Определение 1. Множество M имеет меру ноль, если для любого положительного ε множество M можно покрыть не более чем счётной системой интервалов с суммарной длиной не больше ε (то есть покрыть такой счётной системой интервалов, что сумма длин любого конечного набора этих интервалов не больше ε).

- Задача 1. Докажите, что счётное множество имеет меру ноль.
- Задача 2. Докажите, что а) конечное б) счётное объединение множеств меры ноль имеет меру ноль.
- **Задача 3.** Верно ли, что определение «множества меры ноль» по сути не изменится, если в определении разрешить покрытия только конечными системами интервалов?
- **Задача 4.** Раскрасим прямую так, чтобы точки имели одинаковый цвет, если и только если разность между ними рациональна (понадобится несчётное множество цветов). Рассмотрим какое-нибудь множество M, в котором все точки имеют разный цвет, но при этом все цвета встречаются. Может ли оно иметь меру ноль?
- Задача 5. Возьмём отрезок $K_0=[0,1]$. Разделим его на три равные части и средний интервал $I_1^1=(\frac{1}{3},\frac{2}{3})$ выкинем. Первый и третий отрезки образуют множество K_1 . Каждый из них разделим на три части и выкинем средние интервалы $I_1^2=(\frac{1}{9},\frac{2}{9}),\ I_2^2=(\frac{7}{9},\frac{8}{9}).$ Получится множество K_2 . И так далее: на n-м шаге будем делить каждый из 2^{n-1} отрезков, образующих K_{n-1} , на три равные части и выкидывать все средние интервалы $I_1^n,I_2^n,\ldots,I_{2^{n-1}}^n$. Так получается множество K_n , состоящее из 2^n отрезков. Устремим n к бесконечности. Мно-

жество, получающееся в пределе, т. е. $\bigcap_{n=1}^{\infty} K_n$, называется *канторовым* (всюду дальше будем обозначать его K).

- а) Конечно ли это множество? Счётно?
- б) Докажите, что канторово множество имеет меру ноль.
- в) Является ли оно открытым? Замкнутым?
- **Задача 6.** а) Докажите, что $\frac{1}{4}$ принадлежит канторову множеству. **б**) Бесконечно ли множество рациональных чисел, принадлежащих канторову множеству?
- **Задача 7.** а) Докажите, что множество $\{a+b \mid a,b \in K\}$ всевозможных сумм элементов канторова множества совпадает с отрезком [0,2]. **б**) Что можно сказать про множество всевозможных разностей $\{a-b \mid a,b \in K\}$?

Определение 2. Множество M называется nurde ne nnomhum, если на каждом интервале I найдётся интервал $U \subset I$, такой что $U \cap M = \varnothing$.

Задача 8. Докажите, что объединение конечного числа нигде не плотных множеств нигде не плотно.

Задача 9. Являются ли нигде не плотными следующие множества: **a)** $\{\frac{1}{n} \mid n \in \mathbb{N}\};$ **б)** $\mathbb{Q};$ **в)** множество бесконечных десятичных дробей, в записи которых используется только 0 и 1; **r)** канторово множество?

Задача 10. Существует ли непрерывная функция $f: K \to [0,1]$, множеством значений которой является весь отрезок [0,1]?

Определение 3. Объединение счётного числа нигде не плотных множеств называется *множеством первой* категории. Если множество не представимо в виде счётного объединения нигде не плотных, то его называют множеством второй категории.

Задача 11. а) (*Теорема Бэра*) Докажите, что отрезок является множеством второй категории. **б)** Какую категорию имеет множество иррациональных чисел?

Задача 12. Пронумеруем рациональные числа на отрезке [0,1]: q_1,q_2,q_3,\ldots Возьмём некоторое $\varepsilon>0$ и рассмотрим множество $X_{\varepsilon}=\bigcup_{n=1}^{\infty}U_{\frac{\varepsilon}{2^n}}(q_n)$, то есть объединение всех интервалов вида $(q_n-\frac{\varepsilon}{2^n},q_n+\frac{\varepsilon}{2^n})$. а) Докажите, что $[0,1]\setminus X_{\varepsilon}$ нигде не плотно. 6) Верно ли, что $X_{\frac{1}{2}}\supset [0,1]$? в) Устремим ε к нулю, то есть рассмотрим множество X — пересечение всевозможных X_{ε} , или $X=\bigcap_{\varepsilon>0}X_{\varepsilon}$. Верно ли, что $X=\mathbb{Q}\cap [0,1]$? Зависит ли ответ от выбранной в начале нумерации рациональных чисел на отрезке?

Задача 13. Математики Банах и Мазур опять играют в свою игру (см. задачу 18 листка $26\frac{1}{2}$). У кого из них есть выигрышная стратегия в случае, когда D — это **a**) нигде не плотное множество; **б**) множество первой категории; **в**) множество меры ноль; **г**) X_{ε} ; **д**) X (см. задачу 12)?

Определение 4. Замыканием множества M называется объединение его со всеми своими предельными точками. Обозначение: \overline{M} .

Задача 14. Докажите, что **a)** множество замкнуто тогда и только тогда, когда оно совпадает со своим замыканием; **б)** $\overline{\overline{A}} = \overline{A}$; **в)** \overline{A} есть пересечение всевозможных замкнутых множеств, содержащих A.

