Dependable Distributed Systems Master of Science in Engineering in Computer Science

AA 2022/2023

LECTURES 23: CONSISTENCY CRITERIA FOR DISTRIBUTED SHARED MEMORIES

Motivation

Distributed Shared Memories (DSMs) are an alternative to message passing for allowing inter-process communication

DSM Advantages

- support developers with the shared variables programming paradigm
 - abstract the underlying system
- increasing transparency with respect to portability, load balancing and process migration

The semantic of a shared memory is expressed by a consistency criterion

Consistency criteria

A consistency criterion defines the result returned by an operation

 It can be seen as a contract between the programmer and the system implementing replication

Notation

A shared memory system is composed by a set of sequential processes p_1 , p_2 ,... p_n interacting with a finite set of shared objects

Each object can be accessed by invoking read and write operations

- w_i(x)v denote a write operation issued by pi on the object x and writing the value v
- \cdot $\mathbf{r_i}(\mathbf{x})\mathbf{v}$ denote a read operation issued by pj on the object x and returning the value v
- op_i(x)v denote a generic operation issued by pi on the object x and writing/returning the value v

Histories

Informally, an history represents the partial order of all the operations executed on the shared objects

The *Local history* \hat{h}_i is the sequence of operations issued by p_i

• if op1 and op2 are issued by p_i and op1 is issued first, than we say that op1 precedes op2 in p_i 's process order and we will denote it as op1 \rightarrow_i op2

OBSERVATION

• Given the set of operations h_i issued by p_i , the local history \widehat{h}_i is the total order (h_i, \longrightarrow_i)

Execution history

An execution history $\widehat{H}~$ of a shared memory system is a partial order (H, $\longrightarrow_{\rm H}$) such that

- $\bullet H = \bigcup_i h_i$
- ∘ op1 \rightarrow_{H} op2 if:
 - 1. op1 and op2 are in *process-order* relation (i.e., there exists a p_i such that op1 \rightarrow_i op2) OR
 - 2. op1 and op2 are in *read-from-order* relation (i.e., op1 = $w_i(x)v$ and op2= $r_i(x)v$) OR
 - 3. there exists op3 such that op1 \rightarrow_H op3 and op3 \rightarrow_H op2

If neither op1 \longrightarrow_H op2 nor op2 \longrightarrow_H op1 then op1 and op2 are said to be *concurrent*

Legality

A read operation r(x)v is legal if

- 1. there exists a write w(x)v preceding it in the history (i.e., $\exists w(x)v: w(x)x \rightarrow_H r(x)v$) AND
- 2. there not exists any other operation in between that write/read a different value u (i.e., $\not\equiv op(x)u: (u \neq v) \land w(x)v \rightarrow_H op(x)u \rightarrow_H r(x)v$)

A history is legal if all its read are legal

Sequential Consistency

A history $\widehat{H} = (H, \longrightarrow_H)$ is *sequentially consistent* if it admits a linear extension in which all the read are legal.

A linear extension $\hat{S} = (S, \longrightarrow_S)$ of a partial order $\hat{H} = (H, \longrightarrow_H)$ is a topological sort of this partial order (i.e., \hat{S} create a total order by maintaining the order of all ordered pairs in \hat{H})

The execution is not linearizable!

 $\hat{S} = w1(x)0, w2(x)1, w2(y)2, r1(y)2, r2(x)1, r1(x)0$

However, it is sequential consistent

 $\hat{S} = w2(x)1, w2(y)2, r2(x)1, w1(x)0, r1(y)2, r1(x)0$

Linearizability vs Sequential Consistency

RECALL

- Linearizability requires that the linear extension \hat{S} also respects the real time of invocation
- Sequential consistency removes the real time aspect and just focus on logical time

Linearizability ⇒ Sequential Consistency

Sequential Consistency

⇒ Linearizability

Causal Consistency

Let $\widehat{H} = (H, \longrightarrow_H)$ be an execution history and let \widehat{H}_i be the sub-history of \widehat{H} from which all the read operations not issued by p_i are removed.

A history $\widehat{H} = (H, \longrightarrow_H)$ is *causally consistent* if, for each process p_i , all the read operations of \widehat{H}_i are legal.

OBSERVATION

• in a causally consistent history, all processes see the same partial order of operations but each process may see a different linear extension.

The execution is not sequential consistent!

 $\hat{S} = w1(x)0, w2(y)0, w2(y)2, r2(x)0, w1(x)1, r2(x)1, r1(y)0, r1(y)2$

However, it is causal consistent

 $\hat{S}_1 = w1(x)0$, w1(x)1, w2(y)0, r1(y)0, w2(y)2, r1(y)2

 $\hat{S}_2 = w2(y)0$, r1(y)0, w1(x)0, r2(x)0, w1(x)1, r2(x)1

Sequential Consistency ⇒ Causal Consistency Causal Consistency ⇒ Sequential Consistency

References

Michel Raynal and André Schiper: "A suite of formal definitions for consistency criteria in distributed shared memories"

available at:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.6880&rep=rep1&type=pdf