Name: Shivani patel GSI: DISC #: 103

Handout 1.

Math 55.

1. A proposition is a declarative sentence that is either true or false, but not both

2. A propositional variable is variables that represent propositions, just as letters are used to denote numerical variables
3. The truth value of a proposition is either true if is a true or take if it is a false proposition

LOGICAL OPERATORS.

4. The negation of a proposition p is the result of the operation of the negation 4.1 The truth table of negation is

p	79
T	F
F	T

5. The conjunction of two propositions p and q is true when both p and q are true and is false otherwise 5.1 The truth table of conjunction:

P	9	PA9
T	1	F
Ť	F	F
F	T	F
1 1	F	T

6. The disjunction of two propositions p and q is take when both ρ and q are take and is true otherwise

6.1 The **truth table** of disjunction:

P	9	pva
T	1	T
Ť	F	Т
F	工	T
1 1	F	F

7. The implication connecting propositions p and q is true when both p and q are true, and when pis false (no matter what truth value q has)

7.1 The **truth table** of implication:

p	9	P->9
T	T	T
T	F	F
F	Ţ	ا ا
F	F	

Q1. Draw the truth table for the compound proposition $p \land q \lor r \to (p \to r)$.

ρ	9	r	PA 4	PAQVr	p→ r	PAQVr→(P→r)
7	T	T	T	T	T	†
T	Т	F	T	T	F	F
T	F	T	F	7	T	T
T	F	F	F	F	F	T
F	Т	Т	F	T	T	t
F	Т	F	F	F	Ť	T
F	F	T	F	T	T	7
F	F	F	P	F	T	T

- 8.1 The **converse** of $p \to q$ is $q \longrightarrow p$
- 8.2 The **contrapositive** of $p \to q$ is $\neg q = \neg p = \neg q$
- 8.3 The **inverse** of $p \to q$ is $7\rho \longrightarrow 7$
- 9. Two (compound) propositions are equivalent if they always have the fame truth value
- Q2. Which of the 1) implication and its 2) converse, 3) contrapositive, and
 - 4) inverse are equivalent?
 1) Implication and 3) contrapositive are equivalent
 - 2) converse and 4) inverse are equivalent
- 10. The biconditional of two propositions p and q is true when both conditional statements $p \rightarrow q$ and $q \rightarrow p$ are true and is take otherwise $(p \leftrightarrow q)$ 10.1 The truth table of biconditional:

P	9	Perg
7	4	T
1	F	Ŧ
F	4	F
F	F	T

LOGIC AND BIT OPERATIONS.

- 11.1 A bit is asymbol with two possible values, namely grand 1
- 11.2 Bit operations are opposed connectives. They extend to bit strings.
- Q3. Perform bitwise OR, bitwise AND, and bitwise XOR on the bit strings 10001011011 and 110101001.

APPLICATIONS

TRANSLATION OF NATURAL SPEECH.

Q4. Form the contrapositive of: If I stay home, then it will snow tonight. If it does not snow tonight then full not stay nome.

BOOLEAN SEARCHES.

Q5. How to search for info on universities in Mexico but not in New Mexico?

NOT NEW AND MEXICO AND UNIVERSITIES

LOGIC PUZZLES.

p: there is a lady behind don one TP: there is a tiger behind dom 1 9: there is a lady behind door 2 79: there is a tiger behind don 2

Q6. There are signs on the doors to two rooms. The first sign says "In this room there is a lady, and in the other room there is a tiger"; the sign on the second door treads "In one of these rooms there is a lady, and in the other room there is a tiger". Suppose you know that one of these signs is true and the other false. Behind which door there is a lady?

> statement 1: P 19 8+ atement 2= (p 1 a) V (¬p 1 a) is true which doesn't work so #2 has to be

#2 has the lady behind the door

if #1 is True then #2 true SD that #1 is false

LOGIC CIRCUITS.

Q7. Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $(p \vee \neg q) \wedge (\neg q \vee r)$ from inputs p, q, and r.

