SOAL-SOAL DAN PENYELESAIAN

Misalkan $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{4, 5, 6, 7, 8, 9\}$ dan relasi R dari A ke B diberikan oleh $R = \{(1,5),(4,5),(1,4),(4,6),(3,7),(7,6)\}$

Carilah: Domain, range (jangkauan) dan R⁻¹ Jawab:

Domain dari R = D= {a / a
$$\in$$
A dan (a,b) \in R, b \in B}
= {1, 3, 4, 7}
Range dari R = E = {b / b \in B dan (a,b) \in R, a \in A}
= {4, 5, 6, 7}
R⁻¹ = {(b,a) / (a,b) \in R}
= {(5,1),(5,4),(4,1),(6,4),(7,3),(6,7)}

- 2. Misalkan R suatu relasi pada himpunan bilangan asli N yang didefinisikan oleh $R = \{(x,y)/ x,y \in \mathbb{N}, x+3y = 12\}$. Tentukan:
 - (a) Tulis R dalam bentuk himpunan pasangan terurut.
 - (b) Carilah domain, range dan invers dari R Jawab:
 - a). R sebagai himpunan pasangan terurut $R = \{(2,3),(6,2),(9,1)\}$
 - b). Domain dari R = D = $\{3, 6, 9\}$ Range dari R = E = $\{1, 2, 3\}$ $R^{-1} = \{(b,a) / (a,b) \in R\} = \{(3,3),(2,6),(1,9)\}$
- Suatu relasi R dari himpunan $A = \{1, 2, 3, 4\}$ ke himpunan $B = \{1, 3, 5\}$, yang didefinisikan oleh "x lebih kecil dari y"
 - (c) Tulis R sebagai himpunan pasangan terurut.
 - (d) Gambarkan R pada diagram koordinat A x B
 - (e) Tentukan relasi invers R^{-1}

(a) x R y dibaca x lebih kecil y ditulis x < y.

$$R = \{(x, y) \mid x < y\} = \{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$$

(b) Diagram koordinat A x B dari relasi R sebagai berikut :

R merupakan himpunan titik-titik yang tampak pada diagram koordinat A x B.

- (c) $R^{-1} = \{(y, x) / (x, y) \in R\}$ = $\{(3, 1) (5, 1) (3, 2) (5, 2) (5, 3) (5, 4)\}$
- 4. Suatu relasi R yang didefinisikan sebagai "x pembagi y" dari himpunan $C = \{2, 3, 4, 5\}$ ke himpunan $D = \{3, 6, 7, 10\}$

Α

- (a) Tentukan R sebagai himpunan pasangan terurut
- (b) Gambar R pada diagram koordinat $C \times D$
- (c) Tentukan relasi invers R^{-1}

Jawab :

- (a) $R = \{(2, 6), (2, 10), (3, 3), (3, 6), (5, 10)\}$
- (b) Diagram koordinat R sebagai berikut :

(c). $R^{-1} = \{(6, 2), (10, 2), (3, 3), (6, 3), (10, 5)\}$

5. Misalkan $M = \{a, b, c, d\}$ dan suatu relasi R pada M yang memuat titik-titik yang tampak pada diagram koordinat berikut ini.

- Tentukan semua unsur di M yang berelasi dengan b, atau $\{x \mid \{x, b\} \in R\}$
- (b) Tentukan semua unsur di M sehingga d merupakan relasinya, atau $\{x \mid (d, x) \in R\}$
 - Tentukan relasi invers R⁻¹

Jawab :

- (a) Dari (a, b), (b, b) dan (d, b) diperoleh unsur-unsur pada M yang berelasi dengan b yaitu $\{a, b, d\}$
- (b) Dari (d, a) dan (d, b), diperoleh unsur-unsur di M yang memenuhi $\{x \mid (x, b) \in R\}$ yaitu $\{a,b\}$
- (c) Karena $R = \{(a, b), (b, a), (b, b), (b, d), (c, c), (d, a), (d, b)\}$ maka $R^{-1} = \{(b, a), (a, b), (b, b), (d, b), (c, c), (a, d), (b, d)\}$
- Misalkan R suatu relasi yang didefinisikan sebagai relasi " \leq " pada himpunan N = {1, 2, 3,}. Yaitu $(a, b) \in R$ jika dan hanya jika $a \leq b$. Tentukan apakah R: (a) refleksif, (b) simetris, (c) transitif, ataukah (d) ekivalensi.

- (a) R refleksif, sebab (∀a∈N) a ≤ a
- (b) R tidak simetris, sebab ($\exists a, b \in N$) $3 \le 5$, tetapi $5 \nleq 3$
- (c) R transitif, sebab $(\forall a, b, c \in N)$ $a \le b \land b \le c \rightarrow a \le c$.
- (d) R tidak ekivalensi sebab R tidak simetris. R akan ekivalensi jika R bersifat refleksif, simetris dan sekaligus transitif.

- Mislkan R adalah relasi pada himpunan $A = \{2, 8, 32, 4\}$ dimana ${}_{x}R_{y}$ menyatakan bahwa "x membagi y" untuk setiap $x,y \in A$.
 - a. Tulis R sebagai pasangan terurut
 - b. Buatlah relasi R dalam bentuk matriks
 - c. Selidiki apakah R mempunyai sifat refleksif, simetris dan transitif.
 - d. Buatlah graf untuk R

a.
$$R = \{(2,2),(2,8),(2,32),(2,4),(8,8),(8,32),(32,32),(4,4),(4,8),(4,32)\}$$

b. R dalam bentuk matriks

M	2	8	32	4
2	1	1	1	1
8	0	1	1	0
32	0	0	1	0
4	0	1	1	1

- c. (i) Karena semua elemen-elemen diagonalnya 1, maka R bersifat refleksif.
 yaitu (2,2)∈R, (8,8) ∈R,(32,32)∈R, dan (4,4)∈R
 - (ii) Dari matriks diatas tampak bahwa R mempunyai sifat Transitif, sebab untuk setiap i,j,k = 1, 2, 3, 4, berlaku m_{ij} = 1dan m_{jk} = 1 maka m_{ik} = 1
 - (iii) Matriks M diatas tidak simetris, karena m_{ij} ≠ m_{ji}. Jadi R tidak mempunyai sifat simetris, dan R bersifat anti-simetris

d.

