

(15 6/1226 27 501 2006 607 611000)

Page No: 1/33

WINTER – 2015 EXAMINATION MODEL ANSWER

Subject: BASIC MATHEMATICS

Subject Code: 17104

Important Instructions to examiners:

• The model answer shall be the complete solution for each and every question on the question paper.

- Numerical shall be completely solved in a step by step manner along with step marking.
- All alternative solutions shall be offered by the expert along with self-explanatory comments from the expert.
- In case of theoretical answers, the expert has to write the most acceptable answer and offer comments regarding marking scheme to the assessors.
- In should offer the most convincing figures / sketches / circuit diagrams / block diagrams / flow diagrams and offer comments for step marking to the assessors.
- In case of any missing data, the expert shall offer possible assumptions / options and the ensuing solutions along with comments to the assessors for effective assessment.
- In case of questions which are out of the scope of curricular requirement, the expert examiner shall solve the question and mention the marking scheme in the model answer. However, the experts are requested to submit their clear cut opinion about the scope of such question in the paper separately to the coordinator.
- Experts shall cross check the DTP of the final draft of the model answer prepared by them.

Subject Code: 17104 Page No: 2/33 Winter-2015

Que.	Sub.	M. J.I A	Maula	Total
No.	Que.	Model Answers	Marks	Marks
1.	(a) Ans.	Attempt any <u>TEN</u> of the following: Find missing term, if $\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & \end{vmatrix} = 0$ Let the missing term be x $\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$ $\therefore 4(-2x-28)-3(3x-77)+9(12+22)=0$ $\therefore -8x-112-9x+231+306=0$ $\therefore -17x+425=0$ $\therefore -17x=-425$	1 1/2	20
	(b) Ans.	$\therefore x = 25$ $\therefore x = 25$ If $\begin{bmatrix} 3 & -6 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ find } a, b, c, d$ $\begin{bmatrix} 3 & -6 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\therefore \begin{bmatrix} 5 & -3 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\therefore a = 5, b = -3, c = 2, d = 3$	1 1	2
	c) Ans.	If $A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$ find X such that $2X + 3A - 4B = I$ $2X + 3A - 4B = I$ $2X + 3\begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X + \begin{bmatrix} 9 & -3 \\ 6 & 12 \end{bmatrix} - \begin{bmatrix} 4 & 8 \\ -12 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X + \begin{bmatrix} 5 & -11 \\ 18 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & -11 \\ 18 & 12 \end{bmatrix}$	1/2	

Subject Code: 17104 Page No: 3/33 Winter-2015

Que.	Sub.	Model Angruens	Montro	Total
No.	Que.	Model Answers	Marks	Marks
1.		$2X = \begin{bmatrix} -4 & 11 \\ -18 & -11 \end{bmatrix}$ $\therefore X = \frac{1}{2} \begin{bmatrix} -4 & 11 \\ -18 & -11 \end{bmatrix}$	1/2	2
		If $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$, find $A^T + B^T$ and $A^T - B^T$		
		$A^{T} + B^{T} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$	1/2	
		$A^T + B^T = \begin{bmatrix} 3 & 6 \\ -1 & 3 \end{bmatrix}$	1/2	
		$A^{T} - B^{T} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$	1/2	
		$A^T - B^T = \begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix}$	1/2	2
	(e) Ans.	Resolve into the partial fraction $\frac{1}{x^3 + 3x^2 + 2x}$ $\frac{1}{x^3 + 3x^2 + 2x} = \frac{1}{x(x+1)(x+2)}$ $\frac{1}{x(x+1)(x+2)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2}$ $\therefore 1 = (x+1)(x+2)A + x(x+2)B + x(x+1)C$ Put $x = 0$ $1 = (1)(2)A$ $\therefore A = \frac{1}{2}$ Put $x = -1$ $1 = (-1)(1)B$ $\therefore B = -1$ Put $x = -2$ $1 = (-2)(-2+1)C$	1/2	
		$C = \frac{1}{2}$	1/2	2

Subject Code: 17104 Page No: 4/33 Winter-2015

Que.	Sub. Que.	Model Answers	Marks	Total Marks
1.	f)	$\therefore \frac{1}{x(x+1)(x+2)} = \frac{\frac{1}{2}}{x} + \frac{-1}{x+1} + \frac{\frac{1}{2}}{x+2}$		
	Ans	Prove that $\cos A = \cos^2\left(\frac{A}{2}\right) - \sin^2\left(\frac{A}{2}\right)$ $\cos A = \cos\left(\frac{A}{2} + \frac{A}{2}\right)$	1/2	
		$= \cos \frac{A}{2} \cos \left(\frac{A}{2} + \frac{A}{2}\right)$ $= \cos \frac{A}{2} \cos \frac{A}{2} - \sin \frac{A}{2} \sin \frac{A}{2}$	1	
		$= \cos^2\left(\frac{A}{2}\right) - \sin^2\left(\frac{A}{2}\right)$	1/2	2
		OR $\cos 2A = \cos^2 A - \sin^2 A$		
		Replace A by $\frac{A}{2}$	1/2	
		$\cos 2\left(\frac{A}{2}\right) = \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2}$	1	
		$\cos A = \cos^2\left(\frac{A}{2}\right) - \sin^2\left(\frac{A}{2}\right)$	1/2	2
	g)	Without using calculator find the value of sin75°		
	Ans.	$\sin 75^{\circ} = \sin \left(45^{\circ} + 30^{\circ} \right)$	1/2	
		$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$ 1 $\sqrt{3}$ 1 1	1/2	
		$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2}$ $\sqrt{3} + 1$	1	
		$=\frac{\sqrt{3}+1}{2\sqrt{2}}$		2
	h)	Without using calculator find the value of cos(3660)		
	Ans	$\cos(3660) = \cos(3600 + 60)$ = $\cos(40 \times 90 + 60)$	1	

