Foundations of Statistical Inference, BS2a, Exercises 1

- 1. Let X_1, \ldots, X_n be independent Poisson random variables with means $\mathbb{E}(X_i) = \lambda m_i, i = 1, \ldots, n$ where $\lambda > 0$ is unknown and m_1, \ldots, m_n are known constants.
- (a) Show that the model defines a canonical exponential family with canonical parameter $\theta = \log \lambda$.
- (b) What is the canonical sufficient statistic? Find its mean and variance.
- (c) Find the MLE $\widehat{\theta}$ of θ .
- (d) Find the Fisher information for θ . What statements can you make about the variance of $\widehat{\theta}$.
- 2. A random sample X_1, \ldots, X_n is taken from the Weibull distribution

$$\frac{\beta}{\alpha^{\beta}} x^{\beta - 1} \exp\left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, \ x > 0, \alpha > 0, \beta > 0.$$

Assuming that β is known, find a single function of X_1, \ldots, X_n which is sufficient for α . Show that however if α is known there is no single function of X_1, \ldots, X_n which is sufficient for β . Does the Weibull distribution belong to a 2-parameter exponential family?

3. Let X_1, \ldots, X_n be a random sample from the density

$$f(x;\theta) = e^{-(x-\theta)}, \ x > \theta$$

- (a) Show that the MLE $\widehat{\theta}$ of θ is the minimum of X_1, \ldots, X_n .
- (b) Show that $\hat{\theta}$ is a sufficient for θ . Is the family a regular exponential family?
- (c) Show that for all $\epsilon > 0$

$$P_{\theta}[|\widehat{\theta} - \theta| > \epsilon] \le e^{-n\epsilon},$$

deduce that $\widehat{\theta}$ is consistent in probability and in quadratic mean, but is biased estimator of θ with $\mathbb{E}[\widehat{\theta}] = \theta + 1/n$. Suggest an unbiased and consistent estimator and find its variance.

4. Let X_1, \ldots, X_n be a random sample from a distribution with density

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x}, \ x > 0.$$

(a) Rewrite the density in standard exponential form, giving $A(\theta)$, B(X), C(X), $D(\theta)$ explicitly.

- (b) Find a minimal sufficient statistic for θ , T(X) . Find the expected value of the statistic.
- (c) Find the maximum likelihood estimator for θ . Is it unbiassed for θ ?
- (d) Show that $\theta^* = (2/n) \sum_{i=1}^n X_i^{-1}$ is an unbiased estimator of θ and find its variance.
- (e) Compute the Fisher information matrix $I_n(\theta)$ of the model and compare the variance of θ^* with $I_n(\theta)$.
- 5. Let X_1, \ldots, X_n be a sample from $N(\mu, \sigma^2)$.
- (a) Show that the MLE of σ^2 is

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

(b) Show that $\hat{\sigma}^2$ has a smaller mean square error than

$$(n-1)^{-1}\sum_{i=1}^{n}(X_i-\bar{X})^2.$$

(c) For which value of a is the MSE of

$$(n+a)^{-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$$

the smallest. Hint: For (b) and (c) you will need to find $Var(\chi_{n-1}^2)$ which is a special case of the variance of a gamma distribution.

- 6. a) Let Y_1, \dots, Y_n be a random sample from a Posson distribution with parameter $\lambda > 0$. One observes only $W_i = \mathbf{1}_{Y_i > 0}$. Compute the likelihood associated with the sample (W_1, \dots, W_n) and the MLE in λ . Show that it is consistent in probability.
- b) Let X_1, \ldots, X_n be a random sample from a truncated Poisson distribution with distribution

$$f(x; \lambda) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \cdot \frac{\lambda^x}{x!}, \ x = 1, 2, \dots$$

For i = 1, ..., n a random variable Z_i is defined by

$$Z_i = X_i$$
 if $X_i \ge 2$ or $Z_i = 0$ if $X_i = 1$

Show that \bar{Z} is an unbiased estimator of λ with efficiency

$$\frac{1 - e^{-\lambda}}{1 - \left(\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right)^2}.$$

- 7. (a) (optional bookwork) Let X be a discrete random variable with pmf $f(x;\theta)$ with parameter $\theta \in \Theta$ and sample space $X \in \chi$. Let T(x) be a function of x. Suppose $f(x;\theta)/f(y;\theta)$ is not a function of θ if and only if T(x) = T(y). Show that T(x) is minimal sufficient for θ .
- (b) Let N = N(0, S] be the number of events in a Poisson arrival process of rate λ acting over time s in the interval $0 < s \le S$. Suppose we observe arrivals in the process at times $X_1, X_2, ..., X_N$, and wish to use these data to estimate λ . Show that N is minimal sufficient for λ (assume the result in (a) holds for any sufficiently regular family of probability distributions).