Language Technology

http://cs.lth.se/edan20/

Chapter 10: Partial Parsing

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 23, 2021

Multiwords

Туре	English	French				
Prepositions	to the left hand side	À gauche de				
Adverbs	because of	à cause de				
Conjunctions						
Names	British gas plc.	Compagnie générale				
		d'électricité SA				
Titles	Mr. Smith	M. Dupont				
	The President of the	Le président de la				
	United States	République				
Verbs	give up	faire part				
	go off	rendre visite				

Named Entities: Proper Nouns

Others Entities: Common Nouns

Multiword Annotation

The Message Understanding Conferences (MUC), a benchmarking competition organized by the US military, defined an annotation scheme. The MUC annotation restricts the annotation to information useful to the funding source: names (named entities), time expressions, and money quantities.

The annotation scheme defines an XML element for three classes: <ENAMEX>, <TIMEX>, and <NUMEX> with which it brackets the relevant phrases in a text.

The phrases can be real multiwords, consisting of two or more words, or restricted to a single word.

<ENAMEX>

The <ENAMEX> element identifies proper nouns and uses a TYPE attribute with three values to categorize them: ORGANIZATION, PERSON, and LOCATION as in

- The <ENAMEX TYPE="PERSON">Clinton</ENAMEX> government
- <ENAMEX TYPE="ORGANIZATION">Bridgestone Sports Co.</ENAMEX>
- <ENAMEX TYPE="ORGANIZATION">European Community</ENAMEX>
- <ENAMEX TYPE="ORGANIZATION">University of California</ENAMEX>
 in <ENAMEX TYPE="LOCATION">Los Angeles</ENAMEX>

Named Entities

The detection of named entities and multiwords with regular expressions is an extension of word spotting.

Just as for word spotting, we store them in a Python dictionary.

To get a list of names, we can use geographical or name dictionaries, called **gazetteers**.

We can also model patterns, for example for:

```
'<ENAMEX> M. Dupont </ENAMEX>'
```

and

'<NUMEX> 200 euros </NUMEX>'

ELIZA: Word Spotting and Template Matching

User	Psychotherapist
I like X	Why do you like X?
I am X	How long have you been X?
father	Tell me more about your father

Word Spotting with Regular Expressions

Models for the dialogue pairs using a set of regular expressions:

```
dialogue_pairs = {
    '.*I am not (.+)': [
        r'Why aren\'t you \1'
    '.*I am (.+)': [
        r'How long have you been \1'
    '.*I like (.+)': [
        r'Why do you like \1'
    ],
    '.*I remember (.+)': [
        r'Do you often think of \1',
        'What else do you remember',
        r'Why do you remember \1 just now'
    ],
    '.*(father|mother|brother|sister).*': [
```

Word Spotting with Regular Expressions (Continued)

```
dialogue_pairs = {
    '^no$': [
        'Why are you so negative?',
        'Why not?'
    '^\p{L}+$': [
        'Tell me more...'
    # When nothing matches
    '.*': [
        'I am not sure I understand you fully',
        'Please go on',
        'What does that suggest to you'
```


A simplified version of ELIZA in Python

```
def match_utterance(user_input):
    0.000
    match_utterance accepts the user's utterance and
    tries to find a template matching it
    0.00
    for key in dialogue_pairs:
        matches = list(re.finditer(key, user_input))
        if matches:
            choice = np.random.randint(len(dialogue_pairs[key]
            answer = re.sub(key, dialogue_pairs[key][choice],
                             user_input, count=1)
            return answer
```

ELIZA in Python

```
# The main loop reads the input and calls match_utterance
# It stops when the input is the word bye.
print('Hello, I am ELIZA. How can I help you?')
user_input = input('User: ')
while user_input.lower() != 'bye':
    answer = match_utterance(user_input)
    print('Eliza:', answer)
    user_input = input('User: ')
print('Eliza:', 'Bye')
```


A Dialogue with ELIZA

Hello, I am ELIZA. How can I help you?

