P-uniform*: A new meta-analytic method to correct for publication bias

Robbie C.M. van Aert & Marcel A.L.M. van Assen

October 12, 2019

Message

- Publication bias is omnipresent in science
- \blacktriangleright Publication bias \rightarrow overestimation of effect size in meta-analysis
- ► The publication bias method *p*-uniform overestimates effect size in case of heterogeneity in true effect size
- ▶ The improved and extended method *p*-uniform*:
 - 1. eliminates overestimation due to heterogeneity
 - 2. uses information of significant and nonsignificant effect sizes
 - 3. enables estimating and testing of the extent of heterogeneity

Overview

- 1. Publication bias
- 2. From *p*-uniform to *p*-uniform*
- 3. Illustration based on two examples
- 4. Software
- 5. Conclusion and discussion

Publication bias

Publication bias is "the selective publication of studies with a

significant outcome"

► Close to 90% of main hypotheses are significant in economics

 But this is not in line with median statistical power (18%; loannidis, et al. 2017)

Adapted from Fanelli (2010)

From *p*-uniform to *p*-uniform*: *p*-uniform

- Only considers significant effect sizes and discards others
- ► **Statistical principle:** Distribution of *p*-values at the true effect size is uniform
- Only significant effect sizes → p-values/probabilities conditional on significance are needed
- Important assumptions:
 - Homogeneous true effect size
 - ► All significant effect sizes have an equal probability of getting included in a meta-analysis

From p-uniform to p-uniform*: p-uniform

Example with three observed effect sizes ($\mu = 0.5$):

$$t(48)=3.133$$
, $p=.0029$; $t(48)=2.646$, $p=.011$; $t(48)=2.302$, $p=.025$

From *p*-uniform to *p*-uniform*: *p*-uniform*

- Drawbacks of p-uniform:
 - 1. overestimation due to heterogeneity
 - 2. uses only information of significant effect sizes \rightarrow suboptimal
 - 3. no estimating and testing of the extent of heterogeneity

From *p*-uniform to *p*-uniform*: *p*-uniform*

- Drawbacks of p-uniform:
 - 1. overestimation due to heterogeneity
 - 2. uses only information of significant effect sizes \rightarrow suboptimal
 - 3. no estimating and testing of the extent of heterogeneity
- P-uniform* considers the significant and nonsignificant effect sizes
- Now effect sizes not only conditional on significance but also on nonsignificance
- ► Important assumption:
 - Probability of including a significant and nonsignificant effect size in a meta-analysis is assumed to be constant (but may differ from each other)

- Example 1: Alfieri et al. (2011)
 - Meta-analysis studying whether discovery learning has greater learning benefits
 - 24 Hedges' g effect sizes
 - Sample sizes vary from 12 to 531
- ► Example 2: McCall and Carriger (1993)
 - Meta-analysis on the relationship between infants' habituation and recognition memory to a give stimulus and their later IQ
 - ▶ 12 Pearson correlation coefficients
 - ► Sample sizes vary from 11 to 96

- Example 1: Alfieri et al. (2011)
 - Meta-analysis studying whether discovery learning has greater learning benefits
 - ▶ 24 Hedges' *g* effect sizes
 - Sample sizes vary from 12 to 531

► Example 2: McCall and Carriger (1993)

- Meta-analysis on the relationship between infants' habituation and recognition memory to a give stimulus and their later IQ
- ▶ 12 Pearson correlation coefficients
- Sample sizes vary from 11 to 96

Included methods:

- p-uniform*
- random-effects meta-analysis
- selection model approach by Hedges (1992)
- PFT and PFFSF
- WAAP

- ► No clear indication of small-study effects
- **Egger's** test for small-study effects not significant (p = 0.799)

	ES	$\hat{ au}^2$	95% CI ES
RE (REML)	0.213	0.032	(0.091; 0.334)
<i>p</i> -uniform*	0.069	0.01	(-0.068; 0.21)
Sel. model	0.075	0.011	(-0.059; 0.209)
PET			
PEESE			
WAAP			

	ES	$\hat{ au}^2$	95% CI ES
RE (REML)	0.213	0.032	(0.091; 0.334)
<i>p</i> -uniform*	0.069	0.01	(-0.068; 0.21)
Sel. model	0.075	0.011	(-0.059; 0.209)
PET	0.147	-	(-0.111; 0.404)
PEESE	0.178	-	(0.014; 0.342)
WAAP	0.508	-	-

► Notes:

