# Elektronika

XVI. Műveleti erősítők

# 16.1. Műveleti erősítők

#### <u>Jellemzői</u>

- több fokozatú, egyenáramú erősítő → közvetlen csatolások
- integrált áramköri kivitelben
- nagyon nagy erősítés (Auo)!! (jellemzően több ezerszeres, tízezerszeres)
- nagyon nagy bemeneti ellenállás (néhány M $\Omega$  vagy G $\Omega$ )
  - → nagyon kicsi bemeneti áram !!
- két bemenetük van (szimmetrikus bemenet) → egy invertáló és egy nem invertáló
- szimmetrikus tápfeszültséget igényelnek (+Ut -Ut)



### Működése



Up nem invertáló bemenet

Un invertáló bemenet

$$U_{ki} = A_{U0} * U_{d}$$
 -

A két bemenet különbségét erősíti !! Auo → nyílt hurkú differenciális erősítés (nagyon nagy !!)

# 16.1. Műveleti erősítők

# Fontosabb paraméterek

- nyílt hurkú feszültség erősítés (differenciális)  $\rightarrow$  Au0 Au0 = Uki / (Up Un)  $\sim$  10<sup>5</sup>-10<sup>6</sup>, ideális a végtelen lenne
- közös módusú feszültség erősítés  $\rightarrow$  ha  $U_p = U_n = U_k$ AUK = Uki / UK általában 10-100 körül, ideálisan 0 lenne
- bemeneti munkaponti áram  $\rightarrow$  IB (input bias current))
  IB = (Ip + In) /2 általában néhány nA vagy pA, ideálisan 0 lenne
- bemeneti ofszet áram  $\rightarrow$  IB0 IB0 = Ip - In ha Uki = 0 általában néhány pA
- bemeneti ofszet feszültség → Uво Uво = Up - Un ha Uki = 0 általában néhány mV
- bemeneti ellenállás  $\rightarrow$  Rbe = UD / IB általában n\*100M $\Omega$  ( FET esetén néhány G $\Omega$  ), ideális a végtelen lenne
- kimeneti ellenállás → Rki = Ukiü / Ikir negatív visszacsatolás hatására → Rkiv / Rki0 = Av / A∪0

### 16.1. Műveleti erősítők

# Fontosabb paraméterek

- közös módusú feszültség elnyomás → G vagy CMMR (common mode rejection ratio) G = Auo / Auk ~ 10³-10⁵, ideális a végtelen lenne
- maximális kimeneti feszültség → Ukimax
- maximális kimeneti áram → Ikimax
- sávszélesség (nyílt hurkú) → fo vagy fn általában n\*10Hz
   (ez igazából a felső határfrekvencia, de mivel az alsó 0 → a sávszélesség is egyben)
- egységnyi erősítés frekvenciája → f1 (amikor az erősítés lecsökken 1-re)
- tápfeszültség tartomány ( ±Ut )
- maximális teljesítmény disszipáció → PDmax
- erősítés sávszélesség szorzat (A∪0 \* f0 ) → f⊤ általában 1-10MHz
   Gain Bandwidth Product
- maximális jel változási sebesség (slew rate)
  - → a kimeti jel változásának max. sebessége ( V/μ )

#### Műveleti erősítők áramkörei





#### Differenciál erősítő

Teljesen azonos alkatrészek esetén , ha Ube2 = Ube1  $\rightarrow$  Ic2 = Ic1 =  $\frac{1}{2}$  \* Ie  $\rightarrow$  Ukis = 0

A valóságban nincs tökéletes szimmetria! → Ube2 = Ube1 = 0 esetén is Ukis nem nulla!! → nullázás, ofszet kiegyenlítés szükséges

#### differenciális vezérlés



#### differenciális erősítés → Aus

Ukis = Aus \*( Ube2 - Ube1 )
$$Aus = -\frac{1}{2} * S * rki (\sim 100)$$

$$S = \frac{\beta}{2} * (2*h11e)$$

#### Közös módusú vezérlés

Ha Ube2 = Ube1 
$$\rightarrow$$
 Ubek =  $\frac{1}{2}$ \*(Ube1 + Ube2)

#### Közös módusú erősítés -> Auk

Auk = Ukis / Ubek 
$$\rightarrow$$

$$Auk = -Rc / (2*Re)$$

~ 10<sup>-3</sup> az a jó ha kicsi !! → Re legyen nagy → helyette áramgenerátor alkalmazása !!

