PROJECT REPORT

NATURAL DISASTERS INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

submitted by

MOHAMED ISAM J - 950819106041
ARUMUGA ESWARAN M - 950819106004
MAYAKRISHNAN S - 950819106039
MUGILAN S - 950819106044

In partial fulfillment for the award of the degree of **BACHELOR OF ENGINEERING** In **ELECTRONICS AND COMMUNICATION ENGINEERING**,

GOVERNMENT COLLEGE OF ENGINEERING, TIRUNELVELI - 627 007.

ANNA UNIVERSITY: CHENNAI - 600 025.
NOVEMBER 2022.

TABLE OF CONTENTS

1	INTRODUCTION	3
	1.1 Project overview	
	1.2 Purpose	
2	LITERATURE SURVEY	3
	2.1 Exisiting problem	
	2.2 References	
	2.3 Problem statement definition	
3	IDEATION AND PROPOSED SOLUTION	4
	3.1 Empathy Map Canvas	
	3.2 Ideation and Brainstorming	
	3.3 Proposed solution	
	3.4 Problrm Solution Fit	
4	REQUIREMENT ANALYSIS	7
	4.1 Functional requirements	
	4.2 Non-Functional requirements	
5	PROJECT DESIGN	8
	5.1 Data Flow Diagrams	
	5.2 User Stories	
	5.3 Solution and technical architecture	
6	PROJECT PLANNING AND SCHEDULING	12
	6.1 Sprint Planning and Estimation	
	6.2 Sprint Deliver Schedule	
7	CODING AND SOLUTIONING(Explain the features added	in the project along with code)
	7.1 Feature 1	15
	7.2 Feature 2	
8	TESTING	19
	8.1 Test cases	
	8.2 User Acceptance Testing	
9	RESULTS	20
	9.1 Performance Metrices	
10	ADVANTAGES AND DISADVANTAGES	20
11	CONCLUSION	21
12	FUTURE SCOPE	21
AF	PPENDIX	
	SOURCE CODE	22
	GITHUB	27
	PROJECTDEMO	27

1.INTRODUCTION

1.1 Project overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems.

1.2 Purpose

The main of the aim of the project to develop a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window.

2.LITERATURE SURVEY

2.1 Existing problem

Natural disasters are uncontrollable phenomena occurring yearly which cause extensive damage to lives, property and cause permanent damage to the environment. However by, using Deep Learning, real-time recognition of these disasters can help the victims and emergency response agencies during the onset of these destructive events. At present, there are still gaps in the literature regarding real-time natural disaster recognition. Flood management, which involves flood prediction, detection, mapping, evacuation, and relief activities, can be improved via the adoption of state-oftheart tools and technology. Thus, future efforts need to focus on combining disaster management knowledge, image processing techniques and machine learning tools to ensure effective and holistic disaster management across all phases.

2.2 References

A Review On Flood Management Technologies Related To Image Processing And Machine Learning

Author: Hafiz SulimanMunawara, Ahmed W.A.HammadaS, TravisWaller Published on: 19 Aug 2021

2.3 Problem statement definition

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Many deep learning techniques have been applied by various

researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images.

3.IDEATION AND PROPOSED SOLUTION

3.1 Empathy map canvas

3.2 Ideation and Brainstorming

3.3 Proposed Solution

S.NO	Parameter	Description		
1.	Problem statement(problem to be solved)	To tackle the problem of detecting natural disasters ,we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of natural disaster.		
2.	Ideas/solution description	By predicting to occurrence of natural disaster, we can save thousands of lives and take appropriate measures to reduce property damage.		
3.	Novelty/Uniqueness	It finds the magnitude of impact, length of fore warming and duration of impact.		
4.	Social impact/customer satisfaction	The most vulnerable are citizens and children .it can save lives of people can minimize the loss of infrastructure, finance.		
5.	Business Model (Revenue model)	The government and private companies make use of this to get revenue in future		
6.	Scalability of the solution	Disaster damages are measured involves examining the number of fatalities, of injuries, of people affected.		

3.4 Problem Solution Fit

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Register through mobile application Call the given emergency number
FR-2	User Confirmation	Confirmation via Call back Confirmation via Text
FR-3	User Preparation	Ensure safety of all people Supply of canned food
FR-4	User evacuation	Waiting for evacuation team Take refugee in nearest safe location

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	It is easy and quick method to predict the
		disasters.
NFR-2	Security	The secure pattern shares components with
		monitor and control for logging and control
		access and for providing audit trails.
NFR-3	Reliability	It should be highly reliable.

