Models de PL · Variais de decisa; 1 - m- de atlets de notage a viger no voo TP-444 n ginéstice n 72-3 H H H 4 u ciclismo u u n4-> " " meinadoes " neteger " u 4 u gnéstice u u 4 76-) " " u NG-3 u u u u ciclismo u u 4 · rungo objetio: Meximizer o n=total de ellets e treinadores a viejer no voo TP-444, ou sex1 Mex 2= 11+12+113+14+18+16 · Restricces: X, 542 1 N=de X2 522 affeti dos Beguipos N3 £ 34 14812 X5 £ 14 Meinadores des 3 equipas M6 5 16 M < 384 / Pelo meros I breshodor por colo 3 affeti de natego 7/25 275 | Peto mons 1 traincolor por code 2 affets de gindshice 7/1+1/3+1/4+1/6> 0.7,100 (Peto mono) 70% dos lugares p/ nedecdores, aclistas e meinadores MI+84=83+86 (Meddores + trahedores = Ciclists + transdores MI+NZ+N3+ My+Ng+N6 \$ 100 (N= de lugere)
disponíveis no voo

7170, j=1,00,6

	2	XZ	N3	- M N4	NS	5	-2) (2
11 2	1	1/3	-1/3	1/3	0	l.	(2)= 1/3 (1) (2)=(2)-(1)
< ×50	0	11/3	1/3	-13	1	3	$(2)^{1}=(2)-(1)^{1}$
4 - 4	0	-1/3	-2/3	H+2/3	0	2	

SBA: X= (1,0,0,0,3) 7 Z=Z

			100				
	2	12	N3	-H 74	NS	Ь	- (2) (1) (2)
74 Z	1	4	0	0	1	4	(1)=(1)+13(2)" (2)"=3x(2)"
7130	0	11	Ī	-1	3	9	(2) 23x(2)
45	0	7	0	M	2	8	

Quedro otimo pois ne linhe 2j-9 no le vebre negatios. SBA: x = (4,0,9,0,0), 2 = 8

Min
$$z = -1/4 \times 2 = 4$$
 $(-4/0)$; $(0,1)$
 5.0
 $21/312 \le 6(1)$
 $21/4512 \ge 10^{(2)}$
 $-31/412 \le 3^{(3)}$
 $(-1/0)$; $(0/3)$
 $(-1/0)$; $(0/3)$

Substitutedo 72/por exemplo, na 12 equação: 2/ = 6+382 = 6+3/2 = 15/4 4

PRIMAL

Mcx Z=-X1+X2-3X3
5.9
2X1+X2+X373 =U1
X1+2X2-X3 £ 1 = U2
X1+01X2 ? 0, X370

DUAL

Mm $Z_1 = 3U_1 + U_2$ 5.q $2U_1 + U_2 > -1$ $U_1 + 2U_2 > 1$ $U_1 - U_2 > -3$ $U_1 \le 0, U_2 > 0$

Soluges ofme do ded

Utz (-43, 33, 0, 1, 0)

Zd = 2 = 2 = -73

(5) oppo correta:

"Através de resolução do problema DUAL pelo metrodo DUAL do Simplex, e possível obter a solução otima do problema PRIMA, son o resolver."

(7) Custo de transporte:

2=2x20+8x5+9x10=40+40+90=170

6	2 9	> '	*	8
7	4 2	3 4		3 7
0	0	3(0	ے	S
6	6	6	S	

Quoto mover p/ (1,4)? Hin /2,2,3/=2

6		1	2	8
	6	1		7
		5		5
6	6	6	Z	_

Nova Soluges:

$$(1,1):6$$
 $(2,1):0$ $(3,1):0$ $(1,2):0$ $(1,2):0$ $(2,2):6$ $(3,2):0$ $(1,3):0$ $(2,3):1$ $(3,3):5$ $(1,4):2$ $(2,4):0$ $(3,4):0$

(9) Opção correta: "No modelo ded de um problema de hans portes, es restrições são sempre do hipo "¿" porque correspondem a voideis 30."