PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-108304

(43)Date of publication of application: 10.04.2002

(51)Int.Cl.

G09G 3/36

G02F 1/133 G09G 3/20

(21)Application number: 2000-

(71)Applicant : TOSHIBA CORP

301381

(22)Date of filing:

29.09.2000 (72)Inventor: SAISHIYU TATSUO

YAMAGUCHI HAJIME FUKUSHIMA RIEKO HASEGAWA TSUTOMU

TAKATO TAKAKI

(54) LIQUID CRYSTAL DISPLAY ELEMENT AND ITS DRIVING METHOD (57) Abstract:

PROBLEM TO BE SOLVED: To reduce an afterimage that a polarity asymmetrical response type ferroelectric liquid crystal display element generates.

SOLUTION: This liquid crystal display element has driving circuits 32A and 32B which apply image signals of every two fields constituting one frame to the pixels of a liquid crystal panel 31 displaying an image corresponding to an image signal by sandwiching the ferroelectric liquid crystal material making asymmetrical optical response to the polarity of an applied voltage between a couple of electrode substrates and a liquid crystal controller 32C which inverts the

polarity of the image signal in a one-frame period. Specially, the liquid crystal controller 32C uses a polarity control style which reduces the total value of gradation deviation caused in the frame right after variation in the amplitude of the image signal for a specific kind of a gradation transition quantity between a polarity control style which starts amplitude variation of the image signal from a polarity of large response of the liquid crystal material and a polarity control style which starts amplitude variation of the image signal from

polarity of small response of the liquid crystal material.

ı	.EG	ΔΙ	SI	ГΑ.	TI	10
L	.cu	ML.	்ப	A	11	

[Date of request for examination]

06.02.2003

[Date of sending the examiner's

decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3593018

[Date of registration]

03.09.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-108304 (P2002-108304A)

(43)公開日 平成14年4月10日(2002.4.10)

(51) Int.Cl.7		戲別記号		FI				•	テーマコート*(参考	\$)
G 0 9 G	3/36			C 0	9 G	3/36			2H093	3
G02F	1/133	560		C 0	2 F	1/133		560	5 C 0 O 6	5
		570						570	5 C O 8 C)
		575						575		
G09G	3/20	621		C 0	9 G	3/20		621B		
			審査請求	未崩求	献求	項の数7	OL	(全 10 頁)	最終頁に	続く
(21)出顧番号		特顧2000-301381(P2000-	-301381)	(71)	出願人		9078 社東芝			
(00) (USSET		WH-10/C 0 F 00 F /0000 0	00)						L 1 E	
(22) 出顧日		平成12年9月29日(2000.9	. 73)	(72)	発明者			浦一丁目1番	11.可	
				(12)	7E714			七字记术位置	r-Meiller a stillelige	14-
				1				市幸区小向東		休
				(70)	₩			究開発センタ	— M	
				(12)	発明者	• • • • • • • • • • • • • • • • • • • •		de de la chest	e-lifether a will fell.	Jal.
								市幸区小向東		棶
				(****			究開発センタ	/∽ [7]	
				(74)	代理人			-15-45 444		
						并理士	鈴江	武彦(外	6名)	
									最終頁に	:続く

(54) 【発明の名称】 液晶表示素子およびその駆動方法

(57)【要約】

【課題】極性非対称応答の強誘電性液晶表示素子で発生する残像を低減する。

【解決手段】液晶表示素子は印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料を一対の電極基板間に挟持して画像信号に対応する画像を表示する液晶パネル31の画素に1フレームを構成する2フィールド毎に画像信号を印加する駆動回路32A,32Bと、画像信号の極性を1フレーム期間において反転する液晶コントローラ32Cとを備える。特に、液晶コントローラ32Cとを備える。特に、液晶コントローラ32Cは予め所定種類の画像信号について、液晶材料の応答が大きい極性から画像信号の振幅変化を開始させる極性制御形式並びに液晶材料の応答が小さい極性から画像信号の振幅変化を開始させる極性制御形式がに液晶材料の応答が小さい極性から画像信号の振幅変化を開始させる極性制御形式のうち、所定種類の階調遷移量に対し画像信号の振幅変化直後のフレームで生じる階調ずれ合計値が少なくなる方の極性制御形式に定められている。

【特許請求の範囲】

【請求項1】 一対の電極基板間に挟持され、印加電圧 極性に対して非対称な光学応答を示す強誘電性液晶材料 と、

1フレームを構成する2フィールド毎に画像信号を前記 液晶材料の挟持された画素に印加する信号印加手段と、 前記画像信号の極性を1フレーム期間において反転する 極性制御手段とを備え、

