МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по лабораторной работе №1

на тему «Реализация программного датчика случайных чисел на основе рекуррентной линии задержки с обратной связью»

Дисциплина: МиСКЗИ

Группа: 21ПИ1

Выполнил: Гусев Д. А.

Количество баллов:

Дата сдачи:

Принял: Липилин О. В.

- 1 Цель работы: реализация программного датчика случайных чисел на основе генераторов линейных псевдослучайных последовательностей большого периода.
 - 2 Задание на лабораторную работу.
- 2.1 В соответствии с вариантом задания построить структурную схему комбинирующего генератора ПСП, в качестве функции использовать операцию сложения по модулю 2. Определить период последовательности, вырабатываемой комбинирующим генератором. Вариант задания представлен на рисунке 1.

8	$x^{17}+x^3+1$	$x^{111}+x^{10}+1$	4, 9

Рисунок 1 — вариант задания

- 2.2 Программно реализовать комбинирующий генератор ПСП. В программе должна быть предусмотрена возможность задания количества бит вырабатываемой последовательности.
- 2.3 Реализовать с помощью разработанного генератора ПСП операцию маскирования данных. В качестве исходных данных для маскирования должен файл произвольного формата. В программе должно быть выступать предусмотрено два режима маскирования файла – полностью и без маскирования заголовка файла. В программе должна быть предусмотрена определения возможность статистических характеристик исходного замаскированного файла.
 - 3 Выполнение лабораторную работы:
- 3.1 Была построена структурная схема. Результат представлен на рисунке 2. Был найден период получившегося генератора. Т \leq HOK(2^{17} -1, 2^{111} -1). Т \leq 340279770772509196049560342183603470337.

Рисунок 2 — Структурная схема

3.2 Был разработан код на языке C++, код представлен в репозитории на github: https://github.com/GooseG4G/PGU/blob/main/MuCK3И/gpsp.cpp. Рузультат работы генератора представлен на рисунке 2.

Рисунок 3 — Работа ГПСП

3.3 Был разработан код на языке C++ для маскирования файлов, код представлен в репозитории на github: https://github.com/GooseG4G/PGU/blob/main/MuCK3U/gpsp_mask.cpp. Рузультат маскирования представлен на рисунке 3.

Рисунок 3 — маскирование файла

4 Вывод: был реализован программный датчика случайных чисел на основе генераторов линейных псевдослучайных последовательностей большого периода.