#### **Abstract**

Managing fluctuation in photo-voltaic power plants which is frequent in cloudy days, is one of the big challenges that need to be solved in order to significantly increase its penetration into the power grid. One possible approach to predict short term variations is vision-based which includes a fish eye camera pointing into the sky, taking image sequences. Cloud states are predicted for near future using cloud segmentation and optical flow. In this context, we investigate the role of the cloudiness in shielding the direct sun irradiation and also reflecting the sunlight which increases the diffuse irradiation. Specifically, by analyzing our irradiation sensor measurements and image features we learn a soft sensor regressor for inferring irradiance of a given image. Direct component of irradiation is inferred using sun detection algorithm and cloud map. Finally the diffuse irradiation is estimated using several features derived from cloud state and date and time of image. Several regression algorithms are compared and Support Vector Ordinal Regression Machine delivers the best result with  $34W/m^2$  error and  $33W/m^2$  error standard deviation.

#### Chapter 1

## Introduction

Solar energy is one of the key alternative energy sources. The recent developments in solar panels and different business models around them made the photo-voltaic(PV) power plants more economical. However, the variability in PV output power make the integration into main energy grid risky and slow[14]. These fluctuation comes from cloud states in sky, and it has two different effects, one decreasing the power, the other one increasing the power. Firstly, if the clouds cover the sun completely or partially, some area of plant is shaded and does not receive direct sunlight, causing a power drop. On the other hand, if the clouds are not blocking the the sun completely or at all, based on their type, height, position and time, they can re-reflect some part of the irradiation<sup>1</sup> which is reflected by ground, back into the power plant. In this case, the input irradiance<sup>2</sup> and consequently the output power increases. In the electricity grid, the stability of power is vital. Therefore, if we want to integrate a PV power source into the grid we need to compensate for any power drop by using other electricity sources, and also restrain any excessive power. That is why we need to predict these short-time power changes in advance to design better strategies for handling them and ultimately provide a guaranteed stable power in the grid. In this chapter, we first explain different approaches towards this prediction problem, then we describe overview of the setup used in this study, and finally we talk about accuracy metrics for the result.

## 1.1 Power prediction approaches for a PV plant

The large variety of cloud characteristics such as motion, height, opacity and spatial distribution makes the cloud-induced fluctuations difficult to predict.

<sup>&</sup>lt;sup>1</sup>Irradiation is the sum of irradiance over a time period, expressed in  $Wh/m^2$ 

<sup>&</sup>lt;sup>2</sup>Irradiance is understood as instantaneous density of solar radiation incident on a given surface, typically expressed in  $W/m^2$ 

However, according to these comprehensive survays[5, 7], solar irradiance forecasting techniques have been successfully developed. These include numerical weather models (NWPs)[10] using pattern recognition of meteorological data for irradiance prediction, satellite-based forecasts using cloud motion vectors to determine sun occlusion based on fixed velocity model and predict power [6, 8, 4], statistical methods based on machine learning applied on past several years trend[20] and time series analysis[12] which are mostly developed for intra-day and day-ahead forecasts. However, for very short-term power prediction applications, the interest horizon stretches up to 30 minutes ahead. And therefore, these methods fall begind the required spatial or temporal resolution required on cloud-induced irradiance variability[5].

#### 1.1.1 Ground whole-sky imagery

For acheiving this high resolution forecasts, vision-based methods using total-sky-cameras are developed. The earliest works use cameras for monitoring cloud cover characteristics[11, 3] and aerosol properties[9, 2]. In recent years, using sky cameras for solar irradiance forecast has grown rapidly and several successful works have been developed by analysing motion, optical and distribution of clouds in the whole-sky images captured by a fisheye lense camera.(Chu et al., 2015; West et al., 2014; Quesada-Ruiz et al., 2014; Chu et al., 2013; Fu and Cheng, 2013; Yang et al., 2014; Bernecker et al., 2014; Chow et al., 2011; Marquez and Coimbra, 2013). Using only one camera for data input, some methods[19] predict sun occlusions percieved by the camera and therefore, their forecast in only valid for the point very close to the camera, since areas further away might be sunny or cloudy and camera's point of view is not covering that area. However, one can incorporate cloud base height to calculate projection of clouds shadows on the ground. This information is usually acquired by using a laser based cloud base sensor (ceilometer) and make the area irradiance forecasts more accurate[21]. It is theoritically possible to use two or more cameras in the site mounted with a distance about 50m and by applying stereo algorithm, find the cloud height; however, this method has not been investigated in practice yet. In this research we focus on ground whole-sky imagery methods aimed for very short-term irradiance forecast.

