Systemy Typów 2023

Lista zadań nr 1

Na zajęcia 11 października 2023

Uwaga: zadania 5, 8, 9 i 10 można zrobić w Coqu/Agdzie relatywnie niewielkim (jak na walkę z asystentem dowodzenia) nakładem pracy. Za takie rozwiązanie można dostać podwójną liczbę punktów!

Zadanie 1. Na wykładzie zdefiniowaliśmy (częściowe) podstawienie dla pratermów. Pokaż, że można podnieść tą definicję do podstawienia dla termów. W tym celu pokaż, że:

- wynik nie zależy od wyboru reprezentanta klasy abstrakcji, tzn. dla dowolnych $t_1 \equiv_{\alpha} t_2$ zachodzi $t_1\{t/x\} \equiv_{\alpha} t_2\{t/x\}$, o ile te operacje są zdefiniowane;
- w każdej klasie abstrakcji jest reprezentant, dla którego podstawienie jest zdefiniowane, tzn. dla dowolnych t_1 , t oraz x istnieje $t_2 \equiv_{\alpha} t_1$, takie, że $t_2\{t/x\}$ jest zdefiniowane.

Czy jak usuniemy klauzulę $(\lambda x.t')\{t/x\}=t'$ z definicji podstawienia pratermów, to powyższe własności dalej będą zachodzić?

Zadanie 2. Jednym ze sposobów formalnego ujęcia konwencji Barendregta jest zasada indukcji bazująca na kwantyfikacji koskończonej. Nie $\mathcal{P}_{\text{fin}}(\text{Var})$ oznacza zbiór skończonych podzbiorów zbioru Var. Niech Q będzie predykatem termów (unarną relacją na termach) takim, że:

- $\forall x \in \text{Var. } Q(x)$;
- $\forall x \in \text{Var.} \ \forall t \in \text{PreTerm.}$ $(\forall L \in \mathcal{P}_{\text{fin}}(\text{Var}). \ \exists x' \in \text{Var} \setminus L. \ \exists t' \in \text{PreTerm.} \ \lambda x.t \equiv_{\alpha} \lambda x'.t' \land Q(t\{x'/x\}))$ $\Rightarrow P(\lambda x.t);$
- $\forall t_1, t_2 \in \text{PreTerm. } Q(t_1) \land Q(t_2) \Rightarrow Q(t_1 \ t_2).$

Korzystając ze zwykłej zasady indukcji dla pratermów, pokaż, że dla dowolnego termu t zachodzi Q(t).

Zadanie 3. Pokaż, że $t\{t_1/x\}\{t_2/y\}=t\{t_2/y\}\{t_1\{t_2/y\}/x\}$ o ile $x\neq y$ oraz $x\notin \mathsf{fv}(t_2)$. W tym zadaniu pracujemy już na termach. Postaraj się użyć zasady indukcji z poprzedniego zadania.

Zadanie 4. Zdefiniuj w ulubionym silnie typowanym języku programowania (preferowane: OCaml, Coq, SML, Haskell, Agda, Idris) typ reprezentujący składnię rachunku lambda. Twoja definicja powinna odzwierciedlać pokazaną na wykładzie konstrukcję indeksowanych rodzin zbiorów, więc w szczególności typ termów powinien mieć jeden parametr typowy opisujący zmienne potencjalnie wolne. Zdefiniuj podstawienie $(t\{t'\})$ oraz wszystkie potrzebne do tego operacje (np. fmap i bind).

Uwaga: operacje fmap i bind wymagają rekursji polimorficznej, co w OCamlu oznacza napisanie jakiś okropnych anotacji typowych.

Zadanie 5. Pokaż następujące własności składni abstrakcyjnej reprezentowanej przy pomocy indeksowanych rodzin zbiorów (f to przemianowania, natomiast g to podstawienia).

1.
$$id^{\uparrow} = id$$
,

2.
$$(f_1 \circ f_2)^{\uparrow} = f_1^{\uparrow} \circ f_2^{\uparrow}$$
,

3.
$$id^{\dagger} = id$$
,

4.
$$(f_1 \circ f_2)^{\dagger} = f_1^{\dagger} \circ f_2^{\dagger}$$

5.
$$f^{\uparrow} \circ s = s \circ q$$
,

6.
$$g^{\uparrow} \circ s = s^{\dagger} \circ f$$
,

7.
$$(f^{\dagger} \circ q)^{\uparrow} = f^{\uparrow \dagger} \circ q^{\uparrow}$$
,

