GEANT4 GPU Port:

Test Report

Stuart Douglas – dougls2 Matthew Pagnan – pagnanmm Rob Gorrie – gorrierw Victor Reginato – reginavp

 $\begin{array}{c} \textbf{Version 0} \\ \textbf{March 20, 2016} \end{array}$

Contents

1	Intr	oduction
	1.1	Purpose of the Document
	1.2	Scope of the Testing
	1.3	Organization
	1.4	Note about Usability
2	Mod	dule Unit Testing 2
	2.1	Use of Automated Testing
	2.2	PerformInitialization
		2.2.1 Unit Tests
		2.2.2 Accuracy
		2.2.3 Performance
	2.3	OperatorEquals
		2.3.1 Unit Tests
		2.3.2 Accuracy
		2.3.3 Performance
	2.4	GetPoint
		2.4.1 Unit Tests
		2.4.2 Accuracy
		2.4.3 Performance
	2.5	GetX
		2.5.1 Unit Tests
		2.5.2 Accuracy
		2.5.3 Performance
	2.6	GetY
		2.6.1 Unit Tests
		2.6.2 Accuracy
		2.6.3 Performance
	2.7	GetXsec
		2.7.1 Unit Tests
		2.7.2 Accuracy
		2.7.3 Performance
	2.8	SetData
		2.8.1 Unit Tests
		2.8.2 Accuracy
		2.8.3 Performance
	2.9	SetX
		2.9.1 Unit Tests
		2.9.2 Accuracy
		2.9.3 Performance
	2.10	SetY
		2.10.1 Unit Tests 6

	2.10.2 Accuracy			6
	2.10.3 Performance			7
2.11	Init			7
	2.11.1 Unit Tests			7
	2.11.2 Accuracy			7
	2.11.3 Performance			7
2.12	CleanUp			7
	2.12.1 Unit Tests			7
	2.12.2 Accuracy			7
	2.12.3 Performance			8
2.13	SampleLin			8
	2.13.1 Unit Tests			8
	2.13.2 Accuracy			8
	2.13.3 Performance			8
2.14	Integrate			8
	2.14.1 Unit Tests			8
	2.14.2 Accuracy			8
	2.14.3 Performance			9
2 15	IntegrateAndNormalise			9
2.10	2.15.1 Unit Tests			9
				9
	2.15.2 Accuracy			9
2 16				9
2.10				9
	2.16.1 Unit Tests			-
	2.16.2 Accuracy			9
0.15	2.16.3 Performance			10
2.17	GetXsecBuffer			10
	2.17.1 Unit Tests			10
	2.17.2 Accuracy			10
	2.17.3 Performance			10
2.18	Dump			10
	2.18.1 Unit Tests			10
	2.18.2 Accuracy			10
	2.18.3 Performance			11
2.19	ThinOut			11
	2.19.1 Unit Tests			11
	2.19.2 Accuracy			11
	2.19.3 Performance			11
2.20	Sample			11
	2.20.1 Unit Tests			11
	2.20.2 Accuracy			11
	2.20.3 Performance			12
2.21	Check			12
	2.21.1 Unit Tests			12

5	Cha	nges after Testing	17
	4.2	Modules	16
4	Trac 4.1	ceability Requirements	16 16
J	3.1 3.2	Summary of Tests Performed	16 16
3	Sne	cific System Tests	16
		2.28.3 Performance	16
		2.28.2 Accuracy	15
		2.28.1 Unit Tests	15
	2.28	Merge	15
		2.27.3 Performance	15
		2.27.2 Accuracy	15
		2.27.1 Unit Tests	15
	2.27	SetScheme	15
		2.26.3 Performance	15
		2.26.2 Accuracy	14 14
	2.20	SetInterpolationManager	$\frac{14}{14}$
	2 26	2.25.3 Performance	14 14
		2.25.2 Accuracy	14 14
		2.25.1 Unit Tests	14
	2.25	SetPoint	14
	0.05	2.24.3 Performance	14
		2.24.2 Accuracy	13
		2.24.1 Unit Tests	13
	2.24	GetIntegral	13
		2.23.3 Performance	13
		2.23.2 Accuracy	13
		2.23.1 Unit Tests	13
	2.23	GetLabel	13
		2.22.3 Performance	13
		2.22.2 Accuracy	12
		2.22.1 Unit Tests	12
	2.22	GetVectorLength	12
		2.21.2 Accuracy	12
		2.21.2 Accuracy	12

Revision History

All major edits to this document will be recorded in the table below.

