МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №5

по дисциплине: Основы программирования тема: «Использование подпрограмм в работе с двумерными массивами»

Выполнил: ст. группы ПВ-202 Буйвало Анастасия Андреевна

Проверил: Притчин Иван Сергеевич Брусенцева Валентина Станиславовна

Лабораторная работа №5 «Использование подпрограмм в работе с двумерными массивами»

Цель работы: получение навыков работы с двумерными массивами и закрепление навыков использования подпрограммами.

Задания для подготовки к работе:

- 1. Изучите способы описания и использования многомерных массивов.
- 2. Разбейте задачу соответствующего варианта на подзадачи, таким образом, чтобы решение каждой подзадачи описывалось подпрограммой, а основная программа состояла бы в основном из вызовов подпрограмм.
- 3. Опишите математическое решение задачи с выводом необходимых формул, если необходимо.
- 4. Опишите блок-схему алгоритма решения задачи в укрупненных блоках.
- 5. Для каждой подзадачи опишите используемые структуры данных, спецификацию и блок-схему алгоритма
- 6. Опишите блок-схему алгоритма решения задачи с использованием блоков «предопределённый процесс».
- 7. Закодируйте алгоритм.
- 8. Подберите наборы тестовых данных с обоснованием их выбора.

Задания к работе:

- 1. Наберите программу, отладьте ее и протестируйте.
- 2. Выполните анализ ошибок, выявленных при отладке программы.

Задание варианта №7:

Найти максимальный элемент прямоугольной матрицы в заштрихованной области.

Выполнение работы:

1. Выделение подзадач

Выделим следующие подзадачи:

- а. Ввод массива а размера М на N;
- b. Нахождение максимального элемента \max матрицы размера M на N в области d (puc 1), $M \le N$ (M = 3, N = 4);
- с. Вывод максимального элемента тах области d (рис 1).

Опишем алгоритм в укрупненных блоках в терминах выделенных подзадач.

2. Блок-схема алгоритма в укрупненных блоках:

3. Описание структур данных:

```
const M = 3;
    N = 4;
type t_arr = array [1..M, 1..N] of integer;
type t_row_range = 1..M;
type t_column_range = 1..N;
```

4. Описание подпрограмм:

Процедура input_matr:

Спецификация

- 1. Заголовок: procedure input_matr(var a: t_arr).
- 2. Назначение: ввод матрицы а размера M на N (M = 3, N = 4).
- 3. Входные параметры: нет.
- 4. Выходные параметры: а.

Блок-схема:

Функция search_max:

Спецификация

- 1. Заголовок: function search_max (a: t_arr): integer;
- 2. Назначение: возвращает значение максимального элемента \max матрицы a размера M на M (M = 3, M = 4) в области d (рис 1).
- 3. Входные параметры: а
- 4. Выходные параметры: нет

Блок схема:

5. Блок-схема алгоритма решения задачи с блоками «предопределенный процесс»:

6. Тестовые данные:

№	Исходные данные			Результаты
	М	N	а	c[i]
1	3	4	2 3 1 2	4
			1 1 2 3	
			4 1 2 3	
2	3	4	1000	1
			0001	
			0100	
3	3	4	1112	3
			1132	
			1345	

7. Текст программы:

```
program lab5;
 const M = 3;
       N = 4;
 type t_arr = array [1..M, 1..N] of integer;
 type t_row_range = 1..M;
 type t_column_range = 1..N;
 {ввод массива а размера М на N}
 procedure input_array(var a: t_arr);
   var i : t_row_range;
       j : t_column_range;
   begin
     for i := 1 to M do
       for j := 1 to N do
         read(a[i, j]);
   end;
  {возвращает значение максимального элемента матрицы max размера М на N в области
  d (puc 1)}
 function search_max(a : t_arr) : integer;
   var mt, nt, max : integer;
       i : t_row_range;
       j : t_column_range;
   begin
   mt := M;
   nt := N;
   max := a[1, mt];
   for i := 1 to M do
     begin
       for j:= mt to nt do
       begin
       if a[i,j] > max then
         max := a[i,j];
       end;
       mt := mt - 1;
       nt := nt -1;
     end;
     search max := max;
    end;
 var a: t_arr;
     max : integer;
   input_array (a);
   max := search_max (a);
   writeln ('максимальный элемент');
   writeln (max);
 end.
```

8. Анализ допущенных ошибок:

• Пропущено і в записи імах;

9. Результаты работы программы:

Окно вывода 2 3 1 2 1 1 2 3 4 1 2 3 максимальный элемент 4