

BS (Multimedia Gaming) Spring-2024

Digital Logic Design

Course Title: Digital Logic Design

Course Code: CS103 Credit Hours: (2+1)

Course Instructor: Dr. Santosh Kumar Banbhrani Electronic mail: santosh.faculty@aror.edu.pk

Office location: Faculty office, 2nd floor, Building 02

Consulting hours: 2:30PM to 4:30PM (Tuesday)

Description:

The aim of this course is to provide students with a good understanding of basic concepts, techniques, and principles of logic design in digital circuits.

COURSE LEARNING OUTCOMES

The students will be able:

CLO1: Simplify the Boolean Expressions using Boolean laws, rules, theorems and Karnaugh map

CLO2: Interpret the functionality of basic combinational and sequential logic circuits

CLO3: **Demonstrate** practical skills to build combinational and sequential digital logic circuits using fixed function Integrated Circuits (IC).

CLOs	Level of learning	Mapped OBE PLOs	Mapped ABET SOs	Teaching Methods	CLO attainment checked in
CLO1	Cog-4	1	1	Lectures, tutorials	First Term Exam,
CLO2	Cog-2	1		Lectures, tutorials	Second Term Exam, Quiz 2
CLO3	Psych-4	5		Lectures,	Lab Exams
	-			Demonstrations	

Mapped OBE Program Learning Outcomes (PLOs):

PLO1 Engineering Knowledge: An ability to apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

<u>PLO5 Modern Tool Usage:</u> An ability to create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities, with an understanding of the limitations.

Mapped ABET Student Outcomes (SOs):

<u>SO1:</u> An ability to identify, formulate and solve complex engineering problems by applying principles of engineering science and mathematics

Performance Indicator for SO1 are:

- a. Identification of specific facts of mathematics, science and engineering for a given situation.
- b. Convert real world situation into an appropriate model
- c. Ability to solve engineering problems using relevant facts of mathematics, science and engineering

Assessment: Theory

S. No	Assessment Activities	Percentage	Total Activities
1.	Sessional: Quizzes and Assignments	30%	10
2.	Mid Term Exam	30%	1
3.	Final Exam	40%	1

Assessment: Lab

S. No	Assessment Activities	Percentage	Total Activities
1.	Lab Handout Submissions	30%	10
2.	Mid Term Exam	30%	1
3.	Final Exam	40%	1

Recommended Books: (Textbook)

S.No	Book Name	Author/s Name	Publisher Name & Edition
1.	Digital Fundamentals (11 th Ed)	Floyd Thomas	Prentice Hall, USA.

Reference Books:

1.	Digital Systems: Principles & Applications	R. C. Tocci	Prentice Hall, USA
2.	Digital Electronics: Principles & Applications	R. Tokheim	McGraw Hill.
3.	Introduction to Digital Electronics,	Crowe John and Hayes-Gill Barrie	Newnes Books, UK. ISBN = 0340645709,
4.	Digital Design	M. Moris Mano	Pearson, Prentice Hall.

Course Outlines:

Weeks	LEC#	SUBTOPICS	REFERENCE	Course% Covered
Week No: 01	Lec: 01	 Introduction to the Class & Subject Introductory Analog and Digital Concepts Binary digits 	Sections 1.1-1.3	2.08%
Week	Lec: 02	 Logic levels Digital waveform (periodic and non-periodic) Basic Logic Operations. 	Sections 1.1-1.3	4.16%
Week No: 02	Lec :03	Number Systems and conversions (Binary, Decimal, Hexadecimal, Octal)	Sections 2.1-2.12	8.33%
W _e	Lec: 04	Signed Numbers,Arithmetic Operations with Signed Numbers	Sections 2.1-2.12	10.41%
Week No: 03	Lec: 05	 Binary Arithmetic, Digital Codes (Gray Code, Alphanumeric Codes, Unicode) Error Codes (Parity Method for Error Detection and Cyclic Redundancy Check) 	Sections 2.1-2.12	14.57%
>	Lec: 06	Logic GatesTruth Table	Sections 2.1-2.12	16.65%
04	Lec: 07	 Boolean Algebra, Apply the basic laws and rules of Boolean Algebra to simplify Boolean expressions DE Morgan's theorems. 	Sections 4.1-4.11	20.81%
Week No:	Lec: 08	 Sum-of-Product (SOP) and the Product-of Sum (POS) expressions converting a Boolean expression to a truth table and vice versa. 	Sections 4.1-4.11	22.89%
Week No:05	Lec: 09	 The Karnaugh Map simplification using Karnaugh Map The Karnaugh Map Examples 	Sections 4.1-4.11	27.05%

