Math101

Benjamin Buus Støttrup benjamin@math.aau.dk

Institut for matematiske fag Aalborg universitet Danmark

Introduktion

Disse slides er oprindeligt udarbejdet af

Benjamin Buus Støttrup

til Math101 kurset på Aalborg Universitet i efteråret 2018.

Seneste opdateret 25. marts 2021

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

▶ To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

- ▶ Eksempel: $f(x) = x^2$ og $g(x) = \sqrt{x}$ begge defineret på $[0, \infty[$ er inverse funktioner.
- ► Eksempel: $f(x) = \frac{1}{x}$ defineret på $\mathbb{R} \setminus \{0\}$ er sin egen invers.

- ▶ For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ► Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$

$$\log_2(8)$$
 , $\log_{10}(10000)$, $\log_a(1)$.

- ▶ For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ► Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
 , $\log_{10}(10000)$, $\log_a(1)$.

- ▶ For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x) = x$$
 og $a^{log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8)$$
 , $\log_{10}(10000)$, $\log_a(1)$

- ▶ For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- Der gælder at

$$log_a(a^x)=x\quad ext{og}\quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $v\in]0,\infty[.$

$$\log_2(8)$$
 , $\log_{10}(10000)$, $\log_a(1)$.

- ▶ For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x)=x \quad ext{og} \quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $y\in]0,\infty[.$

$$\log_2(8)$$
 , $\log_{10}(10000)$, $\log_a(1)$.

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x)=x \quad ext{og} \quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $y\in]0,\infty[.$

$$\log_2(8) = \log_2(2^3)$$
 , $\log_{10}(10000)$, $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x)=x \quad ext{og} \quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $y\in]0,\infty[.$

► Eksempler: Udregn

$$\log_2(8) = \log_2(2^3) = 3$$
, $\log_{10}(10000)$

 $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x)=x \quad ext{og} \quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $y\in]0,\infty[.$

► Eksempler: Udregn

$$\log_2(8) = \log_2(2^3) = 3, \log_{10}(10000)$$

 $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x)=x \quad ext{og} \quad a^{\log_a(y)}=y,$$
 for alle $x\in\mathbb{R}$ og $y\in]0,\infty[.$

$$\log_2(8) = \log_2(2^3) = 3$$
, $\log_{10}(10000) = \log_{10}(10^4)$, $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

► Eksempler: Udregn

$$\log_2(8) = \log_2(2^3) = 3$$
, $\log_{10}(10000) = \log_{10}(10^4) = 4$, $\log_a(1)$

 $\log_a(1)$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a.*
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8) = \log_2(2^3) = 3, \qquad \log_{10}(10000) = \log_{10}(10^4) = 4, \qquad \log_a(1)$$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ▶ Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8) = \log_2(2^3) = 3, \qquad \log_{10}(10000) = \log_{10}(10^4) = 4, \qquad \log_a(1) = \log_a(a^0)$$

- ► For ethvert positivt $a \neq 1$ kalder vi funktionen $f_a : \mathbb{R} \to]0, \infty[$ givet ved $f_a(x) = a^x$ for eksponentialfunktionen med grundtal a.
- ► Funktionen $f_a(x) = a^x$ har en invers funktion \log_a : $]0, \infty[\to \mathbb{R}$ som kaldes *logaritmen med grundtal a*.
- ▶ Hvis a = e så skriver vi In i stedet for \log_e og hvis a = 10 skriver vi \log_e i stedet for \log_{10} .
- ▶ Der gælder at

$$log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$,

for alle $x \in \mathbb{R}$ og $y \in]0, \infty[$.

$$\log_2(8) = \log_2(2^3) = 3, \qquad \log_{10}(10000) = \log_{10}(10^4) = 4, \qquad \log_a(1) = \log_a(a^0) = 0.$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\log(50) + \log(20)$$

 $2^{2 + \log_2(5)}$
 $\log_{3}(2)$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\log(50) + \log(20)$$

 $2^{2+\log_2(5)}$
 $\log_{10g_3(2)}$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\log(50) + \log(20)$$

