PUB-NO: DE019710829A1

DOCUMENT-IDENTIFIER: DE 19710829 A1

TITLE: Temperature measuring method using bipolar <u>transistor</u> sensor

PUBN-DATE: September 24, 1998

INVENTOR-INFORMATION:

NAME COUNTRY

GOLOUB, BORIS DE

ASSIGNEE-INFORMATION:

NAME COUNTRY

GOLOUB BORIS DE

APPL-NO: DE19710829

APPL-DATE: March 15, 1997

PRIORITY-DATA: DE19710829A (March 15, 1997)

US-CL-CURRENT: <u>374/E7.035</u>

INT-CL (IPC): G01K 7/24; G01D 3/028 EUR-CL (EPC): G01D003/028; G01K007/01

ABSTRACT:

CHG DATE=19990905 STATUS=C>The method involves periodically controlling the collector of a bipolar <u>transistor</u> (2) using at least two different collector currents under control of an interval clock source (12). A difference of the <u>base-emitter</u> voltage (the difference voltage) of the <u>transistor</u> during a selection period, or a signal of an output device corresponding to this voltage, is supplied. The temperature corresponding to the voltage is identified in the output device. The average voltage value of the <u>base-emitter</u> voltage occuring during a selection period or a signal of the output device corresponding to the average voltage is supplied. The output device identifies the temperature from the linear or non-linear combination of the <u>difference voltage and the average voltage</u>, or of the signals corresponding to these values.

(9) BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift① DE 197 10 829 A 1

(5) Int. Cl.⁶: **G 01 K 7/24** G 01 D 3/028

(1) Aktenzeichen: 197 10 829.6
 (2) Anmeldetag: 15. 3.97
 (3) Offenlegungstag: 24. 9.98

7 Anmelder:

Goloub, Boris, 30179 Hannover, DE

(74) Vertreter:

Leine und Kollegen, 30163 Hannover

② Erfinder: gleich Anmelder

(56) Entgegenhaltungen:

DE 33 21 912 C2 DE 25 22 437 A1 US 38 12 717

Z: Elektronik, 1980, Heft 11, S. 81-84; Z: IEEE Transactions on Instrumentation and Measurement, Vol. IM-26, No. 4, Dez. 1977, S. 335-341;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

54) Verfahren und Vorrichtung zur Temperaturmessung

Bei einem Verfahren zur Temperaturmessung wird der Kollektor eines bipolaren Transistors mit gerade verschobenem Intermitter periodisch mit wenigstens drei unterschiedlichen Kollektorströmen angesteuert, die während einer Ansteuerperiode auftretende Differenzspannung der Basis-Emitter-Spannung (Differenzspannungswert) des Transistors oder ein dieser Spannung entsprechendes Signal einer Auswerteeinrichtung zugeführt und in der Auswerteeinrichtung der zu dem zugeführten Spannungswert gehörige Temperaturwert ermittelt. Der während einer Ansteuerperiode auftretende Spannungsmittelwert der Basis-Emitter-Spannung oder ein dem Spannungsmittelwert entsprechendes Signal wird der Auswerteeinrichtung zugeführt, die aus der linearen Kombination des Spannungsdifferenzwertes und des Spannungsmittelwertes bzw. aus der linearen Kombination der diesen Werten entsprechenden Signale den zugehörigen Temperaturwert ermittelt. Eine Vorrichtung zur Durchführung des Verfahrens weist einen bipolaren Transistor mit gerade verschobenem Emitterübergang, Mittel zum Ansteuern des Transistors mit einem Kollektorstrom, der periodisch wechselnd wenigstens zwei unterschiedliche Stromstärken annimmt, und eine Auswerteeinrichtung, die aus den Spannungswerten den zugehörigen Temperaturwert ermittelt, auf. Der Kollektor des Transistors ist mit dem Eingang eines Operationsverstärkers und sein Emitter mit dem Ausgang des Operationsver stärkers verbunden, wobei der Kollektor des Transistors ferner mit einem ...

Beschreibung

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Temperaturmessung.

