The Inattentive Consumer: Sentiment and Expectations

Rupal Kamdar

Indiana University, Bloomington

October 26, 2021 University of Illinois, Urbana-Champaign

• Nearly all economic decisions are based on agents' beliefs

- Nearly all economic decisions are based on agents' beliefs
- The workhorse approach to modeling beliefs has been full-information rational expectations (FIRE)

- Nearly all economic decisions are based on agents' beliefs
- The workhorse approach to modeling beliefs has been full-information rational expectations (FIRE)
- Survey-based measures of beliefs systematically deviate from FIRE

- Nearly all economic decisions are based on agents' beliefs
- The workhorse approach to modeling beliefs has been full-information rational expectations (FIRE)
- Survey-based measures of beliefs systematically deviate from FIRE
- So how do agents form their economic beliefs? The answer is crucial to understanding macroeconomic dynamics and policy-making

[W]e need to know more about the manner in which inflation expectations are formed and how monetary policy influences them. - Janet Yellen

• Recent experience: inflation has been procylical

- Recent experience: inflation has been procylical
 - Professional forecasters understand the correlation

- Recent experience: inflation has been procylical
 - Professional forecasters understand the correlation
- Consumers believe inflation is countercylical

- Recent experience: inflation has been procylical
 - Professional forecasters understand the correlation
- Consumers believe inflation is countercylical
 - Robust across time, income quartiles, education achieved, and consumer surveys

- Recent experience: inflation has been procylical
 - Professional forecasters understand the correlation
- Consumers believe inflation is countercylical
 - Robust across time, income quartiles, education achieved, and consumer surveys
- Component analysis finds consumer beliefs are driven by one component: sentiment

- Recent experience: inflation has been procylical
 - Professional forecasters understand the correlation
- Consumers believe inflation is countercylical
 - Robust across time, income quartiles, education achieved, and consumer surveys
- Component analysis finds consumer beliefs are driven by one component: sentiment
 - Inflation is negatively related to sentiment

- Recent experience: inflation has been procylical
 - Professional forecasters understand the correlation
- Consumers believe inflation is countercylical
 - Robust across time, income quartiles, education achieved, and consumer surveys
- Component analysis finds consumer beliefs are driven by one component: sentiment
 - Inflation is negatively related to sentiment
- Empirics suggest a fundamental deviation from FIRE

Overview:

• Uncertainty about fundamentals and costly information

Overview:

- Uncertainty about fundamentals and costly information
- To economize on information costs, the consumer chooses to reduce the dimensionality of the problem and obtain a signal that is a linear combination of fundamentals

Overview:

- Uncertainty about fundamentals and costly information
- To economize on information costs, the consumer chooses to reduce the dimensionality of the problem and obtain a signal that is a linear combination of fundamentals
 - ullet This signal o sentiment

Overview:

- Uncertainty about fundamentals and costly information
- To economize on information costs, the consumer chooses to reduce the dimensionality of the problem and obtain a signal that is a linear combination of fundamentals
 - ullet This signal o sentiment
- Due to the information acquisition strategy, beliefs can have correlations that differ from the data-generating process

Overview:

- Uncertainty about fundamentals and costly information
- To economize on information costs, the consumer chooses to reduce the dimensionality of the problem and obtain a signal that is a linear combination of fundamentals
 - ullet This signal o sentiment
- Due to the information acquisition strategy, beliefs can have correlations that differ from the data-generating process

Model Setups:

- Static (intuition)
- Two period (nests FIRE)
- Dynamic (IRFs)

Literature

Expectation formation

- Deviations from FIRE (Coibion, Gorodnichenko, Kamdar 2018)
- Personal experience affects expectations (Malmendier and Nagel 2016)

My contribution: sentiment driven beliefs and inflation is "bad"

Literature

Expectation formation

- Deviations from FIRE (Coibion, Gorodnichenko, Kamdar 2018)
- Personal experience affects expectations (Malmendier and Nagel 2016)

My contribution: sentiment driven beliefs and inflation is "bad"

Rational inattention

- Partial equilibrium firm problem (Mackowiak and Wiederholt 2009)
- Multi-dimensional rational inattention (Kőszegi and Matějka 2020)

My contribution: consumer problem, rationally obtained sentiment, and focus on covariance of posterior beliefs

Literature

Expectation formation

- Deviations from FIRE (Coibion, Gorodnichenko, Kamdar 2018)
- Personal experience affects expectations (Malmendier and Nagel 2016)

My contribution: sentiment driven beliefs and inflation is "bad"

Rational inattention

- Partial equilibrium firm problem (Maćkowiak and Wiederholt 2009)
- Multi-dimensional rational inattention (Kőszegi and Matějka 2020)

My contribution: consumer problem, rationally obtained sentiment, and focus on covariance of posterior beliefs

Monetary Policy

Inflation expectations as a policy tool (Coibion et al. 2018)

My contribution: desired demand effects are attenuated

Historical Inflation and Unemployment Rates

Notes: The civilian unemployment rate and the y-o-y percent change in the consumer price index are plotted. For 1985 onwards, the correlation between the series is -0.2.

