Machine Learning

Session 8 Linear Regression and Regularization

Introduction to Regression

Problem formulation: Loss / Cost function

Solution methods:

Gradient descent

• Closed-form solution

Geometrical Interpretation

Problem formulation: Maximum Likelihood

Regularization

Bibliography:

Bishop, CH 3, 3.1, 3.2

Introduction

Goal of Regression:

predict the value of a continuous target variable y for a new D-dimensional vector \mathbf{x} of input features

- Ingredients:
 - A set of training examples (the training set):

$$\mathbf{X} = \{ (\mathbf{x}^{(n)}, y^{(n)}) \}, \quad n = 1, ..., N \ \mathbf{x}^{(n)} \in \mathbb{R}^{D}, y^{(n)} \in \mathbb{R}$$

- A model $h_{\mathbf{w}}$ with parameters \mathbf{w} to be estimated. We expect: $h_{\mathbf{w}}(\mathbf{x}) \approx y$ for unseen examples
- The y variable is continuous (it does not represent a class)

Introduction

• Example: living areas of homes and its prices

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

1 feet = 0.30 m

 $1 \text{ feet}^2 = 0.09 \text{ m}^2$

Introduction

Example: living areas of homes and its prices

- Another example:
 predicting the grade of the ML course from
 - The grade of Algebra?
 - The grade of Algebra and Calculus?

Problem formulation: Loss / Cost function

The error corresponds to the green lines

Minimize the following objective: the least-squares cost function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2}$$

 $E(\mathbf{w})$ is zero when $h_{\mathbf{w}}(\mathbf{x})$ passes exactly through each training data point

Goal: learn the parameters w that minimize $E(\mathbf{w})$

Problem formulation: Loss / Cost function

F

Linear regression is regression with a linear model

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_D x_D$$

- The model parameters are the linear coefficients
- For convenience $\mathbf{w} = (w_0, ..., w_D)^T$ and $x_0 = 1$
- The least-squares cost function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)} - y^{(n)})^{2}$$

• How can we find $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} E(\mathbf{w})$?

The error at that point will be:
$$E(\widehat{\mathbf{w}}) = \frac{1}{2} \sum_{n=1}^{N} (h_{\widehat{\mathbf{w}}}(\mathbf{x}^{(n)}) - y^{(n)})^2$$

- 1st. Method: Least Mean Squares (LMS) algorithm
 - 1. Start with an initial guess \mathbf{w}_0
 - 2. Update your guess iteratively to make $E(\mathbf{w})$ smaller
 - 3. Stop when some convergence criterion is satisfied

• How can we find $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} E(\mathbf{w})$?

The error at that point will be:
$$E(\widehat{\mathbf{w}}) = \frac{1}{2} \sum_{n=1}^{N} (h_{\widehat{\mathbf{w}}}(\mathbf{x}^{(n)}) - y^{(n)})^2$$

- 1st. Method: Least Mean Squares (LMS) algorithm
 - 1. Start with an initial guess \mathbf{w}_0
 - 2. Update your guess iteratively to make $E(\mathbf{w})$ smaller
 - 3. Stop when some convergence criterion is satisfied
- Gradient descent updates

$$w_j^{i+1} \leftarrow w_j^i - \alpha \frac{\partial E(\mathbf{w})}{\partial w_i}$$

For all values of j = 0, ..., D α is called *learning rate*

• In this case the minimum exists, so at each step $E(\mathbf{w})$ decreases

• What form has $\frac{\partial E(\mathbf{w})}{\partial w_j}$ in our case?

Consider one training example (x, y) [no super index (n)]

$$\frac{\partial E(\mathbf{w})}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} (h_{\mathbf{w}}(\mathbf{x}) - y)^2$$

$$= 2 \cdot \frac{1}{2} (h_{\mathbf{w}}(\mathbf{x}) - y) \cdot \frac{\partial}{\partial w_j} (h_{\mathbf{w}}(\mathbf{x}) - y)$$

$$= (h_{\mathbf{w}}(\mathbf{x}) - y) \cdot \frac{\partial}{\partial w_j} \left(\sum_{j=0}^{D} w_j x_j - y \right)$$

$$= (h_{\mathbf{w}}(\mathbf{x}) - y) \cdot x_j$$

Note that:
$$\frac{\partial E(\mathbf{w})}{\partial w_0} = (h_{\mathbf{w}}(\mathbf{x}) - y) \cdot 1$$

