ГЛАВА 13 ОСОБЕНОСТИ РЕАГИРОВАНИЯ НА ЧС С НАЛИЧИЕМ РТУТИ И РТУТЬСОДЕРЖАЩИХ ОТХОДОВ, ПРОВЕДЕНИЕМ ДЕМЕРКУРИЗАЦИОННЫХ РАБОТ

- 112. Особенностью реагирования на ЧС с наличием ртути и ртутьсодержащих отходов является возможность возникновения высоких концентраций паров ртути на месте ЧС.
- 113. Работники ОПЧС высылаются для проведения демеркуризационных работ физлицам (частным лицам) в случае наличия у заявителя большого количества ртути (более 10 гр.); нахождения в непосредственной близости от разлива ртути людей с инвалидностью или детей в возрасте до 10 лет;

невозможностью проведения демеркуризации без применения специального, аварийно-спасательного инструмента

других причин, препятствующих самостоятельной демеркуризации.

В иных случаях заявителю предлагается осуществить демеркуризацию самостоятельно после получения консультативной помощи от диспетчера МЧС. В случае отказа заявителя от проведения демеркуризации собственными силами,

осуществляется высылка работников ОПЧС для проведения демеркуризационных работ.

114. Для защиты кожных покровов и предотвращения загрязнения ртутью обмундирования личного состава демеркуризационные работы необходимо осуществлять в защитных газопроницаемых костюмах тип 3.

115.Для защиты органов дыхания необходимо использовать панорамные маски с фильтрующепоглощающей коробкой с маркировкой Г (HgP₃). В случае отсутствия панорамной маски с фильтрующепоглощающей коробкой или концентрации паров ртути в помещении свыше 73 мг/м? необходимо использовать АСВ.

При проведении химической демеркуризации для защиты органов дыхания необходимо использовать АСВ или панорамные маски с фильтрующе-поглощающей коробкой с классом защиты не ниже A2BZE2K2H9P3.

116. Перед выполнением демеркуризационных работ необходимо:

эвакуировать всех людей из 3X3; изолировать помещения с разлитой ртутью от смежных помещений (плотно закрыть двери, смежные вентиляционные отверстия);

провести замеры концентрации паров ртути на месте ее разлива и в смежных помещениях;

при необходимости освободить помещение от мебели и провести ее демеркуризацию.

- 117. Демеркуризация помещения осуществляется от периферии (от входа и стен) к центру разлива. Крупные капли ртути собираются с помощью набора для ручной механической сборки ртути. Мелкие капли ртути собираются с помощью пылесоса с аквафильтром в комплекте с ртутной ловушкой.
- 118.После механической сборки ртути и проветривания, исходя из результатов измерения концентрации паров ртути в воздухе помещения, необходимо проводить химическую демеркуризацию согласно приложению 8.
- 119.Перед проведением химической демеркуризации заявителю (собственнику объекта) доводится информация о возможных последствиях проведения химической демеркуризации (окисление металлических поверхностей, окрашивание стеновых поверхностей в рыжий цвет и т.д.). Оформляется письменное согласие заявителя (собственника объекта) на отсутствие претензий к последствиям проведения химической демеркуризации.
- 120. По окончанию демеркуризационных работ использованное имущество и оборудование (СИЗ, оборудование для сбора ртути) обрабатывается мыльным раствором. После обработки имущество и

оборудование промывается большим количеством воды и высушивается на открытом воздухе.

ПДК ЗАГРЯЗНЕННОСТИ МЕТАЛЛИЧЕСКОЙ РТУТЬЮ И ЕЕ ПАРАМИ

ПДК	M_{Γ}/M_3	Hг/м ₃
среднесуточная в населенных пунктах (жилых помещениях)	0,0003	300
максимально разовая в населенных пунктах жилых помещениях)	0,0006	600
среднесменная в рабочей зоне	0,005	5000
максимально разовая в рабочей зоне	0,01	10000

ПОРЯДОК ПРОВЕДЕНИЯ ХИМИЧЕСКОЙ ДЕМЕРКУРИЗАЦИИ (УНИВЕРСАЛЬНАЯ ТЕХНОЛОГИЯ)

1. Универсальная технология демеркуризации - получение химически активных демеркуризаторов непосредственно на загрязненной ртутью поверхности и перевод ее в водонерастворимые, малотоксичные и не разлагающиеся при нормальныхусловиях дийодиды или комплексные соединения ртути.

- 2. Технология позволяет осуществлять визуальную индикацию мест скоплений ртути на обрабатываемой поверхности и проводить объемную обработкупарамийода всех поверхностей, конструкций, оборудования и интерьера помещений зараженного объекта.
- 3.При проведении химической демеркуризации используются 10% водные растворы сульфата меди (ярко-синие кристаллы) и йодида калия (белый порошок). Для приготовления 1 литра растворов требуется 100 г вещества растворить в 900 мл воды. В результате протекания реакции между растворами сульфата меди и йодида калия выделяется газообразный йод, являющийся демеркуризатором во всем объеме зараженного объекта.

