

TYPE TR-0308

IMPULZUSGENERÁTOR

11591

TARTALOMJEGYZÉK

Oldal

1. A KÉSZÜLÉK RENDELTELÉSE ÉS ALKALMAZÁSI TERÜLETE	3
2. MŰSZAKI ADATOK	4
3. A MŰSZER ÖSSZEÁLLITÁSA	10
4. A KÉSZÜLÉK ÉS FŐBB RÉSZEINEK MŰKÖDÉSE ÉS FELÉPÍTÉSE	11
4.1. Működési elv	11
4.2. A készülék működése (a tömbvázlat alapján)	11
4.3. Részletes működési leírás	12
4.4. Mechanikai felépítés	22
5. ÁLTALÁNOS ÜZEMELTETÉSI UTASITÁSOK	24
5.1. A készülék ki- és visszacsomaglása	24
6. BIZTONSÁGTECHNIKAI UTASITÁSOK	25
7. ÜZEMBEHELYEZÉS ELŐKÉSZITÉSE	26
7.1. Ellenőrző és szabályozó szervek	26
7.2. Óvó rendszabályok	32
8. HASZNÁLATI ELŐIRÁSOK	33
8.1. Üzembeherleyezés	33
9. MEGHIBÁSODÁSOK ÉS MEGSZÜNTETÉSÜK MÓDJAI	34
9.1. A készülék szétszedése	34
9.2. Óvó rendszabályok a javítás alatt	34
9.3. Esetleges hibák és elhárításuk	34
10. MŰSZAKI KARBANTARTÁS	36
11. TÁROLÁSI SZABÁLYOK	36
MELLÉKLETEK	37

Gyártja:

ELEKTRONIKUS MÉRŐKÉSZÜLÉKEK GYÁRA

1163, Budapest, Cziráky u. 26-32.

Telefon: 837-950 Telex: 22-45-35

Forgalomba hozza:

MIGÉRT

MŰSZER- ÉS IRODAGÉPÉRTÉKESITŐ VÁLLALAT

1065 Budapest, Bajcsy-Zsilinszky ut 37.

"511591- „III” pr. sz.

1982.

F.k. Kiss Jovák József

11591

1. A KÉSZÜLÉK RENDELTELÉSE ÉS ALKALMAZÁSI TERÜLETE

A 11591 tipusu Impulzusgenerátor impulzus jelek előállítására szolgál. Az impulzusok paramétereinek változtathatósága lehetővé teszi, hogy a mérés- és hiradástechnika számos területén alkalmazzák, mint meghajtó v. vezérlő jelet szolgáltató generátort. Ujdonság a frekvencia, a szélesség és a késleltetési idő modulálásának lehetősége külső és belső jelről egyaránt, így a műszer merőben új területeken is felhasználható.

A készülék külalakja esztétikus, kezelése egyszerű, a kezelőszervek elhelyezése könnyen áttekinthető. Az impulzusgenerátor modern félvezető eszközökből és integrált áramkörökből épült fel, melyek biztosítják a megbizható és precíz üzemelést.

2. MŰSZAKI ADATOK

2.1. Indítási üzemmódok

2.1.1. Belső indítás

Periódusidő tartomány

belső	
külső	
egyszeres	
kapuzott	

20 ns - 2 s (8 sáv)	
(0,5 Hz - 50 MHz)	
I. 20 ns - 200 ns	
II. 200 ns - 2 μ s	
III. 2 μ s - 20 μ s	
IV. 20 μ s - 200 μ s	
V. 200 μ s - 2 ms	
VI. 2 ms - 20 ms	
VII. 20 ms - 200 ms	
VIII. 200 ms - 2 s	

A sávok között finomszabályozó biztosítja a folyamatos beállítási lehetőséget és az egyes sávok átlapolását.

Periódusidő jitter

$$\leq 0,1 \% + 200 \text{ ps}$$

2.1.2. Külső indítás (EXT.)

Ismétlődési frekvencia

$$\text{DC} - 50 \text{ MHz}$$

Indítójel polaritás

pozitív

Indításhoz szükséges feszültség $1,5 \text{ V}_{\text{cs}}$

A bemenetre adható max.

$$\pm 15 \text{ V}$$

Bemeneti impedancia

$$\geq 500 \text{ ohm névleges}$$

2.1.3. Egyszeres indítás (SP)

EXT állásban az előlapon lévő nyomógombbal lehetséges.

2.1.4. Kapuzott indítás (GATE)

A belső vezérgenerátor a külső vagy belső kapuzó jellel szinkronizált működésű.

A pozitív kapuzójel időtartama alatt a vezérgenerátor nem működik.

A belső kapugenerátor specifikációja megegyezik a moduláló generátor adataival.

A kapuzáshoz szükséges feszültség

$$2 \text{ V}_{\text{cs}}$$

A bemenetre adható max.

feszültség

$$\pm 15 \text{ V}$$

Bemeneti impedancia

$$\geq 500 \text{ ohm}$$

A kapuzójel frekvenciája

$$\text{DC} - 5 \text{ MHz}$$

2.2. Kimeneti üzemmódok

egyes impulzus

kettős impulzus

négyszöghullám

külső szélesség

belső moduláció

külső moduláció

2.2.1. Kimenő indítójel (TRIG.OUT)

Minden adat 50 ohmos külső lezárásra értendő.

Hullámforma

négyszög (külső indítás és egyszeres indítás esetén arányos az indítójel kitöltési tényezőjével)

Polaritás

pozitív

Amplitudó

$$\geq 2 \text{ V}$$

Felfutási idő

$$\leq 8 \text{ ns}$$

2.2.2. Egyes impulzus üzemmód

Egyes impulzus üzemmódban a kimenő impulzus a kiadott indítójelhez képest a beállított késleltetési idővel később jelenik meg.

2.2.3. Kettős impulzus üzemmód

Kettős impulzus üzemmódban a két impulzus közötti időtartam a beállított késleltetéssel azonos.

2.2.4. Négyszöghullám üzemmód

A beállított periódusidővel működő, közel 50 %-os kitöltési tényezőjű impulzus sorozat. Négyszöghullám üzemmódban a késleltető és szélességebeállító kezelőszervek működése hatástalan.

A kimenőjel külső indítás és egyszeres indítás esetén arányos az indítójel kitöltési tényezőjével.

2.2.5. Külső szélesség (EXT WIDTH)

Az EXT WIDTH bemenetre adott jel ismétlődési frekvenciájával és szélességével azonos kimeneti impulzus jelenik meg.

Indítójel polaritás pozitív

Indításhoz szükséges feszültség $2 V_{CS}$

Bemenetre adható max. feszültség $\pm 4 V$

Bemeneti impedancia 50 ohm névleges

2.2.6. Késleltetési idő

A sávok felosztása

$10 \text{ ns} - 1 \text{ s (8 sávban)}$

I. $10 \text{ ns} - 100 \text{ ns}$

II. $100 \text{ ns} - 1 \mu\text{s}$

III. $1 \mu\text{s} - 10 \mu\text{s}$

IV. $10 \mu\text{s} - 100 \mu\text{s}$

V. $100 \mu\text{s} - 1 \text{ ms}$

VI. $1 \text{ ms} - 10 \text{ ms}$

VII. $10 \text{ ms} - 100 \text{ ms}$

VIII. $100 \text{ ms} - 1 \text{ s}$

A sávok között finomszabályozó biztosítja a folyamatos beállítási lehetőséget és az egyes sávok átlapolását.

Késleltetési idő jitter $< 0,1 \% + 100 \text{ ps}$

Kitöltési tényező $\geq 50 \%$

2.2.7. Impulzus szélesség

A sávok felosztása

$10 \text{ ns} - 1 \text{ s (8 sávban)}$

I. $10 \text{ ns} - 100 \text{ ns}$

II. $100 \text{ ns} - 1 \mu\text{s}$

III. $1 \mu\text{s} - 10 \mu\text{s}$

IV. $10 \mu\text{s} - 100 \mu\text{s}$

V. $100 \mu\text{s} - 1 \text{ ms}$

VI. $1 \text{ ms} - 10 \text{ ms}$

VII. $10 \text{ ms} - 100 \text{ ms}$

VIII. $100 \text{ ms} - 1 \text{ s}$

A sávok között finomszabályozó biztosítja a folyamatos beállítási lehetőséget és az egyes sávok átlapolását.

Impulzus szélesség jitter $< 0,1 \% + 100 \text{ ps}$

Kitöltési tényező $\geq 50 \%$

2.2.8. Moduláció

A kimeneti impulzus periódusideje, késleltetése és szélessége külső forrásból vagy belső moduláló generátorból modulálható.

Modulációs frekvencia tartomány DC - 100 kHz

Bemeneti impedancia $\geq 500 \text{ ohm}$

Periódusidő (FM) modulációs mélység $\pm 15 \% (\pm 0,5 \text{ V-ra})$

Késleltetés (PPM) modulációs mélység $\pm 30 \% (\pm 0,5 \text{ V-ra})$

Szélesség (PWM) modulációs mélység $\pm 30 \% (\pm 0,5 \text{ V-ra})$

Az időzítő sáv min. értékénél kisebb -, illetve max. értékénél nagyobb időzítés modulációval sem állítható be.

2.2.9. Belső moduláló generátor

Ismétlődési frekvencia 250 Hz - 50 kHz

A belső moduláló generátorral egymástól függetlenül az alábbi üzemmódok szabályozására van lehetőség.

FM

PPM

PWM

GATE

A megvalósítható modulációs mélységek azonosak a külső modulációtól adottakkal.

2.3. Kimeneti impulzus adatok

Minden adat 50 ohmos külső lezárás esetén értendő.

Polaritás pozitiv vagy negativ
normál vagy inverz

Forrás 50 ohm vagy áramgenerátor
(HIGH Z)

2.3.1. Amplitudo

Finomszabályozás

$40 \text{ mV} - 10 \text{ V}$
 $\leq 5 \text{ V} - \geq 10 \text{ V}$
 (HIGH Z forrásról)
 $\leq 2,5 \text{ V} - \geq 5 \text{ V}$
 (50 ohm forrásról)

Osztó

$x2, x4, x8$
 (az egyes osztótagok egymástól
 függetlenül bekapcsolhatók)

Tullövés

$\leq 5 \%$
 (5 V amplitudónál, 50 ohm for-
 ráson és min. átkapcsolási
 időnél mérve)

2.3.2. Átkapcsolási idő (50 ohm forrásról)

A sávok felosztása

5 ns - 0,5 s (8 sávban)
 I. 5 ns - 50 ns
 II. 50 ns - 500 ns
 III. 500 ns - 5 μ s
 IV. 5 μ s - 50 μ s
 V. 50 μ s - 500 μ s
 VI. 500 μ s - 5 ms
 VII. 5 ms - 50 ms
 VIII. 50 ms - 500 ms

Az átkapcsolási idő értékek az amplitudó finomszabályozó max. állására vonatkoznak.

A felfutási- és visszaütési idők egy-egy sávon belül egymástól függetlenül folyamatosan szabályozhatók és biztosítják az egyes sávok átlapolását.

2.3.3. Alapvonal eltolás (OFFSET)

$\geq (+5 \text{ V}) - \leq (-5 \text{ V})$
 (HIGH Z forráson)
 $\geq (+2,5 \text{ V}) - \leq (-2,5 \text{ V})$
 (50 ohm forráson)
 (folyamatosan szabályozható
 1 sávban)

HIGH Z forrás esetén az alapvonal eltolás értékét az amplitudó osztó bármely osztófokozat bekapcsolása esetén hozzávetőleg a felére osztja.

