		পদার্থ বিজ্ঞ	গ্ৰ				
আইসোটোপ (তেজস্ক্রিয়তা)	-> শরীরের কোনো স্থানে কে কোবাল্ট-৬০: ক্যান্সার আক্রা আয়োডিন-১৩১: থাইরয়েড গ্র ফসফরাস-৩২: রক্তের লিউবে টেকনেশিয়াম-৯৯: দেহের হা * হাইড্রোজেনের ৭ টি আইসে	ন্ত কোষ ধ্বংস করে ক্রির অস্বাভাবিক বৃ কামিয়া রোগের চির্চি ড় বেড়ে যাওয়া কা	দ্ধিজনিত রে কৎসা রণ নির্ধারণ	াগের চিকিৎসা করা		াম (হাইডোজেন নিউট্রন সংখ্যা A - Z 0), ডিউটেরিয়াম, টিট্রিয়াম
তেজস্ক্রিয়তা	১৮৯৬ সালে ফরাসি বিজ্ঞান হয়ঃ বেকেরেল রশ্মি * সংজ্ঞাঃ পরমাণুর নিউক্লিয়া * তেজক্জিয়তা একটি <mark>অপ্রত্য</mark> * Radioactive Decay: * Radiative Activation	াস থেকে স্বতঃস্ফুর্ত <mark>াবর্তী প্রক্রিয়া (Onc</mark> শক্তির <mark>মুক্তি</mark> ঘটে	ভাবে রশ্মি f e way read	বৈকিরণের প্রত্রি		٠,	রে এই রশ্মির নামকরণ করা
বাৰ্ষিক গতি	 ৣয়						
আহ্নিক গতি	 ৣয়						
হিগস-বোসন কণা	⇒ এই কণা স্বীশ্বর কণ ⇒ এই কণার স্পিন ০ ⇒ ভরহীন কোনো কণ ⇒ হিগস ক্ষেত্র ভর সূর্যি ⇒ বোসন কণা পাউলি ⇒ সত্যেন্দ্র নাথ বোস	(শূন্য), কিন্তু ভর ত াা হিগস-বোসন ক্ষে ষ্ট করে না, তা কেব <mark>রে বর্জন নীতি মানে</mark>	মাছে ত্রে প্রবেশ ক গল ভর স্থানা <mark>নো</mark>	রলে ধীরে ধীরে ন্তুরিত করে হিণ	গস-বোসনের	মাধ্যমে	বেয়ছে
ফোটন কণা							
ডায়োড	⇒ p-type ও n-type অর্ধপরিবাহী পাশাপাশি জোড়া লাগিয়ে p-n জাংশন ডায়োড তৈরি করা হয় ⇒ ডায়োড <mark>রেক্টিফায়ার</mark> হিসেবে কাজ করে ⇒ রেক্টিফায়ার AC প্রবাহকে DC প্রবাহে রূপান্তরিত করে						
ম্যাক্স প্লাঙ্কের কোয়ান্টাম তত্ত্ব	 ⇒ ১৯০০ সালে ম্যাক্স ➡ ১৯০৫ সালে <mark>আইন</mark> ➡ এই তত্ত্বের সাহায্যে 	<mark>স্টাইন</mark> কোয়ান্টাম	তত্ত্বে র ব্যবহা	র করে আলোব		ার ব্যাখ্যা দেন	
কৃষ্ণবিবর (Black Hole)		নঃ জন হইলার (U	JSA) -> ১	৯৬৯ সালে			

নিউক্লিয় রিয়েক্টর	
আলো	অালোর স্পেকট্রামঃ বে-নি-আ-স-হ-ক-লা -> তর্জাদৈর্ঘ্য কম থেকে বেশি ব্রগুনিঃ তর্জাদৈর্ঘ্য কম + বিচ্যুতি, বিক্ষেপণ, প্রতিসরণ বেশি লালঃ " বেশি + " " কম ত্রজাদৈর্ঘ্য, বিচ্যুতির ব্যস্তানুপাতিক
রঞ্জন রশ্মি (এক্স-রে — X ray)	→ 1895 সালে বিজ্ঞানী রন্টজেন রঞ্জনরশ্মি আবিষ্কার করেন → এর জন্য তিনি ১৯০১ সালে নোবেল পুরস্কার পান যা বিজ্ঞান বিষয়ে ১ম নোবেল → এটি একটি <mark>তড়িৎচুম্বকিয় আড় তরজা</mark> → এটি উচ্চ ভেদন ক্ষমতাসম্পর → এর তরজাদৈর্ঘ্যঃ 10 ⁻⁸ থেকে 10 ⁻¹³ মিটার → ধর্মঃ - সরল পথে গমন করে - অদৃশ্য রশ্মি, চোখের রেটিনায় পড়লে দৃষ্টির অনুভূ - আলোর বেগে গমন করে — প্রতিফলন, প্রতিসরণ, পোলারণ ঘটে - আলোর তড়িৎ ক্রিয়া সৃষ্টি করে - ফটোগ্রাফিক প্লেটে প্রতিক্রিয়া সৃষ্টি করে - চার্জ নিরপেক্ষ, তাই তড়িৎ বা চুম্বক ক্ষেত্র দ্বারা বিক্ষিপ্ত হয় না - গ্যাসের মধ্য দিয়ে গমনের সময় গ্যাসকে আয়নিত করে - জীবন্ত কোষ - প্রতিপ্রভা সৃষ্টি করতে পারে
তর ভ া	তরজ্ঞা ২ ধরণেরঃ ১. অনুদৈর্ঘ্য তরজ্ঞা ২. অনুপ্রস্থ/আড় তরজ্ঞা ১. <mark>অনুদৈর্ঘ্য</mark> তরজ্ঞাঃ স্পন্দনের দিকের সাথে <mark>সমান্তরালে অগ্রসর</mark> হয় Ex: <mark>স্প্রিং-এর তরজা, শব্দ</mark> ২. <mark>অনুপ্রস্থ/আড়</mark> তরজাঃ স্পন্দনের দিকের সাথে <mark>সমকোণে বা আড়াআড়ি</mark> অগ্রসর হয়। যেমনঃ <mark>আলো, বেতার, পানি</mark> -এর তরজা
লেন্স	
গ্যাসের সূত্র	তাপমাত্রা — চার্লসের সূত্রঃ স্থির চাপে নির্দিষ্ট ভরের যেকোনো গ্যাসের <mark>আয়তন তার পরম তাপমাত্রার সমানুপাতিক V C T চাপ — বয়েলের সূত্রঃ স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের <mark>আয়তন ঐ গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক; PV = K তাপমাত্রা+চাপ — গে-লুস্যাকের সূত্রঃ স্থির আয়তনে নির্দিষ্ট ভরের কোনো গ্যাসের <mark>চাপ, তার পরম তাপমাত্রার সমানুপাতিক</mark> P C T</mark></mark>
পরম শুন্য তাপমাত্রা	 <u>সংজ্ঞাঃ</u> যে তাপমাত্রায় চার্লস বা গে-লুস্যাকের সূত্রানুসারে কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়, তাকে পরম শূন্য তাপমাত্রা বলে। পরম শূন্য তাপমাত্রাঃ -273°C বা 0 কেলভিন (K) ব্হ্মাণ্ডে সবচেয়ে কম তাপমাত্রাঃ 0 কেলভিন (K)

