

Real Estate Price Prediction

with MLS and Redfin Data

Jasmine (Jiawen) Tong

Team: Jiawen Tong, Michello Ho, Shiyun Qiu, Yiqi Xie Harvard CS209b Data Science Final Project

- Problem Statement & Motivation
- Data Description
- Exploratory Data Analysis
- Approach
- Results
- Conclusions
- Future Work

- Problem Statement & Motivation
- Data Description
- Exploratory Data Analysis
- Approach
- Results
- Conclusions
- Future Work

To accurately predict real estate prices / DOM ...

- Augment historical real estate transaction data with an emphasis on property images
- Develop feature extraction methods and identify the key factors
- Build predictive models for sold price and number of days on market (DOM)

- Problem Statement & Motivation
- Data Description
- Exploratory Data Analysis
- Approach
- Results
- Conclusions
- Future Work

Data Description

MLS Data (Provided)

- MLSNUM
- STATUS
- LISTDATE
- SOLDPRICE*
- DOM*
- ADDRESS, CITY, STATE, ZIP
- LOTSIZE
- AGE
- GARAGE
- REMARKS

Redfin Data (Scraped)

- MLSNUM
- beds, baths
- sqft_finished, sqft_unfinished
- year_built, year_renovated
- parking_space, garage_space
- hoa fee
- school_ratings, school_distances
- walk score, transit score, bike score
- num_photo
- photos posted on Redfin

* : response variable

Exploratory Data Analysis I - Response Variable

Sold-Price is very right skewed Single log-transformation makes it more symmetrical

Response: Log(sold-price)

Exploratory Data Analysis II - Selected MLS Predictors

<u>Log Sold-Price vs. Selected MLS Predictors</u>

- Beds, baths, number of parking spaces, square footage and lot size positively correlate with the response
- Property age negatively correlates with the response

Exploratory Data Analysis III - MLS Remarks Topics

- Apply NLP Topic Modeling methods to extract topic features from remarks
- The extracted remark topic features appear to have strong correlation with the response variable

Exploratory Data Analysis IV - Educational Resources

Exploratory Data Analysis V - Geographic Location

Log Sold-Price vs. Convenience Scores

- Problem Statement & Motivation
- Data Description
- Exploratory Data Analysis
- Approach
- Results
- Conclusions
- Future Work

Approach Overview

Data Preprocessing / Feature Extraction

MLS Numeric

- Get Month from list date
- Drop non-MA rows
- Fill -1 for NA's

- **Beds**
- **Baths**
- Sqft
- Age
- etc.

10 Numeric Features

MLS Remarks

NLP - Topic Modeling

- . LDA: Fit-transform TF
- NMF: Fit-transform TF-IDF

Topics

20 Numeric Features

Redfin Numeric

- Get avg school ratings
- Get # closest schools
- Get min/max school distance
- Fill -1 for NA's

- **School Ratings**
- **School Distances**
- walk/bike/transit scores

20 Numeric Features

Redfin Images

CV – Image Modeling

- Use the output of ResNet50 last pooling layer to represent each image
- Take avg of all its image features for each house

Image Features

2048 Numeric Features

Feature Sets

Type	Source	Feature Set					
		Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Non-image	MLS numerical	X	X	X	X	X	X
	MLS remarks		X		X		X
	Redfin numerical			X	X	X	X
Image	Redfin images					X	X
Total #	of features	10	30	30	50	2078	2098

Modeling Approach I

Modeling Approach II

- Problem Statement & Motivation
- Data Description
- Exploratory Data Analysis
- Approach
- Results
- Conclusions
- Future Work

Results I - Condo

Feature set 1
Feature set 2
Feature set 3
Feature set 4
Feature set 5
Feature set 6

Condo: Price R^2 (Ensemble Model)							
	Training	Validation	Test				
MLS	0.977	0.936	0.884				
MLS + Remarks	0.990	0.942	0.899				
MLS + Redfin	0.987	0.947	0.893				
MLS + Redfin + Remarks	0.989	0.947	0.907				
MLS + Redfin + Images	0.988	0.949	0.898				
MLS + Redfin + Remarks + Images	0.990	0.948	0.911				

Results II - Multi-Family

Apr 2016 – Dec 2017

Train: ~ 12000

Validation: ~ 1300

validation:

Jan 2018 – Mar 2018

Test: ~ 1300

Feature set 1
Feature set 2
Feature set 3
Feature set 4
Feature set 5
Feature set 6

Multi-family: Price R^2 (Ensemble Model)						
	Training	Validation	Test			
MLS	0.903	0.782	0.718			
MLS + Remarks	0.956	0.841	0.801			
MLS + Redfin	0.930	0.807	0.736			
MLS + Redfin + Remarks	0.961	0.849	0.803			
MLS + Redfin + Images	0.947	0.777	0.724			
MLS + Redfin + Remarks + Images	0.967	0.837	0.800			

- Problem Statement & Motivation
- Data Description
- Exploratory Data Analysis
- Approach
- Results
- Conclusions
- Future Work

Conclusions

Developed:

- topic feature extraction methods using NMF and LDA
- o a method to scrape property data and images from Redfin
- a method to extract visual features from property images (the average 2048-dimensional ResNet final average pooling layer output)

Found:

- that both transformed remark topic features and information from Redfin are useful features for predicting the sold price
- that our current method of extracting images is likely sub-optimal

Future Work

- Gather more multi-family observations to reduce overfitting and improve model generalizability.
- Develop a better approach to incorporate zip code information:
 - Join open census data
- Gather additional features from external sources to try to capture market temperature and the overall economy.
- Develop a better method of incorporating image features:
 - (image_feature) X (numeric_feature)