1 Задание 1

1.1 Постановка задачи

В области $\Omega = [0,1]^2$ решается двумерная задача Дирихле для двумерного стационарного оператора диффузии:

$$\begin{cases} -(D\nabla u) = f, & x \in \Omega, \\ u\big|_{\partial\Omega} = g, \end{cases}$$

где $D = \operatorname{diag}(d_x, d_y)$. Для решения используется Метод конечных элементов на треугольной сетке $w_h = ih, jh,$ где $h = \frac{1}{N}$.

1.2 Результаты экспериментов

Рассмотрим задачи с известным аналитическим решением и построим для них графики C-нормы и L_2 -нормы при измельчении сетки:

1.
$$f = \sin(\pi x)\sin(\pi y), \quad d_x = 1, \ d_y = 1, \quad u = \frac{\sin(\pi x)\sin(\pi y)}{2\pi^2}.$$

Рис. 1. $f = \sin(\pi x)\sin(\pi y)$.

2.
$$f = \sin(4x)\sin(4y), \quad d_x = 5, \ d_y = 1, \quad u = \frac{\sin(4x)\sin(4y)}{16(d_x + d_y)}.$$

3.
$$f = \sin(10x)\sin(10y), \quad d_x = 1, \ d_y = 1, \quad u = \frac{\sin(10x)\sin(10y)}{200}.$$

Рис. 2. $f = \sin(4x)\sin(4y)$.

Рис. 3. $f = \sin(10x)\sin(10y)$.

Рис. 4

2 Задание 2

Решается двумерная задача Дирихле для двумерного стационарного оператора диффузии:

$$\begin{cases} \operatorname{div}(-D \nabla u) = f, \ x \in \Sigma, \\ u = g, \ x \in \partial \Sigma, \end{cases} \qquad \Sigma = [0, 1]^2, \quad D = \operatorname{diag}(d_x, d_y) \cdot (1).$$

Взяты две функции — те же, что и в предыдущем задании:

$$f = \sin(10x)\sin(10y), \quad \text{if} \quad f = \sin(\pi x)\sin(\pi y).$$

Рис. 5. График С-нормы и L_2 -нормы для $f = \sin(10x)\sin(10y)$.

Рис. 6. График С-нормы и L_2 -нормы для $f = \sin(\pi x)\sin(\pi y)$.

Рис. 7