

Athens University of Economics and Business

M.Sc. Business Analytics

Machine Learning & Content Analytics

Title: Argument Detection

<u>Agenda</u>

- The Existing Problem
- Methodology
- Results

The Problem

Content Quality Evaluation of existing bibliography (scientific documents, essays, e-books, articles etc) regarding the achievement or not of the sustainable development goals.

The majority of papers do not include the necessary information in order to elaborate their findings. Need for a mechanism to detect valid papers that include complete arguments, meaning evidences that support existing claims.

Methodology

- Data Acquisition
- Data Preprocessing
- Data Cleansing
- Data preparation

- Pre-Trained Glove Embeddings
- Model Structure
- Hyper Parameters
- Performance Measurements
- Class Weights
- Optimizers and Learning Rates

- √ F1 Score (focused on claim and evidence classes)
- √ Confusion Matrix
- **X** Accuracy

Predictions of the best model on blind data set.

Showcasing the best model and its performance with plots, curves and matrices.

Hyper-Parameters Testing

CNN

RNN

- Number of Filters
- Extra Layers
- Kernel Size
- Batch Size
- Number of Epochs
- Dropout Rate (before/after pooling layer)
- Class Weights
- Optimizers
- Learning Rate

- Batch Size
- Number of Epochs
- Dropout Rate
- Class Weights
- Optimizers
- Learning Rate

Best CNN Model

Charact	Values	
	Number of filters (1 st layer)	15
Hyper-parameters	Number of filters (2 nd layer)	25
	Kernel size	3
	Hidden size	50
	Epochs	100
	Batch size	32
	Dropout rate	0.2
	Optimizers	Adam
Extras	Learning Rate	1E-3
	Class Weights	-

CNN Model Architecture

Embedding(7500, 300, input_length=33, weights=[embedding_matrix], trainable=False)

Conv1D(15, 3, padding='valid', activation='relu', strides=1)

Conv1D(25, 3, padding='valid', activation='relu', strides=1)

Dropout(0.2)

GlobalMaxPooling1D()

FC(Dense50) + Activation('relu')

Softmax Output(Dense3)

Layer (type)	Output	Shape	Param #
embedding_2 (Embedding)	(None,	33, 300)	2250000
conv1d_1 (Conv1D)	(None,	31, 15)	13515
conv1d_2 (Conv1D)	(None,	29, 25)	1150
dropout (Dropout)	(None,	29, 25)	0
<pre>global_max_pooling1d_1 (Glob</pre>	(None,	25)	0
dense_4 (Dense)	(None,	50)	1300
dense_5 (Dense)	(None,	3)	153
activation_2 (Activation)	(None,	3)	0
Total params: 2 266 118			

Total params: 2,266,118 Trainable params: 16,118

Non-trainable params: 2,250,000

Best CNN Model

Charac	Values	
	Bidirectional LSTM(1st layer)	33
	Bidirectional LSTM(2 nd layer)	33
Hyper-parameters	Epochs	60
	Batch size	256
	Dropout rate	0.1
	Optimizers	SGD
Extras	Learning Rate	1E-3
	Class Weights	-

RNN Model Architecture

Embedding(7500,300, input_length = 33, weights = [embedding_matrix], trainable = False)

LSTM(33, return_sequences=False)

LSTM(33, return_sequences=False)

Dropout in [0.1, 0.5]

Softmax Output (Dense3)

Model: "functional_11"

Layer (type)	Output Shape	Param #
input_6 (InputLayer)	[(None, 33)]	0
embedding_4 (Embedding)	(None, 33, 300)	2250000
bidirectional_5 (Bidirection	(None, 66)	88176
dropout_2 (Dropout)	(None, 66)	0
dense_7 (Dense)	(None, 3)	201

Total params: 2,338,377 Trainable params: 88,377

Non-trainable params: 2,250,000

Results – Model Comparison

From Classification Report

Best Chosen Model		f1-score (Class 1)	Accuracy
RNN	.403	.370	.736
CNN	.399	.407	.694

From Confusion Matrix

Best Chosen Model	Claims	Evidences
RNN	82/198 = 41%	117/297 = 39%
CNN	108/198 = 54%	153/297 = 51%

Results – Best Model

Roc Curves

Loss and Accuracy plots

Questions and Thoughts?

Thank you!