8. Misalkan $W = \{1, 2, 3, 4\}$. Perhatikan relasi-relasi R_1 , R_2 , dan R_3 pada W berikut ini:

$$R_1 = \{(1, 2), (4, 3), (2, 2), (2, 1), (3, 1)\}$$

$$R_2 = \{(2, 2), (2, 3), (3, 2)\}$$

$$R_3 = \{(1, 3)\}$$

Tentukan relasi mana yang (a) Simetris, (b) Transitif.

Jawab:

(a) Simetris:

R dikatakan simetris \leftrightarrow $(\forall a, b \in W)$ $(a, b) \in R \rightarrow (b, a) \in R$

 R_1 tidak simetris, sebab ($\exists 3, 4 \in W$) (4,3) $\in R_1$, tetapi (3,4) $\notin R_1$.

 R_2 Simetris, sebab ($\forall 2,3 \in W$) (2,3) $\in R_2 \to$ (3, 2) $\in R_2$ (2, 2) $\in R_2 \to$ (2,2) $\in R_2$

 R_3 tidak simetris, sebab (\forall 1, 3 \in W) (1, 3) \in R_3 . \land . (3, 1) \notin R_3

(b) Transitif:

R dikatakan transitif jika dan hanya jika $(\forall a, b, c \in W)$ $(a, b) \in R$

$$(b, c) \in R \rightarrow (a, c) \in R$$

 R_1 tidak transitif, sebab (\exists 1, 3, $4 \in W$) (4, 3) $\in R_1 \land (3, 1) \in R_1 \rightarrow R_1 \land (3, 1) \in R$

(4, 1)∉ R₁

 R_2 tidak transitif, sebab ($\exists 2, 3 \in W$) (3, 2) $\in R_2 \land (2, 3) \in R_2 \rightarrow$

$$(3, 3) \notin R_2$$

 R_3 tidak transitif, sebab R_3 hanya mempunyai satu unsur yaitu (1, 3) $\in R_3$

Suatu relasi R = {(1,1), (2, 3), (3, 2)} pada X = {1, 2, 3}. Tentukan apakah R mempunyai sifat (a) refleksif (b) Simetris, ataukah (c) transitif.

Jawab:

- (a) R tidak refeksif, sebab $2 \in X$, tetapi $(2, 2) \in R$
- (b) R Simetris, sebab $R^{-1} = \{(1, 1), (3, 2), (2, 3)\} = R$
- (c) R tidak transitif, sebab $(3, 2) \in R$ dan $(2, 3) \in R$, tetapi $(3, 0) \notin R$
- 10. Misalkan R adalah suatu relasi dari himpunan $E = \{2, 3, 4, 5\}$ ke himpunan $F = \{3, 6, 7, 10\}$ yang didefinisikan oleh kalimat terbuka "y habis dibagi oleh x".
 - (a) Tuliskan *R* sebagai himpunan pasangan-pasangan terurut, yaitu carilah himpunan jawab dari *R*.
 - (b) Buatlah sketsa dari R pada diagrain koordinat $E \times F$.

Jawab:

(a) Pandang keenam belas elemen dalam $E \times F$ dan pilihlah pasangan-pasangan terurut dimana elemen keduanya habis dibagi oleh elemen pertamanya; maka $R = \{(2, 6), (2, 10), (3, 3), (3, 6), (5, 10)\}$

(b). Sketsa dari R pada diagram koordinat E x F diperlihatkan pada tabel berikut

- 11. Diketahui $M = \{a, b, c, d\}$ dan relasi R pada M didefinisikan sebagai himpunan titik-titik yang diperlihatkan pada diagram koordinat $M \times M$ dibawah ini.
 - (a) Nyatakan apakah masing-masing berikut ini benar atau salah:
 - (a) c R b, (b) $d \cancel{R}$ a, (c) $a \cancel{R} c$, (d) $b \cancel{R} b$

- (b) Carilah $\{x \mid (x,b) \in R\}$, vaitu semua elemen-elemen dalam M vang berelasi dengan b.
- (c) Carilah $\{x \mid (d, x) \in R\}$, vaitu semua elemen-elemen dalam M vang berelasi dengan d.

- (1) Perhatikan bahwa x R y benar jika dan hanya jika (x, y) termasuk dalam R.
 - (a) Salah, karena (c, b) $\notin R$.
- (c) Benar, karena (a, c) ∉R
- (b) Salah, karena $(d, a) \in R$.
- (d) Salah, karena $(b, b) \in R$.
- (2) Garis horizontal vang melalui b memuat semua titik dari R di mana b muncul sebagai elemen kedua; ia memuat pasangan-pasangan terurut (a. b), (b, b) dan (d, b) dari R.

Oleh karena itu $\{x \mid (x, b) \in R\} = \{a, b, d\}$

- (3) Garis vertikal yang melalui d memuat semua titik dari R dengan d muncul sebagai elemen pertama; yaitu titik-titik (d, a) dan (d, b) dari R. Jadi $\{x \mid (d, a)\}$ $x) \in R$ = {a, b}.
- 12. Masing-masing kalimat terbuka berikut ini mendefinisikan suatu relasi dalam bilangan-bilangan riil. Buatlah sketsa dari masing-masing relasi pada suatu diagram koordinat dari R# x R#.
 - (1) $y = x^2$
- (4) $y \ge \sin x$
- (2) $y \le x^2$ (5) $y \ge x^3$
- (3) y < 3 x (6) $y > x^3$

Untuk membuat sketsa suatu relasi pada bilangan-bilangan riil yang didefinisikan oleh kalimat terbuka berbentuk

- (a) y = f(x)
- (b) y > f(x)
- (c) $y \ge f(x)$
- (d) y < f(x)
- (e) $y \le f(x)$ (e)

Pertama-tama gambarkan kurva y = f(x). Maka relasinya, akan terdiri atas titiktitik.

