#### IBM Applied Data Science Capstone Project

Predicting house prices in Monza using Foursquare API

Alessandro Bonvini, February 12<sup>th</sup> 2021

### Table of contents

- 1. Introduction: business problem
- 2. Data
  - 2.1 Description
  - 2.2 Preprocessing
- 3. Methodology
  - 3.1 Exploratory data analysis
  - 3.2 K-Means neighborhoods clustering
  - 3.3 Retrieving venues with Foursuare API
  - 3.4 K-Means neighborhoods clustering with trending venues
  - 3.5 Regression
- 4. Results
  - 4.1 Training results
  - 4.2 Test set evaluation
- 5. Discussion
- 6. Conclusion

### 1. Introduction: business problem

- The task: predicting house prices given a set of sold houses with a group of representative features.
- **Problem:** the square meter price of the houses depends also on the position of the house.
- Project goal: can the information brough by Foursquare API improve the performance of the regression models with respect of using only houses characteristics as features?
- Interested audience: houses search engines, real estate agencies ...

### 2.1. Data:description(1/2)

- Hundreds of houses extracted from a real estate agency in Monza (Italy)
- Training dataset: 405 houses, testing dataset: 44 houses.

|   | PRICE   | ADDRESS                  | ROOMS | METERS | BATHROOMS | FLOOR  | FLOORS | YEAR | STATUS    | TERRACE | GARDEN | GARAGE | ENERGY | NEIGHBORHOOD | GRADE     |
|---|---------|--------------------------|-------|--------|-----------|--------|--------|------|-----------|---------|--------|--------|--------|--------------|-----------|
| 0 | 5317000 | 6 viale Cesare Battisti  | 5     | 542    | 3         | GROUND | 2      | 1900 | RENOVATED | NO      | YES    | NO     | А      | 1            | EXPENSIVE |
| 1 | 2970000 | 6 viale Cesare Battisti  | 4     | 295    | 3         | MIDDLE | 2      | 1900 | RENOVATED | YES     | NO     | NO     | А      | 1            | EXPENSIVE |
| 2 | 280000  | 3 via Ambrosini          | 3     | 115    | 2         | MIDDLE | 1      | 1980 | GOOD      | NO      | NO     | YES    | Е      | 1            | NORMAL    |
| 3 | 1050000 | 16 via Carlo Porta       | 5     | 278    | 3         | MIDDLE | 2      | 1800 | RENOVATED | YES     | NO     | YES    | Е      | 1            | EXPENSIVE |
| 4 | 690000  | 1 via Bellini            | 5     | 220    | 3         | MIDDLE | 1      | 1970 | RENOVATED | YES     | NO     | YES    | G      | 1            | NORMAL    |
| 5 | 950000  | 14 via Sant'Andrea       | 3     | 272    | 3         | GROUND | 1      | 2020 | NEW       | NO      | YES    | YES    | А3     | 1            | NORMAL    |
| 6 | 450000  | 35 via Aliprandi Pinalla | 3     | 145    | 1         | LAST   | 1      | 1890 | RENOVATED | NO      | NO     | YES    | G      | 1            | NORMAL    |
| 7 | 510000  | 9 via Ramazzotti         | 5     | 220    | 3         | MIDDLE | 1      | 1970 | GOOD      | NO      | NO     | YES    | Е      | 1            | CHEAP     |
| 8 | 770000  | via Donizetti            | 4     | 200    | 2         | GROUND | 1      | 2020 | NEW       | NO      | YES    | NO     | A4     | 1            | EXPENSIVE |
| 9 | 650000  | 20 via Francesco Frisi   | 5     | 200    | 2         | MIDDLE | 1      | 1900 | GOOD      | NO      | YES    | NO     | Е      | 1            | NORMAL    |

## 2.2. Data:description(2/2)

| FEATURE      | MEANING                                                                  |
|--------------|--------------------------------------------------------------------------|
| PRICE        | The price of the house, in Euros.                                        |
| ADDRESS      | The street of the house, in the following format: Number Street.         |
| ROOMS        | The number of rooms of the house. Bathrooms are not considered as rooms. |
| METERS       | The commercial square meters of the house                                |
| BATHROOMS    | The number of bathrooms of the house.                                    |
| FLOOR        | The main floor of the house (GROUND, MIDDLE, LAST, VILLA)                |
| FLOORS       | The number of floors of the house.                                       |
| YEAR         | The construction year of the house                                       |
| STATUS       | The current conditions of the house (BAD, GOOD, RENOVATED, NEW)          |
| TERRACE      | The house has a terrace large enough to be used for eating (YES/NO)      |
| GARDEN       | The house has a garden that can be used to let the kids play (YES/NO)    |
| GARAGE       | The house has a covered place to be used for parking cars (YES/NO)       |
| ENERGY       | The certified energy class of the house (from G to A <sub>4</sub> )      |
| NEIGHBORHOOD | The neighborhood of the house                                            |
| GRADE        | The estate agent evaluation for the price (CHEAP, NORMAL, EXPENSIVE)     |

