Università degli Studi di Padova Facoltà di Ingegneria Corso di Laurea in Ingegneria dell'Informazione

Tesi di Laurea

Implementazione di un sintetizzatore musicale su scheda FPGA Nexys4 DDR

15 Luglio 2019

Relatore: Prof. Daniele Vogrig Laureando: Enrico Lumetti

Anno Accademico 2018/2019

Cos'è un sintetizzatore musicale?

- Dispositivo elettronico per la riproduzione di suoni
- Al giorno d'oggi realizzati in maniera digitale
- Modifica le tre caratteristiche principali del suono: ampiezza, frequenza, timbro(forma d'onda)
- Controllato da uno strumento musicale: protocollo
 MIDI (musical instrument digital interface)

Scheda Nexys4 DDR

serial over USB single channel audio out

Xilinx Artix 7 FPGA

- Frequenza: 100MHz

FPGA Artix-7

 Field Programmable Gate Array: circuito integrato con elementi e interconnessioni configurabili

 Programmata con linguaggi di descrizione dell'hardware e un programma di sintesi

Struttura regolare, gerarchica: CLB → slice → logic

element

Sintesi digitale del suono

- Viene ricostruito attraverso un digital-to-analog converter (DAC)
- Digital Direct Synthesis: viene usata per generare il segnale digitale
- DAC: pulse-width modulation + low-pass filter
- Almeno 42000 Hz per t. campionamento

Sintesi digitale diretta (DDS)

- Cascata di accumulatore di fase e convertitore fase-ampiezza
- Registro di fase: ad ogni ciclo di clock viene incrementato della frequency tuning word

Frequenza d'uscita effettiva:

Pulse-Width Modulation

Esempio: generare un segnale costante y=0.3, $y \in [0,1]$

• Idea: onda quadra di **duty cycle 30%**, filtrata con un **filtro passa-basso** con $f_{cutoff} < f_{square}$

Polifonia: architettura del mixer

Qualità del segnale

- Errore di quantizzazione
- Errore di troncamento di fase

Distorsione PWM:

$$f_{pwm} > \pi f_{max} \Rightarrow f_{max} < \frac{48828 \, Hz}{\pi} = 15542 \, Hz$$

Il problema del clipping

- Overflow del segnale all'ingresso del DAC
- Mitigato usando forme d'onda a 40% volume massimo
- Altre soluzioni: compressione dinamica

Il problema del ritardo

- Vincoli temporali: tempo propagazione < T_clk = 10ns
- Prima soluzione: mixer iterativo
- Seconda soluzione: mixer iterativo + pipeline

Conclusioni

- Obiettivi raggiunti
 - sintetizzatore polifonico
 - forma d'onda programmabile
 - supporto al protocollo MIDI
- Possibili sviluppi
 - connessione MIDI diretta attraverso porte PMOD
 - intensità diversa per ogni singola nota