Autor: Krzysztof Barczak

Metody numeryczne w technice

(kierunek Matematyka)

Projekt 4

Metoda predyktor-korektor

Napisać procedurę realizującą algorytm metody predyktor-korektor (argumenty: f, x_0 , y_0 , b, n). Jako metodę startową wykorzystać metodę Rungego-Kutty rzędu trzeciego. Jako metodę predykcji wykorzystać trzy krokową metodę Adamsa-Bashfortha, a jako metodę korekcji trzy krokową metodę Adamsa-Moultona. W metodzie korekcji wykonać dwie iteracje metody iteracji prostej.

Korzystając z napisanej procedury wyznaczyć rozwiązanie przybliżone zagadnienia początkowego:

$$\begin{cases} y'(x) = 2\sin x - y(x), & x \in [0, 15], \\ y(0) = 2. \end{cases}$$

Obliczenia wykonać dla 20 i 100 kroków.

Na wspólnym rysunku wykreślić rozwiązanie dokładne oraz uzyskane rozwiązania przybliżone. Wykreślić także, na jednym rysunku, błędy uzyskanych rozwiązań przybliżonych.

Wyznaczyć także błędy maksymalne oraz średnie dla obu siatek.

Rozwiązanie

Metoda Rungego-Kutty rzędu trzeciego - kod procedury

```
Wejście:

f = f(x,y) - funkcja;

x0, y0 - wartości;

n - liczba kroków;

h - długość kroku.

Wyjście:

(x_i, y_i) dla i = 0, 1, ..., n - punkty.
```

```
In[0]:= Clear[metodaRK3];
      metodaRK3[f_, x0_, y0_, h_, n_] :=
       Module \{xi, yi, xNext = x0, yNext = y0, k1, k2, k3\},
        xi = \{x0\};
        yi = {y0};
        Do
          (*k1=f[xNext,yNext];
         k2=f[xNext+\frac{h}{2},yNext+\frac{h}{2}];
         xNext=xNext+h;
          xi=Append[xi,xNext];
         k3=f[xNext,yNext-h k1+2 h k2];
          yNext=yNext+1/6 h (k1+4 k2+k3);
          yi=Append[yi,yNext],
          {i,0,n-1}*)
         k1 = f[xi[i]], yi[i]];
         k2 = f\left[xi[i] + \frac{h}{2}, yi[i] + \frac{h k1}{2}\right];
         xi = Append[xi, xi[i] + h];
         k3 = f[xi[i+1]], yi[i] - hk1 + 2hk2];
         yi = Append [yi, yi[i]] + \frac{1}{6} h (k1 + 4 k2 + k3)];,
         {i, 1, n}
        ];
        Return[Transpose[{xi, yi}]]
```

Metoda predyktor-korektor

```
Wejście:

f - funkcja f = f(x, y),

x0, y0 - wartości x_0, y_0,

b - koniec przedziału,

n - liczba kroków.

Wyjście:

punkty(x_i, y_i), i = 0, 1, ..., n.
```

```
Clear[metodaPK];
metodaPK[f_, x0_, y0_, b_, n_] :=
 Module \Big[ \Big\{ h = \frac{b - x0}{n}, xi, yi, k = 3, fi, yInit = 0, bki, bbar, nmip = 2, temp = 0 \Big\},
  bki = \left\{\frac{23}{12}, -\frac{16}{12}, \frac{5}{12}\right\}; (* indeksowane od 1 *)
  bbar = \left\{\frac{9}{24}, \frac{19}{24}, -\frac{5}{24}, \frac{1}{24}\right\}; (* indeksowane od zera *)
   (* Wyznaczamy węzły siatki *)
   xi = Table[x0 + i * h, {i, k-1}];
   xi = Prepend[xi, x0];
   (* Metoda startowa *)
   yi = metodaRK3[f, x0, y0, h, k-1][All, 2];
   (* Obliczamy fi *)
   fi = Table[f[xi[i]], yi[i]]], {i, 1, k}];
  Do[
    xi = Append[xi, xi[[\eta - 1]] + h];
    (* Predykcja: metodaAB *)
    yInit = yi[[\eta - 1]] + h (bki[[1]] fi[[\eta - 1]] + bki[[2]] fi[[\eta - 2]] + bki[[3]] fi[[\eta - 3]]);
    (* Korekta: metodaAM i metoda iteracji prostej *)
    temp = yInit;
    Do[temp = yi[\eta - 1]] + h (bbar[2]] fi[\eta - 1]] + bbar[3]] fi[\eta - 2]] + bbar[4]] fi[\eta - 3]]) + bbar[4][7]
        h bbar[[1]] f[xi[\eta]], temp], {nmip}];
    yi = Append[yi, temp];
    fi = Append[fi, f[xi[\eta], yi[\eta]]];,
    \{\eta, k+1, n+1\}];
   Return[Transpose[{xi, yi}]]
```

Rozwiązanie zagadnienia początkowego

```
In[*]:= dokladne20 = Table[{\left\{ x0 + \frac{i (b - x0)}{n} \right\}, \dokladne /. \{x \rightarrow x0 + i (b - x0) / n} \right\}, \{i, 0, n} \right\};

dokladne100 =

Table[{\left\{ x0 + \frac{i (b - x0)}{n1} \right\}, \dokladne /. \{x \rightarrow x0 + i (b - x0) / n1} \right\}, \{i, 0, n1} \right\};

bledy20 = Table[{\right\{przyblizone20[i, 1]\}, \Abs[przyblizone20[i, 2]\} - \dokladne20[i, 2]\},

{i, Length[dokladne20]\}];

bledy100 = Table[{\right\{przyblizone100[i, 1]\},

Abs[przyblizone100[i, 2]\} - \dokladne100[i, 2]\}, \{i, Length[dokladne100]\}];

bledyWykres20 = ListPlot[bledy20, PlotStyle \rightarrow Orange,

PlotLegends \rightarrow \{"n=20"\}, Joined \rightarrow True, PlotRange \rightarrow All];

bledyWykres100 = ListPlot[bledy100, PlotStyle \rightarrow Brown,

PlotLegends \rightarrow \{"n=100"\}, Joined \rightarrow True, PlotRange \rightarrow All];

Show[dokladneWykres, przyblizoneWykres20, przyblizoneWykres100]

Show[bledyWykres20, bledyWykres100]
```


{0.0458445, 0.000140685}