Survey Data

Michigan Survey of Consumers (MSC)

- ullet Monthly, consumer survey of pprox 500
- Rotating panel (up to 2x)
- 1978-present

NY Federal Reserve's Survey of Consumer Expectations (SCE)

- Monthly, consumer survey of $\approx 1,300$
- Rotating panel (up to 12x)
- 2013-present

Survey Data

Michigan Survey of Consumers (MSC)

- ullet Monthly, consumer survey of pprox 500
- Rotating panel (up to 2x)
- 1978-present

NY Federal Reserve's Survey of Consumer Expectations (SCE)

- Monthly, consumer survey of $\approx 1,300$
- Rotating panel (up to 12x)
- 2013-present

Survey of Professional Forecasters (SPF)

- ullet Quarterly, professional survey of pprox 40
- Rotating panel
- 1968-present

Consumer Survey Questions

Inflation

- Michigan: "By about what percent do you expect prices to go (up/down) on average, during the next 12 months?"
- NY Fed: "What do you expect the rate of (inflation/deflation) to be over the next 12 months?"

Consumer Survey Questions

Inflation

- *Michigan:* "By about what percent do you expect prices to go (up/down) on average, during the next 12 months?"
- NY Fed: "What do you expect the rate of (inflation/deflation) to be over the next 12 months?"

Unemployment

- Michigan: "How about people out of work during the coming 12 months –
 do you think that there will be more unemployment than now, about the
 same, or less?"
- NY Fed: "What do you think is the percent chance that 12 months from now the unemployment rate in the U.S. will be higher than it is now?"

Consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{i,t}\pi_{t+1}$	Dependent	variable:	$\mathbb{E}_{i,t}\pi_{t+12}$
---	-----------	-----------	------------------------------

	,		J, t t 12		
	(1)	(2)		(3)	(4)
More unemployment	1.590***				
	(0.031)				
Less unemployment	-0.677***				
	(0.033)				
Time FE	N				
Consumer FE	N				
Minimum Surveys					
R-squared	0.019				
N	240356				
	, ,	4070	1.4 001	-	

Consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{i,t}\pi_{t+12}$

	(1)	(2)	(3)	(4)
More unemployment	1.590***	1.268***		
	(0.031)	(0.029)		
Less unemployment	-0.677***	-0.618***		
	(0.033)	(0.032)		
Time FE	N	Υ		
Consumer FE	N	N		
Minimum Surveys				
R-squared	0.019	0.116		
N	240356	240356		

Consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{i,t}\pi_{t+12}$

	(1)	(2)	(3)	(4)
More unemployment	1.590***	1.268***	1.183***	
	(0.031)	(0.029)	(0.032)	
Less unemployment	-0.677***	-0.618***	-0.651***	
	(0.033)	(0.032)	(0.034)	
Time FE	N	Υ	Υ	
Consumer FE	N	N	N	
Minimum Surveys			> 1	
R-squared	0.019	0.116	0.057	
N	240356	240356	165900	

Consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{i,t}\pi_{t+12}$

	(1)	(2)	(3)	(4)
More unemployment	1.590***	1.268***	1.183***	0.408***
	(0.031)	(0.029)	(0.032)	(0.044)
Less unemployment	-0.677***	-0.618***	-0.651***	-0.277***
	(0.033)	(0.032)	(0.034)	(0.048)
Time FE	N	Υ	Υ	Υ
Consumer FE	N	N	N	Υ
Minimum Surveys			> 1	> 1
R-squared	0.019	0.116	0.057	0.343
N	240356	240356	165900	165900

By Education: Michigan Survey

Across education groups, consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{j,t}\pi_{t+12}$				
	(1)	(2)	(3)	
Max degree	none	high-school	college	
More unemployment	0.634**	0.467***	0.282***	
	(0.254)	(0.062)	(0.055)	
Less unemployment	-0.811***	-0.267***	-0.191***	
	(0.309)	(0.071)	(0.059)	
Time FE	Υ	Υ	Υ	
Consumer FE	Υ	Υ	Υ	
R-squared	0.292	0.345	0.349	
N	11979	85322	61502	

By Income: Michigan Survey

Across income groups, consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{j,t}\pi_{t+12}$				
	(1)	(2)	(3)	(4)
Income quartile	1 (low)	2	3	4 (high)
More unemployment	0.571***	0.604***	0.272***	0.320***
	(0.138)	(0.105)	(0.095)	(0.074)
Less unemployment	-0.512***	-0.431***	-0.190*	-0.223***
	(0.159)	(0.125)	(0.103)	(0.080)
Time FE	Υ	Υ	Υ	Y
Consumer FE	Υ	Υ	Υ	Υ
R-squared	0.301	0.353	0.344	0.380
N	27613	26359	25686	32156

