- 1. $A = \begin{cases} 2, 3, 5, 7, 11, 13, 17, 19 \end{cases}$ $B = \begin{cases} 10, 12, 14, 16, 18, 20 \end{cases}$ $C = \begin{cases} 1, 3, 5, 7, 9 \end{cases}$
 - (a) AMCUB = そ 2,3,5,7,11,13,17,193 ハ を1,3,5,7,93 U を10,12,14,16,18,203 = そ3,5,7,10,12,14,16,18,203

THE RESERVE OF THE PARTY OF THE

(b) A 1BVC = {2,3,5,7,11,13,17,193 7 \ 10, 12, 14, 16, 18, 203 V \ 1,3,5,7,93 = \ 1,3,5,7,93

p(Anbuc) = { \$\phi, \{13, \{3\}, \{5\}, \{7\}, \{9\}, \{1,3\}, \\{1,5\}, \\{1,7\}, \\{1,6\}, \\{1,5\}, \\{1,7\}, \\{1,6\}, \\{3\}, \\{5\}, \\{1,7\}, \\{1,5\}, \\{1,7\}, \\{1,7\}, \\{1,5\}, \\{1,7\}, \\{1,7\}, \\{1,5\}, \\{1,7\}, \\{1,5\}, \\{1,7\}, \\{1,5\}, \\{1,7\}, \\{1,5\

- cc) A-C= {2,11,13,17,193
- (d) |A| = 8 |B| = 6 |c| = 5
 - (e) $Anc = \{2,5,7\}$ $|P(Anc)| = 2^3 = 8$
- (f) B= { 10,12,14,16,18,20} C'= {2,4,6,8,10,11,12,13,14,15,16,17,18,19,20}

to ... B C C'. False ! V (right : C) property of the property

cg) True

2. (4) (A-c') U (B-c) = (Anc') U (Bnc') Set difference law = (Anc) U (Bnc')

: (A-C') U(B-C) is not equal to AUB.

(b) (A1B) U (A-B) = (A1B) U (A1B') Set difference law

= AU(B1B') Distributive law

= AU & Complement law

= A Identity law (shown)

.: (AnB) v (A-B) is equal to A

3. (a)
$$S = \{a,b,c,d,e,f,g\}$$

 $T = \{a,b,c,d,e,f,g\}$
 $E = \{a,b,c,d,e,f,g\}$
 $E = \{a,b,c,d,e,f,g\}$

- 4. (9) TRUE
 - (b) TRVE

5.(a)

p	q	r	٦r	PAT	9475	prq	Q= (P17) V (Q 177)	R=(pvq)var
T	T	T	F	T	T	T	T 18 1	1
T	Т.	F	T	F	+	Т	T	7
T	F	T	F	Т	1=	+	T	of at an a
T	F	F	T	F	T	Т	T	T &
F	T	T	F	F	T	Т	1	T
F	T	F	T	F	T	T	+	1
F	F	T	F	F	F	F	F	F
F	F	F	T	F	1	F	T	T

.: Since the truth values of a and truth values of R are the same, Q = R.

P	9	r	79	par	P172	7697797	9 VT	a=(par) v - (pang)	R=(p1r) -> (q vr)
T	1	T	F	T	F	T	T	Tay T	Tunit (p)
T	T	F	F	F	F	in The same	157	T. T.	TAX
T	F	T	T	J	Т	F	T		F
7	F	F	T	F	T. 0	A F	F	F to the last	T
F	T	T	F	F	F	T	T	T	7
F	T	F	F	F	F	+	Transiti	1. (STara =	T
F	F	T	T	F	F	- T	T	TYVA	T
F	F	F	T	F	F	T	F	T	1

: Since the truth values of Q and R are different, Q = R.

- 6. (a) Not true. counterexample is 1. is an odd number and less than 7.
 - (b) Not true. counterexample is 9. 9 is odd number and greater than 7.
- 7. 3x(P(x) 1 Q(x))
 - a is odd.

$$a^{2}-3a = (2n+1)^{2}-3(2n+1)$$

= $4n^{2}+4n+1-(6n+3)$
= $4n^{2}+4n+1-6n-3$

= 4n2 -2n -2 $= 2(2n^2 - n - 1)$

= 2k (provon)

There exists an integer k, such that a²-3a = 2k. Therefore, a²-3a is even.

Contradiction: Suppose n² is an odd integer, then n is not odd. Hence, n is an even.

h =
$$2a$$
, where $a \in Z$
h² = $(2a)^2$
= $4a^2$
= $2(2a^2)$ where $2a^2$ is an integer and $k = 2a^2$
= $2k$