Lecture17: CMOS amplifier, excercise

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Common-gate amplifier

- Why do we study other amplification topologies?
 - Different circuit properties
- Common-gate amplifier

Small-signal model

Let's draw the small-signal model together!

Gain & input impedance (1/2)

- Neglect the output resistance, r_0 .
 - Voltage gain

$$A_v = +g_m R_D$$

Input impedance

Gain & input impedance (2/2)

- Consider the output resistance, r_o .
 - Voltage gain

$$A_v = +\left(g_m + \frac{1}{r_O}\right)(R_D||r_O)$$

Output impedance

Same with the CS stage

$$R_{out} = r_O ||R_D|$$

Generic form of CS and CG stages

Setting for calculating R_{out}

Source follower

- Also called the "common-drain" stage
 - The drain is ac ground.
- Wait a minute!
 - Is it a real amplifier?

Its core

• Gain is less than 1?? (Neglecting r_0)

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$

You should be able to draw the small-signal model.

Useless?

- Calculate the input and output impedances.
 - Since the gate is the input terminal, the input impedance is very high at low frequencies.
 - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
 - They can serve as good "buffers."

