Algorithm 4.19: Eliminating left recursion.

INPUT: Grammar G with no cycles or ϵ -productions.

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting non-left-recursive grammar may have ϵ -productions.

- 1) arrange the nonterminals in some order A_1, A_2, \ldots, A_n .
- for (each i from 1 to n) { 2) **for** (each j from 1 to i-1) {
- - replace each production of the form $A_i \to A_i \gamma$ by the

 - productions $A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma$, where
- $A_i \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k$ are all current A_i -productions
- eliminate the immediate left recursion among the A_i -productions

Figure 4.11: Algorithm to eliminate left recursion from a grammar

(4.18)

Example 4.20: Let us apply Algorithm 4.19 to the grammar (4.18). Technically, the algorithm is not guaranteed to work, because of the ϵ -production, but in this case, the production $A \to \epsilon$ turns out to be harmless. We order the nonterminals S, A. There is no immediate left recursion

among the S-productions, so nothing happens during the outer loop for i = 1. For i = 2, we substitute for S in $A \to S$ d to obtain the following A-productions.

$$A \rightarrow A c \mid A a d \mid b d \mid \epsilon$$

Eliminating the immediate left recursion among these A-productions yields the following grammar.

$$S
ightarrow A\ a\ |\ b$$

 $A
ightarrow b\ d\ A'\ |\ A'$
 $A'
ightarrow c\ A'\ |\ a\ d\ A'\ |\ \epsilon$