4. СИСТЕМЫ СКРЕЩИВАНИЯ, ОПРЕДЕЛЯЮЩИЕ ПОДБОР ОСОБЕЙ В "РОДИТЕЛЬСКУЮ" ПАРУ

4.1. Панмиксия (случайное скрещивание)

Пусть популяция $P^t = (a_1^t, \dots, a_{\nu}^t)$ является *Менделевской популяцией*, в которой любые две особи a_k^t , $a_l^t \in P^t$, объединенные в \square одну "родительскую" пару, могут размножаться на основе актов сигнамии и мейоза.

 \square Способ подбора пары "родителей" a_k^t , $a_l^t \in P^t$, несущих, соответственно "отцовскую" гамету (спермотозоид) и "материнскую" гамету (яйцеклетку), будем называть системой скрещивания.

При любой системе скрещивания зигота, образованная в акте сигнамии, может с некоторой вероятностью P_c выжить и воспроизвести "потомство", а может с вероятностью $(1 - P_c)$ погибнуть (элиминировать). Общее число различных "родительских" пар $N_p(t)$, которые в t-ом поколении воспроизводят хотя бы одного "потомка", можно оценить с помощью следующего выражения:

$$N_{p}(t) = \frac{1}{2} \times C_{v}^{2} \times P_{c} = \frac{v(v-1)}{4} \times P_{c}$$
 (4.1)

где ν - численность популяции P^t ;

 P_{c} - вероятность выживания зигот в акте мейоза.

При образовании $N_p(t)$ "родительских" пар каждая особь $a_k^t \in P^t$ может в принципе несколько раз образовывать зиготу с любыми другими особями $a_l^t \in P^t$. Такая ситуация соответствует *полигамии особей*, когда особи какой-то пары в дальнейшем остаются в популяции P^t и продолжают участвовать в образовании новых "родительских" пар. При *моногамии* особи сформированной "родительской" пары исключаются из дальнейшего процесса образования новых пар.

Система скрещивания, в которой любые две особи \mathbf{a}_k^t , $\mathbf{a}_l^t \in \mathsf{P}^t$ имеют равновероятную возможность образовать "родительскую" пару, называется *панмиксией особей*.

При панмиксии особей частота $P(a_k^t, a_l^t)$ образования пары $(a_k^t, a_l^t) \in P^t$ не зависит от вариабельных признаков этих особей, а полностью определяется численностью популяции v:

$$P(a_k^t, a_l^t) = \frac{1}{v \times (v - 1)}.$$
 (4.2)

Таким образом панмиксия особей, по своей сути, является беспорядочным скрещиванием, при котором гаметы "родительских" особей образуют зиготы, встречаясь случайным образом.

В то же время в популяционной генетике [4] обычно говорят не о панмиксии особей, а о *панмиксии генотипов* - системе скрещивания, в которой объединение особей в "родительскую" пару проводится случайным образом в отношении конкретных форм генотипов. Поэтому частота $P(a_k^t, a_l^t)$ образования "родительской" пары в этом случае будет прямо пропорциональна частотам "родительских" генотипов $E(a_k^t)$ и $E(a_l^t)$ [$E(a_k^t) \neq E(a_l^t)$] в хромосомном наборе популяции P^t :

$$P(a_k^t, a_l^t) = \frac{v_k \times v_l}{v^2}, \qquad (4.3)$$

где ν - численность популяции P^t ;

 $v_k,\ v_l$ - доли, в которых генотипы $E(\textbf{a}_k^t)$ и $E(\textbf{a}_l^t)$ представлены в хромосомном наборе популяции P^t .

При этом, чем выше частота какого-то генотипа, тем чаще обладающие им особи будут входить в состав "родительской" пары.

Реализация системы скрещивания, связанной с панмиксией генотипов, сводится к дифференциации хромосомного набора популяции P^t по одинаковым формам генотипов. Этим самым все особи (a_1^t, \ldots, a_v^t) разделяются на m локальных популяций $P_i^t \neq \emptyset$, $i = \overline{1,m}$ (m < v), в каждый из которых Хэмминговы расстояния между любой парой генотипов равны нулю. В качестве "родительской" пары $(a_k^t, a_l^t) \in P^t$ выбираются любые две особи $a_k^t \in P_i^t$ и $a_l^t \in P_j^t$ $(P_i^t \neq P_j^t)$, где сами локальные популяции P_j^t и P_i^t выбираются случайным образом согласно распределения вероятностей:

$$P_{k} = \frac{v_{k}}{v}, k = \overline{1, m}, \tag{4.4}$$

где v_k - численность локальной популяции P_k^t .

Аналогично панмексии генотипов могут быть реализованы схемы скрещивания, реализующие отбор особей в "родительскую" пару как по конкретному локусу (панмексия гена), так и по совокупности локусов (панмиксия совокупности генов).

4.2. Инбридинг и аутбридинг

Будем считать, что две особи \mathbf{a}_k^t , $\mathbf{a}_l^t \in \mathsf{P}^t$ являются "близкими родственниками", если Хеммингово расстояние между их генотипами $E(\mathbf{a}_k^t)$ и $E(\mathbf{a}_l^t)$ не превышает заданного положительного целого числа \mathbf{d}_0 , т.е. генотипы $E(\mathbf{a}_k^t)$ и $E(\mathbf{a}_l^t)$ отличаются между собой не более, чем в \mathbf{d}_0 битах:

$$d[E(a_k^t), E(a_l^t)] = \left| \left| E(a_k^t) \oplus E(a_l^t) \right| \right| \le d_0. \tag{4.5}$$

В частном случае d_0 может равняться нулю. Это означает, что "близкими родственниками" являются особи, формы генотипов которых совпадают [$E(a_k^t) = E(a_l^t)$]. Пару особей, для которых условие (4.5) не выполняется, будем называть "неродственными" особями.

