Fiber Bundles & Characteristic Classes – Homework & Take-Home Exam

Name: Hao Xiao School: Soochow University

1. Some Definitions and Lemmas Mentioned in the Lecture

Lemma 1.1. Let ξ, η be vector bundles over B, and let $f : E(\xi) \to E(\eta)$ be a continuous function which maps each vector space $F_b(\xi)$ isomorphically onto the corresponding vector space $F_b(\eta)$. Then f is necessarily a homeomorphism. Hence ξ is isomorphic to η .

Definition 1.2. Suppose ξ is a vector bundle on B and η is a vector bundle on B'. A bundle map from η to ξ is a continuous map $F: E(\eta) \to E(\xi)$ such that for each $b' \in B'$, there exists $b \in B$ such that F restricts to a linear isomorphism $F|_{b'}: \pi_{\eta}^{-1}(b') \to \pi_{\xi}^{-1}(b)$ at $b' \in B'$.

Thus in fact, F induces $f: B' \to B$ by $b' \mapsto b$. In other words, there holds the following commutative diagram and we say that F covers f.

$$E(\eta) \xrightarrow{F} E(\xi)$$

$$\downarrow^{\pi_{\eta}} \qquad \downarrow^{\pi_{\xi}}$$

$$B' \xrightarrow{f} B$$

2. Homework

2.1. **HW** #1: 7/16/2018.

Homework 2.1. Prove that γ_n^1 defines a line bundle on $\mathbb{R}P^n$.

Proof. Recall that $\mathbb{R}P^n$ is derived by identifying antipodal points x and -x on the unit sphere $S^n \subset \mathbb{R}^{n+1}$ where x varies on S^n . Let $[x] := \{x, -x\}$ for each $x \in S^n$, then $\pi : E = \{([x], cx) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} : c \in \mathbb{R}\} \to B = \mathbb{R}P^n$ projects each ([x], cx) to [x]. So $\pi^{-1}([x]) = \{([x], cx) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} : c \in \mathbb{R}\}$ which can be identified with the line through x and -x or simply \mathbb{R} . Hence $\pi^{-1}([x])$ is always a real vector space.

Let $U \subset S^n$ be an arbitrary open set that does not contain any pair of antipodal points on the sphere. Set U_1 to be the collection of equivalent classes of all elements in U. The map $h: U_1 \times \mathbb{R} \to \pi^{-1}(U_1) = \{([x], tx) : x \in U, t \in \mathbb{R}\}$ defined by h([x], t) = ([x], tx) for each $(x, t) \in U \times \mathbb{R}$ is trivially a homeomorphism. It's also obvious that the union all such U_1 covers B. So for each $[x] \in B$, [x] is contained in some U_1 . Then for all $[x'] \in U_1$, $t \mapsto h([x'], t) = ([x'], tx') \in \pi^{-1}([x'])$ for each $t \in \mathbb{R}$ clearly defines a linear isomorphism from \mathbb{R} to $\pi^{-1}([x']) = \{([x'], cx') \in \mathbb{R}P^n \times \mathbb{R}^{n+1} : c \in \mathbb{R}\}$.

2.2. **HW** #2: 7/17/2018.

Homework 2.2. Consider γ_n^1 on $\mathbb{R}P^n$. Let $f: S^n \to \mathbb{R}P^n$ be defined by $x \mapsto [x]$ for each x on S^n . Then $f^*\gamma_n^1$ on S^n is trivial, i.e., it is isomorphic to the trivial line bundle $(S^n \times \mathbb{R}, S^n, \pi_1)$.

Proof. For each $[x] \in \mathbb{R}P^n$, let $r([x]) \in S^n$ be a fixed representative of [x]. So

$$E(\gamma_n^1) = \{([x], cr([x]) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} : c \in \mathbb{R}\}\$$

and then

$$E(f^*\gamma_n^1) = \{(b, [x], cr([x])) \in S^n \times E(\gamma_n^1) : f(b) = \pi_{\gamma_n^1}([x], cr([x])) = [x], c \in \mathbb{R}\}$$

= \{(b, f(b), cr(f(b))) : b \in S^n, c \in \mathbb{R}\}.

Define $h: S^n \times \mathbb{R} \to E(f^*\gamma_n^1)$ via $(b,c) \mapsto (b,f(b),cr(f(b)))$ for each $(b,c) \in S^n \times \mathbb{R}$. Note that f is a continuous surjection. Thus, h is a continuous function. For each $b \in S^n$, the restriction

$$h|_b:\pi^{-1}(b)=\{b\}\times\mathbb{R}\to\pi^{-1}_{f^*\gamma^1}(b)=\{(b,f(b),cr(f(b))):c\in\mathbb{R}\}$$

maps (b,c) to (b,f(b),cr(f(b))) for all $c \in \mathbb{R}$. It's trivial that $h|_b$ is a linear isomorphism and then $f^*\gamma_n^1$ is isomorphic to the line bundle by Lemma 1.1.

