

- GROUP OF MEMBERS
- 1. Hala Sarwi 2111394

- 2. Reem Alsayed 2110712
- 3. Lara Alofi 2110886

CONTENTS

- 4. Same size of caches
- **6.** Difference size of caches
- **7.** Tag
- 8. C
- 12. Output of code

A - SAME SIZE OF CACHE

A - SAME SIZE OF CACHE

B - DIFFERENCE SIZE OF CACHE

D- Direct Mapping

Tag	Index(line)	Offset (Word)
100	000100	0
3 bit	6 bit	0 bit

MEMORY SIZE = 512->2^9, CACHE SIZE= 64 -> 2^6, BLOCK/LINE OFFSET=0

PHYSICAL ADDRESS = LOG2 512 = 9 BITS
9 BITS WILL BE DIVIDED INTO TAG AND CACHE LINE

NUMBER OF LINES = CACHE SIZE/ LINE SIZE

NUMBER OF LINES = 2^6/ 2^0 = 2^6-> LINE INDEX OF 6 BITS

NUMBER OF BLOCKS = MEMORY SIZE / BLOCK SIZE

NUMBER OF BLOCKS = 2^9/2^0 = 2^9-> BLOCK INDEX OF 9 BITS

TAG = BLOCK INDEX -LINE INDEX

TAG = 9-6=3 BITS

TAG OF 3 BITS WILL IDENTIFY WHICH PARTICULAR BLOCK IS

CURRENTLY STORED IN A SPECIFIC LINE.

D- Fully Associative

Tag	Offset (Word)
100010100	0
9 bit	0 bit

```
MEMORY SIZE = 512->2^9, CACHE SIZE= 64 -> 2^6, BLOCK/LINE OFFSET=0

PHYSICAL ADDRESS = LOG2 512 = 9 BITS

NUMBER OF BLOCKS = CACHE SIZE / BLOCK SIZE

NUMBER OF BLOCKS = 2^9/2^0 = 2^9-> BLOCK INDEX OF 9 BITS

TAG BIT SIZE = BLOCK INDEX
TAG= 9 BITS
```


D- 2-Way associative

Tag	Index (Set)	Offset (Word)
111	100110	0
3 bit	6 bit	0 bit

```
MEMORY SIZE = 512->2^9, CACHE SIZE= 64 -> 2^6, BLOCK/LINE OFFSET=0

PHYSICAL ADDRESS = LOG2 512 = 9 BITS

9 BITS WILL BE DIVIDED INTO TAG AND SET INDEX

NUMBER OF LINES = CACHE SIZE/ LINE SIZE

NUMBER OF LINES = 2^6/2^0 = 2^6

NUMBER OF SET = NUMBER OF LINES / SET SIZE

NUMBER OF SET = 2^6/2^2 = 2^6

SET INDEX = 4 BITS

TAG = ADDRESS LENGTH -(NUMBER OF SET+OFFSET)

TAG = 9-(6+0)=3 BITS

TO IDENIFY WHICH BLOCK IS MAPPED TO A SPECIFIC LINE, WE ONLY SEARCH INSIDE THE SET THAT THE BLOCK IS MAPPED TO USING COMPARATOS OF SIZE BITS.
```


D- 4-Way associative

Tag	Index (Set)	Offset (Word)
00111	1100	0
5 bit	4 bit	0 bit

```
MEMORY SIZE = 512->2^9, CACHE SIZE= 64 -> 2^6, BLOCK/LINE OFFSET=0

PHYSICAL ADDRESS = LOG2 512 = 9 BITS

9 BITS WILL BE DIVIDED INTO TAG AND SET INDEX

NUMBER OF LINES = CACHE SIZE/ LINE SIZE

NUMBER OF LINES = 2^6/2^0 = 2^6

NUMBER OF SET = NUMBER OF LINES / SET SIZE

NUMBER OF SET = 2^6/2^2 = 2^4

SET INDEX = 4 BITS

TAG = ADDRESS LENGTH -(NUMBER OF SET+OFFSET)

TAG = 9-(4+0)=5 BITS

TO IDENIFY WHICH BLOCK IS MAPPED TO A SPECIFIC LINE, WE ONLY SEARCH INSIDE THE SET THAT THE BLOCK IS MAPPED TO USING COMPARATOS OF SIZE 5 BITS.
```

OUTPUT OF CODE

```
Mars Messages
                Run I/O
         Please enter a digits in Octal number (Consist three digit ):
         Error!!! the program is finished,
          Please the number should be three digit
          -- program is finished running --
         Reset: reset completed.
         Please enter a digits in Octal number (Consist three digit ):
         Error!!! the program is finished,
          Please the number should be three digit
          -- program is finished running --
  Clear
         Reset: reset completed.
         Please enter a digits in Octal number (Consist three digit ):
          500
         The Decimal equivalent is:
          -- program is finished running --
```

