FeaTREL

Transfer Reinforcement Learning using features Application to the ball-in-cup problem

Guillaume Doquet

Supervisors: Michèle Sebag, David Filliat

LRI, U. Paris-Sud; U2IS, ENSTA

12 Avril 2016

Motivations

→□▶→□▶→□▶→□▶□ ● 夕久

Plan of this talk

Formal background

- Reinforcement learning
- ▶ Transfer learning

Feature-based Transfer for RL

- ► FeaTREL, overview
- Empirical validation

Reinforcement Learning

Notations

State space ${\mathcal S}$, Action space ${\mathcal A}$

Policy $\pi: \mathcal{S} \mapsto \mathcal{A}$

Goal : Find $\pi^* = \operatorname{argmax} \mathcal{F}(\pi)$

Parameterized policy

weight vector of a NN : $W \mapsto \pi_W$

Some Issues: \mathcal{F} is an expectation

- noisy optimization problem
- expensive optimization

Transfer Learning

▶ Goal : Use π_L^* to accelerate learning of $\pi_L'^*$

FeaTREL 1/4

Core ideas

- \blacktriangleright Observe the trajectory with given policy parameters θ and rope length L
- ▶ Extract features $\phi(L, \theta)$ from trajectory (e.g. number of rebounds of the ball)
- lacktriangle Use features to find optimal parameters heta' for rope length L'

FeaTREL 2/4

First milestone

▶ Find/learn mapping $\phi(L, \theta)$ from (L, θ) unto features

7

FeaTREL 3/4

Second milestone

▶ Observe features $\phi(L', \theta)$ for (θ, L')

FeaTREL 4/4

Third milestone

- ▶ Start from θ_0
- ▶ Modify θ : $\theta_1 = \theta_0 + \Delta \theta$ where $\Delta \theta$ s.t. :

$$\frac{\partial \phi}{\partial L}.\Delta L = -\frac{\partial \phi}{\partial \theta}.\Delta \theta$$

▶ Iterate. Stopping criterion : θ_n optimal or max number of iterations reached. $\Phi(L, \theta)$

Empirical validation 1/3

Implementation

- $m heta \in \mathbb{R}^2$: Major and minor axes of the cup's elliptic motion
- Features $\phi(L, \theta) \in \mathbb{R}^{16}$: Histogram of distance and angles between ball and cup during the trajectory

Empirical validation 2/3

Implementation

- Ball-in-cup simulator
- lacktriangle Online learning of $\Delta \theta$ done by a Neural Network

Experimental setting

- L = 30 cm, L' = 32, 35 or 60 cm
- Success if ball ends in cup
- Performance indicators :
 - Accuracy % on whole dataset (circa 150 trajectories)
 - Average number of iterations to succeed
 - Average distance (in θ) between solution and initial point
- ► All data is averaged on 10 runs

Empirical validation 3/3

L	Max iter	Accuracy (avg and std) FeaTREL & RandomWalk & CMA-ES						Avg θ dist FeaTREL & RandomWalk & CMA-ES			Avg iter FeaTREL & RandomWalk	
		& CIVIA-LS						& CIVIA-L3				
0.32	8	0.692	0.030	0.545	0.024	0.231	0.024	0.059	0.317	0.719	3.34	3.31
0.32	25	0.923	0.059	0.811	0.061	0.531	0.057	0.202	0.582	1.902	8.55	7.65
0.35	8	0.804	0.012	0.461	0.021	0.119	0.045	0.141	0.236	0.458	5.21	3.30
0.35	25	0.973	0.059	0.755	0.072	0.406	0.064	0.278	0.513	1.088	8.35	8.12
0.60	8	0.140	0.076	0.154	0.027	0.203	0.052	0.032	0.105	0.599	4.70	4.36
0.60	25	0.245	0.081	0.560	0.058	0.417	0.049	0.082	0.469	1.554	7.11	12.26

- 4 日 x 4 個 x 4 差 x 4 差 x - 差 - 釣 Q C

Conclusions

FeaTREL PROs

Outperforms direct policy search

FeaTREL CONs

- Requires good features;
- ▶ Requires $\phi(L, \theta)$ to be learned
- Valid when target is sufficiently close to source

Perspectives

- Continuous optimization objective F
- More complex parametric spaces
- In situ validation

Questions?

