第 12 章 c: 幂级数

数学系 梁卓滨

2017.07 暑期班

Outline

1. 函数项级数的概念

2. 幂级数及其收敛性

3. 幂级数的运算

We are here now...

1. 函数项级数的概念

2. 幂级数及其收敛性

3. 幂级数的运算

• 设
$$u_0(x), u_1(x), u_2(x), \ldots, u_n(x), \ldots$$

是定义在区间 I 上的函数列,则称

$$\sum_{n=0}^{\infty} u_n(x) = u_0(x) + u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为定义在区间 I 上的(函数项)(无穷)级数。

• 设

设
$$u_0(x), u_1(x), u_2(x), \ldots, u_n(x), \ldots$$

是定义在区间 I 上的函数列,则称

$$\sum_{n=0}^{\infty} u_n(x) = u_0(x) + u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为定义在区间 I 上的(函数项)(无穷)级数。

• 如果 $x \in I$ 使得 $\sum_{n=1}^{\infty} u_n(x)$ 收敛,则称 x 是函数项级数的收敛点, 全体收敛点构成的集合称为收敛域:

• 设

设
$$u_0(x), u_1(x), u_2(x), \ldots, u_n(x), \ldots$$

是定义在区间 I 上的函数列,则称

$$\sum_{n=0}^{\infty} u_n(x) = u_0(x) + u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为定义在区间 I 上的(函数项)(无穷)级数。

- 如果 $x \in I$ 使得 $\sum_{n=1}^{\infty} u_n(x)$ 收敛,则称 x 是函数项级数的收敛点, 全体收敛点构成的集合称为收敛域:
- 如果 $x \in I$ 使得 $\sum_{n} u_n(x)$ 发散,则称 x 是函数项级数的发散点,

全体发散点构成的集合称为发散域:

• 设
$$u_0(x), u_1(x), u_2(x), \ldots, u_n(x), \ldots$$

是定义在区间 I 上的函数列,则称

$$\sum_{n=0}^{\infty} u_n(x) = u_0(x) + u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为定义在区间 I 上的(函数项)(无穷)级数。

- 如果 $x \in I$ 使得 $\sum_{n=1}^{\infty} u_n(x)$ 收敛,则称 x 是函数项级数的收敛点, 全体收敛点构成的集合称为收敛域:
- 如果 $x \in I$ 使得 $\sum_{n=1}^{\infty} u_n(x)$ 发散,则称 x 是函数项级数的发散点, 全体发散点构成的集合称为发散域:
- $\sum^{\infty} u_n(x)$ 函数项级数

可为视为定义在收敛域上的函数,也称为函数项级数的和函数

We are here now...

1. 函数项级数的概念

2. 幂级数及其收敛性

3. 幂级数的运算

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

的函数项级数称为幂级数。

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

的函数项级数称为幂级数。

• 如果函数项级数是形如

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots + a_n (x-x_0)^n + \dots$$

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

的函数项级数称为幂级数。

• 如果函数项级数是形如

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots + a_n (x-x_0)^n + \dots$$

则通过变量代换 $t = x - x_0$,可得到前述的幂级数形式:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

的函数项级数称为幂级数。

• 如果函数项级数是形如

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots + a_n (x-x_0)^n + \dots$$

则通过变量代换 $t = x - x_0$,可得到前述的幂级数形式:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n t^n = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + \dots$$

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

的函数项级数称为幂级数。

• 如果函数项级数是形如

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots + a_n (x-x_0)^n + \dots$$

则通过变量代换 $t = x - x_0$,可得到前述的幂级数形式:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n t^n = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + \dots$$

问题 如何确定幂级数的收敛域?

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

的函数项级数称为幂级数。

• 如果函数项级数是形如

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \dots + a_n (x-x_0)^n + \dots$$

则通过变量代换 $t = x - x_0$,可得到前述的幂级数形式:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n t^n = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + \dots$$

问题 如何确定幂级数的收敛域?

尝试先用比值审敛法的极限形式 或者 根值审敛法

$$\lim_{n\to\infty}\left|\frac{\frac{1}{n+1}X^{n+1}}{\frac{1}{n}X^n}\right| =$$

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| =$$

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} X^{n+1}}{\frac{1}{n} X^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} X \right| = |X|$$

• 当 |x| < 1 时,收敛; |x| > 1 时,发散; x = ±1 时,另外讨论

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} X^{n+1}}{\frac{1}{n} X^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} X \right| = |X|$$

- 当 |x| < 1 时,收敛;|x| > 1 时,发散; $x = \pm 1$ 时,另外讨论
- 当 x = 1 时,
- $\exists x = -1 \text{ m}$,

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

- 当 |x| < 1 时,收敛;|x| > 1 时,发散; $x = \pm 1$ 时,另外讨论
- 当 x = -1 时,

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

- 当 |x| < 1 时,收敛;|x| > 1 时,发散; $x = \pm 1$ 时,另外讨论
- 当 x = 1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散
- 当 x = -1 时,

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

- 当 |x| < 1 时,收敛;|x| > 1 时,发散; $x = \pm 1$ 时,另外讨论
- 当 x = 1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

- 当 |x| < 1 时,收敛;|x| > 1 时,发散; $x = \pm 1$ 时,另外讨论
- 当 x = 1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散
- 当 x = -1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

- 当 |x| < 1 时,收敛; |x| > 1 时,发散; x = ±1 时,另外讨论
- 当 x = 1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散
- 当 x = -1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛

所以收敛域是 [-1,1).

