Contrôle d'analyse II no 4

Durée: 1 heure 30'

Nom:	
Prénom:	 Groupe:

- 1. Soit la transformation homographique f appliquant le plan des z = x + iy dans le plan w = u + iv, définie par: $w = z_1 \frac{2 + 2i}{z z_0}$ (= f(z)).
- 1.1. Déterminer z_0 et z_1 sachant que le cercle Γ : $x^2 + y^2 + 4x 4y + 4 = 0$ a pour image par f la droite **d'**: u v + 2 = 0 et que z_0 est un complexe imaginaire pur.
- 1.2. Soient $z_0 = -1 + i$ et $z_1 = 1$. Trouver l'image par f de la droite a passant par les points d'affixes $z_A = 2$ et $z_B = 1 + i$ et l'image par f du cercle γ : $x^2 + y^2 2 = 0$.

4 pts

2. En utilisant les développements limités, calculer:

$$\lim_{x \to \infty} [\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}].$$
 3\frac{1}{2} pts

3. Calcular
$$I = \int_0^{\pi/2} \frac{dx}{\cos x + \sin x}$$
. $3\frac{1}{2}$ pts

- 4. Soit f la fonction définie au voisinage de $x_0 = \pi/4$ par $f(x) = \ln(tgx)$
- 4.1. Déterminer le développement limité de f à l'ordre ${\bf 3}$ au voisinage de ${\bf x}_0$.
- 4.2. En déduire la dérivée de f en x₀ et l'équation de la tangente t à son graphe au point d'abscisse x₀.
- 4.3. Esquisser (en justifiant) le graphe de f au voisinage du point T d'abscisse x₀. (préciser notamment la position de la courbe par rapport à sa tangente en ce point).

4 pts

Petit formulaire pour le contrôle 4 d'analyse II

1) <u>Développements limités</u> (autour de u = 0)

$$\left(1+u\right)^a = 1 + au + \frac{a(a-1)}{2!} u^2 + \ldots + \frac{a(a-1)\ldots(a-n+1)}{n!} u^n + o(u^n), a \text{ r\'eel}$$

$$tg u = u + \frac{u^3}{3} + \frac{2}{15}u^5 + \frac{17}{315}u^7 + \dots + o(u^7);$$

$$\ln (1 + \mathbf{u}) = \mathbf{u} - \frac{\mathbf{u}^2}{2} + \frac{\mathbf{u}^3}{3} + \dots + (-1)^{n-1} \frac{\mathbf{u}^n}{n} + o(\mathbf{u}^n).$$

2) Relations trigonométriques

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$ où $t = tg \frac{x}{2}$;

$$\sin^2 x = \frac{t^2}{1+t^2}$$
, $\cos^2 x = \frac{1}{1+t^2}$ où $t = tg x$.

Analyse II

Contrôle n°4 été 05 Ex n°1

Soit la transformation homographique $w = f(z) = z_1 - \frac{2(1+i)}{z-z_0}$.

- a) Déterminer z_0 et z_1 sachant que le cercle Γ d'équation $x^2 + y^2 + 4x + 4y + 4 = 0$ a pour image la droite d': x y + 2 = 0 et que z_0 est un nombre imaginaire pur.
- b) Soient $z_0 = -1 + i$ et $z_1 = 1$. Trouver l'image par f de la droite a passant par les points d'affixes $z_A = 2$ et $z_B = 1 + i$ et l'image par f du cercle γ d'équation $x^2 + y^2 2 = 0$.

Solution:

a) $\Gamma: (x+2)^2 + (y-2)^2 - 4 = 0$; le seul point imaginaire pur est le pôle: $z_0 = 2i$

1/2 pt

Le point I est un point fixe car il se trouve sur le cercle et son image et n'est pas le pôle.