- pada y = f(x)(a)
- di atas y = f(x)(b)
- di atas dan pada y = f(x)(c)
- di bawah y = f(x)(d)
- di bawah dan pada y = f(x)(e)

(f) Jadi gambar-gambar berikut ini adalah sketsa-sketsa dari relasi-relasi di atas:

 $(2) \quad y \le x^2$

(3)
$$y < x^2 - x$$

(4) $y \ge \sin x$

(5) $y \ge x^3$

(6) $y > x^3$

Perhatikan bahwa, kurva y = f(x) digambarkan dengan garis terputus-putus jika titik-titik pada y = f(x) tidak termasuk dalam relasi.

13. Masing-masing kalimat terbuka berikut ini mendefinisikan suatu relasi dalam bilangan-bilangan riil. Buat sketsa masing-masing relasi pada di koordinat R x R Jawab:

Untuk membuat sketsa suatu relasi dalam bilangan-bilangan riil yang didefinisikan oleh kalimat terbuka berbentuk f(x, y) < 0 (atau \le , >, \ge), maka gambarkan f(x, y) = 0. Kurva f(x, y) = 0, akan membagi bidang dalam berbagai daerah-daerah. Relasi ini akan terdiri dari semua titik-titik dalam satu atau mungkin lebih daerah-daerah.

Ujilah satu atau lebih titik-titik dalam tiap-tiap daerah untuk menentukan apakah semua titik dalam daerah itu termasuk dalam relasi atau tidak.

Sketsa dari masing-masing relasi di atas hasilnya adalah sebagai berikut

14. Pandang relasi $R = \{(1, 5), (4, 5), (1, 4), (4, 6), (3, 7), (7, 6)\}$. Carilah (1) Domain dari R, (2) Jangkauan dari R, (3) invers dari R.

Jawab:

- (1) Domain dari *R* terdiri atas himpunan dari elemen-elernen pertama dalam *R*; oleh karena itu domain dari *R* adalah {1, 4, 3, 7}
- (2) Jangkauan dari R terdiri dari himpunan dari elemen-elemen kedua dalam R; oleh karena itu domain dari R adalah {5, 4, 6, 7}
- (3) Invers dari R terdiri dari pasangan elemen dalam R dengan urutannya di balik.

Jadi
$$R^{-1} = \{(5, 1), (5, 4), (4, 1), (6, 4), (7, 3), (6, 7)\}$$

- 15. Misalkan $T = \{1, 2, 3, 4, 5\}$ dan R suatu relasi dalam T merupakan himpunan titik-titik yang diperlihatkan dalam diagram koordinat $T \times T$ berikut ini:
 - (1) Carilah domain dari R
 - (2) Tentukan jangkauan dari R
 - (3) Cari invers dari R.
 - (4) Buatlah sketsa R^{-1} pada diagram koordinat $T \times T$.

Jawab<u>:</u>

- (1) Elemen x ∈ T berada dalam domain R jika dan hanya jika garis vertikal yang melalui x memuat sebuah titik dari R. Jadi domain dari R adalah himpunan {2,4,5}; karena garis vertikal yang melalui tiap-tiap elemen ini dan hanyalah elemen-elemen ini yang mengandung titik-titik dalam R.
- (2) Elemen $x \in T$ berada dalam jangkauan R jika dan hanya jika garis horizontal yang melalui x memuat sebuah titik dari R. Jadi jangkauan dari R adalah himpunan $\{1, 2, 4\}$, karena garis horizontal yang melalui tiap-

tiap elemen ini, dan hanyalah elemen-elemen ini yang memuat sekurangkurangnya satu titik dari R. Karena $R = \{(2, 1), (2, 4), (4, 2), (4, 4), (5, 2)\}$

- (3) $R^{-1} = \{(1, 2), (4, 2), (2, 4), (4, 4), (2, 5)\}$
- (4) R^{-1} diperlihatkan pada diagram koordinat $T \times T$ sebagai berikut:

16. Misalkan $R = \{(x, y) \mid x \in R^{\#}, y \in R^{\#}, 4x2 + gy2 = 36\}$. Sketsa dari R pada diagram koordinat $R^{\#} \times R^{\#}$ adalah sebagai berikut:

Carilah:

- (1) Domain dari R,
- (2) jangkauan dari R,
- (3) R^{-1}

- (1) Domain dari *R* adalah selang [-3, 3] karena garis vertikal yang melalui tiaptiap bilangan ini dan hanyalah bilangan-bilangan ini, yang memuat sekurang-kurangnya satu titik dari *R*.
- (2) Jangkauan dari *R* adalah selang [-2, 2], karena garis horizontal yang melalui tiap-tiap elemen dan hanyalah elemen-elemen ini, yang memuat sekurang-kurangnya satu titik dari *R*.

(3) Menurut definisi invers dari R diperoleh R^{-1} dengan mempertukarkan x dan y dalam kalimat terbuka yang mendefinisikan R; yaitu:

$$R^{-1} = \{(x, y) \mid x \in R^{\#}, y \in R^{\#}, 9x^2 + 4y^2 = 36\}$$

17. Apakah ada hubungan antara domain-jangkauan dari suatu relasi R , dan domain-jangkauan dari R^{-1} ?

Jawab:

Karena R^{-1} terdiri dari pasangan-pasangan yang sama seperti dalam R kecuali dalam urutan terbalik maka tiap-tiap elemen pertama dalam R akan menjadi elemen kedua dalam R^{-1} dan tiap-tiap elemen kedua dalam R akan menjadi elemen pertama dalam R^{-1} . Maka domain R adalah jangkauan R^{-1} dan iangkauan dari R adalah domain R^{-1} .

