Tutorial

Shiny app 'GoricEvSyn': GORIC(A) evidence synthesis

https://utrecht-university.shinyapps.io/GoricEvSyn/

Open app: Top

Open app: Bottom

B:/Shiny Apps and R packages/_4-2_GoricEvSyn - Release 1 - Shiny http://127.0.0.1:7141 🖈 Open in Browser ${\rm K_s}$ columns, with ${\rm K_s}$ the number of parameters in Study s. Do this for each study, by writing them below each other. If you want to seperate or label the matrices, use headers starting with a '#'. No file selected Browse. Fill in the number of hypotheses, that is, the integer M (>= 1), excluding the unconstrained and the complement of hypothesis H_m (m=1,...,M). In case M > 1, the unconstrained hypothesis (representing all possible theories) is included. In case, M = 1, one can choose below which safeguard/competing hypothesis should be included. Choose your type of competing hypothesis to evaluate your hypothesis of interest Since you have one hypothesis of interest (M = 1), you can choose to use the complement of the hypothesis of interest (i.e., all the other possible theories exept the one that is specified) or the unconstrained (i.e., all possible theories, including the one specified). Complement (Hc) Do all studies have the same hypotheses-specification same hypothesesspecification (and thus also the same number of parameter estimates with the same names)? Select the tab delimited .txt file that contains the hypotheses of interest H_m (m=1,...,M), which are specified using the names of the (standardized) parameter estimates as given in previous input. Within a hypothesis, multiple restrictions are combined by a ';', restrictions should be pairwise (i.e., b1 > b2; b2 > b3 instead of b1 > b2 > b3), and equalities are denoted by '==' (not '='). If you want to label lines, use headers starting with a '#'. Note: In case of comparing parameter estimates of continuous variables, one should use the standardized parameter estimates (e.g., by standardizing the continuous variables). For example (if M = 1), # Hypothesis 1 b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4) If sets of hypotheses vary over studies, then do this for each study below each other (and use, if necessary, the study-specific parameter names). For example (if M = 1 and S = 2), # Study 1 # Hypothesis 1 b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4) # Study 2 # Hypothesis 1 $b_1 > b_2; b_2 > b_3$ No file selected

Input: One-parameter example with three hypotheses

Combine evidence from S=4 studies

Parameter estimates (here, one):

Their covariance matrix (here, variance):

Hypotheses (same for each)

Example input: Top (zoomed in)

Evidence per study and per hypotheses of interest (using goric function from K package restrictor)

/Shiny Apps and	R packages/_4-2_GoricEvSyn - Release 1 - Shiny
/127.0.0.1:7141	
possible) wit In the added	vations is the same as obtaining evidence from 1 study (as if it was h n=500 observations (like meta-analysis does). evidence approach, the aggregated evidence from 5 studies is stronger data were combined (as if that was possible).
	ence approach
Fill in the nu	mber of studies, that is, the integer S (>= 2).
4	
•	
Browse	Input_1_Param_BR.txt
	Upload complete
neaders star	below each other. If you want to seperate or label the matrices, use ting with a '#'.
Browse	Input_2_CovMxParam_BR.txt
	Upload complete
unconstraine in case M > 1 included. In	Upload complete mber of hypotheses, that is, the integer M (>= 1), excluding the red and the complement of hypothesis H_m (m=1,,M)., the unconstrained hypothesis (representing all possible theories) is case, M = 1, one can choose below which safeguard/competing hould be included.
unconstraine In case M > 1 included. In	mber of hypotheses, that is, the integer M (>= 1), excluding the ed and the complement of hypothesis H _m (m=1,,M). , the unconstrained hypothesis (representing all possible theories) is case, M = 1, one can choose below which safeguard/competing
unconstraine In case M > 1 included. In ohypothesis s Choose your against. Since you hahypothesis s can choose	mber of hypotheses, that is, the integer M (>= 1), excluding the ed and the complement of hypothesis H _m (m=1,,M). , the unconstrained hypothesis (representing all possible theories) is case, M = 1, one can choose below which safeguard/competing
unconstraine In case M > 1 included. In ohypothesis s Choose your against. Since you ha hypothesis s can choose	mber of hypotheses, that is, the integer M (>= 1), excluding the end and the complement of hypothesis H _m (m=1,,M). It the unconstrained hypothesis (representing all possible theories) is case, M = 1, one can choose below which safeguard/competing hould be included. It type of competing hypothesis to evaluate your hypothesis of interest over multiple hypotheses of interest (M > 1), you may need a safeguard-uch that not the best out of a set of weak hypotheses is chosen. You or use the unconstrained (i.e., all possible theories, including the ones
unconstraine In case M > 1 included. In hypothesis s Choose your against. Since you ha hypothesis s can choose is specified) as	mber of hypotheses, that is, the integer M (>= 1), excluding the ed and the complement of hypothesis H _m (m=1,,M). The unconstrained hypothesis (representing all possible theories) is case, M = 1, one can choose below which safeguard/competing hould be included. Type of competing hypothesis to evaluate your hypothesis of interest we multiple hypotheses of interest (M > 1), you may need a safeguard-uch that not the best out of a set of weak hypotheses is chosen. You o use the unconstrained (i.e., all possible theories, including the ones safeguard or to use none if your theories cover all possible theories.
unconstraine In case M > 1 Included. In hypothesis s 3 Choose your against. Since you ha hypothesis s can choose is specified) as none Do all studie	mber of hypotheses, that is, the integer M (>= 1), excluding the end and the complement of hypothesis H _m (m=1,,M). It the unconstrained hypothesis (representing all possible theories) is case, M = 1, one can choose below which safeguard/competing hould be included. It type of competing hypothesis to evaluate your hypothesis of interest over multiple hypotheses of interest (M > 1), you may need a safeguard-uch that not the best out of a set of weak hypotheses is chosen. You or use the unconstrained (i.e., all possible theories, including the ones

