Stream Ciphers II

AK Bhateja

Shift Registers

- LFSRs of order *n* can generate a maximum-length of $2^n 1$.
- A maximum-length LFSR have a characteristic polynomial that is primitive.
- Number of primitive polynomials is $\frac{\phi(2^n-1)}{n}$.
- Probability of randomly selecting a primitive polynomial is $\left(\frac{\phi(2^n-1)}{n}\right)/2^n \approx \frac{1}{n}$
- The sequence generated by such a maximum-length LFSR is called an m-sequence.
- m-sequence have good pseudo randomness properties.

Linear complexity or linear equivalence

- Definition: The linear complexity of a binary sequence s^N is the minimal possible order for a LFSR that can generate a sequence having s^N as its first N terms. Denoted $L_N(s)$ for the linear complexity of the sequence s of length N.
- For any $N \ge 1$, the linear complexity of the subsequence s^N satisfies $0 \le L(s^N) \le N$.
- If s^N is the zero sequence $s^N = 0, 0, 0, \dots 0$, then $L(s^N) = 0$
- If $s^N = 0, 0, 0, \dots 1$, then $L(s^N) = N$
- If s^N is periodic with period p, then $L(s^N) \le p$.

Berlekamp-Massey algorithm

- It is an efficient algorithm for determining the linear complexity of a finite binary sequence s^N of length N.
- It outputs the minimal polynomial of s^N .
- 2L bits is enough, where L is linear complexity of the keystream.
- Definition (next discrepancy): Consider the finite binary sequence $s^{N+1} = s_0, s_1, \ldots, s_N$. Let an LFSR generates $s^N = s_0, s_1, \ldots, s_{N-1}$ using polynomial $C(x) = 1 + c_1 x + \ldots + c_L x^L$. The next discrepancy d_N is the difference between s_N and the $(N+1)^{\rm st}$ term generated by the LFSR is

$$d_N = \left(s_N + \sum_{i=1}^L c_i s_{N-i}\right) \mod 2$$

Theorem: Let s^N be a finite binary sequence of linear complexity $L(s^N)$, and let $\langle L(s^N), C(x) \rangle$ be an LFSR which generates s^N .

- a) The LFSR $\langle L(s^N), C(x) \rangle$ also generates $s^{N+1} = s_0, s_1, \ldots, s_{N-1}, s_N$ if and only if the next discrepancy d_N is equal to 0.
- b) If $d_N = 0$, then $L(s^{N+1}) = L$.
- c) If $d_N = 1$. Let m the largest integer < N such that $L(s^m) < L(s^N)$, and let $\langle L(s^m), B(x) \rangle$ be an LFSR of length $L(s^m)$ which generates s^m . Then (L', C'(x)) is an LFSR of smallest length which generates s^{N+1} , where

$$L' = \begin{cases} L & \text{if } L > N/2\\ N+1-L & \text{if } L \le N/2 \end{cases}$$

and $C'(x) = C(x) + B(x) \cdot x^{N-m}$.

Reference: James L. Massey, "Shift-Register Synthesis and BCH", IEEE Transactions on Information Theory, vol-IT, No. 1, Jan 1969.

Berlekamp-Massey algorithm

```
INPUT: a binary sequence s^n = s_0, s_1, \ldots, s_{n-1} of length n.
OUTPUT: the linear complexity L(s^n) of s^n, 0 \le L(s^n) \le n.
  C(x) = 1, L = 0, m = -1, B(x) = 1, N = 0.
  While (N < n)
        compute the next discrepancy d = (s_N + \sum_{i=1}^{L} c_i s_{N-i}) \mod 2
         if d = 1 then do
              T(x) = C(x), C(x) = C(x) + B(x). x^{N-m}
             If L \le N/2 then L = N + 1 - L, m = N, B(x) = T(x)
        N = N + 1.
 return (L)
```

Example: Reconstruct a minimum order LFSR which generates the sequence 001110110 of length 9.

