NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Lyndon B. Johnson Space Center

Houst (NASA-CR-160695) COMPUTER PROGRAM

DOCUMENTATION MODIFIED VERSION OF THE JA70

AERODYNAMIC HEATING COMPUTER PROGRAM H800 NC A10 MF PO)

(HINIVER WITH A DISSPLA PLOT PACKAGE

(Lockheed Engineering and Management) 213 p G3/61 23777

COMPUTER PROGRAM DOCUMENTATION

MODIFIED VERSION OF THE

JA70 AERODYNAMIC HEATING COMPUTER PROGRAM H800 (MINIVER)

WITH A DISSPLA PLOT PACKAGE

Job Order 52-309 CPD-919

Prepared By

Lockheed Engineering and Management Services Co., Inc.
Houston Division
Houston, Texas

Contract NAS 9-15800

For

STRUCTURES AND MECHANICS DIVISION
THERMAL TECHNOLOGY BRANCH

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

March 1980

LEMSCO-14571

COMPUTER PROGRAM DOCUMENTATION

MODIFIED VERSION OF THE JA70 AERODYNAMIC HEATING COMPUTER PROGRAM H800 (MINIVER) WITH A DISSPLA PLOT PACKAGE

Job Order 52-309

CPD-919

Prepared By

L. Olmedo

Thermal Technology Section

Approved By

J.AE. Hurst, Acting Supervisor Thermal Technology Section

W. J. Reicks, Manager Applied Mechanics Department

Prepared By

Lockheed Engineering and Management Services Company, Inc.

For

STRUCTURES AND MECHANICS DIVISION
THERMAL TECHNOLOGY BRANCH

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

March 1980

ACKNOWLEDGEMENT

The writer of this manual wishes to express his appreciation to S. J. Damico of Lockheed for his valuable cooperation in helping solve DISSPLA problems.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
JSC-16500	<u> Lagranda de la composição de la compos</u>	
4. Title and Subtitle Modified Version of the JA70	Aerodynamic Heating Computer	5. Report Date March 1980
Program H800 (MINIVER) With		6. Performing Organization Code
		625-51
7. Author(s)		8. Performing Organization Report No.
L. Olmedo Lockheed Engineering and Mar	pagement Services Co. Inc.	LEMSCO-14571
	agement services co., The.	10. Work Unit No.
9. Performing Organization Name and Address Lockheed Engineering and Mar	magement Services Co., Inc.	63-2135-2309
1830 NASA Road 1		11. Contract or Grant No.
Houston, Texas 77058 Technical Monitor: R. G. Bro	own	NAS 9-15800
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
National Aeronautics and Spa		Computer Program
Lyndon B. Johnson Space Cent Houston, Texas 77058	cer	14. Sponsoring Agency Code
15. Supplementary Notes		
16. Abstract		
	iges, modifications, and addition	ons to the MINIVER computer
program, an automated method	or aerodynamic neating.	
1		
		ı
1		
1		
İ		
17. Key Words (Suggested by Author(s))	18. Distribution Sta	tement
DISSPLA		
1		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price*
Unclassified	Unclassified	218

CONTENTS

Sect	tion	Page
1.	INTRODUCTION	1-1
2.	DISCUSSION	2-1
3.	INPUT DESCRIPTION	3-1
4.	PROGRAM EXECUTION	4-1
5.	INPUT LISTING	5-1
6.	OUTPUT LISTING	6-1
7.	PLOT PACKAGE DESCRIPTION	7-1
	7.1 <u>USAGE OF DISSPLA ROUTINES</u>	7-1
	7.2 MINIVER PLOT ROUTINES USAGE	7-5
	7.3 <u>FLOWCHARTS</u>	7 - 8
8.	COMPUTER PROGRAMS LISTING	8-1
9.	MINIVER PLOT PACKAGE ROUTINES	9-1
10.	OFFLINE PLOTTING	10-1
11.	SUBROUTINES USED BY MINIVER	11-1
12.	REFERENCES	12-1

TABLES

Tab	le P	age
I.	INPUT PARAMETERS BY GROUP	-2
II.	NEW INPUT PARAMETERS	-12
	FIGURES	
Fig	ure P	age
1	Runstream overlay	-2
2	Runstream listing OFFLPT	0-1
3	Program listing	0-2

1. INTRODUCTION

The MINIVER computer program (ref. 1) is an automated method of using the simplistic approach to aerodynamic heating. Prime benefits from using MINIVER computer code are the flexibility and economy resulting from the use of a point solution technique. This document describes the changes, modifications, and inclusions which have been adapted to the current version of the MINIVER program. Extensive modifications were made to various subroutines, and a complete new plot package added. This plot package is the Johnson Space Center DISSPLA Graphics System currently driven under an 1110 EXEC 8 configuration. This document provides user instructions on executing the MINIVER program, gives a detailed description of the changes and modifications made, and provides an extensive description of the plot package.

2. DISCUSSION

The version of MINIVER which was modified used the cumbersome method of allowing data to be imput by use of a data editor subroutine recognizing location numbers, rather than conventional input techniques. As a result, any increase in size of an input array resulted in failure to execute the program. For this reason, the input data method was changed and will be handled by FORTRAN NAMELIST.

The old subroutines INPUT and INPUTA were completely removed, eliminating the need for storing all of the input data within an array called W with fixed 1500-computer word locations. The user is now free to change array sizes of the input parameters, with little or no impact in the editing and execution of the program.

The main subroutine (H800) was extensively modified to handle storing of generated data in an 1110 UNIVAC-secured file, and a subroutine called STORED was written to handle this task. The contents of this secured file can be retrieved later for plotting purposes.

The printed output was handled by the main program H800; this method was also changed. A subroutine called NEWOUT was written to allow the main program to be almost output free.

The subroutine WRINP, which also handles the printing of input data, was rewritten to accommodate the changes made with the inclusion of the new input technique.

Another subroutine changed was SETMUP. This routine sets up thick-skin parameters and writes out the input.

Changes in subroutines TRANS and OPTMYZ were minor and are indicated through comments cards within the program listing.

Once calculations for a body point have been completed, the user has the option of plotting the generated data or storing it for later processing. A routine to perform this task was written, and a complete description is given in section 10 of this manual. The main program makes a call to the routine which drives the plot package.

3. INPUT DESCRIPTION

MINIVER input is basically the same as before modification, but the method of getting the data in the program has been changed. The old method used the ENCODE, DECODE technique; the new version uses FORTRAN NAMELIST. The computer name for NAMELIST is DATALO.

Table I shows the input parameters by group, with units and symbols. Two new columns have been added: program name (the name used in the program) and array size (the number of computer words currently assigned to that particular parameter). The array size is assumed to be a single value when none is shown.

Table II shows the new parameters introduced into the modified version, not classified under groups or symbols.

TABLE I. - INPUT PARAMETERS BY GROUP

Symbol Program the name the Timing decisions Timing decisions Timing decisions Timing decisions Timing decisions Timing decisions Total fime total Ata Second time Printout interval 2 Third time Third time Third time Third time Third time Calculation interval 3 Fourth time Calculation interval factor Maximum temperature rise per Maximum temperature rise per ATmax CONFLG CONFLG CONFLG Freestream definit			
Program	Units	Size	
T1	בסו מואב הכי		
T1 In In In In DT1 Property of T4 T4 Tray CONFLG CONFLG	Timing decisions		
T1	cos		
DT1 PP PP T2 SS	tial time sec		
T2 Ss DT2 P T3 T1 T3 T4 DTCALC Calc DTEMAX Tmax CONFLG	ntout interval 1 sec		
DT2 P T3 T T4 DT3 F T4 DTCALC DTEMAX NAX NAX CONFLG	cond time		
T3 T7 T9 T4 T4 DTCALC DTCALC DTEMAX MAX CONFLG	intout interval 2		
DT3 T4 T4 DTCALC OTEMAX ABX NT (flag) CONFLG			
T4 DTCALC 1c DTEMAX sax (T (flag) CONFLG			
DTCALC DTEMAX (flag) CONFLG			
OTEMAX (flag) CONFLG	alculation interval factor		
(flag) CONFLG	Maximum temperature rise per iteration	- V	
	continuity option flag		
	Freestream definition		
ATM (flag) ATFLAG Atmosphere/treestream ings Nimber of time-dependent tab	Atmosphere/freestream flag Number of time-dependent table entrics		

TABLE I. - Continued

Symbol	Program name	Parameter	Units	Array Size
		Freestream definition (continued)		
t z	7.1	Table of times	sec	20
ζω	77	Table of altitudes	ţ	20
*/	NZ A	Table of freestream velocities	ft/sec	25
NF (flag)	NFF			
Z _A	ALFAOT	Table of atmosphere table altitudes	ft	20
8	DELTAT	Table of freestream temperatures	8	20
8	FSPRES	Table of freesteam pressures	1bf/ft ²	20
ARIDE (flag)	ARIDEF	Freestream flag		
		Flowfield definition		
FF (flag)	GF.	Flowfield flags 1-6		9
	₹	Flowfield flags 7-9		æ
* 11	ANGLE	Flowfield angles 1-9	deg	10
E F	ENTI	Number of FF } table entries		

TABLE 1. - Continued

Symbol	Program	Parameter	Units	Array
		Flowfield definition (continued)		
1 FF	TA	Table of FF ≯ table times	sec	01
FF ≱ 1	Al	Table of FF ≯ 1's	deg	01
FF } 2	A2	Table of FF ≯ 2's	deg	10
FF}3	A3	Table of FF ∤ 3's	qeð	10
FF } 4	A4	Table of FF ≯ 4's	qeò	10
FF } 5	A5	Table of FF ≯ 5's	qeò	10
FF } 6	A6	Table of FF ≯ 6's	deg	10
FF } 7	A7	Table of FF ≯ 7's	qeò	10
FF ∤ 8	AR	Table of FF ≯ 8's	deg	10
FF ≱ 9	A9	Table of FF } 9's	deg	10
		Crossflow definition		
CF (flag)	CFFLG	Crossflow option flag		
00	DSUBO	Rectangle width	‡	
~	ELMBDA	Delta wing sweep angle	deg	
ņ	UDOT	Real gas velocity gradient factor		

TABLE I. - Continued

	Array Size							· · · · · · · · · · · · · · · · · · ·	 <u>-</u> -		·····			02	10	_
	Units		‡						ŧ	: #	dea	•	o.	t t	ţ	
	Parameter	Crossflow definition (continued)	Rectangle corner radius	QRAD TR flag	Heat transfer	Heat transfer method option flag	Laminar mangler transform factor	Turbulent mangler transform factor	Nose or leading edge radius	Running length	Local slope or sweep angle	Number of geometry table entries	Table of geometry table times	Table of nose radii	Table of running lengths	
Program	name		CORNR	ATRE		HTFLG	ENL	ENT	RN N	日	PHI	ENT3	TMZ	RNZ	ELZ	
Symbol			ຜິ	TRT (flag)		HT (flag)	Z	× -	a _N		*	Z G	t _G	N S	- e	-

TABLE 1. - Continued

Symbol	Program name	Parameter	Units	Array Size
		Heat transfer (continued)		
\$	PHIZ	Table of local slopes or sweep andles	50	ç
3.G	EMIZ	Table of view factors	7) 2)	2 2
VRL (flag)	VRFLG	Virtual running length option flag		
ReA (flag)	RANFLG	Von Karman-Reynolds analogy flag		
		Transition definition		
TRANS (flag)	TRFLAG	Transition option flag		
PARA I	PARA1	Initial or onset parameter		
PARA II	PARA2	Final or fully turbulent parameter		
Kextent	ELFAC	Extent-of-transition length ratio		
	ARIT			
	HFAC	q/q factor		

TABLE I. - Continued

Program	Parameter	Units	Array Size
	Heat transfer multiplier definition (continued)		
AKL3	Table of Mach-dependent laminor multipliers		10
AKT3	Table of Mach-dependent turbulent multipliers		10
HFACT			10
	Material definition		
EMATL	Material type option flag		,
DEL	Material thickness	in.	
EMIS	Emissivity		
	Thin skin inputs		
TIN	Initial temperature Input material density	°F lbm/ft³	

TABLE I. - Continued

Symbol	Program name	Parameter	Units	Array Size
		Thin skin inputs (continued)		
ر ه	CPM	Input constant specific heat	Btu/lbm ^O R	
Nmz	ENMTL	Number of specific heat table entries		
Tmz	TMAT	Table of specific heat table temperatures	٩,	10
Cp _{mz}	CPMAT	Table of specific heats	Btu/lbm ^O R	10
		Optimization		
OPT (flag)	IOPT	Optimization flag		
Topt	TOPT	Optimization temperature	L 0	
82	PERCNT	Accuracy criteria		
		Miscellaneous		
ENVIR (flag)	ENVIR	Environment summary printout flag		

TABLE I. - Continued

C L				
) ymbol	Program	Parameter	Units	Array
		Thick skin option		
Nodes	NODES	Number of nodes (2 to 25)		
Δm	XO	Node thicknesses	î.	25
,- <u>-</u>	—	Initial temperatures	J _O	25
MATL (flag)	MPFLAG	Node material code		25
E	RHOZ	Node densities	lb_/ft3	25
c _p	CPZ	Node specific heats	Btu/sec ft ^o F	52
ΣĒ	CONDZ	Node conductivity	Btu/sec ft ^o F	
Nmtel	NTAB1	Number of entries in 1st material		
1,	TABT1	First table of temperatures	o _F	01
c _p 1	TABCP1	First table of specific heats	Btu/lb_sec ^o F	10
۲,	TABCX1	First table of conductivity	Btu/ft sec ^o F	10

Symbol	Program name		Units	Array size
Nmte ₂	NTAB2	Number of entries in 2nd material properties		
T ₂	TABT2	Second table of temperatures	u .	10
CP ₂	TABCP2	Second table of specific heats	Btu/lb sec F	10
χ _ζ	TABCX2	Second table of conductivity	Btu/ft sec ^o F	10
$^{\rm N}_{\rm mte_3}$	NTAB3	Number of entries in 3rd material properties		
T ₃	TABT3	Third table of temperatures	r,	10
СР3	TABCP3	Third table of specific heats	Btu/lb sec F	10
7; E	TABCX3	Third table of conductivity	Btu/ft sec ^o F	01
$^{\rm N}_{\rm mte_4}$	NTAB4	Number of entries in 4th material properties		
T ₄	TABT4	Fourth table of temperatures	٥.	10
Cp4	TABCP4	Fourth table of specific heats	Btu/msec ^o F	10
×4	TABCX4	Fourth table of conductivity	Btu/ft sec ^o F	00
Nmtes	NTAB5	Number of entries in 5th material properties		•
75	TABTS	Fifth table of temperatures	9 e	10
Cp _S	TABCP5	Fifth table of specific heats	Btu/lb sec F	10
7	TABCX5	Fifth table of conductivity	Btu/lb sec ^o F	10

TABLE I. - Concluded

Syrik ol	Program	Parameter	Units	Array size
		Thick skin option (continued)		
Tsink	TSINK	Inner wall sink temperature	۳,	
MIE	FIN	Inner wall shape factor (EF)		
MIq	HCIM	Inner wall heat transfer coefficient	Btu/ft ² sec ^o F	
Teas	TGAS	Inner wall gas temperature	٥,	
ZI _N	NTIWZ	Inner wall environment table entries		20
tIWZ	TIWZ	Environment table times	sec	20
hIWZ	HCIWZ	Heat transfer coefficient table	Btu/ft ² sec ^o F	20
T _{GasZ}	TGASZ	Gas temperature table	Btu/ft ² sec ^o F	20
TSINKZ	TSINKZ	Inner wall sink temperature table	o _F	20

TABLE II. - NEW INPUT PARAMETERS

Program name	Description	Array size
ICASE	Case number	
LNGPLT	Flag used for plotting. >0 long plots <0 short plots	
IHCOPY	Flag used for plotting. >0 no plot generation <0 make plots	
IPLTWE	Flag used for plotting while in Demand mode. >0 plot while on Demand <0 no plot	
I FLGOT	Flag used for printed output while on Demand mode. >0 print output data <0 no print	
BDYPNT	Body point ID. (Alpha input, 24 characters)	4
TRANME	Trajectory ID. (Alpha input, 36 characters)	6
IBPNUM MAXTME	Body point number Max time used per run (in seconds)	

4. PROGRAM EXECUTION

There are several ways to execute MINIVER; the most convenient is in demand mode. Upon sign-on, type on device:

@START ES35-NO6516*LOREN.RUNMIN

Contents of RUNMIN, including the overlay, are shown in figure 1. Notice the statements:

@ASG,T 9.

If the user wishes to plot the data generated during the run at a later date, he must save the contents of unit 9 at end of run, as follows:

@COPY,I 9,FILENAME.ELEMENTNAME

Close attention should be paid to the @ADD statements, as these files contain the input data. The user must generate his own input files. It is obvious that the user will not get plots on the device with a @START command; therefore, if plots are desired, the IPLTWE (I Want Plots While Executing) must be set to 1. Plots will be in microfilm.

Another way to start execution is through the @ADD statement @ADD ES35-NO6516*LOREN.RUNMIN

Print output will appear on the screen if the IFLGOT flag is set to 1. The user may want to skip this procedure; if so, set IFLGOT to 0.

A user familiar with demand terminal operation should be able to choose the better method.

```
NODECK LORENZO
                                                                                                                                                                                                                                          4:IN H800, TBLIN, FAYRID, BINTRP, HANSEN, MOLIER, DINT, DINT1
5:IN MATRES, NEUT, EDPARM, STOCK, FDCOPY
1: @RUN, R/R 17@LOX, E/32@7, ES32-L78771, 20,50
                                                     4:0ASG,T 9.,F/1/TRK/500
5:0ASG,T TPFS.,F/1/TRK/500
6:0ERS TPFS.
7:0COPY ES35-N06216*LOREN.,TPFS
                                                                                                                                                                                                      DISSPLAXTRY.00TKEG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             36:SEG DOUNID1*, (FLOU1)
37:IN DOUNID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    32:SEG DUNSTRIX, (FLOUI)
                                                                                                                                                                                                                                                                                                                     8:SEG SETMUP1#, (MAIN1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          34:SEG PMEXPNIX, (FLOUI
                                                                                                                                                                                                                                                                                                                                                         20:SEG OPTHYZ1#, (MAIN1
                                                                                                                                                                                                                                                                               6:SEG URINPIX, (MAINI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      26:SEG TINT61*, (MAIN1)
27:IN TINT6
28:SEG FLOU1*, (MAIN1)
29:IN FLOU
                                                                                                                                                                                                                                                                                                                                                                                             22:SEG AIRG21X, (MAIN1)
                                                                                                                                                                                                                                                                                                                                                                                                                               24:SEG ATMS41X, (MAIN1)
25:IN ATMS4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                30:SEG PCSU1#, (FLOUI)
                                                                                                                                                                                                                          3:IN LOREN. GOTKEG
                                                                                                                                                                  DISSPLAXTRY
                                                                                                                             8:0ED, I TPFS.MAP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        33:IN DUNSTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          35:IN PREXPN
                                                                                                                                                                                                                                                                                                                                       9:IN SETMUP
                                                                                                                                                                                                                                                                                                                                                                          21:IN OPTHYZ
                                                                                                                                                                                    MAINI
                                                                                                                                              9:LIB TPFS
                                                                                                                                                                                                                                                                                                   7:IN URINP
                                                                                                                                                                                                                                                                                                                                                                                                                  23:IN AIR62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   31:IN PCSU
                                                                                                                                                                                   11:SEG
                                                                                                                                                                   0:LIB
```

Figure 1. - Runstream overlay.

```
68: ONAP TPFS. NAP, TPFS. ABS
                                                                                                                  IS:IN SUCYL
16:SEG ECKERTIX, (MAINI)
17:IN ECKERT
                               0:SEG CRSFLUIX, (MAINI)
                                                                                                                                                                                                                                                                                                                                                 S8:SEG RADEQTIX, (MAIN1)
S9:IN RADEQT
                                                                                                                                                                                                                                                                                                                                                                                    60:SEG PRINTIAX, (MAIN1)
                                                                                                                                                                                                                                                                                                                                                                                                                    62:SEG NEUOUTIX, (MAINI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                         64:SEG PLOTLO1*, (MAIN1)
65:IN PLOTLO
                                                                                                                                                                    48:SEG SPCHIIX, (MAINI)
49:IN SPCHI, FSUBC
50:SEG RHOMURIX, (MAINI)
                                                                                                                                                                                                                                                                             54:SEG DETRALIX, (MAINI)
                                                                                                                                                                                                                                          S2:SEG SUCYLEAK, (MAIN1)
                                                                 2:SEG URUNLIX, (MAINI)
                                                                                                                                                                                                                                                                                                              SG:SEG TRANSIX, (MAIN1)
57:IN TRANS
SEG PHIDIX, (FLOUI)
                                                                                                   4:SEG SUCYL1, (MAIN1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LO.BD3RD1/C1
                                                                                                                                                                                                                                                                                                                                                                                                                                       63: IN NEUOUT
                                              11:IN CRSFLU
                                                                                                                                                                                                                          51: IN RHOMUR
                                                                                                                                                                                                                                                           53: IN SUCYLE
                                                                                                                                                                                                                                                                                                                                                                                                     61: IN PRINTS
                                                                                                                                                                                                                                                                                                SS: IN DETRAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               70:0ADD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           66:END
```

Figure 1. - Concluded

INPUT LISTING

```
SDATALO
ICAGE-1,
3DVPNT-24H 1 FT REF. SPHERE
TRAMME-38H (RYLS-EX) 38779
T1=0., DT1=25., T2=300., DTCALC-1, DTEMAX-10.,
ATFLAG-0., TIN-150., LNGPLT-1., ENTR-13.,
TZ-0.0, 25.0, 50.0, 75.0, 100.0,110.0, 125.0, 150.0, 175.0,
200.0, 225.0, 250., 300.0,
22-240000., 230000., 100000., 100000., 100000.,
           UZ- 9360., 9360., 9260., 8800., 7900.,
7800., 7800., 6500., 5700., 4900.,
4200., 3300., 2500.,
18., 16., 16., 18., 19.,
19.5, 17.5, 12.,
HTFLAG= 1., RN- 1.,
HTFLAG= 1., RN- 1.,
HTFLAG= 0., DEL- 12., YMIS- .85, RHON- 10000., CPN- 10000.,
ATRE- 0.0, MAKTRE-300, LNG-LT-0,
IPI-WE-0, IFLGOT-1, INCCY/-0,
SEMS
```

ORIGINAL PAGE IS

6. OUTPUT LISTING

The listing corresponds to the input shown in section 5.

-							- Parker of the						
ICASE													
I FI MEF. SPHEME													
8007 POINT						ORIG OF PO	or Q	PAGI ALI	18				
32770 C (MINIVER)										:	VELOCITY 930G.C	4 6 6 C	7500.0
IRTES-ERI 3277 ETON OF JATE IN	000000000000000000000000000000000000000	10			FACTOR	1.300	12 0000 12 12 0000	2000	₽ 60 CC		ALTITUDE Zaucoo.	20000 20000 20000 20000 20000	11700
LAECTORY		CALC TEPP HAY	TRANSFER T PE THOD	22	1100	L AC	NO.	12 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4	LANFIELD FLAG	NSITION OPTION	000 e	00000	CO

₩

6-3

a

•

 \Box

 $^{\circ}$

ORIGINAL PAGE IS
OF POOR QUALITY

VELOCITY	FACH	REIFT	PRESSURE	G A MM A	EN THAL PY	TEMP	010	2.	٣.	39.		1.000
00:4	4.83	en:	4	0.00	918	41.0	A	6 0	1	0000	CHIS) ·
101	\	* m	10-92	- · · ·	1755	# 1 4 C	20		TAU	212	ALPHA	00.06
D	= 7 %	0000 0000 0000	1.856	1.3954	1 46.	150.	50-1994 0000	2.3	1	i	SIS	- 90.0 10.3
LAMINAR TLRBULENT	22-603-05	1815+04 1816+04	.4857+01	0000	1.000	0000	1.000	000 1.000 000 1.000	1 0 C C C C C C C C C C C C C C C C C C		APA FT/FL	000
CON V	3.857 3.995 7.993	0 000	HC(H) = .290	09-02 H	200 000 000 1111	815.8 4157.					D01	•
NET CL	5.282	c.				44					11	. 🖚
4PE 84 T U	#	150.00			•							
TIME= 25	. =2	230000.										
VELOCITY	MACH	REZET	PRESSURE	GAMMA	ENTHALPY	TEMP	A HO	35	۳.	30		1.00
7 935C.	09.5	9	2	~	95	-65	674-	3000	ST	7091-01	ì	
1024. E 129.	Cm # 0:		. 4000	1.1287	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	# 7 F F F F F F F F F F F F F F F F F F	1674-064 1529-05	. 3000-06 . 3000-06 . 1497-05	TAU U DELTA		PHA	000
•	*	30000 • 30000 •	, •		, .	194	0000	.0000	14E 14	900	LEVIS	1.350
-LAHIWAR-TLRBULENT	3572-62	1840.04	00000		1.000	1.000	1.000	000	1 - 000 1 - 000 1 - 000		PAPA PAPA RET/#L	0000
CONV RAD EC	6 .049 8 .8 .7 0 .056	135.	HC(H)= .357	72-02 H 65-02 T	RECOV = 1 RECOV = 1 RAD EG =	839.6 4279. 1406.					1001	i
40	6.570	199									11	= 11
TEMPERA TURE	(I CEG F)	2 150.00										

20200 RE/F		PRESSUEE	GAMMA	FN THA! BY	1686	940			:		1.
1933	50.5	3813	25	907	60	900	S 70 - 0	E CO	0000	2	9000 9000 9000
333	3+05		228	109.		864-	325	, a	200		00.00
0000	J 17-10	- 1.862	1.3954	146	1500 1500 1500 1500 1500 1500 1500 1500	3750	\$228-06 \$228-06 \$0000	DEL TA DEL A THE TA	000	i	00.00
.17	798.04	.986C+01	000	1.000	1.000	1.000	00 1.000 1.000	1.0000		APA TAMA	
25,2	707 26.	HC (H) = .5967	7-02 H B	RECOV = 17	196.5					E E	
35	23. 54.		T	¥0 £6:						-	22
3000	150.00							!			•
RE / F		PRESSURE	GAMMA	EN THALPY	TEMP	B H0) A	2	36.		1.00
~0	105	733	003	~	27	2072-0	J-633	8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	1950		
5124 1198 2532	2000 000 000		1200		2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 2072-05 . 1647-04 . 1741-04	1522-05 1522-06 1522-06		1-1897.	PH A A A	000
20	٠	1 400	.277		20	0000	0-000	EF TA		SIA	
91.	HR 66:3+04: 663+04	1742+62 •0000	1,000	K2 1.000 1.000	1 : 000 1 : 000	1:000 1:000 1:000 1:000	HFAC1 1:000 1:000	HFACZ 1.0000 1.0000		ABA CT/FL	000
65 50		HC (H) = +1149 HC (T) = +4057	1-01 1-02 1 T R	RECOV = 16 RECOV = 44 RAD EU = 1	652.5 444.6 663.					E E	
70	709.									1	. 31

ORIGINAL PAGE POOR QUALITY

	I I	REJET	PRESSURE	GA MMA	ENTHALPY	TEMP	8 10	2	S/8	WI	œ.	1 :
1005	7.57	946	.578	- 6000	· ·		3168-	4		25	1	0000
63	7.57	3873+05	419.2 5.578	1 - 1 96 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 05 7	40.44.04.	462-05	ř 12	0000	ENIS	••
1129.		90	9	1.1985		3	5016-	20-05	<u>ن</u> د د	151.	ALPHA	00.06 =
	×		1.649	1.3954	145.3 146.3		5348-	162-0	- VE - 19	0000	ETA	0.06
•		8		1.3005		7 9 h	0000	0000	E 1A		LEVIS	1,351
LAMINAR	1 684-01	. 1354+04	.2276+02 .0000	1.0000	1.000 1.000 1.000	1:000	1.000 1.00 1.000 1.00	00 1:000 00 1:000	1.000 1.000		1	000
RAD EU	22.766	0 TOT 1140. 822.	HC(H)= .188 HC(T)= .582	7-01 H	RECOV = 13	354.4			ļ. 1		E E	0
	22.711 25.516	1134.		+	40-£0=	\$					· 1	=
TEMPERATURE LDEG	NE - LUE 6 F.1	00.031										
TIME = 12	= Z • S	117000.										
VELOCITY	MACH	RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMP	840	F.	=	32.	«	1.0
1 7200.	7.09	0.0	9.0	20	2	m:	1483-0	214-0		7132	P.	ب
1101. E	0 W D 3	**************************************	10.92 661.6 727.2	2000 2000 2000 2000 2000 2000 2000 200	promo	1 80 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 3	00000 00000 00000 00000 00000 00000	1000 1000 1000 1000 1000 1000 1000 100	241 241 241		سالہ ک	e 00
	•	0000	• • •	312		# 6 C	0000	0000	E 7 -	50	LENIS	35.15
	H -15450-01-	HR HB +04	00	×1	XQ	K 3	K HFA	C HFACI	HFAC2)	· (2)
2	0000	113	0000.	1.000		1.000	000		50		4 5 w	0000
CONVEC	24 - 2 98 12 - 907 34 - 955	MIN W	HC(H) = .245 HC(T) = .712	П-01 Н 1-02 Т	RECOV : 11 RECOV : 3 RAD EG: 1	137.6 3562. 1917.					TDOT	:
	27.874	1933.										:

- THE THE	~	110000										
VEL	MACH	•	PRESSURE	64 MM A	ENTHALPY	TENP	9	Ę	8/8 11 11	32.05	ند ين	1.0000
1055	A. 4.	1060 -06 -1265 -06	817.6 14.54	1.2770 1.400	0700	# U	206	3254	F/2	0.0000	N S	
	いにゃ	00 00 00 00 00 00	1 1 d	1.377 1.395 1.324 1.324 5.45	146.	3015	7866-03	300	THE TA	0000	BETA.	90.00
LAMINAR Terbulent	.2562-31	. 9437+03	.2044+02 .6600	1.000	1:000	1.000	1.000 1.000 1.000 1.00	00 1.000 00 1.000	NFACZ 1.000 1.000	:	PCT PAPA PET/ML	988
CON V RAD EC	20.43.6	0 TOT 2306. 1451.	HC (#) = .256	2-01 H 3-02 H	44.14	543.7					<u> </u>	•
REIT Co	20.382	2298.		1		1753.					-	; .c
TEMPERATUR TIME = 175	F-48E6 F4	107000.										í
VE LOCITY	PACH	REZET	PRESCURE	GAMMA	ENTHALPY	TEME	R HO	32	8,0	120	α.	1.00
1 5730.	1		6.9	1.4.000	₩ 60	30	387-0	3120-0	S.I.	5441-02	PHI	
20 60 00 00 00 00 00 00 00 00 00 00 00 00	5.72	12161 -06 1217 -06 1896 -09	16.96 657.2 731.1	00000000000000000000000000000000000000	00 80 80 80 80 80 80 80 80 80 80 80 80 8	2324 2324 2324 2324 2324 2324 2324 2324	1		AU WELTA	1065-		00.06
: : •		0000	(1.3377	-	194	0000	0000	HE TA		LEVIS	1,351
TURBULENT	10-2965 0000	74 78 03	3000*	1.000 1.000	1 .000 1 .000	1.000 1.000	1.000 1.00	C MFAC1 00 1:000	HFACZ 1.000 1.000		しまちに	*000
CONV RAD EQ	14 .336 6 .001 .356	22	HC(H)= .238	82-01 H 96-02 T	RECOV = 2 RECOV = 2 RAD EU = 1	747.8 2391. 1563.					1001	000* ==
1	17.813	20112			1						i 	

MACK DEVET		1		1					1		i :
T NEV	PRESSURE	GAMMA	ENTHALPY	TEMP	0 1 2			11 11 æ	30.4		
2	19.41	222	578.	PO:	524-	910	7-06	SF 72 = .	20-986-000	FHI :: :	
1382+0	5.0	320	561	2 PO	125	946	201	"	831	ALPHA =	90-06
0000° X L= 50000 2007- 2024	 	1.3554	2 / 8 · 1 · 6 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0	150-460-	. 1624-0 . 6018-0 . 0000	000	무무		0000	ETA:: EVIS OS	0.06. 8.1 8.301
-2164-C1 -5778+0 -0C00 -5778+0	13 .9246+01 03 .0000	1.000	1.000	1:000	1.000	400	1.000 1.000	1.000 1.000			000
9.346 3045. 3.35c 1767.	HC(H)= .210	64-01 H 6	(1.11	577.8	! !				. .	E E .	•
# C C C C C C C C C C C C C C C C C C C		+	-	en en							: 6
TEMPERATURE-1266-F1150-00 TIME 225, 7= 99000,											•
RE/F	PRESSURE	GAMMA	EN THÀLPY	TEMP	RHO	35		2	; •	İ	1.00
4735+D	3.4 1.0		90	22	3477-	30		S. S. S. S. S. S. S. S. S. S. S. S. S. S	4274-02	PH1	
	5512.35 5712.85 5711.0	1.332	SENO:	17 16 16 16 16 16 16 16 16 16 16 16 16 16	1347		9999 0000 1 - 1	AU W	900	LPHA	90.06
0000	-	367	00	19 19 10 10	000	00		H 74 + 1		LEVIS :	1.351
H H H H H H H H H H H H H H H H H H H	03 .6106+01- 03 .61000 03 .6100	1 .000 1 .000	1.000	1.000 1.000	1.000 1.000	- 000 - 1 H	.000	HFAC2 1:000 1.000	1	OKEN	000
106 3240 827 1613	HC(H) = .20 HC(T) = .51	08-01 H	RECOV = 4 RECOV = 1	50.0 1337.						100	000• =
3772						1				=	16 :

ORIGINAL PAGE IS
OF POOR QUALITY

1.000 2.000 2.000 2.90.00 2.90.00	0000	101	1 . 000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000	# # M	
ENIS FERIS REETS ROS IS	Le P	11	PHI FRIS ALPHA BETA	LEUIS HOS PARA RET/FL	1001
28.39 2.1000 2.0000 2.0000 2.0000			27.76 .3094-02 .0060 .4321-01		
3444 N			34	FEL # 14 14 14 14 14 14 14 14 14 14 14 14 14	
φοροφο	0000-1		MU 33047-06 33437-06 6153-06	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	į
'.	0000 1.000		200 mm mm mm mm mm mm mm mm mm mm mm mm m	00000 PP 0000	
1E N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		24.9	1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E		M
3154 3154 3020 3020 1000		. 2	EN THALP Y 2646. 2646. 2653.	-	PECOV : 2
E COODOO :	1.0c0 1.0c0	31-02	6A M M A M M M M M M M M M M M M M M M M	70 X P P	87-01 H 98-02 T
PRESSURE 30.60 460.1 396.4 396.4 1460.1 P = 1.754	.0302 .0300 .0300		3		H 100 H 100
RE/FT 20 62 706 21 12 706 21 12 706 21 12 706 21 12 706 21 12 706 21 12 706 21 12 706 21 12 706 21 12 706 21 12 706	3146+03 3146+03 0 101 3355+	341 957 45 45	85 6 3 + 0 6 + 55 6 3 + 0 6 + 55 6 3 + 0 6 + 55 6 3 + 0 6 + 55 6 6 + 55 6 6 + 55 6 6 + 55 6 6 6 + 55 6 6 6 6	. 00 00 HR 2643-03 . 2643-03	1877. 1877. 1877. 1808.
3.34 3.34 3.45 4.60 2.60	.0000 2.912	2.936 2.432 5.432 5.432	1 1		1.398 1.398 1.398 4.467 (CEG F)
WELOCITY 1 3308 0 777 E 6	NE NO	AND EN NET CL TEMPERATURE TIME 275.	VELOCITY 1 2500. 0 750. E 82.	TURBULENT	CONV HAD EQ FAS NET CL TEMPERATURE

VELOCI TV	MACH	REZET	PRESSUFE	GA MM A	ENTHALPY	TEMP	8	ž	8/8 8/8	= .7100	ادی	
2000	\$5.50	-6432+06	53.29	0004-1	220	104	7785-04	3026-06		ę	THE	
	2.55	90.75.49	53.29		96	1 9	17785-04	3026-06	;		5743	
735.	•		306.6	1 . 3078	210.	4714	-2648-03	.5459-06		= .1515-01	ALPHA	00.06
ġ		50	4.52.9	1.505.5	220.	- FOR	20-5297°	5637-56	1	0000	t	: 11
		0000		1.3917		-466	0000	0000	THE TA	0000	LEVIS	= 1,351
		90		*			***************************************	1			202	1
LAMINAR Terbulent	1620-01	.2204+03	1237-01		5000	000	1.0000	1.000 1.000			PCT PADA RET/H	000
	ú	101										20000
E .	1.207	345.8	HC (H) = .162	1620-01 H	RECOV	22C. 456.5					TDCT	000* =
N 1 3 0	1.151	3442.			<u> </u>	• 12					=======================================	= 121
PERR FU	EMPERATURE - LOEG-FT	150.00									!	!
NA NA	150. TIVE:	110.									i	

•

And the second of the second

i

.

;

ATURE VERSION OF JATO (MINI	NIVER!	ICASE 2	
•		٠	
: -			· ·
CALC 10.0000			
N SUR 1 1 000			
ATION FACTOR			
NO. E			
12000 12000 12000 12000 13000			
1ELD ANGLE 96.00 1E. 96.00 1E. 96.00			
ALTITUDE	VELOCITY		
24-0000- 000-23-0000- 20-20-00- 15-30-00-	9300.0 9300.0 9200.0 7900.0		
1174000	5000		

16.75.00 16.75.00 9.0000 8.0000 1962 ICAD A INCSPHERE 2222000 6-12

00 00 00 00 00 00 00 00 00 00 00 00 00	PET 1012 PET	•		**************************************	13F0-01 ALPHA = 90.00	U000 LENIS = 1.35	PC1 - 00000 BE1/ML - 00000 RE E - 00000		11 : 11
27.72 CF / 2 DELLTR	A COO		İ	ST	35	E 7 A	1.000	,	
20020000000000000000000000000000000000				3000-0	. 1497-05 • 1501-05	10000 HFAC	0000		
B				\$ 7 4 \$ 0 4	1529-05 1529-05	5000	1.000 1.000 1.000 1.000		
E COCHOUNT		#	0 4 5 4	L 4/14	# # 1000 2000 2000 2000 2000 2000 2000 2000	9 5	1.000	839.6 4279. 1390.	
1816. 1816. 1755. 1816.	• • • •	2	20 1437	.56 .56	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~	1.000	RECOV = 1 RECOV = 1 RAD EQ=	
6 6 A M M M M M M M M M M M M M M M M M	600		4 200 4 3	1-4-000	1280	186 X	000-1	141-02 H 38-02 T	
PRESSURE 1037-C1 9-374 9-374 8-536 PE-074	3962-01 .3962-01 .0000-000000000000000000000000000000		2000	1136 13.85			3000	HC(H) = .34 HC(T) = .16	
# / F T	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00:	230000.	. 52 1e · 04	5218 -04 1046 -04 11376 -03	9000	1840-04	107.	14.2.
MACH 5.02 5.02 5.03 7.03	2	5.282 5.282	=2	!	5000		0000	# . 7 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.331
VELOCITY 1 4300. 1 1011.	TUPPULENT TUPPULENT CONV PAD EQ	FAB C. TEMPERATURE	TIME 25.	1 9350.	1.24. E 129.	•	TURBULENT	CCNV FAD EQ	

VELOCITY	AACE	REIFT	2	6A MM A	EN THALP V	TENF	6	2		2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	38	۵-	1.000
1062.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	200 M 400 M	30.25 30.25	0000	1700	::	4004	337 237 200 100 100 100 100 100 100 100 100 100	10-00-00-00-00-00-00-00-00-00-00-00-00-0	i s	100 F		
ė	-7 ×) -	N-	222	52	1602	1000	122	200	1000 1000 1000 1000 1000 1000 1000 100		LEWIS LEWIS	90.00
NAR	.5726-2 .0000	1.798+04 40+8671	0 - 7 CO - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1.000	1.000	1.000	1.000	1.000	1000	1.000	!		000
U	7.307	Q TOT 25.2 25.2.	HC (T) = .5	726-92 H 612-02 T		798.5					1	: w =	• • • • •
	2	341.			P	N						=======================================	. 21
** ** *** ** ** ** ** ** ** ** ** ** **	-+tee-++	163000.										 	1
LOC1 17	HACH	RE/F	PRESSURE	GAMMA	EN THALPY	TENP	8 70	28		5/8	36.	•	-
•puc•	£.13	5124+0	. 73	2	_	~	72	.35	•	8 T S	= .7100	Ē	0000
107.	*	000-	i	- 1000 -	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	202	. 20 72 - 08 . 16 8 7 - 08	5 35 35 35 35 35 35 35 35 35 35 35 35 35	2 355		7574-1	£ 48	00
	3		;	~~ :	400	1 10 0	0-0500 0000	0000	50		00000	LEUIS	547
aminar Urbulent	.0000		10000 10000	1.300	1:000	1.000	1.000	000		1.000		PC1	0000
y	11.722	482.	THE THE THE THE THE THE THE THE THE THE	097-01 H 536-02 T	RECOV : 1	662.5 444.						1001	•
RA TURE	16.2 10.2	681.				1	1					=	= 31

12 %		ŧ	ENTHALPY	TENP	5	5		200		1.0000
X L = .0000 X L = .0000 X L = .0000 X L = .0000 X L = .0000	50	85	@ W11	4057	10 S	361-6	7/50	18	CHIS	
x L = .0000 CC DO 1766-01 11354	7.0		200	10	2016	- 200	3		P. PH.	00.05
1 .0000 .1354.		1.3153	P • •	1000	1020-03	1025-05 1025-05 0000		000000000000000000000000000000000000000	CV15	N. 1
	1326-02	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000	1.000	1.000 1.000 1.000 1.000	1.000 1.000 0 1.000	1.000		- Z	000
. ~~	#C[H] = .179	0-07 0-03	AECOV : 13	354.4					, <u>, , , , , , , , , , , , , , , , , , </u>	
	in the foreign of the second o	i		•					=	1.
64 1URE - 1 GE 6-F 1 - 2 - 19 33 - 5	*									•
125. 2= 117000.										
17 PACH 9E/FT	PPESSURE	GAMMA	EN THALPY	TEMP	8 ± 0	2		32.		-
22 • 0	0.7	200		md	1.63-0	121	ST ST	- 4150 - 4832-02	- E	
	136	2420 2420 2420 2420 2420 2420 2420 2420		2600	. 9463-04 . 9401-04 . 1048-03	.3214-06 .1360-05 .1372-05	A 1 1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	1320-1	22	90.06
000	- -	.316	S 0	994	1797-0 0003	25	15	200	213	244.7.2
H 2317-31	200	200	29	¥ 00	# 00 m	MFAC1	HFACZ		: 5	
500	2000	1.000	1.00.7	1.000	000	00.1	90.		7 7 7 E	000 000 000
12.451	HC(H): -233	7-01 H 2-02 T	PECOV : 11	137.6 1542.				-	1001	000. :
		-							-	15 =

ORIGIN OF POO	'AL PA R QUA	GE IS

	Para Para Para Para Para Para Para Para	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	101	oneman to co co co co co co co co co co co co co	000 000 000 000 000 000 000 000 000 00	24 4 400 Aut 4	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	MIS FIRM FILES	
100	w pon 1111	100 000 000 000 000 000 000 000 000 000	### U	00 00 00 00 00 00 00 00 00 00 00 00 00	NAM	000 000 000 000 000 000 000 000 000 00	74 4 700 74 4 700 74 400 74 400 74 700	**************************************	14 7	90.06
nn	900 31 900 31	# 00 100 100 100 100 100 100	000 >>U	00 P	00 00 00 00 00 00	000	400		,	_
000 00	35	12 00 72	#000 # # # # # # # # # # # # # # # # #	.0.0					203 967 968 861/80	6.0
		!							ָרְרָּ מכּי	000
14:55									!	i .
• • •									• !	
-										
	PRESSURE	GAPPA	EN THALPY	TEMP	G T	a R	9	31.	•	1.00
0	16.96	1.4.500		94 # 6	2387-0	- 1	E S	. 5227-02	E L	·
			7003	100 E	10mm	777	7 AU W	1-0202	4	000
٩	ن ع	10 3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	~	00 ** #*	12162-03 10000 10000		146.14	50	LEWIS	1,352
	2000.	1.000	1.000	1.000	000	00-1-00			PET PARA PET/HL	000000000000000000000000000000000000000
		120	# # # # # # # # # # # # # # # # # # #	8 7 . B					1001	•
29A2.			 	! !	•			-	1	
-000	90 00 N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000	1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 6 5 7 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C 6 5 7 2 1 1 1 1 1 2 2 2 2 3 1 1 1 1 2 2 2 3 2 3				

VELOCITY PACH 4900. 4.93 916. 4.91 916. 711	RE/FT										
9900. 493 916. 41 E. 41 E. × L=		PPESSURE	GA MM '	EN THALP Y	TEMP	Ŧ	D.	# A	30.		0000
916. 0.000 x L	. 1369.06	633.3	3204	578.	400	10 CAL	0-6	ST. 2	1917-02	ENIS :	١,
= 1 x	ЭĠ	. U.	322	561.	7.5	125-0	-65L	3 2	. 603	ALPHA :	90.00
The state of the s	00000 c c c c c c c c c c c c c c c c c	B.,	1.3413	\$78 \$20	1236.	00	. 8349-06 . 0000	CELTA :	0000	SIA	0.0
TURBULENT .CCOO	-5.778+03 -5.778+03	3294+01 •3294+01	1.000 1.000	1 .000 1 .000	0000	1.000 1.000 1.000 1.00	1.000 1.000	HF ACZ 1.000		CT CT CT CT CT CT CT CT CT CT CT CT CT C	00
A COMMON	1706.	HC(H)= .209 HC(T)= .578	1-01 H 4-02 T	14 11	77.8					E E :: 0	000
21	3349.			2	230					-	: 18
TEMPERATURE 1 CEG F1- TIME: 225. Z=	- 1229.56 99000.										
VELOCITY PACH	RE/FT	PRESSURE	GAMMA	EN THALPY	TEHP	RHO	35	~	29.	 	1.000
4.200. 4.2	55.0	4.3	200	₩	25	3477-0	3084-0	ST	4154-02		י כי
	.4735+56 -1716+06 -2268-09	1	1.44000 1.44000 1.440000 1.440000	337 (0.100) (0.100)	1255	.3477-04 .1712-03 .1852-03	• 35 1 1 - 06 • 85 1 1 - 06 • 65 5 - 06	34	643	PHA	00
	- 9 - 9	≓ !≀	n# :	r .	₩ ₩ ₩ ₩ ₩	- 50-56 22	0000	HE TA	000	LEVIS =	1.352
TURBULENT .0000	and the first	.1796-51 .000C	1.000 1.000	1:003	1 • 000 1 • 000	1.000 1.000	1.000	1.000		PCT PARA RET/ML	000000000000000000000000000000000000000
CONV 1.796 1.796 1.796 1.796		HC(H) = 195 HC(T) = .524	S-02 T	PECCV = 4 PACCV = 1	337. 942.					= 100	•
8.7.8	3613.								-		91

1							٠				
VELOCI TY	HACK	RE/FT	PPESSURE	CANKAD .	EN THALPY	TEMP	RHO	2	S/8	18	919
1 3300	3.34	32.00	6	*	4	\$	30	4		362	*1
	3 E	82 +0 32 +0	ع د	m s	~ 0	22	0000 10000		F / 2	000.	MIS
777.	946	2112+06	1400.3	· M *	302	1- (1868		3,04	4.40	ALPHA = 90.
	= 7 X	0000	9 11	1.3726	276. 276.	67C.	2371-03	90-0649	DEL +	0000	EVIS = 1
L AM I N AR TLRBULENT	.0000	.3146+03 .3146+03	.6593+00 •000C	1.000	1.000	1.000	1.000 1.000 1.000 1.000	0 1.000 0 1.000	1.0000 1.0000		CT = 0000
CONV RAN EC	36.50	9 TOT 1801. 1801.	HC(H) = .16	93-01 H 29-02 T	######################################	314.6 822.					E E = .000 DOT = .
NE T	5.326	3793.				*					11 : 101
TEMPERATURE	E-40E6-E4	88000.									
 >	MACH	RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMP	RHO	2	× ×	27.	= 1.00
. 2500.	2.55	• 5563+06	Ö	1.4000	Ú,	S. 89	0 - 4 + 6 = 6 + 6 = 6 + 6 = 6 = 6 = 6 = 6 = 6	3047	5 P.S	- 3049-02	84 661
75°-	2.95	5563+06 •2755+06 •3245+05	ת. האירי	1.3778	26.3	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.2.60 - 0.3 2.2.60 - 0.3 2.2.60 - 0.3 2.2.60 - 0.3	. 3047-06 . 6323-06	3 7 3 4		LPHA = 90.
-	į	0000	71.4	, •	÷ -	\$ 1 9	000	2000 2000 2000	HE TA		30
Laninab Terbulent	H -1662-01-	2643403 . 2643403	.000C	1.000 1.000	K2 1.0009	K3 1.000 1.000	**************************************	001-000	HFAC2 1.000-		CT 5 7
CONV RAD EQ	mm m did di mm m	1815.	HC(H) = .16	62-01 H 51-02 T	PECOV ::	264.3					10
A.E.T.	4.395	3915.									111

	* NC:	1 02 00	0-01 ALPHA = 90.00	!	PCT = 0000 PARA = 0000 PRET/ML=0000	. = .000 of = .	17 = 121		
	S/R = 27	CF /2 = .000	**		1.000				
	DM .	90-9205	5459-06	86 3 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000 1.000				
	OH &	2884-03		2885-03 3065-03 0000	1.000 1.				
	LPY TEMP	220 454	10. 412	79h- 0	1.000	220.5	• 00•		
	ENTH			. 3885 . 3865	1.000 1.000 1.000 1.000	11 H RECOV	-		
	PRESSURE 61	452.9		43	.2212+00 .0000	HC(H) = .1604-01 HC(T) = .4102-02			
	RE/FT	3452+06	3566.06	. 1541 • 05 . 2030 . 0030	2204+03 • 2204+03	0 TOT 1822. 1822.	4015.	**************************************	E= 110.
			. 5.	= 1 x	.1 604-01 .0000	.221 .221 .221	3.536	∓£MPEA&1∪ RE-1DEG- F≯	13152 11ME=
+14E = 300s	VELOCITY	0	735.	• Dx +	LAMINAR	CONV RAD EQ	1 3 C	9 TEMPERATU	TE PAXE

	TPAJECTORY (MINIATURE VERSI	RTLS-EX1 3277	779 (MINIVER)		BOOV POINT	(BP) 1100	ICASE	£	
) ;	5-1	• 000							
ر		300. 300. 300. 300.							
2	DI CALC DI CALC DIE PP WAX	000.01				-		e de de de de de de de de de de de de de	
}	HEAT TRANSFER HT PETHOD =	1.000							
)	' جد ا	000							
	LICATION SUB L 1	Bv B							
)	H FAC	1.000							
.,									1
)	SI TY HEAT	10000.00 10000.00 10000.00						me e e e e e e e e e e e e e e e e e e	
	FLONF JELD SE.	ANGLE 90.00							٠
;	NSITI			!					
	11 11 11 11 11 11 11 11 11 11 11 11 11	1 I Y UD	3000	¥88					
)		163000 133000 124000	7,000.0 7,000.0 7,600.0						† †
	00.0 00.0	1.7010 1.0000 0.7000	200. 200.	555					

	: 		:		, ,	!		i :	1	ļ				,
				'					!	; ;	ļ			
							ļ		 				i	
į														
19.500	12.000													
00 00 00 00	20005													
27	~									<u> </u>				
104000	900													
700	22	1962 ICAO ATHOSPHERE												
55	68	CAO ATH] 							
1.42 1.45 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.6	300-00	1962 II												
								6-21						
				~	-	ند.	-	~	•	•		•	•	•

VELOCITY	HU	RF /FT	PRESCUEE	GA MM A	EN THAI DV	1640	Q Q				•	
•							2		14	4		88 8
2006	20.5	. 5872+04 . 3569+04	9.074 9.074	1 26	1616.	4197	900	340 340 340 340 340 340 340 340 340 340 340	CF/2 = .000	1000	FHI - F-	- 005
1011.		6891+0	.536	1.25	1795.	4173	1010-0	1482-0	85° = 1	5-16	ALPHA :	90.00
5	* L :	0000	= 1.856	1.2403	322.	65C.	. 4032-05 . 4032-05	.7135-06 .0000	DEL *	000	7A 21	90.0
TLRBULENT	22000-020	- 1816 + 04 - 1816 + 04	.1191-01 .000C	1:000 1:000	1.630	1 + 000 00000000000000000000000000000000	1:000 1:000	I serve	HFA C.2	1 000	OS TO THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE THE TENT OF THE THE TENT OF THE THE THE THE THE THE THE THE THE THE	0,000
13 A 00 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	C. 1. 192	a 101 0.00	HC (H) = .797	0-03 H	RECOV : 18	115.8					E E : :	8 •
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	000	• • • • • • • • • • • • • • • • • • •		ļ		Ú)				-	<u> </u>	
TIME: 25.	7 = 2	230000.									<u> </u>	
VELOCITY	FACH	RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMP	8 HO	D.E.	/R = 39.	22	ļ	ਂ ਼
9350.	5.60	Ç	1134	1 • 4 000	50.0	50 P	1674-0	3000-0	110	10-01		0000
1 1324. E 1254.	S S S S S S S S S S S S S S S S S S S	5218+04 1046+04 1376+03	,	1.1287	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 200 200 200 200 200 200 200 200 200	11674-106	300000 30000 11501 1051	AU W = .302 ELTA = .000	20-05	PHA T	90.06
: 4	K	4	00	1.2155 R1	2	7 7	C0 00 0000	0000 • 0000 • HEAT	E TA = .000 A F.7		ENIS	P) •
L AMINAR- TUPBULENT	-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	1840+04 1840+04	•0000°	1.000	1.0.0	1.000 0.000	1.000 1.000	1.000	999	4000	140A 2.0	000
CONV FAD EC	MEIMO MMM BBB BBB BBB BBB BBB BBB BBB BBB B		HC(H)= .9539	9-03 H 6-03 T	RECOV = 18 RECOV = 4	139.6 279. 912.					- 10	. •
. 10	7	39.										

*	7.	
070	"	
1077. 1468-1668-1668-1668-1668-1668-1668-1668-	1	0000
.000 .274 .000 .000		1.000 1.
. 500. 8. 5	80	17.
	Ľ	מת בפי בי
	1	
TEMP RHO		ENTHALPY
272072	i	199
4405. 1741-	1	- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0000 ·	3	* • • nco
000 1 000	E '• •	1.000 1.
	(A) 34 (B)	RECOV = 1662 RECOV = 4444 RAD ED = 126
	'	

	-											
VELOCITY	MACH	RE/FT	PRESSUPE	GAMMA	ENTHALPY	TEME	8 40	₹		M		1.00
1 2600	7.53	4	4	1.46.606	ď	•	3.46-5	2.4.3		.7100		0000
	-	3877+0	9.	96	# C	1057	5344-0	291	ČF / 2	0000	EMIS	
r 1129.	72.	- 38 98 + C5	1 M 1	36	-0-1	2	5016-0	200 200 200	3	.258	LPMA	0
134	×	00000	1,,	1.3428	603	1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8224-06	064-74-	0000	ETA	00.06
- 1	*	f		اب الا	,		0000	00000	4 1	000	05	1.352 349.
LAMINAR TCPBULENT	•1 623-91 •0c03	•1354+04 •1354+04	.2982+61 .000c	1.000	1.000	1:000	1.000 1.00	000	1.000	! !	į .	930
										!	F 7 / F .	0000
CON COR	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	232	HC(H) = .318	54-02 H	RECOV = 1	354.4					100	
RET Ch	202	#0.00 #0.00				*						
TEMPERATURE	F 405.6 E.A.	1166 10										.
521 = 34I1 -24		11 7000.										1 -
VELOCITY	FACH	REVET	PPESSURE	GAMMA	EN THALPY	TEMP	OHA	i i	9/			6
. 720C.	30°L	22+9	0	8	£ 0.1	-31	483-0	214-0	2	7100	-	
151		2017	20.	90.	601	-31	0-8-0	372-0	1,	0007	HIS-	••
C C		o i	727.2 P= 1.864	1.2.09	11111	3562	. 1048-03	1360-05	TAU	.2224-15 .0000	PHA	96
•	•	Š.		298		194-	000		2	200	LENIS	1.352
TAMINAB	2112-01	11.38+04	-18+484-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	¥ 1000	7.7	0000	K HFAC	HFAC1	HFAC2 1.066		; : :	
		101	3	•			000	0 1.00	0		PARA RET/ML)
CONV RADO EQ	222	307	FC(4) = .393	7-02 H 8-02 T	RECCV = 1	137.6 3562. 1174.					ł	! •
	0 () 1	416.				!						
TEMPE CA TIIDE	1 1 1 1 1 1 1										-	70

VELOCITY	PACH	RE /FT	PRESSURE	GAMMA	ENTHALPY	TEMP	0 4 8	2	٣.	32.		1.000
- 005 y		#265 · D		1	0.	101	66-0	0-63	2.5	NO-8456	T A	3
1000	£.45	90458	7 t c				2066-04	3145-06	7	0000		
וַכ		1775-09	817.6	اداد	- to (3015	1000	267=0	DEC 14-	000	EETA-	-00.00
* *	×		-	 	NO.	7 9 9 -	0-70	000	DEL .	200	EVIS	1,351
LAMINAR	.2485-01 .0000	. 94 37 +03 . 94 37 +03	.2315.01 .0000	1.000	1.000	0000	1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.000 1.000 1.000	1.000 1.000 1.000		- 1	_ 00
RED ED	2.316 2.316	0 707 373.	HC (H) = .*11	25-02 H	PECCV =	543.7				!	E E	000
NE 4	3.852	521:				1					-	19
-TEMPERATURE	E-teef-F-	1087.22										1 !
11ME= 175.	=2	107000.								:		
VFLOCITY	PACH	RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMF	RHO	DN.	æ.	. E	İ	1.00
.0012 g	5.72	0 1 9	6.9		0.0	3	2387-0	3120-0	2 L	- 7100 - 8896-03		00.
2065	5. 72	4361+76 4361+76 1217+76	16.96	0000	728	2323	.2367-04 .1375-03	3120-05 3120-06 1118-05	140 K	174.	FIS .	6 00
1) <i>i</i>	60 UU	4	323	9.00	46.0 46.0 46.0	3033-0	0-6000			EVIS	1.3
LAMINAR	2316-01 • 0000	TT	-1567+01- -0000	K1 1.000 1.000	1.000	K3 1.000	1.000 1.0	1.000 1.000 1.000	HFAC 1.00		OS ABA ET/FL	000
CONV FAD E.	1.566	422. 422.	HC(H): .38	95-62 H 83-62 T	PECO	747.8						•
	2.913	657.				:	***************************************				=======================================	
TEMPERATURE	- CE 6 - C	60								-	1	: :

VE LOCI TY	HOHE	Rt /F I	PRESSURE	GA NMA	EKTHALPY	LEME	012	2	2/0 2/0	200	۵.	
004.	26.0	1360.06	19.41	E ≈	70	1795	2755-0	0-1166:	\$ \$ CF /2	8236-03	ENIS	
e 516.	r: — • • •	. 1362 +06	• 🗥	300	819	1737	2753-0 1472-0	.9759-0	140	.137	ALP	90
<u>.</u> 11 14 35 ★	א ר יפני	2000 2000 2000 2000	5	1.3500	305.		.2945-03 .0000	6910-0 0000	THE		LENIS HOS	=90.00 =
LAMINAR	*2112-01 *0000*	5778+03 • 5778+03	9742+50 •9742+50 •0005	1.000 1.000	1.000	# 1 000 000 000	1.000 1.00	000 000 000 000	1 HFAC2 3 1.000 0 1.000			000
CON V FAD E C	. 974 . 974	0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ±	HC(H)= .35 HC(T)= .96	3575-02 H 9617-03 T	RECOV ::	577.8					, E	•
1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.066	676.			FA0 -E	- 98					=	
TEMPERATURE	-1556-	786.04										
VELOCITY	FAC	RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMF	0 H G	22	8/8	29.	•	1.0
.005 p	4.24	.4735+06	24.35	_	•	5-	177-0	.308	* L	= .7100 = .7112-03	Ĭ.	
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.24	- 1688-06 - 4735-06 - 1716-06	5411. 5412. 5412. 5412. 5412.	1.4000	000010 # 24	1552	.1852-03 .3477-04 .1712-03	. 3084-06 . 3084-06 . 8511-06		- 1101-1		0.00
) (K	0000	-p=-1-185		. . .	394-	P 000	000	THETA	00000	LEVIS	
TURBULENT	10-1441	£0.00.5 % •	00.36.00. 0000.	1.000	1.050	1:000 1:000 1:000	1.000 1.	1-000 1-000	1 HFACZ 0 1.000) UKWL	000
CONV RAD EC	999	474	HC(H): .33	41-02 H 28-03 T	222 200 200 200 000 111111	#50.0 1337.					. 0	
20.	1.50%	715.								 	11	- 61
TEMPERA TURI	F (DEG F)	= 645,r3										

VEL	HACK	RE / FT	PPESSURE	GAMMA	EN THALPY	TENP	9		S/R = 2	100		
300		Ġ () (20.50 20.00	36.00	450	622.	O-00	7038-06	12 ::	= 2	SIE	
111	7 4 6	2112 - 06	396.3	299	302	77.5	9 60		11 1	8	ALPHA	90.06
	= 1 x	0000	F= 1.754	DE P	THE STATE OF THE S	100 C		0000			ETA :: EVIS DS	0.04 8.4
LAMINAR TLPBULENT	.1 706-01 .0000	3146+03		1.0000	1.000	0000	168 1.000 1.000 1.000	1.0000	1.000 1.000 1.000	1	1/2/	•000
00 M	22.00	0 101 4455.	HC(H) = .2857	100 200	8ECOV : 3	11 to 6						•
100	000.	746.		i	*	i					=	101 =
1EMMEGATUME 4DEG.	1.9.9307	2 447.50										
11ME= 275.	:2 :	8 8000°										
VFLOCITY	PACE	RE/F1	PPESSURE	GA MM A	EN THALPY	TENP	8 +0	22	~		•	1.00
1 2500.	2.55	Od	·	1-4000	-0 =	-58.	0-146	T # 0	\$1	054-03	Z Z	•
0 75C.	,	100 000 000 000 000 000 000 000 000 000	MM	11.4000	1 (4/4- 90 N-40	10 (A) 11 (A) 12	- 100 mm mm mm mm mm mm mm mm mm mm mm mm m	6153-06 6153-06	A	500	LPHA ETA	90.06
	j	0000	•	382	0	197	0000	0000	1 4 F 3	38	LEVIS	1.351
LAHIMAB	H 44.73-01	HE 43 403	185648	1 N 1		K3	HFAC HFAC	NFAC1	HFAC2		, 1 –	,
TERUIENT	8000	. 2643+03	3 6 9 1 1	1.000	000.	9	00 1.0	1.00	0		PARA BET/ML RE E	0000
PAN E	1117.0.0 11.20.00 11.20.00 11.20.00 11.20.00 11.20.00 11.20.00	33	HC(H) = .275	30-03 T	PECCV = 2 PECOV = 2 PAD EC=	64.3 626. 3£3.					-	. •
0	127	766.									=	

362.69

Ch TEMPERATURE COEG F1 =

C P = 1.643 1.3051 2.20 2.45	C P= 1.643 1.3953 220. 454. 2864-03 5935-06 5772 3000 EMIS = .8500 6 345. 2864-03 5935-06 5774 8 3000 EMIS = .8500 6 345. 2864-03 5955-06 5474 8 3000 EMIS = .8500 6 345. 2865-03 5855-06 5474 8 3000 EMIS = .8500 6 345. 2865-03 5865	RE/FT	PRESSURE	GAMMA	ENTHALPY	TERF	O I E	2	8/8 8/8	27.24	
C P = 1.643	C P = 1.643		455.2 5.45.2 5.45.2	3853	220		-2864-03 -7785-04	- 30 36 - CO	1	10000	4 11
C3 .1165.00 1.000 .162 1.000 1.000 1.000 1.000 1.000 1.000 1.000 PCT = .000 P	C3 .1165.00 1.000 .162 1.000 1.000 1.000 1.000 1.000 1.000 1.000 PC7 = .000 PC7 PC7 = .000 PC7 PC7 PC7 PC7 PC7 PC7 PC7 PC7 PC7 PC7			1.3924	176	777	. 26 % 6 - 63 . 35 9 6 - 03 . 00 00	0.4440 0.4440 0.4440	TAU OFF THE TA	000000000000000000000000000000000000000	
HC(H)= .2611-02 H RECOV = 220.5 HC(H)= .6463-03 T RECOV = 454. TOOT = 11 = 1	HC(H) = .2611-02 H RECOV = 220.5 HC(H) = .6463-03 T RECOV = 454. TDOT = 1	1 * *	1	1.0000	1,000	00	~~		200	;	0000
17 : 1	17 : 1	1	HC (H) =	I-	RECOV ::	226.5					
		1		+	*** C4*	- 13:		,			-

TRAJECTORY (FTLS-EX) 32770 MINIATURE VERSION OF JATO (MI	INTVERI	BORY POINT	(Bp) 1+00	ICASE 4	
· · · · · · · · · · · · · · · · · · ·					
25.00 2 300.00 12 12 10 10 10					inder english companies co
01 CALC 2000					
THOD I					
N SUP L 1000					
ATION FACTO					
FAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					edden tendemine, or a service separate to the service separate tendents.
MATERIAL NC. : .000 WATE NC. : .000 THICKES IN050 ENISSIVITY: .0500 DENSITY : 15000.000 SP. HEAT : 10000.000		•			
FLOVETELO FLAG ANGLE SCO					
SITION					
	ON CRITTOTON (ALPHA) E FE FLIA/ML (ALPHA) ETAETN THESE LIMITS	X RE L EASEC	ON AN RE THETATAL CALPHAN	HA)	
FAJECTORY ALTITUBE - 25.00 - 2 80.000 - 7 80	> . F02.04F				

962-3C40- A 1 MG5 FHE PE 5-30 ī

VE LOCITY	FACH RE/F	RE/FT	PRESSURE	GA MM A	EN THALPY	TENP	A HO	£	œ	38	œ۷	. 00 m
-1 -0.00°	- 6.82	1 2	7037-0	130	616	382	552-	1518-0	S# 27 ==	2357-02	ENIS	1
5124.	5.62	ė. M	5.697-01	200	900	0 4 i	213-	1386-0	- 1	511	ALPHA	51.23
	×	.1337+06 C .4926+04	51:	1.2869	1358 265 822	2632	.3242-05 .3242-05 .1159-05	1186-0		.033	300	
LAMINAR TLRRULENT	.1610-03 .3568-03	. 1755 + 04	.6635+00 .5895+00	1 • 000 1 • 000	2.550 2.550 1.030	11.00 000 000 000 1000	2.550 1.000 1.000	0000 1.0000 0000 1.000	1.000 1.000 1.000		PCT PARA RE1/HL	232.8 58.77
NO NY NA NY NY NY NY NY NY NY NY NY NY NY NY NY	OO:	0 TOT	HC(H) = .410 HC(T) = .175	57-03 H	-	735.7 4065.					. 8,	000
NET C.	714	••				•					11	~
TEMPERATURE	£-4666-F-F	645.76										
11ME= 25.	. 2=	230000.									i	1
VELOCITY	FACH	REFFT	PRESSURE	GAMMA	ENTHALPY	TEMP	OH &	2	~	37.	a -	000
9 256.	69.5	5218+0	113	0	0.1	1 1	1674-0	3000	213	2360-02	PHI	•
5130. C 5130. F 5063.	5.67 1.76 1.74	\$218 +04 \$218 +04 \$50 +05 \$4	1134 9.126 9.498	1.1596	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1000 E	.1674-00 .1674-06 .1252-05		AU WELTA	6295-0	FPH	\$1.2 \$7.5
!	#	2023+0 6859+0	1	.379 .263	4 C	285	.1670-05	1232	- 4 ! - 4 !	- 167 - 026	LENIS	000
LAMINAR	H 550 7-03	1778+04	90 -7436-00 -8674-00	1.000 1.000	2 K2 2 5550 1 0000	1.000 · · · · · · · · · · · · · · · · · ·	1.000 1.0	0001:000-000	1.000 1.000		PCT PAPA PAPA RET/HL	232.8 271.71
CONV RAD E C	744	17:	HC(H) = .503	31-03 50-03	RECOVE 1	762.8 4164.					. 8	00.
ک نیا	867	20.									11	1 :
	ינ ייני ני	704.87										

3	RE/FT	PPESSURE	GA MM A	EN THALPY	TEHP	8 10	2	20		36.	œ-	000
20 0	29 20 • 5	119.0	B 3	1798.	4565	8000	154		/2	1452-02	EHIS	٠:
9	1239+0	9	_	1306	376	526		۰۰۰	11	101	4	51.2
	z .5436.06 C	7 - 1 6 = 1	1.1706	1 51 7 320 907	2678- 2678-	. 1204-04 . 4705-05	5 -1416-0 4 -7117-0 5 -1238-0	10 AN	EL 7A ::	2975 1024 0162	LEWIS HOS	22.85
00	3 .1.726 .0.6 2 .1.741 .04	•1172+01 •1958+01	1.000	2 * 5 5 5 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	2.550 1.	.000 .000 1.00	100 100	000) U= W	:232.
200	9 TOT 8	HC(H) = .833	38-03 H	### >>	726.2							
0000	- • • - • • - • •		I		dr:						١.	21
-1-9-33	845											1
	ONS	*****										
- Z HACH	RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMP	RHO	3	 	1	35	α.	000
	1020+0	5.0 to	BNE	577	4567	3972	-1550	200	/2	8036-03- 6395-03	PHI :	1.23 · · · · · · · · · · · · · · · · · · ·
×5.59	-4059+05 -4128+05 -1780+07 -6171+05	986	1.1951	1235 1235 362	3752	1234-04	1407	S TA		1725+00 1629 00000	ETA	58.87
882-0 59-3	3 - 1612-04 2 - 1625-04	.1875+01 .4886+01	#00		1.0000	200	000 000 1	¥		3		1 100
270	0 TOT 73.	HC(H) = .150 HC(T) = .568	03-02 H 85-03 T	RECOV = 16	612.1						 0	110
200			Ī	*0 C 0=	60 0) 	

į

٠

## 12	#476	VELOCITY	MACH	REIFT	PPESSURE	GA MM A	ENTHALPY	TEMP	В НО	nw.	S/8	35		000
## 1	## 1		1	ф		- 27		-27.	20-12-05	559	51	-1568-	E	1.23
# # # # # # # # # # # # # # # # # # #	# \$ 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	01	5.14	1177+0	00°	-13	mn	25	4521-04	540	-	.1248-	NIS	•
### 1 190	Factor F	4678	1.58	0+6994	6.10	_	- 40	9	1402-04	40	TAUL	.3848+0	LPHA	51.2
Figure F	The column Column		٠ ډ	+731+55-			uh -	٠. د د	1440-04	60	DELTA	9529	E TA	-58.9
FEATURE 106 11 1 1000 1	Formation Form	•		7107+05	742-7	าณ	- 60	900	1878-04	223-	THE TA	300	SINE	••
Figure F	FOR THE TOTAL STATES AND THE STATES		3	JH	30	-	42	K 7	SN	HEAC	7		2)
FOURTH PARTY FACTOR 100 101 101 100 100 100 100 100 100 10	FEATURE 106 F.1 = 1304.62 PRECOV = 1405.6 PR	AMINAR Urbulen	6 30 1 - 0 4 34 6 - 0	.1578+C .1611+D	1.46.0+0 5.08.6+0	900	55	00	550 1.	1.00	000		APA ET/FL	3454 3454 253 203 203 203 203 203 203 203 203 203 20
E GRATURE LOEG F. 1 1304.62 S.403 S	Standar Stan	> w	0 3.920 3.920	577	(H) = .336	3-02 H 8-02 T	EC 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	325					: t : 001	•0*02•
TOTAL TOTAL TOTAL TOTAL TOTAL TEMP RHO NU SAR TOTAL TO	TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO MU SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO SYR 30.76 R 31270 TOUTY FACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 31270 TOUTY FACH RHO SYR 30.76 R 30.16 R 30.16 R 31270 TOUTY FACH RHO SYR 30.76 R 30.16 R	7 F T	2000	CON		i	2	₹.						' m
Coling Face	TOUR TO THE FOR THE FOR THE FOR THE FORM THE FOR	TEMPERATUR	9.30+	= 1304										
Total Tota	Total Tota	ME: 10	= 2 -	133000.										
7900. 7.57 .1685.06 5.578 1.4C0C 110967168-05 .3361-06 57 = .7675-03 EMIS- 7435. 3.79 .2895.06 81.00 10.00 1	7900. 7.57 .1685.06 5.578 1.9400C 1109. —67168-05 .3361-06 57 = .5644-03 PHI = 1.273 1.253 1.254 1.2544-03 PHI = 1.25455 1.25455 1.25455 1.25455 1.25455 1.25455 1.25455 1.25455 1.25455 1.25455 1.25455 1		4	REFFT	ESSUR	I	NTHALP	w		D.W.		30.7	· æ.	000
7.035. 3.79 - 1685.06 5.578 1.4000 10567168-05 -3361-06 IAU W = .1264.01 ALPHA 7.015. 3.79 - 2895.06 81.00 1.3517 366 1025 - 3375-04 7716-06 IELTA = .0564.01 ALPHA 7.015. 3.75 - 04 7716-06 BELTA = .0564.01 ALPHA 7.015. 3.75 - 04 7716-06 BELTA = .0569 BETA 7.016. 3.75 - 04 7716-06 BELTA = .0569 BETA 7.016. 3.75 - 04 7716-06 BELTA = .0569 BETA 7.016. 3.75 - 04 7716-06 BELTA = .0564 BETA 7.016. 3.75 - 04 7716-06 BELTA = .0564 BETA 7.016. 3.75 - 04 7716-06 BELTA = .0564 BETA 7.016. 3.75 - 04 7716-06 BELTA = .0564 BETA 7.016. 3.75 - 04 701 BETA 7.016. 3.75 - 05 70 8 8 8 7 8 8 7 8 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 7 8 8	7.557 - 1685-06 5.578	7900	.57	00	578	024	50	1 %	7168-0	361-	X - L	0-7495	T	43.13
INAR 7555-03 1237-04 5664-01 1.3146 615. 19322109-04 1025-05 THETA = .0544 LEWIS SULENT .7523-02 1237-04 .7691-09 1.000 1.000 1.000 1.000 1.000 1.000 PARA FE C C C C C C C C C C C C C C C C C C C	NATE 1443.06	7435		, 10000	5.578 81.00	3550	090	9017	31768-10 31768-10 31769-0	7.00	TAUK	1264+0 -5809	1 I	24.23
NATE 1235-03 1207-04 1205 1	HARE 7555-03 1237-04 .764-01 1.300 1.000 1	*	ļ	90	•	\$ 	\$ V)	42 62 64 64	2109-0	1250	THE TA	10.0	SIS	.
FG 5.461 212. HC(H)= .7291-02 H RECOV = 1235.5 FG 5.461 212. HC(T)= .2390-02 T RECOV = 3752. 5.461 212. HC(T)= .2390-02 T RECOV = 1459.	V 5.461 212. HC(H) = .7291-02 H RECOV = 1235.5 Eq. 5.461 212. HC(T) = .2390-32 T RECOV = 3552. 5.461 212. HC(T) = .2390-32 T RAG EG = 1459. 9.00 R 301.	AMINAG	757	HR - 1203	+16-17 1995	200	24. 00:	200	# # # Z 1 + 0 + 0 0 0 1 + 0	1.000 1.000	. 066 . 066		7. H.	00 - C
-> <pre>-><pre>-></pre></pre>	9.00 301.	س د ا	2000	212	(H) = .72 (T) = .23	-02 H -02 T	EC0V	35.					D01	- 205
	9-608 SOI-	E I	000	0		- 1	AU 6.6-	70			İ		1,	ŧ

TEMPERATURE (DEG F) = 1458.90

VE LOCI TY	FACH	REZET	FRESSUPE	GA MM A	EN THALPY	TEMP	0 H 0	2	~~	29.		000
1 1600.	*		3167.05	248	500	# 05C	52	. 146	SF /2 =	6484-03	ENIS	
		4		375	961	-25.	55	.327	TAU	. 136	T A	= 19.23
038	= 1 x x r =	.2009+06 .1517+06	n-53 - 234	1.3337	5.47	1433	2477-04	. 9809-0	THETA	0000 0000 0000 0000 0000	ETA	3.55. 0. 0.
LAMINAR	.7405-03 .7116-02	.1110+04 .1140+04	.5593+CC .5185+D1	1 • 000 1 • 000 1 • 000	1:192 1:000	1.000 0.000 0.000	1.000 1.0	0000 1:000	1.000 1.000 0.000		PARA PARA RET/PL	1.000 1.1640+08 1502-5
ACON AND EC	55.5 1.85 1.85 1.85 1.85 1.85 1.85 1.85	2 101 266.	HC(H) = .781	8-02 H	1 ::	139.7 3512.					100	000
2 H 4 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5	9.916	391:			- P-1 OK	<u> </u>					11	S
TIME = 125.		117000.										
VELOCITY T 7200	PACH 2.00	/FT	PES	GANA	9 5	H F	P HO	MU 1321	S/R PH ST		-	0000 - 43.13
77.8	0.33	3322+06 3322+06 5960+06 5996+06	10.92 78.15 84.00	1.4000 1.4000 1.3853	2221	SUNDA SUNDA SUNDA	1483-04 1483-04 14975-04 5146-04	3214-06 3214-06 5639-06 5787-06	TAU W	599 140 525	HIS- LPHA ETA	20.
		04+0 04+0 04-10	1	327 327	524	609 1009	*25642-04 *2368-C4	886	THE TA	.065	30	, *••
TURBULENT	. 8413-02	≠ −	10+776.	1.000	1.000	1.0000	1.000	000-1-000	0000-1		PET PARA RET/HL RE E	1714+08 590-6 2590-6
CON V FAN E C	# # # # # # # # # # # # # # # # # # #	341.	HC(H) = .841 HC(T) = .256	3-02 8-02 1	PECOV = 11 RECOV = 11	028.7 3238. 1391.					100	00•
Cr	8.655	523.						-			11	= 51

1.23 1.23 1.23 1.8500 43.13 1.23 1.8300 PCT = 1.000 PARA = 1546+08 RET/ML=702-2 -RE E = 5298+08 0000 17.23 27.00 ALPHA = BETATE ** ** ** ŧi LEWIS LENIS MOS TOOL 26.31 2.7100 2.7900-03 7368-03 . 1462+01 . 5004 . 0625 .1346+D1 .4984 .0623 .0485 TAU DELL TA TAU V DEL TA THE TA 1.000 HFAC2 1-000 1-000 SYR ST TTZ 1.0000 1.0000 1.0000 3120-06 3120-06 5199-06 5227-06 8230-06 1.000 1.000 1.000 1.000 .28887-02 .28887-02 .2387-04 .7318-04 .87518-04 1.104 1:000 3015 364. 364. 1347 1347 105 1.000 854.9 2736. 681.6 2162. 1172. 0400 BW8 EN THALPY ENTHALPY 1.104 RECOV = RECOV = K2 1:192 1:000 1.300 I-1.4000 1.4000 1.4000 1.3992 1.3887 1.3381 GA MMA .9721-02 1036-01 .37994CD 2455+00 -2455+00 16.96 16.96 100.7 109.0 P= -237 PRESSURE PRESSURE HC (H) H HC (H) H .8327+03 6616.03 131355 539 452. 736. 930. RE/FT RE/FT -- 110000 107000 4.4.8 4.36 X L= .7 E84-03 1036-01 1050 200 × HACH 5.72 2.871 2.871 2.671 MACH 9 30 1 TEMPERA TURE 11mc - 150 TIME = 175. LAMINAR Terfulent LAMINAR---6114. 6C87. 5256. VELOCITY 5 700. 0059 6-35

VELOCITY	1041	REZET	PRESSURE	GA MMA	EN THALPY	TEMP	7 10	2		7.94		000
1 4500	4.93	4350.006	10.01	3,04	ď	ų,	- 4	- 1		7100		43.13
	F 0 - 3	100	245	P PO 1	بعور	5	-9661	:	CF /2 =	. 6673-03	ENIS	į
- 0674 - 0	no-i	200	77.10	* ***	2	77	7772-	==	3	110	LPHA	20.2
	≟l x	3270-08 C	4	1.3542	356	983	4317-04	7578-06		5012	<u> </u>	25.
	*	•		~ i	347	950	40-01	.7469	HE TA	8 €	LEUIS ::	8.
LAMINAR Turbulent	.7439-03	. 51 AD +03 . 53 GO +03	.1494+00 .175C+61	1.000	1.236	1.000	1.236 1.00	1.000	000		_ < >	1103+08
CONV FAD EC	1.750 1.750	0 707 598.	HC(H)= 1004 HC(T)= 2720	14-01 H	RECOV =	530.0	1					327
NE T CE	5.319	1087.	. 1		40 E 0	1						
TEMPESATURE	1 3 3 30 1 3	003 68						;				•
TIME: 225		99000.										
VELOCITY	HYCH	RE/FT	PPESSURE	GAMMA	EN THALPY	TEMP	RHO	2	<u>«</u>	-		• 000
I 4200.	4.24	· 4735+06		05	800	52	3477-	80	2 L	.7100 .8777-03	75.	43.13
U 3822. E 3793.	4.24 3.64 2.97	4735+06 1487+06 7879+06		1.4000	15.88	202.	3477-04 *3477-04 •8795-04	00000000000000000000000000000000000000	7 7 7	6984-0 9554+0	MIS-	20.7
	·\	3398468 6 3004+06	263	368	295	145	5088- 5361-	900	THE TA	0622	EVIS	
SANT MA	H 0-60.6	HE	200	¥,	2,5	P.(HFA	HFAC	-		·~	•
TURBULENT	1019-01	3 ,	1057+01	1.000	1.000	1.000	1.000 1.00	00 I 000	000-1		PANA PANA RET/HL	11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 -
CON V FAD E L	1.05.1 1.05.7 7.05.1	÷ 100 100	HC(H)= .101 HC(T)= .263	9-01 H 6-02 T	PECOV ::	415.5 1212. 812.					16	8.
-	4.235	1208.					! !	!			-	;

0 0		• 732 • 0¢ • 20¢2 • 0¢	1720.	COM.	315.	822	7839	089	SF/2	. 7533-03	FRIS	
D 3145.	2-67	904 90 90	1 m	397	1,0	1 0 1 1 1	4398- 6304-	C67- B69-	3	•620	ALPHA :	-
^		2964 2964 2880	247	1.3799	228.	1	. 5540-04	.6011-0 .5757-0	# 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ETA — EVIS 05	-27.0 0.0
LAMINAP	.5584-03 .8388-02	.2678+03 .2932+03	.307t-01 .4135-00	1 .000 1 .000	1.170 1.000	1.060 1.000	1.000 1.0	1.000 1.000	1.000 1.000		PCT PARA RET/PL	5449
CONV RAD EQ	33 (0 TOT 651. 651.	HC(H)= .6381	8-02 H 5-02 T	11.11	293.2					E E	286
7 4 C	2.450	1292.			2	*						101 =
TEMPERATURE 1DE	AE + 10E G F +	545-63										; ;
-37	5. 2=	88030.										
VELOCITY	HACH	RE /FT	PRESSURE	GAMMA	ENTHALPY	TEMP	RHO	P.	a/	26.	e	000
*0052 Ĭ	2.95	5563+0	P.33	CJ .	4	S.	5844-	3047-	Z	= .9291-03	H	1.23
2736. E 2717.	S # C	. 5563+06 . 6863+06 . 7915+06	 	1.4400 1.4900 1.4900 1.4000 1.4000	96	MAN MAN		3528-06 3528-06 3528-06	F / 2 -	7393-0 5684+0		25.9
		* 3244+0		390	2¢	36 35 36	5706- 6243-	5562- 5228-	EL :: 0 - HE TA	90	LEVIS	· •c
TLRBULENT	# 5 76 7-03	24	.2605+00	1.000 1.000	1.000 1.000	1 0000 1 0000 1 0000	1:000 m:0	10001:00001:00001:00001:00001:0000	HFACZ 1:0000 1:0000		22	
DANON CAN	.261 .261 .261	660.	HC(H) = .846 HC(T) = .216	6-02 H	RECOV :	246.7 557. 436.					100	000•
CL TEMPERATURE	ł	1350.									11	111

