

CURSO: ENGENHARIAS

DISCIPLINA: Algoritmos e Programação de Computadores CÓDIGO: 113476

SEMESTRE: 2020.1 TURMA: DD

PROFESSOR: Daniel de Paula Porto

PLANO DE ENSINO

1. EMENTA

Princípios fundamentais de construção de programas. Construção de algoritmos e sua representação em pseudocódigo e linguagens de alto nível. Noções de abstração. Especificação de variáveis e funções. Testes e depuração. Padrões de soluções em programação. Noções de programação estruturada. Identificadores e tipos. Operadores e expressões. Estruturas de controle: condicional e repetição. Entrada e saída de dados. Estruturas de dados estáticas: agregados homogêneos e heterogêneos. Iteração e recursão. Noções de análise de custo e complexidade. Desenvolvimento sistemático e implementação de programas. Estruturação, depuração, testes e documentação de programas. Resolução de problemas. Aplicações em casos reais e questões ambientais.

3. HORÁRIO DAS AULAS E DE ATENDIMENTO

Aulas teóricas e práticas: Turma DD (Seg 14h na sala II0, Qua 10h na sala S10, Sex 10h na sala S10).

Atendimento presencial do professor: Segunda-feira, das 10h às 12h na sala 35.

Atendimento virtual: Fórum de Dúvidas disponível no ambiente Aprender (http://aprender.unb.br)

4. METODOLOGIA

Serão ministradas aulas expositivas e práticas em sala de aula e em laboratório pelo professor, auxiliadas por monitores (se disponíveis). O objetivo das práticas é permitir que os alunos elaborem programas para fixar e desenvolver os conceitos sobre fundamentos de programação.

Como ambiente para desenvolvimento de algoritmos, iremos utilizar o **Calango**. Para o desenvolvimento de programas em linguagem C, poderão ser utilizados ambientes tanto em Linux quanto em Windows.

5. CRITÉRIOS DE AVALIAÇÃO

A avaliação dos alunos na disciplina será composta por 3 provas (P1, P2 e P3), atividades extraclasse (E) e um trabalho (T). Cada prova será realizada em laboratório e engloba toda a matéria apresentada anteriormente (conteúdo cumulativo).

A Nota Final na disciplina será calculada da seguinte forma:

$$NF = (P1 * 0.15) + (P2 * 0.20) + (P3 * 0.35) + (E * 0.10) + (T * 0.20)$$

Para ser aprovado na disciplina o aluno precisa:

- Ter 75% de presença nas aulas;
- Atingir Nota Final (NF) maior ou igual a 5,0.

As atividades extraclasse envolvem a realização de exercícios de programação em ambiente virtual.

6. CRONOGRAMA DE ATIVIDADES

Semana	Data	Tópicos
	09/03	Apresentação da Disciplina e do Plano de Ensino, Introdução à Computação (Sala de Aula)
1ª	11/03	Algoritmos e Lógica de Programação (entrada e saída, tipos de dados, operadores e operações)
	13/03	Algoritmos e Lógica de Programação (entrada e saída, tipos de dados, operadores e operações)
2ª	16/03	Condicionais (Sala de Aula)
	18/03	Condicionais (Laboratório)
	20/03	Condicionais (Laboratório)
3ª	23/03	Repetição (Sala de Aula)
	25/03	Repetição (enquanto e faça-enquanto) – (Laboratório)
	27/03	Repetição (para) – (Laboratório)
4ª	30/03	Modularização (Sala de Aula)
	01/04	Modularização (Laboratório)
	03/04	Modularização (Laboratório)
5ª	06/04	Estruturas Homogêneas (Vetores) – (Sala de Aula)
	08/04	Estruturas Homogêneas (Vetores) – (Laboratório)
	10/04	Feriado
6ª	13/04	Estruturas Homogêneas (Vetores) – (Laboratório)
	15/04	Revisão
	17/04	Prova 1
	20/04	Introdução à Linguagem C (Sala de Aula)
7ª	22/04	Linguagem C - Condicionais e Repetição (Laboratório)
	24/04	Linguagem C - Condicionais e Repetição (Laboratório)
	27/04	Linguagem C - Modularização (Sala de Aula)
8ª	29/04	Linguagem C - Modularização (Laboratório)
	01/05	Feriado
9ª	04/05	Linguagem C - Estruturas Homogêneas (Vetores) – (Sala de Aula)
	06/05	Linguagem C - Estruturas Homogêneas (Vetores) – (Laboratório)
	08/05	Linguagem C - Estruturas Homogêneas (Vetores) – (Laboratório)
	11/05	Linguagem C - Strings – (Sala de Aula)
10 ^a	13/05	Linguagem C - Strings – (Laboratório)
	15/05	Linguagem C - Strings – (Laboratório)
11ª	18/05	Revisão
	20/05	Prova 2
	22/05	Resolução da Prova 2
	25/05	Linguagem C – Estruturas Heterogêneas – (Sala de Aula)
12 ^a	27/05	Linguagem C – Estruturas Heterogêneas – (Laboratório)
	29/05	Linguagem C – Estruturas Heterogêneas – (Laboratório)
	01/06	Linguagem C - Estruturas Homogêneas (Matrizes) – (Sala de Aula)
13 ^a	03/06	Linguagem C - Estruturas Homogêneas (Matrizes) – (Laboratório)
	05/06	Linguagem C - Estruturas Homogêneas (Matrizes) – (Laboratório)
Ţ	08/06	Linguagem C - Recursividade – (Sala de Aula)
14 ^a	10/06	Linguagem C – Recursividade – (Laboratório)
	12/06	Linguagem C – Recursividade – (Laboratório)
	15/06	Acompanhamento dos Trabalhos
15 ^a	17/06	Acompanhamento dos Trabalhos
	19/06	Acompanhamento dos Trabalhos
	22/06	Apresentação de Trabalhos
16 ^a	24/06	Apresentação de Trabalhos
	26/06	Apresentação de Trabalhos

17ª	29/06	Revisão
	01/07	Prova 3
	03/07	Resolução da Prova 3
18ª	06/07	Revisão
	08/07	Prova de Reposição
	10/07	Divulgação de Resultados Finais

Observações:

Conforme a conveniência, a distribuição dos tópicos pode ser alterada visando atender eventuais imprevistos e mediante aviso prévio aos participantes.

Somente poderá realizar a Prova de Reposição, o(a) aluno(a) que apresentar comprovação que justifique o não comparecimento a uma das provas (P1, P2 ou P3), como **atestado médico** ou comprovante de apresentação ao **serviço militar obrigatório**.

7. BIBLIOGRAFIA

BÁSICA:

CORMEN, T. et al., Algoritmos: Teoria e Prática, 3a ed., Elsevier - Campus, Rio de Janeiro, 2012.

ZIVIANI, N., **Projeto de Algoritmos com implementação em Pascal e C**, 3a ed., Cengage Learning, 2010.

FELLEISEN, M. *et al.*, **How to design programs: an introduction to computing and programming**, MIT Press, EUA, 2001.

COMPLEMENTAR:

EVANS, D., Introduction to Computing: explorations in Language, Logic, and Machines, CreatSpace, 2011.

HAREL, D., Algorithmics: the spirit of computing, Addison-Wesley, 1978.

MANBER, U., Introduction to algorithms: a creative approach, Addison-Wesley, 1989.

KERNIGHAN, Brian W; RITCHIE, Dennis M.,. C, a linguagem de programacao: Padrão ANSI, Rio de janeiro: Campus

FARRER, H., **Programação estruturada de computadores: algoritmos estruturados**. Rio de Janeiro: Guanabara Dois, 2002.