Refer to the calf infection study discussed in lecture. Let n_3 denote the number of calves with primary, secondary, and tertiary infections, n_2 the number with only primary and secondary infections, n_1 the number with only a primary infection, and n_0 the number that were never infected. Let θ be the probability of a primary infection. Consider a model where the rate of infection is constant. That is,

$$P(\text{tertiary} \mid \text{secondary}, \text{primary}) = P(\text{secondary} \mid \text{primary}) = P(\text{primary}).$$

- 1. Derive the maximum likelihood estimator of θ under the constant infection rate model.
- 2. We observe data $n_0=63,\,n_1=63,\,n_2=25,\,n_3=5$. Compute the mle $\widehat{\theta}$ and the estimated probabilities $\pi_o\left(\widehat{\theta}\right)$.
 - 3.
 - (a) Compute the statistic G^2 and the p-value for testing the constant infection rate model.
 - (b) Provide an interpretation, stated in the context of the problem.
 - 4.
 - (a) Compute $\hat{\pi}$, the estimated probability vector under the full model.
 - (b) Compute the estimated conditional probabilities of further infection under the full model.
 - (c) Provide an interpretation, stated in the context of the problem.