2.4. Hálózati adatok

2.4.1. Feszültség $110,127,220 \text{ V} \pm 10 \%$

2.4.2. Frekvencia $50/60 \text{ Hz}$

2.4.3. Fogyasztás $\text{max. } 100 \text{ VA}$

2.5. Méretek $132,5 \times 443 \times 354 \text{ mm}$

2.6. Tömeg $\text{kb. } 9 \text{ kg}$

2.7. Klima adatok

2.7.1. Normál és névleges üzemi feltételek

2.7.1.1. Környezeti hőmérséklet $+10^{\circ}\text{C} \dots +35^{\circ}\text{C}$

2.7.1.2. Levegő relativ páratartalma $\text{max. } 85 \%$

2.7.1.3. Légnagyomás $600 \dots 1060 \text{ mbar}$

2.7.2. Üzemeltetési határfeltételek

2.7.2.1. Környezeti hőmérséklet $+5^{\circ}\text{C} \dots +40^{\circ}\text{C}$

2.7.2.2. Levegő relativ páratartalma $\text{max. } 85 \%$

2.7.2.3. Légnagyomás $600 \dots 1060 \text{ mbar}$

2.7.3. Szállítási és tárolási feltételek

2.7.3.1. Környezeti hőmérséklet $-25^{\circ}\text{C} \dots +55^{\circ}\text{C}$

2.7.3.2. Levegő relativ páratartalma $\text{max. } 98 \%$

2.7.3.3. Légnagyomás $600 \dots 1060 \text{ mbar}$

2.8. Periodikus ütésvizsgálat

2.8.1. Az ütés időtartama 12 ms

2.8.2. A gyorsulás max. értéke 50 m/s^2

2.8.3. Az ütések száma 1000

2.9. A készülék alapvetően az alábbi szabványoknak tesz eleget:

2.9.1. MSZ 94-70

2.9.2. RSZ 2657-73; RSZ3824-73; RSZ 3825-73;

RSZ 4492-74

3. A MŰSZER ÖSSZEÁLLÍTÁSA

3.1. Type 11591 (TR-0308) Impulzusgenerátor	1 db
3.2. Tartozékok	
3.2.1. "A" tartozékok (a készülék árában bennfoglalt)	
Type 1004 Hálózati csatlakozó vezeték csatlakozó dugókkal	1 db
Type 1024-1 50 ohmos kábel (1 m) minden végén BNC csatlakozó dugó (BNC/4360C01185)	1 db
Kiemelő kártya	1 db
Használati utasítás	1 db
Csöves olvadóbiztosító betétek	1 db
H.Schurter A.G.	
220 V (hálózat) FST+500 mA + 5x20 (késleltetett)	1 db
110 ill. 127 V FST + 1 A + 5x20 (késleltetett)	2 db
FST + 1 A + 5x20 (késleltetett)	1 db
FST + 1,6 A + 5x20 (késleltetett)	3 db

4. A KÉSZÜLÉK ÉS FŐBB RÉSZEINEK MŰKÖDÉSE ÉS FELÉPÍTÉSE

4.1. Működési elv

A készülék működési elvét az 1. ábrán látható tömbvázlat mutatja. A készülék villamos szempontból a következő főbb részekre tagozódik

- I. Tápegység
- II. Frekvencia egység
- III. Késleltető egység
- IV. Szélesség egység
- V. Kimeneti egység
- VI. Belső kapuzó és moduláló generátor

4.2. A készülék működése (a tömbvázlat alapján)

A tápegység (I) szolgáltatja a szükséges tápfeszültségeket az egyes fokozatoknak.

A frekvencia egység (II) változtatható frekvenciáju négy szögjellet állít elő, amely a késleltető egység (III) bemenetére kerül.

A késleltető egység (III) bemenetére kerülő négy szögjel egy monostabil multivibrátort indít, amely a késleltetési időt állítja elő.

A szélesség egység (IV) bemenetére kerül a késleltető egység (III) által előállított jel. Ennek visszafutó éle indítja a szélesség monostabil multivibrátort, amely a szélességi időt határozza meg. Ha a késleltető egységről (III) érkező jel mindenkor előre indul a szélesség monostabil multivibrátor, akkor kettős impulzust állít elő a készülék.

A végfokozat (V) max. 10 V amplitudójú (50 ohm-on) jellé alakitja a szélesség egység (IV) jelét, vagy a négyszögjelet, amelyet a frekvencia egység (II) állít elő. Ezenkívül elvégzi a kimenőjel amplitudószabályozását (finom és durva) valamint az alapvonal eltolást is.

A belső kapuzó és moduláló generátor (VI) háromszög jelet állít elő a frekvencia egység (II), késleltető egység (III) és szélesség egység (IV) belső modulálására, és négyszögjelet a frekvencia egység (II) belső szinkron kapuzására.

4.3. Részletes működési leírás

A készülék működésének részletesebb ismertetése a villamos kapcsolási rajzok megfelelő poziciós zámaival való utalással történik.

4.3.1. A tápegység ismertetése

A tápegység feladata a készülék többi egységét megfelelő tápfeszültséggel ellátni, ennek megfelelően a következő tápfeszültségeket állítja elő.

+ 18 V: A D2, D3 dióda kétutas egyenirányítót alkot. Az egyenirányított feszültséget a C1 kondenzátor szűri, majd a TR1 át-eresztő tranzisztor kollektorára kerül. TR1 emitteréről IC 2 tápegység IC vezérlőfeszültséget kap, mely alapján TR 1 bázisát vezérli. A tápfeszültség értékét P 10. potenciometterrel lehet beállítani.

- 18 V: A működés elve tökéletesen megegyezik a +18 V-os tápegység működésével.

-32 V: A működés elve tökéletesen megegyezik a -18 V-os tápegység működésével.

+ 5 V: A D10, D11, D12, D13 diódák által szolgáltatott egyensúltségből IC 1 tápegység IC állítja elő a +5 V-os tápfeszültséget.

4.3.2. Frekvencia egység ismertetése

A frekvencia egység az 1. ábrán látható tömbvázlat alapján, több kisebb egységből épül fel.

Frekvencia astabil multivibrátor (1) működése. Tételezzük fel, hogy TR106, TR107-ből álló astabil multivibrátorban TR106 nyitva van, TR107 pedig zárva. Ebben az esetben TR106-on átfolyik TR102 áramgenerátor árama, és a két emitter között levő kapacitáson keresztül (C104, C105) TR103 árama is.

Ekkor TR106 kollektora D109 dióda miatt kb. +2 V-on van. Ezért TR107 bázisa a D106 Zener diódán keresztül kb. 7,1 V-on, a kollektora D108 dióda miatt kb. 0,5 V-on van. Igy TR106 bázisa D105 Zener diódán át +4,6 V feszültséget kap. Ahhoz, hogy TR107 tranzisztor kinyisson, emitterén +7,8 V-nak kell lenni. Mivel TR103 áramgenerátor árama átfolyik C104 és C105 kondenzátoron, és azok egyik fele fix ponton van (mivel TR106 tranzisztor bázisán +4,3 V, így emitterén +5 V van), a másik fele fokozatosan pozitív irányban változik, mert TR103 árama tölti. Belátható, hogy ha ez a feszültség eléri az előbb említett +7,8 V-ot, a TR107 tranzisztor kinyit, kollektorfeszültsége pozitív irányban változik, így D108 dióda lezárt, D110 dióda kinyit, és megfogja TR107 kollektorfeszültségét +2 V-nál. Ez a változás D105 diódán keresztül TR106 bázisára jut, amely a

pozitív feszültségváltozás hatására lezár (+7,1 V), és kollektora a +2 V helyett (D109 zárása miatt) - 0,5 V-ra áll be, mert D107 kinyit. Ez TR107 bázisán D106 diódán keresztül +4,3 V feszültséget állít be. Ekkor TR103 áramgenerátor árama átfolyik TR107-en, és TR102 áramgenerátor árama C104 és C105 kondenzátorokon keresztül szintén átfolyik a nyitott tranzisztoron, TR106 emitterét pozitív irányba változtatva. Amikor TR106 emitterfeszültsége eléri a +7,8 V-ot, akkor a tranzisztor kinyit, és a folyamat kezdődik előlről.

Ezzel az oszcilláció bekövetkezik. TR108 és TR109 áramgenerátorok árama abszolut értékben megegyezik TR102 és TR103 áramával, de előjelük ellenkező. Ha tehát TR106 nyitva van, átfolyik rajta TR102 és TR103 árama. Ennek az áramnak a felét TR108 veszi el, a másik felét D109 dióda vezeti el a +1,5 V-os megfogószint felé. Tehát a diódán csak egy áramgenerátori áram folyik. TR107 ilyenkor zárvá van, ezért D110 is zárvá van és TR109 árama D108 diódán állítja be a -0,5 V-os kollektorfeszültséget.

Természetesen a billenőtranzisztorok fordított helyzetében az áramgenerátorok is feladatot cserélnek.

A frekvencia szabályozása finoman az áramgenerátorok áramának változtatásával, durván a kondenzátorok váltásával történik. Az áramgenerátorok áramának változtatását a bázisaikon levő feszültség változtatásával lehet elérni, amit TR118 emitterkövetőn keresztül P1 szabályoz. TR104 és TR105 tranzisztorok nyitásával, illetve lezárásával lehet a kondenzátorokat váltani.

TR101 biztosítja, hogy TR102, TR103, és TR108, TR109 azonos abszolut értékű áramot szolgáltasson. Mivel D109, D110 diódák a rajuk átfolyó áram nagyságával összefüggően változtatjaák nyitóirányú feszültségüket, ezt kompenzálni kell a megfogószint változtatásával, amit TR111, TR113, TR114 valósít meg. A megfogószint alaphelyzetét P102 segítségével lehet beállítani.

A szinkronkapu erősítőről érkező jel TR116, TR117 közös emitterpontjára érkezik. Alaphelyzetben, ha nincs kapuzás, a kapuzó

erősítőről olyan feszültség jut a közös emitterpontra, hogy TR116 PNP tranzisztor nyitva van. Ilyankor emittere - amely megegyezik TR115 bázispontjával - 0,7 V-tal pozitivabb a bázisánál, amire TR118 emitterkövető feszültsége jut. Ezzel TR115 bázisán ugyanakkora feszültség van mint emitterén, mivel TR103 bázisán is akkora feszültség van, mint TR116-én és TR103 is PNP tranzisztor, így emitterén 0,7 V-tal pozitivabb jel van, mint bázisán. Ilyenkor TR103 áramgenerátor működik, tehát az oszcilláció az astabil multivibrátorban fennáll. Ha a kapuzó erősítőről TR118 emitterfeszültségénél negatívabb feszültség érkezik, akkor TR116 lezár, és TR117 kinyit. Ekkor TR117 emitterén - ugyanakkor TR115 bázisán - 0,7 V-tal negatívabb feszültség lesz mint a bázisán. TR103 lezár, mivel TR115 emittere - és ezzel TR103 emittere is - azonos potenciálon van TR103 bázisával. TR103 áramgenerátor nem szolgáltat áramot, ezzel az oszcilláció megszűnik, az astabil multivibrátor stabil helyzetbe áll be, így a kapuzás létrejön. Az astabil multivibrátor minden azonos helyzetben áll le mégpedig úgy, hogy TR106 nyitva van, TR107 pedig zárvá.

Ezért ha a kapuzójel megszűnik, az oszcilláció minden ugyanabból a pozicióból indul újra, így szinkronban van a kapuzójellel.

Az astabil multivibrátor jele R139 és R140 ellenálláson keresztül egy kicsatoló differenciálerősítőre kerül, amelynek kollektorairól a jel két irányba osztódik szét. Egynégyt a frekvenciaosztóra (2) másrészt a szelektorra (3) kerül.

A frekvenciaosztó (2) bemenete a TR125, TR126 differenciál-erősítő. Ezt TR127 földelt emitteres tranzisztor követi, amelynek kollektora az IC101-IC106 integrált áramkörök ből felépített osztóláncre csatlakozik. Ez 10-es osztókból áll, és négy szögjelet szolgáltat. S9 frekvencia kapcsoló által vezérelt NAND kapukról vehető le a megfelelő frekvenciáju négy szöghullám. A frekvenciaosztó kimenete IC109 integrált áramkör kimenete, amely a szelektorra kapcsolódik.

A szelektor (3) feladata, hogy a különböző helyekről érkező jelből a beállított üzemmódnak megfelelő jelet válassza ki. A beérkező jelek differenciálerősítőkre jutnak (az astabil multivibrátorról TR128, TR129, a frekvenciaosztóról TR130, TR131, a külső indítás erősítőről (4) a TR154, TR155-re). Ezen differenciálerősítők emitterellenállásai egy-egy kapcsolótranzisztoron keresztül TR141 áramgenerátor kollektora csatlakoznak. Amelyik kapcsolótranzisztor be van kapcsolva, TR141 árama azt a differenciálerősítőt működteti, így az azon levő jel jut el TR137, TR138 bázisára, és azon keresztül a kimenetre. A szinkron kimenet erősítője a TR136 emitterkövetőről van vezérelve.

A külső indító jel indítás erősítőjére (4) kerül, D117, D118, D119, D120 diódákon keresztül a jel TR132 és TR133-ra kerül, onnan pedig a szelektorra.

A szinkron kapuerősítőre (5) a szinkron kapubemenetről D123, D124, D125, D126 diódán keresztül kerül a jel, amely azután TR144, TR145 differenciálerősítőt vezérli. Ez a differenciálerősítő vezérli az astabil multivibrátor működésénél leírt módon TR116, TR117 közös emitterét.