### 1.2 Data acquisition setup

This study uses the data from a PV plant in Cavriglia area in Italy. The setup for this study is based on one sky camera with fisheye lense mounted at the top of the building right next to the PV plant. This type of camera with 180 degree area of view gives us the whole sky in one image. Furthermore, there are two irradiance sensors-Pyranometer) located at the same location

as camera, one with the same angle as solar panels-which is tilted about 40 degrees towards the south- and the other one about 40 degrees tilted about 35 degrees towards the north. The data acquisition software takes several images with different exposures every 6 seconds and combine them to get HDR images. The irradiance sensor measurements and temperature are also recorded at the same intervals. Finally, we record power output of PV plant every 3 seconds.

#### 1.3 Cloud segmentation, cloud tracking

For predicting the future state of clouds in the sky we need to first know where are the clouds. This is done by applying a dynamic-threshold segmentation algorithm on red to blue channel ratio of RGB images. Several studies has shown that the red to blue ratio is a good criterion for cloud segmentation, but the threshold for this ratio should be set in a way that discriminate clouds locally but be smooth globally. This method handles cloud color variation on different cloud types very well. One sample result of such segmentation is figure 1.1

After detecting the clouds in a sequence of images, one can apply optical flow algorithm on some points of interest in the first image and extract the cloud movement as motion vectors of optical flow. This cloud tracking pipeline gives us the clouds position is the sky for very short time in future. The result of experiment on several future time horizon has shown that accuracy decreases considerably after 30 minutes, specially in high speed cloud motions.

### 1.4 Image irradiance estimation for power prediction

The final step in power prediction is to associate a potential power estimate to any time in several minutes ahead knowing the cloud positions and their characteristic in that time. The generated power of a PV plant depends on several factors including received irradiance, operational temperature and panels specification. However, the only factor which changes rapidly and has a huge impact on the output power is irradiance. Therefore, in our power prediction framework, we use a power prediction adaptation method with recorded data of previous minutes to derive the power output from future irradiance estimations. The scaling factor for the result is calculated by diving the recorded power output and irradiance sensor measurements. Thus, this power adaptation mechanism, separates and defines our main problem as estimating the received irradiance from a clouds attributes in a specific time and location.



Figure 1.1: Cloud segmentation sample

#### 1.5 Irradiance components

The total solar radiation -GHI³- which hits the surface of solar panels consists of three basic components, direct -DNI⁴-, diffuse -DHI⁵- and reflected. The direct part comes from the sunlight beams directly raying from sun direction to the solar module. While passing through atmosphere, some amount of sunlight scatters in every direction by dense particles. The portion of this scattered light which hits the module forms the diffuse irradiation for solar panels. Reflected irradiance represents sunlight that is reflected off the clouds or ground around the array of panels. The source of this reflected radiation can be DNI or DHI. Rate of the reflection depends on clouds coverage, size of the ground that is visible from the module and

<sup>&</sup>lt;sup>3</sup>Global Horizontal Irradiation

<sup>&</sup>lt;sup>4</sup>Direct Normal Irradiance

<sup>&</sup>lt;sup>5</sup>Diffuse Horizontal Irradiance

their albedo coefficient<sup>6</sup>. The albedo coefficient for ground is typically 0.2, though it can be higher during snowy periods in cold climates. The albedo coefficient for clouds depends on their type, density, temperature and etc. These components are shown in figure 1.2



Figure 1.2: Irradiance components

Total irradiation is related to other three components with this formula:

$$GHI = DNI \times cos(Z) + DHI + reflected$$

where Z is the solar zenith angle-the angle between the direction of the sun and the line directly overhead. Since distinguishing between the reflected and diffuse irradiation is practically hard and also there is not any ground truth value for training, we decided to combine both of them as the diffuse component. Thus, the formula changes to:

$$GHI = DNI \times cos(Z) + DHI \tag{1.1}$$

where DHI is sum of all non direct irradiations.

