

IN THE CLAIMS:

Please re-write the claims to read as follows:

Sub F2

1. (Currently Amended) Apparatus for tightly-coupling hardware data encryption functions with software-based protocol decode processing within a pipelined processor of a programmable processing engine in a network switch, the apparatus comprising:
an encryption execution unit contained within the pipelined processor;
an ALU contained within the pipelined processor;
an instruction decode stage (ID stage), [ALU,] in response to reading an opcode [op-code], enables the encryption execution unit to read data from a memory shared by the ALU and the encryption execution unit [pipelined processor], and for the encryption execution unit to process the data read from the shared memory; and
a multiplexer to select as an output a result of processing by the encryption execution unit rather than a result of ALU processing.

X

1 2. (Original) The apparatus of Claim 1 wherein the encryption execution unit is an encryption tightly coupled state machine (TCSM) unit that is selectively invoked within the pipelined processor.

1 3. (Currently Amended) The apparatus of Claim 2, further comprising:

2 native encryption opcodes provided within an instruction set of the pipelined
3 processor to enable selective access to the encryption TCSM unit by software.

1 4. (Currently Amended) The apparatus of Claim 3, further comprising:

2 a plurality of busses internal to the pipelined processor and wherein a hardware
3 portion of the interface allows the encryption TCSM unit to utilize the internal buses in
4 response to decode processing of the native encryption opcodes.

1 5. (Currently Amended) The apparatus of Claim 4, further comprising: [wherein]

2 the pipelined processor is a microcontroller core (TMC) processor having a
3 multi-stage pipeline architecture that includes an instruction fetch stage, an instruction
4 decode stage, an execution stage and a memory write-back stage.

- 1 6. (Currently Amended) The apparatus of Claim 5, further comprising: [wherein]
- 2 the TMC processor further includes an arithmetic logic unit, at least one internal
- 3 register, an instruction fetch and decode unit and the encryption TCSM unit organized as
- 4 a data path.
- 1 7. (Currently Amended) The apparatus of Claim 5 wherein the encryption TCSM unit
- 2 comprises:
- 3 a data encryption standard (DES) functional component cooperatively coupled to
- 4 a sub-key generation functional component.
- 1 8. (Currently Amended) The apparatus of Claim 7 wherein the DES functional compo-
- 2 nent comprises:
- 3 state machine hardware used to execute each round of a DES function.

1 9. (Currently Amended) The apparatus of Claim 7, further comprising:

2 the sub-key generation functional component comprises state machine hardware
3 that generates a sub-key as needed for each round of a DES function.

1 10. (Currently Amended) A method for tightly-coupling hardware data encryption
2 functions with software-based protocol decode processing within a pipelined processor of
3 a programmable processing engine in a network switch, the method comprising the steps
4 of:
5 providing an encryption execution unit within the pipelined processor;
6 providing an ALU within the pipelined processor;
7 enabling, by an instruction decode stage (ID stage) [ALU] in response to read-
8 ing an opcode [op-code], the encryption execution unit to read data from a memory
9 shared by the ALU and the pipelined processor, and for the encryption execution unit to
10 process the data read from the memory; and
11 _____ selecting as output the result of processing by the encryption execution unit rather
12 than selecting results from the ALU.

1 11. (Currently Amended) The method of Claim 10, further comprising:

2 having native encryption opcodes contained within an instruction set of the pipe-
3 lined processor; and

4 issuing the native encryption opcodes directly to the encryption execution unit to
5 substantially reduce encryption setup latency.

1 12. (Currently Amended) The method of Claim 11, further comprising:

2 [the steps of, wherein the pipelined processor is a microcontroller core (TMC) processor
3 having a multi-stage pipeline architecture that includes an instruction decode stage and an
4 execution stage:]

5 decoding the native encryption opcodes at the instruction decode stage; and

6 in response to the step of decoding, invoking the encryption execution unit to per-
7 form encryption/decryption functions at the execution stage.