রোধের সূত্র তাপের প্রবাহ	১. দৈর্ঘ্যের সূত্রঃ
সংরক্ষণশীল বল	তাপের বিকিরণঃ * কোনো বস্তু বা কণার উপর যে বল দ্বারা কৃত মোট কাজের পরিমাণ শূন্য (০), তাই সংরক্ষণশীল বল। * যথাঃ অভিকর্ষজ বল, বৈদ্যুতিক বল, চৌম্বক বল, আদর্শ স্প্রিং-এর বিকৃতি
অসংরক্ষশীল বল	* কোনো বস্তু বা কণার উপর যে বল দ্বারা কৃত মোট কাজের পরিমাণ শূন্য নয় * যথাঃ ঘর্ষণ বল, সান্দ্র বল
মৌলিক কণিকা	- যেসব সৃষ্ণ কণিকা দ্বারা পরমাণু গঠিত, তাদেরকে মৌলিক কণিকা বলে। - পরমাণুর মৌলিক কণিকা ৩ টিঃ ইলেকট্রন, প্রোটন, নিউট্রন। - ভর বর্গালী বিক্ষেপণ পদ্ধতিতে পরমাণুর ভর পরিমাপ করা যায়। - আাভোগেড়োর সংখ্যা ব্যবহার করে কোনো পদার্থের একটি অণুর ভর নির্ণয় করা যায়। ইলেকট্রানঃ * বিজ্ঞানী থ্যসন এটি আবিষ্কার করেন। * প্রতীকঃ ৫ * আখানঃ - 1.6 x 10 ⁻¹⁹ কুল্ম্ব (C) * ভরঃ 9.11 x 10 ⁻³¹ kg * এর আখান ঋণাত্মক (-) প্রাটনঃ * বিজ্ঞানী রাদারফোর্ট এটি আবিষ্কার করেন। * প্রতীকঃ p * আখানঃ + 1.6 x 10 ⁻¹⁹ কুল্ম্ম্ব (C) (ইলেকট্রোনের প্রায় সমান) * ভরঃ 1.67 x 10 ⁻²⁷ kg (নিউট্রোনের প্রায় সমান) * এর আধান ধনাত্মক (+) নিউট্রোনঃ * বিজ্ঞানী চ্যাডউইক এটি আবিষ্কার করেন। * প্রতীকঃ n * ভরঃ 1.67 x 10 ⁻²⁷ kg * এর আধান নেই (শ্ন্যা)
মৌলিক রাশি	* যে সকল রাশি স্বাধীন ও নিরপেক্ষ এবং অন্য রাশির উপর নির্ভর করে না, তাই মৌলিক রাশি * মৌলিক রাশিঃ ৭ টি => দৈর্ঘ্য, ভর, সময়, তাপমাত্রা, তড়িৎ প্রবাহ, দীপন তীব্রতা, পদার্থের পরিমাণ * বিভিন্ন মৌলিক রাশির এককঃ দৈর্ঘ্যঃ মিটার ভরঃ কিলোগ্রাম সময়ঃ সেকেন্ড তাপমাত্রাঃ কেলভিন তড়িৎ প্রবাহঃ অ্যাম্পিয়ার দীপন তীব্রতাঃ ক্যাভেলা পদার্থের পরিমাণঃ মোল