s_N	d	T(x)	C(x)	L	m	B(x)	N
_	_	-	1	0	-1	1	0
0	0	-	1	0	-1	1	1
0	0	-	1	0	-1	1	2
1	1	1	$1 + x^3$	3	2	1	3
1	1	$1 + x^3$	$1 + x + x^3$	3	2	1	4
0	1	$1 + x + x^3$	$1 + x + x^2 + x^3$	3	2	1	5
1	1	$1 + x + x^2 + x^3$	$1 + x + x^2$	3	2	1	6
1	0	$1 + x + x^2 + x^3$	$1 + x + x^2$	3	2	1	7
1	1	$1 + x + x^2$	$1 + x + x^2 + x^5$	5	7	$1 + x + x^2$	8
0	1	$1 + x + x^2 + x^5$	$1 + x^3 + x^5$	5	7	$1 + x + x^2$	9

This sequence is found to have linear complexity 5, and the polynomial is $1 + x^3 + x^5$.

Linear Complexity Profile

• Definition: Let $s = s_0, s_1, \ldots$ be a binary sequence, and let L_N denote the linear complexity of the subsequence $s^N = s_0, s_1, \ldots, s_{N-1}, N \ge 0$. The sequence L_1, L_2, \ldots is called the linear complexity profile of s.

Linear complexity profile of a random sequence with L.C. = 20

Are LC and LCP good?

- Both are good
- However, there are certain predictable sequences that can be detected by neither of them
- Example: The following sequence has perfect LCP, yet it is predictable

$$s_i = \begin{cases} 1 & \text{if } i = 2^j - 1 \text{ for some } j \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

• Use LC and LCP together with other statistical or complexity tests.

Weaknesses of LFSR

- Cryptanalytic attack is very dangerous if keystream is ever repeated
 - Self-cancellation property of XOR: $x \oplus x = 0$
 - $-(m_1 \oplus \text{key stream}) \oplus (m_2 \oplus \text{keystream}) = m_1 \oplus m_2$
 - If attacker knows m_1 , then easily recovers m_2
- Known plaintext attack
 - If the interceptor knows the plaintext equivalent of $m \ge 2n$ consecutive positions of ciphertext of n-stage LFSR based stream cipher, then plaintext can be easily recovered.

Nonlinear feedback shift registers

- Shift registers with non-linear feedback function.
- NLFSRs are known to be more resistant to cryptanalytic attacks than Linear Feedback Shift Registers.
- NLFSR can produce sequences with much higher linear complexity than LFSRs.
- $f(x_1, x_2, x_3, x_4) = 1 \oplus x_2 \oplus x_3 \oplus x_4 x_5 \oplus x_1 x_3 x_4 x_5$ has nonlinear order 4.
- The number of feedback functions for an n-stage shift register is 2^{2^n} .

• Truth table for n = 3

S No	Input			Output	
S. No.	s_0	s_1	s_2	s_3	
1	0	0	0	1	
2	0	0	1	1	
3	0	1	0	0	
4	0	1	1	1	
5	1	0	0	0	
6	1	0	1	0	
7	1	1	0	1	
8	1	1	1	0	

• The function $f(s_0, s_1, s_2)$ which describes the truth table:

$$f(s_0, s_1, s_2) = (s_0 + 1) (s_1 + 1) (s_2 + 1) \cdot 1 + (s_0 + 1) (s_1 + 1) s_2 \cdot 1 + (s_0 + 1)$$

$$s_1 (s_2 + 1) \cdot 0 + (s_0 + 1) s_1 s_2 \cdot 1 + s_0 (s_1 + 1) (s_2 + 1) \cdot 0 + s_0 (s_1 + 1) s_2 \cdot 0$$

$$+ s_0 s_1 (s_2 + 1) \cdot 1 + s_0 s_1 s_2 \cdot 0$$

$$= 1 + s_0 + s_1 + s_1 s_2$$

S. No.	Input			Output	
5. 110.	s_0	s_1	s_2	s_3	
1	0	0	0	1	
2	0	0	1	1	
3	0	1	0	0	
4	0	1	1	1	
5	1	0	0	0	
6	1	0	1	0	
7	1	1	0	1	
8	1	1	1	0	

$$f(s_0, s_1, s_2) = 1 + s_0 + s_1 + s_1 s_2$$

- Every truth table give a unique feedback function
- No two functions can give the same truth table
- Thus the number of feedback functions for *n*-stage shift register is the same as the number of truth tables
- A truth table is completely determined by its last column
- Since a truth table has 2^n rows, last column has 2^n positions & for each one, there are two possible entries (0 or 1). Thus the number of feedback functions for an n-stage shift register is 2^{2^n} .