- ► WAAP is here based on one effect size
- $lackbox{ Null-hypothesis of no effect not rejected in PET-analysis \rightarrow interpret PET's estimate$
- Null-hypothesis of no effect rejected by RE and PEESE

- ▶ Small-study effects seem to be present
- ▶ Egger's test for small-study effects significant (p = 0.025)

	ES	$\hat{ au}^2$	95% CI ES
RE (REML)	0.39	0	(0.306; 0.469)
<i>p</i> -uniform*			
Sel. model			
PET			
PEESE			
WAAP			

ES	$\hat{ au}^2$	95% CI ES
0.39	0	(0.306; 0.469)
0.269	0	(0.097; 0.41)
0.263	0	(0.224; 0.301)
	0.39 0.269	0.39 0 0.269 0

	ES	$\hat{ au}^2$	95% CI ES
RE (REML)	0.39	0	(0.306; 0.469)
<i>p</i> -uniform*	0.269	0	(0.097; 0.41)
Sel. model	0.263	0	(0.224; 0.301)
PET	0.132	-	(0.009; 0.251)
PEESE	0.279	-	(0.203; 0.352)
WAAP	0.314	-	(0.125; 0.481)

Notes:

- ► WAAP is here based on three effect sizes
- \blacktriangleright Null-hypothesis of no effect rejected in PET-analysis \rightarrow interpret PEESE's estimate
- Null-hypothesis of no effect rejected by all methods

Software

► p-uniform*: R package puniform and web application https://rvanaert.shinyapps.io/p-uniformstar

Web application p-uniform*

Manual on how to use this application

Author: Robbie C.M. van Aert

Enter the characteristics of your meta-analysis below:

Select effect size measure

- One-sample mean
- Two-independent means
- One correlation

Alpha level in primary studies (default .05)

0.05

Select direction of effect in primary studies

- Right (positive)
- Left (negative)

Select estimation method for p-uniform

- ML
- @ P
- ⊚ LNP

Data entry

Select how you will enter data (see manual)

Via CSV file

Manually in table

E-t--d-t--d-CCVC

Enter data vi	a CSV file
Browse	rabelo.csv
	Upload complete
Analyze	

p-uniform* (k = 25; ksig = 23)

Estimating effect size p-uniform*:

estimate	ci.lb	ci.ub	L.0	pval
0.0749	-0.1876	0.3067	0.3395	0.5601

Estimating between-study variance p-uniform*:

estimate	tau2.lb	tau2.ub	L.het	pval
0	0	0.0224	0	1

Publication bias test p-uniform*:

L.pb	pval
21.2298	<.001

Random-effects meta-analysis (tau^2 estimator PM):

Estimating effect size random-effects meta-analysis:

estimate	se	ci.lb	ci.ub	zval	pval
0.5706	0.0523	0.468	0.6731	10.9038	<.001

Estimating between-study variance random-effects meta-analysis:

estimate	se	tau2.lb	tau2.ub	Q	pval
0	0.0198	0	0	4.5523	1

Software

- p-uniform*: R package puniform and web application https://rvanaert.shinyapps.io/p-uniformstar
- Hedges' (1992) selection model approach: R package weightr and web application https://vevealab.shinyapps.io/WeightFunctionModel
- ▶ PET, PEESE, and WAAP: Any software that enables fitting weighted least squares regression models

Conclusion and discussion

- ▶ *P*-uniform* is an improvement over *p*-uniform, because
 - 1. eliminates overestimation due to heterogeneity
 - 2. is a more efficient estimator than p-uniform's estimator
 - 3. enables estimating and testing of the extent of heterogeneity
- Signs of overestimation in two examples, but methods disagreed on the extent

Conclusion and discussion

- ▶ *P*-uniform* is an improvement over *p*-uniform, because
 - 1. eliminates overestimation due to heterogeneity
 - 2. is a more efficient estimator than p-uniform's estimator
 - 3. enables estimating and testing of the extent of heterogeneity
- Signs of overestimation in two examples, but methods disagreed on the extent
- Recommendations:
 - Report results of publication bias methods in any meta-analysis
 - Include publication bias methods that are suitable for the characteristics of your meta-analysis

Conclusion and discussion

- Future research:
 - Violations of the assumption of equal probabilities of significant and nonsignificant effect sizes for getting published
 - Consequences of p-hacking
 - Simulation study including all publication bias methods that are now seen as state-of-the-art

Thank you for your attention

www.robbievanaert.com

www.metaresearch.nl

Preprint of paper about *p*-uniform*: https://osf.io/preprints/bitss/zqjr9/