Introdução às Equações Diferenciais e Ordinárias - 2017.2

Lista 5 - EDOs lineares de ordem superior (\geqslant 3) e sistemas de EDOs de primeira ordem

1 — São dadas trincas de funções que são, em cada caso, soluções de alguma EDO de terceira ordem linear, homogênea, e com coeficientes contínuos em toda a reta. Determine, usando o Wronskiano, se as funções dadas são linearmente independentes ou linearmente dependentes no intervalo $(-\infty,\infty)$. Caso sejam linearmente dependentes, escreva uma delas como combinação linear das outras.

a)
$$f_1(t) = 2t - 3$$
, $f_2(t) = t^2 + 1$, $f_3(t) = 2t^2 - t$;

b)
$$f_1(t) = 2t - 3$$
, $f_2(t) = 2t^2 + 1$, $f_3(t) = 3t^2 + t$;

c)
$$f_1(x) = x$$
, $f_2(x) = x^2$, $f_3(x) = x^{-1}$;

d)
$$f_1(x) = 5$$
, $f_2(x) = \sin^2 x$, $f_3(x) = \cos(2x)$.

2— Verifique que as funções dadas formam em cada caso um conjunto completo de soluções para a EDO correspondente. Escreva a solução geral em cada caso e resolva o PVI dado:

a)
$$x^3y''' + 6x^2y'' + 4xy' - 4y = 0$$
, $x > 0$;
 $y(1) = 0$, $y'(1) = 0$, $y''(1) = 1$;
 $y_1(x) = x$, $y_2(x) = x^2$, $y_3(x) = x^{-2} \ln x$;

b)
$$y'''' + y'' = 0$$
;
 $y(\pi) = 0$, $y'(\pi) = 0$, $y''(\pi) = 1$, $y'''(\pi) = 0$;
 $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = \operatorname{sen} x$, $y_4(x) = \cos x$.

3 — Encontre a solução geral das seguintes equações diferenciais:

a)
$$y''' - 4y'' - 5y' = 0$$
;

b)
$$y''' - y = 0$$
;

c)
$$y^{(4)} + y''' + y'' = 0$$
;

d)
$$y''' - 3y'' + 3y' - y = 0$$
;

e)
$$y^{(5)} + 5y^{(4)} - 2y''' - 10y'' + y' + 5y = 0$$
.

4 — Encontre a solução dos PVIs abaixo:

a)
$$y''' + 12y'' + 36y' = 0$$
,
 $y(1) = 0$, $y'(1) = 1$, $y''(1) = -7$;

b)
$$y''' + 2y'' - 5y' - 6y = 0$$
,
 $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$.

5 — Encontre a solução geral das seguintes equações diferenciais:

a)
$$y''' - 6y'' = 3 - \cos x$$
;

b)
$$y^{(4)} - y'' = 4x + 2xe^{-x}$$
.

6 — Encontre a solução dos PVIs abaixo:

a)
$$y''' - 2y'' + y' = 2 - 24e^x + 40e^{5x}$$
,
 $y(0) = 1/2$, $y'(0) = 5/2$, $y''(0) = -9/2$;

b)
$$y''' + 8y = 2x - 5 + 8e^{-2x}$$
,
 $y(0) = -5$, $y'(0) = 3$, $y''(0) = -4$.

7 — Utilizando o método de redução de ordem, determine a solução geral das EDOs abaixo:

a)
$$(2-t)y''' + (2t-3)y'' - ty' + y = 0$$
, $t < 2$, sabendo que $y_1(t) = e^t$ é solução;

b)
$$t^2(t+3)y''' - 3t(t+2)y'' + 6(1+t)y' - 6y = 0$$
,
 $t > 0$, sabendo que $y_1(t) = t^2$ é solução.

8 — Considere os sistemas abaixo. Em cada caso: (i) encontre a solução geral do sistema; (ii) determine e classifique o ponto de equilíbrio em (x,y) = (0,0), explicando o que acontece quando $t \to \infty$.

