In [1]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 %matplotlib inline
 from sklearn import preprocessing
 import dataprep

In [2]: df=pd.read\_csv("intensity 3k.csv")

In [3]: df

## Out[3]:

|      | Magnitude | Depth | destruction | Victim's reaction | Intensity |
|------|-----------|-------|-------------|-------------------|-----------|
| 0    | 7.1       | 40.0  | 6           | 7                 | 8         |
| 1    | 7.7       | 23.5  | 6           | 7                 | 8         |
| 2    | 7.7       | 196.0 | 4           | 5                 | 6         |
| 3    | 6.9       | 15.0  | 3           | 4                 | 5         |
| 4    | 6.9       | 51.6  | 4           | 5                 | 6         |
|      |           |       |             |                   |           |
| 9995 | 6.7       | 15.0  | 7           | 8                 | 9         |
| 9996 | 6.5       | 16.7  | 5           | 6                 | 7         |
| 9997 | 7.8       | 60.0  | 6           | 7                 | 8         |
| 9998 | 5.0       | 28.0  | 0           | 1                 | 2         |
| 9999 | 6.5       | 2.7   | 6           | 7                 | 8         |

10000 rows × 5 columns

In [4]: df.head()

## Out[4]:

|   | Magnitude | Depth | destruction | Victim's reaction | Intensity |
|---|-----------|-------|-------------|-------------------|-----------|
| 0 | 7.1       | 40.0  | 6           | 7                 | 8         |
| 1 | 7.7       | 23.5  | 6           | 7                 | 8         |
| 2 | 7.7       | 196.0 | 4           | 5                 | 6         |
| 3 | 6.9       | 15.0  | 3           | 4                 | 5         |
| 4 | 6.9       | 51.6  | 4           | 5                 | 6         |

In [5]: df.tail()

| $\sim$ |    |     | ١. |
|--------|----|-----|----|
| U      | uτ | 151 |    |
|        |    |     |    |

|      | Magnitude | Depth | destruction | Victim's reaction | Intensity |
|------|-----------|-------|-------------|-------------------|-----------|
| 9995 | 6.7       | 15.0  | 7           | 8                 | 9         |
| 9996 | 6.5       | 16.7  | 5           | 6                 | 7         |
| 9997 | 7.8       | 60.0  | 6           | 7                 | 8         |
| 9998 | 5.0       | 28.0  | 0           | 1                 | 2         |
| 9999 | 6.5       | 2.7   | 6           | 7                 | 8         |

In [6]: df.shape

Out[6]: (10000, 5)

In [7]: df.describe()

## Out[7]:

|       | Magnitude    | Depth        | destruction  | Victim's reaction | Intensity    |
|-------|--------------|--------------|--------------|-------------------|--------------|
| count | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000      | 10000.000000 |
| mean  | 6.805333     | 53.459081    | 4.840900     | 5.840200          | 6.840300     |
| std   | 0.799281     | 102.372100   | 1.825081     | 1.825047          | 1.826836     |
| min   | 3.200000     | 0.000000     | 0.000000     | 0.000000          | 1.000000     |
| 25%   | 6.500000     | 12.590000    | 4.000000     | 5.000000          | 6.000000     |
| 50%   | 6.800000     | 24.000000    | 5.000000     | 6.000000          | 7.000000     |
| 75%   | 7.300000     | 40.000000    | 6.000000     | 7.000000          | 8.000000     |
| max   | 9.500000     | 670.810000   | 10.000000    | 11.000000         | 12.000000    |

## In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 5 columns):

# Column Non-Null Count Dtype ----0 Magnitude 10000 non-null float64 1 Depth 10000 non-null float64 2 destruction 10000 non-null int64 3 Victim's reaction 10000 non-null int64 Intensity 10000 non-null int64

dtypes: float64(2), int64(3)

memory usage: 390.8 KB

In [9]: df.isnull().sum()
Out[9]: Magnitude 0

int64

Depth 0
destruction 0
Victim's reaction 0
Intensity 0
dtype: int64

In [10]: df.dtypes

Out[10]: Magnitude float64
Depth float64
destruction int64
Victim's reaction int64

Intensity
dtype: object

In [11]: sns.heatmap(df.corr())

Out[11]: <Axes: >



In [12]: sns.pairplot(df)

Out[12]: <seaborn.axisgrid.PairGrid at 0x2970b947190>



In [13]: sns.countplot(x='Intensity',data=df)

Using categorical units to plot a list of strings that are all parsable as fl oats or dates. If these strings should be plotted as numbers, cast to the app ropriate data type before plotting.

Out[13]: <Axes: xlabel='Intensity', ylabel='count'>



In [14]: sns.countplot(x='Magnitude',data=df)

Using categorical units to plot a list of strings that are all parsable as fl oats or dates. If these strings should be plotted as numbers, cast to the app ropriate data type before plotting.

Out[14]: <Axes: xlabel='Magnitude', ylabel='count'>



In [15]: sns.countplot(x='Depth',data=df)

Using categorical units to plot a list of strings that are all parsable as fl oats or dates. If these strings should be plotted as numbers, cast to the app ropriate data type before plotting.

Out[15]: <Axes: xlabel='Depth', ylabel='count'>



In [16]: sns.countplot(x='destruction',data=df)

Using categorical units to plot a list of strings that are all parsable as fl oats or dates. If these strings should be plotted as numbers, cast to the app ropriate data type before plotting.

Out[16]: <Axes: xlabel='destruction', ylabel='count'>



In [17]: | sns.countplot(x="Victim's reaction",data=df)

Using categorical units to plot a list of strings that are all parsable as fl oats or dates. If these strings should be plotted as numbers, cast to the app ropriate data type before plotting.

Out[17]: <Axes: xlabel="Victim's reaction", ylabel='count'>



```
In [18]: sns.jointplot(x='Magnitude', y='Intensity', data=df, kind='hex')
```

Out[18]: <seaborn.axisgrid.JointGrid at 0x2971202c3a0>



In [19]: sns.jointplot(x='Depth', y='Intensity', data=df, kind='hex')

Out[19]: <seaborn.axisgrid.JointGrid at 0x297104a0be0>



In [20]: sns.jointplot(x='destruction', y='Intensity', data=df, kind='hex')

Out[20]: <seaborn.axisgrid.JointGrid at 0x29712961b50>



In [21]: sns.jointplot(x="Victim's reaction", y='Intensity', data=df, kind='hex')

Out[21]: <seaborn.axisgrid.JointGrid at 0x29712405d30>



In [22]: sns.countplot(y='Magnitude',hue='Intensity',data=df)

Using categorical units to plot a list of strings that are all parsable as fl oats or dates. If these strings should be plotted as numbers, cast to the app ropriate data type before plotting.

Out[22]: <Axes: xlabel='count', ylabel='Magnitude'>



```
In [23]: sns.distplot(df['Intensity'] ,kde=True )
```

C:\Users\Prern\AppData\Local\Temp\ipykernel\_15192\2715816930.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['Intensity'] ,kde=True )

Out[23]: <Axes: xlabel='Intensity', ylabel='Density'>



```
In [24]: from dataprep.eda import create_report
```

C:\Users\Prern\anaconda3\envs\Mine\lib\site-packages\dask\core.py:127: Runtim
eWarning: invalid value encountered in divide
 return func(\*(\_execute\_task(a, cache) for a in args))

In [ ]: