

SENIOR CERTIFICATE EXAMINATIONS

MATHEMATICAL LITERACY P2

2016

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG/RD	Reading from a table/graph/diagram
SF	Correct substitution in a formula
O	Opinion/reason/deduction
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty for rounding
AO	Answer only full marks
J	Justification

This memorandum consists of 15 pages.

OUES	QUESTION 1 [39 MARKS]			
	Solution	Explanation	TL	
	✓A ✓M	1A correct values	D	
1.1.1	Range = $R62\ 500 - R29\ 890$	1M subtracting	L2	
	= R32 610 ✓ CA	1CA range AO		
		(3)		
1.1.2	Mean $= \frac{\text{Sum of all scores}}{\text{Number of scores}}$		D L2	
	$R 36 586,11 = \frac{R 43 320 + R 33 100 + Z + R 29 730 + R 46 000 + R 35 300 + R 35 970}{\checkmark M}$ $Z = 7 \times R 36 586,11 - R 223 420$	1M adding all correct values 1A dividing by 7 1M subtracting		
	$Z = R32 682,77 \checkmark CA$	1CA simplification		
	Z≈R32 683 ✓ R	1R rounding to nearest rand AO (5)		
			D	
1.1.3	NMMU does not offer these degree courses. $\checkmark\checkmark$ O	2O reason	L4	
	No students attending ✓✓O			
	OR			
	No students took the course $\checkmark \checkmark O$	(2)		
1.1.4	Percentage increase = $\frac{2016 \text{Fee} - 2015 \text{Fee}}{2015 \text{ Fee}} \times 100\% \checkmark M$	1M substituting correct values	F L4 (6)	
	$= \frac{R 69000 - R 46000}{R 46000} \times 100\% \checkmark M$	1M calculating % increase		
	= 50% ✓CA	1CA percentage		
	\checkmark M 50% ÷ 6,7% = 7,462686567 \checkmark CA	1M dividing by 6,7% 1CA answer		
	The student is correct; it is more than seven times the projected inflation			
	rate. ✓O OR	10 verification OR		

3 SCE – Memorandum

Ques	Solution	Explanation	TL
	✓M R 69 000 – R46 00 = R 23 000 ✓A	1M for subtracting 1A answer	
	$\frac{6.7}{100} \times R \ 46\ 000 = R \ 3\ 082 \ \checkmark A$	1M for multiplying 1A answer	
	$R \ 3 \ 082 \times 7 = R \ 21 \ 574 \checkmark CA$	1CA answer	
	The student is correct ✓O	1O verification	
	\checkmark_{M} OR $6,7\% \times 7 = 46,9\% \checkmark_{A}$	OR 1M multiplying by 7 1A answer	
	$R\ 46\ 000 \times 46,9\% = R\ 21\ 574^{\checkmark}A$	1A answer	
	R 46 000 + R 21 574 = R 67 574 ✓ M	1M adding	
	R 69 000 – R 67 574 = R 1 426 more \checkmark CA	1CA subtraction	
	Student is correct. ✓O	1O verification	(6)

SCE-Memorandum

Ques	Solution	Explanation	TL
1.1.5	R 46 000 × 10,75 % = R 4 945 ✓ M	1M for calculating interest	F L3(7)
	$R\ 46\ 000 + R\ 4\ 945 = R\ 50\ 945\ \checkmark CA$	1CA for principal	L4(1)
	R 50 945 × 10,75% = R 5 476,59		
	R 50 945 + R 5 476,59 = R 56 421,59 ✓CA	1CA accumulated value	
	Monthly fee = $R38 \times 24$ = $R912$ \checkmark A		
	Total cost of loan = $R56\ 421,59 + R912 + R300$ $\checkmark M$	1A calculating the monthly fee for 24 months	
	= R57 633,59 ✓CA	1M adding all values	
	Difference in amounts = $R57 633,59 - R46 000$	1CA total cost of loan	
	= R11 633,59 He is correct. ✓O	1M subtracting the amounts 1O verification	
	OR	OR	
	Total capital + interest = R46 $000 \times 110,75\% \times 110,75\%$	2M multiplying by 110,75%	
	$= R56 421,59 \checkmark CA$ Monthly fee = $R38 \times 24$ $= R912 \checkmark A$	1CA answer 1A calculating the monthly fee for 24 months	
	Total cost of loan = $R56\ 421,59 + R912 + R300$ $\checkmark M$	1M adding all values	
	= R57 633,59 ✓CA	1CA total cost of loan	
	Difference in amounts = $R57 633,59 - R46 000$	1M subtracting the amounts	
	= R11 633,59 He is correct. ✓O	10 verification	
		(8)	

