Formulae Sheet for EE1002: Introduction to Circuits and Systems

Part 1

Resistos in series: $R_{eq} = R_1 + R_2 + R_3$; Resistors in parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Capacitors in series: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$; Capacitors in parallel: $C_{eq} = C_1 + C_2 + C_3$

Indetuors in series: $L_{eq} = L_1 + L_2 + L_3$; Inductors in parallel: $\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$

Charge in capacitor: Q = CV, Energy stored in Capacitor: $E_C = \frac{1}{2}CV^2$

Flux - linkage for inductor : $\lambda = LI$, Energy stored in Inductor : $E_L = \frac{1}{2}LI^2$

Capacitor voltage transient in an RC circuit: $v_c(t) = v_c(0)e^{-\frac{t}{\tau}} + v_c(\infty)\left(1 - e^{-\frac{t}{\tau}}\right), \tau = RC$

Inductor Current transient in an RL circuit : $i_L(t) = i_L(0)e^{-\frac{t}{\tau}} + i_L(\infty)\left(1 - e^{-\frac{t}{\tau}}\right), \tau = \frac{L}{R}$

AC:

Impedance for R, L, C: $Z_C = \frac{1}{jC\omega}$, $Z_L = j\omega L$, $Z_R = R$

where
$$\omega = 2\pi f = 2\pi \frac{1}{T}$$
, $V_m = \sqrt{2}V_{RMS}$, $I_m = \sqrt{2}I_{RMS}$

AC Power:

AC supply connected to AC load: $Z = R + jX = \sqrt{R^2 + X^2} \angle \phi$, $\phi = \tan^{-1} \left(\frac{X}{R}\right)$, $X = \omega L$ or $X = -\frac{1}{\omega C}$

Given $v(t) = V_m \cos(\omega t)$, $i(t) = I_m \cos(\omega t - \phi)$,

Apparent power = $V_{RMS}I_{RMS}$

Average power (Real power) = $V_{RMS}I_{RMS}\cos\phi$

Imaginary power = $V_{RMS}I_{RMS}\sin\phi$

Power factor = $\cos \phi$,

(lagging power factor if current lags voltage, else leading power factor if current leads voltage)

Part 2

Chapter 1: Magnetic Circuits and transformers		
Magnetic flux	$B = \frac{\phi}{A} (1.2a)$ $\lambda = N \times \phi (1.3)$	
Flux-linkage	$\lambda = N \times \phi \ (1.3)$	
Faraday's Law	$e = N \frac{d\phi}{dt} = \frac{d(N\phi)}{dt} = \frac{d\lambda}{dt} \qquad (1.4a)$	
Voltage Induced in Field-cutting Conductors	$e = N \frac{d\phi}{dt} = \frac{d(N\phi)}{dt} = \frac{d\lambda}{dt} \qquad (1.4a)$ $e = \frac{d\lambda}{dt} = Bl \frac{dx}{dt} = Bl(u = \frac{dx}{dt}) = Blu (1.5)$ $\phi = \phi_m \sin(\omega t),$	
Voltage Induced by Time-varying Flux	$\phi = \phi_m \sin(\omega t),$ $e = N \frac{d\phi}{dt} = N \phi_m \omega \cos(\omega t) \text{ volts} (1.6)$	
Magnetic Field Intensity and Ampere's Law	$B = \mu H = \mu_r \mu_0 H (1.7) \oint H \cdot dl = \sum i (1.8)$ $Hl = \sum i = H \times (2\pi r) = I \Rightarrow H = \frac{I}{2\pi r} \Rightarrow B = \mu H$	
Magnetic Field around a long Straight Wire	$Hl = \sum_{i} i = H \times (2\pi r) = I \Rightarrow H = \frac{I}{2\pi r} \Rightarrow B = \mu H$ $= \frac{\mu I}{2\pi r} (1.9)$	
Magnetic Field in a Toroidal Core	$= \frac{\mu I}{2\pi r} (1.9)$ $Hl = \sum_{i=1}^{N} i = H \times (2\pi R) = NI \Rightarrow H = \frac{NI}{2\pi R} \Rightarrow B = \mu H = \frac{\mu NI}{2\pi R}$ $\Rightarrow \phi = B \times A = \frac{\mu NI}{2\pi R} \times (\pi r^{2}) = \frac{\mu NI r^{2}}{2R} \Rightarrow \lambda = N\phi$ $= \frac{\mu N^{2} I r^{2}}{2R} (1.9a)$	
Magnetic Circuits, MMF	$\mathcal{F} = N \times i \qquad A - turns \qquad (1.10)$	
Reluctance of magnetic path	$\mathcal{R} = \frac{l}{\mu A} (1.11)$ $\mathcal{F} = \mathcal{R} \times \phi \qquad (1.12)$	
MMF	$\mathcal{F} = \mathcal{R} \times \phi \tag{1.12}$	
Self-Inductance	$L = \frac{\lambda}{i} = \frac{N\phi}{i} = \frac{N(\frac{Ni}{\mathcal{R}})}{i} = \frac{N^2}{\mathcal{R}} $ (1.13)	
Voltage induced in the self-inductance	$e = \frac{d\lambda}{dt} = \frac{d(Li)}{dt} = L\frac{di}{dt} = v_L \qquad (1.14)$	
Self-inductances of coils	$L_1 = \frac{\lambda_{11}}{i_1}$ and $L_2 = \frac{\lambda_{22}}{i_2}$ (1.15)	
Mutual inductances between coils	$e = \frac{d\lambda}{dt} = \frac{d(Li)}{dt} = L\frac{di}{dt} = v_L \qquad (1.14)$ $L_1 = \frac{\lambda_{11}}{i_1} \text{ and } L_2 = \frac{\lambda_{22}}{i_2} \qquad (1.15)$ $M = \frac{\lambda_{21}}{i_1} = \frac{\lambda_{12}}{i_2} \qquad (1.16)$	
Total flux-linkage	i_1 i_2 $\lambda_1 = \lambda_{11} \pm \lambda_{12} = L_1 i_1 \pm M i_2 $ and $\lambda_2 = \pm M i_1 + L_2 i_2$ (1.17)	
Transformer voltage relationship	$v_2(t) = \frac{N_2}{N_1} \ v_1(t) \ (1.22)$	
Transformer current relationship	$v_2(t) = \frac{N_2}{N_1} v_1(t) (1.22)$ $\mathcal{F} = N_1 i_1(t) - N_2 i_2(t) = 0 \Rightarrow i_2(t) = \frac{N_1}{N_2} i_1(t) (1.23)$	