Система скрещивания, в которой при образовании "родительской" пары $(a_k^t, a_l^t) \in \mathsf{P}^t$ предпочтение отдается генетически похожим особям, являющихся "близкими родственниками", называется *инбридингом*.

Подбор особей в "родительские" пары при инбридинге приводит к узкородственному размножению, при котором объединение "близких родственников" в пару произходит чаще, чем можно было бы ожидать при случайном скрещивании (панмиксии). Поскольку "близкие родственники" более сходны между собой в генетическом смысле, то у них большее число аллелей в отдельных генах совпадает между собой, что ведет при размножении к повышению частот гомозиготных генов и к снижению частот гетерозиготных генов. Однако, частота аллелей в хромосомном наборе при этом не изменяется.

Прямо противоположной к рассматриваемой системе скрещивания является аутбридинг (кроссбридинг) - система скрещивания, в которой при образовании "родительской" пары $(a_k^t, a_l^t) \in P^t$ предпочтение отдается генетически различным особям, являющимися "неродственными" особями.

При этом две особи имеют тем большее генетическое различие, чем больше величина Хеммингова расстояния между их генотипами.

Таким образом, инбридинг и аутбридинг являются системами скрещивания, которые основаны на сравнении генетических свойств особей.

4.3. Ассортативное скрещивание.

Система скрещивания, в которой при образовании "родительской" пары $(a_k^t, a_l^t) \in P^t$ особи выбираются только на основании информации об их количественных признаках (фенотипах или степенях приспособленности), называется *ассортативным* (предпочтительным) скрещиванием.

Ассортативное скрещивание, используемое при размножении, само по себе не изменяет частот аллелей в конкретных генах, а только перераспределяет частоту генотипов в хромосомном наборе популяции P^t .

В тех случаях, когда при образовании "родительской" пары предпочтение отдается особям со сходными количественными признаками, говорят о положительном ассортативном скрещивании; при отборе в "родительскую" пару особей с количественными признаками, сильно различающимися между собой, говорят об отрицательном ассортативном скрещивании.

Приведем несколько примеров ассортативного скрещивания.

В качестве количественного признака, по которому происходит сравнение особей, рассмотрим степень приспособленности μ . Чем больше значение этого признака, тем лучше приспособлена особь $\mathbf{a}_k^t \in \mathsf{P}^t$ к внешней среде. Поэтому в случае положительного ассортативного скрещивания при образовании "родительской" пары отбираются те особи, которые имеют близкие и высокие значения степеней приспособленности. Для реализации этой стратегии случайным образом по распределению вероятностей:

$$P_{k} = \mu(a_{k}^{t}) / \sum_{i=1}^{\nu} \mu(a_{i}^{t}), k = \overline{1, \nu}.$$
 (4.6)

выбираются две разные особи a_k^t , $a_l^t \in P^t$ $(a_k^t \neq a_l^t)$ которые и образуют "родительскую" пару.

В случае отрицательного ассортативного скрещивания одна из особей $\mathbf{a}_k^t \in \mathsf{P}^t$, входящая в "родительскую" пару, выбирается случайным образом по распределению вероятностей (4.6). Вторая же особь $\mathbf{a}_k^t \in \mathsf{P}^t \setminus \{\mathbf{a}_k^t\}$ выбирается таким образом,

чтобы ее степень приспособленности как можно больше отличалась от степени приспособленности уже отобранной особи. Для реализации этого требования будем особь \mathbf{a}_{i}^{t} выбирать случайным образом по распределению вероятностей:

$$P_{k} = [1/ \mu(a_{k}^{t})] / \sum_{i=1}^{\nu} \frac{1}{\mu(a_{i}^{t})}, k = \overline{1, \nu}, \qquad (4.7)$$

Частным случаем положительного ассортативного скрещивания является селективное скрещивание - система скрещивания, в которой при образовании "родительской" пары осуществляется предварительное отстранение некоторых особей от участия в этом процессе по тому или иному условию. Например, из популяции P^t исключаются те особи \mathbf{a}_k^t , которые имеют степень приспособленности $\mu(\mathbf{a}_k^t)$ меньше, чем средняя степень приспособленности по популяции $\mu_{cp}(t)$:

$$\mu(\mathbf{a}_{k}^{t}) < \mu_{cp}(t) \tag{4.8}$$

Этим самым эффективная численность популяции сокращается до N особей (N< ν), из которых только и выбирается случайным образом по распределению вероятностей (4.6), "родительская" пара (a_k^t , a_l^t).

Селективное скрещивание по своему целевому назначению относится к системам скрещивания, но по своим последствиям оно равносильно естественному отбору, поскольку в "родительскую" пару выбираются те особи, которые более предпочтительны по степени приспособленности к внешней среде. Однако, отбор особей в репродукционную группу здесь выступает не в качестве элиминирующего фактора, а как механизм отстранения от размножения особей с относительно неудачными степенями приспособленности. Поэтому при селективном скрещивании особи $\mathbf{a}_k^t \in P_t$ не исчезают из популяции P^t , а оказываются временно отстраненными от участия в процессе воспроизводства "потомства".