Recap
Fix margin 9>0.

Want to show: for every $h \in H$, for every D,

for every 8>0, $R(h) \leq RS, S(h) + \frac{2}{S}Rad(H)$ +3 (log (48) 2m), with probability > 1-8. Take $\overline{\Phi}(S) = \sup_{h \in \mathcal{H}} \left(R(h) - \frac{1}{R(h)} \right)$ Proof: Recall: $R(h) = \frac{F}{z \nu D} \frac{1}{\{y \neq h(x)\}}$ (x,y) $R_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} 1_{\{y_{i},h(x_{i})<0\}}$ $S = \left\{ \left(z_i, y_i \right) \right\}_{i=1}^m$ $\mathbb{E}_{s \sim D^m} \hat{R}_s(h) = R(h)$ Suppose we proved $R(h) < \hat{R}_s(h) + \frac{2}{P} Rad_s(H)$ $+3\sqrt{\frac{\log^2/8}{2m}}$ $\frac{loss}{R_{S,S}(h)} = \min_{S,l} \frac{S_{l,l}}{s}$ If A, we are done $R(h) < \hat{R}_{S}(h) + \cdots$ $< \hat{R}_{S,S}(h) + \cdots$ (In practice, we solve FRM using ramp/hige loss) (Want: R(h) < R_s(h) + 2Rods(H)

+ 3 log 2/8

Today $Rad_{S}(H) < \frac{n\Lambda}{\sqrt{m}}$ $n = sull \times || \Lambda = sup_{S}||\omega||$ $\ell(z,h) =$ 1 { h(x) + y } $0 \leq \ell(2,6) \leq 1$ $0 \leq \hat{R}_{S}(h) \leq 1$ Rs (4) = El(2,4) 0 < R_s(h) < 1 In more generality, me will prove a Rademacher Complexity-based generalistis, bound when l ∈ [0,1]. (Chapter 3 of Mohri + Chapter 5 of Mohri). (Also for algorithmic-stability-different idea, depending on learning algorithm for generalization - Uscful inequality Mediarmid's inequality) 1) $\overline{P}(5) = \sup_{h \in \mathcal{H}} R_s(h) - R_s(h)$

2) Apply M. inequality to \$\mathcal{I}(S)\$

Mediarmide in equality
$$S = \emptyset, ..., \ge n$$
If S' diffus from S in one element such that
$$\left| \stackrel{\frown}{\Phi}(S) - \stackrel{\frown}{\Phi}(S') \right| \le C \text{ holds}$$
for every $S, S' \sim D^m$,
Then, for any $t > 0$,
$$Pr\left(\stackrel{\frown}{\Phi}(S) - \stackrel{\frown}{F} \stackrel{\frown}{\Phi}(S) > t \right)$$

$$\le e^{-\frac{2t^2}{mc^2}}$$

Pr $(\Phi(s) - E\Phi(s) > t)$ $\leq e^{-\frac{2t^2}{mc^2}}$ ie with probability $> 1-\delta$, $\Phi(s) - E\Phi(s) < \frac{mc^2 \log 1/s}{2}$

Boosting Freund Shapire 1995, 1999 If you have a bunch of "group" hypotheses that are "easy to Learn " (small computational complexity) can you combine ("boost") them to get better goverelization training comer Approximation error BAD

Fotimation error goods Practical algorithm: Adaboost " adaptive" Theretie algorithm I/p: $S = \{\{x_i, y_i\}\}_{i=1}^m$ Thow do you combine hypotheses?

Weak rules" Wheak " learning seturns f (x) = ±1 $h_{T}(x) = sgn\left(\sum_{t=1}^{T} w_{t} f_{t}(x)\right)$ (after Tourds of boosty) 0/p: h_ There are no hyper parameters! except for T