### 2.3. Data: preprocessing

Ordinal Encoding of categorial features

| ENCODED VALUE | FLOOR  | STATUS    | ENERGY | GRADE     | TERRACE/<br>GARDEN/<br>GARAGE |
|---------------|--------|-----------|--------|-----------|-------------------------------|
| 0             | GROUND | BAD       | G      | СНЕАР     | NO                            |
| 1             | MIDDLE | GOOD      | F      | NORMAL    | YES                           |
| 2             | LAST   | RENOVATED | E      | EXPENSIVE |                               |
| 3             | VILLA  | NEW       | D      |           |                               |
| 4             |        |           | C      |           |                               |
| 5             |        |           | В      |           |                               |
| 6             |        |           | А      |           |                               |
| 7             |        |           | A1     |           |                               |
| 8             |        |           | A2     |           |                               |
| 9             |        |           | А3     |           |                               |
| 10            |        |           | A4     |           |                               |

 Custom encoding of FLOOR feature: three columns GROUND, MIDDLE, HIGH depending on FLOOR and FLOORS

3.1.
Methodology:
exploratory
data analysis
(1/3)

- Samples in training dataset are not equally distributed
- Some charateristics are more common than others (price < 1000000, rooms < 5, meters < 200 ...)</li>



3.1.
Methodology:
exploratory
data analysis
(2/3)

Price correlated with square meters



- House price = square meters \* square meters price
- Add square meters price as column and use it as target variable
- Remove outliers: houses with price > 2900000

3.1.
Methodology:
exploratory
data analysis
(3/3)

 Plot houses: circle proportional to meter price, color is neighborhood



Neighborhood division not correct

# 3.1. Methodology: K-Means neighboroods clustering (1/2)

- Perform K-Means clustering with coordinates to obain better neighbors
- Test from 2 to 15 clusters
- Choose 10 neighborhoods



3.1.
Methodology:
K-Means
neighboroods
clustering (2/2)

• K-Means clustering neighborhoods: better division



# 3.2. Methodology: retrieving venues with Foursquare API

- Does houses close to popular venues cost more?
- Retrieve top 30 trending venues in Monza:
  - Call explore endpoint
  - Set parameters sortByPopularity = 1, section = topPicks
- Retrieved venues become houses features:
  - 1 the venue is present in the sorroundings of the house
  - o the venus is not present in the sorroundings of the house

|   | LAT      | LNG     | Villa<br>Reale | Piazza<br>Trento<br>e<br>Trieste | Istituti<br>Clinici<br>Zucchi | Parco di<br>Monza -<br>Ingresso<br>Alle<br>Grazie | U2 | Parco<br>di<br>Monza<br>- Viale<br>cavriga | Dori | Civico<br>1 | La<br>Rinascente | Duomo<br>di<br>Monza | Macellerie<br>Monzesi | La<br>Feltrinelli | , |
|---|----------|---------|----------------|----------------------------------|-------------------------------|---------------------------------------------------|----|--------------------------------------------|------|-------------|------------------|----------------------|-----------------------|-------------------|---|
| 0 | 45.60266 | 9.26639 | 0              | 0                                | 0                             | 0                                                 | 0  | 1                                          | 0    | 0           | 0                | 0                    | 0                     | 0                 |   |
| 1 | 45.58266 | 9.27903 | 0              | 1                                | 1                             | 0                                                 | 0  | 0                                          | 1    | 0           | 1                | 1                    | 0                     | 1                 |   |
| 2 | 45.59647 | 9.27031 | 1              | 0                                | 0                             | 0                                                 | 0  | 1                                          | 0    | 0           | 0                | 0                    | 0                     | 0                 |   |
| 3 | 45.59982 | 9.26604 | 0              | 0                                | 0                             | 0                                                 | 0  | 1                                          | 0    | 0           | 0                | 0                    | 0                     | 0                 |   |
| 4 | 45.58688 | 9.27912 | 0              | 1                                | 1                             | 0                                                 | 0  | 0                                          | 1    | 0           | 0                | 1                    | 0                     | 0                 |   |

# 3.3. Methodology: K-Means neighboroods clustering with trending venues (1/2)

- How the new venues features impact on K-Means neighbors clustering?
- Try K-Means with venues features



3.3.
Methodology:
K-Means
neighboroods
clustering with
trending
venues (2/2)

- K-Means clustering with venues features
  - Divided houses «in the center» from houses «around the center»
  - Bigger clusters in peripherical neighborhoods



# 3.4. Methodology: regression (1/2)

- Four training datasets to try
- Dataset #1: only houses characteristics:

ROOMS METERS BATHROOMS LAST YEAR STATUS TERRACE GARDEN GARAGE ENERGY

Dataset #2: houses characteristics + K-Means cluster:

