风险交易识别

一、实验名称:风险交易识别

二、实验目的

对 30 维过程的交易进行风险识别。

三、实验原理

本次实验中应用了多种模型,以下按顺序说明它们的原理。另外,本题目中要求以 f1 作为判别模型效果的标准,这里也对其原理进行说明。

1、K近邻

在特征空间中,如果一个样本附近的 k 个最近样本的大多数都属于某一类别,则该样本也属于这一类别。

在寻找最近的 k 个样本时, 使用欧式距离进行度量:

$$dis_{ij} = \sqrt{\sum_{n=1}^{30} (x_{i_n} - x_{j_n})^2}$$

其中i表示第i个测试点,j表示第j个样本点,n表示第n个维度

Dis 中最小的 k 个值对应的下标,它们对应的样本点的标签的众数(这里忽略多个众数的情况)即是所求的测试点的标签。

2、感知机

感知机寻找一组(w,b)作为系数和常数项来实现分类超平面,也可以看作是对(x1 ······x30 1)的增广维度寻找系数组。

感知机模型的损失函数为:

$$-\sum_{i\in M}\left(w^Tx_i+b\right)\cdot y_i$$

其中M是误分类点集合

在迭代中,利用梯度下降法最小化损失函数,即在数据点误分类时,利用损失函数对参数的偏导和迭代步长对参数进行变更:

$$w = w + cxy$$

 $b = b + cy$
其中 c 是迭代步长

最后得到损失函数最小的(w,b),便能指导绘制分类超平面,进而得到分类的结果。

3、全连接神经网络

全连接神经网络模仿生物学中神经元的工作状态,将数学过程转换为一层一层的计算。

在每层当中, 最基本的是一个神经元, 其表达式同上面的感知机模型:

$$a = h(wx + b)$$

其中,b称为偏置,用于控制神经元被激活的容易程度;而w表示各信号的权重,用于控制各信号的重要性。h()为激活函数,是一种非线性函数。本次使用了Sigmoid 函数和ReLU函数:

神经网络的整体结构,可以分为输入层、隐藏层(一层或者多层的神经网络层)、输出层。

神经网络的输出是通过前向传播得到的。其将数据特征作为输入,进入隐藏层,与对应的权重相乘,加上偏置,通过激活函数进行激活,并作为下一层神经网络层的输入。不断重复上述过程直到神经网络的输出层,得到输出值。

在反向传播时,通过梯度下降的方法,最小化损失函数,得到收敛的模型。本次在模型中使用的损失函数是交叉熵损失函数,其多用于分类问题:

$$J_{x} = -\frac{1}{m} \sum_{i=1}^{m} (y_{i} log \sigma(w^{T} x_{i} + b) + (1 - y_{i}) log (1 - \sigma(w^{T} x_{i} + b)))$$

在梯度下降时,同样使用原参数减去步长乘以/2对其的偏导。

最终, 用训练好的模型处理样本, 可以得到对应的预测结果。

4、f1

作为一个常用的分类性能评估指标, f1 分数是精确率 (precision) 和召回率 (recall) 的调和平均数,用于衡量分类模型在识别正样本时的准确性。

这里给出 f1 的计算公式:

正确分类的正样本实例(真正例, True Positives, TP)

错误分类为正样本的负样本实例(假正例, False Positives, FP)

错误分类为负样本的正样本实例(假负例, False Negatives, FN)

精确率:
$$precision = \frac{TP}{TP+FP}$$

召回率:
$$recall = \frac{TP}{TP + EN}$$

$$f1: f1 = 2 \times \frac{precision \times Recall}{precision + Recall}$$

四、实验过程与成果

数据使用:

训练集: train.csv 测试集: pred.csv 1、观察数据:

train. csv 给出了一个交易过程的 30 个维度的信息,并给出了对应的风险标签。可以发现,每个维度的数值有正有负,而标签只有 1 和 0 两种。一共 100000 条数据,标签为 1 的只有 300 个,占 0.3%,这个比例是极小的,对分类的精度提出了很高的要求。

2、K 近邻:

首先使用一些非神经网络的方法。第一个尝试了 K 近邻模型,效果一般。因为风险点极少, K 值只能取 1, 而为了代码运行时间,训练集数量被限制在了 10000 个,这其中的风险点又可能没有覆盖全。