Homework 2.3. In Definition 1.2, prove that $\eta \approx f^*\xi$

Proof. Define $h: E(\eta) \to E(f^*\xi)$ via $e' \mapsto (\pi_{\eta}(e'), F(e'))$ for all $e' \in E(\eta)$. Since for each $b' \in B'$, the restriction

$$h|_{b'}: \pi_{\eta}^{-1}(b') \to \pi_{f^*\xi}^{-1}(b') = \{(b', e) : e \in E(\xi), \pi_{\xi}(e) = f(b') = b\}$$
$$= \{(b', e) : e \in \pi_{\xi}^{-1}(b)\}$$
$$= \{b'\} \times \pi_{\xi}^{-1}(b)$$

is defined by $e' \mapsto (\pi_{\eta}(e'), F(e')) = (b', F(e'))$ for each $e' \in \pi_{\eta}^{-1}(b')$. Since $F|_{b'} : \pi_{\eta}^{-1}(b') \to \pi_{\xi}^{-1}(b)$ is a linear isomorphism by Definition 1.2, then $h|_{b'}$ is obviously an isomorphism. Note that F is continuous. So h is a continuous map. Thus, $\eta \approx f^*\xi$ by Lemma 1.1.

2.3. **HW** #3: 7/18/2018.

Homework 2.4. Suppose η is a subbundle of ξ , define the quotient bundle ξ/η and show that it satisfies the local triviality condition. Prove that $\xi \approx \eta \oplus (\xi/\eta)$ when the base space B is paracompact. Does this hold in general?

Proof. Let $E(\xi/\eta) = E(\xi)/\sim$ where \sim is an equivalent relationship on $E(\xi)$ such that for all $e_1, e_2 \in E(\xi)$ $e_1 \sim e_2$ iff there exists $b \in B$ with $\pi_{\xi}(e_1) = \pi_{\xi}(e_2) = b$ and $e_1 - e_2 \in \pi_{\eta}^{-1}(b)$. Define the projection $\pi_{\xi/\eta}$ by $\pi_{\xi/\eta}(e + \pi_{\eta}^{-1}(\pi_{\xi}(e))) = \pi_{\xi}(e)$ for all $b \in B$. Then for each $b \in B$, $\pi_{\xi/\eta}^{-1}(b) = \pi_{\xi}^{-1}(b)/\pi_{\eta}^{-1}(b)$.

Assume $\operatorname{rank}(\xi) = n, \operatorname{rank}(\eta) = k$. For each $b \in B$, there is an open neighborhood U of b such that there exist s_1, \dots, s_k as a local basis of sections for η on U. Reduce U to be a smaller one so that $\xi|_U$ is trivial. Extend s_1, \dots, s_k to a local basis of sections $s_1, \dots, s_k, s_{k+1}, \dots, s_n$ of ξ on U, then s_{k+1}, \dots, s_n are representatives of the local basis of sections for ξ/η on U since $\pi_{\xi/\eta}^{-1}(b)$ is a quotient space for each $b \in B$. So that ξ/η admits local basis of sections and then local triviality holds for ξ/η .

If B is paracompact, then there is a metric on ξ . By Gram-Schmidt process, s_1, \dots, s_n can be orthonormalized such that s_1, \dots, s_n are mutually perpendicular at each $b \in U$. Note that

the space spanned by $s_{k+1}(b), \dots, s_n(b)$ are the the orthogonal complement of $\pi_{\eta}^{-1}(b)$ in $\pi_{\xi}^{-1}(b)$. Such spaces attached to each $b \in B$ is the fiber-wise orthogonal complement of η in ξ , denoted η^{\perp} . Then $\xi = \eta \oplus \eta^{\perp}$. It's obvious that $\xi/\eta \approx \eta^{\perp}$ since the fibers of them at the same point $b \in B$ are spanned by the same local basis of sections and the topology on ξ/η , η^{\perp} are the same by definition. The isomorphism is given by $v \in E(\eta^{\perp}) \mapsto [v] \in \xi/\eta$. Hence $\eta \approx \xi/\eta$.

This property also holds in general. Since for a Whitney sum, the elements in $\pi_{\eta}^{-1}(b)$, $\pi_{\xi/\eta}^{-1}(b)$ are combined through cartesian product for each $b \in B$. So $\pi_{\xi}^{-1}(b) \approx \pi_{\eta}^{-1}(b) \times \pi_{\xi/\eta}^{-1}(b)$. The general isomorphism is given by the assignment

$$(v_1, \dots, v_k, v_{k+1}, \dots, v_n) \mapsto (v_1, \dots, v_k, [v_{k+1}], \dots, [v_n]).$$

Homework 2.5. Consider a general treatment for line bundles on S^1 .

