

## COSE474 Deep Learning

# Project #1: MLP Implementation

Seungryong Kim

Computer Vision Lab. (CVLAB)

Department of Computer Science and Engineering

Korea University

#### Implement 2-Layer Neural Net with Sofmax Classifier



- Perform the image classification using "CIFAR-10" dataset.
- Two weights  $W_1$ ,  $W_2$  with biased  $b_1$ ,  $b_2$ .
- Predicted output  $y' = W_2(relu(W_1x + b_1)) + b_2$ .
- Total loss = data loss (softmax+log likelihood loss) + L-2 regularization loss (to  $W_1$ ,  $W_2$ , not  $b_1$ ,  $b_2$ ).
- The Ipython Notebook "two\_layer\_net.ipynb" will walk you through the implementation of a two-layer neural network classifier.

### Anaconda Virtual Environments

We strongly recommend using the free <u>Anaconda Python distribution</u> (https://www.anaconda.com/products/individual), which provides an easy way for you to handle package dependencies.

Once you have Anaconda installed, it makes sense to create a *virtual environment* for the course.

If you choose not to use a virtual environment (strongly not recommende d!), it is up to you to make sure that all dependencies for the code are inst alled globally on your machine.

### Anaconda Virtual Environments

To set up a virtual environment called **COSE474**, run the following in your terminal or cmd.

#### conda create -n COSE474 python=3.7

To activate and enter the environment, run conda activate COSE474.

To deactivate the environment, either run conda deactivate COSE474 or exit the terminal.

More: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

**Installing packages:** Once your've setup and activate your virtual environment (via conda), you should install the libraries needed to run the assignments using **pip**.

pip install -r requirements.txt

#### Requirements

- Need to install some python libraries to run two\_layer\_net.ipynb
- Run the following command on prompt (cmd)
  - cd (path of assignment folder)
  - pip install –r requirements.txt
- CIFAR-10 Dataset
  - <a href="http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz">http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz</a>
  - Unzip above file to (Assignment folder)/datasets

#### Do the following!

- Fill the codes following the instruction in markdown cells
  - two\_layer\_net.ipynb, classifier/neural\_net.py
- There are "#START OF YOUR CODE" / "#END OF YOUR CODE" tags denoting the start and end of code sections you should fill out.

iteration 0 / 1000: loss 2.302954 iteration 100 / 1000: loss 2.302551 iteration 200 / 1000: loss 2.297649 iteration 300 / 1000: loss 2.259604 iteration 400 / 1000: loss 2.204187 iteration 500 / 1000: loss 2.118602 iteration 600 / 1000: loss 2.051566 iteration 700 / 1000: loss 1.988489 iteration 800 / 1000: loss 2.006616 iteration 900 / 1000: loss 1.951511 Validation accuracy: 0.287





Due on Oct. 29 (Sun.), 11:59 pm (in Blackboard)

(late policy: 25% off per a day late)

You must submit the code with the report.

(1 page with free format, including the description of your code, results, and discussions)

The report should be written in **English**.

Please do NOT copy your friends' and internet sources.

Please start your project EARLY.

# Thank you! Q&A