User: yes

Eliza: Tell me more...
User: I like apples

Eliza: Why do you like apples User: I went out with my father

Eliza: Please tell me more about your father

User: no

Eliza: Why are you so negative?

User: I am cold

Eliza: How long have you been cold

User: bye Eliza: Bye

Regular Expressions for Named Entities

```
ne_pairs = {
    'in front of': [
        'in_front_of'
    ],
    'in front': [
        'in_front'
    ],
    'give up': [
        'give_up'
    'M\. (\p{Lu}\p{L}+)': [
        r'<ENAMEX> M. \1 </ENAMEX>'
    ],
    r'(\p{N}+) euros': [
        r'<NUMEX> \1 euros </NUMEX>'
```

Longest Match

```
The regex
'in front' | 'in front of'
does not work on:
    The car in front of the house
with the code
input = 'The car in front of the house'
re.search('in front|in front of', input)
<regex.Match object; span=(8, 16), match='in front'>
We need to have the regexes in the right order:
'in front of': [
    'in front of'
'in front': [
    'in_front'
```

Noun Groups

English	French	German
The waiter is bringing	Le serveur apporte le	Der Ober bringt die
the very big dish on	très grand plat sur la	sehr große Speise an
the table	table	den Tisch
Charlotte has eaten	Charlotte a mangé le	Charlotte hat die
the meal of the day	plat du jour	Tagesspeise gegessen

Verb Groups

English	French	German
The waiter is bringing	Le serveur apporte le	Der Ober bringt die
the very big dish on the	très grand plat sur la	sehr große Speise an
table	table	den Tisch
Charlotte has eaten	Charlotte a mangé le	Charlotte hat die
the meal of the day	plat du jour	Tagesspeise gegessen

Noun Groups

```
nominal([NOUN | NOM]) --> noun(NOUN), nominal(NOM).
nominal([N]) --> noun(N).

noun(N) --> common_noun(N).
noun(N) --> proper_noun(N).

noun_group([PRO]) --> pronoun(PRO).
noun_group([D | N]) --> det(D), nominal(N).
noun_group(N) --> nominal(N).
```


Tagging Techniques to Extract Groups

Group detection – chunking – can be reframed as a tagging operation.

```
From: [NG] The government NG has [NG] other agencies and instruments NG for pursuing [NG] these other objectives NG.
```

To: The/I government/I has/O other/I agencies/I and/I instruments/I for/O pursuing/O these/I other/I objectives/I ./O

From: Even [$_{NG}$ Mao Tse-tung $_{NG}$] [$_{NG}$'s China $_{NG}$] began in [$_{NG}$ 1949 $_{NG}$] with [$_{NG}$ a partnership $_{NG}$] between [$_{NG}$ the communists $_{NG}$] and [$_{NG}$ a number $_{NG}$] of [$_{NG}$ smaller, non-communists parties $_{NG}$].

To: Even/O Mao/I Tse-tung/I 's/B China/I began/O in/O 1949/I with/O a/I partnership/I between/O the communists/I and/O a/I number/I of/O smaller I non-communists/I parties/I ./O

Other Chunking Schemes

Tjong and Venstra (1999) created 3 other schemes: IOB1, IOB2, IOE1, and IOB2. A 5th tagset, BIOES, is gaining popularity:

IOB1: Inside, Outside, Between

IOB2: Begin, Inside, Outside, possibly the most popular

IOE1: Inside, Outside, End (between two chunks)

IOE2: Inside, Outside, End

BIOES: Begin, Inside, Outside, End, and Singleton, the most

efficient one.