• For a single training example (\mathbf{x}_n, y_n) , the update becomes

$$w_j^{i+1} \leftarrow w_j^i - \alpha \big(h_{\mathbf{w}} \big(\mathbf{x}^{(n)} \big) - y^{(n)} \big) \cdot x_j^{(n)}$$

Important

- The magnitude of the update is proportional to the error
 - No error -> no update
 - Large error -> large update
- The value of α needs to be chosen with care
 - Large α -> too large steps (no convergence
 - Small α -> too small steps (slow convergence)

• Online (stochastic) gradient descent : sequential updates using a single training example $(\mathbf{x}^{(n)}, y^{(n)})$ at each iteration

$$w_j^{i+1} \leftarrow w_j^i - \alpha \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right) \cdot x_j^{(n)}$$

• Online (stochastic) gradient descent : sequential updates using a single training example $(\mathbf{x}^{(n)}, y^{(n)})$ at each iteration

$$w_j^{i+1} \leftarrow w_j^i - \alpha \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right) \cdot x_j^{(n)}$$

- Batch gradient descent : process all training examples at each iteration
 - Repeat until convergence

$$w_j^{i+1} \leftarrow w_j^i - \alpha \sum_{n=1}^N \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right) \cdot x_j^{(n)}$$

convergence means that the difference between two iterations is smaller than ϵ , e.g., $\epsilon = 10^{-4}$

Example: 1D problem (Housing dataset)

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Ellipses are contours of error function Why?

Initial guess $\mathbf{w}^0 = (48, 30)$ After convergence $\mathbf{\hat{w}} = (71.27, 0.135)$

CS229 Lecture notes Andrew Ng https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf

Example: 1D problem (Housing dataset)

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
•	:

Ellipses are contours of error function Why?

Initial guess $\mathbf{w}^0 = (48, 30)$ After convergence $\mathbf{\hat{w}} = (71.27, 0.135)$

Another numerical example:

https://www.kdnuggets.com/2017/04/simpleunderstand-gradient-descent-algorithm.html

Solution methods: Closed-form Solution

F

- How can we find $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} E(\mathbf{w})$?
- 2nd. Method : Closed-form solution
- The dataset in matrix form

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_D^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \cdots & x_D^{(N)} \end{bmatrix}, \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_D \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix}$$

 $x_j^{(n)}$ is the *j*-th. component of the *n*-th. training example

• The cost function $E(\mathbf{w})$ in matrix form,

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right)^2 = \frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

Solution methods: Closed-form Solution

• To minimize $E(\mathbf{w})$ we take derivatives

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$
$$= \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}}) (\mathbf{X} \mathbf{w} - \mathbf{y})$$

Are the same number, transposed, so they are equal

$$\frac{\partial \mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{w}}{\partial \mathbf{w}} = 2\mathbf{A} \mathbf{w} = \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$
$$= \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$
$$\frac{\partial \mathbf{w}^{\mathsf{T}} \mathbf{z}}{\partial \mathbf{z}} = \mathbf{z} = \frac{1}{2} (2\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}) = \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

• Setting derivatives to zero, we obtain the normal equations

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - \mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0}$$
$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

• The value of \mathbf{w} that minimizes $E(\mathbf{w})$ is given in closed form

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\,\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Solution methods: Closed-form Solution

What can go wrong?

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \, \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ numerically difficult if input covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is close to singular

- When some features are co-linear
- When $D \gg N$
- In practice, we use the pseudo-inverse X^+
 - Consider solving $\mathbf{X}\mathbf{w} = \mathbf{y}$
 - Get Singular Value Decomposition $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$
 - Get S_{nz} discarding zero entries in S (very small singular values)

$$- \widehat{\mathbf{w}} = \mathbf{V} \mathbf{S}_{\mathrm{nz}}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{y}$$

Geometrical Interpretation

- N-dimensional space with components given by $y^{(n)}$
- $-\mathbf{y} = [y_1, ..., y_N]^T$ is *N*-dimensional vector in this space

- Feature Design matrix
$$\mathbf{X} = \begin{bmatrix} 1 & \cdots & x_D^{(1)} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_D^{(N)} \end{bmatrix}$$

- Each column $\boldsymbol{\varphi}_{j}, \ \ j=0,1,...,D$ is a vector of \mathbb{R}^{N}
- $-\mathbf{y} = \left[y^{(1)}, \dots, y^{(N)}\right]^{\mathsf{T}}$ is a linear combination of the vectors $\boldsymbol{\varphi}_i$