By Age: Michigan Survey

Across age groups, consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{j,t}\pi_{t+12}$				
	(1)	(2)	(3)	
Age	<40	40 to 60	>60	
More unemployment	0.492***	0.332***	0.379***	
	(0.079)	(0.064)	(880.0)	
Less unemployment	-0.293***	-0.221***	-0.247***	
	(0.084)	(0.077)	(0.092)	
Time FE	Υ	Υ	Υ	
Consumer FE	Υ	Υ	Υ	
R-squared	0.355	0.361	0.292	
N	63261	57717	41880	

Inflation and Unemployment Expectations: NY Fed Survey

Across surveys, consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{i,t}\pi_{t+12}$

	(1)	(2)	(3)	(4)
$\mathbb{E}_{j,t}(Prob(\Delta Unemp_{t+12} > 0))$	0.070***	0.069***	0.066***	0.034***
	(0.003)	(0.003)	(0.003)	(0.003)
Time FE	N	Υ	Υ	Υ
Consumer FE	N	N	N	Υ
Minimum Surveys			> 1	> 1
R-squared	0.019	0.022	0.021	0.396
N	50660	50660	49172	49172

Sample: June 2013-August 2016

Inflation and Unemployment Expectations: Professionals

In contrast to consumers, professionals believe inflation is procyclical

Dependent variable: $\mathbb{E}_{j,t}\pi_{t+4}$				
	(1)	(2)	(3)	
$\mathbb{E}_{j,t}[\Delta Unemp_{t+4}]$	-0.416***	-0.496***	-0.377***	
	(0.071)	(0.069)	(0.066)	
Time FE	N	Υ	Υ	
Professional FE	N	N	Υ	
R-squared	0.010	0.730	0.796	
N	4852	4852	4829	
Came	Ja: 1001 02	2017 04		

Sample: 1981 Q3 - 2017 Q4

Factor Models

- What is driving consumers to consistently believe inflation is countercyclical?
- How do consumers form beliefs?

Factor Models

- What is driving consumers to consistently believe inflation is countercyclical?
- How do consumers form beliefs?
- Use component analysis, to understand driver(s) of consumer beliefs:
 - Number of important component(s)
 - Characteristics of the key component(s) and loading(s)

Factor Models

- What is driving consumers to consistently believe inflation is countercyclical?
- How do consumers form beliefs?
- Use component analysis, to understand driver(s) of consumer beliefs:
 - Number of important component(s)
 - Characteristics of the key component(s) and loading(s)
- Factor models:
 - NY Fed Survey (numeric answers), use PCA
 - Michigan Survey (categorical answers), use MCA

Unemployment* (next year)

Personal finances* (last year)

Personal finances* (next year)

Economic policy* (now)

Inflation[⋄] (next year)

Personal real income* (next year)

1st dimension explains 76% of the variance

Unemployment* (next year) Personal finances* (last year)

Personal real income* (next year) Inflation^o (next year)

1st dimension explains 76% of the variance

Personal real income* (next year)

Inflation (next year)

^{*} bad, same, good

1st dimension explains 76% of the variance

1st dimension explains 76% of the variance

-0.8 0.4 0.8

 $\Rightarrow \pi_{t+1} > 4$, $0 < \pi_{t+1} < 4$, $\pi_{t+1} < 0$

First Component and Sentiment

The first component is similar to a popular measure of sentiment

Notes: MSC 1st component = the average of the MCA first components, across consumers for a given month.

First Component Loadings: NY Fed Survey PCA

	(1)	(2)	(3)	
Inflation rate will be:				
	-0.22			
% chance unemployn	nent will rise	9:		
	-0.11			
% chance stock mark	et will rise:			
	0.43			
Will you be financiall	y better off:			
	0.54			
% change in average home price will be:				
N:	49977			
Restrictions:	n/a			
Variance explained:	0.30			

First Component Loadings: NY Fed Survey PCA

	(1)	(2)	(3)
Inflation rate will be:	. ,	· /	()
	-0.22	-0.23	
% chance unemployn	nent will ris	se:	
	-0.11	-0.15	
% chance stock mark	ket will rise	:	
	0.43	0.42	
Will you be financial	ly better of	T:	
	0.54	0.55	
% change in average	home price	e will be:	
		0.03	
N:	49977	36625	
Restrictions:	n/a	home-own	
Variance explained:	0.30	0.26	

First Component Loadings: NY Fed Survey PCA

(1)	(2)	(3)			
Inflation rate will be:					
-0.22	-0.23	-0.25			
% chance unemployment will rise:					
-0.11	-0.15	-0.02			
% chance stock market will rise:					
0.43	0.42	0.44			
Will you be financially better off:					
0.54	0.55	0.50			
% change in average home price will be:					
	0.03	-0.15			
49977	36625	13307			
n/a	home-own	non-own			
0.30	0.26	0.25			
	-0.22 nent will rise -0.11 et will rise 0.43 y better of 0.54 home price 49977 n/a	-0.22 -0.23 nent will rise: -0.11 -0.15 net will rise: 0.43 0.42 y better off: 0.54 0.55 home price will be: 0.03 49977 36625 n/a home-own			

