Al 5030: Probability and Stochastic Processes

INSTRUCTOR: DR. KARTHIK P. N.

HOMEWORK 6

TOPICS: JOINT PDFS, CONDITIONAL PDFS, TRANSFORMATIONS

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. All random variables appearing below are assumed to be defined with respect to \mathscr{F} .

- 1. Virat and Anushka have a date at $7\,\mathrm{pm}$. Each will arrive at the meeting place with a delay that is distributed uniformly randomly between $0\,\mathrm{minutes}$ and $60\,\mathrm{minutes}$, independent of the delay of the other. The first to arrive will wait for $15\,\mathrm{minutes}$ and leave if the other does not arrive within $15\,\mathrm{minutes}$. Find the probability that both meet.
- 2. Let $X_1, X_2, X_3 \overset{\text{i.i.d.}}{\sim} \text{Unif}((0,1))$.
 - (a) Compute $\mathbb{P}(\{X_1 + X_2 > X_3\})$.
 - (b) Derive the CDF of the random variable $X = X_1 X_2$.
 - (c) Taking help of the result from part (b), show that $\mathbb{P}(\{X_1X_2 \leq X_3^2\}) = \frac{5}{9}$.
- 3. Let X and Y be jointly continuous random variables with the joint PDF

$$f_{X,Y}(x,y) = \begin{cases} cx(y-x)e^{-y}, & 0 \le x \le y < +\infty, \\ 0, & \text{otherwise}. \end{cases}$$

- (a) Determine the value of the constant c.
- (b) Show that

$$f_{X|Y=y}(x) = \begin{cases} 6x(y-x)y^{-3}, & 0 \leq x \leq y, \\ 0, & \text{otherwise}, \end{cases} \qquad f_{Y|X=x}(y) = \begin{cases} (y-x)e^{x-y}, & y \geq x, \\ 0, & \text{otherwise}, \end{cases}$$

4. Suppose that *X* and *Y* have the joint PDF

$$f_{X,Y}(x,y) = \begin{cases} cy, & -1 \le x \le 1, \ 0 \le y \le |x|, \\ 0, & \text{otherwise}. \end{cases}$$

- (a) Determine the constant c.
- (b) Are X and Y independent?
- (c) Evaluate $\mathbb{P}(\{X \geq Y + 0.5\})$.
- (d) Compute the conditional PDF of X, conditioned on the event $\{Y>0.5\}$. Using the above conditional PDF, evaluate $\mathbb{P}(\{X>0.75\}|\{Y>0.5\})$.
- 5. Let $X_1, X_2 \overset{\text{i.i.d.}}{\sim}$ Exponential(λ). Using the bivariate Jacobian transformation formula, compute the joint PDF of $Y_1 = X_1 + X_2$ and $Y_2 = X_1/X_2$, and show that $Y_1 \perp \!\!\! \perp Y_2$.
- 6. Let $X_1, X_2 \overset{\text{i.i.d.}}{\sim}$ Exponential(λ). Let $X = X_1$ and $Y = X_1 + X_2$. Determine the joint PDF of X and Y using the bivariate Jacobian transformation formula. Further, for any y > 0, show that the conditional PDF of X, conditioned on the event $\{Y = y\}$, is the uniform PDF on the interval [0,y].
- 7. Let $X,Y \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$. Let $R = \sqrt{X^2 + Y^2}$ and $\Theta = \arctan \frac{Y}{X} = \tan^{-1} \left(\frac{Y}{X}\right)$. Determine the joint PDF of R and Θ , and show that $R \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \subseteq \mathbb{N}$. What are the marginal PDFs of R and Θ ?
- 8. Let R and Θ be two random variables with the joint PDF

$$f_{R,\Theta}(r,\theta) = re^{-r^2/2} \cdot \frac{1}{2\pi}, \qquad r \ge 0, \quad \theta \in [0, 2\pi].$$

- (a) Compute the marginal PDFs of R and Θ , and show that $R \perp \!\!\! \perp \Theta$.
- (b) Let $X = R\cos(\Theta)$ and $Y = R\sin(\Theta)$. Show that $X, Y \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$.
- 9. Let X be a random variable with CDF $F: \mathbb{R} \to [0,1]$.

Define a second function $g_{\boldsymbol{F}}:(0,1)\to\mathbb{R}$ as

$$g_{\mathbf{F}}(u) = \min\{x \in \mathbb{R} : \mathbf{F}(x) \ge u\}, \quad u \in (0, 1).$$

- (a) Argue that $F(g_F(u)) \ge u$ for all $u \in (0,1)$.
- (b) Let $U \sim \mathsf{Unif}((0,1))$. Show that the random variable $Z = g_F(U)$ has the same CDF as X, i.e., $F_Z = F$. Here, the random variable Z is defined as

$$Z(\omega) = g_F(U(\omega)), \qquad \omega \in \Omega.$$

Remark: This result is the premise for sampling from a custom distribution function F in computer simulations. To generate a sample $X \sim F$, we first generate a random sample U uniformly from (0,1) and set $X = g_F(U)$. Hint: Fix an arbitrary $z \in \mathbb{R}$.

Using the result in part (a) and the fact that F is non-decreasing, argue that $\{g_F(U) \le z\} \subseteq \{U \le F(z)\}$. On the other hand, using the definition of g_F , show that $\{U \le F(z)\} \subseteq \{g_F(U) \le z\}$. (To show $A \subseteq B$, you need to argue that $\omega \in A$ implies $\omega \in B$.)

(c) Let X be a discrete random variable with the following PMF:

$$p_X(x) = \begin{cases} 0.1, & x = 10, \\ 0.2, & x = 20, \\ 0.3, & x = 30, \\ 0.4, & x = 40, \\ 0, & \text{otherwise.} \end{cases}$$

Explicitly compute the CDF F and the function g_F corresponding to the above PMF.

Write a Python program to generate N=100,000 independent samples uniformly from (0,1). Call these samples $\{u_1,u_2,\ldots,u_N\}$. For each $i\in\{1,\ldots,N\}$, set $x_i=g_F(u_i)$. Plot the histogram of the samples $\{x_1,\ldots,x_N\}$, and verify that the histogram matches closely with the PMF p_X .

You may use the NumPy module random.random() to generate samples uniformly from (0,1).

(d) How will you generate a random sample from Exponential(1) distribution on a computer?