Chapitre 3

Espaces Préhilbertiens réels

Ce chapitre généralise aux espaces vectoriels réels les notions de produit scalaire et d'orthogonalité bien connues en dimensions 2 et 3. Dans tout le chapitre, E est un \mathbb{R} -espace vectoriel.

3.1 Premières définitions

3.1.1 Produits scalaires

Définition 3.1.1 (Produit scalaire)

Soit $f: E^2 \longrightarrow \mathbb{R}$ une application. On dit qu'elle est :

• bilinéaire si, et seulement si,

$$\forall x, y, z \in E \quad \forall \lambda \in \mathbb{K} \qquad f(\lambda x + y, z) = \lambda f(x, z) + f(y, z)$$

et
$$\forall x, y, z \in E \quad \forall \lambda \in \mathbb{K} \qquad f(z, \lambda x + y) = \lambda f(z, x) + f(z, y)$$

• symétrique si, et seulement si,

$$\forall x, y \in E$$
 $f(x, y) = f(y, x)$

• définie si, et seulement si,

$$\forall x \in E$$
 $f(x, x) = 0 \implies x = 0$

• positive si, et seulement si,

$$\forall x \in E$$
 $f(x, x) \ge 0$

• non dégénérée si, et seulement si,

$$\forall x \in E \quad (\forall y \in E \quad f(x, y) = 0) \implies x = 0$$

Enfin, on appelle produit scalaire sur E toute application bilinéaire, symétrique, définie, positive. Un espace préhilbertien réel est un couple $(E, \langle \ | \ \rangle)$ où E est un \mathbb{R} -espace vectoriel et $\langle \ | \ \rangle$ est un produit scalaire. Si E est de dimension finie, on dit qu'il est euclidien.

Observons que, pour montrer qu'une application est un produit scalaire, il est plus rapide d'établir d'abord la symétrie : en effet, suffit alors de montrer la linéarité par rapport à la première variable pour avoir la bilinéarité.

Exemple 3.1.2

1. Soit n un entier non nul. Si x est un vecteur dans \mathbb{R}^n , on notera x_1, \ldots, x_n ses coordonnées dans la base canonique. On pose

$$\forall x, y \in \mathbb{R}^n$$
 $\langle x \mid y \rangle = \sum_{k=1}^n x_k y_k = {}^t x y$

Il est évident que $\langle \, | \, \rangle$ est un produit scalaire. En particulier, on utilise le fait qu'un carré est toujours positif dans \mathbb{R} et qu'une somme de réels positifs est nulle si, et seulement si, chaque réel est nul.

Ce produit scalaire fait de \mathbb{R}^n un espace préhilbertien réel. On l'appelle le produit scalaire canonique sur \mathbb{R}^n .

Dans le cas où n = 2 ou n = 3, on retrouve les produits scalaires usuels dans \mathbb{R}^2 et \mathbb{R}^3 .

2. n est toujours un entier non nul. On se donne un \mathbb{R} -espace vectoriel de dimension finie E, avec une base \mathcal{B} quelconque. Si $x \in E$, on notera x_1, \ldots, x_n ses coordonnées dans la base \mathcal{B} . Si l'on pose

$$\forall x, y \in E$$
 $\langle x \mid y \rangle = \sum_{k=1}^{n} x_k y_k$

on définit un produit scalaire sur E.

Observons que ce produit scalaire dépend évidemment de la base choisie; en général, si l'on change de base, on n'obtient pas le même produit scalaire. Également, si $E = \mathbb{R}^n$ et \mathscr{B} est la base canonique, alors on a simplement le produit scalaire canonique défini juste au-dessus.

3. Prenons par exemple $E = \mathbb{R}^3$ et la base \mathscr{B} formée par les vecteurs

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $e_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

Il s'agit bien d'une base puisque

$$\det(e_1, e_2, e_3) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 2 \end{vmatrix} = 1 \neq 0$$

et un petit calcul montre que si $x \in \mathbb{R}^n$, alors ses coordonnées dans la base \mathcal{B} sont

$$[x]_{\mathscr{B}} = \begin{bmatrix} 2x_1 - 2x_2 + x_3 \\ -x_1 + 2x_2 - x_3 \\ x_1 - y_1 + z_1 \end{bmatrix}$$

Si on note $\langle \, | \, \rangle_c$ le produit scalaire canonique et $\langle \, | \, \rangle_{\mathscr{B}}$ le produit scalaire dans la base \mathscr{B} , on a pour tous x et y dans \mathbb{R}^n :

$$\langle x | y \rangle_c = x_1 y_1 + x_2 y_2 + x_3 y_3$$

et
$$\langle x \mid y \rangle_{\mathscr{B}} = 6x_1y_1 - 7x_1y_2 + 4x_1y_3 - 7x_2y_1 + 9x_2y_2 - 5x_2y_3 + 4x_3y_1 - 5x_3y_2 + 3x_3y_3$$

Ceci montre clairement que $\langle | \rangle_c$ et $\langle | \rangle_{\mathscr{B}}$ n'ont aucune raison d'être identiques.

4. On note $E = \mathcal{C}([0; 1])$, le \mathbb{R} -espace vectoriel des fonctions continues sur [0; 1] et on pose

$$\forall f, g \in E$$
 $\langle f \mid g \rangle = \int_{[0,1]} fg$

D'après les propriétés de l'intégrale, $\langle \, | \, \rangle$ est bien un produit scalaire sur E. En particulier, pour montrer qu'il est défini, on utilise le fait qu'une fonction *continue* sur [0;1], qui a une intégrale nulle, est nulle. La continuité est essentielle ici.

Théorème 3.1.3 (Inégalité de Cauchy-Schwarz)

Soit f une forme bilinéaire symétrique positive sur E. Alors

$$\forall x, y \in E$$
 $f(x, y)^2 \le f(x, x) f(y, y)$

Si, de plus, f est un produit scalaire, et si $x, y \in E$, l'inégalité de Cauchy-Schwarz est une égalité si, et seulement si, (x, y) est liée.

Preuve : Soient x et y dans E. Comme f est positive, $f(x + \lambda y, x + \lambda y)$ est positif pour tout λ réel. Mais par bilinérité et symétrie, on a

$$f(x + \lambda y, x + \lambda y) = f(x, y) + 2\lambda f(x, y) + \lambda^2 f(y, y)$$

Cette quantité est positive pour tout λ donc le trinôme $X^2 f(y,y) + 2f(x,y)X + f(x,x)$ a un discriminant négatif :

$$4f(x, y)^2 - 4f(x, x) f(y, y) \le 0$$

Supposons maintenant que f est un produit scalaire. Soient x et y dans E et on suppose que $f(x,y)^2 = f(x,x) f(y,y)$. Alors le trinôme $X^2 f(y,y) + 2f(x,y)X + f(x,x)$ a une racine (double) donc il existe $\lambda \in \mathbb{R}$ tel que $f(x + \lambda y, x + \lambda y) = 0$. Comme f est définie, on sait que $x + \lambda y = 0$ donc (x,y) est liée. La réciproque est triviale, par simple calcul.

Proposition 3.1.4

Soit $f: E^2 \longrightarrow \mathbb{R}$ une application. Si elle est définie, alors elle est non dégénérée.

Si f est bilinéaire, symétrique, positive, non dégénérée, alors elle est définie (et c'est donc un produit scalaire).

Preuve : Supposons f définie. Soit $x \in E$ tel que

$$\forall y \in E$$
 $f(x, y) = 0$

Alors en particulier f(x, x) = 0 donc x = 0.

Supposons maintenant que f est bilinéaire, symétrique, positive, non dégénérée. On se donne un $x \in E$ tel que f(x, x) = 0. D'après l'inégalité de Cauchy-Schwarz, pour tout $y \in E$,

$$f(x,y)^2 \leqslant f(x,x) \, f(y,y) = 0$$

Comme f(x, y) est réel, il est nul. Mais y était quelconque; comme f est non dégénérée, x = 0: f est définie.

3.1.2 Normes

Définition 3.1.5

Soit E un \mathbb{R} -espace vectoriel. Soit $\| \| : E \longrightarrow \mathbb{R}_+$ une application. On dit que $\| \|$ est une *norme* si, et seulement si,

$$\forall x \in E$$
 $||x|| = 0 \implies x = 0$

$$\forall x \in E \quad \forall \lambda \in \mathbb{R} \qquad \|\lambda x\| = |\lambda| \|x\|$$

3

et $\forall x, y \in E \qquad ||x + y|| \leqslant ||x|| + ||y||$

Définition 3.1.6 (Norme euclidienne)

Soit $(E, \langle | \rangle)$ un espace préhilbertien réel. On appelle *norme euclidienne* sur E, associée au produit scalaire $\langle | \rangle$, l'application || || définie par

$$\forall x \in E$$
 $||x|| = \sqrt{\langle x \mid x \rangle}$

Proposition 3.1.7 (Propriétés des normes euclidiennes)

Soit (E, \langle | \rangle) *un espace préhilbertien réel.*

1. Positivité stricte
$$\forall x \in E \setminus \{0\} \qquad ||x|| > 0$$

2. Homogénéité
$$\forall x \in \mathbb{E} \quad \forall \lambda \in \mathbb{R} \quad \|\lambda x\| = |\lambda| \|x\|$$

3. *Inégalité de Cauchy-Schwarz*
$$\forall x, y \in E \quad |\langle x \mid y \rangle| \leq ||x|| ||y||$$
 avec égalité si, et seulement si, (x, y) est liée.

4. **Relation du parallélogramme**
$$\forall x, y \in E$$
 $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

5. Identités de polarisation
$$\forall x, y \in E \qquad \langle x \mid y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$
$$= \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

6. Inégalité de Minkowski
$$\forall x, y \in \mathbb{E} \quad \left| \|x\| - \|y\| \right| \leqslant \|x \pm y\| \leqslant \|x\| + \|y\|$$

En particulier, la norme euclidienne est une norme.

Preuve : La première propriété est une conséquence du fait que le produit scalaire est positif, défini. La deuxième est une récriture de l'inégalité de Cauchy-Schwarz.