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

当 |x| < 1 时,收敛; |x| > 1 时,发散; x = ±1 时,另外讨论

• 当
$$x = 1$$
 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

•
$$\exists x = -1 \text{ pt}, \sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ where } x = -1 \text{ pt}$$

所以收敛域是 [-1,1).

注 1 当 $x \in (-1,1)$ 时,级数绝对收敛; x = -1 是,级数条件收敛.

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n+1} x^{n+1}}{\frac{1}{n} x^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} x \right| = |x|$$

- 当 |x| < 1 时,收敛; |x| > 1 时,发散; x = ±1 时,另外讨论
- 当 x = 1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

所以收敛域是 [-1,1).

注 1 当 $x \in (-1, 1)$ 时,级数绝对收敛;x = -1 是,级数条件收敛.

注 2 当
$$x \in [-1, 1)$$
时:
$$\sum_{n=1}^{\infty} \frac{1}{n} x^n = x + \frac{1}{2} x^2 + \frac{1}{3} x^3 + \dots = -\ln(1-x).$$

第 12 章 c: 幂级数

7/28 ⊲ ⊳ Δ ¹

$$\lim_{n\to\infty}\sqrt[n]{\left|\frac{1}{n}x^n\right|}=$$

$$\lim_{n\to\infty} \sqrt[n]{\left|\frac{1}{n}x^n\right|} = \lim_{n\to\infty} n^{-\frac{1}{n}}|x| =$$

$$\lim_{n\to\infty} \sqrt[n]{\left|\frac{1}{n}x^n\right|} = \lim_{n\to\infty} n^{-\frac{1}{n}}|x| = |x|$$

解 注意到

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{1}{n} x^n \right|} = \lim_{n \to \infty} n^{-\frac{1}{n}} |x| = |x|$$

- 当 |x| < 1 时,收敛; |x| > 1 时,发散; x = ±1 时,另外讨论
- 当 x = 1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散
- 当 x = -1 时, $\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛

所以收敛域是 [-1,1)

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| =$$

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| =$$

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

• 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时,
- 当 x = -2 时,

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = -2 时,

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时, $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散
- 当 x = -2 时,

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时, $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时, $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时, $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

所以收敛域是 [-2, 2)

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1) \cdot 2^{n+1}}}{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时, $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

所以收敛域是 [-2,2]

注 1 当 $x \in (-2, 2)$ 时,级数绝对收敛; x = -2 是,级数条件收敛.

$$\lim_{n\to\infty}\left|\sqrt[n]{\frac{x^n}{n\cdot 2^n}}\right| =$$

$$\lim_{n\to\infty}\left|\sqrt[n]{\frac{x^n}{n\cdot 2^n}}\right|=\lim_{n\to\infty}(n+1)^{-\frac{1}{n}}\frac{1}{2}|x|=$$

$$\lim_{n \to \infty} \left| \sqrt[n]{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} (n+1)^{-\frac{1}{n}} \frac{1}{2} |x| = \frac{1}{2} |x|$$

解 注意到

$$\lim_{n \to \infty} \left| \sqrt[n]{\frac{x^n}{n \cdot 2^n}} \right| = \lim_{n \to \infty} (n+1)^{-\frac{1}{n}} \frac{1}{2} |x| = \frac{1}{2} |x|$$

- 当 |x| < 2 时,收敛; |x| > 2 时,发散; x = ±2 时,另外讨论
- 当 x = 2 时, $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散

所以收敛域是 [-2,2)

解 注意到当 $x \neq 0$ 时都有

m 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=$$

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=$$

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n \to \infty} \left| \frac{(n+1)! \cdot x^n}{n! \cdot x^n} \right| = \lim_{n \to \infty} (n+1) |x| = \infty > 1$$

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时, 函数项级数都发散。

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

例 计算函数项级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的收敛域

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

例 计算函数项级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的收敛域

$$\lim_{n\to\infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| =$$

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

例 计算函数项级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的收敛域

$$\lim_{n\to\infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n\to\infty} \frac{|x|}{n+1} =$$

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

例 计算函数项级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的收敛域

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 < 1$$

解 注意到当 $x \neq 0$ 时都有

$$\lim_{n\to\infty}\left|\frac{(n+1)!\cdot x^n}{n!\cdot x^n}\right|=\lim_{n\to\infty}(n+1)|x|=\infty>1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

