What is dataset?

- A dataset is a collection of values, usually either numbers (if quantitative) or strings (if qualitative)
- Values are organized in two ways. Every value belongs to a variable and an observation.

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Why Tidy Data?

Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table.

Problems with Messy Dataset

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

Column headers are values, not variable names

Definition: Melting

- Turning columns into rows
- Parametrizing a list of columns that are already variables and
- convert the other columns into variables containing repeated column headings and the concatenated data values from the previous

separate columns

row	\mathbf{a}	b	\mathbf{c}
A	1	4	7
В	2	5	8
C	3	6	9

row	column	value
A	a	1
В	\mathbf{a}	2
\mathbf{C}	\mathbf{a}	3
A	b	4
В	b	5
\mathbf{C}	b	6
A	\mathbf{c}	7
В	\mathbf{c}	8
\mathbf{C}	\mathbf{c}	9

(b) Molten data

Multiple variables stored in one column

country	year	column	cases	country	year	sex	age	case
AD	2000	m014	0	AD	2000	m	0–14	
AD	2000	m1524	0	AD	2000	m	15-24	
AD	2000	m2534	1	AD	2000	m	25 - 34	
AD	2000	m3544	0	AD	2000	m	35 – 44	
AD	2000	m4554	0	AD	2000	m	45 - 54	
AD	2000	m5564	0	AD	2000	\mathbf{m}	55 - 64	
AD	2000	m65	0	AD	2000	\mathbf{m}	65 +	
AE	2000	m014	2	AE	2000	m	0 - 14	
AE	2000	m1524	4	AE	2000	m	15 - 24	
AE	2000	m2534	4	AE	2000	m	25 - 34	
AE	2000	m3544	6	AE	2000	m	35 - 44	
AE	2000	m4554	5	AE	2000	\mathbf{m}	45 - 54	
AE	2000	m5564	12	AE	2000	m	55 - 64	1
AE	2000	m65	10	\mathbf{AE}	2000	m	65 +	1
AE	2000	f014	3	\mathbf{AE}	2000	f	0-14	
(a) Molten data					(b) 7	Γidy da	ıta	

Variables are stored in both rows and columns

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax		-	-			· — ·	ş —— ş	ş ——ş
MX17004	2010	1	tmin	_	_	-	_	-	-	-	_
MX17004	2010	2	tmax	-	27.3	24.1	_	-	_	_	_
MX17004	2010	2	$_{ m tmin}$	-	14.4	14.4	_		-	-	-
MX17004	2010	3	tmax	-		_	_	32.1	-	-	-
MX17004	2010	3	$_{ m tmin}$	-	-	_	_	14.2	-	-	-
MX17004	2010	4	tmax		-	S		-	_	_	_
MX17004	2010	4	$_{ m tmin}$	-		S9	-		_	_	_
MX17004	2010	5	tmax	_				-	_	_	_
MX17004	2010	5	$_{ m tmin}$			-	-			_	_

id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	$_{ m tmin}$	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	$_{ m tmin}$	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010-02-11	$_{ m tmin}$	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010-02-23	tmax	29.9	MX17004	2010-04-27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2
	(a) Molten d	ata			(b) Tidy data	L	

Multiple types in one table

Datasets often involve values collected at multiple levels, on different types of observational units.

During tidying, each type of observational unit should be stored in its own table.

This is closely related to the idea of database normalization, where each fact is expressed in only one place. (could lead to potential inconsistencies within the df)

id	artist	track	time	\overline{id}	date	rank
1	2 Pac	Baby Don't Cry	4:22	$\overline{1}$	2000-02-26	87
2	2Ge+her	The Hardest Part Of	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000-03-25	87
6	98^0	Give Me Just One Nig	3:24	1	2000-04-01	94
7	A*Teens	Dancing Queen	3:44	1	2000-04-08	99
8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66

Tidy Tools

Tidying data makes it easier to maintain and do analysis with.

Manipulation functions:

- Filter: subsetting or removing observations based on some condition.
- Transform: adding or modifying variables. These modifications can involve either a single variable (e.g., log-transformation), or multiple variables (e.g., computing density from weight and volume).
- Aggregate: collapsing multiple values into a single value (e.g., by summing or taking means).
- Sort: changing the order of observations.