

Architecture des ordinateurs

G.BERTHELOT

- boulier (antiquité)
- Pascal : machine à additionner
- Liebniz : machine à mutliplier
- Babbage 1822 : differential engine (multiplications)

Babbage 1834 : analytical engine

Historique

analytical engine (Babbage 1834)

jeu d'instruc	ctions	action	
code op	sources	destination	
+	$W_i W_j$	W_k	$W_i + W_j \rightarrow W_k$
-	$W_i W_j$	W_k	$W_i - W_j \rightarrow W_k$
*	$W_i W_j$	W_k	$W_i * W_j \rightarrow W_k$
1	$W_i W_j$	W_k	$W_i / W_j \rightarrow W_k$
adv N	W_i		N cartes ↓ si W _i < 0
ret N			N cartes ↑

- construite seulement en 1995 (fonctionne, avec les restrictions technologiques de 1850)
- le programme n'est pas enregistré en mémoire

Historique

analytical engine

1	ADV 4	W_6	I < 0 goto 5
2	+		$S+1\rightarrow S$
3	-	W_6 W_7 W_6	-1 →
4	RET 3		goto 1
5	IMP res		

- analogique / digital
 - calcul analogique : les valeurs manipulées sont représentées par des grandeurs physiques (intensité, potentiel)
 - calcul par somme et différence des grandeurs physiques
 - au XXème siècle de nombreux dispositifs de calcul analogiques
 - les premiers ordinateurs comportaient souvent des parties analogiques

- analogique / digital
 - inconvenient des calculs analogique
 - échelle de valeur restreint : un ordre de grandeur (2 au max)
 - calculs peu précis
 - domaines d'application limités
 - calcul digital : les valeur sont représentées par des nombres; calcul arithmétiques
 - XXI siecle : suprématie totale des calculs digitaux

- décimal versus binaire
 - il est beaucoup plus facile de faire un dispositif physique à deux états plutôt qu'à 10 (en dehors des dispositifs mécanique)
 - les calculs sont plus simples sur des valeurs binaires que sur des valeurs décimales (cf table d'addition et de multiplication)

Architecture Von Neuman (1943, toujours actuelle)

BUS

- dispositif pour transférer simultanément plusieurs bits entre deux composants
- le composant destinataire est identifié par une adresse
- les conflits d'accès et les transferts sont gérés à l'aide des lignes de commande (control)

arch. Von Neuman

- Caractéristique
 - Programme ET données stockés en mémoire
- Conséquences
 - un cycle instruction à besoin de lire
 - une instruction et
 - un ou plusieurs opérandes
 - ⇒le bus mémoire est un goulot d'étranglement
- l'unité de commande (contrôl unit):
 - ouvre et ferme les accès aux bus
 - indique à l'ALU quelle opération exécuter

contenu d'un boitier

composants d'un ordinateur

IO-C: I/O controler

Structure

Structure générique

Architecture PC actuel

Architecture d'un PC actue

Direct Memory Access : contrôleur Processeur de transfert périphérique interruption requête E/S data processeur principal mémoire

Composants: cartes

- base: porte logique (gate)
 - transistors déposés sur des circuits intégrés (CI)
 - CI fixés sur des cartes
 - deux types NPN et PNP (phosphore : impuretés dans le silicium)

Composants: vue silicium

composants: vue fonctionelle NPN

NPN (bip); N (mos)

PNP (bip); P (mos)

NPN: si la différence de potentiel V_B - V_E entre la base et l'émetteur est supérieure à un seuil donné alors le transitor est passant sinon il est bloquant

⇒ possibilité de bloquer ou d'autoriser l'information venant du collecteur

PNP: idem dans l'autre sens

$$V_B^-V_E^{< \text{Seuil}}$$

$$\mathbf{R_{tr}} = \mathbf{0}$$
 passant

$$V_E$$
- V_B < Seuil

Porte logique Non :

$V_{\rm I}$	$V_{\rm E}$	R _{tr}	$V_{\rm O}$
0	0	8	+
+	0	0	0

$$V_O = non V_I$$

porte logique NAND

si B2 -Vss > seuil ET B1-Vss> seuil alors les deux transitors sont non bloquants et Vcc est envoyée sur Vss.

