Non-deterministic finite automata: Definition

Arno Pauly

February 8, 2021

Right-linear grammars

Definition

A grammar is *right-linear*, if all rules are of the form $T \to \varepsilon$ or $T \to aR$ for $T, R \in \mathcal{N}$ and $a \in \Sigma$.

We shall also allow the form $T \to a$ as abbreviation for $T \to aQ$, $Q \to \varepsilon$ for a fresh non-terminal Q.

Definition

A grammar is *left-linear*, if all rules are of the form $T \to \varepsilon$ or $T \to Ra$ for $T, R \in \mathcal{N}$ and $a \in \Sigma$.

Theorem

Right-linear and left-linear grammars describe the same languages; the regular languages.

Defining non-deterministic finite automata

Definition

A non-deterministic finite automaton over an alphabet Σ is given by a set V of states, a transition relation $\delta \subseteq V \times \Sigma \times V$, a start state $s \in V$ and a set of accepting (or final) states $F \subseteq V$.

A finite state automaton¹

¹adapted from an example by Till Tantau

A run of an automaton

Definition

A non-deterministic finite automaton over an alphabet Σ is given by a set V of states, a transition relation $\delta \subseteq V \times \Sigma \times V$, a start state $s \in V$ and a set of accepting (or final) states $F \subseteq V$.

Definition

A run of an automaton \mathcal{A} on a word $w \in \Sigma^*$ is a word $v_0v_1\dots v_{|w|} \in V^*$ such that $v_0 = s$ and $\forall i < |w| \ (v_i, w_i, v_{i+1}) \in \delta$. If $v_{|w|} \in F$, it is *accepting*, otherwise it is rejecting. An automaton accepts a word $w \in \Sigma^*$ iff there exists an accepting run on w. We let $L(\mathcal{A})$ be the language of all words accepted by \mathcal{A} .

A finite state automaton²

²adapted from an example by Till Tantau

Reversal of a language

Definition

Given a word $w \in \Sigma^*$, let its reversal $w^R \in \Sigma^*$ be defined by $|w^R| = w$ and $w^R(i) = w(|w| - i - 1)$.

(This literally says that w^R is w read backwards.)

Definition

Given a language $L \subseteq \Sigma^*$, let $L^R := \{ w^R \mid w \in L \}$.

Theorem

If L is regular, then so is L^{R} .

Outlook

- Deterministic automata would be even nicer.
- Regular languages are closed under union, intersection, interleaving.
- Regular expressions!