This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 5/14, 15/00, 15/05, 15/09, 15/29, 15/31, 15/64, 15/82, A01G 13/00, A01H 1/00

(11) International Publication Number:

WO 97/17432

(43) International Publication Date:

15 May 1997 (15.05.97)

(21) International Application Number:

PCT/US96/18003

A1

(22) International Filing Date:

6 November 1996 (06.11.96)

(30) Priority Data:

07107 Data: 60/007,255 6 November 1995 (06.11.95) US 08/608,423 28 February 1996 (28.02.96) US 08/705,484 28 August 1996 (28.08.96) US

(71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDA-TION [US/US]; 614 North Walnut Street, Madison, WI 53707-7365 (US).

- (72) Inventors: ENSIGN, Jerald, C.; 1810 North Walnut Street, Madison, WI 53705 (US). BOWEN, David, J.: 5668 Highway A, Oregon, WI 53575 (US). PETELL, James; 1427 Hunters Glen, Zionsville, IN 46077 (US). FATIG. Raymond; 30 Clay Court, Zionsville, IN 46077 (US). SCHOONOVER, Sue; 7142 Marstella, Brownsburg, IN 46112 (US). FFRENCH-CONSTANT, Richard, H.; 1006 University Bay Drive, Madison, WI 53705 (US). ROCHE-LEAU, Thomas, A.; 3100 Buena Vista Street, Madison, WI 53704 (US). BLACKBURN, Michael, B.; 2127 Luann Lane, Madison, WI 53713 (US). HEY, Timothy, D.; 1653 Catalina Way, Zionsville, IN 46077 (US). MERLO, Donald, J.; 11845 Durbin Drive, Carmel, IN 46032 (US). ORR, Gregory, L.; 1028 Saratoga Circle, Indianapolis, IN 46280 (US). ROBERTS, Jean, L.; 26035 State Road 19, Arcadia, IN 46030 (US). STRICKLAND, James, A.; 780 Mt. Zion Road, Lebanon, IN 46052 (US). GUO, Lining; 7 Nelson Circle, Brownsburg, IN 46112 (US). CICHE, Todd, A.; 1609 Chadbourne Avenue, Madison, WI 53705 (US).
- (74) Agent: SEAY, Nicholas, J.; Quarles & Brady, P.O. Box 2113. Madison, WI 53701-2113 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

(57) Abstract

Proteins from the genus *Photorhabdus* are toxic to insects upon exposure. *Photorhabdus luminescens* (formerly *Xenorhabdus luminescens*) have been found in mammalian clinical samples and as a bacterial symbiont of entomopathogenic nematodes of genus *Heterorhabditis*. These protein toxins can be applied to, or genetically engineered into, insect larvae food and plants for insect control.

• 44

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia .	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

7-1-7

INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

5

10

15

Field of the Invention

The present invention relates to toxins isolated from bacteria and the use of said toxins as insecticides.

20

40

Background of the Invention

Many insects are widely regarded as pests to homeowners, to picnickers, to gardeners, and to farmers and others whose

25 investments in agricultural products are often destroyed or diminished as a result of insect damage to field crops. Particularly in areas where the growing season is short, significant insect damage can mean the loss of all profits to growers and a dramatic decrease in crop yield. Scarce supply of particular agricultural products invariably results in higher costs to food processors and, then, to the ultimate consumers of food plants and products derived from those plants.

Preventing insect damage to crops and flowers and eliminating the nuisance of insect pests have typically relied on strong organic pesticides and insecticides with broad toxicities. These synthetic products have come under attack by the general population as being too harsh on the environment and on those exposed to such agents. Similarly in non-agricultural settings, homeowners would be satisfied to have insects avoid their homes or outdoor meals without needing to kill the insects.

The extensive use of chemical insecticides has raised environmental and health concerns for farmers, companies that produce the insecticides, government agencies, public interest groups, and the public in general. The development of less intrusive pest management strategies has been spurred along both by societal concern for the environment and by the development of biological tools which exploit mechanisms of insect management. Biological control agents present a promising alternative to chemical insecticides.

Organisms at every evolutionary development level have devised means to enhance their own success and survival. The use of biological molecules as tools of defense and aggression is known throughout the animal and plant kingdoms. In addition, the relatively new tools of the genetic engineer allow modifications 15 to biological insecticides to accomplish particular solutions to particular problems.

10

20

25

30

35

40

One such agent, Bacillus thuringiensis (Bt), is an effective insecticidal agent, and is widely commercially used as such. In fact, the insecticidal agent of the Bt bacterium is a protein which has such limited toxicity, it can be used on human food crops on the day of harvest. To non-targeted organisms, the Bt toxin is a digestible non-toxic protein.

Another known class of biological insect control agents are certain genera of nematodes known to be vectors of transmission for insect-killing bacterial symbionts. Nematodes containing insecticidal bacteria invade insect larvae. The bacteria then kill the larvae. The nematodes reproduce in the larval cadaver. The nematode progeny then eat the cadaver from within. The bacteria-containing nematode progeny thus produced can then invade additional larvae.

In the past, insecticidal nematodes in the Steinernema and Heterorhabditis genera were used as insect control agents. Apparently, each genus of nematode hosts a particular species of bacterium. In nematodes of the Heterorhabditis genus, the symbiotic bacterium is Photorhabdus luminescens.

Although these nematodes are effective insect control agents, it is presently difficult, expensive, and inefficient to produce, maintain, and distribute nematodes for insect control.

It has been known in the art that one may isolate an insecticidal toxin from Photorhabdus luminescens that has

activity only when injected into Lepidopteran and Coleopteran insect larvae. This has made it impossible to effectively exploit the insecticidal properties of the nematode or its bacterial symbiont. What would be useful would be a more practical, less labor-intensive wide-area delivery method of an insecticidal toxin which would retain its biological properties after delivery. It would be quite desirous to discover toxins with oral activity produced by the genus *Photorhabdus*. The isolation and use of these toxins are desirous due to efficacious reasons. Until applicants' discoveries, these toxins had not been isolated or characterized.

Summary of the Invention

The native toxins are protein complexes that are produced and secreted by growing bacteria cells of the genus Photorhabdus, of interest are the proteins produced by the species Photorhabdus luminescens. The protein complexes, with a molecular size of approximately 1,000 kDa, can be separated by SDS-PAGE gel analysis into numerous component proteins. The toxins contain no hemolysin, lipase, type C phospholipase, or nuclease activities. The toxins exhibit significant toxicity upon exposure administration to a number of insects.

The present invention provides an easily administered insecticidal protein as well as the expression of toxin in a heterologous system.

25

The present invention also provides a method for delivering insecticidal toxins that are functional active and effective against many orders of insects.

Objects, advantages, and features of the present invention will become apparent from the following specification.

Brief Description of the Drawings

Fig. 1 is an illustration of a match of cloned DNA isolates used as a part of sequence genes for the toxin of the present invention.

Fig. 2 is a map of three plasmids used in the sequencing process.

Fig. 3 is a map illustrating the inter-relationship of several partial DNA fragments.

Fig. 4 is an illustration of a homology analysis between the protein sequences of $TcbA_{ii}$ and $TcaB_{ii}$ proteins.

- 5 Fig. 5 is a phenogram of Photorhabdus strains. Relationship . of Photorhabdus Strains was defined by rep-PCR. The upper axis of Fig. 5 measures the percentage similarity of strains based on scoring of rep-PCR products (i.e., 0.0 [no similarity] to 1.0 [100% similarity]). At the right axis, the numbers and letters indicate the various strains tested; 14=W-14, 10 Hm=Hm, H9=H9, 7=WX-7, 1=WX-1, 2=WX-2, 88=HP88, NC-1=NC-1, 4=WX-4, 9=WX-9, 8=WX-8, 10=WX-10, WIR=WIR, 3=WX-3, 11=WX-11, 5=WX-5, 6=WX-6, 12=WX-12, x14=WX-14, 15=WX-15, Hb=Hb, B2=B2, 48 through 52=ATCC 43948 through ATCC 43952. Vertical lines separating horizontal lines indicate the degree of relatedness (as read from 15 the extrapolated intersection of the vertical line with the upper axis) between strains or groups of strains at the base of the horizontal lines (e.g., strain W-14 is approximately 60% similar to strains H9 and Hm).
- Fig. 6 is an illustration of the genomic maps of the W-14 Strain.

Detailed Description of the Invention

25 The present inventions are directed to the discovery ${\it cf}$ a unique class of insecticidal protein toxins from the genus Photorhabdus that have oral toxicity against insects. A unique feature of Photorhabdus is its bioluminescence. Photorhabdus may be isolated from a variety of sources. One such source is nematodes, more particularly nematodes of the genus Heterorhabditis. Another such source is from human clinical samples from wounds, see Farmer et al. 1989 J. Clin. Microbiol. 27 pp. 1594-1600. These saprohytic strains are deposited in the American Type Culture Collection (Rockville, MD) ATCC #s 43948, 35 43949, 43950, 43951, and 43952, and are incorporated herein by reference. It is possible that other sources could harbor Photorhabdus bacteria that produce insecticidal toxins. Such sources in the environment could be either terrestrial or aquatic based.

The genus Photorhabdus is taxonomically defined as a member of the Family Enterobacteriaceae, although it has certain traits atypical of this family. For example, strains of this genus are nitrate reduction negative, yellow and red pigment producing and 5 bioluminescent. This latter trait is otherwise unknown within the Enterobacteriaceae. Photorhabdus has only recently been described as a genus separate from the Xenorhabdus (Boemare et al., 1993 Int. J. Syst. Bacteriol. 43, 249-255). This differentiation is based on DNA-DNA hybridization studies, phenotypic differences (e.g., presence (Photorhabdus) or absence (Xenorhabdus) of catalase and bioluminescence) and the Family of the nematode host (Xenorhabdus; Steinernematidae, Photorhabdus; Heterorhabditidae). Comparative, cellular fatty-acid analyses (Janse et al. 1990, Lett. Appl. Microbiol 10, 131-135; Suzuki 15 et al. 1990, J. Gen. Appl. Microbiol., 36, 393-401) support the separation of Photorhabdus from Xenorhabdus.

In order to establish that the strain collection disclosed herein was comprised of Photorhabdus strains, the strains were characterized based on recognized traits which define 20 Photorhabdus and differentiate it from other Enterobacteriaceae and Xenorhabdus species. (Farmer, 1984 Bergey's Manual of Systemic Bacteriology Vol. 1 pp.510-511; Akhurst and Boemare 1988, J. Gen. Microbiol. 134 pp.1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp.249-255, which are incorporated herein by reference). The traits studied were the following: gram stain negative rods, organism size, colony pigmentation, inclusion bodies, presence of catalase, ability to reduce nitrate, bioluminescence, dye uptake, gelatin hydrolysis, growth on selective media, growth temperature, survival under anerobic conditions and motility. Fatty acid analysis was used to confirm that the strains herein all belong to the single genus Photorhabdus.

Currently, the bacterial genus *Photorhabdus* is comprised of a single defined species, *Photorhabdus luminescens* (ATCC Type strain #29999, Poinar et al., 1977, Nematologica 23, 97-102). A variety of related strains have been described in the literature (e.g. Akhurst et al. 1988 J. Gen. Microbiol., 134, 1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp. 249-255; Putz et al. 1990, Appl. Environ. Microbiol., 56, 181-186). Numerous

Photorhabdus strains have been characterized herein. Such strains are listed in Table 18 in the Examples. Because there is currently only one species (luminescens) defined within the genus Photorhabdus, the luminescens species traits were used to characterize the strains herein. As can be seen in Fig. 5, these strains are quite diverse. It is not unforeseen that in the future there may be other Photorhabdus species that will have some of the attributes of the luminescens species as well as some different characteristics that are presently not defined as a trait of Photorhabdus luminescens. However, the scope of the invention herein is to any Photorhabdus species or strains which produce proteins that have functional activity as insect control agents, regardless of other traits and characteristics.

Furthermore, as is demonstrated herein, the bacteria of the genus Photorhabdus produce proteins that have functional activity as defined herein. Of particular interest are proteins produced by the species Photorhabdus luminescens. The inventions herein should in no way be limited to the strains which are disclosed herein. These strains illustrate for the first time that proteins produced by diverse isolates of Photorhabdus are toxic upon exposure to insects. Thus, included within the inventions described herein are the strains specified herein and any mutants thereof, as well as any strains or species of the genus Photorhabdus that have the functional activity described herein.

There are several terms that are used herein that have a particular meaning and are as follows:

By "functional activity" it is meant herein that the protein toxins function as insect control agents in that the proteins are orally active, or have a toxic effect, or are able to disrupt or deter feeding, which may or may not cause death of the insect. When an insect comes into contact with an effective amount of toxin delivered via transgenic plant expression, formulated protein compositions(s), sprayable protein composition(s), a bait matrix or other delivery system, the results are typically death of the insect, or the insects do not feed upon the source which makes the toxins available to the insects.

30

PCT/US96/18003 WO 97/17432

The protein toxins discussed herein are typically referred to as "insecticides". By insecticides it is meant herein that the protein toxins have a "functional activity" as further defined herein and are used as insect control agents.

5

25

40

By the use of the term "oligonucleotides" it is meant a macromolecule consisting of a short chain of nucleotides of either RNA or DNA. Such length could be at least one nucleotide, but typically are in the range of about 10 to about 12 10 nucleotides. The determination of the length of the oligonucleotide is well within the skill of an artisan and should not be a limitation herein. Therefore, oligonucleotides may be less than 10 or greater than 12.

15 By the use of the term "toxic" or "toxicity" as used herein it is meant that the toxins produced by Photorhabdus have "functional activity as defined herein.

By the use of the term "genetic material" herein, it is meant to 20 include all genes, nucleic acid, DNA and RNA.

Fermentation broths from selected strains reported in Table 18 were used to determine the following: breadth of insecticidal toxin production by the Photorhabdus genus, the insecticidal spectrum of these toxins, and to provide source material to purify the toxin complexes. The strains characterized herein have been shown to have oral toxicity against a variety of insect orders. Such insect orders include but are not limited to Coleoptera, Homoptera, Lepidoptera, 30 Diptera, Acarina, Hymenoptera and Dictyoptera.

As with other bacterial toxins, the rate of mutation of the bacteria in a population causes many related toxins slightly different in sequence to exist. Toxins of interest here are those which produce protein complexes toxic to a variety of insects upon exposure, as described herein. Preferably, the toxins are active against Lepidoptera, Coleoptera, Homopotera, Diptera, Hymenoptera, Dictyoptera and Acarina. The inventions herein are intended to capture the protein toxins homologous to protein toxins produced by the strains herein and any derivative

By the use of the term "Photorhabdus toxin" it is meant any protein produced by a Photorhabdus microorganism strain which has functional activity against insects, where the Photorhabdus toxin could be formulated as a sprayable composition, expressed by a transgenic plant, formulated as a bait matrix, delivered via a Baculovirus, or delivered by any other applicable host or delivery system.

Photorhabdus. These homologous proteins may differ in sequence, but do not differ in function from those toxins described herein. Homologous toxins are meant to include protein complexes of between 300 kDa to 2,000 kDa and are comprised of at least two (2) subunits, where a subunit is a peptide which may or may not be the same as the other subunit. Various protein subunits have been identified and are taught in the Examples herein. Typically, the protein subunits are between about 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; between about 160 kDa to about 50 kDa to about 80 kDa.

As discussed above, some *Photorhabdus* strains can be isolated from nematodes. Some nematodes, elongated cylindrical parasitic worms of the phylum *Nematoda*, have evolved an ability to exploit insect larvae as a favored growth environment. The insect larvae provide a source of food for growing nematodes and an environment in which to reproduce. One dramatic effect that follows invasion of larvae by certain nematodes is larval death. Larval death results from the presence of, in certain nematodes, bacteria that produce an insecticidal toxin which arrests larval growth and inhibits feeding activity.

15

20

25

30

Interestingly, it appears that each genus of insect parasitic nematode hosts a particular species of bacterium, uniquely adapted for symbiotic growth with that nematode. In the interim since this research was initiated, the name of the bacterial genus Xenorhabdus was reclassified into the Xenorhabdus and the Photorhabdus. Bacteria of the genus Photorhabdus are characterized as being symbionts of Heterorhabditus nematodes while Xenorhabdus species are symbionts of the Steinernema species. This change in nomenclature is reflected in this specification, but in no way should a change in nomenclature alter the scope of the inventions described herein.

The peptides and genes that are disclosed herein are named according to the guidelines recently published in the Journal of Bacteriology "Instructions to Authors" p. i-xii (Jan. 1996), which is incorporated herein by reference. The following peptides and genes were isolated from Photorhabdus strain W-14.

Peptide / Gene Nomenclature Toxin complex (Tc)

_	Peptide	Gene	Patent
5	Name	Name	Sequence ID#
	tca genomic region		
	TcaA	tcaA	12
	TcaA _{iii}	t <i>c</i> aA	4
10	TcaBi	tcaB	3 (19, 20)
	TcaBii	tcaB	5
	TcaC	tcaC	2
		7745	4
	tcb genomic region		
15	TcbA	t c b A	16
	TcbAi	t C.b.A	(pro-peptide)
	TcbAii	tcbA	1 (21, 22, 23, 24)
	TcbAiii	tcbA	40
	1021111	LCDA	40
20	tcc genomic region		
	TCCA	t c c A	8
	TccB	tccB	7
		CCCB	1
	tcd genomic region		
25	TcdAi	t <i>cd</i> A	(pro-peptide)
	TcdAii	t <i>cd</i> A	-
		ccan	13, (38, 39
	TcdAiii	tcdA	17, 18)
	TcdB		41, (42, 43)
30	icab	tcdB	14
		· A	

(bracket sequence indicates internal amino acid sequence obtained by tryptic digests)

The sequences listed above are grouped by genomic region. The tcbA gene was expressed in E. coli as two protein fragments TcbA and TcbAiii as illustrated in the Examples. It may be beneficial to have proteolytic clippage of some sequences to obtain the higher activity of the toxins for commercial transgenic applications.

The toxins described herein are quite unique in that the toxins have functional activity, which is key to developing an insect management strategy. In developing an insect management strategy, it is possible to delay or circumvent the protein degradation process by injecting a protein directly into an organism, avoiding its digestive tract. In such cases, the protein administered to the organism will retain its function until it is denatured, non-specifically degraded, or eliminated by the immune system in higher organisms. Injection into insects

10

15

20

25

30

40

of an insecticidal toxin has potential application only in the laboratory, and then only on large insects which are easily injected. The observation that the insecticidal protein toxins herein described exhibits their toxic activity after oral ingestion or contact with the toxins permits the development of an insect management plan based solely on the ability to incorporate the protein toxins into the insect diet. Such a plan could result in the production of insect baits.

The Photorhabdus toxins may be administered to insects in a purified form. The toxins may also be delivered in amounts from about 1 to about 100 mg / liter of broth. This may vary upon formulation condition, conditions of the inoculum source, techniques for isolation of the toxin, and the like. The toxins may be administered as an exudate secretion or cellular protein originally expressed in a heterologous prokaryotic or eukaryotic host. Bacteria are typically the hosts in which proteins are expressed. Eukaryotic hosts could include but are not limited to plants, insects and yeast. Alternatively, the toxins may be produced in bacteria or transgenic plants in the field or in the insect by a baculovirus vector. Typically the toxins will be introduced to the insect by incorporating one or more of the toxins into the insects' feed.

Complete lethality to feeding insects is useful but is not required to achieve useful toxicity. If the insects avoid the toxin or cease feeding, that avoidance will be useful in some applications, even if the effects are sublethal. For example, if insect resistant transgenic crop plants are desired, a reluctance of insects to feed on the plants is as useful as lethal toxicity to the insects since the ultimate objective is protection of the plants rather than killing the insect.

There are many other ways in which toxins can be incorporated into an insect's diet. As an example, it is possible to adulterate the larval food source with the toxic protein by spraying the food with a protein solution, as disclosed herein. Alternatively, the purified protein could be genetically engineered into an otherwise harmless bacterium, which could then be grown in culture, and either applied to the food source or allowed to reside in the soil in an area in which insect eradication was desirable. Also, the protein could be genetically engineered directly into an insect food source. For

instance, the major food source of many insect larvae is plant material.

By incorporating genetic material that encodes the insecticidal properties of the Photorhabdus toxins into the genome of a plant eaten by a particular insect pest, the adult or larvae would die after consuming the food plant. Numerous members of the monocotyledonous and dictyledenous genera have been transformed. Transgenic agronmonic crops as well as fruits and vegetables are of commercial interest. Such crops include but are not limited to maize, rice, soybeans, canola, sunflower, alfalfa, sorghum, wheat, cotton, peanuts, tomatoes, potatoes, and the like. Several techniques exist for introducing foreign genetic material into plant cells, and for obtaining plants that stably maintain and express the introduced gene. Such techniques 15 include acceleration of genetic material coated onto microparticles directly into cells(U.S. Patents 4,945,050 to Cornell and 5,141,131 to DowElanco). Plants may be transformed using Agrobacterium technology, see U.S. Patent 5,177,010 to University of Toledo, 5,104,310 to Texas A&M, European Patent Application 0131624B1, European Patent Applications 120516, 20 159418B1 and 176,112 to Schilperoot, U.S. Patents 5,149,645, 5,469,976, 5,464,763 and 4,940,838 and 4,693,976 to Schilperoot, European Patent Applications 116718, 290799, 320500 all to MaxPlanck, European Patent Applications 604662 and 627752 to 25 Japan Tobacco, European Patent Applications 0267159, and 0292435 and U.S. Patent 5,231,019 all to Ciba Geigy, U.S. Patents 5,463,174 and 4,762,785 both to Calgene, and U.S. Patents 5,004,863 and 5,159,135 both to Agracetus. Other transformation technology includes whiskers technology, see U.S. Patents 30 5,302,523 and 5,464,765 both to Zeneca. Electroporation technology has also been used to transform plants, see WO 87/06614 to Boyce Thompson Institute, 5,472,869 and 5,384,253 both to Dekalb, WO9209696 and WO9321335 both to PGS. All of these transformation patents and publications are incorporated by 35 reference. In addition to numerous technologies for transforming plants, the type of tissue which is contacted with the foreign genes may vary as well. Such tissue would include but would not be limited to embryogenic tissue, callus tissue type I and II, hypocotyl, meristem, and the like. Almost all plant tissues may

be transformed during dedifferentiation using appropriate techniques within the skill of an artisan.

Another variable is the choice of a selectable marker. The preference for a particular marker is at the discretion of the artisan, but any of the following selectable markers may be used along with any other gene not listed herein which could function as a selectable marker. Such selectable markers include but are not limited to aminoglycoside phosphotransferase gene of transposon Tn5 (Aph II) which encodes resistance to the antibiotics kanamycin, neomycin and G418, as well as those genes which code for resistance or tolerance to glyphosate; hygromycin; methotrexate; phosphinothricin (bialophos); imidazolinones, sulfonylureas and triazolopyrimidine herbicides, such as chlorosulfuron; bromoxynil, dalapon and the like.

In addition to a selectable marker, it may be desirous to use a reporter gene. In some instances a reporter gene may be used without a selectable marker. Reporter genes are genes which are typically not present or expressed in the recipient organism or tissue. The reporter gene typically encodes for a protein which provides for some phenotypic change or enzymatic property. Examples of such genes are provided in K. Weising et al. Ann. Rev. Genetics, 22, 421 (1988), which is incorporated herein by reference. A preferred reporter gene is the glucuronidase (GUS) gene.

25 Regardless of transformation technique, the gene is preferably incorporated into a gene transfer vector adapted to express the Photorhabdus toxins in the plant cell by including in the vector a plant promoter. In addition to plant promoters, promoters from a variety of sources can be used efficiently in plant cells to express foreign genes. For example, promoters of 30 bacterial origin, such as the octopine synthase promoter, the nopaline synthase promoter, the mannopine synthase promoter; promoters of viral origin, such as the cauliflower mosaic virus (35S and 19S) and the like may be used. Plant promoters include. but are not limited to ribulose-1,6-bisphosphate (RUBP) 35 carboxylase small subunit (ssu), beta-conglycinin promoter, phaseolin promoter, ADH promoter, heat-shock promoters and tissue specific promoters. Promoters may also contain certain enhancer sequence elements that may improve the transcription efficiency. Typical enhancers include but are not limited to Adh-intron 1 and

Adh-intron 6. Constitutive promoters may be used. Constitutive promoters direct continuous gene expression in all cells types and at all times (e.g., actin, ubiquitin, CaMV 35S). Tissue specific promoters are responsible for gene expression in specific cell or tissue types, such as the leaves or seeds (e.g., zein, oleosin, napin, ACP) and these promoters may also be used. Promoters may also be are active during a certain stage of the plants' development as well as active in plant tissues and organs. Examples of such promoters include but are not limited to pollen-specific, embryo specific, corn silk specific, cotton fiber specific, root specific, seed endosperm specific promoters and the like.

Under certain circumstances it may be desirable to use an inducible promoter. An inducible promoter is responsible for expression of genes in response to a specific signal, such as: physical stimulus (heat shock genes); light (RUBP carboxylase); hormone (Em); metabolites; and stress. Other desirable transcription and translation elements that function in plants may be used. Numerous plant-specific gene transfer vectors are known to the art.

20

25

30

In addition, it is known that to obtain high expression of bacterial genes in plants it is preferred to reengineer the bacterial genes so that they are more efficiently expressed in the cytoplasm of plants. Maize is one such plant where it is preferred to reengineer the bacterial gene(s) prior to transformation to increase the expression level of the toxin in the plant. One reason for the reengineering is the very low G+C content of the native bacterial gene(s) (and consequent skewing towards high A+T content). This results in the generation of sequences mimicking or duplicating plant gene control sequences that are known to be highly A+T rich. The presence of some A+Trich sequences within the DNA of the gene(s) introduced into plants (e.g., TATA box regions normally found in gene promoters) may result in aberrant transcription of the gene(s). On the other hand, the presence of other regulatory sequences residing in the transcribed mRNA (e.g., polyadenylation signal sequences (AAUAAA), or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing) may lead to RNA instability. Therefore, one goal in the design of reengineered bacterial

gene(s), more preferably referred to as plant optimized gene(s), is to generate a DNA sequence having a higher G+C content, and preferably one close to that of plant genes coding for metabolic enzymes. Another goal in the design of the plant optimized gene(s) is to generate a DNA sequence that not only has a higher G+C content, but by modifying the sequence changes, should be made so as to not hinder translation.

An example of a plant that has a high G+C content is maize. The table below illustrates how high the G+C content is in maize. As in maize, it is thought that G+C content in other plants is also high.

Table 1
Compilation of G+C contents of protein coding regions of maize genes

1	5
ı	J

Protein Class®	Range %G+C	Medn %G+C
Metabolic Enzymes (40)	44.4-75.3	59.0 (8.0)
Storage Proteins		
Group I (23)	46.0-51.9	48.1 (1.3)
Group II (13)	60.4-74.3	67.5 (3.2)
Group I + II (36)	46.0-74.3	55.1 (9.6)°
Structural Proteins (18)	48.6-70.5	63.6 (6.7)
Regulatory Proteins (5)	57.2-68.9	62.0 (4.9)
Uncharacterized Proteins (9)	41.5-70.3	64.3 (7.2)
All Proteins (108)	44.4-75.3	60.8 (5.2)

Number of genes in class given in parentheses.

Standard deviations given in parentheses.

Combined groups mean ignored in calculation of overall mean.

²⁰ For the data in Table 1, coding regions of the genes were extracted from GenBank (Release 71) entries, and base compositions were calculated using the MacVector™ program (IBI, New Haven, CT). Intron sequences were ignored in the

calculations. Group I and II storage protein gene sequences were distinguished by their marked difference in base composition.

Due to the plasticity afforded by the redundancy of the genetic code (i.e., some amino acids are specified by more than one codon), evolution of the genomes of different organisms or classes or organisms has resulted in differential usage of redundant codons. This "codon bias" is reflected in the mean base composition of protein coding regions. For example, organisms with relatively low G+C contents utilize codons having A or T in 10 the third position of redundant codons, whereas those having higher G+C contents utilize codons having G or C in the third position. It is thought that the presence of "minor" codons within a gene's mRNA may reduce the absolute translation rate of that mRNA, especially when the relative abundance of the charged tRNA corresponding to the minor codon is low. An extension of 15 this is that the diminution of translation rate by individual minor codons would be at least additive for multiple minor codons. Therefore, mRNAs having high relative contents of minor codons would have correspondingly low translation rates. This rate would be reflected by the synthesis of low levels of the 20 encoded protein.

In order to reengineer the bacterial gene(s), the codon bias of the plant is determined. The codon bias is the statistical codon distribution that the plant uses for coding its proteins. 25 After determining the bias, the percent frequency of the codons in the gene(s) of interest is determined. The primary codons preferred by the plant should be determined as well as the second and third choice of preferred codons. The amino acid sequence of the protein of interest is reverse translated so that the 30 resulting nucleic acid sequence codes for the same protein as the native bacterial gene, but the resulting nucleic acid sequence corresponds to the first preferred codons of the desired plant. The new sequence is analyzed for restriction enzyme sites that might have been created by the modification. The identified sites are further modified by replacing the codons with second or third choice preferred codons. Other sites in the sequence which could affect the transcription or translation of the gene of interest are the exon:intron 5' or 3' junctions, poly A addition signals, or RNA polymerase termination signals. The sequence is

further analyzed and modified to reduce the frequency of TA or GC doublets. In addition to the doublets, G or C sequence blocks that have more than about four residues that are the same can affect transcription of the sequence. Therefore, these blocks 5 are also modified by replacing the codons of first or second choice, etc. with the next preferred codon of choice. preferred that the plant optimized gene(s) contains about 63% of first choice codons, between about 22% to about 37% second choice codons, and between 15% and 0% third choice codons, wherein the total percentage is 100%. Most preferred the plant optimized gene(s) contain about 63% of first choice codons, at least about 22% second choice codons, about 7.5% third choice codons, and about 7.5% fourth choice codons, wherein the total percentage is The method described above enables one skilled in the art to modify gene(s) that are foreign to a particular plant so that the genes are optimally expressed in plants. The method is further illustrated in pending provisional application U.S. 60/005,405 filed on October 13, 1995, which is incorporated herein by reference.

Thus, in order to design plant optimized gene(s) the amino acid sequence of the toxins are reverse translated into a DNA sequence, utilizing a nonredundant genetic code established from a codon bias table compiled for the gene DNA sequence for the particular plant being transformed. The resulting DNA sequence, which is completely homogeneous in codon usage, is further modified to establish a DNA sequence that, besides having a higher degree of codon diversity, also contains strategically placed restriction enzyme recognition sites, desirable base composition, and a lack of sequences that might interfere with transcription of the gene, or translation of the product mRNA.

It is theorized that bacterial genes may be more easily expressed in plants if the bacterial genes are expressed in the plastids. Thus, it may be possible to express bacterial genes in plants, without optimizing the genes for plant expression, and obtain high express of the protein. See U.S. Patent Nos. 4,762,785; 5,451,513 and 5,545,817, which are incorporated herein by reference.

One of the issues regarding commercial exploiting transgenic plants is resistance management. This is of particular concern with Bacillus thuringiensis toxins. There are numerous companies commercially exploiting Bacillus thuringiensis and there has been much concern about Bt toxins becoming resistant. One strataegy for insect resistant management would be to combine the toxins produced by Photorhabdus with toxins such as Bt, vegetative insect proteins (Ciba Geigy) or other toxins. The combinations could be formulated for a sprayable application or could be molecular combinations. Plants could be transformed with Photorhabdus genes that produce insect toxins and other insect toxin genes such as Bt as with other insect toxin genes such as Bt.

10

25

30

European Patent Application 0400246A1 describes

transformation of 2 Bt in a plant, which could be any 2 genes.

Another way to produce a transgenic plant that contains more than one insect resistant gene would be to produce two plants, with each plant containing an insect resistant gene. These plants would be backcrossed using traditional plant breeding techniques to produce a plant containing more than one insect resistant gene.

In addition to producing a transformed plant containing plant optimized gene(s), there are other delivery systems where it may be desirable to reengineer the bacterial gene(s). Along the same lines, a genetically engineered, easily isolated protein toxin fusing together both a molecule attractive to insects as a food source and the insecticidal activity of the toxin may be engineered and expressed in bacteria or in eukaryotic cells using standard, well-known techniques. After purification in the laboratory such a toxic agent with "built-in" bait could be packaged inside standard insect trap housings.

Another delivery scheme is the incorporation of the genetic material of toxins into a baculovirus vector. Baculoviruses infect particular insect hosts, including those desirably targeted with the *Photorhabdus* toxins. Infectious baculovirus harboring an expression construct for the *Photorhabdus* toxins could be introduced into areas of insect infestation to thereby intoxicate or poison infected insects.

PCT/US96/18003 WO 97/17432

Transfer of the insecticidal properties requires nucleic acid sequences encoding the coding the amino acid sequences for the Photorhabdus toxins integrated into a protein expression vector appropriate to the host in which the vector will reside. One way to obtain a nucleic acid sequence encoding a protein with insecticidal properties is to isolate the native genetic material which produces the toxins from Photorhabdus, using information deduced from the toxin's amino acid sequence, large portions of which are set forth below. As described below, methods of purifying the proteins responsible for toxin activity are also 10 disclosed.

Using N-terminal amino acid sequence data, such as set forth below, one can construct oligonucleotides complementary to all, or a section of, the DNA bases that encode the first amino acids 15 of the toxin. These oligonucleotides can be radiolabeled and used as molecular probes to isolate the genetic material from a genomic genetic library built from genetic material isolated from strains of Photorhabdus. The genetic library can be cloned in plasmid, cosmid, phage or phagemid vectors. The library could be transformed into Escherichia coli and screened for toxin production by the transformed cells using antibodies raised against the toxin or direct assays for insect toxicity.

20

25

30

35

40

This approach requires the production of a battery of oligonucleotides, since the degenerate genetic code allows an amino acid to be encoded in the DNA by any of several threenucleotide combinations. For example, the amino acid arginine can be encoded by nucleic acid triplets CGA, CGC, CGG, CGT, AGA, and AGG. Since one cannot predict which triplet is used at those positions in the toxin gene, one must prepare oligonucleotides with each potential triplet represented. More than one DNA molecule corresponding to a protein subunit may be necessary to construct a sufficient number of oligonucleotide probes to recover all of the protein subunits necessary to achieve oral toxicity.

From the amino acid sequence of the purified protein, genetic materials responsible for the production of toxins can readily be isolated and cloned, in whole or in part, into an expression vector using any of several techniques well-known to one skilled in the art of molecular biology. A typical expression vector is a DNA plasmid, though other transfer means

including, but not limited to, cosmids, phagemids and phage are also envisioned. In addition to features required or desired for plasmid replication, such as an origin of replication and antibiotic resistance or other form of a selectable marker such as the bar gene of Streptomyces hygroscopicus or viridochromogenes, protein expression vectors normally additionally require an expression cassette which incorporates the cis-acting sequences necessary for transcription and translation of the gene of interest. The cis-acting sequences 10 required for expression in prokaryotes differ from those required in eukaryotes and plants.

A eukaryotic expression cassette requires a transcriptional promoter upstream (5') to the gene of interest, a transcriptional termination region such as a poly-A addition site, and a ribosome binding site upstream of the gene of interest's first codon. In bacterial cells, a useful transcriptional promoter that could be included in the vector is the T7 RNA Polymerase-binding promoter. Promoters, as previously described herein, are known to efficiently promote transcription of mRNA. Also upstream from the gene of interest the vector may include a nucleotide sequence encoding a signal sequence known to direct a covalently linked protein to a particular compartment of the host cells such as the cell surface.

15

20

35

40

Insect viruses, or baculoviruses, are known to infect and adversely affect certain insects. The affect of the viruses on insects is slow, and viruses do not stop the feeding of insects. Thus viruses are not viewed as being useful as insect pest control agents. Combining the Photorhabdus toxins genes into a baculovirus vector could provide an efficient way of transmitting 30 the toxins while increasing the lethality of the virus. In addition, since different baculoviruses are specific to different insects, it may be possible to use a particular toxin to selectively target particularly damaging insect pests. A particularly useful vector for the toxins genes is the nuclear polyhedrosis virus. Transfer vectors using this virus have been described and are now the vectors of choice for transferring foreign genes into insects. The virus-toxin gene recombinant may be constructed in an orally transmissible form. Baculoviruses normally infect insect victims through the mid-gut intestinal mucosa. The toxin gene inserted behind a strong viral coat

protein promoter would be expressed and should rapidly kill the infected insect.

In addition to an insect virus or baculovirus or transgenic plant delivery system for the protein toxins of the present invention, the proteins may be encapsulated using Bacillus thuringiensis encapsulation technology such as but not limited to U.S. Patent Nos. 4.695.455; 4.695.462; 4.861.595 which are all incorporated herein by reference. Another delivery system for the protein toxins of the present invention is formulation of the protein into a bait matrix, which could then be used in above and below ground insect bait stations. Examples of such technology include but are not limited to PCT Patent Application WO 93/23998, which is incorporated herein by reference.

10

30

35

40

As is described above, it might become necessary to modify 15 the sequence encoding the protein when expressing it in a nonnative host, since the codon preferences of other hosts may differ from that of Photorhabdus. In such a case, translation may be quite inefficient in a new host unless compensating modifications to the coding sequence are made. Additionally, 20 modifications to the amino acid sequence might be desirable to avoid inhibitory cross-reactivity with proteins of the new host, or to refine the insecticidal properties of the protein in the new host. A genetically modified toxin gene might encode a toxin exhibiting, for example, enhanced or reduced toxicity, altered 25 insect resistance development, altered stability, or modified target species specificity.

In addition to the *Photorhabdus* genes encoding the toxins, the scope of the present invention is intended to include related nucleic acid sequences which encode amino acid biopolymers homologous to the toxin proteins and which retain the toxic effect of the *Photorhabdus* proteins in insect species after oral ingestion.

For instance, the toxins used in the present invention seem to first inhibit larval feeding before death ensues. By manipulating the nucleic acid sequence of *Photorhabdus* toxins or its controlling sequences, genetic engineers placing the toxin gene into plants could modulate its potency or its mode of action to, for example, keep the eating-inhibitory activity while eliminating the absolute toxicity to the larvae. This change could permit the transformed plant to survive until harvest

without having the unnecessarily dramatic effect on the ecosystem of wiping out all target insects. All such modifications of the gene encoding the toxin, or of the protein encoded by the gene, are envisioned to fall within the scope of the present invention.

Other envisioned modifications of the nucleic acid include the addition of targeting sequences to direct the toxin to particular parts of the insect larvae for improving its efficiency.

Strains ATCC 55397, 43948, 43949, 43950, 43951, 43952 have been deposited in the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 USA. Amino acid and nucleotide sequence data for the W-14 native toxin (ATCC 55397) is presented below. Isolation of the genomic DNA for the toxins from the bacterial hosts is also exemplified herein.

Standard and molecular biology techniques were followed and taught in the specification herein. Additional information may be found in Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, which is incorporated herein by reference.

20

15

5

The following abbreviations are used throughout the Examples:

Tris = tris (hydroxymethyl) amino methane; SDS = sodium dodecyl sulfate; EDTA = ethylenediaminetetraacetic acid, IPTG = isopropylthio-B-galactoside, X-gal = 5-bromo-4-chloro-3-indoyl-B-D-galactoside, CTAB = cetyltrimethylammonium bromide; kbp = kilobase pairs; dATP, dCTP, dGTP, dTTP, I = 2'-deoxynucleoside 5'-triphosphates of adenine, cytosine, guanine, thymine, and inosine, respectively; ATP = adenosine 5' triphosphate.

30

Example 1

Purification of toxin from P. luminescens and Demonstration of toxicity after oral delivery of purified toxin

The insecticidal protein toxin of the present invention was

purified from P. luminescens strain W-14, ATCC Accession Number

55397. Stock cultures of P. luminescens were maintained on petri
dishes containing 2% Proteose Peptone No. 3 (i.e., PP3, Difco
Laboratories, Detroit MI) in 1.5% agar, incubated at 25°C and
transferred weekly. Colonies of the primary form of the bacteria

were inoculated into 200 ml of PP3 broth supplemented with 0.5%

PCT/US96/18003 WO 97/17432

10

30

35

40

polyoxyethylene sorbitan mono-stearate (Tween 60, Sigma Chemical Company, St. Louis MO) in a one liter flask. The broth cultures were grown for 72 hours at 30°C on a rotary shaker. The toxin proteins can be recovered from cultures grown in the presence or absence of Tween; however, the absence of Tween can affect the form of the bacteria grown and the profile of proteins produced by the bacteria. In the absence of Tween, a variant shift occurs insofar as the molecular weight of at least one identified toxin subunit shifts from about 200 kDa to about 185 kDa.

The 72 hour cultures were centrifuged at 10,000 x g for 30 minutes to remove cells and debris. The supernatant fraction that contained the insecticidal activity was decanted and brought to 50 mM K2HPO4 by adding an appropriate volume of 1.0 M K2HPO4. The pH was adjusted to 8.6 by adding potassium hydroxide. This supernatant fraction was then mixed with DEAE-Sephacel (Pharmacia 15 LKB Biotechnology) which had been equilibrated with 50 mM K2HPO4. The toxic activity was adsorbed to the DEAE resin. This mixture was then poured into a 2.6 x 40 cm column and washed with 50 mM K_2HPO_4 at room temperature at a flow rate of 30 ml/hr until the effluent reached a steady baseline UV absorbance at 280 nm. The 20 column was then washed with 150 mM KCl until the effluent again reached a steady 280 nm baseline. Finally the column was washed with 300 mM KCl and fractions were collected.

Fractions containing the toxin were pooled and filter 25 sterilized using a 0.2 micron pore membrane filter. The toxin was then concentrated and equilibrated to 100 mM KPO., pH 6.9, using an ultrafiltration membrane with a molecular weight cutoff of 100 kDa at 4°C (Centriprep 100, Amicon Division-W.R. Grace and Company). A 3 ml sample of the toxin concentrate was applied to the top of a 2.6 x 95 cm Sephacryl S-400 HR gel filtration column (Pharmacia LKB Biotechnology). The eluent buffer was 100 mM KPO. pH 6.9, which was run at a flow rate of 17 ml/hr, at 4°C. The effluent was monitored at 280 nm.

Fractions were collected and tested for toxic activity. Toxicity of chromatographic fractions was examined in a biological assay using Manduca sexta larvae. Fractions were either applied directly onto the insect diet (Gypsy moth wheat germ diet, ICN Biochemicals Division - ICN Biomedicals, Inc.) or administered by intrahemocelic injection of a 5 µl sample through the first proleg of 4th or 5th instar larva using a 30 gauge

needle. The weight of each larva within a treatment group was recorded at 24 hour intervals. Toxicity was presumed if the insect ceased feeding and died within several days of consuming treated insect diet or if death occurred within 24 hours after injection of a fraction.

19,0 (

The toxic fractions were pooled and concentrated using the Centriprep-100 and were then analyzed by HPLC using a 7.5 mm x 60 cm TSK-GEL G-4000 SW gel permeation column with 100 mM potassium phosphate, pH 6.9 eluent buffer running at 0.4 ml/min. This analysis revealed the toxin protein to be contained within a single sharp peak that eluted from the column with a retention time of approximately 33.6 minutes. This retention time corresponded to an estimated molecular weight of 1,000 kDa. Peak fractions were collected for further purification while fractions not containing this protein were discarded. The peak eluted from the HPLC absorbs UV light at 218 and 280 nm but did not absorb at 405 nm. Absorbance at 405 nm was shown to be an attribute of xenorhabdin antibiotic compounds.

10

15

35

40

denaturing agarose gel (Metaphor Agarose, FMC BioProducts) showed that two protein complexes are present in the peak. The peak material, buffered in 50 mM Tris-HCl, pH 7.0, was separated on a 1.5% agarose stacking gel buffered with 100 mM Tris-HCl at pH 7.0 and 1.9% agarose resolving gel buffered with 200 mM Tris-borate at pH 8.3 under standard buffer conditions (anode buffer 1M Tris-HCl, pH 8.3; cathode buffer 0.025 M Tris, 0.192 M glycine). The gels were run at 13 mA constant current at 15°C until the phenol red tracking dye reached the end of the gel. Two protein bands were visualized in the agarose gels using Coomassie brilliant blue staining.

The slower migrating band was referred to as "protein band 1" and faster migrating band was referred to as "protein band 2." The two protein bands were present in approximately equal amounts. The Coomassie stained agarose gels were used as a guide to precisely excise the two protein bands from unstained portions of the gels. The excised pieces containing the protein bands were macerated and a small amount of sterile water was added. As a control, a portion of the gel that contained no protein was also excised and treated in the same manner as the gel pieces containing the protein. Protein was recovered from the gel

pieces by electroelution into 100 mM Tris-borate pH 8.3, at 100 volts (constant voltage) for two hours. Alternatively, protein was passively eluted from the gel pieces by adding an equal volume of 50 mM Tris-HCl, pH 7.0, to the gel pieces, then

5 incubating at 30°C for 16 hours. This allowed the protein to diffuse from the gel into the buffer, which was then collected.

Results of insect toxicity tests using HPLC-purified toxin (33.6 min. peak) and agarose gel purified toxin demonstrated toxicity of the extracts. Injection of 1.5 µg of the HPLC purified protein kills within 24 hours. Both protein bands 1 and 2, recovered from agarose gels by passive elution or electroelution, were lethal upon injection. The protein concentration estimated for these samples was less than 50 ng/larva. A comparison of the weight gain and the mortality between the groups of larvae injected with protein bands 1 cr 2 indicate that protein band 1 was more toxic by injection delivery.

15

30

35

When HPLC-purified toxin was applied to larval diet at a concentration of 7.5 µg/larva, it caused a halt in larval weight gain (24 larvae tested). The larvae begin to feed, but after consuming only a very small portion of the toxin treated diet they began to show pathological symptoms induced by the toxin and the larvae cease feeding. The insect frass became discolore; and most larva showed signs of diarrhea. Significant insect mortality resulted when several 5 µg toxin doses were applied to the diet over a 7-10 day period.

Agarose-separated protein band 1 significantly inhibited larval weight gain at a dose of 200 ng/larva. Larvae fed similar concentrations of protein band 2 were not inhibited and gained weight at the same rate as the control larvae. Twelve larvae were fed eluted protein and 45 larvae were fed protein-containing agarose pieces. These two sets of data indicate that protein band 1 was orally toxic to Manduca sexta. In this experiment it appeared that protein band 2 was not toxic to Manduca sexta.

Further analysis of protein bands 1 and 2 by SDS-PAGE under denaturing conditions showed that each band was composed of several smaller protein subunits. Proteins were visualized by Coomassie brilliant blue staining followed by silver staining to achieve maximum sensitivity.

The protein subunits in the two bands were very similar. Protein band 1 contains 8 protein subunits of 25.1, 56.2, 60.8, 65.6, 166, 171, 184 and 208 kDa. Protein band 2 had an identical profile except that the 25.1, 60.8, and 65.6 kDa proteins were not present. The 56.2, 60.8, 65.6, and 184 kDa proteins were present in the complex of protein band 1 at approximately equal concentrations and represent 80% or more of the total protein content of that complex.

The native HPLC-purified toxin was further characterized as follows. The toxin was heat labile in that after being heated to 60°C for 15 minutes it lost its ability to kill or to inhibit weight gain when injected or fed to M. sexta larvae. Assays were designed to detect lipase, type C phospholipase, nuclease or red blood cell hemolysis activities and were performed with purified toxin. None of these activities were present. Antibiotic zone inhibition assays were also done and the purified toxin failed to inhibit growth of Gram-negative or -positive bacteria, yeast or filamentous fungi, indicating that the toxic is not a xenorhabdin antibiotic.

The native HPLC-purified toxin was tested for ability to kill insects other than Manduca sexta. Table 2 lists insects killed by the HPLC-purified P. luminescens toxin in this study.

Table 2

25 Insects Killed by P. luminescens Toxin

	Common Name	<u>Order</u>	Genus and species	Route of Delivery
30	Tobacco horn worm	Lepidoptera	Manduca sexta	Oral and injected
	Mealworm	Coleoptera	Tenebrio molitor	Oral
35	Pharaoh ant	Hymenoptera	Monomorium pharoanis	Oral
	German cockroach	Dictyoptera	Blattella germanica	Oral and injected
40	Mosquito	Diptera	Aedes aegypti	Oral

Example 2 Insecticide Utility

The Photorhabdus luminescens utility and toxicity were further characterized. Photorhabdus luminescens (strain W-14) culture broth was produced as follows. The production medium was 2% Bacto Proteose Peptone* Number 3 (PP3, Difco Laboratories, Detroit, Michigan) in Milli-O deionized water. Seed culture flasks consisted of 175 ml medium placed in a 500 ml tribaffied 10 flask with a Delong neck, covered with a Kaput and autoclaved for 20 minutes, T=250°F. Production flasks consisted of 500 mls in a 2.8 liter 500 ml tribaffled flask with a Delong neck, covered by a Shin-etsu silicon foam closure. These were autoclaved for 45 minutes, T=250°F. The seed culture was incubated at 28°C at 150 rpm in a gyrotory shaking incubator with 15 a 2 inch throw. After 16 hours of growth, 1% of the seed culture was placed in the production flask which was allowed to grow for 24 hours before harvest. Production of the toxin appears to be during log phase growth. The microbial broth was transferred to 20 a 1L centrifuge bottle and the cellular biomass was pelleted (30 minutes at 2500 RPM at 4° C, [R.C.F. = ~1600] HG-4L Rotor RC3 Sorval centrifuge, Dupont, Wilmington, Delaware). The primary broth was chilled at 4°C for 8 - 16 hours and recentrifuged at least 2 hours (conditions above) to further clarify the broth by removal of a putative mucopolysaccharide which precipitated upon standing. (An alternative processing method combined both steps and involved the use of a 16 hour clarification centrifugation, same conditions as above.) This broth was then stored at 4°C prior to bioassay or filtration.

Photorhabdus culture broth and protein toxin(s) purified from this broth showed activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm (larvae and adult), Colorado potato beetle, and turf grubs, which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and weevils. Activity has also been observed against aster leafhopper, which is a member of the order, Homoptera. Other members of the Homoptera include planthoppers, pear pyslla, apple sucker, scale insects, whiteflies, and spittle bugs, as

30

35

well as numerous host specific aphid species. The broth and purified fractions are also active against beet armyworm, cabbage looper, black cutworm, tobacco budworm, European corn borer, corn earworm, and codling moth, which are members of the order Lepidoptera. Other typical members of this order are clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent caterpillar, sod webworm, and fall armyworm. Activity is also seen against fruitfly and mosquito larvae, which are members of the order Diptera. Other 10 members of the order Diptera are pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly, house fly, and various mosquito species. Activity is seen against carpenter ant and Argentine ant, which are members of the order that also includes fire ants, oderous house ants, and little black ants.

The broth/fraction is useful for reducing populations of insects and were used in a method of inhibiting an insect population. The method may comprise applying to a locus of the insect an effective insect inactivating amount of the active described. Results are reported in Table 3.

15

20

30

35

Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth (filter sterilized, cell-free) or purified HPLC fractions were applied directly to the surface (~1.5 cm²) of 0.25 ml of artificial diet in 30 µl aliquots following dilution in control medium or 10 mM sodium phosphate 25 buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from sterilized eggs, with second instar SCR grown on artificial diet or with second instar Diabrotica virgifera virgifera (Western corn rootworm, WCR) reared on corn seedlings grown in Metromix*. Second instar larvae were weighed prior to addition to the diet. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (4 days for neonate and adult SCR, 2-5 days for WCR larvae, 7-14 days for second instar SCR). Mortality and weight determinations were scored as indicated. Generally, 16 insects per treatment were used in all studies. Control mortalities were as follows: neonate larvae, <5%, adult beetles, 5%.

PCT/US96/18003 WO 97/17432

Activity against Colorado potato beetle was tested as follows. Photorhabdus culture broth or control medium was applied to the surface (~2.0 cm²) of 1.5 ml of standard artificial diet held in the wells of a 24-well tissue culture plate. Each well 5 received 50 ul of treatment and was allowed to air dry. Individual second instar Colorado potato beetle (Leptinotarsa decemlineata, CPB) larvae were then placed onto the diet and mortality was scored after 4 days. Ten larvae per treatment were used in all studies. Control mortality was 3.3%.

10

15

20

30

Activity against Japanese beetle grubs and beetles was tested as follows. Turf grubs (Popillia japonica, 2-3rd instar) were collected from infested lawns and maintained in the laboratory in soil/peat mixture with carrot slices added as additional diet. Turf beetles were pheromone-trapped locally and maintained in the laboratory in plastic containers with maple leaves as food. Following application of undiluted Photorhabdus culture broth or control medium to corn rootworm artificial diet (30 μ 1/1.54 cm², beetles) or carrot slices (larvae), both stages were placed singly in a diet well and observed for any mortality and feeding. In both cases there was a clear reduction in the amount of feeding (and feces production) observed.

Activity against mosquito larvae was tested as follows. The assay was conducted in a 96-well microtiter plate. Each well contained 200 μ l of aqueous solution (Photorhabdus culture broth, control medium or H2O) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 2 hours after infestation and did not change over the three day observation period. No control mortality was seen.

Activity against fruitflies was tested as follows. Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium or Photorhabdus culture broth. This was accomplished by placing 8.0 ml of dry medium in each of 3 rearing vials per treatment and adding 8.0 ml of the appropriate liquid. Ten late instar 35 Drosophila melanogaster maggots were then added to each vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 3, 7 and 10 days of exposure. Incorporation of Photorhabdus culture broth into the diet media for fruitfly

maggots caused a slight (17%) but significant reduction in day-10 adult emergence as compared to water and control medium (3% reduction).

Activity against aster leafhopper was tested as follows. The ingestion assay for aster leafhopper (Macrosteles severini) is designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35 x 10 mm Petri dish. A 2 inch Parafilm M square is placed across the top of the dish and secured with an "O" ring. A 1 oz. 10 plastic cup is then infested with approximately 7 leafhoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using undiluted Photorhabdus culture broth, the broth and control medium were dialyzed against water to reduce control mortality. Mortality is reported at day 2 where 26.5% control mortality was seen. In the tests using purified fractions (200 mg protein/ml) a final concentration of 5% sucrose was used in all treatments to improve survivability of the aster leafhoppers. 20 The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assay was graded for mortality at 72 hours. Control mortality was 5.5%.

Activity against Argentine ants was tested as follows. A 1.5 ml aliquot of 100% Photorhabdus culture broth, control medium or water was pipetted into 2.0 ml clear glass vials. The vials 25 were plugged with a piece of cotton dental wick that was moistened with the appropriate treatment. Each vial was placed into a separate 60x16mm Petri dish with 8 to 12 adult Argentine ants (Linepithema humile). There were three replicates per treatment. Bioassay plates were held on a laboratory bench, at room temperature under fluorescent ceiling lights. Mortality readings were made after 5 days of exposure. Control mortality was 24%.

Activity against carpenter ant was tested as follows. Black carpenter ant workers (Camponotus pennsylvanicus) were collected from trees on DowElanco property in Indianapolis, IN. Tests with Photorhabdus culture broth were performed as follows. Each plastic bioassay container (7 1/8" x 3") held fifteen workers, a paper harborage and 10 ml of broth or control media in a plastic 40 shot glass. A cotton wick delivered the treatment to the ants

30

PCT/US96/18003 WO 97/17432

through a hole in the shot glass lid. All treatments contained 5% sucrose. Bioassays were held in the dark at room temperature and graded at 19 days. Control mortality was 9%. Assays delivering purified fractions utilized artificial ant diet mixed 5 with the treatment (purified fraction or control solution) at a rate of 0.2 ml treatment/2.0 g diet in a plastic test tube. The final protein concentration of the purified fraction was less than 10 µg/g diet. Ten ants per treatment, a water source, harborage and the treated diet were placed in sealed plastic containers and maintained in the dark at 27°C in a humidified incubator. Mortality was scored at day 10. No control mortality was seen.

Activity against various lepidopteran larvae was tested as follows. Photorhabdus culture broth or purified fractions were 15 applied directly to the surface (~1.5 cm²) of 0.25 ml of standard artificial diet in 30 μ l aliquots following dilution in control medium or 10 mM sodium phosphate buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate larva. European 20 corn borer (Ostrinia nubilalis) and corn earworm (Helicoverpa zea) eggs were supplied from commercial sources and hatched inhouse, whereas beet armyworm (Spodoptera exigua), cabbage looper (Trichoplusia ni), tobacco budworm (Heliothis virescens), codling moth (Laspeyresia pomonella) and black cutworm (Agrotis ipsilon) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at days 5-7 for Photorhabdus culture broth and days 4-7 30 for the purified fraction. Generally, 16 insects per treatment were used in all studies. Control mortality ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

25

5

Table 3

Effect of Photorhabdus luminescens (strain W-14)

Culture Broth and Purified Toxin Fraction on Mortality and Growth
Inhibition of Different Insect Orders/Species

Insect Order/Species	Broth	Broth		Purified Fraction	
	% Mort.	% G.I.	% Mort.	% G.I.	
COLEOPTERA					
Corn Rootworm					
Southern/neonate larva	100	na	100	na	
Southern/2 nd instar	na	38.5	nt	nt	
Southern/adult	45	nt	nt	nt	
Western/2 nd instar	na	35	nt	nt	
Colorado Potato					
Beetle	93	nt	nt	nt	
2 nd instar			İ		
Turf Grub	na	a.f.	nt	nt	
3 rd instar	na	a.f.	nt	nt	
adult		ł			
DIPTERA					
Fruit Fly (adult	17	nt	nt	nt	
emergence)	100	'na	nt	nt	
Mosquito larvae					
HOMOPTERA					
Aster Leafhopper	96.5	na	100	na	
HYMENOPTERA					
Argentine Ant	75	na	nt	na	
Carpenter Ant	71	na '	100	na	
LEPIDOPTERA					
Beet Armyworm	12.5	36	18.75	41.4	
Black Cutworm	nt	nt	0	71.2	
Cabbage Looper	nt	nt	21.9	66.8	
Codling Moth	nt	nt	6.25	45.9	
Corn Earworm	56.3	94.2	97.9	na	
European Corn Borer	96.7	98.4	100	na	
Tobacco Budworm	13.5	52.5	19.4	85.6	

Mort. = mortality, G.I. = growth inhibition,

na = not applicable, nt = not tested, a.f. = anti-feedant

Example 3 Insecticide Utility Upon Soil Application

Photorhabdus luminescens (strain W-14) culture broth was shown to be active against corn rootworm when applied directly to soil or a soil-mix (Metromix*). Activity against neonate SCR and WCR in Metromix was tested as follows (Table 4). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After 10 roots were approximately 3-6 cm long, a single kernel/seedling was planted in a 591 ml clear plastic cup with 50 gm of dry Metromix*. Twenty neonate SCR or WCR were then placed directly on the roots of the seedling and covered with Metromix*. Upon infestation, the seedlings were then drenched with 50 ml total 15 volume of a diluted broth solution. After drenching, the cups were sealed and left at room temperature in the light for 7 days. Afterwards, the seedlings were washed to remove all Metromix* and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants 20 and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, with representing no damage and +++ representing severe damage.

Activity against neonate SCR in soil was tested as follows (Table 5). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist 25 filter paper for 6 days. After the roots were approximately 3-6 cm long, a single kernel/seedling was planted in a 591 ml clear plastic cup with 150 gm of soil from a field in Lebanon, IN planted the previous year with corn. This soil had not been previously treated with insecticides. Twenty neonate SCR were 30 then placed directly on the roots of the seedling and covered with soil. After infestation, the seedlings were drenched with 50 ml total volume of a diluted broth solution. After drenching, the unsealed cups were incubated in a high relative humidity 35 chamber (80%) at 78°F. Afterwards, the seedlings were washed to remove all soil and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, with - representing no damage and +++ representing severe damage. 40

5

Table 4

Effect of Photorhabdus luminescens (strain W-14) Culture

Broth on Rootworm Larvae After Post-Infestation Drenching
(Metromix*)

	Treatment	Larvae	Leaf Damage	Root Weight (g)	%
	Southern Corn Roc	tworm			
10	Water	-		0.4916 ± 0.023	100
	Medium (2.0% v/v)	_	•••	0.4416 ± 0.029	100
	Broth (6.25%v/v)	-	_	0.4641 ± 0.081	100
	Water	+	+++	0.1410 ± 0.006	28.7
15	Media (2.0% v/v)	+	+++	0.1345 ± 0.028	30.4
	Broth (1.56% v/v)	+	-	0.4830 ± 0.031	104
	Western Corn Root	MOIM			
20	Water	_	-	0.4446 ± 0.019	100
	Broth (2.0% v/v)	-	_	0.4069 ± 0.026	100
	Water	+	_	0.2202 ± 0.015	49
25	Broth (2.0% v/v)	+		0.3879 ± 0.013	95
 J					

Table 5
Effect of Photorhabdus luminescens (strain W-14) Culture Broth on Southern Corn Rootworm Larvae After Post-Infestation Drenching (Soil)

	Treatment	Larvae	Leaf Damage	Root Weight(g)	%
	Water	-	_	0.2148 ± 0.014	100
35	Broth (50% v/v)	-	-	0.2260 ± 0.016	103
	Water	+	+++	0.0916 ± 0.009	43
	Broth (50% v/v)	+	<u>-</u>	0.2428 ± 0.032	113

Activity of Photorhabdus luminescens (strain W-14) culture broth against second instar turf grubs in Metromix® was observed in tests conducted as follows (Table 6). Approximately 50 gm of dry Metromix® was added to a 591 ml clear plastic cup. The Metromix® was then drenched with 50 ml total volume of a 50% (v/v) diluted Photorhabdus broth solution. The dilution of crude broth was made with water, with 50% broth being prepared by adding 25 ml of crude broth to 25 ml of water for 50 ml total volume. A 1% (w/v) solution of proteose peptone #3 (PP3), which is a 50% dilution of the normal media concentration, was used as a broth control. After drenching, five second instar turf grubs were

placed on the top of the moistened Metromix. Healthy turf grub larvae burrowed rapidly into the Metromix. Those larvae that did not burrow within 1h were removed and replaced with fresh larvae. The cups were sealed and placed in a 28°C incubator, in the dark.

5 After seven days, larvae were removed from the Metromix and scored for mortality. Activity was rated the percentage of mortality relative to control.

10 Table 6
Effect of Photorhabdus luminescens (strain W-14) Culture Broth on
Turf Grub After Pre-Infestation Drenching (Metromix*)

15	Treatment	Mortality*	Mortality %		
13	Water	7/15	47		
20	Control medium (1.0% w/v)	12/19	63		
	Broth (50% v/v)	17/20	85		

*expressed as a ratio of dead/living larvae

25

Example 4 Insecticide Utility Upon Leaf Application

30 Activity of Photorhabdus broth against European corn borer was seen when the broth was applied directly to the surface of maize leaves (Table 7). In these assays Photorhabdus broth was diluted 100-fold with culture medium and applied manually to the surface of excised maize leaves at a rate of ~6.0 μl/cm² of leaf surface. The leaves were air dried and cut into equal sized strips approximately 2 x 2 inches. The leaves were rolled, secured with paper clips and placed in 1 oz plastic shot glasses with 0.25 inch of 2% agar on the bottom surface to provide moisture. Twelve neonate European corn borers were then placed onto the rolled leaf and the cup was sealed. After incubation for 5 days at 27°C in the dark, the samples were scored for feeding damage and recovered larvae.

Table 7
Effect of Photorhabdus luminescens (strain W-14) Culture Broth on European Corn Borer Larvae Following Pre-Infestation Application to Excised Maize Leaves

Treatment	Leaf Damage	Larvae Recovered	Weight (mg)
Water	Extensive	55/120	0.42 mg
Control Medium	Extensive	40/120	0.50 mg
Broth (1.0% v/v)	Trace	3/120	0.15 mg

10

5

Activity of the culture broth against neonate tobacco budworm (Heliothis virescens) was demonstrated using a leaf dip methodology. Fresh cotton leaves were excised from the plant and leaf disks were cut with an 18.5 mm cork-borer. The disks were individually emersed in control medium (PP3) or Photorhabdus luminescens (strain W-14) culture broth which had been concentrated approximately 10-fold using an Amicon (Beverly, MA), Proflux M12 tangential filtration system with a 10 kDa filter. Excess liquid was removed and a straightened paper clip was placed through the center of the disk. The paper clip was then 20 wedged into a plastic, 1.0 oz shot glass containing approximately 2.0 ml of 1% Agar. This served to suspend the leaf disk above the agar. Following drying of the leaf disk, a single neonate tobacco budworm larva was placed on the disk and the cup was 25 capped. The cups were then sealed in a plastic bag and placed in a darkened, 27°C incubator for 5 days. At this time the remaining larvae and leaf material were weighed to establish a measure of leaf damage (Table 8).

Table 8

Effect of Photorhabdus luminescens (Strain W-14) Culture Broth on Tobacco Budworm Neonates in a Cotton-Leaf Dip Assay

			Final Weights (mg)
35	Treatment	Leaf Disk	Larvae
	Control leaves	55.7 ± 1.3	na*
	Control Medium	34.0 ± 2.9	4.3 ± 0.91
	Photorhabdus broth	54.3 ± 1.4	0.0**

^{* -} not applicable, ** - no live larvae found

40

PCT/US96/18003 WO 97/17432

Example 5, Part A Characterization of Toxin Peptide Components

In a subsequent analysis, the toxin protein subunits of the bands isolated as in Example 1 were resolved on a 7% SDS polyacrylamide electrophoresis gel with a ratio of 30:0.8 (acrylamide:BIS-acrylamide). This gel matrix facilitates better resolution of the larger proteins. The gel system used to estimate the Band 1 and Band 2 subunit molecular weights in Example 1 was an 18% gel with a ratio of 38:0.18 (acrylamide:BIS-10 acrylamide), which allowed for a broader range of size separation, but less resolution of higher molecular weight components.

In this analysis, 10, rather than 8, protein bands were resolved. Table 9 reports the calculated molecular weights of 15 the 10 resolved bands, and directly compares the molecular weights estimated under these conditions to those of the prior example. It is not surprising that additional bands were detected under the different separation conditions used in this example. Variations between the prior and new estimates of molecular weight are also to be expected given the differences in analytical conditions. In the analysis of this example, it is thought that the higher molecular weight estimates are more accurate than in Example 1, as a result of improved resolution. However, these are estimates based on SDS PAGE analysis, which are typically not analytically precise and result in estimates of peptides and which may have been further altered due to post- and co-translational modifications.

Amino acid sequences were determined for the N-terminal portions of five of the 10 resolved peptides. Table 9 correlates the molecular weight of the proteins and the identified sequences. In SEQ ID NO:2, certain analyses suggest that the proline at residue 5 may be an asparagine (asn). In SEQ ID NO: 3. certain analyses suggest that the amino acid residues at positions 13 and 14 are both arginine (arg). In SEQ ID NO:4, certain analyses suggest that the amino acid residue at position 6 may be either alanine (ala) or serine (ser). In SEQ ID NO:5, certain analyses suggest that the amino acid residue at position 3 may be aspartic acid (asp).

40

20

30

35

Table 9

	EXAMPLE 1 ESTIMATE	NEW ESTIMATE*	SEQ. LISTING
	208	200.2 kDa	SEQ ID NO:1
5	184	175.0 kDa	SEQ ID NO:2
	65.6	68.1 kDa	SEQ ID NO:3
	60.8	65.1 kDa	SEQ ID NO:4
	56.2	58.3 kDa	SEQ ID NO:5
	25.1	23.2 kDa	SEQ ID NO:15

*New estimates are based on SDS PAGE and are not based on gene sequences. SDS PAGE is not analytically precise.

Example 5, Part B Characterization of Toxin Peptide Components

15

20

30

35

New N-terminal sequence, SEQ ID NO:15, Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr, was obtained by further N-terminal sequencing of peptides isolated from Native HPLC-purified toxin as described in Example 5, Part A, above. This peptide comes from the tcaA gene. The peptide labeled TcaAii, starts at position 254 and goes to position 491, where the TcaAiii peptide starts, SEQ ID NO:4. The estimated size of the peptide based on the gene sequence is 25,240 Da.

25 <u>Example 6</u> Characterization of Toxin Peptide Components

In yet another analysis, the toxin protein complex was reisolated from the *Photorhabdus luminescens* growth medium (after culture without Tween) by performing a 10%-80% ammonium sulfate precipitation followed by an ion exchange chromatography step (Mono Q) and two molecular sizing chromatography steps. These conditions were like those used in Example 1. During the first molecular sizing step, a second biologically active peak was found at about 100 ± 10 kDa. Based upon protein measurements, this fraction was 20-50 fold less active than the larger, or primary, active peak of about 860 ± 100 kDa (native). During this isolation experiment, a smaller active peak of about 325 ± 50 kDa that retained a considerable portion of the starting biological activity was also resolved. It is thought that the 325 kDa peak is related to or derived from the 860 kDa peak.

A 56 kDa protein was resolved in this analysis. The N-terminal sequence of this protein is presented in SEQ ID NO:6. It is noteworthy that this protein shares significant identity and conservation with SEQ ID NO:5 at the N-terminus, suggesting that the two may be encoded by separate members of a gene family and that the proteins produced by each gene are sufficiently similar to both be operable in the insecticidal toxin complex.

A second, prominent 185 kDa protein was consistently present in amounts comparable to that of protein 3 from Table 9, and may be the same protein or protein fragment. The N-terminal sequence of this 185 kDa protein is shown at SEQ ID NO:7.

Additional N-terminal amino acid sequence data were also obtained from isolated proteins. None of the determined N-terminal sequences appear identical to a protein identified in Table 9. Other proteins were present in isolated preparation. One such protein has an estimated molecular weight of 108 kDa and an N-terminal sequence as shown in SEQ ID NO:8. A second such protein has an estimated molecular weight of 80 kDa and an N-terminal sequence as shown in SEQ ID NO:9.

15

20

25

30

When the protein material in the approximately 325 kDa active peak was analyzed by size, bands of approximately 51, 31, 28, and 22 kDa were observed. As in all cases in which a molecular weight was determined by analysis of electrophoretic mobility, these molecular weights were subject to error effects introduced by buffer ionic strength differences, electrophoresis power differences, and the like. One of ordinary skill would understand that definitive molecular weight values cannot be determined using these standard methods and that each was subject to variation. It was hypothesized that proteins of these sizes are degradation products of the larger protein species (of approximately 200 kDa size) that were observed in the larger primary toxin complex.

Finally, several preparations included a protein having the N-terminal sequence shown in SEQ ID NO:10. This sequence was strongly homologous to known chaperonin proteins, accessory proteins known to function in the assembly of large protein complexes. Although the applicants could not ascribe such an assembly function to the protein identified in SEQ ID NO:10, it was consistent with the existence of the described toxin protein complex that such a chaperonin protein could be involved in its

assembly. Moreover, although such proteins have not directly been suggested to have toxic activity, this protein may be important to determining the overall structural nature of the protein toxin, and thus, may contribute to the toxic activity or durability of the complex in vivo after oral delivery.

Subsequent analysis of the stability of the protein toxin complex to proteinase K was undertaken. It was determined that after 24 hour incubation of the complex in the presence of a 10-fold molar excess of proteinase K, activity was virtually eliminated (mortality on oral application dropped to about 5%). These data confirm the proteinaceous nature of the toxin.

The toxic activity was also retained by a dialysis membrane, again confirming the large size of the native toxin complex.

15

20

25

30

35

40

10

5

Example 7

Isolation, Characterization and Partial Amino Acid Sequencing of Photorhabdus Toxins

Isolation and N-Terminal Amino Acid Sequencing: In a set of experiments conducted in parallel to Examples 5 and 6, ammonium sulfate precipitation of Photorhabdus proteins was performed by adjusting Photorhabdus broth, typically 2-3 liters, to a final concentration of either 10% or 20% by the slow addition of ammonium sulfate crystals. After stirring for 1 hour at 4°C, the material was centrifuged at 12,000 x g for 30 minutes. The supernatant was adjusted to 80% ammonium sulfate, stirred at 4°C for 1 hour, and centrifuged at 12,000 x g for 60 minutes. The pellet was resuspended in one-tenth the volume of 10 mM Na₂·PO₄, pH 7.0 and dialyzed against the same phosphate buffer overnight at 4°C. The dialyzed material was centrifuged at 12,000 x g for 1 hour prior to ion exchange chromatography.

A HR 16/50 Q Sepharose (Pharmacia) anion exchange column was equilibrated with 10 mM Na₂•PO₄, pH 7.0. Centrifuged, dialyzed ammonium sulfate pellet was applied to the Q Sepharose column at a rate of 1.5 ml/min and washed extensively at 3.0 ml/min with equilibration buffer until the optical density (O.D. 280) reached less than 0.100. Next, either a 60 minute NaCl gradient ranging from 0 to 0.5 M at 3 ml/min, or a series of step elutions using 0.1 M, 0.4 M and finally 1.0 NaCl for 60 minutes each was applied to the column. Fractions were pooled and concentrated using a

Centriprep 100. Alternatively, proteins could be eluted by a single 0.4 M NaCl wash without prior elution with 0.1 M NaCl.

Two milliliter aliquots of concentrated Q Sepharose samples were loaded at 0.5 ml/min onto a HR 16/50 Superose 12 (Pharmacia) 5 gel filtration column equilibrated with 10 mM Na₂•PO₄, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected. The void volume material was collected and concentrated using a Centriprep 100. Two milliliter aliquots of concentrated Superose 12 samples were loaded at 0.5 ml/min onto a HR 16/50 Sepharose 4B-CL (Pharmacia) gel filtration column equilibrated with 10 mM Na₂•PO₄, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected.

The excluded protein peak was subjected to a second fractionation by application to a gel filtration column that used 15 a Sepharose CL-4B resin, which separates proteins ranging from ~30 kDa to 1000 kDa. This fraction was resolved into two peaks; a minor peak at the void volume (>1000 kDa) and a major peak which eluted at an apparent molecular weight of about 860 kDa. Over a one week period subsequent samples subjected to gel 20 filtration showed the gradual appearance of a third peak (approximately 325 kDa) that seemed to arise from the major peak, perhaps by limited proteolysis. Bioassays performed on the three peaks showed that the void peak had no activity, while the 860 kDa toxin complex fraction was highly active, and the 325 kDa 25 peak was less active, although quite potent. SDS PAGE analysis of Sepharose CL-4B toxin complex peaks from different fermentation productions revealed two distinct peptide patterns, denoted "P" and "S". The two patterns had marked differences in the molecular weights and concentrations of peptide components in 30 their fractions. The "S" pattern, produced most frequently, had 4 high molecular weight peptides (> 150 kDa) while the "P" pattern had 3 high molecular weight peptides. In addition, the "S" peptide fraction was found to have 2-3 fold more activity against European Corn Borer. This shift may be related to 35 variations in protein expression due to age of inoculum and/or other factors based on growth parameters of aged cultures.

Milligram quantities of peak toxin complex fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRIS-glycine

40

(Seprabuff TM to PVDF membranes (ProBlott TM , Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and Nterminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides in the "S" pattern had unique N-terminal amino acid sequences compared to the sequences identified in the previous example. A 201 kDa (TcdAii) peptide set forth as SEQ ID NO:.13 below shared between 33% amino acid identity and 50% similarity with SEQ ID NO:1 (TcbAii) (Table 10, in Table 10 vertical lines denote amino acid identities and colons indicate conservative amino acid substitutions). A second 10 peptide of 197 kDa, SEQ ID NO:14 (TcdB), had 42% identity and 58% homology with SEQ ID NO:2 (TcaC). Yet a third peptide of 205 kDa was denoted TcdAii. In addition, a limited N-terminal amino acid sequence, SEQ ID NO:16 (TcbA), of a peptide of at least 235 kDa 15 was identical in homology with the amino acid sequence, SEQ ID NO:12, deduced from a cloned gene (tcbA), SEQ ID NO:11, containing a deduced amino acid sequence corresponding to SEQ ID ${\tt NO:1\ (TcbA_{ii})}$. This indicates that the larger 235+ kDa peptide was proteolytically processed to the 201 kDa peptide, (TcbAii), (SEQ ID NO:1) during fermentation, possibly resulting in 20 activation of the molecule. In yet another sequence, the sequence originally reported as SEQ ID NO:5 (TcaBii) reported in Example 5 above, was found to contain an aspartic acid residue (Asp) at the third position rather than glycine (Gly) and two 25 additional amino acids Gly and Asp at the eighth and ninth positions, respectively. In yet two other sequences, SEQ ID NO:2 (TcaC) and SEQ ID NO:3 (TcaB $_{\rm I}$), additional amino acid sequence was obtained. Densitometric quantitation was performed using a sample that was identical to the "S" preparation sent for N-30 terminal analysis. This analysis showed that the 201 kDa and 197 kDa peptides represent 7.0% and 7.2%, respectively, of the total Coomassie brillant blue stained protein in the "S" pattern and are present in amounts similar to the other abundant peptides. It is speculated that these peptides may represent protein 35 homologs, analogous to the situation found with other bacterial toxins, such as various CryI Bt toxins. These proteins vary from 40-90% homology at their N-terminal amino acid sequence, which encompasses the toxic fragment.

Internal Amino Acid Sequencing: To facilitate cloning of toxin peptide genes, internal amino acid sequences of selected peptides were obtained as followed. Milligram quantities of peak 2A fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRISglycine (Seprabuff™ to PVDF membranes (ProBlott™, Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides, referred to as $TcbA_{ii}$ (containing SEQ ID NO:1), $TcdA_{ii}$, and $TcaB_i$ 10 (containing SEQ ID NO:3) were subjected to trypsin digestion by Harvard MicroChem followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal peptides were sequenced for the peptide TcaB; (205 kDa peptide) 15 referred to as TcaBi-PT111 (SEQ ID NO:17) and TcaBi-PT79 (SEQ ID NO:18). Two internal peptides were sequenced for the peptide TcaB; (68 kDa peptide) referred to as TcaB;-PT158 (SEQ ID NO:19) and TcaB₁-PT108 (SEQ ID NO:20). Four internal peptides were 20 sequenced for the peptide TcbAii (201 kDa peptide) referred to as TCBAII-PT103 (SEQ ID NO:21), TcbAii-PT56 (SEQ ID NO:22), TcbAii-PT81(a) (SEQ ID NO:23), and TcbAii-PT81(b) (SEQ ID NO:24).

Table 10 N-Terminal Amino Acid Sequences

201 kDa (33% identity & 50% similarity to SEQ ID NO.1)

L I G Y N N Q F S G * A SEQ ID NO:13

: | | | | : |

F I Q G Y S D L F G N - A SEQ ID NO:1

25

35

197 kDa (42% identity & 58% similarity SEQ ID NO.2)
M Q N S Q T F S V G E L SEQ ID NO.14
I I : I I I SEQ ID NO.2

Construction of a cosmid library of Photorhabdus luminescens W-14 genomic DNA and its screening to isolate genes encoding peptides comprising the toxic protein preparation

As a prerequisite for the production of Photorhabdus insect toxic proteins in beterologous hosts, and for other uses, it is necessary to isolate and characterize the penes that encode those

peptides. This objective was pursued in parallel. One approach, described later, was based on the use of monoclonal and polyclonal antibodies raised against the purified toxin which were then used to isolate clones from an expression library. The other approach, described in this example, is based on the use of the N-terminal and internal amino acid sequence data to design degenerate oligonucleotides for use in PCR amplication. Either method can be used to identify DNA clones that contain the peptide-encoding genes so as to permit the isolation of the respective genes, and the determination of their DNA base sequence.

GENOMIC DNA ISOLATION: Photorhabdus luminescens strain W-14 (ATCC accession number 55397) was grown on 2% proteose peptone #3 agar (Difco Laboratories, Detroit, MI) and insecticidal toxin 15 competence was maintained by repeated bioassay after passage, using the method described in Example 1 above. A 50 ml shake culture was produced in a 175 ml baffled flask in 2% proteose peptone #3 medium, grown at 28°C and 150 rpm for approximately 24 20 hours. 15 ml of this culture was pelleted and frozen in its medium at -20°C until it was thawed for DNA isolation. The thawed culture was centrifuged, (700 \times g, 30 min) and the floating orange mucopolysaccharide material was removed. The remaining cell material was centrifuged (25,000 \times g, 15 min) to pellet the bacterial cells, and the medium was removed and discarded.

Genomic DNA was isolated by an adaptation of the CTAB method described in section 2.4.1 of Current Protocols in Molecular Biology (Ausubel et al. eds, John Wiley & Sons, 1994) [modified to include a salt shock and with all volumes increased 10-fold). 30 The pelleted bacterial cells were resuspended in TE buffer (10 mM Tris-HCl. 1 mM EDTA, pH 8.0) to a final volume of 10 ml, then 12 ml of 5 M NaCl was added; this mixture was centrifuged 20 min at 15,000 x g. The pellet was resuspended in 5.7 ml TE and 300 ml 35 of 10% SDS and 60 ml of 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY; in sterile distilled water) were added to the suspension. This mixture was incubated at 37°C for 1 hr; then approximately 10 mg lysozyme (Worthington Biochemical Corp., Freehold, NJ) was added. After an additional 45 min, 1 ml of 5 M NaCl and 800 ml of CTAB/NaCl solution (18% w/v CTAB, 0.7 M 40

NaCl) were added. This preparation was incubated 10 min at 65°C, then gently agitated and further incubated and agitated for approximately 20 min to assist clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently and centrifuged. After two extractions with an equal volume of PCI (phenol/chloroform/isoamyl alcohol; 50:49:1, v/v/v; equilibrated with 1 M Tris-HCl, pH 8.0; Intermountain Scientific Corporation, Kaysville, UT), the DNA was precipitated with 0.6 volume of isopropanol. The DNA precipitate was gently removed with a glass rod, washed twice with 70% ethanol, dried, and dissolved in 2 ml STE (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 1 mM EDTA). This preparation contained 2.5 mg/ml DNA, as determined by optical

The molecular size range of the isolated genomic DNA was evaluated for suitability for library construction. CHEF gel analysis was performed in 1.5% agarose (Seakem® LE, FMC BioProducts, Rockland, ME) gels with 0.5 X TBE buffer (44.5 mM Tris-HCl pH 8.0, 44.5 mM H₁BO₁, 1 mM EDTA) on a BioRad CHEF-DR II apparatus with a Pulsewave 760 Switcher (Bio-Rad Laboratories, Inc., Richmond, CA). The running parameters were: initial A time, 3 sec; final A time, 12 sec; 200 volts; running temperature, 4-18°C; run time, 16.5 hr. Ethidium bromide staining and examination of the gel under ultraviolet light indicated the DNA ranged from 30-250 kbp in size.

density at 260 nm (i.e., OD260).

30

35

CONSTRUCTION OF LIBRARY: A partial Sau3A 1 digest was made of this Photorhabdus genomic DNA preparation. The method was based on section 3.1.3 of Ausubel (supra.). Adaptions included running smaller scale reactions under various conditions until nearly optimal results were achieved. Several scaled-up large reactions with varied conditions were run, the results analyzed on CHEF gels, and only the best large scale preparation was carried forward. In the optimal case, 200 µg of Photorhabdus genomic DNA was incubated with 1.5 units of Sau3A 1 (New England Biolabs, "NEB", Beverly, MA) for 15 min at 37°C in 2 ml total volume of 1X NEB 4 buffer (supplied as 10X by the manufacturer). The reaction was stopped by adding 2 ml of PCI and centrifuging at 8000 x g for 10 min. To the supernatant were added 200 µl of 5 M NaCl plus 6 ml of ice-cold ethanol. This preparation was

chilled for 30 min at -20°C. then centrifuged at 12,000 \times g for 15 min. The supernatant was removed and the precipitate was dried in a vacuum oven at 40°C, then resuspended in 400 μ l STE. Spectrophotometric assay indicated about 40% recovery of the

- input DNA. The digested DNA was size fractionated on a sucrose gradient according to section 5.3.2 of CPMB (op. cit.). A 10% to 40% (w/v) linear sucrose gradient was prepared with a gradient maker in Ultra-Clear tubes (Beckman Instruments, Inc., Palo Alto, CA) and the DNA sample was layered on top. After
- 10 centrifugation, (26,000 rpm, 17 hr, Beckman SW41 rotor, 20°C), fractions (about 750 μ1) were drawn from the top of the gradient and analyzed by CHEF gel electrophoresis (as described earlier). Fractions containing Sau3A 1 fragments in the size range 20-40 kbp were selected and DNA was precipitated by a modification
- (amounts of all solutions increased approximately 6.3-fold) of the method in section 5.3.3 of Ausubel (supra.). After overnight precipitation, the DNA was collected by centrifugation (17,000 x g. 15 min), dried, redissolved in TE, pooled into a final volume of 80 μl, and reprecipitated with the addition of 8 μl 3 M sedium
- 20 acetate and 220 µl ethanol. The pellet collected by centrifugation as above was resuspended in 12 µl TE.

 Concentration of the DNA was determined by Hoechst 33258 dye

 (Polysciences, Inc., Warrington, PA) fluorometry in a Hoefer

 TKO100 fluorimeter (Hoefer Scientific Instruments, San Francisco,
- 25 CA). Approximately 2.5 μg of the size-fractionated DNA was recovered.

Thirty μg of cosmid pWE15 DNA (Stratagene, La Jolla, CA) was digested to completion with 100 units of restriction enzyme FamH 1 (NEB) in the manufacturer's buffer (final volume of 200 μ l,

- 30 37°C, 1 hr). The reaction was extracted with 100 μl of PCI and DNA was precipitated from the aqueous phase by addition of 20 μl 3M sodium acetate and 550 μl -20°C absolute ethanol. After 10 min at -70°C, the DNA was collected by centrifugation (17,000 x g, 15 min), dried under vacuum, and dissolved in 180 μl of 10 mm 35 Tris-HCl, pH 8.0. To this were added 20 μl of 10x CIP buffe.
- Tris-HCl, pH 8.0. To this were added 20 μl of 10X CIP buffe.

 (100 mM Tris-HCl, pH 8.3; 10 mM ZnCl₂; 10 mM MgCl₂), and 1 μl

 (0.25 units) of 1:4 diluted calf intestinal alkaline phosphatase

(Boehringer Mannheim Corporation, Indianapolis, IN). After 30 min at 37°C, the following additions were made: 2 μl 0.5 M EDTA, pH 8.0; 10 μl 10% SDS; 0.5 μl of 20 mg/ml proteinase K (as above), followed by incubation at 55°C for 30 min. Following 5 sequential extractions with 100 μl of PCI and 100 μl phenol (Intermountain Scientific Corporation, equilibrated with 1 M Tris-HCl, pH 8.0), the dephosphorylated DNA was precipitated by addition of 72 μl of 7.5 M ammonium acetate and 550 μl -20°C ethanol, incubation on ice for 30 min, and centrifugation as above. The pelleted DNA was washed once with 500 μl -20°C 70% ethanol, dried under vacuum, and dissolved in 20 μl of TE buffer.

Ligation of the size-fractionated Sau3A 1 fragments to the BamH 1-digested and phosphatased pWE15 vector was accomplished using T4 ligase (NEB) by a modification (i.e., use of premixed 10X ligation buffer supplied by the manufacturer) of the protocol in section 3.33 of Ausubel. Ligation was carried out overnight in a total volume of 20 µl at 15°C, followed by storage at -20°C.

