Network performance, scalability & reliability The **09_kahn** way

Alkinoos Sarioglou, Elwin Stephan, Maša Nešić, Snow Man

Failure detection

- · Send heartbeats only if you're not sending regular traffic
- If you're not receiving any traffic → link is dead

Static path encoding

- Reduces packet processing time in intermediate switches
- Only the source switch does a table lookup and encodes the entire path statically in the packet header

Flowlet-based routing for TCP

Δt = avg(host_to_host_round_trip_time)

Fine-grained routing decisions without packet reordering at the destination

- · Alternative path per (link, destination) pair
- · Enables fast sub-optimal convergence within 100ms
- Once the controller updates forwarding details, optimal paths are used

Load balancing & traffic engineering

Max flow algorithm based on available bandwidth capacity

UDP

 $P\left\{p_1,p_2,\ldots,p_n\right\}$ Set of best paths

where $delay(p_n) \le 1.5 * delay(p_1)$

 $x_i = \frac{1}{delay(p_i)^3}$ probability_i = $\frac{x_i}{\sum_j x_i}$

Minimizing overall delay by load balancing across several shortest paths

T – current transfer rate

Prevent flow groups from taking monopoly over the link by **rate limiting**

Weighted fair queuing

- Prevents high-traffic flows from taking monopoly over links
- · Allows flow prioritization by defining weights

Buffer acceptance - Random Early Detection

- Control TCP sending rate preventively, before the queue is filled
- Prevents TCP flow synchronization