Previous Doc Next Doc Go to Doc# First Hit-

Generate Collection **Print**

L10: Entry 36 of 73

File: JPAB

Nov 26, 1999

PUB-NO: JP411323490A

DOCUMENT-IDENTIFIER: JP 11323490 A

TITLE: HIGH STRENGTH COLD ROLLED STEEL SHEET HAVING SUPERIOR WORKABILITY AND

EXCELLENT IN SHAPE FIXABILITY AND ITS PRODUCTION

PUBN-DATE: November 26, 1999

INVENTOR - INFORMATION:

NAME

COUNTRY

KUSUMI, KAZUHISA SUEHIRO, MASAYOSHI MURAKAMI, HIDEKUNI

INT-CL (IPC): C22 C 38/00; C21 D 9/46; C22 C 38/06

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet improved in shape fixability at the time of bending and hat bending and having superior workability, and its production.

SOLUTION: The high strength cold rolled steel sheet having superior workability and excellent in shape fixability has a composition consisting of, by weight, 0.06-4% \underline{C}_{L} 0.5-4.0% of either or both of \underline{Si} and Al, 0.5-2.0% \underline{Mn}_{L} and the balance Fe with inevitable impurities. Moreover, the metallic structure in the surface layer between the surface and a position at a depth of 5% of sheet thickness from the surface consists of, by volume ratio, 1-30% martensite, ≤35% retained austenite, and the balance ferrite or bainite, and further, the metallic structure in the range between a position at a depth of 30% of sheet thickness from the surface and the central part of sheet thickness consists of, by volume ratio, 3-20% retained austenite, ≤2%_martensite, and the balance ferrite or bainite.

COPYRIGHT: (C)1999, JPO

Previous Doc Next Doc Go to Doc#

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-323490

(43)公開日 平成11年(1999)11月26日

(51) IntCL ⁶		識別記号	ΡI		•
C 2 2 C	38/00	301	C 2 2 C	38/00	301S
C 2 1 D	9/46		C 2 1 D	9/46	F
C 2 2 C	38/06	·	C 2 2 C	38/06	

審査請求 未請求 請求項の数2 FD (全8 頁)

香堂耐水 木間水 間水坝の数2 ドリ (主 8 貝)
(71) 出願人 000008655
新日本製錦株式会社
東京都千代田区大手町2丁目6番3号
(72)発明者 植見 和久
北九州市戸畑区飛橋町1-1 新日本製鐵
株式会社八幡製織所内
(72)発明者 末廣 正芳
北九州市戸畑区飛橋町1-1 新日本製鐵
株式会社八幡製織所内
(72)発明者 村上 英邦
北九州市戸畑区飛橋町1-1 新日本製線
株式会社八幡製織所内
(74)代理人 弁理士 田中 久裔

(54) 【発明の名称】 形状凍結性に優れた良加工性商強度冷延網板およびその製造方法

(57)【要約】

【課題】 曲げ加工やハット曲げ加工時の形状凍結性を 改善した良加工性高強度冷延鋼板及びその製造方法を提供する。

【解決手段】 重量比で、C:0.06%以上、0.4%以下、Si、Alの内少なくとも一種以上を0.5%以上、4.0%以下、Mn:0.5%以上、2.0%以下を含み、残部Feおよび不可避的不植物からなり、表面から板厚の5%の表層の金属組織が体積率で、マルテンサイトを1%以上、30%以下、残留オーステナイトを35%以下、残部がフェライトもしくはベイナイトであり、表面から板厚30%内側から板厚中心部までの金属組織中に残留オーステナイトを体積率で3~20%、マルテンサイトを2%以下、残部がフェライトもしくはベイナイトである、形状凍結性に優れた良加工性高強度冷延鋼板。

