

TP Traitement du signal et problèmes inverses

Applications sur des exemples EDF

Guy D'URSO Alexandre GIRARD EDF R&D Chatou

18 mars 2019

Introduction

- Quatre exemples :
 - Traitement de signaux multicapteurs illustré sur des données de température issues de mesures de fibre optique
 - □ Problème inverse de surrésolution à partir de données de fibre optique déformation
 - Problème inverse d'estimation de sources à partir de données de contrôle non destructif ultrasonores
 - Identification de paramètres d'un modèle reliant des données de températures extérieures aux données de température fibre optique
- Pour chaque exemple
 - Un code Matlab avec les données associées
 - L'enjeu est la compréhension des codes développés et de jouer sur les paramètres des méthodes pour bien appréhender les effets des régularisations par exemple

Traitement de signaux multicapteurs illustré sur des données de température issues de mesures de fibre optique

Contexte

- Détection de fuites dans des digues en terre
- Moyen : mesures de températures réparties par une fibre optique implantée dans la digue
 - S'il existe une fuite, la température mesurée au niveau de la fibre optique va subir l'influence de la température de l'eau dans le canal

Objectif du TP

• Déterminer par séparation de sources (ACP puis ACI) des zones de fuites

TP Traitement du signal et problèmes inverses EDF R&D - ECN | 03/2018 | 3

Jade: Joint Approximate Diagonalisation of Eigen-matrices (J-F Cardoso)

- Un tenseur de cumulant (à l'ordre 4) est une matrice de dimension 4 contenant tous les cumulants croisés d'ordre 4.
- Pour une variable aléatoire x de taille n chaque élément du tenseur est Cum(xi, xi, xk, xi) avec 1 ≤ i, j, k, l ≤ n Cette expression peut être vue comme la généralisation de la matrice de covariance au-delà de l'ordre
- Vu aussi comme une APL d'un espace de matrice nxn dans un autre espace de matrice nxn et donc on peut le représenter par une matrice bloc à trois dimensions sur le représenter par une matrice bloc à trois dimensions.

Sous la contrainte de blancheur des signaux d'entrées e, toutes les « tranches » de \mathscr{N}_{x} peuvent être diagonalisées par une même matrice unitaire U ssi pas de dégénérescence de valeurs propres.

En pratique Jade $c(e) = \sum_{i,k,l} \left| \textit{Cum}(e_i, e_i^*, e_k, e_l^*) \right|^2$ Fast ICA

 $Cum[x, x, x, x] = \mu_{x(4)} - 3(\mu_{x(2)})^2$

Figure 3.3: Matrice de cumulants pour l'algorithme JADE.

Problème inverse de surrésolution à partir de données de fibre optique déformation

Contexte

- Localisation/quantification de fontis dans des digues en terre ou de déformations locales dans des bâtiments
- Moyen : mesures de spectres par fibre optique (effet Brillouin) pour estimer la déformation
 - L'objectif est de passer d'une information intégrée sur un intervalle à une information mieux résolue
 - Les mesures sont faites sur des intervalles se recouvrant

Objectif du TP

 A partir de mesures de spectres intégrant les effets de déformation sur un intervalle, estimer des spectres locaux à partir d'un problème inverse

TP Traitement du sign

Mesure du spectre Brillouin sur w

Moyenne des spectre élémentaires sur chaque w :

$$\begin{aligned} & G(v,x) \cong \int_{x-w/2}^{x+w/2} s_e \left(v - v_B(\zeta) \right) . \, d\zeta \\ & G(v,x) \cong W *_x \left(s_e *_v f(v_B,x) \right) = SW(v_B) \end{aligned}$$

- Se : pseudo-Voigt
- Cf thèse de Edouard BUCHOUD

ESTIMATION DU SPECTRE SURRÉSOLU:

Spectres mesurés

$$G(v,z) = W_z *_x S(v,x)$$

On recherche s mesurant G et sachant que W_z est un opérateur de moyenne.

 $\Delta z = 41$ cm et on désire un Δx de 5 cm.