(a)
$$\begin{cases} \frac{dx}{dt} = -x + 2y \\ \frac{dy}{dt} = x \end{cases}$$

(b)
$$\left\{ \begin{array}{l} \frac{dx}{dt} = 2x + 2y \\ \frac{dy}{dt} = -2x + 2y \end{array} \right.$$

(c)
$$\begin{cases} \frac{dx}{dt} = x + 2y \\ \frac{dy}{dt} = 2x - 2y \end{cases}$$

(d)
$$\begin{cases} \frac{dx}{dt} = -2x + 2y \\ \frac{dy}{dt} = 2x + y \end{cases}$$

(e)
$$\begin{cases} \frac{dx}{dt} = x - 2y \\ \frac{dy}{dt} = 3x - 4y \end{cases}$$

(f)
$$\begin{cases} \frac{dx}{dt} = x + y \\ \frac{dy}{dt} = x + 3y \end{cases}$$
(g)
$$\begin{cases} \frac{dx}{dt} = -y \\ \frac{dy}{dt} = x \end{cases}$$

$$(g) \begin{cases} \frac{dx}{dt} = -y \\ \frac{dy}{dt} = x \end{cases}$$

(h)
$$\left\{ \begin{array}{l} \frac{\mathrm{d}x}{\mathrm{d}t} = -2x + 5y \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x - 4y \end{array} \right.$$

9 — Resolva o sistema
$$\begin{cases} \frac{dx}{dt} = -y + 3t \\ \frac{dy}{dt} = 4x + 2t \end{cases}$$
 dadas as condições iniciais $x(0) = 1$, $y(0) = 2$.

10 — Seja μ uma constante real satisfazendo $\mu \neq -1$. Mostre que (x, y) = (0, 0) é sempre um ponto de equilíbrio instável do sistema linear

$$\begin{cases} \dot{x} = \mu x + y \\ \dot{y} = -x + y \end{cases}$$

Para quais valores de μ o ponto (0,0) é um ponto de sela? Para quais valores de μ o ponto (0,0) é um ponto espiral instável? Para quais valores de μ o ponto (0,0) é um ponto nó instável? (Os valores de μ para os quais as características do equilíbrio mudam são chamados de bifurcações.)

Respostas dos exercícios:

1 Se existir pelo menos um t₀ tal que o Wronskiano é diferente de zero, i.e. $W(t_0) \neq 0$, as funções serão LI; caso contrário, são LD.

a)
$$W(t) = 14$$
, LI;

b)
$$W(t) = 0$$
, LD; temos $\frac{1}{2}f_1(t) + \frac{3}{2}f_2(t) = f_3(t)$.

c)
$$W(x) = \frac{6}{x}$$
, LI;

d)
$$W(x) = 0$$
, LD; temos $\frac{1}{5}f_1(x) - 2f_2(x) = f_3(x)$.

2 Em cada caso devemos substituir as funções dadas na EDO para verificar se são soluções ou não. Em seguida, devemos calcular o Wronskiano entre as funções para verificar se são linearmente independentes ou não. Depois de verificar que são soluções e são linearmente independentes, escrevemos a solução geral $y(x) = C_1y_1(x) + C_2y_2(x) + C_3y_3(x)$ e através das condições iniciais determinamos C₁, C₂ e C₃. Os resultados são:

a)
$$y(x) = -\frac{x}{7} + \frac{x^2}{7} - \frac{\ln(x)}{7x^2}$$
;

b)
$$y(x) = 1 + \cos(x)$$
.

3 Em cada caso temos uma EDO linear homogênea com coeficientes constantes. Para encontrar um conjunto completo de soluções, tentamos soluções do tipo $y(t) = e^{\lambda t}$. Com isso, obtemos uma equação polinomial para a variável λ que tem o mesmo grau da EDO. As raízes desse polinômio correspondem a soluções da EDO. Em caso de raiz dupla λ , tanto $e^{\lambda t}$

como $te^{\lambda t}$ são soluções; em caso de raiz tripla, tanto $e^{\lambda t}$ como $te^{\lambda t}$ e $t^2e^{\lambda t}$ são soluções; e assim por diante. Por fim, escrevemos a solução geral fazendo uma combinação linear (com coeficientes arbitrários) das soluções encontradas. Os resultados são:

a)
$$\lambda^3 - 4\lambda^2 - 5\lambda = 0 \Rightarrow \lambda_1 = 0, \ \lambda_2 = -1, \ \lambda_3 = 5, \ y(x) = C_1 + C_2 e^{-t} + \frac{C_3}{5} e^{5t};$$

