AF-500-2010

FACULTY OF ENGINEERING

S.E. (CSE) EXAMINATION

MAY/JUNE, 2010

(New Course)

COMPUTER ALGORITHMS

(Friday, 4-6-2010)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—80

N.B. :- (i) All questions are compulsory.

(ii) Figures should be indicated full marks.

Section A

1. Solve any two:

(a)	Write an algorithm of quick sort.	6
(6)	What kind of problem is solved by an algorithm?	6
(c)	State and explain master theorem.	6
		PTO

2. Solve any two:

(a) Find out the time complexity of given function

$$T(n) = 2T(\sqrt{n}) + \log n$$

using master method and prove that using substitution method. 7

- (b) Compare greedy method and dynamic programming? Which is more efficient? Explain with an example.
- (c) Illustrate the operation of Build Max Heap on arrays

3. Solve any two:

"Irsania"

(a) Find optimal binary search tree using dynamic programming set of keys n = 4.

_		0	.1	2	3	4
	q_{i}	0.5	0.15	0.05	0,05	0.3
	p_{i}	2	0.10	0.10	0.05	0.1

(b) Determine an LCS of {1, 0, 0, 1, 0, 1, 0, 1} and

(c) Explain assembly line problem with example.

Section B

- 4. Solve any two:
 - (a) Explain activity selection problem with example.

6

(b) Find connected component for undirected graph.

6

(c) Construct minimum cost spanning tree using Kruskal's for the following graph.

5. Solve any two:

(a) Write Bellman-Ford algorithm.

1

P.T.O.

(b) Find single source shortest path in directed acyclic graph.

(c) Explain P, NP-hard problem.

7

- 6. Solve any two:
 - (a) Write down Huffman algorithm, and solve

-

e:9

c: 12

b: 13

d: 16

a: 45

- (b) Find an optimal parenthesization of Matrix-Chain product whose sequence of dimension < 1, 2, 3, 4, 5, 6, 7 > 7
- (c) Explain basic concept of Reducibility and NP-hard problem. 7

AF-500-2010

4