1 13. (Currently Amended) The method of Claim 12, further comprising:

2 [the steps of, wherein the encryption/decryption functions are performed on plaintext
3 stored at the network switch:]

4 protocol processing of protocols contained in a [the] plaintext stored at the net-
5 work switch to determine an appropriate encryption algorithm;

6 upon determining the appropriate encryption algorithm, immediately starting an
7 operation to fetch initial keys needed to perform the encryption/decryption functions; and

8 upon fetching the keys, providing the keys to the encryption execution unit within
9 the TMC processor.

1 14. (Currently Amended) The method of Claim 13, further comprising:

2 including a plurality of high-performance busses internal to the TMC processor;
3 and
4 accessing the internal busses to simultaneously load an encryption key and store
5 a previous encryption result.

1 15. (Previously Presented) The method of Claim 12 further comprising the step of,
2 wherein the encryption execution unit is an encryption tightly coupled state machine
3 (TCSM) unit:

4 initializing the encryption TCSM unit in response to execution of a first instruc-
5 tion that defines the form of operation to be performed.

1 16. (Original) The method of Claim 15 wherein the encryption TCSM unit comprises a
2 data encryption standard (DES) functional component cooperatively coupled to a sub-key
3 generation functional component and wherein the step of initializing comprises the steps
4 of:

5 decoding a first portion of the first instruction to initialize the DES functional
6 component; and

7 decoding a second portion of the first instruction to initialize the sub-key genera-
8 tion functional component.

1 17. (Original) The method of Claim 16 further comprising the step of:
2 executing a second instruction having a micro-opcode field containing a native
3 encryption opcode that specifies loading an initial key from a memory into the sub-key
4 generation functional component of the encryption TCSM unit.

1 18. (Previously Presented) The method of Claim 17 further comprising the step of:
2 performing a DES function on a plaintext in response to execution of a third in-
3 struction having a micro-opcode field containing a native encryption code that specifies
4 loading of the plaintext into the DES functional component of the encryption TCSM unit
5 and initiating DES operations; and
6 upon completing the DES operations, storing a ciphertext result in an internal
7 register coupled to the DES functional component.

1 19. (Original) The method of Claim 18 further comprising the step of:
2 executing a fourth instruction to store the ciphertext results contained in the inter-
3 nal register to a location in the memory.

1 20. (Currently Amended) A programmable processing engine of a network switch comprising:
2
3 an input header buffer;
4 an output header buffer; and
5 a plurality of processing complex elements symmetrically arrayed into rows and
6 columns that are embedded between the input header buffer and an output header buffer,
7 each processing complex element comprising a microcontroller core having an encryp-
8 tion tightly coupled state machine (TCSM) unit that is selectively invoked in response to
9 an instruction decode stage (ID stage) [the microcontroller] reading an opcode [op-code];
10 and
11 a selector to select an output from either the microcontroller OR the TCSM.

1 21. (Currently Amended) A pipelined processor in a network switch, the processor
2 comprising:
3 an ALU internal to the processor responsive to a first set of opcodes;
4 an encryption execution unit internal to the processor having an encryption tightly
5 coupled state machine (TCSM) responsive to a second set of opcodes[,];
6 an instruction decode stage (ID stage) to decode an opcode, the ID stage [ALU],
7 in response to an [op-code] opcode of said second set of opcodes, transferring processing
8 to the encryption execution unit [to process in response to said second set of opcodes];
9 a multiplexer to select output from the ALU OR from the encryption execution
10 unit.

1 22. (Currently Amended) The processor of Claim 21, wherein the processor is a mi-
2 crocontroller core (TMC) processor and further comprises:
3 an instruction fetch stage;
4 [an instruction decode stage to decode an instruction fetched by the instruction
5 fetch stage;]
6 an execution stage to execute an [a decoded] instruction decoded by the ID stage;
7 and
8 a memory write-back stage to write a result of said execution stage to memory.

