Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

Roll No: 40 Name: Anish Ramakant Karlekar

Practical - 06

Title: - Introduction to R Graphics and Data Importing

Aim: - To understand R Graphics and how to import data.

Lab Objectives: -

Students will understand following R programming concepts:

- I. R Plotting
- II. R Line
- III. R Scatterplots
- IV. R Pie Charts
- V. Data Importing

Description: -

I. R Plotting

▶ Plot

- The plot() function is used to draw points (markers) in a diagram.
- The function takes parameters for specifying points in the diagram.
 - Parameter 1 specifies points on the x-axis. Parameter 2 specifies points on the y-axis.
- At its simplest, you can use the plot() function to plot two numbers against each other:
- Example Draw one point in the diagram, at position (1) and position (3):

```
plot(1, 3)
```

- o To draw more points, use vectors:
- Example Draw two points in the diagram, one at position (1, 3) and one in position (8,10):

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

plot(c(1, 8), c(3, 10))

- You can plot as many points as you like, just make sure you have the same number of points in both axis:
- Example

○ For better organization, when you have many values, it is better to use variables: ○ Example

- ▷ Sequences of Points
 - If you want to draw dots in a sequence, on both the x-axis and the y-axis, use the :
 operator:
 - o Example

plot(1:10)

II. R Line

Line Graphs

- A line chart is a graph that connects a series of points by drawing line segments between them.
- These points are ordered in one of their coordinate (usually the x-coordinate) value.
- o Line charts are usually used in identifying the trends in data.
- The plot() function in R is used to create the line graph. ○

Syntax - The basic syntax to create a line chart in R is -

plot(v,type,col,xlab,ylab)

- Following is the description of the parameters used
 - v is a vector containing the numeric values.

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

- type takes the value "p" to draw only the points, "I" to draw only the lines and "o" to draw both points and lines.
- xlab is the label for x axis.
- ylab is the label for y axis.
- main is the Title of the chart.
- col is used to give colors to both the points and lines.

▷ Line Graphs

- A line graph has a line that connects all the points in a diagram.
- To create a line, use the plot() function and add the type parameter with a value of "I":
- Example

```
plot(1:10, type="l")
```

Line Color

- The line color is black by default. To change the color, use the col parameter:
- Example

```
plot(1:10, type="l", col="blue")
```

▷ Line Width

○ To change the width of the line, use the lwd parameter (1 is default, while 0.5 means 50% smaller, and 2 means 100% larger): ○ Example

```
plot(1:10, type="l", lwd=2)
```

▷ Line Styles

- The line is solid by default. Use the lty parameter with a value from 0 to 6 to specify the line format.
- For example, Ity=3 will display a dotted line instead of a solid line:
- Example

```
plot(1:10, type="l", lwd=5, lty=3)
```

Available parameter values for Ity:

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

- 0 removes the line
- 1 displays a solid line
- 2 displays a dashed line
- 3 displays a dotted line
- 4 displays a "dot dashed" line
- 5 displays a "long dashed" line
- 6 displays a "two dashed" line

Multiple Lines

- More than one line can be drawn on the same chart by using the lines()function.
- After the first line is plotted, the lines() function can use an additional vector as input to draw the second line in the chart,
- To display more than one line in a graph, use the plot() function together with the lines() function:
- Example

```
line1 <- c(1,2,3,4,5,10) line2 <-
c(2,5,7,8,9,10) plot(line1, type =
"I", col = "blue") lines(line2,
type="I", col = "red")
```

III. R - Scatterplots

▷ R - Scatterplots

- Scatterplots show many points plotted in the Cartesian plane.
- o Each point represents the values of two variables.
- One variable is chosen in the horizontal axis and another in the vertical axis.
- The simple scatterplot is created using the plot() function.
 Syntax The basic syntax for creating scatterplot in R is − plot(x, y, main, xlab, ylab, xlim, ylim, axes)


```
x <- c(5,7,8,7,2,2,9,4,11,12,9,6)
y <- c(99,86,87,88,111,103,87,94,78,77,85,86)
plot(x, y, main="Observation of Cars", xlab="Car age", ylab="Car speed")
```

The observation in the example above should show the result of 12 cars passing by.

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

- The x-axis shows how old the car is.
- The y-axis shows the speed of the car when it passes.

