우수AMS (066590)

무사 만루의 상황

1루 주자. 알루미늄 다이캐스팅

자동차 부품의 소재 및 공정 변화가 진행 중이다. 내연기관차량은 연비 개선을 위해, 친환경 차량은 무게 감소를 위해 소재 및 공정 변화가 진행 중이다. 과거 공정은 주물에서 캐스팅으로, 소재는 철재에서 알루미늄으로 전환되고 있다. 특히 친환경차량의 경우 2차전지 배터리 무게 증가분을 자동차 자체 및 부품의 무게 감소를 통해서 대응하려고 노력 중이다.

동사는 2015년에 알루미늄 다이캐스팅 공장을 신설했으며, 점차 품목을 확대하고 있다. 2024년 하반기 대형 주조기(2,700톤) 입고가 예정되어 있다. 대형 주조기를 통해 다양한 사이즈의 제품을 생산할 수 있어 기존 매출처와 더불어 신규 매출처 확대를 추진하고 있다.

2루 주자. 해외진출

동사는 이미 인도에 진출해 있으며, 향후 북미로의 진출을 모색하고 있다. 국내 자동차 부품 기업들은 관세절감 및 보조금 혜택을 위해 미국, 멕시코 등 북중미에 2023년부터 신규투자 및 투자 확대가 진행되고 있다. 북미 진출 시 1) 주력 매출처의 현지 대응이 용이하다. 2) 글로벌 자동차 기업으로의 진출도 가능하다. 3) 마지막으로 미국대비 낮은 인건비를 통해 경쟁사 대비 이익률 개선도 기대된다.

3루 주자. 전동화

동사는 E-모빌리티 솔루션 업체로의 진화를 모색하고 있으며, 변화의 Key는 자회사인 우수 TMM이다. 초소형 전기차 국산화 개발을 통해 모터, 인버터 등의 부품 관련 기술력을 보유하고 있다. 이를 기반으로 항공, 방산, 육상, 해상 등 다양한 산업 및 기업으로 진출을 모색, 연내 가시적인 성과가 기대된다.

Forecasts an	d valuations	(K-IFRS	연결)
--------------	--------------	---------	-----

(억원, 원, %, 배)

결산 (12월)	2020A	2021A	2022A	2023A
매출액	2,287	3,104	3,253	3,480
영업이익	-61	-7	38	84
지배순이익	-76	-92	-175	102
PER	-18.9	-22.9	-7.7	11.0
PBR	2.2	2.7	2.0	1.4
EV/EBITDA	42.2	23.5	12.3	6.7
ROE	-10.3	-11.1	-23.0	13.1

자료: 유안타증권

NOT RATED (M)

목표주가 원 (I			! (M)
현재주가 (3/21)		3,0	020원
상승여력			-
시가총액		1,	180억원
총발행주식수		39,07	3,104주
60일 평균 거래대금			20억원
60일 평균 거래량		65	4,361주
52주 고/저	3,8	330원 / :	2,210원
외인지분율			1.25%
배당수익률			0.00%
주요주주	다담하모니	니제1호 ·	유한회사
주가수익률 (%)	1개월	3개월	12개월
절대	(6.9)	15.3	(6.6)
상대	(11.1)	9.6	(17.2)
절대 (달러환산)	(6.1)	13.8	(7.4)

무사 만루의 상황

1루 주자, 알루미늄 다이캐스팅

부품의 소재 및 공정이 변화되고 있다. 기존 내연기관차량에서는 연비 개선, 전기차 및 하이드 브리드차는 무게 감소를 위해 소재 및 공정 변화가 진행 중이다. 과거 공정은 주물에서 캐스팅으로, 소재는 철재에서 알루미늄으로 전환되고 있다. 특히 친환경차량의 경우 2차전지 배터리무게 증가분을 자동차 자체 및 부품의 무게 감소를 통해서 대응하려고 노력 중이다. 테슬라의기가캐스팅, 볼보의 메가케스팅, 현대차의 하이퍼캐스팅이 대표적이다. 부품에서는 알루미늄 캐스팅을 통해서 이러한 변화에 대응하고 있다.

