

FCC TEST REPORT

APPLICANT Hohem Technology Co., Ltd.

3-AXIS HANDHELD STABILIZING GIMBAL FOR SMART PRODUCT NAME

PHONE

MODEL NAME T2/BUFF/T2S

TRADE NAME Hohem

BRAND NAME Hohem

FCC ID 2AIB7T2

: 47 CFR Part 15 Subpart B STANDARD(S)

TEST DATE 2017-05-27 to 2017-06-07

ISSUE DATE : 2017-06-11

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

<u>1.</u>	TECHNICAL INFORMATION	5
	APPLICANT INFORMATION	
1.2.	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	5
<u>2.</u>	TEST RESULTS	<u>7</u>
2.1.	APPLIED REFERENCE DOCUMENTS	7
<u>3.</u>	TEST CONDITIONS SETTING	8
	TEST MODE ·····	
	TEST SETUP AND EQUIPMENTS LIST	
	1. CONDUCTED EMISSION ······	
3.2.2	2. RADIATED EMISSION······	11
<u>4.</u> 4	47 CFR PART 15B REQUIREMENTS	<u>13</u>
4.1.	CONDUCTED EMISSION	13
	1. REQUIREMENT ·····	
4.1.2	2. Test Description	13
4.1.3	3. Test Result ·····	13
	RADIATED EMISSION	
	1. REQUIREMENT ·····	
	2. TEST DESCRIPTION ·····	
4.2.3	3. FREQUENCY RANGE OF MEASUREMENT	16
4.2.4	4. Test Result ······	17
ANN	NEX A TEST SETUP PHOTOS	<u>20</u>
ANN	NEX B TEST UNCERTAINTY	22
ANN	NEX C TESTING LABORATORY INFORMATION	<u>2</u> 3

1.	IDENTIFICATION OF THE RESPONSIBLE TESTING LABORATORY	23
2.	IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	23
3.	ACCREDITATION CERTIFICATE	23
4.	TEST ENVIRONMENT CONDITIONS	23

	Change History			
Issue Date Reason for change				
1.0	2017-06-11	First edition		

Test Report Declaration

Applicant	Hohem Technology Co., Ltd.	
Applicant Address	B106,University Creative Park,Xili,Nanshan,Shenzhen P.R.China	
Manufacturer	Hohem Technology Co., Ltd.	
Manufacturer Address	B106,University Creative Park,Xili,Nanshan,Shenzhen P.R.China	
Product Name	3-AXIS HANDHELD STABILIZING GIMBAL FOR SMART PHONE	
Model Name	T2/BUFF/T2S	
Brand Name	Hohem	
HW Version	V1.01	
SW Version	V1.002	
Test Standards	47 CFR Part 15 Subpart B	
Test Result	PASS	

Tested by

Peng Shiqing (Test Engineer)

Approved by

Andy Yeh (Technology Director)

1. Technical Information

Note: Provided by applicant

1.1. Applicant Information

Company: Hohem Technology Co., Ltd.

Address: B106, University Creative Park, Xili, Nanshan, Shenzhen P.R. China

1.2. Equipment under Test (EUT) Description

EUT Type:	3-AXIS HANDHELD STABILIZING GIMBAL FOR SMART PHONE
Serial No: (N/A, marked #1 by test site)	
Hardware Version:	V1.01
Software Version:	V1.002

Power supply :	Battery		
	Brand Name: Hohem		
	Model No.: 18650		
	Serial No.: (N/A, marked #1 by test site)		
	Capacity:	2000mAh	
	Rated Voltage:	3.7V	
	Charge Limit:	4.2V	

NOTE:

1. According to the designer, Hohem Technology Co., Ltd., we hereby declare that the models(T2\BUFF\T2S) are the same both in hardware and software, T2 and BUFF is the same product but the product name is different:T2 is aimed at international market, BUFF is aimed at domestic market. The only difference between T2 and T2S is the handle. The detail difference for models(T2\BUFF\T2S) is as below:

T2	BUFF	T2S
The handle is made	The handle is made	The handle is made
of metal	of metal.BUFF is	of plastic.
	the same with T2	

Declared by: Hohem Technology Co.,Ltd.

- 2. The EUT is a 3-AXIS HANDHELD STABILIZING GIMBAL FOR SMART PHONE which supports ISM 2.4GHz Bluetooth band.
- 3. The EUT is equipped with a Micro USB port which can be connected to ancillary equipments.
- 4. For a more detailed description, please refer to specification or user's manual supplied by the applicant and/or manufacturer.

2. Test Results

2.1. Applied Reference Documents

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Result
1	15.107	Conducted Emission	2017.06.04	PASS
2	15.109	Radiated Emission	2017.06.05	PASS

NOTE: The tests were performed according to the method of measurements prescribed in ANSI C63.4-2014.

Test Conditions Setting 3.

3.1. **Test Mode**

1 The first test mode (Charging)

The EUT configuration of the immunity tests is EUT + Battery + PC + Mobile Phone. In this test mode, the Mobile Phone was laid on the EUT, the EUT was connected to a PC via the Micro-B USB port and charged by the PC, meanwhile, the EUT was working normally as an intentional device.

