Contents

1	Intro	oduzione	2
	1.1	Intervalli di confidenza (Bilaterali)	7
	1.2	Intervalli di confidenza (Unilaterali)	
	1.3	Esempio:	g
	1.4	Intervallo di confidenza	10
	1.5	Integrali Monte Carlo	11
	1.6	Intervallo di confidenza di Bernoulli	11
2	Intervalli di confidenza		12
	2.1	Intervallo di confidenza nella varianza	12
	2.2	Intervallo di confidenza	13
	2.3	Intervallo di previsione	15
	2.4	Qualità di uno stimatore	16
	2.5	Proprietà di uno stimatore	16
	2.6	Stimatore unbaieseo	17
	2.7	Valutazione di uno stimatore	17
	2.8	Esempio:	17
3	Test di ipotesi 1		
	3.1	Metolodogia alternativa	21
	3.2	Test di Hp unilaterale	22

1 Introduzione

$$X_1 = 1.7$$

$$X_2 = 1.82$$

$$X_3 = 1.73$$

$$X_4 = 1.7$$

$$X_5 = 1.8$$

 $\hat{ heta}$? Altezza della popolazione

Possibile soluzione

$$\hat{\theta_a} = \frac{1}{n} \sum_{4}^{5} x_i = \frac{1.7 + 1.82 + 1.73 + 1.7 + 1.8}{5} = \frac{8.75}{5} = 1.75$$

$$\hat{\theta_b} = \frac{\min(x_i) + \max(x_i)}{2} = \frac{3.52}{2} = 1.76$$

$$\hat{\theta_c} = \frac{1}{3} \sum_{4}^{4} x_i = \frac{1}{3} (1.8 + 1.73 + 1.7) = \frac{5.23}{3} = 1.743$$

Scartiamo il più piccolo e il massimo, calcolando poi la media dei rimanenti

Stima parametrica (Point) Parametric Estimation

Formula generica: Bayes

$$P(\theta/X_1 \dots X_n) = \frac{P(X_1 \dots X_n/\theta)P(\theta)}{P(X_1 \dots X_n)}$$

Verosomiglianza (likelihood)

MLE Maximum Likelihood Estimation (Stima a Massima Verosomiglianza)

$$\hat{\theta} = argmaxL(\theta) = argmax[f(X_1 \dots X_n/\theta)]$$

Esempio (Legge -> Distribuzione di Poisson)

$$f(X_1, X_2 \dots X_n/\theta) = f(X_1/\theta) \cdot f(X_2/\theta) \dots f(X_n/\theta)$$

$$= \frac{1}{\theta} e^{-\frac{X_1}{\theta}} \cdot \frac{1}{\theta} e^{-\frac{X_2}{\theta}} \cdot \dots \frac{1}{\theta} e^{-\frac{X_n}{\theta}}$$

$$= \frac{1}{\theta n} e^{-\frac{1}{\theta} \sum_i X_i}$$

Esempio (MLE Ipotesi di Bernoulli)

$$X_{i} = \begin{cases} 0\\1 \end{cases}$$

$$P\{X_{i} = 1\} = 1 - P\{X_{i} = 0\}$$

$$P\{X_{i} = x\} = P^{x}(1 - P)^{x} \quad x \in \{0, 1\}$$

Dove X è una variabile aleatoria e x una variabile sperimentale

$$f(x_1 \dots x_n/P) = P^{x_1} (1-P)^{1-x_1} \cdot P^{x_2} (1-P)^{1-x_2} \dots P^{x_n} (1-P)^{1-x_n} = P^{\sum_{i=1}^{n} x_i} (1-P)^{n-\sum_{i=1}^{n} x_i} \longrightarrow \text{Bisogna trovare il } \mathbf{massimo} \text{ della funzione}$$

$$log(f(x_1 \dots x_n/P)) = \sum_{i=1}^{n} x_i log P - (n - \sum_{i=1}^{n} x_i) log(1 - P)$$

$$= \frac{d}{dP}[log(f)] = 0 = \frac{1}{\hat{P}} \sum_{i=1}^{n} x_i - \frac{n - \sum_{i=1}^{n} x_i}{(1 - \hat{P})}$$