Compare Plots

- To compare the plot with another plot, use the points() function:
- Example Draw two plots on the same figure:

```
# day one, the age and speed of 12 cars:
```

x1 <- c(5,7,8,7,2,2,9,4,11,12,9,6) y1 <-

c(99,86,87,88,111,103,87,94,78,77,85,86) #

day two, the age and speed of 15 cars:

x2 < -c(2,2,8,1,15,8,12,9,7,3,11,4,7,14,12)

y2 <- c(100,105,84,105,90,99,90,95,94,100,79,112,91,80,85)

plot(x1, y1, main="Observation of Cars", xlab="Car age", ylab="Car speed", col="red", cex=2) points(x2, y2, col="blue", cex=2)

IV. R - Pie Charts

▷ Pie Charts

- A pie chart is a circular graphical view of data. In R the pie chart is created using the pie() function which takes positive numbers as a vector input. The additional parameters are used to control labels, color, title etc.
- Syntax The basic syntax for creating a pie-chart using the R is pie(x, labels, radius, main, col, clockwise)
- Following is the description of the parameters used
 - x is a vector containing the numeric values used in the pie chart.
 - labels is used to give description to the slices.
 - radius indicates the radius of the circle of the pie chart.(value between -1 and +1).
 - main indicates the title of the chart.
 - col indicates the color palette.
 - clockwise is a logical value indicating if the slices are drawn clockwise or anti clockwise.

Example

```
# Create a vector of
pies x <- c(10,20,30,40)
# Display the pie chart
pie(x)</pre>
```

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

- As you can see the pie chart draws one pie for each value in the vector (in this case 10, 20, 30, 40).
- By default, the plotting of the first pie starts from the x-axis and move counterclockwise.
- Note: The size of each pie is determined by comparing the value with all the other values, by using this formula:
- The value divided by the sum of all values: x/sum(x)

▷ Labels and Header

 Use the label parameter to add a label to the pie chart, and use the main parameter to add a header: ○ Example

```
# Create a vector of pies x
<- c(10,20,30,40) #
Create a vector of labels
mylabel <- c("Apples", "Bananas", "Cherries", "Dates")
# Display the pie chart with labels
pie(x, label = mylabel, main = "Fruits")</pre>
```

▶ Colors

- You can add a color to each pie with the col parameter:
- Example

```
# Create a vector of colors
colors <- c("blue", "yellow", "green", "black")
# Display the pie chart with colors
pie(x, label = mylabel, main = "Fruits", col = colors)</pre>
```

Legend

- To add a list of explanation for each pie, use the legend() function:
- The legend can be positioned as either: bottomright, bottom, bottomleft, left, topleft, top, topright, right, center
- Example

```
# Create a vector of pies x
<- c(10,20,30,40) #
Create a vector of labels
mylabel <- c("Apples", "Bananas", "Cherries", "Dates")
# Create a vector of colors
colors <- c("blue", "yellow", "green", "black")
# Display the pie chart with colors
pie(x, label = mylabel, main = "Pie Chart", col = colors)</pre>
```

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

Display the explanation box legend("bottomright", mylabel, fill = colors)

V. Importing Data

- ▶ In R, we can read data from files stored outside the R environment.
- ▶ We can also write data into files which will be stored and accessed by the operating system.
- > R can read and write into various file formats like csv, excel, xml etc.
- > The file should be present in current working directory so that R can read it.
- ▶ Of course we can also set our own directory and read files from there.

Importing data from CSV files

> The csv file is a text file in which the values in the columns are separated by a comma.

▷ Reading a CSV File

 Following is a simple example of read.csv() function to read a CSV file available in your current working directory –

```
data <- read.csv("input.csv")
print(data)</pre>
```

▶ Get Information

Use the dim() function to find the dimensions of the data set, and the names()
 function to view the names of the variables:

```
dim(data)
names(data)
rownames(data)
```

• By default, the read.csv() function gives the output as a data frame.