Mathematical Literacy/P2

Ques	Solution	Explanation	TL
1.2.1	Volume of fabric paint container $= \pi \times \text{radius} \times \text{radius} \times \text{height}$ $367,38 \text{ cm}^3$ $3,142 \times 3 \text{ cm} \times 3 \text{ cm} \times \text{height}$ $367,38 \text{ cm}^3 = 28,278 \times \text{height}$ $367,38 \text{ cm}^3 \div 28,278 = \text{height}$	1M calculating radius 1SF substituting into formula 1CA simplification 1M dividing by 28,278	M L3
	height = 12,9917 cm		
	= 129,92 mm ✓C	1C converting to mm NPR (5)	
1.2.2	Area of one letter E = (length × width) – (side × side × 2) = $(29,5 \times 19,5) - (5,9 \times 5,9 \times 2)$ = $505,63 \text{ cm}^2 \checkmark \text{CA}$ Amount of paint needed for one letter E = $505,63 \div 10000 \times 100$	2M using formula for two areas 1CA calculating area 1C converting to m ² 1M converting to mℓ 1CA calculating paint	M L3
	Amount of paint needed for one letter $E' = 5,0563 \text{ m}\ell \checkmark \text{CA}$ Amount of paint needed for four letter $E's = 5,0561 \times 4$ $= 20,2252 \text{ m}\ell \checkmark \text{CA}$	1CA total volume NPR	
	OR	OR	
	Area of letter E = (length ×width) + (side × side × 3) = (29,5 cm × 13,6 cm) + (5,9 cm × 5,9 ×3) \checkmark M = 505,63 cm ² \checkmark CA = 506 cm ² \checkmark C \checkmark M Amount of paint needed for one letter E = 505, 63 ÷ 10 000 × 100 = 5,0563 m ℓ \checkmark CA	2M using formula for two areas 1CA calculating area 1C converting to m ² 1M converting to mℓ 1CA calculating paint	
	Amount of paint needed for four letter E's = 5,0561 × 4 = 20,2252 mℓ ✓CA	1CA total volume	
		(7)	2.6
1.2.3	Perimeter of letter E = 29,5 cm + 19,5 cm + 19,5 cm + $(9 \times 5,9 \text{ cm})$ = 121,6 cm \checkmark CA	1A reading all values 1M adding 1CA perimeter	M L2
	OR	OR	
	Perimeter of letter E = $2 \times 29,5$ cm + $(2 \times 19,5$ cm) + $(4 \times 5,9$ cm)	1A reading all values 1M adding	
	= 121,6 cm ✓CA	1CA perimeter (3)	
		[39]	

QUEST	[ESTION 2 [26 MARKS]		
Ques	Solution	Explanation	TL
2.1.1	Final salary = R26 578 × 12 ✓ MA = R318 936 ✓ A Gratuity	1MA multiplying by 12 1A salary	F L2
	= 6,72% × final salary per year × years of pensionable service = 6,72% × R318 936 × 33 ✓ SF = R707 272,4736	1SF substituting correct values in formula 1R rounding to the nearest	
	= R707 272 ✓ R	rand	
	Final salary = R 26 578 × 6,72% ×12 × 33	OR 1MA multiplying by 12 1MA multiplying by 6,72% and 33	
	$= R 707 272,473 \checkmark A$ $= R 707 272 \checkmark R$	1A salary 1R rounding to the nearest rand	
	- K /0/ 2/2 / K	(4)	
2.1.2	Annuity (p.a.)	CA from answer in Q 2.1.1	F L3
(a)	$= (\frac{1}{55} \times \text{ final salary} \times \text{ years of pensionable service}) + 360$		
	$= (\frac{1}{55} \times R26578 \times 12 \times 33) + 360$	1SF substituting correct values into formula	
	= R191 721,60 ✓CA	1CA calculating the annuity p.a.	
	Tax payable per annum $\checkmark M \qquad \checkmark SF$ = R32 742 + 26% × (R191 721,60 – R181 900) $\checkmark CA$	1M correct tax bracket 1SF substituting correct values into formula	
	= R35 295,62 - R13 257	CA tax before rebate	
	= R22 038,62 ✓CA	1CA calculating the tax due per year 1M subtracting tax due from	
	Annuity after tax = R191 721,60 - R22 038,62 \checkmark M Monthly annuity = R169 682,98 ÷ 12 \checkmark M = R14 140,25 \checkmark CA	yearly income 1M dividing by 12 1CA monthly income after tax	
		(9)	
2.1.2 (b)	Difference in income = R26 578 − R14 140,25 ✓ M = R12 437,75 ✓ CA	1M subtracting 1CA difference	F L4
	He cannot retire ✓ O	10 stating conclusion	
	 His reduced income may not meet all his expenses. Retire at 65 years he will get more money. Any other suitable reason supported with a calculation. 	1J Any one of the listed bullets	
	He can retire ✓O		
	He will get the gratuity. ✓ J	(4)	

