CSC 252: Computer Organization Spring 2023: Lecture 3

Instructor: Sreepathi Pai

Department of Computer Science University of Rochester

Announcement

- Programming Assignment 1 is out
 - Details: https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment1.html
 - Due on Jan. 27, 11:59 PM
 - You have 3 slip days

15	16	17	Today	19	20	21
22	23	24	25	26	Due 27	28

Announcement

- Programming assignment 1 is in C language. Seek help from TAs.
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

Unsigned	Binary
0	000
1	001
2	010
3 4	011
4	100
5 6	101
6	110
7	111

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5 6	101
6	110
7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed Weight	Unsigned Weight	Bit Position
20	20	0
21	21	1
-2 ²	22	2

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Bit
Weight	Weight	Position
20	20	0
21	21	1
-2 ²	22	2

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
	6	110
-1	7	111

Signed	Unsigned	Bit
Weight	Weight	Position
20	20	0
21	21	1
-2 ²	22	2

$$101_2 = 1^*2^0 + 0^*2^1 - 1^*2^2 = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Two-Complement Encoding Example

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15212		15212

Sum 15213 -15213

Two-Complement Implications

- Only 1 zero
- Usual arithmetic still works
- There is a bit that represents the sign!
- Most widely used in today's machines

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-4 -3 -2	101
-2	110
-1	111

Two-Complement Implications

- Only 1 zero
- Usual arithmetic still works
- There is a bit that represents the sign!
- Most widely used in today's machines

	010
+)	101
	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Two-Complement Implications

- Only 1 zero
- Usual arithmetic still works
- There is a bit that represents the sign!
- Most widely used in today's machines

+)	010 101
• /	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

• Unsigned Values

```
• UMin = 0

000...0
• UMax = 2w - 1

111...1
```

Unsigned Values

$$UMin = 0$$

$$000...0$$

•
$$UMax = 2w - 1$$

Two's Complement Values

■
$$TMin = -2^{w-1}$$

100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Unsigned Values

$$UMin = 0$$

$$000...0$$

•
$$UMax = 2w - 1$$

Two's Complement Values

■
$$TMin = -2w-1$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Unsigned Values

$$UMin = 0$$

$$000...0$$

•
$$UMax = 2w - 1$$

Two's Complement Values

■
$$TMin = -2^{w-1}$$

100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Data Representations in C (in Bytes)

- By default variables are signed
- Unless explicitly declared as unsigned (e.g., unsigned int)
- Signed variables use two-complement encoding

C Data Type	32-bit	64-bit
char	1	1
short	2	2
int	4	4
long	4	8

Data Representations in C (in Bytes)

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type	32-bit	64-bit
char	1	1
short	2	2
int	4	4
long	4	8

Data Representations in C (in Bytes)

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type	32-bit	64-bit
char	1	1
short	2	2
int	4	4
long	4	8

C Language

- •#include <limits.h>
- Declares constants, e.g.,
 - •ULONG MAX
 - •LONG_MAX
 - •LONG_MIN
- Values platform specific

- What does 10.01₂ mean?
- C.f., Decimal
 - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$

- What does 10.01₂ mean?
- C.f., Decimal
 - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.01₂ mean?
- C.f., Decimal
 - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•
$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$$

0 1 2 3

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•
$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$$

0 1 2 3

	01.10	
+	01.01	
	10.11	

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•
$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$$

0 1 2 3

Integer Arithmetic Still Works!

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Fixed-Point Representation

- Fixed interval between two representable numbers as long as the binary point stays fixed
 - The interval is 0.25₁₀ here
- Fixed-point representation of numbers
 - Integer is one special case of fixed-point

0 1 2 3

	01.10
+	01.01
	10.11

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

One Bit Sequence, Two Interpretations

 A sequence of bits can be interpreted as either a signed integer or an unsigned integer

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

Signed vs. Unsigned Conversion in C

- What happens when we convert between signed and unsigned numbers?
- Casting (In C terminology)
 - Explicit casting between signed & unsigned

```
int tx, ty = -4;
unsigned ux = 7, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U
```

- Implicit casting
 - e.g., assignments, function calls

```
tx = ux;

uy = ty;
```

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Conversion Visualized

- Signed → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

Conversion Visualized

Conversion Visualized

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

The Problem

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

C Data Type	# of Bytes
char	1
short	2
int	4
long	8

The Problem

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

C Data Type	# of Bytes
char	1
short	2
int	4
long	8

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

The Problem

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

C Data Type	# of Bytes
char	1
short	2
int	4
long	8

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

Signed Extension

• Task:

- Given w-bit signed integer x
- Convert it to (w+k)-bit integer with same value

Signed Extension

• Task:

- Given w-bit signed integer x
- Convert it to (w+k)-bit integer with same value

• Rule:

Make k copies of sign bit:

•
$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$

k copies of MSB

Signed Extension

• Task:

- Given w-bit signed integer x
- Convert it to (w+k)-bit integer with same value

Rule:

Make k copies of sign bit:

Another Problem

```
unsigned short x = 47981;
unsigned int ux = x;
```

	Decimal	Hex	Binary
x	47981	BB 6D	10111011 01101101
ux	47981	00 00 BB 6D	00000000 00000000 10111011 01101101

