

DISTRIBUTION EXPECTATION

Why

If we model some measured value as a random variable with induced distribution $p:V\to \mathbb{R}$, then one interpretation of p(v) for $v\in V$ is the *proportion* of times in a large number of trials that we *expect* to measure the value v.

Definition

Given a distribution $p: \Omega \to \mathbf{R}$ and a real-valued outcome variable $x: \Omega \to \mathbf{R}$, the expectation of x under p is $\sum_{\omega \in \Omega} p(\omega) x(\omega)$.

Notation

We denote the expectation of x under p by $\mathbf{E}(x)$. When there is no chance of ambiguity, we write $\mathbf{E}(x)$.

Properties

Let $x, y : \Omega \to \mathbb{R}$ be two outcome variables and $p : \Omega \to \mathbb{R}$ a distribution. Let $\alpha, \beta \in \mathbb{R}$. Define $z = \alpha x + \beta y$ by $z(\omega) = \alpha x(\omega) + \beta y(\omega)$. Then $\mathbf{E}(z) = \alpha \mathbf{E}(x) + \beta \mathbf{E}(z)$.