训练集中标签为1的	训练集验证 f1	训练时间	测试集中标签为1
样本数量			的样本数量
264	0. 7411	206. 911304s	165

>> KNB 264

0.7411

历时 206.911304 秒。 165

本模型最大的问题在于, 并不能武断地认为靠近风险点的点都是风险点。

3、感知机

其后使用感知机模型。由于完整的训练集会耗时过长,只使用了1000个进行训练,并 用其检验整个训练集,得到了99.80%左右的正确率。然而,这个错误率与风险样本占比(0.3%) 接近,并不能说明模型效果良好,需要进一步验证。

为了能够使用整个训练集的数据,需要对数据进行筛选降维,考虑从30个维度中挑选出一定数量的维度。为此,需要获得对最后风险评估最有影响的几个维度。这有多种实现方法,本代码中给出了两种,一种是小训练集均值与w乘积表示权重,一种是随机森林算法。前者的权重公式如下:

$$weight_n = rac{\sum_{i=1}^{100000} X_{n_i}}{100000} \times w_n$$

其中 n 表示第 n 个维度

在挑选出一定比例的重要维度后,便可以带入整个训练集训练模型。这时,代码的运行时间得到了极大的保障,并且对正确率的影响几乎可以不计。

由于模型给出预测时,并不是直接给出1或0,而是一些介于-1到1的值,我们需要获得合适的阈值,对高于阈值的测试点标1,低于阈值的测试点标0。为了在用训练集验证时获得最高的f1结果,我们以小步长遍历阈值的合理范围,得到对应f1结果最大的阈值。

最终,模型的 f1 值可以达到 0.7 的水平,但并不稳定。以下给出几组结果:

小训练集 30 维度		完整训练集5维度		测试集风险数	
threshold	f1	threshold	f1	目(即标1数目)	
0. 0087	0. 3046	0. 0096	0. 7111	223	
0. 0368	0. 8225	0. 0259	0. 4566	322	
0. 0362	0. 7772	0. 0039	0. 6335	194	

在使用本模型进行辅助的初步判断时,可以多次重复运行,找到结果良好的一次运行结果。

>> perception 0.0087

0.3046

历时 0.673498 秒。 0.0056

0.7520

267

4、全连接神经网络

之后尝试了神经网络的方法, 这里选择的是全连接神经网络。

先将训练集导入,按列划分为维度向量和风险标签后,按4:1的比例随机划分为训练集和验证集。模型由三个密集连接层构成,前两层都有64个神经元,并以Relu作为激活函数,最后一层只有一个神经元,以Sigmoid作为激活函数。

在模型完成训练后,同样需要设定阈值,这里也采用迭代的方法找到最好的阈值(不同的训练会得到不同的阈值,也会得到不一样的结果)。

在 epoch=50 的训练后,得到如下运行过程和运行结果:

Epoch 1/50 Epoch 2/50 Epoch 3/50 2500/2500 [= Epoch 4/50 Epoch 5/50 Epoch 6/50 Epoch 7/50 2500/2500 [Epoch 8/50 Epoch 9/50 Epoch 10/50

.....

Epoch 41/50 2500/2500 [=: Epoch 42/50 :==========] - 3s 1ms/step - loss: 6.2075e-04 - accuracy: 0.9998 - val_loss: 0.0218 - val_accuracy: 0.9991 2500/2500 [= Epoch 43/50 2500/2500 [= Epoch 44/50 2500/2500 [== 2500/2500 [== Epoch 47/50 2500/2500 [= Epoch 49/50 Epoch 50/50 f1 best=0.9750559329846158 3125/3125 [====

loss(训	Accuracy	val_loss	val_accu	f1	阈值	训练集	训练集
练损失)	(训练准	(验证损	racy(验			风险数	风险数
	确度)	失)	证准确			目(标签	目(标签
			度)			为 1 数	为 1 数
						目)	目)
5. 4340e	0. 9998	0. 0289	0. 9987	0. 9750	0. 2659	283	177
-04				559329			
				846158			

代码只需要运行不到两分钟, 较为迅速。

以下给出了在传播过程中训练集和验证集的损失函数值的变化:

