PRÁCTICO 2

Homomorfismos de grupos. Subgrupos.

- (1) Sea (G,\cdot) un grupo y sean $a,b\in G$.
 - (a) Probar que las siguientes funciones de G en G son bivectivas y encontrar sus inversas.
 - (i) $x \mapsto a \cdot x$.
- (iii) $x \mapsto a \cdot x \cdot a^{-1}$. (v) $x \mapsto a \cdot x^{-1} \cdot a^{-1}$.

- (ii) $x \mapsto a \cdot x \cdot b$.
- (iv) $x \mapsto x^{-1}$.
- (b) Determinar cuáles de estas aplicaciones son homomorfismos de grupos.
- (c) Determinar cuáles de estas aplicaciones son homomorfismos si G es abeliano.
- (2) Decir si las siguientes funciones son homomorfismos de grupos, y en tal caso decir si son monomorfismos o epimorfismos.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(a) := ma, con $m \in \mathbb{Z}$.
 - (b) $f: \mathbb{Z}_6 \to \mathbb{Z}_{12}, f(a) := 2a$.
 - (c) $f: \mathbb{Z}_5 \to \mathbb{Z}_5, f(a) := 3a$.
- (3) Probar que las siguientes afirmaciones son equivalentes.
 - (a) G es abeliano.
 - (b) La inversión $f: G \to G$, $f(x) = x^{-1}$, es un morfismo de grupos.
 - (c) La aplicación $f: G \to G$ elevar al cuadrado, $f(x) = x^2$, es un morfismo de grupos.
- (4) Sea G un grupo y sean H_1 y H_2 dos subgrupos de G.
 - (a) Probar que $H_1 \cap H_2$ es un subgrupo de G.
 - (b) ¿Qué sucede con la intersección de 3 o más subgrupos?
 - (c) Probar que $H_1 \cup H_2$ es un subgrupo si y sólo si $H_1 \subseteq H_2$ o $H_2 \subseteq H_1$.
 - (d) ¿Qué sucede con la unión de 3 o más subgrupos?
- (5) Probar que

$$\mathcal{H} := \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}$$

es un subgrupo de $GL(2,\mathbb{C})$.

- (6) Probar que todos los subgrupos de Z son cíclicos.
- (7) Sea G un grupo. Denotemos por |a| al orden de a en G. Probar que $\forall a, b \in G$ valen:

 - (i) $|a| = |a^{-1}|$. (ii) $|a| = |bab^{-1}|$.
- (iii) |ab| = |ba|.

- (8) Sea G un grupo abeliano.
 - (a) Si existen $a, b \in G$, con |a| = m, |b| = n, entonces existe $c \in G$ tal que |c| = [m, n].
 - (b) Sean p y q primos distintos. Si |G| = pq y existen $a, b \in G$, con |a| = p y |b| = q, entonces G es cíclico.
- (9) En cada uno de los siguientes casos calcular el orden de x:
 - (a) $G = \mathbb{S}_8$, $x = (1235) \cdot (1378)$.
 - (b) $G = \mathcal{H}, x = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

- (c) $G = \mathbb{C}^{\times}$, $x = \cos(2\pi/n) + i \sin(2\pi/n) \cos n \in \mathbb{N}$.
- (d) $G = \mathbb{C}^{\times}, x = \frac{1}{2}\cos(2\pi/n) + \frac{1}{2}i\sin(2\pi/n) \cos n \in \mathbb{N}.$
- (e) $G = \mathbb{C}^{\times}, x = \cos(m/n) + i \sin(m/n) \cos n, m \in \mathbb{N}.$
- (f) $G = \mathbb{Z}_n$, x arbitrario.
- (10) Determinar los elementos del subgrupo cíclico de $GL(2,\mathbb{R})$ generado por $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.
- (11) Hallar todos los subgrupos de: \mathbb{Z}_3 ; $\mathbb{Z}_2 \times \mathbb{Z}_2$; \mathbb{S}_3 ; D_4 .
- (12) Hallar 9 subgrupos de \mathbb{S}_4 diferentes entre sí e isomorfos a \mathbb{S}_2 y 4 subgrupos diferentes entre sí e isomorfos a \mathbb{S}_3 .
- (13) Si un grupo tiene sólo una cantidad finita de subgrupos, entonces es finito.
- (14) Probar que el subgrupo de $GL(2,\mathbb{R})$ generado por $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es no abeliano de orden 8 y es isomorfo a D_4 .
- (15) Sea p un número primo mayor que 2. Probar que

$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_p \right\},\,$$

con el producto usual de matrices, es un grupo no abeliano tal que todo elemento distinto de la identidad tiene orden p. ¿Qué sucede si p = 2?

