烷烃和环烷烃 自由基取代反应

一、烷烃和环烷烃的定义、分类和构造异构

烃: 仅由碳和氢两种元素组成的化合物称为烃

烷烃: 分子中所有碳原子彼此以单键连接成链状, 碳的其余价键都与氢原子相连的烃称为烷烃, 其通式为 C_nH_{2n+2} 。如:

CH3CH2CH2CH3

CH₃CHCH₂CH₃ | CH₃

环烷烃:碳原子以单键连接成环状,且性质与开链烷烃相似的烃称为环烷烃,其通式为 C_nH_{2n} 。如:

集合环烷烃:各环以一个环碳原子通过单键相连而成的双环或多环烷烃称为集合环烷烃。如:

定义

螺环烷烃:环与环之间共用一个碳原子(螺原子)的双环或多环烷烃称为螺环烷烃。如:

桥环烷烃:环与环之间共用两个或两个以上碳原子的双环或多环烷烃称为桥环烷 烃。如:

二、烷烃的命名

		命名原则	实 例
普通命名法	天干(癸)们 上词原 个碳原 (2)月	(1~10个碳原子的直链烷烃,用甲、乙、丙、丁、戊、己、庚、辛、壬、 年词头,表示碳原子的个数,再加强"烷",即为烷烃的名称。从含 11 原子起用汉字数字表示 用词头正(normal或 n-)、异(iso和新(neo)来区分同分异构体	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 正戊烷 n-pentane CH ₃ CH ₃ CH ₃ -C-CH ₃ CH ₃ -CH ₃ CH ₃ A CH ₃
系统命名法	直链烷烃	根据分子中的碳原子数称某烷, 某烷前面不需加"正"字	CH ₃ CH ₂ CH ₂ CH ₃ 丁烷(butane) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 戊烷(pentane)
	支链烃	(1)主链的选择:选择连有最多取代基的最长碳链为主链,按主链所含的碳原子数称为某烷(2)主链的编号:从靠近取代基的一端开始,用阿拉伯数字对主链上的碳原子依次编号,使取代基的位次最小。如果在主链两端相等位次同时遇到两个不同的取代基,则使按次序规则中排列小的取代基具有较小的编号(3)把取代基的位次和名称依次写在母体名称某烷的前面,较优基团后列出。英文名称中,取代基按其首字母的字母次序排列先后顺序(4)主链上连有相同的取代基时,则将它们合并	CH ₃ CH ₂ CHCH ₂ CH ₂ CHCH ₂ CH ₃ CH ₂ CH ₃ CH ₃ 3-甲基 -6- 乙基辛烷 3-ethyl-6-methyloctane CH ₃ CH ₃ CHCH ₂ CHCHCH ₃ CH ₃ CH ₃ 2,3,5-三甲基己烷 2,3,5-trimethylhexane CH ₃ CHCH ₂ CHCH ₂ CH ₃ CH ₃ CHCH ₃

三、环烷烃的命名

	命名原则	举例
单环烷烃	(1)以成环碳原子总数称环某烷,名称的前缀为"环(cyclo)"字。环上碳原子编号时要使取代基的位次之和最小(2)环上连有复杂取代基时,可以把环作为取代基来命名	1- 甲基 -2- 乙基环戊烷 1-ethyl-2-methylcyclopentane 3- 甲基 -4- 环丁基庚烷 4-cyclobutyl-3-methylheptane
螺环烷烃	(1)以螺环上碳原子总数称作螺某烷。 先写词头"螺(spiro)"字,再在方括 号中用阿拉伯数字按由小到大的顺序标 出除螺原子外的环碳原子数,数字之间 用下角圆点隔开 (2)编号从小环中与螺原子相邻的一个 碳原子开始,沿小环编号,通过螺原子 编到大环,并在此编号规则基础上使取 代基的位次最小	CH ₃ 6 7 8 1,5-二甲基螺 [3.4] 辛烷 1,5-dimethylspiro[3.4]octane
桥环烷烃	(1)根据桥环上的环数和所含碳原子数称 x 环某烷(x 为环数),然后环数后面的方括号中用阿拉伯数字由大到小标出每一条桥上除桥头碳外的碳原子数,数字之间用下角圆点隔开(2)编号从一个桥头碳开始,沿最长桥到另一个桥头碳,再沿次长桥回到第一个桥头碳,最短桥最后编号。并在此编号规则基础上使取代基的位次最小	1,7-二甲基 -2- 乙基二环 [3.2.1] 辛烷 2-ethyl-1,7-dimethylbicyclo [3.2.1]octane 二环 [4.3.0] 壬烷 bicyclo[4.3.0]nonane

四、烷烃及环烷烃的结构

五、烷烃及环烷烃的构象

Z 烷 纽曼投影式 的 构 重叠式构象 交叉式构象 象 交叉式构象是乙烷的稳定构象或优势构象 围绕丁烷的 $C_2 - C_3 \sigma$ 键旋转会产生下列几种典型的构象: CH_3 CH3. T 对位交叉式 邻位交叉式 部分重叠式 烷 的 H₃C CH₃ CH₃ 构 CH3 象 全重叠式 邻位交叉式 部分重叠式 四种典型构象的稳定性顺序为: 对位交叉式(优势构象)>邻位交叉式>部分重叠式>全重叠式 环 己 椅式构 烷 象和船 的 式构象 构 象 椅式构象 船式构象 无角张力, 无扭转张力 无角张力,有扭转张力和跨环张力 椅式构象是环己烷的优势构象

