What is claimed is:

- A curable homogeneous blend comprising:
 - (a) a 1,2-polybutadiene oligomer having a number average molecular weight
 (Mn) of about 500 Daltons to about 50,000 Daltons,
 - (b) a bis-phenol-A derivative that is end-capped with acrylate functionality, and
 - (c) a reactive component that has at least one terminal double bond and that enhances the compatibility between the 1,2-polybutadiene oligomer and the acrylated bis-phenol-A derivative.
 - (2) A curable blend according to Claim 1 wherein the 1,2-polybutadiene oligomer has a number average molecular weight (Mn) of about 1,000 to about 5,000 Daltons.
 - (3) A curable blend according to Claim 1 wherein the 1,2-polybutadiene oligomer is a butadiene homopolymer.
 - (4) A curable blend according to Claim 3 wherein the butadiene homopolymer contains an amount of 1,4-polybutadiene.
- 1 (5) A curable blend according to Claim 4 wherein the 1,4-polybutadiene is present in 2 an amount up to about 60% by weight based on the weight of the butadiene 3 homopolymer.
- (6) A curable blend according to Claim 1 wherein the 1,2-polybutadiene oligomer is a
 copolymer.
- 1 (7) A curable blend according to Claim 6 wherein the 1,2-polybutadiene copolymer is
 2 prepared from butadiene and a vinyl monomer that is a member selected from the
 3 group consisting of: styrene, vinyl acetate, divinyl benzene, isoprene, chloroprene,

- alkyl acrylates, alkyl methacrylates, ethylene, propylene, butylene and mixtures
 thereof.
- 1 (8) A curable blend according to Claim 1 wherein the 1,2-polybutadiene oligomer is
 2 present in the blend in an amount of about 5% to about 50% based on weight.
 - (9) A curable blend according to Claim 1 wherein the bis-phenol-A derivative is an epoxy prepared from epichlorohydrin and bis-phenol-A.
 - (10) A curable blend according to Claim 1 wherein the bis-phenol-A derivative is ethoxylated.
- (11) A curable blend according to Claim 1 wherein the reactive component is an
 aliphatic monofunctional or multifunctional acrylate or methacrylate.
 (12) A curable blend according to Claim 11 wherein the acrylate or methacrylate is a
 - member selected from the group consisting of: isodecyl acrylate, lauryl methacrylate, nonyl phenyl acrylate, and dodecyl acrylate.
- (13) A curable blend according to Claim 1 wherein the reactive component is a
 polyoxyalkylene monofunctional or multifunctional acrylate or methacrylate.
- 1 (14) A curable blend according to Claim 13 wherein the polyoxyalkylene
 2 monofunctional or multifunctional acrylate or methacrylate is a member selected
- from the group consisting of: 2(2-ethoxyethoxy) ethyl acrylate, 2[2-(2-
- ethoxyhexyloxy)ethoxy] ethyl acrylate, di(ethylene glycol) dimethacrylate,
 di(propylene glycol) diacrylate, and trimethylolpropane triacrylate.
- 1 (15) A curable blend according to Claim 1 wherein the reactive component is a
- compound substituted with long chain alkyl or alkoxy segments.

- 1 (16) A curable blend according to Claim 15 wherein the substituted reactive component
- 2 is a member selected from the group consisting of: alkoxylated nonyl phenol
- 3 acrylate and alkoxylated nonyl phenol methacrylate.

- 1 (17) A curable blend according to Claim 1 wherein the reactive component is a heterocyclic reactive organic compound.
- 1 (18) A curable blend according to Claim 17 wherein the heterocyclic compound is a
 2 member selected from the group consisting of: n-vinyl pyrrolidone and methyl-nvinyl pyrrolidone.
- (19) A curable blend according to Claim 1 further comprising a hydroxy functional adhesion promoter.
- (20) A curable blend according to Claim 19 wherein the hydroxy functional compound is a member selected from the group consisting of hydroxyethyl methacrylate and ethoxylated hydroxyethyl methacrylate.
- 1 (21) A curable blend according to Claim 1 further comprising a photoinitiator that
 2 initiates free radical crosslinking upon exposure to light.
- 1 (22) A curable blend according to Claim 21 wherein the photoinitiator is a member selected from the group consisting of (2,6-dimethoxybenzoyl)-2,4,4-
- 3 trimethylpentyl phosphine oxide, 2-hydroxy-2-methyl-1-phenyl-propane-1, 1-
- 4 hydroxy-cyclohexyl phenyl ketone, benzophenone and mixtures thereof.