Subject Code: 17104 Page No: 5/33 Winter-2015

Que.	Sub. Que.	Model Answers	Marks	Total Marks
1.	Que.	$=\cos(60)$	1/2	With
		$=\frac{1}{2}$	1/2	2
	i)	Prove that $\sin\left(A + \frac{\pi}{6}\right) - \sin\left(A - \frac{\pi}{6}\right) = \cos A$		
	Ans.	$\sin\left(A + \frac{\pi}{6}\right) - \sin\left(A - \frac{\pi}{6}\right)$		
		$= \sin A \cos \frac{\pi}{6} + \cos A \sin \frac{\pi}{6} - \sin A \cos \frac{\pi}{6} + \cos A \sin \frac{\pi}{6}$	1	
		$=2\cos A\sin\frac{\pi}{6}$	1/2	
		$=2\cos A\frac{1}{2}$		
		$=\cos A$ OR	1/2	2
		$\sin\left(A + \frac{\pi}{6}\right) - \sin\left(A - \frac{\pi}{6}\right)$		
		$=2\cos\left(\frac{A+\frac{\pi}{6}+A-\frac{\pi}{6}}{2}\right)\sin\left(\frac{A+\frac{\pi}{6}-A+\frac{\pi}{6}}{2}\right)$	1	
		$= 2\cos A \sin \frac{\pi}{6}$	1/2	
		$=2\cos A\frac{1}{2}$		2
		$=\cos A$	1/2	
		Γ (3)] 1		
	j)	Prove that $\cos \left[\sin^{-1} \left(\frac{3}{5} \right) \right] = \frac{4}{5}$		
	Ans	Put $\sin^{-1}\left(\frac{3}{5}\right) = A$	1/2	
		$\therefore \sin A = \frac{3}{5}$	1/2	
		$\therefore \cos A = \frac{4}{5}$	1/2	

Subject Code: 17104 Page No: 6/33 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Woder Aliswers	IVIAIKS	Marks
1.		$\therefore \cos\left[\sin^{-1}\left(\frac{3}{5}\right)\right] = \frac{4}{5}$	1/2	2
		OR		
		Put $\sin^{-1}\left(\frac{3}{5}\right) = \theta$	1/2	
		$\therefore \sin \theta = \frac{3}{5}$	1/2	
		$\therefore \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{5}\right)^2$		
		$\therefore \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}$ $\therefore \cos \theta = \frac{4}{5}$		
		$\therefore \cos \theta = \frac{4}{5}$	1/2	
		$\left \therefore \cos \left[\sin^{-1} \left(\frac{3}{5} \right) \right] \right = \frac{4}{5}$		
			1/2	2
	k)	State the condition of two lines are parallel and perpendicular		
	Ans.	to each other.	1	
	Alls.	For parallel lines, $m_1 = m_2$	1	
		For perpendicular lines, $m_1 m_2 = -1$	1	2
	1)	Calculte the range from the following data:		
		Weight in kg: 70, 75, 69, 80, 85, 83, 65, 89, 73, 84, 90		
	Ans	Range = Largest Value – Smallest value	1	
		Range = L - S = 90 - 65		
		= 25	1	2
2.	a)	Attempt any <u>FOUR</u> of the following:		16
		Solve the following equations by Cramer's Rule:		
		$\frac{5}{x+2} + \frac{3}{y+1} = 2$, $\frac{10}{x+2} - \frac{3}{y+1} = 1$		
	Ans	Let $\frac{1}{x+2} = p$ and $\frac{1}{y+1} = q$		
		$\therefore 5p + 3q = 2$	1/	
		10p - 3q = 1	1/2	

Subject Code: 17104 Page No: 7/33 Winter-2015

Que.	Sub. Que.	Model Answers	Marks	Total Marks
2.	Que.		1/2	Marks
2.		$D = \begin{vmatrix} 5 & 3 \\ 10 & -3 \end{vmatrix} = -15 - 30 = -45$		
		$D_p = \begin{vmatrix} 2 & 3 \\ 1 & -3 \end{vmatrix} = -6 - 3 = -9$	1/2	
		· · · · · · · · · · · · · · · · · · ·	1/2	
		$D_q = \begin{vmatrix} 5 & 2 \\ 10 & 1 \end{vmatrix} = 5 - 20 = -15$		
		$\therefore p = \frac{D_p}{D} = \frac{-9}{-45} = \frac{1}{5}$	1/2	
		$q = \frac{D_q}{D} = \frac{-15}{-45} = \frac{1}{3}$	1/2	
		But $\frac{1}{x+2} = p$		
		$\frac{1}{x+2} = \frac{1}{5}$		
		$\therefore x + 2 = 5$ $x = 3$	1./	
			1/2	
		$\frac{1}{y+1} = q$		
		$\frac{1}{y+1} = \frac{1}{3}$		
		y+1=3	1/2	
		y = 2	, 2	4
	b)	Find x, y, z if $\begin{bmatrix} 2+x & -1 & 3 \\ 0 & y & z \\ 4 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 1+x & 2 & 3 \\ 0 & 1+y & 4 \\ 2 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 1 & 6 \\ 0 & -1 & 6 \\ 6 & 4 & 8 \end{bmatrix}$		
	Ans	$\begin{bmatrix} 3+2x & 1 & 6 \\ 0 & 1+2y & z+4 \\ 6 & 4 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 1 & 6 \\ 0 & -1 & 6 \\ 6 & 4 & 8 \end{bmatrix}$	1	
		3 + 2x = 6	1/2	
		2x = 3	1/2	
		$\therefore x = \frac{3}{2}$ $1 + 2y = -1$	1/2	
		1+2y = -1 $2y = -2$	1/2	

Subject Code: 17104 Page No: 8/33 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2.		$\therefore y = -1$	1/2	
		z + 4 = 6	1/2	4
		$\therefore z = 2$	/ 2	•
		If $A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ 3 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ find $(AB)C$		
	Ans	$AB = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & 0 \\ 0 & 1 \end{bmatrix}$		
		$AB = \begin{bmatrix} 2+3+0 & 6+0+0 \\ -1+9+0 & -3+0+2 \end{bmatrix}$	1	
		$AB = \begin{bmatrix} 5 & 6 \\ 8 & -1 \end{bmatrix}$	1	
		$\therefore (AB)C = \begin{bmatrix} 5 & 6 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$		
		$= \begin{bmatrix} 5+18 & 10-6 \\ 8-3 & 16+1 \end{bmatrix}$	1	
		$= \begin{bmatrix} 23 & 4 \\ 5 & 17 \end{bmatrix}$	1	4
	d) Ans	Find inverse of matrix, $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ $Let A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ $\therefore A = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$ $\therefore A = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$		
		$\begin{vmatrix} 0 & -1 & 1 \\ A = 3(-3+4) + 3(2-0) + 4(-2-0) \\ = 3+6-8 \\ A = 1 ≠ 0 \\ ∴ A^{-1} \text{ exists} \end{vmatrix}$	1/2	

