I TESSUTI

Tessuto muscolare

TESSUTO MUSCOLARE

Il tessuto muscolare è costituito da cellule specializzate a generare movimento attraverso il processo della contrazione. Questa avviene grazie all'interazione delle proteine actina e miosina.

Il movimento contemporaneo di scivolamento dei filamenti di actina e miosina produce una contrazione delle cellule muscolari che provoca l'accorciamento dei relativi muscoli.

Il tessuto muscolare ha derivazione mesodermica ed è costituito da *fibrocellule* (cellule allungate), in grado di accorciarsi trasformando energia chimica in energia meccanica per il movimento.

Le cellule muscolari devono possedere le seguenti proprietà funzionali:

- contrattilità
- eccitabilità
- estensibilità
 - elasticità

Tessuto m. scheletrico o striato: cellule molto allungate (fibre). Presenti molti nuclei localizzati nelle zone periferiche del citoplasma.

Tessuto m. cardiaco:

responsabile della contrazione continua e ritmica del cuore. Cellule cilindriche unite attraverso i dischi intercalari.

Tessuto m. liscio:

responsabile di movimenti involontari. Costituisce la parete dei vasi, dei visceri cavi ed è presente in forma di fibre isolate nel derma. Cellule fusiformi allungate contenenti un solo nucleo.

TESSUTO MUSCOLARE SCHELETRICO

- è costituito da fibre striate, tubulari e multinucleate
- di solito è inserito sulle ossa, tramite i tendini
- · è volontario

Cellule muscolari striate scheletriche (fibre muscolari)

TESSUTO MUSCOLARE CARDIACO

- è costituito da cellule striate, tubulari, ramificate che possiedono uno o, a volte, due nuclei
- è presente nelle pareti del cuore
- · è involontario

Cellule muscolari striate cardiache

TESSUTO MUSCOLARE LISCIO

- è costituito da cellule lunghe, sottili e affusolate
- le cellule non sono striate e possiedono un solo nucleo
- è distribuito nelle pareti dei vasi sanguigni e degli organi interni

Cellule muscolari lisce

· è involontario

I membri della famiglia della miosina II sono tutti dimeri e presentano due teste ATPasiche e una lunga coda a spirale.

Due o più molecole di miosina possono legarsi tramite le code formando dei filamenti bipolari nei quali le teste sporgono lateralmente.

Meccanismo alla base della contrazione muscolare

Le teste globulari di una molecola di miosina si legano ai filamenti di actina con un certo orientamento e li tirano da una parte, mentre il gruppo di teste dell'altra molecola di miosina li tirano nel verso opposto.

→ Effetto complessivo di scorrimento di fasci di actina orientati in senso opposto.

Tessuto muscolare scheletrico

Le *fibre muscolari* si formano per la fusione di cellule progenitrici mononucleate, chiamate mioblasti.

La fibra muscolare è una cellula di dimensioni notevolissime: diametro 10-100 mm e lunghezza anche fino a 10 cm.

La membrana plasmatica delle cellule muscolari scheletriche o *miociti*, si chiama *sarcolemma.*Il citoplasma, ricchissimo di mitocondri, viene definito *sarcoplasma* e il reticolo endoplasmatico *reticolo*

sarcoplasmatico.

Fibra muscolare matura

*Rimangono alcune cellule satelliti (mioblasti quiescenti) con capacità rigenerativa.

> Martini Fondamenti di Anatomia e Fisiologia EdiSES

Livelli di organizzazione del muscolo scheletrico

Livelli di organizzazione del muscolo scheletrico

Organizzazione dei filamenti spessi e sottili nella miofribrilla

Componenti del sarcomero

Filamenti spessi di miosina

(b) Porzione di filamento spesso

Filamenti sottili di actina + proteine accessorie

Durante la contrazione muscolare le teste miosiniche dei filamenti spessi esercitano una trazione sui filamenti sottili, facendoli scorrere verso il centro del sarcomero, che si accorcia.

*Azione combinata di 300 teste di miosina/filamento.

Tutti i sarcomeri sono coordinati, cioè la contrazione è innescata in modo istantaneo.