Access the data frame by using the \$ sign, and the name of the variable.

data\$name

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

- Once we read data in a data frame, we can apply all the functions applicable to data frames
- Example Get the maximum salary

```
# Get the max salary from data frame.
sal <- max(data$salary)
print(sal)
```

Sort data

o To sort the values, use the sort() function:

```
sort(data$salary)
```

▶ Analyzing the Data

- Now that we have some information about the data set, we can start to analyze it with some statistical numbers.
- For example, we can use the summary() function to get a statistical summary of the data:
- Example

```
Data_Cars <- mtcars summary(Data Cars)
```

- The summary() function returns six statistical numbers for each variable:
 - Min
 - First quantile (percentile)
 - Median
 - Mean
 - Third quantile (percentile)
 - Max

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

Some Examples of accessing data

- Get the details of the person with max salary
- We can fetch rows meeting specific filter criteria similar to a SQL where clause.

```
# Create a data frame.
data <- read.csv("input.csv")
# Get the max salary from data frame.
sal <- max(data$salary)
# Get the person detail having max salary.
retval <- subset(data, salary == max(salary))
print(retval)</pre>
```

□ Get all the people working in IT department

```
# Create a data frame.
data <- read.csv("input.csv")
details <- subset( data, dept == "IT")
print(details)</pre>
```

▶ Get the persons in IT department whose salary is greater than 600

```
# Create a data frame.
data <- read.csv("input.csv")
info <- subset(data, salary > 600 & dept == "IT")
print(info)
```

▶ Get the people who joined on or after 2014

```
# Create a data frame.
data <- read.csv("input.csv")
info <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
print(info)
```


- R can create csv file form existing data frame.
- The write.csv() function is used to create the csv file. This file gets created in the working directory.

```
# Create a data frame.
data <- read.csv("input.csv") retval <- subset(data,
as.Date(start_date) > as.Date("2014-01-01")) # Write filtered data
```

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

into a new file. write.csv(retval,"output.csv") newdata <read.csv("output.csv") print(newdata)</pre>

Importing Data - Excel File

- ▶ Microsoft Excel is the most widely used spreadsheet program which stores data in the .xls or .xlsx format.
- ▶ R can read directly from these files using some excel specific packages.
- ▶ Few such packages are XLConnect, xlsx, gdata etc.
- ▶ We will be using xlsx package. R can also write into excel file using this package.
- ▶ Install xlsx Package
 - You can use the following command in the R console to install the "xlsx" package.
 - o It may ask to install some additional packages on which this package is dependent.
 - Follow the same command with required package name to install the additional packages.

install.packages("xlsx")

- ▷ Verify and Load the "xlsx" Package
 - Use the following command to verify and load the "xlsx" package.
 - # Verify the package is installed.
 - any(grepl("xlsx",installed.packages())) ○

Load the library into R workspace.

- library("xlsx")
- print(library("xlsx"))

▷ Input as xlsx File

• You should save it in the current working directory of the R workspace.

• The input.xlsx is read by using the read.xlsx() function as shown below. The result is stored as a data frame in the R environment.

```
# Read the first worksheet in the file input.xlsx.
data <- read.xlsx("input.xlsx", sheetIndex = 1)
print(data)</pre>
```

▶ Writing data into Excel File

- o In R, we can also write the data into our .xlsx file.
- R provides a write.xlsx() function to write data into the excel file. ○

There is the following syntax of write.xlsx() function:

write.xlsx(data frame,file name,col.names,row.names,sheetnames,append)

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

- The data_frame is our data, which we want to insert into our excel file.
- The file_names is the name of that file in which we want to insert our data.
- The col.names and row.names are the logical values that are specifying whether the column names/row names of the data frame are to be written to the file.
- The append is a logical value, which indicates our data should be appended or not into an existing file.

■ Example

Create a data frame.

data <- read.xlsx("input.xlsx", sheetIndex = 1) empdata <subset(data, as.Date(start_date) > as.Date("2014-01-01")) # Write
filtered data into a new file.
write.xlsx(empdata,"emp.xlsx",col.names=TRUE,
row.names=TRUE,sheetName="Sheet2",append = TRUE) newdata <read.xlsx("emp.xlsx",sheetIndex = 1) print(newdata)</pre>

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

Exercises

1. Import employee.csv file and perform following -

Display the content.

2. Find the dimensions of the data in the above imported dataset.

```
> dim(data)
[1] 10 6
> |
```

3. Get all the people with designation "clerk".

```
> Clerk <- subset( data, Designation == "Clerk")
> print(Clerk)
id Name Age Designation Salary isLocal
2 2 Ryan 27 Clerk 48000 NA
3 3 Gary 30 Clerk 54000 NA
5 5 Harsh 40 Clerk NA NA
7 7 James NA Clerk 52000 NA
>
```

