Classical Mechanics & Properties of Gases

mark.wallace@chem.ox.ac.uk

Properties of gases

- Ideal & real gases
- Kinetic theory of gases
- Maxwell-Boltzmann distribution
- Applications of kinetic theory

Properties of gases

- The gas phase differs from the other phases in that there are only weak interactions between particles
- Relatively simple models can be used to describe the gas phase

Learning Resources

- Handout, Slides, Questions
- wallace.chem.ox.ac.uk

- Physical Chemistry Atkins
- Elements of Physical Chemistry Atkins & de Paula

Defining a gas

- A collection of particles in constant, rapid, random (Brownian) motion
- A gas fills any container it occupies
- The effects of intermolecular forces are generally very small, and may often be ignored

Characteristics of a gas

- The physical state of a pure gas may be defined by four physical properties
 - Pressure, P
 - Amount of substance, n
 - Volume. V
 - Temperature, T
- If we know any three variables, we can use an equation of state to determine the fourth.

Ideal gases

 $p \propto T$ $p \propto N$ $p \propto 1/V$

$$p \propto \frac{NT}{V}$$

$$pV = Nk_{\rm B}T$$

$$pV = nRT$$

 $R=8.314\,JK^{-l}mol^{-l}=$ Molar gas constant $k_{\rm B}=1.38\,\times 10^{-23}\,JK^{-l}=$ Boltzmann constant $(N_{\rm A}k_{\rm B}=R)$

Ideal gas assumptions

$$pV = nRT$$

- The molecules obey Newton's law of motion
- There are no attractive or repulsive interactions between molecules
- The molecules undergo perfectly elastic collisions
- The volume occupied by the molecules is negligibly small in comparison to the size of the container

Partial pressures

- Partial pressure is the pressure that a gas would exert if it alone occupied the container
- Dalton's law
 - The total pressure p exerted by a mixture of gases is simply the sum of the partial pressures p_i of the component pressures

$$p = \sum_{i} p_i$$

Pressure

- Force exerted by the gas per unit area
- SI units of Newtons per square metre (Nm⁻²), or Pascals (Pa)
 - 1 Torr = 1 mmHg = 133.3 Pa
 - 1 bar = 1000 mbar = 100 000 Pa
- Pressure can be measured due to the force arising from collisions of gas particles with a surface

An example

Barometric pressure

 $\Delta p = -\rho g \Delta h$

$$V = hA$$

$$p = \frac{F}{A} = \frac{-Mg}{A} = \frac{-(\rho V)g}{A} = -\rho gh$$

An example

Barometric pressure

$$\Delta p = -\rho g \Delta h$$

$$\rho = \frac{M}{V} = \frac{Nm}{V}$$

$$\rho V = Nk_{\rm B}T$$

$$\frac{\Delta p}{\Delta h} = -\frac{mpg}{k_B T}$$

$$\frac{\mathrm{d}p}{\mathrm{d}h} = -\frac{mpg}{k_B T}$$

$$\frac{1}{p}\mathrm{d}p = -\frac{mg}{k_B T}\mathrm{d}h$$

$$\int_{p_0}^{p} \frac{1}{p} \mathrm{d}p = -\frac{mg}{k_B T} \int_{0}^{h} \mathrm{d}h$$

$$\ln\left[\frac{p}{p_0}\right] = -\frac{mgh}{k_BT} \qquad p = p_0 e^{-\frac{mgh}{k_BT}}$$

Ideal gases

$$pV = nRT$$

- The molecules obey Newton's law of motion
- There are no attractive or repulsive interactions between molecules
- The molecules undergo perfectly elastic collisions
- The volume occupied by the molecules is negligibly small in comparison to the size of the container

Temperature

- Temperature is a measure of the average kinetic energy of the particles in a gas
 - Temperature reflects the velocity distribution of gas particles
 - The velocity of a single particle constantly changes due to collisions
 - The total number of particles with a given velocity is constant
 - The distribution of molecular speeds in an ideal gas is given by the Maxwell-Boltzmann distribution
- Temperature is a direct result of the motion of particles
 - It is only a meaningful concept when describing matter

Real gases

$$pV = nRT$$

- The molecules obey Newton's law of motion
- There are no attractive or repulsive interactions between molecules
- The molecules undergo perfectly elastic collisions elastic, inelastic and reactive collisions
- The volume occupied by the molecules is negligibly small in comparison to the size of the container not negligible

Real Gases

- The ideal gas equation breaks down when molecular size effects or intermolecular forces become important.
 - High P. Particles forced closer together and interact more strongly
 - Low T. Particle motion is slow, so forces have a long time to act

The compression factor

The compression factor

$$Z = \frac{V_m}{V_m^o} = \frac{pV_m}{RT}$$

- Quantifies the deviations of a real gas from ideal gas behaviour
 - $V_m =$ molar volume, $V_m{}^o =$ molar volume of an ideal gas
- Provides information on the dominant types of intermolecular forces
 - Z = 1 No intermolecular forces, ideal gas behaviour
 - Z < 1 Attractive forces dominate, molar volume reduced
 - Z > I Repulsive forces dominate, molar volume increased
- The behaviour of Z as a function of pressure (or temperature) reflects the intermolecular potential.

The compression factor

The Boyle temperature

- For an ideal gas, $Z = 1 \frac{dZ}{dp} = 0$
- For a real gas, $Z \rightarrow I$ at low pressure, but dZ/dp does not necessarily $\rightarrow 0$
- For real gases, there is a single temperature at which $dZ/dp \rightarrow 0$ and $Z \rightarrow I$ as $p \rightarrow 0$.
 - This is the Boyle temperature
 - Here the attractive and repulsive interactions balance and the real gas behaves ideally

Equations of state for real gases

• An alternative is to use the van der Waal's equation.

$$p = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$

 a and b are temperature independent constants called the van der Waal's coefficients, whose values depend on the gas species

Equations of state for real gases

Virial expansion

 Real gases may be treated by taking the ideal gas equation as the first term in a series expansion

$$pV_m = RT (1 + B'p + C'p^2 + ...)$$

$$pV_m = RT\left(1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \dots\right)$$

- This is called a virial expansion
- B and C are virial coefficients

Ideal & real gases

- pV=nRT
- Ideal Gas Assumptions
- Deviations from ideality
 - Compressibility
 - Boyle Temperature
 - Virial Expansions

Properties of gases

- Ideal & real gases
- Kinetic theory of gases
- Maxwell-Boltzmann distribution
- Applications of kinetic theory

"That's amazing—I was just thinking the same thing."