan, provide an action

Classical Planning

Deterministic

 $-\gamma: S \times A \rightarrow S$: each state and action leads to a single other state

Static

 $-\Sigma = (S, A, \gamma)$: no contingency event

Finite

There are finite number of states and actions

Fully observable

– We know everything about Σ

Restricted goals

Can be specified as an explicit goal state(s)

Implicit time

Actions have no duration, instantaneous state transition

Classical Planning

Problem

- The environment $\Sigma = (S, A, \gamma)$
- The initial state s_0
- The goal state(s) S_g
- Solution (Plan)
 - A sequence of actions $(a_1, a_2, ...)$
 - State transitions $(s_1, s_2, ... s_k)$, where $s_1 = \gamma(s_0, a_1)$, $s_2 = \gamma(s_0, a_2)$, ..., and $s_k \in S_g$ is a goal state
- How to represent the states and actions?
- How to perform the search for a solution efficiently
 - Which search space, which algorithm, and what heuristics and control techniques to use for finding a solution.

Planning Domain Definition Language

- A classic representation for planning
- A state is represented as a conjunction of fluents that are ground (no variable) and functionless atoms.
 - Lowercase = variable
 - Capital letters = value
 - Opposite to the style of Probability
- Example
 - At(x) is invalid: not ground and has variable x
 - $-\neg Clean(Right)$ is invalid: has the negate function
 - At(Father(Fred), Sydney) is invalid: has the function Father(Fred)
 - $At(Left) \wedge Clean(Left)$ is valid
- Closed world assumption: any fluents that are not mentioned are false.
 - At(Left) means Left is not clean, as Clean(Left) is not mentioned

Planning Domain Definition Language

- An action consists of an action name, all the variables used, a precondition and an effect.
 - Difference from State: there can be variables in actions
- Example: a plane flies from an airport to another airport
 - Action(Fly(p, from, to),
 - PRECOND: $At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)$
 - EFFECT: $\neg At(p, from) \land At(p, to)$)
- Applicability: an action a is applicable in state s, if its precondition is satisfied by s
- Multiple instantiation: Fly(NZ410, Auckland, Wellington) and Fly(NZ87, Auckland, HK)

PDDL in Vacuum Cleaner's World

- Init(At(Left))
- $Goal(Clean(Left) \land Clean(Right))$
- Action(MoveLeft(),
- PRECOND:
- EFFECT: $At(Left) \land \neg At(Right)$)
- Action(MoveRight(),
- PRECOND:
- EFFECT: $At(Right) \land \neg At(Left)$)
- Action(Suck(x),
- PRECOND: At(x)
- EFFECT: Clean(x)

Update State with Action

- Delete list DEL(a): remove the fluents that appear as negative literals in the action's effects
- Add list ADD(a): add the fluents that are positive literals in the action's effects
- $s' = \gamma(s, a) = (s \mathsf{DEL}(a)) \cup \mathsf{ADD}(a)$
- Example in the vacuum cleaner's world
 - $s_1 = At(Left), a_1 = MoveRight()$
 - EFFECT $(a_1) = At(Right) \land \neg At(Left)$
 - $s_1 DEL(a_1) = \emptyset$
 - $\gamma(s_1, a_1) = \emptyset \cup ADD(a_1) = At(Right)$
 - $s_2 = At(Right), a_1 = Suck(Right)$
 - EFFECT $(a_2) = Clean(Right)$
 - $s_2 DEL(a_2) = At(Right)$
 - $\gamma(s_2, a_2) = At(Right) \cup ADD(a_2) = At(Right) \wedge Clean(Right)$

A Better PDDL

- Init(At(Left))
- $Goal(Clean(Left) \land Clean(Right))$
- Action(MoveLeft(),
- PRECOND: At(Right)
- EFFECT: $At(Left) \land \neg At(Right)$)
- Action(MoveRight(),
- PRECOND: At(Left)
- EFFECT: $At(Right) \land \neg At(Left)$)
- Action(Suck(x),
- PRECOND: $At(x) \land \neg Clean(x)$
- EFFECT: Clean(x))

Generalised PDDL

- Assuming there are four rooms {Left, Right, Top Bottom}
 - Can move from any room to any room
 - Otherwise, we need more information, e.g. $Adjacent(Left, Top), \dots$
- Init(At(Top), Adjacent(Left, Top), ...)
- $Goal(Clean(Left) \land Clean(Right) \land Clean(Top) \land Clean(Bottom))$
- Action(Move(x, y),
- PRECOND: $At(x) \land \neg At(y) \land Adjacent(x, y)$
- EFFECT: $At(y) \land \neg At(x)$
- Action(Suck(x),
- PRECOND: $At(x) \land \neg Clean(x)$
- EFFECT: Clean(x))

- Forward (progression) state-space search
 - Start with the initial state
 - Examine all the applicable actions for the current state
 - Avoid loop never go back to previous states
 - Until reach a goal state
- There can be multiple different goal states
 - All the goal state fluents are present
 - Other fluents can be present as well
 - E.g.
 - Both rooms are clean, the cleaner can be in either room
 - $Clean(Left) \land Clean(Right) \land At(Left)$
 - $Clean(Left) \land Clean(Right) \land At(Right)$

- A plan is a path from the root node to a non-loop leaf node
- Initial state: At(Left)
- Action 1: Suck(Left)
- State 1: $At(Left) \wedge Clean(Left)$
- Action 2: Move(Right)
- State 2: $At(Right) \wedge Clean(Left)$
- Action 3: Suck(Right)
- State 3 (Goal): $At(Right) \wedge Clean(Left) \wedge Clean(Right)$

- Backward (regression) relevant state-space search
 - Start with a goal state (random if there are more than one)
 - Examine all the relevant actions
 - Could be the *last* step leading to the current state
 - At least one effect is an element (positive fluent) of the current state
 - Has no effect that negates an element of the current state
 - Precondition of the action does not contain any conflicting fluent with the current state
 - Avoid loop
 - Until reach the initial state

$$s' = \gamma^{-1}(s, a) = (s - effects^{+}(a)) + precond(a)$$

- A plan is a path from a non-loop leaf node to the root node or the earliest goal state in the middle
- Initial state: At(Left)
- Action 1: Suck(Left)
- State 1: $At(Left) \wedge Clean(Left)$
- Action 2: Move(Right)
- State 2: $At(Right) \wedge Clean(Left)$
- Action 3: Suck(Right)
- State 3 (Goal): $At(Right) \wedge Clean(Left) \wedge Clean(Right)$

Summary

- What is planning? Find a sequence of actions to achieve the goal state from the initial state
- Planning Domain Definition Language (PDDL) a standard language to represent planning problems
- Planning algorithms as state-space search
 - Forward search
 - Backward search

 Suggested reading: Text book, chapter 10: Classical Planning