Donnons-nous x et y dans E. En utilisant la bilinéarité et la symétrie du produit scalaire, on a

$$\|x+y\|^2 = \langle x+y \mid x+y \rangle = \langle x \mid x \rangle + 2\langle x \mid y \rangle + \langle y \mid y \rangle = \|x\|^2 + \|y\|^2 + 2\langle x \mid y \rangle$$

ce qui fournit la première identité de polarisation. On a également

$$\|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x \mid y \rangle$$

et l'on en déduit la deuxième identité de polarisation et la relation du parallélogramme. Ensuite, d'après Cauchy-Schwarz, on sait que

$$\left| \langle x \mid y \rangle \right| \leqslant \|x\| \, \|y\|$$

d'où
$$||x \pm y||^2 \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$$

et
$$||x \pm y|| \le ||x|| + ||y||$$

Enfin, cette relation étant vraie pour tous x et y, on a

$$||x|| = ||x \pm y \mp y|| \le ||x \pm y|| + ||y||$$

donc
$$||x|| - ||y|| \le ||x \pm y||$$

et de même,
$$||y|| - ||x|| \le ||x \pm y||$$

3.2 Orthogonalité

3.2.1 Définitions et premières propriétés

Définition 3.2.1 (Orthogonalité)

Soit $(E, \langle | \rangle)$ un espace préhilbertien réel. Soient x et y deux vecteurs de E. On dit qu'ils sont orthogonaux si, et seulement si, $\langle x | y \rangle = 0$. On notera alors $x \perp y$.

Soit $A \subset E$ une partie formée d'au moins deux éléments. On dit que c'est une famille orthogonale si, et seulement si.

$$\forall x, y \in A \qquad x \neq y \implies x \perp y$$

Enfin, on dira que A est *orthonormée* si, et seulement si, elle est orthogonale et tous ses éléments ont pour norme 1.

Il est évident, parce qu'un produit scalaire est symétrique, que $x \perp y$ équivaut à $y \perp x$. Également, le seul vecteur orthogonal à lui-même est 0 car le produit scalaire est défini; enfin, le seul vecteur orthogonal à tous les vecteurs de E est aussi le vecteur nul car le produit scalaire est non dégénéré.

Proposition 3.2.2 (Théorème de Pythagore)

Soient (E, $\langle | \rangle$) un espace préhilbertien réel, n un entier non nul et $(x_1, ..., x_n)$ une famille orthogonale. Alors pour tous réels $\lambda_1, ..., \lambda_n$,

$$\left\| \sum_{k=1}^{n} \lambda_k x_k \right\|^2 = \sum_{k=1}^{n} \lambda_k^2 \|x_k\|^2$$

Preuve : C'est une conséquence immédiate de la bilinéarité du produit scalaire. Si $\lambda_1, \dots, \lambda_n$ sont dans \mathbb{R} , on a

$$\left\| \sum_{k=1}^{n} \lambda_k x_k \right\|^2 = \left\langle \sum_{k=1}^{n} \lambda_k x_k \mid \sum_{\ell=1}^{n} \lambda_\ell x_\ell \right\rangle = \sum_{k=1}^{n} \sum_{\ell=1}^{n} \lambda_k \lambda_\ell \underbrace{\langle x_k \mid x_\ell \rangle}_{=0 \text{ si } k \neq \ell} = \sum_{k=1}^{n} \lambda_k^2 \|x_k\|^2$$

Définition 3.2.3

Soient $(E, \langle | \rangle)$ un espace préhilbertien réel et $A \subset E$. On appelle *orthogonal de* A, noté A° , l'ensemble des vecteurs orthogonaux à tous les vecteurs de A:

$$A^{\circ} = \{x \in E \mid \forall a \in A \quad x \perp a\}$$

Proposition 3.2.4

Soient $(E, \langle \, | \, \rangle)$ un espace préhilbertien réel. On se donne A et B des sous-ensembles de E non vides.

- 1. $\{0\}^{\circ} = E \ et \ E^{\circ} = \{0\}.$
- 2. Soient $e_1, ..., e_n$ dans E, non nuls. Si la famille $(e_1, ..., e_n)$ est orthogonale, alors elle est libre.
- 3. $A^{\circ} = (Vect A)^{\circ}$; de plus, A° est un sous-espace vectoriel de E et $A \subset A^{\circ \circ}$.
- 4. $(A \cup B)^{\circ} = (VectA + VectB)^{\circ} = A^{\circ} \cap B^{\circ}$.
- 5. $A^{\circ} + B^{\circ} \subset (VectA \cap VectB)^{\circ}$.
- 6. $Si A \subset B$, $alors B^{\circ} \subset A^{\circ}$.
- 7. Si F est un sous-espace vectoriel de E, alors F et F° sont en somme directe.

Preuve : Tout vecteur x de E est orthogonal au vecteur nul, puisque

$$2\langle x \mid 0 \rangle = \langle x \mid 2 \times 0 \rangle = \langle x \mid 0 \rangle$$

Par suite, $\{0\}^{\circ} = E$. Le fait que $E^{\circ} = \{0\}$ a déjà été observé plus haut.

Soient $e_1, ..., e_n$ dans E, non nuls, tels que $(e_1, ..., e_n)$ est une famille orthogonale. On suppose la famille liée; alors l'un de ces vecteurs, par exemple e_n , est combinaison linéaire des autres. Il existe $\lambda_1, ..., \lambda_{n-1} \in \mathbb{R}$ tels que

$$e_n = \sum_{k=1}^{n-1} \lambda_k e_k$$

Alors

$$\|e_n\|^2 = \langle e_n \mid e_n \rangle = \left\langle \sum_{k=1}^{n-1} \lambda_k e_k \mid e_n \right\rangle = \sum_{k=1}^{n-1} \lambda \langle e_k \mid e_n \rangle = 0$$

Mais e_n n'est pas nul donc $||e_n|| \neq 0$ et on a une contradiction.

Pour tout élément x de E, on note φ_x l'application

$$\varphi_x \colon \to \mathbb{R}$$
$$y \longmapsto \langle x \mid y \rangle$$

Le produit scalaire est linéaire par rapport à la seconde variable donc ϕ_x est une forme linéaire. Si A est une partie de E, on a

$$A^{\circ} = \{ y \in E \mid \forall x \in A \quad \langle x \mid y \rangle = 0 \} = \bigcap_{x \in A} \operatorname{Ker} \varphi_x$$

donc A° est un sous-espace vectoriel de E, car c'est une intersection de sous-espaces.

Si $x \in A$, il est, par définition, orthogonal à tous les éléments de A° donc $x \in A^{\circ\circ}$.

Si B est une autre partie de E avec $A \subset B$, on a

$$B^{\circ} = \bigcap_{x \in B} \operatorname{Ker} \varphi_x \subset \bigcap_{x \in A} \operatorname{Ker} \varphi_x = A^{\circ}$$

En particulier, comme $A \subset Vect A$, on a $(Vect A)^{\circ} \subset A^{\circ}$. Réciproquement, si $x \in A^{\circ}$, il est orthogonal à tout élément de A; donc orthogonal à toute combinaison linéaire finie d'éléments de A, par bilinéarité du produit scalaire. Donc $A^{\circ} = (Vect A)^{\circ}$.

Il s'ensuit que, pour toutes parties non vides A et B,

$$(A \cup B)^{\circ} = (\text{Vect}(A \cup B))^{\circ} = (\text{Vect}A + \text{Vect}B)^{\circ}$$

puisque $\operatorname{Vect} A + \operatorname{Vect} B = \operatorname{Vect} (A \cup B)$. Si $x \in A^{\circ} \cap B^{\circ}$, il est orthogonal à tout élément de A et à tout élément de B : il est donc orthogonal à tout élément de A \cup B. On a bien $A^{\circ} \cap B^{\circ} \subset (A \cup B)^{\circ}$. La réciproque est tout aussi évidente.

Enfin, on a (VectA∩VectB) inclus dans VectA et dans VectB donc

$$A^{\circ} = (\text{Vect A})^{\circ} \subset (\text{Vect A} \cap \text{Vect B})^{\circ}$$
 et $B^{\circ} = (\text{Vect B})^{\circ} \subset (\text{Vect A} \cap \text{Vect B})^{\circ}$

d'où
$$(A^{\circ} \cup B^{\circ}) \subset (\text{Vect } A \cap \text{Vect } B) \circ$$

Mais $A^{\circ} + B^{\circ}$ est le plus petit sous-espace de E qui contient $A^{\circ} \cup B^{\circ}$. En particulier, il est inclus dans (Vect $A \cap \text{Vect } B$) \circ .

3.2.2 L'algorithme de Schmidt

L'algorithme de Schmidt est un outil fondamental pour construire une famille orthonormée à partir d'une famille libre finie.

Théorème 3.2.5 (Théorème de Schmidt)

Soient $(E, \langle | \rangle)$ un espace préhilbertien réel, n un entier non nul et $(e_1, ..., e_n)$ une famille libre de E. Alors il existe une famille orthonormée $(v_1, ..., v_n)$ telle que

$$\forall k \in [[1; n]]$$
 $Vect(e_1, ..., e_k) = Vect(v_1, ..., v_k)$

Preuve : On démontre ceci par récurrence. On définit pour tout entier n non nul la proposition $\mathcal{P}(n)$: « si E est un espace préhilbertien réel et (e_1, \ldots, e_n) est une famille libre, il existe (v_1, \ldots, v_n) orthonormée telle que

$$\forall k \in [[1; n]] \quad \text{Vect}(e_1, ..., e_k) = \text{Vect}(v_1, ..., v_k)$$

- $\mathcal{P}(1)$ est vraie : Soit (e_1) une famille libre dans un espace préhilbertien réel. Alors e_1 n'est pas nul, et $||e_1|| \neq 0$. On pose $v_1 = \frac{e_1}{||e_1||}$ et on a gagné.
- $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$: Soit n un entier non nul tel que $\mathscr{P}(n)$ est vraie. On se donne un espace préhilbertien réel E et une famille libre (e_1,\ldots,e_{n+1}) dans E. Alors (e_1,\ldots,e_n) est libre : d'après $\mathscr{P}(n)$, on peut trouver (v_1,\ldots,v_n) orthonormée telle que

$$\forall k \in [[1; n]]$$
 $Vect(e_1, ..., e_k) = Vect(v_1, ..., v_k)$

Il reste donc seulement à trouver v_{n+1} . On se donne des réels $\lambda_1, \ldots, \lambda_n$ et on pose

$$u = e_{n+1} + \sum_{k=1}^{n} \lambda_k v_k$$

On cherche les bonnes valeurs pour $\lambda_1, ..., \lambda_n$, de manière à ce que u soit orthogonal à $v_1, ..., v_n$. Si $i \in [[1; n]]$, on a par bilinéarité du produit scalaire

$$\langle u \mid v_i \rangle = \langle u \mid e_{n+1} \rangle + \sum_{k=1}^n \lambda_k \underbrace{\langle v_k \mid v_i \rangle}_{=\delta_{i,i}} = \langle e_{n+1} \mid v_i \rangle + \lambda_i$$

On voit donc que $u \perp v_i$ si, et seulement si, $\lambda_i = -\langle e_{n+1} | v_i \rangle$. On pose donc

$$\forall i \in [[1; n]]$$
 $\lambda_i = -\langle e_{n+1} \mid v_i \rangle$

De cette manière, $(v_1, ..., v_n, u)$ est orthogonale. Elle est donc libre et en particulier $u \neq 0$. Il suffit donc de poser $v_{n+1} = \frac{u}{\|u\|}$ pour avoir $(v_1, ..., v_{n+1})$ orthonormée.