Test Setup and Equipments List

3.2.1. Conducted Emission

A. Test Setup:

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

The power strip or extension cord has been investigated to make sure that the LISN integrity inma intained with respect to the impedance characteristics as prescribed in ANSI C63.4-2014 at Clause 4.3.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
Receiver	Narda	PMM 9010	595WX11007	2017.05.17	2018.05.16
LISN	Schwarzbeck	NSLK 8127	812744	2017.05.17	2018.05.16
Pulse Limiter (20dB)	VTSD	9561D	9537	2016.07.05	2017.07.04
PC	Apple	A1370	C02FQ2PYD DQW	N/A	N/A

C. Test Software Utilized

Model	Version Number	Producer
PMM Emission Suite	Version 2.05	Narda

3.2.2. Radiated Emission

A. Test Setup:

1. For radiated emissions from 30MHz to1GHz

2. For radiated emissions above 1GHz

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of

the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on avariable-height antenna master tower.

For the test Antenna:

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn TestAntenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
MXE EMI Receiver	Agilent	N9038A	MY54130016	2017.05.17	2018.05.16
Semi-Anechoic Chamber	Changning	9m*6m*6m	N/A	2017.01.11	2018.01.10
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2016.12.09	2017.12.08
Test Antenna - Horn	Schwarzbeck	BBHA9120C	9120C-384	2016.07.05	2017.07.04
PC	PC Apple		C02FQ2PYD DQW	N/A	N/A

C. Test Software Utilized

Model	Version Number	Producer	
MORLAB EMCR V1.2	Version 1.0	MORLAB	

47 CFR Part 15B Requirements

Conducted Emission 4.1.

4.1.1. Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the ACpower line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

4.1.2. Test Description

See section 3.2.1 of this report.

4.1.3. Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

A. Test Plot and Suspicious Points:

No.	o. Fre. Emission Level (dBμV)		Limit (dBµV)		Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.165	62.61	41.37	65.57	55.57		PASS
2	0.205	57.98	31.97	64.43	54.43		PASS
3	0.24	53.94	20.99	63.43	53.43	Line	PASS
4	0.26	50.18	27.24	62.86	52.86	Line	PASS
5	0.29	47.29	18.22	62.00	52.00		PASS
6	0.645	42.59	33.49	56.00	46.00		PASS

No.	Fre.	` ' /		Limit (dBµV)		Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average		1 3 1 3 10 0	
1	0.15	60.01	32.57	66.00	56.00		PASS	
2	0.22	50.54	25.95	64.00	54.00		PASS	
3	0.295	42.40	8.94	61.86	51.86	Neutral	PASS	
4	0.515	34.92	23.94	56.00	46.00	ineuliai	PASS	
5	0.615	40.76	29.05	56.00	46.00		PASS	
6	1.08	34.83	26.53	56.00	46.00		PASS	

Result: Pass

4.2. Radiated Emission

4.2.1. Requirement

According to FCC section 15.109 (a), the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field Strength Limitation at 3m Measurement Dist			
range (MHz)	(μV/m)	(dBµV/m)		
30.0 - 88.0	100	20log 100		
88.0 - 216.0	150	20log 150		
216.0 - 960.0	200	20log 200		
Above 960.0	500	20log 500		

As shown in FCCsection 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBμV/m is calculated by 20log Emission Level(μV/m).

4.2.2. Test Description

See section 3.2.2 of this report.

4.2.3. Frequency range of measurement

According to 15.33(b)(1), the frequency range of radiated measurement for the EUT is listed in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measure- ment range (MHz)
Below 1.705	30. 1000. 2000. 5000. 5th harmonic of the highest frequency or 40 GHz, whichever is lower.

4.2.4. Test Result

The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.

The amplitude of spurious emissions (6GHz-12.5GHz) which are attenuated more than 20 dB below the permissible value need not be reported.

Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.

A. Test Plots and Suspicious Points:

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m		
1	206.540	N.A.	31.82	N.A.	N.A.	43.50	N.A.	V	PASS
2	521.790	N.A.	38.04	N.A.	N.A.	46.00	N.A.	V	PASS
3	1225.600	39.23	N.A	33.05	74.00	N.A.	54.00	V	PASS
4	2218.133	43.35	N.A.	36.64	74.00	N.A.	54.00	V	PASS
5	3055.680	44.29	N.A.	36.02	74.00	N.A.	54.00	V	PASS
6	4720.960	45.76	N.A.	38.86	74.00	N.A.	54.00	V	PASS

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
1.10.								,	voluiot
	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m		
1	224.970	N.A.	38.93	N.A.	N.A.	46.00	N.A.	Н	PASS
2	414.120	N.A.	37.27	N.A.	N.A.	46.00	N.A.	Н	PASS
3	557.680	N.A.	36.57	N.A.	N.A.	46.00	N.A.	Н	PASS
4	2317.867	46.89	N.A.	39.05	74.00	N.A.	54.00	Н	PASS
5	2374.400	46.67	N.A.	38.54	74.00	N.A.	54.00	Н	PASS
6	4728.640	45.21	N.A.	38.06	74.00	N.A.	54.00	Н	PASS

Result: Pass

Test Setup Photos Annex A

1. Conducted emission main's port front view

2. Conducted emission main's port side view

3. Radiated emission (30MHz-1GHz)

4. Radiated emission (above 1GHz)

Test Uncertainty Annex B

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

, , , ,	•
Uncertainty of Conducted Emission:	±1.8dB
Uncertainty of Radiated Emission:	±3.1dB

Testing Laboratory Information

Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

Accreditation Certificate

Accredited Testing Laboratory: The FCC registration number is 695796.

(Shenzhen Morlab Communications Technology Co., Ltd.)

Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 - 60
Atmospheric Pressure (kPa):	86 - 106

***** END OF REPORT *****