

CSCI-GA.3033-004

Graphics Processing Units (GPUs): Architecture and Programming CUDA Advanced Techniques 2

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Alignment

Memory Alignment

- Memory access on the GPU works much better if the data items are aligned as we saw before.
- Hence, allocating 2D (or 3D) arrays so that every row starts at a 64- (or 128-) byte boundary address will improve performance.
- · Difficult to do for a programmer!

Pitch

Columns **Padding**

Pitch

Rows

2D Arrays

- CUDA offers special versions of:
 - Memory allocation of 2D arrays so that every row is padded (if necessary). The function determines the best pitch and returns it to the program. The function name is cudaMallocPitch()
 - Memory copy operations that take into account the pitch that was chosen by the memory allocation operation. The function name is cudaMemcpy2D()

```
cudaMallocPitch(void** devPtr, Will return the pitch, Will return the pitch size_t widthInBytes, size_t height)
```

- This allocates at least width (in bytes) X height array.
- The value returned in pitch is the width in bytes of the allocation.
- The above function determines the best pitch and returns it to the program.
- It is strongly recommended to use this function for allocating 2D (and 3D) arrays.
 (also take a look at cudaMalloc3D())

```
cudaError_t cudaMemcpy2D (void * dst,
size_t dpitch,
const void * src,
size_t spitch,
size_t width,
size_t width,
size_t height,
enum cudaMemcpyKind kind )
```

- dst Destination memory address
- dpitch Pitch of destination memory
- *src* Source memory address
- spitch Pitch of source memory
- width Width of matrix transfer (in bytes)
- height Height of matrix transfer (rows)
- kind Type of transfer

Example: Allocation

```
int main(int argc, char * argv[])
  float * A, *dA;
  size_t pitch;
  A = (float *)malloc(sizeof(float)*N*N);
  cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);
//copy memory from unpadded array A of 760 by 760 dimensions
//to more efficient dimensions on the device
cudaMemcpy2D(dA,pitch,A,sizeof(float)*N,sizeof(float)*N,N,
  cudaMemcpyHostToDevice);
```

Example: Accessing

```
_global___ void MyKernel(float* devPtr,
                          size_t pitch,
                           int width, int height) {
 for (int r = 0; r < height; ++r) {
      float* row = (float*)((char*)devPtr + r * pitch);
      for (int c = 0; c < width; ++c) {</pre>
               float element = row[c]; }
```

So..

Pitch is a good technique to speedup memory access

- · There are two drawbacks that you have to live with:
 - Some wasted space
 - A bit more complicated elements access

Multi-GPU System

Summit: #1 in Top 500 list (June 2018)

IBM POWER9, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband

Flavors

- Multiple GPUs in the same node (e.g. PC)
- Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!

Flavors

Source: "The CUDA Handbook" by Nicholas Wilt .. Copyright (c) by Pearson Education Inc.

Flavors

Source: NVIDIA

Why Multi-GPU Solutions

- Scaling-up performance
- Another level of parallelism
- Power
- Reliability

```
// Run independent kernel on each CUDA device
int numDevs= 0;
cudaGetDeviceCount(&numDevs);
for (int d = 0; d < numDevs; d++) {
     cudaSetDevice(d);
     kernel<<<bl/>blocks, threads>>>(args);
```

CUDA Support

- cudaGetDeviceCount(int * count)
 - Returns in *count the number of devices
- cudaGetDevice (int * device)
 - Returns in *device the device on which the active host thread executes the device code.

CUDA Support

- cudaSetDevice(devID)
 - Device selection within the code by specifying the identifier and making CUDA kernels run on the selected GPU.

Who Controls the GPU?

- Single CPU thread
- Multiple CPU threads belonging to the same process
- Different processes

Peer-to-Peer Access

CUDA Support: Peer to peer memory Access

Peer-to-Peer Memory Access
 cudaDeviceCanAccessPeer (int* can, int device_x, int device_y)

- Can device_x access the memory of device_y?if yes, can = 1
- This is one-way

CUDA Support: Peer to peer memory Access

- Peer-to-Peer Memory Access
 - cudaDeviceEnablePeerAccess(peer_device, 0)

```
cudaSetDevice(0);
                                     // Set device 0 as current
float* p0;
size t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);
                                     // Allocate memory on device 0
                                     // Launch kernel on device 0
MyKernel<<<1000, 128>>>(p0);
cudaSetDevice(1):
                                     // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0):
                                    // Enable peer-to-peer access
                                     // with device 0
// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel <<< 1000, 128>>> (p0);
```

What we want to do ...

