GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN IT/CM

LEVEL NAME : PROFESSIONAL COURSES

COURSE CODE : IT406E⁸

COURSE TITLE : SOFTWARE ENGINEERING

PREREQUISITE : NIL

TEACHING SCHEME: TH: 04; TU: 00; PR: 02(CLOCK HRs.)

TOTAL CREDITS : 05 (1 TH/TU CREDIT = 1 CLOCK HR., 1 PR CREDIT = 2 CLOCK HR.)

TH.TEE : 03 HRs

PR.TEE : 02 HRs (External)

PT. : 01 HRs

* RATIONALE:

Today, in the world of technology computer software is the most imperative technology. When computer software succeeds ie, when it meets the needs of the people who use it, when it performs flawlessly over a long period of time, when it is easy to modify and even easier to use it can and does change things for the better. But when software fails ie, when its users are dissatisfied, when it is error prone, when it is difficult to change and even harder to use bad things can and do happen. To succeed, we need discipline when software is designed and built. We need an engineering approach.

Many decisions are required throughout the software development process. Software Engineering is the basis for Software development. Software Engineering helps to cover up a path towards easier, swift, and less expensive methods to build and maintain high quality software also build decision making power in students.

* COURSE OUTCOMES:

After completing this course students will be able to-

- Identify risk in development process.
- Plan and observe project estimation.
- 3. Apply requirement modeling strategies.
- 4. Use basic design principles, guidelines and process model to develop project.
- Follow ISO 9000 Quality Standards.
- Prepare/ design Software Requirement Specification (SRS).

* COURSE DETAILS:

A. THEORY:

Units	Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs
1. Software Engineering, The Software Process	 State Software Crises & Myths. State the Software Engineering principles. State features of different models. Compare different models. State the advantages and disadvantages of different models. State WSHH principle. Define 4P's terms. 	1.1 The Nature of Software, Software Engineering, the Software Process, Software Engineering Practice, Software Crises & Myths. 1.2 Process Models: A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models: Waterfall, Incremental Model RAD, Prototyping, Spiral Model. 1.3 Agile Development: What Is Agility? Agility and the Cost of Change, Agile Process, Agility Principles, Human Factors. 1.4 Project management concepts: People, Product, Process, and Project. WSHH principle, critical practice.	10
2. Software Projects Management	 Propose estimation for given project. Identify risk and do refinement. State the role of Repository. State SCM Features. Identify different objects in software configuration process. State the need of risk management. Apply the steps to mitigate the risk. 	2.1 Metrics in the Process and Project Domains, Software Measurement, Metrics for Software Quality, Integrating Metrics within the Software Process, Metrics for Small Organizations 2.2 Observations on Estimation, The Project Planning Process, Software Scope and Feasibility, Resources, Software Project Estimation, Decomposition Techniques 2.3 Software risks: identification, risk Projection, Refinement, Risk Mitigation, Monitoring, and Management (RMMM) 2.4 Software Configuration Management: The SCM Repository, The Role of the Repository, General Features and Content, SCM Features, The SCM Process: Identification of Objects in the Software Configuration, Version Control, Change Control	10

3. Software Requirement and Scheduling	State requirements need & Characteristics. State the components of and design SRS document. Apply different project scheduling techniques. Apply Project Scheduling Techniques for given scenario. Draw Gantt chart.	3.1 Requirements Engineering, Need of SRS, Characteristics of SRS, Components of SRS 3.2 The structure of SRS document, SRS validation. 3.3 Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Validating Requirements. 3.4 Project Scheduling: Concepts. Peoples Efforts. Task set, Task network. 3.5 Project Scheduling Techniques-Need, Concept of Gantt chart, Programme Evaluation Review Technique (PERT), and Critical Path Method (CPM) and Earned Value (EV) analysis.	
4. Requirement s Modeling	 Design Data Flow Model. Use case diagram. Design a Behavioral Model. Draw state and sequence diagram. Apply Requirements Modeling Strategies. 	 4.1 Requirements Modeling Strategies 4.2 Building the Analysis Model: Data Modeling Concepts. 4.3 Flow- Oriented Modeling: Creating a Data Flow Model: Creating a Control Flow Model, the Control Specification, and the Process Specification. 4.4 Creating a Behavioral Model: Identifying Events with the Use Case, State Representations. 4.5 Patterns for Requirements Modeling: Discovering Analysis Patterns, a Requirements Pattern Example: Actuator-Sensor. 4.6 Scenario- Based Modeling- Use Case Diagram. 	10
5. Design Concepts	Apply design principles. Apply Software Quality Guidelines and Attributes. State different Design Elements.	5.1 Design within the Context of Software Engineering 5.2 The Design Process, Software Quality Guidelines and Attributes, The Evolution of Software Design 5.3 Design Concepts: Abstraction, Architecture, Patterns, Separation of Concerns, Modularity, Information Hiding, Functional Independence, Refinement, Aspects, Refactoring, Object-Oriented Design Concepts, Design Classes 5.4 The Design Model, Data Design Elements, Architectural Design	12