$$\begin{array}{ll} b) & \lambda^3-1=0 \Rightarrow \lambda_1=1, \ \lambda_2=-\frac{1}{2}+i\frac{\sqrt{3}}{2}, \ \lambda_3=-\frac{1}{2}-i\frac{\sqrt{3}}{2}, \\ & y(x)=C_1e^t+C_2e^{\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)t}+C_3e^{\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)t} \ ou \\ & y(x)=D_1e^t+D_2e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right)+D_3e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}t}{2}\right); \end{array}$$

$$\begin{split} c) \quad \lambda^4 + \lambda^3 + \lambda^2 &= 0 \Rightarrow \lambda_1 = \lambda_2 = 0, \ \lambda_3 = -\frac{1}{2} + i \frac{\sqrt{3}}{2}, \ \lambda_4 = \\ -\frac{1}{2} - i \frac{\sqrt{3}}{2}, \\ y(x) &= C_1 + C_2 t + C_3 e^{\left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)t} + C_4 e^{\left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)t} \ ou \\ y(x) &= D_1 + D_2 t + D_3 e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) + \\ D_4 e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right); \end{split}$$

d)
$$\lambda^3 - 3\lambda^2 + 3\lambda - 1 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 1$$
, $y(x) = C_1 e^t + C_2 t e^t + C_3 t^2 e^t$.

e)
$$\lambda^5 + 5\lambda^4 - 2\lambda^3 - 10\lambda^2 + \lambda + 5 = 0 \Rightarrow \lambda_1 = \lambda_2 = 1$$
, $\lambda_3 = \lambda_4 = -1$, $\lambda_5 = -5$, $y(x) = C_1e^t + C_2te^t + C_3e^{-t} + C_4te^{-t} + C_5e^{-5t}$.

4 Para encontrar a solução geral, devemos seguir os passos do exercício 3. Depois de encontrada a solução geral, usamos as condições iniciais dadas para fixar as constantes arbitrárias. Os resultados são:

a)
$$y(t) = \frac{e^{-3t}}{10} - \frac{e^{-t}}{6} + \frac{e^{2t}}{15}$$
;

b)
$$y(t) = \frac{5}{36} - \frac{11}{36}e^{6(1-t)} + \frac{1}{6}te^{6(1-t)}$$
.

