Lab 3

Matrix Multiplication

CS429 - Introduction to Big Data Analysis

Lab Instructor: Nguyễn Đình Thảo

Table of Contents

Matrix-Vector Multiplication

Problem Statement

Example

<u>Pseudocode</u>

Mapping

Reducing

<u>Implementation</u>

Matrix Multiplication

Problem Statement

Example

<u>Pseudocode</u>

Lab Assignment

Matrix-Vector Multiplication

Problem Statement

Suppose we have an $n \times n$ matrix \mathbf{M} , whose element in row i and column j is denoted m_{ij} . Suppose we also have a vector \mathbf{v} of length n, whose j th element is v_j . Then the matrix-vector product is the vector \mathbf{x} of length n, whose j th element x_j is given by

$$x_i = \sum_{i=1}^n m_{ij} v_j$$

The matrix M and vector \mathbf{v} each will be stored in a file of the distributed file system. We assume that the row-column coordinates of each matrix element will be discoverable, either from its position in the file, or because it is stored with explicit coordinates, as a triple (i, j, m_{ij}). [Mining of Massive Datasets, section 2.3.1, p.31]

Example

Pseudocode

Mapping

Input: list of triples (i, j, m_{ij}) ; vector \mathbf{v}

For each matrix element m_{ij} , create a key-value pair of (i, $m_{ij} \times v_j$)

Output: key-value pairs of (i, $m_{ij} \times v_j$)

Reducing

Input: key-value pairs of (i, $m_{ij} \times v_j$)

For each given key i, sum all values associated with key i

Output: key-value pairs of (i, x_i)

Implementation

See the notebook *Lab 3.ipynb*.

Matrix Multiplication

Problem Statement

If **M** is a matrix with element m_{ij} in row i and column j, and **N** is a matrix with element n_{jk} in row j and column k, then the product **P=MN** is the matrix **P** with element p_{ik} in row i and column k, where

$$p_{ik} = \sum_{i} m_{ij} n_{jk}$$

It is required that the number of columns of **M** equals the number of rows of **N**, so the sum over j make sense. [Mining of Massive Datasets, section 2.3.9, p.38]

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix} = \begin{bmatrix} 25 & 28 \\ 57 & 64 \\ 89 & 100 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix} = \begin{bmatrix} 25 & 28 \\ 57 & 64 \\ 89 & 100 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix} = \begin{bmatrix} 25 & 28 \\ 57 & 64 \\ 89 & 100 \end{bmatrix}$$

3

Pseudocode

Below is the pseudocode of the 2-pass Matrix Multiplication, which is based on the MapReduce algorithm provided in [Mining of Massive Datasets, section 2.3.9, p.38].

```
Input: matrix M as list of triples (i, j, m_{ij}); matrix N as list of triples (j, k, n_{jk}) For each matrix element m_{ij}, create a key-value pair of (j, ("M", i, m_{ij})) For each matrix element n_{jk}, create a key-value pair of (j, ("N", k, n_{jk})) For each key j, examine its list of associated values:
```

For each pair of $("M", i, m_{ij})$ and $("N", k, n_{ik})$:

Create a key-value pair of $((i, k), m_{ii}n_{ik})$

Sum all the pairs with same keys (i,k)

Output: key-value pairs $((i, k), p_{ik})$

Lab Assignment

Implement the provided pseudocode for Matrix Multiplication in PySpark. Please provide the input matrices for testing along with your jupyter notebook.

Name your notebook file as <your studentID>_lab3.ipynb and submit it to the course moodle.