## National Taiwan University Department of Electrical Engineering

## 工程數學.複變

Final Exam

6/13/00

1. (20%) Expand  $f(z) = \frac{7z-3}{z(z-1)}$  in a Laurent series valid for

- (a) 0 < |z| < 1
- (b) 0 < |z 1| < 1
- 2. (10%) Determine the order of the pole at 0 for  $f(z) = \frac{1}{1 e^z}$ .
- 3. (10%) Evaluate  $\oint_C \frac{\tan z}{z} dz$  along the contour C:|z-1|=2.
- 4. (10%) Use an indented contour and residues to establish the result of  $P.V. \int_{-\infty}^{\infty} dx \frac{\sin x}{x(x^2+1)} = \pi \left(1 e^{-1}\right).$
- 5. (10%) Using residues, find the inverse Laplace transform of  $\frac{z}{z^2+9}$ .
- 6. (10%) Sum the series  $\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{n^2 + 1}$ .
- 7. (10%) Find the image of the region defined by  $-\pi/2 \le x \le \pi/2$ ,  $y \ge 0$ , under the complex mapping  $w = (\sin z)^{1/4}$ . What is the image of the line segment  $[-\pi/2, \pi/2]$  on the x-axis?
- 8. (10%) Find a transformation that will map the domain  $0 < \arg z < \pi/2$  from the z-plane onto |w| < 1 in the w-plane.
- 9. (10%) Use the Schwarz-Christoffel formula to construct a conformal mapping w=f(z) from the upper half plane to the given square region using  $x_1=1$ ,  $x_2=0$ ,  $x_3=1$ ,  $x_4=2$ . Find f'(z). Do not attempt to obtain f(z).

