Simply Typed Lambda Calculus

CS3100 Fall 2019

Review

Previously

- · Lambda calculus encodings
 - Booleans, Arithmetic, Pairs, Recursion, Lists

Today

Simply Typed Lambda Calculus

Need for typing

- · Consider the untyped lambda calculus
 - false = $\lambda x \cdot \lambda y \cdot y$
 - $0 = \lambda x \cdot \lambda y \cdot y$
- · Since everything is encoded as a function...
 - We can easily misuse terms...
 - false $0 \rightarrow \lambda y.y$
 - if 0 then ...
 - ...because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words

How to fix these errors?

Typed Lambda Calculus

• Lambda Calculus + Types \rightarrow Simply Typed Lambda Calculus (λ^{\rightarrow})

Simple Types

$$A, B := B$$
 (base type)
 $A \to B$ (functions)
 $A \times B$ (products)
 $A \times B$ (unit)

- B is base types like int, bool, float, string, etc.
- × binds stronger than →
 - $A \times B \rightarrow C$ is $(A \times B) \rightarrow C$
- ullet \rightarrow is right associative.
 - $A \rightarrow B \rightarrow C$ is $A \rightarrow (B \rightarrow C)$
 - Same as OCaml
- If we include neither base types nor 1, the system is degenerate. Why?
 - Degenerate = No inhabitant.

Raw Terms

$$M, N := x$$
 (variable)
 $\mid MN$ (application)
 $\mid \lambda x : A . M$ (abstraction)
 $\mid \langle M, N \rangle$ (pair)
 $\mid \text{fst } M$ (project-1)
 $\mid \text{snd } M$ (project-2)
 $\mid ()$ (unit)

Typing Judgements

- M: A means that the term M has type A.
- Typing rules are expressed in terms of typing judgements.
 - $\blacksquare \ \, \text{An expression of form} \, x_1\!:\!A_1,x_2\!:\!A_2,...,x_n\!:\!A_n \vdash M\!:\!A$
 - Under the assumption $x_1:A_1,x_2:A_2,...,x_n:A_n$, M has type A.
 - Assumptions are usually types for free variables in M.
- Use Γ for assumptions.
 - Γ ⊢ M: A
- · Assume no repetitions in assumptions.
 - alpha-convert to remove duplicate names.

Quiz

Given Γ , x: A, y: $B \vdash M$: C, which of the following is true?

- 1. *M*: *C* holds
- 2. $x \in \Gamma$
- 3. $v \notin \Gamma$
- 4. A and B may be the same type
- 5. x and y may be the same variable

Quiz

Given Γ , x: A, y: $B \vdash M$: C Which of the following is true?

- 1. M: C holds \times (M may not be a closed term)
- 2. $x \in \Gamma \times (\Gamma \text{ has no duplicates})$
- 3. $y \notin \Gamma \bigvee (\Gamma \text{ has no duplicates})$
- 4. A and B may be the same type \checkmark (A and B are type variables)
- 5. x and y may be the same variable \times (Γ has no duplicates)

Typing rules for λ^{\rightarrow}

$$\frac{\overline{\Gamma, x : A \vdash x : A} \quad (var)}{\Gamma, x : A \vdash x : A} \quad \frac{\overline{\Gamma \vdash () : 1} \quad (unit)}{\Gamma \vdash () : 1}$$

$$\frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash M : B} \quad (\to elim) \quad \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A \cdot M : A \to B} \quad (\to intro)$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{fst } M : A} \quad (\times elim1) \quad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{snd } M : B} \quad (\times elim2)$$

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : B}{\Gamma \vdash (M, N) : A \times B} \quad (\times intro)$$

Typing derivation

$$\frac{x: A \to A, y: A \vdash x: A \to A}{x: A \to A, y: A \vdash x: A \to A} \xrightarrow{(var)} \frac{x: A \to A, y: A \vdash x: A \to A, y: A \vdash (xy): A}{x: A \to A, y: A \vdash x (xy): A}$$

$$x: A \to A, y: A \vdash x (xy): A$$

$$x: A \to A \vdash (\lambda y: A. x (xy)): A \to A$$

$$\vdash (\lambda x: A \to A. \lambda y: A. x (xy)): (A \to A) \to A \to A$$

Typing derivation

- For each lambda term, there is exactly one type rule that applies.
 - Unique rule to lookup during typing derivation.

Typability

- Not all λ^{\rightarrow} terms can be assigned a type. For example,
- fst $(\lambda x. M)$
- $\langle M, N \rangle P$
- Surprisingly, we cannot assign a type for $\lambda x. x. x$ in $\lambda \rightarrow$ (or OCaml)
 - x is applied to itself. So its argument type should the type of x!