## 1.6 Accuracy metrics

For measuring accuracy of the result we can use popular error measures such as RMSE-Root mean square error. However, since there are not any other publicly available study on this specific problem to compare our RMSE with, we can define our own error measures which quantify our solution quality better. For example, apart from RMSE, we calculate a relative error as well that penalize errors for irradiances higher than a specific value more.

<sup>&</sup>lt;sup>6</sup>The portion of the incident irradiance that is reflected

#### 1. Introduction

And errors for irradiances lower than that value, will be penalized less. This cutting value is set as 100 and the scale is logarithmic, because when the irradiance is less than 100, the power output of plant is very low and practically not useful in grid. On the other hand, we want more precise result for very high irradiances. This means errors for small irradiances are less important than errors in big big ones. We also use MBE (mean bias error) and  $R^2$  for correlation coefficient.

#### Chapter 2

### Related work

In this chapter we survey the studies which focus on problem of irradiance estimation using sky images. The usage of ground-based cameras for studying effect of clouds on irradiation has a long history, as early as 1977 when Borkowski et al.[1] developed the first whole-sky camera system for investigating effects of clouds on middle ultraviolet global radiation. In this study, the degree of solar obstruction and cloud coverage were determined visually from the images. Later in 1998, Jeff Sabburg and Joe wong[13] developed and evalued the first automated, ground-based, sun-centered sky camera system for cloud assessment. However, since the purpose of study was the clouds effect on UVB¹ radiation they only considered a small area around the sun for cloud and sun ostruction detection which is of paramount importance for this rays. They use a threshold-based approch on gray scale pixel intensities for cloud detection. They also use solar radiation measurements in a image processing algorithm to reduce reflections from the sun on the camera system being mistaken for cloud in the images.

## 2.1 Estimate irradiance from zone types in sky images

One of the recent researches done in this area is held as a collaboration between Universitatea Transilvania din Braşov in Romania and Cyprus University of Technology[17][18]. This work uses sets of two sensequative images taken by wdie-view angle GoPro Hero2 camera(one with normal exposure and the other one under-exposed) and extracts their RGB<sup>2</sup>, HSV<sup>3</sup> components. Then by learning several intensity ranges, they segment four zone type in each image: sun, blue sky, thin clouds and thick clouds. One sample of segmentaion is shown in figure 2.1.

<sup>&</sup>lt;sup>1</sup>Ultraviolet B

<sup>&</sup>lt;sup>2</sup>(Red, Green, Blue)

<sup>&</sup>lt;sup>3</sup>(Hue, Saturation, Value)



Figure 2.1: Three different zones identified in images (sun, cloud, sky)

The irradiance (direct, diffuse, global) is recorded using the equipment Kipp & Zonen, Solys2 at the same time of image capturing. Finally, a regressor used to estimate direct irradiation (DNI) based on a feature vector consisting the number of pixels of different zone types in the images. The correlation in the result is shown in figure 2.2.



Figure 2.2: Correlation between estimated DNI and recorded DNI.

# 2.2 Using clear sky irradiance model and binary cloud mask

Thie work done by T. Schmidt et al.[15] at University of Oldenburg in Germany is a very recent and relevant work on retrieving irradiation using sky imager pictures. The data consists of one year record of components of irradiance (direct, diffuse, global) and sky images captured by a wide-view Vivotec camera every 10 seconds. In their first approch they apply a th

For example, T. Schmidt et al.[16] use a grid of pyranometer in the area around and inside of the plant in order detect coming clouds by looking at irradiation drops of pyramoneters. They also compare the result to using only a camera and one pyranometer instead.