동사는 2015년에 알루미늄 다이캐스팅 공장을 신설했으며, 점차 품목을 확대하고 있다. 2024년 하반기 대형 주조기(2,700톤) 입고가 예정되어 있다. 대형 주조기를 통해 다양한 사이즈의 제품을 생산할 수 있어 기존 매출처와 더불어 신규 매출처 확대를 추진하고 있다.

알루미늄 캐스팅 기술력을 확인할 수 있는 뉴스가 2024년 2월에 보도되었다. 현대차 그룹의 차세대 플랫폼에 장착되는 핵심전략 부품 19개 품목 4,900억원(PHEV TMED2 플랫폼 3,100억원 + EV eMeS 플랫폼 1,800억원) 규모를 수주했다. 신규 수주 중 50% 이상이 알루미늄 다이캐스팅 제품으로 포진되어 있다.

자동차 부품의 공급기간은 통상적으로 7년으로 기본으로 한다는 점에서 연간 700억원의 신규 매출이 발생할 수 있다. 공급기간은 2024년 7월~2030년으로 올해 하반기 매출 인식 시작, 2025년부터 본격적인 매출 인식이 될 것으로 기대된다. 참고로 연간 700억원은 2023년 연결 매출액의 20.1%의 해당되는 수치이다. 현대차 그룹의 대표 및 주력모델인 제네시스, 아이오닉 전기차 모델과 산타페/쏘렌토/스포티지 등의 하이브리드 SUV 차량에 탑재될 예정이라는 점에서 현대차그룹의 판매량 전망 대비 아웃퍼폼(Outperform)한 성장률 가능성도 높다고 판단된다.

[그림 1] 알루미늄 다이캐스팅 생산 라인. 하반기에 대형 주조기 입고 예정

자료: 우수 AMS, 유안타증권 리서치센터

[그림 2] 2023 년 신규 수주 적용 차종

자료: 우수 AMS, 유안타증권 리서치센터

2루 주자. 해외 진출

동사는 이미 인도에 진출해 있으며, 향후 북미로의 진출을 모색하고 있다.

인도. KAMA(한국자동차모빌리티산업협회)에 따르면 2023년 인도 자동차 시장 판매량은 476만 대로 중국과 미국에 이어 3위 시장이다. 인도 인구는 14억명 이상이며, 자동차 보급률이 아직 10%로 저조하다는 점에서 성장성이 높아 매력적인 시장이다.

현대차그룹의 2023년 인도 판매량은 60.2만대로 전년대비 9% 성장했다. 동사는 인도 현지법인 (우수인디아)를 2007년 12월에 설립했으며, 현대차그룹의 판매 증가와 동반한 매출성장세를 보이고 있다. 현대차그룹 외에도 스텔란티스 등의 해외 자동차 기업으로의 매출처도 보유하고 있다. 2019년 441억원에서 2022년 711억원, 2023년 754억원으로 매출증가세를 보이고 있다.

현대차그룹의 생산 CAPA가 확대되고 있다는 점에서 수혜가 예상된다. 현대차는 2023년 증설과 GM탈레가온 공장 인수로 CAPA를 100대까지 확대될 전망이다. 또한, 현대차그룹은 연내 인도에서 투싼 페이스리프트, 크레타EV 등 6종의 신차를 출시할 예정이다. CAPA 확대와 신차출시에 따른 자동차 판매 개선이 예상됨에 따라 올해도 인도 자회사 매출 성장이 기대된다.

북미. 미국 IRA로 인해 국내 자동차 부품기업들은 관세절감 및 보조금 혜택을 위해 미국, 멕시코 등 북중미에 2023년부터 신규투자 및 투자 확대가 진행되고 있다. 미국-멕시코-캐나다 협정 (USMCA)이 2020년에 발효됨에 따라 IRA 혜택을 받을 수 있기 때문이다. 동시는 북미시장 대응을 위해 멕시코 진출을 검토하고 있다.

