Оглавление

1 Первыи семестр			•
	1	Дейст	гвительные числа
		1.1	Логическая символика
		1.2	Кванторы
		1.3	Построение отрицания
		1.4	Множества
		1.5	Операции над множествами
		1.6	Отношения и функции
		1.7	Аксиоматика множества действительных чисел
		1.8	Примеры числовых множеств
		1.9	Верхняя и нижняя грань множества
		1.10	Принцип полноты Кантора или принцип вложенных отрезков
		1.11	Эквивалентность принципов полноты
	2	Топол	погическая классификация точек множеств
		2.1	Расширенная числовая прямая и её свойства
	3	Пред	ел последовательности
		3.1	Числовые последовательности. Определение и терминология
		3.2	Предел последовательности
		3.3	Свойства пределов, связанные с арифметическими операциями 13
		3.4	Монотонные последовательности
		3.5	Число e
		3.6	Частичные пределы последовательности. Теорема Больцано-Вейерштрасса 15
		3.7	Критерий Коши
		3.8	Счётные и несчётные множества
	4		ел и непрерывность функций
	_	4.1	Функции. Определение и терминология
		4.2	Предел функции в точке. Два определения и их эквивалентность 19
		4.3	Свойства предела функции
		4.4	Критерий Коши предела функции
		4.5	Односторонний предела функции
		4.6	Монотонные функции
		4.7	Замена переменной в пределе
		4.8	Непрерывность функции
		4.9	Свойства функций, непрерывных в точке
		4.10	Классификация точек разрыва
		4.11	Свойства функций, непрерывных на промежутках
		4.12	Промежутки. Теорема об обратной функции
	5		ентарные функции
	9	5.1	Показательная функция на $\mathbb R$
		5.1	Логарифм и степенная функция
		5.2	Тригонометрические и обратные тригонометрические функции
		5.4	Элементарные функции
		5.4 5.5	
		J.J	Некоторые замечательные пределы

	5.6	Гиперболические и обратные гиперболические функции
	5.7	Сравнение функций
6	Прои	зводная
	6.1	Производная и дифференциал
	6.2	Геометрический смысл производной и дифференциала
	6.3	Правило дифференцирования
	6.4	Производные простейших элементарных функций
	6.5	Производные и дифференциалы высших порядков
	6.6	Инвариантность первого дифференциала
7		вные теоремы дифференциального исчисления
•	7.1	Теоремы о среднем
	7.2	Следствия из теоремы Лагранжа
	7.3	Правила Лопиталя
	7.4	Формула Тейлора
	7.5	Основные разложения по формуле Маклорена
	7.6	
0		±
8		едование функций при помощи производной
	8.1	Условия монотонности функции
	8.2	Условия локального экстремума в терминах первой производной 4
	8.3	Условия локального экстремума в терминах высших производных 4
	8.4	Выпуклые функции
	8.5	Асимптоты графиков функции
9		лексные числа
	9.1	Определение комплексных чисел и их простейшие свойства
	9.2	Свойства операций сложения и умножения
	9.3	Многочлены и их корни
	9.4	Разложение правильной рациональной дроби в сумму простейших дробей 5
10	Неоп	ределённый интеграл
	10.1	Неопределённый интеграл и его свойства
	10.2	Таблица основных неопределённых интегралов
	10.3	Интегрирование рациональных дробей
11	Элем	енты теории кривых
	11.1	Пространство \mathbb{R}^n
	11.2	Вектор-функции
	11.3	Определение кривой
	11.4	Длина кривой
	11.5	Кривизна кривой
	11.6	Строение кривой в окрестности точки
	11.7	Геометрический смысл кривизны
	11.8	Формулы Френе
12		ические пространства
	12.1	Определение метрического пространства
	12.2	Классификация точек
	12.2 12.3	Компактные метрические пространства
	12.3 12.4	Критерий компактности в \mathbb{R}^n
	12.4 12.5	Существование предельной точки в компактах
	12.5 12.6	
		Последовательности в метрическом пространстве
	12.7	Полные метрические пространства

Глава 1

Первый семестр

- 1 Действительные числа
- 1.1 Логическая символика
- 1.2 Кванторы
- 1.3 Построение отрицания
- 1.4 Множества
- 1.5 Операции над множествами

Теорема 1.1.

1.6 Отношения и функции

1.7 Аксиоматика множества действительных чисел

Определение 1.1. Непустое множество \mathbb{R} называется множеством *действительных* (вещественных) чисел, если на нём заданы операции сложения $(+: \mathbb{R} \times \mathbb{R} \to \mathbb{R})$, умножения $(\times: \mathbb{R} \times \mathbb{R} \to \mathbb{R})$ и отношения порядка, удовлетворяющее следующим аксиомам:

- 1) $\forall a, b \in \mathbb{R} : a + b = b + a$.
- 2) $\forall a, b \in \mathbb{R} : (a+b) + c = a + (b+c)$.
- 3) $\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R} : a + 0 = a$.
- 4) $\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} : a + (-a) = 0.$
- 5) $\forall a, b \in \mathbb{R} : ab = ba$.
- 6) $\forall a, b, c \in \mathbb{R} : (ab)c = a(bc)$.
- 7) $\exists 1 \in \mathbb{R} \setminus \{0\} \ \forall a \in \mathbb{R} : a \cdot 1 = a.$
- 8) $\forall a \in \mathbb{R} \setminus \{0\} \exists \frac{1}{a} \in \mathbb{R} : a \cdot \frac{1}{a} = 1.$
- 9) $\forall a, b, c \in \mathbb{R} : (a+b)c = ac + bc$.
- 10) $\forall a, b \in \mathbb{R} : a \leq b \vee b \leq a$.
- 11) $\forall a, b \in \mathbb{R} : (a \leqslant b \land b \leqslant a) \Rightarrow a = b.$
- 12) $\forall a, b, c \in \mathbb{R} : (a \leq b \land b \leq c) \Rightarrow a \leq c$.
- 13) $\forall a, b, c \in \mathbb{R} : (a \leq b \Rightarrow a + c \leq b + c).$
- 14) $\forall a, b, c \in \mathbb{R}, c \geqslant 0 \colon (a \leqslant b \Rightarrow ac \leqslant bc).$
- 15) (Аксиома непрерывности) Пусть A и B такие непустые подмножества \mathbb{R} , что $\forall a \in A, b \in B \colon a \leqslant b$. Тогда $\exists c \in \mathbb{R} \ \forall a \in A, b \in B \colon a \leqslant c \leqslant b$.

Замечание. $a \leqslant b \Leftrightarrow b \geqslant a$. $a \leqslant b$ при $a \neq b \Leftrightarrow a < b$ или b > a. Некоторые следствия:

- 1) В \mathbb{R} существует единственный 0.
- \blacktriangle Пусть $∃0_1, 0_2$. Тогда $0_1 = 0_1 + 0_2 = 0_2$. ■
- 2) $\forall a \in \mathbb{R} : a \cdot 0 = 0.$
- a0 = a(0+0) = a0 + a0.

$$a0 - a0 = a0 + (a0 - a0).$$

- 0 = a0.
- 3) $\forall a \in \mathbb{R} : (-1)(-a) = a$.
- \blacktriangle (-1)(-a) = -(-a).

$$(-a) - (-a) = 0.$$

$$-a + a = 0 \Rightarrow a = -(-a)$$
.

- 4) 0 < 1.

1.8 Примеры числовых множеств

I. $\mathbb{N} = \{1, 2, 3, \ldots\}$, где $2 = 1 + 1, 3 = 1 + 1 + 1, \ldots$

3амечание. Из определения $\mathbb N$ вытекает принцип доказательства методом математической индукции.

Если имеется набор утверждений T(n) и если доказано а) утверждение T(1) (база индукции) и б) то, что из справедливости T(n) следует T(n+1) (факт индукции), то $\forall n \in \mathbb{N} : T(n)$ — справедливо.

- \blacktriangle $A = \{n \in \mathbb{N}: T(n) \text{справедливо}\}.$ Тогда $A \ni 1, (A \ni m \Rightarrow A \ni m+1) \Rightarrow A = \mathbb{N}.$ ■
- II. $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}.$
- III. $\mathbb{Q} = \{x \in \mathbb{R} : \exists m \in \mathbb{Z}, \exists n \in \mathbb{N} \ x = m\frac{1}{n}\}.$
- IV. Пусть $a, b \in \mathbb{R}, a \leqslant b$, тогда

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$$
 — отрезок.

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$
 — интервал.

$$(a,b] = \{x \in \mathbb{R} \colon a < x \leqslant b\}$$
 — полуинтервал.

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x < b\}$$
 — полуинтервал.

Определение 1.2. Модулем или абсолютной величиной числа называют

$$|x| = \begin{cases} a, a \geqslant 0, \\ -a, a < 0. \end{cases}$$

Бесконечной десятичной дробью называют выражение вида $\pm a_0, a_1 a_2 \dots$, где $a_0 \in \mathbb{N} \cup \{0\}$, $a_i \in \{0, 1, \dots, 9\}, i \in \mathbb{N}$.

Будем считать, что бесконечные десятичные дроби $\pm a_0, a_1 \dots a_n 00000 \dots$ и $\pm a_0, a_1 \dots (a_n-1)99999 \dots$ задают одно и то же число.

Определение 1.3. Пусть $a=\pm a_0,a_1a_2\dots$ и $b=\pm b_0,b_1b_2\dots$ — бесконечные десятичные дроби (без 9 в периоде). Тогда $a\leqslant b$, если

- 1. Перед a_0 стоит знак «-», а перед b_0 знак «+».
- 2. Перед a_0 и b_0 стоит знак «+»
 - a) $a_0 \le b_0$.
 - б) $a_0 = b_0$ и $\exists n \in \mathbb{N} : a_1 = b_1, \dots, a_{n-1} = b_{n-1}, a_n < b_n$.
 - B) $\forall n \in \mathbb{N} \cup \{0\} : a_n = b_n$.
- 3. Перед a_0 и b_0 стоит знак «-» и при его замене на знак «+» выполнен пункт 2 для -a и -b ($-b \leqslant -a$).

Теорема 1.2. Пусть A и B непустые множества бесконечных десятичных дробей (без 9 в периоде), что $\forall a \in A, \forall b \in B \colon a \leqslant b$. Тогда \exists бесконечная десятичная дробь (без 9 в периоде) c, что $\forall a \in A, \forall b \in B \colon a \leqslant c \leqslant b$.

▲ Возможно только два случая:

1. $B \subset \{x : x \ge 0\}$ 2. $A \subset \{x : x \le 0\}$

Рассмотрим случай 1.

Пусть c_0 — минимальный элемент $\{b_0 : b = b_0, b_1 \dots \in B\}$.

 c_1 — минимальный элемент $\{b_1 : b = c_0, b_1 \ldots \in B\}$.

.

Пусть c_0,\ldots,c_n определены, тогда c_{n+1} — минимальный элемент

 $\{b_{n+1} \colon b = c_0, c_1 c_1 \dots c_n b_{n+1} \dots \in B\}.$

По принципу матиндукции $\forall n \in B \cup \{0\}$ определено c_n .

 $c = c_0, c_1 c_2 \dots c_n \dots$

Покажем, что в c нет 9 в периоде.

Предположим, это не так, $c = c_0, c_1 \dots c_n 999 \dots$

Тогда по построению найдётся элемент из B, что выполнено следующее: $b = c_0, c_1 \dots c_n 999 \dots$, и это противоречит условию (b содержит 9 в периоде).

 $a_0 \leqslant c_0$, значит либо $a_0 < c_0$ и $a \leqslant c$, либо $a_0 = b_0$ и $a_1 \leqslant b_1$ (поскольку $\exists b = c_0, c_1 b_2 \ldots$).

Пусть $a_0 = c_0, a_1 = c_1, \dots, a_n = c_n \Rightarrow a_{n+1} \leqslant b_{n+1}$, значит либо $a_{n+1} < c_{n+1}$ и $a \leqslant c$, либо $a_{n+1} = b_{n+1}$.

В результате на каком-то этапе будет установлено неравенство a < c или будет установлено, что $\forall n \in \mathbb{N} \cup \{0\} \colon a_n = c_n$, значит $a = c \Rightarrow$ в любом случае будет установлено, что $a \leqslant c$.

Определение 1.4. $a \in E$ называется наибольшим (максимальным) элементом $E \subset \mathbb{R}$, если $\forall x \in E : x \leqslant a.$ $a = \max E$.

Определение 1.5. $a \in E$ называется наименьшим (минимальным) элементом $E \subset \mathbb{R}$, если $\forall x \in E : x \geqslant a.$ $a = \min E$.

1.9 Верхняя и нижняя грань множества

Определение 1.6. Число $M \in \mathbb{R}$ называют верхней гранью $E \subset \mathbb{R}$, если $\forall x \in E \colon x \leqslant M$.

Определение 1.7. Число $m \in \mathbb{R}$ называют нижней гранью $E \subset \mathbb{R}$, если $\forall x \in E \colon x \geqslant m$.

Определение 1.8. Множество E ограничено сверху (снизу), если E имеет хотя бы одну верхнюю (нижнюю) грань.

Определение 1.9. Ограниченное сверху и снизу множество называют ограниченным.

Задача 1. Доказать, что $E \subset \mathbb{R}$ — ограничено $\Leftrightarrow \exists K > 0 \ \forall x \in E \colon |x| \leqslant K$.

Определение 1.10. Число $M \in \mathbb{R}$ называют точной верхней гранью $E \subset \mathbb{R}$, если

- 1) $\forall x \in E : x \leq M$ (верхняя грань).
- 2) $\forall M' < M \ \exists x' \in E \colon x' > M'$.

Обозначение: $M = \sup E$.

Определение 1.11. Число $m \in \mathbb{R}$ называют точной нижней гранью $E \subset \mathbb{R}$, если

- 1) $\forall x \in E : x \geqslant m$.
- 2) $\forall m' > m \ \exists x' \in E \colon x' < m'$.

Обозначение: $m = \inf E$.

Теорема 1.3 (принцип полноты Вейерштрасса). Любое ограниченное сверху (снизу) непустое числовое множество имеет единственную точную верхнюю (нижнюю) грань.

▲ Пусть A — непустое ограниченное сверху множество, $B = \{x \in \mathbb{R}, \, \text{где } x$ — верхняя грань $A\}$. Тогда $\forall a \in A, b \in B \colon a \leqslant b$. По аксиоме непрерывности $\exists c \in \mathbb{R} \, \forall a \in A, b \in B \colon a \leqslant c \leqslant b$ (*). Покажем, что $c = \sup A$.

По (*) $\forall a \in A : a \leq c$, т.е. первое условие определения точной верхней грани выполнено. Пусть c' < c. Тогда $c' < c \leq b$ по (*) $\Rightarrow c' \notin B$, т.е. c' — не верхняя грань $A \Rightarrow \exists x' \in A : x' > c'$, так что второе условие определения точной верхней грани выполнено.

Предположим $c_1, c_2 \in \mathbb{R}, c_1 \neq c_2$ удовлетворяют определению $\sup A$. Пусть $c_1 < c_2$. По определению $c_2 = \sup A$ имеем $\exists x' \in A \colon x' > c_1$, что противоречит $c_1 = \sup A :!!! \blacksquare$

1.10 Принцип полноты Кантора или принцип вложенных отрезков

Определение 1.12. Последовательностью элементов множества A называют функцию $f: \mathbb{N} \to A$.

Если $(n, a) \in f$, то элемент a обозначается a_n , При этом саму последовательность обозначают $\{a_n\}_{n=1}^{\infty}$.

Определение 1.13. *Последовательностью отрезков* называют функцию из \mathbb{N} на множество отрезков.

Обозначение: $\{[a_n, b_n]\}_{n=1}^{\infty}$.

Определение 1.14. Последовательность отрезков называют вложенной, если $\forall n \in \mathbb{N}$: $[a_n, b_n] \supset [a_{n+1}, b_{n+1}].$

Определение 1.15. Последовательность вложенных отрезков называют *стягивающейся*, если $\forall \varepsilon > 0 \ \exists n \in \mathbb{N} \colon b_n - a_n < \varepsilon$.

Теорема 1.4 (принцип полноты Кантора).

Любая последовательность вложенных отрезков имеет общую точку (причём, если эта последовательность стягивающаяся, то такая точка единственная).

▲ Пусть $\{[a_n,b_n]\}_{n=1}^{\infty}$ — последовательность вложенных отрезков. Рассмотрим $A=\{a_n\colon n\in\mathbb{N}\}$. Поскольку $\forall n\in\mathbb{N}\colon a_n\leqslant b_n\leqslant b_1,\ A$ — непустое ограниченное сверху множество $\Rightarrow \exists c=\sup A$. Пусть $n,k\in\mathbb{N}$, тогда $a_n\leqslant a_{n+k}\leqslant b_{n+k}\leqslant b_k$. Следовательно, b_k — верхняя грань $A\Rightarrow c\leqslant b_k$. С другой стороны, $a_k\leqslant c$. Итак, $\forall k\in\mathbb{N}\colon a_k\leqslant c\leqslant b_k$, т.е. $c\in\bigcap_{k=1}^{\infty}[a_k,b_k]$.

Пусть $\{[a_n,b_n]\}_{n=1}^{\infty}$ — стягивающаяся последовательность. Предположим, $\exists c_1,c_2\in\bigcap_{k=1}^{\infty}[a_k,b_k],c_1< c_2.$ Тогда $\forall n\in\mathbb{N}\colon a_n\leqslant c_1< c_2\leqslant b_n\Rightarrow b_n-a_n\geqslant c_2-c_1!!!$ (для $\varepsilon=c_2-c_1>0$ $\exists n\in\mathbb{N}\colon b_n-a_n<\varepsilon$).

Следовательно, двух различных общих точек быть не может.

1.11 Эквивалентность принципов полноты

Теорема 1.5 (аксиома Архимеда). Множество $\mathbb N$ неограниченно сверху, т.е. $\forall a \in \mathbb R \ \exists n \in \mathbb N \colon n > a.$

▲ Предположим, \mathbb{N} ограничено сверху, тогда по Т3 $\exists k = \sup \mathbb{N} \Rightarrow k-1$ не является точной верхней гранью \mathbb{N} , т.е. $\exists n \in \mathbb{N} \colon n > k-1 \Rightarrow n+1 > (k-1)+1 = k$. Противоречие, т.к. k — верхняя грань \mathbb{N} . \blacksquare

Определение 1.16. $a \in \mathbb{R}, n \in \mathbb{N}$: $a^n = \underbrace{a \cdot \ldots \cdot a}_n$.

Теорема 1.6 (неравенство Бернулли). $\forall \alpha \in \mathbb{R}, \alpha \geqslant -1 \ \forall n \in \mathbb{N} : (1+\alpha)^n \geqslant 1+\alpha n.$

▲ ММИ: При $n = 1 (1 + \alpha)^1 \ge 1 + 1\alpha$ — верно.

Предположим, неравенство верно для n=m. Покажем, что оно верно и для n=m+1: $(1+\alpha)^{m+1}=(1+\alpha)^m(1+\alpha)\geqslant (1+m\alpha)(1+\alpha)=1+(m+1)\alpha+m\alpha^2\geqslant 1+(m+1)\alpha$.

Теорема 1.7. Из аксиомы Архимеда и принципа полноты Кантора следует аксиома непрерывности.

▲ Пусть A, B такие непустые числовые множества, что $\forall a \in A \ \forall b \in B \colon a \leqslant b$. Возьмём $a \in A, b \in B$. Если a = b, то положим c = a = b. Тогда $\forall a' \in A \ \forall b' \in B \colon a' \leqslant b = c = a \leqslant b'$.

Если $a \neq b$, то положим $[a_1,b_1] = [a,b]$. Отрезок [a,b] содержит точки обоих множества Aи B. Разделим его на 2 отрезка $[a_1, \frac{a_1+b_1}{2}], [\frac{a_1+b_1}{2}, b_1]$. Если в каком-то отрезке есть точки обоих множеств, то обозначим его $[a_2, b_2]$.

Если такого отрезка нет, то $A \subset [a_1, \frac{a_1+b_1}{2}] \cup \{x \in \mathbb{R} : x < a_1\}, B \subset [\frac{a_1+b_1}{2}, b_1] \cup \{x \in \mathbb{R} : x > b_1\} \Rightarrow$ $c = \frac{a_1 + b_1}{2}$ разделяет A и B, т.е. $\forall a' \in A, b' \in B \colon a' \leqslant c \leqslant b'$.

Продолжим построение. Пусть уже построен отрезок $[a_n,b_n]$, $b_n-a_n=\frac{b-a}{2^{n-1}}$, содержащий точки обоих множеств A и B. Разделим его пополам на $[a_n,\frac{a_n+b_n}{2}]$ и $[\frac{a_n+b_n}{2},b_n]$.

Если какой-то из полученных отрезков содержит элементы обоих множества, обозначим его за $[a_{n+1}, b_{n+1}].$

Если такого отрезка нет, $A \subset [a_n, \frac{a_n + b_n}{2}] \cup \{x \in \mathbb{R} \colon x < a_n\}], B \subset [\frac{a_n + b_n}{2}, b_n] \cup \{x \in \mathbb{R} \colon x > b_n\} \Rightarrow c = \frac{a_n + b_n}{2}$ разделяет A и B, т.е. $\forall a' \in A, b' \in B \colon a' \leqslant c \leqslant b'$.

Таким образом, если процесс построения $[a_n, b_n]$ оборвался, то точка c найдена, иначе будет построена последовательность вложенных отрезков $\{[a_n, b_n]\}_{n=1}^{\infty}$.

Покажем, что $\{[a_n,b_n]\}_{n=1}^{\infty}$ — стягивающаяся. По неравенству Бернулли

 $2^{n-1}=(1+1)^{n-1}\geqslant 1+(n-1)1=n$. Тогда $b_n-a_n=\frac{b-a}{2^{n-1}}\leqslant \frac{b-a}{n}$. Возьмём $\varepsilon>0$. По аксиоме Архимеда $\exists n\in\mathbb{N}\colon n>\frac{b-a}{\varepsilon}$ или $\frac{b-a}{n}<\varepsilon\Rightarrow b_n-a_n\leqslant \frac{b-a}{n}<\varepsilon$. т.е. $\{[a_n,b_n]\}_{n=1}^{\infty}$ — стягивающаяся.

По принципу полноты Кантора $\exists c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$. Пусть $a' \in A$. Покажем, что $a' \leqslant c$. Имеем $\forall n \in \mathbb{N} \colon a' \leqslant b_n \text{ (т.к. } [a_n, b_n] \cap B \neq \varnothing \text{ и } \forall b \in B \colon a' \leqslant b).$

Предположим a'>c, тогда $a_n\leqslant c< a'\leqslant b_n\Rightarrow b_n-a_n\geqslant a'-c>0$, что противоречит тому, что $\{[a_n, b_n]\}$ — стягивающаяся.

Аналогично, если $b' \in B$, то $c \leq b'$.

AC — аксиома непрерывности.

PW — принцип полноты Вейерштрасса (Т3).

РК — принцип полноты Кантора (Т4).

AA -аксиома Архимеда (T5).

 $AC \Rightarrow PW \Rightarrow (PK \text{ if } AA) \Rightarrow AC.$

Тем самым доказана эквивалентность аксиомы непрерывности, принципа полноты Вейерштрасса и принципа полноты Кантора вместе с аксиомой Архимеда.

Приведём без доказательства следующий факт о действительных числах.

Теорема 1.8. Если A и A' удовлетворяют аксиоматике действительных чисел, то они изоморфны, т.е. $\exists f : A \to A'$ — биекция, что $\forall a, b \in A$:

- 1) f(a+b) = f(a) + f(b).
- 2) f(ab) = f(a)f(b).
- 3) $a \leqslant b \Rightarrow f(a) \leqslant f(b)$.

2 Топологическая классификация точек множеств

Определение 2.1. Пусть $x \in \mathbb{R}, \varepsilon > 0$.

- 1) $B_{\varepsilon}(x) = \{y \in \mathbb{R} : |y x| < \varepsilon\} \varepsilon$ окрестность точки x.
- 2) $B_{\varepsilon}^{\circ}(x)=B_{\varepsilon}'(x)=B_{\varepsilon}(x)\backslash\{x\}=\{y\in\mathbb{R}\colon 0<|y-x|<\varepsilon\}$ проколотая ε окрестность

3амечание. В дальнейшем, говоря об ε -окрестности, будем считать, что $\varepsilon > 0$.

По отношению к множеству E любая точка является точкой одного из следующих типов.

Определение 2.2.

- 1) Точка x называется внутренней точкой $E \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset E$. $\operatorname{int} E$ — множество всех внутренних точек.
- 2) Точка x называется внешней точкой $E \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset \mathbb{R} \backslash E$. $\operatorname{ext} E$ — множество всех внешних точек.

3) Точка x называется граничной точкой $E \subset \mathbb{R}$, если $\forall \varepsilon > 0 \colon B_{\varepsilon}(x) \cap E \neq \emptyset$ и $B_{\varepsilon}(x) \cap \mathbb{R} \backslash E \neq \emptyset$.

 ∂E — множество всех граничных точек.

Замечание. Из определения непосредственно вытекает, что $\operatorname{ext} E = \operatorname{int}(\mathbb{R} \backslash E)$, $\operatorname{int} E \subset E$.

Определение 2.3. Множество $E \subset \mathbb{R}$ называется *открытым*, если все его точки внутренние (т.е. $E \subset \text{int } E$).

Определение 2.4. Множество $E \subset \mathbb{R}$ называется замкнутым, если $\mathbb{R} \backslash E$ — открыто. Теорема 2.1.

1) а)
$$G_{\lambda}, \lambda \in \Lambda$$
 — открытые множества $\Rightarrow \bigcup_{\lambda \in \Lambda} G_{\lambda}$ — открытое множество.

б)
$$G_1, \ldots, G_n$$
 — открытые множества $\Rightarrow \bigcap_{k=1}^{n} G_k$ — открытое множество.

2) а)
$$F_{\lambda}, \lambda \in \Lambda$$
 — замкнутые множества $\Rightarrow \bigcap_{\lambda \in \Lambda} F_{\lambda}$ — замкнутое множество.

б)
$$F_1, \dots, F_n$$
 — замкнутые множества $\Rightarrow \bigcup_{k=1}^n F_k$ — замкнутое множество.

▲ 1.а)
$$x \in \bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \exists \lambda_0 \in \Lambda \colon x \in G_0$$
. G_0 — открыто $\Rightarrow \exists B_{\varepsilon}(x) \subset G_{\lambda_0} \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$, т.е. x — внутренняя точка $\bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \bigcup_{\lambda \in \Lambda} G_{\lambda}$ — открытое.

внутренняя точка
$$\bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \bigcup_{\lambda \in \Lambda} G_{\lambda}$$
 — открытое.
1.6) $x \in \bigcap_{k=1}^{n} G_{k} \Rightarrow x \in G_{k} \ \forall k = 1, \dots, n. \ G_{k}$ — открыто $\Rightarrow \exists B_{\varepsilon_{k}}(x) \subset G_{k}, k = 1, \dots, n.$

Положим $\varepsilon = \min(\varepsilon_k) \Rightarrow B_{\varepsilon}(x) \subset B_{\varepsilon_k}(x) \subset G_k, k = 1, \dots, n \Rightarrow B_{\varepsilon}(x) \subset \bigcap_{k=1}^n G_k$, т.е. x — внутрення точка $\bigcap_{k=1}^n G_k \Rightarrow \bigcap_{k=1}^n G_k$ — открыто. 2.a) $\mathbb{R} \setminus (\bigcap_{\lambda \in \Lambda} F_{\lambda}) = \bigcup_{\lambda \in \Lambda} (\mathbb{R} \setminus F_{\lambda})$ — открытое $\Rightarrow \bigcap_{\lambda \in \Lambda} F_{\lambda}$ — замкнутое. 2.6) $\mathbb{R} \setminus (\bigcup_{k=1}^n F_k) = \bigcap_{k=1}^n (\mathbb{R} \setminus F_k)$ — открытое $\Rightarrow \bigcup_{k=1}^n F_k$ — замкнутое. \blacksquare

2.a)
$$\mathbb{R}\setminus (\bigcap_{\lambda\in\Lambda} F_{\lambda})^{-1} = \bigcup_{\lambda\in\Lambda} (\mathbb{R}\setminus F_{\lambda})$$
 — открытое $\Rightarrow \bigcap_{\lambda\in\Lambda} F_{\lambda}$ — замкнутое.

2.б)
$$\mathbb{R}\setminus (\bigcup_{k=1}^n F_k) = \bigcap_{k=1}^n (\mathbb{R}\setminus F_k)$$
 — открытое $\Rightarrow \bigcup_{k=1}^n F_k$ — замкнутое.

Замечание. Пересечение произвольного числа открытых множеств и не быть открытым множеством.

Пример:
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}.$$

Определение 2.5. Число элементов множества A равно единице, если $\exists a \in A : A \setminus \{a\} = \emptyset$. Пусть определено, что число элементов множества равно n, тогда по определению число элементов множества A равно n+1, если $\exists a \in A : A \setminus \{a\}$ имеет n элементов.

Определение 2.6. Множество A называют *конечным*, если либо $A = \emptyset$, либо $\exists n \in \mathbb{N} : A$ имеет n элементов. В противном случае множество называется бесконечным.

Определение 2.7. Точка x называется $npedenahoй точкой множества <math>E \subset \mathbb{R}$, если $\forall \varepsilon > 0 \colon B'_{\varepsilon}(x) \cap E \neq \emptyset.$

Лемма 2.1. x — предельная точка множества $E \Leftrightarrow \forall \varepsilon > 0 \colon B_{\varepsilon}(x) \cap E$ — бесконечное множество.

 \blacktriangle (⇒) Пусть точка x — предельная точка E. $\forall \varepsilon > 0$: $B'_{\varepsilon}(x) \cap E$ — конечно ⇒ $B'_{\varepsilon}(x) \cap E = \{x_1, \dots, x_n\}.$ $\delta := \min\{|x - x_i|\} > 0.$ Рассмотрим $B'_{\delta}(x) \cap E = \emptyset.!!!$ $(\Leftarrow) \ \forall \varepsilon > 0 \colon B_{\varepsilon}(x) \cap E$ — бесконечное множество $\Rightarrow B'_{\varepsilon}(x) \cap E \neq \emptyset$.

Теорема 2.2. Следующие критерии замкнутости эквивалентны:

- 1) E замкнуто.
- 2) Е содержит все свои граничные точки.
- 3) Е содержит все свои предельные точки.

- **▲** $(1 \Rightarrow 2)$ Пусть $x \in \mathbb{R} \setminus E \Rightarrow \exists B_{\varepsilon}(x) \subset \mathbb{R} \setminus E \Rightarrow x \in \text{ext } E \Rightarrow x \notin \partial E \Rightarrow \partial E \subset E$.
- $(2\Rightarrow 3)$ x предельная точка $E\Rightarrow x\notin \text{ext }E.$ Тогда либо $x\in \text{int }E\Rightarrow x\in E,$ либо $x\in \partial E\Rightarrow x\in E.$
- $(3\Rightarrow 1)\ x\in\mathbb{R}\setminus E\Rightarrow x$ не предельная точка $E\Rightarrow\exists \varepsilon>0\colon B'_{\varepsilon}(x)\cap E=\varnothing\Rightarrow B_{\varepsilon}(x)\cap E=\varnothing\Rightarrow B_{\varepsilon}(x)\subset\mathbb{R}\setminus E\Rightarrow\mathbb{R}\setminus E$ открыто $\Rightarrow E$ замкнуто. \blacksquare

Теорема 2.3. Любое непустое замкнутое ограниченное сверху (или снизу) множество имеет максимальный (или минимальный) элемент.

▲ Пусть F — непустое замкнутое ограниченное сверху множество. $S = \sup F$. Покажем, что $S = \max F$, тогда осталось доказать, что $S \in F$. Т.к. $S = \sup F$, то $\forall \varepsilon > 0 \; \exists x' \in F \colon x' \in (S - \varepsilon, S]$, т.е. $(S - \varepsilon, S] \cap F \neq \varnothing$.

Имеется две возможности:

- 1) $\forall \varepsilon > 0 \ (S \varepsilon, S) \cap F \neq \varnothing \Rightarrow B'_{\varepsilon}(S) \cap F \neq \varnothing \Rightarrow S$ предельная точка $F \Rightarrow S \in F$ (по T2).
- 2) $\exists \varepsilon > 0 \ (S \varepsilon, S) \cap F = \emptyset \Rightarrow S \in F$.

Определение 2.8. 1) Система $\{G_{\lambda} : \lambda \in \Lambda\}$ называется *покрытием* множества E, если $\bigcup_{\lambda \in \Lambda} G_{\lambda} \supset E$.

2) $\forall \lambda \in \Lambda$ G_{λ} — открытое, то покрытие $\{G_{\lambda} \colon \lambda \in \Lambda\}$ называют *открытым*.

Теорема 2.4 (Гейне – **Борель).** $\{G_{\lambda} \colon \lambda \in \Lambda\}$ — открытое покрытие $[a,b] \Rightarrow \exists \lambda_1, \dots, \lambda_n \in \Lambda$, $G_{\lambda_1} \cup \dots \cup G_{\lambda_n} \supset [a,b]$.

▲ Предположим, что из открытого покрытия $\{G_{\lambda} : \lambda \in \Lambda\}$ отрезка [a,b], нельзя выбрать конечной подпоследовательности таких покрытий [a,b].

Положим, $[a_1,b_1]=[a,b]$, поделим $[a_1,b_1]$ пополам. Тогда хотя бы один из $[a_1,\frac{a_1+b_1}{2}]$, $[\frac{a_1+b_1}{2},b_1]$ нельзя покрыть конечным числом G_{λ} . Обозначим этот отрезок $[a_2,b_2]$, тогда хотя бы одну из его половин нельзя покрыть конечным числом G_{λ} , обозначим его за $[a_3,b_3]$.

Продолжим процесс $\{[a_n, b_n]\}_{n=1}^{\infty}$:

- 1) $\forall n \in \mathbb{N} : [a_n, b_n] \supset [a_{n+1}, b_{n+1}].$
- 2) Ни один из $[a_n,b_n]$ нельзя покрыть конечным числом G_λ .
- 3) $\forall n \in N, b_n a_n = \frac{b-a}{2^{n-1}},$ т.е $\{[a_n, b_n]\}_{n=1}^{\infty}$ стягивающаяся. По принципу вложенных отрезков $\exists c \in \bigcap_{n=1}^{\infty} [a_n, b_n], c \in [a_1, b_1] \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}, \ c \in \bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \exists \lambda_0 \in \Lambda \colon c \in G_{\lambda_0}, \text{ но } G_{\lambda_0}$ открытое множество $\Rightarrow \exists \varepsilon > 0$ $B_{\varepsilon}(c) \subset G_{\lambda_0},$ т.к. $\{[a_n, b_n]\}_{n=1}^{\infty}$ стягивающаяся, то $\exists k \in N, b_k a_k < \varepsilon$. Итак $c \in [a_k, b_k], b_k a_k < \varepsilon \Rightarrow [a_k, b_k] \subset B_{\varepsilon}(c) \Rightarrow [a_k, b_k] \subset G_{\lambda_0},$ то есть $[a_k, b_k]$ покрыт одним элементом G_{λ_0} покрытия, получаем противоречие. \blacksquare

Следствие:

F — замкнутое ограниченное множество. $\{G_{\lambda} \colon \lambda \in \Lambda\}$ — открытое покрытие $F \Rightarrow \exists \lambda_1, \ldots, \lambda_n \in \Lambda, G_{\lambda_1} \cup \ldots \cup G_{\lambda_n} \supset F$.

▲ F — замкнутое множество $\Rightarrow \exists [m, M] : [m, M] \supset F$. Пусть $A = \{G_{\lambda} : \lambda \in \Lambda\}$ — открытое покрытие F.

$$A' = \{G_{\lambda}, \lambda \in \Lambda\} \cup \{\mathbb{R} \backslash F\} \colon \bigcup_{\lambda \in \Lambda} G_{\lambda} \cup (\mathbb{R} \backslash F) \supset F \cup (\mathbb{R} \backslash F) \supset \mathbb{R}.$$

По Т4. $\exists A'' \subset A'$ — конечное покрытие [m, M].

Имеется 2 возможности:

1)
$$\mathbb{R}\backslash F \notin A'' = \{G_{\lambda_1}, \dots, G_{\lambda_n}\}, \bigcup_{i=1}^n G_{\lambda_i} \supset [m, M] \supset F$$

2)
$$\mathbb{R}\backslash F \in A'' \Rightarrow A''\backslash \{\mathbb{R}\backslash F\} = \{G_{\lambda_1}, \dots, G_{\lambda_n}\}. \bigcup_{i=1}^n G_{\lambda_i} \supset [m, M]\backslash (\mathbb{R}\backslash F) = F. \blacksquare$$

Теорема 2.5 (о существовании предельной точки). Любое бесконечное ограниченное множество имеет хотя бы одну предельную точку.

▲ Пусть E — бесконечное ограниченное множество. Приведем два различных доказательства. Доказательство 1. От противного:

Предположим, E не имеет предельной точки. $\varnothing \subset E \Rightarrow E$ — замкнутое множество.

Если $x \in E \Rightarrow x$ — не является предельной точкой для $E \Rightarrow \exists \varepsilon_x > 0 \colon B'_{\varepsilon_x}(x) \cap E = \emptyset$, значит $B_{\varepsilon_x}(x) \cap E = \{x\}.$

Рассмотрим $\{B_{\varepsilon_x}(x): x \in E\}$ — открытое покрытие $E \Rightarrow \exists x_1, \dots, x_n \in E$: $\bigcup_{k=1}^n B_{\varepsilon_{x_k}}(x) \supset E$, но из каждого $B_{\varepsilon_{x_k}}(x)$ только 1 точка содержится в $E\Rightarrow E$ — конечное. !!! Доказательство 2.

E — ограниченное множество $\Rightarrow \exists [a_1, b_1] \supset E$. Разделим $[a_1, b_1]$ пополам, тогда хотя бы один из отрезков $[a_1,\frac{a_1+b_1}{2}],[\frac{a_1+b_1}{2},b_1]$ содержит бесконечно много элементов из E, обозначим его за $[a_2,b_2]$, разделим $[a_2,b_2]$ пополам и обозначим через $[a_3,b_3]$ тот отрезок, в котором бесконечно много чисел из E. Будем продолжать и тогда получим $\{[a_n, b_n]\}_{n=1}^{\infty}$.

- 1) $\forall n \in \mathbb{N} : [a_n, b_n] \supset [a_{n+1}, b_{n+1}].$
- 2) $\forall n \in \mathbb{N} : [a_n, b_n] \cap E$ бесконечное множество.
- 3) $\forall n \in \mathbb{N}, b_n a_n = \frac{b-a}{2^{n-1}}$.

По принципу вложенных отрезков (T1.4) $\exists c \in \bigcap^{\infty} [a_k, b_k].$

Покажем, что c — предельная точка E, возьмем $\varepsilon > 0$. Т.к. $\{[a_n,b_n]\}_{n=1}^{\infty}$ — стягивающаяся, TO $\exists k \in \mathbb{N}, b_n - a_n < \varepsilon$.

Итак, $c \in [a_k, b_k], b_k - a_k < e \Rightarrow [a_k, b_k] \subset B_{\varepsilon}(c) \stackrel{\Pi.2}{\Longrightarrow} B_{\varepsilon}(c) \cap E$ — бесконечное множество $\stackrel{\Pi.1}{\Longrightarrow}$ c — предельная точка E. !!! \blacksquare

2.1Расширенная числовая прямая и её свойства.

Определение 2.9. $\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ — расширенная числовая прямая. При этом $\forall x \in \mathbb{R}: -\infty < x < +\infty.$

Пусть $\varepsilon > 0$.

- 1) $B'_{\varepsilon}(+\infty) = \{x \in \mathbb{R} : x > \frac{1}{\varepsilon}\}$ проколотая ε окрестность $+\infty$.
- 2) $B_{\varepsilon}(+\infty) = B'_{\varepsilon}(+\infty) \cup \{+\infty\} \varepsilon$ окрестность $+\infty$.
- 3) $B'_{\varepsilon}(-\infty) = \{x \in \mathbb{R} : x < -\frac{1}{\varepsilon}\}$ проколотая ε окрестность $-\infty$.
- 4) $B_{\varepsilon}(-\infty) = B'_{\varepsilon}(-\infty) \cup \{-\infty\} \varepsilon$ окрестность $-\infty$.

Допустимыми операциями с $\pm \infty$ считаются следующие коммутативные операции:

$$+\infty + (+\infty) = +\infty, +\infty - (-\infty) = +\infty$$

 $-\infty + (-\infty) = -\infty, -\infty - (+\infty) = -\infty$
 $\forall x \in \mathbb{R}:$
 $x + (+\infty) = +\infty, x + (-\infty) = -\infty$

$$x - (+\infty) = -\infty, \quad x - (-\infty) = +\infty$$

$$+\infty \cdot (+\infty) = +\infty, +\infty \cdot (-\infty) = -\infty$$

 $-\infty \cdot (-\infty) = +\infty, -\infty \cdot (+\infty) = -\infty$

$$\forall x \in \mathbb{R} : \frac{x}{+\infty} = 0, \quad \frac{x}{-\infty} = 0$$

$$\forall x \in \mathbb{R} : \frac{x}{+\infty} = 0, \quad \frac{x}{-\infty} = 0$$

$$\forall x > 0 : x \cdot (+\infty) = +\infty, \quad x \cdot (-\infty) = -\infty, \frac{+\infty}{x} = +\infty, \frac{-\infty}{x} = -\infty$$

$$\forall x < 0 : x \cdot (+\infty) = -\infty, \quad x \cdot (-\infty) = +\infty, \frac{+\infty}{x} = -\infty, \frac{-\infty}{x} = +\infty$$

Недопустимыми считаются следующие операции:

$$+\infty + (-\infty), +\infty - (+\infty), -\infty + (+\infty), -\infty - (-\infty)$$
$$0 \cdot (\pm \infty), \pm \infty \cdot 0, \pm \infty$$

Определение 2.10. Утверждение, что для множества $E \subset \mathbb{R}$ $\sup E = +\infty$ означает, что Eнеограниченно сверху. Утверждение, что для множества $E \subset \mathbb{R}$ inf $E = -\infty$ означает, что Eнеограниченно снизу.

Замечание. Классификация точек множества переносится на $E \subset \overline{\mathbb{R}}$.

Теорема 2.6. Любое бесконечное множество $\overline{\mathbb{R}}$ имеет хотя бы одну предельную точку.

▲ Пусть $E \subset \overline{\mathbb{R}}$.

Если $E \setminus \{+\infty\}$ неограниченно сверху, то $\forall \varepsilon > 0 \colon B'_{\varepsilon}(+\infty) \cap E \neq \emptyset \Rightarrow +\infty$ — предельная точка E.

Если $E\setminus \{-\infty\}$ неограниченно снизу, то $\forall \varepsilon > 0 \colon B'_{\varepsilon}(-\infty) \cap E \neq \emptyset \Rightarrow -\infty$ — предельная точка E. Если $E\setminus \{-\infty, +\infty\}$ ограничено сверху и снизу, то имеет предельную точку по Теореме 5. \blacksquare

3 Предел последовательности

3.1 Числовые последовательности. Определение и терминология

Определение 3.1. Числовой последовательностью будем называть функцию $f: \mathbb{N} \to \mathbb{R}$. Если пара $(n,a) \in f$, то второй элемент будем называть n-м членом (элементом) и обозначать a_n . При этом саму последовательность будем обозначать $\{a_n\}$ или $\{a_n\}_{n=1}^{\infty}$.

Замечание. Всюду в дальнейшем, если не указано обратного, последовательность обозначает числовую последовательность.

Определение 3.2. Последовательность $\{a_n\}$ называется *постоянной*, если $\forall n \in \mathbb{N} \colon a_n = a_1$.

Определение 3.3. Последовательность $\{a_n\}$ называется ограниченной сверху (ограниченной снизу, ограниченной), если множество её значений $\{x \in \mathbb{R} : x = a_n, n \in \mathbb{N}\}$ ограничено сверху (ограниченно снизу, ограниченно).

Определение 3.4. Последовательность $\{a_n\}$ называется неограниченной (неограниченной снизу, неограниченной сверху), если $\{a_n\}$ не является ограниченной (ограниченной снизу, ограниченной сверху).