前記極性制御手段は、予め所定種類の画像信号について、前記液晶材料の応答が大きい極性から前記画像信号の振幅変化を開始させる極性制御形式並びに前記液晶材料の応答が小さい極性から前記画像信号の振幅変化を開始させる極性制御形式のうち、所定種類の階調遷移量に対し前記画像信号の振幅変化直後のフレームで生じる階調ずれ合計値が少なくなる方の極性制御形式に定められていることを特徴とする液晶表示素子。

【請求項2】 一対の電極基板間に挟持され、印加電圧 極性に対して非対称な光学応答を示す強誘電性液晶材料 と、

1フレームを構成する3以上のフィールド毎に画像信号を前記液晶材料の挟持された画素に印加する信号印加手段と、

前記画像信号の極性を1フレーム期間において反転する 極性制御手段とを備え、

前記極性制御手段は1フレーム期間を分割して得られる第1および第2期間のうちの第1期間で前記画像信号を第1極性に設定してフィールド毎に印加させ、前記第2期間で前記画像信号を前記第1極性とは逆の第2極性でかつ所定振幅に設定して後続フィールド毎に印加させるよう構成されることを特徴とする液晶表示素子。

【請求項3】 前記所定振幅は次フレームの画像信号の 振幅に依存することを特徴とする請求項2に記載の液晶 表示素子。

【請求項4】 前記第2極性は前記強誘電性液晶材料の 光学応答量が小さい方の極性であることを特徴とする請 求項2に記載の液晶表示素子。

【請求項5】 前記第2期間は前記1フレーム期間を分割した3以上のフィールドにおいて連続する2以上のフィールドで構成され、前記第1期間は前記3以上のフィールドにおいて残る1以上のフィールドで構成されることを特徴とする請求項2に記載の液晶表示素子。

【請求項6】 印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料を一対の電極基板間に挟持した液晶表示素子の駆動方法であって、

1フレームを構成する2フィールド毎に画像信号を前記 液晶材料の挟持された画素に印加する信号印加ステップ と

前記画像信号の極性を1フレーム期間において反転する 極性制御ステップとを備え、

前記極性制御ステップは、予め所定種類の画像信号につ

いて、前記液晶材料の応答が大きい極性から前記画像信号の振幅変化を開始させる極性制御形式並びに前記液晶材料の応答が小さい極性から前記画像信号の振幅変化を開始させる極性制御形式のうち、所定種類の階調遷移量に対し前記画像信号の振幅変化直後のフレームで生じる階調ずれ合計値が少なくなる方の極性制御形式に定められていることを特徴とする液晶表示素子の駆動方法。

【請求項7】 印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料を一対の電極基板間に挟持した液晶表示素子の駆動方法であって、

1フレームを構成する3以上のフィールド毎に画像信号を前記液晶材料の挟持された画素に印加する信号印加ステップと

前記画像信号の極性を1フレーム期間において反転する 極性制御ステップとを備え、

前記極性制御ステップは1フレーム期間を分割して得られる第1および第2期間のうちの第1期間で前記画像信号を第1極性に設定してフィールド毎に印加させ、前記第2期間で前記画像信号を前記第1極性とは逆の第2極性でかつ所定振幅に設定して後続フィールド毎に印加させるよう構成されることを特徴とする液晶表示素子の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料を一対の電極基板間に挟持した液晶表示素子およびその駆動方法に関する。

[0002]

【従来の技術】従来の液晶表示素子は、新規画像の書込みが行われるまでの間、前フレームの画像信号を保持しつづけるホールド型表示装置であり、CRTのようにフレーム内で蛍光体の残光時間のみ発光するインパルス型表示装置に比べて、動画表示時のボケ現象が問題点となっている。ボケ現象は、画像上の動体の動きに眼が追随した場合、前フレームの画像から次フレームの画像へ切り替わる期間も、同じ前フレームの画像が表示されつづけられているにもかかわらず、眼が前フレームの画像上を移動しながら観察してしまうことにより発生する。つまり、眼の追随運動は連続性があり細かくサンプリングするため、結果として第1フレームと第2フレームの間の画像を埋めるように観察することでボケとして認識される。

【0003】この問題を解決し、液晶表示素子においても十分な動画表示特性を得るためには、OCBモードや強誘電性液晶のような高速応答液晶を使用して、1フレームを画像表示期間と黒表示期間の2つに分ける方式が望ましい。具体的にいくつかの方式が提案されており、例えば、各フレーム毎に全画面書込みを行って液晶応答が完了した時点でバックライトを一瞬点灯させる方式

や、一方の駆動極性で光の透過をアナログ的に制御でき、他方の駆動極性で光をほとんど透過しないような、 駆動極性に依存して非対称に応答する液晶の動作特性を 利用し、1フレームを2つのフィールドに分割して、第 1のフィールドでは透過状態、第2のフィールドでは透 過しない状態をとるフィールド反転方式(特開2000 -10076号公報)が知られている。