Table 1: Revision History

Description of Changes	Author	Date	
Initial draft of document	Matt, Rob, Victor, Stuart	2016-03-18	
Template of document	Matt	2016-03-15	

List of Figures

Tables and figures for specific unit tests have been omitted in order to keep this document readable.

Table #	Title
1	Revision History
??	Definitions and Acronyms
??	General Unit Test Variables
57	Tests and Requirements Relationship
58	Tests and Modules Relationship

Definitions and Acronyms

Table 2: Definitions and Acronyms

2 Term	Description
GEANT4	Open-source software toolkit used to simulate the passage of par-
	ticles through matter
GEANT4-GPU	GEANT4 with some computations running on the GPU
GPU	Graphics processing unit, well-suited to parallel computing tasks
CPU	Computer processing unit, general computer processor well-suited
	to serial tasks
CUDA	Parallel computing architecture for general purpose programming
	on GPU, developed by NVIDIA
RHEL	Red Hat Enterprise Linux Server
OS X	Operating system developed by Apple
2	

1 Introduction

1.1 Purpose of the Document

This document summarizes the testing and test conclusions of GEANT4-GPU. This document uses the implementation outlined in the test plan.

1.2 Scope of the Testing

The implemented tests are designed to give a general yet rigorous assessment of the components involved.

The tests are segregated into two categories: unit tests & system tests. The unit tests test function components of the G4ParticleVector module, and the system tests compare total system differences between CPU (original GEANT4) and GPU implementations. For both categories, performance and correctness are the key concerns. Neither the unit tests nor the system tests are concerned with the correctness of original GEANT4 runs, as these runs are used as the baseline for the correctness of GEANT4-GPU modules.

A basic knowledge of programming concepts and command-line tools is assumed, as well as familiarity with GEANT4.

1.3 Organization

In Section 4 we provide an introduction to this report. Section 5 describes the test cases which are carried out on each function. Section 6 describes system test cases that were carried out by our team. In section 7 traceability matrices to requirements and modules are documented. Section 8 provides a summary of changes made in response to the testing results.

1.4 Usability

GEANT4-GPU is a back end implementation of already existing GEANT4 modules. Therefore users will not be interacting with it directly. Since there is no direct user interaction with GEANT4-GPU. There are no usability test.

1.5 Robustness

The GEANT4-GPU functions are meant to mimic the already existing GEANT4 functions. Therefore the GEANT4-GPU functions must also mimic the robustness of the GEANT4 functions. The accuracy section for unit tests has several unit tests designed to test the robustness of the functions.

2 Module Unit Testing

2.1 Use of Automated Testing

Our testing is semi-automated. Due to the nature of this implementation we need to recompile GEANT4-GPU from GPU to CPU in order to get the CPU results to compare against the GPU results. We have a unit test file which preforms all our unit tests and writes the results into a file. The user will then have to manually recompile GEANT4-GPU with GPU acceleration off. Once the unit test file is run again another results file is generated. The comparing of the results is automated by feeding them to an application that we created that will compare the test results against each other. The program outputs a summary of any differences between the two results, if there are any.