Four µ1 of the cosmid DNA ligation reaction, containing 20 about 1 µg of DNA, was packaged into bacteriophage lambda using a commercial packaging extract (Gigapack III Gold Packaging Extract, Stratagene), following the manufacturer's directions. The packaged preparation was stored at 4°C until use. packaged cosmid preparation was used to infect Escherichia coli XL1 Blue MR cells (Stratagene) according to the Gigapack* III gold protocols ("Titering the Cosmid Library"), as follows. XL1 Blue MR cells were grown in LB medium (g/L: Bacto-tryptone, 10; Bactoyeast extract, 5; Bacto-agar, 15; NaCl, 5; [Difco Laboratories, Detroit, MI}) containing 0.2% (w/v) maltose plus 10 mM MgSO4, at 30 37°C. After 5 hr growth, cells were pelleted at 700 x g (15 min) and resuspended in 6 ml of 10 mM MgSO4. The culture density was adjusted with 10 mM MgSO₄ to $OD_{600} = 0.5$. The packaged cosmid library was diluted 1:10 or 1:20 with sterile SM medium (0.1 M NaCl, 10 mM MgSO4, 50 mM Tris-HCl pH 7.5, 0.01% w/v gelatin), and $^{25}~\mu l$ of the diluted preparation was mixed with 25 μl of the diluted XL1 Blue MR cells. The mixture was incubated at 25°C for 30 min (without shaking), then 200 µl of LB broth was added, and incubation was conminued for approximately 1 hr with occasional

gentle shaking. Aliquots (20-40 μ l) of this culture were spread on LB agar plates containing 100 mg/l ampicillin (i.e., LB-Amp $_{1,\alpha}$) and incubated overnight at 37°C. To store the library without amplification, single colonies were picked and inoculated into individual wells of sterile 96-well microwell plates; each well containing 75 μ l of Terrific Broth (TB media: 12 g/l Bactotryptone, 24 g/l Bacto-yeast extract, 0.4% v/v glycerol, 17 mM KH_2PO_4 , 72 mM K_2HPO_4) plus 100 mg/l ampicillin (i.e., $TB-Amp_{122}$) and incubated (without shaking) overnight at 37°C. After replicating the 96-well plate into a copy plate. 75 μ l/well of filter-10 sterilized TB:glycerol (1:1, v/v; with, or without, 100 mg/l ampicillin) was added to the plate, it was shaken briefly at 100 rpm, 37°C, and then closed with Parafilm (American National Can, Greenwich, CT) and placed in a -70°C freezer for storage. Copy plates were grown and processed identically to the master plates. 15 A total of 40 such master plates (and their copies) were prepared.

SCREENING OF THE LIBRARY WITH RADIOLABELED DNA PROBES: To 20 prepare colony filters for probing with radioactively labeled probes, ten 96-well plates of the library were thawed at 25°C $\,$ (bench top at room temperature). A replica plating tool with 96 prongs was used to inoculate a fresh 96-well copy plate containing 75 μ l/well of TB-Amp₁₀₀. The copy plate was grown overnight (stationary) at 37°C, then shaken about 30 min at 100 25 rpm at 37°C. A total of 800 colonies was represented in these copy plates, due to nongrowth of some isolates. The replica tool was used to inoculate duplicate impressions of the 96-well arrays onto Magna NT (MSI, Westboro, MA) nylon membranes (0.45 micron, 220 x 250 mm) which had been placed on solid LB-Amp $_{100}$ (100 30 ml/dish) in Bio-assay plastic dishes (Nunc, 243 \times 243 \times 18 mm; Curtin Mathison Scientific, Inc., Wood Dale, IL). The colonies were grown on the membranes at 37°C for about 3 hr.

A positive control colony (a bacterial clone containing a 35 GZ4 sequence insert, see below) was grown on a separate Magna HT membrane (Nunc. 0.45 micron, 82 mm circle) on LB medium supplemented with 35 mg/l chloramphenicol (i.e., LB-Cam₁₅), and processed alongside the library colony membranes. Bacterial colonies on the membranes were lysed, and the DNA was denatured

and neutralized according to a protocol taken from the Genius™ System User's Guide version 2.0 (Boehringer Mannheim, Indianapolis, IN). Membranes were placed colony side up on filter paper soaked with 0.5 N NaOH plus 1.5 M NaCl for 15 min to 5 denature, and neutralized on filter paper soaked with 1 M Tris-HC1 pH 8.0, 1.5 M NaCl for 15 min. After UV-crosslinking using a Stratagene UV Stratalinker set on auto crosslink, the membranes were stored dry at 25°C until use. Membranes were trimmed into strips containing the duplicate impressions of a single 96-well plate, then washed extensively by the method of section 6.4.1 in CPMB (op. cit.): 3 hr at 25°C in 3X SSC, 0.1% (w/v) SDS, followed by 1 hr at 65°C in the same solution, then rinsed in 2X SSC in preparation for the hybridization step (20x SSC = 3 M NaCl, 0.3 M sodium citrate, pH 7.0).

15

10

Amplification of a specific genomic fragment of a tcaC wene. Based on the N-terminal amino acid sequence determined for the purified TcaC peptide fraction [disclosed herein as SEQ ID NO:2], a pool of degenerate oligonucleotides (pool S4Psh) was

- 20 synthesized by standard β -cyanoethyl chemistry on an Applied BioSystem ABI394 DNA/RNA Synthesizer (Perkin Elmer, Foster City, The oligonucleotides were deprotected 8 hours at 55°C, dissolved in water, quantitated by spectrophotometric measurement, and diluted for use. This pool corresponds to the 25
 - determined N-terminal amino acid sequence of the TcaC peptide. The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A, C, G, and T are the standard DNA bases, and I represents inosine:
- Amino Met Gln Asp Ser Pro Glu Val 30 Acid

S4Psh 5' ATG CA(A/G) GA(T/C) (T/A)(C/G)(T/A) CCI GA(A/G) GT 3'

Another set of degenerate oligonucleotides was synthesized 35 (pool P2.3.5R), representing the complement of the coding strand for the determined amino acid sequence of the SEQ ID NO:17: Amino

Acid Ala Phe Asn Ile Asp Asp Val

40 Codons 5' GCN TT(T/C) AA(T/C) AT(A/T/C) GA(T/C) GA(T/C) GT 3 P2.3.5R 3'CG(A/C/G/T) AA(A/G) TT(A/G) TA(T/A/G) CT(A/G) CT(A/G) CA 5'

These oligonucleotides were used as primers in Polymerase Chain Reactions (PCR®, Roche Molecular Systems, Branchburg, NJ) to

amplify a specific DNA tragment from genomic DNA prepared from Photorhabdus strain W-14 (see above). A typical reaction (50 μ 1) contained 125 pmol of each primer pool P2Psh and P2.3.5R, 253 ng of genomic template DNA, 10 nmol each of dATP, dCTP, dGTP, and dTTP, 1X GeneAmp* PCR buffer, and 2.5 units of AmpliTag* DNA polymerase (both from Roche Molecular Systems; 10X GeneAmp* buffer is 100 mm Tris-HCl pH 8.3, 500 mM KCl, 0.01% w/v gelatin). Amplifications were performed in a Perkin Elmer Cetus DNA Thermal Cycler (Perkin Elmer, Foster City, CA) using 35 cycles of 94°C 10 (1.0 min), 55°C (2.0 min), 72°C (3.0 min), followed by an extension period of 7.0 min at 72°C. Amplification products were analyzed by electrophoresis through 2% w/v NuSieve® 3:1 agarose (FMC BioProducts) in TEA buffer (40 mM Tris-acetate, 2 mM EDTA, pH 8.0). A specific product of estimated size 250 bp was observed amongst numerous other amplification products by ethidium bromide (0.5 μ g/ml) staining of the gel and examination under ultraviolet light.

The region of the gel containing an approximately 250 bp product was excised, and a small plug (0.5 mm dia.) was removed and used to supply template for PCR amplification (40 cycles). The reaction (50 μ l) contained the same components as above, minus genomic template DNA. Following amplification, the ends of the fragments were made blunt and were phosphorylated by incubation at 25°C for 20 min with 1 unit of T4 DNA polymerase (NEB), 1 nmol ATP, and 2.15 units of T4 kinase (Pharmacia Biotech Inc., Piscataway, NJ).

20

25

35

DNA fragments were separated from residual primers by electrophoresis through 1% w/v GTG³ agarose (FMC) in TEA. A gel slice containing fragments of apparent size 250 bp was excised, and the DNA was extracted using a Qiaex kit (Qiagen Inc., Chatsworth, CA).

The extracted DNA fragments were ligated to plasmid vector pBC KS(+) (Stratagene) that had been digested to completion with restriction enzyme Sma 1 and extracted in a manner similar to that described for pWE15 DNA above. A typical ligation reaction (16.3 µl) contained 100 ng of digested pBC KS(+) DNA, 70 ng of 250 bp fragment DNA, 1 nmol {Co(NH₃)₆}Cl₁, and 3.9 Weiss units of T4 DNA ligase (Collaborative Biomedical Products, Bedford, MA), in 1X ligation buffer (50 mM Tris-HCl, pH 7.4; 10 mM MgCl₂; 10 mM

dithiothreitol; 1 mM spermidine, 1 mM ATP, 100 mg/ml bovine serum albumin). Following overnight incubation at 14°C, the ligated products were transformed into frozen, competent Escherichia soli DH5 α cells (Gibco BRL) according to the suppliers'

- 5 recommendations, and plated on LB-Cam₁₅ plates, containing IPT':

 (119 μg/ml) and X-gal (50 μg/ml). Independent white colonies
 were picked, and plasmid DNA was prepared by a modified alkalinelysis/PEG precipitation method (PRISMTM Ready Reaction DyeDeoxyTM
 Terminator Cycle Sequencing Kit Protocols; ABI/Perkin Elmer).
- The nucleotide sequence of both strands of the insert DNA was determined, using T7 primers [pBC KS(+) bases 601-623:

 TAAAACGACGGCCAGTGAGCGCG) and LacZ primers [pBC KS(+) bases 792-816: ATGACCATGATTACGCCAAGCGCGC) and protocols supplied with the PRISM™ sequencing kit (ABI/Perkin Elmer). Nonincorporated dyeterminator dideoxyribonucleotides were removed by passage through

terminator dideoxyribonucleotides were removed by passage through Centri-Sep 100 columns (Princeton Separations, Inc., Adelphia, NJ) according to the manufacturer's instructions. The DNA sequence was obtained by analysis of the samples on an ABI Model 373A DNA Sequencer (ABI/Perkin Elmer). The DNA sequences of two isolates, GZ4 and HB14, were found to be as illustrated in Figure 1.

20

25

35

This sequence illustrates the following features: 1) bases 1-20 represent one of the 64 possible sequences of the S4Psh degenerate oligonucleotides, ii) the sequence of amino acids 1-3 and 6-12 correspond exactly to that determined for the N-terminus of TcaC (disclosed as SEQ ID NO:2), iii) the fourth amino acid encoded is a cysteine residue rather than serine. This difference is encoded within the degeneracy for the serine codons (see above), iv) the fifth amino acid encoded is proline,

corresponding to the TcaC N-terminal sequence given as SEQ ID NO:2, v) bases 257-276 encode one of the 192 possible sequences designed into the degenerate pool, vi) the TGA termination codon introduced at bases 268-270 is the result of complementarity to the degeneracy built into the oligonucleotide pool at the corresponding position, and does not indicate a shortened reading frame for the corresponding gene.

Labeling of a TcaC peptide gene-specific probe. DNA fragments corresponding to the above 276 bases were amplified (35)

cycles) by PCR° in a 100 µl reaction volume, using 100 pmol each of P2Psh and P2.3.5R primers, 10 ng of plasmids GZ4 or HB14 as templates, 20 nmol each of dATP, dCTP, dGTP, and dTTP, 5 units of AmpliTAq° DNA polymerase, and 1X concentration of GeneAmp° buffer, under the same temperature regimes as described above. The amplification products were extracted from a 1% GTG° agarose gel by Qiaex kit and quantitated by fluorometry.

The extracted amplification products from plasmid HB14 template (approximately 400 ng) were split into five aliquots and labeled with "P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) according to the manufacturer's instructions. Nonincorporated radioisotope was removed by passage through NucTrap* Probe Purification Columns (Stratagene), according to the supplier's instructions. The specific activity of the labeled DNA product was determined by scintillation counting to be 3.11 x 108 dpm/μg. This labeled DNA was used to probe membranes prepared from 800 members of the genomic library.

Screening with a TcaC-peptide gene specific probe. The radiolabeled HB14 probe was boiled approximately 10 min, then added to "minimal hyb" solution. [Note: The "minimal hyb" method is taken from a CERES protocol; "Restriction Fragment Length Polymorphism Laboratory Manual version 4.0", sections 4-40 and 4-47; CERES/NPI, Salt Lake City, UT. NPI is now defunct, with its successors operating as Linkage Genetics). "Minimal hyb" solution contains 10% w/v PEG (polyethylene glycol, M.W. approx. 8000), 7% w/v SDS; 0.6X SSC, 10 mM sodium phosphate buffer (from a 1M stock containing 95 g/l NaH₂PO₄•1H₂O and 84.5 g/l $Na_2HPO_4 \cdot 7H_2O)$, 5 mM EDTA, and 100 mg/ml denatured salmon sperm Membranes were blotted dry briefly then, without prehybridization, 5 strips of membrane were placed in each of 2 plastic boxes containing 75 ml of "minimal hyb" and 2.6 ng/ml of radiolabeled HB14 probe. These were incubated overnight with slow shaking (50 rpm) at 60°C. The filters were washed three 35 times for approximately 10 min each at 25°C in "minimal hyb wash solution" (0.25% SSC, 0.2% SDS), followed by two 30-min washes with slow shaking at 60°C in the same solution. The filters were placed on paper covered with Saran Wrap* (Dow Brands, Indianapolis, IN) in a light-tight autoradiographic cassette and exposed to X-Omat X-ray film (Kodak, Rochester, NY) with two

DuPont Cronex Lightning-Plus C1 enhancers (Sigma Chemical Co., 5t. Louis, MO), for 4 hr at -70°C. Upon development (standard photographic procedures), significant signals were evident in both replicates amongst a high background of weaker, more

5 irregular signals. The filters were again washed for about 4 hr at 68°C in "minimal hyb wash solution" and then placed again in the cassettes and film was exposed overnight at -70°C. Twelve possible positives were identified due to strong signals on both of the duplicate 96-well colony impressions. No signal was seen with negative control membranes (colonies of XL1 Blue MR cells containing pWEI5), and a very strong signal was seen with positive control membranes (DH5α cells containing the GZ4 isolate of the PCR product) that had been processed concurrently with the experimental samples.

The twelve putative hybridization-positive colonies were retrieved from the frozen 96-well library plates and grown overnight at 37°C on solid LB-Amp₁₀₀ medium. They were then patched (3/plate, plus three negative controls: XL1 Blue MR cells containing the pWE15 vector) onto solid LB-Amp₁₀₀. Two sets of membranes (Magna NT nylon, 0.45 micron) were prepared for hybridization. The first set was prepared by placing a filter directly onto the colonies on a patch plate, then removing it with adherent bacterial cells, and processing as below. Filters of the second set were placed on plates containing LB-Amp₁₀₀ medium, then inoculated by transferring cells from the patch plates onto the filters. After overnight growth at 37°C, the filters were removed from the plates and processed.

Bacterial cells on the filters were lysed and DNA denatured by placing each filter colony-side-up on a pool (1.0 ml) of 0.5 N NaOH in a plastic plate for 3 min. The filters were blotted dry on a paper towel, then the process was repeated with fresh 0.5 N NaOH. After blotting dry, the filters were neutralized by placing each on a 1.0 ml pool of 1 M Tris-HCl, pH 7.5 for 3 min, blotted dry, and reneutralised with fresh buffer. This was followed by two similar soakings (5 min each) on pools of 0.5 M Tris-HCl pH 7.5 plus 1.5 M NaCl. After blotting dry, the DNA was UV crosslinked to the filter (as above), and the filters were washed (25°C, 100 rpm) in about 100 ml of 3X SSC plus 0.1%(w/v) SDS (4 times, 30 min each with fresh solution for each wash). They were then placed in a minimal volume of prehybridization

30

35

solution (5X SSC plus 1% w/v each of Ficoll 400 (Pharmacia), polyvinylpyrrolidone (av. M.W. 360,000; Sigma) and bovine serum albumin Fraction V; (Sigma)] for 2 hr at 65°C, 50 rpm. The prehybridization solution was removed, and replaced with the HB14 ¹²P-labeled probe that had been saved from the previous hybridization of the library membranes and which had been denatured at 95°C for 5 min. Hybridization was performed at 60°C for 16 hr with shaking at 50 rpm.

Following removal of the labeled probe solution, the

membranes were washed 3 times at 25°C (50 rpm, 15 min) in 3X SSC (about 150 ml each wash). They were then washed for 3 hr at 68°C (50 rpm) in 0.25X SSC plus 0.2% SDS (minimal hyb wash solution), and exposed to X-ray film as described above for 1.5 hr at 25°C (no enhancer screens). This exposure revealed very strong hybridization signals to cosmid isolates 22G12, 25A10, 26A5, and 26B10, and a very weak signal with cosmid isolate 8B10. No signal was seen with the negative control (pWE15) colonies, and a very strong signal was seen with positive control membranes (DH5α cells containing the GZ4 isolate of the PCR product) that had been processed concurrently with the experimental samples.

Amplification of a specific genomic fragment of a tcaB gene. Based on the N-terminal amino acid sequence determined for the purified TcaB, peptide fraction (disclosed here as SEQ ID NO:3) a pool of degenerate oligonucleotides (pool P8F) was synthesized as described for peptide TcaC. The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A. C. G. and T are the standard DNA bases, and I represents inosine:

30

35

40

25

5

Amino Acid Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg

P8F 5' TTT ACI CA(A/G) ACI (C/T)TI AAA GAA GCI (A/C)G 3'
(C/T)TI

Another set of degenerate oligonucleotides was synthesized (pool P8.108.3R), representing the complement of the coding strand for the determined amino acid sequence of the $TcaB_i-PT108$ internal peptide (disclosed herein as SEQ ID NO:20):

Amino Acid Met Tyr Tyr Ile Gln Ala Gln Gln

PCT/US96/18003 WO 97/17432

Codons ATG TA(T/C) TA(T/C) AT(T/C/A) CA(A/G) GC(A/C/G/T) CA(A/G CA(A/G) FB. 10B. 3P 3' AT(A/G) AT(A/G) TA(A/G/T) GT(T/C) CGI GT(T/C) GT 5 TAC

5 These oligonucleotides were used as primers for PCR using HotStart 50 Tubes™ (Molecular Bio-Products, Inc., San Diego, CA) to amplify a specific DNA fragment from genomic DNA prepared from Photorhabdus strain W-14 (see above). A typical reaction (50 μ l) contained (bottom layer) 25 pmol of each primer pool P8F and 10 P8.108.3R, with 2 nmol each of dATP, dCTP, dGTP, and dTTP, in 1X

GeneAmp PCR buffer, and (top layer) 230 ng of genomic template DNA, 8 nmol each of dATP, dCTP, dGTP, and dTTP, and 2.5 units of AmpliTaq DNA polymerase, in 1% GeneAmp PCR buffer.

Amplifications were performed by 35 cycles as described for the TcaC peptide. Amplification products were analyzed by electrophoresis through 0.7% w/v SeaKem LE agarose (FMC) in TEA buffer. A specific product of estimated size 1600 bp was observed.

Four such reactions were pooled, and the amplified DNA was extracted from a 1.0% SeaKem LE gel by Qiaex kit as described for the TcaC peptide. The extracted DNA was used directly as the template for sequence determination (PRISM Sequencing Kit) using, the P8F and P8.108.3R primer pools. Each reaction contained about 100 ng template DNA and 25 pmol of one primer pool, and was 25 processed according to standard protocols as described for the TcaC peptide. An analysis of the sequence derived from extension of the P8F primers revealed the short DNA sequence (and encoded amino acid sequence):

GAT GCA TTG NTT GCT 30 Asp Ala Leu (Val) Ala which corresponds to a portion of the N-terminal peptide sequence disclosed as SEQ ID NO:3 (TcaBi).

Labeling of a TcaBi-peptide gene-specific probe. 35

20

Approximately 50 ng of gel-purified TcaBi DNA fragment was labeled with 32P-dCTP as described above, and nonincorporated radioisotopes were removed by passage through a NICK Column* (Pharmacia). The specific activity of the labelled DNA was determined to be 6 \times 10 $^{\circ}$ dpm/ μ g. This labeled DNA was used to

probe colony membranes prepared from members of the genomic library that had hybridized to the TcaC-peptide specific probe.

The membranes containing the 12 colonies identified in the TcaC-probe library screen (see above) were stripped of 5 radioactive TcaC-specific label by boiling twice for approximately 30 min each time in 1 liter of 0.1% SSC plus 0.1 % SDS. Removal of radiolabel was checked with a 6 hr film exposure. The stripped membranes were then incubated with the TcaBi peptide-specific probe prepared above. The labeled DNA was denatured by boiling for 10 min, and then added to the filters that had been incubated for 1 hr in 100 ml of "minimal hyb" solution at 60°C. After overnight hybridization at this temperature, the probe solution was removed, and the filters were washed as follows (all in 0.3% SSC plus 0.1% SDS): once for 5 min 15 at 25°C, once for 1 hr at 60°C in fresh solution, and once for 1 hr at 63°C in fresh solution. After 1.5 hr exposure to X-ray film by standard procedures, 4 strongly-hybridizing colonies were observed. These were, as with the TcaC-specific probe, isolates 22G12, 25A10, 26A5, and 26B10.

The same TcaBi probe solution was diluted with an equal volume (about 100 ml) of "minimal hyb" solution, and then used to screen the membranes containing the 800 members of the genomic library. After hybridization, washing, and exposure to X-ray film as described above, only the four cosmid clones 22G12, 25A10, 26A5, and 26B10, were found to hybridize strongly to this probe.

ISOLATION OF SUBCLONES CONTAINING GENES ENCODING TCAC AND
TCABi PEPTIDES. AND DETERMINATION OF DNA BASE SEQUENCE THEREOF:

30 Three hybridization-positive cosmids in strain XL1 Blue MR were
grown with shaking overnight (200 rpm) at 30°C in 100 ml TBAmploo. After harvesting the cells by centrifugation, cosmid DNA
was prepared using a commercially available kit (BIGprepTM, 5
Prime 3 Prime, Inc., Boulder, CO), following the manufacturer's
protocols. Only one cosmid, 26A5, was successfully isolated by
this procedure. When digested with restriction enzyme EcoR 1
(NEB) and analyzed by gel electrophoresis, fragments of
approximate sizes 14, 10, 8 (vector), 5, 3.3, 2.9, and 1.5 kbp
were detected. A second attempt to isolate cosmid DNA from the
same three strains (8 ml cultures; TB-Amploo, 30°C) utilized a

roiling miniprep method (Evans G. and G. Wahl., 1987, "Cosmid vectors for genomic walking and rapid restriction mapping." in Guide to Molecular Cloning Techniques. Meth. Enzymology, vol. 152, S. Berger and A. Kimmel, eds., pgs. 604-610). Only one cosmid, 25Al0, was successfully isolated by this method. When digested with restriction enzyme EcoR 1 (NEB) and analyzed by gel electrophoresis, this cosmid showed a fragmentation pattern identical to that previously seen with cosmid 26A5.

A 0.15 μg sample of 26A5 cosmid DNA was used to transform 50 ml of E. coli DH5α cells (Gibco BRL), by the supplier's protocols. A single colony isolate of that strain was inoculated into 4 ml of TB-Amp₁₃₀, and grown for 8 hr at 37°C.

Chloramphenicol was added to a final concentration of 225 μg/ml, incubation was continued for another 24 hr, then cells were harvested by centrifugation and frozen at -20°C. Isolation of the 26A5 cosmid DNA was by a standard alkaline lysis miniprep (Maniatis et al., op. cit., p. 382), modified by increasing all volumes by 50% and with stirring or gentle mixing, rather than vortexing, at every step. After washing the DNA pellet in 70% ethanol, it was dissolved in TE containing 25 μg/ml ribonuclease A (Boehringer Mannheim).

Identification of EcoR 1 fragments hybridizing to GZ4derived and TcaBi - probes. Approximately 0.4 µg of cosmid 25A10 (from XL1 Blue MR cells) and about 0.5 μg of cosmid 26A5 (from 25 chloramphenicol-amplified DH5α cells) were each digested with about 15 units of EcoR 1 (NEB) for 85 min, frozen overnight, then heated at 65°C for five min, and electrophoresed in a 0.7% agarose gel (Seakem* LE, 1X TEA, 80 volts, 90 min). The DNA was stained with ethidium bromide as described above, and photographed under ultraviolet light. The EcoR 1 digest of cosmid 25A10 was a complete digestion, but the sample of cosmid 26A5 was only partially digested under these conditions. The agarose gel containing the DNA fragments was subjected to 35 depurination, denaturation and neutralization, followed by Southern blotting onto a Magna NT nylon membrane, using a high salt (20% SSC) protocol, all as described in section 2.9 of Ausubel et al. (CPMB, op. cit.). The transferred DNA was then UV-crosslinked to the nylon membrane as before.

An TcaC-peptide specific DNA fragment corresponding to the insert of plasmid isolate GZ4 was amplified by PCR[®] in a 100 ml reaction volume as described previously above. The amplification products from three such reactions were pooled and were extracted from a 1% GTG[®] agarose gel by Qiaex kit, as described above, and quantitated by fluorometry. The gel-purified DNA (100 ng) was labeled with ¹²P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) as described above, to a specific activity of 6.34 x 10⁸ dpm/µg.

The ¹²P-labeled GZ4 probe was boiled 10 min, then added to "minimal hyb" buffer (at 1 ng/ml), and the Southern blot membrane containing the digested cosmid DNA fragments was added, and incubated for 4 hr at 60°C with gentle shaking at 50 rpm. The membrane was then washed 3 times at 25°C for about 5 min each (minimal hyb wash solution), followed by two washes for 10 min each at 60°C. The blot was exposed to film (with enhancer screens) for about 30 min at -70°C. The GZ4 probe hybridized strongly to the 5.0 kbp (apparent size) EcoR 1 fragment of both these two cosmids, 26A5 and 25A10.

20

25

The membrane was stripped of radioactivity by boiling for about 30 min in 0.1X SSC plus 0.1 % SDS, and absence of radiolabel was checked by exposure to film. It was then hybridized at 60°C for 3.5 hours with the (denatured) TcaB_i probe in "minimal hyb" buffer previously used for screening the colony membranes (above), washed as described previously, and exposed to film for 40 min at -70°C with two enhancer screens. With both cosmids, the TcaB_i probe hybridized lightly with the about 5.0 kbp EcoR 1 fragment, and strongly with a fragment of approximately 2.9 kbp.

The sample of cosmid 26A5 DNA previously described, (from DH5α cells) was used as the source of DNA from which to subclone the bands of interest. This DNA (2.5 μg) was digested with about 3 units of EcoR 1 (NEB) in a total volume of 30 μl for 1.5 hr, to give a partial digest, as confirmed by gel electrophoresis. Ten μg of pBC KS (+) DNA (Stratagene) were digested for 1.5 hr with 20 units of EcoR 1 in a total volume of 20 μl, leading to total digestion as confirmed by electrophoresis. Both EcoR 1-cut DNA preparations were diluted to 50 μl with water, to each an equal volume of PCI was added, the suspension was gently mixed, spun in

PCT/US96/18003 WO 97/17432

a microcentrifuge and the aqueous supernatant was collected. DNA was precipitated by 150 µl ethanol, and the mixture was placed at -20°C overnight. Following centrifugation and drying, the EcoR 1-digested pBC KS (+) was dissolved in 100 μ l TE; the partially 5 digested 26A5 was dissolved in 20 µl TE. DNA recovery was checked by fluorometry.

In separate reactions, approximately 60 ng of EcoR 1digested pBC KS(+) DNA was ligated with approximately 180 ng or 270 ng of partially digested cosmid 26A5 DNA. Ligations were (0) carried out in a volume of 20 μl at 15°C for 5 hr, using T4 ligase and buffer from New England BioLabs. The ligation mixture, diluted to 100 μ l with sterile TE, was used to transform frozen, competent DH5\alpha cells (Gibco BRL) according to the supplier's instructions. Varying amounts (25-200 μ 1) of the 15 transformed cells were plated on freshly prepared solid LB-Cam: medium with 1 mM IPTG and 50 mg/l X-gal. Plates were incubated at 37°C about 20 hr, then chilled in the dark for approximately 3 hr to intensify color for insert selection. White colonies were picked onto patch plates of the same composition and incubated overnight at 37°C.

20

30

35

Two colony lifts of each of the selected patch plates were prepared as follows. After picking white colonies to fresh plates, round Magna NT nylon membranes were pressed onto the patch plates, the membrane was lifted off, and subjected to denaturation, neutralization and UV crosslinking as described above for the library colony membranes. The crosslinked colony lifts were vigorously washed, including gently wiping off the excess cell debris with a tissue. One set was hybridized with the GZ4(TcaC) probe solution described earlier, and the other set was hybridized with the TcaBi probe solution described earlier, according to the 'minimal hyb' protocol, followed by washing and film exposure as described for the library colony membranes.

Colonies showing hybridization signals either only with the $\mathsf{GZ4}$ probe, with both $\mathsf{GZ4}$ and TcaB_1 probes, or only with the TcaB_1 probe, were selected for further work and cells were streaked for single colony isolation onto LB-Cam, media with IPTG and X-gal as before. Approximately 35 single colonies, from 16 different isolates, were picked into liquid LB-Cam, media and grown

overnight at 37°C; the cells were collected by centrifugation and plasmid DNA was isolated by a standard alkaline lysis miniprep according to Maniatis et al. (op. cit. p. 368). DNA pellets were dissolved in TE + 25 μg/ml ribonuclease A and DNA concentration was determined by fluorometry. The EcoR l digestion pattern was analyzed by gel electrophoresis. The following isolates were picked as useful. Isolate A17.2 contains religated pBC KS(+) only and was used for a (negative) control. Isolates D38.3 and C44.1 each contain only the 2.9 kbp, TcaBi -hybridizing EcoR l fragment inserted into pBC KS(+). These plasmids, named pDAB2000 and pDAB2001, respectively, are illustrated in Fig. 2.

Isolate A35.3 contains only the approximately 5 kbp, GZ4)-hybridizing EcoR 1 fragment, inserted into pBC KS(+). This plasmid was named pDAB2002 (also Fig. 2). These isolates provided templates for DNA sequencing.

Plasmids pDAB2000 and pDAB2001 were prepared using the BIGprepTM kit as before. Cultures (30 ml) were grown overnight in TB-Cam₃₅ to an OD₆₀₀ of 2, then plasmid was isolated according to the manufacturer's directions. DNA pellets were redissolved in 100 μ l TE each, and sample integrity was checked by EcoR 1 digestion and gel electrophoretic analysis.

20

25

35

Sequencing reactions were run in duplicate, with one replicate using as template pDAB2000 DNA, and the other replicate using as template pDAB2001 DNA. The reactions were carried out using the dideoxy dye terminator cycle sequencing method, as described above for the sequencing of the GZ4/HB14 DNAs. Initial sequencing runs utilized as primers the LacZ and T7 primers described above, plus primers based on the determined sequence of the TcaB; PCR amplification product (TH1 =

30 ATTGCAGACTGCCAATCGCTTCGG, TH12 = GAGAGTATCCAGACCGCGGATGATCTG).

After alignment and editing of each sequencing output, each was truncated to between 250 to 350 bases, depending on the integrity of the chromatographic data as interpreted by the Perkin Elmer Applied Biosystems Division SeqEd 675 software. Subsequent sequencing "steps" were made by selecting appropriate sequence for new primers. With a few exceptions, primers (synthesized as described above) were 24 bases in length with a 50% G+C composition. Sequencing by this method was carried out on both strands of the approximately 2.9 kbp EcoR 1 fragment.

PCT/US96/18003 WO 97/17432

To further serve as template for DNA sequencing, plasmid DNA from isolate pDAB2002 was prepared by BIGprep™ kit. Sequencing reactions were performed and analyzed as described above. Initially, a T3 primer (pBS SK (+) bases 774-796: 5 CGCGCAATTAACCCTCACTAAAG) and a T7 primer (pBS KS (+) bases 621-643: GCGCGTAATACGACTCACTATAG) were used to prime the sequencing reactions from the flanking vector sequences, reading into the insert DNA. Another set of primers, (GZ4F: GTATCGATTACAACGCTGTCACTTCCC; TH13: GGGAAGTGACAGCGTTGTAATCGATAC; TH14: ATGTTGGGTGCGTCGGCTAATGGACATAAC; and LW1-204: GGGAAGTGACAGCGTTGTAATCGATAC) was made to prime from internal sequences, which were determined previously by degenerate

10

oligonucleotide-mediated sequencing of subcloned TcaC-peptide PCR products. From the data generated during the initial rounds of sequencing, new sets of primers were designed and used to walk the entire length of the ~5 kbp fragment. A total of 55 oligo primers was used, enabling the identification of 4832 total bp of contiguous sequence.

When the DNA sequence of the EcoR 1 fragment insert of pDAB2002 is combined with part of the determined sequence of the pDAB2000/pDAB2001 isolates, a total contiguous sequence of 6005 bp was generated (disclosed herein as SEQ ID NO:25). When long open reading frames were translated into the corresponding amino acids, the sequence clearly shows the TcaBi N-terminal peptide 25 (disclosed as SEQ ID NO:3), encoded by bases 19-75, immediately following a methionine residue (start of translation). Upstream lies a potential ribosome binding site (bases 1-9), and downstream, at bases 166-228 is encoded the TcaBi-PT158 internal peptide (disclosed herein as SEQ ID NO:19). Further downstream, 30 in the same reading frame, at bases 1738-1773, exists a sequence encoding the TcaBi-PT108 internal peptide (disclosed herein as SEQ ID NO:20). Also in the same reading frame, at bases 1897-1923, is encoded the TcaBii N-terminal peptide (disclosed herein as SEQ ID NO:5), and the reading frame continues uninterrupted to a translation termination codon at nucleotides 3586-3588.

The lack of an in-frame stop codon between the end of the sequence encoding TcaB:-PT108 and the start of the TcaBii encoding region, and the lack of a discernible ribosome binding site immediately upstream of the TcaBii coding region, indicate that

peptides TcaBii and TcaBi are encoded by a single open reading frame of 3567 bp beginning at base pair 16 in SEQ ID NO:25), and are most likely derived from a single primary gene product of 1189 amino acids (131.586 Daltons; disclosed herein as SEQ ID NO:26) by post-translational cleavage. If the amino acid immediately preceding the TcaBii N-terminal peptide represents the C-terminal amino acid of peptide TcaBi, then the predicted mass of TcaBii (627 amino acids) is 70,814 Daltons (disclosed herein as SEQ ID NO:28), somewhat higher than the size observed by SDS-PAGE (68 kDa). This peptide would be encoded by a contiguous stretch of 1881 base pairs (disclosed herein as SEQ ID NO:27). It is thought that the native C-terminus of TcaBi lies somewhat closer to the C-terminus of TcaBi-PT108. The molecular mass of PT108 [3.438 kDa; determined during N-terminal amino acid 15 sequence analysis of this peptide] predicts a size of 30 amino acids. Using the size of this peptide to designate the Cterminus of the TcaBi coding region [Glu at position 604 of SEQ ID NO:28], the derived size of TcaB; is determined to be 604 amino acids or 68,463 Daltons, more in agreement with 20 experimental observations.

Translation of the TcaBii peptide coding region of 1686 base pairs (disclosed herein as SEQ ID NO:29) yields a protein of 562 amino acids (disclosed herein as SEQ ID NO:30) with predicted mass of 60,789 Daltons, which corresponds well with the observed 61 kDa.

25

30

35

A potential ribosome binding site (bases 3633-3638) is found 48 bp downstream of the stop codon for the tcaB open reading frame. At bases 3645-3677 is found a sequence encoding the N-terminus of peptide TcaC, (disclosed as SEQ ID NO.2). The open reading frame initiated by this N-terminal peptide continues uninterrupted to base 6005 (2361 base pairs, disclosed herein as the first 2361 base pairs of SEQ ID NO.31). A gene (tcaC) encoding the entire TcaC peptide, (apparent size ~ 165 kDa; ~ 1500 amino acids), would comprise about 4500 bp.

Another isolate containing cloned EcoR 1 fragments of cosmid 26A5. E20.6, was also identified by its homology to the previously mentioned GZ4 and TcaBi probes. Agarose gel analysis of EcoR 1 digests of the DNA of the plasmid harbored by this strain (pDAB2004, Fig. 2), revealed insert fragments of estimated

PCT/US96/18003 WO 97/17432

sizes 2.9, 5, and 3.3 kbp. DNA sequence analysis initiated from primers designed from the sequence of plasmid pDAB2002 revealed that the 3.3 kbp EcoR 1 fragment of pDAB2004 lies adjacent to the 5 kbp EcoR 1 fragment represented in pDAB2002. The 2361 base 5 pair open reading frame discovered in pDAB2002 continues uninterrupted for another 2094 bases in pDAB2004 [disclosed herein as base pairs 2362 to 4458 of SEQ ID NO:31). DNA sequence analysis using the parent cosmid 26A5 DNA as template confirmed the continuity of the open reading frame. Altogether, the open 10 reading frame (TCaC SEQ ID NO:31) comprises 4455 base pairs, and encodes a protein (TcaC) of 1485 amino acids (disclosed herein as SEQ ID NO:32]. The calculated molecular size of 166,214 Daltons is consistent with the estimated size of the TcaC peptide (165 kDa), and the derived amino acid sequence matches exactly that disclosed for the TcaC N-terminal sequence [SEQ ID NO:2].

The lack of an amino acid sequence corresponding to SEQ ID NO:17; used to design the degenerate oligonucleotide primer pool in the discovered sequence indicates that the generation of the PCR® products found in isolates GZ4 and HB14, which were used as probes in the initial library screen, were fortuitously generated by reverse-strand priming by one of the primers in the degenerate pool. Further, the derived protein sequence does not include the internal fragment disclosed herein as SEQ ID NO:18. These sequences reveal that plasmid pDAB2004 contains the complete coding region for the TcaC peptide.

Example 9

Screening of the Photorhabdus genomic library for genes encoding the TcbAii peptide

30

15

20

25

This example describes a method used to identify DNA clones that contain the TcbAii peptide-encoding genes, the isolation of the gene, and the determination of its partial DNA base sequence.

35 Primers and PCR reactions

The TcbAii polypeptide of the insect active preparation is ~206 kDa. The amino acid sequence of the N-terminus of this peptide is disclosed as SEQ ID NO:1. Four pools of degenerate oligonucleotide primers ("Forward primers": TH-4, TH-5, TH-6, and

TH-7) were synthesized to encode a portion of this amino acid sequence, as described in Example 8, and are shown below.

Table 11

	Amino									
	Acid	Phe	Ile	Gln	Gly	Tyr	Ser	Asp	Leu	Phe
	TH-4	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	TCI	GA(T/C)	CTI	TT-3 '
	TH-5	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)				TT-3 ·
		5'-TT(T/C)								
10	TH-7	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	AG(T/C)	GA(T/C)	TT(A/G)	TT-3'

In addition, a primary ("a") and a secondary ("b") sequence of an internal peptide preparation (TcbAii-PT81) have been determined and are disclosed herein as SEQ ID No:23 and SEQ ID No:24, respectively. Four pools of degenerate oligonucleotides ("Reverse Primers": TH-8, TH-9, TH-10 and TH-11) were similarly designed and synthesized to encode the reverse complement of sequences that encode a portion of the peptide of SEQ ID NO:23, as shown below.

		Авп		.C-(W/5)11	TT (G/A) -5'		TT(G/A)-5'	TC(G/A) AA(A/G) CT(T/C) GT(T/C) CAI CGI TT(G/A) -5.	
		A BI	E LU	1	CGIT		GIT	IGI T	
		VAI AIA	CAT	;	CAI	,	CA I	CAI	
	5	7	GT(T/C)		GT(T/C)	(C) E)	(7/1)	GT(T/C)	
77	(a)	•	CT(T/C)		CT(T/C)	(1) (1)	(7/1/17	CT(T/C)	
71 anns	Phe		AA (A/G) CT(T/C) GT(T/C) CAT CCT		AA(A/G) CT(T/C) GT(T/C) CAI CGI	AA (A/G))	AA (A/G)	
	Ser		AGI	TOR	100	TGI TC (G/A) AA (A/G) CT (T/C) CT (T/C)		TC (G/A)	
	Thr		5		1	TGI	Š	2	
•	Leu	T	Two.	TH-9 3'TGI AT(A/G) TT(A/G) TCT			(V) (V)	(5/4) 11	
	Tyr	TH-8 3'TGT AT/A /C) CAT	(5/4) • •	AT(A/G)		th-10 3'TGI AT(A/G) GAI	AT (A/C)		
		3' TGT	•	3'TGI	1	1915	3'TGI	1	
Amino	Acid Thr	FH-8		FH-9	-	01-41	CH-11		

Sets of these primers were used in PCR* reactions to ampirty TcbAii- encoding gene fragments from the genomic Photornabdus luminescens W-14 DNA prepared in Example 6. All PCR reactions were run with the "Hot Start" technique using AmpliWax™ gems and 5 other Perkin Elmer reagents and protocols. Typically, a mixture (total volume II µI) of MgCl2, dNTP's, 10X GeneAmp* PCR Buffer II, and the primers were added to tubes containing a single wax bead. [10X GeneAmp* PCR Buffer II is composed of 100 mM Tris-HCl. pH 8.3; and 500 mM KCl.] The tubes were heated to 80°C for 2 10 minutes and allowed to cool. To the top of the wax seals, a solution containing 10X GeneAmp PCR Buffer II, DNA template, and AmpliTaq DNA polymerase were added. Following melting of the wax seal and mixing of components by thermal cycling, final reaction conditions (volume of 50 μ l) were: 10 mM Tris-HCl, pH 8.3; 50 mM KCl; 2.5 mM MgCl₂; 200 μM each in dATP, dCTP, dGTP, dTTP: 1.25 mM 15 in a single Forward primer pool; 1.25 μM in a single Reverse primer pool, 1.25 units of AmpliTaq DNA polymerase, and 170 ny of template DNA.

The reactions were placed in a thermocycler (as in 20 Example 8) and run with the following program:

Table 13

Temperature	Time	Cycle Repetition	
9 4° C	2 minutes	1X	
94°C	15 seconds	7	
55-65°C	30 seconds	30X	
72°C	l minute		
72°C	7 minutes	1X	
15°C	Constant		

A series of amplifications was run at three different annealing temperatures (55°, 60°, 65° C) using the degenerate primer pools. Reactions with annealing at 65°C had no amplification products visible following agarose gel electrophoresis. Reactions having a 60°C annealing regime and containing primers TH-5+TH-10 produced an amplification product that had a mobility corresponding to 2.9 kbp. A lesser amount of 10 the 2.9 kbp product was produced under these conditions with primers TH-7+TH-10. When reactions were annealed at 55°C, these primer pairs produced more of the 2.9 kbp product, and this product was also produced by primer pairs TH-5+TH-8 and TH-5+TH-11. Additional very faint 2.9 kbp bands were seen in lanes 15 containing amplification products from primer pairs TH-7 plus TH-8, TH-9, TH-10, or TH-11.

To obtain sufficient PCR amplification product for cloning and DNA sequence determination, 10 separate PCR reactions were set up using the primers TH-5+TH-10, and were run using the above conditions with a 55°C annealing temperature. All reactions were pooled and the 2.9 kbp product was purified by Qiaex extraction from an agarose gel as described above.

Additional sequences determined for TcbA_{ii} internal peptides are disclosed herein as SEQ ID NO:21 and SEQ ID NO:22. As before, degenerate oligonucleotides (Reverse primers TH-17 and TH-18) were made corresponding to the reverse complement of sequences that encode a portion of the amino acid sequence of these peptides.

30 Table 14

Prom SEQ ID NO:21

20

Amino
Acid Met Glu Thr Gln Asn Ile Gln Glu Pro

35
TH-17 3'-TAC CTT/C TGI GTT/C TTA/G TAI GTT/C GTT/C GG-5'

Table 15

40 From SEQ ID NO:22

Amino
Acid Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp

45 TH-18 3'-TT(A/G) GGI TAI TT(A/G) TAI TT(A?G) TGI CCI TAI CT(A/G)-5'

Degenerate oligonucleotides TH-18 and TH-17 were used in an amplification experiment with *Photorhabdus luminescens* W-14 DNA as template and primers TH-4, TH-5, TH-6, or TH-7 as the 5'-(Forward) primers. These reactions amplified products of approximately 4 kbp and 4.5 kbp, respectively. These DNAs were transferred from agarose gels to nylon membranes and hybridized with a 'P-labeled probe (as described above) prepared from the 2.9 kbp product amplified by the TH-5+TH10 primer pair. Both the 4 kbp and the 4.5 kbp amplification products hybridized strongly to the 2.9 kbp probe. These results were used to construct a map ordering the TcbAii internal peptide sequences as shown in Fig. 3. Approximate distances between the primers are shown in nucleotides in Fig. 3.

15 DNA Sequence of the 2.9 kbp TcbAii-encoding fragment

Approximately 200 ng of the purified 2.9 kbp fragment (prepared above) was precipitated with ethanol and dissolved in 17 ml of water. One-half of this was used as sequencing template with 25 pmol of the TH-5 pool as primers, the other half was used as template for TH-10 priming. Sequencing reactions were as given in Example 8. No reliable sequence was produced using the TH-10 primer pool; however, reactions with TH-5 primer pool produced the sequence disclosed below:

25 61 TATTNGAGGG ANTNGTCCCG TGAGGCCAAA AANTGGAATG AAAGAAGTTC ACCGGGGGTT
121 CTAGATAAAC GTCGCCCGGN TTTAGAAAGN TTANTGNTCA GCCAGAAAAT TTTGGTTGAG
121 GAAATTCCAC CGNTGGTTCT CTCTATTGAT TNGGGCCTGG CCGGGTTCGA ANNAAAACNA
241 GGAAATNCAC AAGTTGAGGT GATGGNTTTG TNGCNANCTT NTCGTTTAGG TGGGGAGAAA
301 CCTTNTCANC ACGNTTNTGA AACTGTCCGG GAAATCGTCC ATGANCGTGA NCCAGGNTTN
30 361 CGCCATTGG

Based on this sequence, a sequencing primer (TH-21, 5'-CCGGGCGACGTTTATCTAGG-3') was designed to reverse complement bases 120-139, and initiate polymerization towards the 5' end (i.e., TH-5 end) of the gel-purified 2.9 kbp TcbAii-encoding PCR fragment. The determined sequence is shown below, and is compared to the biochemically determined N-terminal peptide sequence of TcbAii SEQ ID NO:1.

TobAii 3.9 kbp PCP fragment Sequence Confirmation [Underlined amino acids = encoded by degenerate oligonucleotides]

From the homology of the derived amino acid sequence to the biochemically determined one, it is clear that the 2.9 kbp PCR fragment represents the *TcbA* coding region. This 2.9 kbp fragment was then used as a hybridization probe to screen the *Photorhabdus* W-14 genomic library prepared in Example 8 for cosmids containing the TcbA_{ii}-encoding gene.

15

20

25

30

35

40

5

10

Screening the Photorhabdus cosmid library

The 2.9 kb gel-purified PCR fragment was labeled with "P using the Boehringer Mannheim High Prime labeling kit as described in Example 8. Filters containing remnants of approximately 800 colonies from the cosmid library were screened as described previously (Example 8), and positive clones were streaked for isolated colonies and rescreened. Three clones (8All, 25G8, and 26D1) gave positive results through several screening and characterization steps. No hybridization of the TcbAii-specific probe was ever observed with any of the four cosmids identified in Example 8, and which contain the tcaB and rcaC genes. DNA from cosmids 8A11, 25G8, and 26D1 was digested with restriction enzymes Bgl 2, EcoR 1 or Hind 3 (either alone or in combination with one another), and the fragments were separated on an agarose gel and transferred to a nylon membrane as described in Example 8. The membrane was hybridized with "Plabeled probe prepared from the 4.5 kbp fragment (generated by amplification of Photorhabdus genomic DNA with primers TH-5+TH-17). The patterns generated from cosmid DNAs 8All and 26Dl were identical to those generated with similarly-cut genomic DNA on the same membrane. It is concluded that cosmids 8All and 26Dl are accurate representations of the genomic TcbAii encoding locus. However, cosmid 25G8 has a single Bgl 2 fragment which is slightly larger than the genomic DNA. This may result from positioning of the insert within the vector.

DNA sequence of the tcbA-encoding gene

10

20

25

30

The membrane hybridization analysis of cosmid 26D1 revealed that the 4.5 kbp probe hybridized to a single large EcoR 1 fragment (greater than 9 kbp). This fragment was gel purified and ligated into the EcoR 1 site of pBC KS (+) as described in Example 8, to generate plasmid pBC-S1/R1. The partial DNA sequence of the insert DNA of this plasmid was determined by "primer walking" from the flanking vector sequence, using procedures described in Example 8. Further sequence was generated by extension from new oligonucleotides designed from the previously determined sequence. When compared to the determined DNA sequence for the tcbA gene identified by other methods (disclosed herein as SEQ ID NO:11 as described in Example 12 below), complete homology was found to nucleotides 1-272, 319-826, 2578-3036, and 3068-3540 (total bases = 1712). It was concluded that both approaches can be used to identify DNA fragments encoding the TcbAii peptide.

Analysis of the derived amino acid sequence of the tcbA gene.

The sequence of the DNA fragment identified as SEQ ID NO:11 encodes a protein whose derived amino acid sequence is disclosed herein as SEQ ID NO:12. Several features verify the identity of the gene as that encoding the TcbAii protein. The TcbAii N-terminal peptide (SEQ ID NO:1; Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala) is encoded as amino acids 88-100. The TcbAii internal peptide TcbAii-PT81(a) (SEQ ID NO:23) is encoded as amino acids 1065-1077, and TcbAii-PT81(b) (SEQ ID NO:24) is encoded as amino acids 1571-1592. Further, the internal peptide TcbAii-PT56 (SEQ ID NO:22) is encoded as amino acids 1474-1488, and the internal peptide TcbAii-PT103 (SEQ ID NO:24) is encoded as amino acids 1614-1639. It is obvious that this gene is an authentic clone encoding the TcbAii peptide as isolated from insecticidal protein preparations of Photorhabdus luminescens strain W-14.

The protein isolated as peptide TcbAii is derived from cleavage

of a longer peptide. Evidence for this is provided by the fact that
the nucleotides encoding the TcbAii N-terminal peptide SEQ ID NO:1 are
preceded by 261 bases (encoding 87 N-terminal-proximal amino acids) of
a longer open reading frame (SEQ ID NO:11). This reading frame begins
with nucleotides that encode the amino acid sequence Met Gln Asn Ser

Leu, Which corresponds to the N-terminal sequence of the large peptide TcbA, and is disclosed herein as SEQ ID NO:16. It is thought that TcbA is the precursor protein for TcbAii.

5 Relationship of tcbA. tcaB and tcaC genes.

The tcaB and tcaC genes are closely linked and may be transcribed as a single mRNA (Example 8). The tcbA gene is borne on cosmids that apparently do not overlap the ones harboring the tcaB and tcaC cluster, since the respective genomic library screens identified different cosmids. However, comparison of the amino sequences encoded by the tcaB and tcaC genes with the tcbA gene reveals a substantial degree of homology. The amino acid conservation (Protein Alignment Mode of MacVector Sequence Analysis Software, scoring matrix pam250, hash value = 2; Kodak Scientific Imaging Systems, Rochester, NY) is shown in Fig. 4. On the score line of each panel in Fig. 4, up carats (^) indicate homology or conservative amino acid changes, and down carats (v) indicate nonhomology.

This analysis shows that the amino acid sequence of the TcbA peptide from residues 1739 to 1894 is highly homologous to amino acids 441 to 603 of the TcaB; peptide (162 of the total 627 amino acids of P8; SEQ ID NO:28). In addition, the sequence of TcbA amino acids 1932 to 2459 is highly homologous to amino acids 12 to 531 of peptide TcaBii (520 of the total 562 amino acids; SEQ ID NO:30). Considering that the TcbA peptide (SEQ ID NO:12) comprises 2505 amino acids, a total of 684 amino acids (27%) at the C-proximal end of it is homologous to the TcaBi or TcaBii peptides, and the homologies are arranged colinear to the arrangement of the putative TcaB preprotein (SEQ ID NO:26). A 30 sizeable gap in the TcbA homology coincides with the junction between the TcaB; and TcaB; portions of the TcaB preprotein. Clearly the TcbA and TcaB gene products are evolutionarily related, and it is proposed that they share some common function(s) in Photorhabdus.

Example 10

<u>Characterization of zinc-metalloproteases in Photorhabdus Broth:</u> <u>Protease Inhibition, Classification, and Purification</u>

Protease Inhibition and Classification Assays: Protease assays were performed using FITC-casein dissolved in water as substrate (0.08% final assay concentration). Proteolysis reactions were performed at 25°C for 1 h in the appropriate buffer with 25 µl of Photorhabdus broth (150 µl total reaction volume). Samples were also assayed in the presence and absence 10 of dithiothreitol. After incubation, an equal volume of 12% trichloroacetic acid was added to precipitate undigested protein. Following precipitation for 0.5 h and subsequent centrifugation. 100 µl of the supernatant was placed into a 96-well microtiter 15 plate and the pH of the solution was adjusted by addition of an equal volume of 4N NaOH. Proteolysis was then quantitated using a Fluoroskan II fluorometric plate reader at excitation and emission wavelengths of 485 and 538 nm, respectively. activity was tested over a range from pH 5.0-10.0 in 0.5 units 20 increments. The following buffers were used at 50 mM final concentration: sodium acetate (pH 5.0 - 6.5); Tris-HCL (pH 7.0 -8.0); and bis-Tris propane (pH 8.5-10.0). To identify the class of protease(s) observed, crude broth was treated with a variety of protease inhibitors (0.5 µg/µl final concentration) and then 25 examined for protease activity at pH 8.0 using the substrate described above. The protease inhibitors used included E-64 (Ltrans-expoxysaccinylleucylamido(4-,-guanidino)-butane), 3,4 dichloroisocoumarin, Leupeptin, pepstatin, amastatin, ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline.

Protease assays performed over a pH range revealed that indeed protease(s) were present which exhibited maximal activity at ~ pH 8.0 (Table 16). Addition of DTT did not have any effect on protease activity. Crude broth was then treated with a variety of protease inhibitors (Table 17). Treatment of crude broth with the inhibitors described above revealed that 1.10 phenanthroline caused complete inhibition of all protease activity when added at a final concentration of 50 μ g, with the IC50 = 5 μ g in 100 μ l of a 2 μ g/ml crude broth solution. These data indicate that the most abundant protease(s) found in the

Photornabdus broth are from the zinc-metalloprotease class of enzymes.

Table 16
5 Effect of pH on the protease activity found in a Day 1 production of Photorhabdus luminescens (strain W-14).

	рН	Flu. Units ^a Activity ^b	Percent
10	5.0	3013 ± 78	17
	5.5	7994 ± 448	45
15	6.0	12965 ± 483	74
	6.5	14390 ± 1291	82
	7.0	14386 ± 1287	82
20	7.5	14135 ± 198	80
	8.0	17582 ± 831	. 100
25	8.5	16183 ± 953	92
	9.0	16795 ± 760	96
	9.5	16279 ± 1022.	93
30	10.0	15225 ± 210	87

a Flu. Units = Fluorescence Units (Maximum = \sim 28,000; background = \sim 2200).

b. Percent activity relative to the maximum at pH 8.0

Table 17
Effect of different protease inhibitors on the protease activity at pH 8 found in a Day 1 production of Photorhabdus luminescens (strain W-14).

Inhibitor	Corrected Flu. Units	Percent Inhibition
Control	13053	
E-64	13033	0
1,10 PhenanthrolineC		0
	15	99
3,4 Dichloroisocoumar Leupeptin		39
- -	13074	0
Pepstatin ^C	13441	0
Amastatin	12474	4
DMSO Control	12005	8
Methanol Control	12125	7

a. Corrected Flu. Units = Fluorescence Units background(2200 flu. units).

b. Percent Inhibition relative to protease activity at pH 0.

c. Inhibitors were dissolved in methanol.

d. Inhibitors were dissolved in DMSO.

5

20

The isolation of a zinc-metalloprotease was performed by applying dialyzed 10-80% ammonium sulfate pellet to a Q Sepharose 25 column equilibrated at 50 mM Na₂PO₄, pH 7.0 as described in Example 5 for Photorhabdus toxin. After extensive washing, a 0 to 0.5 M NaCl gradient was used to elute toxin protein. majority of biological activity and protein was eluted from 0.15 - 0.45 M NaCl. However, it was observed that the majority of 30 proteolytic activity was present in the 0.25-0.35 M NaCl fraction with some activity in the 0.15-0.25 M NaCl fraction. SDS PAGE analysis of the $0.25-0.35\ M$ NaCl fraction showed a major peptide band of approximately 60 kDa. The 0.15-0.25 M NaCl fraction contained a similar 60 kDa band but at lower relative protein 35 concentration. Subsequent gel filtration of this fraction using a Superose 12 HR 16/50 column resulted in a major peak migrating at 57.5 kDa that contained a predominant (> 90% of total stained protein) 58.5 kDa band by SDS PAGE analysis. Additional analysis of this fraction using various protease inhibitors as described above determined that the protease was a zinc-metalloprotease. Nearly all of the protease activity present in Photorhabdus broth at day 1 of fermentation corresponded to the ~58 kDa zincmetalloprotease.

In yet a second isolation of zinc-metalloprotease(s), W-14

Photorhabdus broth grown for three days was taken and protease

activity was visualized using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) laced with gelatin as described in Schmidt, T.M., Bleakley, B. and Nealson, K.M. 1988. SDS running gels (5.5 x 8 cm) were made with 12.5 % polyacrylamide (40% stock solution of acrylamide/bis-acrylamide; Sigma Chemical Co., St. Louis, MO) into which 0.1% gelatin final concentration (Biorad EIA grade reagent; Richmond CA) was incorporated upon dissolving in water. SDS-stacking gels (1.0 \times 8 cm) were made with 5% polyacrylamide, also laced with 0.1% gelatin. Typically, 2.5 μg of protein to be tested was diluted in 0.03 ml of SDS-PAGE loading buffer without dithiothreitol (DTT) and loaded onto the gel. Proteins were electrophoresed in SDS running buffer (Laemmli, U.K. 1970. Nature 227, 680) at 0° C and at 8 mA. After electrophoresis was complete, the gel was washed for 2 h in 2.5% (v/v) Triton X-100. Gels were then incubated for 1 h at 37 °C in 0.1 M glycine (pH 8.0). After incubation, gels were fixed and stained overnight with 0.1% amido black in methanol-acetic acid- water (30:10:60, vol./vol.; Sigma Chemical Co.). Protease activity was visualized as light 20 areas against a dark, amido black stained background due to proteolysis and subsequent diffusion of incorporated gelatin. At least three distinct bands produced by proteolytic activity at 58-, 41-, and 38 kDa were observed.

Activity assays of the different proteases in W-14 day three culture broth were performed using FITC-casein dissolved in water as substrate (0.02% final assay concentration). Proteolysis experiments were performed at 37 °C for 0-0.5 h in 0.1M Tris-HCl (pH 8.0) with different protein fractions in a total volume of 0.15 ml. Reactions were terminated by addition of an equal volume of 12% trichloroacetic acid (TCA) dissolved in water. After incubation at room temperature for 0.25 h, samples were centrifuged at 10,000 x g for 0.25 h and 0.10 ml aliquots were removed and placed into 96-well microtiter plates. The solution was then neutralized by the addition of an equal volume of 2 N 35 sodium hydroxide, followed by quantitation using a Fluoroskan II fluorometric plate reader with excitation and emission wavelengths of 485 and 538 nm, respectively. Activity measurements were performed using FITC-Casein with different protease concentrations at 37° C for 0-10 min. A unit of

activity was arbitrarily defined as the amount of enzyme needed to produce 1000 fluorescent units/min and specific activity was defined as units/mg of protease.

Inhibition studies were performed using two zincmetalloprotease inhibitors; 1,10 phenanthroline and N-(a-5 rhamnopyranosyloxyhydroxyphosphinyl)-Leu-Trp(phosphoramidon) with stock solutions of the inhibitors dissolved in 100% ethanol and water, respectively. Stock concentrations were typically 10 mg/ml and 5 mg/ml for 1,10 phenanthroline and phosphoramidon, respectively, with final concentrations of inhibitor at 0.5-1.0 10 mg/ml per reaction. Treatment of three day W-14 crude broth with 1,10 phenanthroline, an inhibitor of all zinc metalloproteases, resulted in complete elimination of all protease activity while treatment with phosphoramidon, an inhibitor of thermolysin-like proteases (Weaver, L.H., Kester, W.R., and Matthews, B.W. 1977. 15 J. Mol. Biol. 114, 119-132), resulted in ~56% reduction of protease activity. The residual proteolytic activity could not be further reduced with additional phosphoramidon.

The proteases of three day W-14 Photorhabdus broth were purified as follows: 4.0 liters of broth were concentrated using 20 an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The flow-through material having native proteins less than 100 kDa in size (3.8 L) was concentrated to 0.375 L using an Amicon spiral ultra filtration 25 cartridge Type S1Y10 attached to an Amicon M-12 filtration device. The retentate material contained proteins ranging in size from 10-100 kDa. This material was loaded onto a Pharmacia HR16/10 column which had been packed with PerSeptive Biosystem (Framington, MA) Poros® 50 HQ strong anion exchange packing that 30 had been equilibrated in 10 mM sodium phosphate buffer (pH 7.0). Proteins were loaded on the column at a flow rate of 5 ml/min, followed by washing unbound protein with buffer until $A_{280} =$ 0.00. Afterwards, proteins were eluted using a NaCl gradient of 0-1.0 M NaCl in 40 min at a flow rate of 7.5 ml/min. Fractions 35 were assayed for protease activity, supra., and active fractions were pooled. Proteolytically active fractions were diluted with 50% (v/v) 10 mM sodium phosphate buffer (pH 7.0) and loaded onto a Pharmacia HR 10/10 Mono Q column equilibrated in 10 mM sodium phosphate. After washing the column with buffer until A280 =

0.00, proteins were eluted using a NaCl gradient of 0-0.5 M NaCl for 1 h at a flow rate of 2.0 ml/min. Fractions were assayed for protease activity. Those fractions having the greatest amount of phosphoramidon-sensitive protease activity, the phosphoramidon sensitive activity being due to the 41/38 kDa protease, infra., were pooled. These fractions were found to elute at a range of 0.15-0.25 M NaCl. Fractions containing a predominance of phosphoramidon-insensitive protease activity, the 58 kDa protease, were also pooled. These fractions were found to elute at a range of 0.25-0.35 M NaCl. The phosphoramidon-sensitive 10 protease fractions were then concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-5K NMWL membrane. This material was applied at a flow rate of 0.5 ml/min to a Pharmacia HR 10/30 column that had been packed with Pharmacia Sephadex G-50 equilibrated in 10 mM sodium 15 phosphate buffer (pH 7.0) / 0.1 M NaCl. Fractions having the maximal phosphoramidon-sensitive protease activity were then pooled and centrifuged over a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Proteolytic activity analysis, supra., indicated this material to have only 20 phosphoramidon-sensitive protease activity. Pooling of the phosphoramidon-insensitive protease, the 58 kDa protein, was followed by concentrating in a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane and further separation on a Pharmacia Superdex-75 column. Fractions 25 containing the protease were pooled.

Analysis of purified 58- and 41/38 kDa purified proteases revealed that, while both types of protease were completely inhibited with 1.10 phenanthroline, only the 41/38 kDa protease was inhibited with phosphoramidon. Further analysis of crude broth indicated that protease activity of day 1 W-14 broth has 23% of the total protease activity due to the 41/38 kDa protease, increasing to 44% in day three W-14 broth.

Standard SDS-PAGE analysis for examining protein purity and obtaining amino terminal sequence was performed using 4-20% gradient MiniPlus SepraGels purchased from Integrated Separation Systems (Natick, MA). Proteins to be amino-terminal sequenced were blotted onto PVDF membrane following purification, infra., (ProBlott^m Membranes; Applied Biosystems, Foster City, CA),

30

visualized with 0.1% amido black, excised, and sent to Cambridge Prochem; Cambridge, MA, for sequencing.

Deduced amino terminal sequence of the 58- (SEQ ID NO:45) and 41/38 kDa (SEQ ID NO:44) proteases from three day old W-14 broth were DV-GSEKANEKLK (SEQ ID NO: 45) and DSGDDDKVTNTDIHR (SEQ ID NO:44), respectively.

Sequencing of the 41/38 kDa protease revealed several amino termini, each one having an additional amino acid removed by proteolysis. Examination of the primary, secondary, tertiary and quartenary sequences for the 38 and 41 kDa polypeptides allowed for deduction of the sequence shown above and revealed that these two proteases are homologous.

Example 11, Part A

Screening of *Photorhabdus* Genomic Library via use of Antibodies

for Genes encoding TcbA Peptide

In parallel to the sequencing described above, suitable probing and sequencing was done based on the $TcbA_{ii}$ peptide (SEQ ID NO:1). This sequencing was performed by preparing bacterial culture broths and purifying the toxin as described in Examples 1 and 2 above.

20

30

35

40

Genomic DNA was isolated from the *Photorhabdus luminescens* strain W-14 grown in Grace's insect tissue culture medium. The bacteria were grown in 5 ml of culture medium in a 250 ml Erlenmeyer flask at 28°C and 250 rpm for approximately 24 hours. Bacterial cells from 100 ml of culture medium were pelleted at 5000 x g for 10 minutes. The supernatant was discarded, and the cell pellets then were used for the genomic DNA isolation.

The genomic DNA was isolated using a modification of the CTAB method described in Section 2.4.3 of Ausubel (supra.). The section entitled "Large Scale CsCl prep of bacterial genomic DNA" was followed through step 6. At this point, an additional chloroform/isoamyl alcohol (24:1) extraction was performed followed by a phenol/chloroform/isoamyl (25:24:1) extraction step and a final chloroform/isoamyl/alcohol (24:1) extraction. The DNA was precipitated by the addition of a 0.6 volume of isopropanol. The precipitated DNA was hooked and wound around the end of a bent glass rod, dipped briefly into 70% ethanol as a final wash, and dissolved in 3 ml of TE buffer.

The DNA concentration, estimated by optical density at 280/260 nm, was approximately 2 mg/ml.

Using this genomic DNA, a library was prepared. Approximately 50 µg of genomic DNA was partly digested with Saul Al. Then NaCl density gradient centrifugation was used to size fractionate the partially digested DNA fragments. Fractions containing DNA fragments with an average size of 12 kb, or larger, as determined by agarose gel electrophoresis, were ligated into the plasmid BluScript, Stratagene, La Jolla,

10 California, and transformed into an E. coli DH5α or DHB10 strain. Separately, purified aliquots of the protein were sent to the biotechnology hybridoma center at the University of Wisconsin, Madison for production of monoclonal antibodies to the proteins. The material that was sent was the HPLC purified 15 fraction containing native bands 1 and 2 which had been denatured at 65°C, and 20 μg of which was injected into each of four mice. Stable monoclonal antibody-producing hybridoma cell lines were recovered after spleen cells from unimmunized mouse were fused with a stable myeloma cell line. Monoclonal antibodies were recovered from the hybridomas.

20

35

Separately, polyclonal antibodies were created by taking native agarose gel purified band 1 (see Example 1) protein which was then used to immunize a New Zealand white rabbit. The protein was prepared by excising the band from the native agarose 25 gels, briefly heating the gel pieces to 65°C to melt the agarose, and immediately emulsifying with adjuvant. Freund's complete adjuvant was used for the primary immunizations and Freund's incomplete was used for 3 additional injections at monthly intervals. For each injection, approximately 0.2 ml of emulsified band 1, containing 50 to 100 micrograms of protein, was delivered by multiple subcontaneous injections into the back of the rabbit. Serum was obtained 10 days after the final injection and additional bleeds were performed at weekly intervals for 3 weeks. The serum complement was inactivated by heating to 56°C for 15 minutes and then stored at -20°C.

The monoclonal and polyclonal antibodies were then used to screen the genomic library for the expression of antigens which could be detected by the epitope. Positive clones were detected on nitrocellulose filter colony lifts. An immunoblot analysis of the positive clones was undertaken.

An analysis of the clones as defined by both immunoblor and Southern analysis resulted in the tentative identification of five classes of clones.

In the first class of clone was a gene encoding the peptide designated here as TcbAii. Full DNA sequence of this gene (TcbA) was obtained. It is set forth as SEQ ID NO:11. Confirmation that the sequence encodes the internal sequence of SEQ ID NO:1 is demonstrated by the presence of SEQ ID NO:1 at amino acid number 88 from the deduced amino acid sequence created by the open reading frame of SEQ ID NO:11. This can be confirmed by referring to SEQ ID NO:12, which is the deduced amino acid sequence created by SEQ ID NO:11.

The second class of toxin peptides contains the segments referred to above as TcaBi, TcaBii and TcaC. Following the screening of the library with the polyclonal antisera, this second class of toxin genes was identified by several clones which produced different size proteins, all of which crossreacted with the polyclonal antibody on an immunoblot and were also found to share DNA homology on a Southern Blot. Sequence 20 comparison revealed that they belonged to the gene complex designated TcaBand TcaC above.

15

25

30

Three other classes of antibody toxin clones were also isolated in the polyclonal screen. These classes produced proteins that cross-react with a polyclonal antibody and also shared DNA homology with the classes as determined by Southern blotting. The classes have been designated Class III, Class IV and Class V. It was also possible to identify monoclonals that cross-reacted with Class I, II, III, and IV. This suggests that all have regions of high protein homology. Thus, it appears that the P. luminescens extracellular protein genes represent a family of genes which are evolutionarily related.

To further pursue the concept that there might be evolutionarily related variations in the toxin peptides contained within this organism, two approaches have been undertaken to examine other strains of P. luminescens for the presence of related proteins. This was done both by PCR amplification of genomic DNA and by immunoblot analysis using the polyclonal and monoclonal antibodies.

The results indicate that related proteins are produced by P. luminescens strains WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-3, WX-11, WX-12, WX-15 and W-14.

Example 11, Part B

Sequence and analysis of Class III toxin clones - tcc

Further DNA sequencing was performed on plasmids isolated from Class III *E. coli* clones described in Example 11, Part A. The nucleotide sequence was shown to be three closely linked open reading frames at this genomic locus. This locus was designated tcc with the three open reading frames designated tccA SEQ ID NO:56, tccB SEQ ID NO:58 and tccC SEQ ID NO:60 (Fig. 6B).

The deduced amino acid from the tccA open reading frame indicates the gene encodes a protein of 105,459 Da. This protein was designated TccA. The first 12 amino acids of this protein match the N-terminal sequence obtained from a 108 kDa protein. SEQ ID NO:7, previously identified as part of the toxin complex.

The deduced amino acid from the tccB open reading frame indicates this gene encodes a protein of 175,716 Da. This protein was designated TccB. The first 11 amino acids of this protein match the N-terminal sequence obtained from a protein with estimated molecular weight of 185 kDa, SEQ ID NO:8.

The deduced amino acid sequence of tccC indicated that this open reading frame encodes a protein of 111,694 Da and the protein product was designated TccC.

Example 12 Characterization of Photorhabdus Strains

30

35

5

10

15

20

25

In order to establish that the collection described herein was comprised of *Photorhabdus* strains, the strains herein were assessed in terms of recognized microbiological traits that are characteristic of *Photorhabdus* and which differentiate it from other *Enterobacteriaceae* and *Xenorhabdus* spp. (Farmer, J.J. 1984. Bergey's Manual of Systemic Bacteriology, vol 1. pp. 510-511. (ed. Kreig N.R. and Holt, J.G.). Williams & Wilkins, Baltimore.; Akhurst and Boemare, 1988, Boemare et al., 1993). These characteristic traits are as follows: Gram's stain negative

rods, organism size of 0.5-2 µm in width and 2-10 µm in length. red/yellow colony pigmentation, presence of crystalline inclusion bodies, presence of catalase, inability to reduce nitrate, presence of bioluminescence, ability to take up dye from growth media, positive for protease production, growth-temperature range below 37°C, survival under anaerobic conditions and positively motile. (Table 18). Reference Escherichia coli, Xenorhabdus and Photorhabdus strains were included in all tests for comparison. The overall results are consistent with all strains being part of the family Enterobacteriaceae and the genus Photorhabdus.

10

A luminometer was used to establish the bioluminescence of each strain and provide a quantitative and relative measurement of light production. For measurement of relative light emitting units, the broths from each strain (cells and media) were 15 measured at three time intervals after inoculation in liquid culture (6, 12, and 24 hr) and compared to background luminosity (uninoculated media and water). Prior to measuring light emission from the various broths, cell density was established by measuring light absorbance (560 nM) in a Gilford Systems 20 (Oberlin, OH) spectrophotometer using a sipper cell. Appropriate dilutions were then made (to normalize optical density to 1.0 unit) before measuring luminosity. Aliquots of the diluted broths were then placed into cuvettes (300 µl each) and read in a Bio-Orbit 1251 Luminometer (Bio-Orbit Oy, Twiku, Finland). 25 integration period for each sample was 45 seconds. The samples were continuously mixed (spun in baffled cuvettes) while being read to provide oxygen availability. A positive test was determined as being ≥ 5-fold background luminescence (~5-10 units). In addition, colony luminosity was detected with 30 photographic film overlays and visually, after adaptation in a darkroom. The Gram's staining characteristics of each strain were established with a commercial Gram's stain kit (BBL, Cockeysville, MD) used in conjunction with Gram's stain control slides (Fisher Scientific, Pittsburgh, PA). Microscopic evaluation was then performed using a Zeiss microscope (Carl Zeiss, Germany) 100X oil immersion objective lens (with 10X ocular and 2X body magnification). Microscopic examination of individual strains for organism size, cellular description and inclusion bodies (the latter after logarithmic growth) was

performed using wet mount slides (10% ocular, 2% body and 40% objective magnification) with oil immersion and phase contrast microscopy with a micrometer (Akhurst, R.J. and Boemare, N.E. 1990. Entomopathogenic Nematodes in Biological Control (ed. 5 Gaugler, R. and Kaya, H.). pp. 75-90. CRC Press, Boca Raton, USA.; Baghdiguian S., Boyer-Giglio M.H., Thaler, J.O., Bonnot G., Boemare N. 1993. Biol. Cell 79, 177-185.). Colony pigmentation was observed after inoculation on Bacto nutrient agar, (Difco Laboratories, Detroit, MI) prepared as per label instructions. Incubation occurred at 28°C and descriptions were produced after 5-7 days. To test for the presence of the enzyme catalase, a colony of the test organism was removed on a small plug from a nutrient agar plate and placed into the bottom of a glass test tube. One ml of a household hydrogen peroxide solution was gently added down the side of the tube. A positive reaction was recorded when bubbles of gas (presumptive oxygen) appeared immediately or within 5 seconds. Controls of uninoculated nutrient agar and hydrogen peroxide solution were also examined. To test for nitrate reduction, each culture was inoculated into 10 ml of Bacto Nitrate Broth (Difco Laboratories, Detroit, MI). 20 After 24 hours incubation at 28°C, nitrite production was tested by the addition of two drops of sulfanilic acid reagent and two drops of alpha-naphthylamine reagent (see Difco Manual, 10th edition, Difco Laboratories, Detroit, MI, 1984). The generation 25 of a distinct pink or red color indicates the formation of nitrite from nitrate. The ability of each strain to uptake dye from growth media was tested with Bacto MacConkey agar containing the dye neutral red; Bacto Tergitol-7 agar containing the dye bromothymol blue and Bacto EMB Agar containing the dye eosin-Y (agars from Difco Laboratories, Detroit, MI, all prepared 30 according to label instructions). After inoculation on these media, dye uptake was recorded after incubation at 28°C for 5 days. Growth on these latter media is characteristic for members of the family Enterobacteriaceae. Motility of each strain was tested using a solution of Bacto Motility Test Medium (Difco Laboratories, Detroit, MI) prepared as per label instructions. A butt-stab inoculation was performed with each strain and motility was judged macroscopically by a diffuse zone of growth spreading from the line of inoculum. In many cases, motility was also

observed microscopically from liquid culture under wet mount slides. Biochemical nutrient evaluation for each strain was performed using BBL Enterotube II (Benton, Dickinson, Germany). Product instructions were followed with the exception that incubation was carried out at 28°C for 5 days. Results were consistent with previously cited reports for Photorhabdus. The production of protease was tested by observing hydrolysis of gelatin using Bacto gelatin (Difco Laboratories, Detroit, MI) plates made as per label instructions. Cultures were inoculated 10 and the plates were incubated at 28°C for 5 days. To assess growth at different temperatures, agar plates [2% proteose peptone #3 with two percent Bacto-Agar (Difco, Detroit, MI) in deionized water] were streaked from a common source of inoculum. Plates were sealed with $Nesco^{\textcircled{0}}$ film and incubated at 20, 28 and 37°C for up to three weeks. Plates showing no growth at 37°C showed no cell viability after transfer to a 28°C incubator for one week. Oxygen requirements for Photorhabdus strains were -tested in the following manner. A butt-stab inoculation into fluid thioglycolate broth medium (Difco, Detroit, MI) was made. 20 The tubes were incubated at room temperature for one week and cultures were then examined for type and extent of growth. The indicator resazurin demonstrates the level of medium oxidation or the aerobiosis zone (Difco Manual, 10th edition, Difco Laboratories, Detroit, MI). Growth zone results obtained for the Photorhabdus strains tested were consistent with those of a 25 facultative anaerobic microorganism.

Table 18 Taxonomic Traits of Photorhabdus Strains

30

					Tr	ait	s	Ass	es	sed*							
Strain	A	В	C	D	E	F	G	Н	I	J	ĪΚ	L	М	IN	О	P	Q
W-14		<u>+</u>	±	rd S	=	=	±	±	÷	<u>o</u>	=	=	=	Ξ	<u>±</u>	=	Ξ
MX-1	=	=	=	rd S	±	Ξ	±	±	±	<u>o</u>	±	±	Ξ	±	±	主	=
WX-2	-	÷	±	rd S	=	Ξ	÷	±	<u>+</u>	<u>o</u>	±	±	±	±	÷	÷	Ξ
WX-3	-	<u>÷</u>	±	rd S	÷	Ξ	÷	÷	÷	YT	±	±	±	±	÷	±	-
WX-4	-	÷	±	<u>rd</u> S	<u>+</u>	-	+	+	÷	YT	÷	+	±	±	++	±	=
WX-5	=	<u>+</u>	<u>+</u>	<u>rd</u> S	<u>+</u>	=	±	+	<u>+</u>	LO	=	÷	<u>+</u>	±	÷	<u>+</u>	Ξ

PCT/US96/18003 WO 97/17432

WX-6	=		1	<u>rd</u> 5	-	- -	- =	- -	- 2	LY	1	= =	=	. =	- =	- -	=
WX - 7	=	1	= =	rd S	2	- -	. ±	- -	= =	R	±	1=	1=	.] =	. ±	- -	. <u>-</u>
WX - 8	=	1	= =		<u> </u>	=	. ±	- -	. <u>=</u>	<u> 2</u>	+=	<u> ±</u>	<u> ±</u>	<u>±</u>	1 ±	=	Ξ
WX-9	Ξ	1=	=	_	±	Ξ	<u> </u>	=	<u> </u>	YT	1±	<u> ±</u>	Ξ	=	1 ±	1=	=
WX-10	Ξ	1=	. =		±	1=	1 ±	<u>±</u>	1=	Ro	1 ±	=	1=	1=	1=	1 =	Ξ
WX-11	=	1 ±	<u>±</u>	+	<u> </u>	TΞ	<u>+</u>	Ŧ	1=	Ro	1 =	╁	±	╁	1 ±	╁	=
WX-12	=	<u>+</u>	±		1 ±	TΞ	±	±	1 ±	<u>o</u>	1=	1 ±	±	<u>+</u>	1=	+	=
WX-14	1=	1=	=	rd S	1 ±	ΤΞ	1 ±	1=	±	LR	1 ±	主	1 =	1 ±	╁	1 ±	Ξ
WX-15	Ξ	±	±	rd S	1 ±	ΤΞ	=	±	Ξ	LR	=	╁	±	±	<u>±</u>	Ξ	=
Н9	=	<u>±</u>	Ξ	rd S	<u> ±</u>	Ξ	±	±	土	LY	1 =	±	<u> ±</u>	±	±	上	=
НЬ	=	<u> </u> ±	±	<u>rd</u> S	±	Ξ	1	=	<u>±</u>	YT	<u> </u>	±	±	±	Ξ	1 ±	Ξ
Hm	Ϊ=	主	Ξ	rd S	1 =	Ξ	±	±	主	TY	±	±	Ξ	土	主	主	Ξ
НР88	=	Ξ	Ξ	rd S	<u>+</u>	Ξ	±	±	±	LY	±	=	±	<u>+</u>	±	±	Ξ
NC-1	=	=	<u>+</u>	rd S	=	Ξ	±	±	<u>±</u>	<u>o</u>	±	±	±	±	±	1	
W30	=	±	±	rd S	1	=	±	±	±	YT	1 ±	Ξ	±	±	±	<u>±</u>	=
WIR	=	=	Ξ	rd	<u>+</u>	Ξ	<u>+</u>	±	±	RO	±	±	±	<u>+</u>	±	±	
B2	=	±	±	rd S	±	=	<u>+</u>	<u>+</u>	±	R	±	±	±	<u>+</u>	<u>+</u>	±	=
43948	=	±	<u>+</u>	rd S	±	=	<u>+</u>	<u>+</u>	<u>+</u>	<u>o</u>	±	<u>+</u>	<u>+</u>	±	<u>+</u>	±	=
43949	= .	±	±	rd S	±	=	±	±	±	<u>o</u>	±	±	±	±	<u>+</u>	<u>+</u>	Ξ
43950	Ξ	Ξ	÷	rd S	±	Ξ	<u>+</u>	±	±	<u>o</u>	<u>+</u>	±	±	±	<u>+</u>	<u>+</u>	=
43951	=	±	±	rd	<u>±</u>	Ξ	主	±	<u>+</u>	<u>o</u>	±	<u>±</u>	±	±	±	±	
43952	=	±	±	rd S	±	ᆿ	=	=	<u>+</u>	<u>o</u>	±	±	크	±	±	<u> </u>	
				3							[ı		- 1		- 1	- 1

* - A = Gram's stain, B=Crystaline inclusion bodies, C=Bioluminescence, D=Cell form, E=Motility, F=Nitrate reduction, G=Presence of catalase, H=Gelatin hydrolysis, I=Dye uptake, J=Pigmentation, K=Growth on EMB agar, L=Growth on MacConkey agar, 5 M=Growth on Tergitol-7 agar, N=Facultative anaerobe, O=Growth at 20°C, P=Growth at 28°C, Q=Growth at 37°C, † - +/- = positive or negative for trait, rd=rod, S=sized within Genus descriptors, RO=red-orange, LR = light red, R= red, O= organge, Y= yellow, T= tan, LY= light yellow, YT= yellow tan, and LO= light orange.

10

Cellular fatty acid analysis is a recognized tool for bacterial characterization at the genus and species level (Tornabene, T.G. 1985. Lipid Analysis and the Relationship to

Chemotaxonomy in Methods in Microbiology, Vol 18, 209-3:4; Goodfellow, M. and O'Donnell, A.G. 1993. Roots of Bacterial Systematics in Handbook of New Bacterial Systematics (ed. Goodfellow, M. & O'Donnell, A.G.) pp. 3-54. London: Academic Press Ltd.), these references are incorporated herein by reference, and were used to confirm that our collection was related at the genus level. Cultures were shipped to an external, contract laboratory for fatty acid methyl ester analysis (FAME) using a Microbial ID (MIDI, Newark, DE, USA) Microbial Identification System (MIS). The MIS system consists of a Hewlett Packard HP5890A gas chromatograph with a $25 mm \times 0.2 mm$ 5% methylphenyl silicone fused silica capillary column. Hydrogen is used as the carrier gas and a flame-ionization detector functions in conjunction with an automatic sampler, integrator 15 and computer. The computer compares the sample fatty acid methyl esters to a microbial fatty acid library and against a calibration mix of known fatty acids. As selected by the contract laboratory, strains were grown for 24 hours at 28 C on trypticase soy agar prior to analysis. Extraction of samples was 20 performed by the contract lab as per standard FAME methodology. There was no direct identification of the strains to any luminescent bacterial group other than Photorhabdus. When the cluster analysis was performed, which compares the fatty acid profiles of a group of isolates, the strain fatty acid profiles were related at the genus level.

The evolutionary diversity of the Photorhabdus strains in our collection was measured by analysis of PCR (Polymerase Chain Reaction) mediated genomic fingerprinting using genomic DNA from each strain. This technique is based on families of repetitive DNA sequences present throughout the genome of diverse bacterial species (reviewed by Versalovic, J., Schneider, M., DE Bruijn, F.J. and Lupski, J.R. 1994. Methods Mol. Cell. Biol., 5, 25-40.). Three of these, repetitive extragenic palindromic sequence (REP), enterobacterial repetitive intergenic consensus (ERIC) and the BOX element are thought to play an important role in the organization of the bacterial genome. Genomic organization is believed to be shaped by selection and the differential dispersion of these elements within the genome of closely related bacterial strains can be used to discriminate these strains (e.g.

30

Louws, F.J., Fulbright, D.W., Stephens, C.T. and DE Bruijn, F.J. 1994. Appl. Environ. Micro. 60, 2286-2295.). Rep-PCR utilizes oligonucleotide primers complementary to these repetitive sequences to amplify the variably sized DNA fragments lying between them. The resulting products are separated by electrophoresis to establish the DNA "fingerprint" for each strain.

To isolate genomic DNA from our strains, cell pellets were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a 10 final volume of 10 ml and 12 ml of 5 M NaCl was then added. This mixture was centrifuged 20 min. at 15,000 x g. The resulting pellet was resuspended in 5.7 ml of TE and 300 µl of 10% SDS and 60 µl 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY) were added. This mixture was incubated at 37 °C for 1 hr, 15 approximately 10 mg of lysozyme was then added and the mixture was incubated for an additional 45 min. One milliliter of 5M NaCl and 800 µl of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were then added and the mixture was incubated 10 min. at 65°C, gently agitated, then incubated and agitated for an additional 20 min. 20 to aid in clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently then centrifuged. Two extractions were then performed with an equal volume of phenol/chloroform/isoamyl alcohol (50:49:1). Genomic DNA was precipitated with 0.6 volume of isopropanol. 25 Precipitated DNA was removed with a glass rod, washed twice with 70% ethanol, dried and dissolved in 2 ml of STE (10 mM Tris-HCl pH8.0, 10 mM NaCl, 1 mM EDTA). The DNA was then quantitated by optical density at 260 nm. To perform rep-PCR analysis of Photorhabdus genomic DNA the following primers were used, REPIR-30 I; 5'-IIIICGICGICATCIGGC-3' and REP2-I; 5'-ICGICTTATCIGGCCTAC-3'. PCR was performed using the following 25µl reaction: 7.75 µl H₂O, 2.5 µl 10X LA buffer (PanVera Corp., Madison, WI), 16 µl dNTP mix (2.5 mM each), 1 µl of each primer at 50 pM/µl, 1 µl DMSO, 1.5 µl genomic DNA (concentrations ranged from 0.075-0.480 $\mu g/\mu l$) and 35 0.25 µl TaKaRa EX Tag (PanVera Corp., Madison, WI). amplification was performed in a Perkin Elmer DNA Thermal Cycler (Norwalk, CT) using the following conditions: 95° C/7 min. then 35 cycles of; 94°C/1 min.,44°C/1 min., 65°C/8 min., followed by 15 min. at 65°C. After cycling, the 25 µl reaction was added to 5 µl

of 6X gel loading buffer (0.25% bromophenol blue, 40% www sucrose in H2O). A 15x20cm 1%-agarose gel was then run in TBE buffer (0.09 M Tris-borate, 0.002 M EDTA) using 8 µl of each reaction. The gel was run for approximately 16 hours at 45v. Gels were then stained in 20 µg/ml ethidium bromide for 1 hour and destained in TBE buffer for approximately 3 hours. Polaroid® photographs of the gels were then taken under UV illumination.

