Clock and Data Recovery

Lecture 9

Linear versus Multi-Phase Non-linear CDRs

- The majority of the current designs (up to 2002) employ multi phase sampling and Bang-Bang phase detectors
- CDRs operating at speeds > $0.4f_T$ use BB phase detectors

D Flip-flop as a Non-Linear PD

- Each rising edge of the data samples the clock
- If the clock leads the data: the flip-flop will always samples the low level of the clock producing a zero
- If the clock lags the data: the flip-flop will always sample a one
- The PD output can only take one of 2 values depending on weather the data leads or lags the clock
- Thus the output indicates the polarity of the phase difference between the data and clock

D Flip-flop as a Non-Linear PD

- The DFF PD exhibits nonlinear behavior with very high gain close to $\Delta \phi$ =0 and zero gain otherwise
- This behavior is called a "bang-bang" characteristic, where the output jumps from one extreme to another with a slight shift in the input phase
- The BB PD signal can be used to derive the VCO control voltage in a CDR:
 - If the clock leads the data: the negative output will reduce the VCO frequency
 - If the clock lags the data: the positive output will reduce the VCO frequency

First Order CDR Using DFF PD

- In a 1st order bang-bang CDR the binary PD output is used to derive the VCO directly
- If the clock lags the data: the PD will continue to generate a "1" running the VCO at the faster frequency (f_{nom}+f_{BB}) until the phase of the clock accumulates enough phase and catches up with the data reducing the phase error to zero
- Under lock condition: the PD will continue oscillating between "1" and "-1" with equal probabilities (meta-stability region)
- Another DFF is needed to re-time the data with the recovered clock (VCO clock)

First Order CDR Using DFF PD

- Drawbacks of this simple CDR:
 - If the CDR is under lock condition and the data contains long CIDs, the PD will continue to produce +1 (or -1) forcing the VCO frequency to run at a the high (or the low) frequency for a long time causing the clock to drift from the data "creating large amount of jitter" → Jitter accumulation
 - If DFF exhibit a finite T_{ck-Q} , then after the CDR locks, the clock will lag the data by T_{ck-Q} whereas the output flip flop samples the data with the clock. This will results in a shift (or skew) of $2T_{ck-Q}$ away from the center of the eye

Alexander Phase Detector

- To avoid the skew problem, it is desired to sample the date with the recovered clock
- Using the 3 samples S1-S3 taken at 3 consecutive edges the PD can tell:
 - if a data transition is present, if no transition is present all the 3 samples would have the same value
 - If the clock leads or lags the data
 - If the clock leads the data (Early): then (S1=S2)≠S3
 - If the clock lags the data (Late): then S1≠(S2=S3)

- Early=S2⊕S3
- Late=S1⊕S2
- Late=Early=0→ no transition
- ⊕ means an XOR operation

S1	S2	S 3	Late	Early	Transition
0	0	0	0	0	X
0	0	1	0	1	$\sqrt{}$
0	1	0	-	-	Imp.
0	1	1	1	0	$\sqrt{}$
1	0	0	1	0	$\sqrt{}$
1	0	1	-	-	Imp
1	1	0	0	1	$\sqrt{}$
1	1	1	0	0	X

- Note: The Alexander Phase detector does not provide details about how much early or late is the clock
- The Alexander PD only provides the polarity information, hence it is a nonlinear "or bang-bang" phase detector

- S1 and S3 are sampled at the rising edge of the clock
- The 2nd rising clock edge delays S1 by 1 clock cycle and is stores it at Q2
- S2 is sampled at the falling edge of the clock and the following rising edge delays it by 0.5 a clock cycle and stores it at Q4
- All the required samples are synchronized at t1 and are valid for 1 full clock cycle for comparison

<u>Late clock</u> Δφ<0 Late=1 & Early =0 Late-Early=+ve Early clock $\Delta \phi > 0$ Late=0 & Early=1 (Late- Early)=-ve

- The Early-Late pulses can be used to derive the VCO control voltage to slowdown/speed up the VCO
- The Alexander PD has a very high gain around Δφ=0 (bang-bang PD)
- Advantages of Alexander PD:
 - PD automatically re-times the data at Q1 and Q2
 - In the absence of data transitions the PD generates no output pulses leaving the output at zero "tri-state PD". This will ensure the VCO control voltage is undisturbed, and will not result in VCO freq. drift as in binary DFF PDs