Subject Code: 17104 Page No: 9/33 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
2.		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -3 & 4 & 2 & 4 & 2 & -3 \\ -1 & 1 & 0 & 1 & 0 & -1 \end{vmatrix} \\ \begin{vmatrix} -3 & 4 & 3 & 4 & 3 & -3 \\ -1 & 1 & 0 & 1 & 0 & -1 \end{vmatrix} \\ \begin{vmatrix} -3 & 4 & 3 & 4 & 3 & -3 \\ -3 & 4 & 2 & 4 & 2 & -3 \end{vmatrix} \end{bmatrix}$		
		$= \begin{bmatrix} 1 & 2 & -2 \\ 1 & 3 & -3 \\ 0 & 4 & -3 \end{bmatrix}$	1	
		Matrix of cofactors = $\begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}$	1	
		$Adj.A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$	1	
		$A^{-1} = \frac{1}{ A } \text{Adj.} A$ $A^{-1} = \frac{1}{1} \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$	1/2	4
	e)	Resolve into partial fraction $\frac{x^3+1}{x^2+2x}$		
	Ans	$x^2 + 2x \overline{\smash)x^3 + 1}$		
		$ \begin{array}{r} x^3 + 2x^2 \\ \\ \hline -2x^2 + 1 \\ -2x^2 - 4x \\ + + \\ \hline 4x + 1 \end{array} $		

Subject Code: 17104 Page No: 10/33 Winter-2015

Que.	Sub.	M-1-1 A	Mark	Total
No.	Que.	Model Answers	s	Marks
2.		$\therefore \frac{x^3 + 1}{x^2 + 2x} = (x - 2) + \frac{4x + 1}{x^2 + 2x}$ $\therefore \frac{4x + 1}{x(x + 2)} = \frac{A}{x} + \frac{B}{x + 2}$ $\therefore 4x + 1 = (x + 2)A + xB$	1 1/2	
		Put $x = 0$ $1 = 2A$ $A = \frac{1}{2}$	1	
		Put $x = -2$ $-7 = -2B$ $B = \frac{7}{2}$	1	
		$B = \frac{7}{2}$ $\therefore \frac{4x+1}{x(x+2)} = \frac{\frac{1}{2}}{x} + \frac{\frac{7}{2}}{x+2}$ $\frac{x^3+1}{x^2+2x} = (x-2) + \frac{\frac{1}{2}}{x} + \frac{\frac{7}{2}}{x+2}$	1/2	4
	f) Ans	Resolve into partial fractions $\frac{2x+3}{x^2(x-1)}$ $\frac{2x+3}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}$	1/2	•
		$2x+3 = x(x-1)A + (x-1)B + x^{2}C$ Put $x = 0$ $3 = (-1)B$ $\therefore B = -3$ Put $x = 1$ $\therefore 5 = C$	1	
		Put $x = -1$ $\therefore 1 = (-1)(-1-1)A + (-1-1)B + (-1)^{2}C$ $\therefore 1 = 2A - 2B + C$ $\therefore 1 = 2A + 6 + 5$ $\therefore -10 = 2A$ $\therefore A = -5$	1	

Subject Code: 17104 Page No: 11/33 Winter-2015

Que.	Sub.	M- 1-1 A	Manlan	Total
No.	Que.	Model Answers	Marks	Marks
2.		$\therefore \frac{2x+3}{x^2(x-1)} = \frac{-5}{x} + \frac{-3}{x^2} + \frac{5}{x-1}$	1/2	4
3.		Attempt any <u>FOUR</u> of the following:		16
	a)	Solve the following equations by using matrix intersection method:		
		x+3y+2z=6, $3x-2y+5z=5$, $2x-3y+6z=7$		
	Ans	$Let A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{bmatrix}$ $ A = 1(-12+15) - 3(18-10) + 2(-9+4)$ $ A = 3 - 24 - 10$	1/2	
		$\therefore A = -31 \neq 0$		
		$\therefore A^{-1}$ exists		
		$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{bmatrix}$		
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -2 & 5 \\ -3 & 6 \end{vmatrix} & \begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix} & \begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ -3 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & -3 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ -2 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix} \end{bmatrix}$		
		$= \begin{bmatrix} 3 & 8 & -5 \\ 24 & 2 & -9 \\ 19 & -1 & -11 \end{bmatrix}$	1/2	
		Matrix of cofactors = $\begin{bmatrix} 3 & -8 & -5 \\ -24 & 2 & 9 \\ 19 & 1 & -11 \end{bmatrix}$	1/2	
		$Adj.A = \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$ $A^{-1} = \frac{1}{ A } Adj.A$	1/2	
		$A^{-1} = \frac{1}{ A } Adj.A$		

Subject Code: 17104 Page No: 12/33 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3.		$A^{-1} = \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 7 \end{bmatrix}$ $\begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 18 - 120 + 133 \end{bmatrix}$	1/2	
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 18 - 120 + 133 \\ -48 + 10 + 7 \\ -30 + 45 - 77 \end{bmatrix}$	1/2	
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 31 \\ -31 \\ -62 \end{bmatrix}$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$	1/2	
	b)	$\therefore x = -1, y = 1, z = 2$ Resolve into partial fractions $\frac{x}{x^3 + 1}$	1/2	4
	Ans	$\frac{x}{x^{3}+1} = \frac{x}{(x+1)(x^{2}-x+1)}$ $\therefore \frac{x}{(x+1)(x^{2}-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^{2}-x+1}$ $\therefore x = (x^{2}-x+1)A + (x+1)(Bx+C)$ Put $x = -1$	1/2	
		$\therefore -1 = 3A$ $\therefore A = \frac{-1}{3}$ Put $x = 0$ $0 = (1)A + (1)C$ $0 = \frac{-1}{3} + C$	1	
		$C = \frac{1}{3}$ Put $x = 1$	1	

Subject Code: 17104 Page No: 13/33 Winter-2015

Que.	Sub.	Model Anomera	Mordro	Total
No.	Que.	Model Answers	Marks	Marks
3.		$\therefore 1 = (1)A + 2(B + C)$ $\therefore 1 = \frac{-1}{3} + 2B + \frac{2}{3}$ $\therefore 1 - \frac{1}{3} = 2B$ $\therefore \frac{2}{3} = 2B$ $\therefore B = \frac{1}{3}$ $\therefore \frac{x}{(x+1)(x^2 - x + 1)} = \frac{\frac{-1}{3}}{x+1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1}$	1 1/2	4
	c)	Resolve into partial fractions, $\frac{e^x + 1}{(e^x + 2)(e^x + 3)}$		
	Ans	Put $e^x = m$	1/2	
		$\therefore \frac{m+1}{(m+2)(m+3)} = \frac{A}{m+2} + \frac{B}{m+3}$	1/2	
		$\therefore m+1=(m+3)A+(m+2)B$, -	
		Put $m = -2$	1	
		$\therefore -1 = A$	1	
		Put $m = -3$ $\therefore -2 = (-1)B$		
		$\therefore B = 2$	1	
			1/2	
		$\therefore \frac{m+1}{(m+2)(m+3)} = \frac{-1}{m+2} + \frac{2}{m+3}$		
		$\therefore \frac{e^x + 1}{\left(e^x + 2\right)\left(e^x + 3\right)} = \frac{-1}{e^x + 2} + \frac{2}{e^x + 3}$	1/2	4
	d)	Prove that $\sin(\pi + \theta) = -\sin\theta$		
	Ans	$\sin(\pi + \theta) = \sin \pi \cos \theta + \cos \pi \sin \theta$	1	
		$= 0\cos\theta + (-1)\sin\theta$	2	4
		$=-\sin\theta$	1	•
				1

