Úkol

- 1. Změřte modul pružnosti v tahu E oceli z protažení drátu.
- 2. Změřte modul pružnosti v tahu E oceli a mosazi z průhybu trámku.
- 3. Výsledky měření graficky znázorněte, modul pružnosti určete pomocí lineární regrese.

Teorie

Měření modulu E z protažení drátu

Při působení síly F na drát průřezu S se drát pružnou deformací prodlouží o [1]

$$\Delta l = \frac{1}{E} \frac{l_0 F}{S}.\tag{1}$$

E je modul pružnosti v tahu, [1]

$$E = \frac{\sigma}{\epsilon} = \frac{l_0 F}{\Delta l S} = \frac{4l_0 F}{\Delta l \pi d^2} \tag{2}$$

Prodloužení drátu se měří zrcátkovou metodou. Protažení drátu se převádí na pootočení $\Delta \alpha$ zrcátka upevněného na ose kladky s poloměrem r. [1]

$$\Delta l = r \Delta \alpha \tag{3}$$

Ve vzdálenosti L od zrcátka je umístěna svislá stupnice, před otočením zrcátka je v dalekohledu vidět dílek stupnice n_0 , po otočení dílek n. Pro malé úhly pootočení platí pro prodloužení drátu přibližný vztah [1]

$$\Delta l \approx \frac{r(n_0 - n)}{2L} \tag{4}$$

Měření modulu E z průhybu trámku

Při zatěžování vodorovného kovového trámku, podepřeného dvěma břity ve vzdálenosti l, silou F se trámek prohne průhybem

$$y = \frac{Fl^3}{48EI_p},\tag{5}$$

kde I_p je plošný moment setrvačnosti průřezové plochy tyče vzhledem k vodorovné ose, kolmé k délce trámku a procházející těžištěm. Pro obdélníkový průřez trámku výšky b a šířky a lze I_p vyjádřit vztahem

$$I_p = \frac{ab^3}{12}. (6)$$

Modul pružnosti poté dostaneme jako

$$E = \frac{Fl^3}{4yab^3}. (7)$$

Statistické vyhodnocení

Průměrná hodnota naměřených veličin při n měřeních je počítána podle vzorce aritmetického průměru [2]

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Statistická chyba σ_{stat} aritmetického průměru se získá ze vztahu [2]

$$\sigma_{stat} = \frac{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}}{\sqrt{n}}.$$

Absolutní chyba je potom získána z σ_{stat} a chyby měřidla $\sigma_{\text{měř}}$ jako [3]

$$\sigma_{abs} = \sqrt{\sigma_{m \check{e} \check{r}}^2 + \sigma_{stat}^2}$$

Chyba výpočtů se řídí zákonem přenosu chyb [4], lineární regrese podle metody nejmenších čtverců [5].

Pomůcky

Posuvné měřidlo, pásové měřidlo, drát, kladka, zrcátko, stupnice, dalekohled, závaží, břity, kovové trámky, objektivový mikrometr

Výsledky měření

Teplota	Tlak	Vlhkost
[°C]	[hPa]	[% RH]
23,8	1004,0	21,4

Tabulka 1: Podmínky měření

Úkol 1

Hodnota zobrazená na stupnici zrcátkem při základním zatížení drátu byla

$$n_0 = (147, 0 \pm 0, 5) \text{ mm}$$

Pomocí postupu popsaném v [1] se získaly hodnoty na svislé stupnici v závislosti na hmotnosti závaží, napínající drát. Hodnoty v následující tabulce mají chybu $\pm 0,5$ mm.

m[g]	$n[\mathrm{mm}]$	m[g]	$n[\mathrm{mm}]$
1,1	144,8	1,8	129,0
1,2	142,3	1,9	126,8
1,3	140,0	2,0	124,8
1,4	137,8	2,1	122,5
1,5	135,8	2,2	120,3
1,6	133,3	2,3	118,0
1,7	131,3	2,4	116,0

Tabulka 2: Hodnota na stupnici v závislosti na hmotnosti závaží

Poloměr kladky r byl měřen posuvným měřidlem jako průměr, následně vydělený dvěma.

$$r = (19, 28 \pm 0, 01) \text{ mm}$$

Délka drátu od upevnění ke kladce l_0 byla měřena pásovým měřidlem, k naměřené hodnotě byla poté přičtena $\frac{1}{8}$ obvodu kladky.

$$l_0 = (1156, 1 \pm 1, 2) \text{ mm}$$

Délka L od zrcátka ke stupnici byla ěřena pásovým měřidlem.

$$L = (810 \pm 1) \text{ mm}$$

Průměr drátu d byl měřen na třech místech mikrometrem.

$$d = (0, 51 \pm 0, 01) \text{ mm}$$

Prodloužení drátu po přidání závaží s celkovou hmotností 1400g spočítáme podle (4):

$$\Delta l = (0,369 \pm 0,008) \text{ mm}$$

Modul pružnosti v tahu poté je z (2)

$$E = (2, 1 \pm 0, 1) \times 10^{11} \text{ Pa}$$

Úkol 2

Pomocí postupu popsaném v [1] jsme naměřili prohnutí y_o ocelového trámku a y_m trámku mosazného. Chyba hodnot v tabulce je $\pm 0,05$ mm.

m[g]	$y_o[\mathrm{mm}]$	$y_m[mm]$
10	0,10	0,18
20	$0,\!20$	$0,\!38$
30	0,30	$0,\!53$
40	$0,\!40$	0,73
50	$0,\!50$	0,90
60	0,60	1,08
70	0,70	1,28
80	0,80	1,48
90	0,90	1,63
100	1,00	1,83

Tabulka 3: Prohnutí trámku v závislosti na hmotnosti

Vzdálenost mezi břity l byla měřena pásovým měřidlem.

$$l = (412 \pm 1) \text{ mm}$$

Rozměry a a b trámků byly měřeny na třech místech mikrometrem.

$$a_o = (11, 98 \pm 0, 02) \text{ mm}$$

 $b_o = (1, 95 \pm 0, 01) \text{ mm}$
 $a_m = (11, 84 \pm 0, 03) \text{ mm}$
 $b_m = (1, 98 \pm 0, 01) \text{ mm}$

Z (7) spočítáme

$$E_o = (1, 9 \pm 0, 1) \times 10^{11} \text{Pa}$$

$$E_m = (1, 02 \pm 0, 03) \times 10^{11} \text{Pa}$$

Diskuse

Hodnoty modulu pružnosti v tahu oceli vyšly různými metodami shodně až na součet jejich chyb.

Závěr

Modul pružnosti v tahu E oceli z protažení drátu je

$$E = (2, 1 \pm 0, 1) \times 10^{11} \text{ Pa}$$

Modul pružnosti v tahu E oceli a mosazi z průhybu trámku je

$$E_o = (1, 9 \pm 0, 1) \times 10^{11} \text{Pa}$$

 $E_m = (1, 02 \pm 0, 03) \times 10^{11} \text{Pa}$

Literatura

- [1] Studijní text "Měření modulu pružnosti v tahu", dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_109.pdf
- [2] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 10, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar10.pdf
- [3] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 1, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar1.pdf
- [4] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 9, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar9.pdf
- [5] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 11, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar11.pdf