14. पदार्थ आपल्या वापरातील

ightharpoonup दैनंदिन जीवनातील महत्त्वाचे क्षार-NaCl, NaHCO $_{_3}$, Na $_{_2}$ CO $_{_3}$

> किरणोत्सारी पदार्थ 🕒 दैनंदिन जीवनातील काही राँसायनिक पदार्थ

- 1. दैनंदिन जीवनात आपण कोणकोणते महत्त्वाचे पदार्थ वापरतो? का?
- 2. दैनंदिन वापरातील विविध पदार्थांचे शास्त्रीयदृष्ट्या कसे वर्गीकरण केले आहे?

दैनंदिन जीवनामध्ये आपण विविध पदार्थांचा वापर करत असतो. मागील इयत्तांमध्ये यातील काही पदार्थांची माहिती व उपयोग तसेच त्यातील घटक, निर्मिती याबद्दल आपण सविस्तरपणे माहिती करून घेतलेली आहे.

खाली दैनंदिन वापरातील काही पदार्थांची नावे दिलेली आहेत. त्या पदार्थांचे आम्ल, आम्लारी, धातू, अधातू, क्षार अशा गटात वर्गीकरण करा.

पदार्थ: मीठ, साबण, दूथपेस्ट, खाण्याचा सोडा, पाणी, दही, दुध, तुरटी, लोह, गंधक, कपडे धुण्याची पावडर.

दैनंदिन जीवनातील महत्त्वाचे क्षार (Salts)

सांगा पाहू !

क्षार म्हणजे काय?

ज्या आयनिक संयुगांत H^+ आणि OH^- आयन नसतात तसेच एकाच प्रकारचे धन आयन व ऋण आयन असतात त्यांना सामान्य क्षार म्हणतात. उदा. Na_3SO_4 , K_3PO_4 , $CaCl_5$

निसर्गामध्ये अकार्बनी पदार्थ आम्ल व आम्लारीच्या स्वरूपात सापडत नाहीत, तर ते क्षारांच्या स्वरूपात सापडतात. वर्षाला सुमारे 80 दशलक्ष टन क्षार समुद्राच्या पाण्यात मिळतात म्हणून समुद्राला क्षारांचा समृद्ध स्रोत म्हणतात. समुद्र हा क्लोरीन, सोडीअम, मॅग्नेशिअम. पोटॅशिअम, कॅल्शिअम, ब्रोमिन अशा विविध मूलद्रव्यांच्या अनेक क्षारांचा समृध्द स्रोत आहे. या क्षारांबरोबरच रोजच्या जीवनात आपण इतरही क्षार वापरतो.त्यांविषयी अधिक माहिती घेऊया.

माहीत आहे का तुम्हांला?

समुद्राच्या पाण्यात असणारे प्रमुख क्षार.

- 1. सोडिअम क्लोराइड
- 2. मॅग्नेशिअम क्लोराइड
- 3. मॅग्नेशिअम सल्फेट
- 4. पोटॅशिअम क्लोराइड
- 5. कॅल्शिअम कार्बोनेट
- 6. मॅग्नेशिअम ब्रोमाइड

क्षारांची संपृक्त द्रावणे तयार करून त्यात वैश्विक दर्शकाचे 2-3 थेंब घाला आणि निरीक्षणे नोंदवा. निरीक्षणे नोंदवण्यासाठी शेजारील तक्ता वापरा.

क्षार	मूळ रंग	वैश्विक दर्शक	рН	स्वरूप
	(द्रावणाचा)	घातल्यावर रंग	मूल्य	
साधे मीठ	रंगहीन	शैवाली हिरवा	7	उदासीन
साबण				
धुण्याचा सोडा				
बेकिंग सोडा				
ब्लिचिंग पावडर				
POP				

- 1. खालील पट्टी कसली आहे? तिचा वापर कशासाठी केला जातो?
- 2. पदार्थ हे आम्लधर्मी, आम्लारिधर्मी व उदासीन आहेत हे कसे ठरवले जाते?
- 3. घरातील वापरातील विविध पदार्थांची 1 ते 14 सामूनुसार यादी करा.

आपण मागील पाठात पाहिले आहे, की जेव्हा क्षाराचा pH (सामू) 7 असते तेव्हा तो क्षार उदासीन असून तो तीव्र आम्ल व तीव्र आम्लारीपासून तयार झालेला असतो. तीव्र आम्ल व सौम्य आम्लारीपासून तयार झालेल्या क्षाराचे pH मूल्य 7 पेक्षा कमी असून तो आम्लधर्मी असतो. सौम्य आम्ल व तीव्र आम्लारिपासून तयार झालेल्या क्षाराचे pH मूल्य 7 पेक्षा जास्त असून तो आम्लारिधर्मी असतो. आता आपण दैनंदिन जीवनातील काही क्षारांची माहिती जाणून घेऊ.

सोडिअम क्लोराइड (साधे मीठ - Table Salt - NaCl)

अन्नाला खारट चव देणारे मीठ हा आपल्या दैनंदिन जीवनात सर्वाधिक वापरातील क्षार आहे. या क्षाराचे रासायनिक नाव सोडिअम क्लोराइड आहे. सोडिअम हायड्रॉक्साईड व हायड्रोक्लोरिक आम्ल यांच्या उदासिनीकरण अभिक्रियेने सोडिअम क्लोराईड तयार होते.

हा क्षार उदासीन असून त्याच्या जलीय द्रावणाचे pH मूल्य 7 आहे हे आपण आधी पाहिले आहे.

गुणधर्म व उपयोग

- 2. हा उदासीन क्षार असून चवीला खारट असतो. 3. या संयुगाचा उपयोग Na_2CO_3 , $NaHCO_3$ यासारख्या क्षारांच्या
- निर्मितीसाठी होतो.
 4. सोडिअम क्लोराइडच्या संतृप्त जलीय द्रावणातून (ब्राईन) विद्युत प्रवाह जाऊ दिल्यास त्याचे अपघटन होते व ऋणाग्राजवळ हायड्रोजन वायू तर धनाग्राजवळ क्लोरीन वायू मुक्त होतो. क्लोरीन वायूच्या निर्मितीसाठी ही पद्धत उपयोगात आणतात. या पद्धतीने घटामध्ये

2NaCl + 2
$$H_2O \rightarrow 2NaOH + Cl_2\uparrow + H_2\uparrow$$

'NaOH' हे महत्त्वाचे आम्लारी तयार होते.

- 5. उच्च तापमानास मीठ तापविले असता ते वितळते यास मिठाची सम्मीलित अवस्था (Fused state)म्हणतात.
- 6. सम्मीलित मिठाचे विद्युत अपघटन केले असता धनाग्राजवळ क्लोरीन वायू तर ऋणाग्राजवळ द्रवरुप सोडिअम धातू मुक्त होतो.