On fst and snd

In OCaml, we can define fst and snd as:

```
In [1]:
```

```
let fst (a,b) = a
let snd (a,b) = b

Out[1]:

val fst : 'a * 'b -> 'a = <fun>
Out[1]:
```

Observe that the types are polymorphic.

val snd : 'a * 'b -> 'b = <fun>

- But no polymorphism in λ^{\rightarrow}
 - fst and snd are **keywords** in λ^{\rightarrow}

- For a given type $A \times B$, we can define
 - $(\lambda p: A \times B. \text{ fst } p): A$
 - $(\lambda p : A \times B. \text{ snd } p) : B$

Reductions in λ^{\rightarrow}

$$(\beta_{\rightarrow}) \qquad (\lambda x : A. M) N \rightarrow M[N/x]$$

$$(\eta_{\rightarrow}) \qquad \lambda x : A. M x \rightarrow M \qquad \text{if } x \notin FV(M)$$

$$(\beta_{\times,1}) \qquad \text{fst } \langle M, N \rangle \rightarrow M$$

$$(\beta_{\times,2}) \qquad \text{snd } \langle M, N \rangle \rightarrow N$$

$$(\eta_{\times}) \qquad \langle \text{fst } M, \text{snd } M \rangle \rightarrow M$$

$$(cong1) \qquad \frac{M \rightarrow M'}{M N \rightarrow M' N} \qquad (cong2) \qquad \frac{N \rightarrow N'}{M N \rightarrow M N'}$$

$$(\xi) \qquad \frac{M \rightarrow M'}{\lambda x : A M \rightarrow \lambda x : A M'}$$

Type Soundness

- Well-typed programs do not get **stuck**.
 - stuck = not a value & no reduction rule applies.
 - fst $(\lambda x. x)$ is stuck.
 - ()() is stuck.
- In practice, well-typed programs do not have runtime errors.

Theorem (Type Soundness). If $\vdash M: A$ and $M \to M^{'}$, then either $M^{'}$ is a value or there exists an $M^{''}$ such that $M^{'} \to M^{''}$.

Proved using two lemmas progress and preservation.

Preservation

If a term M is well-typed, and M can take a step to $M^{'}$ then M is well-typed.

Lemma (Preservation). If $\vdash M:A$ and $M \to M'$, then $\vdash M':A$.

Proof is by induction on the reduction relation $M \to M^{'}$.

Preservation : Case β

Lemma (Preservation). If $\vdash M:A$ and $M \to M'$, then $\vdash M':A$.

Recall, $(\beta \rightarrow)$ rule is $(\lambda x : A. M_1) N \rightarrow M_1[N/x]$.

Assume $\vdash M:A$. Here $M = (\lambda x: B. M_1) N$ and $M' = M_1[N/x]$.

We know M is well-typed. And from the typing derivation know that $x: B \vdash M_1: A$ and $\vdash N: B$.

Lemma (substitution). If $x: B \vdash M: A$ and $\vdash N: B$, then $\vdash M[N/x]: A$.

By substitution lemma, $\vdash M_1[N/x]:A$. Therefore, preservation holds.

Progress

Progress says that if a term M is well-typed, then either M is a value, or there is an $M^{'}$ such that M can take a step to $M^{'}$.

Lemma (Progress). If $\vdash M:A$ then either M is a value or there exists an $M^{'}$ such that $M \to M^{'}$.

Proof is by induction on the derivation of $\vdash M:A$.

- Case var does not apply
- Cases *unit*, × *intro* and → *intro* are trivial; they are values.
- Reduction is possible in other cases as *M* is well-typed.

Type Safety = Progress + Preservation

Expressive power of λ^{\rightarrow}

- Clearly, not all untyped lambda terms are well-typed.
 - Any term that gets stuck is ill-typed.
- Are there terms that are ill-typed but do not get stuck?
- Unfortunately, the answer is yes!
 - Consider $\lambda x. x. \ln \lambda^{\rightarrow}$, we must assign type for x
 - Pick a concrete type for x

 $\circ \lambda x: 1.x.$

• $(\lambda x: 1.x) \langle (), () \rangle$ is ill-typed, but does not get stuck.

Expressive power of λ^{\rightarrow}

- As mentioned earlier, we can no longer write recursive function.
 - $(\lambda x. x x) (\lambda x. x x)$
- Every well-typed λ → term terminates!
 - λ^{\rightarrow} is strongly normalising.

Connections to propositional logic

Consider the following types

 $(1) \quad (A \times B) \to A$

(2) $A \rightarrow B \rightarrow (A \times B)$

 $(3) \quad (A \to B) \to (B \to C) \to (A \to C)$

 $(4) \quad A \to A \to A$

 $(5) \quad ((A \rightarrow A) \rightarrow B) \rightarrow B$

(6) $A \rightarrow (A \times B)$

 $(7) \quad (A \to C) \to C$

Can you find closed terms of these types?