The least-squares solution corresponds to the **orthogonal projection** of ${\bf y}$ onto subspace spanned by ${\pmb \varphi}_j$

Problem formulation: Maximum Likelihood

Consider learning a noisy linear mapping where the target variable y is generated from a linear model plus zero-mean Gaussian noise $y = h_{\mathbf{w}}(\mathbf{x}) + \epsilon = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \epsilon$ $p(y|\mathbf{x},\mathbf{w},\sigma^2)$ $p(y|\mathbf{x},\mathbf{w},\sigma^2)$

The probability density function of the target can be written as

$$p(y \mid \mathbf{x}, \mathbf{w}, \sigma^2) = \mathcal{N}(y \mid h_{\mathbf{w}}(\mathbf{x}), \sigma^2) = \mathcal{N}(y \mid \mathbf{w}^{\mathsf{T}}\mathbf{x}, \sigma^2)$$

$$\mathcal{N}(y \mid h_{\mathbf{w}}(\mathbf{x}), \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{w}^\mathsf{T} \mathbf{x} - y)^2\right) \quad \blacksquare$$

 $\mathbf{x}^{(0)}$

Problem formulation: Maximum Likelihood

If examples are generated **independently** from $\mathcal{N}(y \mid h_{\mathbf{w}}(\mathbf{x}), \sigma^2)$, the probability of generating the *entire* dataset \mathcal{D} is

$$p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)} | h_{\mathbf{w}}(\mathbf{x}^{(n)}), \sigma^2)$$

$$\mathcal{L}(\mathbf{w}; \mathcal{D}) = \log p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, \sigma^2) = \sum_{n=1}^{N} \log \mathcal{N}(y^{(n)} \mid h_{\mathbf{w}}(\mathbf{x}^{(n)}), \sigma^2)$$

$$= \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)}\right)^2\right) \right)$$

$$= -\frac{N}{2} \log \sigma^2 - \frac{N}{2} \log(2\pi) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)}\right)^2$$

Minimizing the least-squares error is **equivalent** to **maximizing** the log probability of the correct answer under a Gaussian centered at the predicted target and implicit *unknown* variance

Finding the right model (neither too simple nor too complex)

- Divide the data in training and test:
- Use the training data for learning the parameters
- Use the test data to test the generalization capability given the parameters learned
- Another way to prevent overfitting: Regularization

Regularized Least Squares

Introduce an extra term in the error function

- The term is data-independent
- It is used to incorporate prior knowledge of the parameters w

$$E_R(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right)^2 + \lambda R(\mathbf{w})$$

- The regularized objective $E_R(\mathbf{w})$ penalizes undesired solutions
- Hyperparameter λ controls the relative importance of $R(\mathbf{w})$
- Two common regularization terms
 - Ridge Regression (penalizes large values in magnitude): $R(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$
 - **Lasso** (penalizes non-sparse solutions): $R(\mathbf{w}) = \frac{1}{2} \sum_{d=1}^{D} |w_d|$

Ridge Regression

$$E_R(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right)^2 + \lambda \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

- Least squares with L2 norm (quadratic) penalty (a.k.a. weight decay)
- The error function remains quadratic

Ridge Regression

$$E_R(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right)^2 + \lambda \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

- Least squares with L2 norm (quadratic) penalty (a.k.a. weight decay)
- The error function remains quadratic
- Closed form solution

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Remark: the diagonal of the covariance matrix increases with λ and makes it nonsingular

Lasso

$$E_R(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)})^2 + \lambda \sum_{d=1}^{D} |w_d|$$

- Least squares with L1 norm penalty
- Solutions tend to be sparse (many components of w are zero)

Lasso

$$E_R(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)})^2 + \lambda \sum_{d=1}^{D} |w_d|$$

- Least squares with L1 norm penalty
- Solutions tend to be sparse (many components of w are zero)

 No closed form, requires quadratic programming Efficient algorithm LARS (least angle regression)

Linear Regression

- Summary
 - Solving least squares problems
 - Online (incremental) methods
 - Online or stochastic gradient descent:
 - » Used in massive datasets
 - » Converges faster
 - Batch Gradient descent:
 - » More stable updates
 - » Typical trade-off (mini-batches)
 - Closed-form solution
 - Requires matrix inversion
 - Typically solved using SVD
 - Regularization and bias-variance trade-off
 - A technique to prevent overfitting
 - Different forms: weight decay, LASSO, etc, ...