FEATURES OF DATASET 1 K-MEANS CLUSTER USING LAT AND LNG

• **Dataset #3**: houses characteristics + K-Means venues cluster:

FEATURES OF DATASET 1 K-MEANS CLUSTER USING TOP TRENDING VENUES

• **Dataset #4**: houses characteristics + venues features:

FEATURES OF DATASET 1 TOP TRENDING VENUES FEATURES

All feature sets standardized with sklearn Standard Scaler

# 3.4. Methodology: regression (2/2)

- Four models to try
- Multivariate Linear Regression
- Ridge Regression
  - Feature transformation with 3° degree Polynomial Features
  - Alpha grid searching: 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000
- Support Vector Regression
  - Kernel functions: linear, poly, rbf, sigmoid
  - C grid searching: 0.1, 1, 10, 100
- Random Forest Regression
  - Number of estimators grid searching: 5, 10, 50, 100, 200
- Using sklearn GridSearchCV with 5 folds cross-validation

# 4.1. Results: training results (1/3)

|                     |            | R2 Score | RMSE    |  |
|---------------------|------------|----------|---------|--|
|                     | Dataset #1 | 0.4968   | 643.610 |  |
| Multivariate Linear | Dataset #2 | 0.5029   | 639.662 |  |
| Regression          | Dataset #3 | 0.5057   | 637.906 |  |
|                     | Dataset #4 | 0.6386   | 545-379 |  |
|                     | Dataset #1 | 0.4464   | 675.064 |  |
| Ridge Regression +  | Dataset #2 | 0.4721   | 659.197 |  |
| Polynomial Features | Dataset #3 | 0.4689   | 661.225 |  |
|                     | Dataset #4 | 0.7745   | 430.790 |  |
|                     | Dataset #1 | 0.4703   | 660.295 |  |
| Support Vector      | Dataset #2 | 0.4893   | 648.365 |  |
| Regression          | Dataset #3 | 0.4832   | 652.202 |  |
|                     | Dataset #4 | 0.5951   | 577-315 |  |
|                     | Dataset #1 | 0.9178   | 260.069 |  |
| Random Forest       | Dataset #2 | 0.9352   | 230.81  |  |
| Regression          | Dataset #3 | 0.9307   | 238.76  |  |
|                     | Dataset #4 | 0.938    | 225.83  |  |

4.1. Results: training results (2/3)



# 4.1. Results: training results (3/3)

Worst predictions: particular cases

|   |     | PRICE   | ADDRESS               | ROOMS | METERS | BATHROOMS | FLOOR | FLOORS | GROUND | MIDDLE | LAST | YEAR | STATUS | TERRACE | GARDEN | GARAGE |
|---|-----|---------|-----------------------|-------|--------|-----------|-------|--------|--------|--------|------|------|--------|---------|--------|--------|
| Ī | 14  | 1160000 | 2 piazza<br>Garibaldi | 4     | 171    | 2         | 2.0   | 1      | 0      | 0      | 1    | 2016 | 3.0    | 1.0     | 0.0    | 0.0    |
|   | 141 | 390000  | 8 via                 | 5     | 180    | 3         | 2.0   | 2      | 0      | 1      | 1    | 2021 | 3.0    | 1.0     | 0.0    | 0.0    |

• Delta prices distributions: higher meter prices, higher errors



### 4.2. Results: test set evaluation (1/3)

- Test dataset
  - 44 houses never seen during training
  - Same format of training dataset
  - Same preprocessing pipeline
  - Venues features retrieval with Foursquare



### 4.2. Results: test set evaluation (1/3)

• Tested only the best performing models: datasets #4

|                                  |            | R2 Score | RMSE    |
|----------------------------------|------------|----------|---------|
| Multivariate Linear              | Dataset #4 | 0.3129   | 752.609 |
| Regression                       |            |          |         |
| Ridge Regression +               | Dataset #4 | 0.4639   | 664.784 |
| Polynomial Features              |            |          |         |
| <b>Support Vector Regression</b> | Dataset #4 | 0.4427   | 667.761 |
| Random Forest Regression         | Dataset #4 | 0.6975   | 499-34  |

4.2. Results: test set evaluation (1/3)



#### 5. Discussion

- Datasets with spatial information performs better then dataset with only houses characteristics:
  - Venues features retrieved with Foursquare allowed to improve the predictions performances
  - Venus features big problem: they change over time
- Random Forest Regression outperformed other models training performances
  - Better captured training set distribution, maybe overfitted
  - Did not capture well enough prices > 5000
- Models did not generalize very well on test data
- Not enough samples in price range > 5000
- Very basic models tuning

#### 6. Conclusion

- Improvements that can be made:
  - The training set can be enlarged. Include more samples with high square meter price
  - Improve spatial information. Find a way to stabilize the top trend venues features
  - Add other features
  - Test other models
  - Interesting to study the classification problem of predicting the GRADE class, this time given the price

#### THANKYOU