Nonlinear combination generators

- One general technique for destroying the linearity inherent in LFSRs is to use several LFSRs in parallel.
- The keystream is generated as a nonlinear function f of the outputs of the component LFSRs.
- Such keystream generators are called nonlinear combination generators.
- Function f is called the combining function.

Nonlinear combination generators

Geffe generator

- It has three maximum-length LFSRs whose lengths n_1 , n_2 , n_3 are pairwise relatively prime, with nonlinear combining function
- $f(x_1, x_2, x_3) = x_1 x_2 \oplus (1 + x_2) x_3 = x_1 x_2 \oplus x_2 x_3 \oplus x_3$

Period and LC of Geffe Generator

• The keystream generated has period $(2^{n_1}-1)\cdot(2^{n_2}-1)\cdot(2^{n_3}-1)$

• Linear complexity $L = n_1 n_2 + n_2 n_3 + n_3$.

Clock Controlled generators

- The component LFSRs are clocked regularly; i.e., the movement of data in all the LFSRs is controlled by the same clock.
- The main idea behind a clock-controlled generator is to introduce nonlinearity into LFSR-based keystream generators by having the output of one LFSR control the clocking (i.e., stepping) of the other LFSRs
- Since the other LFSR clocked in an irregular manner, the attacks based on the regular motion of LFSRs gets foiled.
- Some clock controlled generators
 - The alternating step generator (ASG)
 - Shrinking Generator (SG)
 - Self-Shrinking generator (SSG)

The alternating step generator (ASG)

- A clock controlled generator
- It uses three LFSRs $(R_1, R_2 \& R_3)$
- LFSR R_1 to control the clocking / stepping of two LFSRs, R_2 and R_3 .
- The keystream produced is the XOR of the output sequences of R_2 and R_3 .

Algorithm: Alternating step generator

Register R_1 is clocked.

If the output of R_1 is 1 then

 R_2 is clocked; R_3 is not clocked but its previous output bit is repeated.

(For the first clock cycle, the previous output bit of R_3 is taken to be 0)

If the output of R_1 is 0 then

 R_3 is clocked; R_2 is not clocked but its previous output bit is repeated.

(For the first clock cycle, the previous output bit of R_2 is taken to be 0)

The output bits of R_2 and R_3 are XORed; the resulting bit is part of the keystream.

Example:

LFSRs R_1 : Initial contents: 100, Polynomial: $1 + x^2 + x^3$

LFSRs R_2 : Initial contents: 1101, Polynomial: $1 + x^3 + x^4$

LFSRs R_3 : Initial contents: 10010,

Polynomial: $1 + x + x^3 + x^4 + x^5$

Sequence generated by R_1 : 1001011 period 7

Sequence generated by R_2 : 110101111000100 period 15

Sequence generated by R_3 :

10010101100001110011011111101000 period 31

Output bits of R_2 : 1 1 1 1 1 0 1 0 0 ...

Output bits of R_3 : 0 1 0 0 0 0 0 1 ...

The resulting bits: 1 0 1 1 1 0 1 0 1 ...

Period & Linear Complexity of ASG

- Suppose R_1 , R_2 & R_3 are maximum length LFSRs of length n_1 , n_2 and n_3 respectively such that gcd $(n_2, n_3) = 1$.
- The period of the sequence (s) generated by ASG is $(2^{n_1}-1)\cdot(2^{n_2}-1)\cdot(2^{n_3}-1)$
- The linear complexity of ASG satisfies
- $(n_2 + n_3)2^{n_1-1} < L(s) < (n_2 + n_3)2^{n_1}$

Reference: Günther, Christoph G. "Alternating step generators controlled by de Bruijn sequences" Workshop on the Theory and Application of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1987.