ЭТАПЫ ХИМИЧЕСКОЙ ДЕМЕРКУРИЗАЦИИ (УНИВЕРСАЛЬНАЯ ТЕХНОЛОГИЯ)

No	Выполнение	Время	Примечание
	операциии		
1	Механическая уборка		Демеркуризация
	видимых капель ртути		помещения
	(вручную или с		осуществляется от
	помощью пылесоса с		периферии (от входа
	ртутной ловушкой)		и стен) к центру
			разлива
2	Герметизация		Окна, двери и
	помещения с разлитой		вентиляция
	ртутью		закрываются, три
			необходимости
			герметизируются
3	Приготовление	15 мин на	На 10л раствора – 1кг
	10% раствора сульфата	10л	вещества растворяют
	меди		в 9л воды
4	Приготовление	15 мин на	На 10л раствора – 1кг
	10% раствора сульфата	10л	вещества растворяют
	меди		в 9л воды
5	Нанесение на	До 3 мин на	Опрыскиватели с
	загрязненную	10м ²	маркировкой(CuSO ⁴),
	поверхность раствора		расход 0,1-0,15л/м ²
	сульфата меди		
6	Проритка обработанной	До 5 мин	
	поверхности		
7	Нанесение раствора	До 5 мин на	Опрыскиватели с
	иодида калия на	10m ²	маркировкой($CuSO^4$),
	обработанную по п.п 3-4		расход 0,1-0,15л/м ²
	поверхность		

8	Экспозиция	1-3 суток	Окна и двери
	обработанной		закрыты
	поверхности		(загерметизированы)
9	Контроль полноты		С помощью ртутного
	демеркуризации		анализатора

- 5. При обработке впитывающих или сильно пористых поверхностей норму расхода растворов необходимо увеличивать в 1,5 раза.
- 6. На обработанной двумя растворами и высохшей поверхности визуально определяются места скопления ртути (далее- дело), имеющие красно-бурый цвет (экспозиция проявления окрашивания колеблется от 1 до 5 суток). Поверхность, не загрязненная ртутью, после высыхания имеет бледно-розовое окрашивание.
- 7. В проявленных депо, при необходимости, дополнительно проводится механический сбор ртути. В целях полного удаления ртути из депо через 5-7 суток проводится повторная обработка депо с применением слоя сорбента, обрабатываемых последовательно растворами демеркуризаторов (толщина слоя сорбента 5-8 мм, экспозиция 5-10 суток).
- 8. Нанесение новых слоев сорбента проолжается до прекращения их пробоя парами ртути, проявляющегося в образовании на поверхности и внутри сорбента красно-бурых пятен.

9.В зависимости от характера подстилающей поверхности 3-5-ти разового нанесения слоя, сорбента достаточно для полного удаления пролитой (депонированной) и связывания сорбированной материалами ртути.

Максимальный срок обработки (15-30 суток) применяется в случае разлива больших количеств ртути на пористую или деревянную поверхность с затеканием в микротрещины.

10. Удаление слоя сорбента осуществляется скребками от периферии к центру. Собранный сорбент и другие материалы после завершения всех мероприятий помещаются в герметичную тару для дальнейшей утилизации.

ПОРЯДОК ПРОВЕДЕНИЯ ХИМИЧЕСКОЙ ДЕМЕРКУРИЗАЦИИ (КОМБИНИРОВАННЫМ СПОСОБОМ)

Сущность метода заключается в поэтапном переводе металлической ртути в хлориды ртути, а затем - в малорастворимый в воде и малотоксичный сульфид ртути. В данной технологии особое значение имеет влажная уборка помещения. Работы проводятся при положительных температурах.

Осветленный водный раствор гипохлорита кальция с содержанием не менее 0,5 % «активного» хлора готовится из суспензии после ее отстаивания и декантирования раствора.

Вместо гипохлоритов кальция могут быть использованы другие препараты: 5% водные растворы монохораминов: водные растворы гипохлорита натрия или лития, содержащие не менее 0,5% «активного» хлора.

Для приготовления 10л 20% раствора хлорного железа 2 кг вещества растворяют в

8л воды. Чтобы уменьшить гидролиз, растворение соли проводится при охлаждении.

Хлорное железо добавляется в воду не большими порциями и при постоянном перемешивании.

Водный раствор хлорного железа вызывает сильную коррозию металлических неокрашенных поверхностей, порчу деревянных и некоторых полимерных покрытий. Для предотвращения этого в приготовленный раствор за 1-2 часа до применения добавляют/ 50-60 г/л

технического мела. В опрыскиватель заливается осветленный раствор.