10

1

【特許請求の範囲】

【請求項1】 重量比で、C:0.06%以上、0.4 %以下、Si、Alの内少なくとも一種以上を0.5% 以上、4.0%以下、Mn:0.5%以上、2.0%以 下を含み、残部Feおよび不可避的不純物からなり、表 面から板厚の5%の表層の金属組織が体積率で、マルテ ンサイトを1%以上、30%以下、残留オーステナイト を35%以下、残部がフェライトもしくはベイナイトで あり、表面から板厚30%内側から板厚中心部までの金 属組織中に残留オーステナイトを体積率で3~20%、 マルテンサイトを2%以下、残部がフェライトもしくは ベイナイトである、形状凍結性に優れた良加工性高強度 冷延鎖板。

【請求項2】 重量比で、C:0.06%以上、0.4 %以下、Si、A1の内少なくとも一種以上を0.5% 以上、4.0%以下、Mn:0.5%以上、2.0%以 下を含み、残部Feおよび不可避的不純物からなる冷間 圧延後の鋼板を、(Aci変態点+10℃)以上、(A r3変態点-5℃) 以下の温度で20秒以上再結晶焼鈍 を行い、3℃/s以上の冷却速度にて300℃から60 0℃の温度域まで冷却し、この温度で60秒以上600 **秒以下保持してから、室温まで冷却した後、スキンパス** 圧延を圧下率1.5~10%施すことを特徴とする、形 状凍結性に優れた良加工性高強度冷延鋼板の製造方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、形状凍結性に優れ た良加工性高強度冷延鋼板とその製造方法に関するもの である。

[0002]

【従来の技術】便利で快適な移動手段として自動車の国 民生活にしめる地位は年毎に高まっており、環境破壊と 地球温暖化を防止するために燃費を低減し化石燃料の消 費を抑制することが従来にも増して重要となってきてい る。このため、エンジン性能の向上と共に車体の軽量化 が要求され、主要な車体構成材料である鋼板に対しては 成形性を損わずに一層の強度増加を図ることが求められ ている。また、直近では自動車事故を想定した耐衝突安 全性に関する法規制が急速に拡大・強化されつつあり、 高強度鋼板への期待がますます高まっている。ここで、 成形性の指標値には引張試験による伸びをはじめとして n値やr値があるが、一体成形によるプレス工程の簡略 化が課題となっている昨今では均一伸びに相当するn値 の大きいことが中でも重要となってきている。

【0003】このため、残留オーステナイトの変態誘起 塑性の活用が提唱され、高価な合金元素を含まずに、 0.06~0.4%程度のCと0.5~2.0%程度の Si、0.2~2.5%程度のMnのみを基本的な合金 元素とし、2相共存温度域で焼錬後に300~600℃ 程度の温度で、ベイナイト変態を行うことが特徴の熱処 50 性の問題点を克服し得る良加工性高強度冷延鋼板及びそ

理により残留オーステナイトを金属組織中に含む鋼板が 特開平1-230715号公報に開示されている。これ を以下残留ァハイテンと呼ぶ。他の成分として、Siの 代わりにA1を利用した鋼板が特開平6-145788 号公報に開示されている。この種の鋼板は連続焼鈍で製 造された冷延鋼板ばかりでなく、特開平1-79345 号公報のようにランアウトテーブルでの冷却と捲取温度 を制御することにより熱延鋼板でも得ることができる。 また、加工硬化特性が優れていることより、自動車衝突 時の吸収エネルギーに優れるという知見を特願平9-2 8296号で出願した。このように残留ァハイテンは、 広範な実用化が期待されるところである。

【0004】このような高強度鋼板は自動車構成部品の 中でもメンバーなどに使用されることが考えられ、要求 される成形特性としては曲げ加工やハット曲げ加工時の 形状凍結性が挙げられる。この形状凍結性に影響を及ぼ す材料因子としては、降伏強度や引張強度が挙げられ、 一般的に強度が上昇すると形状凍結性は低下する傾向が あることが、「プレス成形難易ハンドブック」(日刊工 業新聞社発行) に示されている。したがって、高強度鋼 板を使用した場合、寸法精度を充分満足する部品をプレ ス成形するためには金型調整回数が多くなり、コスト上 不利である。