Access granted by this call is unidirectional (i.e. current device can access peer device)

CUDA Support Peer to peer memory Copy

Using cudaMemcpyPeer()

```
// Set device 0 as current
cudaSetDevice(0);
float* p0;
size t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);
                                    // Allocate memory on device 0
                                    // Set device 1 as current
cudaSetDevice(1);
float* p1;
                                    // Allocate memory on device 1
cudaMalloc(&p1, size);
cudaSetDevice(0):
                                    // Set device 0 as current
MyKernel<<<1000, 128>>>(p0);
                                    // Launch kernel on device 0
cudaSetDevice(1);
                                    // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
MyKernel<<<1000, 128>>>(p1);
                                    // Launch kernel on device 1
```

- If cudaDeviceEnablePeerAccess() is enabled, host not involved, so faster copy.
- It is asynchronous from host perspective.

Important: If GPU supports <u>Unified Virtual Address</u>, then no need to the above function.

(We will see shortly)

Milestones

- Traditional cudaMemcpy() ← We already saw this!
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up)

Milestones

- Traditional cudaMemcpy()
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up)

Unified Virtual Address Space (UVA)

- From CUDA 4.0
- puts all CUDA execution, host and GPUs, in the same address space
- Requires Fermi-class GPU and above
 - computer capability 2.0 or higher
- Requires 64-bit application
- Call cudaGetDeviceProperties() for all participating devices and check unifiedAddressing flag

Unified Virtual Addressing

Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces

UVA : Single Address Space

Easier Memory Access: UVA Zero-Copy

- UVA provides a single virtual memory address space for all memory in the system, and enables pointers to be accessed from GPU code no matter where in the system they reside.
- Pointers returned by cudaHostAlloc() can be used directly from within kernels running on UVA enabled devices
 - Data cache in L2 of target device.

Easier Memory Copy: UVA Memory Copy

· Between host and multiple devices:

```
cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault) cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault) cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault) cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)
```

Between two devices:

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

- cudaMemcpy() knows that our buffers are on different devices
- (UVA), will do a P2P copy
- Note that this will transparently fall back to a normal copy through the host if P2P is not available

Milestones

- Traditional cudaMemcpy()
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up)

Source of the next few slides:

https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Unified Memory

Source: NVIDIA blogs: https://devblogs.nvidia.com/parallelforall

Unified Memory

- Primitive version from Kepler architecture (CC 3.0 and up)
- Creates a pool of managed memory that is shared between the CPU and GPU.
- Managed memory is accessible to CPU and GPU with single pointers.
- Under the hood: data (granularity = pages) automatically migrates from CPU to GPU and among GPUs.
 - Pascal GPU architecture is the first with hardware support for virtual memory page faulting and migration.

Unified Memory

CPU Code CUDA 6 Code with Unified Memory void sortfile(FILE *fp, int N) { void sortfile(FILE *fp, int N) { char *data; char *data; data = (char °) malloc(N); cudaMallocManaged(&data, N); fread(data, 1, N, fp); fread(data, 1, N, fp); qsort(data, N, 1, compare); qs ort <<<...>>> (data ,N ,1, compare); cu daDeviceSynchronize(); use_data(data); use_data(data); free(data); cu daFree (data);

cudaError_t cudaMallocManaged(void** ptr, size_t size)

- ptr can be used by any GPU and CPU in the system.
- Pascal GPU:
 - Pages may not be created until they are accessed by the GPU or the CPU.
 - Pages automatically migrate to the device (or host) that access them.
- Pre-PASCAL (i.e. Kepler and Maxwell):
 - With single GPU, data will be allocated on the GPU device that is active when the call is made.
 - On multi-GPU systems, if some of the GPUs have peer-to-peer access disabled, the memory will be allocated so it is initially resident on the CPU.

Isn't it like UVA?

- Unified memory depends on UVA.
- UVA does NOT move data automatically between CPU and GPU.
- Unified memory gives higher performance than UVA.

Advantages of Unified Memory

- Ease of programming
- Data is migrated on demand.
 - offer the performance of local data on the GPU
 - while providing the ease of use of globally shared data
- Very efficient with complex data structures (e.g. linked lists, structures with pointers, ...).

Note: The physical location of data is invisible to the program and may be changed at any time

Disadvantages of Unified Memory

 Carefully tuned CUDA program that uses streams to efficiently overlap execution with data transfers may perform better than a CUDA program that only uses Unified Memory.

How to allocated managed memory?