Management Techniques. 3. State different Elements of Software Quality Assurance. 4. State measures of s/w Reliability and Availability 5. State ISO 9000 Quality Standards. 5. State ISO 9000 Quality Standards. 6.2. Achieving Software Quality, Software Engineering Methods, Project Management Techniques, Quality Control, Quality Assurance. 6.3. Software Quality Assurance (SQA): Background Issues, Elements of Software Quality Assurance, SQA Tasks, Goals, and Metrics. 6.4. Formal Approaches to SQA. 6.5. Statistical Software Quality Assurance: A Generic Example, Six Sigma for Software Engineering. 6.6. Software Reliability: Measures of Reliability and Availability, Software Safety, The ISO 9000 Quality Standards, The SQA Plan. 6.7. Introduction- Reengineering & Reverse Engineering.	6. Software Quality	State different McCall's Quality Factors. Apply project	Elements Interface Design Elements, Component-Level Design Elements, Deployment- Level Design Elements. 5.5 Designing Class-Based Components: Basic Design Principles, Component-Level Design Guidelines, Cohesion, Coupling 6.1.6.1.Software Quality: Garvin's Quality Dimensions, McCall's Quality Factors, ISO 9126 Quality	10
	Management	Management Techniques. 3. State different Elements of Software Quality Assurance. 4. State measures of s/w Reliability and Availability 5. State ISO 9000 Quality	Factors 6.2.Achieving Software Quality, Software Engineering Methods, Project Management Techniques, Quality Control, Quality Assurance. 6.3.Software Quality Assurance (SQA): Background Issues, Elements of Software Quality Assurance, SQA Tasks, Goals, and Metrics. 6.4.Formal Approaches to SQA. 6.5. Statistical Software Quality Assurance: A Generic Example, Six Sigma for Software Engineering. 6.6. Software Reliability: Measures of Reliability and Availability, Software Safety, The ISO 9000 Quality Standards, The SQA Plan. 6.7.Introduction- Reengineering &	

B. LIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practic al	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs.
1	Apply suitable software development model for the given scenario.	Software Engineering, The Software Process	02
2	Identify the objectives and summaries outcomes for given scenario, for each SDLC phase.	Software Projects	02
3	Design Software Requirement Specification (SRS) document for the project. Consider any project to be developed in any technology as a Software Architect or Project Manager.	Management	04
4	Classify above identified requirement into functional and non-functional requirements.	Software Requirement and	04
5	Design USE case diagrams for given scenario.	Scheduling	04
6	Create sequence diagram, state diagram for given scenario.		04
7	Draw E-R diagram, DFD and create data dictionary for above system.	Requirements Modeling	02
8	Draw Activity diagram from above system.		02
9	Identify the design principle that is being violated in relation to the given scenario. (Give any scenario)		02
10	Develop three different levels of procedural abstractions for one or more of the following programs by applying a "stepwise refinement approach" to: (a) Develop a check writer that, given a numeric dollar amount, will print the amount in words normally required on a check. (b) Iteratively solve for the roots of a transcendental equation. (c) Develop a simple task scheduling algorithm for an operating system.	Design Concepts	04
		Skill Assessment	02
		Total HRs	32

❖ SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from C	ognition Proce	ss Dimension	Total Marks
No.		R	U	A	1
01	Software Engineering The Software Process	02(00)	04(04)	00(00)	06(04)
02	Software Projects Management	00(00)	04(04)	06(00)	10(04)
03	Software Requirement and Scheduling	02(02)	04(04)	06(00)	12(06)
04	Requirements Modeling	02(00)	08(04)	06(06)	16(<mark>10</mark>)
05	Design Concepts	02(00)	08(04)	06(06)	16(10)
06	Software Quality Management	02(02)	08(04)	00(00)	10(06)
	Total	10(04)	36(<mark>24</mark>)	24 (12)	70 (40)

R - Remember

U - Understand

A - Analyze / Apply

* QUESTION PAPER PROFILE FOR THEORY PAPER:

Q.		Bit	1		Bit 2	2	1	Bit .	3		Bit	4		Bit :	5		Bit	6	ontion
No	T	L	M	T	L	M	T	L	M	T	L	M	T	L	M	T	L	M	option
01	1	R	2	3	R	2	4	R	2	5	R	2	6	R	2	3	R	2	5 /T
01	6	R	2																5/7
02	1	U	4	2	U	4	3	U	4	1	U	4	2	U	4				3/5
03	4	U	4	4	U	4	5	U	4	3	U	4	4	U	4				3/5
04	5	U	4	6	U	4	6	U	4	5	U	4	6	U	4				3/5
05	2	A	6	3	A	6	4	A	6										2/3
06	4	Α	6	5	Α	6	5	A	6										2/3