18. Misalkan R adalah relasi dalam bilangan-bilangan asli $N = \{1, 2,3,...\}$ yang didefinisikan oleh kalimat terbuka "2x + y = 10", yaitu $R = \{(x, y) \mid x \in N, y \in N, 2x + y = 10\}$; Carilah : (1) domain dari R, (2) jangkauan dari R, (3) R^{-1} Jawab:

Pertama perhatikan bahwa himpunan jawaban dari 2x + y = 10 adalah $R = \{(1, 8), (2, 6), (3, 4), (4, 2)\}$ meskipun terdapat tak-berhingga elemenelemen dalam N.

- (1) Domain dari R yang terdiri dari elemen-elemen pertama dari R adalah $\{1, 2, 3, 4\}$.
- (2) Jangkauan dari R yang terdiri dari elemen-elemen kedua dari R adalah {8, 6, 4, 2).
- (3) R^{-1} diperoleh dengan mempertukarkan x dan y dalam kalimat terbuka yang mendefinisikan R; jadi $R^{-1} = \{(x, y) \mid x \in N, y \in N, x + 2y = 10\}$ Juga karena R^{-1} terdiri dari pasangan-pasangan yang sama dalam R kecuali dalam urutan terbalik, maka R^{-1} dapat didefinisikan sebagai:

$$R^{-1} = \{(8, 1), (6, 2), (4, 3), (2, 4)\}$$

19. Misalkan W = $\{1, 2, 3, 4\}$ dan relasi R = $\{(1, 1), (1, 3), (2, 2), (3, 1), (4, 4)\}$.

Apakah R refleksif?

Jawab:

R tidak refleksif karena $3 \in W$ dan $(3,3) \notin R$.

20. Misalkan $E = \{1, 2, 3\}$. Pandang relasi-relasi berikut dalam E.

$$R_1 = \{(1, 2), (3, 2), (2, 2), (2, 3)\}$$

$$R_4 = \{(1, 2)\}$$

$$R_2 = \{(1, 2), (2, 3), (1, 3)\}$$

$$R_5 = E \times E$$

$$R_3 = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)\}$$

Nyatakan apakah masing-masing relasi berikut adalah refleksif atau tidak.

Jawab:

Jika suatu relasi dalam E adalah refleksif maka (1, 1), (2, 2) dan (3, 3) harus termasuk relasi R.

Dengan demikian R₃ dan R₅ bersifat refleksif.

21. Misalkan V = {1, 2, 3, 4} dan relasi R pada V yang didefinisikan sebagai R = {(1,2), (3, 4), (2, 1), (3, 3)}. Apakah R simetris?

Jawab:

R tidaklah simetris, karena $3 \in V$, $4 \in V$, $(3,4) \in R$ dan $(4,3) \notin R$.

22. Misalkan E = {1, 2, 3}. Pandang relasi-relasi berikut dalam E:

$$R_1 = \{(1, 1), (2, 1), (2,2), (3,2), (2,3)\}$$
 $R_2 = \{(1, 1)\}$

$$R_2 = \{(1, 1)\}$$

$$R_3 = \{(1, 2)\}$$

$$R_4 = \{(1, 1), (3, 2), (2, 3)\}$$

$$R_5 = E \times E$$

Nyatakan apakah relasi-relasi ini simetris atau tidak?

- (1) R₁ tidaklah simetris karena (2, 1)∈R₁ tetapi (1, 2)∉R₁
- (2) R_2 simetris.
- (3) R_3 tidaklah simetris karena (1, 2) $\in R_3$ tetapi (2, 1) $\in R_3$
- (4) R₄ Simetris

- (5) R₅ Simetris
- 23. Bilamana suatu relasi R dalam himpunan A tidak anti-simetris?

R tidaklah anti-simetris jika terdapat elemen-elemen $a \in A$, $b \in A$, $a \neq b$ sehingga $(a, b) \in R$ dan $(b, a) \in R$.

io ye_e′greemπ_e ∂r o

24. Misalkan $W = \{1, 2, 3, 4\}$ dan $R = \{(1, 2), (3, 4), (2, 2), (3, 3), (2, 1)\}$. Apakah R anti-simetris?

Jawab:

R tidaklah anti-simeteris karena $1 \in W$, $2 \in W$, $1 \neq 2$, $(1, 2) \in R$ dan $(2, 1) \in R$.

25. Misalkan $E = \{1, 2, 3\}$. Pandang relasi-relasi berikut dalam E:

$$R_1 = \{(1,1),\,(2,1),\,(2,2),\,(3,2),\,(2,3)\}$$

$$R_2 = \{(1, 1)\}$$

$$R_3 = \{(1, 2)\}$$

$$R_4 = \{(1,1), (2,3), (3,2)\}$$

$$R_5 = E \times E$$

Nyatakan apakah masing-masing relasi ini anti-simetris atau tidak.

- (1) R_1 tidaklah anti-simetris karena (3,2) $\in R$, dan (2,3) $\in R_1$.
- (2) R₂ anti-simetris
- (3) R₃ anti-simetris.
- (4) R_4 tidaklah anti-simetris karena (2.3) $\in R_4$ dan (3, 2) $\in R_4$
- (5) R₅ tidak anti-simetris berdasarkan alasan yang sama sebagaimana untuk R₄
- 26. Misalkan $E = \{1, 2,3\}$. Berikan sebuah contoh dari suatu relasi R dalam E di mana R tidaklah simetris dan anti-simetris.

