

Nombre:	
Carnet:	Sección:

MA-1116 —Segundo parcial (35%) Tipo B—

- 1. Halle la distancia del punto P(6,1,4) a la recta que pasa por los puntos A(2,3,8) y B(5,-3,2) (6 puntos)
- 2. Sea $H = \{(x, y, z) \in \mathbb{R}^3 : y = 3z\}$, entonces:
 - a) ¿Es H un subespacio de \mathbb{R}^3 ?
 - b) Halle la intersección de H con el plano de ecuación x + y + 3z = 1 (6 puntos)
- 3. Dados los siguientes polinomios de \mathbb{P}_2

$$p_1(x) = 2x^2 + x + 2$$
 $p_2(x) = x^2 - 2x$
 $p_3(x) = 5x^2 - 5x + 2$ $p_4(x) = -x^2 - 3x - 2$

Determine si el polinomio $p(x) = x^2 + 2x + 1$ pertenece a $gen\{p_1, p_2, p_3, p_4\}$ (7 puntos)

- 4. ¿Para qué valores de c son linealmente dependientes los vectores (1,0,1) , (-2,-1,-2) y (c,1,1) en \mathbb{R}^3 ?
- 5. Dados el plano $\pi: x+y+mz=n$ y la recta

$$L: \frac{x-3}{-1} = y = \frac{x}{-2}$$

- a) Calcule m y n para que π y L sean paralelos y L no este contenida en π
- b) Calcule m y n para que π contenga a L.

(6 puntos)

6. Sea V un espacio vectorial. Demuestre que, si H_1 y H_2 son subespacios de V, entonces $H_1 \cap H_2$ es un subeapacio de V. (4 puntos)