Ubes kicsi lehet csak (max. 60-70mV) !!

# µA741 műveleti erősítő belső felépítése



# Asszimetrikus kimenetű differenciál erősítő

differenciális erősítő + fázis összegző



# Differenciál erősítő áramgenerátorral



# 16.3. Alapkapcsolások

### Invertáló alapkapcsolás



Visszacsatolt erősítés:

$$AUV = \frac{U_{ki}}{U_{be}} = -\frac{Rv}{R_1}$$

Bemeneti ellenállás:

$$Rbe = R_1$$

# Nem invertáló alapkapcsolás



#### Erősítés:

$$Auv = \frac{U_{ki}}{U_{be}} = 1 + \frac{R_v}{R_1}$$

 $R_{be}$  = nagyon nagy! (több száz  $M\Omega$ )

# 16.3. Alapkapcsolások

#### Invertáló alapkapcsolás kompenzáló ellenállással



Ip és In nem nulla (bár nagyon pici) ezért Ube = 0 esetén

Uki nem marad 0, mert feszültség esik Rv ellenálláson !!

A bemeneti nyugalmi áram kompenzálása → Rk ellenállás beiktatásával

 $R_k = R_1 \times R_V$ 

# Nem invertáló alapkapcsolás kompenzáló ellenállással



A bemeneti nyugalmi áram kompenzálása → ebben az esetben is egy Rk ellenállás beiktatásával, de most a nem invertáló lábra kell kötni!

$$Rk = R1 \times Rv$$

# 16.4. Feladatok

### 1. feladat



$$\mathsf{Rbe} = 25 \; k\Omega$$

$$A_{uv} = -40$$

$$U_{kimax} = 14V$$

$$Rt = 100 \Omega$$

$$R_1 = ?$$

$$R_V = ?$$

$$Rk = ?$$

$$U_{bemax} = ?$$

$$I_{kimax} = ?$$

### 2. feladat



$$Rv = 800 k\Omega$$

$$R_1 = 20 \text{ k}\Omega$$

$$U_{be} = 20 \text{mV}$$

$$R_k = ?$$

$$Auv = ?$$

$$U_{ki} = ?$$

### 16.4. Feladatok

#### 1. feladat, megoldás



Rbe = R1 
$$\rightarrow$$
 R1 = 25 k $\Omega$   
Auv = - Rv / R1 = - 40  
 $\rightarrow$  Rv = - Auv \* R1 = 1 M $\Omega$   
Rk = R1 x Rv = 25 x 1000 k $\Omega$   
Rk = 24,4 k $\Omega$   
Uki = Ube \* Auv  
 $\rightarrow$  Ubemax = Ukimax / Auv  
Ubemax = 14 V / 40 = 0,35 V  
Ikimax = Ukimax / Rt = 140 mA

### 2. feladat, megoldás



$$A_{UV} = R_V / R_1 + 1 = 80$$

$$A_{UV} = 800 / 20 + 1 = 41$$

$$R_k = R_1 \times R_V$$

$$R_k = 20 * 800 / (20 + 800) = 19,5 \text{ k}\Omega$$

$$U_{ki} = U_{be} * A_{UV} = 20 \text{ mV} * 41 = 820 \text{ mV}$$

# 16.5. Váltakozó áramú erősítő

#### Invertáló, váltakozó áramú erősítő



Egyenfeszültséget (illetve kis frekvenciás bemenő jelet) nem erősít !! Nagyobb frekvenciákon az erősítés nem változik.

