Lecture 15: Single Source Shortest Path

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortest-path weight from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$. If all edge weights w(u, v) are *nonnegative*, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
     do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
     \mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)
          S \leftarrow S \cup \{u\}
          for each v \in Adj[u]
                do if d[v] > d[u] + w(u, v)
                          then d[v] \leftarrow d[u] + w(u, v)
                        Implicit DECREASE-KEY
```

relaxation step

Graph with nonnegative edge weights:

Correctness — Part I

```
Lemma. Initializing d[s] \leftarrow 0 and d[v] \leftarrow \infty for all
v \in V - \{s\} establishes d[v] \ge \delta(s, v) for all v \in V,
and this invariant is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < \delta(s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then, d[v] < \delta(s, v) supposition
        \leq \delta(s, u) + \delta(u, v) triangle inequality
        \leq \delta(s,u) + w(u,v) sh. path \leq specific path
 \leq d[u] + w(u, v)  v is first violation Contradiction.
```

Correctness — Part II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part II (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. Since subpaths of shortest paths are shortest paths, it follows that d[y] was set to $\delta(s, x) + w(x, y) = \delta(s, y)$ when (x, y) was relaxed just after x was added to S. Consequently, we have $d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$. But, $d[u] \le d[y]$ by our choice of u, and hence $d[y] = \delta(s, y) = \delta(s, u) = d[u]$. Contradiction.

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY's.

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

$$Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}$$
array $O(V) \quad O(1) \quad O(V^2)$
binary heap $O(\lg V) \quad O(\lg V) \quad O(E \lg V)$

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\} initialization do d[v] \leftarrow \infty
for i \leftarrow 1 to |V| - 1
    do for each edge (u, v) \in E
        do if d[v] > d[u] + w(u, v) relaxation
then d[v] \leftarrow d[u] + w(u, v) step
for each edge (u, v) \in E
    do if d[v] > d[u] + w(u, v)
            then report that a negative-weight cycle exists
At the end, d[v] = \delta(s, v). Time = O(VE).
```


A	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞

Note: Values decrease monotonically.

A	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	00
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

Correctness (continued)

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations (because of the lemma from Lecture 17 that $d[v] \ge \delta(s, v)$).

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from s.