Ein Verfahren der betreffenden Art ist aus der US 3 812 717 bekannt. Bei diesem bekannten Verfahren wird ein bipolarer Transistor mit geradeverschobenem Emitterübergang als Temperatursensor verwendet, wobei der Kollektor des Transistors periodisch mit zwei unterschiedlichen Kollektorströmen angesteuert wird. Die während einer Ansteuerperiode auftretende Differenz der Basis-Emitter-Spannung (Spannungsdifferenzwert) des Transistors wird einer Auswerteeinrichtung zugeführt, die den zu dem zugeführten Spannungsdifferenzwert gehörigen Temperaturwert ermittelt.

Ein Nachteil dieses bekannten Verfahrens besteht darin, daß seine Genauigkeit aufgrund der Exemplarstreuung der elektrischen Parameter des als Temperatursensors verwendeten Bipolartransistors gering ist.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bzw. eine Vorrichtung der betreffenden Art anzugeben, dessen bzw. deren Genauigkeit verbessert ist.

Ilinsichtlich des Verfahrens wird diese Aufgabe durch die im Anspruch 1 angegebene Lehre gelöst.

Hinsichtlich der Vorrichtung wird die Aufgabe durch die in den Ansprüchen 2 und 4 angegebene Lehre gelöst.

Der Grundgedanke der erfindungsgemäßen Lehre besteht darin, zur Ermittlung des Temperaturwertes neben dem Differenzspannungswert zusätzlich noch den während einer Ansteuerperiode auftretenden Spannungsmittelwert der Basis-Emitter-Spannung des Transistors heranzuziehen, und zwar derart, daß das in der Auswerteeinrichtung auszuwertende Signal aus einer linearen oder nichtlinearen Kombination des Differenzspannungswertes und des Spannungsmittelwertes gebildet ist.

Es hat sich überraschend gezeigt, daß auf diese Weise die Unabhängigkeit des ermittelten Temperaturwertes von der Exemplarstreuung der elektrischen Parameter des Bipolartransistors verbessert und somit die Genauigkeit des erfindungsgemäßen Verfahrens erhöht ist.

Anstelle des analogen Differenzspannungswertes und des analogen Spannungsmittelwertes können für die Bildung der linearen oder nichtlinearen Kombination auch diesen Werten entsprechende, beispielsweise digitale, Werte herangezogen werden.

Die erfindungsgemäße Vorrichtung arbeitet mit hoher Genauigkeit. Sie ist einfach und kostengünstig herstellbar.

Zweckmäßige und vorteilhafte Weiterbildungen der erfindungsgemäßen Lehre sind in den Unteransprüchen angegeben.

Die Erfindung soll nachfolgend anhand der beigefügten Zeichnung näher erläutert werden. Es zeigt

Fig. 1 ein schematisches Blockschaltbild eines ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung und Fig. 2 ein schematisches Blockschaltbild eines zweiten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung. In den Figuren der Zeichnung sind gleiche Bauteile mit den gleichen Bezugszeichen versehen.

In **Fig.** 1 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens dargestellt, die einen als Thermosensor wirkenden npn-Bipolartransistor 2 mit geradeverschobenem Emitterübergang aufweist.

Der Kollektor des Transistors 2 ist mit Mitteln 4 zum Ansteuern des Transistors 2 verbunden, die bei diesem Ausführungsbeispiel drei Stromquellen 6, 8, 10 aufweisen, die unterschiedliche Quellenströme erzeugen. Eine Steuereinrichtung, die bei diesem Ausführungsbeispiel durch einen Intervallzeitgeber 12 gebildet ist, schaltet periodisch wechselnd die Stromquellen 6, 8, 10 an den Kollektor des Transistors 2 an, so daß während einer Ansteuerperiode oder Kollektor des Transistors 2 mit drei unterschiedlichen Kollektorströmen angesteuert wird.

Der Kollektor des Transistors 2 ist ferner mit dem Eingang eines Operationsverstärkers 14 verbunden, dessen Ausgang mit dem Emitter des Transistors 2 verbunden ist. Der Emitter des Transistors 2 ist über ein erstes Tiefpaßfilter 16, das bei diesem Ausführungsbeispiel als RCR-Filter ausgebildet ist, mit einem Anschluß einer Spannungsquelle 18 verbunden, deren anderer Anschluß mit dem Kollektor des Transistors 2 verbunden ist. Die Spannungsquelle 18 erzeugt eine Quellenspannung E.