Other Chunking Schemes

```
IOB1
       Even/O Mao/I Tse-tung/I 's/B China/I began/O in/O 1949/I
       with/O a/I partnership/I between/O the/I communists/I and/O
        a/I number/I of/O smaller/I, non-communists/I parties/I
IOB<sub>2</sub>
        Even/O
                   Mao/B Tse-tung/I
                                        's/B China/I
                                                       began/O
               1949/B
                         with/O
                                  a/B partnership/I between/O
        the/B communists/I
                              and/O
                                         a/B number/I
                                                          of/O
        smaller/B, non-communists/I parties/I
       Even/O Mao/I Tse-tung/E 's/I China/I began/O in/O 1 949/I
IOF1
       with/O a/I partnership/I between/O the/I communists/I and/O
        a/I number/I of/O smaller/I, non-communists/I parties/I
BIOES
       Even/O
                  Mao/B Tse-tung/E
                                       's/B China/E
                                                       began/O
               1949/S
                        with/O
                                 a/B partnership/E
                                                     beta
        the/B communists/E
                              and/O
                                         a/B number/E
```

Multiple Categories of Chunks

Extendable to any type of chunks: nominal, verbal, etc. For the IOB scheme, this means tags such as I.Type, O.Type, and B.Type, Types being NG, VG, PG, etc. In CoNLL 2000, ten types of chunks

Word	POS	Group	Word	POS	Group
Не	PRP	B-NP	to	TO	B-PP
reckons	VBZ	B-VP	only	RB	B-NP
the	DT	B-NP	£	#	I-NP
current	JJ	I-NP	1.8	CD	I-NP
account	NN	I-NP	billion	CD	I-NP
deficit	NN	I-NP	in	IN	B-PP
will	MD	B-VP	September	NNP	B-NP
narrow	VB	I-VP	•		0

Noun groups (NP) are in red and verb groups (VP) are in blue,

September 23, 2021 22/41

Evaluation: Accuracy, precision, and recall

For noun groups with the predicted output:

Word	POS	Group	Pre	dicted	Word	POS	Group	Pre	dicted
Не	PRP	B-NP		B-NP	to	TO	B-PP		B-PP
reckons	VBZ	B-VP		B-VP	only	RB	B-NP	X	B-NP
the	DT	B-NP	Χ	B-NP	£	#	I-NP	X	I-NP
current	JJ	I-NP	X	B-NP	1.8	CD	I-NP	X	B-NP
account	NN	I-NP	X	I-NP	billion	CD	I-NP	X	I-NP
deficit	NN	I-NP	X	I-NP	in	IN	B-PP		B-PP
will	MD	B-VP		B-VP	September	NNP	B-NP		B-NP
narrow	VB	I-VP		I-VP	•		0		0

There are 16 chunk tags, 14 are correct: Accuracy = $\frac{14}{16}$ = 0.875 There are 4 noun groups, the system retrieved 2 of them: Recall = $\frac{2}{4}$ = 0.5

The system identified 6 noun groups, two are correct: Precision 0.33

Harmonic mean = $2 \times \frac{0.33 \times 0.5}{0.33 + 0.5} = 0.4$

IOB Annotation for Named Entities

Co	NLL 2002			oNLL 200	12
Words	Named entities	Words	POS		-
Wolff	B-PER	U.N.	NNP		I-ORG
	0	official	NN	I-NP	0
currently	0	Ekeus	NNP	I-NP	I-PER
a	0	heads	VBZ	I-VP	0
journalist	0	for	IN	I-PP	0
in	0	Baghdad	NNP	I-NP	I-LOC
Argentina	B-LOC			0	0
,	0				
played	0				
with	0				
Del	B-PER				
Bosque	I-PER				
in	0				
the	0				
final	0				
years	0				
of	0				
the	0				
seventies	0				
in	0				
Real	B-ORG				
Madrid	I-ORG				
ividuilu	0				

Chunking Algorithms

We can apply statistical and symbolic methods to chunking:

- Brill's method with templates adapted to groups.
- Stochastic and machine learning methods similar to POS tagging: logistic regression, support vector machines, or decision trees

Feature Engineering (I)