8.
$$\eta^{\uparrow} = \eta$$
,

9.
$$(g \circ f)^{\uparrow} = g^{\uparrow} \circ f^{\uparrow}$$
,

10.
$$(g_1^* \circ g_2)^{\uparrow} = g_1^{\uparrow *} \circ g_2^{\uparrow}$$
,

11. jeśli
$$g_1 \circ f_1 = f_2^\dagger \circ g_2$$
 to $g_1^* \circ f_1^\dagger = f_2^\dagger \circ g_2^*$,

12.
$$\eta^* = id$$
,

13.
$$g_1^* \circ g_2^* = (g_1^* \circ g_2)^*$$
,

14.
$$(t \triangleleft q)^* \circ s^{\dagger} = q^*$$
.

15.
$$(s^{\dagger}(t))\{t'\}=t$$
,

16.
$$g^{\uparrow} = \eta(0) \triangleleft (\mathsf{s}^{\dagger} \circ g)$$
,

17.
$$f^{\dagger} \circ (t \triangleleft q) = f^{\dagger}(t) \triangleleft (f^{\uparrow \dagger} \circ q),$$

18.
$$g_1^* \circ (t \triangleleft g_2) = g_1^*(t) \triangleleft (g_1^{\uparrow *} \circ g_2).$$

Jeśli decydujesz się rozwiązać to zadanie w Coqu lub Agdzie, to będziesz musiał mówić o równości funkcji. Możesz założyć ekstensjonalność funkcji¹, lub (preferowane) zawsze dawać funkcjom wszystkie parametry. Np. punkt 11 przyjmie postać: jeśli dla dowolnego x zachodzi $g_1(f_1(x)) = f^{\dagger}(g_2(x))$ to dla dowolnego t mamy $g_1^*(f_1^{\dagger}(t)) = f_2^{\dagger}(g_2^*(t))$. Punkt 3 i 12 może wymagać drobnego uogólnienia na dowolną funkcję, która dla każdego parametru zachowuje się jak odpowiednio identyczność i η .

Zadanie 6. Pokaż, równoważność definicji zbioru termów poprzez klasy abstrakcji α -równoważności (zbiór Term) oraz poprzez indeksowane rodziny zbiorów (zbiór $\operatorname{Term}_{\operatorname{Var}}$, gdzie Var to zbiór wszystkich zmiennych) są równoważne. W tym celu zdefiniuj odpowiedni izomorfizm (bijekcję) między tymi zbiorami. Twój izomorfizm powinien działać homomorficznie na wszystkich konstrukcjach z języka. Czy umiesz taką homomorficzność zdefiniować? A czy umiesz udowodnić?

Uwaga: zostawiłem to zadanie, bo nie jestem pewny, czy umiem je elegancko rozwiązać. Chętnie o tym zadaniu porozmawiam, ale też nie oczekuję, że ktoś je zrobi.

Zadanie 7. Zdefiniuj semantykę dużych kroków, czyli relację $e \Downarrow v$ mówiącą o tym, że wyrażenie e oblicza się do wartości v, lub inaczej $e \longrightarrow^* v$. Twoja definicja nie powinna odwoływać się ani do semantyki małych kroków, ani do przechodniego domknięcia relacji.

Zadanie 8. Pokaż, że Twoje semantyka z poprzedniego zadania jest równoważna semantyce małych kroków. W tym celu pokaż, że $e \Downarrow v$ wtedy i tylko wtedy gdy $e \longrightarrow^* v$, gdzie \longrightarrow^* oznacza zwrotne i przechodnie domknięcie relacji \longrightarrow .

Zadanie 9. Pokaż równoważność strukturalnej i redukcyjnej semantyki operacyjnej rachunku lambda CBV.

Zadanie 10. Pokaż, że semantyka redukcyjna rachunku lambda CBV jest deterministyczna, tzn. jeżeli $e \longrightarrow e_1$ oraz $e \longrightarrow e_2$ to $e_1 = e_2$. By to pokazać, zdefiniuj *potencjalne redeksy* (które będziemy oznaczać metazmienną r) i pokaż następujące własności:

- 1. żadna wartość nie jest postaci E[r];
- 2. każde wyrażenie jest postaci E[r] lub jest wartością;
- 3. jeśli $E_1[r_1] = E_2[r_2]$ to $E_1 = E_2$ oraz $r_1 = r_2$ (własność ta nazywana jest jednoznacznością rozkładu).

Jaka reprezentacja kontekstów ewaluacyjnych (*outside-in* czy *inside-out*) jest wygodniejsza do pokazania tych własności?

¹Coq.Logic.FunctionalExtensionality