

Network Protocols and the Physical Layer

Cisco Networking Academy® Mind Wide Open®

Outline

- Network Protocols
- The TCP/IP Layered Architecture Model
- Data Encapsulation
- Reference Models
- The Physical Layer

Protocols

Network Protocols

- Defines how communications take place between two devices
- How the message is formatted or structured
- Rules of Communication
- Message Formatting and Encapsulation
 - Headers
 - Data

Sender 4085 SE Pine Street Ocala, Florida 34471

Recipient 1400 Main Street Canton, Ohio 44203

https://www.youtube.com/watch?v=T8XeI

The TCP/IP Layered Architecture Model

TCP/IP Model

Application

Represents data to the user, plus encoding and dialog control.

Transport

Supports communication between diverse devices across diverse networks.

Internet

Determines the best path through the network.

Network Access

Controls the hardware devices and media that make up the network.

Benefits of Using a Layered Model

- Assists in Protocol design
- Open standard fosters competition
- Changes made in one layer do not affect other layers
- Common standard language
- Allows Protocols and technologies to evolve

Protocol Data Units (PDUs)

- Data
- Segment
- Packet
- Frame
- Bits

Reference Models

What is a Reference Model

Protocol Model

 A model that describes an actual implementation

Reference Model

 Used to describe generic networking processes

Reference Models

Comparing the OSI and TCP/IP Models

The Physical Layer The Physical Layer

The Physical Layer General Purpose

Sending

- Accepts a frame from the Data Link Layer
- Transmits as binary bits over media between devices

Receiving

- Receives a signal over a common media
- Converts back into a sequence of bits
- Passes to the Data Link Layer as a frame for processing

Fundamental Principles of the Physical Layer **Bandwidth**

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10^6 bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10^9 bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10^12 bps

Fundamental Principles of the Physical Layer Throughput

Network Protocols and the Physical Layer **Summary**

In this lecture, we covered:

- What is a Network Protocol
- The TCP/IP Layered Architecture
- The concept of Data Encapsulation
- The benefits and usages of a layered architecture model
- The purpose of a Network Reference Architecture Model
- Compared the OSI/ISO Reference Model with the TCP/IP Model
- The purpose and function of the Physical Layer
- The difference between Bandwidth and Throughput

