1

JEE Main 2020 05-09-2020 Shift2

ai24btech11014 - Charitha Sri

I. Math

1) If $x = 1$ is a critical point of the function $f(x) = ($	$(3x^2 + ax - 2 - a)e^x$, then:
--	----------------------------------

a)
$$x = 1$$
 is a local minima and $x = -\frac{2}{3}$ is a local maxima of f .
b) $x = 1$ is a local maxima and $x = -\frac{2}{3}$ is a local minima of f .

b)
$$x = 1$$
 is a local maxima and $x = -\frac{3}{2}$ is a local minima of f

c)
$$x = 1$$
 and $x = -\frac{2}{3}$ are local minima of f

c)
$$x = 1$$
 and $x = -\frac{2}{3}$ are local minima of f .
d) $x = 1$ and $x = -\frac{2}{3}$ are local maxima of f .

2)

$$\lim_{x \to 0} \frac{x \left(e^{\frac{\sqrt{1+x^2+x^4}-1}{x}} - 1 \right)}{\sqrt{1+x^2+x^4}-1} \tag{1}$$

a) is equal to \sqrt{e}

b) is equal to 1

c) is equal to 0

d) does not exist

3) The statement $(p \to (q \to p)) \to (p \to (p \cup q))$ is:

a) equivalent to
$$(p \cup q) \cap (\sim p)$$

b) equivalent to
$$(p \cap q) \cup (\sim p)$$

- c) a contradiction
- d) a tautology

4) If
$$L = \sin^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$$
 and $M = \cos^2\left(\frac{\pi}{8}\right) - \sin^2\left(\frac{\pi}{8}\right)$, then:

a)
$$M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

b) $M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$

c)
$$L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

d) $L = \frac{1}{4\sqrt{2}} - \frac{1}{4}\cos\frac{\pi}{8}$

b)
$$M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$$

d)
$$L = \frac{1}{4\sqrt{2}} - \frac{1}{4} \cos \frac{\pi}{8}$$

5) If the sum of the first 20 terms of the series $\log_{7\frac{1}{2}} x + \log_{7\frac{1}{4}} x + \log_{7\frac{1}{4}} x + \dots$ is 460, then x is equal

a) $7^{\frac{1}{2}}$

b) 7^2

c) e^2

d) $7^{\frac{46}{21}}$

6) There are 3 sections in a question paper and each section contains 5 questions candidate has to answer a total of 5 questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choose the questions, is:

a) 2250

b) 2255

c) 1500

d) 3000

7) If the mean and the standard deviation of the data 3,5,7, a, b are 5 and 2 respectively, then a and b are the roots of the equation:

a)
$$x^2 - 20x + 18 = 0$$

b)
$$x^2 - 10x + 19 = 0$$

a)
$$x^2 - 20x + 18 = 0$$
 b) $x^2 - 10x + 19 = 0$ c) $2x^2 - 20 + 19 = 0$ d) $x^2 - 10x + 18 = 0$

d)
$$r^2 - 10r + 18 = 0$$

8) The derivative of
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x=\frac{1}{2}$ is:

(2)

d) $\frac{\sqrt{3}}{10}$

d) $\frac{2\sin\theta+1}{5(\sin\theta+3)}$

	equal to:				
	a) 12	b) $\frac{24}{5}$	c) $\frac{9}{5}$	d) $\frac{12}{5}$	
11)	1) If α and β are the roots of the equation, $7x^2 - 3x - 2 = 0$, then the value of $\frac{\alpha}{1 - \alpha^2} + \frac{\beta}{1 - \beta^2}$				
	a) $\frac{27}{32}$	b) 1/24	c) $\frac{27}{16}$	d) $\frac{3}{8}$	
12)	2) If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of the G.P. is:				
	a) $\frac{2}{13} \left(3^{50} - 1 \right)$	b) $\frac{1}{26} \left(3^{49} - 1 \right)$	c) $\frac{1}{13} (3^{50} - 1)$	d) $\frac{1}{26} \left(3^{50} - 1 \right)$	
13)	3) If the line $y = mx + c$ is a common tangent to the hyperbola $\frac{x^2}{100} - \frac{y^2}{64} = 1$ and the circle $x^2 + y^2 = 36$ then which one of the following is true?				
	a) $4c^2 = 369$	b) $c^2 = 369$	c) $8m + 5 = 0$	d) $5m = 4$	
14) The area (in sq.units) of the region					
$A = \{(x, y) : (x - 1) \ [x] \le y \le 2\sqrt{x}, 0 \le x \le 2\} $ (3)					
where $[t]$ denotes the greatest integer funtion, is:					
	a) $\frac{4}{3}\sqrt{2} - \frac{1}{2}$	b) $\frac{8}{3}\sqrt{2} - \frac{1}{2}$	c) $\frac{8}{3}\sqrt{2}-1$	d) $\frac{4}{3}\sqrt{2} + 1$	
15)	15) If $a+x=b+y=c+z+1$, where a,b,c,x,y,z are non-zero distinct real numbers, then $\begin{vmatrix} x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c \end{vmatrix}$ is equal to:				
	a) $y(a-b)$	b) 0	c) $y(b-a)$	d) $y(a-c)$	

b) $\frac{2\sqrt{3}}{5}$ c) $\frac{\sqrt{3}}{12}$

where C is a constant of integration, then $\frac{B(\theta)}{A}$ can be:

b) $\frac{5(\sin\theta+3)}{2\sin\theta+1}$

 $\int \frac{\cos \theta}{5 + 7\sin \theta - 2\cos^2 \theta} d\theta = A\log_e |B(\theta)| + C$

10) If the length of the cord of the circle, $x^2 + y^2 = r^2 (r > 0)$ along the line, y - 2x = 3 is r, then r^2 is

a) $\frac{2\sqrt{3}}{3}$

9) If