ORIGINAL PAGE IS

	43.13	1.23	13.23	27.	0	. 255 1756	5	000•	121	1			
		15 =	PHA :	!	HOS	T/PL	: 	. TO	**				
•	E	T E		t	15	7 4 A	7	1001	11				
1	7100	CF/2 = .7730-03	85. 11 3	4972		1.000 1.000							
Ī	2	5636-06	3307-06	5063-06		1.000							
9				6571-04		0.0							
1000			-15.	32.7		0000		207.1	3¢ r•				
FRITALION		220	106.	105	• .	1.000		RECOV =	P.				
A HM A		1.3653	1 3994	1.3911		1.000		.8344-02 H	-				
POFCCHEF		45.45 4.4.4 7.7.79	76.11	68.77 P= .146		.1547+69		HC(#)= .83					
DF/F1		36.52.06	- 7224 +C6	3403+06 3403+08 C		.2037+03 .2071+03	101 0	665.	1398.	326.76	92.		
HACH				=7 K		. 5513-03	U	.155 .155	1.728	E-10E6-F7	1518. TIMES		
VELOCITY			£ 2296.	# Z36Z #		LAMINAA Tureulent		CONV RAD EQ	180 180	9- 1thPEARTURE 10E6- 8-	CC TANT		
	1									1			

				!			
TIMING Ti							
12 012 113	300000000000000000000000000000000000000						
TY DY CALC DIEMP MAK							
HEAT TRANSFER	200						
SUR L SUB T HI	1 C00 2 1 C00 2 1 230						
10 A 10	FACTORS						4
H FAC	- I.000						
MATE NO. THICKNESS EMISSIVIT							
DENSITY SP. HEAT	100001						
FLOUFIELD SE.	ANGLE • UJ						
FRANSITION OPTION							
æ	LAMINAP RELOW AN TURFULENT FBOVE TRANSITIONAL BETW	RE THETA / ML RE LHESE LI	(ALPHA) HTTS 2.C X	RE L BASED	ON AN RE THETA/ML LALPHAD	PHAI	
TPAJECTORY TIME 25.00	AL TITUDE 240000.	VELOCITY 9300.C	ALPHA 50.000				
75.00 75.00	62000	200 800					

! 1962 1CAO RINOSPHERE 150000 150000 150000 150000 150000 150000 150000 150000 150000 6-40 3 3)))))) j

		24 080c).										
VELOCI TY	FACH	RE /FT	PRESSURE	GA PHA	EN THAL PY	TEMP	01	D.	~	W.C		000
1 • 300.	+. 82	356940	7057±CT"	7-	02	300	1098-0	663		1825-02	I HA	1.23
- 2	5.82 1.78	* * * * 00 *	C37-C1		-O-L	040 ±	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- C- C- C- C- C- C- C- C- C- C- C- C- C-	7	76.11		06.4.
534	7	100.001	6.156	163	- 6)		0-0458	390	DECTA	825	DE TA	57:36
4*	' ' '	40 5 B + D + D + D + D + D + D + D + D + D +	1.561	265 265	238. 822.	2632.	3641	.1186-05	100 146 14 ::	.0537	•	0
	H .	44.	100	- 20	X	200	4	MFA	Ī		50	•
TUPBULENT	• 3 £21-03	1755+04	. 54.9 . 54.9 . 54.9 . 54.9	000	1.00c.	1.000	1.0001	0000	000		PCT PAPA RCT/ML	= 0000 =232.8 =95.39
2	5,					,					-	249
56	100 100 100 100 100 100 100 100 100 100	• •	HC(T) = .106	20 m H	PECOV II	739.7 4065.					1001	000•
2 4 4 5 4 5 4 5 4 5 4 5 6 4 6 6 4 6 6 6 6		ů.		1	2	\$ 2						 -
- TEMPERATURE	r - 10EG + 1	524.55									.	
52 = Juli 1	=2	230000.										
VELOCITY		REVET	PRESSURE	GAMMA	ENTHALPY	TEMF	0 H G	3	=	37.		000
1 9350.	3.60	8 +0	1134	00 4	6	6.5	1674-0	0-000	2 to	1470-0		60
		22.40 18.40 18.40	7.23	1004	\$ Q	44	5297-0	532-0	12	117	H15-	•
5130. F 5063.	22	# 5 4 0 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9.126 9.498	1.1596	1314	3707.	+1252-05 +1298-05	1399-05	TAU W =	. 389	ALPHA :	51.53
	# # # # # # # # # # # # # # # # # # #	05.40		.268	51.85 61.87 61.81	900	5326-0 1692-0	139-0 223-0	<u> </u>	2310	: 5	0.
1	I	J.	S	7	Σ.	×	K FFA	HFAC	HF AC2		s	Ġ
TERBULENT	-146-07 -5276-03	1764-04	.8051+00	1.000	1.000	1:000	1.000 1.00	1.000	0000		PARA PARA RET/ML	
7400	1 4										.	373
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	10.	HC(1) = 131	MM 00- 00-	# # # # # # # # # # # # # # # # # # #	762.8 4164. 578.					1001	• 000
ءِ ج		1 2										1 1

The second secon

														(
	WELDCITY	MACH	REIFT	PRESSURE	GAMMA	EN THALP	4 4ERF	8	2		= u98	Wr.	۵.	0000
	1 9 200	894	-1333+05	1	009**	¢		-466	433	9-0-8		6977	Ħ	1.4
			2900+34	· · · ·	0000	400	# 56 R	-625	.154	100	~	. 714	EHIS	ı
	# 95 m	0	1239+05	26.03	1709	9	TEC M	526-		20-20-20-20-20-20-20-20-20-20-20-20-20-2	3	.625	ALPHA	51.23
1		"	1016-07 C	} ~	1.2724	4000 4000	2827	1349-0	05 .122	7-09-1-09-1-09-1-09-1-09-1-09-1-09-1-09-	1 T JHL	1400	בר א הריבו	7. 0.
]		X	74		3	ď	- 1		TAC.	4	5		۰ ح	ے '
	LAWINAR	.2400-03 .1261-02	.1726+04 .1741+04	.7431+00 .1836+01	1.000 0.000 0.000	2 - 1 + 7 1 - 0 0 C	1.000 1.000	2.147 1.000 1	0000	000	1.000		194	= 232.8 = 199.7
1	CONV RAD EC	3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 101 25: 25:	HC(H) = .51	54-03 H 78-03 T	PECOV :	1726.2						L L	000* =
Í	75.7	0000	20.				Ď.						==	t t
į	TEMPERATURE C. C. C. C. C. C. C. C. C. C. C. C. C.	1 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	204.69								1			
6-42		TRANSITION ONSET	•	********										
, ,	11HE=-53	1	-2=-190300			•							-	† †
	VELOCI IV	FACH	REJET	PPESSURE	GAMMA	EN THALP	Y TENF	810	J.		α	36.	۵.	000
	I OURC.		- 50+ 866t-	28.3	4.0		8 234	7579-	344		21.5	#0254 #057	Į.	1.23
	0 4676.	r-u.					3786	5.40			, a	6199-0	• 4	51.23
1	# # # P D D D D D D D D D D D D D D D D	11.	-1511-07 C	86 1.26A	1.3662	42.54 30.4 8.80		.1920-0 .1920-0 .7283-0	668	7-06 3-05		00023	A H	58.45 = 000
}	TURBULENT	.2530-03 .1790-02	1702+04 1702+04	.2503.01	000	2.147	# T T T T T T T T T T T T T T T T T T T	2.147	000	400	1.000 1.000 1.000		PETA PARA RET/FL	232.0
) <u>.</u>	CONT FART EX	0 + 0 0 0 0 0 0 0 0 0 0	31.	MC(H) = .68 HC(T) = .27	83-03 H		1686.9 4258.						100	
	E GO	1.167	37.		•					!			11	54

******* FULLY TERFULENT ******

#ELOCITY #ACH #EFF PPESSURE GAPMA ENTHALPY TEMP RHO ##670, 6.27 - 3370-05	-05 - 35 4 3 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MATERIA DE COMPANS DE
# 157	-05 -3559-06	FANS THE TEN
## # # # # # # # # # # # # # # # # # #	-05 -140 -05 -140 -05 -140 -05 -140 -05 -140 -05 -140 -05 -140 -05 -140 -05 -05 -05 -05 -05 -05 -05 -05 -05 -0	TERM S O
LAWINAR 3742-03 -1630-06 1250 1-3906 924- 22462382 1-2591 1-250 1-3906 924- 22462382 1-2591 1-	1.030 1.000	MENTS :: 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LAWINAR 13742-03 1659-04 9753-00 1,260 2,147 1,000 2,140 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,140 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,147 1,000 2,140 2,147 1,000 2,1	1.000 1.000	EETS = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LAWINAR .3742-03 .1652-04 .3427-51 1.750 2.147 1.600 2.1400 2.147 1.600 2.147	1.000 1.000	E F F F F F F F F F F F F F F F F F F F
EAN E. 3-427 53. HC(H): .2793-32 H RECOV : 1651.6 4.61	MU S/R = 35.20 -05 .3557-06 ST = .1638-0	1000 = 2000
TIME 75. Z= 163000. VELOCITY MACH RE/FT PRESSURF GAMMA ENTHALPY TEMP RHO I REDD. E.13 .5124.05 1.73 1.4020 1275 .5072 U 6678. 1.58 .4731.05 10.73 1.969 1275. 3736. 1440	MU S/R = 35.20 PR = 315.20 -05 .3557-06 57.3 = 18.38-0	
TIME 75. Z= 163000. VELOCITY MACH RE/FT PRESSURF GAMMA ENTHALPY TEMP RHO BEDD. E.13 .5124.05 1.73 1.4CDC 117. 272072 BEDD. E.13 .5124.05 1.73 1.4CDC 117. 272072 BEDD. E.15 .5124.05 1.73 1.4CDC 117. 272072 BEDD. E.15 .5124.05 1.73 1.4CDC 117. 272072 BEDD. E.15 .5124.05 1.73 1.969 E.1969 1.255 .4569.05 1.055.4 1.969	HU 5/R : 35.20 PR : 315.20	
TIME	NU 5/R = 35.20 PR = 310.0	
VELOCITY MACH RE/FT PRESSURE GAMMA ENTHALPY TEMP RHO BEDD. E.13 .5124.05 1.73 1.40.0 1.10.0 BEDD. E.13 .5124.05 1.73 1.40.0 1.10.0 4678. 1.58 .4669.05 101.0 1.1990 1.225. 3736. 1.40.0 4678. 1.58 .4669.05 101.0 1.1960 1.225. 3736. 1.40.0	HU 5/R = 35.20 PR = 71C0 -05 -3557-06 57 = -16.38-0	
## 52	-05 *3557-06 ST : 1838-0	000
4678. 1.58 4468475 101.9 1.1969 1.125. 3736. 1.4078 46578. 1.58 44689475 101.9 1.1969 1.225. 3736. 1.4078 46578. 1.58 46578. 1.58 1.1969 1.225. 3736. 1.4078		D 4 # # #
	-05 -3559-06 -072 -3463-10-06 -0463-10-06 -034 -09-05 -05-05 -05-05 -05-05 -05-05-05-05-05-05-05-05-05-05-05-05-05-	ALPHA = 51.2 BUTA = 56.9
1975 - 1965 - 425 - 197	-046/61-060Et -0-E-180 -041251-05 TMETA = -140	; ; ;
10-	HFAC HFACI NFACZ 1.000 1.000 1.000	C7 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
		00. = 100
6.352 10%.		11 2 21

1.57	# ####################################	1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	006 007/2 006 007/2 006 006 006 006 006 006 006 00	EMIS E E E E E E E E E E E E E E E E E E E
7.57 - 1685.05	######################################	111	00000000000000000000000000000000000000	MM
3.27	######################################	200 200 200 200 200 200 200 200 200 200	006 006 006 006 006 006 007 007 007 007	EVENT 24.00 00 00 00 00 00 00 00 00 00 00 00 00
5516-53 1207-04 5145-65 13335 -5516-53 1207-04 5145-6012-02 13335 -512-02 1277-04 5145-6012-02 1800 5-246 214- HC(H) = .6912-02 HRECOV 5-246 214- HC(H) = .6912-02 HRECOV 5-246 214- HC(H) = .2264-02 TRECOV 7-246 214- HC(H) = .2264-02 TRECOV	1236. 5 1.000 1.00	11	000 000 000 000 000 000 000 000 000 00	E E E E E E E E E E E E E E E E E E E
5516-53 .1207-04 .5186-65 1.000 1.00	1 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	M M M M M M M M M M M M M M M M M M M	MUU	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.246 214. HC(H) = .6912-DZ H BECOV 5.246 214. HC(T) = .2264-DZ T PECOV 5.247	1236.5 3755. 10375.			E E = 2433
7.07 305. 7.11700. 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 3322.06 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1.40.00 7.07 322.00 10.92 1	14 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
7: 11 7000. 7: 11 7000. 7: 0. 3322.55)			17 = 41
7.07 3322.56 10.92 1.40.30 1.4	ALPY TE			
7.07 .3322.06 10.92 1.2000 1.3228 4.00 1.3228 1.322		RPO MU	/R = 29.	000. =
4.40 .5986.06 74.05 1.9655 4.40 .5996.06 64.05 1.9837 4.40 .5996.06 6 72.05 4.40 .5996.06 6 72.05 4.40 .5996.06 6 72.05 4.40 .5986.06 6 72.05 4.40 .5086.06 0331.	3483-04 3214 5036-02 - 1390	6 S1 = +7100 6 S1 = -6928 9 C772	PM1 = 60.60 PM1 = 1.23	
-1718-06 - 1718-06 - 1718-1718-1718-1718-1718-1718-1718-17	* M = 0 .	• 14 6 3 - 0 4 • 49 7 5 - 0 4 • 51 2 6 - 0 4 • 51 2 6 - 0 4	AU W = .1289+0	PHA = 17.2
73 70		23 a6 - 04 9368 23 a6 - 04 9368 23 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7	6 THE TA : . 084	15 = 21
05-05 -1029-04 -4425-01 1-000 1-0	1.000	1.000 1.000 1.001 1.00 1.00 1.00 1.00 1	000 1.000	PLAN = 1.00 PARA = 1726+0 RET/PLEBD4-6 REE = +8833+0
101111 1735-0 1016- HOTEL 1735-0 1016- HOTEL 1735-0	102F.7 323F. 1359.			00* = 199
957 511.	:		and the state of t	

VELOCITY	HAC	H RE/FT	PRESSURE	GAMMA	ENTHALPY	TEMP	8 +0	æ	8/8	28.		000
1 6500	4.4	J.	4	5	901	-	9770	44.6		7100		60.60
00	6 4 6 F	1000 1000 1000 1000 1000 1000 1000 100	+2743+C5) 60 C	9 4 C	3015	0-065	1267-	CF/2	= .5394-03	ENIS	ļ
6 6114.	4.36	C+ 0 4) O 4	90.0	304	1	5250-	TAU	40.1	ALPHA :	
	×	.6164+08 C	151.	1.3392	7 9 9 9 9 9 9 9 9 9 9 7 9 9	1285. 1388.	3279~04 3279~04 3097~04	. 8513-	THET	- 1031 - 1031 - 0802	EVE -	0.12 -
LAMINAR	.85777-03 .8542-02	. 8327+03 . 8549+03	.2545+C0 .3745+D1	1.0000	1.115	1.000	1:000	000 I:000	1 0000 1 0000		A A A A A A A A A A A A A A A A A A A	1557+
CONV RAD EC	MW - 74	0 TOT 439.	HC(H) = .894 HC(T) = .258	2-05 4-02 1	PECOV ::	854 · 9					E E:	.616
F 30	~	75.75		Ī		Ė						9
9	4ff 6- + +	10,7000.										; ;
VELOCITY	FACH	REJET	PRESSURE	GAMMA	ENTHALPY	TEMP	RFO	21	S/R	28.		000
.007 2	~	361+0	6.96 1412.65	• 4 CO	رات من	46	2387-0	120	51 51	- 7100 - 7268-03	PET (1.23
5277. E 5256.	3.76 3.76 x.76	. 4361 + 06 . 7494 + 06 . 7798 + 06	16.96 100.7 109.0	1.4000 1.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 MM -	. 73187-04 . 7313-04	.3120-06 .5149-06 .5227-06	TAU	1238+0	LPHA	19.23
•		# 67 + O		343	100 101 101	, C	3876-0	105	THE	102 	78 L	, .
LAMINAR TERBULENT	-£3-0-03-	\$60	1-116+00- -2703+01	1.000 1.000	K2 1.000	1.000 1.000	HF HF HF 1-1-6	AC HFACI 600 1.600 000 1.000	HFAC2 1.000			111614
CONV RAD EC	2.705 2.705 2.705	\$21. \$21.	HC(1) = .953	0-02 H 8-02 T	PECCV =	681.6 2162. 1148.					100	000*
	47.4	200							1			: !

E J	REIFT	PRESSURE	GAMMA	EN THALPY	TEMP	8 HO	3	/R = 27.	<u>م</u> ـا	900
66.4	1360.06		62	90	100	0-9561	3101-0 9917-0	CF/2 = .6137-0	S CHIS)
# 6 6 8 F	4350+06		160	\$ \$ P	よて	2753-0	3101-0	AU W = .1019+	1 ALP	20.23
1 X	. 6111 008 C	107.0 P= .265	1.3554	351.	268.	4377-04	.7513-06	DEL 4 1033	BETA	25.35
	. 26 74 +06		356	345	3 4 6	*0-03**	7436-0	META : .080	-	000*0
. 5449-03 7 .9236-02	. 9180+03 . 5300+03	.1013+00 .1656+01	0000	1.110	1.000 1.000 1.000	1.110 1.000 1.000 1.000	1 - 000 000 - 1	0000.11	PER	987
் மும	0 TOT 576. 576.	HC (F) = .9230	0-02 H	₩	30°0 626°				001	000
000 000 8.92	1030.			#C-C	Ė				1.1	10
TEMPERATURE TEEG-F1	487.83									
225. 7=	99000.				,					:
TY MACH	REJFT	PRESSURE	GAMMA	ENTHALPY	TEMP	RHO •	H	/R = 27.	α_	0000
4.24	04	m :	8	∞ ⊂	52	3477-0	84	57 = 8071-	D3 PHI) 11
2. 3.64 3.64 3. 2.97	1413 1413 1413 1413 1413 1413 1413 1413	10000	0000 0000 0000 0000	1	2022	# # # # # # # # # # # # # # # # # # #	90-08084	AU W = .8785+ ELTA = .8203	. 4 6	= 20.73 = 26.81
<u>.</u>	ΦÖ		10 30 10 30	むか むか	9·10	5148-0 5396-0	オオ	HETA = .079	LEKIS	
NT .9371-02	3 4069+03 2 4155+03	.1008+01	1.000 1.000	1:000 1:000	1.000 1.000	1:110 1:000 1:000 1:000	HFAC1 1:000 1:000	HFACZ 1.000	PARA	1 6 8 2 6 1 1 1 1 6 5 2 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
11.11.11.11.11.11.11.11.11.11.11.11.11.	610.	HC(1) = .937	3-02 H	RECOV : 4	1212:		and the state of t		1001	' • ·
3.894	1141.								11	16 =

	0900	2.5.1	BETA = 27.25	!		17 = 121		
		- 1100-03 - 1474+00	. 1025 	1.000		_		
	n#	51-03 .5628-06 51-03 .5638-06 72-04 .3307-06	003 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04	1.000 1.000 1.000 1.000				
	TENP R	454 .59	32766	1.000 1.109	207.1 402.			
	EN TH	1.3853 220. 1.4030 96.	3913	1.300 1.109	4-62 H RECOV = 6-02 T RECOV =			
•	PRESSURE		J	.03 .7321-02 .03 .1516+00	HC(H)= .7664-G		366	
2- 6 2000	MACH REFFT		2425 47891+06- X L= .6365+06 .3602+06	4035-03 .2037+03	0 707 •151 641• •151 641•	.567 1315.		71ME = 92
11ME- 10A		İ	ļ	LAMINAR .40 TURBULEKT .76	CONV RAD EQ	SET CAR	∌	The PAKE 1474-
រក	; `	. ,		``	3	۲٦) }	

BERKPT PRINTS. CHARACTER

EHRET ETLE NAME IS IN ERROR

BBRKPT PRINTS

۵

7. PLOT PACKAGE DESCRIPTION

MINIVER plots are generated using the DISSPLA utility routines as currently operational on the UNIVAC 1110 EXEC 8 operating system at the Johnson Space Center. All DISSPLA routines were not used to accomplish this task. Section 7.1 shows the subroutines used and gives a short explanation of the usage of each. For more detailed information, see the DISSPLA manuals (refs. 2 and 3). Several subroutines were written to drive these routines, PLOTLO (the main driver), HNDYLO, DRAWLO, DSMMLO, and PPLOT1. Description and usage of these subroutines is given in section 7.2. A detailed flowchart is shown in section 7.3. Output plots are shown in section 7.4.

7.1 USAGE OF DISSPLA ROUTINES

AXSPLT - To obtain rounded axis scaling parameters for units/inch (i.e., GRAPH type) axis

CALL AXSPLT(AMIN, AMAX, ORIG, STEP, AXIS)

AMIN - Least data value

AMAX - Greatest data value

ORIG - Returns rounded axis origin

STEP - Returns rounded step size

AXIS - Returns rounded minimum axis

BASALF - To obtain desired alphabet

CALL BASALF('STANDARD')

CURVE - To draw a curve

CALL CURVE(XARAY, YARAY, NPNTS, IMARK)

XARAY - Array containing X-values

YARAY - Array containing Y-values

NPNTS - Number of points to be plotted

IMARK - Frequency of marker symbol

- > 0 Points connected with symbols
- = 0 Points connected. No symbols
- < 0 Points not connected

DISSPLA (automatically) allows up to 14 different symbols

ENDPL - To end a plot and create a new physical page

CALL ENDPL (IPLOT)

IPLOT is the plot number

- > 0 Summary on printer and plot
- = 0 No summary on either
- < 0 Summary on plot only

ERASE - Erase screen contents

CALL ERASE

ERTRAN - To fetch current date and time

CALL ERTRAN(9, DATE, TIME)

The number 9 is required by the system. The other two arguments are self-explanatory.

GRACE - To set margin around the subplot area (beyond which curves will be scissored) to an arbitrary value. Default is 0.5 inch

CALL GRACE(GRACEM)

GRACEM - Width of grace margin around subplot area in inches

GRAPH - To set up linear axis specified in units/inch
CALL GRAPH(XORIG,XSTEP,YORIG,YSTEP)

XORIG - Value of X at the axis origin

XSTEP - X step size in units/inch

YORIG - Value of Y at the axis origin

YSTEP - Y step size in units/inch

GRID - To draw a grid in the subplotted area

CALL GRID(IXGRID, IYGRID)

IXGRID - Number of grid lines per X-axis step

IYGRID - Number of grid lines per Y-axis step

HEIGHT - To set character height. Default is 0.14 inch

CALL HEIGHT (HITE)

HITE - Character height in inches

INTNO - To plot an integer (in inches) from the physical origin

CALL INTNO(INUM, XPOS, YPOS)

INUM - Integer to be plotted as a string of digits

XPOS - X-coordinate in inches

YPOS - Y-coordinate in inches

IOWAIT - An interrupt to allow user viewing of display

CALL IOWAIT(IARG)

IARG - Number of seconds of image to remain on screen

LEGEND - Identifies the curves on a plot by their markers as provided by DISSPLA. The text for the legend must be supplied in an array which has been packed with the routine called LINES. The sequence of the lines should correspond to the order of use of the markers.

CALL LEGEND(IPKRAY, NLINES, XPOS, YPOS)

IPKRAY - Name of array containing packed lines

NLINES - Total number of curves to be identified

XPOS - X-distance from physical origin to lower left corner of legend, in inches

YPOS - Y-distance from physical origin to lower left corner of legend, in inches

LINES - To pack a line of text

CALL LINES(LSTRNG, IPKRAY, ILINE)

LSTRNG - Character string terminated by \$

IPKRAY - Pack array to receive the line

INLINE - Sequence number of line being packed

MESSAG - To plot a message string, in inches from physical origin

CALL MESSAG(LMESS, IMESS, XPOS, YPOS)

LMESS - Characters to be written

IMESS - Number of characters in LMESS

XPOS - X-distance from physical origin to start of message, in inches

YPOS - Y-distance from physical origin to start of message, in inches

MIXALF - Refer to DISSPLA manuals (refs. 2 and 3)

NOCHEK - Suppress listing of points out of range. The default option is for the point out of range listed on the printer.

CALL NOCHEK

TEKEGM - DISSPLA interface with 1110 UNIVAC

CALL TEKEGM(480)

System expects the number 480

XINTAX - Integer numbering on X-axis

CALL XINTAX

YINTAX - Integer numbering of Y-axis

CALL YINTAX

YAXANG - Angle labels on Y-axis

CALL YAXANG(ANGLE)

ANGLE - Angle from horizontal, in degrees

7.2 MINIVER PLOT ROUTINES USAGE

PLOTLO - The driver routine for the plot package

CALL PLOTLO(TIME, NHFLAG, ARIDEF, ATRE, TZ, ZZ, VZ, ALFAOT, DELTAT, ITHICK, LNGPLT, TIN, MAXTME, DEVICE)

Argument in the call statement as defined in section 3.

Subroutines required: DRAWLO,DSMMLO,PPLOT1,HNDYLO

Libraries required : LOCALIB, DISSPLA, PLOT10

DRAWLO - A utility routine which collects DISSPLA routines that are called several times. The routine was written to avoid numerous calls to the same procedures.

CALL DRAWLO(XO,XD,XL,YO,YD,YL,XARRAY,YARRAY,NPCINT,IFLAG,IPASS)

XO - X-origin in inches

XD - X delta increments in inches

XL - X-axis range in inches

YO - Y origin in inches

YD - Y delta increments in inches

YL - Y-axis range in inches

XARRAY - X array to be plotted

YARRAY - Y array to be plotted

NPOINT - Number of X-Y pairs

IFLAY - To indicate closing of a given frame

IFLAG = 1 One plot per frame

IFLAG = 2 Two plots per frame

IFLAG = 3 First plot of a set of two

IPASS - Not used

Subroutines required: None

Libraries required : LOCALIB, DISSPLA, PLOT10

DSMMLO - Find minimum and maximum of an array

CALL DSMMLO(NP,A,YMIN,YMAX)

NP - Number of points

A - Array name

YMIN - Minimum value

YMAX - Maximum value

Subroutines required: None

Libraries required : None

HNDYLO - A utility routine to eliminate the calling of the same routines in the plot driver

CALL HNDYLO(XARRAY, YARRAY, NP, ILABL, IPASS)

XARRAY - X array to be plotted

YARRAY - Y array to be plotted

NP - Number of x,y pairs

ILABL - Y axis label (36 characters maximum)

IPASS - Not used

Subroutines required: PPLOT1,DSMMLO,DRAWLO

Libraries required : LOCALIB, DISSPLA, PLOT10

PPLOT1 - To place a label on the y-axis

CALL PPLOT1(ILABL, ICASE)

ILABL - Label to be used (36 characters maximum)

ICASE - Case number

Subroutines required: None

Libraries required : LOCALIB, DISSPLA, PLOT10

7.3 FLOWCHARTS

7.4 PLOTS OUTPUT

The plots correspond to the input listing in section 5.

3

000

「海内のかんかかんしかりかんを止むなどになるといるのではできるのはしずられいですがらもあるともももももも

000

THE STATE OF THE S

8-2

edesteerendiggen van 1912 de 1919 1919 de 1918 de 1918 de 1918 de 1918 de 1919 de 1919 de 1919 de 1919 de 1919

ORIGINAL PAGE IS OF POOR QUALITY

```
AG.GT.1.1) GO TO 14
NTG(TIME, TZ, U, UZ, TINF, FSTENP, PINF, FSPRES, GRG, GG, RRG, RR, SSG,
                                                                                                                                                                                                                    INITIALIZE OPTIMIZATION CONDITIONS IF OPTIMIZATION IS CALLED FOR AND IF THIS IS THE FIRST CASE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FI.LE.8) GO TO 303
TINTE(TIME,TA.ALFA(1),A1.ALFA(2),A2,ALFA(3),A3,ALFA(4),A4,
(5),A5,ALFA(6),A6,0,NT1)
F(7),G1.0,) CALL FINTE(TIME,TA,ALFA(7),A7,ALFA(8),A8,ALFA(9),
RG_QQ,RRQ,RR,SSG,SS,0,NT1)
                                                                                                                                                                                                                                                                               IF (10PT .GT. 0 .AND. MOD(ISAUED, 2) .NE. 1) CALL OPTHYZ(0) IF(10PT.EG.0.AND.ENUIR.GT.0.) CALL OPTHYZ(0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  URITÉ(6,17)
FORMAT(/39H INPUT FREESTREAM TEMP IS ZERO OR NEG.
NERROR-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LL TELIN(TIME , TZ, Z, ZZ, U, UZ, MT)
(RTFLAG.GT, 3.1) GO TO 11
LL TELIN(Z, FSALT, TIME, FSTEMP, PINE, FSPRES, NALTZ)
                                                                                                                                                                                                                                                                                                                                                                           IF (ITHICK .NE. 1) GO TO 1500
IF (IFIRST .EG. 1) GO TO 1500
IF (NSTEP .EG. 1 .OR. NSTEP .EG. 3) GO TO 1800
IF (NSTERG .GT. 0) GO TO 12
CALL TBLINKTINE .TZ, ZZ, U, UZ, NT)
GO TO 15
CALL ARGE(Z, TINF, RHOINF, PINF, AINF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FF EG. 8) GO TO 366
TBLIN(TIME, TZ, ALFA8, ALFA8T, GRG, GG, NT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      154(2, TINF, RHOINF, PINF, AINF)
IF(TINF.LE.O.) GO TO 16
RHOINF PINF/(1716.483#TINF)
AINF SORT(1.4#1716.483#TINF)
                                                                                                                                                                                                                                                                                                                             BEGIN CALCULATION LOOP
                                                             $
                                                                                                                                                                                                                                                                                                                                                                                                                         1500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Ξ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            5
                                                                                                                                                                                        000000
                                                                                                                                                                                                                                                                                                               OOO
```

ORIGINAL PAGE IS OF POOR QUALITY

```
FICFFIG.GT.8.) CALL CRSFLW(CFFIG,ELL,ELT,EL,ELMBDA,DSUBO,CORNR,
UE, PE, RHOE, PU, ALPMA, UDOT, UU,XMACHU,UX)
LT6-EL†
                                                                                                                                                                    12, ANA, RNZ, ELA, ELZ, PHIA, PHIZ, EMIA, EMIZ, RRG, RR,
                                                                                                                                                                                                                                                                                                                                                         FINHFLAG.LT.3.OR.NHFLAG.GT.5) GO TO 19
FINEFLAG.LT.3.) GO TO 19
FITEFLAG.LT.3.) GO TO 19
ALL URUNLITEFLAG.ELTRAN,ELL,ELT,ELTP,PARA1,PARA2,ENL,EL,UX,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALCULATE WARTABLE FACTORS FOR HEAT TRANSFER COEFFICIENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RANFLG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LOCALL SUCYL(RN, PHI, ENCLO, ENCTO)

IF (NERROR, NE. 0) GO TO 3

GO TO 100

OCALL ECKERT(ELL, ELT, ENL, ENT, ENCLO, ENCTO)

IF (NERROR, NE. 0) GO TO 3

OCALL SPCHI(ELL, ELT, ENL, ENT, ENCLO, ENCTO, RI
IF (NFF .EG. 1) GO TO 300
ALFA(1)-ALFAG-MHI
IF (ALFA(1) .LT. 0.) ALFA(1)-0.001
ALFA(2)-ALFAG-MHI
IF (ALFA(2) .LT. 0.) ALFA(2)-0.001
IF (ALFA(2) .LT. 0.) ALFA(2)-0.001
IF (NFG) .LT. 0.) ALFA(2)-0.001
IF (NFG) .LT. 0.) ALFA(2)-0.001
IF (NFG) .LT. 0.) ALFA(2)-0.001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DETERMINE HEAT TRANSFER COEFFICIENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CALL DETRALGRY, EL, PHI, ENCLO, ENCTO)
IF (MERROR, NE. 8) GO TO 3
GO TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HUR (ELL, ELT, ENCLO, ENCTO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LECRN, PHI, ENCLO, ENCTO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            VERROR - NE. 8) GO TO 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF (MERROR.NE.0) GO TO 3
                                                                                                             ž
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 000
```

```
RI DEFLECTION FACTOR AS FUNCTION OF ALPHA AND DELTA
IF (NTB.GT. 0)

EDALL TBLINGTIME, TK1, AKLZZ, AKLZ, AKTZZ, AKTZ, NTZ)

IF (NTB.GT. 0)

EDALL TBLINGSHO, TRACH, AKLZZ, AKLZ, AKTZZ, AKTZZ, NHZ)

IF (NTFAC.GT. 0)

ECALL TBLINGTIME, TKZ, HFAC1, HFACT, GRG, GG, NTFAC)
                                                                                                                                                                                                                                                                                                                                             IF (ARIDEF .LT. .001) GO TO 1004
CALL TBLIN(TIME, TZ, DELTAP, DELTAT, GRG, GO, NT)
IF (DELTAP .GT. 1.) GO TO 1040
GANNA..01252DELTAP..0651
GO TO 1047
IF (DELTAP .GT. 4.) GO TO 1041
GANNA..01962DELTAP..0122
GO TO 1047
A2 IF (DELTAP .GT. 15.) GO TO 1043
GANNA..02652DELTAP..2665
A3 GANNA..06652DELTAP..2665
A4 GANNA..047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047
BC TO 1047

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RI LAMERC OR HIH FACTOR AS FUNCTION OF ALPHA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RI REFAC AS FUNCTION OF ALPHA AND LOCAL REL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF (ALFAG .GT. ALFARR) GO TO 1025
MEFAC-REFACE-RSIPER(ALFARR-ALFAG)
GO TO 1030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (ARIR .LT. .001) GO TO 1035
REIRI-RHOINFEU/XHUINF/.0175
IF (ALFAG .GT. ALFAIR) GO TO 1020
REFAC-REFACI-RSLP1*(ALFAIR-ALFAD)
GO TO 1030
IF (ALFAD .GT. ALFAZR) GO TO 1025
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1005 IF (ALFAG. GT. ALFAZ) GO TO 1010 AKLZZ-AKLZZZ-HSLPZK(ALFAZ-ALFAG) GO TO 1014 1010 AKLZZ-AKLZZZ+HSLPZK(ALFAG-ALFAZ) 1014 IF (AKLZZ .LT. 0.) AKLZZ-0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ALFARI(1)-ALFA+DELTAG
FFRI(2)-FF(2)
ALFARI(2)-ALFA+DELTAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DO TO 1030

FREACHEFACE+BIP

FIF (REIRI .OF. RE

BF (REIRI .OT. RE

BFFACI=1.+(REIRI-RE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1015
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1042
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1941
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    186
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1025
                                                                                                                                                                                                                                               000
```

```
IF (AKLZ .LE. 0.) GO TO 1960
IF (AKLZ LE. 0.) GO TO 1960
IF (AKLZ LE. 0.) GO TO 1960
IF (ARIT .LT .001) GO TO 1060
IF (ARIT .LT .001) GO TO 1060
IF (ARIM - PARAII - PSLPIK(ALFAIT - ALFA0)
1050
IF (ALFA0 .GT .ALFAIT) GO TO 1050
00 TO 1060
IF (ALFA0 .GT .ALFAET) GO TO 1055
00 TO 1060
IF (ALFA0 .GT .ALFAET) GO TO 1055
00 TO 1060
IF (ALFA0 .ELFAC .ENCT .PARAI .PARAZ .PARA .IIRE, ENC, MRECOU.MTR.PCT, IF (ITHICK .EO. 0) GO TO 1200
IF (ITHICK .EO. 0) GO TO 1200
IF (ITHICK .EO. 0) GO TO 1200
IF (ITHICK .EO. 0) GO TO 1200
IF (ITHICK .EO. 0) GO TO 3
OR - SIGNAERISTREEX 4
ON - GC - OR GO TO 3
ORC - OR GO TO 3
ORC - ENC E HRECOU
                                                                                                                                                                                                                                                                                                                                                                                                                      CALCULATE MEAT RATES, THIN SKIN TEMPERATURE RESPONSE PARAMETER
                                                                                                                                                                                                                                                                                                                                         DETERMINE RADIATION EQUILIBRIUM TEMPERATURE
                                                                                                                                                                                                                                                                                                                                                            CONTINUE
IF (ATRE .GT. .001) GO TO 1205
IF (HRECOU .LE. HU) GO TO 1210
CALL RADEGICENC, HRECOU, EMIS, TU, PE, TRE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CALL NOLIER(HU, PE, 2, TV, 222, SSS, RHOU, GU)
CONTINUE
ON-SIGNARRIISTURE4
                                                                                                                                                                                                                                                                                                                                                                                                                                         GC-ENCRCHRECOU-HU)
GRE-SIGNAMENISTREMA
IF (ATRE .LT. .001) GO TO 1225
TU-RE
GC-GRE
IF (IDEAL .EG. 0) GO TO 1215
HU-MATU
GU-1.4
RNOU-PE/TU/32.17/53.35
TF (MFACI .LT. 1.) MFACI-1.
F CONTINUE
MFACE-MFACINFACI
MFAC-ACIDACLEZNACI
ACTZ-ACIDACLEZNACI
ENCI-ENCIONACIZNIFACZ
ENCI-ENCIONACIZNIFACZ
ENCI-ENCIONACIZNIFACZ
                                                                              DETERMINE TRANSITION
          1836
                                                                                                                                                                    165
                                                                                                                                                                                                                                                                                                                                                            126
                                                                                                                                                                                                                                                                                                                                                                                        1205
                                                                                                                                                                                                                                                                      :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1212
                                                                    000
```

```
| CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE | CONTINUE
```

ORIGINAL PAGE IS OF POOR QUALITY

```
RETAILMENT SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SETTING SET
```

```
782 113 IF (TIMEX(1.00001)-73) 112,115,115
783 114 TIME COPT
784 115 IF (TIMEX(1.00001)-74) 112,115,115
785 1F (TIMEX(1.00001)-74) 114,160,160
786 115 IF (TIMEX(1.00001)-74) 114,160,160
786 115 IF (TIMEX(1.00001)-74) 114,160,160
788 116 IF (TIMEX(1.00001)-74) 114,160,160
788 117 (TIMEX(1.00001)-74) 114,160,160
788 118 (TIMEX(1.00001)-74) 114,160,160
788 118 (TIMEX(1.00001)-74) 119
788 118 (TIMEX(1.00001)-74) 119
788 119 119 119 119 119
788 119 119 119 119 119
788 119 119 119 119 119
788 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-79
789 119 IF (TIMEX(1.00001)-7
```

