3. Gráfkereső stratégia

- □ A gráfkereső rendszer olyan KR, amelynek
 - globális munkaterülete a startcsúcsból kiinduló már feltárt utakat (részgráfot) tárolja
 - · kiinduló értéke: a startcsúcs,
 - terminálási feltétel: megjelenik egy célcsúcs vagy megakad az algoritmus.
 - keresés egy szabálya: egy csúcs rákövetkezőit állítja elő (kiterjeszti),
 - vezérlés stratégiája: a legkedvezőbb csúcs kiterjesztésére törekszik,

3.1. A gráfkereső alapalgoritmus

□ Jelölés:

- G

- keresőgráf

– NYÍLT

- nyílt csúcsok halmaza

- Г

- kiterjesztés

- kiterjesztett csúcsok zárt csúcsok halmaza
- Az absztrakt keresési tér a továbbiakban is egy nem feltétlenül véges δ-gráf.

2

Procedure GKO

- 1. $G \leftarrow \{s\}$: $NYILT \leftarrow \{s\}$
- 2. while not \(\textit{ures}(NY\tilde{I}LT)\)\(\text{loop}\)
- 3. $n \leftarrow elem(NYÍLT)$
- 4. <u>if</u> cél(n) then return van megoldás
- 5. $G \leftarrow G \cup \Gamma(n)$
- 6. $NY\hat{I}LT \leftarrow NY\hat{I}LT \{n\}: NY\hat{I}LT \leftarrow NY\hat{I}LT \cup \Gamma(n)$
- 7. endloop
- 8. <u>return</u> nincs megoldás

end

- □ Körökre érzékeny
 - Zárt csúcs ne lehessen újra nyílt?
- □ Nehezen olvasható ki a megoldás
 - Jelölni kellene az utakat
- □ Nem feltétlenül talál optimális megoldást

4

3.2. Általános gráfkereső algoritmus

■ Módosítások:

- A következő kiterjesztés eldöntése kiértékelő függvény
- A csúcsokhoz (különösen a célcsúcshoz) vezető út nyilvántartása – szülő poiterek
- A csúcsokhoz vezető minél kisebb költségű út nyilvántartása - út költségek
 - Körök kizárása
 - Optimális út megtalálásának igénye

Kiértékelő függvény □ $f:NYÍLT \to \mathbf{R}$ □ a 3. lépésben $n \leftarrow min_f(NYÍLT)$ □ f egy dinamikus függvény

feszítőfa

□ A G feszítőfája konzisztens, ha a g függvény minden G-beli n csúcshoz a feszítőfában nyilvántartott s→n út költségét adja meg.
□ A G feszítőfája optimális, ha minden G-beli n csúcshoz G-beli s→n optimális utat tárol.
- Vigyázat! Nem az R-re nézve optimális.
□ Mindkét tulajdonság fenntartásához szükséges, hogy egy n csúcs kiterjesztésekor - amennyiben van egy (n,m) él - megvizsgáljuk az m csúcs πilletve g értékét.

Konzisztens és optimális költségű

Procedure GK

- 1. $G \leftarrow \{s\}$: $NYILT \leftarrow \{s\}$: $g(s) \leftarrow 0$: $\pi(s) \leftarrow nil$
- 2. while not üres(NYÍLT) loop
- 3. $n \leftarrow min_{t}(NY\hat{I}LT)$
- 4. <u>if</u> $c\acute{e}l(n)$ <u>then</u> <u>return</u> megoldás
- 5. $NYILT \leftarrow NYILT \{n\}$
- 6. **for** $\forall m \in \Gamma(n)$ **loop**
- 7. **<u>if</u>** $m \notin G$ or g(n) + c(n,m) < g(m) **then**
- 8. $\pi(m) \leftarrow n, \ g(m) \leftarrow g(n) + c(n,m), \ NYILT \leftarrow NYILT \cup \{m\}$
- 9. endloop
- 10. $G \leftarrow G \cup \Gamma(n)$
- 11. endloop
- 12. <u>return</u> nincs megoldás

<u>end</u>

3.1. Lemma

- □ A *GK* működése során egy csúcsot legfeljebb véges sokszor terjeszt ki.
- □ Bizonyítás:
- □ 1. Egy *n* csúcs legfeljebb annyiszor kerülhet be a *NYÍLT*-ba, ahányszor egy minden addiginál olcsóbb utat találunk hozzá.
- □ 2. Ilyen útból legfeljebb véges sok van:
 - Először egy C költségű utat találunk az n csúcshoz. Ennél olcsóbb utak a C/δ korlátnál biztos rövidebbek. (δ) Megadott korlátnál rövidebb utak száma véges. (σ)

14

3.1. Tétel

- ☐ A GK véges reprezentációs gráfban mindig terminál.
- □ Bizonyítás:
- A GK véges sok csúcsot (3.1.lemma) véges lépésben végleg kiterjeszt, azaz üres NYÍLT halmazzal áll meg, hacsak már korábban nem terminál másként.

