

Mathematics Methods 3 & 4 Test 1 2016

Section I Calculator Free Differentiation, Anti-differentiation and their applications.

icl		(c, xc) (1 x1) ((n)
[٤]		$(\mathcal{C} - \mathcal{X} \mathbf{e})^{\varepsilon} (\nabla + \mathcal{X} \mathcal{L}) = \mathcal{V} \qquad (6)$
	Oo not simplify your answer.	Differentiate the following. D
		l. (6 marks)
гесеіле fn]] marks.	awing templates, etaser, Formula sheet. than 2 marks require working to be shown to	
MYKKS : 58	TIME: 25 minutes	DATE : Friday 4 th March
		STUDENT'S NAME

 $\frac{L+x^{\Lambda}}{\underline{\varsigma}^{\chi} \underline{\varsigma}^{\Lambda}} = \Lambda \qquad (q)$

2. (3 marks)

Determine $\int 2x(7-3x^2)^4 dx$

3. (3 marks)

Given that $\int_{1}^{a} (2x-3)dx = 6$, determine a.

(6 marks) ٠, A particle moves in rectilinear motion with a velocity of 7 m/s as it passes through

(6 marks)

where m and n are constants. is the number of seconds since passing through O. Acceleration a is defined as a = mt - n,

When t=1, the velocity is 12 m/s, and when t=7 the particle is instantaneously at rest.

- [٤] (a) Calculate the values of m and n.

(a) The rate of change in volume when t = 1. Explain the meaning of this.

 $0 \le t$ lof

The air in a hot air balloon is being inflated such that the rate of change of its volume at any

If initially the balloon has 3 m^3 of air in it, determine:

 $i - z i = \frac{\lambda p}{2}$

time t, minutes, is given as:

[7] (b) For what values of t the volume is increasing.

[7] The volume of the balloon after five minutes.

Page 3 of 5

[7]

[7] Determine when and where the maximum velocity is attained.

Hence, determine the expression for the velocity as a function of time.

 ξ to ξ aga q

[1]

5. (4 marks)

The graph of y = f(x) is shown below.

Given $\int_{-3}^{0} f(x)dx = 4$ and $\int_{0}^{2} f(x)dx = -1$, determine the following:

(a)
$$\int_{-3}^{2} f(x)dx$$
 [1]

(b)
$$\int_{0}^{2} 5f(x)dx$$
 [1]

(c)
$$\int_{-3}^{2} |f(x)| dx$$
 [1]

(d) The area enclosed by f(x) and the x axis. [1]

(b) Using calculus techniques, determine the minimum time taken by the man to reach point B and the distance he would travel by foot to achieve this minimum time. [5]

Page 4 of 5

- .9
- Given the function $y = (x+2)(x^2-4x+4)$.
- [٤] (a) Determine the gradient of the tangent to the curve at x = 3.

[٤] Using calculus techniques, determine the nature of the stationary point at x = 2.

(6 marks)

(7 marks)

He could proceed in any of three ways:

- Row his boat directly across the river to point \boldsymbol{C} and then run to \boldsymbol{B}
- 7 Row directly to B
- Row to some point D between C and B and then run to B .ε

The man can row at a speed of 6 km/h and run at a speed of 8 km/h.

Given that $time = \frac{distance}{speed}$ and x is the distance from C to D, show that the time (t) taken for the man to travel from A to B can be represented by the equation. [7] (a)

$$\frac{x-8}{8} + \frac{6 + 2x}{9} = 1$$

Mathematics Methods 3 & 4 Test 1 2016

Section 2 Calculator Assumed Differentiation, Anti-differentiation and their applications.

STUDENT'S NAME

DATE	E: Frida	ay 4 th March	TIME	25 mins	MARKS: 2	23
INSTRUCTIONS: Standard Items: Special Items:		Pens, penc Three cale	Pens, pencils, drawing templates, eraser, Formula sheet. Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)			
Questio	ons or pai	rts of questions worth	more than 2 marks requir	e working to be show	wn to receive full marks.	
7.	(6 mai	rks)				_
		olume <i>Vcm</i> ³ of wa	where x cm is the depth of the			
	(a)	Determine an ap from 200 to 210	1	nange in depth w	hen the volume of water change: [3	
	(b)	Determine the poby 6%.	ercentage change in th	ne volume of the	vessel if the depth has increased	

8. (4 marks)

A company manufacturing a new bike determines that the marginal cost (in dollars) for the production of the n^{th} unit is given by the expression:

$$\frac{dC}{dn} = \frac{200000}{\left(n + 20\right)^2}$$

(a) The initial set up cost is \$ 10 000 (i.e. the cost of producing no bikes is \$ 10 000). Show that the expression for the total cost of producing *n* bikes is:

$$C = \frac{-200000}{n + 20} + 20000 \tag{2}$$

b) If the company sells each bike for \$200, how many bikes must be sold before it first makes a profit? [2]

Page 1 of 5