 $_{OF\ POOR\ QUALITY}^{ORIGINAL\ PAGE\ IS}$

| ISANED | 1 GAV

```
SUBROUTINE AIR62 (HGM, T, RHO, P, U)
                                                                SUBROUTINE AIR62 (HGM,T,RHO,P,V)
H-ALTITUDE
N-LENGTH OF TABLE(SET TO 12 FOR 1959 MODEL)
HB-ALTITUDE BASE
TMB-BASE TEMPERATURE
GLMB-TEMPERATURE GRADIENT
RHOB-BASE DENSITY
T-TEMPERATURE
RHO-DENSITY
P-PRESSURE
HALELOGITY OF SOUND
V-VELOCITY OF SOUND
                                                                G-FRAUITY
GIVEN H,N,HB(1)TO HB(N),TMB(1) TO TMB(N),GLMB(1) TO
GLMB(N),RHOB(1) TO THOB(N)
COMPUTE T,RHO,P,U,G
                                        DIMENSION HB(22),TMB(22),GLMB(22),RHOB(22)
DIMENSION HB(22),TMB(22),GLMB(22),RHOB(22)
DATA (HB(I),I=1,22)/0.,36089.24,65616.8,104985.88,154199.48,
2170603.68,200131.24,259186.36,291153.22,323002.64,354753.29,
2386406.18,480780.86,512045.95,543215.24,605268.39,728243.79,
3939894.72,1234645.71,1520799.26,1798726.44,2068776.31/
DATA (TMB(I),I=1,22)/518.67,28389.97,411.57,224487.17,454.77,
128325.17,374.17,469.17,649.17,1729.17,1999.17,2179.17,2431.17,
22791.17,3295.17,3889.17,4357.17,4663.17,4861.17/
DATA (GLMB(I),I=1,22)/-3.5662E-3,0.,5.4864E-4,1.5362E-3,0.,-1.0973
1E-3,-2.1946E-3,0.,1.6953E-3,2.8343E-3,5.6867E-3,1.1444E-2,8.635E-3
2,5.7744E-3,4.061E-3,2.927E-3,2.3811E-3,2.0152E-3,1.6355E-3,1.1011E
3-3,7.3298E-4,0./
DATA (RHOB(I),I=1,22)/2.3769E-3,7.0612E-4,1.7082E-4,2.5661E-5,
12.7698E-6,1.4735E-6,4.8719E-7,3.8826E-8,6.1508E-9,9.6511E-10,
21.9071E-10,4.7266E-11,3.5624E-12,2.2488E-12,1.5592E-12,8.4345E-13,
33.0346E-13,6.956E-14,1.2608E-14,3.0599E-15,9.0031E-16,3.0463E-16/
DATA N/22/,GO/32.1740485/,RE/20898908./
12 H-(RE#HGM)/(RE+HGM)
G-GOX((RE/(RE+HGM))**2)
 23:
24:
25:
26:
27:
 28:
29:
30:
31:
 33:
 34:
35:
36:
37:
38:
39:
40:
41:
                                                                  G-G0#((RE/(RE+HGM))##2)
                                                                  DO 1 I-2,N
IF(H-HB(I))2,1,1
                                                  1 CONTINUE
                                                 GO TO 5
2 IF(GLMB(I-1))3,4,3
4 RHO=RHOB(I-1)#EXP(-(H-HB(I-1))#GO/(1716.4827#TMB(I-1)))
 42:
43:
44:
45:
                                                  GO TO 6
3 T-TMB(I-1)+GLMB(I-1)#(H-HB(I-1))
  46:
                                                                  RHO-RHOB(I-1)*EXP(-(1.0+GO/(1716.4827* GLMB(I-1)))*ALOG(T/TMB(I-1)
                                                           11)
                                                  GÓ TO 6
5 T-TMB(N)
RHO-RHOB(N)#EXP(-(H-HB(N))#GO/(1716.4827#TMB(N)))
   48:
 49:
50:
51:
52:
53:
54:
55:
                           WHO HIM THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE 
                                                                   RETURN
```

```
SUBROUTINE ATMS4 (H,T,DENS,P,SPS)
                                   SUBROUTINE RTH54 (H,T,DEH5,P,5P5)
REAL LMB
DIMENSION PB(14),ZI(19),PK(6,5),RHOK(6,3),TK(6,5),TMB(
114),LMB(14),TB(14)
DATA PBASE /6.231001759E-5/
DATA ZI
X.9.E4,1.E5,1.1E5,1.2E5,1.5E5,1.6E5,1.7E5,1.9E5,2.3E5,
X3.E5,4.E5,5.E5,6.E5,7.E5/
DATA PK
1.1428176E-4. -1.2612327E-9.7.3624145E-14
                                                                                                                                                                                                                                                                                                                       ATMS4
       5:
6:
7:
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
ATMS4
ATMS4
                               X3.E5,4.E5,5.E5,6.E5,7.E5/
DATA PK

X1.6871582E-2,
X-1.1425176E-4,-1.3612327E-9,7.3624145E-14,
X-1.0800315E-17,3.3046432E-22,-7.9910777E-2,
X-8.1046438E-5,-5.5522383E-9,3.1116969E-13,
X-1.6687827E-17,3.8319351E-22,9.8414277E-1,
X-2.6976917E-4,8.5227541E-9,-3.9620263E-13,
X1.0146471E-17,-1.0264318E-22,1.14118495E1,
X-4.11497477E-4,1.33664855E-8,-3.59518975E-13,
X5.10097254E-18,-2.89055894E-23,9.99324461,
X-2.58298177E-4,3.76139346E-9,-4.20887236E-14,
X1.60182148E-19,-1.92508927E-25/
DATA RHOK
X-8.8502064E-5,-4.2143056E-9,5.9517557E-13,
X-3.9744789E-17,7.8771273E-22,1.2667122E-1,
X-1.3373147E-4,2.0667371E-9,2.3396109E-13,
X-3.2562503E-17,7.99035209E-22,9.2751266E-1,
X-1.4349679E-4,-2.8271736E-9,4.7480092E-14,
X1.8863246E-18,-4.2702411E-23/
DATA TK

/2.9667877E2,-6.77
       :
9:
   11:
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                        ATMS4
   12:
13:
14:
15:
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
   16:
                                                                                                                                                                                                                                                                                                                       ATRS4
                                                                                                                                                                                                                                                                                                                       ATMS4
   18:
                                                                                                                                                                                                                                                                                                                       ATMS4
   20:
                                                                                                                                                                                                                                                                                                                       ATHS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
   23:
   241
                                                                                                                                                                                                                                                                                                                       ATMS4
   25 :
26 :
27 :
                                                                                                                                                                                                                                                                                                                       ATMS4
                                X1.8863246E-18,-4.2702411E-23/
DATA TK /2.9667877E2,-6.7731001E-3,
X8.4619805E-7,-1.7004049E-10,1.145145E-14,
X-2.4898788E-19,2.6892151E2,4.3075352E-3,
X-8.9159672E-7,-2.8929791E-11,5.0724856E-15,
X-1.1490372E-19,3.7064557E2,-3.2858965E-2,2.0645636E-6,
X-4.3283944E-11,-5.7507242E-17,8.2924583E-21,
X2.044798E1,2.07698384E-2,-8.63038789E-7,
X1.66392417E-11,-9.30076185E-17,-4.09005108E-22,
X-4.98865953E2,3.92137281E-2,-4.95180601E-7,
X-3.26219854E-12, 9.66650364E-17,-4.78844279E-22/
DATA TMB /180.65,210.65,260.65,360.65,
X2160.65,2420.65,2590.65,2700.65/
DATA LMB /3.E-3,5.E-3,10.E-3,20.E-3,15.E-3,
X10.E-3,7.E-3,5.E-3,4.E-3,3.3E-3,2.6E-3,1.7E-3,1.1E-3,
DATA PB /.172244361E-4,.315971712E-5,
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
  29:
30:
31:
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                      ATMS4
   32:
33:
34:
36:
36:
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATM54
                                                                                                                                                                                                                                                                                                                      ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
   38:
39:
40:
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                      ATRS4
   41:
                                                                                                                                                                                                                                                                                                                      ATMS4
                                 DATA PB /.172244361E-4,.315971712E-5,

X.774389807E-6,.265977111E-6,.535849383E-7,

X.391284945E-7,.295911117E-7,.178715656E-7,

X.739258171E-8,.200573116E-8,.430456606E-9,

X.117315480E-9,.370198961E-10,.128115330E-10/

Z-H/3.280833

IF (7) 5 2
   421
                                                                                                                                                                                                                                                                                                                       ATMS4
   43:
44:
45:
                                                                                                                                                                                                                                                                                                                      ATMS4
   461
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
   48:
                                                                                                                                                                                                                                                                                                                       ATMS4
 48: Z-H/3.280833

49: IF (Z) 5,9,6

50:C H LESS THAN 0 SET TO 0

51: 5 Z-0.0

52: GO TO 9

53: 6 IF (Z-700000.) 9,9,8

54:C H GREATER THAN 700000 METERS SET TO 700000

55: 8 Z-700000.

56: 9 N-0

57: 10 N-N+1
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                         IF (Z-ZI(N)) 40,40,10
40 IF (N-5)20,20,65
20 Z2-Z*Z
Z3-Z2*Z
Z4-Z*ZZ
   58:
59:
                                                                                                                                                                                                                                                                                                                       ATMS4
  61:
62:
63:
64:C
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                      ATMS4
                     Z5-Z3*Z2

STD COMPUTATION FOR TEMPERATURE

65 IF (N-5) 70,70,80

H LESS THAN 83004. METERS

70 T= TK(1,N)+TK(2,N)*Z+TK(3,N)*Z2+TK(4,N)*Z3+TK(5,N)*Z4+
   65:
66:C
67:
                                                                                                                                                                                                                                                                                                                       ATMS4
70 T= TK(1,N)+TK(2,N)x2+
68: 1TK(6,N)x2+
69: T = Tx1.8
70: G0 T0 110
71: 80 IF (N-6) 85,82,85
72:C T FOR 83004. THRU 90000.
73: 82 T=180.65x1.8
74: G0 T0 110
75:C T FOR GREATER THAN 90000
76: 85 M=M-6
771
                                                                                                                                                                                                                                                                                                                      ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                      ATMS4
                                                                                                                                                                                                                                                                                                                      ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                         85 M-M-6
T-THB(M)+LMB(M)*(Z-ZI(N-1))
                                                                                                                                                                                                                                                                                                                       ATMS4
                                                                                                                                                                                                                                                                                                                       ATMS4
                                       T -T#1.8
```

```
79: 110 IF (N-5) 130,130,150

80:C H LESS THAN 83004 METERS ATMS4
81: 130 CON- 10.0 ATMS4
83: 132 CON-9.80665E-4 ATMS4
84: 135 P -CON *EXP(PK(1,N)+PK(2,N)*Z+PK(3,N)*Z2+PK(4,N)*Z3+ ATMS4
85: 1PK(5,N)*Z24+PK(6,N)*Z5) ATMS4
86: P -P*Z08.9 ATMS4
87: GO TO 300 ATMS4
89: 150 IF (N-6)160,160,170 ATMS4
89: 160 P -P*BASE*EXP((-1.373301523E12*(Z-83004.))/(180.65* ATMS4
90: 16344860.+Z)**(6344860.+83004.))) ATMS4
91: P -P*Z08.9 ATMS4
93: 170 M-N-6
94: P -EXP(ALOG(PB(M))+(1.373301523E12/(LMB(M)*(6344860.+Z)* ATMS4
95: 16344860.+ZI(N-1))))**ALOG(TMB(M)/(TMB(M)*(6344860.+Z)* ATMS4
95: 16344860.+ZI(N-1))))**ALOG(TMB(M)/(TMB(M)*(2-ZI(N-1)))))
96: P -P*Z08.9
97: 300 IF (N-3) 316,320
98: 316 DENS-(1.16790729)**EXP(RHOK(1,N)+RHOK(2,N)**Z+RHOK(3,N)** ATMS4
99: 1Z2+RHOK(4,N)**Z3+RHOK(5,N)**Z4+RHOK(6,N)**Z5) ATMS4
90: 1Z2+RHOK(4,N)**Z3+RHOK(5,N)**Z4+RHOK(6,N)**Z5)
100: 320 DENS-5.825871E-4*P/T
103: 360 SPS-49.02177**SQRT(T)
104: RETURN
105: ETURN
105: ATMS4
106: ATMS4
106: ATMS4
107: ATMS4
107: ATMS4
108: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: ATMS4
109: AT
```

ORIGINAL PAGE IS OF POOR QUALITY

```
SUBROUTINE BINTRP(X,Y,ITABLE,ZZ)
  Sic
  8:C
               COMMON/ERRELG/NERROR
               COMMON/ERRELG/NERROR
COMMON/FFNUM/HSUBD,ALEU
DIMENSION XJ(100),YI(26), Z(26,40), A(1040), ZI(40,26)
EQUIVALENCE (A,ZI)
IF(IFLAG.EQ.1) GO TO 9
 10:
11:
           IF (IFLAG.EQ.1) GO TO 9
DO 1 J-1,40
DO 1 I-1,26
1 Z(I,J)-ZI(J,I)
9 IF (ITABLE.EQ.1) GO TO 10
IF (ITABLE.EQ.2)GO TO 20
IF (Y.LT.1.E-6) Y-1.E-6
14:
15:
16:
17:
18:
19:
20:
21:
                                                                                                                         BINTOO15
BINTOO20
               M-66
               MM-90
53:
               N-19
                                                                                                                         BINT0025
               NN-56
                                                                                                                         BINT0030
24:
25:
               IF( (Y .LT. YI(N)) .OR. (X .LT. XJ(M) )) GO TO 300
              MN-65
GO TO 30
                                                                                                                         BINT0040
26:
27:
                                                                                                                         BINT0045
                                                                                                                         BINT0050
28:
29:
30:
31:
               IF(Y.LT.1.E-8) Y-1.E-8
              MM-40
               N-1
                                                                                                                         BINT0060
               NN-10
                                                                                                                         BINTO065
              IF( (Y .LT. YI(N) ) .OR. (X .LT. XJ(M) )) GO TO 310 MN-0
35:
                                                                                                                         RINTO070
33:
34:
35:
36:
37:
              GO TO 30
          20 M-41
                                                                                                                         BINT0085
              MM-65
                                                                                                                         BINTOGGA
              N-11
                                                                                                                         BINT0095
38:
              NN-18
              IF( (Y .LT. YI(N) ).OR. (X .LT. XJ(M)) ) GO TO 310
40:
              MN-40
                                                                                                                         BINTO110
BINTO115
          30 N-N+1
42:
43:
44:
              DO 40 I-N,NN
IF( Y.LT. YI(I)) GO TO 50
                                                                                                                         BINT0120
          40 CONTINUE
451
              I-HH
                                                                                                                        BINT0130
BINT0135
          50 M-M+1
46:
         50 M=M+1
DO 60 J=M,MM
IF( X .LT. XJ(J) ) GO TO 70

60 CONTINUE
K=MM-MN
GO TO 80
BINT0155
70 K=J-MN
80 ZMIN= Z(I-1,K-1)+((X-XJ(J-1))/(XJ(J)-XJ(J-1)))*(Z(I-1,K)-Z(I-1,K-1BINT0165)
BINT0170
BINT0170
BINT0170
48:
49:
50:
52:
53:
54:
56:
57:
              ZMAX=Z(I,K-1)+((X-XJ(J-1))/(XJ(J)-XJ(J-1)))*(Z(I,K)-Z(I,K-1))
              ZZ-ZMIN+((Y-YI(I-1))/(YI(I)-YI(I-1)))*(ZMAX-ZMIN)
IF((ITABLE-EQ.1).AND.(ZZ.LT. 0.))ZZ-0.
              IF((ITABLE.EQ.2).AND.(ZZ.LT..5))ZZ=.5
IF((ITABLE.EQ.1).AND.(ZZ.GT.12.45E+3))ZZ=12.45E+3
IF((ITABLE.EQ.3).AND.(ZZ.LT..678))ZZ=.678
IF((ITABLE.EQ.3).AND.(X.GE. 24000.).AND.(ZZ.GT..734))ZZ=.734
58:
59:
60:
61:
62:
63:
64:
65:
              IFLAG-1
IF (ITABLE .EQ. 1) HSUBD-ZZ
IF (ITABLE .EQ. 2) ALEW-ZZ
              RETURN
                                                                                                                         BINT0185
66:
67:
68:
       300 WRITE(6,900) X,Y
900 FORMAT(72H0 ***** NEGATIVE TEMP OR PRESS RATIO LESS THAN 10-6 IN SBINT0195
1UBR. BINTRP. T-,E12.6,6H P/P0-,E12.6)
69:
70:
71:
72:
              NERROR-1
       RETURN

310 WRITE(6,910) X,Y

910 FORMAT(73H0 ***** NEGATIVE TEMP OR DENSITY RATIO LESS THAN 10-8 INBINT0215
1SUBR. BINTRP. T=,E12.6,15H DENSITY RATIO=,E12.6)
NERROR-1
```

```
DATA (XJ(J), J-1,90)/0.,5400.,5760.,6120.,6480.,6840.,7200.,7560., BINT0230 17920.,8280.,8640.,9000.,9360.,9720.,10080.,10440.,10800.,11160.,118INT0235 2520.,11880.,12240.,12600.,12960.,13320.,13680.,14040.,14400.,14760BINT0240 3.,15120.,15480.,15840.,16200.,16560.,16920.,17280.,17640.,18000., BINT0245 419800.,23400.,36000.,0.,3600.,4500.,5400.,6300.,7200.,8100.,9000.,BINT0255 59900.,10800.,11700.,12600.,13500.,14400.,15300.,16200.,17100.,1800BINT0255 60.,18900.,19800.,20700.,21600.,22500.,23400.,25200., 0.0 ,3600.,BINT0266
  76:
77:
   78:
                     80 t
   81:
   82:
  85 :
86 :
   871
   88
  89:
96:
91:
   92:
   93:
   94:
  95:
   97:
   98:
   99:
100:
 103:
1041
 107:
 1081
  110:
 111:
 112:
 1131
 115:
116:
 118:
 120:
 1221
  153
 1241
 125:
 126:
 128:
 129:
130:
 131:
 132:
 1331
 135:
136:
 139:
140:
1411
1421
1441
145:
                        1 1.233, 1.157, 1.154, 1.130, .998, .750, .610, .578, .541, 2 .521, .509,27*.50, 1.35, 1.355, 1.355, 1.213, 1.167, 1.144, 3 1.114, .970, .762, .628, .588, .574, .535, .519, .509, 425*.50, 1.35, 1.355, 1.391, 1.327, 1.227, 1.180, 1.160, 1.105, 5 .982, .808, .669, .605, .587, .570, .530, .518, .507, 623*.50,2*1.35,1.404, 1.405, 1.320, 1.225, 1.196, 1.158, 1.115,
148:
149:
150:
                                                                                                                                                                                                                   BINT0605
                                                                                                                                                                                                                  BINTO610
                                                                                                                                                                                                                  BINT0615
```

```
71.019 , .885 , .746 , .652 , .601 , .570 , .567, .530, .515 , 8 .507 , .502,201.50/
DATA (A(K),K-641,1000)/ 1.35,1.35, 1.407, 1.437, 1.424, 1 1.347, 1.265, 1.215, 1.167, 1.131, 1.071, .975 , .860 , .756 , 2 .669, .618 , .584 , .558 , .540 , .520 , .510 , .502 , 181.5, 321.35,1.408 , 1.445 , 1.464 , 1.449 , 1.404 , 1.327, 1.268, 1.235 , 4 1.158, 1.118, 1.059 , .979 , .893 , .805 , .726 , .662 , .618 , 5.85 , .564 , .531 , .525 , .518 , 161.50 , .77 , .772 , .732 , 6 .726 , .710 , .681 , .680 , .690 , .700 , .710 , .711 , .725 , .731 , .271.734 , .77 , .772 , .750 , .735 , .734 , .717 , .683 , .694 , .702 , .712 , .720 , .726 , .730 , .261.734 , .77 , .772 , .763 , .739 , .734 , .727 , .768 , .682 , .686 , .697 , .704 , .712 , .719 , .729 , .261.734 , .77 , .772 , .770 , .747 , .738 , .734 , .725 , .704 , .684 , .691 , .7, .772 , .770 , .747 , .731 , .731 , .735 , .734 , .737 , .731 , .735 , .734 , .735 , .734 , .737 , .731 , .731 , .731 , .732 , .734 , .739 , .732 , .734 , .732 , .734 , .732 , .734 , .733 , .734 , .735 , .734 , .737 , .732 , .744 , .738 , .734 , .735 , .734 , .737 , .732 , .744 , .738 , .734 , .735 , .734 , .777 , .772 , .774 , .773 , .756 , .743 , .739 , .732 , .724 , .775 , .777 , .772 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .777 , .772 , .778 , .700 , .690 , .690 , .690 , .693 , .707 , .714 , .725 , .221.734/

DATA (A(K),K-1001,1040)/ .77 , .772 , .775 , .775 , .775 , .775 , .771
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             BINT0620
154:
155:
156:
157:
158:
159:
160:
161:
162:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             BINT0635
BINT0640
BINT0645
BINT0650
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BINTO655
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BINT0660
  163:
164:
165:
166:
167:
168:
170:
171:
172:
173:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BINTO665
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BINT0670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BINT0680
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               BINTO695
BINTO700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BINT0710
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  BINT0715
  174:
176:
176:
177:
177:
                                                                                DATA (A(K),K-1001,1040)/ .77, .772,
1 .764, .753, .744, .740, .728,
2 .687, .687, .695, .704, .710
3168.734/
                                                                                                                                                                                                                                                                                                                                                                                            , .775, .775, .776, .771, .720 , .711 , .692 , .691 , .716 , .722 , .727, .732,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               BINTO725
BINTO736
BINTO735
BINTO740
                                                                                        END
```

```
38:C
39:C
31:C
                           SET INITIAL CONDITIONS.
              IF (IFIRST .EQ. 0) GO TO 150
DT - DELT
150 IF (NSTEP .NE. 1) GO TO 300
TWOLD - TW
DO 175 I - 1, IMAX
175 TSAUG(I)-T(I)
  33:
34:
35:
36:
37:
              175 TSAUE(I)-T(I)
CALL STOCK(IMAX,MPFLAG,T,RHO,CP,COND)
IF(IDEAL.GT.0) GO TO 176
CALL MOLIER(HW, PL, 2, TW, ZZ, SS, RR, GR)
IF(IDEAL.GT.0) GO TO 176
CALL MOLIER(HREC, PL, 0, TREC, ZZ, SS, RR, GR)
IF(IDEAL.GT.0) GO TO 176
GO TO 180
176 HW-.24*TW
TREC=HREC/.24
180 HGIN-HCIW
  38:
39:
40:
   41:
   43:
44:
45:
   46:
47:
48:
              TREC-HREC/.24

180 HCIN-HCIU

TGAS-TGSF+459.7

TSINK-TSVNK+459.7

IF (NTIUZ.LE.0) GO TO 903

IF (HCIUZ(1).LE.0.) GO TO 901

CALL TBLIN(CTIME,TIUZ,HCIN,HCIUZ,Z,ZZ,NTIUZ)

901 IF (ABS(TGASZ(1)).LE..0001) GO TO 902

CALL TBLIN(CTIME,TIUZ,TG,TGASZ,Z,ZZ, NTIUZ)

TGAS-TG+459.7

902 IF (ABS(TSINKZ(1)).LE..0001) GO TO 903

CALL TBLIN(CTIME,TIUZ,TS,TSINKZ,Z,ZZ,NTIUZ)

TGINK-TS+459.7
  49:
50:
51:
  52:
53:
  54:
55:
56:
57:
  58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
67:
70:
71:
72:
                            TSINK-TS+459.7
                903 CONTINUE
                           QC = HCOUT * (HREC - HW)
QR = EMISS * STEVIE * TW**4
QO = -QR + QC
QI = EMISIN * STEVIE * TWI**4 - HCIN * (TGAS - TWI) - EMISIN *
                         1 STEUIE & TSINK##4
                           STEP ONE OF RUNGE-KUTTA INTEGRATION. COMPUTE OUTER AND INNER WALL HEAT FLUXES USING INITIAL TEMPERATURES AT TIME(1) OR RESULTS OF LAST SERIES OF CALCULATIONS AT TIME(N).
               300 CONTINUE
  73:C
74:C
76:C
76:C
77:C
                           COMPUTE COEFFICIENTS OF TRI-DIAGONAL MATRIX OF INTERIOR TEMPERATURES AT TIME(N+1/2) USING RESULTS OF PREVIOUS CALCULATIONS
```

```
G(1) = RHO(1) * CP(1) * DX(1)

GOUT = G(1)

ZPLUS(1) = 2.*COND(1)*COND(2)*(COND(2)*DX(1) + COND(1)*DX(2))

ZMINUS(1) = 0.
 79:
80:
81:
82:
 83:
84:
85:
86:
87:
                FOUT . ZPLUS(1)/G(1)
               B(1) = 1. + FOUT * (DT/2.)
C(1) = -FOUT * (DT/2.)
D(1) = TSAVE(1) + Q0 / GOUT * DT/2.
IMINUS = IMAX - 1
28:
89:
90:
91:
93:
94:
95:
96:
98:
99:
100:
101:
104:
105:
106:
107:
108:
                TF(IMAX.EQ.2) GO TO 401
DO 400 I = 2, IMIMUS
ZMINUS(I) = 2. * COND(I)*COND(I-1) / (COND(I-1)*DX(I) + COND(I)*
              1 DX(I-1))
                ZPLUS(I) - 2. # COND(I)#COND(I+1) / (COND(I+1)#DX(I) + COND(I)#
              1 DX([+1))
               G(I) = RHO(I) * CP(I) * DX(I)
A(I) = - (DT/2.) * ZMINUS(I)/G(I)
B(I) = 1. + (DT/2.) * (ZPLUS(I) + ZMINUS(I))/ G(I)
C(I) = -(DT/2.) * ZPLUS(I)/G(I)
                D(I) - TSAVE(I)
         400 CONTINUE
401 ZMINUS(IMAX) - 2. * COND(IMAX)*COND(IMAX-1) / (COND(IMAX-1)*DX(IMA
1X) + COND(IMAX)*DX(IMAX-1))
                ZPLUS(IMAX) . 0.
                G(IMAX) - RHO(IMAX) * CP(IMAX) * DX(IMAX)
GIN - G(IMAX)
FIN - ZMINUS(IMAX) / G(IMAX)
                A(IMAX) = -FIN * (DT/2.)
B(IMAX) = 1. + FIN * (DT/2.)
C(IMAX) = 0.
1891
1101
1111C
                D(IMAX) - TSAUE(IMAX) - DT/2. # QI/GIN
112:C
                SOLVE FOR NEW TEMPERATURES BY GAUSSIAN ELIMINATION METHOD.
1141C
1151C
116:
117:C
118:C
119:C
120:C
121:C
                CALL GAUSS(A, B, C, D, ALPHA, S, T, IMAX)
                COMPUTE THE DERIVATIVES ASSOCIATED WITH NEW TEMPERATURES.
                CALL DRIVEL(DTEMP, G, ZPLUS, ZMINUS, QO, QI, T, NSTEP, IMAX)
123:0
124:C
125:C
126:C
127:C
                AT STEPS 1,2, AND 3 OF RUNGE-KUTTA, USE LATEST TEMPERATURES TO COMPUTE NEW OUTER WALL TEMPERATURE.
129:C
129:C
130:C
                IF NSTEP - 4, RUNGE-KUTTA IS COMPLETED. CALCULATE FINAL NODE TEMPERATURES, WALL TEMPERATURES, AND HEAT FLUXES
132:C
                IF(NSTEP .EQ. 4) CALL FINALT(TSAUE, DTEMP, IMAX, 4, DT, T) THEUT1 - T(1)
1341
1351
1361C
                LIN - 2 # IMAX + 1
137:C
                AT STEP 4, USE TEMPERATURE(N) PLUS DERIVATIVE COMPUTED AT STEP 3.
138:C
139:C
149:C
141:
142:
144:
145:
146:
147:C
148:C
149:C
150:C
                IF (NSTEP .EQ. 3) TNEUT1 - TSAUE(1) + DTEMP(LIN) * DT
                TERM - 2. * COND(1)/ DX(1)
AOUT - EMISS * STEVIE
HCOUTI - HCOUT * (HREC-HW)/(TREC-TW)
                BOUT - HCOUTI + TERM
COUT - HCOUTI * TREC + TERM * THEUTI
                SOLUE FOR NEW OUTER WALL TEMPERATURE BY NEWTON-RAPHSON METHOD.
                CALL NEWT(AOUT, BOUT, COUT, TW, ICANT)
1531C
154:C
155:C
156:C
157:C
                IF CONVERGENCE NOT OBTAINED, ABANDON CASE.
```

```
158:
159: C
160: C
161: C
163: C
164:
165:
166:
167:
168:
170:
171:
172:
173: C
                         IF (ICANT .NE. 8) GO TO 900
                         REPEAT PROCESS TO COMPUTE NEW INNER WALL TEMPERATURE.
                        THEUT2 - T(IMAX)
LIN - 3 * IMAX
IF (NSTEP .EQ. 3) THEUT2 - TSAUE(IMAX) + DTEMP(LIN) * DT
TERM2 - 2. * COND(IMAX) / DX(IMAX)
AIN -- EMISIN * STEVIE
BIN -- (HCIN + TERM2)
CIN - AIN * TSINK**4 - HCIN**TGAS - TERM2**THEUT2
CALL NEUT(AIN, BIN, CIN, TUI, ICANT)
IF (ICANT .NE. 0) GO TO 910
174:C

178:C

178:C

178:

177:

180:

181:

182:

183:

184:

185:

190:C

190:C

191:C

193:C

194:

195:

196:

197:

200:

201:

202:

203:

204:

206:

207:
                         CORRECT HEAT FLUXES FOR NEW WALL TEMPERATURES
             IF (IDEAL .GT. 0) GO TO 410
CALL MOLIER (HU,PL,2,TU,ZZ,SS,RR,GR)
IF (IDEAL .GT. 0) GO TO 410
GO TO 420
410 MU = .24 x TU
420 CONTINUE
QC = HCOUT x (HREC - HU)
QR = EMISS x STEVIE x TUXX4
QO = -QR + QC
QI = EMISIN x STEVIE x TUXX4 - HCIN x (TGAS - TUI) - EMISIN x
STEVIE x TSINKXX4
SOO TDOT =(TU - TUOLD)/DT
                         COMPUTE MAXIMUM STABLE TIME AS FUNCTION OF THE INNER AND WALL EQUILIBRIUM TEMPERATURES.
                         IF (NSTEP .EQ. 4) CALL STABLE(FIN, FOUT, GIN, GOUT, QI, TREC)
IF (NERROR.EQ.1) RETURN
IF (IFIRST .NE. 1) GO TO 450
CALL STABLE (FIN, FOUT, GIN, GOUT, QI, TREC)
IF (NERROR.EQ.1) RETURN
DO 425 T = 1 TMAY
               DO 425 I = 1, IMAX
425 T(I) = TSAUE(I)
IFIRST = 0
               450 CONTINUE
              900 UKITE(6,2000) CTIME

GO TO 920

910 URITE(6,3000) CTIME

920 URITE(6,3000) COND(1), DX(1), EMISS, HCOUT, HREC, HU, TREC, TU,
208:
209:
210:
211:
                       1 NSTEP
                          WRITE(6, 3001) COND(IMAX), DX(IMAX), EMISIN, HCIN, TSINK, TGAS,
                       1 NSTEP
                         WRITE (6,4000) (T(I), I - 1, IMAX)
NERROR-1
 212:
 2131
                          RETURN
 214:
                          END
```

```
SUBROUTINE DETRAL(RM,EL,PHI,ENCL,ENCT)

DIRENSION A(6)

COMMON/FLUFLD/TIMF,PINF,RHOINF,AIMF,RHOE,PE,TE,ME,XMUE,UE,RHOO,PO,

170,HO,XMUO,RHOU,TU,HU,XMUW,RHOS,TS,MS,XMUS,RHOR,TR,MR,XMUR,U,XME

REL,HIMF,XMUINF,PR,PU,DU,TU,XMUU,XMACHU,UU,HU,ALPHA,

SREL,HIMF,XMUINF,PR,PU,DU,TU,XMUU,XMACHU,UU,HU,ALPHA,

REL,HIMF,XMUINF,PR,PU,DU,TU,XMUU,XMACHU,UU,HU,ALPHA,

REL,HIMF,XMUINF,PR,PU,DU,XMACHU,XMIUS,RHOR,TR,MR,XMUR,U,XME

COMMON/ERRFLAV/MEROR

DATA (A(J),J=1,6)/ 1.03754, .0043776,-.6187E-4, .96451, .01107,

10: 1 -.842558E-4/

II: REL-RHOEZUEZEL/XMUE

12: 1 THETA-1.570796-PHIZ.0171453

IF (PHI,GT.89.) GO TO 2

C=1./(1.48XMACHUSR2)

D=(1.-C)Z(THETASZ-THETAZSIN(42THETA)/2.+(1.-COS(4.2THETA))/8)

17: 144.ECZ(THETARZ2-THETAZSIN(2.2THETA)/2.+(1.-COS(2.2THETA))/2.)

FTR=2.2THETAZSIN(THETA)Z((1.-C)ZCOS(THETA)Z22+C)/SQRT(D)

20: CALL FAVRID(RM,ENF)

PRI=.71

PRI=.71

PRI=.71

PRI=.71

PRI=.71

PRI=.71

SSI IF(PHI,GL.25.) M=1

IF(PHI,GL.25.) M=4

N=N=2

K-0

DD 11 I=M,N

30: SUM=SUM=A(1)ZPHIZZ(K)

31: 1 K=K+1

32: FSUM

AND SUM=SUM+A(1)ZPHIZZ(K)

31: 1 K=K+1

32: FSUM

AND SUM=SUM+A(1)ZPHIZZ(K)

31: 1 K=K+1

32: FSUM

AND SUM=SUM+A(1)ZPHIZZ(K)

33: RR-RHOE/2.377E-3

CALL BINTRP(TE,RR,1,HD)

IF(NERROR.NE.0) RETURN

S=PRIZZ.667

38: 99 RETURN

END

END

END

END

PRIZZ.667
```

```
SUBROUTINE DINT(XX,XT,Y1,YT1,ZZ,ZT,ML,NL,Y2,YT2,Y3,YT3,IL,YE,YT4)

DOUBLE INTERPOLATION SUBROUTINE. IF IL-1, THE SECOND INDEPENDENT

UARIABLE IS NOT CONSTANT WITH THE FIRST. (THE RANGE OF THE SECOND

IS NOT THE SAME AT EACH VALUE OF THE FIRST.)

DIMENSION ZT(NL),XT(ML,NL),YT1(ML,NL),YT2(ML,NL),YT3(ML,NL)

DIMENSION YT4(ML,NL)

IF(ZZ-ZT(1))802,801.801

801 IF(IL.EQ.1) GO TO 803

IF(XX.LT.XT(1,1))GO TO 802

803 DO 800 I-1,NL

L-1
     31C
41C
51
     8:
 10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
                      LL-I-1
IF(ZZ-ZT(I))902,804,800
S00 CONTINUE
802 Y1-.2222E+30
                                         RETURN
                       902 RATIP-(ZZ-ZT(LL))/(ZT(L)-ZT(LL))
IF(IL)1111,1111,1113
                      804 DO 904 J-1, ML
LN-J
LLM-J-1
IF(XX-XT(J,L))905, 906, 904
21:
20:
  23:
                       904 CONTINUE
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34;
                                         GO TO 802
                      905 RATIO-(XX-XT(LLM,L))/(XT(LM,L)-XT(LLM,L))
V1-Y11(LLM,L)+RATIOX(YT1(LM,L)-YT1(LLM,L))
Y2-YT2(LLM,L)+RATIOX(YT2(LM,L)-YT2(LLM,L))
Y3-YT3(LLM,L)+RATIOX(YT3(LM,L)-YT3(LLM,L))
                                         YE-YT4(LLM, L)+RATIO*(YT4(LM, L)-YT4(LLM, L))
                                         RETURN
                       906 Y1-YT1(LM,L)
Y2-YT2(LM,L)
Y3-YT3(LM,L)
                                        YE-YT4(LM,L)
RETURN
  35:
36: 1111 DO 913 J-1,ML
37: LM-J
38: LLM-J-1
39: IF(XX-XT(J,L)
                                         IF(XX-XT(J,L))911,912,913
   40:
                       913 CONTINUE
  411
                                         GO TO 802
  42:
                       912 Y1-YT1(LM,LL)-RATIP#(YT1(LM,LL)-YT1(LM,L))
                                         Y2-YT2(LM,LL)-RATIP*(YT2(LM,LL)-YT2(LM,L))
Y3-YT3(LM,LL)-RATIP*(YT3(LM,LL)-YT3(LM,L))
YE-YT4(LM,LL)-RATIP*(YT4(LM,LL)-YT4(LM,L))
  441
  451
                                         RETURN
   461
                      48
  50:
51:
52:
53:
54:
55:
56:
                                            Y3-Y4-RATIPE(Y4-Y5)
  571
                                            Y4-YT4(LLM, LL)+RATIO*(YT4(LM, LL)-YT4(LLM, LL))
57: Y4-YT4(LLM,LL)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,L)+RATIO*(YT4(LM,LM,L)+RATIO*(YT4(LM,LM,L)+RATIO*(YT4(LM,LM,L)+RATIO*(YT4(LM,LM,LM,LM,LM,LM,LM,LM,LM,LM,LM,LM
                                           YS-YT4(LLM, L)+RATIO#(YT4(LM, L)-YT4(LLM, L))
                      917 CONTINUE

GO TO 802

917 Y5-YT1(LM,L)

Y7-YT2(LM,L)

Y9-YT3(LM,L)

Y0-YT4(LM,L)
68:
69:
70:
71:
72:
73:
                      GO TO 1114

916 RATIO=(XX-XT(LLM,L))/(XT(LM,L)-XT(LLM,L))
Y5-VT1(LLM,L)+RATIO*(VT1(LM,L)-VT1(LLM,L))
 74:
75:
76:
77:
                                        Y7-YT2(LLM,L)+RATIO#(YT2(LM,L)-YT2(LLM,L))
Y9-YT3(LLM,L)+RATIO#(YT3(LM,L)-YT3(LLM,L))
                                         Y0-YT4(LLM,L)+RATIOS(YT4(LM,L)-YT4(LLM,L))
```

```
SUBROUTINE DINT1(XX,XT,Y1,YT1,ZZ,ZT,ML,NL)

DOUBLE INTERPOLATION SUBROUTINE.
    DIMENSION ZT(NL),XT(ML,NL) YT1(ML,NL)
    IF(ZZ-ZT(1))802,801,801

801    IF (XX-XT(1,1)) 805,803,803

805    Y1=12.7
    RETURN

802    Y1-.222E+30
    RETURN

803    D0 800    I-1,NL
    L-1
    LL-1
    IF(ZZ-ZT(I))902,804,800

800    CONTINUE
1: C
3:
4:
5:
6:
7:
10:
11:
12:
13:
14:
15:
                IF(ZZ-ZT(I))902,804,800
800 CONTINUE
GO TO 502
902 SATIP+(ZZ-ZT(LL))/(ZT(L)-ZT(LL))
GC TO 5113
804 A 904 J=1,ML
LN=J
LLM=J=1
IF(XX-XT(J,L))905,906,904
904 CONTINUE
 18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
                 904 CONTINUE
                 RETURN
              906 Y1-Y11(LM,L)
RETURN
1113 IF (XX-XT(1,L)) 805,1115,1115
1115 DO 918 J-1,ML
  58:
  29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
                              LM-J-1

IF(XX-XT(J,L))916,917,918
                 918 CONTINUE
                 GO TO 802
917 Y5-YT1(LM,L)
             917 Y5=YT1(LM,L)

GO TO 1114

916 RATIO=(XX-XT(LLM,L))/(XT(LM,L)-XT(LLM,L))

Y5=YT1(LLM,L)+RATIO*(YT1(LM,L)-YT1(LLM,L))

1114 DO 921 J=1,ML

LM=J

LLM=J-1

IF(XX-XT(J,LL))919,920,921

924 CONTINUE
  39:
   40:
  41:
42:
43:
                IF(XX-XT(J,LL))919,920,921
921 CONTINUE
    GO TO 802
920 Y4-YT1(LM,LL)
    GO TO 925
919 RATIO-(XX-XT(LLM,LL))/(XT(LM,LL)-XT(LLM,LL))
    Y4-YT1(LLM,LL)+RATIO*(YT1(LM,LL)-YT1(LLM,LL))
925 Y1-Y4-RATIP*(Y4-Y5)
   441
   45:
  46:
  48:
49:
  50:
51:
52:
                               RETURN
                               END
```

 PFRSTM *(2.8*MUSTRM**2 -.4)/ 2.4
 TFRSTM*PDNSTM/ PFRSTM *(.4 *MUSTRM**2 +2.)/(2.4*MUSTRM COMMON' DNSTRM/TDNSTM, PDNSTM, DDNSTM, NDNSTM, UDNSTM, SDNSTM, HDNSTM, MDNSTM = SQRT(TFRSTM/ TDNSTM*(MFRSTM**2 -2./2.4*(PDNSTM/ PFRSTM COMMON/FRSTM/ TERSTM, PERSTM, DFRSTM, MFRSTM, UFRSTM, SFRSTM, HFRSTM, COMMON/TOTAL/ HTOTAL, PTOTAL, TTOTAL, RHOTOT, GTOTAL COMMON/ERRFLG/NERROR PTOTAL = PDNSTM*(1. + .2*MDNSTM**2)**3.5 DDNSTM=PDNSTM/(32.2*53.35*TDNSTM) ADNSTM=49.02*SQRT(TDNSTM) - TDNSTM/ TFRSTM *PFRSTM/ PDNSTM))) MUSTRM - MFRSTMXSIN(ANGLE) UDNSTM-MDNSTM*ADNSTM REAL MUSTRM, MFRSTM HDNSTM-0.24*TDNSTM KADNSTM, GDNSTM REAL MONSTM GDNSTM-1.4 GTOTAL-1.4 AFRSTM RETURN PDNSTM TDNSTM 4000000 -: ë 231 21: 22:

SUBROUTINE DOUNID(ANGLE)

SUBROUTINE DRIVEL(DTEMP, G, ZPLUS, ZMINUS, QO, QI, T, NSTEP, IMAX)	THI	C STEP(ELIMI	31	IMEN	TEMP	MINUS	FIIM	0 106	MP (MIM	O CONTIN	: 101 DTEMP(IMAX, NSTEP) = ZMINUS(IMAX)/G(IMAX) * (T(IMAX-1) - T(IMAX))	: RETURN	
	4	.80	V. 100	7:	ö	10:	111	12:	13:	14:	15:	16:	17:	19:	

1...

SUBROUTINE EDPARM(ALPHA,PARA1)

DIMENSION DEFL(S),PRMLOG(S), XX(S)

DATA (DEFL(K),K=1,S)/ 0.,30.,40.,50.,60.,70./

DATA (PEFL(K),K=1,S)/ 1.,1.,1.0412,1.1383,1.30103,1.69897/,N/S/
CALL TBLIN(ALPHA,DEFL,PRM,PRMLOG,X,XX,N)

PARA1=10.**PRM

RETURN

END

6.

