	Problem 1 c) Prove that order any affine transformation,
	the ratio of parallel line segments is invariant, but the ratio of
	non-parallel line somets is not invaliant.
	Given some Vector p, an affine transformation is defined as:
	A(p) = M.p.+ b
	For parallel line segments:
_	
_	As in part a), we know f.(K,-Ks) = (l,-l,), fell
_	Then: 11(k-1)11 = 11f.(n,-n)11 = f.11(k,-n)11 = f
	11 (M, - M2) / 11 (M, - M2) / 11 (M, - M3) / 11
_	
-	Using affire transformation:
_	11 (AA D . 1)
	$\frac{\ (M \cdot l_1 + b) - (M \cdot l_2 + b)\ }{\ (M \cdot l_1 + b)\ } = \frac{\ M \cdot (l_1 - l_2)\ }{\ (M \cdot l_1 + b)\ }$
	11(M·h, +b) - (M·Hz+b)11 11M·(h, - Hz)11
	$= M \cdot f \cdot (M - M) = f \cdot M \cdot (M - M) = f \partial E. D. ratio of$
i	$= M \cdot f \cdot (H_1 - H_2) = f \cdot M \cdot (H_1 - H_2) = f \cdot Q \cdot E \cdot D \cdot For the order $
	is preserved
	For non-parallel line segments:
- 0	
	By counterexample:
	Given K, = (0,0,0), K2 = (0,1,0), l, = (0,0,0), l2 = (0,0,1)
39	Forming lines 1 and I each with length = 1
-	J J
	Now suppose matrix M in A copplier a multiplication across atis 2 than
	$K_1 = (0,0,0), K_2 = (0,2,0), V_1 = (0,0,0), V_2 = (0,0,1)$
1	Now line 11 has length 2, but line & Still har length 1.
	Thus, he take of now practed line segments her not been preserved. Q.E.D.
1	

-