	1	2 a	2 б	3	4	5 a	5 б	5 B	6 a	6 6	7 a	7 б	8	9 a	9 6	9 B	9 Г	10	11 a	12 a	12 б	12 B	13 a	13 б	13 B	13 г	13 д	14 a	14 б	14 B
ſ																														

Листок №26 $\frac{2}{3}$

Страница 2

- Задача 15. а) Докажите, что замыкание нигде не плотного множества нигде не плотно.
- б) Верно ли, что замкнутое нигде не плотное множество имеет меру ноль?

Определение 5. Множество M называется всюду плотным в множестве A, если $A \subset \overline{M}$. Если множество M всюду плотно на прямой (то есть $\overline{M} = \mathbb{R}$), то обычно про него просто говорят, что оно всюду плотно.

Задача 16. Являются ли следующие множества всюду плотными:

- а) множество всевозможных несократимых дробей, в записи числителя и знаменателя которых не участвует девятка; б) множество конечных десятичных дробей; в) $[0,1] \setminus X$ в отрезке [0,1] (см. задачу 12)?
- Задача 17. а) Верно ли, что дополнение всюду плотного множества нигде не плотно?
- б) Верно ли, что дополнение нигде не плотного множества всюду плотно?
- в) Докажите, что дополнение всюду плотного открытого множества нигде не плотно.
- **Задача 18. a)** Докажите, что если множество не является нигде не плотным, то оно всюду плотно в некотором интервале. **б)** Что значит, что множество не является всюду плотным?

Задача 19. Пусть α — действительное число. Рассмотрим множество D_{α} всех дробных частей $\{n\alpha\}$ для всевозможных целых n. Пусть α иррационально.

- а) Докажите, что 0 предельная точка этого множества.
- **б)** Докажите, что D_{α} всюду плотно на отрезке [0,1].
- в) Что можно сказать про D_{α} , если α рационально?

Задача 20. Разделим окружность длины 1 на произвольные m дуг и занумеруем их числами от 1 до m. Фиксируем иррациональное число a и отметим на окружности все точки вида $n\alpha$ радиан (отсчитывая от какой-то начальной точки против часовой стрелки), где угол α соответствует дуге длины a. Составим бесконечную последовательность ν из чисел от 1 до m: если точка $n\alpha$ попала внутрь дуги с номером k, то запишем на n-м месте последовательности число k 1 .

- а) Докажите, что все числа от 1 до m встречаются в этой последовательности бесконечно много раз.
- **б)** Пусть где-то в последовательности ν встретился конечный отрезок $\overline{a_1 \dots a_k}$ из чисел от 1 до m. Докажите тогда, что найдётся такое натуральное l, что среди любых l подряд идущих чисел из последовательности ν найдутся k подряд идущих, составляющие $\overline{a_1 \dots a_k}$ (последовательности с таким свойством называются почти периодическими).
- в) Будет ли последовательность ν периодической?

Задача 21. а) Докажите, что 2^n начинается с цифры 7 тогда и только тогда, когда $\lg 7 \leqslant \{n \lg 2\} < \lg 8$. 6) Докажите, что для любой конечной последовательности цифр $\overline{a_1 \dots a_k}$, где $a_1 \neq 0$, найдётся натуральная степень двойки, начинающаяся с этой последовательности цифр.

Задача 22. Рассматривается последовательность, n-й член которой есть первая цифра числа 2^n .

- а) Докажите, что эта последовательность почти периодическая (см. задачу 20). Является ли она периодической? б) Найдите количество различных «слов» длины 13 (наборов из 13 подряд идущих цифр) в этой последовательности.
- Задача 23. а) Возьмём отрезок [0,1] и будем действовать так же, как и при построении множества K, но только делить на пять равных частей (а не на три) и выкидывать вторую и четвёртую. Исследуйте свойства получившегося множества. А если делить на восемь равных частей и выкидывать вторую, третью и шестую?
- **6)** Опять возьмём отрезок [0,1] и будем с ним поступать так же, как при построении множества K, но только на n-м шаге будем из каждого оставшегося отрезка вырезать в середине интервал длины $\frac{1}{n}$ от его длины (а не $\frac{1}{3}$). Исследуйте свойства получившегося множества.

Задача 24. (И.~M.~Гельфанд) а) На плоскости из начала координат в каждом направлении выпустили по некоторому отрезку. Пусть M — объединение этих отрезков. Известно, что M — замкнутое множество. Докажите, что оно имеет непустую внутренность (непустое множество внутренних точек).

б) Обязательно ли в M найдётся круг с центром в начале координат?

Задача 25. Докажите, что у счётного замкнутого множества всегда найдётся изолированная точка.

15	15	16	16	16	17	17	17	18	18	19	19	19	20	20	20	21	21	22	22	23	23	24	24	25
a	б	a	б	B	a	б	B	a	б	a	б	B	a	б	B	a	6	a	6	a	6	a	6	

 $^{^{1}}$ Точка $n\alpha$ может попасть на границу между соседними дугами, но не более одного раза для каждой такой границы, так как a иррационально. Поэтому в этом случае будем рассматривать последовательность начиная с того места, после которого $n\alpha$ на границы дуг уже не попадает.