 $2^{2+\log_2(5)}$
 $\log_3(2)$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\log(50) + \log(20)$$

$$2^{2+\log_2(5)}$$

$$\log_3(2)$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\log(50) + \log(20)$$

$$2^{2 + \log_2(5)}$$

$$9^{\log_3(2)}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\log(50) + \log(20) = \log(50 \cdot 20)$$
$$2^{2 + \log_2(5)}$$
$$\log_3(2)$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\log(50) + \log(20) = \log(50 \cdot 20) = \log(1000)$$

$$2^{2 + \log_2(5)}$$

$$9^{\log_3(2)}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\begin{aligned} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} \\ \log_{3}(2) \end{aligned}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\begin{aligned} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} \end{aligned}$$

$$Q^{\log_3(2)}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} \\ 9^{\log_3(2)} \end{split}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 \\ \log_{3}(2) &= 2 \log_{3}(2) \end{bmatrix}$$

Logaritmer og eksponentialfunktioner

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 = 20, \\ \log_3(2) &= 2 \log_3(2) = 2$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 = 20, \\ g^{\log_3(2)} \end{split}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 = 20, \\ 9^{\log_3(2)} &= (3^2)^{\log_3(2)} \end{split}$$

Logaritmer og eksponentialfunktioner

- ▶ Når vi arbeider med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 = 20, \\ 9^{\log_3(2)} &= (3^2)^{\log_3(2)} = 3^{2 \log_3(2)} \end{split}$$

- ▶ Når vi arbejder med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\begin{aligned} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a(\frac{x}{y}) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{aligned}$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 = 20, \\ 9^{\log_3(2)} &= (3^2)^{\log_3(2)} = 3^{2\log_3(2)} = 3^{\log_3(2^2)} \end{split}$$

- ▶ Når vi arbeider med eksponentialfunktioner kan vi anvende potensregneregler.
- ► For logaritmer har vi følgende regneregler

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

$$\begin{split} \log(50) + \log(20) &= \log(50 \cdot 20) = \log(1000) = 3, \\ 2^{2 + \log_2(5)} &= 2^2 2^{\log_2(5)} = 4 \cdot 5 = 20, \\ 9^{\log_3(2)} &= (3^2)^{\log_3(2)} = 3^{2\log_3(2)} = 3^{\log_3(2^2)} = 4. \end{split}$$

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

▶ Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

► Vi definerer de trigonometriske funktioner ud fra enhedscirklen.

		_	
θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$			
$\frac{\pi}{4}$			
$\frac{\pi}{3}$			
$\frac{\pi}{2}$			

θ	$\sin\theta$	$\cos \theta$	an heta	
0	0	1	0	
$\frac{\pi}{6}$				
$\frac{\pi}{4}$				
$\frac{\pi}{3}$				
$\frac{\pi}{2}$	1	0		

θ	$\sin\theta$	$\cos \theta$	an heta	
0	0	1	0	
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	
$\frac{\pi}{4}$				
$\frac{\pi}{3}$				
$\frac{\pi}{2}$				

Trigonometriske funktioner Eksakte værdier

θ	$\sin\theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{1}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$			
$\frac{\pi}{2}$	1	0	

θ	$\sin\theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$
$\frac{\pi}{2}$			

θ	$\sin\theta$	$\cos \theta$	$\tan heta$
0	0	1	0
$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{4}$ $\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3})$$

$$, \sin(9\pi)$$

$$\sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3})$$

$$sin(9\pi)$$

$$\sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3})$$

$$sin(9\pi)$$

$$\sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3})$$

$$\sin(9\pi)$$

$$\sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3})$$

$$\sin(9\pi)$$

$$\sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi)$$
 , $\sin(-\frac{5\pi}{4})$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi) = \sin(\pi) = 0, \quad \sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi) = \sin(\pi) = 0, \quad \sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi) = \sin(\pi) = 0, \quad \sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi) = \sin(\pi) = 0, \quad \sin(-\frac{5\pi}{4})$$

- ▶ Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi) = \sin(\pi) = 0, \quad \sin(-\frac{5\pi}{4})$$

- ► Når I skal løse opgaver så tegn altid enhedscirklen og udnyt symmetri.
- ► Eksempler: Udregn

$$\cos(\frac{2\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}, \quad \sin(9\pi) = \sin(\pi) = 0, \quad \sin(-\frac{5\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}.$$

Opgaveregning!

