Deep Learning in Computer Vision

Alexei Manso Corrêa Machado

Pontifical Catholic University of Minas Gerais – D. Computer Science

Convolutional Neural Networks

machinelearninguru.com

$$f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2] \cdot g[x-n_1,y-n_2]$$

Convolutional Neural Networks

www.ayasdi.com

Fully-connected layers

activation map

activation maps 28

28

If we have 6 filters (5x5x3), there will be 6 activation maps:

A ConvNet is a sequence of convolutional layers, each followed by an activation function:

A ConvNet is a sequence of convolutional layers, each followed by an activation function:

Filter hierarchy

Activation maps

Convolution as feature extraction

bank of K filters

feature map

Padding

- When an image nxn is convolved by a filter fxf, it loses rows and columns, resulting in a n-f+1 x n-f+1 image
- In order for the image to keep the same dimensions, p columns and rows must be added prior to convolution, resulting in a n+2p-f+1 x n+2p-f+1 image

Padding

Striding

 When an image nxn is convolved by a filter fxf using stride s, it loses rows and columns, resulting in a (n-f)/s+1 x (n-f)/s+1 image

Padding and striding

 When an image nxn is convolved by a filter fxf using stride s and pad p the resulting image is

$$(n+2p-f)/s+1 \times (n+2p-f)/s+1$$

• In order for the image to keep original dimensions ("same" padding):

$$p = (ns - n + f - s) / 2$$

Convolution over volumes

- A convolutional layer may receive an image with multiple channels to be convolved by multiple filters
- The number of channels of the image and the filters must be the same
- Example: Input image of 6x6x3 and 10 filters 3x3x3 resulting in a 4x4x10 output (with p = 0, s = 1)

Convolution over volumes

- Each layer receives a volume of W₁ x H₁ x D₁
- Requires 4 hyperparameters:
 - Number of filters n_c
 - Size of filter f
 - Stride s
 - Padding p
- Outputs a volume of $\mathbf{W_2} \times \mathbf{H_2} \times \mathbf{D_2}$, where:
 - $W_2 = (W_1 f + 2p)/s + 1$
 - $H_2 = (H_1 f + 2p)/s + 1$
 - $D_2 = n_c$
- Must compute f x f x D₁ weights per filter, a total of f x f x D₁ x n_c weights and n_c biases
- In the output volume, the d-th slice of size **W**₂ x **H**₂ is the result of the convolution between the d-th filter and the image with *stride* **s**, and applying an offset related to the d-th *bias*

Summary of notation

```
f[1] = filter size
p[1] = padding
s[1] = stride
nc[1] = number of filters
```

```
Input: n[1-1] \times n[1-1] \times nc[1-1]
```

Or

 $nH[1-1] \times nW[1-1] \times nc[1-1]$

Output: $n[1] \times n[1] \times nc[1]$

Or $nH[1] \times nW[1] \times nc[1]$

Where n[1] = (n[1-1] + 2p[1] - f[1] / s[1]) + 1

Each filter is: $f[1] \times f[1] \times nc[1-1]$

Activations: a[l] is nH[l] x nW[l] x nc[l]

A[1] is m x nH[1] x nW[1] x nc[1]

Weights: f[l] * f[l] * nc[l-1] * nc[l]

bias: (1, 1, 1, nc[1])

Forward propagation

- Convolve the filters with the image
- Add a bias to the output of each filter
- Apply ReLU to the result

Forward propagation

Example:

- Convolve the filters with the image:
 - Input image: **6x6x3** (a0)
 - 10 filters: **3x3x3** (W1)
 - Result: **4x4x10** (W1a0)
- Add a bias to the output of each filter
 - **b**, **10x1**: image **4x4x10** (W1a0 + b)
- Apply ReLU to the result
 - imagem 4x4x10 (A1 = RELU (W1a0 + b))
- Number of parameters: (3x3x3x10) + 10 = 280

Example of ConvNet

Pooling layers

F x F pooling filter, stride S Usually: F=2 or 3, S=2 Backward pass: gradient from next layer is passed back only to the unit with max value

Pooling layers

- In addition to the convolutional layers, CNNs usually use pooling layers to
 - Reduce the size of entries
 - Speed up computation
 - Make some detected features more robust
- Pooling layers have no parameteres to learn!

Max pooling layer

Max pooling says that if a feature is detected anywhere in the filter, keep it high to the next layer

Average pooling layer

Average pooling takes the average of values and is less used than max pooling

Summary: CNN pipeline

Source: R. Fergus, Y. LeCun

Summary: CNN pipeline

Leaky ReLU max(0.1x, x)

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Source: R. Fergus, Y. LeCun

Summary: CNN pipeline

Source: R. Fergus, Y. LeCun

Input Image

Example of CNN (LeNet-5)

References and acknowledgements

Some of these slides were inspired or adapted from courses and presentations given by Andrew Ng, Camila Laranjeira, Fei-Fei Li, Flávio Figueiredo, Hugo Oliveira, Jefersson dos Santos, Justin Johnson, Keiller Nogueira, Pedro Olmo, Renato Assunção, Serena Yeung.

Reference courses include *Machine Learning* and *Deep Learning* CS230 and CS231 from Stanford University, *Deep Learning* and *Hands-on Deep Learning* from UFMG, *Deep Learning* CS498 from Un. Of Illinois.