Algorítmica

Curso 2023-2024

Grupo Viterbi

PRÁCTICA 2-DIVIDE Y VENCERÁS

Integrantes:

Miguel Ángel De la Vega Rodríguez
Alberto De la Vera Sánchez
Joaquín Avilés De la Fuente
Manuel Gomez Rubio
Pablo Linari Perez

miguevrod@correo.ugr.es joaquin724@correo.ugr.es adelaveras01@correo.ugr.es e.manuelgmez@go.ugr.es e.pablolinari@go.ugr.es

Facultad de Ciencias UGR Escuela Técnica Ingeniería Informática UGR Granada 2023-2024

Índice general

1	Autores	3
2	Objetivos	4
3	Definicion Problema	5
4	Algoritmo Especifico 4.1 Problema 1: Subsecuencia de suma máxima	6
5	Algoritmo Divide y Vencerás 5.1 Problema 1: Subsecuencia de suma máxima	7 7
6	Conclusiones	9

Autores

- Miguel Ángel De la Vega Rodríguez: 20%
 - Plantilla y estructura del documento \LaTeX
- Joaquín Avilés De la Fuente: 20%
 - Tarea
- Alberto De la Vera Sánchez: 20%
 - Tarea
- Manuel Gomez Rubio 20%
 - Tarea
- Pablo Linari Pérez: 20%
 - Tarea

Objetivos

En esta práctica, se pretende resolver problemas de forma eficiente aplicando la técnica de Divide y Vencerás. Para ello, se han planteado varios problemas cuya solución es conocida (excepto para el problema del viajante), y se han implementado algoritmos que los resuelven mediante el método convencional y mediante la técnica de Divide y Vencerás. Posteriormente, se ha buscado un umbral en el cual ambos tengan el mismo tiempo de ejecución, finalmente, se ha buscado el umbral óptimo para cada problema.

Definicion Problema

Algoritmo Especifico

En este apartado, estudiaremos la eficiencia teórica, empírica e híbrida de los algoritmos especificos de cada uno de los problemas.

4.1 Problema 1: Subsecuencia de suma máxima.

Para el primer problema, el algoritmo específico que empleamos es el algoritmo de Kadene.

Estudio teórico

```
int kadane(int *a, int size){
    int max_global = a[0];
    int max_current = a[0];

for (int i = 1; i < size; i++) {
        max_current = max(a[i], max_current + a[i]);
        if (max_current > max_global) {
            max_global = max_current;
        }
    }
}
return max_global;
}
```

Como podemos observar la eficiencia del codigo en las líneas 6-8, tienen eficiencia O(1). Por tanto, su tiempo de ejecución es constante y notaremos por a. Luego, el bucle for se ejecutará (size-1)-i+1 veces, es decir, size-i veces. Sabiendo que el resto de líneas del código tienen eficienciaa O(1), tenemos el siguiente resultado

$$\sum_{i=inicial}^{size-1} a$$

Tomaremos size = n e inicial = 1 para simplificar el cálculo y veamos que obtenemos ahora

$$\sum_{i=1}^{n-1} a = a \cdot \sum_{i=1}^{n-1} 1 = a \cdot n$$

Es claro que $a \cdot n \in O(n)$ y por tanto la eficiencia teórica del algoritmo de kadane es O(n).

Algoritmo Divide y Vencerás

En este apartado, estudiaremos la eficiencia teórica, empírica e híbrida de los algoritmos divide y vencerás de cada uno de los problemas.

5.1 Problema 1: Subsecuencia de suma máxima.

Para el primer problema, el algoritmo específico que empleamos es

Estudio teórico

```
SumaData SumaMax (int *v, int inicio, int final){
            SumaData result, d1, d2;
            if (inicio==final){
                  result.max_izq = v[inicio];
                  result.max_dch = v[inicio];
                  result.sum = v[inicio];
                  result.max_sub = v[inicio];
                  return (result);
            }
            int mid = (final+inicio)/2;
11
            (d1)=SumaMax(v, inicio, mid);
            (d2)=SumaMax(v, mid+1, final);
13
            result.max_izq = max(d1.max_izq, d1.sum+d2.max_izq);
15
            result.max_dch = max(d2.max_dch, d2.sum+d1.max_dch);
16
            result.sum = d1.sum + d2.sum;
            int max_cross = d1.max_dch + d2.max_izq;
18
            result.max_sub = max(max(max_cross, d1.max_sub), d2.max_sub);
19
            return (result);
20
```

Este algoritmo devuelve un tipo de dato Suma data, un struct definido por cuatro datos de tipo int. En cuanto a la eficiencai teórica, podemos ver una llamada recursiva a la función SumaMax con vectores de tamaño $\frac{n}{2}$. Teniendo en cuenta que el resto de líneas de código son asignaciones, comparaciones y operaciones arimtéticas, que son O(1), obtenemos la siguiente ecuación

$$T(n) = 2T(\frac{n}{2}) + 1$$

Al realizar un cambio de variable $n = 2^m$ (luego $m = log_2(n)$), obtenemos:

$$T(2^m) = 2T(2^{m-1}) + 1$$

 $T(2^m) - 2T(2^{m-1}) = 1$

Ahora calculamos por un lado la parte homogénea y por otro la no homogénea. En primer lugar, la homogénea:

$$T(2^m) - 2T(2^{m-1}) = 0 \implies p_H(x) = x - 2$$

En cuanto a la parte no homogénea

$$1 = b_1^m q_1(m) \Longrightarrow b_1 = 1 \land q_1(m) = 1 \text{ con grado } d_1 = 0$$

Tenemos entonces el siguiente polinómio característico

$$p(x) = (x-2)(x-b_1)^{d_1+1} = (x-2)(x-1)$$

Por tanto la solución general es

$$t_m = c_{10} 2^m m^0 + c_{20} 1^m m^0 \stackrel{*}{\Longrightarrow} t_n = c_{10} n + c_{20} \Longrightarrow T(n) = c_{10} n + c_{20}$$

donde en (*) hemos deshecho el cambio de variable Por lo que obtenemos como resultado que $T(n) \in O(n)$

Estudio empírico

Figura 5.1: Ejecución algoritmo SumaMaxDyV

Conclusiones