Subject Code: 17104 Page No: 14/33 Winter-2015

Que.	Sub.	Model Angruens	Monka	Total
No.	Que.	Model Answers	Marks	Marks
3.	e)	Find value of $\frac{\sec^2 135^0}{\cos(-240^0) - 2\sin(930^0)}$		
	Ans	$\frac{\sec^2 135^0}{\cos(-240^0) - 2\sin(930^0)} = \frac{\sec^2 135^0}{\cos(240^0) - 2\sin(930^0)}$ $\sec^2(90^0 + 45^0)$		
		$= \frac{\sec^2(90^0 + 45^0)}{\cos(2\times90^0 + 60^0) - 2\sin(10\times90^0 + 30^0)}$ $\cos ec^2(45^0)$	1	
		$= \frac{\cos ec^{2} (45^{0})}{-\cos (60^{0}) + 2\sin (30^{0})}$	1	
		$= \frac{2}{-\frac{1}{2} + 2\frac{1}{2}} = \frac{2}{-\frac{1}{2} + 1}$	1	
		= 4	1	4
	f)	Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right)$		
	Ans	Let $\cos^{-1}\left(\frac{4}{5}\right) = A$		
		$\therefore \cos A = \frac{4}{5}$ $\therefore \tan A = \frac{3}{4}$ $\therefore A = \tan^{-1}\left(\frac{3}{4}\right)$ $\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$ $\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$ $= \tan^{-1}\left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} + \frac{3}{5}}\right)$	1	
		(45)		

Subject Code: 17104 Page No: 15/33 Winter-2015

Que.	Sub.		36.1	Total
No.	Que.	Model Answers	Marks	Marks
		Model Answers $= \tan^{-1} \left(\frac{15+12}{20} \right)$ $= \tan^{-1} \left(\frac{27}{11} \right)$ OR $Let \cos^{-1} \left(\frac{4}{5} \right) = \theta$ $\therefore \cos \theta = \frac{4}{5} \qquad \therefore \sec \theta = \frac{5}{4}$ $\tan^{2} \theta = \sec^{2} \theta - 1$ $= \left(\frac{5}{4} \right)^{2} - 1$ $\tan^{2} \theta = \frac{9}{16}$ $\tan \theta = \frac{3}{4}$ $\therefore \theta = \tan^{-1} \left(\frac{3}{4} \right)$	Marks 1 1	
			1 1	4

Subject Code: 17104 Page No: 16/33 Winter-2015

Que.	Sub.	M 11	M 1	Total
No.	Que.	Model answers	Marks	Marks
4.		Attempt any <u>FOUR</u> of the following:		16
	a)	Prove that $\cos(A+B) = \cos A \cos B - \sin A \sin B$		
	Ans	A+B $A+B$ A	1	
		Right Angled Acute Angle Trigonometric Ratios Triangle		
		$\triangle \text{OMP}$ $\angle \text{MOP} = A$ $\sin A = \frac{PM}{OP}$, $\cos A = \frac{OM}{OP}$		
		$\triangle OPQ$ $\angle POQ = B$ $\sin B = \frac{PQ}{OQ}, \cos B = \frac{OP}{OQ}$	1	
		$\triangle PRQ$ $\angle PQR = A$ $\sin A = \frac{PR}{PQ}, \cos A = \frac{QR}{PQ}$		
		$\Delta \text{ ONQ}$ $\angle \text{NOQ} = \begin{cases} \sin(A+B) = \frac{QN}{OQ}, & \cos(A+B) = \frac{Q}{OQ} \end{cases}$	DN DQ	
		$\therefore \cos(A+B) = \frac{ON}{OQ}$ $OM - MN$	1/2	
		$=\frac{OM-MN}{OQ}$		
		$= \frac{OM - PR}{OQ}$ $= \frac{OM}{OR} - \frac{PR}{OR}$	1/2	
		OQ OQ OM OP PR PQ	1/2	
		$= \frac{OM}{OP} \times \frac{OP}{OQ} - \frac{PR}{PQ} \times \frac{PQ}{OQ}$	1/2	4
		$= c \cos A \cos B - \sin A \sin B.$,2	_

Subject Code: 17104 Page No: 17/33 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
4.		OR Consider a standard unit circle Let P,Q,R,S be points such that $\angle XOP = A$, $\angle XOQ = B$, $\angle XOR = A - B$ From fig. $\angle POQ = A - B$	1	
		$\therefore \angle POQ = \angle XOR \qquad \qquad P(\cos A, \sin A) , Q(\cos B, \sin B)$		
		$R(\cos(A-B),\sin(A-B))$, $S(1,0)$		
		$\therefore \text{Chord } PQ = \text{Chord RS}$ $\sqrt{\left(\cos A - \cos B\right)^2 + \left(\sin A - \sin B\right)^2} = \sqrt{\left[\cos \left(A - B\right) - 1\right]^2 + \left[\sin \left(A - B\right) - 0\right]^2}$ $\left(\cos A - \cos B\right)^2 + \left(\sin A - \sin B\right)^2 = \left[\cos \left(A - B\right) - 1\right]^2 + \left[\sin \left(A - B\right) - 0\right]^2$ $\therefore \cos^2 A + \cos^2 B - 2\cos A\cos B + \sin^2 A + \sin^2 B - 2\sin A\sin B =$	1	
		$\cos^{2}(A-B)+1-2\cos(A-B)+\sin^{2}(A-B)$	1	
		$\therefore 1 + 1 - 2(\cos A \cos B + \sin A \sin B) = 1 + 1 - 2\cos(A - B)$		
		$\therefore \cos A \cos B + \sin A \sin B = \cos (A - B)$	1/2	
		Replace B by $-B$ in above equation $\therefore \cos A \cos (-B) + \sin A \sin (-B) = \cos (A - (-B))$ $\therefore \cos A \cos B - \sin A \sin B = \cos (A + B)$	1/2	4
	b)	Prove that $\tan \left(60^{0} - A\right) \tan \left(60^{0} + A\right) = \tan 3A$		
	Ans	$\tan A \tan \left(60^{0} - A\right) \tan \left(60^{0} + A\right)$		
		$= \tan A \left(\frac{\tan 60^{0} - \tan A}{1 + \tan 60^{0} \tan A} \right) \left(\frac{\tan 60^{0} + \tan A}{1 - \tan 60^{0} \tan A} \right)$	1	
		$= \tan A \left(\frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A} \right) \left(\frac{\sqrt{3} + \tan A}{1 - \sqrt{3} \tan A} \right)$	1	
		$= \tan A \left(\frac{3 - \tan^2 A}{1 - 3 \tan^2 A} \right)$	1	
		$= \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$	1/2	
		$= \tan 3A$	1/2	4
		OR $\tan A \tan \left(60^{0} - A\right) \tan \left(60^{0} + A\right)$		

