Neutron Update

Jyotirmai Singh

Neutron-Nucleus Cross Section

- Contributions from nuclear, electromagnetic (electrostatic, magnetic moment, polarisation), new interactions
- Collect into coherent scattering length b_c , electromagnetic contribution χ_{em} and new contribution χ_{new} .
- $\chi_{em} = Z(b_F + b_I)/b_c$, Foldy scattering length and intrinsic neutron-electron scattering length.
- f(q) is the form factor of the atom, modeled to 10^{-4} accuracy by f $\approx [1 + 3(q/q_0)^2]^{-0.5}$, $q_0 = 6.86 \text{ Å}^{-1}$
- b_s Schwinger scat. length, b_i incoherent scat. length, both assumed negligible.

$$V_{\rm new}(r) = -\frac{1}{4\pi}g^2Q_1Q_2\frac{e^{-\mu r}}{r},$$

$$rac{d\sigma}{d\Omega}(q) = b_c^2 \left\{ 1 + \chi_{\rm em}[1 - f(q)] + \chi_{\rm new} \frac{\mu^2}{q^2 + \mu^2} \right\}^2 + b_s^2(q) + b_i^2 + O(b_F^2)$$

$$\simeq b_c^2 \left\{ 1 + 2\chi_{\text{em}} [1 - f(q)] + 2\chi_{\text{new}} \frac{\mu^2}{q^2 + \mu^2} \right\},$$

Table 1

Typical values of the various contributions δb to the total neutron scattering length b of a heavy atom

Class	Interaction	$\delta b \text{ (fm)}$
I	Strong interaction	10.0
	Atomic magnetic dipole moment*	10.0
11	Spin-orbit (Schwinger)	0.1
	Foldy	0.1
	Neutron electric polarizability	0.05
	Intrinsic electrostatic	0.01
	Nuclear magnetic dipole moment*	0.005
III	Neutron electric dipole moment*	≲10 ⁻⁸
	Neutron electric charge*	≤10 ⁻¹⁰
	Weak interaction	$\sim 10^{-34}$

^{*} If any.

Cross Section with and without new force $\lambda = 1 \text{ Å ($\sim$ 0.1eV)}$

Cross Section with and without new force zoom in

$$\lambda = 10 \text{ Å}$$

$$\lambda = 1 \text{ Å}$$

$$\lambda = 0.1 \text{ Å}$$

Lower energy neutrons seem easier to use

Scattering off Lattice

- Key feature of lattice only allows certain momentum transfers.
- For a crystal, output intensity is given by $I(\theta) \sim F_{hkl}^2$, h,k,l Miller Indices related to lattice FT and indicates where diffractive peaks occur.
- Use Bragg Law to convert h,k,l into an angular position. For a cubic lattice:

Bragg's Law For a cubic system
$$\lambda = 2d\sin(\theta) \qquad \qquad \frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

$$d_{hkl} = \frac{a}{\sqrt{(h^2 + k^2 + l^2)}} \qquad \qquad \lambda = \frac{2a\sin(\theta)}{\sqrt{(h^2 + k^2 + l^2)}} \qquad \Longrightarrow \qquad \sin^2(\theta) = \frac{\lambda^2}{4a^2}(h^2 + k^2 + l^2)$$

$$F_{hkl} = \sum_{j=1}^N f_j \mathrm{e}^{[-2\pi i (hx_j + ky_j + lz_j)]}$$
 ,

Sum over all atoms of unit cell. I think f_j is the single atom neutron cross section for the j^{th} atom.

Lattice Scattering Intensity $\mu = 2.0e+02$

Neutrons off Cubic Xenon Lattice

$$a = 10 \text{ Å}, \mu = 200 \text{ eV}, \lambda = 1 \text{ Å}$$

Lattice Scattering Intensity $\mu = 2.0e+02$

Neutrons off Cubic Xenon Lattice

 $a = 100 \text{ Å}, \mu = 200 \text{ eV}, \lambda = 1 \text{ Å}$

5 Miller Planes

All plots with a = 100 Å, μ = 200 eV, λ = 1 Å

4 Miller Planes

3 Miller Planes

Question: How many of these peaks do we care about?

$$\lambda = 1 \text{ Å, a} = 100 \text{ Å}$$

 $\lambda/a = 0.01$

$$\lambda = 10 \text{ Å, a} = 100 \text{ Å}$$

 $\lambda/a = 0.1$

$$\lambda = 0.1 \text{ Å, a} = 100 \text{ Å}$$

 $\lambda/a = 0.001$

For lattice λ/a is important.
Lower λ/a gives sharper differentiation in a narrower angle range.

Summary/Next Steps

- Neutron cross section dominated by strong force and electromagnetic effects, but can see new force via scattering.
- For simple atomic scattering higher λ gives better signal.
- For (primitive cubic) lattice scattering, important parameter is λ/a . Lower λ/a gives sharper contrast in smaller angular range.
- Next step is to introduce irregular lattice, i.e. unit cell axes with different lengths a,b,c and then put different atoms in the unit cell.