Pseudorandom Sequences

Charles Celerier

March 28, 2012

1 Introduction

- 2 Boolean Functions
 - GF(2)
 - Boolean Functions
 - Discrete Fourier Transforms

Stream Ciphers

0100111001000011010101010101010 = NCUR

Stream Ciphers

 $\begin{array}{llll} & 0100111001000011010101010101010 & = & \mathsf{NCUR} \\ \oplus & 00000101000010010001100100000010 & & & \end{array}$

Stream Ciphers

01001110010000110101010101010 = NCUR ⊕ 0000010100001001000110010000010 = KJLP

Why use stream ciphers?

- fast
- easy to implement with hardware
- plaintext length is not always known
- near one-time-pad security

My research

- Boolean functions
- 2-adic integers
- pseudorandom sequences
- shift registers

\mathbb{F}_2 or "GF two"

XOR	AND
$0 \oplus 0 := 0$	$0 \cdot 0 := 0$
$0\oplus 1:=1$	$0 \cdot 1 := 0$
$1\oplus 0:=1$	$1 \cdot 0 := 0$
$1\oplus1:=0$	$1 \cdot 1 := 1$

Table: Binary Operations for \mathbb{F}_2

\mathbb{F}_2^n or "GF two to the n"

Example

Let $a,b\in\mathbb{F}_2^3$ such that a=(1,0,1) and b=(0,1,1) then

$$a + b = (1 \oplus 0, 0 \oplus 1, 1 \oplus 1) = (1, 1, 0)$$

 $a \cdot b = 1 \cdot 0 \oplus 0 \cdot 1 \oplus 1 \cdot 1 = 1$

Fact

 \mathbb{F}_2^n is a vector space.

Properties of $x \in \mathbb{F}_2^n$

Definition

Let $x, y \in \mathbb{F}_2^n$. Then $wt : \mathbb{F}_2^n \to \mathbb{N} \cup \{0\}$ is defined by

$$wt(x) := \sum_{i=0}^{n-1} x_i$$

and $d: \mathbb{F}_2^n \times \mathbb{F}_2^n o \mathbb{N} \cup \{0\}$ is defined by

$$d(x,y):=w(x+y).$$

Then wt(x) is the Hamming weight of x and d(x, y) is the Hamming distance between x and y.

Some examples

Example

Let $a,b,c\in\mathbb{F}_2^5$ such that

$$a = (0, 1, 1, 0, 1), b = (1, 1, 1, 0, 0), and c = (0, 0, 1, 1, 0).$$

Then,

$$wt(a) = 3$$
 $d(a, b) = 2$
 $wt(b) = 3$ $d(a, c) = 3$
 $wt(c) = 2$ $d(b, c) = 3$.

Boolean functions in \mathcal{BF}^n

Definition

Any function f defined such that

$$f: \mathbb{F}_2^n \to \mathbb{F}_2$$

is a *Boolean function*. The set of all Boolean functions on n variables will be denoted by \mathcal{BF}_n .

An example

Example

Let
$$f = x_0 + x_1$$
.

<i>x</i> ₀	<i>x</i> ₁	$f(x_0,x_1)$
0	0	0
1	0	1
0	1	1
1	1	0

Table: Truth Table of f

Discrete Fourier Transform

Definition

$$\hat{f}(x) := (-1)^{f(x)}$$

Lemma

$$\hat{f}(x) = \frac{1}{2^{n/2}} \sum_{\lambda \in \mathbb{F}_2^n} c(\lambda) \chi_{\lambda}(x) \tag{1}$$

where $c(\lambda)$, the Fourier coefficients of $\hat{f}(x)$ are given by

$$c(\lambda) = \frac{1}{2^{n/2}} \mathcal{F}\hat{f}(\lambda). \tag{2}$$