- (a) Let ξ be a line bundle on S^1 . Since S^1 is Hausdorff and compact we can assume that there is a metric on ξ . By local triviality, there is an open cover $\{U_{\alpha}\}_{{\alpha}\in I}$ of S^1 such that ξ has nowhere vanishing local section s_{α} on each U_{α} . This defines translation function $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to O(1) = \{-1,1\} \approx \mathbb{Z}_2$ since there is a metric on ξ . Then on each overlap $U_{\alpha} \cap U_{\beta}$, we have $s_{\alpha} = g_{\alpha\beta}s_{\beta}$. Show that $g_{\alpha\beta}$ defines a Čech 1-cocycle in $C^1(\{U_{\alpha}\}_{{\alpha}\in I}; \mathbb{Z}_2)$.
- (b) Show that ξ is trivial iff the Čech 1-cocycle defined above is a coboundary. Then prove that the isomorphic classes of line bundles on S^1 are in one-to-one correspondence with $H^1(S^1, \mathbb{Z}_2)$, that is, there are exactly two isomorphic classes of line bundles on S^1 , one represented by the trivial line bundle and the other by Möbius strip.

Proof. (a) By definition of translation function, it's clear that $g_{\alpha\alpha}=1$ and $g_{\alpha\beta}=g_{\beta\alpha}^{-1}$ where $g_{\alpha\beta}$ now denotes the image $g_{\alpha\beta}(U_{\alpha}\cap U_{\beta})$ by abuse of notation. Define Čech 1-cochain f by $f(\alpha,\beta)=g_{\alpha\beta}$. This is indeed an element of $C^1(\{U_{\alpha}\}_{\alpha\in I};\mathbb{Z}_2)$, i.e., a Čech 1-cochain, since $f(\alpha,\beta)=f(\beta,\alpha)$. Note that $s_{\alpha}=g_{\alpha\beta}s_{\beta}=g_{\alpha\beta}g_{\beta\gamma}s_{\gamma}=g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}s_{\alpha}$ on $U_{\alpha}\cap U_{\beta}\cap U_{\gamma}$. So $g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}=1$ and

$$(\delta f)(\alpha, \beta, \gamma) = f(\alpha, \beta)f(\beta, \gamma)f(\gamma, \alpha) = g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1$$

where δ is the coboundary operator. Thus, f is a Čech 1-cocycle in $C^1(\{U_\alpha\}_{\alpha\in I};\mathbb{Z}_2)$.

(b) It's known that ξ , as a line bundle, is trivial iff there exists a nowhere vanishing section s on S^1 . Hence just set $s_{\alpha} := s|_{U_{\alpha}}$ for each $\alpha \in I$. Note that $\{U_{\alpha}\}_{\alpha \in I}$ is an open cover of a connected space S^1 . It follows that all $g_{\alpha\beta}$'s are the same and so equal to 1 by the cocycle condition of $g_{\alpha\beta}$'s. Conversely, if all $g_{\alpha\beta} = 1$, then they combine to define a global nowhere vanishing section on S^1 again because S^1 is connected.

Suppose ξ is trivial, then $g_{\alpha\beta}=1$ for all $\alpha,\beta\in I$. Define Čech 0-cochain f' by $f'(\alpha)\equiv 1$. It's obvious that f' is indeed a 1-cochain of $C^0(\{U_\alpha\}_{\alpha\in I};\mathbb{Z}_2)$. For each $\alpha,\beta\in I$, $f(\alpha,\beta)=g_{\alpha\beta}=1=f'(\alpha)f'(\beta)=(\delta f')(\alpha,\beta)$. Hence, f is a coboundary. Conversely, suppose f is a coboundary, then there exists 0-cochain f' in $C^0(\{U_\alpha\}_{\alpha\in I};\mathbb{Z}_2)$ such that $f=(\delta f')$, i.e., $g_{\alpha\beta}=f(\alpha,\beta)=(\delta f')(\alpha,\beta)=f'(\alpha)f'(\beta)$ always holds. Now let $\tilde{s}_\alpha=f'(\alpha)s_\alpha$ for each $\alpha\in I$,

then
$$\tilde{\alpha}_{\alpha} = f'(\alpha)s_{\alpha} = f'(\alpha)g_{\alpha\beta}s_{\beta} = f'(\alpha)g_{\alpha\beta}(f'(\beta))^{-1}\tilde{s}_{\beta}$$
. So
$$\tilde{g}_{\alpha\beta} = f'(\alpha)g_{\alpha\beta}(f'(\beta))^{-1} = f'(\alpha)f(\alpha,\beta)(f'(\beta))^{-1}$$
$$= f'(\alpha)f'(\alpha)f'(\beta)(f'(\beta))^{-1} = (f'(\alpha))^{2} = 1$$

holds for all $\alpha, \beta \in I$. Thus, for each $\alpha \in I$, \tilde{s}_{α} is a section on U_{α} . Moreover, $\tilde{g}_{\alpha\beta} = 1$ always holds. Hence, ξ is trivial.