例 计算函数项级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的收敛域

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 < 1$$

说明对任何x,函数项级数都绝对收敛。

 \mathbf{M} 注意到当 $\mathbf{X} \neq \mathbf{0}$ 时都有

$$\lim_{n \to \infty} \left| \frac{(n+1)! \cdot x^n}{n! \cdot x^n} \right| = \lim_{n \to \infty} (n+1) |x| = \infty > 1$$

说明 $x \neq 0$ 时,函数项级数都发散。所以收敛域是 $\{0\}$ 。

例 计算函数项级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的收敛域

解 注意到

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 < 1$$

说明对任何 x, 函数项级数都绝对收敛。所以收敛域是 $(-\infty, \infty)$ 。

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{im}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{im}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

- 若 $\rho = 0$,
- 若 $\rho = \infty$,

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛,
- 若 ρ = 0,
- 若 $\rho = \infty$,

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{if}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散,
- 若 ρ = 0,
- 若 ρ = ∞,

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{if}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 ρ = 0,
- 若 ρ = ∞,

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{if}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
- 若 $\rho = \infty$,

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{if}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
- 若 $\rho = \infty$, 则只有当 x = 0 时级数收敛, $x \neq 0$ 时, 级数发散。

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{id}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

则成立:

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
- 若 $\rho = \infty$, 则只有当 x = 0 时级数收敛, $x \neq 0$ 时, 级数发散。

证明 运用比值审敛法的极限形式和根值审敛法。

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{if}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

则成立:

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
- 若 $\rho = \infty$,则只有当 x = 0 时级数收敛, $x \neq 0$ 时,级数发散。

证明 运用比值审敛法的极限形式和根值审敛法。因为

$$\lim_{n\to\infty}\left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| = \qquad \qquad \text{iim} \quad \sqrt[n]{|a_nx^n|} =$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{id}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

则成立:

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
- 若 $\rho = \infty$,则只有当 x = 0 时级数收敛, $x \neq 0$ 时,级数发散。

证明 运用比值审敛法的极限形式和根值审敛法。因为

$$\lim_{n\to\infty}\left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right|=\rho|x|\quad\text{in}\quad\lim_{n\to\infty}\sqrt[n]{|a_nx^n|}=$$

定理 假设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的系数满足条件:

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{id}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

则成立:

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
- 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
- 若 $\rho = \infty$, 则只有当 x = 0 时级数收敛, $x \neq 0$ 时, 级数发散。

证明 运用比值审敛法的极限形式和根值审敛法。因为

$$\lim_{n\to\infty} \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \rho|x| \quad \text{if} \quad \lim_{n\to\infty} \sqrt[n]{|a_nx^n|} = \rho|x|$$

第 12 章 c: 幂级数

定理 假设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的系数满足条件:

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{id}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

则成立:

- 若 $\rho \neq 0$,则当 $|x| < \frac{1}{\rho}$ 时级数绝对收敛, $|x| > \frac{1}{\rho}$ 时级数发散, $x = \pm \frac{1}{\rho}$ 时不确定(需具体问题具体分析);
 - 若 $\rho = 0$, 则对任意 $x \in \mathbb{R}$, 级数绝对收敛;
 - 若 ρ = ∞,则只有当x = 0时级数收敛,x ≠ 0时,级数发散。

证明 运用比值审敛法的极限形式和根值审敛法。因为

$$\lim_{n\to\infty} \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \rho|x| \quad \text{if} \quad \lim_{n\to\infty} \sqrt[n]{|a_nx^n|} = \rho|x|$$

所以 $|x| < \frac{1}{\rho}$ 时,级数(绝对)收敛; $|x| > \frac{1}{\rho}$ 时,级数发散。

定理 幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛域一定是如下几种情况之一:

- 收敛域是单点集 {0};
- 收敛域是全部实数 $(-\infty, \infty)$;
- 收敛域是如下四种可能的有限区间:

$$(-R, R), [-R, R), (-R, R], [-R, R]$$

其中 $0 < R < \infty$ 。

定理 幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛域一定是如下几种情况之一:

- 收敛域是单点集 {0};
- 收敛域是全部实数 $(-\infty, \infty)$;
- 收敛域是如下四种可能的有限区间:

$$(-R, R), [-R, R), (-R, R], [-R, R]$$

其中 $0 < R < \infty$ 。

注

• R 称为收敛半径。

定理 幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛域一定是如下几种情况之一:

- 收敛域是单点集 {0};
- 收敛域是如下四种可能的有限区间:

(收敛半径 R 有限)

(收敛半径 R = 0)

$$(-R, R), [-R, R), (-R, R], [-R, R]$$

其中 $0 < R < \infty$ 。

注

• R 称为收敛半径。

定理 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域一定是如下几种情况之一:

- 收敛域是单点集 {0};
 - (收敛半径 $R = \infty$)
- 收敛域是全部实数 (-∞,∞);

(收敛半径 R 有限)

(收敛半径 R = 0)

• 收敛域是如下四种可能的有限区间:

(-R, R), [-R, R), (-R, R], [-R, R]

其中 $0 < R < \infty$ 。

注

- R 称为收敛半径。
- (-R, R) 称为收敛区间。

定理 幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛域一定是如下几种情况之一:

收敛域是单点集 {0};

(收敛半径 R = 0)

收敛域是全部实数 (-∞,∞);

(收敛半径 $R = \infty$) (收敛半径 R 有限)

• 收敛域是如下四种可能的有限区间:

$$(-R, R), [-R, R), (-R, R], [-R, R]$$

其中 $0 < R < \infty$ 。

注

- R 称为收敛半径。
- (-R, R) 称为收敛区间。收敛区间 ⊆ 收敛域。

定理 幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛域一定是如下几种情况之一:

- 收敛域是单点集 {0}; (收敛半径 R = 0)
- 收敛域是如下四种可能的有限区间: (收敛半径 R 有限)

$$(-R, R), [-R, R), (-R, R], [-R, R]$$

其中 $0 < R < \infty$ 。

注

- R 称为收敛半径。
- (-R, R) 称为收敛区间。收敛区间 ⊆ 收敛域。
- 可以证明在收敛区间 (-R, R) 内, 级数绝对收敛。

例 假设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的系数满足条件:

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\qquad\text{im}\qquad\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho$$

则收敛半径

$$R = \begin{cases} \frac{1}{\rho}, & \rho \neq 0, \\ +\infty, & \rho = 0, \\ 0, & \rho = +\infty. \end{cases}$$

例 假设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的系数满足条件:

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \qquad \text{im} \quad \lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho$$

则收敛半径

$$R = \begin{cases} \frac{1}{\rho}, & \rho \neq 0, \\ +\infty, & \rho = 0, \\ 0, & \rho = +\infty. \end{cases}$$

证明 这是由比值审敛法的极限形式和根值审敛法知: $|x| < \frac{1}{\rho}$ 时,级数(绝对)收敛; $|x| > \frac{1}{\rho}$ 时,级数发散。

第 12 草 c: 幂级数

例 假设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的系数满足条件:

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \qquad \text{im} \quad \lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho$$

则收敛半径

$$R = \begin{cases} \frac{1}{\rho}, & \rho \neq 0, \\ +\infty, & \rho = 0, \\ 0, & \rho = +\infty. \end{cases}$$

证明 这是由比值审敛法的极限形式和根值审敛法知: $|x|<\frac{1}{\rho}$ 时,级数(绝对)收敛; $|x|>\frac{1}{\rho}$ 时,级数发散。所以收敛半径 $R=\frac{1}{\rho}$ 。

● 整角大学

- 若 x_0 是收敛点,则对所有满足 $|x| < |x_0|$ 的 x,级数均绝对收敛。
- 若 x_0 是发散点,则对所有满足 $|x| > |x_0|$ 的 x,级数均发散。

- 若 x_0 是收敛点,则对所有满足 $|x| < |x_0|$ 的 x,级数均绝对收敛。
- 若 x_0 是发散点,则对所有满足 $|x| > |x_0|$ 的 x,级数均发散。

- 若 x_0 是收敛点,则对所有满足 $|x| < |x_0|$ 的 x,级数均绝对收敛。
- 若 x_0 是发散点,则对所有满足 $|x| > |x_0|$ 的 x,级数均发散。

- 若 x_0 是收敛点,则对所有满足 $|x| < |x_0|$ 的 x,级数均绝对收敛。
- 若 x_0 是发散点,则对所有满足 $|x| > |x_0|$ 的 x,级数均发散。

- 若 x_0 是收敛点,则对所有满足 $|x| < |x_0|$ 的 x,级数均绝对收敛。
- 若 x_0 是发散点,则对所有满足 $|x| > |x_0|$ 的 x,级数均发散。

- 若 x_0 是收敛点,则对所有满足 $|x| < |x_0|$ 的 x,级数均绝对收敛。
- 若 x_0 是发散点,则对所有满足 $|x| > |x_0|$ 的 x,级数均发散。

We are here now...