The presence or absence of bands at specific sizes for each strain was scored from the photographs and entered as a similarity matrix in the numerical taxonomy software program, NTSYS-pc (Exeter Software, Setauket, NY). Controls of *E. coli* strain HB101 and <u>Xanthomonas oryzae pv. oryzae</u> assayed at the same time produced PCR "fingerprints" corresponding to published reports (Versalovic, J., Koeuth, T. and Lupski, J.R. 1991.

- Nucleic Acids Res. 19, 6823-6831; Vera Cruz, C.M., Halda-Alija, L., Louws, F., Skinner, D.Z., George, M.L., Nelson, R.J., DE Bruijn, F.J., Rice, C. and Leach, J.E. 1995. Int. Rice Res. Notes, 20, 23-24.; Vera Cruz, C.M., Ardales, E.Y., Skinner, D.Z., Talag, J., Nelson, R.J., Louws, F.J., Leung, H., Mew, T.W. and
- Leach, J.E. 1996. Phytopathology (in press, respectively). The data from *Photorhabdus* strains were then analyzed with a series of programs within NTSYS-pc; SIMQUAL (Similarity for Qualitative data) to generate a matrix of similarity coefficients (using the Jaccard coefficient) and SAHN (Sequential, Agglomerative,
- Heirarchical and Nested) clustering [using the UPGMA (Unweighted Pair-Group Method with Arithmetic Averages) method] which groups related strains and can be expressed as a phenogram (Figure 5). The COPH (cophenetic values) and MXCOMP (matrix comparison) programs were used to generate a cophenetic value matrix and compare the correlation between this and the original matrix upon which the clustering was based. A resulting normalized Mantel statistic (r) was generated which is a measure of the goodness of fit for a cluster analysis (r=0.8-0.9 represents a very good fit). In our case r = 0.919. Therefore, our collection is
- 35 comprised of a diverse group of easily distinguishable strains representative of the *Photorhabdus* genus.

Example 13 Insecticidal Utility of Toxin(s) Produced by Various Fhotorhabdus Strains

Initial "seed" cultures of the various Photorhabdus strains 5 were produced by inoculating 175 ml of 2% Proteose Peptone #3 (PP3) (Difco Laboratories, Detroit, MI) liquid media with a primary variant subclone in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput. Inoculum for each seed culture 10 was derived from oil-overlay agar slant cultures or plate cultures. After inoculation, these flasks were incubated for 16 hrs at 28°C on a rotary shaker at 150 rpm. These seed cultures were then used as uniform inoculum sources for a given fermentation of each strain. Additionally, overlaying the post-15 log seed culture with sterile mineral oil, adding a sterile magnetic stir bar for future resuspension and storing the culture in the dark, at room temperature provided long-term preservation of inoculum in a toxin-competent state. The production broths were inoculated by adding 1% of the actively growing seed culture 20 to fresh 2% PP3 media (e.g. 1.75 ml per 175 ml fresh media). Production of broths occurred in either 500 ml tribaffled flasks (see above), or 2800 ml baffled, convex bottom flasks (500 ml volume) covered by a silicon foam closure. Production flasks were incubated for 24-48 hrs under the above mentioned 25 conditions. Following incubation, the broths were dispensed into sterile 1 L polyethylene bottles, spun at 2600 x g for 1 hr at 10°C and decanted from the cell and debris pellet. The liquid broth was then vacuum filtered through Whatman GF/D (2.7 uM retention) and GF/B (1.0 µM retention) glass filters to remove debris. Further broth clarification was achieved with a tangential flow microfiltration device (Pall Filtron, Northborough, MA) using a 0.5 µM open-channel filter. When necessary, additional clarification could be obtained by chilling the broth (to 4° C) and centrifuging for several hours at 2600 x 35 g. Following these procedures, the broth was filter sterilized using a 0.2 uM nitrocellulose membrane filter. Sterile broths were then used directly for biological assay, biochemical analysis or concentrated (up to 15-fold) using a 10,000 MW cutoff, M12 ultra-filtration device (Amicon, Beverly MA) or

centrifugal concentrators (Millipore, Bedford, MA and Pall Filtron, Northborough, MA) with a 10,000 MW pore size. In the case of centrifugal concentrators, the broth was spun at 2000 x g for approximately 2 hr. The 10,000 MW permeate was added to the corresponding retentate to achieve the desired concentration of components greater than 10,000 MW. Heat inactivation of processed broth samples was acheived by heating the samples at 100°C in a sand-filled heat block for 10 minutes.

The broth(s) and toxin complex(es) from different 10 Photorhabdus strains are useful for reducing populations of insects and were used in a method of inhibiting an insect population which comprises applying to a locus of the insect an effective insect inactivating amount of the active described. A demonstration of the breadth of insecticidal activity observed from broths of a selected group of Photorhabdus strains fermented 15 as described above is shown in Table 19. It is possible that additional insecticidal activities could be detected with these strains through increased concentration of the broth or by employing different fermentation methods. Consistent with the 20 activity being associated with a protein, the insecticidal activity of all strains tested was heat labile (see above).

Culture broth(s) from diverse Photorhabdus strains show differential insecticidal activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm larvae and boll weevil larvae which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and Colorado potato beetle. Activity is also observed against aster leafhopper and corn plant hopper, which are members of the order Homoptera. Other members of the Homoptera include planthoppers, pear psylla, apple sucker, scale insects, whiteflies, spittle bugs as well as numerous host specific aphid species. The broths and purified toxin complex(es) are also active against tobacco budworm, tobacco hornworm and European corn borer which are members of the order Lepidoptera. Other typical members of this order are beet armyworm, cabbage looper, black cutworm, corn earworm, codling moth, clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent

25

30

caterpillar, sod webworm and fall armyworm. Activity is also seen against fruitfly and mosquito larvae which are members of the order Diptera. Other members of the order Diptera are, pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly and house fly and various mosquito species. Activity with broth(s) and toxin complex(es) is also seen against two-spotted spider mite which is a member of the order Acarina which includes strawberry spider mites, broad mites, citrus red mite, European red mite, pear rust mite and tomato russet mite.

10 Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth(s) (0-15 fold concentrated, filter sterilized), 2% Proteose Peptone #3, purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer , pH 7.0 were applied directly to the surface (about 1.5 cm^2) of artificial diet (Rose, R. I. and McCabe, J. M. (1973). J. Econ. Entomol. 66, (398-400) in 40 µl aliquots. Toxin complex was diluted in 10 mM sodium phosphate buffer, pH 7.0. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn 20 rootworm, SCR) hatched from surface sterilized eggs. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (3-5 days). Mortality and larval weight determinations were then scored. Generally, 16 insects per treatment were used in all studies. Control 25 mortality was generally less than 5%.

Activity against boll weevil (Anthomonas grandis) was tested as follows. Concentrated (1-10 fold) Photorhabdus broths, control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml) or 10 mM sodium phosphate buffer, pH 7.0 were applied in 60 µl aliquots to the surface of 0.35 g of artificial diet (Stoneville Yellow lepidopteran diet) and allowed to dry. A single, 12-24 hr boll weevil larva was placed on the diet, and the wells were sealed and held at 25°C, 50% RH for 5 days. Mortality and larval weights were then assessed. Control mortality ranged between 0-13%.

Activity against mosquito larvae was tested as follows. The assay was conducted in a 96-well microtiter plate. Each well contained 200 µl of aqueous solution (10-fold concentrated Photorhabdus culture broth(s), control medium (2% Proteose

Peptone #3), 10 mM sodium phosphate buffer, toxin complex(es) 4 0.23 mg/ml or H20) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 3-4 days after infestation. Control mortality was between 0-20%.

Activity against fruitflies was tested as follows.

Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium (2% Proteose Peptone #3), 10-fold concentrated Photorhabdus culture broth(s), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0. This was accomplished by placing 4.0 ml of dry medium in each of 3 rearing vials per treatment and adding 4.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each 25 ml vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 15 days of exposure. Adult emergence as compared to water and control medium (0-16% reduction).

10

15

20

25

Activity against aster leafhopper adults (Macrosteles severini) and corn planthopper nymphs (Peregrinus maidis) was tested with an ingestion assay designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35X10 mm Petri dish. A 2 inch Parafilm M® square is placed across the top of the dish and secured with an "O" ring. A 1 oz. plastic cup is then infested with approximately 7 hoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using 10-fold concentrated Photorhabdus culture broth(s), the broth and control medium (2% Proteose Peptone #3) were dialyzed against 10 mM sodium phosphate buffer, pH 7.0 and sucrose (to 5%) was added to the resulting solution to reduce control mortality. Purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 was also tested. Mortality is reported at day 3. The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assays were graded for mortality at 72 hours. Control mortality was less than 6%.

Activity against lepidopteran larvae was tested as follows. Concentrated (10-fold) Photorhabdus culture broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied 5 directly to the surface $(\sim1.5~\text{cm}^2)$ of standard artificial lepidopteran diet (Stoneville Yellow diet) in 40 ul aliquots. The diet plates were allowed to air-dry in a sterile flow-hood and each well was infested with a single, neonate larva. European corn borer (Ostrinia nubilalis) and tobacco hornworm (Manduca sexta) eggs were obtained from commercial sources and hatched in-10 house, whereas tobacco budworm (Heliothis virescens) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at day 5. Generally, 16 insects per treatment were used in all studies. Control mortality generally ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

Activity against two-spotted spider mite (Tetranychus urticae) was determined as follows. Young squash plants were trimmed to a single cotyledon and sprayed to run-off with 10-fold concentrated broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0. After drying, the plants were infested with a mixed population of spider mites and held at lab temperature and humidity for 72 hr. Live mites were then counted to determine levels of control.

Table 19 Observed Insecticidal Spectrum of Broths From Different Photorhabdus Strains

5 <u>P</u>	hocorhabdus Strain	Sensitive* Insect Species
	WX-1	3**, 4, 5, 6, 7, 8
	WX-2	2, 4
	wx-3	1, 4
	WX - 4	1, 4
)	wx-5	4
	wx-6	4
	wx-7	3, 4, 5, 6, 7, 8
	WX-8	1, 2, 4
	WX-9	1, 2, 4
5	WX-10	4
	wx-11	1, 2, 4
	WX-12	2, 4, 5, 6, 7, 8
	WX-14	1, 2, 4
	WX-15	1, 2, 4
)	W30	3, 4, 5, 8
	NC-1	1, 2, 3, 4, 5, 6, 7, 8, 9
	WIR	2, 3, 5, 6, 7, 8
	нр88	1, 3, 4, 5, 7, 8
	нь	3, 4, 5, 7, 8
5	Hm	1, 2, 3, 4, 5, 7, 8
	н9	1, 2, 3, 4, 5, 6, 7, 8.
	W-14	1, 2, 3, 4, 5, 6, 7, 8, 10
	ATCC 43948	4
	ATCC 43949	4
)	ATCC 43950	4
	ATCC 43951	4
	ATCC 43952	4

^{* = ≥ 25%} mortality and/or growth inhibition vs. control ** = 1; Tobacco budworm, 2; European corn borer, 3; Tobacco hornworm, 4; Southern corn rootworm, 5; 35 Boll weevil, 6; Mosquito, 7; Fruit Fly, 8; Aster Leafhopper, 9; Corn planthopper, 10; Two-spotted spider mite.

Example 14

Non M-14 Photorhabdus Strains: Purification, Characterization and Activity Spectrum

5 Purification

10

15

35

The protocol, as follows, is similar to that developed for the purification of W-14 and was established based on purifying those fractions having the most activity against Southern corn root worm (SCR), as determined in bioassays (see Example 13). Typically, 4-20 L of broth that had been filtered, as described in Example 13, were received and concentrated using an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The retentate contained native proteins consisting of molecular sizes greater than 100 kDa. whereas the flow through material contained native proteins less than 100 kDa in size. The majority of the activity against SCR was contained in the 100 kDa retentate. The retentate was then continually diafiltered with 10 mM sodium phosphate (pH = 7.0) until the filtrate reached an A280 < 0.100. Unless otherwise stated, all procedures from this point were performed in buffer as defined by 10 mM sodium phosphate (pH 7.0). The retentate was then concentrated to a final volume of approximately 0.20 L and filtered using a 0.45 mm Nalgene™ Filterware sterile filtration The filtered material was loaded at 7.5 ml/min onto a Pharmacia HR16/10 column which had been packed with PerSeptive Biosystem Poros® 50 HQ strong anion exchange matrix equilibrated in buffer using a PerSeptive Biosystem Sprint® HPLC system. After loading, the column was washed with buffer until an A280 $ilde{ imes}$ 0.100 was achieved. Proteins were then eluted from the column at 2.5 ml/min using buffer with 0.4 M NaCl for 20 min for a total volume of 50 ml. The column was then washed using buffer with 1.0 M NaCl at the same flow rate for an additional 20 min (final volume = 50 ml). Proteins eluted with 0.4 M and 1.0 M NaCl were placed in separate dialysis bags (Spectra/Por® Membrane MWCO: 2,000) and allowed to dialyze overnight at 4° C in 12 L buffer. The majority of the activity against SCR was contained in the $0.4\,$ M fraction. The 0.4 M fraction was further purified by application of 20 ml to a Pharmacia XK 26/100 column that had been prepacked with Sepharose CL4B (Pharmacia) using a flow rate

of 0.75 ml/min. Fractions were pooled based on A280 peak profile and concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Protein concentrations were determined using a Biorad Protein Assay Kit with bovine gamma globulin as a standard.

Characterization

10

15

30

The native molecular weight of the SCR toxin complex was determined using a Pharmacia HR 16/50 that had been prepacked with Sepharose CL4B in buffer. The column was then calibrated using proteins of known molecular size thereby allowing for calculation of the toxin approximate native molecular size. As shown in Table 20, the molecular size of the toxin complex ranged from 777 kDa with strain Hb to 1,900 kDa with strain WX-14. The yield of toxin complex also varied, from strain WX-12 producing 0.8 mg/L to strain Hb, which produced 7.0 mg/L.

Proteins found in the toxin complex were examined for individual polypeptide size using SDS-PAGE analysis. Typically, 20 mg protein of the toxin complex from each strain was loaded 20 onto a 2-15% polyacrylamide gel (Integrated Separation Systems) and electrophoresed at 20 mA in Biorad SDS-PAGE buffer. After completion of electrophoresis, the gels were stained overnight in Biorad Coomassie blue R-250 (0.2% in methanol: acetic acid: water; 40:10:40 v/v/v). Subsequently, gels were destained in methanol:acetic acid: water; 40:10:40 (v/v/v). The gels were then rinsed with water for 15 min and scanned using a Molecular Dynamics Personal Laser Densitometer. Lanes were quantitated and molecular sizes were calculated as compared to Biorad high molecular weight standards, which ranged from 200-45 kDa.

Sizes of the individual polypeptides comprising the SCR toxin complex from each strain are listed in Table 21. The sizes of the individual polypeptides ranged from 230 kDa with strain WX-1 to a size of 16 kDa, as seen with strain WX-7. Every strain, with the exception of strain Hb, had polypeptides comprising the toxin complex that were in the 160-230 kDa range, the 100-160 kDa range, and the 50-80 kDa range. These data indicate that the toxin complex may vary in peptide composition and components from strain to strain, however, in all cases the

toxin attributes appears to consist of a large, oligomeric protein complex.

Table 20

Characterization of a Toxin Complex From Non W-14 Photorhabdus Strains

Strain	Approx. Native Molecular Wt. ^a	Yield Active Fraction
		(mg/L)b
Н9	972,000	1.8
нь	777,000	7.0
Hm	1,400,000	1.1
нр88	813,000	2.5
NC1	1,092,000	3.3
WIR	979,000	1.0
WX-1	973,000	0.8
WX-2	951.000	2.2
WX-7	1,000,000	1.5
WX-12	898,000	0.4
WX-14	1,900,000	1.9
W-14	860,000	7.5

a Native molecular weight determined using a Pharmacia HR 16/50 column packed with Sepharose CL4B b Amount of toxin complex recovered from culture broth.

Activity Spectrum

10 As shown in Table 21, the toxin complexes purified from strains Hm and H9 were tested for activity against a variety of insects, with the toxin complex from strain W-14 for comparison. The assays were performed as described in Example 13. The toxin complex from all three strains exhibited activity against tobacco 15 bud worm, European corn borer, Southern corn root worm, and aster leafhopper. Furthermore, the toxin complex from strains Hm and W-14 also exhibited activity against two-spotted spider mite. In addition, the toxin complex from W-14 exhibited activity against mosquito larvae. These data indicate that the toxin complex, 20 while having similarities in activities between certain orders of insects, can also exhibit differential activities against other orders of insects.

Table 21
The Approximate Sizes (in kDa) of Peptides in a Purified
Toxin Complex From Non W-14 Photorhabdus

				WIR	WX-1	WX-2	MW-1	WX-12	47-14	M-T1
		88								
		170	180	170	230	200	200	180	210	190
		160	170	160	190	170	180	160	180	180
		140	140	120	170	150	110	140	160	170
		130	110	110	160	120	87	139	120	160
		129	44	89	110	110	75	130	110	150
		110	16	79	98	82	43	110	100	130
				74	76	64	33	92	95	120
				62	58	37	28	87	80	119
				51	53	30	26	80	69	93
				40	41		23	73	49	90
							22	59	41	77
	19						21	56	33	69
							19			65
							18			6 3
					22		16	33		60
		35						32		51
				25				26		45
				23						40
35										35
					•					2.0
	0 140 0 139 0 130 100 100 98 88 81 75 69 60 57 54 49	140 140 140 139 100 130 81 120 72 100 68 98 49 88 46 81 30 75 22 69 20 60 19 57 54 49 44 39 37	140 140 160 139 100 140 130 81 130 120 72 129 100 68 110 98 49 100 88 46 86 81 30 81 75 22 77 69 20 73 60 19 60 57 58 54 45 49 39 44 35 39	140 140 160 170 139 100 140 140 130 81 130 110 120 72 129 44 100 68 110 16 98 49 100 88 46 86 81 30 81 75 22 77 69 20 73 60 19 60 57 58 54 45 49 39 44 35	140 140 160 170 160 139 100 140 140 120 130 81 130 110 110 120 72 129 44 89 100 68 110 16 79 98 49 100 74 88 46 86 62 81 30 81 51 75 22 77 40 69 20 73 39 60 19 60 37 57 58 33 54 45 30 49 39 28 44 35 27 39 37 25	140 140 160 170 160 190 139 100 140 140 120 170 130 81 130 110 110 160 120 72 129 44 89 110 100 68 110 16 79 98 98 49 100 74 76 88 46 86 62 58 81 30 81 51 53 75 22 77 40 41 69 20 73 39 35 60 19 60 37 31 57 58 33 28 54 45 30 24 49 39 28 22 44 35 37	140 140 160 170 160 190 170 139 100 140 140 120 170 150 130 81 130 110 110 160 120 120 120 72 129 44 89 110 110 100 68 110 16 79 98 82 98 49 100 74 76 64 88 46 86 62 58 37 81 30 81 51 53 30 75 22 77 40 41 69 20 73 39 35 60 19 60 37 31 57 58 33 28 54 45 30 24 49 39 28 22 44 35 37 39 37 31 31 31 31 31 31 31 31 31 31 31 31 31	140	140	140

Table 22
Observed Insecticidal Spectrum of a Purified Toxin Complex from
Photorhabdus Strains

5	<u>Photorhabdus</u> Strain Sensitive* Insect Species
10	Hm Toxin Complex 1**, 2, 3, 5, 6, 7, 8 H9 Toxin Complex 1, 2, 3, 6, 7, 8 W-14 Toxin Complex 1, 2, 3, 4, 5, 6, 7, 8
	<pre>* = > 25% mortality or growth inhibition * = > 25% mortality or growth inhibition</pre>
15	<pre>** = 1; Tobacco bud worm, 2; European corn borer, 3; Southern corn root worm, 4; Mosquito, 5; Two-spotted spider mite, 6; Aster Leafhopper, 7; Fruit Fly, 8; Boll Weevil</pre>

<u>Example 15</u>
<u>Sub-Fractionation of Photorhabdus Protein Toxin Complex</u>

20

25

35

40

The Photorhabdus protein toxin complex was isolated as described in Example 14. Next, about 10 mg toxin was applied to a MonoQ 5/5 column equilibrated with 20 mM Tris-HCl, pH 7.0 at a flow rate of lml/min. The column was washed with 20 mM Tris-HCl, pH 7.0 until the optical density at 280 nm returned to baseline absorbance. The proteins bound to the column were eluted with a linear gradient of 0 to 1.0 M NaCl in 20 mM Tris-HCl, pH 7.0 at 1 ml/min for 30 min. One ml fractions were collected and subjected to Southern corn rootworm (SCR) bioassay (see Example 13). Peaks of activity were determined by a series of dilutions of each fraction in SCR bioassays. Two activity peaks against SCR were observed and were named A (eluted at about 0.2-0.3 M NaCl) and B (eluted at 0.3-0.4 M NaCl). Activity peaks A and B were pooled separately and both peaks were further purified using a 3-step procedure described below.

Solid (NH4)2SO4 was added to the above protein fraction to a final concentration of 1.7 M. Proteins were then applied to a phenyl-Superose 5/5 column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at 1 ml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 0% ethylene glycol, 50 mM potassium phosphate, pH 7.0 to 25% ethylene glycol, 25 mM potassium phosphate, pH 7.0 (no (NH4)2SO4) at 0.5 ml/min. Fractions were dialyzed overnight

against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bioassay.

The fractions with the highest activity were pooled and applied to a MonoQ 5/5 column which was equilibrated with 20 mM Tris-HCl, pH 7.0 at 1 ml/min. The proteins bound to the column were eluted at 1 ml/min by a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0.

For the final step of purification, the most active fractions above (determined by SCR bioassay) were pooled and subjected to a second phenyl-Superose 5/5/ column. Solid (NH4)2SO4 was added to a final concentration of 1.7 M. The solution was then loaded onto the column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at lml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 50 mM potassium phosphate, pH 7.0 to 10 mM potassium phosphate, pH 7.0 at 0.5 ml/min. Fractions were dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bioassay.

The final purified protein by the above 3-step procedure from peak A was named toxin A and the final purified protein from peak B was named toxin B.

20

40

Characterization and Amino Acid Sequencing of Toxin A and Toxin B In SDS-PAGE, both toxin A and toxin B contained two major (> 25 90% of total Commassie stained protein) peptides: 192 kDa (named Al and Bl, respectively) and 58 kDa (named A2 and B2, respectively). Both toxin A and toxin B revealed only one major band in native PAGE, indicating Al and A2 were subunits of one protein complex, and B1 and B2 were subunits of one protein 30 complex. Further, the native molecular weight of both toxin A and toxin B were determined to be 860 kDa by gel filtration chromatography. The relative molar concentrations of Al to A2 was judged to be a 1 to 1 equivalence as determined by densiometric analysis of SDS-PAGE gels. Similarly, Bl and B2 35 peptides were present at the same molar concentration.

Toxin A and toxin B were electrophoresed in 10% SDS-PAGE and transblotted to PVDF membranes. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. The N-terminal

amino sequence of Bl was determined to be identical to SEQ ID NO:1, the TcbAii region of the tcbA gene (SEQ ID NO:12, position 87 to 99). A unique N-terminal sequence was obtained for peptide B2 (SEQ ID NO:40). The N-terminal amino acid sequence of peptide B2 was identical to the TcbAiii region of the derived amino acid sequence for the tcbA gene (SEQ ID NO:12, position 1935 to 1945). Therefore, the B toxin contained predominantly two peptides, TcbAii and TcbAiii, that were observed to be derived from the same gene product, TcbA.

The N-terminal sequence of A2 (SEQ ID NO:41) was unique in comparison to the TcbAiii peptide and other peptides. The A2 peptide was denoted TcdAiii (see Example 17). SEQ ID NO:6 was determined to be a mixture of amino acid sequences SEQ ID NO:40 and 41.

10

Peptides Al and A2 were further subjected to internal amino acid sequencing. For internal amino acid sequencing, 10 µg of toxin A was electrophoresized in 10% SDS-PAGE and transblotted to PVDF membrane. After the blot was stained with amide black, peptides Al and A2, denoted TcdAii and TcdAiii, respectively,

were excised from the blot and sent to Harvard MicroChem and Cambridge ProChem. Peptides were subjected to trypsin digestion followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal amino acid sequences of peptide

Al (TcdAii-PK71, SEQ ID NO:38 and TcdAii-PK44, SEQ ID NO:39) were found to have significant homologies with deduced amino acid sequences of the TcbAii region of the tcbA gene (SEQ ID NO:12). Similarly, the N-terminal sequence (SEQ ID NO:41) and two internal sequences of peptides A2 (TcdAiii-PK57, SEQ ID NO:42 and TcdAiii-PK20, SEQ ID NO.43) also showed significant homology with deduced amino acid sequences of TcbAiii region of the tcbA gene (SEQ ID NO:12).

In summary of above results, the toxin complex has at least two active protein toxin complexes against SCR; toxin A and toxin B. Toxin A and toxin B are similar in their native and subunits molecular weight, however, their peptide compositions are different. Toxin A contained peptides TcdAii and TcdAiii as the major peptides and the toxin B contains TcbAii and TcbAiii as the major peptides.

Example 16

Cleavage and Activation of TcbA Peptide

5

10

15

20

In the toxin B complex, peptide TcbAii and TcbAiii originate from the single gene product TcbA (Example 15). The processing of TcbA peptide to TcbAii and TcbAiii is presumably by the action of Photorhabdus protease(s), and most likely, the metalloproteases described in Example 10. In some cases, it was noted that when Photorhabdus W-14 broth was processed. TcbA peptide was present in toxin B complex as a major component, in addition to peptides TcbAii and TcbAiii. Identical procedures, described for the purification of toxin B complex (Example 15), were used to enrich peptide TcbA from toxin complex fraction of W-14 broth. The final purified material was analyzed in a 4-20% gradient SDS-PAGE and major peptides were quantified by densitometry. It was determined that TcbA, TcbAii and TcbAiii comprised 58%, 36%, and 6%, respectively, of total protein. The identities of these peptides were confirmed by their respective molecular sizes in SDS-PAGE and Western blot analysis using monospecific antibodies. The native molecular weight of this fraction was determined to be 860 kDa.

The cleavage of TcbA was evaluated by treating the above purified material with purified 38 kDa and 58 kDa W-14 .25 Photorhabdus metalloproteases (Example 10), and Trypsin as a control enzyme (Sigma, MO). The standard reaction consisted 17.5 ug the above purified fraction, 1.5 unit protease, and 0.1 M Tris buffer, pH 8.0 in a total volume of 100 µl. For the control reaction, protease was omitted. The reaction mixtures were 30 incubated at 37 °C for 90 min. At the end of the reaction, 20 ul was taken and boiled with SDS-PAGE sample buffer immediately for electrophoresis analysis in a 4-20% gradient SDS-PAGE. determined from SDS-PAGE that in both 38 kDa and 58 kDa protease treatments, the amount of peptides TcbAii and TcbAiii increased 35 about 3-fold while the amount of TcbA peptide decreased proportionally (Table 23). The relative reduction and augmentation of selected peptides was confirmed by Western blot analyses. Furthermore, gel filtration of the cleaved material revealed that the native molecular size of the complex remained 40 the same. Upon trypsin treatment, peptides TcbA and TcbAii were

nonspecifically digested into small peptides. This indicated that 38 kDa and 58 kDa Photorhabdus proteases can specifically process peptide TcbA into peptides TcbAii and TcbAii. Protease treated and untreated control of the remaining 80 µl reaction mixture were serial diluted with 10 mM sodium phosphate buffer, pH 7.0 and analyzed by SCR bioassay. By comparing activity in several dilution, it was determined that the 38 kDa protease treatment increased SCR insecticidal activity approximately 3 to 4 fold. The growth inhibition of remaining insects in the protease treatment was also more severe than control (Table 23).

Table 23

Conversion and activation of peptide TcbA into peptides TcbA_{ii} and TcbA_{iii} by protease treatment.

15		Control	38 kDa protease treatment
•	SO (% of total protein)	58	18
	S1 (% of total protein)	36	64
	S9 (% of total protein)	6	18
-	LD50 (µg protein)	2.1	0.52
20	SCR Weight (mg/insect)*	0.2	0.1

^{*:} an indication of growth inhibition by measuring the average weight of live insect after 5 days on diet in the assay.

Example 17 Screening of the library for a gene encoding the TcdAii Peptide

25

30

35

The cloning and characterization of a gene encoding the TcdAii peptide, described as SEQ ID NO:17 (internal peptide TcdAii-PT111 N-terminal sequence) and SEQ ID NO:18 (internal peptide TcdAii-PT79 N-terminal sequence) was completed. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences of SEQ ID NO:17 (Table 24) and SEQ ID NO:18 (Table 25), and the reverse complements of those sequences, were synthesized as described in Example 8. The DNA sequence of the oligonucleotides is given below:

Table 24
Degenerate Oligonucleotide for SEQ ID NO:17

7111	T	~	3	4	5	9	4	
mino Acid	Ala	946					,	0
		2772	VED	911	Asp	Ard	Val	148
codons	S. GCN	TT(T/C)	AA (T/C)	AT(T/C/A)		GA (T/C)	3.	
2 2 C	(B/C/C/ 8/J) 15	10,00				(2/:)		
9.0		(3/1) 11 (1/5/2)	AAT	ATT	GAT	GAT	3.1	
¥	10/8/00 18/0/0/8/00 15	10/8/8			1			
	3 95 18/5/6/11	111170)	AA (T/C)	AT(T/C/A)	GA(T/C) .	GA (T/C)	GT 3.	
40	74 . V				1			
	, uc	16/A) IC	(6/A) TC	(G/A) TC (T/G/A) AT (G/A) TT	(G/A) TT	(G/A) AA	(A/C/C/T)	
SPT	5 - ACT	1	1	,,,,,,			5 75/5/5/11	
	*****	177	ונד	ATT	IJL	AAI		
E CB	S. CAG	TO (0) (1)	ı				, ,,	
		17/6/41	(A/C)AC	Aic	ATC	AAT	74	

Table 25 Degenerate Oligonucleotide for SEQ ID NO:18

[-	Agn	· ~	AAT 2	AAT 3	~	
12			AAT AZ	-	_	E .
11	_	+	N N N	+-	┰	
07	_	+	AAT	+-	_	_
9	Val	CIN	GTK	STK	1	1
8	Gly	N S S	χgς	ζOS	RCT	E C
7	Leu	9	YTR	YTR	YAR	285
9	Ser	9	TCI	AGY	RCC	2
2	Thr	ACN	ACY	ACY	MAC	MAC
7	Tyr	TAY	TAT	TAT	ATT	ATT
~	Val	GTN	GTK	GTK	YGG	XCC
7	110	ATH	ATY	ATT	ATT	ATT
7	Phe	TTY	TTY	Tele	ATT	ATT
_		5	2.	5	5	ŝ
P2-PT79	Amino	Codons	P2.79.2	P2.79.3	P2.79.R.1	P2.79R.CB

= A, C or T, According to IUPAC-IUB codes for nucleotides, Y = C or N = A, C, G or T, K = G or T, R = A or G, and M = A or

Polymerase Chain Reactions (PCR) were performed essentially as described in Example 8, using as forward primers F2.3.5.CB or P2.3.5, and as reverse primers P2.79.R.1 or P2.79R.CB, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers P2.79.2 or P2.79.3 were used as forward primers, and P2.3.5R, P2.3.5RI, and P2.3R.CB were used as reverse primers in all forward/reverse combinations. Only in the reactions containing P2.3.6.CB as the forward primers combined with P2.79.R.1 or P2.79R.CB as the reverse primers was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 2500 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PT111 lies amino-proximal to the peptide fragment TcdAii-PT79.

10

35

15 The 2500 bp PCR products were ligated to the plasmid vector pCR™II (Invitrogen, San Diego, CA) according to the supplier's instructions, and the DNA sequences across the ends of the insert fragments of two isolates (HS24 and HS27) were determined using the supplier's recommended primers and the sequencing methods 20 described previously. The sequence of both isolates was the same. New primers were synthesized based on the determined sequence, and used to prime additional sequencing reactions to obtain a total of 2557 bases of the insert [SEQ ID NO:36]. Translation of the partial peptide encoded by SEQ ID No: 36 yields the 845 amino acid sequence disclosed as SEQ ID NO:37. 25 Protein homology analysis of this portion of the TcdAii peptide fragment reveals substantial amino acid homology (68% similarity; 53% identity) to residues 542 to 1390 of protein TcbA [SEQ ID NO:12]. It is therefore apparent that the gene represented in 30 part by SEQ ID NO:36 produces a protein of similar, but not identical, amino acid sequence as the TcbA protein, and which · likely has similar, but not identical biological activity as the TcbA protein.

In yet another instance, a gene encoding the peptides TcdA_{ii}-PK44 and the TcdA_{iii} 58 kDa N-terminal peptide, described as SEQ ID NO:9 (internal peptide TcdA_{ii}-PK44 sequence), and SEQ ID NO:41(TcdA_{iii} 58 kDa N-terminal peptide sequence) was isolated. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences described as SEQ ID NO:39 (Table 27) and SEQ

ID NO:41 (Table 26), and the reverse complements of those sequences, were synthesized as described in Example 8, and their DNA sequences.

5

Table 26
Degenerate Oligonucleotide for SEQ ID NO:41

I	т —			
dia dia	G 3.	<u>ب</u>	F. 55	IC 3:
2	8	B	RCF	ATT
3	KIR	YIR	\mathfrak{X}	151
2 2	TIL	ХLL	RIT	90
Len	YTR	YTR	RGF	JDI
Asp	GAT	GAY	XWX.	RIC
Ħ	ACY	ACI	RGF	90
191	YIR	YIR	RIC	YYY
Ħ	KZ	ACI	YAR	90
TEN Y	AAT	W T	AAA	Œ
Ma	Œ	Œ	YAR	5. TG
Ber	VCX		χg	
Arg	CCX		5. TG	
Læu	5' YIR			
Actd	A2.1	A2.2	A2.3.R	A2.4.R
	Leas Arg Ser Ala Aen Thr Leas Thr Asp Leas Pro	1 Leas Argy Best Ala Argy The Leas The Argy Leas Pres Pro Pro Styring CGY AGY CCT ARGY ACY YTR ACY GAG YTR TIT YTR CCR	Lost Arg See Ala Arg Thr Lost Thr Arg Lost Fibe Lost From 5 · YIR GGY ARG ARG <td< th=""><th>Lear Argy Beer Ala Argy Thr Lear Thr Argy Lear Fibe Lear Fibe Lear From 5 · YIR GSY Argy Argy YIR Argy YIR TTT YIR CCT 8 5 · TG YGG YAR Argy RGC YAR RGT RGT</th></td<>	Lear Argy Beer Ala Argy Thr Lear Thr Argy Lear Fibe Lear Fibe Lear From 5 · YIR GSY Argy Argy YIR Argy YIR TTT YIR CCT 8 5 · TG YGG YAR Argy RGC YAR RGT RGT

Table 27
Degenerate Oligonucleotide for SEQ ID NO:39

 . ေသ	199	ACI	TCI	ATY	TTR	GTR	IOS	S. ATI	A1.44.2R
AT 3	CCI	ACI	AAX	ATY	GAR	GTI	cci	2. GGI	A1.44.2
.E ၁၁	GGR	ACY	TCM	ATT	TTA	GTA	່ອວອ	5. ATI	A1.44.1R
 AT 3.	GCI	ACC	AAT	ATT	GAA	GTK	CCR	S. GGY	A1.44.1
116	Ala	TQL	ABB	118	nto	Val	Pro	Gly	Amino Acid
6	8	7	9	2	5	3	7	1	Codon #
 (15) (16)	(15)	(14)	(13)	(13)	(11)	(10)	(6)	(8)	Amino Acid

Polymerase Chain Reactions (PCR) were performed essentially as described in Example 8, using as forward primers A1.44.1 or A1.44.2, and reverse primers A2.3R or A2.4R, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers A2.1 or A2.2 were used as forward primers, and A1.44.1R, and A1.44.2R were used as reverse primers in all forward/reverse combinations. Only in the reactions containing A1.44.1 or A1.44.2 as the forward primers combined with A2.3R as the reverse primer was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 1400 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PK44 lies amino-proximal to the 58 kDa peptide fragment of TcdAii.

The 1400 bp PCR products were ligated to the plasmid vector pCR^MII according to the supplier's instructions. The DNA sequences across the ends of the insert fragments of four isolates were determined using primers similar in sequence to the supplier's recommended primers and using sequencing methods

20 described previously. The nucleic acid sequence of all isolates differed as expected in the regions corresponding to the degenerate primer sequences, but the amino acid sequences deduced from these data were the same as the actual amino acid sequences for the peptides determined previously, (SEQ ID NOS:41 and 39).

25

30

35

Screening of the W-14 genomic cosmid library as described in Example 8 with a radiolabeled probe comprised of the DNA prepared above (SEQ ID NO:36) identified five hybridizing cosmid isolates, namely 17D9, 20B10, 21D2, 27B10, and 26D1. These cosmids were distinct from those previously identified with probes corresponding to the genes described as SEQ ID NO:11 or SEQ ID NO:25. Restriction enzyme analysis and DNA blot hybridizations identified three EcoR I fragments, of approximate sizes 3.7, 3.7, and 1.1 kbp, that span the region comprising the DNA of SEQ ID NO:36. Screening of the W-14 genomic cosmid library using as probe the radiolabeled 1.4 kbp DNA fragment prepared in this example identified the same five cosmids (17D9, 20B10, 21D2, 27B10, and 26D1). DNA blot hybridization to EcoR I-digested cosmid DNAs also showed hybridization to the same subset

of EcoR I fragments as seen with the 2.5 kbp TcdAii gene probe, indicating that both fragments are encoded on the genomic DNA.

DNA sequence determination of the cloned EcoR I fragments revealed an uninterrupted reading frame of 7551 base pairs (SEO 5 ID NO:46), encoding a 282.9 kDa protein of 2516 amino acids (SEQ ID NO:47). Analysis of the amino acid sequence of this protein revealed all expected internal fragments of peptides TcdAii(SEQ ID NOS:17, 18, 37, 38 and 39) and the TcdAiii peptide N-terminus (SEQ ID NO:41) and all TcdAiii internal peptides (SEQ ID NOS:42 10 and 43). The peptides isolated and identified as TcdAii and TcdAiii are each products of the open reading frame, denoted tcdA, disclosed as SEQ ID NO:46. Further, SEQ ID NO:47 shows, starting at position 89, the sequence disclosed as SEQ ID NO:13, which is the N-terminal sequence of a peptide of size approximately 201 kDa, indicating that the initial protein 15 produced from SEQ ID No: 46 is processed in a manner similar to that previously disclosed for SEQ ID NO:12. In addition, the protein is further cleaved to generate a product of size 209.2 kDa, encoded by SEQ ID NO:48 and disclosed as SEQ ID NO:49 (TcdAii peptide), and a product of size 63.6 kDa, encoded by SEQ 20 ID NO:50 and disclosed as SEQ ID NO:51 (TcdAii peptide). Thus, it is thought that the insecticidal activity identified as toxin A (Example 15) derived from the products of SEQ ID NO:46, as exemplified by the full-length protein of 282.9 kDa disclosed as SEQ ID NO:47, is processed to produce the peptides disclosed as 25 SEQ ID NOS:49 and 51. It is thought that the insecticidal activity identified as toxin B (Example 15) derives from the products of SEQ ID NO:11, as exemplified by the 280.5 kDa protein disclosed as SEQ ID NO:12. This protein is proteolytically processed to yield the 207.6 kDa peptide disclosed as SEQ ID 30 NO:53, which is encoded by SEQ ID NO:52, and the 62.9 kDa peptide having N-terminal sequence disclosed as SEQ ID NO:40, and further disclosed as SEQ ID NO:55, which is encoded by SEQ ID NO:54.

Amino acid sequence comparisons between the proteins disclosed as SEQ ID NO:12 and SEQ ID NO:47 reveal that they have 69% similarity and 54% identity. This high degree of evolutionary relationship is not uniform throughout the entire amino acid sequence of these peptides, but is higher towards the carboxy-terminal end of the proteins, since the peptides

disclosed as SEQ ID NO:51 (derived from SEQ ID NO:47) and SEQ ID NO:55 (derived from SEQ ID NO:12) have 76% similarity and 64% identity.

5

Example 18

Control of European Cornborer-Induced Leaf Damage on Maize Plants by Spray Application of *Photorhabdus* (Strain W-14) Broth

The ability of Photorhabdus toxin(s) to reduce plant damage 10 caused by insect larvae was demonstrated by measuring leaf damage caused by European corn borer (Ostrinia nubilalis) infested onto maize plants treated with Photorhabdus broth. Fermentation broth from Photorhabdus strain W-14 was produced and concentrated 15 approximately 10-fold using ultrafiltration (10,000 MW pore-size) as described in Example 13. The resulting concentrated broth was then filter sterilized using 0.2 micron nitrocellulose membrane filters. A similarly prepared sample of uninoculated 2% proteose peptone #3 was used for control purposes. Maize plants (a DowElanco proprietary inbred line) were grown from seed to 20 vegetative stage 7 or 8 in pots containing a soilless mixture in a greenhouse (27°C day; 22°C night, about 50%RH, 14 hr daylength, watered/fertilized as needed). The test plants were arranged in a randomized complete block design (3 reps/treatment, 6 plants/treatment) in a greenhouse with temperature about 22°C 25 day; 18°C night, no artificial light and with partial shading, about 50%RH and watered/fertilized as needed. Treatments (uninoculated media and concentrated Photorhabdus broth) were applied with a syringe sprayer, 2.0 mls applied from directly (about 6 inches) over the whorl and 2.0 additional mls applied in 30 a circular motion from approximately one foot above the whorl. In addition, one group of plants received no treatment. After the treatments had dried (approximately 30 minutes), twelve neonate European corn borer larvae (eggs obtained from commercial sources and hatched in-house) were applied directly to the whorl. After one week, the plants were scored for damage to the leaves using a modified Guthrie Scale (Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. Z., Merlin, E., Rhodes, R., 40

Warren, G. W., Wright, M. and Evola, S. V. 1993).

Bio/Technology, 11, 194-195.) and the scores were compared statistically [T-test (LSD) p<0.05 and Tukey's Studentized Range (HSD) Test p<0.1]. The results are shown in Table 23. For reference, a score of 1 represents no damage, a score of 2 represents fine "window pane" damage on the unfurled leaf with no pinhole penetration and a score of 5 represents leaf penetration with elongated lesions and/or mid rib feeding evident on more than three leaves (lesions < 1 inch). These data indicate that broth or other protein containing fractions may confer protection against specific insect pests when delivered in a sprayable formulation or when the gene or derivative thereof, encoding the protein or part thereof, is delivered via a transgenic plant or microbe.

15

35

Table 28

Effect of *Photorhabdus* Culture Broth on
European Corn Borer-Induced Leaf Damage on Maize

20	Treatment	Average	Guthrie	Score	
	No Treatment			5.02ª	
	Uninoculated medium			5.15 ^a	
25	Photorhabdus Broth Means with different	lette	rs are s	2.24 ^b tatistically	different

Example 19

Genetic Engineering of Genes for Expression in E. coli

30 Summary of constructions

A series of plasmids were constructed to express the tcbA gene of Photorhabdus W-14 in Escherichia coli. A list of the plasmids is shown in Table 29. A brief description of each construction follows as well as a summary of the E. coli expression data obtained.

Table 29 Expression plasmids for the rcbA gene.

Plasmid	Gene	Vector/Selection	Compartment
pDAB634	t cbA	pBC/Chl	Intracellular
pAcGP67B/ tcbA	tcbA	pAcGP67B/Amp	Baculovirus, secreted
pDAB635	tcbA	pET27b/Kan	Periplasm
pET15-ccbA	tcbA	pET15-tcbA	Intracellular

Abbreviations: Kan=kanamycin, Chl=chloramphenicol, Amp=ampicillin

5

10

Construction of pDAB634

In Example 9, a large EcoR I fragment which hybridizes to the TcbAii probe is described. This fragment was subcloned into pBC (Stratagene, La Jolla CA). Sequence analysis indicates that this fragment is 8816 base pairs. The fragment encodes the rcbA gene with the initiating ATG at position 571 and the terminating TAA at position 8086. The fragment therefore carries 570 base pairs of Photorhabdus DNA upstream of the ATG and 730 base pairs downstream of the TAA.

15

Construction of Plasmid pAcGP67B/tcbA

The tcbA gene was PCR amplified using the following primers; 5' primer (S1Ac51) 5' TTT AAA CCA TGG GAA ACT CAT TAT CAA GCA CTA TC 3' and 3' primer (S1Ac31) 5' TTT AAA GCG GCC GCT TAA CGG ATG GTA TAA CGA ATA TG 3'. PCR was performed using a TakaRa LA PCR kit from PanVera (Madison, Wisconsin) in the following reaction: 57.5 ml water, 10 ml 10X LA buffer, 16 ml dNTPs (2.5 mM each stock solution), 20 ml each primer at 10 pmoles/ml, 300 ng of the plasmid pDAB634 containing the W-14 tcbA gene and one ml of 25 TakaRa LA Taq polymerase. The cycling conditions were 98°C/20 sec, 68°C/5 min, 72°C/10 min for 30 cycles. A PCR product of the expected about 7526bp was isolated in a 0.8% agarose gel in TBE (100 mM Tris, 90 mM boric acid, 1 mM EDTA) buffer and purified using a Qiaex II kit from Qiagen (Chatsworth, California). The 30 purified tcbA gene was digested with Nco I and Not I and ligated into the baculovirus transfer vector pAcGP67B (PharMingen (San Diego, California)) and transformed into DH5 α E. coli. The tcbA gene was then cut from pAcGP67B and transferred to pET27b to create plasmid pDAB635. A missense mutation in the tcbA gene was repaired in pDAB635.

The repaired tcbA gene contains two changes from the sequence shown in Sequence ID NO:11; an A>G at 212 changing an asparagine 71 to serine 71 and a G>A at 229 changing an alanine 77 to threonine 77. These changes are both upstream of the proposed TcbAii N-terminus.

Construction of pET15-tcbA

35

The tcbA coding region of pDAB635 was transferred to vector pET15b. This was accomplished using shotgun ligations, the DNAs were cut with restriction enzymes Nco I and Xho I. The resulting recombinant is called pET15-tcbA.

Expression of TcbA in E. coli from plasmid pET15-tcbA

Expression of tcbA in E. coli was obtained by modification 15 of the methods previously described by Studier et al. (Studier, F.W., Rosenberg, A., Dunn, J., and Dubendorff, J., (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymo1., 185: 60-89.). Competent E. coli cells strain BL21(DE3) were transformed with plasmid pET15-tcbA and plated on LB agar 20 containing 100 µg/ml ampicillin and 40 mM glucose. The transformed cells were plated to a density of several hundred isolated colonies/plate. Following overnight incubation at 37°C the cells were scraped from the plates and suspended in LB broth containing 100 μg /ml ampicillin. Typical culture volumes were 25 from 200-500 ml. At time zero, culture densities (OD600) were from 0.05-0.15 depending on the experiment. Cultures were shaken at one of three temperatures (22°C, 30°C or 37°C) until a density of 0.15-0.5 was obtained at which time they were induced with 1 mM isopropylthio- β -galactoside (IPTG). Cultures were incubated at the designated temperature for 4-5 hours and then were transferred to 4°C until processing (12-72 hours).

<u>Purification</u> and characterization of TcbA expressed in *E.coli* from Plasmid pET15-tcbA.

 $\it E.~coli$ cultures expressing TcbA peptides were processed as follows. Cells were harvested by centrifugation at 17,000 x G and the media was decanted and saved in a separate container.

The media was concentrated about 8x using the M12 (Amicon, Beverly MA) filtration system and a 100 kD molecular mass cut-off filter. The concentrated media was loaded onto an anion exchange

column and the bound proteins were eluted with 1.0 M NaCl. The 1.0 M NaCl elution peak was found to cause mortality against Southern corn rootworm (SCR) larvae Table 30). The 1.0 M NaCl fraction was dialyzed against 10 mM sodium phosphate buffer pH 7.0, concentrated, and subjected to gel filtration on Sepharose CL-4B (Pharmacia, Piscataway, New Jersey). The region of the CL-4B elution profile corresponding to calculated molecular weight (about 900 kDa) as the native W-14 toxin complex was collected, concentrated and bioassayed against larvae. The collected 900 kDa fraction was found to have insecticidal activity (see Table 30 below), with symptomology similar to that caused by native W-14 toxin complex. This fraction was subjected to Proteinase K and heat treatment, the activity in both cases was either eliminated or reduced, providing evidence that the activity is proteinaceous in nature. In addition, the active fraction tested immunologically positive for the TcbA and TcbAiii peptides in immunoblot analysis when tested with an anti-TcbAiii monoclonal antibody (Table 30).

Table 30

Results of Immunoblot and SCR Bioassays.

15

Fraction	SCR Activi	ty	Immunoblot	Native Size
,	% Mortality	% Growth Inhibit.	Peptides Detected	[CL-4B Estimated Size]
TcbA Media 1.0 M Ion Exchange	+++	+++	TcbA	
TcbA Media CL-4B	+++	+++	TcbA, TcbA _{iii}	~900 kDa
TcbA Media CL-4B + Proteinase K	++	+++	NT	
TcbA Media CL-4B + heat treatment	-	-	NT	
TcbA Cell Sup CL-4B	-	+++	NT /	~900 kD

PK = Proteinase K treatment 2 hours; Heat treatment = 100°C for 10 minutes; ND = None Detected; NT = Not Tested. Scoring system for mortality and growth inhibition as compared to control samples; 5-24%="+", 25-49%="++", 50-100%="+++".

The cell pellet was resuspended in 10 mM sodium phosphate buffer, pH=7.0, and lysed by passage through a Bio-Nebth cell nebulizer (Glas-Col Inc., Terra Haute, IN). The pellets were

separate the cell pellet from the cell supernatant. The supernatant fraction was decanted and filtered through a 0.2 micron filter to remove large particles and subjected to anion exchange chromatography. Bound proteins were eluted with 1.0 M NaCl, dialyzed and concentrated using Blomax^{IM} (Millipore Corp, Bedford, MA) concentrators with a molecular mass cut-off of 50.000 Daltons. The concentrated fraction was subjected to gel filtration chromatography using Sepharose CL-4B beaded matrix.

Bioassay data for material prepared in this way is shown in Table 30 and is denoted as "TcbA Cell Sup".

In yet another method to handle large amounts of material. the cell pellets were re-suspended in 10 mM sodium phosphate buffer, pH = 7.0 and thoroughly homogenized by using a Kontes 15 Glass Company (Vineland, NJ) 40 ml tissue grinder. The cellular debris was pelleted by centrifugation at 25,000 x g and the cell supernatant was decanted, passed through a 0.2 micron filter and subjected to anion exchange chromatography using a Pharmacia 10/10 column packed with Poros HQ 50 beads. The bound proteins 20 were eluted by performing a NaCl gradient of 0.0 to 1.0 M. Fractions containing the TcbA protein were combined and concentrated using a 50 kDa concentrator and subjected to gel filtration chromatography using Pharmacia CL-4B beaded matrix. The fractions containing TcbA oligomer, molecular mass of 25 approximately 900 kDa, were collected and subjected to anion exchange chromatography using a Pharmacia Mono Q 10/10 column equilibrated with 20 mM Tris buffer pH = 7.3. A gradient of 0.0to 1.0 M NaCl was used to elute recombinant TcbA protein. Recombinant TcbA eluted from the column at a salt concentration 30 of approximately 0.3-0.4 M NaCl, the same molarity at which native TcbA oligomer is eluted from the Mono Q 10/10 column. The recombinant TcbA fraction was found to cause SCR mortality in bioassay experiments similar to those in Table 30.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
•	(i) APPLICANT: Ensign, Jerald C Bowen, David J Petell, James Fatig, Raymond
10	Schoonover, Sue ffrench-Constant, Richard Orr, Gregory L Merlo, Donald J
15	Roberts, Jean L Rocheleau, Thomas A Blackburn, Michael B Hey, Timothy D Strickland, James A
20	(ii) TITLE OF INVENTION: Insecticidal Protein Toxins From Photornabdus
	(iii) NUMBER OF SEQUENCES: 61
25	<pre>(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Quarles & Brady (B) STREET: 1 South Pinckney Street (C) CITY: Madison</pre>
30	(D) STATE: WI (E) COUNTRY: US (F) ZIP: 53703
35	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
40	(Vi) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER:(B) FILING DATE:(C) CLASSIFICATION:
45	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/063,615 (B) FILING DATE: 18-MAY-1993</pre>
50	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/395,497 (B) FILING DATE: 28-FEB-1995</pre>
55	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/007,255 (B) FILING DATE: 06-NOV-1995</pre>
	(Vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/608,423 (B) FILING DATE: 28-FEB-1996

P .

(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/705,484 (B) FILING DATE: 23-AUG-1996 5 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Seay, Nicholas J (B) REGISTRATION NUMBER: 27386 (C) REFERENCE/DOCKET NUMBER: 960296.93804 10 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 608-251-5000 (B) TELEFAX: 608-251-9166 15 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids 20 (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 25 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: 30 Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn 35 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid 40 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 45 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: 50 Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Trp (2) INFORMATION FOR SEQ ID NO:3: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 60 (D) TOPOLOGY: linear

	WO 97/17432	PCT/US96/18003
	(ii) MOLECULE TYPE: protein	
	(v) FRAGMENT TYPE: N-terminal	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
10	Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg	Arg Asp Ala 15
	Leu Val Ala	
15	(2) INFORMATION FOR SEQ ID NO:4:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 14 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
25	(v) FRAGMENT TYPE: N-terminal	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
30	Ala Ser Pro Leu Ser Thr Ser Glu Leu Thr Ser Lys Leu 1 5 10	Asn
35	(2) INFORMATION FOR SEQ ID NO:5:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: protein	
45	(v) FRAGMENT TYPE: N-terminal	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
50	Ala Gly Asp Thr Ala Asn Ile Gly Asp 1 5	
	(2) INFORMATION FOR SEQ ID NO:6:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids	
60	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
60	(ii) MOLECULE TYPE: protein	

p . .

(V) FRAGMENT TYPE: N-terminal 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Leu Gly Gly Ala Ala Thr Leu Leu Asp Leu Leu Pro Gln Ile 10 10 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids 15 (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: 25 Met Leu Ser Thr Met Glu Lys Gln Leu Asn Glu 5 30 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid 35 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 4() (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 45 Met Asn Leu Ala Ser Pro Leu Ile Ser 1 5 (2) INFORMATION FOR SEQ ID NO:9: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal 60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Met Ile Asn Leu Asp Ile Asn Glu Gln Asn Lys Ile Met Val Val Ser 15 5 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Ala Ala Lys Asp Val Lys Phe Gly Ser Asp Ala Arg Val Lys Met Leu 10 25 Arg Gly Val Asn (2) INFORMATION FOR SEQ ID NO:11: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7515 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 35 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 40 (A) NAME/KEY: CDS (B) LOCATION: 1..7515 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: 45 ATG CAA AAC TCA TTA TCA AGC ACT ATC GAT ACT ATT TGT CAG AAA CTG Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu CAA TTA ACT TGT CCG GCG GAA ATT GCT TTG TAT CCC TTT GAT ACT TTC Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe CGG GAA AAA ACT CGG GGA ATG GTT AAT TGG GGG GAA GCA AAA CGG ATT 55 Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 40 THT GAA ATT GCA CHA GCG GAA CAG GAT AGA AAC CTA CTT CAT GAA AAA Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 60 55 CGT ATT TTT GCC TAT GCT AAT CCG CTG CTG AAA AAC GCT GTT CGG TTG 240 Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu

	65	5				7()				79	i				3	c
5	GG! Gl;	r ACO	CGC r Arg	G CA	A ATO Met 85	Leu	GGT Gly	TT1 Phe	ATA	CA: Glr 90	Gly	TAT Tyr	AG1 Ser	GAT Asp	CTC Leu 95	Phe	r 288 =
10	GG1	AA 1 12A '	r cgi n Arg	GCT J Ala 100	GAT Asp	\ AAC	TAT Tyr	GCC Ala	GCG Ala 105	Pro	GGC Gly	TCG Ser	GTI Val	GCA Ala 110	Ser	ATC Met	3 336 :
•0	TTC	TCA Ser	Pro) Ala	GCT Ala	TAT Tyr	TTG Leu	ACG Thr 120	Glu	Leu	TAC Tyr	CGT	GAA Glu 125	Ala	AAA Lys	AAC Asr	384
15	TTG Leu	CAT His	Asp	AGC Ser	AGC Ser	TCA Ser	ATT Ile 135	Tyr	TAC Tyr	CTA Leu	GAT Asp	AAA Lys 140	Arg	CGC Arg	CCG Pro	GAT Asp	432
20	TTA Leu 145	Ala	AGC Ser	TTA Leu	ATG Met	CTC Leu 150	Ser	CAG Gln	AAA Lys	AAT Asn	ATG Met 155	GAT Asp	GAG Glu	GAA Glu	ATT Ile	TCA Ser 150	
25	ACG Thr	CTG Leu	GCT Ala	CTC Leu	TCT Ser 155	AAT Asn	GAA Glu	TTG Leu	TGC Cys	CTT Leu 170	GCC	GGG Gl;	ATC Ile	GAA Glu	ACA Thr 175	AAA Lys	528
30	ACA Thr	GGA Gly	AAA Lys	TCA Ser 180	CAA Gln	GAT Asp	GAA Glu	GTG Val	ATG Met 185	GAT Asp	ATG Met	TTG Leu	TCA Ser	ACT Thr 190	TAT Tyr	CGT Arg	576
	TTA Leu	AGT Ser	GGA Gly 195	GAG Glu	ACA Thr	CCT Pro	TAT Tyr	CAT His 200	CAC	GCT Ala	TAT Tyr	GAA Glu	ACT Thr 205	GTT 7al	CGT Arg	GAA Glu	624
35	ATC Ile	GTT Val 210	CAT His	GAA Glu	CGT Arg	GAT Asp	CCA Pro 215	GGA Gly	TTT Phe	CGT	CAT His	TTG Leu 220	TCA Ser	CAG Gln	GCA Ala	CCC Pro	572
40	ATT Ile 225	GTT Val	GCT Ala	GCT Ala	AAG Lys	CTC Leu 230	GAT Asp	CCT Pro	GTG Val	ACT Thr	TTG Leu 235	TTG Leu	GGT Gly	ATT	AGC Ser	TCC Ser 240	720
45	CAT His	ATT Ile	TCG Ser	CCA Pro	GAA Glu 245	CTG Leu	TAT Tyr	AAC Asn	TTG Leu	CTG Leu 250	ATT Ile	GAG Glu	GAG Glu	ATC Ile	CCG Pro 255	GAA Glu	763
50					GCG Ala			Thr									316
	ATT Ile	ACT Thr	ACT Thr 275	GCT Ala	CAG Gln	TTA Leu	ATG Met	TCC Ser 280	CCA Pro	AGT Ser	TAT Tyr	CTG Leu	GCC Ala 285	CGG Arg	TAT Tyr	TAT Tyr	864
55	GGC Gly	GTC Val 290	TCA Ser	CCG Pro	GAA Glu	GAT Asp	ATT Ile 295	GCC Ala	TAC Tyr	GTG Val	ACG Thr	ACT Thr 300	TCA Ser	TTA Leu	TCA Ser	CAT His	912
60	GTT Val 305	GGA Gly	TAT Tyr	AGC Ser	Ser	GAT Asp 310	ATT Ile	CTG Leu	CTT Val	ATT Ile	CCG Pro 315	TTG Leu	GTC Val	GAT Asp	GGT Gl∵	GTG Val 320	960
65	GGT Gly	AAG Lys	ATG Met	GAA Glu	GTA Val 325	GTT Val	CGT Arg	GTT Val	Thr	CGA Arg 330	ACA Thr	CCA Pro	TCG Ser	Asp	AAT Asn 335	TAT T yr	1003

. .

ACC AGT CAG ACG AAT TAT ATT GAG CTG TAT CCA CAG GGT GGC GAC AAT 1056 Thr Ser Gln Thr Asn Tyr Ile Glu Leu Tyr Pro Gln Gly Gly Asp Asn 345 TAT TTG ATC AAA TAC AAT CTA AGC AAT AGT TTT GGT TTG GAT GAT TTT 1104 Tyr Leu Ile Lys Tyr Asn Leu Ser Asn Ser Phe Gly Leu Asp Asp Phe 355 350 TAT CTG CAA TAT AAA GAT GGT TCC GCT GAT TGG ACT GAG ATT GCC CAT 1152 10 Tyr Leu Gln Tyr Lys Asp Gly Ser Ala Asp Trp Thr Glu Ile Ala His AAT CCC TAT CCT GAT ATG GTC ATA AAT CAA AAG TAT GAA TCA CAG GCG 1200 Asn Pro Tyr Pro Asp Met Val Ile Asn Gln Lys Tyr Glu Ser Gln Ala 15 395 ACA ATC AAA CGT AGT GAC TCT GAC AAT ATA CTC AGT ATA GGG TTA CAA 1248 Thr Ile Lys Arg Ser Asp Ser Asp Asn Ile Leu Ser Ile Gly Leu Gin 410 20 AGA TGG CAT AGC GGT AGT TAT AAT TTT GCC GCC GCC AAT TTT AAA ATT 1296 Arg Trp His Ser Gly Ser Tyr Asn Phe Ala Ala Ala Asn Phe Lys Ile 425 GAC CAA TAC TCC CCG AAA GCT TTC CTG CTT AAA ATG AAT AAG GCT ATT 1344 25 Asp Gln Tyr Ser Pro Lys Ala Phe Leu Leu Lys Met Asn Lys Ala Ile 440 CGG TTG CTC AAA GCT ACC GGC CTC TCT TTT GCT ACG TTG GAG CGT ATT 1392 30 Arg Leu Leu Lys Ala Thr Gly Leu Ser Phe Ala Thr Leu Glu Arg Ile 455 GTT GAT AGT GTT AAT AGC ACC AAA TCC ATC ACG GTT GAG GTA TTA AAC 1440 Val Asp Ser Val Asn Ser Thr Lys Ser Ile Thr Val Glu Val Leu Asn 475 AAG GTT TAT CGG GTA AAA TTC TAT ATT GAT CGT TAT GGC ATC AGT GAA 1488 Lys Val Tyr Arg Val Lys Phe Tyr Ile Asp Arg Tyr Gly Ile Ser Glu 490 GAG ACA GCC GCT ATT TTG GCT AAT ATT AAT ATC TCT CAG CAA GCT GTT 1536 Glu Thr Ala Ala Ile Leu Ala Asn Ile Asn Ile Ser Gln Gln Ala Val 500 505 GGC AAT CAG CTT AGC CAG TTT GAG CAA CTA TTT AAT CAC CCG CCG CTC 1584 Gly Asn Gln Leu Ser Gln Phe Glu Gln Leu Phe Asn His Pro Pro Leu 515 520 AAT GGT ATT CGC TAT GAA ATC AGT GAG GAC AAC TCC AAA CAT CTT CCT 1632 Asn Gly Ile Arg Tyr Glu Ile Ser Glu Asp Asn Ser Lys His Leu Pro 535 AAT CCT GAT CTG AAC CTT AAA CCA GAC AGT ACC GGT GAT GAT CAA CGC 1580 Asn Pro Asp Leu Asn Leu Lys Pro Asp Ser Thr Gly Asp Asp Gln Arg 550 AAG GCG GTT TTA AAA CGC GCG TTT CAG GTT AAC GCC AGT GAG TTG TAT 1728 Lys Ala Val Leu Lys Arg Ala Phe Gln Val Asn Ala Ser Glu Leu Tyr 570 CAG ATG TTA TTG ATC ACT GAT CGT AAA GAA GAC GGT GTT ATC AAA AAT 1776 Gln Met Leu Leu Ile Thr Asp Arg Lys Glu Asp Gly Val Ile Lys Asn AAC TTA GAG AAT TTG TCT GAT CTG TAT TTG GTT AGT TTG CTG GCC CAG 1824 Asn Leu Glu Asn Leu Ser Asp Leu Tyr Leu Val Ser Leu Leu Ala Gln

		595			600			605		
5				GCT Ala 615						1872
10				ATT						1920
10				TTG Leu						1968
15				CTG Leu						2016
20				ATT Ile						2064
25				AGT Ser 695						2112
30		_		TCG Ser						2150
-				TGG .Trp						2208
35				GAA Glu						2256
40				CAG Gln			_			2304
45				GAA Glu 775						2352
50				GGC Gly						2400
				GGT Gly						2448
55				TTG Leu						2496
60				GCT Ala						2544
65				GAG Glu 855						2592

	ACA Thr 865	CAG Gln	ATT Ile	GAC Asp	GCT Ala	ATT Ile 870	CTG Leu	CAA Gln	TGG Trp	TTA Leu	CAG Gln 875	ATG Met	TCT Ser	TCG Ser	GCC Ala	TTG Leu 380	2549
5	GCG Ala	GTT Val	TCT Ser	CCA Pro	CTG Leu 885	GAT Asp	CTG Leu	GCA Ala	GGG Gly	ATG Met 390	ATG Met	GCC Ala	CTG Leu	AAA Lys	TAT Tyr 895	GGG Gly	2688
10	ATA 11e	GAT Asp	CAT His	AAC Asn 900	TAT Tyr	GCT Ala	GCC Ala	TGG Trp	CAA Gln 905	GCT Ala	GCG Ala	GCG Ala	GCT Ala	GCG Ala 910	CTG Leu	ATG Met	2736
15	Ala	Asp	His 915	Ala	Asn	Gln	Ala	920	Lys	Lys	Leu	yżb	Glu 925	Thr	Phe	Ser	2784
20	AAG Lys	GCA Ala 930	TTA Leu	TGT Cys	AAC Asn	TAT Tyr	TAT Tyr 935	ATT	AAT Asn	GCT Ala	GTT Val	GTC Val 940	GAT Asp	AGT Ser	GCT Ala	GCT Ala	2832
	GGA Gly 945	GTA Val	CGT Arg	GAT Asp	CGT Arg	AAC Asn 950	GGT Gly	TTA Leu	TAT Tyr	ACC Thr	TAT Tyr 955	TTG Leu	CTG Leu	ATT	GAT Asp	AAT Asn 960	2880
25	CAG Gln	GTT Val	TCT Ser	GCC Ala	GAT Asp 965	GTG Val	ATC Ile	ACT Thr	TCA Ser	CGT Arg 970	ATT Ile	GCA Ala	GAA Glu	GCT Ala	ATC Ile 975	GCC Ala	2928
30	GGT Gly	ATT Ile	CAA Gln	CTG Leu 980	TAC Tyr	GTT Val	AAC Asn	CGG Arg	GCT Ala 985	TTA Leu	AAC Asn	CGA Arg	GAT Asp	GAA Glu 990	GGT Gly	CAG Gln	2976
35	CTT Leu	GCA Ala	TCG Ser 995	GAC Asp	GTT Val	AGT Ser	ACC Thr	CGT Arg 1000	Gln	TTC Phe	TTC Phe	ACT Thr	GAC Asp 1005	Trp	GAA Glu	CGT Arg	3024
40	TAC Tyr	AAT Asn 1010	Lys	CGT Arg	TAC Tyr	AGT Ser	ACT Thr 1015	Trp	GCT Ala	GGT Gly	GTC Val	TCT Ser 1020	Glu	CTG Leu	GTC Val	TAT Tyr	3072
	TAT Tyr 1025	Pro	GAA Glu	AAC Asn	TAT Tyr	GTT Val 1030	Asp	CCC Pro	ACT Thr	CAG Gln	CGC Arg 1035	Ile	GGG Gly	CAA Gln	ACC Thr	AAA Lys 1040	3120
45					CTG Leu 1045	Leu					Gln					Ala	3168
50	GAT Asp	ACG Thr	GTG Val	GAA Glu 1060	Asp	GCT Ala	TTC Phe	AAA Lys	ACT Thr 1065	Tyr	TTG Leu	ACC Thr	AGC Ser	TTT Phe 1070	Glu	CAG Gln	3216
55	GTA Val	GCA Ala	AAT Asn 1075	Leu	AAA Lys	GTA Val	ATT Ile	AGT Ser 1080	Ala	TAC Tyr	CAC His	GAT Asp	AAT Asn 1085	Val	AAT Asn	GTG Val	3264
60			Gly		ACT Thr			Ile					Ala				3312
		Trr			CGT Arg		Val					Cys					3360
65	TTT Phe	GCC Ala	GCT Ala	AAT Asn	GCT Ala	TGG Trp	GGT Gly	GAG Glu	TGG Trp	AAT Asn	AAA Lys	ATT Ile	ACC Thr	TGT Cys	GCT Ala	GTC Val	3408

1125 1130 1135 AAT CCT TGG AAA AAT ATC ATC CGT CCG GTT GTT TAT ATG TCC CGC TTA 3456 Asn Pro Trp Lys Asn Ile Ile Arg Pro Val Val Tyr Met Ser Arg Leu 1140 1145 TAT CTG CTA TGG CTG GAG CAG CAA TCA AAG AAA AGT GAT GAT GGT AAA 3504 Tyr Leu Leu Trp Leu Glu Gln Gln Ser Lys Lys Ser Asp Asp Gly Lys 1155 1160 10 ACC ACG ATT TAT CAA TAT AAC TTA AAA CTG GCT CAT ATT CGT TAC GAC 3552 Thr Thr Ile T;r Gln Tyr Asn Leu Lys Leu Ala His Ile Arg Tyr Asp 1170 1175 1180 GGT AGT TGG AAT ACA CCA TTT ACT TTT GAT GTG ACA GAA AAG GTA AAA 3600 15 Gly Ser Trp Asn Thr Pro Phe Thr Phe Asp Val Thr Glu Lys Val Lys 1190 1195 AAT TAC ACG TCG AGT ACT GAT GCT GCT GAA TCT TTA GGG TTG TAT TGT 3648 20 Asn Tyr Thr Ser Ser Thr Asp Ala Ala Glu Ser Leu Gly Leu Tyr Cys 1205 1210 ACT GGT TAT CAA GGG GAA GAC ACT CTA TTA GTT ATG TTC TAT TCG ATG 3696 Thr Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met Phe Tyr Ser Met 25 1220 1225 CAG AGT AGT TAT AGC TCC TAT ACC GAT AAT AAT GCG CCG GTC ACT GGG 3744 Gln Ser Ser Tyr Ser Ser Tyr Thr Asp Asn Asn Ala Pro Val Thr Gly 1240 30 CTA TAT ATT TTC GCT GAT ATG TCA TCA GAC AAT ATG ACG AAT GCA CAA 3792 Leu Tyr Ile Phe Ala Asp Met Ser Ser Asp Asn Met Thr Asn Ala Gln 1255 1260 GCA ACT AAC TAT TGG AAT AAC AGT TAT CCG CAA TTT GAT ACT GTG ATG 3840 Ala Thr Asn Tyr Trp Asn Asn Ser Tyr Pro Gln Phe Asp Thr Val Met 1270 1275 GCA GAT CCG GAT AGC GAC AAT AAA AAA GTC ATA ACC AGA AGA GTT AAT 3888 40 Ala Asp Pro Asp Ser Asp Asn Lys Lys Val Ile Thr Arg Arg Val Asn 1285 1290 AAC CGT TAT GCG GAG GAT TAT GAA ATT CCT TCC TCT GTG ACA AGT AAC 3936 Asn Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Thr Ser Asn 45 1300 1305 1310 AGT AAT TAT TCT TGG GGT GAT CAC AGT TTA ACC ATG CTT TAT GGT GGT 3984 Ser Asn Tyr Ser Trp Gly Asp His Ser Leu Thr Met Leu Tyr Gly Gly 1315 1320 1325 50 AGT GTT CCT AAT ATT ACT TTT GAA TCG GCG GCA GAA GAT TTA AGG CTA 4032 Ser Val Pro Asn Ile Thr Phe Glù Ser Ala Ala Glu Asp Leu Arg Leu 1340 1335 TCT ACC AAT ATG GCA TTG AGT ATT ATT CAT AAT GGA TAT GCG GGA ACC 4080 Ser Thr Asn Met Ala Leu Ser Ile Ile His Asn Gly Tyr Ala Gly Thr 1350 1355 CGC CGT ATA CAA TGT AAT CTT ATG AAA CAA TAC GCT TCA TTA GGT GAT 4128

-124-

Arg Arg Ile Gln Cys Asn Leu Met Lys Gln Tyr Ala Ser Leu Gly Asp

65

1380

AAA TTT ATA ATT TAT GAT TCA TCA TTT GAT GAT GCA AAC CGT TTT AAT 4176 Lys Phe Ile Ile Tyr Asp Ser Ser Phe Asp Asp Ala Asn Arg Phe Asn

1385

. .

CTG GTG GCA TTG TTT AAA TTG GGA AAA GAG GAG AAC TGA GAT GAT AGT 4224 Leu Val Pro Leu Phe Lys Phe Gly Lys Asp Glu Asn Ser Asp Asp Ser 1395 1400 ATT TOT ATA TAT AAT GAA AAC COT TOO TOT GAA GAT AAG AAG TGG TAT 4270 Ile Cys Ile Tyr Asn Glu Asn Pro Ser Ser Glu Asp Lys Lys Trp Tyr 1415 TIT TOT TOG AAA GAT GAC AAT AAA ACA GOG GAT TAT AAT GGT GGA ACT 4320 Phe Ser Ser Lys Asp Asp Asn Lys Thr Ala Asp Tyr Asn Gly Gly Thr 1430 1435 CAA TGT ATA GAT GCT GGA ACC AGT AAC AAA GAT TTT TAT TAT AAT CTC 436-Gin Cys Ile Asp Ala Gly Thr Ser Asn Lys Asp Phe Tyr Tyr Asn Leu 1450 CAG GAG ATT GAA GTA ATT AGT GTT ACT GGT GGG TAT TGG TCG AGT TAT 441% Sin Glu Ile Glu Val Ile Ser Val Thr Gly Gly Tyr Trp Ser Ser Tyr 1460 1465 1470 20 AAA ATA TCC AAC CCG ATT AAT ATC AAT ACG GGC ATT GAT AGT GCT AAA 4461 Lys Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys 1475 1480 1485 GTA AAA GTC ACC GTA AAA GCG GGT GGT GAC GAT CAA ATC TTT ACT GCT 4512 Val Lys Val Thr Val Lys Ala Gly Gly Asp Asp Gln Ile Phe Thr Ala 1495 1500 GAT AAT AGT ACC TAT GTT CCT CAG CAA CCG GCA CCC AGT TTT GAG GAG 4569 Asp Asn Ser Thr Tyr Val Pro Gln Gln Pro Ala Pro Ser Phe Glu Glu 1510 1515 ATG ATT TAT CAG TTC AAT AAC CTG ACA ATA GAT TGT AAG AAT TTA AAT 4606 Met Ile Tyr Gln Phe Asn Asn Leu Thr Ile Asp Cys Lys Asn Leu Asn 35 1525 1530 TTC ATC GAC AAT CAG GCA CAT ATT GAG ATT GAT TTC ACC GCT ACG GCA 4656 Phe Ile Asp Asn Gln Ala His Ile Glu Ile Asp Phe Thr Ala Thr Ala 1540 1545 40 CAA GAT GGC CGA TTC TTG GGT GCA GAA ACT TTT ATT ATC CCG GTA ACT 4704 Gln Asp Gly Arg Phe Leu Gly Ala Glu Thr Phe Ile Ile Pro Val Thr AAA AAA GTT CTC GGT ACT GAG AAC GTG ATT GCG TTA TAT AGC GAA AAT 4752 Lys Lys Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn 1575 1580 AAC GGT GTT CAA TAT ATG CAA ATT GGC GCA TAT CGT ACC CGT TTG AAT 4800 50 Asn Gly Val Gln Tyr Met Gln Ile Gly Ala Tyr Arg Thr Arg Leu Asn 1590 1595 ACG TTA TTC GCT CAA CAG TTG GTT AGC CGT GCT AAT CGT GGC ATT GAT 4848 Thr Leu Phe Ala Gln Gln Leu Val Ser Arg Ala Asn Arg Gly Ile Asp 55 1605 1510 1615 GCA GTG CTC AGT ATG GAA ACT CAG AAT ATT CAG GAA CCG CAA TTA GGA 4896 Ala Vai Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gly 1620 1625 1630 60 GCG GGC ACA TAT GTG CAG CTT GTG TTG GAT AAA TAT GAT GAG TCT ATT 4944 Ala Gly Thr Tyr Val Gln Leu Val Leu Asp Lys Tyr Asp Glu Ser Ile 1635 1640 1645 CAT GGC ACT AAT AAA AGC TTT GCT ATT GAA TAT GTT GAT ATA TTT AAA 4992 His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile Phe Lys

	1650	1655	1660
5	GAG AAC GAT AGT TTT GTG Glu Asn Asp Ser Phe Val 1665 1670	Ile Tyr Gln Gly Glu	CTT AGC GAA ACA AGT 5040 Leu Ser Glu Thr Ser 1680
10	CAA ACT GTT GTG AAA GTT	TTC TTA TCC TAT TTT	ATA GAG GCG ACT GGA 5088
	Gln Thr Val Val Lys Val	Phe Leu Ser Tyr Phe	Ile Glu Ala Thr Gly
	1685	1690	1695
10	AAT AAG AAC CAC TTA TGG	GTA CGT GCT AAA TAC	CAA AAG GAA ACG ACT 5136
	Asn Lys Asn His Leu Trp	Val Arg Ala Lys Tyr	Gln Lys Glu Thr Thr
	1700	1705	1710
15	GAT AAG ATC TTG TTC GAC	CGT ACT GAT GAG AAA	GAT CCG CAC GGT TGG 5184
	Asp Lys Ile Leu Phe Asp	Arg Thr Asp Glu Lys	Asp Pro His Gly Trp
	1715	1720	1725
20	TTT CTC AGC GAC GAT CAC	AAG ACC TTT AGT GGT	CTC TCT TCC GCA CAG 5232
	Phe Leu Ser Asp Asp His	Lys Thr Phe Ser Gly	Leu Ser Ser Ala Gln
	1730	1735	1740
25	GCA TTA AAG AAC GAC AGT Ala Leu Lys Asn Asp Ser 1745 175	Glu Pro Met Asp Phe	TOT GGC GCC AAT GCT 5280 Ser Gly Ala Asn Ala 1760
20	CTC TAT TTC TGG GAA CTG	TTC TAT TAC ACG CCG	ATG ATG ATG GCT CAT 5328
	Leu Tyr Phe Trp Glu Leu	Phe Tyr Tyr Thr Pro	Met Met Met Ala His
	1765	1770	1775
30	CGT TTG TTG CAG GAA CAG	AAT TTT GAT GCG GCG	AAC CAT TGG TTC CGT 5376
	Arg Leu Leu Gln Glu Gln	Asn Phe Asp Ala Ala	Asn His Trp Phe Arg
	1780	1785	1790
35	TAT GTC TGG AGT CCA TCC	GGT TAT ATC GTT GAT	GGT AAA ATT GCT ATC 5424
	Tyr Val Trp Ser Pro Ser	Gly Tyr Ile Val Asp	Gly Lys Ile Ala Ile
	1795	1800	1805
40	TAC CAC TGG AAC GTG CGA	CCG CTG GAA GAA GAC	ACC AGT TGG AAT GCA 5472
	Tyr His Trp Asn Val Arg	Pro Leu Glu Glu Asp	Thr Ser Trp Asn Ala
	1810	1815	1820
45	CAA CAA CTG GAC TCC ACC Gln Gln Leu Asp Ser Thr 1825	Asp Pro Asp Ala Val	GCC CAA GAT GAT CCG 5520 Ala Gln Asp Asp Pro 1840
50	ATG CAC TAC AAG GTG GCT	ACC TTT ATG GCG ACG	TTG GAT CTG CTA ATG 5563
	Met His Tyr Lys Val Ala	Thr Phe Met Ala Thr	Leu Asp Leu Leu Met
	1845	1850	1855
50	GCC CGT GGT GAT GCT GCT	TAC CGC CAG TTA GAG	CGT GAT ACG TTG GCT 5615
	Ala Arg Gly Asp Ala Ala	Tyr Arg Gln Leu Glu	Arg Asp Thr Leu Ala
	1860	1865	1870
55	GAA GCT AAA ATG TGG TAT	ACA CAG GCG CTT AAT	CTG TTG GGT GAT GAG 5664
	Glu Ala Lys Met Trp Tyr	Thr Gln Ala Leu Asn	Leu Leu Gly Asp Glu
	1875	1880	1885
60	CCA CAA GTG ATG CTG AGT	ACG ACT TGG GCT AAT	CCA ACA TTG GGT AAT 5712
	Pro Gln Val Met Leu Ser	Thr Thr Trp Ala Asn	Pro Thr Leu Gly Asn
	1890	1895	1900
65	GCT GCT TCA AAA ACC ACA Ala Ala Ser Lys Thr Thr 1905 191	Gln Gln Val Arg Gin	CAA GTG CTT ACC CAG 5760 Gln Val Leu Thr Gln 5 1920

TTG CGT CTC AAT AGC AGG GTA AAA ACC CCG TTG CTA GGA ACA GCC AAT 5808 Leu Arg Leu Asn Ser Arg Val Lys Thr Pro Leu Leu Gly Thr Ala Asn 1925 1930 TOO CTG ACC GOT THA THE CTG CCG CAG GAA AAT AGC AAG CTC AAA GGC 5856 Ser Leu Thr Ala Leu Phe Leu Pro Gln Glu Asn Ser Lys Leu Lys Gly 1340 1945 TAC TGG CGG ACA CTG GCG CAG CGT ATG TTT AAT TTA CGT CAT AAT CTG 5904 Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn Leu Arg His Asn Leu 10 1955 1960 TCG ATT GAC GGC CAG CCG CTC TCC TTG CCG CTG TAT GCT AAA CCG GCT 5952 Ser Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu Tyr Ala Lys Pro Ala 15 1970 1975 GAT CCA AAA GCT TTA CTG AGT GCG GCG GTT TCA GCT TCT CAA GGG GGA 6000 Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser Ala Ser Gin Gly Gly 1985 1990 1995 20 GCC GAC TTG CCG AAG GCG CCG CTG ACT ATT CAC CGC TTC CCT CAA ATG 6048 Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His Arg Phe Pro Gln Met 2005 2010 25 CTA GAA GGG GCA CGG GGC TTG GTT AAC CAG CTT ATA CAG TTC GGT AGT 6096 Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu Ile Gln Phe Gly Ser 2020 2025 TCA CTA TTG GGG TAC AGT GAG CGT CAG GAT GCG GAA GCT ATG AGT CAA 6144 30 Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala Glu Ala Met Ser Gln 2035 2040 CTA CTG CAA ACC CAA GCC AGC GAG TTA ATA CTG ACC AGT ATT CGT ATG 6192 Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu Thr Ser Ile Arg Met 35 2055 CAG GAT AAC CAA TTG GCA GAG CTG GAT TCG GAA AAA ACC GCC TTG CAA 6240 Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu Lys Thr Ala Leu Gln 2070 2075 40 GTC TCT TTA GCT GGA GTG CAA CAA CGG TTT GAC AGC TAT AGC CAA CTG 6288 Val Ser Leu Ala Gly Val Gin Gln Arg Phe Asp Ser Tyr Ser Gin Leu 2090 45 TAT GAG GAG AAC ATC AAC GCA GGT GAG CAG CGA GCG CTG GCG TTA CGC 6336 Tyr Glu Glu Asn Ile Asn Ala Gly Glu Gln Arg Ala Leu Ala Leu Arg 2100 2105 2110 TCA GAA TCT GCT ATT GAG TCT CAG GGA GCG CAG ATT TCC CGT ATG GCA 6384 Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln Ile Ser Arg Met Ala 2120 2125 GGC GCG GGT GTT GAT ATG GCA CCA AAT ATC TTC GGC CTG GCT GAT GGC 6432 Gly Ala Gly Val Asp Met Ala Pro Asn Ile Phe Gly Leu Ala Asp Gly 55 2135 2140 GGC ATG CAT TAT GGT GCT ATT GCC TAT GCC ATC GCT GAC GGT ATT GAG 6480 Gly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile Ala Asp Gly Ile Glu 2150 2155 60 TTG AGT GCT TCT GCC AAG ATG GTT GAT GCG GAG AAA GTT GCT CAG TCG 6528 Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu Lys Val Ala Gln Ser 2165 GAA ATA TAT CGC CGT CGC CGT CAA GAA TGG AAA ATT CAG CGT GAC AAC 6576 Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys Ile Gln Arg Asp Asn

1j +

65

5130 2135 2130 GCA CAA GCG GAG ATT AAC CAG TTA AAC GCG CAA CTG GAA TCA CTG TCT 5524 Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln Leu Glu Ser Leu Ser 2195 2200 ATT CGC CGT GAA GCC GCT GAA ATG CAA AAA GAG TAC CTG AAA ACC CAG 6672 Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu Tyr Leu Lys Thr Gin 2210 10 CAA GCT CAG GCG CAG GCA CAA CTT ACT TTC TTA AGA AGC AAA TTC AGT 6720 Gin Ala Gin Ala Gin Leu Thr Phe Leu Arg Ser Lys Phe Ser 2230 2235 AAT CAA GCG TTA TAT AGT TGG TTA CGA GGG CGT TTG TCA GGT ATT TAT 6768 15 Asn Gln Ala Leu Tyr Ser Trp Leu Arg Gly Arg Leu Ser Gly Ile Tyr 2250 TTC CAG TTC TAT GAC TTG GCC GTA TCA CGT TGC CTG ATG GCA GAG CAA 6816 20 Phe Gln Phe T;r Asp Leu Ala Val Ser Arg Cys Leu Met Ala Glu Gln 2260 2265 TCC TAT CAN TGG GAA GCT AAT GAT AAT TCC ATT AGC TTT GTC AAA CCG 6864 Ser Tyr Gln Trp Glu Ala Asn Asp Asn Ser Ile Ser Phe Val Lys Pro 25 2280 GGT GCA TGG CAA GGA ACT TAC GCC GGC TTA TTG TGT GGA GAA GCT TTG 6912 Gly Ala Trp Gln Giy Thr Tyr Ala Gly Leu Leu Cys Gly Glu Ala Leu 2290 2295 30 ATA CAA AAT CTG GCA CAA ATG GAA GAG GCA TAT CTG AAA TGG GAA TCT 6960 Ile Gin Asn Leu Ala Gin Met Giu Giu Ala Tyr Leu Lys Trp Giu Ser 2305 2310 2315 CGC GCT TTG GAA GTA GAA CGC ACG GTT TCA TTG GCA GTG GTT TAT GAT 7003 Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Val Val Tyr Asp 2325 2330 TCA CTG GAA GGT AAT GAT CGT TTT AAT TTA GCG GAA CAA ATA CCT GCA 7055 40 Ser Leu Glu Gly Asn Asp Arg Phe Asn Leu Ala Glu Gln Ile Pro Ala 2340 2345 TTA TTG GAT AAG GGG GAG GGA ACA GCA GGA ACT AAA GAA AAT GGG TTA 7104 Leu Leu Asp Lys Gly Glu Gly Thr Ala Gly Thr Lys Glu Asn Gly Leu 45 2355 2360 TCA TTG GCT AAT GCT ATC CTG TCA GCT TCG GTC AAA TTG TCC GAC TTG 7152 Ser Leu Ala Asn Ala Ile Leu Ser Ala Ser Val Lys Leu Ser Asp Leu 2370 2375 50 AAA CTG GGA ACG GAT TAT CCA GAC AGT ATC GTT GGT AGC AAC AAG GTT 7200 Lys Leu Gly Thr Asp Tyr Pro Asp Ser Ile Val Gly Ser Asn Lys Val CGT CGT ATT AAG CAA ATC AGT GTT TCG CTA CCT GCA TTG GTT GGG CCT 7248 Arg Arg Ile Lys Gln Ile Ser Val Ser Leu Pro Ala Leu Val Gly Pro 2405 2410 TAT CAG GAT GTT CAG GCT ATG CTC AGC TAT GGT GGC AGT ACT CAA TTG 7296 Tir Gln Asp Val Gln Ala Met Leu Ser Tir Gly Gly Ser Thr Gln Leu

