第3章 微分中值定理与导数的应用

第1节 微分中值定理

条件: 1. 函数在 [a,b] 上连续。2. 函数在 (a,b) 可导

- 罗尔定理 若 f(a) = f(b) 则存在 $\xi \in (a,b)$ 使得 $f'(\xi) = 0$ 成立
- 拉格朗日中值定理 存在 $\xi \in (a,b)$ 使得 $\frac{f(b)-f(a)}{b-a}=f'(\xi)$ 成立

第2节 洛必达法则

对于 $\frac{0}{0}$ 型或 $\frac{\infty}{\infty}$ 型的未定式有: $\lim \frac{f(x)}{F(x)} = \lim \frac{f'(x)}{F'(x)}$

第3节 泰勒公式

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中 $R_n(x) = o((x - x_0)^n) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{(n+1)}$
当 $x_0 = 0$ 时为麦克劳林公式。

第4节 函数的单调性和凹凸性

- 单调性
 - 当 $f'(x) \ge 0$ 时, f(x) 单调递增。
 - 当 $f'(x) \leq 0$ 时, f(x) 单调递减。
- 凹凸性
 - 当 $f''(x) \ge 0$ 时, f(x) 为凹函数。
 - 当 $f''(x) \leq 0$ 时, f(x) 为凸函数。
 - 当 $f''(x_0) = 0$ 且 x_0 左右两侧临近异号,则 x_0 为<mark>拐点</mark>。

第5节 函数的极值与最大值最小值

$$f'(x_0) = 0$$
 且 $f''(x_0) < 0$ 时 $f(x)$ 在 x_0 处取得极大值。 $f'(x_0) = 0$ 且 $f''(x_0) > 0$ 时 $f(x)$ 在 x_0 处取得极小值。

第6节 函数图形的描绘

用函数的单调性及凹凸性来描绘函数图形。

第7节 曲率

曲率
$$K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$$
 曲率半径 $\rho = \frac{1}{K} = \frac{(1+y'^2)^{\frac{3}{2}}}{|y''|}$