(2010 年度後期 担当:佐藤)

球面のベクトル方程式・

与えられたベクトル \vec{c} と正の数 r に対し,

$$|\vec{p} - \vec{c}| = r \tag{2.1}$$

を満たす点 \vec{p} の全体を \vec{c} を中心とする半径 \vec{r} の球面という。球面とは点 \vec{c} からの距離が一定値 \vec{r} である点の集合である。

問題 **2.9.**
$$\vec{p} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\vec{c} = \begin{pmatrix} a \\ b \end{pmatrix}$ として, (2.1) を x,y の方程式で表しなさい*1.

問題 **2.10.**
$$\vec{p}=\begin{pmatrix}x\\y\\z\end{pmatrix},\;\vec{c}=\begin{pmatrix}a\\b\\c\end{pmatrix}$$
 として, (2.1) を x,y,z の方程式で表しなさい.

球面の媒介変数表示 ——

ここでは原点 O を中心とし、半径 r の球面を考える.

● 平面 R² 内の球面 (円周) の媒介変数表示は

$$\begin{pmatrix} r\cos t \\ r\sin t \end{pmatrix}$$

で与えられる。ただし、 $0 < t < 2\pi$.

• 空間 R³ 内の球面の媒介変数表示は

$$\left(\begin{array}{c} r\cos t\cos s\\ r\sin t\cos s\\ r\sin s \end{array}\right).$$

で与えられる。ただし、 $0 \le t \le 2\pi$ 、 $-\frac{\pi}{2} \le s \le \frac{\pi}{2}$.

問題 **2.11.** $x = r \cos t \cos s$, $y = r \sin t \cos s$, $z = r \sin s$ が方程式

$$x^2 + y^2 + z^2 = r^2$$

を満たすことを示しなさい.

^{*1} \mathbf{R}^2 内の球面は円周に他ならない