NFR-4	Performance	It deals with the measure of the system's	
		response time.	
NFR-5	Availability	It can be available at the any time and we can	
		access during any disasters.	
NFR-6	Scalability	Disaster damages are measured involves	
		examining the number of fatalities, of injuries,	
		of people affected.	

5.PROJECT DESIGN

5.1 Data flow diagram

Data Flow Diagrams: Example: (Simplified) External entity like hurricane, cyclones Past weather data records By using convolution Past disaster data records neural network Predicted model of weather Predicting attributes Predicting Data in the form of severity of Cyclone Predictive model of disaster image or dataset a cyclone Predicted results of occurrence trained by past monthly future weather Existing disaster records related data image Predicted results of future Data stored by RNN disaster occurrence Victims

5.2 User Stories

User	Functional	User	User Story	Acceptan	Priority	Relea
Туре	Requireme	Story	/ Task	ce criteria		se
	nt (Epic)	Numb				
		er				
Customer	Registration	USN-1	As a user, I	I can	High	Sprint-1
(Mobile			can register	access my		
user)			for the	account /		
			application	dashboard		
			by entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password.			
		USN-2	As a user, I	I can	High	Sprint-1
			will receive	receive		
			confirmation	confirmation		
			email once I	email &		
			have	click		
			registered	confirm		
			for the			
			application			
		LICNIC	A =	1	1	Consider
		USN-3	As a user, I	I can	Low	Sprint-
			can register	•		2
			for the	access the		
			application	dashboard		
			through	with		
			Facebook	Facebook		
				Login		

		USN-4	As a user, I can register for the application through Gmail	I can login with my password	Medi um	Sprint- 1
	Login	USN-5	As a user, I can log into the application by entering email & password	I can see the dashboard now	High	Sprint- 1
	Dashboard	USN-6	As a user, I can update Disaster incidents.	I can update now.	Medi um	Sprint- 1
Customer (Web user)		USN-7	As a user, I can view Map Data.	I can see Map Data.	Medi um	Sprint- 1
Customer Care Executive	Authenticati on	USN-8	As a Community Leader, I can log into the application using my password	I can access my account.	High	Sprint- 1
		USN-9	As a Community Leader, I can apply for membershi p.	I can apply membershi p.	High	Sprint-1

User	Functional	User	User Story	Acceptan	Priority	Relea
Туре	Requirement	Story	/ Task	ce criteria		se
	(Epic)	Numb				
		er				

System	Membership	USN- 10 USN-	As a Community Leader, I can verify Disaster. As a	Disaster verification	High High	Sprint- Sprint-
Administrat	Approval	11	administrato	approve	riigii	1
or			r, I can	membershi		
			approve the	p.		
			Membership			
			application.			
	Update	USN-	As a	I can update	High	Sprint-
	Disaster	12	administrato	disaster		1
	information		r, I can	information.		
			update			
			information about			
			Disaster.			
	Disaster	USN-	As a	I can verify	High	Sprint-
	verification	13	administrato	Disaster	riigii	1
	vermeation	10	r, I can verify	Disaster		-
			disaster.			
Community	Disaster	USN-	Both are can	We can ask	Low	Sprint-
Leader and	Queries	14	able to ask	Queries		2
System			disaster	about		
Administrat			queries.	disaster.		
or						
	Disaster	USN-	Both are can	Both will	Low	Sprint-
	Reports	15	able to give	give the		2
			disaster	disaster		
			reports.	reports		

5.3 Solution And Technical Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- 1. Find the best tech solution to solve existing business problems.
- 2. Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- 3. Define features, development phases, and solution requirements.

Provide specifications according to which the solution is defined, managed, and delivered.

6 PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning and Estimation

Ose the pelow template to create product backing and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	Low	Maya Krishnan S
Sprint-1	Registration	USN-2	As a user, I will receive confirmation email once I have registered for the application	3	High	Arumuga Eswaran M
Sprint-1	Login	USN-3	As a user, I adapt to logging into the system with credentials.	2	Low	Mugilan S
Sprint-1	Designation of Region	USN-4	As a user, I can collect the dataset and select the region of interest to be monitored and analysed.	5	Medium	Mohamed Isam J
Sprint-2	Analysis of required phenomenon	USN-5	As a user, I can regulate certain factors influencing the action and report on past event analysis.	4	High	Mugilan S
Sprint-2	Algorithm selection	USN-6	As a user, I can choose the required algorithm for specific analysis.	4	Medium	Arumuga Eswaran M
Sprint-2	Training and Testing	USN-7	As a user, I can train and test the model using the algorithm.	4	High	Mohamed Isam J

