

概率论与数理统计 第四章

温灿红

wench@ustc.edu.cn

63607553

- 1. 三大分布
 - 1. 卡方分布
 - 2. t分布
 - 3. F分布
- 2. 正态分布总体样本均值和样本方差的分布
- 3. 几个重要推论

- 1. 三大分布
 - 1. 卡方分布
 - 2. t分布
 - 3. F分布
- 2. 正态分布总体样本均值和样本方差的分布
- 3. 几个重要推论

卡方分布

- 定义: 设 $X_1, ..., X_n, i.i.d. \sim N(0,1)$,令 $X = \sum_{i=1}^n X_i^2$,则称X为自由度为n的 χ^2 变量,其分布为自由度为n的 χ^2 分布,记为 $X \sim \chi_n^2$.
- 概率密度函数为

$$g_n(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-x/2}, & x > 0\\ 0, & x \le 0 \end{cases}$$

• 其中 $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$ 是一个gamma函数。 $\Gamma(n) = (n-1)! \ \Gamma(1/2) = \sqrt{\pi}$

6/21/2021

Percentage Points of the Chi-Square Distribution

Degrees of Freedom	Probability of a larger value of x ²								
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

•
$$E(X) = n$$
; $E(X)^2 = Var(X) = 1$

•
$$Var(X) = 2n$$
; $Var(Xi) = \underbrace{EXi^{4} - (EXi^{4})^{2}}_{1} = \frac{3}{2} - 1 = 2$

• 设 $X \sim \chi_n^2$, $Y \sim \chi_m^2$,且X和Y独立,则 $X + Y \sim \chi_{n+m}^2$ 。

育天下英才

• 定义: 设X ~ N(0,1), Y ~ χ_n^2 , 且X和Y独立,则称

$$T = \frac{X}{\sqrt{Y/n}}$$

- 为自由度为n的t变量,其分布为自由度为n的t分布,记为 $T \sim t_n$.
- 概率密度函数为

$$t_{n}(x) = \frac{\Gamma((n+1)/2)}{\Gamma(n/2)\sqrt{n\pi}} \left(1 + \frac{x^{2}}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < x < \infty$$

育天下英才創寰字學府

- $Var(X) = \frac{n}{n-2}$, $\stackrel{\text{def}}{=} n \geq 3$ if;
- 当 $n \to \infty$ 时,t变量的极限分布为N(0,1)。

$$\frac{T - ET}{\sqrt{Var(T)}} \sim N(0.1) \Rightarrow \frac{T}{\sqrt{\frac{n}{n-2}}} \sim N(0.1) \Rightarrow n \Rightarrow \bowtie RT T N(0.1)$$

• 定义: 设 $X \sim \chi_m^2$, $Y \sim \chi_n^2$, 且X和Y独立,则称

$$F = \frac{X/m}{Y/n}$$

- 为自由度为m和n的F变量,其分布称为自由度为m和n的F分布,记为 $F \sim F_{m,n}$.
- 概率密度函数为

$$f_{m,n}(x) = \begin{cases} \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} m^{\frac{m}{2}} n^{\frac{n}{2}} x^{\frac{m}{2}-1} (n+mx)^{-\frac{m+n}{2}}, \\ 0, \end{cases}$$

育天下英才創裏字學府

- 若 $Z \sim F_{m,n}$, 则 $1/Z \sim F_{n,m}$;
- 若 $T \sim t_n$, 则 $T^2 \sim F_{1,n}$;
- $F_{m,n}(1-\alpha) = 1/F_{n,m}(\alpha)$

- 1. 三大分布
 - 1. 卡方分布
 - 2. t分布
 - 3. F分布
- 2. 正态分布总体样本均值和样本方差的分布
- 3. 几个重要推论

• 设 $X_1, ..., X_n$ $i.i.d., \sim N(\mu, \sigma^2)$, \bar{X} 和 S^2 分别为样本均值和样本方差,则有

1)
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
;

2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
;

3) \bar{X} 和 S^2 独立。

- 1. 三大分布
 - 1. 卡方分布
 - 2. t分布
 - 3. F分布
- 2. 正态分布总体样本均值和样本方差的分布
- 3. 几个重要推论

ψ ይ ፉ ኛ ጵ ጵ ኔ
$$\frac{\overline{X} - \mu}{\sqrt{\overline{n}^2}} \sim N(0.1)$$
University of Science and Technology of China
$$\frac{(N-1) S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

$$\overline{X} \stackrel{\bot}{\Rightarrow} S^2 \Re \mathring{T}$$

$$= \frac{\overline{X} - \mu}{\sqrt{\overline{n}^2}} \sim t_{(n-1)}$$

$$= \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{(n-1)}$$

设 $X_1,...,X_n$ i.i.d., ~ $N(\mu,\sigma^2)$,则有

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t_{n-1}.$$

2. 设 $X_1, ..., X_m$ i. i. d., $\sim N(\mu_1, \sigma^2)$, $Y_1, ..., Y_n$ i. i. d., $\sim N(\mu_2, \sigma^2)$, 且样 $\Delta X_1, \ldots, X_m$ 和 Y_1, \ldots, Y_n 独立,则

3. 设 $X_1, ..., X_m$ $i.i.d., \sim N(\mu_1, \sigma_1^2), Y_1, ..., Y_n$ $i.i.d., \sim N(\mu_2, \sigma_2^2),$ 且样 本 $X_1, ..., X_m$ 和 $Y_1, ..., Y_n$ 独立,则

$$F = \frac{S_1^2}{S_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} \sim F_{m-1, n-1}.$$

$$\frac{(m-1)S_1^2}{\sigma_{1^2}} \propto \chi_{(m-1)}^1$$

$$\frac{(n-1)S_1^2}{\sigma_{2^2}} \propto \chi_{(n-1)}^2 \Rightarrow \frac{S_1^2/\sigma_{1^2}}{S_1^2/\sigma_{1^2}} \propto F_{m-1}, n-1$$

育天下英才