X_1, X_2, X_3 는 모두 정규분포 $N(\theta, 1)$ 을 따르며 서로 독립일 때, 다음 물음에 답하여라.

(a) 두 통계량 $T_1(X) = \frac{X_1 + X_2}{2} - X_3$ 와 $T_2(X) = \frac{X_1 + X_2}{2} + X_3$ 은 모수 θ 에 대해 정보를 거지고 있는지 설명하여라. (b) 통계량 $T(X) = X_1 + X_2$ 는 모수 θ 에 대한 충분통계량인지 설명하여라.

(b) $T(X) = \sum_{i=1}^{n} X_i$ 는 θ 에 대한 완비통계량인지 확인하여라. $F(X_i) = 0 \quad E(T(X_i))^{2n} \quad \Rightarrow T(X_i)^{2n} \quad \Rightarrow F(X_i)^{2n} \quad \Rightarrow F(X_$

5-

3. $X_1, X_2, ..., X_n$ 이 확률밀도함수 $f(x|\theta) = \frac{\theta^3}{2} x^2 e^{-\theta x}$, x > 0인 랜덤샘플일 때, 다음 물음에 답

(c) θ 의 최대가능도추정량을 구하여라.

(c) θ 의 최대가능도추정량을 구하여라. $= 1 \log = m \log \frac{\theta^2}{2} + 2 \log (\chi_1 - \chi_2) - 0 \frac{\pi}{2} \chi_2$ 4. $X_1, X_2, ..., X_n$ 이 확률밀도함수 $f(x|\theta) = \frac{1}{\theta}e^{-\frac{\pi}{\theta}}, x > 0 \ell \exp (\frac{1}{\theta})$ 로부터의 랜덤샘플일 때,

 $\theta \text{의 두 추정량 } \hat{\theta}_1 = \frac{X_1 + X_2}{2} \text{와 } \hat{\theta}_2 = \frac{(n-2)}{n} \overline{X} \text{ 에 대하여 다음 물음에 답하여라 } 0$

(b) 두 추정량이 일치추정량인지 확인하여라.

 $(6) \text{ Div}(\widehat{Q_1}) = 2$ $(6) \text{ Div}(\widehat{Q_1}) = 2$ $(6) \text{ Div}(\widehat{Q_1}) = 2$ $(7) \text{ Div}(\widehat{Q_1}) = 2$ $(8) \text{ Div}(\widehat{Q_$

(a) $Y_n = \frac{2X-n}{\sqrt{n}}$ 의 적률생성함수를 구하여라. 단, B(n,p)의 적률생성함수는 $\left[(1-p)+pe^t \right]^n$ 이다. $\text{Mysch} = E(e^{\frac{1}{\sqrt{n}}tX}e^{-\frac{1}{\sqrt{n}}t}) = \text{Mysch} = \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} e^{\frac{1}{\sqrt{n}}t} \right)^n e^{-\frac{1}{\sqrt{n}}t}$

(b) 위의 적률생성함수의 극한을 구하고, 이를 이용하여 Y_n 이 분포수렴(convergence in distribution)하는 극한을 구하여라. $= \left(\frac{1}{2} + \frac{1}{2} e^{\frac{1}{2}}\right)^n = \left(\frac{1}{2} e^{\frac{1}{2}} + \frac{1}{2} e^{\frac{1}{2}}\right)^n$ = (\frac{1}{2}(1+\frac{1}{12}+\frac{1}{2}\frac{1}{12})^{\text{N}})^{\text{N}} -(1+ = t2) > = ±2