 Option 1: cudaMallocManaged() routine, which is semantically similar to cudaMalloc()

Option 2: defining a global
 __managed___ variable, which is
 semantically similar to a ___device___
 variable

cudaMallocManaged()

```
int main() {
   int *ret;
  cudaMallocManaged(&ret, 1000 * sizeof(int));
  AplusB<<< 1, 1000 >>>(ret, 10, 100);
  cudaDeviceSynchronize();
  for(int i=0; i<1000; i++)
       printf("%d: A+B = %d\n", i, ret[i]);
   cudaFree(ret);
   return 0;
```

___managed___

```
<u>__device__ _managed__ int ret[1000];</u>
__global__ void AplusB(int a, int b) {
       ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
    AplusB<<< 1, 1000 >>>(10, 100);
     cudaDeviceSynchronize();
   for(int i=0; i<1000; i++)
          printf("%d: A+B = %d\n", i, ret[i]);
    return 0;
```

Final Notes About Unified Memory

- Coherence is ahead of performance in runtime implementation. Data has to be coherent across CPUs and GPUs in the system.
- Page faulting is implemented in systems with compute capability 6.x and up
 → cudaMallocManaged will not run out of memory as long as there is enough system memory available for the allocation.
- Before that, all managed data must move to the GPU before kernel launch (automatically of course) → Devices of compute capability lower than 6.x cannot allocate more managed memory than the physical size of GPU memory

Dynamic Parallelism

The Usual case

- Data travels back and forth between the CPU and GPU many times.
- Reason: because
 of the inability of
 the GPU to create
 more work on
 itself depending
 on the data.

With Dynamic Parallelism:

- GPU can generate work on itself without involvement of CPU.
- Permits Dynamic Run time decisions.
- Kernels can start new kernels
- Streams can spawn new streams.


```
global ChildKernel(void* data) {
    //Operate on data
  global ParentKernel(void *data) {
    if (threadIdx.x == 0) {
        ChildKernel<<<1, 32>>>(data);
        cudaThreadSynchronize();
      syncthreads();
    //Operate on data
// In Host Code
ParentKernel<<<8, 32>>>(data);
```

A kernel can call another kernel that calls another kernel up to 24 nested ... Subject to the availability of resources.

When do we need that?

- Nested for-loop for example
- The need for adaptive grids

Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/

- As in the host, device kernel launch is asynchronous.
- Successful execution of a kernel launch means that the kernel is queued;
 - it may begin executing immediately,
 - or it may execute later when resources become available.
- Note that every thread that encounters a kernel launch executes it. So be careful!
- Child grids always complete before the parent grids that launch them, even if there is no explicit synchronization.

 The CUDA Device Runtime guarantees that parent and child grids have a fully consistent view of global memory when the child starts and ends.

Source: http://devblogs.nvidia.com/parallelforall/cuda-dynamic-parallelism-api-principles/

- By default, grids launched within a thread block are executed sequentially.
- This happens even if grids are launched by different threads within the block.
- To deal with this drawback → streams
- streams created on the host cannot be used on the device.
- Streams created in a block can be used by all threads in that block.

```
cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
```

- If the parent kernel needs results computed by the child kernel to do its own work → it must ensure that the child grid has finished execution before continuing
 - by explicitly synchronizing using cudaDeviceSynchronize(void).
 - This function waits for completion of all grids previously launched by the thread block from which it has been called.

Example

```
void threadBlockDeviceSynchronize(void)
                                   To ensure all launches
 __syncthreads();
                                   have been made.
 if(threadIdx.x == 0)
  cudaDeviceSynchronize();
   _syncthreads();
```

What do we gain?

- Reduction in trips to CPU
- Recursion
- More freedom where data generated by the kernel decides how to partition the data for lower-level of the hierarchy.

How to Compile and Link?

nvcc -arch=sm_35 -rdc=true myprog.cu -lcudadevrt

generate relocatable device code, required for later linking

Hyper-Q

Till Fermi

- · Only one work queue
- Even though Fermi allows 16 concurrent kernels.
- GPU resources not fully utilized

Fermi already supported 16 way concurrency of kernel launches from separate streams
Pending work is bottlenecked on 1 work queue.

GPU's computational resources not being utilized fully.

With Hyper-Q

- Starting with Kepler
- We can have connection from multiple CUDA streams, Message Passing Interface (MPI) processes, or multiple threads of the same process.
 - 32 concurrent work queues, can receive work from 32 process cores at the same time.
 - 3X Performance increase on Fermi

With Hyper-Q

Conclusions

- There are many performance enhancement techniques in our arsenal:
 - Alignment
 - Streams
 - Asynchronous execution
 - Dynamic Parallelism
 - Multi-GPU