一 论文汇报

《Duplicate Bug Report Detection- How Far Are 2022 We?》

TOSEM

TING ZHANG, Singapore Management University, Singapore DONGGYUN HAN, Royal Holloway, University of London, United Kingdom VENKATESH VINAYAKARAO, Chennai Mathematical Institute, India IVANA CLAIRINE IRSAN, Singapore Management University, Singapore

BOWEN XU*, Singapore Management University, Singapore FERDIAN THUNG, Singapore Management University, Singapore DAVID LO, Singapore Management University, Singapore LINGXIAO JIANG, Singapore Management University, Singapore

Ting Zhang

<u>Singapore Management University</u>
在 phdcs.smu.edu.sg 的电子邮件经过验证 - <u>首页</u>

Software Engineering

2022 TOSEM

Motivation

Despite the many research works and practitioners' adoption of DBRD, unfortunately, it is unclear which DBRD technique can recommend the duplicate BR most accurately overall.

01

Create a benchmark that addresses the limitations of existing evaluation datasets

The most recent work by Rodrigues et al. [43] shows that SABD [43] outperforms REP [50] and Siamese Pair [18]. However, their experiments are only limited to a collection of old BRs from Bugzilla ITSs, in which the latest data used belongs to the year 2008.

02

Compare research tools on the same dataset

Concurrent with the work by Rodrigues et al. [43], Xiao et al. [57] and He et al. [27] have proposed other DBRD solutions. They have not been compared to each other. Besides, they did not compare with the tools used in practice.

03

Compare research and industrial tools

2022 TOSEM

Age Bias

RQ1: How significant are the potential biases on the evaluation of DBRD techniques?

State Bias

RQ2: How do state-of-the-art DBRD research tools perform on recent data from diverse ITSs?

ITS Bias

RQ3: How do the DBRD approaches proposed in research literature compare to those used in practice?

2022 TOSEM

Table 2. Comparison between different approaches

Approach	Tymo	Featur	e Engineering	Distance Measurement	
Approach	Type	Embedding Modeling		Distance Measurement	
REP [50]	Categorical	ren	handcrafted	linear combination	
KLI [30]	Textual	7-1	$BM25F_{ext}$	inical combination	
Siamese	Categorical	customized	single-layer	Cosine Similarity	
Pair [18]	Textual	GloVe	bi-LSTM + CNN	Cosine Similarity	
SABD [43]	Categorical	customized	ReLU	fully-connected layer	
SABD [43]	Textual	GloVe	bi-LSTM + attention	fully-connected layer	
HINDBR [57]	Categorical	HIN2vec	MLP	Manhattan Distance	
HINDBY [3/]	Textual	Word2vec	RNN	Walliattall Distance	
DC-CNN [27]	Categorical	Word2vec	dual-channel CNN	Cosine Similarity	
DC-CINIV [27]	Textual	wordzvec	duar-chailler CIVIV	Cosine Similarity	

Table 3. Textual and categorical fields that are leveraged by the approaches

	_
	Γε
	Ca

Fields		REP [50]	Siamese-Pair [18]	SABD [43]	HINDBR [57]	DC-CNN [27]
Textual	summary	✓	✓	✓	✓	✓
Textual	description	✓	✓	✓	✓	✓
	product	✓	✓	✓	✓	✓
	component	✓	✓	✓	✓	✓
Categorical	priority	✓	✓	✓	✓	
Categorical	severity		✓	✓	✓	
	type	✓				
	version	✓			✓	

Workflow

10

2022 TOSEM

Table 9. Statistics of training and testing data

ITS	Project	Trai	n	Test	Total	
	rioject	# BRs (% Dup)	# Dup Pairs	# BRs (% Dup)	# BRs (% Dup)	
Buggillo	Eclipse	19,607 (4.7%)	1,725	7,976 (6.5%)	27,583 (5.2%)	
Bugzilla	Mozilla	137,886 (10.1%)	35,474	55,701 (11.2%)	193,587 (10.4%)	
liro	Hadoop	10,276 (2.8%)	328	3,740 (2.5%)	14,016 (2.7%)	
Jira	Spark	6,738 (4%)	414	2,841 (3%)	9,579 (3.7%)	
GitHub	Kibana	9,849 (2.9%)	376	7,167 (2.6%)	17,016 (2.8%)	
	VSCode	40,801 (7.2%)	9,008	21,291 (6.8%)	62,092 (7%)	

test

BR1

Metric

$$RR@k = \frac{n_k}{m},$$

Fig. 3. Examples of the predictions in the top-10 positions for 4 test BRs.