GORICA values	GORICA weights
NULL	NULL
GORICA _m = GORICA value for hypothesis H _m .	GORICA.weight _m = GORICA weight for hypothesis H _m .
LL_{m} and PT_{m} are log likelihood and penalty value for hypothesis $H_{m},$ respectively.	rel.GORICA.weight $_{mu}$ or rel.GORICA.weight $_{mc}$ = ratio of GORICA weights (i.e., relat H_m versus the unconstrained hypothesis (H_u) or versus its complement (H_{cm}), respectively.
Aggregated evidence over all studies (updated per study and the final overall	evidence)
GORICA values	GORICA weights
NULL	NULL
	Final.rel.GORICA.weights = matrix of final GORICA weights ratios (i.e., relative evid

Since the three hypotheses cover all possible theories, we do not need a safeguard hypothesis (i.e., "none")

There is an option to specify study-specific hypotheses: In case of diverse designs (i.e., conceptual replications), hypotheses representing the same theory may differ because of different operationalization and number of variables.

Example input: Bottom (zoomed in)

D:/Shiny Apps and R packages/_4-2_GoricEvSyn - Release 1 - Shiny ks columns, with ks the number of parameters in Study s. Do this for each study, by writing them below each other. If you want to seperate or label the matrices, use headers starting with a '#'. Browse. Input 2 CovMxParam BR.txt Upload complete Fill in the number of hypotheses, that is, the integer M (>= 1), excluding the unconstrained and the complement of hypothesis H_m (m=1,...,M). In case M > 1, the unconstrained hypothesis (representing all possible theories) is included. In case, M = 1, one can choose below which safeguard/competing hypothesis should be included. Choose your type of competing hypothesis to evaluate your hypothesis of interest against. Since you have multiple hypotheses of interest (M > 1), you may need a safeguardhypothesis such that not the best out of a set of weak hypotheses is chosen. You can choose to use the unconstrained (i.e., all possible theories, including the ones specified) as safeguard or to use none if your theories cover all possible theories. Do all studies have the same hypotheses-specification same hypothesesspecification (and thus also the same number of parameter estimates with the same names)? yes Select the tab delimited .txt file that contains the hypotheses of interest H_m (m=1,...,M), which are specified using the names of the (standardized) parameter estimates as given in previous input. Within a hypothesis, multiple restrictions are combined by a ';', restrictions should be pairwise (i.e., b1 > b2; b2 > b3 instead of b1 > b2 > b3), and equalities are denoted by '==' (not '='). If you want to label lines, use headers starting with a '#'. Note: In case of comparing parameter estimates of continuous variables, one should use the standardized parameter estimates (e.g., by standardizing the continuous variables). For example (if M = 1). # Hypothesis 1 b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4) If sets of hypotheses vary over studies, then do this for each study below each other (and use, if necessary, the study-specific parameter names). For example (if M = 1 and S = 2). # Study 1 # Hypothesis 1 b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4) # Study 2 # Hypothesis 1 b 1 > b 2; b2 > b 3 Browse... No file selected

If you upload the file with hypotheses, then the output will be generated. Scroll up to see it from the top.

