SVM

14 March 2023

Sumit Kumar Yadav

Department of Management Studies Indian Institute of Technology, Roorkee

Recap and Today

- Gradient Descent
- SVM

Support Vector Machine - Introduction

- Supervised Learning Algorithm for Classification
- Given N training points in which n_1 are of type A, n_2 are of type B, draw the **best** line(plane)
- To begin with, assume that the training points are linearly separable

Which is the best line?

Which is the best line?

What makes us think it is the green line? Can we make the ideas a bit more precise?

Notations

Let the data-set be denoted as -

S.No	X_1	X_2	Y (+1 or -1)
1	<i>x</i> ₁₁	X ₁₂	+1
2	<i>x</i> ₂₁	X22	-1
3	<i>X</i> 31	X32	-1
N	X _{N1}	X _{N2}	+1

Notations

Let the data-set be denoted as -

S.No	X_1	X_2	Y (+1 or -1)
1	<i>x</i> ₁₁	X ₁₂	+1
2	<i>x</i> ₂₁	X22	-1
3	<i>X</i> 31	X32	-1
N	X _{N1}	X _{N2}	+1

Let the equation of the line be $w_1x_1 + w_2x_2 + b = 0$ We need to determine w_1 , w_2 and b Thank you for your attention