Relasi $R = \{(1,2),(2,1),(2,3)\}$ tidak simetris karena $(2,3) \in R$ tetapi $(3,2) \notin R$. R juga tidak anti-simetris karena $(1,2) \in R$ dan $(2,1) \in R$.

27. Misalkan himpunan $W = \{1, 2, 3, 4\}$ dan relasi $R = \{(1, 2), (4, 3), (2, 2), (2, 1), (3, 1)\}$. Apakah R transitif ?

Jawab:

R tidaklah transitif karena $(4, 3) \in R$, $(3, 1) \in R$ tetapi $(4, 1) \notin R$.

28. Misalkan $W = \{1, 2, 3, 4\}$ dan $R = \{(2, 2), (2, 3), (1, 4), (3, 2)\}$.

Apakah R transitif?

Jawab:

R tidaklah transitif karena $(3,2) \in R$, $(2,3) \in R$ tetapi. $(3,3) \notin R$.

29. Misalkan $E = \{1, 2, 3\}$. Pandang relasi-relasi berikut dalam E:

$$R_1 = \{(1, 2), (2, 2)\}$$

$$R_4 = \{(1, 1)\}$$

$$R_2 = \{(1, 2), (2, 3), (1, 3), (2, 1), (1, 1)\}$$
 $R_5 = E \times E$

$$R_3 = \{(1,2)\}$$

Nyatakan apakah relasi-relasi ini transitif atau tidak.

Jawab:

Masing-masing relasi ini transitif kecuali R_2 , R_2 tidak transitif karena $(2,1) \in R_2$, $(1,2) \in R_2$, tetapi $(2,2) \notin R_2$

- 30.Masing-masing kalimat terbuka berikut mendefinisikan suatu relasi R data bilangan-bilangan asli N. Nyatakan apakah masing-masingnya adalah suatu relasi refleksif atau tidak
 - (1) lebih kecil atau sama dengan y
 - (2) "y habis dibagi oleh x
 - (3) z + y = 10
 - (4) " x dan y secara relatif bilangan prima".

(1) Karena $a \le a$ untuk setiap $a \in N$ maka $(a, a) \in R$. Oleh karena itu R adalah refieksif.

- (2) Karena setiap bilangan habis dibagi oleh dirinya sendiri maka relasi ini refleksif.
- (3) Karena 3 + 3 ≠ 10 maka 3 tidaklah berhubungan dengan dirinya sendiri. Oleh karena itu R tidaklah refleksif.
- (4) Pembagi terbesar untuk 5 dan 5 adalah 5; jadi (6, 5) $\in f$ R. Oleh karena itu R tidaklah retleksif.
- 31. Masing-masing kalimat terbuka berikut mendefinisikan suatu relasi *R* dalam bilangan-bilangan asli *A*. Nyatakan apakah masing-masingnya adalah relasi simetris atau tidak.
 - (1) "x lebih kecil daripada atau sama dengan y"
 - (2) "x habis dibagi oleh y"
 - (3) "x + y = 10"
 - (4) "x + 2y = 10"

Jawab:

- Karena 3 ≤ 5 tetapi 5 ≤ 3, maka (3,5)∈R dan (5,3)∉R.
 Jadi R tidaklah simetris.
- (2) Karena 4 habis dibagi oleh 2 tetapi 2 tidak habis dibagi oleh 4, maka (2,4)∈R dan (4,2) ∉R. Oleh karena itu R tidaklah simetris.
- (3) Jika a + b = 10 maka b + a = 10; atau dengan perkataan lain, jika $(a, b) \in R$ maka $(b, a) \in R$. Oleh karena itu R adalah simetris.
- (4) Perhatikan bahwa $(2, 4) \in R$, tetapi $(4, 2) \notin R$, yakni 2 + 2(4) = 10 tetapi $4 + 2(2) \ne 10$. Jadi R tidaklah simetris.
- 32. Buktikan: Misalkan R dan S adalah relasi-relasi simetris dalam himpunan A; maka $R \cap S$ adalah suatu relasi simetris dalam A.

Pertama perhatikan bahwa R dan S adalah subhimpunan dari A x A; oleh karena itu $R \cap S$ adalah juga subhimpunan dari A x A dan dengan demikian adalah suatu relasi dalam A.

Misalkan (a, b) termasuk $R \cap S$. Maka $(a, b) \in R$. dan $(a, b) \in S$. Karena R dan S adalah simetris, maka (b, a) juga termasuk R dan (b, a) juga termasuk S; oleh karena itu $(b, a) \in R \cap S$.

Dengan memperlihatkan bahwa jika $(a, b) \in R \cap S$ maka $(b, a) \in R \cap S$. oleh karena itu $R \cap S$ adalah simetris.

- 33. Masing-masing kalimat terbuka berikut mendefinisikan suatu relasi *R* dalam bilangan-bilangan asli *N*. Nyatakan apakah masing-masing relasi ini anti-simetris atau tidak.
 - (1) "x lebih kecil daripada atau sama dengan y "
 - (2) "x lebih kecil daripada y"
 - (3) "x + 2y = 10"
 - (4) "x habis dibagi oleh y"

- (1) Karena $a \le b$ dan $b \le a$ menyatakan bahwa a = b, maka R anti-simetris.
- (2) Jika $a \neq b$, maka a < b atau b < a; oleh karena itu R anti-simetris.
- (3) Himpunan jawab adalah $R = \{(2,4), (4,3), (6,2), (8,1)\}$. Perhatikan bahwa $R \cap R^{-1} = \emptyset$, yang mana adalah subhimpunan dari "garis diagonal" $N \times N$. Oleh karena itu R anti-simetris.
- (4) Karena b habis dibagi oleh a dan a habis dibagi oleh b menyatakan bahwa a = b, maka R anti-simetris.
- 34. Masing-masing kalimat terbuka berikut mendefinisikan suatu relasi *R* dalam bilangan-bilangan asli *N*. Nyatakan apakah masing-masing relasi ini transitif atau tidak.
 - (1) "x lebih kecil daripada atau sama dengan y"
 - (2) "y habis dibagi oleh x"

(3)
$$x + y = 10$$

(4) "
$$x + 2y = 5$$
"

- (1) Karena $a \le b$ dan $b \le c$ menyatakan bahwa $a \le c$, maka relasi ini transitif.
- (2) Jika y habis dibagi oleh x dan z habis dibagi oleh y, maka z habis dibagi oleh x, yaitu;

$$(x, y) \in R$$
, $(y, z) \in R$ menyatakan bahwa $(x, z) \in R$.

