Дана задача нелинейного программирования:

$$\max \left(C_{11}x_1^2 + C_{22}x_2^2 + C_{12}x_1x_2 + C_1x_1 + C_2x_2 \right)$$

1) Решить задачу методом Лагранжа при ограничении:

$$a_{51}x_1 + a_{52}x_2 = b_5;$$

2) Записать необходимые условия оптимальности для задачи при ограничениях:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_1 \\ a_{21}x_1 + a_{22}x_2 \le b_2 \\ a_{31}x_1 + a_{32}x_2 \le b_3 \end{cases};$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_2 \\ a_{21}x_1 + a_{22}x_2 \le b_3 \end{cases};$$

3 по желанию) Решить задачу методом Била при ограничениях:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_1 \\ a_{21}x_1 + a_{22}x_2 \le b_2 \\ a_{31}x_1 + a_{32}x_2 \le b_3 \\ a_{41}x_1 + a_{42}x_2 \le b_4 \end{cases}$$

3 для сдающих после даты Х) Решить задачу методом Била при ограничениях:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_1 \\ a_{21}x_1 + a_{22}x_2 \le b_2 \\ a_{31}x_1 + a_{32}x_2 \le b_3 \\ a_{41}x_1 + a_{42}x_2 \le b_4 \end{cases}$$

4) Решить задачу методом проекции градиента при ограничениях:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_1 \\ a_{21}x_1 + a_{22}x_2 \le b_2 \\ a_{31}x_1 + a_{32}x_2 \le b_3 \\ a_{41}x_1 + a_{42}x_2 \le b_4 \end{cases}$$

5) Записать необходимые условия оптимальности для задачи при ограничении:

$$d_1 x_1^2 + d_2 x_2^2 \le b_6;$$

6) Решить задачу методом штрафных функций или методом барьерных функций при ограничении:

$$d_1 x_1^2 + d_2 x_2^2 \le b_6;$$

 $7^{\text{ по желанию}}$) Решить задачу методом возможных направлений при ограничении:

$$d_1 x_1^2 + d_2 x_2^2 \le b_6.$$

Отчет о решении задачи каждым методом должен содержать подробное описание каждой итерации с приведением промежуточных результатов, а также графическое изображение линий равного уровня целевой функции, границ допустимой области и траектории поиска решения. В каждой точке траектории (или в её непосредственной близости) должна быть проведена линия уровня. Масштаб графиков выбрать таким образом, чтобы траектория поиска решения и область допустимых решений занимала большую их часть. Траектории поиска решения каждым методом рекомендуется оформлять в виде таблиц вида:

X(1)	X(2)	f(X)

Исходные данные:

33501/3	33501/3	33501/4	C_{11}	C_{22}	C_{12}	C_1	C_2
1	27		-6	-9	4	20	60
2	28		-16	-19	4	80	140
3	29		-7	-13	8	10	80
4		30	-13	-22	12	30	40
5		31	-21	-24	4	110	180
6		32	-31	-34	4	286	388
7		33	-22	-28	8	172	296
8		34	-39	-51	16	294	532
9		35	-16	-34	24	6	288
10		36	-50	-65	20	380	680
11		37	-8	-17	12	28	154
12		38	-14	-26	16	84	252
13		39	-17	-23	8	182	266
	14	40	-3	-3	2	10	18
	15	41	-7	-7	2	34	50
	16	42	-4	-4	4	8	20
43	17		-7	-7	6	18	38
	18		-9	-9	2	46	66
	19		-13	-13	2	118	146
	20		-10	-10	4	76	100
	21		-18	-18	8	132	176
	22		-10	-10	12	28	60
	23		-23	-23	10	170	226
	24		-5	-5	6	28	28
	25		-8	-8	8	56	56
	26		-8	-8	4	84	84

33501/3	33501/3	33501/4	a11	a12	a21	a22	a51	a52	b1	b2	b5	d1	d2	b6
1	27		-1	1	1	1	1	0	4	6	2	1	9	36
2	28		-1	1	1	1	1	0	4	5	2	4	25	100
3	29		-1	1	1	0	1	1	4	2	6	1	4	16
4		30	2	3	2	1	3	2	6	4	6	1	9	9
5		31	2	1	1	1	0	1	6	5	3	3	12	108
6		32	7	12	10	8	0	1	84	80	5	16	25	400
7		33	7	12	9	7	0	1	84	63	6	9	16	144
8		34	7	12	10	8	0	1	84	80	5	4	9	144
9		35	7	12	-1	1	9	7	84	2	63	3	12	108
10		36	7	12	0	1	-1	1	84	6	3	25	49	1225
11		37	7	12	-1	1	0	1	84	4	5	49	25	1225
12		38	10	8	-1	1	0	1	84	4	5	49	16	784
13		39	9	7	-1	1	0	1	63	4	4	9	25	225
	14	40	-1	1	2	1	0	1	3	6	3	9	25	225
	15	41	-1	1	2	1	0	1	2	6	3	9	16	144
	16	42	9	4	1	1	1	1	36	6	5	4	9	144
43	17		0	1	2	1	-1	1	3	6	2	25	36	900
	18		-1	1	1	1	1	0	4	6	2	9	25	225
	19		7	12	10	8	0	1	84	80	5	16	25	400
	20		7	12	9	7	0	1	84	63	6	9	16	144
	21		7	12	10	8	0	1	84	80	5	4	9	144
	22		7	12	-1	1	9	7	84	2	63	3	12	108
	23		7	12	0	1	-1	1	84	6	3	25	49	1225
	24		7	12	-1	1	0	1	84	4	5	49	25	1225
	25		10	8	-1	1	0	1	80	4	5	49	16	784
	26		9	7	-1	1	0	1	63	4	4	9	25	225

a31=-1

a32=0

a41=0

a42=-1

b3=0 b4=0