Summary of Stylized Facts

1. Consumers believe inflation is countercylical, in contrast to recent experience

Summary of Stylized Facts

1. Consumers believe inflation is countercylical, in contrast to recent experience

2. The economic beliefs of consumers are driven by a single component: sentiment

Summary of Stylized Facts

1. Consumers believe inflation is countercylical, in contrast to recent experience

- 2. The economic beliefs of consumers are driven by a single component: sentiment
- 3. Inflation expectations and sentiment negatively co-move

FIRE

• Sticky Information

Learning

• Rational Inattention

- FIRE X
 - FIRE cannot generate consistent deviations from the underlying DGP
- Sticky Information

Learning

• Rational Inattention

- FIRE X
 - FIRE cannot generate consistent deviations from the underlying DGP
- Sticky Information X
 - Sticky Information has no predictions about the dimensionality of information that informs consumer beliefs
- Learning

• Rational Inattention

- FIRE X
 - FIRE cannot generate consistent deviations from the underlying DGP
- Sticky Information X
 - Sticky Information has no predictions about the dimensionality of information that informs consumer beliefs
- Learning X
 - Learning results in more accurate beliefs over time
- Rational Inattention

- FIRE X
 - FIRE cannot generate consistent deviations from the underlying DGP
- Sticky Information X
 - Sticky Information has no predictions about the dimensionality of information that informs consumer beliefs
- Learning X
 - Learning results in more accurate beliefs over time
- Rational Inattention ✓

• Fundamental uncertainty and costly information

- Fundamental uncertainty and costly information
- The consumer chooses the form of their signal
 - Economizing on information, optimal signals are linear combinations of fundamentals

- Fundamental uncertainty and costly information
- The consumer chooses the form of their signal
 - Economizing on information, optimal signals are linear combinations of fundamentals
- ullet The consumer decides to be best informed along the dimension most costly to misunderstand o rationally obtained sentiment

- Fundamental uncertainty and costly information
- The consumer chooses the form of their signal
 - Economizing on information, optimal signals are linear combinations of fundamentals
- The consumer decides to be best informed along the dimension most costly to misunderstand → rationally obtained sentiment
- Optimal information gathering results in covariances of beliefs that can differ from the covariances of the underlying DGP

Consumer Problem: Static Setup

• The agent consumes and supplies labor

Consumer Problem: Static Setup

- The agent consumes and supplies labor
- \bullet For each unit of labor, the consumer is paid wage $\frac{W}{\Theta}$
 - ullet where Θ is labor market slackness and W is a base nominal wage
 - ullet normalize the base wage: W=1

Consumer Problem: Static Setup

- The agent consumes and supplies labor
- ullet For each unit of labor, the consumer is paid wage $\frac{W}{\Theta}$
 - ullet where Θ is labor market slackness and W is a base nominal wage
 - ullet normalize the base wage: W=1
- Assume the consumer knows the base wage, but faces uncertainty about labor market slackness and the price index
 - slackness and price are assumed to be independent

Consumer Problem: Static Setup Continued

- The consumer may obtain optimal signal(s) about the unknowns
 - signal(s) can be any combination of the unknowns plus noise
 - signal(s) are costly ($\lambda \times \text{Shannon mutual information}, \lambda \geq 0$)

Consumer Problem: Static Setup Continued

- The consumer may obtain optimal signal(s) about the unknowns
 - signal(s) can be any combination of the unknowns plus noise
 - signal(s) are costly ($\lambda \times$ Shannon mutual information, $\lambda \ge 0$)
- Timing:
 - 1. obtain noisy signal(s)
 - 2. commit to amount of labor supplied L
 - 3. consume according to: $CP = L/\Theta$

Consumer Problem: Static Setup Continued

- The consumer may obtain optimal signal(s) about the unknowns
 - signal(s) can be any combination of the unknowns plus noise
 - signal(s) are costly ($\lambda \times \text{Shannon mutual information}$, $\lambda \geq 0$)
- Timing:
 - 1. obtain noisy signal(s)
 - 2. commit to amount of labor supplied L
 - 3. consume according to: $CP = L/\Theta$
- Utility:

$$U\left(L\left(\mathbb{F}[\Theta],\mathbb{F}[P]\right),\Theta,P\right)$$

Log-Quadratic Approximation

• Let \hat{u} be the utility expressed in terms of log-deviations:

$$\hat{u}(I,\theta,p)$$

Log-Quadratic Approximation

• Let \hat{u} be the utility expressed in terms of log-deviations:

$$\hat{u}(I,\theta,p)$$

• Let \tilde{u} be the 2nd-order Taylor approx. of \hat{u} around the steady state:

$$\tilde{u}(l,\theta,p) \approx \underbrace{\hat{u}_1}_{=0} l + \frac{1}{2} \underbrace{\hat{u}_{11}}_{<0} l^2 + \hat{u}_{12} l\theta + \hat{u}_{13} lp$$

where subscripts on \hat{u} denote derivates w.r.t. the input order variable at the steady state