Введём обозначения:

$$\sup\{a_n\} = \sup\{x \in \mathbb{R} : x = a_n, n \in \mathbb{N}\}, \quad \inf\{a_n\} = \inf\{x \in \mathbb{R} : x = a_n, n \in \mathbb{N}\}.$$

3.2 Предел последовательности.

Определение 3.5. Число $a \in \mathbb{R}$ называют *пределом последовательности* $\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{R} \ \forall n > N_{\varepsilon} \colon |a_n - a| < \varepsilon.$$

Пишут $\lim_{n\to\infty} a_n = a$, или $a_n \to a$ при $n\to\infty$, или $a_n \to a$.

Пример: Покажем, что $\lim_{n\to\infty}\frac{1}{n}=0$.

▲ Поскольку $\left|\frac{1}{n}-0\right|<\varepsilon\Leftrightarrow\frac{1}{n}<\varepsilon$, то $\forall \varepsilon>0$ $\exists N_{\varepsilon}=\frac{1}{\varepsilon},$ что $\forall n>N_{\varepsilon}$ $n>\frac{1}{\varepsilon}$ или $\frac{1}{n}<\varepsilon,$ т.е. по определению $\lim_{n\to\infty}\frac{1}{n}=0.$ ■

3амечание. $|a_n - a| < \varepsilon \Leftrightarrow a - \varepsilon < a_n < a + \varepsilon \Leftrightarrow a_n \in B_{\varepsilon}(a)$ — ε -окрестности точки a.

В терминах окрестностей можно дать общее определение предела.

Определение 3.6. Точку $a \in \overline{\mathbb{R}}$ называют *пределом последовательности* $\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{R} \ \forall n > N_{\varepsilon} \colon a_n \in B_{\varepsilon}(a).$$

Геометрический смысл. (картинка)

Точка $a \in \mathbb{R}$ предел $\{a_n\}$, если в любой $B_{\varepsilon}(a)$ содержатся почти все её члены (т.е. вне $B_{\varepsilon}(a)$ лежит конечное число членов a_n).

 $\it 3амечание.$ Обычно в учебниках число $\it N_{\varepsilon}$ предполагается натуральным. Это приводит к определению эквивалентному определению выше.

Задача 2. Доказать, что это приводит к определению, эквивалентному приведённому выше. Приведём ещё один частный случай определения 3.6

Определение 3.7.
$$\lim_{n\to\infty} a_n = +\infty \ (-\infty) \Leftrightarrow \forall \varepsilon > 0 \ \exists N_\varepsilon \in \mathbb{R} \ \forall n > N_\varepsilon \colon a_n > \frac{1}{\varepsilon} \ \left(a_n < -\frac{1}{\varepsilon}\right).$$

Лемма 3.1. Если $a,b \in \overline{\mathbb{R}}, a \neq b$, то $\exists \varepsilon > 0 \colon B_{\varepsilon}(a) \cap B_{\varepsilon}(b) = \emptyset$. Более того, если a < b, то $\forall x \in B_{\varepsilon}(a), \forall y \in B_{\varepsilon}(b) \colon x < y$.

▲ Возможно 4 случая:

- 1) Если a, b числа, то полагаем $\varepsilon = \frac{|b-a|}{2}$.
- 2) Если a число, $b = \pm \infty$, то полагаем $\varepsilon = \frac{1}{|a|+1}$.
- 3) Если b число, $a = \pm \infty$, то полагаем $\varepsilon = \frac{1}{|b|+1}$.
- 4) Если $a=\pm\infty, b=\mp\infty$, то полагаем $\varepsilon=1$.

Теорема 3.1 (о единственности). Если последовательность имеет предел в $\overline{\mathbb{R}}$, то он единственный.

A Предположим обратное. Пусть $a,b \in \overline{\mathbb{R}}$ — пределы последовательности $\{a_n\}, a \neq b$. По ЛЗ.1 $\exists \varepsilon > 0 \colon B_{\varepsilon}(a) \cap B_{\varepsilon}(b) = \emptyset$. По определению предела:

$$\exists N_{\varepsilon}' \in \mathbb{R} \, \forall n > N_{\varepsilon}' \colon a_n \in B_{\varepsilon}(a),$$

$$\exists N_{\varepsilon}'' \in \mathbb{R} \, \forall n > N_{\varepsilon}'' \colon b_n \in B_{\varepsilon}(b).$$

Возьмем $n > \max(N'_{\varepsilon}, N''_{\varepsilon})$, тогда $a_n \in B_{\varepsilon}(a) \cap B_{\varepsilon}(b) !!! \blacksquare$

Теорема 3.2 (об отделимости). Если $\exists \lim_{n \to \infty} a_n, \ b \neq \lim_{n \to \infty} a_n,$ то

$$\exists \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall n > N : a_n \notin B_{\varepsilon}(b).$$

▲ Пусть $a = \lim_{n \to \infty} a_n$. По Лемме 1 $\exists \varepsilon > 0 \colon B_{\varepsilon}(a) \cap B_{\varepsilon}(b) = \emptyset$.

По определению предела $\exists N_{\varepsilon} \in \mathbb{R} \ \forall n > N_{\varepsilon} \colon a_n \in B_{\varepsilon}(a)$.

Положим $N=N_{\varepsilon}$, тогда $\forall n>N$: $a_n\notin B_{\varepsilon}(b)$ (т.к. $B_{\varepsilon}(a)\cap B_{\varepsilon}(b)=\varnothing$).

Определение 3.8. Последовательность называется *сходящейся*, если она имеет конечный $(\in \mathbb{R})$ предел.

Определение 3.9. Если последовательность не является сходящейся, то она называется расходящейся.

Теорема 3.3 (об ограниченности). Если последовательность $\{a_n\}$ сходится, то она ограничена.

 \blacktriangle $\exists a \in \mathbb{R} : a = \lim a_n \Rightarrow$ для $\varepsilon = 1$ $\exists N_1 \in \mathbb{R} \ \forall n > N_1 : a_n \in B_{\varepsilon}(a)$, т.е. $a-1 < a_n < a+1$.

Положим $m = \min\{a-1, a_n, n \leq N_1\}, \quad M = \max\{a+1, a_n, n \leq N_1\}.$

Тогда $\forall n \in \mathbb{N}$: $m \leqslant a_n \leqslant M$. ■

Теорема 3.4. Существование и величина предела последовательности не зависит от конечного сдвига нумерации и значений конечного числа элементов последовательности.

- **\(\)** 1) Пусть нумерация $\{a_n\}$ сдвинута на $m \in \mathbb{Z}$. Рассмотрим $\{b_n\}$, где $b_n = a_{n+m}$. Покажем, что:

1.а) если $\lim_{n\to\infty}a_n=a$, то $\lim_{n\to\infty}b_n=a$. Действительно, если $\forall \varepsilon>0$ $\exists N_\varepsilon\in\mathbb{R}\ \forall n>N_\varepsilon\colon a_n\in B_\varepsilon(a)$, то

 $\forall n > (N_{\varepsilon} - m) : b_n = a_{n+m} \in B_{\varepsilon}(a), \text{ r.e. } a = \lim_{n \to \infty} b_n.$

- 1.б) Если $\sharp \lim_{n \to \infty} a_n$, то $\sharp \lim_{n \to \infty} b_n$ (вытекает из пункта 1.а, поскольку $\{a_n\}$ получена из $\{b_n\}$ сдвигом нумерации на -m).
- 2) Пусть в последовательности $\{a_n\}$ изменили конечное число членов, т.е. пусть $K = \{n_1, \ldots, n_k\} \subset \mathbb{N}$ и

$$b_n = \begin{cases} a_n, \text{если } n \notin K, \\ \text{число, не равное } a_n, \text{если } n \in K. \end{cases}$$

2.a) Если $\lim_{n\to\infty} a_n = a$, то $\lim_{n\to\infty} b_n = a$.

Действительно, если $\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{R}, \forall n > N_{\varepsilon} \colon a_n \in B_{\varepsilon}(a), \text{ то } \forall n > \max(N_{\varepsilon}, M),$ где $M = \max K$: $b_n = a_n \in B_{\varepsilon}(a)$, т.е. $a = \lim_{n \to \infty} b_n$.

2.б) Аналогично, если $\sharp \lim_{n \to \infty} a_n$, то $\sharp \lim_{n \to \infty} b_n$.

Определение 3.10. Последовательностью, в которой не определенно конченое число членов, называют функцию $\mathbb{N}\backslash K \to \mathbb{R}$, где K — конечное подмножество \mathbb{N} .

Определение 3.11. Пределом последовательности, в которой не определено конечное число членов, называют предел любой, совпадающей с ней на области определения (т.е. на множестве $\mathbb{N}\backslash K$), последовательности.

Замечание. Корректность последнего определения 3.11 (независимость существования и величины предела от выбора подходящей последовательности) следует из предыдущей теоремы.

Теорема 3.5 (о пределе в неравенствах).

- 1) Если $\forall n \in \mathbb{N}, n \geqslant n_0 \colon a_n \geqslant b_n$ и $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b \ (a, b \in \overline{\mathbb{R}}),$ то $a \geqslant b$.
- 2) Если $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b \ (a,b\in\overline{\mathbb{R}})$ и a>b, то $\exists N_0\in\mathbb{R} \ \forall n>N_0\colon a_n>b_n$.
- ▲ 1) Предположим обратное: a < b. По Лемме 1 $\exists \varepsilon > 0 \, \forall x \in B_{\varepsilon}(a), \forall y \in B_{\varepsilon}(b)$: x < y. По определению предела

$$\exists N_{\varepsilon}' \in \mathbb{R} \, \forall n > N_{\varepsilon}' \colon a_n \in B_{\varepsilon}(a),$$

$$\exists N_{\varepsilon}'' \in \mathbb{R} \, \forall n > N_{\varepsilon}'' \colon b_n \in B_{\varepsilon}(b).$$

Тогда, взяв $n > \max\{n_0, N_{\varepsilon}', N_{\varepsilon}''\}$, получим $a_n < b_n$, что противоречит условию.

2) По Лемме 1 $\exists \varepsilon > 0 \, \forall x \in B_{\varepsilon}(a), \forall y \in B_{\varepsilon}(b) \colon x > y$. По определению предела

$$\exists N_{\varepsilon}' \in \mathbb{R} \, \forall n > N_{\varepsilon}' \colon a_n \in B_{\varepsilon}(a),$$

$$\exists N_{\varepsilon}'' \in \mathbb{R} \, \forall n > N_{\varepsilon}'' \colon b_n \in B_{\varepsilon}(b).$$

Тогда, положив $N_0 = \max\{N'_{\varepsilon}, N''_{\varepsilon}\}$, при $n > N_0$ имеем $a_n > b_n$.

Теорема 3.6 (о зажатой последовательности). Если $\forall n \in \mathbb{N}, n > n_0 \colon x_n \leqslant z_n \leqslant y_n$ и $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$, то $\lim_{n \to \infty} z_n = a$.

23.09.14

▲ По условию:

 $\forall \varepsilon > 0 \ \exists N_{\varepsilon}' \in \mathbb{R} \ \forall n > N_{\varepsilon}' \colon a - \varepsilon < x_n < a + \varepsilon.$

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon}'' \in \mathbb{R} \ \forall n > N_{\varepsilon}'' \colon a - \varepsilon < y_n < a + \varepsilon.$$

Тогда, взяв $N_{\varepsilon} = \max\{n_0, N'_{\varepsilon}, N''_{\varepsilon}\}, \forall n > N_{\varepsilon}$ имеем:

$$a - \varepsilon < x_n \le z_n \le y_n < a + \varepsilon \Rightarrow a - \varepsilon < z_n < a + \varepsilon$$

T.e. $\lim_{n\to\infty} z_n = a$.

Теорема 3.7. Пусть $\forall n \in \mathbb{N}, n \geqslant n_0 \colon x_n \leqslant y_n$ Тогда:

- 1) Если $\lim_{n\to\infty} x_n = +\infty$, то $\lim_{n\to\infty} y_n = +\infty$.
- 2) Если $\lim_{n\to\infty} y_n = -\infty$, то $\lim_{n\to\infty} x_n = -\infty$.
- \blacktriangle Докажем пункт (1). По условию: $\forall \varepsilon > 0 \ \exists N'_{\varepsilon} \in \mathbb{R} \ \forall n > N'_{\varepsilon} \colon x_n > \frac{1}{\varepsilon}$.

Тогда, взяв $N_{\varepsilon} = \min\{n_0, N_{\varepsilon}'\}, \forall n > N_{\varepsilon}$ имеем $y_n \geqslant x_n > \frac{1}{\varepsilon}$, т.е. $y_n \in \tilde{B}_{\varepsilon}(+\infty) \Rightarrow \lim_{n \to \infty} y_n = +\infty$.

Доказательство пункта (2) аналогично. ■

3.3 Свойства пределов, связанные с арифметическими операциями

Определение 3.12. Последовательность $\{a_n\}$ называется бесконечно малой, если $\lim_{n\to\infty} a_n = 0$.

Пишут: $a_n = o(1)$.

Если $\{a_n\}$ ограничена, то пишут $a_n = O(1)$.

 Π ример. $\left\{\frac{1}{n}\right\}$ — бесконечно малая.

Лемма 3.2. $\lim_{n\to\infty} a_n = a \in \mathbb{R} \Leftrightarrow a_n = a + o(1)$.

▲ Рассмотрим $\{\alpha_n\}$, где $\alpha_n = a_n - a$. Тогда $\lim_{n \to \infty} a_n = a \Leftrightarrow$

 $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{R} \ \forall n > N_{\varepsilon} \colon |a_n - a| < \varepsilon \Leftrightarrow$

 $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{R} \ \forall n > N_{\varepsilon} \colon |\alpha_n - 0| < \varepsilon \Leftrightarrow \alpha_n = o(1). \blacksquare$

Лемма 3.3. Если $\{\alpha_n\}, \{\beta_n\}$ — бесконечно малые, $\{\gamma_n\}$ — ограниченная последовательность, то $\{\alpha_n \pm \beta_n\}, \{\alpha_n \gamma_n\}, \{\alpha_n \beta_n\}$ — бесконечно малые.

▲ 1) Покажем, что $\alpha_n \pm \beta_n = o(1)$.

T.K. $\alpha_n = o(1)$, to $\forall \varepsilon > 0 \ \exists N'_{\varepsilon} \ \forall n > N'_{\varepsilon} \colon |a_n| < \frac{\varepsilon}{2}$.

T.K. $\beta_n = o(1)$, to $\forall \varepsilon > 0 \ \exists N_\varepsilon'' \ \forall n > N_\varepsilon'' \colon |\beta_n| < \frac{\varepsilon}{2}$.

Положим $N_{\varepsilon} = \max\{N'_{\varepsilon}, N''_{\varepsilon}\}$, тогда $\forall n > N_{\varepsilon} : |\alpha_n \pm \beta_n| \leqslant |\alpha_n| + |\beta_n| < \varepsilon \Rightarrow \alpha_n \pm \beta_n = o(1)$.

2) Покажем, что $\alpha_n \gamma_n = o(1)$.

Т.к $\gamma_n = O(1)$, то $\exists c > 0 \ \forall n \in \mathbb{N} \colon |\gamma_n| \leqslant c$. Т.к. $\alpha_n = o(1), \forall \varepsilon > 0 \ \exists N_\varepsilon, n > N_\varepsilon \colon |\alpha_n| < \frac{\varepsilon}{c}$. Тогда $\forall n > N_\varepsilon \colon |\gamma_n \alpha_n| < \varepsilon \Rightarrow \gamma_n \alpha_n = o(1)$.

3) Т.к. $\beta_n = o(1)$, то по Т3.3 $\{\beta_n\}$ — ограничена \Rightarrow по пункту (2) $\alpha_n \beta_n = o(1)$.

Теорема 3.8 (о пределе суммы, произведения, частного). Пусть $\lim_{n\to\infty}a_n=a\in\mathbb{R},$ $\lim_{n\to\infty}b_n=b\in\mathbb{R},$ тогда

- 1) $\lim_{n\to\infty} (a_n \pm b_n) = a \pm b$.
- $2) \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b.$
- 3) Если $b \neq 0$, то $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.

По лемме 3.2 $a_n = a + \alpha_n$, где $\alpha_n = o(1)$, $b_n = b + \beta_n$, где $\beta_n = o(1)$. Тогда

- \blacktriangle 1) $(a_n \pm b_n) (a \pm b) = (\alpha_n \pm \beta_n) = o(1)$ по ЛЗ.3, следовательно, $\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$ по ЛЗ.2.
 - 2) $a_n b_n ab = a\beta_n + b\alpha_n + \alpha_n \beta_n = o(1)$ по ЛЗ.3, следовательно, $\lim_{n \to \infty} a_n b_n = ab$ по ЛЗ.2.
 - 3) По Т3.2 об отделимости $\exists \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall n > N \colon b_n \notin B_{\varepsilon}(0) \Rightarrow \forall n > N \colon \left|\frac{1}{b_n}\right| < \frac{1}{\varepsilon}.$

Если имеются члены $b_n = 0$, то конечное число членов $\left\{\frac{a_n}{b_n}\right\}$ не определено \Rightarrow по определению предела такой последовательности эти члены нужно доопределить, т.е. члены $b_n = 0$ заменить на ненулевые. Поэтому можно считать, что все члены $b_n \neq 0$.

Положим $C = \max\{\frac{1}{\varepsilon}, \frac{1}{|b_n|}, \text{ где } n \leqslant N\}$, тогда $\forall n \in \mathbb{N} \colon \left|\frac{1}{b_n}\right| \leqslant C$, т.е. $\left\{\frac{1}{b_n}\right\}$ ограничена и, следовательно, $\frac{1}{bb_n} = O(1)$. Имеем

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a_n b - ab_n}{bb_n} = \frac{(a + \alpha_n)b - a(b + \beta_n)}{bb_n} = (b\alpha_n - a\beta_n) \cdot \frac{1}{bb_n} = o(1) \cdot O(1) = o(1)$$

и, следовательно, $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ по ЛЗ.2.

3 a me чание. Теорема 3.8 верна для $a,b \in \overline{\mathbb{R}}$ (с допустимыми операциями с $\pm \infty).$

Задача 3. Доказать.

Определение 3.13. Последовательность $\{a_n\}$ называется бесконечно большой, если $\lim_{n\to\infty}|a_n|=+\infty$.

Задача 4. Выяснить связь между двумя условиями:

- 1) $\{a_n\}$ бесконечно большая.
- (a_n) неограничена.

3.4 Монотонные последовательности

Определение 3.14.

- 1) Последовательность $\{a_n\}$ называется нестрого возрастающей (нестрого убывающей), если $\forall n \in \mathbb{N} \colon a_n \leqslant a_{n+1} \ (a_n \geqslant a_{n+1}).$
- 2) Последовательность $\{a_n\}$ называется строго возрастающей (строго убывающей), если $\forall n \in \mathbb{N} \colon a_n < a_{n+1} \ (a_n > a_{n+1}).$

Нестрого возрастающие, нестрого убывающие последовательности называются ${\it монотонны-} {\it ми}.$

Теорема 3.9 (о пределе монотонной последовательности). Всякая монотонная последовательность $\{a_n\}$ имеет предел, равный для нестрого возрастающей последовательности $\sup\{a_n\}$, для нестрого убывающей последовательности $\inf\{a_n\}$.

- **A** Пусть $\{a_n\}$ нестрого возрастает, $S = \sup\{a_n\}$. Покажем, что $\lim_{n\to\infty} a_n = S$. Возможно два случая:
- $\{a_n\}$ ограничена сверху, $S \in \mathbb{R}$. По определению точной верхней грани имеем: $\forall \varepsilon > 0 \ \exists N_\varepsilon \in \mathbb{N} \colon a_{N_\varepsilon} > S \varepsilon$. Тогда в силу возрастания $\{a_n\} \ \forall n > N_\varepsilon \colon S \varepsilon < a_{N_\varepsilon} \leqslant a_n \leqslant S$ и, значит, $a_n \in B_\varepsilon(S) \Rightarrow S = \lim_{n \to \infty} a_n$.
- 2) $\{a_n\}$ неограничена сверху, $S=+\infty$. Тогда $\forall \varepsilon>0$ $\exists N_\varepsilon\in\mathbb{N}\colon a_{N_\varepsilon}>\frac{1}{\varepsilon}$. Отсюда в силу нестрого возрастания $\{a_n\}\ \forall n>N_\varepsilon\colon a_n\geqslant a_{N_\varepsilon}>\frac{1}{\varepsilon}$ и, значит, $a_n\in B_\varepsilon(+\infty)\Rightarrow \lim_{n\to\infty}a_n=+\infty$.

Случай нестрого убывающей последовательности аналогичен. Он может быть сведен к предыдущему случаю умножением на -1.

 ${\it Cnedcmeue}.$ Монотонная последовательность сходится тогда и только тогда, когда она ограничена.

3.5 Число e

Теорема 3.10. Последовательность $x_n = \left(1 + \frac{1}{n}\right)^n$ сходится.

▲ Рассмотрим вспомогательную последовательность $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Покажем, что $\{y_n\}$ сходится. По неравенству Бернулли $((1 + \alpha)^n \geqslant 1 + n\alpha$ при $\alpha \geqslant -1)$ имеем $y_n \geqslant 1 + \frac{n+1}{n} \geqslant 2$, т.е $\{y_n\}$ ограничена снизу, и

$$\frac{y_n}{y_{n+1}} = \frac{\left(\frac{n+1}{n}\right)^{n+1}}{\left(\frac{n+2}{n+1}\right)^{n+2}} = \frac{n}{n+1} \cdot \frac{\left(\frac{n+1}{n}\right)^{n+2}}{\left(\frac{n+2}{n+1}\right)^{n+2}} = \frac{n}{n+1} \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+2} = \frac{n}{n+1} \left(1 + \frac{1}{n(n+2)}\right)^{n+2} \geqslant \frac{n}{n+1} \left(1 + \frac{1}{n}\right) = 1, \text{ r.e.}$$

 $\{y_n\}$ — нестрого убывает, $y_n \leqslant y_1 = 4$.

По Теореме 3.9 $\exists \lim_{n \to \infty} y_n \in \mathbb{R}$. Переходя в неравенстве $2 \leqslant y_n \leqslant 4$ к пределу заключаем, что $\lim_{n \to \infty} y_n \in [2,4]$.

 $n \to \infty$ По теореме о пределе частного:

$$\exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{y_n}{1 + \frac{1}{n}} = \frac{\lim_{n \to \infty} y_n}{\lim_{n \to \infty} (1 + \frac{1}{n})} = \lim_{n \to \infty} y_n. \blacksquare$$

Определение 3.15. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ Вычислено, что e = 2.718281828...

3.6 Частичные пределы последовательности.

Теорема Больцано-Вейерштрасса

Определение 3.16. Если $\{a_n\}$ числовая последовательность, $\{n_k\}$ — строго возрастающая последовательность натуральных чисел, то последовательность $\{b_k\}$, где $\forall k \in \mathbb{N} \colon b_k = a_{n_k}$, называют подпоследовательностью $\{a_n\}$. Обозначение. $\{a_{n_k}\}$

 Π ример. $\left\{\frac{1}{2k}\right\}$ — подпоследовательность $\left\{\frac{1}{n}\right\}$.

Лемма 3.4. Если последовательность имеет предел в $\overline{\mathbb{R}}$, то любая её подпоследовательность имеет тот же предел.

- ▲ Пусть $\lim_{n\to\infty} a_n = a, \{a_{n_k}\}$ подпоследовательность $\{a_n\}$.
 - 1) Покажем, что $\forall k \in \mathbb{N} : n_k \geqslant k$.

ММИ: для k=1 $n_1\geqslant 1$ — верно. Пусть неравенство выполняется для любого k. Тогда оно выполняется и для k+1: $n_{k+1}>n_k\geqslant k\Rightarrow n_{k+1}\geqslant k+1$.

 $2)\lim_{n\to\infty}a_n=a\Rightarrow \forall arepsilon>0\ \exists N_arepsilon\in\mathbb{R}\ \forall n>N_arepsilon\colon a_n\in B_arepsilon(a).$ Тогда $\forall k>N_arepsilon\colon\ n_k>k>N_arepsilon\Rightarrow a_{n_k}\in B_arepsilon(a),$ т.е. $\lim_{n\to\infty}a_{n_k}=a.$

Определение 3.17. Точка $a \in \overline{\mathbb{R}}$ называется *частичным пределом* $\{a_n\}$, если $\exists \{a_{n_k}\}$ — подпоследовательность $\{a_n\}$, т.ч. $\lim_{k \to \infty} a_{n_k} = a$.

24.09.14

Теорема 3.11 (критерий частичного предела). $a \in \mathbb{R}$ — частичный предел $\{a_n\} \Leftrightarrow \forall \varepsilon > 0$ $B_{\varepsilon}(a)$ содержит бесконечно много членов a_n (т.е. $\{n \in \mathbb{N} : a_n \in B_{\varepsilon}(a)\}$ — бесконечно).

- ▲ (⇒) Пусть a частичный предел $\{a_n\}$ ⇒ $\exists \{a_{n_k}\}$ подпоследовательность $\{a_n\}$, что $a = \lim_{k \to \infty} \{a_{n_k}\}$. Тогда $\forall \varepsilon > 0 \ \exists N \ \forall k > N \colon a_{n_k} \in B_{\varepsilon}(a) \Rightarrow \mathsf{B} \ B_{\varepsilon}(a)$ содержится бесконечное число членов $\{a_{n_k}\}$, а следовательно, и самой последовательности $\{a_n\}$.
- (\Leftarrow) Пусть в любой окрестности $B_{\varepsilon}(a)$ точки $a \in \mathbb{R}$ содержится бесконечное число членов $\{a_n\}$. Выберем $n_1 \in \mathbb{N}$: $a_{n_1} \in B_1(a)$. Если уже выбраны $n_1, n_2, \ldots, n_m \in \mathbb{N}$: $n_1 < n_2 < \ldots < n_m$ и $a_{n_k} \in B_{\frac{1}{k}}(a)$ ($1 \leqslant k \leqslant m$), то выберем n_{m+1} так, что $n_{m+1} > n_m$ и $a_{n_{m+1}} \in B_{\frac{1}{m+1}}(a)$. Так будет построена подпоследовательность $\{a_{n_k}\}$. Покажем, что $a = \lim_{k \to \infty} a_{n_k}$. Действительно, $\forall \varepsilon > 0 \; \exists N = \frac{1}{\varepsilon} \; \forall k > N$: $a_{n_k} \in B_{\frac{1}{\varepsilon}}(a) \subset B_{\varepsilon}(a)$. ■

 $Cnedcmeue. +\infty (-\infty)$ — частичный предел $\{a_n\} \Leftrightarrow \{a_n\}$ неограничена сверху (снизу).

 \blacktriangle Докажем для $+\infty$. Доказательство для $-\infty$ аналогично.

Если $+\infty$ не является частичным пределом $\{a_n\}$, то $\exists \varepsilon > 0$, что $B_{\varepsilon}(+\infty)$ содержит лишь конечное число членов a_n . Тогда $\forall n \in \mathbb{N} \colon a_n \leqslant \max\{\frac{1}{\varepsilon}, a_n, \text{ где } a_n \in B_{\varepsilon}(+\infty)\}$, т.е. $\{a_n\}$ ограничена сверху.

Если $\{a_n\}$ ограничена сверху, то $\exists M \in \mathbb{R} : a_n \leqslant M$. Найдём $\varepsilon > 0 : \frac{1}{\varepsilon} > M$. Тогда в $B_{\varepsilon}(+\infty)$ нет членов $\{a_n\}$ и, значит, по $T3.11 + \infty$ не является частичным пределом.

Теорема 3.12. Множество частичных пределов последовательности не пусто в $\overline{\mathbb{R}}$.

A Пусть L — множество частичных пределов последовательности $\{a_n\}$. Пусть $E = \{x \in \mathbb{R} : x = a_n, n \in \mathbb{N}\}$ — множество значений $\{a_n\}$.

- 1) E конечно $\Rightarrow \exists a \in E, \exists \{n_k\}$ строго возрастающая последовательность натуральных чисел, что $a = a_{n_k} \Rightarrow \lim_{k \to \infty} a_{n_k} = a \Rightarrow a \in L$. 2) E — бесконечно $\Rightarrow \exists a$ — предельная точка $E \Rightarrow \forall \varepsilon > 0 \colon B_{\varepsilon}(a) \cap E$ — бесконечно \Rightarrow
- 2) E бесконечно $\Rightarrow \exists a$ предельная точка $E \Rightarrow \forall \varepsilon > 0 \colon B_{\varepsilon}(a) \cap E$ бесконечно $\Rightarrow \forall \varepsilon > 0 \ \{n \in \mathbb{N} \colon a_n \in B_{\varepsilon}(a)\}$ бесконечно $\Rightarrow a$ частичный предел $\{a_n\}$, т.е. $a \in L$.

Следствие (теорема Больцано-Вейерштрасса). Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

▲ По Теореме 3.12 множество частичных пределов последовательности непусто в $\overline{\mathbb{R}}$, но $\pm \infty$ по следствию из Т3.11 не является частичным пределом \Rightarrow множество частичных пределов содержит действительное число. \blacksquare

Теорема 3.13. Множество частичных пределов в $\overline{\mathbb{R}}$ (и в \mathbb{R}) замкнуто.

▲ Пусть L — множество частичных пределов $\{a_n\}$. Покажем, что $\overline{\mathbb{R}} \setminus L$ ($\mathbb{R} \setminus L$) открыто. Пусть $y \in \overline{\mathbb{R}} \setminus L \Rightarrow \exists B_{\varepsilon}(y)$, содержащая лишь конечное число членов $\{a_n\}$. Т.к. $B_{\varepsilon}(y)$ — открытое множество, то $\forall x \in B_{\varepsilon}(y) \ \exists B_{\delta}(x) \subset B_{\varepsilon}(y)$. Но тогда в $B_{\delta}(x)$ лишь конечное число членов $\{a_n\}$ $\Rightarrow x$ не является частичным пределом $\{a_n\} \Rightarrow x \in \overline{\mathbb{R}} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \overline{\mathbb{R}} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$ ($\mathbb{R} \setminus L$) $\Rightarrow B_{\varepsilon}(y) \subset \mathbb{R} \setminus L$

Следствие. Множество частичных пределов последовательности имеет максимальный и минимальный элементы в \mathbb{R} .

▲ Пусть L — множество частичных пределов $\{a_n\}$. По Т3.12 и Т3.13 множество L непусто и замкнуто в \mathbb{R} . Если L ограничено, то по T2.3~L имеет максимальный и минимальный элементы. Если L неограничено сверху (снизу), то сама последовательность $\{a_n\}$ не ограничена сверху $(\text{снизу}) \Rightarrow +\infty \ (-\infty) \in L$ по следствию из $T3.11 \Rightarrow +\infty$ — максимальный элемент $L \ (-\infty$ минимальный элемент L).

Определение 3.18.

- $1)\ Bерхний предел последовательности <math>\{a_n\}$ это наибольший из частичных пределов $\{a_n\}$ в $\overline{\mathbb{R}}$. Обозначение. $\lim a_n$.
- 2) $\mathit{Нижений}$ предел последовательности $\{a_n\}$ это наименьший из частичных пределов $\{a_n\}$ в \mathbb{R} . Обозначение. $\underline{\lim} a_n$.

Теорема 3.14. Справедливы равенства:

$$\overline{\lim}_{n \to \infty} a_n = \lim \sup_{n \to \infty} \{a_k\}, \quad \underline{\lim}_{n \to \infty} a_n = \lim \inf_{n \to \infty} \{a_k\}.$$

 \blacktriangle Докажем первое равенство. Пусть $b_n=\sup_{k\geqslant n}\{a_k\}$ ($\{b_n\}$ — последовательность со значениями в $\overline{\mathbb{R}}$). Т.к. $\forall n \in \mathbb{N} \colon b_n = \sup_{k \geqslant n} \{a_k\} \geqslant \sup_{k \geqslant n+1} \{a_k\} = b_{n+1}^{-1}$, то $\{b_n\}$ нестрого убывает $\Rightarrow \exists S = \lim_{n \to \infty} b_n \in \overline{\mathbb{R}}.$

Возможно 3 случая:

- 1) $S = +\infty \Rightarrow \forall n \in \mathbb{N} : b_n = +\infty \Rightarrow b_1 = \sup\{a_n\} = +\infty \Rightarrow \{a_n\}$ неограниченно сверху \Rightarrow $+\infty$ — частичный предел $\{a_n\} \Rightarrow +\infty = \lim_{n \to \infty} a_n$.
- 2) $S=-\infty$. Поскольку $\forall n\in\mathbb{N}\colon a_n\leqslant \sup_{k\geqslant n}\{a_k\}=b_n\xrightarrow{\mathrm{T3.7}}\lim_{n\to\infty}a_n=-\infty$ \Rightarrow множество частичных пределов $\{a_n\}$ состоит из $-\infty \Rightarrow \overline{\lim} \ a_n = -\infty$.
- 3) $S \in \mathbb{R}$. Тогда $\forall \varepsilon > 0 \; \exists N \; \forall n > N \colon b_n \in B_{\varepsilon}(S)$. Т.к. $\{b_n\}$ нестрого убывает, то $S = \inf\{b_n\} \Rightarrow$ $\forall n > N \colon S \leqslant b_n < S + \varepsilon$. По определению точной верней грани $\exists k \geqslant n \colon S - \varepsilon < a_k \leqslant \sup\{a_k\} = b_n < S + \varepsilon$. Итак, $\forall \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists k \geqslant n \colon a_k \in B_{\varepsilon}(S) \Rightarrow B_{\varepsilon}(S)$ содержит бесконечно много членов $\{a_n\} \Rightarrow S$ — частичный предел $\{a_n\}$.

С другой стороны, $\forall n > N \colon a_n \leqslant \sup\{a_k\} = b_n < S + \varepsilon \Rightarrow$ множество $A_\varepsilon = \{x \in \mathbb{R}, x > S + \varepsilon\}$

содержит лишь конечное число членов $\{a_n\}$. Множество A_{ε} открыто \Rightarrow

 $\forall y \in A_{\varepsilon} \; \exists B_{\delta}(y) \subset A_{\varepsilon} \Rightarrow \mathsf{B} \; B_{\delta}(y) \; \mathsf{содержится} \; \mathsf{лишь} \; \mathsf{конечное} \; \mathsf{число} \; \mathsf{членов} \; \{a_n\} \Rightarrow y \; \mathsf{не}$ является частичным пределом $\{a_n\}$. Т.к. $\varepsilon > 0$ произвольно, то $\forall x > S$: x не является частичным пределом $\{a_n\}$.

Следовательно, $S = \overline{\lim}_{n \to \infty} a_n$.

Теорема 3.15. $a = \lim_{n \to \infty} a_n \Leftrightarrow \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = a.$

 \blacktriangle (\Rightarrow) Пусть $a=\lim_{n\to\infty}a_n$. Тогда по Л3.4 множество частичных пределов $\{a_n\}$ состоит только из $a \Rightarrow \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = a.$

(\Leftarrow) Если $\overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = a$, то по Т3.14 имеем:

 $\forall \varepsilon > 0 \ \exists N'_{\varepsilon} \ \forall n > N'_{\varepsilon} \colon \sup_{k \ge n} \{a_k\} \in B_{\varepsilon}(a).$ $\forall \varepsilon > 0 \ \exists N''_{\varepsilon} \ \forall n > N''_{\varepsilon} \colon \inf_{k \ge n} \{a_k\} \in B_{\varepsilon}(a).$

Положим $N_{\varepsilon} = \max\{N_{\varepsilon}^{', N_{\varepsilon}''}\}$. Тогда, учитывая $\inf_{k\geqslant n}\{a_k\}\leqslant a_n\leqslant \sup_{k\geqslant n}\{a_k\}$, имеем

 $\forall \varepsilon > 0 \ \forall n > N_{\varepsilon} \colon a_n \in B_{\varepsilon}(a), \text{ r.e. } \lim_{n \to \infty} a_n = a. \blacksquare$

¹Вытекает из $(X \subset Y \Rightarrow \sup X \leqslant \sup Y)$.

3.7 Критерий Коши

Определение 3.19. Последовательность $\{a_n\}$ называют $\phi y n \partial a$ ментальной (или последовательностью Коши), если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall n > N \ \forall m > N : |a_n - a_m| < \varepsilon.$$

Теорема 3.16 (критерий Коши). $\{a_n\}$ сходится $\Leftrightarrow \{a_n\}$ фундаментальна.

 $lack A \ (\Rightarrow) \ {
m E}$ сли $\lim_{n \to \infty} a_n = a \in \mathbb{R}, \ {
m Tor} \ orall \varepsilon > 0 \ \exists N_{arepsilon} \ orall n > N_{arepsilon} \colon |a_n - a| < rac{arepsilon}{2}.$ Тогда $orall n > N_{arepsilon} \ orall m > N_{arepsilon}$ имеем:

$$|a_n - a_m| = |(a_n - a) - (a_m - a)| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

и, значит, $\{a_n\}$ — фундаментальна.

 (\Leftarrow) Пусть $\{a_n\}$ фундаментальна. Покажем, что $\{a_n\}$ ограничена.

Для $\varepsilon = 1$ $\exists N_1 \ \forall n > N_1 \ \forall m > N_1 \colon |a_n - a_m| < 1$. Зафиксируем $l > N_1$, тогда $\forall n > N_1 \colon a_l - 1 < a_n < a_l + 1$. Положим $\alpha = \min\{a_l - 1, a_n \text{ где } n \leqslant N_1\}, \ \beta = \max\{a_l + 1, a_n \text{ где } n \leqslant N_1\}.$

Тогда $\forall n \in \mathbb{N}: \alpha \leqslant a_n \leqslant \beta$, т.е. $\{a_n\}$ — ограничена. По теореме Больцано-Вейерштрасса, существует частичный предел $\{a_n\}$. Обозначим его через a и покажем, что $a = \lim_{n \to \infty} a_n$.

Т.к. $\{a_n\}$ — фундаментальна, то $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; \forall m > N \colon |a_n - a_m| < \frac{\varepsilon}{2}$. Число a — частичный предел $\{a_n\} \xrightarrow{\text{Т3.11}}$ в $B_{\frac{\varepsilon}{2}}(a)$ содержится бесконечно много членов $a_n \Rightarrow \exists m > N \colon a_m \in B_{\frac{\varepsilon}{2}}(a)$. Но тогда

$$\forall n > N : |a_n - a| \le |a_n - a_m| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

и, значит, $a = \lim_{n \to \infty} a_n$.

Замечание. При использовании критерия Коши не обязательно знать величину предела.

3.8 Счётные и несчётные множества

30.09.14

Определение 3.20. Множества A и B называются *эквивалентными* (равномощными), если $\exists f \colon A \to B$ — биекция. Обозначение: $A \sim B$.

Определение 3.21. Множество называется c чётным, если оно эквивалентно \mathbb{N} .

Замечание. Множество A счётно, если оно бесконечно и его элементы можно занумеровать. Действительно, $\forall n \in \mathbb{N} \ \exists ! a \in A : a = f(n)$. Обозначим его через a_n . $\forall a \in A \ \exists ! n \in \mathbb{N} : a = a_n$, тогда $A = \{a_1, a_2, \ldots\}, a_i \neq a_i$ при $i \neq j$.

Определение 3.22. Множество называется *не более чем счётным*, если оно конечно или счётно.

Теорема 3.17 (Кантор). Не более чем счётное объединение не более чем счётных множеств не более чем счётно.

▲ Занумеруем все множества последовательными натуральными числами, пусть E_k — множество, соответствующее номеру k, где k пробегает либо конечное множество $\{1,\ldots,K\}$, либо $\mathbb N$. Занумеруем все элементы множества $E_k, E_k = \{e_m^k\}$, где номер m пробегает либо конечное множество $\{1,\ldots,M_k\}$, либо $\mathbb N$. Запишем элементы e_m^k в таблицу:

$$E_1 = \{e_1^1, e_2^1, e_3^1, e_4^1, \ldots\},\$$

 $E_2 = \{e_1^2, e_2^1, e_2^2, e_3^2, e_4^2, \ldots\}$

 $E_2 = \{e_1^2, e_2^2, e_3^2, e_4^2, \dots\},\$ $E_3 = \{e_1^3, e_2^3, e_3^3, e_4^3, \dots\},\$

Теперь будем последовательно нумеровать элементы этой таблицы следующим образом: $e_1^1, e_1^2, e_2^1, e_3^1, e_2^2, e_3^1, \ldots$, пропуская пустые места и те элементы, которые ранее были занумерованы. В результате получим биекцию между $\bigcup_k E_k$ и либо \mathbb{N} , либо конечным множеством.

Cледствие 1. \mathbb{Z} счётно.

 $\blacktriangle \mathbb{Z} = \mathbb{N} \cup \{0\} \cup (-\mathbb{N}). \blacksquare$

Cледствие 2. \mathbb{Q} счётно.

$$lack \mathbb Q = igcup_{q\in\mathbb N} E_q,$$
 где $E_q = \left\{ rac{p}{q} \colon p\in\mathbb Z
ight\} \sim \mathbb Z \sim \mathbb N.$ $lack \blacksquare$

Определение 3.23. Бесконечное множество, не являющееся счётным, называется *несчётным*.

Теорема 3.18 (Кантор). Отрезок [a, b] несчётен.

▲ Предположим обратное. Пусть $[a,b] = \{x_1,x_2,\ldots\}$. Поделим [a,b] на три равных отрезка и обозначим через $[a_1,b_1]$ тот из них, который не содержит x_1 . Пусть уже построен отрезок $[a_n,b_n] \not\ni x_n$. Поделим $[a_n,b_n]$ на три равных отрезка и обозначим через $[a_{n+1},b_{n+1}]$ тот из них, который не содержит x_{n+1} . Так будет построена последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. По теореме Кантора о вложенных отрезках $\exists c \in \bigcap_{n=1}^{\infty} [a_n,b_n] \Rightarrow \forall n \in \mathbb{N} : c \in [a_n,b_n] \Rightarrow \forall n \in \mathbb{N} : c \notin x_n$. Итак, $c \in [a_1,b_1] \subset [a,b], \forall n \in \mathbb{N} : c \notin x_n$. !!!

4 Предел и непрерывность функций

4.1 Функции. Определение и терминология

Напомним некоторые определения

Определение 4.1. Функцией $f \colon X \to Y$ называют отношение $f \subset X \times Y$, такое что $\forall x \in X \; \exists ! y \in Y \colon xfy$.

При этом X — множество (область) определения функции f.

 $Y_f = \{y \in Y \; \exists x \in X \colon xfy\}$ — множество (область) значений f.

Вместо xfy пишут f(x) = y.

 ${\it Замечание}.$ Наряду с записью f(x) будем использовать $f(x)|_{x=x_0}$ или $f(x)|_{x_0}$

Определение 4.2. Графиком функции $f: X \to Y$ называют $\{(x, f(x)): x \in X\} \subset X \times Y$.

Определение 4.3. Пусть $f: X \to Y, A \subset X, B \subset Y$, тогда по определению:

 $f(A) = \{f(x) \colon x \in A\}$ — образ множества A.

 $f^{-1}(B) = \{x \in X : f(x) \in B\} - npooбpaз$ множества B.

По определению $f^{-1}(y_0) = f^{-1}(\{y_0\}) - n$ рообраз элемента $y_0 \in Y$.

figure 4.1

Замечание. Из определения образа $f(X) = Y_f$.

Определение 4.4. Композицией $f\colon X\to Y$ и $g\colon Y\to Z$ называют функцию $g\circ f\colon X\to Z,$ $\forall x\in X\colon (g\circ f)(x)=g(f(x))$

Определение 4.5. Пусть $f: X \to Y, A \subset X$, тогда функцию $f|_A: A \to Y$,

 $\forall x \in A \colon (f|_A)(x) = f(x)$ называют *сужением* функции f на A.

Всюду в дальнейшем под функцией будет подразумеваться отображение из $E\subset\mathbb{R}$ в \mathbb{R} , то есть действительнозначная функция действительного аргумента.

Определение 4.6. Функция $f \colon E \to \mathbb{R}$ называется ограниченной сверху (ограниченной снизу, ограниченой), если множество её значений f(E) ограничено сверху (ограничено снизу, ограничено). Введём обозначения: $\sup_E f := \sup_E f(E), \inf_E f := \inf_E f(E)$.

4.2 Предел функции в точке. Два определения и их эквивалентность

Определение 4.7 (предел функции по Коши). Точка $b \in \overline{\mathbb{R}}$ называется npedeлом функции $f \colon E \to \mathbb{R}$ в точке $a \in \overline{\mathbb{R}}$, если a — предельная точка множества E и

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B'_{\delta}(a) \cap E \colon f(x) \in B_{\varepsilon}(b).$$

Пишут: $\lim_{E\ni x\to a} = b$ или $f(x)\to b$ при $E\ni x\to a$.

