Concrete Machine Learning Deep User: 2020 Summer Program

Naïve Bayes Classifier

Clustering algorithm

Supervised/Unsupersvised learning

Strong & Simple

Labeling process

Bayesian probability theory base

Main Purpose

Proceed with classification of objects as the group with the greatest posterior probability

$$\frac{\mathbf{prior} \times \mathbf{likelihood}}{\mathbf{evidence}}$$

* posterior : 사후 확률, prior : 사전확률, likelihood : 우도, evidence : 관찰값

$$\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^n p(x_i | C_k).$$

Assign classes with the highest post probability for k classes

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$$

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3) = \sum_{i=1}^{3} P(A_i)P(B|A_i)$$

Law of Total Probability

 $P(A_1), P(A_2), P(A_3)$

사전확률(prior probability)

P(B|A1), P(B|A2), P(B|A3)

우도(likelihood probability)

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{P(B)}$$

$$= \frac{P(A_1)P(B|A_1)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)}$$

 $P(A_1|B)$ 사후확률(posterior probability)

Posterior probability is an updated version of prior probability

: 쿠키가 들어 있는 그릇 두 개가 있다

첫번째 그릇에는 바닐라 쿠키 30개와 초콜렛 쿠키 10개가 들어있고, 두번째 그릇에는 두 가지 쿠키가 종류별로 20개씩 들어 있을 때

어떤 그릇인지 보지 않고 한 그릇에서 임의로 쿠키를 집었는데 바닐라 쿠키라면 이 때 '이 바닐라 쿠키가 그릇 1에서 나왔을 가능성'은 얼마일까요?

: 쿠키가 들어 있는 그릇 두 개가 있다

첫번째 그릇에는 바닐라 쿠키 30개와 초콜렛 쿠키 10개가 들어있고, 두번째 그릇에는 두 가지 쿠키가 종류별로 20개씩 들어 있을 때

어떤 그릇인지 보지 않고 한 그릇에서 임의로 쿠키를 집었는데 바닐라 쿠키라면 이 때 '이 바닐라 쿠키가 그릇 1에서 나왔을 가능성'은 얼마일까요?

$$P(H|D) = \frac{P(H)P(D|H)}{P(D)} = \frac{\frac{1}{2} \times \frac{3}{4}}{\frac{5}{8}} = \frac{3}{5}$$

: 쿠키가 들어 있는 그릇 두 개가 있다

첫번째 그릇에는 바닐라 쿠키 30개와 초콜렛 쿠키 10개가 들어있고, 두번째 그릇에는 두 가지 쿠키가 종류별로 20개씩 들어 있을 때

어떤 그릇인지 보지 않고 한 그릇에서 임의로 쿠키를 집었는데 바닐라 쿠키라면이 때 '이 바닐라 쿠키가 그릇 1에서 나왔을 가능성'은 얼마인가?

항목	가설1(그 릇 1)	가설2(그릇2)
사전확률 $P(H)$	1/2	1/2
우도 $P(D H)$	3/4	1/2
사전확률 × 우도	3/8	1/4
한정상수 $P(D)$	5/8	5/8
사후확률 $P(H D)$	3/5	2/5

Document Classifier

$$P(c_{1}|d) = \frac{P(c_{1},d)}{P(d)} = \frac{\frac{P(c_{1},d)}{P(c_{1})} \cdot P(c_{1})}{P(d)} = \frac{P(d|c_{1})P(c_{1})}{P(d)}$$

$$P(c_{2}|d) = \frac{P(d|c_{2})P(c_{2})}{P(d)}$$

$$P(c_{i}|d) \propto P(d|c_{i})P(c_{i})$$

$$P(c_{i}|d) = P(c_{i}|w_{1}, w_{2})$$

$$\propto P(w_{1}, w_{2}|c_{i})P(c_{i})$$

$$\propto P(w_{1}, w_{2}|c_{i})$$

Normalization Formula

$$X_{normalized} = \frac{(X - X_{minimum})}{(X_{maximum} - X_{minimum})}$$

Numpy.sum

Numpy.mean

Numpy.std

Calculate the mean and standard deviation of train data each for label 1, label 2, label 3, feature 1, feature 2, feature 3, feature 4 the example of mean matrix of train data

	Feature1	Feature2	Feature3	Feature4
Label1	Mean	Mean	Mean	Mean
Label2	Mean	Mean	Mean	Mean
Label3	Mean	Mean	Mean	mean

- Estimate the probability of feature vector each for class 1, class 2, class 3
- Use Naive Bayesian theorem

$$p(C_k|x) = \frac{p(C_k)p(x|C_k)}{p(x)}$$

- $p(x|\mathcal{C}_k) = k_{th} \text{feature (observation)}$
- $p(x) = \text{normalization factor } (\sum_{k=1}^{class_num} p(C_k)p(x|C_k)) \text{ (Never mind)}$
- $p(C_k)$ = initial probability of class
- Use chain rule
 - $p(C_k)p(x_{1 \text{ and }} x_{2 \text{ and }} x_3 | C_k) = p(C_k)p(x_1 | C_k)p(x_2 | C_k)p(x_3 | C_k)$
- Use log scale
 - $= \ln(p(C_k)p(x_1|C_k)p(x_2|C_k)p(x_3|C_k)) = \ln(p(C_k)) + \ln(p(x_1|C_k)) + \ln(p(x_2|C_k)) + \ln(p(x_3|C_k))$

ESTIMATION OF PROBABILITY DISTRIBUTION

	Probability of class1	Probability of class2	Probability of class3
Feature vector1	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector2	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector3	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector4	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$

ESTIMATION OF PROBABILITY DISTRIBUTION

	Probability of class1.	Probability of class2	Probability of class3
Feature vector1	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector2	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(C_2)p(x1 C_2)p(x2 C_2)p(x3 C_2)p(x4 C_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector3	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(\mathcal{C}_2)p(x1 \mathcal{C}_2)p(x2 \mathcal{C}_2)p(x3 \mathcal{C}_2)p(x4 \mathcal{C}_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$
Feature vector4	$\ln(p(C_1)p(x1 C_1)p(x2 C_1)p(x3 C_1)p(x4 C_1))$	$\ln(p(\mathcal{C}_2)p(x1 \mathcal{C}_2)p(x2 \mathcal{C}_2)p(x3 \mathcal{C}_2)p(x4 \mathcal{C}_2))$	$\ln(p(C_3)p(x1 C_3)p(x2 C_3)p(x3 C_3)p(x4 C_3))$

	Estimation class	
Feature vector1	1	
Feature vector2	2	
Feature vector3	3	
Feature vector4	1 1	

After build all of function, you can see below result from python console when you compile "main_app.py" (or yielded 90% accuracy due to shuffling data)

```
accuracy is 97.95918367346938% ! !
the number of correct data is 48 of 49 ! !

In [22]:
```


DeepUser

Naïve Bayes Classifier

THANKS