Tema 6 E/S y dispositivos periféricos

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - ☐ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

¡ATENCIÓN!

- Estas transparencias son un guión para la clase
- Los libros dados en la bibliografía junto con lo explicado en clase representa el material de estudio para el temario de la asignatura
 - Para la preparación de los exámenes se ha de utilizar todo el material de estudios

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - ☐ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

Introducción

Introducción

 Qué es un bus de interconexión

Introducción

- Qué es un periférico
- Qué es un módulo de entrada/salida

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - ☐ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

Bus

- Un bus es un camino de comunicación entre dos o más dispositivos.
- Constituido por varias líneas de transmisión de bit.
- Medio compartido, unívoco.
- Permite transmitir varios bits entre dos elementos conectados a él

Bus del sistema

Bus del sistema

- Conecta los principales componentes del computador
- Representa la unión de tres buses:
 - ▶ Control
 - Direcciones
 - Datos

Buses

Bus de datos

- Transmite datos
- Su anchura y velocidad influye mucho en las prestaciones

Bus de direcciones

- Direcciones de memoria y dispositivos de E/S
- Su anchura determina la máxima capacidad de memoria

Bus de control

Señales de control y temporización

Comunicación entre módulos

Envío de datos de un módulo a otro:

- I°) Obtener el uso del bus.
- 2°) Transferir el dato a través de las líneas de datos del bus.

Petición de datos a otro módulo:

- 1°) Obtener el uso del bus.
- 2°) Transferir la petición de información a través de las líneas de control y dirección.
- 3°) Esperar que el segundo módulo envíe el dato.

Jerarquias de buses

- A más dispositivos conectados al bus, mayor es el retardo de propagación.
- A medida que aumenta el número de peticiones de transferencia, se puede producir un cuello de botella.
- Soluciones:
 - Aumentar la velocidad de transmisión de datos con buses más anchos.
 - Utilizar más buses de datos, organizados jerárquicamente.

Jerarquías de buses

Curiosidades: Familia USB

	Transfer. (por seg.)	Aparición
USB 3.0	600 MB/s	2010
USB 2.0	60 MB/s	2000
USB 1.0	1.5 MB/s y 187 KB/s	1996

	Song / Pic	256 Flash 256 MB	USB Flash 1 GB	SD-Movie 6 GB	USB Flash 16 GB	HD-Movie 25 GB
.)						
USB 1.0	5.3 sec	5.7 min	22 min	2.2 hr	5.9 hr	9.3 hr
USB 2.0	0.1 sec	8.5 sec	33 sec	3.3 min	8.9 min	13.9 min
USB 3.0	0.01 sec	0.8 sec	3.3 sec	20 sec	53.3 sec	70 sec

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - ☐ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

Concepto de periférico

Periférico:

- Todo aquel dispositivo externo que se conecta a una CPU a través de la unidades o módulos de entrada/salida (E/S).
- Permiten almacenar información o comunicar el computador con el mundo exterior.

Clasificación de periféricos (por uso)

Comunicación:

- ▶ Hombre-máquina
 - □ (Terminal) teclado, ratón, ...
 - □ (Impresa) plotter, escáner, ...
- ▶ Máquina-máquina (Módem, ...)
- Medio físico
 - ☐ (Lectura/accionamiento) x (analógico/digital)

Almacenamiento:

- Acceso "directo" (Discos, DVD, ...)
- Acceso secuencial (Cintas)

Estructura general de un periférico

Compuesto de:

- Dispositivo
 - Hardware que interactúa con el entorno
- Módulo de Entrada/Salida
 - También denominado controlador
 - Interfaz entre dispositivo y la CPU, que le oculta las particularidades de este

Ejemplo Disco duro

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - □ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

- El primer disco duro apareció en 1956
 - Encargo de las fuerzas Aéreas de EEUU
 - Se le llamó IBM RAMAC 305
 - ▶ 50 discos de aluminio de 61 cm de diámetro
 - ▶ 5 MB de datos
 - ▶ Giraba a 3.600 revoluciones por minuto
 - Contaba con una velocidad de transferencia de 8,8 Kbps
 - Pesaba cerca de una tonelada

1956

2005

	Tasa de crecimiento por año		
Capacidad	I.93/año		
Coste	0.6/año		
Prestaciones	0.05/año		

Módulo de control y mecánica

Electrónica

- Planificación de comandos
- Corrección de errores
- Optimización
- Comprobación de integridad
- Control de las revoluciones por minuto (RPM)