.1. 16161

3.2. Invariáns lemma

- □ Legyen n egy tetszőleges s-ből elérhető csúcs. A GK az n csúcs kiterjesztése előtt bármelyik s*→n optimális úton mindig nyilvántart egy olyan m csúcs, amelyikre teljesül, hogy
 - (1) *m*∈ *NYÍLT*
 - $-(2) g(m) = g^*(m)$
 - (3) minden m csúcsot megelőző csúcs végleg zárt, azaz minden ilyen k csúcsra $g(k)=g^*(k)$.

16

17

Bizonyítás

- □ Teljes indukció a lépések (kiterjesztések) száma szerint
- □ 1. lépés előtt: Bármelyik s-ből elérhető n csúcsra kezdetben fennáll, hogy
 - $s \in NYILT \text{ és } s \in s^* \rightarrow n \text{ és } g^*(s) = 0 = g(s)$
- □ <u>i. lépés előtt</u>: Tegyük fel, hogy az állítás igaz minden s-ből elérhető, az i-dik lépésben még ki nem terjesztett n csúcsra. Rögzítsünk egy ilyen n csúcsot, és egy α=s*→n utat, amelyre tehát
 - ∃m∈s* $\rightarrow n$ úgy, hogy (1)(2)(3) fennáll.

□ <u>i. lépésben</u>:
 − 1. lehet,

- 1. lehet, hogy nem az *m* csúcsot terjesztjük ki:
 - Ekkor m-re továbbra is fennáll (1)(2)(3)
- 2. ha az m csúcsot terjesztjük ki (m≠n), akkor kell keresni egy olyan csúcsot α úton, amelyik átveszi az invariáns állításban szereplő m csúcs szerepét. Az m csúcsnak az α úton fekvő utóda az m', amelyre az m csúcs kiterjesztése után két eset állhat fenn: m' ∈ NYÍLT, vagy m' ∉ NYÍLT

3.2. Tétel □ Ha egy véges reprezentációs gráfban létezik megoldás akkor a *GK* egy célcsúcs megtalálásával terminál. □ <u>Bizonyítás:</u> □ A 3.2. lemma szerint (legyen az ottani n csúcs most a célcsúcs) a NYÍLT halmaznak mindig van eleme a célcsúcs elérése előtt, így nem terminálhat az algoritmus üres NYÍLT halmazzal.

□ 3.1. tétel miatt viszont az algoritmusnak mindenképpen terminálnia kell.

Csökkenő kiértékelő függvény

a NYÍLT halmazbeli csúcsok kiértékelő függvényértéke az ott tartózkodás alatt nem nő, és
a NYÍLT halmazba visszakerülő csúcs kiértékelő függvényértéke határozottan kisebb, mint a csúcs megelőző kiterjesztésekor felvett függvényértéke.

A nevezetes gráfkereső algoritmusok ilyen csökkenő kiértékelő függvényt használnak.

3.3. Tétel

Csökkenő kiértékelő függvény használata mellett a GK a küszöbcsúcsok kiterjesztésének pillanatában optimális költségű konzisztens feszítőfát tart nyilván.

Bizonyítás: HF (A küszöbcsúcsok száma szerinti teljes indukcióval lássuk be, hogy egy küszöbcsúcs kiterjesztésekor nincs zárt csúcs a NYÍLT halmazban! Ehhez azt kell megmutatni, hogy amikor egy zárt csúcs újra nyílt lesz, akkor az még a következő küszöbcsúcsot megelőzően biztosan kiterjesztődik.)

Szélességi gráfkeresés

□ Szélességi gráfkeresésnek (breadth-first) a GK-t
nevezzük, ha az élköltségeket egységnyinek vesszük
(GK 7. és 8. lépés), a kiértékelő függvényt pedig az
alábbi módon definiáljuk:
- f(n)= g(n) ∀n∈ NYÍLT csúcsra.

□ Mindig a legrövidebb megoldást adja.
□ Egy csúcsot legfeljebb egyszer terjeszt ki.

