Lecture 5: NFA Equivalence

CSC 320: Foundations of Computer Science

Quinton Yong
quintonyong@uvic.ca

NFAs and DFAs

- A DFA can be considered a **special case** of an NFA
- We just have to change the **transition function** definition slightly

 $\delta: Q \times \Sigma \to Q$ defined by

δ	0	1
q_1	q_3	q_2
q_2	q_3	q_3
q_3	q_3	q_3

 $\{q_3\} \mid \{q_3\}$

 q_3

NFAs and DFAs

- Recall that this state diagram was not a valid DFA
- q_3 does not have an outgoing transition for symbol 2

- However, this is a valid state diagram for an NFA
- In NFAs, we do not require outgoing transitions for each alphabet symbol from every state

NFAs and DFAs

• **Definition**: Let M_1 and M_2 each be a DFA or an NFA. We call M_1 and M_2 equivalent if $L(M_1) = L(M_2)$.

Clearly, for every DFA there exists an equivalent NFA

• Recall, we claimed that the computational power of DFAs and NFAs are equal

So, we will also prove that for every NFA there also exists an equivalent DFA

Equivalence of NFAs and DFAs

First: We show that for every DFA, there exists an equivalent NFA

Proof: (easy)

Let $\mathbf{D} = (\mathbf{Q}_D, \mathbf{\Sigma}, \boldsymbol{\delta}_D, \mathbf{q}_D, \mathbf{F}_D)$ be a DFA.

We can build NFA $N = (Q_N, \Sigma, \delta_N, q_N, F_N)$ with L(D) = L(N) as follows:

•
$$Q_N \coloneqq Q_D$$

•
$$q_N \coloneqq q_D$$

• $Q_N \coloneqq Q_D$ • $q_N \coloneqq q_D$ • States, start state, and accept states are the same

•
$$F_N \coloneqq F_D$$

- - $\delta_N(q,\varepsilon) \coloneqq \emptyset$
- $\delta_N: Q_N \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q_N)$ with $\delta_N(q,a) \coloneqq \{\delta_D(q,a)\}$ for all $a \in \Sigma$ • containing the outgoing state in DFA
 - No ${m arepsilon}$ -transitions

Equivalence of NFAs and DFAs

Next: We show that for every NFA, there exists an equivalent DFA

Proof: Let $N = (Q_N, \Sigma, \delta_N, q_N, F_N)$ be an NFA. Construct DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ such that L(D) = L(N).

Idea: Build D such that is simulates the computation of N.

• Since states can go to a set of states in NFAs, create a state in D for every possible subset of states of Q_N

$$\begin{array}{c} \mathbf{D} \\ \hline \\ \{q_0\} \\ \hline \end{array}$$

NFA to DFA Construction

Proof continued: Given NFA $N = (Q_N, \Sigma, \delta_N, q_N, F_N)$, build DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$: For now, let's ignore the ε -transitions of N.

- (q_0,q_1,q_2) $Q_D\coloneqq \mathcal{P}(Q_N)$ New states are **all possible subsets** of states in NFA
 - $q_D \coloneqq \{q_N\}$ Start state is **the singleton set** containing NFA start state
 - δ_D is defined as follows: Next state is the state corresponding to **set of all reachable** states in NFA from the states in current DFA state
 - Let $S \in Q_D$ be a state of the DFA D and let $a \in \Sigma$. Recall, $S \subseteq Q_N$.
 - $\delta_D(S, a) := \{q \in Q_N \mid q \in \delta_N(S, a) \text{ for some } S \in S\}$
 - $F_D \coloneqq \{S \in Q_D \mid \text{there exists a } q \in S \text{ with } q \in F_N\}$ Accept states are the states which contain an accept state in NFA

NFA to DFA Construction (ε -transitions)

Proof continued: Next, modify the D to simulate the ε -transitions in NFA

All states in S plus states reachable by ε -transitions (0 or more) from states in S

• For any state $S \in Q_D$, let $E(S) = \{q \mid q \text{ can be reached from some state in } S \text{ by traveling 0 or more } \varepsilon\text{-transitions}\}$

- Modify **D** as follows:
 - $q_D := E(\{q_N\})$ Start state is E() of start state in NFA
 - $\delta_D(S, a) := \{q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S\}$

Transition table for DFA **D**

δ_D	0	1
Ø		
$\{q_1\}$		
{q ₂ }		
{q ₃ }		
$\{q_1, q_2\}$		
$\{q_1, q_3\}$		
$\{q_2,q_3\}$		
$\{q_1,q_2,q_3\}$		

D	

$$Q_D \coloneqq \mathcal{P}(Q_N)$$

Transition table for DFA **D**

δ_D	0	1
Ø		
$\{q_1\}$		
$\{q_2\}$		
$\{q_{3}\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }		
$\{q_2,q_3\}$		
$\{q_1, q_2, q_3\}$		

D		

$$q_D \coloneqq E(\{q_N\})$$

Transition table for DFA ${\it D}$

	δ_D	0	1
	Ø	Ø	Ø
,	$\{q_1\}$		
	$\{q_2\}$		
	$\{q_3\}$		
	$\{q_1,q_2\}$		
	\rightarrow { q_1, q_3 }		
	$\{q_2,q_3\}$		
	$\{q_1,q_2,q_3\}$		

DFA state Ø represents when an NFA state has **no outgoing transitions** for a symbol

Transition table for DFA ${\it D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$		
$\{q_2\}$		
{q ₃ }		
$\{q_1, q_2\}$		
 \rightarrow { q_1, q_3 }		
$\{q_2,q_3\}$		
$\{q_1,q_2,q_3\}$		