具体结果可以参见 train_with_labels. csv 和 pred_with_labels. csv, 前者给出了验证时的标签实际值(Label_p 列)和阈值处理后的值(Label_b 列),后者给出了预测值(Label 列)。

这个 f1 值颇高, 用训练集验证的结果也与实际接近, 说明模型结果很好。

五、代码与解析

代码有三个, 具体见附件, 以下对其进行逐个解析

1、K 近邻: KNB. m

导入数据集,并用列号作为索引,将其划分为特征向量和数据标签。

% 训练验证集导入

Train_Validation = readtable('train.csv');

num_t_v = height(Train_Validation);

X = Train Validation{:,3:32};

Y = Train_Validation{:,33};

用训练集验证模型。由于使用全部训练集的代码运行时间过长,这里仅拣选了前 10000 个样本作为训练集,所有样本做测试集。通过调用 K 近邻的函数,得到了预测结果,并输出其中标签为 1 的数量作为对比验证。另外计算 f1 作为评判。

% 验证

```
tic()
n = 10000;
XTrain = X(1:n,:);
YTrain = Y(1:n);
result = KNB_fun(XTrain,YTrain,X);
disp(length(result(result == 1)))
% 计算真正例(TP)、假正例(FP)、真反例(TN)和假反例(FN,没用,不算)
TP = sum(Y .* result);
FP = sum((1 - Y) .* result);
FN = sum(Y .* (1 - result));
% 计算精确率和召回率, 进而计算 F1
precision = TP / (TP + FP + eps);
recall = TP / (TP + FN + eps);
f1 = 2 * (precision * recall) / (precision + recall + eps);
disp(f1)
toc()
   用测试集测试模型。由于使用全部训练集的代码运行时间过长,这里仍是仅拣选了前
10000 个训练集样本作为训练集,测试整个测试集。通过调用 K 近邻的函数,得到了预测结
果,并输出其中标签为1的数量。
%测试
Predict = readtable('pred.csv');
XTest = Predict{:,3:32};
YTest = KNB fun(XTrain,YTrain,XTest);
disp(length(YTest(YTest == 1)))
   定义了 K 近邻模型的函数。这里使用了实验课的成果, 并将其封装为函数, 上面也叙述
了其原理, 不再赘述。重点在于 k 值的选定。由于不知道风险点是不是集中分布, 而风险点
密度又过小,只能选1。
% K 近邻函数
function result=KNB_fun(XTrain,YTrain,X)
n = height(XTrain);
m = height(X);
                            % 预测集
YTry = zeros(m,1);
dis = zeros(n,1);
                            % 距离集
k = 1;
                           % 近邻数目
                            % 近邻类别集
k_{dis} = zeros(k,1);
for i=1:m
                           % 计算欧氏距离
  for j=1:n
      dis(j) = norm(X(i,:)-XTrain(j,:));
  end
  [~, index] = sort(dis);
                         % 升序排序,index 记录下标
  for j=1:k
                           % k 个最近邻数据点的类别标签
      k_dis(j) = YTrain(index(j));
                       % 标签众数即为所求
  YTry(i) = mode(k_dis);
```

```
end
result = YTry;
end
2、感知机: perception. m
   导入数据集, 与上一个代码完全一致, 不再赘述。
% 训练验证集导入
Train Validation = readtable('train.csv');
num_t_v = height(Train_Validation);
X = Train Validation{:,3:32};
Y = Train_Validation{:,33};
   为了减少代码的时间复杂度, 需要寻找特征向量中权重较高的几个维度。这里有两个方
法,分别是小训练集获得w、b,w与对应x的均值之积表示权重和随机森林。
% 得到 x 个最重要的维度
tic()
% 小训练集获得 w、b, w 与对应 x 的均值之积表示权重
          % 小训练集数据集数目
n = 1000;
XTrain = X(1:n,:);
YTrain = Y(1:n);
[w1, b1] = perception fun(XTrain,YTrain,30);
[threshold1, f11] = calculate_metrics(X,Y,w1,b1);
disp(threshold1)
disp(f11)
X \text{ average = } sum(X(:,1:30))./num t v;
X_weight = X_average .* w1';
[~, indices] = sort(X_weight, 'descend');
%{
% 随机森林
rfModel = TreeBagger(100, X, Y, 'Method', 'classification',
'OOBPredictorImportance', 'on');
[~, indices] = sort(rfModel.00BPermutedVarDeltaError, 'descend');
%}
x = 5;
indices = indices(1:x);
toc()
   调用感知机函数使用全集对选定的维度进行训练,并调用 f1 函数得到对应的 f1 值和阈
值。
% 全集训练
X = X(:, indices);
[w2, b2] = perception_fun(X,Y,x);
[threshold2, f12] = calculate_metrics(X,Y,w2,b2);
disp(threshold2)
disp(f12)
   调用感知机函数进行预测, 并利用得到的阈值对预测结果进行赋值。
%测试
```

```
Predict = readtable('pred.csv');
num p = height(Predict);
XTest = Predict{:,3:32};
XTest = XTest(:, indices);
YTest = XTest * w2 + b2;
YTest(YTest>threshold2) = 1;
YTest(YTest<1) = 0;
disp(length(find(YTest==1)))
   定义了感知机模型的函数。这里使用了实验课的成果,并将其封装为函数,上面也叙述
了其原理,不再赘述。
% 感知机函数
function [w_result,b_result]=perception_fun(X,Y,w_num)
w = zeros(w_num, 1);
b = 0;
            % 迭代次数
x = 100000;
c = 0.0001;
                 % 步长
for i = 1:x
 a = randi([1,height(Y)]);
   if (X(a,:)*w+b)*Y(a) <= 0
      w = w+(X(a,:)').*c.*Y(a);
      b = b+c*Y(a);
end
end
w result=w;
b_result=b;
end
   定义了获取最佳 f1 值及对应阈值的函数。这里以 0.0001 为步长, 遍历了阈值的可能范
围, 找到其中最好的 f1 值。
% 最佳 F1 值
function [best threshold, best f1] = calculate metrics(X,Y,w,b)
best_threshold = 0;
best_f1 = 0;
for threshold = 0:0.0001:0.1
   result = X * w + b;
   result(result>threshold) = 1;
 result(result<1) = 0;
   % 计算真正例(TP)、假正例(FP)、真反例(TN)和假反例(FN,没用,不算)
   TP = sum(Y .* result);
   FP = sum((1 - Y) .* result);
   FN = sum(Y .* (1 - result));
  % 计算精确率和召回率,进而计算 F1
   precision = TP / (TP + FP + eps);
   recall = TP / (TP + FN + eps);
   f1 = 2 * (precision * recall) / (precision + recall + eps);
```