THIS SUBROUTINE DETERMINES THE FINAL TEMPERATURES AT THIS COMPUTATION TIME AS FUNCTIONS OF PREVIOUS TEMPERATURES AND THE DERIVATIVES COMPUTED AT RUNGE-KUTTA STEPS 1, 2, 3, AND 4. * DTEMP(I,2) DIMENSION TSAUE(IMAX), T(IMAX), DTEMP(IMAX,NCOL)
DO 100 I = 1, IMAX
T(I) = TSAUE(I) + DT/6. * (DTEMP(I,1) + 2. * D'
+ 2 * DTEMP(I,3) + DTEMP(I,4)) SUBROUTINE FINALT(TSAVE, DTEMP, IMAX, NCOL, DT, CONTINUE RETURN END 100 11361

:

```
SUBROUTINE FLOW(FF, ALFA, BETA)
REAL MU, ND, NL, ME
DIMENSION FF(9), ALFA(9), NF(9)
COMMON/FLUFLD/TINF, PINF, RHOINF, AINF, RHOE, PE, TE, HE, XMUE, UE, RHOO, PO,
1TO, HO, XMUO, RHOW, TW, HW, XMUW, RHOS, TS, HS, XMUS, RHOR, TR, HR, XMUR, U, XME
2, REL, HINF, XMUINF, PR, PU, DU, TU, XMUU, XMACHU, VU, HU, ALPMA,
3RHOSTL, HSTL, TSTL, XMUSTL, RHOSTT, HSTT, TSTT, XMUSTT, HRECL, HRECT, S
*, GINF, GAMAU, GAMAE, GAMAE, GAMAO, GW, GAMAG, PRL, PRT
COMMON/DNSTRM/TD, PD, DD, MD, VD, >D, HD, AD, GAMAD
COMMON/FRSTM/TFRSTM, PFRSTM, DFRSTM, MU, VFRSTM, SU, HFRSTM, AU
COMMON/TOTAL/ HTOTAL, PTOTAL, TTOTAL, RHOTOT, GTOTAL
COMMON/STAG/PSTAG, RHOSTG, TSTG, XMUSTG
COMMON/STAG/PSTAG, RHOSTG, TSTG, XMUSTG
COMMON/FLAG/ IDEAL
2:
3:
4:
5:
6:
8:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
                          COMMON/FLAG/ IDEAL
COMMON/ERRFLG/NERROR
                          COMMON/HFLAG/ NHFLAG
DATA PI/3.141592654/
IDEAL-0
                          GR-32.2#53.35
                        DO 8 K-1,9
NF(K)=FF(K)+.001
HINF-.24*TINF
22:
23:
24:
25:
26:
27:
28:
29:
30:
33:
33:
33:
33:
33:
33:
40:
41:
42:
                          CALL HANSEN (XMUINF, PINF, TINF)
                          GINF-1.4
TU-TINF
                          PU-PINF
                          DU-RHOINF
                          MU-U/AINF
                          VU-V
                          HI-HINE
                          AU-AINF
GAMAU-GINF
                          XMUU-XMUINF
                          PFRSTM-PU
                          TFRSTM-TU
                          DFRSTM-DU
                          UFRSTM-VU
                   UFRSTM-NU

1 IF(MU.LT.1.) GO TO 20

IF(MF(K)-36 )2,4,6

2 CALL PCSU(MU,ALFA(K),1,OFT,BETA)

IF(MERROR.NE.0) RETURN

IF(OFT-1.)10,20,5
43:
44:
45:
46:
47:
                         CALL PCSU(MU, ALFA(K), 2, OFT, BETA)
IF(NERROR.NE.0) RETURN
IF(OFT-1.)10, 20, 5
48:
49:
50:
51:
53:C
54:C
55:C
56:
57:
                    5 BETA-90.
                 GO TO 10
6 BETA-ALFA(K)
10 CALL DWNSTM(BETA*PI/180)
IF(IDEAL-1)30,100,30
                           IF MACH NO IS LESS THAN ONE, USE MOD. NEUTONIAN AND LAST SLOPE
                  20 IF(K.LT.2) GO TO 160
                           HO-HTOTAL
                          PO-PTOTAL
RHOO-RHOTOT
TO-TTOTAL
                           GAMAO-GTOTAL
                 CALL HANSEN(XMUO,PO,TO)
22 IF(NF(K+2).EQ.29) GO TO 26
BETAP-ALFA(K+1)*PI/180
                            K-K+2
                 27 IF(K.GT.7) GO TO 25
IF(ALFA(K)-0.)25,25,22
26 BETAP=(ALFA(K+1)-ALFA(K+2))*PI/180
IF(BETAP.LT.0.) BETAP-0.
                 GO TO 27
25 PE-PU+(PO-PU)#SIN(BETAP)##2
                          FE-PUT(FO-FO)251R(BETMP)222

CALL MOLIER(HE,PE,1,TE,ZE,SD,RHOE,GAMAE)

IF(IDEAL.GT.0) GO TO 160

IF(ME.GT.HO) GO TO 23

IF (BETAP .GE. PI/2) GO TO 23

UE2-(HO-HE)250103.
                                                                                                                                                                                                          ORIGINAL PAGE IS
                                                                                                                                                                                                        OF POOR QUALITY
```

```
UE-SQRT(UE2)
AE-SQRT(GAMAE*GR*ZE*TE)
XME-UE/AE
CALL HANSEN(XMUE,PE,TE)
GO TO 24
HE-HO
PE-PO
TE-TO
    78:
79:
80:
81:
82:
83:
84:
85:
86:
                         23
                                   RHOE-RHGO
XMUE-XMUO
GAMAE-GAMAO
    88:
89:
90:
91:
92:
93:
                        UE-0.
XME-0.
24 HSL-HE
PSL-PE
TSL-TE
    94:
95:
96:
97:
                                   XMUSL - XMUE
                                   VSL-UE
                                   RHOSL - RHOE
                                   HD-HU
PD-PU
 98:
99:
100:
101:
102:
103:
104:
106:
107:
108:
110:
111:
112:
113:
114:
114:
115:
                                  TD-TU
DD-DU
MD-MU
VD-VU
SD-SU
                                  SD-SU
AD-AU
GAMAD-GAMAU
GAMASL-GAMAE
PSTAG-PO
RHOSTG-RHOO
TSTG-TO
XMUSTG-XMUO
GO TO 52
                                   DETERMINE LOCAL FLOW CONDITIONS
                      30 IF(NF(K).GT.38) GO TO 43
    IF(NF(K+1).EQ.14) GO TO 38
    IF(NF(K+1)-16) 31,32,36

36 IF(NF(K+1)-18) 46,34,37

31 ITABLE-3
    GO TO 33

32 ITABLE-4

33 CALL PCSU(MU,ALFA(K+1),ITABLE,OFT,PC)
    IF(NERROR.NE.0) RETURN
    BETAP-ALFA(K+1)*PI/180
    IF(OFT-1.)35,20,34

35 IF(PC.LT.0.) PC-0.
    PL-PU+PC**DU**VU**VU/2.
    GO TO 40
                         30 IF(NF(K).GT.38 ) GO TO 43
PL-PH-PCEDUEVUEVU/2.
GO TO 40

34 BETAP-ALFA(K+1)*PI/180
PL-PH+(PTOTAL-PH)*SIN(BETAP)**2
GO TO 40

37 PSAU-PTOTAL
TSU-TTOTAL
RSU-RHOTOT
                                   SSV-SD
                                   GSU-GTOTAL
                                   HDSU-HD
                                  PDSU-PD
                                   TDSU-TD
                                  DDSU-DD
GDSU-GAMAD
XMDSU-MD
                                 XMDSU-MD
UDSU-UD
ANGLE-PI/2
CALL DUNSTM(ANGLE)
PSTAG-PTOTAL
PTOTAL-PSAU
RHOTOT-RSU
TTOTAL-TSU
                                  SD-SSU
GTOTAL-GSU
                                  HD-HDSU
                                  PD-PDSU
                                   TD-TDSU
```

```
DD-DDSU
GAMAD-GDSU
MD-XMDSU
UD-UDSU
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
                BETAP-ALFA(K+1)*PI/180
PL-PU+(PSTAG -PU)*SIN(BETAP)**2
GO TO 40
38 PC-ALFA(K+1)
                 BETAP-0.

PL-PU+PC*DU*VU*VU/2.

40 CALL MOLIER(HL,PL,1,TL,ZL,SD,DL,GAMAL)

IF(IDEAL.GT.0) GO TO 100
 167:
168:
169:
170:
171:
172:
                        ZTL-ZL*TL
                        L-SETT(GAMAL*GR*ZTL)
IF(HL.GT.HTOTAL) GO TO 41
VL2-(HTOTAL-HL)*50103.
                         UL-SORT(UL2)
                        ML-UL/AL
GO TO 42
 1731
                 41 HL-HTOTAL
PL-PTOTAL
TL-TTOTAL
174:
175:
176:
177:
178:
179:
180:
181:
182:
183: C
184: C
                       DL-RHOTOT
GAMAL-GTOTAL
UL-UUXCOS(BETAP)XX2
IF (BETAP .EQ. 0.) U
ML-UL/AL
GO TO 42
                                              .EQ. 0.) VL-0.
                        CALCULATE OBLIQUE SHOCK PRESSURE
186:
                 46 ULT-UUECOS(BETAEPI/180)
                       IF(ALFA(K+1).GT.BETA) GO TO 43
ANGL-PI/180*(BETA-ALFA(K+1))
189:
190:
191:
192:
193:
                        UL-ULT/COS(ANGL)
                       HL-HTOTAL-UL#UL/50103.
CALL MOLIER(HL,PL,3,TL,ZL,SD,DL,GAMAL)
AL-SQRT(GAMAL#GR#ZL#TL)
                       ML-UL/AL
                      ML-UL/AL

BETAP-ALFA(K+1)IPI/180

IF(NF(K+2).NE.29) GO TO 44

CALL PMEXPN(ALFA(K+2),HTOTAL,HL,AL,SD,PL,TL,UL,DL,ML,GAMAL)

IF(IDEAL.GT.0) GO TO 100

IF(NERROR.GT.0) GO TO 999

BETAP-(ALFA(K+1)-ALFA(K+2))IPI/180
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
                      K-K+3
GO TO 45
K-K+2
                     IF(K.GT.9) GO TO 50
IF(ML.LE.0.) GO TO 50
IF(NF(K).LE.0) GO TO 50
PU-PL
                       TU-TL
                       DU-DL
                       HU-HL
                       AU-AL
212:
                       MU-ML
                       GAMAU-GAMAL
214:
215:
216:
217:
                      PFRSTM-PU
TFRSTM-TU
DFRSTM-DU
                       UFRSTM-VU
218:
                       GO TO 1
2501C
551:0
                       SUEPT CYLINDER STAG LINE PROPS
                43 CALL MOLIER(HSL,PSL,3,TSL,ZSL,SD,RHOSL,GAMASL)
IF(IDEAL.GT.0) GO TO 100
CALL HANSEN(XMUSL,PSL,TSL)
USL-UUXCOS(BETAXPI/180)
223:
224:
2251
226:
                       PE-PSL
:855
                       HE-HSL
                      TE-TSL
RHOE-RHOSL
229:
230:
                       XMUE - XMUSL
```

```
232:
833:
834:
835:
837:
839:
840:
841:
243:
244:
245:
246:
847:
847:
848:
849:
                                   AE-SORT (GAMASLEGRETSL)
UE-VSL
                                   XME-USL

XME-UE/AE

GAMAE-GAMASL

PSAU-PTOTAL

TSU-TTOTAL

RSU-RHOTOT

GSU-GTOTAL
                                   HDSU-HD
                                   PDSU-PD
TDSU-TD
                                  DDSU-DD
GDSU-GAMAD
XMDSU-MD
UDSU-UD
ANGLE-PI/2
                                  ANGLE = 172
CALL DUMSTM(ANGLE)
PSTAG = PTOTAL
CALL MOLIER(HTOTAL, PSTAG, 0, TSTG, ZSTG, SSTG, RHOSTG, GAMSTG)
IF(IDEAL .NE.0) GO TO 100
CALL HANSEN(XMUSTG, PSTAG, TSTG)
         252:
253:
253:
254:
255:
255:
258:
259:
260:
262:
263:
264:
266:
267:
268:
268:
268:
268:
268:
                                  HSL-HE
PTOTAL-PSAU
                                   RHOTOT-RSV
                                   TTOTAL-TSU
                                  GTOTAL-GSU
                                   HD-HDSU
                                  PD-PDSU
                                   TD-TDSU
                                  DD-DDSU
GAMAD-GDSU
MD-XMDSU
                                  UD-UDSU
                                  BETAP-BETA*PI/180
GO TO 51
                                  DEFINE BOUNDARY LAYER EDGE PROPERTIES
          269:C
        270:
271:
272:
273:
274:
                           50 PE-PL
                                  TE-TL
                                  RHOE - DL
                                  HE-HL
                                  UE-VL
AE-AL
ME-ML
         275 :
276 :
         277:
278:
279:
                                  XME -ME
                          GAMAE-GAMAL
CALL HANSEN(XMUE,PE,TE)
51 PO-PTOTAL
         280:
         188
                                  HO-HTOTAL
                                  RHOO-RHOTOT
TO-TTOTAL
         283:
         284:
                                   GAMAO-GTOTAL
         285 i
                          CALL HANSEN(XMUU,PU,TU)
52 CALL HANSEN(XMUU,PU,TU)
XMACHU-MU
         287:
         289:C
                                  DEFINE WALL PROPERTIES
        CALL MOLIER(HU,PE,2,TU,ZU,SU,RHOU,GU)
IF(IDEAL.GT.0) GO TO 100
CALL HANSEN(XMUU,PE,TU)
                                     ECKERT REFERENCE ENTHALPY PROPERTIES - REAL GAS
                                HRECL-HE+0.85%UE%UE/50103.
HRECT-HE+0.88%UE%UE/50103.
HSTL-0.5%(HE+HU)+0.22%(HRECL-HE)
HSTT-0.5%(HE+HU)+0.22%(HRECT-HE)
CALL MOLIER(HSTL,PE,0,TSTL,ZS,SS,RHOSTL,GAMAS)
CALL MOLIER(HSTT,PE,0,TSTT,ZS,SS,RHOSTT,GAMAS)
IF(IDEAL.EQ.1) GO TO 100
CALL HANSEN(XMUSTL,PE,TSTL)
CALL HANSEN(XMUSTT,PE,TSTT)
IF(NHFLAG.EQ.5) GO TO 70
IF(NHFLAG.EQ.7) GO TO 70
GO TO 999
```

```
DEFINE RHO R , MU R PROPERTIES
                      70 CALL MOLIER(HO,PE,0,TSP,ZSP,SSP,RHOSP,GAMASP)
IF(IDEAL.GT.0) GO TO 100
CALL HANSEN(XMUSP,PE,TSP)
RMSP-RHOSPIXMUSP
                                RME - RHOE XXMUE
                                RMEE - RMSP#(1.85-.85#(RMSP/RME))
                                RMU-RHOUXXMUU
                                RORMUR - RMEE # (1.6-.6#(PMEE/RMU))
                               ITERATE FOR RHO R
                               RMP-RORMUR/(1.E-13*PE)
IF(RMP-4.)60,60,61
TRGESS-2.21E4*RMP**(-2.47)
                     GO TRGESS=2.21E4IRMPIX(-2.47)
GO TO G2
G1 TRGESS=2.E7RRMPIX(-7.39)
G2 IF(TRGESS.GT. 8000.) TRGESS= 8000.
CALL MOLIER(HR,PE,2,TRGESS,ZRG,SRG,RHORG,GAMAG)
IF(IDEAL.GT.0) GO TO 100
CALL HANSEN(XMURG,PE,TRGESS)
RMGESS=RHORGIXMURG
ERR-ABS((RMGESS-RORMUR)/RORMUR)
IF(ERR.LT..01) GO TO 65
RESID=RORMUR-RMGESS
TRGP2=TRGESSI.05
TRGM2=TRGESSI.05
TRGM2=TRGESSI.05
CALL MOLIER(HR,PE,2,TRGP2,ZRG,SRG,RHORP2,GAMAG)
IF(IDEAL.GT.0) GO TO 100
CALL MOLIER(HR,PE,2,TRGM2,ZRG,SRG,RHORM2,GAMAG)
DERIUM=(XMURP2-RHORM2)/(.1*TRGESS)
DERIUM=(XMURP2-XMURM2)/(.1*TRGESS)
DERIUM=(XMURP2-XMURM2)/(.1*TRGESS)
DERIUM=(XMURP2-XMURM2)/(.1*TRGESS)
                                GO TO 62
DERIU--XMURG#DERIUR-RHORG#DERIUM
RATE-RESID/DERIU
TRGESS-TRGESS-RATE
                      I TRUESS TRUESS TRUESS TRUESS TRUESS TRUESS TRUESS TRUESS TRUESS GO TO 999
                                 IDEAL GAS FLOW PROPERTIES
                  100 K-1
TU-TINF
                                PU-PINF
                                DU-RHOINF
                                MU-V/AINF
                                UU-U
                                HU-HINF
                                AU-AINF
GAMAU-GINF
PFRSTM-PU
                                TFRSTM-TU
                   DFRSTM-DU
'JFRSTM-UU
HFRSTM-HU
101 IF(MU.LT.1.) GO TO 159
IF(NF(K)-36 )102,103,106
                    102 ITABLE-1
                   GO TO 104

103 ITABLE-2

104 CALL PCSU(MU,ALFA(K),ITABLE,OFT,BETA)

IF(NERROR.NE.0) RETURN

IF(OFT-1.)107,20,105
                   195 BETA-90.
GO TO 167
186 BETA-ALFA(K)
187 CALL DOWNID(BETARPI/188)
  383:
 384:
385:
386: C
```

ORIGINAL PAGE IS OF POOR QUALITY

```
387:C
388:C
389:
390:
391:
392:
393:
394:
395:
396:
397:
400:
401:
                                             DETERMINE LOCAL FLOW CONDITIONS
                         IF(MF(K).GT.38) GO TO 116
IF(MF(K+1).EQ.14) GO TO 126
IF(MF(K+1)-16) 108,109,123
123 IF(MF(K+1)-18) 124,111,125
108 ITABLE-3
GO TO 110
109 ITABLE-4
110 CALL PCSU(MU,ALFA(K+1),ITABLE,OFT,PC)
IF(MERROR.NE.0) RETURN
BETAP-ALFA(K+1)**PI/180
IF(OFT-1.)112,20,111
111 BETAP-ALFA(K+1)**PI/180
PL-PU+(PTOTAL-PU)**SIN(BETAP)***2
GO TO 113
112 IF(PC.LT.0.) PC-0.
PL-PU+PC**DU**UU**2UU*/2.
GO TO 113
125 PSAU-PTOTAL
  402:
403:
404:
405:
                         GO TO 113

125 PSAU-PTOTAL
TSU-TTOTAL
RSU-RHOTOT
ANGLE-PI/2
CALL DOWNID(ANGLE)
PSTAU-PTOTAL
PTOTAL-PSAU
RHOTOT-RSU
TTOTAL-TSU
BETAP-ALFA(K+1)*PI/180
PL-PU+(PSTAG-PU)*SIN(BETAP)**22
GO TO 113

126 PC-ALFA(K+1)
BETAP-0.
PL-PU+PC**BDU**UU**2.

113 IF (PL .GT. PTOTAL) PL-PTOTAL
ML=SORT(5.***((PTOTAL/PL)***(2./7.)-1.))
HTOTAL-0.24**TINF+V***U**50103.
TT-HTOTAL/.24
   406:
407:
408:
409:
  410:
411:
412:
413:
414:
415:
416:
417:
    418:
   420:
421:
422:
423:
                                              TT-HTOTAL/.24
TL-TT*(PL/PTOTAL)**.286
DL =PL/(GR*TL)
AL-49.02**SQRT(TL)
HL-0.24*TL
    1241
   424:
425:
426:
427:
428:
429:
430:
431:
432:
                                               GAMAL-1.4
IF(HL.GT.HTOTAL) GO TO 114
VL-SQRT((HTOTAL-HL)#50103.)
                            GO TO 115

114 HL-HTOTAL
PL-PYOTAL
UL-UUSCOS(BETAP)##2
IF (BETAP .EQ. 0.) UL-0.
    433:
   434:
435:
436:
437:
                                               ML-UL/AL
GO TO 115
    438:
439:C
440:C
441:C
                                                    CALCULATE OBLIQUE SHOCK PRESSURE
  442: 124 ULT-UUXCOS(BETAXPI/180)
443: IF(ALFA(K+1).GT.BETA) G
444: ANGL-PI/180X(BETA-ALFA()
445: UL-ULT/COS(ANGL)
446: HTOTAL-.24*TINF+UXU/501
447: HL-HTOTAL-ULXUL/50103.
448: IF(HL.LT.0.) GO TO 111
                                               IF(ALFA(K+1).GT.BETA) GO TO 116
ANGL-PI/180*(BETA-ALFA(K+1))
                                               ANGL-PI/180%(BETA-ALFA(K+1
UL-ULT/COS(ANGL)
HTOTAL-.24%TINF+U%U/50103.
HL-HTOTAL-UL%UL/50103.
IF(HL.LT.0.) GO TO 111
TL-HL/.24
PL-PD%(TL/TD)%%3.5
DL-PL/(GR%TL)
AL-49.02%SQRT(TL)
ML-UL/AL
    449:
450:
451:
452:
                              #L-49.02#5GRT(TL)

ML-UL/AL

GAMAL-1.4

BETAP-ALFA(K+1)#PI/186

115 IF(NF(K+2).NE.29) GO TO 117

CALL PMID(ALFA(K+2),HL,AL,PL,TL,UL,DL,ML)

BETAP-(ALFA(K+1)-ALFA(K+2))#PI/180
    4531
4541
4551
    455:
456:
457:
458:
459:
460:
461:
462:
                                                 K-K+3
                              GO TO 118
117 K-K+2
118 IF(K.GT.9) GO TO 120
IF(ML.LE.6.) GO TO 120
```

RI

```
4641
4661
4661
4671
4681
4791
4791
4791
4791
4761
4761
4761
                            IF(NF(K).LE
PU-PL
TU-TL
DU-DL
HU-HL
AU-AL
VU-VL
HU-HL
GAMAU-GAMAL
PFRSTM-PU
TFRSTM-PU
UFRSTM-DU
VFRSTM-DU
VFRSTM-HU
GO TO 101
                              IF(NF(K).LE.0) GO TO 120
  4781
47910
48010
48110
                              MACH HUMBER LESS THAN ONE ( IDEAL GAS
 482:
483:
484:
486:
486:
486:
488:
                 159 IF(K.LT.2) GO TO 160
                 159 IF(K.LT.2) GO TO 160

HO-MTOTAL

PO-PTOTAL

RHOO-RHOTOT

TO-TTOTAL

GAMAO-GTOTAL

GO TO 162

160 PO-PUX(1.+.2xMUXNU)**3.5

HO-HU+UUXUU/50103.

TO-MO/24
 TO-HOV.24
GAMAO-1.4
162 CALL HANSEN(XMUO,FO,TO)
165 IF(NF(K+2).EQ.29) GO TO 166
BETAP-ALFA(K+1)$PI/188
                              K-K+2
                 167 IF(K.GT.7) GO TO 168
IF(ALFA(K)-0.)168,168,165
166 BETAP-(ALFA(K+1)-ALFA(K+2))*PI/180
                              IF (BETAP.LT.O.) BETAP-O.
                 TF (BETHP.LT.W. / BETHP.W.
K-K+3
GO TO 167
168 PE-PU+(PO-PU)#SIN(BETAP)##2
TO-HO/.24
GAMAO-1.4
TE-TO#(PE/PO)##.286
                             RHOE-PE/(GR#TE)
RHOO-PO/(32.2#53.35#TO)
                             MMC-P0/(32.2%53.35%TO)
HE-0.24%TE
GAMAE-1.4
IF(HE.GT.HO) GO TO 163
IF (BETAP .GE. PI/2) GO TO 163
UE-SQRT((HO-HE)%50103.)
AE-49.02%SQRT(TE)
                 XME-UE-AE
CALL HANSEN(XMUE,PE,TE)
GO TO 164
163 PE-PO
                             HE-HO
TE-TO
                              RHOE - RHOO
 548:
623:
624:
626:
626:
626:
626:
628:
628:
630:
630:
633:
633:
636:
636:
536:
536:
                              XMUE - XMUO
                              UE-0.
UE-UUICOS(BETAP)##2
XME-0.
                  164 HSL-HE
PSL-PE
TSL-TE
                              XMUSL-XMUE
                              USL-UE
                              RHOSL - RHOE
                              HD-HU
PD-PU
TD-TU
                              DD-DU
                              UD-UU
                             SD-SU
AD-AU
```

```
GAMAD-GAMAU
GAMASL-1.4
PSTAG-PO
RHOSTG-RHOO
TSTG-TO
XMUSTG-XMUO
$40:
$41:
$42:
$44:
$45:
$46:
$46:
$46:
$56:
$56:
$56:
$56:
$56:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$566:
$
                                                                                                   GO TO 121
                                                                                                    SWEPT CYLINDER STAG LINE PROPS
                                                            116 UT-UECOS(BETARPI/180)
                                                                                                   UN-6.
IF(UT.LT.UE) UN-SQRT(UD&UB-UT&UT)
                                                                                                   EMN-UN/AD
TSL-TD$(1.+.2$EMN$EMN)
PSL-PD$(TSL/TD)$$3.5
                                                                                                   PSL-PDE(TSL/TD)##3.5
HSL-.24#TSL
HMOSL-PSL/(GR#TSL)
GAMASL-1.4
USL-UU#COS(#ETA#PI/180)
CALL HAMSEN(XMUSL,PSL,TSL)
PE-PSL
HE-HSL
TE-TSL
                                                                                                    RHOE - RHOSL
GAMAE - GAMASL
XMUE - XMUSL
                                                                                                    WE-USL
XME-UT/AD
PSAU-PTOTAL
TSU-TTOTAL
                                                                                                       RSU-RHOTOT
                                                                                                       ANGLE-PI/2
                                                                                                      CALL DOWNID (ANGLE)
                                                                                                      HTOTAL-0.24*TINF+U*U/50103.
TSTG-HTOTAL/.24
RHOSTG-PSTAG/(GR#TSTG)
                                                                                                         CALL HANSEN(XMUSTG, PSTAG, TSTG)
                                                                                                       PTOTAL-PSAU
    $601

$811

$821

$821

$821

$821

$821

$821

$821

$821

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$921

$931

$941

$941

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$942

$944

$944

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

$945

                                                                                                       TTOTAL-TSU
                                                                                                       BETAP-BETASPI/180
GO TO 119
                                                                                                       DEFINE BOUNDARY LAYER EDGE PROPERTIES
                                                               120 PE-PL
                                                                                                    TE-TL
RNOE-DL
HE-HL
AE-AL
GAMAE-GAMAL
UE-VL
HE-HL
                                                            XME-ME
CALL HAMSEN(XMUE,PE,TE)
119 HO-HTOTAL
PO-PTOTAL
TO-HO/.24
RHOO-PO/(GR#TO)
GAMAO-1.4
CALL HANSEN(XMUO,PO,TO)
CALL HANSEN(XMUU,PU,TU)
                                                                                                       DEFINE WALL PROPERTIES
                                                      121 MU-0.24%TU
GU-1.4
XMACHU-MU
RHOU-PE/(GR&TU)
CALL HANSEN(XMUU,PE,TU)
ALPHA-BETAP/PI%180
       610
     613:C
614:C
616:C
                                                                                                               ECKERT REFERENCE ENTHALPY PROPERTIES - IDEAL GAS
```

```
HRECL-HE+0.85%UEXUE/50103.
HRECT-HE+0.88%UEXUE/50103.
HSTL -0.5%(HE+HU)+0.22%(HRECL-HE)
HSTT -0.5%(HE+HU)+0.22%(HRECT-HE)
TSTL-HSTL/.24
 616:
617:
618:
619:
620:
621:
622:
622:
623:
626:
629:
630:
631:
634:
635:
636:
637:
                                                                               TSTT-HSTT/.24
                                                                            TSTT-MSTT/.24
GAMAS-1.4
GAMAS-1.4
RHOSTL-PE/(1716.481TSTL)
RHOSTT-PE/(1716.481TSTT)
CALL MANSEN(XMUSTL,PE,TSTL)
CALL HANSEN(XMUSTT,PE,TSTT)
IF(NMFLAG.EQ.5) GO TO 150
IF(NMFLAG.EQ.7) GO TO 150
GO TO 999
                                                                               DEFINE RHO R. MU R PROPERTIES
                                            150 RHOSP-PE/(GRATO)
CALL HANSEN(XMUSP,PE,TO)
RMSP-RHOSPAXMUSP
                                                                               RME - RHOE & XMUE
                                                                               RMEE-RMSP#(1.85-.85#(RMSP/RME))
                                                                              RMU-RHOUSEMUU
RORMUR-RMEES(1.60-0.608(RMEE/RMU))
 ITERATE FOR RHO R AND MU R
                                          I=1
RMP-RORMUR/(1.E-13#PE)
IF(RMP-4.)130,130,131
130 TRGESS-2.21E4#RMP##(-2.47)
GO TO 132
131 TRGESS-2.E7#RMP##(-7.39)
132 IF(TRGESS.GT.10000.) TRGESS-10000.
RHORG-PE/(GR#TRGESS)
CALL MANSEN(XMURG,PE,TRGESS)
RMGESS-RHORG##MURG
ERR-ABS((RMGESS-RCRMUR)/RORMUR)
IF(ERR.LT..01) GO TO 135
RESID-RORMUR-RMGESS
TRGP2-TRGESS#1.05
TRGM2-TRGESS#1.05
TRGM2-TRGESS#1.05
DERIUR--PE/(GR#TRGESS#TRGESS)
CALL HANSEN(XMURP2,PE,TRGM2)
DERIUM-(XMURP2-XMURM2)/(.1#TRGESS)
DERIUM-(XMURP2-XMURM2)/(.1#TRGESS)
DERIUM-(XMURP2-XMURM2)/(.1#TRGESS)
DERIUM-(XMURP2-XMURM2)/(.1#TRGESS)
DERIUM-XMURG#DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/DERIUM-RATE-RESID/
662:
663:
664:
665:
666:
667:
668:
663:
                                                                             RATE - RESID/DERIU
TRGESS-TRGESS-RATE
                                            IF(I.LT.50) G0 TO 132
135 RHOR-RHORG
XMUR-XMURG
TR-TRGESS
                                                                             HR - . 241TR
  6711
                                                                              GAMAG-1.4
                                              999 RETURN
```

```
DIMENSION A(IMAX), B(IMAX), C(IMAX), D(IMAX), S(IMAX), ALPHA(IMAX)
                               SIMULTANEOUS LINEAR
                             THIS SUBROUTINE SOLVES A SYSTEM OF SIMULTANEOUS LINI
EQUATIONS WITH TRI-DIAGONAL MATRIX BY THE METHOD OF
SUBROUTINE GAUSS(A, B, C, D, ALPMA, S, T, IMAX)
                                                                                                                                                                                                                                                                                                                    ALPHA(I) = B(I) - A(I)*C(I-I)/ALPHA(I-I)
                                                                                                                                                                                                                                                                                                                                     S(I) - D(I) - A(I)*S(I-1)/ALPHA(I-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                     T(J) - (S(J) -C(J)*T(J+1))/ ALPHA(J)
                                                                                                                                                                                      - ARRAY TO CANTAIN SOLUTIONS
                                                                                                                                                     ARRAY OF SECOND DIAGONAL ARRAY OF THIRD DIAGONAL
                                                                                                                                                                                                                                                                                                                                                                    T(IMAX) - S(IMAX)/ALPHA(IMAX)
                                                                                                                                       - ARRAY OF FIRST DIAGONAL
                                                                                                                                                                                                                                      IMAX - NUMBER OF UNKNOWNS
                                                                                                                                                                                                                     ALPHA = SCRATCH STORAGE
                                                             GAUSSIAN ELIMINATION.
                                                                                                                                                                                                    S - SCRATCH STORAGE
                                                                                                                                                                                                                                                                                                                                                                                                     I-2, IMAX
                                                                                                                                                                                                                                                                                     S(1) = D(1)
DO 50 I=2 IMAX
                                                                                                                                                                                                                                                                      ALPHA(1) = B(1)
                                                                                                          T(IMAX)
                                                                                                                                                                                                                                                                                                                                                                                    YHMI - D
                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                      100
                                                                                                                                                                                                                                                                                                                                                                                                                     . J-1
                                                                                                                                                                                                                                                                                                                                                                                                     20
                                                                                                                                                                                                                                                                                                                                                     20
                                                                                                                                                                                                                                                                                                                                                                                                                                                    100
                                                 4:0
                                                                              6 1 C
                                                                                                          ..
6
..
                                                                                                                                         0:0
                                                                                                                                                         11:0
                                                                                                                                                                         2:0
                                                                                                                                                                                                                      5:0
                                                                                                                                                                                                                                       16:0
                                                                                                                                                                                                                                                                                                                                                                                                                                                 29:
                                                                                                                                                                                                                                                                                     19:
                                                                                                                                                                                                                                                                                                     20:
                                                                                                                                                                                                                                                                                                                     22
                                                                                                                                                                                                                                                                                                                                     22:
                                                                                                                                                                                                                                                                                                                                                    23.
24.
25.
```

```
THIS SUBROUTINE CALCULATES VISCOSITY BASED ON HANSEN
                                                                                                                                                               IF (PL.LT.-3.69897) COEF=1.
IF (PL.LT.-3.69897) GO TO 3
A=(T/1800.*(1.-0.125*PL)-6.5)/(1.5+0.125*PL)
B= 1.+0.023*(T/1800.)*(1.+TANH(A))
                                                                                             FORMAT( / 24H TEMP IS ZERO OR NEG, T= F9.2)
                                                                                                                                                                                                                        C-(T/1800.-14.5-1.5*PL)/(.9+.1*PL)
                                                                                                                                      XMUS=2.27E-8*T**1.5/(198.6+T)
PL=AL0G10(P/2116.)
SUBROUTINE HANSEN(XMU,P,T)
                                                                                                                                                                                                                                                                  IF(COEF.LT..04) COEF=.04
XMU=XMUS*COEF
                                                   COMMON/ERRFLG/ NERROR IF(T.GT.0.) GO TO 2 URITE(6,1) T
                                                                                                                                                                                                                                          D-EXP(C)+1.
                                                                                                                                                                                                                                                       COEF-B/D
                                                                                                                           NERROR-1
                                                                                                             T-1999.
                                                                                                                                                                                                                                                                                               RETURN
                                                                                                                                          ณ
                2:0
                             9:0
0:0
                                                                                               ä
                                                                                                             ö
                                                                                                                            :01
                                                                                                                                                      ä
                                                                                                                                                                    3:
                                                                                                                                                                                  4006
                                                                                                                                                                                                                                         18:
                                                                                                                                                                                                                                                       19:
                                                                                                                                                                                                                                                                     20:
```

