Introducción a la mecánica cuántica relativista

Consideremos una partícula libre por el momento

$$H = \frac{p^2}{2m}$$
 $E = i\hbar \frac{\partial}{\partial t}$ $\mathbf{p} = -i\hbar \nabla$

en relatividad la primera expresión no sirve pero la segunda y la tercera sí.

$$\begin{split} P_{\mu} &= i\hbar\partial_{\mu} = i\hbar\frac{\partial}{\partial x^{\mu}} \\ p^{\mu} &= (E/c, \boldsymbol{p}) \qquad p_{\mu} = (E/c, -\boldsymbol{p}) \qquad x^{\mu} = (ct, \boldsymbol{x}) \\ \frac{\partial}{\partial x^{\mu}} &= \left(\frac{1}{c}\frac{\partial}{\partial t}, \boldsymbol{\nabla}\right) \equiv \partial_{\mu} \qquad \frac{\partial}{\partial x_{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\boldsymbol{\nabla}\right) \equiv \partial^{\mu} \end{split}$$

y Schrödinger para la partícula libre es

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi \tag{1}$$

y entonces podemos hacer la cuenta

$$\psi^* \times (1) \to i\hbar\psi^* \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \psi^* \nabla^2 \psi$$

y conjugando la ecuación,

$$\psi\times\left(1\right)^{*}\rightarrow-i\hbar\psi\frac{\partial\psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2m}\psi\nabla^{2}\psi^{*}$$

y restando ambas expresiones se obtiene

$$\begin{split} i\hbar \left(\psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t} \right) &= \frac{\hbar^2}{2m} \left(\psi \nabla^2 \psi^* - \psi^* \nabla^2 \psi \right) \\ i\hbar \frac{\partial (\psi^* \psi)}{\partial t} + \frac{\hbar^2}{2m} \boldsymbol{\nabla} \cdot (\psi^* \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \psi^*) &= 0 \end{split}$$

la cual se puede reescribir como

$$\frac{\partial(\psi^*\psi)}{\partial t} + \boldsymbol{\nabla}\cdot\left(\frac{\hbar}{2mi}[\psi^*\boldsymbol{\nabla}\psi - \psi\boldsymbol{\nabla}\psi^*]\right) = 0$$

que es una analogía de la conservación de la carga en electrodinámica. Recordemos que la conservación de la carga era $\partial_t \rho + \nabla \cdot \boldsymbol{J} = 0$. Tenemos entonces una especie de conservación de la probabilidad. Note que $\psi^*\psi = |\psi|^2 \geq 0$

$$E^{2} = c^{2}p^{2} + m^{2}c^{4}$$

 $E = \sqrt{c^{2}p^{2} + m^{2}c^{4}} = H \quad \text{con } H\psi = E\psi$

Pero esto se pone muy complicado debido a la raíz

1.0.1 La ecuación de Klein-Gordon

Conserva el cuadrado para no complicar demasiado los reemplazos. Entonces

$$\begin{split} H^2 &= E^2 = c^2 p^2 + m^2 c^4 \\ &- \hbar \frac{\partial^2 \psi}{\partial t^2} = - \hbar^2 c^2 \boldsymbol{\nabla}^2 \psi + m^2 c^4 \psi \\ p^\mu p_\mu &= m^2 c^2 \qquad - \partial_\mu \partial^\mu \psi = \frac{m^2 c^2}{\hbar^2} \psi \end{split} \tag{2}$$

siendo el operador $\Box^2 \equiv \partial_\mu \partial^\mu$ el dalembertiano.

$$\left(\Box^2 + \frac{m^2 c^2}{\hbar^2}\right)\psi = 0$$

y procediendo de modo ídem al caso anterior,

$$\begin{split} \psi^* \cdot (2) &= -\hbar^2 \psi^* \partial_t^2 \psi = -\hbar^2 c^2 \psi^* \nabla^2 \psi + m^2 c^4 \psi^* \psi \\ \psi \cdot (2)^* &= -\hbar^2 \psi \partial_t^2 \psi^* = -\hbar^2 c^2 \psi \nabla^2 \psi^* + m^2 c^4 \psi \psi^* \end{split}$$

y restando ambas ecuaciones tenemos

$$\begin{split} &\hbar^2\frac{\partial}{\partial t}\left(\psi^*\partial_t\psi-\psi\partial_t\psi^*\right)=\hbar^2c^2\boldsymbol{\nabla}\cdot\left(\psi^*\boldsymbol{\nabla}\psi-\psi\boldsymbol{\nabla}\psi^*\right)\\ &\frac{\partial}{\partial t}\left(\frac{i}{c^2}[\psi^*\partial_t\psi-\psi\partial_t\psi^*]\right)+i\boldsymbol{\nabla}\cdot\left(\psi\boldsymbol{\nabla}\psi^*-\psi^*\boldsymbol{\nabla}\psi\right)=0 \end{split}$$

