

Cloud Computing: Broker for Cloud Marketplace

Prof. Soumya K Ghosh

Department of Computer Science and Engineering
IIT KHARAGPUR

9/20/2017

INTRODUCTION

- Rapid growth of available cloud services
- Huge number of providers with varying QoS
- Different types of customer use cases each with different requirements

INTRODUCTION

- Rapid growth of available cloud services
- Huge number of providers with varying QoS
- Different types of customer use cases each with different requirements

- Need for a "middle man" (Intelligent Broker!) to
 - Suggest the best cloud provider to the customer
 - Safeguard the interests of the customer

MOTIVATION

- Flexible selection of cloud provider
- Trustworthiness of provider
- Monitoring of services
- Avoiding vendor lock-in

OBJECTIVES

- Selection of the most suitable provider satisfying customer's QoS requirements
- Calculation of the degree of SLA satisfaction and trustworthiness of a provider
- Decision making system for dynamic service migration based on experienced QoS

Different Approaches

- CloudCmp: a tool that compares cloud providers in order to measure the QoS they offer and helps users to select a cloud.
- Fuzzy provider selection mechanism.
- Framework with a measure of satisfaction with a provider for keeping in mind the fuzzy nature of the user requirements.
- Provider selection framework which takes into account the trustworthiness and competence of a provider.

CUSTOMER QoS PARAMETERS

Infrastructure-as-a-Service

Software-as-a-Service

More QoS parameter can be added easily.

PROVIDER

- Promised QoS values : $Prom_i^1$, $Prom_i^2$, ..., $Prom_i^L$
- Trust values: $TRUST_i^1$, $TRUST_i^2$, ..., $TRUST_i^L$

Note: They have been kept independent as they pertain to different parameters

Typical MARKETPLACE Architecture

PROVIDER SELECTION

- Selection of provider is done using a fuzzy inference engine
- Input: QoS offered by a provider and its trustworthiness
- Output: Suitability of the provider for the customer
- Customer request is dispatched to provider with maximum suitability
- Membership functions are built using the user requirements

PROVIDER SELECTION

PROVIDER SELECTION – INPUT MEMBERSHIP FUNCTION

PROVIDER SELECTION – INPUT MEMBERSHIP FUNCTION

PROVIDER SELECTION – OUTPUT MEMBERSHIP FUNCTION

MONITORING MODULE

Symbol	Interpretation
$Prom_i^{avail}$	Promised availability for VM_i
$Prom_i^{bw}$	Promised bandwidth for VM_i
$Exp_i^{avail}(t)$	Availability experienced by VM_i at time t
$Exp_i^{bw}(t)$	Bandwidth experienced by VM_i at time t
$F_i^{avail}(t)$	Performance History in availability for VM_i at time t
$F_i^{bw}(t)$	Performance History in bandwidth for VM_i at time t
$G_i^{avail}(t)$	SLA satisfaction for VM_i in availability
$G_i^{bw}(t)$	SLA satisfaction for VM_i in bandwidth

Performance for SI_i in current monitoring period

MIGRATION DECIDER

- Makes use of a fuzzy inference engine
- Input : $F_i^1, F_i^2, ..., F_i^L$
- Output : Degree of SLA Satisfaction for SI_i
- If Degree of SLA Satisfaction < threshold, migrate

MIGRATION DECIDER – OUTPUT MEMBERSHIP FUNCTION

MIGRATION MODULE - SELECTION OF TARGET PROVIDER

- Similar to provider selection
- Selection done using a fuzzy inference engine

Case study on laaS Marketplace

- 10 providers with varying offered QoS
- 500 requests for VMs
- Year long simulation
- Few providers exhibit performance degradation. Degraded QoS parameters follow a Gaussian distribution
- Comparison made with conventional (minimum cost) crisp broker

Case study on SaaS Marketplace

- 10 providers with varying offered QoS
- 500 service requests
- Year long simulation
- Few providers exhibit performance degradation. Degraded QoS parameters follow a Gaussian distribution
- Comparison made with conventional (minimum cost) crisp broker

Experiments and Results

Future Scope

- Specification of flexibility in QoS requirements
- Comparison against existing approaches on production workload
- Service classes for customers

Thank You!!