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Prediction and	USN-8	As a user, I can predict and visualise the data	4	High	Maya
	analysis of data		effectively.			Krishnan S
Sprint-3	Model building	USN-9	As a user, I can build with the web application.	8	High	Mugilan S
Sprint-4	Report generation	USN-10	As a user, I can generate detailed report on product data analysis.	4	High	Arumuga Eswaran M
Sprint-4	Model deployment	USN-11	As an administrator, I can maintain thirdparty services	8	High	Mohamed Isam J

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	12	6 Days	24 Oct 2022	29 Oct 2022	12	29 Oct 2022
Sprint-2	12	6 Days	31 Oct 2022	05 Nov 2022	12	05 Nov 2022
Sprint-3	12	6 Days	07 Nov 2022	12 Nov 2022	12	12 Nov 2022
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022	12	19 Nov 2022

6.3 Reports from JIRA

7 CODING AND SOLUTIONING

7.1 Feature 1


```
import numpy as np
import tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten

model=Sequential()
model.add(Conv2D(32,(3,3),activation="relu",input_shape=(64,64,3)))
model.add(MaxPooling2D(poo activation: Any model.add(Conv2D(32,(3,3),activation= relu ))
model.add(Conv2D(32,(3,3),activation= relu ))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=4,activation='softmax'))
model.compile(loss="categorical_crossentropy",metrics=["accuracy"],optimizer='adam')
```

```
model.summary()
Model: "sequential"
Layer (type)
                            Output Shape
                                                      Param #
conv2d (Conv2D)
                            (None, 62, 62, 32)
                                                      896
max_pooling2d (MaxPooling2D (None, 31, 31, 32)
 conv2d_1 (Conv2D)
                            (None, 29, 29, 32)
                                                      9248
max_pooling2d_1 (MaxPooling (None, 14, 14, 32)
 flatten (Flatten)
                            (None, 6272)
dense (Dense)
                            (None, 128)
                                                       802944
dense_1 (Dense)
                             (None, 4)
                                                       516
Total params: 813,604
Trainable params: 813,604
```

```
Non-trainable params: 0

model.fit_generator(generator=x_train_epochs=20, steps_per_epoch=len(x_train), validation_data=x_test, validation_steps=len(x_test))

model.save('disaster.h5')
model_json=model.to_json()

with open("model-bw.json", "w") as json_file:
    json_file.write(model_json)

from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model('disaster.h5')

x_train.class_indices

{'Cyclone': 0, 'Earthquake': 1, 'Flood': 2, 'Wildfire': 3}
```

7.2 Feature 2

```
from flask import flask, render_template

app = flask(_name__)

@app.route('/')

def home():
    return render_template('homepage.html', title='Disaster Classifier | Home', active_page='home')

@app.route('/intro')
def intro():
    return render_template('intro.html', title='Disaster Classifier | About', active_page='intro')

@app.route('/launch')
def launch():
    return render_template('launch.html', title='Disaster Classifier | Launch', active_page='launch')

if __name__ == '__main__':
    app.run(debug=True)
```

8 TESTING

8.1 Test Case

Test case ID	Feature Type	Compone	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Commets	TC for Automation(YIN)	BUG ID	Executed By
HomePage_TC_ OO1	Functional	Home Page	Verify user is able to see the home page when click on the Local host ID		Click on the local host ID. Verify Home page displayed or not	Mps.0127.0.0.1:5000	Home page should display	Working as expected	Pann		2313131311111	Ĩ	
HomePage_TC_ OO2		Home Page	Verify the UI elements in Home page		Click on the Local host ID. Xverify Home page with below UI elements: a Home b Intro page c Open Web Carm	teps://127.0.0.1:5000	Application should show below UI elements: a Home b intro page c.Open web carn	Working as expected	pass				
HomePage_FC_ GO3	u	Home	Verify user is able to see the some definition of natural disaster in Home.		Click on the local hast ID Click on Home Verify Home with below UI exements: a Cyclone with definition Earth quake with definition CWide Fire with definition CWide Fire with definition CWide Fire with definition CWide Fire with definition	Міря //127.D.O.1.5000	Application should show below till elements. a Cyclone with definition b Earth quake with definition c Wide Fire with definition d Flood with definition	Working as expected	Pass				
HomePage_TC_ OO4	u	intro Page	Verify user is able to see introduction in intro page		Click on the local host ID Click on intro page Verify intro page with some introduction	Mips./127.0 0.1:5000	Application should show Some introduction about natural disaster	Working as expected	pass				
HomePage_TC_ CIO4		Open web cam	Verify user is able to see Ut elements in open web cain		Click on the local host ID Click on the Open web cam 3 Verify open web cam with below elements: a Upload b-Predict	https://127.0.0.1:5000	Application should show Upload button and predict button	Working as expected	Pass				
HomePage_TC_ GOS		Upload	Verify user is able to upload an image		Click on the local host ID Click on the Open web cam click on the Upload butten Averify user to see images to uproad in upload butten Scick on any image shows in uproad butten	Mips./127.0.0.1:5000	Application should upload an image	Working as expected	pass				
ome age_TC_666	u	Prodict			Citick on the local host ID Citick on the Open web cam Subick on the Upbad button A.Citick on the Image to upland Scilick on the Image to upland Scilick on the predict button Evently user able to see output image.	Miga #127.0 0.1 5000	Application should show output trial	working as expected	Fall	Output image not shows			