 S^1 has a good cover since S^1 is a manifold. So assume $\{U_{\alpha}\}_{\alpha\in I}$ is a good cover of S^1 . Since the usual cohomology group is isomorphic to the Čech cohomology group for good covers, we have $H^1(\{U_{\alpha}\}_{\alpha\in I}; \mathbb{Z}_2) \approx H^1(S^1; \mathbb{Z}_2) \approx H^1(\mathbb{R}P^1; \mathbb{Z}_2)$, which is cyclic of order 2. Hence, the line bundle ξ on S^1 is trivial iff $w_1(\xi) = 0$ in $H^1(S^1; \mathbb{Z}_2)$ since f is a coboundary iff ξ is trivial. So $w_1(\xi)$ distinguishes the trivial line bundle on S^1 from other nontrivial ones. Then any other nontrivial vector bundle ξ_1 on S^1 defines the same nonzero element $a := w_1(\xi)$ in $H^1(S^1; \mathbb{Z}_2)$ as a generator.

It's obvious that all trivial line bundles are isomorphic. Suppose s_{ξ}, s_{η} are global sections of nontrivial line bundles ξ, η respectively, then s_{ξ}, s_{η} vanish somewhere on S^1 . Assume that s_{ξ} vanishes on $p \in S^1$, then pick p out of the circle. The remaining space is contractible, and so there is a global nowhere vanishing section s on it since all vector bundles on it are trivial. Parametrize S^1 as $(0,1) \to S^1$ by $t \mapsto e^{2\pi i t}$ such that p=1. Let $\tilde{s}(e^{2\pi i t}) = t(1-t)s(e^{2\pi i t})$ for all $t \in [0,1]$. \tilde{s} is a well-defined section on S^1 and only vanishes at p. So without loss of generality, we can assume that s_{ξ}, s_{η} only vanish at p. Define $F: E(\xi) \to E(\eta)$ as

$$F|_{e^{2\pi it}}: \pi_{\xi}^{-1}(e^{2\pi it}) \to \pi_{\eta}^{-1}(e^{2\pi it}), \ r \frac{s_{\xi}(e^{2\pi it})}{\|s_{\xi}(e^{2\pi it})\|} \to r \frac{s_{\eta}(e^{2\pi it})}{\|s_{\eta}(e^{2\pi it})\|}$$

for all $t \in (0,1)$ where $r \in \mathbb{R}$. Let $F|_1 : \pi_{\xi}^{-1}(1) \to \pi_{\eta}^{-1}(1)$ be defined as $v \to v$. It's trivial that F is a isomorphism. Hence, all nontrivial line bundles on S^1 are isomorphic and then $0, a \in H^1(S^1; \mathbb{Z}_2)$ corresponds to and only to two isomorphic classes of line bundles on S^1 , that is, the one represented by trivial line bundle and the other by Möbius strip.

Homework 2.6. Process the following steps to prove that a real vector bundle ξ is orientable iff $w_1(\xi) = 0$.

Before stating the problem, we have to clarify some notions involved here.

Suppose b_1, b_2 are bases of a linear space V and $A: b_1 \rightarrow b_2$ is the unique linear transformation from b_1 to b_2 . Then b_1 and b_2 are said to have **the same orientation** (or be **consistently oriented**) if the A has positive determinant; otherwise they have opposite orientations. The property of having the same orientation defines an equivalence relation on the set of all ordered bases for V. If V is nonzero, there are precisely two equivalence classes determined by this relation. An **orientation** on V is an assignment of +1 to one equivalence class and -1 to the other.

Given a real vector bundle $\pi: E \to B$, an **orientation** of E means: for each fiber $\pi^{-1}(b)$, there is an orientation of the vector space $\pi^{-1}(b)$ and one demands that each trivialization map (which is a bundle map) $h: \pi^{-1}(U) \to U \times \mathbb{R}^n$ is fiber-wise orientation-preserving, where \mathbb{R}^n is given the standard orientation.

A vector bundle that can be given an orientation is said to be **orientable**.