Sinon Vcc est redirigée sur S.

V_{B1}	$V_{\rm B2}$	R _{tr1}	R _{tr2}	V_{S}
0	0	+∞	+8	+
0	+	+∞	0	+
+	0	0	+∞	+
+	+	0	0	0

$$S = non (B_1 \wedge B_2)$$

porte logique NOR

V_{B1}	$V_{\rm B2}$	R _{tr1}	R _{tr2}	V_{S}
0	0	+∞	+∞	+
0	+	+∞	0	0
+	0	0	+∞	0
+	+	0	0	0

$$S = non (B_1 \vee B_2)$$

A retenir :

 tous les opérateurs logiques unaires, binaires, ou n-aires peuvent êtres construits à partir de l'opérateur NOR ou de l'opérateur NAND

- "Loi" de Moore : observation empirique : nombre de transistors sur une puce de silicium double tous les deux ans (2^e loi de Moore, 1975).
- Observation commune: la « puissance », la « vitesse », double tous les 18 mois.
- Le niveau d'intégration atteint aujourd'hui ses limites. L'augmentation de la puissance de calcul passe par le parallélisme (notamment multicœurs).

Calculabilité

- Définition: ce qui peut être déterminé avec un algorithme.
- Question: quelles sont les fonctions calculables ? (Ceci donne les limites de ce qu'un ordinateur peut faire).
- Plusieurs réponses vers 1930-40: lambdacalcul, fonctions récursives. La machine de Turing: plus simple dispositif permettant d'exprimer un algorithme.

- Machine de Turing (Alan)
 - dispositif de calcul abstrait M

X : alphabet $X = \{0,1, \lozenge\} \ (\lozenge : \text{symbole vide})$

• Q : états $Q = q_0, q_1, ...$

■ F : régles d'évolution $Q,X \rightarrow X,G/D,Q$

le processeur lit un caractère
 sur la bande puis réagit suivant
 la régle d'évolution qui s'applique
 à son état actuel et au caractère lu

- Machine de Turing (1936)
 - dispositif de calcul abstrait M composé de
 - bande de calcul (contient les données)
 (infinité de cellules contenant des symboles)
 - tête de lecture/écriture (déplacement gauche ou droite)
 - Fonction de contrôle F (spécifie les règles d'évolution, c.à.d un programme)
 - \square X,X': alphabets par exemple: X= $\{0,1,\lozenge\}$ \(\rangle \): symbole vide
 - Q : états $Q = q_0, q_1, ...$
 - \square régles d'évolution F : Q x X \rightarrow X' x {G/D} x Q

- Machine de Turing (1936)
 - dispositif de calcul abstrait M composé de
 - bande de calcul (contient les données)
 (infinité de cellules contenant des symboles)
 - tête de lecture/écriture (déplacement gauche ou droite)
 - Fonction de contrôle F (spécifie les règles d'évolution, c.à.d un programme)
 - \square X : alphabet X= $\{0,1,\lozenge\}$ \lozenge : symbole vide
 - Q : états $Q = q_0, q_1, ...$
 - □ régles d'évolution $F: Q \times \{0,1\} \rightarrow \{0,1\} \times \{G/D\} \times Q$

Machine de Turing

exemple

$$X= \{0,1, \lozenge \}$$

$$Q = \{q_0, q_1\}$$

$$F: \{\{q_0, 1 \rightarrow 1, D, q_1\}, \{q_1, 1 \rightarrow 0, D, q_0\}\}$$

état initial de la bande :