$$= (1 - \hat{P}) \sum_{i=1}^{n} x_i = \hat{P}(n - \sum_{i=1}^{n} x_i)$$

$$= \hat{P} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \mathsf{MLE}$$

Esercizio 1 Probabilità che Oneto dia 30L (Lode)

$$n = 120$$

 $\sum_{i}^{120} x_{i} = 18$
 $\hat{P} = \frac{18}{120} = 0.15 \rightarrow 15\%$

Esercizio 2 N studenti da 30 e lode

$$n_1 = 18 \leftarrow \mathsf{Oneto}$$

 $n_2 = 20 \leftarrow \mathsf{Anguita}$

$$n_2 = 20 \leftarrow \mathsf{Anguita}$$

$$n_{1,2} = 10 \leftarrow 30 \text{L}$$
 sia con Oneto che con Anguita $N = ?$ Studenti da **30 e Lode**

$$\hat{P}_1 pprox rac{n_1 2}{n_2}$$
 $\hat{P}_1 pprox rac{n_1 2}{N}$

$$\implies N = \frac{n_1 \cdot n_2}{n_1 \cdot n_2} \rightarrow \frac{18 \cdot 20}{10} = 36$$

$$\frac{n_{1,2}}{n_2} = \frac{n_1}{N}$$

MLE POISSON

$$f(x_1, x_2 \dots x_n/\lambda) = \frac{e^{-\lambda} \lambda^{x_1}}{x_1!} \cdot \frac{e^{-\lambda} \lambda^{x_2}}{x_2!} \dots \frac{e^{-\lambda} \lambda^{x_n}}{x_n!}$$
$$= \frac{e^{-n\lambda} \lambda^{\sum_i x_i}}{x_1! x_2! \dots x_n!}$$

Formula generica: $\lambda = \frac{\sum_{i} x_i}{\lambda}$

Esercizio 3 Stima del numero di incidenti medio in auto n = 10 $x_1 = \{4, 0, 6, 5, 2, 1, 2, 0, 4, 3\}$ $\hat{\lambda} = \frac{\sum_i x_i}{n} = \frac{27}{10} = 2.7$

$$\hat{\lambda} = \frac{\sum_{i} x_i}{n} = \frac{27}{10} = 2.7$$

$$P\{x \le 2\} = e^{-2.7} \left(\frac{2.7^0}{0!} + \frac{2.7^1}{1!} + \frac{2.7^2}{2!}\right) \approx .4936 \to 49.36\%$$

Probabilità che non ci siano più di 2 incidenti

MLE UNIFORME

$$f(x_1, x_2 \dots x_n/\theta) = \begin{cases} \frac{1}{\theta^n} & 0 < x_i < \theta \\ 0 & \text{altrimenti} \end{cases}$$

$$\hat{\theta} = \max\{x_i\}$$

$$\frac{\hat{\theta}}{2} = \frac{\max\{x_i\}}{2}$$

MLE GAUSSIANA

$$f(x_1, x_2 \dots x_n/\mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x_1-\mu)^2}{2\sigma^2}}$$

$$(\frac{1}{2\pi})^{\frac{n}{2}} \frac{1}{\sigma^n} e^{\frac{-\sum_i (x_i - \mu)^2}{2\sigma}}$$

$$log[f] = -\frac{n}{2} log 2\pi - n log \sigma - \frac{\sum_i (x_i - \mu)^2}{2\sigma^2}$$

$$\frac{d log f}{d\mu} = 0 = \frac{\sum_i (x_i - \mu)^2}{\sigma^2} \longrightarrow \hat{\mu} = \frac{\sum_i x_i}{n}$$

$$\frac{d log f}{d\sigma} = 0 = -\frac{n}{\sigma} + \frac{\sum_i (x_i - \mu)^2}{4\sigma^4} \rightarrow \sigma = \sqrt{\frac{\sum_i (x_i - \mu)^2}{n}}$$