Unsigned (Zero) Extension

• Task:

- Given w-bit unsigned integer x
- Convert it to (w+k)-bit integer with same value

Rule:

Simply pad zeros:

Yet Another Problem

```
int x = 53191;
short sx = (short) x;
```

	Decimal	Нех	Binary
x	53191	00 00 CF C7	00000000 00000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Yet Another Problem

```
int x = 53191;
short sx = (short) x;
```

	Decimal	Hex	Binary
x	53191	00 00 CF C7	00000000 00000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

- Truncating (e.g., int to short)
 - · C's implementation: leading bits are truncated, results reinterpreted
 - So can't always preserve the numerical value

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Unsigned	Binary
0	000
1	001
2	010
3	011
4 5 6	100
5	101
6	110
7	111

• Similar to Decimal Addition

Unsigned	Binary
0	000
1	001
2	010
	011
4 5	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)

Normal
Case

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5 6	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal
Case

Overflow Case

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
4 5 6	101
	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal
Case

Unsigned	Dillary
0	000
1	001
2	010
3	011
4	100
4 5 6	101
6	110
7	111

Uncigned Binon

Overflow Case

True Sum

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal
Case

Binary
000
001
010
011
100
101
110
111

Overflow Case

True Sum

Unsigned Addition in C

Unsigned Addition in C

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

 \mathcal{U} u + v

 $UAdd_{w}(u, v)$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic $s = \mathsf{UAdd}_w(u, v) = u + v \mod 2^w$

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

Normal Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Min	
-----	--

	010	2
Normal	+) 101	+) -3
โลรค	<u> </u>	

111

Overflow
Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Min	**********

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Normal Case

Overflow Case

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

M	in	***************************************

0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Binary

Signed

Normal Case

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Max	
Min	

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Normal
Case

Overflow Case

Negative Overflow

Positive Overflow

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

This is not an overflow by definition

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- This is not an overflow by definition
- Because the actual result can be represented using the bit width of the datatype (3 bits here)

Two's Complement Addition in C

Two's Complement Addition in C

Operands: w bits u

True Sum: w+1 bits

Discard Carry: w bits $\frac{u+v}{TAdd_w(u,v)}$

 ν

• • •

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Two's Complement Addition in C

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as
 2's comp. integer

True Sum

In	Out
0	1
1	0

NOR Gate (NOT + OR)

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Basic Logic Gates

Basic Logic Gates

A	В	\mathbf{C}_{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	В	\mathbf{C}_{in}	S	C_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
			-	

$$S = (A \& B \& C_{in})$$

	A	В	C _{in}	S	C _{ou}
					t
F	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1
				•	

$$S = (\text{~A \& ~B \& C}_{in})$$

| (\times A & B & \times C_{in})

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Add two bits and carry-in, produce one-bit sum and carry-out.

$$S = (\text{~A \& ~B \& C}_{in})$$

| (\tau A & B & \tau C_{in})
| (A & \tau B & \tau C_{in})

Truth Table

A	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
	0 0 0 0 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1	0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0

Add two bits and carry-in, produce one-bit sum and carry-out.

$$S = (\text{~A \& ~B \& C}_{in})$$

$$| (\text{~A \& B \& ~C}_{in})$$

$$| (\text{A \& ~B \& ~C}_{in})$$

$$| (\text{A \& B \& C}_{in})$$

Truth Table

	A	В	C _{in}	S	C _{ou}
					t
•	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
.=	1	1	0	0	1
	1	1	1	1	1

Add two bits and carry-in, produce one-bit sum and carry-out.

$$S = (\text{~A \& ~B \& C}_{in})$$

$$| (\text{~A \& B \& ~C}_{in})$$

$$| (\text{A \& ~B \& ~C}_{in})$$

$$| (\text{A & B & C}_{in})$$

Truth Table

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$C_{ou} = (\text{~A \& B \& C}_{in})$$

$$| (A \& \text{~B \& C}_{in})$$

$$| (A \& B \& \text{~C}_{in})$$

$$| (A \& B \& \text{~C}_{in})$$

Add two bits and carry-in, produce one-bit sum and carry-out.

Four-bit Adder

Four-bit Adder

Four-bit Adder

- Ripple-carry Adder
 - Simple, but performance linear to bit width

Four-bit Adder

- Ripple-carry Adder
 - Simple, but performance linear to bit width
- Carry look-ahead adder (CLA)
 - Generate all carriers simultaneously

• Design digital components from basic logic gates

- Design digital components from basic logic gates
- Key idea: use the truth table!

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

Α	В	С	F
A 0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

Δ	В	С	F	
A 0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

• Goal: Computing Product of w-bit numbers x, y

• Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

OMax $2^{w-1}-1$ T OMin -2^{w-1}

Product

• Goal: Computing Product of w-bit numbers x, y

Goal: Computing Product of w-bit numbers x, y

OMax $2^{w-1}-1$ J OMin -2^{w-1}

Original Number (w bits)

Product (2w bits)

- Goal: Computing Product of w-bit numbers x, y
- Exact results can be bigger than w bits
 - Up to 2w bits (both signed and unsigned)

Original Number (w bits)

Product (2w bits)

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Effectively Implements the following:

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$