

Altruism, infidelity and telomeres

David S Richardson Lewis Spurgin

Cost and trade-offs in the struggle to survive and reproduce

Cost and trade-offs in the struggle to survive and reproduce

Telomeres

...TTAGGGTTAGGGTTAGGG...
...AATCCCAAT CCCAATCCC AATCCC...

(TTAGGG)_n in vertebrates

- 1. Inheritance
- 2. Replication History (age)
- 3. Oxidative Damage

If you measure telomere length in individuals and control for chronological age:

If you measure telomere length in individuals and control for chronological age:

= Marker of biological ageing

If you measure telomere length in individuals and control for chronological age:

= Marker of biological ageing

If you isolate telomere shortening during specific experiences:

If you measure telomere length in individuals and control for chronological age:

= Marker of biological ageing

If you isolate telomere shortening during specific experiences:

= Biomarker of the costs of such experiences

If you measure telomere length in individuals and control for chronological age:

= Marker of biological ageing

If you isolate telomere shortening during specific experiences:

= Biomarker of the costs of such experiences

If you control for age and telomere shortening factors:

If you measure telomere length in individuals and control for chronological age:

= Marker of biological ageing

If you isolate telomere shortening during specific experiences:

= Biomarker of the costs of such experiences

If you control for age and telomere shortening factors:

= Measure of individual quality

Seychelles Warbler

Acrocephalus sechellensis

• Cousin island (studied since 1985)

- Small, isolated and enclosed population
- > 97% birds colour ringed

- Cousin island (studied since 1985)
- Small, isolated and enclosed population
- > 97% birds colour ringed
- Repeatedly blood sampled since 1994

- Cousin island (studied since 1985)
- Small, isolated and enclosed population
- > 97% birds colour ringed
- Repeatedly blood sampled since 1994
- Exact chronological age known
- 18 year pedigree being completed
- Life history parameters known
- Other experiences e.g. malaria infection

Altruism

The evolution of cooperative breeding

letters to nature

Nature 358, 493 - 495 (06 August 1992); doi:10.1038/358493a0

Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler

JAN KOMDEUR

The evolution of cooperative breeding

letters to nature

Nature 358, 493 - 495 (06 August 1992); doi:10.1038/358493a0

Importance of habitat saturation and territory quality for evolution of cooperative breedin warbler

JAN KOMDEUR

letters to nature

Nature 385, 522 - 525 (06 February 1997); doi:10.1038/385522a0

Extreme adaptive modification in sex ratio of the Seychelles warbler's eggs

JAN KOMDEUR*†‡, SERGE DAAN*, JOOST TINBERGEN* & CHRISTA MATEMAN\$

Altruism

Infidelity

The benefits of (extra-pair) mate choice

Infidelity

The benefits of (extra-pair) mate choice

Nature 422, 580 (10 April 2003) | doi:10.1038/422580a

Avian behaviour: Altruism and infidelity among warblers

David S. Richardson¹, Jan Komdeur³ & Terry Burke¹

Infidelity

The benefits of (extra-pair) mate choice

Nature 422, 580 (10 April 2003) | doi:10.1038/422580a

Avian behaviour: Altruism and infidelity among

warblers

David S. Richardson^{1,2}, Jan Ko

Proc. R. Soc. B (2005) 272, 759–767 doi:10.1098/rspb.2004.3028 Published online 5 April 2005

MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler

David S. Richardson^{1,2,*}, Jan Komdeur², Terry Burke³ and Torbiörn von Schantz⁴

Infidelity

The benefits of (extra-pair) mate choice

Nature 422, 580 (10 April 2003) | doi:10.1038/422580a

Avian behaviour: Altruism and infidelity among warblers

David S. Richardson^{1,2}, Jan Ko

PROCEEDINGS

THE ROYAL
SOCIETY

MOLECULAR ECOLOGY

Molecular Ecology (2010) 19, 3444-3455

doi: 10.1111/j.1365-294X.2010.04750.x

MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations

LYANNE BROUWER, *†‡ IAIN BARR, * MARTIJN VAN DE POL, ‡ TERRY BURKE, \$ JAN KOMDEUR¶

MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler

David S. Richardson^{1,2,*}, Jan Komdeur², Terry Burke³ and Torbiörn von Schantz⁴

Assess individual variation in telomere length/shortening

Assess individual variation in telomere length/shortening

1. Are telomere dynamics linked to survival / longevity (Biological ageing)

Assess individual variation in telomere length/shortening

- 1. Are telomere dynamics linked to survival / longevity (Biological ageing)
- 2. How strategies/experiences affect telomere shortening (**Generic currency**)

Assess individual variation in telomere length/shortening

- 1. Are telomere dynamics linked to survival / longevity (Biological ageing)
- 2. How strategies/experiences affect telomere shortening (**Generic currency**)
- 3. If individuals differ in response to these factors (**Individual quality**)

Adult telomeres shorten with age

Age: $t_{1,211.6}$ =-3.88, P<0.0001

REML model with bird identity as random effect, R²=0.26

 $Loss = 120b \pm 30.1 SE per year$

Adult telomeres shorten with age

Age: $t_{1,211.6}$ =-3.88, P<0.0001

REML model with bird identity as random effect, R² =0.26

Loss = $120b \pm 30.1$ SE per year

Length predicts survival to next year

Independent of their age

Telomere: χ^2 =9.62, P<0.01

Age: χ^2 =0.64, P=0.42

Adult telomeres shorten with age

Age: t_{1,211.6} =-3.88, P<0.0001

REML model with bird identity as random effect, $R^2 = 0.26$

Loss = $120b \pm 30.1$ SE per year

Length predicts survival to next year

Independent of their age

Telomere: χ^2 =9.62, P<0.01

Age: χ^2 =0.64, P=0.42

Length predicts post sampling lifespan

Last sample used for all individuals

Age χ^2 =6.35, P<0.05

Telomeres χ^2 =3.83, P<0.05

Dr Emma Barrett

MOLECULAR ECOLOGY

Molecular Ecology (2013) 22, 249-259

doi: 10.1111/mec.12110

Telomere length and dynamics predict mortality in a wild longitudinal study

EMMA L. B. BARRETT,* TERRY A. BURKE,† MARTIJN HAMMERS,‡ JAN KOMDEUR‡ and DAVID S. RICHARDSON*§