काही विशिष्ट प्रकारच्या खडकांपासूनही मिठाची निर्मिती होते. अशा मिठाला रॉक सॉल्ट असे म्हणतात. हलाईट खनिज तसेच हिमालयीन रॉक सॉल्ट (सैंधव मीठ) ही त्याची काही उदाहरणे आहेत. या मिठाचा अनेक प्रकारच्या व्याधी निवारणासाठी उपयोग केला जातो.

मिठाच्या 25% जलीय द्रावणाला संतृप्त मिठवणी (Saturated Brine) असे म्हणतात. अशा द्रावणाचे 1 भाग बाष्पीभवन केल्यास विरघळलेल्या मिठाचे स्फटिकात रूपांतर होऊन द्रावणातून मीठ वेगळे होते.

सोडिअम बायकार्बोनेट (खाण्याचा सोडा - NaHCO)

तुमच्या वाढिदवसाला घरी केक आणला जातो किंवा तुमची आई केक बनवते. तसेच खुसखुशीत भजीही करते. तुम्ही आईला केक सच्छिद्र होण्याचे किंवा भजी खुसखुशीत होण्याचे कारण विचारले आहे का?

आई पिठात बेकिंग सोडा घालते. पांढऱ्या अस्फटिकी चूर्णरूप सोड्याला बेकिंग सोडा म्हणतात याचे रासायनिक नाव सोडिअम हायड्रोजन कार्बोनेट किंवा सोडिअम बायकार्बोनेट असून त्याचे रेणुसूत्र NaHCO आहे.

गुणधर्म व उपयोग

- NaHCO₃ ची ओल्या लिटमस बरोबर अभिक्रिया होऊन लाल लिटमस निळा होतो म्हणजेच हा आम्लारीधर्मी आहे.
- 2. याचा उपयोग केक, ढोकळा बनवण्याकरता होतो.
- 3. आम्लारिधर्मी असल्यामुळे याचा उपयोग पोटातील आम्लता कमी करण्यासाठी होतो.
- 4. अग्निशामक यंत्रातील मुख्य घटक CO_2 तयार करण्यासाठी $NaHCO_3$ वापरतात.
- 5. ओव्हन स्वच्छ करण्यासाठी बेकिंग सोड्याचा वापर करतात.

बेकिंग पावडरमधील घटक कोणता? तिचा वापर कशासाठी करतात?

ब्लिचिंग पावडर (विरंजक चूर्ण- CaOCl,) (कॅल्शिअम ऑक्सिक्लोराइड)

एक रंगीत कापडाचा तुकडा घ्या. त्याच्या थोड्या भागावर विरंजक चूर्णाचे संपृक्त द्रावण थोड्या प्रमाणात टाकून काय होते त्याचे निरीक्षण करा .

कापडाच्या रंगात कोणता बदल होतो?

पावसाळ्यात नळाच्या पाण्याला एक विशिष्ट उग्र वास येतो. तो तुम्ही अनुभवला आहे का?

पोहोण्याच्या तलावातील पाण्यालासुद्धा हाच वास येतो. पाण्यामधील जंतूंचा नाश करण्यासाठी वापरलेल्या क्लोरीन वायूचा हा वास असतो. क्लोरीन वायू हा तीव्र ऑक्सिडीकारक असल्याने त्याच्यामुळे जंतूंचा नाश होतो तसेच विरंजनाची क्रिया सुध्दा घडून येते.

वायुरूपामुळे क्लोरीन हा सर्वसामान्य हाताळणीसाठी गैरसोयीचा आहे. त्याऐवजी, तसाच परिणाम देणारे स्थायुरूपातील विरंजक चूर्ण सामान्य वापरासाठी सोयीचे ठरते. हवेतील कार्बन डायऑक्साइडमुळे विरंजक चूर्णाचे संथपणे विघटन होऊन क्लोरीन वायू मुक्त होतो. या मुक्त झालेल्या क्लोरीनमुळे विरंजक चूर्णाला त्याचा गुणधर्म प्राप्त होतो.

$$CaOCl_2 + CO_2 \rightarrow CaCO_3 + Cl_2 \uparrow$$

विरी गेलेल्या चुन्याची क्लोरिन वायूबरोबर अभिक्रिया झाल्यास विरंजक चूर्ण मिळते.

$$Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$$

- 1. बाजारात मिळणारे विरंजक चूर्णाचे विविध प्रकार.
- 2. हे प्रकार कशावर अवलंबून असतात?

गुणधर्म व उपयोग

- 1. विरंजक चूर्ण हा पिवळसर पांढऱ्या रंगाचा स्थायू पदार्थ आहे.
- 2. याचे रासायनिक नाव कॅल्शिअम ऑक्सिक्लोराइड असे आहे.
- 3. याला मोठ्या प्रमाणात क्लोरिनचा वास येतो.
- 4. याचा उपयोग जलशुद्धीकरण केंद्रात पिण्याच्या पाण्याचे निर्जंतुकीकरण करणे तसेच जलतरण तलावातील पाण्याचे निर्जंतुकीकरण करण्यासाठी करतात.
- 5. कपड्याचे विरंजन करण्यासाठी याचा उपयोग होतो.
- 6. रस्त्याच्या कडेला तसेच कचऱ्याच्या जागांचे निर्जंतुकीकरण करण्यासाठी याचा वापर करतात.
- 7. विरल सल्फ्युरिक ॲसिड व विरल हायड्रोक्लोरीक ॲसिड बरोबर विरंजक चूर्णाची जलद अभिक्रिया होऊन क्लोरीन वायू पूर्णपणे मुक्त होतो.

$$CaOCl_{2} + H_{2}SO_{4} \rightarrow CaSO_{4} + Cl_{2}\uparrow + H_{2}O$$

8. कॅल्शिअम हायपोक्लोराइडची कार्बन डायऑक्साइड बरोबर अभिक्रिया होऊन कॅल्शिअम कार्बोनेट आणि क्लोरिन तयार होतात.

धुण्याचा सोडा (Washing Soda) ($Na_2CO_3.10 H_2O$)

कृती: विहिरीच्या किंवा बोअरवेलच्या पाण्याचा एक नमुना चंचुपात्रात घेऊन त्यात साबण टाकून ढवळा. नंतर दुसरा नमुना घेऊन त्यात धुण्याचा सोडा एक चमचा टाका व पुन्हा साबण टाकून ढवळा. केलेल्या कृतीचे निरीक्षण करत रहा. कोणकोणते बदल दिसून आले? का?