De! a csatoló kondenzátor miatt R<sub>1</sub> ellenállást nem kell figyelembe venni a kompenzáló ellenállás számításakor!

$$Auv = -\frac{Rv}{R1}$$

$$R_k = R_v$$

#### Nem invertáló, váltakozó áramú erősítő



$$AUV = \frac{Rv}{R1} + 1$$

Erősítés szintén nem változik. De! → Ebben az esetben a csatoló kondenzátor miatt Rk ellenállást máshogy kell bekötni! (nem invertáló láb és a földpont közé)



 $Rk = R1 \times Rv$ 

Bemeneti ellenállás értékét csökkenti!

$$Rbe = Rk$$

# 16.6. Feladatok

### 1. feladat



Rbe = 
$$10 \text{ k}\Omega$$

$$Auv = -50$$

$$U_{kimax} = 12V$$

$$Rt = 1 k\Omega$$

$$R_1 = ?$$

$$R_V = ?$$

$$Rk = ?$$

$$U_{bemax} = ?$$

$$I_{kimax} = ?$$

### 2. feladat



Rbe = 
$$6 \text{ k}\Omega$$

$$Auv = 80$$

$$fa = 20 Hz$$

$$R_1 = ?$$

$$R_V = ?$$

$$Rk = ?$$

$$C_{be} = ?$$

# 16.6. Feladatok



# 3. feladat

 $R_1 = 12 k\Omega$ 

Auv = -60

 $U_{ki} = 10V$ 

 $Rt = 1 k\Omega$ 

 $R_g = 3 k\Omega$ 

Rbe = ?

 $R_V = ?$ 

 $R_k = ?$ 

 $U_{be} = ?$ 

 $U_g = ?$ 

# 4. feladat

 $R_1 = 15 k\Omega$ 

 $R_V = 600 \text{ k}\Omega$ 

 $U_{be} = 300 \text{mV}$ 

 $Rt = 1 k\Omega$ 

 $R_g = 5 k\Omega$ 

Auv = ?

Rbe = ?

Rk = ?

 $U_{ki} = ?$ 

 $U_g = ?$ 

### 16.6. Feladatok

#### 1. feladat, megoldás

```
Rbe = R1 \rightarrow R1 = 10 k\Omega

AUV = - RV / R1 = - 50

\rightarrow RV = - AUV * R1 = 500 k\Omega

Rk = R1 x RV = 10 x 500 k\Omega = 9,8 k\Omega

Uki = Ube * AUV \rightarrow Ukimax = Ubemax * AuV

\rightarrow Ubemax = Ukimax / AuV = 0,24 V

Ikimax = Ukimax / Rt = 12 mA
```

### 3. feladat, megoldás

```
Rbe = R1 = 15 kΩ

Auv = - Rv / R1 = -600 / 15 = -40

Rk = Rv = 600 kΩ (Cbe miatt )

Uki = Ube * Auv = 300mV * -40 = -12 V

Ibe = Ube / Rbe = 20 μA

Ug = Ibe * (Rbe + Rg) = 20 μA * 20 kΩ

Ug = 400 mV
```

### 2. feladat, megoldás

Rbe = Rk 
$$\rightarrow$$
 Rk = 6 kΩ  
AUV = RV / R1 + 1 = 80  
 $\rightarrow$  RV = (AUV -1)\* R1  $\rightarrow$   
RV = 79 \* R1  
Rk = R1 x RV = 6 kΩ  
 $\rightarrow$  R1\* 79\*R1 / 80\*R1 = 6 kΩ  
R1 = 6 kΩ \* 80 / 79 = 6,1 kΩ  
RV = 480 kΩ  
fa = 20 Hz  $\rightarrow$  Xcbe = Rbe  
 $\rightarrow$  Cbe = 1 / (2\*π\*fa\* Rbe)  
Cbe = 1 / (2\*π\*20 Hz\* 6 kΩ) = 1,3 μF

