# 实验二 多项式插值法

计 21 班 杨俊 2012011400

1. 对[-5,5]作等分划 $x_i = -5 + ih$ , h = 10/n,  $i = 0,1,\dots,n$ , 并对Runge 给出的函数

$$f(x) = \frac{1}{1 + 16x^2}$$

作 Lagrange 差值,观察 Runge 现象的发生及防止。

- a. 分别取n = 10,20作 Lagrange 代数差值 $L_{10}(x)$ 与 $L_{20}(x)$ 。
- b. 给出f(x)及 $L_{10}(x)$ 、 $L_{20}(x)$ 在区间 $\left[-5,5\right]$ 的函数图像,观察其不同(可用 matlab)。
- c. 考察上述两个差值函数在 x=4.8 处的误差,并作分析。
- (1) 设计思路

从 Lagrange 插值方法可得对于每个插值点 $\mathbf{x}_i$ ,对于要计算的值,先计算  $\mathbf{I}[\mathbf{n}]$ ,再计算  $\mathbf{\Sigma}(\mathbf{l}[\mathbf{n}]*\mathbf{f}[x_n])$ ,即可得程序的近似解。

(2) 运行结果及分析

#### 5.151315

#### -1080.740187

通过观察运行结果,我们可以看到,用 Lagrange 插值法进行插值,如果被差值函数是一个类似 Runge 给出的函数,那么当 N 比较大的时候,那么 Runge 现象比较明显,例如本题中,实际上函数值为 0.0027。通过插值函数得到的值和精确值误差比较大。原函数如图所示:



用拉格朗日插值函数进行计算, 当插值区间个数为 10 时, 图像为:



当 n 为 20 时,



通过函数图像可以很明显地看出当 n 比较大的时候,Runge 现象比较明显,此时, 拉格朗日插值并不适合,可以考虑使用三次样条插值。

## (3) 程序过程中所遇到的问题

由于比较粗心,在运算得到 $x_i$ 时,忘记了转化成为双精度类型,所以导致了一直有bug,后来才知道是这个地方错了。

2

### 1. 已知直升飞机旋转机翼外形曲线部分坐标如下表:

| X | 0.52  | 3.1   | 8     | 17.95 | 28.65 | 39.62 | 50.65 | 78  | 104.6 | 156.6 |
|---|-------|-------|-------|-------|-------|-------|-------|-----|-------|-------|
| y | 5.288 | 9.4   | 13.84 | 20.2  | 24.9  | 28.44 | 31.1  | 35  | 36.9  | 36.6  |
| X | 208.6 | 260.7 | 312.5 | 364.4 | 416.3 | 468   | 494   | 507 | 520   |       |
| у | 34.6  | 31.0  | 26.34 | 20.9  | 14.8  | 7.8   | 3.7   | 1.5 | 0.2   |       |

及两端点的一阶导数值为 $y_0 = 1.86548$ ,  $y_n = -0.046115$ 。

利用第一类边界条件的三次样条差值函数计算翼型曲线在 x=2,30,133,390,470,515 各点上的函数值及一、二阶导数近似值。

### (1)、设计思路

对于三次样条插值,可以利用公式进行计算。先计算 $\mu_j = \frac{h_{j-1}}{h_{j-1} + h_j}$ ,  $\alpha = \frac{h_j}{h_{j-1} + h_j}$  ,另外  $\mathbf{d}_i = 6 * \mathbf{f}[x_{j-1}, x_j, x_{j+1}]$  , 根 据 以 上 公 式 可 以 求 出 来 , 然 后 对 于 矩 阵

$$\begin{bmatrix} 2 & \alpha_0 & \cdots & & & & \\ \mu_1 & 2 & \alpha_1 & & \ddots & & \\ \vdots & \mu_2 & \cdots & & & & \\ & \ddots & & \mu_{n-1} & 2 & \alpha_{n-1} \\ & & & & \mu_n & 2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ \vdots \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}, 然后对于解得的解 $x_i$ , 再利用公式求得对$$

应的函数值,一次导数值,二次导数值。

### (2) 运行结果

|       | 函数值      | 一阶导数值      | 二阶导数值        |
|-------|----------|------------|--------------|
| X=2   | 7.82516  | 1.55684    | -0.22126     |
| X=30  | 25.3862  | 0.354874   | -0.00784271  |
| X=133 | 37.1767  | -0.0143208 | -0.00123718  |
| X=390 | 17.9851  | -0.117116  | -0.000278449 |
| X=470 | 7.50662  | -0.147205  | -0.000550427 |
| X=515 | 0.542713 | -0.0899062 | 0.00811973   |

## 3、体会与思考

通过本次编程实验,通过用 matlab 作图可以直观地看出拉格朗日插值函数的不足之处。 在这种情况下,可以采用低次分段插值来提高精度。