

Applicant : David H. Coy et al.

Attorney's Docket No.: 00537-00900L

Serial No. :

Filed :

Page : 3 of 43

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1 - 8 (canceled)

9 (new) : A method of inhibiting tumor growth which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

wherein

A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F_s-Phe, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^5 = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^7 = 1-methyl-His, 3-methyl-His or His;

provided that, if A⁰ is present, A¹ cannot be pGlu; further provided that, if A⁰ or A¹ is present, A² cannot be pGlu; further provided that, when A⁰ is deleted and A¹ is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

where R₂₂ is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, or lower acyl; provided that, when one of R₅ or R₆ is -NR₂₂, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃), F₅-Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A⁷ is His, A⁶ is Gly, A⁵ is Val, A⁴ is Ala, A² is His, and either of R₁ or R₂ is other than H, A¹ must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R₁ and R₂, independently, is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE₁ (where E₁ is C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkynyl, phenyl, naphthyl, or C₇₋₁₀

phenylalkyl), or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide, and further provided that

when one of R₁ or R₂ is COE₁, the other must be H, or a pharmaceutically acceptable salt thereof.

10 (new) : The method of claim 9 wherein said therapeutic peptide is of the formula:

A⁰ = Gly, D-Phe, or is deleted;

A¹ = p-Glu, D-Phe, D-Ala, D-β-Nal, D-Cpa, or D-Asn;

A² = Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala;

A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, or D-Ala;

A⁷ = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

11 (new) : The method of claim 10 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

12 (new) : The method of claim 10 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

13 (new) : The method of claim 10 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His- β -Leu-NH₂.

14 (new) : The method of claim 9 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

15 (new) : The therapeutic peptide of claim 14 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

16 (new) : The therapeutic peptide of claim 10 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- β -Leu-NH₂.

17 (new) : The method of claim 9 wherein said tumor is located in the gastrointestinal tract, pancreas, colon, prostate or breast.

18 (new) : The method of claim 9 wherein said tumor is a small-cell lung carcinoma.

19 (new) : The method of claim 9 wherein said effective amount is 0.5 μ g/kg/day to 5 mg/kg/day.

20 (new) : The method of claim 9 wherein said effective amount is 250 mg/patient/day.

21 (new) : A method of inhibiting pancreatic adenocarcinomas which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

wherein

A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^5 = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^7 = 1-methyl-His, 3-methyl-His or His;

provided that, if A^0 is present, A^1 cannot be pGlu; further provided that, if A^0 or A^1 is present, A^2 cannot be pGlu; further provided

Serial No. :

Filed :

Page : 10 of 43

that, when A⁰ is deleted and A¹ is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

where R₂₂ is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, or lower acyl; provided that, when one of R₅ or R₆ is -NR₂₂, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO_2 , OH or CH_3), F_5 -Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C_{1-12} alkyl, C_{7-10} phenylalkyl, COE_1 (where E_1 is C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl), or lower acyl, and R_1 and R_2 are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R_1 or R_2 is COE_1 , the other must be H, or a pharmaceutically acceptable salt thereof.

22 (new) : The method of claim 21 wherein said therapeutic peptide is of the formula:

A⁰ = Gly, D-Phe, or is deleted;

A¹ = p-Glu, D-Phe, D-Ala, D-β-Nal, D-Cpa, or D-Asn;

A² = Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala;

A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, or D-Ala;

A⁷ = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

23 (new) : The method of claim 22 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

24 (new) : The method of claim 22 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

25 (new) : The method of claim 22 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH₂.

26 (new) : The method of claim 21 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

27 (new) : The therapeutic peptide of claim 26 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

28 (new) : The therapeutic peptide of claim 22 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH₂.

29 (new) : The method of claim 21 wherein said effective amount is 0.5 μg/kg/day to 5 mg/kg/day.

30 (new) : The method of claim 21 wherein said effective amount is 250 mg/patient/day.