Log-Quadratic Approximation

• Let \hat{u} be the utility expressed in terms of log-deviations:

$$\hat{u}(I,\theta,p)$$

• Let \tilde{u} be the 2nd-order Taylor approx. of \hat{u} around the steady state:

$$\tilde{u}(l,\theta,p) \approx \underbrace{\hat{u}_1}_{=0} l + \frac{1}{2} \underbrace{\hat{u}_{11}}_{<0} l^2 + \hat{u}_{12} l\theta + \hat{u}_{13} lp$$

where subscripts on \hat{u} denote derivates w.r.t. the input order variable at the steady state

• Under full-information, the utility maximizing labor is:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$

Utility Function

• What are the optimal labor weights on slackness and price?

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$

Utility Function

What are the optimal labor weights on slackness and price?

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$

Assume the utility function:

$$U(L,\Theta,P) = rac{C^{1-arphi}}{1-arphi} - rac{L^{1+1/\eta}}{1+1/\eta} ext{ where } C = rac{L}{\Theta P}$$

Utility Function

What are the optimal labor weights on slackness and price?

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$

Assume the utility function:

$$U(L,\Theta,P)=rac{C^{1-arphi}}{1-arphi}-rac{L^{1+1/\eta}}{1+1/\eta}$$
 where $C=rac{L}{\Theta P}$

• Then the optimal labor weights are equal:

$$\frac{\hat{u}_{12}}{|\hat{u}_{11}|} = \frac{\hat{u}_{13}}{|\hat{u}_{11}|}$$

Intuition

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

Then:

$$p=0$$
 and $\theta=0 \Rightarrow I^*=0$

Intuition

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

Then:

$$p=0$$
 and $\theta=0 \Rightarrow I^*=0$
 $p=-1$ and $\theta=1 \Rightarrow I^*=0$

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

$$p=0$$
 and $\theta=0\Rightarrow I^*=0$
 $p=-1$ and $\theta=1\Rightarrow I^*=0$
 $p=1$ and $\theta=-1\Rightarrow I^*=0$

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

$$p=0$$
 and $\theta=0 \Rightarrow I^*=0$
 $p=-1$ and $\theta=1 \Rightarrow I^*=0$
 $p=1$ and $\theta=-1 \Rightarrow I^*=0$
 $I^*=0$ along the -45° line

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

$$p=1$$
 and $\theta=1 \Rightarrow \mathit{I}^*=1$

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

$$p=1$$
 and $\theta=1 \Rightarrow \mathit{I}^*=1$

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

$$p=1$$
 and $\theta=1\Rightarrow I^*=1$ $p=-1$ and $\theta=-1\Rightarrow I^*=-1$

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

$$p=1 \text{ and } \theta=1 \Rightarrow \mathit{I}^*=1$$

$$p=-1 \text{ and } \theta=-1 \Rightarrow \mathit{I}^*=-1$$

Optimal labor choice:

$$I^* = \frac{\hat{u}_{12}}{|\hat{u}_{11}|}\theta + \frac{\hat{u}_{13}}{|\hat{u}_{11}|}\rho$$
$$= .5\theta + .5\rho$$

Then:

$$p=1 \text{ and } \theta=1 \Rightarrow \mathit{I}^*=1$$

$$p=-1 \text{ and } \theta=-1 \Rightarrow \mathit{I}^*=-1$$

The agent wants to learn along the 45° line!

• Transform into an optimization problem that is a function of ______

- 1. expected loss due to misperceptions
- 2. the cost of information

- Transform into an optimization problem that is a function of more

- 1. expected loss due to misperceptions
- 2. the cost of information
- Eigen-decomposition of loss matrix more
 - 1. eigenvectors are the "directions" the agent cares about
 - 2. eigenvalues are a measure of how much the agent cares

- Transform into an optimization problem that is a function of more
 - 1. expected loss due to misperceptions
 - 2. the cost of information
- Eigen-decomposition of loss matrix more
 - 1. eigenvectors are the "directions" the agent cares about
 - 2. eigenvalues are a measure of how much the agent cares
- The prior $(\sigma_0^2 I)$, cost of information (λ) , and the eigenvalues will dictate the precision of the signal(s)

- Transform into an optimization problem that is a function of more
 - 1. expected loss due to misperceptions
 - 2. the cost of information
- Eigen-decomposition of loss matrix more
 - 1. eigenvectors are the "directions" the agent cares about
 - 2. eigenvalues are a measure of how much the agent cares
- The prior $(\sigma_0^2 I)$, cost of information (λ) , and the eigenvalues will dictate the precision of the signal(s)

For the consumer problem: one eigenvalue is zero and one is nonzero \Rightarrow at most, the consumer gets one signal

Covariance of Posterior Slackness and Price Beliefs

What is the covariance of the posterior beliefs of slackness and price?