В частности, если $a, b \in \mathbb{R}$, то определение 4.7 можно переписать следующим образом:

Определение 4.8. Число $b \in \mathbb{R}$ называется *пределом* функции $f \colon E \to \mathbb{R}$ в точке $a \in \mathbb{R}$, если a — предельная точка E и

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \colon (0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon).$$

3амечание. (Геометрический смысл). Пусть $f \colon E \to \mathbb{R}, \ a$ — предельная точка E. Тогда $b = \lim_{E \ni x \to a} \Leftrightarrow \forall B_{\varepsilon}(b) \ \exists B'_{\delta}(a) \colon f(B'_{\delta}(a) \cap E) \subset B_{\varepsilon}(b)$. figure. 4.2

Определение 4.9 (предел функции по Гейне). Точка $b \in \overline{\mathbb{R}}$ называется *пределом* функции $f \colon E \to \mathbb{R}$ в точке $a \in \overline{\mathbb{R}}$, если a — предельная точка множества E и

$$\forall \{x_n\}, x_n \in E \setminus \{a\} \ (\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = b).$$

Теорема 4.1. Определения предела функции по Коши и по Гейне эквивалентны.

 \blacktriangle (\Rightarrow) Докажем, что если $\lim_{E\ni x\to a}f(x)=b$ по Коши, то $\lim_{E\ni x\to a}=b$ по Гейне.

Итак, пусть $f: E \to \mathbb{R}, a$ — предельная точка E и $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B'_{\delta}(a) \cap E \colon f(x) \in B_{\varepsilon}(b)$ (*). Пусть $\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$. Покажем, что $f(x_n) \to b$. Т.к. $x_n \to a$, то

 $\exists N \ \forall n > N \colon x_n \in B_{\delta}(a). \ \text{T.K.} \ x_n \in E \setminus \{a\}, \ \text{to} \ \forall n > N \colon x_n \in B_{\delta}'(a) \cap E \xrightarrow{\text{iio } (*)} f(x_n) \in B_{\varepsilon}(b).$

Получаем: $\forall \varepsilon > 0 \; \exists N \; \forall n > N \colon f(x_n) \in B_{\varepsilon}(b)$, т.е. $\lim_{n \to \infty} f(x_n) = b$. Определение по Гейне выполняется.

 (\Leftarrow) Пусть определение по Коши не выполняется. В начале обоих определений формируются некоторые одинаковые требования, естественно, что не выполнение их в одном определении означает их невыполнение во втором определении. Поэтому пусть $f \colon E \to \mathbb{R}$ и a — предельная точка множества E, но определение по Коши не выполняется, т.е.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in B'_{\delta}(a) \cap E \colon f(x) \not\in B_{\varepsilon}(b).$$

Возьмем последовательность чисел $\delta_n = \frac{1}{n}$ и построим соответствующую последовательность точек $x_n \in B'_{\delta_n}(a) \cap E \colon f(x_n) \not\in B_{\varepsilon}(b)$. Итак, $x_n \in E \setminus \{a\}$ и $x_n \to a$ (т.к. $\delta_n \to 0$), но $f(x_n) \not\in B_{\varepsilon}(b) \Rightarrow b \neq \lim_{n \to \infty} f(x_n)$. Определение по Гейне не выполняется.

Замечание. Т.к. определения по Коши и по Гейне эквивалентны, то в дальнейшем будем говорить просто, что функция $f \colon E \to \mathbb{R}$ имеет предел в точке a, равный b. Если a — внутренняя точка множества $E \cup \{a\}$, то пишут $\lim f(x) = b$ (опуская указание на множество E).

01.10.14

Пример: Пусть $a, b \in \mathbb{R}$. Расписать на языке ε - δ :

$$\lim_{x \to 0} f(x) = b \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ (x > \frac{1}{\delta} \Rightarrow |f(x) - b| < \varepsilon).$$

 $\lim_{x \to a} f(x) = -\infty \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ (0 < |x - a| < \delta \Rightarrow f(x) < -\frac{1}{\varepsilon}).$

 $\Pi puмер: Доказать, что <math>\lim_{x \to +\infty} \frac{\sin x}{x} = 0.$

$$\blacktriangle \ \forall \varepsilon > 0 \ \exists \delta = \varepsilon \ \forall x \ (x > \frac{1}{\delta} \Rightarrow \left| \frac{\sin x}{x} \right| \leqslant \frac{1}{x} < \varepsilon) \Leftrightarrow \lim_{x \to +\infty} \frac{\sin x}{x} = 0. \blacksquare$$

4.3 Свойства предела функции

Определение 4.10. Функция $f \colon E \to \mathbb{R}$ имеет предел в точке a, если $\exists b \in \overline{\mathbb{R}} \colon b = \lim_{E \to \infty} f(x)$.

Теорема 4.2 (о пределе по подмножеству). Если $\lim_{E\ni x\to a} f(x) = b, D\subset E, a$ — предельная точка D, то $\lim_{D\ni x\to a} (f|_D)(x) = b.$

▲ Возьмем любую последовательность точек $x_n \in D \setminus \{a\}, x_n \to a$, тогда $f|_D(x_n) = f(x_n) \to b \Rightarrow \lim_{D\ni x\to a} (f|_D)(x) = b$. ■

Теорема 4.3 (о единственности предела). Если $\lim_{E\ni x\to a}f(x)$ существует, то он единственный.

▲ Возьмем любую последовательность точек $x_n \in D \setminus \{a\}, x_n \to a$, тогда $f(x_n) \to \lim_{E \ni x \to a} f(x)$. В силу единственности предела последовательности $\lim_{E \ni x \to a} f(x)$ единственный. ■

figure 4.3

$$\begin{array}{c} x'_n = \frac{1}{\pi n} \to 0, f(x'_n) = \sin \pi n = 0 \\ x''_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \to 0, f(x''_n) = \sin(\frac{\pi}{2} + 2\pi n) = 1 \end{array} \} \Rightarrow \# \lim_{x \to 0} \sin \frac{1}{x}. \blacksquare$$

Теорема 4.4 (об отделимости). Если $\lim_{E\ni x\to a} f(x)=b\neq c$, то $\exists \varepsilon>0\ \exists \delta>0$: $f(B'_\delta(a)\cap E)\cap B_\varepsilon(c)=\varnothing$.

▲ По Лемме 3.1 $\exists \varepsilon > 0$: $B_{\varepsilon}(b) \cap B_{\varepsilon}(c) = \varnothing$. T.K. $b = \lim_{E \ni x \to a} f(x) \Rightarrow \exists \delta > 0 \ \forall x \in B'_{\delta}(a) \cap E$:

 $f(x) \in B_{\varepsilon}(b) \Rightarrow f(B'_{\delta}(a) \cap E) \subset B_{\varepsilon}(b) \Rightarrow f(B'_{\delta}(a) \cap E) \cap B_{\varepsilon}(c) = \varnothing. \blacksquare$

Теорема 4.5 (об ограниченности). Если $\lim_{E \ni x \to a} f(x) \in \mathbb{R}$, то $\exists \delta > 0 \colon f(B'_{\delta}(a) \cap E)$ — ограниченное множество.

▲ Пусть $b = \lim_{E\ni x\to a} f(x)$, тогда $\exists \delta > 0 \ \forall x \in B'_{\delta}(a) \cap E \colon f(x) \in B_1(b) \Rightarrow$

 $f(B'_{\delta}(a) \cap E) \subset (b-1,b+1) \Rightarrow f(B'_{\delta}(a) \cap E)$ — ограниченное.

Теорема 4.6 (о зажатой функции). Пусть $f,g,h \colon E \to \mathbb{R}$. Тогда если $\exists \Delta > 0 \ \forall x \in B'_{\Delta}(a) \cap E$:

$$f(x) \leqslant h(x) \leqslant g(x) \lim_{E \ni x \to a} f(x) = \lim_{E \ni x \to a} g(x) = b$$
, to $\exists \lim_{E \ni x \to a} h(x) = b$.

A Возьмём любую последовательность точек $x_n \in E \setminus \{a\}, x_n \to a$, тогда

 $\exists n_0 \ \forall n \geqslant n_0 \colon x_n \in B'_{\Delta}(a) \cap E \Rightarrow \forall n \geqslant n_0 \colon f(x_n) \leqslant h(x_n) \leqslant g(x_n)$. По теореме о зажатой последовательности $h(x_n) \to b$. По определению предела по Гейне $\lim_{x \to a} h(x) = b$.

Задача 5. Доказать, что если $\exists \Delta > 0 \ \forall x \in B'_{\Delta}(a) \cap E \colon f(x) \geqslant g(x), \lim_{E \ni x \to a} f(x) = b,$

 $\lim_{E \ni x \to a} g(x) = c$, to $b \geqslant c$.

Определение 4.11. Функция $f: E \to \mathbb{R}$ называется *бесконечно малой при* $E \ni x \to a$, если $\lim_{E\ni x\to a} f(x) = 0$. Пишут f(x) = o(1) при $E\ni x\to a$.

Определение 4.12. Функция $f \colon E \to \mathbb{R}$ называется *ограниченной при* $E \ni x \to a$, если $\exists \delta > 0 \colon f(B'_{\delta}(a) \cap E)$ — ограниченное множество. Пишут f(x) = O(1) при $E \ni x \to a$.

Лемма 4.1. $\lim_{x\to a} f(x) = b \in \mathbb{R} \Leftrightarrow f(x) = b + o(1)$ при $E \ni x \to a$

▲ Возьмём любую последовательность точек $x_n \in E \setminus \{a\}, x_n \to a$, тогда утверждение $f(x_n) \to b$ эквивалентно $f(x_n) - b = o(1)$. Следовательно, по определению Гейне $\lim_{E \ni x \to a} f(x) = b \Leftrightarrow f(x) - b = o(1)$ при $E \ni x \to a$. ■

Задача 6. Доказать, что если $\alpha \colon E \to \mathbb{R}$ — бесконечно малая при $x \to a, \gamma \colon E \to \mathbb{R}$ — ограничена при $E \ni x \to a$, то $\alpha \gamma \colon E \to \mathbb{R}$ — бесконечно малая при $E \ni x \to a$.

Теорема 4.7 (о пределе суммы, произведения, частного).

Если $\lim_{E\ni x\to a} f(x) = b, \lim_{E\ni x\to a} g(x) = c$, то:

 $\lim_{x \to a} (f(x) \pm g(x)) = b \pm c,$

 $\lim_{x \to a} f(x)g(x) = bc,$

 $c \neq 0$, тогда $\lim_{E' \ni x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$ (под E' подразумевается область определения $\frac{f}{g}$).

 \blacktriangle Возьмём любую последовательность точек $x_n \in E \backslash \{a\}, x_n \to a,$ тогда

$$f(x_n) \pm g(x_n) \to b \pm c, \qquad f(x_n)g(x_n) \to bc, \qquad \frac{f(x_n)}{g(x_n)} \to \frac{b}{c}.$$

По определению предела по Гейне $\lim_{E\ni x\to a}(f(x)\pm g(x))=b\pm c, \lim_{E\ni x\to a}f(x)g(x)=bc, \lim_{E'\ni x\to a}\frac{f(x)}{g(x)}=\frac{b}{c}.$

4.4 Критерий Коши предела функции

Определение 4.13. $f \colon E \to \mathbb{R}$ удовлетворяет условию Коши в точке a, если a- предельная точка множества E и

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in B'_{\delta}(a) \cap E \colon |f(x) - f(x')| < \varepsilon.$$

Теорема 4.8. $f \colon E \to \mathbb{R}$ имеет конечный предел в точке a тогда и только тогда, когда f удовлетворяет условию Коши в точке a.

 \blacktriangle (\Rightarrow) Пусть $\lim_{E\ni x\to a} f(x)=b\in\mathbb{R}$, тогда $\forall \varepsilon>0\ \exists \delta>0\ \forall x\in B'_\delta(a)\cap E\colon |f(x)-b|<\frac{\varepsilon}{2}$. Поэтому, если $x,x'\in B'_\delta(a)\cap E$, то

$$|f(x) - f(x')| = |(f(x) - b) - (f(x') - b)| \le |f(x) - b| + |f(x') - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

т.е. f удовлетворяет условию Коши в точке a.

 (\Leftarrow) Пусть $f\colon E\to\mathbb{R}, a$ — предельная точка E и $\forall \varepsilon>0$ $\exists \delta>0$ $\forall x,x'\in B'_\delta(a)\cap E$: $|f(x)-f(x')|<\varepsilon$. Возьмём любую последовательность точек $x_n\in E\backslash\{a\}, x_n\to a$. Тогда $\forall \delta>0$ $\exists N$ $\forall n>N$: $x_n\in B'_\delta(a)\cap E$. Значит $\forall n>N,m>N$: $|f(x_n)-f(x_n)|<\varepsilon\Rightarrow \{f(x_n)\}$ — фундаментальная. По критерию Коши для последовательностей $\{f(x_n)\}$ сходится. Покажем, что предел $\{f(x_n)\}$ не зависит от выбора $\{x_n\}$. Пусть $x_n\in E\backslash\{a\}, x_n\to a$, и $y_n\in E\backslash\{a\}, y_n\to a$.

Рассмотрим
$$\{z_n\}, z_n = \begin{cases} x_k, n = 2k-1 \\ y_k, n = 2k \end{cases}$$
, т.е. $\{z_n\} \colon x_1, y_1, x_2, y_2, \dots$

Тогда $z_n \in E \setminus \{a\}, z_n \to a$. По доказанному $\{f(z_n)\}$ имеет предел. По лемме 3.4 о сходимости подпоследовательности и единственности предела последовательности $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. По определению предела по Гейне $\lim_{E \ni x \to a} f(x) \in \mathbb{R}$.

Задача 7. Пусть $\forall \varepsilon > 0 \; \exists A \in \mathbb{R} \; \exists \delta > 0 \colon (0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon)$. Верно ли, что $\exists \lim_{x \to a} f(x)$?

4.5 Односторонний предел функции

Пусть $f: E \to \mathbb{R}, a \in \mathbb{R}$.

Определение 4.14. Пусть f определена на (a, α) , т.е. $(a, \alpha) \subset E$, тогда npedenom функции <math>f cnpasa называют предел сужения $f|_{(a,\alpha)}$ в точке a. Обозначение: f(a+0) или $\lim_{x\to a+0} f(x)$.

Определение 4.15. Пусть f определена на (β, a) , т.е. $(\beta, a) \subset E$, тогда npedenom функции <math>f cneba называют предел функции $f|_{(\beta,a)}$ в точке a. Обозначение: f(a-0) или $\lim_{x \to a} f(x)$

Определение 4.16. Пределы функции слева и справа называют односторонними.

Замечание. Корректность определения односторонних пределов (независимость от выбора точек α и β) следует из теоремы о пределе по подмножеству.

Лемма 4.2 (об односторонних пределах). Пусть функция f определена в некоторой окрестности точки a. Тогда

 $\lim_{x \to a} f(x) = b \Leftrightarrow f(a-0) = b = f(a+0).$

- ▲ (⇒) Пусть $\lim_{x\to a} f(x) = b$, тогда a внутренняя точка $E \cup \{a\}$, значит, $\exists B'_{\delta}(a) \subset E$, по T4.2 о пределу по подмножеству: $f(a+0) = \lim_{(a,a+\delta) \ni x\to a} f|_{(a,a+\delta)}(x) = b$ и $f(a-0) = \lim_{(a-\delta,a) \ni x\to a} f|_{(a-\delta,a)}(x) = b$.
- (\Leftarrow) Пусть f(a-0)=b=f(a+0), тогда $\exists \Delta_1, \Delta_2>0$: f определена на $(a-\Delta_1,a)\cup (a,a+\Delta_2)$, $\forall \varepsilon>0 \ \exists \delta_1>0 \ \forall x\in B'_{\delta_1}(a)\cap (a-\Delta_1,a)\colon f(x)\in B_\varepsilon(b),$ $\forall \varepsilon>0 \ \exists \delta_2>0 \ \forall x\in B'_{\delta_2}(a)\cap (a,a+\Delta_2)\colon f(x)\in B_\varepsilon(b).$

Положим $\delta = \min\{\tilde{\Delta}_1, \Delta_2, \delta_1, \delta_2\}$, тогда: $\forall x \in B'_{\delta}(a) \colon f(x) \in B_{\varepsilon}(b)$, и, значит, $\lim_{x \to a} f(x) = b$.

4.6 Монотонные функции

Определение 4.17. Функция $f \colon E \to \mathbb{R}$ называется нестрого возрастающей (нестрого убывающей) на $X \subset E$, если $\forall x, x' \in X \ (x < x' \Rightarrow f(x) \leqslant f(x'))$ (соотв. $f(x) \geqslant f(x')$).

Определение 4.18. Функция $f: E \to \mathbb{R}$ называется строго возрастающей (строго убывающей) на $X \subset E$, если $\forall x, x' \in X \ (x < x' \Rightarrow f(x) < f(x'))$ (соотв. f(x) > f(x')).

Определение 4.19. Функция $f\colon E\to\mathbb{R}$ называется монотонной на $X\subset E,$ если f нестрого возрастает или нестрого убывает на X.

Теорема 4.9 (о пределах монотонной функции). Пусть $f:(a,b)\to\mathbb{R}$ монотонна 07.10.14 на (a,b). Тогда:

- 1) Существует f(b-0), равный $\sup_{(a,b)} f$, если f нестрого возрастает на (a,b), и равный $\inf_{(a,b)} f$, если f нестрого убывает на (a,b).
- 2) Существует f(a+0), равный $\inf_{(a,b)} f$, если f нестрого возрастает на (a,b), и равный $\sup_{(a,b)} f$, если f нестрого убывает на (a,b).
- \blacktriangle Пусть f нестрого возрастает на $(a,b), s = \sup_{(a,b)} f$. Покажем, что $\exists f(b-0) = s$.
 - 1) $s \in \mathbb{R} \Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0, b \delta \in (a,b) \colon f(b-\delta) > s \varepsilon$. В силу нестрогого возрастания f на (a,b) имеем: $\forall x \in (b-\delta,b) \colon s \geqslant f(x) \geqslant f(b-\delta) > s \varepsilon$, т.е. $f(x) \in B_{\varepsilon}(s) \Rightarrow f(b-0) = s$.
 - 2) $s = +\infty \Rightarrow \forall \varepsilon > 0 \; \exists \delta > 0, b \delta \in (a,b) \colon f(b-\delta) > \frac{1}{\varepsilon}$. В силу нестрогого возрастания f на (a,b) имеем: $\forall x \in (b-\delta,b) \colon f(x) \geqslant f(x-\delta) > \frac{1}{\varepsilon}$, т.е. $f(x) \in B_{\varepsilon}(+\infty) \Rightarrow f(b-0) = +\infty$.

Остальные случаи аналогичны.

Следствие 1. Пусть f монотонна в $B_{\Delta}(a)$ ($a \in \mathbb{R}$), тогда существует конечные f(a-0) и f(a+0). Если f нестрого возрастает в $B_{\Delta}(a)$ то $f(a-0) \leqslant f(a) \leqslant f(a+0)$. Если f нестрого убывает в $B_{\Delta}(a)$ то $f(a-0) \geqslant f(a) \geqslant f(a+0)$.

▲ Если f нестрого возрастает в $B_{\Delta}(a)$, то по предыдущей теореме: $f(a-0) = \sup_{a \in A} f(a) \le \inf_{a \in A} f(a+0)$. Случай нестрого убыва

 $f(a-0) = \sup_{(a-\Delta,a)} f \leqslant f(a) \leqslant \inf_{(a,a+\Delta)} f = f(a+0)$. Случай нестрого убывания аналогичен. \blacksquare

 $\mathit{Cnedcmeue}\ 2.\ \mathrm{Пусть}\ f$ монотонна на $I\subset\mathbb{R},$ где I — отрезок, полуинтервал, интервал (возможно с одним или с двумя бесконечными концами).

Если $x \in I, x \neq \sup I, f(x) \neq f(x+0)$, то интервал с концами f(x) и f(x+0) не пересекается с f(I), но с обеих сторон содержит точки из f(I).

Если $x \in I, x \neq \inf I, f(x) \neq f(x-0)$, то интервал с концами f(x-0) и f(x) не пересекается с f(I), но с обеих сторон содержит точки из f(I).

 \blacktriangle Пусть f нестрого возрастает на $I, x \in I, x \neq \sup I$.

Тогда $\forall t \in I, t \leqslant x \colon f(t) \leqslant f(x); \quad \forall t \in I, t > x \colon f(t) \geqslant \inf_{(x,\sup I)} f = f(x+0).$ Следовательно, если $f(x) \neq f(x+0)$, то интервал $(f(x), f(x+0)) \cap f(I) = \varnothing$, хотя с обеих сторон имеет точки из f(I).

Случай, когда f нестрого убывает на I рассматривается аналогично.

4.7 Замена переменной в пределе

Bonpoc. Пусть $\lim_{E\ni x\to a} f(x)=b, f(E)\subset B$ и $\lim_{E\ni x\to b} g(y)=c$. Верно ли, что $\lim_{E\ni x\to a} (g\circ f)(x)=c$? Ответ. Не верно. Пусть $g\colon \mathbb{R}\to \mathbb{R}$,

$$g(y) = \begin{cases} 0, y \neq b, \\ 1, y = b. \end{cases}$$
 Тогда $\lim_{y \to b} g(y) = 0.$

 $g(y)=egin{cases} 0,y
eq b, & \text{Тогда} \lim_{y o b} g(y)=0. \\ 1,y=b. & \text{Пусть } f\colon \mathbb{R} o \mathbb{R}, f(x)\equiv b. & \text{Тогда} \lim_{x o a} f(x)=b, \ (g\circ f)(x)=g(f(x))\equiv 1 \ \text{и, следовательно}, \end{cases}$ $0 = \lim_{y \to b} g(y) \neq \lim_{x \to a} g(f(x)).$

Теорема 4.10 (о замене переменной под знаком предела). Пусть $\lim_{x\to x\to a} f(x) = b$, $\exists \Delta > 0 \ \forall x \in B'_{\Delta}(a) \cap E \colon f(x) \neq b, \text{ пусть } f(E) \subset B, \lim_{E \ni y \to b} g(y) = c \ (a,b,c \in \overline{\mathbb{R}}).$ Тогда $\lim_{E\ni x\to a} (g\circ f)(x) = c = \lim_{E\ni y\to b} g(y).$

▲ Пусть $x_n \in E \setminus \{a\}, x_n \to a$, тогда $\exists n_0 \ \forall n > n_0 \colon x_n \in B'_\Delta(a) \cap E \Rightarrow f(x_n) \neq b$. Т.к. $\lim_{E \ni x \to a} f(x) = b$, то по определению предела по Гейне $f(x_n) \to b$ и, следовательно, $g(f(x_n)) \to c$. Таким образом, $\forall \{x_n\}, x_n \in E \setminus \{a\} \ (x_n \to a \Rightarrow (g \circ f)(x_n) \to c)$, т.е. $\lim_{E\ni x\to a} (g \circ f)(x) = c$.

Непрерывность функции 4.8

Определение 4.20 (по Коши). Функция $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B_{\delta}(a) \cap E \colon f(x) \in B_{\varepsilon}(f(a)).$$

Замечание. Если точка a не является предельной точкой множества E, то условие непрерывности в этой точке всегда выполняется. Действительно, $\exists \delta > 0 \ B_{\delta}(a) \cap E = \{a\} \Rightarrow$ $f(B_{\delta}(a) \cap E) = \{f(a)\} \subset B_{\varepsilon}(f(a)).$

Если точка a предельная точка E, то утверждение, что f непрерывна в точке a, эквивалентно утверждению $\lim f(x) = f(a)$.

Определение 4.21 (по Гейне). Функция $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$, если

$$\forall \{x_n\}, x_n \in E \ (\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = f(a)).$$

Теорема 4.11. Определения непрерывности функции по Коши и по Гейне эквивалентны.

▲ (⇒) Покажем, что если выполняется определение непрерывности по Коши, то выполняется и определение по Гейне.

Пусть
$$f \colon E \to \mathbb{R}$$
 и $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in B_{\delta}(a) \cap E \colon f(x) \in B_{\varepsilon}(f(a))$ (*)

Пусть $x_n \in E$ $x_n \to a$, тогда $\exists N \ \forall n > N \colon x_n \in B_\delta(a) \cap E \stackrel{(*)}{\Longrightarrow} \forall n > N \colon f(x_n) \in B_\varepsilon(f(a))$.

Получим $\forall \varepsilon > 0 \; \exists N \; \forall n > N \colon f(x_n) \in B_{\varepsilon}(f(a))$, т.е. $f(x_n) \to f(a)$. Определение по Гейне выполняется.

(←) Покажем, что если выполняется определение по Гейне, то выполняется и определение по Коши.

Если точка $a \in E$ не является предельной точкой, то оба определения выполняются.

Если $a \in E$ — предельная точка, то по определению предела функции по Гейне $\lim f(x) = f(a)$, а значит, f непрерывна в точке a в смысле определения Коши.

Определение 4.22. Пусть $f: E \to \mathbb{R}, a$ — предельная точка E. Функция f разрывна (имеет paspы 6) в точке a, если функция f не является непрерывной в этой точке. При этом говорят, что точка a является mочкой pазрыва функции f.

 $\ \ \Pi$ ример: Пусть $D\colon \mathbb{R} \to \mathbb{R}$, где $D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$ — функция Дирихле. Покажем, что функция Дирихле разрывна в каждой точке. Пусть $a \in \mathbb{R}$. Тогда

$$\lim_{x \to a} (D|_{\mathbb{Q}})(x) = 1,$$

$$\lim_{x \to a} (D|_{\mathbb{R} \setminus \mathbb{Q}})(x) = 0$$

$$\Rightarrow \nexists \lim_{x \to a} D(x) \Rightarrow f$$
 разрывна в точке a .

Свойства функций, непрерывных в точке 4.9

Теорема 4.12 (о непрерывности суммы, произведения, частного).

Если функции $f \colon E \to \mathbb{R}$ и $g \colon E \to \mathbb{R}$ непрерывны в точке a, то в точке a непрерывны $f \pm g, f \cdot g, \frac{f}{g}$ (при $g(a) \neq 0$).

 \blacktriangle Если a не является предельной точкой множества E, то в этой точке непрерывна любая функция, которая в ней определена и, значит, теорема в этом случае верна.

Если a — предельная точка множества E, то утверждение эквивалентно утверждению $\lim(f\pm g)=f(a)\pm g(a), \lim(f\cdot g)=f(a)g(a), \lim\frac{f}{g}=\frac{f(a)}{g(a)},$ что вытекает из теоремы о пределе суммы, произведения и частного и определения непрерывности f и g в точке a.

Пример. Пусть $P_n: \mathbb{R} \to \mathbb{R}$, где $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, a_i \in \mathbb{R}, a_n \neq 0.$ 08.10.14Докажем, что функция P_n непрерывна в любой точке $a \in \mathbb{R}$.

 \blacktriangle Рассмотрим функции $f,g:\mathbb{R}\to\mathbb{R}$, где f(x)=c,g(x)=x. Тогда

 $\forall \varepsilon > 0 \ \exists \delta = 1 \ \forall x \in \mathbb{R} \ (|x-a| < \delta \Rightarrow |f(x)-f(a)| = |c-c| = 0 < \varepsilon) \Rightarrow f$ — непрерывна в точке a. $\forall \varepsilon > 0 \ \exists \delta = \varepsilon \ \forall x \in \mathbb{R} \ (|x-a| < \delta \Rightarrow |g(x) - g(a)| = |x-a| < \delta = \varepsilon) \Rightarrow g$ — непрерывна в точке a. По Т4.12 $\forall m \in \mathbb{N} \cup \{0\}$ функция $h_m \colon \mathbb{R} \to \mathbb{R}$, где $h_m(x) = x^m$, — непрерывна в точке a. Тогда $P_n = a_n h_n + a_{n-1} h_{n-1} + \dots a_0 + h_0$ — непрерывна в точке a.

Теорема 4.13. Если $f: A \to \mathbb{R}$ непрерывна в точке $a, g: B \to \mathbb{R}$ непрерывна в точке b, $b=f(a), f(A)\subset B$, то композиция $g\circ f\colon A\to\mathbb{R}$ непрерывна в точке a.

 \blacktriangle Возьмём любую последовательность точек $x_n \in A, x_n \to a$. Тогда $f(x_n) \in B$ и $f(x_n) \to f(a) = b$. Следовательно, $g(f(x_n)) \to g(b) = g(f(a)) \Rightarrow g \circ f$ непрерывна в точке a.

Следствие (предельный переход под знаком непрерывной функции).

Если $g\colon B\to \mathbb{R}$ непрерывна в точке $b, \lim_{E\ni x\to a}f(x)=b, f(E)\subset B,$ то

$$\lim_{E\ni x\to a}g\circ f(x)=g(b)=g(\lim_{E\ni x\to a}f(x))\ (a\in\mathbb{R}).$$

 \blacktriangle Доопределим (переопределим) функцию f, положив f(a) = b, тогда утверждение вытекает из Т4.13. ■

Классификация точек разрыва 4.10

Определение 4.23. Пусть функция $f: E \to \mathbb{R}$ определена в $B'_{\Delta}(a)$ $(a \in \mathbb{R})$, т.е. $B'_{\Delta}(a) \subset E$.

- 1) Точка a называется точкой устранимого разрыва функции f, если $\exists \lim f(x) \in \mathbb{R}$, а значение f(a) или не существует, или не равно этому пределу.
- 2) Точка а называется точкой разрыва I рода функции f, если существуют $f(a-0) \in \mathbb{R}$, $f(a+0) \in \mathbb{R}$, Ho $f(a-0) \neq f(a+0)$.
- 3) Точка a называется точкой разрыва II рода функции f, если хотя бы один из односторонних пределов f(a-0) и f(a+0) не существует или бесконечен.

Примеры:

1) Пусть
$$f \colon \mathbb{R} \to \mathbb{R}$$
, $f(x) = \operatorname{sign} x = \begin{cases} 1, x > 0, \\ 0, x = 0, \\ -1, x < 0. \end{cases}$

Тогда f(+0) = 1 и f(-0) = -1. Следовательно, x = 0 — точка разрыва I рода.

- 2) Пусть $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{sign}^2 x$, тогда x = 0 точка устранимого разрыва.
- 3) Пусть $h \colon \mathbb{R} \backslash \{0\} \to \mathbb{R}, \quad h(x) = \frac{1}{x}$, тогда x = 0 точка разрыва II рода.
- 4) Функция Дирихле $D: \mathbb{R} \to \mathbb{R}$ имеет разрыв II рода в каждой точке.

Теорема 4.14 (о разрывах монотонной функции). Если $f:(a,b)\to\mathbb{R}$ монотонна на $(a,b), (a,b \in \overline{\mathbb{R}})$, то f имеет разрывы только I рода, причём их не более чем счётное множество.

▲ По следствию 1 из Т4.9 о пределах монотонной функции

 $\forall x \in (a,b) \ \exists f(x+0), f(x-0) \in \mathbb{R}$, причём $f(x-0) \leqslant f(x) \leqslant f(x+0)$ или $f(x-0) \geqslant f(x) \geqslant f(x+0)$. Если f(x+0) = f(x-0), то f(x-0) = f(x) = f(x+0) и, следовательно, f — непрерывна в точке x. Поэтому в точке разрыва $f(x-0) \neq f(x+0)$, так что x — точка разрыва I рода. В силу монотонности функции f на (a,b) интервалы с концами f(x-0) и f(x+0) для различных точек разрыва не пересекаются.

Поставим в соответствие каждому такому интервалу рациональное число, содержащееся в нём. Этим установим биекцию между множеством таких интервалов и подмножеством Q. Любое подмножество \mathbb{Q} не более чем счётно \Rightarrow множество точек разрыва f не более чем счётное множество. ■

4.11 Свойства функций, непрерывных на промежутках

Теорема Больцано-Коши о промежуточных значениях

Определение 4.24. Функция $f:[a,b] \to \mathbb{R}$ непрерывна на [a,b], если f непрерывна в каждой точке [a,b]. Обозначение: C[a,b] — множество непрерывных функций на [a,b]

Теорема 4.15 (Больцано – **Коши).** Если $f \in C[a,b], f(a) \cdot f(b) < 0$, то $\exists c \in [a,b] : f(c) = 0$.

$$[a_2,b_2] = \begin{cases} [a_1,\frac{a_1+b_1}{2}], \text{ если } f(a_1)f(\frac{a_1+b_1}{2}) < 0\\ [\frac{a_1+b_1}{2},b_1], \text{ если } f(\frac{a_1+b_1}{2})f(b_1) < 0, \end{cases}$$

lack A Пусть $[a_1,b_1]=[a,b]$. Если $f(\frac{a_1+b_1}{2})=0$, то положим $c=\frac{a_1+b_1}{2}$, иначе $[a_2,b_2]=egin{cases} [a_1,\frac{a_1+b_1}{2}],\ \text{если}\ f(a_1)f(\frac{a_1+b_1}{2})<0,\ [\frac{a_1+b_1}{2},b_1],\ \text{если}\ f(\frac{a_1+b_1}{2})f(b_1)<0,\ \end{bmatrix}$ Т.к. $[f(a_1)f(\frac{a_1+b_1}{2})][f(\frac{a_1+b_1}{2})f(b_1)]=f(a_1)f(b_1)f^2(\frac{a+b}{2})<0$, то отрезок $[a_2,b_2]$ определен однознач-

$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, \frac{a_n + b_n}{2}], \text{ если } f(a_n) f(\frac{a_n + b_n}{2}) < 0, \\ [\frac{a_n + b_n}{2}, b_n], \text{ если } f(\frac{a_n + b_n}{2}) f(b_n) < 0, \end{cases}$$

но. Пусть уже построен $[a_n,b_n], f(a_n)f(b_n) < 0$. Если $f(\frac{a_n+b_n}{2}) = 0$, то $c = \frac{a_n+b_n}{2}$, иначе $[a_{n+1},b_{n+1}] = \begin{cases} [a_n,\frac{a_n+b_n}{2}], \text{ если } f(a_n)f(\frac{a_n+b_n}{2}) < 0, \\ [\frac{a_n+b_n}{2},b_n], \text{ если } f(\frac{a_n+b_n}{2})f(b_n) < 0, \end{cases}$ Т.к. $[f(a_n)f(\frac{a_n+b_n}{2})][f(\frac{a_n+b_n}{2})f(b_n)] = f(a_n)f^2(\frac{a_n+b_n}{2})f(b_n) < 0 \Rightarrow [a_{n+1},b_{n+1}]$ определен однознач-HO.

Если за конечное число шагов точка c не найдена, то будет построена последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. Т.к. $b_n-a_n=\frac{b-a}{2^{n-1}}\to 0 \Rightarrow \{[a_n,b_n]\}_{n=1}^{\infty}$ — стягивающаяся последовательность. По теореме Кантора о вложенных отрезках существует общая точка у этих

отрезков:
$$c\in\bigcap_{n=1}^{\infty}[a_n,b_n].$$

Т.к. $|a_n-c|\leqslant b_n-a_n,\quad |b_n-c|\leqslant b_n-a_n\Rightarrow a_n\to c,b_n\to c.$

В силу непрерывности функции f в точке c имеем $f(a_n) \to f(c), f(b_n) \to f(c)$. Перейдем в неравенстве $f(a_n)f(b_n) < 0$ к пределу, получим $f^2(c) \leqslant 0 \Rightarrow f(c) = 0$, т.е. точка c — искомая.

Задача 8. Если $f \in C[a,b], f(a) < 0, f(b) > 0, c = \sup\{x \in [a,b]: f(x) < 0\}, \text{ то } f(c) = 0.$

Теорема 4.16 (Больцано – **Коши).** Если $f \in C[a,b], f(a) = A, f(b) = B$, то для любого C между A и B найдется $c \in [a,b]: f(c) = C$.

 \blacktriangle Пусть A=B, тогда положим c=a.

Пусть $A \neq B$, тогда $\varphi \colon [a,b] \to \mathbb{R}, \varphi(x) = f(x) - C$, удовлетворяет условию предыдущей теоремы $\Rightarrow \exists c \in [a,b] \colon \varphi(c) = f(c) - C = 0$.

Теоремы Вейерштрасса

Теорема 4.17 (Вейерштрасса об ограниченности). Если $f \in C[a,b]$, то она ограничена на [a,b] ($\exists M>0 \ \forall x \in [a,b] \colon |f(x)| < M$).

▲ Пусть f непрерывна и неограниченна на отрезке [a,b]. Тогда $\forall n \in \mathbb{N} \ \exists x_n \in [a,b] \colon |f(x_n)| > n$. По Теореме Больцано — Вейерштрасса выделим из $\{x_n\}$ сходящуюся подпоследовательность $\{x_{n_k}\}, x_{n_k} \to x_0$. Т.к. $\forall k \in \mathbb{N} \colon a \leqslant x_{n_k} \leqslant b$, то, переходя в этом неравенстве к пределу при $k \to \infty$, получим $a \leqslant x_0 \leqslant b$, то есть $x_0 \in [a,b]$.

В силу непрерывности функции f в точке x_0 $f(x_{n_k}) \to f(x_0)$. Но т.к. $|f(x_{n_k})| > n_k \geqslant k$, то $\{f(x_{n_k})\}$ неограничена, что противоречит Т3.3 об ограниченности.

Замечание. На интервале соответствующее утверждение неверно, например $f \colon (0,1) \to \mathbb{R}$, $f(x) = \frac{1}{x}$.

Теорема 4.18 (Вейерштрасса о точных гранях). Если $f \in C[a,b]$, то $\exists x_s, x_i \in [a,b]$: $f(x_s) = \sup_{[a,b]} f, f(x_i) = \inf_{[a,b]} f.$

▲ По Т17 f ограничена на $[a,b] \Rightarrow \exists M = \sup_{[a,b]} f \in \mathbb{R}$ и $m = \inf_{[a,b]} f \in \mathbb{R}$. По определению точной верхней грани, $\forall n \in \mathbb{N} \ \exists x_n \in [a,b] \colon f(x_n) > M - \frac{1}{n}$.

По Теореме Больцано-Вейерштрасса выделим из $\{x_n\}$ сходящуюся подпоследовательность $\{x_{n_k}\}, x_{n_k} \to x_s \in [a,b]$. В силу непрерывности f в точке x_s имеем $f(x_{n_k}) \to f(x_s)$.

Переходя к пределу при $k \to \infty$ в неравенстве $M \geqslant f(x_{n_k}) > M - \frac{1}{n_k}$, получим $f(x_s) = M$. Точка x_i находится аналогично.

4.12 Промежутки. Теорема об обратной функции

14.10.14

Определение 4.25. Промежсутком называется любое множество $J \subset \mathbb{R}$, содержащее с какой-то парой точек и все точки, лежащие между ними (т.е. $\forall a, b \in J, a < x < b \Rightarrow x \in J$)

Лемма 4.3. Промежутками являются следующие множества: \mathbb{R} , лучи $(a, +\infty)$, $[a, +\infty]$, $(-\infty, b)$, $(-\infty, b]$, отрезки [a, b], интервалы (a, b), полуинтервалы (a, b], [a, b) $(a, b \in \mathbb{R})$, \varnothing . Любой промежуток — одно из указанных множеств.

▲ Очевидно, все приведённые множества — промежутки. Покажем, что ими исчерпываются все промежутки.

Пусть J — промежуток, $J \neq \emptyset$. Обозначим $a = \inf J \in \overline{\mathbb{R}}, b = \sup J \in \overline{\mathbb{R}}$. Если a < x < b, то $x \neq \sup J, x \neq \inf J \Rightarrow \exists x', x'' \in J \colon x' < x < x'' \Rightarrow x \in J$. Откуда $(a,b) \subset J \subset [a,b]$ (в $\overline{\mathbb{R}}$), т.е. J является либо отрезком, либо интервалом, либо полуинтервалом, быть может с одним или двумя бесконечными концами, не входящими в J.

Определение 4.26. Если $f: X \to Y$ — биекция, то функция $f^{-1}: Y \to X$, определенная правилом $f^{-1}(y) = x \Leftrightarrow f(x) = y$, называется *обратной* функцией к f.

3амечание. По определению, $f(f^{-1}(y)) = y$ для всех $y \in Y$ и $f^{-1}(f(x)) = x$ для всех $x \in X$.

Лемма 4.4. Пусть $f: E \to \mathbb{R}, E \subset \mathbb{R}, D = f(E)$. Если f строго монотонна на E, то существует $f^{-1}: D \to \mathbb{R}$. Причём f^{-1} строго возрастает на D, если f строго возрастает на E и f^{-1} строго убывает на D, если f строго убывает на E.

▲ По условию $f \colon E \to D$ — сюръекция. Если $x_1, x_2 \in E, x_1 \neq x_2$, то в силу строгой монотонности f имеем $f(x_1) \neq f(x_2)$, так что f — инъекция. Следовательно, f — биекция и $\exists f^{-1} \colon D \to \mathbb{R}$. Пусть f строго возрастает на E. Покажем, что f^{-1} строго возрастает на D. Пусть $y_1, y_2 \in D \colon y_1 < y_2$. Обозначим $x_i = f^{-1}(y_i)(i=1,2)$. Равенство $x_1 = x_2$ не может выполняться, т.к. $f(x_1) = y_1 \neq y_2 = f(x_2)$. Неравенство $x_2 < x_1$ не может выполняться, т.к. $(x_2 < x_1 \xrightarrow{f$ строго возр. f f строго возр. Поэтому f f строго возрастает.

Случай строгого убывания рассматривается аналогично.

Теорема 4.19 (об обратной функции). Если f — строго монотонна и непрерывна на промежутке I, то f(I) является промежутком и на f(I) существует обратная функция f^{-1} , которая также строго монотонна и непрерывна.

▲ Пусть f строго возрастает на I. Если f принимает в точках a и b значения f(a) и f(b), то по теореме Больцано-Коши функция f принимает все промежуточные (между f(a) и f(b)) значения. Значит, J = f(I) — промежуток. По Л4.4 обратная функция f^{-1} : $J \to I$ определена и строго возрастает на J.

Покажем, что функция f^{-1} непрерывна на J. По T4.9 о пределах монотонной функции конечные односторонние пределы существуют для каждой внутренней точки J (в случае концевой точки J, принадлежащей J, существует один конечный односторонний предел).

Предположим, f^{-1} не является непрерывной в некоторой точке $y_0 \in J$. Поскольку $f^{-1}(y_0-0) \leqslant f^{-1}(y_0) \leqslant f^{-1}(y_0+0)$, то либо $f^{-1}(y_0-0) \neq f^{-1}(y_0)$, либо $f^{-1}(y_0) \neq f^{-1}(y_0+0)$. Пусть для определённости $f^{-1}(y_0) \neq f^{-1}(y_0+0)$. По следствию 2 T4.9 о пределах монотонной функции интервал $(f^{-1}(y_0-0), f^{-1}(y))$ не пересекается с I и лежит между точками из I. Это противоречит тому, что I — промежуток. Следовательно, f^{-1} непрерывна на J.

 $\mathit{Пример}.$ Пусть $f\colon \mathbb{R} \to \mathbb{R},$ где $f(x)=x^n,$ степенная функция с показателем $n\in \mathbb{N}.$ Эта функция непрерывна на $\mathbb{R}.$

f строго возрастает на $[0, +\infty)$. Тогда по $\mathrm{T}4.19$ для сужения f на $[0, +\infty)$ существует $f^{-1}: [0, +\infty] \to \mathbb{R}, \sqrt[n]{y} = f^{-1}(y)$. Функция f^{-1} непрерывна на $[0, +\infty)$.

3амечание. Если $a\geqslant 0$, то положим $a^{\frac{1}{n}}:=\sqrt[n]{a}$.

5 Элементарные функции

5.1 Показательная функция на $\mathbb R$

Пусть $a > 0, p, q \in \mathbb{N}$. Положим

$$a^{\frac{p}{q}} = (a^{\frac{1}{q}})^p, \quad a^{-\frac{p}{q}} = \frac{1}{a^{\frac{p}{q}}}.$$

Замечание. Определение корректно, то есть, если r_1 и r_2 — рациональные и $r_1=r_2$, то $a^{r_1}=a^{r_2}$. Для проверки этого равенства достаточно показать, что если $p\in\mathbb{Z}, k,q\in\mathbb{N}$, то $a^{\frac{p}{q}}=a^{\frac{kp}{kq}}$.

