Alfonso Pineda Cedillo | A01660394

Evidencias Bloque 2	Competencias Bloque 2				
	SMA0400 - Métodos cognitivos: Utiliza métodos de inteligencia artificial y cómputo cognitivo en la solución de problema optimización.				
Portafolio Implementación	SMA0401C - Aprendizaje e IA: Emplea métodos de aprendizaje máquina e inteligencia artificial en el procesamiento de información habilitan la personalización de procesos, servicios o productos.				
Portafolio Implementación	SMA0402C - Reconocimiento de patrones, lenguaje natural e IA: Desarrolla sistemas de minería de datos, reconocimiento de patrones y procesamiento de lenguaje natural, que emulan el funcionamiento de un recomendado.				
	SMA0100 - Modelación matemática: Construye modelos matemáticos deterministas o estocásticos, soportados por herramientas computacionales de vanguardía.				
Portafolio Implementación	SMA0101C - Construcción de modelos: Construye modelos estocásticos y/o deterministas adaptados al contexto establecido por las necesidades del problema en cuestión.				

Evidencia	Subcompetencia	Indicador	Se observa en:	Descripción	Módulo donde se evalúa
Portafolio Implementación	SMA0401C Aprendizaje e IA	Utiliza un framework para entrenar un modelo de aprendizaje profundo	https://github. com/AlfonsoPineda/Advan cedA/I/blob/main/Bloque% 2011%20y%2011/M2.% 20Deep% 20Leaming/S9 TextEmbe dding.jpynb	El código utiliza TensorFlow junto con su API Keras, para entrenar un modelo de análisis de sentimientos basado en texto.	Técnicas y arquitecturas de deep learning.
		Evalúa el desempeño del modelo en su aproximación inicial y realiza ajustes para mejorar su desempeño	https://github. com/AlfonsoPineda/Adv ancedA/Iblob/main/Bloq ue%20II%20y% 20III/M2.%20Deep% 20Leaming/A01660394 %20-%20Redes% 20Neuronales% 20Profundas%20 (Ejercicio%201).ipynb	Se hizo ajustes en el código aumentando el número de épocas para así lograr mayor desempeño del modelo.	
		Utiliza un conjunto datos reales (no ejemplos de clase), para la creación del modelo.	https://github. com/AlfonsoPineda/Advan cedAl/blob/main/Bloque% 20II%20y%20III/M2.% 20Deep% 20Learinig/Actividad_Tran sferLearning.ipynb	Se creó un dataset desde cero con imágenes de teclado, mouse y monitor, con lo cual se entrenó un modelo con la arquitectura ResNet50.	
		El modelo puede generar predicciones o recomendaciones a través de la consola o una interfaz	https://github. com/AlfonsoPineda/Advan cedAl/blob/main/Bloque% 2019;20V/s2011/M2.% 20Leep% 20Leaming/A01660394% 20.0020Redes% 20Neuronales% 20Profundas%20 (Ejerciclo%202).jpynb	Se utiliza el modelo entrenado para predecir la clase de una imagen de prueba y muestra la predicción con la mayor probabilidad a través de la consola.	
	SMA0402C Reconocimiento de patrones, lenguaje natural e IA	Puede integrar una interfaz de lenguaje natural escrito a una aplicación haciendo uso de APIs	https://github. com/AlfonsoPineda/Adv ancedAl/blob/main/Bloq ue%20II%20y% 20III/M3.% 20NLP/Actividad%203% 20-% 20BertForQuestionAnsw ering%20.jpynb	Uso de la biblioteca Transformers de Hugging Face mediante el consumo de su API para realizar preguntas y obtener respuestas contextualizadas (generación de texto).	3. Herramientas para el procesamiento del lenguaje natural.
		Puede integrar una interfaz de lenguaje natural en audio o voz a una aplicación haciendo uso de APIs	No aplica	Durante el curso, nos enfocamos en integrar interfaces de lenguaje natural a través de texto, abordando tareas como el análisis de emociones y Q&A. Sin embargo, tengo la capacidad y disposición para integrar una interfaz en audio o voz, adaptando los conocimientos adquiridos en el curso.	
		Analiza un texto con herramientas de NLP para obtener información relevante: análisis de sentimientos, generación de texto, generación de audio, etc	https://github. com/AlfonsoPineda/Advan cedAl/Iblob/main/Bloque% 2011%20v%2011/M3.% 20NLP/Actividad%202% 20-%20Aplicacl%C3% B3n%20de%20an%C3% A1lisis%20de% 20sentimientos.ipynb	Asignación de puntuaciones de polaridad (positiva, negativa o neutral) al texto mediante el uso de un diccionario que considera tanto las palabras como su contexto, evaluando la intensidad de las emociones en el texto.	
	SMA0101C Construcción de modelos	Identifica correctamente si el problema a tratar requiere un modelo estocástico o determinista	https://giithub. com/AlfonsoPineda/Auan cedAl/Iblob/main/Bloque% 20II%20V%20III/M5.% 20Estad%C3%ADstica% 20Avanzada/Actividad% 201.%20%20Regresion% 20Lineal%20Simple% 20y%20Multiple.jpynb	Determinación de un modelo de regresión determinista por basarse en coeficientes específicos y proporcionar predicciones precisas para la variable de respuesta (CO2 Emissions) en función de las variables predictoras.	5. Estadística avanzada para la ciencia de datos.
		Selecciona el modelo adecuado al problema	https://github. com/AlfonsoPineda/Advan cadAl/blob/a315b140/5d0f 72c5f9ecc6105f00267ef33 2439/Bloque%010%207% 2011/11/5 %20Estad%C3% ADstca% 20Avanzada/Actividad% 203%20-%20Setad% 20de%20Tiempo.jpynb	Se seleccionó el modelo adecuado para el problema basándose en análisis estadísticos como el T-test, p-valor, y valores críticos en series de tiempo, lo que guió decisiones críticas sobre estandarización y manejo de datos.	
		Explica claramente las ventajas y desventajas del modelo seleccionado para este problema	https://github. com/AlfonsoPined/Advan cedAl/blob/main/Bloque% 2019:20y%2011/M5.% 20Estad%C3%ADstica% 20Avanzada/Actividad% 202%20-% 20Multicolinealidad.jpynb	Se probaron los modelos VIF y PCR, donde se compararon los resultados de cada uno y se hizo un análisis de del rendimiento de cada modelo.	