미국 대선이라는 이슈로 인해 진출시기가 확정되지는 않았다. 반면, 위에서 언급되었듯이 신규하이브리드/전기차 플랫폼 관련 수주를 받았다는 점에서 기술력을 인정받은 상황이며, 해외기업 대비 가격경쟁력과 Customizing 능력 측면에서 비교우위에 있다고 판단되어 진출 시 회사의 매출 성장에 긍정적인 영향을 줄 수 있다고 판단된다.

북미 진출은 다음과 같은 효과가 기대된다. 첫째, 주력 매출처의 현지 대응이 용이하다. 현대차 그룹은 지난 2022년에 전기차 생산거점으로 조지아주를 선정하여 투자가 진행되고 있다. 2025년 양산될 것으로 기대된다. 연내 북미 프로젝트가 시작된다면 조지아 공장 양산 초기부터 대응이 가능할 것으로 기대된다.

둘째, 글로벌 자동차 기업으로의 진출도 가능하다. 멕시코내 스텔란티스, GM, 포드, 테슬라 등 10여개의 글로벌 자동차 브랜드가 위치해 있다. 동사는 현대차 그룹 외에도 스텔란티스, 폭스바겐, GM 등으로 거래를 하고 있다. 글로벌 고객사의 대응능력도 상향될 것으로 예상된다.

셋째, 미국 대비 낮은 인건비를 통해 경쟁사 대비 이익률 비교우위도 기대된다. 이는 경쟁사 대비 가격경쟁력의 비교우위를 가져갈 수 있다는 의미이며, 고객사와의 협상력이 상향되는 효과를 기대할 수 있다.

우수AMS(066590)

[그림3] 우수인디아 매출추이 (억원) 800 700 600 500 400 2019 2020 2021 2022 2023

자료: 우수 AMS, 유안타증권 리서치센터

[그림 4] 멕시코 진출 예상 지역

자료: 우수 AMS, 유안타증권 리서치센터

3루 주자. 전동화

동사는 E-모빌리티 솔루션 업체로의 진화를 모색하고 있으며, 변화의 Key는 자회사인 우수 TMM이다. 우수TMM은 2020년에 8월 인수된 기업으로 인수 초기 초소형전기차를 개발했다. 우수TMM은 울산광역시와 초소형 전기차 부품 중 80% 이상을 국산화 개발에 성공했으며, 주행성능과 충동 테스트에서 정부인증 기준을 상회하는 성과를 달성한 바 있다.

여기에서 획득한 기술을 기반으로 다양한 기업 및 산업향 모터와 인버터를 공급할 계획이다. 진출하기 위해 추진되는 기업 및 산업들은 공통적인 특징을 보유하고 있다. 내연기관 엔진에서 전동화로 전환되는 초기 시점이며, 고객사에 맞는 제품을 제조해야 한다는 점이다. 시장 참여자(경쟁사)가 많지 않은 블루오션 시장이라고 판단된다.

모터는 전기에너지로부터 회전력을 얻어 축에 회전력을 발생시키는 동력기계이다. 유도기 모터는 산업용 기계, 가전제품 등에 널리 사용되는 반면 영구자석 모터는 전기차, 로봇, 드론 등 고속회전에 주로 사용된다. 전기차에서 영구자석 모터를 사용하는 이유는 일정한 토크를 유지할수 있는 효율성, 고속회전, 내구성 및 저소음, 제어 용이성이 우수하다는 장점들을 보유하고 있기 때문이다. 전기차 뿐 아니라 다양한 구동 기계들의 전동화가 이뤄지고 있다.

우수TMM은 모터와 인버터, 제어에 이르기까지 다양한 기술력을 보유하고 있다. 모터, 인버터, 제어 등 개별기술력을 보유하고 있는 기업들은 존재하지만 통합적으로 시스템화 할 수 있는 기업은 소수에 불과하다. 우수TMM은 초소형전기차를 제조한 경험을 통해 모터, 인버터, 제어 등다양한 기술력을 보유하고 있으며, 이를 통합적으로 효율적으로 구동할 수 있는 노하우를 보유하고 있다. 이와 같은 시기적 변화와 기술력으로 다양한 산업으로 진출을 모색하고 있다.

