A foadmap for the Jordan integrability Theorem

Theorem 1 (Jordan Integrability Theorem). Let \mathbb{I} be a generalized rectangle in \mathbb{R}^n and let f be a bounded function from \mathbb{I} to \mathbb{R} . Assume

(1)
$$D(f, \mathbb{I}) = \{ \mathbf{x} \in \mathbb{I} \mid f : \mathbb{I} \to \mathbb{R} \text{ is discontinuous at } \mathbf{x} \}$$

has Jordan content zero (JC 0).

Then, f is integrable on \mathbb{I} !

We list here some of the important notation and ideas in the proof for you to use while learning the proof.

We let
$$\epsilon > 0$$
 and $\mathbb{I} = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$

We let M > 0 such that for all $\mathbf{x} \in \mathbb{I}$, $-M \le f(\mathbf{x}) \le M$

Let $\widetilde{J}_1, \widetilde{J}_2, \dots, \widetilde{J}_p$ be generalized rectangles in $\mathbb I$ such that

(a)
$$D(f,\mathbb{I})\subset \widetilde{J}_1\cup \widetilde{J}_2\cup \cdots \cup \widetilde{J}_p$$
 and

(b)
$$\sum_{i=1}^{p} \operatorname{Vol}(\widetilde{J}_i) < \frac{\epsilon}{4M}$$

Let
$$F = \bigcup_{i=1}^p \widetilde{J}_i$$
. Then $D(f, \mathbb{I}) \subset F$.

For $j=1,\ldots,n$ let P_j be the partition of $[a_j,b_j]$ (the j^{th} edge of \mathbb{I}) that contains the j^{th} coordinates of all vertices of all the \widetilde{J}_i .

Let $\mathbb{P}=(P_1,P_2,\ldots,P_n)$ be the resulting partition of \mathbb{I} . By construction each rectangle J in \mathbb{P} either

- is contained in F or
- meets F at most on its boundary.

Let $J_1', J_2', \dots, J_\ell'$ be the rectangles in $\mathbb P$ that are contained in F.

Since the J'_k are contained in F,

(2)
$$\sum_{k=1}^{\ell} \operatorname{Vol}(J_k') < \frac{\epsilon}{4M}$$

Let J_1, J_2, \ldots, J_m be those rectangles in \mathbb{P} that meet F at most on a boundary. Therefore,

(3)
$$f$$
 is continuous on $int(J_k)$ and bounded for all $k = 1, ..., m$.

Let
$$f_1: \mathbb{I} \to \mathbb{R}$$
 be defined by $f_1(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \mathbf{x} \in \cup_{j=1}^m J_j \\ 0 & \mathbf{x} \in \mathrm{int}(F) \cup \mathrm{bd}(\mathbb{I}) \end{cases}$

By (3), f_1 is integrable on each J_i , i = 1, ..., m since $f_1 = f$ there.

 f_1 is integrable on each J'_k because $f_1 = 0$ in $int(J'_k)$ for each k. By the Additivity over Partitions Theorem, f_1 is integrable on \mathbb{I} .

¹©Todd Quinto and Tufts University

By Riemann's Condition, there is a partition \mathbb{P}_1 of \mathbb{I} such that $U(f_1,\mathbb{P}_1)-L(f_1,\mathbb{P}_1)<\frac{\epsilon}{2}$.

Let
$$\mathbb{P}^* = \mathbb{P} \overline{\bigcup} \mathbb{P}_1$$
. Then $U(f_1, \mathbb{P}^*) - L(f_1, \mathbb{P}^*) < \frac{\epsilon}{2}$.

Now, we divide the sum for $U(f, \mathbb{P}^*) - L(f, \mathbb{P}^*)$ into two sums

$$\begin{split} U(f,\mathbb{P}^*) - L(f,\mathbb{P}^*) &= \sum_{J \text{ in } \mathbb{P}^*, J \subset F} (M(f,J) - m(f,J)) \operatorname{Vol}(J) + \sum_{J \text{ in } \mathbb{P}^*, J \subset \cup J_k} (M(f,J) - m(f,J)) \operatorname{Vol}(J) \\ &\leq \sum_{J \text{ in } \mathbb{P}^*, J \subset F} (M - (-M)) \operatorname{Vol}(J) + \sum_{J \text{ in } \mathbb{P}^*, J \subset \cup J_k} (M(f_1,J) - m(f_1,J)) \operatorname{Vol}(J) \\ &\text{as } -M \leq f(\mathbf{x}) \leq M \text{ on } \mathbb{I} \qquad \text{as } f = f_1 \text{ here} \\ &< 2M \frac{\epsilon}{4M} + \sum_{J \text{ in } \mathbb{P}^*} (M(f_1,J) - m(f_1,J)) \operatorname{Vol}(J) \end{split}$$

the sum over J in \mathbb{P}^* and $J \subset \cup J_k$ is a part of the sum over all J in \mathbb{P}^* , and the terms are nonnegative

$$=rac{\epsilon}{2}+U(f_1,\mathbb{P}^*)-L(f_1,\mathbb{P}^*)<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$$

$$YEA!!!!!$$