NYCU-EE ICLAB - Spring 2023

Lab12 Power Rail Analysis Practice Tutorial

1. Flow overview

2. Set environment

- unix% tar -xvf ~iclabta01/Lab12.tar
- unix% cd Lab12/Practice/05 APR
- unix% mkdir power_log (You will save all the things here)
- unix% innovus
- Restore the design DBS/CHIP.inn

3. Static Power Analysis

- 1. Save CHIP.v
- 2. Write CHIP.sdf
- **3.** Run post simulation at 06_POST, the generated waveform CHIP POST.fsdb will be used for power rail analysis.
- 4. In the innovus menu, open Power -> Power Analysis -> Setup

i. Click OK.

5. In the innovus menu, open Power -> Power Analysis -> Run

- i. ◆Activity FILE ◆FSDB
- ii. Fill the information:
 - Select CHIP_POST.fsdb (from 06_POST)
 - Scope: TESTBED/u CHIP
 - Start: 0; Stop: 1000
 - Press Add
- iii. Results Directory: power log
- iv. Click OK.

v. Results appear at terminal

4. Create Power Grid Library

In the innovus menu, open Power -> Rail Analysis -> Set PG Library
 Mode

- i. Cell type: ◆Tech Only
- ii. Filler Cell Names: FILL1 FILL16 FILL2 FILL32 FILL4 FILL64 FILL8
- iii. Extraction
 - Extraction tech file: Library/rc/RCGen.tch (File of type: All files(*))
 - LEF Layermap: Library/layermap/lefdef.layermap
- iv. Supply Pins

• Voltages: 1.8

• Power pin: **VDD**

Ground pin: VSS GND

v. Click OK

- In the innovus menu, open Power -> Rail Analysis -> Generate PG
 Library
 - i. Choose power_log
 - ii. Click OK

iii. Check if the directory **techonly.cl** exists (under power_log/)

- In the innovus menu, open Power -> Rail Analysis -> Set PG Library
 Mode
 - i. Cell type: ◆Std Cells
 - ii. Filler Cell Names: FILL1 FILL16 FILL2 FILL32 FILL4 FILL64 FILL8
 - iii. Extraction
 - Extraction tech file: Library/rc/RCGen.tch
 - LEF Layermap: Library/layermap/lefdef.layermap
 - iv. Supply Pins
 - Voltage: 1.8
 - Power pin: VDD
 - Ground pin: VSS GND
 - v. Click **OK**.

- 4. In the innovus menu, open Power -> Rail Analysis -> Generate PG Library
 - i. Click OK
 - ii. Check if the directory **stdcells.cl** exists (under power_log/)

5. Rail Analysis

- In the innovus menu, open Power -> Rail Analysis -> Setup Rail Analysis
 - i. Analysis Method: ◆ Static
 - ii. PowerGrid Libraries:

power_log/technoly.cl (should be added first)
power_log/stdcells.cl

iii. Click OK

In the innovus menu, open Power -> Rail Analysis -> Run Rail Analysis

- i. ◆ Domain Based Domain Name: PD
- ii. Power Net(s): VDD Voltage(s): 1.8 Threshold:1.7 (Press \overline{ADD})

 Power Net(s): GND Voltage(s): 0 Threshold:0.1 (Press \overline{ADD})

 (1.8v * 5% \approx 0.1v)
- iii. Power/Current Files(s):
 power_log/static_VDD.ptiavg

power_log/static_GND.ptiavg

- iv. Power Pads: ♦ XY File
- v. Click Create
 - Net Name: VDD
 - Click Fetch
 - Save as power_log/CHIP_VDD.pp
- vi. Click Create again
 - Net Name: GND
 - Click Fetch
 - Save as power_log/CHIP_GND.pp
- vii. Click Cancel
- viii. File: power_log/CHIP_VDD.pp Net Name: VDD (press ADD)
 - ix. File: power_log/CHIP_GND.pp Net Name: GND (press ADD)
 - x. Results Directory: **power_log**
 - xi. Click **OK**

6. Power & IR Drop Results

- 1. In the innovus menu, open Power -> Report -> Power & Rail Result
 - i. ◆Auto Apply for Color Scale
 - ii. Click DB Setup
 - Power Databas: power log/power.db
 - Rail Database: power_log/PD_25C_avg_1
 - Click OK
 - iii. Type: ♦Rail
 - iv. Choose ir IR Drop

i. ◆Result Browser

The following shows the distribution of IR Drop (they should in the range 0.1V)

Appendix - Provided library files

- Timing libraries

Directory	Contain
/05_APR/Library/lib/	slow.lib
	fast.lib
	umc18io3v5v_slow.lib
	umc18io3v5v_fast.lib

- Physical libraries

Directory	Contain
/05_APR/Library/lef/	umc18_6lm.lef
	umc18_6lm_antenna.lef
	umc18io3v5v_6lm.lef

- RC extraction table/files

Directory	Contain
/05_APR/Library/rc/	umc18_1p6m.captbl
	RCGen.tch

- CeltIC libraries

Directory	Contain
/05_APR/Library/cdb/	slow.cdb
	fast.cdb

- Layermap

Directory	Contain
/05_APR/Library/layermap/	lefdef.layermap
	qrc_lefdef.layermap