항공, 방산, 육상, 해상 등 다양한 산업 및 기업으로의 진출을 모색하고 있다. 특징적인 점은 첫째, 항공과 방산을 통해서 동사의 기술력이 인정받고 있다는 것을 확인할 수 있다. 특히 항공의 경우 다수의 기업과의 경쟁을 진행했음에도 선정되었다. 둘째, 항공/방산과 육상/해상을 동시 진행되고 있음을 통해 다양한 모터 출력에 대응할 수 있다는 점을 확인할 수 있다. 셋째, 육상과 해상 사업 진행 과정을 통해서 국내와 해외 진출 모두 가능하다는 것도 확인할 수 있다.

현재 우수TMM은 생산라인을 구축하고 있으며, 2024년 4분기부터 초도 매출이 발생할 것으로 기대된다. 성공적인 진입 시 빠른 속도로 성장할 수 있을 것으로 예상된다.

항공. 『회전익기 테일로터용 다중 전기식 통합추력시스템 기술개발』 국책과제(2022.4~2025.12월)을 한국항공우주(KAI)등 5개 기관과 진행하고 있다. 지난 80년간 상용 헬리콥터에는 테일로터가 기계식 시스템으로 사용되고 있는데, 이는 엔진과 변속기에 기계적으로 직결되어 구조가복잡하며, 비행중 측풍에 취약하고, 고장/손상될 경우 안정성이 저하되어 기체가 추락할 가능성이 커진다는 문제점이 있다. 2020년 2월 BELL사의 429 EDAT(Electrically Distributed Anti-Torque)는 2개의 발전기와 4개의 전기모터를 테일로터 Ducted Fan에 장착하여 비행안정성을향상시키고 소음을 저감하도록 개발한 바 있다.

2023년 기본설계 과정에서 전기식 다중 테일로터 시스템 기술을 확보, 2024년 전기식 다중 테일로터 시스템 기술 개발의 상세설계를 진행, 2025년에는 확보된 기술검증을 종료한다는 계획이다. 현재 계획대로 2차 기본설계가 진행중이며, 2024년 2분기내 1차 시제품(1~4호기)을 납품할예정이다. 이후 보안설계를 걸쳐 상세설계 및 시제품제작(시제품 5~10호기)은 2024년말~2025년에 진행될 예정이다. 이를 기반으로 국내외 인증을 취득할 예정이다.

육상. 육상용으로 전동 농기계 및 골프카트 등의 구동모듈 모터와 인버터를 공급할 예정이다. 트랙터 전동화시스템 기술력을 보유하고 있으며, 미니굴삭기/지게차/골프카트는 기존 유도기 모터를 영구자석 모터로의 전환에 따른 시장 진입이 기대된다. 영구자석 모터로의 전환될 경우 에너지 효율성이 개선, 이를 통해 주행거리가 증가하며, 무게 감소 효과도 있다. 경쟁사와 비교시비교우위의 데이터를 보유하고 있다. 고객사는 국내뿐만 아니라 해외 농기계 업체와도 협의 중으로 연내 초도 매출이 시작될 것으로 기대된다.

해상. 육해상 전기보트/요트용 모터와 인버터를 통해 유럽과 미주 시장으로 진출한다는 계획이다. 2023년 10월 스페인 바르셀로나 국제 보트쇼에 참석해 국내기업 최초로 전기보트 전용 구동모터와 인버터를 출품, 2023년 11월 스페인 메이저 선박 기자재 유통업체와 전기보트 선외기용 구동모터 및 인버터 관련 MOU를 체결했다. 스페인 유통업체는 레저 선박용 중소형 내연기관 엔진 및 보트 부품 유통분야 글로벌 Top Tier급 회사로 전세계 57개국, 200개 이상의 공식대리점을 운영하고 있다.

유럽으로 진출할 경우 높은 성장률을 기대할 수 있다. EU 정책에 기반 된다. EU의 Mission Starfish 2030은 해양 쓰레기 제거, 해양 생태계 복원, 해양 경제발전을 위한 전략을 추진하고 있으며 2025년까지 해상선박 엔진 50%, 2030년까지 100% 전동화 전환을 목표로 하고 있다. 기존 내연기관에 비해 조용하고, 소형에 경량이며, 수명이 길고, 유지보수가 용이하고, 에너지소비효율이 뛰어나 환경적으로 우수하기 때문이다.