Example output: Top

Example output: Top (zoomed in)

First: Study-specific output

LL_m and PT_m are log likelihood and penalty value for hypothesis H_m, respectively

GORICA.weight_m = GORICA weight for hypothesis H_m

rel.GORICA.weight_{mu} or rel.GORICA.weight_{ma} = ratio of GORICA weights (i.e., relative evidence) for Hypothesis H_m versus the unconstrained hypothesis (H_u) or versus its complement (H_{cm}), respectively.

Example output: Bottom

Select the tab delimited .txt file that contains the covariance matrices of the (standardized) parameter estimates. For Study s, this matrix consists of k_s rows and k_s columns, with k_s the number of parameters in Study s. Do this for each study, by writing them below each other. If you want to seperate or label the matrices, use headers starting with a '#.

Browse... Input_2_CovMxParam_BR.txt
Upload complete

Fill in the number of hypotheses, that is, the integer M (>= 1), excluding the unconstrained and the complement of hypothesis H_m (m=1,...,M). In case M > 1, the unconstrained hypothesis (representing all possible theories) is included. In case, M = 1, one can choose below which safeguard/competing hypothesis should be included.

3

Choose your type of competing hypothesis to evaluate your hypothesis of interest

Since you have multiple hypotheses of interest (M > 1), you may need a safeguard-hypothesis such that not the best out of a set of weak hypotheses is chosen. You can choose to use the unconstrained (i.e., all possible theories, including the ones specified) as safeguard or to use none if your theories cover all possible theories.

none ▼

Do all studies have the same hypotheses-specification same hypotheses-specification (and thus also the same number of parameter estimates with the same names)?

yes ▼

Select the tab delimited .txt file that contains the hypotheses of interest H_m (m=1,...,M), which are specified using the names of the (standardized) parameter estimates as given in previous input. Within a hypothesis, multiple restrictions are combined by a ';', restrictions should be pairwise (i.e., b1 > b2; b2 > b3 instead of b1 > b2 > b3), and equalities are denoted by '==' (not '='). If you want to label lines, use headers starting with a #.

Note: In case of comparing parameter estimates of continuous variables, one should use the standardized parameter estimates (e.g., by standardizing the continuous variables).

For example (if M = 1),

Hypothesis 1

b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4)

If sets of hypotheses vary over studies, then do this for each study below each other (and use, if necessary, the study-specific parameter names). For example (if M = 1 and S = 2).

Study 1

Hypothesis 1

b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4)

Study 2

Hypothesis 1

b 1 > b 2; b2 > b 3

Province Input 2 Hyper PD restrictor but

GORICA_m = GORICA value for hypothesis H_m

LL_m and PT_m are log likelihood and penalty value for hypothesis H_m, respectively

GORICA.weight_m = GORICA weight for hypothesis H_m.

rel.GORICA.weight_{mu} or rel.GORICA.weight_{mc} = ratio of GORICA weights (i.e., relative evidence) for Hypothesis H_m versus the unconstrained hypothesis (H_u) or versus its complement (H_{cm}), respectively.

О

⑤ Republish ▼

Aggregated evidence over all studies (updated per study and the final overall evidence)

GORICA values

\$Final.GORICA_m H1 H2 H3 246.960 -1.758 250.960 \$Final.LL_m

H1 H2 H3 Final -119.5 6.879 -119.5

\$Final.PT_m H1 H2 H3 Final 4 6 6 GORICA weights

```
$Approach

[1] Added-evidence approach

$Updated.GORICA.weight_m
H1 H2 H3

$tudy1 1.308e-02 0.979 7.931e-03

$tudy2 7.636e-04 0.999 2.809e-04

$tudy3 1.868e-33 1.000 4.167e-34

$tudy4 9.806e-55 1.000 1.327e-55

$Final.GORICA.weight_m
H1 H2 H3

Final 9.806e-55 1 1.327e-55

$Final.rel.GORICA.weights
vs H1 vs H2 vs H3

H1 1.000e+00 9.806e-55 7.389e+00
H2 1.020e+54 1.000e+00 7.535e+54
H3 1.353e-01 1.327e-55 1.000e+00
```