Almacenamiento

Almacenamiento: cilindro

Cilindro:

información accedida por todas las cabezas en una rotación

Almacenamiento: pistas y sectores

Pista:

Un anillo del plato

Sector:

 División de la superficie del disco realizada en el formateo (típicamente 512 bytes)

Bloques:

- El sistema de ficheros escribe en bloques
- Grupo de sectores

Distribución de sectores

(a) Constant angular velocity

(b) Multiple zoned recording

Capacidad de almacenamiento

Para discos con velocidad angular constante

- n_s: número de superficies
- p: número de pistas por superficie
- s: número de sectores por pista
- t_s: bytes por sector

$$Capacidad = n_s \times p \times s \times t_s$$

Para discos con múltiples zonas

- z: número de zonas
- p_i: pistas de la zona i
- p_i: sectores por pista de la zona i

$$Capacidad = n_s \times t_s \times \sum_{i=1}^{z} (p_i \times s_i)$$

Tiempo de acceso

- $T_{acceso} = n * T_{búsqueda} + T_{latencia} + T_{transferencia}$
- n: número de cilindros a desplazar desde el cilindro actual al cilindro sobre el que se quiere operar
- Tiempo de búsqueda (T_{búsqueda}): tiempo necesario para mover la cabeza un cilindro de distancia
- Latencia de rotación (T_{latencia}): tiempo que pasa hasta que el sector deseado pasa por debajo de la cabeza de lectura/escritura
 - T_{latencia} = Tiempo medio para recorrer media pista
- ▶ Tiempo de transferencia (Tt): tiempo necesario para recorrer un sector y transferir los datos de él

Ejercicio

- Sea un disco con un solo plato con las siguientes características:
 - Velocidad de rotación: 7200 rpm
 - Platos: 5, con 2 superficies por plato
 - Número de pistas de una cara del plato: 30000
 - Sectores por pista: 600 (de 512 bytes)
 - Tiempo de búsqueda: I ms por cada 100 pistas atravesadas
- Suponiendo que la cabeza está en la pista 0 y se solicita un sector de la pista 600, calcular:
 - Capacidad del disco duro
 - La latencia de rotación
 - Tiempo de transferencia de un sector
 - Tiempo de búsqueda del sector pedido

Capacidad:

5 platos * 2 caras/plato * 30.000 pistas/cara * 600 sectores/pista * 512 bytes/sector = 85,8 GB

Latencia de rotación:

- Lr = Tiempo de media vuelta a una pista
- 7.200 vueltas/minuto -> 120 vuelta/segundo
 -> 0,0083 segundos/vuelta -> 4,2 milisegundos (media vuelta)

▶ Tiempo de transferencia de un sector:

- ▶ Hay 600 sectores por pista y la pista se lee en 8,3 milisegundos
- 8,3 / 600 -> 0,014 milisegundos

Tiempo de búsqueda:

- Cada 100 pistas 1 ms, y hay que ir a la pista 600
- ▶ 600 / 100 = 6 milisegundos

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - ☐ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

Módulo de E/S: qué son

Las unidades o módulos de E/S realizan la conexión de la CPU con los dispositivos periféricos.

Módulo de E/S: necesidad

Módulo de E/S

Dispositivo

Periférico

- Son necesarios debido a:
 - Gran variedad de periféricos.
 - Los periféricos son 'raros'
 - La velocidad de transferencia de datos de los periféricos es mucho menor que la de la memoria o el procesador.
 - Los periféricos son 'muy lentos'
 - Formatos y tamaños de palabra de los periféricos distintos a los del computador al que se conectan.

Módulo de E/S: estructura

- Interacción entre CPU y Unidad de E/S a través de 3 registros:
 - Registro de control
 - Ordenes para el periférico
 - Registro de estado
 - Estado desde de la última orden
 - Registro de datos
 - Datos intercambiados CPU/Perif.

Módulo de E/S: estructura

- Interacción periférico/unidad de E/S:
 - Líneas de datos: transferencia de información
 - Señales de estado: diagnóstico del periférico
 - Ejemplos:

 - Nuevo dato disponible
 Periférico encendido/apagado
 Periférico ocupado
 Periférico operativo o no
 Error de operación
 - Señales de control: accionamiento del periférico
 - Ejemplos:

 - Encender o apagar
 Saltar página en impresoras
 Posicionar el brazo de un disco

Módulo de E/S: funciones

Atender al procesador:

- Decodificación de órdenes
- Información de estado
- Control y temporización
 - Ej.: datos a M.P.