विहिरीचे किंवा बोअरवेलचे दुष्फेन (जड) पाणी धुण्याचा सोडा टाकल्यावर सुफेन (मृदू) होते, हे त्यावर आलेल्या साबणाच्या फेसामुळे लक्षात येते. कॅल्शिअम व मॅग्नेशिअमच्या क्लोराइडस व सल्फेट्सच्या अस्तित्वामुळे पाणी दुष्फेन होते. असे पाणी सुफेन व वापरण्यायोग्य बनवण्यासाठी Na_2CO_3 वापरतात. हे केल्याने सोड्याबरोबर अभिक्रिया होऊन मॅग्नेशिअम व कॅल्शिअमचे अविद्राव्य कार्बोनेट क्षार तयार होतात.

$$MgCl_{2}(aq) + Na_{2}CO_{3}(s) \rightarrow MgCO_{3}(s) + 2 NaCl(aq)$$

सोडिअम कार्बोनेट हा पाण्यात द्रावणीय असणारा सोडिअमचा क्षार आहे. स्फटिकरूप सोडीअम कार्बोनेट नुसता ठेवल्यावर सहजपणे त्यातील स्फटिकजल उडून जाते व त्याचे पांढरे चूर्ण मिळते. त्यालाच धुण्याचा सोडा असे म्हणतात.

$$Na_2CO_3.10 H_2O \xrightarrow{-H_2O} Na_2CO_3.H_2O$$
 $vicous$ $vico$

गुणधर्म व उपयोग

- 1. कक्ष तापमानाला धुण्याचा सोडा हे करड्या रंगाचे व गंधहीन चूर्ण असते.
- 2. याच्या जलीय द्रावणात लिटमसचा रंग निळा असतो.
- 3. हा आर्द्रताशोषक असतो म्हणजेच हवेत उघडे राहिल्यास हवेतील बाष्प शोषून घेतो.
- 4. कपडे धुण्यासाठी प्रामुख्याने याचा वापर केला जातो.
- 5. काच, कागद उद्योगात तसेच पेट्रोलिअमच्या शुद्धीकरणात सोडिअम कार्बोनेटचा वापर करतात.

 Na_2CO_3 ची H_2SO_4 बरोबर होणारी अभिक्रिया लिहा.

काही स्फटिकी क्षार (Some Cryastalline Salts)

मागील पाठात तुम्ही स्फटिकजलाविषयी माहिती घेतली आहे. स्फटिकजल असणारे विविध क्षार आपल्या वापरात असतात.

आपल्या दैनंदिन वापरात येणारे स्फटिकजल असणारे पदार्थ.

- 1. तुरटी (Potash Alum K,SO4.Al,(SO4)3.24H,O)
- 2. बोरॅक्स (Borax Na B,O,.10H,O)
- 3. ईप्सम सॉल्ट (Magnesium Sulphate MgSO₄.7H₂O)
- 4. बेरीअम क्लोराइड (Barium Chloride BaCl₂.2 H₂O)
- 5. सोडीअम सल्फेट (Sodium Sulphate Glauber's Salt Na, SO, .10 H, O)

वर नमूद केलेल्या विविध पदार्थांचे गुणधर्म व उपयोग याबददल अधिक माहिती मिळवा.

जलशुद्धीकरण प्रक्रियेमध्ये तुरटीचा वापर करतात हे तुम्ही अभ्यासले आहे. तुरटीच्या क्लथन/साकळाणे (Coagulation) या गुणधर्मामुळे गढूळ पाण्यातील गाळ एकत्र गोळा होऊन जड होतो व खाली बसतो. अशाप्रकारे पाणी निवळते.

मोरचूद हे ॲनिमिआचे निदान करताना रक्त तपासणीकरीता वापरतात. द्राक्षे, खरबूज या फळांसाठी बुरशीनाशक म्हणून वापरल्या जाणाऱ्या बोर्डो मिश्रणात मोरचुदाबरोबर चुना असतो.

साबण (Soap)

थोडे आठवा.

- 1. अपमार्जके म्हणजे काय?
- 2. प्रयोगशाळेत साबण तयार करताना कोणकोणती रसायने व साहित्य वापराल?

सावण: तेल किंवा प्राण्यांची चरबी सोडिअम किंवा पोटॅशिअम हायड्रॉक्साइडच्या जलीय द्रावणाबरोबर उकळले असता कार्बोक्झिलक आम्लाचे (तेलाम्लाचे) सोडिअम किंवा पोटॅशिअम क्षार तयार होतात. या क्षारांनाच 'साबण' असे म्हणतात. साबण दुष्फेन पाण्यात मिसळल्यास साबणातील सोडीअमचे विस्थापन होऊन तेलाम्लांचे कॅल्शिअम व मॅग्नेशिअम क्षार तयार होतात.हे क्षार पाण्यात अविद्राव्य असल्याने त्यांचा साका तयार होतो व त्यामुळेच फेस तयार होत नाही.

आंघोळीचा साबण व कपडे धुण्याचा साबण यांतील फरक लिहून तक्ता पूर्ण करा

आंघोळीचा साबण	कपडे धुण्याचा साबण	
1. कच्च्या सामग्रीत चांगल्या दर्जाचे मेद आणि तेल	1. कमी दर्जाचे मेद व तेल वापरले जाते.	
वापरले जाते.		
2.	2.	

किरणोत्सारी पदार्थ (Radioactive Substances)

युरेनियम, थोरियम, रेडिअम यांसारख्या उच्च अणुअंक असणाऱ्या मूलद्रव्यांमध्ये अदृश्य, अतिशय भेदक व उच्च दर्जा असणारी प्रारणे उत्स्फूर्तपणे उत्सर्जन करण्याचा गुणधर्म असतो त्याला किरणोत्सार (Radiation) असे म्हणतात. हा गुणधर्म असणाऱ्या पदार्थास किरणोत्सारी पदार्थ असे म्हणतात. किरणोत्सारी मूलद्रव्यांचे अणुकेंद्रक अस्थिर असते. अस्थिर अणुकेंद्रकातून किरणोत्सार होतो. किरणोत्सारी पदार्थांचा आपल्या दैनंदिन जीवनाशी संबंध आहे. तत्पूर्वी या पदार्थांविषयी थोडे जाणून घेऊया.

किरणोत्सारी पदार्थातून बाहेर पडणारी प्रारणे तीन प्रकारची असतात. त्यांना अल्फा, बीटा आणि गॅमा किरणे म्हणतात.

विज्ञानाच्या गवाक्षातून

हेनरी बेक्वेरेल हे युरेनिअमच्या पिचब्लेंड या संयुगांचे संशोधन करीत होते . त्यांनी ड्रॉवरमध्ये फोटोग्राफीच्या न वापरलेल्या काचा एका कार्डबोर्डच्या डब्यात ठेवल्या होत्या व त्यावर एक किल्ली पडलेली होती. त्यावर ही युरेनिअमची संयुगे ठेवली गेली व ती तेथे तशीच राहिली. काही दिवसानंतर या काचा धुतल्यावर असे आढळून आले की काचा ध्रकटलेल्या होत्या व त्यावर किल्लीचा आकार दिसत होता. अंधारातही वरील प्रकार घडून आल्याने बेक्वेरेल यांनी असा निष्कर्ष काढला की पदार्थांना भेदन जाणाऱ्या क्ष-किरणासारख्या किरणांचा उत्सर्ग ही युरेनिअमची संयुगे आपल्या अंतरंगातूनच करीत असावीत. या किरणांना बेक्वेरेल किरण म्हणतात. काही दिवसांनी मादाम क्युरी यांनाही थोरिअमच्या संयुगात असेच गुणधर्म दिसून आले.

