

Biomedical Imaging Group

3D Deconvolution Microscopy BIG > 3D Deconvolution Microscopy

DECONVOLUTION

Outline **Open Software**

- » DeconvolutionLab2
- » DeconvolutionLab
- » PSF Generator
- 3D Reference

Datasets

Benchmarking Advanced Methods

Conditions of Use Acknowledgment

BIG

Home Research **Publications** Demos Algorithms Teaching

DeconvolutionLab2

The remasterized Java deconvolution tool

DeconvolutionLab2 is freely accessible and open-source for 3D deconvolution microscopy; it can be linked to well-known imaging software platforms, ImageJ, Fiji, ICY, Matlab, and it runs as a stand-alone application.

The backbone of our software architecture is a library that contains the number-crunching elements of the deconvolution task. It includes the tool for a complete validation pipeline. Inquisitive minds inclined to peruse the code will find it fosters the understanding of

At this stage, DeconvolutionLab2 includes a friendly user interface to run the following algortihms: Regularized Inverse Filter, Tikhonov Inverse Filter Naive Inverse Filter, Richardson-Lucy, Richardson-Lucy, Total Variation, Landweber (Linear Least Squares), Non-negative Least Squares, Bounded-Variable Least Squares, Van Cittert, Tikhonov-Miller, Iterative Constraint Tikhonov-Miller, FISTA, ISTA.

Reference

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, M. Unser DeconvolutionLab2: An Open-Source Software for Deconvolution Microscopy Methods-Image Processing for Biologists, vol. 115, 2017.

Installation of DeconvolutionLab2

Download		
DeconvolutionLab_2.jar	•	Do not unzip this downloaded file

Installation

line interface

1. To run the user interface of Deconvolutionlab2, enter the following command line in the terminal:

java -jar DeconvolutionLab_2.jar Lab

2. To run a deconvolution task with a command following this example:

java -jar DeconvolutionLab_2.jar Run

-image synthetic Cube 10.0 1.0 size 200 100 100

-psf synthetic Double-Helix 3.0 30.0 10.0 size 200 100 100 intensity 255.0

-algorithm RIF 0.1000 -out mip MI1 -path home

Put the file DeconvolutionLab_2.jar in the plugins folder and restart ImageJ or Fiji. Check the menu Plugins »

Source code and documentation					
	git clone https://c4science.ch/diffusion/2075/deconvolution.git				
Status	Status of the development				
API	Java doc				

FFT Libraries					
	Visit the page of JTransforms JTransforms is already included in Fiji and Icy	Get a JTransforms.jar file and put it in the same directory than DeconvolutionLab_2.jar			
FFTW Version 2	FFTW.zip It is include the FFTW2 dynamic libraries for Mac OSX, and Windows 32-bits and 64-bits machines, and Linux 32-bits and 64-bits machines.	Download the FFTW.zip folder, unzip it and put it in the same directory than DeconvolutionLab_2.jar			

How to use Deconvolution2

▶ Image

Drag and Drag and drop the drop input image file (or directory) into the Image bar or in the image table file Select file containing z-stack of images (default path is indicated in Path) Select a directory directory containing the list of images (only files which have a name containing the pattern)

TIKNONOV KEGUIATIZATION INVERSE FIITET [IKIF | IK] This algorithm is a direct inverse filter with a Tikhonov regularization following this formalization: $\mathbf{x} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H}^T \mathbf{y}$ where **H** is the PSF and **I** is the identity operator. This regularization tends to reduce high frequencies noisy and in the same time it tends to blur the image. It is controlled by the regularization factor λ . TRIF or TR is very fast. It is non-iterative algorithm. This formulation can also be interpreted as a maximum a posteriori model.The regularization introduces prior information about the signal to guide the Reference: A. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Mathematics Dokl., vol. 5, 1963. DeconvolutionLab2 Path Default Close Batch Launch