Shrinking Generator (SG)

- A control LFSR R_1 is used to control the output of a second LFSR R_2 and select a portion of the output sequence of a second LFSR R_2
- Both R_1 and R_2 are clocked
- If the output of R_1 is 1, the output bit of R_2 forms part of the keystream.
- If the output of R_1 is 0, the output bit of R_2 is discarded.

Example: Shrinking Generator

LFSRs R_1 : Initial contents: 001, Polynomial: $1 + x + x^3$

LFSRs R_2 : Initial contents: 10100, Polynomial: $1 + x^3 + x^5$

Sequence generated by R_1 is

0011101

Sequence generated by R_2 is 1010000100101100111110001101110

The keystream generated by SG is

100001011111101110

Period & LC of Shrinking Generator

- Let R_1 (selector) and R_2 form a shrinking generator. If both R_1 and R_2 are maximal length (have primitive feedback polynomials of order n_1 , n_2 respectively) and $gcd(2^{n_1} 1, 2^{n_2} 1) = 1$, then the shrunken sequence has
 - period $(2^{n_2} 1) \cdot 2^{n_1 1}$
 - linear complexity $n_2 \cdot 2^{n_1-1}$

Reference: Coppersmith, Don, Hugo Krawczyk, and Yishay Mansour. "The shrinking generator." Annual International Cryptology Conference. Springer, Berlin, Heidelberg, 1993.

Self-Shrinking generator (SSG)

- A self-shrinking generator is a pseudorandom generator that is based on the shrinking generator concept.
- It uses one LFSR and alternating output bits of the single register is used to control its final output.
- The procedure for clocking SSG
 - Clock the LFSR twice to obtain a pair of bits as LFSR output
 - If the pair is 10 output a zero
 - If the pair is 11 output a one
 - Otherwise, output nothing.

Example: Consider LFSR of degree 8

Initial contents $s = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1$

Primitive polynomial: $1+x^2+x^3+x^4+x^8$

Time	State of LFSR	Output	SSG bit
0	01101101	-	-
1	11011011	0	
2	10110111	1	-
3	01101111	1	0
4	1101111	0	U
5	10111110	1	1
6	01111100	1	1

Sequence generated by SSG is: 0 1 1 0

RC4 (Rivest Cipher 4)

- RC4 was designed in 1987 by Ron Rivest and is one of the most widely software stream cipher
- It was proprietary cipher owned by RSA Data Security Inc (RSADSI)
- Became public in 1994
- Simple and effective design
- Variable key size, byte-oriented stream cipher
- RC4 is a symmetric key cipher and bite-oriented algorithm
- Widely used (web SSL/TLS, wireless WEP)
- It's considered fast and simple in terms of software
- However, the simplicity of RC4 makes it vulnerable to different security attacks.

RC4: Basic Constituents

- Key scheduling algorithm (KSA)
 - A simple scrambling of input keystream and the initial state is performed
 - KSA generates initial permutation S of $\{0, \dots, N-1\}$
 - First, the array S is initialized to the identity permutation and then mixes bytes of the key within it.
- Pseudo Random-number Generation Algorithm (PRGA)
 - A pseudorandom output byte sequence is generated from internal permutation

```
Algorithm: Key Scheduling

for i from 0 to N-1

S[i] = i
j = 0
for i from 0 to N-1
j = (j + S[i] + \text{key}[i \text{ mod keylength}]) \text{ mod } N
swap(S[i], S[j])
```

Algorithm: Pseudo Random Generation

$$i = j = 0$$

while Generating_Output key stream

$$i = (i + 1) \mod N$$

$$j = (j + S[i]) \bmod N$$

Swap (S[i], S[j])

Output = $S[(S[i] + S[j]) \mod N]$

RC4

- Many stream ciphers are based on LFSRs, which are efficient in hardware but less efficient in software.
- The design of RC4 avoids the use of LFSRs, and is ideal for software implementation, as it requires only byte manipulations.
- It uses
 - 256 bytes (for N = 256) of memory for the array, S[0] through S[255],
 - -l bytes of memory for the key, key[0] through key[l-1],
 - integer variables, i, j.