Esercizio primo

$$x_1 = 1.7$$

$$x_2 = 1.82$$

$$x_3 = 1.73$$

$$x_4 = 1.7$$

$$x_5 = 1.8$$

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{n} = \frac{1.7 + 1.82 + 1.73 + 1.7 + 1.8}{5} = 1.75$$

$$\hat{\sigma} = \sqrt{\frac{0.05^{2} + 0.07^{2} + 0.02^{2} + 0.05^{2} + 0.05^{2}}{5}} \approx 0.051$$

Intervalli di confidenza normali TODO

Intervalli di confidenza gaussiani σ^2 Nota

$$x_1mx_2\dots x_n$$

$$\hat{\mu} \longleftarrow \mu$$

$$\begin{array}{l} \hat{\mu} \longleftarrow \mu \\ \frac{\overline{x} - \mu}{\frac{\sigma}{\overline{\sigma}}} \sim \mathcal{N}(0, 1) \end{array}$$

$$P(-1.96 < \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} < +1.96) = 0.95$$

Esempio: Sistema di comunicazione $\sigma^2 = 4$ n = 9

$$x_1 = \{5.85, 12, 15, 7, 9, 7.5, 6, 5, 10.5\}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{9} \sum_{i=1}^{n} x_i = \frac{81}{9} = 9$$

$$\begin{split} P\left(9-1.96\frac{\sigma}{\sqrt{m}} < \mu < 9+1.96\frac{\sigma}{\sqrt{m}}\right) &= 0.95 \\ p\left(9-1.96\frac{2}{3} < \mu < 9+1.96\frac{2}{3}\right) &= 0.95 \\ &\longrightarrow [7.693, 10.31] \to \mu \text{ si trova tra } 7.693 \text{ e } 10.31 \end{split}$$

In generale Prob = $1 - \alpha$

$$(\overline{x}-z_a\frac{\sigma}{\sqrt{n}},\overline{x}+z_a\frac{\sigma}{\sqrt{n}})\to Si \text{ rileva dalle tavole}$$

1.1 Intervalli di confidenza (Bilaterali)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$\overline{X} \sim (\mu, \frac{\sigma^2}{n})$$

$$\mathcal{Z} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1) \quad Var(\frac{x}{2}) = \frac{1}{\sigma^2} Var(x)$$

Supponiamo che σ sia nota:

$$\begin{split} & \Pr\left\{-z_{\frac{\alpha}{2}} < Z < +z_{\frac{\alpha}{2}}\right\} = 1 - \alpha \\ & \Pr\left\{-z_{\frac{\alpha}{2}} < \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{m}}} < +z_{\frac{\alpha}{2}}\right\} = 1 - \alpha \\ & \Pr\left\{-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}} < \bar{x} - \mu < +z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}}\right\} \\ & \Pr\left\{-\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}} < -\mu < -\bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}}\right\} = \\ & \Pr\left\{\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}} < \mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}}\right\} = 1 - \alpha \end{split}$$

1.2 Intervalli di confidenza (Unilaterali)

$$\Pr\left\{z < z_{\alpha}\right\} = 1 - \alpha$$

$$\Pr\left\{\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{m}}} < z_{\alpha}\right\} = 1 - \alpha$$

$$\Pr_{r}\left\{\bar{x} - \mu < z_{\alpha}\frac{\sigma}{\sqrt{m}}\right\} = 1 - \alpha$$

$$\Pr\left\{-\mu < -\bar{x} + z_{\alpha}\frac{\sigma}{\sqrt{m}}\right\} = 1 - \alpha$$

$$\Pr\left\{\bar{x} - z_{\alpha}\frac{\sigma}{\sqrt{m}} < \mu\right\} = 1 - \alpha$$

$$\mu \in \left(\bar{x} - z_{\alpha}\frac{\sigma}{\sqrt{m}}, +\infty\right)$$

1.3 Esempio:

Pesca stagionale dei salmoni (*Fisso intervallo -> trovo n*) Ad ogni stagione il peso medio dei salmoni è diverso ma $\sigma=0.3$ Kg Intervallo di confidenza al 95%, quindi $\alpha=0.05$

$$(\overline{X}-1.96\frac{\sigma}{\sqrt{n}},\overline{X}+1.96\frac{\sigma}{\sqrt{n}})$$