	জীব বিজ্ঞান
শ্রেণিবিন্যাসবিদ্যা (Taxonomy)	এই পদ্ধতির মাধ্যমে জীবজগতকে তাদের বৈশিষ্ট্যের ভিত্তিতে ধাপে ধাপে ভাগ করা হয় ক্যারোলাস লিনিয়াসঃ - শ্রেণিবিন্যাসবিদ্যার জনক - দ্বিপদ নামকরণের জনক শ্রেণিবিন্যাসের ধাপঃ জগৎ (kingdom) — পর্ব (phylum) - শ্রেণি (class) - বর্গ (order) — গোত্র (family) — গণ (genus) — প্রজাতি (species) মানুষের বৈজ্ঞানিক নামঃ Homo Sapiens
ধমনি দ্বারা রক্ত পরিবহণ	সাবক্লেভিয়ালঃ <mark>ফুসফুস</mark> আন্তঃম্যামারিঃ স্তনগ্রন্থি, বক্ষীয় প্রাচীর, পেরিকার্ডিয়াম সার্ভিকালঃ <mark>অক্সিপুট</mark> পেশি থাইরোসার্ভিকালঃ থাইরয়েড গ্রন্থি, ল্যারিংক্স, ঘাড়ের পেশি ভার্টিব্রালঃ <mark>মেরুদ্ণড</mark> সিলিয়াকঃ পাকস্থলী, যকৃত ফ্রেনিকঃ <mark>ডায়াফ্রাম</mark> মেসেন্টেরিকঃ অন্ত্রের বিভিন্ন অংশ জননঃ গোনাড ইলিয়াকঃ <mark>পেলভিস</mark> , উরু, পা
হৃৎপিড	বৈশিষ্ট্যঃ বক্ষণহ্বরের বামদিকে দুই ফুসফুসের মাঝখানে মোচাকৃতির অঞ্চা এটি পেরিকার্ডিয়াম নামক দুই-স্তর বিশিষ্ট পাতলা পর্দা দ্বারা আবৃত হৎপিণ্ড তিনটি স্তরে বিভক্তঃ এপিকার্ডিয়াম (বহিস্তর), মায়োকার্ডিয়াম (মধ্যস্তর), এন্ডোকার্ডিয়াম (ভিতরের স্তর) মায়োকার্ডিয়ামঃ সবচেয়ে পুরু (মোটা) এবং এটি সংকোচনের কারণে হৃৎপিণ্ড পাম্প করে রক্ত সঞ্চালন করে হৎপিণ্ড হৃৎপেশী নামক এক ধরণের অনৈচ্চিক পেশি দ্বারা আবৃত এটি প্রতি মিনিটে প্রায় ৭২ বার সংকুচিত ও প্রসারিত হয় হৎপিণ্ড ৪টি প্রকোষ্ঠে বিভক্তঃ উপরের দুটি প্রকোষ্ঠের নামঃ অলিন্দ নিচের দুটি প্রকোষ্ঠের নামঃ নিলয়
রাইবোজোম / রাইবোসোম	সাইটোপ্লাজমে মুক্ত অবস্থায় বিরাজমান বা অন্তঃপ্লাজমীয় জালিকার গায়ে অবস্থিত যে দানাদার কণায় প্রোটিন সংশ্লেষণ ঘটে, তাই রাইবোসোম * ১৯৫৫ সালে <mark>প্যালাডে</mark> রাইবোসোম আবিষ্কার করেন * এটি প্রাণী ও উদ্ভিদ উভয় কোষে উপস্থিত থাকে * প্রধান কাজঃ প্রোটিন সংশ্লেষণ করা ও স্নেহ জাতীয় পদার্থের বিপাক সাধন করা। এজন্য রাইবোসোমকে প্রোটিন ফ্যাক্টরি বলা হয় * এটি প্রোটিনের পলিপেপটাইড চেইন সংযোজন করে এবং এ সকল কাজে প্রয়োজনীয় এনজাইম সরবরাহ করে।
ভাইরাস	* ভাইরাস অকোষীয় * এর সাইটোপ্লাজম, কোষঝিল্লী, কোষ প্রাচীর, রাইবোসোম, মাইটোকন্ডিয়া, নিউক্লিয়াস <mark>থাকে না</mark> * এর নিউক্লিক এসিড হিসেবে DNA এবং RNA থাকে
ব্যাকটেরিয়া	গ্রিক শব্দঃ Bakterion = Little rod আবিষ্কারকঃ আ্যান্টনি ফন লিউয়েন হক (১৬৭৫) -> Father of Bacteriology -> ওলন্দাজ নামকরণঃ এহরেনবার্গ (জার্মানি) ব্যাকটেরিয়া তত্ত্বঃ লুই পান্তুর (ফরাসি) বৈশিষ্ট্যঃ
টিকা	* DPT-1, OPV-1: শিশু জন্মের ৬ সপ্তাহ বয়সে * TT: ১০-১৬ বছর * মহিলাদের ধনুষ্টংকারের TT টিকা দিতে হবেঃ ১৫ বছর হলে * ভিটামিন-ম ক্যাপসুলঃ শিশুদের ৬ মাস অন্তর অন্তর বছরে মোট ২ বার

টিকার প্রকারভেদ	
AIDS (Acquired Immune Deficiency Syndrome)	* ১৯৮১ সালে USA তে ১ম সনাক্ত হয় * HIV (Human Immuno Dificiency Virus) ভাইরাসের মাধ্যমে এই রোগ হয় * HIV শ্বেত রক্তকণিকার T-লিম্ফোসাইটকে আক্রমণ করে
ভিটামিন বা খাদ্যপ্রাণ	 ভিটামিন প্রত্যক্ষভাবে দেহ গঠনে অংশগ্রহণ না করলেও এদের অভাবে দেহের ক্ষয়পূরণ, বৃদ্ধিসাধন বা তাপশক্তি উৎপাদন ইত্যাদি বিভিন্ন ক্রিয়াগুলো সুসম্পন্ন হতে পারে না ভিটামিনের প্রকারভেদঃ রেহ জাতীয় পদার্থে দ্রবণীয়ঃ ভিটামিন A, D, E, K পানিতে দ্রবণীয়ঃ B-complex, C
ভিটামিনের অভাবজনিত রোগ	* ক্যালসিয়াম (Ca)-এর অভাবে -> রিকেটস, অস্টিওম্যালেসিয়া (বয়স্ক নারীদের)
প্রোটিন বা আমিষ	 মাছ, মাংস, ডিম, দুধ এগুলো প্রোটিন জাতীয় খাদ্য প্রোটিনের কাজঃ দেহে রোগ প্রতিরোধকারী <mark>এন্টিবডি প্রোটিন থেকে তৈরি হয়</mark> দেহের বৃদ্ধি প্রোটিনের প্রধান কাজ দেহে শক্তি উৎপন্ন করে প্রটিনের অভাবে তৈরিকৃত সমস্যাঃ শিশুদের প্রোটিনের অভাবে — কোয়াশিয়রকর রোগ হয় দেহের স্বাভাবিক বৃদ্ধি বাধাগ্রস্থ হয়
টিস্যু	
স্নায়ুটিস্যু বা নাৰ্ভটিস্যু	 প্রাণী দেহের এই টিস্যু উদ্দীপনায় সাড়া দিয়ে উপযুক্ত প্রতিবেদন সৃষ্টি করে স্নায়ুটিস্যুর এককঃ স্নায়ুকোষ বা নিউরন প্রতিটি নিউরন ৩ টি অংশ নিয়ে গঠিতঃ কোষদেহ, ডেনছেন, অ্যাএক্সন
প্রাগায়ন	স্ব-পরাগায়নঃ ধুতুরা পর-পরাগায়নঃ শিমুল, পেঁপে স্ব+পর পরাগায়নঃ সরিষা, কুমড়া

