DSP First

Second Edition

CHAPTER 9

z-Transforms

Contents

- Definition of the z-Transform
- z-Transform Properties and Convolution
- z-Domain vs. frequency domain
- Filter Design in z-Domain: Zeros and Poles of H(z)

TWO (no, THREE) DOMAINS

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$H(e^{j\widehat{\omega}}) = \sum_{k=0}^{M} b_k \, e^{-j\widehat{\omega}k}$$

z-TRANSFORM CONCEPT

- Move to a new domain where
 - OPERATIONS are SIMPLER & FAMILIAR
 - Use simple POLYNOMIALS

- TRANSFORM both ways
 - $x[n] \to X(z)$ (into the z domain)
 - $X(z) \rightarrow x[n]$ (back to the time domain)

"TRANSFORM" EXAMPLE: DTFT

Equivalent Representations

Z-TRANSFORM IDEA

• For any complex number z, H(z) is represented with polynomials.

9-1 Z-Transform DEFINITION

Finite length signal x[n]

$$x[n] = \sum_{k=0}^{L-1} b_k \delta[n-k]$$

Z-transform of x[n]

$$X(z) = \sum_{k=0}^{L-1} x[k]z^{-k}$$

9-2 z-Transform Property: Linearity

 Can be proven that z-transform satisfies the superposition(addition and scaling) property.

$$x[n] = ax_1[n] + bx_2[n]$$

$$X(z) = \sum_{n=0}^{L-1} x[n]z^{-n} = \sum_{n=0}^{L-1} (ax_1[n] + bx_2[n])z^{-n}$$

$$= a \sum_{n=0}^{L-1} x_1[n] z^{-n} + b \sum_{n=0}^{L-1} x_2[n] z^{-n} = a X_1[z] + b X_2[z]$$

Review: Unit Delay

$$\xrightarrow{x[n]} \delta[n-1] \xrightarrow{y[n] = x[n-1]}$$

y[n]: x[n] is delayed by 1

- Example
 - $-x[n] = \{3,1,4,1,5,9\} \rightarrow y[n] = \{0,3,1,4,1,5,9\}$

z-Transform Property: Time-Delay

- UNIT DELAY: find y[n] via polynomials
 - $x[n] = {3,1,4,1,5,9,0,0,...}$

									<i>n</i> > 6
y[n]	0	0	3	1	4	1	5	9	0

Relationship between X(z) and Y(z) in Z-domain?

$$Y(z) = 0z^{0} + 3z^{-1} + z^{-2} + 4z^{-3} + z^{-4} + 5z^{-5} + 9z^{-6}$$

$$Y(z) = z^{-1}(3 + z^{-1} + 4z^{-2} + z^{-3} + 5z^{-4} + 9z^{-5})$$

$$Y(z) = z^{-1}X(z)$$

Multiply by z^{-1} so that Y(Z) causes the delay by 1 from X(z)

DELAY PROPERTY

A delay of one sample multiplies the z-transform by z^{-1} .

$$x[n-1] \iff z^{-1}X(z)$$

$$\iff$$

$$z^{-1}X(z)$$

Time delay of n_0 samples multiplies the z-transform by z^{-n_0}

$$x[n-n_0] \iff z^{-n_0}X(z)$$

$$\iff$$

$$z^{-n_0}X(z)$$

Z-Transform EXAMPLE: forward

ANY SIGNAL has a z-Transform:

$$X(z) = \sum_{n} x[n]z^{-n}$$

n	n < -1	-1	0	1	2	3	4	5	n > 5
x[n]	0	0	2	4	6	4	2	0	0

$$X(z) = ?$$

$$X(z) = ?$$
 $X(z) = 2 + 4z^{-1} + 6z^{-2} + 4z^{-3} + 2z^{-4}$

Z-Transform EXAMPLE: backward

$$x[n] = \begin{cases} 0 & n < 0 \\ 1 & n \neq 0 \\ -2 & n \neq 1 \\ 0 & n = 2 \\ 3 & n = 3 \\ 0 & n = 4 \\ -1 & n = 5 \\ 0 & n > 5 \end{cases}$$

$$x[n] = \delta[n] - 2\delta[n-1] + 3\delta[n-3] - \delta[n-5]$$

9-3,4 z-Transform of an FIR Filter

Impulse response of FIR filter

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] \longrightarrow h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

z-Transform of h[n] : SYSTEM FUNCTION

$$H(z) = \sum_{k=0}^{M} h[k]z^{-k}$$

Convolution & z-Transform

FIR difference equation

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

z-Transform of FIR filter

$$Y(z) = \sum_{k=0}^{M} b_k (z^{-k}X(z)) = \left(\sum_{k=0}^{M} b_k z^{-k}\right) X(z)$$

$$\underset{linearity}{\underbrace{ linearity}}$$

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k] \Leftrightarrow Y(z) = H(z)X(z)$$