$$1.96\frac{\sigma}{\sqrt{n}}\geq 0.1 \quad \sqrt{n}\geq \frac{1.96}{0.1}\sigma$$

$$n\geq (\frac{1.96}{0.1}0.3)^2=5.88^2\approx 34.6\leftarrow \text{salmoni}$$

1.4 Intervallo di confidenza

con media e varianza incognite

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \sigma \qquad \text{Non nota}$$

$$s^2 = \frac{1}{n-1} \sum_i \left(x_i - \bar{x} \right)^2 = \frac{1}{n-1} \sum_i^n \left(x_i^2 - n \bar{x}^2 \right)$$

$$= \frac{1}{n-1} \sum_i \left(x_i^2 + \bar{x}^2 - 2x_i \bar{x} \right)$$

$$= \frac{1}{n-1} \sum_i x_i^2 + \frac{n \bar{x}^2}{n-1} - 2 \bar{x} \frac{\bar{x} n}{n-1}$$

$$T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim T_n - 1 \quad \text{(T studenti con n gradi di libertà)}$$

Esempio: Trasimttente (μ) e ricevitore $(\mu + \text{rumore})$

$$95\%(7.69, 10.31)$$
 $\hat{\mu} = 9, \sigma^2 = 4$

$$\begin{array}{l} X_i\{5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5\} \\ \hat{\mu} = \overline{X} = \frac{1}{9} \sum_i^n X_i = \frac{81}{9} = 9 \\ s^2 = \frac{1}{8} \sum_i (X_i^2 - 9.81) \approx 9.5 \quad s = 3.082 \end{array}$$

$$\mu \in (9-2.306\frac{3.082}{3}, 9+2.306\frac{3.082}{3}) = (6.63, 11.37)$$

Si può dimostrare che $T_{\frac{\alpha}{2}\cdot n-1}\mathbb{E}[S] \geq z_{\alpha}\sigma$

1.5 Integrali Monte Carlo

$$\theta = \mathbb{E}[f(u)] = \int_{-\infty}^{+\infty} f(u)p(u) \, du = \int_{-\infty}^{+\infty} f(u) \, du$$

Esempio

$$\begin{array}{ll} \int_0^1 \sqrt{1-x^2} \, dx = ? \ \mathbb{E}[\sqrt{1-x^2}] & n=100 \\ X_i = \sqrt{1-U_i^2} & X = \{X_1, X_2 \dots X_100\} \\ \hat{\theta} = \overline{X} \pm t_{\frac{\alpha}{2}}, 99 \frac{s}{\sqrt{100}} \rightarrow \text{Per vedere se il risultato è corretto (confidenza)} \end{array}$$

1.6 Intervallo di confidenza di Bernoulli

n esperimenti Binomiale media np varianza np(1-p)

$$\hat{P} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad X_i \in \{0, 1\}$$

$$X=n\hat{P}$$
 $P_r\{-z_{rac{lpha}{2}} < z < z_{rac{lpha}{2}} pprox 1-lpha\}$ Dove $z=rac{X-np}{\sqrt{np(1-p)}}$

$$\frac{x - nP}{\sqrt{nP(1 - P)}} \sim \mathcal{N}(0, 1)$$

$$\rho_r \left\{ -z_{\frac{a}{2}} < \frac{x - mp}{\sqrt{mp(1-\hat{p})}} < z_{\frac{a}{2}} \right\} \cong 1 - \alpha$$

$$\rho_r \left\{ \hat{p} - z_{\frac{a}{2}} \sqrt{\frac{p(1-p)}{m}} < \mu < \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-p)}{m}} \right\} \simeq 1 - \alpha$$
(1)

2 Intervalli di confidenza

Se σ^2 è nota allora:

$$X_{i} \sim \mathcal{N}(\mu, \sigma^{2}) \quad \overline{X} = \frac{1}{n} \sum_{i}^{n} X_{i}$$

$$\mu \in (-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$$

$$\mu \in (\overline{X} - z_{\frac{\sigma}{\sqrt{n}}}, \overline{X} + z_{\frac{\sigma}{\sqrt{n}}}) \quad p_{r}(1 - \alpha)$$

$$\mu \in (-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$$

$$\mu \in (\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$$

$$s^2 = \frac{1}{n-1} \sum_i (X_i - \overline{X})$$

Se σ^2 è ignota allora:

$$\mu \in (\overline{X} - z_{\frac{\alpha}{2}}, n - 1 \frac{s}{\sqrt{n}}) \quad \sigma^2 \to s^2 = z \to t$$