किरणोत्सारी प्रारणांचे स्वरूप

रूदरफोर्डने (1899) रेडिअम उत्सर्जित करत असलेली प्रारणे दोन भिन्न प्रकारची असतात याचा शोध लावला. त्यांना अल्फा आणि बीटा प्रारणे असे म्हणतात. विलार्ड यांनी तिसऱ्या म्हणजे गॅमा प्रारणांचा शोध लावला.

दोन विरुद्ध विद्युतप्रभार असलेल्या पट्ट्यांमधून हे किरण जाऊ दिले असता ते अलग होतात. ही पद्धती रूदरफोर्डने 1902 साली मांडली. रूदरफोर्ड आणि विलार्ड यांनी विविध किरणोत्सारी पदार्थांतून उत्सर्जित होणाऱ्या प्रारणांचा अभ्यास करण्यासाठी प्रारणे विद्युत क्षेत्रातून जाऊ दिली व त्यांच्या मार्गात फोटोग्राफिक पट्टी धरली तेव्हा त्यांना प्रारणांचे तीन प्रकारे विभाजन झाल्याचे आढळले. एक प्रारण ऋण प्रभारित पट्टीकडे किंचित विचलित झाल्याचे आढळले तर दुसरे प्रारण धन प्रभारित पट्टीकडे अधिक प्रमाणात विचलित झाल्याचे दिसले. परंतु तिसऱ्या प्रारणांचे विद्युत क्षेत्रात अजिबात विचलन झाले नाही. ऋणप्रभारित पट्टीकडे किंचित विचलित झालेल्या किरणांना अल्फा किरणे, धनप्रभारित पट्टीकडे अधिक प्रमाणात विचलित झालेल्या किरणांना बीटा किरणे आणि अजिबात विचलित न झालेल्या किरणांना बीटा किरणे असे म्हणतात.

14.1 अल्फा, बीटा व गॅमा किरणे

परिचय शास्त्रज्ञांचा : अर्नेस्ट रूदरफोर्ड (1871-1937) या ब्रिटिश पदार्थविज्ञान शास्त्रज्ञाने जे.जे. थॉमसन यांच्या मार्गदर्शनाखाली कॅव्हेंडीश यांच्या प्रयोगशाळेत आणि कॅनडातील मॅकगिल विद्यापीठात किरणोत्सारावर संशोधन केले. अल्फा कणांचा मारा करून त्यांनी नायट्रोजन अणू विभागून दाखवले. या प्रयोगामुळे पदार्थविज्ञान क्षेत्रात नवे युग सुरू झाले.

अल्फा, बीटा व गॅमा किरणांची गुणवैशिष्ट्ये

अ.क्र.	गुणधर्म	अल्फा किरणे (α)	बीटा किरणे (β)	गॅमा किरणे (γ)
1.	स्वरूप	अल्फा कणांचा प्रवाह	बीटा कणांचा प्रवाह (e⁻)	विद्युत चुंबकीय प्रारण
		(He ⁺⁺)		
2.	वस्तुमान	4.0028 u	0.000548 u	वस्तुमानरहित
3.	प्रभार	+2	-1	प्रभाररहित
4.	वेग	प्रकाशीय वेगाच्या	प्रकाशीय वेगाच्या	प्रकाशीय वेगाएवढाच
		1 d 1 mbs amai	$\frac{1}{5}$ ते $\frac{9}{10}$ पटीत असतो.	असतो.
		5 " 20 4210 असता.	5 " 10 पटात असता.	
5.	विद्युत क्षेत्रातील	ऋणप्रभारित पट्टीकडे	धनप्रभारित पट्टीकडे	कोठेही आकर्षित होत
	विचलन	आकर्षित होतात.	आकर्षित होतात.	नाहीत.
6.	भेदन शक्ती	कमी 0.02 मीमी जाडीचा	अल्फा कणांच्या सुमारे 100	अल्फा कणांच्या सुमारे
		ॲल्युमिनिअमचा पत्रा भेदू	पट जास्त, 2 मीमी जाडीचा	10,000 पट जास्त ,15
		शकतात.	ॲल्युमिनिअमचा पत्रा भेदू	सेमी जाडीचा शिशाचा
			शकतात.	पडदा भेदू शकतात.
7.	आयनीभवन शक्ती	अतिउच्च	कमी	अतिशय कमी
8.	प्रतिदीप्ती निर्माण	मोठ्या प्रमाणावर	अत्यंत अल्प	अल्प
	करण्याची शक्ती			

किरणोत्सारी समस्थानिकांचे उपयोग: किरणोत्सारी मूलद्रव्ये फक्त अणुबाँब तयार करण्यासाठी वापरतात असा आपला गैरसमज आहे. किरणोत्सारी समस्थानिकांचा उपयोग वैज्ञानिक संशोधन, कृषी, उद्योगधंदे, औषधी वनस्पती इत्यादी अनेक क्षेत्रांमध्ये केला जातो. किरणोत्सारी पदार्थांचा उपयोग दोन प्रकारे केला जातो.

- अ. केवळ किरणोत्साराचा उपयोग करून.
- आ. किरणोत्सारी मूलद्रव्याचा प्रत्यक्ष वापर करून.

नैसर्गिक किरणोत्सार – साधारणतः निसर्गामध्ये 82 ते 92 अणुक्रमांकाची मूलद्रव्ये स्वयंस्फूर्त किरणोत्सर्ग करताना आढळतात. त्यांना नैसर्गिक किरणोत्सर्गी मूलद्रव्ये म्हणतात. कृत्रिम किरणोत्सारी मूलद्रव्ये – फ्रेडरिक जॉलिओ क्यूरी व आयरीन जॉलिओ क्यूरी या दांपत्याने प्रथम प्रवर्तित किरणोत्सर्गाचा शोध लावला. प्रयोगशाळेमध्ये कणांच्या भडिमाराने घडणाऱ्या अणुगर्भ विघटन क्रियांमध्ये उत्पन्न होणाऱ्या किरणोत्सारी मूलद्रव्यांना कृत्रिम किरणोत्सर्गी मूलद्रव्ये म्हणतात. या शोधाबद्द्ल त्यांना 1935 साली नोबल पुरस्कार देण्यात आला.

विविध क्षेत्रांत किरणोत्सारी समस्थानिकांचे उपयोग खालीलप्रमाणे करतात.

1.औद्योगिक क्षेत्र

रेडिओग्राफी- बिडाच्या वस्तू किंवा लोखंडाचे वितळजोड यातील भेगा, पोकळी गॅमा किरणांच्या साहाय्याने शोधता येतात. यासाठी कोबाल्ट-60, इरिडिअम- 192 यांसारख्या समस्थानिकांचा उपयोग रेडिओग्राफी करण्यासाठीच्या कॅमेरामध्ये केला जातो. धातुकामातील दोष शोधण्यासाठी हे तंत्र वापरतात.