- (16) Consideremos el grupo simétrico \mathbb{S}_n .
 - (a) Escribir al ciclo $(i_1 i_2 \dots i_r)$ como producto de trasposiciones.
 - (b) Mostrar que el producto de trasposiciones (1i)(1j)(1i) es una trasposición. ¿Cuál?
 - (c) Probar que \mathbb{S}_n está generado por las n-1 trasposiciones (1i) con $i=2,\ldots,n$.
 - (d) Calcular el producto de trasposiciones (1 j 1)(j 1 j)(1 j 1), con $j = 3, \ldots, n$.
 - (e) Probar que \mathbb{S}_n está generado por las n-1 trasposiciones $(i \ i+1)$ con $i=1,\ldots,n-1$.
 - (f) Sean $\sigma = (12)$ y $\tau = (123...n)$. Calcular $\tau^i \sigma \tau^{-i}$.
 - (g) Probar que \mathbb{S}_n está generado por σ y τ .
- (17) Calcular el orden y el signo de las siguientes permutaciones:

$$(4267) \in \mathbb{S}_9; \quad (365)(173) \in \mathbb{S}_7; \quad (13254)(35) \in \mathbb{S}_6.$$

(18) Decir cuáles de los siguientes grupos son isomorfos entre sí.

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$
; $\mathbb{Z}_2 \times \mathbb{Z}_4$; $\mathbb{Z}_2 \times \mathbb{G}_4$; \mathbb{Z}_8 ; D_4 ; \mathbb{G}_8 ; \mathcal{H} ; Q_8

donde Q_8 es el grupo de cuaterniones: $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ con la operación dada por $i^2 = j^2 = k^2 = -1$, ij = k = -ji, (-1)i = -i, (-1)j = -j y (-1)k = -k.

- (19) Mostrar que si $f: G \to H$ es un morfismo de grupos y $x \in G$ es tal que |x| es finito, entonces |f(x)| divide a |x|.
- (20) Para los siguientes pares de grupos (G, H), calcular Hom(G, H) y Hom(H, G):

(a)
$$(\mathbb{G}_n, \mathbb{Z})$$
. (b) (\mathbb{Z}, \mathbb{Q}) . (c) $(\mathbb{Z}, \text{grupo finito})$. (d) $(\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_4)$.

- (21) Para los siguientes grupos G, calcular $\operatorname{End}(G)$ y $\operatorname{Aut}(G)$:
 - (a) \mathbb{Z} . (b) \mathbb{Q} . (c) \mathbb{Z}_n . (d) $\mathbb{Z}_2 \times \mathbb{Z}_2$.

EJERCICIOS ADICIONALES

- (22) Probar que todos los grupos de orden ≤ 5 son abelianos. ¿Son todos cíclicos? ¿Cuántos grupos no isomorfos de orden 4 hay?
- (23) Probar que:
 - (a) $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}_n) \neq 0$.
 - (b) No existe un epimorfismo de \mathbb{Z} en $\mathbb{Z} \times \mathbb{Z}$.
 - (c) $\operatorname{Hom}(\mathbb{Q}, \mathbb{Z}) = 0$.
- (24) Sea $f: G \to H$ un homomorfismo. Decir para cuáles de las siguientes propiedades P vale que "si G cumple P, entonces H cumple P". Hacer lo mismo asumiendo que f es epimorfismo y luego asumiendo que es monomorfismo.
 - (a) Tener n elementos.
 - (b) Ser finito.
 - (c) Ser conmutativo.
 - (d) Ser no conmutativo.
 - (e) Ser cíclico.
 - (f) Todo elemento tiene orden finito.
 - (g) Todo elemento no trivial tiene orden infinito.
- (25) Hallar en S_3 y en S_4 elementos de todos los órdenes posibles.
- (26) Sea $G = GL(2, \mathbb{Z}_3)$. Encontrar subgrupos de G de orden 2, 4 y 8.
- (27) Sean $a, b \in \mathbb{Z}$. Probar que $\{a, b\}$ es un sistema de generadores de \mathbb{Z} si y sólo si (a, b) = 1.
- (28) Sean G grupo finito, $g \in G$ y p primo. Probar que