2.1 Intervallo di confidenza nella varianza

$$(n-1)\frac{S^2}{\sigma^2} \sim \mathcal{X}^2 \quad X_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$p_r \left\{ \mathcal{X}_{1-\frac{\alpha}{2},n-1}^2 \le (n-1) \frac{s^2}{\sigma^2} \le \mathcal{X}_{\frac{\alpha}{2},n-1} \right\}$$

$$p_r \left\{ \frac{s^2(n-1)}{\mathcal{X}_{\frac{\alpha}{2},n-1}^2} \le \sigma^2 \le \frac{s^2(n-1)}{\mathcal{X}_{1-\frac{\alpha}{2},n-1}^2} \right\} = 1 - \alpha$$

$$\sigma^2 \in \left(\frac{s^2(n-1)}{\mathcal{X}_{\frac{\alpha}{2},n-1}^2}, \frac{s^2(n-1)}{\mathcal{X}_{1-\frac{\alpha}{2},n-1}} \right) \quad p_r = 1 - \alpha$$

Esempio: Laminatoio n = 4 $X_i = \{0.123, 0.124, 0.126, 0.12\}$ spessore in mm

Svolgimento

$$\frac{1}{4} \sum_{i}^{4} X_{i} = \frac{0.493}{4} = 0.12325$$

$$\frac{1}{4-1} \sum_{i}^{4} (X_{i} - 0.12325)^{2} = 1.875 \cdot 10^{-5}$$

$$\sigma^{2} \in \left(\frac{s^{2}(n-1)}{9.348}, \frac{s^{2}(n-1)}{0.216}\right)$$

Dove 9.348 e 0.216 sono ricavati dalle tabelle

Facciamo la radice:

$$\sigma \in (0.0014, 0.0093) \rightarrow 95\%$$

2.2 Intervallo di confidenza

della differenza di due medie:

M campioni

$$\begin{split} X_i \sim \mathcal{N}(\mu_1, \sigma_1^2) & Y_i \sim \mathcal{N}(\mu_2, \sigma_2^2) \\ \overline{X} = \frac{1}{n} \sum_{i}^{n} X_i & \overline{Y} = \frac{1}{m} \sum_{i}^{m} Y_i \\ \overline{X} - \overline{Y} \sim \mathcal{N} \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} \right) \\ \mathcal{N}(0, 1) \sim \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \\ \mu_1 - \mu_2 \in \left(\overline{X} - \overline{Y} - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, \overline{X} - \overline{Y} + z_{\frac{\alpha}{2}}, \overline{X} - \overline{Y} + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \right) \end{split}$$

Se σ_1^2, σ_2^2 non sono note:

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})$$

$$S_2^2 = \frac{1}{m-1} \sum_{i=1}^{m} (X_i - \overline{Y})$$

$$(n-1) \frac{S_1^2}{\sigma_1^2} \sim \mathcal{X}_{n-1}^2$$

$$(n-1) \frac{s_2^2}{\sigma_2^2} \sim \mathcal{X}_{n-1}^2$$

Possiamo andare avanti solo se $\sigma_1^2=\sigma_2^2=\sigma^2$

$$(n-1)\frac{s_1^2}{\sigma^2} + (n-1)\frac{s_2^2}{\sigma^2} \sim \mathcal{X}_{n+m-2}^2$$

$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma^2(\frac{1}{n} + \frac{1}{m})}} \longrightarrow \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{S_p(\frac{1}{n} + \frac{1}{m})}}$$

$$\sim \mathcal{N}(0,1) \qquad \sim T_{n+m-2}$$

$$S_p = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

Se σ sono ignote ma uguali

$$\mu_1 - \mu_2 \in (\overline{X} - \overline{Y} - T_{\frac{\alpha}{2}, n+m-2} \sqrt{s^2(\frac{1}{n} + \frac{1}{m})})$$

$$\overline{X} - \overline{Y} + T_{\frac{\alpha}{2}, n+m-2} \sqrt{s^2(\frac{1}{n} + \frac{1}{m})}$$