$$cov(\tilde{\theta}, \tilde{p}) = \begin{cases} & \text{if } \sigma_0^2 \leq \lambda |\alpha| \\ & \text{if } \sigma_0^2 > \lambda |\alpha| \end{cases}$$

where $|\alpha|$ is a term that depends on the curvature of the utility function

Covariance of Posterior Slackness and Price Beliefs

What is the covariance of the posterior beliefs of slackness and price?

$$cov(\tilde{\theta}, \tilde{p}) = \begin{cases} 0 & \text{if } \sigma_0^2 \le \lambda |\alpha| \\ & \text{if } \sigma_0^2 > \lambda |\alpha| \end{cases}$$

where $|\alpha|$ is a term that depends on the curvature of the utility function

When the consumer does not receive a signal:

$$cov(ilde{ heta}, ilde{ heta})=$$
 the prior covariance $=0$

Covariance of Posterior Slackness and Price Beliefs

What is the covariance of the posterior beliefs of slackness and price?

$$cov(\tilde{\theta}, \tilde{p}) = \begin{cases} 0 & \text{if } \sigma_0^2 \le \lambda |\alpha| \\ \frac{1}{2} \left(\sigma_0^2 - \lambda |\alpha| \right) & \text{if } \sigma_0^2 > \lambda |\alpha| \end{cases}$$

where $|\alpha|$ is a term that depends on the curvature of the utility function

When the consumer does not receive a signal:

$$cov(ilde{ heta}, ilde{p})=$$
 the prior covariance $=0$

When the consumer gets one signal:

$$cov(\tilde{ heta}, \tilde{p}) > 0$$

Covariance of Posterior Beliefs By Information Cost

Notes: Parameters: $\varphi = 1.4$, $\eta = 3$, $\sigma_0^2 = 1$

Covariance of Posterior Beliefs By Information Cost

Notes: Parameters: $\varphi=1.4$, $\eta=3$, $\sigma_0^2=1$

Static Model: Takeaways

1. The consumer reduces the dimensionality of the problem, receiving one signal but facing two unknowns

Static Model: Takeaways

- 1. The consumer reduces the dimensionality of the problem, receiving one signal but facing two unknowns
- The optimal information gathering results in a positive covariance between consumer beliefs about prices and labor market slackness

Extension: Two Periods, Two Choices, Two States

First period:

- Do not know labor market slackness or price, obtain optimal signal(s) about them
- Choose first period labor and savings
- Consume according to, $PC_1 = L/\Theta S$
- Assume the consumer knows the interest rate

Extension: Two Periods, Two Choices, Two States

First period:

- Do not know labor market slackness or price, obtain optimal signal(s) about them
- Choose first period labor and savings
- Consume according to, $PC_1 = L/\Theta S$
- Assume the consumer knows the interest rate

Second period:

- No labor
- Assume the price index is the same both periods
- Consume savings, $C_2 = \frac{(1+R)S}{P}$

Extension: Two Periods, Two Choices, Two States

Assume the utility function:

$$U(L, C_1, C_2) = \frac{C_1^{1-\varphi}}{1-\varphi} - \frac{L^{1+1/\eta}}{1+1/\eta} + \beta \frac{C_2^{1-\varphi}}{1-\varphi}$$

• Budget constraints:

$$C_1 = \frac{L/\Theta - S}{P}$$
 and $C_2 = \frac{(1+R)S}{P}$

- Take the log-quadratic approximation around the steady state
- Solve as before

Two-Period Covariance

Notes: Parameters: $\varphi=$ 1.4, $\eta=$ 3, $\sigma_0^2=$ 1, R= .05, $\beta=$.95

Two-Period Model: Takeaways

1. For low costs of information, the consumer will choose to obtain two signals

Two-Period Model: Takeaways

- For low costs of information, the consumer will choose to obtain two signals
- 2. As information costs approach zero, the consumer smoothly learns the values of slackness and price

Two-Period Model: Takeaways

- For low costs of information, the consumer will choose to obtain two signals
- 2. As information costs approach zero, the consumer smoothly learns the values of slackness and price
- A comparison of professional forecasters (low information costs) to consumers (intermediate information costs) is possible and consistent with the empirical findings

Inflation Expectations as a Policy Tool

• With nominal short-term interest rates at ... their effective lower bound in many countries, the broader question of how expectations are formed has taken on heightened importance ... [C]entral banks have sought additional ways to stimulate their economies, including adopting policies that are directly aimed at influencing expectations of ... inflation.

- Janet Yellen

Inflation Expectations as a Policy Tool

• With nominal short-term interest rates at ... their effective lower bound in many countries, the broader question of how expectations are formed has taken on heightened importance ... [C]entral banks have sought additional ways to stimulate their economies, including adopting policies that are directly aimed at influencing expectations of ... inflation.

- Janet Yellen

 The first element [of quantitative easing] was to dispel people's deflationary mindset and raise inflation expectations.