Egyenletes keresés

□ Egyenletes keresésnek (uniform-cost) a GK-t akkor nevezzük , ha a kiértékelő függvényt az alábbi módon definiáljuk:

□ f(n)= g(n) ∀n∈ NYÍLT csúcsra.

□ Egy csúcsot legfeljebb egyszer terjeszt ki.
□ Mindig az optimális megoldást adja.

Heurisztikus függvény

Azt $h: N \to \mathbf{R}$ függvényt, amelyik minden n csúcsra az abból a célba vezető út költségére ad becslést heurisztikus függvénynek hívjuk. $h(n) \approx h^*(n) = \min_{i \in T} c^*(n,t) = c^*(n,T)$ $Egy s = n_0, n_1, ..., n_k = t$ optimális megoldási út esetén $h^*(n_i) = \sum_{j=i...k-1} c(n_j n_{j+1})$

Előre tekintő keresés

□ Azt a GK-t nevezzük előretekintő keresésnek, amelyre
- f(n)=h(n) ∀n∈NYÍLT
□ Szeszélyes, eredményessége és hatékonysága erősen függ a heurisztikus függvénytől.

 $\begin{array}{|c|c|c|c|c|}\hline & Azf^* \text{ optimális költségfüggvény egy optimális} \\ & \text{megoldási út mentén állandó.} \\ \hline & \underline{Bizonyítás:} \text{ Legyen } s = n_0, n_1, ..., n_k = t \text{ egy optimális} \\ & \text{megoldás.} \\ \hline & f^*(n_i) = g^*(n_i) + h^*(n_i) = \\ & = \sum_{j=0...i-1} c(n_j, n_{j+1}) + \sum_{j=i...k-1} c(n_j, n_{j+1}) = \\ & = \sum_{j=0...i-1} c(n_j, n_{j+1}) + c(n_j, n_{i+1}) \\ & - c(n_j, n_{j+1}) + \sum_{j=i...k-1} c(n_j, n_{j+1}) = \\ & = \sum_{j=0...i} c(n_j, n_{j+1}) + \sum_{j=i+1...k-1} c(n_j, n_{j+1}) = \\ & = g^*(n_{i+1}) + h^*(n_{i+1}) = f^*(n_{i+1}) \\ \hline \end{array}$

3.4. Lemma

□ Ha az A algoritmus nem terminál, akkor minden NYÍLT halmazba bekerült m csúcs véges sok lépés után kiterjesztődik.
□ Bizonyítás:
□ Egy csúcs kiértékelő függvényértéke arányos a csúcs mélységével.
□ f(n) = g(n)+h(n) ≥ g*(n) ≥ d(n)*δ ≥ d*(n)*δ
□ ahol d(n) az s*→n optimális út hossza,
□ d*(n) a legrövidebb s→n út hossza.

3.4. Tétel \Box A $D = \lceil f(m)/\delta \rceil$ korlátnál mélyebben elhelyezkedő □ Az A algoritmus mindig talál egy megoldást, ha az csúcsok nem előzik meg az m csúcsot a kiterjesztésben. $f(k) \ge d^*(k) * \delta > D^* \delta > f(m)$ □ Bizonyítás: - Tehát csak a D-nél magasabban fekvő csúcsokra \square Jelölje α az $s=n_0$, n_1 ,..., $n_k=t$ optimális megoldást. állhat fenn, hogy $f(k) \le f(m)$ □ Kezdetben az s nyílt csúcs. \square Ha n_i egy nyílt csúcs (i=0...k), akkor az a 3.4. lemma miatt véges lépésben kiválasztódik, és *i*<*k* esetén az De egy δ-gráfban a σ-tul. miatt D-nél magasabban fekvő n_{i+1} legkésőbb ekkor (n_i kiterjesztésekor) bekerül a csúcsból csak véges (legfeljebb σ^D) sok van, és ezek *NYÍLT* halmazba. véges sok lépésben végleg (lásd 3.1. lemma) □ Tehát az algoritmus véges lépés múlva kiválasztja a t kiterjesztődnek. célcsúcsot, hacsak korábban nem terminál. A* algoritmus ☐ De korábban csak egy másik megoldás megtalálásával \square Azt az A algoritmust nevezzük A^* algoritmusnak, terminálhat - üres NYÍLT halmazzal nem -, hiszen a t amelynek heurisztikája optimális (admissible = kiterjesztése előtt a NYÍLT halmaz biztos tartalmazza megengedhető), azaz $h(n) \le h^*(n)$ az α egyik csúcsát (3.2. lemma). ■ Megjegyzés: $-0 \le h(n) \le h^*(n)$ $\forall n \in N$ ■ Megjegyzés -h(t)=0 $\forall t \in T$ - Az A algoritmus nem mindig terminál, csak ha van □ Példa: megoldás, - f = g + 0- de akkor megtalál egyet. - 8-as játék: f=g+W, f=g+P3.5. Lemma 3.5. Tétel

