Analisi 3

Serie e Trasformata di Fourier

DEFINIZIONI E REMARKS

• ($f \in \mathcal{C}^1(\mathbb{T})$ a tratti) Diciamo che $f \in \mathcal{C}^1(\mathbb{T})$ a tratti quando $f \in \mathcal{C}^0(\mathbb{T})$ e la derivata esiste dovunque tranne che in un numero finito di punti, nei quali esiste $f'_{\pm}(x_0) \in \mathbb{R}$ derivate destre e sinistre.

TEOREMI UTILI

• (Densità in norma \mathcal{L}^1 delle \mathcal{C}_0^∞ nelle \mathcal{L}^1) Sia $f \in \mathcal{L}^1(a,b)$. Allora $\forall \varepsilon > 0, \exists f_\varepsilon \in \mathcal{C}_0^\infty(a,b)$ tale che

$$||f - f_{\varepsilon}||_{\mathcal{L}^1} = \int_a^b |f - f_{\varepsilon}| \, \mathrm{d}x < \varepsilon$$

• (Lemma di Riemann-Lebesgue) $f \in \mathcal{L}^1(a,b)$. Allora $\int_a^b f(x) \sin(nx) \, dx \to 0$ quando $|n| \to \infty$ (e per il coseno si ha un enunciato analogo) [Si usi il teorema di densità precedente con qualche stima]

SERIE DI FOURIER

- (Relazioni di ortogonalità) Valgono le seguenti formule:
 - 1. Se m+n>0 allora $\int_{-\pi}^{\pi}\cos(mx)\cos(nx) dx = \pi\delta_{mn}$
 - 2. Se m+n>0 allora $\int_{-\pi}^{\pi}\sin(mx)\sin(nx)\,\mathrm{d}x=\pi\delta_{mn}$
 - 3. $\forall m, n \in \mathbb{N} \text{ si ha } \int_{-\pi}^{\pi} \cos(mx) \sin(nx) \, dx = 0$

Ovvero seni e coseni (interi) sono ortogonali sull'intervallo $[-\pi,\pi]$

• (Serie di Fourier) Data una funzione f definiamo Serie di Fourier la serie formale seguente

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$$

dove si ha $a_k=\frac{1}{\pi}\int_{-\pi}^{\pi}\cos(kx)f(x)\,\mathrm{d}x$, $b_k=\frac{1}{\pi}\int_{-\pi}^{\pi}\sin(kx)f(x)\,\mathrm{d}x$, $c_n=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-ikx}\,\mathrm{d}x$. Ovvero gli a_k,b_k,c_n sono legati dalle seguenti relazioni: $c_k=\frac{a_k-ib_k}{2}$ e $c_{-k}=\frac{a_k+ib_k}{2}$ $\forall k>0$

NUCLEO DI DIRICHLET

- (Nucleo di Dirichlet) $D_n(z) = \sum_{k=-n}^n e^{ikz} = \frac{\sin((n+\frac{1}{2})z)}{\sin(\frac{z}{2})}$ [Raccogliere e^{-inz} e sommare la geometrica]
- (Parità ed integrale) $D_n(z)$ è pari e si ha $\int_{-\pi}^{\pi} D_n(z) = 2\pi$ [Scambiare somma con integrale]
- (Riemann-Lebesgue per i coefficienti) Se $f \in \mathcal{L}^2(\mathbb{T})$ allora si ha $\hat{f}_n \to 0$ per $|n| \to \infty$ [Considerare la norma \mathcal{L}^2 delle code]
- (Più regolarità più decrescenza) Se $f \in C^k(\mathbb{T})$ allora $|n|^k \hat{f}_n \in \ell^2(\mathbb{Z})$. In particolare $\hat{f}_n = o(|n|^{-k})$ quando $|n| \to \infty$ [Integrare per parti la precedente]
- (fC^1 convergenza assoluta) Se $f \in C^1(\mathbb{T})$ allora la Serie di Fourier converge assolutamente [Usare GM-QM sulla precedente]
- (fC^1 convergenza delle parziali) Se $f \in C^1(\mathbb{T})$ allora $S_n(f,x) \to f(x)$ per $n \to \infty$ e $\forall x \in \mathbb{T}$ [Scrivere S_n come convoluzione tra f e D_n e moltiplicare per uno. Poi stimare la differenza con RL]

