이미지 히스토그램을 이용한 이미지 비교

20181277 이영진

Image comparison using image histograms

20181277 Youngjin Lee

요 약

이미지 히스토그램을 이용해 이미지 내 패치들의 유사도를 구하고, 가장 유사한 패치를 매핑한다.

Abstract

In the report, I calculate the histograms of patches of images and try to find the most similar patch.

Key words image histogram, opency

1. 서 론

이미지 히스토그램을 이용해 두 이미지 사이의 유사도를 검사할 수 있다. 이번 프로젝트에선 첫 번 째 이미지에서 책의 4개 모서리를 패치로 지정하고, 두 번째 이미지에서도 4개의 패치를 지정한 후 가 장 유사한 패치끼리 연결하는 프로그램을 만든다. 그리고 이미지 히스토그램 비교에 활용되는 Parameter들을 조정해 Task에 가장 효과적인 히스토 그램 비교 방법을 찾는다.

II. 이미지 히스토그램 비교

이미지 히스토그램 추출 방식은 RGB 채널의 이미지를 HSV 형식으로 변환한 후, 이미지에 border를 만들어 패치가 이미지 바깥 범위로 넘어가도 유효한 값을 가지게 한다. 매핑 방식은 마우스로 클릭

한 위치의 패치를 sub-image로 만 총 8개 패치의 히스토그램을 2개씩 대조해 가장 유사도가 높은 패치들 끼리 우선적으로 매칭시켜서 모든 패치를 매핑한다.

이 과정에서 정확도에 영향을 줄 수 있는 Parameter과 가설은 다음과 같다.

1. Patch Size

마우스 클릭으로 패치가 정해지기 때문에 클릭 범위에 따라 정확한 비교가 힘들 수 있다. 따라서 Patch Size가 크면 클릭 위치 오차의 영향이 줄어들 것이다.

2. 히스토그램 추출 채널

H, S, V 채널 중 V 채널인 밝기는 촬영 상황에 따라 크게 바뀔 수 있으므로 사용하지 않는 방법을 채택하기도 한다.

3. 히스토그램 Bin Size

히스토그램의 Bin Size가 너무 낮으면 제대로 된 비교가 안 될 것이고, 너무 높아도 노이즈에 예민해 질 것이다.

4. 히스토그램 비교 방법

OpenCV에서는 Correlation, Chi-Square, Intersection, Bhattacharyya distance의 4가지 히스토그램 비교 방법을 제공하며, Correlation과 Intersection은 수치가 높을수록, 나머지 두 방법은 수치가 낮을수록 유사한 히스토그램이다.

성능을 비교하기 위해 정확도를 측정할 수 있는 방법이 필요하다. 따라서 가장 정확하다고 생각되는 패치 위치들을 미리 정한 후, 무작위로 100개의 오 차를 만들어 여러 케이스에 대한 정답률을 계산한 다. 책의 모서리 4개는 이미 굉장히 유사하기 때문 에, 히스토그램 비교 결과값까지는 정확도 측정에 사용하지 않고 오로지 최종 Output만 사용했다.

III. Parameter 테스트 결과

여러 Paraemter을 테스트 중 특정 히스토그램 비교 방식은 Patch Size가 달라져도 Bin Size의 변화에 대해 비슷하게 반응한다는 사실을 알았다. 따라서 가장 좋은 히스토그램 비교 방식을 정하기 위해 Patch Size [50, 75, 100], Bin Size [4, 6, 8, ..., 30]의 결과를 비교한다.

그림 2. Correlation 방식의 Bin Size별 정확도

그림 3. Chi-Square 방식의 Bin Size별 정확도

그림 1. Intersection 방식의 Bin Size별 정확도

그림 4. Bhattacharyya distance 방식의 Bin Size별 정확도

위 실험 결과를 통해 Patch Size는 히스토그램 비교 방법에는 영향을 적게 주며, 전반적으로 Bin Size가 클수록 정확도는 높아지지만 8과 14에서 급격하게 하락한다는 사실을 알 수 있다. 또 전반적인 결과를 봤을 때 Bhattacharyya distance 방식이 가장우수하다.

다음으로 V채널 사용 여부와 Patch Size를 결정하기 위해 Patch Size [50, 60, ..., 200], Bin Size [16, 24, 32]의 결과를 비교한다. 이 중 V 채널을 사용하지 않고 H, S 채널만 사용한 경우 정확도가 40%를 넘지 못했다.

그림 5. Bin size / Patch Size별 정확도

Bin Size가 늘어날수록 연산 시간 차이가 많이 나고, Bin Size가 16일 때 가장 성능이 좋기 때문에 Bin Size는 16으로 결정한다. 또, Patch Size 140 이 상일 때 정확도가 100%이므로 Patch Size를 140으로 한다.

Ⅳ. 결 론

본 보고서에서는 두 이미지의 4개 패치를 매칭하는데에 쓰이는 이미지 히스토그램 비교방법에 적절한 Parameter들을 찾았다.

HSV 채널 3개를 모두 사용하고, Bhattacharyya distance 방식을 사용하며 Patch Size가 140이고 Bin Size가 16일 때 가장 고성능이었다.

IV. 부 록

소스코드 및 실행 파일:

https://github.com/HappyFaceFriend/OpenCV_Histogram Comparison

참 고 문 헌

[1] https://docs.opencv.org/3.4/d8/dc8/tutorial_histogram_comparison.html

그림 7. 각 Patch의 채널별 히스토그램 (빨강: H, 초록: S, 파랑: V)

그림 8. 실행 결과 1

그림 9. 실행 결과 2