Filamento spesso Filamenti sottili Salar Salar Filamento sottile Formazione del ponte trasversale Miosina "armata" -Filamento spesso Ponte trasversale 6 Avviene l'idrolisi dell'ATP; la miosina si "arma" Rilascio - Miosina staccata 3 Colpo di forza: la miosina subisce Verso il centro un cambiamento del sarcomero conformazionale 6 L'ATP lega la miosina provocando il distacco della miosina dall'actina; il ponte trasversale A Rifascio di ADP si dissocia

Come si genera il moto di scorrimento?

Il moto di scorrimento si genera quando le teste di miosina interagiscono con i filamenti adiacenti.

Il processo prevede cicli ripetuti di attacco e stacco mediati da cambiamenti conformazionali provocati dall'idrolisi di ATP.

La contrazione muscolare si innesca per un improvviso aumento della concentrazione di ioni Ca⁺⁺

Le membrane del reticolo endoplasmatico (sarcoplasmatico) sono a stretto contatto con i *tubuli trasversi* (tubuli T) che sono introflessioni della membrana plasmatica (sarcolemma). Il reticolo sarcoplasmatico avvolge le miofibrille.

Quando la fibra riceve un segnale elettrico da un motoneurone, il Ca⁺⁺ viene rilasciato dal reticolo sarcoplasmatico (che è una sede di accumulo di questo catione) e la concentrazione di Ca⁺⁺ citosolica aumenta.

Tessuto muscolare cardiaco

Il muscolo cardiaco è molto simile a quello scheletrico nell'organizzazione dei filamenti di actina e ha lo stesso aspetto striato.

Le cellule (cardiomiciti) non sono multinucleate ma collegate le une alle altre da strutture chiamate *dischi intercalari* (ricchi in desmosomi e giunzioni comunicanti) che permettono il passaggio di ioni e il trasferimento del segnale elettrico → accoppiamento elettrico di cellule adiacenti.

Il cuore non è attivato da impulsi nervosi ma si contrae spontaneamente.

Tessuto muscolare cardiaco

Tessuto muscolare liscio

Responsabile di movimenti involontari.

Costituisce la parete dei vasi, dei visceri cavi ed è presente in forma di fibre isolate nel derma della pelle.

Le cellule (fibrocellule muscolari lisce) sono fusiformi e contengono un solo nucleo in posizione centrale.

Tessuto muscolare liscio

Figura 19.32 ▲ Rappresentazione schematica dell'organizzazione dei corpi densi e dei filamenti sottili, spessi e intermedi in una cellula muscolare liscia.

FIGURA 5.40 Contrazione delle cellule muscolari lisce. (a) La cellulla muscolare liscia a riposo ha una tipica forma fusata. Nello schema sono evidenziati corpi densi collegati da filamenti intermedi di desmina; i sarcomeri sono assenti e le cisterne del reticolo sarcoplasmatico sono rimpiazzate dalle caveole. (b) Al momento dell'arrivo dello stimolo nervoso o ormonale, i miofilamenti spessi delle cellule muscolari lisce si assemblano, grazie al cambiamento di conformazione delle molecole di miosina, ed interagiscono con i miofilamenti sottili, determinandone lo scivolamento. (c) La cellula muscolare liscia contratta assume una forma rotondeggiante e bernoccoluta.

Contrazione nel muscolo liscio

Il meccanismo di attivazione richiede un temporaneo aumento del calcio citosolico che è stimolato da vari segnali extracellulari.

Il meccanismo di contrazione basato sulla fosforilazione/defosforilazione determina una contrazione lenta e prolungata.

I TESSUTI

Tessuto nervoso

Il tessuto nervoso è parte integrante del sistema nervoso e ha la funzione di ricevere stimoli dall'ambiente esterno ed interno e di analizzarli ed integrarli per produrre risposte appropriate negli organi effettori.

E' costituito da cellule specializzate (neuroni) tenute in situ da altre cellule di sostegno e trofiche (cellule della glia o nevroglia) che con le loro espansioni citoplasmatiche creano una rete perfettamente organizzata per ricevere, condurre ed elaborare gli stimoli provenienti dalle diverse parti del corpo.

neurone

Neurone: cellula con proprietà di eccitabilità e conducibilità

Cellule della glia: cellule con funzione trofica, strutturale e funzionale a supporto della propagazione degli stimoli nervosi e dell'intera omeostasi del tessuto.

Dal punto di vista anatomico, il sistema nervoso si organizza in sistema nervoso centrale (SNC), costituito dall'encefalo e dal midollo spinale, e sistema nervoso periferico (SNP), formato da rete di nervi sensitivi (cranici e spinali) e gangli ad esso associati.