\Diamond	\Diamond	\Diamond	1	1	1	\Diamond	\Diamond

Pas à Pas

position de la tête : ↑					règle utilisée	
q_0	\Diamond	1 1	1	1	\Diamond	$q_0, 1 \rightarrow 1, D, q_1$
q_1	\Diamond	1	1 1	1	\Diamond	$q_1, 1 \rightarrow 0, D, q_0$
q_0	\Diamond	1	0	1 1	\Diamond	$q_0, 1 \rightarrow 1, D, q_1$
$\overline{q_1}$	\Diamond	1	0	1	\Diamond \uparrow	$q_1, \lozenge \rightarrow arr\hat{e}t$

état résultat

\Diamond \Diamond \Diamond 1 0 1 \Diamond	\Diamond
---	------------

Que peux-t-on calculer avec une machine de Turing?

fonction Turing-calculable

- une fonction partielle F est T-calculable s'il existe M telle si la donnée d'entrée codée par $x_1, x_2, ... x_k$ appartient au domaine de définition de F alors M s'arrête en un nombre fini de pas et produit le résultat $F(x_1, x_2, ... x_k)$
- si la donnée d'entrée n'appartient pas au domaine de définition alors M ne s'arrête jamais

Remarques

- Il existe des fonctions non T-calculables
- les fonctions Turing-calculables sont les fonctions récursives de Kurt Gödel

- Machine de Turing universelle
 - Une machine de Turing universelle est une machine de Turing qui sur des données d'entrées décrivant d'une part une machine de Turing M donnée et d'autre par une donnée d'entrée x pour cette machine simule l'action de M sur x (c.à.d calcule M(x))
 - \cup U(M,x) = M(x)
 - on peut lui donner son programme sur sa bande d'entrée (pas obligé de construire une machine par algorithme).

- Machine de Turing universelle
 - problème de l'arrêt :
 - Soit une machine M1 qui calcule une valeur F(x)
 - Après plusieur millions d'étapes, elle tourne toujours
 - faut-il l'arrêter ou continuer encore un peu pour obtenir le résultat ?
 - Existe-t-il une machine M2 qui ayant comme donnée M1 et x pourrait se terminer par vrai si M1 s'arrêtera et se terminer par faux sinon

Décidabilité

- Un problème est décidable si l'ensemble des solutions est T- calculable.
- L'arrêt de la machine de Turing est indécidable
- Thèse de Church (1950) toute fonction mécaniquement calculable est Tcalculable
 - tout les processeurs sont fonctionnellement équivalents
 - savoir si un programme s'arrête est indécidable

Comment spécifier un algorithme ?

- En donnant l'ensemble de règles d'évolution d'une machine de Turing
- En donnant une machine à état (automate)
- Plusieurs types d'automates
- Automate fini
 - Un automate fini est un quintuplet A=(q₀,Q,F,X,f) où
 - Q est un ensemble fini d'états et q₀ est l'état initial
 - F ⊂ Q est l'ensemble des états finaux
 - X (alphabet) est un ensemble fini de symboles
 - $f: Q \times X \rightarrow Q$ est la fonction de transition

Spécification d'algorithme

 automate fini reconnaissant la séquence d'entrée 010 (envoie 1 sur y lorsqu'il reconnait 010)

Spécification d'algorithme

automate de la machine de Turing qui remplace
 111 par 101

Rappels d'algèbre de Boole

(p => q)

⇔ !p or q

!(p or q)

⇔ !p and !q Loi De Morgan

!(p and q)

⇒ !p or !q

Loi De Morgan

Rappels algèbre booléenne

- Tableaux de Karnaugh: méthode de simplification expressions booléennes.
- méthode « graphique », qui utilise notre capacité à reconnaître des motifs géométriques.
- difficile à pratiquer au-delà de 6 variables.

Rappels algèbre booléenne

Principe:

- répartir les variables en ligne et colonne sur un tableau 2ⁿ cases pour n variables
- décliner les valeurs des variables selon code binaire réfléchi (Gray) (ex: 00,01,11,10).
- faire des regroupements de 1 de forme carrée ou rectangulaire de 2ⁿ cases (toroïdal permis, éléments peuvent être pris plusieurs fois)
- on s'arrête quand on a pris tous les 1
- on ne garde que les variables qui ne prennent pas une valeur constante.