Breast Cancer Prediction

In [1]:

#importing libraries and data reading,cleaning

In [2]:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [3]:

df=pd.read_csv(r"C:\Users\shaik\Downloads\BreastCancerPrediction.csv")
df

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn		
0	842302	М	17.99	10.38	122.80	1001.0			
1	842517	М	20.57	17.77	132.90	1326.0			
2	84300903	М	19.69	21.25	130.00	1203.0			
3	84348301	М	11.42	20.38	77.58	386.1			
4	84358402	М	20.29	14.34	135.10	1297.0			
564	926424	М	21.56	22.39	142.00	1479.0			
565	926682	М	20.13	28.25	131.20	1261.0			
566	926954	М	16.60	28.08	108.30	858.1			
567	927241	М	20.60	29.33	140.10	1265.0			
568	92751	В	7.76	24.54	47.92	181.0			
500 manua y 20 asilwana									

569 rows × 33 columns

In [21]:

df.head()

Out[21]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	0.022658	122.80	1001.0	
1	842517	М	0.643144	0.272574	132.90	1326.0	
2	84300903	М	0.601496	0.390260	130.00	1203.0	
3	84348301	М	0.210090	0.360839	77.58	386.1	
4	84358402	М	0.629893	0.156578	135.10	1297.0	

5 rows × 35 columns

In [22]:

df.tail()

Out[22]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
564	926424	М	0.690000	0.428813	142.00	1479.0	
565	926682	M	0.622320	0.626987	131.20	1261.0	
566	926954	М	0.455251	0.621238	108.30	858.1	
567	927241	М	0.644564	0.663510	140.10	1265.0	
568	92751	В	0.036869	0.501522	47.92	181.0	

5 rows × 35 columns

In [6]:

```
#dropping the null column
df.drop(['Unnamed: 32'],axis=1)
```

Out[6]:

id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn
842302	М	17.99	10.38	122.80	1001.0	
842517	М	20.57	17.77	132.90	1326.0	
84300903	М	19.69	21.25	130.00	1203.0	
84348301	М	11.42	20.38	77.58	386.1	
84358402	М	20.29	14.34	135.10	1297.0	
926424	M	21.56	22.39	142.00	1479.0	
926682	M	20.13	28.25	131.20	1261.0	
926954	M	16.60	28.08	108.30	858.1	
927241	M	20.60	29.33	140.10	1265.0	
92751	В	7.76	24.54	47.92	181.0	
	842302 842517 84300903 84348301 84358402 926424 926682 926954 927241	842302 M 842517 M 84300903 M 84348301 M 84358402 M 926424 M 926682 M 926954 M 927241 M	842302 M 17.99 842517 M 20.57 84300903 M 19.69 84348301 M 11.42 84358402 M 20.29 926424 M 21.56 926682 M 20.13 926954 M 16.60 927241 M 20.60	842302 M 17.99 10.38 842517 M 20.57 17.77 84300903 M 19.69 21.25 84348301 M 11.42 20.38 84358402 M 20.29 14.34 926424 M 21.56 22.39 926682 M 20.13 28.25 926954 M 16.60 28.08 927241 M 20.60 29.33	842302 M 17.99 10.38 122.80 842517 M 20.57 17.77 132.90 84300903 M 19.69 21.25 130.00 84348301 M 11.42 20.38 77.58 84358402 M 20.29 14.34 135.10 926424 M 21.56 22.39 142.00 926682 M 20.13 28.25 131.20 926954 M 16.60 28.08 108.30 927241 M 20.60 29.33 140.10	842302 M 17.99 10.38 122.80 1001.0 842517 M 20.57 17.77 132.90 1326.0 84300903 M 19.69 21.25 130.00 1203.0 84348301 M 11.42 20.38 77.58 386.1 84358402 M 20.29 14.34 135.10 1297.0 926424 M 21.56 22.39 142.00 1479.0 926682 M 20.13 28.25 131.20 1261.0 926954 M 16.60 28.08 108.30 858.1 927241 M 20.60 29.33 140.10 1265.0

