A note on Darwiche and Pearl

Daniel Lehmann and students in the Advanced Seminar in AI

April, 22nd 1998

Abstract

It is shown that Darwiche and Pearl's postulates imply an interesting property, not noticed by the authors.

1 A short remark

In [?], Darwiche and Pearl propose postulates for iterated revisions, noted (R*1) to (R*6) and (C1) to (C4). In particular, the postulate (C3) reads:

(C3) If
$$\Psi \circ \alpha \models \mu$$
, then $(\Psi \circ \mu) \circ \alpha \models \mu$.

It will be shown that, in the presence (R*1) to (R*6), (C1) and (C3) imply:

(**) If
$$\Psi \circ \alpha \models \mu$$
, then $(\Psi \circ \mu) \circ \alpha \equiv \Psi \circ \alpha$.

First, a lemma.

Lemma 1 Assuming (R*1) to (R*6), if $\Psi \circ \mu \models \varphi$, then $\Psi \circ \mu \equiv \Psi \circ (\mu \wedge \varphi)$.

Proof: Since $\Psi \circ \mu \models \varphi, \Psi \circ \mu \models (\Psi \circ \mu) \land \varphi$. By $(R^*4), (\Psi \circ \mu) \land \varphi \models \Psi \circ (\mu \land \varphi)$. Therefore $\Psi \circ \mu \models \Psi \circ (\mu \land \varphi)$.

If $\Psi \circ \mu$ is satisfiable, then, since $\Psi \circ \mu \models \varphi$, $(\Psi \circ \mu) \wedge \varphi$ is satisfiable and, by (R*5), $\Psi \circ (\mu \wedge \varphi) \models (\Psi \circ \mu) \wedge \varphi$ and therefore $\Psi \circ (\mu \wedge \varphi) \models \Psi \circ \mu$.

If $\Psi \circ \mu$ is not satisfiable, then, by (R*3), μ is not satisfiable, and $\mu \wedge \varphi$ is not satisfiable. By (R*1), then, $\Psi \circ (\mu \wedge \varphi) \models \Psi \circ \mu$.

Lemma 2 Assuming (R^*1) to (R^*6), (C1) and (C3), if $\Psi \circ \alpha \models \mu$, then ($\Psi \circ \mu$) $\circ \alpha \equiv \Psi \circ \alpha$.

Proof: Suppose $\Psi \circ \alpha \models \mu$. By Lemma 1, $\Psi \circ \alpha \equiv \Psi \circ (\alpha \wedge \mu)$. By (C1), $\Psi \circ (\alpha \wedge \mu) \equiv (\Psi \circ \mu) \circ (\alpha \wedge \mu)$. But, by (C3), $\Psi \circ \mu \circ \alpha \models \mu$ and, by Lemma 1, $\Psi \circ \mu \circ \alpha \equiv \Psi \circ \mu \circ (\alpha \wedge \mu)$.

We conclude that $\Psi \circ \alpha \equiv \Psi \circ \mu \circ \alpha$.