Действительно, т.к $((a^{\frac{1}{kq}})^k)^q=a=(a^{\frac{1}{q}})^q$, то в силу строгой монотонности степенной функции имеем $(a^{\frac{1}{kq}})^k=a^{\frac{1}{q}}$, откуда

 $a^{\frac{kp}{kq}} = (a^{\frac{1}{kq}})^{kp} = ((a^{\frac{1}{kq}})^k)^p = (a^{\frac{1}{q}})^p = a^{\frac{p}{q}}$. Аналогично устанавливается равенство $(a^{\frac{1}{q}})^p = (a^p)^{\frac{1}{q}}$. Будем использовать следующие свойства степени a^r с $r \in \mathbb{Q}$ (a > 0).

- 1) $r_1 < r_2 \Rightarrow a^{r_1} < a^{r_2}$ при a > 1 и $a^{r_1} > a^{r_2}$ при 0 < a < 1.
- 2) $a^{r_1}a^{r_2} = a^{r_1+r_2}$.
- 3) $(a^{r_1})^{r_2} = a^{r_1 r_2}$.
- 4) $a^0 = 1$.
- 5) $(ab)^r = a^r b^r$.

Проверим, например, свойство (3). Пусть $p, p' \in \mathbb{Z}$ и $q, q' \in \mathbb{N}$, тогда $(a^{\frac{p}{q}})^{\frac{p'}{q'}} = (((a^{\frac{1}{q}})^p)^{\frac{1}{q'}})^{p'} = (a^{\frac{1}{qq'}})^{pp'} = a^{\frac{pp'}{qq'}} = a^{\frac{p}{q}\frac{p'}{q'}}.$

Замечание. Для $r \in \mathbb{Q}$ можно рассмотреть функцию $x \mapsto x^r, x \in (0, +\infty)$. Эта функция непрерывна на области определения.

Лемма 5.1 (обобщенное неравенство Бернулли). Пусть $a > 1, r \in \mathbb{Q}, |r| \leqslant 1$, тогда $|a^r - 1| \le 2|r|(a - 1).$

 \blacktriangle Пусть $r=\frac{1}{n}, n\in\mathbb{N}$, тогда обозначим $\alpha=a^{\frac{1}{n}}-1$. Имеем $a^{\frac{1}{n}}=1+\alpha, a=(1+\alpha)^n\geqslant 1+\alpha n\Rightarrow$ $\alpha\leqslant \frac{a-1}{n}$ и следовательно $a^{\frac{1}{n}}-1\leqslant \frac{1}{n}(a-1)$ (*), откуда $a^{\frac{1}{n}}-1<\frac{2}{n}(a-1)$ и лемма верна. Пусть $0< r\leqslant 1$, тогда $\frac{1}{n+1}< r\leqslant \frac{1}{n}$ для некоторого $n\in\mathbb{N}$. Используя (*) и свойство (1)

имеем $a^r-1 < a^{\frac{1}{n}}-1 \leqslant \frac{1}{n}(a-1) \leqslant \frac{2}{n+1}(a-1) < 2r(a-1)$ и лемма верна.

Пусть $-1 \leqslant r < 0$, тогда

 $|a^r - 1| = a^r |a^{-r} - 1| < a^r 2(-r)(a-1) < 2|r|(a-1), \text{ T.K. } a^r < 1.$

Для r=0 неравенство превращается в верное равенство.

Теорема 5.1. Для каждого a > 0 и любого $x_0 \in \mathbb{R}$ существует конечный предел $\lim a^x$. Более того, если $x_0 \in \mathbb{Q}$, то $\lim_{\mathbb{Q}\ni x \to x_0} a^x = a^{x_0}$.

\Delta Рассмотрим случай a>1. Выберем такое $M\in\mathbb{N},$ что $x_0+1< M,$ положим $c=a^M.$ Тогда $\forall \varepsilon > 0 \ \exists \delta = \min\{\frac{1}{2}, \frac{\varepsilon}{4c(n-1)}\} \ \forall x_1, x_2 \in B_{\delta}(x_0) \cap \mathbb{Q}:$

 $|a^{x_2} - a^{x_1}| = a^{x_1}|a^{x_2 - x_1} - 1| < c|a^{x_2 - x_1} - 1| \stackrel{(*)}{\leqslant} 2c(a - 1)|x_2 - x_1| < \varepsilon \ (**).$

По критерию Коши для функций $\exists \lim_{x \to a} a^x \in \mathbb{R}$. Отметим, что $\lim_{x \to a} a^x > 0$. Действительно, По критерию Коши для функции $\exists \min_{\mathbb{Q}\ni x\to x_0} a \in \mathbb{R}$. Отметия, $\Pi \in \mathbb{Q}\ni x\to x_0$ возьмём $n\in\mathbb{N}, x_0>-n$. Тогда $\exists \Delta>0 \ \forall x\in B_\Delta(x_0)\cap\mathbb{Q}\colon a^x>a^{-n}\Rightarrow \lim_{\mathbb{Q}\ni x\to x_0}a^x\geqslant a^{-n}>0$. Рассмотрим случай 0< a<1. Т.к. $a^r=\frac{1}{(\frac{1}{a})^r}, r\in\mathbb{Q}, \ \text{то}\ \exists \lim_{\mathbb{Q}\ni x\to x_0}a^x=\frac{1}{\lim_{\mathbb{Q}\ni x\to x_0}(\frac{1}{a})^x}$.

Случай a = 1 тривиален.

Если положить в (**) $x_2 = x, x_1 = x_0$, то получим $\lim a^x = a^{x_0}$.

Определение 5.1. Пусть $a>0, x_0\in\mathbb{R}$. Положим $a^{x_0}=\lim a^x$. Пусть a>0, тогда функция $x \to a^x, x \in \mathbb{R}$ называется показательной функцией с основанием a.

Теорема 5.2. Показательная функция $y = a^x$ строго возрастает при a > 1, строго убывает 15.10.14

при 0 < a < 1, постоянна при a = 1, непрерывна на \mathbb{R} и $\lim_{x \to +\infty} a^x = \begin{cases} +\infty, \ a > 1, \\ 0, \quad 0 < a < 1. \end{cases} \qquad \lim_{x \to -\infty} a^x = \begin{cases} 0, \quad a > 1, \\ +\infty, \quad 0 < a < 1. \end{cases}$

lacktriangle Пусть a>1. Покажем, что $y=a^x$ строго возрастает на \mathbb{R} . Пусть $x_1< x_2$. Найдём $r_1, r_2 \in \mathbb{Q}$: $x_1 < r_1 < r_2 < x_2$, тогда $\exists \Delta_1, \Delta_2 > 0$:

 $\forall x \in B_{\Delta_1}(x_1) \cap \mathbb{Q} \colon a^x < a^{r_1},$

 $\forall x \in B_{\Delta_2}(x_2) \cap \mathbb{Q} \colon a^x > a^{r_2}.$

Переходя в полученном неравенстве к пределу, получим:

 $a^{x_1} = \lim_{\mathbb{Q} \ni x \to x_1} a^x \leqslant a^{r_1} < a^{r_2} \leqslant \lim_{\mathbb{Q} \ni x \to x_2} a^x = a^{x_2}$, т.е. $a^{x_1} < a^{x_2}$. Пусть $x_0 \in \mathbb{R}$. Покажем, что $y = a^x$ непрерывна в точке x_0 . По следствию 1 теоремы о пределе монотонной функции существуют конечные пределы $a^{x_0-0} = \sup_{(-\infty,x_0)} a^x$ и $a^{x_0+0} = \inf_{(x_0,+\infty)} a^x$,

причём $a^{x_0-0} \leqslant a^{x_0} \leqslant a^{x_0+0}$.

Рассмотрим $\{\alpha_n\}$, $\alpha_n \in \mathbb{Q} \cap (x_0, +\infty)$, $\alpha_n \to x_n$; $\{\beta_n\}$, $\beta_n \in \mathbb{Q} \cap (-\infty, x_0)$, $\beta_n \to x_0$. Тогда $\forall n \in \mathbb{N}$: $a^{\beta_n} \leqslant a^{x_0-0} \leqslant a^{x_0+0} \leqslant a^{\alpha_n} \Rightarrow 0 \leqslant a^{x_0+0} - a^{x_0-0} \leqslant a^{\alpha_n} - a^{\beta_n}$. Перейдём в этом неравенстве к пределу при $n \to \infty$. Т.к. $\lim_{n \to \infty} a^{\alpha_n} = \lim_{n \to \infty} a^{\beta_n} = a^{x_0}$, то по теореме о зажатой последовательности $a^{x_0-0}=a^{x_0+0}$. Следовательно, $\exists \lim_{x\to 0} a^x=a^{x_0}$, т.е. $y=a^x$ непрерывна в точке x_0 .

Если $x > n \in \mathbb{N}$, то $a^x > a^n = (1 + (a - 1))^n \geqslant 1 + n(a - 1) \to +\infty \Rightarrow \lim_{x \to +\infty} a^x = +\infty$.

Если x < -n, то $a^x < a^{-n} = \frac{1}{(1+(a-1))^n} \leqslant \frac{1}{1+n(a-1)} \to 0 \Rightarrow \lim_{x \to 0} a^x = 0$.

Случай 0 < a < 1 рассматривается аналогично.

Случай a = 1 тривиален.

Cледствие. $\forall x, x_1, x_2 \in \mathbb{R}$:

 $1) (ab)^x = a^x b^x$

- 2) $a^{x_1}a^{x_2} = a^{x_1+x_2}$
- 3) $(a^{x_2})^{x_1} = a^{x_1x_2}$.

▲ Проверим последнее равенство.

Пусть $r \in \mathbb{Q}, \mathbb{Q} \ni r_n \to x_1$. В силу непрерывности степенной функции с рациональным показателем и непрерывности показательной функции имеем: $a^{r_n} \to a^{x_1}$,

Пусть
$$\mathbb{Q} \ni r'_n \to x_2$$
, тогда $a^{(ar'_n)x_1} \to (a^{x_2})^{x_1} = a^{x_2x_1}$ $\Rightarrow (a^{x_2})^{x_1} = a^{x_2x_1}$.

5.2 Логарифм и степенная функция

Определение 5.2. Функция, обратная к показательной функции $y = a^x \ (a > 0, a \neq 1)$ на \mathbb{R} , называется логарифмической функцией и обозначается $y = \log_a x$.

Теорема 5.3. Логарифмическая функция $y = \log_a x$ определена на $(0, +\infty)$, строго монотонна и непрерывна на $(0, +\infty)$, множество её значений \mathbb{R} , выполняются свойства:

- 1) $\forall x \in (0; +\infty)$: $\log_a x = \frac{\log_b x}{\log_b a}$.
- 2) $\forall x, t \in (0; +\infty)$: $\log_a xt = \log_a x + \log_a t$.
- 3) $\forall x \in (0; +\infty) : \forall t \in \mathbb{R}, \log_a x^t = t \log_a x.$

▲ Доказательство вытекает из свойств показательной функции и теоремы об обратной функции. Проверим свойство (3). Т.к. показательная и логарифмическая функции взаимо обратны, то справедливы тождества:

$$a^{\log_a x} = x, \log_a a^x = x$$
. Откуда: $a^{\log_a x^t} = x^t = (a^{\log_a x})^t = a^{t \log_a x} \Leftrightarrow \log_a x^t = t \log_a x$.

Определение 5.3. Пусть $\alpha \in \mathbb{R}$, тогда функция $x \to x^{\alpha}, x \in (0; +\infty)$, называется *степенной* функцией с показателем α .

Теорема 5.4. Степенная функция $y=x^{\alpha}$ непрерывна на $(0;+\infty)$, строго возрастает при $\alpha>0$, постоянна при $\alpha=0$, строго убывает при $\alpha<0$.

▲ Поскольку $x^{\alpha} = e^{\alpha \ln x}$, свойства степенной функции вытекают из свойств показательной и логарифмической функции. ■

5.3 Тригонометрические и обратные тригонометрические функции

Считая известными определения тригонометрических функций и их простейшие свойства, остановимся на вопросе их непрерывности.

Лемма 5.2. $\forall x \neq 0 : |\sin x| < |x|$.

- **▲** 1) $0 < x < \frac{\pi}{2}$: $\sin x = BH < BA < BA = x$.
 - 2) $x \ge \frac{\pi}{2} : |\sin x| \le 1 < \frac{\pi}{2} \le x.$
 - 3) x < 0 в силу чётности функции. ■

Теорема 5.5. Функции $\sin x$, $\cos x$, $\cot x$ непрерывны на своих областях определения.

- **1**) Покажем, что $y = \sin x$ непрерывна в произвольной точке $x_0 \in \mathbb{R}$. Поскольку $|\sin x - \sin x_0| = |2\cos\frac{x+x_0}{2}\sin\frac{x-x_0}{2}| \leqslant 2|\frac{x-x_0}{2}| = |x-x_0|$, то $\forall \varepsilon > 0 \; \exists \delta = \varepsilon \; \forall x \; (|x-x_0| < \delta \Rightarrow |\sin x - \sin x_0| < \varepsilon)$, т.е. $y = \sin x$ непрерывна в точке x_0 .
- 2) Непрерывность $y = \cos x$ следует из тождества $\cos x = \sin(\frac{\pi}{2} x)$ и теоремы о непрерывности сложной функции.
- 3) функции $\lg x = \frac{\sin x}{\cos x}$ и $\operatorname{ctg} x = \frac{\cos x}{\sin x}$ непрерывны во всех точках, в которых знаменатели отличны от нуля (как частные непрерывных функций).

Рассмотрим функции:

- 1) $f_1: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to \left[-1; 1\right], f_1(x) = \sin x \Rightarrow \arcsin y = f_1^{-1}(y): \left[-1; 1\right] \to \left[-\frac{\pi}{2}; \frac{\pi}{2}\right].$ 2) $f_2: \left[0; \pi\right] \to \left[-1; 1\right], f_2(x) = \cos x \Rightarrow \arccos y = f_2^{-1}(y): \left[-1; 1\right] \to \left[0; \pi\right].$ 3) $f_3: \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}, f_3(x) = \operatorname{tg} x \Rightarrow \operatorname{arctg} y = f_3^{-1}(y): \mathbb{R} \to \left(-\frac{\pi}{2}; \frac{\pi}{2}\right).$ 4) $f_4: \left(0; \pi\right) \to \mathbb{R}, f_4(x) = \operatorname{ctg} x \Rightarrow \operatorname{arcctg} y = f_4^{-1}(y): \mathbb{R} \to \left(0; \pi\right).$

Теорема 5.6. Функции $\arcsin x$, $\arccos x$, $\arctan x$ и $\operatorname{arcctg} x$ и $\operatorname{arcctg} x$ непрерывны на своих областях определения.

▲ Вытекает из теоремы об обратной функции. ■

Элементарные функции 5.4

Определение 5.4. Простейшими элементарными функциями называются следующие функции: y = C, x^{α} , a^{x} , $\log_{a} x$, $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$, $\operatorname{arcsin} x$, $\operatorname{arccos} x$, $\operatorname{arctg} x$.

Определение 5.5. Элементарной функцией называется функция, представимая при помощи конечного числа арифметических действий и композиции простейших элементарных функций.

Теорема 5.7. Любая элементарная функция непрерывна на своей области определения.

▲ Все простейшие элементарные функции непрерывны в точках, в которых определены. Это свойство сохраняется при арифметических действиях и взятии композиции.

5.5 Некоторые замечательные пределы

Теорема 5.8 (первый замечательный предел). $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

$$\blacktriangle 1) 0 < x < \frac{\pi}{2}.$$

$$S_{AOB} < S_{\text{cer. }AOB} < S_{AOC}.$$

$$\frac{1}{2}BN \cdot OA < \frac{1}{2}OA^2 \cdot x < \frac{1}{2}OA \cdot AC$$

 $\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\operatorname{tg} x.$

$$\cos x < \frac{\sin x}{x} < 1. \ \forall x \colon 0 < |x| < \frac{\pi}{2}.$$

Таким образом, $\sin x < x < \frac{\sin x}{\cos x}$. $\cos x < \frac{\sin x}{x} < 1$. $\forall x \colon 0 < |x| < \frac{\pi}{2}$. Т.к. $y = \cos x$ непрерывна в точке x = 0, то $\lim_{x \to 0} \cos x = \cos 0 = 1$.

По теореме о зажатой функции $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Cледствие. $\lim_{x\to 0} \frac{\arcsin x}{x} = 1$.

 \blacktriangle Рассмотрим $y=\arcsin x$. Тогда $\lim_{x\to 0}y(x)=\arcsin 0=0,\ y(x)\neq 0$ при $x\neq 0$.

Т.к. $\lim_{y\to 0} \frac{y}{\sin y} = 1$, то по теореме о замене переменной в пределе $\lim_{x\to 0} \frac{\arcsin x}{x} = \lim_{y\to 0} \frac{y}{\sin y} = 1$.

Лемма 5.3. Если $\{K_n\}, K_n \in \mathbb{N}, K_n \to +\infty, \text{ то} \lim_{n \to \infty} (1 + \frac{1}{K_n})^{K_n} = e.$

 \blacktriangle По определению $e=\lim_{n\to\infty}x_n$, где $x_n=(1+\frac{1}{n})^n$. Тогда $\forall \varepsilon>0\ \exists N_1\ \forall n>N_1\colon x_n\in B_\varepsilon(e)$.

Т.к. $K_n \to +\infty$, то $\exists N \forall n > N \colon K_n > N_1$. Следовательно, $\forall \varepsilon > 0 \ \exists N \ \forall n > N \colon \ x_{K_n} \in B_{\varepsilon}(e)$, T.e. $\lim x_{K_n} = e$.

Теорема 5.9 (второй замечательный предел). $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = \lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$.

▲ Пусть $x_n \to +\infty$; $K_n = [x_n]$; $K_n \le x_n < K_n + 1$.

При
$$x_n \geqslant 1$$
 выполнено:
$$\left(1 + \frac{1}{K_n + 1}\right)^{K_n} < \left(1 + \frac{1}{x_n}\right)^{x_n} < \left(1 + \frac{1}{K_n}\right)^{K_n + 1}.$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{K_n + 1} \right)^{K_n} = \frac{\left(1 + \frac{1}{K_n + 1} \right)^{K_n + 1}}{\left(1 + \frac{1}{K_n + 1} \right)} = e.$$

$$\lim_{n\to\infty} \left(1+\tfrac{1}{K_n}\right)^{K_n+1} = \lim_{n\to\infty} \left(1+\tfrac{1}{K_n}\right)^{K_n} \left(1+\tfrac{1}{K_n}\right) = e.$$

 $\lim_{n\to\infty} \left(1+\frac{1}{x_n}\right)^{x_n} = e$. По определению Гейне $\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x = e$.

Тогда
$$\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = \lim_{x\to -\infty} \left(\frac{x}{x+1}\right)^{-x} = \lim_{x\to -\infty} \left(1+\frac{1}{-x-1}\right)^{-x} = \lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^{-x} = \lim_{x\to -\infty} \left(1+\frac{1}{x}\right$$

$$= \lim_{x \to -\infty} \left(1 + \frac{1}{-x-1} \right)^{-x-1} \left(1 + \frac{1}{-x-1} \right)^{y = -x-1} \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{y} \cdot \left(1 + \frac{1}{y} \right) = e.$$

В полученном пределе делаем замену $x=\frac{1}{t},$ тогда по теореме 4.10

$$\lim_{t \to +0} (1+t)^{\frac{1}{t}} = e = \lim_{t \to -0} (1+t)^{\frac{1}{t}}.$$

По лемме об одностороннем пределе существует предел $\lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$.

Cnedemeue 1. $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

21.10.14

 \blacktriangle Т.к. $z = \ln y$ непрерывна в точке y = 1, имеем $\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \ln \lim_{x \to 0} (1+x)^{\frac{1}{x}}$ $= \ln e = 1.$

Следствие 2. $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.

▲ В пределе $\lim_{y\to 0} \frac{\ln(1+y)}{y} = 1$ сделаем замену $y = e^x - 1, y(x) \neq 0 \Leftrightarrow x \neq 0$. По теореме 4.10 $1 = \lim_{x\to 0} \frac{\ln(1+e^x-1)}{e^x-1} = \lim_{x\to 0} \frac{x}{e^x-1}$. Откуда $\lim_{x\to 0} \frac{e^x-1}{x} = 1$. ■

Гиперболические и обратные гиперболические функции

 $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \qquad \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x},$

 $\operatorname{arsh} x$ — ариа-синус гиперболический — обратная функция к $\operatorname{sh} x$ на \mathbb{R} .

 $\operatorname{arch} x$ — ариа-косинус гиперболический — обратная функция к $\operatorname{ch} x$ на $[0; +\infty)$.

 $\operatorname{arth} x$ — ариа-тангенс гиперболический — обратная функция к $\operatorname{th} x$ на \mathbb{R} .

 $\operatorname{arcth} x$ — ариа-котангенс гиперболический — обратная функция к $\operatorname{cth} x$ на $\mathbb{R}\setminus\{0\}$.

Задача 9. Доказать, что обратные гиперболические функции являются элементарными. Π ример. $\lim_{x\to 0} \frac{\operatorname{sh} x}{x} = 1$.

5.7Сравнение функций

Определение 5.6. Пусть $f: E \to \mathbb{R}, g: E \to \mathbb{R}, a$ — предельная точка множества E. Тогда:

- 1) f = o(g) при $E \ni x \to a$, если $f(x) = \alpha(x)g(x)$ на $B'_{\Delta}(a) \cap E$, $\lim_{n \to \infty} \alpha(x) = 0$.
- 2) f=O(g) при $E\ni x\to a$, если $f(x)=\alpha(x)g(x)$ на $B'_\Delta(a)\cap E,\alpha\colon E\to\mathbb{R}$ ограниченна при $E \ni x \to a \ (\alpha(B'_{\Lambda}(a) \cap E) - \text{ограниченное множество}).$
- 3) $f \sim g$ при $E \ni x \to a$, если $f(x) = \alpha(x)g(x)$ на $B'_{\Delta}(a) \cap E_{\underline{\cdot}} \lim \alpha(x) = 1$.

Если a — внутренняя точка $E \cup \{a\}$, то упоминания о множестве E опускаются.

3амечание. Если $g(x) \neq 0$ на $B'_{\Delta}(a) \cap E$, то

f = o(g) при $E \ni x \to a \Leftrightarrow \lim_{E\ni x \to a} \frac{f(\overrightarrow{x})}{g(x)} = 0.$

f = O(g) при $E \ni x \to a \Leftrightarrow \exists C > 0 \ \exists \Delta > 0 \ \forall x \in B'_{\Delta}(a) \cap E \colon \left| \frac{f(x)}{g(x)} \right| < C.$

 $f \sim g$ при $E \ni x \to a \Leftrightarrow \lim_{E \ni x \to a} rac{f(x)}{g(x)} = 1.$

Примеры:

1) $x^m = o(x^n)$ при $x \to 0 \Leftrightarrow m > n$. $x^m = o(x^n)$ при $x \to +\infty \Leftrightarrow m < n$.

- 2) $\left(\frac{1}{x} + \cos x\right)\sqrt{x} = O(\sqrt{x})$ при $x \to +\infty$. 3) $\frac{x^3 1}{x 1} \sim x^2$ при $x \to -\infty$.

Лемма 5.4.

- 1) a) $f \sim f$.
 - 6) $f \sim q \Rightarrow q \sim f$.
 - B) $f \sim q, q \sim h \Rightarrow f \sim h$.
- 2) $f \sim q$ при $E \ni x \to a \Leftrightarrow f q = o(q)$ при $E \ni x \to a$.

▲ Пункт 1 вытекает из теоремы о пределе частного и произведения. Докажем пункт 2.

 $f\sim g$ при $E
i x o a \Leftrightarrow f=\alpha g$ на $B'_{\Delta}(a)\cap E, \lim_{E
i x o a} \alpha(x)=1 \Leftrightarrow G$

$$f-g=(\alpha-1)g$$
 на $B'_{\Delta}(a)\cap E, \ \lim_{E
i x o a} \alpha(x)=1 \stackrel{E
i x o a}{\Leftrightarrow} f-g=o(g), x o a$ при $E
i x o a.$

Пример: При $x \to 0, x \sim \sin x \sim \arcsin x \sim \ln(1+x) \sim e^x - 1 \sim \sin x$.

3амечание. o(g) — класс функций, запись f=o(g) при E
i x
ightarrow a следует понимать как $f \in o(g)$. Поэтому равенство f = o(g) необратимо. Например, $x^2 = o(x)$, $x^3 = o(x)$ при $x \to 0$, HO $x^2 \neq x^3$.

Лемма 5.5. При $E \ni x \to a$ справедливы следующие равенства:

- 1) $o(f) \pm o(f) = o(f)$.
- 2) $O(f) \pm O(f) = O(f)$.
- 3) O(o(f)) = o(f).
- 4) o(O(f)) = o(f).
- 5) o(f)O(g) = o(fg).
- 6) $(o(f))^{\alpha} = o(f^{\alpha}).$

 \blacktriangle Докажем 1. $h_1 = o(f), h_2 = o(f) \stackrel{?}{\Rightarrow} h_1 \pm h_2 = o(f), E \ni x \to a.$

 $h_1 = \alpha_1 f, h_2 = \alpha_2 f$ на $B'_{\Delta}(a) \cap E$ и $\lim_{E \ni x \to a} \alpha_1(x) = \lim_{E \ni x \to a} \alpha_2(x) = 0 \Rightarrow$ $h_1 \pm h_2 = (\alpha_1 - \alpha_2) f$ на $B'_{\Delta}(a)$ и $\lim_{E \ni x \to a} (\alpha_1 \pm \alpha_2) = 0$, т.е. $h_1 \pm h_2 = o(f)$.

Докажем 3. $g = o(f), h = O(g) \stackrel{?}{\Rightarrow} h = o(f)$ при $E \ni x \to a$.

 $g=lpha_1f,h=\gamma g$, где $\lim_{E
i x o a}lpha_1(x)=0,\,\gamma$ — ограниченная функция при $E
i x o a \Rightarrow$

 $h = \alpha_1 \gamma f$ и $\lim_{E \ni x \to a} \alpha_1 \gamma(x) = 0$, т.е. h = o(f).

Лемма 5.6. Пусть $f \sim f_1, g \sim g_1$ при $E \ni x \to a$. Тогда $\lim_{E\ni x\to a} \frac{f(x)}{g(x)}$ и $\lim_{E\ni x\to a} \frac{f_1(x)}{g_1(x)}$ существуют или не существуют одновременно. В случае существования эти пределы равны.

▲ Вытекает из представления $\frac{f(x)}{g(x)} = \frac{\alpha_1(x)f_1(x)}{\alpha_2(x)g_1(x)}, \lim_{E\ni x\to a} \frac{\alpha_1(x)}{\alpha_2(x)} = 1.$ ■

Замечание. если $f \sim f_1$ и $g \sim g_1$ при $E \ni x \to a$ не следует $f + g \sim f_1 + g_1(?)$.

6 Производная

6.1Производная и дифференциал

Определение 6.1. Пусть $f: E \to \mathbb{R}$ определена в некоторой δ окрестности точки x_0 , т.е. $B_{\delta}(x) \subset E$, тогда величина $\Delta = x - x_0$ называется приращением аргумента. $\Delta f = f(x) - f(x_0)$ приращение функции.

Определение 6.2. Функция $f: E \to \mathbb{R}$ *имеет производную в точке* x_0 , если x_0 — внутренняя точка множества E и

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \in \overline{\mathbb{R}}.$$

Этот предел называют производной функции f в точке x_0 и обозначают $f'(x_0), \frac{df(x_0)}{dx_0}, \frac{d}{dx}f(x_0)$. Пример: Пусть $f: \mathbb{R} \to \mathbb{R}, f(x) = c$, тогда $f'(x_0) = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0$. Пусть $f: \mathbb{R} \to \mathbb{R}, f(x) = x$, тогда $f'(x_0) = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - x}{\Delta x} = 1$.

Пусть
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x$$
, тогда $f'(x_0) = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - x}{\Delta x} = 1$.

Определение 6.3. Пусть $f: E \to \mathbb{R}$ определена на $[x_0, x_0 + \delta)$ $((x_0 - \delta, x_0])$, тогда f(x) имеет nравую (левую) nроизводную в точке x_0 , если

$$\exists \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to + 0} \frac{\Delta f}{\Delta x} \in \overline{\mathbb{R}} \quad \left(\exists \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to -0} \frac{\Delta f}{\Delta x} \in \overline{\mathbb{R}} \right).$$

Этот предел называют npaвой (левой) npouзводной функции f в moчке x_0 и обозначают

Утверждение, что функция f имеет производную в точке x_0 эквивалентно утверждению, что f в x_0 имеет равные левую и правую производные, при этом $f'(x_0) = f'_+(x_0) = \bar{f}'_-(x_0)$ (по лемме об односторонних пределах).

Определение 6.4. Если говорят о производной функции $f:[a,b] \to \mathbb{R}$, то под ней понимают 22.10.14 в точке a правую производную, в точке b левую производную, в остальных точках — просто производную функции f.

Пример: Пусть
$$f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$$
. Тогда $f'_{+}(x) = \lim_{\Delta x \to +0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to +0} \frac{\Delta x}{\Delta x} = 1.$ $f'_{-}(x) = \lim_{\Delta x \to -0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to -0} \frac{-\Delta x}{\Delta x} = -1.$ $\Rightarrow \nexists f'(0).$

Определение 6.5. Функция $f: E \to \mathbb{R}$ называется $\partial u \phi \phi$ еренцируемой в точке x_0 , если x_0 — внутренняя точка множества E и её приращение Δf в этой точке представляется в виде:

$$\Delta f = A\Delta x + o(\Delta x)$$
 при $\Delta x \to 0, A \in \mathbb{R}$.

Линейная функция $\Delta x \mapsto A\Delta x, \Delta x \in \mathbb{R}$, называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$.

Теорема 6.1. Функция f дифференцируема в точке $x_0 \Leftrightarrow \exists f'(x_0) \in \mathbb{R}$. При этом $A = f'(x_0)$, T.e. $df(x_0) = f'(x_0)\Delta x$.

 \blacktriangle (\Rightarrow) Если f дифференцируема в точке x_0 , то $\Delta f = A\Delta x + o(\Delta x)$ при $\Delta x \to 0$, и, значит, $\frac{\Delta f}{\Delta x} = A + o(1)$ при $\Delta x \to 0$. Следовательно, $\exists \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = A = f'(x_0)$.

(\Leftarrow) Если $\exists f'(x_0) \in \mathbb{R}$, то $\frac{\Delta f}{\Delta x} = f'(x_0) + o(1)$ при $\Delta x \to 0$ и, значит, $\Delta f = f'(x_0)\Delta x + o(\Delta x)$ при $\Delta x \to 0$, т.е. f дифференцируема в точке x_0 .

Замечание. Вместо Δx часто будем использовать обозначение dx. При таком обозначении $df(x_0) = f'(x_0)dx$.

Теорема 6.2. Если f дифференцируема в точке x_0 , то f непрерывна в точке x_0 .

A Если f дифференцируема в точке x_0 , то $\Delta f = f'(x_0)\Delta x + o(\Delta x)$ при $\Delta x \to 0$ или $f(x) = f(x_0) + (f'(x_0) + o(1))(x - x_0)$ при $x \to x_0$.

Следовательно, $\lim_{x\to x_0} f(x) = f(x_0)$, т.е. f непрерывна в точке x_0 .

Задача 10. Пусть f дифференцируема в точке x_0 . Верно ли, что f непрерывна в некоторой окрестности точки x_0 ?

6.2 Геометрический смысл производной и дифференциала

Пусть функция $f: \mathbb{R} \to \mathbb{R}$ непрерывна в некоторой δ -окрестности x_0 , т.е. $B_{\delta}(x_0) \subset E$.

Через точки $M_0(x_0, f(x_0))$ и $M_h(x_0+h, f(x_0+h))$ $(0 < |h| < \delta)$ можно провести единственную прямую M_0M_h , которая называется секущей графика функции f. Её уравнение:

$$M_0M_h$$
: $y=k(h)(x-x_0)+f(x_0)$, где $k(h)=\frac{f(x+x_0)-f(x_0)}{h}$. figure 6.1

Устремим $h \to 0$. «Предельное положение» $M_0 M$ секущей $M_0 M_h$ называют касательной. Дадим точное определение.

Определение 6.6. Прямая M_0M : $y=k(x-x_0)+f(x_0)$ называется наклонной касательной к графику f точке $(x_0,f(x_0))$, если

$$f(x) - (k(x - x_0) + f(x_0)) = o(x - x_0), x \to x_0.$$

Теорема 6.3. Наклонная касательная к графику функции f в точке $(x_0, f(x_0))$ существует $\Leftrightarrow \exists f'(x_0) \in \mathbb{R}$, при этом $k = f'(x_0)$.

▲ Вытекает из определений ■

figure 6.2

Вывод: Если $\exists f'(x_0) \in \mathbb{R}$, то приращение $\Delta f = f(x) - f(x_0)$ складывается из двух частей: $df(x_0)$ — приращения ординаты касательной, и бесконечно малой по сравнению с Δx , при $\Delta x \to 0$, которая учитывает приращение от касательной до f(x).

Замечание. Уравнение наклонной касательной $y = f'(x_0)(x - x_0) + f(x_0)$ получается из уравнения $M_0 M_h$ предельным переходом при $h \to 0$. Т.к. уравнение секущей $M_0 M_h$ при $f(x) \neq f(x_0)$ можно переписать $M_0 M_h$: $x - x_0 = \frac{y - f(x_0)}{k(h)}$, это мотивирует следующее определение:

Определение 6.7. Если $\exists f'(x_0) = \pm \infty$, то $M_0 M_h$: $x - x_0 = 0$ называется вертикальной касательной к графике f в точке x_0 .

Замечание. Пусть
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \operatorname{sign} x + \sqrt[3]{x} = \begin{cases} 1 + \sqrt[3]{x}, x > 0, \\ 0, x = 0, \\ -1 + \sqrt[3]{x}, x < 0. \end{cases}$$

Тогда $\exists f'(0) = +\infty, x = 0$ — вертикальная касательная, но f разрывна в точке x_0 .

6.3 Правило дифференцирования

Теорема 6.4. Если $f: E \to \mathbb{R}, g: E \to \mathbb{R}$ дифференцируемы в точке x_0 , то в этой точке дифференцируемы функции $f \pm g, f \cdot g$, и если $g(x_0) \neq 0$, то также $\frac{f}{g}$, причём

1)
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0),$$
 $d(f \pm g)(x_0) = df(x_0) \pm dg(x_0).$

2)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0),$$
 $d(fg)(x_0) = g(x_0)df(x_0) + f(x_0)dg(x_0)$
3) $\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) - f(x_0)g'(x_0)}{g^2(x_0)},$ $d\left(\frac{f}{g}\right)(x_0) = \frac{g(x_0)df(x_0) - f(x_0)dg(x_0)}{g^2(x_0)}.$

▲ Установим формулы для производных. Формулы для дифференциалов получаются домножением обеих частей соответствующих формул для производных на dx.

1) T.K.
$$\Delta(f \pm g) = (f(x) \pm g(x)) - (f(x_0) \pm g(x_0)) = \Delta f \pm \Delta g$$
, to $(f \pm g)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta(f \pm g)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \pm \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} = f'(x_0) \pm g'(x_0)$.
2) T.K. $\Delta(fg) = f(x)g(x) - f(x_0)g(x_0) = g(x)(f(x) - f(x_0)) + f(x_0)(g(x) - g(x_0)) = g(x)(f(x) - f(x_0)) + f(x_0)(g(x) - g(x_0)) = g(x)(f(x) - f(x_0)) + g(x_0)(g(x) - g(x_0)) = g(x)(f(x) - g(x_0)) + g(x_0)(g(x) - g(x_0)) = g(x)(f(x) - g(x_0)) + g(x)(f(x) - g(x_0)) = g(x)(f(x) - g(x)) + g(x)(f(x) - g(x)) + g(x)(f(x) - g(x)) = g(x)(f(x) - g(x)) + g(x)(f(x) - g(x)) +$

2) T.K.
$$\Delta(fg) = f(x)g(x) - f(x_0)g(x_0) = g(x)(f(x) - f(x_0)) + f(x_0)(g(x) - g(x_0)) = g(x)\Delta f + f(x_0)\Delta g$$
, to $(fg)' = \lim_{\Delta x \to 0} \frac{\Delta(fg)}{\Delta x} = \lim_{\Delta x \to 0} (g(x)\frac{\Delta f}{\Delta x} + f(x_0)\frac{\Delta g}{\Delta x}) = \lim_{\Delta x \to x_0} g(x)\frac{\Delta f}{\Delta x} + f(x_0)\lim_{x \to x_0} \frac{\Delta g}{\Delta x} = g(x_0)f'(x_0) + f(x_0)g'(x_0).$

3) По T6.2 из дифференцируемости функции g точке x_0 следует её непрерывность в этой точке и, значит, по свойству отделимости, $g(x) \neq 0$ в окрестности $B_{\delta}(x_0)$. Пусть $x \in B_{\delta}(x_0)$, тогда $\Delta\left(\frac{f}{g}\right)=\frac{f(x)}{g(x)}-\frac{f(x_0)}{g(x_0)}=\frac{g(x_0)(f(x)-f(x_0))-f(x_0)(g(x)-g(x_0))}{g(x)g(x_0)}=\frac{g(x_0)\Delta f-f(x_0)\Delta g}{g(x)g(x_0)}$ и, значит,

$$\left(\frac{f}{g}\right)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta\left(\frac{f}{g}\right)}{\Delta x} = \frac{g(x_0) \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} - f(x_0) \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x}}{g(x_0) \lim_{\Delta x \to 0} g(x_0 + \Delta x)} = \frac{g(x_0)f'(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}. \blacksquare$$

Cледствие. Если $f: E \to \mathbb{R}$ дифференцируема в $x_0, c \in \mathbb{R}$, то $c \cdot f$ дифференцируема в точке $x_0 \text{ if } (cf)'(x_0) = cf'(x_0), \quad d(cf)(x_0) = cdf(x_0).$

Теорема 6.5 (производная сложной функции). Если $f: X \to \mathbb{R}$ дифференцируема в точке $x_0, g: Y \to \mathbb{R}$ дифференцируема в точке $y_0 = f(x_0)$, то композиция $f \circ g$ дифференцируема в точке x_0 , и

$$(g \circ f)'(x_0) = g'(y)|_{y=y_0} \cdot f'(x)|_{x=x_0} = g'(y_0)f'(x_0).$$

\Delta По T6.2 функция f непрерывна в точке x_0 , функция g непрерывна в точке y_0 , тогда по T4.13 о непрерывности композиции сложная функция $z = F(x) \equiv g(f(x))$ определена в некоторой окрестности $B_{\delta}(x_0)$.

Т.к. g дифференцируема в точке y_0 , то

(*) $\Delta g = g'(y_0)\Delta y + \varepsilon(\Delta y)\Delta y$, где $\varepsilon(\Delta y) \to 0$ при $\Delta y \to 0$. Пусть $x \in B'_{\delta}(x_0), y = f(x)$. Тогда $\Delta y = y - y_0 = f(x) - f(x_0) = \Delta f$ и

$$\Delta F = g(f(x)) - g(f(x_0)) = g(y) - g(y_0) = \Delta g.$$

Подставив в (*) Δf вместо Δy (т.е. считая, что Δy вызвано выбором точки x) и поделив на $\Delta x = x - x_0$, получим:

$$\frac{\Delta F}{\Delta x} = g'(y_0) \frac{\Delta f}{\Delta x} + \varepsilon (\Delta f) \frac{\Delta f}{\Delta x}.$$

Т.к. f непрерывна в точке x_0 , то $\Delta f \to 0$ при $\Delta x \to 0$. Доопределим функцию ε в точке 0,

положив
$$\varepsilon(0)=0$$
, тогда $\varepsilon(\Delta f)\to 0$ при $\Delta x\to 0$ по следствию из T4.13. Поэтому
$$\lim_{\Delta x\to 0}\frac{\Delta F}{\Delta x}=g'(y_0)\lim_{\Delta x\to 0}\frac{\Delta f}{\Delta x}+\lim_{\Delta x\to 0}\varepsilon(\Delta f)\lim_{\Delta x\to 0}\frac{\Delta f}{\Delta x}=g'(y_0)f'(x_0)+0\cdot f'(x_0)=g'(x_0)f'(x_0).$$

28.10.14

Теорема 6.6 (производная обратной функции). Если f непрерывна и строго монотонна в некоторой окрестности $B_{\Delta}(x_0)$ и существует производная $f'(x_0) \neq 0$, то обратная к f (в $B_{\Delta}(x_0)$) функция f^{-1} дифференцируема в точке $y_0 = f(x_0)$ и

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

\Delta По теореме об обратной функции на образе $B_{\Delta}(x_0)$ (т.е. на интервале $f(B_{\Delta}(x_0))$) определена непрерывная строго монотонная функция f^{-1} . Значит, $\Delta y = y - y_0 \to 0 \Leftrightarrow \Delta x = x - x_0 \to 0$, где $y = f(x), x = f^{-1}(y)$. Поэтому

$$(f^{-1})'(y_0) = \lim_{\Delta y \to 0} \frac{\Delta f^{-1}}{\Delta y} = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} \stackrel{(*)}{=} \lim_{\Delta x \to 0} \frac{1}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} = \frac{1}{f'(x_0)},$$

где (*) верно по T4.10 о замене переменной в пределе. ■

Теорема 6.7 (производная параметрической функции). Если функция x = x(t)непрерывна и строго монотонна в некоторой окрестности $B_{\delta}(t_0)$, существует $x'(t_0) \neq 0$, функция y=y(t) дифференцируема в точке t_0 , то обозначая обратную к x=x(t) (в $B_{\delta}(t_0)$) функцию через t = t(x) и полагая f(x) = y(t(x)) в окрестности точки $x_0 = x(t_0)$, получим, что функция f дифференцируема в точке x_0 и

$$f'(x_0) = \frac{y'(t_0)}{x'(t_0)}.$$

6.4Производные простейших элементарных функций

Теорема 6.8. Во внутренних точках областей определения функций справедливы формулы:

- 1) c' = 0.
- 2) $(a^x)' = a^x \ln a$.
- 3) $(\log_a x)' = \frac{1}{x \ln a}$. 4) $(x^{\alpha})' = \alpha x^{\alpha 1}, x > 0$.

- 5) $(\sin x)' = \cos x$. $(\cos x)' = -\sin x$. 6) $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$. $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$. 7) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$. $(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}}$. 8) $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$. $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$. 9) $(\operatorname{sh} x)' = \operatorname{ch} x$. $(\operatorname{ch} x)' = \operatorname{sh} x$. 10) $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$. $(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$.

- $lacktriangle \Delta 2) \ (e^x)'|_{x=x_0} = \lim_{\Delta x o 0} \frac{e^{x_0 + \Delta x} e^{x_0}}{\Delta x} = e^{x_0} \lim_{\Delta x o 0} \frac{e^{\Delta x} 1}{\Delta x} = e^{x_0} \ ($ по следствию из 2-го замечательного предела). По теореме о производной сложной функции $(a^x)' = (e^{x \ln a})' = e^{x \ln a} (x \ln a)' = a^x \ln a.$
 - 3) По теореме о производной обратной функции: $(\log_a x)' = \frac{1}{(a^y)'} = \frac{1}{a^y \ln a}$, где $x = a^y$.
- 4) $(x^{\alpha})'=(e^{\alpha \ln x})'=e^{\alpha \ln x}(\alpha \ln x)'=x^{\alpha}\cdot \frac{\alpha}{x}=\alpha x^{\alpha-1}, x>0.$ (Формула справедлива для $\alpha\in\mathbb{Z}$
- при $x \neq 0$ (если $\alpha \in \mathbb{N}$, то $\forall x \in \mathbb{R}$). Доказывается по индукции).

 5) $(\sin x)|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\sin(x_0 + \Delta x) \sin x_0}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\cos(x_0 + \frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\Delta x} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin(x_0 + \Delta x) \sin(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\cos(x_0 + \frac{\Delta x}{2}) \sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2})\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2$

 $\cos x_0$ (по первому замечательному пределу и непрерывности функции $y = \cos x$ в точке x_0) $(\cos x)' = (\sin(\frac{\pi}{2} - x))' = \cos(\frac{\pi}{2} - x)(-1) = -\sin x.$ 6) $(\operatorname{tg} x)' = (\frac{\sin x}{\cos x})' = \dots = \frac{1}{\cos^2 x}$ при $x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$. Формула для котангенса доказывается аналогично.