3、全连接神经网络: FCNN. py

导入要用的包。

Numpy 是 Python 的一个核心库,用于处理、运算大型多维数组和矩阵。

Pandas 用于数据预处理和特征工程。

Keras 是一个高级神经网络 API, 可以运行在 TensorFlow 上, 其中 Sequential 是一个定义简单堆叠层(即顺序模型)的模型类; layers 模块包含神经网络中的各种层, Dense 是全连接层; optimizers 模块包含用于优化神经网络参数的优化算法, Adam 是其中广泛使用的一种。

sklearn 是一个机器学习库。train_test_split 是其 model_selection 模块中的一个函数,用于将数据集拆分为训练集和验证集。f1_score 是其 metrics 模块中的一个函数,用于计算 f1 分数。

Matplotlib 是一个数据可视化绘图库,提供了与 MATLAB 类似的绘图框架。pyplot 是其中一个子模块,用于绘制各种类型的图形和图表。

```
import numpy as np
import pandas as pd
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.metrics import fl_score
import matplotlib.pyplot as plt
```

导入数据集,并用列名作为索引,将其划分为特征向量和数据标签。并使用相应的函数, 将其按 4:1 的比例随机划分为训练集和测试集,并且这种随机将在每次运行时保持一致。

```
# 导入数据集并划分训练集和验证集

t_v = pd.read_csv('train.csv')

x_col = ['V' + str(i) for i in range(1, 31)]

X = t_v[x_col]

X = X.astype('float32')

y = t_v['Label']

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
```