Oleh karena itu R transitif

(3) Perhatikan bahwa 2 + 8 = 10, 8 + 2 = 10 dan 2 +2 \neq 10; Yaitu, $(2,8) \in R$, $(8,2) \in R$ tetapi $(2,2) \notin R$

Oleh karena itu R tidak transitif.

(4) R tidak transitif, karena (3, 1) \in R, (1, 2) \in R tetapi (3,2) \notin R; Yaitu,

$$3 + 2(1) = 5$$
, $1 + 2(2) = 5$ tetapi $3 + 2(2) \neq 5$

35. Buktikan jika suatu relasi R transitif, maka relasi invers R⁻¹ juga transitif *Jawab*:

Misalkan (a,b) dan (b,c) termasuk R^{-1} ; maka $(c,b) \in R$ dan $(b,a) \in R$. Karena transitif maka (c,a) juga termasuk R; oleh karena itu $(a,c) \in R^{-1}$.

Kita telah memperlihatkan bahwa jika $(a,b) \in \mathbb{R}^{-1}$, $(b,c) \in \mathbb{R}^{-1}$ maka $(a,c) \in \mathbb{R}^{-1}$: oleh karena itu \mathbb{R}^{-1} transitif.

36. Misalkan R adalah relasi dalam bilangan-bilangan asli N yang didefinisikan oleh kalimat terbuka "(x - y) dapat dibagi oleh 5"; yaitu misalkan

$$R = \{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, (x - y) \text{ dapat dibagi oleh 5}\}$$

Buktikan bahwa R suatu relasi ekivalen.

Jawab:

Misalkan $a \in N$; maka (a - a) = 0 dapat dibagi oleh 5, dan oleh karena itu $(a, a) \in R$. Jadi R refleksif.

Misalkan $(a, b) \in R$; maka (a - b) dapat dibagi oleh 5, dan oleh karena itu (b - a) = -(a - b) juga dapat dibagi oleh 5. Jadi (b, a) termasuk R. Karena jika $(a, b) \in R$ maka $(b, a) \in R$. Jadi R simetris,

Misalkan $(a, b) \in R$ dan $(b, c) \in R$; maka (a - b) dan (b - c) masing-masing dapat dibagi oleh 5. Oleh karena itu (a - c) - (a - b) + (b - c) juga dapat dibagi oleh 5, yang berarti (a, c) termasuk R. Karena jika, $(a, b) \in R$ dan $(b, c) \in R$ maka $(a, c) \in R$. Jadi R adalah transitif.

Karena *R* refleksif, simetris dan transitif maka menurut definisi *R* suatu relasi ekivalen.

- 37. Misalkan *R* dan *S* adalah relasi-relasi dalam himpunan *A*. Buktikan kedua pernyataan berikut:
 - (1) Jika R dan S simetris maka $R \cup S$ simetris.
 - (2) Jika R refleksif dan S sebarang relasi maka $R \cup S$ refleksif.

Jawab:

- (1) Jika $(a, b) \in R \cup S$, maka (a, b) termasuk R atau S, yang mana adalah simetris. Oleh karena itu (b,a) juga termasuk R atau S. Maka $(b, a) \in R \cup S$ dan dengan demikian $R \cup S$ simetris.
- (2) R refleksif jika dan hanya jika R memuat "garis diagonal" D dari $A \times A$. Tetapi $D \subset R$ dan $R \subset R \cup S$ maka $D \subset R \cup S$. Dengan demikian $R \cup S$ refleksif.
- 38. Misalkan *R* dan *S* adalah relasi-relasi dalam himpunan *A*. Perlihatkan bahwa masing-masing pernyataan berikut salah dengan memberikan contoh berlawanannya yaitu suatu contoh di mana pernyataan ini tidak benar.
 - (1) Jika R anti-simetris dan S anti-simetris maka $R \cup S$ anti-simetris,
 - (2) Jika R transitif dan S transitif maka $R \cup S$ transitif.

Jawab:

(1) $R = \{(1, 2)\}$ dan $S = \{(2, 1)\}$ masing-masingnya anti-simetris; tetapi $R \cup S = \{(1, 2), (2, 1)\}$ tidak anti-simetris.

- (2) $R = \{(1, 2)\}$ dan $S = \{(2, 3)\}$ masing-masingnya transitif; tetapi $R \cup S = \{(1, 2), (2, 3)\}$ tidak transitif.
- 39. Misalkan dua relasi R dan S yang didefinisikan sebagai $R = \{(x, y) | x \in R^{\#}, y \in R^{\#}, y \in X^{\#}\}$, dan $S = \{(x, y) | x \in R^{\#}, y \in R^{\#}, y \in X^{\#}\}$

Perhatikan bahwa R dan S kedua-duanya adalah relasi dalam bilangan-bilangan riil.

- (1) Buatlah sketsa relasi $R \cap S$ pada diagram koordinat $R^{\#} \times R^{\#}$
- (2) Carilah domain $R \cap S$.
- (3) Carilah jangkauan $R \cap S$.

