cóno construía Punatrón

Rubén Espino San José

¿cué es un robote

- Dispositivo autónomo
 - Interactúa con el entorno
 - Tiene cierta inteligencia
 - Capacidad de decisión ante diferentes situaciones

Esto es un robot

• Esto no es un robot

FUNCIONAMIENTO DE UN ROFOT

• Funcionamiento similar al de un ser humano

EPOR GUÉ SURGIÓ PUMATRÓNE

- Me picaba el gusanillo por la robótica
- Complementar mis estudios con algo realmente interesante
- Cambié atletismo por robótica (que otros compitan por mi)
- Necesidad de saciar el SAV
- Y me daban 6 créditos de libre elección por competir en Alcabot

ien oué pruesas compare Punatróns

actuadores motores

- Tracción diferencial
 - Cada motor es independiente y mueve una rueda
- Micromotores de Pololu
 - Motores de corriente continua
 - Alta potencia
 - Buena relación velocidad*fuerza
 - Pesan poco
 - Reducido tamaño

actuadores; privers de motores (puente en H)

- En la primera versión:
 - L293
 - Dos puentes en H
 - Transistores bipolares
 - Disipa parte de la potencia
 - Frecuencia de PWM de 1KHz

- En la segunda versión:
 - TB6612FNG
 - Dos puentes en H
 - Transistores MOSFET
 - Apenas disipa potencia
 - Frecuencia de PWM entre 10 y 20KHz

alimentación eaterias

- Baterías Lipo
 - Alta capacidad de descarga
 - Son peligrosas. No cortocircuitar ni golpear
 - Carga balanceada de las celdas
- Primera versión: Lipo 2S, 900 mAh
- Segunda versión: Lipo 2S, 240 mAh

sensores de Linea/suelo

- Primera versión: CNY70
 - 12 sensores

- Segunda versión: QRE1113
 - 16 sensores para rastreador
 - 6 sensores para velocista

SCASORCS DC DISTANCIA

- GP2Y0A21
 - Analógico

- GP2Y0D340K
 - Digital

- Ópticos
 - Primera versión: Simples
 - Segunda versión: En cuadratura

MICROCONTROLABOR

- LPC2138 en todas las versiones
 - ARM7
 - 60 MHz
 - Más que suficiente para este tipo de robots

CONUNICACIÓN INGLÁMERICA

- Muy útil e imprescindible para testear parámetros en tiempo real con el robot en movimiento
- Bluetooth HC-05
 - Configurable mediante comandos AT
 - Conectado por UART

mecánica chasis

- Primera versión:
 - Autosoportado
 - Totalmente modular
 - Chasis rígido

- Segunda versión:
 - Autosoportado
 - Placa de sensores intercambiable
 - Chasis flexible con suspensión

mecánica chasis

- Dimensiones y forma del chasis
 - Primera versión: a ojo y por intuición, lo más compacto posible
 - Segunda versión: relación de distancia entre ruedas y distancia del eje motriz a los sensores con el peso centrado y atrasado

mecánica relación motriz

- Reductora de motores y diámetro de las ruedas
 - Primera versión:
 - Rastreador: relación 50:1, diámetro de rueda 45 mm
 - Segunda versión:
 - Rastreador: relación 30:1, diámetro de rueda 15 mm
 - Velocista: relación 10:1, diámetro de rueda 27,5 mm

mecánica separación de Sensores

- Separación de sensores de línea
 - Depende de la altura de los sensores y la amplitud del haz del led
 - Primera versión: 10 mm
 - Segunda versión: 7 mm

necénica abherencia be Las ruebas

- Adherencia de las ruedas
 - Primera versión:
 - Experimentar con materiales
 - Ruedas blandas forradas de globos
 - Segunda versión:
 - Ruedas de goma para el rastreador
 - Ruedas de espuma para el velocista
 - Medida de adherencia para optimizar dimensiones

SOFTWARE: ALGORITMOS PARA SEGUIMIENTO DE LÍNEAS

- Primera versión: if, else if, else if, else if...
 - Lo más sencillo
 - Tedioso de programar y calibrar
 - Es difícil conseguir buenos resultados
- Segunda versión: algoritmo PID
 - Fácil de calibrar
 - Se consiguen muy buenos resultados

SOFTWARE: LOUÉ ES UN PIDE

- Proporcional
 - Detecta el error de posición
- Integral
 - Detecta el error acumulado
- Derivativo
 - Detecta la variación del error de posición

RCFCRCAS

• GitHub

- Javier Baliñas: supernudo
- Rubén Espino: Resaj
- Javier Isabel: JavierIH

- Facebook
 - @pumaprideteam
- Twitter
 - Javier Baliñas: @supernudo
 - Rubén Espino: @RugidoDePuma
 - Javier Isabel: @JavierIH

GRACIAS POR VUESTRA ATENCIÓN ©

