

of Exeter

P17.015.D Impact of control selection strategies on GWAS results: a study of Schizophrenia and Bipolar Disorder in the UK Biobank

Jingzhan Lu¹², Johan Thygesen², Andrew McQuillin³, Harry Green¹

Affiliations: ¹Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK. ²Institute of Health Informatics, University College London, UK. ³Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK.

Background

As GWAS studies move from array-based genotyping to whole exome (WES) and whole genome (WGS) sequencing, there is a significant increase in cost. For disease phenotypes, case-control selection may be a useful, but it is a currently underexplored technique for minimising resource intensity while maintaining statistical power. This is particularly relevant to studies of disease in a general population like UK Biobank (N=500,000), where there is often a surplus of available healthy controls. This investigation aims to explore different strategies for control selection in GWAS studies.

Methods

The study included 1,988 Schizophrenia (SCZ) and Bipolar Disorder (BD) cases of European ancestry from the UK Biobank (UKB), with a 1:4 case-to-control ratio. Individual GWAS were conducted under each strategy using REGENIE. We assessed the impact of three control selection strategies on GWAS combining SCZ and BD with covariates: age, gender and deprivation. These S 1-3 were:

- S1: Random selection without covariates
- S2: Case/control matched analysis with covariates
- S3: (Another) Random selection with covariates

Results were compared with the Psychiatric Genomics Consortium (PGC 2022), the largest GWAS meta-analysis, which was considered the gold standard.

Matching GENDER GENDER Age, gender, deprivation Matched Control Units

A total of 1,988 SCZ and BD cases combined in the GWAS. The S_{1-3} selected 4X controls from the 405,949 available cohort of UKB.

Manhattan-Comparison Plot Development

Example of Manhattan plot (one GWAS result)

Results & Discussion

Equation: $p_{diff} = \frac{|(S_{123})_p - PGC_p|}{SNP_{num}}$, num is the overlapping SNPs

PGC	Compare Items	Strategy 1	Strategy 2	Strategy 3
PGC SCZ				
	p_diff	-0.03	0.0002	-0.021
<i>p</i> mean = 0.426	p_abs_diff	0.382	0.384	0.375
β mean = -0.002	β_ <i>diff</i>	0.002	-0.001	-0.010
	β_abs_diff	0.189	0.419	0.426
PGC BD				
	p_diff	-0.037	-0.003	-0.027
<i>p</i> mean = 0.441	p_abs_diff	0.383	0.387	0.380
β mean = -0.0016	β_ <i>diff</i>	-0.001	-0.004	-0.014
	β_abs_diff	0.190	0.430	0.434

Overall, S2 (matching) showed the best performance for GWAS, matching the PGC results the closest. This suggests that the matching process makes the controls and cases more similar at the level of covariates.

Future Plans

This preliminary work shows case-control matching performs better than adjusting the model for the same covariates. Future work will compare case-control matching with using all controls, test in other disease phenotypes, and measure the impact of matching when WGS techniques are used.

@JingzhanLu