Der Emitter des Transistors 2 ist ferner über einen durch den Intervallzeitgeber 12 angesteuerten Synchrondetektor 20 mit einem zweiten Tiefpaßfilter 22 verbunden, dessen Ausgangssignal der Temperatur direkt proportional ist.

Bei einem Kollektorstrom I_K und einer absoluten Temperatur T gilt für die Basis-Emitterspannung U_{BE} des Bipolartransistors 2:

$$U_{BE} = m \frac{K}{q} T \ln(\frac{I_K}{I_S} + 1) + R_T I_K \frac{h_{21E} + 1}{h_{21E}}$$
 (1)

mi

50

15

30

K - Boltzmann-Konstante

q-Elementar ladung

I_S – Sättigungsstrom

$$R_T = r_E + \frac{r_B}{h_{21e} + 1}$$

r_E, r_B - ohmsche Widerstände von Emitter und Basis

5 h_{21E} – Stromverstärkung des Transistors bei Emitterschaltung.

Die vorstehende Gleichung für die Basis-Emitter-Spannung läßt sich annähern durch

$$U_{BE} = m\frac{K}{q} T \ln \frac{I_K}{I_S} + R_T I_K \quad da \ I_S \ll I_K \ und \ h_{21E} \gg 1$$

Bei einer aufeinanderfolgenden Ansteuerung des Transistors 2 mit Kollektorströmen I_1 , I_2 und I_3 tritt folgender Differenzspannungswert der Basis-Emitterspannung auf:

$$\Delta(\Delta U) = \left(m \frac{K}{q} T \ln \frac{I_1}{I_S} + R_T I_1 - m \frac{K}{q} T \ln \frac{I_2}{I_S} + R_T I_2 \right) - \left(m \frac{K}{q} T \ln \frac{I_2}{I_S} + R_T I_2 - m \frac{K}{q} T \ln \frac{I_3}{I_S} + R_T I_3 \right) =$$

$$= m \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} + R_T (I_1 - 2I_2 + I_3)$$

Die Kollektorströme I₁, I₂ und I₃ genügen der Bedingung

$$I_1 + I_3 = 2I_2 \ (mit \ \frac{I_1I_3}{I_2^2} < 1)$$

so daß der Spannungsdifferenzwert von dem aufgrund von Exemplarstreuungen von Transistor zu Transistor variierenden Widerstand R unabhängig ist.

Die Erfindung geht von der Erkenntnis aus, daß zwischen dem Koeffizienten m und dem Spannungsmittelwert der Basis-Emitter-Spannung des Transistors 2 während einer Ansteuerperiode eine Abhängigkeit besteht, die sich mit

$$m = 1 + \mu = 1 + \mu(\overline{U}_{RE})$$

beschreiben läßt.

Es hat sich experimentell herausgestellt, daß die Größe

 $\mu(\overline{U}_{BE})$

von der Temperatur unabhängig ist. Sie läßt sich mit hoher Genauigkeit durch folgende Exponentialfunktion annähern:

$$\mu(\overline{U}_{BE}) = \gamma \exp \frac{E - \overline{U}_{BE}}{KT/q} = \gamma \exp \frac{E - \overline{U}_{BE0}}{KT_0/q}$$
45

wohei

$$\forall \approx e^{-33,2}$$

$$E = 1.27 V$$

$$ar{U}_{BE0}$$
 = $ar{U}_{BE}$ bei T = T_0

Die Exponentialfunktion läßt sich näherungsweise als lineare Funktion darstellen

65

60

20

30

35

$$\mu(\vec{U}_{BE}) \approx \mu_r + \left(\frac{d\mu}{d\vec{U}_{BE}}\right)_{\vec{U}_{BE} = \vec{U}_{BEr}} \cdot (\vec{U}_{BE} - \vec{U}_{BEr}) =$$

$$= \mu_r \left(1 - \frac{E - \vec{U}_{BEr}}{KT/q}\right) + \mu_r \frac{E - \vec{U}_{BE}}{KT/q} =$$

$$= \mu_r \left(1 - \frac{E - \vec{U}_{BEr0}}{KT_o/q}\right) + \mu_r \frac{E - \vec{U}_{BE}}{KT/q}$$

wohei

15

20

45

50

55

$$\mu_r$$
 = $\mu(\bar{U}_{BEr})$ = $\mu(\bar{U}_{BEr0})$ und \bar{U}_{BEr0} = \bar{U}_{BEr} bei T = T_0