Morphology: অঞ্চাসংস্থানবিদ্যা Physiology: শারীরবিদ্যা Embryology: ভ্রণবিদ্যা Histology: টিস্যুবিদ্যা জীববিজ্ঞানের বিভিন্ন শাখা Cytology: কোষবিদ্যা Genetics: বংশগতিবিদ্যা Ecology: বাস্তুবিদ্যা Evolution: বিবর্তন ■ অধিকাংশ উদ্ভিদ নিজের খাদ্য নিজে তৈরি করতে পারে ■ উদ্ভিদের কোষপ্রাচীর সেলুলোজ দিয়ে তৈরি উদ্ভিদজগৎ ফুলের উপর ভিত্তি করে উদ্ভিদ ২ প্রকারঃ সপুষ্পক উদ্ভিদ, অপুষ্পক উদ্ভিদ পত্রকক্ষোঃ উদ্ভিদের কাণ্ডের সাথে পাতা যে কোণ উৎপন্ন করে বৈশিষ্ট্যঃ এসব উদ্ভিদে ফুল উৎপন্ন হয়। সপুষ্পক উদ্ভিদ এদের দেহ সুস্পষ্টভাবে মূল, কাণ্ড ও পাতায় বিভক্ত ■ উদাহরণঃ আম, ধান, নারিকেল বৈশিষ্ট্যঃ অপুষ্পক উদ্ভিদে ফুল-ফল-বীজ উৎপন্ন হয় না এরা স্পোর বা রেণুর মাধ্যমে বংশবৃদ্ধি করে অপুষ্পক উদ্ভিদ ৩ ধরণেরঃ সমাঞ্চাবর্গীয়, মসবর্গীয়, ফার্নবর্গীয় সমাঞ্চাবর্গীয় অপুষ্পক উদ্ভিদঃ এদের দেহ মূল, কাছ ও পাতায় বিভক্ত করা যায় না এদের মধ্যে যাদের ক্লোরোফিল আছে তারা নিজের খাদ্য নিজে তৈরি করতে পারে। যেমনঃ **শৈবাল (স্পাইরোগাইরা)** যাদের ক্লোরোফিল নেই, তারা নিজের খাদ্য নিজে তৈরি করতে পারে না। যেমনঃ ছ্রাক (এগারিকাস) মসবর্গীয় অপুষ্পক উদ্ভিদঃ অপুষ্পক উদ্ভিদ এদের দেহ, কাণ্ড ও পাতায় বিভক্ত করা যায় মসের মূল নেই, মূলের পরিবর্তে রাইজয়েড নামক সূত্রাকার অভ্যাণু থাকে এরা সাধারণত পুরানো ভেজা দেয়ালে কার্পেটের মতো নরম আস্তরণ করে জন্মায় উদাহরণঃ মস, ব্রায়াম ফার্নবর্গীয় অপুষ্পক উদ্ভিদঃ এদের দেহ মূল, কাণ্ড ও পাতায় বিভক্ত এদের দেহে পরিবহণ টিস্যু আছে এবং কচি পাতাগুলো কুণ্ডলীত থাকে স্যাতস্যাতে পরিবেশে জন্মায় উদাহরণঃ ফার্ন, টেরিস - এই প্রক্রিয়ায় একটি <mark>বৈষম্যভেদ্য ঝিল্লির</mark> মধ্য দিয়ে পানি (দ্রাবক) <mark>হালকা ঘনত্বের দ্রবণ থেকে ঘন দ্রবণের দিকে</mark> প্রবাহিত হয়। - এই প্রক্রিয়া দুই দ্রবণের ঘনত সমান না হওয়া পর্যন্ত চলতে থাকে। উদ্ভিদের অভিস্রবণ - উদাহরণঃ পানিতে <mark>শুকনো কিসমিস</mark> ডুবিয়ে রাখলে তা ফুলে উঠে। অধিকাংশ কলয়েডধর্মী পদার্থই পানিগ্রাহী উদ্ভিদদেহে বিভিন্ন কলয়েডধর্মী পদার্থ বিদ্যমানঃ <mark>স্টার্চ, সেলুলোজ, জিলেটিন</mark> -> এসব পদার্থ তাদের কলয়েডধর্মী গুণের উদ্ভিদের ইমবাইবিশন জন্যই পানি শোষণ করতে পারে। • ইমবাইবিশনঃ কলয়েডধর্মী বিভিন্ন পদার্থ (উদ্ভিদের ক্ষেত্রে কোষপ্রাচীর) যে প্রক্রিয়ায় নানা ধরণের তরল পদার্থ (উদ্ভিদের ক্ষেত্রে পানি) শোষণ করে। উদ্ভিদ মূলের মাধ্যমে শোষিত পানির কিছু অংশ বিপাকীয় কাজে ব্যবহার করে এবং বাকি অংশ বাষ্পাকারে বায়ুমণ্ডলে পরিত্যাগ করে। উদ্ভিদের দেহাভ্যন্তর থেকে এই পানির পরিত্যাগ বা নির্গমণকে প্রস্বেদন বলে প্রস্কেদন কোথায় সংঘটিত হচ্চে, তার উপর ভিত্তি করে প্রস্কেদন ৩ প্রকারঃ ১. পত্ররন্ধীয় প্রম্বেদন (পাতা) ২. ত্বকীয় বা কিউটিকুলার প্রম্বেদন (দেহ ত্বক) ৩. লেন্টিকুলার প্রম্বেদন **লেন্টিকুলার প্রস্বেদনঃ** উদ্ভিদের <mark>কাণ্ডের বাকল ফেঁটে লেন্টিসেল নামক ছিদ্রের সৃষ্টি</mark> হয়। লেন্টিসেলের মাধ্যমে কিছু পানি বাইরে বের হয়ে যাবার প্রক্রিয়াকে লেন্টিকুলার প্রম্বেদন বলে। উদ্ভিদের প্রস্বেদন প্রম্বেদনের গুরুতঃ - এর ফলে কোষরসের ঘনত বৃদ্ধি পায় - পানি ও খনিজ লবণ শোষণে সাহায্য করে - উদ্ভিদদেহকে ঠাণ্ডা রাখে - পাতার আর্দ্রতা বজায় রাখে - খাদ্য তৈরির জন্য পাতায় অবিরাম পানি সরবরাহ বজায় থাকে

