Vermogensbepaling verwarmingsinstallatie met warmtepomp in woningen en woongebouwen

Jan Aerts projectcoördinator ISSO

Inhoud

- Comfort, energiegebruik en kosten
- Bepalen vermogen verwarmen
- Bepalen vermogen voor tapwater
- Bepalen vermogen opwekkingsinstallatie
- Vermogensverdeling opwekkers
- Economisch en/of duurzaam

Comfort, kosten en energiegebruik

Optimalisatie

Bepalen vermogen verwarmen

- Berekening benodigd vermogen per verwarmd vertrek
- 2. Berekening van het aansluitvermogen

Bepalen vermogen verwarmen vertrekken

$$\phi_{tot} = \phi_t + \phi_v + \phi_i + \phi_o$$

Bepalen aansluitvermogen verwarmen

Woningen met individuele installaties zijnde mechanische ventilatie

en vloerverwarming

In figuur alleen transmissie weergegeven.

ISSO J.C. Aerts

Som vermogen transmissie ϕ_t naar buiten

Som vermogen transmissie ϕ_t vloerverwarming naar buiten

Som vermogen transmissie ϕ_t naar buren

Som vermogen ventilatie ϕ_v

Som vermogen infiltratie φ_i vermenigvuldigd met z

Som vermogen opwarmtoeslag ϕ_{o}

Som vermogen warmteverlies leidingen ϕ_l

Aansluitvermogen

Bepalen aansluitvermogen verwarmen

Woningen met Collectieve installaties zijnde mechanische ventilatie

en vloerverwarming

Som vermogen transmissie ϕ_t naar buiten

Som vermogen transmissie ϕ_t vloerverwarming naar buiten

Som vermogen ventilatie ϕ_v

Som vermogen infiltratie φ_i vermenigvuldigd met z

Som vermogen opwarmtoeslag ϕ_{o}

Som vermogen warmteverlies leidingen ϕ_i

+

Aansluitvermogen

ISSO J.C. Aerts

Toepassen van ISSO 51

In te voeren gegevens

2.ISSO-publicatie 51

Berekeningsmethode

3. Resultaat 1:

Vermogens vertrekken ϕ_{tot}

4. Resultaat 2:

Aansluitvermogen

$$\phi_{\text{aansl}} = f(\phi_{\text{tot}} + \phi_{\text{l}})$$

Hoe kan men ϕ_{tot} en ϕ_{aansl} zo klein mogelijk krijgen

Bepalen vermogen verwarmen vertrekken

1. Vraagspecificatie:

Bouwkundig:

- Type woning (tussen, hoek, vrij, gestapelde bouw)
- Afmetingen van de woning (vaststellen volgens NEN 1068)
- R_c-waarden constructies (R_{c,minimaal} =2,5 m².K/W Bouw Besluit)
- Luchtdichtheid $q_{v.10}$ ($q_{v10,max}$ = 200 dm³/s Bouw Besluit)

CV- Installatie

- Aantal verwarmde ruimten
- Type afgiftesysteem: vloerverwarming, wandverwarming
- Minimale temperatuur: 20°C wk of slk, 22°C badkamer (conform GIW)
- Zekerheidklasse buren A,B,C en D (GIW klasse A θ_{buren} =10 °C of 15 °C)
- Wel/geen nachtverlaging
- Regeling: kamerthermostaat, per vertrek, adaptief (GIW per vertrek)

Ventilatie-installatie

- Minimale luchthoeveelheden per m²_{vloer} (vastgesteld in het Bouw Besluit)
- Vermindering aantal m²_{vloer} (krijtstreep methode niet toegestaan GIW)
- Minimaal 50% van buiten voor verblijfsgebied (NEN 1078)
- Type ventilatiesysteem A, B, C of **D met WTW**
- Bij D maximale inblaastemperatuur $\theta_{inblaas}$ =16°C (GIW eis)

Voorbeelden aansluitvermogen

4. Resultaat 2: Aansluitvermogen individuele installaties

- Nieuwbouw tussenwoning A_q =126 m^2
- $q_{v10} = 100 dm^3/s$
- Verwarmde vertrekken: woonkamer, keuken, toilet, hal, 3 slaapkamers
- Vloerverwarming
- Zekerheidklasse A
- U_{glas} =1,7 W/m².K
- Bij nachtverlaging opwarmtoeslag 2,5 W/m²