Fig. 4. The workflow of retrieving the correct bucket.

2022 TOSEM

RQ1: How significant are the potential biases on the

evaluation of DBRD techniques?

Age Bias

State Bias

ITS Bias

Table 5. Statistics of old (2012-2014) and recent (2018-2020) data for RQ1

Project	Train		n Test		Total		
Troject	Age	# BRs (% Dup)	# Dup Pairs	# BRs (% Dup)	# BRs (% Dup)	# Master BRs	
Mozilla	Old	198,653 (9.9%)	35,474	139,502 (9.9%)	338,155 (9.9%)	21,554	
MOZIIIa	Recent	137,886 (10.1%)	60,498	55,701 (11.2%)	193,587 (10.4%)	10,702	
Folinco	Old	49,355 (5.5%)	4,482	25,021 (12.1%)	74,376 (7.7%)	3,254	
Eclipse	Recent	19,607 (4.7%)	1,725	7,976 (6.5%)	27,583 (5.2%)	959	

Table 6. The percentage of BRs changed the corresponding state in 2018–2020

Platform	Summary	Description	Product	Component	Priority	Severity	Version
Eclipse	10.8%	-	7.8%	11.7%	1.2%	5.6%	8.6%
Mozilla	11.8%	-	21.4%	24.5%	24.5%	5.4%	4.2%

2022 TOSEM

RQ1: How significant are the potential biases on the

evaluation of DBRD techniques?

0.05 / 6 = 0.0083

d € [-1, 1], 0表示两个样本没有差异

Table 8.	Mann-Whitney-U	with (Cliff's Delta	Effect Size	d on RQ1

Bias	Approach	Data	<i>p</i> -value	d
	REP	Eclipse	0.003	0.78 (large)
	KEP	Mozilla	0.005	0.72 (large)
Aga	Siamese Pair	Eclipse	< 0.001	1 (large)
Age	Stalliese Fall	Mozilla	0.003	0.76 (large)
	SABD	Eclipse	0.001	0.82 (large)
	SADD	Mozilla	0.012	0.66 (large)
	DED	Eclipse	0.105	0.44 (medium)
	REP	Mozilla	0.190	0.36 (medium)
State	Siamese Pair	Eclipse	0.063	0.5 (large)
State	Stalliese Fall	Mozilla	0.190	0.36 (medium)
	SABD	Eclipse	0.315	0.28 (small)
	SADD	Mozilla	0.315	0.28 (small)
	DED	Jira	0.056	0.36 (medium)
	REP	GitHub	< 0.001	0.66 (large)
ITS	Siamese Pair	Jira	< 0.001	1 (large)
	Stalliese Fall	GitHub	< 0.001	0.97 (large)
	SABD	Jira	< 0.001	0.97 (large)
	JADU	GitHub	< 0.001	0.77 (large)

2022 TOSEM

RQ2: How do state-of-the-art DBRD

research tools perform on recent data from

diverse ITSs?

Fig. 5. Recall Rate@k in the test data of Eclipse, Mozilla, Hadoop, Spark, Kibana, and VSCode

2022 TOSEM

RQ2: How do state-of-the-art DBRD

research tools perform on recent data from

diverse ITSs?

(c) REP vs. DC-CNN

Table 10. Investigation of which component benefits REP

RR@k	All	w/o						
KKWK		description	short_desc	product	component	priority		
1	0.460	0.327	0.350	0.456	0.458	0.450		
2	0.544	0.415	0.458	0.527	0.554	0.540		
3	0.610	0.456	0.494	0.575	0.598	0.602		
4	0.646	0.490	0.510	0.617	0.633	0.637		
5	0.673	0.515	0.533	0.644	0.658	0.665		
6	0.690	0.531	0.552	0.662	0.663	0.679		
7	0.704	0.544	0.569	0.671	0.671	0.694		
8	0.706	0.556	0.579	0.681	0.683	0.706		
9	0.715	0.565	0.600	0.687	0.683	0.712		
10	0.721	0.573	0.613	0.698	0.692	0.717		

Fig. 6. REP compared to the other four approaches in terms of successful predictions

(d) REP vs. HINDBR

2022 TOSEM

RQ3: How do the DBRD approaches
proposed in research literature
compare to those used in practice?

Fig. 7. Recall Rate@k comparing the tools in research and in practice on the VSCode data