- 5 Para encontrar a solução geral, primeiro encontramos um conjunto completo de soluções da EDO homogênea associada. Em seguida, encontramos uma solução particular da EDO não-homogênea usando o método dos coeficientes indeterminados. Basicamente, olhando para o lado direito das equações, tentamos um "chute inteligente"para $y_p(t)$. Depois de encontrar $y_p(t)$, podemos escrever a solução geral da EDO não-homogênea como sendo $y(t) = y_h(t) + y_p(t)$, onde $y_h(t)$ é a solução geral da EDO homogênea associada.
- a) EDO homogênea: $\lambda^3-6\lambda^2=0 \Rightarrow \lambda_1=\lambda_2=0$, $\lambda_3=6 \Rightarrow y_h(x)=C_1+C_2x+C_3e^{6x}$. Solução particular da EDO não homogênea: o "chute" mais óbvio é $y_p(x)=A+B\cos x+C\sin x$. Como A é solução da EDO homogênea, temos que trocálo por Ax. Como Ax também é solução da EDO homogênea, temos que trocálo por Ax². Em vista disso, tentamos $y_p(x)=Ax^2+B\cos x+C\sin x$ e encontramos $A=-\frac{1}{4}$, $B=-\frac{6}{37}$, $C=\frac{1}{37}$. A solução geral é, portanto, $y(x)=y_h(x)+y_p(x)=C_1+C_2x+C_3e^{6x}-\frac{x^2}{4}+\frac{\sin x}{37}-\frac{6}{37}\cos x$;
- b) EDO homogênea: $\lambda^4 \lambda^2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0$, $\lambda_3 = 1$, $\lambda_4 = -1 \Rightarrow y_h(x) = C_1 + C_2x + C_3e^x + C_4e^{-x}$. Solução particular da EDO não homogênea: o "chute" mais óbvio é $y_p(x) = Ax + B + Cxe^{-x}$, porém não funciona. Tentando $y_p(x) = (Ax + B)x^2 + Cxe^{-x} + Dx^2e^{-x}$ e encontramos $A = -\frac{2}{3}$, B = 0, $C = -\frac{5}{2}$, $D = -\frac{1}{2}$. A solução geral é, portanto, $y(x) = C_1 + C_2x + C_3e^x + C_4e^{-x} \frac{2x^3}{3} \frac{5}{2}xe^{-x} \frac{1}{2}x^2e^{-x}$.
- **6** Para encontrar a solução geral da EDO, fazemos como no exercício 5. Usamos então as condições iniciais para fixar as constantes que aparecem na solução geral e, com isso, resolvemos o PVI.
- a) EDO homogênea: $y_h(x) = C_1 + C_2 e^x + C_3 x e^x$. Solução particular da EDO não homogênea: tentamos $y_p(x) = Ax + Bx^2 e^x + Ce^{5x}$ e encontramos A = 2, B = -12, $C = \frac{1}{2}$. A solução geral é, portanto, $y(x) = y_h(x) + y_p(x) = C_1 + C_2 e^x + C_3 x e^x \frac{x^2}{4} + \frac{\text{sen } x}{37} \frac{6}{37} \cos x$. Usando as condições iniciais encontramos as constantes C_1 , C_2 e C_3 : $y(x) = 20 20e^x + 18xe^x + 2x 12x^2e^x + \frac{1}{2}e^{5x}$;
- b) EDO homogênea: $y_h(x) = C_1 e^{-2x} + C_2 e^x \operatorname{sen} (\sqrt{3}x) + C_3 e^x \cos (\sqrt{3}x)$. Solução particular da EDO não homogênea: tentamos $y_p(x) = A + Bx + Cxe^{-2x}$ e encontramos $A = -\frac{5}{8}$, $B = \frac{1}{4}$,

- $\begin{array}{ll} C &= \frac{2}{3}. \quad \text{A solução geral \'e, portanto, } y(x) &= \\ y_h(x) + y_p(x) &= C_1 e^{-2x} + C_2 e^x \sec\left(\sqrt{3}x\right) + \\ C_3 e^x \cos\left(\sqrt{3}x\right) \frac{5}{8} + \frac{x}{4} + \frac{2}{3}x e^{-2x}. \quad \text{Usando as condições iniciais encontramos as constantes } C_1, C_2 e \\ C_3 : \\ y(x) &= -\frac{23}{12} e^{-2x} + \frac{17}{24\sqrt{3}} e^x \sec\left(\sqrt{3}x\right) \frac{59}{24} e^x \cos\left(\sqrt{3}x\right) \frac{5}{8} + \frac{x}{4} + \frac{2}{3}x e^{-2x}. \end{array}$
- 7 a) No método de redução de ordem buscamos uma solução do tipo $y_2(t) = u(t)y_1(t) = u(t)e^t$. Substituindo na EDO encontramos a seguinte equação para u: (t-2)u''' + (t-3)u'' = 0. Definindo v(t) = u''(t), temos uma EDO de primeira ordem: (t-2)v' + (t-3)v = 0. Resolvendo, encontramos $v(t) = C_1e^{-t}(t-2)$. Integrando duas vezes, temos $u(t) = C_1e^{-t}t + C_2t + C_3e$, portanto, $y_2(t) = u(t)e^t = C_1t + C_2te^t + C_3e^t$. Ou seja, além de e^t , temos t e t como soluções da EDO. A solução geral é $y(t) = C_1t + C_2te^t + C_3e^t$;
- b) No método de redução de ordem buscamos uma solução do tipo $y_2(t)=u(t)y_1(t)=u(t)t^2$. Substituindo na EDO encontramos a seguinte equação para u: t(t+3)u'''+3(t+4)u''=0. Definindo v(t)=u''(t), temos uma EDO de primeira ordem: t(t+3)v'+3(t+4)v=0. Resolvendo, encontramos $v(t)=\frac{C_1(t+3)}{t^4}$. Integrando duas vezes, temos $u(t)=\frac{C_1}{2}\left(\frac{1}{t^2}+\frac{1}{t}\right)+C_2t+C_3$ e, portanto, $y_2(t)=u(t)t^2=\frac{C_1}{2}\left(1+t\right)+C_2t^3+C_3t^2$. Ou seja, além de t^2 , temos t^3 e t^3 e t^4 como soluções da EDO. A solução geral é t^4 0 e t^4 1 e t^4 2 e t^4 3 e t^4 4.
- 8 Em cada item temos um sistema do tipo $\begin{cases} \dot{x} = ax + by & (I) \\ \dot{y} = cx + dy & (II) \end{cases}$