Subject Code: 17104 Page No: 18/33 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Allsweis	Marks	Marks
4.		$= \tan A \frac{\sin(60^{0} - A)}{\cos(60^{0} - A)} \frac{\sin(60^{0} + A)}{\cos(60^{0} + A)}$		
		$= \tan A \frac{\left[\sin 60^{0} \cos A - \cos 60^{0} \sin A\right] \left[\sin 60^{0} \cos A + \cos 60^{0} \sin A\right]}{\left[\cos 60^{0} \cos A + \sin 60^{0} \sin A\right]} \frac{\left[\sin 60^{0} \cos A + \cos 60^{0} \sin A\right]}{\left[\cos 60^{0} \cos A - \sin 60^{0} \sin A\right]}$	1	
		$= \tan A \frac{\left[\frac{\sqrt{3}}{2}\cos A - \frac{1}{2}\sin A\right]\left[\frac{\sqrt{3}}{2}\cos A + \frac{1}{2}\sin A\right]}{\left[\frac{1}{2}\cos A + \frac{\sqrt{3}}{2}\sin A\right]\left[\frac{1}{2}\cos A - \frac{\sqrt{3}}{2}\sin A\right]}$	1	
		$= \tan A \frac{\left[\frac{3}{4}\cos^2 A - \frac{1}{4}\sin^2 A\right]}{\left[\frac{1}{4}\cos^2 A - \frac{3}{4}\sin^2 A\right]}$		
		$= \tan A \frac{\left[3\cos^2 A - \sin^2 A\right]}{\left[\cos^2 A - 3\sin^2 A\right]}$	1/2	
		$= \tan A \left[\frac{3 - \tan^2 A}{1 - 3\tan^2 A} \right]$	1/2	
		$-\frac{3\tan A - \tan^3 A}{2}$	1/2	
		$ \begin{array}{l} -1 - 3 \tan^2 A \\ = \tan 3A \end{array} $	1/2	4
	c)	By using principal value, prove that		
		$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) + 2\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) + 3\sin^{-1}\left(-1\right) = \frac{-\pi}{4}$		
	Ans	$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) + 2\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) + 3\sin^{-1}\left(-1\right)$		
		$=-\sin^{-1}\frac{1}{\sqrt{2}}+2\left(\pi-\cos^{-1}\frac{1}{\sqrt{2}}\right)-3\sin^{-1}1$	2	
		$=-\frac{\pi}{4}+2\left(\pi-\frac{\pi}{4}\right)-3\frac{\pi}{2}$	1	
		$=-\frac{\pi}{4}$	1	4
		OR $\therefore \sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) + \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) + \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) + 3\sin^{-1}\left(-1\right)$		
		$= \frac{\pi}{2} + \pi - \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) - 3\sin^{-1}(1)$	2	

Subject Code: 17104 Page No: 19/33 Winter-2015

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
4.		$= \frac{\pi}{2} + \pi - \frac{\pi}{4} - 3\frac{\pi}{2}$ $= \frac{3\pi}{2} - \frac{\pi}{4} - \frac{3\pi}{2}$ $= \frac{-\pi}{4}$	1	4
	d)	Prove that, (without using calculator) $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$		
	Ans	$\sin 20^{0} \sin 40^{0} \sin 60^{0} \sin 80^{0}$		
		$= \sin 20^{\circ} \sin 40^{\circ} \frac{\sqrt{3}}{2} \sin 80^{\circ}$	1/2	
		$= \frac{\sqrt{3}}{4} \left[2\sin 20^{0} \sin 40^{0} \right] \sin 80^{0}$ $= \frac{\sqrt{3}}{4} \left[\cos \left(-20^{0} \right) - \cos 60^{0} \right] \sin 80^{0}$	1	
			1	
		$= \frac{\sqrt{3}}{4} \left[\cos 20^{0} - \frac{1}{2} \right] \sin 80^{0}$		
		$= \frac{\sqrt{3}}{4} \left[\cos 20^{0} \sin 80^{0} - \frac{1}{2} \sin 80^{0} \right]$ $= \frac{\sqrt{3}}{4} \left[\frac{1}{2} 2 \cos 20^{0} \sin 80^{0} - \frac{1}{2} \sin 80^{0} \right]$ $= \frac{\sqrt{3}}{8} \left[\sin 100^{0} - \sin (-60) - \sin 80^{0} \right]$	½ 1	
		$= \frac{\sqrt{3}}{8} \left[\sin\left(2 \times 90^{0} - 80\right) + \frac{\sqrt{3}}{2} - \sin 80^{0} \right]$		
		$ = \frac{\sqrt{3}}{8} \left[\sin 80^0 + \frac{\sqrt{3}}{2} - \sin 80^0 \right] $	1/2	
		$=\frac{3}{16}$	1/2	4
	e)	Prove that $\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$		
	Ans	We know that $2 \sin A \sin B$	1	
		$\cos(A+B) - \cos(A-B) = -2\sin A \sin B$ Let $A+B=C$	1	
		A - B = D		

Subject Code: 17104 Page No: 20/33 Winter-2015

Que.	Sub.	N. 1.1.A	N/ 1	Total
No.	Que.	Model Answers	Marks	Marks
4.		$\therefore 2A = C + D$ $\therefore A = \frac{C + D}{2}$ $\therefore B = \frac{C - D}{2}$ $\cos C - \cos D = -2\sin\left(\frac{C + D}{2}\right)\sin\left(\frac{C - D}{2}\right)$	1 1 1	4
	f)	Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$		
	Ans	Let $\cos^{-1}\left(\frac{4}{5}\right) = A$ $\therefore \cos A = \frac{4}{5}$ $\therefore \sin^2 A = 1 - \cos^2 A$ $= 1 - \frac{16}{25}$ $= \frac{9}{25}$		
		$\therefore \sin A = \frac{3}{5}$ $\cos^{-1}\left(\frac{12}{13}\right) = B$ $\therefore \cos B = \frac{12}{13}$ $\therefore \sin^2 B = 1 - \cos^2 B$ $= 1 - \frac{144}{169}$ $= \frac{25}{169}$	1	
		$\therefore \sin B = \frac{5}{13}$ $\therefore \cos (A+B) = \cos A \cos B - \sin A \sin B$ $= \frac{4}{5} \frac{12}{13} - \frac{3}{5} \frac{5}{13}$ $= \frac{48}{65} - \frac{15}{65}$	1	

