Maximum - Modellus Theorem/Principle: (Version - 1):

If a function f is analytic and non-constant in a domain (= open, connected let) D,

[f(z)] has NO MAXIMUM value in D.

That is, there is NO POINT Zo in the domain D such $|f(z)| \leq |f(z_0)|$ for all $z \in D$.

Version-2: (Max. Modulus theorem).

Suppose that a function f is continuous in a closed, bounded (= compact) Ingion S and that f(z) is analytic and non-constant in the interior of S. Then, the maximum value of (f(z) in S which is always Heached, occurs somewhere on the boundary of S and never in the interior of S.

Example: $R = \{Z = x + iy \mid 0 \le x \le T, 0 \le y \le i\}$, $f(z) = \lambda i n(z)$ (f(z)) = \sinax + sint = y By the maximum - modulus theorem, the maximum value of fize) will attain only on the boundary OR of R.

Maximum is reached at the point (# 1).

Note: For a head valued function $f: [a, b] \subseteq \mathbb{R} \to \mathbb{R}$, |f(x)| may attain its maximum value at the interior of [a, b]. Example: $f(x) = 1 - x^2$ for $x \in [-1, 1]$. Nax |f(x)| = 1 and it is heached at x = 0.

Minimum _ Modulus theorem:

Let f be a continuous function in a closed, bounded region S and let f be analytic and non-constant in the interior of S. Further f(z) to for all z in S. Then, [f(z)] has a minimum value in S which occurs on the boundary of S and never in the interior of S.

SEQUENCES and SERIES

Now, Recall: Sequence of real/Complex numbers from MA101
Series of heal/Complex numbers

Also Recall: Sequences of Functions

Series of functions

Power Series

Sequence $\{a_n\}$ where a_n are complex numbers $\{a_n\}$ sequence is a function from $\{a_n\}$ to $\{a_n\}$ defined by $\{a_n\}=\{a_n\}$.

Auestion: As $n \to \infty$, what is the behaviour of an?

(Long term behaviour)

Does it approach any values, as $n \to \infty$? ((ONVERGENCE))

Definition;

Let fant be a sequence of complex numbers.

If there exists a complex number at such that for each &>0,

there is a natural number No such that

 $|\alpha_n - \alpha^*| \angle \epsilon$ for all $n \ge N_0$, then

we say that fang converges to at.

at is called the limit of the sequence {any.

We write it as $\left(\begin{cases} a_n \\ y \rightarrow a^* \end{cases} \right) (ar) \left(\lim_{n \to \infty} a_n = 0 \right)$

Properties: 1) It fant converges then the limit of fant is unique.

- 1 If fany converges then the set { an [nEN] is bounded.
- 3 If $\{a_n\}$ converges then $\{a_n\}$ converges. But converse is not true. For example, $a_n = (-1)^n$.

Framplet: $\left\{\frac{1}{n}\right\}$ is convergent. $\left\{\frac{1}{n}\right\} \to 0$ as $n \to \infty$. $\left\{2n\right\} \text{ is not convergent.} \quad \left\{(-1)^{n}\right\} \text{ is not convergent.} \quad \left(\text{diverges}\right)$

Let
$$a_n \in \mathbb{C}$$
 for $n \in \mathbb{N}$.
 $\{a_n\} \to a^* \text{ iff } \{Re(a_n)\} \to Re(a^*) \text{ and } \{Im(a_n)\} \to Im(a^*).$

Recall: Let {an} be a sequence of heal numbers.

 $\lim_{n\to\infty}\inf a_n = \lim_{n\to\infty} \left[\inf \left\{a_n, a_{n+1}, \dots \right\}\right]$

limsup $a_n = \lim_{n \to \infty} \left[\sup \{a_n, a_{n+1}, \dots, 3\right]$

Alternate notation: liminf = lim , limsup = lim

The concepts of limit infersor and limit superior are defined ONLY for sequence of heal numbers.

Result: O limsup an and limit an always exist.

It may be -00 or +00 also.

- 1 liming an \(\) limsup an
- 3 If lim an exists then

 $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$

Series of Numbers:

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of complex numbers. Then, $\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \cdots$ is called an (infinite) series of complex numbers.

When the sum of series can be computed? Equivalent to say: When the series converges?

Convergence of Series:

Let $\underset{n=0}{\overset{\infty}{\leq}}$ an be a series of complex numbers. Define

the sequence of partial sums as follows.

$$S_1 = a_6$$
 $S_2 = a_0 + a_1$
 $S_3 = a_0 + a_1 + a_2$

 $g_n = \alpha_{0} + \alpha_1 + \alpha_2 + \dots + \alpha_{n-1}$, and so on.

