Road vehicles passive suspension system

M. Gobbi 3/2016

Data of the reference road vehicle taken into consideration

Parameter	Reference value	Lower and upper bound†
m , (kg)	229	114-458
m , (kg)	31	15-62
k _{1r} (N/m)	120 000	60 000-240 000
k _{2r} (N/m)	20 000	10 000-40 000
r _{2r} (N s/m)	1200	600-2400

[†]Lower and upper bounds refer to parameter sensitivity analysis.

Table 2

Data of the road roughness taken into consideration

Parameter	Reference value	
$A_{\mathfrak{p}}$	(m)	1·4e-5
$a = s_c/v$	(rad/m) (m²)	0.4
A_{ν}	(m ²)	3·5e−5

Data of the reference road vehicle taken into consideration

Parameter	Reference value	Lower and upper bound†
m , (kg) m , (kg)	229 31	114-458 15-62
$k_{1r}(N/m)$	120 000 20 000	60 000-240 000 10 000-40 000
k _{2r} (N/m) r _{2r} (N s/m)	1200	600-2400

[†]Lower and upper bounds refer to parameter sensitivity analysis.

Table 2

Data of the road roughness taken into consideration

Parameter	Reference value		_
$a = \frac{A_b}{A_o} v$	(m) (rad/m) (m²)	1·4e–5 0·4 3·5e–5	- con

$$\sigma_{\ddot{x}_{2}} = A \cdot \sqrt{\frac{(m_{1} + m_{2})}{m_{2}^{2} r_{2}}} k_{2}^{2} + \frac{k_{1} r_{2}}{m_{2}^{2}}$$

$$\sigma_{Fz} = A \cdot \sqrt{\frac{(m_{1} + m_{2})^{3}}{m_{2}^{2} r_{2}}} k_{2}^{2} - 2 \frac{m_{1} k_{1} (m_{1} + m_{2})}{m_{2} r_{2}} k_{2} + \frac{k_{1} r_{2} (m_{1} + m_{2})^{2}}{m_{2}^{2}} + \frac{k_{1}^{2} m_{1}}{r_{2}}$$

$$\sigma_{x_{2} - x_{1}} = A \cdot \sqrt{\frac{m_{1} + m_{2}}{r_{2}}}$$

$$A = \sqrt{1/2 A_{b} v}$$

 x_2 x_2 x_1 x_1 x_2 x_1 x_2 x_3 x_4 x_4 x_4 x_5 x_5

Figure 3. $\sigma_{\bar{x}_2}/\sigma_{\bar{x}_3}$: non-dimensional standard deviation of the vertical body acceleration as function of morparameters. Data of the reference vehicle in Table 1, running condition data in Table 2. Each diagram has be obtained by varying one single parameter, the other ones being constant and equal to those of the reference vehicle ---, 2S-PSD: v = 10 m/s; ----, 2S-PSD: v = 50 m/s; ----, 1S-PSD: any speed.

Figure 4. $\sigma_{F_s}/\sigma_{F_s}$: non-dimensional standard deviation of road holding as a function of model parameters. Data of the reference vehicle in Table 1, running condition data in Table 2. Each diagram has been obtained by varying one single parameter, the other ones being constant and equal to those of the reference vehicle. ————, 2S-PSD: v = 10 m/s; ————, 2S-PSD: v = 50 m/s; ————, 1S-PSD: any speed.

Figure 5. $\sigma_{x_2-x_1}/\sigma_{x_2-x_1r}$: non-dimensional standard deviation of working space as function of model parameters. Data of the reference vehicle in Table 1, running condition data in Table 2. Each diagram has been obtained by varying one single parameter, the other ones being constant and equal to those of the reference vehicle. ----, 2S-PSD: v = 10 m/s; $\cdot - \cdot - \cdot - \cdot$, 2S-PSD: v = 50 m/s; $\cdot - \cdot - \cdot - \cdot$, 1S-PSD: any speed.

From Eq. (3.18), with the substitution C = D/d, the spring rate for a helical spring under an axial load is

$$k = \frac{Gd}{8C^3N}. (3.22)$$

For springs in parallel having individual spring rates k_i (Fig. 3.4a), the spring rate k is

$$k = k_1 + k_2 + k_3. (3.23)$$

For springs in series, with individual spring rates k_i (Fig. 3.4b), the spring rate k is

$$k = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3}}. (3.24)$$