

A.P.L.S. de Laat. N.G. Schultheiss

1 Inleiding

Deze pagina beschrijft de functies van de 'jSparc analyse' http://data.hisparc.nl/media/jsparc/jsparc.html web applicatie. Met deze web applicatie kun je de waarnemingen van een deeltjeslawine die meerdere stations heeft geraakt analyseren.

Hieronder worden de functies van deze pagina stap voor stap uitgelegd.

2 Het ophalen van data

In Figuur 2.1 is te zien dat de pagina in het begin vrij leeg is, er worden alleen het HiSPARC logo en een formulier waarop je de sessie-titel, de pin-code en je naam kunt invullen afgebeeld. Een analyse sessie is door jou of je leraar aan te vragen met het 'Session Request Form' http://www.hisparc.nl/en/hisparc-data/jsparc/sessie-aanvragen/.

Nadat het jSparc analyse formulier is ingevuld, klik je op de *Get data* knop om data op te halen. Als er geen sessie is aangemaakt kun je de web applicatie nog steeds gebruiken door op de 'Get example' knop te klikken.

3 Traces

Traces tonen het gemeten signaal van de fotomultiplier buis van iedere detector voor een event. (Meerdere detectoren meten nagenoeg tegelijkertijd een signaal.)

3.1 Coincidence traces

De traces voor alle detectoren van alle stations die een coïncidentie hadden worden in bovenste grafiek getoond (figuur 3.1). Onder deze grafiek is in de balk te zien welke kleur ieder station heeft. Langs de horizontale as staat de tijd in nanoseconds vanaf het begin van het event. Langs de vertikale as staat de sterkte van het detectorsignaal, dit is een maat voor het aantal deeltjes dat door de detector gaat.

Traces voor alle detectoren (met dezelfde kleur) voor ieder station (verschillende kleur) tijdens coincidentie.

3.2 Station traces

Onder de Coincidence graph kun je de traces voor ieder station afzonderlijk zien (figuur 3.2). Je kunt de station selecteren door op het station nummer in de balk onder de coincidentie grafiek te klikken.

JA-1 Versie 1.0

Figuur 2.1 – Het formulier waarmee zowel data van een sessie of een voorbeeld is aan te vragen.

Figuur 3.1 – Traces voor alle detectoren (met dezelfde kleur) voor ieder station (verschillende kleur) tijdens coïncidentie..

3.3 Zoomen

Je kunt op de traces in- en uitzoomen door met de cursor een gebied in de grafiek te selecteren (figuur 3.3). Dubbel klikken laat de hele grafiek weer zien.

4 Kaart

Op de kaart naast de grafieken zijn de plaatsen van de verschillende [HiSPARC] stations afgebeeld (figuur 4.1). De achtergrond wordt opgehaald bij OpenStreetMap. De kaart kan worden verschoven en er is in en uit te zoomen door te scrollen.

4.1 De positie van het midden van de deeltjes-lawine

Midden op de kaart is een zwarte vlek te zien, deze stelt het midden van de deeltjes-laine voor. Het doel van de analyse is om de plaats van het midden van de deeltjes-lawine te bepalen, het aantal deeltjes per detector wordt hiermee zo goed mogelijk verklaard. Het midden kan over de kaart worden versleept. De getallen in de tabel aan de rechterkant en onder de kaart worden interactief aangepast. Onder de kaart is bijvoorbeeld de chi-kwadraat waarde te zien. Als het midden op de juiste plaats ligt, is deze waarde zo laag mogelijk.

5 Data tabellen

Aan de rechterkant zie je een tabel, ieder station heeft hier een eigen kolom (figuur 5.1). Op de bovenste regel kun je op ieder moment de afstand van de stations tot het midden van de deeltjeslawine zien. Daaronder staat een blok waarin het verwachtte aantal deeltjes per detector te zien

Versie 1.0 JA - 2

Figuur 3.2 – Traces voor alle detectoren (verschillende kleuren) van een enkel station.

Figuur 3.3 - Zoomen

is. Dit aantal wordt aan de hand van de signaalsterkte geschat. Het gemiddelde per station maakt deze waarden nauwkeuriger. Hieronder is het aantal detectoren in te stellen. Als je dit aantal wilt wijzigen is het verstandig om eerst de werking van het station te controleren. Dit kan door op het stationnummer bovenin de kolom te klikken. Een nieuwe pagina met de gegevens van het station voor die dag wordt in een nieuw tabblad getoond. Als de krommen van de detectoren op elkaar liggen, functioneren alle detectoren. Op de onderste regels zijn het gemeten (Data) en het met het midden van de deeltjes-lawine berekende signaal (Calc.) afgebeeld. In het ideale geval zijn deze waarden (nagenoeg) gelijk. Hoe minder deze waarden van elkaar afwijken hoe kleiner chi-kwadraat wordt.

6 Submit results / Verzend het resultaat

Nadat je de data zo goed mogelijk hebt geanalyseerd, kun je deze verzenden door op knop *Send results* onder de tabel te klikken. Bij de verwerking van de aanvraag van een sessie wordt naast een sessie-naam en pincode ook een uitslagen-link gestuurd. Hier is een overzicht te zien met resultaten van iedereen die analyses met de data van deze sessie heeft gedaan.

JA - 3 Versie 1.0

Figuur 4.1 - De plaatsen van de stations en het midden van de deeltjes-lawine in OpenStreetMap.

Figuur 5.1 – Overzicht van de detector data.

Versie 1.0 JA-4