- □ Az A^* algoritmus által kiterjesztésre kiválasztott bármely n csúcsra teljesül, hogy $f(n) \le f^*(s)$.
- □ <u>Bizonyítás:</u> Tegyük fel, hogy a reprezentációs gráfban létezik megoldás, így s*→t optimális út is. Ellenkező esetben az f *(s)=∞.
- $\square \exists m \in s^* \rightarrow t \text{ úgy, hogy } m \in NYÍLT \text{ és } g(m) = g^*(m) \text{ (3.2. } lemma).$
- □ De az algoritmus az n csúcsot választotta ki az m helyett $f(n) \le f(m) = g(m) + h(m) =$
 - $= g^*(m) + h(m) \le g^*(m) + h^*(m) = f^*(m) = f^*(s)$

41

- Az A* algoritmus mindig optimális megoldás megtalálásával terminál feltéve, hogy létezik megoldás.
- ☐ <u>Bizonyítás:</u> Az A* algoritmus, mint speciális A algoritmus, biztos talál megoldást. (3.4. tétel)
- \square Tegyük fel indirekt módon, hogy ez a megoldás nem optimális, azaz a termináláskor kiválasztott $t \in T$ célcsúcsra $g(t) > f^*(s)$.
- □ A 3.5. lemma szerint (n helyébe t): $f(t) \le f^*(s)$
- \Box De t célcsúcs: f(t) = g(t) + 0

3.6. Tétel

| A következetes heurisztika egyben optimális is.
| Bizonyítás: Kell: $h(n) \le h^*(n) \ \forall n \in \mathbb{N}$ | Ha nincs $n \to T$ út, akkor $h^*(n) = \infty$, tehát $h(n) \le h^*(n)$.
| Egyébként $h^*(n) = \min_{t \in T} c^*(n,t) = c^{\alpha}(n,t)$, ahol α a egy $n^* \to T$ út.
| A következetes heurisztika monoton megszorításos, így a 3.6. lemma miatt $h(n) - h(t) \le c^{\alpha}(n,t)$, továbbá célcsúcsban pontos, azaz h(t) = 0.
| Összeolvasva $h(n) \le h^*(n)$.

Következmény

Minden A^c algoritmus egyben A* algoritmus is, azaz optimális megoldást talál, ha van megoldás.

Viszont fordítva nem igaz, azaz nem minden A* algoritmus A^c algoritmus.

I

h(s)=3

h(n)=1

Altalában könnyebb igazolni a következetességet, mint az optimalitást.

Amikor az A^c algoritmus egy csúcsot kiterjesztésre kiválaszt, akkor már ismeri hozzá az optimális utat: $g(n)=g^*(n)$.

Bizonyítás: TF indirekt: n kiterjesztésekor $g(n)>g^*(n)$.

Bizonyítás: TF indirekt: n kiterjesztésekor $g(n)>g^*(n)$.

Migy, hogy $m \in NYÍLT$ és $g(m)=g^*(m)$ (3.2. lemma) (Az indirekt feltevés miatt az $n \neq m$.)

A 3.6. lemma miatt $h(m)-h(n) \le c^*(m,n)$ De az algoritmus az n csúcsot választotta ki m ellenében $f(n) \le f(m) = g(m) + h(m) = g^*(m) + h(m) \le g^*(m) + c^*(m,n) + h(n) = g^*(n) + h(n) < g(n) + h(n) = f(n)$

Következmény

☐ Az A^c algoritmus egy csúcsot egynél többször nem terjeszt ki.

48

Különböző heurisztikájú A* algoritmusok összehasonlítása

- □ Az A_1 (h_1) és A_2 (h_2) A^* algoritmusok közül az A_2 jobban informált, mint az A_1 , ha minden $n \in N \setminus T$ csúcsra teljesül, hogy $h_1(n) < h_2(n)$.
- Megmutatjuk, hogy egy jobban informált A*
 algoritmus nem terjeszt ki több csúcsot, mint a
 kevésbé informált.