A frekvenciamodulálás erősítőjének (6) kimenete az astabil multivibrátorban D107, D108 diódák közös anódpontjára csatlakozik. Alaphelyzetben ennek a pontnak 0 V feszültségének kell lenni. Ha az erősítőre moduláló jel érkezik, akkor kimeneti pontja megváltoztatja feszültségét a bemenőjel függvényében, és az eredetileg 0 V feszültségű alsó megfogószintet megváltoztatja. Belátható, hogy ha ez a feszültség negativ, akkor a C104, C105 kondenzátornak nagyobb feszültségre kell töltődni a billenéshez, így hosszabb ideig töltődik, és ezzel a frekvencia lecsökken. Ha az alsó megfogószint pozitív, akkor természetesen a frekvencia nagyobb lesz az eredetinél.

4.3.3. A készeltető egység ismertetése

A készeltető egység is több kisebb egységből épül fel. A bemenetről érkező indítójel kétfelé ágazik. Egyrészt a TR303, TR304 tranzisztorokból álló négyzetjel differenciálerősítőre (7) kerül (mely a négyzetjelét a végfokozatra juttatja), másrészt a TR301, TR302 differenciálerősítőre, amely a készeltető monostabil multivibrátor (8) bemenete. TR302 tranzisztor kollektorköri munkaimpedanciája L301 induktivitás, amely a bázisra adott négyzetjelből - differenciálás után - pozitív és negatív impulzusokat állít elő. D302 dióda ezen impulzusokat egyenirányítja, csak a negatív impulzusokat engedi át. Ezek az impulzusok TR305, TR306 billenőtranzisztorokból álló monostabil multivibrátor indítójérei. Alaphelyzetben TR305 vezet, bázisa D303 és D304 diódán keresztül - 4,6 V, emittere - 5,3 V feszültségen van. Átfolyik rajta TR307 áramgenerátor árama, ezért kollektora - 0,5 V potenciálon van (D306 nyitott). TR306 bázisa D305 Zener diódán keresztül - 5,6 V-on van. Mivel D308 dióda vezet, és áram folyik át rajta R318 ellenállásra, a TR306 emitterfeszültsége - 5,1 V, tehát le van zárva. Ha L301 tekercsről negatív impulzus érkezik, TR305 lezár, kollektora kb. +3 V potenciálra ugrik, ami D305 diódán átjutva kinyitja TR306-ot. TR306-on átfolyik R318 árama, és C306 kondenzátoron keresztül TR307 áramgenerátor árama is. TR306 emitterpotenciálja -2,3 V. Ez C306 fix pontja. Másik fele fokozatosan töltődik negatív irányba TR307 árama által. Mikor eléri a -5,3 V feszültséget TR305 kinyit, kollektorfeszültsége - 0,5 V lesz, ami lezárja TR306 tranzisztorát, és stabil állapotba kerül a monostabil multivibrátor a következő indítóimpulzus érkezéséig. Az időzítési időt finoman TR307 áramának változtatásával (P2 segitségével), durván az emitterkapacitások váltásával (S7 kapcsolóval) lehet változtatni. A jel TR309, TR310 differenciálerősítőn keresztül a fokozat kimenetére kerül.

R315, R316 közös pontjára csatlakozik a PPM erősítő (9) kimeneti pontja, amely vezéreletlen állapotban kb. +3 V potenciálon van, és ez a monostabil multivibrátor kollektor-tápfeszültsége.

Ha a PPM erősítő vezetelve van, ez a feszültség kisebb vagy nagyobb értékű lesz, így megváltozik a monostabil multivibrátor tápfeszültsége is. Ezzel megváltozik TR306 bázisán kinyitott állapotban a feszültség is, így a kondenzátor hosszabb vagy rövidebb ideig töltődik, amely az időzítési idő változását eredményezi. Ezzel létrejön a késleltetési idő modulációja. (PPM = PULSE PLACE MODULATION = impulzus helyzetmoduláció). A PPM erősítő bemenete mind a külső modulációs bemenetről, mind a belső moduláció oszcillátorról vezérelhető.

4.3.4. A szélesség egység ismertetése

A szélesség egység is - hasonlóan az előző egységekhez - több kisebb fokozatból áll. Az egységhez szervesen nem tartozik ugyan hozzá, de itt van elhelyezve a szinkron kimenet differenciálerősítője és osztója (10). A beérkező szinkronjel TR421 bázisára kerül, amely TR422-vel differenciálerősítőt alkot, amelynek TR422 kollektora a kimenete. Erre a pontra csatlakozik egy 50 ohm hullámimpedanciáju 4x-es osztó, így a szinkron kimenet kimenőfeszültsége 2 V ill. 0,5 V lehet.

A késleltető egységről érkező jel TR401, TR402 tranzisztorokból felépített differenciálerősítőre kerül. A kollektorkörében elhelyezett L402 tekercs a késleltetés astabil multivibrátor (8) ismertetésénél leírt módon indítja a szélesség monostabil multivibrátort (11). Ha TR403 tranzisztor ki van kapcsolva, akkor L401-en is megjelenhet a negativ impulzus, ami D402 diódán keresztül szintén indithatja a monostabil multivibrátort. Ilyenkor az billen a késleltetési idő indulásánál és befejezésénél is, tehát kettős impulzust állít elő. Ha TR403 be van kapcsolva, akkor rövidre zárja L401 tekercset, és a monostabil multivibrátor működése a továbbiakban megegyezik a késleltető monostabil multivibrátor (8) működésével. A kimenőjele TR408, TR409 differenciálerősítőre kerül, amelynek kollektorairól D412 illetve D413 csatolja ki a jelet. TR410 és TR411 nyitott illetve zárt helyzetétől függ, hogy a kollektoron megjelenik-e jel

vagy sem. Igy tetszés szerinti kollektorról vehetjük le a jelet. Az egyiken a normál jel, a másikon annak inverze jelenik meg, így TR410 és TR411 vezérlésével megválaszthatjuk, hogy a fokozat kimenetén normál vagy inverz jel jelenjen meg. D412, D413 jele közös pontra, TR412 bázisára kerül, amely TR413-mal differenciálerősítőt alkot. Ez a fokozat kimenete. A PWM (PULSE WIDTH MODULATION = impulzus szélesség moduláció) erősítő (12) működése tökéletesen megegyezik a PPM erősítő (9) működésével.

Ha nem a készülék által szolgáltatott szélességű jellel akarjuk működtetni a készülék kimeneti egységét, akkor külső szélességi jelet kell adnunk az EXT. WIDTH csatlakozóra, mely a külső szélesség erősítő (13) bemenete. Ebben az esetben a készülék előző fokozatainak működése (frekvencia egység, késleltetés egység, szélesség egység) leáll, és a kimeneti egységet a külső szélesség erősítő (13) vezérli. Ez egy differenciálerősítő, amelynek kimenete ugyanazokra a kimenő pontokra csatlakozik, mint a szélesség astabil multivibrátor kimenete.

4.3.5. A kimeneti egység működése

A kimeneti egység is több kisebb fokozatból épül fel. A végfokozatra kerülő jel először a felfutás, visszasutás egységre (14) kerül. Ide két helyről juthat el a jel. A TR501, TR502 tranzisztorokra a négyzetjel differenciálerősítőről (7), a TR503, TR504 tranzisztorokra pedig a szélesség egység kimenetéről. Ennek a két differenciálerősítőnek közös kollektorpontjai vannak, és az emitterellenállásukra kapcsolt feszültség határozza meg, hogy melyik működik, és melyik működése van letiltva. Közös kimenőjelük TR505, TR506 tranzisztorokból felépített földelt bázisu erősítő emitterpontjaira érkezik. A kollektorokról a jel TR507, TR508 utána TR509, TR510 tranzisztorokból felépített differenciálerősítőkre kerül. TR509, TR510 kollektora TR511, TR512 és D503, D504 Zener diódákon keresztül TR513, TR514 differenciálerősítőkre csatlakozik.

TR509, TR510 kollektora zárt állapotban kb. -13 V, nyitott állapotban kb. -12 V feszültségű. Ez a vezérlés eredményezi, hogy amikor TR509 nyitva van, akkor TR511, TR514 zárt, TR512 és TR513 pedig nyitott. TR516 áramgenerátor árama elfolyik TR513 tranzisztoron a -18 V-os tápfeszültség felé, TR515 áramgenerátor árama pedig tölti C507 kondenzátort pozitív irányban. Amikor TR510 van nyitva, akkor a helyzet fordított, és TR515 áramá folyik a -18 V-os tápfeszültség felé, TR516 áramá pedig TR514-en keresztül negatív irányban változtatja a kondenzátor feszültségét. Ha a kondenzátor feszültsége eléri kb. -16 V-ot, akkor D509 dióda kinyit, és TR515 áramát elfolytatja TR527-en, ezzel -16 V-on stabilizálja a kondenzátor feszültségét. Ha pedig TR516 áramgenerátor hatására a kondenzátor feszültsége eléri a kb. -21 V-ot, akkor D508 dióda nyit ki, és TR528 tranzisztoron keresztül elfolyik TR516 áramgenerátor árama, a feszültség ismét stabilizálódik a kondenzátoron mindaddig, mik a kondenzátor feszültségét TR515 pozitív irányban nem kezdi változtatni. D508, D509 közös pontján tehát előáll a változtatható felfutási idejű impulzus. A fel- és visszafutási időt finoman TR515 és TR516 áramgenerátorok áramának változtatásával (P4, P5 potenciometrrel), durván pedig a kondenzátorok átkapcsolásával (S4 kapcsolóval) lehet változtatni.

Ez a jel azután a végerősítő fokozatra (15) kerül, amelynek be-menőpontja TR526 bázisa. Ez a tranzisztor emitterkövető üzemmód-ban működik. Emittere áramgenerátorról van táplálva (TR537), amely kb. 40 mA-t szolgáltat. Ezután következik a két meghajtó tranzisztor (TR531, TR532), ugyancsak emitterkövető fokozatok, amelyeket TR535 tranzisztor táplál, mint áramgenerátor, valamivel több mint 200 mA-es árammal. A kimenő tranzisztor (TR533) bázisa -18 V-ra, emittere R585, R586 ellenállásokon keresztül TR531, TR532 emitterkövetők emitterére kapcsolódik.

Ha a meghajtó tranzisztorok emittere eléri a -18,7 V-ot, akkor a végtranzisztor kinyit, és a 30 ohmos ellenállásokon keresztül áram folyik el TR535 áramgenerátorról a végtranzisztorra.

Minél jobban negatív a meghajtó tranzisztorok emitterfeszültsége, annál több áramot visz el a végtranzisztor. Ha ez a feszültség eléri a kb. -21,7 V-ot, akkor a végtranzisztoron 200 mA áram folyik, amely elegendő ahhoz, hogy az 50 ohmos lezáró ellenálláson 10 V feszültségesést hozzon létre. A végtranzisztor lezárt állapotában az egész 200 mA a meghajtótranzisztoron és TR5 tranzisztoron át a föld felé folyik el.

A végtranzisztor emitterére csatlakozik TR534 tranzisztor emittere, amely már az amplitudószabályozó és járulékos offset fokozathoz (16) tartozik. Ha ezzel a tranzisztorral áramot vonunk el a végtranzisztorról, akkor az 50 ohmos lezáróellenálláson kisebb feszültség esik. Igy lehet szabályozni az amplitudót.

Ha pozitív impulzust akarunk a kimeneten, akkor az eredeti jel inverzét kell vennünk, és 10 V-tal el kell tolunk, vagyis 200 mA járulékos offset áramot kell a kimenet felé folyatnunk. Ha a pozitív amplitudót csökkenteni akarjuk, akkor az amplitudószabályozó áramát növelniük kell, a járulékos offset áramát pedig csökkenteniük. Ezt a feladatot végzi TR545, TR546 differenciálerősítő, mely ugy van beállítva, hogy alaphelyzetben TR543 amplitudószabályozó áramgenerátoron ne folyék áram, TR540 járulékos offset áramgenerátoron pedig 200 mA áram folyék. Ha fél amplitudót akarunk, akkor P6 amplitudószabályozó potenciométerrel ugy állítsuk be TR546 bázisfeszültségét, hogy az TR543 áramát 100 mA-re, TR540 áramát szintén 100 mA-re állitsa be, így létrejön a kimeneten az 5 V amplitudójú pozitív impulzus.