- Haruhiko Kuroda

Monetary Policy Implications

- In FIRE-based macro-models:
 - Higher inflation expectations result in stronger demand today

Monetary Policy Implications

- In FIRE-based macro-models:
 - Higher inflation expectations result in stronger demand today
- However based on my empirical results and rational inattention framework:
 - Consumers associate higher inflation with recessionary outcomes
 - So the increase in demand could be attenuated or even counteracted

Monetary Policy Implications

- In FIRE-based macro-models:
 - Higher inflation expectations result in stronger demand today
- However based on my empirical results and rational inattention framework:
 - Consumers associate higher inflation with recessionary outcomes
 - So the increase in demand could be attenuated or even counteracted
- Rather than manipulating inflation expectations:
 - Manage wage inflation or unemployment expectations

Conclusion

- Using survey data:
 - · Consumers' expectations are driven by sentiment
 - ... believe inflation is countercylical
- In a rational inattention model:
 - Consumers learn about a combination of fundamentals ⇒ rationally obtained sentiment
 - ... leading to countercylical price beliefs
- Monetary policy implications:
 - Raising inflation expectations may inadvertently cause consumers to become pessimistic

Inflation and Unemployment Rates: Rolling Regression

Notes: Dotted lines represent the 95% confidence interval. Ten year rolling window slope regression coefficient is plotted. The sample end date is on the x-axis.

Inflation and Unemployment: Consumers (Michigan Survey)

$$\mathbb{E}_{j,t}\pi_{t+1} = \alpha_t + \beta_t^{\textit{more}} D_{j,t+1}^{\textit{more}} + \beta_t^{\textit{less}} D_{j,t+1}^{\textit{less}} + \epsilon_{j,t}$$

First Component: Michigan and NY Fed

- MSC 1st Component =
 Michigan's MCA 1st component, averaged across consumers by month
- SCE 1st Component =
 NY Fed's PCA 1st component, averaged across consumers by month

First Component and Actions

Optimistic consumers (those with a large first component), are more likely say it is a good time to make purchases

Is it a Good Time to Buy...

First Component of Beliefs vs. First Component of Actions

The first component of belief-related questions (the baseline) is highly correlated with the first component of action-related questions

back conclusion

Inflation and Unemployment, By Age

By age group:
$$\mathbb{E}_{j,t}\pi_{t+1} = \alpha_t + \beta_t^{more}D_{j,t+1}^{more} + \beta_t^{less}D_{j,t+1}^{less} + \epsilon_{j,t}$$

By Birth Year: Michigan Survey

Across years of birth, consumers believe inflation is countercyclical

Dependent variable: $\mathbb{E}_{j,t}\pi_{t+12}$				
	(1)	(2)	(3)	(4)
Birth year	<1930	1930-1950	1950-1970	>1970
More unemployment	0.397***	0.377***	0.393***	0.581***
	(0.140)	(0.073)	(0.066)	(0.121)
Less unemployment	-0.137	-0.304***	-0.293***	-0.224*
	(0.150)	(0.086)	(0.073)	(0.127)
Time FE	Υ	Υ	Υ	Υ
Consumer FE	Υ	Υ	Υ	Υ
R-squared	0.280	0.381	0.350	0.308
N	23921	52103	71282	17372

Sample: January 1978 - May 2017

Japan: Rolling Regression

Notes: Dotted lines represent the 95% confidence interval. Ten year rolling window slope regression coefficient is plotted. The sample end date is on the x-axis.

Re-express LQ Utility Approximation

 To utilize the solution methodology of Kőszegi and Matějka (2018), one must be maximizing a quadratic function of the form:

$$-y'Dy + x'By$$

where D is symmetric and positive-semidefinite

• Re-express the LQ approximation of utility

$$\tilde{u}(l,\theta,p) = \frac{1}{2}\hat{u}_{11}l^2 + \hat{u}_{12}l\theta + \hat{u}_{13}lp$$
$$= -\mathbf{y}'\mathbf{D}\mathbf{y} + \mathbf{x}'\mathbf{B}\mathbf{y}$$

where

$$\mathbf{D} = rac{|\hat{u}_{11}|}{2}$$
, $\mathbf{B} = \begin{bmatrix} \hat{u}_{12} \\ \hat{u}_{13} \end{bmatrix}$, $\mathbf{y} = l$ and $\mathbf{x} = \begin{bmatrix} \theta \\ p \end{bmatrix}$

Transform the Problem

- For tractability, solve a transformed problem that is a function of:
 - 1. misperceptions about the state
 - 2. the cost of information
- This takes three steps:
 - 1. find the action ${\bf y}$ chosen given some posterior mean of the state $\tilde{{\bf x}}$
 - 2. express the utility function as function of the posterior mean of the state, $\tilde{\mathbf{x}}$, rather than action \mathbf{y}
 - quantify the cost of information in terms of the posterior variance-covariance Σ

