In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2007-12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN	4.030000	15
1	2007-12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN	3.260000	8
2	2007-12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN	5.310000	Ę
3	2007-12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN	4.500000	1(
4	2007-12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	1(
225115	2007-03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	
225116	2007-03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN	22.150000	
225117	2007-03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN	18.540001	1
225118	2007-03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN	NaN	
225119	2007-03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	1

225120 rows × 17 columns

```
In [3]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 225120 entries, 0 to 225119
Data columns (total 17 columns):
Columns Non Mull County Drugs

#	Column	Non-Null Count	Dtype				
0	date	225120 non-null	object				
1	BEN	68885 non-null	float64				
2	CO	206748 non-null	float64				
3	EBE	68883 non-null	float64				
4	MXY	26061 non-null	float64				
5	NMHC	86883 non-null	float64				
6	NO_2	223985 non-null	float64				
7	NOx	223972 non-null	float64				
8	OXY	26062 non-null	float64				
9	0_3	211850 non-null	float64				
10	PM10	222588 non-null	float64				
11	PM25	68870 non-null	float64				
12	PXY	26062 non-null	float64				
13	S0_2	224372 non-null	float64				
14	TCH	87026 non-null	float64				
15	TOL	68845 non-null	float64				
16	station	225120 non-null	int64				
dtyp	es: float	64(15), int64(1),	object(1)				
momony usaga. 20 21 MP							

memory usage: 29.2+ MB

In [4]: b=a.fillna(value=82)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
0	2007-12-01 01:00:00	82.00	2.86	82.00	82.00	82.00	282.200012	1054.000000	82.00	4.030000
1	2007-12-01 01:00:00	82.00	1.82	82.00	82.00	82.00	86.419998	354.600006	82.00	3.260000
2	2007-12-01 01:00:00	82.00	1.47	82.00	82.00	82.00	94.639999	319.000000	82.00	5.310000
3	2007-12-01 01:00:00	82.00	1.64	82.00	82.00	82.00	127.900002	476.700012	82.00	4.500000
4	2007-12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999
225115	2007-03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999
225116	2007-03-01 00:00:00	82.00	0.16	82.00	82.00	82.00	46.820000	51.480000	82.00	22.150000
225117	2007-03-01 00:00:00	0.24	82.00	0.20	82.00	0.09	51.259998	66.809998	82.00	18.540001
225118	2007-03-01 00:00:00	0.11	82.00	1.00	82.00	0.05	24.240000	36.930000	82.00	82.000000
225119	2007-03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000

225120 rows × 17 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	
0	2007-12-01 01:00:00	82.00	2.86	82.00	82.00	82.00	282.200012	1054.000000	82.00	4.030000	156
1	2007-12-01 01:00:00	82.00	1.82	82.00	82.00	82.00	86.419998	354.600006	82.00	3.260000	80
2	2007-12-01 01:00:00	82.00	1.47	82.00	82.00	82.00	94.639999	319.000000	82.00	5.310000	53
3	2007-12-01 01:00:00	82.00	1.64	82.00	82.00	82.00	127.900002	476.700012	82.00	4.500000	105
4	2007-12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106
5	2007-12-01 01:00:00	82.00	1.35	82.00	82.00	0.56	115.300003	319.600006	82.00	9.880000	57
6	2007-12-01 01:00:00	5.54	1.87	4.65	82.00	0.75	165.100006	520.000000	82.00	4.780000	75
7	2007-12-01 01:00:00	82.00	1.57	82.00	82.00	82.00	97.830002	369.000000	82.00	4.870000	59
8	2007-12-01 01:00:00	82.00	0.70	82.00	82.00	82.00	107.699997	188.500000	82.00	4.560000	43
9	2007-12-01 01:00:00	82.00	1.48	82.00	82.00	0.69	152.500000	485.200012	82.00	8.230000	80
10	2007-12-01 01:00:00	82.00	1.87	82.00	82.00	82.00	113.500000	519.099976	82.00	4.380000	104

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	82.00	2.86	82.00	82.00	82.00	282.200012	1054.000000	82.00	4.030000
1	82.00	1.82	82.00	82.00	82.00	86.419998	354.600006	82.00	3.260000
2	82.00	1.47	82.00	82.00	82.00	94.639999	319.000000	82.00	5.310000
3	82.00	1.64	82.00	82.00	82.00	127.900002	476.700012	82.00	4.500000
4	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999
5	82.00	1.35	82.00	82.00	0.56	115.300003	319.600006	82.00	9.880000
6	5.54	1.87	4.65	82.00	0.75	165.100006	520.000000	82.00	4.780000
7	82.00	1.57	82.00	82.00	82.00	97.830002	369.000000	82.00	4.870000
8	82.00	0.70	82.00	82.00	82.00	107.699997	188.500000	82.00	4.560000
9	82.00	1.48	82.00	82.00	0.69	152.500000	485.200012	82.00	8.230000
10	82.00	1.87	82.00	82.00	82.00	113.500000	519.099976	82.00	4.380000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x20704b35220>
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         -4.547473508864641e-13
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
             BEN -3.983305e-16
                  9.015748e-14
             CO
             EBE -2.838995e-16
            MXY -3.595983e-16
           NMHC
                  1.794156e-15
            NO_2
                  1.135338e-16
            NOx 1.000000e+00
            OXY -3.416783e-16
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x2070991a1f0>
           500
           450
           400
           350
           300
           250
           200
                 200
                        250
                               300
                                     350
                                            400
                                                   450
                                                          500
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9999990139552668
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999999396703001
In [22]: a1=b.head(6000)
Out[22]:
                                               MXY
                                         EBE
                       date
                             BEN
                                   CO
                                                    NMHC
                                                                 NO_2
                                                                              NOx
                                                                                    OXY
                                                                                               0_3
                 2007-12-01
                            82.00 2.86 82.00 82.00
                                                     82.00 282.200012 1054.000000 82.00
                                                                                           4.030000 1
                   01:00:00
                 2007-12-01
                            82.00 1.82 82.00 82.00
                                                     82.00
                                                             86.419998
                                                                        354.600006 82.00
                                                                                           3.260000
                   01:00:00
                 2007-12-01
                            82.00 1.47 82.00 82.00
                                                     82.00