Dal punto di vista funzionale può essere suddiviso in sistema nervoso somatico (funzioni volontarie) e in sistema nervoso autonomo (funzioni involontarie)

Nel sist. nervoso centrale (SNC) si distinguono sostanza grigia (corpi cellulari dei neuroni e fibre non mielinizzate) e sostanza bianca (assoni, fibre mielinizzate).

Nel cervello e nel cervelletto

Sost. grigia esterna e sost. bianca interna.

Nel midollo spinale

Sost. grigia interna e bianca esterna.

Cervello e midollo spinale sono rivestiti da 3 strati di tessuto connettivo detti meningi che comprendono:

dura madre (più vicina all'osso)

aracnoide (che comprende vasi)

pia madre (a contatto col tessuto nervoso).

Cellule del SNC

- 1. Neuroni
- 2. Cellule ependimali
- 3. Astrociti
- 4. Cellule della microglia
- 5. Oligodentrociti

Classificazione morfologica basata su numero e modalità di ramificazione dei prolungamenti.

Cellule gliali

- Non trasmettono impulsi
- Sono capaci di dividersi e hanno funzione di supporto e trofismo
- Comprendono:
 oligodendrociti, cellule di
 Schwann, astrociti, cell.
 ependimali, cell. satelliti, cell.
 della microglia

Cellule ependimali:

costituiscono un epitelio monostratificato che riveste la cavità dei ventricoli encefalici e del midollo spinale.

Astrociti:

- *Rappresentano la categoria cellulare più abbondante.
- *Sono caratterizzati dalla presenza di GFAP (Glial Fibrillary Acid Protein).
- *Hanno importanti funzioni che riguardano l'omeostasi degli ioni, la produzione di fattori trofici ed infiammatori. *Partecipano alla formazione della barriera ematoencefalica*.

Barriera ematoencefalica

La barriera ematoencefalica è una barriera che separa il tessuto nervoso dal sangue e permette il passaggio di sostanze in modo estremamente selettivo, dai vasi ai neuroni.

Serve per mantenere l'omeostasi del tessuto nervoso, proteggendolo da improvvise variazioni della concentrazione ionica nei liquidi extracellulari e da sostanze neuronocive eventualmente presenti nel sangue.

Cellule della microglia:

sono le cellule più piccole, caratterizzate da brevi processi citoplasmatici da cui si dipartono numerose spine.

Svolgono un importante presidio del sistema immunitario residente nel sistema nervoso.

*Quando sono attivate assumono le funzioni di cellule dendritiche con un intensa attività fagocitaria tramite enzimi idrolitici e citochine.

Oligodentrociti:

Hanno una funzione di supporto strutturale dei neuroni, cui forniscono anche un apporto di fattori neurotrofici essenziali per la loro sopravvivenza.

*Sono deputati alla formazione dei rivestimenti mielinici attorno agli assoni del sistema nervoso centrale.

GUAINE DI RIVESTIMENTO MIELINICHE

La guaina mielinica è formata da avvolgimenti concentrici della membrana plasmatica delle cellule gliali (oligodendrociti o cellule di Schwann) attorno all'assone.

la GUAINA DI RIVESTIMENTO MIELINICA nel SNP

L'assone si invagina nella cellula di Schawnn e viene circondato da un *mesassone*. Il mesassone si allunga e si stringe attorno all'assone formando una spirale.

Gli strati vanno incontro ad una compattazione ottenuta grazie all'espressione della proteina MBP (Myelinic Basic Protein)

GUAINA DI RIVESTIMENTO MIELINICA nel SNC

Ogni oligodendrocita è capace di avvolgere più assoni (circa 40-50).

Il sistema nervoso periferico (SNP) comprende gangli e nervi.

Anatomy of a Nerve

nervi

Fasci di assoni rivestiti da tessuto connettivo

possono comprendere fibre mieliniche e non mieliniche + cellule di Schwann

epinevrio perinevrio endonevrio

L'insieme dell'assone e delle guaine costituisce la *fibra nervosa*. Più fibre nervose di varia grandezza formano un *nervo periferico* che a sua vola è rivestito da una guaina connettivale che protegge le fibre e conferisce loro resistenza alla trazione.