2420 2425 2430

CCG AAA GGT TGT TCA GCG TTG GCT GTG TCT CAT GGT ACC AAT GAT AGT 7344

Pro Lys Gly Cys Ser Ala Leu Ala Val Ser His Gly Thr Asn Asp Ser

2440

GGT CAG TTC CAG TTG GAT TTC AAT GAC GGC AAA TAC CTG CCA TTT GAA 7392 Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Tyr Leu Pro Phe Glu 2450 2455 2460

- 5 GGT ATT GCT CTT GAT GAT CAG GGT ACA CTG AAT CTT CAA TTT CCG AAT 7440 Gly Ile Ala Leu Asp Asp Gln Gly Thr Leu Asn Leu Gln Phe Pro Asn 2465 2470 2475 2480
- GCT ACC GAC AAG CAG AAA GCA ATA TTG CAA ACT ATG AGC GAT ATT ATT 7488 Ala Thr Asp Lys Gln Lys Ala Ile Leu Gln Thr Met Ser Asp Ile Ile 2485 2490 2495

TTG CAT ATT CGT TAT ACC ATC CGT TAA
Leu His Ile Arg Tyr Thr Ile Arg *
2500 2505

7515

(2) INFORMATION FOR SEQ ID NO:12:

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2505 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

- 30 Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu 1 5 10 15
- Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 20 25 30
 - Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 35 40 45
- Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 50 55 60
 - Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu 65 70 75 80
- 45 Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe 85 90 95
- Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala Ser Met
 100 105 110
 - Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 115 120 125
- Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 130 135 140
 - Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser 145 150 155 160
- 60 Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 165 170 175
- Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg 180 185 190

	Ĺeu	Ser	Gly 195	Glu	Thr	Pro	T, r	His 200	His	Ala	Tyr	Glu	Thr 205	Val	Arg	Glu
5	Ile	Val 210	His	Glu	Arg	Asp	Pro 215	Gly	Phe	Arg	His	Leu 220	ser	Gln	Ala	Pro
	Ile 225	Val	Ala	Ala	Lys	Leu 230	Asp	Pro	Val	Thr	Leu 235	Гел	Gly	Ile	Ser	Ser 240
10	His	Ile	Ser	Pro	Glu 245	Leu	Tyr	Asn	Leu	Leu 250	Ile	Glu	Glu	Ile	Pro 255	Glu
15	Lys	Asp	Glu	Ala 260	Ala	Leu	Asp	Thr	Leu 265	Tyr	Lys	Thr	Asn	Phe 270	Gly	Asp
13			275					280					285	Arg		
20		290					295					300		Leu		
	305					310				•	312			Asp		320
25					325					330				Asp	333	
30				340					345					Gly 350		
50			355					360					202			Phe
35		370					375					300				His
	385					390					395					Ala 400
40					405					410					417	
45				420					425					430		Ile
73			435					440					44.			Ile
50		450					455					400				Ile
	465					470					4/5					480
55					485					490					300	
60				500					505	,				510		Val
.,0			515					520					52.	,		Leu
65	Asn	Gly 530		Arg	Tyr	Glu	Ile 535	Ser	Glu	Asp	AST	Ser 540	Lys	His	Leu	Pro

	Asn 545	Pro	Asp	Leu	Asn	Leu 550	Lys	Pro	Asp	Ser	Thr 555	Gly	Asp	Аsр	Gln	Arg 560
5	Lys	Ala	Val	Leu	Lys 565	λrg	Ala	Phe	Gln	Val 570	Asn	Ala	Ser	Glu	Leu 575	Tyr
	Gln	Met	Leu	Leu 580	Ile	Thr	Asp	λrg	Lys 585	Glu	Asp	Gly	Val	Ile 590	Lys	Asn
10	Asn	Leu	Glu 595	Asn	Leu	Ser	Asp	Leu 600	Tyr	Leu	Val	Ser	Leu 605	Leu	Ala	Gln
15	Ile	His 610	Asn	Leu	Thr	Ile	Ala 515	Glu	Leu	Asn	Ile	Leu 620	Leu	Val	Ile	Cys
13	Gly 625	Tyr	Gly	Asp	Thr	Asn 630	Ile	Tyr	Glņ	Ile	Thr	Asp	Asp	Asn	Leu	Ala 640
20	Lys	Ile	Val	Glu	Thr 645	Leu	Leu	Trp	Ile	Thr 650	Gln	Trp	Leu	Lys	Thr 655	Gln
	Lys	Trp	Thr	Val 660	Thr	Asp	Leu	Phe	Leu 665	Met	Thr	Thr	Ala	Thr 670	Tyr	Ser
25	Thr	Thr	Leu 675	Thr	Pro	Glu	Ile	Ser 680	Asn	Leu	Thr	Ala	Thr 685	Leu	Ser	Ser
30	Thr	Leu 690	His	Gly	Lys	Glu	Ser 695	Leu	Ile	Gly	Glu	Asp 700	Leu	Lys	Arg	Ala
50	Met 705	Ala	Pro	Суѕ	Phe	Thr 710	Ser	Ala	Leu	His	Leu 715	Thr	Ser	Gln	Glu	Val 720
35	Ala	Tyr	Asp	Leu	Leu 725	Leu	Trp	Ile	Asp	Gln 730	Ile	Gln	Pro	Ala	Gln 735	Ile
	Thr	Val	Asp	Gly 740	Phe	Trp	Glu	Glu	Val 745	Gln	Thr	Thr	Pro	Thr 750	Ser	Leu
40	Lys	Val	Ile 755	Thr	Phe	Ala	Gln	Val 760	Leu	Ala	Gln	Leu	Ser 765	Leu	Ile	Tyr
45	Arg	Arg 770	Ile	Gly	Leu	Ser	Glu 775	Thr	Glu	Leu	Ser	Leu 780	Ile	Val	Thr	Gln
••	Ser 785	Ser	Leu	Leu	Val	Ala 790	Gly	Lys	Ser	Ile	Leu 795	Asp	His	Gly	Leu	Leu 800
50	Thr	Leu	Met	Ala	Leu 805	Glu	Gly	Phe	His	Thr 810	Trp	Val	Asn	Gly	Leu 815	Gly
	Gln	His	Ala	Ser 820	Leu	Ile	Leu	Ala	Ala 825	Leu	Lys	Asp	Gly	Ala 830	Leu	Thr
55	Val	Thr	Asp 835	Val	Ala	Gln	Aia	Met 840	Asn	Lys	Glu	Glu	Ser 845	Leu	Leu	Gln
60	Met	Ala 850	Ala	Asn	Gln	Val	Glu 855	Lys	Asp	Leu	Thr	Lys 860	Leu	Thr	Ser	Trp
.,,,	Thr 865	Gln	Ile	Asp	Ala	Ile 870	Leu	Gln	Trp	Leu	Gln 875	Met	Ser	Ser	Ala	Leu aso
65	Ala	Val	Ser	Pro	Leu 885	Asp	Leu	Ala	Gly	Met 890	Met	Ala	Leu	Lys	Tyr 895	Gly

	Ile	Asp	His	Asn 900	T/T	Ala	Ala	Trp	Gln 905	Ala	Ala	ala	Ala	Ala 910	Leu	Met
5	Ala	Asp	His 915	Ala	Asn	Glņ	Ala	Gln 920	Lys	Lys	Leu	Asp	Glu 925	Thr	Phe	Ser
	Lys	Ala 930	Leu	Cys	Asn	туr	Tyr 935	Ile	Asn	Ala	Val	Val 940	Asp	Ser	Ala	Ala
10	Gly 945	Val	Arg	Asp	Arg	Asn 950	Gly	Leu	Tyr	Thr	Tyr 955	Leu	Leu	Ile	Asp	Asn 960
16	Gln	Val	Ser	Ala	Asp 965	Val	Ile	Thr	Ser	Arg 970	Ile	Ala	Glu	Ala	Ile 975	Ala
15	Gly	Ile	Gln	Leu 980	Tyr	Val	Asn	Arg	Ala 985	Leu	Asn	Arg	Asp	Glu 990	Gly	Gln
20	Leu	Ala	Ser 995	Asp	Val	Ser	Thr	Arg 1000		Phe	Phe	Thr	Asp	Trp	Glu	Arg
	Tyr	Asn 1010		Arg	туг	Sar	Thr 1015	Trp	Ala	Gly	Val	Set 1020	Glu)	Leu	Val	Tyr
25	1025	5				1030)			Gln	1035	5				1040
30	Met	Met	Asp	Ala	Leu 1045		Gln	Ser	Ile	Asn 1050	Gln	Ser	Gln	Leu	Asn 1055	Ala
50	Asp	Thr	Val	Glu 1060		Ala	Phe	Lys	Thr 1065	Tyr	Leu	Thr	Ser	Phe 1070	Glu)	Gln
35	Val	Ala	Asn 1075		Lys	Val	Ile	Ser 1080		Tyr	His	Asp	Asn 1085	Val	Asn	Val
	Asp	Gln 1090		Leu	Thr	Tyr	Phe 1095		Gly	Ile	Asp	Gln 1100	Ala)	Ala	Pro	Gly
40	Thr 1105		Tyr	Trp	Arg	Ser 1110		Asp	His	Ser	Lys 1115	Cys 5	Glu	Asn	Gly	Lys 1120
45	Phe	Ala	Ala	Asn	Ala 1125		Gly	Glu	Trp	Asn 1130	Lys)	Ile	Thr	Cys	Ala 1135	Val
73				1140)				1145					1150)	
50	Tyr	Leu	Leu 1155		Leu	Glu	Gln	Gln 1160	Ser	Lys	Lys	Ser	Asp 116	Asp 5	Gly	Lys
	Thr	Thr 1170		Tyr	Gln	Tyr	Asn 1175		Lys	Leu	Ala	His 118	Ile)	Arg	Tyr	Asp
55	Gly 1185		Trp	Asn	Thr	Pro 1190		Thr	Phe	Asp	Val 1195	Thr	Glu	Lys	Val	Lys 120
60	Asn	Tyr	Thr	Ser	Ser 1205		Asp	Ala	Ala	Glu 1210	Ser	Leu	Gly	Leu	Tyr 1215	Cys 5
w	Thr	Gly	Tyr	Gln 1220		Glu	Asp	Thr	Leu 1225	Leu	Val	Met	Phe	Tyr 1230	Ser	Met
65	Gln	Ser	Ser 1235		Ser	Ser	Tyr	Thr 1240	Asp	Asn	Asn	Ala	Pro 1245	Val	Thr	Gly

	Lei	u T;	r Ile 50	e Phe	e Ala	Asp	125		: Ser	Asp	Asr	Met 126		: Asr	n Ala	a Jin
5	Ala 12	a Th:	r Ası	ויצר ה	Trp	Asn 127	Asn 'O	Ser	T ₂ 'r	Pro	Gln 127		Asp	Thr	: Val	l Met 128
	Al:	a Ası	p Pro	Asp	Ser 128	Asp 5	Asn	L; s	Lys	Val 129		Thr	Arg	Arg	Val	Asn 15
10	Ası	n Arg	T ₃ °r	: Ala 130	Glu 0	Asp	Tyr	Glu	1le 130	Pro 5	Ser	Ser	7al	Thr 131		: Asn
15	Ser	: Ası	131	ser 5	Trp	Gly	Asp	His 132	Ser 0	Leu	Thr	Met	Leu 132		Gly	Gly
	Ser	Val 133	l Pro	Asn	Ile	Thr	Phe 133	Glu 5	Ser	Ala	Ala	Glu 134		Leu	Arg	Leu
20	Ser 134	Thr 5	Asn	Met	Ala	Leu 135	Ser 0	Ile	Ile	His	Asn 135		Tyr	Ala	Gly	Thr 136
	Arg	Arg	Ile	Gln	Cys 136	Asn 5	Leu	Met	Lys	Gln 1370		Ala	Ser	Leu	Gly 137	Asp 5
25	Lys	Phe	lle	Ile 138	Tyr 0	Asp	Ser	Ser	Phe 138		Asp	Ala	Asn	Arg 139		Asn
30	Leu	Val	Pro 139	Leu 5	Phe	Lys	Phe	Gly 140		Asp	Glu	Asn	Ser 140		Asp	Ser
	Ile	Cys 141	Ile O	Tyr	Asn	Glu	Asn 141		Ser	Ser	Glu	Asp 142		Lys	Trp	Tyr
35	Phe 142	Ser 5	Ser	Lys	Asp	Asp 1430	Asn O	Lys	Thr	Ala	Asp 143		Asn	Gly	Gly	Thr 1440
	Gln	Cys	Ile	Asp	Ala 1445	Gly	Thr	Ser	Asn	Lys 1450		Phe	Tyr	Tyr	Asn 145	Leu S
40	Gln	Glu	Ile	Glu 1460	Val	Ile	Ser	Val	Thr 1465		Gly	Tyr	Trp	Ser 147		Tyr
45	Lys	Ile	Ser 1475	Asn 5	Pro	Ile	Asn	Ile 1480		Thr	Gly	Ile	Asp 148		Ala	Lys
	Val	Lys 149	Val 0	Thr	Val	Lys	Ala 1495	Gly	Gly	Asp	Asp	Gln 1500		Phe	Thr	Ala
50	Asp 1509	Asn 5	Ser	Thr	Tyr	Val 1510	Pro	Gln	Gln	Pro	Ala 1515		Ser	Phe	Glu	Glu 1520
	Met	Ile	Tyr	Gln	Phe 1525	Asn	Asn	Leu	Thr	Ile 1530		Cys	Lys	Asn	Leu 1535	Asn 5
55	Phe	Ile	Asp	Asn 1540	Gln	Ala	His	Ile	Glu 1545		Asp	Phe	Thr	Ala 1550		Ala
60	Gln	Asp	Gly 1555	Arg	Phe	Leu	Gly	Ala 1560		Thr	Phe	Ile	Ile 1569		Val	Thr
170	Lys	Lys 1570	Val)	Leu	Gly	Thr	Glu 1575		Val	Ile .	Ala	Leu 1580		Ser	Glu	Asn
65	Asn 1585	Gly	Val	Gln	Tyr	Met 1590	Gln	Ile	Gly		Tyr 1595		Thr	Arg	Leu	Asn 1600

D .

Thr	Leu	Phe	Ala	Gin	Gln	Leu	Val	Ser	Arg	Ala	Asn	λrg	Gly	Ile	Asp
				160					1610					1613	_

- 5 Ala Val Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gly 1620 1625 1630
 - Ala Gly Thr Tyr Val Gln Leu Val Leu Asp Lys Tyr Asp Glu Ser Ile 1635 1640 1645
- His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile Phe Lys 1650
 1660
- Glu Asn Asp Ser Phe Val Ile Tyr Gln Gly Glu Leu Ser Glu Thr Ser 1665 1670 1675 1680
 - Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala Thr Gly 1685 1690 1695
- Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu Thr Thr 1700 1705 1710
 - Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His Gly Trp 1715 1720 1725
- Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser Ala Gln 1730 1735 1740
- Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala 1745 1750 1755 1760
- Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Ala His 1765 1770 1775
- Arg Leu Leu Gin Glu Gln Asn Phe Asp Ala Ala Asn His Trp Phe Arg 1780 1785 1790
 - Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile Ala Ile 1795 1800 1805
- 40 Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp Asn Ala 1810 1815 1820
- Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp Asp Pro 1825 1830 1835 1840
 - Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu Leu Met 1845 1850 1855
- Ala Arg Cly Asp Ala Ala Tyr Arg Cln Leu Clu Arg Asp Thr Leu Ala 1860 1865 1870
 - Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly Asp Glu 1875 1880 1885
- 55 Pro Gln Val Met Leu Ser Thr Thr Trp Ala Asn Pro Thr Leu Gly Asn 1890 1895 1900
- Ala Ala Ser Lys Thr Thr Gln Gln Val Arg Gln Gln Val Leu Thr Gln 1905 1910 1915 1920
 - Leu Arg Leu Asn Ser Arg Val Lys Thr Pro Leu Leu Gly Thr Ala Asn 1925 1930 1935
- Ser Leu Thr Ala Leu Phe Leu Pro Gln Glu Asn Ser Lys Leu Lys Gly 1940 1945 1950

	Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn Leu Arg His Asn Leu 1955 1960 Loca
	Ser Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu Tvr Ala Lye Dro No.
	1980
14	Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser Ala Ser Gln Gly Gly 1985 1990 1995 2000
	2005 Led Fro Leu Thr Ile His Arg Phe Pro Gln Met
15	
	Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala Glu Ala Met Ser Gln 2035 2040 2045
20	Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu Thr Ser Ile Arg Met 2050 2055 2060
	Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu Lys Thr Ala Leu Gln 2065 2070 2075 2080
25	Val Ser Leu Ala Gly Val Gin Gin Arg Phe Asp Ser Tyr Ser Gin Leu
30	Tyr Glu Glu Asn Ile Asn Ala Gly Glu Gln Arg Ala Leu Ala Leu Arg 2100 2105 2110
50	Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln Ile Ser Arg Met Ala
35	Gly Ala Gly Val Asp Met Ala Pro Asn Ile Phe Gly Leu Ala Asp Gly 2130 2135
	Gly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile Ala Asp Gly Ile Glu
40	Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu Lys Val Ala Glu Ser
	Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys Ile Gln Arg Asp Asp
45	Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln Leu Glu Ser Leu Ser
50	2200 2205 Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu Tyr Leu Lys Thr Gln 2210 2215
30	Gln Ala Gln Ala Gln Leu Thr Phe Leu Arg Ser Lys Phe Ser
55	2235 2240
	Asn Gin Ala Leu Tyr Ser Trp Leu Arg Gly Arg Leu Ser Gly Ile Tyr 2245 2250 2255
50	Phe Gln Phe Tyr Asp Leu Ala Val Ser Arg Cys Leu Met Ala Glu Gln 2265 2270
	Ser Tyr Gln Trp Glu Ala Asn Asp Asn Ser Ile Ser Phe Val Lys Pro 2275 2280 2285
55	Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu Leu Cys Gly Glu Ala Leu 2290 2295 2300

	11e 230	Gln 5	λsn	Leu	Ala	Gln 231		Glu	Glu	Ala	Tyr 2319	Leu	L;/s	Trp	Glu	ser 2320
5	Àrg	λla	Leu	Glu	Val 2329		Arg	Thr	Val	Ser 2330	Leu)	λla	Val	Val	T/r 2335	Asp
	Ser	Leu	Glu	Gly 2340		λsp	Arg	Phe	Asn 2345	Leu	Ala	Glu	Glņ	11e 2350	Pro	Ala
10	Leu	Leu	Asp 2355		Gly	Glu	Gly	Thr 2360		Gly	Thr	Lys	Glu 2365	Asn	Gly	Leu
	Ser	Leu 2370		Asn	Ala	Ile	Leu 2375		Ala	Ser	Val	Lys 2380		Ser	Asp	Leu
15	Lys 2385	Leu	Gly	Thr	Asp	Tyr 2390		Asp	Ser	Ile	Val 2395	GLY	Ser	Asn	L;;s	Val 2400
20	Arg	Arg	Ile	Lys	Gln 2405		Ser	Val	Ser	Leu 2410	Pro	Ala	Leu	Val	Gly 2415	Pro
	Tyr	Gln	Asp	Val 2420		Ala	Met	Leu	Ser 2425		Gly	Gly	Ser	Thr 2430	Gln)	Leu
25	Pro	Lys	Gly 2435		Ser	Ala	Leu	Ala 2440		Ser	His	Gly	Thr 2445		Asp	Ser
••	Gly	Gln 2450		Gln	Leu	Asp	Phe 2455		Asp	Gly	Lys	Tyr 2460	Leu)	Pro	Phe	Glu
30	Gly 2465	Ile	Ala	Leu	Asp	Asp 2470		Gly	Thr	Leu	Asn 2475	Leu	Gln	Phe	Pro	Asn 2480
35	Ala	Thr	Asp	Lys	Gln 2485		Ala	Ile	Leu	Gln 2490		Met	Ser	Asp	Ile 2495	Ile
	Leu	His	Ile	Arg 2500	_	Thr	Ile	Arg	÷ 2505	i						
ю	(2)	INF	ORMA	TIO	N FC	OR S	EQ I	D NO	0:13	:						
15		(i	(. – -	LENC TYPE STRA	TH: : ai	12	amin ac: S:	no a id sing	cids	5					
50		(ii) MC	DLEC	ULE	TYP	E: p	ept	ide							
		(xi) SE	EQUE	NCE	DES	CRIP	TIO	N: S	EQ I	ID N	0:13	B: .			
55		Leu 1	Ile	Gly	Tyr	Asn 5	Asn	Glm	Phe	Ser	Gly 10	Xaa	Ala	l.		
	(2)	INF	ORMA	TIO	N FC	R S	EQ I	D NO	0:14	:						
60		(i	(EQUE (A) (B) (C)	LENG TYPE STRA	TH: : ai NDEI	12 mino DNES	amin ac: S: S	no a id sing	cids	5 .					

```
(ii) MOLECULE TYPE: peptide
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
5
         Met Gln Asn Ser Gln Thr Phe Ser Val Gly Glu Leu
10
     (2) INFORMATION FOR SEQ ID NO:15:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 9 amino acids
               (B) TYPE: amino acid(C) STRANDEDNESS: single
15
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
20
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
         Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr
25
     (2) INFORMATION FOR SEQ ID NO:16:
          (i) SEQUENCE CHARACTERISTICS:
30
                (A) LENGTH: 5 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
35
         (ii) MOLECULE TYPE: peptide
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
40
          Met Gln Asn Ser Leu
     (2) INFORMATION FOR SEQ ID NO:17:
45
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 10 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
50
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
55
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
          Ala Phe Asn Ile Asp Asp Val Ser Leu Phe
60
```

в •

:2: INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids 5 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn Ser Ser Asn 15 10 (2) INFORMATION FOR SEQ ID NO:19: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEO ID NO:19: 30 Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile Gly Ser Leu Gln Leu Phe Ile 35 20 (2) INFORMATION FOR SEQ ID NO:20: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: 50 Met Tyr Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro 55 (2) INFORMATION FOR SEO ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid 60 (C) STRANDEDNESS: single (D) TOPOLOGY: linear

-138-

		(ii) MOLECULE TYPE: peptide
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
		Gly Île Asp Ala Val Leu Ser Met Glu Thr Gln Asn Île Gln Glu Pro 1 5 10 15
10		Gln Leu Gly Ala Gly Thr Tyr Val Gln Leu 20 25
15	(2)	INFORMATION FOR SEQ ID NO:22:
.,		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
20		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
		Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys 1 10 15
30	(2)	INFORMATION FOR SEQ ID NO:23:
35		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
40		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
45		Thr Tyr Leu Thr Ser Phe Glu Gln Val Ala Asn Leu Lys 1 10
	(2)	INFORMATION FOR SEQ ID NO:24:
50		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
55		(ii) MOLECULE TYPE: peptide
60		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
OU		Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly

15 (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: RBS

(B) LOCATION: 1..9

20

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 16..3585

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(D) OTHER INFORMATION: /product = "P8"

25

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

AAGAAGGAAT TGATT ATG TCT GAA TCT TTA TTT ACA CAA ACG TTG AAA GAA 51

Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu

1 5 10

GCG CGC CGT GAT GCA TTG GTT GCT CAT TAT ATT GCT ACT CAG GTG CCC 99
Ala Arg Arg Asp Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro
35 20 25

GCA GAT TTA AAA GAG AGT ATC CAG ACC GCG GAT GAT CTG TAC GAA TAT 147 Ala Asp Leu Lys Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr 30 35 40

CTG TTG CTG GAT ACC AAA ATT AGC GAT CTG GTT ACT ACT TCA CCG CTG 195
Leu Leu Leu Asp Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu
45 50 55 60

45 TCC GAA GCG ATT GGC AGT CTG CAA TTG TTT ATT CAT CGT GCG ATA GAG 243 Ser Glu Ala Ile Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu

GGC TAT GAC GGC ACG CTG GCA GAC TCA GCA AAA CCC TAT TTT GCC GAT 291
50 Gly Tyr Asp Gly Thr Leu Ala Asp Ser Ala Lys Pro Tyr Phe Ala Asp
80 85

GAA CAG TTT TTA TAT AAC TGG GAT AGT TTT AAC CAC CGT TAT AGC ACT 339
Glu Gln Phe Leu Tyr Asn Trp Asp Ser Phe Asn His Arg Tyr Ser Thr
55 95 100 105

TGG GCT GGC AAG GAA CGG TTG AAA TTC TAT GCC GGG GAT TAT ATT GAT 387
Trp Ala Gly Lys Glu Arg Leu Lys Phe Tyr Ala Gly Asp Tyr Ile Asp
110 115 120

60 CCA ACA TTG CGA TTG AAT AAG ACC GAG ATA TTT ACC GCA TTT GAA CAA 435 Pro Thr Leu Arg Leu Asn Lys Thr Glu Ile Phe Thr Ala Phe Glu Gln 125 130 135 140

	GGT Gly	ATT Ile	TCT Ser	CAA Gln	GGG Gly 145	AAA Lys	TTA Leu	AAA Lys	AGT Ser	GAA Glu 150	TTA Leu	GTC Val	GAA Glu	TCT Ser	AAA L;;s 155	TTA Leu	493
5	CGT Arg	GAT Asp	TAT Tyr	CTA Leu 160	ATT	AGT Ser	TAT Tyr	GAC Asp	ACT Thr 165	TTA Leu	GCC Ala	ACC Thr	CTT Leu	GAT Asp 170	TAT Tyr	ATT Ile	531
10	ACT Thr	GCC Ala	TGC Cys 175	CAA Gln	GGC Gly	AAA Lys	GAT Asp	AAT Asn 180	AAA Lys	ACC Thr	ATC Ile	TTC Phe	TTT Phe 185	ATT Ile	GGC Gly	CGT Arg	579
15	Thr	Gln 190	Asn	GCA Ala	Pro	Tyr	Ala 195	Phe	Tyr	Trp	Arg	Lys 200	Leu	Thr	Leu	Val	627
20	Thr 205	Asp	Gly	GGT Gly	Lys	Leu 210	Lys	Pro	Asp	Gln	Trp 215	Ser	Glu	Trp	Arg	A1a 220	675
20	Ile	Asn	Ala	GGG Gly	Ile 225	Ser	Glu	Ala	Tyr	Ser 230	Gly	His	Val	GIU	235	Pne	723
25	Trp	Glu	Asn	AAC Asn 240	Lys	Leu	His	Ile	Arg 245	Trp	Phe	Thr	Ile	Ser 250	Lys	Glu	771
30	Яsр	Lys	Ile 255	GAT Asp	Phe	Val	Tyr	Lys 260	Asn	Ile	Trp	Val	Met 265	Ser	ser	Asp	819
35	Tyr	Ser 270	Trp	GCA Ala	Ser	Lys	Lys 275	Lys	Ile	Leu	Glu	280	ser	Pue	Thr	Asp	867
40	Tyr 285	Asn	Arg	Val	Gly	Ala 290	Thr	Gly	Ser	Ser	295	Pro	Thr	GIU	Val	GCT Ala 300	915
₩.	Ser	Gln	Tyr	Gly	Ser 305	Asp	Ala	Gln	Met	Asn 310	Ile	Ser	Asp	AST	315		
45	Val	Leu	Ile	Phe 320	Gln	Asn	Ala	Gly	Gly 325	Ala	Thr	Pro	ser	330)	vai	1011
50	Thr	Leu	335	Tyr	Asp	Ser	Gly	340	Val	. 116	. ràs	AST	345	Sei	. ser	. 1112	1059
55	Gly	Ser 350	Ala	Asn	Leu	Ser	Ser 355	Lys	: Asp	туг	: Ala	360	r Thi	, rā	s Let	1 ALG	1107
60	Met 365	Cys	His	Gly	Glr	370	Tyr	: Asr) Ast) ASI	375	1 1yı	. Cys	S WOI	. F110	380	
60	Leu	Ser	: Ile	AST	Thr 385	Ile	Glu	ı Phe	e Thi	390	r Tyl	. GI	/ Thi	Pil	39	5	
65	GA T Asp	GGA Gly	AAA Lys	CAF Glr	TTT Phe	ACA Thi	CC/	A CC	r TC1 o Sei	r GG	r TC: / Sei	r GCC r Al	AT.	r GA' e As	r TT. p Le	A CAC u His	1251

				400					495					419			
5	CTC Leu	CCT Pro	AAT Asn 415	TAT- Tyr	GTA Val	GAT Asp	CTC Leu	AAC Asn 420	GCG Ala	CTA Leu	TTA Leu	GAT Asp	ATT Ile 425	AGC Ser	CTC Leu	GAT Asp	1299
	TCA Ser	CTA Leu 430	CTT Leu	AAT Asn	TAT Tyr	GAC Asp	GTT Val 435	CAG Gln	GGG Gly	CAG Gln	TTT Phe	GGC Gly 440	GGA Gly	TCT Ser	AAT Asn	CCG Pro	1347
10	GTT Val 445	GAT Asp	AAT Asn	TTC Phe	AGT Ser	GGT Gly 450	CCC Pro	TAT Tyr	ggt Gly	ATT Ile	TAT Tyr 455	CTA Leu	TGG Trp	GAA Glu	ATC Ile	TTC Phe 460	1395
15	TTC Phe	CAT His	ATT Ile	CCG Pro	TTC Phe 465	CTT Leu	GTT Val	ACG Thr	GTC Val	CGT Arg 470	ATG Met	CAA Gln	ACC Thr	GAA Glu	CAA Gln 475	CGT Arg	1443
20	TAC Tyr	GAA Glu	GAC Asp	GCG Ala 480	GAC Asp	ACT Thr	TGG Trp	TAC Tyr	AAA Lys 485	TAT Tyr	ATT Ile	TTC Phe	CGC Arg	AGC Ser 490	GCC Ala	GGT Gly	1491
25	TAT Tyr	CGC Arg	GAT Asp 495	GCT Ala	AAT Asn	GGC Gly	CAG Gln	CTC Leu 500	ATT Ile	ATG Met	GAT Asp	GGC Gly	AGT Ser 505	AAA Lys	CCA Pro	CGT Arg	1539
20	TAT Tyr	TGG Trp 510	AAT Asn	GTG Val	ATG Met	CCA Pro	TTG Leu 515	CAA Gln	CTG Leu	GAT Asp	ACC Thr	GCA Ala 520	TGG Trp	GAT Asp	ACC Thr	ACA Thr	1587
30	CAG Gln 525	CCC	GCC Ala	ACC Thr	ACT Thr	GAT Asp 530	CCA Pro	GAT Asp	GTG Val	ATC Ile	GCT Ala 535	ATG Met	GCG Ala	GAC Asp	CCG Pro	ATG Met 540	1635
35	CAT His	TAC Tyr	AAG Lys	CTG Leu	GCG Ala 545	ATA Ile	TTC Phe	CTG Leu	CAT His	ACC Thr 550	CTT Leu	GAT Asp	CTA Leu	TTG Leu	ATT Ile 555	GCC Ala	1683
40	CGA Arg	GGC Gly	GAC Asp	AGC Ser 560	GCT Ala	TAC Tyr	CGT Arg	CAA Gln	CTT Leu 565	GAA Glu	CGC Arg	GAT Asp	ACT Thr	CTA Leu 570	GTC Val	GAA Glu	1731
45	GCC Ala	AAA Lys	ATG Met 575	TAC Tyr	TAC Tyr	ATT Ile	CAG Gln	GCA Ala 580	CAA Gln	CAG Gln	CTA Leu	CTG Leu	GGA Gly 585	CCG Pro	CGC Arg	CCT Pro	1779
50	GAT Asp	ATC Ile 590	CAT His	ACC Thr	ACC Thr	Asn	Thr	Trp	CCA Pro	Asn	Pro	Thr	Leu	AGT Ser	AAA Lys	GAA Glu	1827
50	GCT Ala 605	GGC Gly	GCT Ala	ATT Ile	GCC Ala	ACA Thr 610	CCG Pro	ACA Thr	TTC	CTC Leu	AGT Ser 615	TCA Ser	CCG Pro	GAG Glu	GTG Val	ATG Met 620	1875
55	ACG Thr	TTC Phe	GCT Ala	GCC Ala	TGG Trp 625	CTA Leu	AGC Ser	GCA Ala	GGC Gly	GAT Asp 630	ACC Thr	GCA Ala	AAT Asn	ATT	GGC Gly 635	GAC Asp	1923
6()	GGT Gly	GAT Asp	TTC Phe	TTG Leu 640	CCA Pro	CCG Pro	TAC Tyr	AAC Asn	GAT Asp 645	GTA Val	CTA Leu	CTC Leu	GGT Gly	TAC Tyr 650	TGG Trp	GAT Asp	1971
65	жж Lys	CTT Leu	GAG Glu 655	TTA Leu	CGC Arg	CTA Leu	TAC Tyr	AAC Asn 660	CTG Leu	CGC	CAC His	AAT Asn	CTG Leu 665	AGT Ser	CTG Leu	GAT Asp	2019

	GI;	3AA 31n 670	CCG Pro	CTA Leu	AAT Asn	CTG Leu	CCA Pro 675	CTG Leu	TAT Tyr	GCC Ala	ACG Thr	CCG Pro 680	GTA Val	GAC Asp	CCG Pro	Ļ¥s Ļ¥s	2067
.															AGT Ser		2115
10	GCT Ala	GGT Gly	GGT Gly	CAA Gln	GGC Gly 705	AGT Ser	GTT Val	CAG Gln	GGC Gly	TGG Trp 710	Arg	TAT Tyr	CCG Pro	TTA Leu	TTG Leu 715	GTA Val	2153
15															AAC Asn		2211
20	TTA Leu	CAA Gln	ACA Thr 735	ACG Thr	TTA Leu	GAA Glu	CAT His	CAG Gln 740	GAT Asp	AAT Asn	GAA Glu	AAA Lys	ATG Met 745	ACG Thr	ATA Ile	CTG Leu	2259
															ATA Ile		2307
25															CAG Gln		2355
30															CTG Leu 795		2403
35															CGC Arg		2451
40															GCC Ala		2499
															GGT Gly		2547
45															CAA Gln		2595
50															ACA Thr 875		2643
55															ATT		2691
60	GAT Asp	AAC Asn	GAA Glu 895	ATA Ile	ACC Thr	CAA Gln	CTG Leu	GAT Asp 900	GCC Ala	CAG Gln	ATA Ile	CAA Gln	AGC Ser 905	CTG Leu	CAA Gln	GAG Glu	2739
.,,															GAA Glu		2787
65															ACC Thr		2835

	925	930	935 940	
5	Gln Ala Leu Tyr Asn 945	Trp Met Ala Gly Ar 95		
	Gln Met Tyr Asp Ser	ACT CTG CCA ATC TG Thr Leu Pro Ile Cy 965	et ctc cag cca aaa gcc gca 2931 ys Leu Gln Pro Lys Ala Ala 970	
10	TTA GTA CAG GAA TTA Leu Val Gln Glu Leu 975	GGC GAG AAA GAG AG Gly Glu Lys Glu Se 980	GC GAC AGT CTT TTC CAG GTT 2979 er Asp Ser Leu Phe Gln Val 985	, .
15	CCG GTG TGG AAT GAT Pro Val Trp Asn Asp 990	CTG TGG CAA GGG CT Leu Trp Gln Gly Le 995	rg TTA GCA GGA GAA GGT TTA 3027 eu Leu Ala Gly Glu Gly Leu 1000	7
20	AGT TCA GAG CTA CAG Ser Ser Glu Leu Gln 1005	AAA CTG GAT GCC AT Lys Leu Asp Ala Il 1010	TC TGG CTT GCA CGT GGT GGT 3075 le Trp Leu Ala Arg Gly Gly 1015 1020	5
25	ATT GGG CTA GAA GCC Ile Gly Leu Glu Ala 102	lle Arg Thr Val Se	CG CTG GAT ACC CTG TTT GGC 3123 er Leu Asp Thr Leu Phe Gly 030 1035	3
	ACA GGG ACG TTA AGT Thr Gly Thr Leu Ser 1040	GAA AAT ATC AAT AA Glu Asn Ile Asn Ly 1045	AA GTG CTT AAC GGG GAA ACG 3171 ys Val Leu Asn Gly Glu Thr 1050	1
30	GTA TCT CCA TCC GGT Val Ser Pro Ser Gly 1055	GGC GTC ACT CTG GC Gly Val Thr Leu Al 1060	CG CTG ACA GGG GAT ATC TTC 3219 la Leu Thr Gly Asp Ile Phe . 1065	9
35	CAA GCA ACA CTG GAT Gln Ala Thr Leu Asp 1070	TTTG AGT CAG CTA GC Leu Ser Gln Leu Gl 1075	GT TTG GAT AAC TCT TAC AAC 326' ly Leu Asp Asn Ser Tyr Asn 1080	7
40	TTG GGT AAC GAG AAG Leu Gly Asn Glu Lys 1085	AAA CGT CGT ATT AA Lys Arg Arg Ile Ly 1090	AA CGT ATC GCC GTC ACC CTG 331 ys Arg Ile Ala Val Thr Leu 1095 1100	5
45	CCA ACA CTT CTG GGG Pro Thr Leu Leu Gly 110	Pro Tyr Gln Asp Le	TT GAA GCC ACA CTG GTA ATG 336 eu Glu Ala Thr Leu Val Met 110 1115	3
	GGT GCG GAA ATC GCC Gly Ala Glu Ile Ala 1120	GCC TTA TCA CAC GC A Ala Leu Ser His G 1125	GT GTG AAT GAC GGA GGC CGG 341 ly Val Asn Asp Gly Gly Arg 1130	1
50	TTT GTT ACC GAC TTT Phe Val Thr Asp Phe 1135	r AAC GAC AGC CGT T e Asn Asp Ser Arg Pl 1140	TT CTG CCT TTT GAA GGT CGA 345 he Leu Pro Phe Glu Gly Arg 1145	9
55	GAT GCA ACA ACC GGG Asp Ala Thr Thr Gly 1150	C ACA CTG GAG CTC A y Thr Leu Glu Leu A: 1155	AT ATT TTC CAT GCG GGT AAA 350 sn Ile Phe His Ala Gly Lys 1160	7
60	GAG GGA ACG CAA CAG Glu Gly Thr Gln His 1165	C GAG TTG GTC GCG A S Glu Leu Val Ala A 1170	AT CTG AGT GAC ATC ATT GTG 355 sn Leu Ser Asp Ile Ile Val 1175 1180	:5
65	His Leu Asn Tyr Ile	e Ile Arg Asp Ala	AA ATTTCTTTTC TTTGTCGATT 360 * 190	5

	ACAGGTCCCT	ATCAGGGGCC	TGTTATTAAG	GAGTACTTTA	TGCAGGATTC	ACCAGAAGTA	3555
	TCGATTACAA	CGCTGTCACT	TCCCAAAGGT	GGCGGTGCTA	TCAATGGCAT	GGGAGAAGCA	3725
5	CTGAATGCTG	CCGGCCCTGA	TGGAATGGCC	TCCCTATCTC	TGCCATTACC	CCTTTCGACC	3785
	GGCAGAGGGA	CGGCTCCTGG	ATTATCGCTG	ATTTACAGCA	ACAGTGCAGG	TAATGGGCCT	3845
10	TTCGGCATCG	GCTGGCAATG	CGGTGTTATG	TCCATTAGCC	GACGCACCCA	ACATGGCATT	3905
10	CCACAATACG	GTAATGACGA	CACGTTCCTA	TCCCCACAAG	GCGAGGTCAT	GAATATCGCC	3965
	CTGAATGACC	AAGGGCAACC	TGATATCCGT	CAAGACGTTA	AAACGCTGCA	AGGCGTTACC	4025
15	TTGCCAATTT	CCTATACCGT	GACCCGCTAT	CAAGCCCGCC	AGATCCTGGA	TTTCAGTAAA	4085
	ATCGAATACT	GGCAACCTGC	CTCCGGTCAA	GAAGGACGCG	CTTTCTGGCT	GATATCGACA	4145
20	CCGGACGGGC	ATCTACACAT	CTTAGGGAAA	ACCGCGCAGG	CTTGTCTGGC	AAATCCGCAA	4205
20	AATGACCAAC	AAATCGCCCA	GTGGTTGCTG	GAAGAAACTG	TGACGCCAGC	CGGTGAACAT	4265
	GTCAGCTATC	AATATCGAGC	CGAAGATGAA	GCCCATTGTG	ACGACAATGA	AAAAACCGCT	4325
25	CATCCCAATG	TTACCGCACA	GCGCTATCTG	GTACAGGTGA	ACTACAGGCA	ACATCAAACC	4385
	ACAAGCCAGC	CTGTTCGTAC	TGGATAACGC	ACCTCCCGCA	CCGGAAGAGT	GGCTGTTTCA	4445
30	TCTGGTCTTT	GACCACGGTG	AGCGCGTACC	TCACTTCATA	CCGTGCCAAC	ATGGGATGCA	4505
50	GGTACAGCGC	AATGGTCTGT	ACGCCCGGAT	ATCTTCTCTC	GCTATGAATA	TGGTTTTGAA	4565
	GTGCGTACTC	GCCGCTTATG	TCAACAAGTG	CTGATGTTTC	ACCGCACCGC	GCTCATGGCC	4625
35	GGAGAAGCCA	GTACCAATGA	CGCCCCGGAA	CTGGTTGGAC	GCTTAATACT	GGAATATGAC	4685
•	AAAAACGCCA	GCGTCACCAC	GTTGATTACC	ATCCGTCAAT	TAAGCCATGA	ATCGGACGGG	4745
40	AGGCCAGTCA	CCCAGCCACC	ACTAGAACTA	GCCTGGCAAC	GGTTTGATCT	GGAGAAAATC	4805
	CCGACATGGC	AACGCTTTGA	CGCACTAGAT	AATTITAACT	CGCAGCAACG	TTATCAACTG	4865
	GTTGATCTGC	GGGGAGAAGG	GTTGCCAGGT	ATGCTGTATC	AAGATCGAGG	CGCTTGGTGG	4925
45	TATAAAGCTC	CGCAACGTCA	GGAAGACGGA	GACAGCAATG	CCGTCACTTA	CGACAAAATC	4985
	GCCCCACTGC	CTACCCTACC	CAATTTGCAG	GATAATGCCT	CATTGATGGA	TATCAACGGA	5045
50	GACGGCCAAC	TGGATTGGGT	TGTTACCGCC	TCCGGTATTC	GCGGATACCA	TAGTCAGCAA	5105
	CCCGATGGAA	AGTGGACGCA	CTTTACGCCA	ATCAATGCCT	TGCCCGTGGA	ATATTTTCAT	5165
	CCAAGCATCC	AGTTCGCTGA	CCTTACCGGG	GCAGGCTTAT	CTGATTTAGT	GTTGATCGGG	5225
55	CCGAAAAGCG	TGCGTCTATA	TGCCAACCAG	CGAAACGGCT	GGCGTAAAGG	AGAAGATGTC	5285
	CCCCAATCCA	CAGGTATCAC	CCTGCCTGTC	ACAGGGACCG	ATGCCCGCAA	ACTGGTGGCT	5345
60	TTCAGTGATA	TGCTCGGTTC	CGGTCAACAA	CATCTGGTGG	AAATCAAGGG	TAATCGCGTC	5405
	ACCTGTTGGC	CGAATCTAGG	GCATGGCCGT	TTCGGTCAAC	CACTAACTCT	GTCAGGATTT	5465
	AGCCAGCCCG	AAAATAGCTT	CAATCCCGAA	CGGCTGTTTC	TGGCGGATAT	CGACGGCTCC	5525
65	GGCACCACCG	ACCTTATCTA	TGCGCAATCC	GGCTCTTTGC	TCATTTATCT	CAACCAAAGT	5585

	SGTA	ATCA	GT 1	MGAT	rgccc	:c G1	TGAC	ATTA	GCG	TTGC	CAG	AAGG	CGTA	CA 3	TTTC	ACAAC	5645
	ACTI	GCC:	AAC 1	TCA	GTCC	c c	ATAT	rrcac	GGA	TTAG	GGλ	TAGO	CAGO	TT	ATTC	TGACT	5705
5	GTG	CAC	ATA 1	rccc	CCAC	A TO	CACTO	GCG1	TGT	GACC	TGT	CACT	GACC	AA A	CCCI	CGTTG	5765
	TTG	LATG1	raa 1	GAAC	AATA	A CC	GGGG	CGCA	CAT	CACA	CGC	TACA	TTAT	CG 1	AGTI	recece	5825
	CAAT	TCTC	GT 1	rgga1	rgaa?	LA A1	PTAC:	AGCTC	: ACC	AAAG	CAG	GCAA	ATCI	יככ כ	CCTI	GTTAT	5885
10	CTGC	CGT	rrc c	AATO	CATI	T GO	TATO	GTAT	, ycc	GAAA	TTC	AGGA	TGAA	AT C	AGCG	GCAAC	5945
	CGGC	TCAC	CA C	TGA	GTC	LA CI	racao	CCAC	GGC	GTC1	CGG	ATGG	TAAP	GA C	CGGG	AATTC	6005
15																	
	(2)	INF						D N									
20			(i)	(A) I B) 1	ENG	TH: : an	1190 nino	am aci	ino d	: aci	ds					
								: 1:									
		(ii)	MOL	ECUI	E T	YPE:	pr	otei	n							
25		(xi)	SEQ	UENC	E D	ESCI	RIPT	ON:	SE	Q ID	NO:	26:				
	Met 1	ser	Glu	Ser	Leu 5	Phe	Thr	Gln	Thr	Leu 10	Lys	Glu	Ala	Arg	Arg 15	Asp	
30	Ala	Leu	Val	Ala 20	His	Tyr	Ile	Ala	Thr 25	Gln	Val	Pro	Ala	Asp 30	Leu	Lys	
35	Glu	Ser	Ile 35	Gln	Thr	Ala	Asp	Asp 40	Leu	Tyr	Glu	Tyr	Leu 45	Leu	Leu	Asp	
	Thr	Lys 50	Ile	Ser	Asp	Leu	Val 55	Thr	Thr	Ser	Pro	Leu 60	Ser	Glu	Ala	Ile	
40	Gly 65	Ser	Leu	Gln	Leu	Phe 70	Ile	His	Arg	Ala	Ile 75	Glu	Gly	Tyr	Asp	80	
45	Thr	Leu	Ala	Asp	Ser 85	Ala	Lys	Pro	Tyr	Phe 90	Ala	Asp	Glu	Gln	Phe 95	Leu	
43	Tyr	Asn	Trp	Asp 100	Ser	Phe	Asn	His	Arg 105	Tyr	Ser	Thr	Trp	Ala 110	Gly	Lys	
50	Glu	Arg	Leu 115	Ly:s	Phe	Tyr	Ala	Gly 120	Asp	Tyr	Ile	Asp	Pro 125	Thr	Leu	Arg	
	Leu	Asn 130		Thr	Glu	Ile	Phe 135	Thr	Ala	Phe	Glu	Gln 140	Gly	Ile	Ser	Gln	
55	Gly 145	Lys	Leu	Lys	Ser	Glu 150	Leu	Val	Glu	Ser	Lys 155	Leu	Arg	Asp	Tyr	Leu 160	
60					165			Thr		170					1/5		
w	Gly	Lys	Asp	Asn 180	Lys	Thr	Ile	Phe	Phe 185	Ile	Gly	Arg	Thr	Gln 190	Asn	Ala	
65	Pro	Tyr	Ala 195	Phe	туг	Trp	Arg	Lys 200	Leu	Thr	Leu	Val	Thr 205	Asp	Gly	Gly	

	Ly	's La 21	eu L	ys P	ro As	p Gl	n Tr 21	p Se	r Gl	u Tr	p Ar	g Ala 22	a Il	e As	n Al	a Gly
5	11 22	e Se 5	er G.	lu Al	la Ty	r Se:	r Gl 0	y Hi	s Va	l Gl	u Pro 235	Phe	Tr	p Gl	u As	n Asn 240
10	Ly	s Le	eu Hi	is II	le Ar 24	g Tri	P Ph	e Th	r Ile	e Se:	r Lys	Glu	ı Ası	p Lys	5 Il 25	e Asp 5
				20					26:	•				270)	p Ala
15			21	,				281	U				289	5		y Val
		4,5	•				29	•				300				Gly
20	50.	•				310	•				315					Phe 320
25					32:					330					335	
				340	,	Ile			345					350		
30			33	,		Tyr		360					365			
26		310	•			Asn	3/5					380				
35	303					Ser 390					395					400
40					405	Gly				410					415	
7,				420		Leu			425					430		
45			433			Gln		440					445			
5 0		450				Ile	455					460				
50	403					Arg 470					475					480
55					485	Tyr				490					495	
	Asn	Gly	Gln	Leu 500	Ile	Met	Asp	GIY	Ser 505	Lys	Pro .	Arg	Tyr	Trp 510	Asn	Val
60			212			Asp '		520					525			
		220					515					540				
65	Ala 545	Ile	Phe	Ļeu	His	Thr 1	Leu	Asp	Leu 1	Leu :	Ile /	Ala i	Arg (Gly .		Ser 560

	Ala	a Ty	r Ar	g Glr	n Leu Sás		ı Arş	g Asp	Thi	57:	1 7a)	l Gl	ı Ala	a Lys	575	
5	T ₃ ·1	r Il	e Gli	n Ala 580		Glr	Let	ı Leu	Gl; 585		o Arg	, Pro	Asp	590		5 Thi
10	Thi	ASI	n Thi	Trp	Pro) Asn	n Pro	600		s Sei	. Lys	Glu	1 Ala 605		' Ala	ı Ile
10	Ala	610		Thr	Phe	. Leu	Ser 615		Pro	Glu	ı Val	. Met		Phe	Ala	Ala
15	Trp 625		ı Ser	Ala	Gly	630 Ysb		Ala	Asn	Ile	635		Gly	Asp	Phe	640
	Pro	Pro	Тут	Asn	Asp 645		Leu	Leu	Gly	Tyr 650	_) Asp	Lys	Leu	655	
20	Arg	Leu	Tyr	Asn 660		Arg	His	Asn	Leu 665		Leu	Asp	Gly	Gln 670		Leu
25	Asn	Leu	675	Leu	Tyr	Ala	Thr	Pro 680		λsp	Pro	Lys	Thr 685		Gln	Arg
	Gln	Gln 690		Gly	Gly	Хsр	Gly 695		Gly	Ser	Ser	Pro 700		Gly	Gly	Gln
30	Gly 705		Val	Gln		Trp 710	Arg	Tyr	Pro	Leu	Leu 715		Glu	Arg	Ala	Arg 720
	Ser	Ala	Val	Ser	Leu 725	Leu	Thr	Gln	Phe	Gly 730		Ser	Leu	Gln	Thr 735	
35	Leu	Glu	His	Gln 740	Asp	Asn	Glu	Lys	Met 745	Thr	Ile	Leu	Leu	Gln 750	Thr	Gln
40	Gln	Glu	Ala 755	Ile	Leu	Lys	His	Gln 760	His	Asp	Ile	Gln	Gln 765	Asn	Asn	Leu
	Lys	Gly 770	Leu	Gln	His	Ser	Leu 775	Thr	Ala	Leu	Gln	Ala 780	Ser	Arg	Asp	Gly
45	Asp 785	Thr	Leu	Arg	Gln	Lys 790	His	Tyr	Ser	Asp	Leu 795	Ile	Asn	Gly	Gly	ao o
	Ser	Ala	Ala	Glu	Ile 805	Ala	Gly	Leu	Thr	Leu 810	Arg	Ser	Thr	Ala	Met 815	Ile
50	Thr	Asn	Gly	Val 820	Ala	Thr	Gly	Leu	Leu 825	Ile	Ala	Gly	Gly	11e [°] 830	Ala	Asn
55	λla	Val	Pro 835	Asn	Val	Phe	Gly	Leu 840	Ala	Asn	Gly	Gly	Ser 845	Glu	Trp	Gly
	Ala	Pro 850	Leu	Ile	Gly	Ser	Gly 855	Gln	Ala	Thr	Gln	Val 860	Gly	Ala	Gly	Ile
6()	Gln 365	Asp	Gln	Ser		Gly 870	Ile	Ser	Glu	Val	Thr 875	Ala	Gly	Tyr	Gln	Arg 880
	Arg	Gln	Glu	Glu	Trp 885	Ala	Leu	Gln	Arg	Asp 890	Ile	Ala	Asp	Asn	Glu 895	Ile
65	Thr	Gln	Leu	Asp 900	λla	Gln	Ile	Gln	Ser 905	Leu	Gln	Glu	Gln	11e 910	Thr	Met

_	915 920 925
5	930 935 Phe Thr Gir Gln Ala Leu Tyr
10	
	Ser Thr Leu Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu 965 970 975
15	Leu Gly Glu Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn 980 985 990
	Asp Leu Trp Gln Gly Leu Leu Ala Gly Glu Gly Leu Ser Ser Glu Leu 995 1000 1005
20	Gln Lys Leu Asp Ala Ile Trp Leu Ala Arg Gly Gly Ile Gly Leu Glu 1010 1015 1020
25	Ala Ile Arg Thr Val Ser Leu Asp Thr Leu Phe Gly Thr Gly Thr Leu 1025 1030 1035 1040
	Ser Glu Asn Ile Asn Lys Val Leu Asn Gly Glu Thr Val Ser Pro Ser 1045 1050 1055
30	Gly Gly Val Thr Leu Ala Leu Thr Gly Asp Ile Phe Gln Ala Thr Leu 1060 1065 1070
26	Asp Leu Ser Gln Leu Gly Leu Asp Asn Ser Tyr Asn Leu Gly Asn Glu 1075 1080 1085
35	Lys Lys Arg Arg Ile Lys Arg Ile Ala Val Thr Leu Pro Thr Leu Leu 1090 1095 1100
40	Gly Pro Tyr Gln Asp Leu Glu Ala Thr Leu Val Met Gly Ala Glu Ile 1105 1110 1115 1120
	Ala Ala Leu Ser His Gly Val Asn Asp Gly Gly Arg Phe Val Thr Asp 1125 1130 1135
45	Phe Asn Asp Ser Arg Phe Leu Pro Phe Glu Gly Arg Asp Ala Thr Thr 1140 1145 1150
E()	Gly Thr Leu Glu Leu Asn Ile Phe His Ala Gly Lys Glu Gly Thr Gln 1155 1160 1165
50	His Glu Leu Val Ala Asn Leu Ser Asp Ile Ile Val His Leu Asn Tyr 1170 1175 1180
55	Ile Ile Arg Asp Ala * 1135 1190
	(2) INFORMATION FOR SEQ ID NO:27:
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1881 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
65	(ii) MOLECULE TYPE: DNA (genomic)

-149-

(ix) FEATURE:

, t

65

- (A) NAME/KEY: CDS
- 5 (B) LOCATION: 1..1881
 - (D) OTHER INFORMATION: /product = "P8"

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:27:

10		(x	i) :	SEQU	ENCE	DE	SCRI	PTI	: 110	SEQ	ID	NO : 2	7:				
10	ATO Met	Ser	GA/	A TCT 1 Ser	TTA Leu	TTI Phe	ACA Thr	CAA Glm	ACC Thi	TTC Leu	Lys	A GAA Glu	GCC	CGC Arg	CG1 Arg	GAT Asp	48
15	GCA Ala	Leu	GTM Val	GCT Ala 20	His	TAT Tyr	ATT	GCT Ala	ACT Thr	Glr	GTC Val	ccc Pro	GCA Ala	GAT Asp 30	Leu	AAA Lys	96
20	GAG Glu	AGT Ser	ATC Ile 35	Gln	ACC Thr	GCG Ala	GAT	GAT Asp 40	Leu	TAC Tyr	GAA Glu	TAT	CTG Leu 45	Leu	CTG	GAT Asp	144
25	ACC Thr	AAA Lys 50	Ile	AGC Ser	GAT Asp	C TG Leu	GTT Val 55	Thr	ACT Thr	TCA Ser	CCG Pro	CTG Leu 60	TCC Ser	GAA Glu	GCG Ala	ATT Ile	192
30	GGC Gly 65	AGT Ser	CTG Leu	CAA Gln	TTG Leu	TTT Phe 70	ATT	CAT	CGT Arg	GCG Ala	ATA Ile 75	GAG Glu	GGC Gly	TAT Tyr	GAC Asp	GGC Gly 80	240
	ACG Thr	CTG Leu	GCA Ala	GAC Asp	TCA Ser 85	GCA Ala	AAA Lys	CCC Pro	TAT Tyr	TTT Phe 90	GCC Ala	GAT Asp	GAA Glu	CAG Gln	TTT Phe 95	TTA Leu	288
35	TAT Tyr	AAC Asn	TGG Trp	GAT Asp 100	AGT Ser	TTT Phe	AAC Asn	CAC His	CGT Arg 105	TAT Tyr	AGC Ser	ACT Thr	TGG Trp	GCT Ala 110	GGC Gly	AAG Lys	336
40	GAA Glu	CGG Arg	TTC Leu 115	AAA Lys	TTC Phe	TAT Tyr	GCC Ala	GGG Gly 120	GAT Asp	TAT Tyr	ATT Ile	GAT Asp	CCA Pro 125	ACA Thr	TTG Leu	CGA Arg	384
45	TTG Leu	AAT Asn 130	AAG Lys	ACC Thr	GAG Glu	ATA Ile	TTT Phe 135	ACC Thr	GCA Ala	TTT Phe	GAA Glu	CAA Gln 140	GGT Gly	ATT Ile	TCT Ser	CAA Gln	432
50	GGG Gly 145	AAA Lys	TTA Leu	AAA Lys	AGT Ser	GAA Glu 150	TTA Leu	GTC Val	GAA Glu	TCT Ser	AAA Lys 155	TTA Leu	CGT Arg	GAT Asp	TAT Tyr	CTA Leu 160	480
	ATT Ile	AGT Ser	TAT Tyr	GAC Asp	ACT Thr 165	TTA Leu	GCC Ala	ACC Thr	CTT Leu	GAT Asp 170	TAT Tyr	ATT	ACT Thr	GCC Ala	TGC Cys 175	CAA Gln	528
55	GGC Gly	AAA Lys	GAT Asp	AAT Asn 180	AAA Lys	ACC Thr	ATC Ile	Phe	TTT Phe 185	ATT Ile	GGC Gly	CGT Arg	ACA Thr	CAG Gln 190	AAT Asn	GCA Ala	576
60	CCC '	Tyr	GCA Ala 195	TTT Phe	TAT Tyr	TGG Trp	Arg	AAA Lys 200	TTA Leu	ACT Thr	TTA Leu	Val	ACT Thr 205	GAT Asp	GGC Gly	GGT Gly	624

AAG TTG AAA CCA GAT CAA TGG TCA GAG TGG CGA GCA ATT AAT GCC GGG 672 Lys Leu Lys Pro Asp Gln Trp Ser Glu Trp Arg Ala Ile Asn Ala Gly 210 215 220

5	ATT Ile 225	AGT Ser	Gli	G GC. ⊔ Ala	a TA'	r TC: r Sei 230	. G13	G CAT / His	T ST	GA:	3 00° 4 Pr	o Phe	TOC Tr	G GAI	A AAT Asn	7 AA0 1 Asr 240	1
	AAG Lys	CTG Leu	CAC His	E ATO	CG1 Arg 245	i net	Phe	T ACT	T ATC	TC0 Ser 250	r Ly:	A GA/ 5 Glu	A GAT L Asp	AAA Lys	A ATA Ile 255	Asp	768
10	rite	vai	17.	260)	1 115	rrp) \41	. Met 265	Ser	Sei	: Asp	Tyr	270		λla	
15	2=1	Lys	275	гуз	TIE	. red	GIU	280	Ser	Phe	Thi	Asp	Tyr 285	λsn	' AGA Arg	Val	
20	GIY	290	1111	GIA	set	ser	295	Pro	Thr	Glu	Val	300	Ser	Gln	TAT	Gly	
25	TCT (Ser , 305	vsħ	VIG	GIN	met	310	116	Ser	Asp	Asp	Gly 315	Thr	Val	Leu	Ile	Phe 320	
20	G1 2	n311	210	Gly	325	via	Inr	Pro	Ser	330	GIA	Val	Thr	Leu	Cys 335	Tyr	1008
30	ush :	se.	GIŞ	340	vaı	iie	Lys	Asn	145	Ser	Ser	Thr	Gly	Ser 350	Ala	Asn	1056
35	red 3	ser	355	Lys	Asp	Tyr	Ala	Thr 360	Thr	Lys	Leu	Arg	Met 365	Cys	His	Gly	1104
- 40		70	lyr	ASN	Asp	Asn	375	Tyr	Суѕ	Asn	Phe	Thr 380	Leu	Ser	Ile	Asn	
45	ACA A Thr I 385	. 1e (GIU	Pne	Thr	390	Tyr	Gly	Thr	Phe	Ser 395	Ser	Asp	Gly	Lys	Gln 400	
50	TTT A	nr i	Pro	Pro	Ser 405	GIÀ	Ser	Ala	Ile	Asp 410	Leu	His	Leu	Pro	Asn 415	Tyr	
50	GTA G Val A	sp i	-eu	420	Ala	Leu	Leu	Asp	11e 425	Ser	Leu	Asp	Ser	Leu 430	Leu	Asn	
55	TAT G	sp (/a1 135	Gin	GIA	Gln	Phe	Gly 440	Gly	Ser	Asn	Pro	Val 445	Asp	Asn	Phe	
60		19 E	ro '	Tyr	GIA	Ile	Tyr . 455	Leu	Trp	Glu	Ile	Phe 460	Phe	His	Ile	Pro	
65	TTC C' Phe Le 465	eu v	al '	Thr	Val .	Arg 1 470	Met (Gln '	Thr	Glu	Gln 475	Arg '	Tyr	Glu	Asp	Ala 480	
	GAC AC	T T	GG '	TAC A	AAA 1	TAT A	ATT :	TTC (CGC .	AGC	GCC	GGT '	TAT (CGC (GAT (CT.	1488

	Asp	Thr	Trp	Tyr	192 Tits		Iìe	Phe	Arg	Ser 490		Gl;	Tyr	λrg	Asp 435	Ala	
5			CAG Gln		Ile												1536
10			TTG Leu 515														1584
15			Pro														1632
		Ile	TTC Phe														1680
20			CGT Arg														1728
25			CAG Gln														1776
30			ACT Thr 595														1824
35			CCG Pro														1872
,,		CTA Leu	-														1331
10	(2)	INF	ORM	ATIO	N FC	OR S	EQ I	D N	0:28	:							
15			(i)	(A) I B) 1		TΗ: : аπ	627 ino	ami aci	no a d		s					
50		(ii)	MOL	ECUL	E T	YPE:	pro	otei	n							
	Met		Xi) Glu											Arg	Arg	Asp	
55	1		Val		5					10					15		
60	Glu	Ser	Ile	20 Gln	Thr	Ala	Asp		25 Leu	Tyr	Glu	Tyr	Leu 45	30 Leu	Leu	Asp	
n.	Thr	Lys 50	35 Ile	Ser	Asp	Leu '	Val 55	40 Thr	Thr	Ser	Pro	Leu 60		Glu	Ala	Ile	
5	Gly	Ser	Leu	Gln	Leu	Phe	Ile	His	Arg -15		Ile	Glu	Gly	Tyr	Asp	Gly	
										-							

		65					7	7 C						75					8	٥
5		hr L	eu i	Ala	Asp	8 e	r Al 5	a L	.s i	ro	Туг	r Ph	e A O	la A	sp (lu	Gli		ie Le: '5	1
					100						105)					110)	y Lys	
10			•						1	20					1	25			u Arg	
		-	•					13	, ,					14	10				r Gln	
15								•					12	כ					r Leu 160	
20						103	,					1/()					175		
				•	-						182						190		Ala	
25				, ,					20	,0					20	5			Gl;	
30			•					21						22	0				Glÿ	
			٠				230						235	5					Asn 240	
35					•	C # 3			,			250						255		
				•	. •					4	00					2	70		Ala	
40				-					20	U					28	5			Val	
45								230						300					Gly	
43							310						315	Thr					320	
50					3	25					3	30		Val				335		
				34	•					34	15			Thr		3 5	50			
55			,,,,						360					Arg	365					
6()	Gln	•						3/5						380						
****	Thr 385					-	90					-	395						400	
65	Phe				40	, ,					4.	10					4	15		
	Val .	usb	Leu	ASN	Al	a L	eu l	Leu	Asp		e 50		.eu	Asp	Ser	Le	u L	eu /	Asn	

5

20

35

50

55

120	425	130

Tyr Asp Val Gin Giy Gin Phe Giy Giy Ser Ash Pro Val Asp Ash the 435 440 445

Ser Gly Pro Tyr Gly Ile Tyr Leu Trp Glu Ile Phe Phe His Ile Pro 450 460

Phe Leu Val Thr Val Arg Met Gln Thr Glu Gln Arg Tyr Glu Asp Ala 10 465 470 475 480

Asp Thr Trp Tyr Lys Tyr Ile Phe Arg Ser Ala Gly Tyr Arg Asp Ala 485 490 495

15 Asn Gly Gln Leu Ile Met Asp Gly Ser Lys Pro Arg Tyr Trp Asn Val

Met Pro Leu Gin Leu Asp Thr Ala Trp Asp Thr Thr Gin Pro Ala Thr 515 520 525

Thr Asp Pro Asp Val IIe Ala Met Ala Asp Pro Met His Tyr Lys Leu 530 535 540

Ala Ile Phe Leu His Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp Ser 545 550 555 550

Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Val Glu Ala Lys Met Tyr 565 570 575

30 Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro Arg Pro Asp Ile His Thr 580 585 590

Thr Asn Thr Trp Pro Asn Pro Thr Leu Ser Lys Glu Ala Gly Ala Ile
595 600 605

Ala Thr Pro Thr Phe Leu Ser Ser Pro Glu Val Met Thr Phe Ala Ala 610 615 620

Trp Leu Ser 40 625

(2) INFORMATION FOR SEQ ID NO:29:

- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1689
 - (D) OTHER INFORMATION: /product = "S8"
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GCA GGC GAT ACC GCA AAT ATT GGC GAC GGT GAT TTC TTG CCA CCG TAC
Ala Gly Asp Thr Ala Asn Ile Gly Asp Gly Asp Phe Leu Pro Pro Tyr
1 10 15

	.2.4 .As	c sa n As	T ST P Va	A CT. l Le	u Lei	c scr u Gl;	r tag y Tyi	TGC Tri	G GA' D Asi 25	o Ly:	A CT s Le	T GAG	G TT	A CGG u Arg	g Le	A TAC u Tyr	35
5	AA Asi	c cr n Le	G CG u Ard	g HI:	C AAC S ASI	r cro	3 AG1 1 Set	CTC Leu 40	ı yet	r GGr	r ca / Glr	A CCC	CTA Let	A AA?	י רי כידע	G CCA Pro	144
10	OT: Let	G TA	r wre	C ACC	CCC Pro	GT.	GAC Asp 55	Pro	AA Lys	ACC Thi	CTC	CA3 Glr 60	ı Arg	CAC Glr	G CAA	A GCC Ala	132
15	GG; Gl; 65	(GI)	G GAG	GGT Gly	Thr	GGC Gly 70	Ser	AGT Ser	Pro	GCT Ala	GGT Gly 75	Gly	CAA Gln	GGC Gly	AGT Ser	GTT Val 80	240
20	GII	. 617	(iii	Arg	85	Pro	Leu	Leu	Val	Glu 90	Arg	Ala	Arg	Ser	Ala 95		
25	361	Let	. red	100	Gin	Pne	Gly	Asn	Ser 105	Leu	Gln	Thr	Thr	Leu 110	Glu	CAT His	336
	CAG Gln	GAT Asp	AAT Asn 115	GIU	AAA Lys	ATG Met	ACG Thr	ATA Ile 120	CTG Leu	TTG	CAG Gln	ACT Thr	CAA Gln 125	CAG Gln	GAA Glu	GCC Ala	384
30	ATC	CTG Leu 130	rys	CAT	CAG Gln	CAC His	GAT Asp 135	ATA Ile	CAA Gln	CAA Gln	AAT Asn	AAT Asn 140	CTA Leu	AAA Lys	GGA Gly	TTA Leu	432
35	CAA Gin 145	CAC	AGC Ser	CTG Leu	ACC Thr	GCA Ala 150	TTA Leu	CAG Gln	GCT Ala	AGC Ser	CGT Arg 155	GAT Asp	GGC Gly	GAC Asp	ACA Thr	TTG Leu 160	480
40	CGG Arg	CAA Gln	AAA Lys	CAT His	TAC Tyr 165	AGC Ser	GAC Asp	CTG Leu	ATT Ile	AAC Asn 170	GGT Gly	GGT Gly	CTA Leu	TCT Ser	GCG Ala 175	GCA Ala	528
45	GIU	116	GCC Ala	180	Leu	Thr	Leu	Arg	Ser 185	Thr	Ala	Met	Ile	Thr 190	Asn	Gly	576
	GTT Val	GCA Ala	ACG Thr 195	GGA Gly	TTG Leu	CTG Leu	ATT Ile	GCC Ala 200	GGC Gly	GGA Gly	ATC Ile	GCC Ala	AAC Asn 205	GCG Ala	GTA Val	CCT Pro	624
50	AAC Asn	GTC Val 210	TTC Phe	GGG Gly	CTG Leu	GCT Ala	AAC Asn 215	GGT Gly	GGA Gly	TCG Ser	GAA Glu	TGG Trp 220	GGA Gly	GCG Ala	CCA Pro	TTA Leu	672
55	ATT Ile 225	GGC Gly	TCC Ser	GGG Gly	Gln	GCA Ala 230	ACC Thr	CAA Gln	GTT Val	GGC	GCC Ala 235	GGC Gly	ATC Ile	CAG Gln	GAT Asp	CAG Gln 240	720
60	AGC Ser	GCG Ala	GGC Gly	Ile	TCA Ser 245	GAA (Glu	GTG . Val	ACA Thr	Ala	GGC Gly 250	TAT Tyr	CAG Gln	CGT Arg	CGT Arg	CAG Gln 255	GAA Glu	768
65	GAA Glu	TGG Trp	Ala	TTG Leu 260	CAA (Gln /	CGG (Arg /	GAT A	Ile.	GCT : Ala : 265	GAT Asp	AAC Asn	GAA . Glu	Ile	ACC Thr 270	CAA Gln	CTG Leu	316
	GAT (GCC	CAG	ATA (CAA /	AGC (CTG (CAA	gag (CAA .	ATC .	ACG .	ATG (GCA	CAA	AAA	364

12 ...

Asp Ala Gin Tie Gin Ser Leu Gln Glu Gln Tie Thr Met Ala Gln Lys CAG ATC ACG CTC TCT GAA ACC GAA CAA GCG AAT GCC CAA GCG ATT TAT 912 Gln Ile Thr Leu Ser Glu Thr Glu Gln Ala Asn Ala Gln Ala Ile Tyr GAC CTG CAA ACC ACT CGT TTT ACC GGG CAG GCA CTG TAT AAC TGG ATG 960 Asp Leu Gln Thr Thr Arg Phe Thr Gly Gln Ala Leu Tyr Asn Trp Met 10 315 GCC GGT CGT CTC TCC GCG CTC TAT TAC CAA ATG TAT GAT TCC ACT CTG 1008 Ala Gly Arg Leu Ser Ala Leu Tyr Tyr Gln Met T;r Asp Ser Thr Leu 330 15 CCA ATC TGT CTC CAG CCA AAA GCC GCA TTA GTA CAG GAA TTA GGC GAG 1056 Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu Leu Gly Glu 340 345 20 AAA GAG AGC GAC AGT CTT TTC CAG GTT CCG GTG TGG AAT GAT CTG TGG 1104 Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn Asp Leu Trp 355 360 CAA GGG CTG TTA GCA GGA GAA GGT TTA AGT TCA GAG CTA CAG AAA CTG 1152 Gin Gly Leu Leu Ala Gly Glu Gly Leu Ser Ser Glu Leu Gin Lys Leu GAT GCC ATC TGG CTT GCA CGT GGT GGT ATT GGG CTA GAA GCC ATC CGC 1200 Asp Ala Ile Trp Leu Ala Arg Gly Gly Ile Gly Leu Glu Ala Ile Arg 30 390 395 ACC GTG TCG CTG GAT ACC CTG TTT GGC ACA GGG ACG TTA AGT GAA AAT 1248 Thr Val Ser Leu Asp Thr Leu Phe Gly Thr Gly Thr Leu Ser Glu Asn 405 ATC AAT AAA GTG CTT AAC GGG GAA ACG GTA TCT CCA TCC GGT GGC GTC 1296 Ile Asn Lys Val Leu Asn Gly Glu Thr Val Ser Pro Ser Gly Gly Val 420 ACT CTG GCG CTG ACA GGG GAT ATC TTC CAA GCA ACA CTG GAT TTG AGT 1344 Thr Leu Ala Leu Thr Gly Asp Ile Phe Gln Ala Thr Leu Asp Leu Ser CAG CTA GGT TTG GAT AAC TCT TAC AAC TTG GGT AAC GAG AAG AAA CGT 1392 Gln Leu Gly Leu Asp Asn Ser Tyr Asn Leu Gly Asn Glu Lys Lys Arg 455 CGT ATT AAA CGT ATC GCC GTC ACC CTG CCA ACA CTT CTG GGG CCA TAT 1440 Arg Ile Lys Arg Ile Ala Val Thr Leu Pro Thr Leu Leu Gly Pro Tyr 50 CAA GAT CTT GAA GCC ACA CTG GTA ATG GGT GCG GAA ATC GCC GCC TTA 1488 Gin Asp Leu Glu Ala Thr Leu Val Met Gly Ala Glu Ile Ala Ala Leu 485 490 55 TCA CAC GGT GTG AAT GAC GGA GGC CGG TTT GTT ACC GAC TTT AAC GAC 1536 Ser His Gly Val Asn Asp Gly Gly Arg Phe Val Thr Asp Phe Asn Asp AGC CGT TTT CTG CCT TTT GAA GGT CGA GAT GCA ACA ACC GGC ACA CTG 1584 Ser Arg Phe Leu Pro Phe Glu Gly Arg Asp Ala Thr Thr Gly Thr Leu 520 525 GAG CTC AAT ATT TTC CAT GCG GGT AAA GAG GGA ACG CAA CAC GAG TTG 1632 65 Glu Leu Asn Ile Phe His Ala Gly Lys Glu Gly Thr Gln His Glu Leu

STC GCG AAT CTG AGT GAC ATC ATT GTG CAT CTG AAT TAC ATC ATT CGA 1430 Wal Ala Ash Leu Ser Asp Ile Ile Wal His Leu Ash Tyr Ile Ile Arg 555 545 550 GAC GCG TAA 1539 Asp Ala * 10 (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 563 amino acids 15 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: Ala Gly Asp Thr Ala Asn Ile Gly Asp Gly Asp Phe Leu Pro Pro T;r 25 Asn Asp Val Leu Leu Gly Tyr Trp Asp Lys Leu Glu Leu Arg Leu Tyr Asn Leu Arg His Asn Leu Ser Leu Asp Gly Gln Pro Leu Asn Leu Pro 30 Leu Tyr Ala Thr Pro Val Asp Pro Lys Thr Leu Gln Arg Gln Gln Ala 35 Gly Gly Asp Gly Thr Gly Ser Ser Pro Ala Gly Gly Gln Gly Ser Val Gln Gly Trp Arg Tyr Pro Leu Leu Val Glu Arg Ala Arg Ser Ala Val 40 Ser Leu Leu Thr Gln Phe Gly Asn Ser Leu Gln Thr Thr Leu Glu His Gin Asp Asn Glu Lys Met Thr Ile Leu Leu Gln Thr Gln Gln Glu Ala 45 Ile Leu Lys His Gln His Asp Ile Gln Gln Asn Asn Leu Lys Gly Leu 50 Gin His Ser Leu Thr Ala Leu Gin Ala Ser Arg Asp Gly Asp Thr Leu 150 Arg Gln Lys His Tyr Ser Asp Leu Ile Asn Gly Gly Leu Ser Ala Ala 55 Glu Ile Ala Gly Leu Thr Leu Arg Ser Thr Ala Met Ile Thr Asn Gly 180 185 Val Ala Thr Gly Leu Leu Ile Ala Gly Gly Ile Ala Asn Ala Val Pro 60 Asn Val Phe Gly Leu Ala Asn Gly Gly Ser Glu Trp Gly Ala Pro Leu 65 Ile Gly Ser Gly Gln Ala Thr Gln Val Gly Ala Gly Ile Gln Asp Gln

	23	:5					23	0				23	5				240
5	Se	er A	ia	Gl7	Ile	se 24	r Glu 5	ı∵a	l Th	r Al	a G1 25	у Ту 0	r Gl	n Ar	g Ar	g G1 25	n Glu 5
_	Gl	u T	rp.	Ala	Let 260	3 Gl:	n Arg	j As	p Il	e Al. 26	a As 5	p As	n Gl	ıIl	e Th: 270		n Leu
10			•	275					286	0				285	5		ı Lys
		25	70					295	5				300)			Tyr
15	30	>					310					315	5				320
20						325					33()				335	
					340		Pro			345					350		
25			3	>>			Leu		360					365			
		37	0				Gly	375					380				
30	Asp 385	Al.	a I	le	Trp	Leu	Ala 390	Arg	Gly	Gly	Ile	Gly 395	Leu	Glu	Ala	Ile	Arg 400
35						405	Thr				410					415	
				•	420		Asn			425					430		
40			4.3	15			Gly		440					445			
		450						455					460				
45	465						Ala 470					475					480
50					•	485	Thr				490					495	
				5	00		Asp (505					510		
55			51	5			Phe (520					525			
•		530						535					540				
60	7a1 545	Ala	λsı	n L	eu S	er .	Asp 1 550	le	Ile '	Val :		Leu . 555	Asn '	Cyr :	Ile		Arg 560
65	Asp	Ala	•														

```
(Z) INFORMATION FOR SEQ ID NO:31:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 4458 base pairs
  5
                  (B) TYPE: nucleic acid
                  (C) STPANDEDNESS: double
                  (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: DNA (genomic)
 10
          (ix) FEATURE:
                 (A) NAME/KEY: CDS
                 (B) LOCATION: 1..4458
 15
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
      ATG CAG GAT TCA CCA GAA GTA TCG ATT ACA ACG CTG TCA CTT CCC AAA
     Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Leu Ser Leu Pro Lys
 20
                                          10
     GGT GGC GGT GCT ATC AAT GGC ATG GGA GAA GCA CTG AAT GCT GCC GGC
     Gly Gly Gly Ala Ile Asn Gly Met Gly Glu Ala Leu Asn Ala Ala Gly
25
     CCT GAT GGA ATG GCC TCC CTA TCT CTG CCA TTA CCC CTT TCG ACC GGC
     Pro Asp Gly Met Ala Ser Leu Ser Leu Pro Leu Pro Leu Ser Thr Gly
30
     AGA GGG ACG GCT CCT GGA TTA TCG CTG ATT TAC AGC AAC AGT GCA GGT
     Arg Gly Thr Ala Pro Gly Leu Ser Leu Ile Tyr Ser Asn Ser Ala Gly
     AAT GGG CCT TTC GGC ATC GGC TGG CAA TGC GGT GTT ATG TCC ATT AGC
     Asn Gly Pro Phe Gly Ile Gly Trp Gln Cys Gly Val Met Ser Ile Ser
                          70
     CGA CGC ACC CAA CAT GGC ATT CCA CAA TAC GGT AAT GAC GAC ACG TTC
     Arg Arg Thr Gln His Gly Ile Pro Gln Tyr Gly Asn Asp Asp Thr Phe
40
     CTA TCC CCA CAA GGC GAG GTC ATG AAT ATC GCC CTG AAT GAC CAA GGG
     Leu Ser Pro Gin Gly Glu Val Met Asn Ile Ala Leu Asn Asp Gin Gly
                                     105
    CAA CCT GAT ATC CGT CAA GAC GTT AAA ACG CTG CAA GGC GTT ACC TTG
    Gln Pro Asp Ile Arg Gln Asp Val Lys Thr Leu Gln Gly Val Thr Leu
                                120
50
    CCA ATT TCC TAT ACC GTG ACC CGC TAT CAA GCC CGC CAG ATC CTG GAT
    Pro Ile Ser Tyr Thr Val Thr Arg Tyr Gln Ala Arg Gln Ile Leu Asp
                            135
    TTC AGT AAA ATC GAA TAC TGG CAA CCT GCC TCC GGT CAA GAA GGA CGC
    Phe Ser Lys Ile Glu Tyr Trp Gln Pro Ala Ser Gly Gln Glu Gly Arg
    145
                        150
    GCT TTC TGG CTG ATA TCG ACA CCG GAC GGG CAT CTA CAC ATC TTA GGG
    Ala Phe Trp Leu Ile Ser Thr Pro Asp Gly His Leu His Ile Leu Gly
                    165
    AAA ACC GCG CAG GCT TGT CTG GCA AAT CCG CAA AAT GAC CAA CAA ATC 576
    Lys Thr Ala Gln Ala Cys Leu Ala Asn Pro Gln Asn Asp Gln Gln Ile
```

			18	3				135	i				190	,	
5	 -		Le			_		∵al			GCC Ala		Glu		 624
10		r Glr					Asp				TGT C;;s 220	Asp			
117	Thi					Val					TAT Tyr				720
15					Lys					Leu	TTC Phe				758
20				Pro							CTG Leu				816
25			Asp								ACA Thr				864
30		Gln									TCT Ser 300				912
30	Phe										CAA Gln				960
35											ACC Thr				1008
40											λλλ Lys				1056
45											GAA Glu				1104
50											CAA Gln 380				
50											CTA Leu				1200
55											GGA Gly				1248
60											TAT Tyr				1296
65						Ser					TAC Tyr				1344

	Pr	A 37 o Le 45	in Er	T AT	C CT r Le	A CCG	C AA: O Asi 45:	y rei	G CA u Gl	G GA n As	AA T P As	T GC: n Al 46	a Se	A TTO r Lei	G ATC	GA: Asp	r 1392 o
5	16	5	11 G1	y As	b GI	470	n Leu	ı yal	Tr	p Va	1 Va 47	l Thi	r Ala	a Ser	Gly	430)
10	AL.	, GI	1 11	I HI:	48!	5	1 GIF	ı Pro) AS	49	у <u>Гу</u> я О	s Trp	Thi	His	495	Thr	
15	Pro	A ATO	AA C e As	T GCC n Ala 500	r rec	CCC Pro	GTG Val	GAA Glu	TA: Ty: 505	: Phe	r cat	CCA Pro	AGC Ser	ATC Ile 510	Gln	TTC Phe	1536
20	GC7 Ala	GA(CT Lei 51	i ini	GCG	GCA Ala	GGC Gly	TTA Leu 520	Ser	GAT Asp	TTA Leu	GTC Val	Leu 525	Ile	GGG	CCG Pro	1584
	AAA Lys	AGC Ser 530	va.	G CGI L Arg	CTA	TAT	GCC Ala 535	AAC Asn	CAG Gln	CGA Arg	A AAC J Asn	GGC Gly 540	Trp	CGT Arg	AAA Lys	GGA Gly	1632
25	GAA Glu 545	ASE	CTC Val	ccc Pro	CAA Gln	TCC Ser 550	Thr	GGT Gly	ATC	ACC	CTG Leu 555	Pro	GTC Val	ACA Thr	GGG Gly	ACC Thr 560	1680
30	GAT Asp	GCC Ala	CGC Arg	: AAA Lys	CTG Leu 565	GTG Val	GCT Ala	TTC Phe	AGT Ser	GAT Asp 570	Met	CTC Leu	GGT Gly	TCC Ser	GGT Gly 575	CAA Gln	1728
35	CAA Gln	CAT	Leu Leu	GTG Val 580	GAA Glu	ATC Ile	AAG Lys	GGT Gly	AAT Asn 585	CGC Arg	GTC Val	ACC Thr	TGT Cys	TGG Trp 590	CCG Pro	AAT Asn	1776
40	CTA Leu	GGG Gly	CAT His 595	GIA	CGT Arg	TTC Phe	ggt Gly	CAA Gln 600	CCA Pro	CTA Leu	ACT Thr	CTG Leu	TCA Ser 605	GGA Gly	TTT Phe	AGC Ser	1824
	CAG Gln	CCC Pro 610	GIU	AAT Asn	AGC Ser	TTC Phe	AAT Asn 615	CCC Pro	GAA Glu	CGG Arg	CTG Leu	TTT Phe 620	CTG Leu	GCG Ala	GAT Asp	ATC Ile	1872
45	GAC Asp 625	GGC Gly	TCC Ser	GGC Gly	ACC Thr	ACC Thr 630	GAC Asp	CTT Leu	ATC Ile	TAT Tyr	GCG Ala 635	CAA Gln	TCC Ser	GGC Gly	TCT Ser	TTG Leu 640	1920
50	CTC Leu	ATT Ile	TAȚ Tyr	CTC Leu	AAC Asn 645	CAA Gln	AGT Ser	GGT Gly	AAT Asn	CAG Gln 650	TTT Phe	GAT Asp	GCC Ala	CCG Pro	TTG Leu 655	ACA Thr	1968
55	TTA Leu	GCG Ala	TTG Leu	CCA Pro 660	GAA Glu	GCC	GTA Val	CAA Gln	TTT Phe 665	GAC Asp	AAC Asn	ACT Thr	TGC Cys	CAA Gln 670	CTT Leu	CAA Gln	2015
60	GTC Val	GCC Ala	GAT Asp 675	ATT Ile	CAG Gln	GGA Gly	Leu	GGG Gly 680	ATA Ile	GCC Ala	AGC Ser	TTG Leu	ATT Ile 685	CTG Leu	ACT Thr	GTG Val	2064
	Pro	CAT His 690	ATC Ile	GCG Ala	CCA Pro	His	CAC ' His '	TGG Trp	CGT Arg	TGT Cys	GAC Asp	CTG Leu 700	TCA Ser	CTG Leu	ACC Thr	AAA Lys	2112
65	CCC Pro	TGG Trp	TTG Leu	TTG Leu	AAT Asn	GTA . Val !	ATG A	AAC . Asn .	AAT Asn	AAC Asn	CGG Arg	GGC Gly	GCA Ala	CAT (CAC . His '	ACG Thr	2160

	705	i				710	ı			715				720	
5				CG1 Arg		Ser				Leu				Gln	2303
01				GCA Ala 740	Gly				C7s				Pro		2256
				Trp				Gln				Gly			2304
15			Ser	GAA Glu							Asp				2352
20		Glu		AGA Arg											2400
25				GGC											2448
30				GCC Ala 820											2496
30				CAG Gln											2544
35				TGG Trp											2592
40				CAA Gln											2640
45				GAG Glu											2688
50				GTC Val 900											2736
				ACT Thr											2784
55	Ser			TAT Tyr		Arg									2832
60				CAA Gln	His				Gln						2880
65				CCG Pro				Pro							2928

	ACT Thr	: ITC	g coo	GAA Glu 980	Thr	CTA Leu	Phe	GAC Asp	385	Ser	TAI Tyr	'GAT 'Asp	GAT Asp	CAA Gln 990	Gln	TAA 31n	2976
5	CTA Leu	TT?	A CGI Arg 995	Leu	GTG Val	AGA Arg	CAA Gln	AAA Lys 100	Asn	AGC Ser	TGG	CAT	CAC His 100	Leu	ACT Thr	GAT Asp	3024
10	ggg gly	GAA Glu 101	. Asn	TGG Trp	CGA Arg	TTA Leu	GGT Gly 101	Leu	CCG Pro	AAT Asn	GCA Ala	CAA Gln 102	Arg	CGT	GAT Asp	GTT Val	3072
15	TAT Tyr 102	Thr	TAT Tyr	Asp	csc Arg	AGC Ser 103	Lys	ATT	CCA	ACC	GAA Glu 103	Gly	ATT Ile	TCC Ser	CTT Leu	GAA Glu 1046	3120 0
20	ATC Ile	TTG Leu	CTG Leu	AAA Lys	GAT Asp 104	Asp	GGC	CTG Leu	CTA	GCA Ala 105	Asp	GÁA Glu	AAA Lys	GCG Ala	GCC Ala 105	Val	3168
	TAT Tyr	CTG Leu	GGA Gly	CAA Gln 106	Gln	CAG Gln	ACG Thr	TTT Phe	TAC Tyr 106	Thr	GCC Ala	GGT Gly	CAA Gln	GCG Ala 107	Glu	GTC Val	3216
25	ACT Thr	CTA Leu	GAA Glu 107	Lys	CCC	ACG Thr	TTA Leu	CAA Gln 108	Ala	CTG Leu	GTC Val	GCG Ala	TTC Phe 1089	Gln	GAA Glu	ACC Thr	3264
30	GCC Ala	ATG Met 109	Met	GAC Asp	GAT Asp	ACC Thr	TCA Ser 1095	Leu	CAG Gln	GCG Ala	TAT Tyr	GAA Glu 110	Gly	GTG Val	ATT Ile	GAA Glu	3312
35	GAG Glu 1105	Gln	GAG Glu	TTG Leu	AAT Asn	ACC Thr 1110	Ala	CTG Leu	ACA Thr	CAG Gln	GCC Ala 111	Gly	TAT Tyr	CAG Gln	CAA Gln	GTC Val 1120	3360)
40	GCG Ala	CGG Arg	TTG Leu	TTT Phe	AAT Asn 112	Thr	AGA Arg	TCA Ser	GAA Glu	AGC Ser 113	Pro	GTA Val	TGG Trp	GCG Ala	GCA Ala 1135	Arg	3408
	CAA Gln	GGT Gly	TAT Tyr	ACC Thr 1140	Asp	TAC Tyr	GGT Gly	GAC Asp	GCC Ala 114	Ala	CAG Gln	TTC Phe	TGG Trp	CGG Arg 1150	Pro	CAG Gln	3456
45	GCT Ala	CAG Gln	CGT Arg 115	Asn	TCG Ser	TTG Leu	CTG Leu	ACA Thr 1160	Gly	AAA Lys	ACC Thr	ACA Thr	CTG Leu 1165	Thr	TGG Trp	GAT Asp	3504
50			His					Gln					Ala				3552
55	ACG Thr 1185	Gln	GCC Ala	CAT His	TAC Tyr	GAT Asp 1190	Tyr	CGT Arg	TTC Phe	CTT Leu	ACA Thr 119	Pro	GTA Val	CAA Gln	CTG Leu	ACA Thr 1200	3600
6()			AAT Asn			Gln					Leu					Arg	3648
			ACC Thr		Arg					Glu					Ala		3596
65			AAC Asn														3744

1235 1240 1245

GCA TTA ACC GGC GCA CTC CCT STT GCC CAA TGT TTA GTC TAT GCC GTT 3732 Ala Leu Thr Gly Ala Leu Pro Val Ala Gln Cys Leu Val Tyr Ala Val 5 1250 1255 1260

GAT AGC TGG ATG CCG TCG TTA TCT TTG TCT CAG CTT TCT CAG TCA 3840 Asp Ser Trp Met Pro Ser Leu Ser Leu Ser Gln Leu Ser Gln Ser Gln 1265 1270 1275 1280

- I()

 GAA GAG GCA GAA GCG CTA TGG JCG CAA CTG CGT GCC GCT CAT ATG ATT 3888
 Glu Glu Ala Glu Ala Leu Trp Ala Gln Leu Arg Ala Ala His Met Ile

 1285 1290 1295
- 15 ACC GAA GAT GGG AAA GTG TGT GCG TTA AGC GGG AAA CGA GGA ACA AGC 3936 Thr Glu Asp Gly Lys Val Cys Ala Leu Ser Gly Lys Arg Gly Thr Ser 1300 1305
- CAT CAG AAC CTG ACG ATT CAA CTT ATT TCG CTA TTG GCA AGT ATT CCC 3984

 His Gin Asn Leu Thr Ile Gin Leu Ile Ser Leu Leu Ala Ser Ile Pro1315 1320 1325
- CGT TTA CCG CCA CAT GTA CTG GGG ATC ACC ACT GAT CGC TAT GAT AGC 4032 Arg Leu Pro Pro His Val Leu Gly Ile Thr Thr Asp Arg Tyr Asp Ser 25 1330 1335 1340
- GAT CCG CAA CAG CAG CAC CAA CAG ACG GTG AGC TTT AGT GAC GGT TTT 4080 Asp Pro Gln Gln His Gin Gln Thr Val Ser Phe Ser Asp Gly Phe 1345 1350 1350 1360
 - GGC CGG TTA CTC CAG AGT TCA GCT CGT CAT GAG TCA GGT GAT GCC TGG 4128 Gly Arg Leu Leu Gln Ser Ser Ala Arg His Glu Ser Gly Asp Ala Trp 1365 1370 1375
- 35 CAA CGT AAA GAG GAT GGC GGG CTG GTC GTG GAT GCA AAT GGC GTT CTG 4176
 Gln Arg Lys Glu Asp Gly Gly Leu Val Val Asp Ala Asn Gly Val Leu
 1380 1385 1390
- GTC AGT GCC CCT ACA GAC ACC CGA TGG GCC GTT TCC GGT CGC ACA GAA 4224

 Val Ser Ala Pro Thr Asp Thr Arg Trp Ala Val Ser Gly Arg Thr Glu

 1395

 1400

 1405
- TAT GAC GAC AAA GGC CAA CCT GTG CGT ACT TAT CAA CCC TAT TTT CTA 4272
 Tyr Asp Asp Lys Gly Gln Pro Val Arg Thr Tyr Gln Pro Tyr Phe Leu
 45 1410 1415 1420
 - AAT GAC TGG CGT TAC GTT AGT GAT GAC AGC GCA CGA GAT GAC CTG TTT 4320
 Asn Asp Trp Arg Tyr Val Ser Asp Asp Ser Ala Arg Asp Asp Leu Phe
 1425 1430 1435 1440
 - GCC GAT ACC CAC CTT TAT GAT CCA TTG GGA CGG GAA TAC AAA GTC ATC 4368 . Ala Asp Thr His Leu Tyr Asp Pro Leu Gly Arg Glu Tyr Lys Val Ile $1445 \hspace{1.5cm} 1450 \hspace{1.5cm} 1455 \hspace{1.5cm} .$
- 55 ACT GCT AAG AAA TAT TTG CGA GAA AAG CTG TAC ACC CCG TGG TTT ATT 4416
 Thr Ala Lys Lys Tyr Leu Arg Glu Lys Leu Tyr Thr Pro Trp Phe Ile
 1460 1465 1470
- GTC AGT GAG GAT GAA AAC GAT ACA GCA TCA AGA ACC CCA TAG
 6() Val Ser Glu Asp Glu Asn Asp Thr Ala Ser Arg Thr Pro *
 1475 1480 1485
 - (2) INFORMATION FOR SEQ ID NO:32:

..

5			(1) SE	(B)	LEN	GTH	RACT : 14 amin GY:	86 a	nime Li:	S: o ac	ids:				
J			(ii) MC	LECT	JLE	TYPE	E: p	rote	ein				.:		
10			(xi								EQ I					
		1			5	•				10)				15	
15	Gl	/ Gly	/ Gly	/ Ala 20	lle	Asr	Gly	/ Met	Gly 25	Glu	Ala	Leu	Asr	Ala 30		Gly
	Pro	a Ası	Gl ₃	Met	Ala	Ser	Leu	Ser 40	Leu	Pro	Leu	Pro	Leu 45		Thr	Gly
20	Arc	Gly 50	Thr	Ala	Pro	Gly	Leu 55	Ser	Leu	Ile	Tyr	Ser 60		Ser	Ala	Gly
25	Asn 65	Gly	Pro	Phe	Gly	Ile 70	Gly	Trp	Gln	Cys	Gly 75		Met	Ser	Ile	ser 30
	Arg	Arg	Thr	Gln	His 85	Gly	Ile	Pro	Gln	Туг 90		Asn	Asp	Asp	Thr 95	Phe
30	Leu	Ser	Pro	Gln 100	Gly	Glu	Val	Met	Asn 105	Ile	Ala	Leu	Asn	Asp 110		Gly
	Gln	Pro	Asp 115	Ile	Arg	Gln	Asp	Val 120	Lys	Thr	Leu	Gln	Gly 125	Val	Thr	Leu
35	Pro	11e 130	Ser	Tyr	Thr	Val	Thr 135	Arg	Tyr	Gln	Ala	Arg 140	Gln	Ile	Leu	Asp
40	Phe 145	Ser	Lys	Ile	Glu	Туг 150	Trp	Gln	Pro	Ala	Ser 155	Gly	Gln	Glu	Gly	Arg 160
	Ala	Phe	Trp	Leu	Ile 165	Ser	Thr	Pro	Asp	Gly 170	His	Leu	His	Ile	Leu 175	Gly
45	Lys	Thr	Ala	Gln 180	Ala	Cys	Leu	Ala	Asn 185	Pro	Gln	Asn	Asp	Gln 190	Gln	Ile
	Ala	Gln	Trp 195	Leu	Leu	Glu	Glu	Thr 200	Val	Thr	Pro	Ala	Gly 205	Glu	His	Val
50	ser	Tyr 210	Gln	Tyr	Arg	Ala	Glu 215	Asp	Glu	Ala	His	Cys 220	Asp	Asp	Asn	Glu
55	Lys 225	Thr	Ala	His	Pro	Asn 230	Val	Thr	Ala	Gln	Arg 235	Tyr	Leu	Val	Gln	Val 240
	λsn	Tyr	Gly	Asn	Ile 245	Lys	Pro	Gln	Ala	Ser 250	Leu	Phe	Val	Leu	Asp 255	Asn
60	Ala	Pro	Pro	Ala 260	Pro	Glu	Glu		Leu 265	Phe	His	Leu	Val	Phe 270	Asp	His
	Gly	Glu	Arg 275	Asp	Thr	Ser		His 280	Thr	Val	Pro	Thr	Trp 285	Asp	Ala	Gly
65	Thr	Ala	Gln	Trp	Ser	Val	Arg	Pro	Asp	Ile	Phe	Ser	Arg	Tyr	Glu	Tyr

		3	90				29	5				30	0			
5	G1 30	.y Pi 15	he G	lu Va	al Ar	g Th:	r Ar	g Ar	g Le	u cy	s Gl:		n Va	l Le	u Me	t Phe 320
					32	5				33	0		•		33'	
10				34	0				345	5				350)	r Val
			35	55				360)				369	5		/ Arg
15	•	37	0				375					-380)			Leu
20	389	5				390					395					400
					405					410					415	
25	Gly	Me	t Le	u Ty:	r Glm	a Asp	Arg	r Gly	Ala 425		Trp	Tyr	Lys	Ala 430		Gln
	Arg	Gli	n G1 43	u Asp S	Gly	, yab	Ser	Asn 440	Ala	Val	Thr	Tyr	Asp 445		Ile	Ala
30	Pro	450	ı Pr	o Thr	Leu	Pro	Asn 455	Leu	Gln	Asp	Asn	Ala 460	Ser	Leu	Met	Asp
35	Ile 465	Ası	Gly	/ yeb	Gly	Gln 470	Leu	Asp	Trp	Val	Val 475	Thr	Ala	Ser	Gly	Ile 480
	Arg	Gly	Ty1	His	Ser 485	Gln	Gln	Pro	Asp	Gly 490	Lys	Trp	Thr	His	Phe 495	Thr
40	Pro	Ile	Ası	3 Ala 500	Leu	Pro	Val	Glu	Tyr 505	Phe	His	Pro	Ser	Ile 510	Gln	Phe
	Ala	Asp	515	Thr	Gly	Ala	Gly	Leu 520	Ser	Asp	Leu	Val	Leu 525	Ile	Gly	Pro
45	Lys	Ser -530	Val	. Arg	Leu	Tyr	Ala 535	Asn	Gln	Arg	Asn	Gly 540	Trp	Arg	Lys	Gly
50	Glu 545	Asp	Val	Pro	Gln	Ser 550	Thr	Gly	Ile	Thr	Leu 555		Val	Thr	Gly	Thr 560
	Asp	Ala	Arg	Lys	Leu 565	Val	Ala	Phe	Ser	Asp 570	Met	Leu	Gly	Ser	Gly 575	Gln
55	Gln	His	Leu	Val 580	Glu	Ile	Lys	Gly	Asn 585	Arg	Val	Thr	Cys	Trp 590	Pro	Asn
	Leu	Gly	His 595	Gly	Arg	Phe (Gly	Gln 600	Pro	Leu	Thr		Ser 605	Gly	Phe	Ser
60	Gln	Pro 610	Glu	Asn	Ser	Phe i	Asn 515	Pro	Glu	Arg		Phe 620	Leu	Ala	Asp	Ile
65	Asp 625	Gly	Ser	Gly	Thr	Thr 2	Asp	Leu	Ile		Ala (635	Gln .	Ser	Gly		Leu 6 4 0
	Leu	Ile	Tyr	Leu	Asn	Gln s	Ser	Gly .	Asn (Gln	Phe i	Asp A	Ala	Pro .	Leu	Thr

						ó	45					5	55 ū					s ⁱ	55
	1 5	Leu	Ala	Leu	Pr 55	0 G	lu G	17 3	al	Glr	n Pl	ne .3 55	sp.	Asn	Thr	c _y	s G	ln L.	eu Gln
	V	al.	Ala	Asp 675	Il	e G	ln G	ly [.eu	Gl; 680	11	e A	la S	Ser	Leu	11 68	e L e	u Th	ır Val
10	P	ro i	His 590	Ile	Ala	a Pi	:0 н	is.H õ	is 95	Trp	Ar	g C	ys A	sp	Leu 700	Se	r Le	u Th	r Lys
.0													,	7.2					s Thr
15							•					/ 3	50					73	_
20											/4:	,					750)) Met
									•	, 00						765			n Arg
25								. ,	٠					7	80				Glu
30								•					/9	5					Thr 800
21)												81	U					815	
35											043						830		Thr
				_					0	40					8	345			Arg
40								05.	•					86	0				Pro
45							0,0						87	•				Gln	980
43						,,,						890						Thr 895	
50					••					7	υÞ					:	910	Pro	
									92	U					9	25		Asn	
55								333						94	0			Gln	
60							,,,						755						960
110					,	0,5					•	3 / 0					!	Pro 975	
65	Thr									90	3.5					9	90		
	Leu	nen	AFÇ	Le	u V.	al A	Arg	Gln	Lys		n S -16		Trp	His	Hi	s L	eu 1	Chr 2	Asp

\$2 B

395 1000 1005

Gly Glu Asn Trp Arg Leu Gly Leu Pro Asn Ala Gln Arg Arg Asp Val

Tyr Thr Tyr Asp Arg Ser Lys Ile Pro Thr Glu Gly Ile Ser Leu Glu 1025 1030 1035

Ile Leu Leu Lys Asp Asp Cly Leu Leu Ala Asp Glu Lys Ala Ala Val 1045 1050 1055

Tyr Leu Gly Gln Gln Gln Thr Phe Tyr Thr Ala Gly Gln Ala Glu Val 1060 1065 1070

- 15 Thr Leu Glu Lys Pro Thr Leu Gln Ala Leu Val Ala Phe Gln Glu Thr 1075 1080 1085
- Ala Met Met Asp Asp Thr Ser Leu Gln Ala Tyr Glu Gly Val Ile Glu 1050 1095 1100
- Giu Gin Glu Leu Asn Thr Ala Leu Thr Gin Ala Gly Tyr Gin Gin Val 1105 1110 1115 1120
- Ala Arg Leu Phe Asn Thr Arg Ser Glu Ser Pro Val Trp Ala Ala Arg 1125 1130 1135
 - Gln Gly Tyr Thr Asp Tyr Gly Asp Ala Ala Gln Phe Trp Arg Pro Gln 1140 1145 1150
- 30 Ala Gln Arg Asn Ser Leu Leu Thr Gly Lys Thr Thr Leu Thr Trp Asp 1155 1160 1165
- Thr His His Cys Val Ile Ile Gln Thr Gln Asp Ala Ala Gly Leu Thr 1170 1175 1180
 - Thr Gln Ala His Tyr Asp Tyr Arg Phe Leu Thr Pro Val Gln Leu Thr 1185 1190 1195 1200
- Asp Ile Asn Asp Asn Gln His Ile Val Thr Leu Asp Ala Leu Gly Arg 1205 1210 1215
 - Val Thr Thr Ser Arg Phe Trp Gly Thr Glu Ala Gly Gln Ala Ala Gly 1220 1230
- 45 Tyr Ser Asn Gln Pro Phe Thr Pro Pro Asp Ser Val Asp Lys Ala Leu 1235 1240 1245
- Ala Leu Thr Gly Ala Leu Pro Val Ala Gln Cys Leu Val Tyr Ala Val 1250 1255 1260
 - Asp Ser Trp Met Pro Ser Leu Ser Leu Ser Gln Leu Ser Gln Ser Gln 1265 1270 1275 1280
- 55 Glu Glu Ala Glu Ala Leu Trp Ala Gln Leu Arg Ala Ala His Met Ile 1285 1290 1295
 - Thr Glu Asp Gly Lys Val Cys Ala Leu Ser Gly Lys Arg Gly Thr Ser 1300 1310
- 6() His Gln Asn Leu Thr Ile Gln Leu Ile Ser Leu Leu Ala Ser Ile Pro 1315 1320 1325
- Arg Leu Pro Pro His Val Leu Gly Ile Thr Thr Asp Arg Tyr Asp Ser 1330 1340
 - Asp Pro Gln Gln Gln His Gln Gln Thr Val Ser Phe Ser Asp Gly Phe

	1	345			1350						1355						
5		ly Ai	rg Le	eu Le	u Gl 13	n Se 65	r Se	r Al	a Ar	g Hi 13	is G1	u Se	r Gl	y As		a Trp	•
_		ln Ar	g Ly	/s Gl 13	u As 80	p Gl	y Gl	y Le	u Va 13	l Va 85	l As	p Al	a As		у Vа 90	l Leu	
10	Va	ıl Se	r Al	a Pr 95	o Th	r As	p Th	r Ar	g Tr 00	p Al	a Va	l Se	r Gl		g Th	r Slu	
	ТУ	r As 14	p As 10	p Ly	s Gly	y Gli	14:	o Va 15	l Ar	g Th	r Ty:	r Gli	n Pro 20	o Ty	r Ph	e Leu	
15	As 14	n As 25	p Tr	p Ar	Ту	r Val	l Sei	r Asj	p Ası	p Se	r Ala 14:	a Arç	g Ası) As	P Le	u 9he	
20	Al	a As	p Th	r His	Le. 144	1 Tyr 15	Ası	Pro) Let	14!	y Arg 50	Glu	1 Туі	r Ly:	5 Va:	l Ile 55	
	Th	r Al	a Ly:	s Lys 146	Tyr 0	Leu	Arg	g Glu	1 Lys	Let	л Туг	Thr	Pro	Trp		e Ile	
25	Va.	l Se	r Glo	u Asp 75	Glu	Aşn	Asp	Thr 148	Ala 30	a Sei	r Arg	Thr	Pro 148				
	(2		FORM	MATIO	ON F	OR S	SEQ	ID 1	10 : 3	3:							
30		,	/	3 2Q	(A (B))	LEN TYP	IGTH E: 1	: 3 nucl	288 eic	bas aci	đ	airs				
					(C)						dou	ble					
25					(D)	•"			GY:								
35		(ii)	МО		•"					nomi	c)					
35	ATG	(GTG	xi) ACT	SE(LECU QUEN ATG	LE :	TYPE DESC AAT	RIPT	DNA PION ATA	(ger	nomi EQ I	D NC	T/C A	CCT	202	TO C	
	l 1	GTG Val	xi) ACT Thr	SEC GTT Val	LECU QUEN ATG Met 5	CE I	TYPE DESC AAT Asn	RIPT AAA Lys	ONA FION ATA Ile	(ger TCA Ser 10	nomi EQ I TTT Phe	D NC TTA Leu	TCA Ser	GGT Gly	Thr 15		48
	I GAA	GTG Val	xi) ACT Thr	SEC GTT Val	LECU QUEN ATG Met 5	CE I	TYPE DESC AAT Asn	RIPT AAA Lys	ONA FION ATA Ile	(ger	TTT Phe	D NC TTA Leu	TCA Ser	GGT	Thr 15	Ser	
40	GAA Glu TCA	GTG Val CAG Gln	Xi) ACT Thr CCC Pro	SEC GTT Val CTG Leu	LECU QUEN ATG Met 5 CTT Leu	CE I CAA Gln GAC Asp	TYPE AAT ASD GCC Ala TTC	RIPT AAA Lys GGT Gly	ONA FION ATA FILE TAT Tyr 25 CAA	: SI TCA Ser 10 CAA Gln	TTT Phe	D NC TTA Leu GTA Val	TCA Ser TTT Phe	GGT Gly GAT Asp 30	Thr 15 ATC Ile	Ser GCA Ala	
40 45 50	GAA Glu TCA Ser	CAG Gln ATC Ile	Xi) ACT Thr CCC Pro AGC Ser 35	SEO GTT Val	LECU QUEN ATG Met 5 CTT Leu GCT Ala	CE I CAA Gln GAC Asp	TYPE DESC AAT Asn GCC Ala TTC Phe	RIPT AAA Lys GGT Gly GTT Val 40	TAT Tyr 25 CAA Gln	(gen : SI TCA Ser 10 CAA Gln TCC Ser	TTT Phe AAC Asn GTT Val	D NC TTA Leu GTA Val CCC Pro	TCA Ser TTT Phe ACC Thr 45	GGT Gly GAT Asp 30 CTG Leu	Thr 15 ATC Ile CCC Pro	Ser GCA Ala GTT Val	96
40 45	GAA Glu TCA Ser AAA Lys	CAG Gln ATC Ile GAG Glu 50	Xi) ACT Thr CCC Pro AGC Ser 35 GCT Ala	SEG GTT Val CTG Leu 20 CGG Arg	LECU QUEN ATG Met 5 CTT Leu GCT Ala ACC Thr	CE I CAA Gln GAC ASP ACT Thr GTC Val	DESC AAT ASN GCC Ala TTC Phe TAT Tyr 55	RIP7 AAA Lys GGT Gly GTT Val 40 CGT Arg	TAT TYT 25 CAA Gln CAG	(ger : SI TCA Ser 10 CAA Gln TCC Ser	TTT Phe AAC Asn GTT Val CGG Arg	D NC TTA Leu GTA Val CCC Pro CAA Gln 60 CAG	TCA Ser TTT Phe ACC Thr 45 CGT Arg	GGT Gly GAT Asp 30 CTG Leu GCG Ala	Thr 15 ATC Ile CCC Pro	GCA Ala GTT Val AAT Asn	96 144
40 45 50	GAA Glu TCA Ser AAA Lys CTG Leu 65	CAG Gin ATC Ile GAG Glu 50 AAA Lys	Xi) ACT Thr CCC Pro AGC Ser 35 GCT Ala TCC Ser CTG	SEC GTT Val CTG Leu 20 CGG Arg CAT His	DUEN ATG Met 5 CTT Leu GCT Ala ACC Thr TAC TYr	CE I CAA Gln GAC Asp ACT Thr CTC Val CGA Arg 70 CTT	TYPE DESC AAT ASN GCC Ala TTC Phe TAT Tyr 55 GCC Ala AAC	RIPT AAA Lys GGT Gly GTT Val 40 CGT Arg TGG TTCG TTCG TTCG TTCG TTCG	TAT Tyr 25 CAA Gln CAG Gln	(ger : SI TCA Ser 10 CAA Gln TCC Ser GCG Ala TTG Leu	TTT Phe AAC Asn CGT Val CGG Arg 75	D NC TTA Leu GTA Val CCC Pro CAA Gln 60 CAG Gln	TCA Ser TTT Phe ACC Thr 45 CGT Arg GAG Glu	GGT Gly GAT Asp 30 CTG Leu GCG Ala CCG Pro	Thr 15 ATC Ile CCC Pro GAA Glu GTT Val	GCA Ala GTT Val AAT Asn ATT Ile 30	96 144 192

				10	0				10	5				110	5		
5	AT Me	G AA t As	C CG n Ar 11	g Al	C AG' a Se:	r CAI	а таз п Туз	r GC: : Ala 120	a Asp	o Ala	T GCC	TC1	11e	Glr	A TCC n Sei	CTA Leu	394
10	TT Ph	TC. Se 13	r Pro	G GGG G Gl;	c cg: / Arg	TAT TYI	C GCT Ala 135	ı Sei	GCA Ala	CTC Lau	TAC Tyr	AGA Arg 140	Val	GCT Als	l AAS	GAT Asp	432
10	CTC Let 145	Hi	r AA S Lys	A TC: Sei	A GAT	TCC Ser 150	Ser	TTC Leu	CAT His	ATT	GAT Asp 155	Asn	CGC Arg	CGC	GCT Ala	GAT Asp 160	480
15	CTC	AAC Lys	G GAT S Asp	CTC Leu	ATA Ile 165	Leu	AGC Ser	GAA Glu	ACG Thr	Thr 170	Met	AAT Asn	AAA Lys	GAG Glu	GTC Val 175	ACT Thr	528
20	TCC Ser	Leu	GAT Asp	Ile 180	Leu	TTG Leu	GAT Asp	GTG Val	CTA Leu 185	Gln	AAA Lys	GGC Gly	GGT Gly	AAA Lys 19	Asp	ATT	576
25	ACT Thr	GAG Glu	CTG Leu 195	Ser	Gly	GCA Ala	TTC Phe	TTC Phe 200	CCA Pro	ATG Met	ACG Thr	TTA Leu	CCT Pro 205	TAT Tyr	GAC Asp	GAT Asp	624
30	CAT His	CTG Leu 210	Ser	CAA Gln	ATC	GAT Asp	TCC Ser 215	GCT Ala	TTA Leu	TCG Ser	GCA Ala	CAA Gln 220	GCC Ala	AGA Arg	ACG Thr	CTG Leu	672
	AAC Asn 225	GGT	GTG Val	TGG Trp	AAT Asn	ACT Thr 230	TTG Leu	ACA Thr	GAT Asp	ACC Thr	ACG Thr 235	GCA Ala	CAA Gln	GCG Ala	GTT Val	TCA Ser 240	720
35	GAA Glu	CAA Gln	ACC Thr	AGT Ser	AAT Asn 245	ACG Thr	AAT Asn	ACA Thr	CGC Arg	AAA Lys 250	CTG Leu	TTC Phe	GCT Ala	GCC Ala	CAA Gln 255	GAT Asp	768
40	GGT Gly	AAT Asn	CAA Gln	GAT Asp 260	ACA Thr	TTT Phe	TTT Phe	TCC Ser	GGA Gly 265	AAC Asn	ACT Thr	TTT Phe	TAT Tyr	TTC Phe 270	AAA Lys	GCG Ala	816
45	GTG Val	GGA Gly	TTC Phe 275	AGC Ser	GGG Gly	CAA Gln	CCT Pro	ATG Met 280	GTT Val	TAC Tyr	CTG Leu	TCA Ser	CAG Gln 285	TAC Tyr	ACC Thr	AGC Ser	864
50	GGG Gly	AAC Asn 290	GGC Gly	ATT Ile	GTC Val	GGC Gly	GCA Ala 295	CAA Gln	TTG Leu	ATT Ile	GCA Ala	GGT Gly 300	AAT Asn	CCA Pro	GAC Asp	CAA Gln	912
	GCC Ala 305	GCC Ala	GCC Ala	GCA Ala	ATA Ile	GTC Val 310	GCA Ala	CCG Pro	TTG Leu	AAA Lys	CTC Leu 315	ACT Thr	TGG Trp	TCA Ser	ATG Met	GCA Ala 320	960
55	AAA Lys	CAG Gln	TGT Cys	TAC Tyr	TAC Tyr 325	CTC Leu	GTC Val	GCT Ala	Pro	GAT Asp 330	GGT Gly	ACA Thr	ACG Thr	ATG _. Met	GGA Gly 335	GAC Asp	1008
6()	GGT Gly	AAT Asn	GTT Val	CTG Leu 340	ACC Thr	GGC Gly	TGT Cys	Phe	TTA Leu 345	AGA Arg	GGC Gly	AAC Asn	Ser	CCA Pro 350	ACT Thr	AAC Asn	1056
65	CCG Pro	GAT Asp	AAA Lys 355	GAC Asp	GGT Gly	ATT Ile	Phe	GCT Ala 360	CAG - Gln	GTA Val	GCC . Ala	Asn	AAA Lys 365	TCA Ser	GGC Gly	AGT Ser	1104

	AC Th	T C/ T G1 37	.11 ET	T TI	G CC	A AG O Se	C TT r Ph	e Hi	T CT s Le	G CC u Pr	G GT o Va	C AC 1 Th 38	r Le	G GA u Gl	A CA u Hi	C AGC s Ser	1152
5	GA: G1: 38:	u Aş	T AA n Ly	A GA 's As	T CAG	G TA n Ty: 39	r ly:	T CT T Le	G AA u Ly:	A AC	A GA r Gl 39	u Gl	G GG n Gl	т та у ту	T AT	C ACG e Thr 400	
10	GT/ Va	A GA l As	T AG p Se	T TC r Se	c GG/ r Gly 405	7 G11	G TC! n Sei	A AA' r Ası	T TG(AAA Lys 410	s Ası	C GCO n Ala	G CTY	G GT u Va	T AT 1 I1 41	C AAT e Asn 5	1248
15	GI	, 111	r Ly	42)) b rås	: G17	/ Leu	ı Let	425	Thr	r Phe	e Cys	s Se	43	p Se:	C TCA r Ser	
20	GIY	ın.	43!	o rni	. Asn	Pro) Asp	Asr 440	Val	. Ile	Pro	Pro	Ala 445	Ile	e Ası	r GAT n Asp	
	116	450))	. Pr	Pro	Ala	455	Glu	Thr	Leu	Ser	460	Thr	Pro	Va]	AGT Ser	
25	465	GII	ı Dec	, wet	inr	470	Pro	Ala	Pro	Thr	Glu 475	Asp	Asp	Ile	Thi	AAC Asn 480	1440
30	urs	ТУІ	GIĀ	Pne	485	GIÀ	Ala	Ser	Leu	Arg 490	Ala	Ser	Pro	Leu	Ser 495		1488
35	Set	GIO	reu	500	ser	Lys	Leu	Asn	Ser 505	Ile	Asp	Thr	Phe	Cys 510	Glu	AAG Lys	1536
40	1111	Arg	515	ser	Pne	Asn	Gln	Leu 520	Met	Asp	Leu	Thr	Ala 525	Gln	Gln	TCT	1584
45	TYL	530	GIN	ser	ser	He	Asp 535	Ala	Lys	Ala	Ala	Ser 540	Arg	Tyr	Val	CGT Arg	1632
45	545	GIĀ	GIU	Thr	ACC Thr	Pro 550	Thr	Arg	Val	Asn	Val 555	Tyr	Gly	Ala	Ala	Tyr 560	1680
50	reu	ASN	ser	Tnr	CTG Leu 565	Ala	Asp	Ala	Ala	Asp 570	Gly	Gln	Tyr	Leu	Trp 575	Ile	1728
55	GIII	THE	Asp	580	AAG Lys	Ser	Leu	Asn	Phe 585	Thr	Asp	Asp	Thr	Val 590	Val	Ala	1776
60	red	Ala	595	Arg	GCT Ala	Glu	Lys	Leu 600	Val	Arg	Leu	Ser	Ser 605	Gln	Thr	Gly	1824
	Leu	5er 610	Pne	Glu	GAA : Glu :	Leu	Asp 615	Trp	Leu	Ile	Ala	Asn 620	Ala	Ser	Arg	Ser	1872
65	GTG Val	CCG Pro	GAC Asp	CAC His	CAC His	GAC Asp	AAA . Lys	ATT Ile	GTG Val	CTG (Leu .	GAT Asp	AAG Lys	CCG Pro	GTC Val	CTT Leu	GAA Glu	1920

	62	5				530)				53	5				540	i
5	GC. Al	A CT a Le	G GC u Al	A GAI a Gli	G TA: u Ty: 64!	r Val	AG0	C CT?	A AAS 1 Lys	A CAC 5 Glr 650	n Ar	C TAT g Tyl	r GG(: Gly	CT Le	T GA u Ası 65!	T GCC D Ala 5	1953
10	AA. Ası	T AC n Th	C TT r Ph	T GCC e Ala 660	a Thi	TTC Phe	: ATT	r AG1 e Sei	GCA Ala 665	ı Val	A AA: L Asi	r cci	TAT Tyr	7 ACC	r Pro	A GAT O Asp	2015
10	CAC Glr	G AC	A CC r Pr 67	o Sei	TTC Phe	TAT Tyr	GAA Glu	ACC Thr 680	Ala	TTC Phe	CGC Arg	TC1 Ser	GCC Ala 685	Ası	GGT Gly	AAT Asn	2064
15	CA1 His	GT(Va. 69)	1 110	r GCC Ala	CTA Leu	GGT Gly	ACA Thr 695	Glu	GTG Val	AAA Lys	TAT	GCA Ala 700	Glu	AA1 Asņ	r GAC n Glu	CAG Gln	2112
20	GAT Asp 705	Glu	TT!	A GCC I Ala	GCC Ala	ATA Ile 710	TGC Cys	TGC	AAA Lys	GCA Ala	TTC Leu 715	Gly	GTC Val	ACC	AGT Ser	GAT Asp 720	2160
25	GAA Glu	CTC Leu	CTC Leu	CGT Arg	Ile 725	GGT Gly	CGC	TAT Tyr	TGC Cys	TTC Phe 730	GGT Gly	' AAT ' Asn	GCA Ala	GGC	AGT Ser 735		2208
30	ACC Thr	Leu	GAT Asp	GAA Glu 740	Tyr	ACC Thr	GCC Ala	AGT Ser	CAG Gln 745	TTG Leu	TAT Tyr	CGC Arg	TTC Phe	GGC Gly 750	Ala	ATT Ile	2256
50	CCC Pro	CGT Arg	TTG Leu 755	Phe	GGG Gly	CTG Leu	ACA Thr	TTT Phe 760	GCC Ala	CAA Gln	GCC Ala	GAA Glu	ATT Ile 765	TTA Leu	TGG Trp	CGT Arg	2304
35	CTG Leu	ATG Met 770	Glu	GGC Gly	GGA Gly	AAA Lys	GAT Asp 775	ATC Ile	TTA Leu	TTG Leu	CAA Gln	CAG Gln 780	TTA Leu	GGT Gly	CAG Gln	GCA Ala	2352
40	AAA Lys 785	TCC Ser	CTG Leu	CAA Gln	CCA Pro	CTG Leu 790	GCT Ala	ATT Ile	TTA Leu	CGC Arg	CGT Arg 795	ACC Thr	GAG Glu	CAG Gln	GTG Val	CTG Leu 800	2400
45	GAT Asp	TGG Trp	ATG Met	TCG Ser	TCC Ser 805	GTA Val	AAT Asn	CTA Leu	AGT Ser	CTG Leu 810	ACT Thr	TAT Tyr	CTG Leu	CAA Gln	GGG Gly 81	Met	2448
50	GTA Val	AGT Ser	ACG Thr	CAA Gln 820	TGG Trp	AGC Ser	GGT Gly	ACC Thr	GCC Ala 825	ACC Thr	GCT Ala	GAG Glu	ATG Met	TTC Phe 830	AAT Asn	TTC Phe	2496
50	TTG Leu	GAA Glu	AAC Asn 835	GTT Val	TGT Cys	GAC Asp	AGC Ser	CTG Val 840	AAT Asn	AGT Ser	CAA Gln	GCT Ala	GCC Ala 845	ACT Thr	AAA Lys	GAA Glu	2544
55	ACA Thr	ATG Met 850	GAT Asp	TCG Ser	GCG Ala	Leu	CAG Gln 855	CAG Gln	AAA Lys	GTG Val	CTG Leu	CGG Arg 860	GCG Ala	CTA Leu	AGC Ser	GCC Ala	2592
60	GGT Gly 865	TTC Phe	GGC Gly	ATT Ile	Lys	AGC . Ser . 370	AAT Asn	GTG Val	ATG Met	Gly	ATC Ile 875	GTC Val	ACC Thr	TTC Phe	TGG Trp	CTG Leu 880	2640
65	GAG Glu	AAA Lys	ATC Ile	Thr	ATC Ile 885	GGT :	AGT Ser	GAT . Asp .	Asn	CCT Pro 890	TTT Phe	ACA Thr	TTG Leu	GCA Ala	AAC Asn 895	TAC Tyr	2688

-		900	905	HIS ASP ASN Ala	910
5	915	5	920 ,	ATT GCT ACT CAG (Ile Ala Thr Gln (925	Gln Leu Ser
10	930	. 93	5 IIP Led S	AGC CTG ACC GAG (Ser Leu Thr Glu (940	Gln Asp Leu
15	CAA TTA CTG Gln Leu Leu 945	ACA ACC TAT CC Thr Thr Tyr Pr 950	C GAA CGT 1 o Glu Arg I	TTA ATC AAC GGC A Leu Ile Asn Gly I 955	ATC ACG AAT 2880 le Thr Asn 960
20	GTT CCT GTA Val Pro Val	CCC AAT CCG GAG Pro Asn Pro Glo 965	d red red T	TTC ACG CTA TCA C Leu Thr Leu Ser A 170	GT TTT AAG 2923 org Phe Lys 975
	CAG TGG GAA Gln Trp Glu	ACT CAA GTC ACC Thr Gin Val Thi 980	C GTT TCC C r Val Ser A 985	GT GAT GAA GCG A rg Asp Glu Ala M 9	TG CGC TGT 2976 et Arg Cys 90
25	TTC GAT CAA Phe Asp Gln 995	TTA AAT GCC AAT Leu Asn Ala Asr	T GAT ATG A ASP Met T 1000	CG ACT GAA AAT G hr Thr Glu Asn A 1005	CA GGT TCA 3024 la Gly Ser
30	CTG ATC GCC Leu Ile Ala 1010	ACA TTG TAT GAG Thr Leu Tyr Glu 101	Mec Asp L	AA GGT ACG GGA GG ys Gly Thr Gly A 1020	CG CAA GTT 3072 la Gln Val
35	AAT ACC TTG Asn Thr Leu 1025	CTA TTA GGT GAA Leu Leu Gly Glu 1030	AAT AAC TO ASD ASD TO	GG CCG AAA AGT T rp Pro Lys Ser P 1035	TT ACC TCT 3120 he Thr Ser 1040
40	Dea 11p GIN	1045	Leu Arg Va	TC GGG CAA AGA C1 al Gly Gln Arg Le D50	eu Asn Val 1055
	017 001 1111	ACT CTG GGC AAT Thr Leu Gly Asn 1060	CTG TTG TC Leu Leu Se 1065	CC ATG ATG CAA GO OF Met Met Gln Al 10	CA GAC CCT 3216 .a Asp Pro 970
45	GCT GCC GAG Ala Ala Glu :	AGT AGC GCT TTA Ser Ser Ala Leu	TTG GCA TC Leu Ala Se 1080	A GTA GCC CAA AA Fr Val Ala Gln As 1085	C TTA AGT 3264 n Leu Ser
50	GCC GCA ATC A Ala Ala Ile : 1090	AGC AAT CGT CAG Ser Asn Arg Gln 1095	TAA		3285
55	(2) INFORM	(B) TYP	CTERISTICS	amino acids acids	
60	(ii)	MOLECULE TYPE:			
65	(xi) Featur	SEQUENCE DESCR es From 254 254	To D 267 S	EQ ID NO:34: escription EQ ID NO:15 caAii peptide	

5	Me 1	t V	al T	hr Va	al Me 5		n As	n Ly:	s Il	e Se l		e La	ı Se	r Gl	/ Th:	
J	G1	u G	ln P	ro Le	u Le	u Ası	p Ala	a Gly	7 Ty:		n Asr	val	l Ph	e Asp 30	Ile	≥ Al.
10	Se	r I		er Ar 35	g Ala	a Thi	r Phe	e Val 40		n Sei	r Val	Pro	Th:		Pro	Va.
	Ly:	s G	lu A:	la Hi	s Thi	r Val	1 Tyr 55		Gli	n Ala	a Arg	Gln 60		, Ala	Glu	Ası
15	Let 65	ı Ly	's Se	er Le	u Tyr	7 Arç		Trp	Glr	n Leu	Arg 75		Glu	Pro	Val	11e
20	Lys	s Gl	y Le	u Al	a Lys) Asn	Leu	Glr	ser 90		Val	Ser	Val	Leu 95	
	Asp	Al	a Le	u Va 10	l Glu) Asn	Ile	Gly	Gly 105		Gly	Asp	Phe	Ser 110	Asp	Leu
25	Met	: As	n Ar 11	g Ala 5	a Ser	Gln	Tyr	Ala 120	Asp	Ala	Ala	Ser	Ile 125		Ser	Leu
	Phe	5e 13	r Pr O	o Gly	/ Arg	Tyr	Ala 135		Ala	Leu	Tyr	Arg 140	Val	Ala	Lys	Asp
30	Leu 145	Hi.	s Ly	s Sei	Asp	Ser 150		Leu	His	Ile	Asp 155	Asn	Arg	Arg	Ala	Asp 160
35	Leu	Ly	s As	p Leu	Ile 165	Leu	Ser	Glu	Thr	Thr 170	Met	Asn	Lys	Glu	Val 175	Thr
	Ser	Le	ı Ası	180	Leu	Leu	Asp	Val	Leu 185	Gln	Lys	Gly	Gly	Lys 190		Ile
40	Thr	Glu	ı Le: 19!	ı Ser	Gly	Ala	Phe	Phe 200	Pro	Met	Thr	Leu	Pro 205	Tyr	Asp	Asp
	His	Le: 210	ı Sei	c Gln	Ile	Asp	Ser 215	Ala	Leu	Ser	Ala	Gln 220	Ala	Arg	Thr	Leu
45	Asn 225	Gly	Val	l Trp	Asn	Thr 230	Leu	Thr	Asp	Thr	Thr 235	Ala	Gln	Ala	Val	Ser 240
50	Glu	Glr	Thi	Ser	Asn 245	Thr	Asn	Thr	Arg	Lys 250	Leu	Phe	Ala	Ala	Gln 255	Asp
	Gly	Asn	Glr	Asp 260	Thr	Phe	Phe	Ser	Gly 265	Asn	Thr	Phe	Tyr	Phe 270	Lys	Ala
55	Val	Gly	Phe 275	Ser	Gly	Gln	Pro	Met 280	Val	Tyr	Leu		Gln 285	Tyr	Thr	Ser
	Gly	Asn 290	Gly	Ile	Val	Gly	Ala 295	Gln	Leu	Ile		Gly 300	Asn	Pro	Asp	Gln
60	Ala 305	Ala	Ala	Ala		Val 310	Ala	Pro	Leu		Leu ' 315	Thr	Trp	Ser		Ala 320
65	Lys	Gln	Cys	Tyr	Tyr 325	Leu	Val	Ala		Asp 330	Gly '	Thr '	Thr		Gly 335	Asp
.,,,	Gly	Asn	Val	Leu	Thr	Gly	Cys	Phe 1	Leu .		Gly A	Asn :	Ser	Pro	Thr .	Asn

				340					345					350		
5	Pro	λsp	Lys 355	Asp	Gly	Ile	Phe	Ala 360	Gln	Val	Ala	Asn	Lys 365	Ser	Glγ	Ser
3	Thr	Gln 370	Pro	Leu	Pro	Ser	Phe 375	His	Leu	Pro	Val	Thr 380	Leu	Glu	His	Ser
10	Glu 385	Asn	Lys	Asp	Gln	Tyr 390	Tyr	Leu	Lys	Thr	Glu 395	Gln	Gly	Tyr	Ile	Thr
	Val	Asp	Ser	Ser	Gly 405	Gln	Ser	Asn	Trp	Lys 410	Asn	Ala	Leu	Val	Ile 415	Asn
15	Gly	Thr	Ļys	Asp 420	Lys	Gly	Leu	Leu	Leu 425	Thr	Phe	Суѕ	Ser	Asp 430	Ser	Ser
20	Gly	Thr	Pro 435	Thr	Asn	Pro	Asp	Asp 440	Val	Ile	Pro	Pro	Ala 445	Ile	Asn	Asp
	Ile	Pro 450	Ser	Pro	Pro	Ala	Arg 455	Glu	Thr	Leu	Ser	Leu 460	Thr	Pro	Val	Ser
25	Tyr 465	Gln	Leu	Met	Thr	Asn 470	Pro	Ala	Pro	Thr	Glu 475	Asp	Asp	Ile	Thr	Asn 480
	His	Tyr	Gly	Phe	Asn 485	Gly	Ala	Ser	Leu	Arg 490	Ala	Ser	Pro W4 >	Leu •	Ser 495	Thr
30	Ser	Glu	Leu	Thr 500	Ser	Lys	Leu	Asn	Ser 505	Ile	Ąsp	Thr	Phe	Cys 510	Glu	Lys
35	Thr	Arg	Leu 515	Ser	Phe	Asn	Gln	Leu 520	Met	Asp	·Leu	Thr	Ala 525	Gln	Gln	Ser
<i>J J</i>	Tyr	Ser 530	Gln	Ser	Ser	Ile	Asp 535	Ala	Lys	Ala	Ala	Ser 540	Arg	Tyr	Val	Arg
40	Phe 545	Gly	Glu	Thr	Thr	Pro 550	Thr	Arg	Val	Asn	Val 555	Tyr	Gly	Ala	Ala	Туг 560
	Leu	Asn	Ser	Thr	Leu 565	Ala	Asp	Ala	Ala	Asp 570	Gly	Gln	Tyr	Leu	Trp 575	Ile
45	Gln	Thr	Asp	Gly 580	Lys	Ser	Leu	Asn	Phe 585	Thr	Asp	Asp	Thr	Val 590	Val	Ala
50	Leu	Ala	Gly 595	Arg	Ala	Glu	Lys	Leu 600	Val	Arg	Leu	Ser	Ser 605	Gln	Thr	Gly
J.,	Leu	Ser 610	Phe	Glu	Glu	Leu	Asp 615	Trp	Leu	Ile	Ala	Asn 620	Ala	Ser	Arg	Ser
55	Val 625	Pro	Asp	His	His	Asp 630	Lys	Ile	Val	Leu	Asp 635	Lys	Pro	Val	Leu	Glu 640
	Ala	Leu	Ala	Glu	Tyr 645	Val	Ser	Leu	Lys	Gln 650	Arg	Tyr	Gly	Leu	Asp 655	Ala
60	Asn	Thr	Phe	Ala 660	Thr	Phe	Ile	Ser	Ala 665	Val	Asn	Pro	Tyr	Thr 670	Pro	Asp
42	Gln	Thr	Pro 675	Ser	Phe	Tyr	Glu	Thr 680	Ala	Phe	Arg	Ser	Ala 685	Asp	Gly	Asr
65	His	Val	Ila	Ala	Leu	Gly	Thr	Glu	Val	Lys	Tyr	Ala	Glu	Asn	Glu	Gln

		ő:	90				69	5				70	C			
5	As 70	p G.	lu La	eu A.	la Al	.a Ile 71	е Су О	з су	s Ly	s Al	a Le 71		y Va.	l Thi	r <i>5</i> e	r Asp 720
,	Gl	u Le	eu Le	eu Ai	rg Il 72	e Gly 5	/ Ar	g Ty	r Cys	73		/ Ası	n Ala	a Gly	735	r Phe
10	Th	r Le	eu As	p G] 74	u Ty 10	r Thi	Al.	a Se	r Glr 745	Lei	ц Туг	Arç	, Phe	Gly 750		lle
	Pr	o Ar	g Le 75	u Ph 5	e Gl	y Leu	Thi	r Pho 760	≥ Ala)	Glr	n Ala	Glu	11e 765		Trp	Arg
15	Lei	u M e 77	t Gl	u Gl	y Gl	y Lys	775	o Ile	e Leu	Leu	ı Gln	Gln 780		Gly	Gln	Ala
20	Ly: 78	s Se	r Lei	ı Gl	n Pro	790	Ala	Ile	e Leu	Arg	795		Glu	Gln	Val	Leu 300
	Asţ	Tr	p Met	: Se	r Sei 809	r Val	Asn	Leu	Ser	Leu 810		туг	Leu	Gln	Gly 81	
25	Val	. Se:	r Thi	82		Ser	Gly	Thr	Ala 825		Ala	Glu	Met	Phe 830	Asn	Phe
	Leu	Glu	Asr 835	Va.	l Cys	Asp	Ser	Val 840	Asn	Ser	Gln	Ala	Ala 845	Thr	Lys	Glu
30	Thr	Met 850	Asp	Se	Ala	Leu	Gln 855	Gln	Lys	Val	Leu	Arg 860	Ala	Leu	Ser	Ala
35	Gly 865	Ph∈	e Gly	Ile	: Lys	Ser 870	Asn	Val	Met	Gly	Ile 875	Val	Thr	Phe	Trp	Leu 880
	Glu	Lys	Ile	Thr	11e 885	Gly	ser	Asp	Asn	Pro 890	Phe	Thr	Leu	Ala	Asn 895	Tyr
40				900	•	Thr			905					910		
	Ser	Leu	Gln 915	Thr	Asp	Thr	Ser	Leu 920	Val	Ile	Ala	Thr	Gln 925	Gln	Leu	Ser
45	Gln	Leu 930	Val	Leu	Ile	Val	Lys 935	Trp	Leu	Ser	Leu	Thr 940	Glu	Gln	Asp	Leu
50	945					Tyr 950					955					960
					965	Pro				970					975	_
55				980		Val			985					990		
	Phe	Asp	Gln 995	Leu	Asn	Ala .	Asn	Asp 1000		Thr	Thr		Asn 1005	Ala	Gly	Ser
60	Leu	Ile 1010	Ala)	Thr	Leu	Tyr	31u 1015		Asp 1	Lys		Thr (Gly .	Ala (Gln '	Val
65	Asn 1025	Thr	Leu	Leu	Leu	Gly (Slu .	Asn	Asn 1		Pro 1 1035	Lys :	Ser :	Phe 1		Ser 1040
	Leu	Trp	Gln	Leu	Leu	Thr ?	rp	Leu .	Arg \	/al (Glv (3ln 2	Ara I	Leu :	Asn 1	/al

1045

105ú

1055

Gly Ser Thr Thr Leu Gly Asn Leu Leu Ser Met Met Gln Ala Asp Pro 1060 1065 1070

Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala Gln Asn Leu Ser 1075 1080 1085

Ala Ala Ile Ser Asn Arg Gln ...
10 1090 1095

5

15

20

50

65

(2) INFORMATION FOR SEQ ID NO:35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 603 amino acids
- (B) TYPE: amino acid
- (C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Pro Leu Ser Thr Ser Glu Leu Thr Ser Lys Leu Asn Ser Ile Asp Thr 1 5 10 15

Phe Cys Glu Lys Thr Arg Leu Ser Phe Asn Gln Leu Met Asp Leu Thr 20 25 30

30 Ala Gln Gln Ser Tyr Ser Gln Ser Ser Ile Asp Ala Lys Ala Ala Ser 35 40 45

Arg Tyr Val Arg Phe Gly Glu Thr Thr Pro Thr Arg Val Asn Val Tyr
50 55 60

Gly Ala Ala Tyr Leu Asn Ser Thr Leu Ala Asp Ala Ala Asp Gly Gln 65 70 75 80

Tyr Leu Trp Ile Gln Thr Asp Gly Lys Ser Leu Asn Phe Thr Asp Asp 85 90 95 .

Thr Val Val Ala Leu Ala Gly Arg Ala Glu Lys Leu Val Arg Leu Ser 100 105 110

45 Ser Gln Thr Gly Leu Ser Phe Glu Glu Leu Asp Trp Leu Ile Ala Asn 115 120 125

Ala Ser Arg Ser Val Pro Asp His His Asp Lys Ile Val Leu Asp Lys
130 135 140

Pro Val Leu Glu Ala Leu Ala Glu Tyr Val Ser Leu Lys Gln Arg Tyr 145 150 155 160

Gly Leu Asp Ala Asn Thr Phe Ala Thr Phe Ile Ser Ala Val Asn Pro 165 170 175

Tyr Thr Pro Asp Gln Thr Pro Ser Phe Tyr Glu Thr Ala Phe Arg Ser

60 Ala Asp Gly Asn His Val Ile Ala Leu Gly Thr Glu Val Lys Tyr Ala
195 200 205

Glu Asn Glu Gln Asp Glu Leu Ala Ala Ile Cys Cys Lys Ala Leu Gly 210 215 220

	2.	al T 25	hr 3	er A	sp G.	lu Le 23	u L.	≙u Aı	rg I.	le G	ly A: 2.	rg T 35	r c	's Ph	e Sl	540 A yeu
5	Ai	la G	ly A	rg P	he Ti 24	nr Le 15	u As	sp 31	lu T	/r Ti 25	nr A. 50	la Se	er G!	ln Le	u T;	r Arg 5
	Pł	ne G	ly A	la I. 20	le Pr 50	o Ar	g Le	u Ph	ie Gl 26	y Le 5	eu Th	ır Ph	ne Al	.a Gl 27		a Glu
10	11	e L	eu T: 2'	rp Ai 75	rg Le	u Me	t Gl	u Gl 28	0 9 G1	y Ly	's As	p Il		u Le	u Gli	n Gln
15	ХХ	x G]	ly G:	ln Al	a Ly	s Sei	r Le 29	u Gl 5	n Pr	o Le	u Al	a Il 30		u Ar	g Arg	Thr
13	G1 30	u G1 5	n Va	al Le	u As	p Trp	Me	t Se	r Pr	o Va	l As 31		u Se	r Lei	ı Thi	Tyr 320
20	Le	u Gl	n Gl	y Me	t Va.	l Ser	Th	r Gli	n Tr	p Se 33		y Th	r Al	a Thi	: Ala	
	Met	: Ph	e As	n Ph	e Lei O	u Glu	Ası	n Val	1 Cy:		p Se	r Va	l Ası	n Ser 350		Ala
25	300	c Th	r Ly 35	s G1 5	u Thi	. Met	Asp	Ser 360	r Ala	a Lei	u Gla	n Gli	n Lys 369		Leu	Arg
30	Ala	1 Lei	u Se O	r Al	a Gly	Phe	Gly 375	′ Ile	Lys	Se	r Ası	n Vai		Gly	Ile	Val
50	Thr 385	Phe	• Tr	p Le	ı Glu	Lys 390	Ile	Thr	Ile	Gly	7 Arg) Asr	Pro	Phe	Thr 400
35	Leu	Ala	A Ası	а Туг	Trp	His	Asp	Ile	Gln	Thr 410		Phe	Ser	His	Asp 415	Asn
	Ala	Thr	Leu	420	ser	Leu	Gln	Thr	Asp 425	Thr	Ser	Leu	Val	Ile 430	Ala	Thr
40	Gln	Gln	Le:	ı Ser	Gln	Leu	Val	Leu 440	Ile	Val	Lys	Trp	Val 445		Leu	Thr
45	Glu	Gln 450	Asp	Leu	Gln	Leu	Leu 455	Thr	Thr	Tyr	Pro	Glu 460		Leu	Ile	Asn
45	Gly 465	Ile	Thr	Asn	Val	Pro 470	Val	Pro	Asn	Pro	Glu 475		Leu	Leu	Thr	Leu 480
50	Ser	Arg	Phe	Lys	Gln 485	Trp	Glu	Thr	Gln	Val 490	Thr	Val	Ser	Arg	Asp 495	Glu
	Ala	Met	Arg	Cys 500	Phe	Asp	Gln	Leu	Asn 505	Ala	Asn	Asp	Met	Thr 510	Thr	Glu
55	Asn	Ala	Gly 515	Ser	Leu	Ile	Ala	Thr 520	Leu	Tyr	Glu	Mec	Asp 525	Lys	Gly	Thr
60	Gly	Ala 530	Gln	Val	Asn	Thr	Leu 535	Leu	Leu	Gly	Glu	Asn 540	Asn	Trp	Pro	Lys
11(/	Ser 545	Phe	Thr	Ser	Leu	Trp (Gln	Leu	Leu	Thr	Trp 555	Leu	Arg	Val :		31n 560
65	Arg	Leu	Asn	Val	Gly 565	Ser 1	Thr	Thr	Leu	Gly 570	Asn	Leu	Leu		Met 1	Met

```
Gln Ala Asp Pro Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala
      Gln Asn Leu Ser Ala Ala Ile Ser Asn Arg Gln *
             595
                                 600
           INFORMATION FOR SEQ ID NO:36:
      (2)
                 SEQUENCE CHARACTERISTICS:
10
                      LENGTH: 2557 base pairs
                 (A)
                 (B)
                      TYPE: nucleic acid
                 (C)
                      TOPOLOGY: linear
           (ii) MOLECULE TYPE: DNA (genomic)
15
                 SEQUENCE DESCRIPTION: SEQ ID NO:36:
     GAATTCGGCT TGCGTTTAAT ATTGATGATG TCTCGCTCTT CCGCCTGCTT AAAATTACCG 60
     ACCATGATAA TAAAGATGGA AAAATTAAAA ATAACCTAAA GAATCTTTCC AATTTATATA
20
     TTGGAAAATT ACTGGCAGAT ATTCATCAAT TAACCATTGA TGAACTGGAT TTATTACTGA
     TTGCCGTAGG TGAAGGAAAA ACTAATTTAT CCGCTATCAG TGATAAGCAA TTGGCTACCC
                                                                     240
     TGATCAGAAA ACTCAATACT ATTACCAGCT GGCTACATAC ACAGAAGTGG AGTGTATTCC 300
    AGCTATTTAT CATGACCTCC ACCAGCTATA ACAAAACGCT AACGCCTGAA ATTAAGAATT 360
    TGCTGGATAC CGTCTACCAC GGTTTACAAG GTTTTGATAA AGACAAAGCA GATTTGCTAC
25
    ATGTCATGGC GCCCTATATT GCGGCCACCT TGCAATTATC ATCGGAAAAT GTCGCCCACT
                                                                      480
    CGGTACTCCT TTGGGCAGAT AAGTTACAGC CCGGCGACGG CGCAATGACA GCAGAGGGAN 540
    TCTGGGACTG GTTGAATACT AAGTATACGC CGGGTTCATC GGAAGCCGTA GAAACGCAGG
    AACATATCGT TCAGTATTGT CAGGCTCTGG CACAATTGGA AATGGTTTAC CATTCCACCG
                                                                      660
    GCATCAACGA AAACGCCTTC CGTCTATTTG TGACAAAACC AGAGATGTTT GGCGCTGCAA 720
    CTGGAGCAGC GCCCGCGCAT GATGCCCTTT CACTGATTAT GCTGACACGT TTTGCGGATT 780
    GGGTGAACGC ACTAGGCGAA AAAGCGTCCT CGGTGCTAGC GGCATTTGAA GCTAACTCGT
    TAACGGCAGA ACAACTGGCT GATGCCATGA ATCTTGATGC TAATTTGCTG TTGCAAGCCA 900
    GTATTCAAGC ACAAAATCAT CAACATCTTC CCCCAGTAAC TCCAGAAAAT GCGTTCTCCT 960
   GTTGGACATC TATCAATACT ATCCTGCAAT GGGTTAATGT CGCACAACAA TTGAAATGTC
                                                                     1020
    GCCCCACAGG GCGTTTCCGC TTTGGTCGGG CTCGATTATA TTCAATCAAT GAAAGAGACA 1080
    CCGACCTATG CCCAGTGGGA AAACGCGGCA GGCGTATTAA CCGCCGGGTT GAATTCAACA 1140
```

180

ACAGGCTAAT ACATTACAAC GCTTTTCTGG ATGAATCTCG CAGTGCCGCA TTAAGCACCT 1200 ACTATATCCG TCAAGTCGCC AAGGCAGCGG CGGCTATTAA AAGCCGTGAT GACTTGTATC 1260

AATACTTACT GATTGATAAT CAGGTTTCTG CGGCAATAAA AACCACCCGG ATCGCCGAAG 1320 CCATTGCCAG TATTCAACTG TACGTCAACC GGGCATTGGA AAATGTGGAA GAAAATGCCA 1380 ATTCGGGGGT TATCAGCCGC CAATTCTTTA TCGACTGGGA CAAATACAAT AAACGCTACA 1440 GCACTTGGGC GGGTGTTTCT CAATTAGTTT ACTACCCGGA AAACTATATT GATCCGACCA 1500 TGCGTATCGG ACAAACCAAA ATGATGGACG CATTACTGCA ATCCGTCAGC CAAAGCCAAT 1560 TAAACGCCGA TACCGTCGAA GATGCCTTTA TGTCTTATCT GACATCGTTT GAACAAGTGG 1620 CTAATCTTAA AGTTATTAGC GCATATCACG ATAATATTAA TAACGATCAA GGGCTGACCT 1680 ATTTTATCGG ACTCAGTGAA ACTGATGCCG GTGAATATTA TTGGCGCAGT GTCGATCACA 1740 GTAAATTCAA CGACGGTAAA TTCGCGGCTA ATGCCTGGAG TGAATGGCAT AAAATTGATT 1800 GTCCAATTAA CCCTTATAAA AGCACTATCC GTCCAGTGAT ATATAAATCC CGCCTGTATC 1860

PCT/US96/18003 WO 97/17432

	7	GCT	TGGT	T GC	AACA	AAAG	GAG	ATCA	CCA	AACA	GACA	.GG 2	AATA	GTAA	A GA	TGGCTATO	1920
																TGGCACTT	
																GGAAAAA	
																GGTGATGT	
5																ACTATATA	
٠																TCGGGATA	
	A	TAGC	TATC.	A AC	AATT	TGAT	ACC	LATA/	ATG 1	TCAG	AAGA	ST G	AATA	ACCG	TA'	TGCAGAGG	2280
	A'	TTAT	GAGA'	r TC	CTTC	TTCG	GTA	AGTAC	SCC (GTAA!	AGAC:	ra To	GGTT	GGG	A GA	TATTACC	2340
	T	CAGC.	ATGG:	T AT	AATA	CGGA	GATA	TTC	AA C	TATO	AATT	ra cz	AAAGO	CGC	A TC	AAGTGATT	2400
10	T	AAAA	ATTT!	TAT	TTC	ACCA	AAA7	TAAC	AA 1	TATI	CATA	LA TO	GATA	TGA	A GG2	CAGAAGC	2460
												G TO	ATA	ATT	ATT	CTCTATA	2520
	CC	CAGC	TGGG	CG1	TAAT	CCG	AATA	ATAA	ec c	GAAT	TC						2557
15	(2	2)	INFO	RMAT SE (A (B	QUEN	ICE (LENG IYPE	CHAR TH: : an	ACTI 84 nino	ERIS 5 an aci	TICS nino .ds	3:	.ds					
20				10	, .	горо	LOGY	: 1	ınea	ır							
			(ii)	M	OLEC	ULE	TYP	E:	pro	tein	(p	arti	al)				
			(xi)	SI	EQUE	NCE	DES	CRIP	TIO	N: S	EO :	א מז	10:37	7.			
25					_									•			
	Ala	a Ph	e Ası	ı Ile	e Asp) Asr	Val	Sei	Lei	ı Phe	Arc	: Le	u Lei	ı Lv	s Tla	e Thr	
	1				5					10					15		
30	Asį	Hi:	s Asp	Asr 20	Lys	: Asp	Gly	' Lys	: Ile 25	e Lys	ASI	ı Ası	n Leu	1 Lys 30	S Ası	n Leu	
	Ser	Ası	1 Leu	Tyr	Ile	Gly	Lys	Leu	Leu	ı Ala	Ast	Ile	e His	G) r	ום. ז	Thr	
			35				_	40					45		. 560		
35	Ile	Asp 50	Glu	Leu	Asp	Leu	Leu 55	Leu	Ile	Ala	Val	Gly 60	/ Glu	Gly	' Lys	Thr	
	Asn	Leu	Ser	Ala	Ile	Ser	Asn	f.ve	Gln	. FAU	λl.	ምb v		T1-		Lys	
40	65					70	nsp	Lys	GIM	Leu	75	IIII	Leu	116	Arg	BO	
40	Leu	Asn	Thr	Ile	Thr	Ser	Trp	Leu	Hic	Thr	Gln	Tire	Tro	Sor	Usl	Phe	
					85					90	91	. , .	p	261	95	FILE	
	Gln	Leu	Phe	Ile	Met	Thr	Ser	Thr	Ser	Tvr	Asn	Lvs	Thr	Leu	Thr	Pro	
45				100					105	-,-		_,_	••••	110		110	
	Glu	Ile	Lys	Asn	Leu	Leu	Asp	Thr	Val	Tyr	His	Glv	Leu	Gln	Gly	Phe	
			115				_	120		-		•	125		1		
5 0	Asp	Lys 130	Asp	Lys	Ala	Asp	Leu	Leu	His	Val	Met	Ala	Pro	Tyr	Ile	Ala	
							135					140					
	Ala 145	Thr	Leu	Gln	Leu	Ser	Ser	Glu	Asn	Val	Ala	His	Ser	Val	Leu	Leu	
55						150					155					160	
	Trp	Ala	Asp	Lys	Leu 165	Gln	Pro	Gly	Asp	Gly	Ala	Met	Thr	Ala		Gly	
										170					175		
	Phe	Trp	Asp	Trp	Leu	Asn	Thr	Lys	Tyr	Thr	Pro	Gly	Ser	Ser	Glu	Ala	
									-18	30-							

					180					18	5					190		
	5								200	•				- 2	205			Gln
					Val								2	20				
10					Thr							۷.	, ,					240
1.6											25	U				2	55	
1.5	_				Ala I 260					203					2	70		
20					Ser L				200					28	35			
					eu L		_						30	0				
25					ro V							31	>					320
30											330					3.	35	
30					ly Ai 40					242					35	0		
35					sp Th				00					36	5			
					g Va		٠,	-					380	,				
40					u Se		•					395					4	00
45					s Al 40	•				4	110					41	5	
40									4	25					430)		
50					u Ala			•						445				
					l Glu		43.	,					460					
55					Trp	• • • • • • • • • • • • • • • • • • • •	•				•	1/5					48	0
60					485					4	90					495		
60									50	7					510			
65					Leu			321	J					525				
	Tyr	Leu	Thr	Ser	Phe	Glu	Gln	Va:	l Al	a As	n L	eu :	Lys	Val	Ile	Ser	Al.	a

8° &

540 535 530 Tyr His Asp Asn Ile Asn Asn Asp Gln Gly Leu Thr Tyr Phe Ile Gly 550 5 Leu Ser Glu Thr Asp Ala Gly Glu Tyr Tyr Trp Arg Ser Val Asp His Ser Lys Phe Asn Asp Gly Lys Phe Ala Ala Asn Ala Trp Ser Glu Trp 10 585 His Lys Ile Asp Cys Pro Ile Asn Pro Tyr Lys Ser Thr Ile Arg Pro Val Ile Tyr Lys Ser Arg Leu Tyr Leu Leu Trp Leu Glu Gln Lys Glu 15 Ile Thr Lys Gln Thr Gly Asn Ser Lys Asp Gly Tyr Gln Thr Glu Thr 20 Asp Tyr Arg Tyr Glu Leu Lys Leu Ala His Ile Arg Tyr Asp Gly Thr Trp Asn Thr Pro Ile Thr Phe Asp Val Asn Lys Lys Ile Ser Glu Leu 25 Lys Leu Glu Lys Asn Arg Ala Pro Gly Leu Tyr Cys Ala Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met Phe Tyr Asn Gln Gln Asp Thr Leu 30 Asp Ser Tyr Lys Asn Ala Ser Met Gln Gly Leu Tyr Ile Phe Ala Asp 35 Met Ala Ser Lys Asp Met Thr Pro Glu Gln Ser Asn Val Tyr Arg Asp Asn Ser Tyr Gln Gln Phe Asp Thr Asn Asn Val Arg Arg Val Asn Asn 745 40 Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Ser Ser Arg Lys Asp Tyr Gly Trp Gly Asp Tyr Tyr Leu Ser Met Val Tyr Asn Gly Asp 770 780 45 Ile Pro Thr Ile Asn Tyr Lys Ala Ala Ser Ser Asp Leu Lys Ile Tyr 50 Ile Ser Pro Lys Leu Arg Ile Ile His Asn Gly Tyr Glu Gly Gln Lys Arg Asn Gln Cys Asn Leu Met Asn Lys Tyr Gly Lys Leu Gly Asp Lys 55 825 Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn 60 INFORMATION FOR SEQ ID NO:38: (2) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids

(B) TYPE: amino acid

```
(C) STRANDNESS: single
                 (D) TOPOLOGY: linear
            (ii) MOLECULAR TYPE: protein
  5
           (v) FRAGMENT TYPE: N-terminal
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
 10
      Arg Tyr Tyr Asn Leu Ser Asp Glu Glu Leu Ser Gln Phe Ile Gly
     Lys
 15
           INFORMATION FOR SEQ ID NO:39:
                SEQUENCE CHARACTERISTICS:
 20
                (A) LENGTH: 20 amino acids
                (B)
                     TYPE: amino acid
                     STRANDNESS: single
                (C)
                     TOPOLOGY: linear
                (D)
25
           (ii) MOLECULAR TYPE: protein
           (v) FRAGMENT TYPE:
                                 N-terminal
30
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
     Gly Thr Ala Thr Asp Val Ser Gly Pro Val Glu Ile Asn Thr Ala
35
     Ile Ser Pro Ala Lys
          INFORMATION FOR SEQ ID NO:40:
     (2)
40
               SEQUENCE CHARACTERISTICS:
          (i)
                (A) LENGTH: 11 amino acids
                     TYPE: amino acid
                (B)
                    STRANDNESS: single
                (C)
45
                (D)
                    TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
          (v)
               FRAGMENT TYPE: N-terminal
50
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
    Ala Asn Ser Leu Tyr Ala Leu Phe Leu Pro Gln
55
    (2)
          INFORMATION FOR SEQ ID NO:41:
60
          (i)
               SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 14 amino acids
```

\$1.0

```
(B) TYPE: amino acid
                  (C) STRANDNESS: single
                  (D) TOPOLOGY: linear
  5
            (ii) MOLECULAR TYPE: protein
                 FRAGMENT TYPE:
            (V)
                                   N-terminal
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
 10
      Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln
 15
      (2)
           INFORMATION FOR SEQ ID NO:42:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 19 amino acids
                (B) TYPE: amino acid
(C) STRANDNESS: single
(D) TOPOLOGY: linear
 20
           (ii) MOLECULAR TYPE: protein
 25
           (v) FRAGMENT TYPE: N-terminal
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
 30
     Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Glu Val Tyr
     Ala Gly Leu Glu
35
     (2) INFORMATION FOR SEQ ID NO: 43:
                SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 11 amino acids
40
                (B)
                    TYPE: amino acid
                (C)
                    STRANDNESS: single
                (D)
                    TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
45
          (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
50
    Ile Arg Glu Asp Tyr Pro Ala Ser Leu Gly Lys
55
    (2)
         INFORMATION FOR SEQ ID NO:44:
               SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 16 amino acids
                    TYPE: amino acid
               (B)
               (C) STRANDNESS: single
60
               (D) TOPOLOGY: linear
```

```
(ii) MOLECULAR TYPE: protein
              (V)
                   FRAGMENT TYPE: N-terminal
   5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
       Asp Asp Ser Gly Asp Asp Lys Val Thr Asn Thr Asp Ile His
  10
                                             10
       Arg
  15
             INFORMATION FOR SEQ ID NO:45:
                   SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 13 amino acids
                   (B) TYPE: amino acid
 20
                   (C) STRANDNESS: single
                   (D) TOPOLOGY: linear
             (ii) MOLECULAR TYPE: protein
 25
             (v) FRAGMENT TYPE: N-terminal
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:
 30
      Asp Val Xaa Gly Ser Glu Lys Ala Asn Glu Lys Leu Lys
      (2)
           INFORMATION FOR SEQ ID NO:46:
35
                  SEQUENCE CHARACTERISTICS:
                  (A)
                        LENGTH: 7551 base pairs
                         TYPE: nucleic acid
                   (B)
                  (C)
                        STRANDEDNESS: double
                  (D)
                       TOPOLOGY: linear
40
            (ii) MOLECULE TYPE: DNA (genomic)
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46 (ccdA):
     ATG AAC GAG TCT GTA AAA GAG ATA CCT GAT GTA TTA AAA AGC CAG TGT Met Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser Gln Cys
     GGT TTT AAT TGT CTG ACA GAT ATT AGC CAC AGC TCT TTT AAT GAA TTT
     Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn Glu Phe
     CGC CAG CAA GTA TCT GAG CAC CTC TCC TGG TCC GAA ACA CAC GAC TTA Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His Asp Leu
55
     TAT CAT GAT GCA CAA CAG GCA CAA AAG GAT AAT CGC CTG TAT GAA GCG
     Tyr His Asp Ala Gln Gln Ala Gln Lys Asp Asn Arg Leu Tyr Glu Ala
60
     CGT ATT CTC AAA CGC GCC AAT CCC CAA TTA CAA AAT GCG GTG CAT CTT
    Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu Gln Asn Ala Val His Leu 70 75 80
```

	GC Al	C AN a II	rr c'	rc sc eu Al	CT CC la Pi 85	o As	T GC	T GA a Gl	A CT u Le	G AT u Il 90	ə Gl	С ТА У Ту	T AA r As	C AA n As	T CA n Gl 95	A TT	r 288
5	AG Se	c GC r Gl	T AC	GA GC cg Al	a Se	GT CA er Gl	A TA n Ty	T GT T Va	T GC 1 Al 10	a Pr	G GG o Gl	T AC	c GT r Va	T TC 1 3e 11	r Se	C ATO	336
10	Phe	e Se	r Pr 11	o Al 5	a Al	а Ту	r Le	u Th:	r Gli	u Lei	T. T.Y.	r Arg	129	ı Al.	a Arq	C AAT J Asn	ı
15	Leu	1 Hi	s Al O	a Se	r As	p Se	r Va. 13!	1 Ty:	Tyı	r Leu	ı Ası	140	Arg	Arg	y Pro	A GAT Asp	
20	145	ı Ly	s Se	r Me	t Al	a Let 15(ı Sei	r Glm	Glr	n Asr	155	Asp	Ile	Glu	ı Leu	TCC Ser 160	
	ACA Thr	CTC	C TC u Se	r Tro	S TCC L Set 16	r Ası	GAC Glu	CTG Leu	TTA Leu	Leu 170	Glu	A AGC 1 Ser	ATT Ile	Lys	ACT Thr 175	GAA Glu	528
25	TCT Ser	` AAI Lys	A CTO	G GAL L Glu 180	ı Ası	TAT Tyr	ACT Thr	Lys	Val 185	Met	GAA Glu	ATG Met	CTC Leu	TCC Ser 190	Thr	TTC Phe	576
30	CGT	Pro	TCC Sei	: Gly	GC# Ala	A ACG	Pro	TAT Tyr 200	His	GAT Asp	GCT Ala	TAT Tyr	GAA Glu 205	AAT Asn	GTG Val	CGT Arg	624
35	GAA Glu	GTT Val 210	. Ile	CAG Gln	CTA Leu	CAA Gln	GAT Asp 215	Pro	GGA Gly	CTT Leu	GAG Glú	CAA Gln 220	CTC Leu	AAT Asn	GCA Ala	TCA Ser	672
40	CCG Pro 225	GCA Ala	ATT Ile	GCC Ala	Gly	Leu 230	ATG Met	CAT His	CAA Gln	GCC Ala	TCC Ser 235	CTA Leu	TTG Leu	GGT Gly	ATT Ile	AAC Asn 240	720
	GCT Ala	TCA Ser	ATC	TCG	Pro 245	GAG Glu	CTA Leu	TTT Phe	AAT Asn	ATT Ile 250	CTG Leu	ACG Thr	GAG Glu	GAG Glu	ATT Ile 255	ACC Thr	768
45	GAA Glu	GGT Gly	AAT Asn	GCT Ala 260	Glu	GAA Glu	CTT	TAT Tyr	AAG Lys 265	AAA Lys	AAT Asn	TTT Phe	GG T Gly	AAT Asn 270	ATC Ile	GAA Glu	316
50	CCG Pro	GCC Ala	TCA Ser 275	TTG	GCT Ala	ATG Met	CCG Pro	GAA Glu 280	TAC Tyr	CTT Leu	AAA Lys	CGT Arg	TAT Tyr 285	TAT Tyr	AAT Asn	TTA Leu	864
55	Ser	GAT Asp 290	GAA Glu	GAA Glu	CTT Leu	AGT Ser	CAG Gln 295	TTT Phe	ATT Ile	GCT Gly	AAA Lys	GCC Ala 300	AGC Ser	AAT Asn	TTT Phe	GGT Gly	912
60	CAA Gln 305	CAG Gln	GAA Glu	TAT Tyr	AGT Ser	AAT Asn 310	AAC Asn	CAA Gln	CTT Leu	Ile	ACT Thr 315	CCG Pro	GTA Val	GTC Val	AAC Asn	AGC Ser 320	960
•	AGT (GAT Asp	GGC Gly	ACG Thr	GTT Val 325	AAG Lys	GTA Val	TAT Tyr	Arg	ATC Ile 330	ACC Thr	CGC Arg	GAA Glu	TAT Tyr	ACA Thr 335	ACC Thr	1008
65	AAT (Asn 2	GCT Ala	TAT Tyr	CAA Gln 340	ATG Met	GAT Asp	GTG Val	Glu 1	CTA S Leu 345	TTT Phe	CCC Pro	TTC (Gly (SGT Sly 350	GAG .	AAT Asn	1056
70	TAT (Tyr !	CGG Arg	TTA Leu 355	GAT Asp	TAT Tyr	AAA Lys	Phe	AAA A Lys A 360	AAT ' Asn	TTT ' Phe '	TAT Tyr	Asn A	SCC 1 Ala 1 365	rcr Ser	TAT '	TTA Leu	1104

5		cc er	ATC 11= 370	AA Ly	G TT	CA A eu A	AT G	ab r	AA A ys A 75	Gλ rg	GA: Glu	CT Le	T G1 u Va	at y	GA A rg T 80	CT hr	GAA Glu	GG G1	C GC' Y Ala	r 1153 a
	3 8	35					39	0	yr S	et.	via	ASI	39	e T1	nr L	eu	Asn	Th	C GC: r Ala 400	a)
10		•				40	5		.u 1.	16	GTÅ	410) Th	r Ai	g V	al I	Leu	Pro		•
15					42	0 1	- 11	a vi	נא בי.	La I	125	Pne	Th	r va	T G	lu (31u 430	Түі	r AAC Asn	
20			•	435			- 24	u Dy	44	0	J211	μλε	AT	a II	e Ar 44	5 I	Leu	Ser	CGT Arg	
25		4	50		Dec	. 56	L PL	45	5	e L	.eu	GIU	GI	46	e Va O	ıl A	ırg	Ser	GTT Val	_
70	46	5	_		Dec	. vai	470	e AS	n Tn	r A	sp	val	475	i Gl	y Ly	s V	'al	Phe	CTG Leu 480	1440
30				• , •		485	GII	ı AF	g TY:	r a	.I.a	490	His	Ala	a Gl	u T	hr	Ala 495	CTG Leu	1488
35				-,-	500	VIC	PIO	, 116	÷ 261	5	05	Arg	Ser	Туг	Ası	P A 5	sn 10	Gln	CCT Pro	1536
40	-	-	-	15	ASP	vra	CTG	Pn€	520	1 11	nr	Pro	Leu	Leu	1 Ası 525	n G	ly (Gln	Tyr	1584
45		53	ō	***	GIY	ASP	GAG Glu	535	116	A.	\$p }	Leu	Asn	Ser 540	Gly	/ S	er '	Thr	Cly	1632
	545	••		- - -9	ny s	1111	ATA Ile 550	reu	Lys	A	rg A	Ala	Phe 555	Asn	Ile	As	p ?	Asp	Val 560	1680
50					ALG	565	CTT Leu	Lys	110	Tr	ır A	sp 70	His	Asp	Asn	Ly	's A	sp 575	Gly	1728
55	AAA Lys	AT Il	ΓA EL;		AAT Asn 580	AAC Asn	CTA Leu	AAG Lys	AAT Asn	CT Le 58	u s	er .	AAT Asn	TTA Leu	TAT	11 59	e G	GA ly	AAA Lys	1776
60	TTA Leu	CTO	• •	CA (la /	GAT Asp	ATT Ile	CAT His	CAA Gln	TTA Leu 600	AC Th	C A	TT (GAT Asp	GAA Glu	CTG Leu 605	GA As	T T	TA eu	TTA Leu	1824
65	CTG Leu	ATT Ile 610		cc c la v	GTA /al	GGT Gly	GAA Glu	GGA Gly 615	AAA Lys	AC Th	T A r A	AT ? sn I	-eu	TCC Ser 620	GCT Ala	AT Il	C A e S	GT er	GAT Asp	1872
	AAG Lys 625	CAA Gln	. Ti	rg c	SCT . Ala '	ACC Thr	CTG Leu 630	ATC Ile	AGA Arg	AA. Ly:	A C' s L	eu A	AT Sn 35	ACT Thr	ATT Ile	AC Th	C A	er '	TGG Trp 540	1920
70	CTA Leu	CAT His	Th	A C	AG A	AAG Lys	TGG Trp	AGT Ser	GTA Val	Pne	2 C 2 G	in L	TA ' eu	TTT Phe	ATC Ile	AT(G A	cc :	rcc Ser	1968

545

650

						•				0,5	•				0.2	,	
5	Th	ic Ad	GC T. er T	yr As	AC AA sn Ly so	A AC	G CT: r Lei	A ACC	cc Pr 66	o Gl	A AT u Il	T AA e Ly	G AA s As	T TT n Le 67	u Le	G GA1	r 201:
10	Th	c c r V	al T	AC CA yr Hi 75	AC GG is Gl	T TT. y Le	A CAA u Glr	680 680	/ Ph	T GA B As	T AA p Ly	A GA(s As)	C AA D Lys 685	s Al	A GA a As	T TTC p Lau	3 2064 I
	Le	u Hi 69	ls Va	al Me	E Al	a Pro	695	Ile	Alá	a Ala	a Th	700	ı Glr	ı Le	ı Se	A TCG r Ser	,
15	70!	u As 5	n Va	al Al	a Hi:	5 Ser 710	Val	Leu	Leu	Trp	715	a Asp	Lys	Leu	Gli	CCC Pro 720	
20	. GIZ	/ As	p G1	y Al	a Met 729	t Thr	Ala	Glu	Lys	730	Trp	Asp	Trp	Leu	735		
25	Γλε	: Ту	r Th	740	o Gly	/ Ser	Ser	Glu	Ala 745	Val	Glu	ı Thr	Gln	750	His	T ATC	2256
30	Val	. G1.	n Ty 75	r Cys 5	s Gln) Ala	CTG Leu	Ala 760	Gln	Leu	Glu	Met	Val 765	Tyr	His	Ser	2304
	Thr	77	0	e Asr	ı Glu	Asn	GCC Ala 775	Phe	Arg	Leu	Phe	780	Thr	Lys	Pro	Glu	2352
35	Met 785	Phe	∋ Gly	y Ala	. Ala	790	Gly	Ala	Ala	Pro	Ala 795	His	Asp	Ala	Leu	800	2400
40	CTG Leu	ATT	TATO Met	CTG Leu	ACA Thr 805	CGT Arg	TTT Phe	GCG Ala	GAT Asp	TGG Trp 810	GTG Val	AAC Asn	GCA Ala	CTA Leu	GGC Gly 815	GAA Glu	2448
45	AAA Lys	GCG	Ser	Ser 820	Val	CTA Leu	GCG Ala	GCA Ala	TTT Phe 825	GAA Glu	GCT Ala	AAC Asn	TCG Ser	TTA Leu 830	ACG Thr	GCA Ala	2496
50	GAA Glu	CAA Gln	Leu 335	Ala	GAT Asp	GCC Ala	ATG Met	AAT Asn 840	Leu	GAT Asp	GCT Ala	AAT Asn	TTG Leu 845	CTG Leu	TTC Lau	CAA Gln	2544
	λla	850	Ile	Gln	Ala	Gln	AAT Asn 855	His	Gln	His	Leu	Pro 860	Pro	Val	Thr	Pro	2592
55	GAA Glu 865	AAT Asn	GCG Ala	TTC Phe	TCC Ser	TGT Cys 870	TGG . Trp '	ACA '	TCT Ser	ATC Ile	AAT Asn 875	ACT Thr	ATC Ile	CTG Leu	CAA Gln	TGG Trp 880	2640
60	GTT Val	AAT Asn	GTC Val	GCA Ala	CAA Gln 885	CAA Gln	TTG /	AAT (Asn '	Val	GCC Ala 890	CCA Pro	CAG Gln	GGC Gly	GTT Val	TCC Ser 895	GCT Ala	2688
65	TTG Leu	GTC Val	GGG	CTG Leu 900	GAT Asp	TAT Tyr	ATT (Gln :	PCA Ser 905	ATG Met	AAA Lys	GAG Glu	Thr	CCG Pro 910	ACC Thr	TAT Tyr	2736
70	GCC Ala	CAG Gln	TGG Trp 915	GAA Glu	AAC Asn	GCG (Ala ,	GCA (Ala (GC (Gly (920	GTA '	TTA Leu	ACC Thr	Ala (GGG (Gly 1 925	MG Leu	AAT Asn	TCA Ser	2784
	CAA	CAG	GCT	AAT	ACA	TTA (CAC C	CT 1	TT (GAT	GAA '	TCT (CGC .	AGT	GCC	2932
										-							

	Glr	930	n Ala	a Ası	n Thi	Leu	His 935	Ale	a Phe	e Leu	ı Asp	340 Glu		Arg	Ser	Ala	
5	GCA Ala 945	Leu	A AGO	C ACC	TAC Tyr	TAT Tyr 950	Ile	CG1 Arg	CAA Glr	GTO Val	GCC Ala 955	Lys	GCA Ala	GCC Ala	GCG Ala	GCT Ala 960	2880
10	IIe	· Lys	Ser	: Arg	965	Asp	Leu	Tyr	Gln	970	Leu	Leu	Ile	Asp	Asn 975		2928
15	GTT Val	TCT Ser	GCG Ala	GCA Ala 980	ITe	AAA Lys	ACC	ACC	CGG Arg 985	Ile	GCC Ala	GAA Glu	GCC Ala	ATT Ile 990	GCC Ala	AGT Ser	2976
	ATT Ile	CAA Gln	CTG Leu 995	Tyr	GTC Val	AAC Asn	CGG Arg	GCA Ala 100	Leu	GAA Glu	AAT Asn	GTG Val	GAA Glu 100	Glu	AAT Asn	GCC Ala	3024
20	TAA nea	TCG Ser 101	GIA	GTT Val	Ile	AGC Ser	CGC Arg 101	Gln	TTC Phe	TTT Phe	ATC	GAC Asp 102	Trp	GAC Asp	AAA Lys	TAC Tyr	3072
25	AAT Asn 102	Lys	CGC	TAC Tyr	AGC Ser	ACT Thr 1030	Trp	GCG Ala	GGT Gly	GTT Val	TCT Ser 103	Gln	TTA Leu	GTT Val	TAC Tyr	TAC Tyr 1040	3120
30	CCG Pro	GAA Glu	AAC Asn	TAT	ATT Ile 104	Asp	CCG Pro	ACC Thr	ATG Met	CGT Arg 105	Ile	GGA Gly	CAA Gln	ACC Thr	AAA Lys 105	Met	3168
35	ATG Met	GAC Asp	GCA Ala	TTA Leu 106	CTG Leu 0	CAA Gln	TCC Ser	GTC Val	AGC Ser 106	Gln	AGC Ser	CAA Gln	TTA Leu	AAC Asn 1070	Ala	GAT Asp	3216
	ACC Thr	GTC Val	GAA Glu 1075	Asp	GCC Ala	TTT Phe	ATG Met	TCT Ser 1080	Tyr	CTG Leu	ACA Thr	TCG Ser	TTT Phe 1085	Glu	CAA Gln	GTG Val	3264
40	GCT Ala	AAT Asn 1090	Leu	AAA Lys	GTT Val	ATT Ile	AGC Ser 1095	Ala	TAT Tyr	CAC His	GAT Asp	AAT Asn 1100	Ile	AAT Asn	AAC Asn	GAT Asp	3312
45	CAA Gln 1105	Gly	CTG Leu	ACC Thr	TAT Tyr	TTT Phe 1110	Ile	GGA Gly	CTC Leu	AGT Ser	GAA Glu 1115	Thr	GAT Asp	GCC Ala	GGT Gly	GAA Glu 1120	3360
50	TAT Tyr	TAT Tyr	TGG Trp	CGC Arg	AGT Ser 1125	Val	GAT Asp	CAC His	AGT Ser	AAA Lys 1130	Phe	AAC Asn	GAC Asp	GGT Gly	AAA Lys 1135	Phe	3408
55	GCG Ala	GCT Ala	AAT Asn	GCC Ala 1140	Trp	AGT Ser	GAA Glu	TGG Trp	CAT His 1145	Lys	ATT Ile	GAT Asp	Cys	CCA Pro 1150	Ile	AAC Asn	3456
	Pro	Tyr	AAA Lys 1155	Ser	ACT Thr	ATC Ile	CGT Arg	CCA Pro 1160	Val	ATA Ile	TAT Tyr	AAA Lys	TCC Ser 1165	Arg	CTG Leu	TAT Tyr	3504
60	CTG Leu	CTC Leu 1170	Trp	TTG Leu	GAA Glu	Gln	AAG Lys 1175	Glu	ATC Ile	ACC Thr	AAA Lys	CAG Gln 1180	Thr	GGA Gly	AAT Asn	AGT Ser	3552
65	AAA Lys 1185	GAT Asp	GGC Gly	TAT Tyr	Gln	ACT Thr 1190	Glu	ACG Thr	GAT Asp	TAT Tyr	CGT Arg 1195	Tyr	GAA Glu	CTA Leu	AAA Lys	TTG Leu 1200	3600
70	GCG (Ala	CAT	ATC Ile	CGC Arg	TAT Tyr 1205	Asp (GGC Gly	ACT Thr	Trp	AAT Asn 1210	Thr	CCA Pro	ATC Ile	Thr	TTT Phe 1215	Asp	3648

	GTC AAT Val Asr	AAA Lys	AAA Lys 122	Ile	TCC Ser	GAG Glu	CTA Leu	AAA Lys 122	Leu	GAA Glu	AAA Lys	AAT Asn	AGA Arg 1230	Ala	CCC Pro	3636
5	GGA CTC Gly Leu	TAT Tyr 123	Cys	GCC Ala	GGT Gly	TAT Tyr	CAA Gln 1240	Gly	GAA Glu	GAT Asp	ACG Thr	TTG Leu 1245	Leu	GTG Val	ATG Met	3744
10	TTT TAT Phe Tyr 125	Asn	CAA Gln	CAA Gln	GAC Asp	ACA Thr 125	Leu	GAT Asp	AGT Ser	TAT Tyr	AAA Lys 1260	Asn	GCT Ala	TCA Ser	ATG Met	3792
15	CAA GGA Gln Gly 1265	CTA Leu	TAT Tyr	ATC Ile	TTT Phe 1270	Ala	GAT Asp	ATG Met	GCA Ala	TCC Ser 1275	Lys	GAT Asp	ATG Met	ACC Thr	CCA Pro 1280	3840
20	GAA CAG Glu Gln	AGC Ser	AAT Asn	GTT Val 1285	Tyr	CGG Arg	GAT Asp	AAT Asn	AGC Ser 1290	Tyr	CAA Gln	CAA Gln	TTT Phe	GAT Asp 1299	Thr	3888
20	AAT AAT Asn Asn	GTC Val	AGA Arg 1300	Arg	GTG Val	AAT Asn	AAC Asn	CGC Arg 1305	Tyr	GCA Ala	GAG Glu	GAT Asp	TAT Tyr 1310	Glu	ATT Ile	3936
25	CCT TCC Pro Ser	TCG Ser 131	Val	AGT Ser	AGC Ser	CGT Arg	AAA Lys 1320	Asp	TAT Tyr	ggt Gly	TGG Trp	GGA Gly 1325	Asp	TAT Tyr	TAC Tyr	3984
30	CTC AGC Leu Ser 133	Met	GTA Val	TAT Tyr	AAC Asn	GGA Gly 1335	Asp	ATT Ile	CCA Pro	ACT Thr	ATC 11e 1340	Asn	TAC Tyr	AAA Lys	GCC Ala	4032
35	GCA TCA Ala Ser 1345	AGT Ser	GAT Asp	TTA Leu	AAA Lys 1350	Ile	TAT Tyr	ATC Ile	Ser	CCA Pro 1355	Lys	TTA Lau	AGA Arg	ATT	ATT Ile 1360	4080
40	CAT AAT His Asn	GGA Gly	TAT Tyr	GAA Glu 1365	Gly	CAG Gln	AAG Lys	CGC Arg	AAT Asn 1370	Gln	TGC Cys	TAA Asn	CTG Leu	ATG Met 1375	Asn	4128
40	AAA TAT Lys Tyr	GGC Gly	AAA Lys 1380	Leu	GGT Gly	GAT Asp	AAA Lys	TTT Phe 1385	Ile	GTT Val	TAT Tyr	ACT Thr	AGC Ser 1390	Leu	GGG Gly	4176
45	GTC AAT Val Asn	CCA Pro 1395	Asn	AAC Asn	TCG Ser	TCA Ser	AAT Asn 1400	Lys	CTC Leu	ATG Met	TTT Phe	TAC Tyr 1405	Pro	GTC Val	TAT Tyr	4224
50	CAA TAT Gln Tyr 141	Ser	GGA Gly	AAC Asn	ACC Thr	AGT Ser 1415	Gly	CTC Leu	AAT Asn	CAA Gln	GGG Gly 1420	Arg	CTA Leu	CTA Leu	TTC Phe	4272
55	CAC CGT His Arg 1425	GAC Asp	ACC. Thr	ACT Thr	TAT Tyr 1430	Pro	TCT Ser	AAA Lys	GTA Val	GAA Glu 1435	Ala	TGG Trp	ATT Ile	CCT Pro	GGA Gly 1440	4320
40	GCA AAA Ala Lys	CGT Arg	TCT Ser	CTA Leu 1445	Thr	AAC Asn	CAA Gln	AAT Asn	GCC Ala 1450	Ala	ATT Ile	GGT Gly	GAT Asp	GAT Asp 1455	Tyr	4368
60	GCT ACA Ala Thr	GAC Asp	TCT Ser 1460	Leu	AAT Asn	AAA Lys	CCG Pro	GAT Asp 1465	Asp	CTT Leu	AAG Lys	CAA Gln	TAT Tyr 1470	Ile	TTT Phe	4416
65	ATG ACT Met Thr	GAC Asp 1475	Ser	AAA Lys	GGG Gly	ACT Thr	GCT Ala 1480	Thr	GAT Asp	GTC Val	TCA Ser	GGC Gly 1485	Pro	GTA Val	GAG Glu	4464
70	ATT AAT Tle Asn 1490	Thr	GCA Ala	ATT Ile	TCT Ser	CCA Pro 1495	Ala	AAA Lys	GTT Val	CAG Gln	ATA Ile 1500	Ile	GTC Val	AAA Lys	GCG Ala	4512

5	G3' G1; 150	/ GI	C AA0 / Lys	G GAC S Glu	G CAI I Glr	A ACT Thr 151	Phe	ACC Thr	GCA Ala	GA? Asp	C AAA C Lys 151	Asp	GTC Val	TCC Ser	ATI	CAG Gln 1520	
	CC:	A TCA Sei	CC1	AGC Ser	TTT Phe 152	: Asp	GAA Glu	ATG Met	AAT Asn	TAT Tyr 153	Glr	TTT Phe	AAT Asn	GCC Ala	CTT Leu 153		4608
10	ATA Ile	GAC Asp	GGT Gly	Ser 154	GIA	CTG	AAT Asn	TTT	ATT Ile 154	Asn	AAC Asn	TCA Ser	GCC Ala	AGT Ser 155	Ile	GAT Asp	4656
15	GTT Val	ACT Thr	Phe 155	Thr	GCA Ala	TTT Phe	GCG Ala	GAG Glu 156	Asp	GGC	CGC Arg	aaa Lys	CTG Leu 156	Gly	TAT Tyr	GAA Glu	4704
20	AGT Ser	TTC Phe 157	Ser	ATT	CCT Pro	GTT Val	ACC Thr 157	Leu	AAG Lys	GTA Val	AGT Ser	ACC Thr 158	Asp	AAT Asn	GCC Ala	CTG Leu	4752
25	ACC Thr 158	Leu	CAC His	CAT	AAT Asn	GAA Glu 1590	Asn	GGT Gly	GCG Ala	CAA Gln	TAT Tyr 159	Met	CAA Gln	TGG Trp	CAA Gln	TCC Ser 1600	4800
	TAT Tyr	CGT	ACC Thr	CGC Arg	CTG Leu 160	AAT Asn 5	ACT Thr	CTA Leu	TTT Phe	GCC Ala 161	Arg	CAG Gin	TTG Leu	GTT Val	GCA Ala 161	Arg	1848
30	GCC Ala	ACC Thr	ACC Thr	GGA Gly 162	Ile	GAT Asp	ACA Thr	ATT Ile	CTG Leu 162	Ser	ATG Met	GAA Glu	ACT Thr	CAG Gln 1630	Asn	ATT Ile	4896
35	CAG Gln	GAA Glu	CCG Pro 1635	Gln	TTA Leu	GGC Gly	AAA Lys	GGT Gly 1640	Phe	TAT Tyr	GCT Ala	ACG Thr	TTC Phe 1645	Val	ATA Ile	CCT Pro	4944
40	CCC Pro	TAT Tyr 1650	Asn	CTA Leu	TCA Ser	ACT Thr	CAT His 1655	Gly	GAT Asp	GAA Glu	CGT Arg	TGG Trp 1660	Phe	AAG Lys	CTT Leu	TAT Tyr	4992
45	ATC Ile 1665	Lys	CAT His	GTT Val	GTT Val	GAT Asp 1670	Asn	AAT Asn	TCA Ser	His	ATT Ile 1675	ATC Ile	TAT Tyr	TCA Ser	GGC Gly	CAG Gln 1680	5040
	CTA Leu	ACA Thr	GAT Asp	ACA Thr	AAT Asn 1685	ATA Ile	AAC Asn	ATC Ile	ACA Thr	TTA Leu 1690	Phe	ATT Ile	CCT Pro	CTT Leu	GAT Asp 1695	Asp	5088
50	GTC Val	CCA Pro	TTG Leu	AAT Asn 1700	Gln	GAT Asp	TAT Tyr	CAC His	GCC Ala 1705	Lys	G TT Val	TAT Tyr	ATG Met	ACC Thr 1710	Phe	AAG Lys	5136
55	AAA Lys	TCA Ser	CCA Pro 1715	Ser	GAT Asp	GCT Gly	Thr	TGG Trp 1720	Trp	GGC Gly	CCT Pro	CAC His	TTT Phe 1725	Val	AGA Arg	GAT Asp	5184
60	GAT Asp	AAA Lys 1730	GIY	ATA Ile	GTA Val	ACA Thr	ATA Ile 1735	Asn	CCT Pro	AAA Lys	TCC Ser	ATT Ile 1740	Leu	ACC Thr	CAT His	TTT Phe	5232
65	GAG Glu 1745	Ser	GTC Val	AAT Asn	GTC Val	C T G Leu 1750	AAT Asn	AAT Asn	ATT Ile	AGT Ser	AGC Ser 1755	Glu	CCA Pro	ATG Met	GAT Asp	TTC Phe 1760	5280
	AGC Ser	GGC Gly	GCT Ala	AAC Asn	AGC Ser 1765	CTC Leu	TAT ' Tyr	TTC Phe	Trp	GAA Glu 1770	Leu	TTC Phe	TAC Tyr	Tyr	ACC Thr 1775	CCG Pro	5328
70	ATG Met	CTG Leu	GTT Val	GCT Ala	CAA Gln	CGT '	TTG (Leu	CTG Leu	CAT His	Glu	CAG Gln	AAC Asn	TTC : Phe .	GAT (GAA Glu	GCC Ala	5376

1730 1785 1790 AAC CGT TGG CTG AAA TAT GTC TGG AGT CCA TCC GGT TAT ATT GTC CAC Asn Arg Trp Leu Lys Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val His 1300 1805 GGC CAG ATT CAG AAC TAC CAG TGG AAC GTC CGC CCG TTA CTG GAA GAC Gly Gln Ile Gln Asn Tyr Gln Trp Asn Val Arg Pro Leu Leu Glu Asp 1815 10 ACC AGT TGG AAC AGT GAT CCT TTG GAT TCC GTC GAT CCT GAC GCG GTA Thr Ser Trp Asn Ser Asp Pro Leu Asp Ser Val Asp Pro Asp Ala Val 5520 1825 1830 GCA CAG CAC GAT CCA ATG CAC TAC AAA GTT TCA ACT TTT ATG CGT ACC Ala Gln His Asp Pro Met His Tyr Lys Val Ser Thr Phe Met Arg Thr TTG GAT CTA TTG ATA GCA CGC GGC GAC CAT GCT TAT CGC CAA CTG GAA 20 Leu Asp Leu Leu Ile Ala Arg Gly Asp His Ala Tyr Arg Gln Leu Glu 1860 1865 CGA GAT ACA CTC AAC GAA GCG AAG ATG TGG TAT ATG CAA GCG CTG CAT Arg Asp Thr Leu Asn Glu Ala Lys Met Trp Tyr Met Gln Ala Leu His 1880 CTA TTA GGT GAC AAA CCT TAT CTA CCG CTG AGT ACG ACA TGG AGT GAT Leu Leu Gly Asp Lys Pro Tyr Leu Pro Leu Ser Thr Thr Trp Ser Asp 30 CCA CGA CTA GAC AGA GCC GCG GAT ATC ACT ACC CAA AAT GCT CAC GAC Pro Arg Leu Asp Arg Ala Ala Asp Ile Thr Thr Gln Asn Ala His Asp 1910 1915 AGC GCA ATA GTC GCT CTG CGG CAG AAT ATA CCT ACA CCG GCA CCT TTA Ser Ala Ile Val Ala Leu Arg Gln Asn Ile Pro Thr Pro Ala Pro Leu 1925 1930 TCA TTG CGC AGC GCT AAT ACC CTG ACT GAT CTC TTC CTG CCG CAA ATC Ser Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln Ile 40 5856 1945 AAT GAA GTG ATG AAT TAC TGG CAG ACA TTA GCT CAG AGA GTA TAC Asn Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg Val Tyr 45 AAT CTG CGT CAT AAC CTC TCT ATC GAC GGC CAG CCG TTA TAT CTG CCA Asn Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr Leu Pro 50 ATC TAT GCC ACA CCG GCC GAT CCG AAA GCG TTA CTC AGC GCC GCT Ile Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val 1990 1995 GCC ACT TCT CAA GGT GGA GGC AAG CTA CCG GAA TCA TTT ATG TCC CTG Ala Thr Ser Gln Gly Gly Gly Lys Leu Pro Glu Ser Phe Met Ser Leu 2010 TGG CGT TTC CCG CAC ATG CTG GAA AAT GCG CGC GGC ATG GTT AGC CAG Trp Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val Ser Gln CTC ACC CAG TTC GGC TCC ACG TTA CAA AAT ATT ATC GAA CGT CAG GAC Leu Thr Gin Phe Gly Ser Thr Leu Gln Asn Ile Ile Glu Arg Gln Asp 65 2040 GCG GAA GCG CTC AAT GCG TTA TTA CAA AAT CAG GCC GCC GAG CTG ATA Ala Glu Ala Leu Asn Ala Leu Leu Gln Asn Gln Ala Ala Glu Leu Ile 2055 2060 70 TTG ACT AAC CTG AGC ATT CAG GAC AAA ACC ATT GAA GAA TTG GAT GCC 6240

WO 97/17432 PCT/US96/18003 Leu Thr Asn Leu Ser Ile Gin Asp Lys Thr Ile Glu Glu Leu Asp Ala 2070 GAG AAA ACG GTG TTG GAA AAA TCC AAA GCG GGA GCA CAA TCG CGC TTT Glu Lys Thr Val Leu Glu Lys Ser Lys Ala Gly Ala Gln Ser Arg Phe 2085 GAT AGC TAC GGC AAA CTG TAC GAT GAG AAT ATC AAC GCC GGT GAA AAC Asp Ser Tyr Gly Lys Leu Tyr Asp Glu Asn Ile Asn Ala Gly Glu Asn 10 2105 CAA GCC ATG ACG CTA CGA GCG TCC GCC GCC GGG CTT ACC ACG GCA GTT Gln Ala Met Thr Leu Arg Ala Ser Ala Ala Gly Leu Thr Thr Ala Val CAG GCA TCC CGT CTG GCC GGT GCG GCG GCT GAT CTG GTG CCT AAC ATC Sin Ala Ser Arg Leu Ala Gly Ala Ala Ala Asp Leu Val Pro Asn Ile 2130 2140 20 TTC GGC TTT GCC GGT GGC GGC AGC CGT TGG GGG GCT ATC GCT GAG GCG Phe Gly Phe Ala Gly Gly Gly Ser Arg Trp Gly Ala Ile Ala Glu Ala ACA GGT TAT GTG ATG GAA TTC TCC GCG AAT GTT ATG AAC ACC GAA GCG 25 Thr Gly Tyr Val Met Glu Phe Ser Ala Asn Val Met Asn Thr Glu Ala 2170 GAT AAA ATT AGC CAA TCT GAA ACC TAC CGT CGT CGC CGT CAG GAG TGG Asp Lys Ile Ser Gln Ser Glu Thr Tyr Arg Arg Arg Arg Gln Glu Trp 30 GAG ATC CAG CGG AAT AAT GCC GAA GCG GAA TTG AAG CAA ATC GAT GCT Glu Ile Gln Arg Asn Asn Ala Glu Ala Glu Leu Lys Gln Ile Asp Ala 2200 CAG CTC AAA TCA CTC GCT GTA CGC CGC GAA GCC GCC GTA TTG CAG AAA Gln Leu Lys Ser Leu Ala Val Arg Arg Glu Ala Ala Val Leu Gln Lys 2215 ACC AGT CTG AAA ACC CAA CAA GAA CAG ACC CAA TCT CAA TTG GCC TTC 6720 Thr Ser Leu Lys Thr Gln Gln Glu Gln Thr Gln Ser Gln Leu Ala Phe 2230 2235 CTG CAA CGT AAG TTC AGC AAT CAG GCG TTA TAC AAC TGG CTG CGT GGT 45 Leu Gln Arg Lys Phe Ser Asn Gln Ala Leu Tyr Asn Trp Leu Arg Gly 2245 2250 CGA CTG GCG GCG ATT TAC TTC CAG TTC TAC GAT TTG GCC GTC GCG CGT Arg Leu Ala Ala Ile Tyr Phe Gln Phe Tyr Asp Leu Ala Val Ala Arg TGC CTG ATG GCA GAA CAA GCT TAC CGT TGG GAA CTC AAT GAT GAC TCT 6864 Cys Leu Met Ala Glu Gln Ala Tyr Arg Trp Glu Leu Asn Asp Asp Ser GCC CGC TTC ATT AAA CCG GGC GCC TGG CAG GGA ACC TAT GCC GGT CTG Ala Arg Phe Ile Lys Pro Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu 2295 CTT GCA GGT GAA ACC TTG ATG CTG AGT CTG GCA CAA ATG GAA GAC GCT 6960 Leu Ala Gly Glu Thr Leu Met Leu Ser Leu Ala Gln Met Glu Asp Ala CAT CTG AAA CGC GAT AAA CGC GCA TTA GAG GTT GAA CGC ACA GTA TCG 7008

. 2330

His Leu Lys Arg Asp Lys Arg Ala Leu Glu Val Glu Arg Thr Val Ser

CTG GCC GAA GTT TAT GCA GGA TTA CCA AAA GAT AAC GGT CCA TTT TCC Leu Ala Glu Val Tyr Ala Gly Leu Pro Lys Asp Asn Gly Pro Phe Ser

	CTG GCT CAG GAA ATT GAC AAG CTG GTG AGT CAA GGT TCA GGC AGT GCC 71 Leu Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly Ser Ala 2355 2360 2365	154
5	GGC AGT GGT AAT AAT TTG GCG TTC GGC GCC GGC ACG GAC ACT AAA 71 Gly Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp Thr Lys 2370 2375 2380	152
10	ACC TCT TTG CAG GCA TCA GTT TCA TTC GCT GAT TTG AAA ATT CGT GAA 72 Thr Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu 2385 2390 2395 2400	200
15	GAT TAC CCG GCA TCG CTT GGC AAA ATT CGA CGT ATC AAA CAG ATC AGC 72 Asp Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln Ile Ser 2405 2410 2415	48
20	GTC ACT TTG CCC GCG CTA CTG GGA CCG TAT CAG GAT GTA CAG GCA ATA 72 Val Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile 2420 2425 2430	96
	TTG TCT TAC GGC GAT AAA GCC GGA TTA GCT AAC GGC TGT GAA GCG CTG 73 Leu Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu 2435 2440 2445	44
25	GCA GTT TCT CAC GGT ATG AAT GAC AGC GGC CAA TTC CAG CTC GAT TTC 73 Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe 2450 2460	92
30	AAC GAT GGC AAA TTC CTG CCA TTC GAA GGC ATC GCC ATT GAT CAA GGC 74 Asn Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly 2465 2470 2475 2480	40
35	ACG CTG ACA CTG AGC TTC CCA AAT GCA TCT ATG CCG GAG AAA GGT AAA 74 Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys 2485 2490 2495	88
40	CAA GCC ACT ATG TTA AAA ACC CTG AAC GAT ATC ATT TTG CAT ATT CGC 75 Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg 2500 2505 2510	36
40	TAC ACC ATT AAA TAA 7551 Tyr Thr Ile Lys ••• 2516	
45	(2) INFORMATION FOR SEQ ID NO:47: (i) SEQUENCE CHARACTERISTICS:	
50	 (A) LENGTH: 2516 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: protein	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47 (TcdA): Features From To Description Peptide 1 2516 TcdA proteins	
60	Peptide 89 1937 TcdAii peptide Fragment 89 100 S2 N-terminus (SEQ ID NO:13) Fragment 284 299 (SEQ ID NO:38) Fragment 554 563 (SEQ ID NO:17)	
65	Fragment 1080 1092 (SEQ ID NO:23; 12/13) Fragment 1385 1400 (SEQ ID NO:18) Fragment 1478 1497 (SEQ ID NO:39)	
65	Fragment 1620 1642 (SEQ ID NO:21; 19/23) Fragment 1938 1948 (SEQ ID NO:41) Peptide 1938 2516 TcdA _{ili} peptide Fragment 2327 2345 (SEQ ID NO:42)	
	Fragment 2398 2408 (SEQ ID NO:43)	
	- 1 9 4 -	

Met Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser Gln Cys
1 5 10 15 Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn Glu Phe 20 25 30 Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His Asp Leu 35 40 4510 Tyr His Asp Ala Gln Gln Ala Gln Lys Asp Asn Arg Leu Tyr Glu Ala 50 60Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu Gln Asn Ala Val His Leu 65 70 75 80 15 Ala Ile Leu Ala Pro Asn Ala Glu Leu Ile Gly Tyr Asn Asn Gln Phe 85 90 95 20 Ser Gly Arg Ala Ser Gln Tyr Val Ala Pro Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Arg Asn 115 120 125 25 Leu His Ala Ser Asp Ser Val Tyr Tyr Leu Asp Thr Arg Arg Pro Asp 130 135 Leu Lys Ser Met Ala Leu Ser Gln Gln Asn Met Asp Ile Glu Leu Ser 150 155 150 30 Thr Leu Ser Leu Ser Asn Glu Leu Leu Leu Glu Ser Ile Lys Thr Glu 165 170 175 Ser Lys Leu Glu Asn Tyr Thr Lys Val Met Glu Met Leu Ser Thr Phe 180 190 Arg Pro Ser Gly Ala Thr Pro Tyr His Asp Ala Tyr Glu Asn Val Arg 195 200 205 Glu Val Ile Gln 1-u Gln Asp Pro Gly Leu Glu Gln Leu Asn Ala Ser 210 225 220 Pro Ala Ile Ala Gly Leu Met His Gln Ala Ser Leu Leu Gly Ile Asn 230 235 240 45 Ala Ser Ile Ser Pro Glu Leu Phe Asn Ile Leu Thr Glu Glu Ile Thr 245 250 255 50 Glu Gly Asn Ala Glu Glu Leu Tyr Lys Lys Asn Phe Gly Asn Ile Glu 265 270 Pro Ala Ser Leu Ala Met Pro Glu Tyr Leu Lys Arg Tyr Tyr Asn Leu 275 280 285 55 Ser Asp Glu Glu Leu Ser Gln Phe Ile Gly Lys Ala Ser Asn Phe Gly 290 295 300 Gln Gln Glu Tyr Ser Asn Asn Gln Leu Ile Thr Pro Val Val Asn Ser 305 310 315 320 60 Ser Asp Gly Thr Val Lys Val Tyr Arg Ile Thr Arg Glu Tyr Thr Thr 325 330 335 65 Asn Ala Tyr Gln Met Asp Val Glu Leu Phe Pro Phe Gly Gly Glu Asn 340 350 Tyr Arg Leu Asp Tyr Lys Phe Lys Asn Phe Tyr Asn Ala Ser Tyr Leu 355 360 365 70 Ser Ile Lys Leu Asn Asp Lys Arg Glu Leu Val Arg Thr Glu Gly Ala -195-

		370					375					380				
•	Pro 385		Val	Asn	Ile	Glu 390	Tyr	Ser	Ala	Asn	Ile 395	Thr	Leu	Asn	Thr	Ala 400
5	уsb	Ile	Ser	Gln	Pro 405	Phe	Glu	Ile	Gly	Leu 410	Thr	Arg	Val	Leu	Pro 415	Ser
10	Gly	Ser	Trp	Ala 420	Tyr	Ala	Ala	Ala	Lys 425	Phe	Thr	Val	Glu	436 436	Tyr	Asn
	Gln	Tyr	Ser 435	Phe	Leu	Leu	Lys	Leu 440	Asn	Lys	Ala	Ile	Arg 445	Leu	Ser	Arg
15		450	Glu				455					460				
20	465		Gln			470					475					480
			Tyr		485					490					495	
25			Cys	500					505					510		
			Phe 515					520					525			
30		530	Thr				535					540				
35	545		Arg			550					555					560
			Phe		565					570					575	
40			Lys	580					585					590		
			Ala 595					600					605			
45		610	Ala				615					620				
50	625		Leu			630					635					640
	•		Thr		645					650					655	
55			Tyr	660					665					670		
			Tyr 675					680					685			
60		690	Val				695					760				
65	705		Val			710					715					720
-			Gly		725		,			730					735	
70	Lys	Tyr	Thr	Pro 740	Gly	Ser	ser	Glu	Ala 745	Val	Glu	Thr	Gln	Glu 750	His	Ile

	∵a	l G	ln I	yr c	ys G	ln A	la L	eu A	la G	ln L	eu Gl	ı, Me	e 17 s	1 0	·	
			·	••				٠,	6 U				76	5		
5		·	•				•	, ,			eu Ph	78	0			
141		•				, ,	, ,				79	כ				800
10						-				01					91,	5
15				•	. •				02		u Al			830)	
			-	•				04	U		p Ala		845	5		
20	Alá	8 Se	r II	le Gl	n Al	a Gl	n As 85	n Hi 5	s Gl	n Hi	s Leu	Pro 860	Pro	Val	Thr	Pro
						0,	•				e Asr 875	•				380
25						,				89					895	i
30				-	•				30:	•	t Lys			910		
	Ala	Gli	91	p Gl	ı Ası	n Ala	a Ala	920	/ Vai	l Leu	1 Thr	Ala	Gly 925	Leu	Asn	Ser
35	Gln	Glr 930	a Al	a Ası	n Thi	Lev	His 935	Ala	. Phe	e Leu	ı Asp	Glu 940	Ser	Arg	Ser	Ala
	Ala 945	Leu	Se	r Thi	Туг	7yr 950	Ile	Arg	Glr	Val	Ala 955	Lys	Ala	Ala	Ala	Ala 960
40	Ile	Lys	Ser	r Arç	965	Asp	Leu	Tyr	Gln	Tyr 970	Leu	Leu	Ile	Asp	Asn 975	Gln
45	Val	Ser	Ala	980	Ile	Lys	Thr	Thr	Arg 985	Ile	Ala	Glu	Ala	Ile 990	Ala	Ser
	Ile	Gln	995	Tyr	Val	Asn	Arg	Ala 100	Leu 0	Glu	Asn	Val	Glu 1005	Glu	Asn	Ala
50	Asn	Ser 101	Gly 0	Val	Ile	Ser	Arg 101	Gln 5	Phe	Phe	Ile	Asp 1020	Trp	Asp	Lys	Tyr
	Asn 1025	Lys	Arg	Tyr	Ser	Thr 103	Trp 0	Ala	Gly	Val	Ser 1035	Gln	Leu	Val	Tyr	Tyr 1040
55	Pro	Glu	Asn	Tyr	Ile 104	Asp 5	Pro	Thr	Met	Arg 105	Ile	Gly	Gln	Thr	Lys 10 5 5	Met
60	Met	Asp	Ala	Leu 106	Leu 0	Gln	Ser	Val	Ser 106	Gln 5	Ser	Gln	Leu	Asn 1070	Ala	λsp
	Thr	Val	Glu 107	Asp 5	Ala	Phe	Met	Ser 1080	Tyr	Leu	Thr	Ser	Phe 1085	Glu	Gln	Val
65	Ala .	Asn 1090	Leu)	Lys	Val	Ile	Ser 1095	Ala	Tyr	His	Asp	Asn 1100	Ile	Asn .	Asn	Asp
	Gln (Gly	Leu	Thr	Tyr	Phe 1110	Ile)	Gly	Leu	Ser	Glu 1115	Thr	Asp .	Ala (Glu 1120
70	Tyr '	lyr	Trp	Arg	Ser 1125	Val	Asp	His	Ser	Lys 1130	Phe	Asn .	Asp (

	Ala	Ala	λsn	Ala 114		Ser	Glu	Trp	His 114	Lys 5	Ile	Эsр	Cys	Pro 115	Ile O	Asn
5	Pro	Tyr	Lys 115	Ser 5	Thr	Ile	Arg	Pro 116		Ile	T/r	Lys	Ser 116	Arg 5	Leu	Tyr
10	Leu	Leu 117		Leu	Glu	Gln	Lys 117	Glu 5	Ile	Thr	Lys	Gln 118	Thr 0	Gly	Asn	ser
10	Lys 113		Gly	туг	Gln	Thr 1190		Thr	Asp	Tyr	Arg 119	Tyr 5	Glu	Leu	Lys	Leu 120
15	Ala	His	Ile	Arg	Tyr 1209		Gly	Thr	Trp	Asn 1210	Thr)	Pro	Ile	Thr	Phe 1215	Asp
	Val	Asn	Lys	Lys 1220		Ser	Glu	Leu	Lys 1225		Glu	Lys	Asn	Arg 1230	Ala)	Pro
20	Gly	Leu	Tyr 123	Cys 5	Ala	Gly	Tyr	Gln 1240	Gly	Glu	Asp	Thr	Leu 1249	Leu 5	Val	Met
25		125	0	Gln			1259	5				1260)			
	1265	5		Tyr		1270)				1275	5				128
30				Asn	1285	•				1290)				1295	•
				Arg 1300)				1305	j				1310)	
35		•	1315					1320)				1325	5		
40		1330)	Val			1335	5				1340)			
	1345	5		Asp		1350)				1355	5				136
45				Tyr	1365	i				1370)				1375	5
				Lys 1380)				1385	•				1390)	
50			1399					1400)				1405	5		
55		1410)	Gly			1415	i				1420)			
	1425	i		Thr		1430	ŀ				1435	•				144
60				Ser	1445					1450	ı				1455	'
				Ser 1460					1465					1470	1	
65			1475					1480)				1485	i		
70		1490)	Ala			1495					1500	,			
	Gly	Gly	Lys	Glu	Gln	Thr	Phe	Thr		Asp 98-	Lys	Asp	Val	ser	119	GIN

	1505	1510	1515	1526
5	Pro Ser Pro	Ser Phe Asp Glu 1525	Met Asn Tyr Gln Phe Asr 1530	n Ala Leu Glu 1535
_	Ile Asp Gly	Ser Gly Leu Asn 1540	Phe Ile Asn Asn Ser Ala 1545	Ser Ile Asp 1550
10	Val Thr Phe 1555	Thr Ala Phe Ala	Glu Asp Gly Arg Lys Leu 1560 156	Gly Tyr Glu
	Ser Phe Ser 1570	Ile Pro Val Thr 1575	Leu Lys Val Ser Thr Asp 1580	Asn Ala Leu
15	Thr Leu His 1585	His Asn Glu Asn (1590	Gly Ala Gln Tyr Met Gln 1595	Trp Gln Ser 1600
20	Tyr Arg Thr	Arg Leu Asn Thr 1 1605	Leu Phe Ala Arg Gln Leu 1610	Val Ala Arg 1615
	Ala Thr Thr	Gly Ile Asp Thr : 1620	Ile Leu Ser Met Glu Thr 1625	Gln Asn Ile 1630
25	Gln Glu Pro 1635	Gln Leu Gly Lys (Gly Phe Tyr Ala Thr Phe 1640 164	Val Ile Pro 5
	Pro Tr Asn 1 1650	Leu Ser Thr His 0 1655	Gly Asp Glu Arg Trp Phe 1660	Lys Leu Tyr
30	Ile Lys His V 1665	val Val Asp Asn A 1670	asn Ser His Ile Ile Tyr 1675	Ser Gly Gln 1680
35	Leu Thr Asp 1	Thr Asn Ile Asn I 1685	le Thr Leu Phe Ile Pro 1690	Leu Asp Asp 1695
	Val Pro Leu A	Asn Gln Asp Tyr H 1700	is Ala Lys Val Tyr Met 1705	Thr Phe Lys 1710
40	1/15	1	rp Trp Gly Pro His Phe 720 1725	5
Ω	1730	1735	sn Pro Lys Ser Ile Leu 1740	
45	1/43	1/50	sn Ile Ser Ser Glu Pro 1755	1760
50		1765	he Trp Glu Leu Phe Tyr 1770	1775
	1	780		1790
55	1/95	18	rp Ser Pro Ser Gly Tyr 300 1805	
	1010	1815	rp Asn Val Arg Pro Leu 1820	
60	1623	1830	eu Asp Ser Val Asp Pro . 1835	1840
65		1845	r Lys Val Ser Thr Phe I 1850	1855
	18	360		1870
70	Arg Asp Thr Le	eu Asn Glu Ala Ly 18	s Met Trp Tyr Met Gln / 80 1885	Ala Leu His

		390					1070									
5	Pro A:					1310										
	Ser A	la :	lle	Val	Ala 1925	Leu	Arg	Gln	Asn	Ile 1930	Pro	Thr	Pro	Ala	Pro 1935	Leu
10	Ser L			1940					1343)						
	Asn G		1955					1900	•							
15	_	970					19/5	1				1300	,			
20	Ile T 1985					1990	•				133.	,				
	Ala T				2005	1				2010	,					
25	Trp A			2020					2025	•				2050		
70	Leu T		2035	i				2041	,				204.	•		
30	_	050					2055	•				200	•			
35	Leu T 2065					2070	,									
	Glu L				2085	5				2091	J					
40	Asp S			2100)				210:	•					•	
45	Gln A		2115	;				212	U							
43		130					213	•				214	•			
50	Phe G 2145					215	U				213	,				
	Thr G				216	5				211	U					_
55	Asp L			218	0				210	7					•	
60	Glu I		219	5				220	U				220	•		
		2210)				221	.				444	•			
65	Thr 5					223	U				223	,				
	Leu (224	5				223	·					
70	Arg [Leu	Ala	Ala 226	lle n	Tyr	Phe	GIN	226	17 . 5	ASP	, Leu	. Wra	227	0	

	Суѕ	Lau	Met 227		Glu	Gln	Ala	Tyr 228		Trp	Glu	Leu	Asn 228		Asp	Ser		
5	Ala	Arg 229	Phe 0	Ile	Lys	Pro	Gly 229		Trp	Gln	Gly	Thr 230		Ala	Gly	Leu		
10	Leu 230		Gly	Glu	Thr	Leu 231		Leu	Ser	Leu	Ala 2315		Met	Glu	Asp	Ala 2320		
10	His	Leu	Lys	Arg	Asp 2325		Arg	Ala	Leu	Glu 2330		Glu	Arg	Thr	Val 2339			
15	Leu	Ala	Glu	Val 2340		Ala	Gly	Leu	Pro 2345		Asp	Asn	Gly	Pro 2350		Ser		
	Leu	Ala	Gln 235	Glu 5	Ile	Asp	Lys	Leu 2360	Val	Ser	Gln	Gly	Ser 2369		Ser	λla		
20	Gly	Ser 2370	Gly	Asn	Asn	Asn	Leu 2375		Phe	Gly	Ala	Gly 2380		Аsр	Thr	Lys		
25	Thr 238		Leu	Gln	Ala	5er 2390		Ser	Phe	Ala	Asp 2395		Lys	Ile	Arg	Glu 2400		
دی	Asp	Tyr	Pro	Ala	Ser 2405		Gly	Lys	Ile	Arg 2410		Ile	Lys	Gln	Ile 2415			
30	Val	Thr	Leu	Pro 2420		Leu	Leu	Gly	Pro 2425		Gln	Asp	Val	Gln 2430		Ile		
	Leu	Ser	Tyr 2435		Asp	Lys	Ala	Gly 2440		Ala	Asn	Gly	Cys 2445		Ala	Leu		
35	Ala	Val 2450	Ser	His	Gly	Met	Asn 2455		Ser	Gly	Gln	Phe 2460		Leu	Asp	Phe		
40	Asn 2465		Gly	Lys	Phe	Leu 2470		Phe	Glu	Gly	Ile 2475		Ile	Asp	Gln	Gly 2480		
4 0	Thr	Leu	Thr	Leu	Ser 2485		Pro	Asn	Ala	Ser 2490		Pro	Glu	Lys	Gly 2495			
‡ 5	Gln	Ala	Thr	Met 2500		Lys	Thr	Leu	Asn 2505		Ile	Ile	Leu	His 2510		Arg		
	Tyr	Thr	Ile	Lys 2516	;													
50	(2)	TN	IEOD)	43 MT	OV. 5	*OB	CEO	TD 1	VO - 4	0.								
	(2)		i)	SEQU	(A)	Е СН	ARA(TER TH:	IST 55	CS:	base	-	irs					
55					(B) (C) (D)		STR	E: n ANDE OLOG	DNE	SS:	doub	_						
		(i	ii)	MOL	.ECUI	LE T	YPE	: D	NA (gen	omic	:)						
50		()	(i)	SEC	UEN	CE D	ESCI	RIPT	ION:	5 E	Q ID	NO.	:48	(tc	Aii	coding	region	: נמ
55			GGC Gly													GTT 48 Val		
	GCG		GGT Gly					Met								ACT 96 Thr		

4) 12

5	ن	AA C lu L	.eu	TAT Tyr 35	CG:	r ga g Gl	A GC u Al	A CG a Ar	G AA g As 40	n Le	A CA Eu Hi	AC GC is Al	CA AG la Se	T GA r As 45	p Se	C GT r Va	т та 1 ту	T 144
-	T	/r L	eu 0	GAT Asp	ACC Thr	CG Ar	c cg g Ar	c cc g Pr 55	O As	r cr p Le	ር ኢአ ር ኢን	A TO	A AT er Me 60	c Al	G CT a Le	C AG u Se	T CA r Gl	G 192 n
10	C; G) 65	n a	AT . sn	ATG Met	GAT Asp	TI.	A GA Glo 70	A TT.	A TCC u Sei	r Th	A CT r Le	C TC u Se 75	r Le	G TC	C AA' r Ası	T GAG	G CT u Le 80	G 240
15	Le	u L	euc	31u	Ser	85 85	e Lys	Thi	r Glu	ı Se	90	s Le	u Gli	1 Ası	n Tyi	7h: 95	r Ly:	
20	va	T Me	פכ כ	ilu	100	Leu	. Ser	Thr	. Phe	105	y Pro	o Se	c GG(/ Alá	110	Pro	Ту	•
25	н	5 AS	1 A	15	Tyr	GIU	Asn	Val	120	Glu	ı Va	l Il	C CAC	125	ı Glr) Asp	Pro)
	GI	13	0	Iu (GIN	Leu	Asn	135	Ser	Pro	Alá	a Ile	r GCC P Ala 140	Gly	Leu	Met	His	
30	Glr 145	J WT	C T a S	cc (CTA Leu	TTG Leu	GGT Gly 150	ATT	AAC Asn	GCT Ala	TCA Ser	11e	TCG Ser	CCT	GAG	CTA Leu	Phe	
35	AA1 Asr	T AT	T C' e L	rg /	ınr	GAG Glu 165	GAG Glu	ATT	ACC Thr	GAA Glu	GGT Gly 170	Asn	GCT Ala	GAG Glu	GAA Glu	CTT Leu 175	TAT	528
40	Lys	Ly:	5 A.	in E	80	GIA	Asn	Ile	Glu	Pro 185	Ala	Ser	TTG Leu	Ala	Met 190	Pro	Glu	
45	ıyr	Lei	19	'S A	irg	Tyr	Tyr	Asn	Leu 200	Ser	Asp	Glu	GAA Glu	Leu 205	Ser	Gln	Phe	
	ATT Ile	GG? Gly 210	L	A G	icc .	AGC Ser	AAT Asn	TTT Phe 215	ggt Gly	CAA Gln	CAG Gln	GAA Glu	TAT Tyr 220	AGT Ser	AAT Asn	AAC Asn	CAA Gln	672
50	225	116	2 170	r P	ro v	/al	Va1 230	Asn	Ser	Ser	Asp	Gly 235	ACG Thr	Val	Lys	Val	Tyr 240	
55	ALG	116	111	ΓA	rg t	245	lyr	Thr	Thr	Asn	Ala 250	Tyr	CAA Gln	Met	Asp	Val 255	Glu	
60	red	rne	PE	2	60	ily	GIĀ	Glu	Asn	Tyr 265	Arg	Leu	GAT Asp	Tyr	Lys 270	Phe	Lys	
65	ASII	rne	27	5 A:	sn A	ila :	ser	ryr .	Leu 280	Ser	Ile	Lys		Asn 285	Asp	Lys	Arg	
	GAA Glu	CTT Leu 290	GT Va	r cc l Az	SA A rg T	hr (Glu (GGC (Gly , 295	GCT (Ala 1	Pro	CAA Gln	GTC Val	AAT Asn 300	ATA (GAA Glu	TAC Tyr	TCC Ser	912
70	GCA Ala	AAT Asn	ATO	AC Th	A T	TA A	AT I	ACC (Thr i	GCT (Ala /	ASP	Ile	λGT Ser	CAA (Gln)	Pro I	rrr (Phe (GAA / Glu :	ATT :	960

-202-

	305	310	315	320
5	>	325	TCC GGT TCT TGG GCA TAT Ser Gly Ser Trp Ala Tyr 330	GCC GCC GCA 1008 Ala Ala Ala 335
10		340	AAC CAA TAC TCT TTT CTG Asn Gln Tyr ser Phe Leu 345	Leu Lys Leu 350
15	355	-	CGT GCG ACA GAA TTG TCA Arg Ala Thr Glu Leu Ser 365	Pro Thr Ile
15	370	375	GTT AAT CTA CAA CTG GAT . Val Asn Leu Gln Leu Asp . 380	lle Asn Thr
20	385	390	CTG ACT AAA TAT TAT ATG (Leu Thr Lys Tyr Tyr Met (395	in Arg Tyr 400
25		405	CTG ATA CTA TGC AAC GCG C Leu Ile Leu Cys Asn Ala E 410	ro Ile Ser 415
30	•	120		eu Phe Asn 30
	ACG CCA TTA (Thr Pro Leu 1 435		TAT TTT TCT ACC GGC GAT G Tyr Phe Ser Thr Gly Asp G 445	AG GAG ATT 1344 . lu Glu Ile .
35	GAT TTA AAT 1 Asp Leu Asn S 450	CA GGT AGC ACC C er Gly Ser Thr C 455	GC GAT TGG CGA AAA ACC A' ly Asp Trp Arg Lys Thr I 460	TA CTT AAG 1392 le Leu Lys
40	CGT GCA TTT A Arg Ala Phe A 465	AT ATT GAT GAT G sn lle Asp Asp V 470	TC TCG CTC TTC CGC CTG CT al Ser Leu Phe Arg Leu Le 475	TT AAA ATT 1440 Bu Lys Ile 480
45	ACC GAC CAT G Thr Asp His A	AT AAT AAA GAT G sp Asn Lys Asp G 485	GA AAA ATT AAA AAT AAC CT ly Lys Ile Lys Asn Asn Le 490	
50		TA TAT ATT GGA A au Tyr Ile Gly L OO	AA TTA CTG GCA GAT ATT CA ys Leu Leu Ala Asp Ile Hi 505 51	s Gln Leu
	ACC ATT GAT GAT Thr Ile Asp G		FA CTG ATT GCC GTA GGT GA Bu Leu Ile Ala Val Gly Gl 525	A GGA AAA 1584 u Gly Lys
55	ACT AAT TTA TO Thr Asn Leu Se 530	CC GCT ATC AGT GA F Ala Ile Ser As 535	T AAG CAA TTG GCT ACC CT p Lys Gln Leu Ala Thr Le 540	G ATC AGA 1632 u Ile Arg
60	AAA CTC AAT AC Lys Leu Asn Th 545	T ATT ACC AGC TG r lle Thr Ser Tr 550	G CTA CAT ACA CAG AAG TG p Leu His Thr Gln Lys Tr 555	G AGT GTA 1680 D Ser Val 560
65	TTC CAG CTA TT Phe Gln Leu Ph	T ATC ATG ACC TC e Ile Met Thr Se 565	C ACC AGC TAT AAC AAA ACC r Thr Ser Tyr Asn Lys Thr 570	
70	CCT GAA ATT AA Pro Glu Ile Ly 58	G AAT TTG CTG GA S Asn Leu Leu As	T ACC GTC TAC CAC GGT TTA Thr Val Tyr His Gly Leu 585 590	Gln Gly
	TTT GAT AAA GA	AAA GCA GAT TTO	CTA CAT GTC ATG GCG CCC	TAT ATT 1824

	Pt.e	Asp	Lys 595	λsp	Lys	Ala	Asp	Lau 600	Leu	His	Val	Met	Ala 605	Pro	tyr	Ile	
5	GCG Ala	GCC Ala 610	ACC Thr	TTG Leu	CAA Gln	TTA Leu	TCA Ser 615	TCG Ser	GAA Glu	AAT Asn	GTC Val	GCC Ala 620	CAC His	TCG Ser	GTA Val	CTC L a u	1372
10	CTT Leu d25	TGG Trp	GCA Ala	GAT Asp	AAG Lys	TTA Leu 630	CAG Gln	CCC Pro	GGC Gly	GAC Asp	GGC Gly 635	GCA Ala	ATG Met	ACA Thr	GCA Ala	GAA Glu 640	1920
	AAA Lys	TTC Phe	TGG Trp	GAC Asp	TGG Trp 645	TTG Leu	AAT Asn	ACT Thr	AAG Lys	TAT Tyr 650	ACG Thr	CCG Pro	GGT Gly	TCA Ser	TCG Ser 655	GAA Glu	1963
15	GCC Ala	GTA Val	GAA Glu	ACG Thr 660	CAG Gln	GAA Glu	CAT His	ATC Ile	GTT Val 665	CAG Gln	TAT Tyr	TGT Cys	CAG Gln	GCT Ala 670	CTG Leu	GCA Ala	2016
20	CAA Gln	TTG Leu	GAA Glu 675	ATG Met	GTT Val	TAC Tyr	CAT His	TCC Ser 680	ACC Thr	GGC Gly	ATC Ile	AAC Asn	GAA Glu 685	AAC Asn	GCC Ala	TTC Phe	2064
25	CG T Arg	CTA Leu 690	TTT Phe	GTG Val	ACA Thr	AAA Lys	CCA Pro 695	GAG Glu	ATG Met	TTT Phe	GGC Gly	GCT Ala 700	GCA Ala	ACT Thr	GGA Gly	GCA Ala	2112
30	GCG Ala 705	CCC Pro	GCG Ala	CAT His	GAT Asp	GCC Ala 710	CTT Leu	TCA Ser	CTG Leu	ATT Ile	ATG Met 715	CTG Leu	ACA Thr	CGT Arg	TTT Phe	GCG Ala 720	2160
2-	GAT Asp	TGG Trp	GTG Val	AAC Asn	GCA Ala 725	CTA Leu	GGC Gly	GAA Glu	AAA Lys	GCG Ala 730	TCC Ser	TCG Ser	GTG Val	CTA Leu	GCG Ala 735	GCA Ala	2208
35	TTT Phe	GAA Glu	GCT Ala	AAC Asn 740	TCG Ser	TTA Leu	ACG Thr	GCA Ala	GAA Glu 745	CAA Gln	CTG Leu	GCT Ala	GAT Asp	GCC Ala 750	ATG Met	AAT Asn	2256
40	CTT Leu	GAT Asp	GCT Ala 755	AAT Asn	TTG Leu	CTG Leu	TTG Leu	CAA Gln 760	GCC Ala	AGT Ser	ATT Ila	CAA Gln	GCA Ala 765	CAA Gln	AAT Asn	CAT His	2304
45	CAA Gln	CAT His 770	CTT Leu	CCC Pro	CCA Pro	GTA Val	ACT Thr 775	CCA Pro	GAA Glu	AAT Asn	GCG Ala	TTC Phe 780	TCC Ser	TGT Cys	TGG Trp	ACA Thr	2352
50	TCT Ser 785	ATC Ile	AAT Asn	ACT Thr	ATC Ile	CTG Leu 790	CAA Gln	TGG Trp	GTT Val	AAT Asn	GTC Val 795	GCA Ala	CAA Gln	CAA Gln	TTG Leu	AAT Asn 800	2400
	GTC Val	GCC Ala	CCA Pro	CAG Gln	GGC Gly 805	GTT Val	TCC Ser	GCT Ala	TTG Leu	GTC Val 810	GGG Gly	CTG Leu	GAT Asp	TAT Tyr	ATT Ile 815	CAA Gln	2448
55	TCA Ser	ATG Met	AAA Lys	GAG Glu 820	ACA Thr	CCG Pro	ACC Thr	TAT Tyr	GCC Ala 825	CAG Gln	TGG Trp	GAA Glu	AAC Asn	GCG Ala 830	GCA Ala	GGC	2496
6()	GTA Val	TTA Leu	ACC Thr 835	GCC Ala	G1y GGG	TTG Leu	AAT Asn	TCA Ser 840	CAA Gln	CAG Gln	GCT Ala	AAT Asn	ACA Thr 845	TTA Leu	CAC His	GCT Ala	2544
65	TTT Phe	CTG Leu 850	GAT Asp	GAA Glu	TCT Ser	CGC Arg	AGT Ser 855	GCC Ala	GCA Ala	TTA Leu	AGC Ser	ACC Thr 860	TAC Tyr	TAT Tyr	ATC Ilė	CGT Arg	2592
70	CAA Gln 665	GTC Val	GCC Ala	AAG Lys	GCA Ala	GCG Ala 870	GCG Ala	GCT Ala	ATT Ile	AAA Lys	AGC Ser 875	CGT Arg	GAT Asp	GAC Asp	TTG Leu	TAT Tyr 380	2640

	CAA Gln	TAC Tyr	TTA Leu	CTG Leu	ATT Ile 385	GAT Asp	AAT Asn	CAG Gln	GTT Val	TCT Ser 890	GCG Ala	GCA Ala	ATA Ile	AAA Lys	ACC Thr 895	ADD Thr	lááá
5	CGG Arg	ATC Ile	GCC Ala	GAA Glu 900	GCC Ala	ATT Ile	GCC Ala	AGT Ser	ATT Ile 905	CAA Gln	CTG Leu	TAC Tyr	STC Val	AAC Asn 910	CGG Arg	GCA Ala	2736
10	TTG Leu	GAA Glu	AAT Asn 915	GTG Val	GAA Glu	GAA Glu	AAT Asn	GCC Ala 920	AAT Asn	TCG Ser	GGG Gly	GTT Val	ATC Ile 925	AGC Ser	CGC Arg	CAA Gln	2784
15	TTC Phe	TTT Phe 930	ATC Ile	GAC Asp	TGG Trp	GAC Asp	AAA Lys 935	TAC Tyr	AAT Asn	AAA Lys	CGC Arg	TAC Tyr 940	AGC Ser	ACT Thr	TGG Trp	GCG Ala	2832
20	GGT Gly 945	GTT Val	TCT Ser	CAA Gln	TTA Leu	GTT Val 950	TAC Tyr	TAC Tyr	CCG Pro	GAA Glu	AAC Asn 955	TAT Tyr	ATT Ile	GAT Asp	CCG Pro	ACC Thr 960	2880
	ATG Met	CGT Arg	ATC Ile	GGA Gly	CAA Gln 965	ACC Thr	AAA Lys	ATG Met	ATG Met	GAC Asp 970	GCA Ala	TTA Leu	CTG Leu	CAA Gln	TCC Ser 975	GTC Val	2928
25	AGC Ser	CAA Gln	AGC Ser	CAA Gln 980	TTA Leu	AAC Asn	GCC Ala	GAT Asp	ACC Thr 985	GTC Val	GAA Glu	GAT Asp	GCC Ala	TTT Phe 990	ATG Met	TCT Ser	2976
30	TAT Tyr	CTG Leu	ACA Thr 995	TCG Ser	TTT Phe	GAA Glu	CAA Gln	GTG Val 1000	Ala	AAT Asn	CTT Leu	AAA Lys	GTT Val 1005	Ile	AGC Ser	GCA Ala	3024
35	TAT Tyr	CAC His 1010	Asp	AAT Asn	ATT Ile	AAT Asn	AAC Asn 1015	Asp	CAA Gln	GGG Gly	CTG Leu	ACC Thr 1020	Tyr	TTT Phe	ATC Ile	GGA Gly	3072
40		Ser					Gly	GAA Glu				Arg					3120
,,,	AGT Ser	AAA Lys	TTC Phe	AAC Asn	GAC Asp 1045	Gly	AAA Lys	TTC Phe	GCG Ala	GCT Ala 1050	Asn	GCC Ala	TGG Trp	AGT Ser	GAA Glu 1055	Trp	3168
45	CAT His	AAA Lys	ATT Ile	GAT Asp 1060	Cys	CCA Pro	ATT Ile	AAC Asn	CCT Pro 1065	Tyr	AAA Lys	AGC Ser	ACT Thr	ATC Ile 1070	Arg	CCA Pro	3216
50				Lys				TAT Tyr 1080	Lau					Gln			3264
55	ATC Ile	ACC Thr 1090	Lys	CAG Gln	ACA Thr	GGA Gly	AAT Asn 1095	Ser	AAA Lys	GAT Asp	GGC Gly	TAT Tyr 1100	Gln	ACT Thr	GAA Glu	ACG Thr	3312
60		Tyr					Lys	TTG Leu				Arg					3360
170	TGG Trp	AAT Asn	ACG Thr	CCA Pro	ATC Ile 1125	Thr	TTT Phe	GAT Asp	GTC Val	AAT Asn 1130	Lys	AAA Lys	ATA Ile	TCC Ser	GAG Glu 1135	Leu	3408
65	AAA Lys	CTG Leu	GAA Glu	AAA Lys 1140	Asn	AGA Arg	GCG Ala	CCC Pro	GGA Gly 1145	Leu	TAT Tyř	TGT Cys	GCC Ala	GGT Gly 1150	Tyr	CAA Gln	3456
70	GGT Gly	GAA Glu	GAT Asp 1155	Thr	TTG Leu	CTG Leu	GTG Val	ATG Met 1160	Phe	TAT Tyr	AAC Asn	CAA Gln	CAA Gln 1165	λsp	ACA Thr	CTA Leu	3504

5	GAT Asp	Sei 11	r Ty	T AAA r Lys	AAC Asn	GCT Ala	TCA Ser 117	Met	CAN Glo	GG? Gly	CTA Leu	TAT Tyr 118	Ile	TTT Phe	GCT Ala	GAT Asp	3552
,		Ala					Thr					Asn					
10	AAT Asn	AGC Ser	TAT	CAA Gln	CAA Gln 120	Phe	GAT Asp	ACC Thr	AAT Asn	AAT Asn 121	Val	AGA Arg	AGA Arg	GTG Val	AAT Asn 121	Asn	3648
15					Asp					Ser		GTA Val			Arg		3696
20				Trp					Leu			GTA Val		Asn			3744
25			Thr					Ala				GAT Asp 1260	Leu				3792
		Ser					Ile					Tyr					3840
30						Leu					Gly	AAA Lys				Lys	3888
35					Thr					Asn		AAT Asn			Ser		3936
40				Phe					Gln			GGA Gly		Thr			3984
45	CTC Leu	AAT Asn 133	Gln	GGG Gly	AGA Arg	CTA Leu	CTA Leu 133	Phe	CAC His	CGT Arg	GAC Asp	ACC Thr 1340	Thr	TAT Tyr	CCA Pro	TCT Ser	4032
40	AAA Lys 1345	Val	GAA Glu	GCT Ala	TGG Trp	ATT Ile 1350	Pro	GGA Gly	GCA Ala	AAA Lys	CGT Arg 1355	Ser	CTA Leu	ACC Thr	AAC Asn	CAA Gln 1360	4080
50						Asp					Asp	TCT Ser				Pro	4128
55					Gln					Thr		AGT Ser			Thr		4176
60	ACT Thr	GAT Asp	GTC Val 1395	Ser	GGC Gly	CCA Pro	Val	GAG Glu 1400	ATT Ile	TAA Asn	ACT Thr	Ala	ATT Ile 405	TCT Ser	CCA Pro	GCA Ala	4224
			Gln					Ala			Lys	GAG Glu 1420					4272
65	GCA Ala 1425	Asp	AAA Lys	GAT Asp	Val	TCC Ser 1430	Ile⊓	CAG Gln	CCA Pro	TCA Ser	CCT Pro 1435	AGC Ser	TTT Phe	GAT Asp	GAA Glu	ATG Met 1440	4320
7 0	AAT Aan	TAT Tyr	CAA Gln	TTT Phe	AAT Asn	GCC Àla	CTT Leu	GAA Glu	ATA Ile	GAC Asp	GGT Gly	TCT (Ser :	GGT Gly	CTG Leu	AAT Asn	TTT Phe	4368

					144	5				145	י				1455	5	
5	ATT	AAC Asn	AAC Asn	TCA Ser 146	Ala	AGT Ser	ATT Ile	GAT Asp	GTT Val 146	Thr	TTT Phe	ACC Thr	GCA Ala	Phe	Ala	GAG Glu	4416
10	GAT Asp	GGC Gly	CGC Arg 1479	Lys	CTG Leu	GGT Gly	TAT Tyr	GAA Glu 1480	Ser	TTC Phe	AGT Ser	ATT Ile	CCT Pro 1485	Val	ACC Thr	CTC Leu	4464
10	AAG Lys	GTA Val 1490	AGT Ser	ACC Thr	GAT Asp	AAT Asn	GCC Ala 1495	Lau	ACC Thr	CTG Leu	CAC His	CAT H1s 1500	Asn	GAA Glu	AAT Asn	GGT Gly	4512
15	GCG Ala 150	Gln	TAT Tyr	ATG Met	CAA Gln	TGG Trp 1510	Gln	TCC Ser	TAT Tyr	CGT Arg	ACC Thr 1515	Arg	CTG Leu	AAT Asn	ACT Thr	CTA Leu 1520	
20	TTT Phe	GCC Ala	CGC Arg	CAG Gln	TTG Leu 152	Val	GCA Ala	CGC Arg	GCC Ala	ACC Thr 1530	Thr	GGA Gly	ATC Ile	GAT Asp	ACA Thr 1535	Ile	460,8
25	CTG Leu	AGT Ser	ATG Met	GAA Glu 1540	Thr	CAG Gln	AAT Asn	ATT Ile	CAG Gln 1545	Glu	CCG Pro	CAG Gln	TTA Leu	GGC Gly 1550	Lys	GGT Gly	4656
30	TTC Phe	TAT Tyr	GCT Ala 1555	Thr	TTC Phe	GTG Val	ATA 11e	CCT Pro 1560	Pro	TAT Tyr	AAC Asn	CTA Leu	TCA Ser 1565	Thr	CAT His	GGT Gly	4704
70	GAT Asp	GAA Glu 1570	CGT Arg	TGG Trp	TTT Phe	AAG Lys	CTT Leu 1575	Tyr	ATC Ile	AAA Lys	CAT His	GTT Val 1580	Val	GAT Asp	AAT Asn	AAT Asn	4752
35		His	ATT Ile				Gly					Thr					
10			TTT Phe			Leu					Leu					His	4348
15			GTT Val		Met					Ser					Thr		4896
50			CCT Pro 1635	His					Asp					Thr			4944
JO	Pro	Lys	TCC Ser	Ile	Leu	Thr	His	Phe	Glu	Ser	Val	Asn	Val				4992
55		Ser	AGC Ser				Asp					Asn					
60			CTG Leu			Tyr					Val					Leu	5088
15			CAG Gln		Phe					Arg					Val		5136
70	AGT Ser	CCA Pro	TCC Ser 1715	Gly	TAT Tyr	ATT Ile	GTC Val	CAC His 1720	Gly	CAG Gln	ATT Ile	CAG Gln	AAC Asn 1725	Tyr	CAG Gln	TGG Trp	5184
U	AAC	GTC	cgc	cca	TTA	СТС	GAA	GAC	ACC	AGT	TGG	AAC	AGT	GAT	ССТ	TTG	5232

-207-

Asn Val Arg Pro Leu Leu Glu Asp Thr Ser Trp Asn Ser Asp Pro Leu 1735 GAT TCC GTC GAT CCT GAC GCG GTA GCA CAG CAC GAT CCA ATG CAC TAC 5230 Asp Ser Val Asp Pro Asp Ala Val Ala Gln His Asp Pro Met His Tyr AAA GTT TCA ACT TTT ATG CGT ACC TTG GAT CTA TTG ATA GCA CGC GGC 5328 Lys Val Ser Thr Phe Met Arg Thr Leu Asp Leu Leu Ile Ala Arg Gly 10 1765 GAC CAT GOT TAT CGC CAA CTG GAA CGA GAT ACA CTC AAC GAA GCG AAG 5376 Asp His Ala Tyr Arg Gin Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys 1780 1785 1790 15 ATG TGG TAT ATG CAA GCG CTG CAT CTA TTA GGT GAC AAA CCT TAT CTA 5424 Met Trp Tyr Met Gln Ala Leu His Leu Leu Gly Asp Lys Pro Tyr Leu 1800 1795 CCG CTG AGT ACG ACA TGG AGT GAT CCA CGA CTA GAC AGA GCC GCG GAT 5472 20 Pro Leu Ser Thr Thr Trp Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp 1810 ATC ACT ACC CAA AAT GCT CAC GAC AGC GCA ATA GTC GCT CTG CGG CAG 5520 Ile Thr Thr Gln Asn Ala His Asp Ser Ala Ile Val Ala Leu Arg Gln 1830 1835 AAT ATA CCT ACA CCG GCA CCT TTA TCA 5547 Asn Ile Pro Thr Pro Ala Pro Leu Ser 30 1845 INFORMATION FOR SEQ ID NO:49: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 1849 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49 (TcdAii): To Description From Features 45 1849 TcdAii peptide 1 Peptide S2 N-terminus (SEQ ID NO:13) 12 Fragment (SEQ ID NO:38) (SEQ ID NO:17) 211 475 Fragment 196 466 Fragment 1004 (SEQ ID NO:23; 12/13) 993 Fragment (SEQ ID NO:18) (SEQ ID NO:39) 50 1297 1312 Fragment Fragment 1390 1409 (SEQ ID NO:21; 19/23) 1532 1554 Fragment Leu Ile Gly Tyr Asn Asn Gln Phe Ser Gly Arg Ala Ser Gln Tyr Val 55 Ala Pro Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr Tyr Leu Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln 65 Gin Asn Met Asp Ile Glu Leu Ser Thr Leu Ser Leu Ser Asn Glu Leu 65 70 80

Leu Leu Glu Ser Ile Lys Thr Glu Ser Lys Leu Glu Asn Tyr Thr Lys

-208-

70

					85					90)				95		
.5	٧a	ıl Me	et G	lu Me 10	t Le	u Se	r Th	r Ph	e Ar 10	g Pr 5	o Se	r Gl	y Al	.a Th		o Tyr	
	Hi	s As	P A	la Ty 15	r Gl	u As	n Va	1 Ar 12	g G1 0	u Va	1 11	e Gl	n Le 12		n As	p Pro	
ю	Gl	y Le 13	u Gl	lu Gl	n Le	u As	n Al	a Se	r Pr	o Al	a Il	e Ala 140	a G1	y Le	u Mei	t His	
		_				15	U				15	5				Phe	
15	Ası	n Il	e Le	u Th	r Glu 165	Glı	u Ila	e Thi	r Glu	1 Gly	y Ast O	n Ala	a Gli	u Glu	1 Leu 175	ı Tyr	
20	Lys	s Ly	s As	n Phe 180	∋ Gly	' Ası	n Ile	∋ Glu	185	Ala S	a Sei	Leu	Al:	a Met		Glu	
	Туг	: Le	u Ly 19	s Arg 5	Tyr	Tyı	Asr	200	Ser	Asp	Glu	Glu	Le: 20:		Gln	Phe	
25	Ile	G1: 21:	y Ly: O	s Ala	. Ser	Asr	215	Gly	Gln	Glr	n Glu	Tyr 220	Ser	Asn	Asn	Gln	
	Leu 225	Ile	7hi	r Pro	Val	Val 230	Asn	Ser	Ser	Asp	Gly 235	Thr	Val	Lys	Val	Tyr 240	
30	Arg	Ile	Thi	Arg	Glu 245	туг	Thr	Thr	Asn	Ala 250	Tyr	Gln	Met	Asp	Val 255		
3 5	Leu	Phe	Pro	260	Gly	Gly	Glu	Asn	Tyr 265	Arg	Leu	Asp	Tyr	Lys 270	Phe	Lys	
	Asn	Phe	Tyr 275	Asn	Ala	Ser	Tyr	Leu 280	Ser	Ile	Lys	Leu	Asn 285		Lys	Arg	
40	Glu	Leu 290	Val	Arg	Thr	Glu	Gly 295	Ala	Pro	Gln	Val	Asn 300	Ile	Glu	Tyr	Ser	
	Ala 305	Asn	Ile	Thr	Leu	Asn 310	Thr	Ala	Asp	Ile	Ser 315	Gln	Pro	Phe	Glu	Ile 320	
45	Gly	Leu	Thr	Arg	Val 325	Leu	Pro	Ser	Gly	Ser 330	Trp	Ala	Tyr	Ala	Ala 335	Ala	
50	Lys	Phe	Thr	Val 340	Glu	Glu	Tyr	Asn	Gln 345	Tyr	Ser	Phe	Leu	Leu 350	Lys	Leu	
	Asn	Lys	Ala 355	Ile	Arg	Leu	Ser	Arg 360	Ala	Thr	Glu	Leu	Ser 365	Pro	Thr	Ile	
55	Leu	Glu 370	Gly	Ile	Val	Arg	Ser 375	Val	Asn	Leu	Gln	Leu 380	Asp	Ile	Asn	Thr	
	Asp 385	Val	Leu	Gly	Lys	Val 390	Phe	Leu	Thr	Lys	Tyr 395	Tyr	Met	Gln	Arg	Tyr 400	
50	Ala	Ile	His	Ala	Glu 405	Thr	Ala	Leu	Ile	Leu 410	Cys	Asn	Ala	Pro	Ile 415	Ser	
5	Gln	Arg	Ser	Tyr 420	Asp .	Asn	Gln	Pro	Ser 425	Gln	Phe	Asp.	Arg	Leu 430	Phe	Asn	
	Thr	Pro	Leu 435	Leu	Asn (Gly	Gln	Tyr	Phe	Ser	Thr	Gly .	Asp	Glu	Glu	Ile	

Asp Leu Asn Ser Gly Ser Thr Gly Asp Trp Arg Lys Thr Ile Leu Lys 450 460

	465					4,0					• • •			Leu		
5	Thr	Asp	His	Asp	Asn 485	L'; s	Asp	Gly	Lys	11e 490	Lys	Asn	λsn	Leu	L;;s 495	Asn
	Leu	Ser	λsn	Leu 500	Tyr	Ile	Gly	L;;s	Leu 505	Leu	Ala	Asp	Ile	His 510	Gln	Leu
10	Thr	Ile	Asp 515	Glu	Leu	λsp	Leu	Leu 520	Leu	Ile	Ala	Val	Gly 525	Glu	Gly	Lys
15	Thr	Asn 530	Leu	Ser	λla	Ile	Ser 535	Asp	Lys	Gln	Leu	Ala 540	Thr	Leu	Ile	Arg
	Lys 545	Leu	Asn	Thr	Ile	Thr 550	Ser	Trp	Leu	His	Thr 555	Gln	Lys	Trp	Ser	Val 560
20	Phe	Gln	Leu	Phe	Ile 565	Met	Thr	Ser	Thr	Ser 570	Tyr	Asn	Lys	Thr	Leu 575	Thr
	Pro	Glu	Ile	Lys 580	Asn	Leu	Leu	Asp	Thr 585	Val	Tyr	His	Gly	Leu 590	Gln	Gly
25	Phe	Asp	Lys 595	Asp	Lys	Ala	Asp	Leu 600	Leu	His	Val	Met	Ala 605	Pro	Tyr	Ile
30	Ala	Ala 610	Thr	Leu	Gln	Leu	Ser 615	Ser	Glu	Asn	Val	Ala 620	His	Ser	Val	Leu
	Leu 625	Trp	Ala	Asp	Lys	Leu 630	Gln	Pro	Gly	Asp	Gly 635	Ala	Met	Thr	Ala	Glu 640
35	Lys	Phe	Trp	Asp	Trp 645	Leu	Asn	Thr	Lys	Tyr 650	Thr	Pro	Gly	Ser	Ser 655	Glu
	Ala	Val	Glu	Thr 660	Gln	Glu	His	Ile	Val 665	Gln	Tyr	Суѕ	Gln	Ala 670	Leu	Ala
40	Gln	Leu	Glu 675	Met	Val	Tyr	His	Ser 680	Thr	Gly	Ile	Asn	Glu 685	Asn	Ala	Phe
45	Arg	Leu 690	Phe	Val	Thr	Lys	Pro 695	Glu	Met	Phe	Gly	Ala 700	Ala	Thr	Gly	Ala
						711					111					720
50					725					/30						
				740					145)						Asn
55			755	•				760								His
		770					115									Thr
60	785				•	790					,,,					Asn 800
65					805)				010	,					
	Ser	Met	Lys	G1u 820	Thr	Pro	Thr	Tyr	Ala 825	Glr	Trp	Glu	a Asi	n Alá 830	a Ala	Gly
70	7al	Leu	Thr	Ala	Gly	Leu	Asn	Ser 840	Glr	Glr	n Ala	. Asr	Th:	r Leu 5	ı His	; Ala

	Phe	Leu 950	Аsр	Glu	Ser	λrg	Ser 855	Ala	Ala	Leu	Ser	Thr 860	Tyr	Tyr	Ile	Arg
5	Gln 365	Val	Ala	Lys	Ala	Ala 870	Ala	Ala	Ile	L;;s	Ser 875	Arg	Asp	Asp	Leu	T;'r 330
	Gln	Tyr	Leu	Leu	11e 885	Asp	Asn	Gln	Val	Ser 890	Ala	Ala	Ile	Lys	Thr 895	Thr
10	Аrg	Ile	Ala	Glu 900	Ala	Ile	Ala	Ser	Ile 905	Gln	Leu	Tyr	Val	Asn 910	Arg	Ala
15	Leu	Glu	Asn 915	Val	Glu	Glu	Asn	Ala 920	Asn	Ser	Gly	Val	11e 925	Ser	Arg	Gln
13	Phe	Phe 930	Ile	Asp	Trp	Asp	Lys 935	Tyr	Asn	Lys	Arg	Tyr 940	Ser	Thr	Trp	Ala
20	Gly 945	Val	Ser	Gln	Leu	Val 950	Tyr	Tyr	Pro	Glu	Asn 955	Tyr	Ile	Asp	Pro	Thr 960
	Met	Arg	Ile	Gly	Gln 965	Thr	Lys	Met	Met	Asp 970	Ala	Leu	Leu	Gln	Ser 975	Val
25	Ser	Gln	Ser	Gln 980	Leu	Asn	Ala	Asp	Thr 985	Val	Glu	Asp	Ala	Phe 990	Met	Ser
30	Tyr	Leu	Thr 995	Ser	Phe	Glu	Gln	Val 1000		Asn	Leu	Lys	Val 1005		Ser	Ala
	Tyr	His 1010		Asn	Ile	Asn	Asn 1015		Gln	Gly	Leu	Thr 1020		Phe	Ile	Gly
35	Leu 1025		Glu	Thr	Asp	Ala 1030		Glu	Tyr	Tyr	Trp 1035		Ser	Val	Asp	His 1040
	Ser	Lys	Phe	Asn	Asp 1045		Lys	Phe	Ala	Ala 1050		Ala	Trp	Ser	Glu 1059	
40	His	Lys	Ile	Asp 1060		Pro	Ile	Asn	Pro 1065		Lys	Ser	Thr	Ile 1070		Pro
45	Val	Ile	Tyr 1075	Lys	Ser	Arg	Leu	Tyr 1080		Leu	Trp	Leu	Glu 1085		Lys	Glu
. =	Ile	Thr 1090		Gln	Thr	Gly	Asn 1099		Lys	Asp	Gly	Tyr 1100		Thr	Glu	Thr
50	Asp 1105		Arg	Tyr	Glu	Leu 1110		Leu	Ala	His	lle 1115		Tyr	Asp	Gly	Thr 1120
	Trp	Asn	Thr	Pro	Ile 1125	Thr	Phe	Asp	Val	Asn 1130	Lys)	Lys	Ile	Ser	Glu 1135	Leu 5
55	Lys	Leu	Glu	Lys 1140		Arg	Ala	Pro	Gly 1145		Tyr	Cys	Ala	Gly 1150		Gln
60	Gly	Glu	Asp 1155	Thr	Leu	Leu	Val	Met 1160		Tyr	Asn	Gln	Gln 1165		Thr	Leu
	Asp	Ser 1170		Lys	Asn	Ala	Ser 1175		Gln	Gly	Leu	Tyr 1180	Ile)	Phe	Ala	Asp
65	Met 1185		Ser	Lys	Asp	Met 1190		Pro	Glu	Gln	Ser 1199		Val	Tyr	Arg	Asp 1200
	λsn	Ser	Tyr	Gln	Gln 1205		Asp	Thr	Asn	Asn 1210		Arg	Arg	Val	Asn 1215	
70																

	λsp Γ'.'t	Gly 1 1235	rp Gly	. yab	T, r	T, r 124		Ser	Met	Val	T;r 124		Sly	Asp
5	Ile Pro		le Asn	Tyr	Lys 125		Ala	Ser	Ser	Asp 126		Lys	Ile	Tyr
• • •	Ile Ser 1255	Pro L	ys Leu	Arg 127		Ile	His	. Asn	Gly 127		Glu	Gly	Gln	Lys 1280
10	Arg Asn	Gln C	ys Asn 128		Met	Asn	Lys	T;r 129		Lys	Leu	Gly	Asp 12	
15	Phe Ile		yr Thr 300	Ser	Leu	Gly	Val 130		Pro	Asn	Asn	Ser 1310		Asn
	Lys Leu	Met P.	he Tyr	Pro	Val	Tyr 132		Tyr	Ser	Gly	Asn 1325		Ser	Gly
20	Leu Asn 133		ly Arg	Leu	Leu 1335		His	Arg	Asp	Thr	Thr		Pro	Ser
	Lys Val 1345	Glu A	la Trp	Ile 1350		Gly	Ala	Lys	Arg 1355	Ser		Thr	Asn	Gln 1360
25	Asn Ala	Ala I	le Gly 1369	Asp	Asp	Tyr	Ala	Thr	Asp		Leu	Asn	Lys 137	Pro
30 .	Asp Asp		/s Gln	Tyr	Ile	Phe	Met 1389	Thr		Ser	Lys	Gly 1390	Thr	
	Thr Asp		-	Pro		Glu 400			Thr		Ile 405			Ala
35	Lys Val	Gln Il	le Ile			Ala	Gly	Gly	Lys		Gln	Thr	Phe	Thr
	Ala Asp 1425		p Val		Ile		Pro	Ser	Pro 1435	Ser		Asp	Glu	Met 1440
40	Asn Tyr	Gln Ph	e Asn 1445	Ala		Glu	Ile		Gly		Gly			Phe
45	Ile Asn				lle					Thr	Ala	Phe		
43	Asp Gly	Arg Ly		Gly '		Glu			Ser	Ile				Leu
50	Lys Val	1475 Ser Th	r Asp		Ala			Leu					Asn	Gly
	1490 Ala Gln 1505		t Gln	Trp (1495 31n		Tyr		Thr .	1500 Arg		Asn '	Thr	
55	Phe Ala	Arg Gl	n Leu	1510 Val· <i>l</i>	Ala .	Arg .		Thr	1515 Thr (Gly	Ile .			
.	Leu Ser	Met Gl	1525 u_Thr		Asn :		Gln (1530 Glu	Pro (Gln :	Leu (1535 Jys	
60	Phe Tyr	15 Ala Th		Val I	le i		15 4 5 Pro'	Tyr .	Asn I	Leu :		1550 Thr 1	lis :	Gly
65	Asp Glu	1555			1	1560					1565			
	1570 Ser His			1	.575				1	1580				
70	1585 Thr Leu I		:	1590				1	1595					1,600
					-	-						-	- '	

	1605	1610	1615	
	Ala Lys Val Tyr Met Thr P 1620	he Lys Lys Ser Pro Ser 3 1625	Asp Gly Thr Trp 1630	
5	Trp Gly Pro His Phe Val A		Val Thr Ile Asn	
10	Pro Lys Ser Ile Leu Thr H	is Phe Glu Ser Val Asn V 555 1660	al Leu Asn Asn	
	Ile Ser Ser Glu Pro Met As 1665 1670	sp Phe Ser Gly Ala Asn S 1675	Ser Leu Tyr Phe 1680	
15	Trp Glu Leu Phe Tyr Tyr Tr 1685	nr Pro Met Leu Val Ala G 1690	ln Arg Leu Leu 1695	
20	His Glu Gln Asn Phe Asp Gl 1700	u Ala Asn Arg Trp Leu L 1705	ys Tyr Val Trp 1710	
20	Ser Pro Ser Gly Tyr Ile Va 1715		sn Tyr Gln Trp 725	
25	Asn Val Arg Pro Leu Leu Gl 1730 17	u Asp Thr Ser Trp Asn S 735 1740	er Asp Pro Leu	
	Asp Ser Val Asp Pro Asp Al 1745 1750	a Val Ala Gln His Asp P 1755	ro Met His Tyr 1760	
30	Lys Val Ser Thr Phe Met Ar 1765	g Thr Leu Asp Leu Leu I 1770	le Ala Arg Gly 1775	
35	Asp His Ala Tyr Arg Gln Le 1780	u Glu Arg Asp Thr Leu A 1785	sn Glu Ala Lys 1790	
	Met Trp Tyr Met Gln Ala Le 1795		ys Pro Tyr Leu 805	
40	Pro Leu Ser Thr Thr Trp Se 1810 18	r Asp Pro Arg Leu Asp A 15 1820	rg Ala Ala Asp	
	Ile Thr Thr Gln Asn Ala Hi 1825 1830	s Asp Ser Ala Ile Val A 1835	la Leu Arg Gln 1840	
45	Asn Ile Pro Thr Pro Ala Pr 1845	o Leu Ser 18 4 9		
50 55	(2) INFORMATION FOR SE (i) SEQUENCE CHAR (A) LENGTH: (B) TYPE: nuc (C) STRANDEDI (D) TOPOLOGY:	ACTERISTICS: 1740 base pairs cleic acid NESS: double		
,,	(ii) MOLECULE TYP	E: DNA (genomic)		
	(xi) SEQUENCE DES	CRIPTION: SEQ ID NO:5	0 (TcdAiii coding	region):
50	TTG CGC AGC GCT AAT ACC CT Leu Arg Ser Ala Asn Thr Le i 5			•
55	GAA GTG ATG ATG AAT TAC TG Glu Val Met Met Asn Tyr Tr 20	G CAG ACA TTA GCT CAG AG p Gln Thr Leu Ala Gln A: 25	GA GTA TAC AAT 96 rg Val Tyr Asn 30	
	CTG CGT CAT AAC CTC TCT AT	C GAC GGC CAG CCG TTA TA	AT CTG CCA ATC 144	

	Leu	Arg	His 35	Asn	Leu	Ser	Ilê	10 Asp	Gly	Gln	Pro	Leu	Tyr 45	Leu	Pro	Ile	
5	TAT Tyr	GCC Ala 50	ACA Thr	CCG Pro	GCC Ala	GAT Asp	CCG Pro 55	AAA Lys	GCG Ala	TTA Leu	CTC Leu	AGC Ser 50	GCC Ala	GCC Ala	GTT Val	GCC Ala	192
10	ACT Thr 55	TCT Ser	CAA Gln	GGT Gly	GGA Gly	GGC Gly 70	AAG Lys	CTA Leu	CCG Pro	GAA Glu	TCA Ser 75	TTT Phe	ATG Met	TCC Ser	CTG L e u	TGG Trp 30	240
	CGT Arg	TTC Phe	CCG Pro	CAC His	ATG Met 85	CTG Leu	GAA Glu	AAT Asn	GCG Ala	CGC Arg 90	GGC Gly	ATG Met	GTT Val	AGC Ser	CAG Gln 95	CTC Leu	288
15	ACC Thr	CAG Gln	TTC Phe	GGC Gly 100	TCC Ser	ACG Thr	TTA Leu	CAA Gln	AAT Asn 105	ATT Ile	ATC Ile	GAA Glu	CGT Arg	CAG Gln 110	GAC Asp	GCG Ala	336
20	GAA Glu	GCG Ala	CTC Leu 115	AAT Asn	GCG Ala	TTA Leu	TTA Leu	CAA Gln 120	TAA nak	CAG Gln	GCC Ala	GCC Ala	GAG Glu 125	CTG Leu	ATA Ile	TTG Leu	384
25	ACT Thr	AAC Asn 130	CTG Leu	AGC Ser	ATT Ile	CAG Gln	GAC Asp 135	AAA Lys	ACC Thr	ATT Ile	GAA Glu	GAA Glu 140	TTG Leu	GAT Asp	GCC Ala	GAG Glu	432
30	AAA Lys 145	ACG Thr	GTG Val	TTG Leu	GAA Glu	AAA Lys 150	TCC Ser	AAA Lys	GCG Ala	GGA Gly	GCA Ala 155	CAA Gln	TCG Ser	CGC Arg	TTT Phe	GAT Asp 160	480
26	AGC Ser	TAC Tyr	GCC	AAA Lys	CTG Leu 165	TAC Tyr	GAT Asp	GAG Glu	AAT Asn	ATC Ile 170	AAC Asn	GCC Ala	GGT Gly	GAA Glu	AAC Asn 175	CAA Gln	528
35	GCC Ala	ATG Met	ACG Thr	CTA Leu 180	CGA Arg	GCG Ala	TCC Ser	GCC Ala	GCC Ala 185	GGG Gly	CTT L e u	ACC Thr	ACG Thr	GCA Ala 190	GTT Val	CAG Gln	576
40	GCA Ala	TCC Ser	CGT Arg 195	CTG Leu	GCC Ala	GGT Gly	GCG Ala	GCG Ala 200	GCT Ala	GAT Asp	CTG Leu	GTG Val	CCT Pro 205	AAC Asn	ATC Ile	TTC Phe	624
45	GGC Gly	TTT Phe 210	GCC Ala	GGT Gly	GGC Gly	GGC Gly	AGC Ser 215	CGT Arg	TGG Trp	GGG Gly	GCT Ala	ATC Ile 220	GCT Ala	GAG Glu	GCG Ala	ACA Thr	672
50	GGT Gly 225	TAT Tyr	GTG Val	ATG Met	GAA Glu	TTC Phe 230	TCC Ser	GCG Ala	AAT Asn	GTT Val	ATG Met 235	AAC Asn	ACC Thr	GAA Glu	GCG Ala	GAT Asp 240	720
55	AAA Lys	ATT Ile	AGC Ser	CAA Gln	TCT Ser 245	GAA Glu	ACC Thr	TAC Tyr	CGT Arg	CGT Arg 250	CGC Arg	CGT Arg	CAG Gln	GAG Glu	TGG Trp 255	GAG Glu	768
55	ATC Ile	CAG Gln	CGG Arg	AAT Asn 260	AAT Asn	GCC Ala	GAA Glu	GCG Ala	GAA Glu 265	TTG Leu	AAG Lys	CAA Gln	ATC Ile	GAT Asp 270	GCT Ala	CAG Gln	815
60	CTC Leu	AAA Lys	TCA Ser 275	CTC Leu	GCT Ala	GTA Val	CGC Arg	CGC Arg 280	GAA Glu	GCC Ala	GCC Ala	GTA Val	TTG Leu 285	CAG Gln	AAA Lys	ACC Thr	864
65	AGT Ser	CTG Leu 290	AAA Lys	ACC Thr	CAA Gln	CAA Gln	GAA Glu 295	CAG Gln	ACC Thr	CAA Gln	TCT Ser	CAA Gln 300	TTG Leu	GCC Ala	TTC Phe	CTG Leu	912
70	CAA Gln 305	CGT Arg	AAG Lys	TTC Phe	AGC Ser	AAT Asn 310	CAG Gln	GCG Ala	TTA Leu	TAC Tyr	AAC Asn 315	TGG Trp	CTG Leu	CGT Arg	GGT Gly	CGA Arg 320	960

				ATT Ile													1308
5				GAA Glu 340													1056
10				AAA Lys													1104
15				ACC Thr													1152
20				GAT Asp													1200
20				TAT Tyr													1248
25	GCT Ala	CAG Gln	GAA Glu	ATT Ile 420	GAC Asp	AAG Lys	CTG Leu	GTG Val	AGT Ser 425	CAA Gln	GGT Gly	TCA Ser	GGC Gly	AGT Ser 430	GCC Ala	GGC Gly	1296
30				AAT Asn													1344
35				GCA Ala													1392
40				TCG Ser													1440
40				GCG Ala													1488
45	TCT Ser	TAC Tyr	GGC Gly	GAT Asp 500	AAA Lys	GCC Ala	GGA Gly	TTA Leu	GCT Ala 505	AAC Asn	GGC	TGT Cys	GAA Glu	GCG Ala 510	CTG Leu	GCA Ala	1536
50	GTT Val	TCT Ser	CAC His 515	GGT Gly	ATG Met	AAT Asn	GAC Asp	AGC Ser 520	GCC	CAA Gln	TTC Phe	CAG Gln	CTC Leu 525	GAT Asp	TTC Phe	AAC Asn	1584
55	GAT Asp	GGC Gly 530	AAA Lys	TTC Phe	CTG Leu	CCA Pro	TTC Phe 535	GAA Glu	GGC Gly	ATC Ile	GCC Ala	ATT Ile 540	GAT Asp	CAA Gln	GGC Gly	ACG Thr	1632
	CTG Leu 545	ACA Thr	CTG Leu	AGC Ser	TTC Phe	CCA Pro 550	AAT Asn	GCA Ala	TCT Ser	ATG Met	CCG Pro 555	GAG Glu	AAA Lys	GGT Gly	AAA Lys	CAA Gln 560	1680
60	GCC Ala	ACT Thr	ATG Met	TTA Leu	AAA Lys 565	ACC Thr	CTG Leu	AAC Asn	GAT Asp	ATC Ile 570	ATT Ile	TTG Leu	CAT His	ATT Ile	CGC Arg 575	TAC Tyr	1728
65		ATT Ile		TAA	1	740											

