Special Topics on Basic EECS I Design Technology Co-Optimization Lecture 2

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

L2

Traditional MOSFET scaling

- Ground rules
 - -Length: *L*
 - -Width: W
 - –Width of n⁺ or p⁺ diffusion: d
- Scaled by the same factor, κ (> 1)
 - -Its typical value is $\kappa \approx 1.4$. ($\kappa^2 \approx 2$)
 - -Area: $\times \frac{1}{\kappa^2}$
 - -Oxide capacitance (per area): $\times \kappa$

Layout and cross-section of a MOSFET (Prof. Taur's book)

GIST Lecture

Constant-field scaling

Discussion

- -Gate capacitance follows $C_{ox}WL$, $\times \frac{1}{\kappa}$.
- -Recall that the saturation current follows $\mu C_{ox} \frac{W}{L} (V_{DD} V_t)^2$.
- -When V_{DD} becomes $\times \frac{1}{\kappa}$, the saturation current also becomes $\times \frac{1}{\kappa}$. (\times 0.7 low current)
- -Charge stored (gate capacitance $\times V_{DD}$) scales $\times \frac{1}{\kappa^2}$.
- -The delay (~performance) becomes $\times \frac{1}{\kappa}$.
- -At an increased frequency ($\times \kappa$), power becomes $\times \frac{1}{\kappa^2}$.

Ideal case with $\kappa = 1.4$

Generation-to-generation improvement

0.5X Area & +40% Speed & -50% Energy

- From today's view, improvement seems to be tremendous.
- -Let's see an example, 0.25 μ m (Intel Pentium II and III, 1997)
 - \rightarrow 0.18 μ m (Intel Pentium 4, 1999)

Intel 0.25 µm @ IEDM 1996

Fact sheet

 $-V_{DD}$ = 1.8 V. Actual channel length is 0.18 µm. Oxide thickness is 4.5 nm. Saturation currents are 0.70 mA/µm (N-ch) and 0.32 mA/µm (P-ch). Subthreshold slope is less than 85 mV/dec. Nch/P-ch threshold voltage are 0.28/-0.27 V. DIBL values are

65/63 mV/V.

- Transistor's $\frac{CV}{r}$:

~3.5 psec (N-ch)

~7 psec (P-ch)

Then, inverter delay?

-SRAM: 10.26 µm²

N-ch CV/I gate delay vs. gate length trend

Fig. 10 P-ch CV/I gate delay vs. gate length trend

IST Lecture
$$\frac{CV}{I}$$
 of N/PMO

Intel 0.18 µm @ IEDM 1998

- Fact sheet (Red ones for 0.18 μm)
 - $-V_{DD}$ = 1.3 1.5 V (1.8 V). Actual channel length is 0.13 μm (N-ch)/0.15 μm (P-ch) (0.18 μm). Oxide thickness is 3.0 nm (4.5 nm). Saturation currents at 1.5 V are 0.94 mA/μm (0.70 mA/μm) (N-ch) and 0.42 mA/μm (0.32 mA/μm) (P-ch). Subthreshold slope is less than 90 mV/dec (85 mV/dec). N-ch/P-ch threshold voltage are 0.30/-0.24 V (0.28/-0.27 V).
 - -DIBL?
 - -Inverter delay (fan out = 1):
 - <11 psec at 1.5 V
 - $-SRAM: 5.59 \mu m^2 (10.26 \mu m^2)$

GIST Lecture

Fig. 10 Inverter gate delay per stage vs. L_{GATE}, FO=1

When you read those papers,

- You can find that:
 - The authors mainly discuss the single device performance.

Lego brick and Duplo brick (Lego)

Chronicles

- Intel and TSMC. IEDM and VLSI papers
 - 130nm: 2000 (Intel, IEDM)
 - 90nm: 2003 (Intel, IEDM)
 - 65nm: 2004 (Intel, IEDM)
 - 45nm: 2007 (Intel, IEDM)
 - 32nm: 2008 (Intel, IEDM)
 - 22nm: 2012 (Intel, VLSI)
- 16nm: 2013 (TSMC, IEDM), 14nm: 2014 (Intel, IEDM)
 - 10nm: 2016 (TSMC, IEDM)
 - 7nm: 2016 (TSMC, IEDM)
 - 5nm: 2019 (TSMC, IEDM)
 - 3nm: 2022 (TSMC, IEDM)
 - 2nm: 2024 (TSMC, IEDM)

For your interest, watch the video, [Eng][VLSIDevices2025] L23, from 33:53.

Homework#2

- Due: 08:00 on Sep. 8
- Submit your report through GIST LMS system.
- 1) Download Intel's IEDM 1998 abstract for 0.18 μm technology.
 - -See Fig. 6.
 - Calculate the DIBL for both devices.
- 2) For 0.25 µm devices,
 - -Estimate C (of course, per width) for N/PMOSFETs.
 - -Compare it with $\epsilon_{ox} \frac{L}{t_{ox}}$.

Fig. 6 MOSFET subthreshold curves

Thank you!