Identifying Repeated Patterns in Music Using Sparse Convolutive Non-Negative Matrix Factorization ISMIR 2010

Ron Weiss Juan Bello {ronw,jpbello}@nyu.edu

Music and Audio Research Lab New York University

August 10, 2010

Repetitive patterns in music

- Repetition is ubiquitous is music
 - long-term verse-chorus structure

repeated motifs

- Can we identify this structure directly from audio?
 - What about the repeated units?

Proposed approach

- Treat song as concatenation of short, repeated template patterns
- Inspired by source separation / text topic modeling
 - Convolutive Non-negative Matrix Factorization (NMF)

Beat-synchronous chroma features [Ellis and Poliner, 2007]

- Summarize energy at each pitch class during each beat
- Normalize frame energy to ignore dynamics

SI-PLCA [Smaragdis and Raj, 2007]

Shift-invariant Probabilistic Latent Component Analysis
 i.e. probabilistic convolutive NMF

- Decompose matrix V into weighted (by Z) sum of latent components
 each component is convolution of basis W with activations H
- Short-term structure in W, long-term structure in H
- Must specify number, length of patterns
- Iterative EM learning algorithm

Learning algorithm example - Initialization

Learning algorithm example - Converged

Sparsity

- Encourage sparse (mostly zero) parameters using prior distributions
- Use entropic prior over activations H [Smaragdis et al., 2008]
 - low entropy ⇒ less uniform
- Leads to more meaningful patterns
 - but reduces temporal information in activations
 - \bullet sparse H \Longrightarrow dense W

Automatic relevance determination [Tan and Févotte, 2009]

- Avoid having to specify number of patterns in advance
 - Initialize decomposition with large number of patterns
 - Sparse Dirichlet distribution over mixing weights Z
 - Discard unused patterns

Sparse learning example – Initialization

Sparse learning example - Converged

Applications: Riff identification / Thumbnailing

- Reconstruct song using a single pattern
 - Sparse activations
 - Riff length known in advance (for now)
 - Thumbnail corresponds to largest activation in H

Applications: Structure segmentation

- Identify long-term song structure (verse, chorus, bridge, etc.)
- Assume one-to-one mapping between chroma patterns and segments
- Use SI-PLCA decomposition with longer patterns
 - no prior on activations

Structure segmentation example

Structure segmentation example 2

segments tend to be broken into multiple motifs

Experiments'

Evaluate on 180 songs from The Beatles catalog

System	f-meas	prec	recall	over-seg	under-seg
[Mauch et al., 2009]	0.66	0.61	0.77	0.76	0.64
SI-PLCA (sparse Z)	0.60	0.58	0.68	0.61	0.56
SI-PLCA (rank=4)	0.58	0.60	0.59	0.56	0.59
[Levy and Sandler, 2008]	0.54	0.58	0.53	0.50	0.57
Random	0.30	0.36	0.26	0.07	0.24

- Compare to systems based on self-similarity and HMM clustering
 - middle of the pack performance
 - \bullet sparse Z gives $\sim 10\%$ improvement in recall over fixed rank
- Needs better post-processing?

Summary

- Novel algorithm for identifying repeated harmonic patterns in music
- Use sparsity to minimize number of fixed parameters, control structure
- Applications to thumbnailing and structure segmentation
- Future work
 - Adaptive model of pattern length, better downbeat alignment
 - 2D convolution to compensate for key changes
 - Time-warp invariance (beat-tracking errors, fixed hop size)

Open source Python/Matlab implementation available: http://ronw.github.com/siplca-segmentation

References

Ellis, D. and Poliner, G. (2007).

Identifying 'cover songs' with chroma features and dynamic programming beat tracking. In *Proc. ICASSP*, pages IV–1429–1432.

Levy, M. and Sandler, M. (2008).

Structural Segmentation of Musical Audio by Constrained Clustering. *IEEE Trans. Audio, Speech, and Language Processing,* 16(2).

Mauch, M., Noland, K. C., and Dixon, S. (2009).

Using musical structure to enhance automatic chord transcription. In *Proc. ISMIR*, pages 231–236.

Smaragdis, P. and Raj, B. (2007).

Shift-Invariant Probabilistic Latent Component Analysis. Technical Report TR2007-009, MERL.

Smaragdis, P., Raj, B., and Shashanka, M. (2008).

Sparse and shift-invariant feature extraction from non-negative data. In *Proc. ICASSP*, pages 2069–2072.

Tan, V. and Févotte, C. (2009).

Automatic Relevance Determination in Nonnegative Matrix Factorization. In *Proc. SPARS*.