W06D05 – Trees and Forests

Instructor: Brian Lynch

Credit: Zain Hasan, Jeremy Eng

Outline

- Decision Trees
 - Classification Trees
 - Regression Trees
- Random Forests
- Ensemble Methods
 - Bagging
 - Boosting
 - Stacking
- Demo

Decision Trees

- Flow chart based on features
- Can program using nested if-else statements.
- Tree models will create these automatically in an optimal fashion.
- Ex: Classification Tree

Decision Trees

- Flow chart based on features
- Can program using nested if-else statements.
- Tree models will create these automatically in an optimal fashion.
- Ex: Classification Tree
- Terminology:
 - Nodes and Branches
 - Root, internal, and leaf nodes.
 - Levels (depth)
- Let's focus on classification trees first.

Classification Trees

- Classification trees create regions in the feature space.
 - Each boundary line represents a root/internal node
 - Each region represents a leaf node

Classification Trees

- Classification trees create regions in the feature space.
 - Each boundary line represents a root/internal node
 - Each region represents a leaf node

Classification Trees vs Logistic Regression

- Classification trees create regions in the feature space.
- Logistic regression creates a single decision boundary line.
- Example of over-fitting (2 features).
 - Main drawback with Trees

Classification Trees

- How do we decide the split in an optimal way?
- Pick a criterion and minimize it across possible splits
 - Based on the proportions after split
 - Popular: Gini, entropy, misclassification (details)
- Ex: Gini impurity
 - *C*=number of classes
 - *p(i)*=proportion of class *i*

$$G = \sum_{i=1}^C p(i)*(1-p(i))$$

Regression Trees

- Leaf nodes will now give us a number, not a class.
- Regression tree criterion are calculated on the values in each region.
 - Popular: MSE, MAE, Half-Poisson deviance (details)
 - Minimized across all possible splits

Regression Trees vs Linear Regression

Regression Trees vs Linear Regression

Decision Trees: Pros and Cons

• Pros:

- Simple to understand and interpret.
- Can be visualized
- Requires little data preparation (doesn't require normalization, can work with NaNs)
- Can handle multi-class classification well.

• Cons:

- Tendency to overfit (pruning techniques are needed)
- Can be unstable (small change to data may result in a completely different tree)
- Each node is locally optimized (not globally)

- Addresses the problem that decision trees are susceptible to over-fitting.
- General idea: fit a diverse set of trees by injecting "randomness".
- Then use the most common (or average) of all the predictions as our single prediction.

Tally: Six 1s and Three 0s

Prediction: 1

- Ways to inject randomness:
 - Create "bootstrap samples", and then build a tree for each bootstrap sample
 - 2. At each split, consider only a random subset of features.

• Averaging many over-fitted models reduces variance.

- Accuracy
 - Usually more accurate when compared to decision trees.
 - Usually one of the best performing off-the-shelf classifiers.
- Speed
 - Slower than decision trees because we are training multiple trees.
 - But can easily parallelize training because trees are independent.
- Overfitting
 - Addresses the over-fitting tendency of decision trees.
- Interpretability
 - Decision trees are more interpretable than random forests.

Ensemble Methods

- Random Forests are an example of an ensemble method.
- Ensemble methods are techniques that create multiple models (weak models) and then combine them to produce improved results.
- Bagging (bootstrap and aggregate, e.g. random forest)
 - Same type of weak model used, models learn in parallel, combined in a deterministic process.
 - Addresses over-fitting.
- Boosting
 - Add one model at a time that addresses the "shortcomings" of the current ensemble (iterative process).
 - Aggregation (averaging) is done during training, not after.
 - Addresses under-fitting.
- Stacking
 - Use a variety of weak models as input to a "meta-model".
 - Similar to bagging, but can use different types of models.
- Source

Ensemble Methods: Boosting Example

AdaBoost (Adaptive Boosting)

Jupyter Notebook Demo