Asymmetric Collaborative Bar Stabilization Tethered to Two Heterogeneous Aerial Vehicles

Automatic Control – Royal Institute of Technology, KTH

Pedro O. Pereira, Pedro Roque and Dimos V. Dimarogonas

Motivation

Goal of collaborative transportation:

- ► Transportation of heavy cargos: individual UAVs' payload capacity exceeded
- Pose stabilization: requires two or more UAVs

Tethered transportation:

- Mechanically simple
- ▶ It does not consume useful payload capacity

Asymmetries:

- Non-identical UAVs: m_1, m_2
- ► Cables of different lengths: I_1, I_2
- Grasping points placed asymmetrically w.r.t. to bar's center-of-mass: d_1, d_2

Problem and Strategy

- Modeling of system of three rigid bodies
 - ► Two geometric constraints imposed by each cable
 - ▶ Distance between UAV and grasping point on the bar is equal to cable length
 - Linearization around point in manifold requires special attention
- ► PID control laws on each UAV
- Relations between gains that guarantee stability

Equilibrium state and equilibrium input input

- $\theta = \text{pitch angle and } F = \text{normal force}$
- Equilibrium state:
 - Stabilize bar on the horizontal plane
- Stabilize bar under no normal stress
- ► Equilibrium state requires non-zero equilibrium input along vertical direction

$$u_i^{\star} = m_i g e_3 + \underbrace{\frac{d_j}{d_1 + d_2} mg e_3}_{ ext{UAV's weight}}$$
 portion of bar's weight

- ► Equilibrium input: requires exact model knowledge
- ▶ Other equilibria: requires separate stability analysis

Control laws

Integral term along vertical direction compensates for model mismatch

Linearization

- ▶ Jacobian $A \in \mathbb{R}^{32 \times 32}$
- Find appropriate change of coordinates $P \in \mathbb{R}^{32 \times 32}$

Change of coordinates

Arbitrary gains

- ▶ Jacobian A is similar to PAP^{-1} (thus, they share the same eigenvalues)
- ► Three decoupled motions: vertical + longitudinal + lateral
- ► Each motion: linear component + angular component
- ▶ Choose gains that *cancel* asymmetries and render block triangular structure

Longitudinal motion

- ▶ Longitudinal proportional gains: $k_{p,x}^i = k_{p,x} + \frac{d_i l_i}{d_1 l_1 + d_2 l_2} f_{p,x} \Delta_x$
- Quantification of asymmetry: $\Delta_x = \frac{m(m_1d_1l_1 + m_2d_2l_2)}{m_1m_2(d_1l_1 d_2l_2)}$
- Good/Bad asymmetry: gap $|\Delta_x|$ between gains is small/big

Main result

Link to video

Pose stabilization is asymptotically stable if

- Attitude inner loop is sufficiently fast
- Integral gain is sufficiently small