De plus, on sait déjà que

$$\forall k \in [1; n]$$
 $\text{Vect}(e_1, \dots, e_k) = \text{Vect}(v_1, \dots, v_k)$

En outre, par construction, $v_{n+1} \in \text{Vect}(v_1, ..., v_n, e_{n+1}) = \text{Vect}(e_1, ..., e_n, e_{n+1})$ donc

$$Vect(v_1,...,v_{n+1}) \subset Vect(e_1,...,e_{n+1})$$

Mais ces espaces sont de même dimension, égale à n+1, car les familles $(e_1,...,e_{n+1})$ et $(v_1,...,v_{n+1})$ sont libres. Donc ils sont égaux, ce qui démontre $\mathcal{P}(n+1)$.

• **Conclusion** : $\mathcal{P}(n)$ est vraie pour tout entier n non nul.

Exemple 3.2.6

La preuve du théorème de Schmidt a pour avantage de montrer précisément comment construire une base orthonormée à partir d'une famille libre.

Prenons par exemple comme espace $E = \mathbb{R}[X]$, avec le produit scalaire

$$\forall P, Q \in E$$
 $\langle P \mid Q \rangle = \int_{-1}^{1} P(x)Q(x) dx$

Observons déjà que c'est bien un produit scalaire; toutes les propriétés de la définition sont triviales, sauf peut-être le fait que $\langle \, | \, \rangle$ est définie. Si P est tel que $\langle \, P \, | \, P \rangle = 0$, alors P est la fonction nulle sur [-1;1]. Mais un polynôme qui a une infinité de racines est nul, donc P=0.

On considère la famille $(1,X,X^2)$, qui est libre dans E et on lui applique le procédé de Schmidt pour l'orthonormaliser. On a

$$||1||^2 = \int_{-1}^1 \mathrm{d}x = 2$$

et on pose

$$v_1 = \frac{1}{\|1\|} = \frac{\sqrt{2}}{2}$$

On a calcule alors

$$\langle v_1 \mid X \rangle = \frac{\sqrt{2}}{2} \int_{-1}^1 x \, \mathrm{d}x = 0$$

et on pose

$$u_2 = X - \langle v_1 | X \rangle v_1 = X$$

qui est orthogonal à v_1 . Il reste à le rendre normé donc calcule

$$||u_2||^2 = \int_{-1}^1 x^2 \, \mathrm{d}x = \frac{2}{3}$$

et on pose

$$v_2 = \frac{u_2}{\|u_2\|} = \frac{\sqrt{3}}{\sqrt{2}} X$$

À ce stade, on a une famille orthonormée (v_1, v_2) . Pour calculer le troisième vecteur, on commence par déterminer

$$\langle \nu_1 | X^2 \rangle = \frac{\sqrt{2}}{2} \int_{-1}^1 x^2 dx = \frac{\sqrt{2}}{3} \qquad \langle \nu_2 | X^2 \rangle = \frac{\sqrt{3}}{\sqrt{2}} \int_{-1}^1 x^3 dx = 0$$

On définit

$$u_3 = X^2 - \langle v_2 | X^2 \rangle v_2 - \langle v_1 | X^2 \rangle v_1 = X^2 - \frac{1}{3}$$

Par construction, (v_1, v_2, u_3) est orthogonale. Il reste à normer u_3 :

$$||u_3||^2 = \int_{-1}^{1} \left(x^2 - \frac{\sqrt{1}}{3}\right)^2 dx = \frac{8}{45}$$

En posant

$$v_3 = \frac{3\sqrt{5}}{2\sqrt{2}} \left(X^2 - \frac{1}{3} \right)$$

on a construit une base orthonormée (v_1, v_2, v_3) , à partir de (e_1, e_2, e_3) , qui conserve les sous-espaces intermédiaires. La famille

$$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{\sqrt{2}}X, \frac{3\sqrt{5}}{2\sqrt{2}}\left(X^2 - \frac{1}{3}\right)\right)$$

est une base orthonormée de $\mathbb{R}_2[X]$ pour le produit scalaire $\langle | \rangle$.

Corollaire 3.2.7

Soient $(E, \langle | \rangle)$ un espace préhilbertien réel et F un sous-espace de dimension finie, non nulle, de E. Alors F admet des bases orthonormées.

De plus, si n = dim F et $(e_1, ..., e_n)$ est une base orthonormée de F, on a

$$\forall x \in F$$
 $x = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$

Preuve : Le théorème de Schmidt assure l'existence de bases orthonormées pour F. On en construit une, notée (e_1, \ldots, e_n) . On se donne $x \in F$ et on considère

$$y = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$$

Comme les vecteurs (e_1, \dots, e_n) sont orthogonaux deux-à-deux, on voit que

$$\forall k \in [[1; n]] \quad \langle y \mid e_k \rangle = \langle x \mid e_k \rangle$$

ou encore

$$\forall k \in [[1; n]] \quad \langle y - x \mid e_k \rangle = 0$$

Alors par linéarité du produit scalaire par rapport à la deuxième variable, et parce que la famille $(e_1, ..., e_n)$ engendre F, on a

$$\forall z \in F \qquad \langle y - x \mid z \rangle = 0$$

En particulier, $y - x \in F$ puisque y et x sont dans F d'où $||y - x||^2 = 0$ et y = x.

3.2.3 Projection orthogonale sur un sous-espace

Il s'agit maintenant de généraliser la notion de projection orthogonale dont on a l'habitude dans le plan ou dans l'espace. Intuitivement, le projeté orthogonal d'un vecteur ||x|| sur un sousespace F doit être un élément de F qui minimise la distance entre x et les vecteurs de F.

Proposition 3.2.8

Soient $(E, \langle | \rangle)$ un espace préhilbertien réel et F un sous-espace de dimension finie. Si $x \in E$, il existe un unique élément $p_F x$ de F, tel que

$$||x - p_{\mathsf{F}}x|| = Inf\{||x - z|| \mid z \in \mathsf{F}\}$$

De plus, $x - p_F x$ est orthogonal à F et

$$||p_{\mathrm{F}}x|| \leq ||x||$$

avec égalité si, et seulement si, $x \in F$.

Enfin, si F est de dimension finie n non nulle et rapporté à une base orthonormée $(e_1, ..., e_n)$, on a

$$p_{\mathrm{F}}x = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$$

 $p_{\rm F}x$ est appelé la projection orthogonale de x sur F.

Preuve : Notons n la dimension de F. Le théorème est trivial si n = 0 donc on suppose n non nul. Comme F est de dimension finie, on peut y trouver une base orthonormée (e_1, \ldots, e_n) . Si x est donné dans E, on définit

$$p_{\mathrm{F}}x = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$$

Par définition, $p_F x$ est dans F et parce que (e_1, \dots, e_n) est orthonormée, on a

$$\forall k \in [[1; n]] \quad \langle p_F x \mid e_k \rangle = \langle x \mid e_k \rangle$$

On se donne maintenant un $z \in F$, quelconque. Toujours du fait que $(e_1, ..., e_n)$ est orthonormée, on sait que

$$z = \sum_{k=1}^{n} \langle z \mid e_k \rangle e_k$$

et

$$\langle p_{\mathrm{F}}x \mid z \rangle = \sum_{k=1}^{n} \langle x \mid e_k \rangle \langle z \mid e_k \rangle = \langle x \mid \sum_{k=1}^{n} \langle z \mid e_k \rangle e_k \rangle = \langle x \mid z \rangle$$

D'où

$$\forall z \in F$$
 $\langle x - p_F x \mid z \rangle = 0$

Ceci démontre que $x - p_F x$ est orthogonal à F. Par conséquent, d'après le théorème de Pythagore,

$$\forall z \in F \qquad \|x - z\|^2 = \|\underbrace{x - p_F x}_{\in F^\circ} + \underbrace{p_F x - z}_{\in F}\|^2 = \|x - p_F x\|^2 + \|p_F x - z\|^2 \geqslant \|x - p_F x\|^2 \qquad (\star)$$

et l'on a bien

$$||x - p_{F}x|| = Min\{||x - z|| \mid z \in F\}$$

Mais la relation (\star) montre aussi que si $z \in F$ est tel que $||x - z|| = ||x - p_F x||$, alors $||p_F x - z|| = 0$ donc $z = p_F x$. Par suite, $p_F x$ est bien l'unique vecteur de F qui réalise ce minimum.

Enfin, comme $x - p_F x$ est orthogonal à $p_F x$, on a

$$||p_{\rm F}x||^2 = ||x||^2 - ||x - p_{\rm F}x||^2 \le ||x||^2$$

ce qui fournit l'inégalité de Bessel. Et on voit qu'on a une égalité si, et seulement si, $||x - p_F x||^2 = 0$, c'est-à-dire $x = p_F x$, ou encore $x \in F$.

Exemple 3.2.9

Supposons qu'on cherche à calculer

$$m = \text{Inf}\left\{ \int_{-1}^{1} (e^{x} + a + bx + cx^{2})^{2} dx \mid a, b, c \in \mathbb{R} \right\}$$

Une manière consiste à étudier la fonction définie par

$$\forall a, b, c \in \mathbb{R}^3$$
 $f(a, b, c) = \int_{-1}^{1} (e^x + a + bx + cx^2)^2 dx$

en étudiant ses dérivées partielles et en cherchant où celles-ci s'annulent. Ce n'est pas très drôle.

