数值代数实验报告

PB21010456 杨隽臣

2023年12月30日

一、问题描述

参考课本 7.6.2 节 (P234-240)SVD 迭代完成 SVD 算法 7.6.3, 并对附件 svddata.txt 中的矩阵作 SVD 分解 $A=P\Sigma Q$ 。并计算 $PP^T-I,QQ^T-I,P\Sigma Q-A$ 的绝对值最大的元素,依次用 ep, eq, et 表示。

要求输出迭代次数,从小到大排序的所有奇异值以及上面要求的三个值。

输出格式为: (可以更详细,不能比下面的简单)

迭代次数: x

奇异值从小到大:

ep = xx

eq = xx

et = xx

以下内容不需要在报告中给出,但要在上交的程序中输出。

A=PTQ(可以用别的字母, 但是要在最上面说明)

T=

[矩阵]

P=

[矩阵]

Q =

[矩阵]

二、程序介绍

本次实验主要函数包括 double-diagonal (二对角化)、SVD、wilkinson,以及之前实验涉及的求矩阵范数、矩阵相乘等。

- 1. 二对角化:对应于将 A^TA 三对角化,这里将 A 二对角化,即计算正交阵 U,V,使得 U^TAV 为二对角阵。二对角化可以通过一系列 householder 变换来实现。
- 2. 带 wilkinson 位移的 SVD 迭代: 应用对称 QR 算法的第二步就是对对称三对角阵 $T = B^T B$ 进行带位移的隐式 QR 迭代。不把 T 明确算出来即可完成。首先选取 $T = B^T B$ 矩阵的右下

角 2 阶矩阵的 wilkinson 位移,然后确定一个 Givens 变换 $G(1,2,\theta_1)$ 将第一列的第二个分量 变为 0。然后确定一个正交阵 Q,使得 $Q^T(G_1^TTG_1)Q$ 是对称三对角阵,且 $Qe_1=e_1$ 。这一步只需计算正交矩阵 P,Q 使得 $P^T(BG_1)Q$ 是二对角阵,且 $Qe_1=e_1$,这一步可以利用 Givens 变换来实现。

3. SVD 算法: 首先输入矩阵 A, 将其二对角化, 然后进行收敛性判定: 将满足条件的较小对角元、次对角元置为 0, 确定最大的非负整数 p 和最小的非负整数 q 使得 $B = diag(B_{11}, B_{22}, B_{33})$, 其中 B_{11} 为 p 阶, B_{33} 为 q 阶对角阵, 而 B_{22} 对角元之上的次对角元均不为 0. 如果 q = n 则输出有关信息,否则进行下一步。若 B_{22} 有对角元为 0 (最后一个除外),则将其行的元素均化为 0,并将相应的变换矩阵累积到 U,然后进行收敛性判定,否则进行下一步。应用wilkinson 位移的 SVD 迭代到 B_{22} 产生正交矩阵 P, Q 以及二对角阵 $B_{22} = P^T B_{22} Q$,并重新计算 P, Q,然后进行收敛性判定。

三、实验结果

```
迭代次数为17
奇异值从小到大为
0.375993 0.703989 0.880006 1.14018 1.89863 2.60205 3.1445 4.98101 5.94702 8.66648 32.2979 214.31
ep=1.55431e-15
eq=1.22125e-15
et=2.27307e-06
```

图 1: 迭代次数、奇异值

图 2: P 矩阵

图 3: P 矩阵

```
\begin{array}{c} 131768 & -0.0213873 & -0.157435 & 0.465802 & -0.0531484 & 0.339082 & -0.231688 & 0.0120718 \\ -0.161575 & 0.00893414 & -0.102 & -0.0802051 & -0.315397 & 0.0526245 & 0.0364021 \\ -0.127682 & 0.0474879 & -0.242878 & 0.246161 & -0.158028 & 0.0758759 & -0.0352377 & 0.015888 & -0.0893203 & 0.141246 & 0.0329373 & 0.466794 & 0.0592561 & 0.0892004 & 0.0825633 & 0.019016 & 0.100567 & -0.380861 & -0.116152 & 0.066423 & 0.0592561 & 0.0892004 & 0.0825633 & 0.019173 & 0.0273063 & -0.0760688 & -0.267384 & -0.010747 & -0.00408776 & -0.435188 & -0.19226 & 0.389877 & 0.195299 & 0.152068 & -0.267384 & -0.010747 & -0.00408776 & -0.435188 & -0.19226 & 0.389877 & 0.195299 & 0.152068 & -0.267384 & -0.010747 & -0.00408776 & -0.435188 & -0.19226 & 0.0034041 & 0.0648447 & 0.142297 & 0.0187205 & -0.284525 & -0.065896 & 0.00187205 & -0.284525 & -0.065896 & 0.00187205 & -0.284525 & -0.065896 & 0.00187205 & -0.284525 & -0.065896 & 0.00187205 & -0.0934195 & -0.0344182 & 0.212791 & -0.10155 & -0.0934195 & -0.0244848181 & 0.299806 & 0.0206603 & -0.200705 & -0.284525 & -0.0584278 & -0.0317328 & 0.585665 & 0.202158 & -0.22555 & -0.058458 & -0.22712 & -0.0394195 & -0.0317328 & 0.585665 & 0.202158 & -0.152462 & 0.0112569 & -0.035673 & -0.0317328 & 0.585665 & 0.202158 & -0.133156 & 0.152462 & 0.00112569 & -0.035673 & -0.0317328 & 0.585665 & 0.202158 & -0.133156 & -0.152462 & 0.0112569 & -0.035673 & -0.018320 & -0.039611 & 0.063849 & -0.0348362 & -0.0379005 & 0.248796 & 0.223688 & -0.212712 & 0.0526566 & 0.0365469 & 0.043857 & -0.039905 & -0.034905 & 0.035825 & -0.0317127 & -0.10255 & 0.0526566 & 0.0365469 & 0.043857 & -0.039905 & 0.043822 & 0.035838 & -0.227172 & 0.0526566 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.0365469 & 0.
```

