CISE III Examen final

Quadrimestre Tardor

(22 de gener de 2004. Inici: 15:00 hores. Duració: 2 hores 30 minuts)

Publicació de Notes (Mòdul C4 Planta –1): Dilluns 26 de gener (18:00) Al·legacions: Fins al dijous 29 de gener (11:30 hores) a la Secretaria del mòdul B3 Publicació de Notes definitives: (Mòdul C4 Planta –1): Dijous 29 de gener (18:00)

Problema 1 (2.5 punts)

1.1 Es pretén dissenyar una font de corrent a partir de l'esquema a) o b) de la figura. Determineu quin dels circuits és l'adequat a partir del fluxograma, el càlcul del guany de llaç T(s) i la determinació del tipus de realimentació dels dos circuits. Per fer-ho considereu el segon operacional ideal i el primer operacional amb un guany del tipus:

$$A_1(s) = \frac{a_o \omega_1 \omega_2}{(s+\omega_1)(s+\omega_2)}$$
. Representeu el lloc geomètric dels arrels del circuit triat.

- 1.2 Una vegada determinat quin dels dos circuits és l'adequat per a la realització d'una font de corrent controlada per tensió, calculeu l'expressió del corrent de sortida I_o en funció de la tensió d'entrada V_i si es consideren ideals els dos amplificadors operacionals.
- 1.3 Calculeu de nou l'expressió del corrent de sortida I_o en funció de la tensió d'entrada V_i si es considera una tensió d'offset V_{OS1} per a l'amplificador AO_1 i una tensió V_{OS2} per a l'amplificador AO_2 i la resta de característiques ideals.

Problema 2 (2.5 punts)

- 2.1 Obtingueu la característica entrada-sortida V_o = $f(V_i)$ del circuit de la figura 2.1. (A.O.'s ideals alimentats a $\pm Vcc$ = ± 15 V).
- **2.2** Dibuixeu la forma d'ona de la tensió de sortida V_o per a un senyal d'entrada V_i com el de la figura 2.2.

Figura 2.2

Problema 3 (2.5 punts)

DADES: R_3 = 4 k Ω , C= 0.1 μ F, V γ = 0.7 V, $|V_Z|$ = 5.3 V, R_1 = 1k Ω , R_2 = 4 k Ω , V_R = 2 V

3.1 Obtingueu $V_{OB}(V_{OA})$ del circuit del bloc 1 aïllat. Dibuixeu $V_{OB}(t)$ si el senyal d'entrada $V_{OA}(t)$ és el representat en la figura, marcant els valor principals del senyal. Suposeu $V_{OB}(t=0)=0$.

3.2 Obtingueu $V_{OA}(V_{OB})$ del circuit del bloc 2 aïllat. Dibuixeu la característica de transferència $V_{OA}(V_{OB})$. Dibuixeu el senyal $V_{OA}(t)$ si el senyal d'entrada és el de la figura. Calculeu el valor del periode T del senyal $V_{OB}(t)$ per a que, si el *slew-rate* és 6 V/μ s el senyal de sortida sigui triangular.

3.3 Dibuixeu els senyals $V_{OA}(t)$ y $V_{OB}(t)$ del circuit amb els dos blocs connectats, suposant que per a t=0, $V_{OA}(t=0)$ =-6 V, $V_{OB}(t=0)$ = 0 V i calculeu el període T del senyal periòdic.

Problema 4 (2.5 punts)

DADES: $R_1 = 2 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $|V_z| = 5 \text{ V}$, $|I_{Z, \text{MAX}}| = 50 \text{ mA}$, $V_{BEon} = 0.7 \text{ V}$

Amb el circuit regulador de tensió de la figura es pretén aconseguir una tensió de sortida nominal V_o = 15 V.

- **4.1** Calculeu el valor necessari de la resistència R₂.
- **4.2** Obtingueu el valor màxim de la tensió d'entrada V_i considerant el corrent màxim del diode Zener.
- **4.3** La missió del transistor Q_2 és protegir el transistor Q_1 en front de corrents excessius. Obtingueu el valor de la resistència R_4 per a que el corrent de sortida I_0 estigui limitat a 1.25 A i el de la resistència R_L que produeix aquest corrent.
- **4.4** Si es connecta a l'entrada una font de tensió $V_i = 25 \text{ V}$ i una resistència de càrrega $R_L = 30 \Omega$, quin serà el rendiment del regulador?
- **4.5** En les condicions de l'apartat anterior, quina és la potència dissipada pel transistor Q₁?, i la dissipada pel diode Zener?