On peut aussi donner une structure euclidienne à l'espace $E = \mathcal{C}([-1; 1])$ en posant

$$\forall f, g \in \mathbf{E}$$
 $\langle f \mid g \rangle = \int_{[-1;1]} fg$

Si on note

$$e_1: x \longmapsto 1$$
 $e_2: x \longmapsto x$ $e_3: x \longmapsto x^2$

et $F = Vect(e_1, e_2, e_3)$, alors on a simplement

$$m = \inf\{\|\exp - f\|^2 \mid f \in F\}$$

Le théorème de projection répond exactement à cette question puisque $m = \|\exp - p_F \exp\|^2$. Il suffit donc de trouver une base orthonormée (v_1, v_2, v_3) de F (déjà calculée dans l'exemple précédent), calculer

$$\langle \exp \mid \nu_1 \rangle = \frac{\sqrt{2}}{2} \Big(e - \frac{1}{e} \Big) \qquad \langle \exp \mid \nu_2 \rangle = \frac{\sqrt{6}}{e} \qquad \langle \exp \mid \nu_3 \rangle = \frac{\sqrt{5}}{\sqrt{2}} \Big(e - \frac{7}{e} \Big)$$

$$\|\exp\|^2 = \frac{1}{2} \left(e^2 - \frac{1}{e^2} \right) \qquad \|p_F \exp\|^2 = \langle \exp \mid \nu_1 \rangle^2 + \langle \exp \mid \nu_2 \rangle^2 + \langle \exp \mid \nu_3 \rangle^2 = 3 \left(e^2 - 12 + \frac{43}{e^2} \right)$$

$$m = \|\exp - p_F \exp\|^2 = \|\exp\|^2 - \|p_F \exp\|^2 = \frac{1}{2} \left(5e^2 + 259 - \frac{72}{e^2} \right)$$

Proposition 3.2.10

ďoù

Soient (E, $\langle | \rangle$) un espace préhilbertien réel et F un sous-espace de dimension finie. On note p_F l'application de projection orthogonale de E sur F. p_F est la projection sur F, parallèlement à F°. De plus,

$$\forall x, y \in E$$
 $\langle p_F x \mid y \rangle = \langle x \mid p_F y \rangle$

Preuve : Soit n la dimension de F. Si n = 0, le théorème est trivial donc on suppose n non nul. Si on note (e_1, \ldots, e_n) une base orthonormée de F, on a

$$\forall x \in E$$
 $p_F x = \sum_{k=1}^n \langle x \mid e_k \rangle e_k$

La linéarité du produit scalaire par rapport à la première variable assure la linéarité de $p_{\rm F}$.

Si $x \in F$, on a $||x - x|| = 0 = \inf\{||x - z|| \mid z \in F\}$ donc $p_F x = x$. Ceci montre à la fois que $F = \operatorname{Im} p_F$ et que

$$\forall x \in E$$
 $p_F(\underbrace{p_F x}_{\in F}) = p_F x$

donc p_F est une projection, d'image F. Enfin, si $x \in E$, on a

$$x \in \operatorname{Ker} p_{F} \iff \sum_{k=1}^{n} \langle x \mid e_{k} \rangle e_{k} = 0$$

$$\iff \forall k \in [[1; n]] \qquad \langle x \mid e_{k} = 0 \rangle$$

$$\iff x \in \{e_{1}, \dots, e_{n}\}^{\circ} = (\operatorname{Vect}(e_{1}, \dots, e_{n}))^{\circ} = F^{\circ}$$

ďoù

$$\operatorname{Ker} p_{\mathrm{F}} = \mathrm{F}^{\circ}$$

Enfin, donnons-nous x et y dans E. On a

$$p_{\mathrm{F}}x = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$$
 donc $\langle p_{\mathrm{F}}x \mid y \rangle = \sum_{k=1}^{n} \langle x \mid e_k \rangle \langle e_k \mid y \rangle$

et de même

$$\langle x \mid p_{\mathrm{F}} y \rangle = \sum_{k=1}^{n} \langle y \mid e_k \rangle \langle x \mid e_k \rangle$$

Comme le produit scalaire est symétrique, et la multiplication dans \mathbb{R} est commutative, il vient $\langle p_F x \mid y \rangle = \langle x \mid p_F y \rangle$.

Corollaire 3.2.11

Soient (E, \langle | \rangle) préhilbertien réel et F un sous-espace de E, de dimension finie. Alors

$$F^{\circ \circ} = F$$
 et $F^{\circ \circ \circ} = F^{\circ}$

Preuve : On sait déjà que $F \subset (F^{\circ})^{\circ}$. Réciproquement, soit $x \in F^{\circ \circ}$. On a

$$x = p_{\rm F}x + (x - p_{\rm F}x)$$

On sait que $x - p_F x \in F^{\circ}$ donc $x \perp (x - p_F x)$; et $p_F x \in F$ donc $p_F x \perp (x - p_F x)$. Par suite,

$$\langle x \mid x - p_{\mathrm{F}} x \rangle = 0 = \underbrace{\langle p_{\mathrm{F}} x \mid x - p_{\mathrm{F}} x \rangle}_{=0} + \langle x - p_{\mathrm{F}} x \mid x - p_{\mathrm{F}} x \rangle$$

et

$$||x - p_F x||^2 = 0$$
 d'où $x - p_F x = 0$

Ceci montre que $p_F x = x$ donc $x \in F$: on a bien $F^{\circ \circ} = F$. Et du coup, $F^{\circ \circ \circ} = F^{\circ}$.

3.3 Espaces euclidiens

3.3.1 Résumé

Un espace euclidien est, par définition, un espace préhilbertien réel $(E, \langle \, | \, \rangle)$ qui est de dimension finie. Comme tous les sous-espaces de E sont, eux-mêmes, de dimension finie, les résultats obtenus précédemment ont une formulation qui peut être simplifiée. La proposition suivante est une conséquence triviale de ce qui a été fait plus haut.

Proposition 3.3.1

Soit $(E, \langle | \rangle)$ un espace euclidien de dimension n non nulle.

- E admet des bases orthonormées.
- $Si(e_1,...,e_n)$ est une base orthonormée, alors

$$\forall x \in E$$
 $x = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$

• Si F est un sous-espace non nul de E, alors $F^{\circ \circ} = F$ et F° est un supplémentaire de F, appelé le supplémentaire orthogonal de F dans E. La projection orthogonale p_F sur F existe et il s'agit de la projection sur F parallèlement à F° . Enfin, si $(u_1, ..., u_k)$ est une base de F, on a

$$\forall x \in E \qquad p_F x = \sum_{i=1}^k \langle x \mid u_i \rangle u_i$$

3.3.2 Automorphismes orthogonaux

Définition 3.3.2

Soit $(E, \langle | \rangle)$ un espace euclidien. Soit $f: E \longrightarrow E$ une application. On dira que

• f préserve les distances si, et seulement si,

$$\forall x, y \in E$$
 $||f(x) - f(y)|| = ||x - y||$

• f préserve le produit scalaire si, et seulement si,

$$\forall x, y \in E$$
 $\langle f(x) \mid f(y) \rangle = \langle x \mid y \rangle$

• f préserve la norme si, et seulement si,

$$\forall x \in E \qquad ||f(x)|| = ||x||$$

Le très joli résultat qui suit dit que, essentiellement, ces trois propriétés sont équivalentes.

Lemme 3.3.3

Soit $(E, \langle | \rangle)$ un espace euclidien de dimension n non nulle. Soit f une application de E dans E. Les assertions suivantes sont équivalentes :

- 1. f préserve les distances et f(0) = 0;
- 2. f préserve le produit scalaire;
- 3. f est linéaire et il existe une base orthonormée $(e_1,...,e_n)$ de E telle que $(f(e_1),...,f(e_n))$ soit une base orthonormée;
- 4. f est linéaire et préserve la norme.

De plus, si f satisfait une de ces propriétés, c'est un automorphisme de E.

Ce théorème est particulièrement joli et puissant; en particulier parce que le seul fait de préserver les distances et le vecteur nul (assertion 1) ou le produit scalaire (assertion 2) suffit à assurer la linéarité (assertions 3 et 4).

Preuve : Supposons que f préserve la distance. Comme f(0) = 0, on a immédiatement que

$$\forall x \in E$$
 $||f(x)|| = ||f(x) - f(0)|| = ||x - 0|| = ||x||$

Par suite, si x et y sont dans E, on a

$$||x - y||^2 = ||f(x) - f(y)||^2 = ||f(x)||^2 + ||f(y)||^2 - 2\langle f(x) | f(y) \rangle$$

$$= ||x||^2 + ||y||^2 - 2\langle f(x) | f(y) \rangle$$

$$||x - y||^2 = ||x - y||^2 + 2\langle x | y \rangle - 2\langle f(x) | f(y) \rangle$$

ďoù

$$\forall x, y \in E$$
 $\langle f(x) \mid f(y) \rangle = \langle x \mid y \rangle$

La deuxième assertion est vraie.

Supposons maintenant que f préserve le produit scalaire. Soit (e_1, \ldots, e_n) une base orthonormée de E. On a

$$\forall i, j \in [[1; n]] \qquad \langle f(e_i) \mid f(e_j) \rangle = \langle e_i \mid e_j \rangle$$

Ainsi, $(f(e_1), ..., f(e_n))$ est une famille orthonormée de E. Elle est donc libre; mais comme E est de dimension n, c'est une base orthonormée de E.

Reste à montrer que f est linéaire. C'est assez simple : prenons x et y dans E et λ dans R. Alors

$$||f(\lambda x + y) - \lambda f(x) - f(y)||^2 = ||f(\lambda x + y)||^2 + ||f(x)||^2 + ||f(y)||^2 -2\lambda \langle f(\lambda x + y) | f(x) \rangle - 2\langle f(\lambda x + y) | f(y) \rangle - 2\langle f(x) | f(y) \rangle$$

Comme f préserve le produit scalaire, il vient

$$\begin{split} \|f(\lambda x + y) - \lambda f(x) - f(y)\|^2 &= \|\lambda x + y\|^2 + \|x\|^2 + \|y\|^2 - 2\lambda \langle \lambda x + y \mid x \rangle - 2\langle \lambda x + y \mid y \rangle - 2\langle x \mid y \rangle \\ &= \|(\lambda x + y) - \lambda x - y\|^2 = 0 \end{split}$$

Par suite, $f(\lambda x + y) - \lambda f(x) - f(y) = 0$: f est bien linéaire. La proposition 3 est vraie. En outre, elle transforme une base en une base, donc c'est un automorphisme de E.