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA ${\it D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$		
{q ₂ }		
{q ₃ }		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1, q_3\}$	
$\{q_2,q_3\}$		
$\{q_1, q_2, q_3\}$		

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA ${\it D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$		
$\{q_2\}$		
$\{q_{3}\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$		
$\{q_1, q_2, q_3\}$		

$$\delta_D(S, a) \coloneqq \{q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S\}$$

Transition table for DFA $m{D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$		
$\{q_2\}$		
$\{q_3\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$		
$\{q_1, q_2, q_3\}$	$\{q_1, q_3\}$	

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA $m{D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$		
$\{q_2\}$		
$\{q_3\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$		
$\{q_1, q_2, q_3\}$	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA $m{D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$	$\{q_1,q_3\}$	
$\{q_2\}$		
$\{q_3\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$		
$\{q_1,q_2,q_3\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA ${\it D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$		
$\{q_3\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$		
$\{q_1,q_2,q_3\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA $m{D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_3\}$	
$\{q_3\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$		
$\{q_1,q_2,q_3\}$	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA $m{D}$

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_3\}$	Ø
$\{q_3\}$		
$\{q_1, q_2\}$		
\rightarrow { q_1, q_3 }	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_2,q_3\}$		
$\{q_1, q_2, q_3\}$	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$

$$\delta_D(S, a) := \{ q \in Q_N \mid q \in E(\delta_N(S, a)) \text{ for some } S \in S \}$$

Transition table for DFA **D**

δ_D	0	1
Ø	Ø	Ø
$\{q_1\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_3\}$	Ø
$\{q_3\}$	$\{q_{3}\}$	$\{q_3\}$
$\{q_1, q_2\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
\rightarrow { q_1, q_3 }	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$	$\{q_{3}\}$	$\{q_3\}$
$\{q_1, q_2, q_3\}$	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$

Transition table for DFA **D**

δ_D	0	1
Ø	Ø	Ø
{ q ₁ }	$\{q_1,q_3\}$	$\left\{q_1,q_2,q_3\right\}$
$\{q_2\}$	$\{q_3\}$	Ø
{ q ₃ }	$\{q_3\}$	$\{q_3\}$
$\{q_1,q_2\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
\rightarrow { q_1,q_3 }	$\{q_1,q_3\}$	$\left\{q_1,q_2,q_3\right\}$
$\{q_2,q_3\}$	{q ₃ }	$\{q_3\}$
$\{q_1,q_2,q_3\}$	$\{q_1, q_3\}$	$\left\{q_1,q_2,q_3\right\}$

 $F_D := \{S \in Q_D \mid \text{there exists a } q \in S \text{ with } q \in F_N\}$

Transition table for DFA **D**

δ_D	0	1
Ø	Ø	Ø
{ q ₁ }	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_3\}$	Ø
{ q ₃ }	$\{q_3\}$	$\{q_3\}$
$\{q_1,q_2\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
\rightarrow { q_1,q_3 }	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$	$\{q_{3}\}$	$\{q_3\}$
$\{q_1,q_2,q_3\}$	$\{q_1, q_3\}$	$\{q_1,q_2,q_3\}$

Equivalence of NFAs and DFAs

- We have shown that:
 - For every DFA there exists an equivalent NFA
 - For every NFA there exists an equivalent DFA
- So, we know that DFAs and NFAs produce the same set of languages
- Therefore, the languages recognized by NFAs is exactly the set of regular languages

Recall: Given languages L_1 and L_2 over alphabet Σ , their **concatenation** denoted L_1L_2 is defined as $L_1L_2 = \{w \in \Sigma^* \mid w = xy \text{ for some } x \in L_1 \text{ and } y \in L_2\}$

• E.g. Let $L_1 = \{0, 10\}$ and $L_2 = \{0, 11\}$. Then $L_1L_2 = \{00, 011, 100, 1011\}$

Theorem: If L_1 and L_2 are regular languages over alphabet Σ , then the language L_1L_2 is a regular language

Proof: Since L_1 and L_2 are regular languages, then there exist DFAs M_1 and M_2 where $L_1 = L(M_1)$ and $L_2 = L(M_2)$

We can create an NFA M that accepts the strings where the **first part** is accepted by M_1 and the **second part** is accepted by M_2 .

Create **NFA** *M* as follows:

• M inherits **all states** from DFAs M_1 and M_2

$$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$$

Create **NFA** *M* as follows:

- M inherits **all states** from DFAs M_1 and M_2
- The **start state** of M is the start state of M_1

Create **NFA** *M* as follows:

- M inherits **all states** from DFAs M_1 and M_2
- The **start state** of M is the start state of M_1
- The **accept states** of M are the accept states of M_2 (accept states of M_1 are no longer accept states)

Create **NFA** *M* as follows:

 $M = (Q_1 \cup Q_2, \Sigma, \delta, q_1, F_2)$

- M inherits **all states** from DFAs M_1 and M_2
- The **start state** of M is the start state of M_1
- The **accept states** of M are the accept states of M_2 (accept states of M_1 are no longer accept states)
- The **transitions** of *M* consist of:
 - All transitions of M_1 and all transitions of M_2 (remain the same)
 - Add ε -transitions between the previous accept states in M_1 to the start state of M_2

Regular Language Closure

We have now shown that given **regular languages** L_1 and L_2 :

- $L_1 \cup L_2$ is a regular language
- $L_1 \cap L_2$ is a regular language
- L_1L_2 is a regular language

Regular languages are also closed under complement and Kleene star:

- $\overline{L_1}$ is a regular language
- L_1^* is a regular language