4. Get the people whose salary is greater than 55,000 and write the output in new excel file.

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

```
> amount <- subset(data, Salary >= 55000)
> print(amount)
  id Name Age Designation Salary isLocal
  1 Michelle 44
                     Manager 72000 NA
4 4 Guru 38
6 6 Brad 35
                        Engineer 61000
                        Engineer 58000
         Tina 48 Senior manager 79000
         Mina 50
                         CEO 83000
10 10
         Tara 37 Engineer 67000
> write.csv(amount, "output.csv")
> newdata <- read.csv("output.csv")</pre>
> print(newdata)
  X id
          Name Age Designation Salary isLocal
1 1 1 Michelle 44 Manager 72000 NA
2 4 4 Guru 38 Engineer 61000 NA
3 6 6 Brad 35 Engineer 58000 NA
          Tina 48 Senior_manager 79000
Mina 50 CEO 83000
Tara 37 Engineer 67000
4 8 8
5 9 9
6 10 10
```

5. Summarize the above dataset

```
> summary(newdata)
                             Name
                 id
    X
                                             Age
Min. : 1.000 Min. : 1.000 Length:6
                                        Min. :35.00
Median: 7.000 Median: 7.000 Mode :character Median: 41.00
Mean : 6.333 Mean : 6.333
                                         Mean :42.00
3rd Qu.: 8.750 3rd Qu.: 8.750
                                         3rd Qu.:47.00
Max. :10.000 Max. :10.000
                                         Max. :50.00
Designation Salary isLocal Length:6 Min. :58000 Mode:logical
Class: character 1st Qu.:62500 NA's:6
Mode :character Median :69500
              Mean :70000
               3rd Qu.:77250
               Max. :83000
```

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

2. The age and speed of 12 cars observed on day 1 are age1 (5,7,8,7,2,2,9,4,11,12,9,6), speed1 (99,86,87,88,111,103,87,94,78,77,85,86) and on day 2 following values are observed age2(2,2,8,1,15,8,12,9,7,3,11,4,7,14,12), speed2(100,105,84,105,90,99,90,95,94,100,79,112,91,80,85). Write a R program to draw a scatterplot that compares observations of the two days.

CODE:

OUTPUT:

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

3. Write a R program to create a vector with numerical values in a sequence from 1 to 10 and draw a blue colored dotted line of width 2 for the above vector.

```
> v <- 1:10
> plot(v, type="1", col="blue", lty=3, lwd=2, xlab="Index", ylab="Value",
+ main="Blue Dotted Line from 1 to 10")
```


- 4. Write a R program to read the excel file "input.xlsx" and perform following
 - 1. Display the content.

2. Find the dimensions of the data in the above imported dataset.

```
> dim(data)
[1] 8 5
```

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

3. Get all the people working in IT department

4. Get the people who joined on or after 2014 and write the output in new excel file.

```
> joined_after_2014 <- subset(data, as.Date(start_date) >= as.Date("2014-01-01"))
> write.xlsx(joined_after_2014, "joined_after_2014.xlsx")
```

Joined_after_2014.xlsx

	Α	В	С	D	E	F
1		id	name	salary	start_date	dept
2	3	3	Michelle	611	11/15/2014	IT
3	4	4	Ryan	729	5/11/2014	HR
4	5	5	Gary	843.25	3/27/2015	Finance
5	8	8	Guru	722.5	6/17/2014	Finance

5. Summarize the above dataset

```
> summary(data)
id name salary start_date dept
Min. :1.00 Length:8 Min. :515.2 Min. :2012-01-01 Length:8
lst Qu.:2.75 Class :character lst Qu.:602.8 lst Qu.:2013-07-12 Class :character
Median :4.50 Mode :character Median :628.0 Median :2014-01-16 Mode :character
Mean :4.50 Mean :656.9 Mean :2013-12-13
3rd Qu.:6.25 3rd Qu.:724.1 3rd Qu.:2014-07-24
Max. :8.00 Max. :843.2 Max. :2015-03-27
```

Department of MCA

Course:-MCAL13 Advanced Database Management System

Lab

5. Create a pie chart for favourite movie categories (comedy, action, drama, romance, sci-fi). Consider appropriate percentages for creating pies. Add a list of explanation for each pie

```
> categories <- c("Comedy", "Action", "Drama", "Romance", "Sci-Fi")
> percentages <- c(20, 30, 25, 15, 10)  # Appropriate percentages
>
> pie(percentages, labels=categories, main="Favorite Movie Categories",
+ col=c("blue", "red", "green", "yellow", "purple"))
> legend("topright", categories, fill=c("blue", "red", "green", "yellow", "purple")
```