Controlar periférico(s):

- Comunicación con dispositivos
- Detección de errores
- Almacenamiento temporal de datos
 - periférico->CPU

Módulo de E/S: tipos

- Canal de E/S o procesador de E/S: se encarga de la mayoría de los detalles del procesamiento.
- Controlador de E/S o controlador de dispositivo: módulo más simple, que requiere que el procesador tenga un control detallado del dispositivo.

Contenidos

- Introducción
- Buses
 - Estructura y funcionamiento
 - Jerarquía de buses
- Periféricos
 - Concepto de periférico
 - Clasificación y tipos de periféricos
 - Estructura general de un periférico
 - ☐ Caso de estudio: disco duro
- Módulos de E/S
 - Estructura
 - Funcionamiento general
 - Características

Módulo de E/S: características

- Características fundamentales:
 - Unidad de transferencia
 - Direccionamiento (y ancho de palabra)
 - Interacción computadorcontrolador

Características (1/3)

Unidad de transferencia:

- Dispositivos de bloque:
 - Acceso secuencial o directo a bloques
 - Operaciones: leer, escribir, situarse, ...
 - Acceso posible a través de ficheros proyectados en memoria
 - Ejemplos: discos y "cintas"
- Dispositivos de carácter:
 - Acceso secuencial a caracteres
 - ▶ Operaciones: get, put,....
 - Ejemplo: terminales, impresoras, tarjetas de red

Características (2/3)

Direccionamiento de E/S:

Proyectados en memoria

Los registros del 'controlador' se proyectan en memoria y usando un conjunto de direcciones de memoria se acceden a dichos registros.

▶ Ej: sw \$a0 etiqueta_discoA

Mediante puertos:

Con instrucciones ensamblador especiales (In/Out) se acceden a unos puertos que representan los registros del 'controlador'.

▶ Ej: out \$a0 0×105A

Características (3/3)

- Interacción Computador-Controlador:
 - E/S programada o directa
 - ► CPU no hace otra cosa que E/S: espera → transfiere
 - **► E/S por interrupciones**
 - CPU: sólo transfiere
 - ▶ E/S por DMA (acceso directo a memoria)
 - ▶ CPU no transfiere solo se le avisa del fin del bloque transferido
 - □ controlador de periférico más sofisticado
 - □ lógica para DMA: contadores, señales de control, etc.

'polling'

Interacción mediante E/S programada

Interacción mediante E/S programada

Ejemplo

- Información de control
 - 0: leer
 - I: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

Ejemplo (lectura de dato)

- Información de control
 - ▶ 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - 1: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

- Enviar la orden:
 - li \$t0 0
 - sw \$t0 0x500
- 2. Leer estado hasta que esté listo:
 - bucle: lw \$t1 0x504
 - begz \$t1 bucle
- 3 Leer el dato:
 - lw \$t2 0x508

Ejemplo (escritura de dato)

- Información de control
 - 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

- . Enviar el dato:
 - li \$t0 123
 - sw \$t0 0x508
- 2. Enviar la orden:
 - li \$t0 l
 - sw \$t0 0x500
- 3. Leer estado hasta que esté listo:
 - bucle: lw \$t1 0x504
 - begz \$t1 bucle

Ejercicio

- Información de control
 - ▶ 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

Codifique un programa en ensamblador que lee 100 datos usando la unidad de E/S descrita, y los almacene en la dirección de memoria principal dada por la etiqueta 'datos'.

- Información de control
 - ▶ 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

```
.data
   datos: .space 400
.text
.globl main
           li $t3 0
main:
  bucle1: li $t0 0
           sw $t0 0x500
  bucle2: lw $t1 0x504
           begz $t1 bucle2
           lw $t2 0x508
           sw $t2 datos($t3)
           add $t3 $t3 4
           bne $t3 400 bucle l
```


- Información de control
 - ▶ 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - 1: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

```
.data
   datos: .space 400
.text
.globl main
           li $t3 0
main:
  bucle1: li $t0 0
           sw $t0 0x500
  bucle2: lw $t1 0x504
                                    Bucle de
                                    sincronización
           begz $t1 bucle2
           lw $t2 0x508
           sw $t2 datos($t3)
           add $t3 $t3 4
           bne $t3 400 bucle l
```


