Assignment 6

1

AI24BTECH11008- Sarvajith

1: If
$$\phi(x) = \frac{1}{\sqrt{x}} \int_{\frac{\pi}{4}}^{x} \left(4\sqrt{2}\sin t - 3\phi'(t) \right) dt$$
, $x > 0$, then $\phi'\left(\frac{\pi}{4}\right)$ is equal to

2: If a point
$$P(\alpha, \beta, \gamma)$$
 satisfying $\begin{bmatrix} \alpha & \beta & \gamma \end{bmatrix} \begin{bmatrix} 2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ lies on the plane $2x + 4y + 3z = 5$ then $6\alpha + 9\beta + 7\gamma$ is equal to

- a. -1
- b. $\frac{-11}{5}$ c. $\frac{5}{4}$
- d. 11

3 . Let
$$a_1, a_2, a_3, ...$$
 be an A.P. If $a_7 = 3$ the product a_1a_4 is minimum and the sum of its first n terms is zero, then n!- $4a_{n(n+2)}$ is equal to

- b. $\frac{33}{4}$ c. $\frac{381}{4}$

4 : Let
$$(a,b) \subset (0,2\pi)$$
 be the largest interval for whichsin⁻¹ $(\sin \theta) - \cos^{-1} (\sin \theta) > 0, \theta \in (0,2\pi)$ holds. If $\alpha x^2 + \beta x + \sin^{-1} (x^2 - 6x + 10) + \cos^{-1} x^2 - 6x + 10 = 0$ and $\alpha - \beta = b - a$, then (α) is equal to:

- a. $\frac{\pi}{48}$ b. $\frac{\pi}{16}$

5: Let
$$y = y(x)$$
 be the solution of the differential equation $(3y^2 - 5x^2)ydx + 2x(x^2 - y^2)dy = 0$ such that $y(1) = 1$ then $|(y(2))^3 - 12y(2)|$ is equal to

- a. $32\sqrt{2}$
- b. 64
- c. $16\sqrt{2}$
- d. 32
- 6: The set of all values of a^2 for which the line x + y = 0 bisects two distinct chords drawn from a point $P(\frac{1+a}{2}, \frac{1-a}{2})$ on the circle $2x^2 + 2y^2 - (1+a)x - (1-a)y = 0$ a. $(8, \infty)$

- b. $(4, \infty)$
- c. (0,4]
- d. (2, 12]
- 7 : If $S = \{(a,b): a,b \in \mathbf{R} \{0\}, 2\frac{a}{b} > 0\}$ And $T = \{(a,b): a,b \in \mathbf{R}, a^2 b^2 \in \mathbf{Z}\}$:
 - a. S is transitive but T is not
 - b. T is symmetric but S is not
 - c. Neither S nor T is transitive
 - d. Both S and T are symmetric
- 8: The equation $e^{4x} + 8e^{3x} + 13e^{2x} 8e^{x} + 1 = 0, x \in R$ has:
 - a. two solutions and both are negative
 - b. no solution
 - c. four solutions two of which are negative
 - d. two solutions and only one of them is negative
- 9: The number of values of $r \in \{p, q, \neg p, \neg q\}$ for which $((p \land q) \rightarrow (r \lor q)) \land$ $((p \land r) \rightarrow q)$ is a tautology is:
 - a. 3
 - b. 2
 - c. 1
 - d. 4
- 10: Let $f: \mathbf{R} \{2, 6\} \to \mathbf{R}$ be a real-valued function defined as $f(x) = \frac{x^2 + 2x + 1}{x^2 8x + 12}$ Then the range of f is

 - $\begin{aligned} &a. \ \left(-\infty, -\frac{21}{4} \right] \cup [0, \infty) \\ &b. \ \left(-\infty, -\frac{21}{4} \right] \cup (0, \infty) \\ &c. \ \left(-\infty, -\frac{21}{4} \right] \cup \left[\frac{21}{4}, \infty \right) \\ &d. \ \left(-\infty, -\frac{21}{4} \right] \cup [1, \infty) \end{aligned}$
- 11 : $\lim_{x\to\infty} \frac{\left(\sqrt{3x+1} + \sqrt{3x-1}\right)^6 + \left(\sqrt{3x+1} \sqrt{3x-1}\right)^6}{\left(x+\sqrt{x^2-1}\right)^6 + \left(x-\sqrt{x^2-1}\right)^6}$
 - a. is equal to 9
 - b. is equal to 27
 - c. does not exist
 - d. is equal to $\frac{27}{2}$
- 12: Let P be the plane, passing through the point (1, -1, -5) and perpendicular to the line joining the points (4, 1, -3) and (2, 4, 3). Then the distance of P from the point (3, -2, 2) is
 - a. 6
 - b. 4
 - c. 5
 - d. 7
- 13: The absolute minimum values of the function $f(x) = |x^2 x + 1| + |x^2 x + 1|$, where [t] denotes the greatest integer function, in the interval [-1,2] is
 - a. $\frac{3}{4}$ b. $\frac{3}{2}$

c.
$$\frac{1}{2}$$
 d. $\frac{5}{4}$

- 14: Let the plane $P: 8x + \alpha_1 y + \alpha_2 z + 12 = 0$ be parallel to the line $L: \frac{x+2}{2} = \frac{y-3}{3} = \frac{z+4}{5}$. If the intercept of P on the y-axis is 1, then the distance between P and L is
 - a. $\sqrt{14}$
 - b. $\frac{6}{\sqrt{14}}$
 - c. $\sqrt{\frac{2}{7}}$
 - d. $\sqrt{\frac{7}{2}}$
- 15: The foot of the perpendicular from the origin O to a plane P which meets to coordinate axes at the points A, B, C is (2, a, 4), $a \in N$ if the volume of the tetrahedron OABC is $144unit^3$, then which of the following points is NOT on P?
 - a. (2, 2, 4)
 - b. (0,4,4)
 - c. (3,0,4)
 - d. (0, 6, 3)