

Department of Mathematics, Bennett University

Course Details for EMAT101L – Fall Semester 2018

Course Name:	Engineering Calculus	Course Code:		EMAT101L			
Department:	Mathematics	Type:			Core		
L-T-P Structure	3-1-0	Credits	4	Pre-requi	site:	NA	
Course Objectives	Main Objectives of the course are: CO1: To identify the convergence or divergence of a wide class of sequence/series. CO2: To develop the fundamental ideas of the differential and integral calculus to						
	functions of one variable. CO3: To understand the concepts of the differential and integral calculus to functions of multivariable. CO4: To develop the problem-solving skills related to limit, continuity, differentiation, integration etc. using some computational software packages.						
Course Outcome	At the end, students will be able to 1: Test the convergence and divergence of sequence and series. 2: Check the continuity, differentiability and integrability of functions in single and multi-variables. 3. Compute the area and volume of functions up to three-variables. 4. Approximate the smooth function with a polynomial. 5. Solve the problems using computational software packages.						
	Compon	ent of Course	Evalu	ation		Percentage	
	Project/Assign	nment			5%+5%		
	Online Quizzes				+5%=10%		
Evaluation	Quizzes 10%			10%+1	10%=20%		
Policy	Mid Term 20%			20%			
	End Term	End Term 40%			40%		
	Total 100%						

S. No.	Course Contents	No. of Hours				
1	The Real Number System, Archimedean Property, Convergence of a Sequence, Monotone Sequences, Cauchy Criterion, Bolzano- Weierstrass Theorem, Limit inferior and Limit Superior	6				
2	Infinite Series, Convergence Tests and Alternating series	4				
3	Limit, Continuity, Existence of Maxima, Intermediate Value Property	4				
4	Differentiability, Rolle's Theorem, Mean Value Theorem	3				
5	Convexity, Concavity, L'Hospital Rule, Fixed Point Iteration Method, Taylor's Theorem, Taylor Series, Power Series	5				
6	Riemann Integration, Fundamental Theorems of Calculus, Riemann Sum	3				
7	Improper Integrals, Beta-Gamma Functions, Differentiation under integration	3				
8	Area between two curves; Polar Coordinates, Volumes by slicing, Washer and Shell Methods, Length of a plane curve, Areas of Surfaces of Revolution	5				
9	Review of vectors, Calculus of Vector Valued Functions, Functions of Several Variables: limit, Continuity and Differentiability, Chain Rule, Directional Derivative, Gradient	6				
10	Mixed Derivative Theorem, MVT, Extended MVT, Taylor's Theorem in Multiple Variables, Hessian, Maxima, Minima, Second Derivative Test, Lagrange Multiplier Method	6				
11	Double Integrals, Change of Variable in a Double and Triple Integrals, Area of a Parametric Surface and surface integral	5				
12	Surface Area, Surface Integrals, Line Integrals Green's Theorem and Applications	4				
	Total Lectures	54				
Special Instructions	 Students must attend every class. They are expected to arrive on time for class. Please turn off cell phones when you enter the class. Your participation is essential. 					
Text Book:	 Maurice D. Weir and Joel Hass, "Thomas' Calculus", 12th Edition, Pearson Education India, 2016. K. A. Ross, "Elementary Analysis: The Theory of Calculus", 2nd Edition, Springer, 2013. 					
References:	 S. R. Ghorpade and B. V. Limaye, "An Introduction to Calculus and Real Analysis", Springer India, 2006. James Stewart, "Calculus", 7th Edition, Brooks Cole Cengage Learning, 2012. Bartle and Shebert, "Introduction to Real Analysis", 4th Edition, Wiley, 2014. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2010. 					