JOINT & MARGINAL Distourion
Definition 4.1.1 =
Deginario 1 Am
An n-dim Handom vector a
a function four a sample space S into
IRM > n-dim Euclidean Seace
Multiple Random variables on (2, 7, 1P)
(2,3,0)
(20)010
$\chi(\cdot)$
ω · IR
2002
Y (·)
<u> </u>
The Porobability SPace is the Same, the elementary
outcome as in the sames once the a realizes
X(·) captures Temporature (Example), Y(·)
Capturies the Hornidity (Example)

Example 4.1.2: consider the experiment of tossing two fair dice. [2]=36 X = Sum of the two dire Y= / difference of two dice) IP (x=5 and Y=3) =) IP(x=5 and y=2)= 10 es fi stirces mos sa (P(X=5, Y=3) = 10 ") " or AND Definition 4.1.3: +x, v(213) Let (x, v) be a dissorte bivourale orandom vector. The the Function of (x1x) form ICS - [011] defined post(x12) = IP(x=x, Y=y) is called Joint IMF on (x, Y)

$$P((x,y) \in A) = \sum_{(x,y) \in A} f_{x,y}(x,y)$$
Cons) $\in A$ such $\in A$

Theorem 4.1.6: Let (x,v) be a discorde (circ) xxxx f 7mg forest with Joint Pmf fx,x(siz) Then the morginal Prif's of x and y, (e3) 31 = (ext pure (x=x) 21 = (x)x+

fx(x)= ≤ fx, x(x1x) cmd

fy(6)= ≤ fx1x(N13)

The morginal distociaution's of x and y, derroubed by the marginal Prifit frame and fyle), do not completely deroube the Joint distouraution of X and Y. windped, there are many different Joint distociaution's that have the same marginal distribution's.

The Joint Praf fx, (six) tells us additional wonformation about the distociaution of (x,y) that is not found in the marginal - 2'noitubisetzib 220 wourthas root prodlimis (P((X,1)CA)=) = (A)(x,y)A) $|E(3(x,y)) = \int_{\infty}^{\infty} g(x,y) \int_{x,y}^{x,y} (x,y) dxdy$ $\frac{4^{k}(a)}{4^{k}(a)} = \int_{\infty}^{\infty} \frac{1}{4^{k}(a)} da - \infty < a < -\infty$

find 16(Xtx >1)

: mostul62

A

$$= \int (3n_5 - 3(nn_3)_5 n_5) q_2$$

$$= \int (3n_5 - 3(nn_3)_5 n_5) q_2$$

$$= \int (3n_5 - 3(nn_3)_5 n_5) q_2$$

Example 4.1.12
f(x12) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
=> f(x12) = 6-2 I (0112): 050 < 1150 3
- / (01/1): 020 < 1/20 J
The Joint Porobability distacionation of (x, x)
an be completely describer with the Joint
CDF.
1F(x12) = 1P(XEX, YES)
2 foor Continuous Casp
$= \sum_{\alpha} \sum_{\beta} \int_{\alpha} \chi_{\alpha}(\alpha) \int_{\alpha} d\alpha$
5 3 E(XID) = Y(XID)

4.2 Conditional distribution and Independence Definition 4.2.1: f(y|x) = 1P(/=y/x=x) = 1P (Y=y, x=x) 1P(x=x) = f(x1x) £(1) 1P(x=x) 70 Who (E[3CX)[x]= \frac{2}{3}(6) f(2) (2) que Example 4.2.4 f(x15) = e-3 OKXKYLD <u>~102</u> for 270, f(x12) =0 Y Y & X

$$= \int \frac{d^{2}x}{(x/x)^{2}} \left(\frac{G_{-x}}{G_{-y}} + \frac{A}{A} \right) dx$$

$$= \int \frac{d^{2}x}{(x/x)^{2}} \left(\frac{G_{-x}}{G_{-y}} + \frac{A}{A} \right) dx$$

$$= \int \frac{d^{2}x}{(x/x)^{2}} \left(\frac{G_{-x}}{G_{-y}} + \frac{A}{A} \right) dx$$

$$= \int \frac{d^{2}x}{(x/x)^{2}} \left(\frac{G_{-x}}{G_{-y}} + \frac{A}{A} \right) dx$$

Definition 4.2.5. Let (x, y) be a bivoriale on v with Alf or pmf f(xix) and marginal Pafis on PMfs as fx(x) fy(y). Then x, y or called in de Pendent on v if AXER, YYER t(x12) = t(x) t(a) (c) + (x/x) + (= £(x) $= \frac{f \times (a)}{f \times (a)}$ = fy(5) $= \int (\lambda / \lambda) = t^{\lambda}(2)$

Theorem 4.2.10 : Let X and V be independent random vosúables. a) for any ACIR, BCIR, IP(XEA, YEB) = IP(XEA) IP(YEB); that is event's IXEAZ and IVEBZ . 2 may 5 trabnagas in ever (b) Let 9(1) be a function of x and h(8) be a function of y, then [(x)) = [(x)) = [(x)] = [(x)] Throwen 4.2.12: if X, Y are independen I.V with MGF MX(4) MX(4). Then the MUE of 5= XEY 3 W 5(4) = Wx(4) Wx(4)

M2(4)= 1= (6+5) = IE[etx.etx] = NE[etx] NE[etx] = MX(4) MX(4)