INSTITUTO KRIETE DE INGENIERIA Y CIENCIAS

Reto 3: DataBase

Estudiante:

Monica Daniela Alvarenga Mejia

Docente:

José Luis Montalvo

Materia:

Fisica applicada II

FASE 2: NORMALIZACIÓN

Este documento presenta la transformación del **Diagrama Entidad–Relación (ER)** al **modelo relacional**. Además, se explica el proceso de normalización hasta la **Tercera Forma Normal (3FN)**, con el fin de eliminar redundancias y asegurar la integridad de los datos

Modelo relacional:

Autor		
ID_Autor	PK, INT, Autoincremental	
Nombre	VARCHAR	

Libro		
ID_Libro	PK, INT, Autoincremental	
Titulo	VARCHAR	
ISBN	VARCHAR, UNIQUE	
ID_Autor	FK -> Autor.ID_Autor	

Estudiante		
ID_Estudiante	PK, INT, Autoincremental	
Nombre	VARCHAR	
Grado	VARCHAR, UNIQUE	

Prestamo		
ID_Prestamo	PK, INT, Autoincremental	
Fecha_Prestamo	Date	
Fecha_Devolucion	date	
Estado	VARCHAR	
ld_libro	FK -> Libro.ID.libro	
ld_estudiante	FK-> Estudiante.ID_estudiante	

Estudiante		
ID_Estudiante	INT	
nombre	VARCHAR	
Apellido	VARCHAR	
carrera	VARCHAR	
Correo	VARCHAR	

Normalizacion

1FN:

- **Atomicidad:** Cada celda de una tabla debe contener un solo valor, no múltiples valores.
- Unicidad de columnas: Cada columna debe almacenar un único tipo de dato.
- Sin filas ni columnas duplicadas: Se asegura la unicidad de las filas y columnas.

Evita guardar cosas como "Teléfonos: 2222-1111, 7777-3333" en una sola celda. En lugar de eso, cada teléfono tendría su propio registro.

Eliminar grupos repetidos y asegurar que cada campo tiene un solo valor.

En vez de poner en la tabla **Libro** los nombres de varios autores en una sola celda, creamos la tabla **Autor** y usamos una FK.

2FN:

• La tabla debe estar en 1NF.

Eliminar dependencias parciales (cuando un campo depende solo de parte de la clave primaria compuesta).

Elimina redundancia cuando hay claves compuestas.

En **Préstamo**, si hubiéramos usado clave compuesta (id_libro + id_estudiante), podríamos repetir datos del libro o del estudiante. Al usar **id_prestamo** como PK y poner las FKs, evitamos redundancia.

3FN:

• La tabla debe estar en 2NF.

Eliminar dependencias transitivas (atributos que dependen de otros atributos que no son clave).

Evita datos derivados o repetidos que pueden actualizarse mal.

Si en la tabla **Libro** hubiéramos guardado también nombre_autor, este dependería de id_autor (no de la PK del libro directamente). Al quitarlo y dejarlo solo en la tabla **Autor**, eliminamos redundancia y posibles errores (ej: cambiar un nombre de autor solo en un libro y no en todos).

Si hubiéramos dejado **nombre_autor** dentro de **Libro**, cada vez que ese autor escriba otro libro, tendríamos que volver a escribir su nombre. Esto genera **redundancia** y riesgo de inconsistencia (ej: "Gabriel García Márquez" escrito distinto en cada fila). Con la normalización, solo se guarda una vez en **Autor**.