- Advantages of Alexander PD (Cont'd):
 - When the CDR locks the sample S2 will always co-inside with the zero crossing resulting in meta-stability. In this case, if the edge FF can't resolve the edge samples the PD output will be near zero resulting in no updates to the VCO control voltage
 - The Alexander phase detector has very high gain close to lock which eliminates the need for a charge pump and eliminates the need to amplify very short pulses in linear PDs

High-Speed CML XOR

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

- Differential swing (p-p)=2I_BR is determined by the load resistors and the bias current, which also sets the output common mode level
- Speed is mainly determined by the RC product at the output node
- To increase the speed and maintain the bandwidth the bias current must be increase → consume more power (or use inductive peaking techniques)

High-Speed CML Samplers/Flip-Flops

- A D-flip flop can simply be implemented using master slave latches
- The latch consists of a pre-amplifier Apre and a regeneration circuit with a re-generation time constant τ_{rea}
- In track mode, clk is high and the output tracks the input with a gain A_{pre} , if input large enough the output will saturate at $v_{o-p}=V_F=I_BR$
- In the latch (regeneration) mode, the positive feedback results in an exponential increase in the output $v_o \propto v_{initial} \exp(+t/\tau_{reg})$
- Until the current is fully steered and $v_{o-p}=V_F=I_BR$

High-Speed Latches

- Assume that the differential input changes with a slope of 2k, and the latch has sufficient BW such that its output follow the input with the same slope
- If the phase difference between the data and clk, ΔT, is large the signal reaches I_BR in the sampling mode and is held constant in latch mode
- If $2k\Delta TA_{pre} < V_F$, the circuit regeneratively amplifies the sampled level providing $V_{oPD,avg} < V_F$

High-Speed Latches (Cont'd)

• If ΔT is sufficiently small the regeneration in Tb/2 doesn't amplify $2k\Delta TA_{pre}$ to V_F leading to $V_{oPD,avg} << V_F$

$$v_{oPD,avg} = \frac{1}{T_b} \int_{0}^{T_b/2} 2k\Delta T A_{pre} \exp(t/\tau_{reg}) dt = 2k\Delta T A_{pre} \frac{\tau_{reg}}{T_b} \exp(T_b/2\tau_{reg})$$

• The average output is linearly proportional to ΔT , as long as the final value at $T_b/2 < V_f$:

 $\Delta T_{lin} = V_F / 2kA_{pre} \exp(T_b / 2\tau_{reg})$

[Ref]: "Analysis and Modeling of Bang-Bang Clock and data recovery circuit", JSSC Sept. 2004

High-Speed Latches (Cont'd)

• For phase differences > ΔT_{lin} , the slope of the characteristics starts to drop reaching zero when the pre-amplified values reaches V_F :

$$\Delta T_{sat} = V_F / 2kA_{pre}$$

- For small values of input jitter, i.e. small ∆T, a BB-CDR can be analyzed in a similar fashion to linear CDRs
- As the input jitter starts to increase the loop starts to become heavily nonlinear and the loop needs to be analyzed differently

CDR Based on Alexander PD

Analysis of BB-PD CDRs

- BB-PD is follower by a V/I converter and a loop filter before the VCO
- BB phase detectors are non-linear and theoretically they provide very high gain in the vicinity of $\Delta\phi=0$
- However, the actual BB-PD exhibits a finite gain for small phase differences $|\Delta \phi| < \phi_m$ before it saturates, due to:
 - the meta-stability of the DFFs
 - the random jitter on the recovered clock

Jitter Transfer of BB CDRs

- To analyze jitter transfer, assume the input data phase $\phi_{in}(t)$ varies according to the following equation: $\phi_{in}(t) = \phi_{in,p} \cos(\omega_{\phi} t)$
- If $\phi_{in,p} < \phi_m$ then the PD operates in the <u>linear region</u> resulting in a standard second-order low-pass response for the loop "similar to linear PD CDRs"
- Indicating that the ϕ_{out} tracks ϕ_{in} as long as ω_{ϕ} is less than the loop BW