- Información de control
 - ▶ 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - 1: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

```
.data
   datos: .space 400
.text
.globl main
           li $t3 0
main:
  bucle1: li $t0 0
           sw $t0 0x500
  bucle2: lw $t1 0x504
           begz $t1 bucle2
                                       transferencia
           lw $t2 0x508
           sw $t2 datos($t3)
           add $t3 $t3 4
           bne $t3 400 bucle I
```

Ejercicio

- Sea un computador con la capacidad de ejecutar 200 millones de instrucciones por segundo (200 MIPS)
- Se conecta el módulo de E/S anteriormente descrito siendo el tiempo medio de espera de lectura de 5 ms
- Calcule cuantas instrucciones se ejecutan en el bucle de sincronización y en el bucle de transferencia para el programa mostrado

```
.data
   datos: .space 400
.text
.globl main
           li $t3 0
main:
  bucle I: li $t0 0
           sw $t0 0x500
  bucle2: lw $t1 0x504
           begz $t1 bucle2
                                       transferencia
           lw $t2 0x508
           sw $t2 datos($t3)
           add $t3 $t3 4
            bne $t3 400 bucle I
```


- Bucle de sincronización:
 - En media dura 5 ms
 - Se ejecuta 200 MIPS en media

$$I_{bs} = 200*10^6 * 5*10^{-3} = 10^6$$

Bucle de transferencia:

$$I$$
 (li \$t3 0) + 6 * I 00 + I 06 (I _{bs})

- Como puede comprobarse, en el bucle se ejecuta 1.000.601 instrucciones, de las cuales 1.000.000 corresponden al bucle de espera (el 99,9%)
 - Es un desperdicio de ciclos de la CPU

```
.data
   datos: .space 400
.text
.globl main
           li $t3 0
main:
  bucle I: li $t0 0
           sw $t0 0x500
  bucle2: lw $t1 0x504
           begz $t1 bucle2
                                       transferencia
           lw $t2 0x508
           sw $t2 datos($t3)
           add $t3 $t3 4
            bne $t3 400 bucle I
```

Interacción mediante E/S programada

Interacción mediante interrupciones

Interacción mediante interrupciones

Ejemplo (lectura de 100 datos)

- Información de control
 - 0: leer
 - l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Mapa de E/S común
 - Instrucciones lw y sw

```
main: li $t3 0

bucle I: li $t0 0

sw $t0 0x500

li $v0 xx

syscall # sleep till interrupt ©

sw $v0 datos($t3)

add $t3 $t3 4

bne $t3 400 bucle I
```

```
INT_05: lw $v0 0x508

ret_int # restore registers & return
```

Ejemplo (lectura de 100 datos)

Interacción mediante interrupciones

Memoria

Uso de CPU

Ejemplo (lectura de 100 datos)

- Información de control
 - ▶ 0: leer
 - ▶ I: escribir
 - ▶ 10: dirección
 - > 20: número de palabras
- Mapa de E/S común
 - Instrucciones lw y sw

```
main: la $t0 datos

sw $t0 0x500

li $t0 100

sw $t0 0x500

li $t0 0

sw $t0 0x500

li $v0 xx

syscall # sleep till interrupt ☺

beq $v0 400 error
```

```
INT_05: lw $v0 0x508

ret_int # restore registers & return
```

Coordinación entre CPU y Módulos de E/S para acceder a memoria

Cada dato transferido a memoria supone:

- Pedir permiso para acceder a memoria (BUSRQ)
- Esperar el permiso (BUSACK)
- Transfiere a memoria
- Desactiva petición de permiso (BUSRQ)

Una vez transferido todos los datos:

• Generar una interrupción (INT) para avisar a la CPU

Curiosidades: Importancia de los controladores

- ► Estadísticas del kernel de Linux (2007-2008):
 - > 9,2 millones de líneas de código.
 - Se incrementa un 10% cada año:
 - ▶ En media cada día se:
 - □ Añaden 4.500 líneas,
 - □ Borran I.800 líneas
 - Modifican 1.500 líneas
 - La mayor parte del código es de los drivers:
 - El 55% del código son los controladores de dispositivo (o drivers)
 - □ Software parte del sistema operativo que la CPU ejecuta para trabajar con el dispositivo asociado
 - El núcleo del kernel ocupa un 5% y el resto (40%) se reparte entre soporte para las distintas arquitectura, el código de red, etc.

Tema 6 E/S y dispositivos periféricos

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid