Assignment03

zerofrom

2024-10-07

1. Data Wrangling

1 (Q1)

[1] 897 9

##		Age	Day	${\tt Month}$	Year	${\tt CaptureTime}$	Species	Wing	Weight	Tail
##	1	I	19	9	1992	13:30	RT	385	920	219
##	2	I	22	9	1992	10:30	RT	376	930	221
##	3	I	23	9	1992	12:45	RT	381	990	235
##	4	I	23	9	1992	10:50	CH	265	470	220
##	5	I	27	9	1992	11:15	SS	205	170	157

1 (Q2)

1 (Q6)

- 1. There are 4 aesthetics: x=Tail,y=Weight,color=Species,shape=Species.
- 2. Points.
- 3. Color: Different colors refers to different species.

 Shape: Different shapes refers to different species.

 Axes Labels: These provide context for what the x(Tail length) and y(Weight) axes represent.

1 (Q7)

$geom_smooth()$ using formula = 'y ~ x'

Color: Used to differentiate between species.
 Line: A trend line indicates the relationship between Tail and Weight.
 The trend line shows a positive slope, which suggests positive correlation between the weight of the hawks and their tail lengths.

1 (Q8)

Warning in geom_point(aes(x = heaviest_hawk\$Tail, y = heaviest_hawk\$Weight), : All aesthetics have 1
i Please consider using `annotate()` or provide this layer with data containing
a single row.

2. Finite probability spaces

• n = 10: number of balls.

• r = 3: number of red balls.

• n-r=7: number of blue balls.

• k = 22: repeat times.

• q = z: red balls in repeat times.

$$P(X=z) = \binom{k}{q} \left(\frac{r}{n}\right)^z \left(\frac{n-r}{n}\right)^{k-z}$$

 $\#\#\ 2\ (Q1)$

the probability that z out of the 22 selections were red spheres

$$P(X=z) = {22 \choose z} \left(\frac{3}{10}\right)^z \left(\frac{7}{10}\right)^{22-z}$$

2 (Q2)

[1] 0.05285129

2 (Q3)

2 (Q4)

2 (Q5)

2 (Q5.1)

- ## [1] 14 68 39 1 34
- ## [1] 87 43 14 82 59
- ## [1] 51 97 85 21 54
- ## [1] 74 7 73 79 85
- **##** [1] 37 89 100 34 99
- ## [1] 68 39 1 34 87
- ## [1] 68 39 1 34 87
- ## [1] 68 39 1 34 87
- ## [1] 14 68 39 1 34
- ## [1] 87 43 14 82 59
- ## [1] 51 97 85 21 54
- **##** [1] 74 7 73 79 85
- **##** [1] 37 89 100 34 99

2 (Q5.2)

- ## [[1]]
- ## [1] 1 1
- ##
- ## [[2]]

```
## [1] 2 4
##
## [[3]]
## [1] 3 9
## [1] 1 8 27
```

2 (Q5.3)

2 (Q6)

##		${\tt num_reds}$	prob	predicted_prob
##	1	1	0.003686403	0.005
##	2	2	0.016588812	0.019
##	3	3	0.047396606	0.054
##	4	4	0.096485948	0.104
##	5	5	0.148864035	0.150

2 (Q7)

3

3 (Q1)

##		num_trail	missing_proportion
##	1	10	0.1
##	2	100	0.14
##	3	500	0.128
##	4	1000	0.122
##	5	2000	0.1205
##	6	5000	0.1206
##	7	10000	0.1218

3 (Q2)

[1] 0.1180318