Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models

Qingyu Lu $^{\Diamond}$, Baopu Qiu $^{\flat}$, Liang Ding $^{\sharp}$, Kanjian Zhang $^{\Diamond \spadesuit *}$, Tom Kocmi $^{\heartsuit}$, Dacheng Tao $^{\natural}$

♦ Southeast University Nanjing University The University of Sydney

◆Southeast University Shenzhen Research Institute [♥]Microsoft [†]Nanyang Technological University
■ luqingyu@seu.edu.cn, qiubaopu@smail.nju.edu.cn,
liangding.liam@gmail.com, tomkocmi@microsoft.com

https://github.com/Coldmist-Lu/ErrorAnalysis_Prompt

TL;DR: We propose a new prompting method – "Error Analysis Prompting" for translation evaluation. By combining Chain-of-Thoughts and Error Analysis, this technique emulates human evaluation framework MQM and produces explainable and reliable MT evaluations.

Figure: A comparative overview between GEMBA Prompting and our proposed Error Analysis Prompting in assessing the MT quality with LLMs.

			System-Level Acc.	Segment-Level Acc*			
Models	Metrics / Prompts	Ref?	All (3 LPs)	En-De	En-Ru	Zh-En	
Baselines	MetricsX-XXL	1	85.0	60.4	60.6	54.4	
	BLEURT20	1	84.7	56.8	54.0	48.9	
	COMET22	1	83.9	59.4	57.7	53.6	
	UniTE	1	82.8	59.8	57.7	51.7	
	COMET-QE	X	78.1	55.5	53.4	48.3	
	UniTE-src	X	75.9	58.2	55.4	50.8	
	MaTESe-QE	×	74.8	57.2	49.9	49.4	
Llama2-70b-Chat	GEMBA	1	74.1	53.7	48.8	45.4	
	EAPrompt	1	85.4 (+11.3)	55.2(+1.5)	51.4†(+2.6)	50.2†(+4.8	
	GEMBA	X	72.6	54.1	47.8	45.0	
	EAPrompt	X	85.8 (+13.2)	55.0†(+0.9)	51.6†(+3.8)	49.3†(+4.3	
Mixtral-8x7b-Instruct	GEMBA	1	69.7	54.8	48.3	46.7	
	EAPrompt	1	84.0 (+14.3)	53.8 (-1.0)	50.6†(+2.3)	48.2†(+1.5	
	GEMBA	X	74.1	54.8	47.5	46.2	
	EAPrompt	X	82.5 (+8.4)	54.1 (-0.7)	49.9†(+2.4)	48.3†(+1.1	
GPT-3.5-Turbo	GEMBA	1	86.5	55.2	49.5	48.2	
	EAPrompt	1	91.2 (+4.7)	56.7†(+1.5)	53.3†(+3.8)	50.0†(+1.8	
	GEMBA	X	86.9	54.7	50.0	47.6	
	EAPrompt	X	89.4 (+2.5)	55.7†(+1.0)	53.4†(+3.4)	48.8†(+1.2	

Table: Performance of metrics using pairwise accuracy (%) at the system level And pairwise accuracy with tie calibration (%) at the segment level.

Prompt	Demo of Errors		Type of Queries		Mixtral-8x7b-Instruct			Llama2-70b-Chat				
	Detailed	Itemized	1-step	2-step	All (3 LPs)	En-De	En-Ru	Zh-En	All (3 LPs)	En-De	En-Ru	Zh-En
GEMBA	(.5)	15	-	-	69.7	54.8	48.3	46.7	74.1	53.7	48.8	45.4
EAPrompt	1		1		75.2	53.4	50.0	45.0	62.0	53.7	47.0	47.8
	1			1	75.5	53.4	47.9	45.5	84.7	53.5	46.9	47.5
		1	1		60.2	53.4	45.1	45.6	56.9	53.7	48.4	50.2
		1		1	84.0	53.7	50.6	48.2	85.4	55.2	51.4	50.2

Table: Performance comparsion with variants of prompts for EAPrompt.

Figure: Distribution of identified error counts across LLMs and human evaluation.

Findings:

- EAPrompt significantly enhances the performance of LLMs at the system level.
- EAPrompt surpasses GEMBA in 8 out of 9 test scenarios at the segment level.
- EAPrompt's strong performance remain consistent even in reference-free settings.

Findings:

When designing prompts, we recommend the EAPrompt variant featuring a 2-step separated prompting approach and itemized error demonstrations.

Findings:

- > EAPrompt adeptly distinguishes major errors from minor ones, closely aligning its error distribution with MQM.
 - Designed by Qingyu Lu