7) $(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y}$, где $x = \sin y, y \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

 $\cos y = \pm \sqrt{1 - \sin^2 y} \Rightarrow \cos y = \sqrt{1 - x^2}.$

Формулы для производных $y = \arccos x, y = \arctan x$ доказываются аналогично.

9) $(\operatorname{sh} x)' = \left(\frac{e^x - e^{-x}}{2}\right) = \frac{e^x + e^{-x}}{2} = \operatorname{ch} x.$ $(\operatorname{ch} x)' = \left(\frac{e^x + e^{-x}}{2}\right) = \frac{e^x - e^{-x}}{2} = \operatorname{sh} x.$

$$(\operatorname{ch} x)' = \left(\frac{e^x + e^{-x}}{2}\right) = \frac{e^x - e^{-x}}{2} = \operatorname{sh} x.$$

10) Формулы для производных $y = \operatorname{th} x, y = \operatorname{cth} x$ доказываются аналогично (6), учитывая $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1. \blacksquare$

6.5Производные и дифференциалы высших порядков

Производные высших порядков определяются индукцией по порядку.

Определение 6.8. Положим $f^0 := f$, $f^{(1)} := f'$.

Если (n-1)-я производная $f^{(n-1)}$ функции f определена в некоторой δ -окрестности точки x_0 и существует $(f^{(n-1)})'(x_0)$, то эту производную называют n-й производной функции в точке x_0 . Обозначают: $f^{(n)}(x_0), \frac{d^n f}{dx^n}(x_0)$. Примеры: $(a^{\alpha})^{(n)} = a^{\alpha} \ln^n a$.

 $(x\alpha)^{(n)} = \alpha(\alpha - 1) \cdot \ldots \cdot (\alpha - n + 1)x^{\alpha - n}.$

 $(\sin x)^{(n)} = \sin(x + \frac{\pi}{2}n).$

 $(\cos x)^{(n)} = \cos(x + \frac{2\pi}{2}n).$ $(\ln x)^{(n)} = (\frac{1}{x})^{(n-1)} = \frac{(-1)^n (n-1)!}{x^n}.$

Определение 6.9. Функцию, имеющую в точке x (на множестве E) конечные производные до порядка n включительно называет n раз дифференцируемой в точке x (на множестве E).

Определение 6.10. Функцию, имеющую в точке x (на множестве E) конечные производные всех порядков называют бесконечно дифференцируемой в точке x (на множестве E).

Замечание. Из правил дифференцирования следует, что если функции f и g имеют в точке x конечные n-ые производные $f^{(n)}(x)$ и $g^{(n)}(x)$, то функции cf $(c \in \mathbb{R})$, $f \pm g$ так же имеют в точке x конечные n-ые производные и справедливы формулы:

 $(cf)^{(n)}(x) = c(f^{(n)})(x).$ $(f \pm q)^{(n)}(x) = f^{(n)}(x) \pm q^{(n)}(x).$

Теорема 6.9 (формула Лейбница). Если $\exists f^{(n)}(x) \in \mathbb{R}$ и $\exists g^{(n)}(x) \in \mathbb{R}$, то $\exists (fg)^{(n)}(x) \in \mathbb{R}$,

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x).$$

\blacktriangle Докажем ММИ по n.

При n = 1 верно по правилам дифференцирования.

Пусть утверждение верно для n=m. Покажем, что оно верно для n=m+1.

$$(fg)^{(m+1)}(x) = ((fg)^{(n)})'(x) = (\sum_{k=0}^{m} C_m^k f^{(k)}(x) g^{(m-k)}(x))' =$$

$$= \sum_{k=0}^{m} C_m^k f^{(k+1)}(x) g^{(m-k)}(x) + \sum_{k=0}^{m} C_m^k f^{(k)}(x) g^{(m+1-k)}(x) =$$

$$= \sum_{k=1}^{m+1} C_m^{k-1} f^{(k)}(x) g^{(m-(k-1))}(x) + \sum_{k=0}^{m} C_m^k f^{(k)}(x) g^{(m+1-k)}(x) =$$

$$= C_m^0 f^{(0)}(x) g^{(m+1)}(x) + \sum_{k=1}^{m} (C_m^{k-1} + C_m^k) f^{(k)} g^{(m+1-k)} + C_m^m f^{(m+1)}(x) g^{(0)}(x) =$$

$$= C_{m+1}^0 f^{(0)}(x) g^{(m+1)}(x) + \sum_{k=1}^{m} C_{m+1}^k f^{(k)}(x) g^{(m+1-k)}(x) + C_{m+1}^{m+1} f^{(m+1)}(x) g^{(0)}(x) =$$

$$= \sum_{k=0}^{m+1} C_{m+1}^k f^{(k)}(x) g^{(m+1-k)}(x). \blacksquare$$

Пример: Найти $(x^2e^{5x})^{(n)}$

 $(x^2e^{5x})^{(n)} = C_n^0x^2(e^{5x})^{(n)} + C_n^1(x^2)'(e^{5x})^{(n-1)} + C_n^2(x^2)''(e^{5x})^{(n-2)} + 0 + \ldots + 0 =$ $= x^25^ne^{5x} + n2x5^{n-1}e^{5x} + \frac{n(n-1)}{2}25^{n-2}e^{5x} = 5^{n-2}e^{5x}(25x^2 + 10nx + n(n-1)) \text{ (предполагалось } n > 2,$ справедливость формулы при n=0,1,2 проверяется непосредственно).

Определение 6.11. Если первый дифференциал df(x) = f'(x)dx функции f дифференцируем в точке x_0 (как функция от x) при постоянном dx (т.е. f' дифференцируема в точке x_0), то выражение, являющееся дифференциалом от df с новым приращением $\delta x = dx$, называется *вторым дифференциалом* функции f в точке x_0 и обозначается $d^2f(x_0)$.

Из определения вытекает: $d^2 f(x_0) = d(df(x))|_{x=x_0} = d(f'(x)dx)|_{x=x_0} = (f''(x)\delta x)dx|_{x=x_0,\delta x=dx} =$ $f''(x_0)dxdx = f''(x_0)dx^2.$

Определение 6.12. Если (n-1)-й дифференциал $d^{n-1}f(x) = f^{(n-1)}(x)dx^{n-1}$ функции fдифференцируем (как функция от x) в точке x_0 при постоянном dx, то выражение, являющееся дифференциалом от $d^{n-1}f$ с новым приращением $\delta x = dx$, называется n-м дифференциалом функции f точке x_0 и обозначается $d^n f(x_0)$. Убеждаемся, что $d^n f(x_0) = f^{(n)} dx^n$.

6.6Инвариантность первого дифференциала

29.10.14

Если функции y = y(x), z = z(y) дифференцируемы в точках x и y(x), то вычисление дифференциала сложной функции z=z(y(x)) прямым способом $(dz=z_x'dx=z_y'y_x'dx)$ или последовательным способом $(dz = z'_y dy = z'_y (y'_x dx))$ приводят к одному результату. Это(?) свойство и называется инвариантностью первого дифференциала (дифференциал для зависимой переменной имеет такую же форму, как и для независимой).

Дифференциалы высших порядков $(n \geqslant 2)$ таким свойством не обладают. Действительно, если y = y(x) и z = z(y) дважды дифференцируемы соответственно в точках x и y(x), то второй дифференциал сложной функции z=z(y(x)) равен $d^2z=d(dz)=d(z_y'dy)=d(z_y')dy+z_y'd^2y=$ $=z_{yy}^{"}dy^2+z_y^{'}d^2y$. Вычисление дифференциала последовательным способом приводит к неверному ответу: $d^2z=z_{yy}^{"}dy^2=z_{yy}^{"}(y_x^{\prime}dx)^2$.

Основные теоремы дифференциального исчисления 7

7.1 Теоремы о среднем

Определение 7.1. Точка x_0 называется точкой локального максимума (строго локального максимума) функции $f: E \to \mathbb{R}$, если x_0 внутренняя точка множества E и $\exists \delta > 0 \ \forall x \in B'_{\delta}(x_0)$: $f(x) \leq f(x_0) \ (f(x) < f(x_0)).$

Определение 7.2. Точка x_0 называется точкой локального минимума (строго локального минимума) функции $f: E \to \mathbb{R}$, если x_0 внутренняя точка множества E и $\exists \delta > 0 \ \forall x \in B'_{\delta}(x_0)$: $f(x) \ge f(x_0) \ (f(x) > f(x_0)).$

Определение 7.3. Все точки локального максимума и локального минимума называются точками локального экстремума.

Пример: Пусть $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 0, x < -1, \\ x^2, -1 \leqslant x < 2, \end{cases}$$
 Тогда (figure 7.1)

x = -1 — точка строго локального максимума.

x = 0 — точка строго локального минимума.

x = 2 — точка локального максимума (нестрого).

x > 2, x < -1 — одновременно является точкой локального максимума и минимума.

Теорема 7.1 (Ферма). Пусть x_0 — точка локального экстремума функции $f: E \to \mathbb{R}$. Тогда если f имеет производную в точке x_0 , то $f'(x_0) = 0$.

▲ Если x_0 — точка локального максимума $f : E \to \mathbb{R}$, то $\exists \delta > 0 : B_{\delta}(x_0) \subset E$ и $\forall x \in B'_{\delta}(x) : f(x) \leqslant f(x_0)$. Тогда $\Delta f = f(x) - f(x_0) \leqslant 0$ при $x \in B'_{\delta}(x_0)$, и, значит, $\frac{\Delta f}{\Delta x} \leqslant 0$ при $0 < \Delta x < \delta$, $\frac{\Delta f}{\Delta x} \geqslant 0$ при $-\delta < \Delta x < 0$. Пусть $\exists f'(x_0)$, тогда переходя в этих неравенствах к пределу при $\Delta x \to 0$ соответственно справа и слева получим, что $f'_+(x_0) \leqslant 0$ и $f'_-(x_0) \geqslant 0$. Поскольку $f'(x_0) = f'_+(x_0) = f'_-(x_0)$, to $f'(x_0) = 0$.

Bсюду в этом параграфе отрезок [a,b] предполагается невырожденным.

Теорема 7.2 (Ролль). Если $f:[a,b] \to \mathbb{R}$

- 1) непрерывна на [a,b],
- (a,b), дифференцируема на (a,b),
- 3) f(a) = f(b),

TO $\exists c \in (a, b) : f'(c) = 0.$

 \blacktriangle По теореме Вейерштрасса $\exists x_s, x_i \in [a,b] \colon f(x_s) = \sup_{[a,b]} f, f(x_i) = \inf_{[a,b]} f$. Если

 $f(x_s) > f(a) = f(b)$, то положим $c = x_s$. Если $f(x_i) < f(a) = f(b)$, то положим $c = x_i$. В любом случае $c \in (a,b)$ и c — точка локального экстремума f, по T7.1 Ферма f'(c) = 0.

Если $f(x_s) = f(a) = f(b) = f(x_i)$, то f — постоянна на [a,b] и в качестве точки c можно взять любую точку из (a,b).

Теорема 7.3 (Лагранжа о среднем). Если $f:[a,b]\to\mathbb{R}$

- 1) непрерывна на [a,b],
- (a,b), дифференцируема на (a,b),

TO
$$\exists c \in (a, b) : f(b) - f(a) = f'(c)(b - a).$$

▲ Рассмотрим функцию $g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$. Такая функция непрерывна на [a, b], дифференцируема на (a, b) и g(a) = f(a) = g(b). По T7.2 Ролля $\exists c \in (a, b) \colon g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$, т.е. f'(c)(b - a) = f(b) - f(a). ■

Замечание. Если положить $\Delta x = b - a$, $\Delta f = f(b) - f(a)$, то формула в Т.Лагранжа запишется в следующем виде: $\Delta f = f'(c)\Delta x - \phi$ ормула конечных приращений (Лагранжа).

Геометрический смысл формулы Лагранжа: $\exists c \in (a,b)$, что касательная к графику f в точке (c,f(c)) параллельна хорде, соединяющей точки (a,f(a)) и (b,f(b)). (figure. 7.2).

Теорема 7.4 (Коши о среднем). Если $f:[a,b]\to\mathbb{R}$ и $g:[a,b]\to\mathbb{R}$

- 1) непрерывны на [a, b],
- (a,b), дифференцируемы на (a,b),
- 3) $g'(x) \neq 0$ на (a, b),

To
$$\exists c \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

▲ Отметим, что $g(b) \neq g(a)$ (иначе по T7.2 Ролля $\exists c \in (a,b) : g'(c) = 0$). Рассмотрим функцию $h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))$. Эта функция непрерывна на [a,b], дифференцируема на (a,b) и h(a) = h(b) = f(a). По T7.2 Ролля $\exists c \in (a,b) : h'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0$. Т.к. по условию $g'(c) \neq 0$, то $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$. ■

7.2 Следствия из теоремы Лагранжа

 ${\it Cnedcmbue}\ 1.\ {\it Ecлu}\ f$ непрерывна на промежутке I и во всех внутренних точках I имеет равную нулю производную, то f постоянна на I.

▲ Пусть $x, x' \in I, x < x'$. Применяя T7.3 Лагранжа о среднем к сужению f на [x, x'], получим f(x') - f(x) = f'(c)(x' - x), где $c \in (x, x')$. По условию $f'(c) = 0 \Rightarrow \forall x, x' \in I : f(x) = f(x')$, т.е. f постоянна на I. ■

Следствие 2 (о доказательстве неравенств). Если $f:[a,b)\to\mathbb{R},\ g:[a,b)\to\mathbb{R}$ ($a\in\mathbb{R},\ b\in\mathbb{R}\cup\{+\infty\}$)

- 1) непрерывны на [a,b),
- (a,b), дифференцируемы на (a,b),
- 3) $f(a) \leqslant g(a)$,
- 4) f'(x) < g'(x) на (a, b),

то
$$f(x) < q(x)$$
 на (a, b) .

▲ Пусть $x \in (a,b)$. Применяя Т.Лагранжа о среднем к сужению функции $\varphi = g - f$ на [a,x], получим $\varphi(x) = \varphi(a) + \varphi'(c)(x-a)$ для некоторой точки $c \in (a,b)$. По условию $\varphi(a) = g(a) - f(a) \geqslant 0$, $\varphi'(c) = g'(c) - f'(c) > 0$, следовательно $\varphi(x) > 0$. Итак, $\forall x \in (a,b)$: f(x) < g(x). ■

Пример: $\forall x \neq 0 : e^x > 1 + x$.

▲ $f(x) = 1 + x, g(x) = e^x$ на $[0; +\infty)$.

 $(f(0) = g(0), f'(x) = 1 < e^x = g'(x)$ при x > 0). По следствию 2 f(x) < g(x) на $[0; +\infty)$.

Если x < 0, то положим t = -x. Тогда аналогично устанавливается неравенство $\forall t > 0: e^{-t} > 1 - t \ (g(t) = e^{-t}, f(t) = 1 - t). \blacksquare$

Пример: $\ln(1+x) < x$ при $x > -1, x \neq 0$.

Следствие 3 (о свойстве производной). Если $f(x_0) = f(x_0 + 0)$ (т.е. f непрерывна в точке x_0 справа) и $\exists f'(x_0+0)$ (предел производной справа), то $\exists f'_+(x_0)=f'(x_0+0)$. Аналогично для левой производной.

lacktriangle Рассмотрим первый случай. По T.Лагранжа о среднем при достаточно малых Δx выполнено $\frac{\Delta f}{\Delta x} = f'(c(\Delta x))$, где $x_0 < c(\Delta x) < x_0 + \Delta x$. Т.к. $c(\Delta x) \to x_0$ при $\Delta x \to +0$ и $c(\Delta x) \neq x_0$, то по $\bar{\mathrm{T}}4.10$ о замене переменной получим

$$f'_{+}(x_0) = \lim_{\Delta x \to +0} \frac{\Delta f}{\Delta x} = \lim_{c \to x + x_0} f'(c) = f'(x_0 + 0).$$

Второй случай рассматривается аналогично.

Задача 11. Пусть f дифференцируема на (a,b). Может ли её производная f' а) иметь разрыв I рода б) иметь разрыв II рода?

Теорема 7.5 (Дарбу). Если функция f дифференцируема на [a,b], то $\forall C \in \mathbb{R}$ (f'(a) < C < f'(b)) или f'(a) > C > f'(b)) $\exists c \in (a,b) \colon f'(c) = C.$

29.10.14

 \blacktriangle Рассмотрим случай f'(a)f'(b) < 0 и C = 0. Если f'(a) > 0 и f'(b) < 0, то для достаточно малых $\Delta x>0$ выполнено $\frac{f(a+\Delta x)-f(a)}{\Delta x}>0$ и, значит, $f(a+\Delta x)>f(a)$, при достаточно малых мажит $\Delta x > 0$ выполнено $\frac{\Delta x}{\Delta x} > 0$ и, значит, $f(a + \Delta x) > f(a)$, при достаточно малых (по модулю) $\Delta x < 0$ выполнено $\frac{f(b + \Delta x) - f(b)}{\Delta x} < 0$ и, значит, $f(b + \Delta x) > f(b)$. Пусть x_s — точка $\max f$ на [a,b], $f(x_s) = \sup_{s \in S} f$, тогда $x_s \in (a,b)$. Положим $c = x_s$, тогда по

T7.1 Ферма f'(c) = 0.

Рассмотрим общий случай. Введем функцию h(x) = f(x) - Cx, тогда h'(x) = f'(x) - C. По условию $h'(a)h'(b) < 0 \Rightarrow \exists c \in (a,b) : h'(c) = f'(c) - C = 0.$

7.3 Правила Лопиталя

Теорема 7.6 (І правило о неопределенности $\frac{0}{0}$). Пусть функции f и g определены в окрестности точки a, f(a) = g(a) = 0, существуют f'(a) и $g'(a) \neq 0$. Тогда существует

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

$$\blacktriangle \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)}. \blacksquare$$

Доказанная теорема верна и для односторонних пределов и соответствующих односторонних производных.

Теорема 7.7 (II правило о неопределенности $\frac{0}{0}$). Пусть функции $f:(a,b)\to\mathbb{R},$ $g\colon (a,b)\to \mathbb{R}$

- 1) дифференцируемы на (a, b),
- 2) $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0,$
- 3) $g'(x) \neq 0$ ha (a, b), 4) $\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} \in \mathbb{R}$.

Тогда существует

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$

осмененной в пределе $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}$, где $c \in (a, x), c = c(x)$.

Т.к. $\lim_{x \to a+0} c(x) = a$ и $c(x) \neq a$, то по c(x) = a по $c(x) \neq a$. Положив $c(x) \neq a$ по $c(x) \neq a$. \blacktriangle Доопределим f и g в точке a, положив f(a)=g(a)=0. Тогда $\forall x\in(a,b)$ по T7.4 Коши о

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{c \to a+0} \frac{f'(c)}{g'(c)}. \blacksquare$$

3амечание. Теорема также верна при $x \to a - 0$ и $x \to a$.

Следствие. Пусть $f:(c,+\infty)\to\mathbb{R},\ g:(c,+\infty)\to\mathbb{R}\ (c>0)$

- 1) дифференцируемы на $(c, +\infty)$,
- 2) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0,$ 3) $g'(x) \neq 0 \text{ Ha } (c, +\infty),$ 4) $\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}.$

Тогда существует $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$.

▲ Рассмотрим функции φ : $(0, \frac{1}{c}) \to \mathbb{R}$, $\varphi(t) = f(\frac{1}{t})$ и ψ : $(0, \frac{1}{c}) \to \mathbb{R}$, $\psi(t) = g(\frac{1}{t})$. Функции φ и ψ дифференцируемы на $(0, \frac{1}{c}), \varphi'(t) = -f'(\frac{1}{t})\frac{1}{t^2}, \ \psi'(t) = -g'(\frac{1}{t})\frac{1}{t^2} \neq 0$. По Т4.10 о замене переменной в пределе $\lim_{t\to+0} \varphi(t) = \lim_{t\to+\infty} f(x) = 0$, $\lim_{t\to+0} \psi(t) = \lim_{x\to+\infty} g(x) = 0$ и $\exists \lim_{t\to+0} \frac{\varphi'(t)}{\psi'(t)} = \lim_{x\to+\infty} \frac{f'(x)}{g'(x)}$. Тогда по Т7.7 (случай a=0) $\exists \lim_{t\to+0} \frac{\varphi(t)}{\psi(t)} = \lim_{t\to+0} \frac{\varphi'(t)}{\psi'(t)}$. Откуда, учитывая что $\lim_{t\to+0} \frac{\varphi(t)}{\psi(t)} = \lim_{t\to+\infty} \frac{f(x)}{g(x)}$, получим $\lim_{x\to+\infty} \frac{f(x)}{g(x)} = \lim_{x\to+\infty} \frac{f'(x)}{g'(x)}$. ■

Замечание. Доказанное утверждение верно и при $x \to -\infty$.

Теорема 7.8 (правило о неопределенности $\frac{\infty}{\infty}$). Пусть функции $f:(a,b)\to \mathbb{R}$ $g\colon (a,b)\to \mathbb{R}$

- 1) дифференцируемы на (a, b),
- 2) $\lim_{x \to a+0} f(x) = \pm \infty$, $\lim_{x \to a+0} g(x) = \pm \infty$,
- 3) $g'(x) \neq 0$ на (a, b), 4) $\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}$.

Тогда существует

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$

A Т.к. $\lim_{\substack{x\to a+0 \ x\to a+0}} g(x) = \pm \infty$, то можно дополнительно предположить, что $g(x) \neq 0$ на (a,b). Пусть $x, x_0 \in (a, b), x < x_0$, тогда по Т7.4 Коши о среднем $\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}$ для некоторой точки $c \in (a, x_0).$

Умножая это равенство на $\frac{g(x)-g(x_0)}{g(x)}$ и группируя члены, получаем, что

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)} + \frac{f(x_0)}{g(x)} - \frac{f'(c)}{g'(c)} \frac{g(x_0)}{g(x)}$$
(*).

I) Пусть $\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}$. Покажем, что $\lim_{x \to a+0} \frac{f(x)}{g(x)} = A$.

Возьмём произвольное $\varepsilon > 0$, найдём $\delta > 0$, что $\forall t \in (a, a + \delta) : \left| \frac{f'(t)}{g'(t)} - A \right| < \frac{\varepsilon}{3}$.

Выберем и зафиксируем $x_0 \in (a, a + \delta)$, тогда $\forall c \in (a, x_0), \left| \frac{f'(c)}{g'(c)} - A \right| < \frac{\varepsilon}{3}$. В силу условия $\lim_{x \to a+0} \frac{1}{g(x)} = 0$. Поэтому $\exists \delta' \colon 0 < \delta' \leqslant \delta$, что $\forall x \in (a, a + \delta')$ выполняются

неравенства $a < x < x_0$, $\left| \frac{f(x_0)}{g(x)} \right| < \frac{\varepsilon}{3}$, $\left| \frac{g(x_0)}{g(x)} \right| < \frac{\varepsilon}{3|A| + \varepsilon}$.

Значит, при $x \in (a, a + \delta)$: $\left| \frac{f(x)}{g(x)} - A \right| \stackrel{(*)-A}{=} \left| \frac{f'(c)}{g'(c)} - A + \frac{f(x_0)}{g(x_0)} - \frac{f'(c)}{g'(c)} \frac{g(x_0)}{g(x)} \right| \leqslant$ $\leq \left| \frac{f'(c)}{g'(c)} - A \right| + \left| \frac{f(x_0)}{g(x_0)} \right| + \left| \frac{f'(c)}{g'(c)} \right| \left| \frac{g(x_0)}{g(x)} \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \left(|A| + \frac{\varepsilon}{3} \right) \frac{\varepsilon}{3|A| + \varepsilon} < \varepsilon,$

II) Пусть $\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = \pm \infty$, тогда $\exists \lim_{x \to a+0} \frac{g'(x)}{f'(x)} = 0$. Следовательно, по пункту $\mathbf{I} \ \exists \lim_{x \to a+0} \frac{g(x)}{f(x)} = \lim_{x \to a+0} \left| \frac{g'(x)}{f'(x)} \right| = +\infty$. По равенству (*):

$$\frac{f(x)}{g(x)} = \left(1 - \frac{g(x_0)}{g(x)}\right) \frac{f'(c)}{g'(c)} + \frac{f(x_0)}{g(x)}.$$

Т.к. $\lim_{x \to a+0} \frac{g(x_0)}{g(x)} = \lim_{x \to a+0} \frac{f(x_0)}{g(x)} = 0$, то существует интервал (a, α) на котором знак дроби $\frac{f(x)}{g(x)}$ совпадает со знаком $\frac{f'(c)}{g'(c)}$. Следовательно, $\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = \pm \infty$.

Замечание. Данная теорема верна при $x \to a - 0, x \to a$.

Cледствие. См. предыдущее следствие, где 2) $\lim_{x \to +\infty} f(x) = \pm \infty, \lim_{x \to +\infty} g(x) = \pm \infty.$

▲ Доказывается аналогично предыдущему следствию. В

Замечание. Следствие верно и при $x \to -\infty$.

Замечание. Если предела $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ не существует, то это не означает, что не существует предела $\lim_{x\to a} \frac{f(x)}{g(x)}$. Например: $\frac{f(x)}{g(x)} = \frac{x+\sin x}{x}$ при $x\to +\infty$.

7.4Формула Тейлора

Определение 7.4. Пусть $f \colon E \to \mathbb{R}$ дифференцируема в точке x_0 не менее n раз, тогда равенство $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x)$ называется формулой Тейлора функции f в точке x_0 .

При этом $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ называется многочленом Тейлора, $r_n(x) = f(x) - P_n(x)$

Пример: Если
$$P(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$$
, то

11.11.14

$$P^{(l)}(x) = \sum_{k=l}^{n} \frac{k!}{(k-l)!} a_k(x-x_0)^{k-l}, P^{(l)}(x_0) = l! a_l, 0 \le l \le n.$$

Таким образом, $P(x) = \sum_{k=0}^{n} \frac{P^{(k)}(x_0)}{k!} (x - x_0)^k$ — формула Тейлора многочлена P(x).

Теорема 7.9 (остаточный член в форме Пеано). Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$, тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), x \to x_0,$$

т.е. $r_n(x) = o((x - x_0)^n)$ при $x \to x_0$.

A Пусть
$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
, тогда $P^{(k)}(x_0) = f^{(k)}(x_0), 0 \leqslant k \leqslant n$.

Рассмотрим $r_n = f(x) - P_n(x)$, тогда $r_n(x_0) = r'_n(x_0) = \dots = r_n^{(n)}(x_0) = 0$.

Используя правило Лопиталя, имеем:

$$\lim_{x\to x_0}\frac{r_n(x)}{(x-x_0)^n}=\lim_{x\to x_0}\frac{r_n'(x)}{n(x-x_0)^{n-1}}=\ldots=\lim_{x\to x_0}\frac{r_n^{(n-1)}(x)}{n!(x-x_0)}\stackrel{\mathrm{T7.6}}{=}\frac{r_n^{(n)}(x_0)}{n!}=0,$$
 следовательно, $r_n(x)=o((x-x_0)^n)$ при $x\to x_0$.

Теорема 7.10 (остаточный член в форме Лагранжа). Пусть $x > x_0$ $(x < x_0)$, $n \in \mathbb{N} \cup \{0\}, f^{(n)}$ непрерывна на отрезке $[x_0, x]$ ($[x, x_0]$) и $f^{(n+1)}$ существует на интервале (x_0, x) $((x,x_0))$. Тогда, существует $c \in (x,x_0)$ $(c \in (x_0,x))$, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1},$$

T.e. $r_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$.

A Пусть $x > x_0$. Введём функции $\varphi(t) = (x - t)^{n+1}, \psi(t) = \sum_{k=0}^n \frac{f^{(k)}(t)}{k!} (x - t)^k$.

Тогда $\psi(x) = f(x)$, $\psi(x_0) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$.

$$\psi'(t) = \sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!} (x-t)^k - \sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!} k(x-t)^{k-1} = \sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!} (x-t)^k - \sum_{k=0}^{n-1} \frac{f^{(k+1)}(t)}{k!} (x-t)^k = \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

Значит, $r_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = \psi(x) - \psi(x_0).$

Тогда по Теореме Коши о среднем $\frac{r_n(x)}{\varphi(x)-\varphi(x_0)}=\frac{\psi(x)-\psi(x_0)}{\varphi(x)-\varphi(x_0)}=\frac{\psi'(c)}{\varphi'(c)},$ где $c\in(x,x_0).$ Откуда

$$r_n(x) = \frac{\psi'(c)}{\varphi'(c)}(\varphi(x) - \varphi(x_0)) = \frac{f^{(n+1)}(c)(x-c)^n}{n!(x-c)^n(-1)}(0 - (x-x_0)^{n+1}) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}. \blacksquare$$

Замечание. Если положить $\varphi(t) = x - t$, тогда $r_n(x) = \frac{f^{(n+1)}(c)}{n!}(x-c)^n(x-x_0)$ (остаточный член в форме Коши). Так можно получать разные формы остаточного члена.

Теорема 7.11 (о единственности). Пусть в $B'_{\varepsilon}(x_0)$

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n),$$

$$f(x) = b_0 + b_1(x - x_0) + \ldots + b_n(x - x_0)^n + o((x - x_0)^n)$$

при $x \to x_0$. Тогда $a_0 = b_0, \dots, a_n = b_n$.

▲ Вычитая из второго представления первое имеем:

$$(b_0 - a_0) + (b_1 - a_1)(x - x_0) + \ldots + (b_n - a_n)(x - x_0)^n = o((x - x_0)^n), x \to x_0 (*).$$

Переходя в этом равенстве к пределу при $x \to x_0$, получим $b_0 = a_0$. Учитывая это, поделим (*) на $(x - x_0)$. Тогда

$$(b_1 - a_1) + (b_2 - a_2)(x - x_0) + \ldots + (b_n - a_n)(x - x_0)^{n-1} = o((x - x_0)^{n-1}), x \to x_0,$$

аналогично получим $b_1 = a_1$ и т.д.

Следствие. Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$ и $f(x) = \sum_{k=0}^n a_k (x-x_0)^k + o((x-x_0)^n), x \to x_0$. Тогда это равенство является формулой Тейлора с остаточным членом в форме Пеано, т.е. $a_k = \frac{f^{(k)}(x_0)}{k!}, 0 \leqslant k \leqslant n$.

Лемма 7.1. Пусть $\exists f^{(n+1)}(x_0) \in \mathbb{R}$ и

$$f'(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n), x \to x_0.$$
 Тогда

$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x - x_0)^{k+1} + o((x - x_0)^{n+1}), x \to x_0.$$

A По предыдущему следствию $a_k = \frac{(f')^{(k)}(x_0)}{k!} \Rightarrow f^{(k+1)}(x_0) = a_k k!, 0 \leqslant k \leqslant n.$

$$\Pio \text{ T7.9 } f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + o((x-x_0)^{n+1}) = f(x_0) + \sum_{k=0}^n \frac{f^{(k+1)}(x_0)}{k+1!} (x-x_0)^{k+1} + o((x-x_0)^{n+1}).$$

Откуда
$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x-x_0)^{k+1} + o((x-x_0)^{n+1}), x \to x_0.$$

7.5 Основные разложения по формуле Маклорена

Определение 7.5. Формула Тейлора при $x_0 = 0$ называется формулой Маклорена.

$$f(x) = \sum_{k=0}^{n} = \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n}), x \to 0.$$

Лемма 7.2. 1) Пусть $f:(-a,a)\to\mathbb{R}$ — чётная (a>0). Тогда если f дифференцируема в точке $x_0\in(-a,a)$, то f дифференцируема в точке $x=-x_0$ и $f'(-x_0)=-f'(x_0)$. В частности, если f дифференцируема на (-a,a), то f' — нечётная.

- 2) Пусть $f:(-a,a)\to\mathbb{R}$ нечётная (a>0). Тогда если f дифференцируема в точке $x_0\in(-a,a)$, то f дифференцируема в точке $x=-x_0$ и $f'(-x_0)=f'(x_0)$. В частности, если f дифференцируема на (-a,a), то f' чётная.
- ▲ Докажем (1). Пусть f чётная на (-a,a), т.е. $f(-x_0) = f(x_0)$, тогда по T4.10 о замене переменной в пределе имеем: $f'(-x_0) = \lim_{\Delta x \to 0} \frac{f(-x_0 + \Delta x) f(-x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 \Delta x) f(x_0)}{\Delta x} \stackrel{t = -\Delta x}{=} = \lim_{t \to 0} \frac{f(x_0 + t) f(x_0)}{-t} = -f'(x_0)$. Пункт 2 доказывается аналогично. ■

Лемма 7.3. 1) Пусть f — чётная и $\exists f^{(2n+1)}(0) \in \mathbb{R}$. Тогда $f(x) = \sum_{k=0}^{n} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} + o(x^{2n+1}),$ $x \to 0$.

- 2) Пусть f нечётная и $\exists f^{(2n+2)}(0) \in \mathbb{R}$. Тогда $f(x) = \sum_{k=0}^{n} \frac{f^{(2k+1)}(0)}{(2k+1)!} x^{2k+1} + o(x^{2n+2}), x \to 0$.
- ▲ Докажем (1). Т.к. $\exists f^{(2n+1)}(0) \in \mathbb{R}$, то на некотором интервале (-a,a) определены $f^{(j)}(x)$, $0 \le j \le 2n$. По лемме 2 $f^{(2k)}(x)$ чётная, $f^{(2k-1)}(x)$ нечётная $\Rightarrow f^{(2k-1)}(0) = 0$ $(1 \le k \le n)$ и $f^{(2n+1)}(0) = 0$.

Следовательно, $f(x) = f(0) + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(2n)}(0)}{(2n)!}x^{2n} + o(x^{2n+1}), x \to 0.$

Пункт (2) доказывается аналогично. ■

7.6 Основные разложения

- 1) Если $f(x) = e^x$, то $f^{(n)}(0) = e^0 = 1$ для всех $n \in \mathbb{N} \cup \{0\}$, следовательно, $e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n), x \to 0.$
- 2) Если $f(x) = \sin x$, то $f^{(n)}(x) = \sin(x + \frac{\pi}{2}n)$, $n \in \mathbb{N} \cup \{0\}$; $f^{(2k)}(0) = \sin(\pi k) = 0$, $f^{(2k+1)}(0) = \sin(\frac{\pi}{2} + \pi k) = (-1)^k$, следовательно, $\sin x = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+2}), x \to 0$.

Аналогично, $\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n+1}), x \to 0.$

3) Если $f(x) = \operatorname{sh}(x)$, то $f^{(2k)}(x) = \operatorname{sh} x$, $f^{(2k+1)}(0) = 0$, $f^{(2k+1)}(x) = \operatorname{ch} x$, $f^{(2k+2)}(0) = 1$, следовательно, $\operatorname{sh} x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}), x \to 0$.

Аналогично, ch $x = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}), x \to 0.$

4) Если $f(x) = (1+x)^{\alpha}$, то $f^{(k)} = \alpha(\alpha-1)\dots(\alpha-k+1)(1+x)^{\alpha-k}$ и, значит, $f^{(k)}(0) = \alpha(\alpha-1)\dots(\alpha-k+1)$.

Введём обозначение: $C^0_{\alpha}=1, C^k_{\alpha}=\frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}, k\in\mathbb{N}.$ Тогда

$$(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^{k} x^{k} + o(x^{\alpha}), x \to 0.$$

В частности: $\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^\alpha), x \to 0.$

5) Если $f(x) = \ln(1+x)$, то $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$, $k \in \mathbb{N}$, и, значит, $f^{(k)}(0) = (-1)^{k-1}(k-1)!$, f(0) = 0, следовательно, $\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n), x \to 0.$

Пример. Если $f(x)=\arctan x$, то $f'(x)=\frac{1}{1+x^2}$. Тогда по формуле 4) и Т4.10 о замене переменной в пределе $f'(x)=\sum\limits_{k=0}^n (-1)^k x^{2k}+o(x^{2n})$. По Лемме 1 и учитывая, что f(0)=0, получим $\arctan x=\sum\limits_{k=0}^n \frac{(-1)^k x^{2k+1}}{2k+1}+o(x^{2n+1}), x\to 0$.

Пример. Разложим $f(x) = \ln x$ по формуле Тейлора в точке $x_0 > 0$.

 \blacktriangle Пусть $t=x-x_0$, тогда имеем $t\to 0$. Имеем

$$\ln x = \ln(x_0 + t) = \ln\left(x_0\left(1 + \frac{t}{x_0}\right)\right) = \ln x_0 + \ln\left(1 + \frac{t}{x_0}\right) = \ln x_0 + \sum_{k=1}^n \frac{(-1)^k}{k} \left(\frac{t}{x_0}\right)^k + o\left(\left(\frac{t}{x_0}\right)^n\right) =$$

$$= \ln x_0 + \sum_{k=1}^n \frac{(-1)^{k-1}}{kx_0^k} t^k + o(t^n), \ t \to 0. \text{ Окончательно}$$

$$\ln x = \ln x_0 + \sum_{k=1}^n \frac{(-1)^{k-1}}{kx_0^k} (x - x_0)^k + o((x - x_0)^n), \ x \to x_0. \blacksquare$$

$$\Pi pumep. \ (\frac{0}{0}) \lim_{x \to 0} \frac{\sin x - x \cos x}{\sin x - \operatorname{arctg} x} = \lim_{x \to 0} \frac{\frac{x^3}{3} + o(x^4)}{\frac{x^3}{2} + o(x^4)} = \frac{2}{3}.$$

 \blacktriangle При $x \to 0$.

$$\sin x = x - \frac{x^3}{6} + o(x^4).$$

$$\sin x = x - \frac{x^3}{6} + o(x^4).$$

$$\cos x = x(1 - \frac{x^2}{2} + o(x^3)).$$

$$\sin x - x \cos x = \frac{x^3}{3} + o(x^4).$$

$$\sinh x = x + \frac{x^3}{6} + o(x^4).$$

$$\operatorname{arctg} x = x - \frac{x^3}{3} + o(x^4).$$

$$\sinh x - \operatorname{arctg} x = \frac{x^3}{2} + o(x^4).$$

Задача 12. Пусть $f(x) = f(x_0) + a_1(x - x_0) + a_2(x - x_0)^2 + o((x - x_0)^2), x \to x_0$. Верно ли, что а) $\exists f'(x_0)$, б) $\exists f''(x_0)$?

8 Исследование функций при помощи производной

8.1 Условия монотонности функции

Теорема 8.1. Пусть $f \colon E \to \mathbb{R}$ дифференцируема на промежутке $I \subset E$. Тогда

- 1) f нестрого возрастает (убывает) на $I \Leftrightarrow f' \geqslant 0$ ($f' \leqslant 0$) на I.
- 2) Если f'>0 (f'<0) на I, то f строго возрастает (строго убывает) на I.
- ▲ Докажем (1).
 - (\Rightarrow) Пусть f нестрого возрастает на $I, x_0 \in I$. Тогда для Δf в x_0 выполнено:

 $\Delta f \geqslant 0$ при $\Delta x > 0$ и $\Delta f \leqslant 0$ при $\Delta x < 0$, и значит, $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \geqslant 0$ (если x_0 — концевая точка промежутка I, то рассматривается односторонние производная и предел).

(\Leftarrow) Пусть $x, x' \in I, x < x'$. Тогда по Т. Лагранжа о среднем $\Delta f = f(x') - f(x) = f'(c)\Delta x$, где $c \in (x, x'), \ \Delta x = x' - x > 0$.

Если всегда $f'(c) \geqslant 0$, то $\Delta f \geqslant 0 \Rightarrow f$ нестрого возрастает на I.

Если всегда f'(c)>0, то $\Delta f>0\Rightarrow f$ строго возрастает на I, что доказывает (2).

Оставшиеся утверждения доказываются аналогично.

Замечание. Т.к. при переходе к пределу строгие неравенства могут переходить в нестрогие, то нельзя утверждать, что если f строго возрастает на I, то f' > 0 на I (например, $f(x) = x^3$ строго возрастает на \mathbb{R} , но f'(0) = 0).

Определение 8.1. 1) Функция $f : E \to \mathbb{R}$ строго (нестрого) возрастает в точке x_0 , если x_0 — внутрення точка E и $\exists \delta > 0$, что $f(x) > f(x_0)$ ($f(x) \geqslant f(x_0)$) при $x \in (x, x_0 + \delta)$ и $f(x) < f(x_0)$ ($f(x) \leqslant f(x_0)$) при $x \in (x - \delta, x_0)$ (т.е. $\frac{\Delta f}{\Delta x} > 0$ ($\geqslant 0$) при $0 < |\Delta x| < \delta$).

2) Функция $f: E \to \mathbb{R}$ строго (нестрого) убывает в точке x_0 , если x_0 — внутрення точка E и $\exists \delta > 0$, что $f(x) < f(x_0)$ ($f(x) \leqslant f(x_0)$) при $x \in (x, x_0 + \delta)$ и $f(x) > f(x_0)$ ($f(x) \geqslant f(x_0)$) при $x \in (x - \delta, x_0)$. (т.е. $\frac{\Delta f}{\Delta x} < 0$ ($\leqslant 0$) при $0 < |\Delta x| < \delta$).

Задача 13. Показать, что функция $f \colon \mathbb{R} \to \mathbb{R},$

$$f(x) = \begin{cases} x + x^2 \sin \frac{1}{x^2}, & x \neq 0, \\ x = 0, & x \neq 0, \end{cases}$$

строго возрастает в точке $x_0=0$, но не является возрастающей (даже в нестрогом смысле) ни в какой окрестности $x_0=0$.

8.2 Условия локального экстремума в терминах первой производной

Теорема 8.2. Пусть $f \colon E \to \mathbb{R}$ непрерывна в $B_{\delta}(x_0) \subset E$ и дифференцируема в $B'_{\delta}(x_0)$. Тогда

- 1) Если $f' \ge 0$ на $(x_0 \delta, x_0)$ и $f' \le 0$ на $(x_0, x_0 + \delta)$, то x_0 точка локального максимума f (строго, если неравенства для производной строгие).
- 2) Если $f' \leq 0$ на $(x_0 \delta, x_0)$ и $f' \geq 0$ на $(x_0, x_0 + \delta)$, то x_0 точка локального минимума f (строго, если неравенства для производной строгие).
- 3) Если f' > 0 на $B'_{\delta}(x_0)$, то f строго возрастает в точке x_0 . Если f' < 0 на $B'_{\delta}(x_0)$, то f строго убывает в точке x_0 . В обоих случаях в точке x_0 нет локального экстремума.

A Пусть $x \in B'_{\delta}(x_0)$. Тогда по Т. Лагранжа о среднем $\Delta f = f(x) - f(x_0) = f'(c) \Delta x$, где c лежит между x и x_0 .

По условию теоремы, в случае 1) всегда $\Delta f \leq 0$ (< 0), т.е. x_0 — точка локального максимума f (строго, если неравенства для производной строгие).

По условию теоремы, в случае 2) всегда $\Delta f \geqslant 0 \ (>0)$, т.е. x_0 — точка локального минимума f (строго, если неравенства для производной строгие).

В случае 3) знак Δf зависит от знака Δx :

Если f'>0 на $B'_{\delta}(x_0)$, то $\Delta f<0$ при $-\delta<\Delta x<0$ и $\Delta f>0$ при $0<\Delta x<\delta$, т.е. f строго возрастает в точке x_0 .

Если f'<0 на $B'_\delta(x_0)$, то $\Delta f>0$ при $-\delta<\Delta x<0$ и $\Delta f<0$ при $0<\Delta x<\delta$, т.е. f строго убывает в точке x_0 .

8.3 Условия локального экстремума в терминах высших производных

Теорема 8.3. Пусть $f: E \to \mathbb{R}$ имеет конечную n-ую производную в точке x_0 и $f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$, а $f^{(n)}(x_0) \neq 0$, $n \in \mathbb{N}$. Тогда:

- 1) Если n чётно и $f^{(n)}(x_0) < 0$, то x_0 точка строгого локального максимума f.
- 2) Если n чётно и $f^{(n)}(x_0) > 0$, то x_0 точка строгого локального минимума f.
- 3) Если n нечётно, то f не имеет локального экстремума в точке x_0 :

Если $f^{(n)}(x_0) > 0$, то f строго возрастает в точке x_0 , если $f^{(n)}(x_0) < 0$, то f строго убывает в точке x_0 .