Transformed Problem

- ullet Let the prior variance-covariance be Γ and the posterior variance-covariance be Σ
- The choice variable is the posterior variance-covariance matrix
- Transformed problem (let $\Omega \equiv \frac{BD^{-1}B'}{4}$):

$$\max_{\Gamma \geq \Sigma} \underbrace{-\mathbb{E}\Big[(\tilde{\mathbf{x}} - \mathbf{x})'\Omega(\tilde{\mathbf{x}} - \mathbf{x})\Big]}_{\text{expected utility}} + \underbrace{\frac{\lambda}{2}log|\Sigma|}_{\text{cost of info}}$$
$$\max_{\Gamma \geq \Sigma} - Tr(\Omega\Sigma) + \frac{\lambda}{2}log|\Sigma|$$

ullet The restriction $\Gamma \geq oldsymbol{\Sigma}$ means $\Gamma - oldsymbol{\Sigma}$ is positive semidefinite

Eigen-decomposition

The loss matrix can be eigen-decomposed as:

$$\Omega = V \Lambda V'$$

where:

- Λ is the diagonal matrix of eigenvalues with $\Lambda_1=0$ and $\Lambda_2=rac{1}{2|\hat{u}_{11}|}[\hat{u}_{12}^2+\hat{u}_{13}^2]$
- **V** is the matrix of the normalized eigenvectors. The eigenvectors are, respectively:

$$\begin{bmatrix} -\frac{\hat{u}_{13}}{\hat{u}_{12}} \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} \frac{\hat{u}_{12}}{\hat{u}_{13}} \\ 1 \end{bmatrix}$$

back

Rotated Posterior Variance-Covariance

Solve for posterior variance-covariance in rotated space

$$J = V' \Sigma V$$

• Kőszegi and Matějka (2018) find the general solution:

$$J_{ij}=0$$
 for all $i\neq j$

$$J_{ii} = min\left(\sigma_0^2, \frac{\lambda}{2\Lambda_i}\right)$$

Consumer Problem Solution

• For the consumer problem, the solution for (diagonal) **J** is:

$$J_{11} = \sigma_0^2$$

$$J_{22} = \frac{\lambda}{\frac{1}{|\hat{u}_{11}|}[\hat{u}_{12}^2 + \hat{u}_{13}^2]}$$

- Notice that households will learn about at most one direction:
 - $\Lambda_1=0 \implies$ households do not update from the prior in the first eigenvector direction
 - If $\sigma_0^2 > \frac{\lambda}{2\Lambda_2} \implies$, households obtain information on the 2nd eigenvector direction
- The solution for the posterior variance-covariance:

$$\Sigma = VJV'$$

Dynamic Model: Setup

Assume slack and price log-deviations follow independent AR(1) processes

$$\theta_t = \phi_\theta \theta_{t-1} + \gamma_\theta \epsilon_t^\theta$$
$$p_t = \phi_p p_{t-1} + \gamma_p \epsilon_t^p$$

Dynamic Model: Setup

Assume slack and price log-deviations follow independent AR(1) processes

$$\theta_t = \phi_\theta \theta_{t-1} + \gamma_\theta \epsilon_t^\theta$$
$$\rho_t = \phi_p \rho_{t-1} + \gamma_p \epsilon_t^\rho$$

 Signals can be any linear combination of the log-deviations of current or past period slack, prices, slack shocks and/or price shocks

Dynamic Model: Setup

Assume slack and price log-deviations follow independent AR(1) processes

$$\theta_t = \phi_\theta \theta_{t-1} + \gamma_\theta \epsilon_t^\theta$$
$$p_t = \phi_p p_{t-1} + \gamma_p \epsilon_t^p$$

- Signals can be any linear combination of the log-deviations of current or past period slack, prices, slack shocks and/or price shocks
- Maćkowiak, Matějka, and Wiederholt (2018) show that the consumer will optimally choose one signal, a linear combination of current slackness and price

$$\mathsf{signal}_t = h_1 \theta_t + h_2 p_t + \epsilon_t$$

Impulse Response: One Standard Deviation Shock to Price

Notes: Parameters: $\phi_{\theta}=.715$, $\phi_{p}=.813$, $\gamma_{\theta}=\gamma_{p}=\lambda=1$, $\frac{\hat{u}_{12}}{|\hat{u}_{11}|}=.7$, and $\frac{\hat{u}_{13}}{|\hat{u}_{11}|}=.7$. The resulting optimal signal weights are $h_{1}=1$ and $h_{2}=1.04$

Impulse Response: One Standard Deviation Shock to Price

Impulse Response: One Standard Deviation Shock to Price

Labor and price beliefs under-react and slackness beliefs over-react

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

As information costs decline ($\lambda \to 0$), the consumer does not perfectly learn the true values of slackness and price

Positive Demand Shock

In reaction to demand shocks, the response of beliefs is muted

Negative Supply Shock

In reaction to supply shocks, the response of beliefs is strong, although still an under-reaction relative to actual values

Consumption Response: One Standard Deviation Shock to Price

Consumption Response: Vary Information Cost

As information costs decline ($\lambda \to 0$), the consumer learns the optimal labor choice perfectly and therefore obtains the optimal consumption