On a donc
$$f(I) = I$$
 ou plutôt : $f(z = -2) = -2 \implies z_1 = -3$

1/2 pt

En résumé :
$$f(z) = -3 - \frac{2(1+i)}{z-2i}$$
.

b) Avec les conditions imposées, la fonction homographique devient :

$$f(z) = 1 - \frac{2(1+i)}{z+1-i} = \frac{z-1-3i}{z+1-i}$$

On constate, d'après le dessin, que la droite a ne passe pas par le pôle $z_0 = -1 + i$, donc son image est un cercle γ ':

On cherchera les images des trois points z_A , z_B et z_C :

$$f(1+i)=-i \; ; \; f(2)=\frac{1}{5}(3-4i) \; ; \; f(2i)=-1 \quad \text{et ces trois points sont sur le cercle } \gamma' \qquad \frac{1}{2} \; pt$$
 d'équation : $u^2+v^2-1=0$

Par contre, le cercle donné passe par le pôle ; son image est alors une droite qui passe par le point z = -i, image de de z_B .

L'image de z_D , par exemple, nous donne un deuxième point de cette droite image :

f(1-i) = 1 - i; c'est un point fixe du reste ; donc la droite image a' s'écrit : v = -1

14 juin 2005

Corrigé du Contrôle d'analyse II no 4

2. En utilisant les développements limités, calculer:

$$\lim_{x \to \infty} [\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}].$$
 3\frac{1}{2} pts

• On a f(x) =
$$\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2} = x \left[\sqrt[3]{1 + \frac{1}{x}} - \sqrt[3]{1 - \frac{1}{x}} \right]$$
.

- On pose $t = \frac{1}{x}$ de sorte que $(x \to \pm \infty) \Leftrightarrow (t \to 0\pm)$. D'où $\Phi(t) = \frac{1}{t} [\sqrt[3]{1+t} \sqrt[3]{1-t}]$
- Pour chercher la limite quand $t \to 0\pm$ de $\Phi(t)$, on développe le terme entre crochet à l'ordre 1 autour de t=0. On obtient:

$$(1+t)^{1/3} - (1-t)^{1/3} = (1+\frac{1}{3}t+t\epsilon_1(t)) - (1-\frac{1}{3}t+t\epsilon_2(t)), \lim_{t \to 0} \epsilon_1(t) = 0 = \lim_{t \to 0} \epsilon_2(t).$$

$$(1+t)^{1/3} - (1-t)^{1/3} = (1+\frac{1}{3}t+t\epsilon_1(t)) - (1-\frac{1}{3}t+t\epsilon_2(t)), \lim_{t \to 0} \epsilon_1(t) = 0$$

D'où: $(1+t)^{1/3} - (1-t)^{1/3} = \frac{2}{3}t + t\varepsilon(t)$ où $\lim_{t \to 0} \varepsilon(t) = 0$.

• Finalement:
$$\lim_{t \to 0} \Phi(t) = \lim_{t \to 0} \frac{1}{t} \left[\sqrt[3]{1+t} - \sqrt[3]{1-t} \right] = \lim_{t \to 0} \left[\frac{2}{3} + \epsilon(t) \right] = \frac{2}{3}$$

et ainsi
$$\lim_{x \to \infty} [\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}] = \frac{2}{3}$$
.

3. Calcular
$$I = \int_0^{\pi/2} \frac{dx}{\cos x + \sin x}$$
. $3\frac{1}{2}$ pts

• sur $[0, \frac{\pi}{2}]$, sinx + cosx est toujours > 0; donc I est bien définie.

• On a
$$\int \frac{dx}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \int \frac{dx}{\sin(x + \frac{\pi}{4})} = \frac{1}{\sqrt{2}} \int \frac{du}{\sin u}$$
.où $u = x + \frac{\pi}{4}$.