31 (new) : A method of inhibiting gastric acid secretion which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

wherein

A⁰ = Gly, Nle, α-aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal, or is deleted;

Serial No. :

Filed :

Page : 14 of 43

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^5 = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^7 = 1-methyl-His, 3-methyl-His or His;

provided that, if A^0 is present, A^1 cannot be pGlu; further provided that, if A^0 or A^1 is present, A^2 cannot be pGlu; further provided that, when A^0 is deleted and A^1 is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser,

Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

where R₂₂ is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, or lower acyl; provided that, when one of R₅ or R₆ is -NR₂₂, the other is H;

(II) :

wherein Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β-Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃), F₅-Phe, Trp, Cys, Met, Pro, or HyPro; and each Z₂, Z₃, and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C_{1-12} alkyl, C_{7-10} phenylalkyl, COE_1 (where E_1 is C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkynyl, phenyl, naphthyl, or C_{7-10} phenylalkyl), or lower acyl, and R_1 and R_2 are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R_1 or R_2 is COE_1 , the other must be H, or a pharmaceutically acceptable salt thereof.

32 (new) : The method of claim 31 wherein said therapeutic peptide is of the formula:

A^0 = Gly, D-Phe, or is deleted;

A^1 = p-Glu, D-Phe, D-Ala, D- β -Nal, D-Cpa, or D-Asn;

A^2 = Gln, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala;

A^5 = Val;

A^6 = Sar, Gly, D-Phe, or D-Ala;

A^7 = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

33 (new) : The method of claim 32 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

34 (new) : The method of claim 32 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

35 (new) : The method of claim 32 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH₂.

36 (new) : The method of claim 31 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

37 (new) : The therapeutic peptide of claim 36 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

38 (new) : The therapeutic peptide of claim 32 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- β -Leu-NH₂.

39 (new) : The method of claim 31 wherein said effective amount is 0.5 μ g/kg/day to 5 mg/kg/day.

40 (new) : A method of treating motility disorders of the GI tract which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

wherein

A⁰ = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

A¹ = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A² = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric

acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β-Nal;

A⁶ = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal;

A⁷ = 1-methyl-His, 3-methyl-His or His;

provided that, if A⁰ is present, A¹ cannot be pGlu; further provided that, if A⁰ or A¹ is present, A² cannot be pGlu;

further provided that, when A⁰ is deleted and A¹ is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

where R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is $-\text{NR}_{22}$, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO_2 , OH or CH_3), $\text{F}_5\text{-Phe}$, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the

formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R₁ and R₂, independently, is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE₁ (where E₁ is C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl), or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R₁ or R₂ is COE₁, the other must be H, or a pharmaceutically acceptable salt thereof.

41 (new) : The method of claim 40 wherein said therapeutic peptide is of the formula:

A⁰ = Gly, D-Phe, or is deleted;

A¹ = p-Glu, D-Phe, D-Ala, D-β-Nal, D-Cpa, or D-Asn;

A² = Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala;

A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, or D-Ala;

A⁷ = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

42 (new) : The method of claim 41 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

43 (new) : The method of claim 41 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

44 (new) : The method of claim 41 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His- β -Leu-NH₂.

45 (new) : The method of claim 40 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl,

naphthyl, or C₇₋₁₀ phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

46 (new) : The therapeutic peptide of claim 45 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

47 (new) : The therapeutic peptide of claim 41 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- β -Leu-NH₂.

48. (new) : The method of claim 40 wherein said effective amount is 0.5 μ g/kg/day to 5 mg/kg/day.

49 (new) : A method of suppressing amylase release which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

wherein

A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^5 = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^7 = 1-methyl-His, 3-methyl-His or His;

provided that, if A^0 is present, A^1 cannot be pGlu; further provided that, if A^0 or A^1 is present, A^2 cannot be pGlu; further provided that, when A^0 is deleted and A^1 is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

Serial No. :

Filed :

Page : 24 of 43

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

where R₂₂ is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, or lower acyl; provided that, when one of R₅ or R₆ is -NR₂₂, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃), F₅-Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE₁ (where E₁ is C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl), or lower acyl, and R_1 and R_2 are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R_1 or R_2 is COE₁, the other must be H, or a pharmaceutically acceptable salt thereof.