Ezután a jel a kimeneti osztóra (17) kerül, amely x2, x4 és x8 átlásu. A kimeneti osztó 50 ohmos hullámimpadanciáju, és II tagokból van felépítve. Kimenetéről az impulzus közvetlenül a készülék OUT kimenetére kerül.

Ugyanoda csatlakozik az alapvonal eltoló (offset) fokozat (18).

Az 5 V offset feszültség előállításához az 50 ohmos terhelő impedancián 100 mA offset áramnak kell átfolynia. P7 potenciometter (Offset szabályozó) által meghatározott feszültség kerül D513, D514 közös pontjára. Ezen feszültség polaritása határozza meg,

hogy D513 v. D514 legyen nyitva, a diódák pedig azt, hogy melyik áramgenerátor működjön. A pozitív offset feszültséghez az áramot TR549, a negativhoz TR556 szolgáltatja P7 potenciometter feszültségével arányosan.

4.3.6. Belső kapuzó és moduláló generátor

A belső kapuzó és moduláló generátor háromszög- és négy-szöghullámú jelet állít elő. P9 potenciometter által meghatározott feszültséggel vezéreljük TR316 és TR317 tranzisztorokból felépített áramgenerátorokat. TR316 áramgenerátor negatív áramát TR318, TR319, TR320 tranzisztorokból felépített áramtükör (áramvezérelt áramgenerátor) pozitív árammá alakítja át. D311, D312, D313, D314 diódákból álló kapcsoló IC 302 komparátor kimenetétől függően vagy negatív, vagy pozitív árammal tölti C319 kondenzátort.

Tételezzük fel, hogy bekapcsolás után a pozitív áramgenerátor tölti a C319 kondenzátort. Ekkor D311 és D314 dióda vezet, és D312, D313 dióda zárva van, mivel TR321, TR322 emitteréről a diódagyűrű pozitív kapcsolójelet kap. Mikor a pozitív árammal töltött kondenzátor feszültsége eléri a komparátor billenési szintjét, a komparátor átbillen, D311 és D314 dióda lezár, D312 és D313 kinyit, így a kondenzátorra negatív töltőáram kerül.

A háromszögjelét C319 kondenzátor feszültségét követve IC 303 követő erősítőről kapjuk, míg a kapuzáshoz szükséges négyzetjelet TR321 és TR322 közös emitteréről.

4.4. Mechanikai felépítés

A készülék öntött oldallapjai biztosítják mechanikai szilárdságát.

Szétszerelése nagyon egyszerű. Az oldallapok csavarjainak kihajtása után a készülék oldallapjai eltávolíthatók. Az alsó és fedőlemez, a hátlpnál elhelyezett 2-2 csavar kicsavarása után hátrafelé lehet lehuzni. A borítólapotól megszabadított gépből a kártyákat az első diszléc eltávolítása után lehet kiemelni, amely az előlap és oldallap találkozásánál elhelyezett tuskókhöz csavarral van erőssítve. A diszléc eltávolítása után a kártyákat az alaphelyzetben álló gépből felfelé lehet eltávolítani. A frekvencia kártya azonnal kiemelhető, míg a késleltetés és szélesség kártyánál előbb le kell forrasztani a kapcsolókhöz forrasztott ellenállásokat. A kártyák alaplapjait a rögzítő csavarok kicsavarása után lehet kivenni, de előbb le kell forrasztani a hozzájuk csatlakozó vezetékeket. A készülék tápegysége és hálózati transzformátora az oldallapokra és hátlapra erősített hajlitott aluminiumlemezen van elhelyezve, amely hajlításai által nagy mechanikai szilárdságot biztosít a gépnek.

Ugyanezen a lemezen találhatók a gép alja felől szerelve a szekunder biztosítékok is, valamint a felhajlitott részen a kártyamegvezető sinék. Nagy felülete és hőátadása az oldallap és hátlap felé biztosítja az áteresztő tranzisztorok megfelelő hűtését. A készülék összeszerelését a fent leírtak fordított sorrendjében kell elvégezni.

5. ÁLTALÁNOS ÜZEMELTETÉSI UTASITÁSOK

5.1. A készülék ki- és visszacsomagolása

A készülék külső burkolata a hullámpapír doboz, amelyet a ragasztások mentén kell felbontani. A hullámpapír dobozból történt kiemelés után eltávolítható a légmentesen zárt műanyag fólia burkolat is, és a készüléket a csomagolópapírból ki lehet venni. A korrodeálódó alkatrészek korroziógátló anyaggal vannak bevonva, amit szintén el kell távolítani.

Ezen műveletek elvégzése után a készülék üzembe helyezhető. Amennyiben a készülék újból szállításra kerül, a visszacsomagolást a fent leírt mód fordított sorrendjében kell elvégezni, lehetőleg minden csomagolóanyag felhasználásával, nehogy a készülék a szállítás folytán károsodjon.

6. BIZTONSÁGTECHNIKAI UTASITÁSOK

A készülék kezelése különleges biztonsági intézkedéseket nem igényel. A hálózati feszültség átkapcsolása és a hálózati biztosíték cseréje a készülék hátlapján könnyen elvégezhető, de ezen műveletek elvégzése előtt a hálózati csatlakozó dugót a hálózati csatlakozó aljzatból ki kell huzni. A biztosító betétet kiolvadás esetén drótszállal vagy átkötéssel helyettesíteni veszélyes és szigoruan tilos! A biztosító kizárálag a gyár által előírt tipusu, vagy azzal azonos méretű és villamos paraméretű biztosítóval pótolható. Az olvadó biztosító betét cseréje után a biztosító fejet szerszámmal (pl. csavarhuzó) rögzíteni kell, hogy az kézzel ne legyen kicsavarható. A készülék csak védőföldessel ellátott hálózati csatlakozó aljzathoz csatlakoztatható.

7. ÜZEMBEHELYEZÉS ELŐKÉSZITÉSE

7.1. Ellenőrző és szabályozó szervek

7.1.1. A készülék előlapján elhelyezett ellenőrző és szabályozó szervek (2. ábra szerint). A készülék alaphelyzetben negatív normál impulzust szolgáltat. Ha ettől eltérő üzemmódot választunk, akkor az a címkén jelölve van a kezelőszerv mellett.

1. Sp (S 14)

Nyomógomb, az egyszeres indítás nyomógombja. A készüléket EXT állásba állítva ennek megnyomásakor a készülék kimenetén egyetlen impulzus jelenik meg a beállított paraméterekkel.

2. EXT (So 5)

Csatlakozó, amelyre a külső indítójelet kell adni. A készüléket EXT állásba állítva a kimeneten az EXT bemenetre adott jelnek megfelelő periódusidejű impulzusjel jelenik meg.

3. (S 10/A)

Kapcsoló, mely a külső indítást kapcsolja. Kiengedett állásban a készülék belső indításban, benyomott állapotban külső indításban működik.

4. SYNC GATE (So 4)

Csatlakozó, ahová a szinkron kapuzójelet kell csatlakoztatni. Ha a szinkron kapu kapcsolója benyomott állapotban van, akkor a készülék kimenetén a kapuzójel időtartama alatt nem jelenik meg jel.

5. (S 10/B)

A szinkron kapuzás kapcsolója. Benyomott állapotban a készülék kapuzható, kiengedett állapotban a SYNC GATE bemenetre adott jel hatástan.

6. FM (So 3)

A frekvenciamoduláció csatlakozója. Az erre a pontra adott jel a frekvenciamoduláció kapcsoló benyomott állapotában a kimenőjel frekvenciáját változtatja.

7. (S 10/c)

Ha a kapcsoló benyomott állapotban van, akkor FM bemenetre adott jel modulál, ha ki van engedve, akkor hatástan. Belső moduláció használatakor is be kell nyomni.

Periódusidő finomszabályozó szerv.

Forgatásával a készülék kimenőjelének periódusideje folyamatosan állitható.

Nyomógombsáv, amelynek megfelelő nyomogombját benyomva durván beállítható a készülék kimenőjelének periódusideje. A gomb széléhez tartozó feliratok között tudja változtatni 8. forgatógomb a periódusidőt.

Ennek a nyomógombnak a benyomásával a kimeneten négyeszöghullám jelenik meg ugy, hogy a késleltetési idő és szélesség nem működik. Ennek megfelelően hatástan a normál-inverz átkapcsoló. Ilyen esetben a pozitív gombot (S3/B) benyomva a jelhez annak amplitudójával megegyező pozitív DC szint adódik

Erre a csatlakozóra adott jel a kimenő impulzus késleltetési idejét modulálja abban az esetben, ha a késleltetési idő moduláció gomb (12) be van nyomva.

A késleltetési idő modulációjának nyomógombja. Benyomott állapotban a PPM bemenetre adott jel modulál, kiengedett állapotban hatástan.

A belső moduláció használatánál is be kell nyomni.

A késleltetési idő finomszabályozó forgatógombja. Forgatásával a készülék kimenőjelének késleltetési ideje folyamatosan állitható.

Nyomógombsáv, amelynek megfelelő nyomó-

8. PERIOD (P1)

9. PERIOD (S9)

10. (S 8/A)

12. PPM (So6)

13. (S8/C)

14. DELAY (P2)

15. DELAY (S7)

11591

- gombját benyomva durván beállítható a készülék kimenőjelének késleltetési ideje. A gomb széléhez tartozó feliratok értékei között tudja változtatni 14. kezelőszerv a késleltetési időt.
- 16. EXT WIDTH (S09)** Ha a készülék kimeneti egységét nem belső, hanem külső jelről akarjuk működtetni (4.3.4. pontban leírtak alapján), akkor ezt a külső jelet erre a csatlakozóra kell adnunk. EXT WIDTH csatlakozó nyomógombja. Benyomott állapotban EXT WIDTH üzemmód, kiengedett állapotban belső szélességüzemmód van. EXT WIDTH üzemmódban a bemenetre adott indítójellel arányos szélességű pozitív jelet kapunk a kimenetben, a pozitív (S3/B) gomb benyomásával. Ebben az üzemmódban a normál-inverz átkapcsoló (S3/A) nem működik. Negativ polaritás esetén a fentiekben leírt kimenőjel az amplitudójával megegyező negativ DC szinttel eltolódik.
- 18. TRIG OUT (S07)** A készülék szinkronjelének kimenete. Ennek a jelnek a selfutó éléhez képest késleltetett a kimenőjel selfutó éle.
- 19. (S6/B)** A szinkron kimenet amplitudóját szabályozó nyomógomb. Két állása van. Benyomva a TRIG OUT csatlakozón 0,5V, kiengedve 2V amplitudójú szinkronjel jelenik meg.
- 20. PWM (S07)** Az impulzusszélesség modulációjának csatlakozója. Az erre a pontra adott jel az impulzusszélesség moduláció kapcsoló benyomott állapotában a kimenőjel szélességét modulálja.
- 21. (S6/C)** Az impulzusszélesség modulációjának nyomógombja. Benyomott állapotban a PWM bemenetre adott jel modulál, kiengedett állapotban hatásalan. A belső moduláció használatánál is be kelnyomni.

28

- 22. (P3)** A szélesség finomszabályozó forgatógombja. Forgatásával a készülék kimenőjelének széleségi ideje folyamatosan állítható.
- 23. WIDTH (S5)** Nyomógombsáv, amelynek megfelelő nyomogombját benyomva durván beállítható a készülék kimenőjelének szélessége. A gomb széléhez tartozó feliratok értékei között tudja változtatni 22. kezelőszerv a szélességet.
- 24. RISE (P4)** A felfutási idő finomszabályozó forgatógombja. Forgatásával a készülék kimenőjelének felfutási ideje folyamatosan állítható.
- 25. FALL (P5)** A visszafutási idő finomszabályozó forgatógombja. Forgatásával a készülék kimenőjelének visszafutási ideje folyamatosan állítható.
- 26. TRANS.TIME (S4)** Nyomógombsáv, amelynek megfelelő nyomogombját benyomva durván beállítható a készülék kimenőjelének átkapcsolási ideje. A gomb széléhez tartozó feliratok értékei között tudják változtatni 24 és 25 kezelőszervek a felfutási illetve visszafutási időt.
- 27. INV-NORM (S3/A)** Normál-inverz átkapcsoló nyomógomb. Kiengedett állapotban a készülék kimenetén a periódusidőt és szélességet szabályozó kezelőszervek állásának megfelelő impulzus jelenik meg. Benyomott állapotban az előbb leírt impulzus inverze.
- 28. POS-NEG (S3/B)** Pozitiv-negativ átkapcsoló. Kiengedett állapotában a készülék kimenőjele negativ polaritásu, benyomott állapotban pedig pozitív. Pozitiv polaritásnál, a negativ polaritásban beállított impulzusszélesség kb. 5ns-ral kiszélesedik.
- 29. 50 ohm-HIGH Z** 50 ohm nagyimpedanciás átkapcsoló. Benyomott állapotában a készülék belül le van zárva 50 ohm-mal, kiengedett állapotban nincs lezárva (vagyis nagyimpedanciás).