	Lec: 10	Quine McCluskey Method	Sections 4.1-4.11	31.21%
Week No:06	Lec: 11	Combinational Logic Analysis	Sections 5.1 -5.5	33.29%
Week	Lec: 12	Basic Combinational Logic Circuits	Sections 5.1 -5.5	35.37%
Week No:07	Lec: 13	Implementing Combinational Logic	Sections 5.1 -5.5	39.53%
Week	Lec: 14	The Universal Property of NAND and NOR Gates	Sections 5.1 -5.5	41.61%
Week No: 08	Lec: 15	Combinational Logic Using NAND and NOR Gates	Sections 5.1 -5.5	44.71%
	Lec: 16	Pulse Waveform Operation.	Sections 5.1 -5.5	50.00%
		Midterm exam		
Week No: 09	Lec: 17	 Functions of Combinational Logic Half and Full Adders Parallel Binary Adders 	Sections 6.1 – 6.10	52.00%
Week	Lec: 18	Ripple Carry and Look-Ahead Carry AddersComparators	Sections 6.1 – 6.10	54.09%
Wee k No:	Lec: 19	DecodersEncodersCode Converters	Sections 6.1 – 6.10	58.27%

	Lec: 20	Multiplexers (Data Selectors)Demultiplexers	Sections 6.1 – 6.10	60.36%
		Parity Generators/Checkers.		
Week No: 11	Lec: 21	 Latches, Flip-Flops, and Timers Latches: Introduction S-R Latch 	Sections 7.1, 7.2, 7.4	64.54%
Wee 1	Lec: 22	Gated S-R LatchGated D-Latch.	Sections 7.1, 7.2, 7.4	70.34%
Week No: 12	Lec: 23	Flip Flops:S-R Flip FlopJ-K Flip Flop	Sections 7.1, 7.2, 7.4	72.42%
Weel	Lec: 24	D-Flip FlopT-Flip FlopApplications	Sections 7.1, 7.2, 7.4	74.5%
No:13	Lec: 25	 Shift Register Operations Types of Shift Register Data I/Os 	Sections 8.1 – 8.5	78.66%
Week No:13	Lec: 26	 Bidirectional Shift Registers Shift Register Counters Shift Register Applications. 	Sections 8.1 – 8.5	80.74%
	Lec: 27	• Counters	Sections 9.1 – 9.4, 9.6, 9.8	84.9%

Week No: 14	Lec: 27	• Counters	Sections 9.1 – 9.4, 9.6, 9.8	84.9%
Weel	Lec: 28	Finite State MachinesAsynchronous Counters	Sections 9.1 – 9.4, 9.6, 9.8	86.98%
No:15	Lec: 29	Synchronous CountersUp/Down Synchronous Counters	Sections 9.1 – 9.4, 9.6, 9.8	93%
Week No:1	Lec: 30	Cascaded CountersCounter Applications	Sections 9.1 – 9.4, 9.6, 9.8	100%

Week No: 16

REVISION

Labs outline and proposed lab projects here:

Lab	Objective	Mapped CLO
1	NOT, AND, OR Gate	
2	Logic Gates Explored and Boolean Algebra	
3	Binary Conversion and Adders	
4	Karnaugh Maps	
5	Karnaugh Maps in Seven Segment Displays	CLO 3
6	Decoder and Encoder	
7	Comparators	
8	Multiplexers and De-multiplexer	
9	Flip Flops	
10	Bidirectional Shift Registers	

S. No	Project Title	
1	Digital Watch	
2	Stop Watch	
3	Frequency Down Converter	
4	PWM	
5	Traffic Signal Control System	
6	Clock Generator	
7	Security System	
8	Serial to Parallel Converter	
9	Parallel to Serial Converter	
10	4 Digit Arithmetic Calculator	

Course Instructor

Name	Dr. Santosh Kumar Banbhrani		
Designation	Assistant Professor		
Department	AI-Multimedia Gaming		