 $Final. rel. GORICA. weights = matrix \ of final \ GORICA \ weights \ ratios \ (i.e., relative \ evidence) \ for \ each \ Hypothesis \ H_m \ versus \ each \ of \ the \ hypotheses.$

Example output: Bottom (zoomed in) with comments in blue

Input: **One-parameter** example with 1 hypothesis (against complement) Combine evidence from S=4 studies

Parameter estimates (here, one):

Their covariance matrix (here, variance):

Hypotheses (same for each)

Example output: Bottom

B D:/Shiny Apps and R packages/_4-2_GoricEvSyn - Release 1 - Shiny http://127.0.0.1:7141 🔎 Open in Browser k_s columns, with k_s the number of parameters in Study s. Do this for each study, by writing them below each other. If you want to seperate or label the matrices, use headers starting with a '#'. Input 2 CovMxParam BR.txt Browse Upload complete Fill in the number of hypotheses, that is, the integer M (>= 1), excluding the unconstrained and the complement of hypothesis H_m (m=1,...,M). In case M > 1, the unconstrained hypothesis (representing all possible theories) is included. In case, M = 1, one can choose below which safeguard/competing hypothesis should be included. Choose your type of competing hypothesis to evaluate your hypothesis of interest Since you have one hypothesis of interest (M = 1), you can choose to use the complement of the hypothesis of interest (i.e., all the other possible theories exept the one that is specified) or the unconstrained (i.e., all possible theories, including the one specified). Complement (Hc) Do all studies have the same hypotheses-specification same hypothesesspecification (and thus also the same number of parameter estimates with the same names)? Select the tab delimited .txt file that contains the hypotheses of interest H_m (m=1,...,M), which are specified using the names of the (standardized) parameter estimates as given in previous input. Within a hypothesis, multiple restrictions are combined by a ';', restrictions should be pairwise (i.e., b1 > b2; b2 > b3 instead of b1 > b2 > b3), and equalities are denoted by '==' (not '='). If you want to label lines, use headers starting with a '#'. Note: In case of comparing parameter estimates of continuous variables, one should use the standardized parameter estimates (e.g., by standardizing the continuous variables). For example (if M = 1), # Hypothesis 1 b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4) If sets of hypotheses vary over studies, then do this for each study below each other (and use, if necessary, the study-specific parameter names). For example (if M = 1 # Study 1 # Hypothesis 1 b1 > b2; b2 > b3; b3 > b4; b1 - b2 > 2*(b3 - b4) # Study 2 # Hypothesis 1 b 1 > b 2; b2 > b 3 Input_3_Hypos_BR_1restr_restriktor.txt Browse. Upload complete

```
Aggregated evidence over all studies (updated per study and the final overall evidence)
```

GORICA values

```
$Approach
                                                                                    $Approach
[1] Added-evidence approach
                                                                                    [1] Added-evidence approach
$Updated.GORICA m
                                                                                    $Updated.GORICA.weight m
        H1 Hc1
                                                                                              H1
Studv1 -2.243 7.388
                                                                                    Studv1 0.9920 8.036e-03
Studv2 -3.243 13.110
                                                                                    Studv2 0.9997 2.811e-04
Study3 -3.155 150.566
                                                                                    Study3 1.0000 4.167e-34
Study4 -1.758 250.960
                                                                                    Study4 1.0000 1.327e-55
$Final.GORICA m
                                                                                    $Final.GORICA.weight m
-1.758 250.960
                                                                                    Final 1 1.327e-55
$Final.LL m
                                                                                    $Final.rel.GORICA.weights
        H1 Hc1
                                                                                           vs H1 vs Hc1
Final 6.879 -119.5
                                                                                    H1 1.000e+00 7.535e+54
                                                                                    Hc1 1.327e-55 1.000e+00
$Final.PT m
Final 6 6
```

GORICA weights

 $Final. rel. GORICA. weights = matrix \ of final \ GORICA \ weights \ ratios \ (i.e., relative \ evidence) \ for each \ Hypothesis \ H_m \ versus \ each \ of the \ hypotheses.$

О

⑤ Republish ▼

Example output: Bottom (zoomed in) with comments in blue

