Minería de Datos

Práctica 4. Clasificación y selección de atributos

Ángel Ríos San Nicolás

19 de marzo de 2021

- 1. Carga el fichero de datos "credit_g.arff" en Weka.
- 2. Estudia los distintos atributos, su significado y su distribución. ¿Hay algún atributo que podría ser considerado "poco relevante"? (por ejemplo, porque la mayoría de las filas caigan en el mismo valor).

checking_status Existencia y estado actual de la cuenta corriente

duration Duración del crédito en meses

credit_history Historial de créditos: sin créditos previos, impagados, etc.

purpose Propósito: coche, equipamiento, reformas, formación, etc.

credit_amount Cuantía del crédito

saving_status Cuantía en cuentas de ahorro

employment Antigüedad en el trabajo: desempleado, de 1 a 4 años, etc.

installment_commitment Tasa de pago a plazos en porcentaje respecto al ingreso

personal_status Género y estado civil

other_parties Existencia de terceros: otros deudores, solicitantes, etc.

residence_since Antigüedad en la residencia actual

property_magnitude Propiedades: Inmobiliaria, hipoteca, vehículos, etc.

age Edad

other_payment_plans Otros modos de pago: Banco, bienes o ninguno

housing Vivienda de alquier, propia o gratuita

existing_credits Número de creditos existentes con el banco

job Profesión: cualificado, no cualificado, autónomo, etc. num_dependents Número de dependientes del crédito

own_telephone Propietario o no de teléfono propio

 $foreign_worker$ Trabajador extranjero o no

class Calidad del cliente respecto a la concesión de un crédito

La mayoría de las instancias tienen el mismo valor en los atributos other-parties y foreign worker por lo que podríamos considerarlos poco relevantes. Podríamos también considerar poco relevante si el cliente tiene o no teléfono propio, es decir, el atributo own_telephone.

- 3. Realiza las siguientes tareas de clasificación con 10-cross-validation:
 - a. Usando J48
 - b. Usando NaïveBayes
 - c. Usando Redes Bayesianas con TAN
 - d. Usando 5-NN (Vecinos cercanos con k = 5.)
- 4. Una vez obtenidos los diferentes modelos del punto 3, responde:
 - a. ¿Qué clasificador obtiene mejores resultados? ¿Cuál tiene un peor rendimiento?
 - J48

Accuracy: 70.5%

good	bad
588	112
183	117

Clase	Recall	Precision
good	0.840	0.763
bad	0.390	0.511

• NaïveBayes

Accuracy: 75.4%

good	bad
605	95
151	149

Clase	Recall	Precision
good	0.864	0.800
bad	0.497	0.611

• Redes Bayesianas con TAN

Accuracy: 74.5%

good	bad
599	101
154	146

Clase	Recall	Precision
good	0.856	0.795
bad	0.487	0.591

• 5-NN

Accuracy: 74.2%

good	bad
624	76
182	118

Clase	Recall	Precision
good	0.891	0.774
bad	0.393	0.608

De los clasificadores anteriores el que obtiene mejores resultados es NaïveBayes, es el método con el mayor Accuracy de los cuatro. Aunque tiene menor Recall que 5-NN para la clase *good*, su Precision es mayor en ambas clases. El clasificador que obtiene peor rendimiento es J48 porque sus medidas de evaluación son todas menores que las del resto de métodos.

b. ¿Qué diferencia hay entre el modelo de clasificación obtenido en el punto 3.b y el obtenido en el 3.c?

El modelo NaïveBayes es mejor que el método del árbol generador de peso máximo, clasifica mejor para los dos valores del atributo como se ve en la matriz de confusión y todas las medidas de evaluación son mayores en consecuencia.

- 5. Utilizando la técnica de selección de atributos CfsSubsetEval y 10-cross-validation, elimina los atributos que hayan sido seleccionados menos de un 70% de las veces. Repite el punto 3 usando solamente los atributos seleccionados para la clasificación. ¿Qué modelos mejoran y cuáles empeoran?
 - J48

Accuracy: 70.5%

good	bad
615	85
210	90

Clase	Recall	Precision
good	0.879	0.745
bad	0.300	0.514

• NaïveBayes

Accuracy: 74.4%

good	bad
639	61
195	105

Clase	Recall	Precision
good	0.913	0.766
bad	0.350	0.633

• Redes Bayesianas con TAN

Accuracy: 72.5%

good	bad
631	69
206	94

Clase	Recall	Precision
good	0.901	0.754
bad	0.313	0.577

• 5-NN

Accuracy: 71.7%

good	bad
600	100
183	117

Clase	Recall	Precision
good	0.857	0.766
bad	0.390	0.539

El método J48 se comporta de manera similar, mantiene el mismo Accuracy, mejora clasificando la clase *good* tanto como empeora clasificando *bad*. Sabemos, como recoge la documentación del archivo de datos, que es más grave clasificar un cliente *bad* como *good* que lo contrario, con lo que podemos decir que el clasificador es algo peor.