Supposons que f est linéaire et qu'il existe une base orthonormée $(e_1, ..., e_n)$ de E telle que $(f(e_1), ..., f(e_n))$ soit orthonormée. Soit x un vecteur dans E. Comme $(e_1, ..., e_n)$ est orthonormée, on a

$$x = \sum_{k=1}^{n} \langle x \mid e_k \rangle e_k$$

donc

$$||x||^2 = \sum_{k=1}^n |\langle x \mid e_k \rangle|^2$$
 et $f(x) = \sum_{k=1}^n \langle x \mid e_k \rangle f(e_k)$

Mais $(f(e_1),...,f(e_n))$ est aussi une base orthonormée d'où

$$||f(x)||^2 = \sum_{k=1}^n |\langle x | e_k \rangle|^2 = ||x||^2$$

Ainsi, f préserve la norme et 4 est vraie.

Enfin, supposons que f est linéaire et préserve la norme. Immédiatement, ||f(0)|| = ||0|| donc f(0) = 0. Et comme f est linéaire,

$$\forall x, y \in E$$
 $||f(x) - f(y)|| = ||f(x - y)|| = ||x - y||$

La proposition 1 est vraie.

Définition 3.3.4 (Automorphismes orthogonaux)

Soit $(E, \langle | \rangle)$ un espace euclidien. Toute application de E dans E, qui vérifie une des propriétés équivalentes du **lemme 3.3**, est appelée *automorphisme orthogonal de* E.

L'ensemble des automorphismes orthogonaux de E est noté $\mathcal{O}(E)$.

Définition 3.3.5 (Matrices orthogonales)

Soient $n \in \mathbb{N}^*$ et $M \in M_n(\mathbb{R})$. On dit que M est une matrice orthogonale si, et seulement si, ${}^tMM = I_n$. L'ensemble des matrices $n \times n$ orthogonales est noté $O_n(\mathbb{R})$.

Proposition 3.3.6

Soit n un entier non nul. $O_n(\mathbb{R})$ est un sous-groupe de $GL_n(\mathbb{R})$. Toute matrice orthogonale a pour déterminant 1 ou -1.

 $Si M \in M_n(\mathbb{R})$, on note $C_1, ..., C_n$ ses colonnes et $L_1, ..., L_n$ ses lignes. Les assertions suivantes sont équivalentes :

- 1. $M \in O_n(\mathbb{R})$;
- 2. ${}^{t}\mathbf{M} \in \mathbf{O}_{n}(\mathbb{R})$;
- 3. $C_1, ..., C_n$ est une base orthonormée de \mathbb{R}^n pour le produit scalaire canonique;
- 4. ${}^{t}L_{1},...,{}^{t}L_{n}$ est une base orthonormée de \mathbb{R}^{n} pour le produit scalaire canonique.

Preuve : Si $M \in O_n(\mathbb{R})$, alors ${}^tMM = I_n$ donc M est inversible à gauche et son inverse à gauche est tM . Mais on sait qu'inversibilité à gauche équivaut à inversibilité à droite donc $M \in GL_n(\mathbb{R})$ et $M {}^tM = I_n$. Ceci démontre en même temps que les assertions 1 et 2 sont équivalentes, et que $O_n(\mathbb{R}) \subset GL_n(\mathbb{R})$. En outre, on a

$$\det(^t MM) = (\det^t M)(\det M) = (\det M)^2$$

donc si M est orthogonale, son déterminant vaut 1 ou -1.

Montrons que $O_n(\mathbb{R})$ est un sous-groupe de $GL_n(\mathbb{R})$. Soient M et N deux matrices orthogonales. Par définition,

$${}^{t}MM = I_{n}$$
 et ${}^{t}NN = I_{n}$

Alors

$$^{t}(MN)MN = (^{t}N^{t}M)MN = ^{t}N(^{t}MM)N = ^{t}NN = I_{n}$$

donc $O_n(\mathbb{R})$ est stable par produit. Enfin, si M est orthogonale, on a vu que $M^{-1} = {}^tM$ est aussi orthogonale. Ainsi, $O_n(\mathbb{R})$ est bien un sous-groupe de $GL_n(\mathbb{R})$.

On note $\langle \, | \, \rangle_c$ le produit scalaire canonique dans \mathbb{R}^n . On se donne $M \in O_n(\mathbb{R})$; ses colonnes sont netées (C_1, \ldots, C_n) :

$$\forall i \in [[1; n]]$$
 $C_i = \begin{bmatrix} m_{1,i} \\ \vdots \\ m_{n,i} \end{bmatrix}$

Si i et j sont dans [[1; n]], on remarque que

$$\langle C_i | C_j \rangle_c = \sum_{k=1}^n m_{k,i} m_{k,j} = \sum_{k=1}^n (^t M)_{j,k} M_{k,i} = (^t M M)_{j,i}$$

Compte-tenu de ce calcul, on voit facilement que

$$M \in O_n(\mathbb{R}) \iff {}^t MM = I_n$$

$$\iff \forall i, j \in [[1; n]] \quad ({}^t MM)_{j,i} = \delta_{i,j}$$

$$\iff \forall i, j \in [[1; n]] \quad \langle C_i \mid C_j \rangle_c = \delta_{i,j}$$

$$M \in O_n(\mathbb{R}) \iff (C_1, ..., C_n) \text{ est une base orthonormée de } \mathbb{R}^n$$

Ceci montre que 1 et 3 sont équivalentes. On procède de même pour 2 et 4.

Définition 3.3.7

Soit $n \in \mathbb{N}^*$. L'ensemble des matrices orthogonales $n \times n$, dont le déterminant vaut 1, est appelé groupe spécial orthogonal d'ordre n et on le note $\mathrm{SO}_n(\mathbb{R})$. C'est un sous-groupe de $\mathrm{O}_n(\mathbb{R})$ et ses éléments sont appelés des rotations.

Théorème 3.3.8

Soient $(E, \langle | \rangle)$ euclidien, $f \in \mathcal{L}(E)$ et \mathcal{B} une base orthonormée de E. Alors f est un automorphisme orthogonal S, et seulement S, sa matrice dans la base \mathcal{B} est othogonale.

Ce théorème peut être reformulé d'une manière plus abstraite, mais aussi plus claire. Si l'on note $n \neq 0$ la dimension de E et \mathcal{B} une base quelconque de E, on sait qu'on a un isomorphisme d'anneaux

$$\begin{aligned} \operatorname{Mat}_{\mathscr{B}} \colon \ \mathscr{L}(\mathsf{E}) &\longrightarrow \operatorname{M}_n(\mathbb{R}) \\ f &\longmapsto \operatorname{Mat}_{\mathscr{B}} f \end{aligned}$$

On sait déjà que $\operatorname{Mat}_{\mathscr{B}}$ réalise un isomorphisme de groupes entre $\mathscr{GL}(E)$ et $\operatorname{GL}_n(\mathbb{R})$. Le théorème précédent nous dit aussi que, si \mathscr{B} est orthonormée, alors $\operatorname{Mat}_{\mathscr{B}}$ est aussi un isomorphisme de groupes entre $\mathscr{O}(E)$ et $\operatorname{O}_n(\mathbb{R})$.

Preuve : Notons $\mathcal{B} = (e_1, ..., e_n)$ notre base orthonormée et M = Mat_{\mathscr{B}} f :

$$\mathbf{M} = \begin{bmatrix} m_{1,1} & \cdots & m_{1,n} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,n} \end{bmatrix}$$

Par définition, si $i \in [[1; n]]$, la i-ème colonne de M donne les coordonnées de $f(e_i)$ dans la base \mathcal{B} :

$$\forall i \in [[1; n]]$$
 $f(e_i) = \sum_{k=1}^{n} m_{k,i} e_k$

Comme la base \mathcal{B} est orthonormée, si $i, j \in [[1; n]]$, on a

$$\langle f(e_i) \mid f(e_j) \rangle = \sum_{k=1}^n m_{k,i} m_{k,j} = \langle C_i \mid C_j \rangle_c$$

On voit que $(f(e_1), ..., f(e_n))$ est orthonormée si, et seulement si, $(C_1, ..., C_n)$ est orthonormée dans \mathbb{R}^n , ce qui équivaut à dire (**proposition 3.6**) que M est une matrice orthogonale.

Proposition 3.3.9

Soient $(E, \langle | \rangle)$ un espace euclidien et \mathcal{B} une base orthonormée. Soit \mathcal{B}' une autre base de E. Alors \mathcal{B}' est orthonormée si, et seulement si, la matrice de passage $P_{\mathcal{B}}^{\mathcal{B}'}$ est orthogonale. Dans ce cas, $det_{\mathcal{B}}(\mathcal{B}')$ vaut 1 ou -1.

Preuve : Notons $\mathscr{B} = (e_1, ..., e_n)$ et $\mathscr{B}' = (e'_1, ..., e'_n)$. La matrice de passage $P_{\mathscr{B}}^{\mathscr{B}'}$ est aussi la matrice, par rapport à la base \mathscr{B} , de l'application linéaire f qui transforme chaque e_i en e'_i . En utilisant le **lemme 3.3** et le **théorème 3.7**, on a

$$(e'_1,\ldots,e'_n)$$
 orthonormée \iff $(f(e_1),\ldots,f(e_n))$ orthonormée \iff $f\in\mathcal{O}(\mathsf{E})$ \iff $\mathsf{P}_{\mathscr{B}}^{\mathscr{B}'}=\mathsf{Mat}_{\mathscr{B}}f\in\mathsf{O}_n(\mathbb{R})$

Si l'on suppose que \mathscr{B}' est orthonormée, alors $\det_{\mathscr{B}}\mathscr{B}'$ est le déterminant de la matrice de passage $P_{\mathscr{B}}^{\mathscr{B}'}$, qui vaut 1 ou -1 puisqu'il s'agit d'une matrice orthogonale.

On peut voir immédiatement un intérêt de travailler avec des bases orthonormées. En effet, lors d'un changement de base orthonormée, la matrice de passage P est orthogonale : son inverse est donc tP , ce qui rend son calcul absolument trivial.

