

Lecture 7: Distortion Analysis

Prof. Ali M. Niknejad

University of California, Berkeley Copyright © 2005 by Ali M. Niknejad

Introduction to Distortion

- Up to now we have treated amplifiers as small-signal linear circuits. Since transistors are non-linear, this assumption is only valid for extremeley small signals.
- Consider a class of memoryless non-linear amplifiers. In other words, let's neglect energy storage elements.
- This is the same as saying the output is an instantaneous function of the input. Thus the amplifier has no memory.

Distortion Analaysis Assumptions

• We also assume the input/output description is sufficiently smooth and continuous as to be accurately described by a power series

$$s_o = a_1 s_i + a_2 s_i^2 + a_3 s_i^3 + \dots$$

For instance, for a BJT (Si, SiGe, GaAs) operated in forward-active region, the collector current is a smooth function of the voltage V_{BE}

BJT Distortion

- We shift the origin by eliminating the DC signals, $i_o = I_C I_Q$. The input signal is then applied around the DC level $V_{BE,Q}$.
- Note that an ideal amplifier has a perfectly linear line.

JFET Distortion

 JFETs are more common devices in RF circuits. The I-V relation is also approximately square law

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

MOSFET Distortion

The long-channel device also follows the square law relation (neglecting bulk charge effects)

$$I_D = \frac{1}{2}\mu C_{ox} \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$$

This is assuming the device does not leave the forward active (saturation) regime.

MOSFET Model

- Note that the device operation near threshold is not captured by our simple square-law equation
- The I-V curve of a MOSFET in moderate and weak inversion is easy to describe in a "piece-meal" fashion, but difficult to capture with a single equation.
- Short-channel devices are even more difficult due to velocity saturation and drain induced barrier lowering.

Differential Pair

The differential pair is an important analog and RF building block.

• For a BJT diff pair, we have $V_i = V_{BE1} - V_{BE2}$

$$I_{C1,2} = I_S e^{\frac{qV_{BE1,2}}{kT}}$$

• The sum of the collector currents are equal to the current source $I_{C1}+I_{C2}=I_{EE}$

BJT Diff Pair

The ideal BJT diff pair I-V relationship (neglecting base and emitter resistance) is give by

$$I_o = I_{C1} - I_{C2} = \alpha I_{EE} \tanh \frac{qV_i}{2kT}$$

Notice that the output current saturates for large input voltages

Power Series Relation

For a general circuit, let's represent this behavior with a power series

$$s_o = a_1 s_i + a_2 s_i^2 + a_3 s_i^3 + \dots$$

- ullet a_1 is the small signal gain
- **●** The coefficients $a_1, a_2, a_3, ...$ are independent of the input signal s_i but they depend on bias, temperature, and other factors.

Harmonic Distortion

• Assume we drive the amplifier with a time harmonic signal at frequency ω_1

$$s_i = S_1 \cos \omega_1 t$$

• A linear amplifier would output $s_o = a_1 S_1 \cos \omega_1 t$ whereas our amplifier generates

$$s_o = a_1 S_1 \cos \omega_1 t + a_2 S_1^2 \cos^2 \omega_1 t + a_3 S_1^3 \cos^3 \omega_1 t + \dots$$

or

$$s_o = a_1 S_1 \cos \omega_1 t + \frac{a_2 S_1^2}{2} (1 + \cos 2\omega_1 t) + \frac{a_3 S_1^3}{4} (\cos 3\omega_1 t + 3\cos \omega_1 t) + \dots$$

Harmonic Distortion (cont)

- The term $a_1s_1\cos\omega_1t$ is the wanted signal.
- Higher harmonics are also generated. These are unwanted and thus called "distortion" terms. We already see that the second-harmonic $\cos 2ω_1t$ and third harmonic $\cos 3ω_1t$ are generated.
- Also the second order non-linearity produces a DC shift of $\frac{1}{2}a_2S_1^2$.
- The third order generates both third order distortion and more fundamental. The sign of a_1 and a_3 determine whether the distortion product $a_3S_{1\,\,\overline{4}}^{3\,\,\overline{3}}\cos\omega_1 t$ adds or subtracts from the fundamental.
- If the signal adds, we say there is gain expansion. If it subtracts, we say there is gain compression.

Second Harmonic Distortion Waveforms

The figure above demonstrates the waveform distortion due to second harmonic only.

A. M. Niknejad University of California, Berkeley EECS 142 Lecture 7 p. 13/18

Third Harmonic Distortion Waveform

The above figure shows the effects of the third harmonic, where we assume the third harmonic is in phase with the fundamental.

Third Harmonic Waveform (cont)

The above figure shows the effects of the third harmonic, where we assume the third harmonic is out of phase with the fundamental.

General Distortion Term

• Consider the term $\cos^n \theta = \frac{1}{2^n} \left(e^{j\theta} + e^{-j\theta} \right)^n$. Using the Binomial formula, we can expand to

$$= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{jk\theta} e^{-j(n-k)\theta}$$

• For n = 3

$$= \frac{1}{8} \left(\binom{3}{0} e^{-j3\theta} + \binom{3}{1} e^{j\theta} e^{-j2\theta} + \binom{3}{2} e^{j2\theta} e^{-j\theta} + \binom{3}{3} e^{j3\theta} \right)$$

$$= \frac{1}{8} \left(e^{-j3\theta} + e^{j3\theta} \right) + \frac{1}{8} 3 \left(e^{j\theta} + e^{-j\theta} \right) = \frac{1}{4} \cos 3\theta + \frac{3}{4} \cos \theta$$

General Distortion Term (cont)

- We can already see that for an odd power, we will see a nice pairing up of positive and negative powers of exponentials
- For the even case, the middle term is the unpaired DC term

$$\binom{2k}{k}e^{jk\theta}e^{-jk\theta} = \binom{2k}{k}$$

- So only even powers in the transfer function can shift the DC operation point.
- The general term in the binomial expansion of $(x+x^{-1})^n$ is given by

$$\binom{n}{k}x^{n-k}x^{-k} = \binom{n}{k}x^{n-2k}$$

General Distortion Term (cont)

- The term $\binom{n}{k}x^{n-2k}$ generates every other harmonic.
- If n is even, then only even harmonics are generated. If n is odd, likewise, only odd harmonics are generated.
- Recall that an "odd" function f(-x) = -f(x) (anti-symmetric) has an odd power series expansion

$$f(x) = a_1 x + a_3 x^3 + a_5 x^5 + \dots$$

• Whereas an even function, g(-x) = g(x), has an even power series expansion

$$g(x) = a_0 + a_2 x^2 + a_4 x^4 + \dots$$