图 4: P 矩阵

T=																
214.31				0												0
0	32.2979															0
0			66648													0
0				5.9470												0
0						98101										0
0				0			3. 14	145								0
0				0						60205						0
0				0					0		1.					0
0				0								0.3				0
0	0	0		0	0		0		0		0	0		. 14018		0
0	0	0		0	0		0		0		0	0	0		. 703989	0
0	0			0	0		0		0			0	0	0	0.	. 880006
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0				0	0		0		0			0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0) 0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
Ō	0	0		0	0		0		0		0	0	0	0	0	
Ō	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	
0	0	0		0	0		0		0		0	0	0	0	0	

图 5: T 矩阵

0=			
0. 0234413	0.0312827	0. 157212	0.0779178
0. 956374			
-0. 0422221	-0. 0873538	3 −0. 36346	7 -0.17
5794 0. 283782 -0. 0839516 -0. 0830574 -0. 0294925 0. 00963127 -0. 521551 -0. 0630768 0. 759487 -0. 0186828	-0 135289	-0.049655	4 -0.04
80063 0.0112589 -0.348422 0.0351311 -0.0302003	0. 100203	0.043000	1 0.01
-0. 028024	0. 156338	0.08982	0.060128
0.0227738 -0.924485 -0.0298043 0.0421216			
0. 123837	0. 191302	0.642166	0. 296522
-0. 0556006 0. 0347159 0. 436249 -0. 260624 -0. 0889256 -0. 21098 0. 185246 -0. 0289853 0. 21143	0.0599110	0.957099	0.422264
-0. 0284664	-0.0526119	0. 257032	0.432204
0. 059809	-0.891951	0.0950931	0.0125808
0. 00250434 -0. 0885951 0. 119498 -0. 30073			
-0.0516038 0.10304 -0.0151717 0.0746845 0.0606621	0. 252501	-0. 365931	0. 212771
$egin{array}{cccccccc} 0.0149853 & -0.00296719 & -0.0867562 & -0.852372 \ 0.701523 & 0.0294532 & -0.586422 & -0.0156241 & 0.356333 \ \end{array}$	0.0051050	0.0100775	0.00504
33 -0.00382375 0.00722707 -0.172791 0.014089	0. 0551056	-0.0102775	-0.00554
-0. 195669 -0. 12333 0. 238952 -0. 0133904 0. 866511	0.167604	-0.152785	-0.0801522
0. 00448851			
0. 543076	-0.0119204	-0.369728	0. 4935
72 -0.00146235 -0.0259679 0.194836 0.204115	0 142042	0.99571	0.619520
0. 376767	0. 143043	0. 22571	-0.018539
0. 00102011 0. 0102000 0. 200200 0. 22021	•	•	

图 6: Q 矩阵

四、结果分析

带 Wilkinson 位移的 SVD 迭代法是一种有效的数值计算方法,用于求解特征值问题。该方法结合了 SVD (奇异值分解) 和迭代技术,通过对矩阵进行迭代操作,逐步逼近真实的特征值和特征向量。

该方法的优点在于:

- 1. 全局收敛性: 该方法具有全局收敛性, 这意味着只要迭代过程持续进行, 它最终会收敛到正确的解, 而不会陷入局部最优解。
- 2. 对矩阵特征值分布敏感: 该方法对矩阵特征值的分布很敏感, 这使得它可以很好地处理具有复杂特征值分布的矩阵。

然而,带 Wilkinson 位移的 SVD 迭代法也存在一些缺点:

- 1. 计算量大:每次迭代需要进行奇异值分解(SVD),这是一个计算密集型操作,特别是对于大型矩阵。这可能导致计算时间较长,需要较高的计算资源。需要额外的存储空间:由于需要存储 U、 Σ 和 V 等中间结果,该方法可能需要大量的存储空间。这可能对存储资源有限的环境不太适用。
- 2. 迭代不保证最快收敛:虽然该方法全局收敛,但它不一定是收敛速度最快的算法。对于某些问题,可能需要其他更优化的算法。