:

```
SUBROUTINE MATRES(MATL, QN, RHOM, CPM, DEL, TDOT, TW, TMAT, CPMAT, NMTL)
DIMENSION CPMAT(10), TMAT(10), XX(10)
IF(MATL.GT.0) GO TO 10
T=TW-459.7
                                                                                                                   GO TO 100
CALL TBLIN(T, TMAT, CP, CPMAT, X, XX, NMTL)
                                                                                                                                                     10 CALL MPROPS(MATL, TW, RHO, CP, X)
                                                                                                                                                                                                  TDOT-12.*GN/(RHO*CP*DEL)
                                                                                             IF (NMTL.GT.0) GO TO 6
                                                           MATL PROPS INPUT
                                                                                                                                                                             CALCULATE TDOT
                                                                                                                                          GO TO 100
                                                                                  RHO-RHOM
                                                                                                                                                                                                               RETURN
                                                                                                         CP-CPM
                                                                                                                                ø
                                                                                                                                                                                                     100
                                                                                    S
                                                           15:0
16:0
                                                  2:0
```

```
SUBROUTINE MOLIER(H,P,NOPT,T,Z,S,RHO,GAMMA)
                        NOPT-0 LOOK UP PROPS BASED ON P AND H
NOPT-1 LOOK UP PROPS BASED ON P AND S
NOPT-2 LOOK UP PROPS BASED ON P AND T
NOPT-3 LOOK UP PROPS BASED ON H AND S
DIMENSIOM FLP(33,20),HZ(33,20),TT(33,20),ZT(33,20),GAME(33,20),
1ENTRO(33,20),FLPO(660),HZO(660),TTO(660),ZTO(660),GAME(060),
2ENTROO(660),FLPZ(20),HTBL(33),ENTROV(20,33),FLPU(20,33)
EQUIVALENCE(FLPO,FLP),(HZO,HZ),(TTO,TT),(ZTO,ZT),(GAMEO,GAME),
1(FNTROO,FNTRO)
                        (ENTROO,ENTRO)
DATA PO,CPOR,HO,SOR,G,R,ALE,RTO,CP/2116.,3.48158,117.346,23.6,
132.2,53.35,2.302585,33.705,.23866/
COMMON/FLAG/ IDEAL,IFP
                           IDEAL-0
                           Z-1.0
GAMMA-1.4
                           IF(IZ.EQ.33) GO TO 5
                           DO 2 K-1,20
LL-33#(K-1)
  20:
21:
                          DO 2 L-1,33
FLPO(LL+L)-FLPZ(K)
IF(K.EQ.1) GO TO 2
HZO(LL+L)-HZO(L)
  22:
23:
24:
 25:
26:
27:
28:
29:
39:
31:
32:
                     S CONTINUE
                           IZ-33
                           JZ-20
                 JZ-20
DO 1 I-1,IZ
HTBL(I)-MZ(I,1)
DO 1 J-1,JZ
ENTROU(J,I)-ENTRO(I,JZ-J+1)
1 FLPU(J,I)-FLP(I,JZ-J+1)
5 IF(NOPT.EQ.3) GO TO 40
PL-RLOGIO(P/2116.) + 10.
IF(NOPT-1) 10,20,30
10 IF(H.LT.100.) GO TO 100
CALL DINT(H,HZ,ZT,PL,FLPZ,IZ,JZ,T,TT,S,ENTRO,0,GAMMA,GAME)
IF(Z-.2222E+30)11.12.12
  33:
34:
35:
36:
37:
               IF(Z-.222E+30)11,12,12
11 RHO- P/(32.2*53.35*2*T)
GO TO 50
100 IF(H.LT.0.) GO TO 12
  38:
   40:
   41:
   421
                           T-H/CP
                           RHO-P/(GERET)
  43:
44:
               101 S=(CPOR*ALOGI@(H/HO)-ALOGI@(P/PO))*ALE+SOR
GO TO 50
12 IFP=1
   451
  46:
47:
48:
                           IDEAL-1
                          GO TO 50

IF(PL.LT.FLPZ(1)) GO TO 22

DO 21 J-2,JZ

IF(PL-FLPZ(J)) 203,202,21
 49:
50:
51:
52:
53:
54:
                  50
               21 CONTINUE

202 IF(S-ENTRO(2,J)) 205,204,204

203 IF(S-ENTRO(2,J-1)) 205,204,204

204 CALL DINT(S,ENTRO,H,HZ,PL,FLPZ,IZ,JZ,T,TT,Z,ZT,1,GAMMA,GAME)

IF(H-.2222E+30)11,22,22

205 H-RTOXCPORX10XX((S-SOR+ALEXALOG10(P/PO))/(CPORXALE))
 55:
56:
57:
58:
560:
661:
664:
664:
669:
77:
77:
77:
78:
                            T-H/CP
                  RHO-P/(G*R*T)
GO TO 50
22 IFP-1
                            IDEAL - 1
               GO TO 50

30 IF(T.LT.419.) GO TO 301

CALL DINT(T,TT,H,HZ,PL,FLPZ,IZ,JZ,

IF(H-.2222E+30)11,31,31

301 IF(T.LT.0.) GO TO 31
                                                                                                                               Z, ZT, S, ENTRO, 1, GAMMA, GAME)
                  H-CP±T
RHO-P/(G±R±T)
GO TO 101
31 IFP-1
                           IDEAL-1
                  IDERL*1

GO TO 50

40 IF(H.LT.100.) GO TO 401

CALL DINT1(S,ENTROU,PL,FLPU,H,HTBL,JZ,IZ)

IF(PL-.2222E+30)41,42,42

41 IF(PL.GT.12.69897) GO TO 44
                           P-10.##(PL-10.)#2116.
```

```
ORIGINAL PAGE IS
                                                                                                                                                                                                                                                                                                                                                       OF POOR QUALITY
      79:
80:
                                        GO TO 18
                                                                    ALP-(SOR-S)/ALE+CPOR#ALOG18(H/HO)
      81:
                                                                     P-P0#10.##ALP
       83:
                                                                     T-H/CP
      84:
85:
86:
87:
                                                                    RHO-P/(GERST)
                                                                    GO TO 50
                                                                    IFP-1
                                               49 IDEAL-1
GO TO 50
      88:
                                                44 IDEAL-2
      90:
91:
92:
                                                50 RETURN
                                                            DATA (FLPZ(J),J-1,20) /6.30103, 6.69897, 7.0, 7.30103, 7.69897, 8.
10, 8.30103, 8.69897, 9.0, 9.30103, 9.69897, 10.0, 10.30103, 10.698
297, 11.0, 11.30103, 11.69897, 12.0, 12.30103, 12.69897/
DATA (TTO(L),L-1,204)/ 0., 419., 834.,1616.,2339.,3032.,3478.,
      93:
                                                                                                                                          L),L-1,204)/ 0., 419., 834.,1616.,2339.,3032.,3478.,.,4175.,4320.,4468.,4600.,4880.,5148.,5730.,6238.,6565.,,7155.,7270.,7380.,7693.,7911.,8100.,8262.,8410.,8568.,
                                                             13848.,4025.,4175.,4320.,426836.,7005.,7155.,7270.,78723.,8900.,9140.,9450.,
       95:
       96:
                                                           38733, 8900. 9140. 9450. 0. 419. 834. 1616. 2339. 3032. 3517. 43907. 4130. 4390. 4460. 4600. 4750. 4940. 5260. 5760. 6300. 6705. 56984. 7195. 7350. 7490. 7596. 7927. 8172. 8374. 8550. 8712. 8878. 69054. 9250. 9490. 9780. 0. 419. 834. 1616. 2339. 3032. 3546. 73964. 4224. 4390. 4563. 4708. 4865. 5660. 5346. 575. 6350. 6795. 87092. 7305. 7495. 7648. 7772. 8125. 8388. 8595. 8784. 8950. 9135. 99324. 9520. 9750. 10030. 0. 419. 834. 1616. 2339. 3032. 3571. 14035. 4295. 4500. 4669. 4830. 4990. 5180. 5450. 5890. 6450. 6870. 27218. 7450. 7640. 7790. 7920. 8323. 8604. 8827. 9018. 9216. 9405. 39594. 9780. 10030. 10350. 0. 419. 834. 1616. 2339. 3032. 3586. 44100. 4410. 4630. 4815. 4985. 5150. 5340. 5594. 5990. 6498. 6995. 57353. 7620. 7840. 8015. 8172. 8597. 8901. 9150. 9378. 9576. 9765. 69963. 10180. 10420. 10730. 0. 419. 834. 1616. 2339. 3032. 3596. 74150. 4485. 4735. 4930. 5100. 5270. 5480. 5724. 6050. 6580. 7050. 87470. 7760. 8000. 8190. 8334. 8811. 9144. 9410. 9648. 9846. 91060. 10280. 10500. 10740. 11040. 0. 419. 834. 1616. 2339. 3032. 3596. 74150. 4485. 4735. 4930. 5100. 5270. 5480. 5724. 6050. 6580. 7050. 87470. 7760. 8000. 8190. 8334. 8811. 9144. 9410. 9648. 9846. 91060. 10280. 10500. 10740. 11040. 0. 419. 834. 1616. 2339. 3032. 3596. 74150. 5872. 6195. 6650. 7165. 7596. 7908. 8150. 8355. 8532. 9036. 29414. 9657. 9927. 10160. 10380. 10590. 10820. 11100. 11400. 5202. 5408.
       971
                                                                                                                                                                                                                                                                                    419
                                                                                                                                                                                                                                                                                                                              834.,1616.,2339.,3032.
       99:
100:
 102:
  1041
 105:
106:
107:
   109:
 110
   112:
  113:
                                                      DATA (TTO(L),L-205,400/3618.4208.4555.4829.5040.5240.5140.15610.5872.6195.6656.7165.7596.7998.8156.8355.8524.9263.29414.9657.9927.10160.10380.10590.10820.11100.11400.0.3
3 419.834.1616.2339.3032.3630.4259.4655.4960.5202.5408.45640.5840.6066.6356.6790.7250.7722.8095.8360.8600.8725.59378.9755.10060.10350.10580.10580.11100.11300.11580.611880.09419.834.1616.2339.3032.36640.4300.4750.5060.87523.5550.5758.5990.6228.6505.6090.7310.7830.8215.8520.88760.9000.9030.10040.11300.11580.11680.11970.11290.004.119.834.1616.2339.3032.3640.4300.4750.5060.911800.11970.11290.004.119.834.1616.2339.3032.3654.4314.14800.5150.5445.5683.5910.6150.6094.16100.11180.11200.11180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.1180.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11200.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.11800.118
  114:
   116:
  117:
  120:
   122:
  123:
   1241
   125:
  126:
 129:
130:
131:
 132:
133:
134:
 136:
 138:
   139:
 140:
 1411
  142:
 143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
   153
154:
155:
156:
157:
 158:
```

```
159:
160:
161:
162:
                  DATA (ZTO(L),L=1,249)/6*1.0,1.007,1.024,1.049,1.076,1.103,1.130,
11.156,1.180,1.201,1.210,1.216,1.226,1.238,1.251,1.265,1.280,1.296
21.358,1.422,1.486,1.551,1.617,1.681,1.746,1.810,1.874,1.934,6*1.0
                                                                                                                      .874,1
.197,1
                  31.004,1.020
41.224,1.235
51.674,1.738
                                                                                                                                  . 268
. 545
. 967
. 258
. 858
                                               044
                                                                        998
                                                                                   .124
 163
                                                248
                                                            560
                                                                                              .352,
                                                                                                           .416
.018
.232
                                                                        275
                                                                                  . 296
                                                                                                                                              . 689
                                                                                                                        486
                                                                                6.1.6
                                                                                                                       040
244
 1641
                                                           . 865
1661
1681
1671
                  61.119,1.147
71.287,1.348
                                               .171.
                                                           . 193,
                                                           .475
                                               411
                                                                                                                       795
165
                                                                       539
                                                                                  .684
                                                                                               .667
                                                                                                           .732
                                                                                                                                               918
                 71.287,1.348,

R6#1.0,1.001,

91.212,1.219,

11.597,1.661,

21.108,1.132,

31.277,1.337,

47*1.0,1.012,

51.214,1.223,
                                                                                                                                  .188
.470
.056
                                               016
                                                                       060
                                                           241,
788,
181,
                                                                                                           343
013
226
                                                                       255,
                                                                                   . 268
                                                                                              *1.0
.216
                                               725
                                                                       851
                                                                                   .909
                                                                                                                       032
237
                                                                                                                                               681
 169:
170:
                                               . 156
                                                                                                                                               264.
                                                                       526
076
                                                                                                                                  .840
.193
                                               398
                                                            461
                                                                                   .589
                                                                                               652
                                                                                                            715
                                                                                  .100
                                                                                                                                               205
                                                928
                                                            952
                                               234
                                                            246
                                                                        259
                                                                                                332
                                                                                                                        455
                                                                                                                                   .518
1731
                                                                                                            393
                  61.344,1.707
71.120,1.144
81.326,1.387
                                               770
169
449
                                                                                                           024
231
                                                                                                                                   978
256
1741
                                                           .831
                                                                       891
                                                                                711.0
                                                                                               110.
                                                                                                                        242
                                                                                                                                               . 896
175:
176:
177:
                                                            188
                                                                       201
                                                                                    636
                                                                                                699
                                                                                                                        822
                                                                                                                                    889
                                                                                                                                                1.0
                 81.320,1.367,
91.010,1.022,
DATA (ZTO(L
11.439,1.500,
21.037,1.058,
31.232,1.244,
41.798,1.855
                                                          .063
                                                                        988
                                                                                   112
                                                                                                136
                                                                                                           160
                                                                                                                        180
                                                                                                                                    196
                                                                                                                                               206
                                               L•250
.563,
                                                                       215,
178:
                                                                                   . 226
                                                                                                                        563
                                                                                                                                    318
                                                            625
                                                                                   .748
                                                                                                808
                                                                                                            867
                                                                                                                        1.0
                                                                      .128,1.152
.372,1.431
.015,1.032
.216,1.228
.727,1.787
                                                           104
                                                                                               172,
                                                                                                           190
                                                                                                                                   677
 180
                                                686
                                                                                                                        201
                                               258,
181:
                                                                                                                                                738
                                                                                                                       616
                                                                                                                                  .121
.364
.012
.210
182
                                                                                              .240
.844
.173
.531
                  51.164,1
61.484,1
71.046,1
                                   .184
                                                            207
                                                                                                                       306
183:
                                               .197
                                                                                                            252
                                                                                                                                                424
                                                                                                                                              .026,
.220,
.770,
.144,
.462,
                                                           667
184:
                                                                                                          ¥1.0
                                               606
                                   . 066
                                                088,
                                                                      .133,1.154
.412,1.472
.022,1.040
.215,1.227
.757,1.812
.135,1.154
.452,1.510
                  81.232,
1861
                                1.245
                                                                                                                       653
                                                297
                                                            353
                                                                                                           592
                                                                                                                       101
                                               005
                                                                                               058
                                                                                                           989
                                                           204
                                                                                                                                  .124
                 11.164,
188
                                                                                                           589
                                                                                                                                               219
189:
                                   581
                                                640
                                                            699
                                                                                              11.0
                                                                                                           004
                                                                                                                       007
                                                                                                                                   918
                  31.052,1
                                 .072
                                                           115
394
                                                                                              .172
.569
                                                                                                                       197
                                               992
1901
                                                                                                           186
                                                                                                                                   208
                                               337
                                                                                                                                  .742
191:
                                                                                                           627
                                                                                                                       685
                 57#1.0,1.003
61.159,1.174
71.552,1.609
                                                           013,
                                                                                   844
                                                                                                           081
                                                           199,
721,
112,
                                                                                               278
                                                                                                                                               494,
                                                                      .210,
                                                                                                           324
004
193:
                                                                                1.221
                                                                                                                       379
                                                                                                                                   437
                                               188
                                                                                7$1.0
194:
                                               666
195 :
196 :
                 81.055,1.072
91.261,1.314
                                                                                                                                  . 759
                                                                                  .148
                                               092,1
                                                                                               164
                                                                                                           177
                                                                                                                       189
                                                                                                                                               213,
                                                                                   537
                 DATA (ZTO(L
11.082,1.098,
21.355,1.410
                                                                      .001,1
152,1
577,1
                                                                                 .632
197:
                                              L-503
                                                         .136
                                                                                               998
                                                                                                           019
                                                                                                                       636
                                                                                                                                   251
                                                                                                                                               064,
                                                                                                           191,1.203
                                                                                               179
                                                                                                           191
198:
                                                                                                                                               302
199;
200;
201;
202;
                                               466
                                                          .522
                                                                                               687
                                                                                                                                   992
                                                                                                                                               905
                 31.014,1.024,
41.176,1.189,
51.712,8*1.0
                                               037
                                               235
                                                          .285
                                                                       338
                                                                                               445
030
223
                                                                                   390
                                                                                                           500
                                                                                                                       553
                                                                                                                                   607
                                                                               1.019
                                                                                                           944
272
                                                                      .010
                                                                                                                                   075
                                                                                                                                               091.
                                                                                                                       059
203:
204:
205:
206:
207:
                  61.107,1.122
                                               136
                                                                       163
                                                                                                                       322
                                                                                                                                   375
                                                                                                                                               428
                  71.480
                                                                       692
                                                                                                                                               037,
                 81.050
                 81.050,1.064,
91.306,1.357,
11.019,1.028,
                                               979
410
                                                          . 460
                                                                               1.122
                                                                       108
                                                                                               136
                                                                                                           148
                                                                                                                       161,
                                                                                                                                   895
                                                                     .512
                                                                                                                     0×1.
                                                                                 .564
                                                                                               615
                                                                                                           665
                                                                                                                                   993
                                                                                                                                               010.
                                               .039
                                                          . 050
                                                                                 .076
                                                                                               090
                                                                                                           184
                                                                                                                                  . 128
                                                                                                                                            1.141,
                 21.187,1.234,
DATA (GAMEO(
11.114,1.108,
21.121,1.110,
31.111,1.122,
                                                                                 .431
568:
                                               282
                                                           332,
                                                                       382,1
                                                                                                           531
                                                                                               480
                                                                                                                       581,
                                                                                                                                  . 630
209:
210:
                                              ),L=1,
.108.1
                                                         212)/2*1.4,
                                                                                               344
                                                                                                           317
                                                                                                                       295
                                                                                                           264
094
                                                                                                                                  .180
                                                                                 . 169
                                                                                               556
                                                                                                                       238
                                                                                                                                               143,
                                                                     .094
211:
                                               103,
                                                          .099
                                                                                                                                             .104,
                                                                                  .092
                                                                                               093
                                                                                                                       996
                                                                                                                       214
515:
                                                138,
                                                                                               317
                                                                                                           295
                                                                                                                                  149
                 41.113,1.113,
51.116,1.109,
61.124,1.138,
71.116,1.121,
213:
                                               118
                                                          . 131
                                                                                   212
                                                                                                           248
214:
                                                                                               998
295
                                                                                                                       192,
154,
158,
                                                                   1.096
                                                                                  .097
                                               105
                                                           698
                                                                                                           100
                                                                                                                                   107
                                                          .390
                                                                                                           220
                                                                                                                                  .124
                                                                                                                                 .133,1
516:
                                                                       203,
                                                                                               255
                                                                                                           198
                                                                                   258
217:
                 81.114,1.109,
91.139,2*1.4,
11.124,1.134,
                                               101
390
                                                          .099
                                                                     .100
                                                                                   101
218:
                                                                                                                       130,
140,
118,
                                                                                                                                               120,
                                                                                   295
                                                                                               227
                                                                                                           160
                                                                                                                                   121
219:
                                                          .195,
                                               156
                                                                       250
                                                                                  . 261
                                                                                               206
                                                                                                           165
                                                                                                                                 .126
                 21.114,1.105,
32*1.4,1.390,
41.137,1.154,
51.110,1.107,
61.390,1.344,
                                               102
                                                                                   106
: 025
                                                            103,
                                                                       104
                                                                                              .169,
.174,
.116,
221:
                                                           317,1.295,1
                                                                                 .236
                                                                                                                       128,1.125
134,1.125
130,1.142
                                                           317
                                                                                                           138
: 255
                                               186,
                                                                                                                                               120
                                                                                                           148,1
                                                                   1.110,1.112
223:
                                               107,1
                                                          .108,
224:
                                                                                                                       130,1.133
                                                                                                           133
                                                                                                                              1.133,1.149
                  71.154,1.181
81.111,1.111
91.344,1.317
                                                                                                           140,
                                  .181,
225:
                                                           258,1.227,1.182
                  81.111,1.111,1.112,1.113,1.116,1.129,1.125,1.133,1.145,2*1.4,1.390, 91.344,1.317,1.295,1.250,1.183,1.151,1.188,1.134,1.137,1.143,1.155/
DATA (GAMEO(L),L=213,276)/ 1.179,1.218,1.252,1.236,1.191,1.163, 11.147,1.138,1.131,1.118,1.114,1.114,1.115,1.117,1.120,1.123,1.128, 21.136,1.147,2*1.4,1.390,1.344,1.317,1.295,1.258,1.193,1.161,1.146, 31.140,1.142,1.148,1.157,1.177,1.209,1.244,1.244,1.207,1.177,1.159,
: 955
227:
558:
229:
230 :
```

```
31.148,
41.139,1.124,1.120,1.119,1.120,1.122,1.124,1.128,1.133,1.141,1.150,
52*1.4,1.396,1.344,1.317,1.295,1.263,1.201,1.169,1.152,1.146,1.147/
DATA (GAMEO(L),L=277,424)/ 1.152,
61.160,1.177,1.204,1.237,1.245,1.219,1.189,1.169,1.156,1.145,1.128,
 238:
233:
234:
235:
236:
236:
                                     71.124,1
81.344,1
91.178,1
11.127,1
                                                                                                                                                                                                                     143,1.154,211.4,
152,1.152,1.156,
164,1.152,1.134
                                                                                                                                                                                           .137,1
                                                                                                                                                                                                                                                                                           . 390,
. 163,
. 128,
                                                                                                                                                                    .132
                                                                                                                    .267,1
 538:
538:
                                                                                               . 295, 1
                                                                                                                                              210,1
                                                                                                                                                                                                                   156, 211.4,
.156, 211.4,
.159, 1.161,
.22, 1.141
                                                                        317
                                                                                                                                                                                           .179,1
.147,1
.160,1
.174,1
                                                                 1.200
                                                                                                                                             . 226
 240:
241:
242:
                                                                        128
                                                                                                                                              . 136
                                                                                                                                                                   .148
                                                                                                                                                                                                                                                                    169
                                     21.317
                                                                                                                                                                                                                                                                                            130,
133,
317,
                                                                                               271
                                                                                                                      .223.1
                                                                                                                                              . 188. 1
                                                                 1.295
                                                                 1.221
                                                                                              . 236. 1
                                                                                                                     . 231,1
                                                                                                                                                                                                                                     1.390,
1.173,
1.140,
1.344,
                                                                                                                    .142
                                                                                                                                                                   .152,
   2431
                                                                                               . 138,
                                                                                                                                                                                               161
                                     51.295,1.273,61.217,1.231,
 2441
                                                                                                                                             . 175
                                                                                                                                                                                           .164,1
                                                                                                                                                                                                                                                                  .182.
                                                                                                232.1
                                                                                               . 232, 1
                                                                                                                                                                                                                                                                     138
 245:
246:
247:
248:
249:
250:
251:
252:
253:
                                                                                                                                            .156.1
                                                                                                                                                                                                                   .390,
                                     71.140,1.142,
81.274,1.238,
91.228,1.232,
                                                                                                                                                                   .164,
.170,
.179,
                                                                                               146,
                                                                                                                     . 150,
                                                                                                                                                                                                                                                                                            295,
214,
145/
                                                                                                                                                                                      1.171
                                                                                              1,015.1,305.
                                                                                                                                                                                                                                      1.186
                                                                                                                                                                                                                                                                  .197
                                                                                                                                       1.192
                                                                                                                                                                                                                   .145,1
                                                                                                                                                                                                                                          .143
                                                                                                                                                                                                                                                                     143
                                         DATA (GAMEO (L
                                                                                                                                      71.147,
1.244,1
1.231,1
                                                                                                L-425,636
                                    11.344,1.317,1
21.190,1.200,1
31.150,1.150,1
41.317,1.295,1
                                                                                                                                                                     218,
                                                                                                                                                                                                                    182
                                                                                                                                                                                                                                         .178
                                                                                                                      275,
                                                                                                295,1
                                                                                                                                                                                            . 195
                                                                                                                                                                                                                                                                                             183
                                                                                              .213,1
.150,1
.275,1
                                                                                                                                                                                                                                                                                            153
344
194
                                                                                                                                                                   .228.1.218
                                                                                                                                                                                                                   .204
                                                                                                                      225
                                                                                                                                                                                                            1.173,211.4
                                                                                                                     .153, 1.156,
                                                                                                                                                                   .160,1.160
                                                                                                                                                                                                                                                                  . 390
                                                                                                                                                                                                                                         .184
                                                                                                                                                                                           . 189
                                                                                                                                                                    .204,
 254:
255:
256:
257:
258:
259:
260:
                                     51.202,1.213,
61.155,1.156,
71.295,1.275,
                                                                                                224,
                                                                                                                      230
                                                                                                                                              530
                                                                                                                                                                   .224,
                                                                                                                                                                                             212
                                                                                                                                                                                                                    200,
                                                                                                                                                                                                                                          .169
                                                                                                                                                                                                                                                                    159
                                                                                                                                                                                                                                                                                            155
                                                                                                                                                                   .171,1.177
                                                                                                                    .161
                                                                                               158,1
                                                                                                                                             . 165.
                                                                                                                                                                                                             211.4.1
                                                                                                                                                                                                                                         .390
                                                                                                                                                                                                                                                                   344
                                                                                                                                                                                                                                                                                             317.
                                                                                              .250,1
                                                                                                                   .232,1.211
                                                                                                                                     1.227,1.219,1.240,1.390,
1.175,1.182,2x1.4,1.390,
1.265,1.199,1.198,1.199,
1.226,1.216,1.186,1.174,
                                     81.214,
                                                                1.224
                                                                                               166,
                                     91.161,
                                                                     .163
                                                                                                                     . 169
                                                                                                                                                                                                                                                                     317
                                    11.276.
                                                                                            .237,1.219,
                                                                                                                                                                                                                                          .204
                                                                1.253
                                                                                                                                                                                                                                                                    .210
                                                                                                                                                                                                                                                                                            516
                                     21.224,1.230,1
                                                                                                                                                                                                                                           . 169
                                                                                                                                                                                                                                                                   . 167
                                                                                                                                                                                                                                                                                            168
 563:
565:
                                     31.170,
                                                                                                                                                                                                                                                                                            276
                                    41.254,1.240,1
                                                                                            .232,1,212,
                                                                                                                                           . 205
                                                                                                                                                                                          .284,
                                                                                                                                                                                                                   . 268
                                                                                                                                                                                                                                             214
                                                                                                                                                                                                                                                                  .220
                               51. 239. 1.233, 1.232, 1.228, 1.221, 1.194, 1.181, 1.176, 1.173, 1.174, 1.176, 61.179, 1.182, 1.186, 1.192, 281.4, 1.390, 1.344, 1.317, 1.295, 1.276, 1.255, 71.241, 1.226, 1.217, 1.211, 1.208, 1.209, 1.212, 1.218, 1.223, 1.226, 1.229, 81.233, 1.232, 1.229, 1.224, 1.203, 1.188, 1.182, 1.179, 1.180, 1.182, 1.184, 91.187, 1.191, 1.196, 281.4, 1.390, 1.344, 1.317, 1.295, 1.276, 1.255, 1.242, DATA (GAREO (1), 1.637, 660 ) / 1.228, 1.223, 1.221, 1.214, 1.198, 1.191, 1.223, 11.228, 1.229, 1.233, 1.232, 1.229, 1.224, 1.227, 1.214, 1.198, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.229, 1.227, 1.214, 1.198, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.229, 1.227, 1.214, 1.198, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.228, 1.228, 1.227, 1.214, 1.198, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.228, 1.228, 1.227, 1.214, 1.198, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.228, 1.227, 1.244, 1.288, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.228, 1.227, 1.244, 1.288, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.228, 1.228, 1.227, 1.244, 1.288, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.228, 1.228, 1.227, 1.244, 1.288, 1.191, 1.187, 21.188, 1.189, 1.192, 1.195, 1.198, 1.229, 1.227, 1.244, 1.288, 1.191, 1.187, 21.188, 21.219, 21.228, 21.229, 21.224, 21.228, 21.229, 21.224, 21.228, 21.229, 21.224, 21.228, 21.229, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.224, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228, 21.228
                                     51.230,1.233,1.232,1.228,1.221,1.194,1.181,1.176,1.173,61.179,1.182,1.186,1.192,2*1.4,1.390,1.344,1.317,1.295,71.241,1.226,1.217,1.211,1.208,1.209,1.212,1.218,1.223,
                                                                                                                                                                                                                                                                                            176
  2641
                                                                                                                                                                                                                                                                    276
                                                                                                                                                                                                                                                                                            255
 265:
 266:
  2671
  568:
 269:
270:
271:
  272:
  273:
 274:
275:
 276:
277:
278:
 279:
280:
281:
 283:
284:
  285
 2861
 288:
  289:
291:
291:
292:
293:
294:
296:
296:
297:
 298
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
```

```
311: 247.98, 49.07, 50.15, 51.15, 13.55, 21.43, 23.84, 26.30, 27.79, 28.88, 29.75, 312: 330.64, 31.42, 32.10, 32.72, 33.30, 33.87, 34.39, 34.90, 35.40, 35.86, 36.32, 313: 436.75, 37.17, 37.57, 37.95, 38.30, 39.65, 40.93, 42.10, 43.27, 44.34, 45.45, 314: 546.51, 47.53, 48.53, 49.50, 12.86, 20.74, 23.15, 25.61, 27.10, 28.19, 29.01, 315: 629, 97, 30.71, 31.39, 32.00, 32.60, 33.15, 33.68, 34.14, 34.62, 35.10, 35.54, 316: 735.95, 36.35, 36.77, 37.11, 37.44, 38.77, 40.02, 41.16, 42.27, 43.32, 44.37, 317: 845.42, 46.38, 47.36, 48.28, 12.16, 20.05, 22.45, 24.91, 26.40, 27.49, 28.36, 38: 929, 25, 30.03, 30.68, 31.30, 31.86, 32.41, 32.93, 33.40, 33.88, 34.31, 34.73, 319: 135.14, 35.53, 35.91, 36.27, 36.62, 37.90, 39.10, 40.22, 41.31, 42.34, 43.31, 32.01, 34.24, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.25, 34.
```

ORIGINAL PAGE IS
OF POOR QUALITY

```
BUILT-IN MATLS 1=2024-T4 ALUMINUM, 2- 6AL-4U TITANIUM, 3-
REME 41, 4-INCOMEL X-750, 5- TD MI-CR, 6-1-605, 7- FS-85 COLUMBIUM
8- CARBON/CARBON, 9-MASTELLOV X, 10- BERYLLIUM, 11-MULLITE HCF,
12- FIBERGLASS HOMEVCOMB, 13-HRSI AND LRSI, 14- MOMEX SIP AND
FILLER BOND
                                                                                    THIS SUBROUTINE CALCULATES MATL PROPS FOR BUILT-IN MATLS AT TEMP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       6.25 7.25,
2#8.,
41.0 0.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PARAMETER JHAT-14, JTAB-81, JNAT
DIMENSION TZ(JTAB), CPZ(JTAB), CZ(JTAB), RHOZ(JMAT), IN(JMAT)
DATA (IN(J), J=1, JMAT)/6, 6, 3, 5, 2, 5, 8, 6, 7, 4, 8, 8/
DATA (IN(J), J=1, JMAT)/173, 285, 512, 531, 3, 528, 569, 661.8,
DATA (TZ(J), J=1, JMAT)/173, 285, 512, 531, 3, 528, 569, 661.8,
ING3, 7, 510, 115, 5, 1748)/
DATA (TZ(J), J=1, JMAT)/173, 286, 7000, 210,
1-400, -260, -100, 300, 500, 2500, 210,
3 00, 2400, 510,
4-360, 260, 610,
5-300, 260, 610,
610, 2400, 2400, 2400, 2600, 210,
5-300, 2500, 610,
610, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400, 2400,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  , 104.74 , 2x0.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .4975 ..520,
2#0.
.86 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ..575 ..575
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6-300. 5500. 610. 1200. 1200. 310. 3000. 4000. 4000. 1200. 1200. 1200. 1200. 2500. 3000. 4000. 4000. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 1200. 2500. 3000. 00. 250. 420. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 2500. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200. 4200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALL TBLIN(TT, TZ(K), CP, CPZ(K), CONX, CZ(K), IN(MATL))
COND-CONX/3600.

RETURN
END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3x6.
4.500
15.32
49.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          , 3$0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        57.47

3.787

4.581

5.889

17.65

6.366

11.97

17.63

6.10

6.366

11.97

17.63

6.10

8.500

11.05

11.05

11.05

11.05

14.32

15.68

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.05

11.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    .0767
SUBROUTINE MPROPS (MATL, T, RHO, CP, COND)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              6495
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          . 0325
. 0325
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63

6.63
```

CORMON'COMLW/TI, DTI, T2, DT2, T3, DT3, T4, DTCALC, DTEMAX, AFFLAG, HTFLAG,

1 RN.EL, PARRAL, EML, EMT, PHI, AKT, PARA2, EMATL, DEL, EMIS, TIN, RHOM,

2 CPM, TRFLAG, ELFAC, URLFLG, ATRE, GF(6), ALFA(9), HH(3), HFAC, ENTR,

3 TZ(50), ZZ(50), UZ(50), CFFLG, DSUBO, ELMBDA, UDOT, CORMR, IOPT, CONFLG,

4 ENTI, TA(10), AZ(10), AZ(10), AZ(10), AZ(10), AS(10), AS(10), AG(10),

5 AR(10), AS(10), MTFAC, OUTPUT, REIRO, REIRIM, LNGPLT, ENVIR, RAWFLG, ENTZ,

6 TX(10), AKLZ(10), ARIDEF, ALFAGT(50), DELTAT(50), FSPRES(50),

7 AKT3(10), HFACT(9), ARIDEF, ALFAGT(50), DELTAT(50), ARIZ(10),

8 ARIQ, ALFAL, AKLZZI, HSLPI, ALFAZ, AKLZZZ, HSLPZ, ARIR, REFACT, RSLPI,

8 ARIQ, ALFAL, AKLZZI, AFRON, ARIT, ALFAIT, ENMILL, TMAT(10), CPMAT(10),

8 ARRAIL, PSLPI, ALFAZT, PARA12, CPSLPZ, PSLPZ, PSLPZ, ARIC, ALFAIC, CPCPSI,

8 CPSLPI, ALFAZC, CPCPSZ, CPSLPZ, ENALTZ, FSALT(50), FSTEMP(50),

8 TRESTI(5), RESTI(150) CORROW-FLUELD/TINE, PINE, RHOINE, AINE, RHOE, PE, TE, HE, XRUE, UE, RHOO, PO, 1TO, HO, XRUO, RHOW, TY, HW, XRUJW, RHOS, TS, HS, XRUOS, TR, HR, XRUDK, LW, XNEE, LW, MINE, XRUINE, PR, PU, DU, TU, XRUOTLU, VU, HU, ALPHA, ARDISTL, HSTL, TSTL, XRUSTL, HSTL, TRUTL, HRECL, HRECT, S. Y. CINF, GARRAU, GARRAS, GARRAC, GARRAC, PRL, PRT COMPON HANDY/INAX, DX, T, MPFLAG, MTIUZ, TSYNK, EMISIN, HCIU COMPON HANDY/INAX, DX, T, MPFLAG, MTIUZ, TSYNK, EMISIN, HCIU CONTON HOUSE, TGASZ, TSINKZ, TUI, TSINK, TGAS, HCIN, CONTON DNSTRM/TD, PD, DD, XND, VD, SD, HD, AD, CANAD PARAMETER J2-500
DIMENSION TIME1(J2), XME1(J2), REL1(J2), QC1(J2),
ETREF1(J2), TUI(J2), PE1(J2), CP1(J2), BETA1(J2), ALPHA1(J2), AKLZ1(J2)
E, MFACZ1(J2), QT(Z), TT(Z), TT(Z), TUZ(J2)
DIMENSION TRAJ(Z, Z)
DATA ((TRAJ(Z, Z)), J-1, Z), J-1, Z), JZHZ6BP-14414-1, 12HZ6BP-OFT-IN /
DIMENSION FF(9), BDYPHT(4), TRANME(6) DIMENSION T(25), DX (25), MPFLAG (25), RHOZ (25), 1 CPZ (25), CONDZ (25), NTAB (5), TIUZ (50), HCIUZ (50), 2 TGASZ (50), TSINKZ(50), DIMENSION TABT(10,5), TABCP(10,5), TABCX(10,5) SUBROUTINE NEWOUT(TOF, CFO2, TUF, TAUN, RED, TDF, Z, XNINF, FF, ELIT, REE, RETHMIL, ENCLO, AKLZ, GCTOT, GRE, ELTRAN, CPS, RR, SS, REI, TEF, DELTAS, GCL, AKLZZ, AKLZZ, THETA, PARAO, HFACI, ELTP, 3 TIMFF, STANT, BETA, CP, TUF, REU, RES, TSF, TRF, ELL, XNUD, TREF, 4 TRECOU, REO, DELTA, AKTZZ, HFACZ, GRETOT, GNTOT, GCCU, SG, GCCUT, H, ENCTO, GCTU, AKTZZ, AKTZ, AKTZ, IPAGE) CONMON BLOCK DIBUJO USED IN PPLOT AND DRAW ROUTINES COMMON BLOCK USED TO TRANSFER INPUT DATA TO URINP AND SETMUP ROUTINES INPUT/OUTPUT DESCRIPTION OF NAMELIST COMMON DIBLLIO B DYPNT, TRANNE, ICASE INTEGER BOYPHT, TRANKE

ä

ti- 49

COMMONY TRICK DIEG. TD01, TEE. 0C. 0R. ENC. ERISS. HORCOW.

1 DT TITE. PL. DT0.

1 DT TITE. PL. DT0.

1 COMMONYERE C. IDEA. IDEA.

1 COMMONYERE C. IDEA. IDEA.

1 COMMONYERE C. IDEA. IDEA.

1 COMMONYERE C. IDEA. IDEA.

1 COMMONYERE C. IDEA. IDEA. IDEA.

1 COMMONYERE C. IDEA. IDEA. IDEA. IDEA.

1 COMMONYERE C. IDEA. IDEA. IDEA. IDEA. IDEA. ITREP.

1 INDEA. E. S. O. O. O. D. S. D. TREE.

1 INDEA. IDEA. IDEA. IDEA. IDEA. IDEA. IDEA. IDEA. ITREP.

1 INDEA. IDEA. IDEA. IDEA. IDEA. IDEA. IDEA. IDEA. IDEA. IDEA.

2 COMMONYERE C. O. O. O. O. D. S. D. D. TREE. IDEA. I

163: 203 FORMAT (133,114 L TRANSITION = F8.3,114 L UNCORR
163: 203 FORMAT (133,141,9X,142,9X,144,9X,145,9X,147,9X,148,
164: 25X,149, 8H FF FLAG,F6.0,8F10.0/GH ANGLE,9F10.2)
165: UNTITE (6.204) ENCLO, MECL, OCL, AKL2Z, AKL3Z, AKL2Z, AKL3Z, A 95 FORMAT(SH M E-F6.2,7H RE E-E9.4,6H P E-G9.4,6H G E-F6.3,6H H E #F7.0,6H T E-F7.0,8H RNO E-E9.4,7H MU E-E9.4,8H DELTA-E9.4)
URITE(6,96)UD, REL, CP.GU,HU,TUF,RHOU,XMUU,DELTAS
96 FORMAT(SH U D-F6.0,7H RE E-E9.4,6H C P-G9.4,6H G U-F6.3,6H H U FORMAT(2H U,14X, 'X L+',E9.4,1X,'C P+',F6.3,2X,F7.4,4X,F7.0,2X,F6.0 1 ,2X,2(E9.4,2X),1X,'DEL x +',F6.4) 94 FORMAT(SH H D-FG.2,7H RE D-E9.4,6H P D-G9.4,6H G D-FG.3,6H H R-F7.0,6H T D-F7.0,8H RHO D-E9.4,7H MU D-E9.4,8H 7AU U-E9.4)
URITE(6,95) UE,XME,REE,PE,GAMAE,HE,TEF,RHOE,XMUE,DELTA 64 G R-F6.3, 64 H IFICFFLG.CT.0.) URITE(6,201) ELL,ELTP 201 FORMAT(27H CROSSFLOW LAMINAR LENGTH - F9.4,19H,TURBULEMT LENGTH FORMAT(2H 1,18X,E9.4,13X,F7.4,4X,F7.0,2X,F6.0,2X,2(E9.4,2X),1X, 1 'THETA "',F6.4,5X,'LEWIS "',F8.3/111X,'HDS "',F6.0) URITE(6,95) UE, XME, REE, PE, GAMAE, ME, TEF, RHOE, XMUE, DELTA, BETA FORMAT(4H E , F6.0,2X, F6.2,2X, E9.4,2X, G9.4,2X, F7.4,4X, F7.0,2X, 1 F6.0,2X, 2(E9.4,2X),1X,7HDELTA ", F6.4,5X,7HBETA ", F7.2) URITE(6,94) UD,XMD,RED,PD,GAMAD,HD,TDF,DD,XMUD,THUU,ALPHA FORMAT(4H D ,F6.0,2X,F6.2,2X,E9.4,2X,G9.4,2X,F7.4,4X,F7.9, I 2X,F6.0, 2X,2(E9.4,2X),1X,'TAU U -',E9.4,2X,'ALPHA -',F7.2) URITE (6,97) RES, GAMAS, HS, TSF, RHOS, XNUS, THETA, ALEW, HSUBD 98 FORMAT(2H R, 40X, F7.4, 4X, F7.0, 2X, F6.0, 2X, 2(E9.4, 2X)) 98 FORMAT(42), 2-F7.0,6H T R-F7.0,8H RHO R-E9.4,7H MU R-E9.4) IF (NHFLAG .EQ. 5 .OR. NHFLAG .EQ. 7)
\$URITE(6,98) URITE (6,96)REL, CP, GU, HJ, TUF, RHOU, XMUU, DELTAS 61 97

```
1741 URITE(6, 204)
1751 ENCLO, MECL, OCL, ACL, ACL22, ACL32, ACC2, HFAC1, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2, HFAC2
```

THIS SUBROUTINE EMPLOYS THE NEWTON-RAPHSON METHOD FOR FINDING REAL POLYNOMIAL ROOTS TO COMPUTE WALL OR EQUILLIBRIUM TEMPERATURES WRITE(6,200)A,B,C,T,DELTAT
200 FORMAT(1H , 9X, 22HNEWTON RAPHSON GARBAGE, 1X, 2HA=, E9.3, 2HB=,
1E9.3, 2HC=, E9.3, 2HT=, E9.3, 7HDELTAT*, E9.3)
ICANT = 1
RETURN CONVERGENCE HAS NOT BEEN OBTAINED IN FIFTY ITERATIONS. SET FLAG T##4 - B # T + C)/ (-4. # A # T##3 -T = T - DELTAT