φ _{aansluit} / EPC	Ventilatiesysteem C		Ventilatiesysteem D	
R _c - buitenwanden m ² .K/W	Wel Nachtverlaging	Geen nachtverlaging	Wel nachtverlaging	Geen nachtverlaging
2,5	7,5 kW / 0,81	6,7 kW / 0,81	5,0 kW / 0,74	4,7 kW / 0,74
3,5	7,4 kW / 0,78	6,6 kW / 0,78	4,9 kW / 0,70	4,5 kW / 0,70
4	7,4 kW/ 0,77	6,6 kW / 0,77	4,8 kW / 0,69	4,4 kW / 0,69

Ten behoeve van EPC -berekening:

- NEN 5128, versie 2003
- LTV-verwarming aanvoertemperatuur 35°C
- Elektrische warmtepomp

Voorbeelden aansluitvermogen

4. Resultaat 2 Aansluitvermogen Collectieve CV installaties

- -Tien rijtjeswoningen met een collectieve verwarmingsinstallatie
- Nieuwbouw tussenwoning A_a=126 m²
- q_{v10}= 100 dm³/s
 Verwarmde vertrekken: woonkamer, keuken, toilet, hal, 3 slaapkamers
- Vloerverwarming
- Zekerheidklasse A
- $U_{olas} = 1.7 \text{ W/m}^2.\text{K}$
- Bij nachtverlaging opwarmtoeslag 2,5 W/m²

φ _{aansluit}	Ventilatiesysteem C		Ventilatiesysteem D	
R _c - buitenwanden m ² .K/W	Wel Nachtverlaging	Geen nachtverlaging	Wel nachtverlaging	Geen nachtverlaging
2,5	69 kW	61 kW	44 kW	41 kW
3,5	68kW	60 kW	43 kW	39 kW
4	68 kW	60 kW	42 kW	38 kW

Bepalen vermogen voor tapwater

Individueel ISSO-publicatie 30

Bepalen vermogen voor tapwater

Collectief ISSO-publicatie 55

$$\phi_{\text{btap,tot}} < \text{som } \phi_{\text{bt,won}}$$

Bepalen vermogen voor tapwater

Buffer voor warm tapwater (reductie te leveren vermogen)

$$\phi_{\text{opw,tap}} < \phi_{\text{btap}}$$

Bepalen vermogen opwekkingsinstallatie

Verwarmen:
$$\phi_{opw,cv} = redf_{gelijk,cv}^* som \phi_{aansluit} + som \phi_{verlies}$$

Tapwater:
$$\phi_{\text{opw,tap}} = \text{redf}_{\text{buf,tap}} * \text{redf}_{\text{gelijk,tap}} * \text{som } \phi_{\text{btap}} + \text{som } \phi_{\text{verlies}}$$

gelijktijdig

$$\phi_{\text{opw}} = \phi_{\text{opw,cv}} + \phi_{\text{opw,tap}}$$

Bepalen vermogen opwekkingsinstallatie

ISSO-publicatie 72: "Individuele installaties, combitoestel"

$$\phi_{\text{opw}} = \phi_{\text{aansluit}} + \text{redf}_{\text{buf,tap}}^* \phi_{\text{tap}}$$

Bijvoorbeeld:

$$\phi_{\text{opw}} = 4.1 + 0.62 = 4.72 \text{ kW}$$

Vermogensverdeling

$$\phi_{\text{opw}} = \phi_{\text{c}} + \phi_{\text{a}}$$

Definitie beta-factor $\beta = \phi_c/\phi_{opw}$

Vermogensverdeling

Waarom

- Te groot te leveren vermogen voor WP
- Te hoge aanvoertemperatuur nodig voor WP
- Kosten
- Deellast WP hoge schakelfrequentie, lagere
 COP en levensduur
- Bedrijfszekerheid

Nadelen

- Rendement opwekkingsinstallatie lager
- Besparing t.o.v conventioneel minder

Vermogensverdeling

Economisch

Duurzaam

Bedankt voor uw aandacht