If there excists a complex number I such that the requence $\{S_n\}$ of partial sums converges to I then we say that the series $\sum_{n=0}^{\infty} a_n = 8$ Here $8 = \lim_{n \to \infty} s_n$.

Note: If the sequence of partial sums does not converge then we say the series $\leq a_n$ diverges (= does not converge).

Examples:
$$\frac{\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n}{\sum_{n=0}^{\infty} \left(\frac{1}{2} + i\frac{1}{2}\right)^n} \quad \text{converges}$$

$$\frac{2}{n} \frac{1}{n} \quad \text{doed not converge}.$$

Result: If
$$\leq a_n$$
 converges then $a_n \rightarrow 0$ as $n \rightarrow \infty$.

(That is, n^{th} term tends to zero)

Absolute Convergence:

We say that the series $\leq a_n$ converges absolutely if $\leq |a_n|$ converges.

Example: $\leq \frac{1}{n^2}$ converges absolutely.

 $\leq \frac{(-1)^n}{n}$ Converges, but not absolutely.

Result: If $\leq a_n$ converges absolutely then $\leq a_n$ converges.

But converse of this healt is not true. For example, $\sum_{n=1}^{(-1)^n}$.

Sequences of Functions:

Let $f_n: D \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ for $n = 1, 2, 3, \dots$.

Let Z∈D.

Consider the sequence { fn(zo)}. It is just a sequence of numbers.

Suppose {fn(20)} converges to a number Wo.

Define a new function g at z_0 by $g(z_0) = w_0$.

If {fn(20)} does not converge, then leave it. Take another point. Similarly, voly the point Zo in D and repeat the above process.

Formulating the above idea into a mathematical definition.

(Pointwise) Convergence:

Let $f_n: D \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ where $n \in \mathbb{N}$.

We say that the sequence $\{f_n(z)\}$ of functions converges (pointwise) to a function g(z), say, in D, if for each point $Z_0 \in D$ and for each E > 0, there exists a natural number N_0 (that depends on E and may depend on the point Z_0 also) such that $|f_n(Z_0) - g(Z_0)| < E$ for $n > N_0$.

In this case, we write it as

$$\lim_{n\to\infty} f_n(z) = g(z) \text{ for } z \in D$$

$$\{f_n\} \rightarrow g \text{ on } D$$

(or) $\{f_n(z)\}\rightarrow g(z)$ for $z\in D$.

$$f_n: [0, \overline{1} \subseteq \mathbb{R} \to \mathbb{R}$$

$$n = 1, 2, 3, \dots$$

$$f_n(x) = x^n$$
 for $x \in [0,1]$

Then,
$$f_n(x) \longrightarrow g(x) = \begin{cases} 0 & \text{if } 0 \leq x < 1 \\ 1 & \text{if } x = 1 \end{cases}$$

 $f_n: [-1, \vec{1}] \subseteq \mathbb{R} \to \mathbb{R}$ $f_n(x) = x^n \text{ for } x \in [-1, \vec{1}]$ Then, $f_n(x) \to f_n(x) = \begin{cases} 0 \text{ if } -1 < x < 1 \\ 1 \text{ if } x = 1 \end{cases}$ as $n \to \infty$.

Note that $\{f_n\}$ does not converge at the point x=-1.

Note: In $\{f_n\} \to \mathcal{G}$ on D, It may happen that for a given $\varepsilon > 0$, \mathcal{G} No which depends only on ε and not on the points z_0 such that $|f_n(z_0) - \mathcal{G}(z_0)| < \varepsilon$ for $n > N_0$ and for all points z_0 in D

That is, for all points Zo, the same No will do.

This situation of Convergence on the set D is described as UNIFORM

CONVERGENCE on the set D.

Uniform Convergence: Let $f_n: D \subseteq \mathbb{C} \to \mathbb{C}$ where $n \in \mathbb{N}$. We say that the sequence $\{f_n\}$ of functions converges uniformly to a function g(z) on the set D, if for each E > 0, there exists a natural number N^* that depends only on E such that $|f_n(z) - g(z)| < E$ for $n > N^*$ and for all z in D.

In this case, we write it as $\lim_{n\to\infty} f_n(z) = g(z)$ uniformly on D $\{f_n\} \xrightarrow{\Longrightarrow} g \text{ on } D. \text{ (or) } \{f_n\} \xrightarrow{\text{uniformly}} g \text{ on } D$ (or) $\{f_n\} \to g \text{ (uniformly) on } D$.