CoNLL 2000 baseline: Use t_i to predict $chunk_tag_i$

```
deficit
He
       reckons
                 the
                                                    will
                        current
                                 account
                                                            narrow
PRP
       VBZ
                                 NN
                                           NN
                                                    MD
                                                           VB
                 DT
                        Ш
                        I-NP
                                 I-NP
B-NP
       B-VP
                 B-NP
                                            I-NP
                                                    B-VP
                                                           I-VP
```

to	only	#	1.8	billion	in	September	
TO	RB	#	CD	CD	IN	NNP	
B-PP	B-NP	I-NP	I-NP	I-NP	B-PP	B-NP	O

F-measure: 77.07

Feature Engineering (II)

Second experiment using decision trees: Use t_{i-1} , t_i to predict $chunk_tag_i$

Не	reckons	the	current	account	deficit	will	narrow
PRP	VBZ	DT	JJ	NN	NN	MD	VB
B-NP	B-VP	B-NP	I-NP	I-NP	I-NP	B-VP	I-VP

to	only	#	1.8	billion	in	September	
TO	RB	#	CD	CD	IN	NNP	
B-PP	B-NP	I-NP	I-NP	I-NP	B-PP	B-NP	O

F-measure: 81.88

Feature Engineering (III)

Third experiment: Use t_{i-2} , t_{i-1} , t_i to predict $chunk_tag_i$

Не	reckons	the	current	account	deficit	will	narrow
PRP	VBZ	DT	JJ	NN	NN	MD	VB
B-NP	B-VP	B-NP	I-NP	I-NP	I-NP	B-VP	I-VP

to	only	#	1.8	billion	in	September	
TO	RB	#	CD	CD	IN	NNP	
B-PP	B-NP	I-NP	I-NP	I-NP	B-PP	B-NP	O

F-measure: 82.84

Dynamic Features

So far, we used "static" features extracted from a first annotation, for example, the words and their part of speech: $w_{i-1}, t_{i-1}, w_i, t_i$ We can add dynamic features that will reuse the value of the preceding (and just obtained) chunk tag.

It is possible to reuse chunk tags to the left in case of left-to-right parsing and to the right in case of right-to-left parsing This corresponds to recurrent neural networks

Feature Engineering (IV)

Fourth experiment: Use w_i , t_{i-1} , t_i , t_{i+1} , $chunk_tag_{i-1}$ to predict $chunk_tag_i$. All words with a frequency less than ~ 100 mapped onto a unique symbol (RARE_WORD).

Не	reckons	the	current	account	deficit	will	narrow
PRP	VBZ	DT	JJ	NN	NN	MD	VB
B-NP	B-VP	B-NP	I-NP	I-NP	I-NP	B-VP	I-VP
to	only	# 1	8 hillic	n in	Sentem	her	_

to	only	#	1.8	billion	in	September	
TO	RB	#	CD	CD	IN	NNP	
B-PP	B-NP	I-NP	I-NP	I-NP	B-PP	B-NP	0

F-measure: 90.17

Kudoh and Matsumoto (2000)

Kudoh and Matsumoto (2000) won the CoNLL-2000 shared task. They used static and dynamic features in the Yamcha system Typically, a feature vector consists of 10 static parameters: $w_{i-2}, t_{i-2}, w_{i-1}, t_{i-1}, w_i, t_i, w_{i+1}, t_{i+1}, w_{i+2}, t_{i+2}$ And two dynamic parameters: $chunk_tag_{i-2}, chunk_tag_{i-1}$ Kudoh and Matsumoto (2000) experimented various feature vectors, forward and backward parsing, as well as the four annotation schemes. Their classifiers used support vector machines.

Example from Kudoh and Matsumoto (2000)

Three lines or columns representing the words, the parts of speech, and the groups.