Jawab:

(1) Buatlah sketsa R pada diagram koordinat $R^{\#} \times R^{\#}$, berikan R arsiran dengan garis-garis miring yang condong ke kanan (////); dan pada diagram koordinat yang sama, buatlah sketsa S dengan garis-garis miring yang condong ke kiri (\\\\)), seperti diperlihatkan dalam Gambar 1. Maka daerah bergaris silang adalah $R \cap S$. Jadi $R \cap S$ adalah yang diperlihatkan dalam Gambar 2.

R dan S yang disketsa Gambar 1

Gambar 2

- (2) Domain dari $R \cap S$ adalah [-1, 2], karena sebuah garis vertikal yang melalui tiap-tiap titik dalam selang ini dan hanyalah titik-titik ini, akan memuat sebuah titik dari $R \cap S$.
- (3) Jangkauan dari $R \cap S$ adalah [0, 4], karena sebuah garis horizontal yang melalui tiap-tiap titik dalam selang ini dan hanyalah titik-titik ini, akan memuat sekurang-kurangnya satu titik dari $R \cap S$.

40. Buktikan jika S, T, dan para R_i (untuk semua i berjalan pada himpunan index I) adalah relasi relasi pada A, maka berlaku

(a)
$$(ST)^{-1} = T^{-1}S^{-1}$$

(b)
$$(\bigcap_{i} R_{i})^{-1} = \bigcap_{i} R_{i}^{-1}$$

(c)
$$(\bigcup_{i} R_{i})^{-1} = \bigcup_{i} R_{i}^{-1}$$

Jawab:

Menggunakan definisi relasi sehingga diperoleh:

(a).
$$(a,b) \in (ST)^{-1}$$
 jika dan hanya jika $(b,a) \in ST$

$$\leftrightarrow$$
 ($\exists c \in A$) dengan $(b,c) \in S \land (c,a) \in T$

$$\leftrightarrow$$
 $(\exists c \in A) \operatorname{dengan}(c,b) \in S^{-1} \land (a,c) \in T^{-1}$

$$\leftrightarrow$$
 ($\exists c \in A$)dengan $(a,c) \in T^{-1} \land (c,b) \in S^{-1}$

$$\leftrightarrow$$
 $(a,b) \in T^{-1}S^{-1}$

Jadi
$$(ST)^{-1} = T^{-1}S^{-1}$$

(b). Ambil index set $I = \alpha, \beta, \gamma,...$

$$(a,b) \in (\bigcap_i R_i)^{-1}$$
 jika dan hanya jika $(b,a) \in \bigcap_i R_i$

$$\leftrightarrow$$
 $(b,a) \in R_{\alpha} \land (b,a) \in R_{\beta} \land (b,a) \in R_{\gamma} \land \dots$

$$\Leftrightarrow$$
 $(a,b) \in \mathbb{R}^{-1} \alpha \land (a,b) \in \mathbb{R}^{-1} \beta \land (a,b) \in \mathbb{R}^{-1} \gamma \land \dots$

$$\leftrightarrow$$
 $(a,b) \in \bigcap_i R^{-1}_i$

Jadi
$$(\bigcap_i R_i)^{-1} = \bigcap_i R_i^{-1}$$

(c). Ambil index set $I = \alpha, \beta, \gamma, \dots$

$$(a,b) \in (\bigcup_i R_i)^{-1}$$
 jika dan hanya jika $(b,a) \in \bigcup_i R_i$

$$\leftrightarrow (b,a) \in R_{\alpha} \lor (b,a) \in R_{\beta} \lor (b,a) \in R_{\gamma} \lor \dots$$

$$\leftrightarrow$$
 $(a,b) \in \mathbb{R}^{-1}_{\alpha} \vee (a,b) \in \mathbb{R}^{-1}_{\beta} \vee (a,b) \in \mathbb{R}^{-1}_{\gamma} \vee \dots$

$$\Leftrightarrow (a,b) \in \bigcup_{i} R^{-1}_{i}$$
Jadi $(\bigcup_{i} R_{i})^{-1} = \bigcup_{i} R_{i}^{-1}$

SOAL SOAL LATIHAN

- 1. Misalkan R relasi pada $A = \{2, 3, 4, 5\}$ di definisikan oleh "x dan y" relatif prima" yaitu pembagi bersama dari x dan y hanyalah bilangan "satu"
 - (a) Tuliskan R sebagai himpunan pasangan terurut.
 - (b) Gambarkan R pada diagram koordinat A x A
 - (c) Tentukan R⁻¹.
- 2. Misalkan $N = \{1, 2, 3,\}$ dan R relasi di N yang didefinisikan sebagai x + 2y = 8, yakni $R = \{(x, y) \mid x, y \in N, x + 2y = 8\}$
 - (a) Tulis R sebagai himpunan pasangan terurut.
 - (b) Tentukan R⁻¹.
- 3. Misalkan W = {1, 2, 3, 4}. Perhatikan relasi-relasi dalam W berikut ini :

$$R_1 = \{(1,1), (1,2)\}$$

$$R_2 = \{(1,1), (2,3), (4,1)\}$$

$$R_3 = \{(1,2), (2,4)\}$$

$$R_4 = \{(1,1), (2,2), (3,3)\}$$

$$R_5 = W \times W$$

$$R_6 = \emptyset$$

Selidiki apakah masing-masing relasi diatas bersifat (a) refleksif (b) simetris (c) transitif

- 4. Misalkan *R* relasi tegak lurus pada himpunan garis pada bidang. Tentukan apakah *R* : (i) refleksif (ii) Simetris (iii) transitif atau (iv) ekivalensi.
- 5. Misalkan W = {1, 2, 3, 4, 5, 6}. Tentukan apakah masing-masing berikut ini merupakan partisi pada W atau bukan:

(a) [{1,3,5}, {2,4}, {3,6}]

(c). [{1,5}, {2}, {4}, {1,5}, {3,6}]

(b) [{1,5}, {2}, {3,6}]

(d). [{1,2,3,4,5,6}]

- 6. Tentukan semua partisi dari A = {1,2,3}
- 7. Misalkan R adalah relasi dalam $B = \{2, 3, 4, 5, 6\}$ yang didefinisikan oleh kalimat terbuka "|x y| dapat dibagi oleh 3" Tuliskan R sebagai himpunan dari pasangan-pasangan terurut.
- 8. Misalkan $C = \{1, 2, 3, 4, 5\}$, dan relasi R dalam C adalah himpunan titik-titik yang diperlihatkan dalam diagram koordinat $C \times C$ berikut.