- (a) Show that a line bundle ξ on S^1 is orientable iff it is trivial.
- (b) Define the determinant line bundle of ξ to be $\det \xi := \wedge^n \xi := \coprod_{b \in B} \wedge^n \pi^{-1}(b)$ where $n = \operatorname{rank}(\xi)$. (Recall that if V is an n-dimensional vector space, then $\dim(\wedge^k V) = \binom{n}{k}$ and so $\dim(\wedge^k V) = 1$.) Show that a vector bundle ξ is orientable iff its determinant line bundle $\det \xi$ is trivial.
- (c) Any continuous curve $c: S^1 \to B$ defines a 1-cycle in $H^1(B, \mathbb{Z}_2)$ and hence it can be paired with $w_1(\xi)$. Compute this pairing in terms of $c^*w_1(\xi)$ to prove that ξ is orientable iff $w_1(\xi) = 0$.
- *Proof.* (a) \Leftarrow) Suppose ξ is trivial, then there is a nowhere vanishing section s on S^1 . It's obvious that ξ is orientable by just assigning 1 to each [s(b)].
- \Rightarrow) By local triviality, for $b \in S^1$ there is a neighborhood U_b of b and a nowhere vanishing local section s_b on U_b . When b varies on S^1 , we derive an open cover $\{U_b\}_{b\in B}$ of B. Without loss of generality, assume $\{U_b\}_{b\in B}$ are open intervals on S^1 and every point of S^1 is contained in at most two sets in the cover. Suppose the line bundle ξ is orientable, then there is a local constant function f maps $[s_b(b')]$ to $\{\pm 1\}$ for all $b' \in B$. Multiply s_b by -1 if necessary, we can assume that $f([s_b(b')]) \equiv 1$ for each $b \in B$. Since S^1 is connected, each U_b intersects another set in the cover. Hence, all s_b 's can combine to produce a nowhere vanishing global section s by proper adjustment on the overlaps. So ξ is trivial.
- (b) \Leftarrow)Assume det ξ is trivial, then there is a nowhere vanishing section ω of det ξ . Suppose B is the base space of ξ . Define ε such that $\varepsilon_b(f) = \text{sign}(\omega_b(f))$ for each $b \in B$. ε is clearly an orientation on ξ , i.e., $\varepsilon \in \text{or}(\xi)$ and hence ξ is orientable.
- \Rightarrow) Suppose ξ is orientable and let s_1, \dots, s_n be an ordered local basis on some neighborhood U_b of b. Then there is a local constant function ε with $\varepsilon(s_1(b), \dots, s_n(b))$ taken values in $\{\pm 1\}$. Replacing s_1 by $-s_1$ and U_b by a smaller neighborhood if necessary, we may assume that $\varepsilon \equiv 1$ on U_b . So s_1, \dots, s_n would be a positively oriented local basis with respect to the orientation ε . Then $\omega_b = s_1 \wedge \dots \wedge s_n$ is a nowhere vanishing section of $\wedge^n \pi^{-1}(b)$ over U_b . Moreover, for every $b' \in B$, the form ω_b is positively oriented with respect to ε_b .

Obviously, there exists an open cover $\{U_{b_i}\}_{i\in I}$ of B with nowhere vanishing sections ω_i of $\wedge^n \xi|_{U_i}$ such that $\omega_i(b')$ is positively oriented with respect to ε_{b_i} for every $i \in I$.

Suppose B is Hausdorff and paracompact, then $\{U_{b_i}\}_{i\in I}$ admits a partition of unity $\{\psi_k\}_{k\in K}$ subordinate to $\{U_{b_i}\}_{i\in I}$. This means ψ_k 's are continuous functions taking values in [0, 1], for all $k\in K$ supp $(\psi_k)\subset U_{b_{i_k}}$ for some $i_k\in I$, and $\sum_{k\in K}\psi_k=1$ with locally finite sum.

- Let $\omega = \sum_{k \in K} \psi_k \omega_{ik}$. This is obviously an global nowhere vanishing section of ξ which is positively oriented with respect to ε . Hence, det ξ is trivial.
- (c) Since ξ is orientable iff the line bundle $\wedge^n \xi$ on B is trivial, it suffices to prove that $w_1(\xi) = 0$ iff $\wedge^n \xi$ is trivial. Instead of a direct proof, we first verify two general propositions.

Suppose λ is a real line bundle on B, then λ is trivial iff the its Euler class $e(\lambda) = 0 \in H^1(B; \mathbb{Z}_2)$. Basically, let $f: S^1 \to B$ be any map, then by naturality of Euler class, one has $e(f^*\lambda) = f^*e(\lambda) \in H^1(S^1; \mathbb{Z}_2)$. It's known that all line bundles on S^1 are divided into two isomorphic classes, i.e., the trivial ones and the nontrivial ones. Moreover, the trivial ones

correspond to zero Euler class in $H^1(S^1; \mathbb{Z}_2)$; the nontrivial ones correspond to the unique nonzero Euler class in $H^1(S^1; \mathbb{Z}_2)$. It follows that $f^*\lambda$ is trivial on S^1 for every f if $e(\lambda) = 0$. However, since each connected component of B is path-wise connected, λ is trivial iff $f^*\lambda$ is trivial for every map $f: S^1 \to B$. Then $e(\lambda) = 0$ yields λ is trivial. The inverse part is obvious. Hence, $\wedge^n \xi$ is trivial iff $e(\wedge^n \xi) = 0$.

