Mathematical Formulation of a SCRUM Optimization Model

Gemini AI Assistant

Friday 5th September, 2025

Contents

1	Sets (Entities)	1
2	Indices	2
3	Goals	2
4	Conditions	4
5	Decision Variables	5

This document provides a mathematical and logical formulation of an optimization model for resource and task management within a software development company using the SCRUM framework. The model is derived from a domain model specified by a set of entities, relationships, goals, conditions, and decision variables.

The general form of the optimization model is:

Optimize
$$Z = \sum_{g \in G} w_g \cdot f_g(\mathbf{X})$$

subject to $h_c(\mathbf{X}) \leq 0 \quad \forall c \in C_{must}$
 $\mathbf{X} \in \mathcal{D}$

where Z is the multi-objective function (a weighted sum of all individual goals g), \mathbf{X} is the vector of decision variables, w_g is the weight for each goal, h_c are the constraint functions for all "must-match" conditions c, and \mathcal{D} is the domain of the decision variables.

1 Sets (Entities)

The fundamental sets of the model are derived from the entities in the domain.

- **Project** (P): The set of all projects.
- **Team** (T): The set of all teams.
- Worker (W): The set of all workers.
- **Feature** (F): The set of all features.
- **Skill** (S): The set of all skills.
- Role (R): The set of all roles.
- **ProductOwner** (*PO*): The set of all Product Owners.
- ScrumMaster (SM): The set of all Scrum Masters.
- **ProductBacklog** (*PB*): The set of all Product Backlogs.
- **Sprint** (SP): The set of all sprints.
- SprintBacklog (SBL): The set of all Sprint Backlogs.
- SprintGoal (SG): The set of all Sprint Goals.
- **Epic** (E): The set of all epics.
- UserStory (US): The set of all user stories.
- Task (TSK): The set of all tasks.
- Blocker (BL): The set of all blockers.
- Stakeholder (SH): The set of all stakeholders.
- **Velocity** (VEL): The set of all team velocity records.
- ReleasePlan (REP): The set of all release plans.
- FeatureDocumentation (FED): The set of all feature documentations.

2 Indices

Indices are used to iterate over the elements of the sets defined above.

- $p \in P$: index for projects.
- $t \in T$: index for teams.
- $w \in W$: index for workers.
- $f \in F$: index for features.
- $s \in S$: index for skills.
- $r \in R$: index for roles.
- $po \in PO$: index for Product Owners.
- $sm \in SM$: index for Scrum Masters.
- $pb \in PB$: index for Product Backlogs.
- $sp \in SP$: index for sprints.
- $sbl \in SBL$: index for Sprint Backlogs.
- $sg \in SG$: index for Sprint Goals.
- $e \in E$: index for epics.
- $us \in US$: index for user stories.
- $tsk \in TSK$: index for tasks.
- $bl \in BL$: index for blockers.
- $sh \in SH$: index for stakeholders.
- $vel \in VEL$: index for velocity records.
- $rep \in REP$: index for release plans.
- $fed \in FED$: index for feature documentations.

3 Goals

The objective functions of the optimization model. The overall goal is a weighted sum of these individual functions. Let $X_{...}$ denote relevant binary decision variables (e.g., $X_{f,rep} = 1$ if feature f is in release plan rep).

G0: maximize team velocity

$$\max \sum_{t \in T} \text{avg_story_points}_t$$

G1: minimize_project_budget

$$\min \sum_{p \in P} \mathrm{budget}_p$$

G2: maximize feature priority sum

$$\max \sum_{f \in F} \sum_{rep \in REP} \mathrm{priority}_f \cdot X_{f,rep}$$

G3: minimize_total_task_effort

$$\min \sum_{tsk \in TSK} \sum_{w \in W} \text{effort}_{tsk} \cdot X_{w,tsk}$$

G4: maximize sprint goal achievement

$$\max \sum_{sg \in SG} \text{achievement_status}_{sg}$$

G5: minimize blocker count

$$\min \sum_{bl \in BL} 1$$

G6: maximize story points in sprint

$$\max \sum_{us \in US} \sum_{sp \in SP} \text{story_points}_{us} \cdot X_{us,sp}$$

G7: maximize team satisfaction

$$\max \sum_{t \in T} \text{team_satisfaction}_t$$

G8: minimize_project_end_date

$$\min \max_{p \in P} (\operatorname{project_end}_p)$$

G9: maximize stakeholder engagement

$$\max \sum_{sh \in SH} \sum_{f \in F} \text{influence_level}_{sh} \cdot \text{relevance}_{sh,f}$$

G10: minimize_blocker_severity_sum

$$\min \sum_{bl \in BL} \text{severity}_{bl}$$

G11: maximize sprint review attendance

$$\max \sum_{sp \in SP} \text{attendees_count}_{sp}$$

G12: maximize_certified_skills_in_team

$$\max \sum_{w \in W} \sum_{s \in S} \operatorname{certified}_s \cdot X_{w,s}$$

4 Conditions

The constraints that the solution must satisfy. Let parameters be denoted by their attribute names and indexed by the relevant set index.