Subject Code: 17104 Page No: 21/33 Winter-2015

Que.	Sub. Que.	Model Answers	Marks	Total Marks
4.		$\therefore \cos\left(A+B\right) = \frac{33}{65}$	1	
		$\therefore A + B = \cos^{-1}\left(\frac{33}{65}\right)$		
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	1	4
		<u>OR</u>		
		OR		
		Let $\cos^{-1}\left(\frac{4}{5}\right) = A$		
		$\therefore \cos A = \frac{4}{5}$ $\therefore \tan A = \frac{3}{4}$ 3 12 15		
		$\therefore \tan A = \frac{3}{4}$ 12		
		$B = \tan^{-1}\left(\frac{3}{4}\right)$		
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	1	
		$\cos^{-1}\left(\frac{12}{13}\right) = B$		
		$\therefore \cos B = \frac{12}{13}$		
		$\therefore \tan B = \frac{5}{12}$		
		$B = \tan^{-1}\left(\frac{5}{12}\right)$		
		$\therefore \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$	1	
		$L.H.S. = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{5}{12}\right)$		
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \frac{5}{12}} \right)$	1/2	

Subject Code: 17104 Page No: 22/33 Winter-2015

Que.	Sub. Que.	Model Answers	Marks	Total Marks
4.		$L.H.S. = \tan^{-1} \left(\frac{36 + 20}{48} \right)$ $= \tan^{-1} \left(\frac{\frac{56}{48}}{1 - \frac{15}{48}} \right)$ $= \tan^{-1} \left(\frac{\frac{56}{48}}{\frac{48 - 15}{48}} \right)$ $= \tan^{-1} \left(\frac{56}{33} \right)$ $Let \tan^{-1} \left(\frac{56}{33} \right) = C$ $\therefore \tan C = \frac{56}{33}$ $\therefore \cos C = \frac{33}{65}$	1/2	
5.	a)	$\therefore C = \cos^{-1}\left(\frac{33}{65}\right)$ $\therefore R.H.S. = \cos^{-1}\left(\frac{33}{65}\right)$ Attempt any <u>FOUR</u> of the following: Prove that $\frac{\sec 4\theta - 1}{\sec 2\theta - 1} = \frac{\tan 4\theta}{\tan \theta}$	1	4 16
	Ans	$\frac{\sec 4\theta - 1}{\sec 2\theta - 1}$ $= \frac{\frac{1}{\cos 4\theta} - 1}{\frac{1}{\cos 2\theta} - 1}$ $= \frac{\cos 2\theta (1 - \cos 4\theta)}{\cos 4\theta (1 - \cos 2\theta)}$ $= \frac{2\cos 2\theta \sin^2 2\theta}{\cos 4\theta (1 - \cos 2\theta)}$	¹ / ₂	
		$= \frac{2\cos 4\theta \sin^2 \theta}{\sin 4\theta \sin 2\theta}$ $= \frac{\sin 4\theta \sin^2 \theta}{2\cos 4\theta \sin^2 \theta}$	1	
		$= \frac{2 \tan 4\theta \sin \theta \cos \theta}{2 \sin^2 \theta}$ $= \tan 4\theta \cot \theta$	1/2	

Subject Code: 17104 Page No: 23/33 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
5.		$=\frac{\tan 4\theta}{\tan \theta}$	1	4
	b) Ans	Prove that $\frac{\sin \theta - \sin 5\theta + \sin 9\theta - \sin 3\theta}{\cos \theta - \cos 5\theta - \cos 9\theta + \cos 13\theta} = \cot 4\theta$ Consider $\frac{\sin \theta - \sin 5\theta + \sin 9\theta - \sin 13\theta}{\cos \theta - \cos 5\theta - \cos 9\theta + \cos 13\theta}$		
		$= \frac{(\sin \theta - \sin 13\theta) - (\sin 5\theta - \sin 9\theta)}{\cos \theta + \cos 13\theta - (\cos 5\theta + \cos 9\theta)}$ $= \frac{2\cos\left(\frac{\theta + 13\theta}{2}\right)\sin\left(\frac{\theta - 13\theta}{2}\right) - 2\cos\left(\frac{5\theta + 9\theta}{2}\right)\sin\left(\frac{5\theta - 9\theta}{2}\right)}{2\cos\left(\frac{\theta + 13\theta}{2}\right)\cos\left(\frac{\theta - 13\theta}{2}\right) - 2\cos\left(\frac{5\theta + 9\theta}{2}\right)\cos\left(\frac{5\theta - 9\theta}{2}\right)}$ $= \frac{2\cos 7\theta \sin(-6\theta) - 2\cos 7\theta \sin(-2\theta)}{2\cos 7\theta \cos(-6\theta) - 2\cos 7\theta \cos(-2\theta)}$	1	
		$= \frac{2\cos 7\theta \left[\sin \left(-6\theta\right) - \sin \left(-2\theta\right)\right]}{2\cos 7\theta \left[\cos \left(-6\theta\right) - \cos \left(-2\theta\right)\right]}$	1/2	
		$= \frac{\sin 2\theta - \sin 6\theta}{\cos 6\theta - \cos 2\theta}$ $(2\theta + 6\theta) \qquad (2\theta - 6\theta)$	1/2	
		$= \frac{2\cos\left(\frac{2\theta + 6\theta}{2}\right)\sin\left(\frac{2\theta - 6\theta}{2}\right)}{-2\sin\left(\frac{6\theta + 2\theta}{2}\right)\sin\left(\frac{6\theta - 2\theta}{2}\right)}$	1	
		$= \frac{\cos 4\theta \sin(-2\theta)}{\cos 4\theta \sin 2\theta}$	1/2	4
		$-\sin 4\theta \sin 2\theta - \sin 4\theta \sin 2\theta$ $= \cot 4\theta$	1/2	
	c)	Prove that $\sin^{-1} x = \cot^{-1} \left(\frac{\sqrt{1 - x^2}}{x} \right)$		
	Ans	Consider $\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$		
		Put $x = \sin \theta$ $\int_{-1}^{1} \left(\sqrt{1 - \sin^2 \theta} \right)$	1	
		$=\cot^{-1}\left(\frac{\sqrt{1-\sin^2\theta}}{\sin\theta}\right)$	1	
		$=\cot^{-1}\left(\frac{\cos\theta}{\sin\theta}\right)$	1	