The second proposition goes that $w_1(\xi) = e(\wedge^n \xi) \in H^1(B; \mathbb{Z}_2)$. In fact, let $f : B' \to B$ be a splitting map for ξ , so that $f^*\xi$ is a Whitney sum $\lambda_1 \oplus \cdots \oplus \lambda_m$ of real line bundles on B' and $f^* : H^*(X; \mathbb{Z}_2) \to H^*(B'; \mathbb{Z}_2)$ is a monomorphism. It suffices to show that $f^*e(\wedge^n \xi) = f^*w_1(\xi) \in H^1(B; \mathbb{Z}_2)$. On the one hand, $f^*e(\wedge^n \xi) = e(f^* \wedge^n \xi) = e(\wedge^n f^*\xi)$ by naturality of Euler classes and naturality of exterior powers, and since $f^*\xi = \lambda_1 \oplus \cdots \oplus \lambda_m$, we have

$$f^*e(\wedge^n \xi) = e(\wedge^m f^* \xi) = e(\lambda_1 \otimes \cdots \otimes \lambda_m) = e(\lambda_1) + \cdots + e(\lambda_m) \in H^1(B', \mathbb{Z}_2).$$

On the other hand,

$$f^*w(\xi) = w(f^*\xi) = w(\lambda_1 \oplus \cdots \oplus \lambda_m) = w(\lambda_1) \cdots w(\lambda_m)$$
$$= (1 + e(\lambda_1)) \cdots (1 + e(\lambda_m)) \in H^{\Pi}(B'; \mathbb{Z}_2)$$

by naturality and the Whitney product formula for total Stiefel-Whitney classes. This implies that $f^*w_1(\xi) = e(\lambda_1) + \cdots + e(\lambda_m) = f^*e(\wedge^n\xi)$, and since f^* is a monomorphism one has $w_1(\xi) = e(\wedge^n\xi) \in H^1(B,\mathbb{Z}_2)$ as claimed. Hence, $\wedge^n\xi$ is trivial iff $w_1(\xi) = 0$. So ξ is orientable iff $w_1(\xi) = 0$.

2.4. HW #4: 7/24/2018.

Homework 2.7. Show that for all odd positive integer n, $\mathbb{R}P^n$ is the boundary of some compact smooth manifold.

Proof. In the definition of the monomial $w_1^{r_1} \cdots w_n^{r_n}$, the exponents are subject to the identity $r_1 + 2r_2 + \cdots + nr_n = n$. If all w_j 's are zero for odd j, then the identity fails since it's even on the left and odd on the right. So the monomial must contain w_j for some odd j. Since $\binom{n+1}{j}$ is odd when n and j are both odd. Note that we have used the fact that $\binom{p}{q}$ is odd iff every bit of the binary expansion of q is less than or equal to the corresponding bit of the binary expansion of p. This is due to Lucas.

Thus, w_j equals zero. This immediately implies that all Whitney numbers of $\mathbb{R}P^n$ is zero. Hence, $\mathbb{R}P^n$ is the boundary of some compact smooth manifold whenver n is odd.

Homework 2.8. Find a 4-dimensional smooth manifold M such that $\partial M = \mathbb{R}P^3$.

Solution. Take the complex surface $z_1^2+z_2^2+z_3^2=1$ in \mathbb{C}^3 and intersect it with the ball $|z_1|^2+|z_2|^2+|z_3|^2\leq 1$ to get an 4-dimensional smooth manifold M whose boundary is claimed to be $\partial M=\mathbb{R}\mathrm{P}^3$ and embedded in \mathbb{C}^3 . The boundary can be derived by intersecting the complex surface with S^5 , i.e., $|z_1|^2+|z_2|^2+|z_3|^2=1$.

To verify the claim explicitly, consider the map from \mathbb{C}^2 to \mathbb{C}^3 given by

$$z_1 = i[(z^2 + w^2) - (\bar{z}^2 + \bar{w}^2)]/2,$$

$$z_2 = [(z^2 + w^2) + (\bar{z}^2 + \bar{w}^2)]/2,$$

$$z_3 = zw + \bar{z}\bar{w}.$$

One computes that $z_1^2 + z_2^2 + z_3^3 = (|z|^2 + |w|^2)^2$ and $|z_1|^2 + |z_2|^2 + |z_3|^2 = (|z|^2 + |w|^2)^2$. It follows that the image of S^3 in \mathbb{C}^2 is the complex surface $z_1^2 + z_2^2 + z_3^3 = 1$ intersected with S^5 , i.e., $|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$. Since the map $(z, w) \mapsto (z_1, z_2, z_3)$ is 2:1 restricted to S^3 , its image is $\mathbb{R}P^3$.

2.5. HW #5: 7/25/2018.

Homework 2.9. Consider $E = M \times \mathbb{R}^k \xrightarrow{\pi_1} M$ with $d: (f_1, \dots, f_k)^T \mapsto (df_1, \dots, d_k)^T$ as the trivial connection. Let $\nabla^E = d + \omega : (f_1, \dots, f_k)^T \mapsto (df_1, \dots, df_k)^T + \omega (f_1, \dots, f_k)^T$ where $\omega \in (\omega_{ij})_{k \times k}$ and $\omega_{ij} \in \Omega^1(M)$. Show that all connections on E is of the form $d + \omega$.