1. 函数项级数的概念

2. 幂级数及其收敛性

3. 幂级数的运算

性质 2 幂级数 $\sum_{n} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\sum_{n=0}^{\infty} a_n t^n$$

$$\int_0^x \left[\sum_{n=0}^\infty a_n t^n \right] dt \tag{x \in I}$$

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt \qquad (x \in I)$$

$$\int_0^x \left[\sum_{n=0}^\infty a_n t^n \right] dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \frac{a_n}{n+1} x^{n+1}, \quad (x \in I)$$

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径,

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径, 但收敛 域不一定相同。

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径, 但收敛 域不一定相同。

例
$$\sum_{n=1}^{\infty} x^n$$

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径, 但收敛 域不一定相同。

例 $\sum_{n=1}^{\infty} x^n$ 的收敛域是 (-1, 1),

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum\limits_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径 ,但收敛 域不一定相同。

例 $\sum_{n=1}^{\infty} x^n$ 的收敛域是 (-1, 1),而逐项积分后的幂级数是

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径, 但收敛 域不一定相同。

例 $\sum_{n=1}^{\infty} x^n$ 的收敛域是 (-1, 1),而逐项积分后的幂级数是 $\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$

性质 2 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域 I 上可积,并成立逐项积分公式:

$$\int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} t^{n} \right] dt = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \quad (x \in I)$$

逐项积分后的幂级数 $\sum\limits_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 与原级数有相同收敛半径 ,但收敛 域不一定相同。

例 $\sum_{n=1}^{\infty} x^n$ 的收敛域是 (-1, 1),而逐项积分后的幂级数是 $\sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1}$

其收敛域是 [-1,1)。

逐项积分公式的应用

例 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

逐项积分公式的应用

例 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

$$\sum_{n=0}^{\infty} t^n$$

逐项积分公式的应用

例 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

$$\int_0^x \sum_{n=0}^\infty t^n dt$$

$$x\in[-1,1)$$

例 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

$$\int_0^x \sum_{n=0}^\infty t^n dt = \sum_{n=0}^\infty \int_0^x t^n dt$$

$$x \in [-1, 1)$$

例 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \sum_{n=0}^{\infty} \int_{0}^{x} t^{n} dt = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}, \quad x \in [-1, 1)$$

M 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

$$\int_0^x \sum_{n=0}^\infty t^n dt = \sum_{n=0}^\infty \int_0^x t^n dt = \sum_{n=0}^\infty \frac{1}{n+1} x^{n+1}, \qquad x \in [-1, 1)$$

另一方面
$$\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$$
,所以

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \sum_{n=0}^{\infty} \int_{0}^{x} t^{n} dt = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}, \quad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$,所以

カー万面
$$\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$$
,所以

$$\int_0^x \sum_{n=0}^\infty t^n dt = \int_0^x \frac{1}{1-t} dt$$

 $x \in [-1, 1)$

例 对级数 $\sum_{n=0}^{\infty} x^n$ 运用逐项积分公式:

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \sum_{n=0}^{\infty} \int_{0}^{x} t^{n} dt = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}, \quad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$,所以

$$\int_{0}^{x} \sum_{n=1}^{\infty} t^{n} dt = \int_{0}^{x} \frac{1}{1-t} dt = -\ln(1-t)|_{0}^{x}$$

 $x \in [-1, 1)$

例 对级数 $\sum_{n=1}^{\infty} x^n$ 运用逐项积分公式:

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \sum_{n=0}^{\infty} \int_{0}^{x} t^{n} dt = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}, \quad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$,所以

$$\int_0^x \sum_{n=0}^\infty t^n dt = \int_0^x \frac{1}{1-t} dt = -\ln(1-t)\Big|_0^x = -\ln(1-x), \qquad x \in [-1,1)$$

例 对级数 $\sum_{n=1}^{\infty} x^n$ 运用逐项积分公式:

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \sum_{n=0}^{\infty} \int_{0}^{x} t^{n} dt = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}, \quad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$,所以

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \int_{0}^{x} \frac{1}{1-t} dt = -\ln(1-t)|_{0}^{x} = -\ln(1-x), \qquad x \in [-1,1]$$

$$\text{\Leftrightarrow \bot \textbf{m\vec{x}, $\ #}}$$

例 对级数 $\sum_{n=1}^{\infty} x^n$ 运用逐项积分公式:

$$\int_0^x \sum_{n=0}^\infty t^n dt = \sum_{n=0}^\infty \int_0^x t^n dt = \sum_{n=0}^\infty \frac{1}{n+1} x^{n+1}, \qquad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$,所以

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \int_{0}^{x} \frac{1}{1-t} dt = -\ln(1-t)|_{0}^{x} = -\ln(1-x), \qquad x \in [-1, 1)$$

$$\Leftrightarrow \vdash \text{ π $\overrightarrow{\tau}$} \quad \text{4}$$

综上两式. 得

$$\sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1} = -\ln(1-x), \quad x \in [-1, 1)$$

例 对级数 $\sum_{n=1}^{\infty} x^n$ 运用逐项积分公式:

$$\int_0^x \sum_{n=0}^\infty t^n dt = \sum_{n=0}^\infty \int_0^x t^n dt = \sum_{n=0}^\infty \frac{1}{n+1} x^{n+1}, \qquad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$, 所以