Ideal transformer power relationship	$p_2(t) = v_2(t) \times i_2(t) = v_1(t) \times i_1(t) = p_1(t)$ (1.24)	
Impedance Transformations	$Z_L = \frac{\mathbf{V_2}}{I_2} \Rightarrow Z_L' = \frac{\mathbf{V_1}}{I_1} = \left(\frac{N_1}{N_2}\right)^2 Z_L $ (1.25)	
Real transformer	$P = V_{rms} I_{rms} \cos\phi, Q = V_{rms} I_{rms} \sin\phi, S = V_{rms} I_{rms}$	
Voltage regulation of transformer	percent regulation = $\frac{V_{no-load} - V_{load}}{V_{load}} \times 100\%$ (1.26)	
Efficiency of transformer	power efficiency = $\frac{P_{out}}{P_{in}} \times 100\%$ (1.27)	
Chapter 2: Power Semiconductor Diodes and Rectifiers		
Half-wave rectifier average voltage	$V_{o,avg} = \frac{V_m}{\pi} (2.1)$	
Output filter capacitor for half-wave rectifier	$C = \frac{I_L T}{V_{pk-pk}} = \frac{I_L}{V_{pk-pk} \times f} (2.6)$ $V_{o,avg} = \frac{1}{\pi} \left[\int_0^{\pi} V_m \sin(\omega t) d(\omega t) \right] = \frac{2V_m}{\pi} (2.7)$ $C = \frac{I_L \times T}{2 \times V_{pk-pk}} = \frac{I_L}{2 \times f_S \times V_{pk-pk}} (2.8)$	
Full-wave bridge rectifier average voltage	$V_{o,avg} = \frac{1}{\pi} \left[\int_0^{\pi} V_m \sin(\omega t) d(\omega t) \right] = \frac{2V_m}{\pi} (2.7)$	
Output filter capacitor for full-wave bridge rectifier	$C = \frac{I_L \times T}{2 \times V_{pk-pk}} = \frac{I_L}{2 \times f_s \times V_{pk-pk}} $ (2.8)	
Chapter 3: Introduction to Electromechanical Energy Converters		
Torque in an electrical machine	$T = k(\mathbf{B_s} \times \mathbf{B_r}) = k B_s B_r \sin(\gamma) (3.2)$	
Linear DC machine	$\mathbf{F}_{\text{ind}} = i(1 \times \mathbf{B}) \tag{3.3}$	
	$e_{ind} = (\mathbf{u} \times \mathbf{B}) \bullet 1 \tag{3.4}$	
	$KVL: V_T - i_A R_A - e_{ind} = 0 (3.5)$	
	Netwon's Law: $\mathbf{F}_{net} = m \times a (3.6)$	
Steady-state linear velocity	$V_T = e_{ind} = Bl\mathbf{u}_{ss} \Rightarrow \mathbf{u}_{ss} = \frac{V_T}{Bl}$ (3.11)	
Converted power in linear DC machine	$P_{conv} = e_{ind} \times i_A = F_{ind} \times u \tag{3.13}$	
Field-circuit voltage in rotating DC machine	$V_F = R_F I_F \qquad (3.16)$	
Back-emf in DC machine	$E_A = K_A \phi \omega_m (3.17)$	
Motor torque in DC machine	$T_{dev} = K_T \phi I_A (3.18)$	
Converted power in rotating DC machine	$P_{dev} = T_{dev}\omega_m = E_A \times I_A \tag{3.19}$	
Armature and field circuit voltages under steady-state condition	V_T or $V_A = E_A + I_A R_A$ armature circuit (3.21) $V_F = I_F R_F$ field circuit (3.22)	

Armature and field circuit voltages under dynamic condition	$v_T(t)$ or $v_A(t) = e_A(t) + i_A(t)R_A + L_a \frac{di_A}{dt}$ (armature circuit) (3.23)
	$v_F = i_F(t)R_F + L_f \frac{di_F}{dt}$ (field circuit) (3.24)
Equation of motion	$T_{dev}(t) = k_T \phi(t) i_A(t) = T_L + b(t) \omega_m + J \frac{d\omega_m}{dt} $ (3.25)
Generator voltage relationship with speed	$\frac{E_{A1}}{E_{A2}} = \frac{n_1}{n_2} = \frac{\omega_1}{\omega_2} $ (3.26)
Motor torque-speed characteristic	$\omega_{m} = \frac{V_{T}}{K_{A}\phi} - \frac{R_{A}T_{dev}}{(K_{T}\phi)(K_{A}\phi)} = \frac{V_{T}}{K\phi} - \frac{R_{A}}{(K\phi)^{2}}T_{dev} $ (3.29)
Chopper output voltage	$V_o = \frac{1}{T} \int_0^T v_o(t) dt = V_s \times \frac{T_{on}}{T} = V_s \times D $ (3.33)