Regularized Inverse Filter
Tikhonov Regularization inverse Filter
Naive Inverse Filter
Fast Iterative Shrinkage—Thresholding
Iterative Shrinkage—Thresholding
Landweber
Non—Linear Least—Square
Bounded-Variable Least Squares
Richardson—Lucy
Richardson—Lucy
Richardson—Lucy Total Variation
Tikhonov—Miller
Iterative Contraint Tikhonov—Miller
Van Cittert
Identity (copy)
Convolution Noiseless
Simulation with noise
Non Stablized Division

Run the deconvolution task in headless mode

Start the deconvolution task then Run the deconvolution task

The current deconvolution command is added in the Batch table (see Advanced tab)

Algorithms of DeconvolutionLab2

Run

Launch

Batch

Algorithms	Shortname	Iterative	Step Controllable	Regularization	Wavelets
Deconvolution					
Regularized Inverse Filter Laplacian Regularized Inverse Filter	RIF LRIF	Direct	No	Yes	
Tikhonov Regularized Inverse Filter	TRIF	Direct	No	Yes	

3 of 6 12/26/17, 8:29 AM

Naive Inverse Filter Inverse Filter	NIF IF	Direct	No	Yes	
Richardson-Lucy	RL	Iterative	No	No	
Richardson-Lucy Total Variation	RLTV	Iterative	No	Yes	
Landweber Linear Least Squares	LW LLS	Iterative	Yes	No	
Non-negative Least Squares Landweber+Positivity	NNLS LW+	Iterative	Yes	No	
Bounded-Variable Least Squares Spark-Parker	BVLS SP	Iterative	Yes	No	
Van Cittert	VC	Iterative	Yes	No	
Tikhonov-Miller	TM	Iterative	Yes	Yes	
Iterative Constraint Tikhonov- Miller	ICTM	Iterative	Yes	Yes	
FISTA	FISTA	Iterative	No	Yes	Haar, Spline
ISTA	ISTA	Iterative	No	Yes	Haar, Spline
Simulation					
Simulation	SIM	Direct	Convolution with a PSF and corruption with Gaussian and Poisson noise		
Convolution	CONV	Direct	Convolution with a PSF (no additive noise)		
Identity	I	Direct	Copy the input into the output		
Non-stabilized Division	DIV	Direct	Division by a PSF in the Fourier domain		

Synopsis of the algorithms of DeconvolutionLab2

Results of DeconvolutionLab2

The results of the deconvolution in terms of image reconstruction are the same than our previous version **DeconvolutionLab**. DeconvolutionLab2 improves the usability through friendly user-interface and it run on various imaging platform It offers a larger choice a FFT librairies and different ways to cancel the border artefacts. In addition, it allows a scripting for batch processing.

Scripting DeconvolutionLab2

The command line of DeconvolutionLab2 consists of a series of arguments that allows a full control of the processing. The command line is written in a single line, space is mostly used as separator. The general format of the argument is:

-keyword [option] parameters

The list of keywords and the options presenting in the following table. The sign | indicate a OR). The default value are written in bold