CONVOLUTION EXAMPLE

• MULTIPLY the z-TRANSFORMS:

$$x[n] = \delta[n-1] - \delta[n-2] + \delta[n-3] - \delta[n-4]$$
and
$$h[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$$

$$X(z) = 0 + 1z^{-1} - 1z^{-2} + 1z^{-3} - 1z^{-4}$$

and
$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$$

MULTIPLY H(z)X(z)

CONVOLUTION EXAMPLE

- Finite-Length input x[n]
- FIR Filter (L=4)

$$Y(z) = H(z)X(z)$$

$$= (1 + 2z^{-1} + 3z^{-2} + 4z^{-3})(z^{-1} - z^{-2} + z^{-3} - z^{-4})$$

$$= z^{-1} + (-1 + 2)z^{-2} + (1 - 2 + 3)z^{-3} + (-1 + 2 - 3 + 4)z^{-4}$$

$$+ (-2 + 3 - 4)z^{-5} + (-3 + 4)z^{-6} + (-4)z^{-7}$$

$$= z^{-1} + z^{-2} + 2z^{-3} + 2z^{-4} - 3z^{-5} + z^{-6} - 4z^{-7}$$

$$y[n] = ?$$

$$y[n], Y(z) 0 +1 +1 +2 +2 -3 +1 -4$$

$$0 + 1$$

$$+1$$

CASCADE SYSTEMS

- Does the order of S₁ & S₂ matter?
 - NO, LTI SYSTEMS can be rearranged !!!
 - Remember: $h_1[n] * h_2[n]$
 - How to combine $H_1(z)$ and $H_2(z)$?

CASCADE EQUIVALENT

Multiply the System Functions

CASCADE EXAMPLE

9-5~7 Relationship between z-Domain and Freq. Domain

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$H(e^{j\widehat{\omega}}) = \sum_{k=0}^{M} b_k \, e^{-j\widehat{\omega}k}$$

Review: FREQUENCY RESPONSE?

Same Form:

H(z) & $H(e^{j\widehat{\omega}})$ in a Complex Plane

- What is e^{jŵ} in a complex plane?
- What is z in a complex plane?
- What is H(z) in a complex plane?
- What is $H(e^{j\widehat{\omega}})$ in a complex plane?

Evaluate H(z) on Unit Circle

$$H(z) = 1 + 0.5z^{-1} - 0.5z^{-2}$$
$$= (1 + z^{-1})(1 - 0.5z^{-1})$$

$$\begin{array}{c}
\mathbf{DTFT} \\
H(e^{j\widehat{\omega}}) = H(z) \Big|_{z=e^{j\widehat{\omega}}}
\end{array}$$

zeros at z = -1 and z = 0.5

[Q] What are DFT
H[k] in the plot?

DFT By Sampling DTFT

Z-Transform: ANOTHER ANALYSIS TOOL

- z-Transform POLYNOMIALS are EASY!
 - ROOTS, FACTORS, etc.
- Can easily choose ZEROS and POLES so we design whatever filter we want to make →
 Location of zeros and poles is important to
 - Location of zeros and poles is important to characterize the filter response.
- The z-domain is COMPLEX.
- → H(z) is a COMPLEX-VALUED function of a COMPLEX VARIABLE z.

ZEROS & Poles of H(z)

$$H(z) = 1 - 0.5z^{-1} = 1 - \frac{0.5}{z} = \frac{z - 0.5}{z}$$

- Find z, where $H(z) = 0 \rightarrow zeros$
 - H(z) becomes zero at z = 0.5.
 - \rightarrow H(z) has a zero at z = 0.5.

- Find z, where $H(z) = \infty \rightarrow \text{poles}$
 - H(z) becomes infinite at z = 0.
 - \rightarrow H(z) has a pole at z = 0.

EX) ZEROS of H(z)

- Find z, where H(z)=0
 - Interesting when z is ON the unit circle.

$$H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$$

$$H(z) = \frac{z^3(1 - 2z^{-1} + 2z^{-2} - z^{-3})}{z^3}$$

$$= \frac{z^3 - 2z^2 + 2z - 1}{z^3} = \frac{(z - 1)(z^2 - z + 1)}{z^3}$$

$$= (1 - z^{-1})(1 - z^{-1} + z^{-2})$$

Roots:
$$z = 1$$
, $\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$

$$e^{\pm j\pi/3}$$

EX) POLES of H(z)