Daraus ergibt sich für den Spannungsdifferenzwert:

$$\Delta(\Delta U) = \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} \left[1 - \mu_r \left(\frac{E - \overline{U}_{BEr\theta}}{K T_0 / q} - 1 \right) \right] + \mu_r \ln \frac{I_1 I_3}{I_2^2} (E - \overline{U}_{BE})$$

Bildet man die lineare Kombination aus dem Spannungsdifferenzwert und dem Spannungsmittelwert, so ergibt sich:

$$U = \Delta(\Delta U) + a (E - \overline{U}_{BE}) =$$

$$= \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} \left[1 - \mu_r \left(\frac{E - \overline{U}_{BEr0}}{K T_0 / q} - 1 \right) \right] + \mu_r \ln \frac{I_1 I_3}{I_2^2} (E - \overline{U}_{BE}) + a(E - \overline{U}_{BE})$$
35

Geht man zur Bestimmung des Koeffizienten a von der Bedingung

$$\mu_r \ln \frac{I_1 I_3}{I_2^2} + a = 0$$

aus, so ergibt sich:

$$U = \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} \cdot \left[1 - \mu_n \left(\frac{E - \overline{U}_{BEiO}}{K T_0 / q} - 1 \right) \right] = const \cdot T$$

Somit ist der aus der linearen Kombination des Spannungsdifferenzwertes und des Spannungsmittelwertes gebildete Spannungswert U in erster Näherung zu der zu messenden Temperatur proportional.

Die Funktionsweise der in **Fig.** 1 dargestellten Vorrichtung ist wie folgt: Für den Spannungsdifferenzwert gilt:

$$\Delta(\Delta U) = \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} + \mu(\vec{U}_{BE}) \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2}$$

Bei Betrieb schaltet der Intervallzeitgeber 12 periodisch wechselnd die Stromquellen 6, 8, 10 an den Kollektor des Transistors 2 an, so daß der Kollektorstrom des Transistors 2 während einer Ansteuerperiode die Werte

$$I_1 + \frac{E - \overline{U}_{BE}}{2R}$$
; $I_2 + \frac{E - \overline{U}_{BE}}{2R}$; $I_3 + \frac{E - \overline{U}_{BE}}{2R}$

annimmt, wobei R der Widerstand des RCR-Filters 16 ist. Während der Zeitintervalle, während denen der Quellenstrom den Wert I₁ bzw. den Wert I₃ hat, beträgt der Übertragungskoeffizient des Synchrondetektors +A, wohingegen er wäh-

rend der Zeitintervalle, während denen der Quellenstrom den Wert I_2 hat, -A beträgt. Am Ausgang des zweiten Tiefpaßfilters **22** tritt somit die folgende Spannung auf:

$$U_{22} = \frac{A}{4} \left[1 + \mu(\bar{U}_{BE}) \right] \ln \frac{\left(I_1 + \frac{E - \bar{U}_{BE}}{2R} \right) \left(I_3 + \frac{E - \bar{U}_{BE}}{2R} \right)}{\left(I_2 + \frac{E - \bar{U}_{BE}}{2R} \right)^2} \approx 10$$

$$\approx \frac{A}{4} \frac{KT}{q} \left[1 + \mu(\bar{U}_{BE}) \right] \ln \frac{I_1 I_3}{I_2^2} + \frac{A}{4} \frac{KT}{q} \left[1 + \mu(\bar{U}_{BE}) \right] \left(\frac{1}{I_1} + \frac{1}{I_3} - \frac{2}{I_2} \right) \frac{E - \bar{U}_{BE}}{2R}$$
15

mit

$$\Delta(\Delta U) = \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} \left[1 - \mu_r \left(\frac{E - \bar{U}_{BEr0}}{K T_0 / q} - 1 \right) \right] + \mu_r \ln \frac{I_1 I_3}{I_2^2} (E - \bar{U}_{BE}) \right]^{-20}$$

folgt daraus:

$$U_{22} \approx \frac{A}{4} \left[\frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} - \mu_r \left(\frac{E - \bar{U}_{BEr\theta}}{K T_0 / q} - 1 \right) \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} + \mu_r \ln \frac{I_1 I_3}{I_2^2} (E - \bar{U}_{BE}) \right]$$
30

$$+\frac{A}{4}\left[\frac{KT}{q}\left(1+\mu(\bar{U}_{BE})\right)\left(\frac{1}{I_{1}}+\frac{1}{I_{3}}-\frac{2}{I_{2}}\right)\frac{E-\bar{U}_{BE}}{2R}\right]$$

