Instrucciones del proyecto

Este proyecto tiene como objetivo aplicar los conceptos de álgebra lineal al proceso de cifrado y descifrado de mensajes mediante matrices. Cada alumno recibe una matriz llave K y una cadena de números cifrados. Su tarea consiste en:

- 1. Calcular la matriz inversa K^{-1} utilizando el **método de Gauss-Jordan**.
- 2. Multiplicar la matriz inversa K^{-1} por los vectores de la cadena cifrada (en bloques de 3 en 3 números).
- 3. Obtener la secuencia numérica original y convertirla a texto según la tabla de equivalencias proporcionada.

El mensaje resultante corresponderá a una frase corta que deberá descifrarse correctamente. Presente todos los cálculos y procedimientos paso a paso en el espacio indicado.

Ejemplo de descifrado

Suponga que se le da la siguiente matriz y cadena cifrada:

$$K = \begin{pmatrix} 2 & 5 & 7 \\ 1 & 6 & 3 \\ 4 & 0 & 8 \end{pmatrix}$$
, Cadena cifrada: [7, 18, 3, 4, 9, 2, 15, 21, 5]

1. Calcular la matriz inversa K^{-1} utilizando el método de Gauss-Jordan. Para ello, se forma la matriz aumentada:

$$[K \mid I] = \begin{pmatrix} 2 & 5 & 7 & 1 & 0 & 0 \\ 1 & 6 & 3 & 0 & 1 & 0 \\ 4 & 0 & 8 & 0 & 0 & 1 \end{pmatrix}$$

Luego, aplicando operaciones elementales de fila (intercambio, multiplicación y suma), se transforma la parte izquierda en la identidad. El resultado final es:

$$[I \mid K^{-1}] = \begin{pmatrix} 1 & 0 & 0 & 0.50 & -0.39 & -0.22 \\ 0 & 1 & 0 & -0.10 & 0.26 & -0.09 \\ 0 & 0 & 1 & -0.25 & 0.24 & 0.18 \end{pmatrix} \quad \Rightarrow \quad K^{-1} = \begin{pmatrix} 0.50 & -0.39 & -0.22 \\ -0.10 & 0.26 & -0.09 \\ -0.25 & 0.24 & 0.18 \end{pmatrix}$$

2. Agrupar la cadena cifrada en vectores de tamaño 3:

3. Multiplicar K^{-1} por cada vector para recuperar los números originales del mensaje. Por ejemplo, para el primer bloque:

$$\begin{pmatrix} 0.50 & -0.39 & -0.22 \\ -0.10 & 0.26 & -0.09 \\ -0.25 & 0.24 & 0.18 \end{pmatrix} \begin{pmatrix} 7 \\ 18 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.50(7) - 0.39(18) - 0.22(3) \\ -0.10(7) + 0.26(18) - 0.09(3) \\ -0.25(7) + 0.24(18) + 0.18(3) \end{pmatrix} = \begin{pmatrix} 0.83 \\ 3.03 \\ 1.45 \end{pmatrix} \approx \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

Repitiendo este proceso para los demás bloques, se obtienen los números descifrados.

4. Convertir los números a letras utilizando la siguiente tabla de equivalencias:

5. Interpretar el mensaje obtenido.

Supongamos que el resultado final es:

$$[3, 15, 4, 9, 7, 15, 27, 19, 5, 3, 18, 5, 20, 15]$$

Usando la tabla anterior:

Por lo tanto, el mensaje descifrado es:

CODIGO SECRETO

Nota: el propósito de este ejemplo es ilustrar el procedimiento paso a paso del método de Gauss-Jordan. Cada alumno deberá aplicar el mismo proceso con su propia matriz y cadena cifrada.

	Prov	vecto	080
--	------	-------	-----

Nombre del alumno:

Matrícula: _____ Grupo: ____ Fecha de entrega: _____

Matriz llave:

$$K = \begin{pmatrix} 1.0 & 6.0 & 8.0 \\ 1.0 & 1.0 & 1.0 \\ 3.0 & 5.0 & 4.0 \end{pmatrix} \pmod{29}$$

Cadena cifrada:

289.0	55.0	210.0	158.0	34.0	139.0	176.0	38.0	135.0	266.0	52.0	193.0
186.0	28.0	113.0	105.0	18.0	78.0	168.0	37.0	131.0	209.0	51.0	182.0
266.0	52.0	193.0	155.0	32.0	120.0	105.0	30.0	102.0	207.0	37.0	170.0
309.0	62.0	256.0	259.0	50.0	203.0	267.0	53.0	196.0	320.0	56.0	225.0
154.0	38.0	137.0	335.0	51.0	218.0	259.0	40.0	186.0	345.0	61.0	248.0
208.0	43.0	159.0	345.0	61.0	248.0	195.0	53.0	214.0	171.0	33.0	120.0
161.0	44.0	150.0	160.0	37.0	135.0	178.0	27.0	109.0	161.0	44.0	150.0
160.0	37.0	135.0	266.0	39.0	161.0	267.0	61.0	233.0	73.0	23.0	80.0
341.0	63.0	248.0									

Espacio para cálculos y observaciones: