Weekly Progress Report

Name: Abhishek Kumar Gupta Domain: Predictive Maintenance using ML Date of submission: 30/08/25

Week Ending: 04

I. Overview

In Week 4, Project 6 – Turbofan Engine Remaining Useful Life (RUL) Prediction was completed. The focus was on:

- Running final experiments across multiple machine learning and deep learning models.
- Performing comparative evaluation using RMSE, MAE, R², and NASA scoring function.
- Separating production-ready models (LSTM/GRU) vs research models (BiLSTM, CNN-LSTM, Attention, Transformer).
- Preparing deployment workflow using Streamlit for interactive predictions.
- Documenting the pipeline, final results, and future enhancement scope.

II. Achievements

♦ Model Implementations & Results (NASA FD001 Dataset)

Production Models (Deployment Candidates):

<u>Model</u>	<u>Seq Len</u>	<u>Units</u>	<u>Dropout</u>	<u>RMSE</u>	<u>MAE</u>	$\underline{R^2}$	<u>NASA</u>	<u>Notes</u>
<u>LSTM</u>	<u>40</u>	<u>128</u>	<u>0.3</u>	12.59	9.12	<u>0.91</u>	<u>9628</u>	Strong, stable
<u>GRU</u>	<u>50</u>	<u>128</u>	<u>0.3</u>	<u>11.47</u>	<u>8.44</u>	<u>0.92</u>	<u>6234</u>	Best performer
<u>LSTM</u>	<u>50</u>	<u>128</u>	<u>0.3</u>	<u>12.47</u>	9.18	<u>0.91</u>	<u>8375</u>	<u>Consistent</u>
<u>GRU</u>	<u>40</u>	<u>128</u>	<u>0.5</u>	<u>12.27</u>	<u>9.06</u>	<u>0.91</u>	<u>7908</u>	Robust generalization

Research Models (Explored but not stable):

<u>Model</u>	<u>RMSE</u>	<u>MAE</u>	$\underline{R^2}$	<u>NASA</u>	<u>Notes</u>
<u>BiLSTM</u>	<u>14.22</u>	<u>10.00</u>	<u>0.88</u>	<u>15265</u>	Slight overfitting
<u>CNN-LSTM</u>	<u>13.91</u>	9.82	0.89	<u>13341</u>	<u>Test collapse</u>
Attention-LSTM	20.63	<u>17.19</u>	<u>0.76</u>	<u>19071</u>	Poor stability
<u>Transformer</u>	<u>16.85</u>	12.88	0.84	<u>25928</u>	<u>Inconsistent</u>

☑ Conclusion: GRU with seq len=50, units=128, dropout=0.3, LR=0.0005 was the best overall model (RMSE 11.47, R² 0.92, NASA 6234).

Deployment Readiness

- Built a Streamlit dashboard for interactive predictions.
 - File upload option for new engine sensor data.
 - o Model predicts RUL and visualizes degradation curves.
 - Batch mode for predicting RUL across multiple engines daily.
- Models saved as .h5 and scaler.pkl for reproducibility.
- Final pipeline supports both research experimentation and real-world deployment.

III. Challenges

- NASA Score Consistency: Some models (AttnLSTM, Transformer) showed poor generalization → excluded from deployment.
- Overfitting: CNN-LSTM & BiLSTM overfit; solved partially with dropout & tuning.
- Computational Load: Training deep models required careful LR/batch size tuning.

IV. Lessons Learned

- Sequence models (LSTM, GRU) capture temporal degradation patterns effectively.
- Baseline ML models (Linear Regression, Random Forest) offer interpretability but lack predictive power.
- Hybrid architectures (CNN-LSTM, Transformer) need larger datasets and regularization for stable performance.
- Model interpretability and visualizations (Predicted vs Actual RUL) are crucial for client confidence.

V. Final Outcome

- Delivered a production-ready predictive pipeline for turbofan RUL estimation.
- Identified GRU & LSTM as deployment candidates.
- Streamlit dashboard prepared for client-facing demonstration.
- Results documented with structured comparisons of production vs research models.

VI. Future Enhancements

- Extend training across all NASA datasets (FD001–FD004) to improve robustness.
- Implement explainable AI (SHAP/attention maps) for sensor contribution analysis.
- Add uncertainty estimation in predictions for risk-aware decision-making.
- Wrap trained models in a REST API (FastAPI/Flask) for enterprise integration.
- Explore federated learning for scalability across multiple sites.