- (fC^1 a tratti convergenza delle parziali) Se $f \in CT0$ e la derivata esiste ovunque tranne al più in un numero finito di punti, nei quali $\exists f'_{\pm}(x_0) \in \mathbb{R}$ derivate sinistre e destre, allora si ha $S_n(f,x) \to f(x)$ quando $n \to \infty$ [Usare la parità di D_n e spezzare in due pezzi per la stima con le derivate da un lato]
- $(f\mathcal{C}^1$ a tratti, comportamento nei punti di salto) Siano x_1,\dots,x_n i punti di salto. In questi definiamo $\tilde{f}(x)=\left\{egin{array}{ll} f(x) & \text{se } x\in[-\pi,\pi]\setminus\{x_i\}_{i=1,\dots,n} \\ \frac{f(x^+)+f(x^-)}{2} & \text{se } x\in\{x_i\}_{i=1,\dots,n} \end{array}\right.$, dove $f(x^\pm)=\lim_{h\to 0^\pm}f(x+h)$, allora $S_n(f,x)\to \tilde{f}(x)$ quando $n\to\infty$ [Basta stimare come già precedentemente fatto solo nei punti di salto]
- (Dini per la convergenza delle parziali) Sia $f \in \mathcal{C}^0(\mathbb{T})$ tale che $\exists \delta$ per cui si abbia

$$\int_{-\delta}^{\delta} \frac{|f(x+z) - f(x)|}{|z|} dz < +\infty$$

Allora si ha $S_n(f,x) \to f(x)$ (o eventualmente a $\tilde{f}(x)$ come sopra) [Usare Riemann-Lebesgue sulla funzione g(z)]

STIME

- (Stime sui coefficienti di Fourier) Siano $f,g\in\mathcal{L}^1(\mathbb{T})$. Allora si ha:
 - 1. $|\hat{f}_k \hat{g}_k| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) g(x)| dx$
 - 2. $|S_n(f,x) S_n(g,x)| \le \frac{2n+1}{2\pi} \int_{-\pi}^{\pi} |f(x) g(x)| dx$
- (serie dei coefficienti in $\updownarrow^1(\mathbb{Z})$) Se $\{c_n\} \in \updownarrow^1(\mathbb{Z})$, allora la serie $\sum_{n \in \mathbb{Z}} c_n e^{inx}$ converge ad un certo $g(x) \in \mathcal{C}^0(\mathbb{T})$ tale che $c_n = \hat{g}_n \quad \forall n$.
- (Sommabilità secondo Cesaro) $\{a_n\} \in \mathbb{R}$ successione. Se $a_n \to L$ allora $b_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k \to L$ (e a_n si dice sommabile secondo Cesaro)

Nucleo di Fejer

- (Nucleo di Fejer) $\phi_n(z)=\frac{1}{n}\sum_{k=0}^{n-1}D_k(z)=\frac{1}{2\pi n}\left(\frac{\sin(\frac{\pi}{2}z)}{\sin(\frac{\pi}{2})}\right)^2$
- (Serie di Fourier alla Cesaro) $\sigma_n(f,x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(f,x)$
- (Proprietà del Nucleo di Fejer) Si hanno le seguenti proprietà:
 - 1. (Normalizzazione) $\int_{-\pi}^{\pi} \phi_n(z) dz = 1$
 - 2. (Parità) $\phi_n(z) = \phi_n(-z)$
 - 3. (Positività) $\phi_n(z) \geq 0$
 - 4. (Rapida decrescenza) $\forall \varepsilon, \delta > 0 \quad \exists N \text{ t.c. } \forall z \notin [-\delta, \delta] \quad \forall n > N \qquad \phi_n(z) < \varepsilon.$ [Stime]
 - 5. (Velocità di decrescenza) $\phi_n(0) = O(n)$
- (Convergenza uniforme della Serie "di Fejer" per funzioni continue) $f \in \mathcal{C}^0(\mathbb{T})$. Allora $\sigma_n(f,x) \to f(x)$ uniformemente quando $n \to \infty$, cioè $\sup_{x \in [-\pi,\pi]} |\sigma_n(f,x) f(x)| \to 0$ [Spezzare l'integrale nella parte interna ed esterna, e stimare in norma \mathcal{L}^1 . Notare che la maggiorazione non dipende da x]

SUCCESSIONE DI DIRAC

- (Successione di Dirac) Una successione di funzioni $\{Q_n : [-\pi, \pi] \to \mathbb{R}\}$ si dice successione di Dirac se soddisfa le proprietà:
 - 1. (Normalizzazione) $\int_{-\pi}^{\pi} Q_n(x) dx = 1$
 - 2. (Parità) $Q_n(-x) = Q_n(x)$
 - 3. (Positività) $Q_n(x) \geq 0$

- 4. (Quasi-nullità integrale esterna) $\int_{\delta<|x|}Q_n(x)~\mathrm{d}x\to 0~\mathrm{se}~n\to\infty\quad\forall\delta>0$
- (Convergenza uniforme delle convolute) Se Q_n è una successione di Dirac, allora si ha

$$f \star Q_n(x) = \int_{-\pi}^{\pi} f(x-z)Q_n(z) dz \to f(x) \text{ per } n \to \infty$$

