

Análise de Mídias Sociais e Mineração de Texto

Aquisição e Modelagem de Dados

Laura de Oliveira F. Moraes

NLP Pipeline

Break text into sentences and words, lemmatize

Part of speech (POS) tagging, stemming, NER

Constituency/dependency parsing

Coreference resolution, wordsense disambiguation

Task-dependent (sentiment, ...)

Fonte: https://www.slideshare.net/YuriyGuts/natural-language-processing-nlp

Open Data

Web Scraping

Fonte: http://prowebscraping.com/web-scraping/

Maneiras de fazer web scraping

- Copiando e colando: devagar e ineficiente. Involve humanos analisando e copiando os dados
- Manualmente identificando padrões no texto: através de regular expressions.
- APIs: muitos sites como Facebook, Twitter, LinkedIn disponibilizam APIs
 publicas ou pagas que podem ser acessadas através de chamadas http em
 um formato específico.
- Parseamento de DOM: através de navegadores web, é possível recuperar dinamicamente o conteúdo gerado pelos scripts no cliente. Gera-se uma árvore e é possível navegar através dela e recuperar as partes de interesse em uma página.

Maneiras de fazer web scraping

- Copiando e colando: devagar e ineficiente. Involve humanos analisando e copiando os dados
- Manualmente identificando padrões no texto: através de regular expressions.
- APIs: muitos sites como Facebook, Twitter, LinkedIn disponibilizam APIs
 publicas ou pagas que podem ser acessadas através de chamadas http em
 um formato específico.
- Parseamento de DOM: através de navegadores web, é possível recuperar dinamicamente o conteúdo gerado pelos scripts no cliente. Gera-se uma árvore e é possível navegar através dela e recuperar as partes de interesse em uma página.

https://developer.twitter.com/

Bag of words e N-grams

the dog is on the table

```
N = 1 : This is a sentence unigrams: this, is, a, sentence

N = 2 : This is a sentence bigrams: this is, is a, is a, a sentence

N = 3 : This is a sentence trigrams: this is a, is a, is a sentence
```

Fonte: https://www.slideshare.net/YuriyGuts/natural-language-processing-nlp

```
def lessthan5(num_list):
def light(switchA, switchB):
    if switchA == 1 and switchB == 1:
                                            new list = []
                                            for item in num list:
        return True
                                                if item < 5:
   else:
                                                    new list.append(item)
        return False
                                            return new list
```

```
def light switchA switchB is block
    is_indent if switchA is_op_logic is_number and switchB is_op_logic
is_number is_block
      is_indent return True
      is_dedent else is_block
      is indent return False
      is dedent
is_dedent
```

```
def lessthan5 num_list is_block
      is indent new list is attribution is list
      for item in num list is block
      is_indent if item is_op_logic is_number is_block
            is indent new list is class append item
      is dedent
is_dedent return new list is dedent
```

N-grams → Bag of words

term\document	doc	doc
	#1	#2
is_number	2	1
is_op_logic	2	1
if	1	1
append	0	1
is_attribution	0	1
for	0	1
is_list	0	1
is_op_logic is_number	2	1
is_attribution is_list	0	1
is_attribution is_list for	0	1