Proof. For any two connections ∇_1^E, ∇_2^E on $E, \nabla_1^E - \nabla_2^E$ is $C^{\infty}(M)$ -linear by definition. Hence there is a unique $\omega' \in \Omega^1(M; E)$ such that $(\nabla_1^E - \nabla_2^E)(\sigma) = \omega' \sigma$ for all $\sigma \in \Gamma(E)$, that is, ∇_1^E, ∇_2^E differ by an element in $\Omega^1(M; E)$. So all connections on E is of the form $d + \omega$.

3. Take-Home Exam: 7/30/2018

Question 3.1. Give a detailed proof of the second part of Chern-Weil Theorem, that is, for any formal power series

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots \in \mathbb{C}[[x]]$$

the cohomology class $[\operatorname{tr}[f(R^E)]] \in H^*(M)$ is independent of the connection ∇^E .

Proof. Suppose $\tilde{\nabla}^E$ is another connection on E and \tilde{R}^E is its curvature. For any $t \in [0,1]$, let ∇^E_t be the deformed connection on E given by $\nabla^E_t = (1-t)\nabla^E + t\tilde{\nabla}^E$. Then ∇^E_t is a connection on E such that $\nabla^E_0 = \nabla^E$ and $\nabla^E_1 = \tilde{\nabla}^E$. Moreover,

$$\frac{\mathrm{d}\nabla_t^E}{\mathrm{d}t} = \tilde{\nabla}^E - \nabla^E \in \Omega^1(M; \mathrm{End}(E)).$$

Denote the curvature of ∇_t^E by R_t^E with $t \in [0, 1]$. We study the change of $\operatorname{tr}[f(R_t^E)]$ when t varies in [0, 1]. Let f'(x) be the power series obtained from the derivative of f(x) with respect to x. By Bianchi's identity, we deduce that

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{tr}[f(R_t^E)] &= \mathrm{tr}\left[\frac{\mathrm{d}R_t^E}{\mathrm{d}t}f'(R_t^E)\right] = \mathrm{tr}\left[\frac{\mathrm{d}(\nabla_t^E)^2}{\mathrm{d}t}f'(R_t^E)\right] \\ &= \mathrm{tr}\left[\left[\nabla_t^E, \frac{\mathrm{d}\nabla_t^E}{\mathrm{d}t}\right]f'(R_t^E)\right] = \mathrm{tr}\left[\left[\nabla_t^E, \frac{\mathrm{d}\nabla_t^E}{\mathrm{d}t}f'(R_t^E)\right]\right] \\ &= \mathrm{dtr}\left[\frac{\mathrm{d}\nabla_t^E}{\mathrm{d}t}f'(R_t^E)\right]. \end{split}$$

Then we derive

$$\operatorname{tr}[f(R^E)] - \operatorname{tr}[f(\tilde{R}^E)] = -\operatorname{d} \int_0^1 \operatorname{tr}\left[\frac{\operatorname{d} \nabla_t^E}{\operatorname{d} t} f'(R_t^E)\right] \operatorname{d} t.$$

Hence, $[\operatorname{tr}[f(R^E)]] \in H^*(M)$ is independent of the connection ∇^E .

Question 3.2. For complex vector bundles E, E' on M, show that

$$c_1(E \otimes E') = r'c_1(E) + rc_1(E')$$

where r = rank(E) and r' = rank(E'). Use this to show that $c_1(\bar{E}) = -c_1(E)$.

Proof. Using the splitting principle, assume that $E = E_1 \oplus E_2 \oplus \cdots \oplus E_r$ and $E' = E'_1 \oplus E'_2 \oplus \cdots \oplus E'_{r'}$ are splittings of E, E' into line bundles. Then $c(E) = c(E_1 \oplus E_2 \oplus \cdots \oplus E_r) = \prod_{i=1}^r c(E_i) = \prod_{i=1}^r (1 + \alpha_i)$ where $\alpha_i = c_1(E_i)$. Also, $c(E') = \prod_{i=1}^{r'} (1 + \beta_i)$ where $\beta = c_1(E'_i)$. Hence,

$$c(E_1 \otimes E') = c((E_1 \oplus E_2 \oplus \cdots \oplus E_r) \otimes E') = \prod_{i=1}^r c(E_i \otimes E')$$

$$= \prod_{i=1}^r c(E_i \otimes (E'_1 \oplus E'_2 \oplus \cdots \oplus E'_{r'})) = \prod_{i=1}^r \prod_{j=1}^{r'} c(E_i \otimes E'_j)$$

$$= \prod_{i=1}^r \prod_{j=1}^{r'} (1 + \alpha_i + \beta_j) = 1 + r'c_1(E) + rc_1(E') + \cdots$$

which implies that $c_1(E \otimes E') = r'c_1(E) + rc_1(E')$. Since $E \otimes \bar{E}$ is a trivial line bundle, then $rc_1(E) + rc_1(\bar{E}) = c_1(E \otimes \bar{E}) = 0 \Rightarrow c_1(\bar{E}) = -c_1(E)$.

