Regeln des natürlichen Schließens

Aussagenlogik

	Einführung	Elimination
^	$rac{arphi}{arphi} rac{\psi}{\sqrt{\lambda}} \left[egin{array}{ccc} \lambda & \lambda & \lambda \end{array} ight]$	$\frac{\varphi \wedge \psi}{\varphi} \left[\wedge e_1 \right] \qquad \frac{\varphi \wedge \psi}{\psi} \left[\wedge e_2 \right]$
٧	$\frac{\varphi}{\varphi\vee\psi} \forall i_1 \qquad \frac{\psi}{\varphi\vee\psi} \forall i_2$	$\varphi \vee \psi \qquad \qquad \psi \qquad \qquad \vdots \qquad \vdots \qquad \qquad \\ \chi \qquad \qquad \chi \qquad \qquad$
\rightarrow	$\frac{\begin{bmatrix} \varphi \\ \vdots \\ \psi \end{bmatrix}}{\varphi \to \psi} \to \mathbf{i}$	$\frac{\varphi \varphi \to \psi}{\psi} \to e, MP$
7	$\begin{array}{c c} \varphi \\ \vdots \\ \bot \\ \hline \neg \varphi \end{array}$	$\frac{\varphi - \varphi}{\bot}$ $\neg e$
RAA,⊥	$\begin{array}{c c} \neg \varphi \\ \vdots \\ \bot \\ \hline \varphi \end{array} \ RAA$	$\frac{1}{arphi}$ $oxed{f Le, EFQ}$

Einige abgeleitete Regeln der Aussagenlogik

$$\frac{\varphi}{\neg \neg \varphi} \neg \neg \mathbf{i} \qquad \qquad \frac{\neg \neg \varphi}{\varphi} \neg \neg \mathbf{e}$$

$$\frac{\varphi \rightarrow \psi \quad \neg \psi}{\neg \varphi} \quad \mathbf{MT} \qquad \qquad \frac{\neg \neg \varphi}{\varphi \vee \neg \varphi} \quad \mathbf{TND}$$

Prädikatenlogik

Bemerkung

Es sind nur gültige Substitutionen erlaubt: In allen Substitutionen $\varphi[t/x]$ muss t frei für x in der Formel φ sein, d.h. keine freie Variable y in t gelangt durch das Einsetzen von x in φ in den Bereich eines Quantors $\forall y$ oder $\exists y$.

Neu eingeführte Variablen x_0 dürfen nirgendwo außerhalb ihres Gültigkeitsbereichs erscheinen.