IF (ABS(DELTAT/ T) .LT. .001) RETURN

IF (T .LE. 0.) T = (T + DELTAT)/ 2. SUBROUTINE NEUT(A, B, C, T, ICANT) ICANT - 0 DO 100 N - 1, DELTAT = (-A * AND RETURN. CONTINUE 100 15:0 16:0 3:0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5:C 6:C :: :: :: :: 10: 12:: 14: 0 0 0 4 0 0

```
181C 48X,5H(SEC),4X,13H(LBM/F1e-SEC),7A,3M,8.0.

191C 57H(DEG F) /)

201 2000 FORMAT(1H0, 49X, 29HOPTIMIZATION PROCEDURE RESULT/ 1H0, 8X, 211 1 12HAT ITERATION, 13, 21 2 35H MAXIMUM WALL TEMPERATURE REACHED -, 231 3 F11.3, 34H DEGREES F WITH A SKIN THICKNESS *. E11.5, 241 4 8H INCHES./ 1H, 8X, 27HCOMPLETE TRAJECTORY WILL BE, 251 5 28H RERUN USING THIS THICKNESS.)

261 2500 FORMAT(1H0, 7X, 36HTRAJECTORY WILL BE RERUN WITH A SKIN, 271 1 12H THICKNESS *, E11.5)

281 3000 FORMAT(1H0, 16X, 37HFAILURE TO OBTAIN CONVERGENCE OF WALL, 291 1 47H AND OPTIMUM TEMPERATURES AFTER 10 TRIES. CASE, 11H ABANDOMED.)
     281 3600 FORMAT(1H0, 16X, 37HFAILURE TO OBTAIN CONVERGENCE OF WALL,
291 1 47H AND OPTIMUM TEMPERATURES AFTER 10 TRIES. CASE,
301 2 11H ABANDOMED.)
31: 4000 FORMAT(1H0, 5X,22HOPTIMUM TEMPERATURE OF, E11.5,
32: 1 51H DEGREES F 15 GREATER THAN THE MAXIMUM EQUILIBRIUM,
33: 2 15H TEMPERATURE OF, E11.5,11H DEGREES F./ 1H , 5X,
34: 3 16H CASE ABANDONED.)
35: 5000 FORMAT(1H0, 7X, 23HUITH A SKIN THICKNESS *, E11.5, 8H INCHES,,
36: 1 35H MAXIMUM WALL TEMPERATURE REACHED *, F10.3,
37: 2 10H DEGREES F./ 1H , 7X, 15HWHICH IS WITHIN, F10.3,
38: 36H PERCENT OF THE OPTIMUM TEMPERATURE.)
39: 6000 FORMAT(1H0, 48X, 32HOPTIMIZATION - SURPRISING RESULT./
40: 1 1H0, 13X, 29HWITH INITIAL SKIN THICKNESS *, E11.5,
41: 2 43H INCHES, MAXIMUM WALL TEMPERATURE REACHED *, F11.4,
42: 3 11H DEGREES F./ 1H , 12X, 16H WHICH IS WITHIN, F7.3,
43: 4 51H PERCENT OF THE OPTIMUM TEMPERATURE. VOUR COMPUTER,
44: 5 1H DEGREES F./ 1H , 12X, 16H WHICH IS WITHIN, F7.3,
45: 7000 FORMAT(1H0, 50X, 27HOPTIMIZATION RESULT. RETURN, 13)
46: 8000 FORMAT(1H0, 7X, 39HOPTIMIZATION RESULT. RETURN, 13)
47: 9500 FORMAT(1H0, 51X, 25HFIHAL OPTIMIZATION RESULT.)
48: 9500 FORMAT(1H0, 51X, 25HFIHAL OPTIMIZATION RESULT.)
49: 9500 FORMAT(1H0, 51X, 25HFIHAL OPTIMIZATION RESULT.)
49: 9500 FORMAT(1H, 7X, 44HYOUR FRIENDLY NEIGHBORHOOD CONFUTER SUGGESTS.)
50: 1 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 2 1H, 12X, 43H(1) LOOSENING YOUR CONVERGENCE CRITERIA, 0R/
51: 3 27H YOUR ORIGINAL LOUSY GUESS.)
        53:0
54:0
55:0
56:0
57:
58:
59:0
                                                                THE FOLLOWING EXECUTABLE STATEMENT TOPT- TOPT + 459.7 WAS REMOVED FROM THE MAIN PROGRAM (H800) TO THIS SUBROUTINE
                                                            TOPT- TOPT + 459.7
IF (M - 1) 100, 200, 300
         61:0
                                                           SET THE COUNTER, ERROR FLAG, AND EQUILLIBRIUM TEMPERATURE TO 8.
         6210
                                   180 H = 0
TEGMAX = 0.
ICANT = 0
RETURN
       641
661
671
681
671
681
671
771
771
7751
                                                             SAVE FLOWFIELD PARAMETERS AND STORE NEW EQUILLBRIUM TEMPERATURE IF IT EXCEEDS PREVIOUS MAXIMUM.
                                   200 N - N + 1
    TYM(M) - TIME
    ENC5(N) - ENC
    HRS(N) - HRECOU
    TS(N) - TU
    PS(N) - PE
    IF (TRE .GT. TEQMAX) TEQMAX - TRE
                                                                                                                                                                                                                                                                                                                                                                                   ORIGINAL PAGE PAGE
       781
791
801
       81:
82:0
```

```
841C
851C
861C
871C
                         IF THE OPTIMUM TEMPERATURE IS LESS THAN THE MAXIMUM EQUILLIBRIUM TEMPERATURE, ABANDON TRY.
  ### 300 NMAX-N ### 15 (TOPT .GE. TEQMAX) GO TO 950
  91:0
92:0
93:0
94:0
96:0
96:
                         DETERMINE MAXIMUM WALL TEMPERATURE REACHED.
                         TMAX - 0.

DO 400 N - 1, NMAX

IF (TS(N) .GT. TMAX) TMAX - TS(N)
  98:
               400
                         CONTINUE
                        CONTINUE
IF (M.EQ. 3) GO TO 850
ITRY - 0
ICANT - 0
DELMEW - DELO
TDIFF - (TMAX - TOPT)/(TOPT-TI)
TDIF2 - (TMAX - TOPT)/(TOPT-TI)
500
                         CHECK IF CONVERGENCE HAS BEEN OBTAINED WITH THIS THICKNESS.
                         IF (ABS(TDIFF) .LT. PERCNT) GO TO 700
IF (IDID .EQ. 2) GO TO 750
IF (IDID .EQ. 3) GO TO 800
ITRY - ITRY + 1
IF (1TRY .GT. 25) GO TO 900
                         COMPUTE NEW THICKNESS AND GO THROUGH SIMULATED TRAJECTORY TO GET NEW MAXIMUM WALL TEMPERATURE.
             DELNEU - DELNEU * TDIF2 + DELNEU
TU - TI
TMAX - TU
NM = NMAX - 1

550 DO 600 N = 1, NN
TWO - TW
HW = 0.24 * TW
QN = ENCS(N) * (HRS(N) - HW) - SIGMA * EMIS * TW**
CALL MATRES(MATL, QN, RHOM, CPN, DELNEW, TDOT, TW, TMAT, CPMAT,

1 NMTL)
TW = TDOT * (TYM(N+1) - TYM(N)) + TWO
IF (TW .GT. TMAX) THAX - TW

600 CONTINUE
GO TO 500
700 IF (ITRY .EQ. 0) GO TO 860
THUR = TMAX - 459.7
WRITE(6,2000) ITRY, THUR, DELNEU
DELO - DELNEU
RETURN
750 T1 - TMAX
D1 - DELNEU
DELO - DELO + TDIF2* DELO
GO TO 825

800 T2 - TMAX
D2 - DELNEU
DELO - D2 + (TOPT - T2) * (D2 - D1)/ (T2 - T1)

825 WRITE(6,2500) DELO
                         DELNEU . DELNEU . TDIF2 + DELNEU
              DELO - D2 + (TOPT - T2) $ (D2 - D1)/ (T2 - T1)

825 URITE(6,2500) DELO
DELNEU-DELO
RETURN
148:
149:
150:
151:C
152:C
153:C
154:C
156:C
                         IF THIS WAS RE-RUN OF ORIGINAL TRAJECTORY PRINT RESULTS AND
156 : C
```

```
157: 856 TDIFF = ABS(TMAX - TOPT) / TOPT
158: TDCENT = TDIFF : 100.
159: THUR = TMAX - 459.7
160: IF (TDIFF : LE. PERCHT : OR. IDID .GE. 3) GO TO 855
161: URITE(6, 5000) DELNEU, TMUR, TDCENT
162: URITE(6, 5000) DELNEU, TMUR, TDCENT
163: URITE(6, 5000) DELNEU, TMUR, TDCENT
165: RETURN
166: 85 ICANT = 0
167: URITE(6, 5000) DELNEU, TMUR, TDCENT
168: URITE(6, 5000) DELNEU, TMUR, TDCENT
170: URITE(6, 5000) DELNEU, TMUR, TDCENT
171: 860 TDCENT = ABS(TDIFF) # 100.
172: TMUR = TMAX - 459.7
173: URITE(6, 6000) DELO, TMUR, TDCENT
174: ICANT = 1
175: RETURN
176: IF CONVERGENCE HAS NOT BEEN OBTAINED IN 25 TRIES ABANDON CASE.
179: ICANT = 1
182: CISSIC
188: CISSIC
188: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: CISSIC
189: C
```

```
PCSUMMO1
                                SUBROUTINE PCSU(X,Y,ITABLE,OFFTBL,Z)
    9:
                               DIMENSION A(6,6,28) , B(1008) EQUIVALENCE (A(1,1,1), B(1))
 10:
121
                                OFF7BL-0.
                 OFFTBL-0.
X3-X

IF(X.GT. 26.)X-26.

PCSU0015

PCSU0025

IF(Y.LE. 0.) GO TO 500

IF(Y.LE. 0.) GO TO 510

IF(Y.GT.60. AND.((ITABLE.EQ. 2).OR.(ITABLE .EQ.4)))GO TO 520

PCSU0025

IF (Y.GT.60. AND. ((ITABLE.EQ. 1).OR.(ITABLE .EQ. 3)))GO TO 520

IF (Y.GT.55. AND. ((ITABLE.EQ. 1).OR.(ITABLE .EQ. 3)))GO TO 520

IF (Y.GT.55. AND. ((ITABLE .EQ. 1).OR.(ITABLE .EQ. 3)))GO TO 520

IF (X.LE. 1.7).AND.(Y.LE.16.))GO TO 101

PCSU0025

IF (X.LE. 1.7).AND.(Y.LE.16.))GO TO 101

PCSU0026

IF (Y.LE. 1.6). GO TO 103

IF (X.LE. 2.8) GO TO 520

IF (X.LE. 2.8). GO TO 104

IF (X.GT. 3.4). AND. (Y.LE. 45.))GO TO 105

PCSU0026

GO TO 520

30 IF ((X.LE. 1.5).AND. (Y.LE. 28.))GO TO 101

PCSU0026

IF (Y.LE. 35.) GO TO 520

IF (X.LE. 2.8). AND. (Y.LE. 28.))GO TO 102

PCSU0026

IF (Y.LE. 2.8). AND. (Y.LE. 28.))GO TO 101

PCSU0102

IF (X.LE. 2.8). AND. (Y.LE. 28.))GO TO 101

PCSU0115

IF (X.LE. 2.8). AND. (Y.LE. 28.))GO TO 101

PCSU0115

IF (X.LE. 2.0). AND. (Y.LE. 28.))GO TO 103

PCSU0126

IF (X.LE. 2.0). AND. (Y.LE. 36.)) GO TO 103

PCSU0136

IF (X.LE. 3.5). AND. (Y.LE. 36.)) GO TO 104

PCSU0136

IF (X.LE. 3.5). AND. (Y.LE. 38.)) GO TO 103

PCSU0136

IF (X.LE. 3.5). AND. (Y.LE. 38.)) GO TO 104

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU0136

PCSU
                                X3-X
IF(X.GT. 26.)X-26.
13:
14:
15:
16:
17:
                                                                                                                                                                                                                                                                        PCSU0015
PCSU0020
PCSU0025
PCSU0030
18:
 50:
 21:
 22:
 23:
 24:
25:
26:
27:
30:
31:
32:
33:
34:
35:
36:
37:
38:
 39:
 40:
 41:
  43:
  44:
 451
  46:
  471
  481
  49:
 50:
51:
52:
 531
                                G-1.4
C1=((G+1)*C+2)/((G-1)*C+2)
54:
55:
                                C2-ALOG(1.2+1./C)
 56:
57:
                                 Z-(1+C1*C2)*(SIN(.0174533*Y))**2
                                RETURN
 58:
59:
60:
                  101 IPATCH-1
                                                                                                                                                                                                                                                                          PCSU0205
                 GO TO 700
                                                                                                                                                                                                                                                                          PCSU0210
                                                                                                                                                                                                                                                                          PCSU0215
 611
                                GO TO 700
62:
63:
64:
65:
66:
                  103 IPATCH-3
GO TO 700
                                                                                                                                                                                                                                                                          PCSU0225
                                                                                                                                                                                                                                                                          PCSU0230
                  104 IPATCH-4
                                                                                                                                                                                                                                                                          PCSU0235
                 GO TO 700
105 IPATCH-5
                                                                                                                                                                                                                                                                          PCSU0245
                 GO TO 70
106 IPATCH-6
                                                                                                                                                                                                                                                                          PCSU0250
                                                                                                                                                                                                                                                                          PC540255
68:
69:
70:
71:
72:
73:
74:
76:
76:
77:
                                GO TO 700
                                                                                                                                                                                                                                                                         PCSU0266
PCSU0265
                 107 IPATCH-7
                                IF(X.GT.20.) X-20.
                  700 CONTINUE
                                IPATAB - 7 # (ITABLE -1) + IPATCH
                             IPHIND

Z=0.

X1=1./X

DO 740 I=1,6

IF (A(1,I,IPATAB) .EQ. 0.) GO TO 760
                                                                                                                                                                                                                                                                        PCSU0275
                                                                                                                                                                                                                                                                         PCSU0280
                                                                                                                                                                                                                                                                        PCSU0285
```

```
DO 730 J=1,6

IF (A(J,I,IPATAB) .EQ. 0.) GO TO 735

Z * Z + A(J,I,IPATAB) * (X1**(I-1)) * (Y**(J-1))

730 CONTINUE

735 CONTINUE

740 CONTINUE

760 X=X3
   78:
79:
80:
                                                                                                                                                                                                                                                              PCSUA295
   81:
82:
                                                                                                                                                                                                                                                              PCSU0310
                                                                                                                                                                                                                                                               PCSU0315
   83:
                                                                                                                                                                                                                                                               PCSU8328
   85 :
                                IF(((ITABLE.EQ.1).OR.(ITABLE.EQ.2)).AND.(Z.GE.90.))OFFTBL=2
IF((ITABLE.EQ. 3 .OR. ITABLE.EQ.4).AND.Z .GE.1.8)OFFTBL=2
   87:
                                 RETURN
                   500 OFFTBL-1.
                   RETURN
510 WRITE (6,511) Y
511 FORMAT(53H0 ***** WEDGE OR CONE ANGLE NEGATIVE OR ZERO, ANGLE-,
   89:
90:
                                                                                                                                                                                                                                                               PCSU0335
   91:
92:
93:
94:
                                                                                                                                                                                                                                                              PCSU0345
                             1E12.6,9H DEGREES.)
                                NERROR-1
                                 RETURN
   95:
96:
97:
98:
                   520 OFFTBL-2.
                            RETURN

DATA (B(I), I=1, 36) / -.45502295E+3, .417105BE+2,

1 -.2526002E+1, 3x0., .1954673E+4, -.144188BE+3,

2.1137163E+2,3x0., -.261245E+4, .1548773E+3, -.1767171E+2,3x0.,

3 .1201241E+4, -.4653136E+2, .967671E+1,15x0./

DATA (B(I),I=37,72)/

4 .1562248E+2, -.3610159E+1, -.39188205E-1, -.2403211E-2,

5 2x0., -.4861156E+2, .3298564E+2, -.3057881,

6 .4272396E-1, 2x0., .2316127E+3, -.7982207E+2,

7 .1808133E+1, -.1520378, 2x0., -.1535225E+3,

8 .6332171E+2, -.2104545E+1, .16028342, 14x0./

DATA (B(I), I=73,108)/

9 .2105304E-1, .1145824E+1, -.1576662E-2, .4145022E-3, .1464391E-3, PCSU0415

1-.1168675E-4, .5377458E+2, -.6947946E+1, .1604501E+1, -.33449885, PCSU0426

2 .2550358E-1, -.5881141E-3, .2292846E+2, .2210030E+1, .6336085E-2, PCSU0425

3 .73411788, -.7901796E-1, .2022837E-2, -.2833321E+2, .3004077E+2, PCSU0435

DATA (B(I), I=109,144)/

1 .6486186, -.1357706E-1, .121729E-3, 0 , -.122099E+4, PCSU0445

2 .8141611E+2, -.26783191, -.3160076E-1, .1795490E-4, 0 , PCSU0455
                                 RETURN
                                                                                                                                                                                                                                                              PCSU0365
   99:
100:
103:
104:
1061
1071
108:
1091
 110:
1111
112:
 1131
114:
                             1 .6486186 ,-.1357706E-1, .121729E-3 , .0 ,-.122099E+4 , PCSW0445
2 .8141611E+2,-.26783191 ,-.3160076E-1, .1795490E-4, .0 , PCSW0450
3 .5419949E+4,-.9224745E+2,-.1777307E+2, .35320902 , .3728116E-2, PCSW0455
4 .0 ,-.1302285E+5, .3071897E+3, .7558936E+1, .1641796E+1, PCSW0466
5-.5539958E-1, .0 , .1368806E+5,-.9949971E+3, .8745465E+2, PCSW0465
6-.6093441E+1,.1231502,.0,6*0./
DATA (B(I),I=145,180)/
7 .3767199E+2,-.3462785E+1, .13918317 ,-.1230641E-2, 2*.0 , PCSW0475
8 .3208977E+3, .3631655E+2,-.1786110E+1, .1748266E-1, 2*.0 , PCSW0475
9 .3019779E+4,-.8006098E+3, .2870986E+2,-.25491071 , 2*.0 , PCSW0480
9 .3019779E+4,-.8006098E+3, .2870986E+2,-.25491071 , 2*.0 , PCSW049DATA (B(I),I=181,216)/
2 .5636795E+2,-.4826616E+1, .10074503 , PCSW0495
1151
 116:
 118:
119:
 120:
 122:
 123:
 1241
                            2 .5636795E+2,-.4826616E+1, .10074503 , PCSW0495
3 3x.0 ,-.2276700E+4, .3522476E+3,-.6491722E+1, 3x.0 , PCSW0500
4-.1573135E+6,-.3414515E+3, .8101909E+2, 3x.0 , .4848575E+7, PCSW0500
5-.1228870E+6, .3798787E+3, 3x.0 ,-.2778084E+7,-.2323070E+6, PCSW0510
6 .6385858E+4, 9x0./
DATA (B(I), I-253,288)/
1 .14913243E+3 ,-.396940507
 125:
 126:
128:
129:
130:
131:
                                DATA (B(I), I-253,288)/
DATA (B(I), I-253,288)/
1.14913243E+3, -.38690958E+1, .78674236E-1, 2*.0
2.38645046E+4, -.57054352E+3, .16057233E+2, -.38328927, .38.0
2.48811490E+4, .72280498E+3, -.22178436E+2, .38628930, 2*.0
3.4.0
3.50338782E+3, .38674236E-1, .2*.0
3.8645046E+4, -.30338782E+3, .38645046E+2, .38628930, .2*.0
132:
133:
134:
                                                                                                                                                                                                                                                    , PCSU0530
                                                                                                                                                                                                                                                              PCSU0535
136:
                                        .60628930 , 2x.0
.10199340E+2 , -.31032062
                                                                                                                                                                                                                                                              PCSU0540
                                DATA (B(I), I-289, 324)
138:
                                                                                           .74999131E+1 , .62472434 , -.31141753E-2 , .0 , .39063672E+4 , -.67884265E+2 , .53865644E-2 , -.17998610E-2 , .0 , .20852209E+3 , .11372642E+2 , -.57256508E-1 , .0 , .15319342E+5 , -.26893756E+3 , .22614131 , -.14359621E-1 , .0 , .153192376E+1 , -.23014992 , .10./
                                   -.46935175E+3 , .74999131E+1 , .62472434
.18999426E-3 , .0 , .390636721
139:
                                                                                                                                                                                                                                                              PCSU0550
140:
141:
142:
                                                                                                                                                                                                                                                              PCSU0555
                            7 .18999426E-3 , .0
8 -.39509797E+1 , .53865644E
9 -.11617541E+5 , .20852209E
1 .75608494E-2 , .0
2 -.16300093E+2 , .22614131
3 -.74350930E+4 , .12332202E
4 .10012938E-1 ,7*0.*
                                                                                                                                                                                                                                                              PCSU0560
                                                                                                                                                                                                                                                               PCSU0565
143:
144:
145:
                                                                                                                                                                                                                                                              PC540570
                                                                                                                                                                                                                                                              PCSU0575
                                                                                                                                                                                                                                                              PCSU0580
146:
147:
148:
                                                                                            (B(I), I=325,360)/ .11409437 , PCSW0585 .26737328E-1 , -.14371280E-2 , .1998871E-4 , 0.,PCSW0595 .90042812E+1 , .50227665 , -.84683618E-2 , PCSW0595 .13405882E+3 , .28456653E+1 , .31682443 , PCSW0600
                                DATA
                                  .96082449
                            149:
150:
151:
                                                                                                                                                       53271055E+3
                                                                                                                                                                                                            10812230E+3 .
1521
                                                                                             .56917652,-.93637268E-2,0.,.71874048E+3,
                                                     .20371901E+2, -.89913739, .14146178E-1,7#0./
                                                                                                                                                                                                                                                              PCSU0615
```

```
-.61178322E+2,
-.72860442E-5,
-.11340648E+1,
-.40160813E+3,
.16970589E-2,
.73181110E+1,
155:
                 DATA (B(I)
                                                                                                                                        PCSW0620
                                            I-361,396)/
                                                                                                          .61023376E+1 ,
156:
                  -.15594696
-.39856145E+3 ,
                                                  . 19646023E-2 ,
                                                                                                                                        PCSU0625
PCSU0635
PCSU0635
                                                                                                           .24518360E-1
                                                                                                            .20795290E+3
158:
                      25084113E-3
                4 -.78254882E+1 ,
159:
                                                  .36634463E-2
                                                                                                                                        PCSU0640
1601
                                                                                                           .70631423E-1
                                                                                                                                        PCSU0645
                      24399687E+5
                                                  .61013951E+3 ,
161:
                  -.63625578E-2 ,
-.39312454E+2 ,
                                                                                                                                        PCSU0650
                                                                                                            .81840866E+3 ,
                                                                                                       710./
                                                   67556079
                                                                                                                                        PCSU0655
                                                                             .31871982E-2,
                                            I-505,540)/
, -.28858615E-1 ,
163:
164:
165:
188:
                DATA (B(I), I
1 .76334979E-1,
2 -.17324872,
                                                                                                                                        PCSU0660
                                                                            .45590165E-2
-.42637694
.37217119E+1
                                                                                                                                        PCSU0665
                                                                                                         .52397858E-1 ,
-.21656469E+1 ,
                                                                                                                                        PCSU0670
                                                                                                                                        PCSU0675
PCSU0680
                3 -.38552517E-2
                                                 .41198257E-1 , -.10911688E-1 , .0
.14451009E+1 , -.11471143 , -.763
.0 , .26324790E+1 , .107
-.38821178E-2 , .10453250E-1 , 7*0./
 167:
                     .55374501
                                                                                                         -.76328219E-1 ;
                   -.58373798E+1
                                                                                                                                        PCSU0685
168:
                  .26758654E-2 , .0 , .57081032E-1 , -.38821178E-2 ,
169:
170:
                DATA (B(I),
81-541,576)/
                                                                               .13987730E+1 , -.25321884 , .39695817E+2 , -.37004653E+1 ,
                                                -.78003525E+1 ,
                                                                                                                                        PCSU0706
1721
                   .32248734E-1 , 2x.0
1731
                                                                                                                                        PCSU0705
174:
176:
176:
177:
                                          , -.77640998E-1 , 2%.0 , -.66849856E+2 , .20642351E+1 , -.52601560E-1 , 2%.0 , .50949779E+1 , -.27737575E+1 , .15813941,14%0./
                1 .16677517
2 -.63689274
                                                                                                                                        PC5U0710
                                                                             -.27737575E+1 , .15813941,1486./ PCSU0726
                  .37257988E+2 , .509
DATA (B(I),I-577,612)/
                                                                              -.15378365E-2 , -.99252723E-1 ,
178:
179:
180:
181:
                                                                                                                                        PCSU0725
PCSU0730
PCSU0735
                   .20554818E-1 , -.94399629E-3 , .60602619 , -.11797733 , -.10218554E-1 , -.73096671 ,
                                                                              21.0
.55902406E-2
                                                                                                         .80750904E-2 ,
2x.6
                                                                                                                                        PCSU0740
PCSU0745
PCSU0750
                                                                               .15437942
                                                                                                      , -.73038777E-2 ,
 1851
                 BZ0810.7

DATA (B(I), I-613,648)/ -.18753880E+1,
1 -.72532363E-2, .85816698E-4, 28.0,
2 -.13170006E+1, .46623661E-1, -.58180164E-3,
3 -.15015365E+2, .20256798E+1, -.76598607E-1,
                                                                                                           .23500759
 183:
                                                                                                          .10519039E+2 ,
                                                                                                                                        PCSU0755
PCSU0760
1841
185:
                                                                                                           .11276257E-2 ;
                                                                                                                                        PCSU0765
 86:
187:
                42010.
                  DATA (B(I), I-649, 684)/
                                                                                                            .64008627E-2
                                                                             -.86415987E-4 ,
                                                                                                                                        PCSU8776
 189:
                                                 .34558708E-3 , -.20447315E-4 ,
.24418006E-1 , .16028931E-1 ,
                5 -.17074787E-2 ,
                                                                                                            .39771862E-6 ,
                                                                                                                                        PCSU6775
190:
                  -.62376658E-2 , -.24418006E-1 , .22400754E-3 , -.50253790E-5 ,
                                                                                                                                        PCSU0780
                                                                               .82195252E-1 ,
.14439430E-2 ,
192:
                                                                                                           .17951074
.39476380E-4
                                                                                                                                        PCSU0785
                                                  .14166802E-1 ,
                       42795077E-1 ,
                                                                                                                                        PCSU8798
                                                                                                         -.92208078E-2 ,
1941
1951
1961
                                                  .23410848
                     .23211899E-2 .
                                                                             -.10090115
                   -.21585754
                                                   .78764006E-4,12#0./
                  DATA (B(I), I-685,720)/
                                        . .84124699E-1 ,
. .13867504E+2 ,
                                                                           -.17560913E-2 ,
-.10416866E+1 ,
-.72141665E+2 ,
                                                                                                           .19694004E-4 ,
.22428194E-1 ,
.52766283E+1 ,
1971
                  -.92395025
                                                                                                                                        PCSU0805
               3 21.0
4 -.10356036E-3 ;
                                                                                                                                        PCSU0810
                2x.

-.10356036E-

-.10193683

-.68065061E+1 , .93235439E-

DATA (B(I), I=721,756)/

1 -.56681035E-3 , -.20862419E-5 ,

-.76300746 , -.74202436E-2 ,

-.15727572E+2 ,

-.13406721E+4 ,
198:
199:
                                                                                                                                        PCSU081
200:
                                                                                                            . 10517322E+3 ,
                                                                                                                                        PCSU082
                                                                            .29873349E-3 ,1480./
-.16903622E+1 , .92242116E-1
                                                                                                                                        PCSU082
                                                                                                                                        PCSU0830
202:
                                                                                                            . 2+3821198E+2 ,
2031
                                                                              21.0
                                                                                                                                        PCSU083
                                                                              .28861086E-3 , .42597236 , .50227256E+1 ,
204:
205:
206:
207:
                                                                                                         2x.0
-.41003694E-2,
.12340818E+1,
-.15420909E+3,
                                                                                                                                        PCSU884
                                                                                                                                        PCSU884
                   -.15132656E-1 ,
                                                                                                                                        PCSU0850
                                                                               .77525364E+4 ,
                                                                                                                                        PCSU085
                                                  8.15
                                                .16019300E-1
                                                                                                                                        PCSU086
PCSU0865
                   -.15772325E+1 ,
                                                                              2x.0
.32861514
                                                                                                            .42331760E+3 ,
                                                                                                         21.0 /
-.13370942E-1 ,
-.45418744E-6 ,
.15324255E-3 ,
209:
                                           I-757,792)/
, .13539108E-3 ,
, .65415711E-1 ,
                                                  .14621209E+2 ,
                       56313879E+2
                 DATA (B(I), I
                                                                               .36263253
.10618352E-4
.63870986E-2
                                                                                                                                        PCSU8876
210:
211:
                                                                                                                                        PCSU0875
                  -.13488301E+1 .
                                                                                                                                        PCSUe88
                                                                            .16535806E+1 , -.72164580E-1 ,
-.20115781E-4 , .11946920E-5 ,
.78221056E-2 , -.52450415E-3 ,
                       34125079E-4 ,
213:
                                               .81657254E-6 , .165
-.17346048E-3 , -.201
.16400213E-1 , .782
-.20117242E-5 ,12*0./
                                                  .81657254E-6
                                                                                                                                        PCSUe88
                4 -.69538967E-2 ,
5 -.66820358 ,
                                                                                                                                        PCSU689
214:
                                                                                                                                        PCSU689
                      67487165E-4
1915
                 DATA (B(I),I=793,828)/

-.36863924E-2 , .28147493E-1 ,

40145162E-5 , -.28852081E-6 .
217:
                                                                               .67341855E-3 , -.89466173E-4 , .26601158E-1 , -.17289645 , .22862473E-4 , .49669006E-6 , .23011052E-3 , -.53449068E-3 , .44010028E-1 , -.244173 47 ,
2181
                7 -.36863924E-2 , .28147493E-1 , .67341855E-3 , 8 .40145162E-5 , -.28852081E-6 , .26601158E-1 , 9 .23900585E-2 , -.38088266E-4 , .22862473E-4 , 1 -.60699902E-1 , .35755448 , -.23011052E-3 , 2 -.20972765E-4 , -.12030029E-5 , .44010028E-1 , 3 .51245503E-3 , .64123699E-3 , -.98265109E-5 ,
                                                                                                                                        PCSUAGA
219:
                                                                                                                                        PCSU091
                                                                                                                                       PCSU091
PCSU092
: 055
221:
5551
                                                                                                                                        PCSU092
5531
                41210./
                  12x0./
DATA (B(I), I-829,864)/
.20580835E-2 , .24329582E-4 ,
-.10601885 , -.32140365E-1 ,
.11372675E-5 , .30261620E-7 ,
2241
: 255
                  DATA
                                                                               .63215967
                                                                                                         -.78699932E-1
                                                                                                                                        PCSU0935
                                                                             -.14960751E-5 ,
.68815543E-2 ,
                                                                                                                                       PCSU0940
PCSU0945
: 955
                                                                                                          .96998447E-8
2271
                                                                                                         -.12387818E-3 ,
                                                                               .12437513E+1 ,
.43365037E-5 ,
1855
                                                                                                                                        PCSU0950
                                                                                                         -.13636679
                                                                                                                                       PCSU0955
PCSU0960
PCSU096
229:
                     .61878387E-2 , -.45916596E-3 ,
                                                                                                         -.60268853E-7
                9 -.31191903E+1 ,
1 .18861784E-4 ,
                                                                                .54659903E-2 ,
230:
                                                  .31180343
                                               -.16870681E-6 ,1210./
231:
```

```
PMID 005
PMID 010
                                                                                                                                                                                                                                                                    PMID 015
                                                                                                                                                                                                                                                                    PMID 025
PMID 035
PMID 030
    X(1)=MUSTRM
28:C
28:C222222 PERFORM NEUTON-RAPHSON ERROR IS LESS THAN ONE PERCENT #####
30:C
31: DO 20 I=2,26
                                                                                                                                                                                                                                                                    PMID 045
   31: DO 20 I=2,26

32: F=C1RATAN(X(I-1)/C1)-ATAN(X(I-1)

33: XX=X(I-1)RR

34: FPRIME=C6/(C6+XX)-1./(1.+XX)

35: X(I)=X(I-1)-F/FPRIME

36: IF(ABS((X(I)-X(I-1))/X(I-1)) .LE

37: 20 CONTINUE

38: GO TO 50

39: 40 XXX=X(I)

40:C

41:CRRRR COMPUTE LOCAL CONDITIONS RRRRR

42:C

43: 50 HLOCAL=SGRT(XXXRR2+1.)

44: GMINUS=(GAMMA-1.)/2.

45: C=(1.+GMINUSRMUSTRRRRR)/(1.+GMIN

46: PLOCAL=PUSTRMRCR (GAMMA/(GAMMA-1)/47: TLOCAL=TUSTRMRCR (GAMMA/(GAMMA-1)/48: ALOCAL=PLOCAL/(1716.48RTLOCAL)

49: DLOCAL=PLOCAL/(1716.48RTLOCAL)
                       DO 20 I=2,26
F=C1RATAN(X(I-1)/C1)-ATAN(X(I-1))+C5
XX=X(I-1)822
FPRIME=C6/(C6+XX)-1./(1.+XX)
X(I)=X(I-1)-F/FPRIME
IF(ABS((X(I)-X(I-1))/X(I-1)) .LE. .01) GO TO 40
20 CONTINUE
GO TO 50
40 XXX=X(I)
                                                                                                                                                                                                                                                                    PMID 060
PMID 065
PMID 070
                                                                                                                                                                                                                                                                    PMID 080
PMID 085
PMID 090
PMID 105
                                                                                                                                                                                                                                                                     PMID 110
                        50 HLOCAL-SQRT(XXXXX2+1.)
GMINUS-(GAMMA-1.)/2.
C-(1.+GMINUSXMUSTRMXX2)/(1.+GMINUSXMLOCALXX2)
PLOCAL-PUSTRMXCXX(GAMMA/(GAMMA-1.))
TLOCAL-TUSTRMXC
ALOCAL-49.02XSQRT(TLOCAL)
DLOCAL-PLOCAL/(1716.48XTLOCAL)
HLOCAL-90.24 XTLOCAL
ULOCAL-NLOCALXALOCAL
DETIRM
                                                                                                                                                                                                                                                                    PMID 120
PMID 125
PMID 130
PMID 135
      49:
50:
51:
52:
53:
                                                                                                                                                                                                                                                                    PMID 150
PMID 160
PMID 170
                                    RETURN
```

ORIGINAL PAGE IS OF POOR QU

```
SUBROUTINE RADEGT(ENC, HR, EMIS, TW, PE, TRE)
 1:
 S:C
          CALCULATES RADIATION EQUILIBRIUM TEMPERATURE
 3:
          COMMON/FLAG/IDEAL
 4:
          SIGMA-4.75892E-13
 5:
          TG-TW
 6:
        1 CALL MOLIER(HG, PE, 2, TG, ZZ, SS, RR, GG)
 7:
          IF (IDEAL .EQ. 0) GO TO 10
 8:
          HG - . 2345 * TG + 9 . 786E - 6 * TG * TG + 943 . 6 / TG - 1 . 57
 9:
       10 DHDT=.2345+1.9572E-5*TG-943.6/(TG*TG)
10:
          IF (TG .LT. 400.) DHDT=.23866
11:
          RESID=ENC*(HR-HG)-EMIS*SIGMA*TG**4
12:
          IF (ABS(RESID/(ENC*(HR-HG))) .LT. .001) GO TO 30
13:
          DERIU = - ENC * DHDT - 4. * EMIS * SIGMA * TG * TG * TG
14:
          RATE = RESID/DERIU
15:
          TG-TG-RATE
16:
          GO TO 1
17:
      30 TRE-TG
18:
          RETURN
19:
          END
```

CORRON/CORLN/11, DT1, T2, DT2, T3, DT3, T4, DTCALC, DTEMAX, ATFLAG, HTFLAG, HTFLAG, ELFAC, ENT. FMI, AKI, AKI, PARAG, ERAFL, DEL, ENIS, TINC, RUGH, C. CPR, TAFLAG, ELFAC, UNCSO, CFFLG, DSUBO, ELMBDA, UDOT, CORNR, IOPT, CONFLG, AKIT, TAKILAD, AKITO, ARITO, DSUBO, ELMBDA, UDOT, CORNR, IOPT, CONFLG, ARITO, AKITO THIS SUBROUTINE SETS UP THICK SKIN PARAMETERS AND URITES OUT INPUT COMMON/MANDY/NODES, DELM, TIN, MATLF, NTIUZ, TSINK, FIU, HCIU, TGAS, TIUZ. 1HCIUZ, TGASZ, TSINKZ, TUI, FSNK, TGS, HCIN, IFÍRST, DÉLT TSINK-TSINKI DINENSION TIN(25), PHOLICES), CPIN(25), CONDIN(25), TAGRAT (JRATH) <u>SUBBOUTINE SETMUP(TSINKI,FIUI,MCIUI,TGASI,NTIWZI,MODESI.</u> 1 TIWZI,TGASZI,TZKI,DX,TII,MPF[AG) CONHON/PROPS/ RHOZ, CPZ, CONDZ, TABT, TABCP, TABCK,NTAB DATA TBL, ENAT, CONST2, CONST2/SHTABLE, ANNATL, GHGCL-DATA(TAGNAT(J),J-1, JRATH)/6N2024-T, ANA AL, GHGAL-1, ANI , GHINCO X, 4H-750, GHID NI-, 4HCR , GHL-605 , 2HCB , GHCARB/C, 4HARB , GHRASTEL, 4HLOYX, GHBERYLL, 3AHEHCF, GHFG MNY, 4HCONB, GHRRSI/L, 4HRSI , GHSIP+RI, COMMON/FLUFLD/PHIL(16), TU, REST(35) PARAMETER UNAT-14, UMATH-28JMAT DIMENSION MATLF (25), DELM(25) TSINK -TSINK! 000 O O ů o o ပပ

8-64

 $o_{F}^{ORIGIN_{AL}}_{POO_{R}}$ $o_{QU_{ALITY}}^{PAGE}$ IS

FIN "FILE "FILE III MINE "FILE III MINE "FILE "FILE III MINE "FILE

(N)-450.7

```
11
21 C88388
31 C
41 C
51 C
61 C
71 C
81 C
91 C
10 C
                SUBROUTINE STABLE(FIN, FOUT, GIN, GOUT, GI,
                                                                                     TREC)
                       THIS SUBROUTINE ESTABLISHES THE STABLE TIME INCREMENT FOR $
THE THICK SKIN OPTION: THE LESSER OF THE TIMES REQUIRED FORS
THE INNER AND OUTER WALLS TO REACH THEIR RESPECTIVE $
RADIATION EQUILIBRIUM TEMPERATURES FOR THE GIVEN NET HEAT $
FLUX AND HEAT CAPACITY.
                       IF THE STABLE TIME INCREMENT IS LESS THAN 1 SECOND BECAUSE THE WALL TEMPERATURE AND WALL EQUILIBRIUM TEMPERATURE ARE WITHIN 1 DEGREE, THEN THE STABLE TIME INCREMENT IS SET TO 1
 13:0
 13 C
14 C
15 C 8 8 1
16 I
17 I
18 I
20 I
           21: COMMONZENT LG/MENROR
22: DATA STEVIE/ .4760E-12/
23: 3000 FORMAT(1M0, 13X, 36H###NEUTON-RAPHSON FAILED TO CONVERGE,
24: 1 53H ON A VALUE FOR THE INNER EQUILIBRIUM TEMPERATURE AT,
25: 2 F10.3, 11H SECONDS###)
 CALL RADEGT(HCO, HREC, EMISS, T(1), PL, TEQ)
Q0 - QC - QR
DTO - ABS(GOUT # (TEQ - T(1))/(Q0 - FO
 35:
 33:
               DTO - ABS(GOUT # (TEQ - T(1))/(QO - FOUT #GOUT# (T(1) - T(2))))
IF(DTO.LT.1..AND.(ABS(TEQ-T(1))).LT.1.) DTO -1.0
 36:C
37:C
38:C
                       STABLE TIME INCREMENT: INNER WALL
                          FOR ADIABATIC INNER WALL, SET RADIATION VIEW FACTOR AND HEAT TRANSFER COEFFICIENT EQUAL TO ZERO.
 39 1 C
 40 IC
 IF (EMISIN .NE. 0. .OR. HCIN .NE. 0.) GO TO 10
DTI = 1.0E+06
TEQ2 - 0.
 461
471
481
                  GO TO 20
          10 CONTINUE
TEG2 - T(IMAX)
AEG2 - EMISIN # STEVIE
BEG2 - HCIN
CEG2 - AEG2 # TSINK##4 + HCIN# TGAS
 491
 50 I
 521C88888
531C
541C
551C
                          FOR INNER WALL, IF SUM OF RADIATIVE AND CONVECTIVE HEAT FLUX IS ZERO, SET RADIATION EQUILIBRIUM TEMPERATURE TO -459.7\ F.
DTEQ - AMINI(DTO,DTI)
RETURN
910 URITE(6,3000) CTIME
NERROR-1
721
731
741
751
761
              RETURN
              END
```

```
DIMENSION MATLN(25), TN(25), RHON(25), CONDN(25), RHOZ(25), CPZ(25), 1CONDZ(25), TABT(10,5), TABCP(10,5), TABCX(10,5), NTAB(5), CPN(25) COMMON/PROPS/ RHOZ, CPZ, CONDZ, TABT, TABCP, TABCX,NTAB
                                                                                                                                                                                              ,TABT(1,J),CPN(K),TABCP(1,J),CONDN(K),TABCX(1,J),
                            PROUIDES THERMAL PROPERTIES FOR THICK SKIN CONDUCTION SOLUTION
                                                                                                                                                                                                                                                                                                                   CALL MPROPS(MATLN(K), TN(K), RHON(K), CPN(K), CONDN(K))
SUBROUTINE STOCK (N, MATLN, TN, RHON, CPN, CONDN)
                                                                                                                              IF (MATLN(K)-100) 30,20,10
                                                                                                                                                                                                                                                                                   CONDN(K)=CONDZ(K)
                                                                                                                                            J- MATLN(K)-100
                                                                                                                                                              RHON(K)-RHOZ(K)
                                                                                                                                                                                                                                                  RHON(K)=RHOZ(K)
                                                                                                                                                                               T=TN(K)-459.7
                                                                                                                                                                                                                                                                   CPN(K)=CPZ(K)
                                                                                                                DO 100 K-1,N
                                                                                                                                                                                                CALL TBLING
                                                                                                                                                                                                                                                                                                     GO TO 100
                                                                                                                                                                                                                                 GO TO 100
                                                                                                                                                                                                                  1NTAB(J))
                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                   9
                                                                                                                                                                                                                                                                                                                      30
                 3:0
                                                  4 : C
                                                                 ......
                                                                                                                                                 10:
                                                                                                                                                                 13:19:1
                                                                                                                                                                                                                  14:
15:
```

ORIGINAL PAGE IS

OF POOR QUALITY

INTEGER BDVPNT, TRANTE
PARAMETER J1=17, J2=500, J3=32
DIMENSION TIME:(J2),XMEI(J2),REL1(J2),QC1(J2),QC1T(J2),
XTRE1(J2),TU1(J2),PE1(J2),CP1(J2),BETA1(J2),ALPHA1(J2),AKLZ1(J2),
X HFACZ1(J2),QT(2),TT(2),TU2(J2)
DIMENSION UZ(50),TZ(50),ALFAOT(50),ZZ(50),DELTAT(50)
DIMENSION BDVPNT(4),TRANME(6),IBUF(200),LABEL(20,6),IPAK(40) WRITE(9,200)ITINIT, ICASE, UNGPLT, NHFLAG, ITHICK, ARIDEF, ATRE URITE(9,220)(BDYPNT(I), I=1,4), (TRANTE(I), I=1,6), ICASE, NT, IT CONTINUE SUBROUTINE STORED(TINE, NHFLAG, ARIDEF, ATRL, .., ZZ, UZ, ALFAGT, 1 DELTAT, ITHICK, LNGPLT, MAXTME, ITINIT) | PE1(I) CP1(I), GC1(I), AKLZ1(I), HFACZ1(I), XME1(I), REL1(I), PE1(I) CP1(I), CP1(I), GC1(I), TREF1(I), TU1(I), TU2(I COMMON/LABS/LABEL
COMMON/DIBLJO/BDYPNT,TRANME,ICASE
COMMON/AXDAT/XOR,XSTEP,XAXIS
COMMON/ARRAY/QCI,TINEI,BETAI,ALPHAI,AKLZI,
RHFACZI,XMEI,RELI,PEI,CPI,TUI,TREFI,QT,TI,TUZ,QCIT
COMMON/ARX/QMI,BETAM,AKLZM,HFACZM,PEM,CPPM,TREFM
COMMON/PLOTT/JRCD,IT,NT,NT2,NFF,PCT CONTINUE WRITE(9,230) (TZ(1),ZZ/1),UZ(1),ALFA0T(1),I-1,NT) GO TO 40 CONTINUE WRITE(9,240) (TIME1(1),QC1(1),QC1T(1),I-1,IT) GO TO 40 IF(ICASE .GT. 5) GO TO 35 IF(ICASE .GT. 3) GO TO 30 GO TO (10,20,30), ICASE DECLARATIVE STATEMENTS BASIC PLOT DATA CASE 2 DATA 8 8 æ 3.55 5.61 5.61 884 555 4 15 16 15 0 0 0 0 1

```
SUBROUTINE SUCYL2(RN,PHI,ENCL,ENCT)
COMMON/FLUFLD/TINF,PINF,RHOINF,AINF,RHOE,PE,TE,HE,XMUE,UE,RHOO,PO,
1TO,HO,XMUO,RHOW,TW,HW,XMUW,RHOS,TS,HS,XMUS,RHOR,TR,HR,XMUR,U,XME
2,REL,HINF,XMUINF,PR,PU,DU,TU,XMUU,XMACHU,V'J,HU, ALPHA,
3RHOSTL,HSTL,TSTL,XMUSTL,RHOSTT,HSTT,TSTT,XMUSTT,HRECL,HRECT,S
#,GINF,GAMAU,GAMAS,GAMAE,GAMAO,GW,GAMAG,PRL,PRT
COMMON/CYLV HSL,PSL,RHOSTG,XMUSL,TSL,USL
COMMON/STAG/PSTAG,RHOSTG,TSTG,XMUSTG
COMMON/ERRFLG/NERROR
COMMON/FLAG/ IDEAL
PET-BULLULIS, 2007/XMUIII
RED-DUXVUX2. *RN/XMUU
                             REL-RED
                      1 PSV-PO
XSV-XMUO
RSV-RHOO
TSV-TO
                            RUSV-RHOW
                            XMUUSU-XMUU
PO-PSTAG
RHOO-RHOSTG
                           RHOU-RHOSTG
XMUO-XMUSTG
TO-TSTG
CALL MOLIER(HU,PO,0,TX,ZX,SX,RHOU,GX)
CALL HANSEN(XMUU,PO,TU)
CALL HANSEN(XMUU,PO,TU)
CALL FAYRID(RN,ENF)
PRI=.71
                           PO-PSU
RHOO-RSU
                            XMUO-XSV
                            TO-TSU
                            RHOW-RUSV
                           RHOU-RHOU
XMUU-XMUUSU
ENCL-0.707%ENF%COS(PHI%.0174)%%1.1
DUDX-SQRT(2.%(PSL-PU)/RHOSL)/RN
RMR-RHOSTT%XMUSTT/(RHOO%XMUO)
                            ENCT-1.04*RH00**.8*XMU0**.2*USL**.6*RMR**.8*DUDX**.2/PRT**.667
5-PRL**.667
                  99 RETURN
                            END
```

```
1 TIME: TO TIME 2, LAMINAR TO TURB.
1 TIME: TO TIME 2, TURBULENT TO LAM.
1 RETHETAL TO RETHETA?
1 ED PARAM 1 TO ED PARAM 2
ED ON E.D.TRANS. LENGTH AND ALPHA
ED ON MAR CRITERIA RETR-F(ME)
ED ON R.I. CRITERION --- RETHETA/ML
                                                                                                                                                                                                                                                                    TIME DEPENDANT TRANSITION - LAMINAR TO TURBULENT
                                                                                                                                                                                                                                                                                                                   TIME DEPENDANT TRANSITION - TURBULENT TO LANIMAR
                                                                                                                                                                                                                                                                                                                                                                        SUB
                                                                                                                                                                                                                                                                                                                                                                        5
                                                                                                                                                                                                                                                                                 10 IF(TIME-PARA))180,100,11
11 IF(TIME-PARA2)12,300,300
12 PCT=(TIME-PARA1)/(PARA2-PARA1)
GO TO 200
                                                                                                                                                                                                                                                                                                                                 IF (TIME-PARA) 300, 300, 21
IF (TIME-PARA2) 22, 100, 100
PCT-(PARA2-TIME)/(PARA2-PARA1)
GO TO 200
                                                                                                                      TRANSITION FROM RE SUB L 1
                                                                                                                                                                                                                                                                                                                                                                                IF (PARAL.GT.PARAE)GO TO 33
IF (REL-PARAE)100,100,31
IF (REL-PARAE)32,300,300
                                                                                                                                                                                                                  I NFLAG*TRFLAG+.001
IF(NFLAG-E)10,20,2
IF(NFLAG-2)10,20,2
Z IF(NFLAG-4)30,40,3
3 IF(NFLAG-6) 40,60,4
4 IF(NFLAG-8) 70,80,997
                                                                                                                    TRANSITION F
TRANSITION F
TRANSITION F
TRANSITION F
TRANSITION F
TRANSITION F
TRANSITION F
                                                                                                                                                                                MERROR-8
ITRAN-8
IF(MHFLAG.E0.1) GO TO
                                                                                                                    78FLAG-2
78FLAG-3
78FLAG-4
78FLAG-5
78FLAG-6
78FLAG-6
                                                                                                                                                                                                                                                                                                                                  22.9
                                                                                                                                                                                                                                                                                                                                                                                  ä
                                                                                                                                                                                                                                                                                                                                                                                              31
 511
5310
5410
```

```
2
                    THE FOLLOWING EXPRESSION IS USED TO MATCH THE RI TRANSITION ZONE
                                                                                                                  TRANSITION FROM RE THETAI TO RE THETA 2 (BASED ON ECKERT LAM.PROPS
                                                                                                                                                                                                                                                                                                                                                                  TRANSITION OCCURS LAEN L IS GREATER THAN E.D. TRANSITION LENGTH
                                                                                                                                40 RETHET-6.664#SQRT(RHOSTL#XMUSTL#REL/(RHOE#XMUE#ENL))
IF(NFLAG.EQ.S)GO TO 50
PARA-KETHET
IF(FARAL.GT.PARAZ) GO TO 46
IF(RETHET-PARAZ) 100,100,44
44 IF(RETHET-PARAZ) 3300,300
45 PCT-(RETHET-PARAZ) 17,70ARAZ-PARAZ)
60 TO 200
46 IF(RETHET-PARAZ) 100,100,47
47 IF(RETHET-PARAZ) 100,100,47
47 IF(RETHET-PARAZ) 100,100,47
47 IF(RETHET-PARAZ) 100,70ARAZ)
60 TO 200
60 TO 200
                                 PCT=(SIN((REL-PARA1)/(PARAZ-PARA1)11.570706))112
00 T0 200
                                                 IF (REL - PARA 2) 100, 100, 34
IF (REL - PARA 1) 35, 300, 300
PCT - (REL - PARA 2) / (PARA 1 - PARA 2)
PCT - (SIN ((REL - PARA 1) / (PARA 2 - PARA 1) 11, 570796)) 112
GO TO 200
                                                                                                                                                                                                                                                                     TRANSITION FROM ED PARAMETER 1 TO ED PARAMETER 2
                                                                                                                                                                                                                                                                                       50 PARA-RETHET/(XME:(RHOE:UE/XMLE)::2)
If(PARA-PARA):00.100.51
51 If(PARA-PARA2):2,300,300
52 PCT=(PARA-PARA1)/(PARA2-PARA1)
GO TO 200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ELTZ-ELFACIELTRAN
CONTINUE
PARAI-ELTRAN
PARAZ-ELTZ
                                                         888
                                                                                                                                                                                      14
                                                                                                                                                                                                                 974
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         69
                                                                                                                                      •
```