Question 3.3. Let E be a complex vector bundle of rank k on M and let $\det E = \wedge^k E$ be its top exterior product bundle, aka determinant bundle.

- (a) If $\{U_{\alpha}\}$ is an open cover of M on which E is trivial and $g_{\alpha\beta}$ the corresponding transition matrices, what would be the transition functions of det E? For a connection ∇^E on E, construct an induced connection $\nabla^{\det E}$ and compute its curvature in terms of that of ∇^E .
- (b) Show that $c_1(\det E) = c_1(E)$.

Proof. (a) By the definition of determinant bundle, the transition functions of $\wedge^k E$ are given by $j_{\alpha\beta}(x) = \det g_{\alpha\beta}(x) \in GL(1,\mathbb{C}) = \mathbb{C}^*$. Given a connection ∇^E and a local frame e_1, \dots, e_k for E, the corresponding connection matrix consisting of 1-forms ω_i^j is defined by $\nabla e_i = \omega_i^j e_j$. Since $e_1 \wedge \dots \wedge e_k$ is a frame for $\det E$, we have

$$e_1 \wedge \cdots \wedge \nabla^E e_j \wedge \cdots \wedge e_k = e_1 \wedge \cdots \wedge \omega_j^k e_k \wedge \cdots \wedge e_k = \omega_j^k \delta_{jk} e_1 \wedge \cdots \wedge e_j \wedge \cdots \wedge e_k.$$

Then by definition of product connection, $\nabla^{\det E}(e_1 \wedge \cdots \wedge e_k) = \omega_j^j e_1 \wedge \cdots \wedge e_k$, that is, the connection matrix represents $\nabla^{\det E}$, which is the trace of the connection matrix of ∇^E . Hence immediately we deduce that $R^{\det E} = -\frac{\sqrt{-1}}{2\pi} \operatorname{tr}(R^E) = -c_1(E, \nabla^E)$, i.e., minus the first Chern form associated to ∇^E .

(b) Using the splitting principle, assume $E = E_1 \oplus E_2 \oplus \cdots \oplus E_k$ is a splitting of E into line bundles, then $\det E \approx E_1 \otimes E_2 \otimes \cdots \otimes E_k$. It follows that

$$c_1(E) = c_1(E_1 \oplus E_2 \oplus \cdots \oplus E_k) = \sum_{i=1}^k c_1(E_i)$$
$$= c_1(E_1 \otimes E_2 \otimes \cdots \otimes E_k) = c_1(\det E).$$

Question 3.4.

(a) Assume that M is a closed oriented manifold of dimension n (so that we can integrate differential forms on M). For any $\omega = [\omega]_{(n)} + [\omega]_{(n-1)} + \cdots \in \Omega^*(M)$ written in its components of homgeneous degree, define

$$\int_{M} \omega = \int_{M} [\omega]_{(n)}.$$

Let K be a vector field on M and define $i_K : \Omega^k(M) \to \Omega^{k-1}(M)$ to be the contraction with respect to K. That is $i_K \omega(X_1, \dots, X_{k-1}) = \omega(K, X_1, \dots, X_{k-1})$. Put $d_K = d + i_K : \Omega^*(M) \to \Omega^*(M)$. (Restricted to the invariant forms, this is the coboundary operator that defines the equivariant cohomology.) Show that

$$\int_{M} \mathrm{d}_{K} \omega = 0.$$

(b) Let $g = \langle \bullet, \bullet \rangle$ be a metric on TM with respect to which K is an infinitesimal isometry, meaning the Lie derivative $\mathcal{L}_K g = 0$. (This implies that the family of local diffeomorphisms generated by K will preserve the metric g). Set $\theta \in \Omega^1(M)$ to be the metric dual of K, i.e., $\theta(X) = \langle K, X \rangle$. Check that $d_K \theta = |K|^2 + d\theta$ is invertible in $\Omega^*(M)$ provided that K is nowhere vanishing. That is $(d_K \theta)^{-1} \in \Omega^*(M)$. In this case show that for any $\omega \in \Omega^*(M)$ which is d_K -closed,

$$\omega = d_K[(d_K \theta)^{-1} \wedge \theta \wedge \omega].$$

In particular, in this case, for any $\omega \in \Omega^*(M)$, $d_K \omega = 0$,

$$\int_{M} \omega = 0.$$

Proof. Sorry I can't work out this problem...

Integral on manifold is beyond my knowledge.