PMat - praca domowa z dnia 11.12.2023

Gracjan Barski, album: 448189

October 22, 2024

Zadanie 409:

Najpierw pokażmy, że "≤" jest porządkiem częściowym.

- 1) Zwrotność: Weźmy $f \in \mathbb{N}^{\mathbb{N}}$. Wiadomo, że zachodzi $\forall_{n \in \mathbb{N}} f(n) \leq f(n)$, więc $f \leq f$.
- 2) Antysymetria: Weźmy $f,g\in\mathbb{N}^{\mathbb{N}}$ takie że $f\preceq g$ i $g\preceq f$. Z tego mamy:

$$\forall_{n \in \mathbb{N}} f(n) \le g(n) \land \forall_{n \in \mathbb{N}} g(n) \le f(n)$$

Z komutywności kwantyfikatora ogólnego i koniunkcji otrzymujemy:

$$\forall_{n \in \mathbb{N}} f(n) \le g(n) \land g(n) \le f(n)$$

Czyli

$$\forall_{n \in \mathbb{N}} f(n) = g(n)$$

Więc wnioskujemy f = g.

3) Przechodniość: Weźmy $f,g,h\in\mathbb{N}^{\mathbb{N}}$ takie że $f\preceq g$ i $g\preceq h$. Z tego mamy:

$$\forall_{n \in \mathbb{N}} f(n) \le g(n) \land \forall_{n \in \mathbb{N}} g(n) \le h(n)$$

Z komutywności kwantyfikatora ogólnego i koniunkcji otrzymujemy:

$$\forall_{n \in \mathbb{N}} f(n) \le g(n) \land g(n) \le h(n)$$

Z przechodniości relacji "<":

$$\forall_{n \in \mathbb{N}} f(n) \le h(n)$$

Więc $f \leq h$.

Więc mamy porządek częściowy.

Weźmy funkcję $f \in \mathbb{N}^{\mathbb{N}}$ określoną wzorem $f = \lambda n$. 0. Weźmy dowolną funkcję $g \in \mathbb{N}^{\mathbb{N}}$. Zachodzi $\forall_{n \in \mathbb{N}} g(n) \geq 0$ ponieważ przeciwdziedziną funkcji g jest \mathbb{N} . Z tego otrzymujemy:

$$\forall_{n \in \mathbb{N}} f(n) < q(n)$$

Czyli f jest "mniejsze" od każdego elementu $\mathbb{N}^{\mathbb{N}}$, czyli jest w tym porządku elementem najmniejszym, a co za tym idzie jest też jedynym elementem minimalnym.

Teraz pokażę, że nie istnieje element maksymalny.

Załóżmy niewprost, że istnieje element maksymalny. Weźmy $f \in \mathbb{N}^{\mathbb{N}}$ które jest elementem maksymalnym. Z definicji to znaczy:

$$\forall_{g \in \mathbb{N}^{\mathbb{N}}} \ f \leq g \Longrightarrow f = g \tag{1}$$

Ale jeśli weźmiemy funkcję $g \in \mathbb{N}^{\mathbb{N}}$ określoną wzorem $g = \lambda n.f(n) + 1$ to taka funkcja g, łamie warunek (1), ponieważ $f \leq g \land f \neq g$. więc sprzeczność, a to oznacza, że funkcja maksymalna nie istnieje. Co za tym idzie, nie istnieje również element maksymalny.

Teraz nieskończony łańcuch w tym porzadku: Weźmy zbiór:

$$\{\lambda n.k \mid k \in \mathbb{N}\}$$

Jest to zbiór wszystkich funkcji stałych w $\mathbb{N}^{\mathbb{N}}$. Niewątpliwie są one wszystkie ze sobą porównywalne, ponieważ ten zbiór jest trywialnie izomorficzny ze zbiorem $\langle \mathbb{N}, \leq \rangle$, który jest łańcuchem.

Teraz nieskończony antyłańcuch: Zdefiniujmy funkcję f_k :

$$f_k = \lambda n$$
. if $n == k$ then 1 else 0

Weźmy zbiór tych funkcji:

$$A = \{ f_k \mid k \in \mathbb{N} \}$$

Oczywiste, że ten zbiór jest nieskończony. Weźmy dowolne $f_k, f_l \in A$ takie, że $k \neq l$. Teraz rozpatrzmy wartości funkcji w k, l:

$$f_k(k) = 1 \ge 0 = f_l(k)$$

oraz

$$f_k(l) = 0 \le 1 = f_l(l)$$

Więc oczywiście nie zachodzi $f_k \leq f_l$ ani $f_l \leq f_k$. Więc wszystkie dowolne pary nie są porównywalne, więc jest to antyłańcuch.