定义全连接神经网络模型。模型由三个密集连接层构成。第一层的输入维度是 30, 有 64 个神经元, 并以 Relu 作为激活函数; 第二层接受第一层的输出结果, 同样有 64 个神经元, 并以 Relu 作为激活函数; 最后一层接受第二层的输出结果, 只有一个神经元, 以 Sigmoid 作为激活函数。

```
# 定义模型
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(30,)))
```

```
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```

配置模型的学习过程。这里指定了 Adam 优化器, 其是一种自适应学习率的优化算法, 学习率设置为 0.001; 指定了损失函数为二元交叉熵, 其常用于二分类问题, 衡量了模型预测的概率分布与真实概率分布之间的差异; 另指定了评估指标为准确率。

```
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001),
loss='binary_crossentropy', metrics=['accuracy'])
```

训练模型。这里确定了训练集和验证集,并将训练轮数 epochs 设定为 50, 每个 epoch 中模型会遍历整个训练数据集一次。而在一个 epoch 中, 每个批次 (batch) 将使用 batch_size=32 的样本。指定 verbose=1, 这会在训练时显示进度条。最后返回一个 History 对象,它包含了训练过程中的损失值和评估指标值。

```
# 训练模型
history = model.fit(X_train, y_train, epochs=50, batch_size=32,
validation_data=(X_val, y_val), verbose=1)
```

用模型预测整个数据集,用其来找到最适宜的阈值。在遍历中,会在获得更大的 f1 值时更新阈值和 f1,而阈值每次移动的步长是 0.0001。找到最优的阈值后,会将阈值处理前后的预测值输出到一个新的表格中。

```
# 找到预测阈值(高于阈值的为 1, 低于的为 0)

predictions_p = model.predict(X)

t_v['Label_p'] = predictions_p

threshold = 0

threshold_best = 0

fl_best = 0

while threshold < 1:
    predictions_p_binary = np.where(predictions_p > threshold, 1, 0)
    f1 = f1_score(y, predictions_p_binary, average='macro')
    if f1 > f1_best:
        threshold_best = threshold
        f1_best = f1
        threshold += 0.0001

predictions_p_binary = np.where(predictions_p > threshold_best, 1, 0)

t_v['Label_b'] = predictions_p_binary

t_v.to_csv('train_with_labels.csv', index=False)

print(f"f1_best={f1_best}")
```

之后用模型预测测试集,并使用之前获得的阈值进行赋值判断。最后得到的预测值会输出到另一个新的表格中。

```
# 测试
t = pd.read_csv('pred.csv')

X_test = t[x_col]

X_test = X_test.astype('float32')

predictions = model.predict(X_test)

predictions binary = np.where(predictions > threshold best, 1, 0)
```

```
t['Label'] = predictions_binary

t.to_csv('pred_with_labels.csv', index=False)
```

最后,利用 history 中的信息,绘制训练过程中,训练集和验证集损失函数的变化。

```
# 绘制损失和验证损失曲线
plt.figure(figsize=(10, 6))
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Loss Curves')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```

六、分析

本问题给出了大量的数据,数据的维度也很高,需要将其分为两类,这对一些分类边缘的数据,即一些异常数据的分类问题提出了很高的要求。最开始使用的 K 近邻模型,有一定的指导意义,但运行时间过长。其后使用感知机模型,但在代码运行时间上遇到了很大的问题,这表明这种传统的机器学习算法,也并不适用于超大量数据集的实际问题。但是,在寻找方法减少时间损耗后,感知机模型也能给出一个有参考意义的结果,对处理问题有一定帮助。在此基础上,运用全连接神经网络这种最基本的神经网络,便取得了很好的成果。在评价模型效果时,采用了 f1 作为标准。这个标准平衡了准确度和召回率,可以在迭代中找到其最好的值。

最后采纳的全连接神经网络模型,在结果上比较优秀,然而仍是无法达到极高的判断精确度。这其实并不是模型准确度的问题。面对超大量的数据,少数风险点被掩藏了起来,这在现实情况中也是合理而正常的。当前的正确率已经可以很好地作为辅助工具,帮助评估该问题情况下的风险。为了进一步提高模型的鲁棒性,可以尝试更多的不同的神经网络。

七、模型结果

在解决本题目时,尝试了多种模型,各有不同的结果。这里选择了全连接神经网络的结果作为题目的解。请详见 pred with labels. csv,其最后的 Label 列即是预测结果。