【0005】この高強度鋼板の形状凍結性を改善する知 見としては、成形方法として特開平7-148527号 公報や特開平7-185663号公報などに開示されて いる。しかし、これらの知見では、成形方法が制限され るため、デザインの自由度が低下するため望ましくな い。また、鋼板としては特開昭62-259839号公 30 報、特開平7-268484号公報などに開示されてい る、ラミネート鋼板を利用した技術がある。しかし、こ れらは鋼板の製造コストが高くなるため、望ましくな い。また、特開平7-275938号公報には表内層の 強度が異なる複層鋼板により、形状凍結性が改善される 知見が開示されている。しかし、この知見は具体的な複 層鋼板の製造方法についてはなにも言及されていない。 形状凍結性については言及していないが、浸炭した鋼製 部品の表面をショットピーニングする事で、変態誘起塑 性を利用して、表面を硬化する方法が、特開平2-20 0727号公報に開示されている。しかしこの方法は自 動車用鋼板に適用するにはコストが高く、表面形状が悪 化するため、望ましくない。

【0006】すなわち、自動車用部品に使用される良加 工性高強度鋼板の課題としては、成形方法によらず、曲 げ加工やハット曲げ加工時の形状凍結性を改善すること が挙げられる。

[0007]

【発明が解決しようとする課題】本発明は、かかる成形 方法によらず、曲げ加工やハット曲げ加工時の形状凍結 3

の製造方法を提供することを目的とする。

【課題を解決するための手段】本発明者は、形状凍結性 に優れた良加工性高強度冷延鋼板を検討した結果、残留 アハイテンを焼鈍後に圧下率の高いスキンパス圧延を施 すことにより、鋼板の表面近傍の金属組織を制御して表 層を内層よりも強化し、曲げ加工時の板厚断面の応力状 態を変化させることにより、形状凍結性が向上すること を見いだした。また、適当な熱処理条件をとることによ り、その鋼板を工業的に安定的に製造できることを見い 10 だした。

【0009】即ち、曲げ成形では、板厚中心から外側で は材料が伸びるため離形後に縮みの応力が、板厚中心か ら内側では逆に材料が縮むため伸びの応力が発生し、離 形後に板厚方向の応力差を低減するようにモーメントが 発生し角度変化が起こる。これがスプリングバックであ る。このスプリングバックを低減する方法としては、引 張曲げがよく知られている。これは、曲げ加工の際に鋼 板に張力を加えて、板厚中心から内側の材料も伸び変形 をさせて、離形後の板厚方向の応力差を低減してスプリ ングバックを減少させる方法である。この際、付加する 張力を大きくした時、歪みが0の面である中立面は、板 厚中心から曲げ内側に移動していき、ついには鋼板の全 てが伸び変形することになる。このように板厚断面の応 力状態を制御することにより、中立面を板厚中心から移 動させて、スプリングバックが低減できる。

【0010】成形方法によらず、歪みの中立面を板厚中 心から移動させて、スプリングバックを低減する方法と しては、変形が大きい表層と中立面が移動する内層との 強度差をつけることが挙げられる。

【0011】これは以下のように説明される。

【0012】メンバーなどの部品を成形する場合の曲げ 加工の場合、曲げ部はほぼ降伏変形しており、その応力 は鋼板の降伏強度にほぼ比例すると考えても良い。表内 層の強度が異なる場合、曲げ加工時の応力は、表層と内 層で異なる。ここで、板厚変動を考える。すなわち、曲 げ内側では圧縮変形となるために板厚が増加し、曲げ外 側では伸び変形となるため板厚が減少する。そのため、 圧縮部が多くなり、伸び部は減少する。このとき、応力 の釣り合いを考えると中立面は移動するが、表層が内層 より強度が高い場合は曲げ内側に、表層が内層より強度 が低い場合は曲げ外側に移動することになる。このよう に中立面が板厚中心から移動し、スプリングバックが減 少する。

