Real-time monophonic pitch estimation for guitar driven sound synthesis

Luc de Jonckheere

Supervised by: Erwin Bakker Michael Lew

LIACS Leiden University

29 Augustus 2022

Real-time monophonic pitch estimation

Introduction

Real-time monophonic pitch estimation

- Pitch estimation: Measure pitch of signal/played note
- Real-time: While the musician is playing it
 - Real-time constraint: 20 ms
- Monophonic: One note at the time

Motivations

- Drive synthesizer with a guitar
- No open source real-time pitch estimation applications available

Goals

- 1. Create a real-time pitch estimation algorithm
- 2. Synthesize audio based on estimation

Audio in computers

- Audio format
- Sample rate (f_{SR})

Fourier transform

Fourier transform

- ullet Function of time o function of frequency
- ullet Continuous/infinite $\not\in$ computers \to DFT

Discrete Fourier transform (DFT)

- Frame of samples → frequency bins
- Fourier resolution = sample rate / frame size = frame time $^{-1}$
- Nyquist frequency = sample rate / 2
- Each bin corresponds to one frequency
- Spectral leakage

Music theory

- 12 tone equal temperament (12-TET)
- Tuning note $(A_4 = 440 \text{ Hz})$
- MIDI note numbers $(A_4 = 69)$

Physics of sound

- Fundamental and overtones
- Timbre
- Transients

Basic estimator

Basic estimator algorithm

Given frame of samples F with sample rate f_{SR}

- 1. Apply window function
- 2. Fourier transform
- 3. Calculate amplitudes of bins
- 4. Find bin index with highest amplitude (i_{max})
- 5. Compute frequency of the bin $(f_b = i_{\text{max}} * \frac{f_{\text{SR}}}{|F|})$
- 6. Compute MIDI note number corresponding to frequency

$$\downarrow 2 \log \frac{f_b}{440} + \underbrace{12 * 2 \log \frac{f_b}{440}}_{\text{Distance from A}_4} + \underbrace{69}_{\text{A}_4 \text{ MIDI numbe}}$$

Basic estimator

Shortcomings

Latency

$$ightharpoonup$$
 F₂ - E₂ $pprox$ 5 Hz $ightharpoonup$ 200 ms frame time

Frame rate

$$\rightarrow$$
 Frame time $^{-1} \rightarrow$ 5 FPS

- Estimation quantization
- Octave problem
- Never silent

Low frame rate

- ullet Decrease frame time o decrease Fourier resolution
- Overlap frames

Low resolution \rightarrow interpolation

Zero-padding

- Increase frame size \rightarrow increase number of bins
- No resolution increase, only interpolation!

Quadratic interpolation (QIFFT)

- Fit Lagrange parabola through peak and neighbors
- Parabola peak is interpolated location
- Scaled magnitude spectrum

Peak picking and note selection

Basic estimator shortcomings:

- No silence
- Octave problem
- Solved by:
 - Pick significant peaks
 - Determine played note from picked peaks

Gaussian peak picking

- Gaussian envelope
- Moving average of spectrum
- Eliminates spectral leakage noise

Real-time monophonic pitch estimation

Note selection

- Set of peaks from peak picker
- QIFFT each peak
- Basic estimator: loudest peak
- Groups of overtones

Filtering

- Minimum peak/envelope/signal power
- Instrument range filter
- Signal-to-noise filter

HighRes estimator

- 1. Window function
- 2. Fourier transform
- 3. Calculate amplitudes
- 4. Calculate Gaussian envelope
- 5. Pick peaks
- 6. Interpolate peaks
- 7. Select note

Note that the input signal is overlapped and zero-padded Additional filtering at every stage

Digistring

29 Augustus 2022

Fourier size limit

- Resolution vs latency
- Lowest notes (E₂ and F₂)
- Pure sines: 5.33 ms
- Recordings: 30 ms
 - Dissonant
- Digistring: 42.67 ms

Pitch estimation speed

Pitch estimation accuracy

- Fraunhofer dataset
- ullet Polyphonic o use a subset
- 4 subsets, 3 monophonic
- Challenging dataset

First subset

- Single note recordings
- All positions up to 12th fret
- Every string
- 2 guitars
- 3 different pick-up combinations

version	correct	$t_{>0.9}$ correct	no interrupt
Fender	100 %	96 %	81 %
Ibanez N	100 %	96 %	76 %
Ibanez B	100 %	87 %	51 %
$Ibanez\ N{+}B$	100 %	92 %	67 %

Second subset

- 6 guitar licks
- 3 guitars
- Plectrum and finger style

version	correct	$t_{>0.8}$ correct
Fender pick	100 %	83 %
Fender finger	100 %	58 %
Gibson pick	100 %	75 %
Gibson finger	100 %	58 %
Aristides pick	100 %	79 %
Aristides finger	100 %	63 %

Third subset

- 5 excerpts of classical pieces
 - Only 2 monophonic

Conclusions

Contributions

- HighRes estimator
- Digistring

Conclusions

- Limited by Fourier resolution ⇔ latency
- 200 ms frame \rightarrow 43 ms frame
- Real-time constraint ⇔ lowest note

29 Augustus 2022

Digistring demo

Digistring demo