방산. 2024년 K1, K2 및 정지형(전력제어) 인버터 부품을 공급할 예정이다. 초기 시작품 업체 등록을 통해 기술개발을 했으며, 개발품 체계개발 참여로 2024년 상반기 양산업체 등록이 진행될 예정이다. 2024년 하반기 양산이 시작될 것으로 기대된다. 방위산업용 다목적 전술차량 관련기술 개발도 진행하고 있다.

[그림 5] 회전익기 테일로터용 다중 전기식 통합추력시스템 및 성능 요구도

모터 목표	사양	ETRM1	70	인버터 목표 사	양	ETRD170
TYPE		브러시리스	모터	입력정격전압	Vdc	650
정격출력	kW	85		입력전압병위	Vdc	500 to 720
순시출력	kW	127.5@2min /	170@5sec	OLDER D	Idc	150@연속 85 kW / 300@순시
최대토크	N-m	270		입력전류	ıac	170 kW
최대회전수	RPM	8,000		스위칭소자		SiC module 1,200 V - 400 A
정격회전수	RPM	6,000		스위칭 주파수	kHz	20
시스템전압	Vdc	650		모터제어가능 주파수	Hz	1.000
최대전류	Adc	262				DC-AC / 3삼 / 2-Level 인버터
토크리플	%	51		전력변환방식	2.00	토플로지 적용
사이즈	mm	Ø350 L1	26	속도/위치검출		레즐버
솔력밀도	kW/kg	41	-	오터 종류	-	브러시리스 모터(영구자석 모터
냉각방식	-	공행식		생각방식	-	공행식
권선 내열도	°C	200 †		CPU		TMS320F28377D
최대효율						
	96	80 1		26 OL 24 SI	V	8 to 16
속도/위치검출	-	원급병		제어전원 통신	-	8 to 16 CAN 2.08 / 2CH / 500 kbps
속도/위치검출 주력성능 요	구도	KAI	SD Macanage	#4 U		
속도/위치검출 주락성능 요 테일로티	구도 개념설	레윤변 (KAI 계 추력성능 요-	SD 세하다바다 구도	#4 U		
속도/위치검출 우리성능 요 테일로 먹트/쇼라우드	구도 건가념설 타입	제품 ⁵ (KAI 계 추력성능 요- 유라	의료 이 의료 기계	#4 U		
속도/위치검출 주락성능 요 테일로타 먹트/슈라우드 로터 직경	구도 개념설	제품 ⁸ (KAI 계 추력성능 요- 유라: m 800	무도 위로 의하	#4 U		
속도/위치검출 다리성능 요 테일로타 택트/슈라우드 로터 직정 플레이드 수	구도 개념설	제품 ⁵ KAI 계 추력성능 요- 유라 m 800 G	ABCANE ABCANE	#4 U		
속도/위치검출 무리성능 요 테일로 택트/슈타우드 로터 직경 플레이드 수 먹트/슈라우드	구도 개념설타입	계 추력성능 요- - 유라 - 유라 - 유라 - 유라	서울 CATH	#4 U		
속도/위치검출 주락성능 요 테일로타 억트/슈라우드 로터 직경 분레이드 수 덕트/슈라우드 모터 직정	구도 의 개념설 타입 : E I	제 추력성능 요- - 슈라: Im 800 A 400 Im 400	ABCANM MINA PAPA AN 무도 무드 기하	#4 U		
속도/위치검출 작립성능 요 테일로타 역트/슈라우드 로터 직경 플레이드 수 역트/슈라우드 모터 직경(명)	구도 서 개념설 타입 대 표 n	계 추력성능 요- - 슈란(- 유리(- 유리(유리(- 유리(- 유리(ABCANE MARCANE MARCANA	#4 U		
속도/위치검을 작력성능 요 태일로 택으시라우드 로터 직정 플레이드 수 택트/슈라우드 모터 직정(회) 모터 정경 PP 모터 정려 PP 모터 정려 PP 모터 최대 PP	구도 1개념설 타입 	제 추력성능 요- - 습관 mm 800 0 A - 400 0 mm 22 PM 6,00 PM 8,5	기 등 기 등 기 등 기 등 기 등 기 등 기 등 기 등 기 등 기 등	#4 U		
속도/위치점을 주락성능 요 태일로타 먹트/슈라우드 로터 직정 플레이드 수 로트/슈라우드 모터 직정(회) 모터 정격 RP 모터 최대 RP 모터 최대 RP	구도 해개념설 타입 교 교 대 M R M R M R	제출생 보다 1 2 2 PM 6.0 PM 8.5 PM 1 3	기 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시	#4 U		
속도/위치검을 수 적성능 요 태일로 타일로 수라우드로 로타 직정 플레이트 수 덕르/슈라우드모터 직정 원모로 되장 경기 및 모터 정격 PR 모터 최대 PR 모터 최대 PR 모터 최대 PR 모터 최대 PR	구도 서 개념설 타입 n 는 E 폭 n HI) n M R que N	제 추력성능 요- - 습관 mm 800 0 A - 400 0 mm 22 PM 6,00 PM 8,5	지 지 전	#4 U		