Repare que em todos os casos temos $b \neq 0$ e $d \neq 0$ (ou seja, as equações sempre misturam x e y). Derivando a equação (I), encontramos $\ddot{x} = a\dot{x} + b\dot{y}$. Utilizando a equação (II), essa equação se torna $\ddot{x} = a\dot{x} + b(cx + dy)$. Isolando y na equação (I) e substituindo nessa última, temos $\ddot{x} = a\dot{x} + bcx + d(\dot{x} - ax)$ e, portanto, $\ddot{x} - (a + d)\dot{x} + (bc - ad)x = 0$. Com isso, transformamos o problema de resolver o sistema de EDOs no problema de resolver uma EDO linear com coeficientes constantes. O polinômio característico associado a essa EDO é, portanto, $\lambda^2 - (a + d)\lambda + (bc - ad)$. Em termos de matrizes, o sistema pode ser escrito como

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Definindo $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, e sendo $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ repare que encontrar as raízes do polinômio $\lambda^2-(\alpha+d)\lambda+(bc-\alpha d)$ é equivalente a resolver a equação $\det(M-\lambda I)=0$:

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2 - (a + d)\lambda + (bc - ad) = 0.$$

Depois de resolver essa equação, encontramos a solução geral para x(t). Pela equação (I), temos $\dot{x}=ax+by\Rightarrow y(t)=\frac{1}{b}\dot{x}(t)-\frac{a}{b}x(t)$ e, portanto, conhecendo x(t) usamos essa equação para encontrar y(t). Em todos os casos, o ponto (x,y)=(0,0) é um ponto de equilíbrio isolado. O tipo de equilíbrio está relacionado às raízes do polinômio característico. As soluções são:

- a) Raízes do polinômio: $\lambda_1=-2$ e $\lambda_2=1$. Como $\lambda_1<0$ e $\lambda_2>0$, o ponto de equilíbrio é instável (ponto de sela). A solução geral é: $x(t)=C_1e^{-2t}+C_2e^t$, $y(t)=-\frac{C_1}{2}e^{-2t}+C_2e^t$;
- b) Raízes do polinômio: $\lambda_1=2+2i$ e $\lambda_2=2-2i$. Como $\text{Re}(\lambda_1)>0$ e $\text{Re}(\lambda_2)>0$, o equilíbrio é instável. Como $\text{Im}(\lambda_1)\neq 0$ e $\text{Im}(\lambda_2)\neq 0$, temos uma espiral instável. A solução geral é: $x(t)=C_1e^{2t}\cos(2t)+C_2e^{2t}\sin(2t), \\ y(t)=-C_1e^{2t}\cos(2t)+C_2e^{2t}\sin(2t);$
- c) Raízes do polinômio: $\lambda_1 = -3$ e $\lambda_2 = 2$. Como $\lambda_1 < 0$ e $\lambda_2 > 0$, o equilíbrio é instável (ponto de sela). A solução geral é: $x(t) = C_1 e^{-3t} + C_2 e^{2t}$, $y(t) = -2C_1 e^{-3t} + \frac{C_2}{2} e^{2t}$;
- d) Raízes do polinômio: $\lambda_1=-3$ e $\lambda_2=2$. Como $\lambda_1<0$ e $\lambda_2>0$, o equilíbrio é instável (ponto de sela). A solução geral é: $x(t)=C_1e^{-3t}+C_2e^{2t}, \quad y(t)=-\frac{C_1}{2}e^{-3t}2C_2e^{2t};$
- e) Raízes do polinômio: $\lambda_1=-2$ e $\lambda_2=-1$. Como $\text{Re}(\lambda_1)<0$ e $\text{Re}(\lambda_2)<0$, o equilíbrio é assintoticamente estável. Como $\text{Im}(\lambda_1)=\text{Im}(\lambda_2)=0$, o ponto de equilíbrio é um nó estável. A solução geral é:

