EDO III

por Abílio Lemos

Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147 - 2019

06 e 11 de junho de 2019

Considere a EDO linear, de 2^a ordem, não homogênea, com coeficientes constantes

$$ay'' + by' + cy = g(x), \tag{1}$$

onde $a,b,c\in\mathbb{R}$, $a\neq 0$ e g(x) é uma função polinomial, $sen\beta x$, $cos\,\beta x$, $e^{\beta x}$ $(\beta\in\mathbb{R})$, ou combinações de somas e produtos envolvendo tais funções. A solução geral de (1) é dada por

$$y(x) = y_c(x) + y_p(x),$$

onde y_c é a solução geral da EDO homogênea associada (chamada **solução complementar**) ay'' + by' + cy = 0 e y_p é uma solução particular de (1).

1º Caso: $g(x) = a_0 + a_1x + \cdots + a_nx^n$, $a_0, \ldots, a_n \in \mathbb{R}$. Neste caso, deve-se procurar uma solução particular da forma

 $v_n(x) = x^s(A_0 + \cdots + A_n x^n).$

onde
$$s$$
 é o menor inteiro não negativo que garante que nenhuma parcela de $y_p(x)$ seja solução da EDO homogênea

associada. Os coeficientes A_0, \ldots, A_n devem ser determinados.

Exemplo: Determine a solução geral da EDO $y'' + y' = 2 + x^2$.

2º **Caso**: $g(x) = (a_0 + a_1x + \cdots + a_nx^n)e^{ax}$, $a_0, \ldots, a_n, a \in \mathbb{R}$. Neste caso, deve-se procurar uma solução particular da forma

$$y_p(x) = x^s(A_0 + \cdots + A_n x^n x)e^{ax},$$

onde s é o menor inteiro não negativo que garante que nenhuma parcela de $y_p(x)$ seja solução da EDO homogênea associada. Os coeficientes A_0, \ldots, A_n devem ser determinados.

Exemplo: Determine a solução geral da EDO $y'' + 2y' + y = (2 + x)e^{-x}$.

3° **Caso**:
$$g(x) = (\sum_{i=0}^{n} a_i x^i) e^{ax} \cos bx + (\sum_{i=0}^{m} b_i x^i) e^{ax} \operatorname{senb} x$$
, $a_0, \ldots, a_n, b_0, \ldots, b_m, a, b \in \mathbb{R}$.

Neste caso, deve-se procurar uma solução particular da forma

$$y_p(x) = x^s[(A_0 + \cdots + A_q x^q)e^{ax}\cos bx + (B_0 + \cdots + B_q x^q)e^{ax}senbx],$$

onde $q = \max\{n, m\}$ e s é o menor inteiro não negativo que garante que nenhuma parcela de $y_p(x)$ seja solução da EDO homogênea associada. Os coeficientes $A_0, \ldots, A_q, B_0, \ldots, B_q$ devem ser determinados.

Exemplo: Determine a solução geral da EDO $y'' + 2y' + 2y = e^x \cos x$.

Exercícios: Determine a solução das EDO's e dos PVI's abaixo.

(a)
$$y'' + 5y' + 6y = xe^{-5x}$$
;

(b)
$$y'' + 4y = 2sen(2x) + x$$
;

(c)
$$y'' + 2y = e^x + 2$$
;

(d)
$$y'' - 4y' + 4y = 3e^{-x}$$
, $y(0) = 0$, $y'(0) = 0$;

(e)
$$y'' + 2y' + y = 3sen(2x)$$
, $y(0) = 0$, $y'(0) = 0$.

Esse método funciona para qualquer EDO do tipo

$$y'' + p(x)y' + q(x)y = f(x),$$
 (2)

para a qual se conheça duas soluções fundamentais $y_1(x), y_2(x)$ da EDO homogênea associada. Neste caso, $y_c(x) = Ay_1(x) + By_2(x)$ é solução complementar. Procuramos uma solução particular da forma

$$y_p(x) = A(x)y_1(x) + B(x)y_2(x),$$
 (3)

com a condição que

$$y_p'(x) = A(x)y_1'(x) + B(x)y_2'(x),$$

ou equivalentemente

$$A'(x)y_1(x) + B'(x)y_2(x) = 0. (4)$$

Substituindo $y_p(x), y_p'(x)$ e $y_p''(x)$ na EDO (2) obtemos

$$A'(x)y_1'(x) + B'(x)y_2'(x) = f(x), (5)$$

e portanto temos o seguinte sistema

$$\begin{cases} A'(x)y_1(x) + B'(x)y_2(x) = 0 \\ A'(x)y_1'(x) + B'(x)y_2'(x) = f(x) \end{cases}$$

cuja solução é

$$A(x) = -\int \frac{y_2(x)f(x)}{W[y_1(x), y_2(x)]} dx \in B(x) = \int \frac{y_1(x)f(x)}{W[y_1(x), y_2(x)]} dx.$$

Assim, a solução geral da EDO (2) é

$$y(x) = Ay_1(x) + By_2(x) - y_1(x) \int \frac{y_2(x)f(x)}{W[y_1(x), y_2(x)]} dx + y_2(x) \int \frac{y_1(x)f(x)}{W[y_1(x), y_2(x)]} dx$$

Exemplo: Determine a solução geral das EDO's $y'' + y = \sec x$ e $y'' + y = \csc x$.

Exercícios: Determine a solução geral das EDO's.

(a)
$$y'' - 2y' + y = e^x/x$$
;

(b)
$$y''' - 3y'' + 2y' = e^x/(1 + e^{-x});$$

(c)
$$y'' - 4y' + 3y = e^x/(1 + e^x);$$

(d)
$$y'' - 2y' + y = e^x/x^3$$
;

(e)
$$y'' + 4y = 4 \sec^2(2x)$$
.