SCE – Memorandum

Ques	Solution	Explanation	TL
			P
2.2.1	No money for transport		L3
	✓M/A ✓MA	1MA pie chart concept	
	= 100% - (11,0% + 8,7% + 4% + 73%)	1MA adding correct	
	= 3,3%	values	
	✓CA ✓CA		
	$P = 3,3\%$ OR 0,033 OR $\frac{\checkmark CA}{100}$ OR $\frac{\checkmark CA}{1000}$		
	$\frac{1}{100} = \frac{3,370}{100} = \frac{3,370}{1000} = \frac{3,370}{1000}$	1CA probability	
		AO	
		(3)	-
			D
2.2.2	The number of boys with other reasons is very small and will not account for a sector on the pie chart. \checkmark	20 aminian	L4
	account for a sector on the pie chart.	2O opinion	
		(2)	
		(2)	D
2.2.3	During the examination period learners do not come to school on		L4
2.2.3	the days they are not writing. $\checkmark\checkmark$ O	2O reason	
	OR		
	They do not prepare for the examinations. ✓✓O		
	OR		
	Afraid of writing. ✓✓O		
	OR		
	Studying at home. ✓✓O		
	OR		
	They bunk classes. ✓✓O	(2)	
			D
2.2.4	The pie charts only give percentages and not actual numbers. ✓✓O	20 Opinion	L4
		(2)	
		[26]	

QUES	QUESTION 3 [42 MARKS]			
Ques	Solution	Explanation	TL	
3.1.1	Gauteng and North West	2A for 1 st province 2A for 2 nd province (4)	MAP L2	
3.1.2	De Hoop Limpopo Any two correct Umtata Eastern Cape Any two correct pairs 4 marks Darlington Eastern Cape	1A correct dam 1A correct province 1A correct dam 1A correct province (4)	MAP L2	
3.1.3	$P = \frac{5 \checkmark A}{16 \checkmark A} \mathbf{OR} 0.32 \mathbf{OR} 31\%$	2A numerator 1A denominator AO (3)	P L3	
3.1.4	2014	1MA multiply with % 1CA answer(2014) in megalitres	M L3	
	2015 5 340 000 megalitres × 58,7% = 3 134 580 megalitres	1CA answer (2015) in megalitres		
	Difference = 3 625 860 megalitres – 3 134 580 megalitres	1CA calculating the difference		
	= 491 280 megalitres ✓CA			
	= 491 280 000 kilolitres ✓ C	1C conversion		
	OR \checkmark M $67.9\% - 58.7\% = 9.2\% \checkmark$ A $9.2\% \times 5340000 \text{ megalitres} \checkmark$ M $= 491280 \text{ megalitres} \checkmark$ CA $= 491280000 \text{ kilolitres} \checkmark$ C	OR 1M subtracting correct percentages 1A simplification 1M multiplying by 9,2% 1CAcalculating the difference 1C conversion		
	• • • • • • • • • • • • • • • • • • • •	(5)		