50 (new) : The method of claim 49 wherein said therapeutic peptide is of the formula:

A^0 = Gly, D-Phe, or is deleted;

A^1 = p-Glu, D-Phe, D-Ala, D- β -Nal, D-Cpa, or D-Asn;

A^2 = Gln, His, 1-methyl-His, or 3-methyl-His;

Serial No. :

Filed :

Page : 26 of 43

 A^4 = Ala; A^5 = Val; A^6 = Sar, Gly, D-Phe, or D-Ala; A^7 = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

51 (new) : The method of claim 50 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

52 (new) : The method of claim 50 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

53 (new) : The method of claim 50 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His- β -Leu-NH₂.

54 (new) : The method of claim 49 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

Serial No. :

Filed :

Page : 27 of 43

55 (new) : The therapeutic peptide of claim 54 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

56 (new) : The therapeutic peptide of claim 50 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- β -Leu-NH₂.

57 (new) : The method of claim 49 wherein said effective amount is 0.5 μ g/kg/day to 5 mg/kg/day.

58 (new) : A method of treating cancer cachexia which comprises administering to a patient in need thereof an effective amount of a therapeutic compound of the formula:

wherein

A⁰ = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

A¹ = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A² = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric

acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal;

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α-aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β-Nal;

A⁶ = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β-Nal;

A⁷ = 1-methyl-His, 3-methyl-His or His;

provided that, if A⁰ is present, A¹ cannot be pGlu; further provided that, if A⁰ or A¹ is present, A² cannot be pGlu; further provided that, when A⁰ is deleted and A¹ is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

Serial No. :

Filed :

Page : 29 of 43

where R_4 is any of C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl, and each R_5 , and R_6 , independently, is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, lower acyl, or

Applicant : Coy et al.

where R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is $-NR_{22}$, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO_2 , OH or CH_3), F_5 -Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when

either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further

provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C_{1-12} alkyl, C_{7-10} phenylalkyl, COE_1 (where E_1 is C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl), or lower acyl, and R_1 and R_2 are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R_1 or R_2 is COE_1 , the other must be H, or a pharmaceutically acceptable salt thereof.

59 (new) : The method of claim 58 wherein said therapeutic peptide is of the formula:

A^0 = Gly, D-Phe, or is deleted;

A^1 = p-Glu, D-Phe, D-Ala, D- β -Nal, D-Cpa, or D-Asn;

A^2 = Gln, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala;

A^5 = Val;

A^6 = Sar, Gly, D-Phe, or D-Ala;

A^7 = His;

and, where W is (I) and R_3 is CH_2 or CH_2-CH_2 , Z_1 is the identifying group of Leu or Phe, where W is (I) and R_3 is $CHOH-CH_2$, Z_1 is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R_5 and R_6 is H; and where W is (I), V is NHR_6 , and R_6 is NH_2 ; where W is (II), Z_1 is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO_2 , OH or CH_3); and each Z_2 , Z_3 and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z_{20} and Z_{30} , is H; and each R_1 and R_2 , independently, is H, lower alkyl, or lower acyl.

60 (new) : The method of claim 59 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

61 (new) : The method of claim 59 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

62 (new) : The method of claim 59 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His- β -Leu-NH₂.

63 (new) : The method of claim 58 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

64 (new) : The therapeutic peptide of claim 63 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

65 (new) : The therapeutic peptide of claim 59 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- β -Leu-NH₂.

66 (new) : The method of claim 58 wherein said effective amount is 0.5 μ g/kg/day to 5 mg/kg/day.

67 (new) : A method of inhibiting growth hormone release which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

wherein

A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^5 = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^7 = 1-methyl-His, 3-methyl-His or His;

Serial No. :

Filed :

Page : 33 of 43

provided that, if A⁰ is present, A¹ cannot be pGlu; further provided that, if A⁰ or A¹ is present, A² cannot be pGlu; further provided that, when A⁰ is deleted and A¹ is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val,

Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β-Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

where R₂₂ is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, or lower acyl; provided that, when one of R₅ or R₆ is -NR₂₂, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃), F₅-Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A⁷ is His, A⁶ is Gly, A⁵ is Val, A⁴ is Ala, A² is His, and either of R₁ or R₂ is other than H, A¹ must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R₁ and R₂, independently, is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE₁ (where E₁ is C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl), or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R₁ or R₂ is COE₁, the other must be H, or a pharmaceutically acceptable salt thereof.