# 16.7. Speciális kapcsolások

# Összegző áramkör



$$U_{ki} = -R_{v} * \left( \frac{U_{be1}}{R_1} + \frac{U_{be2}}{R_2} + \frac{U_{be3}}{R_3} \right)$$

Súlyozva összegzi a bemeneteket!

$$Rk = ((R_1 \times R_2) \times R_3) \times R_V$$

pl. ha 
$$R_2 = 2^* R_1$$
 és  $R_3 = 4^* R_1$ 

akkor 
$$\rightarrow$$
  $U_{ki} = -\frac{R_V}{R_1} \left( U_{be1} + \frac{U_{be2}}{2} + \frac{U_{be3}}{4} \right) \rightarrow bináris súlyozás$ 

Uki másképpen:

$$U_{ki} = -\frac{Rv}{R_1} * U_{be1} - \frac{Rv}{R_2} * U_{be2} - \frac{Rv}{R_3} * U_{be3}$$

# 16.7. Speciális kapcsolások

#### Kivonó áramkör



Uki = (Ube2 - Ube1) \* 
$$\frac{R_2}{R_1}$$

### Feszültség követő áramkör



Uki = Ube 
$$\rightarrow$$
 AUV = 1

Rbe nagyon nagy Rki nagyon kicsi

> <u>Felhasználása:</u> Impedancia illesztő, meghajtó áramkör

# 16.7. Speciális kapcsolások

#### Aktív aluláteresztő szűrő



Határ frekvencia  $\rightarrow$  fh = 1 / (2 $\pi$ \*Rv\*C) Kis frekvencián  $\rightarrow$  Au = - Rv / R1

A frekvencia függő erősítés:

#### Aktív felüláteresztő szűrő



Határ frekvencia  $\rightarrow$  fh = 1 / (2 $\pi$ \*R<sub>1</sub>\*C) Nagy frekvencián  $\rightarrow$  AU = - Rv / R<sub>1</sub>

A frekvencia függő erősítés:

$$Au = -R_V/Z_{CR1}$$

# 16.8. Feladatok

# 1. feladat



$$R_2 = 40 \text{ k}\Omega$$

$$R_1 = ?$$

$$R_V = ?$$

$$Rk = ?$$

# 2. feladat



$$R_1 = 20 \text{ k}\Omega \text{ és}$$
  
 $U_{ki} = -25 * U_{be1} - 20 * U_{be2} - 10 * U_{be3}$ 

$$R_2 = ?$$

$$R_3 = ?$$

$$R_V = ?$$

$$R_k = ?$$

# 16.8. Feladatok

### 1. feladat, megoldás



R2 = 40 kΩ  
és Uki = -36 \* Ube1 - 9\* Ube2  

$$Uki = - Rv * (Ube1/R1 + Ube2/R2)$$

$$Uki = - (Rv/R1)* Ube1 - (Rv/R2)*Ube2$$

$$ki \rightarrow Rv/R1 = 36 \text{ és } Rv/R2 = 9$$

$$Rv = 9*R2 = 360 kΩ$$

$$R1 = Rv / 36 = 10 kΩ$$

$$Rk = (R1 x R2) x Rv = 7,83 kΩ$$

### 2. feladat, megoldás



$$R_1 = 20 \text{ k}\Omega \text{ \'es}$$

$$U_{ki} = -25 * \text{Ube1} - 20 * \text{Ube2} - 10 * \text{Ube3}$$

$$U_{ki} = -(R_V/R_1) * \text{Ube1} - (R_V/R_2) * \text{Ube2}$$

$$-(R_V/R_3) * \text{Ube3}$$

$$\to R_V/R_1 = 25 \text{ \'es} R_V/R_2 = 20$$

$$\text{\'es} R_V/R_3 = 10$$

$$R_V = 25 * R_1 = 500 \text{ k}\Omega$$

$$R_2 = R_V/20 = 25 \text{ k}\Omega$$

$$R_3 = R_V/10 = 50 \text{ k}\Omega$$

$$R_k = ((R_1 \times R_2) \times R_3) \times R_V = 8,93 \text{ k}\Omega$$

# 16.9. Speciális kapcsolások \*

#### Kivonó áramkör 2.

Nem azonos a két bemenet erősítése



nyugalmi áram kompenzálása miatt célszerű, ha:

$$R_1 \times R_2 = R_3 \times R_4$$

$$U_{ki} = A_{U0} * (U_p - U_n)$$

Mivel a nyílthurkú erősítés (Auo) nagyon nagy, és negatív visszacsatolás van →

Up = Ube2 \* R4 /(R3 + R4) 
$$\approx$$
 Un

Un közelében lévő csomópontra a csomóponti törvény:

$$(Ube1 - Un)/R_1 = - (Uki - Un)/R_2$$

$$U_{ki} - U_{n} = -\frac{R_{2}}{R_{1}} * U_{be1} + \frac{R_{2}}{R_{1}} * U_{n}$$

$$U_{ki} = -\frac{R_2}{R_1} *U_{be1} + (\frac{R_2}{R_1} + 1) * \frac{R_4}{R_3 + R_4} * U_{be2}$$

# 16.9. Speciális kapcsolások \*

#### Kivonó áramkör 2.

#### mintafeladat



$$Up = Ube2 * R4 /(R3 + R4) \approx Un$$

Un közelében lévő csomópontra a csomóponti törvény:

$$(Ube1 - Un)/R_1 = - (Uki - Un)/R_2$$

Adatok:

 $R_1 = 30 \text{ k}\Omega$ 

 $R_2 = 60 \text{ k}\Omega$ 

 $R_3 = 40 \text{ k}\Omega$ 

 $R_4 = 40 \text{ k}\Omega$ 

Ube1 = 5 V

 $U_{be2} = 3 V$ 

Uki = ???

### <u>Megoldás:</u>

$$U_{ki} = -\frac{R_2}{R_1} *U_{be1} + (\frac{R_2}{R_1} + 1) *\frac{R_4}{R_3 + R_4} *U_{be2}$$

$$U_{ki} = -2 * U_{be1} + 3 * (1/2) * U_{be2}$$
  
 $U_{ki} = -2 * 5 V + (3/2) * 3 V = -10 + 4,5 = -5,5 V$ 

# 16.9. Speciális kapcsolások

# Speciális kivonó áramkör (összegző-kivonó)

R1
Ube1
Itt is Un ≈ Up

R4
Ube2
R3
Ube4
R6
Uki

Un közelében lévő csomópontra a csomóponti törvény:

 $(U_{be1}-U_n)/R_1 + (U_{be2}-U_n)/R_2 + (U_{be3}-U_n)/R_3 = - (U_{ki} - U_n)/R_4$ 

Up = Ube4 \* R6 /(R5 + R6) 
$$\approx$$
 Un

Uki ezekből az előző áramkörhöz hasonló képlettel számolható:

$$U_{ki} = -\frac{R_4}{R_1} * U_{be1} - \frac{R_4}{R_2} * U_{be2} - \frac{R_4}{R_3} * U_{be3} + (\frac{R_4}{R_1} + \frac{R_4}{R_2} + \frac{R_4}{R_3} + 1) * \frac{R_6}{R_5 + R_6} * U_{be4}$$

# 16.9. Speciális kapcsolások

# Speciális kivonó áramkör

(összegző-kivonó) mintafeladat



 $(U_{be1}-U_n)/R_1 + (U_{be2}-U_n)/R_2 + (U_{be3}-U_n)/R_3 = - (U_{ki} - U_n)/R_4$ 

$$Up = Ube4 * R6 / (R5 + R6) \approx Un$$

Adatok:

 $R_1 = 10 \text{ k}\Omega$ 

 $R_2 = 20 \text{ k}\Omega$ 

 $R_3 = 30 \text{ k}\Omega$ 

 $R_4 = 60 \text{ k}\Omega$ 

 $R_5 = 40 \text{ k}\Omega$ 

 $R_6 = 5 k\Omega$ 

 $U_{be1} = 0.5 V$ 

Ube2 = 1 V

Ube3 = 2 V

 $U_{be4} = 3 V$ 

 $U_{ki} = ???$ 

#### Megoldás:

$$U_{ki} = -\frac{R_4}{R_1} * U_{be1} - \frac{R_4}{R_2} * U_{be2} - \frac{R_4}{R_3} * U_{be3} + (\frac{R_4}{R_1} + \frac{R_4}{R_2} + \frac{R_4}{R_3} + 1) * \frac{R_6}{R_5 + R_6} * U_{be4}$$

$$U_{ki} = -6 * U_{be1} - 3 * U_{be2} - 2 * U_{be3} + (6+3+2+1)* (5/45)* U_{be4}$$
  
 $U_{ki} = -6 * 0.5 V - 3 * 1 V - 2 * 2 V + (12*5/45)* 3 V = -3 - 3 - 4 + (4/3)*3 = -6 V$ 

# 16.10. Sávszélesség

### Nyilthurkú sávszélesség

- A műveleti erősítő egyen feszültséget is erősít → alsó határ frekvenciája 0 (fa)
- Felső határ frekvenciája (ff) visszacsatolás nélkül (nyilthurkú) sajnos nagyon kicsi !!
  - → jellemzően csak néhány Hz (n\*10Hz) → jelölése fo vagy fh
- Ezért visszacsatolás nélkül a sávszélessége kicsi !! → B<sub>0</sub> = f<sub>0</sub>



egyenes meredeksége - 20 dB / dekád

f1 frekvencián az erősítés 1-re csökken (0 dB)

### Erősítés sávszélesség szorzat

- erősítés sávszélesség szorzat (  $A \cup 0 * f_0$  )  $\rightarrow f_{\top}$  általában 1-10MHz
- az erősítés sávszélesség szorzat viszont közel állandó!!
- negatív visszacsatolás → csökken az erősítés és
  - → növekszik a sávszélesség

 $A_{00} * f_{0} = A_{uv} * f_{f}$ 

pl.

$$A_{U0} = 40000$$
 és  $f_0 = 20$  Hz, majd visszacsatolással  $\rightarrow$   $A_{UV} = 50$   
 $\rightarrow$   $B_V = A_{U0} * B_0 / A_{UV} = 40000*20 / 50 = 16000$  Hz

# 16.10. Sávszélesség

#### 1. mintafeladat



| $A_{00} = 10^5$       | $U_{ki} = 1,5 V$    |
|-----------------------|---------------------|
| $f_0 = 10 \text{ Hz}$ | $R_k = 30 k\Omega$  |
| $C_{be} = 1 \mu F$    | $C_{ki} = 10 \mu F$ |
| $U_g = 30 \text{ mV}$ | $R_g = 6 k\Omega$   |

- Az erősítő bemeneti ellenállása, Rbe = ?

- feszültség erősítése, A∪ = ?

- Rv = ? Rk = ?

- az erősítő felső és alsó határfrekvenciája

```
Rbe = Rk = 30 kΩ

Ube = Ug * Rbe / (Rg +Rbe)

Ube = 30mV* 30 kΩ / (6kΩ +30 kΩ)

Ube = 25 mV

Au = Uki / Ube = 1,5V / 25mV = 60

Au = 1 + Rv / R1 \rightarrow Rv = 59 * R1

és Rk = 30 kΩ = Rv x R1 \rightarrow

30 kΩ = 59*R1 * R1 / (59*R1 +R1)

30 kΩ = R1 * 59/60 \rightarrow R1 = 30,5 kΩ

Rv = 1800 kΩ
```