Ainsi, supposons que f est un endomorphisme d'un espace euclidien, $\mathcal B$ et $\mathcal B'$ sont deux bases orthonormées. On note

$$M = Mat_{\mathscr{B}} f$$
 $M' = Mat_{\mathscr{B}'} f$ $P = P_{\mathscr{B}}^{\mathscr{B}'}$

On a tout simplement $M' = {}^{t}PMP$ et $M = PM'{}^{t}P$.

Définition 3.3.10 (Orientation d'une base)

Soient (E, $\langle | \rangle$) un espace euclidien et \mathcal{B} , \mathcal{B}' deux bases de E. On dit qu'elles *ont la même orientation* si, et seulement si, $\det_{\mathcal{B}} \mathcal{B}' = 1$.

Dans la mesure où $\det_{\mathscr{B}}\mathscr{B}'=(\det_{\mathscr{B}'}\mathscr{B})^{-1}$ (voir cours sur les déterminants), on voit que \mathscr{B} et \mathscr{B}' ont la même orientation si, et seulement si, \mathscr{B}' et \mathscr{B} ont la même orientation.

Et si l'on a trois bases orthonormées \mathcal{B} , \mathcal{B}' et \mathcal{B}'' , telles que \mathcal{B} et \mathcal{B}' ont la même orientation, et \mathcal{B}' et \mathcal{B}'' aussi, alors (cours sur les déterminants) :

$$\det_{\mathscr{B}}\mathscr{B}'' = (\det_{\mathscr{B}}\mathscr{B}')(\det_{\mathscr{B}'}\mathscr{B}'') = 1$$

On a donc montré que

Proposition 3.3.11

« Avoir la même orientation » est une relation d'équivalence sur l'ensemble des bases orthonormées d'un espace euclidien E.

Définition 3.3.12 (Orientation de l'espace)

Soit $(E, \langle | \rangle)$ un espace euclidien. On dit qu'on a orienté E si on a choisi une classe d'équivalence C pour la relation « avoir la même orientation ». Dans ce cas, les bases de la classe C sont dites

directes et celles qui ne sont pas dans C sont dites indirectes.

Exemple 3.3.13

Dans l'espace euclidien \mathbb{R}^3 , on choisit l'orientation donnée par la base canonique (e_1, e_2, e_3) . Considérons les vecteurs

$$v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} \qquad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

On a déjà $v_1 \perp v_2$ et ces deux vecteurs sont orthogonaux à e_2 . Donc on peut former les deux bases orthonormées (v_1, v_2, e_2) et $(v_1, v_2, -e_2)$. Il est certain qu'une des deux est directe, puisque

$$\det(v_1, v_2, -e_2) = -\det(v_1, v_2, e_2)$$

On calcule

$$\det(v_1, v_2, e_2) = \begin{vmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & -1 & 0\\ 0 & 0 & 1\\ 1 & 1 & 0 \end{vmatrix} = -1$$

Ainsi, pour notre choix d'orientation de l'espace, la base orthonormée (v_1, v_2, e_2) est indirecte, tandis que $(v_1, v_2, -e_2)$ est directe. Observons que d'après la propriété d'antisymétrie du déterminant, (v_1, e_2, v_2) est directe, par exemple.

3.3.3 Symétries orthogonales et réflexions

On a déjà vu dans le cours sur les espaces vectoriels que si $E = F \oplus G$ est une décomposition de E en deux sous-espaces supplémentaires, on peut définir la projection p_F sur F parallèlement à G, et la symétrie s_F par rapport à F, parallèlement à G.

Dans le cas où E est euclidien et F est un sous-espace vectoriel, on a une décomposition privilégiée $E = F \oplus F^\circ$, et donc une manière privilégiée de projeter sur F, ou de symétriser par rapport à F. On a d'ailleurs vu (**théorème 2.10**) que la projection orthogonale sur F est précisément la projection sur F parallèlement à F° .

On suppose dans ce paragraphe que $(E, \langle | \rangle)$ est euclidien de dimension $n \ge 2$.

Définition 3.3.14 (Symétrie orthogonale)

Soit F un sous-espace de E. On appelle symétrie orthogonale par rapport à F, notée s_F , la symétrie par rapport à F, parallèlement à F°.

Autrement dit, la symétrie orthogonale s_F , par rapport à F, est la symétrie associée à la somme directe orthogonale $E = F \oplus F^{\circ}$. Rappelons ce que cela signifie : si $x \in E$, il se décompose suivant cette somme directe

$$x = \underbrace{p_{\mathcal{F}}(x)}_{\in \mathcal{F}} + \underbrace{p_{\mathcal{F}^{\circ}}(x)}_{\in \mathcal{F}^{\circ}}$$

Par définition, $s_F(x)$ garde la composante de x suivant F, et change la composante suivant F° en son opposé :

$$s_{\rm F}(x) = p_{\rm F}(x) - p_{\rm F^{\circ}}(x) = 2p_{\rm F}(x) - \mathrm{id}(x)$$

Proposition 3.3.15

Toute symétrie orthogonale est un automorphisme orthogonal de E. Réciproquement, toute symétrie de E, qui est un automorphisme orthogonal de E, est une symétrie orthogonale.

Preuve : Soit F un sous-espace de E et s_F la symétrie orthogonale par rapport à F. Si $x \in E$, on a

$$x = p_{F}(x) + p_{F^{\circ}}(x)$$
 $s_{F}(x) = p_{F}(x) - p_{F^{\circ}}(x)$ avec $p_{F}(x) \perp p_{F^{\circ}}(x)$

donc $||s_F(x)||^2 = ||p_F(x)||^2 + ||p_{F^\circ}(x)||^2 = ||x||^2$

d'après le théorème de Pythagore : s_F préserve la norme. Comme elle est aussi linéaire, c'est un automorphisme orthogonal de E.

Réciproquement, soit s une symétrie de E, qui soit aussi un automorphisme orthogonal de E. Alors il existe des sous-espaces supplémentaires F et G, tels que s soit la symétrie par rapport à F, parallèlement à G. Montrons que F et G sont orthogonaux : soient $x \in F$ et $y \in G$. Par définition de s,

$$s(x) = x$$
 $s(y) = -y$

donc

$$x + y = s(x) - s(y) = s(x - y)$$

Mais s est un automorphisme orthogonal donc préserve la norme et

$$||x + y|| = ||s(x - y)|| = ||x - y||$$

Ainsi, $4\langle x | y \rangle = ||x + y||^2 - ||x - y||^2 = 0$

ce qui prouve bien que $x \perp y$. Par suite, s est une symétrie orthogonale.

Définition 3.3.16 (Réflexion)

Soit $f \in \mathcal{L}(E)$. On dit que f est une *réflexion* si, et seulement si, f est la symétrie orthogonale par rapport à un hyperplan.

Proposition 3.3.17

Toute réflexion de E *est un automorphisme orthogonal de* E, *de déterminant* −1.

Preuve : Soit r une réflexion de E. Par définition, r est la symétrie orthogonale par rapport à un hyperplan H de E. D'après la **proposition 3.15**, c'est un automorphisme orthogonal de E.

Notons $n \ge 2$ la dimension de E. On sait que r est la symétrie orthogonale par rapport à un hyperplan H. Donc H est de dimension n-1 et H° est une droite, de dimension 1. On prend une base (e_1, \ldots, e_{n-1}) de H et une base (e_n) de H°. Alors $\mathscr{B} = (e_1, \ldots, e_{n-1}, e_n)$ est une base de E. De plus, par définition de r comme symétrie par rapport à H, parallèlement à H°, on sait que

$$\forall x \in H$$
 $r(x) = x$ $\forall x \in H^{\circ}$ $r(x) = -x$

Par suite,

$$\operatorname{Mat}_{\mathscr{B}} r = \begin{bmatrix} I_{n-1} & 0 \\ 0 & -1 \end{bmatrix}$$

et le déterminant de r vaut bien -1.

Théorème 3.3.18 (Décomposition en produit de réflexions)

Soit $(E, \langle | \rangle)$ un espace euclidien de dimension $n \ge 2$. Tout automorphisme orthogonal de E peut être décomposé en produit d'au plus n réflexions.

Preuve : On démontre ceci par récurrence sur la dimension de E. Le cas des espaces de dimension 2 sera traité dans le prochain paragraphe et on l'admet pour l'instant.

Soit $n \ge 2$ un entier. On suppose que tout automorphisme orthogonal d'un espace euclidien de dimension n peut être décomposé en produit d'au plus n réflexions. Soient E un espace euclidien de dimension n+1 et $f \in \mathcal{O}(E)$. On se donne une base orthonormée $\mathcal{B} = (e_1, \ldots, e_n, e_{n+1})$ de E et on distingue deux cas :

• Si $f(e_{n+1}) = e_{n+1}$: Comme f est orthogonal et que e_1, \ldots, e_n sont orthogonaux à e_{n+1} , il vient que $f(e_1), \ldots, f(e_{n+1})$ sont aussi orthogonaux à e_{n+1} . Donc

$$f(\operatorname{Vect}(e_1,...,e_n)) \subset \{e_{n+1}\}^\circ = \operatorname{Vect}(e_1,...,e_n)$$

Ainsi, f induit un endomorphisme de $F = Vect(e_1, ..., e_n)$; plus précisément, si l'on définit

$$\forall x \in F$$
 $\tilde{f}(x) = f(x)$

alors \tilde{f} est un endomorphisme de F. En outre, $\tilde{f}\in \mathscr{O}(\mathrm{F})$ puisque

$$\forall x, y \in F$$
 $\langle \tilde{f}(x) \mid \tilde{f}(y) \rangle = \langle f(x) \mid f(y) \rangle = \langle x \mid y \rangle$

D'après l'hypothèse de récurrence, il existe des réflexions $\tilde{r}_1, ..., \tilde{r}_k$ de F, avec $k \leq n$, telles que $\tilde{f} = \tilde{r}_1 \cdots \tilde{r}_k$.