68 (new) : The method of claim 67 wherein said therapeutic peptide is of the formula:

A⁰ = Gly, D-Phe, or is deleted;

A¹ = p-Glu, D-Phe, D-Ala, D-β-Nal, D-Cpa, or D-Asn;

A² = Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala;

A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, or D-Ala;

A⁷ = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

69 (new) : The method of claim 68 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

70 (new) : The method of claim 68 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

71 (new) : The method of claim 68 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His-β-Leu-NH₂.

72 (new) : The method of claim 67 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

73 (new) : The therapeutic peptide of claim 72 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

74 (new) : The therapeutic peptide of claim 68 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His-β-Leu-NH₂.

75 (new) : The method of claim 67 wherein said growth hormone is a factor in the progression of muscular dystrophy in a patient.

76 (new) : The method of claim 67 wherein said growth hormone is a factor in the onset of diabetes in a patient.

77 (new) : The method of claim 67 wherein said growth hormone is a factor in the development of diabetes-related retinopathy in a patient.

78 (new) : The method of claim 67 wherein said effective amount is 0.5 μg/kg/day to 5 mg/kg/day.

79 (new) : The method of claim 67 wherein said effective amount is 0.01 μg/kg/day to 1000 μg/kg/day.

80 (new) : The method of claim 67 wherein said effective amount is 0.1 $\mu\text{g}/\text{kg}/\text{day}$ to 100 $\mu\text{g}/\text{kg}/\text{day}$.

81 (new) : A method of treating atherosclerosis which comprises administering to a patient in need thereof an effective amount of a therapeutic peptide of the formula:

wherein

A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, or β -Nal, or is deleted;

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), $\text{F}_5\text{-Phe}$, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, or β -Nal;

A^5 = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH_3), Trp, Thr, or β -Nal;

Serial No. :

Filed :

Page : 38 of 43

A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A^7 = 1-methyl-His, 3-methyl-His or His;

provided that, if A^0 is present, A^1 cannot be pGlu; further provided that, if A^0 or A^1 is present, A^2 cannot be pGlu; further provided that, when A^0 is deleted and A^1 is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I) :

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and Z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β -Nal; and V is either OR₄, or

where R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkynyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and each R₅, and R₆, independently, is any of H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, lower acyl, or

H

where R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is $-NR_{22}$, the other is H;

(II) :

wherein Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe (where X = H, F, Cl, Br, NO_2 , OH or CH_3), F_5 -Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III) :

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C_{1-12} alkyl, C_{7-10} phenylalkyl, COE_1 (where E_1 is C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or

C₇₋₁₀ phenylalkyl), or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R₁ or R₂ is COE₁, the other must be H, or a pharmaceutically acceptable salt thereof.

82 (new) : The method of claim 81 wherein said therapeutic peptide is of the formula:

A⁰ = Gly, D-Phe, or is deleted;

A¹ = p-Glu, D-Phe, D-Ala, D-β-Nal, D-Cpa, or D-Asn;

A² = Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala;

A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, or D-Ala;

A⁷ = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala,

or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

83 (new) : The method of claim 82 wherein said therapeutic peptide is of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

84 (new) : The method of claim 82 wherein said therapeutic peptide is of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

85 (new) : The method of claim 82 wherein said therapeutic peptide is of the formula:

D-Cpa-Gln-Trp-Ala-Val-Gly-His- β -Leu-NH₂.

86 (new) : The method of claim 81 wherein said therapeutic peptide is of the formula: W is (I), V is OR₄, and R₄ is any of C₁₋₂₀alkyl, C₃₋₂₀alkenyl, C₃₋₂₀alkinyl, phenyl, naphthyl, or C₇₋₁₀phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

87 (new) : The therapeutic peptide of claim 86 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

88 (new) : The therapeutic peptide of claim 82 of the formula:

D-Cpa-Gln-Trp-Ala-Val-D-Ala-His- β -Leu-NH₂.

89 (new) : The method of claim 81 wherein said effective amount is 0.5 μ g/kg/day to 5 mg/kg/day.