【0004】このうち後者のような極性非対称応答液晶で高速性を有するものとして単安定化強誘電性液晶が知られており、液晶層中への高分子網の導入により単安定化するものや、直流電圧印加徐冷により初期配向処理を行うことにより単安定化するものがある。尚、分極の応答が対称の強誘電性液晶でも、偏光板の配置によっては、光学応答が極性非対称となるが、上記のようなフィールド反転駆動では、時間平均で液晶層に直流電圧がかかってしまうため、この方式には適していない。

【0005】より一般的な対称応答の強誘電性液晶で は、TFT素子などにより1フレーム毎に書込みと保持 を繰り返す駆動を行うと、通常は液晶の応答時間が書込 時間より大きいため、誘電緩和により保持期間中に画素 電圧が低下する現象が起きる。この画素電圧低下は実効 印加電圧の低下であり、書込み電圧の割に輝度やコント ラスト比が十分とれないという問題となる。また、印加 電圧をフレーム毎に極性反転し正負対称のモードで駆動 する場合、すなわち交流駆動に於いては、あるフレーム を境に信号電圧振幅が変化した場合に、「ステップ応 答」、すなわち数フレームにわたって明暗を繰り返しな がら定常の透過光量に落ちつくという現象が発生する (Verhulst et al.:IDRC'94 digest, 377(1994))。この ステップ応答は、前述のホールド型表示によるボケ現象 と原因は異なるが、やはり画面上の動体が尾を引く形の 残像として認められ、同様なボケ現象となる。

【0006】「ステップ応答」の解決策として、フレーム毎の書込みの前に、一定の電圧を書込むことにより、前に保持していた電荷を消去或いは相殺するリセット動作をする方法があり、リセット駆動方法とそれを行うための回路構成には種々の方式が知られている。

【0007】これに対し、極性非対称応答の液晶表示素子では、1フレームを2つのフィールドに分け、例えば前半のフィールドではプラス極性による書込みを行い、後半のフィールドではマイナス極性による消去を行うことで交流駆動する。この場合、プラス極性は電圧に対して液晶素子の光透過率変化量が大きい極性(すなわち、液晶層の(強誘電的な)分極が応答する極性あるいは応答が大きい極性)、マイナス極性は電圧に対して液晶素子の光透過率変化量が小さい極性(すなわち、液晶層の(強誘電的な)分極が応答しない極性あるいは応答が小さい極性)である。ただし、液晶層内部に直流成分が残ると、不純物イオンの偏在により表示焼き付きが発生するため、直流成分がかからないように両極性で概略同じ

振幅の交流波形により駆動することが一般的である。すなわち、極性非対称応答の液晶表示素子も、水平走査周波数が極性対称応答の液晶表示素子の場合の2倍となること以外はほとんど同じ駆動波形で駆動できる。

[0008]

【発明が解決しようとする課題】しかし、極性非対称応 答の液晶表示素子においても、正負極性で概略同じ振幅 で交流駆動すれば、あるフレームを境に信号電圧振幅が 変化したとき、応答が大きい極性を先に振幅変化させた 場合に立上りで、応答が小さい極性に先に振幅変化させ た場合に立下りで、振幅の変わる1~数フレーム目にお いて光透過率が高くなる。この1フレーム目の階調ずれ は、64階調のグレースケールの場合、約1階調以上で あれば容易に視認され、残像の原因となる。極性対称応 答の液晶表示素子で既に知られているリセット駆動を適 用して解決することも可能であるが、すでに1フレーム を2フィールドに分けて書込み時間が通常の半分となっ ており、さらにリセット時間を別に入れることは書込み 不足を引き起こす。また、走査線を2本同時に走査し て、他のラインの書込みと同時に消去することにより、 リセット時間を別にせずに済ませる方法もあるが、アレ イ構造が複雑になったり、開口率が低下したり、消去が 不完全で画素により不均一に直流成分が残るなどの問題 がある。このように、インパルス型表示が簡便に実現で き、高速動画表示に優れた極性非対称応答の液晶表示素 子において、動画表示を損なう残像が問題となってい る。

【0009】本発明は上記事情を考慮してなされたものであり、極性非対称応答の強誘電性液晶材料を一対の電極基板間に挟持した構造で発生する残像を可及的に防止できる液晶表示素子よびその駆動方法を提供することにある。

[0010]

【課題を解決するための手段】本発明によれば、一対の電極基板間に挟持され、印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料と、1フレームを構成する2フィールド毎に画像信号を前記液晶材料の挟持された画素に印加する信号印加手段と、前記画像信号の極性を1フレーム期間において反転する極性制御手段とを備え、前記極性制御手段は、予め所定種類の画像信号について、前記液晶材料の応答が大きい極性から前記画像信号の振幅変化を開始させる極性制御形式並びに前記液晶材料の応答が小さい極性から前記画像信号の振幅変化を開始させる極性制御形式のうち、所定種類の階調遷移量に対し前記画像信号の振幅変化直後のフレームで生じる階調ずれ合計値が少なくなる方の極性制御形式に定められている液晶表示素子が提供される。