50

3.8. Tétel

- \square Legyen A_2 jobban informált A^* algoritmus, mint az A_J . Ekkor A_2 nem terjeszt ki olyan csúcsot, amelyet A_J sem terjeszt ki.
- □ Bizonyítás:
- $\hfill \square$ Teljes indukció az A_2 terminálásakor nyilvántartott feszítőfa mélysége (szintjei) szerint.
- A (0)-dik szinten csak a startcsúcs van, amit vagy mindkettő algoritmus kiterjeszt, ha az nem célcsúcs; vagy egyik sem.
- \square (d)-edik szintig minden csúcsról feltesszük, hogy ha azt A_2 kiterjesztette, akkor $A_I\,$ is.

51

53

- □ Indirekt tegyük fel, hogy a (d+1)-edik szinten van olyan $m \in N$ csúcs, amit csak az A_2 terjeszt ki. (m nyilván nem célcsúcs.)
- □ Egyrészt $f_2(m) \le f^*(s)$ fennáll a 3.5.lemma miatt. (Az $f_2(m)$ az m csúcs A_2 általi kiterjesztéskor mért érték.)
- □ Másrészt $f_j(m) \ge f^*(s)$. (Az $f_j(m)$ az A_j terminálásakor mért érték.) (ld. később)
- □ Harmadrészt $g_2(m) \ge g_1(m)$ (ld. később)
- □ Összegezve $f_2(m) \le f^*(s) \le f_1(m) = g_1(m) + h_1(m) \le g_2(m) + h_1(m) < g_2(m) + h_2(m) = f_2(m)$

52

- □ Az $f_I(m) \ge f^*(s)$, mert az m d szinten levő A_2 által kiterjesztett szülőjét (az indukciós feltevés miatt) az A_1 is kiterjeszti, és így az A_1 algoritmus működése alatt az m legkésőbb ekkor nyílt csúcs lesz. Ugyanakkor $f_I(m) < f^*(s)$ sohasem lehet, mert ekkor az A_1 kiterjesztené az m csúcsot, ami ellentmond az indirekt feltevésnek.
- \square A $g_2(m) \ge g_1(m)$, mert az A_1 biztosan feltárta az m csúcshoz vezető A_2 által talált legolcsóbb (tehát d szint alatti) utat, de lehet, hogy talált egy még olcsóbbat.

Megjegyzés

- ☐ A gyakorlatban sokszor enyhébb feltételek mellett látványosabb különbségekkel is találkozhatunk:
 - Már $h_1 \le h_2$ esetén is több csúcsot terjeszt ki az A_1 , mint A_2
- $\square W \leq P$
- ☐ Minél jobban becsli alulról a heurisztika a *h**-ot, várhatóan annál kisebb lesz a memória igénye.

Különböző gráfkereső algoritmusok összehasonlítása

- Optimális heurisztikájú feladatokon hasonlítjuk össze az A algoritmust (amely ilyenkor természetesen egy A* algoritmus) más algoritmusokkal.
- ☐ Egy nem-determinisztikus algoritmus determinisztikus változatai ("tie-breaking rule") algoritmusosztályt alkotnak, ezért valójában algoritmusosztályokat hasonlítunk össze.

56

Jobb algoritmusosztály

□ Az X és Y algoritmusosztályok. Az X jobb Y -nál egy adott feladatosztályra nézve, ha a feladatosztály minden feladatára van az X-nek egy olyan algoritmusa, amely csak olyan csúcsokat terjeszt ki (értékel ki), amelyeket az Y minden algoritmusa kiterjeszt (kiértékel).

Optimális algoritmusok

- Uptimálisnak nevezzük azt az algoritmust/ algoritmusosztályt (nem feltétlenül gráfkeresést), amely optimális heurisztikájú feladatokra optimális megoldást talál feltéve, ha van megoldás.
- □ Példák
 - Egyenletes keresés
 - $-A^{(*)}$ algoritmus
 - A^{**} algoritmus: $f(n)=\max_{m \in s \to n}(g(m)+h(m))$
 - IDA* algoritmus
- □ Jó lenne, ha az *A algoritmus* lenne a legjobb algoritmus az optimálisak között.

58

A algoritmus nem jobb az A^{**} -nál Van olyan feladat és optimális heurisztika, ahol az $A^{(*)}$ minden verziója kiterjeszt egy olyan csúcsot, amit az A^{**} valamelyik verziója nem. Mindkettő az s kiterjesztése után: A alg az n kiterjesztése után: 3 A^{**} alg az n kiterjesztése után: 3

Megjegyzés

- Melyik optimális algoritmus a legjobb az optimális heurisztikájú feladatosztályon?
 - A fentiek közül egyik sem. (az A algoritmusnál nincs jobb)
- Egy szűkebb feladatosztályon, a következetes heurisztikájú feladatokon viszont az A algoritmus a legjobb optimális algoritmus.