fa1 
$$\rightarrow$$
 XCbe = Rbe + Rg  
 $\rightarrow$  fa1 = 1 / (2\*π\*Cbe\* (Rbe + Rg))  
fa1 = 1 / (2\*π \* 1μF \* 36kΩ) = 4,42 Hz  
fa2  $\rightarrow$  XCki = Rt  $\rightarrow$  fa2 = 1 / (2\*π\*Cki\* Rt)  
fa2 = 1 / (2\*π \* 10μF \* 400Ω) = 39,8 Hz  
fa = 39,8 Hz  
Auo \* fo = Auv \* ff  $\rightarrow$  ff = Auo \* fo / Auv  
ff = 10<sup>5</sup> \* 10 Hz / 60 = 16,66kHz

# 16.11. Több fokozatú erősítő

#### 1. mintafeladat



$$R_3 = ?$$
  $R_{be1} = ?$   $U_{be1} = ?$   $A_{U1} = ?$   $U_{ki1} = ?$ 

R3 = R1 x R2 = 14 x 700 k
$$\Omega$$
 = 13,7 k $\Omega$   
Rbe1 = R1 = 14 k $\Omega$   
AU1 = - R2 / R1 = -50  
Ube1 = Ug \* Rbe1 / (Rg + Rbe1)  
Ube1 = 1,87 mV  
Uki1 = Ube1 \* AU1 = -93,33 mV

$$R_{be2} = 20 \text{ k}\Omega$$
  $A_{U2} = -40$   
 $R_4 = ?$   $R_5 = ?$   $R_6 = ?$   
 $U_{ki2} = ?$   $A_U = ?$   $A_i = ?$ 

Rbe2 = R4 
$$\rightarrow$$
 R4 = 20 kΩ  
Au2 = - R5 / R4 = - 40  
 $\rightarrow$  R5 = - Au2 \* R4 = 800 kΩ  
R6 = R4 x R5 = 20 x 800 kΩ = 19,5 kΩ  
Uki2 = Ube2 \* Au2 = - 93,33 mV \* -40  
Uki2 = 3733,33 mV = 3,73 V  
Au = Au1 \*Au2 = 2000  
Ai = Au \* Rbe1 / Rt = 140000

# 16.11. Több fokozatú erősítő

#### 2. mintafeladat



$$R_4 = 720 \text{ k}\Omega$$
 és  $U_{ki1} = -30^* \text{ Ube1} - 20^* \text{ Ube2} - 40^* \text{ Ube3}$ 

$$R_6 = 30 \text{ k}\Omega$$
 és  $R_7 = 600 \text{ k}\Omega$   
 $R_1 = ?$   $R_2 = ?$   $R_3 = ?$   $R_5 = ?$   
 $R_8 = ?$   $A_{u2} = ?$   $U_{ki1} = ?$   $U_{ki2} = ?$ 

Uki1 = - (R4/R1)\* Ube1 - (R4/R2)\*Ube2  
- (R4/R3)\*Ube3  

$$\rightarrow$$
 R4/R1 = 30 és R4/R2 = 20  
és R4/R3 = 40  
R1 = R4/30 = 720/30 = 24 kΩ  
R2 = R4/20 = 720/20 = 36 kΩ  
R3 = R4/40 = 720/40 = 18 kΩ

R5 = ((R1 x R2) x R3) x R4 = 7,91 k
$$\Omega$$
  
R8 = R6 x R7 = 28,57 k $\Omega$   
AU2 = - R7 / R6 = -600/30 = -20  
Uki1 = -30\* Ube1 - 20\* Ube2 - 40\* Ube3  
Uki1 = -30\*2 - 20\*3 - 40\*1 mV = -160 mV  
Uki2 = Ube2 \* AU2 = -160 mV \* -20  
Uki2 = 3200 mV = 3,2 V

# 16.12. Feladatok

### 1. feladat



$$Au1 = -30$$

$$R_2 = ?$$

Ube1 = ?