569 rows × 32 columns

In [7]:

```
plt.scatter(df["radius_mean"],df["texture_mean"])
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[7]:

Text(0, 0.5, 'texture_mean')

In [8]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[8]:

KMeans()

In [9]:

```
y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

Out[9]:

```
array([3, 2, 0, 1, 2, 3, 2, 6, 6, 6, 6, 2, 4, 6, 6, 5, 2, 2, 0, 3, 3, 7,
       3, 0, 2, 2, 6, 2, 6, 3, 4, 1, 4, 4, 2, 2, 6, 1, 6, 6, 6, 6, 4, 1,
       6, 2, 7, 1, 7, 6, 6, 3, 1, 2, 6, 1, 2, 6, 1, 7, 7, 1, 6, 7, 6, 6,
       1, 1, 1, 3, 2, 7, 4, 3, 1, 2, 7, 2, 4, 1, 6, 3, 0, 4, 7, 2, 6, 4,
       6, 3, 6, 6, 3, 1, 2, 0, 1, 1, 7, 1, 6, 7, 1, 1, 1, 3, 1, 1, 0, 6,
       1, 6, 1, 1, 7, 6,
                        7, 3, 6, 2, 7, 2, 0, 3, 3, 3, 6, 2, 3, 4,
       2, 3, 2, 6, 1, 7, 3, 7, 7, 2, 1, 3, 7, 7, 1, 2, 3, 1, 6, 1, 7, 7,
       3, 1, 2, 2, 7, 7, 1, 2, 2, 6, 0, 2, 7, 2, 4, 3, 7, 1, 3, 7, 7, 7,
       1, 2, 6, 7, 0, 4, 2, 7, 6, 7, 2, 1, 1, 3, 6, 6, 1, 5, 6, 3, 6, 2,
       0, 6, 1, 2, 4, 6, 1, 3, 1, 2, 6, 3, 0, 1, 0, 4, 6, 3, 1, 1, 0,
       3, 3, 1, 2, 3, 3, 7, 3, 6, 6, 2, 5, 5, 4, 7, 6, 4, 0, 5, 5, 3, 3,
       1, 6, 4, 1, 1, 3, 6, 7, 0, 1, 2, 2, 2, 3, 4, 3, 6, 5, 4, 4, 2, 2,
       2, 4, 1, 6, 3, 1, 3, 7, 0, 7, 4, 1, 7, 2, 1, 3, 4, 7, 2, 2,
                                                                   3, 1,
         7, 1, 1, 1, 2, 3, 1, 7, 3, 7, 1, 1, 6, 2, 1, 4, 1, 1, 6, 3, 7,
       3, 3, 1, 3, 7, 7, 1, 1, 7, 2, 1, 1, 7, 2, 7, 0, 7, 1, 3, 1, 2, 2,
       3, 1, 1, 7, 1, 2, 3, 2, 1, 0, 3, 1, 7, 0, 7, 7, 1, 3, 7, 7, 1, 2,
       0, 6, 7, 1, 1, 3, 7, 1, 1, 6, 1, 2, 3, 0, 4, 1, 0, 0, 6, 3,
       3, 3, 1, 5, 3, 1, 7, 7, 6, 1, 3, 6, 7, 3, 7, 4, 7, 1, 2, 0, 1, 3,
       1, 1, 7, 1, 2, 7, 1, 3, 7, 1, 3, 6, 2, 1, 1, 1, 6, 6, 5, 6, 6, 2,
       7, 6, 1, 3, 7, 1, 1, 1, 7, 6, 1, 1, 6, 1, 2, 2, 3, 1, 1, 3,
                                                                   1, 3,
       1, 4, 3, 1, 2, 6, 4, 3, 1, 0, 6, 4, 5, 3, 1, 5, 5, 6, 6, 5, 4, 0,
       5, 1, 1, 1, 6, 1, 4, 1, 1, 5, 3, 5, 7, 3, 6, 3, 7, 2, 1, 1, 3, 1,
       3, 3, 3, 2, 7, 2, 6, 3, 2, 7, 6, 2, 1, 1, 2, 0, 3, 6, 3, 0, 7, 7,
       1, 1, 3, 6, 7, 3, 6, 3, 2, 1, 2, 2, 1, 3, 7, 0, 1, 1, 7, 7, 1, 7,
       3, 7, 1, 1, 3, 0, 1, 0, 6, 6, 6, 6, 7, 6, 6, 5, 6, 6, 7, 1, 1, 6,
       6, 6, 5, 6, 5, 5, 1, 5, 6, 6, 5, 5, 5, 4, 0, 4, 4, 4, 6
```