70 (2) INFORMATION FOR SEQ ID NO:51:

5		9.3	i)	(A) (B) (C)	LEN TYP STR	GTH: E: ANDI	: 5 amin EDNE	TER 79 a 0 ac SS: line	min ids sin	o ac	ids					
		(:	ii)	MOI	LECU	LE T	YPE	: p	rote	ein						
		(:	xi)	SE(ONEM	CE D	ESC	RIPT	ION:	: SE	Q II	00 0	:51	(Tcc	lAii	i):
10	Leu l	Arg	Ser	Ala	Asn 5	Thr	Leu	Thr	Asp	Leu 10	Phe	Leu	Pro	Gln	Ile 15	Asn
15	Glu	Val	Met	Met 20	Asn	Tyr	Trp	Gln	Thr 25	Leu	Ala	Gln	Arg	Val 30	Tyr	Asn
	Leu	Arg	His 35	Asn	Leu	Ser	Ile	Asp 40	Gly	Gln	Pro	Leu	Tyr 45	Leu	Pro	Ile
20	Tyr	Ala 50	Thr	Pro	Ala	Asp	Pro 55	Lys	Ala	Leu	Leu	Ser 60	Ala	Ala	Val	Ala
25	Thr 65	Ser	Gln	Gly	Gly	Gly 70	Ļys	Leu	Pro	Glu	Ser 75	Phe	Met	Ser	Leu	Trp 80
25					85			Asn		90					, ,	
30				100				Gln	102					110		
			115					Gln 120					123			
35		130					135	Lys				140				
40	145					150		Lys			133					100
40					165			Glu		1/0					1,,	
45				180				Ala	182					150		
			195					Ala 200					203			
50		210					215					220				
55	225					230		Ala			233					
))	Lys	Ile	Ser	Gln	Ser 245	Glu	Thr	Tyr	Arg	Arg 250	Arg	Arg	Gln	Glu	Trp 255	Glu
60	Ile	Gln	Arg	Asn 260	Asn	Ala	Glu	Ala	Glu 265	Leu	Lys	Gln	Ile	Asp 270	Ala	Gln
	Leu	Lys	Ser 275		Ala	Val	Arg	Arg 280	Glu	Ala	Ala	Val	Leu 285	Gln	Lys	Thr
65	Ser	Leu 290	Lys	Thr	Gln	Gln	Glu 295	Gln	Thr	Gln	Ser	Gln 300	Leu	Ala	Phe	Leu
70	Gln 305		Lys	Phe	Ser	Asn 310	Gln	Ala	Leu	Tyr	Asn 315	Trp	Leu	Arg	Gly	Arg 320

	Lau	Ala	. Ala	Ile	Tyr 325	Phe	Gln	Phe	Tyr	Asp 330	Leu	λla	Val	Ala	Arg 325	Суѕ	
5	Leu	Met	Ala	Glu 340	Gln	Ala	Tyr	Arg	Trp 345	Glu	Leu	Asn	Asp	Asp 350	Ser	Ala	
	Arg	Phe	Ile 355	Lys	Pro	Gly	Ala	Trp	Gin	Gly	Thr	Tyr	Ala 365	Gly	Leu	Leu	
10	Ala	Gly 370	Glu	Thr	Leu	Mec	Leu 375	Ser	Leu	Ala	Gln	Met 380	Glu	Asp	Ala	His	
15	Leu 385	Lys	Arg	Asp	Lys	Arg 390	Ala	Leu	Glu	Val	Glu 395	Arg	Thr	Val	Ser	Leu 400	
.5	Ala	Glu	Val	Tyr	Ala 405	Gly	Leu	Pro	Lys	Asp 410	Asn	Gly	Pro	Phe	Ser 415	Leu	•
20	Ala	Gln	Glu	11e 420	Asp	Lys	Leu	Val	Ser 425	Gln	Gly	Ser	Gly	Ser 430	Ala	Gly	
	Ser	Gly	Asn 435	Asn	Asn	Leu	Ala	Phe 440	Gly	Ala	Gly	Thr	Asp 445	Thr	Lys	Thr	
25	ser	Leu 450	Gln	Ala	Ser	Val	Ser 455	Phe	Ala	Asp	Leu	Lys 460	Ile	Arg	Glu	Asp	
30	Tyr 465	Pro	Ala	Ser	Leu	Gly 470	Lys	Ile	Arg	Arg	Ile 475	Lys	Gln	Ile	Ser	Val 480	
50	Thr	Leu	Pro	Ala	Leu 485	Leu	Gly	Pro	Tyr	Gln 490	Asp	Val	Gln	Ala	Ile 495	Leu	
35	Ser	Tyr	Gly	Asp 500	Lys	Ala	Gly	Leu	Ala 505	Asn	Gly	Cys	Glu	Ala 510	Leu	Ala	
	Val	Ser	His 515	Gly	Met	Asn	Asp	Ser 520	Gly	Gln	Phe	Gln	Leu 525	Asp	Phe	Asn	
40	Asp	Gly 530	Lys	Phe	Leu	Pro	Phe 535	Glu	Gly	Ile	Ala	Ile 540	Asp	Gln	Gly	Thr	
45	Leu 545	Thr	Leu	Ser	Phe	Pro 550	Asn	Ala	Ser	Met	Pro 555	Glu	Lys	Gly	Lys	Gln 560	
73	Ala	Thr	Met	Leu	Lys 565	Thr	Leu	Asn	Asp	Ile 570	Ile	Leu	His	Ile	Arg 575	Tyr	
50	Thr	Ile	Lys 579	•••													
55	(2)	IN (i	FORM	SEQU (A) (B)	ENCI LEN TYP STR	OR S E CH GTH: E: D ANDE	ARAC 5 ucl DNE	TER 532 eic SS:	ISTI base acie doul	CS: e pa i	irs						

60 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52 (TcdA $_{iii}$ coding region):

65 TTT ATA CAA GGT TAT AGT GAT CTG TTT GGT AAT CGT GCT GAT AAC TAT 48 Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 1 5 15

GCC GCG CCG GGC TCG GTT GCA TCG ATG TTC TCA CCG GCG GCT TAT TTG 96

	Ala	Ala	Pro	317 20	Ser	Val	λla	Ser	Met 25	Phe	Ser	Pro	Aia	Ala 30	Trr	Leu	
5	ACG Thr	GAA Glu	TTG Leu 35	TAC Tyr	CGT Arg	GAA Glu	GCC Ala	AAA Lys 40	AAC Asn	TTG Leu	CAT His	GAC Asp	AGC Ser 45	AGC Ser	TCA Ser	ATT Ile	144
10	TAT T _i 'r	TAC Tyr 50	CTA Leu	GAT Asp	AAA Lys	CGT Arg	CGC Arg 55	CCG Pro	GAT Asp	TTA Leu	GCA Ala	AGC Ser 60	TTA Leu	ATG Met	CTC	AGC Ser	192
	CAG Gln 65	lys Lys	AAT Asn	ATG Met	GAT Asp	GAG Glu 70	GAA Glu	ATT Ile	TCA Ser	ACG Thr	CTG Leu 75	GCT Ala	CTC Leu	TCT Ser	AAT Asn	GAA Glu 80	240
15	TTG Leu	TGC C;;s	CTT Leu	GCC Ala	GGG Gly 85	ATC Ile	GAA Glu	ACA Thr	AAA Lys	ACA Thr 90	GGA Gly	AAA Lys	TCA Ser	CAA Gln	GAT Asp 95	GAA Glu	288
20	GTG Val	λTG Met	GAT Asp	ATG Met 100	TTG	TCA Ser	ACT Thr	TAT Tyr	CGT Arg 105	TTA Leu	AGT Ser	GGA Gly	GAG Glu	ACA Thr 110	CCT Pro	TAT Tyr	336
25	CAT His	CAC His	GCT Ala 115	TAT Tyr	GAA Glu	ACT Thr	GTT Val	CGT Arg 120	GAA Glu	ATC Ile	GTT Val	CAT His	GAA Glu 125	CGT Arg	GAT Asp	CCA Pro	384
30	GGA Gly	TTT Phe 130	CGT	CAT His	TTG Leu	TCA Ser	CAG Gln 135	GCA Ala	CCC Pro	ATT Ile	GTT Val	GCT Ala 140	GCT Ala	AAG Lys	CTC Leu	GAT Asp	432
35	CCT Pro 145	GTG Val	ACT Thr	TTG Leu	TTG Leu	GGT Gly 150	ATT Ile	AGC Ser	TCC	CAT His	ATT Ile 155	TCG Ser	CCA Pro	GAA Glu	CTG Leu	TAT Tyr 160	480
JJ	AAC Asn	TTG Leu	CTG Leu	ATT Ile	GAG Glu 165	GAG Glu	ATC Ile	CCG Pro	GAA Glu	AAA Lys 170	GAT Asp	GAA Glu	GCC Ala	GCG Ala	CTT Leu 175	GAT Asp	528
40	ACG Thr	CTT Leu	TAT Tyr	AAA Lys 180	ACA Thr	AAC Asn	TTT Phe	GGC Gly	GAT Asp 185	ATT Ile	ACT Thr	ACT Thr	GCT Ala	CAG Gln 190	TTA Leu	ATG Met	576
45	TCC Ser	CCA Pro	AGT Ser 195	TAT Tyr	CTG Leu	GCC Ala	CGG Arg	TAT Tyr 200	TAT Tyr	GGC Gly	GTC Val	TCA Ser	CCG Pro 205	GAA Glu	GAT Asp	ATT Ile	624
50	GCC Ala	TAC Tyr 210	GTG Val	ACG Thr	ACT Thr	TCA Ser	TTA Leu 215	TCA Ser	CAT His	GTT Val	GGA Gly	TAT Tyr 220	Ser	AGT Ser	GAT Asp	ATT Ile	672
<i></i>	CTG Leu 225	GTT Val	ATT Ile	CCG Pro	TTG Leu	GTC Val 230	GAT Asp	GGT Gly	GTG Val	GGT Gly	AAG Lys 235	ATG Met	GAA Glu	GTA Val	GTT Val	CGT Arg 240	720
55	GTT Val	ACC Thr	CGA Arg	ACA Thr	CCA Pro 245	TCG Ser	GAT Asp	AAT Asn	TAT Tyr	ACC Thr 250	AGT Ser	CAG Gln	ACG Thr	AAT Asn	TAT Tyr 255	ATT Ile	768
60	GAG Glu	CTG Leu	TAT Tyr	CCA Pro 260	CAG Gln	GGT Gly	GGC Gly	GAC Asp	AAT Asn 265	TAT Tyr	TTG Leu	ATC Ile	AAA Lys	TAC Tyr 270	AAT Asn	CTA Leu	816
65	AGC Ser	AAT Asn	AGT Ser 275	TTT Phe	GGT Gly	TTG Leu	GAT Asp	GAT Asp 280	TTT Phe	TAT Tyr	CTG Leu	CAA Gln	TAT Tyr 285	AAA Lys	GAT Asp	GGT Gly	864
70	Ser	GCT Ala 290	GAT Asp	TGG Trp	ACT Thr	GAG Glu	ATT Ile 295	GCC Ala	CAT His	AAT Asn	CCC Pro	TAT Tyr 300	CCT Pro	GAT Asp	ATG Met	GTC Val	912

		AAT Asn															360
5		AAT Asn															1008
10		TTT Phe															1056
15		CTG Leu															1104
20		TCT Ser 370															1152
20		TCC Ser															1200
25		ATT Ile															1248
30		ATT Ile															1296
35		CAA Gln															1344
. 40		GAG Glu 450															1392
40		GAC Asp															1440
45		CAG Gln															1488
50		AAA Lys															1536
55		TAT Tyr															1584
60		TTG Leu 530															1632
OU		CAG Gln													Leu		1680
65	TGG Trp	ATC Ile	ACT Thr	CAA Gln	TGG Trp 565	TTG Leu	AAG Lys	ACC Thr	CAA Gln	AAA Lys 570	TGG Trp	ACA Thr	GTT Val	ACC Thr	GAC Asp 575	CTG Leu	1728
70		CTG Leu															1776
									_								

5	AC Se	c A	sn L	TG AC eu Th 95	G GC Ar Al	T ACC a Thi	TTC Leu	5 TC: 5 Se: 600	: S∈	A AC r Th	T TT r Le	u Hi	T GG s Gl	y Ly	A GA s Gl	G AG u Se:	r 1824 r
J	CT Le	u I.	rr Go le Gi lo	GG GA ly Gl	A GA u As	r cro p Leu	Lys 615	Arc	A GC	A AT Me	G GC t Al	G CC' a Pro 620	o Cys	TTO S Pho	C ACT	T TCC	3 1872
10	A1 62	a Le 5	u Hi	ıs Le	u Thi	630	Gln	Glu	l Val	l Als	63°	r Asp 5) Le	ı Leı	ı Leu	Trp 640)
15	AT Il	A GA e As	c ca p Gl	G AT	T CAJ e Glr 645	Pro	GCA Ala	CAA Gln	ATA Ile	ACT Thi	· Va.	r GAT l Asp	GGC Gly	Phe	TGG Trp 655	Glu	1968
20	GI	ı Va	1 G1	n Thi	r Thr	Pro	Thr	Ser	Leu 665	Lys	Va)	l Ile	Thr	670	Ala	Gln	
25	Va.	l Le	u Al 67	a Glr 5	1 Leu	Ser	Leu	Ile 680	Tyr	Arg	Arç	, Ile	685	Leu	Ser	Glu	
	ACC Thi	GA Gli 69	u Le	G TCA u Ser	CTG Leu	ATC Ile	GTG Val 695	ACT Thr	CAA Gln	TCT	TC1	CTG Leu 700	Leu	GTG Val	GCA Ala	GGC Gly	2112
30	AAA Lys 705	Se	C AT	A CTC e Leu	GAT Asp	CAC His 710	GGT Gly	CTG Leu	TTA Leu	ACC Thr	CTC Leu 715	Met	GCC Ala	TTC Leu	GAA Glu	GGT Gly 720	2160
35	TTT Phe	CAT His	T ACC	TGG Trp	Val 725	AAT Asn	GGC Gly	TTG Leu	GGG Gly	CAA Gln 730	His	GCC Ala	TCC Ser	TTG Leu	ATA Ile 735	TTG Leu	2208
40	GCG Ala	GCC	TTC Leu	AAA Lys 740	Asp	GGA Gly	GCC Ala	TTG Leu	ACA Thr 745	GTT Val	ACC Thr	GAT Asp	GTA Val	GCA Ala 750	CAA Gln	GCT Ala	2256
45	ATG Met	AAT Asn	AAC Lys 755	Glu	GAA Glu	TCT Ser	Leu	CTA Leu 760	CAA Gln	ATG Met	GCA Ala	GCT Ala	AAT Asn 765	CAG Gln	GTG Val	GAG Glu	2304
	AAG Lys	GAT Asp 770	Leu	ACA Thr	AAA Lys	Leu	ACC Thr 775	AGT Ser	TGG Trp	ACA Thr	CAG Gln	ATT Ile 780	GAC Asp	GCT Ala	ATT Ile	CTG Leu	2352
50	CAA Gln 785	TGG Trp	TTA Leu	CAG Gln	ATG Met	TCT Ser :	TCG (Ser /	GCC Ala	TTG Leu	GCG Ala	GTT Val 795	TCT Ser	CCA Pro	CTG Leu	GAT Asp	CTG Leu 800	2400
55	GCA Ala	GGG Gly	ATG Met	ATG Met	GCC Ala 805	CTG /	AAA 1 Lys 1	PAT (Gly	ATA Ile 810	GAT Asp	CAT His	AAC Asn	TAT Ty'r	GCT Ala 815	GCC Ala	2448
60	TGG Trp	CAA Gln	GCT Ala	GCG Ala 820	GCG Ala	GCT (Ala /	GCG (Leu l	ATG Met 925	GCT Ala	GAT Asp	CAT His	Ala	AAT Asn 830	CAG Gln	GCA Ala	2496
65	CAG Gln	AAA Lys	AAA Lys 835	CTG Leu	GAT Asp	GAG A Glu T	hr F	TC A he s	AGT . Ser	AAG Lys	GCA Ala	Leu	TGT Cys 845	AAC Asn	TAT Tyr	TAT Tyr	2544
3	Ile	AAT Asn 350	GCT Ala	GTT Val	GTC (Val	Asp S	GT G er A 55	CT C	SCT (GGA (Gly	Val	CGT (Arg , 860	GAT (Asp .	CGT Arg	AAC (Asa (GGT :	2592
70	TTA Leu	TAT Tyr	ACC Thr	TAT Tyr	TTG (Leu 1	CTG A Leu I	TT G le A	AT A	LAT (Sln '	GTT Val	TCT (GCC (Ala	GAT (GTG . Val	ATC : Ile	2640

	865	3	370	an	75	3â0
5	ACT TCA CO	GT ATT GCA G rg Ile Ala G 885	SAA GCT ATC (Slu Ala Ile)	GCC GGT AT Ala Gly II 890	TT CAA CTG TAC le Gln Leu Tyr	GTT AAC 2688 Val Asn 895
14	CGG GCT TT Arg Ala Le	TA AAC CGA G au Asn Arg A 900	sp Glu Gly	CAG CTT GO Gln Leu Al 905	CA TCG GAC GTT la Ser Asp Val 910	AGT ACC 2736 Ser Thr
10	Arg Gln Ph	TC TTC ACT G ne Phe Thr A 15	SAC TGG GAA Asp Trp Glu 920	CGT TAC AM Arg Tyr As	AT AAA CGT TAC sn Lys Arg Tyr 925	AGT ACT 2784 Ser Thr
15	TGG GCT GC Trp Ala GI 930	GT GTC TCT G ly Val Ser G	GAA CTG GTC S Slu Leu Val 9 935	TAT TAT CO Tyr Tyr Pi	CA GAA AAC TAT ro Glu Asn Tyr 940	GTT GAT 2832 Val Asp
20	CCC ACT CA Pro Thr Gl 945	ln Arg Ile G	GGG CAA ACC Gly Gln Thr 950	Lys Met Me	TG GAT GCG CTG et Asp Ala Leu 55	TTG CAA 2880 Leu Gln 960
25	TCC ATC AF	AC CAG AGC C an Gln Ser G 965	CAG CTA AAT Gln Leu Asn	GCG GAT AG Ala Asp Ti 970	CG GTG GAA GAT hr Val Glu Asp	GCT TTC 2928 Ala Phe 975
30	AAA ACT TA	AT TTG ACC A yr Leu Thr S 980	Ser Phe Glu	CAG GTA GO Gln Val A 985	CA AAT CTG AAA la Asn Leu Lys 990	GTA ATT 2976 Val Ile
50	Ser Ala Ty	AC CAC GAT A yr His Asp A 95	AST GTG AAT AST Val AST 1000	Val Asp G.	AA GGA TTA ACT ln Gly Leu Thr 1005	TAT TTT 3024 Tyr Phe
35	ATC GGT AT Ile Gly II 1010	rc GAC CAA G le Asp Gln A	GCA GCT CCG Ala Ala Pro 1015	GGT ACG TA	AT TAC TGG CGT Yr Tyr Trp Arg 1020	AGT GTT 3072 Ser Val
40	GAT CAC AG Asp His So 1025	er Lys Cys C	GAA AAT GGC Glu Asn Gly 1030	Lys Phe A	CC GCT AAT GCT la Ala Asn Ala 035	TGG GGT 3120 Trp Gly 1040
45	GAG TGG AN	AT AAA ATT A sn Lys Ile 1 1045	ACC TGT GCT Thr Cys Ala	GTC AAT CO Val Asn P 1050	CT TGG AAA AAT ro Trp Lys Asn	ATC ATC 3168 Ile Ile 1055
50	CGT CCG GT Arg Pro Va	TT GTT TAT A al Val Tyr N 1060	ATG TCC CGC Met Ser Arg	TTA TAT C Leu Tyr L 1065	TG CTA TGG CTG eu Leu Trp Leu 107	Glu Gln
50	Gln Ser Ly	AG AAA AGT 0 ys Lys Ser A 075	GAT GAT GGT Asp Asp Gly 1080	Lys Thr T	CG ATT TAT CAA hr Ile Tyr Gln 1085	TAT AAC 3254 Tyr Asn
55	TTA AAA C Leu Lys Lo 1090	TG GCT CAT A eu Ala His I	ATT CGT TAC Ile Arg Tyr 1095	GAC GGT A Asp Gly S	GT TGG AAT ACA er Trp Asn Thr 1100	CCA TTT 3312 Pro Phe
60	ACT TTT G Thr Phe A 1105	sp Val Thr C	GAA AAG GTA Glu Lys Val 1110	Lys Asn T	AC ACG TCG AGT Yr Thr Ser Ser 115	ACT GAT 3360 Thr Asp 1120
65	GCT GCT G Ala Ala G	AA TCT TTA (lu Ser Leu (1125	Gly Leu Tyr	TGT ACT G Cys Thr G 1130	GT TAT CAA GGG Gly Tyr Gln Gly	GAA GAC 3408 Glu Asp 1135
70	ACT CTA T Thr Leu L	TA GTT ATG 1 eu Val Met 1 1140	TTC TAT TCG Phe Tyr Ser	ATG CAG A Met Gln S 1145	GT AGT TAT AGO Ser Ser Tyr Ser 115	Ser Tyr
7.0	ACC GAT A	AT AAT GCG	CCG GTC ACT	GGG CTA T	TAT ATT TTC GCT	GAT ATG 3504

-221-

The Asp Asn Asn Ala Pro Val The Gly Leu Dyr Ile Phe Ala Asp Met 1155 1160 1165

TCA TCA GAC AAT ATG ACG AAT GCA CAA GCA ACT AAC TAT TGG AAT AAC 3552
Ser Ser Asp Asn Met The Asn Ala Gln Ala The Asn Tyr Trp Asn Asn 1170 1175 1180

- AGT TAT CCG CAA TTT GAT ACT GTG ATG GCA GAT CCG GAT AGC GAC AAT 3600 Ser Tyr Pro Gin Phe Asp Thr Val Met Ala Asp Pro Asp Ser Asp Asn 1U 1185 1190 1195 1200
 - AAA AAA GTC ATA ACC AGA AGA GTT AAT AAC CGT TAT GCG GAG GAT TAT 3648 Lys Lys Val Ile Thr Arg Arg Val Asn Asn Arg Tyr Ala Glu Asp Tyr 1205 1210 1215
- GAA ATT CCT TCC TCT GTG ACA AGT AAC AGT AAT TAT TCT TGG GGT GAT 3696
 Glu Ile Pro Ser Ser Val Thr Ser Asn Ser Asn Tyr Ser Trp Gly Asp
 1220
 1225
 1230
- 20 CAC AGT TTA ACC ATG CTT TAT GGT GGT AGT GTT CCT AAT ATT ACT TTT 3744
 His Ser Leu Thr Met Leu Tyr Gly Gly Ser Val Pro Asn Ile Thr Phe
 1235 1240 1245
- GAA TCG GCG GCA GAA GAT TTA AGG CTA TCT ACC AAT ATG GCA TTG AGT 3792

 Glu Ser Ala Ala Glu Asp Leu Arg Leu Ser Thr Asn Met Ala Leu Ser
 1250 1255 1260
- ATT ATT CAT AAT GGA TAT GCG GGA ACC CGC CGT ATA CAA TGT AAT CTT 3840
 Ile Ile His Asn Gly Tyr Ala Gly Thr Arg Arg Ile Gln Cys Asn Leu
 30 1265 1270 1275 1280
 - ATG AAA CAA TAC GCT TCA TTA GGT GAT AAA TTT ATA ATT TAT GAT TCA 3888 Met Lys Gln Tyr Ala Ser Leu Gly Asp Lys Phe Ile Ile Tyr Asp Ser 1285 1290 1295
 - TCA TTT GAT GAT GCA AAC CGT TTT AAT CTG GTG CCA TTG TTT AAA TTC 3936 Ser Phe Asp Asp Ala Asn Arg Phe Asn Leu Val Pro Leu Phe Lys Phe 1300 1305 1310
- GGA AAA GAC GAG AAC TCA GAT GAT AGT ATT TGT ATA TAT AAT GAA AAC 3984
 Gly Lys Asp Glu Asn Ser Asp Asp Ser Ile Cys Ile Tyr Asn Glu Asn
 1315
 1320
 1325
- CCT TCC TCT GAA GAT AAG AAG TGG TAT TTT TCT TCG AAA GAT GAC AAT 4032
 45 Pro Ser Ser Glu Asp Lys Lys Trp Tyr Phe Ser Ser Lys Asp Asp Asn
 1330 1335 1340
- AAA ACA GCG GAT TAT AAT GGT GGA ACT CAA TGT ATA GAT GCT GGA ACC 4080 Lys Thr Ala Asp Tyr Asn Gly Gly Thr Gln Cys Ile Asp Ala Gly Thr 1345 1350 1355 1360
 - AGT AAC AAA GAT TTT TAT TAT AAT CTC CAG GAG ATT GAA GTA ATT AGT 4128 Ser Asn Lys Asp Phe Tyr Tyr Asn Leu Gln Glu Ile Glu Val Ile Ser 1365 1370 1375
- GTT ACT GGT GGG TAT TGG TCG AGT TAT AAA ATA TCC AAC CCG ATT AAT 4176
 Val Thr Gly Gly Tyr Trp Ser Ser Tyr Lys Ile Ser Asn Pro Ile Asn
 1380 1385 1390
- 6() ATC AAT ACG GGC ATT GAT AGT GCT AAA GTA AAA GTC ACC GTA AAA GCG 4224 Ile Asn Thr Gly Ile Asp Ser Ala Lys Val Lys Val Thr Val Lys Ala 1395 1400 1405
- 65 GGT GGT GAC GAT CAA ATC TTT ACT GCT GAT AAT AGT ACC TAT GTT CCT 4272
 65 Gly Gly Asp Asp Gln Ile Phe Thr Ala Asp Asn Ser Thr Tyr Val Pro
 1410 1415 1420
- CAG CAA CCG GCA CCC AGT TTT GAG GAG ATG ATT TAT CAG TTC AAT AAC 4320 Gln Gln Pro Ala Pro Ser Phe Glu Glu Met Ile Tyr Gln Phe Asn Asn 7() 1425 1430 1435 1440

	cTĠ Leu	ACA Thr	ATA Ile	GAT ASP	TGT Cys 1445	Lys	AAT Asn	TTA Leu	AAT Asn	TTC Phe 1450	Ile	GAC Asp	AAT Asn	CAG Gln	GCA Ala 1455	His	4263
5	ATT Ile	GAG Glu	ATT Ile	GAT Asp 1460	Phe	ACC Thr	GCT Ala	ACG Thr	GCA Ala 1465	Gln	GAT Asp	GGC Gly	CGA Arg	TTC Phe 1470	Leu	GGT Gly	141 0
10	GCA Ala	GAA Glu	ACT Thr 1475	Phe	ATT Ile	ATC Ile	CCG Pro	GTA Val 1480	Thr	aaa Lys	AAA Lys	GTT Val	CTC Leu 1485	Gly	ACT Thr	GAG Glu	4464
15	AAC Asn	GTG Val 1490	Ile	GCG Ala	TTA Leu	TAT Tyr	AGC Ser 1495	Glu	AAT Asn	AAC Asn	GGT Gly	GTT Val 1500	Gln	TAT Tyr	ATG Met	CAA Gln	4512
20	ATT Ile 1505	Gly	GCA Ala	TAT Tyr	CGT Arg	ACC Thr 1510	Arg	TTG Leu	AAT Asn	ACG Thr	TTA Leu 1515	Phe	GCT Ala	CAA Gln	CAG Gln	TTG Leu 1520	4560
20	G TT Val	AGC Ser	CGT Arg	GCT Ala	AAT Asn 1525	Arg	GGC Gly	ATT Ile	GAT Asp	GCA Ala 1530	Val	CTC Leu	AGT Ser	ATG Met	GAA Glu 1535	Thr	4608
25	CAG Gln	AAT Asn	ATT Ile	CAG Gln 1540	Glu	CCG Pro	CAA Gln	TTA Leu	GGA Gly 1545	Ala	GGC	ACA Thr	TAT Tyr	GTG Val 1550	Gln	CTT Leu	4656
30	GTG Val	TTG Leu	GAT Asp 1555	Lys	TAT Tyr	GAT Asp	GAG Glu	TCT Ser 1560	Ile	CAT His	GGC Gly	ACT Thr	AAT Asn 1569	Lys	AGC Ser	TTT Phe	4704
35	GC T Ala	ATT Ile 1570	Glu	TAT Tyr	GTT Val	GAT Asp	ATA Ile 1575	Phe	AAA Lys	GAG Glu	AAC Asn	GAT Asp 1580	Ser	TTT Phe	GTG Val	ATT Ile	4752
40	TAT Tyr 1585	Gln	GGA Gly	GAA Glu	CTT Leu	AGC Ser 159	Glu	ACA Thr	AGT Ser	CAA Gln	ACT Thr 1595	Val	GTG Val	AAA Lys	GTT Val	TTC Phe 1600	4800
40	TTA Leu	TCC Ser	TAT Tyr	TTT Phe	ATA Ile 1609	Glu	GCG Ala	ACT Thr	GGA Gly	AAT Asn 161	Lys	AAC Asn	CAC	TTA Leu	TGG Trp 161	Val	4848
45	CGT Arg	GCT Ala	AAA Lys	TAC Tyr 162	Gln	AAG Lys	GAA Glu	ACG Thr	ACT Thr 162	Asp	AAG Lys	ATC Ile	TTG	TTC Phe 163	Asp	CGT	4896
50	ACT Thr	GAT Asp	GAG Glu 163	Lys	GAT Asp	CCG Pro	CAC His	GGT Gly 164	Trp	TTT	CTC Leu	AGC Ser	GAC Asp 164	Asp	CAC His	AAG Lys	4944
55	ACC Thr	TTT Phe 165	Ser	GGT Gly	CTC Leu	TCT Ser	TCC Ser 165	Ala	CAG Gln	GCA Ala	TTA Leu	AAG Lys 166	Asn	GAC Asp	AGT Ser	GAA Glu	4992
40	CCG Pro 166	Met	GAT Asp	TTC Phe	TCT Ser	GGC Gly 167	Ala	AAT Asn	GCT Ala	CTC Leu	TAT Tyr 167	Phe	TGG Trp	GAA Glu	CTG Leu	TTC Phe 168	5040 0
60	TAT Tyr	TAC Tyr	ACG Thr	CCG Pro	ATG Met 168	Met	ATG Met	GCT Ala	CAT His	CGT Arg 169	Leu	TTG Leu	CAG Gln	GAA Glu	CAG Gln 169	_Asn	5088
65	TTT Phe	GAT Asp	GCG Ala	GCG Ala 170	Asn	CAT His	TGG Trp	TTC Phe	CGT Arg 170	Tyr	GTC Val	TGG	AGT Ser	CCA Pro 171	Ser	GGT	5136
70	TAT Tyr	ATC Ile	GTT Val 171	Asp	GGT Gly	AAA Lys	ATT	GCT Ala 172	Ile	TAC Tyr	CAC His	TGG Trp	AAC Asn 172	Val	CGA Arg	CCG Pro	5184

	Leu G	AA G. 1u G 730	AA GAC lu Asp	ACC Thr	AGT Ser	TGG Trp 1735	Asn	GCA Ala	CAA Gln	LIn	CTG Leu 1740	wab	TCC Ser	ACC Thr	GAT 5232 Asp
5	Pro A 1745	sp A	la Val	Ala	Gln 1750	Asp)	Asp	Pro	мес	H15 1755	lyr	Lys	741	Ald	1,00
10	TTT A	TG G	CG ACG la Thr	TTG Leu 1765	Asp	CTG Leu	CTA Leu	ATG Met	GCC Ala 1770	Arg	GGT Gly	GAT Asp	GCT Ala	GCT Ala 1775	TAC 5328 Tyr
15	Arg G	in L	eu Glu 178	Arg 0	Asp	Thr	Leu	1785	GIU	Ald	Lys	met	1790	171	•
20	Gln A	la L	eu Asn 795	Leu	Leu	Gly	1800	GIU	Pro	GIN	Val	1805	Fed	261	
26	Thr T	rp A 810	la Asn	Pro	Thr	Leu 1815	2 GIÀ	ASN	Ala	Ala	1820	LYS	1111	1111	
25	CAG G Gln V 1825	TT C	GT CAG rg Gln	CAA Gln	GTG Val 1830	Leu	ACC Thr	CAG Gln	TTC Leu	CGT Arg 1835	Leu	AAT Asn	AGC Ser	AGG Arg	GTA 5520 Val 1840
30	AAA A Lys T	CC C	CG TTC ro Leu 184	ļ	532										
35	(2)	INF	(A (B	UENC LEI TYI	E CH NGTH PE:	IARA : l amir	CTER 1844 10 ac	IST: ami ids	ICS: no a	acid	s				
40			(C) (D	STI	RAND POLO	EDNE GY:	ESS: line	sin ear	gle						
		(ii	.) MC												
45			.) SE tures eptide		rom 1		To 1844	NOI	Des T	Q II crip cbAi seQ	tion i pe	ı ∋pti		bAii	,):
50		F: F: F:	ragmen ragmen ragmen ragmen	t t t	1 978 1387 1484 1527	7	11 990 1401 1505 1552		(SEQ SEQ SEQ	ID NO ID NO ID NO	0:23 0:22 0:24 0:21))		
55	Phe 1	Ile G	iln Gly	Tyr 5	Ser	Asp	Leu	Phe	Gly 10	Asn	Arg	Ala	Asp	Asn 15	Tyr
	Ala i	Ala F	ro Gly 20	/ Ser	Val	Ala	Ser	Met 25	Phe	Ser	Pro	Ala	Ala 30	Tyr	Leu
60		_, .		r Arq	Glu	Ala	Lys 40	Asn	Leu	His	Аsp	Ser 45	Ser	Ser	Ile
	Thr		seu ly.				40								
	Tyr '	3				Arg 55	-	Asp	Leu	Ala	Ser 60	Leu	Met	Leu	
65	Tyr (Tyr I 50	15	p Lys	Arg	לל	Pro				80				Ser
65	Tyr (Tyr I 50 Lys <i>I</i>	.eu As	p Lys	Arg Glu 70	Glu	Pro	Ser Lys	Thr	Leu 75	Ala	Leu	Ser	Asn	Ser Glu 80

					85					90					35	
5	Val	Met	Яsр	Met 100	Leu	Ser	Thr	Tyr	Arg 105	Leu	Ser	Gly	Glu	Thr 110	Pro	Tyr
,	His	His	Ala 115	Tyr	Glu	Thr	Val	Arg 120	Glu	Ile	Val	His	Glu 125	Arg	Asp	Pro
10	Gly	Phe 130	Arg	His	Leu	Ser	Gln 135	Ala	Pro	Ile	Val	Ala 140	Ala	Lys	Leu	Asp
	Pro 145	Val	Thr	Leu	Leu	Gly 150	Ile	Ser	Ser	His	Ile 155	Ser	Pro	Glu	Leu	T;r 160
15	Asn	Leu	Leu	Ile	Glu 165	Glu	Ile	Pro	Glu	Lys 170	Asp	Glu	Ala	Ala	Leu 175	Asp
20	Thr	Leu	Tyr	Lys 180	Thr	Asn	Phe	Gly	Asp 185	Ile	Thr	Thr	Ala	Gln 190	Leu	Met
<i>4</i> ()	Ser	Pro	Ser 195	Tyr	Leu	Ala	Arg	Tyr 200	Tyr	Gly	Val	Ser	Pro 205	Glu	Asp	Ile
25	Ala	Tyr 210	Val	Thr	Thr	Ser	Leu 215	Ser	His	Val	Gly	Tyr 220	Ser	Ser	Asp	Ile
	Leu 225	Val	Ile	Pro	Leu	Val 230	Asp	Gly	Val	Gly	Lys 235	Met	Glu	Val	Val	Arg 240
30	Val	Thr	Arg	Thr	Pro 245	Ser	Asp	Asn	Tyr	Thr 250	Ser	Gln	Thr	Asn	Tyr 255	Ile
35	Glu	Leu	Tyr	Pro 260	Gln	Gly	Gly	Asp	Asn 265	Tyr	Leu	Ile	Lys	Tyr 270	Asn	Leu
))	Ser	Asn	Ser 275	Phe	Gly	Leu	Asp	Asp 280	Phe	Tyr	Leu	Gln	Tyr 285	Lys	Asp	Gly
40	Ser	Ala 290	Asp	Trp	Thr	Glu	Ile 295	Ala	His	Asn	Pro	Tyr 300	Pro	Asp	Met	Val
	Ile 305	Asn	Gln	Lys	Tyr	Glu 310	Ser	Gln	Ala	Thr	Ile 315	Lys	Arg	Ser	Asp	Ser 320
45	Asp	Asn	Ile	Leu	Ser 325	Ile	Gly	Leu	Gln	Arg 330	Trp	His	Ser	Gly	Ser 335	Tyr
50	Asn	Phe	Ala	Ala 340	Ala	Asn	Phe	Lys	Ile 345	Asp	Gln	Tyr	Ser	Pro 350	Lys	Ala
	Phe	Leu	Leu 355	Lys	Met	Asn	Lys	Ala 360	Ile	Arg	Leu	Leu	Lys 365	Ala	Thr	Gly
55	Leu	Ser 370	Phe	Ala	Thr	Leu	Glu 375	Arg	Ile	Val	Asp	Ser 380	Val	Asn	Ser	Thr
	Lys 385	Ser	Ile	Thr	Val	Glu 390	Val	Leu	Asn	Lys	Val 395	Tyr	Arg	Val	Lys	Phe 400
60	Tyr	Ile	Asp	Arg	Tyr 405	Gly	Ile	Ser	Glu	.Glu 410	Thr	Ala	Ala	Ile	Leu 415	Ala
	Asn	Ile	Asn	11e 420	Ser	Gln	Gln	Ala	Val 425	Gly	Asn	Gln	Leu	Ser 430	Gln	Phe
65	Glu	Gln	Leu 435	Phe	Asn	His	Pro	Pro 440	Leu	Asn	Gly	Ile	Arg 445	Tyr	Glu	Ile
70	Ser	Glu 450	Asp	Asn	ser	Lys	His 455	Leu	Pro	Asn	Pro	Asp 460	Leu	Asn	Leu	Lys

	465					4:0		Gln								
5					485			Leu		,,,						
				500				Lys	,,,							
10			515					Ala 520								
		530					232	Ile								
15	545					220		Leu								
20					202			Thr		5,0						
				580				Tyr	202							
25			595					Ser 600							•	
30		610					913	Arg								
30	625					630		Gĺu			0.5.5					
35					645			Gln		030						
				660				Ser	003							
40			675					000								Glu
45		690	}				033	,								Gly
40	705					710					, 23					Gly 720
50					120	ı				, •	•					Leu
				740)				, .	•						Ala
55			75	•				, 00	,							Glu
60		77	0				, ,	,								Leu
110	78	5				/90	,									800
65					80	>				-	•					a Ala 5
				82	0				02	-						n Ala
70	Gl	n Ly	s Ly 83	s Le	u Ası	p Gl	u Th	r Ph 84	e Se O	r Ly	s Al	a Le	u Cy 84	s As: 5	пту	r Tyr

	Ile	Asn 350	Ala	Val	∵al	Asp	Ser 855	Ala	Ala	Gly	7al	Arg 860	Asp	λrg	Asn	Gly
5	Leu 865	Tyr	Thr	T; r	Leu	Leu 370	Ile	Asp	λsn	Gln	Val 875	Ser	Ala	Àsp	Val	Ile 880
10	Thr	Ser	Arg	Ile	Ala 885	Glu	Ala	Ile	Ala	Gly 890	Ile	Gln	Leu	Tyr	Val 895	Asn
10	Arg	Ala	Leu	Asn 900	Arg	Asp	Glu	Gly	Gln 905	Leu	Ala	Ser	Asp	Val 910	Ser	Thr
15	Arg	Gln	Phe 915	Phe	Thr	Asp	Trp	Glu 920	Arg	Tyr	Asn	Lys	Arg 925	Tyr	Ser	Thr
	Trp	Ala 930	Gly	Val	Ser	Glu	Leu 935	Val	Tyr	Tyr	Pro	Glu 940	Asn	Tyr	Val	Asp
20	Pro 945	Thr	Gln	Arg	Ile	Gly 950	Gln	Thr	Lys	Met	Met 955	Asp	Ala	Leu	Leu	Gln 960
25	Ser	Ile	Asn	Gln	Ser 965	Gln	Leu	Asn	Ala	Asp 970.		Val	Glu	Asp	Ala 975	Phe
	Lys	Thr	Tyr	Leu 980	Thr	Ser	Phe	Glu	Gln 985	Val	Ala	Asn	Leu	Lys 990	Val	Ile
30	Ser	Ala	Tyr 995	His	λsp	Asn	Val	Asn 1000		Asp	Gln	Gly	Leu 1005		Tyr	Phe
	Ile	Gly 1010		Asp	Gln	Ala	Ala 1015		Gly	Thr	Tyr	Tyr 1020		Arg	Ser	Val
35	Asp 1025		Ser	Lys	Суѕ	Glu 1030		Gly	Lys	Phe	Ala 1035		Asn	Ala	Trp	Gly 1040
40	Glu	Trp	Asn	Lys	Ile 1045	Thr	Cys	Ala	Val	Asn 1050		Trp	Lys	Asn	Ile 1055	
••	Arg	Pro	Val	Val 1060		Met	Ser	Arg	Leu 1065		Leu	Leu	Trp	Leu 1070		Gln
45	Gln	Ser	Lys 1075		Ser	Asp	Asp	Gly 1080		Thr	Thr	Ile	Tyr 1085		Tyr	Asn
	Leu	Lys 1090		Ala	His	Ile	Arg 1095		Asp	Gly	Ser	Trp 1100		Thr	Pro	Phe
50	Thr 1105		Asp	Val	Thr	Glu 1110		Val	Lys	Asn	Tyr 1115		Ser	Ser	Thr	Asp 1120
55	Ala	Ala	Glu	Ser	Leu 1125	Gly	Leu	Tyr	Cys	Thr 1130	Gly)	Tyr	Gln	Gly	Glu 1135	
	Thr	Leu	Leu	Val 1140		Phe	Tyr	Ser	Met 1145		Ser	Ser	Tyr	Ser 1150		Tyr
60	Thr	Asp	Asn 1155		Ala	Pro	Val	Thr 1160		Leu	Tyr	Ile	Phe 1165		Asp	Met
	Ser	Ser 1170		Asn	Met	Thr	Asn 1175		Gln	Ala	Thr	Asn 1180		Trp	Asn	Asn
65	Ser 1185		Pro	Gln	Phe	Asp 1190		Val	Met	Ala	Asp 1195		Asp	Ser	Asp	Asn 1200
70	Lys	Lys	Val	Ile	Thr 1205	Arg	Arg	Val	Asn	Asn 1210		Tyr	Ala	Glu	Asp 1215	
. •	Glu	Ile	Pro	Ser	Ser	Val	Thr	Ser		Ser 27-	Asn	Tyr	Ser	Trp	Gly	Asp
										- •						

0.4

wo	97/17	7432													PC	T/US
				1220)				1225	5				1230).	
_	His	Ser	Leu 1235	Thr	Met	Leu	Tyr	Gly 1240	Gly)	Ser	7al	Pro	Asn 1245	Ile	Thr	Phe
5	Glu	Ser 1250		Ala	Glu	Ąsp	Leu 1255	Arg	Leu	Ser	Thr	Asn 1260	Met	Ala	Leu	Ser
10	Ile 1265		His	Asn	Gly	Tyr 1270	Ala	Gly	Thr	λrg	Arg 1275	Ile	Gln	Cys	Asn	Leu 1230
	Met	Lys	Gln	Tyr	Ala 1285	Ser	Leu	Gly	Asp	Lys 1290	Phe)	Ile	Ile	Tyr	Asp 1299	Ser
15	Ser	Phe	Asp	Asp 1300		Asn	Arg	Phe	Asn 1305	Leu	Val	Pro	Leu	Phe 1310	Lys)	Phe
	Gly	Lys	Asp 1315		Asn	Ser	Asp	Asp 1320		Ile	Cys	Ile	Tyr 1325	Asn	Glu	Asn
2()	Pro	Ser 1330		Glu	Asp	Lys	Lys 1335	Trp	Tyr	Phe	Ser	Ser 1340	Lys)	Asp	Asp	Asn
25	Lys 1345	Thr	Ala	Asp	Tyr	Asn 1350	Gly	Gly	Thr	Gln	Cys 1355	Ile	Asp	Ala	Gly	Thr 1360
	ser	Asn	Lys	Asp	Phe 1365	Tyr	Tyr	Asn	Leu	Gln 1370	Glu)	Ile	Glu	Val	Ile 1375	Ser
30	Val	Thr	Gly	Gly 1380	Tyr)	Trp	Ser	Ser	Tyr 1385	Lys	Ile	Ser	Asn	Pro 1390	Ile)	Asn
	Ile	Asn	Thr 1395	Gly	Ile	Asp	Ser	Ala 1400	Lys)	Val	Lys	Väl	Thr 1405	Val	Lys	Ala
35	Gly	Gly 1410	Asp	Asp	Gln	Ile	Phe 1415	Thr	Ala	Asp	Asn	Ser 1420	Thr	Tyr	Val	Pro
	Gln	Gln	Pro	Ala	Pro	Ser	Phe	Glu	Glu	Met	Ile	Tyr	Gln	Phe	Asn	Asn

40

Leu Thr Ile Asp Cys Lys Asn Leu Asn Phe Ile Asp Asn Gln Ala His 1445 1450 1455

Ile Glu Ile Asp Phe Thr Ala Thr Ala Gln Asp Gly Arg Phe Leu Gly 45 1465

Ala Glu Thr Phe Ile Ile Pro Val Thr Lys Lys Val Leu Gly Thr Glu 1480

50 Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly Val Gln Tyr Met Gln 1495 1500

Ile Gly Ala Tyr Arg Thr Arg Leu Asn Thr Leu Phe Ala Gln Gln Leu 55 1510

Val Ser Arg Ala Asn Arg Gly Ile Asp Ala Val Leu Ser Met Glu Thr 1525 1530 1535

Gin Asn Ile Gin Glu Pro Gin Leu Gly Ala Gly Thr Tyr Val Gin Leu 60

Val Leu Asp Lys Tyr Asp Glu Ser Ile His Gly Thr Asn Lys Ser Phe 1555 1560 1565

65 Ala Ile Glu Tyr Val Asp Ile Phe Lys Glu Asn Asp Ser Phe Val Ile

Tyr Gln Gly Glu Leu Ser Glu Thr Ser Gln Thr Val Val Lys Val Phe 70 1590

g = -(-)

Leu Ser Tyr Phe Ile Glu Ala Thr Gly Asn Lys Asn His Leu Trp Val 1610 Arg Ala Lys Tyr Gln Lys Glu Thr Thr Asp Lys Ile Leu Phe Asp Arg 5 Thr Asp Glu Lys Asp Pro His Gly Trp Phe Leu Ser Asp Asp His Lys 1640 10 Thr Phe Ser Gly Leu Ser Ser Ala Gln Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala Leu Tyr Phe Trp Glu Leu Phe 1665 1670 1675 168 15 Tyr Tyr Thr Pro Met Met Ala His Arg Leu Leu Gln Glu Gln Asn 1690 Phe Asp Ala Ala Asn His Trp Phe Arg Tyr Val Trp Ser Pro Ser Gly 1700 1705 171020 Tyr Ile Val Asp Gly Lys Ile Ala Ile Tyr His Trp Asn Val Arg Pro 1715 1720 1725 25 Leu Glu Glu Asp Thr Ser Trp Asn Ala Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp Asp Pro Met His Tyr Lys Val Ala Thr 1745 1750 1755 176 30 Phe Met Ala Thr Leu Asp Leu Leu Met Ala Arg Gly Asp Ala Ala Tyr 1770 Arg Gln Leu Glu Arg Asp Thr Leu Ala Glu Ala Lys Met Trp Tyr Thr 35 1780 Gln Ala Leu Asn Leu Leu Gly Asp Glu Pro Gln Val Met Leu Ser Thr 40 Thr Trp Ala Asn Pro Thr Leu Gly Asn Ala Ala Ser Lys Thr Thr Gln 1815 Gln Val Arg Gln Gln Val Leu Thr Gln Leu Arg Leu Asn Ser Arg Val 1830 1835 45 Lys Thr Pro Leu 1844 50 INFORMATION FOR SEQ ID NO:54: SEQUENCE CHARACTERISTICS: (A) LENGTH: 1722 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 60 SEQUENCE DESCRIPTION: SEQ ID NO:54 (TcbAiii coding region:: (xi) CTA GGA ACA GCC AAT TCC CTG ACC GCT TTA TTC CTG CCG CAG GAA AAT 48

Leu Gly Thr Ala Asn Ser Leu Thr Ala Leu Phe Leu Pro Gln Glu Asn

AGC AAG CTC AAA GGC TAC TGG CGG ACA CTG GCG CAG CGT ATG TTT AAT 96 Ser Lys Leu Lys Gly Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn 20 25 30

65

	TT? Leu	CGT Arg	CAT His 35	AAT Asn	CTG Leu	TCG Ser	ATT Ile	GAC Asp 40	GGC Gly	CAG Gln	CCS Pro	CTC Leu	Ser 45	TTG Leu	Pro	CTS Leu	144
5					GCT Ala												
10	GCT Ala 65	TCI Ser	CAA Glm	GGG Gly	GGA Gly	GCC Ala 70	GAC Asp	TTG	Pro	AAG Lys	GCG Ala 75	Pro	CTG	ACT Thr	ATT Ile	CAC His 80	240
15					ATG Met 85												
20					AGT Ser					Tyr							
				Ser	CAA Gln												
25			Ile		ATG Met												
30	Lys 145	Thr	Ala	Leu	CAA Gln	Val 150	Ser	Leu	Ala	Gly	Val 155	Gln	Gln	Arg	Phe	λsp 160	
35	AGC Ser	TAT Tyr	AGC Ser	CAA Gln	CTG Leu 165	TAT Tyr	GAG Glu	GAG Glu	AAC Asn	ATC Ile 170	Asn	GCA Ala	GGT Gly	GAG Glu	CAG Gln 175	CGA Arg	·528
40					CGC Arg												576
	ATT Ile	TCC Ser	CGT Arg 195	ATG Met	GCA Ala	GGC Gly	GCG Ala	GGT Gly 200	GTT Val	gat Asp	ATG Met	GCA Ala	CCA Pro 205	TAA neA	ATC Ile	TTC Phe	624
45	GGC Gly	CTG Leu 210	GCT Ala	GAT Asp	GGC Gly	G17 GCC	ATG Met 215	CAT His	TAT Tyr	GGT Gly	GCT Ala	ATT Ile 220	GCC Ala	TAT Tyr	GCC Ala	ATC Ile	572
50					GAG Glu												720
55					TCG Ser 245												768
60					AAC Asn												816
	CTG Leu	GAA Glu	TCA Ser 275	CTG Leu	TCT Ser	ATT Ile	CGC	CGT Arg 280	GAA Glu	GCC Ala	GCT Ala	GAA Glu	ATG Met 285	CAA Gln	AAA Lys	GAG Glu	864
65					CAG Gln												912
70	AGA Arg 305	AGC Ser	AAA Lys	TTC Phe	AGT Ser	AAT Asn 310	CAA Gln	GCG Ala	TTA Leu	TAT Tyr	AGT Ser 315	TGG Trp	TTA Leu	CGA Arg	GGG Gly	CGT Arg 320	960

5					32	5	- 51	.1 -	= 13	33	0 b re	u Al	a Va	l Se	r Ar 33	g Cy:	
•				34	0		,.	. 61,	34	5	u Al	3 ASI	u ysi	35	n Se O	r Ile	
10			35	5		,		360)	11 G1	rni	171	365	Gly	/ Le	ı Lec	
15		37	0				375	na.	. Let	1 VIC	ı GIR	380	Glu	Gli	ı Ala	a Tyr	
20	385	5				390	nzu	ned	GIU	va1	395	Arg	Thr	Val	. Ser	Leu 400	
25					405	501	260	Giu	Gly	410	Asp	Arg	Phe	Asn	415	Ala	
20				420		200	Deu	vsh	425	GIY	GIU	GIĀ	Thr	Ala 430	Gly	Thr	1296
30			435	JI	Deu	Ser	reu	440	Asn	Ala	. IIe	Leu	Ser 445	Ala	Ser	Val	1344
35	-	450)			2,3	455	Gly	IIII	ASP	lyr	460	Asp	Ser	Ile	Val	1392
40	465			2,3	Va1	470	AL G	116	Lys	GIN	475	Ser	Val	Ser	Leu	Pro 480	1440
45				GGG	485	IYI	GIN	Asp	vai	490	Ala	Met	Leu	Ser	Tyr 495	Gly	
**	,			CAA Gln 500	Dea	PIO .	Lys	GIŞ	505	ser	Ala	Leu	Ala	Val 510	Ser	His	
50	,		515	GAT Asp	Je!	GIÀ (JIII	520	GIU	Leu	Asp	Phe	Asn 525	Asp	Gly	Lys	
55		530		TTT Phe	.	51,	535	nia .	Leu	Asp	ASP	540	GIÀ .	Thr	Leu	Asn	
60	545		•	CCG . Pro .	nsii /	550	ine 2	ASP .	Lys	Gin	Lys . 555	Ala	Ile	Leu	CAA Gln	ACT Thr 560	1630
65	ATG Met	AGC Ser	GAT Asp	ATT I	ATT 1 Ile I 565	MTG C	AT A	ATT (Arg '	TAT Tyr '	ACC A	Ile i	CGT 1 Arg 573	TAA		1722	
	(2)	IN	FORM	LATIC	N FO	OR SI	EQ I	D N	0:55	5 :							

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 573 amino acids
(B) TYPE: amino acids

70

PCT/US96/18003 WO 97/17432

> (C) STRANDEDNESS: single (D) TOPOLOGY: linear

MOLECULE TYPE: protein (ii)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55 (TcbAiii): Leu Gly Thr Ala Asn Ser Leu Thr Ala Leu Phe Leu Pro Gln Glu Asn 10 15 10 Ser Lys Leu Lys Gly Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn 20 25 30 Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu 35 15 Tyr Ala Lys Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser 50 55 20 Ala Ser Gln Gly Gly Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His 65 70 80 Arg Phe Pro Gln Met Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu 85 90 95 25 Ile Gln Phe Gly Ser Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala Glu Ala Met Ser Gln Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu 115 120 125 Thr Ser Ile Arg Met Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu 130 135 140 35 Lys Thr Ala Leu Gln Val Ser Leu Ala Gly Val Gln Gln Arg Phe Asp 145 150 155 160 Ser Tyr Ser Gln Leu Tyr Glu Glu Asn Ile Asn Ala Gly Glu Gln Arg 165 170 175 40 Ala Leu Ala Leu Arg Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln 180 185 190 Ile Ser Arg Met Ala Gly Ala Gly Val Asp Met Ala Pro Asn Ile Phe 195 200 205 45 Gly Leu Ala Asp Gly Gly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile 210 215 220 50 Ala Asp Gly Ile Glu Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu 225 230 240

Lys Val Ala Gln Ser Glu Ile Tyr Arg Arg Arg Arg Gln Glu Trp Lys 245 250 25555

Ile Gln Arg Asp Asn Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln 265 270

Leu Glu Ser Leu Ser Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu 275 280 285 60

Tyr Leu Lys Thr Gln Gln Ala Gln Ala Gln Ala Gln Leu Thr Phe Leu 290 295 300

65 Arg Ser Lys Phe Ser Asn Gln Ala Leu Tyr Ser Trp Leu Arg Gly Arg 305 310 320

Leu Ser Gly Ile Tyr Phe Gln Phe Tyr Asp Leu Ala Val Ser Arg Cys 325 330 335 70

	Lau	Met	Ala	Glu 340	Gln	Ser	Tyr	Gln	Trp 345	Glu	Ala	Asn	Asp	Asn 350	Ser	Ile	
5	Ser	Phe	Val 355	Lys	Pro	Gly	Ala	Trp 360	Gln	Gly	Thr	Tyr	Ala 365	Gly	Leu	Leu	
10	Суѕ	Gly 370	Gluʻ	Ala	Leu	Ile	Gln 375	Asn	Leu	Ala	Gln	Met 380	Glu	Glu	Ala	Tyr	
10	Leu 385	Lys	Trp	Glu	Ser	Arg 390	Ala	Leu	Glu	Val	Glu 395	Arg	Thr	Val	Ser	Leu 400	
15	Ala	Val	Val	Tyr	Asp 405	Ser	Leu	Glu	Gly	Asn 410	Asp	Arg	Phe	Asn	Leu 415	Ala	
	Glu	Gln	Ile	Pro 420	Ala	Leu	Leu	Asp	Lys 425	Gly	Glu	Gly	Thr	Ala 430	Gly	Thr	
20	Lys	Glu	Asn 435	Gly	Leu	Ser	Leu	Ala 440	Asn	Ala	Ile	Leu	Ser 445	Ala	Ser	Val	
	Lys	Leu 450	Ser	Asp	Leu	Lys	Leu 455	Gly	Thr	Asp	Tyr	Pro 460	Asp	Ser	Ile	Val	
25	Gly 465	Ser	Asn	Lys	Val	Arg 470	Arg	Ile	Lys	Gln	Ile 475	Ser	Val	Ser	Leu	Pro 480	
30	Ala	Leu	Val	Gly	Pro 485	Tyr	Gln	Asp	Val	Gln 490	Ala	Met	Leu	Ser	Tyr 495	Gly	
	Gly	Ser	Thr	Gln 500	Leu	Pro	Lys	Gly	Cys 505	Ser	Ala	Leu	Ala	Val 510	Ser	Kis	
35	Gly	Thr	Asn 515	Asp	Ser	Gly	Gln	Phe 520	Gln	Leu	Asp	Phe	Asn 525	Asp	Gly	Lys	
	Tyr	Leu 530	Pro	Phe	Glu	Gly	Ile 535	Ala	Leu	Asp	Asp	Gln 540	Gly	Thr	Leu	Asn	
40	Leu 545	Gln	Phe	Pro	Asn	Ala 550	Thr	Asp	Lys	Gln	Lys 555	Ala	Ile	Leu	Gln	Thr 560	
45	Met	Ser	Asp	Ile	Ile 565	Leu	His	Ile	Arg	Tyr 570	Thr	Ile	Arg 573	•••			
	(2)	•															
50	(2)	IN (i	FORM			E CH	ARAC LENC	TER TH:	ISTI 28	CS: 398		pa:	irs				
					(B) (C) (D)		STR	ANDE	ucle DNES	SS:	doub						
55		(i	.i)	MOL								:)					
		(x	(i)	SEO	UENC	ר פי	FSCE	יים ז	ION:	SF) TE	NO:	- 56	lr.co	~A \		
60		NTG A	АТ С	AA C	TC G	CC A	GT C	cc c	TG A	т т	- 'CC C	GC A	cc G	AA G	AG A	TC CAC	48
																le His	
65																TTT GAT Phe Asp	
	97	GTG	GTA	CGT	ATG	CCG	CGT	GAG			ATT	CGT	GAG	CAT	CGT	GCT GAT	144
									-23	33-			•				

	33	Val V	al A	rg M	let P	ro A	rg G	lu A	rg P	he I	le A	rg G	lu H	is A	rg ?	la A	.sp	13
5	145 49	CTC Leu	GGG Gly) CGC	AGT Ser	GCT Ala	GAA Glu	λλΑ Lys	ATG Met	TAT Tyr	GAC Asp	CTG Leu	GCA Ala	GTG Val	GGC Gly	TAT Tyr	GCT Ala	192
10	193 65		CAG Gln	GTG Val	TTA Leu	CAC His	CAT His	TTT Phe	CGC	CGT Arg	AAT Asn	TCT Ser	CTT Leu	AGT Ser	GAA Glu	GCT Ala	GTT Val	240 30
	241	CAG Gln	TTT Phe	GGC	TTC Leu	AGA Arg	AGT Ser	CCG Pro	TTC Phe	TCC Ser	GTA Val	TCA Ser	GGC Gly	CCG Pro	GAT Asp	TAC Tyr	GCC Ala	233 96
15	289 97	AAT Asn	CAG Gln	TTT Phe	CTT Leu	GAT Asp	GCA Ala	AAC Asn	ACG Thr	GGT Gly	TGG Trp	AAA Lys	GAT Asp	AAA Lys	GCA Ala	CCA Pro	AGT Ser	336 112
20	337 113	GGA Gly	TCA Ser	CCG Pro	GAA Glu	GCC Ala	AAT Asn	GAT Asp	GCG Ala	CCG Pro	GTA Val	GCC Ala	TAT Tyr	CTG Leu	ACT Thr	CAT His	ATT Ile	384 128
25	385 129	TAT Tyr	CAA Gln	TTG Leu	GCC Ala	CTT Leu	GAA Glu	CAG Gln	GAA Glu	AAG Lys	AAT Asn	GGC Gly	GCC Ala	ACT Thr	ACC Thr	ATT Ile	ATG Met	432 144
30	433 145	AAT Asn	ACG Thr	CTG Leu	GCG Ala	GAG Glu	CGT Arg	CGC Arg	CCC Pro	GAT Asp	CTG Leu	GGT Gly	GCT Ala	TTC	TTA Leu	ATT Ile	AAT Asn	480 160
	481 161		AAA Lys	GCA Ala	ATC Ile	AAT Asn	GAG Glu	GTG Val	ATA Ile	CCG Pro	CAA Gln	TTG	CAG Gln	TTG Leu	GTC Val	AAT Asn	GAA Glu	528 176
35	529 177	ATT Ile	CTG Leu	TCC Ser	AAA Lys	GCT Ala	ATT Ile	CAG Gln	AAG Lys	AAA Lys	CTG Leu	AGT Ser	TTG Leu	ACT Thr	GAT Asp	CTG Leu	GAA Glu	576 192
40	577 193	GCG Ala	GTA Val	AAC Asn	GCC Ala	AGA Arg	CTT Leu	TCC Ser	ACT Thr	ACC	CGT Arg	TAC	CCG Pro	AAT Asn	AAT Asn	CTG Leu	CCG Pro	62 4 208
45	625 209	ТАТ Туг	CAT His	TAT Tyr	GGT Gly	CAT His	CAG Gln	CAG Gln	ATT	CAG Gln	ACA Thr	GCT Ala	CAA Gln	TCG Ser	GTA Val	TTG Leu	GGT Gly	672 224
50	673 225	ACT Thr	ACG Thr	TTG	CAA Gln	GAT Asp	ATC	ACT	TTG	CCA Pro	CAG Gln	ACC Thi	CTG Leu	GAT Asp	CTC Leu	ccg Pro	CAA Gln	720 240
50	721 241	AAC Asn	TTC	TGG	GCA Ala	ACA Thr	GCA Ala	AAA Lys	GGA Gly	AAA Lys	CTG Leu	AGC Sel	GAT Asp	ACC Thr	ACT Thi	GCC Ala	: AGT Ser	768 256
55	769 257	GCT Ala	TTC Leu	ACC Thr	CGA Arg	CTC Leu	CAA Gln	ATC	ATC	GCG Ala	AGT Ser	CAC Gli	TTI n Phe	TCC Set	CCI Pro	A GAG	CAG Gln	81 6 27 2
60	817 273	7 CAC 3 Glr	AAA Lys	ATC	ATI	ACC Thi	GAG	ACT Thi	GTC Val	GGT Gly	CAC Glr	GA' n Asi	r TTC p Phe	TAT	CAC Gli	CTI n Leu	AAC ASD	864 288
65	865 285	5 TA	r GGT	GAC Asp	AG1	TCC	CTI	ACT Thi	GTC Va.	AAT L Asr	T AG	r TT	C AGG e Sei	GA(ATO	G ACC	ATA	913

	913 305	AT0 Met	G AC'	T GAT r Asp	CGA Arg	ACA Thr	AG1 Ser	TTC Leu	ACT Thr	GTA Val	CCC Pro	CAC Glr	GTA Val	GAA Glu	CTC Leu	ATT Met	TTO	360 320
5	961 321	TG1 Cys	TC;	A ACT	GTC Val	GGA Gly	GGT Gly	TCT Ser	ACG Thr	GTT Val	GTT Val	'AAC Lys	TCT Ser	GAT Asp	AAT Asn	GTG	AGT Ser	1003 336
10	1009	Э тс 7 Зе	T GO r Gl	ST GA Y As	C AC p Th	G AC	A GC	G AC a Th	G CC r Pr	A TT o Ph	T GC e Al	G TA a Ty	T GG	C GC Y Al	C CG a Ar	C TT g Ph	T ATT e Ile	1056 352
15	1057	CA Hi	T GC s Al	C GG a Gl	T AAG y Ly:	G CCC	G GAG	G GC u Al	G AT	T ACC	C CTY	G AG u Se	T CG	C AG' g Se:	T GG r Gl	T GC	G GAG a Glu	369 1104
20	1105 369	GC Al	G CA a Hi	T TT s Ph	T GCT e Ala	r cro	ACC Thi	G GT r Va	T AAG l Asi	C AAC n Asi	r cro	3 AC.	A GA' r Ası	r GAG P Asi	C AAG D Lys	G TTO	G GAC u Asp	1152 384
25	1153 385	CC	T AT	T AAG	C CGC	ACA Thr	GTC Val	G CGC	C CTC	G CAA	A AAJ A Lys	TG(G CTO	G AA1 u Asr	r CTC	G CCT	TAT Tyr	1200 400
25	1201 401	GAC Glu	G GA:	r ATT	°GAC Asp	CTG Leu	TTA Leu	GTC Val	ACT Thr	TCT Ser	GC1	ATC Met	G GAT	C GCC	GA Glu	A AC.	A GGA	1248 416
30	1249 417	AAT Asr	ACC Thr	GCC Ala	CTG Leu	TCG Ser	ATG Met	AAC Asn	GAC Asp	AAT Asn	ACC Thr	CTC Leu	G CGT	ATG	TTC Lev	GGA Gly	GTG Val	1296 432
35	1297 433	TTC Phe	AAA Lys	CAT His	TAT Tyr	CAG Gln	GCG Ala	AAG Lys	TAT Tyr	GCT	GTT Val	'AGC Ser	GCT Ala	AAA Lys	CAA Gln	TTT Phe	GCT Ala	1344 448
40	1345 449	GGC	TGG Trp	CTG Leu	CGC Arg	GTA Val	GTG Val	GCC Ala	CCG Pro	TTT Phe	GCC Ala	ATT	ACA Thr	CCG Pro	GCA Ala	ACG Thr	CCG Pro	1392 464
45	1393 465	TTT Phe	TTA Leu	GAC Asp	CAA Gln	GTG Val	TTT Phe	AAC Asn	TCC Ser	GTC Val	GGC Gly	ACC Thr	TTT Phe	GAT Asp	ACA Thr	CCG Pro	TTT Phe	1440 480
43	1441 481	GTG Val	ATA Ile	GAT Asp	AAT Asn	CAG Gln	GAT Asp	TTT Phe	GTC Val	TAT Tyr	ACA Thr	TTG Leu	ACC Thr	ACC Thr	GGG Gly	GGC Gly	GAT Asp	1483 496
50	1489 497	GGG Gly	GCG Ala	CGT Arg	GTT Val	AAG Lys	CAT His	ATC Ile	AGC Ser	ACG Thr	GCA Ala	CTG Leu	GGC Gly	CTC Leu	AAT Asn	CAT His	CGT Arg	1536 512
55	1537 513	CAG Gln	TTC Phe	CTG Leu	TTA Leu	TTG Leu	GCG Ala	GAT Asp	AAT Asn	ATT Ile	GCC Ala	CGT Arg	CAA Gln	CAG Gln	GGG Gly	AAT Asn	GTC Val	1584 528
60	1585 529	ACG Thr	CAA Gln	AGC Ser	ACA Thr	CTC Leu	AAC Asn	TGT Cys	AAT Asn	CTG Leu	TTT Phe	GTG Val	GTG Val	TCA Ser	GCT Ala	TTC Phe	TAC Tyr	1632 544
65	1633 545	CGT Arg	CTG Leu	GCT Ala	AAT Asn	TTG Leu .	GCG Ala	CGC Arg	ACA Thr	TTC Leu	GGG Gly	ATA Ile	AAT Asn	CCA Pro	GAG Glu	TCT Ser	TTC Phe	1530 550
65	1681	TGT	GCC	TTG	GTT	GAT (CGA	TTA	GAT	GCA	GGT	ACA	GGC	ATC	GTC	TGG	CAG	1723

	551	C75	Ala	Leu	Val	Asp	λrg	Leu	λsp	Ala	Gly	Thr	Gly	Ilə	Val	Trp	Gln	574
5	1729 577	CAA Gln	TTG Leu	GCA Ala	GGG Gly	aaa Lys	CCC Pro	ACA Thr	ATC Ile	ACG Thr	GTA Val	CCA Pro	CAA Gln	AAA Lys	GAT Asp	TCC Ser	ccu Pro	1776 592
10	1777 1824 593 608																	ATT GCT
15	1825 609		TGG Trp	CAA Gln	CAA Gln	CAG Gln	CAC His	GAT Asp	TTA Leu	GAA Glu	TTT Phe	TCA Ser	GCA Ala	CTG Leu	CTT Leu	TTG Leu	CTG Leu	1372 624
20	1873 625	TTG Leu	AGT	GAC Asp	AAC Asn	CCT Pro	ATT Ile	TCT Ser	ACC Thr	TCG Ser	CAG Gln	GGC	ACT Thr	GAC Asp	GAT Asp	CAA Gln	TTG Leu	1920 .640
	1921 641	AAC Asn	TTT Phe	ATC Ile	CGT Arg	CAA Gln	GTG Val	TGG Trp	CAG Gln	AAC Asn	CTA Leu	GGC	AGT Ser	ACG Thr	TTT Phe	GTG Val	GGT Gly	1968 656
25	1969 657	GCA Ala	ACA Thr	TTG Leu	TTG Leu	TCC Ser	CGC Arg	AGT Ser	GGG Gly	GCA Ala	CCA Pro	TTA Leu	GTC Val	GAT Asp	ACC Thr	AAC Asn	GGC Gly	2016 672
30	2017 673	CAC His	GCT Ala	ATT Ile	GAC Asp	TGG Trp	TTT Phe	GCT Ala	CTG Leu	CTC Leu	TCA Ser	GCA Ala	GGT Gly	AAT Asn	AGT Ser	CCG Pro	CTT Leu	2064 688
35	2065 689	ATC Ile	GAT Asp	AAG Lys	GTT Val	GGT Gly	CTG Leu	GTG Val	ACT Thr	GAT Asp	GCT Ala	GGC Gly	ATA Ile	CAA Gln	AGT Ser	GTT Val	ATA Ile	2112 704
40	2113 705	GCA Ala	ACG Thr	GTG Val	GTC Val	AAT Asn	ACA Thr	CAA Gln	AGC Ser	TTA Leu	TCT Ser	GAT Asp	GAA Glu	GAT Asp	AAG Lys	AAG Lys	CTG Leu	2160 720
	2161 721	GCA Ala	ATC Ile	ACT Thr	ACT Thr	CTG Leu	ACT Thr	AAT Asn	ACG Thr	TTG Leu	AAT Asn	CAĞ Gln	GTA Val	CAG Gln	AAA Lys	ACT Thr	CAA Gln	2208 736
45	2209 737	CAG Gln	GGC Gly	GTG Val	GCC Ala	GTC Val	AGT Ser	CTG Leu	TTG Leu	GCG Ala	CAG Gln	ACT Thr	CTG Leu	AAC Asn	GTG Val	AGT Ser	CAG Gln	2256 752
50	2257 753	TCA Ser	CTG Leu	CCT Pro	GCG Ala	TTA Leu	TTG Leu	TTG Leu	CGC Arg	TGG Trp	AGT Ser	GGA Gly	CAA Gln	ACA Thr	ACC Thr	TAC Tyr	CAG Gln	2304 763
55	2305 769	TGG Trp	TTG Leu	AGT Ser	GCG Ala	ACT Thr	TGG Trp	GCA Ala	TTG Leu	AAG Lys	GAT Asp	GCC Ala	GTT Val	AAG Lys	ACT Thr	GCC	GCC Ala	2352 784
60	2353 785	GAT Asp	ATT Ile	CCC Pro	GCT Ala	GAC Asp	TAT Tyr	CTG Leu	CGT Arg	CAA Gln	TTA Leu	CGT	GAA Glu	GTG Val	GTA Val	. CGC Arg	CGC	2400 300
	2401 301	TCC Ser	TTC Leu	TTG Leu	ACC Thr	CAA Gln	CAA Gln	TTC Phe	ACG Thr	CTG Leu	AGT Ser	CCT	GCA Ala	ATG Met	GTG Val	CAA Gln	ACC	2448 316
65																		

65

	2449 317	TTG Leu	CTG Leu	GAC Asp	ТАТ Туг	CCA Pro	GCC Ala	TAT	TTT Phe	GGC Gly	GCT Ala	TCC Ser	GCA Ala	GAA Glu	ACA Thr	. GTC Val	3 ACC 1 Thr	249 <i>5</i> 332
5	2497 833	GAT Asp	ATC Ile	AGT Ser	TTG Leu	TGG Trp	ATG Met	CTT Leu	TAT Tyr	ACC Thr	CTG Leu	AGC Ser	TGT Cys	TAT Tyr	AGC Ser	GAT Asp	TTA Leu	2544 348
10	2545 849	TTG Leu	CTC Leu	CAA Gln	ATG Met	GGT Gly	GAA Glu	GCT Ala	GGT Gly	GGT Gly	ACC Thr	GAA Glu	GAT Asp	GAT Asp	GTA Val	CTG Leu	GCC Ala	2592 364
15	2593 865	TAC (TTA Leu	CGC Arg	ACA Thr	GCT Ala	AAT Asn	GCT Ala	ACC Thr	ACA Thr	CCG Pro	TTG Leu	AGC Ser	CAA Gln	TCT Ser	GAT Asp	GCT Ala	2640 880
20	2641 881,					nia	****	Leu	Led	GIY	Trp	Glu	Val	Asn	Glu	Leu	Gln	2688 396
	2689 (897)	GCC C Ala #	CT (rgg : Frp :	TCG Ser	GTA Val	TTG Leu	GGC Gly	GGG Gly	ATT Ile	GCC Ala	AAA Lys	ACC Thr	ACA Thr	CCG Pro	CAA Gln	CTG Leu	2736 912
25		GAT C		Jeu (beu i	vTA (Leu	GIN	GIN	Ala	Gln .	Asn	Gln	Thr	Gly	Leu	Gly	2784 928
30	,		111 . G	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3111 (atu (JIN (etA .	lyr i	Leu !	Leu :	Ser	Arg .	Asp :	Ser	Asp	Tyr	2832 944
35	•		eu ,	rp c	1111 3	er 1	inr (GGT (CAG (Gln /	GCG (Ala I	CTG (Leu \	GTG (GCT (Ala (GGC (Gly)	STA '	TCC Ser	CAT His	2880 960
40	2881 G 961 V	al L	ys G	ly s	er A	sn F	End	289 966	5									٠
	(2) II (NFOR i)	MAT] SEQ	ON UENC (A (B	CE C	HARA LEN	CTE GTH	RIST	rics	amin	o ac	cids	•					
45	r (ii)	MOI	(C LECU		TOP	OLO	GY: prot	lin	ea								
50	(: Feature	ki) es	SEC	QUEN F	CE (rom		RIP' To 10	rion	Des	cri	D NO ptio NO:	n	(To	CA 1	pept	ide)	
55		: Asn Leu							u Il	e Se	r Ar	g Th						16
		Val																32 48
60	49 Leu	Gly	Arg	Ser	Ala	Glu	ı Ly:	s Mei	t Ty	r Ası	e Lei	ı Al	a Va	l Gl	r Ty	r Al	.a	01
		Gln																30
65	or Gin	Phe	GIÀ	reu	Arg	ser	Pro	Phe	e Sei	: Val	l Ser	Gly	y Pro) Ası	o Tyr	r Al	a	95

	91	7 Asn	Gln	Phe	Leu	ı Asp	Ala	a Asi	n Th	r Gl	y Tri	p Ly	s Ası	p Lys	s Al	a Pr	o Ser	111
	113	Gly	Ser	Pro	Glu	Ala	Ast	a Ası	p Al	a Pr	o Va	1 Al	а Ту	r Le	ı Th	r Hi	s Ile	128
5	129	Tyr	Gln	Leu	Ala	Leu	Glu	: Gl:	n Gl	u Ly:	s Ası	n Gl	y Ala	a Thi	Th:	r II	e Met	144
	149	Asn	Thr	Leu	Ala	Glu	Arg	Arg	Pr	o As) Leu	ı Gly	y Alá	. Leu	ı Le	ı 11.	e Asn	160
10	161	Asp	Lys	Ala	Ile	Asn	Glu	Val	Ile	e Pro	Glr	1 Lêt	ı Glr	ı Leu	Val	l Ası	n Glu	176
• • • • • • • • • • • • • • • • • • • •	177	Ile	Leu	Ser	Lys	Ala	Ile	Glr	Lys	Lys	Leu	ı Sei	Leu	Thr	yst) Le	ı Glu	192
	193	Ala	Val	Asn	Ala	Arg	Leu	Ser	Thi	Thi	Arg	Туг	Pro	Asn	Asr	ı Lei	ı Pro	208
15	209	Tyr	His	Tyr	Gly	His	Gln	Gln	Ile	Glr	Thr	Ala	Glm	Ser	Va]	. Lət	Gly	224
	225	Thr	Thr	Leu	Gln	Asp	Ilə	Thr	Leu	Pro	Gln	Thr	Leu	Asp	Leu	Pro	Gln	240
20	241	Asn	Phe	Trp	Ala	Thr	Ala	Lys	Gly	Lys	Leu	Ser	Asp	Thr	Thr	Ala	Ser	256
	257	Ala	Leu	Thr	Arg	Leu	Gln	Ile	Met	Ala	Ser	Gln	Phe	Ser	Pro	Glu	Gln	272
	273	Gln	Lys	Ile	Ile	Thr	Glu	Thr	Val	Gly	Gln	Asp	Phe	Tyr	Gln	Leu	Asn	288
25	289	Tyr	Gly	Asp	Ser	Ser	Leu	Thr	Val	Asn	Ser	Phe	Ser	Asp	Met	Thr	Ile	304
	305	Met	Thr	Asp	Arg	Thr	Ser	Leu	Thr	Val	Pro	Gln	Val	Glu	Leu	Met	Leu	320
30	321	Cys	Ser	Thr	Val	Gly	Gly	Ser	Thr	Val	Val	Lys	Ser	Asp	Asn	Val	Ser	336
	337	Ser	Sly	Asp	Thr	Thr	Ala	Thr	Pro	Phe	Ala	Tyr	Gly	Ala	Arg	Phe	Ile	352
	353	His i	Ala	Gly	Lys	Pro	Glu	Ala	Ile	Thr	Leu	Ser	Arg	Ser	Gly	Ala	Glu	368
35	369	Ala i	lis	Phe	Ala	Leu	Thr	Val	Asn	Asn	Leu	Thr	Asp	Asp	Lys	Leu	Asp	384
	385	Arg :	lle .	Asn	Arg	Thr	Val	Arg	Leu	Gln	Lys	Trp	Leu	Asn	Leu	Pro	Tyr	400
40	401	Glu A	\sp	Ile.	Asp	Leu	Leu	Val	Thr	Ser	Ala	Met	Asp	Ala	Glu	Thr	Gly	416
	417	Asn 1	hr.i	Ala :	Leu	Ser	Met	Asn	Asp	Asn	Thr	Leu	Arg	Met	Leu	Gly	Val	432
	433	Phe I	ys i	His '	Tyr	Gln	Ala	Lys	Tyr	Gly	Val	Ser	Ala	Lys	Gln	Phe	Ala	448
45	449	Gly T	rp I	Leu	Arg	Val	Val	Ala	Pro	Phe	Ala	Ile	Thr	Pro	Ala	Thr	Pro	464
	465	Phe L	.eu A	Asp (Gln	Val	Phe	Asn	Ser	Val	Gly	Thr	Phe	Asp	Thr	Pro	Phe	480
50	481	Val I	le A	Asp i	Asn	Gln .	Asp	Phe	Val	Tyr	Thr	Leu	Thr	Thr	Gly	Gly	Asp	496
	497	Gly A	la A	Arg \	Val :	Lys I	His	Ile	Ser	Thr	Ala	Leu	Gly	Leu	Asn	His	Arg	512
	513	Gln P	he L	.eu I	Leu	Leu .	Ala .	Asp	Asn	Ile	Ala	Arg	Gln	Gln	Gly	Asn	Val	528
55	529	Thr G	ln s	er 1	Chr 1	Leu i	Asn	Cys	Asn	Leu	Phe	Val	Val	Ser	Ala	Phe	Tyr	544
	545	Arg L	eu A	la A	Asn I	Leu i	Ala .	Arg	Thr	Leu	Gly	Ile	Asn	Pro	Glu	Ser	Phe	560
60	561	Cys A	la L	eu V	/al /	Asp A	Arg	Leu .	Asp	Ala	Gly	Thr	Gly	Ile	Val	Trp	Gln	576
117	577	Gln L	eu A	la G	:17 [rys (Pro 1	Thr	Ile	Thr	Val	Pro	Gln	Lys .	Asp	Ser	Pro	592
	593	Leu A	la A	la A	sp 1	lle t	.eu s	Ser :	Leu	Leu	Gln .	Ala	Leu	Ser .	Ala	Ile	Ala	603
65	609	Gln T	rp G	ln G	in c	31n H	lis A	Asp 1	Leu	Glu	Phe :	Ser	Ala :	Leu 1	Leu	Lêu	Leu	624

	525	Lei	u Se	r Ası	e Asr	n Pro	Ile	Ser	Thr	Ser	Glr	ı Gly	Thr	: Asp) Asp	Gir	l Leu	540
	641	Ası	n Phe	⊇ Ile	a Arg	Gln	. Val	Trp	Gln	Asn	Leu	Gly	Ser	Thr	Phe	- Val	Gly	556
5	657	Ala	a Thi	: Leu	ı Leu	Ser	Arg	Ser	Gly	Ala	Pro	Leu	Val	Asp	Thr	Asn	Gly	672
	673																Leu	688
10	689								Thr									764
117	705	Ala	Thr	Val	Val	Asn	Thr	Gln	Ser	Leu	Ser	Asp	Glu	Asp	Lys	Lys	Leu	720
	721	Ala	Ile	Thr	Thr	Lau	Thr	Asn	Thr	Leu	Asn	Gln	Val	Gln	Lys	Thr	Gin	736
15	737	Gln	Gly	Val	Ala	Val	Ser	Leu	Leu	Ala	Gln	Thr	Leu	Asn	Val	Ser	Gln	752
	753	Ser	Leu	Pro	Ala	Leu	Leu	Leu	Arg	Trp	Ser	Gly	Gln	Thr	Thr	Tyr	Gln	768
20	769	Trp	Leu	Ser	Ala	Thr	Trp	Ala	Leu	Lys	Asp	Ala	Val	Lys	Thr	Ala	Ala	734
	785	Asp	Ile	Pro	Ala	Asp	Tyr	Leu	Arg	Gln	Leu	Arg	Glu	Val	Val	Arg	Arg	300
	3,01	Ser	Leu	Leu	Thr	Gln	Gln	Phe	Thr	Leu	Ser	Pro	Ala	Met	Val	Gln	Thr	816
25	317	Leu	Leu	Asp	Tyr	Pro	Ala	Tyr	Phe	Gly	Ala	Ser	Ala	Glu	Thr	Val	Thr	832
	833	Asp	Ile	Ser	Leu	Trp	Met	Leu	Tyr	Thr	Leu	Ser	Cys	Tyr	Ser	Asp	Leu	848
30	849	Leu	Leu	Gln	Met	Gly	Glu	Ala	Gly	Gly	Thr	Glu	Asp	Asp	Val	Leu	Ala	864
	865	Tyr	Leu	Arg	Thr	Ala	Asn	Ala	Thr	Thr	Pro	Leu	Ser	Gln	Ser	Asp	Ala	880
	881	Ala	Gln	Thr	Leu	Ala	Thr	Leu	Leu	Gly	Trp	Glu	Val	Asn	Glu	Leu	Gln	896
35	397	Ala	Ala	Trp	Ser	Val :	Leu	Gly	Gly	Ile	Ala	Lys	Thr	Thr	Pro	Gln	Leu	912
	913								Gln									928
40	929								Tyr									944
40	945								Gln .									960
	961				Ser		96											
45																		
	(2)	INF			N FO):58 STIC	ς.								
					(A)	L	ENGT	'H :		8 ba	ase	pair	s					
50				((C)	S?	rran	DED	NESS	: do	oubl	e						
		,							: li									
		(ii	.) !	10LE	CULE	TYE	E:	DNA	A (g	enom	nic)							
55		(xi	.)	EQU	ENCE	DES	CRI	PTIC	ON:	SFO	ו תד	NO - 5	8 () \			
		1 A'															AT GCG	
60		1 M	et L	eu Sa	er Th	ir Me	t Gl	u Ly	s Gl	n Le	eu As	sn Gl	u Se	er G	ag co ln Ai	or G	AT GCG sp Ala	16
	1	9 T	וה פי	ומ או	ጉጥ ርረ	יים אי	nn san	~ · ·	· Tr · Tr-	v n ~~	.							٠
		7 L	eu Va	al Th	ır Gl	y Ty	r Me	C As	n Ph	e Va	G GC	G CC	G AC	G TT	rg A.∂ eu Ly	AA GO	SC STO	9 6 3 2
65																		