Los métodos de NaïveBayes y de redes bayesianas con TAN tienen peor Accuracy, mejoran clasificando *good*, pero se equivocan mucho más clasificando *bad*, con lo que también empeora.

El método 5-NN empeora, tiene peor Accuracy y, al contrario que los anteriores, se equivoca más en la clasificación de ambas clases.

6. Repite el punto 5, pero usando ClassifierSubSetEval como método de selección de atributos, y usando como clasificador base el clasificador que luego se va a usar para generar el modelo de predicción. Prueba en cada caso eliminando los atributos que hayan sido seleccionado menos de un 70% o un 50%. ¿En qué casos se obtiene mejor o peor resultado? ¿Mejoran con respecto a los obtenidos en el apartado 5?

• J48

 $\geq 70\%$

Accuracy: 72.4%

good	bad
601	99
177	123

Clase	Recall	Precision
good	0.859	0.772
bad	0.410	0.554

 $\geq 50\%$

Accuracy: 73%

good	bad
604	96
167	133

Clase	Recall	Precision
good	0.863	0.783
bad	0.443	0.581

Obtenemos resultados algo mejores considerando los atributos que se seleccionan el 50% de las veces, mejora la matriz de confusión y, por lo tanto, todas las medidas de evaluación del clasificador.

• NaïveBayes

 $\geq 70\%$

Accuracy: 75%

good	bad
628	72
178	122

Clase	Recall	Precision
good	0.897	0.779
bad	0.407	0.629

 $\geq 50\%$

Accuracy: 74.4%

good	bad
606	94
162	138

Clase	Recall	Precision
good	0.866	0.789
bad	0.460	0.595

Si seleccionamos los atributos escogidos al menos un 50% de las veces, en este caso el clasificador clasifica más instancias como bad, con lo que mejora para esa clase, pero empeora clasificando good. Como resultado el Accuracy es ligeramente menor.

• Redes Bayesianas con TAN

 $\geq 70\%$

Accuracy: 74.5%

good	bad
604	96
159	141

Clase	Recall	Precision
good	0.863	0.792
bad	0.470	0.595

 $\geq 50\%$

Accuracy: 74.7%

good	bad
607	93
160	140

Clase	Recall	Precision
good	0.867	0.791
bad	0.467	0.601

Al escoger los datos seleccionados un 50% de las veces, se clasifica mejor la clase good, pero peor la clase bad. La diferencia es sutil, tres instancias en el primer caso y una en el segundo, con lo que el Accuracy, aunque es mejor, varía muy poco.

• 5-NN

 $\geq 70\%$

Accuracy: 76.2%

good	bad
608	92
146	154

Clase	Recall	Precision
good	0.869	0.806
bad	0.513	0.626

 $\geq 50\%$

Accuracy: 73.7%

good	bad
625	75
188	112

Clase	Recall	Precision
good	0.893	0.769
bad	0.373	0.599

En el apartado anterior, los atributos fueron seleccionados de la misma manera independientemente del clasificador escogido. En este apartado, todos los clasificadores mejoran su Accuracy, lo que tiene sentido porque el proceso de selección de atributos se ha especializado en el clasificador que se ha usado después.

7. En base a lo observado, ¿qué tipo de clasificadores se ven más afectados por la selección de atributos? ¿por qué?

El clasificador que se ve más afectado por la selección de atributos es 5-NN porque se basa en una distancia de los datos. Dadas dos instancias, se define una distancia a partir de sus atributos, pero, si eliminamos parte de estos, generalmente la distancia cambia completamente, con lo que también lo hacen los k vecinos más cercanos y el clasificador tiene un comportamiento muy diferente.

J48, por el contrario, se ve poco afectado por la selección de atributos porque lleva implementada su propia selección.

NaïveBayes supone por hipótesis que los atributos son independientes entre sí dado el valor de la clase, con lo que su clasificación se basará en los atributos que tengan mayor peso en la muestra. Redes bayesianas con TAN es una implementación de NaïveBayes con una búsqueda en un árbol generador de peso máximo. A la hora de seleccionar los atributos, también buscamos los que tienen mayor peso para la clasificación, así que tiene sentido que ambos clasificadores se vean relativamente poco afectados por la selección previa.