SCE – Memorandum

Ques	Solution	Explanation	TL
			M
3.1.5	Low rainfall ✓✓O	2O first reason	L4
	No rainfall ✓✓O OR	2O second reason	
	OR		
	Drought $\checkmark \checkmark O$		
	OR		
	Evaporation ✓✓O		
	OR		
	Water usage for human activities $\checkmark \checkmark O$		
	OR		
	Bad infrastructure ✓✓O		
	Leakages VVO		
	OR		
	Population increases $\checkmark \checkmark O$ OR		
	Climatic changes ✓✓O		
	OR		
	Agriculture VVO		
	OR		
	Global warming ✓✓O		
			(4)

Ques	Solution	Explanation	TL
3.2.2	In the summer/high temperature the duration of the shower time decrease.	1A high temp. 2O time decrease	D L4
	In the winter/low temperature the duration of the shower time increase.	(3)	D
3.2.3	The authorities must provide more water in the winter months for showering as people use more water to shower in the winter months. $\checkmark \checkmark O$ OR They can educate people not to run the water in the shower to heat up the bathroom in the winter months, but to use other heating methods. $\checkmark \checkmark O$ OR Build bigger dams. $\checkmark \checkmark O$	20 for any valid reason	D L4
	OR		
	Educate people to save water. ✓✓O	(2)	
3.2.4	This is not a representative sample because the sample is too small.	2O for stating that the sample is too small	D L4
		(2)	P
3.2.5	7 minute 10 seconds = 430 seconds \checkmark C	1C converting to seconds	L2
	$\frac{11}{26} \checkmark A$	1A numerator 1A denominator	
		Accept denominator of 52 Answer in decimal form full marks (3)	
3.2.6	Winter shower duration Lower quartile = 385 ✓ A Upper quartile = 410 ✓ A IQR = 410 – 385 ✓ M = 25 ✓ CA Summer shower duration IQR = 29	1A reading the lower quartile 1A reading the upper quartile 1M subtracting 1CA IQR	D L3
	Difference = $29 - 25$ = $4 \checkmark CA$	1M subtraction 1CA difference Accept Lower quartile 380 Upper quartile 405 (6)	

QUES'	QUESTION 4 [43 MARKS]			
Ques	Solution	Explanation	HL	
4.1.1 (a)	Rental for 2-berth vehicle (unlimited km)		F L2	
(4)	= (R1 225 + R220) × 8 ✓ MA	1MA adding and multiplying		
	= R11 560 ✓ CA	1CA rental cost		
	Rental per person			
	= R11 560 ÷ 3 ✓ M	1M dividing by 3		
	= R3 853,33 ✓CA	1CA rental per person (4)		
4.1.1 (b)	Rental for 2-berth vehicle (limited km) = $(R1\ 050 + R220) \times 7 \checkmark M$ = $R8\ 890 \checkmark CA$ Free kilometres = $300 \times 7 = 2\ 100 \checkmark A$	1M adding and multiplying 1CA rental cost 1A free kilometres	F L4	
	Extra kilometres = $3\ 050\ \text{km} - 2\ 100\ \text{km}$ = $950\ \text{km} \ \checkmark \text{CA}$	1M subtracting values 1CA extra km		
	Cost for extra km = 950 km × R3,50 = R3 325 ✓ CA Total cost = R8 890 + R3 325	1CA extra cost		
	= R12 215 ✓ CA	1CA total cost		
	∴ The 8-day option is the most economical. ✓O	10 comparing and giving advice Use Q4.1.1.(a) answer for opinion mark (8)		

Ques	Solution	Explanation	HL
4.1.2	Length of bed on plan = $2,010 \text{ m} \div 80$	1M working with ratio(dividing by 80)	Map L3
	= 0,025125 m × 1 000		
	= 25,125 mm ✓C	1C for answer in mm	
	= 25 mm ✓R	1R rounding to nearest mm AO 25mm (3)	
4.1.3	4-berth vehicle Amount of diesel used = 3 050 km × 0,1321 ℓ/km	1M multiplying by rate	F L4
	= 402,905 ℓ ✓CA	1CA amount of diesel used	
	Cost of diesel = $402,905 \ \ell \times R11,78/\ell$		
	= R4 746,22 ✓CA	1CA cost of diesel	
	2-berth vehicle Amount of diesel used = 3 050 km ÷ 10,362 km/ℓ	1M dividing by the rate	
	= 294,3447211 ℓ ✓CA	1CA amount of diesel used.	
	Cost of diesel = 294,3447211 $\ell \times R11,78/\ell$		
	= R3 467,38 ✓ CA	1CA cost of diesel	
	Difference in cost = R4 746,22 − R3 467,38 ✓M	1M subtracting	
	= R1 278,84 ✓CA	1CA difference	
	Maria is correct; they will be saving R1 278,84 on the cost of diesel. ✓ ✓ O	2O for stating that Maria is correct NPR (10)	

