Body A (radius r, mass m_2) has a torque $M_r = \alpha t$, where $\alpha = const.$ B body has a mass m_1 . It goes up. We need to find angular velocity if A is just a uniform cylinder.

Initial conditions: t = 0, $\omega_0 = 0$.

Answer:
$$\omega = \frac{t(\alpha t - 2m_1gr)}{r^2(m_2 + 2m_1)}$$

HINTS:

- 1) Ahtung! Different notations
 - Q Linear momentum
 - K linear, angular momentum
 - L angular (sic!) momentum

Be aware! It's a good practice to write a legend

2)
$$L = M_0(Q) = Q \times R$$

Angular Linear 3)
$$L = J_o w$$

4) Change inertia for other point.

Example: know 70

need
$$J_{k-} > J_{k} = J_{o} + n(ok)^{2}$$

5) Need to choose 1 point $\frac{dL}{dt} = 2M$

Research Object:

System, consists of A - Disk, B - block

Motion:

A - rotation motion, B - translatory motion

Conditions:

initial final
$$+=0$$
 $+-?$ $4-?$ $4-?$

Solution:
$$\frac{d\zeta}{dz} = \frac{2M}{2M} = \frac{2M}{$$

Force Analysis: $P_1 = mq$; $P_2 = mq$; $P_3 = mq$; $P_4 = 2d$ $Z_0 = R_2$; $Y_0 = R_2$; $Y_0 = R_2$; $P_4 = mq$; $P_4 = mq$; $P_4 = mq$; point

Solution: $\frac{df}{df} = 2M = mq$; $\frac{df}{df} = 2M\pi$ $\frac{df}{df} = 2M = mq$; $\frac{df}{df} = 2M\pi$ $\frac{df}{df} = 2M = mq$; $\frac{df}{df} = 2M\pi$ $\frac{df}{df} = 2M = mq$; $\frac{df}{df} = 2M\pi$ $\frac{df}{df} = 2M = mq$; $\frac{df}{df} = 2M\pi$ $\frac{df}{df} = 2M = mq$; $\frac{df}{df} = 2M\pi$ $\frac{$ $= 24 - mgv =)(\omega)$