	- পাতায় প্রস্বেদনের ফলে জাইলেম বাহিকায় পানির যে টান সৃষ্টি হয়, তা মূলরোম কর্তৃক পানি শোষণ ও উদ্ভিদের শীর্ষে পরিবহণে সাহায্য করে প্রস্বেদন উদ্ভিদের জন্য গুরুষপূর্ণ হলেও অতিরিক্ত প্রস্বেদনের ফলে উদ্ভিদের মৃত্যুও হতে পারে। এজন্য প্রস্বেদনকে উদ্ভিদের Necessary Evil বলে।
কোষ	 কোষঃ জীবদেহের গঠন ও কাজের একক বিজ্ঞানী রবার্ট হক ১৬৬৫ সালে কোষ প্রত্যক্ষ করেন ভাইরাস অকোষীয় ব্যাকটেরিয়া আদি কোষীয় (এক কোষীয়) আদর্শ উদ্ভিদ কোষে ২টি অংশ থাকেঃ কোষপ্রাচীর, প্রোটোপ্লাজম কোষপ্রাচীরঃ এটি সেলুলোজ দিয়ে তৈরি এটি কোষের সজীব অংশকে রক্ষা করে ও কোষের সীমারেখা নির্দেশ করে অাটোপ্লাজমঃ কোষের অর্ধতরল, জেলির মত আঠালো, দানাদার বর্ণহীন সজীব অংশ প্রোটোপ্লাজমে শতকরা ৬৭-৯০% পানি।

রসায়ন বিজ্ঞান		
খনিজ পদার্থ	* সবচেয়ে শক্ত খনিজঃ হীরক * " নরম খনিজঃ ট্যালক	
আকরিক	* আয়রন (Fe)-এর আকরিকঃ ম্যাগনেটাইট, হেমাটাইট, লিমোনাইট, আয়রন পাইরাইটস * সোডিয়াম (Na)-এর আকরিকঃ রকসল্ট, চিলি সল্টপিটার, ন্যাট্রোন, বোরাক্স * ক্যালসিয়াম (Ca)-এর আকরিকঃ চুনাপাথর, জিপসাম, ডলোমাইট * অ্যালুমিনিয়াম (Al)-এর আকরিকঃ বক্সাইট, কোরান্ডাম, ক্রায়োলাইট	
LSD [Lysergic Acid Diethylamide]	* এটি সুইস বিজ্ঞানী আলবার্ট হফম্যান কর্তৃক আবিষ্কৃত শক্তিশালী সাইকেলেডিক পদার্থ * এটি মানসিক অবস্থায় গভীর পরিবর্তন আনতে সক্ষম এবং সচরাচর হ্যালুসিনেশন তৈরি করে	
ক্ষার	* ধাতু বা ধাতুর ন্যায় ক্রিয়াশীল যৌগমূলক যেসব হাইড়োক্সাইড পানিতে দ্রবণীয়, তাদেরকে ক্ষার বলে * প্রশমণ বিক্রিয়াঃ অম্ল-ক্ষারক বিক্রিয়া * ক্ষার জলীয় দ্রবণে হাইড়োক্সিল আয়ন (OH) দান করে * ক্ষার লাল লিটমাসকে নীল করে [এসিডঃ নীল লিটমাসকে লাল করে] * ক্ষারের জলীয় দ্রবণকে স্পর্শ করলে সাবানের মত পিচ্ছিল মনে হয় * মৃদু ক্ষারঃ NH4OH, Fe(OH)2, Fe(OH)3, Al(OH)3 * তীব্র ক্ষারঃ NaOH, KOH, Ca(OH)2	
নিউমোনিয়া	* নিউমোনিয়াঃ ফুসফুসের প্রদাহ * বেপাটাইটিসঃ যকৃতের প্রদাহ * নেফাইটিসঃ কিডনির প্রদাহ * নিউমোকক্কাস নামক ব্যাকটেরিয়া এ রোগের অন্যতম কারণ * ফুসফুসের আবরণকে বলা হয়ঃ প্লুরা	
অ্যালকেন	* অসম্পৃক্ত হাইড্রোকার্বনের সাথে হাইড্রোজেন সংযোজন করে অ্যালকেন প্রস্তুত করা হয় * এতে প্রভাবক হিসেবে নিকেল (Ni) ব্যবহৃত হয় * ১ - ৪ কার্বন বিশিষ্ট অ্যালকেনঃ গ্যাসীয় * ৫ - ১৫ কার্বন বিশিষ্ট অ্যালকেনঃ তরল * ১৬ থেকে উচ্চতর অ্যালকেনঃ কঠিন * অ্যালকেন সাধারণত প্যারাফিন নামে পরিচিতি * অ্যালকেন এসিড, ক্ষার, ধাতু ও ক্ষারক কারো সাথে রাসায়নিক ভাবে বিক্রিয়া করে না	
pH স্কে ল	* বিজ্ঞানী সোরেনসেনঃ pH স্কেল আবিস্কার করেন * কোনো পদার্থ অন্দ্রীয়, ক্ষারীয় নাকি নিরপেক্ষ তা বুঝার জন্য এই স্কেল ব্যবহৃত হয় * pH = -log[H ⁺] => এটি কোনো দ্রবণের হাইড়োজেন আয়নের ঘনমাত্রা প্রকাশ করে * pH স্কেলের মানঃ ০ - ১৪ * ৭ থেকে কমঃ অন্দ্রীয় দ্রবণ * ৭ থেকে বেশিঃ ক্ষারীয় দূরণ * ৭ = নিরপেক্ষ দ্রবণ	
রাসায়নিক সংকেত	Na ₂ CO ₃ . 10H20 : কাপড় কাচার সোডা C ₁₇ H ₃₅ COONa : কাপড় কাচার সাবান (সোডিয়াম ইন্টিয়ারেট) C ₁₇ H ₃₅ COOK : শেভিং ফোম/জেল (পটাশিয়াম ইন্টিয়ারেট) NaHCO ₃ : বেকিং সোডা CuSO ₄ . 5H2O : তুঁতে K ₂ SO ₄ .Al(SO ₄) ₃ . 24H2O : ফিটকিরি	
রাসায়নিকের পদার্থের অভাবে উদ্ভিদে প্রতিক্রিয়া	ফসফরাস (Fe): উদ্ভিদের পাতা বেগুনি রঙ ধারণ করে ম্যাগনেশিয়াম (Mg): এর অভাবে ক্লোরফিল সংশ্লেষিত হয় না, ফলে পাতার সবুজ রঙ কমে যায় পটাশিয়াম (K): পাতার শীর্ষ ও কিনারা হলুদ হয় ও মৃত অঞ্চল সৃষ্টি হয় নাইট্রোজেন (N): এর অভাবে পাতার ক্লোরোফিল সৃষ্টিতে বিঘ্ন ঘটে ক্লোরসিসঃ ক্লোরফিলের অভাবে পাতা হলুদ হয়ে যাওয়ার প্রক্রিয়া	
এসিড	* সাধারণত জৈব এসিডগুলো দুর্বল এসিড হয় এবং রাসায়নিক এসিডগুলো শক্তিশালী এসিড হয় * তবে, <mark>কার্বোনিক এসিড (H_2CO_3) রাসায়নিক এসিড হয়েও দুর্বল এসিড</mark> * <mark>দুর্বল এসিডঃ</mark>	