2.2 General variables used for Unit Testing

The following are variables that are used for multiple unit tests. Instead of defining them again for each unit test they are defined here only once. Other variables used for specific unit tests will be defined in their respective unit test sections For all unit tests:

Name #	Type	Value
n	G4double	length of the G4ParticleHPVector
r0	G4double	0.000512
r1	G4double	1.58
r2	G4double	513.18
Empty	G4ParticleHPVector	Empty
A	G4ParticleHPVector	66 entries
В	G4ParticleHPVector	1509 entries
\mathbf{C}	G4ParticleHPVector	8045 entries
D	G4ParticleHPVector	41854 entries
${ m E}$	G4ParticleHPVector	98995 entries
F	G4ParticleHPVector	242594 entries

Table 3: General Unit Test Variables

2.3 Note about Performance testing

Tests on vectors A - F all behave the same. Showing accuracy for vectors A - F does not provide any extra useful information. Therefore only unit tests on vector D will be shown in the Unit Tests and Accuracy sections. Unit test interfaces for the other vectors will be omitted from this document in order to make it more readable. The

unit tests were still performed on the other vectors. These unit tests on vectors of different length are done to show how increasing the size of the vector increases the execution time of some functions

2.4 OperatorEquals

2.4.1 Unit Tests

Table 4: Unit Tests

Test #	Code	Description
1	Empty = Empty2	Assign an empty vector to another empty vector
2	D = Empty	Assign an empty vector to regular vector
3	Empty = D	Assign a vector to an empty vector
4	D = D	Assign a vector to itself
5	D = F	Assign a vector to another vector

2.4.2 Accuracy

Table 5: Accuracy

	ŭ
Test #	Status
??	Pass

2.4.3 Performance

2.5 GetPoint

2.5.1 Unit Tests

Table 6: Unit Tests

Test #	Code	Description
6	Empty.GetPoint(-1)	Get a point at a negative index from an empty vector
7	Empty.GetPoint(0)	Get a point at a the first index from an empty vector
8	Empty.GetPoint(1)	Get a point at an index out of bounds from an empty vector
9	D.GetPoint(-1)	Get a point at a negative index
10	D.GetPoint(0)	Get a point at a the first index
11	D.GetPoint(n/2)	Get a point at an index within the vector
12	D.GetPoint(n-1)	Get a point at the last index
13	D.GetPoint(n)	Get a point at an index our of bounds

2.5.2 Accuracy

Table 7: Accuracy

Test #	Status
??	Pass

2.5.3 Performance

2.6 GetX

2.6.1 Unit Tests

Table 8: Unit Tests

Test #	Code	Description
14	Empty.GetX(-1)	Set an xSec at a negative index of an empty vector
15	Empty.GetX(0)	Set an xSec at a the first index of an empty vector
16	Empty.GetX(1)	Set an xSec at an index out of bounds of an empty vector
17	D.GetX(-1)	Set an xSec at a negative index
18	D.GetX(0)	Set an xSec at a the first index
19	D.GetX(n/2)	Set an xSec at an index within the vector
20	D.GetX(n-1)	Set an xSec at the last index
21	D.GetX(n)	Set an xSec at an index our of bounds

2.6.2 Accuracy

Table 9: Accuracy

Test #	Status
??	Pass

2.6.3 Performance

2.7 GetY

2.7.1 Unit Tests

Table 10: Unit Tests

Test #	Code	Description
22	Empty.GetY(-1)	Get a point at a negative index of an empty vector
23	Empty.GetY(0)	Get a point at a the first index of an empty vector
24	Empty.GetY(1)	Get a point at an index out of bounds of an empty vector
25	D.GetY(-1)	Get a point at a negative index
26	D.GetY(0)	Get a point at a the first index
27	D.GetY(n/2)	Get a point at an index within the vector
28	D.GetY(n-1)	Get a point at the last index
29	D.GetY(n)	Get a point at an index our of bounds

2.7.2 Accuracy

Table 11: Accuracy

Test #	Status
??	Pass

2.7.3 Performance

2.8 GetXsec

2.8.1 Unit Tests

Table 12: Unit Tests

Test #	Code	Description
30	Empty.GetXsec(-1)	Get an xSec with a negative energy from an empty vector
31	Empty.GetXsec(0)	Get a xSec with an energy of zero from an empty vector
32	Empty.GetXsec(r1)	Get a xSec with a normal energy from an empty vector
33	D.GetXsec(-1)	Get a xSec with a negative energy
34	D.GetXsec(0)	Get a xSec with a zero energy
35	D.GetXsec(r0)	Get a xSec with a small energy
36	D.GetXsec(r1)	Get a xSec with a normal energy
37	D.GetXsec(r2)	Get a xSec with a large energy