Nie jest to liniowy porządek, ponieważ istnieją elementy które nie są ze sobą porównywalne, chociażby f_1 i f_2 (jak pokazano powyżej). W skrypcie stoi, że porządek gęsty jest liniowy, jednak w niektórych innych źródłach stoi, że nie musi on być liniowy, więc rozpatrzę gęstość tego porządku:

Weźmy takie dwie funkcje $f, f_0 \in \mathbb{N}^{\mathbb{N}}$ takie że $f = \lambda n$. 0. Jasne jest, że $f \leq f_0$. Jedyne co rozróżnia te dwie funkcje to wartość w n = 0, i różni się ona tylko o 1, dla pozostałych argumentów są takie same, więc nie istnieje żadna funkcja g spełniająca ($f \leq g \wedge g \leq f_0 \wedge g \neq f \wedge g \neq f_0$). Wnioskujemy, że porządek nie jest gesty.

Teraz zadanie dodatkowe. Mamy relację funkcji częściowych $\langle \mathbb{N} \rightharpoonup \mathbb{N}, \preceq \rangle$:

$$f \leq g \iff \forall_{n \in \text{dom}(f)} \ x \in \text{dom}(g) \land f(x) = g(x)$$

Czyli f i g są ze sobą w relacji gdy dom $(f) \subseteq \text{dom}(g)$ oraz wartości w dom(f) są takie same. Musimy znaleźć maksymalny łańcuch w tym porządku, który jest izomorficzny z $\langle [0;1], \leq \rangle$. Wiemy, że izomorfizm wymaga, aby zbiory miały taką samą moc. $|[0;1]| = \mathfrak{c}$. Sprawdźmy jaką ma moc dowolny maksymalny łańcuch w danym porządku.

Jasne jest, że najmniejszy element tego łańcucha to funkcja, której dziedziną jest zbiór pusty, więc będzie to też najmniejszy element w poszukiwanym łańcuchu maksymalnym. Jasnym jest też, że elementy maksymalne, to wszystkie funkcje, których dziedzina to $\mathbb N$. Więc w łańcuchu może być tylko jedna taka funkcja, i będzie elementem największym. Nasze poszukiwania maksymalnego łańcucha funkcji w tym porządku sprowadzają się do poszukiwania maksymalnego łańcucha w $\langle \mathcal{P}(\mathbb N),\subseteq \rangle$, ponieważ wartości funkcji nie grają roli, muszą być takie same we wszystkich dziedzinach, więc mamy jeden wybór. Rozpatrujmy takie funkcje $f_X\colon X\to \mathbb N$ określone wzorami $f_X=\lambda n.$ 0

Skoro mamy już ustalony element najmniejszy (f_{\varnothing}) , to następna funkcja w łańcuchu musi mieć dziedzinę, która różni się od poprzedniej o co najmniej jeden element, więc weźmy taką, która różni się o jeden, na przykład $A = \{0\}$. Istotnie $f_{\varnothing} \leq f_A$. Analogicznie, następna funkcja, też musi różnić się o co najmniej jeden element w dziedzinie, aby być w relacji z poprzednimi i być różną. Weźmy za dziedzinę zbiór $B = \{0,1\}$. Istotnie $f_{\varnothing} \leq f_B$ oraz $f_A \leq f_B$. Można kontynuować takie działanie aż otrzymamy $f_{\mathbb{N}}$. I wtedy jasne jest, że moc takiego łańcucha jest równa \aleph_0 . Więc izomorfizm pomiędzy takim łańcuchem a $\langle [0;1], \leq \rangle$ nie istnieje. Innym argumentem za tym że taki izomorfizm nie istnieje, może być fakt, że taki żaden maksymalny łańcuch w tym porządku nie jest gęsty (na przykład pomiędzy f_{\varnothing} i $f_{\{0\}}$ nie istnieje żadna inna funkcja pomiędzy), a łańcuch $\langle [0;1], \leq \rangle$ jest trywialnie gęsty.