[Ref]: "Analysis and Modeling of Bang-Bang Clock and data recovery circuit", JSSC Sept. 2004

- As $\phi_{in,p}$ exceeds ϕ_m the difference $\Delta \phi$ <u>may</u> exceed ϕ_m leading to nonlinear operation
- For low jitter frequencies ω_{ϕ} , ϕ_{out} tracks ϕ_{in} i.e. $\phi_{out}/\phi_{in}\sim 1$, which makes $|\Delta\phi|<\phi_{m}$
- As the jitter frequency increases so does Δφ, requiring the PD to pump more current in the loop filter, but the V/I current saturates beyond the linear region leading to <u>slewing</u>
- Assume $\phi_{in,p}>>\phi_m$, such that $\Delta\phi$ changes polarity in every half cycle of ω_ϕ , and I_1 keeps jumps between $+I_p$ and $-I_p$
- Since the loop capacitor is typically very large its voltage is ~ constant and the VCO control voltage tracks ±I_DR

 A square wave on the VCO control voltage leads to a triangular wave on the VCO output phase

• The peak value of the output phase ϕ_{out} occurs after its integration for $T_{\phi}/4$, where $T_{\phi}=2\pi/\omega_{\phi}$:

$$\phi_{out,p} = \frac{K_{VCO}I_{P}RT_{\phi}}{4}$$

 Hence, the jitter transfer is obtained by dividing with the input jitter peak value:

$$\left| \frac{\phi_{out,p}}{\phi_{in,p}} \right| = \frac{\pi K_{VCO} I_P R}{2\phi_{in,p} \omega_{\phi}}$$

- The jitter transfer rolls of with a slope of -20dB/dec
- However, the jitter transfer is a function of the amplitude of the input jitter $\phi_{\text{in,p}}$
- As the jitter frequency decreases the CDR stops slewing and enters into the linear region φ_{out}=φ_{in}

 Extrapolating the 2 regions we can get an expression for the 3dB BW of the loop:

$$\omega_{3dB} = \frac{\pi K_{VCO} I_P R}{2\phi_{in,p}}$$

 It is possible to approximate the entire jitter transfer as:

$$\frac{\phi_{out}}{\phi_{in}}(s) = \frac{1}{1 + s/\omega_{3dB}}$$

- The BB-CDR loop BW is a function of the input jitter amplitude φ_{in,p}
- The jitter transfer approaches that of the linear loop as $\phi_{\text{in,p}}$ decreases

Jitter Tolerance in BB CDRs

- JTOL is the maximum input jitter that CDR can tolerate without increasing BER for different jitter frequencies
- Phase error $\Delta \phi_{\text{max}}$ approaches π (0.5UI) for BER to rapidly increase
- CDR has to be slewing in order for errors to occur

$$\phi_{in} = \phi_{in,p} \cos(\omega_{\phi} t + \delta)$$

- $\Delta\phi_{\text{max}}$ occurs at $t_1 \approx (\Delta\phi \text{ at } t_0 \approx T_\phi/4)$ (approx. simplifies the analysis)
- CDR has to be slewing in order for errors to occur

$$\Delta \phi_{\text{max}} \approx \Delta \phi(t_o) = \left| \phi_{in,p} \cos(\omega_{\phi} \times T_{\phi}/4 + \delta) \right|$$

• $\phi_{in}(t)$ and $\phi_{out}(t)$ have the same at t= 0:

$$K_{VCO}I_PRT_\phi/4 = \phi_{in,p}\cos(\delta)$$

Jitter Tolerance in BB CDRs (Cont'd)

$$\Delta \phi_{\text{max}} \approx \frac{1}{2\omega_{\phi}} \sqrt{4\omega_{\phi}^2 \phi_{in,p}^2 - \pi^2 K_{VCO}^2 I_P^2 R^2} = \pi$$

• Equating $\Delta \phi_{max}$ to π results in the maximum tolerable input jitter

$$|G_{JT}| = \pi \sqrt{1 + \frac{K_{VCO}^2 I_P^2 R^2}{4\omega_{\phi}^2}}$$

- For low values of ω_{ϕ} , G_{JT} drops by 20dB/dec
- For higher values of ω_{ϕ} , G_{JT} approaches π (0.5UI)