2.3 Intervallo di previsione

$$X_{1}, \dots X_{n}, X_{n+1} \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\overline{X}_{n} = \frac{1}{n} \sum_{i}^{n} X_{i} \quad \overline{X}_{n} \sim \mathcal{N}(\mu, \frac{\sigma^{2}}{n})$$

$$\overline{X}_{n} - X_{n+1} \sim \mathcal{N}(0, \sigma^{2} + \frac{\sigma^{2}}{n}) \rightarrow (\mu - \mu, \sigma^{2} + \frac{\sigma^{2}}{n})$$

$$\sigma^{2}(1 + \frac{1}{n}) \quad \frac{X_{n} - X_{n} + 1}{\sigma\sqrt{1 + \frac{1}{n}}} \sim \mathcal{N}(0, 1) \qquad \qquad s_{n}^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - \overline{X}_{n})^{2}$$

$$X_{n+1} \in (\overline{X}_n - T_{\frac{\alpha}{2}, n-1} s_n \sqrt{1 + \frac{1}{n}}, \overline{X}_n + T_{\frac{\alpha}{2}, n-1} s_n \sqrt{1 + \frac{1}{n}}) \longrightarrow P_r(1 - \alpha)$$

Esempio smartwatch contapassi n=7

$$DOM \quad 6752 \quad X_7$$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^{m} X_i = \frac{47016}{7} \approx 6717$$

$$1 - \alpha = 95\% \quad \alpha = 5\%$$

$$t_{0.0025,6} = 2.997$$

$$S_n = \sqrt{S_n^2} = 7.333.8$$

$$x_{n+1} \in (6717 - 2.447 \cdot 733397 \sqrt{1 + \frac{1}{7}}, 6717 + 2.447 \cdot 73397 \sqrt{1 + \frac{1}{7}})$$

$$X_{n+1} \in (9796, 8637) \mu \in (6037, 7396)$$

2.4 Qualità di uno stimatore

$$X = X_1 \dots X_n \quad \theta \leftarrow \mathsf{parametro} \qquad d(x) \leftarrow \mathsf{stimatore} \ \mathsf{di} \ \theta \ (d(x) - \theta)^2 \ \mathbb{E}[(d(x) - \theta)^2]$$

Errore Quadratico (*misura della qualità*) Errore Quadratico Medio (*M.S.E*) Rischio $r(d,\theta)=\mathbb{E}[(d-\theta)^2]$ Lo stimatore "ottimo" sarà quello con il rischio minimo -> d con r minimo θ

Esempio $d^*(x)=4$ $\sec\theta=4\Rightarrow d^*=$ stimatore ottimo(per tutti gli altri valori non va

2.5 Proprietà di uno stimatore

Def: $b_{\theta}(d) = \mathbb{E}[d] - \theta \to \text{bias o polarizzazione Uno stimatore non è$ **polarizzato** $se <math>b_{\theta}(d) = 0$

$$\begin{array}{ll} \textbf{Esempio} &: X_1 \dots X_n \quad \theta \text{media} \\ d_1(X_1 \dots X_n) &= X_1 \\ d_2(X_1 \dots X_n) &= \frac{X_1 + X_2}{2} \\ d_3(X_1 \dots X_n) &= \frac{X_1 + X_2 + \dots X_n}{n} \end{array}$$

Tutti questi sono unbiased

2.6 Stimatore unbaieseo

$$r(d,\theta)=\mathbb{E}[(d(x)-\theta)^2]=\mathbb{E}[(d(x)-\mathbb{E}[d(x)])^2]=Var(d)$$
tra gli stimatori non polarizzati di ottimo è quello con la varianza minima