▲ По формуле Тейлора с остаточным членом в форме Пеано имеем:

$$\Delta f = f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (\Delta x)^n + o((\Delta x)^n) = \left(\frac{f^{(n)}(x_0)}{n!} + \alpha(\Delta x)\right) (\Delta x)^n,$$
 где $\alpha(\Delta x) = o(1)$ при $\Delta x \to 0$.

При достаточно малых по модулю $\Delta x \neq 0$ значение $|\alpha(\Delta x)| < \left|\frac{f^{(n)}(x_0)}{n!}\right|$, следовательно, знак выражения $\left(\frac{f^{(n)}(x_0)}{n!} + \alpha(x_0)\right)$ совпадает со знаком $f^{(n)}(x_0)$.

Если n чётно, то всегда $(\Delta x)^n > 0$. Поэтому в случае 1) $\Delta f < 0$ при достаточно малых Δx , и, значит, x_0 — точка строго локального максимума f.

В случае 2) $\Delta f > 0$ при достаточно малых Δx , и, значит, x_0 — точка строго локального минимума f.

В случае 3) (n- нечётно) знак Δf зависит от знака Δx (при достаточно малых Δx). Если $f^{(n)}(x_0)>0$, то $\Delta f<0$ при $\Delta x<0$ и $\Delta f>0$ при $\Delta x>0$, т.е. f строго возрастает в точке x_0 .

Если $f^{(n)}(x_0) < 0$, то $\Delta f > 0$ при $\Delta x < 0$ и $\Delta f < 0$ при $\Delta x > 0$, т.е. f строго убывает в точке x_0 .

8.4 Выпуклые функции

Определение 8.2. Пусть $f \colon E \to \mathbb{R}$ и промежуток $(a,b) \subset E$ $(a,b \in \overline{\mathbb{R}})$.

Функция f называется выпуклой вниз (выпуклой) на (a,b), если $\forall x_1, x_2, x_1 \neq x_2 \ \forall t \in (0,1)$ имеет место неравенство $f((1-t)x_1+tx_2) \leq (1-t)f(x_1)+tf(x_2)$.

Функция f называется выпуклой вверх (вогнутой) на (a,b), если $\forall x_1, x_2, x_1 \neq x_2 \ \forall t \in (0,1)$ имеет место неравенство $f((1-t)x_1+tx_2) \geqslant (1-t)f(x_1)+tf(x_2)$.

Если неравенства в формулах строгие, то говорят о строгой выпуклости вверх и вниз.

Замечание. Каждая точка хорды с концами $(x_1, f(x_1))$ и $(x_2, f(x_2))$ может быть записана в виде $((1-t)x_1+tx_2, (1-t)f(x_1)+tf(x_2)), t \in [0,1]$. Тогда условие (строгой) выпуклости вниз функции f на (a,b) геометрически означает, что график f лежит не выше (строго ниже) любой его хорды (исключая концы). (figure 8.1)

Выпуклость вверх функции f очевидно равносильна выпуклости вниз функции -f. Поэтому в утверждениях можно ограничиться случаем выпуклости вниз.

Лемма 8.1. Пусть f выпукла вниз на промежутке (a,b) и дифференцируема в $x_0 \in (a,b)$. Тогда $\forall x \in (a,b)$ выполнено неравенство

$$f(x) \ge f(x_0) + f'(x)(x - x_0)$$
 (*).

A Пусть f выпукла вниз на (a,b) и $x \in (a,b), x \neq x_0$ (при $x=x_0$ (*) верно). При $t \in (0,1)$ условие выпуклости вниз $f((1-t)x_1+tx_2) \leqslant (1-t)f(x_1)+tf(x_2)$ перепишем в виде

$$(x - x_0) \frac{f(x_0 + t(x - x_0)) - f(x_0)}{t(x - x_0)} \le f(x) - f(x_0).$$

Перейдём в полученном неравенстве к пределу при $t \to 0$. Тогда по T4.10 о замене переменной в пределе

$$\lim_{t \to 0} \frac{f(x_0 + t(x - x_0)) - f(x_0)}{t(x - x_0)} \stackrel{\Delta x = t(x - x_0)}{=} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0),$$

откуда следует (∗). ■

3амечание. В условиях леммы 8.1 график функции f лежит не ниже касательной, прове- 18.11.14 дённой в точке x_0 .

Лемма 8.2. Пусть f дифференцируема на промежутке (a,b) и f' нестрого возрастает на (a,b), тогда $\forall x_0, x \in (a,b), x_0 \neq x$ выполнено неравенство (*).

A Рассмотрим случай $x > x_0$ (случай $x < x_0$ аналогичен). Применяя к сужению f на $[x_0, x]$ Т. Лагранжа о среднем, получим, что для некоторой точки $c \in (x_0, x)$ имеет место равенство: $f(x) - f(x_0) - f'(x_0)(x - x_0) = f'(c)(x - x_0) - f'(x_0)(x - x_0) = (f'(c) - f'(x_0))(x - x_0)$.

Поскольку f' нестрого возрастает на $(a,b), c > x_0$, то $(f'(c) - f'(x_0))(x - x_0) \ge 0$, значит (*) верно.

Замечание. Если f' строго возрастает на (a,b), то выполнено строгое неравенство $f(x) > f(x_0) + f'(x_0)(x - x_0)$.

Теорема 8.4. Пусть $f: E \to \mathbb{R}$ дифференцируема на промежутке (a, b), тогда:

- 1) f выпукла вниз на $(a,b) \Leftrightarrow f'$ нестрого возрастает на (a,b).
- 2) Если f' строго возрастает на (a,b), то f' строго выпукла вниз на (a,b).
- \blacktriangle (\Rightarrow) Пусть f выпукла вниз на $(a,b), x_1, x_2 \in (a,b)$ и $x_1 < x_2$. Применяя неравенство (*) (по Л8.1), имеем:

$$f(x_2) \ge f(x_1) + f'(x_1)(x_2 - x_1),$$

 $f(x_1) \ge f(x_2) + f'(x_2)(x_1 - x_2).$

Складывая эти неравенства, получим: $0 \ge (f'(x_1) - f'(x_2))(x_2 - x_1)$ Т.к. $x_2 > x_1$, то из последнего неравенства вытекает, что $f'(x_2) > f'(x_1)$, т.е. f' нестрого возрастает на (a,b).

 (\Leftarrow) Пусть f' нестрого возрастает на (a,b). Зафиксируем $x_1,x_2 \in (a,b), x_1 \neq x_2$, и $t \in (0,1)$. Положим $x_0 = (1-t)x_1 + tx_2$. Тогда по неравенству (*) (по Л8.2) имеем:

$$f(x_1) \geqslant f(x_0) + f'(x_0)(x_1 - x_0) \mid \times (1 - t),$$

$$f(x_2) \geqslant f(x_0) + f'(x_0)(x_2 - x_0) \mid \times t.$$

$$(1-t)f(x_1) + tf(x_2) \geqslant f(x_0) + f'(x_0)((1-t)x_1 + tx_2 - x_0) = f((1-t)x_1 + tx_2),$$

т.е. функция f выпукла вниз на (a, b).

Утверждение пункта 2 вытекает из замечания к Л8.2. ■

Следствие. Пусть $f: E \to \mathbb{R}$ дважды дифференцируема на промежутке (a, b), тогда f выпукла вниз на $(a, b) \Leftrightarrow f'' \geqslant 0$ на (a, b).

Вопрос: Верно ли утверждение 2) в Т8.4 в обратную сторону? Ответ: Верно.

▲ Пусть f строго выпукла на $(a,b) \Rightarrow f'$ нестрого возрастает на (a,b). Пусть $\exists x_1, x_2 \in (a,b)$: $x_1 < x_2$ и $f'(x_1) = f'(x_2)$, тогда f' постоянна на (x_1, x_2) , т.е. $f'(x) = k \ \forall x \in (x_1, x_2)$. Рассмотрим g = f(x) - kx, т.к. g'(x) = 0 на $(x_1, x_2) \Rightarrow g(x) = b$, т.е. f(x) = kx + b на (x_1, x_2) . Противоречие $(f - \text{строго выпукла на } (x_1, x_2))$. ■

Замечание. Таким образом, выполняется следующее условие: f строго выпукла на $(a,b) \Leftrightarrow f'$ строго возрастает на (a,b).

Из последних двух замечаний следует, что если f дифференцируема на (a,b) и строго выпукла вниз, то $\forall x, x_0 \in (a,b), x \neq x_0 \colon f(x) > f(x_0) + f'(x_0)(x-x_0)$.

 $\Pi pumep:$ а) $f(x)=e^x, f'(x)=e^x, f''(x)=e^x>0$ на $\mathbb{R}\Rightarrow f$ строго выпукла вниз на $\mathbb{R},$ тогда $e^x>1+x, x\neq 0.$

б) $f(x) = \ln(1+x), f'(x) = \frac{1}{1+x}, f''(x) = -\frac{1}{(1+x)^2} < 0 \Rightarrow f$ строго выпукла вверх на \mathbb{R} , тогда $\ln(1+x) < x, x > -1, x \neq 0$.

Определение 8.3. Точка x_0 называется точкой перегиба $f: E \to \mathbb{R}$, если

- 1) f непрерывна в некоторой окрестности $B_{\delta}(x_0) \subset E$,
- $\exists f'(x_0) \in \overline{\mathbb{R}},$
- 3) f выпукла вверх (вниз) на $(x_0 \delta, x_0)$ и выпукла вниз (вверх) на $(x_0, x_0 + \delta)$.

Теорема 8.5. Пусть $f: E \to \mathbb{R}$ непрерывна в точке $x_0, \exists f'(x_0) \in \overline{\mathbb{R}}$ и дважды дифференцируема в $B'_{\delta}(x_0)$. Если при переходе через x_0 f'' меняет знак, то x_0 — точка перегиба функции f.

▲ Вытекает из определения точки перегиба и следствия Т8.4. ■ *Пример*. Картинка.

8.5 Асимптоты графиков функции

Определение 8.4. Прямая x = a называется вертикальной асимптотой графика функции f, если хотя бы один из пределов $\lim_{x\to a-0} f(x)$ или $\lim_{x\to a+0} f(x)$ равен $\pm\infty$.

Пример. x = 0 — вертикальная асимптота графика функции $f(x) = \frac{1}{x}$.

Определение 8.5. Прямая y = kx + b называется *наклонной асимптотой* графика функции f при $x \to \pm \infty$, если $\lim_{x \to \infty} (f(x) - kx - b) = 0$.

Лемма 8.3. Для того, чтобы график f имел наклонную асимптоту y=kx+b при $x\to\pm\infty$, необходимо и достаточно, чтобы существовали $\lim_{x\to+\infty}\frac{f(x)}{x}=k$, $\lim_{x\to\pm\infty}(f(x)-kx)=b, k,b\in\mathbb{R}$.

 \blacktriangle (\Rightarrow) Если y=kx+b — наклонная асимптота графика f при $x\to\pm\infty$, то по определению f(x)-kx-b=o(1) при $x\to\pm\infty$ $\Rightarrow \frac{f(x)}{x}=k+o(1), \ f(x)-kx=b+o(1)$ при $x\to\pm\infty$.

 (\Leftarrow) Пусть $\exists \lim_{x \to \pm \infty} \frac{f(x)}{x} = k \in \mathbb{R}, \ \lim_{x \to \pm \infty} (f(x) - kx) = b \in \mathbb{R}, \ \text{тогда} \ \lim_{x \to \pm \infty} (f(x) - kx - b) = 0, \ \text{т.e.}$ y = kx + b — наклонная асимптота при $x \to \pm \infty$.

9 Комплексные числа

9.1 Определение комплексных чисел и их простейшие свойства

Определение 9.1. Множество \mathbb{R}^2 с введёнными на нём операциями сложения и умножения, определяемыми следующим образом:

$$(a,b) + (c,d) = (a+b,c+d).$$

$$(a,b)\cdot(c,d) = (ac - bd, ad + bc).$$

называется множеством *комплексных чисел* и обозначается $\mathbb C$. Элемент $\mathbb C$ называется *комплексным числом*.

Замечание. Отождествим пару (a,0) с действительным числом a, такое отождествление согласовано с определениями сложения и умножения в \mathbb{C} .

9.2 Свойства операций сложения и умножения

- 1) $\forall z_1, z_2 \in \mathbb{C} : z_1 + z_2 = z_2 + z_1.$
- 2) $\forall z_1, z_2, z_3 \in \mathbb{C} : (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).$
- 3) $\forall z \in \mathbb{C} : z + (0,0) = z$.
- 4) $\forall z = (a, b) \in \mathbb{C} \ \exists (-z) = (-a, -b) \colon z + (-z) = (0, 0).$
- 5) $\forall z_1, z_2 \in \mathbb{C} : z_1 z_2 = z_2 z_1$.
- 6) $\forall z_1, z_2, z_3 \in \mathbb{C} : (z_1 z_2) z_3 = z_1(z_2 z_3).$
- 7) $\forall z \in \mathbb{C} : z(1,0) = z$.
- 8) $\forall z = (a, b) \in \mathbb{C}, z \neq (0, 0) \exists z^{-1} = (\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}) \colon zz^{-1} = (1, 0).$
- 9) $\forall z_1, z_2, z_3 \in \mathbb{C} : z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$.

$$\blacktriangle$$
 9) $z_i = (a_i, b_i), i = 1, 2, 3.$

 $z_1(z_2+z_3)=(a_1,b_1)(a_2+a_3,b_2+b_3)=(a_1(a_2+a_3)-b_1(b_2+b_3),b_1(a_2+a_3)+a_1(b_2+b_3)).$ $z_1z_2+z_1z_3=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)+(a_1a_3-b_1b_3,a_1b_3+b_1a_3)=$ $=(a_1(a_2+a_3)-b_1(b_2+b_3),b_1(a_2+a_3)+a_1(b_2+b_3)). \blacksquare$

Обозначим (0,1) через i, из определения умножения, $i^2=-1$. Т.к. (a,b)=(a,0)+(0,b), то z=(a,b) может быть записано в виде z=a+bi (алгебраическая форма). $a=\operatorname{Re} z$ — вещественная часть z, $b=\operatorname{Im} z$ — мнимая часть z.

Определение 9.2. *Модулем* числа z=a+bi называется действительное число $\sqrt{a^2+b^2}$. 19.11.14 Обозначение: |z|.

Определение 9.3. Комплексное число $\bar{z} = a - bi$ называется (комплексно) сопряженным к числу z = a + bi.

Лемма 9.1. $\forall z, z_1, z_2 \in \mathbb{C}$:

- 1) $\bar{z} = z$.
- 2) $\bar{z} = z \Leftrightarrow z \in \mathbb{R}$.
- 3) $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$.
- 4) $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$.
- 5) $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$.
- 6) $\bar{z} + z = 2 \operatorname{Re} z$.

- 7) $\bar{z}z = |z|^2$.
- \blacktriangle 2) Пусть z = a + bi, тогда $\bar{z} = z \Leftrightarrow b = 0 \Leftrightarrow z = a \in \mathbb{R}$.
 - 4) Пусть $z_1 = a + bi, z_2 = c + di.$

$$\overline{z_1 z_2} = \overline{(a+bi)(c+di)} = (ac-bd) + (bc+ad)i.$$

$$\overline{z_1} \cdot \overline{z_2} = (a - bi)(c - di) = (ac - bd) + (bc + ad)i.$$

- 5) Вытекает из п. 4 и того, что $\overline{z^{-1}} = \overline{z}^{-1}$. (Если z = a + bi)
- 7) $z\bar{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$.

Пусть на плоскости введена декартова с.к., тогда комплексное число z = a + bi может быть обозначено точкой и вектором с координатами (a,b). При векторном представлении сложению комплексных чисел сопоставляют сложение векторов по правилу параллелограмма.

(картинка)

Определение 9.4. Аргументом комплексного числа z называется угол, который образует соответствующий вектор с положительным направлением оси Ox. Обозначение: arg x.

Замечание. Аргумент ненулевого комплексного числа определён с точностью до $2\pi k, k \in \mathbb{Z}$, аргумент 0 не определён.

Если |z| — модуль z, φ — аргумент $z \ (z \neq 0)$, где z = x + iy, то

 $x = |z| \cos \varphi, y = |z| \sin \varphi.$

 $z = |z|(\cos \varphi + i \sin \varphi) - m$ ригонометрическая форма z.

Лемма 9.2. Если $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1), z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2),$ то

 $z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)).$

 $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)).$

 $=r_1r_2[(\cos\varphi_1\cos\varphi_2-\sin\varphi_1\sin\varphi_2)+i(\cos\varphi_1\sin\varphi_2+\sin\varphi_1\cos\varphi_2)]=r_1r_2(\cos(\varphi_1+\varphi_2)+i\sin(\varphi_1+\varphi_2)).$ $z_2^{-1} = \frac{\bar{z}}{|z|^2} = \frac{r_2(\cos\varphi_2 - i\sin\varphi_2)}{r_2^2} = \frac{1}{r_2}(\cos\varphi_2 - i\sin\varphi_2).$

T.K. $\frac{z_1}{z_2} = z_1 z_2^{-1}$, to $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$.

Следствие (формула Муавра). Если $z = r(\cos \varphi + i \sin \varphi), n \in \mathbb{N}$, то $z^n = r^n(\cos n\varphi + i \sin n\varphi)$.

Определение 9.5. Комплексное число w называется корнем n-й степени из $z \in \mathbb{C}$ $(n \in \mathbb{N})$, если $w^n = z$.

Лемма 9.3. Пусть $z=|z|(\cos\varphi+i\sin\varphi), z\neq 0$, тогда существует ровно n корней n-й степени из z, которые вычисляются по формуле

 $w_r = \sqrt[n]{|z|}(\cos\varphi_r + i\sin\varphi_r), \ \varphi_r = \frac{\varphi + 2\pi r}{n}, \ r = 0, 1, \dots, n-1.$

 \blacktriangle 1) Пусть $w = |w|(\cos \psi + i \sin \psi)$, тогда

 $w^n = z \Leftrightarrow |w|^n(\cos n\psi + i\sin n\psi) = |z|(\cos \varphi + i\sin \varphi) \Leftrightarrow |w|^n = |z|, n\psi = \varphi + 2\pi k, k \in \mathbb{Z}.$

 $w_k = \sqrt[n]{|z|}(\cos\varphi_k + i\sin\varphi_k)$, где $\varphi_k = \frac{\varphi + 2\pi k}{n}, k \in \mathbb{Z}$.

2) $k = nq + r, 0 \le r \le n - 1$, тогда

 $\varphi_k = \frac{\varphi + 2\pi (nq + r)}{n} = \frac{\varphi + 2\pi r}{n} + 2\pi q = \varphi_r + 2\pi q, q \in \mathbb{Z} \Rightarrow w_k = w_r.$ 3) Покажем, что $w_i \neq w_j, i \neq j, i, j \in \{0, \dots, n-1\}.$

Предположим, что $w_i = w_j$, тогда $\varphi_i = \varphi_j + 2\pi m, m \in \mathbb{Z} \Rightarrow \frac{\varphi + 2\pi i}{n} = \frac{\varphi + 2\pi j}{n} + 2\pi m \Rightarrow i - j = nm.$ $i, j \in \{0, \dots, n-1\}, i \neq j \Rightarrow |i-j| \leqslant n-1$. С другой стороны, $|i-j| = n|m| \geqslant n$, противоречие.

Замечание. Использовали равенство двух комплексных чисел в тригонометрической форме. $r_1(\cos\varphi_1+i\sin\varphi_1)=r_2(\cos\varphi_2+i\sin\varphi_2) \Leftrightarrow r_1=r_2$ и $\varphi_1=\varphi_2+2\pi k, k\in\mathbb{Z}$.

9.3 Многочлены и их корни

Определение 9.6. *Многочленом* называется функция $P(z) = a_n z^n + \dots a_1 + z + a_0, a_k \in \mathbb{C}$.

Определение 9.7. Если P ненулевой многочлен, тогда наибольший из номеров n, что $a_n \neq 0$ называется *степенью многочлена* P(z). Обозначение: deg P.

Если P(z) — нулевой многочлен, то $\deg P = -\infty$.

Свойства.

 $\deg(P+Q) \leq \max\{\deg P, \deg Q\}.$

 $\deg(PQ) = \deg P + \deg Q.$

Теорема 9.1 (о делении с остатком). Пусть P, Q — многочлены, $Q \neq 0$, $\deg P \geqslant \deg Q$, тогда $\exists !T, R$ — многочлены, что:

- 1) P = TQ + R.
- 2) либо R=0, либо $\deg R < \deg Q$.

1 1) Пусть $P(z) = a_n z^n + \ldots + a_0, \ Q(z) = b_m z^m + \ldots + b_0, \ a_n, b_m \neq 0.$

Рассмотрим $P_1(z) = P(z) - \frac{a_n}{b_m} z^{n-m} Q(z) \Rightarrow \deg P_1 < \deg P$. Если $\deg P_1 < \deg Q$, то $T(z) = \frac{a_n}{b_m} z^{n-m}$, $R(z) = P_1(z)$.

Если $\deg P_1 \geqslant \deg Q$, то поступаем аналогично с $P_1(z)$, получим $P_2(z)$, $\deg P_2 < \deg P_1$ и т. д. В конце концов получим $T(z)=\frac{a_n}{b_n}z^{n-m}+\ldots$, что $\deg(P-TQ)<\deg Q$, тогда T(z) — неполное

частное, R(z) = P(z) - T(z)Q(z) — остаток.

2) Пусть $P = T_1Q + R_1 = T_2Q + R_2$, тогда $R_1 - R_2 = (T_1 - T_2)Q$.

C одной стороны, $\deg R_1 < \deg Q$, $\deg R_2 < \deg Q \Rightarrow \deg(R_1 - R_2) < \deg Q$.

С другой стороны, $\deg(R_1 - R_2) = \deg(T_1 - T_2) + \deg Q \geqslant \deg Q$. Противоречие.

Следовательно, $T_1 = T_2, R_1 = R_2$.

Особое значение имеет деление многочлена на двучлен z - a.

 $P(z) = (z - a)Q(z) + r, r \in \mathbb{C}.$

T.к. r = P(a), то верна

Теорема 9.2 (Безу). Многочлен P(z) делится без остатка на $z-a \Leftrightarrow P(a)=0$.

Теорема 9.3 (основная теорема алгебры (ОТА)). Для любого многочлена P(z), $\deg P \geqslant 1$

 $\exists x_n \in \mathbb{C} \colon P(z_n) = 0.$

Без доказательства.

Следствие. Для любого многочлена $P(z) = \sum_{k=0}^{n} a_k z^k, a_n \neq 0, n \geqslant 0$ справедливо представление $P(z) = a_n(z-z_1) \cdot \ldots \cdot (z-z_n)$.

 \blacktriangle По ОТА $\exists z_1 \in \mathbb{C} \colon P(z_1) = 0 \stackrel{\text{т. Безу}}{\Longrightarrow} P(z) = (z-z_1)P_1(z)$. Если $\deg P_1(z) = 0$, то разложение получено, если $\deg P_1 = n - 1 > 0$, то по ТЗ $\exists z_2 \colon P_1(z) = (z - z_2)P_2(z) \dots$

За n шагов получим $P(z)=\alpha(z-z_1)\cdot\ldots\cdot(z-z_n)$. Сравнивая коэффициент перед z^n в левой и правой части получим, что $\alpha = a_n$.

Определение 9.8. Число $a \in \mathbb{C}$ называется корнем многочлена P(z) кратности k, если $P(z) = (z - a)^k Q(z)$, где Q(z) — такой многочлен, что $Q(a) \neq 0 \ (0 < k \leq \deg P)$.

Лемма 9.4. Пусть $P(z) = \sum_{k=0}^{n} a_k z^k, a_k \in \mathbb{R}$, тогда

1) $P(\bar{z}) = \overline{P(z)} \ \forall z \in \mathbb{C}.$

лей) может быть записан в виде

- 2) a корень P(z) кратности $k \Leftrightarrow \bar{a}$ корень P(z) кратности k.
- ▲ 1) Имеем $P(z) \sum_{k=0}^{n} a_k(\overline{z})^k = \sum_{k=0}^{n} a_k \overline{z^k} = \sum_{k=0}^{n} \overline{a_k} \overline{z^k} = \sum_{k=0}^{n} a_k z_k = \overline{P(z)}.$

2) Т.к. $\bar{a} = a$, то достаточно доказать в одну сторону. Пусть $P(z)=(z-a)^kQ(z), Q(\underline{a})\neq 0$, тогда $P(\bar{z})=\overline{P(z)}=\overline{(z-a)^kQ(z)}=(\bar{z}-a)^k\overline{Q}(\bar{z}) \ \forall z\in\mathbb{C}\Rightarrow 0$

 $P(z)=(\bar{z}-\bar{a})^k\overline{Q}(\bar{z}),\ \overline{Q}(\bar{a})=\overline{Q(a)}\neq 0\Rightarrow \bar{a}$ — корень P(z) кратности k.

Теорема 9.4. Многочлен $P(x) = \sum_{k=0}^{n} d_k x^k, a_n \neq 0, n \geqslant 1$, с действительными коэффициента- 25.11.14 ми (действительный многочлен) единственным образом (с точностью до порядка сомножите-

 $P(x) = a_n \prod_{i=1}^s (x-x_i)^{k_i} \prod_{i=1}^m (x^2+p_ix+q_i)^{l_i}$, где $k_i, l_i \in \mathbb{N}, x_i$ — различные действительные числа,

 (p_i, q_i) — различные пары действительных чисел таких, что $x^2 + p_i x + q_i$ не имеет действительных корней.

 \blacktriangle Пусть $x_1,\ldots,x_s,\alpha_1,\ldots,\alpha_m,\overline{\alpha_1},\ldots,\overline{\alpha_m}$ — все (различные) корни $P(x),x_i\in\mathbb{R},\alpha_i\notin\mathbb{R}.$ Пусть k_i — кратность корня x_i , l_i — кратность корня α_i (и, следовательно, $\overline{\alpha_i}$). Тогда $P(x) = a_n(x - x_1)^{k_1} \cdot \ldots \cdot (x - x_s)^{k_s} [(x - \alpha_1)(x - \overline{\alpha_1})]^{l_1} \cdot \ldots \cdot [(x - \alpha_m)(x - \overline{\alpha_m})]^{l_m}.$ Положим $x^2 + p_i x + q_i = (x - \alpha_i)(x - \overline{\alpha_i}), p_i = (\alpha_i + \overline{\alpha_i}) = 2 \operatorname{Re} \alpha_i, q_i = \alpha_i \overline{\alpha_i} = |\alpha_i|^2.$

Разложение правильной рациональной дроби в сумму простейших 9.4дробей

Будем рассматривать действительные дробно-рациональные функции $f(x) = \frac{P(x)}{Q(x)}$ (рациональная дробь), где P, Q — действительные многочлены, $\deg P \geqslant 0, \deg Q \geqslant 1$.

Определение 9.9. Рациональная дробь $\frac{P(x)}{Q(x)}$ называется $\mathit{npaeunbho\'u},$ если $\deg P < \deg Q.$

Лемма 9.5. Всякая рациональная дробь $\frac{P(x)}{Q(x)}$ единственным образом может быть разложена в сумму многочлена и правильной рациональной дроби с знаменателем Q(x).

lacktriangle Пусть $rac{P(x)}{Q(x)}$ — рациональная дробь. Поделим многочлен P на Q с остатком.

 $P=TQ+R,\deg R<\deg Q\Rightarrow rac{P(x)}{Q(x)}=T(x)+rac{R(x)}{Q(x)}$ — правильная дробь. Обратно, если $rac{P}{Q}=T+rac{R}{Q}$ и $rac{R}{Q}$ — правильная дробь, тогда P=TQ+R и $\deg R<\deg Q,$ откуда по Т9.1 получаем единственность указанного представления. ■

Лемма 9.6. Если $\frac{P(x)}{Q(x)}$ — правильная дробь и $Q(x)=(x-x_0)^kQ_1(x), Q_1(x_0)\neq 0$, то существуют единственные $A \in \mathbb{R}$ и действительный многочлен $P_1(x)$ такие, что $\frac{P(x)}{Q(x)} = \frac{A}{(x-x_0)^k} + \frac{P_1(x)}{(x-x_0)^{k-1}Q_1(x)}$, где последнее выражение — правильная дробь.

 \blacktriangle Для любого $A \in \mathbb{R}$ $\frac{P(x)}{Q(x)} - \frac{A}{(x-x_0)^k} = \frac{P(x) - AQ_1(x)}{Q(X)}$, где выражение в правой части — правильная

Выражение $\frac{P(x)-AQ(x)}{Q(X)} = \frac{P_1(x)}{(x-x_0)^{k-1}Q_1(x)} \Leftrightarrow P(x)-AQ(x) = P_1(x)(x-x_0) \leftrightarrow x_0$ — корень $P(x)-AQ_1(x)$, откуда $A=\frac{P(x_0)}{Q_1(x_0)}$ (по теореме Безу). \blacksquare

Лемма 9.7. Если $\frac{P(x)}{Q(x)}$ — правильная дробь и $Q(x)=(x^2+px+q)^kQ_1(x)$, где $Q_1(x)$ не делится на x^2+px+q , причём x^2+px+q не имеет действительных корней, то существуют единственные $A, B \in \mathbb{R}$ и действительный многочлен $P_1(x)$ такие, что

 $\frac{P(x)}{Q(x)} = \frac{Ax+B}{(x^2+px+q)^k} + \frac{P_1}{(x^2+px+q)^{k-1}Q_1(x)}$, где последнее выражение — правильная дробь

Δ Пусть $x^2 + px + q = (x - α)(x - \overline{α}), α ∉ <math>\mathbb{R}$.

Для любых $A,B\in\mathbb{R}$ $\frac{P(x)}{Q(x)}-\frac{Ax+B}{(x^2+px+q)^k}=\frac{P(x)-(Ax+B)Q_1(x)}{Q(x)}.$ $\frac{P(x)-(Ax+B)Q_1(x)}{Q(x)}=\frac{P_1(x)-(Ax+B)Q_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}\Leftrightarrow P(x)-(Ax+B)Q_1(x)=P_1(x)(x^2+px+q)\Leftrightarrow \alpha,\overline{\alpha}$ - корни многочлена $P(x)-(Ax+B)Q_1(x)$. Тогда $A\alpha+B=\frac{P(\alpha)}{Q_1(\alpha)},\ A\overline{\alpha}+B=\frac{P(\overline{\alpha})}{Q_1(\overline{\alpha})}$

$$A = \frac{\frac{P(\alpha)}{Q_1(\alpha)} - \frac{P(\overline{\alpha})}{Q_1(\overline{\alpha})}}{\alpha - \overline{\alpha}}, \quad B = \frac{\frac{P(\overline{\alpha})}{Q_1(\overline{\alpha})}\alpha - \frac{P(\alpha)}{Q_1(\alpha)}\overline{\alpha}}{\alpha - \overline{\alpha}}.$$

$$\overline{A} = \frac{\overline{A} - \alpha}{\overline{Q_1(\alpha)} - \overline{Q_1(\overline{\alpha})}} = \frac{\overline{P(\alpha)}}{\overline{Q_1(\overline{\alpha})}} = \frac{P(\overline{\alpha})}{\overline{Q_1(\alpha)}} - \frac{P(\alpha)}{\overline{Q_1(\alpha)}} = A.$$

$$\overline{B} = \frac{\overline{P(\overline{\alpha})} - \overline{P(\alpha)}}{\overline{Q_1(\overline{\alpha})}} - \frac{P(\alpha)}{\overline{Q_1(\alpha)}} = \frac{P(\alpha)}{\overline{Q_1(\alpha)}} - \frac{P(\alpha)}{\overline{Q_1(\alpha)}} = A.$$

Определение 9.10. Простейшими (элементарными) дробями называются рациональные дроби вида $\frac{A}{(x-x_0)^n}$, $\frac{Ax+B}{(x^2+px+q)^n}$, $A,B,x_0,p,q\in\mathbb{R}$, $n\in\mathbb{N}$, трехчлен $x^2+p_ix+q_i$ не имеет действительных корней.

Из лемм 5, 6 и следует

Теорема 9.5 (о разложении правильных дробей). Если знаменатель правильной рациональной дроби $\frac{P(x)}{Q(x)}$ с действительными коэффициентами представлен в виде

 $Q(x) = \alpha \prod_{i=1}^k (x-x_i)^{\eta_i} \cdot \prod_{i=1}^m (x^2+p_ix+q_i)^{\mu_i}$, где $\alpha \in \mathbb{R}$, $\eta_i, \mu_i, k, m \in \mathbb{N}$, x_i — действительные корни, а $x^2+p_ix+q_i$ не имеет действительных корней, то $\frac{P(x)}{Q(x)}$ единственным образом может быть записана в виде суммы простейших дробей: $\frac{P(x)}{Q(x)} = \sum_{i=1}^s \sum_{k=1}^{\eta_i} \frac{A_i^k}{(x-x_i)^k} + \sum_{i=1}^m \sum_{k=1}^{\mu_i} \frac{B_i^k x + C_i^k}{(x^2+p_ix+q_i)^k}$, где A_i^k, B_i^k, C_i^k — действительные числа.

10 Неопределённый интеграл

10.1 Неопределённый интеграл и его свойства

Определение 10.1. Функция $F: I \to \mathbb{R}$ называется *первообразной* функции $f: I \to \mathbb{R}$ на промежутке $I \subset \mathbb{R}$, если $\forall x \in I : F'(x) = f(x)$ (в концах промежутка, если они ему принадлежат, производная подразумевается односторонней).

Теорема 10.1 (описание класса первообразных). Если F — первообразная функции f на промежутке I, то F+C, где C — постоянная, также является первообразной f на I. Если F_1, F_2 — первообразные функции f на промежутке I, то разность $F_1 - F_2$ постоянна на I (т.е. $F_2 = F_1 + C$ на I).

▲ Т.к.
$$(F+C)'=F'+C'=f$$
, то $F+C$ – первообразная f на I . Т.к. $(F_2-F_1)'=F_2'-F_1'=0$, то по следствию 1 Т.Лагранжа F_2-F_1 постоянна на I . ■

Определение 10.2. Произвольная первообразная функции f на промежутке I называется неопределенным интегралом f на I и обозначается

$$\int f(x)dx.$$

Будем использовать обозначение $\int dg(x) := \int g(x) dx$.

Из теоремы 1 следует, что общий вид неопределенного интеграла функции f на промежутке I:

$$\int f(x)dx = F(X) + C,$$

где F — некоторая конкретная первообразная f на I, C — некоторая постоянная.

(Иногда под неопределённым интегралом подразумевают класс первообразных, мы будем подразумевать какую-то конкретную первообразную).

Свойства интеграла:

- 1) Если существует $\int f(x)dx$ на промежутке I, то $(\int f(x)dx)' = f(x)$ или $d(\int f(x)dx) = f(x)dx$.
- 2) Если F дифференцируема на промежутке I, то $\int F'(x)dx = F(x) + C$, где C постоянная.
- 3) Если существуют $\int f(x)dx$ и $\int g(x)dx$ на промежутке I, то при любых $\alpha, \beta \in \mathbb{R}$ на I существует $\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx + C$, где C постоянная.
- 4) Интегрирование по частям. Если функции u, v дифференцируемы на промежутке I и существует $\int v(x)u'(x)dx$ на I, то на I существует $\int u(x)v'(x)dx = u(x)v(x) \int v(x)u'(x)dx + C$.
- 5) Формула замены переменной. Если F — неопределённый интеграл функции f на промежутке I, функция φ дифференцируема на промежутке J, $\varphi(J) \subset I$, то на J существует $\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C$.

Замечание. Если $\exists \varphi^{-1}$ на $\varphi(J)$, то $\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt|_{t=\varphi^{-1}(x)} + C$.

6) Формула интегрирования обратной функции. Если функция f имеет на I конечную, неравную нулю производную и F — неопределённый интеграл f на I, то для обратной к f на I функции f^{-1} существует на f(I) интеграл: $\int f^{-1}(y)dy = yf^{-1}(y) - F(f^{-1}(y)) + C.$

26.11.14

 $\Phi(y) = yf^{-1}(y) - F(f^{-1}(y))$ — дифференцируема на I. $\Phi'(y) = y \cdot \frac{1}{f'(y)} + f^{-1}(y) - f(f^{-1}(y)) \frac{1}{f'(y)} = \frac{y}{f'(y)} + f^{-1}(y) - \frac{y}{f'(y)} = f^{-1}(y)$.

Таблица основных неопределённых интегралов

- 1) $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$ на I. Если $\alpha \in \mathbb{Z}, \alpha \geqslant 0$, то $I = \mathbb{R}$, если $\alpha \in \mathbb{Z}$, $\alpha < -1$, то $I = (-\infty, 0)$ или $I = (0, +\infty)$, если $\alpha \notin \mathbb{Z}$, то $I = (0, +\infty)$.
- 2) $\int \frac{1}{x} dx = \ln |x| + C$ на $(-\infty, 0)$ и $(0, \infty)$.
- 3) $\int a^x dx = \frac{a^x}{\ln a} + C$ на $\mathbb{R}, a > 0, a \neq 1$.
- 4) $\int \cos x dx = \sin x + C$ на \mathbb{R} .
- 5) $\int \sin x dx = -\cos x + C$ на \mathbb{R} .
- 6) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C \text{ Ha } \mathbb{R}, a \neq 0.$ 7) $\int \frac{1}{x^2 a^2} dx = \frac{1}{2a} \ln \left| \frac{x a}{x + a} \right| + C \text{ Ha } (-\infty, -a), (-a, a), (a, +\infty).$ 8) $\int \frac{1}{\sqrt{a^2 x^2}} dx = \arcsin \frac{x}{a} + C \text{ Ha } (-a, a), a > 0.$
- 9) $\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x + \sqrt{x^2 \pm a^2}| + C$ на $\mathbb R$ для +, на $(-\infty, -|a|)$ и $(|a|, +\infty)$ для -.
- 10) $\int \operatorname{sh} x dx = \operatorname{ch} x + C$ на \mathbb{R} .
- 11) $\int \operatorname{ch} x dx = \operatorname{sh} x + C$ на \mathbb{R} .
- 12) $\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$ Ha $\left(-\frac{\pi}{2} + \pi k, \frac{\pi}{2} + \pi k\right), k \in \mathbb{Z}$. 13) $\int \frac{1}{\sin^2 x} dx = \operatorname{ctg} x + C$ Ha $(\pi k, \pi + \pi k), k \in \mathbb{Z}$. 14) $\int \frac{1}{\cosh^2 x} dx = \operatorname{th} x + C$ Ha \mathbb{R} .

- 15) $\int_{-\infty}^{\infty} \frac{1}{\sinh^2 x} dx = -\coth x + C \text{ Ha } (-\infty, 0), (0, +\infty).$

Все эти равенства проверяются непосредственным дифференцированием.

$$\int e^{-x^2} dx$$
, $\int \frac{\sin x}{x} dx$, $\int \frac{\cos x}{x} dx$, $\int \frac{1}{\ln x} dx$.

 $\int e^{-x^2} dx$, $\int \frac{\sin x}{x} dx$, $\int \frac{\cos x}{x} dx$, $\int \frac{1}{\ln x} dx$. Неопределённый интеграл данных функций не выражается комбинацией элементарных функций.

10.3Интегрирование рациональных дробей

Из Л9.5 и Т9.5 вытекает, что любая рациональная дробь единственным образом представляется суммой многочлена и простейших дробей.

Покажем, как интегрируются простейшие дроби.

- 1) $\int \frac{A}{x-a} dx = A \ln|x-a| + C$.
- 2) $\int \frac{x-a^{n-1}}{(x-a)^n} dx = A \frac{(x-a)^{-n+1}}{-n+1} = -\frac{A}{(n-1)(x-a)^{n-1}} + C, n > 1.$
- 3) $\int \frac{Bx+C}{x^2+px+q} dx = \frac{B}{2} \int \frac{2x+p}{x^2+px+q} dx + \left(C \frac{Bp}{2}\right) \int \frac{dx}{x^2+px+q} = \frac{B}{2} \int \frac{d(x^2+px+q)}{x^2+px+q} + \left(C \frac{B}{2}\right) \int \frac{d(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{2}} = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} + \frac{B}{2} \int \frac{d(x+\frac{p}{2})}{x^2+px+q} dx = \frac{B}{2} \int \frac{d(x+\frac{p}{2$ $= \frac{B}{2}\ln(x^2 + px + q) + \frac{(C - \frac{Bp}{2})}{\sqrt{q - \frac{p^2}{4}}} \arctan \frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} + \widetilde{C}.$
- 4) $\int \frac{Bx+C}{(x^2+px+q)^n} dx = \frac{B}{2} \int \frac{2x+p}{(x^2+px+q)^n} dx + \left(C \frac{Bp}{2}\right) \int \frac{dx}{(x^2+px+q)^n} = \frac{B}{2} \frac{(x^2+px+q)^{-n+1}}{-n+1} + \left(C \frac{Bp}{2}\right) \int \frac{d(x+\frac{p}{2})}{\left((x+\frac{p}{2})^2+q-\frac{p^2}{4}\right)^n}.$

Заменой
$$t=x+\frac{p}{2}$$
 и $a=\sqrt{q-\frac{p^2}{4}}.$

$$J_n = \int \frac{dt}{(t^2 + a^2)^n}.$$

Рассмотрим $J_n, n \geqslant 1$: $u = \frac{1}{(t^2 + a^2)^n}, du = -\frac{2nt}{(t^2 + a^2)^{n+1}} dt. dt = dv, v = t.$

$$J_n = \int \frac{dt}{(t^2 + a^2)^n} = \frac{t}{(t^2 + a^2)^n} + 2n \int \frac{t^2}{(t^2 + a^2)^{n+1}} dt = \frac{t}{(t^2 + a^2)^n} + 2n J_n - 2na^2 J_{n+1}.$$

$$J_{n+1} = \frac{1}{2na^2} \left(\frac{t}{(t^2 + a^2)^n} + (2n - 1)J_n \right), J_1 = \frac{1}{a} \operatorname{arctg} \frac{t}{a} + C.$$

Итак, все простейшие дроби можно проинтегрировать указанным способом за конечное число шагов и их первообразная — элементарная функция.

Теорема 10.2. Неопределённый интеграл от любой рациональной функции (рациональной дроби) выражается через рациональные функции (многочлены), функции ln и arctg и следовательно является элементарной функцией.

$$\Pi puмер. \int \frac{1}{x^3-1} dx.$$
 $\frac{1}{x^3-1} = \frac{1}{(x-a)(x^2+x+1)} = \frac{A}{x-1} + \frac{Mx+N}{x^2+x+1}.$ Коэффициенты находятся методом неопределённых приписаний.

$$1 = A(x^2 + x + 1) + (Mx + N)(x - 1).$$

$$\begin{cases} A+M=0,\\ A-M+N=0,\\ A-N=1. \end{cases} \Leftrightarrow \begin{cases} A=\frac{1}{3},\\ B=-\frac{1}{3},\\ C=-\frac{2}{3}.\\ I=\frac{1}{3}\int\frac{dx}{x-1}-\frac{1}{3}\int x+2x^2+x+1dx=\frac{1}{3}\ln|x-1|-\frac{1}{6}\int\frac{2x+1}{x^2+px+q}dx-\frac{1}{2}\int\frac{dx}{x^2+x+1}dx+C=\\ =\frac{1}{3}\ln|x-1|-\frac{1}{6}\ln(x^2+x+1)-\frac{1}{2}\int\frac{d(x+\frac{1}{2})}{(x+\frac{1}{2})^2+\frac{3}{4}}+C=\frac{1}{3}\ln|x-1|-\frac{1}{6}\ln(x^2+x+1)-\frac{1}{\sqrt{3}}\arctan\frac{2x+1}{\sqrt{3}}+C \end{cases}$$

11 Элементы теории кривых

Пространство \mathbb{R}^n 11.1

Определение 11.1. Арифметическим n-мерным пространством \mathbb{R}^n называется множество $\{\vec{x} = (x_1, \dots, x_n), x_k \in \mathbb{R}, k = 1, \dots, n\}$ с операциями:

$$\vec{x} + \vec{y} = (x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n).$$

$$\alpha \vec{x} = \alpha(x_1, \dots, x_n) := (\alpha x_1, \dots, \alpha x_n).$$

 \mathbb{R}^n — векторное пространство (над \mathbb{R}). Векторы $e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ образуют (стандартный) базис в \mathbb{R}^n . Числа x_1,\ldots,x_n называются координатами вектора \vec{x} в базисе e_1,\ldots,e_n .

Определим скалярное произведение с векторами в \mathbb{R}^n .

$$(\vec{x}, \vec{y}) = \sum_{k=1}^{n} x_k y_k.$$

Свойства скалярного произведения.

