

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019Binary Decision Diagrams

Shannon-Formeln

Shannon-Formeln sind aussagenlogische Formeln, die aufgebaut sind aus

- ► dem dreistelligen Operator sh
- den Konstanten 0 und 1
- ► Aussagevariablen P_1, \ldots, P_n, \ldots

Semantik von sh für eine Interpretation I

$$val_l(sh(P_1, P_2, P_3)) = \begin{cases} val_l(P_2) & \text{falls} \quad val_l(P_1) = F \\ val_l(P_3) & \text{falls} \quad val_l(P_1) = W \end{cases}$$

oder in Tabellenform:

$val_l(P_1)$	W	W	W	W	F	F	F	F
$val_l(P_2)$	W	W	F	F	W	W	F	F
$val_l(P_3)$	W	F	W	F	W	F	W	F
$val_l(sh(P_1, P_2, P_3))$	W	F	W	F	W	W	F	F

Eigenschaften des sh-Operators

- $\blacktriangleright sh(P_1, P_2, P_3) \leftrightarrow (\neg P_1 \land P_2) \lor (P_1 \land P_3)$
- $\blacktriangleright sh(P_1, P_2, P_3) \leftrightarrow (\neg P_1 \lor P_3) \land (P_1 \lor P_2)$
- $\blacktriangleright sh(P_1, P_2, P_3) \leftrightarrow (P_1 \rightarrow P_3) \land (\neg P_1 \rightarrow P_2)$
- $ightharpoonup \neg sh(A,B,C) \leftrightarrow sh(A,\neg B,\neg C)$
- ▶ $sh(0, P_2, P_3) \leftrightarrow P_2$
- ▶ $sh(1, P_2, P_3) \leftrightarrow P_3$
- ▶ $sh(P,0,1) \leftrightarrow P$
- ▶ $sh(P, 1, 0) \leftrightarrow \neg P$
- \blacktriangleright $sh(P_1, P_2, P_2) \leftrightarrow P_2$
- ► $sh(sh(P_1, P_2, P_3), P_4, P_5) \leftrightarrow sh(P_1, sh(P_2, P_4, P_5), sh(P_3, P_4, P_5))$
- $ightharpoonup A \leftrightarrow sh(P, A_{P=0}, A_{P=1})$

Normierte Shannon-Formeln

Wir fixieren eine Ordnung auf der Menge der Aussagevariablen, etwa die durch die Ordnung der Indizes gegebene.

Definition

- 1. Die Konstanten 0,1 sind normierte sh-Formeln.
- 2. $sh(P_i, A, B)$ ist eine normierte sh-Formel wenn
 - ► A und B normierte sh-Formeln sind und
 - ► für jede in A oder B vorkommende Variable P_i gilt i < j.</p>

Theorem

Zu jeder aussagenlogischen Formel gibt es eine äquivalente normierte sh-Formel.

Shannon-Graphen

Shannon-Graphen

Ein sh-Graph ist ein gerichteter, binärer, zusammenhängender Graph. Jedem nichtterminalen Knoten v ist eine natürliche Zahl index(v) zugeordnet. Von jedem nichtterminalen Knoten v gehen zwei Kanten aus. Eine davon ist mit $\mathbf{0}$, die andere mit $\mathbf{1}$ gekennzeichnet. Jeder terminale Knoten v ist mit $\mathbf{0}$ oder $\mathbf{1}$ versehen. Wir definieren dafür wert(v) durch $wert(\mathbf{0}) = \mathbf{F}$ und $wert(\mathbf{1}) = \mathbf{W}$. Ist der nichtterminale Knoten w ein unmittelbarer Nachfolger von v, dann gilt index(v) < index(w). Es gibt genau einen Wurzelknoten.

Weitere Beispiele von Shannon-Graphen

Shannon-Graphen und Boolesche Funktionen

- Jedem sh-Graphen G kann man eine m-stellige Boolesche Funktion f_G zuordnen, wobei m die Anzahl der in G vorkommenden verschiedenen Indizes i₁,..., i_m ist.
- ▶ Wir fassen f_G als eine Funktion mit den Eingabevariabeln P_{i_1}, \ldots, P_{i_m} auf und bestimmen den Funktionswert $f_G(P_{i_1}, \ldots, P_{i_m})$, indem wir an der Wurzel von G beginnend einen Pfad durch G wählen. Am Knoten v folgen wir der Kante $\mathbf{0}$, wenn die Eingabevariable $P_{index(v)}$ den Wert F hat, sonst der Kante $\mathbf{1}$.
- Der Wert des terminalen Knotens ist der gesuchte Funktionswert.