                                                             94.639999
                                                                        319.000000 82.00
                                                                                           5.310000
                   01:00:00
                 2007-12-01
                            82.00 1.64
                                        82.00
                                              82.00
                                                     82.00
                                                            127.900002
                                                                        476.700012 82.00
                                                                                           4.500000 1
                    01:00:00
                 2007-12-01
                             4.64 1.86
                                         4.26
                                               7.98
                                                       0.57
                                                            145.100006
                                                                        573.900024
                                                                                         52.689999 1
                                                                                    3.49
                   01:00:00
                 2007-12-10
                                                                         28.080000 82.00 49.939999
            5995
                            82.00 0.31 82.00 82.00
                                                     82.00
                                                             23.350000
                   15:00:00
                 2007-12-10
            5996
                            82.00 0.45 82.00 82.00
                                                                        112.000000 82.00 30.309999
                                                     82.00
                                                             63.939999
                   15:00:00
                 2007-12-10
            5997
                            82.00 0.31 82.00 82.00
                                                     82.00
                                                             34.779999
                                                                         52.369999 82.00 42.070000
                    15:00:00
                 2007-12-10
            5998
                            82.00 0.36 82.00 82.00
                                                     82.00
                                                                        112.099998 82.00 50.730000
                                                             66.269997
                    15:00:00
                 2007-12-10
            5999
                            82.00 0.29 82.00 82.00
                                                     82.00
                                                             43.029999
                                                                         66.809998 82.00 49.919998
                    15:00:00
           6000 rows × 17 columns
          e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
          f=e.iloc[:,0:14]
In [24]:
In [25]:
In [26]: logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
In [27]: from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
        [28079038]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
               28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
               28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
               28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
               28079040, 28079099], dtype=int64)
In [31]:
Out[31]: 3.9362863136010165e-59
In [32]:
Out[32]: 1.8650092005736393e-109
In [33]:
Out[33]: 0.4877777777777775
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
        [-0. 0.
                            -0.
                                      -0.
                                                  0.
                                                            0.
          0.9999824 -0.
                            1
In [36]:
        0.009092657542964844
In [37]: prediction=en.predict(x_test)
        0.999999993967136
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
         Out[38]: RandomForestClassifier()
In [39]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
         'n_estimators':[10,20,30,40,50]
```

```
In [40]: from sklearn.model selection import GridSearchCV
                            grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                   param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                        'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                        'n_estimators': [10, 20, 30, 40, 50]},
                                                                   scoring='accuracy')
In [41]:
Out[41]: 0.5407142857142857
In [42]:
In [43]: from sklearn.tree import plot_tree
                            plt.figure(figsize=(80,50))
Out[43]: [Text(1935.9183673469388, 2491.5, 'X[11] <= -0.389\ngini = 0.961\nsamples = 2
                            643\nvalue = [153, 179, 159, 142, 192, 182, 147, 142, 150, 158\n164, 180, 16
                            9, 160, 144, 146, 148, 167, 184, 146\n186, 161, 170, 168, 151, 152]'),
                               Text(842.6938775510205, 2038.5, 'X[10] <= -1.18 \setminus i = 0.947 \setminus i = 122
                            1\nvalue = [10, 65, 40, 7, 4, 64, 93, 29, 36, 102, 66, 96\n28, 108, 68, 80, 1
                            06, 154, 154, 63, 170, 73, 28\n132, 87, 49\]'),
                               Text(364.40816326530614, 1585.5, 'X[5] <= -0.341 \setminus gini = 0.407 \setminus gini = 13
                            2\nvalue = [0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 154, 0, 0, 0,
                            0, 0, 0, 0, 49]'),
                               Text(182.20408163265307, 1132.5, 'X[8] \leftarrow -0.566 \text{ ngini} = 0.482 \text{ nsamples} = 10
                            0\nvalue = [0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 102, 0, 0, 0,
                            0, 0, 0, 0, 48]'),
                               Text(91.10204081632654, 679.5, 'gini = 0.0\nsamples = 34\nvalue = [0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 53, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(273.30612244897964, 679.5, 'X[12] <= -1.28 \setminus i = 0.56 \setminus i = 66 \setminus i = 0.56 \setminus i = 0
                            0, 0, 0, 48]'),
                              Text(182.20408163265307, 226.5, 'gini = 0.499 \nsamples = 43 \nvalue = [0, 0, 0]
                            0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 46, 0, 0, 0, 0, 0, 0, 17]'),
```

From this observation I had observe that the ELASTICNET is a highest accuracy of 0.9999999993967136

```
In [ ]:
```