	এসিটিক এসিড বা ভিনেগার (CH ₃ COOH), সাইট্রিক এসিড (C ₆ H ₆ O ₇), অক্সালিক এসিড (HOOC-COOH) * শক্তিশালী এসিডঃ সালফিউরিক এসিড (H ₂ SO ₄), নাইট্রিক এসিড (HNO ₃), হাইড্রোক্লোরিক এসিড (HCl) * <mark>একোয়া রেজিয়া (Aqua Regia): নাইট্রিক এসিড এবং হাইড্রোক্লোরিক এসিডের ১:৩</mark> অনুপাতের দ্রবণ যাকে অভিজাত দ্রবণ (royal water) বলা হয়। HNO ₃ + 3HCl = NOCl + Cl ₂ + 2H ₂ O
পলিমার	* অনেকগুলো ছোট অনু (মনোমার) একত্রে হয়ে পলিমার তৈরি করে। * পিভিসি পাইপ (PVC) — ভিনাইল ক্লোরাইড নামক মনোমার থেকে তৈরি হয়। * পলিথিন — ইথিলিন নামক মনোমার থেকে তৈরি হয়। * বৈদ্যুতিক সুইচ তৈরিতে ব্যবহৃত পলিমার ব্যাকেলাইট তৈরি হয়ঃ ফেনল ও ফরমালডিহাইড নামক মনোমার থেকে। * বাসন তৈরির পলিমার মেলামাইন রেজিন তৈরি হয়ঃ মেলামাইন ও ফরমালডিহাইড নামক মনোমার থেকে। প্রাকৃতিক পলিমারঃ - পাট, সিল্ক, সুতি কাপড়, রাবার কৃত্রিম পলিমারঃ - মেলামাইন, রেজিন, ব্যাকেলাইট, পিভিসি, পলিথিন
জারণ-বিজারণ বিক্রিয়া রেডক্স (Redox) বিক্রিয়া	* Redox = Red (Reduction — বিজারণ) + Ox (Oxidation — জারণ) * বিজারণে ইলেকট্রোন গ্রহণ — আনোডে জারণ, ক্যাথোডে বিজারণ জারণে ইলেকট্রোন দান * বিজারকঃ বিজারক নিজে জারিত হয়ে (ইলেকট্রোন দান — H ₂ , Na, K) অন্যকে বিজারিত করে। তীব্র বিজারকঃ H ₂ , Li, Na, K, Rb বিজারকঃ H ₂ S, Mg, Ca * জারকঃ জারক নিজে বিজারিত হয়ে (ইলেকট্রোন দান — O ₂ , Cl ₂) অন্যকে জারিত করে। জারকঃ HNO ₃ , H ₂ SO ₄ , O ₂ , Cl ₂ , F ₂ * SO ₂ : একই সাথে জারক ও বিজারক * H ₂ O ₂ : সাধারণত জারকের মতো কাজ করলেও অশ্রীয় বা ক্ষারীয় দ্রবণে বিজারকের মতো কাজ করে H ^T + Cl ⁻ = HCl জারণ বিজারণ * ইলেকট্রোন স্থানান্তরের মাধ্যমে (জারণ-বিজারণ) সংঘটিত বিক্রিয়াঃ সংযোজন, বিয়োজন, প্রতিস্থাপন ও দহন বিক্রিয়া * ইলেকট্রোন স্থানান্তরের মাধ্যমে (জারণ-বিজারণ) সংঘটিত বিক্রিয়াঃ সংযোজন, বিয়োজন, প্রতিস্থাপন ও দহন বিক্রিয়া * ইলেকট্রোন স্থানান্তরে হয় না এরূপ বিক্রিয়াঃ প্রশমন ও অধঃকেপ বিক্রিয়া

