Genomik Çalışmalarda R Kullanımı

Çanakkale Onsekiz Mart Üniversitesi Fen-Edebiyat Fakültesi Moleküler Biyoloji ve Genetik Bölümü

Yapisal Analizler (Gen bolgeleri, gen siralari, genom haritalari ...)

Fonskiyonel Analizler (Regulasyon, transkriptom veri isleme ...)

Evrimsel analizler

. . .

- > FastA
- FastQ
 - **≻**SAM
 - **≻**BAM
- ≻VCF
- ≽GFF3
 - **>...**

- □ Kalite Kontrol
- ☐ Assembly (Genom toplama) (Referansa gore veya de novo)
- Anotasyon
- Varyant Tespiti
- ☐ Genom Yapilari
- ☐ Genom dizi kiyaslamalari
- □ Genom iliski analizleri
- □ Genom istatistikleri
- **.**..

BiocManager: Access the Bioconductor Project Package Repository

"Use the BiocManager package to install and manage packages from the Bioconductor project for the statistical analysis and comprehension of high-throughput genomic data."

BiocManager::install()

#Install or update packages from Bioconductor, CRAN, and GitHub.

BiocManager::repositories()

Rqc - Quality Control Tool for High-Throughput Sequencing Data

Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

de Souza W, Carvalho BS, Lopes-Cendes I (2018). Journal of Statistical Software, Code Snippets, 87(2), 1–14.

Rqc

```
library(Rqc)
folder <- "/Users/Hilal Ozkilinc/Desktop/HLL/FAStQ"
list.files(path = folder, pattern = ".fastq.gz")
rqc(path = folder, pattern = ".fastq.gz")
rqcReadQualityBoxPlot(rqcResultSet)
rqcReport(result[1:10])</pre>
```

Rqc 1.24.0 - Quality Control Report

File Information

This table describes input files. reads column can be total number of reads (sample=FALSE) or sample size.

```
kable(perFileInformation(rqcResultSet))
```

filename pair format group reads total.reads path

B5-A4 1.fastq.qz 1 FASTQ None 1e+06 19913623 /Users/Hilal Ozkilinc/Desktop/HLL/FAStQ

Per Read Mean Quality Distribution of Files

This plot describe an overview of per read mean quality distribution of all files

rqcReadQualityBoxPlot(rqcResultSet)

FastqCleaner

an interactive
Bioconductor
application for qualitycontrol, filtering and
trimming of FASTQ files

- > library("FastqCleaner")
- > launch_fqc()

Roser, L.G., Agüero, F. & Sánchez, D.O. 2019. *BMC Bioinformatics* **20**, 361 (2019).

ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H and Gentleman R (2009). *Bioinformatics*, **25**, pp. 2607-2608

Biostrings: Efficient manipulation of biological strings.

Pagès H, Aboyoun P, Gentleman R, DebRoy S (2020). R package version 2.58.0.

Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import

Morgan M, Pagès H, Obenchain V, Hayden N (2020). R package version 2.6.0,

seqinr: Biological Sequences Retrieval and Analysis

```
> scaf <- read.fasta("scaffolds.fasta")</pre>
> length(scaf)
[1] 668
> summary(sapply(scaf, length))
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    78.0 82.0 960.5 62945.2 95644.8 734326.0
> sum(sapply(scaf, length))
[1] 42047421
> N <- function(x, t) {</pre>
+ x <- sort(x, decreasing = TRUE)
+ cx <- cumsum(x)
+ 1 <- sum(x)
  return(as.numeric(x[max(which(cx <= t * 1))]))</pre>
> N(sapply(scaf, length), 0.5)
[1] 213066
```

```
library(seqinr)
    x <- "/Users/Hilal Ozkilinc/Desktop/HLL/hll.fas"</pre>
     read.alignment(x)
     read.alignment(file = x, format = "fasta", whole.header = TRUE)
 60
     library(GenomicAlignments)
 62
 63
 61
     (Top Level) 🛊
 55:1
                                                                   R Script
      Terminal ×
Console
              Jobs ×
     agcccaaaatggtttaaattcaaccataac--aaccatagcaatgtaaacaaattcaactcttattatactaggcctggtatt
tttacaagtgtaaataaatccaatataataggtagaagacacttttctgtaacatctccgcgtaggttaattagtgaagagtt
tgaatgatactcggggtcttagtggtatttatttaattttaaacaaagtgactcttgattattatataggatcagcttcaact
ggtagattccatgctagattttctaatcatttattcaattttcatgggagtaaagtagttaaaaatgcagtaaagaagatgg
tatatcttgttttgcatttataattttagagttgtttcctgagatagtaaacaaagaaaacaataaaaaattattagatttgg
aagacttttacttaaaatctttattaccaaactataatattaactgaagcgggttcaagctttggttataaacataacgaa
aaaagaattctaaagctatactggtttataatatggactatacagtatatggtgaatttcctagtataacagaggcatctaaa
tctttaggttgttctcaaaaaacaatttatagggctttacaaacaccaaaaaagatattaagaagacgttgaattgt-----
-----taaatatgtttaaata---ttgttgtaggt--ttgaatttaaattatagtcctacgagtataaatttttatgca
atttgtaa---aaaaaa-----ataaaaagtaaagtagaatagcccga-cggggatattgaagaaatgttta
aatttctttggcaatgttagtgaatacgatcaaataatttgtagttttgttttat---ttagataaagac-taaccttaataa
aatatagaa---ctaaaag-ttagagatcgtcggttatttatatgatcgcgacaggctgggtcactgacgggtgtctgaaatg
atacttaatgtacagtcgaagtatttagttatag-----aatatgactaatagaatatacgaattcaaagttattctagctt
tttataaatgtc---ttttaatttatattaagtata------tttgtatgttttaccttacggtcaaatgtcgc
tatgaggtattgacatgtcagtatctacattttgtattctgcctgtttctggggattaaaccagataaaaggtttatggctatg
tttattgggtttattgatggtgatggttattttgatattggtgagcaaaaacaatataataataactaaaaccttagttaa
tagtactattagaattcgtttagctagtaatgtcaatgttagagatttacccttgttagaatattttgtgggaagttctaggag
taggtaaaatatctaacatgtcagtcggaagagaacaagttagagtcatgttctctaaaaaaagacttagtaacggtaatactg
cctttgattaaactttataacctacagtttttaacttctcaacgtgtaaaacagtttgctcttgttaattatatattagaaaa
```