$$g = g_r g_u = g_u g_r,$$

donde $g_r, g_u \in G$ son tales que $(|g_r|, p) = 1$ y $|g_u| = p^k$, para algún k. Mostrar que g_r y g_u son únicos con esta propiedad. (**Nota**: El elemento g_r se llama la parte p-regular de g y el elemento g_u se llama la parte p-unipotente de g.)

- (29) Sea $G = \left\{ \begin{pmatrix} 1 & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{Z}_7, a \neq 0 \right\}.$
 - (a) Hallar el orden de G.
 - (b) Para cada primo p que divide a |G| hallar todos los elementos de G de orden p.
- (30) Determinar si los siguientes pares de grupos son isomorfos o no.

$$(\mathbb{Z}_n, \mathbb{G}_n); (\mathbb{Z}_{10}, \mathbb{Z}_2 \times \mathbb{Z}_5); (\mathbb{R}, \mathbb{C}); (\mathcal{U}_{16}, \mathcal{H}); (\mathbb{A}_4, D_6).$$

- (31) (i) La relación $x \sim y \Leftrightarrow x y \in \mathbb{Z}$ es una relación de congruencia en $(\mathbb{Q}, +)$.
 - (ii) \mathbb{Q}/\sim es un grupo abeliano infinito (se lo llama grupo de racionales módulo uno).
 - (iii) Mostrar que todos los elementos de \mathbb{Q}/\sim tienen orden finito.
 - (iv) Probar que para cada $n \in \mathbb{N}$ existe $g \in \mathbb{Q}/\sim$ tal que |g|=n.

(32) Para cada $p \in \mathbb{N}$ primo definimos el siguiente subconjunto del grupo \mathbb{Q}/\sim :

$$\mathbb{Z}(p^{\infty}):=\{\overline{x}\,:\,x\in R^p\}=\{\overline{x}=\overline{a/b}\in\mathbb{Q}/\sim\colon\,a,b\in\mathbb{Z},\,b=p^i,\,\,\text{para alg\'un}\,\,i\geq 0\}.$$

Probar que:

- (i) $\mathbb{Z}(p^{\infty})$ es un subgrupo infinito de \mathbb{Q}/\sim .
- (ii) $\mathbb{Z}(p^{\infty})$ está generado por el conjunto $\{\overline{1/p^n}: n \in \mathbb{N} \cup \{0\}\}.$
- (iii) cada elemento de $\mathbb{Z}(p^{\infty})$ tiene orden finito e igual a p^{ℓ} , par algún $\ell \geq 0$.

Sea H un subgrupo de $\mathbb{Z}(p^{\infty})$. Mostrar las siguientes afirmaciones.

- (iv) Si existe $h_0 \in H$ tal que $|h_0| = p^k$ y $|h| \le p^k$, $\forall h \in H$, entonces $H = \langle \overline{1/p^k} \rangle \cong \mathbb{Z}_{p^k}$.
- (v) Si para todo $M \in \mathbb{N}$ existe $h \in H$ tal que |h| > M, entonces $H = \mathbb{Z}(p^{\infty})$.
- (vi) Los únicos subgrupos propios de $\mathbb{Z}(p^{\infty})$ son los grupos cíclicos finitos $C_n := \langle \overline{1/p^n} \rangle$, $n \in \mathbb{N}$. Más aún, $C_n < C_{n+1}$, para todo $n \in \mathbb{N}$.