C0: enforce max team size

team size,
$$\leq 9 \quad \forall t \in T$$

C1: enforce min team size

$$\text{team_size}_t \geq 3 \quad \forall t \in T$$

C2: enforce project budget

$$\sum_{t \in T, \dots} \mathrm{cost} \leq \mathrm{budget}_p \quad \forall p \in P$$

C3: require _active _worker _status Let $\delta_w = 1$ if status _w = 'active', 0 otherwise.

$$X_{w,tsk} \leq \delta_w \quad \forall w \in W, tsk \in TSK$$

C4: respect sprint backlog capacity

$$\text{total_effort}_{sbl} \leq \text{avg_story_points}_t \quad \forall sbl \in SBL, t \in T \text{ assigned to } sbl$$

C5: require high feature priority Let P_{min} be the minimum priority threshold.

priority
$$f \geq P_{min} \quad \forall f \in F \text{ selected for development}$$

C6: require_user_story_acceptance_criteria Let $\gamma_{us} = 1$ if acceptance_criteria_{us} is not null, 0 otherwise.

$$X_{us,sp} \le \gamma_{us} \quad \forall us \in US, sp \in SP$$

C7: require sprint goal definition Let $\sigma_{sp} = 1$ if sprint sp has a goal, 0 otherwise.

$$\operatorname{start_sprint}_{sp} \leq \sigma_{sp} \quad \forall sp \in SP$$

C8: require_project_start_date Let $\lambda_p = 1$ if project_start_p is not null, 0 otherwise. Any assignment to project p must be 0 if $\lambda_p = 0$.

$$X_{t,p} \le \lambda_p \quad \forall t \in T, p \in P$$

C10: prefer_experienced_scrum_master (Soft Constraint) Could be modeled by adding a penalty to the objective function if experience_{sm} $< E_{min}$.

C11: require_feature_documentation_link Let $\phi_f = 1$ if feature f has linked documentation, 0 otherwise.

$$\operatorname{status}_f = \operatorname{'Done'} \implies \phi_f = 1 \quad \forall f \in F$$

C12: prevent work on closed projects Let $\omega_p = 1$ if status_p = 'closed', 0 otherwise.

$$X_{us,sp,p} \cdot \omega_p = 0 \quad \forall us \in US, sp \in SP, p \in P$$

5 Decision Variables

The variables that the optimization model will determine.

DV0: assign_worker_to_task $(X_{w,tsk})$

$$X_{w,tsk} \in \{0,1\} \quad \forall w \in W, tsk \in TSK$$

DV1: assign_story_to_sprint $(X_{us,sp})$

$$X_{us,sp} \in \{0,1\} \quad \forall us \in US, sp \in SP$$

DV2: assign_team_to_project $(X_{t,p})$

$$X_{t,p} \in \{0,1\} \quad \forall t \in T, p \in P$$

DV3: select feature for release $(X_{f,rep})$

$$X_{f,rep} \in \{0,1\} \quad \forall f \in F, rep \in REP$$

DV4: set sprint backlog effort (E_{sbl})

$$E_{sbl} \in \mathbb{Z}^+ \quad (e.g., 0 \le E_{sbl} \le 200) \quad \forall sbl \in SBL$$

DV5: set team size (S_t)

$$S_t \in \{3, 4, ..., 9\} \quad \forall t \in T$$

DV6: schedule release date (D_{rep})

$$D_{rep} \in \mathbb{Z}^+ \quad \forall rep \in REP$$

DV7: update_task_status $(Y_{tsk,status})$

$$Y_{tsk, \text{status}} \in \{0, 1\} \quad \forall tsk \in TSK, \text{status} \in \{\text{'ToDo'}, \text{'InProgress'}, ...\}$$

$$\sum_{\text{status}} Y_{tsk, \text{status}} = 1 \quad \forall tsk \in TSK$$

DV8: prioritize feature (P_f)

$$P_f \in \{1, 2, ..., 100\} \quad \forall f \in F$$

DV9: assign worker to team $(X_{w,t})$

$$X_{w,t} \in \{0,1\} \quad \forall w \in W, t \in T$$

DV10: set project budget (B_p)

$$B_p \in \mathbb{R}^+ \quad \forall p \in P$$

DV11: approve sprint goal achievement (A_{sq})

$$A_{sq} \in \{0,1\} \quad \forall sq \in SG$$