第五节・微分的概念

■山东财经大学 ■田宽厚

第二章・承数与极限

5.1 微分的引例

改变量 Δu .

 $\Delta y = (x_0 + \Delta x)^2 - x_0^2 = 2x_0\Delta x + (\Delta x)^2$

 $\Delta y = 2 \cdot 1 \cdot 0.1 + 0.1^2 = 0.2 + 0.01$

即

解 正方形面积为 $y = f(x) = x^2$. 则面积改变量为

注 若 Δx 很小,则 $2x_0\Delta x$ 远比 $(\Delta x)^2$ 大. 因此

例如 一块正方形金属薄片受热后, 其边

长由 x_0 增加到 $x_0 + \Delta x$. 求此薄片面积的

 $\Delta y \approx f'(x_0)\Delta x$

函数的改变量

讨论导数. 即讨论

改变量为 $\Delta y = f(x + \Delta x) - f(x)$.

第五节·微分的概念 ▷ 微分的引例

$$\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\frac{f(x_0+\Delta x)-f(\Delta x)}{\Delta x}$$
 的极限是否存在,而不是研究改变量本身、实践中,我们关心的是:

当自变量 x 有微小改变量 Δx 时, 函数 y 相应的改变量 Δy 与 Δx 有何关系, 大小又如何? 注 对于函数 y = f(x). 若自变量从 x 变为 $x + \Delta x$, 则 y 的相应

 $\Delta u \approx 2x_0 \Delta x$

函数的改变量

 $A = x^2$

第五节・微分的概念

比如、当 $x_0 = 1$. $\Delta x = 0.1$ 时、

定理1 y = f(x) 在点 x_0 处可导

第五节・微分的概念

函数的改变量

 $\iff \Delta y = f'(x_0)\Delta x + o(\Delta x) \quad (\Delta x \to 0)$

定理 2 设
$$y=f(x)$$
 在点 x_0 处可导,则当 $|\Delta x|$ 很小时,有近似公式

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x.$$

 $\Delta u = f'(x_0)\Delta x + o(\Delta x)$

$$\Delta y = f'(x_0)\Delta x + o(\Delta x)$$

$$\Longrightarrow \Delta y \approx f'(x_0) \Delta x$$

$$\implies f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x$$

取
$$f(x) = \sqrt{x}$$
, 则 $f'(x) = \frac{1}{2\sqrt{x}}$, $f''(x) = -\frac{1}{4(\sqrt{x})^3}$. 再取 $x_0 = 1$, $\Delta x = 0.02$. 则有

$$\sqrt{1.02} = f(1.02) = f(1+0.02)$$

$$\approx f(1) + f'(1) \times 0.02 + \frac{f''(1)}{2} \times 0.02^{2}$$

$$\frac{(1)}{2} \times 0.02^2$$

$$= 1 + \frac{1}{2} \times 0.02 - \frac{1}{8} \times 0.02^{2} = 1.00995$$

而准确值为
$$\sqrt{1.02} = 1.0099505 \cdots$$
.

近似计算

例 1 计算 $\sqrt{1.02}$ 的近似值.

取 $f(x) = \sqrt{x}$, 则 $f'(x) = \frac{1}{2\sqrt{x}}$. 再取 $x_0 = 1$, $\Delta x = 0.02$, 则有

 $\sqrt{1.02} = f(1.02) = f(1 + 0.02)$ $\approx f(1) + f'(1) \times 0.02 = 1.01$

注 以后将会学到更准确的诉似公式:

 $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x + \frac{f''(x_0)}{2}(\Delta x)^2$

5.2 微分的定义

微分的概念

定义 1 对于自变量在点 x 处的改变量 Δx , 如果函数 y = f(x)的相应改变量 Δu 可以表示为

$$\Delta y = A\Delta x + o(\Delta x)$$
 $(\Delta x \rightarrow 0)$

其中 $A \subseteq \Delta x$ 无关,则称 y = f(x) 在点 x 处可微,并称 $A\Delta x$ 为 函数 y = f(x) 在点 x 处的微分,记为

$$dy = A\Delta x.$$

微分的概念

定理 3 y = f(x) 在点 x 处可微 $\iff y = f(x)$ 在点 x 处可导,且 此时有 $dy = f'(x)\Delta x$.