2.8.2 Accuracy

Table 13: Accuracy

Test #	Status
??	Pass

2.8.3 Performance

2.9 SetData

2.9.1 Unit Tests

Table 14: Unit Tests

Test #	Code	Description
38	Empty.SetData(-1, r1, r2)	Set a point at a negative index of an empty vector
39	Empty.SetData(0, r1, r2)	Set a point at a the first index of an empty vector
40	Empty.SetData(1, r1, r2)	Set a point at an index out of bounds of an empty vector
41	D.SetData(-1, r1, r2)	Set a point at a negative index
42	D.SetData(0, r1, r2)	Set a point at a the first index
43	D.SetData(n/2, r1, r2)	Set a point at an index within the vector
44	D.SetData(n-1, r1, r2)	Set a point at the last index
45	D.SetData(n, r1, r2)	Set a point at an index our of bounds
46	D.SetData(0, -1, -1)	Set a point with a negative energy and xSec
47	D.SetData(0,0,0)	Set a point with a zero energy and xSec

2.9.2 Accuracy

Table 15: Accuracy

Test #	Status
??	Pass

2.9.3 Performance

2.10 SetEnergy

2.10.1 Unit Tests

Table 16: Unit Tests

Test #	Code	Description
48	Empty.SetEnergy(-1, r1)	Set an energy at a negative index of an empty vector
49	Empty.SetEnergy(0, r1)	Set an energy at a the first index of an empty vector
50	Empty.SetEnergy(1, r1)	Set an energy at an index out of bounds of an empty vector
51	D.SetEnergy(-1, r1)	Set an energy at a negative index
52	D.SetEnergy(0, r1)	Set an energy at a the first index
53	D.SetEnergy(n/2, r1)	Set an energy at an index within the vector
54	D.SetEnergy(n-1, r1)	Set an energy at the last index
55	D.SetEnergy(n, r1)	Set an energy at an index our of bounds
56	D.SetEnergy(0, -1)	Set an energy at an index within the vector to a negative value
57	D.SetEnergy(0, 0)	Set an energy at an index within the vector to a zero value

2.10.2 Accuracy

Table 17: Accuracy

Test $\#$	Status
??	Pass

2.10.3 Performance

2.11 SetXsec

2.11.1 Unit Tests

Table 18: Unit Tests

Test #	Code	Description
58	Empty.SetXsec(-1, r1)	Set an xSec at a negative index of an empty vector
59	Empty.SetXsec(0, r1)	Set an xSec at a the first index of an empty vector
60	Empty.SetXsec(1, r1)	Set an xSec at an index out of bounds of an empty vector
61	D.SetXsec(-1, r1)	Set an xSec at a negative index
62	D.SetXsec(0, r1)	Set an xSec at a the first index
63	D.SetXsec(n/2, r1)	Set an xSec at an index within the vector
64	D.SetXsec(n-1, r1)	Set an xSec at the last index
65	D.SetXsec(n, r1)	Set an xSec at an index our of bounds
66	D.SetXsec(0, -1)	Try to set a negative xSec
67	D.SetXsec(0, 0)	Try to set a zero xSec

2.11.2 Accuracy

Table 19: Accuracy

Test $\#$	Status
??	Pass

2.11.3 Performance

2.12 SetX

2.12.1 Unit Tests

Table 20: Unit Tests

Test #	Code	Description
68	Empty.SetX(-1, r1)	Set an energy at a negative index of an empty vector
69	Empty.Set $X(0, r1)$	Set an energy at a the first index of an empty vector
70	Empty.Set $X(1, r1)$	Set an energy at an index out of bounds of an empty vector
71	D.SetX(-1, r1)	Set an energy at a negative index
72	D.SetX(0, r1)	Set an energy at a the first index
73	D.SetX(n/2, r1)	Set an energy at an index within the vector
74	D.SetX(n-1, r1)	Set an energy at the last index
75	D.SetX(n, r1)	Set an energy at an index our of bounds
76	D.SetX(0, -1)	Set a negative energy
77	D.SetX(0, 0)	Set a zero energy