Subject Code: 17104 Page No: 24/33 Winter-2015

Que.	Sub.	Madal America	M1	Total
No.	Que.	Model Answers	Marks	Marks
5.		$=\cot^{-1}(\cot\theta)$	1	
		$=\theta$		4
		$=\sin^{-1}x$	1	•
		OR		
		Consider $\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$		
		Put $x = \cos \theta$		
		$=\cot^{-1}\left(\frac{\sqrt{1-\cos^2\theta}}{\cos\theta}\right)$	1	
		$=\cot^{-1}\left(\frac{\sin\theta}{\cos\theta}\right)$	1	
		$=\cot^{-1}(\tan\theta)$		
		$=\cot^{-1}\left(\cot\left(\frac{\pi}{2}-\theta\right)\right)$	1/2	
		$=\frac{\pi}{2}-\theta$	1/2	
		$=\frac{\pi}{2}-\cos^{-1}x$	1/2	
		$=\sin^{-1}x$	1/2	4
	d)	Prove that distance between two parallel lines $ax + by + c_1 = 0$ and		
	Ans	$ax + by + c_2 = 0$ is $\left \frac{c_1 - c_2}{\sqrt{A^2 + B^2}} \right $		
		$L_1: ax + by + c_1 = 0$		
		$L_2: ax + by + c_2 = 0$		
		Let $P(x_1, y_1)$ be any point on the line L_1 $P(x_1, y_1)$		
		$\therefore ax_1 + by_1 + c_1 = 0$		
		$\therefore ax_1 + by_1 = -c_1 \qquad \qquad \qquad L_2 \qquad \qquad L_1$	1	
		PM is perpendicular on the line L_2		
		$\therefore PM = \left \frac{ax_1 + by_1 + c_2}{\sqrt{a^2 + b^2}} \right $	1	

Subject Code: 17104 Page No: 25/33 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
5.		$\therefore PM = \left \frac{-c_1 + c_2}{\sqrt{a^2 + b^2}} \right $ $\therefore PM = \left \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right $	1	4
	e)	Find equation of lines passing through $(12,-4)$ and whose sum of the intercept is equal to 10		
	Ans	Let x -intercept is a y -intercept is b $a+b=10$ Equation of line is, $\therefore \frac{x}{a} + \frac{y}{b} = 1$	1/2	
		line passing through $(12,-4)$ $\therefore \frac{12}{a} + \frac{(-4)}{10-a} = 1$	1	
		$\therefore a^2 - 26a + 120 = 0$	1/2	
		$\therefore a = 20, a = 6$	1/2	
		$\therefore b = -10, b = 4$	1/2	
		When $a = 20, b = -10$	/2	
		Equation of line is, $ \therefore \frac{x}{20} - \frac{y}{10} = 1 $ $ i.e.x - 2y = 20 $ When $a = 6, b = 4$ Equation of line is, $ \therefore \frac{x}{6} + \frac{y}{4} = 1 $ $ i.e.2x + 3y = 12 $	1/2	4
	f)	If m_1 and m_2 are the slope of two lines then prove that angle between two lines is $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	Ans	Let θ_1 = Inclination of L_1 θ_2 =Inclination of L_2 \therefore Slope of L_1 is $m_1 = \tan \theta_1$ Slope of L_2 is $m_2 = \tan \theta_2$		

Subject Code: 17104 Page No: 26/33 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
5.		$\begin{array}{c} L_1 \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ \text{ from figure,}	1	
		$\theta = \theta_1 - \theta_2$ $\therefore \tan \theta = \tan (\theta_1 - \theta_2)$ $= \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2}$	1	
		$\therefore \tan \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$ Since θ is acute	1	
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1/2	
		$\therefore \theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1/2	4
6.		Attempt any <u>FOUR</u> of the following:		16
	a)	Prove that the length of perpendicular from the point $P(x_1, y_1)$ to the		
	Ans	line $Ax + By + C = 0$ is $\left \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right $		
		R P X L: ax+by+c=0		

Subject Code: 17104 Page No: 27/33 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
6.	- Que.	Let $Q\left(\frac{-C}{A}, 0\right)$ and $R\left(0, \frac{-C}{B}\right)$ $A(\Delta PQR) = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ -C & 0 & 1 \\ 0 & \frac{-C}{B} & 1 \end{vmatrix} = \frac{1}{2} \left[x_1 \left(0 + \frac{C}{B} \right) - y_1 \left(\frac{-C}{A} - 0 \right) + 1 \left(\frac{C^2}{AB} \right) \right]$ $= \frac{1}{2} \left[\frac{x_1 C}{B} + \frac{y_1 C}{A} + \frac{C^2}{AB} \right]$ $= \frac{1}{2} \left[\frac{C}{AB} \left(Ax_1 + By_1 + C \right) \right]$ $d(QR) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{\left(\frac{-C}{A} - 0 \right)^2 + \left(0 + \frac{C}{B} \right)^2}$ $= \sqrt{\frac{C^2}{A^2} + \frac{C^2}{B^2}}$ $= \sqrt{\frac{B^2 C^2 + A^2 C^2}{A^2 B^2}}$	1	
		$= \frac{C}{AB} \sqrt{A^2 + B^2}$ $= \frac{C}{AB} \sqrt{A^2 + B^2}$ $A(\Delta PQR) = \frac{1}{2} \times d(QR) \times PM$	1	
		$= \frac{1}{2} \times \frac{C}{AB} \sqrt{A^2 + B^2} \times PM$ $\therefore \frac{1}{2} \frac{C}{AB} (Ax_1 + By_1 + C) = \frac{1}{2} \frac{C}{AB} \sqrt{A^2 + B^2} \times PM$	1	
		$\therefore PM = \left \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right \qquad \therefore \text{ distance is always positive}$	1/2	4
	b) Ans	Find the length of the perpendicular from the point (2,3) on the line $4x - 6y - 3 = 0$ $p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{4(2) + (-6)(3) - 3}{\sqrt{(4)^2 + (-6)^2}} \right $		
		$= \left \frac{4(2) + (-6)(3) - 3}{\sqrt{(4)^2 + (-6)^2}} \right $	2	