145 GAC CCG GAA GTG GCT GAT GAC GTT GAG ACT ACC GG TA GCA GCA GCG GA ASP PRO GIU VAI ALA ASP GIU VAI GIU THY SEY ARG VAI ALA GIN ALA 64 193 ATT GCC AGC ATA CAG CAA TAT ATG ACT CGT CTG GTC AAC GGC TCT GAA 240 85		97 33	AGT Ser	GGT Gly	CAG Gln	CCG Pro	GTG Val	ACG Thr	GTG Val	GAA Glu	GAT Asp	TTA Leu	TAC Tyr	GAA Glu	TAT Tyr	TTG Leu	CTG Leu	ATT Ile	19 111
241 CCG GGG CGT CAG GCG ATG GAG CCT TCT ACA GCT AAC GAA TGG CGT CAT 81 PRO Gly Arg Gln Ala Met Glu Pro Ser Thr Ala Asn Glu Trp Arg Asp 96 289 AAT GAT AAC CAA TAT GCT ATC TGG GCT GGG GGG GCT GAG GTT CGA AAT 113 TAC GCT GAA AAC TAT ATT TCA CCC ATC ACC CGG CAG GAA AAA AGC CAT 113 TYR Ala Glu Asn Tyr Ile Ser Pro Ile Thr Arg Gln Glu Lys Ser His 123 25 385 TAT TTC TCG GAG CTG GAG ACC ACT TTA AAT CAG AAT CAG CAT CAG CTG 129 TYR Phe Ser Glu Leu Glu Thr Thr Leu Asn Gln Asn Arg Leu Asp Pro 141 30 413 GAT CGT GTG CAG GAT GCT GTT TTG GCG TAT CTC AAT GAG TTT GAG GCA 145 Asp Arg Val Gln Asp Ala Val Leu Ala Tyr Leu Asn Glu Phe Glu Ala 160 481 GTG ACT AAT CTA TAT GTG CTC AGT GGT TAT ATT AAT CAG GAT AAA TTT 177 Asp Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 40 577 CGC TAC TAC TGG CGT CAG ATG GAT TTG AGT AAG AAC CGT CAA GAT CCG 193 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 45 625 GCA GGG AAT CCG GTG ACC CCA ATT TGC TCG GAT TGC CAG GAT ACC 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu Ile 224 56 67 ACT TTG CCG CTG TCT GGT GAT TGT GTG GAG TAT GGG CAT ACC GGT GAA ATC 227 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 256 677 GCG TAC TAC TGG CGT CAG ATG GAT TGG GGC ACT ACC ACT AAA CGG TAT 278 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 578 ACT TTG CCG CTG TCT GGT GAT ACG GTC TGG GAG CAT ACA GTT CGC CGG 228 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 257 Ala Val Gln Lys Asp Ala Asp Gly Lys Asn Ile Gly Lys Thr His Ala 279 TY Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 281 682 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCG GGA ATT TCG ACA GCG 384 385 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCG GGG AA ATT TCG TCG ACG 386 387 TYR Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 288 688 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCG GGG GAA ATT TCG ACA GCG 384 385 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 387	5		GAC Asp	CCG Pro	GAA Glu	GTG Val	GCT Ala	GAT Asp	GAG Glu	GTT Val	GAG Glu	ACG Thr	AGT Ser	CGG Arg	GTA Val	GCA Ala	CAA Gln	GCG Ala	
289 AAT GAT AAC CAA TAT GCT ATC TGG GCT GCG GCG GCT GAG GTT CGA AAT 316 112 113 TAC GCT GAA AAC TAT ATT TCA CCC ATC ACC CGG CAG GAA AAA AAC CCAT 313 TYR Ala Glu Asn Tyr Ile Ser Pro Ile Thr Arg Gln Glu Lys Ser His 123 125 129 Tyr Phe Ser Glu Lau Glu Thr Thr Leu Asn Gln Asn Arg Leu Asp Pro 144 133 GAT CCT GTG GAG GAT GAG GTT GAG GAT CAG ARG ACT TTA AAT CAG AAT CGA CTC GAT CCC ARG ACC ARG ACC GGT GAA AAA ACC CAT ARA CAG AAT CGA CTC GAT CCC ARG ACC GGT GAA AAA ACC CAT CAC ARG AAT CGA CTC GAT CCC ARG ACC GGT CCG GAG CAC ARG ACT TTA AAT CAG AAT CGA CTC GAT CCC ARG ARG ACT TTA AAT CAG AAT CGA CTC GAT CCC ARG ARG ACT TTA AAT CAG AAT CGA CTC GAT CCC ARG ARG ARG ACT TTA AAT CAG GAT AAAA ARG CCAT ARG ARG ARG ACT ARG ARG ARG ACT TTA AAT CAG GAT AAAA TTT GAG CTC AAG ARG ARG ACT ATC TAC TAT GTG CTC AAT GGT TAT ATT AAT CAG GAT AAA TTT 528 161 VAI SER ASN Leu Tyr VAI Leu Ser Gly Tyr Ile ASN Gln ASP Lys Phe 176 177 ASP Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 177 ASP Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 177 ASP Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 178 ARG Tyr Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 184 185 185 185 185 185 185 185 185 185 185	10		ATT Ile	GCC Ala	AGC Ser	ATA Ile	CAG Gln	CAA Gln	TAT Tyr	ATG Met	ACT Thr	CGT Arg	CTG Leu	GTC Val	AAC Asn	GGC Gly	TCT Ser	GAA Glu	
289 AAT GAT AAC CAA TAT GCT ATC TGG GCT GCG GCG GCT GAG GTT CGA AAT 316 977 ASN ASP ASN GIN TYY AIA IIE TYP AIA AIA GIY AIA GIV VAI AYR ASN 1112 20	15		CCG Pro	G14 GCG	CGT Arg	CAG Gln	GCG Ala	ATG Met	GAG Glu	CCT Pro	TCT Ser	ACA Thr	GCT Ala	AAC Asn	GAA Glu	TGG Trp	CGT Arg	GAT Asp	_
137 TAC GCT GAA AAC TAT ATT TEA CLC ARE ARE GIN GIU Lys Ser His 123 25 385 TAT TTC TCG GAG CTG GAG ACG ACT TTA AAT CAG AAT CGA CTC GAT CCG 432 129 Tyr Phe Ser Glu Leu Glu Thr Thr Leu Asn Gln Asn Arg Leu Asp Pro 144 30 433 GAT CGT GTG CAG GAT GCT GTT TTG GCG TAT CTC AAT GAG TTT GAG GCA 480 145 Asp Arg Val Gln Asp Ala Val Leu Ala Tyr Leu Asn Glu Phe Glu Ala 160 481 GTG AGT AAT CTA TAT GTG CTC AGT GGT TAT ATT AAT CAG GAT AAA TTT 528 161 Val Ser Asn Leu Tyr Val Leu Ser Gly Tyr Ile Asn Gln Asp Lys Phe 176 529 GAC CAA GCT ATC TAC TAC TTT ATT GGT CGC ACT ACC ACT AAA CCG TAT 177 ASp Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 40 577 CGC TAC TAC TGG CGT CAG ATG GAT TTG AGT AAG AAC CGT CAA GAT CCG 193 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 45 625 GCA GGG AAT CCG GTG ACG CCA AAT TGC TGG AAT GAT TGG CAG GAA ATC 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu Ile 224 50 673 ACT TTG CCG CTG TCT GGT GAT ACG GTG GAG CAT ACA GTT CGC CCG 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 516 729 GCA GTA CAG AAG GAT GGT GAT ACG GTT GAG CAT GAC CCG 720 221 CTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 256 526 GCA GTA CAG AAG GAT GCT GAT CGA CGT TAA AAC ATC GCT GAC CCG 720 221 CTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 720 221 Val Phe Tyr Asn Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 60 60 617 TAC AAC ATA AAG TTT GGT TAT AAA CAT TAT GTG GCT TGG GAT ACA GTT GCC CGC 723 227 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT AAT TTG ACA ACT GCC 723 3289 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 732			AAT Asn	GAT Asp	AAC Asn	CAA Gln	TAT Tyr	GCT Ala	ATC Ile	TGG Trp	GCT Ala	GCG Ala	GGG Gly	GCT Ala	GAG Glu	GTT Val	CGA Arg	AAT Asn	
433 GAT CGT GTG CAG GAT GCT CTT TTG GCG TAT CTC AAT GAG TTT GAG GCA 480 145 Asp Arg Val Cln Asp Ala Val Leu Ala Tyr Leu Asn Glu Phe Glu Ala 160 481 GTG AGT AAT CTA TAT GTG CTC AGT GGT TAT ATT AAT CAG GAT AAA TTT 528 161 Val Ser Asn Leu Tyr Val Leu Ser Gly Tyr Ile Asn Glu Asp Lys Phe 176 529 GAC CAA GCT ATC TAC TAC TTT ATT GGT CGC ACT ACC ACT AAA CCG TAT 177 Asp Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 40 577 CGC TAC TAC TGG CGT CAG ATG GAT TTG AGT AAG AAC CGT CAA GAT CCG 193 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 45 625 GCA GGG AAT CCG GTG ACG CCA AAT TGC TGG AAT GAT TGG CAG GAA ATC 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu Ile 224 50 673 ACT TTG CCG CTG TCT GGT GAT ACG GTG CTG GAG CAT ACA GTT CGC CCG 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 721 GTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 240 241 Val Phe Tyr Asn Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 769 GCA GTA CAG AAG GAT GCT GAC GGT AAA AAC ATC GGT AAA ACC CAT GCC 316 257 Ala Val Gln Lys Asp Ala Asp Gly Lys Asn Ile Gly Lys Thr His Ala 272 60 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT ACT TGG ACA GCG 316 273 Tyr Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 283 65 CCG AAT ACG ACC ACC ACG TTA ATG GAC CAA CAA GCA GGG GAA AGT TCA GAA 289 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 304	20		TAC Tyr	GCT Ala	GAA Glu	AAC Asn	TAT Tyr	ATT Ile	TCA Ser	ccc Pro	ATC Ile	ACC Thr	CGG Arg	CAG Gln	GAA Glu	AAA Lys	AGC Ser	CAT His	
481 GTG AGT AAT CTA TAT GTG CTC AGT GGT TAT ATT AAT CAG GAT AAA TTT 528 161 Val Ser Asn Leu Tyr Val Leu Ser Gly Tyr Ile Asn Gln Asp Lys Phe 176 529 GAC CAA GCT ATC TAC TAC TAC TTT ATT GGT CGC ACT ACC ACT AAA CCG TAT 576 177 Asp Gln Ala Ile Tyr Tyr Phe Ile Gly Arg Thr Thr Thr Lys Pro Tyr 192 40 577 CGC TAC TAC TGG CGT CAG ATG GAT TTG AGT AAG AAC CGT CAA GAT CCG 624 193 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 45 625 GCA GGG AAT CCG GTG ACG CCA AAT TGC TGG AAT GAT TGG CAG GAA ATC 672 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu Ile 224 50 673 ACT TTG CCG CTG TCT GGT GAT ACG GTG CTG GAG CAT ACA GTT CGC CCG 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 721 GTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 768 2241 Val Phe Tyr Asn Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 769 GCA GTA CAG AAG GCT GAC GGT AAA AAC ATC GGT AAA ACC CAT GCC 676 768 257 Ala Val Gln Lys Asp Ala Asp Gly Lys Asn Ile Gly Lys Thr His Ala 272 773 Tyr Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 655 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCA GGG GAA AGT TCA GAA 912 389 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 324	25	-	TAT Tyr	TTC Phe	TCG Ser	GAG Glu	CTG Leu	GAG Glu	ACG Thr	ACT Thr	TTA Leu	AAT Asn	CAG Gln	AAT Asn	CGA Arg	CTC Leu	GAT Asp	CCG Pro	
161 Val ser Asn Leu Tyr Val Leu ser Gly Tyr Tie Asn Gin Asp Gys Tib. 173 GAC CAA GCT ATC TAC TAC TTT ATT GGT CGC ACT ACC ACT AAA CCG TAT 192 40 577 CGC TAC TAC TGG CGT CAG ATG GAT TTG AGT AAG AAC CGT CAA GAT CCG 624 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 45 625 GCA GGG AAT CCG GTG ACG CCA AAT TGC TGG AAT GAT TGG CAG GAA ATC 672 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu Ile 224 50 673 ACT TTG CCG CTG TCT GGT GAT ACG GTG CTG GAG CAT ACA GTT CGC CCG 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 721 GTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 768 241 Val Phe Tyr Asn Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 769 GCA GTA CAG AAG GAT GCT GAC GGT AAA AAC ATC GGT GAG CCT GAC CCT 660 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT ACT TGG ACA GCG 364 273 Tyr Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 65 865 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCA GGG GAA AGT TCA GAA 912 289 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 324	30	433 145	GAT Asp	CGT Arg	GTG Val	CAG Gln	GAT Asp	GCT Ala	GTT Val	TTG	GCG Ala	TAT Tyr	CTC Leu	AAT Asn	GAG Glu	TTT Phe	GAG Glu	GCA Ala	
40 529 GAC CAA GCT ATC TAC TAC TAC TTT ATT GGT CGC ACT ACC ACT AAA CCG TAT 576 192 40 577 CGC TAC TAC TGG CGT CAG ATG GAT TTG AGT AGA AAG AAC CGT CAA GAT CCG 624 193 Arg Tyr Tyr Trp Arg Gln Met Asp Leu Ser Lys Asn Arg Gln Asp Pro 208 45 625 GCA CGG AAT CCG GTG ACG CCA AAT TGC TGG AAT GAT TGG CAG GAA ATC 672 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu 11e 224 50 673 ACT TTG CCG CTG TCT GGT GAT ACG GTG GAT ACG GTG CAT ACA GTT CGC CCG 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 555 769 GCA GTA CAG AAG GAT GCT GAC CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 768 255 Ala Val Gln Lys Asp Ala Asp Gly Lys Asn 1le Gly Lys Thr His Ala 272 60 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT GAT ACT TGG ACA GCG 364 273 273 Tyr Asn 1le Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 65 865 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA CAA GCA GGG GAA AGT TCA GAA 912 289 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 524	35		GTG Val	AGT Ser	AAT Asn	CTA Leu	TAT Tyr	GTG Val	CTC	AGT Ser	GGT Gly	TAT Tyr	ATT	AAT Asn	CAG Gln	GAT Asp	AAA Lys	TTT Phe	
45 625 GCA GGG AAT CCG GTG ACG CCA AAT TGC TGG AAT GAT TTG CAG GAA ATC 672 209 Ala Gly Asn Pro Val Thr Pro Asn Cys Trp Asn Asp Trp Gln Glu Ile 224 673 ACT TTG CCG CTG TCT GGT GAT ACG GTG CTG GAG CAT ACA GTT CGC CCG 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 721 GTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 768 241 Val Phe Tyr Asn Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 769 GCA GTA CAG AAG GAT GCT GAC GGT AAA AAC ATC GGT AAA ACC CAT GCC 316 257 Ala Val Glu Lys Asp Ala Asp Gly Lys Asn Ile Gly Lys Thr His Ala 272 60 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT GAT ACT TGG ACA GCG 364 273 Tyr Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 65 865 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCA GGG GAA AGT TCA GAA 912 389 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 324			GAC Asp	CAA Gln	GCT Ala	ATC Ile	TAC Tyr	TAC Tyr	TTT Phe	ATT	GGT Gly	CGC	ACT Thr	ACC Thr	ACT Thr	AAA Lys	CCG Pro	TAT Tyr	-
209 Ala Gly Asn Pro Val Thr Pro Ash Cys Tip Ash Asp Tip Office Cod Cod 720 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 721 GTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 768 241 Val Phe Tyr Ash Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 769 GCA GTA CAG AAG GAT GCT GAC GGT AAA AAC ATC GGT AAA ACC CAT GCC 316 257 Ala Val Gln Lys Asp Ala Asp Gly Lys Ash Ile Gly Lys Thr His Ala 272 60 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT ACT TGG ACA GCG 364 273 Tyr Ash Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 65 CCG AAT ACG ACC ACG TTA ATG ACA CAA GAA GCA GGG GAA AGT TCA GAA 912 289 Fro Ash Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 334	40		CGC Arg	TAC Tyr	TAC Tyr	TGG Trp	CGT Arg	CAG Gln	ATG Met	GAT Asp	TTG Leu	AGT Ser	AAG Lys	AAC Asn	CGT	CAA Gln	GAT Asp	CCG Pro	
50 225 Thr Leu Pro Leu Ser Gly Asp Thr Val Leu Glu His Thr Val Arg Pro 240 721 GTA TTT TAT AAT GAT CGA CTA TAT GTG GCT TGG GTT GAG CGT GAC CCG 768 241 Val Phe Tyr Asn Asp Arg Leu Tyr Val Ala Trp Val Glu Arg Asp Pro 256 769 GCA GTA CAG AAG GAT GCT GAC GGT AAA AAC ATC GGT AAA ACC CAT GCC 316 257 Ala Val Gln Lys Asp Ala Asp Gly Lys Asn Ile Gly Lys Thr His Ala 272 60 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT ACT TGG ACA GCG 364 273 Tyr Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 65 CCG AAT ACG ACC ACG TTA ATG ACA CAA GAA GCA GGG GAA AGT TCA GAA 912 289 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 304	45		GCA Ala	GGG Gly	AAT Asn	CCG Pro	GTG Val	ACG Thr	CCA Pro	AAT Asn	TGC Cys	TGG	AAT Asn	GAT Asp	TCC	CAG Gln	GAA Glu	ATC	
241 Val Phe Tyr Ash Asp Arg Leu Tyr Val Ara Trp Val Sta May My Sta	50		ACT Thr	TTG Leu	CCG	CTG Leu	TCT Ser	GGT	GAT Asp	ACG Thr	GTG Val	CTC Leu	GAG Glu	CAT His	ACA Thi	GTI Val	CGC Arg	ccG Pro	
GCA GTA CAG AAG GAT GCT GAC GGT AAA AAC ATC GGT AAA ACC CAT GCC 316 257 Ala Val Gln Lys Asp Ala Asp Gly Lys Asn Ile Gly Lys Thr His Ala 272 60 817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT ACT TGG ACA GCG 364 273 Tyr Asn Ile Lys Phe Gly Tyr Lys Arg Tyr Asp Asp Thr Trp Thr Ala 233 65 CCG AAT ACG ACC ACG TTA ATG ACA CAA CAA GCA GGG GAA AGT TCA GAA 912 289 Fro Asn Thr Thr Thr Leu Met Thr Gln Gln Ala Gly Glu Ser Ser Glu 304	55		GTA Val	TTT Phe	TAT Tyr	AAT Asn	GAT Asp	CGA	CTA Leu	TAT Tyr	GTG Val	GC1	TGC Trp	GTT Val	GAC	G CGT	GAC	ccc Pro	
817 TAC AAC ATA AAG TTT GGT TAT AAA CGT TAT GAT GAT ACT TGG ACT TAC ACT TAC ACT TGG ACT TAC TAC ACT T	33		GCA Ala	GTA Val	CAG Glr	AAG Lys	GAT Asp	GC1	GAC Asp	GGT Gly	AAA Lys	AAA Asr	ATC	GG7	r AAJ / Lys	A ACC	CAT His	r GCC s Ala	
289 Fro Asn Thr Thr Leu Met Thi Gill Gill Ald Gil	60		TAC Tyr	AAC Asn	: ATA	AAG Lys	TTI Phe	GGT Gly	TA1 7 TY1	AAA Lys	A CG1	TAT	r GAT	GA7	r ACT	r TGC	ACE Thi	A GCG r Ala	
	65		CCG	AAT Asr	ACC Thi	ACC Thi	ACC Thi	TT/	T We	Thi	CA.	A CAI	A GCA	A GGG	G GA	A AG	r TC: r Se:	A GAA r Glu	912 304

5	913 305	ACA Thr	CAG Gln	CGA Arg	TCC Ser	AGC Ser	CTG Leu	CTG Leu	ATT Ile	GAT Asp	GAA Glu	TCT	AGC Ser	ACC	ACA Thr	TTG L e u	ege Arg	360 320
10	961 321	CAA Gln															GAG Glu	336 1008
10	1009 337			GAC Asp														1056 352
15	1057 353			TTT Phe														1104 368
20	1105 369			TAT Tyr														1152 384
25	1153 385			AGT Ser														1200 400
30	1201 401			AAC Asn														1243 416
	1249			GTT Val														1296 432
35	1297 433			AAA Lys														1344 448
40	1345 449			GAT Asp													AAT Asn	1392 464
45	1393 465			TTT Phe														1440 490
50	1441			AAG Lys													TTT Phe	1488 496
	1489 497	TAT Tyr		GAT Asp														1536 512
55	1537 513			TAC Tyr														1584 523
60	1585 529			GCG Ala														1632 544
65	1633 545	CTG Leu		GAT Asp														1630 560

	1531 561																GGT Gly	
5	1729 577	ACC Thr	GTG Val	TTC Leu	CTA Leu	GAT Asp	TGG Trp	TTT Phe	GAT Asp	AAA Lys	ATA Ile	AAT Asn	TTT Phe	GCT Ala	ATT Ile	GGT Gly	CTT Leu	1776 592
10	1777 593		AAG Lys															1824 608
15	1825 609																CAG Gln	1372 624
	1873 625	GAA Glu																1920 640
20	1921 641																ACT Thr	1968 656
25	1969 657		ACT Thr														TAC Tyr	2016 672
30	2017 673																TCA Ser	2064 688
35	2065 689																TAT Tyr	2112 704
	2113 705																	2160 720
40	2161 721		CGT Arg														TGG Trp	2208 736
45	2209 737		TCA Ser														CGT Arg	2256 752
50	2257 753	ACT Thr	TTG Leu	ATT Ile	GAG Glu	AAG Lys	GCT Ala	AAT Asn	CTG Leu	GGG Gly	CTG Leu	GAT Asp	AGT Ser	TTG Leu	CTG Leu	GAT Asp	TAC Tyr	2304 768
55	2305 769		TTG Leu															2352 784
	2353 785																	2400 300
60	2401 801																	2448 316
65	2449 817																	2496 332

5	2497	CCG	GCG	ATG	AAA	AAC	łAG	CCA	CAC	AAT	GCC	CCG	GCT	TAT	TGG	AAT	GTA	348
	333	Pro	Ala	Met	Lys	Asn	Lys	Pro	His	Asn	Ala	Pro	Ala	Tyr	Trp	Asn	Val	348
	2545	CGT	CCG	TTG	GTT	GAA	GGA	AAC	AGC	GAT	TTG	TCA	CGT	CAT	TTG	GAC	GAT	2592
	349	Arg	Pro	Leu	Val	Glu	Gly	Asn	Ser	Asp	Leu	Ser	Arg	His	Leu	Asp	Asp	864
10	2593	TCT	ATA	GAC	CCA	GAT	ACT	CAA	GCT	TAT	GCT	CAT	CCG	GTG	ATA	TAC	CAG	2640
	865	Ser	Ile	Asp	Pro	Asp	Thr	Gln	Ala	Tyr	Ala	His	Pro	Val	Ile	Tyr	Gln	880
15	981	AAA	GC G	GTG	TTT	ATT	GCC	TAT	GTC	AGT	AAC	CTG	ATT	GCT	CAG	GGA	GAT	2688
	2 <i>6</i> 41	Lys	Ala	Val	Phe	Ile	Ala	Tyr	Val	Ser	Asn	Leu	Ile	Ala	Gln	Gly	Asp	896
20	2689	ATG	TGG	TAT	CGC	CAA	TTG	ACT	CGT	GAC	GGT	CTG	ACT	CAG	GCC	CGT	GTC	2736
	897	Met	Trp	Tyr	Arg	Gln	Leu	Thr	Arg	Asp	Gly	Leu	Thr	Gln	Ala	Arg	Val	912
25	2737	тат	TAC	AAT	CTG	GCC	GCT	GAA	TTC	CTA	GGG	CCT	CGT	CCG	GAT	GTA	TCS	2784
	913	туг	Tyr	Asn	Leu	Ala	Ala	Glu	Leu	Leu	Gly	Pro	Arg	Pro	Asp	Val	Ser	928
	2785	CTG	AGT	AGC	ATT	TGG	ACG	CCG	CAA	ACC	CTG	GAT	ACC	TTA	GCA	GCC	GGG	2332
	929	Leu	Ser	Ser	Ile	Trp	Thr	Pro	Gln	Thr	Leu	Asp	Thr	Leu	Ala	Ala	Gly	944
30	2833	CAA	AAA	GCG	GTT	TTA	CGT	GAT	TTT	GAG	CAC	CAG	TTG	GCT	AAT	AGT	GAT	2880
	945	Gln	Lys	Ala	Val	Leu	Arg	Asp	Phe	Glu	His	Gln	Leu	Ala	Asn	Ser	Asp	960
35	2881 961	ACC Thr	GCT Ala	TTA Leu	CCC Pro	GCA Ala	TTG Leu	CCG Pro	GCC	CGC Arg	AAT Asn	GTC Val	AGC Ser	TAC Tyr	TTG Leu	aaa Lys	CTG Leu	2923 976
40	2929	GCA	GAT	AAT	GGC	TAC	TTT	AAT	GAA	CCG	CTC	AAT	GTT	CTG	ATG	TTC	TCT	2976
	977	Ala	Asp	Asn	Gly	Tyr	Phe	Asn	Glu	Pro	Leu	Asn	Val	Leu	Met	Leu	Ser	992
45	2977 993	CAC His	TGG Trp	GAT Asp	ACG Thr	TTG Leu	GAT Asp	GCA Ala	CGG Arg	TTA Leu	TAC Tyr	AAT Asn	CTG Leu	CGT Arg	CAT	AAC Asn	CTG Leu	302 4 1008
	3025 1009	ACC Thr	GTT Val	GAT Asp	GGC	AAG Lys	CCG Pro	CTT	TCG Ser	CTG Leu	CCG Pro	CTG Leu	тат Туг	GCT Ala	GCG Ala	CCT Pro	GTT Val	3072 1024
50	3073 1025	GAT Asp	CCG Pro	GTA Val	GCG Ala	TTG Leu	TTG Leu	GCT Ala	CAG Gln	CGT Arg	GCT Ala	CAG Gln	TCC Ser	Gly	ACG	Leu	ACG Thr	3120 1040
55	3121 1041	AAT Asn	GGC	GTC Val	AGT Ser	GGC	GCC	ATG Met	TTG Leu	ACG	GTG Val	CCG Pro	CCA Pro	TAC Tyr	CGT Arg	TTC Phe	: AGC : Ser	3153 1056
60	3169 1057	GCT Ala	ATG Met	TTC Leu	CCG	CGA Arg	GCT Ala	TAC	AGC Ser	GCC	GTC Val	GGT Gly	ACG Thr	TTC	ACC Thr	: AG1 : Sei	TTT Phe	3216 1072
65	3217 1073	GGT Gly	CAG	AAC Asn	CTG Leu	CTI Leu	'AGT	TTC Lev	TTC Leu	GAA Glu	CG1	AGC Ser	GAA Glu	cGA	A GCC J Ala	TGT Cys	CAA Gin	3264 1036

	3265	GAA	GAG	TTG	GCG	CAA	CAG	CAA	CTG	TTG	GAT	ATG	TCC	AGC	TAT	GCC	ATC	9311
	1089	Glu	Glu	Leu	Ala	Gln	Gln	Gln	Leu	Leu	Asp	Met	Ser	Ser	Tyr	Ala	Ile	1164
5 .	3313	ACG	TTG	CAA	CAA	CAG	GCG	CTG	GAT	GGA	TTG	GCG	GCA	GAT	CGT	CTG	GCG	3360
	1105	Thr	Leu	Gln	Gln	Gln	Ala	Leu	Asp	Gly	Leu	Ala	Ala	Asp	Arg	Leu	Ala	1120
10	3361	CTG	CTA	GCT	AGT	CAG	GCT	ACG	GCA	CAA	CAG	CGT	CAT	GAC	CAT	TAT	TAC	3403
	1121	Leu	L e u	Ala	Ser	Gln	Ala	Thr	Ala	Gln	Gln	Arg	His	Asp	His	Tyr	Tyr	1156
15	3409	ACT	CTG	TAT	CAG	AAC	AAC	ATC	TCC	AGT	GCG	GAA	CAA	CTG	GTG	ATG	GAC	3456
	1137	Thr	Leu	Tyr	Gln	Asn	Asn	Ile	Ser	Ser	Ala	Glu	Gln	Leu	Val	Met	Asp	1152
	3457	ACC	CAA	ACG	TCA	GCA	CAA	TCC	CTG	ATT	TCT	TCT	TCC	ACT	GGT	GTA	CAA	1148
	1153	Thr	Gln	Thr	Ser	Ala	Gln	Ser	Leu	Ile	Ser	Ser	Ser	Thr	Gly	Val	Gln	3201
20	3505	ACT	GCC	AGT	GGG	GCA	CTG	AAA	GTG	ATC	CCG	AAT	ATC	TTT	GGT	TTG	GCT	3552
	1169	Thr	Ala	Ser	Gly	Ala	Leu	Lys	Val	Ile	Pro	Asn	Ile	Phe	Gly	Leu	Ala	1134
25	3553	GAT	GGC	GGC	TCG	CGC	TAT	GAA	GGA	GTA	ACG	GAA	GCG	ATT	GCC	ATC	GGG	3600
	1185	Asp	Gly	Gly	Ser	Arg	Tyr	Glu	Gly	Val	Thr	Glu	Ala	Ile	Ala	Ile	Gly	1200
30	3601	TTA	ATG	GCT	GCC	GGA	CAA	GCC	ACC	AGC	GTG	GTG	GCC	GAG	CGT	CTG	GCA	3648
	1201	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	Ser	Val	Val	Ala	Glu	Arg	Leu	Ala	1216
35	3649	ACC	ACG	GAG	AAT	TAC	CGC	CGC	CGC	CGT	GAA	GAG	TGG	CAA	ATC	CAA	TAC	3696
	1217	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Ile	Gln	Tyr	1232
	3697	CAG	CAG	GCA	CAG	TCT	GAG	GTC	GAC	GCA	TTA	CAG	AAA	CAG	TTG	GAT	GCG	3744
	1233	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp	Ala	Leu	Gln	Lys	Gln	L e u	Asp	Ala	1248
40	3745	CTG	GCA	GTG	CGC	GAG	AAA	GCA	GCT	CAA	ACT	TCC	CTG	CAA	CAG	GCG	AAG	3792
	1249	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln	Ala	Lys	1264
45	3793	GCA	CAG	CAG	GTA	CAA	ATT	CGG	ACC	ATG	CTG	ACT	TAC	TTA	ACT	ACT	CGT	3840
	1265	Ala	Gln	Gln	Val	Gln	Ile	Arg	Thr	Met	Leu	Thr	Tyr	Leu	Thr	Thr	Arg	1280
50	3841	TTC	ACC	CAG	GCG	ACT	CTG	TAC	CAG	TGG	CTG	AGT	GGT	CAA	TTA	TCC	GCG	3388
	1281	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala	1296
55	33 8 9	TTG	TAT	TAT	CAA	GCG	TAT	GAT	GCC	GTG	GTT	GCT	CTC	TGC	CTC	TCC	GCC	3936
	1297	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Cys	Lau	Ser	Ala	1312
	3937	CAA	GCT	TGC	TGG	CAG	TAT	GAA	TTG	GGT	GAT	TAC	GCT	ACC	ACT	TTT	ATC	3984
	1313	Gln	Ala	Cys	Trp	Gln	Tyr	Glu	Leu	Gly	Asp	Tyr	Ala	Thr	Thr	Phe	Ile	1323
60	3985 1329	CAG Gln	ACC Thr	GGT Gly	ACC Thr	TGG Trp	AAC Asn	GAC Asp	CAT His	TAC Tyr	CGT Arg	GGT Gly	TTG Leu	CAA Gln	GTG Val	GGG	GAG Glu	4032 1344
65	4033 1345	ACA Thr	CTG Leu	CAA Gln	CTC Leu	AAT Asn	TTG Leu	CAT His	CAG Gln	ATG Met	GAA Glu	GCG Ala	GCC Ala	TAT Tyr	TTA Leu	GTT Val	CGT	4030 1360

65 Features

5	4081 1361	CAC His	GAA Glu	CGC Arg	cgT Arg	CTT Leu	AAT Asn	GTG ∵al	ATC Ile	CGT Arg	ACT Thr	GTG Val	TCG Ser	CTC Leu	AAA Lys	AGC Ser	CTA Leu	4128 1376
	4129 1377	TTG Leu	GGT Gly	GAT Asp	GAT Asp	GGT Gly	TTT Ph e	GGT Gly	AAG Lys	TTA Leu	AAA Lys	ACC Thr	GAA Glu	GGC Gly	AAA Lys	GTC Val	GAC Asp	4176 1392
10	4177 1393	TTT Phe	CCA Pro	TTA Leu	AGC Ser	GAA Glu	AAG Lys	CTG Leu	TTT Phe	GAC Asp	AAC Asn	GAC Asp	TAT Tyr	CCG Pro	GGG Gly	CAC His	TAT Tyr	4224 1408
15	4225 1409	TTG Leu	CGC Arg	CAG Gln	ATT Ile	AAA Lys	ACT Thr	GTG Val	TCA Ser	GTG Val	ACG Thr	TTG Leu	CCG Pro	ACG Thr	TTA Leu	GTC Val	GGG	4272 1424
20	4273 1425	CCG Pro	TAT Tyr	CAA Gln	AAC Asn	GTG Val	AAG Lys	GCA Ala	ACG Thr	CTC Leu	ACT Thr	CAG Gln	ACC Thr	AGC Ser	AGC Ser	AGT Ser	ATA Ile	4320 1440
25	4321 1441	TTG Leu	TTA Leu	GCA Ala	GCA Ala	GAT Asp	ATC Ile	AAT Asn	GGT Gly	GTT Val	AAA Lys	CGT Arg	CTC Leu	AAT Asn	GAT Asp	CCG Pro	ACA Thr	4368 1456
20	4369 1457	GGT Gly	AAA Lys	GAG Glu	GGT Gly	GAT Asp	GCG Ala	ACG Thr	CAT His	ATT Ile	GTC Val	ACC Thr	AAT Asn	CTG Leu	CGT Arg	GCC	AGC Ser	4416 1472
30	4417 1473	CAG Gln	CAG Gln	GTG Val	GCG Ala	CTC Leu	TCT Ser	TCT	GCC	ATT Ile	TAK nzk	GAT Asp	GCC Ala	GGT Gly	AGC Ser	TTT Phe	GAG Glu	4464 1488
35	4465 1489	TTG Leu	CGT Arg	TTG Leu	GAA Glu	GAT Asp	GAG Glu	CGC Arg	TAT Tyr	CTA Leu	TCA Ser	TTT Phe	GAG Glu	GGG	ACT Thr	GGA Gly	GCT Ala	4512 1504
40	4513 1505	GTT Val	TCC Ser	AAA Lys	TGG Trp	ACT Thr	CTT Leu	AAC Asn	TTC Phe	CCG Pro	CGT	TCT	GTG Val	GAT Asp	GAG Glu	CAT His	ATT	4560 1520
45	4561 1521	GAC Asp	GAT Asp	AAG Lys	ACA Thr	TTG Leu	AAA Lys	GCG Ala	GAT Asp	GAG Glu	ATG Met	CAG Gln	GCC Ala	GCA Ala	CTG Leu	r in Table	GCG Ala	4608 1536
50	4609 1537	AAT Asn	ATG Met	GAT Asp	GAT Asp	GTG Val	CTG Leu	gtg Val	CAG Gln	GTG Val	CAT His	ТАТ Туг	ACC Thr	GCC	TGC	GAC Asp	GGC Gly	1656 1552
50	4657 1553	GIY	GCC Ala	AGT Ser	TTC Phe	GCA Ala	AAC Asn	CAG Gln	GTC Val	AAG Lys	λλλ Lys	ACA Thr	CTC Leu	TCT	TAP	. 4	698 566	
55		NFOR		ION UENC (A	E C	HARA LE1	CTE IGTH	RIST : 1	1CS 665	ami	no a	acid	ls					
60	•	(ii)	мо	(B C)	TO	POLO	amin GY: prot	lin									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59 (TccB peptide) res From To Description

i 11 SEQ ID NO:7

5	1	Met	Leu	Ser	Thr	Met	Glu	Lys	Gln	L e u	Asn	Glu	Ser	Gln	Arg	дsр	Ala	1 9
J	17	Leu	Val	Thr	Gly	Tyr	Met	Asn	Phe	Val	Ala	Pro	Thr	Leu	Lys	Gly	Val	3.2
	33	Ser	Gly	Gln	Pro	Val	Thr	Val	Glu	Asp	Leu	Tyr	Glu	Tyr	Leu	Leu	Ile	43
10	49	Asp	Pro	Glu	Val	Ala	Asp	Glu	Val	Glu	Thr	Ser	Arg	Val	Ala	Gln	Ala	64
	65	Ile	Ala	Ser	Ile	Gln	Gln	Tyr	Met	Thr	λrg	Leu	Val	Asn	Gly	Ser	Glu	80
15	81	Pro	Gly	Arg	Gln	Ala	Met	Glu	Pro	Ser	Thr	Ala	Asn	Glu	Trp	Arg	Asp	96
15	97	Asn	Asp	Asn	Gln	Tyr	Ala	Ile	Trp	Ala	Ala	Gly	Ala	Glu	Val	λrg	Asn	112
	113	Tyr	Ala	Glu	Asn	Tyr	Ile	Ser	Pro	Ile	Thr	Arg	Gln	Glu	Lys	Ser	His	129
20	129	Tyr	Phe	Ser	Glu	Leu	Glu	Thr	Thr	Leu	Asn	Gln	Asn	Arg	Leu	Asp	Pro	144
	145	Asp	Arg	Val	Gln	Àsp	Ala	Val	Leu	Ala	Tyr	Leu	Asn	Glu	Phe	Glu	Ala	160
25	161	Val	Ser	Asn	Leu	Tyr	Val	Leu	Ser	Gly	Tyr	Ile	Asn	Gln	Asp	Lys	Phe	176
رن	177	Asp	Gln	Ala	Ile	Tyr	Tyr	Phe	Ile	Gly	Arg	Thr	Thr	Thr	Lys	Pro	T;r	192
	193	Arg	Tyr	Tyr	Trp	Arg	Gln	Met	Asp	Leu	Ser	Lys	Asn	Arg	Gln	Asp	Pro	208
30	209	Ala	Gly	Asn	Pro	Val	Thr	Pro	Asn	Cys	Trp	Asn	Asp	Trp	Gln	Glu	Ile	224
	225	Thr	Leu	Pro	Leu	Ser	Gly	Asp	Thr	Val	Leu	Glu	His	Thr	Val	Arg	Pro	240
35	241	Val	Phe	Tyr	Asn	Asp	Arg	Leu	Tyr	Val	Ala	Trp	Val	Glu	Arg	Asp	Pro	256
,,	257	Ala	Val	Gln	Lys	Asp	Ala	Asp	Gly	Lys	Asn	Ile	Gly	Lys	Thr	His	Ala	272
	273	Tyr	Asn	Ile	Lys	Phe	Gly	Tyr	Lys	Arg	Tyr	Asp	Asp	Thr	Trp	Thr	Ala	238
40	289	Pro	Asn	Thr	Thr	Thr	Leu	Met	Thr	Gln	Gln	Ala	Gly	Glu	Ser	Ser	Glu	304
	305	Thr	Gln	Arg	Ser	Ser	Leu	Leu	Ile	Asp	Glu	Ser	Ser	Thr	Thr	Leu	Arg	.20
45	321	Gln	Val	Asn	Leu	Leu	Ala	Thr	Thr	Asp	Phe	Ser	Ile	Asp	Pro	Thr	Glu	336
43	337	Glu	Thr	Asp	Ser	Asn	Pro	Tyr	Gly	Arg	Leu	Met	Leu	Gly	Val	Phe	Val	352
	353	Arg	Gln	Phe	Glu	Gly	Asp	Gly	Ala	Asn	Arg	Lys	Asn	Lys	Pro	Val	Val	368
50	3 6 9	Tyr	Gly	Tyr	Leu	Tyr	Суѕ	Asp	Ser	Ala	Phe	λsn	Arg	His	Val	Leu	Arg	384
	385	Pro	Leu	Ser	Lys	Asn	Phe	Leu	Phe	Ser	Thr	Tyr	Arg	Asp	Glu	Thr	Asp	400
55	401	Gly	Gln	Asn	Ser	Leu	Gln	₽he	Ala	Val	Tyr	Asp	Lys	Lys	Tyr	Val	Ile	416
23	417	Thr	Lys	Val	Val	Thr	Gly	Ala	Thr	Glu	Asp	Pro	Glu	Asn	Thr	Gly	Trp	432
	433	Val	Ser	Lys	Val	Asp	Asp	Leu	Lys	Gln	Gly	Thr	Thr	Gly	Ala	Tyr	Val	448
60	149	Tyr	Ile	Asp	Gln	Asp	Gly	Leu	Thr	Leu	His	Ile	Gln	Thr	Thr	Thr	Asn	194
	465	Gly	Asp	Phe	Ile	Asn	Arg	His	Thr	Phe	Gly	Tyr	Asn	Asp	Leu	Val	Tyr	480
45	481	Asp	Ser	Lys	Ser	Gly	Tyr	Gly	Phe	Thr	Trp	Ser	Gly	Asn	Glu	Gly	Phe	196
65	197	Tyr	Lau	Asp	Tyr	His	Asp	Gly	Asn	туr	Tyr	Thr	Phe	His	Asn	Ala	Ile	512
									- 4 -									

	513	Ile	Asn	Tyr	Tyr	Pro	Ser	Gly	T;r	Gly	Gly	Gly	Ser	Val	Pro	Asn	317	528
_	529	Thr	Trp	Ala	Leu	Glu	Gln	Arg	Ile	Asn	Glu	Gly	Trp	Ala	Ile	Ala	Prs	211
5	545	Leu	Leu	Asp	Thr	Leu	His	Thr	Val	Thr	Val	Lys	Gly	Ser	Tyr	Ile	Ala	560
	561	Trp	Glu	Gly	Glu	Thr	Pro	Thr	Gly	Tyr	Asn	Leu	Tyr	Ile	Pro	Asp	Gly	57 ó
10	5-7	Thr	7al	Leu	Leu	Asp	Trp	Phe	Asp	Lys	Ile	Asn	Phe	Ala	Ile	Gly	Leu	592
	593	Asn	Lys	Ļeu	Glu	ser	Val	Phe	Thr	Ser	Pro	Asp	Trp	Pro	Thr	Leu	Thr	608
	609	Thr	Ile	Lys	Asn	Phe	Ser	Lys	Ile	Ala	Asp	Asn	Arg	Lys	Phe	Tyr	Gln	624
15	625	Glu	Ile	Asn	Ala	Glu	Thr	Ala	Asp	Gly	Arg	Asn	Leu	Phe	Lys	Arg	Tyr	640
	641	Ser	Thr	Gln	Thr	Phe	Gly	Leu	Thr	Ser	GJA	Ala	Thr	Tyr	Ser	Thr	Thr	จ์ริร์
20	657	Tyr	Thr	Leu	Ser	Glu	Ala	Asp	Phe	Ser	Thr	Asp	Pro	Asp	Lys	λsn	T;r	672
	673	Leu	Gln	Val	Cys	Leu	Asn	Val	Val	Trp	Asp	His	Tyr	Asp	Arg	Pro	Ser	688
25	589												Trp					704
25	705	Val	Ala	Leu	Gln	Asp	Ser	Lys	Ala	Pro	Asp	Ala	Ile	Pro	Arg	Leu	Val	720
	721												Tyr					736
30	737												Thr					752
	753												Ser					768
25	769												Leu					784
35	785												Gly					800
	801												Thr					316
40	817												His					932
	233																Val	348
45	849																λsp	364
45	865																Gln	880
	881																Asp	396
50	897																y Val	312
	913																Ser	928
6.5	929																a Gly	911
55	945																, ysb	
	961																s Leu	
60	977																ı Ser	
	993																n Leu	
	1009																o Val	
65	.25	Asp	o Pro	o Val	Ala	a Leu	ı Le	u Al	a Gli	n Ar	g Al	a Gl	n Sei	r Gl	y Th	r Le	u Thr	1040

	1041	Asn	GIY	Val	Ser	Gly	Ala	Met	Leu	Thr	Vāl	Pro	Pro	T/r	Arg	Phe	Ser	1356
5	1057	Ala	Met	Leu	Pro	Arg	Ala	T;r	ser	Ala	Val	Gly	Thr	Leu	Thr	Ser	Phe	1072
J	1073	Gly	Gln	Asn	Leu	Leu	Ser	Leu	Leu	Glu	λrg	ser	Glu	Arg	Ala	Cs	Gln	1099
	1089	Glu	Glu	Leu	Ala	Gln	Gln	Gln	Leu	Leu	Asp	Met	Ser	Ser	Tyr	Ala	Ile	1104
10	1105	Thr	Leu	Gln	Gln	Gln	Ala	Leu	Asp	Gly	Leu	Ala	Ala	Asp	Arg	Leu	Ala	1120
	1121	Leu	Leu	Ala	Ser	Gln	λla	Thr	Ala	Gln	Gln	Arg	His	Asp	His	Tyr	Tyr	1136
15	1137	Thr	Leu	Tyr	Gln	Asn	Asn	Ile	Ser	Ser	Ala	Glu	Gln	Leu	Val	Met	Asp	1152
13	1153	Thr	Gln	Thr	Ser	Ala	Gln	Ser	Leu	Ile	Ser	Ser	Ser	Thr	Gly	Val	Gln	1168
	1169	Thr	Ala	Ser	Gly	Ala	Leu	Lys	Val	Ile	Pro	Asn	Ile	Phe	Gly	Leu	Ala	1134
20	1185	Asp	Gly	Gly	Ser	Arg	Tyr	Glu	Gly	Val	Thr	Glu	Ala	Ile	Ala	Ile	Gly	1200
	1201	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	Ser	Val	Val	Ala	Glu	Arg	Leu	Ala	1216
25	1217	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Ile	Gln	Tyr	1232
رن	1233	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp.	Ala	Leu	Gln	Lys	Gln	Leu	Asp	Ala	1248
	1249	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln	Ala	Lys	1264
30	1265	Ala	Gln	Gln	Val	Gln	Ile	Arg	Thr	Met	Leu	Thr	Tyr	Leu	Thr	Thr	Arg	1280
	1281	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala	1296
25	1297	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Cys	Leu	Ser	Ala	1312
35	1313	Gln	Ala	Cys	Trp	Gln	Tyr	Glu	Leu	Gly	Asp	Tyr	Ala	Thr	Thr	Phe	Ile	1328
	1329	Gln	Thr	Gly	Thr	Trp	Asn	Asp	His	Tyr	Arg	Gly	Leu	Gln	Val	Gly	Glu	1344
40	1345	Thr	Leu	Gln	Leu	Asn	Leu	His	Gln	Met	Glu	Ala	Ala	Tyr	Leu	Val	Arg	1360
	1361	His	Glu	Arg	Arg	Leu	Asn	Val	Ile	Arg	Thr	Val	Ser	Leu	Lys	Ser	Leu	1376
46	1377	Leu	Gly	Asp	Asp	Gly	Phe	Gly	Lys	Leu	Lys	Thr	Glu	Gly	Lys	Val	Asp	1392
45	1393	Phe	Pro	Leu	Ser	Glu	Lys	Leu	Phe	Asp	Asn	Asp	Tyr	Pro	Gly	His	Tyr	1408
	1409	Leu	Arg	Gln	Ile	Lys	Thr	Val	Ser	Val	Thr	Leu	Pro	Thr	Leu	Val	Gly	1424
50	1425	Pro	Tyr	Gln	Asn	Val	Lys	Ala	Thr	Leu	Thr	Gln	Thr	Ser	ser	Ser	Ile	1440
	1441	Leu	Leu	Ala	Ala	Asp	Ile	Asn	Gly	Val	Lys	Arg	Leu	Asn	Asp	Pro	Thr	1456
	1457	Gly	Lys	Glu	Gly	Asp	Ala	Thr	His	Ile	Val	Thr	Asn	Leu	Arg	Ala	Ser	1472
55	1473	Gln	Gln	Val	Ala	Leu	Ser	Ser	Gly	Ile	Asn	Asp	Ala	Gly	Ser	Phe	Glu	1488
	1489	Leu	Arg	Leu	Glu	Asp	Glu	Arg	Tyr	Leu	Ser	Phe	Glu	Gly	Thr	Gly	Ala	1504
60	1505	Val	Ser	Lys	Trp	Thr	Leu	Asn	Phe	Pro	Arg	Ser	Val	Asp	Glu	His	Ilē	1520
	1521	Аsp	Asp	Lys	Thr	Leu	Lys	Ala	Asp	Glu	Met	Gln	Ala	Ala	Leu	Leu	Ala	1536
	1537	Asn	Met	Asp	Asp	Val	Leu	Val	Gln	Val	His	туr	Thr	Ala	Cys	Asp	Gly	1552
65	1553	Gly	Ala	Ser	Phe	Ala	Asn	Gln	Val	Lys	Lys	Thr	Leu	Ser	1	565		

5		NFOR	SEQ	UENC (A) (B)	E CI))	HARA LEN TYP STR	CTEI GTH E: 1 ANDI	RIST : 3 nucl EDNE		base acı doul	f	irs					
10		(ii)	MO	LECU	LE T	TYPE	: [ANC	(gen	omi	=)						
	((xi)	SE	QUEN	CE I	DESC	RIPI	CION	: SE	Q II	0 NO	:60	(10	cC)			
15		ATG Met															10 18
20	49 17	GTG Val							TCC Ser								96 32
25	97 33								GAC Asp							TAT Tyr	144 48
		GAT Asp															192 64
30		GCA Ala															240 80
35	241 81	GAT Asp														CGT Arg	288 96
4 0	289 97								GAA Glu							AAT Asn	336 112
45		GCG Ala															384 123
_	385 129															GCT Ala	432 144
50	433 145								TGG Trp								430 160
55	481 161	GAG Glu							TGT Cys								528 176
60	529 177	GTG Val							TCA Ser								575 192
65	577 193								GGG Gly								624 203

	625	GAC	GAA	ACT	GTC	TGG	CAG	GGA	ATG	CTG	GCA	AGT	GAG	GTC	TAT	ACG	ACA	672
	209	Asp	Glu	Thr	Val	Trp	Gln	Gly	Met	Leu	Ala	Ser	Glu	Val	Tyr	Thr	Thr	224
5	673	CAA	AGT	ACC	ACT	AAT	GCC	ATC	GGG	GCT	TTA	CTG	ACC	CAA	ACC	GAT	GCG	720
	225	Gln	Ser	Thr	Thr	Asn	Ala	Ile	Gly	Ala	Leu	Leu	Thr	Gln	Thr	Asp	Ala	240
10	721 241	AAA Lys	GIY	AAT Asn	ATT Ile	CAG Gln	CGT Arg	CTG Leu	GCT Ala	TAT Tyr	GAC Asp	ATT Ile	GCC Ala	GGT Gly	CAG Gln	TTA Leu	aaa Lys	763 256
15	769	GGG	AGT	TGG	TTG	ACG	GTG	AAA	GGC	CAG	AGT	GAA	CAG	GTG	ATT	GTT	AAG	816
	257	Gly	Ser	Trp	Leu	Thr	Val	Lys	Gly	Gln	Ser	Glu	Gln	Val	Ile	Val	Lys	272
20	817	TCC	CTG	AGC	TGG	TCA	GCC	GCA	GGT	CAT	AAA	TTG	CGT	GAA	GAG	CAC	GGT	864
	273	Ser	Leu	Ser	Trp	Ser	Ala	Ala	Gly	His	Lys	Leu	Arg	Glu	Glu	His	Gly	288
	865 289																CTG Leu	912 304
25	913	ATA	GGT	ATC	ACC	ACC	CGG	CGT	GCC	GAA	GGG	AGT	CAA	TCA	GGA	GCC	AGA	960
	305	Ile	Gly	Ile	Thr	Thr	Arg	Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	Arg	320
30	961	GTA	TTG	CAG	GAT	CTA	CGC	TAT	AAG	TAT	GAT	CCG	GTG	GGG	AAT	GTT	ATC	1008
	321	Val	Leu	Gln	Asp	Leu	Arg	Tyr	Lys	Tyr	Asp	Pro	Val	Gly	Asn	Val	Ile	336
35	1009	AGT	ATC	CAT	AAT	GAT	GCC	GAA	GCT	ACC	CGC	TTT	TGG	CGT	AAT	CAG	AAA	1056
	337	Ser	Ile	His	Asn	Asp	Ala	Glu	Ala	Thr	Arg	Phe	Trp	Arg	Asn	Gln	Lys	352
40	1057	GTG	GAG	CCG	GAG	AAT	CGC	TAT	GTT	TAT	GAT	TCT	CTG	TAT	CAG	CTT	ATG	1104
	353	Val	Glu	Pro	Glu	Asn	Arg	Tyr	Val	Tyr	Asp	Ser	Leu	Tyr	Gln	Leu	Met	368
	1105	AGT	GCG	ACA	GGG	CGT	GAA	ATG	GCT	AAT	ATC	GGT	CAG	CAA	AGC	AAC	CAA	1152
	369	Ser	Ala	Thr	Gly	Arg	Glu	Met	Ala	Asn	Ile	Gly	Gln	Gln	Ser	Asn	Gln	384
45	1153	CTT	CCC	TCA	CCC	GTT	ATA	CCT	GTT	CCT	ACT	GAC	GAC	AGC	ACT	TAT	ACC	1200
	385	Leu	Pro	Ser	Pro	Val	Ile	Pro	Val	Pro	Thr	Asp	Asp	Ser	Thr	Tyr	Thr	400
50	1201 401	AAT Asn	TAC Tyr	CTT Leu	CGT Arg	ACC Thr	TAT Tyr	ACT Thr	TAT Tyr	GAC Asp	CGT Arg	GGC	GGT Gly	AAT Asn	TTG Leu	GTT Val	CAA Gln	1243 416
55	1249 417	ATC Ile	CGA Arg	CAC His	AGT Ser	TCA Ser	CCC	GCG Ala	ACT Thr	CAA Gln	AAT Asn	AGT Ser	TAC Tyr	ACC Thr	ACA Thr	GAT Asp	ATC Ile	1296 432
60	1297	ACC	GTT	TCA	AGC	CGC	AGT	AAC	CGG	GCG	GTA	TTG	AGT	ACA	TTA	ACG	ACA	1344
	433	Thr	Val	Ser	Ser	Arg	Ser	Asn	Arg	Ala	Val	Leu	Ser	Thr	Leu	Thr	Thr	448
	1345	GAT	CCA	ACC	CGA	GTG	GAT	GCG	CTA	TTT	GAT	TCC	GGC	GGT	CAT	CAG	AAG	791
	449	Asp	Pro	Thr	Arg	Val	Asp	Ala	Leu	Phe	Asp	Ser	Gly	Gly	His	Gln	Lys	1393
65	1393	АТG	TTA	ATA	CCG	GGG	CAA	AAT	ctg	GAT	TGG	AAT	ATT	CGG	GGT	GAA	TTG	1440

	465	Met	Leu	Ile	Pro	Gly	Gln	Asn	Leu	Asp	Trp	Asn	Ile	Arg	Gly	Glu	Leu	450
5	1441	CAA	CGA	GTC	ACA	CCG	GTG	AGC	CGT	GAA	AAT	AGC	AGT	GAC	AGT	GAA	TGG	196
	431	Gln	Arg	Val	Thr	Pro	Val	Ser	Arg	Glu	Asn	Ser	Ser	Asp	Ser	Glu	Trp	1488
10	1489	TAT	CGC	тат	AGC	AGT	GAT	GGC	ATG	CGG	CTG	CTA	AAA	GTG	AGT	GAA	CAG	1536
	497	Tyr	Arg	туг	Ser	Ser	Asp	Gly	Met	Arg	Leu	Leu	Lys	Val	Ser	Glu	Gln	512
	1537	CAG	ACG	GGC	AAC	AGT	ACT	CAA	GTA	CAA	CGG	GTG	ACT	TAT	CTG	CCG	GGA	1584
	513	Gln	Thr	Gly	Asn	Ser	Thr	Gln	Val	Gln	Arg	Val	Thr	Tyr	Leu	Pro	Gly	528
15	1585	TTA	GAG	CTA	CGG	ACA	ACT	GGG	GTT	GCA	GAT	AAA	ACA	ACC	GAA	GAT	TTG	1632
	529	Leu	Glu	Leu	Arg	Thr	Thr	Gly	Val	Ala	Asp	Lys	Thr	Thr	Glu	Asp	Leu	544
20	1633	CAG	GTG	ATT	ACG	GTA	GGT	GAA	GCG	GGT	CGC	GCA	CAG	GTA	AGG	GTA	TTG	1580
	545	Gln	Val	Ile	Thr	Val	Gly	Glu	Ala	Gly	Arg	Ala	Gln	Val	Arg	Val	Leu	560
25	1581	CAC	TGG	GAA	AGT	GG T	AAG	CCG	ACA	GAT	ATT	GAC	AAC	AAT	CAG	GTG	CGC	1723
	561	His	Trp	Glu	Ser	Gly	Lys	Pro	Thr	Asp	Ile	Asp	Asn	Asn	Gln	Val	Arg	576
30	1729	TAC	AGC	TAC	GAT	AAT	CTG	C TT	GGC	TCC	AGC	CAG	CTT	GAA	CTG	GAT	AGC	1776
	577	Tyr	Ser	Tyr	Asp	Asn	Leu	Leu	Gly	Ser	Ser	Gln	Leu	Glu	L e u	Asp	Ser	592
	1777 593	GAA Glu	GGG Gly	CAG Gln	ATT Ile	CTC Leu	AGT Ser	CAG Gln	GAA Glu	GAG Glu	TAT Tyr	TAT Tyr	CCG Pro	TAT Tyr	GGC	GGT Gly	ACG Thr	1324 608
35	1825	GCG	ATA	TGG	GCG	GCG	AGA	AAT	CAG	ACA	GAA	GCC	AGC	TAC	AAA	TTT	ATT	1872
	609	Ala	Ile	Trp	Ala	Ala	Arg	Asn	Gln	Thr	Glu	Ala	Ser	Tyr	Lys	Phe	Ile	624
40	1873	CGT	TAC	TCC	GGT	AAA	GAG	CGG	GAT	GCC	ACT	GGA	TTG	TAT	TAT	TAC	GGC	1920
	625	Arg	Tyr	Ser	Gly	Lys	Glu	Arg	Asp	Ala	Thr	Gly	Leu	Tyr	Tyr	Tyr	Gly	640
45	1921	TAC	CGT	тат	TAT	CAA	CCT	TGG	GTG	GGT	CGA	TGG	TTG	AGT	GCT	GAT	CCG	1963
	641	Tyr	Arg	туг	Tyr	Gln	Pro	Trp	Val	Gly	Arg	Trp	Leu	Ser	Ala	Asp	Pro	656
50	1969	GCG	GGA	ACC	GTG	GAT	GGG	CTG	AAT	TTG	TAC	CGA	ATG	GTG	AGG	AAT	AAC	2016
	657	Ala	Gly	Thr	Val	Asp	Gly	Leu	Asn	Leu	Tyr	Arg	Met	Val	Arg	Asn	Asn	672
	2017 673	CCC Pro	ATC Ile	ACA Thr	TTG Leu	ACT Thr	GAC Asp	CAT His	GAC Asp	GGA Gly	TTA Leu	GCA Ala	CCG	TCT Ser	CCA Pro	AAT Asn	AGA Arg	2064 638
55	2065	AAT	CGA	AAT	ACA	TTT	TGG	TTT	GCT	TCA	TTT	TTG	TTI	CGT	' AAA	CCT	GAT	2112
	689	Asn	Arg	Asn	Thr	Phe	Trp	Phe	Ala	Ser	Phe	Leu	Phe	Arg	Lys	Pro	Asp	704
60	2113 705	GAG Glu	GGA Gly	ATG Met	TCC Ser	GCG Ala	TCA Ser	ATG Met	AGA Arg	CGG	GGA Gly	CAA Gln	AAA Lys	ATT	GGC Gly	AGA Arg	GCC Ala	2160 720
65	2161 721	ATT Ile	GCC	GGC Gly	GGG	ATT Ile	GCG Ala	ATT	GGC Gly	GGT	CTI Leu	GCG Ala	GCT Ala	ACC Thr	ATT	GCC Ala	GCT A Ala	2203 736

WO 97/17432

	2209 737																A JGC 1 Jly	
5	2257 753	GCC Ala	GGG Gly	ATT Ile	GGC	GCG Ala	TTC Leu	ATC Met	Gly	A TAT	AAC Asn	GTC Val	GGT Gly	AGC Ser	Circ Leu	CTO	GAA I Glu	2304 768
10	2305 769	ili Lys	GGC	GGG Gly	GCA Ala	TTA Leu	CTT Leu	GCT Ala	CGA Arg	CTC	GTA Val	CAG Gln	GGG	AAA Lys	TCG Ser	ACC Thr	TTA Leu	2352 784
15	2353 785	GTA Val	CAG Gln	TCG Ser	GCG Ala	GCT Ala	GGC	GCG Ala	GCT Ala	GCC Ala	GGA Gly	GCG Ala	AGT Ser	TCA Ser	GCC	GCC Ala	GCT Ala	2400 300
20	2401 801	TAT Tyr	GGC Gly	GCA Ala	CGG Arg	GCA Ala	CAA Gln	GGT Gly	GTC Val	GCT Gly	GTT Val	GCA Ala	TCA Ser	GCC Ala	GCC Ala	GGG Gly	GCG Ala	2443 316
	2449 . 817	GTA Val	ACA Thr	GGG Gly	GCT Ala	GTG Val	GGA Gly	TCA Ser	TGG Trp	ATA Ile	AAT Asn	AAT Asn	GCT Ala	GAT Asp	CGG Arg	GGG Gly	ATT Ile	2496 832
25	2 4 97 833	GGC Gly	GGC Gly	GCT Ala	ATT Ile	GGG Gly	GCC Ala	GGG Gly	AGT Ser	GCG Ala	GTA Val	GGC Gly	ACC Thr	ATT Ile	GAT Asp	ACT Thr	ATG Met	2544 848
30	2545 849																GGT Gly	2592 864
35	2593 865	GGG	GCG Ala	GCG Ala	GGT Gly	GGG Gly	ATG Met	ATC Ile	ACC Thr	GGT Gly	ACG Thr	CAA Gln	GGG Gly	AGT Ser	ACT Thr	CGG Arg	GCA Ala	26 4 0 280
40	2641 881		ATC Ile															2588 896
	2689 897		TTA Leu														GCA Ala	2736 912
45	2737 913		GCT Gly															2784 928
50	2785 929		GGT Gly															2832 944
55	2833 945	TAT Tyr	GCC (Ala .															2830 960
60	2881 961	CCT Pro	GTC '															2928 976
	2929 977	ATT (2976 992
65	2977	AGA (GCG 1	rta i	AGT (GCT (SCC (GGT		GGT	ATA I	GAT (CAT	GTC	GCT	GGC	ATG	3024

	33 3	Arg A	la Leu	Ser	Ala Al	a Gly	/ Set	r Giy	· Ile	Asp	Hls	7al	. Alá	3 12	Met	1213
5	3025 1009	ATT G	GT AAT ly Asn	CAG Gln	ATC AG Ile Ar	A GGG g Gly	2 AGC / Arg	G GTC	TTC	ACC Thr	ACA Thr	ACC Thr	GGC Gly	ATO	GCT Ala	3 07 1 1014
10	3073 1025	AAT G Asn A	CG ATA la Ile	GAC Asp	TAT GG Tyr Gl	C ACC y Thi	C AGT	r GCT r Ald	r GTC a Val	GG#	A GCC	GCA Ala	A CG	A CG/ g Arg	A GTT g Val	3120 1640
	3121 1041		CT TTC er Leu		3132 1043											
15	(2)	INFORMA (i) S	TION QUEN (A	CE CH	ARACTI LENGTI	ERIS' H:	TICS 1043	am:	ino	acio	is					
20			(E	:)	TYPE: TOPOL	OGY:	lin	ear					٠			
					YPE:											
25	,				ESCRI											16
	1 17	Val Leu														32
30 .	33	Ile Val														43
	49	Asp Ala	Arg	Gly H	is Leu	Asn	Tyr	Ser	Ile	Asp	Pro	Arg	Leu	Tyr	Asp	ē 4
35	6 5	Ala Lys	Gln	Ala A	sp Asn	Ser	Val	Lys	Pro	Asn	Phe	Val	Trp	Gln	His	80
	81	Asp Let														96
40	97	Thr Va														112
40	113	Ala Th														128
	129	Gly Ar														144
45	145	Lys Va														150
	161	Glu Ty														176
50	177	Val Th														192
30	193	Ser Hi														203
	209	Asp Gl														224
55	225	Gln Se														240
	241	Lys Gl														256
60	257	Gly Se														2"2
1117	273															293
	289															304
65	305	Ile G	y Ile	Thr ?	Thr Arg	, Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	Arg	320

	3.	1 V.	al L	.eu (Sin A	Asp I	.eu A	rg T	yr L	/s T	r As	p Pr	o Va	1 31	/ As	n V.	al Ile	1:5
5	3 3	7 S	er I	le F	lis a	ksn A	sp A	la G	lu A	la Th	nr Ar	g Ph	e Tr	p Ar	g As	n G	ln L;;s	352
	35	3 Va	al G	lu F	ro G	ilu A	sn A	rg T	yr V	al Ty	r As	p Se	r Le	ı Tyı	r Gl	n Le	₃u Met	368
	36	9 Se	er A	la T	hr G	ly A	rg G	lu M	et A	la As	n Il	e Gl	y Gli	n Glr	ı Se	r As	n Gln	334
10	3 9	5 Le	u P	ro S	er P	ro V	al I	le P	ro Va	al Pr	o Th	r Ası	ask q	Ser	Th	r Ty	r Thr	400
	40	l As	n T	yr L	eu A	rg T	hr T	r Ti	ır Ty	r As	p Ar	g Gl	/ Gly	Asn	Le	ı Va	l Gln	416
15	41	7 11	e Ai	rg H	is S	er S	er P	co Al	la Th	r Gl	n Ası	n Ser	Tyr	Thr	Thi	: As	p Ile	432
	43	3 Th	r Vá	al S	er S	er A	rg Se	er As	n Ar	g Al	a Vai	l Leu	Ser	Thr	Let	ı Th	r Thr	113
	449	As	p Pr	o Ti	hr A	rg V	al As	p Al	a Le	u Ph	e Asp	Ser	Gly	Gly	His	Gl	n Lys	164
20	469	Me	t Le	u I	ie P	ro G	ly Gl	n As	n Le	u Ası	o Trp) Asn	Ile	Arg	Gly	GI.	u Leu	190
	481	Gl	n Ar	g Vá	al Th	ır Pı	o Va	l Se	r Ar	g Glu	ı Asr	Ser	Ser	Asp	Ser	Gl	u Trp	495
25	497	Ту	r Ar	g Ty	r Se	er Se	r As	p Gl	y Me	t Arc	, Leu	Leu	Lys	Val	Ser	Gl	u Gln	512
	513	Gli	1 Th	r Gl	y As	n Se	r Th	r Gl	n Va	l Glr	n Arg	Val	Thr	Tyr	Leu	Pro	Gly	528
	529	Leu	ı Gl	u Le	u Ar	g Th	r Th	r Gl	y Va	l Ala	Asp	Lys	Thr	Thr	Glu	Asp	Leu	544
30	545	Glr	. Va	1 11	e Th	r Va	l Gl	y Gl	u Ala	a Gly	Arg	Ala	Gln	Val	Arg	Val	Leu	560
	561	His	Tr	p Gl	u Se	r Gl	y Ly	s Pr	o Thi	: Asp	Ile	Asp	Asn	Asn	Gln	Va l	Arg	576
35	577	Tyr	Se	г Ту	r As	p As	n Lei	ı Le	ı Gly	ser .	Ser	Gln	Leu	Glu	Leu	Asp	Ser	592
33	593	Glu	Gly	/ Gl	n Il	e Le	u Sei	r Glr	ı Glu	Glu	Tyr	Tyr	Pro	Tyr	Gly	Gly	Thr	608
	609	Ala	Ile	Tr	p Al	a Al	a Arg	J Asr	Gln	Thr	Glu	Ala	Ser	Tyr	Lys	Phe	lle	624
40	625	Arg	Tyr	Se	r Gl	Y Ly	Glu	Arç	, Asp	Ala	Thr	Gly	Leu	Tyr	Tyr	Tyr	Gly	640
	641											Trp						656
45	657	Ala	Gly	Thi	Va.	l Ası	Gly	Leu	Asn	Leu	Tyr	Arg	Met	Val	Arg	Asn	Asn	672
40	673											Ala						688
	689											Leu						704
50	705	Glu	Gly	Met	Ser	Ala	Ser	Met	Arg	Arg	Gly	Gln	Lys	Ile	Gly	Arg	Ala	720
	721							•				Ala .						736
55	737	Thr	Ala	Gly	Ala	Ala	Ile	Pro	Val	Ile	Leu	Gly '	Val i	Ala i	Ala	Val	Gly	752
33	753	Ala	Gly	Ile	Gly	Ala	Leu	Met	Gly	Tyr	Asn	Val (Sly :	Ser 1	Leu	Leu	Glu	763
	769											Gln (734
60	785											Ala S						300
	801											Ala S						315
65	817	Val																332
65	833	Gly (343
															•	-		

	549	L÷u	Gly	Thr	Ala	Ser	Thr	Leu	Thr	His	Slu	Val	Sly	Ala	Ala	äla	317	: 5 -
5	865	Gly	Ala	Ala	Gly	Gly	Met	Ile	Thr	Gly	Thr	Gln	Gly	Ser	Thr	Arg	Ala	3 5 .
,	381	Gly	Ile	His	Ala	Gly	Ile	Gly	Thr	Tyr	Trr	Gly	ser	Trp	Ile	Gly	Phe	396
	397	Gly	Leu	Asp	Val	Ala	Ser	Asn	Pro	Ala	Gly	His	Ləu	Ala	Asn	Tyr	Ala	912
10) 13	Val	Gly	Tyr	Ala	Ala	Gly	Leu	Gly	Ala	Glu	Met	Ala	Val	Asn	Arg	Ile	923
	929	Met	Gly	Gly	Gly	Phe	Leu	Ser	Arg	Leu	Leu	Gly	Arg	Val	Val	ser	Pro	944
15	945	Tyr	Ala	Ala	Gly	Leu	Ala	Arg	Gln	Leu	Val	His	Phe	Ser	Val	Ala	Arg	960
	961	Pro	Val	Phe	Glu	Pro	Ile	Phe	ser	Val	Leu	Gly	Gly	Leu	Val	Gly	Gly	976
	977	Ile	Gly	Thr	Gly	Leu	His	Arg	Val	Met	Gly	Arg	Glu	Ser	Trp	Ile	Ser	992
20	993	Arg	Ala	Leu	Ser	Ala	Ala	Gly	Ser	Gly	Ile	Asp	His	Val	Ala	Gly	Met	1009
	1009	Ile	Gly	Asn	Gln	Ile	Arg	Gly	Arg	Val	Leu	Thr	Thr	Thr	Gly	Ile	Ala	1024
25	1025	Asn	Ala	Ile	Asp	Tyr	Cly	Thr	Ser	Ala	Val	Gly	Ala	Ala	Arg	Arg	Val	1040
	1641	Dho	Sar	Lau	104	13												

PCT/US96/18003

We claim:

WO 97/17432

10

 A composition, comprising an effective amount of a Photorhabdus protein toxin that has functional activity against
 an insect.

- 2. The composition of Claim 1, wherein the Photorhabdus toxin is produced by a purified culture of Photorhabdus, a transgenic plant, Baculovirus, or heterologous microbial host.
- 3. The composition of Claim 2, wherein the Photorhabdus toxin produced by a purified culture of Photorhabdus luminescens.
- 4. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.
- The composition of Claim 2, wherein the toxin is produced by a purified culture of Photorhabdus luminescens strain
 designated W-14.
- The composition of Claim 1, wherein the toxin is produced by a purified culture of *Photorhabdus* strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 7. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens*30 strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 35 8. The composition of Claim 1, wherein the toxin is respresented by amino acid sequence is SEQ ID NO:12.
- The composition of Claim 6, wherein the composition is a mixture of one or more toxins produced from purified cultures of
 Photorhabdus.

10. The composition of Claim 1 or 6, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.

5

11. The composition of Claim 1 or 6, wherein the insect species is from order *Coleoptera* and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.

10

12. The composition of Claim 1 or 6, wherein the insect species is from order *Lepidoptera* and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.

15

- 13. The composition of Claim 1 or 6, wherein the toxin is formulated as a sprayable insecticide.
- 14. The composition of Claim 1 or Claim 6, wherein the 20 toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
- 15. A method of controlling an insect, comprising orally delivering to an insect an effective amount of a protein toxin that has functional activity against an insect, wherein the protein is produced by a purified bacterial culture of the genus Photorhabdus.
- 16. The method of Claim 15, wherein the bacterium is a 30 purified culture of *Photorhabdus luminescens*.
 - 17. The method of Claim 15, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.

35

18. The method of Claim 16, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated W-14.

19. The method of Claim 15, wherein the toxin is produced from a purified culture of Photorhabdus strains designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# ATCC# 43950, ATCC# 43951, or ATCC# 43952.

- 20. The method of Claim 15, wherein the toxin is produced from a purified culture of Photorhabdus luminescens strains designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 21. The method of Claim 19, wherein a mixture of one or 15 more toxins is produced from a purified culture of Photorhabdus and said toxins are orally delivered to an insect.
 - 22. The method of Claim 15, wherein the toxin is produced by a prokaryotic host transformed with a gene encoding the toxin.

23. The method of Claim 15, wherein the toxin is produced by a eukaryotic host transformed with a gene encoding the toxin.

- 24. The method of Claim 23, wherein the eukaryotic host is baculovirus.
 - 25. The method of Claim 15 or 19, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.
 - 26. The method of Claim 15 or 19, wherein the insect species is from order *Coleoptera* and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.
 - 27. The method of Claim 15 or 19, wherein the insect species is from order *Lepidoptera* and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.

40

35

30

23. The method of Claim 15 or 19, wherein the toxin is formulated as a sprayable insecticide.

- 29. The method of Claim 15 or Claim 19, wherein the toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
- 30. A method of isolating a gene coding for a protein subunit, comprising the steps of: constructing at least one RNA or DNA oligonucleotide molecule that corresponds to at least a part of a DNA coding region of an amino acid sequence selected from a group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43, wherein the nucleotide molecule is used to isolate genetic material from Photorhabdus or
 - 31. A method for expressing a protein produced by a purified bacterial culture of the genus *Photorhabdus* in a prokaryotic or eukaryotic host in an effective amount so that the protein has functional activity against an insect, wherein the method comprises: constructing a chimeric DNA construct having 5' to 3' a promoter, a DNA sequence encoding a protein, a transcription terminator, and then transferring the chimeric DNA construct into the host.

30

25

32. The method of Claim 31, wherein the protein has functional activity against insects selected from a group consisting of Coleoptera, Lepidoptera, Diptera, Homoptera, Hymenoptera, Dictyoptera, and Acarina.

35

33. The method of Claim 31, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID 10:8, SEQ ID NO:9. SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:14, SEQ

ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:13, SEQ ID NO:12, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEO ID NO:42, and SEQ ID NO:43.

5

- 34. The method of Claim 31, wherein the protein encoded by the DNA sequence includes the amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:23, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59 and SEQ ID NO:61.
 - 35. A chimeric DNA construct, adapted for expression in a prokaryotic or eukaryotic host comprising, 5' to 3' a transcriptional promoter active in the host; a DNA sequence encoding a *Photorhabdus* protein that has functional activity against an insect; and a transcriptional terminator.
- 36. A chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 37. The chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.

35

38. The chimeric DNA construct of Claim 35, wherein the DNA sequence encoding the *Photorhabdus luminescens* protein is selected from the group comprising SEQ ID NO:11, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID

NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO: 58, and SEQ ID NO:60.

- 39. The chimeric DNA construct of Claim 35, wherein the 5 host is baculovirus.
 - 40. An isolated and substantially purified preparation comprising, a DNA molecule capable of encoding an effective amount of a protein that is produced by a bacterium of the genus *Photorhabdus* and that has functional activity against an insect.
 - 41. The preparation of Claim 40, wherein the bacterium is Photorhabdus luminescens.
- 15
 42. A purified preparation comprising, a protein produced by Photorhabdus or Photorhabdus luminescens having an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 25
 43. A purified protein preparation comprising, a protein that has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 35
 44. A purified protein preparation comprising, a protein selected from the group of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.

45. A purified DNA preparation comprising, a DNA sequence selected from the group consisting of SEQ ID NO:11, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:46. SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58 and SEQ ID NO:60, wherein the DNA sequence is isolated from its native host.

- 46. A purified protein preparation comprising, a
 Photorhabdus luminescens protein with at least one subunit having
 an approximate molecular weight between 18 kDa to about 230 kDa;
 between about 160 kDa to about 230 kDa; 100 kDa to 160 kDa; about
 80 kDa to about 100 kDa; or about 50 kDa to about 80 kDa.
- 47. A purified protein preparation comprising, a

 15 Photorhabdus luminescens protein with at least one subunit having an approximate molecular weight of about 280 kDa.
 - 48. A substantially pure microorganism culture comprising, ATCC 55397.

20

- 49. The culture of Claim 48, wherein the culture is a derivative of ATCC 55397 that produces a protein toxin that has functional activity against an insect.
- 25 50. A substantially pure microorganism culture comprising, H9.
 - 51. A substantially pure microorganism culture comprising, Hb.

- 52. A substantially pure microorganism culture comprising, Hm.
- 53. A substantially pure microorganism culture comprising, 35 HP88.
 - 54. A substantially pure microorganism culture comprising, NC-1.
- 40 55. A substantially pure microorganism culture comprising,

W30.

56. A substantially pure microorganism culture comprising, WIR.

5

57. A transgenic plant comprising in its genome, a chimeric artificial gene construction imbuing the plant with an ability to express an effective amount of a *Photorhabdus* protein that has functional activity against an insect.

10

58. The transgenic plant of Claim 57, wherein the plant is transformed using acceleration of genetic material coated onto microparticles directly into cells, *Agrobacteria*, whiskers, or electroporation techniques

15

- 59. The transgenic plant of Claim 57, wherein the selectable marker is selected from the group consisting of kanamycin, neomycin, glyphosate, hygromycin, methotrexate, phosphinothricin (bialophos), chlorosulfuron, bromoxynil, dalapon and the like.
- 60. The transgenic plant of Claim 57, wherein the promoter is selected from the group consisting of octopine synthase, nopaline synthase, mannopine synthase, 35S, 19S, ribulose-1,625 bisphosphate (RUBP) carboxylase small subunit (ssu), beta-conglycinin, phaseolin, alcohol dehydrogenase (ADH), heat-shock, ubiquitin, zein, oleosin, napin, or acyl carier protein (ACP).
- 61. The transgenic plant of Claim 57, wherein embryogenic 30 tissue, callus tissue type I or II, hypocotyl, meristem, or plant tissue during dedifferentiation is used in preparing the transgenic plant.
- 62. The transgenic plant of Claim 57, wherein the chimeric gene is a DNA sequence which encodes a *Photorhabdus* protein that has functional activity against an insect and at least one codon of the gene has been modified so that the codon is a plant preferred codon.

63. A method of controlling an insect comprising orally delivering to an insect an effective amount of a protein toxin, wherein the protein is produced by a transgenic plant, which said insect feeds.

5

64. A composition of matter, comprising a purified DNA sequence from a purified bacterial culture from the genus *Photorhabdus*.

E 8 3 क्षेत्र के इंधु दें ម្ងីស្ល AGC Ser **651** 680 **65A** 680 Gly Gly Het Ala ZAT DE 38 **≸**E Gly Trp 888 88 R R t g ą́ ў ਹ ਨੇ 89 Pro Phe និនិ Thr. TAT **8**5 ਰੰ Ę S 불점점 88 88 At Val **3**E 888 A A gg GAT TGT CCG CTA ACA GCC CTG CCA TTA GAC GGT AAT Lau Pro Leu Asp Cys Pro ដ្ឋិង Ser Gly Met អូ 88 Met ម្ង CTA Lec TAT TAT 58**b** Ile ATG 200 Ala 39 172 115

<u> 교</u>

FIG. 2

3/8

FIG. 3

FIG. 4A

	2090	2100		2120	
TcbA	DSYSQLYEEN	INAGEQRALA	LRSESAIESQ	GAQISRMAGA	GVDMAPNIFG a
TcaBii	170	180	190	200 Gvatalliag	210 GinavPNvFG>
ICABLI	-v^^^v^-	^^^^\\\\\\	^^^_^v^ ^^	^^v^v^	^^~V-^^^^
	2140	2150		2170	2180
TcbA	LADGGMHYGA	IAYAIADGIE		l	
TcaBii	220 LAnGGsewGA	230 pligsgqatq	240 vgAgiqdqsA	250 gisevtagYq	260 RRqeEWalQR>
	^^^~~~	vvv^v^^^-^	^^^V^~V~^V	-vv-v^-v^^	^^^^^
TcbA	2190	2200 NAQLESLSIR			2230
ICDA	1		.]	300	310
TcaBii	270 DiAdnEItQL	280 dAQiqSLqeq	290 itmAqkQitl	seTeOAnAOA	ivdlottrFt>
	^V^^-^^-^^	^^^^^^^v	v-v^^-^v-v	A	vv-^vv^^^
TcbA	2240 NOALYSWLRG	2250 RLSGIYFQFY	2260 DLAVSRCLMA	2270 EOSYOWEAND	
	320	330	340	1	360
TcaBii	gOALYnWmaG	RLSalyyOmY	DstlpiCLap	kaalvqEgek	eSdSlfqvpv>
	-				
TcbA	2290 WQGTYAGLLC	2300 GEALIONLAQ	2310 MEEAYLKWES	2320 RALEVERTVS	
	370	380	390	400	410
TcaBii	WndlwaGLLa	GEaLsseLak	ldaiwLargg	igLEaiRTVS	LdtlfgtG>
	^^^*	^^^^*	····	VV	^^^^
TcbA	2340	2350 PALLDKGEGT	2360	2370	2380
TcbA	2340 NDRFNLAEQI	2350 PALLDKGEGT	2360 AGTKKNGLSL 430	2370 ANAILSASVK	2380 LSDLKLGTDY 450
TcbA TcaBii	2340 NDRFNLAEQI	2350 PALLDKGEGT	2360 AGTKKNGLSL 430	2370 ANAILSASVK	2380 LSDLKLGTDY
	2340 NDRFNLAEQItLsEnI -^^^^	2350 PALLDKGEGT 420 nkvLn-GEtv vv^^^ ^	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^^	2370 ANAILSASVK 440 tgdlfqAtld ^^^V^^-	2380 LSDLKLGTDY 450 LSqLqLdnsY>
	2340 NDRFNLAEQItLsEnI -^^^^	2350 PALLDKGEGT 420 nkvLn-GEtv	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^^ 2410 PALVGPYQDV	2370 ANAILSASVK 440 tgdlfqAtld ^^^V^^-	2380 LSDLKLGTDY 450 LSqLgLdnsY> ^^^v^^ 2430 QLPKGCSALA
TcaBii TcbA	2340 NDRFNLAEQItLsEnI -^^^^ 2390 PDSIVGSNKV 460	2350 PALLDKGEGT 420 nkvLn-GEtv vv^^^ ^ 2400 RRIKQISVSL	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^^ 2410 PALVGPYQDV 480	2370 ANAILSASVK 440 tgdlfqAtld ^^^V^^- 2420 QAMLSYGGST i 490	2380 LSDLKLGTDY 450 LSqLgLdnsY> ^^^v^^ 2430 QLPKGCSALA 500
TcaBii	2340 NDRFNLAEQItLsEnI -^^^^ 2390 PDSIVGSNKV 460 -nlGneKk	2350 PALLDKGEGT 420 nkvLn-GEtv vv^^^ ^ 2400 RRIKQISVSL	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^ 2410 PALVGPYQDV 480 PtLlGPYQDI	2370 ANAILSASVK 440 tgdlfqAtld ^^^V^^- 2420 QAMLSYGGST i 490 eAtLvmGaea	2380 LSDLKLGTDY 450 LSqLgLdnsY> ^^^^v^^^ 2430 QLPKGCSALA 500 aLshGvndgg>
TcaBii TcbA	2340 NDRFNLAEQItLsEnI -^^^^ 2390 PDSIVGSNKV 460 -nlGneKk ^ ^^^^v	2350 PALLDKGEGT 420 nkvLn-GEtv vv^^^ ^ 2400 RRIKQISVSL 470 RRIKTIAVtL	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^^ 2410 PALVGPYQDV 480 PtLlGPYQD1 ^^^^^^	2370 ANAILSASVK 440 tgdIfqAtld ^^^v^^- 2420 QAMLSYGGST i 490 eAtLvmGaea ^^v^vv^^-	2380 LSDLKLGTDY 450 LSqLgLdnsY> ^^^v^^ 2430 QLPKGCSALA 500 aLshGvndgg> -^^-^v^-v^
TcaBii TcbA	2340 NDRFNLAEQItLsEnI -^^^^ 2390 PDSIVGSNKV 460 -nlGneKk ^ ^^^^v	2350 PALLDKGEGT 420 nkvLn-GEtv vv^^^ ^^- 2400 RRIKQISVSL 470 RRIKTIAVtL	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^^ 2410 PALVGPYQDV 480 PtLlGPYQD1 ^^^^^^	2370 ANAILSASVK 440 tgdIfqAtld ^^^v^^- 2420 QAMLSYGGST i 490 eAtLvmGaea ^^v^vv^^-	2380 LSDLKLGTDY 450 LSqLgLdnsY> ^^^v^^ 2430 QLPKGCSALA 500 aLshGvndgg> -^^-^v^-v^
TcaBii TcbA TcaBii	2340 NDRFNLAEQItLsEnI -^^^^ 2390 PDSIVGSNKV 460 -nlGneKk ^ ^^^^v 2440 VSHGTNDSGQ 510	2350 PALLDKGEGT 420 nkvLn-GEtv vv^^^ ^ 2400 RRIKQISVSL 470 RRIKTIAVtL	2360 AGTKKNGLSL 430 spsggvtLaL ^v^vvv-^^^ 2410 PALVGPYQDV 480 PtLlGPYQD1 ^^^^^^^^	2370 ANAILSASVK 440 tgdIfqAtld ^^^v^^- 2420 QAMLSYGGST i 490 eAtLvmGaea ^^v^vv^^-	2380 LSDLKLGTDY 450 LSqLgLdnsY> ^^^v^^ 2430 QLPKGCSALA 500 aLshGvndgg> -^^-^v^-v^

FIG. 4B

SUBSTITUTE SHEET (RULE 26)

FIG. 6B

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/18003

A. CLA	SSIFICATION OF SUBJECT MATTER											
IPC(6) :Picase See Extra Sheet. US CL :536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/205; 47/58												
US CL	:536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/205; 4 o International Patent Classification (IPC) or to both	17/38 national ci	lassification and IPC									
	DS SEARCHED											
	ocumentation searched (classification system followed	by classi	fication symbols)									
	536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/205; 4											
Documentat	ion searched other than minimum documentation to the	extent the	at such documents are included	in the fields scarched								
	ata base consulted during the international search (na	me of dat	a base and, where practicable,	, scarch terms used)								
APS, CA	ABA, CAPLUS, MEDLINE, GENBANK, BIOSIS arms: photorhabdus, xenorhabdus, luminescens	, insectio	cide, nematode, lepidoptera	1								
C. DOC	UMENTS CONSIDERED TO BE RELEVANT											
Category*	Citation of document, with indication, where ap	propriate,	of the relevant passages	Relevant to claim No.								
Υ	CLARKE et al. Virulence Mechani Strain K122 toward Wax Mot Invertebrate Pathology. 1995, Vol entire document.	h Lar	vae. Journal of	1-64								
Y	US 5,039,523 A (PAYNE ET AL.) 1 1-10.	I3 Aug	just 1991, columns	1-64								
Y	US 5,254,799 A (DE GREVE ET columns 1-14.	AL.)	19 October 1993,	1-64								
	1 03 3,234,755 A (BE GREVE ET AE), 10 001055 10057											
Furti	ner documents are listed in the continuation of Box C	. 🗆	See patent family annex.									
• Sp	ecial ontegories of cited documents:	т	later document published after the inte	emetional filing date or priority								
بر ۲۷۰ وہ	comment defining the general state of the art which is not considered be of particular relevance		principle or theory underlying the inv	ention								
	rier document published on or after the international filing date	x.	document of particular relevance; the									
	current which may throw doubts on priority chains(s) or which is not to establish the publication date of another citation or other	·Y'	when the document is taken alone document of particular relevance; th	a chimal investion assess be								
· · ·	ecial reason (as specified) cuspont referring to an oral disclosure, use, exhibition or other	-1	considered to involve an inventive	step when the document is h documents, such combination								
°P° do	comes published prior to the international filing date but later than	·&•	being obvious to a person skilled in the document member of the same patent									
	actual completion of the international search	Date of	mailing of the international sea	arch report								
23 DECE	MBER 1996		28 JAN 1997	·								
Commissio	mailing address of the ISA/US mer of Patents and Trademarks		ed officer	C_{k}								
Box PCT Washington	n, D.C. 20231	тно	MAS HAAS AQU	Ver _								
Esseimile N	In (703) 305-3230	Telephor	ne No. (703) 303-0196									

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/18003

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):	
C12N 5/14, 15/00, 15/05, 15/09, 15/29, 15/31, 15/64, 15/82; A01G 13/00; A01H 1/00	į
	1
	·
	,
•	

Form PCT/ISA/210 (extra sheet)(July 1992)*

THIS PAGE BLANK (USPTO)