Banque << Agro>> A - 0204

MATHÉMATIQUES A Durée : 3 heures 30 minutes

L'usage d'une calculatrice est autorisé pour cette épreuve.

Les deux problèmes sont indépendants et peuvent être traités dans n'importe quel ordre.

I] Premier problème.

Dans ce problème, E désigne l'ensemble des polynômes (ou fonctions polynômiales) à coefficients réels de degré inférieur ou égal à 2. On rappelle qu'il s'agit d'un espace vectoriel sur \mathbb{R} .

On note
$$\mathcal{B}=(1,X,X^2)$$
 sa base canonique et I_3 la matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Pour tout polynôme P de E on note P' son polynôme dérivé. Enfin, f désigne l'application qui à tout polynôme P de E associe le polynôme : Q = f(P) défini par

$$\forall x \in \mathbb{R}, \ Q(x) = (2x+1)P(x) - (x^2 - 1)P'(x).$$

I.1.a. Calculer f(1), f(X) et $f(X^2)$.

I.1.b. Montrer que f est une application linéaire de E dans E.

I.2. Déterminer la matrice A représentant f dans la base \mathcal{B} .

I.3.a. Déterminer le noyau et l'image de f.

I.3.b. Déterminer les valeurs propres de la matrice A. Indication : on pourra déterminer les noyaux de $(A - I_3)$, $(A + I_3)$ et $(A - 3I_3)$.

I.4.a. Montrer que la matrice A est diagonalisable.

I.4.b. Déterminer une matrice P, inversible, telle que la matrice $P^{-1}AP$ soit diagonale. **TSVP**

$$(2x+1-\lambda)y(x) - (x^2-1)y'(x) = 0.$$

I.5.a. Déterminer deux réels
$$\mu, \nu$$
 tels que $\forall x \in \mathbb{R} \setminus \{-1, 1\}$, on ait $\frac{2x+1-\lambda}{x^2-1} = \frac{\mu}{x-1} + \frac{\nu}{x+1}$.

I.5.b. Déterminer, pour tout $\lambda \in \mathbb{R}$, l'ensemble des solutions de l'équation différentielle (E_{λ}) sur chacun des intervalles : $]-\infty,-1[,]-1,1[$ et $]1,+\infty[$.

I.5.c. Pour quelles valeurs de λ toutes les solutions de E_{λ} sont-elles polynômiales sur chacun des intervalles ci-dessus? Peut-on retrouver ainsi les résultats de la question I.3.b.?

II] Deuxième problème.

Dans ce problème, pour tout λ réel positif, on note

$$A(\lambda) = \int_0^{\pi/2} (\cos(x))^{\lambda} dx$$

et $[\lambda]$ la partie entière de λ , c'est à dire l'unique entier naturel défini par $[\lambda] \le \lambda < [\lambda] + 1$.

II.1.a. Déterminer A(0) et A(1).

II.1.b. Montrer que la fonction A est décroissante sur \mathbb{R}^+ .

II.1.c. Soit $n \in \mathbb{N}$ un entier naturel; montrer que $A(n+2) = \frac{n+1}{n+2}A(n)$.

II.1.d. Déduire de ce qui précède que, pour tout $p \in \mathbb{N}$, on a :

$$A(2p) = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2}$$

et donner une formule similaire pour A(2p+1).

II.2.a. Montrer que pour tout n entier naturel, vérifiant $n \ge 2$, on a :

$$1\leqslant \frac{A(n-1)}{A(n)}\leqslant \frac{A(n-2)}{A(n)}\leqslant \frac{n}{n-1}.$$

En déduire la limite de $\frac{A(n-1)}{A(n)}$ lorsque n tend vers $+\infty$.

II.2.b. Montrer que la suite de terme général nA(n)A(n-1) est constante pour $n \ge 1$ et déduire des questions précédentes que la suite de terme général $nA(n)^2$ converge vers $\frac{\pi}{2}$ lorsque n tend vers $+\infty$.

II.3.a. Soit $\lambda \in \mathbb{R}^+$, on note $n = [\lambda]$ sa partie entière. Montrer que $\frac{A(n+1)}{A(n)} \leqslant \frac{A(\lambda)}{A(n)} \leqslant 1$.