六、烷烃及环烷烃的物理性质

熔点	在烷烃同分异构体中,分子结构越对称的异构体熔点越高。例如: 正戊烷 异戊烷 新戊烷	
	熔点 (℃) -130 -160 -17	
相对	烷烃是所有有机物中密度最小的一类化合物,它们的相对密度都小于 1。虽然随着相对分子质量的增加,密度有所增加,但增加不明显	
密度		
溶解度	烷烃易溶于非极性或极性较小的苯、氯仿、四氯化碳、乙醚等有机溶剂,而难溶于水和其他强极性有机溶剂	
波谱 性质	IR: C—H 伸缩振动 3000 \sim 2850cm $^{-1}$, 强吸收; C—H 弯曲振动 1465 \sim 1340 cm $^{-1}$ H–NMR: 烷烃中 C—H 质子的共振吸收出现在高场, δ 值为 0.9 \sim 1.8	

七、烷烃及环烷烃的化学性质

性 质	反应式	备 注
氧化和 燃烧	$C_nH_{2n+2} + \left(\frac{3n+1}{2}\right)O_2$ 点燃 $\rightarrow nCO_2 + (n+1)H_2O +$ 热量 燃烧热:标准状态下 1 摩尔烷烃完全燃烧所放出的热量为该烷烃的燃烧热	烷烃是人类可利用的重 要能源之一 燃烧热可用于判断物质 的内能大小
热裂反应	$CH_3CH_2CH_3 \xrightarrow{600^{\circ}C} CH_4 + CH_3CH_3 + CH_3CH_2CH_3 + CH_2 = CH_2 + CH_3CH = CH_2 \cdot \cdots$	主要用于生产燃料、低 分子量的烷烃和烯烃等 化工原料
卤代反应	$CH_4 + X_2 \xrightarrow{h\nu} CH_3X + HX$ $+ Br_2 \xrightarrow{h\nu} Br + HBr$	卤素的反应活性顺序是: F ₂ > Cl ₂ > Br ₂ > I ₂ 甲烷的氯代反应较难停 留在一氯代阶段
小环环烷 烃的开环 反应	与氢反应:	可用于环丙烷的鉴别。
	$\begin{array}{c c} & + & \operatorname{Br}_2 & \xrightarrow{\operatorname{BF}} & \operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}_2 \\ & & & \\ & & \operatorname{Br} & \operatorname{Br} \end{array}$	环丁烷与溴很难发生开 环反应

性 质	反 应 式	备注
小环环烷 烃的开环 反应	与卤化氢反应:	氢加在含氢最多的碳原 子上, 卤原子加在含氢 最少的碳原子上 环丁烷及碳数更多的环 烷烃与卤化氢通常不发 生开环反应

八、烷烃卤代反应机制

反应机制 的定义	反应机制 (reaction mechanism): 又称反应历程, 是描述反应物如何逐步转变成产物的过程,包括 反应分几步进行、每步反应中旧键如何断裂、新 键如何形成以及反应条件对反应速率的影响等等	反应机制是在综合实验 事实后提出的理论假 设,现在公认的反应机 制符合目前已观察到的 反应事实。反应机制是 不断发展完善的
甲烷的氯反制	链引发: $Cl \xrightarrow{h\nu} 2Cl \cdot $ 链增长: $Cl \cdot + H \xrightarrow{C} CH_3 \longrightarrow \cdot CH_3 + HCl \cdot CH_3 + Cl \xrightarrow{C} CH_3 + Cl \cdot CH_3 + Cl \cdot CH_3 + Cl \cdot CH_3 \longrightarrow CH_3 CH_3$ $Cl \cdot + CH_3 \longrightarrow CH_3 CH_3 \longrightarrow CH_3 Cl$	反应经由自由基中间体, 在链增长阶段,每一步 都消耗一个活泼的自由 基,同时又为下一步反 应产生一个新的活泼自由基,整个反应就像一 条锁链,一经引发,朝 一环扣一环地进行下 去,因此称自由基链锁 反应 链增长是整个链锁反应 的重要阶段,也是生成 产物的主要阶段
甲基自由基的结构	H G	三个σ键在同一平面上,单电子所占的 p 射道与σ键所在平面垂直 其他烷基自由基也者 具有类似甲基自由基 的结构

续表

甲烷氯代 反应链增 长阶段的 能量变化	(「Own/PJ) (Cl・+CH4	过渡态处于能垒的顶端,是体系能量的最高点,活性中间体甲基自由基处于两个能垒间的低谷链增长的第一步即生成甲基自由基中间体的一步是整个反应的反应逐率决定步骤
卤素与甲 烷反应的 活化能	CH ₄ + X · → · CH ₃ + HX Ea (kJ/mol) F · 4 Cl · 17 Br · 85 I · >141	卤素的相对反应活性的 序是: F ₂ > Cl ₂ > Br ₂ > I ₂
其他烷烃 的卤代反 应	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	烷烃氯代反应中,三种氢的相对反应活性比为:3°H:2°H:1°H=5:3.8:1烷烃溴代反应中,三种氢的相对反应活性比为:3°H:2°H:1°H=1600:82:1溴代反应比氯代反应具有较大的选择性
烷基自由 基相对稳 定性	根据单电子所在碳原子的类型不同可以将烷基自由基分为伯(1°)、仲(2°)、叔(3°)自由基。它们的相对稳定性次序为: 3°R·>2°R·>1°R·>·CH ₃	中心碳原子所连烷基制 多,自由基越稳定。自 由基越稳定,越容易 生成

(赵 红)