32 PCT - (REL-PARAL) / (PARAZ-PARAL)

ORIGINAL PAGE IS

```
IS A FLAG TO INDICATE POINT OF LANIMAR/TRANSITION OR TRANSITION/TURBULENT FLOW FOR PRINTOUT AND PLOTTING. IT IS RESET TO ZERO WITH EACH PASS THROUGH THIS SUBROUTINE. ITRAN-0 NO CHANGE IN TYPE OF FLOW
                                                                                                                                                                                                              R.I. TRANSITION CRITERION --- RE THETA/MACH NO.
-TRANSITION IS INITIATED AT AN RE THETA/MACH NO.(ALPHA)
-FLOW IS FULLY TURBULENT AT AN RE X WHICH IS EQUAL TO 2X THE
RE X DERIUED FROM THE RE THETA/MACH NO.(ALPHA) PARAMETER
EVALUATED AT THAT TIME
                                          TRANSITION OCCURS LIMEN L IS GREATER THAN TRANS LENGTH .F(RE(ME))
                                                                                                                                                                                                                                                                  70 CALL TBLIN(XME, EMEX, RELG, RETRX, X, XX, NX2)

ELTRAN (10. ERELG) EXMUE/(RHOESUE)

PARA-ELTRAN

IF (ELFA.CG. 1) GO TO 73

RELOG-ALOGIO (RHOESUE SELTRAN/XMUE)

CALL TBLIN(RELOG, REEX, ELFAX, ELX, X, XX, NX)

GO TO 74

73 ELT2-ELFAXELTRAN

74 CONTINUE
                                                                                                                                                PARA1=ELTRAN
PARA2=ELT2
IF(EL -ELT2) 72,300,300
IF(EL -ELT2) 72,300,300
GO TO 200
IF(EL -ELTRAN)100,100,61
IF(EL -ELT2) 62,300,300
PCT=(EL -ELTRAN)/(ELT2-ELTRAN)
GO TO 200
                                                                                                                                                                                                                                                                                                                                                                                                        ENC-ENCL
HRECON-HRECL
HRECS-HHOSTL
HS-HSTL
TS-FSTL
TS-FSTL
PCT-0.
                                                                                                                                                                                                                                                                                                                                                                                        LAMINAR FLOW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ITRATI
         58
                                                             2
```

```
TO INDICATE THE TYPE OF FLOW. IT IS USED TO THE UALUE OF ITRAN.
LANINAR
TURNSITIONAL
                                                                                                                                                                                                                                                                                                                                                                     URITE(6,998)NFLAC
FORMAT(720H TRANSITION FLAG NO.,13,19H DOES NOT VET EXIST/)
NETROR-1
RETURN
EYD
 CHANGE IN TYPE OF FLOW
                                                                                            MECOU (1.-PCT)ZENCL+PCTZENCT
MECOU (1.-PCT)ZEMECL+PCTZENECT
PR. (1.-PCT)ZEMECL+PCTZENECT
REAS=RHOSTL
HS-HSTL
TS-TSTL
XMUS=XRLSTL
XMUS=XRLSTL
IF (NTR :E0. 1) ITRAN-1
IF (NTR :E0. 3) ITRAN-1
MTR-2
GO TO 999
                                                                                                                                                                                              ENC-ENCT
HRECOU-HRECT
RHOS-RHOSTT
HS-HSTT
TS-TSTT
XGNLS-XMLSTT
PR-PRT
IF (WTR .EQ. 2) ITRAN-1
NTR-3
PCT-1.
                                                     IF (HTR .EG. 2) ITRNN-1
NTR-1
GO TO 999
            IS A FLAG 1
DETERNINE 1
NTR-2
NTR-2
ITRAN-1
                                                                                 TRANSITIONAL FLOW
                                                                                                                                                                                                                                                                                  STACHATION POINT
                                                                                                                                                                                 TURBULENT FI.OU
                                                                                                                                                                                                                                                                                                ENC-ENCL
MRECOU-HO
MTR-1
PCT-0.
PR-PRL
GO TO 999
RETURN
             Ĕ
                                                                                              i
```

```
(INCREASING INDEP. UARIABLE)
SUBROUTINE TBLIN(X,XX,Y,YY,Z,ZZ,N)
                LINEAR INTERPOLATION SUBROUTINE
                                                                                                                     RATIO = (X-XX(K))/(XX(K+1)-XX(K))
                                DIMENSION XX(N), YY(N), ZZ(N)
                                                                                                                            Y=YY(K)+RATIO*(YY(K+1)-YY(K))
Z=ZZ(K)+RATIO*(ZZ(K+1)-ZZ(K))
                                                                                          IF(X-XX(K+1))4,3,6
                                                 IF(X-XX(1)) 1,2,2
                                                                          GO TO 10
DO 6 K-1,NA
                                                                                                    RATIO-1.
                                                                                                                                              G0 T0 10
                                                                                                                                                      CONTINUE
                                                         Y-YY(1)
Z-ZZ(1)
                                                                                                                                                               Y=YY(N)
Z=ZZ(N)
                                         NA=N-1
                                                                                                                                                                                 10
                                                                                                                      4 N
                                                                                    വ
                                                                                                                                                        ø
        86.6
                                                                                                                                                                        22:
22:
23:
```

ř.

ORIGINAL PAGE IS
OF POOR QUALITY

```
3:
                                                             SUBROUTINE URUNL(TRFLAG, ELTRAN, ELL, ELT, ELTP, PARA1, PARA2, ENL, EL, UX,
                                                     1 NCFLG)
DIMENSION EMEX(7), RETRX(7), XX(7)
COMMON/FLUFLD/TINF, PINF, RHOINF, AINF, RHOE, PE, TE, HE, XMUE, UE, RHOO, PO,
1TO, HO, XMUO, RHOW, TW, HW, XMUW, RHOS, TS, HS, XMUS, RHOR, TR HR, XMUR, V, XME
2, REL, HINF, XMUINF, PR, PU, DU, TU, XMUU, XHACHU, UU, HU, ALPHA,
3RHOSTL, HSTL, TSTL, XMUSTL, RHOSTT, HSTT, TSTT, XMUSTT, HRECL, HRECT, S
***, GIMF, GAMAU, GAMAS, GAMAE, GAMAO, GW, GAMAG, PRL, PRT
DATA (EMEX(K), K-1, 7)/0.5, 1.0, 1.5, 2.0, 3.5, 4.5, 5.5

DATA (RETRX(K), K-1, 7)/ 5.30103, 5.54407, 5.81291, 6.0, 6.0, 6.07918,
1 6.25527
DATA NX2/7/
        41 61
DATA NX2/7/
                                                          THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TABLE TO THE TABLE TABLE TO THE TABLE TABLE TO THE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TA
                                                            IF (PARAZ.LT.PARA1) PARA-PARAZ
                                      IF (NTRANS-4)30,40,50
30 ELTRAN-PARAEXHUE/(RHOE#UE)
                                       GO TO 100
40 ELTRAN-(PARAXMUE/.664)**2/(RHOSTL*XMUSTL*UE)
                                      GO TO 100
50 ELTRAN-2.26#PARA#PARA#XME#XME#RHOE##.4#XMUE##1.6/(RHOSTL#XMUSTL#
                                                   1UE**.6)*ENL

1UE**.6)*ENL

IF(NCFLG.LE.0) GO TO 100

IF(NCFLG.LT.3) GO TO 51

ELTRAN-ELTRAN*EL/ELL
                                    ELTRAM*ELTRAMSEL/ELL
GO TO 100
51 IF(ELTRAM.GT.(UX/2.)) GO TO 52
ELTRAM*-.5%UX%ALOG(1.-2.*ELTRAM/UX)
GO TO 100
52 ELTRAM*1000.*ELTRAM
GO TO 100
60 CALL EDPARM(ALPHA,PARA)
29:
30:
31:
32:
33:
34:
35:
36:
37:
                                     GO TO 50

70 CALL TBLIN(XME,EMEX,RELG,RETRX,X,XX,NX2)
ELTRAN-(10.**RELG)*XMUE/(RHOE*UE)
                              ELTRAN-(10.% TRELG) TXNUE/(RHO)

100 ELTP-ELT

IF(EL .LT.ELTRAN) GO TO 999

IF(NCFLG.LE.0) GO TO 110

ELT-(EL-ELTRAN) *ELT/EL

GO TO 999

110 ELT-ELTP-ELTRAN
 38:
 39:
40:
 421
 43:
 44:
                                                         RETURN
                                                           END
```

 $o_F^{ORIGINAL}_{POOR}_{QU_{ALITY}}$

```
50 FORMATICETIO.2,F10.4,F10.2,F10.4))
50 FORMATICETIO.2,F10.4,F10.2,F10.4))
1F(CFFLG.GT. 0)URITE(6,4) CFFLG,DSUBO,ELMBDA,UDOT,CORNR
4 FORMATICION FLG=F9.3/
15X,11HOPTION FLG=F9.3/
25X,11HOPTION FLG=F9.3/
35X,11HCORNER R =F9.3/
55X,11HCORNER R =F9.3/
55X,11HCORNER R =F9.3/
55X,11HK SUB L 1 =F9.3/
15X,11HK SUB L 1 =F9.3/
15X,11HK SUB L 1 =F9.3/
15X,11HK SUB L 1 =F9.3/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1G. )
NT3-ENT3+.0001
IF(NT3 - LE - 0) GO TO 2011
IF(NT3 - LE - 0) GO TO 2011
URITE(6,5001)
S001 FORMAT(/5%,35HTIME DEPENDENT GEOMETRIC PARAMETERS /, 15%,4HTIME,6%,2HRN,8%,1HL,9%,3HPHI,5%,8H5CRIPT F/)
DO 2010 LO-1,NT3
URITE(6,50) THZ(LO),RNZ(LO),ELZ(LO),PHIZ(LO),EHIZ(LO)
2011 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MTZ-ENTZ-.001

INTZ-ENTZ-.001

IF (NTZ .LE. 0) GO TO 2030

URITE (6,66)

15X,4HTINE.8X,29HK SUB L 2,4X, 9HK SUB T 2/)

DO 3020 LO-1,NTZ

URITE (6,6) TKI(LO),AKLZ(LO),AKTZ(LO)

10 CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

INTS - ENTS + .001

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (1007)

IF (
                       19:1
100:2030
110:6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    115:3040
                                          ÷.
```

i

```
1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 1882 1 18
```

```
291 FORMAT(7x,1M8,7x,37MLAMINAR BELOW AN RE THETA/ML (ALPMA))
292 WRITE (6,293) PARA;
293 FORMAT(7x,1M8,7x,31MLAMINAR BELOW RE THETA/ML =F7.1)
294 WRITE(6,295)
295 FORMAT(15x,78H7URBULENT ABOUE RE L 2.0 x RE L BASED
1 ON AN RE THETA/ML (ALPMA)/15x,33MTRANSITIONAL BETWEEN THESE LIMIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FORMATCIIH TRAJECTORV/

45X, 4HTIRE, 8X, 8HALTITUDE, 7X, 8HUELOCITY, 7X, SHALPHA, 9X, SHDELTA/

4(F10.2, 7X, F8.0, 7X, F7.1, 7X, F7.3, 7X, F7.3))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO TO 309
CONTINUE
DO 3030 LO-1,NT
BURITE(6,306) TZ(LO),ZZ(LO),UZ(LO),ALFA0T(LO),DELTAT(LO)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           278: DO 3050 LU.1, TAOT(LO), DL. 280: LATE(6,32) ALFA0T(LO), DL. 280: LATINITALE 281:3050 CONTINUE 282: 32 FORMAT(11H ATMOSPHERE/283: 15x, 84aLTITUDE, 7x, 9HF.S.TEMP., 6x, 10HF.S.PRESS./284: 2(4x,F8.0,8x,F8.2,7x,E11.5))
284: 2(4x,F8.0,8x,F8.2,7x,E11.5)
284: 2(4x,F8.0,8x,F8.2,7x,E11.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  643 307 CUNITIVE
651 WRITE(6,3088)
1651 DO 2044 LO-1,NT
1671 URITE(6,308) 72(LO),UZ(LO),ALFA0T(LO)
1681:2040 CONTINUE
1681 3088 FORMAT(11H TRAJECTORY,
171:308 FORMAT(FI0-2,7X,F8.0,7X,F7.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF (NTF.EQ.0) URITE (6,310)
310 FORMAT(-Z1H 1962 ICAO ATMOSPHERE/)
IF (NTF.EQ.4) URITE(6,311)
311 FORMAT(-Z5H 1963 PAFB STD ATMOSPHERE)
IF (NTF.NE.2) GO TO 99
IF (NTF.NE.2) GO TO 99
DO 305-0 LO-1,NAL
URITE(6,32) ALFAOT(LO),DELTAT(LO),FSPRES(LO)
                                                                                                                                                                                                                     30 MTF-ATFLAG+.001
MT-ENTRA.001
IF (MTF.EQ.1) GO TO 33
IF (MFF.EQ.1) GO TO 33
IF (MFF.EG.3111)
ENGINE (G.3111)
DO 2020 LO-1,NT
URITE (G.311)
DO 2020 LO-1,NT
URITE (G.31) TZ(LO),ZZ(LO),UZ(LO)
11 FORMAT(11H TRAJECTORY/
11 FORMAT(11H TRAJECTORY/
31 FORMAT(F10.2,7X,F8.0,7X,F7.1)
GO TO 309
FORMAT(15X, 26HR. I. TRANSITION CRITERION)
IF (ARIT .LT. .001) GO TO 292
URITE(6, 291)
                                                                                                                                                                                                                                                                 246:1
246:1
246:1
248:1
248:1
250:1
250:1
250:1
250:1
250:1
```

15% - 10 FREE STREAM PROPERTIES - 15% - 16% - 15% - 16%

MINIVER PLOT PACKAGE ROUTINES 9.

```
1:
2:
3:C
4:C
5:C
                  SUBROUTINE PLOTLO(TIME, NHFLAG, ARIDEF, ATRE, TZ, ZZ, UZ, ALFAGT, 1 DELTAT, ITHICK, LMGPLT, ITINIT, MAXTME, DEVICE, IMCOPY)
                    DECLARATIVE STATEMENTS
                 INTEGER BDYPHT,TRANME,DEVICE
PARAMETER J1-17, J2-500, J3-32
DIMENSION TIME1(J2),XME1(J2),REL1(J2),QC1(J2),QC1T(J2),
ITREF1(J2),TM1(J2),PE1(J2),CP1(J2),BETA1(J2),ALPMA1(J2),AKLZ1(J2),
##FACZ1(J2),QT(2),TT(2),TM2(J2)
DIMENSION VZ(50),TZ(50),ALFAOT(50),ZZ(50),DELTAT(50)
DIMENSION BDYPHT(4),TRANME(6),IBUF(200),LABEL(20,6),IPAK(40)
 7:
9:
10:
11:
12:
13:C
14:C
 16:
                   COMMON/LABS/LABEL
COMMON/DIBUJO/BDYPNT, TRANME, ICASE
                 COMMON/AXDAT/XOR, XSTEP, XAXIS
COMMON/ARRAY/QC1, TIME1, BETA1, ALPHA1, AKLZ1,
##FACZ1, XME1, REL1, PE1, CP1, TU1, TREF1, QT, TT, TU2, QC1T
COMMON/AAX/QM, BETAM, AKLZM, HFACZM, PEM, CPPM, TREFM
COMMON/PLOTT/BUE TRAY
 18:
22:
23:
24:0
25:0
26:0
27:0
                   COMMON IPT, IBUF, IPAK
                     SET X-AXIS LABEL LIMITS AND INCREAMENTS
27:C
28:C
39:C
31:C
32:C
33:
34:
35:C
36:C
37:C
38: 310
39:
40:C
                   OMAX - MAXTME
                   DELTX-MAXTME/10
                       INITIALIZE PLOTTING DEVICE
                   GO TO(310,320,330), DEVICE
                        INITIALIZE TEKTRONIX CRT
                   CONTINUE
                   CALL ERASE
 41:C
42:C
                        START PLOTTING
 43:
44:
45:
46:
47:C
                   CALL TEKEGM(480)
CALL BASALF('L/CSTD')
CALL MIXALF ('STANDARD')
GO TO 340
48:C
49:C
50: 320
51:C
52:C
53:C
                     INITIALIZE MOPS TERMINAL
                 CONTINUE
                        INSERT CODING HERE
54:
55:C
56:C
                   GO TO 340
                     INITIALIZE MICROFILM HERE
 57:C
 57:C
58: 330
59:C
60:C
61:C
62: 340
63:C
64:C
65:
66:C
67:C
                   CONTINUE
                  CONTINUE
                        PLOT REFERENCE PLOTS
                    IF(ICASE-2) 5, 10, 20
                      REFERENCE SPHERE PLOTS
                                                                                                                            ORIGINAL PAGE IS
 68:C
69:
70:C
71:C
72:C
             5 CONTINUE
                      TIME US ALTITUDE
```

CALL AXSPLT(0.0,0MAX,8.0,XOR,XSTEP,XAXIS)

```
741C
 75:
76:C
77:C
                 CALL HMDYLO(IHCOPY, TZ, ZZ, NT, 1, 1)
                       TIME US VELOCITY
 78:C
79:
                CALL HNDYLO(IHCOPY, TZ, UZ, NT, 2, 1)
 $0:C
                    TIME US ANGLE OF ATTACK
 82:C
83:
84:C
85:
86:C
87:
                  IF(ALFAST .LE. 8) GO TO 18
                CALL HNDYLO(IHCOPY, TZ, ALFA@T, NT, 3, 1)
                GO TO 48
 89:C
                  TIME US QUOT REF
 90:C
91: 10
                CONTINUE
 92:
93:
94:
95:C
96:
                CALL DSMMLO(IT,QC1T,YMIN,YMAX)
CALL AXSPLT(0.0,YMAX,5.0,YOR,YSTEP,YAXIS)
CALL PPLOT1(11,ICASE)
CALL PLOT1(11,ICASE)
CALL BLMK1(0.0,2.5,5.0,6.2,3)
CALL DRAULO(XOR,XSTEP,XAXIS,YOR,YSTEP,YAXIS,TIME1,QC1,IT,3,3)
              1 IHCOPY)
CALL DRAWLO(XOR, XSTEP, XAXIS, YOR, YSTEP, YAXIS, TIME1, QC1T, IT, 2,
 97:
 98:
99:
100:
101:
102:
               1 IHCOPY)
CALL LINES('(T)W (R)AD (E)Q (T)EMP.8', IPAK, 1)
CALL LINES('(T)W (D)EG. (F)8', IPAK, 2)
IPT--1
103:
104:
105:
106:
107:
                CALL LEGEND(IPAK,2,2.5,6.2)
CALL INTHO(ITINIT,3.4,6.2)
IF(ICOPY LE. 0) GO TO 99
CALL HDCOPY
CALL ERASE
107:
108: 99
109:
110:
112:C
112:C
114:C
114:C
116:C
116:C
117:C
118:C
                CONTINUE
                 CALL ENDPL(8)
GO TO 48
               CONTINUE
IF(LNGPLT .EQ. 0) GO TO 30
                  LONG PLOT
                  LAMINAR FACTORS
183:C
                   LAMINAR FACTORS
125:C
126:
127:C
                 CALL HNDYLO(IHCOPY, TIME1, AKLZ1, IT, 4,3)
128:
                 IF(ARIDEF .NE. 1) GO TO 26
129:C
130:C
131:C
133:C
134:C
135: 25
136:C
137:C
138:C
139:C
141:C
141:C
143:C
144:C
145:C
145:C
146:C
147:C
                  DEFLECTION FACTORS
                 CALL HNDYLO(IHCOPY, TIME1, HFACZ1, IT, 5,3)
                CONTINUE
                  LOCAL MACH NUMBER
                 CALL HNDYLO(IHCOPY, TIME1, XME1, IT, 6,3)
                 IF(NHFLAG .EQ. 1) GO TO 27
                  REYMOLDS NUMBER LOCAL/1.0E6
                 CALL MIDYLO(IHCOPY, TIME1, REL1, IT, 7,3)
```

```
GO TO 28
         27 CONTINUE
153:C
                    REFAC
155 : C
            CALL HMDYLO(IHCOPY, TIME1, HFACZ1, IT, 8,3)
               CONTINUE
160:C
              LOCAL PRESSURE LBF/FT-SQ
            CALL HNDYLO(IHCOPY, TIME1, PE1, IT, 9, 3)
               C SUB P
             CALL HNDYLO(IHCOPY TIME1, CP1, IT, 10,3)
              SHORT PLOTS
170:C
171:
172:C
173:C
174:
175:C
176:C
              CONTINUE
             IF(ARIDEF .NE. 1 ) GO TO 210
              CONTROL SURFACE DEFLECTION PLOT
178:C
179:C
180: 210
             CALL HNDYLO(IHCOPY, TIME1, DELTAT, IT, 13,3)
            CONTINUE
183:C
              Q DOT (BTU/FT-SQ-SEC) PLOT
            CALL HNDYLO(INCOPY, TIME1, QC1, IT, 11,3)
               TITLE TUAL (DEG F) PLOT
            CALL HNDYLO(IHCOPY, TIME1, TREF1, IT, 12,3)
189 : C
            IF(ATRE .GT. 0.001) GO TO 236
              T WALL (DEG F) PLOT
193:C
194:
195:C
196:
197:C
            CALL HNDYLO(IHCOPY, TIME1, TW1, IT, 12,3)
            CONTINUE
197:C
198:
199:
200:C
201: 37
202:C
203:C
204:C
205:
205:
207: 4(
208:
209:
            IF(ITHICK .NE. 0) GO TO 37
             GO TO 40
            CONTINUE
             TUALL (DEG F) PLOT TUZ
            CALL HNDYLO(IHCOPY, TIME1, TH2, IT, 12,3)
            CONTINUE
RETURN
END
```

SUBROUTINE 2:C DECLARATIU 4:C INTEGER BD 6: DIMENSION 7: DIMENSION 7: DIMENSION 9:C COMMON/LAB COMMON/LAB COMMON/AXD 1:: COMMON/AXD COMMON/A	SUBROUTINE HNDYLO(IHCOPY,XARRAY,NP,ILABL,IPASS) DECLARATIUE STATEMENTS INTEGER BDYPNT,TRANME DIMENSION BDYPNT,TRANME(G),LABEL(20,G),IPAK(40) DIMENSION ARRAY(1),YARRAY(1) DIMENSION IBUF(200) COMMON/LABS/LABEL COMMON/AXDAT/XOR,XSTEP,XARIS COMMON/AXDAT/XOR,XSTEP,XARIS COMMON/AXDAT/XOR,XSTEP,XARIS COMMON/AXDAT/XOR,XSTEP,XARIS COMMON/AXDAT/XOR,XSTEP,XARIS CALL PPLOTI(ILABL,ICASE) CALL PRALO(NP,YARRAY,YMIN,YMAX) CALL DSMMLO(NP,YARRAY,YMIN,YMAX) CALL DSMMLO(NP,YARRAY,YMIN,YMAX) CALL DSMMLO(NOR,XSTEP,XARIS,YOR,YSTEP,YAXIS,XARRAY,NP, 1 1,IPASS,IHCOPY) RETURN RETURN RETURN
--	---

```
SUBROUTINE DRANLO, URITTEN BY LORENZO OLNEDO OF LEC JULY,1979
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SUBROUTINE DRAWLO(XO,XD,XL,YO,YD,YL,XARRAY,YARRAY,NPOINT,IFLAG, 1 IPASS,INCOPY)
                                                                   THIS ROUTINE COLLECTS DISSPLA ROUTINES FOR THE PURPOSE OF GENERATING A PLOT, AND LABELING OF THE X-AXIS. THE Y-AXIS ARE LABELED IN A ROUTINE CALLED PPLOT!
                                                                                                                                                                                                                                                                                      - X-ORIGIN

- X-INCREAMENTS

- X-AXIS RANGE

- Y-ORIGIN

- Y-INCREAMENTS

- Y-AXIS RANGE

- ARRAY TO BE PLOTTED ON THE X-AXIS

- NUMBER OF POINTS TO BE PLOTTED

- FLAG TO INDICATE CLOSING OF A GIUEN FRAME

IFLAG-1 ONE PLOT PER FRAME

IFLAG-2 TUO PLOTS PER FRAME

IFLAG-3 FIRST PLOT OF A SET OF TUO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ROUTINES CALLED IN THIS PGM. ARE PART OF DISSPLA SYSTEM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DINENSION XARRAV(1), YARRAV(1)
DINENSION IBLF(200), BDVPNT(4), TRANTE(6), IPAK(40)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G('(T)RAJECTORY 8', 100, 0.1, 7.0)
G(TRANTE, 36, 1.4, 7.0)
G(BDYPNT, 24, 5.0, 7.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTON IPT, IBUF, IPAK
CONTON/DIBUJO/BDYPNT, TRANTE, ICASE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GO TO(1,20,2), IFLAG
CALL XINTAX
CALL YINTAX
CALL YINTAX
GO TO 16
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DECLARATIVE STATEMENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INTEGER BOYPMT, TRANNE
                                                                                                                                                                                                                         ARGUMENTS
```



```
SUBROUTINE DSMMLO(NP,A,YORI,YLAST)

2: DIMENSION A (500)

3: YORI=A(1)

4: YLAST=A(1)

5: DO 10 I=1,NP

6: YORI=AMINI(YORI,A(1))

7: YLAST=AMAXI(YLAST,A(1))

8: 10 CONTINUE

9: RETURN

10: END
```

SUBROUTINE PPLOTI(ILABL, ICASE)	URITTEN BY LORENZO OLMEDO	THE PURPOSE OF THIS SUBROUTINE IS TO PLACE A LABEL	ON THE Y AXIS		ARGUMENT: ILABL, UHICH IS AN INTEGER INDICATING	UHICH LABEL IS TO BE URITTEN ON Y-AXIS	THE LABEL IS DEFINED IN A TWO DIMENSION ARRAY	CALLLED LABEL.		THERE CAN BE AS MANY AS 20 LABELS , WHICH MUST BE	DEFINED IN SUBROUTINE PPLOT. EACH LABEL CONTAIN 6 LORDS.		SUBROUTINE PPLOTI(ILABL, ICASE)	DIMENSION LABEL(20,6), IBUF(200), LABF(6), IPAK(40)	COMMON/LABS/LABEL	COMMON IPT, IBUF, IPAK				DO 10 J-1,6	LABF(J)-LABEL(ILABL, J)			RETURN	
o c	000	0	O	c)	co i	u	U	O	O	O	O	O					O	O	c			10			
110	90.4	2	9	2		ä	10:	11	12:	13:	14:	15:	16:	17:	18:	19	20:	21:	22	231	24:	25:	261	27.	9

10. OFF-LINE PLOTTING

Off-line plotting is hasically the same as explained in section 4, except that the data is ready to be plotted and stored in a secured file. The name of the file containing the runstream is different; it is OFFLPT (off-line plotting) and resides in secured file ES35-N06516*LOREN.

The runstream listing for OFFLPT is shown in figure 2; the program listing is shown in figure 3.

```
1: OFREE TPFS.
 2: @ASG, A ES32-L78771*OLMEDO
 3: @USE OL., ES32-L78771*OLMEDO
 4: @ASG, T 9., F/1/TRK/500
 5: @ASG, T TPF$., F/1/TRK/800
 6: GERS TPFS.
 7: @COPY ES35-N06216*LOREN., TPF$
 8: GED, I TPFS. MAP
 9:LIB TPFS
10:LIB DISSPLAXTRY
11:SEG MAIN
12:NOT DISSPLA*TRY.QQTKEG
13: IN LOREN. QQTKEG
14: IN DEMOMA, PLOTDE, MENUPT
15:END
16: OPREP
17: MAP TPFS. MAP, TPFS. ABS
18: EXQT ABS
19: CADD OL.RTLS-EX/32779
20: CADD OL.C1234/DATA
21: @ADD OL.C12345/DATA
22: CADD OL. BD3RD1/DATA
23: CADD OL. DIRECTORY
```

Figure 2. - Runstream listing OFFLPT.

DO 60 J-1,10PT
READ(9,200,END-150) ITINIT,ICASE,LHGPLT,NWFLAG,ITHICK,ARIDEF,ATRE
READ(9,220)(BDVPNT(1),1-1,4),(TRANNE(1),1-1,6),ICASE,NT,IT
IF(J .GT. 1) GO TO 25
READ(9,230) (TZ(1),ZZ(1),UZ(1),ALFA0T(1),I-1,NT)
RANTHE-TZ(NT)
GO TO 60 IF(J.GT. S) GO TO 45

READ(0,240)(TIME1(I), AKLZ1(I), HFACZ1(I), XME1(I), REL1(I),
2 I-1, IT)

READ(0,240) (DELTAT(I), TREF1(I), TUI(I), TUZ(I),
READ(0,240) (DELTAT(I), I-1, NT)
CONTINUE
READ(0,230) (TZ(I), ZZ(I), UZ(I), ALFAGT(I), I-1, NT)
RAXTNE-TZ(NT) CALL PLOTDE:TIME, MFLAG, ARIDEF, ATME, TZ, ZZ, UZ, ALFAGT, 1 DELTAT, ITHICK, LNGPLT, ITHIT, MAXTME, DEVICE, INCOPY) IF(J.GT, 2) GO TO 35 READ(9,240) (TIME1(I),0C1(I),0C1T(I),I-1,IT) GO TO 60 CONTINUE URITE(6,1)
FORMAT(' MARD COPY OF PLOTS VES OR NO?'/
1 'ENTER PROPER RESPONSE Y OR N')
READ(5,2) KOPY
FORMAT(A1)
IF(KOPY .E0. 1HY) IHCOPY-1 READ DATA NEEDED FOR PLOT PROGRAM URITE(6,11) FORMAT(' ANY MORE PLOTS?'/ 1 ' ENTER PROPER RESPONSE (Y/N)') ASK USER IF HE UNNTS MORE PLOTS ERASE SCREEN AND CALL PENU CALL THE PLUT ROUTINE DEVICE-1 CONTINUE Ξ 18858 8 2 2 2 2

11710 GET USER'S RESPONSE
11810 READ(S, 2) IAMS
11811 GO TO 150
1221 200 FORMAT(SIS, 25'10.0)
1231 210 FORMAT(SIS, 25'10.0)
1231 210 FORMAT(SAS, 1X, 6AS, 1X, 31S)
1251 220 FORMAT(SE10.0)
1251 220 FORMAT(SE10.0)
1251 220 FORMAT(SE10.0)
1251 220 FORMAT(SE10.0)
1251 220 FORMAT(SE10.0)
1251 220 FORMAT(SE10.0)
1251 250 FORMAT(SE10.0)
1251 250 FORMAT(SE10.0)
1251 250 FORMAT(SE10.0)

INTEGER BDYPHT, TRANSE, DEUICE
PARAMETER J1=17, J2=500, J3=32
DIMENSION TIME(12), MRE(12), PETA1(J2), ACLI(J2), AKLZ1(J2),
ATMET(102), THEE(12), MRE(12), BETA1(J2), ALPHA1(J2), AKLZ1(J2),
ATMET(102), TA1(2), TT(2), TT(2), DETA1(J2), DELTAT(50)
ATMET(102), MRC2(J2), MRC3(J2), MRC3(J2), DELTAT(50)
DIMENSION UZ(50), TZ(50), ALFANT(6), IMPE(200), LABEL(20, 6), IPAK(40)
DIMENSION BDYPHT(4), TRANSE(6), IMPE(200), LABEL(20, 6), IPAK(40) SUBROUTINE PLOTDECTINE, MFLAG, ARIDEF, ATRE, TZ, ZZ, UZ, ALFAGT, 1 DELTAT, ITHICK, LNGPLT, ITHNIT, MAXTHE, DEUICE, INCOPY) COMMON.OPTION.IOPT.IOPT1.NT.IT.MENUFG
COMMON.LABS.1.ABEL
COMMON.DIBUJO.BDYPNT.TRAWE.ICASE
COMMON.AXBAT.XOR.XSTEP.XAXIS
COMMON.AXRAY.VG1.XSTEP.XAXIS
COMMON.AXRAY.GC1.TIME1.BETA1.ALPHA1.AKLZ1.
SUF ACZ1.XWE1.KEL1.PE1.CP1.TU1.TREF1.GT.TT.TU2.GC1T
COMMON.MAX.ON.BETAM.AKLZM.WFACZN.PEN.CPPM.TREFN
COMMON.MAX.ON.BETAM.AKLZM.WFACZN.PEN.CPPM.TREFN CALL TEXECH(480)
CALL BASALF('L/CSTD')
CALL MIXALF ('STANDARD')
CALL MXSPLT(0.0, OMAX, 8.0, XOR, XSTEP, XAXIS)
GO TO 340 SET X-AXIS LABEL LIMITS AND INCREMMENTS INITIALIZE MICROFILM WERE INITIALIZE PLOTTING DEVICE INITIALIZE TEKTRONIX CRT INITIALIZE NOPS TERMINAL DEVICE-1 GO TO(310, 320, 330;, DEVICE INSERT CODING HERE DECLARATIVE STATEMENTS START PLOTTING OMBX-MAXTME DELTX-MAXTME / 10 GO TO 340 CONTINUE CALL ERASE CONTINUE ### CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

CONTINE

C

111 CALL ENGINE

112 CALL ENGINE

113 CALL ENGINE

114 CALL ENGINE

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

116 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 8, 3)

117 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 8, 3)

118 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 8, 3)

119 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 8, 3)

110 CONTINE

111 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 8, 3)

112 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 4, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

115 CALL HUDOLO (INCOPY, TIME1, MFACZI, IT, 5, 3)

 $o_{F}^{ORIGIN_{AL}}_{POOR}$ $o_{QU_{ALITY}}^{PAGE}$ IS

CALL DSPMLO(IT, TREF1, VMIN, VMAX)
CALL DSPMLO(IT, TU1, VMIN1, VMAX1)
VMAX-AMAX1(VMAX, VMAX1)
VMAX-AMAX1(VMAX, VMAX1)
CALL AKSPLT(0.0.0.VMAX, 6.0.VOR, VSTEP, VAXIS)
CALL DRAULO(XOR, XSTEP, XAXIS, VOR, VSTEP, VAXIS, TIME1, TREF1, IT, 3, 3, 1 IHCOPY)
I INCOPY)
IF (ATRE .GT. 0.001) GO TO 236
CALL DRAULO(XOR, XSTEP, XAXIS, VOR, VSTEP, VAXIS, TIME1, TU2, IT, 2, 3, CONTINE CALL HNDYLO(IHCOPY, TIME1, DELTAT, IT, 13,2) CALL HEDYLO(IHCOPY, TINE1, HFACZ1, IT, 8,3) CALL HNDYLO(IHCOPY, TINE1, REL1, IT, 7,3) CALL HNDYLO(IHCOPY, TIME1, CP1, IT, 10, 3) CALL HNDYLO(IHCOPY, TIME1, QC1, IT, 11,3) CALL HNDYLO(IHCOPY, TIME1, PE1, IT, 9,3) CONTROL SURFACE DEFLECTION PLOT REYNOLDS NUMBER LOCAL/1.0EG LBF /FT-50 IF CARIDEF .NE. 1) GO TO 210 @ DOT (BTU/FT-SQ-SEC) PLOT IF CHAFLAG .EQ. 1) GO TO 27 TITLE TUNK (DEG F.) PLOT LOCAL PRESSURE SHORT PLOTS REFE CONTINUE C SUB P CONTINUE 27 CONTINUE CONTINUE 82 07 08 8

IF (INCOPY .LE. 0) GO TO 237

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
ESS:
ESS:
END

11. SUBROUTINES USED BY MINIVER

Routine name	Symbolics available	Source system or library
н800	Yes	MINIVER
AXSPLT	No	DISSPLA
AIR62	Yes	MINIVER
ATMS4	Yes	MINIVER
BASALF	No	DISSPLA
NINTRP	Yes	MINIVER
CHEEVY	Yes	MINIVER
CRSFLW	Yes	MINIVER
CURVE	No	DISSPLA
DETRAL	Yes	MINIVER
DINT	Yes	MINIVER
DINTI	Yes	MINIVER
DOWNID	Yes	MINIVER
DRAWLO	Yes	MINIVER
DRIVEL	Yes	MINIVER
DSMMLO	Yes	MINIVER
EDPARM	Yes	MINIVER
ENDPL	No	DISSPLA
ERASE	No	PLOT10,LOCALIB
ERTRAN	No	LOCALIB
FINALT	Yes	MINIVER
FAYRID	Yes	MINIVER
FLOW	Yes	MINIVER
GAUSS	Yes	MINIVER
GRACE	No	DISSPLA
GRAPH	No	DISSPLA
GRID	No	DISSPLA
HANSEN	Yes	MINIVER
HDCOPY	No	PLOT10,LOCALIB
HNDYLO	Yes	MINIVER

Routine name	Symbolics available	Source system or library
HEIGHT	No	DISSPLA
INTNO	No	DISSPLA
IOWAIT	No	PLOT10,LOCALIB
LEGEND	No	DISSPLA
LINES	No	DISSPLA
MATRES	Yes	MINIVER
MESSAG	No	DISSPLA
MI XALF	No	DISSPLA
MOLIER	Yes	MINIVER
NEWOUT	Yes	MINIVER
NEWT	Yes	MINIVER
NOCHEK	No	DISSPLA
OPTMYZ	Yes	MINIVER
PCSW	Yes	MINIVER
PLOT10	Yes	MINIVER
PME XPN	Yes	MINIVER
PM10	Yes	MINIVER
PPLOT1	Yes	MINIVER
PRINT1	Yes	MINIVER
RADEQ	Yes	MINIVER
SETMUP	Yes	MINIVER
STABLE	Yes	MINIVER
STOCK	Yes	MINIVER
STORED	Yes	MINIVER
SWCYL2	Yes	MINIVER
TBLIN	Yes	MINIVER
TEKEGM	No	DISSPLA
TINT6	Yes	MINIVER
TRANS	Yes	MINIVER
VRUNL	Yes	MINIVER
WRINP	Yes	MINIVER
XINTAX	No	DISSPLA
YAXANG	No	DISSPLA
YINTAX	No	DISSPLA

REFERENCES

- Hender, D. R.: A Miniature Version of JA70 Aerodynamic Heating Computer Program H800 (MINIVER). McDonnell-Douglas Astronautics Company; June 1970.
- DISSPLA Beginners Manual. Integrated Software System Corporation; July 1975.
- DISSPLA Intermediate Manual. Integrated Software System Corporation; July 1975.