

US401

Apresente um croqui de uma estrutura e as suas divisões internas

- 1. A estrutura deve ter as seguintes dimensões: 10 metros de largura, 20 metros de comprimento e 5 metros de altura.
- 2. A cobertura superior terá dupla inclinação mínima e que cobrirá toda a estrutura, com o cume ao longo de todo o comprimento.
- 3. Esta estrutura terá uma porta grande, que possa subir, de dimensões a definir pelo usuário, mas que permita o acesso a um veículo de transporte de mercadorias tipo furgão de grandes dimensões, e que dará acesso à zona de receção, zona A.
- 4. A estrutura deve ter ainda uma outra porta de duas folhas, com dimensões a definir pelo usuário, que servirá exclusivamente para acesso à zona de armazenamento de produtos e/ou excedentes, zona B.
- 5. A estrutura deve ter um mínimo de duas janelas, ambas com dimensões a definir pelo usuário. Uma posicionada na zona de receção, zona A, e a outra na zona de armazenamento, zona B.
- 6. O interior será dividido em cinco espaços ou zonas, separados fisicamente por paredes e uma porta de acesso ao seu interior. Com exceção da zona de armazenamento, que só terá acesso pelo exterior.
- 7. A sua disposição, dimensões individuais e portas de acesso são definidas pelo usuário.

US402 - US403

Escolha de materiais para as janelas, portas, paredes e telhado.

Materiais escolhidos:

Material da porta: aço.

Material da janela: estrutura de aço e vidro duplo. Material do telhado: poliuretano (isolante), aço.

Material, condutividade, espessura e área de cada estrutura.

Porta	Material	Condutividade Térmica	Espessura	Área
Porta	Aço	52	0.08	2,00 m ²

Janela	Material	Condutividade Térmica	Espessura	Área
Vidro Exterior	Vidro	0.8 W/m	0.03 m	1,71 m ²
Vidro Interior	Vidro	0.8 W/m	0.03 m	1,71 m ²
Estrutura	Aço	52 W/m	0.08 m	0,29 m ²
Caixa de ar	Ar	1.77 W/m	0.02 m	1,71 m ²

Medidas Auxiliares:

Espessura aço - 0.08m

Espessura cada vidro - 0.03m

Espessura camara ar - 0.02m

Total: 0.08m (vidro+ar+vidro)

Largura da Moldura de aço - 0.05m

Telhado	Material	Condutividade Térmica	Espessura	Área
Isolante	Poliuretano	0.03 W/m	0.04 m	250,00 m ²
Telha	Aço	52 W/m	0.0023 m	250,00 m ²

Cálculos Auxiliares:

Rácio dos lados: h = 3, b = 4, hipotnusa = 5

h = 7.5m, b = 10m, hipotnusa(comprimento do telhado) = 12.5m

Ângulo hipotnusa/base ≈ 36.86989764584401°

Conjunto 1

Conjunto 1	Material	Condutividade Térmica	Espessura	Área
Parede Exterior	Tijolo	0.8 W/m	0.1 m	100 m ²
Parede Intermédia	Poliuretano	0.03 W/m	0.2 m	100 m ²
Parede Interior	Concreto leve	0.8 W/m	0.08 m	100 m ²

Conjunto 2

Conjunto 2	Material	Condutividade Térmica	Espessura	Área
Parede Exterior	Tijolo	0.8 W/m	0.1 m	50 m ²
Parede Intermédia	Poliuretano	0.03 W/m	0.2 m	50 m ²
Parede Interior	Concreto leve	0.8 W/m	0.08 m	50 m ²

Conjunto 3

Conjunto 3	Material	Condutividade Térmica	Espessura	Área
Parede Exterior	Madeira Leve	0.15 W/m	0.09 m	25 m ²
Parede Intermédia	Poliestireno	0.04 W/m	0.2 m	25 m ²
Parede Interior	Poliuretano	0.03 W/m	0.08 m	25 m ²

Conjunto 4

Conjunto 4	Material	Condutividade Térmica	Espessura	Área
Parede Exterior	Concreto Leve	0.8 W/m	0.09 m	16,7 m ²
Parede Intermédia	Poliuretano	0.03 W/m	0.2 m	16,7 m ²
Parede Interior	Concreto Celular	0.5 W/m	0.08 m	16,7 m ²

Conjunto 5

Conjunto 5	Material	Condutividade Térmica	Espessura	Área
Parede Exterior	Concreto Leve	0.8 W/m	0.09 m	16,65 m ²
Parede Intermédia	Poliuretano	0.03 W/m	0.2 m	16,65 m ²
Parede Interior	Concreto Celular	0.5 W/m	0.08 m	16,65 m ²

US404

Pretende-se saber qual a resistência térmica das paredes, para cada temperatura de funcionamento, de cada espaço ou zona que deve conter pelo menos três materiais diferentes nas suas paredes. Um para o material exterior, outro para o material intermédio e outro para o material interior.

- 1. Para a divisão ou zona C, a funcionar à temperatura de -10 °C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.
- 2. Para a divisão ou zona D, a funcionar à temperatura de 0 °C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.
- 3. Para a divisão ou zona E, a funcionar à temperatura de 10 °C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.
- 4. Para a estrutura grande, que envolve as restantes divisões, determinar a resistência térmica, de cada parede e telhado, com a inclusão das portas de acesso à receção e de armazenamento e janelas consideradas, de acordo com a escolha dos materiais realizada.

Zona C

Parede 1	Parede 2	Parede 3	Parede 4 (s/ porta)	Porta	Total
0,417 K/W	0,331 K/W	0,276 K/W	0,474 K/W	7,692*10 ⁻⁴ K/W	7,627*10 ⁻⁴ K/ W

Zona D

Parede 1	Parede 2	Parede 3	Parede 4 (s/ porta)	Porta	Total
0,331 K/W	0,442 K/W	0,331 K/W	0,472 K/W	7,692*10 ⁻⁴ K/W	7,631*10 ⁻⁴ K/ W

Zona E

Parede 1	Parede 2	Parede 3	Parede 4 (s/ porta)	Porta	Total
0,417 K/W	0,331 K/W	0,276 K/W	0,474 K/W	7,692*10 ⁻⁴ K/W	7,627*10 ⁻⁴ K/ W

Estrutura Total

Parede 1	Parede 2	Parede 3	Parede 4	Telhado
8,788*10 ⁻⁵ K/W	4,489*10 ⁻³ K/W	4,489*10 ⁻³ K/W	2,049*10 ⁻⁴ K/W	5,334*10 ⁻³ K/W

Telhado Comprimela água telhado =
$$\sqrt{10^2 + 7.5^2} = 12.5 \text{ m}$$

Alchado = $12.5 \times 10 \times 2 = 250 \text{ m}^2$

R telhado = $R_{1elhas} + R_{aso}$

R telhas = $\frac{0.04}{0.03 \times 250} = 5.333 \times 10^{-3} \text{ KW}^{-1}$

R $_{aso} = \frac{0.0023}{52 \times 250} = 1.769 \times 10^{-7} \text{ KW}^{-1}$

R telhado = $5.334 \times 10^{-3} \text{ KW}^{-1}$