【0013】この方法を残留ァハイテンに適用した。残 留ァハイテンに加工が加わると、残留オーステナイトが マルテンサイトに加工誘起変態を起こし、加工された部 位が強化される。これが、残留アハイテンが巾値と伸び が優れる原因である。ところで、スキンパス圧延で導入 される歪みは表面近傍に集中しており、板厚方向で分布 50 少なくとも1種以上の添加上限量は4.0%とする。

を持っている。したがって、残留ァハイテンにスキンパ スを行った場合、その歪み分布に応じた量の残留オース テナイトがマルテンサイトに変態し、表内層の強度差を 生じさせることができる。ここで、加工誘起変態を起こ

すためには、通常のスキンパス圧下率より、高い圧下率 が必要となる。

【0014】本発明の要旨とするところは、(1)重量 比で、C: 0. 06%以上、0. 4%以下、Si、A1 の内少なくとも一種以上を0.5%以上、4.0%以 下、Mn: 0.5%以上、2.0%以下を含み、残部F eおよび不可避的不純物からなり、表面から板厚の5% の表層の金属組織が体積率で、マルテンサイトを1%以 上、30%以下、残留オーステナイトを35%以下、残 部がフェライトもしくはベイナイトであり、表面から板 厚30%内側から板厚中心部までの金属組織中に残留オ ーステナイトを体積率で3~20%、マルテンサイトを 2%以下、残部がフェライトもしくはベイナイトであ る、形状凍結性に優れた良加工性高強度冷延鋼板、およ び(2)上記の化学成分の冷間圧延後の鋼板を、(Ac 1変態点+10℃)以上、(Ar3変態点-5℃)以下の 温度で20秒以上再結晶焼鈍を行い、3℃/s以上の冷 却速度にて300℃から600℃の温度域まで冷却し、 この温度で60秒以上600秒以下保持してから、室温 まで冷却した後、スキンパス圧延を圧下率1.5~10 %施すことを特徴とする、形状凍結性に優れた良加工性 高強度冷延鋼板の製造方法にある。

[0015]

【発明の実施の形態】本発明の成分および金属組織の限 定理由は次の通りである。

30 【0016】Cはオーステナイト安定化元素であり、2 相共存温度域およびベイナイト変態温度域でフェライト 中から移動しオーステナイト中に濃化する。その結果、 化学的に安定化されたオーステナイトが室温までの冷却 後に3~25%残留し、変態誘起塑性により成形性を良 好とする。Cが0.06%未満であると3%以上の残留 オーステナイトを確保するのが困難であり、0.4%以 上であると残留オーステナイトを確保するのは容易であ るが、共存する組織が比較的大きなサイズの炭化物が密 に存在するベイナイトを主体とすることになるため、朝 性が劣化し実用に耐えない。このため、C量は0.06 ~0.4%とした。

【0017】Si、Alはオーステナイトを残留させる ための必須元素であり、フェライトの生成を促進し、炭 化物の生成を抑制することにより、残留オーステナイト を確保する作用があると同時に脱酸素元素、強化元素と しても作用する。これよりSiとA1の内の少なくとも 1種以上の添加の下限量は0.5%以上とする必要があ る。ただしSi、Alを過度に添加しても上記効果は飽 和し、かえって鋼を脆化させるため、SiとA1の内の

【0018】Mnはオーステナイトを安定化して残留オ ーステナイトを確保する作用があると共に強化元素であ る。この観点から、Mnの添加下限量は0.5%以上と する必要がある。ただし、Mnを過度に添加しても上記 効果は飽和し、かえってフェライト変態抑制等の悪影響 を生ずるため、Mnの添加量の上限量は2.0%以下と する。