$$x(t) = C_1 e^{-t} + C_2 e^{-2t} \text{, } y(t) = C_1 e^{-t} + \tfrac{3}{2} C_2 e^{-2t} \text{;}$$

f) Raízes do polinômio: $\lambda_1=2+\sqrt{2}$ e $\lambda_2=2-\sqrt{2}.$ Como $Re(\lambda_1)>0$ e $Re(\lambda_2)>0$, o equilíbrio é instável. Como $Im(\lambda_1)=Im(\lambda_2)=0$, o ponto de equilíbrio é um nó instável. A solução geral é: $x(t)=C_1e^{\left(2+\sqrt{2}\right)t}+C_2e^{\left(2-\sqrt{2}\right)t},\\ y(t)=C_1\left(1+\sqrt{2}\right)e^{\left(2+\sqrt{2}\right)t}+C_2\left(1-\sqrt{2}\right)e^{\left(2-\sqrt{2}\right)t};$

- g) Raízes do polinômio: $\lambda_1=i\ e\ \lambda_2=-i$. Como $Re(\lambda_1)=Re(\lambda_2)=0$, o equilíbrio é estável (centro). A solução geral é: $x(t)=C_1 \operatorname{sen} t + C_2 \operatorname{cos} t, \quad y(t)=-C_1 \operatorname{cos}(t) + C_2 \operatorname{sen}(t);$
- h) Raízes do polinômio: $\lambda_1=-3+2i$ e $\lambda_2=-3-2i.$ Como $Re(\lambda_1)<0$ e $Re(\lambda_2)<0$, o equilíbrio é estável. Como $Im(\lambda_1)\neq 0$ e $Im(\lambda_2)\neq 0$, temos uma espiral estável. A solução geral é: $x(t)=C_1e^{-3t}\cos(2t)+C_2e^{-3t}\sin(2t),\\ y(t)=\left(\frac{-C_1+2C_2}{5}\right)e^{-3t}\cos(2t)+\left(\frac{-2C_1-C_2}{5}\right)e^{-3t}\sin(2t).$

9 Repare que não podemos fazer exatamente da mesma maneira que fizemos no exercício anterior. Mas podemos fazer parecido. Em termos de matrizes, esse sistema pode ser reescrito como

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 4 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 3t \\ 4t \end{pmatrix}.$$

Fazendo uma analogia com o que aprendemos sobre as EDOs lineares, esse sistema pode ser entendido como uma versão não-homogênea dos sistemas homogêneos que aparecem no exercício 8. Derivando a primeira equação do sistema, encontramos $\ddot{x}=-\dot{y}+3$. Substituindo \dot{y} dado pela segunda equação, temos $\ddot{x}=-4x-2t+3\Rightarrow \ddot{x}+4x=-2t+3$. Resolvendo essa EDO linear não-homogênea, encontramos a solução geral $x(t)=C_1\cos(2t)+C_2\sin(2t)+\frac{3}{4}-\frac{t}{2}$. Substituindo na primeira equação do sistema e isolando y, temos $y(t)=2C_1\sin(2t)-2C_2\cos(2t)+\frac{1}{2}+3t$. Usando as condições iniciais, temos $x(0)=1\Rightarrow C_1+\frac{3}{4}=1\Rightarrow C_1=\frac{1}{4}$ e $y(0)=2\Rightarrow -2C_2+\frac{1}{2}=2\Rightarrow C_2=-\frac{3}{4}$. Com isso, $x(t)=\frac{1}{4}\cos(2t)-\frac{3}{4}\sin(2t)+\frac{3}{4}-\frac{t}{2}$ e $y(t)=\frac{1}{2}\sin(2t)+\frac{3}{2}\cos(2t)+\frac{1}{2}+3t$.