TP Traitement du signal et problèmes inverses EDF R&D - ECN | 03/2018 | 7

RÉSOLUTION PAR RÉTROPROPAGATION

- On cherche min ||x||² sous la contrainte y = Hx
- Idée : c'est que l'information est redondante et on moyenne plusieurs fois le même spectre s pour obtenir G.
- $min \frac{1}{2} ||x||^2 sc Hx = f$
- $L(x,p) = \frac{1}{2}x^2 + p^t(Hx f)$
- $\frac{\partial L}{\partial x} = x + H^t p = 0 \text{ et } \frac{\partial L}{\partial p} = Hx f = 0$
- $x = -H^t p$ d'où $Hx = -HH^t p$
- $f = -HH^t$ p donc $p = -(HH^t)^{-1}$ f

$$x = +H^t (HH^t)^{-1} f$$

RÉSOLUTION AVEC RÉGULARISATION:

$$\begin{bmatrix}
1 & -1 & 0 \\
& \ddots & -1 \\
0 & & 1
\end{bmatrix} x \|^2$$

$$\Delta x$$

$$x^{t} \begin{bmatrix} 1 & 0 & 0 \\ -1 & \ddots & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & \ddots & -1 \\ 0 & 0 & 1 \end{bmatrix} x$$

$$\begin{bmatrix} 2 -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 -1 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots &$$

$$\min \frac{1}{2} \|Hx - f\|^2 + \frac{\lambda}{2} x^t \, \Delta_2 x$$

$$H^{t}(Hx - f) + \lambda \Delta_{2} x = 0$$

$$H^t H x - H^t f + \lambda \Delta_2 x = 0$$

$$(H^tH + \lambda \Delta_2) x = H^tf$$

$$x = (H^t H + \lambda \Delta_2)^{-1} H^t f$$

TP Traitement du signal et problèmes inverses EDF R&D - ECN | 03/2018 | 9

Problème inverse d'estimation de sources à partir de données de contrôle non-destructif ultrasonores

Contexte

- Contrôle non-destructif de défauts dans les soudures par ultrasons
- Moyen : signaux ultrasonores réalisés autour de la soudure à inspecter
 - L'objectif est de détecter des perturbations du signal ultrasonore dues à des défauts
 - Mélange d'effets de réflexions et d'échos du défaut

Objectif du TP

 A partir d'un signal ultrasonore 1D, réaliser une déconvolution avec régularisation par une ondelette de référence en faisant varier les paramètres de régularisation

Identification de paramètres d'un modèle reliant températures air et eau aux données de température fibre optique

Contexte

- · Localisation/qualification de fuites dans des digues en terre
- Moyen : mesures de températures réparties par une fibre optique implantée dans la digue et des températures d'air et d'eau dans la digue
 - L'objectif est de relier via un modèle fonction de transfert la température mesurée par la fibre optique aux températures air et eau

Objectif du TP

 Utiliser la procédure d'identification d'un modèle approché de la physique pour « voir » des fuites par évolution des paramètres du modèle via son expression fréquentielle

Modèle d'évolution de la température (Rép. Impulsionnelle et Transf. de Laplace)

$$\begin{split} F(t,\alpha,\eta,\sigma) &= \frac{u(t)\alpha}{\sigma\sqrt{2\pi}} \left(\frac{t}{\eta}\right)^{-3/2} \exp\left[-\frac{\eta}{2t} \left(\frac{t-\eta}{\sigma}\right)^2\right]. \\ &\alpha \exp\left[-\frac{1}{\rho} \left(\sqrt{1+2\rho\eta s}-1\right)\right], \quad \rho = \left(\frac{a}{\eta}\right)^2 \end{split}$$

TP Traitement du signal et problèmes inverses EDF R&D - ECN | 03/2018 | 11

Modèle d'évolution de la température (Rép. Impulsionnelle et Transf. de Laplace)

- Stéphane BONELLI Irstea
- Approximation du problème 1D d'advection-diffusion
- u(t) = Heaviside

$$F(t, \alpha, \eta, \sigma) = \frac{u(t)\alpha}{\sigma\sqrt{2\pi}} \left(\frac{t}{\eta}\right)^{-3/2} \exp\left[-\frac{\eta}{2t} \left(\frac{t-\eta}{\sigma}\right)^{2}\right].$$

$$\alpha \exp \left[-\frac{1}{\rho} \left(\sqrt{1 + 2\rho \eta s} - 1 \right) \right], \quad \rho = \left(\frac{\sigma}{\eta} \right)^2$$