【0019】また、上記で規定した以外の元素は原則添 加されないことが望ましいことは言うまでもないが、C aやREMは硫化物系介在物が球状化して穴拡げ性を向 10 上させるので、上限が0.01%まで許容できる。N b、Ti、Cr、Cu、Ni、V、Bを1種または2種 以上添加して、強度確保、細粒化を図っても良いが、そ の添加量の合計が0.2%を超えると本発明の金属組織 を得ることが困難となると共に、コストが増大するた め、その上限は0.2%まで許容できる。

【0020】Pは残留オーステナイトの確保に効果があ るが、朝性を低下させるので、0.02%以下まで許容 できる。

【0021】Sは硫化物系介在物による穴拡げ性等の成 20 形性低下のため、0.01%以下まで許容できる。

【0022】MoはMnと同等に残留オーステナイトを 安定化する元素であり、0.3%まで許容できる。それ 以上であると、炭化物が金属組織中に顕在化して、プレ ス成形性劣化を引き起こす。

【0023】表層のマルテンサイトの体積率を1%以 上、30%以下としたのは、1%未満では曲げ加工時に 中立面の移動が生じるのに必要な強度差が得られないた めであり、30%超では、強度が高すぎるために、曲げ 加工時に割れを生じてしまうためである。

【0024】表層の残留オーステナイトの体積分率を3 5%以下としたのは、C含有量の上限により得られる残 留オーステナイト量の限界である。

【0025】内層の残留オーステナイトの体積分率を3 ~20%としたのは、制限未満の残留オーステナイト量 では、変体誘起塑性の効果が充分得られないためであ る。上限は、C含有量の上限により得られる残留オース テナイト量の限界である。

【0026】内層のマルテンサイトの体積率を2%以下 としたのは、それ以上のマルテンサイト量では加工性が 40 劣化するためである。

【0027】本発明の製造工程の限定理由は次の通りで ある。

【0028】 冷延鋼板はまず、 オーステナイトとフェラ イトの2相共存温度域で再結晶焼鈍される。この際に、 CやM n等のオーステナイト安定化元素がオーステナイ ト中に濃化し、その後の熱処理による残留オーステナイ ト安定化を容易にする。再結晶焼鈍温度を(Aci変態 点+10℃)以上、(Ar3変態点-5℃)以下とした のは、制限未満であると充分な量のオーステナイトが形 50 幅広がり量:ΔW=W-W₀

成せず、また炭化物の溶解が充分でなくてオーステナイ トへのCの濃化が充分でなくなるからであり、制限超で あると、フェライトが極わずかしか存在せず、またさら に全く存在せずにオーステナイト単相となるため、合金 元素の分布が全体として希薄となり、残留オーステナイ トを安定化できるだけの量が濃化しないためである。ま た、再結晶焼鈍時間を20秒以上としたのは、制限未満 の時間であれば、未溶解の炭化物が存在する可能性があ るためである。

【0029】再結晶終了後、2相共存温度域から3℃/ s以上の冷却速度にて、ベイナイト変態温度域である3 00℃から600℃の温度域まで冷却する。冷却速度を 3℃/s以上とすれば、2相共存温度域で生成したオー ステナイトをパーライト変態させることなく、ベイナイ ト変態温度域まで冷却するためである。600℃以上で 冷却を終了すると、パーライトへの分解が急激に生じ、 オーステナイトを残存できない。また、300℃未満で 冷却を終了すると、オーステナイトの過半がマルテンサ イトに変態するため、プレス成形性が劣化する。

【0030】その後、300~600℃の温度範囲にお いて60~600秒保持してから室温に冷却する。この 目的はベイナイト変態時に未変態オーステナイト中への Cの濃化をさらに進めて、残留オーステナイトを安定化 させるためである。保持時間を60秒以上、600秒以 下と制限したのは、制限未満では残留オーステナイトを 安定化するために必要な、未変態オーステナイトへのC の濃化が不足しているためであり、制限以上ではベイナ イト変態が進行して、未変態オーステナイトが消滅する ためである。