3.9. Tétel | Következetes heurisztikájú feladatok esetén az A (A^c) algoritmus jobb az optimális algoritmusoknál. | Bizonyítás: | Tegyük fel indirekt, hogy van olyan Y optimális algoritmus, és olyan (R,s,T) feladat a h következetes heurisztikával, hogy az R egy n∈ N csúcsát az A algoritmus minden verziója kiterjeszti, de az Y algoritmus nem.

Futási idő

☐ Zárt csúcsok száma: k

☐ Alsókorlát: k

☐ A következetes heurisztika mellett egy csúcs legfeljebb csak egyszer terjesztődik ki,

☐ habár ettől még a kiterjesztett csúcsok száma igen sok is lehet (egyenletes keresés)

☐ Felsőkorlát: 2^{k-1}

Megjegyzés

□ Nevezetes AB algoritmusok:

- A algoritmus (egyenletes keresés): q=f

- B algoritmus (Martelli): q=g

□ Az AB algoritmusok csökkenő kiértékelő függvényt használnak.

3.10. Tétel

□ Az eltérő belső kiértékelő függvényt használó

AB algoritmusok működésük során ugyanazokat a

küszöbcsúcsokat, ugyanabban a sorrendben és

ugyanazon küszöbértékkel választják ki, és ekkor

ugyanazt a keresőgráfot, ugyanazon feszítőfával és

költségértékekkel tartják nyilván.

□ Bizonyítás: Teljes indukció a küszöbcsúcsok számára.

□ Az i+1-dik küszöbcsúcsnál bekövetkező állapot attól

függ, hogy előtte mely csúcsokat terjeszti ki a keresés az

az i-edik árokban. (Ez a kiterjesztések sorrendjétől és

számától nem függ.)

Az i-edik árokban kiterjesztett csúcsok

- □ Egy az i-edik árokban kiterjesztett m csúcsnak a NYÍLT halmazban kell lennie az n_i kiterjesztése után, de még az n_{i+I} kiterjesztése előtt úgy, hogy f(m) < F_i fennálljon
- Az m csúcs akkor kerülhet be a NYÍLT halmazba, ha iedik árokhoz tartozó csúcsok kiterjesztései során találunk hozzá egy s-ből induló n_i-n keresztül vezető utat, amely vagy az első hozzá talált út, vagy egy minden eddigénél olcsóbb út.
- □ Ha m csúcs már benn volt a NYÍLT halmazban az n_i kiterjesztésekor, akkor az f(m) ≥ F_i állt fenn. Ahhoz, hogy ez megváltozzon (f=g+h) kell, hogy találjunk egy minden eddigénél olcsóbb utat m-hez i-edik árokhoz tartozó csúcsok kiterjesztései során.

Az i-edik árok csúcsai függetlenek q-tól

- $\square D_i = \{ m \in N \mid$
 - $\exists \alpha \in \{s \to n_i \to m\} : \forall n \in n_i \to m \setminus \{m\} : n \in D_i$
 - $g_i(n_i) + c^{\alpha}(n_i, m) < g_i(m)$ ha $m \in G_i$
 - g_i az algoritmus által nyilvántartott g értékeket mutatja n_i kiterjesztésének pillanatában.
 - $f(m) = g(m) + h(m) \le g_i(n_i) + c^{\alpha}(n_i, m) + h(m) < F_i$

74

Megjegyzés

- □ Az *AB algoritmusok* megoldással terminálnak, ha van megoldás. (Ui: az *A* is egy *AB*)
 - HF: az árkok (az utolsó árok is) véges hosszú.
- Az optimális heurisztikát használó AB algoritmusok optimális megoldással terminálnak, ha van megoldás. (Ui az A* is egy AB)
 - HF: A* működésekor a célcsúcs az utolsó küszöbcsúcs.
- A következetes heurisztikát használó AB algoritmus egy csúcsot legfeljebb egyszer terjesztenek ki. (Ui: az A^c is egy AB)
 - HF: Ac árkai üresek.

