The 'non-overlapping confidence interval' test.

I am a strong believer in including precision information in plots. If you are plotting an estimate for which you can get a confidence interval, then adding the confidence interval leads to the potential for a much better imterpretation of the plot.

This leads to the idea.

- You have a plot showing the means of samples from two groups along with 95% confidence intervals for the means.
- If the intervals overlap, you say the two groups are not significantly different.
- If the intervals do not overlap, you declare the groups significantly different.

Is this method OK?

Example: three groups X, Y, Z. Summary stats

Variable	N	Mean	SD	SE Mean
Х	20	20.261	4.8287	1.0797
У	9	23.281	1.1919	0.3973
Z	20	25.940	7.3843	1.6512

Two-Sample T Tests for y vs x

Assumption Unequal Variances	T 2.62	DF 23.5	P 0.0150
Two-Sample T Tests Assumption Equal Variances Unequal Variances	for x vs z T -2.88 -2.88	DF 38 32.7	P 0.0065 0.0070
Two-Sample T Tests Assumption Equal Variances Unequal Variances	for z vs y T 1.06 1.57	DF 27 21.1	P 0.2969 0.1323

The math. X and Y CI's overlap depending on whether $|\overline{X} - \overline{Y}| > \left(t_1 \frac{s_x}{\sqrt{n_x}} + t_2 \frac{s_y}{\sqrt{n_y}}\right)$

The two-sample t test accepts or rejects on the basis of whether $t_* \sqrt{\left(\frac{S_x^2}{n_X} + \frac{S_y^2}{n_y}\right)} t_* \sqrt{\left(\frac{S_x^2}{n_X} + \frac{S_y^2}{n_y}\right)}$

The t cutoffs t_1 , t_2 , t_* satisfy $t_* < \min(t_1, t_2)$, though in large samples the numbers may be about equal.

Even if the *t* were all equal, Cauchy-Schwartz tells you that $\left(t_1 \frac{S_x}{\sqrt{n_x}} + t_2 \frac{S_y}{\sqrt{n_y}}\right) > t_* \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}}$. Thus the

'overlapping confidence interval test' is always conservative. How conservative? Some extremes

- (a) If $s_y / \sqrt{n_y}$ is 'small' and n_x is 'large', then the overlapping confidence approach is not very conservative.
- (b) If the two samples are of similar size and variability, then $\left(\frac{S_x}{\sqrt{n_x}} + \frac{S_y}{\sqrt{n_y}}\right) \approx \sqrt{2} \sqrt{\left(\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}\right)}$

If the samples are 'large' so that $t_1 \approx t_2 \approx t_*$, then the overlapping CI approach is like using a t cutoff that is too big by a factor of 1.41. So for example, 95% CIs correspond to a cutoff around 2.8, corresponding to a P value around 0.5% -- one tenth of the nominal

If the samples are 'small', then the difference can be even more extreme. For example 95% CIs when you have two groups of size 5 use $t_1 = 2.78$. The nonoverlapping CIs turn out to correspond to a P value of 0.4%.