Topic Notes 8 & 9, Problem Formulation & Linear Programming Exam Sample Questions

Question 1

What is the meaning of tractability for a mathematical model?

- a) The model's ability to handle large amounts of data
- b) The model's ability to produce accurate predictions
- c) The model's ability to be solved or analyzed efficiently
- d) The model's ability to adapt to changing conditions
- e) The model's ability to produce simple and intuitive explanations.

c)

Question 2

What is meant by validity of a model?

- a) The model's ability to produce consistent results over time
- b) The model's ability to fit the data accurately
- c) The extent to which the model is able to generalize to new situations
- d) The degree to which inferences drawn from the model hold meaning for the real system
- e) The model's ability to handle complex data inputs

d)

Question 3

What is heuristic optimization?

- a) A problem-solving approach that uses a set of rules or guidelines to find a solution
- b) A mathematical technique for optimizing a function using derivatives
- c) A search algorithm that guarantees the optimal solution
- d) An approach that uses trial and error to find the best solution but is not guaranteed to yield an exact optimum
- e) An optimization method that involves solving a series of linear equations

d)

Question 4

Which of the following is not a continuous variable?

- a) The average 30-day rainfall in a region in centimetres.
- b) Water volume in a concrete mix.
- c) The result of rolling a die.
- d) The temperature of a freezer.
- e) They are all continuous variables

Use the following scenario for questions 5-7.

A steel mill has two production lines available to make steel for industrial use. The first production line can produce one lot of steel in t_1 hours at cost c_1 , and the second requires t_2 hours and cost c_2 . The plant manager wishes to find the least costly way to produce z lots in a total of at most T hours of operation (meaning that even though the lines operate in parallel, T is the sum of the hours the lines are operating. e.g. Both lines running for one hour each would be two total hours.) An integer number of lots x_1 will be produced on line 1, and integer number of lots x_2 will be produced on line 2.

Identify the decision variables.

- a) x_1, x_2
- b) t_1, t_2
- c) c_1, c_2
- d) $x_1, x_2, t_1, t_2, c_1, c_2$
- e) none of the above

a)

Question 6

Identify the objective function from Question 5.

- a) $\max_{x \in X} \phi = c_1 x_1 + c_2 x_2$
- b) $\max_{x_1, x_2} \phi = c^T x$
- c) $\min_{x_1, x_2} \phi = c_1 x_1 + c_2 x_2$
- d) $\min_{x_1, x_2} \phi = c^T x$
- e) c and d

e)

Question 7

Identify the constraints from Question 5.

- a) $t_1 x_1 + t_2 x_2 \le T$
- b) $x_1 + x_2 = z$
- c) $x_1 \ge 0, x_2 \ge 0$
- d) $x_1, x_2 \in \mathbb{Z}$
- e) All of the above

e)

The first constraint is that there is a set number of total hours, T.

The other constraints are that the two production lines, x_1 and x_2 , will produce z lots of steel, and those lots will not be negative, nor decimal quantities

Consider the constraints:

$$-x_1 + x_2 \le 1$$

 $x_2 \le 3$
 $x_1, x_2 \ge 0$

$$x_2 \leq 3$$

$$x_1, x_2 \ge 0$$

Which of the following represents the feasible space?

a)

b)

c)

d)

e) none of the above

For questions 9- 12 use the constraints from Question 8 and consider the points:

$$x_1 = (2,3), x_2 = (0,3), x_3 = (2,1), x_4 = (3,3)$$

What is the correct classification for point x_1 ?

- a) Interior Point
- b) Boundary Point
- c) Extreme Point
- d) Infeasible Point
- e) Edge Point
- c) Extreme (or corner) point.

Question 10

What is the correct classification for point x_2 ?

- a) Interior Point
- b) Boundary Point
- c) Extreme Point
- d) Infeasible Point
- e) Edge Point

d) Infeasible point.

Question 11

What is the correct classification for point x_3 ?

- a) Interior Point
- b) Boundary Point
- c) Extreme Point
- d) Infeasible Point
- e) Edge Point
- a) Interior point.

Question 12

Of the four points, which point may be a possible optimal solution?

- a) x_2
- b) *x*₄
- c) x_1
- d) x_3
- e) x_1, x_4

e) x_1 , x_4 may both represent the optimal solution. While x_1 is the only point that may be uniquely optimal, there is a chance based on the objective function that x_4 is non-uniquely optimal as well.

Consider the linear constraints:

$$3x_1 + 5x_2 \le 16$$

 $5x_1 + 3x_2 \le 16$
 $x_1, x_2 \ge 0$

And the objective contour:

Of the following four points, x_5 through x_8 , which point represents the best solution? $x_5 = (2,2), x_6 = \left(2,\frac{3}{2}\right), x_7 = (3,0), x_8 = \left(\frac{1}{2},\frac{5}{2}\right)$

- a) x_5
- b) x_6
- c) x_7
- d) x_8
- e) From the given information, it is impossible to tell which of the four points represents the best solution.

a)

Consider the following scenario presented in lecture for Questions 14-17.