BSgenome: Software infrastructure for efficient representation of full genomes and their SNPs.

> Scerevisiae Yeast genome:

genome: sacCer1 # provider: UCSC

17 sequences:

chr1

chr9

chrM

85779

views:

[1] TRUE > dnaseq

seq: ACGTACGT

start

[1] 57933 57940

8-letter DNAString object

230208

439885

release date: Oct. 2003

[15] "chr15" "chr16" "chrM" > seqlengths(Scerevisiae)

chr2

813136

chr10

745446

> segnames(Scerevisiae)

organism: Saccharomyces cerevisiae (Yeast)

chr11 chr12 chr13 chr14 chr15 chr16 chrM

chr3

chr11

> matchPattern(dnaseq, Scerevisiae\$chr1)

end width

> dnaseq == reverseComplement(dnaseq)

Views on a 230208-letter DNAString subject

> dnaseg <- DNAString("ACGTACGT")</pre>

316613 1531914

666445 1078173

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8" "chr9" "chr10" "chr11" "chr12" "chr13" "chr14"

chr4

chr12

8 [ACGTACGT]

subject: CCACACCACACCCACACCCACACAC...TGTGGTGTGGGTGTGTGTGTGGG

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10

chr5

576869

chr13

924430

chr6

chr14

270148 1090944

784328 1091285

chr15

chr8

562639

948060

chr16

trim()

```
Pagès H (2020). R package version 1.58.0,
library(BSgenome)
available.genomes()
BiocManager::install("BSgenome.Scerevisiae.UCSC.sacCer1")
Scerevisiae
segnames(Scerevisiae)
seglengths(Scerevisiae)
Scerevisiae$chr1
letterFrequency(Scerevisiae\shr1, "GC", as.prob = TRUE)
dnaseg <- DNAString("ACGTACGT")</pre>
matchPattern(dnaseq, Scerevisiae$chr1)
dnaseq == reverseComplement(dnaseq)
dnasea
pairwiseAlignment()
```

pegas: Population and Evolutionary Genetics Analysis System

Paradis E. 2010.. Bioinformatics 26: 419–420 Untitled1* × Environment History Connections Tutorial ☐ Source on Save 5→ Source - = ≣ List - C -☐ Import Dataset ▼ library(pegas) 📑 Global Environment 🔻 pop <- read.dna("hll.fas", format = "fasta")</pre> Data ss <- site.spectrum(pop)</pre> <Object with null pointer> dnaseq plot(ss) nuc.div(pop) scaf List of 668 taiima.test(pop) Values Large DNAbin (1860922 elements, 1.9 M... pop 'spectrum' int [1:16] 15016 57 6 1 3 8... SS Functions (Top Level) \$ R Script \$ Packages Help Viewer Console Terminal × Jobs × Zoom Zoom Export < 3</p> C:/Users/Hilal Ozkilinc/Desktop/HLL/ > librarv(pegas) Folded Site Frequency Spectrum > pop <- read.dna("hll.fas", format = "fasta")</pre> > ss <- site.spectrum(pop)</pre> Warning message: In site.spectrum.DNAbin(pop) : 5000 3589 sites with more than two states were ignored > plot(ss) > nuc.div(pop) [1] 0.1833571 > taiima.test(pop) \$D [1] -2.450908\$Pval.normal [1] 0.01424962 9 15 \$Pval.beta [1] 0.0002641515

DecipheR

Wright ES (2016). "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R." *The R Journal*, **8**(1), 352-359.

FindSynteny()

GAPIT: genome association and prediction integrated tool

Lipka et al. (2012) Bioinformatics.15;28(18):2397-9.

- GAPIT çok işlevli genom çapında bağdaştırma çalışmalarında kullanılan çok işlevli R paketi
- Genotip ve fenotip türünde veriyi çalıştırmak için HapMap ve numerik formatta veri seti kullanılir.

GAPIT (mass, multtest, gplot, compiler, scatterplot3D, LDHeatmap)– Tek komuttan elde edilebilen çıktılardan bazıları

MLM.V1

...ve daha pekcok paket

- Genomik
- Trankriptomik
- Evrimsel genetic
- Populasyon genetigi
- Filogenetik
- Epigenetik
- ...

OzkilincLab Fungal Evolutionary Genetics

Home Projects Most Recent Publications Lab Head Lab Team Previous Lab Members Photos Events Announcements Lab Meetings

Welcome to the Özkılınç Lab

Welcome to our website!

Our group is working at Canakkale Onsekiz Mart University, Faculty of Arts and Sciences,

Dept. of Molecular Biology and Genetics, Canakkale/ Turkey

Our group has been directing evolutionary biology questions on fungal plant pathogens by using population genetics, phylogenetics and genomics approaches.

TESEKKURLER

https://ozkilinclab.wixsite.com/website

hilalozkilinc@comu.edu.tr

