МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Соболевский Федор Александрович Б03-109

1 Аннотация

В данной работе изучено явление поверхностного натяжения жидкости. Измерена температурная зависимость коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта. С помощью полученных значений определена полная поверхностная энергия и теплота, необходимая для изотермического образования единицы поверхности жидкости при различной температуре.

2 Теоретические сведения

2.1 Явление поверхностного натяжения

Молекулы жидкости притягиваются друг к другу силами электростатического происхождения, возникающими из-за их взаимной поляризации. Те молекулы, которые находятся в поверхностном слое на границе с газом, притягиваются в сторону жидкости гораздо сильнее, чем в направлении газа из-за большой разницы плотностей. Вследствие этого молекулы поверхностного слоя обладают большей потенциальной энергией по сравнению с молекулами внутри жидкости. Работа, необходимая для обратимого изотермического образования единицы площади поверхности жидкости, называется коэффициентом поверхностного натяжения и обозначается σ .

Для исследования термодинамики поверхностного натяжения запишем первое начало термодинамики с учётом $\delta A = -\sigma dF$, где F - площадь поверхности:

$$\delta Q = dU_F - \sigma dF,\tag{1}$$

где U_F - полная поверхностная энергия. Перепишем (1) с учётом $\delta Q = TdS$:

$$dU_F = TdS + \sigma dF. (2)$$

Выразим из (2) дифференциал свободной энергии поверхности $d\Psi_F$, зная, что $\Psi_F = U_F - TS$:

$$d\Psi_F = \sigma dF - SdT. \tag{3}$$

Из (3) следует

$$S = \left(\frac{\partial \Psi_F}{\partial T}\right)_F \tag{4}$$

И

$$\sigma = (\frac{\partial \Psi_F}{\partial F})_T. \tag{5}$$

Интегрируя (5) с учётом $\Phi_F = 0$ при F = 0, получим

$$\Psi_F = \sigma F. \tag{6}$$

Подставляя (6) в (4) и используя это соотношение в (2), получим окончательное выражение для полной энергии поверхности:

$$U_F = (\sigma - T\frac{d\sigma}{dT})F.$$

Это выражение можно переписать в виде

$$\frac{U_F}{F} = \sigma - T \frac{d\sigma}{dT},$$

где U_F/F - энергия единицы поверхности.

Рис. 1: Схема экспериментальной установки

Введём величину q, обозначающую количество теплоты, необходимое для изменения площади поверхности на единицу площади в изотермическом процессе. Из (1) с учётом $dU_F=0$ получим

$$q = -T\frac{d\sigma}{dT}.$$

Наличие поверхностного слоя жидкости приводит к различию давлений внутри жидкости и снаружи. Эту разницу давлений можно найти по формуле Лапласа:

$$\Delta P = \sigma K,\tag{7}$$

где K - кривизна поверхности. Для сферического пузырька радиуса r кривизна поверхности поверхности определяется как $K=2\sigma/r$.

2.2 Экспериментальная установка

В работе использован прибор Ребиндера, изображённый на рис. 1. Исследуемая жидкость (дистиллированная вода) наливается в колбу В, тестовая жидкость (этиловый спирт) - в сосуд Е (см. рис. 1). При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP , необходимого для прохождения пузырьков. Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране К2 заполняется водой. Затем кран К2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана К1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром, расположенным под углом к поверхности. Полное давление P, измеренное микроманометром, равно

$$P = \rho g h + \Delta P,\tag{8}$$

где ρ - плотность жидкости, h - глубина погружения иглы. Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

3 Оборудование и экспериментальные погрешности

В работе использовались: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости - дистиллированная вода и спирт; микроскоп, линейка, термометр.

Инструментальные погрешности:

• Линейка: $\Delta_l = 0.5$ мм;

• Микроскоп: $\Delta_d = 0.025$ мм;

• Микроманометр: $\Delta_h = 0.5$ мм;

• Термометр: $\Delta_T = 0.5 \text{ K}.$

4 Результаты измерений и обработка экспериментальных данных

4.1 Исследование жидкости с известным коэффициентом поверхностного натяжения

Перед началом измерений с дистиллированной водой был проведён предварительный опыт со спиртом, коэффициент поверхностного натяжения которого известен, для проверки использованных в работе закономерностей. Пузырьки начали пробулькивать через спирт при максимальном давлении, соответствующем высоте столба спирта $h=42\,\mathrm{mm}$. Разброс полученных значений настолько незначителен, что показания микроманометра не отличались в пределах его систематической погрешности. Давление определяется из показаний микроманометра в делениях h и показателя наклона k=0,2 как

$$\Delta P = 9.81kh = 82.4 \text{ Ha}.$$
 (9)

Погрешность измерения давления термеометром равна $\Delta_P = 9.81k\Delta_h = 1.0$ Па.