75

Megjegyzés

- Az AB algoritmusok memória igénye az A algoritmussal azonos. (Optimális heurisztikájú feladatokon nincs náluk jobb.)
- Az AB algoritmusok futási ideje eltérő, mert az árkon belüli kiterjesztések száma és sorrendje más.
- □ A futási idő szempontjából az A algoritmus nem jó (A* algoritmus futási ideje legrosszabb esetben exponenciális).
- ☐ A legjobb futási idejű AB algoritmus a B algoritmus (futási ideje legrosszabb esetben polinomiális)

76

3.11. Tétel

- ☐ A *B algoritmus* egy árkon belül egy csúcsot csak egyszer terjeszt ki.
- □ Bizonyítás:
- \square Tegyük fel indirekt, hogy egy m csúcs kétszer terjesztődik ki a D_i árkon belül: először az n_i küszöbcsúcsból egy drágább α út mentén érjük el az m csúcsot, majd egy olcsóbb β út mentén, azaz $c^{\beta}(n_i m) < c^{\alpha}(n_i m)$

- □ Amikor az α út mentén elérjük, majd kiterjesztjük az m csúcsot (m∈ NYÍLT és $g(m) = c(s,n_i) + c^{\alpha}(n_im)$), addigra elértünk a β úton egy k csúcshoz (k∈ NYÍLT és $g(k) ≤ c(s,n_i) + c^{\beta}(n_ik)$).
- □ A B algoritmus az m csúcsot választotta: $g(m) \le g(k)$
- $g(k) \le c(s, n_i) + c^{\beta}(n_i k) \le c(s, n_i) + c^{\beta}(n_i m) < c(s, n_i) + c^{\alpha}(n_i m) = g(m)$

3.5. Heurisztika szerepe □ Milyen a jó heurisztika? - optimális : $h(n) \le h^*(n)$ • Nincs mindig szükség az optimális megoldásra. - jólinformált: $h(n) \sim h^*(n)$ - monoton megszorításos: h(n)- $h(m) \le c(n,m)$ • Ekkor A^c algoritmus, különben B algoritmus □ Változó heurisztikák: - f=g+ ϕ *h ahol ϕ -d- B' algoritmus

Állítások

- □ Csökkenő kiértékelő függvény mellett a *GK* küszöbcsúcsai mind különböznek, és egy csúcs csak az első kiterjesztésekor lehet küszöbcsúcs.
- □ Ha a *GK* terminálásakor egyetlen nyílt csúcs (a célcsúcs) van, akkor a *GK* optimális megoldást talált.
- \square Az A^* minden olyan n nyílt csúcsot kiterjeszt, amelyre $f(n) < f^*(x)$.
- Ha a h monoton megszorításos, akkor egy tetszőleges n csúcsba vezető optimális út mentén a g*+h értéke monoton növekvő.

85

Tétel

Csökkenő kiértékelő függvény használata mellett a *GK* csak konzisztens csúcsot választ kiterjesztésre.

Bizonyítás: HF (Képzeljük el, hogy miután az n csúcs egy α út mentén kiterjesztődött, egy olcsóbb β út mentén újra nyílt lesz. Eközben bekerült a NYÍLT halmazba a γ út menti m is. Az m csúcs az nyílttá válásakor inkonzisztensé válik. Meg kell mutatni, hogy az algoritmus nem terjeszti ki az m csúcsot az n csúcs előtt! Ehhez kövessük nyomon a β és a γ utak felfedezésést, az n csúcs korábbi kiterjesztése és újra nyílttá válása között. β cβ(s, n) < cα(s, n)

A** algoritmus

- ☐ Azt a GK-t nevezzük A** algoritmusnak, amelyre az
 - $-f(n)=\max_{m\in s\to n}(g(m)+h(m))$ $\forall n\in NY\acute{L}T$,
 - h optimális
- □ Optimális megoldást talál, ha van megoldás
 - Talál megoldást. Ehhez 3.5. lemma:
 - $\blacksquare f(n) \ge g(n) + h(n) \ge g^*(n) \ge d^*(n) * δ$
 - Optimális a megoldás. Ehhez 3.6. lemma:
 - $f(n) \le f(m) = g(m_i) + h(m_i) \le f^*(m_i) = f^*(s).$

87

IDA* algoritmus

 $c \leftarrow f(start)$

<u>loop</u>

 $(megold\acute{a}s,\,c) \leftarrow VL2.1(<\!\!s\!\!>,\,c)$

<u>if megoldás</u>≠hiba <u>then return</u> megoldás

 $\label{eq:continuous} \begin{tabular}{ll} $if $c = \infty$ then return $hiba$ & $//$ ha $VL2.1$ -ben nem volt vágás $endloop$ \\ \end{tabular}$

- VL2.1:
 - f=g+h
 - n csúcsot kiértékelés nélkül levágja, ha f(n) > c
 - c-ben visszaadja a levágott csúcsok f értékeinek minimumát; ha nincs ilyen, akkor a ∞-t.