# 2.3 Using a set of image features to quanity the pattern of clouds

## **Bibliography**

- [1] J. Borkowski, Chai A.-T., Mo T., and Green A. E. O. Cloud effects on middle ultraviolet global radiation. 25(4):287–301, 1977.
- [2] A. Cazorla. *Development of a Sky Imager for Cloud Classification and Aerosol Characterization*. PhD thesis, Universidad de Granada, Granada, Spain, 2010. PhD thesis.
- [3] A. Cazorla, F. J. Olmo, and L. Alados-Arboledas. Development of a sky imager for cloud cover assessment. 25:29–39, 2008.
- [4] A. Hammer, D. Heinemann, E. Lorenz, and B. Lückehe. Shortterm forecasting of solar radiation: a statistical approach using satellite data. 67:139–150, 1999.
- [5] R. H. Inman, H. T. C. Pedro, and C. F. M. Coimbra. Solar forecasting methods for renewable energy integration, Prog. Energ. 39:535–576, 2013.
- [6] J. Kühnert, E. Lorenz, and D. Heinemann. Satellite-based irradiance and power forecasting for the German energy market. page 504, 2013.
- [7] E. Lorenz and D. Heinemann. Prediction of solar irradiance and photovoltaic power. 1:239–292, 2012.
- [8] E. Lorenz, D. Heinemann, and A Hammer. Short-term forecasting of solar radiation based on satellite data. page 841–848, 2004.
- [9] F. J. Olmo, A. Cazorla, L. Alados-Arboledas, M. A. Lopez-Alvarez, J. Hernandez-Andres, and J. Romero. Retrieval of the optical depth using an all-sky CCD camera. 47:182–189, 2008.

- [10] R. Perez, E. Lorenz, S. Pelland, M. Beauharnois, G. Van Knowe, K. Hemler Jr., D. Heinemann, J. Remund, S. C. Müller, W. Traunmüller, G. Steinmauer, D. Pozo, J. A. Ruiz-Arias, V. Lara-Fanego, L. Ramirez-Santigosa, M. Gaston-Romero, and L. M. Pomares. Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. 94:305–326, 2013.
- [11] G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, B. W. Forgan, and C. N. Long. Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. 42:1421–1434, 2003.
- [12] G. Reikard. Predicting solar radiation at high resolutions: a comparison of time series forecasts. 83:342–349, 2009.
- [13] J. Sabburg and J. Wong. Evaluation of a Ground-Based Sky Camera System for Use in Surface Irradiance Measurement. 16:752–759, 1998.
- [14] S. Sayeef, S. Heslop, D. Cornforth, T. Moore, S. Percy, J. Ward, A. Berry, , and D. Rowe. Solar Intermittency: Australia's Clean Energy Challenge: Characterising the Effect of High Penetration Solar Intermittency on Australian Electricity Networks. 2012.
- [15] T. Schmidt, J. Kalisch, and E Lorenz. Retrieving direct and diffuse radiation with the use of sky imager pictures. 17:12–17, 2015.
- [16] T. Schmidt, J. Kalisch, E. Lorenz, and Heinemann D. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts. 16:3399–3412, 2016.
- [17] R. Tapakis, A.G. Charalambides, M.D. Moldovan, and B.G. Burduhos. Cloudy sky irradiance model using sky images. 2015.
- [18] R. Tapakis, A.G. Charalambides, M.D. Moldovan, and B.G. Burduhos. Effect of clouds on solar irradiance. Technical report, Universitatea Transilvania din Braşov, 2015.
- [19] S. R. West, D. Rowe, S. Sayeef, and A. Berry. Short-term irradiance forecasting using skycams: motivation and development. 110:188–207, 2014.
- [20] B. Wolff, E. Lorenz, and O. Kramer. Statistical learning for short-term photovoltaic power predictions. 2013.
- [21] D. Yang, Z. Dong, T. Reindl, P. Jirutitijaroen, and W. M. Walsh. Solar irradiance forecasting using spatiotemporal empirical kriging and vector autoregressive models with parameter shrinkage. 103:550–562, 2014.