

Department: Artificial Intelligence (AI) and Data Science

COURSE CODE: (DJS22ADL7013)

COURSE NAME: Blockchain Technology Laboratory CLASS: B.Tech

EXPERIMENT NO. 2

CO/LO: Describe basic knowledge of Blockchain technology.

AIM / OBJECTIVE: To create a basic Blockchain with sample transactions and print it.

DESCRIPTION OF EXPERIMENT:

This experiment involves creating a basic blockchain using Python to understand its structure and working. Each block will contain sample transactions, a timestamp, and the hash of the previous block. The experiment prints the blockchain to demonstrate how data is securely linked in a chain.

Overview of Libraries:

Library Purpose

Hashlib To generate SHA-256 hashes for securing each block.

datetime To timestamp each block when it is created.

json (Optional) To format and display blockchain data cleanly.

EXERCISE

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department: Artificial Intelligence (AI) and Data Science

Department: Artificial Intelligence (AI) and Data Science

Step:1 Simple Hashing

```
import hashlib
def create_hash(string):
    hash_object = hashlib.sha256()
    hash_object.update(string.encode('utf-8'))
    hash_string= hash_object.hexdigest()
    return hash_string

input_string = input("Enter a string: ")
hash_result = create_hash(input_string)
print("Hash: ",hash_result)|
```

Hash: d7df8dd69ddc5b1bdf438a5d1086dba4bebc9bb82de23dcb69a3eb59620b0178

Step:2 Hashing with NONCE

Enter a string: DASHRATH KALE

```
import hashlib
input_string = input("Enter a string: ")
nonce = input("Enter a nonce: ")
hash_string = input_string + nonce
hash_object = hashlib.sha256(hash_string.encode('utf-8'))
hash_code= hash_object.hexdigest()
print("Hash: ",hash_code)
```

Enter a string: RAM SINGH

Enter a nonce: 123

Hash: fa8c4f0e1ac343f477924e01d66609e0196aa2b79a01deac77535b3fb847a167

Department: Artificial Intelligence (AI) and Data Science

Step 3: Hashing with random NONCE

```
import hashlib
import random
input_string = input("Enter a string: ")
nonce = str(random.randint(0,1000))
hash_string = input_string + nonce
hash_object = hashlib.sha256(hash_string.encode('utf-8'))
hash_code= hash_object.hexdigest()
print("NONCE: ",nonce)
print("Hash: ",hash_code)
```

Enter a string: SUDHIT SIR

NONCE: 716

Hash: 024ea26dfe01a1f2ce269101276c492c9ac9fd06fcd8046e155e3f8b8c87271a

Step 4:Simple Blockchain implementation

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department: Artificial Intelligence (AI) and Data Science

```
import hashlib
class Block:
   def init (self, transactions, previous hash):
        self.transactions = transactions
        self.previous hash = previous hash
        self.hash = self.calculate hash()
   def calculate hash(self):
        data = (self.transactions) + str(self.previous hash)
        return hashlib.sha256(data.encode()).hexdigest()
class Blockchain:
   def init (self):
        self.chain = []
        self.create genesis block()
   def create genesis block(self):
        transactions = "Genesis block"
        previous hash = "0"
        self.chain.append(Block(transactions,previous_hash))
   def add_block(self, transactions):
        previous_block = self.chain[-1]
        previous hash = previous block.hash
        self.chain.append(Block(transactions,previous hash))
   def print chain(self):
        for block in self.chain:
            print("Transactions: ",block.transactions)
            print("Hash: " , block.hash)
            print("Previous Hash: " , block.previous_hash)
            print()
blockchain = Blockchain()
# Add blocks to the blockchain
blockchain.add_block("Transaction Data 1")
blockchain.add_block("Transaction Data 2")
blockchain.add_block("Transaction Data 3")
blockchain.add block("Transaction Data 4")
blockchain.add_block("Transaction Data 5")
blockchain.print chain()
```


Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department: Artificial Intelligence (AI) and Data Science

Transactions: Genesis block

Hash: 29b4f27c76066fc0c3b4ef7617216202930ed69e99e42aa94da0565254852350

Previous Hash: 0

Transactions: Transaction Data 1

Hash: 501a452df5cbbccee5b68b4409dc2c713023945c25dda690ff7ff5178fd7201d

Previous Hash: 29b4f27c76066fc0c3b4ef7617216202930ed69e99e42aa94da0565254852350

Transactions: Transaction Data 2

Hash: 7b07691276851c652038e31ab13d64d55b8c00d57e9cb1a90aea867958997196

Previous Hash: 501a452df5cbbccee5b68b4409dc2c713023945c25dda690ff7ff5178fd7201d

Transactions: Transaction Data 3

Hash: 1956ad570f0f7d0c4875ee08391636a2ceaa296ccd9575d93f5138349cb76178

Previous Hash: 7b07691276851c652038e31ab13d64d55b8c00d57e9cb1a90aea867958997196

Transactions: Transaction Data 4

Hash: a0cd89368ddacc68a4dc6a89655a354dced4bb7b30389c20b152639617d1ef90

Previous Hash: 1956ad570f0f7d0c4875ee08391636a2ceaa296ccd9575d93f5138349cb76178

Transactions: Transaction Data 5

Hash: 0aea5431f66cfdf5cc625a9dc406fdd2bf2d94f4d6e8183e1ba3af626d3dc253

Previous Hash: a0cd89368ddacc68a4dc6a89655a354dced4bb7b30389c20b152639617d1ef90

QUESTIONS:

- 1. Difference between Centralized Systems, Decentralized Systems, and Distributed Systems
- 2. Explain the types of Blockchain

REFERENCE:

Website References:

- 1.https://www.youtube.com/watch?v=MViBvQXQ3mM
- 2. https://www.youtube.com/watch?v=o0hp-fRyLOc