Homework 8 Due Thursday Nov 6 by 3:00

- 1. (Relationship between tests and confidence sets.) Let $X_1, \ldots, X_n \sim p(x; \theta)$ where $\theta \in \mathbb{R}$.
 - (a) Let C_n be a $1-\alpha$ confidence interval for θ . Consider testing

$$H_0: \theta = \theta_0$$
 and $H_1: \theta \neq \theta_0$.

Define a test as follows: reject H_0 if $\theta_0 \notin C_n$. Show that this defines a test with type I error α .

(b) For each $\theta_0 \in \mathbb{R}$, let $\phi(\theta_0, X_1, \dots, X_n)$ be a level α test of

$$H_0: \theta = \theta_0$$
 and $H_1: \theta \neq \theta_0$.

In other words, $\phi(\theta_0, X_1, \dots, X_n) \in \{0, 1\}$ and

$$\mathbb{P}_{\theta_0}(\phi(\theta_0, X_1, \dots, X_n) = 1) = \alpha.$$

Let

$$C_n = \left\{ \theta_0 : \ \phi(\theta_0, X_1, \dots, X_n) = 0 \right\}.$$

Show that C_n is a $1-\alpha$ confidence set. In other words, for every θ ,

$$P_{\theta}(\theta \in C_n) = 1 - \alpha.$$

2. Let $X_1, \ldots, X_n \sim P$ where P has a density p on [0,1]. Assume that the density p satisfies the following condition:

$$|p(x) - p(y)| \le L |x - y|$$

for all $x, y \in [0, 1]$, where L > 0 is a constant. Given an integer m, let h = 1/m and define m bins:

$$B_1 = [0, h], B_2 = (h, 2h], \dots$$

Let n_j denote the number of observations in bin B_j . The histogram density estimator is

$$\widehat{p}(x) = \frac{\widehat{\pi}_j}{h} \quad \text{for } x \in B_j$$

where $\widehat{\pi}_j = n_j/n$.

- (a) Find $\mathbb{E}(\widehat{p}(x))$ and find $V(\widehat{p}(x))$.
- (b) Find an approximate expression for $R_n(h) = \mathbb{E} \int (\widehat{p}(x) p(x))^2 dx$.
- (c) Find h_n to minimize your expression and find $R_n(h_n)$. You should get that $R_n(h_n) = O(n^{-2/3})$.

3. Let T(F) be a statistical functional. Suppose that T satisfies the following condition: there exists L > 0 such that, for any F and G,

$$|T(F) - T(G)| \le L \sup_{x} |F(x) - G(x)|.$$
 (1)

Let $\theta = T(F)$ and $\widehat{\theta}_n = T(\widehat{F}_n)$.

- (a) Show that $\widehat{\theta}_n \stackrel{P}{\to} \theta$.
- (b) Let \mathcal{F} be all distributions on the real line and define

$$T(F) = \inf\{x : F(x) = 1\}.$$

Show that T does not satisfy (1).

- 4. Let $X_1, \ldots, X_n \sim P$ and let $\mu = \mathbb{E}(X_i)$ and $\sigma^2 = V(X_i)$. Let $\overline{X}_n = (1/n) \sum_{i=1}^n X_i$ and $s^2 = (1/n) \sum_{i=1}^n (X_i \overline{X}_n)^2$. Let X_1^*, \ldots, X_n^* denote a bootstrap sample and let $\overline{X}_n^* = \frac{1}{n} \sum_{i=1}^n X_i^*$.
 - (a) Show that $\mathbb{E}(\overline{X}_n^*|X_1,\ldots,X_n)=\overline{X}_n$.
 - (b) Show that $Var(\overline{X}_n^*|X_1,\ldots,X_n) = s^2$.