2.12.2 Accuracy

Table 21: Accuracy

Test #	Status
??	Pass

2.12.3 Performance

2.13 SetY

2.13.1 Unit Tests

Table 22: Unit Tests

Test #	Code	Description
78	Empty.SetY(-1, r1)	Set an xSec at a negative index of an empty vector
79	Empty.Set $Y(0, r1)$	Set an xSec at a the first index of an empty vector
80	Empty.Set $Y(1, r1)$	Set an xSec at an index out of bounds of an empty vector
81	D.SetY(-1, r1)	Set an xSec at a negative index
82	D.SetY(0, r1)	Set an xSec at a the first index
83	D.SetY(n/2, r1)	Set an xSec at an index within the vector
84	D.SetY(n-1, r1)	Set an xSec at the last index
85	D.SetY(n, r1)	Set an xSec at an index our of bounds
86	D.SetY(0, -1)	Set a negative xSec
87	D.SetY(0, 0)	Set a zero xSec

2.13.2 Accuracy

Table 23: Accuracy

Test #	Status
??	Pass

2.13.3 Performance

2.14 Init

2.14.1 Unit Tests

Table 24: Unit Tests

Test #	Code	Description
88 89	Empty.Init() D.Init()	Init an empty Vector Init a Vector

2.14.2 Accuracy

Table 25: Accuracy

Test #	Status
??	Pass
??	Pass

2.14.3 Performance

2.15 SampleLin

2.15.1 Unit Tests

Table 26: Unit Tests

Test #	Code	Description
90	Empty.SampleLin()	Sample an empty Vector
91	D.SampleLin()	Sample a Vector

2.15.2 Accuracy

Table 27: Accuracy

Test #	CPU	GPU
?? ??		GPU result GPU result

2.15.3 Performance

2.16 Integrate

2.16.1 Unit Tests

Table 28: Unit Tests

Test #	Code	Description
92 93	Empty.Integrate() D.Integrate()	Integrate an empty Vector Integrate a Vector

2.16.2 Accuracy

Table 29: Accuracy

Test #	Status
??	Pass
??	Pass

2.16.3 Performance

2.17 IntegrateAndNormalise

2.17.1 Unit Tests

Table 30: Unit Tests

Test #	Code	Description
94 95	Empty.IntegrateAndNormalise() D.IntegrateAndNormalise()	Integrate and normalize an empty Vector Integrate normalize a Vector

2.17.2 Accuracy

Table 31: Accuracy

Test #	Status
??	Pass
??	Pass

2.17.3 Performance

2.18 Times

2.18.1 Unit Tests

Table 32: Unit Tests

Test #	Code	Description
96	Empty.Times(-1)	Times an empty vector by a negative factor
97	Empty.Times(0)	Times an empty vector by zero
98	Empty.Times(1)	Times an empty vector by 1
99	Empty.Times(r1)	Times an empty vector by a random factor
100	D.Times(-1)	Times a vector by a negative factor
101	D.Times(0)	Times a vector by zero
102	D.Times(1)	Times a vector by 1
103	D.Times(r1)	Times a vector by a random factor

2.18.2 Accuracy

Table 33: Accuracy

Test #	Status
??	Pass

2.18.3 Performance

2.19 GetXsecBuffer

Table 34: General Unit Test Variables

Name	\mathbf{Size}	Description
emptyBuff	0	Array with no queries
singleBuff	1	Array with a single query
$\operatorname{smallbuff}$	50	Array with a small number of queries
normalBuff	1000	Array with a moderate number of queries
largeBuff	10000	Array with a large amount of queries
$\operatorname{negBuff}$	50	Array of queries with negative values
zeroBuff	50	Array of queries with values of zero
highBuff	50	Array of queries with values larger than the highest energy in the vector