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \int_{0}^{x} \frac{1}{1-t} dt = -\ln(1-t)|_{0}^{x} = -\ln(1-x), \qquad x \in [-1, 1)$$

$$4 = -\ln(1-t)|_{0}^{x} = -\ln(1-x), \qquad x \in [-1, 1)$$

综上两式,得

$$\sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1} = , \quad x \in [-1, 1)$$

例 对级数 $\sum_{n=1}^{\infty} x^n$ 运用逐项积分公式:

$$\int_0^x \sum_{n=0}^\infty t^n dt = \sum_{n=0}^\infty \int_0^x t^n dt = \sum_{n=0}^\infty \frac{1}{n+1} x^{n+1}, \qquad x \in [-1, 1)$$

另一方面 $\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$,所以

$$\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} dt = \int_{0}^{x} \frac{1}{1-t} dt = -\ln(1-t)|_{0}^{x} = -\ln(1-x), \qquad x \in [-1, 1)$$

$$\Leftrightarrow \vdash \text{ π $\overrightarrow{\tau}$} \quad \text{4}$$

综上两式. 得

$$\sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1} = -\ln(1-x), \quad x \in [-1, 1)$$

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R, 则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R)

上可导,

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R,则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R)

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' \qquad x \in (-R, R)$$

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R, 则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R)

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} \left(a_n x^n\right)' \qquad x \in (-R, R)$$

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R, 则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R)

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} \left(a_n x^n\right)' = n a_n x^{n-1}, \quad x \in (-R, R)$$

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R,则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R)

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}, \quad x \in (-R, R)$$

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R, 则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R)

上可导,并成立逐项求导公式:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}, \quad x \in (-R, R)$$

逐项求导后的幂级数 $\sum\limits_{n}^{\infty} n lpha_n x^{n-1}$ 与原级数有相同收敛半径。

性质 3 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R,则 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-R, R) 上可导,并成立逐项求导公式:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} \left(a_n x^n\right)' = \sum_{n=1}^{\infty} n a_n x^{n-1}, \qquad x \in (-R, R)$$

逐项求导后的幂级数 $\sum\limits_{n}^{\infty} n\alpha_n x^{n-1}$ 与原级数有相同收敛半径。

推论 设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径为 R ,则 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-R, R)$ 上

具有任意阶的导数,并成立逐项求导公式:

$$\frac{d^k}{dx^k} \left(\sum_{n=0}^{\infty} a_n x^n \right) = \sum_{n=0}^{\infty} \frac{d^k}{dx^k} (a_n x^n), \qquad x \in (-R, R)$$

逐项求导后的幂级数 $\sum_{n=0}^{\infty} \frac{d^k}{dx^k} (a_n x^n)$ 与原级数有相同收敛半径。

利用逐项求导、或逐项积分,把级数化为简单的级数,从而求出原级数。

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \qquad 收敛区间(-1, 1)$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

$$\exists x = 1 \text{ 时, } \sum_{n=1}^{\infty} \frac{x^n}{n+1} = \sum_{n=1}^{\infty} \frac{1}{n+1} \text{ 发散}$$

$$\exists x = -1 \text{ 时, } \sum_{n=1}^{\infty} \frac{x^n}{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} \text{ 收敛}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

$$\exists x = 1 \text{ 时, } \sum_{n=1}^{\infty} \frac{x^n}{n+1} = \sum_{n=1}^{\infty} \frac{1}{n+1} \text{ 发散}$$

$$\exists x = -1 \text{ 时, } \sum_{n=1}^{\infty} \frac{x^n}{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} \text{ 收敛}$$

$$\therefore \text{收敛域}[-1, 1)$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1),$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1), \ \text{则}:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, x \in [-1, 1), 则:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)'$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, x \in [-1, 1), 则:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)'$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, x \in [-1, 1), 则:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, x \in [-1, 1), 则:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1), \ \text{则}:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

当 $x \in (-1, 1)$ 时,两边求导可得:

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

所以

$$xS(x) = \int \frac{1}{1-x} dx$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1), \ \text{则}:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

当 $x \in (-1, 1)$ 时,两边求导可得:

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

所以

$$xS(x) = \int \frac{1}{1-x} dx = -\ln(1-x) + C,$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1), \ \text{则}:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

当 $x \in (-1, 1)$ 时,两边求导可得:

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

所以

$$xS(x) = \int \frac{1}{1-x} dx = -\ln(1-x) + C, \quad x \in (-1, 1)$$

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1), \ \text{则}:$$

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

当 $x \in (-1, 1)$ 时,两边求导可得:

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

所以

$$xS(x) = \int \frac{1}{1-x} dx = -\ln(1-x) + C, \quad x \in (-1, 1)$$

上式取 x=0 时,可得 C=0,所以

解 Step 2. 记
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1}, \quad x \in [-1, 1), \ \mathbb{M}$$
:

$$xS(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad x \in [-1, 1)$$

当 $x \in (-1, 1)$ 时,两边求导可得:

$$[xS(x)]' = \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

所以

$$xS(x) = \int \frac{1}{1-x} dx = -\ln(1-x) + C, \quad x \in (-1, 1)$$

上式取 x = 0 时,可得 C = 0,所以

$$xS(x) = -\ln(1-x), x \in (-1, 1).$$

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而 $xS(x) = -\ln(1-x)$, $x \in (-1, 1)$