注 从 y = x 可以得到 $dx = \Delta x$, 故定理中的等式可以写为 dy = f'(x) dx.

注 根据定理3: 由于可微即可导, 若不会对函数微分, 可先对函数 求导. 两边乘以 dx 即可.

$$\frac{dy}{dx} = f'(x) \iff dy = f'(x)dx$$

第五节・微分的概念

微分的计算

微分的几何意义: 以直代曲

例 2 求 $y = x^2$ 当 x = 2, $\Delta x = 0.01$ 时的微分.

解
$$dy = (x^2)' \Delta x = 2x\Delta x$$
,所以

$$dy \Big|_{\substack{x=2 \\ \Delta x = 0.01}} = 2 \times 2 \times 0.01 = 0.04.$$

第五节・微分的概念 微分的定义

微分的计算

例3 求微分: (1)
$$y = xe^x$$
; (2) $y = \sin(3x + 2)$.

M (1)
$$dy = y'_x dx = (xe^x)'_x dx = (x+1)e^x dx$$
.

(2) $dy = y'_x dx = \left(\sin(3x+2)\right)' dx$.

$$= 3\cos(3x + 2)dx$$

第五节・微分的概念

第五节・微分的概念

微分法则

基本初等函数的微分:

1 d(C) = 0 $d(x^a) = ax^{a-1}dx$

3 $d(\ln x) = \frac{1}{x}dx$

 $d(e^x) = e^x dx$

 $d(\sin x) = \cos x dx$

 $d(\cos x) = -\sin x dx$

微分的四则运算:

d(Cu) = Cdu

d(uv) = vdu + udv

 $d\left(\frac{u}{u}\right) = \frac{vdu - udv}{u^2}$

5.3 形式不变性

微分的形式不变性

■ 若 y = f(u), 则有 dy = f'(u)du;

■ 若 y = f(u), u = g(x). 则仍有 dy = f'(u)du.

例如 $[\sin x]' = \cos x$. 但是 $[\sin 2x]' \neq \cos 2x$.

 $d(\sin x) = \cos x dx \implies d(\sin 2x) = \cos 2x d(2x)$.

例 4
$$y = \ln(1 + e^{x^2})$$
, 求 dy .

 $dy = \frac{1}{1+\mathrm{e}^{x^2}} d\left(1+\mathrm{e}^{x^2}\right)$

$$1 + e^{x^2} \cdot \left(\frac{1}{1 + e^{x^2}} \cdot e^{x^2} d \left(\frac{x^2}{2} \right) \right)$$

$$= \frac{1}{1 + e^{x^2}} \cdot e^{x^2} \cdot 2x dx$$

$$= \frac{2x e^{x^2}}{1 + e^{x^2}} dx$$

例 5 设 $y \sin x - \cos(x - y) = 0$, 求 dy.

解 利用一阶微分形式不变性, 有

 $d(y \sin x) - d(\cos(x - y)) = 0$ $\sin x dy + y \cos x dx + \sin(x - y)(dx - dy) = 0$

 $dy = \frac{y\cos x + \sin(x - y)}{\sin(x - y) - \sin x} dx$

第五节·微分的概念 ▷ 形式不夸性

∇

▶ 形式不变性

Δ 18/21 7

内容小结

5.4 内容小结

11 微分概念

■ 微分的定义及几何意义

■ 可微 ←⇒ 可导

微分形式不变性: df(u) = f'(u)du 微分运算法则

内容小结

第五节·微分的概念 Þ 内容小结 Δ 19/21 ▽

第五节·微分的概念 Þ

Δ 20/21 ♥

本章完!

第五节・微分的概念 ▷ 内容小结

Δ 21/21 ♥