11591

11591

29

30. AMPLITUDE (P6) Az amplitudószabályozás forgatógombja.
Forgatásával a készülék kimenőjelének amplitudója folyamatosan állítható.
31. ATTENUATOR (S2) A kimeneti osztó nyomógombsávja.
A megfelelő nyomógomb benyomásával választható ki a megfelelő osztóállás. Egyszerre több gombja is benyomható, így az osztás értéke összeszorzódik.
32. OFFSET (P7) Az alapvonal eltolás szabályozó gombja.
Forgatásával pozitív v. negativ eltolás érhető el. Az alapvonal eltolást folyamatosan változtatja.
33. OFF (S13) Az alapvonal eltolás kikapcsoló nyomógombja.
Kiengedett állapotban az alapvonal eltolás működik, benyomott állapotban pedig nincs alapvonal eltolás.
34. OUT (S010) A készülék kimeneti pontja. Erről a csatlakozóról lehető le a kimenőjel.
35. OUT (S02) A belső kapuzó és moduláló generátor kimeneti pontja. Erről a csatlakozóról lehető a belső moduláló jel.
36. GATE (S11) A belső kapuzó és moduláló generátor belső kapuzó jelének nyomógombja. Benyomott állapotában a készüléket a kapuzó generátor kapizza. Ilyenkor a belső moduláció nem működik. Kiengedett állapotban a belső kapuzójel nem jut el a kapubemenetre.
37. FM (S12/A) A belső kapuzó és moduláló generátor belső frekvenciaszabályozó jelének nyomógombja. Benyomott állapotban a kimenő jel frekvenciáját a moduláló generátor modulálja (be kell nyomni az FM nyomógombot /7/ is). Kiengedett állapotban a belső moduláló jel nem jut el a moduláló bemenetre.
38. PPM (S12/B) A belső kapuzó és moduláló generátor belső késleltetési idő moduláló jelének nyomógombja. Benyomott állapotban a kimenőjel késleltetési idejét a moduláló generátor modulálja (be kell nyomni a PPM nyomógombot /13/ is). Kiengedett állapotban a belső moduláló jel nem jut el a moduláló bemenetre.
39. PWM (S12/C) A belső kapuzó és moduláló generátor belső szélességmodulációs jelének nyomógombja. Benyomott állapotban a kimenőjel szélességét a moduláló generátor modulálja, (be kell nyomni a PWM nyomógombat 21. is). Kiengedett állapotban a moduláló jel nem jut el a moduláló bemenetre.
40. AMPL (P8) A belső kapuzó és moduláló generátor amplitudószabályozó szerve. A kapuzó és moduláló generátor szinuszhullámának amplitudóját lehet vele szabályozni folyamatosan.
41. FREQ (P9) A belső kapuzó és moduláló generátor frekvenciaszabályozó szerve. A kapuzó és moduláló generátor frekvenciáját lehet vele folyamatosan szabályozni.
42. POWER (S1) A készülék hálózati kapcsolója. Benyomott állapotában a készülék be van kapcsolva, kiengedett állapotában pedig nem működik.
43. (D1) A készülék bekapcsolt állapotát ellenőrző szerv. Ha POWER kapcsoló bekapcsolt állapotban van, akkor piros fényvel világít. Ha POWER kapcsoló kiengedett állapotban van, akkor nem világít.

7.1.2. A készülék hátlapján elhelyezett ellenőrző és szabályozó szervek (3. ábra szerint)

44. (S01)

A hálózati kábel csatlakozó aljzata. Ide kell dugaszolni a hálózathoz csatlakozó kábel megfelelő csatlakozóját.

45.

Hálózati feszültségválasztó dugó. A hálózati feszültségnak megfelelő állásba a következő sorrendben kell átkapcsolni. A hálózati csatlakozó dugót a hálózatból ki kell húzni.

A feszültségválasztó dugó csavarját ki kell húzni és elfordítani úgy, hogy a nyil a kivánt hálózati feszültségre mutasson. Ebben a helyzetben a dugót vissza kell dugaszolni, a csavart becsavarni. Ezek után a készülék a hálózatra csatlakoztatható.

46. FUSE (F1)

Hálózati biztosító aljzat, melyben a hálózati biztosító van elhelyezve.

7.2. Óvó rendszabályok

Az előkészítéssel kapcsolatos alkatrészek a készülék hátlapján találhatók. A készülék gyárilag 220 V-os hálózati feszültségre van állítva és így kerül szállításra. 110 V vagy 127 V hálózati feszültség esetén a hálózati feszültségválasztó dugót a megfelelő helyzetbe kell átdugaszolni. A 220 V-os hálózati feszültségnél alkalmasított biztosítót 110 V, illetve 127 V-os feszültséghez megfelelő értékűre kell kicserélni. A hálózati feszültségválasztó dugó helyes állásának ellenőrzése után a készülék a hálózathoz csatlakoztatható.

8. HASZNÁLATI ELŐIRÁSOK

8.1. Üzembehelyezés

A készüléket a POWER feliratu hálózati kapcsoló benyomásával lehet bekapcsolni. A bekapcsolást a POWER felirat fölött elhelyezett fényemittáló dióda jelzi. Bekapcsolás után a készülék azonnal üzemelhető.

9. MEGHIBÁSODÁSOK ÉS MEGSZÜNTETÉSÜK MÓDJAI

A készülék modern félvezetőkből, integrált áramkörökből és passzív elemekből épül fel, ezért meghibásodásának valószínűsége kicsi. Az alábbiakban leírtak egy esetleges hiba elhárítását könnyítik meg.

9.1. A készülék szétszedése

A készülék szétszerelését a 4.4. pontban leírtak alapján kell elvégezni.

9.2. Óvó rendszabályok a javítás alatt

Javitás alatt a kidobozott készülékben a munkát körültekintően kell végezni. A készülék tápegységének hálózati oldalánál az esetleges javításokat csak a hálózati dugó kihúzása után lehet elvégezni!

9.3. Esetleges hibák és elhárításuk

A készülék meghibásodása esetén a vizsgálatot a tápegységnél kell elkezdeni. Ha a tápfeszültségek eltérnek a megadottaktól, akkor először a szekunder biztosítókat kell megvizsgálni, hogy nem olvadtak-e ki. Ha jók, akkor először az egyenirányítatlan, majd az egyenirányított feszültséget kell megmérni. Ha ezek megfelelőek, akkor a hiba az áteresztő tranzisztorban, vagy az azt meghajtó hibajel érzékelő erősítőben van, ahol a hiba az alkatrészek ellenőrzésével könnyen behatárolható.

Ha a tápfeszültségek rendben vannak, akkor nézzük meg a szinkron kimenetet (TRIG OUT). Ha a negyszögjel megjelenik rajta, akkor a készülék frekvenciaegysége működik. Ha nincs szinkronjel, akkor a működési leírás 4.3.2. pontja alapján nézzük meg az astabil multivibrátor. Ha nem működik, ellenőrizzük le az alkatrészeket,

és a hibást cseréljük ki. Ha működik, akkor nézzük meg, hogy a szelektor kimenetén megjelenik-e a frekvenciát meghatározó négy-szögjel. Amennyiben ez megjelenik, ugy csak a szinkronjel erősítőjében lehet a hiba. Ezzel elvégeztük a frekvencia egység működésének ellenőrzését.

Ha a készülék kimenetén továbbra sincs kimenőjel, akkor végezzük el a késleltető egység ellenőrzését is 4.3.3. pont alapján. Abban az esetben, ha a késleltető egység kimenetén nincs jel, ellenőrizni kell a monostabil működését, és hogy eljut-e az indítóimpulzus (kellő amplitúdóval) a monostabil multivibrátorra. Ezek figyelembe-vételével a hiba behatárolható.

A szélesség egység működését - mivel hasonló felépítésű a késleltető egységezhez - a fent leírt elvek alapján ellenőrizzük.

Amennyiben kimenetén megjelenik a beállított szélességnek megfelelő jel, akkor a hiba a kimeneti egységen van.

A kimeneti egység működésének leírásánál 4.3.5. pontban leírtakat vegyük alapul az egység ellenőrzésének elvégzésekor. Nézzük meg, hogy a felsutó és visszafutó éleket előállító fokozatban az áramgenerátorok áramát kapcsoló tranzisztorok megkapják-e a kapcsoló jelet. Ha igen, akkor nézzük meg a kondenzátoron - amelyet az áramgenerátorok táplálnak - a jelet. Ha megvan, és a felsutó és visszafutó élek meredeksége változtatható, akkor ez a fokozat is működik. Utána ellenőrizzük a végfokozat meghajtó részét és a végtranzisztor működését. Ha a jel még itt is megjelenik, akkor a kimeneti osztót nézzük át.

10. MŰSZAKI KARBANTARTÁS

A készülék semmiféle különleges karbantartást nem igényel.

11. TÁROLÁSI SZABÁLYOK

A készüléket az 5.1. pontnak megfelelően becsomagolt és leragasztott állapotban olyan raktárhelyiségben, illetve olyan külön körülmények között kell raktározni és szállítani, amelyek az alábbi előirásoktól nem térnek el:

Környezeti hőmérséklet

-25°C ... +55°C

Relatív légnedvesség

max. 98 %

Légnyomás

600 - 1060 mbar

A készülék hosszu idejű raktározása különleges óvintézkedést nem tesz szükségessé.

Raktározás után a készülék kicsomagolva és hálózatra csatlakoztatva üzemi körülmények között azonnal üzemképes.

0°C alatti hőmérsékleten történt raktározás után, használat előtt a készüléket célszerű állandósító légtérbe helyezni és ott tar-tani mindaddig, amíg hőmérséklet-egyensúlyba jut, és csak ezután üzembehelyezni.

