EXÁMENES ANTERIORES

1 Discutir el sistema en función del valor de y . Calcular las soluciones para los valores de y que hacen el sistema compatible
Sea la matriz, entonces
Si , entonces el igual a número de incógnitas, el sistema es compatible determinado y se resuelve por Cramer.
Si
Si, entonces, el sistema es incompatible.
Si el sistema es compatible indeterminado.
2 Discutir y calcular las soluciones del sistema de ecuaciones con incógnitas

Sistema compatible indeterminado	
3 Sea una matriz de orden . Demostrar que si es impar, matriz identidad) y , entonces .	(es la
4 Sea una matriz de orden . Si , demostrar que .	

5	Sean	números	reales of	aue	y consideremos	la matriz
0.	Duair		I CUICD (440	y combined circo	id illuci iz

- i) Probar que la matriz es simétrica (es decir), siendo la matriz identidad de orden 3.
- ii) Demostrar que.

Es muy fácil, ya que

6.- Sean y dos matrices y respectivamente. Calcular los rangos de ambas sabiendo que .

Por la hipótesis, no pueden ser matrices cuadradas. Supongamos por ejemplo . Entonces, , y como es una matriz cuadrada de orden , su rango no es máximo y su determinante es nulo. Por hipótesis entonces, , y como tiene orden resulta . Pero tanto como tienen rango , luego concluimos que su rango es exactamente .

7.- Dadas las matrices, . Calcular el valor de para que.

Como

entonces
8 Si dos matrices no necesariamente cuadradas cumplen que (matriz identidad de orden), demostrar que entonces ambas tienen rango máximo.
Sean,
Si
Si se procede de forma análoga.
9 Sean y números reales y consideremos los subespacios de dados por las ecuaciones siguientes (respecto de la base estándar de)
Calcular las dimensiones de y .¿Existen valores de y para los que ?
Las dimensiones de y se calculan como sigue

Como y tienen la misma dimensión, la condición equivale a . Por otro lado, una base de es la formada por los vectores , luego la condición equivale a que esos dos vectores estén en .

Sustituyendo sus coordenadas en las ecuaciones de se concluye que eso ocurre si y sólo si

En consecuencia, si y sólo si.

10.- Sea una base del espacio vectorial, sea el subespacio vectorial del que unas ecuaciones implícitas respecto de son

y sea . Obtener una base del espacio vectorial cociente y calcular las coordenadas, respecto de dicha base, de la clase .

Resolviendo las ecuaciones implícitas de , obtenemos las paramétricas

de modo que los vectores cuyas coordenadas son , forman una base de . Añadiendo los vectores y obtenemos una base de , luego generan un suplementario de y sus clases son una base del cociente .

Para la segunda parte, las coordenadas buscadas cumplen , esto es, . Las coordenadas de respecto de son

luego está en el subespacio si y sólo si esas coordenadas cumplen las ecuaciones implícitas de

_			_
$\mathbf{D} \sim \alpha c$	stri on do	agta gigtam	a obtenemos
RHSI	111/10/11/11	POLE CICIEIII	aomenemos

a) Calcular las dimensiones de y.

Dimensión de

b) Calcular las dimensiones de y.

La ecuación implícita de es

, son los vectores de la forma , por lo tanto tiene dimensión , así

12.- Estudiar si es un subespacio vectorial de.

Son los vectores de la forma , como los dos vectores son independientes es un subespacio vectorial de dimensión .

13.- Sea el espacio vectorial de los polinomios en la variable con coeficientes reales. Se considera en los polinomios , , . Estudiar si

forman una base del subespacio vectorial, de los polinomios reales de grado menor o igual a dos.

Una base la forman

Entonces es un sistema generador formado por tres vectores en un espacio vectorial de dimensión tres, luego es una base.

14.- Calcular las bases de los subespacios de y, siendo y el subespacio vectorial generado por los vectores y.

Como , entonces los vectores son de la forma , por tanto los vectores " generan y son independientes, luego forman una base.

Como está generado por los vectores de y no pertenece a , los vectores anteriores con el forman una base de .

Conocemos que

Puesto que, forma una base de.

15.- Sea el espacio vectorial de las matrices cuadradas con coeficientes en y sean y. Calcular las bases de los subespacios y.

Si escribimos y, entonces es muy fácil demostrar que una base de es y una base de es. Por lo tanto y.

Como el vector, se tiene que y, luego las bases serán las de y las de.

16 Dado el espacio vectorial y los subespacios
a) Estudiar si es igual a .
No lo es, puesto que el pertenece a pero no pertenece a.
b) Estudiar si es suma directa.
No es directa, puesto que pertenece a .
c) Estudiar si es suma directa de y.
Si lo es, ya que y.
17 Sean y dos bases de y sea la aplicación lineal tal que , , . Determinar la matriz asociada a respecto a la base en el espacio de partida y la base en el espacio de llegada.
Resolviendo el sistema se tiene

La matriz asociada a es