10 Note que a condição $\mu \neq -1$ é importante para que o ponto de equilíbrio seja um ponto de equlíbrio isolado. Quando $\mu = -1$, o sistema se torna $\dot{x} = \dot{y} = -x + y$. Nesse caso, todos os pontos na reta y = x são pontos de equilíbrio e, portanto, (0,0) é um ponto de equilíbrio que não é isolado. Para $\mu \neq -1$, fazendo como no exercício 8 encontra-se o seguinte polinômio característico: $\lambda^2 - \lambda(\mu + 1) + \mu + 1$, cujo discriminante é $\Delta(\mu) = (\mu + 1)^2 - 4(\mu + 1) = (\mu + 1)(\mu - 3)$. As raízes desse polinômio característico são $\lambda_1 = \frac{1+\mu}{2} + \frac{\sqrt{\Delta(\mu)}}{2}$ e $\lambda_2 = \frac{1+\mu}{2} - \frac{\sqrt{\Delta(\mu)}}{2}$. Para analisar a estabilidade do ponto de equilíbrio, temos que conhecer $Re(\lambda_1)$ e $Re(\lambda_2)$. Se pelo menos um desses valores for positivo, o ponto será instável.

Para encontrar $Re(\lambda_1)$ e $Re(\lambda_2)$, precisamos analisar o sinal do discriminante $\Delta(\mu)=(\mu+1)(\mu-3)$. Essa função representa uma parábola com concavidade para cima e, por isso, tem valores positivos se $\mu<-1$ ou $\mu>3$. Para $-1<\mu<3$, a função $\Delta(\mu)$ tem valores negativos. Vamos analisar três casos separadamente: Caso I: $\mu<-1$. Nesse caso, $\Delta>0$ e, portanto, λ_1 e λ_2 são números reais. Como $\mu<-1$, temos $-4(\mu+1)>0$ e, portanto, $\Delta(\mu)=(\mu+1)^2-4(\mu+1)>(\mu+1)^2\Rightarrow \sqrt{\Delta(\mu)}>|\mu+1|$. Logo, $\lambda_1=\frac{1+\mu}{2}+\frac{\sqrt{\Delta(\mu)}}{2}>0$ e $\lambda_2=\frac{1+\mu}{2}-\frac{\sqrt{\Delta(\mu)}}{2}<0$. Isso significa que o ponto de equilíbrio é instável (ponto de sela) nesse caso.

Caso II: $-1 < \mu < 3$. Nesse caso, $\Delta < 0$ e, portanto, λ_1 e λ_2 são números complexos. Logo, $\text{Re}(\lambda_1) = \text{Re}(\lambda_2) \frac{1+\mu}{2} > 0$. Isso significa que o ponto de equilíbrio é instável (espiral) nesse caso.

Caso III: $\mu > 3$. Nesse caso, $\Delta > 0$ e, portanto, λ_1 e λ_2

são números reais. Como $\mu>3$, temos $-4(\mu+1)<0$ e, portanto, $\Delta(\mu)=(\mu+1)^2-4(\mu+1)<(\mu+1)^2\Rightarrow \sqrt{\Delta(\mu)}<\mu+1. \ \ Logo,\ \lambda_1=\frac{1+\mu}{2}+\frac{\sqrt{\Delta(\mu)}}{2}>0$ e $\lambda_2=\frac{1+\mu}{2}-\frac{\sqrt{\Delta(\mu)}}{2}>0$. Isso significa que o ponto de equilíbrio é instável (nó) nesse caso.

Como $\mu<-1$, temos $-4(\mu+1)>0$ e, portanto, $\Delta(\mu)=(\mu+1)^2-4(\mu+1)>(\mu+1)^2\Rightarrow\sqrt{\Delta(\mu)}>|\mu+1|$. Logo, $\lambda_1=\frac{1+\mu}{2}+\frac{\sqrt{\Delta(\mu)}}{2}>0$ e $\lambda_2=\frac{1+\mu}{2}-\frac{\sqrt{\Delta(\mu)}}{2}<0$. Isso significa que o ponto de equilíbrio é instável (ponto de sela) nesse caso.

Resumindo: as bifurcações ocorrem quando $\Delta(\mu)=0$, isto é, quando $\mu=-1$ ou quando $\mu=3$. Para $\mu<-1$, o ponto de equilíbrio (0,0) é um ponto de sela. Para $-1<\mu<3$, o ponto de equilíbrio (0,0) é uma espiral instável. Para $\mu>3$, o ponto de equilíbrio (0,0) é um nó instável.