Pour chaque $j \in [[1;k]]$, on note r_j l'endomorphisme de E qui vaut $\tilde{r_j}$ sur F et qui envoie e_{n+1} sur e_{n+1} . Alors r_j est une symétrie puisque $r_j^2 = \operatorname{id} \operatorname{sur} F$ et sur Vect e_{n+1} . De plus, si $x \in E$, il se décompose de manière unique en $x = x_F + y$ avec $y = \langle x \mid e_n \rangle e_n$ orthogonal à F; donc

$$r_j(x) = r_j(x_F) + r_j(y) = \underbrace{\tilde{r_j}(x_F)}_{\in F} + y$$

et
$$||r_i(x)||^2 = ||\tilde{r_i}(x_F)||^2 + ||y||^2 = ||x_F||^2 + ||y||^2 = ||x||^2$$

ce qui démontre que $r_j \in \mathcal{O}(E)$. D'après la proposition **3.15**, r_j est une symétrie orthogonale. Enfin, il est facile de voir que r_j est une réflexion puisque

$$\operatorname{Ker}(\tilde{r_i} - \operatorname{id}) \subset \operatorname{Ker}(r_i - \operatorname{id})$$
 et $e_{n+1} \in \operatorname{Ker}(r_i - \operatorname{id})$

donc $\operatorname{Ker}(\tilde{r_j} - \operatorname{id}) \oplus \operatorname{Vect}(e_{n+1}) \subset \operatorname{Ker}(r_j - \operatorname{id})$

Mais
$$\dim \operatorname{Ker}(\tilde{r_j} - \operatorname{id}) = n - 1$$
 $\operatorname{donc} \operatorname{dim} \operatorname{Ker}(r_j - \operatorname{id}) \geqslant n$

et cette dimension n'est pas n+1, puisque r_j est une réflexion sur F, donc a au moins un vecteur qui n'est pas invariant. Ce qui démontre bien que r_j est une réflexion.

Mais on a $f = r_1 \cdots r_k$ puisque cette relation est vérifiée sur F et sur Vect (e_{n+1}) . Donc f peut être décomposé en produit d'au plus n réflexions.

• Si $f(e_{n+1}) \neq e_{n+1}$: Dans ce cas, on remarque que

$$e_{n+1} = \frac{1}{2}(e_{n+1} - f(e_{n+1})) + \frac{1}{2}(e_{n+1} + f(e_{n+1}))$$

et
$$\langle e_{n+1} - f(e_{n+1}) | e_{n+1} + f(e_{n+1}) \rangle = ||e_{n+1}||^2 - ||f(e_{n+1})||^2 = 0$$

parce que $f \in \mathcal{O}(E)$ et préserve la norme. Si on note g la réflexion autour de l'hyperplan $(e_{n+1} - f(e_{n+1}))^\circ$, on a par définition

$$g(e_{n+1}-f(e_{n+1}))=-(e_{n+1}-f(e_{n+1}))=f(e_{n+1})-e_{n+1}$$
 et
$$g(e_{n+1}+f(e_{n+1}))=e_{n+1}+f(e_{n+1}) \quad \text{car} \quad (e_{n+1}+f(e_{n+1}))\perp (e_{n+1}-f(e_{n+1}))$$
 Ainsi,
$$g(e_{n+1})=f(e_{n+1})$$
 et
$$gf(e_{n+1})=g^2(e_{n+1})=e_{n+1}$$

car g est une symétrie. Donc $gf \in \mathcal{O}(E)$ et il fixe e_{n+1} . D'après le premier cas étudié, gf se décompose en produit d'au plus n réflexions. Mais f = g(gf) se décompose alors en produit d'au plus n+1 réflexions. Ce qui achève la récurrence.

La preuve de ce théorème explique comment faire, en pratique, pour décomposer un automorphisme orthogonal f en produit de réflexions. On commence par se donner une base orthonormée (e_1,\ldots,e_n) de l'espace. On note g_n la réflexion autour de l'hyperplan orthogonal à $e_n-f(e_n)$. Alors $g_n f$ est un automorphisme orthogonal qui fixe e_n et induit un automorphisme orthogonal de $\text{Vect}(e_1,\ldots,e_{n-1})$. On recommence alors la même procédure : on note g_{n-1} la réflexion autour de l'hyperplan $e_{n-1}-g_n f(e_{n-1})$. Alors $g_{n-1}g_n f$ est un automorphisme orthogonal qui fixe e_{n-1} et e_n . Et ainsi de suite.

Exemple 3.3.19

On considère la matrice

$$M = \frac{1}{3} \begin{bmatrix} -2 & 2 & 1\\ 2 & 1 & 2\\ 1 & 2 & -2 \end{bmatrix} \in O_3(\mathbb{R})$$

M représente un automorphisme orthogonal de \mathbb{R}^3 dans la base canonique; on identifie l'automorphisme et sa matrice. Posons

$$u_3 = e_3 - Me_3 = \frac{1}{3} \begin{bmatrix} -1\\ -2\\ 5 \end{bmatrix}$$

La projection orthogonale P_3 sur Vect u_3 est donnée par

$$\forall x \in \mathbb{R}^3 \qquad P_3(x) = \left\langle x \mid \frac{u_3}{\|u_3\|} \right\rangle \frac{u_3}{\|u_3\|} = \frac{\langle x \mid u_3 \rangle}{\|u_3\|^2} u_3$$

et la réflexion autour de $(u_3)^\circ$ est donnée par

$$\forall x \in \mathbb{R}^3 \qquad S_3 = I_3 - 2P_3$$

$$\text{Après calculs,} \qquad \quad P_3 = \frac{1}{30} \begin{bmatrix} 1 & 2 & -5 \\ 2 & 4 & -10 \\ -5 & -10 & 25 \end{bmatrix} \qquad S_3 = I_3 - 2P_3 = \frac{1}{15} \begin{bmatrix} 14 & -2 & 5 \\ -2 & 11 & 10 \\ 5 & 10 & -10 \end{bmatrix}$$

Également,
$$S_3M = \frac{1}{5} \begin{bmatrix} -4 & 4 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

On voit que, comme prévu, S_3M induit un automorphisme orthogonal de $Vect(e_1,e_2)$. On recommence, en travaillant cette fois avec e_2 . Posons

$$u_2 = e_2 - S_3 M e_2 = \frac{1}{5} \begin{bmatrix} -4\\2\\0 \end{bmatrix}$$

La projection orthogonale P_2 sur Vect u_2 et la réflexion S_2 autour de $(u_2)^{\perp}$ sont données par

$$\forall x \in \mathbb{R}^3 \qquad P_2(x) = \frac{\langle x \mid u_2 \rangle}{\|u_2\|^2} u_2 \qquad S_2 = I_3 - 2P_2$$

Tous calculs faits,

$$P_2 = \frac{1}{5} \begin{bmatrix} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad S_2 = I_3 - 2P_2 = \frac{1}{5} \begin{bmatrix} -3 & 4 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

On remarque que $S_2 = S_3M$, donc S_3M était déjà une réflexion. Du coup, une décomposition de M en produit de réflexions est

$$M = S_3 S_2 = \frac{1}{15} \begin{bmatrix} 14 & -2 & 5 \\ -2 & 11 & 10 \\ 5 & 10 & -10 \end{bmatrix} \times \frac{1}{5} \begin{bmatrix} -3 & 4 & 0 \\ 4 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Cette procédure nous a même permis d'identifier géométriquement ces transformations : appliquer M, c'est la même chose que

- faire une réflexion autour du plan $(u_2)^\circ$, d'équation -2x + y = 0;
- suivie d'une réflexion autour du plan $(u_3)^\circ$, d'équation x + 2y 5z = 0.

3.4 Automorphismes orthogonaux en dimension 2

L'étude du groupe orthogonal en dimension 2 est très simple. Étant donné un réel θ , on note

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad S(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

On peut remarquer que ces matrices sont orthogonales, de déterminants respectifs 1 et -1. Par définition, $R(\theta)$ est une rotation de \mathbb{R}^2 . Un simple dessin montre qu'il s'agit effectivement de la rotation d'angle θ .

Identifions la nature géométrique de $S(\theta)$. À tout hasard, on se demande s'il ne s'agit pas, peutêtre, d'une réflexion. Auquel cas, il suffit de trouver $Ker(S(\theta) - I_2)$ et $Ker(S(\theta) + I_2)$. Un calcul facile prouve que

$$\operatorname{Ker}\left(S(\theta)-I_{2}\right)=\operatorname{Vect}\left(\left[\begin{matrix}\cos\frac{\theta}{2}\\\sin\frac{\theta}{2}\end{matrix}\right]\right) \qquad \operatorname{Ker}\left(S(\theta)+I_{2}\right)=\operatorname{Vect}\left(\left[\begin{matrix}-\sin\frac{\theta}{2}\\\cos\frac{\theta}{2}\end{matrix}\right]\right)$$

Géométriquement, $S(\theta)$ est donc la symétrie orthogonale autour de la droite qui fait un angle $\frac{\theta}{2}$ avec l'axe des abscisses.

On remarque aussi, par le calcul, que conformément à l'intuition,

$$\forall \theta, \phi \in \mathbb{R}$$
 $R(\theta) R(\phi) = R(\theta + \phi)$
 $\forall \theta \in \mathbb{R}$ $R(\theta)^{-1} = {}^tR(\theta) = R(-\theta)$
 $\forall \theta \in \mathbb{R}$ $R(\theta) = I_2 \iff \theta \in 2\pi\mathbb{Z}$

et

De manière plus abstraite, mais aussi plus jolie, on vient de montrer que $R: \theta \longrightarrow R(\theta)$ est un morphisme de groupes de $(\mathbb{R}, +)$ dans $(SO_2(\mathbb{R}), \cdot)$, de noyau $2\pi\mathbb{Z}$.