- Find z, where $H(z) \rightarrow \infty$
 - Not very interesting for the FIR case

$$H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$$

$$H(z) = \frac{z^3 - 2z^2 + 2z - 1}{z^3}$$

Three Poles at: z = 0

EX) PLOT ZEROS in z-DOMAIN:

3 Nulling points of the frequency response

$$H(z) = (1 - z^{-1})(1 - z^{-1} + z^{-2})$$
 $z = 1, \frac{1}{2} \pm j \frac{\sqrt{3}}{2}$

EX) FREQ. RESPONSE from ZEROS

$$H(e^{j\widehat{\omega}}) = H(z)\Big|_{z=e^{j\widehat{\omega}}}$$

- Relate H(z) to FREQUENCY RESPONSE
- EVALUATE H(z) on the <u>UNIT CIRCLE</u>
 - ANGLE $\hat{\omega}$ is same as FREQUENCY

 $z=e^{j\widehat{\omega}}$ (as $\widehat{\omega}$ varies) defines a CIRCLE, radius = 1

$$H(e^{j\widehat{\omega}}) = H(z)\Big|_{z=e^{j\widehat{\omega}}}$$

The Complex *z*-Plane

EX) FIR Frequency Response

Magnitude of Frequency Response for h[n] = 1,-2,2,-1

Phase Angle of Frequency Response for h[n] = 1,-2,2,-1

EX) NULLING FILTER Design

PLACE ZEROS to make y[n] = 0

$$H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$$
The output resulting from each of the

the output resulting from each of the following three signals will be zero:

$$H(z_1) = 0$$
 $x_1[n] = (z_1)^n = 1$

$$H(z_2) = 0$$
 $x_2[n] = (z_2)^n = e^{j\pi n/3}$

$$H(z_3) = 0$$
 $x_3[n] = (z_3)^n = e^{-j\pi n/3}$

$$y_1[n] = 0$$

$$y_2[n] = 0$$

$$y_3[n] = 0$$

Another example: L-pt RUNNING Average H(z)

sum of geometric series (등비수열)
$$\sum_{n=0}^{\infty} ar^n = \frac{a(1-r^n)}{1-r} \Rightarrow \frac{a}{1-r}, |r| < 1$$

$$H(z) = \sum_{k=0}^{L-1} \frac{1}{L} z^{-k} = \frac{1 - z^{-L}}{L(1 - z^{-1})} = \frac{z^{L} - 1}{Lz^{L-1}(z - 1)}$$
 L-1 POLES at $z = 0$ one POLE at $z = 1$

$$z^L - 1 = 0 \quad \Rightarrow \quad z^L = 1 = e^{j2\pi k}$$

$$z = e^{j(2\pi/L)k}$$
 for $k = 1, 2, ... L - 1$

ZEROS at
$$\widehat{\omega} = \frac{2\pi k}{L}$$
 on UNIT CIRCLE

Pole and zero are canceled when z = 1 (k = 0).

11-pt RUNNING Average H(z)

: displayed with the region $|z| \le 1.5$

FILTER DESIGN: CHANGE L

Filter Design Example

- → Z transform needed for easier design
- Design a Lowpass FIR filter → i.e. Find b_k's
- Reject completely 0.7π , 0.8π , and 0.9π
 - NULLING at $\pm 0.7\pi$, $\pm 0.8\pi$, $\pm 0.9\pi$
- Estimate the filter length needed to accomplish this task. How many b_k?
- → Z POLYNOMIALS provide the TOOLS

$$H(z) = \frac{(z - e^{j0.7\pi})(z - e^{-j0.7\pi})(z - e^{j0.8\pi})(z - e^{-j0.8\pi})(z - e^{j0.9\pi})(z - e^{-j0.9\pi})}{z^6}$$
$$= z^{-6}(z - e^{j0.7\pi})(z - e^{-j0.7\pi})(z - e^{-j0.8\pi})(z - e^{-j0.8\pi})(z - e^{-j0.9\pi})(z - e^{-j0.9\pi})$$

At least 7 b_k's are required!

PeZDemo: Zero Placing

3 Domain Movie: FIR LPF

z transform domain H(z) and Pole Zero Plot

3 DOMAINS MOVIE: FIR BPF

4 MOVIES @ Blackboard

- 3 DOMAINS MOVIES: FIR Filters
 - fir2.mp4: Two zeros moving around UC and inside
 - fir3.mp4: Three zeros; one held fixed at z=-1
 - fir10_1.mp4:
 Ten zeros; 9 equally spaced around unit circle;
 one moving
 - fir10_r.mp4
 Ten zeros; 8 equally spaced around unit circle;
 two moving

Summary

- Definition of the z-Transform
- z-Transform Properties and Convolution
- z-Domain vs. frequency domain
- Filter Design in z-Domain: Zeros and Poles of H(z)