Connections to propositional logic

 $(1) \quad (A \times B) \to A$

 $\lambda x: A \times B$. fst x

 $(2) \quad A \to B \to (A \times B)$

 $\lambda x: A. \lambda y: B. \langle x, y \rangle$

(3) $(A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$ $\lambda x: A \rightarrow B. \lambda y: B \rightarrow C. \lambda z: A. y (x z)$

 $(4) \quad A \to A \to A$

 $\lambda x: A. \lambda y: A. x$

 $(5) \quad ((A \to A) \to B) \to B$

 $\lambda x: (A \to A) \to B. \ x (\lambda y: A. \ y)$

(6) $A \rightarrow (A \times B)$

can't find a closed term

 $(7) \quad (A \to C) \to C$

can't find a closed term

A different question

- Given a type, whether there exists a closed term for it?
- Replace \rightarrow with \implies and \times with \wedge .

 $(1) (A \wedge B) \Longrightarrow A$

 $(2) \quad A \implies B \implies (A \land B)$

 $(3) \quad (A \implies B) \implies (B \implies C) \implies (A \implies C)$

 $(4) \quad A \implies A \implies A$

 $(5) \quad ((A \implies A) \implies B) \implies B$

(6) $A \implies (A \land B)$

 $(7) \quad (A \implies C) \implies C$

What can we say about the validity of these logical formulae?

A different question

 $(1) \quad (A \land B) \implies A$

 $(2) \quad A \implies B \implies (A \land B)$

 $(3) \quad (A \implies B) \implies (B \implies C) \implies (A \implies C)$

 $(4) \quad A \implies A \implies A$

 $(5) \quad ((A \implies A) \implies B) \implies B$

 $(6) \quad A \implies (A \land B)$

(7) $(A \Longrightarrow C) \Longrightarrow C$

(1) - (5) are valid, (6) and (7) are not!

Proving a propositional logic formula

- How to prove $(A \wedge B) \implies A$?
 - Assume $A \wedge B$ holds. By the first conjunct, A holds. Hence, the proof.
- Consider the program $\lambda x : A \times B$. fst x.
 - Observe the close correspondence of this **program** to the **proof**.
- What is the type of this program? $(A \times B) \rightarrow A$.
 - Observe the close correspondence of this type to the proposition.
- Curry-Howard correspondence between λ^{\rightarrow} and propositional logic.

Curry-Howard Correspondence

- Proposition:Proof :: Type:Program
- Intuitionistic/constructive logic and not classical logic
 - Law of excluded middle $(A \lor \neg A)$ does not hold for an arbitrary A.
 - Can't prove by contradiction
 - In order to prove, *construct* the proof object!

Propositional Intuitionistic Logic

Formulas: $A, B := \alpha \mid A \rightarrow B \mid A \land B \mid T$

where α is atomic formulae.

A derivation is

$$x_1: A_1, x_2: A_2, ..., x_n: A_n \vdash A$$

where A_1, A_2, \ldots are assumptions, x_1, x_2, \ldots are names for those assumptions and A is the formula derived from those assumptions.

Derivations through natural deduction

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma \vdash A} \text{ (axiom)} \qquad \frac{\Gamma \vdash \Gamma}{\Gamma \vdash \Gamma} \text{ (\top intro)}$$

$$\frac{\Gamma \vdash A \implies B \quad \Gamma \vdash A}{\Gamma \vdash B} \text{ (\Longrightarrow elim)} \qquad \frac{\Gamma, x: A \vdash B}{\Gamma \vdash A \implies B} \text{ (\Longrightarrow intro)}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \text{ (\land elim1)} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \text{ (\land elim2)}$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \text{ (\land intro)}$$

Curry Howard Isomorphism

- Allows one to switch between type-theoretic and proof-theoretic views of the world at will.
 - used by theorem provers and proof assistants such as coq, HOL/Isabelle, etc.
- Reductions of λ^{\rightarrow} terms corresponds to proof simplification.

Curry Howard Isomorphism

 λ — Propositional Intuitionistic Logic
Types — Propositions

1 — T \times — \wedge \rightarrow — \Longrightarrow Programs — Proofs

Reduction — Proof Simplification

What about \vee ?

Disjunction

Extend the logic with:

Formulas:
$$A, B := ... \mid A \lor B \mid \bot$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \ (\lor \ intro1) \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \ (\lor \ intro2)$$

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash C} \ (\bot \ elim) \qquad \frac{\Gamma \vdash A \lor B}{\Gamma \vdash C} \ (\lor \ elim)$$

Sum Types

Extend \$\stlc\$ with:

The OCaml equivalent of this sum type is:

- Similar to fst and snd, there is no polymorphism in \$\stlc\$.
 - Hence, inl and inr are keywords.

