

SHRI S.H. KELKAR COLLEGE OF ARTS, COMMERCE& SCIENCE, DEVGAD FIRST TERM END EXAMINATION 2023

USPH 101

MAX.MARKS:75		TION: 2 1/2	HOURS
1	N.B (i) All questions are compulsory.		
	(ii) Figures to the right indicate full marks.		
	(iii) Use of non-programmable calculator is allowed.		
Q 1.A) (i)	Attempt any One. What is kinetic friction? The coefficient of friction between a ble and incline angle 'e' of the incline with the horizontal so that bo slip on the plane. If the incline makes e/2 with the horizontal, fir force on the block. Two unequal masses m ₁ and m ₂ connected by light and an inexter	dy does not ad frictional	
, ,	negligible mass are hung over light and frictionless pulley (syste Atwood's machine). Determine the Acceleration due to gravity and tension T produce	m is known as	3
Q 1.B) (i)	Attempt any One. State Newton's laws of motion with suitable examples.		08
(ii)	State and prove the work-energy theorem.		
Q 1.C) (i) (ii)	Attempt any One. Write short notes on mass-energy equivalence. A spring is held constant with upper end fixed to a support. It was 3 cm when a mass of 205 gm was attached to its lower end. Deterorce constant of the spring.	as stretched by	04
Q 2.A) (i) (ii)	Attempt any One. Derive and expression for the Bernoulli's equation. Show that for homogeneous isotropic material $Y = 2\eta(1+)$		08
Q 2.B) (i)	Attempt any One. Define (i) Coefficient of viscosity (ii) poise (iii) terminal velocity force and (v) critical velocity Derive equation of continuity.	y (iv) viscous	08
Q 2.C) (i)	Attempt any One. Explain the terms (i) Streamline flow and (ii) turbulent flow		04

(ii)	Define stress and strain and hence explain the Young's modulus of elasticity's	
Q 3.A)	Attempt any One.	08
(i)	Show that Cp - Cv = R for a perfect gas.	
(ii)	Derive Van der Waals equation of state.	
Q 3.B)	Attempt any One.	08
(i)	Derive an expression for the work done by a perfect gas in an adiabatic	
	process.	
(ii)	State and explain zeroth law of thermodynamics	
Q 3.C)	Attempt any One.	04
(i)	An ideal gas isothermally expands at 27° C so that its initial volume is doubled	
	[R = 8.3 J/deg.Mole]	
(ii)	What are limitations of Van der Waals equation?	
Q.4)	Attempt any Three	15
(i)	A gas enclosed in a cylinder expands to double of its initial volume at a	
	constant pressure of 1 atmosphere. How much work is done in this process.	
(ii)	Explain Inertial and non-inertial frames of reference	
(iii)	Advantages & disadvantages of friction in daily life	- 6
(iv)	Explain Kinetic Energy and potential energy.	
(v)	Distinguish between real and ideal gases.	
(vi)	Write note on streamline and turbulent flow.	