1 23. (Currently Amended) The processor of Claim 21, further comprises:
2 one or more internal registers;
3 a bus operatively connecting the one or more internal registers to both the ALU
4 and the encryption execution unit; and
5 a multiplexer having inputs from both the ALU and the encryption execution unit,
6 the multiplexer outputting a selected input.

1 24. (Previously Presented) The processor of Claim 21, wherein the encryption TCSM
2 unit comprises:
3 a data encryption standard (DES) functional component cooperatively coupled to
4 a sub-key generation functional component.

1 25. (Previously Presented) The processor of Claim 24, wherein the DES functional
2 component comprises:
3 a state machine that executes each round of a DES function.

1 26. (Previously Presented) The processor of Claim 24, wherein the sub-key genera-
2 tion functional component comprises:
3 a state machine that generates a sub-key as needed for each round of a DES
4 function.

✓ 27. (Currently Amended) A method for providing encryption functions within a pipe-
1 lined processor in a network switch, the method comprising the steps of:

3 associating a first set of opcodes with an ALU internal to the processor, the ALU
4 performing protocol processing operations;

5 associating a second set of opcodes with an encryption execution unit internal to
6 the processor, the encryption execution unit performing encryption operations;

7 [or having an encryption tightly coupled state machine (TCSM), wherein protocol proc-
8 essing operations are performed by the ALU and encryption operations are performed by
9 the encryption execution unit in response to said second set of opcodes; and]

10

11 decoding opcodes by an instruction decode stage (ID stage);
12 transferring by the ID stage, in response to an opcode from said first set of op-
13 codes, processing to the ALU;

14

15 transferring by the ID stage [ALU], in response to an [op-code] opcode from said
16 second set of opcodes, processing to the encryption execution unit
17 [to process encryption operations in response to said second set of opcodes]; and

18

19 selecting output from the ALU OR from the encryption execution unit.

1 28. (Previously Presented) The method of Claim 27, further comprises the step of:

2 providing one or more internal registers;
3 providing a bus operatively connecting the one or more internal registers to both
4 the ALU and the encryption execution unit;
5 providing a multiplexer having inputs from both the ALU and the encryption exe-
6 cution unit, the multiplexer outputting a selected input.

1 29. (Previously Presented) The method of Claim 27 further comprising the step of:

2 initializing the encryption TCSM unit in response to a first instruction that defines
3 a form of operation to be performed.

1 30. (Previously Presented) The method of Claim 29, wherein the step of initializing
2 comprises the steps of:
3 decoding a first portion of the first instruction to initialize a DES functional com-
4 ponent; and
5 decoding a second portion of the first instruction to initialize a sub-key genera-
6 tion functional component.

1 31. (Previously Presented) The method of Claim 27, further comprising the steps of:
2 executing a second instruction including an encryption opcode that specifies
3 loading an initial key from a memory into a sub-key generation functional component of
4 the TCSM unit.

1 32. (Currently Amended) The method of Claim 27, further comprising the steps of:
2 performing a DES function in response to execution of a third instruction having a
3 field containing an encryption opcode that specifies loading plaintext and initializing
4 [initializing] a DES operation.

1 33. (Currently Amended) A computer readable media, comprising:

2 said computer readable media containing instructions for execution in a processor

3 for the practice of the method of,

4 providing a tightly-coupling hardware data encryption function with software-

5 based protocol decode processing within a pipelined processor of a programmable proc-

6 essing engine in a network switch;

7 providing an encryption execution unit within the pipelined processor;

8 providing an ALU within the pipelined processor;

9 enabling, by an instruction decode stage (ID stage) [ALU] in response to read-

10 ing an opcode [op-code], the encryption execution unit to read data from a memory

11 shared by the ALU and the pipelined processor, and for the encryption execution unit to

12 process the data read from the memory; and

13 selecting as output the result of processing by the encryption execution unit rather

14 than selecting results from the ALU.

