$$| x_1 + \frac{1}{2}x_2 = \frac{5}{21}$$

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 = \frac{11}{84}$$

$$\Rightarrow \chi_{1}=0.18$$
, $\chi_{2}=0.13$ there fore $(\chi_{1}\chi_{2})=\begin{bmatrix}0.18\\0.13\end{bmatrix}$

b.
$$\chi^{(0)} = (0, 0, 0)^{t}$$
 $\chi^{(0)} = [-A\chi^{(0)}] = (0, 24, 0.13)^{t}$
 $\chi^{(0)} = (0, 24, 0.13)^{t}$

$$f^{(1)} = C \quad W = (0.24, 6.13)$$

$$t^{(1)} = \frac{d}{dx} = 0.79$$
 $t_{1} = \frac{d}{dx} = 0.79$

2.
$$y' = 1 - y$$
 $0 \le t \le 2$

$$\begin{vmatrix} \frac{\partial f}{\partial 7}(t, y) \end{vmatrix} \le 1 \quad \text{Statisfies the Lip schitz} \\ \text{criteria for constant=1} \end{vmatrix}$$
therefore $y' = 1 - y$ has a unique solution

$$\Rightarrow \text{ is nell - posed}$$
3. $a \cdot y' = f(t, y(t))$

$$\Rightarrow \int_{a}^{t} y'(z) dz = \int_{a}^{t} f(z, y(z)) dz$$

$$\Rightarrow y(t) - y(a) = \int_{a}^{t} f(z, y(z)) dz$$

$$\Rightarrow y(t) = y(a) + \int_{a}^{t} f(z, y(z)) dz$$

b,
$$f(b) = 1$$

 $f(t) = 1 + \int_{0}^{t} T dT = 1 + \frac{t^{2}}{2}$
 $f(t) = 1 + \int_{0}^{t} T dT = 1 + \frac{t^{2}}{2}$
 $f(t) = 1 + \int_{0}^{t} - (1 + \frac{1}{2}T) + T + 1 dT$

$$= -\frac{t^{3}}{6} + \frac{t^{2}}{2t}$$

$$= -\frac{t^{3}}{6} + \frac{t^{2}}{2} + 1$$

$$= 1 + \int_{0}^{t} -(-\frac{t^{3}}{6} + \frac{t^{2}}{2} + 1) + t + 1 dt$$

$$= \frac{t^{4}}{24} - \frac{t^{3}}{6} + \frac{t^{2}}{2} + 1$$

C.
$$Y[t] = |t| + \frac{t^2}{5} - \frac{t^3}{6} + \frac{t^4}{14} - \frac{t^5}{120} + \dots$$