- 1) $\forall \vec{x} \in \mathbb{R}^n : (\vec{x}, \vec{x}) \geqslant 0, (\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \bar{0}.$
- 2) $\forall \vec{x}, \vec{y} \in \mathbb{R}^n : (\vec{x}, \vec{y}) = (\vec{y}, \vec{x}).$
- 3) $\forall \alpha, \beta \in \mathbb{R}, \forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n : (\alpha \vec{x} + \beta \vec{y}, \vec{z}) = \alpha(\vec{x}, \vec{z}) + \beta(\vec{y}, \vec{z}).$

 $(\mathbb{R}^n$ относительно скалярного произведения является евклидовым пространством)

$$|\vec{x}|:=\sqrt{(\vec{x},\vec{x})}=\sqrt{\sum\limits_{k=1}^n x_k^2}-$$
 длина вектора $\vec{x}.$

Теорема 11.1 (Коши – Буняковского).

$$\forall \vec{x}, \vec{y} \in \mathbb{R}^n \colon |(\vec{x}, \vec{y})| \leqslant |\vec{x}||\vec{y}| \ (*).$$

$$\left(\left| \sum_{k=1}^{n} x_k y_k \right| \leqslant \sqrt{\sum_{k=1}^{n} x_k^2 \cdot \sum_{k=1}^{n} y_k^2} \right).$$

Причём равенство возможно лишь в случае, когда векторы пропорциональны.

 \blacktriangle Если $\vec{x} = \vec{0}$, то неравенство (*) превращается в равенство и $\vec{x} = 0\vec{y}$. Если $\vec{x} \neq \vec{0}$, то рассмотрим квадратный трёхчлен P(t) := (tx - y, tx - y).

$$P(t) = (\vec{x}, \vec{x})t^2 - 2(\vec{x}, \vec{y})t + (\vec{y}, \vec{y}).$$

T.K.
$$\forall t \in \mathbb{R} \colon P(t) \geqslant 0$$
, to $D \leqslant 0$.
 $D - 4(\vec{x}, \vec{y})^2 - 4(\vec{x}, \vec{x})(\vec{y}, \vec{y}) \leqslant 0 \Leftrightarrow (*)$.

Равенство в (*) возможно лишь в случае, когда P(t) имеет (единственный) корень t_0 , т.е. $t_0 \vec{x} = \vec{y}$ или \vec{x} и \vec{y} пропорциональны.

Cnedcmeue. $\forall \vec{x}, \vec{y} \in \mathbb{R}^n : |\vec{x} - \vec{y}| \leq |\vec{x}| + |\vec{y}|$.

3амечание. Особо нужно выделить случай n=3. Пусть в трёхмерном геометрическом пространстве Vect(3) задан базис $\vec{e}_1, \vec{e}_2, \vec{e}_3$ тогда соответствие между вектором и его координатным набором устанавливает изоморфизм между Vect(3) и \mathbb{R}^3 . Учитывая это, в дальнейшем будет отождествлять Vect(3) и \mathbb{R}^3 . Будем предполагать в дальнейшем, что базис $\vec{e}_1, \vec{e}_2, \vec{e}_3$ ортонормирован и правый.

Определение 11.2. Пусть $\vec{x} = (x_1, x_2, x_3), \vec{y} = (y_1, y_2, y_3)$. Векторным произведением \vec{x} и \vec{y} называется вектор $[\vec{x}, \vec{y}] := (\mid \substack{x_2 & x_3 \\ y_2 & y_3} \mid, \mid \substack{x_3 & x_1 \\ y_3 & y_1} \mid, \mid \substack{x_1 & x_2 \\ y_1 & y_2} \mid)$

11.2Вектор-функции

Определение 11.3. Функция $f: T \to \mathbb{R}^n$, где $T \subset \mathbb{R}$ называется вектор-функцией. Обозначение: $\vec{r} = \vec{r}(t), t \in T$. Т.к. $\vec{r}(t) = (x_1(t), \dots, x_n(t)), t \in T$, то задание вектор-функции на Tравносильно заданию n числовых функций на этом множестве. Эти функции будем называть $\kappa oop \partial u ham u h m u функция m v <math>\vec{r}$.

Определение 11.4. Вектор $\vec{r}_0 \in \mathbb{R}^n$ называется *пределом* вектор-функции $\vec{r} = \vec{r}(t), t \in T$ при $t \to t_0$, если t_0 — предельная точка множества T и

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t \in B'_{\delta}(t_0) \cap T \colon |\vec{r}(t) - \vec{r}_0| < \varepsilon.$$

Обозначение: $\lim_{T\ni t\to t_0} \vec{r}(t) = \vec{r}_0$.

Лемма 11.1. Пусть $\vec{r}(t) = (x_1(t), \dots, x_n(t)), t \in T, \vec{r}_0 = (x_1^0, \dots, x_n^0)$. Тогда следующие утверждения эквивалентны.

- $1) \lim_{T\ni t\to t_0} \vec{r}(t) = \vec{r}_0.$
- $2) \lim_{T \ni t \to t_0} |\vec{r}(t) \vec{r}_0| = 0.$
- 3) $\lim_{T\ni t\to t_0} x_k(t) = x_k^0, k = 1,\dots, n.$
- ▲ (1) \Leftrightarrow (2) непосредственно из определения.

Покажем, что
$$(2) \Leftrightarrow (3)$$
.

$$|\vec{r}(t) - r_0| = \sqrt{(x_1(t) - x_1^0)^2 + \ldots + (x_n(t) - x_n^0)^2}$$

$$|x_k(t) - x_k^0| \le |\vec{r}(t) - \vec{r}_0| \le |x_1(t) - x_1^0| + \dots + |x_n(t) - x_n^0|. \blacksquare$$

 $\mathit{Cледствиe}.\ \mathrm{Echu} \lim_{T \ni t \to t_0} \vec{r}(t) = \vec{r}_0,\ \mathrm{To} \lim_{T \ni t \to t_0} |\vec{r}(t)| = |\vec{r}_0|.$

02.12.14

Теорема 11.2. Пусть существуют предель $\lim_{T\ni t\to t_0} \vec{r_1}(t), \lim_{T\ni t\to t_0} \vec{r_2}(t)$ и $\lim_{T\ni t\to t_0} f(t)$, где f — числовая функция. Тогда существуют

- $1) \lim_{T \ni t \to t_0} (\vec{r}_1(t) \pm \vec{r}_2(t)) = \lim_{T \ni t \to t_0} \vec{r}_1(t) \pm \lim_{T \ni t \to t_0} \vec{r}_2(t).$ $2) \lim_{T \ni t \to t_0} (f(t)\vec{r}_1(t)) = \lim_{T \ni t \to t_0} f(t) \lim_{T \ni t \to t_0} \vec{r}_1(t).$ $3) \lim_{T \ni t \to t_0} (\vec{r}_1(t), \vec{r}_2(t)) = (\lim_{T \ni t \to t_0} \vec{r}_1(t), \lim_{T \ni t \to t_0} \vec{r}_2(t)).$ $4) \lim_{T \ni t \to t_0} [\vec{r}_1(t), \vec{r}_2(t)] = [\lim_{T \ni t \to t_0} \vec{r}_1(t), \lim_{T \ni t \to t_0} \vec{r}_2(t)]$

▲ Эти свойства можно получить переходя к пределу соответствующих равенствах при пределах координат (по Лемме 1). Но можно доказать и непосредственно.

3) Пусть
$$\lim_{T \ni t \to t_0} \vec{r_1}(t) = \vec{a}, \lim_{T \ni t \to t_0} \vec{r_2}(t) = \vec{b},$$
 тогда

$$\begin{split} &|(\vec{r}_1(t),\vec{r}_2(t))-(\vec{a},\vec{b})| = |(\vec{r}_1(t),\vec{r}_2(t))-(\vec{a},\vec{r}_2(t))+(\vec{a},\vec{r}_2(t))-(\vec{a},\vec{b})| \leqslant \\ &\leqslant |(\vec{r}_1(t)-\vec{a},\vec{r}_2(t))|+|(\vec{a},\vec{r}_2(t)-\vec{b})| \leqslant |\vec{r}_2(t)||\vec{r}_1(t)-a|+|\vec{a}||\vec{r}_2(t)-\vec{b}| \to 0 \text{ при } T\ni t\to t_0. \ \blacksquare \end{split}$$

Определение 11.5. Вектор функция $\vec{r}: T \to \mathbb{R}^n$ непрерывна в точке $t_0 \in T$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t \in B_{\delta}(t_0) \cap T \colon |\vec{r}(t) - \vec{r}(t_0)| < \varepsilon.$$

Определение 11.6. Пусть вектор-функция $\vec{r}(t)$ определена в некоторой окрестности $B_{\delta}(t_0)$. Производной вектор-функции $\vec{r}(t)$ в точке t_0 называется

$$\vec{r}'(t_0) := \lim_{\Delta t \to 0} \frac{\vec{r}(t_0 + \Delta t) - \vec{r}(t_0)}{\Delta t},$$

если этот предел существует. Аналогично определяются односторонние производные $\vec{r}'_+(t_0)$ и $\vec{r}'_-(t_0)$.

Определение 11.7. Пусть вектор-функция \vec{r} определена в $B_{\delta}(t_0)$. Тогда \vec{r} называется $\partial u\phi$ -ференцируемой в точке t_0 , если при $t_0 + \Delta t \in B_{\delta}(t_0)$:

$$\vec{r}(t_0 + \Delta t) - \vec{r}(t_0) = \vec{A}\Delta t + \vec{\alpha}(\Delta t)\Delta t$$

где $\vec{\alpha}(\Delta t) \to 0$ при $\Delta t \to 0$, $A = \vec{r}'(t_0)$.

Так же, как и для числовых функция, доказывается, что дифференцируемость в точке t_0 и существование производной в этой точке — эквивалентные свойства.

Лемма 11.2. Пусть $\vec{r}(t) = (x_1(t), \dots, x_n(t)), t \in (a, b)$, тогда существование производной вектор-функции $\vec{r}(t)$ в точке $t_0 \in (a, b)$ эквивалентно существованию конечных производных всех её координатных функций $x_k(t)$, причём $\vec{r}'(t_0) = (x_1'(t_0), \dots, x_n'(t_0))$.

▲ Вытекает из Л8.1. ■

Теорема 11.3 (правила дифференцирования). Пусть в точке t_0 определены $\vec{r}_1'(t_0), \vec{r}_2'(t_0)$ и $f'(t_0)$. Тогда существуют

- 1) $(\vec{r}_1 \pm \vec{r}_2)'(t_0) = \vec{r}_1'(t_0) \pm \vec{r}_2'(t_0)$.
- 2) $(f\vec{r}_1)'(t_0) = f'(t_0)\vec{r}_1(t_0) + f(t_0)\vec{r}_1'(t_0)$.
- 3) $(\vec{r}_1, \vec{r}_2)'(t_0) = (\vec{r}'_1(t_0), \vec{r}_2(t_0)) + (\vec{r}_1(t_0), \vec{r}'_2(t_0)).$
- 4) (n=3). $[\vec{r_1}, \vec{r_2}]'(t_0) = [\vec{r_1}'(t_0), \vec{r_2}(t_0)] + [\vec{r_1}(t_0), \vec{r_2}'(t_0)]$.

Лемма 11.3. Пусть в окрестности точки τ_0 задана числовая функция $t = t(\tau)$, а в окрестности $t_0 = t(\tau_0)$ задана вектор функция $\vec{r} = \vec{r}(t)$. Пусть существуют $t'(\tau_0) \in \mathbb{R}$, $\vec{r}'(t_0) \in \mathbb{R}$, тогда в точке τ_0 существует производная функции $\vec{\rho} = \vec{\rho}(\tau)$, $\vec{\rho}(\tau) = \vec{r}(t(\tau))$.

▲ Доказательство вытекает из Леммы 2 и теоремы о производной сложной функции. ■

Определение 11.8. $\vec{r}^{(0)}(t) = \vec{r}(t), \vec{r}^{(n+1)}(t) = (\vec{r}^{(n)})'(t).$

Теорема 11.4 (формула Тейлора). Пусть $\exists \vec{r}^{(m)}(t_0)$, тогда $\exists \delta > 0 \ \forall t \in B_{\delta}(t_0)$:

$$\vec{r}(t) = \sum_{k=0}^{m} \frac{\vec{r}^{(n)}(t_0)}{k!} (t - t_0)^k + \vec{\alpha}(t)(t - t_0)^m,$$

где $\vec{\alpha}(t) \to 0$ при $t \to t_0$.

▲ Доказательство заключается к применению формулы Тейлора с остаточным членом в форме Пеано к каждой их координатных функций. ■

Определение 11.9. 1) Вектор-функция $\vec{r}: I \to \mathbb{R}^n$, где $I \subset \mathbb{R}$ — промежуток, называется непрерывной (k раз дифференцируемой) на I, если \vec{r} непрерывна (k раз дифференцируема) в каждой точке I (в концевых точках, если они принадлежат I, дифференцируемость подразумевается односторонняя).

2) Вектор-функция $\vec{r}: I \to \mathbb{R}^n$ называется k раз непрерывно-дифференцируемой на I, если её k-ая производная $\vec{r}^{(k)}$ определена и непрерывна на I.

Теорема Лагранжа не обобщается непосредственно на вектор-функции.

Пример. \vec{r} : $[0, 2\pi] \rightarrow \mathbb{R}^2$, $\vec{r}(t) = (\cos t, \sin t)$. $\vec{r}'(t) = (-\sin t, \cos t), |\vec{r}'(t)| = 1.$ $(0,0) = \vec{r}(2\pi) - \vec{r}(0) \neq \vec{r}'(\xi)(2\pi - 0) \ \forall \xi \in (0,2\pi).$

Теорема 11.5 (Лагранжа о среднем для вектор-функций). Пусть $\vec{r} \colon [a,b] \to \mathbb{R}^n$

- 1) непрерывна на [a, b],
- (a,b), дифференцируема на (a,b),

тогда $\exists \xi \in (a,b) : |\vec{r}(b) - \vec{r}(a)| \leq |\vec{r}'(\xi)|(b-a).$

 \blacktriangle Если $\vec{r}(a) = \vec{r}(b)$, то очевидно.

Считая, $\vec{r}(a) \neq \vec{r}(b)$, положим $\vec{e} = \frac{\vec{r}(b) - \vec{r}(a)}{|\vec{r}(b) - \vec{r}(a)|}$

Тогда $|\vec{e}| = 1$ и

$$|\vec{r}(b) - \vec{r}(a)| = (\vec{r}(b) - \vec{r}(a), \vec{e}) = (\vec{r}(b), \vec{e}) - (\vec{r}(a), \vec{e}).$$

Рассмотрим числовую функцию $f(t) = (\vec{r}(t), \vec{e})$, по теореме Лагранжа о среднем $\exists \xi \in (a,b) : f(b) - f(a) = f'(\xi)(b-a).$

T.K.
$$f(b) - f(a) = |\vec{r}(b) - \vec{r}(a)|, f'(t) = (\vec{r}'(t), \vec{e}), \text{ To } |\vec{r}(b) - \vec{r}(a)| = (\vec{r}'(\xi), \vec{e})(b - a).$$

11.3 Определение кривой

Определение 11.10. *Параметризованной кривой в* \mathbb{R}^n называется произвольная непрерывная вектор-функция \vec{r} : $I \to \mathbb{R}^n$, где $I \subset \mathbb{R}$ — промежуток.

Переменная $t \in I$ называется параметром, а образ $\vec{r}(I)$ называется носителем параметризованной кривой \vec{r} .

Введённый класс параметризованных прямых является слишком широким, в частности содержит примеры (кривые Пеано), не согласующиеся с естественным представлением о кривых как одномерных объектах.

Определение 11.11. Точкой параметрической кривой $\vec{r}: I \to \mathbb{R}^n$ называется пара $(t, \vec{r}(t))$, где $t \in I$. Точка $(t, \vec{r}(t))$ параметрической кривой $\vec{r}: I \to \mathbb{R}^n$ называются точкой самопересечения, если $\exists t_1 \in I, t_1 \neq t : \vec{r}(t) = \vec{r}(t_1).$

Параметризованная кривая без самопересечений называется простой.

Определение 11.12. Пусть $\vec{r} \colon I \to \mathbb{R}^n$ — параметризованная кривая. Говорят, что точка $(t_2, \vec{r}(t))$ следует за точкой $(t_1, \vec{r}(t_1))$, если $t_2 > t_1$.

Определение 11.13. Параметризованная кривая $\vec{r}: I \to \mathbb{R}^n$ называется k раз (непрерывно- 03.12.14 $\partial u \phi \phi e penuupye mo \ddot{u}$, если $\vec{r} - k$ раз (непрерывно-)дифференцируема.

Носитель даже бесконечно дифференцируемой кривой, как показывает следующий пример, может иметь точки «излома».

 Π ример.

- 1) $\vec{r_1}: \mathbb{R} \to \mathbb{R}^2 \ \vec{r_1}(t) = (t^2, t^3)$

$$2) \vec{r}_2 \colon \mathbb{R} \to \mathbb{R}, \vec{r}_2(t) = (x(t), y(t)).$$

$$x(t) = \begin{cases} 0, t \in (-\infty, 0], \\ e^{-t}, t \in (0, +\infty). \end{cases} \quad y(t) = \begin{cases} e^{-\frac{1}{t^2}}, t \in (-\infty, 0), \\ 0, t \in (0, +\infty]. \end{cases}$$

Определение 11.14. Точка дифференцируемой кривой $\vec{r}: I \to \mathbb{R}^n$ $(t_0, \vec{r}(t_0))$ называется неособой, если $\vec{r}'(t_0) \neq \vec{0}$. Иначе точка $(t_0, \vec{r}(t_0))$ называется особой.

Определение 11.15. Непрерывная дифференцируемая кривая $\vec{r}: I \to \mathbb{R}^n$ называется гладкой, если $\forall t \in I: \vec{r}'(t) \neq \vec{0}$.

Определение 11.16. Параметризованная кривая $\vec{r}: I \to \mathbb{R}^n$ называется *кусочно-гладкой*, если производная \vec{r}' непрерывна и отличается от $\vec{0}$ всюду на I, кроме конечного числа точек, в которых существуют отличные от $\vec{0}$ односторонние пределы производной \vec{r}' .

Пример. Рассмотрим еа плоскости две параметризованные кривые:

 $\vec{r}_1 \colon \mathbb{R} \to \mathbb{R}^2, \ \vec{r}_1(t) = (\operatorname{ch} t, \operatorname{sh} t).$

$$\vec{r}_2 : (0, +\infty) \to \mathbb{R}^2, \ \vec{r}_2(\tau) = (\frac{1}{2}(\tau + \frac{1}{\tau}); \frac{1}{2}(\tau - \frac{1}{\tau}))$$

Обе кривые имеют один и тот же носитель $\{(x,y)\colon x^2-y^2=1, x>0\}.$

Определение 11.17. Две параметризованный кривые $\vec{r}_1 \colon I_1 \to \mathbb{R}, \vec{r}_2 \colon I_2 \to \mathbb{R}$ называют эквивалентными, если найдётся непрерывная строго монотонная сюръекция $\varphi \colon I_2 \to I_1$, что $\vec{r}_2(\tau) = \vec{r}_1(\varphi(\tau)) \ \forall \tau \in I_2$. При этом функцию φ называют заменой параметра на \vec{r}_1 . Обозначение: $\vec{r}_1 \sim \vec{r}_2$.

Замечание. Заметим, что у эквивалентных прямых один и тот же носитель.

Пример. Замена параметра в предыдущем примере $t = e^{\tau}$.

Если $\vec{r_1}-k$ раз (непрерывно-)дифференцируемая кривая с параметром t, то замена параметра $\varphi\colon I_2\to I_1$ считают допустимой заменой параметра, если

1) $\varphi - k$ раз (непрерывно-)дифференцируема на I_2 . 2) $\varphi'(\tau) \neq 0$ на I_2 .

Задача 14. Пусть φ — допустимая замена параметра на дифференцируемой \vec{r}_1 . Показать, что

- а) неособая точка \vec{r}_1 переходит в неособую точку \vec{r}_2 .
- б) если \vec{r}_1 гладкая кривая, то \vec{r}_2 тоже гладкая кривая.

Лемма 11.4. Пусть $\vec{r_i}$: $I_i \to \mathbb{R}^2$ — параметризованные кривые (i=1,2,3). Тогда

- 1) $\vec{r}_1 \sim \vec{r}_1$.
- 2) $\vec{r}_1 \sim \vec{r}_2 \Rightarrow \vec{r}_2 \sim \vec{r}_1$.
- 3) $(\vec{r}_1 \sim \vec{r}_2, \vec{r}_2 \sim \vec{r}_3) \Rightarrow \vec{r}_1 \sim \vec{r}_3.$

▲ Вытекает из того, что если φ — замена параметра, то φ^{-1} тоже замена параметра, если φ, ψ — замены параметра, то $\varphi \circ \psi$ — тоже замена параметра. ■

Таким образом множество параметризованных кривых распадается на классы эквивалентных между собой кривых: все кривые одного класса получаются (допустимой) заменой параметра из какого-нибудь произвольно выбранного представителя этого класса.

Определение 11.18. Класс эквивалентности параметризованных кривых по отношению «~» называется (параметрической) кривой.

Если (параметрическая) кривая Γ содержит кривую \vec{r} : $I \to \mathbb{R}^n$, то \vec{r} называется napamem-pusauueŭ Γ .

Определение 11.19. Кривая Γ называется гладкой (k раз (непрерывно-)дифференцируемой) кривой, если она допускает гладкую (k раз (непрерывно-)дифференцируемую) параметризацию \vec{r} : $I \to \mathbb{R}^n$, а отношение \sim понимается в смысле допустимых замен параметра.

Допустимая замена параметра по определению либо строго возрастает, либо строго убывает. Строго возрастающая замена параметра сохраняет порядок точек на кривой, строго убывающая меняет его на противоположный.

Определение 11.20. Класс параметризованных кривых, получаемых одна из другой строго возрастающей заменой параметра называется *ориентированной кривой*.

11.4 Длина кривой

Определение 11.21. *Разбиением* Т отрезка [a,b] называется набор точек $\{t_i\}_{i=0}^n$ таких, что $a=t_0 < t_1 < \ldots < t_n = b$.

Определение 11.22. Длиной кривой Γ с параметризацией $\vec{r} \colon [a,b] \to \mathbb{R}^n$ называется величина

$$|\Gamma| := \sup_{\mathcal{T}} \sum_{i=1}^{n} |\vec{r}(t_i) - \vec{r}(t_{i-1})|,$$

точная верхняя грань берется по всем разбиениям T отрезка [a,b].

Геометрический смысл. Рассмотрим на кривой Γ точки $M_i(\vec{r}(t_i))$. $L_T = M_0 M_1 \dots M_n$ ломанная, порождённая разбиением T (вписанная в Γ).

Длина этой ломанной равна $|L_{\mathrm{T}}| = \sum_{i=1}^{n} |\vec{r}(t_i) - \vec{r}(t_{i-1})|$. Т.о. $|\Gamma| = \sup\{|L_{\mathrm{T}}|: \mathrm{T} - \mathrm{разбиениe}\}$.

Тут картинка, но и без неё всё понятно.

Лемма 11.5. Длина кривой не зависит от параметризации.

▲ Пусть $\vec{\rho}$: $[\alpha, \beta] \to \mathbb{R}^n$, \vec{r} : $[a, b] \to \mathbb{R}^n$ — две параметризации кривой Γ с параметрами τ и t соответственно. Тогда существует замена параметра $t = \varphi(\tau)$: $\vec{\rho}(\tau) = \vec{r}(\varphi(\tau)) \ \forall \tau \in [\alpha, \beta]$. Рассмотрим произвольное разбиение $\mathcal{T} = \{\tau_i\}_{i=0}^m$ отрезка $[\alpha, \beta]$ и определим разбиение T отрезка [a, b] следующим образом: $T = \{a = \varphi(\tau_0) < \varphi(\tau_1) < \ldots < \varphi(\tau_m) = b\}$ если φ строго возрастает, $T = \{a = \varphi(\tau_m) < \varphi(\tau_{m-1}) < \ldots < \varphi(\tau_0) = b\}$ если φ строго убывает. Тогда

$$\sum_{i=1}^{m} |\vec{\rho}(\tau_i) - \vec{\rho}(\tau_{i-1})| = \sum_{i=1}^{m} |\vec{r}(\varphi(\tau_i)) - \vec{r}(\varphi(\tau_{i-1}))|.$$

Следовательно, если $|\Gamma|_{\vec{\rho}}$ и $|\Gamma|_{\vec{r}}$ — длины Γ относительно параметризаций $\vec{\rho}$ и \vec{r} , то $|\Gamma|_{\vec{\rho}} \leqslant |\Gamma|_{\vec{r}}$. Т.к. $\tau = \varphi^{-1}(t)$ — тоже замена параметра (на Γ), то верно $|\Gamma|_{\vec{\rho}} \geqslant |\Gamma|_{\vec{r}} \Rightarrow |\Gamma|_{\vec{\rho}} = |\Gamma|_{\vec{r}}$.

Определение 11.23. Кривая Γ называется *спрямляемой*, если её длина конечна $(|\Gamma| < t)$.

Лемма 11.6. Если кривая Γ , заданная параметризацией \vec{r} : $[a,b] \to \mathbb{R}^n$, спрямляема, то $\forall c \in (a,b)$ также спрямляемы кривые Γ_1 , заданная сужением $\vec{r}|_{[a,c]}$: $[a,c] \to \mathbb{R}^n$, и Γ_2 , заданная сужением $\vec{r}|_{[c,b]}$: $[c,b] \to \mathbb{R}$, причём $|\Gamma| = |\Gamma_1| + |\Gamma_2|$.

A 1) Покажем, что Γ_1 и Γ_2 спрямляемы и $|\Gamma_1| + |\Gamma_2| \leqslant |\Gamma|$. Рассмотрим разбиение $T_1 = \{t_i\}_{i=0}^{m_1}$ отрезка [a,c] и сумму $L_{T_1} = \sum_{i=1}^{m_1} |\vec{r}(t_i) - \vec{r}(t_{i-1})|$. Рассмотрим разбиение $T_2 = \{t_i^*\}_{i=0}^{m_2}$ отрезка [c,b] и сумму $L_{T_2} = \sum_{i=1}^{m_2} |\vec{r}(t_i^*) - \vec{r}(t_{i-1}^*)|$.

Пусть Т — разбиение отрезка [a,b], состоящее из точек \mathbf{T}_1 и \mathbf{T}_2 , т.е. $\mathbf{T}=\{t_i\}_{i=0}^{m_1+m_2}$, где $t_i=t_{i-m_1}^*$ при $i=m_1+1,\ldots,m_1+m_2$ и $|L_{\mathbf{T}}|=\sum\limits_{i=1}^{m_1+m_2}|\vec{r}(t_i)-\vec{r}(t_{i-1})|$

Тогда $|L_{\rm T}| = |L_{\rm T_1}| + |L_{\rm T_2}|$. Следовательно, $|L_{\rm T_1}| + |L_{\rm T_2}| \leqslant |\Gamma|$. В последнем неравенстве переходим к точной верхней грани по все разбиениям T_1 отрезка [a,c]. Тогда Γ_1 спрямляема и $|\Gamma_1| + |L_{\rm T_2}| \leqslant |\Gamma|$. Переходим к точной верхней грани по всем разбиениям T_2 отрезка [c,b]. Тогда Γ_2 спрямляема и $|\Gamma_1| + |\Gamma_2| \leqslant |\Gamma|$.

2) Покажем, что $|\Gamma_1|+|\Gamma_2|\geqslant |\Gamma|$. Рассмотрим разбиение $T=\{t_i\}_{i=0}^m$ отрезка [a,b] и $|L_T|=\sum\limits_{i=1}^m|\vec{r}(t_i)-\vec{r}(t_{i-1})|$. Возьмём $k\colon t_{k-1}< c\leqslant t_k$.

Рассмотрим разбиения $T_1 = \{a = t_0 < \dots, t_{k-1} < c\}$ и $T_2 = \{c \leqslant t_k < \dots < t_m = b\}$ Т.к. $|\vec{r}(t_k) - \vec{r}(t_{k-1})| \leqslant |\vec{r}(t_k) - \vec{r}(c)| + |\vec{r}(c) - \vec{r}(t_{k-1})|$, то

$$|L_{\mathrm{T}}| \leqslant \sum_{\substack{i=1\\i\neq k}}^{m} |\vec{r}(t_i) - \vec{r}(t_{i-1})| + |\vec{r}(t_k) - \vec{r}(c)| + |\vec{r}(c) - \vec{r}(t_{k-1})| = |L_{\mathrm{T}_1}| + |L_{\mathrm{T}_2}|,$$

получаем

$$|L_{\rm T}| \leq |L_{\rm T_1}| + |L_{\rm T_2}| \Rightarrow |L_{\rm T}| \leq |\Gamma_1| + |\Gamma_2|.$$

Переходя к супремуму по всем разбиениям отрезка [a,b] получим $|\Gamma| \leqslant |\Gamma_1| + |\Gamma_2| \Rightarrow |\Gamma| = |\Gamma_1| + |\Gamma_2|$.

Cледствие. Если Γ задаётся параметризацией \vec{r} : $[a,b] \to \mathbb{R}^n$ спрямляема и $[c,d] \subset [a,b]$, то 09.12.14 кривая γ , заданная сужением $\vec{r}|_{[c,d]}$: $[c,d] \to \mathbb{R}^n$, спрямляема и $|\gamma| \leqslant |\Gamma|$.

Лемма 11.7. Если Γ — непрерывно-дифференцируемая кривая с параметризацией \vec{r} : $[a,b] \to \mathbb{R}^n$, то она спрямляема и её длина удовлетворяет условию

$$|\vec{r}(b) - \vec{r}(a)| \leq |\Gamma| \leq \max_{[a,b]} |\vec{r}'(t)| \cdot (b-a).$$

A Т.к. $|\vec{r}'(t)|$ непрерывна на [a,b], то $\exists M = \max_{[a,b]} |\vec{r}'(t)|$. Пусть $\mathbf{T} = \{t_i\}_{n=0}^m$ — произвольное разбиение [a,b]. По Т.Лагранжа для вектор-функций $\forall i=1,\ldots,m \ \exists \xi \in (t_{i-1},t_i)$:

$$|\vec{r}(t_i) - \vec{r}(t_{i-1})| \leq |\vec{r}'(\xi)|(t_i - t_{i-1}) \leq M(t_i - t_{i-1}),$$

следовательно

$$|\vec{r}(b) - \vec{r}(a)| \le \sum_{i=1}^{m} |\vec{r}(t_i) - \vec{r}(t_{i-1})| \le M \sum_{i=1}^{m} (t_i - t_{i-1}) = M(b-a).$$

Переходя в полученном двойном неравенстве к точной верхней грани по всем разбиениям отрезка $T = \{t_i\}_{n=0}^m$, получим утверждение леммы.

Определение 11.24. Пусть кривая Γ с параметризацией \vec{r} : $[a,b] \to \mathbb{R}^n$ спрямляема. Функция $s \colon [a,b] \to \mathbb{R}$, где s(t) — длина кривой Γ_t , заданной сужением $\vec{r}|_{[a,t]}$, называется nеременной ∂ линой ∂ уги Γ .

Теорема 11.6. Пусть Γ — непрерывно-дифференцируемая кривая с параметризацией \vec{r} : $[a,b] \to \mathbb{R}^n$. Тогда переменная длина дуги s=s(t) является нестрого возрастающей непрерывно-дифференцируемой функцией параметра t, причём $s'(t)=|\vec{r}'(t)|$.

 \blacktriangle Пусть $a \leqslant t_0 < t_0 + \Delta t \leqslant b$. Рассмотрим Γ_Δ , заданную сужением $\vec{r}|_{[t_0,t_0+\Delta t]}$. Длина Γ_Δ равна $\Delta s = s(t_0 + \Delta t) - s(t_0)$, откуда

$$|\vec{r}(t_0 + \Delta t) - \vec{r}(t_0)| \leqslant \Delta s \leqslant \max_{[t, t_0 + \Delta t]} |\vec{r}'(t)| \Delta t.$$

Пусть $\xi \in [t_0, t_0 + \Delta t]$: $|\vec{r}'(\xi)| = \max_{[t_0, t_0 + \Delta t]} |\vec{r}'(t)|$, тогда, учитывая, что $|\Delta t| = \Delta t$, получим

$$\left| \frac{\Delta r}{\Delta t} \right| \leqslant \frac{\Delta s}{\Delta t} \leqslant |\vec{r}'(\xi)|.$$

Перейдём в полученном неравенстве к пределу при $\Delta t \to +0$.

Т.к. по теореме о предельном переходе под знаком непрерывной функции $\exists \lim_{\Delta t \to 0} |\vec{r}'(\xi(\Delta t))| = |\vec{r}'(t)|$, то существует $s'_+ = |\vec{r}'(t)|$.

Аналогично доказывается, что в точке t существует левая производная $s'_{-} = |\vec{r}'(t)|$, откуда заключаем, что в точке t_0 существует производная, равная $|\vec{r}'(t_0)|$.

Т.к. производная функции s на отрезке [a,b] неотрицательна, то функция s нестрого возрастает на [a,b].

Замечание. Если Γ — гладкая кривая, то в каждой точке $s'(t) = |\vec{r}'(t)| > 0$, т.е. s = s(t) является допустимой заменой параметра.

Определение 11.25. Параметр s — переменная длина дуги гладкой кривой Γ называется натуральным параметром. Соответствующая параметризация \vec{r} : $[0, |\Gamma|] \to \mathbb{R}^n$ называется натуральной параметризацией кривой Γ .

В дальнейшем дифференцирование по s вместо штриха будем обозначать точкой сверху. $\dot{\vec{r}} = \frac{d\vec{r}}{ds}$.

 $\stackrel{\sim}{C}$ ледствие. Если Γ — гладкая кривая с натуральным параметром s, то $|\dot{\vec{r}}(s)|=1$.

11.5 Кривизна кривой

Лемма 11.8. Пусть вектор-функция $\vec{h}(t)$ постоянна по модулю $(|\vec{h}(t)| = C$ при $t \in B_{\Delta}(t_0))$ и пусть существует $\vec{h}'(t_0)$. Тогда $\vec{h}'(t) \perp \vec{h}(t)$.

▲ Дифференцируя скалярное произведение $(\vec{h}(t), \vec{h}(t)) = |\vec{h}(t)|^2 = C^2$ при $t = t_0$, получим $0 = (\vec{h}'(t), \vec{h}(t)) + (\vec{h}(t), \vec{h}'(t)) = 2(\vec{h}'(t), \vec{h}(t))$. ■

Следствие. Если дважды дифференцируемая кривая Γ задана натуральной параметризацией \vec{r} : $[0, |\Gamma|] \to \mathbb{R}^n$ и $s_0 \in (0, |\Gamma|)$, то $\ddot{r}(s_0) \perp \dot{r}(s_0)$.

Определение 11.26. Величина $k(s_0) = |\ddot{\vec{r}}(s_0)|$ называется *кривизной* кривой Γ в точке $(s_0, \vec{r}(s_0))$.

Примеры. 1) $\vec{r}(t) = \vec{r}_0 + \vec{a}t, a \neq \vec{0}, t \in \mathbb{R}$.

 $\vec{s}'(t)=|\vec{a}|\Rightarrow s(t)=|\vec{a}|t+C \Longrightarrow s(t)=|\vec{a}|t\Rightarrow \vec{r}(s)=\vec{r}_0+rac{\vec{a}}{|a|}s$ — натуральная параметризация этой прямой.

 $\vec{r}(s) = 0 \Rightarrow K(s) = 0.$

2) $\vec{r}(t) = (R\cos t, R\sin t), t \in [0, 2\pi].$

T.K. $\vec{r}'(t) = (-R \sin t, R \cos t)$, to $s'(t) = |\vec{r}'(t)| = R \Rightarrow s(t) = Rt + C \xrightarrow{s(0)=0} s(t) = Rt$.

 $\vec{r}(s) = (R\cos\frac{s}{R}, R\sin\frac{s}{R}).$

 $\dot{\vec{r}}(s) = (-\sin\frac{s}{R}, \cos\frac{s}{R}), \quad \ddot{\vec{r}}(s) = (-\frac{1}{R}\cos\frac{s}{R}, -\frac{1}{R}\sin\frac{s}{R}).$

 $K(s) = |\ddot{\vec{r}}(s)| = \frac{1}{R}.$

11.6 Строение кривой в окрестности точки

В дальнейшем ограничимся изучением пространственных кривых.

Пусть Γ — гладкая кривая с натуральной параметризацией \vec{r} : $[0, |\Gamma|] \to \mathbb{R}^3, s_0 \in (0, |\Gamma|), \vec{r_0} := \vec{r}(s_0).$

Определение 11.27. Прямая l, заданная уравнением $\vec{l}(t) = \vec{r_0} + \dot{\vec{r}}(s_0)t$, называется *каса- тельной* к Γ в точке $(s_0, \vec{r_0})$.

Теорема 11.7. 1) Касательная не зависит от параметризации. 2) Касательная — единственная прямая, проходящая через точку $M_0(\vec{r_0})$, расстояние от точки $M(\vec{r}(t))$ до которой есть $o(t-t_0)$ при $t \to t_0$ (t- допустимый параметр на Γ).

- **A** 1) Пусть $\vec{r} = \vec{r}(t)$ произвольная параметризация Γ , $s_0 = s(t_0)$. Тогда вектор $\vec{r}'(t_0) = \dot{\vec{r}}(s_0)s'(t_0)$ коллинеарен вектору $\dot{\vec{r}}(s_0)$ и, следовательно уравнения $\vec{l}_1 = \vec{r}_0 + \vec{r}'(t_0)t$ и $\vec{l}_2(t) = \vec{r}_0 + \dot{\vec{r}}(s_0)t$ задают одну прямую.
- 2) Возьмём произвольную прямую, проходящую через точку $M_0,\ l_0\colon \vec{l}(t)=\vec{r_0}+\vec{a}t, |\vec{a}|=1.$ Тогда $d(M,l_0)=|[\vec{r}(t)-\vec{r_0},\vec{a}]|.$ Разложим $\vec{r}=\vec{r}(t)$ в окрестности t_0 по формуле Тейлора.

$$\vec{r}(t) = \vec{r}_0 + \vec{r}'(t_0)(t - t_0) + \vec{\alpha}_1(t_0)(t - t_0),$$

где $\vec{lpha}_1(t) o 0$ при t o 0. Тогда при $t o t_0$

$$d(M, l_0) = o(t - t_0) \Leftrightarrow |[\vec{r}'(t_0) + \vec{\alpha}_1(t), a]| = o(1) \Leftrightarrow [\vec{r}'(t_0), \vec{a}] = \vec{0},$$

т.е. $\vec{r}'(t_0)$ и \vec{a} коллинеарны.

11.7 Геометрический смысл кривизны.

Картинка

 $|\Delta\dot{\vec{r}}|=2\sin{rac{arphi(\Delta s)}{2}}.\ k=\lim_{\Delta s o 0}\left|rac{\Delta\dot{r}}{\Delta s}
ight|=\left|\lim_{\Delta s o 0}{rac{\Delta\dot{r}}{\Delta s}}
ight|=\left|\lim_{\Delta s o 0}{rac{arphi(\Delta s)}{\Delta s}}
ight|=\left|\dot{arphi}(s)
ight|$ — модуль мгновенной скорости поворота единичного вектора касательной.

Определение 11.28. Точка $(s_0, \vec{r}(s_0))$ дважды дифференцируемой прямой называется точкой *спрямления* кривой, если $k(s_0) = 0$.

3амечание. Будем дополнительно предполагать, что Γ — дважды дифференцируемая кривая без точек спрямления.

Определение 11.29. Плоскость π , заданная уравнением $\vec{r}(u,w) = \vec{r}_0 + \dot{\vec{r}}(s_0)u + \ddot{\vec{r}}(s_0)w$ 10.12.14 называется соприкасающейся плоскостью к кривой Γ в точке (s_0, \vec{r}_0) .

Теорема 11.8. 1) Соприкасающаяся плоскость не зависит от параметризации. 2) Соприкасающаяся плоскость — единственная плоскость, проходящая через $M_0(\vec{r_0})$, что расстояние от точки $M(\vec{r}(t))$ до плоскости есть $o((t-t_0)^2)$ при $t \to t_0$ (t- допустимый параметр Γ , $t_0 = s(t_0)$).

\Delta 1) Пусть $\vec{r} = \vec{r}(t)$ — произвольная параметризация кривой $\Gamma, \ s_0 = s(t_0)$. Тогда

$$\vec{r}'(t_0) = \dot{\vec{r}}(s_0)s'(t_0), \quad \vec{r}''(t_0) = \ddot{\vec{r}}(s_0)(s'(t_0))^2 + \dot{\vec{r}}(s_0)s''(t_0) \ (*),$$

и, следовательно, уравнения $\vec{r}_1(u,w) = \vec{r}_0 + \vec{r}'(t_0)u + \vec{r}''(t_0)w$ и $\vec{r}_2(u,w) = \vec{r}_0 + \dot{\vec{r}}(s_0)u + \ddot{\vec{r}}(s_0)w$ задают одну и ту же плоскость.

2) Рассмотрим произвольную плоскость π_0 с единичным нормальным вектором $\vec{\nu}$, проходящую через точку M_0 . Тогда расстояние от $M(\vec{r}(t))$ до π_0 вычисляется $d(M,\pi_0) = |(\vec{r}(t) - \vec{r}_0, \vec{\nu})|$.

$$\vec{r}(t) = \vec{r}_0 + \vec{r}'(t_0)(t - t_0) + \frac{1}{2}\vec{r}''(t_0)(t - t_0)^2 + \vec{\alpha}_2(t)(t - t_0)^2,$$

где $\vec{\alpha}_2(t) \to 0$ при $t \to 0$. Тогда, при $t \to 0$

$$d(M, \pi_0) = o((t - t_0)^2) \Leftrightarrow (\vec{r}'(t_0), \vec{\nu}) = (\vec{r}''(t_0), \vec{\nu}) = 0,$$

т.е. π_0 — соприкасающаяся плоскость в точке $(t_0, \vec{r}(t_0))$.

Замечание. Из (*) вытекает следующий критерий: $(t_0, \vec{r}(t_0))$ — точка спрямления $\Leftrightarrow \vec{r}''(t_0) \parallel \vec{r}'(t_0)$.

Введём обозначение: $\vec{v} = \dot{\vec{r}} - \textit{вектор скорости}$, $\vec{n} = \frac{\dot{\vec{r}}}{|\vec{r}|} - \textit{вектор главной нормали кривой <math>\Gamma$ в точке (t_0, \vec{r}_0) . Вместе с точкой M_0 образуют (внутреннюю) прямоугольно-декартову систему координат соприкасающейся плоскости.

Для изучения строения носителя кривой Γ в окрестности точки M_0 отбросим в её натуральной параметризации члены, являющиеся $o(\Delta s^2)$ при $\Delta s = s - s_0 \to 0$ и рассмотрим полученную кривую γ :

$$\vec{r}(s) = \vec{r}_0 + \dot{\vec{r}}(s_0)\Delta s + \frac{1}{2}\ddot{\vec{r}}(s_0)\Delta s^2 = \vec{r}_0 + \vec{v}(s_0)\Delta s + \frac{1}{2}k\vec{n}\Delta s^2.$$

Во внутренней системе координат γ : $w = \frac{k}{2}u^2$, т.е. γ является параболой.

Картинка.

Рассмотрим окружность $C: u^2 + (w-R)^2 = R^2$, где $R = \frac{1}{k}$. Та полуокружность, которая проходит через точку M_0 , имеет уравнение $w = R - \sqrt{R^2 - u^2}$. Разложим её по формуле Тейлора

$$w = R - R\left(1 - \frac{1}{2}\frac{u^2}{R^2} + o(u^2)\right) = \frac{1}{2}\frac{u^2}{R} + o(u^2).$$

Отсюда видно, что окружность C приближает кривую γ , а следовательно и Γ с точностью до бесконечно малой $o(u^2)$, где $u=\Delta s \to 0$.

Определение 11.30. Окружность C называется соприкасающейся окружностью, её центр — центром кривизны, её радиус — радиусом кривизны кривой Γ в точке $(s_0, \vec{r_0})$.