जाडी, घनता, पातळी यांचे मापन करणे— ॲल्युमिनिअम, प्लॅस्टिक लोखंड अशा पदार्थांचे कमी—अधिक जाडीच्या पत्र्यांचे उत्पादन करताना हवी तेवढी जाडी कायम राखणे आवश्यक असते. उत्पादनात एका बाजूने किरणोत्सारी द्रव्य व दुसऱ्या बाजूला किरणोत्सार मापन यंत्र असते. मापन यंत्राने दाखिवलेला किरणोत्सार पत्र्याच्या जाडीप्रमाणे कमी जास्त होतो. या तंत्राच्या साहाय्यानेच पॅकिंगमधील मालही तपासता येतो.

दीप्तिमान रंग व किरणोत्सारिदीप्ति रंग – पूर्वी घड्याळाचे काटे, विशिष्ट अशा वस्तू अंधारात दिसण्यासाठी रेडिअम,प्रोमेथिअम, ट्रीटिअम या किरणोत्सारी पदार्थांचे फॉस्फर बरोबरचे मिश्रण वापरले जात होते .

HID (High Intensity Discahrge) दिव्यात क्रिप्टॉन-85 तर बीटाकिरणांचा स्रोत म्हणून X-ray युनिटमध्ये प्रोमेथिअम-147 हे समस्थानिक वापरतात.

सिरॅमिक वस्तूंमध्ये होणारा वापर— सिरॅमिकपासून बनविण्यात येणाऱ्या टाईल्स, भांडी, प्लेटस्, स्वयंपाकघरातील भांडी यामध्ये चमकदार रंग वापरतात. या रंगांमध्ये पूर्वी युरेनिअम ऑक्साईडचा वापर करत असत.

2. कृषी क्षेत्र

- 1. रोपांची जलद वाढ होण्यासाठी व अधिक उत्पन्न मिळवण्यासाठी बीजाला गुणधर्म देणारी जनुके व गुणसूत्रे यावर किरणोत्साराचा उपयोग करून त्यात मूलभूत बदल करता येतात.
- 2. कोबाल्ट-60 या किरणोत्सारी समस्थानिकाचा उपयोग अन्नपरिरक्षणात करतात.
- 3. कांद्रे, बटाटे यांना मोड येऊ नये म्हणून त्यांवर कोबाल्ट 60 च्या गॅमा किरणांचा मारा करतात.
- 4.विविध पिकांवरील संशोधनात अनुरेखक म्हणून स्ट्रॉन्शिअम- 90 वापरले जाते.

3. वैट्यकशास्त्र

- 1. **पॉलिसायथेमिआ –** या रोगामध्ये तांबड्या रक्तपेशींचे रक्तातील प्रमाण वाढते. यावर उपचारासाठी फॉस्फरस-32
- 2. **हाडांचा कर्करोग** उपचार करताना स्ट्रॉन्शिअम– 89, स्ट्रॉन्शिअम– 90, समारिअम –153 आणि रेडिअम –223
- 3. **हायपर थायरॉइडिझम** गलग्रंथी मोठी होणे, भूक लागूनही वजन कमी होणे, झोप न येणे, हे सर्व गलग्रंथीमधून जास्त प्रमाणात हार्मोन्स तयार झाल्यामुळे होते. यालाच हायपर थायरॉइडिझम म्हणतात. याच्या उपचारासाठी आयोडिन-123
- 4. **ट्यूमर ओळखणे –** मेंदूतील ट्यूमरवर उपचार करताना बोरॉन –10, आयोडिन–131, कोबाल्ट– 60 चा वापर तर शरीरातील लहान ट्यूमर शोधण्यासाठी आर्सेनिक–74 चा वापर केला जातो.

किरणोत्सारी पदार्थ व प्रारणे यांचे दृष्परिणाम

- 1. किरणोत्सारी प्रारणांमुळे मध्यवर्ती चेतासंस्थेला इजा पोहोचते.
- 2. शरीरातील डी. एन. ए. वर प्रारणांचा मारा होऊन आनुवंशिक दोष निर्माण होतात.
- 3. किरणोत्सारी प्रारणे त्वचेला भेद्न आत जाऊ शकतात. त्यामुळे त्वचेचा कर्करोग, ल्यूकेमिआ यांसारखे रोग होतात.
- 4. स्फोटामुळे उत्पन्न झालेली किरणोत्सारी प्रदूषके हवेवाटे शरीरात गेल्याने त्यांच्यावर नियंत्रण ठेवणे कठीण असते.
- 5. समुद्रात सोडलेली किरणोत्सारी प्रदूषके माशांच्या शरीरात जाऊन त्यांच्यामार्फत मानवी शरीरात प्रवेश करतात.
- 6. घड्याळावर लावलेल्या किरणोत्सारी रंगद्रव्यामुळे कर्करोग होण्याची शक्यता असते.
- 7. वनस्पती, फळे, फुले, धान्य, गाईचे दूध इत्यादींमधून स्ट्रॉन्शिअम-90 हे किरणोत्सारी समस्थानिक शरीरात गेल्यामुळे बोन कॅन्सर, ल्युकेमिआ असे रोग होतात.

इतिहासात डोकावताना....

चेनोंबिलची दुर्घटना: 26 एप्रिल 1986 मध्ये चेनोंबिल अणुऊर्जा केंद्रातील ग्रॅफाइट रिॲक्टरचा स्फोट झाल्यामुळे त्यातून किरणोत्सारी समस्थानिके व प्रारणे अचानकपणे बाहेर पडली. या घटनेमुळे पाण्यातून व जिमनीतून किरणोत्सारी समस्थानिके मानवी शरीरात प्रवेशून आनुवंशिक दोष निर्माण झाले व ते पुढच्या पिढीत संक्रमित झाले. गलगंडाचे प्रमाण लहानांपासून मोठ्यांपर्यंत जास्त झाले. त्यामुळे घशाच्या आजाराचे प्रमाण तेथे जास्त आहे.

दैनंदिन जीवनातील काही रासायनिक पदार्थ

आपण खातो ते अन्न, वापरातील वस्तू उदा. कपडे, भांडी, घड्याळे तसेच औषधे व इतर वस्तू या वेगवेगळ्या द्रव्यापासून बनवलेल्या असतात. यांचा प्रत्यक्ष अथवा अप्रत्यक्षपणे आपल्या आरोग्यावर परिणाम होत असतो. अशा इतर पदार्थांची माहिती आपण घेऊ.

- 1. मिठाईच्या दुकानात गेल्यावर तुम्हाला विविध रंगांच्या मिठायांनी दुकान सजलेले दिसते त्या पदार्थांत कोणते रंग वापरतात?
- 2. आजारी पडल्यावर डॉक्टर तुम्हाला वेगवेगळी औषधे देतात ती कशापासून तयार होतात?