Example:

 $f_n(x) = \frac{1}{x+n}$ for $x \in [0, 1]$ where $n \in \mathbb{N}$.

Set g(x) = 0 for all x∈[0,].

Let $\varepsilon > 0$ be given. Choose $N^* > \frac{1}{\varepsilon}$. For example, $N^* = I$ the find part of $\{(\frac{1}{\varepsilon}) + 1\} > \frac{1}{\varepsilon}$.

Note N^* does not depend on the points x.

Then, $\left| f_n(x) - g(x) \right| = \left| \frac{1}{x+n} - 0 \right| = \left| \frac{1}{x+n} \right| < \varepsilon \text{ for } n > N^*$ and for all $x \in [0, 1]$.

Reason: N>N*> \frac{1}{\xi}

Since x > 0, $x + n > n > \frac{1}{\varepsilon}$ $\Rightarrow \frac{1}{x + n} < \varepsilon$ for all $x \in [0, 1)$.

Therefore, $\{f_n\} \to g$ uniformly on [0, 1].

Absolute Convergence: Let $f_n: D \subset \mathbb{C} \to \mathbb{C}$ where $n \in \mathbb{N}$. We say that the sequence $\{f_n\}$ of functions converges absolutely in \mathbb{D} if for each point \mathbb{Z} in \mathbb{D} , the sequence $\{|f_n(\mathbb{Z})|\}$ converges.

Example: $f_n(x) = x^n$ for $x \in (-1, 1)$ converges absolutely in (-1, 1).

where $n \in \mathbb{N}$

Important Note:

Uniform convergence is needed to do the following:

$$\lim_{n \to \infty} \left(\int_{n \to \infty}^{\infty} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{n \to \infty} f_n(x) \right)$$

If Ifny does not converge uniformly, the above identities need not be true.

For details: Read from any Real Analysis Book

Series of Functions:

Consider
$$\int_{N=0}^{\infty} f_{N}(z)$$
.

Let $f_n: D \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ where n=0,1,-...

Define sequence of partial sums functions
$$8_1(z) = f_0(z)$$

$$8_2(z) = f_0(z) + f_1(z)$$

$$d_3(z) = f_0(z) + f_1(z) + f_2(z)$$

$$S_n(z) = f_0(z) + f_1(z) + \cdots + f_{n-1}(z)$$
, and so on.

We say that $\leq f_n(z)$ converges at a point z_0 if the Sequence { Sn(Zo)} of partial sums at Zo converges.

We say that $\leq f_n(z)$ converges on the set D if for each point Z in D, the sequence { Sn(z) y of partial sums converges.

Let
$$\lim_{n\to\infty} S_n(z) = S(z)$$
 for $z \in D$.

Then, we write it as
$$\sum_{n=0}^{\infty} f_n(z) = \mathcal{S}(z) \quad \text{for } z \in \mathbb{D} \quad \text{and}$$

the function S(z) is called the sum function of the series $\geq f_n(z)$.

Example:
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 for $x \in (-1,1)$.

$$\sum_{n=0}^{\infty} Z^n = \frac{1}{1-Z}$$
 for $|z| < 1$

Let $\underset{N=0}{\overset{\infty}{\sum}} f_{N}(z)$ be a series of functions. Let $\underset{N=0}{\overset{\infty}{\sum}} f_{N}(z) = \underset{K=0}{\overset{N-1}{\sum}} f_{K}(z)^{2}$ be its sequence of partial sums.

If $\{S_n(z)\}$ converges (pointwise) to S(z) on D then we lay that the series $\mathbb{Z}f_n(z)$ converges (pointwise) on D and we write it as $\mathbb{Z}f_n(z)=S(z)$ for $z\in D$.

If $\{s_n(z)\}$ converges uniformly to s(z) on the set D then we say that the series $\sum f_n(z)$ converges uniformly on D and we write it as $\int_{-\infty}^{\infty} f_n(z) = s(z)$ for $z \in D$ (uniformly).

If $\{t_n(z)=\sum_{k=0}^{n-1}|f_k(z)|\}$ converges (pointwise) on D then we say that the series $\geq f_n(z)$ converges absolutely on D.

Brief Summary:

Sequence of real/complex Numbers/ Series of real/complex Numbers

(ordinary)

Absolute Convergence

Sequence of Functions (and hence for Power Series)

Ordinary/Pointwise

Uniform Conversence on the set D Abbolute Convergence