Die Bedingung für die Minimierung des Einflusses der Exemplarstreuung des Koeffizienten m auf das thermometrische Verhalten der Vorrichtung lautet:

$$\mu_r \ln \frac{I_1 I_3}{I_2^2} + \frac{KT}{q} \left[1 + \mu(\overline{U}_{BE}) \right] \frac{1}{2R} \left(\frac{1}{I_1} + \frac{1}{I_3} - \frac{2}{I_2} \right) = 0$$

35

50

Mit

$$R = \frac{KT_0}{2q} \frac{1 + \mu_r}{\mu_r \ln \frac{I_1 I_3}{I_2^2}} \left(\frac{1}{I_1} + \frac{1}{I_3} - \frac{2}{I_2} \right) \quad \text{für } \mu(\overline{U}_{BE}) = \mu_r \text{ und } T = T_0$$

ergibt sich insgesamt

$$U_{22} \approx \frac{A}{4} \frac{KT}{q} \ln \frac{I_1 I_3}{I_2^2} \left[1 - \mu_r \left(\frac{E - \vec{U}_{BEr0}}{KT_0/q} \right) + \mu_r \frac{E - \vec{U}_{BE}}{KT/q} \left(1 - \frac{T}{T_0} \frac{1 + \mu(\vec{U}_{BE})}{1 + \mu_r} \right) \right]$$
55

Aus der vorstehenden Gleichung ist ersichtlich, daß der Einfluß der Exemplarstreuung des Koeffizienten m verringert ist, so daß die Genauigkeit der Vorrichtung und ihr thermometrisches Verhalten verbessert ist.

In **Fig.** 2 ist ein zweites Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Bei diesem Ausführungsbeispiel ist der Emitter des Transistors 2 mit dem Eingang des ersten Tiefpaßfilters 16 verbunden, dessen Ausgang über die Spannungsquelle 18 mit der Auswerteeinrichtung 24 verbunden ist. Die Auswerteeinrichtung 24 weist bei diesem Ausführungsbeispiel einen Summierer auf, der die Signale, die der Auswerteeinrichtung 24 zugeführt werden, summiert.

Bei Betrieb der Vorrichtung wird der Transistor **2** periodisch wechslend mit Kollektorströmen I₁, I₂ und I₃, die bei diesem Ausführungsbeispiel den Quellenströmen der Stromquellen **6**, **8**, **10** entsprechen, angesteuert. Der Mittelwert des Signals am Ausgang des Synchrondetektors wird dann durch folgenden Ausdruck beschrieben:

$$\overline{U}_{20} = \frac{A}{4} \frac{K}{q} T \left[1 + \mu(\overline{U}_{BE}) \right] \ln \frac{I_1 I_3}{I_2^2} = \frac{A}{4} \frac{K}{q} T \left(1 + \sqrt{\frac{E - \overline{U}_{BE}}{kT/q}} \right) \ln \frac{I_1 I_3}{I_2^2}$$

Dieses Signal wird über das zweite Tiefpaßfilter der Auswerteeinrichtung 24 zugeführt. Ferner wird der Auswerteeinrichtung über das erste Tiefpaßfilter 16 und die Spannungsquelle 18 ein Signal zugeführt, das der Differenz aus der Quellenspannung E der Spannungsquelle 18 und dem Spannungsmittelwert der Basis-Emitterspannung des Transistors 2 entspricht. Wenn der Summierer der Auswerteeinrichtung 24 ein Analogsummierer ist, so wird das Summensignal näherungsweise durch den folgenden Ausdruck beschrieben:

$$U_{24} = \frac{A}{4} \left[\frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} - \mu_r \left(\frac{E - \bar{U}_{BEr0}}{K T_0 / q} - 1 \right) \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} + \mu_r \ln \frac{I_1 I_3}{I_2^2} (E - \bar{U}_{BE}) \right] + (E - \bar{U}_{BE}) =$$

$$= \frac{A}{4} \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} \left[1 - \mu_r \left(\frac{E - \bar{U}_{BEr0}}{K T_0 / q} - 1 \right) \right] + (E - \bar{U}_{BE}) \left(\frac{A}{4} \mu_r \ln \frac{I_1 I_3}{I_2^2} + 1 \right)$$