खाद्य रंग व सुगंधी द्रव्ये (Food colours and Essence)

बाजारात मिळणाऱ्या बऱ्याचशा पेयांमध्ये व अन्नपदार्थांत खाद्यरंग मिसळलेले असतात. हे खाद्यरंग पावडर, जेल आणि पेस्टच्या स्वरूपात असतात. ह्या खाद्यरंगांचा उपयोग घरगुती व व्यावसायिक उत्पादनांमधून केला जातो. आईस्क्रीम, बर्फगोळा, सॉस, फळांचे रस, शीतपेये, लोणची, जॅम,जेली यांमध्ये संबंधित रंग व स्गंधी द्रव्ये टाकलेली असतात.

बाजारात पॅकिंगमध्ये मिळणारे मांस (चिकन, मटण), तिखट, हळद, मिठाई यांसारख्या इतरही पदार्थांना रंग चांगला यावा म्हणून त्यांत बरेचदा खाद्यरंग मिसळलेले आढळतात.

14.2 विविधरंगी खाद्यपदार्थ

कृत्रिम खाद्यरंगांचे दृष्परिणाम

- 1. लोणची, जॅम आणि सॉस यामध्ये घातल्या जाणाऱ्या रंगांमध्ये शिसे, पारा थोड्या प्रमाणात वापरलेला असतो. सतत ही उत्पादने खाणाऱ्या लोकांना ती घातक ठरू शकतात.
- 2. खाद्य रंग वापरलेल्या पदार्थांच्या अतिरिक्त सेवनामुळे लहान मुलांमध्ये ADHD सारखे आजार उद्भवू शकतात. (Attention Deficit Hyperactivity Disorder)

हे नेहमी लक्षात ठेवा.

खाद्यरंग हे नैसर्गिक व कृत्रिमही असतात. बिया, बीट, फुले व फळांचा अर्क यांपासून तयार झालेले खाद्यरंग नैसर्गिक असतात. टेट्राझीन, सनसेट यलो हे खूप मोठ्या प्रमाणात वापरात असलेले असे कृत्रिम खाद्यरंग आहेत. परंतु अतिसेवनाने कृत्रिम खाद्यरंग घातक ठरू शकतात. म्हणून नेहमी नैसर्गिक खाद्यरंगांचा वापर उचित ठरतो.

डाय (Dye)

जो रंगीत पदार्थ एखाद्या वस्तूला लावल्यास त्या वस्तूला रंग प्राप्त करून देतो त्याला डाय असे म्हणतात. साधारणपणे डाय हा पाण्यात द्रावणीत व तेलात अद्रावणीय असतो. अनेकदा कापड रंगवल्यावर दिलेला रंग पक्का होण्यासाठी रंगबंधक वापरतात.

नैसर्गिक डाय बनवण्यासाठी वनस्पती हा मुख्य स्रोत आहे. मुळे, पाने, फुले, साल, फळे, बिया, बुरशी, केशर या सर्वांचा उपयोग डाय तयार करण्यासाठी करतात. काश्मीरमध्ये केशरापासून उत्तम डाय बनवून त्यापासून धागे रंगवून त्याच्या पासून साड्या, शाल, ड्रेस तयार होतात. ते अत्यंत महाग असतात. या व्यवसायावर बऱ्याच लोकांची उपजीविका चालते. केस रंगवण्यासाठी मेंदीच्या पानांचा वापर आरोग्याच्या दृष्टीने सुरक्षित असतो.

कृत्रिम डायचा शोध 1856 मध्ये विल्यम हेनरी पर्किन यांनी लावला. रासायनिक गुणधर्म व विद्राव्यता यानुसार कृत्रिम रंगांचे विविध प्रकार पडतात. यामध्ये पेट्रोलिअमची उपउत्पादिते व खनिजांचा वापर केलेला असतो.

उपयोग

- 1. कपडे, केस रंगवण्यासाठी यांचा वापर करतात.
- 2. रस्त्यावरील पाट्या रात्री दिसाव्यात म्हणून पयुओरोसंट (प्रतिदीप्तिशील) रंग वापरले जातात.
- 3. चामड्याचे बूट, पर्स, चप्पल यांना चमकदार बनवण्यासाठी रंग वापरतात.

दष्परिणाम

- 1. केसांना रंग लावल्याने केस गळणे, केसांचा पोत खराब होणे, त्वचेची आग होणे, डोळ्चांना इजा पोहोचणे इत्यादी धोके संभवतात.
- 2. लिपस्टिकमध्ये कॅरमाइन (Carmine) नावाचा रंग असतो. याने ओठांना इजा होत नाही परंतु ते पोटात गेल्यावर पोटाचे विकार होतात.
- 3. नैसर्गिक रंग तयार करण्यासाठी वनस्पतींचा अतिवापर केल्यामुळे पर्यावरणाचा ऱ्हास होतो.

कृत्रिम रंग (Artificial Colours)

- 1. रंगपंचमीला रंग खेळल्यानंतर तुम्हांला कोणकोणता त्रास होतो? का?
- 2. हा त्रास होऊ नये म्हणून तुम्ही कोणते रंग वापराल?
- 3. घराला, फर्निचरला रंग दिल्यानंतर त्याच्या वासाने तुम्हाला काय त्रास होतो?

रंगपंचमीला रंग खेळणे, घरांना रंग देऊन सजवणे यामध्ये आपण सर्रास कृत्रिम रंगांचा वापर करतो. रंगपंचमीला वापरला जाणारा लाल रंग सर्वात घातक असतो. त्यामध्ये पाऱ्याचे प्रमाण जास्त असते. यामुळे आंधळेपणा, त्वचेचा कर्करोग, अस्थमा, त्वचा खाजणे, त्वचेची रंध्रे कायमची बंद होणे असे धोके उद्भवतात. त्यामुळे कृत्रिम रंगांचा वापर सावधगिरीने करणे आवश्यक आहे.

14.3 कृत्रिम रंगांचे दुष्परिणाम

कृत्रिम रंगांमध्ये असलेल्या घातक रसायनांची नावे व होणारे परिणाम शोधा.

बीट , पळसाची फुले, पालक, गुलमोहोर या निसर्गातील विविधरंगी स्रोतांपासून रंगपंचमीसाठी रंग तयार करा व त्यांचा वापर करून आपले आरोग्य सांभाळा.

द्गंधीनाशक (Deodorant)

शरीराला येणाऱ्या घामाला सूक्ष्मजंतूंनी केलेल्या विघटनामुळे वास येतो. हा वास रोखण्यासाठी दुर्गंधीनाशक पदार्थ वापरला जातो. दिवसभर प्रफुल्लित रहाण्यासाठी प्रत्येकाला सुवासिक डिओडरंट आवडतो. मोठ्या प्रमाणात शाळकरी मुले डिओ वापरतात. किशोरवयीन मुलांमध्ये डिओ वापरण्याचे प्रमाण टीव्हीवर दाखवल्या जाणाऱ्या जाहिरातींमुळे जास्त आहे. यात पॅराबेन्स (मिथाइल, इथाइल, प्रोपाइल, बेन्झाइल आणि ब्युटाइल अल्कोहोल) चे प्रमाण जास्त असते. ॲल्युमिनिअमची संयुगे व सिलिकाचा यात वापर होतो.