El problema es que no puede asegurarse que esta $\rho \equiv i/c^2 [\psi^* \partial_t \psi - \psi \partial_t \psi^*]$ sea definida positiva, lo cual sería necesario para seguir una coherencia.

$$\begin{split} \psi &= N \; \mathrm{e}^{i/\hbar(\boldsymbol{p}\cdot\boldsymbol{x}-Et)} \\ \partial_t \psi &= -N \frac{iE}{\hbar} \; \mathrm{e}^{i/\hbar(\boldsymbol{p}\cdot\boldsymbol{x}-Et)} \\ \rho &= \frac{i}{c^2} \left(N^* \; \mathrm{e}^{-i/\hbar(\boldsymbol{p}\cdot\boldsymbol{x}-Et)} (-N) \frac{iE}{\hbar} \; \mathrm{e}^{i/\hbar(\boldsymbol{p}\cdot\boldsymbol{x}-Et)} - N \; \mathrm{e}^{i/\hbar(\boldsymbol{p}\cdot\boldsymbol{x}-Et)} N^* \frac{E}{\hbar} \; \mathrm{e}^{i/\hbar(\boldsymbol{p}\cdot\boldsymbol{x}-Et)} \; \mathrm{e}^{i\pi/2} \right) \\ \rho &= -\frac{i}{c^2} \left(2|N|^2 \frac{iE}{\hbar} \right) < 0 \quad \mathrm{si} \quad E > 0 \end{split}$$

para una onda plana. Necesito considerar E<0 pues $E=\pm\sqrt{c^2p^2+m^2c^4}$ y la base debe ser completa.

La densidad ρ es positiva si tuviese E < 0 pero esto causa el problema de tener materia inestable, pues nunca se alcanza el fundamental. Acá muere en este atolladero la ecuación de Klein-Gordon.

1.0.2 La ecuación de Dirac

Dirac parte de pedir una ecuación lineal en el impulso \boldsymbol{p}

$$H = c\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta mc^2$$

usando $H\psi = E\psi$ y $H^2 = E^2 = c^2p^2 + m^2c^4$ y con β, α, p operadores.

$$\begin{split} H^2 &= (c\boldsymbol{\alpha}\cdot\boldsymbol{p} + \beta mc^2)(c\boldsymbol{\alpha}\cdot\boldsymbol{p} + \beta mc^2) \\ H^2 &= c^2\alpha_ip_i\alpha_\ell p_\ell + c^3\alpha_ip_i\beta m + \beta mc^3\alpha_ip_i + \beta^2m^2c^4 \\ H^2 &= c^2\alpha_i\alpha_\ell p_ip_\ell + c^3mp_i\underbrace{\left(\alpha_i\beta + \beta\alpha_i\right)}_{=0} + \beta^2m^2c^4 \\ H^2 &= c^2\underbrace{\left(\frac{\alpha_i\alpha_\ell + \alpha_\ell\alpha_i}{2}\right)}_{\delta_{i\ell}}p_ip_\ell + m^2c^4\underbrace{\beta^2}_{=1} \\ \alpha_i\alpha_\ell + \alpha_\ell\alpha_i = 2\delta_{i\ell} \qquad \alpha_i\beta + \beta\alpha_i = 0 \qquad \beta^2 = 1 \end{split}$$

Como se ve, estos no pueden ser simples escalares. Dirac pide

- α, β hermíticos
- $\beta^2 = 1 \ \alpha^2 = 1 \ \text{autovalores} \ \pm 1$
- traza nula

$$\begin{split} \alpha_i\beta &= -\beta\alpha_i \quad \rightarrow \quad \beta\alpha_i\beta = -\beta^2\alpha_i = -\alpha_i \\ Tr(\alpha_i) &= -Tr(\beta\alpha_i\beta) = -Tr(\beta\beta\alpha_i) \end{split}$$

dimensión par

$$\alpha = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}$$

donde cada elemento de la matriz es de 2×2 .