Explicit Type Annotation for inl and inr

Raw Terms:
$$M, N, P$$
 ::= ... | case M of inl $x: A \Rightarrow N$ | inl $y: B \Rightarrow P$ | inl $[B]M$ | inr $[A]M$ | $\square_A M$

- Observe that the term for inl and inr require explicit type annotation.
- Without that inl () has many possible types captured by 1 + A.
 - Bottom up type checking is not possible as A is left undefined.
 - No type inference or polymorphism in λ^{\rightarrow} .
- Add explicit annotation and preserve bottom-up type checking property.

Sum Types: Contradiction

Extend \$\stlc\$ with:

- The type \$0\$ is an uninhabited type
 - There are no values of this type.
- The OCaml equivalent is an empty variant type:

```
type zero = |
```

Sum Types: Static Semantics

Extend λ^{\rightarrow} with:

$$\frac{\Gamma \vdash M:A}{\Gamma \vdash \operatorname{inl}[B] M:A+B} (+ \operatorname{intro1}) \quad \frac{\Gamma \vdash M:B}{\Gamma \vdash \operatorname{inr}[A] M:A+B} (+ \operatorname{intro2})$$

$$\frac{\Gamma \vdash M:A+B \quad \Gamma, x:A \vdash N:C \quad \Gamma, y:B \vdash P:C}{\Gamma \vdash \operatorname{case} M \text{ of inl } x:A \Rightarrow N \mid \operatorname{inl} y:B \Rightarrow P:C} (+ \operatorname{elim})$$

$$\frac{\Gamma \vdash M:0}{\Gamma \vdash \Box_A M:A} (\Box)$$

Casting and type soundness

- Recall, Type Soundness = Progress + Preservation
- But □ _A changes the type of the expression
 - Is type soundness lost?
- Consider $\lambda x: 0.(\square_{1\to 1} x)()$
 - This term is well-typed.
 - If we are able to call this function, the program would crash since *x* is not a function.
- There is no way to call this function since the type 0 is uninhabited!
 - Type Soundness is preserved.

Sum Types : Dynamic Semantics

Extend → with:

$$\frac{M \to M^{'}}{\operatorname{case} M \text{ of inl } x_{1} : A \Rightarrow N_{1} \mid \operatorname{inl} x_{2} : B \Rightarrow N_{2} \to \operatorname{case} M^{'} \text{ of inl } x_{1} : A \Rightarrow N_{1} \mid \operatorname{inl} x_{2} : B \Rightarrow N_{2}}$$

$$\frac{M = \operatorname{inl} [B] M^{'}}{\operatorname{case} M \text{ of inl } x_{1} : A \Rightarrow N_{1} \mid \operatorname{inl} x_{2} : B \Rightarrow N_{2} \to N_{1}[M^{'}/x_{1}]}$$

$$\frac{M = \operatorname{inr} [A] M^{'}}{\operatorname{case} M \text{ of inl } x_{1} : A \Rightarrow N_{1} \mid \operatorname{inl} x_{2} : B \Rightarrow N_{2} \to N_{2}[M^{'}/x_{2}]}$$

Type Erasure

- Although we carry around type annotations during reduction, we do not examine them.
 - No runtime type checking to see if function is applied to appropriate arguments, etc.
- Most compilers drop the types in the compiled form of the program (erasure).

$$erase(x) = x$$

 $erase(M N) = erase(M) erase(N)$
 $erase(\lambda x : A . M) = \lambda x . erase(M)$
 $erase(inr [A] M) = erase(inr erase(M))$

etc.

Type erasure

Theorem (Type erasure).

- 1. If $M \to M^{'}$ under the λ^{\to} reduction relation, then $\operatorname{erase}(M) \to \operatorname{erase}(M^{'})$ under untyped reduction relation.
- 2. If $erase(M) \to N'$ under the untyped reduction relation, then there exists a λ^{\to} term M' such that $M \to M'$ under λ^{\to} reduction relation and erase(M') = N'.

Static vs Dynamic Typing

- OCaml, Haskell, Standard ML are statically typed languages.
 - Only well-typed programs are allowed to run.
 - Type soundness holds; well-typed programs do no get stuck.
 - Types can be erased at compilation time.

- What about Python, JavaScript, Clojure, Perl, Lisp, R, etc?
 - Dynamically typed languages.
 - No type checking at compile time; anything goes.
 - \circ x = lambda a : a + 10; x("Hello") is a runtime error.
 - Allows more programs to run, but types need to be checked at runtime.
 - Types cannot be erased!

Fin