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而 $xS(x) = -\ln(1-x)$, $x \in (-1, 1)$

•
$$\exists x \in (-1, 0) \cup (0, 1)$$
 时, $S(x) = -\frac{1}{x} \ln(1-x)$

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而 $xS(x) = -\ln(1-x)$, $x \in (-1, 1)$

- $\exists x \in (-1, 0) \cup (0, 1)$ 时, $S(x) = -\frac{1}{x} \ln(1-x)$
- $\exists x = 0 \text{ ph}, S(0) = \sum_{n=0}^{\infty} \frac{0^n}{n+1} = 1$
- 当 x = −1 时,由连续性

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而 $xS(x) = -\ln(1-x)$, $x \in (-1, 1)$

- $\exists x \in (-1, 0) \cup (0, 1)$ 时, $S(x) = -\frac{1}{x} \ln(1-x)$
- $\exists x = 0$ 时, $S(0) = \sum_{n=0}^{\infty} \frac{0^n}{n+1} = 1$
- 当 x = -1 时,由连续性

$$S(-1) = \lim_{x \to (-1)^+} S(x)$$

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而
$$xS(x) = -\ln(1-x), \quad x \in (-1, 1)$$

- $\exists x \in (-1, 0) \cup (0, 1)$ 时, $S(x) = -\frac{1}{x} \ln(1-x)$
- $\exists x = 0$ 时, $S(0) = \sum_{n=0}^{\infty} \frac{0^n}{n+1} = 1$
- 当 x = -1 时,由连续性

$$S(-1) = \lim_{x \to (-1)^+} S(x) = \lim_{x \to (-1)^+} -\frac{1}{x} \ln(1-x)$$

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而 $xS(x) = -\ln(1-x)$, $x \in (-1, 1)$

- $\exists x \in (-1, 0) \cup (0, 1)$ 时, $S(x) = -\frac{1}{x} \ln(1-x)$
- $\exists x = 0 \text{ ph}, S(0) = \sum_{n=0}^{\infty} \frac{0^n}{n+1} = 1$
- 当 x = -1 时,由连续性

$$S(-1) = \lim_{x \to (-1)^+} S(x) = \lim_{x \to (-1)^+} -\frac{1}{x} \ln(1-x) = -\frac{1}{x} \ln(1-x) \Big|_{x=-1}$$

解 Step 3. 至此已知:
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
 的收敛域是 $x \in [-1, 1)$,而 $xS(x) = -\ln(1-x)$, $x \in (-1, 1)$

- 当 $x \in (-1, 0) \cup (0, 1)$ 时, $S(x) = -\frac{1}{x} \ln(1-x)$
- 当 x = -1 时,由连续性

$$S(-1) = \lim_{x \to (-1)^+} S(x) = \lim_{x \to (-1)^+} -\frac{1}{x} \ln(1-x) = -\frac{1}{x} \ln(1-x) \Big|_{x=-1}$$

综上 $S(x) = \begin{cases} -\frac{1}{x} \ln(1-x) & x \in [-1, 1) \setminus \{0\}, \\ 1 & x = 0. \end{cases}$

注 在等式

$$\sum_{n=0}^{\infty} \frac{x^n}{n+1} = \begin{cases} -\frac{1}{x} \ln(1-x) & x \in [-1, 1) \setminus \{0\}, \\ 1 & x = 0. \end{cases}$$

注 在等式

$$\sum_{n=0}^{\infty} \frac{x^n}{n+1} = \begin{cases} -\frac{1}{x} \ln(1-x) & x \in [-1, 1) \setminus \{0\}, \\ 1 & x = 0. \end{cases}$$

中取 x = -1,可得

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \cdots$$

注 在等式

$$\sum_{n=0}^{\infty} \frac{x^n}{n+1} = \begin{cases} -\frac{1}{x} \ln(1-x) & x \in [-1, 1) \setminus \{0\}, \\ 1 & x = 0. \end{cases}$$

中取 x=-1,可得

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \dots = \ln 2.$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2n-1}{2n+1} = 1$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2n-1}{2n+1} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

解 Step 1. 求收敛域:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2n-1}{2n+1} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{ which with weights with which with weights with which which with which which with which which with which with which which with which which which with which which which with which whic$$

:. 收敛域(-1,1)

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}, \quad x \in (-1, 1)$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)'$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)'$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \cdots$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$$

所以

$$S(x) = \int \frac{1}{1 - x^2} dx$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$$

所以

$$S(x) = \int \frac{1}{1 - x^2} dx = \frac{1}{2} \ln \frac{1 + x}{1 - x} + C,$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$$