【0011】さらに本発明によれば、一対の電極基板間 に挟持され、印加電圧極性に対して非対称な光学応答を 示す強誘電性液晶材料と、1フレームを構成する3以上 のフィールド毎に画像信号を前記液晶材料の挟持された 画素に印加する信号印加手段と、前記画像信号の極性を 1フレーム期間において反転する極性制御手段とを備 え、前記極性制御手段は1フレーム期間を分割して得ら れる第1および第2期間のうちの第1期間で前記画像信 号を第1極性に設定してフィールド毎に印加させ、前記 第2期間で前記画像信号を前記第1極性とは逆の第2極 性でかつ所定振幅に設定して後続フィールド毎に印加さ せるよう構成される液晶表示素子が提供される。

【0012】また本発明によれば、印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料を一対の電極基板間に挟持した液晶表示素子の駆動方法であって、1フレームを構成する2フィールド毎に画像信号を前記液晶材料の挟持された画素に印加する信号印加ステップと、前記画像信号の極性を1フレーム期間において反転する極性制御ステップとを備え、前記極性制御ステップは、予め所定種類の画像信号について、前記液晶材料の応答が大きい極性から前記画像信号の振幅変化を開始させる極性制御形式並びに前記液晶材料の応答が小さい極性から前記画像信号の振幅変化を開始させる極性制御形式のうち、所定種類の階調遷移量に対し前記画像信号の振幅変化直後のフレームで生じる階調ずれ合計値が少なくなる方の極性制御形式に定められている液晶表示素子の駆動方法が提供される。

【0013】さらに本発明によれば、印加電圧極性に対して非対称な光学応答を示す強誘電性液晶材料を一対の電極基板間に挟持した液晶表示素子の駆動方法であって、1フレームを構成する3以上のフィールド毎に画像信号を前記液晶材料の挟持された画素に印加する信号印加ステップと、前記画像信号の極性を1フレーム期間において反転する極性制御ステップとを備え、前記極性制御ステップは1フレーム期間を分割して得られる第1および第2期間のうちの第1期間で前記画像信号を第1極性に設定してフィールド毎に印加させ、前記第2期間で前記画像信号を前記第1極性とは逆の第2極性でかつ所定振幅に設定して後続フィールド毎に印加させるよう構成されることを特徴とする液晶表示素子の駆動方法が提供される。

【0014】本発明の液晶表示素子およびその駆動方法では、液晶応答が大きい極性と応答が小さい極性のうち、画像信号の振幅変化直後のフレームで生じる階調ずれの割合が所定種類以上の階調遷移量に対して少ない方から振幅変化が開始されるか、あるいは1フレーム期間を分割して得られる第1および第2期間のうちの第1期間で第1極性に設定してフィールド毎に印加されると共に第2期間で画像信号を第1極性とは逆の第2極性でかつ所定振幅に設定して後続フィールド毎に印加される。いずれの場合においても、強誘電性液晶材料の印加電圧極性に対する非対称な光学応答に適合するように印加電圧の極性が設定されるため、残像の発生を低減すること

ができる。また、これに伴って、コントラストの低下や 開口率の低下やアレイ構造の複雑化を改善できる。 【0015】

【発明の実施の形態】以下に、本発明の第1実施形態に 係る液晶表示素子について添付図面を参照して説明す る。図1に示すように、この液晶表示素子は画像を表示 する液晶パネル31、この液晶パネル31の表示動作を 制御する表示制御回路32を備える。液晶パネル31 は、アレイ基板AR、対向基板CT、およびこれら基板 ARおよびCT間に挟持された液晶層LQを有する。対 向基板CTはコモン電位Vcomに設定される対向電極3 3を有する。アレイ基板ARは、複数の走査線34、こ れら複数の走査線34と交差して互いに絶縁される複数 の信号線35、対向電極33に対向してこれら走査線お よび信号線により区画される画素領域にそれぞれ形成さ れる複数の画素電極36、これら走査線および信号線の 交差位置付近に形成され複数のスイッチング素子を構成 する薄膜トランジスタ (TFT)素子37を有する。各 TFT素子37は、対応走査線34に接続されるゲー ト、対応信号線35に接続されるドレイン、および対応 画素電極36に接続されるソースを持ち、対応走査線3 4からのゲートパルスに応答して対応信号線35からの 画像信号を対応画素電極36に印加する。また、各画素 電極36は対応走査線34に平行でコモン電位Vcomに 設定される補助容量線38に容量結合し、これにより補 助容量39が形成される。表示制御回路32は互いに異 なる水平走査期間において複数の走査線34にゲートパ ルスを供給する走査線駆動回路32A、および各水平走 査期間に複数の信号線35に画像信号を供給する信号線 駆動回路32B、およびこれら走査線駆動回路32Aお よび信号線駆動回路32Bを制御する液晶コントローラ 32Cを含む。具体的には、走査線駆動回路32Aおよ び信号線駆動回路32Bがフレーム毎に画像信号を液晶 パネル10の画素に印加するよう動作し、液晶コントロ ーラ32Cが画像信号の極性を1フレーム期間において 反転するようこれら走査線駆動回路32Aおよび信号線 駆動回路32Bを制御する。ここで、液晶コントローラ 32Cは液晶の応答が大きい極性と応答が小さい極性の うち、画像信号の振幅変化直後のフレームで生じる階調 ずれの割合が所定種類以上の階調遷移量に対して少ない 方の極性から振幅変化を開始させるよう構成される。