자료: 항공우주시스템공학회(2022), 유안타증권 리서치센터

[그림 6] 전기식 테일로터 시스템 적용된 미국 벨사의 헬리콥터

자료: Bell, 유안타증권 리서치센터

NDR Q&A

- O. 2023년 신규수주를 받은 주력품목과 경쟁사는?
- A. Differential Assembly으로 조향을 안전하게 구동하는 제품이다. 경쟁사로는 디아이씨, 네오 오토 등이 있다.
- Q. 2023년 신규수주는 전량 다이캐스팅 제품인가?
- A. 알루미늄 57%, 주물 43%로 구성되어 있다. 향후 수주는 경량화 트렌드로 인해 알루미늄 다이캐스팅 비중이 추가 상향될 것으로 예상된다.
- Q. 알루미늄 다이캐스팅 사업은 언제부터 시작되었나?
- A. 10년 이상. 초기에는 소재를 구매하여 가공을 했었지만, 현재는 알루미늄 소재를 구매하여 가공하고 있다.
- Q. 인도에서 현대차그룹의 자동차 판매가 증가하고 있는데 CAPA증설 이슈가 존재하나?
- A. 우수인디아는 2개의 공장으로 구성되어 있으며, 현재 추가적인 생산여력이 충분한 상황이다.
- Q. 2023년 마진율이 개선되었는데, 지속 가능한가?
- A. 자동화 생산설비 비중 확대와 더불어 알루미늄 다이캐스팅 비중 확대로 이익률이 개선, 지속 적으로 개선될 수 있도록 노력할 예정이다.
- Q. 우수TMM의 기술의 핵심은?
- A. 초소형 전기차 제조 기반의 모터, 인버터, 센서 등의 기술력을 보유하고 있다. 각각 품목을 생산하는 경쟁사들은 존재하지만, 모터와 인버터, 센서까지 통합적으로 연동시키는 시스템화 기술을 보유하고 기업은 제한적이다.
- Q. 우수TMM은 모터와 인버터를 직접 생산하나?
- A. 모터와 인버터 관련 원천기술을 보유하고 있으며, 현재 생산라인을 구축하고 있다. 3분기 중에 생산라인을 구축할 예정이며, 연내 매출이 발생될 것으로 기대한다.

우수 AMS (066590) 추정재무제표 (K-IFRS 연결)

손익계산서					(단위: 억원)
결산(12월)	2019A	2020A	2021A	2022A	2023A
매출액	2,529	2,287	3,104	3,253	3,480
매출원가	2,284	2,146	2,889	3,007	3,171
매출총이익	244	141	215	247	309
판관비	215	202	222	208	225
영업이익	29	-61	-7	38	84
EBITDA	131	53	130	179	238
영업외손익	-23	-34	-97	-199	10
외환관련손익	5	-6	9	-15	11
이자손익	-16	-15	-30	-35	-42
관계기업관련손익	-2	-29	2	7	-4
기타	-10	15	-78	-156	45
법인세비용차감전순손익	6	-95	-104	-161	94
법인세비용	3	-18	-1	-43	24
계속사업순손익	3	-78	-102	-118	70
중단사업순손익	0	0	0	-58	32
당기순이익	3	-78	-102	-175	102
지배지분순이익	3	-76	-92	-175	102
포괄순이익	5	-84	-96	-175	99
지배지분포괄이익	5	-82	-85	-175	99