2.19.1 Unit Tests

Table 35: Unit Tests

Test #	Code	Description
104	D.GetXsecBuffer(normalBuff, -1)	buffer with a negative size
105	Empty.GetXsecBuffer(emptyBuff, 0)	Empty buffer of xSec queries to an empty vector
106	Empty.GetXsecBuffer(normalBuff, 1000)	Normal buffer of xSec queries to an empty vecto
107	D.GetXsecBuffer(emptyBuff, 0)	Empty buffer of xSec queries
108	D.GetXsecBuffer(smalllBuff, 50)	Small number of queries
109	D.GetXsecBuffer(normalBuff, 1000)	Normal case
110	D.GetXsecBuffer(highBuff, 10000)	Large number of queries
111	D.GetXsecBuffer(negBuff, 1000)	Buffer of negative xSec queries
112	D.GetXsecBuffer(emptyBuff, 1000)	Buffer of zeros
113	$D.GetXsecBuffer(highBuff,\ 0)$	Buffer of high valued xSec queries

2.19.2 Accuracy

Table 36: Accuracy

Test #	Status
??	Pass

2.19.3 Performance

2.20 ThinOut

2.20.1 Unit Tests

Table 37: Unit Tests

Test #	Code	Description
114	Empty.ThinOut(r1)	ThinOut an empty Vector
115	D.ThinOut(-1)	ThinOut a Vector using a negative value
116	D.ThinOut(0)	ThinOut a Vector using a zero value
117	D.ThinOut(r0)	ThinOut a Vector using a small value
118	D.ThinOut(r1)	ThinOut a Vector using a normal value
119	D.ThinOut(r2)	ThinOut a Vector using a large value

2.20.2 Accuracy

Table 38: Accuracy

	· ·
Test #	Status
??	Pass

2.20.3 Performance

2.21 Sample

2.21.1 Unit Tests

Table 39: Unit Tests

Test #	Code	Description
120 121	Empty.Sample() D.Sample()	Sample an empty Vector Sample a Vector

2.21.2 Accuracy

Table 40: Accuracy

Test #	CPU	GPU
?? ??		GPU result GPU result

2.21.3 Performance

2.22 SetPoint

2.22.1 Unit Tests

- "rPoint" is a random G4ParticleHPDataPoint
- "nPoint" is a negative G4ParticleHPDataPoint
- "zPoint" is a zero G4ParticleHPDataPoint

Table 41: Unit Tests

Test #	Code	Description
122	Empty.SetPoint(-1, rPoint)	Set a point at a negative index of an empty vector
123	Empty.SetPoint(0, rPoint)	Set a point at a the first index of an empty vector
124	Empty.SetPoint(1, rPoint)	Set a point at an index out of bounds of an empty vector
125	D.SetPoint(-1, rPoint)	Set a point at a negative index
126	D.SetPoint(0, rPoint)	Set a point at a the first index
127	D.SetPoint(n/2, rPoint)	Set a point at an index within the vector
128	D.SetPoint(n-1, rPoint)	Set a point at the last index
129	D.SetPoint(n, rPoint)	Set a point at an index our of bounds
130	D.SetPoint(0, nPoint)	Set a negative point
131	D.SetPoint(0, zPoint)	Set a zero point

2.22.2 Accuracy

Table 42: Accuracy

Test #	Status
??	Pass

2.22.3 Performance

${\bf 2.23}\quad {\bf Get 15 percent Border}$

2.23.1 Unit Tests

Table 43: Unit Tests

Test #	Code	Description
132 133	Empty.Get15percentBorder() D.Get15percentBorder()	Get 15 percent Border of an empty vector Get 15 percent Border of a vector

2.23.2 Accuracy

Table 44: Accuracy

	110001100
Test #	Status
??	Pass
??	Pass

2.23.3 Performance

2.24 Get50percentBorder

2.24.1 Unit Tests

Table 45: Unit Tests

Test #	Code	Description
134 135	Empty.Get50percentBorder() D.Get50percentBorder()	Get 50 percent Border of an empty vector Get 50 percent Border of a vector
155	D.GetəopercentBorder()	Get 50 percent Border of a vector

2.24.2 Accuracy

Table 46: Accuracy

Test #	Status
?? ??	Pass Pass

2.24.3 Performance

3 Specific System Tests

3.1 Summary of Tests Performed

System tests will be performed by running the sample code packaged with the GEANT4 installation. The Hadr04 example will be run with different materials (i.e water, uranium) and number of events. The values and conditions that are changed per test are detailed in the table below.

