Project Data Assimilation

1. Modelul dinamic

Sa consideram modelul dinamic unidimensional descris de ecuatia diferentiala de mai jos. Variabila t este variabila temporala (timpul) iar variabila t semnifica pozitia spatiala, la momentul de timp t, unidimensionala, a unei particule care pleaca din pozitia initiala t0 = t1.

$$\begin{cases} \frac{dx}{dt} = f(t,x) = -\cos t \cdot x + \sin(t) & \text{modelul dinamic} \\ x(0) = x_0 & \text{pozitia initiala} = ---> \text{prior} \end{cases}$$

Traiectoria particulei la momentul de timp t este data de solutia x(t) a ecuatiei diferentiale de mai sus. Solutia se va considera, in acest studiu, ca fiind solutia numerica data de metoda Euler imbunataţită (de mai jos)

$$x_{i} = x_{i-1} + \frac{h}{2}(g_{1} + g_{2})$$

$$g_{1} = f(t_{i-1}, x_{i-1}), g_{2} = f(t_{i-1} + h, x_{i-1} + hg_{1})$$

$$x_{i} = x_{i-1} + \frac{h}{2}(f(t_{i-1}, x_{i-1}) + f(t_{i-1} + h, x_{i-1} + hf(t_{i-1}, x_{i-1})))$$

Se va considera pasul de discretizare din metoda numerica $h\!=\!0.03$, de unde rezultă discretizarea pe axa timpului

$$t_0 = 0, t_i = t_0 + ih$$
.

Tot din rezolvarea numerică de mai sus reiese si modelul dinamic care ofera pozitia particulei intre doua intervale de timp consecutive și anume

$$x_{i} = \underbrace{x_{i-1} + \frac{h}{2} \left(f(t_{i-1}, x_{i-1}) + f(t_{i-1} + h, x_{i-1} + hf(t_{i-1}, x_{i-1})) \right)}_{m(x_{i-1})} = m(x_{i-1}) + 0$$

Acea valoare 0 de la final înseamnă că în procesul de data assimilation, modelul este considerat perfect (i.e. nu are eroare)

2. Simularea observaţiilor

Vom considera ca model de referință ("truth") acel model pentru care pozitia initiala a particulei este $x_0 _truth = 0.1$ și vom considera un număr de $\emph{k=20}$ de observații luate la un

interval de timp **de** h = 0.03. Observaţiile vor fi considerate ca fiind solutia numerica x_truth a ecuatiei diferentiale de mai sus pentru valoarea $x_0_truth = 0.1$

$$Obs = [x _truth(h) x _truth(2h)... x _truth(kh)]$$

Se va considera că eroarea în masurarea observatiilor urmeaza o distributie Gaussiana de medie 0 si deviatie standard 0.03.

$$\varepsilon \square N(0;0.03^2)$$

3. Incertitudinea iniţială

Incertitudinea modelului este data de necunoașterea exactă a poziției inițiale a particulei și anume x_0 . Din acest motiv o vom considera ca fiind o variabilă aleatoare cu distribuția Gaussiană, $x_0 \square N(0;0.2^2)$.

4. Cerinta modelului de data assimilation

Date fiind modelul dinamic, cele 20 de observatii ale pozitiei particulei, incertitudinile in observatii si in pozitia initiala a particulei

- 1. Sa se implementeze un model de EnKF (Ensemble Kalman Filter) cu 100 de membri, simulati aleator din distributia initiala, cu ajutorul caruia să se estimeze/calibreze la fiecare pas pozitia particulei.
- 2. Să se prezinte grafic variabilitatea modelului initial si variabilitatea modelului updatat.
- 3. Să se aproximeze din ansamblul updatat, media si deviatia standard a pozitiei finale a particulei.
- 4. Să se implemeteze acelasi model de data assimilation, insă numărul de observatii sa fie 10, luate la un interval de timp h=0.3, însa modelul dinamic (solutia numerica) sa se rezolve la un pas de discretizare de 0.03.