1 34. (Currently Amended) Electromagnetic signals propagating on a computer net-

2 work, comprising:

3 said electromagnetic signals carrying instructions for execution on a processor for

4 the practice of the method of,

5 providing a tightly-coupling hardware data encryption function with software-

6 based protocol decode processing within a pipelined processor of a programmable proc-

7 essing engine in a network switch;

8 providing an encryption execution unit within the pipelined processor;

9 providing an ALU within the pipelined processor;
10 enabling, by an instruction decode stage (ID stage) [ALU] in response to reading
11 an opcode [op-code], the encryption execution unit to read data from a memory shared
12 by the ALU and the pipelined processor, and for the encryption execution unit to process
13 the data read from the memory; and
14 selecting as output the result of processing by the encryption execution unit rather
15 than selecting results from the ALU.

Sub P

1 35. (Currently Amended) A router, comprising:
2 a processor having an instruction decode stage (ID stage) [ALU] for processing
3 opcodes [op-codes];
4 [and]
5 an ALU for performing protocol processing operations;
6 a tightly coupled state machine (TCSM) for performing encryption processing;
7 a shared memory for providing data to either the ALU or the TCSM;
8 the ID stage [ALU], in response to reading an opcode [op-code], transferring
9 processing to the TCSM, and the TCSM performing encryption processing on data read
10 from the shared memory;
11 a selector to select as output results from the ALU OR results from the TCSM.

1 36. (Previously Presented) The apparatus of Claim 35, further comprising:
2 the selector is a multiplexer.

1 37. (Previously Presented) The apparatus of Claim 35, further comprising;

2 the ALU selects whether the ALU or the TCSM reads data from the memory.

1 38. (Previously Presented) The apparatus of Claim 35, further comprising:
2 the TCSM performs DES data encryption standard encryption processing.

1 39. (Previously Presented) The apparatus of Claim 35, further comprising:
2 a sub-key generation component to provide a key to the TCSM.

1 40. (Currently Amended) A method for operating a router, comprising:
2 [providing a processor having an ALU for]
3 processing [op-codes] opcodes by an instruction decode stage (ID stage); [and]
4 [a tightly coupled state machine (TCSM) for]
5 performing encryption processing by a tightly coupled state machine (TCSM);
6 performing protocol processing by an ALU;
7 reading data from a shared memory by either the ALU or the TCSM;
8 transferring processing by the ID stage [ALU], in response to reading an opcode
9 [op-code,] to the TCSM, and the TCSM performing encryption processing on data read
10 from the shared memory;
11 selecting as output results from the ALU OR results from the TCSM.

1 41. (Previously Presented) The method of Claim 40, further comprising:

2 using a multiplexer for selecting as output results from the ALU OR results from
3 the TCSM.

1 42. (Currently Amended) The method of Claim 40, further comprising;
2 selecting [by the ALU] whether the ALU or the TCSM reads data from the
3 memory.

1 43. (Previously Presented) The method of Claim 40, further comprising:
2 performing DES data encryption standard encryption processing by the TCSM.

1 44. (Currently Amended) The method of Claim 40, further comprising:
2 providing a key to the TCSM by a sub-key generation component.

1 45. (Currently Amended) A router, comprising:
2 means for providing a processor having an ALU for processing opcodes [op-
3 codes] and a tightly coupled state machine (TCSM) for performing encryption process-
4 ing;
5 means for reading data from a shared memory by either the ALU or the TCSM;
6 means for transferring processing by an instruction decode stage (ID stage) [the
7 ALU], in response to reading an opcode [op-code], to the TCSM, and the TCSM per-
8 forming encryption processing on data read from the shared memory;
9 means for selecting as output results from the ALU OR results from the TCSM.

1 46. (Previously Presented) The apparatus of Claim 45, further comprising:
2 means for using a multiplexer for selecting as output results from the ALU OR
3 results from the TCSM.

1 47. (Previously Presented) The apparatus of Claim 45, further comprising;
2 means for selecting by the ALU whether the ALU or the TCSM reads data from
3 the memory.

1 48. (Previously Presented) The apparatus of Claim 45, further comprising:
2 means for performing DES data encryption standard encryption processing by the
3 TCSM.