На поверхность, обработанную хлор-активным раствором и раствором хлорного железа, наносится 10% раствор сульфида натрия или 5% раствор полисульфидов. Для приготовления 10 л 10% раствора сульфида/ натрия в 9 л воды растворяют 1 кг Na₂S.

На первом этапе демеркуризационных работ осуществляется тщательный сбор видимых капель металлической ртути:

С помощью опрыскивателя с маркировкой "ГК" (гипохлорит кальция) на зараженную поверхность наносится методом орошения или методом орошения с

одновременным протиранием капроновой щеткой осветленный раствор гипохлорита кальция. Норма расхода составляет 1,0-1,5 л/м²

Экспозиция демеркуризации составляет 8-10 часов. По истечении указанного времени на поверхность, обработанную осветленным раствором гипохлорита кальция, из опрыскивателя с маркировкой "FeCl₃" методом орошения или методом орошения с одновременным протиранием капроновой щеткой наносится водный раствор хлорного железа. В случае интенсивного перемешивания раствор оказывает эмульгирующее действие, в результате чего "шарики" ртути теряют свою подвижность, деформируются и со временем превращаются в мелкий серый порошок. Норма расхода раствора демеркуризатора составляет 2,5 - 3,0 л/м²Раствор оставляют на поверхности на 1-2 суток до полного высыхания. После этого поверхность тщательно очищается от продуктов реакции. При невозможности по каким-либо причинам проводить экспозицию в течении 1-2 суток в помещении допускается удаление раствора

1-2 суток в помещении допускается удаление раствора хлорного железа с эмульгированной ртутью через 4-6 часов струей воды или щеткой. Все смывные воды должны быть в обязательном порядке собраны впоследствии обезврежены.

На поверхность, обработанную раствором гипохлорита кальция и раствором хлорного железа, наносится 10% раствор сульфида натрия или 5% раствор поли-

сульфида натрия (калия). Она постоянно смачивается в течение 8-10 часов.

На наклонных поверхностях для увеличения времени существования жидкой фазы раствора демеркуризатора могут использоваться древесные опилки.

Суммарное время обезвреживания комбинированным способом составляет 1,5-3,0 суток (без подготовительных операций и влажной уборки помещения).

На заключительном этапе проводится тщательная влажная уборка, в ходе которой легко удаляется нерастворимый в воде сульфид ртути. Все поверхности протираются ветошью насухо.

ЭТАПЫ ХИМИЧЕСКОЙ ДЕМЕРКУРИЗАЦИИ (КОМБИНИРОВАННЫМ СПОСОБОМ)

$N_{\underline{0}}$	Выполнение	Время	Примечание
	операции		
1	Механическая уборка		
	видимых капель ртути		
	(вручную или с		
	помощью пылесоса с		
	ртутной ловушкой)		
2	Приготовление	30 мин на	На 10л
	суспензии	10л	раствора –
	гипохлорита кальция,	суспензии	250Γ
	отстаивание		гипохлорита
			кальция
			растворяют в
			9,75 л воды

3	Приготовление	До 2 мин на	Залив раствора
	осветленного раствора	10л р-ра	В
	из суспензии		опрыскиватель
	гипохлорита кальция		с маркировкой
	методом декантации		"ГК"
4	Нанесение на	До 3 мин на	опрыскиватель
	загрязненную	10m ²	с маркировкой
	поверхность раствора		"ГК" расход
	гипохлорита кальция		1,0-1,5 л/м ²
5	Экспозиция	8-10 часов	Изолирование
	обработанной		помещения
	поверхности		
6	Приготовление 20%	20 мин на	На 10л
	водного раствора	10л р-ра	раствора – 2кг
	хлорного железа		хлорного
			железа
			растворяют в 8
			л воды
7	Нанесение на	До 3 мин на	Опрыскиватель
	поверхность 20%	10m ²	с маркировкой
	раствора хлорного		"FeCl ³ ", расход
	железа		$2,5-3$ л/м 2
8	Экспозиция	1-2 суток	До полного
	обработанной		высыхания
	поверхности		
9	Очистка поверхности от	20 мин на	Подручными
	продуктов реакции	10м ²	средствами,
			СМЫВ
			продуктов в
			специальные
			емкости

10	Приготовление 10%	10 мин на	На 10л
	водного раствора	10л р-ра	раствора – 1кг
	сульфида натрия		сульфицида
			натрия
			растворяют в 9
			л воды
11	Нанесение на	До 3 мин на	Опрыскиватель
	поверхность 10%	10 M^2	с маркировкой
	раствора сульфида		Na ₂ S
	натрия		
12	Экспозиция	8-10 часов	Постоянное
	обработанной		смачивание
	поверхности		поверхности
	Влажная уборка		водой
	помещения,		
13	протирка обработанной	До 20 мин на	Подручные
	поверхности насухо	10 M^2	средства
14	Контроль полноты		С помощью
	демеркуризации		ртутного
			анализатора