How many decision variables are there for this problem?

- a) 12
- b) 16
- c) 18
- d) 24
- e) 30

c)

Question 15

A linear optimization was performed on the problem above and the following sensitivity report was generated by Excel Solver:

Variable Cells									
		Final	Reduced	Objective	Allowable	Allowable			
Cell	Name	Value	Cost	Coefficient	Increase	Decrease			
\$1\$2	A11 Devices Made	1000	0	280	0	0			
\$1\$3	A12 Devices Made	2000	0	220	0	0			
\$1\$4	A13 Devices Made	0	0	150	0	1E+30			
\$1\$5	A21 Devices Made	2000	0	290	0	0			
\$1\$6	A22 Devices Made	2000	0	260	0	0			
\$1\$7	A23 Devices Made	2000	0	240	1E+30	0			
\$1\$8	B11 Devices Made	5000	0	280	1E+30	0			
\$1\$9	B12 Devices Made	0	0	270	0	0			
\$1\$10	B13 Devices Made	0	0	200	0	1E+30			
\$1\$11	B21 Devices Made	0	0	290	0	1E+30			
\$1\$12	B22 Devices Made	3000	0	310	0	0			
\$1\$13	B23 Devices Made	5000	0	290	1E+30	0			
\$1\$14	C11 Devices Made	4000	0	280	0	0			
\$1\$15	C12 Devices Made	3000	0	320	0	0			
\$1\$16	C13 Devices Made	0	0	200	80	0			
\$1\$17	C21 Devices Made	1000	0	190	0	0			
\$1\$18	C22 Devices Made	0	0	260	0	1E+30			
\$1\$19	C23 Devices Made	1000	0	190	0	190			

What is the profit per Device A manufactured at plant 1 and shipped to retailer 3?

- a) \$290
- b) \$270
- c) \$200
- d) \$190
- e) \$150

e)

Question 16

The sensitivity report for the constraints is shown below:

Constraints

Onstrain						
		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$B\$23	A Demand 1 Value	3000	100	3000	1000	2000
\$B\$24	A Demand 2 Value	4000	0	4000	1000	0
\$B\$25	A Demand 3 Value	2000	50	2000	1000	2000
\$B\$26	B Demand 1 Value	5000	50	5000	0	0
\$B\$27	B Demand 2 Value	3000	0	3000	1E+30	0
\$B\$28	B Demand 3 Value	5000	50	5000	0	0
\$B\$29	C Demand 1 Value	5000	0	7000	1E+30	2000
\$B\$30	C Demand 2 Value	3000	0	3000	1E+30	0
\$B\$31	C Demand 3 Value	1000	0	3000	1E+30	2000
\$B\$32	A Capacity 1 Value	3000	0	10000	1E+30	7000
\$B\$33	A Capacity 2 Value	6000	0	12000	1E+30	6000
\$B\$34	B Capacity 1 Value	5000	50	5000	0	0
\$B\$35	B Capacity 2 Value	8000	50	8000	0	0
\$B\$36	C Capacity 1 Value	7000	100	7000	1000	2000
\$B\$37	C Capacity 2 Value	2000	0	5000	1E+30	3000
\$B\$38	Total Capacity 1 Value	15000	100	15000	2000	0
\$B\$39	Total Capacity 2 Value	16000	0	20000	1E+30	4000
\$B\$40	Shipping Capacity 1,1 Value	10000	80	10000	0	2000
\$B\$41	Shipping Capacity 1,2 Value	5000	120	5000	0	2000
\$B\$42	Shipping Capacity 1,3 Value	0	0	3000	1E+30	3000
\$B\$43	Shipping Capacity 2,1 Value	3000	190	3000	2000	1000
\$B\$44	Shipping Capacity 2,2 Value	5000	260	5000	0	1000
\$B\$45	Shpping Capacity 2,3 Value	8000	190	8000	2000	1000

Which of the following constraint is not binding at the optimum solution?

- a) Demand for Device C from Retailer 2
- b) Shipping capacity from Plant 1 to Retailer 3
- c) Shipping capacity from Plant 1 to Retailer 1
- d) Demand for Device A from Retailer 1
- e) Manufacturing Capacity of Plant 2 for Device B

What is the increase in profit if shipping capacity from plant 2 to retailer 3 is increased by 1500 units?

- a) \$165,000
- b) \$190,000
- c) \$250,000
- d) \$285,000
- e) Cannot be determined since shadow price will change

d)