Accompagnement Personnalisé (AP): Triangles semblables.

Exercice 1:*

Les triangles ABC et DEF sont-ils semblables? Justifie.

Exercice 2:*

Les triangles GIH et JKL sont-ils semblables ? Justifie.

Exercice 3:*

Ces deux équerres sont-elles semblables ? Justifie.

Exercice 4:**

Les droites (PQ) et (ON) sont parallèles. $Q \in [MO]$ et $P \in [MN]$. Les triangles MPQ et NOM sont-ils semblables ? Justifie.

Exercice 5: **

Un puits cylindrique à un diamètre de 1,5 mètre. Pierre se place à 60 cm du bord du puits, de sorte que ses yeux (Y) soient alignés avec les points B et C ci-contre. La taille de Pierre est 1,70 m. Les triangles ABC et PBY sont semblables.

Quelle est la profondeur du puits ?

Exercice 6: ** Les longueurs sont en cm.

Les triangles FED et ABC sont semblables.

- 1) Calcule les longueurs DE et BC.
- 2) L'aire du triangle ABC est 16,2 cm². Calcule l'aire du triangle FED.

Exercice 7: ***

Pour estimer la hauteur de l'obélisque de la place de la concorde à Paris, un touriste mesurant 1,84 m regarde dans un miroir (M) dans lequel il arrive à voir le sommet S de l'obélisque. Les angles ÂMT et BMS ont la même mesure.

Calcule la hauteur SB de l'obélisque.

Corrigé.

Exercice 1:

Dans un triangle, la somme des mesures des angles est égale à 180°, donc :

$$\widehat{BAC} = 180 - (\widehat{ABC} + \widehat{ACB}) = 180 - (45 + 58) = 180 - 103 = 77^{\circ}$$

$$\widehat{\text{DEF}} = 180 - (\widehat{\text{DFE}} + \widehat{\text{EDF}}) = 180 - (45 + 77) = 180 - 122 = 58^{\circ}$$

Les triangles ABC et DEF ont leurs angles deux à deux de mêmes mesures : ces triangles sont donc semblables.

Exercice 2:

	Petit	Moyen	Grand
Triangle GIH	IH = 2,8	GI = 4,4	GH = 5,6
Triangle JKL	JL = 4,2	JK = 6,6	KL = 8,4

$$\frac{4,2}{2,8} = 1,5$$
 $\frac{6,6}{4,4} = 1,5$ et $\frac{8,4}{5,6} = 1,5$

Les longueurs des côtés du triangle GIH sont proportionnelles aux longueurs des côtés du triangle JKL, donc ces triangles sont semblables.

Exercice 3:

Une équerre possède un angle droit!

La « grande » équerre a un angle qui mesure 90° et un deuxième angle qui mesure 60°, le troisième angle mesure donc

$$180 - (90 + 60) = 30^{\circ}$$
.

La « petite » équerre a un angle qui mesure 90° et un deuxième angle qui mesure 30°, le troisième angle mesure donc

$$180 - (90 + 30) = 60^{\circ}$$
.

Les deux équerres ont leurs angles deux à deux de même mesure, elles sont donc semblables.

Exercice 4:

Les droites parallèles (PQ) et (ON), coupées par la sécante (OQ), forment des angles alternes-internes \widehat{RQO} et \widehat{QON} de même mesure : \widehat{RQO} = \widehat{QON} = 49°.

Les angles \widehat{RQO} et \widehat{MQP} sont opposés par le sommet, ils ont donc la même mesure $\widehat{RQO} = \widehat{MQP} = 49^\circ$.

Les angles \widehat{MPQ} et \widehat{TPN} sont opposés par le sommet, ils ont donc la même mesure $\widehat{MPQ} = \widehat{TPN} = 110^\circ$.

Les droites parallèles (PQ) et (ON), coupées par la sécante (PN), forment des angles alternes-internes \widehat{TPN} et \widehat{PNO} de même mesure : $\widehat{TPN} = \widehat{PNO} = 110^{\circ}$.

On a aussi $\widehat{QMP} = \widehat{OMN}$.

Les triangles MPQ et NOM ont leurs angles deux à deux de même mesure : ces triangles sont donc semblables.

Exercice 5:

Triangle ABC	PB = 0,60 m	PY = 1,70 m	ВҮ
Triangle PBY	AC = 1,5 m	AB	ВС

Les triangles ABC et PBY sont semblables, donc il s'agit d'un tableau de proportionnalité.

AB =
$$\frac{1,5 \times 1,7}{0.6}$$
 = 4,25 m La profondeur du puits est 4,25 mètres.

Exercice 6:

1) Les côtés homologues sont :

- [EF] et [BC].
- [DE] et [AC].
- [FD] et [AB].

Triangle FED	EF = 10,8 cm	DE	FD = 9 cm
Triangle ABC	ВС	AC = 5,6 cm	AB = 6 cm

Les triangles ABC et FED sont semblables, donc il s'agit d'un tableau de proportionnalité :

DE =
$$\frac{5,6\times9}{6}$$
 = 8,4 cm et BC = $\frac{10,8\times6}{9}$ = 7,2 cm

2) Si les longueurs d'un triangle sont multipliées par 1,5 alors l'aire de ce triangle est multipliée par 1,5 = 2,25. $\mathcal{A}_{FED} = \mathcal{A}_{ABC} \times 1,5^2 = 16,2 \times 2,25 = 36,45 \text{ cm}^2$.

Exercice 7:

On sait que $\widehat{AMT} = \widehat{SMB}$ et $\widehat{TAM} = \widehat{SBM}$ donc $\widehat{ATM} = \widehat{MSB}$ (La somme des mesures des angles d'un triangle est égale à 180°).

Les triangles ATM et SMB ont leurs angles deux à deux de même mesure, ces triangles sont donc semblables.

 $M \in [AB]$ donc BM = AB - AM = 94,5 - 7 = 87,5 m

Les côtés homologues sont :

- [TM] et [SM].
- [AT] et [SB].
- [AM] et [BM].

Triangle TAM	TM	AT = 1,84 m	AM = 7 m
Triangle SBM	SM	SB	BM = 87,5 m

Les triangles TAM et SBM sont semblables, donc il s'agit d'un tableau de proportionnalité :

$$SB = \frac{1,84 \times 87,5}{7} = 23 \text{ m}$$

La hauteur de l'obélisque est 23 mètres.