【0016】液晶層LQは、Iso-Ch-SmC*という相転移系列を有する強誘電性液晶を単安定化した構成であって、図2に示すような電圧-光透過率特性を有する。尚、特に断らない限り、一対の偏光板が図2に示す電圧-光透過率特性を持つ液晶層LQに対してクロスニコルに配置され、これにより無電圧状態で黒表示となるノーマリブラックモードに設定する。図3は液晶パネル31の上部から観察した液晶層LQの配向状態を示す。液晶分子42の長軸は電圧無印加時において一軸性

配向処理方向41(例えばラビング方向)に一致する。 液晶分子42は一方の極性の電圧印加時において印加電 圧の大きさに応じて円錐面43上を回転し、反対の極性 の電圧印加時に一軸性配向処理方向41にとどまる。こ こで液晶層LQでの屈折率異方性を△n、液晶層LQの 厚さをdとし、それらの積△ndを1/2波長に設定す ると、液晶分子42の面内回転角が45°(円錐面上を 半周した位置)において最大の輝度変化が得られる。配 向状態を形成する際には、液晶パネル31を強誘電性液 晶のCh相の温度まで加熱後、+1~+5V、もしくは -1~-5Vの直流電圧を画素電極36と対向電極CT の間に印加しながら、SmC*相の温度まで冷却する。 このとき、液晶分子42の回転方向および分子の応答極 性は図3の(b)および(c)に示すように印加電圧の 極性に依存する。ちなみに、配向状態形成時の印加電圧 極性は画素電極の行および列の少なくとも一方毎に反転 させてもよい。また、同様の特性を示す液晶層LQ(液 晶素子)として、液晶性(メタ)アクリレートの光未硬 化物および強誘電性液晶の混合物を、SmC相の温度に おいて上述のような直流電圧を印加しながら、あるいは SmA相の温度において、波長365nm、照度2mW /cm² の紫外線を30秒間照射した高分子安定化強誘 電性液晶なども、図2に示す電圧-光透過率特性と同様 な極性非対称な応答を示す。

【0017】次にこの液晶表示素子の動作について説明する。同一極性の信号が同一フィールドにおいて全ての画素電極36に書き込まれるフィールド反転においては、クロストークが発生しやすい。そこで、信号線35毎に極性を反転する信号線反転駆動法を用い、隣接信号線35からのカップリングによって画素電位が逆極性にシフトする現象を低減させる。また、走査線34毎に極性を反転する走査線反転駆動法を用いると、同様にカップリングの影響が低減でき、クロストークを改善できる。走査線34毎の極性反転と信号線35毎の極性反転を同時に適用するドット反転駆動を行えば、クロストークを大幅に改善できる。

【0018】本発明はこれら3つの反転駆動法のうちいずれにおいても適用できるが、同一フィールドにおいて異なる極性をとる画素は、それぞれ配向形成時の印加電圧極性を逆にして、図3の(b)および(c)に示すような2種の配向状態にすることにより、同一フィールドで同時に黒表示、または同時に透過状態になるようにすることが表示特性上望ましい。

【0019】図4は、信号線駆動回路32Bが上述の信号線反転駆動法で動作したときに液晶パネル31で得られる走査線34の電位波形12、信号線35の電位波形13、画素電極36の電位波形14および光学応答(光透過率)波形15を示す。極性対称応答液晶では、60Hz(1フレーム=16.7ms)で通常駆動するのに対し、極性非対称応答液晶では、120Hz(1フィー