- (a) Nyatakan apakah masing-masing pernyataan benar atau salah: (a) 1 R 4,
 (b) 2 R 5, (c) 3 ₱ 1, (d) 5 ₱ 3.
- (b) Tuliskan masing-masing subhimpunan C berikut dalam bentuk pendaftaran:

 $\{x \mid 3 R x\}$

 $\{x \mid (4, x) \in R\}$

 $\{x \mid (x, 2) \notin R\}$

 $\{x \mid x R 5\}$

- (c) Carilah domain dari R,
- (d) Tentukan jangkauan R,
- (e) Definisikan R⁻¹
- 9. Diketahui $R = \{(x, y) \mid x \in R^{\#}, y \in R^{\#}, x^2 + 4y^2 \le 16\}.$
 - (a) Buatlah sketsa R pada diagram koordinat R# x R#.

- (b) Carilah ranah dari R,
- (c) Tentukan jangkauan R.
- 10. Jika R = $\{(x, y) | x \in R^{\#}, y \in R^{\#}, x^2 y^2 \le 4\}$, maka:
 - (a) Buatlah sketsa R pada diagram koordinat R# x R#.
 - (b) Carilah ranah dari R.
 - (c) Tentukan jangkauan dariR.
 - (d) Definisikan R⁻¹.
- 11. Suatu relasi R pada bilangan-bilangan asli N yang didefinisikan oleh kalimat terbuka "x + 3y = 12" dinyatakan sebagai :

$$R = \{(x, y) \mid x \in N, y \in N, x + 3y = 12\}$$

- (a) Tuliskan R sebagai himpunan pasangan-pasangan terurut.
- (b) Carilah ranah dari R,
- (c). Tentukan jangkauan dari R,
- (d) Definisikan R⁻¹
- 12. Misalkan R suatu relasi dalam bilangan-bilangan asli N yang didefinisikan sebagai "2x + 4y = 15".
 - (a) Tuliskan R sebagai himpumn pasangan-pasangan terurut.
 - (b) Carilah ranah dari R,
 - (c) Tentukan jangkauan dariR,
 - (d) Definisikan relasi invers R⁻¹
- Nyatakan masing-msing pernyataan berikut benar atau salah. Anggaplah R dan S adalah relasi-relasi dalam himpunan A.
 - (a) Jika R simetris maka R⁻¹ simetris.
 - (b) Jika R anti-simetris, maka R⁻¹ anti-simetris.
 - (c) Jika R refleksif, maka $R \cap R^{-1} \neq \emptyset$.
 - (d) Jika R simetris, maka $R \cap R^{-1} \neq \emptyset$.
 - (e) Jika R transitif dan S transitif, maka $R \cup S$ transitif.
 - (f) Jika R transitif dan S transitif, maka $R \cap S$ transitif.

- (g) Jika R anti-simetris dan S anti-simetris maka $R \cup S$ anti-simetris.
- (h) Jika R anti-simetris dan S anti-simetris maka $R \cap S$ anti-simetris.
- (i) Jika R refleksif dan S refleksif, maka $R \cup S$ refleksif.
- (j) Jika R refleksif dan S refleksif, maka $R \cap S$ refleksif.
- 14. Misalkan L adalah himpunan dari garis-garis dalam bidang Euclid dan R adalah relasi dalam L yang didefinisikan oleh "x sejajar y". Nyatakan apakah relasi R (1) refleksif, (2) simetris, (3) anti-simetris, (4) transitif, ataukah tidak. (Anggap sebuah garis sejajar dirinya sendiri).
- 15. Misalkan L himpunan dari garis-garis dalam bidang Euclid dan R adalah relasi dalam L yang didefinisikan oleh "x tegak lurus y". Nyatakan apakah R (1) refleksif, (2) simetris, (3) anti-simetris, (4) transitif.
- 16. Misalkan A keluarga himpunan-himpunan dan R adalah relasi dalam A yang didefinisikan oleh "x terpisah dari y". Nyatakan apakah R (1) refleksif, (2) simetris, (3) anti-simetris, (4) transitif, ataukah tidak.
- 17. Masing-masing kalimat terbuka berikut mendefinisikan suatu relasi dalam bilangan-bilangan asli *N*.
 - (a) "x lebih besar daripada y"
 - (b) "x adalah kelipatan y"
 - (c) "x kali y adalah kuadrat dari sebuah bilangan".
 - (d) x + 3y = 12

Nyatakan apakah masing-masing relasi tersebut (a) refleksif, (b) simetris, (c) anti-simetris, (d) transitif, ataukah tidak.

18. Pandang relasi-relasi dalam bilangan-bilangan riil berikut ini:

$$R = \{(x, y) \mid x \in R^{\#}, y \in R^{\#}, x^2 + y^{\#} \le 25\}$$

$$S = \{(x, y) \mid x \in R^{\#}, y \in R^{\#}, y \ge 4x^{2}/9\}$$

- (a) Buatlah sketsa relasi $R \cap R'$ pada diagram koordinat $R^{\#} \times R^{\#}$.
- (b) Carilah ranah dari $R \cap S$
- (c) Tentukan jangkauan dari $R \cap S$.

RELASI

- a). Tulis R sebagai pasagan terurut
- b). Tentukan domain, range dan relasi invers dari R
- 23. Buatlah graf untuk R pada soal no 22