Практическое Задание №3

Практическое задание №3 состоит из 5 упражнений:

- Первое в файле 03_01_detect_sequence_using_fsm.sv
- Второе в файле 03_02_detect_sequence_using_shift_reg.sv
- Третье в файле 03_03_serial_divisibility_using_fsm.sv
- Четвертое и пятое в папке 03_04_sqrt_formula_fsms

В каждом упражнении есть секция Example с модулем для примера, секция Task с описанием задания, в которой нужно описать ваше решение, а так же секция Testbench, которая осуществляет минимальную проверку работоспособности вашего решения.

Предисловие

В процессе работы с упражнениями 1-3, возможно запускать проверку вашего решения отдельно с помощью команды

iverilog -g2005-sv {SOLUTION_FILENAME}.sv && vvp a.out

В секции Testbench любого из заданий можно убрать комментарий у строк \$dumpfile; и \$dumpvars; для генерации dump.vcd файла при запуске. В файле содержится временная диаграмма описывающая изменения на всех проводах и регистрах во время симуляции работы модуля.

Можно воспользоваться командой gtkwave dump.vcd для просмотра файла, либо убрать комментарий у этой строки в файле скрипта run_all_using_iverilog.

Упражнение 1. Распознавание бинарной последовательности с помощью FSM

Ознакомиться с примером детектирования 4-х битной последовательности.

Задание: Реализовать модуль для детектирования 6-ти битной последовательности 110011 используя конечный автомат.

Упражнение 2. Распознавание бинарной последовательности с помощью Shift Register

Ознакомиться с примером детектирования 4-х битной последовательности.

Задание: Реализовать модуль для детектирования 6-ти битной последовательности 110011 используя сдвиговый регистр.

Упражнение 3. Последовательная проверка делимости числа

Ознакомиться с примером детектирования делимости числа на 3.

Ниже приведён пример работы модуля, вывод и внутреннее состояние в процессе. На вход модуля подаётся лишь самый правый бит:

binary number	Div by 3	State
0	yes	mod_0
01	no	mod_1
011	yes	mod_0
0110	yes	mod_0
01101	no	mod_1
011010	no	mod_2
0110100	no	mod_1
01101001	yes	mod_0

Задание: Реализовать модуль последовательного детектирования делимости числа на 5 используя конечный автомат.

Упражнения 4 и 5. Вычисление формулы с помощью FSM

Введение

Директория 03_04_sqrt_formula_fsms содержит примеры, тестбенчи, заготовки решений и вспомогательный код для 4-го и 5-го упражнений.

Для выполнения упражнений, необходимо использовать готовый модуль <code>isqrt.sv</code> в качестве чёрного ящика и написать FSM для вычисления двух формул.

Moдуль isqrt.sv вычисляет целочисленный квадратный корень (integer square root) с фиксированной латентностью (временем в тактах между поступлением аргумента на вход и получением результата на выходе).

Модуль начинает вычисление при выставлении сигнала x_vld , и сообщает о готовности (валидности) результата выставляя сигнал y_vld .

Структура директории следующая:

```
├─ black_boxes // Готовый модуль isqrt
  ├─ isqrt.sv
 |-- isqrt_slice_comb.sv
  └─ isqrt_slice_reg.sv
 testbenches
  — formula_tb.sv // Основной код тестбенча
   — isqrt_fn.svh // Математическая формула isqrt для верификации
                   // Запуск трёх тестбенчей для разных формул
├─ formula_1_fn.svh // Эталонная формула 1 (используется для верификации)
├─ formula_1_impl_1_fsm.sv // Пример реализации формулы 1
├─ formula_1_impl_1_fsm_style_2.sv // Альтернативная реализация формулы 1
formula_1_impl_1_top.sv
├─ formula_1_impl_2_fsm.sv // файл с Упражнением 4
formula_1_impl_2_top.sv
├─ formula_2_fn.svh // Эталонная формула 2 (используется для верификации)
├─ formula_2_fsm.sv // файл с Упражнением 5
├─ formula_2_top.sv
run_all_using_iverilog_under_linux_or_macos_brew.sh
run_all_using_iverilog_under_windows.bat
```

Замечание: Создавать инстансы модуля isqrt самостоятельно запрещается. Необходимо работать с модулем через входы и выходы isqrt_x и isqrt_y модуля упражнения.

Упражнение 4

Heoбходимо ознакомиться с формулой в файле formula_1_fn.svh и примером конечного автомата для последовательного вычисления этой формулы в файле formula_1_impl_1_fsm.sv или formula_1_impl_1_fsm_style_2.sv.

Задание:

В файле formula_1_impl_2_fsm.s√, имплементировать вычисление Формулы 1 используя два модуля isqrt одновременно. Необходимо вычислить два из трёх значений параллельно. Далее, вычислить оставшееся значение и предоставить результат суммы.

Упражнение 5

Необходимо ознакомиться с формулой в файле formula_2_fn.svh.

Задание:

B файле formula_2_fsm.sv, имплементировать последовательное вычисление Формулы 2 используя один модуль isqrt