ルド=8.3ms.1フレーム=2フィールド)で駆動 する。従って、液晶コントローラ32Cが画像信号をデ ータとして記憶するフィールドメモリを必要とする。各 走査線34の電位波形は、ゲートパルス11が8.3m s間隔で並んでおり、ゲートパルス11の幅は、8.3 msを走査線総数で割った値(例えばXGAの768本 の場合は10.9μs)である。従来のアクティブマト リクス型液晶表示素子と同様に、このゲートパルス11 が各画素のTFT素子37のゲート端子に印加される期 間だけTFT素子37がオン状態となり、信号線34の 電圧が画素電極36に書込まれ、TFT素子37がオフ の期間は画素電極36の電荷が保持される。 ただし、前 述のように強誘電性液晶の誘電緩和のため、画素電圧は この保持期間に低下する。この低下量は液晶分子42の 自発分極が大きいほど大きく、補助容量38が大きいほ ど小さい。ここで、信号線電位波形13aおよび13 b、画素電位波形14aおよび14b、並びに光学応答 (光透過率)波形15aおよび15bはそれぞれ、1フ レーム内で応答の小さい極性から先に電圧を印加した (信号振幅を変化させた)場合と、応答の大きい極性か ら先に電圧を印加した(信号振幅を変化させた)場合を 表す。応答の小さい極性は、図2に示す電圧-光透過率 特性においてプラス側(右側)の極性であり、応答の大 きい極性は、図2に示す電圧-光透過率特性においてマ イナス側(左側)の極性である。いずれの極性から先に 信号振幅を変化させた場合も、程度の差はあるものの、 振幅変化後1フレーム目の光透過率は、それ以後のフレ ームの光透過率の安定値に比べて高くなってしまう。応 答の小さい極性が先の場合、階調ずれ16aが立下り時 に現れる。応答の大きい極性が先の場合、階調ずれ16 bが立上り時に現れる。こうした階調ずれが大きい場合 には、動体が尾を引くようなボケや残像の原因となる。 この残像は黒または白の動体が図5に示すような均一な グレー背景の中にあるような画像を表示した場合に顕著 に認められる。従って、振幅変化後1フレーム目の階調 ずれを最小限にして、残像を抑制する必要があり、その ためには、いずれの極性から先に信号振幅変化させるの が適切であるか測定により評価する必要がある。図6の (a) および (b) は1フレーム内で、応答の大きい極 性から信号振幅を変化させた場合、および応答の小さい 極性から信号振幅を変化させた場合について64階調間 の遷移時に生じる階調ずれをまとめた結果を示す。これ ら図6の(a)および(b)に示す値は、信号振幅が変 わった1フレーム目において、2フレーム目以降の輝度 から何階調分ずれているかを階調数で表すものである。 例えば64階調間、256階調間などのように実際に使 用される階調教の全ての場合について測定することが望 ましいが、ここでは理解しやすいように64階調のうち で最低限必要な4階調について測定結果を示す。この結 果によれば、応答の大きい極性から振幅変化した場合が

最大でも階調ずれが2であり、合計値(階調ずれの絶対 値の合計値)も6であるが、応答の小さい極性から振幅 変化した場合では最大14、合計値41.5となってい る。従って、応答の大きい極性からの振幅変化の方が、 残像をほとんど発生させないので望ましいことがわか る。

【0020】一般的には、こうした測定結果の比較によ り合計値の小さいほうを選択することが望ましい。図6 に示す測定結果では、省略した階調間の測定値は、補間 値とほぼ等しいため、64階調間(あるいは256階調 問)の全ての場合を測定して階調ずれ合計値を比較した 結果は、応答の大きい極性から振幅変化することがよい という同様の結果になる。OVの書込みにより、液晶分 子42が回転した状態から初期方向(ラビング方向)に 戻るときの立下り応答が特に遅い単安定型強誘電性液晶 のような液晶では、立下りの階調ずれが非常に大きい傾 向があり、電圧に応答する側の極性を先にすることが望 ましい。逆に、立下りが速い特性を持つ液晶であれば、 立上りの階調ずれが相対的に大きくなるため、電圧にほ とんど応答しない側の極性を先にすることにより、残像 の少ない画像を得ることができる。上述のようにフィー ルド反転以外の反転駆動を行う場合には、図3の(b) のように、画素によって液晶分子42の動く方向と動く 電圧極性を変えているため、応答が大きい極性が実際に いずれの電圧極性になるかは、画素によって異なる。こ の場合でも、本発明は適用可能であり、画素毎に応答の 大きい極性か応答の小さい極性のいずれの振幅変化を先 にするかを、上述の比較を行うことにより選択すればよ い。結果的には、各フィールドにおける画素の電圧極性 は、通常の反転駆動と同じ極性の並び方となる。

【0021】この実施形態の液晶表示素子では、画素毎に応答の大きい極性か応答の小さい極性のいずれの振幅変化を先にするかが上述の比較を行うことにより予め決定され、信号線駆動回路32がこの決定に対応する極性で信号線35をそれぞれ駆動するように構成される。これにより、液晶層LQが極性非対称応答の強誘電性液晶で構成される場合に発生する残像を可及的に防止することができる。