- 1. **सर्वसाधारण डिओ –** यात ॲल्युमिनिअमच्या संयुगांचे प्रमाण कमी असते. हा घामाचा वास कमी करतो.
- 2. **घाम रोखणारे डिओ** घाम स्त्रवण्याचे प्रमाण कमी करतो. यामध्ये ॲल्युमिनिअम क्लोरोहायड्रेटस्चे प्रमाण 15% असते. त्यामुळे त्वचेवरील घामाची छिद्रे बंद होतात.
- 3. वैद्यकीय डिओ ज्या व्यक्तींना खूप घाम येतो व त्याचे घातक परिणाम त्वचेवर होतात. अशा व्यक्तींसाठी वैद्यकिय डिओ तयार केलेला आहे. यात 20 ते 25% ॲल्युमिनिअम असते. हा फक्त रात्रीच वापरला जातो. डिओ हे स्थायू, वायू या स्वरूपात आढळतात.

दुष्परिणाम

- 1. ॲल्युमिनिअम-झिरकोनियम ही संयुगे डिओडरंट मधील सर्वात घातक असणारी रसायने आहेत. यामुळे नकळतपणे डोकेदुखी, अस्थमा, श्वसनाचे विकार, हृदयविकार असे आजार संभवतात.
- 2. ॲल्युमिनिअम क्लोराहायड्रेटस्मुळे त्वचेचे विविध विकार तसेच त्वचेचा कर्करोग होण्याची शक्यता असते.

टेफ्लॉन (Teflon)

चिकटण्याची प्रक्रिया टाळण्यासाठी स्वयंपाकाची भांडी, औद्योगिक उपकरणांमध्ये मुलामा देण्यासाठी टेफ्लॉनचा वापर करतात. हे टेट्रॉफ्ल्यूओरोइथिलीनचे बहुवारिक आहे. याचा शोध रॉय जे. प्लंकेट यांनी 1938 मध्ये लावला. याचे रासायनिक नाव पॉलीटेट्रा फ्ल्यूओरोइथिलीन (C_3F_4), हे आहे.

14.4 टेफ्लॉन कोटिंग

टेफ्लॉनमध्ये असा कोणता गुणधर्म असतो ज्यामुळे तो नॉनस्टिकवेअरमध्ये वापरला जातो ?

गुणधर्म

- वातावरणाचा व रासायनिक पदार्थांचा टेफ्लॉनवर परिणाम होत नाही.
- 2. पाणी व तेल हे दोन्ही पदार्थ टेफ्लॉन कोटेड वस्तूंना चिकटत नाहीत.
- उच्च तापमानाचा टेफ्लॉनवर परिणाम होत नाही कारण टेफ्लॉनचा द्रवणांक 327°C आहे.
- 4. टेफ्लॉन कोटेड वस्तू सहजतेने स्वच्छ करता येतात.

उपयोग

- 1. टेफ्लॉनच्या विसंवाहकता या गुणधर्मामुळे उच्च तंत्रज्ञानाच्या इलेक्ट्रॉनिक उपकरणांमध्ये तसेच टेफ्लॉन वेष्टीत विजेच्या तारा व वस्तू तयार करण्यासाठी याचा वापर करतात.
- 2. स्वयंपाकघरातील नॉनस्टिक वेअर तयार करण्यासाठी याचा वापर करतात.
- 3. दुचाकी व चारचाकी वाहनांच्या रंगीत पत्र्यावर तापमान, पाऊस यांचा परिणाम होऊन ते खराब होऊ नयेत म्हणून टेफ्लॉन कोटिंग करतात.

पावडर कोटिंग (Powder Coating)

लोखंडी वस्तू गंजू नये म्हणून वस्तूच्या पृष्ठभागावर रंगापेक्षा अधिक टणक थर देण्याची पध्दत म्हणजे पावडर कोटिंग होय. या पध्दतीत पॉलिमर रेझिन रंग आणि इतर घटक एकत्र करून वितळवले जातात आणि नंतर थंड करून त्या मिश्रणाचे बारीक चूर्ण बनवतात. इलेक्ट्रोस्टॅटीक स्प्रे डिपॉझिशन (ESD) करताना धातूच्या घासलेल्या भागावर ह्या पावडरचा फवारा उडवतात. ह्या पध्दतीत पावडरच्या कणांना स्थितिक विद्युत प्रभार दिला जातो त्यामुळे पावडरचा एकसारखा थर धातूच्या पृष्ठभागावर चिकटून बसतो. यानंतर ह्या थरासह वस्तू भट्टीत तापवतात. तेव्हा थरामध्ये रासायनिक अभिक्रिया होऊन मोठ्या लांबीचे बहुवारिक जाळे तयार होते. हे पावडर कोटिंग अतिशय टिकाऊ, टणक व आकर्षक असते. दैनंदीन वापरातील प्लॅस्टिक व मिडिअम डेन्सिटी फायबर (MDF) बोर्डवर पावडर कोटिंग करता येते.

ॲनोडायझींग (Anodizing)

ॲल्युमिनिअम धातूच्या पृष्ठभागावर हवेतील ऑक्सिजन बरोबर अभिक्रिया होऊन निसर्गत: एक संरक्षक थर तयार होतो. ॲनोडायझींग प्रक्रियेत हा थर हव्या त्या जाडीचा बनवता येतो. विद्युत अपघटन पध्द्तीचा वापर करून ॲनोडायझींग केले जाते. विद्युत अपघटनी घटात विरल आम्ल घेऊन त्यामध्ये ॲल्युमिनिअमची वस्तू धनाग्र म्हणून बुडवतात. विद्युतप्रवाह सुरु केल्यावर ऋणाग्राजवळ हायड्रोजन वायू तर धनाग्राजवळ ऑक्सिजन वायू मुक्त होतो. ऑक्सिजनबरोबर अभिक्रिया होऊन ॲल्युमिनिअम वस्तूरूपी धनाग्रावर हायड्रेटेड ॲल्युमिनेअम ऑक्साइडचा थर तयार होतो. यादरम्यान घटामध्ये रंग टाकून हा थर आकर्षक बनवता येतो. ॲनोडायझिंग केलेले तवे, कुकर अशी स्वयंपाकाची विविध भांडी आपण वापरतो. ती का?

मृत्तिका (Ceramic)

मृत्तिका म्हणजे अकार्बनी पदार्थ पाण्यात मळून, आकार देऊन, भाजून तयार झालेला उष्णतारोधक पदार्थ होय. कुंभाराने बनवलेली गाडगी, मडकी, माठ,अशी भांडी तसेच घराच्या छपरावर घालतात ती मंगलोरी कौले, बांधकामाच्या विटा, कप-बशा, टेराकोटाच्या वस्तू ही सर्व आपल्या आजूबाजूला दिसणारी मृत्तिकेची उदाहरणे आहेत.