2.7 Valutazione di uno stimatore

$$X = X_1 \dots X_n \quad \theta = ?$$

Dove θ è un parametro e d(x) è uno stimatore di θ

$$\begin{split} r(d,\theta) &(\text{mse}) \text{ rischio} \qquad b_{\theta}(d) = \mathbb{E}[d] - \theta \\ &\text{se } b_{\theta}(d) = 0 \Rightarrow r(d,\theta) = Var(d) \\ &\text{se } b_{\theta}(d) \neq 0 ? \ r(d,\theta) = ? \\ \\ r(d,\theta) &= \mathbb{E}[(d(x)-\theta)^2] = \mathbb{E}[(d(x)-\mathbb{E}[d]+\mathbb{E}[d]-\theta)^2] \\ &= \mathbb{E}[(d-\mathbb{E}[d])^2 + (\mathbb{E}[d]-\theta)^2 - 2(d-\mathbb{E}[d])(\mathbb{E}[d]-\theta)] \\ &= \mathbb{E}[(d-\mathbb{E}[d])^2] + \mathbb{E}[(\mathbb{E}[d]-\theta)^2] - 2(\mathbb{E}[d]-\theta) \cdot \mathbb{E}[(d-\mathbb{E}[d])] \\ \\ r(d,\theta) &= \mathbb{E}[(d-\mathbb{E}[d])^2] + \mathbb{E}[(\mathbb{E}[d]-\theta)^2] \\ &= Var(d) + b_{\theta}(d)^2 \leftarrow \mathsf{bias}^2 \end{split}$$

2.8 Esempio:

Stimatore della media di una distribuzione uniforme

$$\mathbb{E}[X_i] = \theta/2 \qquad d_1 = 2\frac{1}{n}\sum_i^n X_i X_1, X_2 \dots X_n \qquad d_2 = \max X_i$$

$$d_1: \mathbb{E}[d_1] = \frac{2}{n} \sum_i \mathbb{E}[X_i] = \frac{2}{n} n \frac{\theta}{2} = \theta$$

$$r(d_1,\theta) = Var(d_1) = \frac{4}{n^2}nVar(X_i) = \frac{4}{n}\frac{\theta^2}{12} = \frac{\theta^2}{3n} \Leftarrow Unbiased$$

$$F_2(x) = P_r\{d_2(x) \le x\} = P_r\{\max X_1 \le x\}$$

$$= P_r\{X_1 \le \forall i \in 1\} = \prod_{i=1}^n P_r\{X_i \le x\} = (\frac{x}{\theta})^n$$

$$f_2(x) = \frac{d}{dx}F_2(x) = n\frac{x^{n-1}}{\theta^n} \quad x \le \theta$$

$$\mathbb{E}[d_{2}] = \int_{0}^{\theta} x f_{x}(x) dx = \int_{0}^{\theta} \frac{n}{\theta^{n}} x^{n} dx = \frac{n}{\theta^{n}} \left[\frac{x^{n+1}}{n+1} \Big|_{0}^{\theta} \right] = \frac{n}{n+1} \theta$$

$$\mathbb{E}[d_{2}^{2}] = \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{2} f(x) dx = \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+1} dx = \frac{n}{\theta^{n}} \left[\frac{x^{n+2}}{n+2} \Big|_{0}^{\theta} \right] = \frac{n}{n+2} \theta^{2}$$

$$Var(d_{2}) = \mathbb{E}[d^{2}] - \mathbb{E}[d_{2}]^{2} = \frac{n}{n+2} \theta^{2} - \frac{n^{2}}{(n+1)^{2}} \theta^{2} = \frac{n}{(n+2)(n+1)^{2}} \theta^{2}$$

$$r(d_{2}, \theta) = Var(d_{2}) + (\mathbb{E}[d_{2}] - \theta)^{2} = \frac{2 \cdot \theta^{2}}{(n+1)(n+2)}$$

$$n \geq 4 \quad r(d_{2}, \theta) < r(d_{1}, \theta) \qquad d_{3} = \frac{n+1}{n} d_{2}$$

In sintesi

$$\begin{split} r(d_1,\theta) &= \frac{\theta^2}{3n} \Leftarrow \mathsf{Unbiased} \\ r(d_2,\theta) &= \frac{2\theta^2}{(n+1)(n+2)} \Leftarrow \mathsf{Biased} \\ r(d_3,\theta) &= \frac{\theta^2}{n^2+2n} \Leftarrow \mathsf{Unbiased} \\ r(d_4,\theta) &= \frac{\theta^2}{(n+1)^2} \Leftarrow \mathsf{Biased} \end{split}$$