【0022】以下、本発明の第2実施形態に係る液晶表示素子について添付図面を参照して説明する。この液晶表示素子は、表示制御回路32の構成を除いて第1実施形態と同様である。このため、第1実施形態と同様な部分を同一参照符号で表すことにより、その説明を省略する。

【0023】この液晶表示素子では、走査線駆動回路3 2Aおよび信号線駆動回路32Bが1フレームを構成する3以上のフィールド毎に画像信号を液晶パネル31の 画素に印加するよう動作し、液晶コントローラ32Cが 画像信号の極性を1フレーム期間において反転するよう これら走査線駆動回路32Aおよび信号線駆動回路32 Bを制御する。ここで、液晶コントローラ32Cは1フレーム期間を分割して得られる第1および第2期間のうちの第1期間で画像信号を第1極性に設定してフィールド毎に印加させ、第2期間で画像信号を第1極性とは逆の第2極性でかつ所定振幅に設定して後続フィールド毎に印加させるよう構成される。

【0024】信号線駆動回路32Bは信号線反転駆動法 で動作し、図7に示すような走査線34の電位波形2 2、信号線35の電位波形23、画素電極36の電位波 形24および光学応答(光透過率)波形25が液晶パネ ル31で得られるように構成される。ここで、水平走査 周波数は第1実施の形態の2倍となっており、それぞれ の画素電極36に1フレームで同極性の信号を続けて2 回ずつ書込むが、応答の小さい極性の2回目の書込みを 次のフレームの信号振幅とする。すなわち、ある画素に おけるn番目のフレームの信号振幅をV(n)、n+1 番目のフレームの信号振幅をV(n+1)とし、マイナ ス側の極性が応答の大きい極性であるとすると、n番目 のフレーム内の4回の書込み電圧は、+V(n), -V(n), -V(n), +V(n)となり、続くn+1番 目のフレーム内の4回の書込み電圧は、+V(n+ 1), -V(n+1), -V(n+1), +V(n+1)1)となり、2フレームを連続的に見ると、プラス極性 (応答の小さい極性)の書込みが2回続き、1回目はn 番目のフレームの信号、2回目はn+1番目のフレーム の信号となっている。応答の小さい極性の2回のパルス は、それぞれリセットと予備書込みの役割を果たすた め、階調ずれは大幅に減少する。具体的には、第1実施 形態と同じ特性の液晶を使用した場合、立下りの階調ず れ特性は図6の(a)において左下側の三角領域(前階 調>後階調)の値に対応し、立上りの階調ずれ特性は図 6の(b)において右上側の三角領域(前階調<後階 調)の値に対応する。さらに、階調ずれは、同極性で2 階続く書込みのうち1回目のみで発生し、2回目ではゼ ロであるので、実効的にこの値は1/2となり、結局、 図6の(c)に示すような結果となる。この結果によれ ば、階調ずれが1階調以下でほとんどないに等しく、残 像は実用上問題ないレベルにまで解消することがわか る。また、付随的な効果として、応答する極性の書込み を2回連続させることにより、輝度も向上する。 同極性 の信号を連続的に書き込む駆動法は知られており(Jpn. J. Appl. Phys. Vol. 33(1994) 4950-4959) 、1回の書込みよ りも、合計時間が同じでも2回に分けて書き込むほうが 応答量が大きくなり、図7に示す光学応答波形25のよ うに、輝度が向上する効果がある。リセットのための時 間を別途用意せず、従来の書込みの順序を変更するのみ で解決できるため、書込み時間の合計は従来と同じだけ 確保できる。

【0025】本実施形態では、両極性とも2回ずつ書込みを行っているが(1フレーム=4フィールド)、同極

性の連続書込み数は2回に限らず、1フレームをさらに多数のフィールドに分けて、多数回ずつ行ってもよい。この場合、応答の小さい極性の複数回の書込みは、初めの1〜数回は、前の逆極性書込みを打ち消す振幅(同フレームの振幅)とし、終わりの1〜数回を、次の逆極性書込みの予備書込みとなる振幅(次フレームの振幅)とすることにより、同様の効果が得られる。例えば同極性を3回ずつ書き込む場合、n番目のフレーム内の6回の書込み電圧は+V(n),-V(n),-V(n),-V(n),+V(n)とし、続くn+1番目のフレーム内の6回の書込み電圧は、+V(n+1),-V(n+1),-V(n+1),-V(n+1),・V(n+1),・V(n+1)

