CORPS FINIS

<u>I/ Corps de Galois</u> $\mathbb{F}_q = GF(q)$ où $q = p^r$, p premier et $r \in \mathbb{N}^*$

On se limitera ici au cas p=2 . On appelle \mathbb{F}_2 le corps des nombres binaires $\mathbb{F}_2=\mathbb{Z}/2\mathbb{Z}=\left\{0,1\right\}$

1. Anneau $\mathcal{K} = \mathbb{F}_2[X]/(P)$

Soit P un polynôme de degré r dans $\mathbb{F}_2[X]$.

On considère les classes modulo P des polynômes de $\mathbb{F}_2[X]$.

Exemples

C <u>S</u>		
	modulo $X^2 + X + 1$	modulo $X^3 + X^2 + 1$
1	1	1
X	X	X
X^2	X+1	X^2
X^3	1	$X^{2} + 1$
X^4	X	$X^2 + X + 1$
X^5		
$1 + X^2 + X^4 + X^5$		

Pour calculer
$$Q = X^7 + X^5 + X^3 + 1$$
 par $P = X^4 + X + 1$, on pose la division de Q par P : $X^7 + X^5 + X^3 + 1 = (X^4 + X + 1)(X^3 + X + 1) + X^2$ donc $Q = X^2$ modulo P

On appelle \mathcal{K} l'ensemble de ces classes : $\mathcal{K} = \mathbb{F}_2[X]/(P)$

En notant \overline{A} la classe de A, on pose $\overline{A} + \overline{B} = \overline{A} + \overline{B}$, $\lambda \overline{A} = \overline{\lambda} \overline{A}$ et $\overline{A} \cdot \overline{B} = \overline{A} \overline{B}$ L'ensemble des classes $\,\mathcal{K}\,$, muni de ces opérations, est un anneau commutatif.

Si $\deg(P) = r$, \mathcal{K} est isomorphe à l'anneau des polynômes de degré < r à coefficients dans \mathbb{F}_2 Tout $\xi \in \mathcal{K}$ s'écrit de manière unique $\xi = \overline{R}$ avec degré(R) < rOn identifie alors R et \overline{R} pour tout R tel que $\operatorname{degr\acute{e}}(R) < r$.

Exempl	le avec	$P = X^2$	$^{2} + X +$	1, K=	$\{0,1,X,$	1+	$\{X\}$ av	ec]	les table	s:
	+	0	1	X	1+X		×	0	1	<u> </u>
	0	0	1	X	1+X	_	0	0	0	(
	1	1	0	1+X	X	•	1	0	1	2
	\overline{X}	X	1+X	0	1		X	0	X	1+
	1+X	1+X	X	1	0		1+X	0	1+X	

×	0	1	X	1+X
0	0	0	0	0
1	0	1	X	1+X
X	0	X	1+X	1
1+X	0	1+X	1	X

2. Espace vectoriel $\mathcal{K} = \mathbb{F}_2[X]/(P)$

En notant \overline{A} la classe de A, on pose $\overline{A}+\overline{B}=\overline{A+B}$, 0 $\overline{A}=\overline{0}$, 1 $\overline{A}=\overline{A}$ Tout $\xi\in\mathcal{K}$ s'écrit de manière unique $\xi=a_0+a_1X+...+a_{r-1}X^{r-1}$, où $a_0,a_1,...,a_{r-1}$ sont des éléments de \mathbb{F}_2 donc \mathcal{K} est également un espace vectoriel sur \mathbb{F}_2 , de base $\left(1,X,X^2,...,X^{r-1}\right)$, de dimension r. On peut aussi identifier $\xi=a_0+a_1X+...+a_{r-1}X^{r-1}$ à $v=\left(a_0,a_1,...,a_{r-1}\right)\in\left(\mathbb{F}_2\right)^r$

3. Corps $\mathcal{K} = \mathbb{F}_2[X]/(P)$

Soit maintenant P un polynôme **irréductible** de degré r dans $\mathbb{F}_2[X]$.

Exemples
$$P = X^2 + X + 1$$

 $P = X^3 + X^2 + 1$
 $P = X^4 + X + 1$
Contre exemples $P = X^2 + 1$
 $P = X^5 + X^4 + 1 = (X^2 + X + 1)(X^3 + X + 1)$

P étant irréductible, l'anneau $\mathcal{K} = \mathbb{F}_2[X]/(P)$ est **intègre**.

Comme il est fini (il a 2^r éléments) c'est donc un **corps**.

On le note \mathbb{F}_{2^r} ou $GF(2^r)$: corps de Galois à 2^r éléments

(on démontre qu'il n'y en a qu'un à isomorphisme près)

Remarque : puisque P(X) = 0 modulo P le polynôme P a une racine dans \mathbb{F}_{2^r} (la classe de X) alors qu'il n'a pas de racine dans \mathbb{F}_2 , puisqu'il est irréductible dans \mathbb{F}_2 .

 \mathbb{F}_{2^r} apparaît donc comme le corps obtenu à partir de \mathbb{F}_2 en adjoignant un élément α vérifiant $P(\alpha) = 0$.

Pour tout $\alpha \in \mathbb{F}_{2^r}$ non nul, $\langle \alpha \rangle = \{..., \alpha^{-n}, ..., \alpha^{-2}, \alpha^{-1}, 1, \alpha, \alpha^2, ..., \alpha^n, ...\}$ est un sous-groupe du groupe multiplicatif de \mathbb{F}_{2^r} (sous-groupe engendré par α).

