ELEC 4800/5800 Special Topics Homework: Neural Networks

Name:	Charles Bollig	
11411101	enance being	

Put all answers in ML_HW_NN_LastName

[Problem 1] - Consider the following Boolean function.

x_1	x_2	$y = \neg x_1 \cup x_2$
0	0	1
0	1	1
1	0	0
1	1	1

[Part A] Can this function be represented by a perceptron? Explain your answer with a graph in the X/Y domain.

[Part B] If yes, draw a perceptron that represents it. Otherwise, build a multilayer neural network that will.

[Problem 2] — Consider a data set with inputs (X0,X1) and an output (Y). How many free parameters are needed into each of these two models:

[Part A] Neural network with one hidden layer and 9 neurons in that layer.

Parameters are the connections between neurons.

$$\therefore$$
 (2×9) + (9×1) = 27 parameters

[Part B] Neural network with two hidden layers and three neurons for each of the layers.

$$(2\times3) + (3\times3) + (3\times1) = 18 parameters$$

[Part C] Draw the architectures of Part A and Part B.

PartA

PartB

[Part D] How many calculations are required to execute a forward propagation of each neural network model in Part A and Part B.

PartA

$$First \ Set = x \times w_1 = 2 \times 9 = 18$$

$$Second \ Set = First \ Set + Intermediate_1 = (2 \times 9) = 18$$

$$Third \ Set = Second \ Set \times w_2 = 1 \times 9 = 9$$

$$Total = 45 \ calculations \ for \ forward \ propogation$$

PartB

First Set =
$$x \times w_1 = 2 \times 3 = 6$$

Second Set = First Set + Intermediate₁ = $(3 \times 3) = 9$
Third Set = Second Set $\times w_2 = 3 \times 3 = 9$
Fourth Set = Third Set + Intermediate₂ = $3 \times 3 = 9$
Fifth Set = Third Set + Intermediate₂ = $3 \times 1 = 3$
Total = 36 calculations for forward propagation

[Problem 3] — Use the following architecture and training data to set the weights (w) of the neural network so that it is capable of correctly classifying this dataset.

[Part A] Plot on two separate graphs, the decision boundaries for N_1 and N_2 (e.g., for neuron N_1 , the line where w10+w11*X1+w12*X2 = 0) on the first two graphs.

[Part B] Design a 3^{rd} graph axes V_2 and V_1 , plot $\{V_1(x_1, x_2), V_2(x_1, x_2)\}$ for a few of the training points and provide a decision boundary so that the neural net will correctly classify the training data.