 Az IDA* algoritmus optimális heurisztika mellett optimális megoldást talál, ha van megoldás!

- Talál megoldást: Egyrészt a c értéke nem válhat ∞ naggyá megoldás megtalálása előtt. Másrészt a keresés nem akadha meg egy megoldási útnak egy csúcsánál.
- Optimális a megoldás: Ehhez elég belátni, hogy c≤f*(start) mindig fennáll, hiszen ekkor nem találhat a VL2.1 olyan célcsúcsot, amelyre g(t)>f*(start).
 - Legyen $n \in s^* \to t$ az a csúcs, amit levágunk $(g(n) = g^*(n))$ Ekkor $c \le f(n) = g(n) + h(n) = g^*(n) + h(n) \le f^*(n) = f^*(s)$.

B' algoritmus

 $\textbf{if } h(n) < min_{m \in \Gamma(n)} \left(c(n,m) + h(m) \right)$

then $h(n) \leftarrow min_{m \in \Gamma(n)} (c(n,m) + h(m))$

else for $\forall m \in \Gamma(n)$ -re loop

if h(n)-h(m)>c(n,m) then $h(m) \leftarrow h(n)$ -c(n,m)

endloop

A h optimális marad

A h nem csökken

A mononton megszorításos élek száma nő

Mohó A algoritmus

- ☐ Nincs mindig szükség az optimális megoldásra.
 - Ilyenkor a mohó \boldsymbol{A} algoritmus is használható.
 - Ha h optimális és $\forall t \in T$: $\forall (n,t) \in A$: $h(n) + \alpha \ge c(n,t)$ akkor $g(t) \le f^*(s) + \alpha$
- □ A mohó *A algoritmus* optimális heurisztika mellett akkor garantálja az optimális megoldást, ha
 - $\forall t$ ∈ T: $\forall (n,t)$ ∈A: h(n)=c(n,t) vagy
 - *h* monoton és ∃ α ≥0: $\forall t$ ∈T: $\forall (n,t)$ ∈A: h(n)+ α =c(n,t)

91

Lemma

- □ Az A^c algoritmus (!) által kiterjesztésre választott bármely n csúcsra teljesül, hogy $f(n) \le f^*(s)$.
- □ <u>Bizonyítás:</u> Tegyük fel, hogy a reprezentációs gráfban létezik megoldás, így s*→t optimális út is. Ellenkező esetben az f*(s)=∞.
- $\square \exists m \in s^* \rightarrow t \text{ úgy, hogy } m \in NYÍLT \text{ és } g(m) = g^*(m) \text{ (3.2. } lemma).$
- \square De az algoritmus az n csúcsot választotta ki az m helyett
 - $f(n) \le f(m) = g(m) + h(m) =$
 - $= g^*(m) + h(m) \le g^*(t) + h(t) = g^*(t) = f^*(s).$

92

Tétel

- Az A^c algoritmus (!) optimális megoldás megtalálásával terminál feltéve, hogy létezik megoldás.
- □ Bizonyítás:
- Megegyezik a 3.5. tétel bizonyításával, csak most a 3.5. lemma helyett az előző lemmára kell hivatkoznunk.

93

Tétel

- \square Minden A^c algoritmus A^* algoritmus is.
- □ Bizonyítás: Be kell látni: $h(n) \le h^*(n) \ \forall n \in N$
- Ha az n csúcsból nem vezet út a célcsúcsba, akkor a h* értékét végtelen nagynak véve magától értetődik az állítás.
- ☐ Ha viszont létezik ilyen út, akkor van $n=n_0$, n_1 ,..., $n_k=t$ optimális út is.

94

☐ Ennek éleire írjuk fel a monoton megszorítást feltételét:

- $-h(n)-h(n_1) \leq c(n,n_1)$
- $-h(n_1)-h(n_2) \le c(n_1,n_2)$

...

- $-h(n_{k-1})-h(t) \leq c(n_{k-1},t)$
- ☐ Adjuk össze ezeket az egyenlőtlenségeket:
 - $-h(n)-h(t) \leq \sum c(n_{i-1},n_i) = h^*(n).$
- ☐ Mivel t egy célcsúcs, ezért h(t)=0, tehát $h(n) \le h^*(n)$