II.3.b. Déduire de la question précédente et de II.2.a. que les fonctions $\lambda \longmapsto A(\lambda)$ et $\lambda \longmapsto A([\lambda])$ sont équivalentes quand λ tend vers $+\infty$.

II.3.c. Déduire du II.2.b. et du II.3.b. un équivalent simple de $A(\lambda)$ quand λ tend vers $+\infty$.

II.4. Dans cette question on étudie la convergence de $\sum_{p=1}^{+\infty} \frac{1}{p^2}$.

II.4.a. Montrer que, pour tout entier naturel non nul p, on a :

$$\frac{1}{(p+1)^2}\leqslant \frac{1}{p}-\frac{1}{p+1}\leqslant \frac{1}{p^2}.$$

II.4.b. Déduire des inégalités précédentes la convergence de la série de terme général $\frac{1}{p^2}$ et un majorant simple de sa somme.

II.4.c. A l'aide d'une intégration par parties montrer que, pour toute fonction g de classe \mathbb{C}^1 sur [0,1], il existe un réel b tel que

$$\forall n \in \mathbb{N}^*, \mid \int_0^1 g(x) \sin(2n\pi x) dx \mid \leq \frac{b}{n}.$$

II.4.d. Vérifier que pour tout $x \in]0,1[$ et pour tout $n \in \mathbb{N}^*$, on a :

$$2\sum_{k=1}^{k=n}\cos(2k\pi x) = \cot(\pi x)\sin(2n\pi x) + \cos(2n\pi x) - 1.$$

II.4.e. Pour tout $k \in \mathbb{N}^*$, on note $I_k = \int_0^1 \frac{x(x-1)}{2} \cos(2k\pi x) dx$.

On considère la fonction f définie pour tout $x \in]0,1[$ par $f(x)=\frac{x(x-1)}{2}\mathrm{cotan}(\pi x)$ et on admet que f se prolonge par continuité en une fonction, toujours notée f, de classe \mathbb{C}^1 sur [0,1].

Calculer Ik et montrer que

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^{k=n} I_k = \frac{1}{2} \int_0^1 f(x) \sin(2n\pi x) dx + \frac{1}{2} \int_0^1 \frac{x(x-1)}{2} \cos(2n\pi x) dx - \frac{1}{2} \int_0^1 \frac{x(x-1)}{2} dx.$$

TSVP

- II.4.f. Déduire de l'égalité précédente la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- II.5.a. Dans la suite du problème on note, pour tout $n \in \mathbb{N}^*$, $v_n = \frac{n^{n+\frac{1}{2}}}{n!e^n}$ et $\delta_n = \ln(\frac{v_{n+1}}{v_n})$.

Montrer, à l'aide d'un développement limité, l'existence d'une suite ε_n de limite nulle, telle que :

 $\forall n \in \mathbb{N}^*, \ \delta_n = \frac{1}{12n^2} + \frac{\varepsilon_n}{n^2}.$

- II.5.b. Déduire de ce qui précède l'existence d'une constante K, strictement positive, et d'un entier n_0 tels que pour tout entier n, vérifiant $n > n_0$, on a : $0 < \delta_n < \frac{K}{n^2}$.
- II.5.c. Déduire du II.5.b. que la série de terme général δ_n converge.
- II.5.d. Déduire de ce qui précède que la suite de terme général v_n converge vers une limite strictement positive.
- II.5.e. Montrer qu'il existe un réel k, strictement positif, et une suite ε_n de limite nulle tels que : $n! = kn^n e^{-n} \sqrt{n} (1 + \varepsilon_n) \qquad \text{(formule de Stirling)}.$
- II.6. Montrer en utilisant II.1.d. et II.2.b. que $k = \sqrt{2\pi}$.
- II.7. Application numérique:
- II.7.a. Ecrire un programme simple (en français ou dans le langage de votre choix) permettant de calculer le coefficient binomial C_{2n}^n .
- II.7.b. Donner un ordre de grandeur et les quatre premiers chiffres de l'écriture décimale du coefficient binomial C_{2n}^n pour $n \in \{10, 50, 100\}$.
- II.7.c. Déterminer la valeur approchée de C^n_{2n} obtenue à l'aide de la formule de Stirling et comparer les valeurs précédentes aux valeurs approchées ainsi obtenues.

FIN.