30 【0031】上記の条件を満たすことで、形状凍結性に 優れた良加工性高強度鋼板を実現できる。

[0032]

【実施例】表1に示した成分組成を有する連続鋳造スラ ブを1200℃程度で加熱し、910℃で仕上圧延して 冷却の後に約550℃で捲き取った4mm厚の熱延躺板 を70%冷延した。その後、スキンパス圧延を施した後 にJIS5号引張試験片にて引張特性を行い、引張強度 と全伸びの積が2000以上を、加工性良とした。ま た、ハット成形により形状凍結性を評価した。ハット成 形は図1に示すような金型にて行った。成形条件は、以 下の通りである。

【0033】 · 工具条件

- (1) ポンチ 辺長: 100mm、肩R:5mm
- (2)ダイ肩R:5mm
- (3) クリアランス: O. 7mm
- (4) しわ押さえ力: 150kN
- (5)潤滑:防錆油
- (6)成形高さ:75mm

・評価

W: ポンチ辺長 100mm

Wo:ハットの底から65mmでの幅

[0034] 【表1】

						(mass t ()
卿	С	Si	Y in	P	S	N)
Å	0.03	155	1. 11	0.008	0.005	0. 047
В	0.11	<u>0. 03</u>	1, 11	0.007	0. 908	0.054
С	0. 10	L 47	0. 99	0.008	0.006	0.044
D	0, 12	1.79	1, 12	0.009	0.008	0.048
E	0.11	0.02	1. 15	0.007	0.006	1.72
P	0.11	L 51	2.2	0.008	0.008	0.048
G	0. 22	L 63	1. 13	0.009	0.006	0. 047
B	0. 21	2 13	0. 98	0.009	0.006	0. 047
I	0. 19	1. 4 5	<u>0. 32</u>	0, 007	0.007	0. 039
J	0. 18	<u>3. 21</u>	1, 13	0.007	0.005	<u>2. 31</u>
K	0. 33	1. 63	1, 11	0.008	0.006	0. 047
L	0.48	1. 55	1. 32	0.008	0. 007	0. D44

い鋼板の∆Wと引張強度の関係を求めた。同じ引張強度 でAWが、複層化していない鋼板のAWの0.85倍以 下であれば、形状凍結性が改善されているとした。引張 強度と AWの関係を図3に示す。

【0035】表2、3に焼鈍条件、スキンパス圧下率、 表層厚、表内層のオーステナイト体積率(ア率)とマル テンサイト体積率 (M率)、引張強度、全伸び、形状凍 結性の評価を示す。

【0036】実験番号1は内層のC含有量が制限より少 有量が、制限より少ないために残留オーステナイトが安 定化しなかったため、加工性が良くなかった。

【0037】実験番号3~9は、鋼Cを使用して、スキ ・ンパス圧下率を変化させた実験である。実験番号3、 8、9は、圧下率が制限外であったため、形状凍結性が 良くなかった。実験番号4~7は本発明の条件を全て満 たしているため、形状凍結性の優れた良加工性高強度冷 延銅板が実現できた。

【0038】実験番号10~16は、鋼Cを使用して、 熱処理条件の影響を検討した。実験番号10は焼鈍温度 40 が制限より高かったために残留オーステナイトが残ら ず、加工性が良くなかった。実験番号11は焼鈍時間が 制限より短くて未溶解の炭化物が残ったため、Cのオー ステナイトへの濃化が充分でなかったため、残留オース

テナイトが残らず、加工性が良くなかった。実験番号1 2は焼鈍後の冷却速度が小さく、冷却中にパーライト変 態が生じたために、残留オーステナイトが残らず、加工 性が良くなかった。実験番号13、14は保定温度の影 響を検討した。実験番号13は制限よりも保定温度が低 かったために、オーステナイトの過半がマルテンサイト に変態したため、加工性が良くなかった。実験番号14 は制限よりも保定温度が高かったために、オーステナイ トがパーライト変態を起こして、残留オーステナイトが 10 残らなかったため、加工性が良くなかった。実験番号1 5、16は保定時間の影響を検討した。実験番号15 は、保定時間が制限より短かったために、残留オーステ ナイトの安定化に充分な元素の濃化が不十分であったた め、残留オーステナイトがあまり残らずにマルテンサイ トが残ったため、加工性が悪かった。実験番号16は、 保定時間が制限より長かったために残留オーステナイト

