

FRC Pneumatics System

Pressure Generation, Storage & Regulation

Compressor & Relief Valve

Test Relief Valve Before Competition Relief Valve Should Pop at 125 psi

Pressure Switch

- Switch Opens at About 115psi
- Switch Closes at About 95psi
- Short Switch to Test
 Compressor Pop Off Valve
 Setting

Plug Valve

Valve Must Be
Plumbed to Relieve
All System Pressure
When Opened

Pressure Tank

Tanks used in Past Include 16 Cubic Inch, 32 Cubic Inch and 41 Cubic Inch

Primary Regulator

- Set to a Max of 60psi for Working Pressure
- Pay Attention to the Direction of Flow When Installing

Working Pressure Portion

Secondary Regulator Set to <60psi

Cylinder (Actuator)

Double Acting
Single Ended

Clevis

Swivel End Mount

Inside a Double Acting Actuator

Cylinder Sizes

*M-Magnet	Bore	Stroke in inches	Mounting
(Optional)	04 = 3/4"	0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10	DP for 3/4"
Includes (2) MRS087-B	17 = 1 ½"	0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11,	DP for 1 1/2"
position sensors	31 = 2"	0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24	DXP for 2"

Also offer 1 1/16" Cylinders

Bimba Usually Provides Several Free Cylinders

Cylinder Forces

	3/4" Bore	3/4" Bore		
Pressure	Force Extended	Force Retracted		
(pounds/sq. inch)	(pounds)	(pounds)		
20	ω	8		
25	11	10		
30	13	12		
35	15	14		
40	18	16		
45	20	18		
50	22	20		
55	24	22		
60	26	24		

	and the second second second second		
	1-1/2" Bore	1-1/2" Bore	
Pressure	Force Extended	Force Retracted	
pounds/sq. inch	(pounds)	(pounds)	
20	35	32	
25	44	40	
30	53	48	
35	62	57	
40	71	65	
45	79	73	
50	88	81	
55	97	89	
60	108	97	

	2" Bore	2" Bore
Pressure	Force Extended	Force Retracted
pounds/sq. inch	(pounds)	(pounds)
20	63	57
25	79	71
30	94	85
35	110	99
40	126	113
45	141	128
50	157	142
55	173	156
60	188	170

Valves (Solenoids)

Inside a Valve

Single Acting vs Double Acting Valve

Spike Control

SPIKE RELAY MODULE TYPICAL CONNECTIONS

Table 1: Spike Blue P-BASIC software control, Spike output, Motor function

INP	UTS	TS OUTPUTS			
Fwd	Rev	M+	M-	Indicator	Motor Function
0	0	GND	GND	Orange	OFF / Brake Condition (default)
1	0	+12v	GND	Green	Motor rotates in one direction
0	1	GND	+12v	Red	Motor rotates in opposite direction
1	1	+12v	+12v	Off	OFF / Brake Condition

Powering 12v & 24v Valves

24 volt Solenoid

12 volt Solenoid

Plumbing

Pneumatic Tube Insertion

Method of assembly

 Ensure that the end of the tube is cut square and is free from burrs.

Push the tube through the release button and grab ring into the fitting.

Push the tube firmly through the '0' ring until it bottoms on the tube stop then pull back.

To disconnect, push the tube into the fitting, hold down the release button and withdraw the tube.

Typical part

90° Swivel elbow adapter

Find Mounting Point

Example: Arm to be raised by Cylinder

- Determine overall length of retracted cylinder
- Draw an arc from the mounting point on arm
- Determine overall length of extended cylinder
- Draw an arc from the mounting point on arm
- Where <u>arcs intersect</u> is the mounting point
- Check for intermediate interference

Cylinder Lengths

- •Base Dimension = 4.38 +
- Stroke Length = ? +
- •Locking Nut = .25 +
- Clevis Dimension = 1.31

Retracted Length = 4.38 + Stroke + .25 + 1.31 = 5.94 + Stroke

Extended Length = $5.94 + (2 \times Stroke Length)$

Why Pneumatics?

- Weight
 - Comparable to other approaches?
- Simple
- Durable
 - Can stall without burning up
- Strong
 - Up to 180 pounds of force

- Adjustable Force
 - Bore size
 - Pressure regulation
- Adjustable Speed
 - Flow control valves
- Adjustable Stroke
 - Many lengths available

Why Not Pneumatics?

- Weight Overhead for First Actuator
- System is "Springy"
- Reserve Pressure Limited
 - -Pressure recovery slow
 - Leaks
 - Cannot Stop in Mid Stroke