GEOMETRIA ALGEBRAICZNA, Lista 5

Niech K będzie ciałem algebraicznie domkniętym i R będzie pierścieniem.

1. Dla $k_1, \ldots, k_n \in \mathbb{N}_{>0}$ obliczyć:

$$\dim_K \left(K[X_1, \dots, X_n] / (X_1^{k_1}, \dots, X_n^{k_n}) \right).$$

- 2. Niech $I, J \leq R$ oraz $I \subseteq \sqrt{J}$. Udowodnić, że jeśli ideał I jest skończenie generowany, to istnieje $n \in \mathbb{N}$ takie, że $I^n \subseteq J$.
- 3. Niech $P \subseteq I \subseteq Q$ będą ideałami w dziedzinie R takimi, że P i Q są pierwsze. Udowodnić, że mamy następujący izomorfizm R-algebr:

$$\frac{R_Q}{IR_Q} \cong \frac{(R/P)_{Q/P}}{I/P(R/P)_{Q/P}}.$$

- 4. Niech C będzie krzywą afiniczną, $v \in C$ punktem gładkim i $f \in K(C)$. Udowodnić, że f jest lokalnym parametrem C w punkcie v wtedy i tylko wtedy, gdy f ma zero w punkcie v rzędu 1.
- 5. Niech C będzie krzywą planarną, I(C)=(F) dla pewnego wielomianu $F\in K[X,Y]$ i załóżmy, że $0=(0,0)\in C$. Udowodnić, że:
 - (a) $T_0(C) = V(\frac{\partial F}{\partial X}(0)X + \frac{\partial F}{\partial Y}(0)Y),$
 - (b) przekształcenie K-dwuliniowe

$$\Phi: T_0(C) \times I_C(0)/I_C(0)^2 \to K$$

zdefiniowane na wykładzie indukuje izomorfizm przestrzeni liniowych:

$$(T_0(C))^* \cong I_C(0)/I_C(0)^2$$
.

6. Niech R będzie UFD, $r \in R$ będzie nierozkładalny i $L = R_0$. Definiujemy

$$v_r: L^* \to \mathbb{Z}, \quad v_r(\alpha) = n \text{ dla } \alpha = r^n \frac{a}{b}, \text{ gdzie } a, b \in R \text{ oraz } r \nmid ab.$$

Dla $\alpha, \beta \in L^*$ udowodnić, że:

- (a) jeśli $\alpha + \beta \in L^*$, to $v_r(\alpha + \beta) \ge \min(v_r(\alpha), v_r(\beta))$;
- (b) $v_r(\alpha\beta) = v_r(\alpha) + v_r(\beta);$
- (c) $v_r(L^*) = \mathbb{Z}$.
- 7. Niech (R, \mathfrak{m}) będzie pierścieniem DVR i v_R valuacją daną przez parametr uniformizujący R. Udowodnić, że dla dowolnego $a \in R \setminus \{0\}$ mamy $v_R(a) = n$, gdzie $a \in \mathfrak{m}^n \setminus \mathfrak{m}^{n+1}$ $(\mathfrak{m}^0 := R)$.
- 8. Niech v będzie waluacją (dyskretną) na ciele L. Definiujemy

$$\mathcal{O}_v := \{ x \in L \mid v(x) \ge 0 \}, \quad \mathfrak{m}_v := \{ x \in L \mid v(x) > 0 \}.$$

Udowodnić, że $(\mathcal{O}_v, \mathfrak{m}_v)$ jest pierścieniem DVR i że $v = v_{\mathcal{O}_v}$.