He	reckons	the	current	account	deficit	will	narrow
PRP	VBZ	DT	JJ	NN	NN	MD	VB
B-NP	B-VP	B-NP	I-NP	I-NP	I-NP	B-VP	I-VP
to	only	# 1	.8 bill	ion in	Septen	nber .	_
TO	RB	# 0	D CD) IN	NNP		

I-NP

B-PP

B-NP

B-PP

B-NP

I-NP

I-NP

Example from Kudoh and Matsumoto (2000)

Words	POS	Groups	
BOS	BOS	BOS	Padding
BOS	BOS	BOS	
He	PRP	B-NP	
reckons	VBZ	B-VP	
the	DT	B-NP	
current	JJ	I-NP	
account	NN	I-NP	
deficit	NN	I-NP	Input features
will	MD	B-VP	
narrow	VB	I-VP	Predicted tag
to	TO	B-PP	↓
only	RB	B-NP	
£	#	I-NP	
1.8	CD	I-NP	
billion	CD	I-NP	
in	IN	B-PP	
September	NNP	B-NP	
		0	
EOS	EOS	EOS	Padding
EOS	EOS	EOS	

Message Understanding Conferences

The Message Understanding Conferences (MUCs) measure the performance of information extraction systems.

They are competitions organized by an agency of the US department of defense, the DARPA

The competitions have been held regularly until MUC-7 in 1997.

The performances improved dramatically in the beginning and stabilized then.

MUCs are divided into a set of tasks that have been changing over time.

The most basic task is to extract people and company names.

The most challenging one is referred to as information extraction.

Information Extraction

Information extraction consists of:

- The analysis of pieces of text ranging from one to two pages,
- The identification of entities or events of a specified type,
- The filling of a pre-defined template with relevant information from the text.

Information extraction then transforms free texts into tabulated information.

An Example

San Salvador, 19 Apr 89 (ACAN-EFE) – [TEXT] Salvadoran President-elect Alfredo Cristiani condemned the terrorist killing of Attorney General Roberto Garcia Alvarado and accused the Farabundo Marti National Liberation Front (FMLN) of the crime...

Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas on his vehicle exploded as it came to a halt at an intersection in downtown San Salvador...

Vice President-elect Francisco Merino said that when the attorney general's car stopped at a light on a street in downtown San Salvador, an individual placed a bomb on the roof of the armored vehicle...

According to the police and Garcia Alvarado's driver, who escaped unscathed, the attorney general was traveling with bodyguards. One of them was injured.

The Template

Template slots	Information extracted from the text
Incident: Date	19 Apr 89
Incident: Location	El Salvador: San Salvador (city)
Incident: Type	Bombing
Perpetrator: Individual ID	urban guerrillas
Perpetrator: Organization ID	FMLN
Perpetrator: Organization confidence	Suspected or accused by authorities: FMI
Physical target: Description	vehicle
Physical target: Effect	Some damage: vehicle
Human target: Name	Roberto Garcia Alvarado
Human target: Description	Attorney general: Roberto Garcia Alvarad
	driver
	bodyguards
Human target: Effect	Death: Roberto Garcia Alva
	No injury: <i>driver</i>
	Injury: bodyguards

FASTUS

The FASTUS system has been designed at the Stanford Research Institute to extract information from free-running text FASTUS uses partial parsers that are organized as a cascade of finite-state automata.

It includes a tokenizer, a multiword detector, and a group detector as first layers.

Verb groups are tagged with active, passive, gerund, and infinitive features.

Then FASTUS combines some groups into more complex phrases and uses extraction patterns to fill the template slots.

FASTUS' Architecture

Evaluation

The Message Understanding Conferences have introduced a metric to evaluate the performance of information extraction systems using three figures.

They are borrowed them from library science

	Relevant documents	Irrelevant documents
Retrieved	Α	В
Not retrieved	C	D

Recall, Precision, and the F-Measure

Recall measures how much relevant information the system has retrieved.

$$Recall = \frac{A}{A \cup C}.$$

Precision is the accuracy of what has been returned

$$Precision = \frac{A}{A \cup B}.$$

Recall and precision are combined into the **F-measure**, which is defined as the harmonic mean of both numbers:

$$F = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P + R}.$$