所以

$$S(x) = \int \frac{1}{1 - x^2} dx = \frac{1}{2} \ln \frac{1 + x}{1 - x} + C, \quad x \in (-1, 1)$$

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$$

所以

$$S(x) = \int \frac{1}{1 - x^2} dx = \frac{1}{2} \ln \frac{1 + x}{1 - x} + C, \quad x \in (-1, 1)$$

上式取 x=0 时,可得 C=0

解 Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
, $x \in (-1, 1)$, 两边求导可得:

$$S'(x) = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} \left(\frac{x^{2n-1}}{2n-1}\right)' = \sum_{n=1}^{\infty} x^{2n-2}$$
$$= 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$$

所以

$$S(x) = \int \frac{1}{1 - x^2} dx = \frac{1}{2} \ln \frac{1 + x}{1 - x} + C, \quad x \in (-1, 1)$$

上式取 x = 0 时,可得 C = 0,所以

$$S(x) = \frac{1}{2} \ln \frac{1+x}{1-x}, \quad x \in (-1, 1)$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1} \rightarrow 0$,级数发散

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

Step 2.
$$i \exists S(x) = \sum_{n=1}^{\infty} nx^{n+1}$$
 $x \in (-1, 1),$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1} \not\to 0$,级数发散

Step 2.
$$\exists S(x) = \sum_{n=1}^{\infty} nx^{n+1} = x^2 \sum_{n=1}^{\infty} nx^{n-1}, \quad x \in (-1, 1),$$

解 Step 1. 求收敛域:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

Step 2.
$$id S(x) = \sum_{n=0}^{\infty} nx^{n+1} = x^2 \sum_{n=0}^{\infty} nx^{n-1}, \quad x \in (-1, 1), \ \text{则}:$$

S(x)

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

Step 2. 记
$$S(x) = \sum_{n=1}^{\infty} nx^{n+1} = x^2 \sum_{n=1}^{\infty} nx^{n-1}, x \in (-1, 1), 则:$$

$$S(x) = x^2 \sum_{n=1}^{\infty} (x^n)'$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

Step 2.
$$id S(x) = \sum_{n=1}^{\infty} nx^{n+1} = x^2 \sum_{n=1}^{\infty} nx^{n-1}, \quad x \in (-1, 1), \ \text{则}:$$

$$S(x) = x^2 \sum_{n=1}^{\infty} (x^n)' = x^2 \left(\sum_{n=1}^{\infty} x^n\right)'$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

Step 2.
$$id S(x) = \sum_{n=1}^{\infty} nx^{n+1} = x^2 \sum_{n=1}^{\infty} nx^{n-1}, \quad x \in (-1, 1), \ \text{则}:$$

$$S(x) = x^2 \sum_{n=1}^{\infty} (x^n)' = x^2 \left(\sum_{n=1}^{\infty} x^n \right)' = \left(\frac{1}{1-x} - 1 \right)'$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$\therefore R = \frac{1}{\rho} = 1, \quad \text{收敛区间}(-1, 1)$$

当
$$x = \pm 1$$
 时,一般项 $nx^{n+1} = n(\pm 1)^{n+1}$ → 0,级数发散

Step 2.
$$\[\] \Im S(x) = \sum_{n=1}^{\infty} n x^{n+1} = x^2 \sum_{n=1}^{\infty} n x^{n-1}, \quad x \in (-1, 1), \] \]$$

$$S(x) = x^2 \sum_{n=1}^{\infty} (x^n)' = x^2 \left(\sum_{n=1}^{\infty} x^n \right)' = \left(\frac{1}{1-x} - 1 \right)' = \frac{x^2}{(1-x)^2}$$

注 等式

$$\sum_{n=1}^{\infty} n x^{n+1} = \frac{x^2}{(1-x)^2}, \quad x \in (-1, 1)$$

推出

$$\sum_{n=1}^{\infty} n x^{n-1} = \frac{1}{(1-x)^2}, \quad x \in (-1, 1)$$

注 等式

$$\sum_{n=1}^{\infty} n x^{n+1} = \frac{x^2}{(1-x)^2}, \quad x \in (-1, 1)$$

推出

$$\sum_{n=1}^{\infty} n x^{n-1} = \frac{1}{(1-x)^2}, \quad x \in (-1, 1)$$

中取 $x=\frac{1}{2}$,可得

$$1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \frac{5}{2^4} + \cdots$$

注 等式

$$\sum_{n=1}^{\infty} n x^{n+1} = \frac{x^2}{(1-x)^2}, \quad x \in (-1, 1)$$

推出

$$\sum_{n=1}^{\infty} n x^{n-1} = \frac{1}{(1-x)^2}, \quad x \in (-1, 1)$$

中取 $x=\frac{1}{2}$,可得

$$1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \frac{5}{2^4} + \dots = 4.$$