Shannongraph als Boolesche Funktion

G:

$$f_G(F, W, F) = ?$$

Shannongraph als Boolesche Funktion

G:

$$f_G(F, W, F) = F$$

Konstruktion von Shannon-Graphen

Beispiel

$$\begin{split} f(P_1,P_2,P_3) &= \\ \begin{cases} W & \text{falls } \#\{1 \leq i \leq 3 \mid P_i = W\} = 2 \\ F & \text{sonst} \end{cases} \\ f_1(P_2,P_3) &= f(W,P_2,P_3) = \\ \begin{cases} W & \text{falls } (P_2 = W \text{ und } P_3 = F) \text{ oder} \\ (P_2 = F \text{ und } P_3 = W) \end{cases} \\ F & \text{sonst} \end{cases} \\ f_2(P_2,P_3) &= f(F,P_2,P_3) = \\ \begin{cases} W & \text{falls } P_2 = P_3 = W \\ F & \text{sonst} \end{cases} \end{split}$$

$$f_3(P_3) = f(W, W, P_3) = \neg P_3$$

 $f_4(P_3) = f(W, F, P_3) = P_3$
 $f_5(P_3) = f(F, F, P_3) = F$

 $f_6(P_3) = f(F, W, P_3) = P_3 = f_4(P_3)$

Shannon-Graphen vs normierte Shannon-Formeln

Es gibt eine offensichtliche Korrespondenz zwischen Shannon-Graphen und normierten Shannon-Formeln:

n-te Variable entspricht Knoten mit Index *n*.

Von jetzt an betrachten wir nur noch Shannon-Graphen.

Reduzierte Shannon-Graphen

Definition

Ein sh-Graph heißt reduziert, wenn

- 1. es keine zwei Knoten v und w ($v \neq w$) gibt, so daß der in v verwurzelte Teilgraph G_v mit dem in w verwurzelten Teilgraph G_w isomorph ist.
- es keinen Knoten v gibt, so dass die beiden von v ausgehenden Kanten zum selben Nachfolgerknoten führen.

Ein reduzierter Shannongraph heißt auch *ordered binary decision diagram*: (O)BDD.

Einfachstes Beispiel isomorpher Shannon-Graphen

Elimination isomorpher Subgraphen

Elimination isomorpher Subgraphen

Elimination doppelter Kanten

Elimination doppelter Kanten

Isomorphismus π :

Isomorphie von Shannon-Graphen

Definition

Seien zwei *sh*-Graphen H, G gegeben. Ihre Knotenmengen seien V_1 , V_2 .

H, G heißen zueinander *isomorph* ($H \cong G$) genau dann, wenn es eine bijektive Abbildung π von V_1 nach V_2 gibt mit:

- 1. $index(k) = index(\pi(k))$ für jeden Nichtterminalknoten $k \in V_1$
- 2. $wert(k) = wert(\pi(k))$ für jeden Terminalknoten $k \in V_1$
- 3. Für jeden Nichtterminalknoten $k \in V_1$, dessen **0**-Kante/**1**-Kante zu dem Knoten k_0/k_1 führt, gilt: die **0**-Kante von $\pi(k)$ führt zu $\pi(k_0)$, die **1**-Kante zu $\pi(k_1)$.

Ein Kriterium für Reduziertheit

Theorem

Sei G ein Shannongraph, so daß für jedes Paar von Knoten v, w gilt

wenn index(v) = index(w),

die 1-Nachfolger von v und w identisch sind und

die 0-Nachfolger von v und w identisch sind

dann v = w

Dann erfüllt G die Bedingung (1) aus der Definition reduzierter Shannongraphen, d.h. für jedes Paar x, y von Knoten gilt

wenn G_x isomorph zu G_y ist

dann x = y

Eindeutigkeit reduzierter Shannon-Graphen

Theorem

Sind G, H reduzierte sh-Graphen zu $\Sigma = \{P_1, ..., P_n\}$, dann gilt

$$f_G = f_H \Leftrightarrow G \cong H$$
.

(Zu jeder Booleschen Funktion f gibt es bis auf Isomorphie genau einen reduzierten sh-Graphen H mit $f = f_H$).

BDD-Größe in Abhängigkeit von Variablenordnung

Zwei BDDs für
$$(x_1 \wedge x_2) \vee (x_3 \wedge x_4) \vee (x_5 \wedge x_6) \vee (x_7 \wedge x_8)$$

Ordnung: $x_1 < x_3 < x_5 < x_7 < x_2 < x_4 < x_6 < x_8$

Eine harte Nuß

[BDD für Multiplikationen]

- ► *X* enthalte 2*k* Variablen $\{x_0, \ldots, x_{k-1}, y_0, \ldots, y_{k-1}\}$
- ► $x = x_0 \dots x_{k-1}$ und $y = y_0 \dots y_{k-1}$ bezeichnen k-stellige Binärzahlen.
- für 0 ≤ i < 2k bezeichne Mult_i die boolsche Funktion, die das i-te Bit des Produktes von x mit y beschreibt.

Theorem

Für jede Ordnung < der Variablen in X gibt es einen Index $0 \le i < 2k$, so dass der BDD $B_{Mult_i,<}$ mindestens $2^{k/8}$ Knoten besitzt.