Wird der Faktor Λ wie folgt gewählt

25

40

55

60

65

wird der Faktor A wie folgt gewant
$$\frac{A}{4}\mu_r \ln \frac{I_1 I_3}{I_2^2} + 1 = 0 \implies A = \frac{4}{\mu_r \ln \frac{I_2^2}{I_1 I_3}}$$

so hängt das Ausgangssignal der Vorrichtung gemäß **Fig.** 2 in erster Näherung nicht von der Streuung des Koeffizienten mab, und es ergibt sich:

$$U = \frac{A}{4} \frac{K}{q} T \ln \frac{I_1 I_3}{I_2^2} \left[1 - \mu_r \left(\frac{E - \bar{U}_{BEr0}}{K T_0 / q} - 1 \right) \right]$$

Somit ist die Unabhängigkeit von durch Exemplarstreuungen verursachten Abweichungen der elektrischen Parameter des Transistors 2 und damit die Genauigkeit der Vorrichtung weiter verbessert.

Die Genauigkeit der Vorrichtung läßt sich dadurch noch weiter verbessern, daß die Auswerteeinrichtung 24 mit einem Zweikanal-A/D-Wandler zur A/D-Wandlung der zugeführten Spannungssignale versehenen Mikrocomputer versehen, der Zähläquivalente dieser Signale nach der folgenden Formel verarbeitet:

$$\bar{U}_{4} = \frac{A}{4} \frac{K}{q} T \left[1 + \mu(\bar{U}_{BE}) \right] \ln \frac{I_{1}I_{3}}{I_{2}^{2}} = \frac{A}{4} \frac{K}{q} T \left(1 + \gamma e^{\frac{E - \bar{U}_{BE}}{kT/q}} \right) \ln \frac{I_{1}I_{3}}{I_{2}^{2}}$$

Bei einer derartigen Verarbeitung läßt sich der Fehler des thermometrischen Verhaltens der Vorrichtung, der von der Streuung des Koeffizienten mabhängt, vollständig eliminieren.

Es ist möglich, anstelle der drei Stromquellen 6,8,10 zwei Stromquellen zu verwenden.

Es ist auch möglich, mehr als drei Stromquellen zu verwenden. In diesem Fall läßt sich die Genauigkeit der Vorrichtung weiter verbessern, weil zusätzlich zum Einfluß des stromunabhängigen Teils des Widerstandes noch der Einfluß des stromabhängigen Teils des Widerstandes unterdrückt wird.

Es ist auch möglich, zur Erzeugung der während einer Ansteuerperiode erforderlichen unterschiedlichen Kollektorströme eine einzige Stromquelle zu verwenden, deren Quellenstrom dann während einer Ansteuerperiode entsprechend

Patentansprüche

1. Verfahren zur Temperaturmessung,

bei dem der Kollektor eines bipolaren Transistors mit geradeverschobenem Emitterübergang periodisch mit wenigstens zwei unterschiedlichen Kollektorströmen angesteuert wird,

bei dem die während einer Ansteuerperiode auftretende Differenz der Basis-Emitter-Spannung (Differenzspan-

nungswert) des Transistors oder ein dieser Spannung entsprechendes Signal einer Auswerteeinrichtung zugeführt wird und

bei dem in der Auswerteeinrichtung der zu dem zugeführten Spannungswert gehörige Temperaturwert ermittelt wird,

dadurch gekennzeichnet,

daß der während einer Ansteuerperiode auftretende Spannungsmittelwert der Basis-Emitter-Spannung oder ein dem Spannungsmittelwert entsprechendes Signal der Auswerteeinrichtung zugeführt wird und

daß die Auswerteeinrichtung aus der linearen oder nichtlinearen Kombination des Spannungsdifferenzwertes und des Spannungsmittelwertes bzw. aus der linearen oder nichtlinearen Kombination der diesen Werten entsprechenden Signale den zugehörigen Temperaturwert ermittelt.