Entonces

$$H\vec{\psi} = i\hbar \frac{\partial \vec{\psi}}{\partial t}, \qquad H \in 4 \times 4, \vec{\psi} \in 4 \times 1, \qquad \vec{\psi} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

$$i\hbar \frac{\partial \psi}{\partial t} = -i\hbar c \sum_k \alpha_k \frac{\partial \psi}{\partial x_k} + mc^2 \beta \psi \qquad (3)$$

$$-i\hbar \frac{\partial \psi^{\dagger}}{\partial t} = i\hbar c \sum_k \frac{\partial \psi^{\dagger}}{\partial x_k} \alpha_k + mc^2 \psi \alpha_k \beta$$

$$\psi^{\dagger} \cdot (3) - (3)^{\dagger} \cdot \psi \to i\hbar \frac{\partial}{\partial t} (\psi^{\dagger} p s i) = -i\hbar c \sum_k \frac{\partial}{\partial x_k} (\psi^{\dagger} \alpha_k \psi)$$

$$\frac{\partial}{\partial t} (\psi^{\dagger} p s i) + c \sum_k \frac{\partial}{\partial x_k} (\psi^{\dagger} \alpha_k \psi) = 0$$

Y si $\rho \equiv \psi^\dagger \psi$ ahora tenemos una densidad de proababilidad como requiere la naturaleza.

1.0.3 Ejemplo: partícula libre quieta

Sea una partícula libre en reposo,

$$p = 0$$
 $H = \beta mc^2$ $i\hbar \frac{\partial \psi}{\partial t} = \beta mc^2 \psi$

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix} \psi_1\\ \psi_2\\ \psi_3\\ \psi_4 \end{pmatrix} = \begin{pmatrix} mc^2 & 0 & 0 & 0\\ 0 & mc^2 & 0 & 0\\ 0 & 0 & -mc^2 & 0\\ 0 & 0 & 0 & -mc^2 \end{pmatrix}\begin{pmatrix} \psi_1\\ \psi_2\\ \psi_3\\ \psi_4 \end{pmatrix}$$

Tenemos cuatro ecuaciones, dos con energía positiva y dos con energía negativa

$$i\hbar\frac{\partial\psi_i}{\partial t}=mc^2\psi_i \qquad i\hbar\frac{\partial\psi_i}{\partial t}=-mc^2\psi_i$$

$$\psi_1 = e^{-imc^2t/\hbar} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad \psi_3 = e^{imc^2t/\hbar} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$

Como aún tenemos degeneración de orden dos, necesitaremos un operadore que conmute con el ${\cal H}$

$$\begin{split} \vec{\Sigma} &= \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix} \qquad [H, \vec{\Sigma}] = 0 \\ \Sigma_3 &= \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \\ \psi_1, E &= mc^2, \Sigma_3 = 1 \qquad \psi_2, E = mc^2, \Sigma_3 = -1 \\ \psi_2, -E &= mc^2, \Sigma_2 = 1 \qquad \psi_4, -E = mc^2, \Sigma_2 = -1 \end{split}$$

Podemos identificar

$$ec{S} = rac{\hbar}{2} \vec{\Sigma}$$

si $p \neq 0 \Rightarrow [H, \Sigma] = 2ic\alpha \times p$

1.0.4 Energías negativas

Como $E=\pm\sqrt{c^2p^2+m^2c^4}$ hay E<0 y además un gap de ancho $2mc^2$ entre ellas. Las E<0 harían que la materia jamás alcance un estado fundamental y por ende jamás se estabilice. Dirac piensa que los estados de E<0 están todos llenos. No decaen más electrones allí dentro. Es el mar de Dirac. Iluminando ese vacío se lo puede excitar.

Podemos hacer saltar a la zona positiva una carga (-e) dejando un huevo positivo (equivalente a una carga +e). Es una creación e pares $\gamma \to e^-e^+$, sin embargo el proceso inverso $e^-e^+ \to \gamma$ de aniquilación de pares ocurre prontamente. Se observó experimentalmente.

Figura 0.1

Figura 0.2