```
RAHUL ETHIRAS
ethiraj Guscedu
```

CSCI 570 - SPRING 2018 - HW4

1. Graded Problems:

for all $d_1 < d_2 d_{n-1} < d_n$ if $(d_n - d_{n-1}) < g_{emaining}$ fuel tank

Fill gas at d_n endfor

Fill gas at d_{n-1} can filled gas in $G_1 : g_1 g_k$ Say G_1 is of sizek.

Say those is an optimal solution $O_1 : g_1 g_n$ $O: g_1 g_n$

h, = 91 - 1 since it's greedy the car fills at 1st step By exchange argument, new solution is \$9, ,h2 hmy - optimal solution

Assume,

is an optimal solution — Induction hypothesis. $h_{\ell} \leq g_{\ell+1} - \text{there is fuel left}$ $h_{\ell} \leq g_{\ell+1} - \text{there is fuel left}$ $h_{\ell} \leq g_{\ell+1} - \text{to be filled at the}$ $h_{\ell} \leq g_{\ell+1} - \text{to be filled at the}$

By induction, 29.92.93...82 is an optimal solution for 26... olse $3 \rightarrow 0(n)$

Dijekstra Algo: ·f (du) > (d(v) + le)) $a \rightarrow c = > (a,b), (b,c) = -2$ a for 1 b (a.e) = 1. Dijkstra algorithm while comparison of values , it severses the sesult. 3.) Say our greedy algorithm 2 b., b2 ... bj 3 first k trucks Say there is an optimal solution 0: 58, . B2.... Big for the first k trucks iss k=1; B, < b, - greedy also. It to more boxes k = K-1; BKO-1 bk-1 - induction hypothesis For k; bk > Bk , since it can fit move boxes into the km truck.