주: 영업이익 산출 기준은 기존 k-GAAP과 동일. 즉, 매출액에서 매출원가와 판관비만 차감

현금흐름표				(1	단위: 억원)
결산(12월)	2019A	2020A	2021A	2022A	2023A
영업활동 현금흐름	90	72	-8	111	312
당기순이익	3	-78	-102	-175	102
감가상각비	103	114	137	141	154
외환손익	-1	3	-10	-6	4
종속,관계기업관련손익	0	29	-2	-7	4
자산부채의 증감	-41	21	-123	15	153
기타현금흐름	26	-17	93	144	-105
투자활동 현금흐름	-364	-359	-192	-249	-135
투자자산	-104	-267	48	-26	-7
유형자산 증가 (CAPEX)	-173	-151	-192	-158	-125
유형자산 감소	8	38	12	10	3
기타현금흐름	-96	21	-60	-75	-7
재무활동 현금흐름	194	319	177	284	-450
단기차입금	-119	169	193	137	-282
사채 및 장기차입금	321	47	8	22	-179
자본	0	357	16	113	-1
현금배당	0	0	0	0	0
기타현금흐름	-7	-254	-40	12	12
연결범위변동 등 기타	1	-1	3	2	0
현금의 증감	-80	31	-20	148	-273
기초 현금	152	72	104	84	232
기말 현금	72	104	84	232	-42
NOPLAT	29	-61	-7	38	84
FCF	-83	-79	-200	-47	187

자료: 유안타증권

재무상태표				(1	근위: 억원)
결산(12월)	2019A	2020A	2021A	2022A	2023A
유동자산	683	817	1,021	1,292	1,163
현금및현금성자산	72	104	84	232	139
매출채권 및 기타채권	296	380	397	412	434
재고자산	176	206	342	368	277
비유동자산	1,125	1,638	1,665	1,484	1,337
유형자산	864	1,158	1,259	1,240	992
관계기업등 지분관련자산	7	0	0	0	0
기타투자자산	183	323	267	90	211
자산총계	1,809	2,455	2,686	2,776	2,500
유동부채	1,072	1,394	1,648	1,755	1,411
매입채무 및 기타채무	459	620	721	726	821
단기차입금	310	480	657	794	527
유동성장기부채	20	54	40	103	48
비유동부채	133	199	246	292	266
장기차입금	119	183	219	84	65
사채	0	0	13	200	200
부채총계	1,206	1,593	1,894	2,047	1,677
지배지분	603	862	792	729	823
자본금	123	177	179	195	195
자본잉여금	179	483	497	592	591
이익잉여금	353	277	189	16	116
비지배지분	0	0	0	0	0
자본총계	603	862	792	729	823
순차입금	583	784	970	875	469
총차입금	733	949	1,149	1,308	847

Valuation 지표				(단위:	원, 배, %)
결산(12월)	2019A	2020A	2021A	2022A	2023A
EPS	11	-284	-257	-479	261
BPS	2,445	2,438	2,218	1,867	2,109
EBITDAPS	532	199	366	491	610
SPS	10,240	8,573	8,714	8,902	8,906
DPS	0	0	0	0	0
PER	348.8	-18.9	-22.9	-7.7	11.0
PBR	1.6	2.2	2.7	2.0	1.4
EV/EBITDA	11.9	42.2	23.5	12.3	6.7
PSR	0.4	0.6	0.7	0.4	0.3

