Лабораторная работа №1. Исследование зависимости диэлектрической проницаемости и тангенса угла диэлектрических потерь от частоты.

Цель работы: исследовать зависимости ёмкости конденсатора, параметра диэлектрических потерь и активного и реактивного сопротивлений от частоты тока.

Общие сведения

Конденсатор — система из двух и более электродов (обычно в форме пластин, называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок конденсатора.

Электрическая ёмкость конденсатора $C[\Phi]$ – величина, определяющая заряд конденсатора, в зависимости от напряжения на обкладках.

Диэлектрическая проницаемость — безразмерная величина ε , определяющая, во сколько раз сила взаимодействия двух электрических зарядов в вакууме больше, чем сила их взаимодействия в веществе.

Диэлектрические потери — часть энергии электрического поля, рассеиваемая в диэлектрике за единицу времени и затрачиваемая на нагрев диэлектрика.

Угол диэлектрических потерь δ [рад] — угол, дополняющий до 90° угол сдвига фаз ϕ между током и напряжением в емкостной цепи.

Тангенс угла диэлектрических потерь $tg\delta$ – количественная величина диэлектрических потерь.

Ход эксперимента

Для определения описанных в цели работы зависимостей был использован предоставленный образец конденсатора и измеритель иммитанса, с помощью которого были произведены измерения ёмкости, тангенса угла диэлектрических потерь, а также полного сопротивления для каждого значения частоты тока в диапазоне (0,5 — 100 кГц) с переменным шагом.

Экспериментальные результаты

В ходе эксперимента была получена следующая таблица значений:

Таблица 1

f [кГц]	С [пФ]	tga	Z' [ĸOm]	Z'' [кОм]
0,5	492	0,11	70,75	-621,6
1	473	0,09	32,5	-325,2
3	449	0,07	9,06	-115,2
5	441	0,066	4,94	-70,63
8	433	0,063	3	-45
10	430	0,06	2,3	-36,3
12	428	0,06	1,9	-30,46
15	425	0,059	1,52	-24,59
18	422	0,0586	1,26	-20,62
20	419	0,058	1,14	-18,62
30	415	0,0576	0,75	-12,59
40	412	0,06	0,6	-9,52
50	412	0,062	0,483	-7,67
60	410	0,064	0,427	-6,43
70	408	0,065	0,387	-5,55
80	406	0,067	0,34	-4,89
90	404	0,069	0,305	-4,37
100	402	0,07	0,296	-3,94

Величко Арсений Александрович ИВТ 2 курс, 2 группа, 3 подгруппа Предмет: Физика полупроводников

Значения активного и реактивного сопротивлений Z' и Z" в Таблице 1 были рассчитаны с использованием значений полного сопротивления Z и угла ϕ по формулам:

$$Z' = Z \cdot \cos \phi$$
$$Z'' = Z \cdot \sin \phi$$

В Таблице 1 представлены все необходимые данные для исследования необходимых зависимостей, следующим шагом выполнения лабораторной работы является визуализация данных значений в виде графиков зависимостей.

Рисунок 1

Зависимость ёмкости конденсатора от частоты тока

Рисунок 2

Зависимость величины диэлектрических потерь конденсатора от частоты тока

Рисунок 3

Рисунок 4

Зависимость реактивного сопротивления конденсатора от частоты тока

Вывод

Результатами выполненной лабораторной работы являются графики зависимостей (Рисунки 1-4).

Данные графики позволяют сделать следующие выводы: при повышении частоты тока ёмкость конденсатора снижается; диэлектрические потери стремительно падают, после чего постепенно растут; активное сопротивление стремительно падает при малой частоте тока и медленно убывает при большей частоте; реактивное сопротивление стремительно возрастает при малой частоте тока и медленно продолжает увеличиваться при большей частоте тока.