Ques	Solution	Explanation	HL
4.2.1 (a)	Full tank can drive: $50 \times 10,362 \text{ km} = 518,1 \text{ km}$	1M multiplying 1CA distance	Maps L2
	Distance from Bloemfontein to Kimberley = 175 km ✓RT	1RT reading of distance	
	Total distance from Harrismith to Kimberley = 337 km + 175 km		
	= 512 km ✓CA	1CA total distance	
	512 km is less than 518,1 km. ✓O	1O conclusion	
	OR	OR	
	Full tank can drive: $50 \times 10{,}362 \text{ km} = 518{,}1 \text{ km} \checkmark \text{CA}$	1M multiplying 1CA distance	
	Distance on map from Kimberley to Bloemfontein = 15 mm Scale 22 mm = 300 km / 3mm = 50 km / 9 mm = 100 km Distance from Kimberley to Bloemfontein in km		
	$ = \frac{15 \text{ mm} \times 300 \text{ km}}{22 \text{ mm}} = \frac{15 \text{ mm} \times 50 \text{ km}}{3 \text{ mm}} = \frac{15 \text{ mm} \times 100 \text{ km}}{9 \text{ mm}} $ $ = 204,55 \text{ km} = 250 \text{ km} = 166,67 \text{ km} $	I 1M calculating distance using bar scale	
	Total distance from Harrismith to Kimberley		
	= (337 + 204,55) km $= (337 + 250) km$ $= (337 + 166,67) km$		
	$= 542,55 \text{ km}$ $= 587 \text{ km}$ $= 503,67 \text{ km}$ $\} \checkmark \text{CA}$	1CA total distance	
	$542 > 518,1$ $587 > 518,1$ $503,67 < 518,1$ $\}_{\checkmark O}$	10 conclusion Allow ± 1mm	
		(5)	Maps
4.2.1 (b)	Distance from Kimberley to Upington = 401 km ✓RT ✓MA	1RT reading of distance	L4
	Scale on map: $9 \text{ mm} = 100 \text{ km}$	1MA measuring scale	
	Length on map from Upington to Kakamas = 9 mm ✓MA	1MA measuring	
	Distance from Upington to Kakamas = 100 km ✓CA	1CA calculating the distance	
	Total distance: Kimberley to Kakamas = 401 km + 100 km = 501 km ✓ CA		
	501 km is less than 518,1 km. ✓O	1CA total 1O Stating less than 518,1 km	
		(6)	

Ques	Solution	Explanation	HL
4.2.2	Time = Distance ÷ speed ✓CA	1CA distance	M L3
	$= 1300 \text{ km} \div 94 \text{ km/h} \checkmark \text{M}$	1M dividing by speed	
	= 13,82978723 ≈ 13 hours and 50 minutes ✓CA	1CA hours and minutes	
	Time on road + breaks ✓M 1	1M adding all the times	
	= 13 hours + 50 minutes + 2×20 minutes + $2\frac{1}{4}$ + 180 minutes	Tivi adding an the times	
	= 19 hours and 45 minutes ✓CA	1CA total time spent on road	
	Time of arrival = 00:45 Tuesday ✓ CA	1CA time of arrival 1CA day of arrival	
	OR	OR	
	Total distance from Harrismith to Springbok = 512 km + 800 km		
	= 1 312 km ✓CA	1CA distance	
	Distance = speed × time		
	1 312 km = 94 Km/h × time Time = 13,95744681 hours \checkmark M	1M dividing by speed	
	= 13 hours 57 minutes ✓CA	1CA hours and minutes	
	Time on road + breaks ✓M 1	1M adding all the times	
	= 13 hours + 57 minutes + 2 × 20 minutes + $2\frac{1}{4}$ + 180 minutes	Tivi adding all the times	
	= 19 hours and 45 minutes ✓CA	1CA total time spent on road	
	Time of arrival = 00.52 Tuesday \checkmark CA	1CA time of arrival 1CA day of arrival	
		(7)	
		[43]	
		TOTAL:	150