【0026】また、1フィールド内の複数のフィールド 時間は、同じ時間でなくてもよい。

【0027】また、1フレームを長さの異なる複数のフィールドに分け、応答の大きい極性の書込みは1回、応答の小さい極性の書込みは複数回(振幅を上述のように変化させる)としても、同様の効果が得られる。

【0028】保持期間の画素電圧は、無電圧状態または 応答の小さい極性の状態から、応答の小さい極性を書き 込んだ場合のみ、ほとんど低下しない。従って、応答の 小さい極性を複数回続けて書き込むと、その極性では画 素電位の平均値が高く、応答の大きい極性の画素電位の 平均値より高くなる場合がある。このような場合には、 画素電位の極性対称性を考慮して残留DC成分をなくす ために、応答の小さい極性の2回の書込みのフィールド の一方または両方を短くするなどの方法をとれば、不純 物イオンの偏りなどによる焼き付きは発生しない。

【0029】尚、第2実施形態の液晶表示素子においては、信号線に送出される画像信号データのシーケンスが従来と異なるため、フィールドメモリが必要であるが、前述のように極性非対称応答モードでは120Hzで駆動するためにフィールドメモリは既に用意されているため、第2実施形態の駆動方法を適用することによる製造コストの増加は軽微である。上述のようにフィールド反転以外の反転駆動を行う場合には、図3の(b)および(c)のように、画素によって液晶分子42の動く方向と動く電圧極性を変えているため、応答が小さい極性が実際にいずれの電圧極性になるかは、画素によって異なる。この場合でも、本発明は適用可能であり、画素毎に

応答の小さい極性側のみの連続する書込みの振幅を変化 させる駆動が可能である。

【0030】尚、本発明は上述の実施形態に限定されず、その要旨を逸脱しない範囲で種々変形することができる。

[0031]

【発明の効果】以上のように本発明によれば、極性非対 称応答の強誘電性液晶材料を一対の電極基板に挟持した 構造で発生する残像を低減することが可能な液晶表示素 子およびその駆動方法を提供できる。

【図面の簡単な説明】

【図1】本発明の第1実施形態に係る液晶表示素子の回路構成を示す図である。

【図2】図1に示す液晶層の電圧-光透過率特性を示す グラフである。

【図3】図1に示す液晶層の配向状態を説明するための 図である。

【図4】図1に示す液晶表示素子の駆動波形および光学 応答波形を示す波形図である。

【図5】図1に示す液晶表示素子で階調間遷移時の階調ずれが大きい場合に観察される残像を説明するための図である。

【図6】図1に示す液晶表示素子で生じ得る階調ずれと 前後階調との関係を示す図である。

【図7】本発明の第2実施形態に係る液晶表示素子の駆動波形および光学応答波形を示す波形図である。

【符号の説明】

- 31…液晶パネル
- 32…表示制御回路
- 32A…走査線駆動回路
- 32B…信号線駆動回路
- 32C…液晶コントローラ
- 34…走査線
- 35…信号線
- 36…画素電極
- 37…TFT素子
- 38…補助容量
- 39…補助容量線
- 41…ラビング方向
- 4 2…液晶分子
- 43…円錐面

【図6】

(a)	Г			後		揖	
• •	L		0	16	32	48	64
		0	[-	+1.5	+2	+1.5	+1
	前	16	9	\-	0	0	0
	酷	32	0	0		0	0
	評	48	o	0	9	\ -	0
		64	0	0	0	<u>~</u>	<u>.</u> -

(b)	Г			後	階	(7)	
(0)			0	16	32	48	64
		0	-	0.7	-1	0.5	-0.3
	前	16	0	-/	0	0	0
	营	32	+2	0	-/	0	0
	類	48	 +8	+4	+1	-/	0
		64	+14	+7	+2	+1	Ž

(a)				飬	簿	隣	
(c)			0	16	32	48	64
		0	-	-0.4	-0.5	-0.3	-0.2
	Ħ	16	0	-	0	0	0
	膌	32	0	0	-	0	0
	Ħ	48	0	0	0	-	0
		64	0	0	0	0	-

5C006 AC15 AC24 AC26 AF44 BA12

5C080 AA10 BB05 DD01 EE19 EE29

FF11 JJ01 JJ02 JJ04 JJ05

BB16 FA14 FA34

KK43

【図7】

フロントページの続き

(51) Int. Cl.	7	識別記号		FΙ							(参考)
G09G	3/20	621		G09G	3/20)		62	1 F		
		660						66	0 V		
(72)発明者	福島 理恵子			Fターム(参	考)	2н093	NA16	NA34	NA53	NC11	NC21
	神奈川県川崎市	市幸区小向東芝町1番地	株				NC29	NC34	NC35	NC49	NC65
	式会社東芝研究	党開発センター内		•			ND06	ND32	NF17	NH14	NH15

(72)発明者 長谷川 励 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内(72)発明者 高頭 孝毅

神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内