1 49. (Currently Amended) The apparatus of Claim 45, further comprising:
2 means for providing a key to the TCSM by a sub-key generation component.

1 50. (Currently Amended) A computer readable media, comprising:
2 said computer readable media containing instructions for execution in a processor
3 for the practice of the method of,

4 providing encryption functions within a pipelined processor in a network switch,
5 having the steps,

6 associating a first set of opcodes with an ALU internal to the processor, the ALU
7 performing protocol processing operations;

8 associating a second set of opcodes with an encryption execution unit internal to
9 the processor, the encryption execution unit performing encryption operations;

10

11 [u]having an encryption tightly coupled state machine (TCSM), wherein protocol process-
12 ing operations are performed by the ALU and encryption operations are performed by the
13 encryption execution unit in response to said second set of opcodes; and]

14 decoding opcodes by an instruction decode stage (ID stage);

15 transferring by the ID stage, in response to an opcode from the first set of op-
16 codes, processing to the ALU;

17

18 transferring by the ID stage [ALU], in response to an [op-code] opcode from
19 said second set of opcodes, processing to the encryption execution unit
20 [u]to process encryption operations in response to said second set of opcodes]; and

21 selecting output from the ALU OR from the encryption execution unit.

1 51. (Currently Amended) Electromagnetic signals propagating on a computer network,
2 comprising:
3 said electromagnetic signals carrying instructions for execution on a processor for
4 the practice of the method of,

5 \ providing encryption functions within a pipelined processor in a network switch,
6 having the steps,

7 associating a first set of opcodes with an ALU internal to the processor, the ALU
8 performing protocol processing operations;

9 associating a second set of opcodes with an encryption execution unit internal to
10 the processor, the encryption execution unit performing encryption operations;

11 [having an encryption tightly coupled state machine (TCSM), wherein protocol process-
12 ing operations are performed by the ALU and encryption operations are performed by the
13 encryption execution unit in response to said second set of opcodes; and]

14

15 decoding opcodes by an instruction decode stage (ID stage);

16 transferring by the ID stage, in response to an opcode from the first set of op-
17 codes, processing to the ALU;

18

19 transferring by the ID stage [ALU], in response to an [op-code] opcode from
20 said second set of opcodes, processing to the encryption execution unit
21 [to process encryption operations in response to said second set of opcodes]; and

22

23 selecting output from the ALU OR from the encryption execution unit.

1 52. (Currently Amended) A computer readable media, comprising:
2 said computer readable media containing instructions for execution in a processor
3 for the practice of the method of operating a router, having the steps,
4 [providing a processor having an ALU for]

5 processing opcodes by an instruction decode stage (ID stage); [and]
6 [a tightly coupled state machine (TCSM) for]
7 performing encryption processing by a tightly coupled state machine (TCSM);
8 performing protocol processing by an ALU;
9 reading data from a shared memory by either the ALU or the TCSM;
10 transferring processing by the ID stage [ALU], in response to reading an opcode
11 [op-code,] to the TCSM, and the TCSM performing encryption processing on data read
12 from the shared memory; and
13 selecting as output results from the ALU OR results from the TCSM.

1 53. (Previously Presented) Electromagnetic signals propagating on a computer network,
2 comprising:
3 said electromagnetic signals carrying instructions for execution on a processor for
4 the practice of the method of operating a router, having the steps,
5 [providing a processor having an ALU for]
6 processing opcodes [op-codes] by an instruction decode stage (ID stage); [and]
7 [a tightly coupled state machine (TCSM) for]
8 performing encryption processing by a tightly coupled state machine (TCSM);
9 performing protocol processing by an ALU;
10 reading data from a shared memory by either the ALU or the TCSM;
11 transferring processing by the ID stage [ALU], in response to reading an opcode
12 [op-code,] to the TCSM, and the TCSM performing encryption processing on data read
13 from the shared memory; and
14 selecting as output results from the ALU OR results from the TCSM.