Digital Signal Processing (DSP)

About me

- Zhiming Dai (戴智明)
- Phone: 135-6043-4859
- Email: daizhim@mail.sysu.edu.cn
- Office: Room 618 E

Textbook

 Mitra S K, Digital Signal Processing: A Computer-Based Approach (Fourth Edition). McGraw-Hill, 2011.

 Teaching materials download: dsp_dzm@163.com

password: 123456dsp

References

- Smith S W, Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes, 2002.
- Vegte J V, Fundamentals of Digital Signal Processing. Prentice Hall, 2001.
- Proakis J G and Manolakis D G, Digital Signal Processing: Principles, Algorithms, and Applications (Third Edition). Prentice Hall, 1995.
- 程佩青,数字信号处理教程(第三版).清华大学出版社, 2007.
- 张德丰,详解MATLAB数字信号处理.电子工业出版社, 2010.

The Goals of this course

- Understanding of basic concepts of DSP
- Mastery of the key terminologies
- Ability of simulating digital signals and systems
- Matlab software, downloaded from: https://software.sysu.edu.cn/matlabho me

Grade

- Attendance 10%
- Exercise 30%
- Project 60%

Introduction

Why signals should be processed?

- Signals are carriers of information
 - Useful and unwanted
 - Extracting, enhancing, storing and transmitting the useful information
- How signals are being processed?---
 - Analog Signal Processing vs.
 - Digital Signal Processing

Digital Signal Processing

Theory, method, algorithm

Digital Signal Processor

A kind of microprocessor used to implement digital signal processing algorithm

- The foundation of information technology is digitalization.
- The kernel of digitalization is digital signal processing
- Most of digital signal processing, especially real-time processing are implemented by DSP processor or ASIC based on DSP core
- DSP technology becomes hot front edge and is growing up rapidly.

About DSP

History of DSP

- The roots of DSP are in the 1960s and 1970s when digital computers first became available
- DSP was limited to only a few critical applications at first
- The personal computer revolution of the 1980s and 1990s caused DSP to explode with new applications

History of DSP (cont.)

- In the early 1980s, DSP was taught as a graduate level course in electrical engineering
- A decade later, DSP had become a standard part of the undergraduate curriculum
- Today, DSP is a basic skill needed by scientists and engineers in many fields

Applications of DSP

Communication

Mobile phone

Current-Generation Smartphone Using Baseband IC with Application Processors

Medical

CT (Computed Tomography)

(1) Programmability

Analog system: Modify hardware design.

Digital system: Modify software.

Example: Analog filter, digital filter, adaptive filter

(2) Precision

Analog system: component specification: resistors have a tolerance 5%; capacitors 20% or worse

Digital system: ADC bits, CPU word width and algorithm

(3) Stability

Analog system: the characteristics of analog system components, resistors, capacitors and operational amplifiers will change along with temperature, humidity

Digital system: will show no variation with temperature throughout their guaranteed operation range.

(4) Anti-noise

(5) Repeatability

(6) VLSI (Very Large Scale Integrated circuit)

- (7) Error Correcting Codes
- Data retrieval and transmission systems suffer from a number of potential forms of error.
- With information in a digital or binary form, we may easily build into the data stream additional "redundant" bits that are used to detect when an error has occurred.

- (8) Data Transmission and Storage
- The Internet, Compact Disc (CD) and Digital Video Disc (DVD) brought information based on trouble-free high-quality text, audio and video into the office and home.
- The fidelity of the digital medium is greater than that of the analog one.

- (9) Data Compression
- The information channels cost and transmission bottlenecks make compression necessary for real-time processing.
- With analog compression some information is lost. A typical example is the bandwidth limiting applied to analog telephone lines in order to multiples calls, which limits the frequency response to 3kHz.

(1) Real-Time Processing

Analog system: Besides the delay introduced by the circuit, the processing is in real-time.

Digital system: Decided by the processor speed.

(2) Processing very high frequency signals

Analog system: may process microwave, mini-meter-wave, even light wave signals.

Digital system: By the Nyquist Rule, the processing speed is limited by the S/H, A/D and processor speed.

We still need analog processing

- (3)The most signals in real would are analog.
- If we want to process these analog signals with digital signal processing system, must change them into digital form first by mixed signal processing.

Thank you!