Montrons qu'il est surjectif. Donnons-nous

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SO}_2(\mathbb{R})$$

Ceci signifie que les colonnes de M forment une base orthonormée de \mathbb{R}^2 pour le produit scalaire canonique, et que det M=1. Ce qui fournit les relations :

$$\begin{cases} a^{2} + c^{2} = 1 \\ b^{2} + d^{2} = 1 \\ ab + cd = 0 \\ ad - bc = 1 \end{cases}$$

À l'aide des deux premières relations et de l'étude des fonctions sinus et cosinus, il existe des réels θ et ϕ dans $[0; 2\pi[$, tels que

$$a = \cos \theta$$
 $c = \sin \theta$ $b = \sin \varphi$ $d = -\cos \varphi$

Ensuite,
$$1 = ad - bc = \cos\theta \cos\phi + \sin\theta \sin\phi = \cos(\theta - \phi)$$

donc θ et ϕ sont égaux modulo 2π . Mais comme ils sont dans $[0; 2\pi[$, ils sont égaux. Ainsi, $M = R(\theta)$ et on a montré que

Théorème 3.4.1 (Paramétrisation de $SO_2(\mathbb{R})$)

L'application R est un morphisme surjectif de $(\mathbb{R}, +)$ sur $SO_2(\mathbb{R})$, de noyau $2\pi\mathbb{Z}$. En particulier, $SO_2(\mathbb{R})$ est commutatif et

$$SO_2(\mathbb{R}) = \{R(\theta) \mid \theta \in \mathbb{R}\}\$$

Le même raisonnement montre que tout automorphisme orthogonal de déterminant -1 est une réflexion de la forme $S(\theta)$. Comme toute matrice orthogonale est de déterminant 1 ou -1,

$$O_2(\mathbb{R}) = \underbrace{\{R(\theta) \mid \theta \in \mathbb{R}\}}_{=SO_2(\mathbb{R})} \cup \{S(\theta) \mid \theta \in \mathbb{R}\}$$

Intéressons-nous maintenant à la structure multiplicative de ces réflexions. $S(\theta)$. Qu'obtient-on si on les compose? Le calcul montre que

$$\forall \theta, \phi \in \mathbb{R}$$
 $S(\theta) S(\phi) = R(\theta - \phi)$

Par conséquent, toute rotation peut s'écrire comme produit de deux réflexions : en effet, si $\theta \in \mathbb{R}$, on a $R(\theta) = S(\theta)S(0)$. Mais cette décomposition n'est pas unique, évidemment : il suffit de prendre deux réels quelconques φ et ψ , tels que $\varphi - \psi = \theta$ [2π], pour avoir $R(\theta) = S(\varphi)S(\psi)$.

Enfin, que donne le produit d'une rotation et d'une réflexion du type $S(\theta)$? Il suffit encore de faire le calcul

$$\forall \theta, \phi \in \mathbb{R}$$
 $S(\theta)R(\phi) = S(\theta)S(\theta)S(\theta - \phi) = S(\theta - \phi)$

et
$$\forall \theta, \phi \in \mathbb{R}$$
 $R(\phi)S(\theta) = S(\phi + \theta)S(\theta)S(\theta) = S(\phi + \theta)$

Il est intéressant de remarquer comme chacun de ces calculs est simple, et fournit immédiatement un résultat géométrique sans le moindre effort. Par exemple : si l'on fait une rotation d'angle ϕ , suivie d'une réflexion autour de la droite qui fait un angle $\theta/2$ avec l'horizontale, on obtient le même résultat que si l'on fait une réflexion autour de la droite qui fait un angle $\frac{\theta-\phi}{2}$ avec l'horizontale. Ce n'est pas évident à voir géométriquement ; mais c'est trivial par le calcul matriciel.

3.5 Automorphismes orthogonaux en dimension 3

Commençons par expliquer comment il est possible d'orienter un plan, connaissant un vecteur normal à celui-ci.

Proposition 3.5.1 (Orientation d'un plan par un vecteur normal)

Soit E un espace euclidien orienté de dimension 3. Soit $a \in E$ de norme 1. Il existe une unique orientation de $P = (a)^{\circ}$ telle que, pour toute base orthonormée directe (e_1, e_2) de P, la famille (e_1, e_2, a) est une base orthonormée directe de E.

Cette proposition peut faire peur, mais ce qu'elle dit est intuitivement très simple : l'orientation d'une droite de E détermine de manière « naturelle » une orientation de son plan orthogonal.

Supposons avoir choisi l'orientation habituelle de \mathbb{R}^3 , dans laquelle la base caonique est directe. On prend une base orthonormée (e_1, e_2) de $(a)^\circ$ comme sur le dessin, de manière à avoir (e_1, e_2, a) orthonormée directe. On souhaite choisir une orientation de $(a)^\circ$: naturellement, on décide de dire que (e_1, e_2) est directe.

Preuve : On sait que P a des bases orthonormées et on en prend une $(\varepsilon_1, \varepsilon_2)$. Alors $(\varepsilon_1, \varepsilon_2, a)$ est une base orthonormée de E. Si elle est directe, on pose

$$u_1 = \varepsilon_1$$
 $u_2 = \varepsilon_2$

et si elle est indirecte, on pose

$$u_1 = \varepsilon_2$$
 $u_2 = \varepsilon_1$

On a ainsi une base orthonormée directe (u_1, u_2, a) de E, telle que (u_1, u_2) est une base orthonormée de P.

On choisit alors comme orientation pour P celle donnée par (u_1, u_2) . Par définition, ceci veut dire que, si (e_1, e_2) est une base orthonormée de P, elle est directe si, et seulement si,

$$\det_{(u_1,u_2)}(e_1,e_2)=1$$

Maintenant, si (e_1, e_2) est une base orthonormée directe de P, la matrice de la famille (e_1, e_2) dans (u_1, u_2) est orthogonale, de déterminant 1. Donc il existe $\theta \in \mathbb{R}$ tel que la matrice de (e_1, e_2) dans la base (u_1, u_2) soit

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Par suite, la matrice de (e_1, e_2, a) dans la base directe (u_1, u_2, a) est

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Son déterminant vaut 1, donc (u_1, u_2, a) est directe. Ceci démontre bien l'existence d'une orientation de P qui a la propriété demandée.

Pour l'unicité, c'est simple : supposons avoir choisi l'autre orientation de P. Ceci signifie que (u_1, u_2) est indirecte dans P, donc (le déterminant est alterné) que (u_2, u_1) est directe dans P. Alors la base (u_2, u_1, a) est indirecte dans E, toujours d'après les propriétés du déterminant. Et cette orientation ne satisfait pas la propriété voulue.

Identifions maintenant les rotations d'un espace euclidien de dimension 3.

Proposition 3.5.2

Soient E un espace euclidien de dimension 3 et $f \in \mathcal{SO}(E)$. Il existe une base orthonormée directe $\mathcal{B} = (u, v, w)$ de E, et $\theta \in \mathbb{R}$, tels que

$$Mat_{\mathscr{B}}(f) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

On dit que f est la rotation d'angle θ autour du vecteur w.

Preuve : Si f est l'identité, la proposition est évidente puisque sa matrice est I_3 dans n'importe quelle base orthonormée ; il suffit alors de prendre $\theta = 0$.

Supposons alors que f n'est pas l'identité. Comme E est de dimension 3, f peut se décomposer comme produit d'une, deux ou trois réflexions. Mais f est dans $\mathscr{SO}(E)$ donc son déterminant vaut 1; par suite, f est le produit de deux réflexions distinctes r_1 et r_2 . Par définition, $\operatorname{Ker}(r_1-\operatorname{id})$ et $\operatorname{Ker}(r_2-\operatorname{id})$ sont de dimension 2. D'après la relation de Grassmann, leur intersection est de dimension 1 : il existe w, de norme 1, tel que $r_1(w) = r_2(w) = w$. Par suite,

$$f(w) = r_1 r_2(w) = w$$

On note $P = (w)^{\circ}$, qui est un plan. On l'oriente par son vecteur normal w, à l'aide de la **proposition 5.1**. Comme f préserve l'orthogonalité et que f(w) = w, P est stable par f: en effet,

$$\forall x \in P$$
 $\langle f(x) | w \rangle = \langle f(x) | f(w) \rangle = \langle x | w \rangle = 0$

Donc f induit un automorphisme orthogonal de P. Et f ne fixe aucun vecteur de P, puisque $\operatorname{Ker}(f-\operatorname{id})=\operatorname{Vect} w$. D'après l'étude des automorphismes orthogonaux en dimension 2, f est une rotation sur P. Alors si (u,v) est une base orthonormée directe de P, on trouve $\theta \in \mathbb{R}$ tels que la matrice de f dans la base (u,v) soit

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Par suite, (u, v, w) est une base orthonormée directe de E, dans laquelle la matrice de f a la forme voulue.

La preuve de ce théorème nous dit, à nouveau, comment faire pour identifier une rotation f. On commence par chercher $\operatorname{Ker}(f-\operatorname{id})$, qui est nécessairement de dimension 1 et on prend un vecteur w dedans, de norme 1.

Ensuite, on détermine le plan $P = (w)^{\circ}$ et on en choisit une base orthonormée (u, v) telle que (u, v, w) soit orthonormée directe. La matrice de f dans cette base aura alors la bonne forme.

Exemple 3.5.3

On reprend la matrice de l'exemple 3.19:

$$\mathbf{M} = \frac{1}{3} \begin{bmatrix} -2 & 2 & 1\\ 2 & 1 & 2\\ 1 & 2 & -2 \end{bmatrix}$$

Le calcul de son déterminant, ou bien sa décomposition comme produit de deux réflexions, prouvent qu'il s'agit d'une rotation. On recherche $Ker(M-I_3)$ et le calcul donne

$$Ker (M - I_3) = Vect \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

et on pose

$$w = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$

Pour trouver une base orthonormée de $(w)^{\circ}$, il y a plusieurs méthodes. On peut en chercher une base, et utiliser Schmidt pour l'orthonormer. Mais on peut aller plus vite, puisqu'on est dans \mathbb{R}^3 : il est clair que

$$u = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$

est orthogonal à w et de norme 1. On pose alors

$$v = w \wedge u = \frac{1}{\sqrt{30}} \begin{bmatrix} 5\\ -2\\ -1 \end{bmatrix}$$

D'après les propriétés du produit vectoriel, (u, v, w) est une base orthonormée directe de \mathbb{R}^3 . On peut alors trouver l'angle de la rotation M en décomposant Mu dans la base orthonormée (u, v) de $(w)^{\circ}$:

$$Mu = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} = -u$$

Sur cet exemple, la décomposition de Mu s'obtient immédiatement. Mais en général, c'est à peine plus difficile puisque M $u = \langle Mu \mid u \rangle u + \langle Mu \mid v \rangle v$.

Par suite, dans la base orthonormée directe (u, v, w), la matrice de M est

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ou encore

$$M = \frac{1}{30} \begin{bmatrix} 0 & 5 & \sqrt{5} \\ \sqrt{6} & -2 & 2\sqrt{5} \\ -2\sqrt{6} & -1 & \sqrt{5} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \sqrt{6} & -2\sqrt{6} \\ 5 & -2 & -1 \\ \sqrt{5} & 2\sqrt{5} & \sqrt{5} \end{bmatrix}$$

M est la rotation autour de w, d'angle π .