In [10]:

```
df["cluster"]=y_predicted
df.head()
```

Out[10]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 34 columns

→

In [11]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="y")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[11]:

Text(0, 0.5, 'texture_mean')

In [12]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["texture_mean"]])
df["texture_mean"]=scaler.transform(df[["texture_mean"]])
df.head()
```

Out[12]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	0.022658	122.80	1001.0	
1	842517	М	20.57	0.272574	132.90	1326.0	
2	84300903	М	19.69	0.390260	130.00	1203.0	
3	84348301	М	11.42	0.360839	77.58	386.1	
4	84358402	М	20.29	0.156578	135.10	1297.0	

5 rows × 34 columns

In [13]:

```
scaler.fit(df[["radius_mean"]])
df["radius_mean"]=scaler.transform(df[["radius_mean"]])
df.head()
```

Out[13]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	0.022658	122.80	1001.0	
1	842517	M	0.643144	0.272574	132.90	1326.0	
2	84300903	M	0.601496	0.390260	130.00	1203.0	
3	84348301	M	0.210090	0.360839	77.58	386.1	
4	84358402	M	0.629893	0.156578	135.10	1297.0	

5 rows × 34 columns

→

In [14]:

```
y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

Out[14]:

```
array([7, 4, 4, 5, 4, 7, 4, 3, 3, 0, 3, 7, 2, 3, 3, 0, 3, 3, 4, 7, 7, 1,
       7, 6, 3, 4, 3, 4, 3, 4, 2, 5, 2, 2, 7, 3, 3, 5, 0, 3, 3, 5, 2, 3,
       3, 4, 1, 5, 1, 3, 5, 7, 5, 4, 3, 5, 4, 3, 5, 1, 1, 5, 3, 1, 0, 3,
       5, 5, 5, 7, 4, 1, 2, 7,
                               5, 3, 7, 4, 2, 5, 5, 7, 6, 2, 1, 4, 3, 2,
       3, 7, 3, 3, 7, 5, 3,
                            2,
                               5, 5, 1, 3, 0, 1, 5, 5, 5, 7, 5, 5,
       5, 3, 3, 5, 1, 5, 1, 7, 3, 4, 1, 4, 6, 7, 7, 7, 0, 4, 7, 2, 1, 3,
       3, 7, 4, 3, 5, 1, 7, 1, 1, 7, 5, 7, 1, 1, 5, 3, 7, 7, 3, 5, 1, 1,
       7, 5, 4, 4, 1, 1,
                         5, 4, 4, 3, 6, 3, 1, 4, 2, 7, 1, 3, 7,
                                                                   1, 1,
                                                                1,
       5, 3, 3, 7, 6, 2,
                         3, 1, 3, 1, 4, 5, 5, 7, 3, 3, 5, 0, 3, 7, 3, 4,
       4, 3, 5, 4, 6, 3, 5, 7, 5, 4, 3, 7, 4, 5, 6, 2, 3, 7, 5, 5, 4, 2,
       7, 7, 5, 3, 7, 7, 1, 7, 0, 3, 4, 0, 0, 2, 1, 3, 6, 4, 0, 2, 7, 7,
       5, 3, 2, 5, 7, 7, 0, 1,
                               2, 5, 4, 4, 4, 7, 2, 7, 3, 0, 2, 2, 4, 3,
       4, 2, 5, 3, 7, 5, 7, 1, 6, 1, 2, 5, 1, 4, 7, 7, 2, 1, 4, 3,