MELLÉKLETEK

Alkatrészjegyzék

A készülék fényképe

Tömbvázlat

Előlap a kezelőszervekkel

Hátlap a kezelőszervekkel

Belső elrendezés

Tápegység kapcsolási rajza

Frekvencia egység kapcsolási rajza

Késleltető egység kapcsolási rajza

Szélesség egység kapcsolási rajza

Kimeneti egység kapcsolási rajza

Belső kapuzó és moduláló generátor

Nyomtatott áramköri rajzok

1. ábra

2. ábra

3. ábra

4. ábra

5. ábra

6. ábra

7. ábra

8. ábra

9.10. ábra

11. ábra

12-25. ábra

**ALKATRÉSZJEGYZÉK
PARTS LIST
SCHALTTEILLISTE
LISTE DU MATERIEL
СПЕЦИФИКАЦИЯ ДЕТАЛЕЙ**

RF	fémrétegellenállás	metal-film resistor	Metallschichtwiderstand	резистор металлизированный	RF
RK	szénrétegellenállás	crystal-carbon resistor	Kohlerschichtwiderstand	резистор углеродистый поверхностный	RK
RT	tárcsaellenállás	disc resistor	Scheibenwiderstand	резистор дисковый	RT
RH	huzalellenállás	wire-wound resistor	Drahtwiderstand	резистор проволочный	RH
RPH	precíziós huzalellenállás	precision wire-wound resistor	Präzisions-Drahtwiderstand	резистор прецизионный проволочный	RPH
RZ	zománctevonatú huzalellenállás	wire-wound resistor (enamelled)	Drahtwiderstand	резистор проволочный с эмалевым покрытием	RZ
PH	huzalpotenciometér	wire-wound potentiometer	Drahtpotentiometer	резистор переменный проволочный	PH
PR	réteg potenciometér	film-type potentiometer	Schichpotentiometer	резистор переменный углеродистый	PR
CP	papirkondenzátor	paper capacitor	Papierkondensator	конденсатор бумажный	CP
CC	csillámkondenzátor	mica capacitor	Glimmerkondensator	конденсатор слюдяной	CC
CK	kerámik kondenzátor	ceramic capacitor	Keramikkondensator	конденсатор керамический	CK
CE	elektrolit kondenzátor	electrolytic capacitor	Elektrolytkondensator	конденсатор электролитический	CE
CS	styroflex kondenzátor	styroflex capacitor	Styroflexkondensator	конденсатор полистирольный	CS
CMP	fémezett papirkondenzátor	metallized paper capacitor	Metallpapierkondensator	конденсатор металлизированный бумажный	CMP
CMF	fémezett műanyagfóliás kondenzátor	metallized plastic foil capacitor	Metallkunststoff-Folien-kondensator	конденсатор металлизированный с пластмассовой фольгой	CMF
CML	fémezett lakkfilm kondenzátor	metallized lacquered capacitor	Metallisierte-Kunststoffkondensator mit Lackfolien	металлизированный конденсатор на лакированной основе	CML
CMS	fémezett styroflex kondenzátor	metallized styroflex capacitor	Metallstyroflexkondensator	конденсатор полистирольный, металлизированный	CMS
CT	trimmer kondenzátor	trimmer capacitor	Trimmerkondensator	конденсатор подстроечный	CT
CME	fémezett poliészter kondenzátor	metallized polyester capacitor	Metallpolyesterkondensator	металлизированный полиэфирный конденсатор	CME
CET	tantál elektrolit kondenzátor	tantal electrolytic capacitor	Tantalelektrolytkondensator	электролитический tantalовый конденсатор	CET
CFE	poliészter kondenzátor	polyester capacitor	Polyesterfolienkondensator	полиэфирный конденсатор	CFE
V	elektroncső	tube	Röhren	электронная лампа	V
NJ	számjelző eszközök	numerical indicators	Ziffernanzeigen	цифровой индикатор	NJ
D	dióda	diode	Dioden	диод	D
Se	szélén egyenirányító	selenium rectifier	Selen	выпрямитель селеновый	Se
TR	tranzisztor	transistor	Transistoren	транзистор	TR
Th	termisztor	thermistor	Termistor	термистор	Th
IC	integrált áramkör	integrated circuit	Integrierte Stromkreise	интегральная схема	IC
XL	kristály	crystal	Schwingquarz	кварцевый резонатор	XL
So	csatlakozó aljzat	socket	Buchse	разъем	So
Pl	csatlakozó dugó	plug connector	Stecker	штекель	Pl
T	transzformátor	transformer	Transformatoren/Übertrager	трансформатор	T
L	induktivitás	inductivity, coil	Spulen	катушка индуктивности	L
A	akkumulátor	rechargeable battery	Batterie	аккумуляторная батарея	A
REG	regisztráló	recorder	Schreiber	регистратор	REG
F	biztosító betét	fuse	Sicherungseinsatz	предохранительная вставка	F
H	hallgató	headphone	Kopfhörer/Ohrhörer	наушник	H
Hx	hangszóró	loudspeaker	Lautsprecher	громкоговоритель	Hx
RY	jelfogó	relay	Relais	реле	RY
J	jelzőlámpa	pilot lamp	Signallampe	сигнальная лампа	J
G	parázsfénylámpa	glow discharge lamp	Glimmlampe	лампа тлеющего разряда	G
S	kapcsoló	switch	Schalter	выключатель	S
MOT	motor	motor	Motor	мотор	MOT
B	telep	battery	Batterie	батарея	B
M	műszer	meter	Anzeigegerät	стрелочный прибор	M

R -

Minden mérőkészülék - a megbízhatóság és a műszaki adatokban előirt határértéken nagyobb pontosság érdekében - gondos egyedi méréssel és beszabályozással készül. Ennek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő alkatelemeket is tartalmaznak.

With a view to reliability and increased accuracy within the specifications, each unit has been subjected to careful individual control measurement and alignment. Therefore, it may occur that an instrument includes components with ratings slightly different from those given in the Parts List below.

Jedes Gerät wird im Interesse einer höchstmöglichen Genauigkeit und Verlässlichkeit sorgfältigen individuellen Messung und Eichung unterzogen. Demzufolge kann es vorkommen, dass die Geräte auch Teile enthalten, deren Werte von den in der vorliegenden Sa

teilliste angeführten Werten abweichen.

Chaque appareil de mesure a été fabriqué avec des mesures et des réglages individuels soignés dans l'intérêt de la fiabilité et d'une plus grande précision, en-dedans des limites prescrites dans les caractéristiques techniques. En raison de ceci il peut arriver que l'appareil contienne des éléments dont la valeur est autre que celle spécifiée dans la Liste du matériel ci-jointe.

Каждый прибор - в интересах достижения более высокой точности в пределах величин, приведенных в технических данных, а также с целью повышения надежности - подвергается тщательной индивидуальной настройке и наладке. В результате этого может случиться, что приборы содержат и детали, величины которых отличаются от величины, приведенной в спецификации деталей прибора.

No		Ω	%	W	No		Ω	%	W
R1	RF	20 k	5	0,25	R121	RF	3 k	1	0,125
R2	R	20 k	5	0,25	R122	RF	3 k	1	0,125
R3	R	20 k	5	0,25	R123	RF	43	5	0,25
R4	R	20 k	5	0,25	R124	RF	43	5	0,25
R5	R	150	5	0,25	R126	RF	100	5	0,25
R6	R	10 k	5	0,25	R127	RF	100	5	0,25
R7	R	3,6 k	5	0,25	R128	RF	2,7 k	5	0,25
R8	R	2,2 k	5	0,25	R129	RF	220	1	0,125
R9	R	2 k	5	0,25	R130	RF	220	1	0,125
R10	R	100 k	5	0,25	R131	RF	4,7 k	5	0,25
R11	R	3 k	5	0,25	R132	RF	4,7 k	5	0,25
R12	RF	3 k	5	0,25	R133	RF	1 k	5	0,25
R13	R	1,1 k	5	0,25	R134	RF	620	5	1
R14	R	5,1 k	5	0,25	R135	RF	30	5	0,25
R15	R	10 k	5	0,25	R136	RF	220	5	0,25
R16	R	100 k	5	0,25	R137	RF	2,2 k	5	0,25
R17	R	3 k	5	0,25	R138	RF	100	5	0,25
R18	R	3 k	5	0,25	R139	RF	33	5	0,25
R19	R	1,1 k	5	0,25	R140	RF	33	5	0,25
R20	R	1,2 k	5	0,25	R141	RF	1 k	5	0,25
R21	R	430	5	1	R142	RF	1,5 k	5	0,25
R22	RF	10	5	0,25	R143	RF	1,5 k	5	0,25
R23	RF	10	5	0,25	R144	RF	15	5	0,25
R24	RF	8,2 k	5	0,25	R145	RF	15	5	0,25
R25	RF	10	5	0,25	R146	RF	1,3 k	5	0,25
R26	RF	10	5	0,25	R147	RF	1,3 k	5	0,25
R27	RF	10	5	0,25	R148	RF	470	5	0,25
R28	RF	10	5	0,25	R149	RF	5,1 k	5	0,25
R29	RF	10	5	0,25	R150	RF	200	5	0,25
R30	RF	8,2 k	5	0,25	R151	RF	200	5	0,25
R31	RF	84,1	1	0,125	R152	RF	15	5	0,25
R32	RF	84,1	1	0,125	R153	RF	15	5	0,25
R33	RF	94,4	1	0,125	R154	RF	100	5	0,25
R34	RF	2,4 k	5	0,25	R155	RF	1 k	5	0,25
R35	RF	100	5	0,25	R156	RF	1 k	5	0,25
R36	RF	220	1	0,125	R157	RF	2 k	5	0,25
R37	RF	220	1	0,125	R158	RF	1,5 k	5	0,25
R38	RF	100	5	0,25	R159	RF	8,2 k	5	0,25
R39	RF	10	5	0,25	R160	RF	1,5 k	5	0,25
R40	RF	8,2 k	5	0,25	R161	RF	5,1 k	5	0,25
R41	RF	84,1	1	0,125	R162	RF	2 k	5	0,25
R42	RF	84,1	1	0,125	R163	RF	200	5	0,25
R43	RF	94,4	1	0,125	R164	RF	100	5	0,25
R44	RF	510	5	0,25	R165	RF	3,6 k	5	0,25

11591

R

	Ω	%	W	No		Ω	%	W
RF	2,2 k	5	0,25	R210	RF	100	5	0,25
RF	2,4 k	5	0,25	R211	RF	390	5	0,25
RF	3,6 k	5	0,25	R212	RF	120	5	0,25
RF	3,6 k	5	0,25	R213	RF	100	5	0,25
RF	2 k	5	0,25	R214	RF	120	5	0,25
RF	1,8 k	5	0,25	R215	RF	2,7 k	5	0,25
RF	2 k	5	0,25	R216	RF	1,8 k	5	0,25
RF	1,8 k	5	0,25	R217	RF	200	5	0,25
RF	82	5	0,25	R218	RF	3 k	5	0,25
RF	82	5	0,25	R219	RF	2,4 k	5	0,25
RF	10	5	0,25	R220	RF	300	5	0,25
RF	10	5	0,25	R221	RF	1 M	5	0,25
RF	100	5	0,25	R222	RF	1 k	5	0,25
RF	3,9 k	5	0,25	R223	RF	1,5 k	5	0,25
RF	1 k	5	0,25					
RF	100	5	0,25	R301	RF	51	5	0,25
RF	22	5	0,25	R302	RF	51	5	0,25
RF	510	5	0,25	R303	RF	620	5	0,5
RF	560	5	0,25	R304	RF	51	5	0,25
RF	620	5	0,25	R305	RF	51	5	0,25
RF	620	5	0,25	R306	RF	820	5	0,5
RF	120	5	0,25	R307	RF	51	5	0,25
RF	150	5	0,25	R308	RF	51	5	0,25
RF	47	5	0,25	R309	RF	390	5	1
RF	47	5	0,25	R310	RF	51	5	0,25
RF	750	5	0,25	R311	RF	2 k	5	0,25
RF	2,7 k	5	0,25	R312	RF	3 k	1	0,125
RF	1,3 k	5	0,25	R313	RF	10	5	0,25
RF	1 k	5	0,25	R314	RF	10	5	0,25
RF	2,4 k	5	0,25	R315	RF	270	5	0,25
RF	2,2 k	5	0,25	R316	RF	270	5	0,25
RF	390	5	0,25	R317	RF	51	5	0,25
RF	12 k	5	0,25	R318	RF	820	5	0,5
RF	1 k	5	0,25	R321	RF	43	5	0,25
RF	3,3 k	5	0,25	R322	RF	3 k	1	0,125
RF	3,9 k	5	0,25	R323	RF	100 k	5	0,25
RF	12 k	5	0,25	R324	RF	750	5	0,25
RF	2,4 k	5	0,25	R325	RF	360	5	0,25
RF	3,6 k	5	0,25	R326	RF	2 k	1	0,125
RF	3,6 k	5	0,25	R327	RF	1 k	1	0,125
RF	2,4 k	5	0,25	R328	RF	510	5	0,25
RF	470	5	0,25	R330	RF	10	5	0,25
RF	1,8 k	5	0,25	R331	RF	5,1 k	5	0,25
RF	15	5	0,25	R332	RF	1,5 k	5	0,25