$$R_3 = ?$$
  
 $U_{ki1} = ?$ 

Rbe2 = 
$$25 k\Omega$$

$$R_5 = 600 \text{ k}\Omega$$

$$R_4 = ?$$

$$Au_2 = ?$$
  $R_6 = ?$ 

$$R_6 = ?$$

$$U_{ki2} = ?$$
  $A_U = ?$   $A_i = ?$ 

$$Au = ?$$

$$A_i = ?$$

# 16.12. Feladatok

### 2. feladat



# 16.12. Feladatok

#### 3. feladat



- $R_1 = 20 \text{ k}\Omega$
- $R_2 = 400 \text{ k}\Omega$

- $R_6 = ?$  $R_3 = ?$ a.
- feszültség erősítés, Au = ? (viszonyszámként és dB-ben is!) b,
- kimeneti teljesítmény, pki = ? ha Ube1 = 3 mV
- Cbe = ? és Cki = ? hogy az erősítő alsó határ frekvenciája 15 Hz legyen! A vezérlő jelforrás belső ellenállása,  $R_g = 5 k\Omega$ ! A műveleti erősítő kimeneti ellenállása elhanyagolható!

# 16.13. Hiba feszültség kompenzálása

### Nullpont beállítás, offszet kiegyenlítés

- Uki nem biztos hogy 0, Ube = 0 esetén
- van olyan műveleti erősítő, amelyiknek külön bemenetei vannak ilyen célra, de ha nincs akkor is van lehetőség külsőleg megoldani



# 16.14. Ismétlő feladatok

# 1. feladat



$$R_1 = 30 \text{ k}\Omega$$

$$A_{uv} = -32$$

$$U_{kimax} = 13V$$

$$R_t = 1 \text{ k}\Omega$$

Rbe = ?  

$$Rv = ?$$
  
 $Rk = ?$   
 $U_{bemax} = ?$   
 $I_{kimax} = ?$ 

# 2. feladat



$$R_V = 984 \text{ k}\Omega$$
  
 $R_1 = 24 \text{ k}\Omega$   
 $U_{be} = 40 \text{mV}$ 

$$R_k = ?$$
  
 $A_{uv} = ?$   
 $U_{ki} = ?$ 

# 16.14. Ismétlő feladatok

# 3. feladat



Rbe = 
$$25 \text{ k}\Omega$$
  
Auv =  $-40$   
Ukimax =  $12\text{V}$   
Rt =  $500 \Omega$ 

$$R_1 = ?$$

$$R_V = ?$$

$$R_k = ?$$

$$U_{bemax} = ?$$

$$I_{kimax} = ?$$

# 4. feladat



$$R_1 = 20 \text{ k}\Omega$$
 
$$R_V = 700 \text{ k}\Omega$$
 
$$U_{be} = 200 \text{mV}$$
 
$$R_t = 1 \text{ k}\Omega$$
 
$$R_g = 5 \text{ k}\Omega$$

# 16.14. Ismétlő feladatok

### 5. feladat



$$R_1 = 20 \text{ k}\Omega \text{ és}$$
  
 $U_{ki} = -30 * U_{be1} - 40 * U_{be2} - 20 * U_{be3}$ 

$$R_2 = ?$$
 $R_3 = ?$ 
 $R_v = ?$ 
 $R_k = ?$ 

# 6. feladat



$$Au_1 = -20$$

$$R_2 = ?$$

 $U_{be1} = ?$ 

$$R_3 = ?$$
  
 $U_{ki1} = ?$ 

Rbe1 = 
$$?$$

$$R_6 = 20 \text{ k}\Omega$$

$$R_4 = ?$$

$$U_{ki2} = ?$$

$$R_5 = 780 \text{ k}\Omega$$

$$R_4 = ?$$
  $A_{U2} = ?$   $R_4 = ?$ 

$$R_4 = ?$$

$$AU = ?$$
  $Ai = ?$