• The corner frequency can be calculate by equating G_{JT} to $\pi\sqrt{2}$

$$\omega_1 = K_{VCO} I_P R/2$$

 Our analysis has assumed linear slewing, i.e. the voltage across the capacitor was assumed constant and the change in the control voltage is due to I_PR

Jitter Tolerance in BB CDRs (Cont'd)

- For jitter frequencies lower than 1/RC nonlinear slewing starts to take place, and the voltage across the capacitor starts to yield a parabolic shape for $\phi_{out}(t)$
- For sufficiently low jitter frequencies we can neglect the effect of the linear term compared to the parabolic term
- Performing the analysis in a similar method results in:

$$\left|G_{JT}\right| = 1.26 \frac{K_{VCO}I_{P}\pi^{2}}{4C_{p}\omega_{\phi}^{2}}$$

$$\omega_2 = 0.63\pi/RC_p$$

JSSC 2004: 10Gb/s Alexander PD CDR

- 10Gb/s measurements show the bandwidth of the jitter transfer inversely scales linearly with input jitter
- Measured high frequency jitter tol. is worse than 0.5UI (theoretical limit)
- Recovered clock jitter histogram gives jitter pp and rms values

Half-Rate Phase Detectors

- Oscillators are hard to design at very high frequencies with a wide tuning range and good jitter performance
- CDRs can sense full-rate data but employ a VCO running at a fraction of the speed (half-rate, quarter-rate,...)
- This also relaxes the speed requirement on the PDs (extra area!)
- Picture shows a quarter rate architecture with a VCO running at 10GHz to receive a 40Gbps signal

Failure of DFF as a Half-rate PD

- A DFF sensing a half-rate clock with a constant phase difference relative to the full-rate data results in both positive and negative pulses at the PD output
- DFF can't work as a half-rate PD

Failure of Hogge PD as a Half-rate PD

- Since half of the clock transitions are absent, the clock can continue to sample a high (or a low) level failing to detect data transitions
- The proportional and reference pulses are invalid
- Date transitions can be detected if both clock edges of the half rate clock are used to sample the data!

Half-rate Hogge Phase Detector

- Each latch is transparent for half of the clock cycle passing data transitions to its output and is latched on the other half cycle
- L1 is transparent when CK is high→L₁ produces a pulse T_{ck}/2+∆T wide
- L2 is transparent when CK is low→L₂ produces a pulse T_{ck}/2-∆T wide
- A XOR B produces pulses ∆T wide on each data transition

Half-rate Hogge Phase Detector (Cont'd)

- A complete Hogge PD must generate reference pulses to uniquely represent the phase error for any data transition density
- The two additional latches L3 & L4 together with L1 & L2 respectively form a master slave flip-flop
- If there is a data transition C XOR D generates a pulse T_{ck}/2 wide
 →reference pulses

Half-rate Hogge Phase Detector (Cont'd)

- At lock conditions, the clock is aligned to the center of the data eye
- Then the proportional pulses are T_{CK}/4 wide (reference pulses are T_{CK}/2)
- The output of the reference XOR
 has to be scaled down by a factor
 of 2 in the charge pump to
 correctly align the clock and data
- The half rate PD provides retimed and also de-multiplexed data by 2
- The outputs are available as 2 data streams at L3 and L4

Half-rate Alexander Phase Detector

- Alexander phase detector already requires sampling on both edges for full-rate operation (for data and edge information)
- It must employ additional clock phases to operate in half-rate mode
- The data must be sampled using an in-phase CK_I and edge samples using a quadrature clock CK_O

Half-rate Alexander Phase Detector (Cont'd)

- A1, A2, & A3 represent the consecutive samples in the full-rate PD
- The 2 XORs produce the up and down pulses
- Under lock condition, the rising edge of CK_Q occurs at the data zero crossing
- Additional re-timing latches are usually required to eliminate the skew between A1-A3 by delaying A1 by $T_{\rm CK}/2$ and A2 by $T_{\rm CK}/4$