재무비율				(돈	년위: 배, %)
결산(12월)	2019A	2020A	2021A	2022A	2023A
매출액 증가율 (%)	3.6	-9.6	35.7	4.8	7.0
영업이익 증가율 (%)	-36.9	적전	적지	흑전	119.0
지배순이익 증가율(%)	-80.8	적전	적지	적지	-158.3
매출총이익률 (%)	9.7	6.1	6.9	7.6	8.9
영업이익률 (%)	1.1	-2.7	-0.2	1.2	2.4
지배순이익률 (%)	0.1	-3.3	-3.0	-5.4	2.9
EBITDA 마진 (%)	5.2	2.3	4.2	5.5	6.9
ROIC	1.6	-4.5	-0.5	2.0	5.3
ROA	0.2	-3.5	-3.6	-6.4	3.9
ROE	0.5	-10.3	-11.1	-23.0	13.1
부채비율 (%)	199.9	184.8	239.2	280.7	203.6
순차입금/자기자본 (%)	96.7	91.0	122.5	120.0	57.0
영업이익/금융비용 (배)	1.6	-3.3	-0.2	0.9	1.6

주: 1. EPS, BPS 및 PER, PBR은 지배주주 기준임 2. PER등 valuation 지표의 경우, 확정치는 연평균 주가 기준, 전망치는 현재주가 기준임 3. ROE,ROA의경우, 자본,자산 항목은 연초,연말 평균을 기준일로 함

P/E band chart

P/B band chart

우수 AMS (066590) 투자등급 및 목표주가 추이

자료: 유안타증권

주: 괴리율 = (실제주가* - 목표주가) / 목표주가 X 100

- * 1) 목표주가 제시 대상시점까지의 "평균주가"
- 2) 목표주가 제시 대상시점까지의 "최고(또는 최저) 주가"

구분	투자의견 비율(%)
Strong Buy(매수)	0
Buy(매수)	84.2
Hold(중립)	15.8
Sell(비중축소)	0
합계	100.0

주: 기준일 2024-03-21

※해외 계열회사 등이 작성하거나 공표한 리포트는 투자등급 비율 산정시 제외

- 이 자료에 게재된 내용들은 본인의 의견을 정확하게 반영하고 있으며 타인의 부당한 압력이나 간섭 없이 작성되었음을 확인함. (작성자 : 권명준)
- 당사는 자료공표일 현재 동 종목 발행주식을 1%이상 보유하고 있지 않습니다.
- 당사는 자료공표일 현재 해당 기업과 관련하여 특별한 이해관계가 없습니다.
- 당사는 동 자료를 전문투자자 및 제 3자에게 사전 제공한 사실이 없습니다.
- 동 자료의 금융투자분석사와 배우자는 자료공표일 현재 대상법인의 주식관련 금융투자상품 및 권리를 보유하고 있지 않습니다.
- 종목 투자등급 (Guide Line): 투자기간 12개월, 절대수익률 기준 투자등급 4단계(Strong Buy, Buy, Hold, Sell)로 구분한다
- Strong Buy: 30%이상 Buy: 10%이상, Hold: -10~10%, Sell: -10%이하로 구분
- 업종 투자등급 Guide Line: 투자기간 12개월, 시가총액 대비 업종 비중 기준의 투자등급 3단계(Overweight, Neutral, Underweight)로 구분
- 2014년 2월21일부터 당사 투자등급이 기존 3단계 + 2단계에서 4단계로 변경

본 자료는 투자자의 투자를 권유할 목적으로 작성된 것이 아니라, 투자자의 투자판단에 참고가 되는 정보제공을 목적으로 작성된 참고 자료입니다. 본 자료는 금융투자분석사가 신뢰할만 하다고 판단되는 자료와 정보에 의거하여 만들어진 것이지만, 당사와 금융투자분석사가 그 정확성이나 완전성을 보장할 수는 없습니다. 따라서, 본 자료를 참고한 투자자의 투자의사결정은 전적으로 투자자 자신의 판단과 책임하에 이루어져야 하며, 당사는 본 자료의 내용에 의거하여 행해진 일체의 투자행위 결과에 대하여 어떠한 책임도 지지 않습니다. 또한, 본 자료는 당사 투자자에게만 제공되는 자료로 당사의 동의 없이 본 자료를 무단으로 복제 전송 인용 배포하는 행위는 법으로 금지되어 있습니다.