T= Unit/Topic Number

L= Level of Question

M= Marks

R-Remember

U-Understand

A-Analyze/ Apply

* ASSESSMENT AND EVALUATION SCHEME:

	,	What	To Whom	Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3
Direct Assessment Theory	Conti	Assignments	pms	Continuous	10		Assignment Book / Sheet	1, 2, 3
Direct Asse	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3
				Total	100	40		
	essment)	Skill Assessment		Continuous	20		Rubrics & Assessment Sheets	4,5,6
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Continuous	05	-	Journal	4,5,6
ssessme	ю))			TOTAL	25	10		
Direct A	TEE (Tem End Examination)	End Exam	Students	End Of the Course	50	20	Rubrics & Practical Answer Sheets	4,5,6
ssessment	Student Feedback on course		Students	After First Progressive Test	Stud	lent Feedba	ack Form	1 2 2 456
Indirect Assessment	End (Of Course	Students	End Of The Course		Questionnaires		1, 2, 3, 4,5,6

SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
1	Identify the suitable software development model, Classify the requirement into functional and non-functional requirements.	20
2	Performance	10
3	Identify the various elicitation techniques, identify design principles, Draw sequence, state, E-R diagram, DFD, Sequence and Activity diagram.	10
4	Viva voce	10
	TOTAL	50

* MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

Computer Engineering:

Course		Program Outcomes (POs)								PSOs		
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2
1	-	3		30	5	5		-	-	3	3	3
2	-	3	5	1.	1	15	K	-	-	3	3	3
3	-	3	5/	-	e in		71		-	3	3	3
4	-	3	2	2	AL.	1.	1/1	2	2	3	3	3
5	-	3	2	2	1	1.	10	2	2	3	3	3
6	-	3	2	2	17	3	J.	2	2	3	3	3

Information Technology:-

Course	Program Outcomes (POs)											PSOs	
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2	
1	-	3	-	-	-	-	-	-	-	3	-	3	
2	1 -	3	-	-	-	-	-	-	-	3	-	3	
3	-	3	-	-	-	-	-	-	-	3	-	3	
4	-	3	2	2	-	-	-	2	2	3	-	3	
5	-	3	2	2	1	-	-	2	2	3	-	3	
6	-	3	2	2	-	- 1	-	2	2	3	-	3	

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

* REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
	Project Management:	Shtub, A. Bard, J. F. and	0-13-102765-4
1.	Engineering, Technology	Globerson, S, Prentice Hall,	100 100 1 100 100 100 100 100 100 100 1
	and Implementation	0.000	
2	Software Engineering - a	Roger S. Pressman, Tata McGraw	978-0-07-337597-
2.	practitioner's approach	Hill Publication, Seventh, 2010	7
2	Software Engineering -	Waman S. Jawadekar, Tata	10: 0070583714
3.	Principles and Practice	McGraw Hill Publication, 2004	13:9780070583719

❖ E-REFERENCES:

- http://www.tutorialspoint.com/software engineering/software engineering tutor ial.pdf, assessed on 04th August 2016
- http://www.resource.mitfiles.com/IT/II%20year/IV%20sem/Software%20Engin eering/books/Pressman Software Engineering.pdf, assessed on 04th August
- · https://www.tutorialspoint.com/software_engineering/software_project_manage ment.htm assessed on 14th October 2016
- **❖ LIST OF MAJOR EQUIPMENTS/INSTRUMENTS WITH SPECIFICATION** NIL

❖ LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry
1.	Dr. A. R. Mahajan	HOD, Information Technology	Government Polytechnic, Nagpur.
2	Mr. S.P. Lambhade	Head of Computer Engineering	Government Polytechnic, Nagpur.
3.	Ms. S. N. Chaudhari	Lecturer in Computer Engineering	Government Polytechnic, Nagpur.
4.	Ms. D. M. Shirkey	Lecturer in Computer Engineering	Government Polytechnic, Nagpur.
5.	Ms. G. B. Chavan	Lecturer in Computer Engineering	Government Polytechnic, Nagpur.
6.	Prof. Manoj Jethawa	HOD Computer Science	Shri Datta Meghe Polytechnic, Nagpur
7.	Prof. N.V.Chaudhari	Asst. Professor (CSE)	DBACEO, Wanadongari, Nagpur
8.	Mr. Atul Upadhay	CEO	Vista Computers,Ram Nagar,Nagur

(Member Secretary PBOS)	(Chairman PBOS)