- (23) A curable blend according to Claim 1 further comprising a ground state catalyst
 that initiates free radical crosslinking upon exposure to heat.
- 1 (24) A curable blend according to Claim 23 wherein the ground state catalyst is a peroxide.
- 1 (25) A coated substrate wherein the coating comprises a crosslinked composition
 2 prepared from a homogeneous blend comprising:
 - (a) a 1,2-polybutadiene oligomer having a number average molecular weight
 (Mn) of about 500 Daltons to about 50,000 Daltons,
 - (b) a bis-phenol-A derivative that is end-capped with acrylate functionality, and
 - (c) a reactive component that has at least one terminal double bond and that enhances the compatibility between the 1,2-polybutadiene oligomer and the bis-phenol-A derivative.
 - (26) A coated substrate according to Claim 25 wherein the 1,2-polybutadiene oligomer has a number average molecular weight (Mn) of about 1,000 to about 5,000 Daltons.
- 1 (27) A coated substrate according to Claim 25 wherein the butadiene homopolymer is a 1,2-butadiene homopolymer.

- 1 (28) A coated substrate according to Claim 27 wherein butadiene homopolymer contains an amount of 1,4-polybutadiene.
- 1 (29) A coated substrate according to Claim 28 wherein the 1,4-polybutadiene is present
 2 in an amount up to about 60% by weight, based on the weight of the polybutadiene
 3 oligomer.
- (30) A coated substrate according to Claim 25 wherein the 1,2-polybutadiene oligomer
 is a copolymer.
 - (31) A coated substrate according to Claim 30 wherein the 1,2-polybutadiene copolymer is prepared from butadiene and a vinyl monomer that is a member selected from the group consisting of: styrene, vinyl acetate, divinyl benzene, isoprene, chloroprene, alkyl acrylates, alkyl methacrylates, ethylene, propylene, butylene and mixtures thereof.
- 1 (32) A coated substrate according to Claim 25 wherein the 1,2-polybutadiene oligomer
 2 is present in the blend in an amount of about 5% to about 50% based on weight.
- 1 (33) A coated substrate according to Claim 25 wherein the bis-phenol-A derivative is 2 prepared from epichlorohydrin and bis-phenol-A.

- (34) A coated substrate according to Claim 25 wherein the bis-phenol-A derivative is
 ethoxylated.
- (35) A coated substrate according to Claim 25 further comprising a photoinitiator that
 initiates free radical crosslinking upon exposure to light.
- 1 (36) A coated substrate according to Claim 35 wherein the photoinitiator is a member selected from the group consisting of (2,6-dimethoxybenzoyl)-2,4,4
 trimethylpentyl phosphine oxide, 2-hydroxy-2-methyl-1-phenyl-propane-1, 1-hydroxy-cyclohexyl phenyl ketone, benzophenone and mixtures thereof.
 - (37) A coated substrate according to Claim 25 further comprising a ground state catalyst

that initiates free radical crosslinking upon exposure to heat.

(38) A coated substrate according to Claim 37 wherein the ground state catalyst is a peroxide.

1	(39)	A process for preparing a coated substrate comprising:				
2		(a) obtaining a substrate with a clean surface,				
3		(b) applying a coating to the substrate wherein the coating comprises a				
4		homogeneous blend comprising:				
5		(x) a 1,2-polybutadiene oligomer having a number				
6						
7						
_ 8		(y) a bis-phenol-A derivative that is end-capped with				
₫ 9		acrylate functionality, and				
企 9 位 位10		(z) a reactive component that has at least one terminal				
<u>j.2</u> []11		double bond and that enhances the compatibility between the 1,2-polybutadiene oligomer and the bis-phenol-A derivative, and				
- 12						
_± 13		(c) exposing the homogeneous blend to radiant energy.				
(T)						
1	(40)	A process for preparing a coated substrate according to Claim 39 wherein the				
2		radiant energy is derived from a source which is member selected from the group				
⊨ 3		consisting of electron beam, ultraviolet, radiofrequency, infrared, and combinations				
4		thereof.				
1	(41)	A process for preparing a coated substrate according to Claim 40 wherein the				
2		substrate is a metal that couples in a radiofrequency induction field to generate heat				
3		and initiate catalyst activity.				
4						

1	(42)	A process for preparing a coated substrate comprising.				
2			(a)	obtaining a substrate with a clean surface,		
3			(b)	applying a coating to the substrate wherein the coating		
4				comprises a homogeneous blend comprising:		
5				(w) a 1,2 - polybutadiene oligomer having a number average		
6				molecular weight (Mn) of about 500 Daltons to about 50,000		
7				Daltons,		
8				(x) a bis-phenol a derivative that is end-capped with acrylate		
9				functionality, and		
6 10				(y) a reactive component that has at least one terminal		
11				double bond and that enhances the compatibility between the		
9 0 11 12 13				1,2 - polybutadiene oligomer and the bis-phenol-A		
13				derivative, and		
<u>⊆</u> 14				(z) a ground state catalyst that initiates free radical cross-		
្តា ្ន្រា5				linking upon exposure to heat, and		
114 115 116			(c)	exposing the homogeneous blend to thermal		
hi-17		energy.				
18						
1	(43)	A process for preparing a coated substrate according to Claim 42 wherein the				
2		homogeneous blend is exposed to both thermal energy and radiant energy.				