Табличное значение коэффициента поверхностного натяжения спирта при комнатной температуре $\sigma_{\rm cn} = 22{,}03 \cdot 10^{-3} \text{ H/m}$. По формуле Лапласа (7)

$$d=rac{4\sigma}{\Delta P}=1{,}07$$
 mm.

Измеренное микроскопом значение диаметра иглы составило d=1,15 мм. Значения различаются менее чем на 10%, что говорит о применимости формулы Лапласа в данном опыте.

4.2 Измерение коэффициента поверхностного натяжения воды

Далее были проведены опыты по измерению коэффициента поверхностного натяжения воды и его зависимости от температуры. При комнатной температуре $T=296~{\rm K}$ было измерено гидростатическое давление на глубине $\Delta h=15,5~{\rm mm}$ как разница давлений при полном погружении иглы $(h_2=201)$ и при касании концом иглы поверхности воды $(h_1=134)$:

$$\rho gh = \Delta P_2 - \Delta P_1 = 9.81k(h_2 - h_1) = 131.5 \text{ }\Pi a.$$

T, K	h, mm	Р, Па	ΔP , Πa	$\sigma, 10^{-3} \; {\rm H/m}$
296	201	394.4	262,9	75,57
301	200	392,4	260,9	75,01
306	198	388,5	257,0	73,88
311	196	384,6	253,1	72,75
316	194	380,6	249,1	71,62
321	192	376,7	245,2	70,50
326	190	372,8	241,3	69,37
331	188	368,9	237,4	68,24

Таблица 1: Температурная зависимость значения коэффициента поверхностного натяжения

Рис. 2: Зависимость коэффициента поверхностного натяжения воды от температуры

Значение, измеренное непосредственно по формуле: $\rho gh = 152,1$ Па. Однако можно утверждать, что значение, измеренное микроманометром, более точно, так как точно оценить глубину погружения иглы и плотность воды использованными приборами затруднительно.

Далее в интервале от 20 до 60 °C было измерено 7 значений разницы давлений в воде при разных температурах. По формулам (7), (8) и (9) найдены соответствующие значения коэффициента поверхностного натяжения. Результаты измерений представлены в таблице 1

На рис. 2 изображена зависимость $\sigma(T)$. С помощью метода наименьших квадратов можно построить аппроксимирующую прямую и оценить величину $d\sigma/dT$:

$$k = \frac{d\sigma}{dT} = \frac{\langle \sigma T \rangle - \langle \sigma \rangle \langle T \rangle}{\langle T^2 \rangle - \langle T \rangle^2} = -0.216 \cdot 10^{-3} \text{ H/m} \cdot \text{K},$$
$$b = \langle \sigma \rangle - k \langle T \rangle = 139.9 \text{ H/m}.$$

Погрешность определения коэффициента наклона прямой можно найти по формуле

$$\sigma_k = \sqrt{\frac{1}{8}(\frac{\langle \sigma^2 \rangle - \langle \sigma \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - k^2)} = 0.005 \text{ H/m} \cdot \text{K}.$$

Зная коэффициент поверхностного натяжения и его температурную зависимость, можно установить зависимости q(T) и $U_F(T)$. Графики данных зависимостей представлены на рис. 3 и 4.

Рис. 3: Зависимость теплоты образования единицы поверхности воды от температуры

Рис. 4: Зависимость полной энергии единицы поверхности воды от температуры

5 Обсуждение результатов и выводы

Табличные значения коэффициента поверхностного натяжения воды при комнатной температуре лежат в пределах $73\text{-}74\cdot10^{-3}~\text{H/m}$. Значения, полученные в ходе данной работы, отклоняются от табличных не более, чем на 2-5%. Относительные систематические и случайные погрешности также не превышают нескольких процентов. Это говорит о том, что точность опыта достаточно высока и позволяет проверить экспериментально рассмотренные теоретические закономерности.

В ходе опыта было установлено, что зависимость поверхностного натяжения от температуры линейна. Это соответствует теоретическим сведениям: по правилу Этвёша коэффициент поверхностного натяжения воды определяется как

$$\sigma \approx 0.073(1 - 0.002 \cdot (T - 291)).$$

Следовательно, использованная в данной работе экспериментальная установка позволяет с большой точностью измерить энергию поверхности воды в температурном диапазоне от 20 до $60~{\rm K}.$