8.2 User Acceptance Testing

Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	6	3	2	1	12
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	12	2	4	5	23
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won'tFix	0	3	2	1	6
Totals	21	11	13	9	54

9 RESULTS

9.1 Performance Metrics

S.No.	Parameter Values			Screenshot					
1.	Model Summary	-	mode	:1.summary()					
			Model: "sequential"						
				er (type)	Output Shape	Param #			
					(None, 62, 62, 32)	896			
			max_	pooling2d (HaxPooling2D	(None, 31, 31, 32)	ø			
			com	r2d_1 (Conv2D)	(None, 29, 29, 32)	9248			
			max_ 2D)	_pooling2d_1 (MaxPooling	(Hone, 14, 14, 32)	9			
			flat	tten (Flatten)	(None, 6272)	0			
			dens	se (Dense)	(None, 128)	802944			
			dens	se_1 (Dense)	(None, 4)	516			
<u> </u>									
2.	Accuracy	Training Accuracy -	· loss: 0.5239 - accuracy: 0.7857 - val_loss: 0.7226 - val_accuracy:						
		Validation Accuracy -	· loss:	: 0.4353 - accuracy: 0.8383 -	val_loss: 0.7538 - val_accura	есу: 0.7323			
			· loss:	loss: 0.3964 - accuracy: 0.8544 - val_loss: 1.8309 - val_atcuracy: 0.63					
			· loss:	: 0.3662 - accuracy: 0.8767 -	· val_loss: 0.6900 - val_accura	ecy: 0.7273			
			· loss: 0.4363 - accuracy: 0.8342 - val_loss: 0.5638 - val_accuracy:						
			· loss:	: 0.3292 - accuracy: 0.8814 -	- val_loss: 0.6497 - val_accura	есу: 0.7577			

10. ADVANTAGES AND DISADVANTAGES

ADVANTAGES:-

- 1.Humans also need breaks and time offs to balance their work life and personal life.But AI can work endlessly without breaks.
- 2. With the use of various AI-based techniques, we can also anticipate today's weatherand the days ahead.
- 3. Helpful in getting life back on track. Their Alert nature able to respond effectively and efficiently which defend the societyfrom large scale damages.

DISADVANTAGES:-

- 1. It involves huge money to be equipped.
- 2. Problems faced in life basic needs. One application of artificial intelligence is

a robot, which is displacing occupations and increasing unemployment.

4. Machines can perform only those tasks which they are designed or programmed to do, anything out of that they tend to crash or give irrelevant outputs which could be a major backdrop.

11 CONCLUSION

Many researchers have attempted to use different deep learning methods for detection of natural disasters. However, the detection of natural disasters by using deep learning techniques still faces various issues due to noise and serious class imbalance problems. To address these problems, we proposed a multilayered deep convolutional neural network for detection and intensity classification of natural disasters. The proposed method works in two blocks—one for detection of natural disaster occurrence and the second block is used to remove imbalanced class issues. The results were calculated as average statistical values: sensitivity, 97.54%; specificity, 98.22%; accuracy rate, 99.92%; precision, 97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the highest accuracy as compared to other state-of-the-art methods due to its multilayered structure. The proposed model performs significantly better for natural disaster detection and classification, but in the future the model can be used for various natural disaster detection processes.

