HW 4

1

1.7.18

Reflexive: for all $a \in A$ we have $a \sim a$ since a = ea.

Symmetric: let $a, b \in A$ such that $a \sim b$, that is, a = hb. Then $b = h^{-1}a$. Since $h^{-1} \in H$ this means $b \sim a$.

Transitive: let $a, b, c \in A$ such that $a \sim b, b \sim c$. This means $a = h_1 b, b = h_2 c$ for some $h_1, h_2 \in H$. Then $a = h_1 \cdot (h_2 \cdot c) = (h_1 h_2) \cdot c$ hence $a \sim c$ because $h_1 h_2 \in H$.

1.7.19

Let ϕ be the map.

Injective: suppose $\phi(h_1) = \phi(h_2)$, that is $h_1 x = h_2 x$. By multiplying by x^{-1} on the right, we have $h_1 = h_2$.

Surjective: let $y \in O$ be some element in the codomain of ϕ . This means $x \sim y$, that is there exists some h with x = hy. Then $\phi(h^{-1}) = hh^{-1}y = y$. Here $\phi(h^{-1})$ is well-defined because $h^{-1} \in H$.

Let O_g be the orbit of g. The bijection given by ϕ tells us that $|O_g| = |H|$. Since the orbits partition G we can write $G = O_{g_1} \sqcup O_{g_2} \ldots \sqcup O_{g_k}$ for some subset $\{g_1, g_2 \ldots g_k\} \subseteq G$ which means $|G| = \sum_k |O_{g_k}| = k|H|$.

$\mathbf{2}$

a

Let D_{14} act faithfully on A where n = |A| < 7. The group action is equivalent to a group homomorphism $D_{14} \to S_A$. Since the action is faithful, this is an injective homomorphism (since distinct elements of D_{14} are mapped to distinct permutations). By Cayley's theorem we have S_A is a subgroup of S_6 ; hence there is an injective homomorphism $D_{14} \to S_6$; the range of this homomorphism is a subgroup of S_6 isomorphic to D_{14} . By Lagrange's theorem the order of this subgroup divides $|S_6| = 6!$, that is 14|6!, a contradiction.

b

We wish to construct an isomorphic copy of D_{12} in S_5 , say with generating permutations r, s satisfying the usual relations. We have ord(r) = 6 hence r must decompose into a 3-cycle multiplied by a 2-cycle;

WLOG r = (1, 2, 3)(4, 5). If we take s = (4, 5) we have rsrs = (1, 2, 3)(4, 5)(4, 5)(4, 5)(4, 5)(4, 5) = e and $s^2 = e$.

Concretely, the action can be defined as follows: $r^i s^j \cdot x = (1,2,3)^i (4,5)^{i+j} x$ for $i \in [0,6), j \in [0,1)$.

 \mathbf{c}

By the argument above, if D_{2n} acts faithfully on a set with k elements then there is an injective homomorphism $D_{2n} \to S_k$, in particular n|k!. For (n,k)=(7,7) this is a contradiction; the smallest factorial which is a multiple of $2 \cdot 7$ is 7!. In general for (n,k)=(p,p) for p prime this leads to a contradiction. However for (n,k)=(6,5) this is fine, since 6|5!.