	NMIT2 Numerik 2	Serie 1	Zürcher Hochschule für Angewandte Wissenschaften
	Autoren	Rémi Georgiou, André Stocker	
	Datum	17. September 2015	
			avv

Aufgabe 1

a)
$$f(x) = e^x$$
, $x_0 = 0$, ohne Restglied $p(x) = \sum_{n=0}^{7} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}$

b)
$$x = 1$$
, $e = 2.71828...$

b)
$$x = 1$$
, $e = 2.71828 ...$

$$p(1) = \sum_{n=0}^{7} \frac{x^n}{n!} (x - x_0)^n = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} = \frac{685}{252} \approx 2.71825$$

$$abs.err = |2.71828 - 2.71825| = 0.3 \cdot 10^{-4}$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$