12 FUTURE SCOPE

AI -smart technology, which has enabled accurate and speedy solutions. If harnessed properly, the technology has the potential of predicting, preventing and providing response faster than ever.AI data setups are trained to predict seismic data to analyze the patterns of earthquake occurrences, rainfall records

and monitor flooding, measure the intensity hurricanes and read the geological data to understand volcanic eruptions, such systems can reduce the catastrophic impact of natural disasters. Last year, Google's Pilot project to monitor flood in India with the help of AI, was a successful one – it was a Patna project. They were able to predict floods and the regions that it would be affected due to the natural disaster with an accuracy of over 90%. It was possible owing to the combination of data from government agencies that provide on-ground information - from measuring devices placed on the spot and satellite captured images of flood-prone areas. They ran hundreds of thousands of simulations on its machine learning (ML) models to predict the flow of water. In thefuture, leveraging AI can help disaster management bodies install drones, sensors and robots to provide accurate information about damaged buildings and landscapes, potential floods, making rescue missions safer and less timeconsuming. There is a need for smart technology to be integrated within our local communities. Immediate response and tech-based solutions can help reduce the extent of damage. However, since AI is based on machine codes, there is a scope of limitations and errors. However, the amalgamation of human, empathy and alertness, could do wonders in the field of crisis management.

APPENDIX

Source code: Model creation

```
import numpy as np
import tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten

model=Sequential()
model.add(Conv2D(32,(3,3),activation="relu",input_shape=(64,64,3)))
model.add(MaxPooling2D(poo activation: Any
model.add(Conv2D(32,(3,3),activation= relu"))
model.add(Conv2D(32,(3,3),activation= relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=4,activation='softmax'))
model.compile(loss="categorical_crossentropy",metrics=["accuracy"],optimizer='adam')
```

```
model.summary()
Model: "sequential"
Layer (type)
                             Output Shape
                                                        Param #
conv2d (Conv2D)
                             (None, 62, 62, 32)
                                                        896
 max_pooling2d (MaxPooling2D (None, 31, 31, 32)
                                                        ø
 conv2d_1 (Conv2D)
                             (None, 29, 29, 32)
                                                       9248
 max_pooling2d_1 (MaxPooling (None, 14, 14, 32)
                                                        ø
 2D)
 flatten (Flatten)
                             (None, 6272)
 dense (Dense)
                             (None, 128)
                                                        802944
 dense_1 (Dense)
                             (None, 4)
                                                        516
Total params: 813,604
Trainable params: 813,604
```

```
Non-trainable params: 0
   model.fit\_generator(generator=x\_train,epochs=20,steps\_per\_epoch=len(x\_train),validation\_data=x\_test,validation\_steps=len(x\_test))
   model.save('disaster.h5')
 model_json=model.to_json()
with open("model-bw.json","w") as json_file:
    json_file.write(model_json)
   from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model('disaster.h5')
{'Cyclone': 0, 'Earthquake': 1, 'Flood': 2, 'Wildfire': 3}
    img-image.load_img(r"/content/drive/MyDrive/Disaster/dataset/test_set/Earthquake/1329.jpg",target_size=(64,64))
    x=image.img_to_array(img)
    x=np.expand_dims(x,axis=0)
    index=['Cyclone','Earthquake','Flood','Wildfire']
y=np.argmax(model.predict(x),axis=1)
    print(index[int(y)])
1/1 [-----] - 0s 121ms/step
Earthquake
    img-image.load\_img(r"/content/drive/MyDrive/Disaster/dataset/test\_set/Cyclone/900.jpg", target\_size=(64,64))
    x=image.img_to_array(img)
    x=np.expand_dims(x,axis=0)
    index=['cyclone', Earthquake', 'Flood', 'Wildfire']
y=np.argmax(model.predict(x),axis=1)
    print(index[int(y)])
1/1 [======] - 0s 20ms/step
Cyclone
```

Flask app.py

```
application.py* X

from flask import Flask, render_template

app = Flask(_name__)

@app.route('/')

def home():
    return render_template('homepage.html', title='Disaster Classifier | Home',
    active_page='home')

@app.route('/intro')

def intro():
    return render_template('intro.html', title='Disaster Classifier | About', active_page='intro')

@app.route('/launch')

def launch():
    return render_template('launch.html', title='Disaster Classifier | Launch',
    active_page='launch')

if __name__ == '__main__':
    app.run(debug=True)
```

HTML Code

GITHUB:

https://github.com/IBM-EPBL/IBM-Project-31341-1660199506

PROJECT DEMO:

https://drive.google.com/file/d/18XL76mPFqKJxbOBUeOov7J hqietny9Sn/view?usp=share_link