Teoria da Computação FCT-UNL 2023-2024

Problem Set 4

Autómatos Finitos Não-Deterministas

- 1. Para cada uma das linguagens definidas abaixo, descreva um AFN que a reconhece através do seu diagrama de estados e formalmente:
 - (a) A linguagem L sobre $\{A,C,G,T\}$ das sequências que contêm ACT como substring. Mostre que $ACTCTACT \in L$ de duas maneiras diferentes.
 - (b) A linguagem sobre $\{0,1\}$ das sequências que começam em 0 e acabam em 1.
 - (c) A linguagem sobre $\{0,1,2\}$ cujas sequências têm pelo menos um 0 seguido de pelo menos um 2 e terminam em 1.
 - (d) A linguagem L sobre $\{0,1\}$ das sequências nas quais existem dois 1s separados por um número ímpar de 0s. Por exemplo, $100101 \in L$, mas $10010011 \notin L$. Mostre que $1010010001 \in L$ de duas maneiras diferentes.
 - (e) $L = \{01, 001, 010\}^*$, com alfabeto $\Sigma = \{0, 1\}$.
 - (f) $L = \{(01)^m (10)^n \mid m, n \in \mathbb{N}\}$, com alfabeto $\Sigma = \{0, 1\}$.
- 2. Para cada uma das linguagens sobre $\{0,1\}$ definidas abaixo, descreva um AFN que a reconhece através do seu diagrama de estados e com o número de estados pedido:
 - (a) $L = \{w \mid w \text{ termina em } 11\} \text{ com } 3 \text{ estados.}$
 - (b) $L = \{0^a 1^b 0^c \mid a, b \in \mathbb{N} \land c \in \mathbb{N}^+\} \text{ com } 3 \text{ estados.}$
 - (c) $L = \{0\}$ com 2 estados.
 - (d) $L = \{0\}^* \text{ com 1 estado.}$
- 3. Mostre que todo o AFN M pode ser transformado num AFN M' com apenas um estado final e tal que L(M') = L(M).
- 4. Seja M um AFN que reconhece uma linguagem L. Seja também M' o AFN obtido ao transformar todos os estados finais de M em estados não finais e vice-versa. Diga, justificando, se é sempre verdade que $L(M') = \overline{L}$.

5. Para $k \in \mathbb{N}^+$ arbitrário, definimos a linguagem

$$L_k = \{ w \in \{0,1\}^* \mid |w| \ge k \land w_{|w|-k+1} = 1 \},$$

Isto é, L é a linguagem das sequências binárias que têm um 0 na posição k a contar do fim. Para cada k, descreva um AFN com k+1 estados que reconhece L_k .

Tente também construir um AFD que reconhece L_k . O que nota em relação ao número de estados?