R -

D		Ω	%	W	No		Ω	%	W
33	RF	51	5	0,25	R407	RF	8,2 k	5	0,25
34	RF	2 k	5	0,25	R408	RF	620	-	0,25
35	RF	8,2 k	5	0,25	R409	RF	2	5	0,25
36	RF	2 k	5	0,25	R410	RF	3 k	1	0,125
37	RF	1 k	5	0,25	R411	RF	3 k	1	0,125
38	RF	5,1 k	5	0,25	R412	RF	10	5	0,25
39	RF	1,8 k	5	0,25	R413	RF	10	5	0,25
40	RF	390	5	0,25	R414	RF	51	5	0,25
41	RF	1,5 k	5	0,25	R417	RF	20	5	0,5
42	RF	1 k	5	0,25	R418	R	270	5	0,25
43	RF	100	5	0,25	R419	F	270	5	0,25
44	RF	1,3 k	5	0,	R420	RF	43	5	0,25
45	RF	3,9 k	5	0,25	R421	RF	100 k	5	0,25
46	RF	4,3 k	5	0,25	R422	RF	750	5	0,25
47	RF	1 k	5	0 25	R423	RF	360	-	0,25
48	RF	1 k	5	0,25	R4 4	RF	2 k	5	0,25
49	RF	4,7 k	5	0 25	R4 5	F	1 k	5	0,25
350	RF	100	5	0 25	R4	RF	510	5	0,25
351	RF	1	5	0 2	R428	RF	2 k	5	0,25
352	RF	200	1	0 5	429	RF	2 k	5	0,25
353	RF	200	1	0,5	R430	RF	8,2 k	5	0,25
354	RF	200	1	0,5	R431	RF	51 k	5	0,25
355	RF	200	1	0,5	R432	RF	1,5 k	5	0,25
356	RF	2,4 k	5	0,25	R433	RF	51	5	0,25
357	R	30 k	5	0,25	R 34	RF	1 k	5	0,25
358	RF	10 k	5	0 25	R435	RF	390	5	0,25
359	RF	3,6 k	5	0,25	R436	RF	5,1 k	5	0,25
360	RF	100	5	0 25	R437	RF	1,8 k	5	0,25
361	RF	10	5	0,25	R438	RF	10	5	0,25
362	RF	10	5	0,25	R439	RF	1 k	5	0 5
363	RF	3,6 k	5	0,25	R440	RF	1,5 k	5	0,25
364	RF	100	5	0,25	R441	RF	4,3 k	5	0,25
365	RF	510	5	0,25	R442	RF	100	5	0,25
366	R	1,5 k	5	0,25	R443	RF	1,1 k	-	-
367	R	20	5	0,25	R444	RF	3,9 k	5	0,25
368	R	20	5	0,25	R4 5	RF	1 k	5	0,25
R401	RF	51	5	0,25	R446	RF	1 k	5	0,25
R402	RF	51	5	0,25	R447	RF	390	5	0,25
R403	RF	620	5	0 5	R448	RF	390	5	0,25
R404	RF	51	5	0,25	R449	RF	100	5	0,25
R405	RF	51	5	0,25	R450	RF	820	5	0,5
R406	R	300	5	1	R451	RF	1 k	5	0,25
					R452	RF	1,8 k	5	0,25
					R453	RF	820	5	0,5

R -

	Ω	%	W	No		Ω	%	W
RF	2,7	5	0,25	R532	RF	30	5	0,25
RF	2,1 k	5	0,25	R533	RF	2,2 k	5	0,25
RF	62	5	0,25	R534	RF	1,5 k	5	0,25
RF	91	5	0,25	R535	RF	62	5	0,25
RF	12	5	0,25	R536	RF	20	5	0,25
RF	10	5	0,25	R537	RF	51	5	0,25
RF	360	5	1	R538	RF	5,6 k	5	0,25
PF	00	5	0,25	R539	RF	6,2 k	5	0,25
RF	00	5	0,25	R540	RF	1,8 k	5	0,25
RF	20	5	0,25	R541	RF	1 M	5	0,25
RF	1 k	5	0,25	R544	RF	1 M	5	0,25
RF	1 k	5	0,25	R545	RF	1 M	5	0,25
RF	10 k	5	0,25	R546	RF	1 M	5	0,25
RF	51	5	0,25	R547	RF	1 M	5	0,25
RF	51	5	0,25	R548	RF	1 M	5	0,25
RF	51	5	0,25	R549	RF	1 M	5	0,25
RF	51	5	0,25	R552	RF	2 k	5	0,25
RF	15	5	0,25	R553	RF	2 k	5	0,25
RF	15	5	0,25	R554	RF	2 k	5	0,25
RF	15	5	0,25	R555	RF	2 k	5	0,25
RF	15	5	0,25	R556	R	820	5	1
RF	1,1 k	5	0,5	R557	RF	2 k	5	0,25
RF	1 k	5	0,5	R560	RF	1 k	5	0,25
RF	15	5	0,25	R561	RF	1 k	5	0,25
RF	15	5	0,25	R562	RF	1 k	5	0,25
RF	51	5	0,25	R563	RF	1 k	5	0,25
RF	51	5	0,25	R564	RF	1 k	5	0,25
RF	82	5	0,25	R565	RF	1 k	5	0,25
RF	82	5	0,25	R566	RF	2,4 k	5	0,25
RF	33	5	0,25	R567	RF	5,1	±0,1	0,125
RF	33	5	0,25	R568	RF	270	5	0,25
RF	39	5	0,25	R569	RF	300	5	0,25
RF	39	5	0,25	R570	RF	680	5	0,25
RF	680	5	1	R571	RF	1 k	5	0,25
RF	10	5	0,25	R572	RF	1 k	5	0,25
RF	10	5	0,25	R573	RF	3,5 k	5	0,25
RF	160	5	1	R574	RF	3,3 k	5	0,25
RF	20	5	0,25	R575	R	150	5	0,25
RF	20	5	0,25	R576	RF	1,8 k	5	0,25
RF	20	5	0,25	R577	RF	33	5	0,25
RF	20	5	0,25	R578	RF	10	5	0,25
RF	1,6 k	5	0,25	R579	RF	75	5	0,25
RF	1,6 k	5	0,25	R580	RF	75	5	0,25
RF	30	5	0,25	R581	RF	10	5	0,25

R

No		Ω	%	W	No		Ω	%	W
R454	RF	2,7	5	0,25	R532	RF	30	5	0,25
	RF	2,4 k	5	0,15	R533	RF	2,2 k	5	0,25
R456	RF	62	5	0,25	R534	RF	1,5 k	5	0,25
R457	RF	91	5	0,25	R535	RF	62	5	0,25
R458	RF	12	5	0,25	R536	RF	62	5	0,25
R459	RF	10	5	0,25	R537	RF	20	5	0,25
R460	RF	360	5	1	R538	RF	51	5	0,25
R461	RF	100	5	0,25	R539	RF	5,6 k	5	0,25
R462	RF	100	5	0,25	R540	RF	6,2 k	5	0,25
R463	RF	20	5	0,25	R541	RF	1,8 k	5	0,25
R467	RF	1 k	5	0,25	R544	RF	1 M	5	0,25
R468	RF	1 k	5	0,25	R545	RF	1 M	5	0,25
R464	RF	10 k	5	0,25	R546	RF	1 M	5	0,25
R501	RF	51	5	0,25	R547	RF	1 M	5	0,25
R502	RF	51	5	0,25	R548	RF	1 M	5	0,25
R503	RF	51	5	0,25	R549	RF	1 M	5	0,25
R504	RF	51	5	0,25	R552	RF	2 k	5	0,25
R505	RF	15	5	0,25	R553	RF	2 k	5	0,25
R506	RF	15	5	0,25	R554	RF	2 k	5	0,25
R507	RF	15	5	0,25	R555	RF	2 k	5	0,25
R508	RF	15	5	0,25	R556	R	820	5	1
R509	RF	1,1 k	5	0,5	R557	RF	2 k	5	0,25
R510	RF	1 k	5	0,5	R560	RF	1 k	5	0,25
R511	RF	15	5	0,25	R561	RF	1 k	5	0,25
R512	RF	15	5	0,25	R562	RF	1 k	5	0,25
R513	RF	51	5	0,25	R563	RF	1 k	5	0,25
R514	RF	51	5	0,25	R564	RF	1 k	5	0,25
55	RF	82	5	0,25	R565	RF	1 k	5	0,25
516	RF	82	5	0,25	R566	RF	2,4 k	5	0,25
R517	RF	33	5	0,25	R567	RF	5,1	±0,1	0,125
R518	RF	33	5	0,25	R568	RF	270	5	0,25
R519	RF	39	5	0,25	R569	RF	300	5	0,25
R520	RF	39	5	0,25	R570	RF	680	5	0,25
R521	RF	680	5	1	R571	RF	1 k	5	0,25
R522	RF	10	5	0,25	R572	RF	1 k	5	0,25
R523	RF	10	5	0,25	R573	RF	3,6 k	5	0,25
R524	RF	160	5	1	R574	RF	3,3 k	5	0,25
R525	RF	20	5	0,25	R575	R	150	5	0,25
R526	RF	20	5	0,25	R576	RF	1,8 k	5	0,25
R527	RF	20	5	0,25	R577	RF	33	5	0,25
R528	RF	20	5	0,25	R578	RF	10	5	0,25
R529	RF	1,6 k	5	0,25	R579	RF	75	5	0,25
R530	RF	1,6 k	5	0,25	R580	RF	75	5	0,25
R531	RF	30	5	0,25	R581	RF	10	5	0,25

11591

R -

No		Ω	%	W	No		Ω	%	W
R582	RF	10	5	0,25	R626	RF	2	k	0,25
R583	RF	10	5	0,25	R627	RF	10	k	0,25
R584	RF	10	5	0,25	R628	RF	390	5	0,25
R585	RF	27	5	1	R629	RF	10	k	0,25
R586	RF	27	5	1	R630	RF	820	5	0,25
R587	RF	75	5	0,25	R653	RF	33	5	0,25
R588	RF	56	5	0,25	R654	RF	33	5	0,25
R589	RF	120	5	1	R631	RF	820	5	0,25
R590	R	39	5	1	R632	RF	1,3 k	5	0,25
R591	R	43	5	1	R633	RF	510	5	0,25
R592	RF	1 k	5	0,25	R634	RF	75	1	0,5
R593	RF	1,8 k	5	0,25	R635	RF	75	1	0,5
R594	RF	430	5	0,25	R636	RF	150	1	0,5
R595	RF	3 k	5	0,25	R637	RF	150	1	0,25
R596	RF	10	5	0,25	R638	RF	165	1	0,5
R597	RF	2 k	5	0,25	R639	RF	165	1	0,5
R598	RF	510	5	0,25	R640	RF	94,4	1	0,5
R599	RF	1 k	5	0,25	R641	RF	84,1	1	0,25
R600	RF	2,7 k	5	0,25	R642	RF	192	1	0,5
R601	RF	51	5	1	R643	RF	192	1	0,5
R602	RF	510	5	0,25	R644	RF	192	1	0,5
R603	RF	1,3 k	5	0,25	R645	RF	196	1	0,5
R604	RF	820	5	0,25	R646	RF	64,3	1	0,25
R605	R	220	5	0,25	R647	RF	20	5	1
R606	RF	20	5	1	R648	RF	20	5	1
R607	RF	820	5	0,25	R649	RF	20	5	1
R608	R	220	5	0,25	R650	RF	3 k	5	0,25
R609	RF	10 k	5	0,25	R651	RF	820	5	0,25
R610	RF	200	5	0,25	R652	RF	300	5	0,25
R611	RF	150	1	0,125	R655	R	3 k	5	0,25
R612	RF	1,5 k	1	0,125	R656	R	51	5	0,25
R613	RF	7,5 k	1	0,125	R657	R	100	5	0,25
R614	RF	360	1	0,125					
R615	RF	360	1	0,125					
R616	RF	6,8 k	1	0,125					
R617	RF	2,4 k	1	0,125					
R618	RF	510	5	0,25					
R619	RF	1,3 k	5	0,25					
R620	RF	820	5	0,25					
R621	RF	10 k	5	0,25					
R622	RF	390	5	0,25					
R623	RF	820	5	0,25					
R624	RF	10 k	5	0,25					
R625	RF	2 k	5	0,25					

11591

P

No		Ω	%	W	No		Ω	%	W
P1	PR	10 k	20	1	P302	PR	470	20	0,5
P2	PR	10 k	20	0,5	P303	PR	10 k	20	0,5
P3	PR	10 k	20	0,5	P306	PR	100	20	0,5
P4	PR	2,5 k	20	0,5	P307	PR	10 k	20	0,5
P5	PR	2,5 k	20	0,5					
P6	PR	500	20	0,5	P402	PR	470	20	0,5
P7	PR	500	20	0,5	P403	PR	10 k	20	0,5
P8	PR	1 k	20	1					
P9	PR	10 k	20	1	P501	PR	100	20	0,5
P10	PR	470	20	0,5	P502	PR	100	20	0,5
P11	PR	470	20	0,5	P503	PR	470	20	0,5
P12	PR	1 k	20	0,5	P504	PR	470	20	0,5
P101	PR	100	20	0,5					
P102	PR	100	20	0,5					
P103	PR	2 k	20	0,5					