【0039】実験番号17~19は同等のC含有量のも とで成分を検討した。実験番号17、18は本発明の条 測定部位を図2に示す。この試験より、複層化していな 20 件を全て満たしているため、形状凍結性の優れた良加工 性高強度冷延鋼板が実現できた。実験番号19はMn含 有量が制限以上であったため、朝性が劣化した。

が残らず、加工性が悪かった。

【0040】実験番号20~24は鋼Gを使用して、ス キンパス圧下率を変化させた実験である。実験番号2 0、24はスキンパス圧下率が制限外であるため、形状 凍結性が良くなかった。実験番号21~23は本発明の 条件を全て満たしているため、形状凍結性の優れた良加 工性高強度冷延鋼板が実現できた。

【0041】実験番号25~27はC含有量が0.2% ないため、加工性が良くなかった。実験番号2はSi含 30 程度の時の、鋼成分の影響を検討した。実験番号25は 本発明の条件を全て満たしているため、形状凍結性の優 れた良加工性高強度冷延鋼板が実現できた。実験番号2 7はSiとAlの含有量の和が制限以上であるために、 加工性が良くなかった。実験番号26はMn含有量が制 限より多かったために、朝性が劣化した。

> 【0042】実験番号28~32は、鋼Kを使用して、 スキンパス圧下率を変化させた実験である。実験番号2 8、32はスキンパス圧下率が制限範囲外であったた め、形状凍結性が良くなかった。実験番号29~31は 本発明の条件を全て満たしているため、形状凍結性の優 れた良加工性高強度冷延鋼板が実現できた。実験番号3 3はC含有量が多かったために朝性が劣化した。

[0043] 【表2】

		9	•															1	0		
€\$3			郊汨	郊汨	郊中	本類明	本翔明	本舞明	本海明	郊汨	郊汨	郊汨	郊泊	郊汨	邓汨	郊田	比較	郊汨	的數本	本等明	投数
表	世投		0	×	×	0	0	0	0	0	x	×	x	x	x	×	×	x	0	0	×
TS×81		(WPa K)	17221. 2	19595. 2	24405.3	24030.6	23372.8	23119.8	21988.5	18313. 4	13382, 3	12228. 5	16522, 8	16092. 3	12326.1	19406, 4	12283.0	16881. 0	24424. 4	23501. 1	24326. 4
펿		(%)	38.1	33.1	39. 3	36.3	35.2	34.1	32.1	25. 4	16.3	14.3	28.1	29, 1	18.1	31, 2	17.3	23. 5	36.4	36.1	36.2
ß		(MPa)	462	269	621	299	664	878	989	721	128	855	688	223	681	229	710	299	671	199	672
氏		(%)	0.0	0.0	0.1	0.0	0.1	0.0	1.2	2.2	8.8	0.0	0.0	0.0	1.1	0.0	4.1	চ ন্দ	0.0	0.1	0.0
还	7	8	0.0	0.0	6.3	6. 4	6.2	6.4	4. 2	3.3	1.2	0'0	0.9	<u>0.0</u>	0.0	0.0	1.2	0''0	8.4	6.3	5.8
紹	對	8	0.0	0.0	0.3	1.2	2.2	3.3	4.5	5. 4	6.3	0.0	0.0	0.0	<u>87</u>	0.0	<u>6.0</u>	<u> ত'ত</u>	2.2	1.3	2.2
路面	₩	8	0.0	0.0	8.0	4.5	3.8	2.7	1.7	0.3	0.1	0.0	1.1	0.0	0.0	0,0	<u>1. 5</u>	0"0	6. 1	3.5	မာ အ
Mass	田下租	8	3.2	2.7	0.6	1.9	3.4	6.3	8.2	13.3	15.3	3.5	3.4	3.6	3. 5	3.4	3.3	3.5	3.3	3. 4	3.2
殿	超少	(8 9)	300	320	300	300	300	82	029	200	300	340	300	300	300	300	30	<u> </u>	240	370	180
服	風風	(C)	400	420	400	400	400	420	380	480	400	410	400	400	240	630	400	400	430	380	440
桑	極期	(c/3)	10	02	02	02	07	100	0\$	30	07	02	20	7	20	07	07	07	32	40	30
五		(<u>(4)</u>)	0,	08	08	08	06	021	017	120	08	06	10	06	80	06	06	06	100	110	120
五	開開	$\hat{\mathbf{g}}$	008	008	008	800	008	180	028	082	008	038	800	800	800	800	800	800	028	088	840
2			Y	В	ວ	၁	3	S	3	3	3	C	c	C	ပ	C	C	3	D	2	C
₩ ₩	中		1	2	3	4	2	9	7	æ	ဇ	10	11	12	13	14	15	16	17	18	19

