Marked Exercises for Algorithms for Big Data 2023 Spring

Due 17 April 2023 at 17:59

Exercise 1 15 points Let $\sum_{i=1}^r \sigma_i u_i v_i^T$ be the SVD of A, where $A \in \mathbb{R}^{n \times d}$. Show that $|u_1^T A| = \sigma_1$ and $|u_1^T A| = \max_{\|u\|=1} \|u^T A\|$, where $||x|| = \sqrt{\sum_{i=1}^{d} x_i^2}$ for a vector $x \in \mathbb{R}^d$.

Exercise 2 25 points

Let A be an $n \times d$ matrix with SVD such that $A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}$. Let $x \in \mathbb{R}^d$ be a vector such that $||x||_2 = 1$ and $|x^{\top}v_1| \geq \delta$ for some $\delta > 0$. Suppose that $\sigma_2 < \frac{1}{2}\sigma_1$. Let w be the vector after $k = \log(1/\varepsilon\delta)$ iterations of the power method, namely,

$$w = \frac{(A^{\top}A)^k x}{\|(A^{\top}A)^k x\|_2}.$$

Prove that the length of the projection of w onto the line defined by the first singular vector v_1 is at least $1-\varepsilon$, i.e., $|w\top v_1|\geq 1-\varepsilon$.

Exercise 3 20 points

Let k < d. Let $U \in \mathbb{R}^{d \times k}$ be a random matrix such that its (i, j)-th entry is denoted as u_{ij} , where $\{u_{ij}\}$ are independent random variables such that

$$u_{ij} = \begin{cases} 1 & \text{with probability } \frac{1}{2}, \\ -1 & \text{with probability } \frac{1}{2} \end{cases}$$

Now we use matrix B as a random projection matrix. That is, for a (row) vector $a \in \mathbb{R}^d$, we map it to

$$f(a) = \frac{1}{\sqrt{k}}aU$$

For each j such that $1 \le j \le k$, define $b_j = [f(a)]_j$, i.e., b_j is the j-th entry of f(a).

- What is the expectation $E[b_i]$?
- What is $E[b_i^2]$?
- What is $E[||f(a)||^2]$?

Exercise 4 20 points

In the class, we have seen an algorithm, denoted by A, for the (c, r)-ANN problem with success probability at least 0.6. That is, upon a queried vertex x such that there exists a point a^* in the set \mathcal{P} with $d(x, a^*) \leq r$, the algorithm \mathcal{A} outputs some $a \in \mathcal{P}$ with $d(x, a) \leq c \cdot r$ with probability at least 0.6.

Let $\delta \in (0,1)$. Using the above \mathcal{A} as a subroutine, give a new algorithm \mathcal{B} with success probability at least $1-\delta$. That is, for the above query vertex x, the algorithm \mathcal{B} outputs some $a\in\mathcal{P}$ with $d(x,a)\leq c\cdot r$ with probability at least $1 - \delta$. Your algorithm should use as little query time as possible. Explain the correctness of your algorithm and state its query time, assuming the query time of \mathcal{A} is $T_{\mathcal{A}}$.

Exercise 5 20 points

Let $\alpha \in (0,1]$. Suppose we change the (basic) Morris algorithm to the following:

- (a) Initialize $X \leftarrow 0$
- (b) For each update, increment X by 1 with probability $\frac{1}{(1+\alpha)^X}$
- (c) For a query, output $\tilde{n} = \frac{(1+\alpha)^X 1}{\alpha}$.

Let X_n denote X in the above algorithm after n updates.

- Calculate $E[\tilde{n}]$ and upper bound $Var[\tilde{n}]$.
- Let $\epsilon, \delta \in (0, 1)$. Based upon the above algorithm, give a new algorithm such that with probability at least 1δ , it outputs an estimator \tilde{n} such that $|\tilde{n} n| \le \epsilon n$. Explain the correctness and the space complexity (i.e., the number of bits) of your algorithm. It suffices to give an algorithm with space complexity that is a polynomial function of $1/\delta$.

Exercise 6 Bonus 10 points

Recall that in the class (see Lecture note 7), we have seen one algorithm based on dimension reduction for solving (c, r)-ANN problem.

Let $0 . Prove that for any <math>x, y \in \{0, 1\}^d$, it holds that

$$\Pr[(Ux)_i \neq (Uy)_i] = \frac{1}{2} \left(1 - (1 - 2p)^{\operatorname{Ham}(x,y)} \right),\,$$

where U is a $k \times d$ random matrix such that the entries are independently and identically distributed (i.i.d.) as follows:

$$u_{ij} = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } 1 - p, \end{cases}$$

and all the calculations are in the finite field GF(2) (i.e., addition and multiplication are always modulo 2). **Hint:** You may consider to use the following fact: Let $w \in \{0,1\}^d$ be a random vector such that all entries w_i 's are i.i.d. and $\Pr[w_i = 1] = \Pr[w_i = 0] = \frac{1}{2}$ for each $i \leq d$. Then $\Pr[w^\top x \neq w^\top y] = \frac{1}{2}$.