- (Coefficienti di Fourier della convoluzione) $(f \stackrel{\hat{}}{\star} g)_n = \hat{f}_n \cdot \hat{g}_n$
- (Commutatività della convoluzione) $f \star g = g \star f$
- (Disuguaglianza di convoluzione in norma \mathcal{L}^1) Si ha $||f \star g||_{\mathcal{L}^1} \leq ||f||_{\mathcal{L}^1} \cdot ||g||_{\mathcal{L}^1}$
- (Disuguaglianza di convoluzione) $f \in \mathcal{L}^1, g \in \mathcal{L}^p, 1 \leq p \leq \infty$. Allora si ha $||f \star g||_{\mathcal{L}^p} \leq ||f||_{\mathcal{L}^1} ||g||_{\mathcal{L}^p}$. [Per $p = \infty$ è evidente. Per gli altri utilizare la disuguaglianza di Holder]
- (Coefficienti di Fourier della moltiplicazione) $\hat{f}g_n = \hat{f}_k \star \hat{g}_k(n)$
- (Derivabilità della Convoluta) $f \in \mathcal{C}^k_0(\mathbb{R}^n), g \in \mathcal{L}^1_{\mathrm{loc}}(\mathbb{R}^n)$. Allora $f \star g \in \mathcal{C}^k(\mathbb{R}^n)$ e si ha $D^{\alpha}(f \star g)(x) = (D^{\alpha}f \star g)(x)$
- (Formula per le σ_n) $\sigma_n(f,x) = \sum_{k=-n+1}^{n-1} \left(1 \frac{|k|}{n}\right) \hat{f}_k e^{ikx}$
- ("Completezza" dei coefficienti di fourier) Sia $f\in\mathcal{C}^0(\mathbb{T})$ t.c. $\hat{f}_k=0 \forall k$. Allora $f\cong 0$
- (Convergenza assoluta in norma della successione di Dirac) $f \in \mathcal{L}^1(\mathbb{T})$. Allora $\int_{-\pi}^{\pi} |\sigma_n(f,x) f(x)| dx \to 0$ per $n \to \infty$
- $f \in \mathcal{L}^1(\mathbb{T})$ tale che $\hat{f}_k = 0 \forall k$ allora si ha $f \cong 0$ quasi ovunque
- (Identità di Parseval) Sia $f(x) = \sum_{n \in \mathbb{Z}} \hat{f}_n e^{inx}$ con $\{\hat{f}_n\} \in \updownarrow^2(\mathbb{Z})$. Allora vale l'uguaglianza $||f||_{\mathcal{L}^2}^2 = \sum_{n \in \mathbb{Z}} |\hat{f}_n|^2$.
- (Massimalità della Circonferenza) C curva chiusa, semplice e C^1 . Allora l'area della zona interna a C è massima quando C è la circonferenza. [Scrivere "x(t), y(t)" in serie di fourier e calcolarne l'area per poi usare parseval]

CONTROESEMPI

• (**Du Bois-Raymond**) Si può costruire una funzione $f \in C^0(\mathbb{T})$ tale che $S_n(f,x)$ NON converge a f per qualche x. Ovvero, non tutte le serie di fourier di funzioni continue convergono alla funzione di partenza.

FISICA

Cerchiamo in questa sezione di utilizzare i precedenti teoremi sulla serie di Fourier per risolvere problemi classici di Fisica.

EQUAZIONE DELLA CORDA VIBRANTE

L'equazione è $u_{tt}=c^2u_{xx}$. Vogliamo capire per quali condizioni iniziali u(0,x)=f(x) la soluzione esiste ed è unica.

1. (**Alcune soluzioni**) Ci accorgiamo che le funzioni $u_n(t,x) = \sin(nx)\cos(cnt)$ risolvono l'equazione, dunque ogni serie ottenuta sommandole con coefficienti risolve (per linearità dell'equazione).

2. (**Separazione delle variabili**) Proviamo a risolvere l'equazione separando le variabili. Scriviamo dunque u(t,x)=T(t)X(x) e sostituendo nell'equazione principale si ha $\frac{T''(t)}{T(t)}=c^2\frac{X''(x)}{X(x)}$. Le due funzioni sono uguali, ma in variabili diverse. Ciò significa che sono costanti. Ovvero ci siamo ricondotti allo studio del sistema

$$\left\{ \begin{array}{l} X^{\prime\prime}(x)+\frac{\lambda}{c^2}X(x)=0 \\ X(-\pi)=X(\pi)=0 \end{array} \right.$$

visto che vogliamo la corda fissata alle estremità. (D'ora in poi mettiamo c=1)