अशी तयार होते मृत्तिका

चिकणमाती पाण्यात कालवून तिला आकार देऊन भट्टीत 1000 ते 1150°C तापमानाला भाजल्यावर सच्छिद्र मृत्तिका तयार होते. सच्छिद्रपणा घालवण्यासाठी भाजलेल्या भांड्यावर पाण्यात कालवलेले काचेचे चूर्ण (ग्लेझ) लावतात व भांडी पुन्हा भाजतात. त्यामुळे सिरॅमिकच्या पृष्ठभागाचा सच्छिद्रपणा जाऊन तो चकचकीत होतो.

14.5 मृत्तिका

पोर्सेलिन: ही कठीण, अर्धपारदर्शक व पांढरा रंग असणारी मृत्तिका आहे. ही बनवण्यासाठी चीनमध्ये सापडणारी केओलिन ही पांढरी माती वापरतात.काच, ग्रॅनाईट, फेल्डस्पार हे खनिज केओलिनमध्ये मिसळून त्यात पाणी घालून मळतात. तयार झालेल्या मिश्रणास आकार देऊन भट्टीत 1200 ते 1450 °C तापमानाला भाजतात. त्यानंतर आकर्षक अशी ग्लेझ लावून पुन्हा भाजल्यावर पोर्सेलिनची सुंदर भांडी बनवतात. प्रयोगशाळेत अशी कोणकोणती भांडी आहेत? बोन चायना: केओलिन (चिनी माती), फेल्डस्पार खनिज, बारीक सिलिका यांच्या मिश्रणात प्राण्यांच्या हाडांची राख मिसळून पुढील प्रक्रिया करतात. ही मृत्तिका पोर्सेलिनपेक्षाही कठीण असते.

प्रगत मृत्तिका : प्रगत मृत्तिका बनवताना मातीऐवजी ॲल्युमिना (${\rm Al_2O_3}$), झिर्कोनिया(${\rm ZrO_2}$), सिलिका (${\rm SiO_2}$) अशी काही ऑक्साइड्स व सिलिकॉन कार्बाइड (${\rm SiC}$), बोरॉन कार्बाइड (${\rm B_4C}$) यासारख्या काही इतर संयुगांचा उपयोग करतात. या मृत्तिका भाजण्यासाठी 1600 ते 1800 $^{\rm O}{\rm C}$ असे तापमान व ऑक्सिजनिवरहीत वातावरण लागते. या प्रक्रियेलाच सिंटिरिंग असे म्हणतात.

सिरॅमिक पदार्थ हे उच्च तापमानाला विघटन न होता राहू शकतात. सिरॅमिक हे ठिसूळ, विद्युतरोधक व जलरोधक असते. त्यामुळे त्याचा वापर विद्युत उपकरणांमध्ये ,भट्टीच्या आतील भागास लेप देण्यासाठी, जहाज तसेच जेट इंजिनच्या पात्यांना विलेपन करण्यासाठी करतात. स्पेस शटलच्या बाहेरील थरावर विशिष्ट सिरॅमिक टाइल्स लावलेल्या असतात. काही सिरॅमिकचा वापर अतिसंवाहक (Super Conductors) म्हणून केला जातो.

स्वाध्याय 🗸 🍑

'ब' गट

1. रिकाम्या जागी योग्य शब्द लिहा.

- अ. धुण्याच्या सोड्यामध्ये स्फटिकजलाच्या रेणूंची संख्याआहे.
- आ. बेकिंग सोड्याचे रासायनिक नाव.... आहे.
- इ. हायपर थायरॉइडिझम या रोगाच्या उपचारासाठी चा वापर करतात.
- ई. टेफ्लॉनचे रासायनिक नाव आहे.

2. योग्य जोड्या लावा.

'अ' गट

- 1.संतृप्त मिठवणी अ. सोडीअम धातू मुक्त
- 2.सम्मीलित मीठ ब. आम्लारिधर्मी क्षार
- 3.CaOCl क. मिठाचे स्फटिकीभवन
- 4. NaHCO₃ ड. रंगाचे ऑक्सिडीकरण

3. खालील प्रश्नांची उत्तरे लिहा.

- अ. किरणोत्सारिता म्हणजे काय?
- आ. अणुकेंद्रक अस्थिर आहे असे केव्हा म्हणतात?
- इ. कृत्रिम खाद्यरंगामुळे कोणते आजार होतात?
- ई. औद्योगिक क्षेत्रात किरणोत्सारितेचा उपयोग कोठे करतात?
- उ. टेफ्लॉनचे गुणधर्म लिहा.
- ऊ. पर्यावरणपूरक रंगपंचमी साजरी करण्यासाठी कोणत्या प्रकारचे रंग वापराल? का?
- ए. टेफ्लॉन विलेपन सारख्या पद्धतींचा वापर खूप वाढलेला का आहे ?

4. स्पष्टीकरणासह लिहा.

- अ. विरंजक चूर्णाला क्लोरीनचा वास येतो.
- आ. विहीरीचे दुष्फेन पाणी धुण्याच्या सोड्यामुळे सुफेन होते.
- इ. दुष्फेन पाण्यात साबणाचा साका तयार होतो.
- ई. पावडर कोटिंग करताना फवारा उडवताना पावडरच्या कणांना विद्युत प्रभार देतात.
- ॲनोडायझींगमध्ये ॲल्युमिनिअमची वस्तू धनाग्र म्हणून वापरतात.
- ऊ. काही किरणोत्सारी पदार्थांतून येणारे प्रारण विद्युत क्षेत्रातून जाऊ दिल्यास मार्गातील

फोटोग्राफिक पट्टीवर तीन ठिकाणी खुणा दिसून येतात.

ए. स्पेस शटलच्या बाहेरील थरावर विशिष्ट सिरॅमिक टाईल्स लावतात.

5. खालील प्रश्नांची उत्तरे लिहा.

- अ. कृत्रिम खाद्यरंग व त्यात वापरले जाणारे पदार्थ सांगून त्यांचे दुष्परिणाम लिहा.
- आ. स्फटिकजल म्हणजे काय ते सांगून स्फटिकजल असणारे क्षार व त्याचे उपयोग लिहा.
- इ. सोडीअम क्लोराइडचे विद्युत अपघटन करण्याच्या तीन पध्दती कोणत्या?

उपयोग लिहा.

- अ. ॲनोडायझींग आ. पावडर कोटिंग
- इ. किरणोत्सारी पदार्थ ई. सिरॅमिक

7. दुष्परिणाम लिहा.

- अ. कृत्रिम डाय
- आ. कृत्रिम खाद्यरंग
- इ. किरणोत्सारी पदार्थ
- ई. दुर्गंधीनाशक

8. रासायनिक सूत्र लिहा.

विरंजक चूर्ण, मीठ, बेिकंग सोडा, धुण्याचा सोडा.

9. खालील चित्राबाबत स्पष्टीकरण लिहा.

उपक्रम:

पावडर कोटिंग,टेफ्लॉन कोटिंग करतात त्या ठिकाणांना भेट देऊन प्रक्रियेची माहिती मिळवा व वर्गात सादर करा.

