Intro to probability: outcomes

 An outcome space specifies the possible outcomes that we would like to reason about, e.g.

$$\Omega = \{$$
 \emptyset , \emptyset \emptyset Coin toss $\Omega = \{$ \emptyset , \emptyset \emptyset Die toss

We specify a probability p(x) for each outcome x such that

$$p(x) \ge 0,$$
 $\sum_{x \in \Omega} p(x) = 1$ E.g., $p(x) = 0.6$ $p(x) = 0.4$

Intro to probability: events

An event is a subset of the outcome space, e.g.

$$E = \{ \begin{tabular}{c} \begi$$

• The **probability** of an event is given by the sum of the probabilities of the outcomes it contains,

$$p(E) = \sum_{x \in E} p(x)$$
 E.g., $p(E) = p(x) + p(x) + p(x)$ = 1/2, if fair die

Intro to probability: union bound

P(A or B or C or D or ...)

$$\leq P(A) + P(B) + P(C) + P(D) + ...$$

Q: When is this a tight bound?

A: For disjoint events

(i.e., non-overlapping circles)

Intro to probability: independence

• Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Are these events independent?

No!
$$p(A \cap B) = 0$$
 $p(A)p(B) = \left(\frac{1}{6}\right)^2$

Intro to probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Analogy: outcome space defines all possible sequences of e-mails in training set

Suppose our outcome space had two different die:

$$\Omega = \{ \emptyset \emptyset, \emptyset \emptyset, \dots, \emptyset \emptyset \}$$
 2 die tosses

 6^2 = 36 outcomes

and the probability of each outcome is defined as

$$p((a)) = a_1 b_1 p((a)) = a_1 b_2 \cdots$$

a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	
.1	.12	.18	.2	.1	.3	
b ₁	b,	b ₃	b₄	b ₅	b ₆	
.19	.11	.1	.22	.18	.2	

Intro to probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Are these events independent?

- A random variable X is a mapping $X : \Omega \to D$
 - *D* is some set (e.g., the integers)
 - ullet Induces a partition of all outcomes Ω
- For some $x \in D$, we say

$$p(X = x) = p(\{\omega \in \Omega : X(\omega) = x\})$$

"probability that variable X assumes state x"

• Notation: Val(X) = set D of all values assumed by X (will interchangeably call these the "values" or "states" of variable X)

$$\Omega = \{ \emptyset \emptyset, \emptyset \emptyset, \dots, \emptyset \emptyset \}$$
 2 die tosses

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - − R in {true, false} (sometimes write as {+r, ¬r})
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

- p(X) is a distribution: $\sum_{x \in Val(X)} p(X = x) = 1$
- E.g. X₁ may refer to the value of the first dice, and X₂ to the value of the second dice
- We call two random variables X and Y identically distributed if Val(X) = Val(Y) and p(X=s) = p(Y=s) for all s in Val(X)

$$p(p(p)) = a_1 b_1 p(p(p)) = a_1 b_2 \cdots$$

X₁ and X₂ NOT identically distributed

a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
.1	.12	.18	.2	.1	.3
h	b ₂	b ₂	b ₄	h	h
		D 3	4	D 5	6
.19	11	.1	.22	.18	.2

$$\sum_{j=1}^{6} b_j = 1$$

 $\sum a_i = 1$

$$\Omega = \{ \bigcirc, \bigcirc, \bigcirc, \cdots, \bigcirc, \cdots, \bigcirc \}$$

2 die tosses

- p(X) is a distribution: $\sum_{x \in Val(X)} p(X = x) = 1$
- E.g. X₁ may refer to the value of the first dice, and X₂ to the value of the second dice
- We call two random variables X and Y identically distributed if Val(X) = Val(Y) and p(X=s) = p(Y=s) for all s in Val(X)

$$p(s) = a_1 a_1 \qquad p(s) = a_1 a_2 \cdots$$

X₁ and X₂ identically distributed

a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
.1	.12	.18	.2	.1	.3

$$\sum_{i=1}^{6} a_i = 1$$

$$\Omega = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \cdots, \bigcirc \bigcirc \}$$

- X=x is simply an event, so can apply union bound, etc.
- Two random variables X and Y are independent if:

$$p(X = x, Y = y) = p(X = x)p(Y = y) \quad \forall x \in Val(X), y \in Val(Y)$$

Joint probability. Formally, given by the event $X=x\cap Y=y$

- The **expectation** of **X** is defined as: $E[X] = \sum_{x \in Val(X)} p(X = x)x$
- If X is binary valued, i.e. x is either 0 or 1, then:

$$E[X] = p(X = 0) \cdot 0 + p(X = 1) \cdot 1$$

= $p(X = 1)$

• Linearity of expectations: $E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$

PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1- δ : $\mathrm{error}_{true}(h) \leq \mathrm{error}_D(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$ "variance"

For large | H |

- low bias (assuming we can find a good h)
- high variance (because bound is looser)

For small | H |

- high bias (is there a good h?)
- low variance (tighter bound)

Probability Distributions

Discrete random variables have distributions

P(T)		
Τ	Р	
warm	0.5	
cold	0.5	

D/D

1 ()	, ,
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

P(W)

- A discrete distribution is a TABLE of probabilities of values
- The probability of a state (lower case) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

• Must have: $\forall x P(x) \ge 0 \qquad \sum_{x} P(x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment:

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

– How many assignments if n variables with domain sizes d?

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T,W)

- For all but the smallest distributions, impractical to write out or estimate
 - Instead, we make additional assumptions about the distribution

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{w} P(t, w)$$

$$P(w) = \sum_{t} P(t, w)$$

$\boldsymbol{\mathcal{D}}$	(7	٦)
1	(1	J

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = ???$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot) $W \qquad P$ $sun \qquad 0.8$ $rain \qquad 0.2$ P(W|T = cold) $W \qquad P$ $sun \qquad 0.4$ $rain \qquad 0.6$

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \longleftarrow \qquad P(x,y) = P(x|y)P(y)$$

Example:

P(W)			
W	Р		
sun	8.0		
rain	0.2		

D/TIT

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D|W)

	, ,	
)	W	P
et	sun	0.

P(D,W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Let's us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many practical systems (e.g. ASR, MT)
- In the running for most important ML equation!