জারণ সংখ্যার নিয়ম	যৌগের সংকেত	মৌল ও জারণ সংখ্যা
ধাতু সমুহের জারণ সংখা ধনাত্বক এবং অধাতু সমুহের জারণ সংখা ঋণাত্বক	NaCl	Na= +1 Cl=-1
নিরপেক্ষ বা মুক্ত বা পরমাণু অবস্থায় মৌলের জারণ সংখ্যা শূন্য(০) ধরা হয়	Fe, H ₂	Fe= 0 H=0 মোট=0
নিরপেক্ষ যৌগে পরমাণুর মোট জারণ সংখ্যা শূন্য হয়	H ₂ O	H=+1, O=-2
আধান বিশিষ্ট আয়নে পরমাণুর মোট জারণ সংখ্যা তার আধান সংখ্যার সমান হয়	SO ²⁻ 4	SO ²⁻ 4=-2
ক্ষার ধাতু সমুহের জারণ সংখ্যা হয়	KCI,K ₂ CO ₃	K=+1
মৃৎক্ষার ধাতু সমুহের জারণ সংখ্যা হয়	CaO, MgSo ₄	Ca=+2 Mg=+2
ধাতব হ্যালাইডে হ্যালোজেনের জারণ সংখ্যা হয়	MgCl _{2, LiCl}	CI=-1
অধিকাংশ যৌগে হাইড্রোজেনের জারণ সংখ্যা ১ কিন্তু ধাতব হাইড্রাইডে হাইড্রোজেনের জারণ সংখ্যা -১।	NH ₃ LiAlH ₄	H=+1 H=-1
অধিকাংশ যৌগে অক্সিজেনের জারণ সংখ্যা -2 , কিন্তু <mark>পার অক্সাই</mark> ডে অক্সিজেনের জারণ সংখ্যা -1 এবং সুপার অক্সাইডে অক্সিজেনের জারণ সংখ্যা -½	K ₂ O, CaO K ₂ O ₂ ,H ₂ O ₂ NaO ₂ , KO ₂	O=-2 O=-1 O=-½

উদাহরণঃ

 $[Fe(CN)_6]^{-4}$ এ Fe-এর জারণ সংখ্যাঃ x এখানে, CN-এর প্রমাণ জারণ সংখ্যাঃ -1 এবং সম্পূর্ণ যৌগটির আয়নঃ -4 তাই,

x + (-1).6 = -4

বা, x = +2, যা এই যৌগে আয়রনের জারণ সংখ্যা।

জারণ সংখ্যা

- যে কোষে রাসায়নিক জারণ-বিজারণ বিক্রিয়ার ফলে রাসায়নিক শক্তি তড়িৎ শক্তিতে রূপান্তরিত হয়, তাকে তড়িৎ রাসায়নিক কোষ বলে।
- তড়িৎ রাসায়নিক কোষ ২ প্রকারঃ প্রাইমারি কোষ, সেকেন্ডারি কোষ।

তড়িৎ রাসায়নিক কোষ

প্রাইমারি বা প্রাথমিক কোষঃ

- * এসব কোষ <mark>সরাসরি রাসায়নিক শক্তি তড়িৎ শক্তিতে</mark> রূপান্তরিত করে তড়িৎ প্রবাহ বজায় রাখে।
- * উদাহরণঃ ড্যানিয়েল কোষ, শুষ্কো কোষ

