ECOLES PRIVEES ELMAARIF- ERRAIA

الرجاء والمعارف الحرة

Bac Blanc Epreuve de Mathématiques Classes:7D

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie du candidat.

Exercice 1 (4 points)

Dans l'ensemble des nombres complexes, on pose : $P(z) = z^3 + 2z^2 - 16$.

On note z_A , z_B et z_D les solutions de l'équation P(z) = 0, tels que $Im z_A < Im z_B < Im z_D$.

Le point C est tel que ABCD soit un parallélogramme. Le point E a pour affixe $z_E = 6$.

 Γ est l'ensemble des points M d'affixe z telle que $\begin{vmatrix} z-2 \\ z+2+2i \end{vmatrix} = 1$.

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte.

Ecrire le numéro de chaque question et donner, avec justification, la réponse qui lui correspond.

N°	Questions	Réponses			
		$\langle A \rangle$	В	C	D
1	On a	P(2) = 0	P(2i) = 0	$\mathbf{P}(-2)=0$	P(i) = 0
2	La forme algébrique de Z _A est	$z_A = -2-i$	$\mathbf{z}_{\mathrm{A}} = 1 - 2\mathbf{i}$	$\mathbf{z}_{\mathbf{A}} = -2 - 2\mathbf{i}$	$\mathbf{z}_{\mathbf{A}} = -2 + 2\mathbf{i}$
3	La forme exponentielle de Z _D est	$z_{\rm D} = 2i\sqrt{2}e^{-i\frac{\pi}{4}}$	$\mathbf{z}_{\mathrm{D}} = -2\sqrt{2}\mathrm{e}^{\mathrm{i}\frac{\pi}{4}}$	$\mathbf{z}_{\mathrm{D}} = 2\sqrt{2}\mathrm{e}^{\mathrm{i}\frac{5\pi}{4}}$	$\mathbf{z}_{\mathrm{D}} = 2\sqrt{2}\mathrm{e}^{\mathrm{i}\frac{3\pi}{4}}$
4	L'affixe z _C du point C est	$z_{\rm C} = -2-4i$	$\mathbf{z}_{\mathrm{C}} = 2 + 4\mathbf{i}$	$\mathbf{z}_{\mathrm{C}} = 7 - 2\mathbf{i}$	$\mathbf{z}_{\mathrm{C}} = 4\mathbf{i}$
5	L'ensemble Γ est le/la	médiatrice de [AD]	médiatrice de [AB]	cercle de diamètre [AB]	droite (AB)
6	Le triangle EBC est	non isocèle	non rectangle	Equilatéral	rectangle isocèle

Exercice 2 (4 points)

On considère la suite (U_n) définie par $U_0 = 1$ et pour tout $n \in \mathbb{N}$, $U_{n+1} = \frac{1}{3}U_n + n - 2$.

- 1) Calculer U_1 , U_2 et vérifier que $U_3 = -\frac{14}{27}$.
- 2. a) Démontrer, par récurrence, que pour tout entier naturel n \geq 4, $\,U_{n} \geq 0$.
- b) Montrer que pour tout entier $n \ge 5$, $U_n \ge n-3$. En déduire $\lim_{n \to \infty} U_n$.
- 3) On définit la suite (V_n) pour tout entier $n \in \mathbb{N}$, par $V_n = -2U_n + 3n \frac{21}{2}$.
- a) Démontrer que (V_n) est une suite géométrique et donner son terme général en fonction de n.
- b) En déduire que, pour tout $n \in \mathbb{N}$, $U_n = \frac{25}{4} \left(\frac{1}{3}\right)^n + \frac{3}{2}n \frac{21}{4}$.
- c) Calculer la somme $S_n = U_0 + U_1 + ... + U_n$ en fonction de n.

Exercice 3 (4 points)

On considère la fonction numérique f définie sur $D = -\infty, -1 \cup 0, +\infty$ par : $f(x) = \ln(x^2 + x)$.

Soit (C) la courbe représentative de f dans un repère orthonormé (O; u, v) d'unité 2cm.

1.a) Calculer les limites suivantes: $\lim_{x \to a} f(x)$ et $\lim_{x \to a} f(x)$ puis les interpréter graphiquement.

- 2) Calculer f'(x) et étudier son signe sur D. Dresser le tableau de variations de f.
- 3) Démontrer que la droite (Δ) d'équation $x = -\frac{1}{2}$ est un axe de symétrie de la courbe (C).
- 4) Déterminer l'intersection de la courbe (C) avec l'axe des abscisses puis construire (C).
- 5.a) En utilisant une intégration par parties, calculer les deux nombres: $I = \int_1^e \ln x dx$ et $J = \int_1^e \ln(x+1) dx$.
- b) Calculer l'aire, en cm^2 , de la surface plane délimitée par la courbe (C), l'axe des abscisses et les droites d'équation respective x=1 et x=e.

Exercice 4 (8 points)

Partie A

On considère la fonction définie sur $[0;+\infty]$ par : $g(x) = x \ln x - x + 1, \quad x > 0$

- 1.a) Montrer que g est continue à droite de 0.
- b) Etudier la dérivabilité de g à droite de 0. Interpréter graphiquement.
- c) Montrer que $\lim_{x \to \infty} g(x) = +\infty$.
- 2.a) Calculer g'(x) pour x > 0 et dresser le tableau de variation de g.
- b) En déduire que g(x) > 0 pour tout x > 0.

Partie B

Soit f la fonction définie par : $f(x) = \frac{\ln x}{x-1}$.

- 1.a) Déterminer le domaine de définition de f.
- b) Montrer que $\lim_{x\to 0^+} f(x) = +\infty$ et $\lim_{x\to +\infty} f(x) = 0^+$. Interpréter graphiquement.
- c) Montrer que f admet un prolongement par continuité au point $x_0 = 1$. Déterminer son prolongement.
- 2.a) Montrer que $f'(x) = \frac{-g(x)}{x(x-1)^2}$ et dresser le tableau de variation de f.
- b) Montrer que l'équation $f(x) = \frac{1}{2}$ admet une solution unique α et que 3.5 < α < 3.6.
- c) Tracer la courbe de f.
- 3) Soit h la fonction définie sur $]1,+\infty[$ par : $h(x) = \ln x + \frac{1}{2}x + \frac{1}{2}$.
- a) Vérifier que $h(\alpha) = \alpha$.
- b) Etudier les variations de h.
- c) On pose I = [3,4]. Montrer que si $x \in I$ alors $h(x) \in I$ et $|h'(x)| \le \frac{5}{6}$.
- 4) On définit la suite (u_n) par $: u_0 = 3$ et $u_{n+1} = h(u_n)$.
- a) Vérifier que $\alpha \in I$ et montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n \in I$.
- b) En utilisant l'inégalité des accroissements finis, montrer que pour tout $n \in \mathbb{N}: |u_{n+1} \alpha| \le \frac{5}{6} |u_n \alpha|$.
- c) Montrer que pour tout $n \in \mathbb{N}$, $: \left| u_{n+1} \alpha \right| \le \left(\frac{5}{6} \right)^n$. En déduire que $\lim_{n \to +\infty} u_n = \alpha$.

Fin.