Predicting Evacuation Location for Post-Disaster Recovery Modeling

Aaron Appelle, Ana Moura-Cook, Davyd Tamrazov

{appellea, anamc, dt453}@stanford.edu

— Class 1

— Class 2

Class 3

-0.4

-0.2

0.50 0.75 1.00

False Positive Rate

0.67 0.11

0.019 0.47

Predicted class

Introduction / Background / Motivation

- Post-disaster recovery modeling is limited by semi-heuristic assumptions and survey-based data
- We explore machine learning techniques to predict a household's location of temporary shelter following a natural disaster
- Decision tree and neural network methods perform better in balanced accuracy than a random-guess trivial classifier

Dataset and Feature Importance

- Data: anonymized responses to the 2017 American Housing Survey in the greater San Francisco area (mostly binary)
- Originally 3,343 variables and 2,286 observations, after cleaning and manual feature selection: 951 observations and 61 variables
- PCA analysis: PC1 and PC2 explain only 20.1% of the variance

- Top features ranked from PCA: Number of rooms, Owner/renter status, Monthly utility cost, Unit size (sq ft), Number people in household, Type of housing unit, Market value of unit, Type of household, Marital Status, US Citizenship
- When compared to feature ranking from decision tree methods (below), common significant variable themes include wealth, stage of life, and time spent living in the region

Results and Discussion

- Neural network with Focal Loss¹ has the highest balanced accuracy: best for predicting the number of households which will evacuate to shelters
- Neural network with weighted cross-entropy loss has a higher AUROC for Class 3 while maintaining high total accuracy: best for predicting evacuation to hotels
- XGBoost² is the most interpretable and performs relatively well across error metrics and classes, but it is not best-in-class for any one metric
- Categorical and imbalanced data is a challenge for every model considered

Metric	Baseline Naive	Ridge Regression	Decision Tree		Neural Network	
			Random Forest	XGBoost	Weighted CE	Focal Loss
Total Accuracy	0.6126	0.5654	0.5026	0.5445	0.6492	0.5864
Balanced Accuracy	0.3333	0.5109	0.5310	0.5367	0.4845	0.5739
Weighted F1 Score	0.4654	0.5740	0.5171	0.5575	0.6180	0.5976
AUROC (Class 1)	0.5000	0.5835	0.5337	0.5698	0.6185	0.5678
AUROC (Class 2)	0.5000	0.7354	0.7864	0.8131	0.6843	0.8651
AUROC (Class 3)	0.5000	0.6612	0.6773	0.5820	0.6598	0.5956

Future Work

- Apply LDAM and deferred re-weighting³ until after the initial stage
- Explore data undersampling and better class weighting schemes
- Establish more data-driven relationships to improve the underlying semi-heuristic assumptions in existing recovery models

References

[1] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection," 2018.

[2] T. Chen and C. Guestrin, "Xgboost," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 2016. [Online]. Available: http://dx.doi.org/10.1145/2939672.2939785

[3] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 2017.