1.	What is the main function of backpropagation when training a Neural Network?	1 / 1 point
	Preprocess the input layer	
	Make adjustments to the weights	
	Make adjustments to the loss function	
	Propagate the output on the output layer	
	Correct Correct! You can find more information on the lesson Convolutional Neural Networks.	
2.	(True/False) The "vanishing gradient" problem can be solved using a different activation function.	1 / 1 point
	TrueFalse	
	Correct Correct! You can find more information on the lesson Convolutional Neural Networks.	
3.	(True/False) Every node in a neural network has an activation function.	1 / 1 point
	TrueFalse	
	Correct Correct! You can find more information on the lesson Convolutional Neural Networks.	
4.	These are all activation functions except:	1 / 1 point
	O Sigmoid	
	Hyperbolic tangent	
	Leaky hyperbolic tangent	
	ReLu	
	Correct Correct! You can find more information on the lesson Convolutional Neural Networks.	
5.	Deep Learning uses deep Neural Networks for all these uses, except:	1 / 1 point
	As an alternative to manual feature engineering	
	To uncover usually unobserved relationships in the data	
	Cases in which explainability is the main objective	

	As a classification and regression technique	
	Correct Correct! You can find more information in the lesson Convolutional Neural Networks.	
6.	These are all activation functions for CNN, except:	1 / 1 point
	Regularization penalty in cost function Dropout Early stopping Pruning	
	Correct Correct! You can find more information in the lesson Convolutional Neural Networks.	
7.	(True/False) Optimizer approaches for Deep Learning Regularization use gradient descent: True False	1 / 1 point
	Correct Correct! You can find more information in the lesson Convolutional Neural Networks.	
8.	Stochastic gradient descent is this type of batching method:	1 / 1 point
	 online learning mini batch full batch stochastic batch 	
	Correct Correct! You can find more information in the lesson Convolutional Neural Networks	
9.	The main purpose of data shuffling during the training of a Neural Network is to aid convergence and use the data in a different order each epoch.	1 / 1 point
	True False	
	Correct Correct! You can find more information in the lesson Convolutional Neural Networks	

10. Which of the following IS NOT a benefit of Transfer Learning?	1 / 1 point
Reducing time required to tune hyper-parameters Reducing the impact of the vanishing gradient problem on early layers Improving the speed at which large models can be trained from scratch Conveying computational benefits when problems share similar primitive features.	
Correct Correct! You can find more information on the lesson Transfer Learning.	
11. Which of the following statements about using a Pooling Layer is TRUE?	1 / 1 point
Pooling can reduce both computational complexity and overfitting.	
Pooling can reduce computational complexity, at the cost of overfitting.	
Pooling increases computational complexity, but helps with overfitting.	
Pooling reduces the likelihood of overfitting, but generally does not impact computational complexity.	
 Correct Correct! You can find more information on the lesson Convolutional Neural Networks Architectures. 	