Algorithms @to

Home

Arrays

Linked List

Recursion

Dynamic Programming

Backtracking

Binary Tree

Trees

Difficulty Level

Interviews

MISC

ADOBE / AMAZON
QUESTIONS / APACHE /
EXPERT / GOOGLE
INTERVIEW / MICROSOFT
INTERVIEW / RECURSION /
TOP COMPANIES

Q 1

Dynamic Programming — Subset Sum Problem

BY SJ · MAY 10, 2015

FOLLOW:

Q To search type and hit enter

Objective: Given a set of positive integers, and a value *sum S*, find out if there exist a subset in array whose sum is equal to given *sum S*.

Example:

Output: True, subset is (3, 2, 1)

We will first discuss the recursive approach and then we will improve it using Dynamic Programming.

Recursive Approach:

For every element in the array has two options, either we will include that element in subset or we don't include it.

- So if we take example as int[] A = { 3, 2, 7, 1}, S= 6
- If we consider another int

RECENT POSTS

Dynamic Programming — Longest Palindromic Subsequence

Dynamic Programming — Maximum Product Cutting Problem.

Dynamic Programming — Minimum Numbers are Required Whose Square Sum is Equal To a Given Number

Dynamic Programming — Longest Common Substring

Dynamic Programming — Longest Common Subsequence

Dynamic Programming — Rod Cutting Problem

Dynamic Programming — Coin Change Problem

array with the same size as A.

- If we include the element in subset we will put 1 in that particular index else put 0.
- So we need to make every possible subsets and check if any of the subset makes the sum as S.
- If we think carefully this problem is quite similar to "Generate All Strings of n bits"
- See the code for better explanation.

FOLLOW ME ON TWITTER

SUBSCRIBE FOR NEW POSTS (NO SPAMS!!)

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 17 other subscribers

Email Address
Subscribe

TOP POSTS & PAGES

All Articles

Binary Search Tree Complete Implementation.

SubSetSumRecursion.java view raw hosted with ♥ by GitHub

Time Complexity: O(2ⁿ).

Approach: Dynamic Programming (Bottom-Up)

Base Cases:

4

 If no elements in the set then we can't make any subset except for 0.

 If sum needed is 0 then by returning the empty subset we can make the subset with sum 0.

Given — Set = arrA[], Size = n, sum = S

- Now for every element in he set we have 2 options, either we include it or exclude it.
- for any ith element—
- If include it => S = SarrA[i], n=n-1
- If exclude it => S, n=n-1.

Recursive Equation:

Base Cases:
SubsetSum(a
rrA, n, S)=
false, if

Dynamic Programming - Subset Sum Problem

Dynamic Programming - Coin Change Problem

Binary Min - Max Heap

Construct a binary tree from given Inorder and Postorder Traversal

Print The Top View of a Binary Tree

Construct Binary Search Tree from a given Preorder Traversal using Recursion

Introduction To Backtracking Programming

Backtracking - N Queens Problem

ARCHIVES

August 2015 (1)
July 2015 (2)
June 2015 (9)
May 2015 (14)
April 2015 (1)
March 2015 (18)
February 2015 (20)
January 2015 (9)
December 2014 (26)
November 2014 (26)
September 2014 (28)
August 2014 (11)
July 2014 (9)

sum > 0 and
n == 0
SubsetSum(a
rrA, n, S)=
true, if
sum == 0
(return
empty set)

Rest Cases SubsetSum(a rrA, n, S) = SubsetSum(a rrA, n-1,

S)||
SubsetSum(a
rrA, n-1,
S-arrA[n1])

Elements	

			Sum				100
	0	1	2	3	4	5	6
0	Т	F	F	F	F	F	F
3	Т	F	F	Т	F	F	F
2	Т	F	Т	Т	F	Т	F
7	Т	F	Т	Т	F	Т	F
1	Т	Т	Т	Т	Т	Т	Т

Subset Sum Problem

How to track the elements.

- Start from the bottomright corner and backtrack and check from the True is coming.
- If value in the cell above if false that means current cell has become true after including the current element. So include the current element and check for the sum = sum current element.

Include the current element whenever you move left.

Subset Sum Problem — Track Solution

Complete Code:

```
public class SubSetSum {
 1
 2
              public static bool
 3
 4
                       boolean[][
                       // if sum
 5
                       for(int i=
 6
                                SC
 7
 8
                       // if sum
 9
10
11
12
                       //
13
                       for(int i=
14
                                fc
15
```

```
16
17
18
19
20
21
                                 }
22
23
                        }
                        return sol
24
              }
25
26
              public static voic
27
                        int[] A =
28
                        System.out
29
              }
31
     }
32
SubsetSumDP.java hosted view raw
with ♥ by GitHub
```

```
Output: From DP:
true
```

Related Posts:

- Dynamic Programming
 - Coin Change Problem
- Minimum number that cannot be formed by any subset of an array
- Print All Combinations of subset of size K from Given Array
- Dynamic Programming— Maximum size squaresub-matrix with all 1s
- Print All N Length Strings from Given Number K

- Print All the Subsets of a Given Set (Power Set)
- Dynamic Programming
 - Longest CommonSubsequence
- Dynamic Programming
 - Minimum Cost PathProblem
- Check if Array Contains
 All Elements Of Some
 Given Range
- Search an Element in a Rotated Sorted Array

Share this:

Related

Tags: 2D Arrays

Dynamic Programming Recursion

YOU MAY ALSO LIKE...

Algorithms © 2015. All Rights Reserved Powered by WordPress. Theme by Alx.

198 gueries in 0.627 seconds.

8