21/11/2022 Time 3 Hours Mou Mor 2022

Max. Marks: 80

- Note: (1) Question No. 1 is Compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks.
 - (a) Find the constants a, b, c, d, e if

$$f(z) = (ax^{4} + bx^{2}y^{2} + cy^{4} + dx^{2} - 2y^{2}) + i(4x^{3}y - exy^{3} + 4xy) \text{ is analytic.}$$
(5)
$$(5) \text{ Find } L\{e^{-t} \sin 2t \cos 3t\}.$$

(c) Use Cayley Hamilton theorem for
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 to find A^3 and A^{-1} . (5)

(d) Obtain the Fourier Series of
$$f(x) = x^4$$
, in (-1,1).

2. (a) Find
$$L^{-1}\left(\frac{s^2}{(s^2+5)(s^2+4)}\right)$$
 (6)

(b) Find the analytic function
$$f(z)=u+iv$$
 where $u+v=e^{x}(\cos y+\sin y)$. (6) Find a Fourier series to represent the form

$$f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ \frac{1}{4}\pi x, & 0 < x < \pi \end{cases}$$

$$e \text{ that } \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

3 (a) Find the eigen values and eigen vectors of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (6

(b) Find the Laplace transform of
$$e^{-4t} \int_0^t u \sin 3u \, du$$
 (6)

Hence, deduce that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$
 (8)

3 (a) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ (6)

(b) Find the Laplace transform of $e^{-4t} \int_0^t u \sin 3u \, du$ (6)

(c) Solve $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ by Bender-Schmidt method, given $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x^2(16-x^2)$ Assume h=1 upto $t = 1$ sec (8)

4 (a) Find the orthogonal trajectory of the family of curves given by $e^x \cos y = xy = c$ (6)

(b) Find $L^{-1} \begin{bmatrix} (s+3)^2 \\ (s^2+6s+18)^2 \end{bmatrix}$ using convolution theorem (6)

(c) Show that $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ is diagonalizable. Determine a transforming matrix and a diagonal matrix.

4 (a) Find the orthogonal trajectory of the family of curves given by
$$e^x \cos y = xy = c$$

(b) Find
$$L^{-1}\left[\frac{(s+3)^2}{(c^2+6c+18)^2}\right]$$
 using convolution theorem (6)

(c) Show that
$$A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$
 is diagonalizable. Determine a transforming matrix and a

Page 1 of 2

6D23857F67C75D114A576845BBE6E8CA

Paper / Subject Code: 51621 / Engineering Mathematics-III

- 5 (a) Find half range cosine series for $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ x, & 1 \le x \le 2 \end{cases}$ (6)
 - (6)
- (b) By using Laplace transform, evaluate $\int_0^\infty \frac{\sin 2t + \sin 3t}{te^t} dt$ (c) Solve by Crank-Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial t}$

condition
$$u(0,t) = 0, u(1,t) = 0, u(x,0) = 100 (x-x^2), h = 0.25 \text{ for one time step.}$$
 (8)

- 6 (a) Find $L^{-1} \left[log \frac{(s^2+4)}{(s+2)^2} \right]$ (6)
 - (b) Find sin A where $A = \begin{bmatrix} \pi/2 \\ 0 \end{bmatrix}$ (6)
 - (c) Find a Fourier series for f(x) in $(0, 2\pi)$ Where

$$f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi \le x < 2\pi \end{cases}$$

Hence, deduce that
$$\frac{\pi^2}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$$
 (8)