12 Problems: Elementary Matrices and Determinants

1. Let $M = \begin{pmatrix} m_1^1 & m_2^1 & m_3^1 \\ m_1^2 & m_2^2 & m_3^2 \\ m_1^3 & m_2^3 & m_3^3 \end{pmatrix}$. Use row operations to put M into row echelon form. For simplicity, assume that $m_1^1 \neq 0 \neq m_1^1 m_2^2 - m_1^2 m_2^1$.

Prove that M is non-singular if and only if:

$$m_1^1 m_2^2 m_3^3 - m_1^1 m_3^2 m_2^3 + m_2^1 m_3^2 m_1^3 - m_2^1 m_1^2 m_3^3 + m_3^1 m_1^2 m_2^3 - m_3^1 m_2^2 m_1^3 \neq 0$$

- 2. (a) What does the matrix $E_2^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ do to $M = \begin{pmatrix} a & b \\ d & c \end{pmatrix}$ under left multiplication? What about right multiplication?
 - (b) Find elementary matrices $R^1(\lambda)$ and $R^2(\lambda)$ that respectively multiply rows 1 and 2 of M by λ but otherwise leave M the same under left multiplication.
 - (c) Find a matrix $S^1_2(\lambda)$ that adds a multiple λ of row 2 to row 1 under left multiplication.

3.	Let M be a requations prove	matrix and S_j^i wing that det M	M the same mat $M = -\det(S_j^i M)$.	rix with rows	i and j switched	. Explain every	line of the series of