

实验报告

	实验报告成绩	实验总成绩
实验课堂表现	实验报节风级	
A() B() C()	· · · · · · · · · · · · · · · · · · ·	

实验名称: 门电路测计及组制逻辑电路设计

专业班级: _	10 电影像图像
学号:_	一大人と参加し
姓 名: _	· 元度交下器划台: 四章 - 二二字
联系电话:	
指导老师:	81 1 4 5 4
实验时间:	

电气与电子工程学院 电工电子技术实验中心

【成绩】

【教师签名】

- ① 熟悉拿成的电路的逻辑劝能知测计方法。
- @ J解 TTL, CMOS 集成门电路的特点知使用规则。
- 图根据任务设计出组台逻辑电路。
- @ 由实验方案,选用仪器设备验证所设计的组部逻辑电路的正确性

【实验原理及内容】

(1)常见的组创逻辑电路静使用中,小规模集成电路来设计。

没计组合电路的一般步骤是:①根据设计任务的要求,列出真值表。②用作语图本代数 似简洁或是简的逻辑表达了图根橙色辑表达式 画出逻辑 图,用标准器件构本线 田最后用实验 来经证没计的正确性。 (2) 组合逻辑电路设计部。

用"排"门设计一个电路建建。当有4个输入3%中有3个或4个为"1"对、输出2篇标门 没法粮:

3 作出真伪值表好诺图

•	10		1	1	-	5	-	10	1	-	-		-	,	_	
A	1	0	10	0	0	10	0.	U	11	1	1	1	1	1	. 1	1
B	0	0	0	0	1	1	1	1	V	V	0	0	010	1	1	1
C	O	0	1	1	0	0	1	1	0	0	1	1	0	J.	1	1 0
D	0	400	0	1	0	1	0	P	10	1.	0	1	v	1	D	313
2	0	0	0	0	0	0	0	P	0	0	0	1	12	1	1	,

1	1	1	1	1	1	. 1	1	1	AB DO	0 01	14	10
+	V	0	0	010	1	1	1	1	00	3		157
-	0	1	1	0	J.	1	10		201	3	m	
-	10	0.	1	U	1	0	1	1	11	10	1	1
-	0	0	1	0	1	1	1	t	10	1,	+ 1	2

· 是好人人不知為我一种自己的自己的

日 由卡洛因 得想逻辑表达 开, 新兴简为"赫"形式

Z = ABC+ABD+ ACD+BCD = A. BC.BD . C.AD.BD

四月彩色路通

②《逐出与非门"村成的逻辑电路。

- 【实验设备】 Ozt算机, Multisim 软件
- ②数邻腺
- ③ 數字电路家驗箱
- 9 742500 (C(4011) 742520 (C(4013) 742586 (C(4030) 742508 (C(4081)

742554 (ce4.85) 74 LSO2 (ce4001) 7415138 【实验方案及步骤】

(1)沙汀"绯汀"逻辑功能。①检电路图色接好电路 ①打开电源开始仍直并记录数据

封	小人	独出			DIT		4: 4:		1 = 1
0	0	I do to	45 # 20 1	Wid Brid	7				
0	1	1	1016 3. 16 p	Tho-Orach	41 6146 91	三年 成五	100 X		" , "X"
L	0	0	-				7		
	1	0	2. 未完	自大的	4 (4)	C (* 4.	1 4 301	1000	-/

(2) 用741500设计一个似表决电路,纷散紫发胜过。

①根据要求到出相对应的直值表,再由卡诺图得出重新逻辑表达了 Z=ABC+ABD+AID+BO

日均逻辑 (X简为5非"形才 Z=[(A((BC)'(BD))')'(C((AD)'(BD)')')']

③画出电线图、制用 Multisimed 其进行给真。 面记录输入与输出,进行二次9定证

31 用741500设计一个物器

①由默到出租对应的原值表,由丰诺图得出逻辑表达式.

,				
A	B	C	5	-
0	D	0	0	
0	1	0	1	
1	0	0	1	-
1	1	1	0	-
	0	0 0	0 0 0	0 0 0 0

多里行之鬼 "想" 指表达 打 狗 狗 排 侧个

2. 军工之后。其世世的人员是由了上

173 公司公司公司

③画出电路图,制用 Multisim 对其进行伤真。

图记录输入与输出进行二次多道。

(3)四人表决包络

新門一直以此一有成了,所以在一处接為也年一年上點車接後便可以并

【实验数据处理及分析】

的"排门逻辑功能

至為) 多入		教业	E of BAUR	31
0	0	Î		
U	1		and the state of t	
1	0	1		
1	1	0		

	. 1 11				F 1 1 6	
0	(3) 半か発	184. 4	后在年	7	南京	

(1) 新美麗州中国山村,如此村 神教·新

母 美格	A	B	C	5	ci di	in the	1		
	0	Pos	0	10.14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1. 3	A W	e Ur	10
	11	0	0	1	4年450		8 St 14	1 1 11	
4. 6.75	1 12 1		114	0				6	

(2) 四入人表 净色路

4	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
B	0	0	0	0	1	1	1	1	v	0	0	0	1	1	1
c	0	0	1	1	0	C	1	1	0	0	1	1	0	o	1
D	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
2	0	0	0	0	0	0	0	1	0	0	0	1	U	1	1

【实验结论】

- (1) 李握并应用了设计组台电路的一般多级。
- (2) 神多了解了741500,741520等的基本功能。
- (3) 学生了使用TTY coms望城门宛城行络及其测试的法。
- (4) 成功验证了阶设计的组制逻辑电路的正确性

11)如何用最简单的方法验证"绯门"的逻辑功能是否完好!

新门"全赋O,有OBI",所以在一端接高电平1、 别三端春接低钾OH. 输 出高色平1, 对塞高电平1时. 输出任电平0。

(2) "与""排""求""或非"门, 多年输入运输分配 如何处理?"与或非"门中 当某一组"与"之为不同时,这如何处理了

"与""排"门 纷争输入汽箱 楼高电平。

"水""排"门 多车输入沟 接地电对接地。

"与我能"门 当集一组"给端不同时、Trun 是空。(MOS 到接地

11 6 - 1 1 0 0 1 1 2 0 1 - 2

【原始记录】

10 1

(3) A B CS
0 0 0 0
1 0 1
1 1 1 0

4

11.484