Capítulo 3

Funciones recursivas primitivas

3.1. Definiciones

3.1.1. Aridad

Sea $f: A_1 \times A_2 \times \ldots \times A_n \to B$ llamaremos aridad al numero de argumentos que toma la función, es decir n y notaremos $f^{(n)}$.

3.1.2. Función característica

Dado un conjunto X, para cada subconjunto $A \subseteq X$ definimos su función característica $\chi_A: X \to \{0,1\}$ como:

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

3.1.3. Función numérica

Llamaremos función numérica a toda función $f: \mathbb{N}^k \to \mathbb{N}$ con $k \in \mathbb{N}$. Si k = 0 identificaremos a dicha función con un numero perteneciente a \mathbb{N} .

3.1.4. Funciones base

Llamaremos funciones base a las siguientes tres funciones:

- La función cero $c^{(n)}: \mathbb{N}^n \to \mathbb{N}$ definida por $c^{(n)}(X) = 0$.
- Las funciones proyección $p_k^{(n)}: \mathbb{N}^n \to \mathbb{N}$ definidas por $p_k^{(n)}(x_1, x_2, \dots, x_n) = x_k$.
- \bullet La función sucesor $s^{(1)}:\mathbb{N}\to\mathbb{N}$ definida por $s^{(1)}(x)=x+1.$

3.1.5. Operadores

Definiremos dos operadores que nos permitirán construir nuevas funciones:

■ El operador de composición Φ que dada una función numérica $f^{(n)}$ y n funciones numéricas de aridad k, construye la función numérica k definida como:

$$h: \mathbb{N}^k \to \mathbb{N}$$

$$X^k \to h(X^k) = f\left[g_1(X^k), g_2(X^k), \dots, g_n(X^k)\right]$$

y que notaremos $h = \Phi(f, g_1, g_2, \dots, g_n)$.

■ El operador de recursion R que dadas dos funciones numéricas $g^{(k)}$ y $h^{(k+2)}$ construye una nueva función numérica $f^{(k+1)}$ definida como

$$f(y, X^{k}) = \begin{cases} g(X^{k}) & y = 0\\ h[y - 1, X^{k}, f(y - 1, X^{k})] & y > 0 \end{cases}$$

y notaremos f = R(g, h).

3.1.6. Definición inductiva

Definimos inductivamente el conjunto de funciones recursivas primitivas (FRP) como el menor conjunto tal que:

- Las funciones base pertenecen a FRP.
- Las funciones obtenidas aplicando un numero finito de operaciones de composición y recursion sobre elementos de *FRP* también pertenecen a *FRP*.

3.2. Ejemplos

3.2.1. Predecesor natural

La función
$$\widehat{Pd}^{(1)}(y) = \begin{cases} 0 & y = 0 \\ y - 1 & y > 0 \end{cases}$$
 es FRP pues:

1.
$$\widehat{Pd}^{(1)}(0) = 0 = c^{(0)}()$$
.

2.
$$\widehat{Pd}^{(1)}(y) = y - 1 = p_1^{(2)} \left[y - 1, \widehat{Pd}^{(1)}(y - 1) \right].$$

por lo que
$$\widehat{Pd}^{(1)} = R\left(c^{(0)}, p_1^{(2)}\right)$$
.

3.2.2. Suma

La función $\Sigma^{(2)}(y,x) = y + x$ es FRP pues:

1.
$$\Sigma^{(2)}(0,x) = 0 + x = x = p_1^{(1)}(x)$$
.

2.
$$\Sigma^{(2)}(y,x) = y + x = y + x + 1 - 1 = (y-1) + x + 1 = s^{(1)} \left[\Sigma^{(2)}(y-1,x) \right] =$$
$$= s^{(1)} \left\{ p_3^{(3)} \left[y - 1, x, \Sigma^{(2)}(y-1,x) \right] \right\} = \Phi\left(s^{(1)}, p_3^{(3)} \right).$$

y en consecuencia $\Sigma^{(2)}=R\left[p_1^{(1)},\Phi\left(s^{(1)},p_3^{(3)}\right)\right].$

3.2.3. Función potencia

Dada una función $f^{(1)}$ definimos $F^{(2)}$ llamada potencia de f como:

$$F(y,x) = \begin{cases} x & y = 0\\ f[F(y-1,x)] & y > 0 \end{cases}$$

y notaremos $F(y, x) = f^{y}(x)$. La función $f^{y}(x)$ es FRP pues:

1.
$$F^{(2)}(0,x) = x = p_1^{(1)}(x)$$
.

2.
$$F^{(2)}(y,x) = f^{(1)}[F(y-1,x)] = f^{(1)}\{p_3^{(3)}[y-1,x,F(y-1,x)]\} = \Phi(f^{(1)},p_3^{(3)}).$$

entonces $F^{(2)} = R\left[p_1^{(1)}, \Phi\left(f^{(1)}, p_3^{(3)}\right)\right].$

3.3. Conjuntos

3.3.1. Conjunto recursivo primitivo

Diremos $A \subseteq \mathbb{N}^k$ es un conjunto recursivo primitivo (CRP) si su función característica $\chi_A : \mathbb{N}^k \to \{0,1\}$ es FRP.

3.3.2. Relaciones recursivas primitivas

Una relación $R \subseteq \mathbb{N} \times \mathbb{N}$ se dice recursiva primitiva (RRP) si es un CRP.