       5, 7, 5, 5, 3, 3, 7, 5, 7, 7, 1, 5, 7, 5, 4, 5, 2, 5, 5, 0, 7, 1,
       7, 7, 5, 7, 7, 1, 5, 5, 1, 4, 5, 5, 1, 4, 7, 4, 1, 5, 7, 5, 3, 3,
       7, 5, 5, 1, 5, 4,
                         7, 4,
                               5, 6, 7, 1, 1, 4, 1, 1, 5, 7, 1, 1,
       6, 0, 1, 5, 5, 7, 1, 5, 5, 3, 5, 4, 7, 4, 2, 5, 4, 6, 3, 7, 4, 4,
       7, 7, 5, 0, 7, 5, 1, 1, 3, 5, 7, 3, 1, 7, 1, 2, 1, 1, 3, 6, 5, 7,
       3, 5, 1, 5, 4, 1, 5, 7, 1, 5, 7, 3, 4, 5, 5, 5, 5, 5, 3, 0, 5, 5, 3,
                         5,
       1, 5, 5, 7, 1, 3,
                            5, 1, 5, 5, 5, 3, 5, 4, 4, 7, 3, 5, 7,
       5, 2, 7, 5, 4, 0, 2, 7, 3, 4, 5, 2, 0, 7, 5, 0, 0, 0, 0, 0, 2, 6,
       0, 5, 5, 3, 3, 5, 2, 5, 5, 0, 7, 0, 1, 7, 3, 7, 1, 3, 5, 3, 7, 7,
       7, 7, 7, 4, 1, 4, 3, 7, 4, 1, 3, 3, 5, 5, 4, 4, 7, 0, 7, 6, 1, 1,
       5, 5, 7, 3, 1, 7, 3, 7, 3, 5, 4, 4, 5, 7, 1, 6, 5, 3, 1, 1, 3, 1,
       7, 1, 5, 5, 7, 4, 5, 4, 3, 0, 0, 0, 1, 0, 0, 0, 3, 3, 1, 1, 5, 0,
       5, 5, 0, 5, 0, 0, 5, 0, 3, 0, 0, 0, 0, 2, 6, 2, 2, 2, 0])
```

In [15]:

```
df["New Cluster"]=y_predicted
df.head()
```

Out[15]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes		
0	842302	М	0.521037	0.022658	122.80	1001.0			
1	842517	М	0.643144	0.272574	132.90	1326.0			
2	84300903	М	0.601496	0.390260	130.00	1203.0			
3	84348301	М	0.210090	0.360839	77.58	386.1			
4	84358402	М	0.629893	0.156578	135.10	1297.0			
5 r	5 rows × 35 columns								

In [16]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="y")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[16]:

Text(0, 0.5, 'texture_mean')

In [17]:

```
km.cluster_centers_
```

Out[17]:

In [18]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="y")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[18]:

Text(0, 0.5, 'texture_mean')

In [19]:

```
k_rng=range(1,10)
sse=[]
```

In [20]:

```
for k in k_rng:
km=KMeans(n_clusters=k)
km.fit(df[["radius_mean","texture_mean"]])
sse.append(km.inertia_)#km.inertia_ will gives the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
 warnings.warn(
[27.817507595043075, 14.872296449956036, 10.252751496105198, 8.48472527
7027607, 7.030773895811419, 6.043115625877609, 5.143113512343714, 4.443
01570025843, 4.018064982712662]
Out[20]:
Text(0, 0.5, 'Sum of Squared Error')
   25
Sum of Squared Error
   20
   15
  10
```

CONCLUSION

we can use multiple models but we get different types of accuracies so,that's why we will take it as a clustering and done with K-Means Clustering