11A6102

Exercice 19:

$$\frac{1+3}{2} = \frac{4}{2} = 2$$

Exercice 21:

Dématrer que 9 => B Vrai

* Par an raisonnement direct	* Par en raisoment per catraposes
A) Supposur que A et mai	(B) Supposas que 7B et reai
@ Dac B Shai	(C) Drc 1A et vai
	•

	* Pan l'absurde:
	(A) On suppose que A et viai et B est faix
	(c) On a use contradiction
۷)	$\forall x \in R \{-1\}, (x) = \frac{2}{1+x} = 1$
	1+2
	Soit or eIR/{-1}
H	Supposas que = 21
	Dac xt 122 >0
	Doc $\frac{1}{x+1} \in \frac{1}{2}$ Doc $\frac{2x!}{x+1} \in \frac{2}{x} \in \frac{2}{x+1} \in \frac{2}{x}$
	Dar 2 6 1 1+x
٤)	$H_q V(x,y) \in J_{-1}, +\infty[\frac{2}{3}, (x < y =) \xrightarrow{x+2} \frac{y+2}{y+1})$
	Soiet x, y &]-1+pt
H	Supposes que x (y) Supposes que x (y) 2+1 3+1
(D)	(x +2 y+2 (x+2)(y+1)=(y+2)(x+1)
<u> </u>	$O_{ma} = \frac{y+2}{x+1} = \frac{y+2}{(x+1)(y+1)^{\frac{1}{2}}(y+2) x+1 }$
	$\frac{(2y+x+2y+2)-(xy+y+2x+2)}{(x+1)(y+1)} = \frac{y-x}{(x+1)(y+1)}$
	(x+1)(y+1) (x+1)(y+1) (x+1)
	a a d'agrés l'hypothèse: y-270
	et x+1/0 et y+1/0 cm x>1 et y>-1
	Dac x+2 9+2 70 x+1 9+1
	Duc xt2 7 St2 xt1 yt1

4) Mg (x,y) & J-1; + &[2, (x + y =) 2 + 2) +2) Sit (x,y) &]-1+0[2 (4) Supposus que x+2 g+2 Donc 212 x (211) (y11) = 3+2 x (2+1) (y+1) Dar (2+2)(y+1)=(y+2)(2+1)

Dar xy+x+2y+2=yx+y+2x+2

Dar y=x O Dac x=y Escemple: My Vx EIR, 1x-2/4 22-2x+3 Len Cos; x (2 1er cos: 272 Alas |2-2 = x-2 Alor 12-2) = -(x-2) Alors 22 - 22 +3 - 2-21 Dac x2-2x+3-12-2) $= x^2 - 2x + 3 + (x - 2)$ = x1 -2x+3 - (x-2) 5 xl -32 + 5 = x2 - x+1 D= 1-4 <0 1- 5-20 - -11 <0 5) $\forall (x,y) \in \mathbb{R}^2 \quad \min(x,y) = \frac{1}{2} (x+y-|x-y|)$ Soich a, y EIR 10 cos : Si a >y; Alors { min (24, y) = y} (1/2 (2+y-12-y1) = 1/2 (2+y-(x-y)) = y 12-4/-2-4 cm 274 (dac 2-420)

```
gen cos: Six 5g
        (1/2 (x+y-|x+y|) = 1/2 (x+y-(-(x-y)) = x
(cor xcy doc x-y <0 du |xy|=-(x-y)
   Alors: S \min (x, y) = x
\frac{1}{2} \left( x + y - |x - y| \right) = \frac{1}{2} \left( x + y \right) = \frac{1}{2} \left( x + x \right) = x
( min(2, y) = 1 (2+y-12-y)
        Euria 12:
1) a) (7PV9) n(R => (P => Q))
          G R TPon G POQ RO(POQ)
              F
```

6)	P => ((QVR) =>	(R=) 7P))

P	હ	R	QUR	R => 7P	(QUR) => (R=7P)	6)
V	V	V	V	F	F	É
V	ν	F	U	V	V	V
V	F	V	V	r	F	P
V	F	F	F	V	V	V
F	J	\vee	V	V	V	V
F	V	F	V	J	\checkmark	V
F	F	V	V	V	U	V
E	f	P	F	V	\vee	V

2)	P	Q	R	a)
	V	Ú	>	F
	V	J	F	F
	J	F	J	F
	J	F	F	F
	F	V	J	V
	F	V	F	F
	F	F	V	F
	P	C	P	C

a) Tp et q et R