5.24 among_diff_0

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the automaton of nvalue.

Constraint among_diff_O(NVAR, VARIABLES)

Arguments NVAR : dvar

VARIABLES : collection(var-dvar)

Restrictions $NVAR \ge 0$

NVAR ≤ |VARIABLES|
required(VARIABLES, var)

PurposeNVAR is the number of variables of the collection VARIABLES that take a value different from 0.

Example $(3, \langle 0, 5, 5, 0, 1 \rangle)$ $(0, \langle 0, 0, 0, 0, 0, 0 \rangle)$ $(1, \langle 0, 0, 0, 6, 0 \rangle)$

The first among_diff_0 constraint holds since exactly 3 values of the collection of values (0,5,5,0,1) are different from 0.

Typical NVAR > 0

$$\begin{split} & \texttt{NVAR} < |\texttt{VARIABLES}| \\ & |\texttt{VARIABLES}| > 1 \\ & \texttt{atleast}(1, \texttt{VARIABLES}, 0) \\ & 2 * \texttt{among_diff_O}(\texttt{VARIABLES}.\texttt{var}) > |\texttt{VARIABLES}| \end{split}$$

Symmetries

- Items of VARIABLES are permutable.
- An occurrence of a value of VARIABLES.var that is different from 0 can be replaced by any other value that is also different from 0.

Arg. properties

- Functional dependency: NVAR determined by VARIABLES.
- Contractible wrt. VARIABLES when NVAR = 0.
- Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
- Aggregate: NVAR(+), VARIABLES(union).

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for among_diff_0: domains 0..n

20040807 587

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	1	1	1	1	1	1	1
	1	4	9	16	25	36	49	64
	2	4	27	96	250	540	1029	1792
	3	-	27	256	1250	4320	12005	28672
	4	-	-	256	3125	19440	84035	286720
	5	-	-	-	3125	46656	352947	1835008
	6	-	-	-	-	46656	823543	7340032
	7	-	-	-	-	-	823543	16777216
	8	-	-	-	-	-	-	16777216

Solution count for among_diff_0: domains 0..n

20040807 589

Solution density for among_diff_0

Parameter value as fraction of length

See also

common keyword: nvalue (counting constraint).

generalisation: among (variable $\neq 0$ replaced by variable \in values).

Keywords

characteristic of a constraint: joker value, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.

 Arc input(s)
 VARIABLES

 Arc generator
 SELF→collection(variables)

 Arc arity
 1

 Arc constraint(s)
 variables.var ≠ 0

 Graph property(ies)
 NARC= NVAR

Graph model

Since this is a unary constraint we employ the *SELF* arc generator in order to produce an initial graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.55 respectively show the initial and final graph associated with first example of the **Example** slot. Since we use the **NARC** graph property, the loops of the final graph are stressed in bold.

Figure 5.55: Initial and final graph of the among_diff_O constraint

20040807 591

Automaton

Figure 5.56 depicts the automaton associated with the among_diff_0 constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i . The following signature constraint links VAR_i and S_i : VAR_i $\neq 0 \Leftrightarrow S_i$. The automaton counts the number of variables of the VARIABLES collection that take a value different from 0 and finally assigns this number to NVAR.

Figure 5.56: Automaton of the among_diff_0 constraint

Figure 5.57: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the among_diff_0 constraint: since all states variables Q_0, Q_1, \ldots, Q_n are fixed to the unique state s of the automaton, the transitions constraints share only the counter variable C and the constraint network is Berge-acyclic