2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1,

mit einem bipolaren Transistor mit geradeverschobenen Emitterübergang,

mit Mitteln zum Ansteuern des Transistors mit einem Kollektorstrom, der periodisch wechselnd wenigstens zwei unterschiedliche Stromstärken annimmt und

mit einer Auswerteeinrichtung, die aus den Spannungswerten den zugehörigen Temperaturwert ermittelt, dadurch gekennzeichnet,

daß der Kollektor des Transistors (2) mit dem Eingang eines Operationsverstärkers (14) und sein Emitter mit dem Ausgang des Operationsverstärkers (14) verbunden ist,

daß der Kollektor des Transistors (2) mit einem Anschluß einer Spannungsquelle (18) verbunden ist, deren anderer Anschluß über ein erstes Tiefpaßfilter (16) mit dem Emitter des Transistors (2) verbunden ist und

daß der Emitter des Transistors (2) über einen Synchrondetektor (20) mit einem zweiten Tiefpaßfilter (22) verbunden ist, dessen Ausgangssignal der zu ermittelnden Temperatur direkt proportional ist.

- 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das erste Tiefpaßfilter (16) ein RCR-Filter ist.
- 4. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1

mit einem bipolaren Transistor mit geradeverschobenen Emitterübergang,

mit Mitteln zum Ansteuern des Transistors mit einem Kollektorstrom, der periodisch wechselnd wenigstens zwei unterschiedliche Stromstärken annimmt und

mit einer Auswerteeinrichtung, die aus den Spannungswerten den zugehörigen Temperaturwert ermittelt, dadurch gekennzeichnet,

daß der Kollektor des Transistors (2) mit dem Eingang eines Operationsverstärkers (14) und sein Emitter mit dem Ausgang des Operationsverstärkers (14) verbunden ist,

daß der Emitter des Transistors (2) mit dem Eingang eines ersten Tiefpaßfilters (16) verbunden ist, dessen Ausgang über eine Spannungsquelle (18) mit einem ersten Eingang der Auswerteeinrichtung (24) verbunden ist, daß der Emitter des Transistors über einen Synchrondetektor (20) mit dem Eingang eines zweiten Tiefpaßfilters (22)

verbunden ist, dessen Ausgang mit einem zweiten Eingang der Auswerteeinrichtung (24) verbunden ist.

- 5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Mittel zum Ansteuern des Transistors (2) wenigstens eine mit dem Kollektor des Transistors (2) verbundene Stromquelle (4) aufweisen, deren Quellenstrom durch eine Steuereinrichtung (12) periodisch wechselnd umsteuerbar ist.
- 6. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Mittel zum Ansteuern des Transistors (2) wenigstens zwei Stromquellen (6, 8, 10) mit unterschiedlichen Quellenströmen aufweisen und daß die Steuereinrichtung (12) die Stromquellen (6, 8, 10) periodisch wechselnd an den Kollektor des Transistors (2) anschaltet
- 7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Steuereinrichtung (12) einen Intervallzeitgeber aufweist, der zur periodischen Ansteuerung des Transistors (2) die Stromquelle bzw. die Stromquellen (6, 8, 10) ansteuert und der ferner einen Synchrondetektor (20) ansteuert, über den der Emitter des Transistors (2) mit dem zweiten Tiefpaßfilter (22) verbunden ist.
- 8. Vorrichtung nach Anspruch einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß der Kollektorstrom während einer Ansteuerperiode drei unterschiedliche Werte annimmt.
- 9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß die Auswerteeinrichtung (24) einen Summierer aufweist, der die über das erste Tiefpaßfilter (16) und das zweite Tiefpaßfilter (22) zugeführten Signale summiert.
- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Summierer ein Analogsummierer ist.
- 11. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß die Auswerteeinrichtung wenigstens einen Λ/D -Wandler zur Λ/D -Wandlung der über das erste Tiefpaßfilter (16) und das zweite Tiefpaßfilter (22) zugeführten Signale aufweist.
- 12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Auswerteeinrichtung zur Auswertung der A/D-gewandelten Signale einen Mikrocomputer aufweist, durch den eine genauere Auswertung als mit der linearen Kombination erzielbar ist.

Hierzu 2 Seite(n) Zeichnungen

65

60

55

5

10

15

20

25

35

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 197 10 829 A1 G 01 K 7/24**24. September 1998

FIG. 1

Nummer: Int. Cl.⁶; Offenlegungstag: DE 197 10 829 A1 G 01 K 7/24

24. September 1998

