CSC 503 Homework Assignment 2 Sample Solutions

Out: August 31, 2018 Due: September 10, 2018 Unity ID: jdoyle2

Prove the validity of the following sequents. Use only the basic rules of natural deduction (no derived rules).

1. **[10 points]** $\vdash (p \rightarrow q) \rightarrow (p \rightarrow (p \rightarrow (p \land q)))$

Answer

Note that line 4 could be produced from lines 1 and 2 instead of lines 1 and 3, and could appear right after line 2 instead of after it.

2. **[15 points]** $q \rightarrow p \vdash q \rightarrow (p \rightarrow q)$

Answer

Note that the proof does not actually use the premise in deriving the conclusion, so proof would be correct even if the first line were omitted.

$$\begin{array}{c|cccc} 1 & q \rightarrow p & & \text{Premise} \\ 2 & q & & \text{Assumption} \\ 3 & p & & \text{Assumption} \\ 4 & q & & \text{copy, 2} \\ 5 & p \rightarrow q & \rightarrow \text{i, 3-4} \\ 6 & q \rightarrow (p \rightarrow q) & \rightarrow \text{i, 2-5} \\ \end{array}$$

3. **[15 points]** $\neg p \rightarrow (\neg q \rightarrow \neg r) \vdash (\neg p \rightarrow \neg q) \rightarrow (\neg p \rightarrow \neg r)$

Answer

4. [30 points] $p \lor q, p \to r \lor s, q \to r \lor s, r \to t, s \to t \vdash t$

Answer

Proof 1			Proof 2				
			1	p	$\vee q$		Premise
			2	p	$\rightarrow r \vee s$		Premise
1	1	D	3	q	$\rightarrow r \vee s$		Premise
1	$p \lor q$	Premise	4	r	$\rightarrow t$		Premise
2	$p \to r \vee s$	Premise	5	s	$\rightarrow t$		Premise
3	$q \to r \lor s$	Premise	6		p		Assumption
4	$r \to t$	Premise	7		$r \vee s$		\rightarrow e, 6, 2
5	$s \to t$	Premise	8		$ _r$		Assumption
6	<u>p</u>	Assumption	9				\rightarrow e, 8, 4
7	$r \lor s$	\rightarrow e, 6, 2	10				Assumption
8	q	Assumption	11				\rightarrow e, 10, 5
9	$r \lor s$	\rightarrow e, 8, 3	12		$\begin{vmatrix} 1 \\ t \end{vmatrix}$		∨e, 7, 8–9, 10–11
10	$r \lor s$	∨e, 1, 6–7, 8–9	13		q		Assumption
11	r	Assumption	14		$r \lor s$		→e, 13, 3
12		\rightarrow e, 11, 4	15				Assumption
13	<u>s</u>	Assumption	16				\rightarrow e, 15, 4
14	$\mid t \mid$	\rightarrow e, 13, 5	17				Assumption
15	$\mid t \mid$	\vee e, 10, 11–12, 13–14					_
			18				\rightarrow e, 17, 5
			19		$\mid t$		∨e, 14, 15–16, 17–18
			20	$\mid t$			∨e, 1, 6–12, 13–19

5. [30 points] $r \to (p \lor q), p \to s, \neg q, \neg s \vdash \neg r$

Answer

1	$ \begin{vmatrix} r \to (p \lor q) \\ p \to s \end{vmatrix} $	Premise				
2	$p \rightarrow s$	Premise				
3	$\neg q$	Premise				
4	$\neg s$	Premise				
5	r	Assumption				
6	$p \lor q$	\rightarrow e, 5, 1				
7		Assumption				
8		\rightarrow e, 7, 2				
9		$\neg e, 8, 4$				
10	$ \neg r$	⊥e , 9				
11		Assumption				
12		¬e, 11, 3				
13	$ \neg r$	⊥e, 12				
14	-r	∨e, 6, 7–10, 11–13				
15	_	$\neg e, 5, 14$				
16	$\neg r$	¬i, 5–15				