	সেকেন্ডারি বা সঞ্চয়ী কোষঃ	
	* এরা <mark>তড়িৎ শক্তিকে রাসায়নিক শক্তিতে</mark> রূপান্তরিত করে সঞ্চয় করে এবং <mark>প্রয়োজনবোধে সেই রাসায়নিক শক্তি তড়িৎ শক্তিতে</mark>	
	রূপান্তরিত করতে পারে।	
	* উদাহরণঃ লেড এসিড কোষ, নিকেল অক্সাইড কোষ * এটি পানিতে অদুবণীয়।	
	* জৈব দ্রাবক — এসিটোন, মিথানলে অদ্রবণীয়।	
রাবার	* কিছু জৈব দ্রাবক – টারপেন্টাইন, পেট্রোল, ইথার, বেনজিন এগুলোতে সহজেই দ্রবণীয়	
	* সাধারণত কোনো পদার্থকে তাপ দিলে তার আয়তন বৃদ্ধি পায়, কিন্তু তাপে রাবারের আয়তন হাস পায়।	
	 ওজন গ্যাস রাবারের সঞ্চো বিক্রিয়ে করে এবং রাবারকে ক্ষয় করে। 	
	- <mark>ইথানোয়িক এসিড বা অ্যাসিটিক এসিড (CH₃-COOH) এর ৬-১০% জলীয় দুবণকে</mark> ভিনেগার বা সিরকা বলে।	
Sec 1913		
ভিনেগার	* অধিকাংশ অণুজীবের বংশবিস্তার হয়ঃ pH 6.5-7.5 এর মধ্যে, অর্থাৎ হালকা এসিডিও বা ক্ষারীয় মাধ্যমে। ভিনেগার এসিটিক	
	হওয়ায় এখানে অণুজীব বংশবিস্তার করতে পারে না। তাই ভিনেগার প্রিজারভেটিভ হিসেবে ব্যবহৃত হয়।	
	 এই পদ্ধতিতে লোহার উপর (জিংক)দস্তার প্রলেপ দেয়া হয় 	
গ্যালভানাইজিং	 এই পদ্ধতিতে তড়িৎ বিশ্লেষণের প্রয়োজন নেই 	
01 101 112101	 এর মাধ্যমে লোহার জিনিসকে গলিত দস্তায় ডুবিয়ে পাতলা প্রলেপ দেয়া হয় 	
	- এসিড ও ক্ষারকের বিক্রিয়ায় লবণ ও পানি উৎপন্ন হয়।	
	- बाग्र ७ स्वारंक्त्र विक्रिया विक्राय विक्राय विक्राय	
	বিভিন্ন ধরণের লবণঃ	
	* সোডিয়াম ক্লোরাইড (NaCl) _ খাবারের লবণ	
	* সোডিয়াম গ্লুটামেট 🗕 টেস্টিং সল্ট বা লবণ	
	* সোডিয়াম স্টিয়ারেট ($C_{17}H_{35}COONa$) — কাপড় কাচা সাবান যা একটি লবণ [টুথপেস্টঃ ক্ষার জাতীয়]	
	* সোডিয়াম কার্বোনেট (Na ₂ CO ₃) _ কাপড় কাচা সোডা যা একটি লবণ	
	st পটাশিয়াম স্টিয়ারেট ($ m C_{17}H_{35}COOK$) $ m $ শেভিং ফোম বা জেল যা একটি লবণ	
	* তুঁতে (CuSO ₄ . <mark>5</mark> H ₂ O) _ একটি লবণ	
	* ইপসম লবণঃ MgSO4. 7H2O	
er act	st ফিটকিরি [K_2SO_4 $-Al_2(SO_4)_3$. $24H_2O$] $-$ একটি লবণ st চুনাপাথর একটি লবণ	
ল্বণ	* মাটির উর্বরতা বৃদ্ধিতে ব্যবহৃত বেশির ভাগই লবণ।	
	উদাহরণঃ অ্যামোনিয়াম নাইট্রেট, অ্যামোনিয়াম ফসফেট, পটাশিয়াম নাইট্রেট	
	- (1) (1) - (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	লবণের ব্যবহারঃ	
	=> কৃষি জমিতে ব্যাকটেরিয়া ও ভাইরাস প্রতিরোধে এবং শৈবালের উৎপাদন বন্ধে তুঁতে বা কপার সালফেট প্রয়োগ করা হয়।	
	=> তুঁতে, মারকিউরিক সালফেট (HgSO ₄), সিলভার সালফেট (AgSO ₄) শিল্পকারখানায় প্রভাবক হিসেবে কাজ করে।	
	=> টেক্সটাইল ও রং তৈরির কারখানায় রং ফিক্স করার জন্য লবণ ব্যবহৃত হয়।	
	=> ধাতুর বিশুদ্ধকরণে লবণ ব্যবহৃত হয়।	
	=> রাবার প্রস্তুতিতে লবণ ব্যবহার করে রাবারকে (ল্যাটেক্স) রাবার গাছের নির্যাস থেকে আলাদা করা হয়। => ওষুধ কারখানায় স্যালাইন এবং অন্যান্য ওষুধে লবণ ব্যবহৃত হয়।	
	=> ডিটারজেন্টের ফিলার হিসেবে লবণ খুবই প্রয়োজনীয়।	
বিভিন্ন যৌগের রাসায়নিক সংকেত	* ব্লিচিং পাওডারঃ Ca(OCl)Cl * ক্লোরোফর্মঃ CHCl3	
विभिन्न देवाद्यात त्रात्मात्राच्या व विद्या	* বেকিং সোডাঃ NaHCl	
	- দুই বা ততোধিক ধাতু একত্রে মিশিয়ে সংকর ধাতু তৈরি করা হয়।	
	- প্রধান ধাতুর নামানুসারে সংকর ধাতুর নামকরণ করা হয়।	
	Address No. As Albert	
সংকর ধাতু	কপারের সংকর ধাতুঃ * পিতল (ব্রাস) = কপার + জিংক (৩৫%)	
	* কাঁসা (ব্ৰোঞ্জ) = কপাৱ + টিন (১০%)	
	স্টিল = লোহা + কাৰ্বন (১%)	
	 মৌলিক পদার্থঃ যে পদার্থকে ভাঙ্গালে অন্য কোনো পদার্থ পাওয়া যায় না। 	
মৌলিক পদার্থ	 মোট আবিষ্কৃত মৌলিক পদার্থঃ ১১৮ টি 	
נייווייואי זייוויין	 প্রকৃতিতে প্রাপ্ত মৌলিক সংখ্যাঃ ৯৮ টি 	
	পর্যায় সারণির গ্রপ-১ এর মৌলগুলোকে ক্ষার ধাতু বলে	
ক্ষার ধাতু (অ্যালকালি মেটাল)	বির সারাণর গ্রুপ-১ এর মোলগুলোকে সমর বাজু বলে এরা অত্যন্ত সক্রিয়	
איוש אוא (אוואואוואו נשמואו)	- এরা বত্যর পাশ্রুর ■ উদাহরণঃ লিথিয়াম (Li), সোডিয়াম (Na), পটাশিয়াম (K), রুবিডিয়াম (Rb), সিজিয়াম (Cs), ফ্রানসিয়াম (Fr)	
মৃত ক্ষার ধাতু		
হ্যালোজেন		
₩ 110-41-1		
	1	

নিষ্ক্রিয় গ্যাস	 পর্যায় সারণির ১৮তম (শূন্য) গ্রুপের মৌল নিদ্রিয় গ্যাসঃ হিলিয়াম (He), নিয়ন (Ne), আর্গন (Ar), ক্রিপ্টন (Kr), জেনন (Xe), রেডন (Rn), ওগানেসন (Og) নিদ্রিয় গ্যাস অন্য কোনো মৌলের সাথে বিক্রিয়া করে না — তাই এদেরকে অভিজাত (Noble) গ্যাস বা মহান গ্যাস বলে একমাত্র হিলিয়াম ছাড়া অন্য সকল নিদ্রিয় গ্যাসের <mark>যোজ্যতা স্তরে ৮টি করে ইলেক্ট্রন</mark> আছে। অক্টেড পূর্ণ থাকায় এরা অন্য মৌলের সাথে বিক্রিয়া করে না। হিলিয়ামের যোজ্যতা স্তরে মাত্র ২টি ইলেক্ট্রন থাকায় হিলিয়াম Octet Rule অনুসরণ করে না নিদ্রিয় গ্যাসের ধর্মঃ নিদ্রিয় গ্যাসের আয়নিক শক্তি সবচেয়ে বেশি সাধারণ তাপমাত্রা ও চাপে এক (১) পরমাণুক গ্যাস বর্ণ, গন্ধ বা স্বাদ নেই গলনাজ্ঞ ও স্কুটনাজ্ঞ অত্যন্ত কম