# The Impact of Natural Disasters on Education: Evidence from Standardized Testing

**Gregor Steiner** 

June 10, 2022

#### Introduction

I exploit quasi-random variation in natural disaster exposure in the United States to answer two questions:

- ▶ What is the causal effect of natural disasters on academic achievement as measured by standardized test scores?
- What is the role of federal disaster assistance? Which counties apply for assistance?

#### Why is this important?

Negative effects in education affect earnings potential  $\implies$  Inequality in disaster risk exposure could exacerbate economic inequality

#### Data

- Natural disasters:
  - ► Federal Emergency Management Agency (FEMA) declarations
  - Storms from the National Weather Service (NWS)
  - Work in progress: Data on extreme heat
- ► **Standardized testing outcomes** from the Stanford Education Data Archive (Reardon et al., 2021):
  - Cohort standardized average scores by county in Mathematics
    & Reading Language Arts (RLA)
  - ► Grades 3 through 8 for schoolyears 2008-09 to 2017-18
- Public Assistance applications and payments from FEMA

# Distribution of mean test scores by subgroup



Figure: Boxplots of mean test scores by subgroup

#### Natural Disasters in the US



Figure: Number of declared natural disasters in school years 2008-09 through 2017-18

# When do counties apply for assistance?

Table: Share of counties that applied for federal assistance following a disaster by disaster type (schoolyears 2016-17 and 2017-18)

|                  | Number of Cases | Applied for Assistance (in %) |
|------------------|-----------------|-------------------------------|
| Dam/Levee Break  | 3               | 0.00                          |
| Fire             | 106             | 10.38                         |
| Flood            | 85              | 9.41                          |
| Hurricane        | 1263            | 23.91                         |
| Mud/Landslide    | 1               | 0.00                          |
| Severe Ice Storm | 20              | 0.00                          |
| Severe Storm(s)  | 154             | 30.52                         |
| Tornado          | 29              | 79.31                         |
| Total            | 1661            | 23.54                         |

## Which counties apply for assistance?



Figure: Boxplots by application status

# **Empirical Strategy**

Event-study design:

$$y_{i,t,g} = \beta_{-5} \mathbb{1} \{ t - E_i \le 5 \} + \sum_{l=-4, l \ne -1}^{8} \beta_l \mathbb{1} \{ t - E_i = l \}$$
$$+ \alpha_i + \lambda_t + \zeta_g + \varepsilon_{i,t,g}$$

- ▶ Treatment begins in the period of first disaster  $(E_i)$  and is absorbing (staggered adoption)
- ▶ But: Always-treated (i.e. disaster in the first year) counties are dropped
- Never-treated counties act as the baseline
- Standard-errors clustered at the cohort level (Abadie et al., 2017)

## Empirical Strategy: Identification

- Natural disasters are plausibly independent of unobserved determinants of test scores conditional on location and year
- ► Heterogenous treatment effects ⇒ simple TWFE is inadequate (de Chaisemartin and D'Haultfœuille, 2020; Sun and Abraham, 2021)
- ► Solution: Interaction-Weighted Estimator (IW) by Sun and Abraham (2021)
- ► Identifying Assumptions: Parallel Trends & No Anticipatory Behavior
- ► IW consistently estimates a weighted average of cohort average treatment effects on the treated (CATT)

#### Main Results: FEMA



Figure: Dynamic Treatment effects in relative time: FEMA disaster data

## Main Results: Subgroups, FEMA



Figure: Dynamic Treatment effects in relative time: FEMA disaster data

#### Main Results: Storms



Figure: Dynamic Treatment effects in relative time: NWS storm data

## Main Results: Subgroups, Storms



Figure: Dynamic Treatment effects in relative time: NWS storm data

# Are these results driven by changes in county composition?



Figure: Aggregated ethnic shares by treatment timing based on FEMA disasters (left) and on NWS storms (right)

#### Conclusion

- Negative short-term effect of disasters on achievement in mathematics
- Some positive long-term effects among subgroups (but not very robust)
- Socially vulnerable counties are more likely to need federal assistance following a disaster

#### References

- Abadie, A., Athey, S., Imbens, G. W., and Wooldridge, J. (2017). When should you adjust standard errors for clustering? Technical report, National Bureau of Economic Research.
- de Chaisemartin, C. and D'Haultfœuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. American Economic Review, 110(9):2964–96.
- Reardon, S., Kalogrides, D., Ho, A., Shear, B., Fahle, E., Jang, H., and Chavez, B. (2021). Stanford education data archive (version 4.1).
- Sun, L. and Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225(2):175–199.