Subject Code: 17104 Page No: 28/33 Winter-2015

Que.	Sub.			<u> </u>	f a d a	1 1						Marks	Total
No.	Que.		Model Answers										Marks
6.		$p = \left \frac{8 - 18 - 3}{\sqrt{16 + 36}} \right $ $= \left \frac{-13}{\sqrt{52}} \right $ $= \frac{13}{\sqrt{52}}$ $p = \frac{\sqrt{13}}{2}$	8 5									2	4
	c)	Calculate the	mean (<u> </u>		1			ollov	ving data	:		
		Marks		3 4	5	6	7	8					
		No. of Stud	ent	1 3	7	5	2	2					
	Ans												
	Alls	x_i	f_i	$f_i x$	í	$d_i = 3$	$x_i - \overline{x}$		$\left d_{_i} ight $	$f_i d_i $			
		3	1	3		-2	.5		2.5	2.5			
		4	3	12		-1	.5		1.5	4.5			
		5	7	35		-0	.5		0.5	3.5			
		6	5	30		0.	5		0.5	2.5			
		7	2	14		1.	5		1.5	3		2	
		8	2	16		2.	5		2.5	5		2	
			20	110						21			
		Mean $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{x_i}$	$f_i x_i -$	110									
			$\overline{x} = \overline{x}$	20								1	
		$\sum f_i$	d_i	- 3.3									
		$M.D. = \frac{\sum f_i}{\sum f}$	i										
		$= \frac{21}{20} \\ = 1.05$										1	4

Subject Code: 17104 Page No: 29/33 Winter-2015

Que.	Sub.		Marks	Total						
No.	Que.				1VIOUCI I	Answers			With	Marks
6.	d)	Find the sta	ndard d	leviation	of the f					
		Cla	ISS	0-20	20-40	40-60	60-80	80-100		
		Frequ	ency	20	130					
	Ans									
		Class	x_i		f_i	$f_i x_i$	x_i^2	$f_i x_i^2$		
		0-20	10		20	200	100	2000		
		20-40	30		130	3900	900	117000		
		40-60	50		220	11000	2500	550000	2	
		60-80	70		70	4900	4900	343000		
		80-100	90		60	5400	8100	486000		
				ĺ	500	25400		1498000		
		$=\sqrt{2}$	$ \frac{\sum f_i x_i^2}{N} $ 498000 $ 500 $ $ 996 - 2 $ $ 15.36 $	$= 50.8$ $-(\bar{x})^{2}$ $-(50.8)$					1	4

Subject Code: 17104 Page No: 30/33 Winter-2015

Que.	Sub. Que.		Model Answers										
6.	Que.												
			Class x_i f_i $d_i = \frac{x_i - a}{h}$ $f_i d_i$ d_i^2 $f_i d_i^2$										
			0-20	10	20		-2	-40	4	80			
			20-40	30	130		-1	-130) 1	130)		
			40-60	50	220		0	0	0	0			
			60-80	70	70		1	70	1	70		2	
		8	30-100	90	60		2	120	4	240)	2	
					500			20		520)		
			$= \sqrt{\frac{\sum f_i}{N}}$ $= \sqrt{\frac{520}{500}}$ $= 20.38$									1 1	4
	e)		ariance f										
			under	10	20	30	40	50	60	70	80		
		No.of	person	15	30	53	75	100	110	115	125		

Subject Code: 17104 Page No: 31/33 Winter-2015

Que.	Sub.				Mode	l Answer	s		Marks	Total
	Que.			-	6	2	a 2	1		Marks
6.	Ans	Class	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$			
		0-10	5	15	75	25	375			
		10-20	15	15	225	225	3375			
		20-30	25	23	575	625	14375			
		30-40	35	22	770	1225	26950			
		40-50	45	25	1125	2025	50625			
		50-60	55	10	550	3025	30250			
		60-70	65	5	325	4225	21125		2	
		70-80	75	10	750	5625	56250			
				125	4395		203325			
		Mean $\bar{x} = \frac{1}{2}$ S.D. $\sigma = \frac{1}{2}$	$\sqrt{\frac{\sum f_i}{N}}$	$\frac{x_i}{x} = \frac{439}{12}$ $\frac{x_i}{x} = 35$ $\frac{x_i^2}{x_i^2} - \left(x_i^2\right)$ $\frac{x_i^2}{x_i^2} - \left(x_i^2\right)$	5.16			•	1	
				o					1	4
		$\sigma = 1$ OR	9.75							

Subject Code: 17104 Page No: 32/33 Winter-2015

Que.	Sub. Que.				N	Model Answers				Marks	Total Marks
6.											
						$x_{\cdot} - a$	6.1	12	C 12		
			Class	x_i	f_i	$d_i = \frac{x_i - a}{h}$	$f_i d_i$	d _i -	$f_i a_i^z$		
			0-10	5	15	-3	-45	9	135		
		1	0-20	15	15	-2	-30	4	60		
		2	20-30	25	23	-1	-23	1	23		
		3	0-40	35	22	0	0	0	0		
		4	0-50	45	25	1	25	1	25		
		5	60-60	55	10	2	20	4	40	2	
		6	0-70	65	5	3	15	9	45		
		7	70-80	75	10	4	40	16	160		
					125		2		488		
		$S.D.\sigma =$ $=$ $\sigma =$	•		$\left(\frac{\sum f_i d}{N}\right)^2 \times 10$					 1	4
	f)	more of of 7 item	values			items are 64 and added to the d					
	Ans	Given x		6 0							
		Varianc $ \frac{1}{x} = \frac{\sum x}{n} $ $ 64 = \frac{\sum x}{5} $		= 68							

Subject Code: 17104 Page No: 33/33 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
6.		$\therefore \sum x_i = 320$	1	
		$\text{New } \sum x_i = \sum x_i + 62 + 66$		
		=320+62+66		
		= 448	1	
		New Mean = $\frac{\text{New }\sum_{i} x_{i}}{n}$		
		n		
		$=\frac{448}{7}$		
		= 64	1/2	
		$\sigma^2 - \sum_{i} x_i^2 - \sum_{i} x_$		
		$O = \frac{1}{n} - \lambda$		
		$\sigma^{2} = \frac{\sum x_{i}^{2}}{n} - x^{2}$ $68 = \frac{\sum x_{i}^{2}}{5} - (64)^{2}$		
			1/2	
		$\sum x_i^2 = 20820$, -	
		New $\sum x_i^2 = \sum x_i^2 + (62)^2 + (66)^2$		
		= 20820 + 3844 + 4356	1/2	
		= 29020	72	
		$\therefore \text{ New variance } = \frac{\text{New } \sum_{i} x_{i}^{2}}{n} - \frac{1}{n^{2}}$		
		$\frac{n}{29020}$ $(64)^2$		
		$=\frac{29020}{7}-(64)^2$	1/2	4
		= 49.71	1/2	
		<u>Important Note</u>		
		In the solution of the question paper, wherever possible all the		
		possible alternative methods of solution are given for the sake of		
		convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope		
		of the curriculum, and then only give appropriate marks in accordance		
		with the scheme of marking.		