Álgebra Linear - Lista de Exercícios 4 (RESOLUÇÃO)

Luís Felipe Marques

Novembro de 2022

1. Seja
$$A = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$$
.

- (a) Ache b tal que A tenha um autovalor negativo.
- (b) Como podemos concluir que A precisa ter um pivô negativo?
- (c) Como podemos concluir que A não pode ter dois autovalores negativos?

Resolução:

(a) Analisando o polinômio característico:

$$p_A(x) = x^2 - 2x + 1 - b^2 = 0 \iff (x - 1)^2 = b^2 \iff x = 1 \pm b$$

Assim, para |b| > 1, como b = 2, temos um dos autovalores de A será 1 - 2 = -1 < 0.

(b)

$$\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} \xrightarrow{L_2 - bL_1} \begin{bmatrix} 1 & b \\ 0 & 1 - b^2 \end{bmatrix}$$

Ou seja, usando |b| > 1 do item anterior, temos que $1 - b^2 < 0$.

- (c) Note que a soma dos autovalores é igual a Tr A = 2. Assim, o autovalor de maior módulo positivo.
- **2.** Em quais das seguintes classes as matrizes A e B abaixo pertencem: invertível, ortogonal, projeção, permutação, diagonalizável, Markov?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ e } B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Quais das seguintes fatorações são possíveis para A e B? LU, QR, $S\Lambda S^{-1}$ ou $Q\Lambda Q^T?$

Resolução:

Podemos notar que A é invertível (det $A = -1 \neq 0$), ortogonal ($A^T = A^{-1}$), permutativa ($A^2 = I$), diagonalizável (simétrica) e de Markov (cada coluna tem soma 1). Além disso, B é de projeção ($B^2 = B$), de Markov e diagonalizável (é simétrica).

Na matriz A, podemos fazer as fatorações QR, $S\Lambda S^{-1}$ e $Q\Lambda Q^T$, enquanto a matriz B pode ser fatorada em LU e $Q\Lambda Q^T$.

3. Complete a matriz A abaixo para que seja de Markov e ache o autovetor estacionário. Sua conclusão é válida para qualquer matriz simétrica de Markov A? Por quê?

$$A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ * & * & * \end{bmatrix}$$

Resolução:

$$A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}$$

1

Note que o vetor estacionário é $\mathbf{v}=(1,1,1)$, já que $A\mathbf{v}=\mathbf{v}$. Podemos concluir que toda matriz simétrica de Markov será duplamente de Markov, o que garante que 1 sempre será autovalor para o autovetor de entradas unitárias.

- **4.** Dizemos que \mathcal{M} é um grupo de matrizes invertíveis se $A, B \in \mathcal{M}$ implica $AB \in \mathcal{M}$ e $A^{-1} \in \mathcal{M}$. Quais dos conjuntos abaixo é um grupo?
 - (a) O conjunto das matrizes positivas definidas;
 - (b) o conjunto das matrizes ortogonais;
 - (c) o conjunto $\{e^{tC}; t \in \mathbb{R}\}$, para uma matriz C fixa;
 - (d) o conjunto das matrizes com determinante igual a 1.

Resolução:

- (a) Não. Note que $A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ são positivas definidas, mas $AB = \begin{bmatrix} 3 & 1 \\ 4 & 12 \end{bmatrix}$, que não é positiva definida (não é simétrica).
- (b) Sim. Note que se $A \in \mathcal{M}$ $(A^{-1} = A^T)$, então $A^{-1} \in \mathcal{M}$ $((A^{-1})^T = (A^T)^{-1} = (A^{-1})^{-1} = A)$ e, se B também está em \mathcal{M} , então $AB \in \mathcal{M}$ $((AB)^{-1} = B^{-1}A^{-1} = B^TA^T = (AB)^T)$.
- (c) Sim. Sejam $A, B \in \mathcal{M}, A = e^{aC}, B = e^{bC}$. Logo, $A^{-1} = e^{(-a)C} \in \mathcal{M}$ e $AB = e^{(a+b)C} \in \mathcal{M}$.
- (d) Sim, já que se $\det A = 1$, $\det(A^{-1}) = 1$, e $\det(AB) = \det A \cdot \det B = 1$.
- 5. Sejam A e B matrizes simétricas e positivas definidas. Prove que os autovalores de AB são positivos. Podemos dizer que AB é simétrica e positiva definida?

Resolução:

Seja λ um autovalor de AB, relativo ao autovetor x.

$$ABx = \lambda x \Rightarrow (ABx)^T = \lambda x^T \Rightarrow (ABx)^T Bx = \lambda x^T Bx \Rightarrow (Bx)^T ABx = \lambda x^T Bx$$

Como A é positiva, $(Bx)^T A B x > 0$, e, como B é positiva, $x^T B x > 0 \Rightarrow \lambda > 0$.

Não podemos dizer que AB é simétrica (ver questão anterior).

6. Ache a forma quadrática associada à matriz $A = \begin{bmatrix} 1 & 5 \\ 7 & 9 \end{bmatrix}$. Qual o sinal dessa forma quadrática? Positivo, negativo ou ambos?

Resolução:

$$q(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 7 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + 5xy + 7xy + 9y^2 = (x+3y)^2 + 6xy$$

Note que o sinal será positivo para (x,y)=(1,1), e negativo para (x,y)=(-1,1), por exemplo.

- **7.** Prove os seguintes fatos:
 - (a) Se A e B são similares, então A^2 e B^2 também o são.
 - (b) $A^2 \in B^2$ podem ser similares sem $A \in B$ serem similares.
 - (c) $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ é similar à $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$.
 - (d) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ não é similar à $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$.

Resolução:

- (a) Existe M invertível tal que $A=MBM^{-1}$. Logo, $A^2=MBM^{-1}MBM^{-1}=MB^2M^{-1}$, ou seja, a matriz de similaridade é a mesma.
- (b) Seja $A = \mathbf{0} \in B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. $A^2 = B^2 = \mathbf{0} \Rightarrow A^2 \sim B^2$, mas $A \nsim B$.

(c) Note que
$$\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

(d) Note que 3 é autovalor nas duas matrizes, mas

$$2 = \dim N \left(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right) \neq \dim N \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right) = 1$$

Assim, as matrizes não podem ser similares, por terem autodecomposições em quantidades diferentes de autovetores.

8. Ache os valores singulares (como na decomposição SVD) da matriz $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

Resolução:

$$A^{T}A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow p_{A^{T}A}(x) = x^{2} - 3x + 1$$
$$\Rightarrow \lambda_{1,2} = \frac{3 \pm \sqrt{5}}{2}$$
$$\Rightarrow \sigma_{1,2} = \sqrt{\frac{3 \pm \sqrt{5}}{2}}$$

9. Suponha que as colunas de A sejam $\mathbf{w}_1, \dots, \mathbf{w}_n$ que são vetores ortogonais com comprimentos $\sigma_1, \dots, \sigma_n$. Calcule $A^T A$. Ache a decomposição SVD de A.

Resolução:

Pela ortogonalidade das colunas, A^TA será matriz diagonal de entrada $\sigma_1^2, \ldots, \sigma_n^2$. Temos ainda que $A^TA = V\Sigma^2V^T$, o que nos diz que Σ é a matriz diagonal de entradas $\sigma_1, \ldots, \sigma_n$, e que V = I.

Assim, como $A = U\Sigma V^T$, e já conhecemos Σ e V, sabemos que U será igual a AD, onde D é matriz diagonal de entradas $\frac{1}{\sigma_i}$.