Il est donc fini et son ordre k divise $2^r - 1$. On a alors $\langle \alpha \rangle = \{1, \alpha, \alpha^2, ..., \alpha^{k-1}\}$.

Si l'ordre de α est égal à $2^r - 1$, alors on dit que α est **primitif** et $\mathbb{F}_{2^r} = \{0, 1, \alpha, \alpha^2, ..., \alpha^{2^r - 1}\}$

Exemples: Dans $\mathbb{F}_4 = \mathbb{F}_2[X]/(X^2 + X + 1)$, $\alpha = X$ est primitif: $\alpha^2 = \alpha + 1$ donc $\mathbb{F}_4 = \{0,1,\alpha,\alpha^2\}$.

Dans $\mathbb{F}_8 = \mathbb{F}_3[X]/(X^3 + X + 1)$, tout élément non nul est primitif puisque 7 est premier.

Dans $\mathbb{F}_{256} = \mathbb{F}_2[X]/(X^8 + X^4 + X^3 + X + 1)$, étudions l'élément $\alpha = X$. On a $\alpha^8 = \alpha^4 + \alpha^3 + \alpha + 1$.

Puisque $255 = 3 \times 5 \times 17$, l'ordre de α ne peut être que 1, 3, 5, 17, $15 = 3 \times 5$, $51 = 3 \times 17$, $85 = 5 \times 17$, ou 255

On calcule
$$\alpha^{16} = (\alpha^4 + \alpha^3 + \alpha + 1)^2 = \alpha^8 + \alpha^6 + \alpha^2 + 1 = \alpha^6 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha$$

donc
$$\alpha^{15} = \alpha^5 + \alpha^3 + \alpha^2 + \alpha^1 + 1 \neq 1$$
 et et $\alpha^{17} = \alpha^7 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 \neq 1$

puis $\alpha^{32} = \dots = \alpha^7 + \alpha^6 + \alpha^5 + \alpha^2$ et $\alpha^{51} = \alpha^{32} \alpha^{16} \alpha^2 \alpha = \dots = 1$! : α n'est donc pas primitif.

On peut montrer que $\beta = \alpha + 1$ est primitif.

Le corps à 256 éléments apparaît notamment dans l'algorithme de chiffrement symétrique le plus répandu, l'Advanced Encryption Standard, et dans les codes de Reed-Solomon utilisés pour la correction d'erreurs pour le stockage optique (CD/DVD/Blue-Ray) et les communications satellitaires.

II/ Codes correcteurs

1/ Introduction

Schéma de communication avec bruit

2/ Code de Hamming (7,4)

On veut détecter et corriger une erreur quand il n'y en a qu'une au plus par message On ajoute des bits de contrôle au message.

On cherche à calculer un syndrome qui permette de localiser l'erreur, s'il y en a au plus une, de manière que $s_2s_1s_0$ donne en binaire le numéro du digit erroné

Message	m	
MICSSUZU	III	

111000	• 5•	•				
d_1	d_2	d_3	d_4			
Code	<i>c</i> :			•		
d_1	d_2	d_3	d_4	d_5	d_6	d_7

α 1			,
Code	recu	0	٠.
Couc	rocu	L	

edde reçu e :						
d' ₁	ď'2	d' ₃	ď' ₄	d'5	d' ₆	ď'7

Syndrome:

S_1 S_2 S_3

Erreur sur :	S 3	S ₂	s_1
aucun	0	0	0
d_1	0	0	1
d_2	0	1	0
d_3	0	1	1
d_4	1	0	0
d_5	1	0	1
d_6	1	1	0
d_7	1	1	1

Posons
$$e_i = d_i + d'_i$$
 is in envisage au plus une erreur, on a alors (1)
$$\begin{cases} s_1 = e_1 + e_3 + e_5 + e_7 \\ s_2 = e_2 + e_3 + e_6 + e_7 \\ s_3 = e_4 + e_5 + e_6 + e_7 \end{cases}$$

Mais on ne connaît pas les d_i seulement les d'_i On va donc s'arranger pour que (2) $\begin{cases} 0 = d_1 + d_3 + d_5 + d_7 \\ 0 = d_2 + d_3 + d_6 + d_7 \\ 0 = d_4 + d_5 + d_6 + d_7 \end{cases}$

Dès lors le système (1) devient (3) $\begin{cases} s_1 = d'_1 + d'_3 + d'_5 + d'_7 \\ s_2 = d'_2 + d'_3 + d'_6 + d'_7 \text{ et on peut calculer } s_1, s_2, s_3 \text{ à l'aide du code reçu.} \\ s_3 = d'_4 + d'_5 + d'_6 + d'_7 \end{cases}$

$$d_5 = d_2 + d_3 + d_4$$

(2) est un système de 3 équations à 3 inconnues d_5, d_6, d_7 qui donne: $d_6 = d_1 + d_3 + d_4$

$$d_7 = d_1 + d_2 + d_4$$

remarque : dans la pratique, les digits $d_1...d_7$ ne sont pas dans cet ordre.

On écrit sous forme matricielle :

$$(d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7) = (d_1 \ d_2 \ d_3 \ d_4) \begin{pmatrix} 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \end{pmatrix}$$
soit $c = m.G$. G est la matrice génératrice
$$(d'_1)$$

$$\begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} d'_1 \\ d'_2 \\ d'_3 \\ d'_4 \\ d'_5 \\ d'_6 \\ d'_7 \end{pmatrix}$$
soit $s^T = H.c^{T}$. H est la **matrice de test**