Keyword	Default	Options	Description	
-image file	Mandatory	Path to a single file (z-stack) usually a TIF or STK file	Source of images. The 3D input data should be a	
-image directory		Path to a directory containing 2D images [pattern	z-stack of images.	
-image synthetic		Name and parameters of the shape [intensity, size, center]>		
-image platform		Name of the image of the platform (ImageJ or Icy)		
-psf file	Mandatory	Path to a single file (z-stack) used as PSF usually a TIF or STK file	Source of PSF. The 3D PSF data should be a	
-psf directory		Path to a directory containing 2D images [pattern]	z-stack of images.	
-psf synthetic		Name and parameters of the shape [intensity, size, center]		
-psf platform		Name of the image of the platform (ImageJ or Icy)		
-algorithm	Mandatory	RIF TRIF NIF LW NNLS BVLS RL RLTV TM ICTM ISTA FISTA VC I CONV SIM DIV Synonym of the acronym: RIF = LRIF, NIF = IF, LW = LLS, NNLS = LW+, BVLS = SP, I = ID	Name and parameter of the algorithm	
-path	current	current path	Working directory	
Output (several inst	ances of out ar	e possible)		
-display	yes	yes no	The final results is displayed	
-out stack	intact float	Name of the output: Note that this name is used as title of the window image and	Output as a stack of images (TIF)	
-out series	intact float	as the filename for the storage Option for dynamic:	Output as series of 2D images (slices, XY)	
-out mip	intact float	intact rescaled normalized clipped <u>Option for type:</u> byte short float	Output as a maximum-intensity projection	
-out ortho	intact float	Mode: By default the output is shown and saved.	Output as a 3 orthogonal views centered around the keypoint	
-out planar	intact float	nosave I noshow	Outputs as a 2D side-to-side imagon fall the z-slices	
Controller				
-monitor	console table	console table no	Selection of the monitoring output	
-verbose	log	log quiet prolix mute	Message monitoring	
-stats	show	show I save I no	Statistics	
-constraint	no	no nonnegativity clipped	Spatial constraint on the signal	
-residu	no	no value	Stops when the minimal residu is reached	
-time	no	no value	Limitation of running time	
-reference	no	no filename	Assess the current deconvolved image with the reference image	
Preprocessing	•			
-pad	NO NO 0 0	NO X2 X23 X235 E2	Lateral and axial padding and extension scheme	

5 of 6 12/26/17, 8:29 AM

-apo	NO NO	UNIFORM NO HAMMING HANN COSINE TUKEY WELCH	Lateral and axial apodization window function	
-norm	1	no value	Normalization factor for the PSF	
Resources				
-fft	fastest	academic jtransforms fftw2	Indicates the FFT library	
-epsilon	1E-6	value	Machine Epsilon	

Example

-image synthetic Cube 10.0 1.0 size 200 100 100 intensity 255.0 -psf synthetic Double-Helix 3.0 30.0 10.0 size 200 100 100 intensity 255.0 -algorithm RIF 0.1000 -out mip MI1 -norm 10.0 -path home

Course

	!	1	1
Material	Download	Size	Description
Slide in PDF (without the animation/video)	3D-Deconvolution- Microscopy.pdf	4.6 Mb	Course given in Neubias 2020, February 2017
Restoration	logo.zip	0.6 Mb	2D simulation, influence of the PSF shape to restore the original image
Naive Inverse Filter	naive-deconvolution.zip	3.3 Mb	2D simulation of the inverse filter
Simulation to check the resolution	test-resolution.ijm	0 Mb	Macro to generate simulated data and simulated PSF
Simulation to check the spectral effect	spectral-analysis.zip	0.7 Mb	2D simulation of fine structures
Hollow bars	bars.zip	28 Mb	3D reference, 3D corruputed data and 3D PSF
C-elegans embryo	c-elegans.zip	183 Mb	3 fluoresence channels, 3D data and 3D theoretical PSF
Synthetic microtubules	microtubules- challenge.zip	63 Mb	3D data and 3D theoretical PSF of a realistic specimen
Drosophila (crop)	drosophila-crop.zip	19 Mb	Small 3D data and 3D theoritical PSF
Synthetic microtubules	real-donut.zip	463 Mb	3D data and 3D estimated PSF of real well-defined objects (donut)

Conditions of use

You'll be free to use this software for research purposes, but you must not transmit and distribute it without our consent. In addition, you undertake to include a citation whenever you present or publish results that are based on it. EPFL makes no warranties of any kind on this software and shall in no event be liable for damages of any kind in connection with the use and exploitation of this technology.

© 2017 EPFL • webmaster.big@epfl.ch • 22.11.2017

6 of 6 12/26/17, 8:29 AM