Week 1 Where Does Data Come From & Tools for Data Engineering

ISTA 322 - Data Engineering

Recap of last lecture

- Data volumes have boomed in the last 20 years
- Some early companies were effective in using this
- This and other things (media, research) drove the potential for data scientists to use big data
- Early efforts did not go well as data is often in messy, not in immediately useful formats
- And there was lots of it which limited ability to process
- Early DS roles involved a lot of data engineering
- Now, there are explicit DE roles
- DE is all about making data useful for analysis

Where are we going today?

- Talk about where all these data are coming from
- The (generally) main job of a DE making *ETLs
- Technologies using in DE and what subset we'll use

*ETL: Extract, transform, load

https://databricks.com/glossary/extract-transform-load

Where do data come from?

- There are tons of data and the amount being collected is exploding.
- What generates these data?
- Events!

1 Zetabyte is

- 350 trillion songs
- 100k copies of wikipedia

How events create data

- Events data of actions performed by entities
 - Clicked on an ad
 - Left the page
 - Searched for something
 - Tried to log in
 - Made a transaction
 - Scrolled up or down
 - Liked, reacted, retweeted, hearted, shared
 - Uploaded a photo or video
 - Doesn't have to be human... temperature probe recording, machine finishing a job, airplane sensors measuring tons of stuff, etc.
- Also will record time and who did it

How events create data

- Events will then be linked to other data that's collected
- e.g. you click on Tiger King
 - o {time: 07:26, event: click_watch, show_id: tk_S1E1, user_id: x88}
- These events are linked to other data that's known about you or the show
- There will be a table that contains show info
 - o {show_id : tk_S1E1, tags : ['drama', 'reality'], runtime : 55min }
- And user info
 - o {user_id : x88, age : 35, gender : 'M', OS : ['wind', 'andro']}

Event data at Netflix

- With this data arriving at over 2 million events per second, getting it into a database that can be queried quickly is formidable. We need sufficient dimensionality for the data to be useful in isolating issues and as such we generate over 115 billion rows per day.
 - This was in 2020 Ref @ Netflix Tech Blog
- They 'only' generated 10 billion rows a day in 2015
 - o Ref @ Netflix Tech Blog

How events create data

- In just 5 years Netflix increased the amount of data collected by 10x (115 billion vs 10 billion)
 - Number of subscribers only increased by 2.5 <u>ref</u>
 - Increased granularity of data collected
- This allows for more complex models & better analytics
 - "We need sufficient dimensionality for the data to be useful in isolating issues"
 - Remember, models need n x m matrix
 - More dimensions = more features in the matrix
 - o More features = more models & better predictions
 - ∴ more money

Not all events

- Of course, not all data collected is structured like this
- Some is just stored in a database across multiple tables
 - Each transaction in a convenience store

TABLE ID: STORE						
store_id	store_state	country				
az_23	AZ	USA				
az_45	AZ	USA				
ca_12	CA	USA				
to_39	Ontario	Canada				

TABLE ID: TRANSACTIONS								
transact_id	store_id	UPC	price					
x88943	az_23	49914	2.57					
x88943	az_23	99371	1.99					
a85921	to_39	95831	8.99					
a85921	to_39	99492	5.49					
a85921	to_39	27482	4.49					
z88930	az_45	33491	0.99					

Not all events

- Of course, not all data collected is structured like this
- Some is just stored in a database across multiple tables
 - Each transaction in a convenience store
 - And data collected might not be optimized

A	В	С	D	E	F	G	Н	1	J
id	name	host_id	host_name	neighbourhood_g	neighbourhood	latitude	longitude	room_type	price
2539	Clean & quiet ap	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149
2595	Skylit Midtown C	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225
3647	THE VILLAGE O	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.9419	Private room	150
3831	Cozy Entire Floo	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89
5022	Entire Apt: Spaci	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80
7322	Chelsea Perfect	18946	Doti	Manhattan	Chelsea	40.74192	-73.99501	Private room	140
7726	Hip Historic Brow	20950	Adam And Chari	Brooklyn	Crown Heights	40.67592	-73.94694	Entire home/apt	99
7750	Huge 2 BR Uppe	17985	Sing	Manhattan	East Harlem	40.79685	-73.94872	Entire home/apt	190
7801	Sweet and Space	21207	Chaya	Brooklyn	Williamsburg	40.71842	-73.95718	Entire home/apt	299
8024	CBG CtyBGd He	22486	Lisel	Brooklyn	Park Slope	40.68069	-73.97706	Private room	130
8025	CBG Helps Haiti	22486	Lisel	Brooklyn	Park Slope	40.67989	-73.97798	Private room	80

So what does a DE do again?

- Takes data from these various databases that are recording events/transactions/information
- Reorganizes it in some way or another into a format that lets people do analytics or data science
- Puts it in a database for them to use.
- This process has a general name ETL
 - Extract Transform Load

ETL

- ETLs are essentially the core of DE
- That raw data in structured, semi-structured, or unstructured format is all stored in a **data lake**
- The transform step is going to remove errors, create features, scale values, aggregate data for metrics and whatever else is needed to support analytics and DS
- The transformed data is stored in a data warehouse

ETL

From reading - Ch1 Data Mining Concepts and Techniques

Figure 1.6 Typical framework of a data warehouse for *AllElectronics*.

But how to deal with so many events?

- OK, our goal is to get the data into a useful format
- But we're dealing lots of data
- Average computer has say 16gb of memory
 - A decade ago Facebook was dealing with 10+ gb of processed data a day
 - Amazon's daily login datafile alone is 1tb
- Obviously this is the other challenge of DE
 - How to deal with massive volumes of data fast enough to be useful
 - Can't let it take hours/days/weeks to process on one machine

Enter big data technologies

- The other part of of being a DE is using big data processing frameworks that allow for much, much faster data processing
- Technologies like hadoop/mapreduce and Spark utilized clusters of machines to distribute framework and optimize speed

Enter big data te

- The other part processing fra data processin
- Technologies l clusters of ma speed

Languages, Tools & Software

Enter big data technologies

- The other part of of being a DE is using big data processing frameworks that allow for much, much faster data processing
- Technologies like hadoop/mapreduce and Spark utilized clusters of machines to distribute framework and optimize speed
- It's a massive ecosystem of tools We're only going to learn some of the essential tools

A bit more about the technologies we're going to use

- Languages / technologies
 - Python and pandas
 - SQL Likely PostgreSQL
 - Pyspark locally
 - Pyspark via Databricks
- Environments
 - We'll be working in Jupyter Notebooks
 - Use <u>Google Colaboratory</u> Google cloud based Jupyter Notebook
 - You'll download a notebook, upload and open there
 - You're welcome to use a local install, but I won't be providing tutorials (I can't troubleshoot 40 installs of all the libraries)
 - AWS Pull from and set up database on AWS
 - <u>Databricks</u> Cloud notebook based analytics/DS platform