11591

C +

No		F	%	V	No		F	%	V
C1	CE	4700 /u	+100-10	25	C305	CK	33 p	5	500
C2	CE	4700 /u	+100-10	25	C306	CK	15 p	5	500
C3	CE	4700 /u	+100-10	25	C307	CK	100 n	+80-20	40
C4	CE	4700 /u	+100-10	63	C308	CK	470 p	+50-20	500
C5	CE	1 n	+30-20	50	C309	CK	470 p	5	100
C6	CE	100 /u	+100-10	25	C310	CMF	10 n	5	250
C7	CK	100 n	+80-20	40	C311	CMF	10 n	5	250
C8	CE	1 n	+30-20	25	C312	CET	1 /u	5	10
C9	CE	100 /u	+100-10	25	C313	CET	1 /u	5	10
C10	CK	100 n	+80-20	40	C314	CET	100 /u	5	10
C11	CE	1 n	+30-20	25	C315	CET	100 /u	5	10
C12	CE	100 /u	+100-10	63	C318	CET	100 n	+80-20	40
C13	CK	100 n	+80-20	40	C319	CET	150 n	10	63
C15	CE	100 /u	+100-10	16	C320	CET	470 p	20	500
C16	CK	100 n	+80-20	40	C321	CET	100 n	+80-20	40
C101	CET	22 /u	+50-20	16	C322	CET	100 n	+80-20	40
C102	CK	6,2 p	0,5 p	500	C323	FSM	100 n	+80-20	40
C103	CK	680 p	5	100	C324	FSM	100 n	+80-20	40
C104	CK	12 p	5	500	C325	CETK	10 /u	+50-20	35
C105	CK	39 p	5	500	C326	CETK	10 /u	+50-20	35
C106	CK	470 p	+50-20	500	C327	CE	100 /u		25
C107	CK	470 p	+50-20	500	C328	CE	100 /u		25
C108	CK	100 n	+80-20	40	C401	CK	100 n	+80-20	40
C109	CK	100 n	+80-20	40	C402	CK	470 p	+50-20	500
C110	CK	10 n	+80-20	40	C403	CK	470 p	+50-20	500
C111	CK	170 p	20	500	C404	CK	10 n	+80-20	40
C112	CK	100 n	+80-20	40	C405	CK	33 p	5	500
C113	CK	100 n	+80-20	40	C406	CK	15 p	5	500
C114	CK	470 p	+50-20	500	C407	CKK	470 p	5	100
C115	CK	100 n	+80-20	40	C408	CMF	10 n	5	250
C116	CK	100 n	+80-20	40	C409	CMF	10 n	5	250
C117	CK	100 n	+80-20	40	C410	CET	1 /u	5	10
C118	CK	100 n	+80-20	40	C411	CET	1 /u	5	10
C119	CK	100 n	+80-20	40	C412	CET	100 /u	5	10
C120	CK	100 n	5	500	C413	CET	100 /u	5	10
C121	CK	100 n	+80-20	40	C414	CK	100 n	+80-20	40
C122	CK	100 n	+80-20	40	C415	CK	470 p	+50-20	500
C123	CK	6,2 p	0,5 p	500	C416	CK	100 n	+80-20	40
C124	CE	100 /u		25	C417	FSM	100 n	+80-20	40
C125	CE	100 /u		25	C418	CE	100 /u		25
C301	CK	100 n	+80-20	40	C419	CE	100 /u		25
C302	CK	470 p	+50-20	500	C501	CK	100 n	+80-20	40
C303	CK	470 p	+50-20	500	C502	LETK	10 /u	+50-20	35
C304	CK	10 n	+80-20	40					

11591

C +

No		F	%	V	No		F	%	V
C503	CK	100 n	+80-20	40	C518	CK	100 n	+80-20	40
C504	CK	100 n	+80-20	40	C519	CK	10 n	+80-20	40
C505	CK	100 n	+80-20	40	C520	CK	10 n	+80-20	40
C506	CK	100 n	+80-20	40	C521	CK	100 n	+80-20	40
C507	CK	15 p	5	500	C522	CK	10 n	+80-20	40
C508	CK	220 p	5	100	C523	CK	22 p	5	500
C509	CMF	2,2 n	5	400	C524	CK	100 n	+80-20	40
C510	CMF	22 n	5	250	C525	CK	27 p	5	500
C511	CMF	220 n	5	160	C526	CK	27 p	5	500
C512	CET	2,2 u	5	20	C527	CK	100 n	+80-20	40
C513	CET	22 u	5	16	C528	CK	100 n	+80-20	40
C514	CET	100 u	5	10	C529	CK	100 n	+80-20	40
C515	CET	100 u	5	10	C530	FSM	100 n	+80-20	40
C516	CK	100 n	+80-20	40	C531	TRL	56 p	5	500
C517	CET	10 u	+50-20	35	C532	TRL	33 p	5	500

11591

V - Q

D -

TR - X

TR1	TR	BD241A	TR143	TR	2N2369A
TR2	TR	BD242A	TR144	TR	2N2369A
TR3	TR	BD242A	TR145	TR	2N2369A
TR5	TR	BD242A	TR146	TR	BC182
TR101	TR	BC212	TR301	TR	2N2369A
TR102	TR	MPS3640	TR302	TR	2N2369A
TR103	TR	MPS3640	TR303	TR	2N2369A
TR106	TR	MPS3640	TR304	TR	2N2369A
TR107	TR	MPS3640	TR305	TR	2N2369A
TR108	TR	2N2369A	TR306	TR	2N2369A
TR109	TR	2N2369A	TR307	TR	2N2369A
TR110	TR	BC212	TR308	TR	BC182
TR111	TR	BC182	TR309	TR	MPS3640
TR112	TR	BC182	TR310	TR	MPS3640
TR113	TR	BC182	TR311	TR	BC182
TR114	TR	BC182	TR312	TR	BC182
TR115	TR	BC212	TR313	TR	BC212
TR116	TR	BC212	TR314	TR	BC182
TR117	TR	BC182	TR315	TR	BC182
TR118	TR	BC182	TR316	TR	2N2219A
TR119	TR	BC182	TR317	TR	2N2219A
TR120	TR	BC182	TR318	TR	2N2905A
TR121	TR	MPS3640	TR319	TR	2N2905A
TR122	TR	BC182	TR320	TR	2N2905A
TR123	TR	2N5771	TR321	TR	2N2905A
TR124	TR	2N5771	TR322	TR	2N2219A
TR125	TR	2N2369A			
TR126	TR	2N2369A	TR401	TR	2N2369A
TR127	TR	2N2369A	TR402	TR	2N2369A
TR128	TR	2N2369A	TR403	TR	BC212
TR129	TR	2N2369A	TR404	TR	2N2369A
TR130	TR	2N2369A	TR405	TR	2N2369A
TR131	TR	2N2369A	TR406	TR	2N2369A
TR132	TR	MPS3640	TR407	TR	BC182
TR133	TR	MPS3640	TR408	TR	2N2369A
TR134	TR	2N2369A	TR409	TR	2N2369A
TR135	TR	2N2369A	TR410	TR	MPS3640
TR136	TR	2N2369A	TR411	TR	MPS3640
TR137	TR	MPS3640	TR412	TR	MPS3640
TR138	TR	MPS3640	TR413	TR	MPS3640
TR139	TR	2N2369A	TR414	TR	MPS 3640
TR140	TR	2N2369A	TR415	TR	MPS3640
TR141	TR	2N2369A	TR416	TR	BC182
TR142	TR	2N2369A	TR417	TR	BC182

V - ⊕

D ←

TR - ⊖

TR418	TR	BC212	TR543	TR	BD242A
TR419	TR	BC182	TR544	TR	BC182
TR420	TR	BC182	TR545	TR	BC182
TR421	TR	MPS3640	TR546	TR	BC182
TR422	TR	MPS3640	TR547	TR	BC182
			TR548	TR	BC182
TR501	TR	MPS3640	TR549	TR	BD241A
TR502	TR	MPS3640	TR550	TR	BC212
TR503	TR	MPS3640	TR551	TR	BC182
TR504	TR	MPS3640	TR552	TR	BC182
TR505	TR	MPS3640	TR553	TR	BC212
TR506	TR	MPS3640	TR554	TR	BC212
TR507	TR	BFW30	TR555	TR	BC182
TR508	TR	BFW30	TR556	TR	BD242A
TR509	TR	2N5057			
TR510	TR	2N5057			
TR511	TR	2N5057			
TR512	TR	2N5057			
TR513	TR	BFW30			
TR514	TR	BFW30			
TR515	TR	BC212			
TR516	TR	BC182			
TR517	TR	BC212			
TR520	TR	BC212			
TR521	TR	BC212			
TR522	TR	BC212			
TR523	TR	BC182			
TR524	TR	BC182			
TR525	TR	BC182			
TR526	TR	BFW30			
TR527	TR	BC212			
TR528	TR	2N2905A			
TR529	TR	BC182			
TR530	TR	BC212			
TR531	TR	2N3553			
TR532	TR	2N3553			
TR533	TR	2N5635			
TR534	TR	2N5635			
TR535	TR	BD241A			
TR536	TR	BC182			
TR537	TR	2N2219A			
TR539	TR	BC212			
TR540	TR	BD241A			
TR541	TR	BC212			
TR542	TR	BC182			

V		D		TR	
D1	D	VQA131B	D307	D	MBD101
D2	D	SY320/2	D308	D	MBD101
D3	D	SY320/2	D309	D	1N4148
D4	D	SY320/2	D310	D	1N4148
D5	D	SY320/2	D311	D	1N4148
D6	D	SY320/2	D313	D	1N4148
D7	D	SY320/2	D314	D	1N4148
D8	D	SY320/2	D315	D	1N4148
D9	D	SY320/2	D316	D	1N4148
D10	D	SY320/2	D401	D	ZPD5,1
D11	D	SY320/2	D402	D	FD777
D12	D	SY320/2	D403	D	FD777
D13	D	SY320/2	D404	D	MBD101
D14	D	ZPY 12	D405	D	ZPD5,1
			D406	D	ZPD5,1
D105	D	ZPD5,1	D407	D	MBD101
D106	D	ZPD5,1	D408	D	MBD101
D107	D	MBD101	D409	D	MBD101
D108	D	MBD101	D410	D	1N4148
D109	D	MBD101	D411	D	1N4148
D110	D	MBD101	D412	D	MBD101
D111	D	1N4148	D413	D	MBD101
D112	D	1N4148	D414	D	1N4148
D113	D	1N4148	D416	D	1N4148
D114	D	1N4148	D417	D	1N4148
D115	D	MBD101	D418	D	1N4148
D116	D	MBD101	D419	D	1N4148
D117	D	1N4148	D420	D	ZPD5,1
D118	D	1N4148	D421	D	ZPD5,1
D119	D	1N4148	D501	D	ZPY8,2
D120	D	1N4148	D502	D	ZPY5,1
D121	D	ZPD5,1	D503	D	ZPD11
D122	D	ZPD5,1	D504	D	ZPD11
D123	D	1N4148	D505	D	ZPD3
D124	D	1N4148	D506	D	ZPD3
D125	D	1N4148	D507	D	ZPY8,2
D126	D	1N4148	D508	D	MBD777
D127	D	MBD101	D509	D	MBD777
			D510	D	MBD101
D301	D	ZPD5,1	D511	D	MBD101
D302	D	FD777	D512	D	1N4148
D303	D	MBD101	D513	D	1N4148
D304	D	ZPD5,1	D514	D	1N4148
D305	D	ZPD5,1	D515	D	1N4148
D306	D	MBD101	D516	D	1N4148
			D517	D	1N4148

11591

V -

D ←

TR ↗

IC101	IC	SN7490AN
IC102	IC	SN7490AN
IC103	IC	SN7490AN
IC104	IC	SN7490AN
IC105	IC	SN7490AN
IC106	IC	SN7490AN
IC107	IC	SN7400N
IC108	IC	SN7400N
IC109	IC	SN7430N
IC301	IC	741PC
IC302	IC	CA3140S
IC303	IC	741PC

1	F	FST+500mA+5x20	L101	L		
2	F	FST+1,6 A+5x20	L103	L		
3	F	FST+1,6 A+5x20				
4	F	FST+1,6 A+5x20	L301	L		
5	F	FST+1 A+5x20	L302	L		
	T		L401	L		
			L402	L		
11	So		L403	L		
S01	So			L501		
S02	So			L502	L	
S03	So			L503	L	
S04	So			L504	L	
S05	So			L505	L	
S06	So			L506	L	
S07	So			L507	L	
S08	So			L508	L	
S09	So			L509	L	
S010	So			L510	L	
S1	S			L511	L	
S2	S			L512	L	
S3	S			L513	L	
S4	S			L514	L	
S5	S			L515	L	
S6	S			L516	L	
S7	S			L517	L	
S8	S			L518	L	
S9						
S10						
S11						
S12						
S13						
S14						
RY101	RY		HE721A1230			
RY501	RY		HE721A05U			
RY502	RY		HE721A05U			

11591

1
11591

2
11591

3
11591

4
11591

5
11591

6
11591

7
1591

7
11591

10
11591

11
11591

12
11591

13
11591

14
11591

15
11591

16
11591

17
11591

18
11591

19
11591

20
11591

21
11591

22
11591

4350005372 B/2-3

23
11591