Найдём координаты центра кривизны.

$$\rho(s) = \vec{r}(s) + R\vec{n}(s) = \vec{r}(s) + \frac{1}{k^2}\ddot{\vec{r}}(s).$$

Определение 11.31. Кривая $\vec{\rho} = \vec{\rho}(s)$ называется *эволютой* кривой Γ . Сама кривая по отношению к эволюте называется *эвольвентой*.

11.8 Формулы Френе

Дополним векторы \vec{v} и \vec{n} до ортонормированного базиса вектором $\vec{b} = [\vec{v}, \vec{n}]$. Вектор \vec{b} называется вектором бинормали данной кривой в соответствующей точке.

Определение 11.32. Базис $e(s) = (\vec{v}(s), \vec{n}(s), \vec{b}(s))$. называется базисом (репером) Френе в точке $(s, \vec{r}(s))$.

Теорема 11.9 (Френе). Если Γ — гладкая трижды непрерывно-дифференцируемая кривая с натуральным параметром, то справедливы формулы:

$$\dot{\vec{v}} = k\vec{n}, \quad \dot{\vec{n}} = -k\vec{v} + \varkappa \vec{b}, \quad \dot{\vec{b}} = -\varkappa \vec{n},$$

где $\varkappa(s)$ — некоторая непрерывная функция.

 \blacktriangle Поскольку базис Френе ортонормирован, то для любого вектора \vec{u} выполнено

$$\vec{u} = (\vec{u}, \vec{v})\vec{v} + (\vec{u}, \vec{n})\vec{n} + (\vec{u}, \vec{b})\vec{b}.$$

Разложим вектора $\dot{\vec{v}}, \dot{\vec{n}}, \dot{\vec{b}}$ по базису Френе, координаты запишем в матричном виде.

$$\begin{pmatrix} \dot{\vec{v}} \\ \dot{\vec{n}} \\ \dot{\vec{b}} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} \vec{v} \\ \vec{n} \\ \vec{b} \end{pmatrix}.$$

Т.к. $|\vec{v}|=|\vec{n}|=|\vec{b}|=1$, то по Л8 $a_{11}=a_{22}=a_{33}=0$. Далее, дифференцируя тождество $(\vec{v},\vec{n})\equiv 0$, имеем

$$(\vec{v}, \vec{n}) + (\vec{v}, \dot{\vec{n}}) = (a_{12}\vec{n} + a_{13}\vec{b}, \vec{n}) + (\vec{v}, a_{21}\vec{v} + a_{23}\vec{b}) = a_{12} + a_{21} = 0.$$

Дифференцируя тождество $(\vec{n}, \vec{b}) \equiv 0$, аналогично установим, что $a_{23} = -a_{32}$. Дифференцируя тождество $(\vec{b}, \vec{v}) \equiv 0$, аналогично установим, что $a_{31} = -a_{13}$.

По определению $\dot{\vec{v}} = k\vec{n}$. В силу единственности разложения по базису, $a_{12} = k$, $a_{13} = 0$.

Для завершения доказательства введём обозначение $a_{23} = \varkappa$.

Определение 11.33. Величина $\varkappa = \varkappa(s_0)$ (написание похоже на \mathfrak{B}) называется κpy чением кривой Γ в точке $(s_0, \vec{r_0})$.

Геометрический смысл кручения виден из третьего уравнения формул Френе: это скорость вращения вектора \vec{b} , а значит, скорость вращения соприкасающейся плоскости кривой в данной точке.

Теорема 11.10. Если Γ — гладкая трижды непрерывно дифференцируемая кривая с параметризацией \vec{r} : $[a,b] \to \mathbb{R}^3$, $t \in (a,b)$, то

$$k = \frac{|[\vec{r}'(t), \vec{r}''(t)]|}{|\vec{r}'(t)|^3}, \quad \varkappa = \frac{(\vec{r}'(t), \vec{r}'(t)), \vec{r}'''(t))}{|[\vec{r}'(t), \vec{r}''(t)]|^2}.$$

 \blacktriangle Пусть t=s, тогда $\dot{\vec{r}}=\vec{v},\ \ddot{\vec{r}}=k\vec{n},\ \ddot{\vec{r}}=\dot{k}\vec{n}+k\dot{\vec{n}}=\dot{k}\vec{n}+k(-k\vec{v}+\varkappa\vec{b})$. Следовательно,

$$|[\dot{\vec{r}}, \ddot{\vec{r}}]| = |\dot{\vec{r}}||\ddot{\vec{r}}| = |\vec{v}|k|\vec{n}| = k.$$

$$(\dot{\vec{r}}, \ddot{\vec{r}}, \ddot{\vec{r}}) = (\vec{v}, k\vec{n}, \dot{k}\vec{n} - k^2\vec{v} + k\varkappa\vec{b}) = k^2\varkappa(\vec{v}, \vec{n}, \vec{b}) = k^2\varkappa,$$

поделив на $|[\dot{\vec{r}}, \ddot{\vec{r}}]|^2$ получим \varkappa , так что в этом случае формулы верны.

Покажем, что выражения в правых частях формул не зависят от параметризации. Действительно,

$$\vec{r}'(t) = \dot{\vec{r}}(s)s'(t), \quad \vec{r}''(t) = \ddot{\vec{r}}(s)(s'(t))^2 + \dot{\vec{r}}(s)s''(t),$$
$$\vec{r}'''(t) = \ddot{\vec{r}}(s)(s'(t))^3 + 3\ddot{\vec{r}}(s)s'(t)s''(t) + \dot{\vec{r}}(s)s'''(t).$$

откуда

$$[\vec{r}'(t), \vec{r}''(t)] = [\dot{\vec{r}}(s), \ddot{\vec{r}}(s)](s'(t))^3, \quad (\vec{r}'(t), \vec{r}''(t), \vec{r}'''(t)) = (\dot{\vec{r}}, \ddot{\vec{r}}, \ddot{\vec{r}})(s'(t))^6,$$

что влечёт

$$\frac{|[\vec{r}',\vec{r}'']|}{|\vec{r}'|^3} = \frac{|[\dot{\vec{r}},\ddot{\vec{r}}]|}{|\dot{\vec{r}}|^3}, \quad \frac{(\vec{r}',\vec{r}',\vec{r}''')}{|[\vec{r}',\vec{r}'']|^2} = \frac{(\dot{\vec{r}},\ddot{\vec{r}},\ddot{\vec{r}})}{|[\dot{\vec{r}},\ddot{\vec{r}}]|^2}. \blacksquare$$

Следствие 1. Для кривизны плоской дважды дифференцируемой кривой с параметризацией 16.12.14 $\vec{r}(t) = (x(t), y(t))$ справедлива формула

$$k = \frac{|y''x' - x''y'|}{(x'^2 + y'^2)^{3/2}}.$$

Следствие 2. Если $\vec{\rho}(t) = (x_c(t), y_c(t))$ — параметризация эволюты плоской дважды дифференцируемой кривой, заданной параметризацией $\vec{r}(t) = (x(t), y(t))$, то

$$x_c = x - y' \frac{x'^2 + y'^2}{y''x' - y'x''}, \quad y_c = y + x' \frac{x'^2 + y'^2}{y''x' - y'x''}.$$

12 Метрические пространства

12.1 Определение метрического пространства

Определение 12.1. Метрическим пространством (МП) называется пара (X, ρ) , состоящая из множества X и функции $\rho: X \times X \to \mathbb{R}$ (называемой метрикой или расстоянием), удовлетворяющей следующим свойствам-аксиомам:

- 1) $\forall x, y \in X : \rho(x, y) \ge 0$, $\rho(x, y) = 0 \Rightarrow x = y$,
- 2) $\forall x, y \in X : \rho(x, y) = \rho(y, x),$
- 3) $\forall x, y, z \in X : \rho(x, z) \leq \rho(x, y) + \rho(y, z)$ (неравенство треугольника).

В дальнейшем часто под МП будем понимать само множество X, предполагая наличие связной с X метрики ρ .

Примеры. 1)
$$X$$
 — любое множество, $\rho(x,y) = \begin{cases} 0, x = y, \\ 1, x \neq y, \end{cases}$ (дискретная метрика).

- 2) $(X, \rho) \text{M}\Pi, X' \subset X, \rho' \text{сужение метрики } \rho$ на $X' \times X'$. Тогда ρ' удовлетворяет условиям 1-3. Следовательно, $(X', \rho') \text{M}\Pi$. Оно называется $nodnpocmpancmeom \text{M}\Pi$ (X, ρ) , а метрика ρ' называется undyuupoeanhoù метрикоù.
 - 3) $X = \mathbb{R}, \rho(x, y) = |x y|$.
 - 4) $X = {\vec{x} = (x_1, \dots, x_n) : x_k \in \mathbb{R}}, \rho(\vec{x}, \vec{y}) = |x_1 y_1| + \dots + |x_n y_n|.$

Лемма 12.1.
$$\mathbb{R}^n$$
 — МП с метрикой $\rho(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^n (x_k - y_k)^2} = |\vec{x} - \vec{y}|.$

▲ Очевидно выполнение всех свойств метрики, кроме неравенства треугольника.

Пусть $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$. Если в неравенстве $|\vec{a} + \vec{b}| \leqslant |\vec{a}| + |\vec{b}|$ (следствие 1 Т11.1) положить $\vec{a} = \vec{x} - \vec{y}, \vec{b} = \vec{y} - \vec{z}$, получим $|\vec{x} - \vec{z}| \leqslant |\vec{x} - \vec{y}| + |\vec{y} - \vec{z}|$, что является другой записью неравенства $\rho(x, z) \leqslant \rho(x, y) + \rho(y, z)$.

Из леммы 1 следует, что все результаты, относящиеся к метрическим пространствам, справедливы к \mathbb{R}^n .

12.2 Классификация точек

Пусть (X, ρ) — фиксированное МП.

Определение 12.2. *Открытым шаром* радиуса r > 0 с центром в точке $x_0 \in X$ называется множество $B_{\varepsilon}(x_0) = \{x \in X : \rho(x, x_0) < r\}.$

Замкнутым шаром радиуса $r\geqslant 0$ с центром в точке $x_0\in X$ называется множество $\overline{B}_{\varepsilon}(x_0)=\{x\in X\colon \rho(x,x_0)\leqslant r\}.$

Задача 15. Нарисовать $B_1(\vec{0})$ для примера (4) (манхеттеновская метрика) при n=2.

Определение 12.3. Под ε -окрестностью точки $x \in X$, где $\varepsilon > 0$, понимается $B_{\varepsilon}(x)$. Под проколотой ε -окрестностью точки $x \in X$, где $\varepsilon > 0$, понимается $B'_{\varepsilon}(x) = B_{\varepsilon}(x) \setminus \{x\}$.

Задача 16. Пусть $a,b\in X, a\neq b\Rightarrow \rho(a,b)>0$. Доказать, что $\exists \varepsilon>0\colon B_{\frac{\varepsilon}{2}}(a)\cap B_{\frac{\varepsilon}{2}}(b)=\varnothing$.

По отношению к множеству $E \subset X$ любая точка является точкой одного и следующих видов.

Определение 12.4. 1) Точка $x \in X$ называется внутренней точкой множества E, если $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset E$.

- 2) Точка $x \in X$ называется внешней точкой множества E, если $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset X \setminus E$.
- 3) Точка $x \in X$ называется граничной точкой множества E, если $\forall \varepsilon > 0$:
- $B_{\varepsilon}(x) \cap E \neq \emptyset, B_{\varepsilon}(x) \cap (X \setminus E) \neq \emptyset.$

Определение 12.5. 1) Множество всех внутренних точек множества $E \subset X$ называется внутренностью E. Обозначение: int E.

- 2) Множество всех внешних точек множества $E\subset X$ называется внешностью E. Обозначение: ext E.
- 3) Множество всех граничных точек множества $E\subset X$ называется границей E. Обозначение: $\partial E.$

Замечание. Непосредственно из определения следует, что int $E \subset E$, ext $E = \operatorname{int}(X \setminus E)$.

Определение 12.6. Множество $G \subset X$ называется *открытым*, если все его точки внутренние (т.е. G = int G).

Множество $F \subset X$ называется замкнутым, если $X \setminus F$ — открытое множество.

3амечание. X, \varnothing — открыты и замкнуты одновременно.

Лемма 12.2. Открытый шар — открытое множество. Замкнутый шар — замкнутое множество.

▲ Пусть $x \in B_r(x_0) \Rightarrow \rho(x, x_0) < r$.

Положим $\varepsilon = r - \rho(x, x_0)$ и покажем, что $B_{\varepsilon}(x) \subset B_r(x_0)$.

Действительно, если $y \in B_{\varepsilon}(x)$, то $\rho(x,y) < \varepsilon \Rightarrow \rho(y,x_0) \leqslant \rho(y,x) + \rho(x,x_0) < \varepsilon + \rho(x,x_0) = r$.

Таким образом, если $x \in B_{\varepsilon}(x_0)$, то $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset B_r(x_0)$, то есть $B_{\varepsilon}(x)$ — открытое множество.

Пусть $x \in X \setminus \overline{B}_r(x_0) \Rightarrow \rho(x, x_0) > r$.

Положим $\varepsilon = \rho(x, x_0) - r$ и покажем, что $B_{\varepsilon}(x) \subset X \setminus \overline{B}_r(x_0)$.

Действительно, если $y \in B_{\varepsilon}(x)$, то $\rho(x,y) < \varepsilon$, и, следовательно,

 $\rho(y,x_0) \geqslant \rho(x,x_0) - \rho(x,y) > \rho(x,x_0) - \varepsilon = r, \text{ r.e. } y \notin \overline{B}_r(x_0).$

Таким образом, если $x \in X \setminus \overline{B}_r(x_0)$, то $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset X \setminus \overline{B}_r(x_0)$, то есть $\overline{B}_r(x_0)$ — замкнутое множество.

Лемма 12.3.

- 1) а) $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ семейство открытых в X множеств $\Rightarrow \bigcup_{{\lambda}\in\Lambda}G_{\lambda}$ открытое множество.
 - б) G_1, \ldots, G_n открытые множества в $X \Rightarrow \bigcap_{k=1}^n G_k$ открытое множество.
- 2) а) $\{F_{\lambda}\}_{{\lambda}\in\Lambda}$ семейство замкнутых в X множества $\Rightarrow \bigcap_{{\lambda}\in\Lambda} F_{\lambda}$ замкнутое множество.
 - б) F_1, \dots, F_n замкнутые множества в $X \Rightarrow \bigcup_{k=1}^n F_k$ замкнутое множество.

▲ 1.a) $x \in \bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \exists \lambda_0 \in \Lambda \colon x \in G_0$. Μηοжество G_0 открыто $\Rightarrow \exists B_{\varepsilon}(x) \subset G_{\lambda_0} \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$, т.е.

$$x$$
 — внутренняя точка $\bigcup_{\lambda \in \Lambda} G_{\lambda}$, так что $\bigcup_{\lambda \in \Lambda} G_{\lambda}$ — открыто.
1.6) $x \in \bigcap_{k=1}^{n} G_{k} \Rightarrow x \in G_{k} \ \forall k = 1, \dots, n$. Множество G_{k} открыто $\Rightarrow \exists B_{\varepsilon_{k}}(x) \subset G_{k}, k = 1, \dots, n$.

Положим $\varepsilon = \min(\varepsilon_k) \Rightarrow B_{\varepsilon}(x) \subset B_{\varepsilon_k}(x) \subset G_k, \forall k = 1, \dots, n \Rightarrow B_{\varepsilon}(x) \subset \bigcap_{k=1}^n G_k$, т.е. x

2.a)
$$X \setminus (\bigcap_{\lambda \in \Lambda} F_{\lambda}^{k=1}) = \bigcup_{\lambda \in \Lambda} (X \setminus F_{\lambda})$$
 — открыто $\Rightarrow \bigcap_{\lambda \in \Lambda} F_{\lambda}$ — замкнуто.

внутрення точка
$$\bigcap\limits_{k=1}^n G_k\Rightarrow \bigcap\limits_{k=1}^n G_k$$
 — открыто.
 2.a) $X\setminus (\bigcap\limits_{\lambda\in\Lambda} F_\lambda)=\bigcup\limits_{\lambda\in\Lambda} (X\setminus F_\lambda)$ — открыто $\Rightarrow \bigcap\limits_{\lambda\in\Lambda} F_\lambda$ — замкнуто.
 2.6) $X\setminus (\bigcup\limits_{k=1}^n F_k)=\bigcap\limits_{k=1}^n (X\setminus F_k)$ — открыто $\Rightarrow \bigcup\limits_{k=1}^n F_k$ — замкнуто. \blacksquare

Определение 12.7. Точка x называется $npedenhoù moчкоù множества <math>E \subset X$, если 17.12.14 $\forall \varepsilon > 0 \ B'_{\varepsilon}(x) \cap E \neq \emptyset$. Обозначение: E' — множество предельных точек E.

Лемма 12.4. $x \in E' \Leftrightarrow \forall \varepsilon > 0$ $B_{\varepsilon}(x) \cap E$ — бесконечное множество.

- \blacktriangle (\Leftarrow) ($\forall \varepsilon > 0 : B_{\varepsilon}(x) \cap E$ бесконечное множество) \Rightarrow ($\forall \varepsilon > 0 : B'_{\varepsilon}(x) \cap E \neq \varnothing$) $\Rightarrow x \in E'$.
- (\Rightarrow) От противного. Пусть $\exists \varepsilon > 0 \colon B_{\varepsilon}(x) \cap E$ конечное множество $\Rightarrow B'_{\varepsilon}(x) \cap E$ конечное множество. Поскольку $B'_{\varepsilon}(x) \cap E \neq \emptyset$, то $B'_{\varepsilon}(x) \cap E = \{x_1, \dots, x_n\}$. Положим $\delta := \min_{1 \le k \le n} \rho(x, x_k)$. Тогда $B'_{\delta}(x) \cap E = \varnothing \Rightarrow x \notin E'$, противоречие. \blacksquare

Теорема 12.1 (критерии замкнутости). Следующие утверждения эквивалентны.

- 1) E замкнуто.
- 2) Е содержит все свои граничные точки.
- 3) Е содержит все свои предельные точки.

 \blacktriangle (1 ⇒ 2) Пусть $x \in X \setminus E$. Так как $X \setminus E$ — открытое множество, то $\exists B_{\varepsilon}(x) \subset X \setminus E$ ⇒ $x \in \operatorname{ext} E \Rightarrow x \notin \partial E \Rightarrow \partial E \subset E.$

 $(2\Rightarrow 3)$ $x\in E'\Rightarrow x\notin \mathrm{ext}\ E.$ Тогда либо $x\in \mathrm{int}\ E\Rightarrow x\in E,$ либо $x\in \partial E\Rightarrow x\in E.$ В любом случае $E' \subset E$.

 $(3 \Rightarrow 1) \ x \in X \setminus E \Rightarrow x \notin E' \Rightarrow \exists \varepsilon > 0 \colon B'_{\varepsilon}(x) \cap E = \varnothing \Rightarrow B_{\varepsilon}(x) \cap E = \varnothing \Rightarrow B_{\varepsilon}(x) \subset X \setminus E \Rightarrow B_{\varepsilon}(x) \cap E = \varnothing \Rightarrow B_{\varepsilon}(x) \cap E = \varnothing \Rightarrow B_{\varepsilon}(x) \cap E \Rightarrow B_{\varepsilon}(x) \cap E = \varnothing \Rightarrow B_{\varepsilon}(x) \cap E \Rightarrow B_{\varepsilon}(x) \cap E$ $X \setminus E$ — открыто $\Rightarrow E$ — замкнуто.

Определение 12.8. $\overline{E}=E\cup E'$ называют *замыканием* множества $E\subset X$.

Лемма 12.5. \overline{E} — замкнутое множество.

▲ Покажем, что множество
$$\overline{E} = X \setminus \text{ext } E$$
. Действительно, $a \in X \setminus \text{ext } E \iff a \notin \text{ext } E \iff \forall \varepsilon > 0 \colon B_{\varepsilon}(a) \cap E \neq \varnothing \iff \begin{bmatrix} \forall \varepsilon > 0 \colon B'_{\varepsilon}(a) \cap E \neq \varnothing \\ a \in E \end{bmatrix} \iff a \in \overline{E}.$

Поскольку $\operatorname{ext} E = \operatorname{int}(X \setminus E)$ — открытое множество, то \overline{E} замкнуто.

Замечание. В общем случае, $\overline{B_{\varepsilon}(x)} \subsetneq \overline{B_{\varepsilon}(x)}$.

Пример. Рассмотрим $X \neq \emptyset$ с дискретной метрикой и $x \in X$. Тогда $B_1(x) = \{x\},$ $(B_1(x))' = \emptyset$, и, значит, $B_1(x) = \{x\}$. Однако $\overline{B}_1(x) = X$.

12.3Компактные метрические пространства

Пусть (X, ρ) — МП.

Определение 12.9. Множество $K \subset X$ называется компактом (или компактным множеcmвом), если для любого покрытия $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ множества K открытыми множествами (omкpы*того покрытия*) существует конечное подпокрытие $\{G_{\lambda_k}\}_{k=1}^n$, также являющееся покрытием K $(\lambda_k \in \Lambda)$.

 $\Pi pumep. [a, b]$ — компакт в \mathbb{R} (Т. Гейне – Бореля).

Определение 12.10. Множество в X называется *ограниченным*, если оно содержится в некотором шаре.

Лемма 12.6. Если K — компакт в $X, F \subset K, F$ — замкнуто, то F — компакт.

В Рассмотрим произвольное покрытие $\{G_{\lambda}\}_{{\lambda}\in{\Lambda}}$ множества F. Тогда $\{G_{\lambda}\}_{{\lambda}\in{\Lambda}}\cup\{X\setminus F\}$ открытое покрытие K (т.к. $\bigcup_{{\lambda}\in{\Lambda}}G_{\lambda}\cup(X\setminus F)=X$). Так как K — компакт, выделим конечное

покрытие $\exists \lambda_1, \dots, \lambda_n \in \Lambda$, что $\bigcup_{k=1}^n G_{\lambda_k} \cup (X \setminus F) \supset K$. Учитывая, что $K \supset F$, имеем $\bigcup_{k=1}^n G_{\lambda_k} \supset F$, так что $\{G_{\lambda_k}\}_{k=1}^n$ — конечно подпокрытие K.

Лемма 12.7. Если K — компакт в X, то K — ограничено и замкнуто.

1) Зафиксируем произвольную точку $x \in X$ и рассмотрим $\{B_n(x)\}_{n \in \mathbb{N}}$ — открытое покрытие K (т.к. $\bigcup_{n \in \mathbb{N}} B_n(x) = X$). Так как K — компакт, выделим $\{B_{n_k}(x)\}_{k=1}^m$ — конечное подпокрытие

K. Поскольку $B_1(x) \subset B_2(x) \subset \ldots$, то $\bigcup_{k=1}^m B_{n_k}(x) = B_N(x)$, где $N = \max_{1 \leqslant k \leqslant m} n_k$. Следовательно, $K \subset B_N(x)$.

2) Докажем, что K замкнуто. Пусть $a \in X \setminus K$. Тогда $\forall x \in K \ \exists \varepsilon_x > 0 \colon B_{\varepsilon_x}(x) \cap B_{\varepsilon_x}(a) = \emptyset$. Рассмотрим семейство окрестностей $\{B_{\varepsilon_x}(x)\}_{x \in K}$ — открытое покрытие K.

Так как K — компакт, выделим конечное покрытие K: $\{B_{\varepsilon_{x_k}}(x_k)\}_{k=1}^n$.

Положим $\varepsilon = \min_{1 \leqslant k \leqslant n} \varepsilon_{x_k}$. Тогда $B_{\varepsilon}(a) \cap B_{\varepsilon_{x_k}}(x_k) = \varnothing, k = 1, \dots, n \Rightarrow B_{\varepsilon}(a) \cap \bigcup_{k=1}^n B_{\varepsilon_{x_k}}(x_k) = \varnothing \Rightarrow B_{\varepsilon}(a) \cap K = \varnothing \Rightarrow B_{\varepsilon}(a) \subset X \setminus K \Rightarrow X \setminus K$ — открытое $\Rightarrow K$ — замкнутое. \blacksquare

Задача 17. Пусть $K_1\supset K_2\supset\ldots$ последовательность вложенных непустых компактных множеств в X, тогда $\bigcap_{k=1}^{\infty}K_k\neq\varnothing$.

12.4 Критерий компактности в \mathbb{R}^n

Лемма 12.8. Любой n-мерный брус (параллелепипед)

$$\prod_{k=1}^{n} [a_k, b_k] = \{ \vec{x} = (x_1, \dots, x_n) \colon a_k \leqslant x_k \leqslant b_k \} -$$

компакт в \mathbb{R}^n .

▲ Предположим обратное. Пусть в открытом покрытии $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ множества $\Pi^1=\prod_{k=1}^n [a_k^1,b_k^1],$ где $[a_k^1,b_k^1]=[a_k,b_k],$ не существует конечной подсистемы, покрывающей $\Pi^1.$

Разделим брус Π^1 по каждому ребру $[a_k^1, b_k^1]$ пополам. Получим 2^n брусов $\prod_{k=1}^n [\alpha_k, \beta_k]$, где $[\alpha_k, \beta_k] \in \left\{ [a_k^1, \frac{a_k^1 + b_k^1}{2}], [\frac{a_k^1 + b_k^1}{2}, b_k^1] \right\}$. Хотя бы один из этих брусов нельзя покрыть конечным числом G_{λ} , обозначим его через Π^2 . Продолжая рассуждение, получим $\{\Pi^m\}_{m=1}^{\infty}$:

- 1) $\forall m \in \mathbb{N} : \Pi^m \supset \Pi^{m+1}$.
- 2) $\forall m \in \mathbb{N} \colon \Pi^m$ не покрываема конечным числом G_{λ} .
- 3) Длина k-го ребра $\Pi^m \colon b_k^m a_k^m = \frac{b_k^1 a_k^1}{2^{m-1}} \to 0$ при $m \to \infty$.

Поскольку $\{[a_k^m,b_k^m]\}_{m=1}^{\infty}$ — последовательность стягивающихся отрезков, то

 $\exists c_k \in \bigcap_{m=1}^{\infty} [a_k^m, b_k^m]. \text{ Рассмотрим } \vec{c} = (c_1, \dots, c_k). \text{ Тогда } \vec{c} \in \Pi^1 \Rightarrow \vec{c} \in \bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \exists \lambda_0 \colon \vec{c} \in G_{\lambda_0}. \text{ Множество } G_{\lambda_0} - \text{открыто, следовательно } \exists \varepsilon > 0 \colon B_{\varepsilon}(\vec{c}) \subset G_{\lambda_0}. \text{ Найдём } m \colon \sqrt{n} 2^{1-m} \max_{1 \leqslant k \leqslant n} (b_k^1 - a_k^1) < \varepsilon.$

Тогда $\forall x \in \Pi^m$ выполнено:

$$\rho(\vec{x},\vec{c}) = \sqrt{\sum_{k=1}^{n} (x_k - c_k)^2} \leqslant \sqrt{\sum_{k=1}^{m} (b_k^m - a_k^m)^2} \leqslant \max_{1 \leqslant k \leqslant n} (b_k^m - a_k^m) \sqrt{n} = \sqrt{n} 2^{1-m} \max_{1 \leqslant k \leqslant n} (b_k^1 - a_k^1) < \varepsilon$$
 и следовательно, $\Pi^m \subset B_{\varepsilon}(\vec{c}) \subset G_{\lambda_0}$, что противоречит свойству (2). \blacksquare

Теорема 12.2. $K \subset \mathbb{R}^n$ — компакт $\iff K$ — замкнуто и ограничено.

- **▲** (⇒) Следует из Л12.7.
 - (\Leftarrow) Так как K ограничено, то $\exists B_r(\vec{x}) \supset K \ (\vec{x} = (x_1, \dots, x_n))$. Брус

 $P = \prod_{k=1}^{n} [x_k - r, x_k + r] \supset B_r(\vec{x})$. Следовательно, K — замкнутое подмножество бруса P — компакта в \mathbb{R}^n . По Л12.6 K — компакт. \blacksquare

12.5 Существование предельной точки в компактах

Теорема 12.3. Любое бесконечное подмножество компакта имеет хотя бы одну предельную 23.12.14 точку, принадлежащую этому компакту, т.е. если K — компакт в МП, A — бесконечно, $A \subset K$, то $A' \cap K \neq \varnothing$.

▲ Пусть $A \subset K$ не имеет предельной точки в K. Тогда $\forall x \in K \exists \varepsilon_x > 0$: $B'_{\varepsilon_x}(x) \cap A = \emptyset$. Система $\{B_{\varepsilon_x}(x)\}_{x \in K}$ образует открытое покрытие K. Так как K — компакт, выделим конечное подпокрытие: $\{B_{\varepsilon_{x_k}}(x_k)\}_{k=1}^m$. Имеем $A \subset K \subset \bigcup_{k=1}^m B_{\varepsilon_{x_k}}(x_k)$. Следовательно, $A \subset \{x_1, \ldots, x_m\}$, т.е. A конечно. \blacksquare

конечно.

Cnedcmeue. В \mathbb{R}^n любое бесконечное ограниченное множество A имеет предельную точку.

▲ Так как A — ограничено, то $\exists r > 0 \ \exists \vec{x} \in \mathbb{R}^n \colon A \subset \overline{B}_r(\vec{x})$ — компакт по критерию компактности $\Rightarrow A' \neq \emptyset$. ■

12.6 Последовательности в метрическом пространстве

Пусть $(X, \rho) - M\Pi$.

Определение 12.11. Последовательностью точек в X называется функция из \mathbb{N} в X: $n\mapsto a_n\in X$. Обозначение: $\{a_n\}$.

Определение 12.12. Точка $a \in X$ называется пределом последовательности $\{a_n\}$ точек из X, если $\rho(a_n,a) \to 0$ при $n \to \infty$. Пишут $\lim_{n \to \infty} a_n = a$ или $a_n \to a$ при $n \to \infty$.

 $\Pi p u м e p. \ a_n = \left(\frac{1}{n}, \frac{1}{2n}\right) \to (0,0) \ в \mathbb{R}^2.$ Действительно, $\rho(a_n, (0,0)) = \sqrt{\frac{1}{n^2} + \frac{1}{4n^2}} = \frac{\sqrt{5}}{2n} \to 0$ при $n \to \infty$.

Замечание. $a = \lim_{n \to \infty} a_n \iff \forall \varepsilon > 0 \ \exists N_{\varepsilon} \ \forall n > N_{\varepsilon} \colon a_n \in B_{\varepsilon}(a).$

Определение 12.13. Последовательность называется *сходящейся*, если она имеет предел (т.е. найдётся точка a, удовлетворяющая предыдущему определению). В противном случае последовательность называется pacxodsumeics.

Свойство 1 (единственность предела). Если последовательность имеет предел, то он единственен.

▲ Пусть $a, b \in X$ удовлетворяют определению предела последовательности $\{a_n\}$. Тогда $\rho(a_n, a) \to 0$ и $\rho(a_n, b) \to 0$ при $n \to \infty$.

Переходя к пределу в неравенстве $\rho(a,b) \le \rho(a,a_n) + \rho(a_n,b)$, получим $0 \le \rho(a,b) \le 0 \Rightarrow \rho(a,b) = 0 \Rightarrow a = b$.

Определение 12.14. Последовательность $\{a_n\}$ называется ограниченной, если множество её значений $\{x \in X : x = a_n, n \in \mathbb{N}\}$ ограничено (т.е. содержится в некотором шаре).

Свойство 2 (об ограниченности). Если последовательность сходится, то она ограничена.

▲ Если $a = \lim_{n \to \infty} a_n$, то $\rho(a_n, a) \to 0$ при $n \to \infty$, и, значит, числовая последовательность $\{\rho(a_n, a)\}$ — ограничена, т.е. $\exists r \geqslant \rho(a_n, a)$ для всех $n \in \mathbb{N}$. Итак, $\forall n \in \mathbb{N} \colon a_n \in \overline{B}_r(a)$. ■

Свойство 3 (об отделимости). Если $\{a_n\}$ сходится, $b \neq \lim_{n \to \infty} a_n$, то $\exists \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall n > N$: $a_n \notin B_{\varepsilon}(b)$.

▲ Пусть $a = \lim_{n \to \infty} a_n$. Положим $\varepsilon = \frac{1}{2}\rho(a,b)$. Тогда $B_{\varepsilon}(a) \cap B_{\varepsilon}(b) = \varnothing$. Так как $a = \lim_{n \to \infty} a_n$, то $\exists N_{\varepsilon} \ \forall n > N_{\varepsilon} \colon a_n \in B_{\varepsilon}(a)$. Тогда $N = N_{\varepsilon}$ и ε — искомые. ■

Определение 12.15. Пусть $\{a_n\}$ — последовательность в (X, ρ) , $\{n_k\}$ — строго возрастающая последовательность натуральных чисел. Тогда последовательность $\{b_k\}$, где $b_k = a_{n_k}$ для всех $k \in \mathbb{N}$, называется подпоследовательностью $\{a_n\}$. Обозначение: $\{a_{n_k}\}$

Свойство 4 (о подпоследовательности). Если последовательность имеет предел, то любая её подпоследовательность имеет тот же предел.

▲ Пусть $a = \lim_{n \to \infty} a_n$ тогда числовая последовательность $\alpha_n = \rho(a_n, a) \to 0$ при $n \to \infty$, но тогда $\alpha_{n_k} \to 0$ при $k \to \infty$. Поэтому $a_{n_k} \to a$ при $k \to \infty$. ■

Теорема 12.4 (Больцано — **Вейерштрасс).** Из любой последовательности точек компакта (в МП) можно выбрать сходящуюся к точке компакта подпоследовательность.

▲ Пусть $\{a_n\}$ — последовательность точек компакта $K, E = \{x \in K : x = a_n, n \in \mathbb{N}\}$ — множество значений $\{a_n\}$. Возможны 2 случая:

- 1) E конечно $\Rightarrow \exists a \in E \ \exists \{n_k\}$ строго возрастающая последовательность натуральных чисел, что $a_{n_k} = a$. Тогда $\{a_{n_k}\}$ подпоследовательность $\{a_n\}$ и $\lim_{k \to \infty} a_{n_k} = a$.
- 2) E бесконечно \Rightarrow E имеет предельную точку $a \in K$.

Пусть n_1 : $a_{n_1} \in B_1(a)$. Если уже выбраны номера $n_1 < n_2 < \ldots < n_m$: $a_{n_k} \in B_{\frac{1}{k}}(a)$, то определим $n_{m+1} > n_m, a_{n_{m+1}} \in B_{\frac{1}{m+1}}(a)$. Так будет построена подпоследовательность $\{a_{n_k}\}$.

Покажем, что
$$a=\lim_{k\to\infty}a_{n_k}$$
. Имеем $\forall \varepsilon>0\ \exists N=\frac{1}{\varepsilon}\ \forall n>N:\ a_{n_k}\in B_{\frac{1}{k}}(a)\subset B_{\varepsilon}(a)$.

 $Cnedcmeue.\ B\ \mathbb{R}^n$ из любой ограниченной последовательности можно выбрать сходящуюся последовательность.

В МП, вообще говоря, не определены +, \cdot , отношение порядка. Поэтому построенные на этих операциях свойства не определены в общем виде.

Теорема 12.5 (о покоординатной сходимости). В \mathbb{R}^n последовательность $\vec{x}^{(m)} \to \vec{x}$ при $m \to \infty \Leftrightarrow \forall k = 1, \dots, n \colon \vec{x}_k^{(m)} \to x_k$ при $m \to \infty$.

 \blacktriangle (\Rightarrow) Пусть $\vec{x}^{(m)} \to \vec{x}$ при $m \to \infty$, т.е. $\rho(\vec{x}^{(m)}, \vec{x}) \to 0$ при $m \to \infty$. Так как $\forall k = 1, \dots, n$ $|\vec{x}_k^{(m)} - \vec{x}_k| \leqslant \sqrt{\sum_{k=1}^n (\vec{x}_k^{(m)} - x_k)^2} = \rho(\vec{x}^{(m)}, \vec{x}) \to 0 \Rightarrow \vec{x}_k^{(m)} \to \vec{x}_k$ при $m \to \infty$.

(\Leftarrow) Пусть $\forall k=1,\ldots,n\colon \ \vec{x}_k^{(m)}\to \vec{x}_k$ при $m\to\infty$, тогда $\rho(\vec{x}^{(m)},\vec{x})^2=\sum\limits_{k=1}^n (\vec{x}_k^{(m)}-\vec{x}_k)^2\to 0$ при $m\to\infty\Rightarrow \vec{x}^{(m)}\to \vec{x}$ при $m\to\infty$.

12.7 Полные метрические пространства

Определение 12.16. Последовательность $\{a_n\}$ точек МП называется $\phi y n \partial a ментальной,$ если

$$\forall \varepsilon > 0 \ \exists N \ \forall i > N \ \forall j > N : \rho(a_i, a_j) < \varepsilon.$$

Лемма 12.9. Если последовательность сходится, то она фундаментальна.

▲ Если
$$a = \lim_{n \to \infty} a_n$$
, то $\forall \varepsilon > 0 \; \exists N_\varepsilon \; \forall n > N \colon \rho(a_n, a) < \frac{\varepsilon}{2}$. Но тогда $\forall i, j > N \colon \rho(a_i, a_j) \leqslant \rho(a_i, a) + \rho(a_j, a) < \varepsilon$. ■

Замечание. В произвольно метрическом пространстве фундаментальная последовательность не обязана быть сходящейся, но особый интерес представляют пространства, в которых любая фундаментальная последовательность сходится.

Определение 12.17. Метрическое пространство называется *полным*, если любая фундаментальная последовательность в нём сходится.

Теорема 12.6. \mathbb{R}^n является полным МП.

▲ Пусть $\{\vec{x}^{(m)}\}$ — фундаментальная последовательность в \mathbb{R}^n . Так как $\forall k=1,\ldots,n$: $|\vec{x}_k^{(i)} - \vec{x}_k^{(j)}| \leqslant |\vec{x}^{(i)} - \vec{x}_k^{(j)}|$, то последовательность $\{\vec{x}_k^{(m)}\}$ является фундаментальной в \mathbb{R} . По критерию Коши $\lim_{m\to\infty} \vec{x}_k^{(m)} = x_k \in \mathbb{R}$. По Т12.5 $\vec{x}^{(m)} \to \vec{x} \in \mathbb{R}^n$, где $\vec{x} = (x_1,\ldots,x_n)$. ■

Замечание. Укажем без доказательства, что для любого МП (X, ρ) найдётся полное МП, для которого (X, ρ) будет подпространством.

Теоремы и Леммы

Теорема 1.1		3
Теорема 1.2		5
Теорема 1.3	(принцип полноты Вейерштрасса)	5
Теорема 1.4	(принцип полноты Кантора)	6
Теорема 1.5	(аксиома Архимеда)	6
Теорема 1.6	(неравенство Бернулли)	6
Теорема 1.7		6
Теорема 1.8		7
Теорема 2.1		8
Лемма 2.1		8
Теорема 2.2		8
Теорема 2.3		9
Теорема 2.4	(Гейне – Борель)	9
Теорема 2.5	(о существовании предельной точки)	9
Теорема 2.6		10
Лемма 3.1		11
Теорема 3.1	(о единственности)	12
Теорема 3.2	(об отделимости)	12
Теорема 3.3	(об ограниченности)	12
Теорема 3.4	· · · · · · · · · · · · · · · · · · ·	12
Теорема 3.5	(о пределе в неравенствах)	13
Теорема 3.6	(о зажатой последовательности)	13
Теорема 3.7		13
Лемма 3.2		13
Лемма 3.3		14
Теорема 3.8	(о пределе суммы, произведения, частного)	14
Теорема 3.9	(о пределе монотонной последовательности)	15
Теорема 3.10		15
Лемма 3.4		16
Теорема 3.11	(критерий частичного предела)	16
Теорема 3.12		16
Теорема 3.13		16
		17
Теорема 3.15		17
Теорема 3.16	(критерий Коши)	18
Теорема 3.17	(Кантор)	18
Теорема 3.18	(Кантор)	19
Теорема 4.1		20
Теорема 4.2	(о пределе по подмножеству)	20
Теорема 4.3	(о единственности предела)	21
Теорема 4.4	(об отделимости)	21
Теорема 4.5	(об ограниченности)	21
Теорема 4.6	(о зажатой функции)	21
Лемма 4.1		21

Теорема 4.7	(о пределе суммы, произведения, частного)
Теорема 4.8	22
Лемма 4.2	(об односторонних пределах)
Теорема 4.9	(о пределах монотонной функции)
Теорема 4.10	(о замене переменной под знаком предела)
Теорема 4.11	
Теорема 4.12	(о непрерывности суммы, произведения, частного)
Теорема 4.13	25
Теорема 4.14	(о разрывах монотонной функции)
_	(Больцано – Коши)
	(Больцано – Коши)
-	(Вейерштрасса об ограниченности)
_	(Вейерштрасса о точных гранях)
Лемма 4.3	
Лемма 4.4	27
Теорема 4.19	(об обратной функции)
Лемма 5.1	(обобщенное неравенство Бернулли)
Теорема 5.1	
Теорема 5.2	29
Теорема 5.3	30
Теорема 5.4	30
Лемма 5.2	30
Теорема 5.5	31
Теорема 5.6	31
Теорема 5.7	31
Теорема 5.8	(первый замечательный предел)
Лемма 5.3	32
Теорема 5.9	(второй замечательный предел)
Лемма 5.4	
Лемма 5.5	
Лемма 5.6	
Теорема 6.1	
Теорема 6.2	
Теорема 6.3	
Теорема 6.4	
Теорема 6.5	(производная сложной функции)
Теорема 6.6	(производная обратной функции)
Теорема 6.7	(производная параметрической функции)
Теорема 6.8	37
Теорема 6.9	(формула Лейбница)
Теорема 7.1	(Ферма)
Теорема 7.2	(Ролль)
Теорема 7.3	(Лагранжа о среднем)
Теорема 7.4	(Коши о среднем)
Теорема 7.5	(Дарбу)
Теорема 7.6	(I правило о неопределенности $\frac{0}{0}$)
Теорема 7.7	(II правило о неопределенности $\frac{0}{0}$)
Теорема 7.7	(правило о неопределенности $\frac{\infty}{0}$)
Теорема 7.9	(правило о неопределенности $\frac{1}{\infty}$)
Теорема 7.9 Теорема 7.10	(остаточный член в форме Лагранжа)
-	
Теорема 7.11 Порта 7.1	
Лемма 7.1	
Лемма 7.2	45

Лемма 7.3		45
Теорема 8.1		46
Теорема 8.2		47
Теорема 8.3		47
Лемма 8.1		48
Лемма 8.2		48
Теорема 8.4		48
Теорема 8.5		49
Лемма 8.3		49
Лемма 9.1		50
Лемма 9.2		51
Лемма 9.3		51
Теорема 9.1	(о делении с остатком)	52
Теорема 9.1		52
-	(Безу)	$\frac{52}{52}$
Теорема 9.3	(основная теорема алгебры (ОТА))	
Лемма 9.4		52
Теорема 9.4		52
Лемма 9.5		53
Лемма 9.6		53
Лемма 9.7		53
Теорема 9.5	(о разложении правильных дробей)	53
Теорема 10.1	(описание класса первообразных)	54
Теорема 10.2		56
Теорема 11.1	(Коши – Буняковского)	56
Лемма 11.1		57
Теорема 11.2		57
Лемма 11.2		58
Теорема 11.3	(правила дифференцирования)	58
Лемма 11.3		58
	(формула Тейлора)	58
-	(Лагранжа о среднем для вектор-функций)	59
Лемма 11.4	Color parima o opognom zem bektop dynamini	60
Лемма 11.4		61
Лемма 11.6		61
Лемма 11.0		62
Теорема 11.6		62
Лемма 11.8		63
Теорема 11.7		63
Теорема 11.8		64
Теорема 11.9		65
Теорема 11.10	0	65
Лемма 12.1		66
Лемма 12.2		67
Лемма 12.3		67
Лемма 12.4		68
Теорема 12.1	(критерии замкнутости)	68
Лемма 12.5		68
Лемма 12.6		68
Лемма 12.7		69
Лемма 12.8		69
Теорема 12.2		69
Теорема 12.2 Теорема 12.3		70
-	(Больцано – Вейерштрасс)	71
100pcma 12.4	(Doublemit Douchinithmon)	1 1

Теорема 12.5	(o	П	ЭКС	op	οди	зни	ιTΕ	юй	CX	ОД	ции	MO	ст	и)										 	71
Лемма 12.9																									
Теорема 12.6																								 	71