```
df = pd.read_csv("https://raw.githubusercontent.com/AmenaNajeeb/Data/master/data.csv")
```

df.h

Passeng	erId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	2	1	1	Cumings, Mrs. John Bradley		00.0	4	0	DC 47500	74 0000	005	
				(Florence Briggs	female		1	0	PC 17599	71.2833	C85	
lf.drop(["P	assen'			Briggs			l	U	PC 17599	71.2833	C85	
null().sum(assen'			Briggs			ı	U	PC 17599	71.2833	C85	
f.drop(["P null().sum(Survived Pclass	assen			Briggs			ı	U	PC 17599	71.2833	C85	
df.drop(["P null().sum(Survived Pclass Sex	Passen (1) (1) (2) (3)			Briggs			ı	U	PC 17599	71.2833	C85	
df.drop(["P null().sum(Survived Pclass Sex Age	Passen (1) (1) (1) (2) (3) (4) (5) (7) (7)			Briggs			1	U	PC 17599	71.2833	C85	
df.drop(["P null().sum(Survived Pclass Sex Age SibSp	Passen (1) (1) (2) (3) (4) (7) (7) (7) (8)			Briggs			1	Ü	PC 17599	71.2833	C85	
df.drop(["P null().sum(Survived Pclass Sex Ses SibSp Parch	Passen (1) (0) (0) 177 (0) (0)			Briggs			1	Ü	PC 17599	71.2833	C85	
df.drop(["P null().sum(Survived Pclass Sex Age SibSp	Passen (1) (1) (2) (3) (4) (7) (7) (7) (8)			Briggs			1	Ü	PC 17599	71.2833	C85	

```
df.isnull().sum()
```

Survived Pclass Sex 0 Age 0 SibSp 0 Parch 0 Fare 0 Embarked 0 dtype: int64

df.dtypes

Survived int64 Pclass int64 object float64 Sex Age SibSp int64 Parch int64 float64 Fare Embarked object dtype: object

from sklearn import preprocessing

le = preprocessing.LabelEncoder()

df["Sex"]=le.fit_transform(df["Sex"])

df["Embarked"]=le.fit_transform(df["Embarked"])

df.dtypes

Survived int64 Pclass int64 Sex int64 float64 Age SibSp int64 Parch int64 float64 Fare Embarked int64 dtype: object

```
y=df["Survived"]
x=df.drop(["Survived"],axis=1)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.15,random_state=5)
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(max_leaf_nodes=10) #max_leaf_nodes = 10
model.fit(x_train,y_train) #trained
               DecisionTreeClassifier
     DecisionTreeClassifier(max_leaf_nodes=10)
y_pred=model.predict(x_test)
model.score(x_train,y_train)
     0.8330578512396695
model.score(x_test,y_test)
     0.8598130841121495
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)
    array([[64, 4],
[11, 28]])
from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))
                  precision recall f1-score support
                              0.94
               0
                       0.85
                                           0.90
                                                       68
               1
                       0.88
                                0.72
                                          0.79
                                                       39
        accuracy
                                           0.86
                                                      107
                             0.83
0.86
                      0.86
                                           0.84
                                                      107
       macro avg
                     0.86
                                          0.86
                                                      107
     weighted avg
```

from sklearn import tree

tree.plot_tree(model)

```
[Text(0.4230769230769231, 0.916666666666666666666, 'x[1] <= 0.5\ngini = 0.484\nsamples = 605\nvalue = [356,
  249]'),
     Text(0.15384615384615385, 0.75, 'x[0] <= 2.5\ngini = 0.369\nsamples = 221\nvalue = [54, 167]'),
Text(0.07692307692307693, 0.583333333333334, 'gini = 0.101\nsamples = 131\nvalue = [7, 124]'),
Text(0.23076923076923078, 0.58333333333334, 'x[5] <= 20.8\ngini = 0.499\nsamples = 90\nvalue = [47,
     Text(0.15384615384615385, 0.416666666666667, 'x[5] <= 7.742 \\ ngini = 0.492 \\ nsamples = 71 \\ nvalue = 1.002 \\ nvalue = 1.0
  [31, 40]'),
     Text(0.07692307692307693, 0.25, 'gini = 0.0\nsamples = 7\nvalue = [0, 7]'),
Text(0.23076923076923078, 0.25, 'x[2] <= 7.0\ngini = 0.5\nsamples = 64\nvalue = [31, 33]'),
    Text(0.6923076923076923, 0.75, 'x[2] <= 13.0\ngini = 0.336\nsamples = 384\nvalue = [302, 82]'),
      Text(0.5384615384615384,\ 0.583333333333333333334,\ 'x[3] <= 2.5 \\ line = 0.475 \\ line = 31 \\ line = [12, 1] \\ line = [12, 
 19]'),
    Text(0.46153846153846156, 0.4166666666666667, 'gini = 0.0\nsamples = 18\nvalue = [0, 18]'),
Text(0.6153846153846154, 0.416666666666667, 'gini = 0.142\nsamples = 13\nvalue = [12, 1]'),
Text(0.6153846153846154, 0.4166666666666667, 'gini = 0.142\nsamples = 13\nvalue = [12, 1]'),
Text(0.6153846153846154, 0.4166666666666667, 'gini = 0.142\nsamples = 23\nvalue = [12, 1]'),
32]'),
     Text(0.6923076923076923, 0.25, 'gini = 0.493\nsamples = 66\nvalue = [37, 29]'),
Text(0.8461538461538461, 0.25, 'gini = 0.245\nsamples = 21\nvalue = [18, 3]'),
      Text(0.9230769230769231, 0.4166666666666667, 'gini = 0.206\nsamples = 266\nvalue = [235, 31]')]
                                                                                                                                                x[1] <= 0.5
gini = 0.484
samples = 603
                                                                                                                                                                                                                                                   x[2] <= 13.0
ginl = 0.336
samples = 384
                                                                          x[2] <= 7.0
gini = 0.5
```

Colab paid products - Cancel contracts here

✓ 0s completed at 12:20 PM