[0044]

11																1 2
₩			強汨	本幾明	本幾明	施設本	确审	本勢明	क्षभ	獅汨	獅汨	施基本	施器率	本発明	御扣	比較
嫯	世紀		×	0	0	0	×	0	0	x	×	0	0	0	×	×
TS×81		Offe K)	24107.2	24197.6	23316. 4	20752. 2	18582. 2	24656.8	23813.6	8968.0	23744. 5	22565. 4	22174 2	22238. 4	16850. 2	14729.0
E		(%)	30. 4	29.8	28.4	24.3	18.2	29. 8	28.9	0.8	28.1	26. 3	25. 4	24.6	E-71	14.3
TS		(MPa)	282	812	821	854	1021	833	824	1111	845	828	873	804	974	1030
五	置	(%)	0.0	0.0	0.0	0.4	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3	2.9	0.0
石	母 4	ક્ર	10,1	9.6	10.4	9.6	7.7	10,4	8.2	1.4	17.4	17.2	17.6	15.3	13.9	22, 3
器		(%)	7 0	1.4	2.3	2.5	8.1	3.1	8 7	97	6 O	22	4.1	68	14.2	23
報	7	(%)	9.8	8.1	7.8	4.3	2.2	7.3	7.1	4.1	17.2	14.3	13.2	8.3	2.1	19.3
NAS N	田下籍	(X)	0.6	2.1	3.5	7.2	13.4	3.6	3.5	3. 4	9.0	2.4	3.6	6.4	12.3	3.3
家	聖堂	(4 2)	300	006	300	300	300	210	130	130	300	300	300	300	300	300
保定	温度	(C)	400	400	400	400	400	380	400	077	400	700	400	700	400	400
泵	極機	(c/s)	02	02	02	02	02	07	02	30	02	02	07	02	02	20
囊	超盤	<u>a</u>	08	06	06	08	08	110	08	08	06	08	08	08	06	06
囊	開開	3	008	008	800	800	800	820	018	011	800	800	800	800	800	800
2			5	5	9	5	9	E	1	ſ	1	ï	X	1	1	1
畿	中中		20	21	22	23	24	22	26	22	28	58	30	31	32	33

[0045]

【発明の効果】本発明によれば、自動車部品などに使用される、形状凍結性に優れた良加工性高強度冷延鋼板を 提供できるため、工業的に価値の高い発明である。

【図面の簡単な説明】

【図1】本発明を評価するための成形方法を示す図である。

【図2】本発明を評価するための測定方法を示す図であ*

*る。

【図3】引張強度と△Wの関係を示す図である。 【符号の説明】

- 40 1 ポンチ
 - 2 ダイ
 - 3 試験片
 - W 幅

【図1】

【図2】

【図3】