• Or $\frac{d(-u)}{\sin(-u)} = \frac{du}{\sin u}$; d'où (une règle de Bioche) on pose $\cos u = t$. Par suite: - $\sin u \, du = dt$

et il vient
$$\int \frac{du}{\sin u} = \int \frac{-dt}{\sin^2 u}$$
; ainsi $\int \frac{dx}{\sin x + \cos x} = -\frac{1}{\sqrt{2}} \int \frac{dt}{1 - t^2}$ soit

$$\int \frac{dx}{\sin x + \cos x} = -\frac{1}{2\sqrt{2}} \left[\int \frac{dt}{1+t} + \int \frac{dt}{1-t} \right] = -\frac{1}{2\sqrt{2}} \ln \left| \frac{1+t}{1-t} \right| = \frac{\sqrt{2}}{2} \ln \left| \frac{1-\cos u}{1+\cos u} \right|$$

puis:
$$I = \frac{\sqrt{2}}{2} \ln(\left[\left| \frac{1 - \cos(x + \frac{\pi}{4})}{1 + \cos(x - \frac{\pi}{4})} \right| \right]_0^{\pi/2} \text{ soit: } I = \frac{\sqrt{2}}{2} \ln(3 + 2\sqrt{2}).$$

- 4. Soit f la fonction définie au voisinage de $x_0 = \pi/4$ par $f(x) = \ln(tgx)$.
- 4.1. Déterminer le développement limité de f à l'ordre $\bf 3$ au voisinage de $\bf x_0$.
- 4.2. En déduire la dérivée de f en x₀ et l'équation de la tangente t à son graphe au point d'abscisse x₀.
- 4.3. Esquisser (en justifiant) le graphe de f au voisinage du point T d'abscisse x₀. (préciser notamment la position de la courbe par rapport à sa tangente en ce point).

4 pts

- Ci-dessous, on a: $\lim_{t \to 0} \varepsilon_i(t) = 0$, i = 1, 2, ...
- **4.1.** Posons $x = t + \frac{\pi}{4}$. Alors $\ln(tgx) = \ln(tg(t + \frac{\pi}{4}))$.
- On introduit des développements limités à l'ordre 3 autour de t = 0:

$$tg(t+\frac{\pi}{4}) = \frac{1+tg\,t}{1-tg\,t} = \frac{1+t+\frac{1}{3}\,t^3+0(t^3)}{1-t-\frac{1}{3}\,t^3+0(t^3)}$$
 soit en divisant selon les puissances croissantes

de t:
$$tg(t + \frac{\pi}{4}) = 1 + 2t + 2t^2 + \frac{8}{3}t^3 + t^3\epsilon_1(t)$$
.

• D'où
$$\ln(tg(t+\frac{\pi}{4})) = \ln(1+u(t))$$
 où $u(t) = 2t + 2t^2 + \frac{8}{3}t^3 + t^3\epsilon_2(t)$ avec $u(0) = 0$.

Or
$$\ln(1 + u) = u - \frac{u^2}{2} + \frac{u^3}{3} + u^3 \epsilon_3(u)$$
 autour de $u = 0$. Par suite:

$$\ln(tg(t + \frac{\pi}{4})) = 2t + \frac{4}{3}t^3 + t^3\epsilon_4(t)$$
 puis:

•
$$f(x) = \ln(tgx) = 2(x - \frac{\pi}{4}) + \frac{4}{3}(x - \frac{\pi}{4})^3 + (x - \frac{\pi}{4})^3 \varepsilon_5(x - \frac{\pi}{4}).$$

- 4.2. Puisque f(x) possède le développement limité à l'ordre 1 autour de $x_0 = \pi/4$ donné ci-dessus, on a: $f(\pi/4) = 0$ et $f'(\pi/4) = 2$ et ainsi la tangente au point $T(\pi/4;0)$ au graphe de f est t: $y = 2(x \frac{\pi}{4})$.
- 4.3. Le développement limité à l'ordre 3 en $x = \pi/4$ de f montre par ailleurs que le graphe de f admet au point T un point d'inflexion.

Le graphe est au-dessous de t à gauche de T et au-dessus de t à droite de T (en effet $f(x) - 2(x - \frac{\pi}{4}) = \frac{4}{3}(x - \frac{\pi}{4})^3 + (x - \frac{\pi}{4})^3 \varepsilon_5(x - \frac{\pi}{4})$).