Table 47: System Tests

Test #	Initial State	Inputs	Outputs	Description
136	Fresh start up	Events = 2000 Material = Water	Same output as non-GPU GEANT4	HADR04 no changes
137	Fresh start up	Events = 2000 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – basic example
138	Fresh start up	Events = 600 Material = Water	Same output as non-GPU GEANT4	HADR04 – Shorter test
139	Fresh start up	Events = 600 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – Shorter test
140	Fresh start up	Events = 20000 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – Long simulation stress Test
141	Fresh start up	Events = 0 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – no runs, Edge case

3.2 System Tests Results

This section will summarize all of the results from running tests 39 through 44. Each test has an accuracy section as well as a performance section. The accuracy of the results will be based on how well the values generated on the GPU match up with the values generated on the CPU. The performance metrics used will include user, system and real time required to run each system test.

3.3 System test # 39

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.3.1 Accuracy

Table 48: Accuracy Test #39

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron			
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
C14			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O16			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
017			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
018			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Alpha			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Deuteron			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Gamma			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Proton			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
	23		
	4.1		

3.3.2 Performance

Table 49: Performance Test $\#39$				
Type	CPU Time	GPU Time		
User	NA	NA		
Real	NA	NA		
System	NA	NA		

3.4 System test # 40

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.4.1 Accuracy

Table 50: Accuracy Test #40

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron			
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
U235			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
U238			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
U239			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Gamma			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Neutron			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA

3.4.2 Performance

Table 51: Performance Test #40

Type	CPU Time	GPU Time
User	NA	NA
Real	NA	NA
System	NA	NA

3.5 System test # 41

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.5.1 Accuracy

Table 52: Accuracy Test #41

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron			
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
O16			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O17			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O18			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Alpha			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Gamma			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Proton			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA

3.5.2 Performance

Table 53: Performance Test #41

Type	CPU Time	GPU Time
User	NA	NA
Real	NA	NA
System	NA	NA

4 Traceability

The following section is used to highlight the relations of implemented test cases to requirements and modules. In doing so, we hope to draw clear reasoning upon the inclusion of such tests.

4.1 Requirements

Below is a traceability table outlining test cases and the requirements they are related to:

Table 54: Tests and Requirements Relationship

Test #	Description	Requirement
1	Performance test of	Req. # 4 (Speed and Latency)
	functions	
2	InitializeVector	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
3	Setters and Getters	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
4	GetXSec	Req $\#$ 5 & 6 & 7 (Precision & Reliability
		& Robustness)
5	ThinOut	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
6	Merge	Req $\#$ 5 & 6 & 7 (Precision & Reliability
		& Robustness)
7	Sample	Req $\#$ 5 & 6 & 7 (Precision & Reliability
		& Robustness)
8	GetBorder	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)

9	Integral	Req # 5 & 6 & 7 (Precision & Reliability & Robustness)
10	Times	Req # 5 & 6& 7 (Precision & Reliability & Robustness)
11	Assignment	Req # 5 & 6 & 7 (Precision & Reliability & Robustness)
12	System Test	Req # 1 & 2 & 8 & 11 (Adjacent Systems & Access)

4.2 Modules

Similarly, the following is a traceability table explicitly relating test cases to modules:

Table 55: Tests and Modules Relationship

Test #	Description	Module
1	Performance test of	G4ParticleVector
	functions	
2	InitializeVector	G4ParticleVector
3	SettersandGetters	G4ParticleVector
4	GetXSec	G4ParticleVector
5	ThinOut	G4ParticleVector
6	Merge	G4ParticleVector
7	Sample	G4ParticleVector
8	GetBorder	G4ParticleVector
9	Integral	G4ParticleVector
10	Times	G4ParticleVector
11	Assignment	G4ParticleVector
12	System Test	G4NeutronHPDataPoint &
		G4ParticleVector & CMake Files

5 Changes after Testing