3 Test di ipotesi

lpotesi: Affermazione rispetto a uno o più parametri di una distribuzione lpotesi da confutare: H_0 (ipotesi nulla)

Esempio

$$X_1 \dots X_n \sim \mathcal{N}(\mu, \sigma^2)$$

$$H_0 : \mu = 0$$

$$H_a : \mu \neq 0$$
(2)

Diamo per scontato che l'ipotesi sia **vera** Dobbiamo cercare di *confutarla*

Definizione Regione critica tale che:

$$(X_1\dots X_n)\in C o H_0$$
è rifiutata $(X_1\dots X_n)
ot\in C o H_0$ è accettata $lpha=$ Livello di **significatività** del test ($lpha=10\%,5\%\dots$)

Procedimento

- Fisso alpha
- ullet Suppongo che lpha sia vera
- ullet calcolo stima di μ
- verifico che non sia "troppo distante"

$$X_1 \dots X_n \sim \mathcal{N}(\mu, \sigma^2)$$

$$H_0 : \mu = \mu_0 \quad H_a : \mu \neq \mu_0$$

$$\overline{X} = \frac{1}{n} \sum_i X_i$$

$$\begin{array}{ll} \textbf{Regione critica} & \{(X_1 \dots X_n): |\overline{X} - \mu_0| > c\} \\ P_{r_{\mu_0}} & \{|\overline{X} - \mu_0| > c\} = \alpha \\ P_{r_{\mu_0}} & \left\{\frac{|\overline{X} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} > \frac{c}{\frac{\sigma}{\sqrt{n}}}\right\} = \alpha \\ P_{r_{\mu_0}} & \{|z| > z_\alpha\} = \alpha \end{array}$$

Esempio (5 transimissioni)
$$n=5$$
 $H_0: \mu=8$ $\overline{X}=9.5$ $\alpha=5\%$

lpotizzando che H_0 sia vera:

$$\frac{|\overline{X} - \mu|}{\frac{\sigma}{\sqrt{n}}} = \frac{|9.5 - 8|}{\frac{2}{\sqrt{5}}} \approx 1.68$$

Se:

 $\alpha = P_r(\text{rifiuto } H_0 \mid H_0 \text{ vera})$

 $\alpha \uparrow \text{più }$ "facile" rifiutare l'ipotesi

 $\alpha \downarrow$ più "difficile" rifiutare l'ipotesi

3.1 Metolodogia alternativa

$$Ts = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} o \mathsf{Statistica}$$
 di test

P-value = **probabilità** di ottenere un valore più "anomalo" di quello osservato

Esempio:
$$X_i \sim \mathcal{N}(\mu, 4)$$

$$n = 5$$

$$\overline{X} = 8.5$$

$$\frac{|\overline{X} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} = \frac{|8.5 - 8|}{\frac{2}{\sqrt{5}}} = \frac{\sqrt{5}}{2}0.5 \approx 0.559$$

 $P\{|z|>0.559\}=2P\{z>0.559\}\approx 2\cdot 0.288=0.579 \to \text{P-value}$

Se
$$\overline{X} = 11.5$$
:

$$\frac{|\overline{X} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} = \frac{|11.5 - 8|}{\frac{2}{\sqrt{5}}} \approx 3.913$$

 $P\{|z|>3.913\}=2P\{z>3.913\}\leq 0.00005 \rightarrow \underline{\text{Rifiuto ipotesi } H_0}$

3.2 Test di Hp unilaterale

$$H_0: \mu = \mu_0(\mu \leq \mu_0) \qquad \qquad H_a: \mu > \mu_0$$

$$C = \{(X_1 \dots n) \cdot \overline{X} - \mu_0 > c\}$$

$$P_{r_{\mu_0}}\{\overline{X} - \mu_0 > c\} = P_r\{\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > \frac{c}{\frac{\sigma}{\sqrt{n}}}\} = P_{r_{\mu_0}}\{z > z_a\} = \alpha$$
 Statistica test $\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \leq z_\alpha$ accetto