,פתרון מטלה -09 מבוא ללוגיקה

2025 בינואר 7

, בשפה, lpha קבוצת הינטיקה אם היא מקיימת את התנאים הבאים לכל שני פסוקים lpha בשפה.

- Σ יכים שייכים $\neg P$ וגם ואם לא יתכן אז לא יסודי אז פסוק פסוק .1
 - $.lpha\in\Sigma$ אז גם $\neg(\neglpha)\in\Sigma$ אם .2
- Σ ב הא $\neg \alpha$ אז או $\neg (\alpha \wedge \beta) \in \Sigma$ ואם $\alpha, \beta \in \Sigma$ אז $\alpha \wedge \beta \in \Sigma$.3
- $\neg \alpha, \neg \beta \in \Sigma$ אז $\neg (\alpha \lor \beta) \in \Sigma$ אם $\beta \in \Sigma$ או $\alpha \in \Sigma$ אז או $\alpha \lor \beta \in \Sigma$.4
 - $-\alpha, \neg \beta \in \Sigma$ אז $\neg (\alpha \to \beta) \in \Sigma$ ואם $-\alpha$ אז או $\alpha \to \beta \in \Sigma$ אם .5
- $\neg \alpha, \beta \in \Sigma$ או $\alpha, \neg \beta \in \Sigma$ או או $\alpha, \alpha, \beta \in \Sigma$ או או $\alpha, \beta \in \Sigma$ או או $\alpha, \beta \in \Sigma$ או או $\alpha, \beta \in \Sigma$.6.

בוכיח שאם Σ קבוצת הינטיקה אז ספיקה.

 $v(P)=\mathbb{T}\iff P\in\Sigma$ על־ידי $v:L o \{\mathbb{T},\mathbb{F}\}$ הוכחה. נגדיר

נגדיר (($\varphi \in \Sigma$) את באינדוקציה על מבנה הפסוק. $\bar{v}(\varphi) = \mathbb{T}$) א $\bar{v}(\varphi) = \mathbb{T}$) אונוכיח את באינדוקציה על מבנה הפסוק. לפני שנתחיל נעיר ש־ β הוא טענה שנכתבה בשפה לוגית מטעמי נוחות, ואנו מתייחסים אליה כטענה ולא כאל נוסחה.

2 E we have X = X + X . The coverage of the contraction X = X + X . The coverage of X = X + X . The coverage of X = X + X . The coverage of X = X + X . The coverage of X = X + X . The coverage of X = X + X . The coverage of X = X + X is a contraction of X = X + X . The coverage of X = X + X is a contraction of X = X + X . The coverage of X = X + X is a contraction of X = X + X in the contraction of X = X + X is a contraction of X = X in the contraction of X = X is a contraction of X = X in the contraction of X = X is a contraction of X = X in the contraction of X = X is a contraction of X = X in the contract

 $ar v(
eg P)=V_
eg (v(P))=$ אז $eg P\in \Sigma$ אז כמבוקש, ואילו $eg V(P)=\mathbb T$ עבור אז מהגדרה נובע פסוק יסודי, אם $eg P\in L$ אז פסוק יסודי, אם פסוק יסודי, אם $eg P\in L$ אז מהגדרה נובע פסיס האינדוקציה ולכן נעבור $eg V(P)=\mathbb T$ בעבור שמתנאי 1 לקבוצות הינטיקה נובע שהמהלך שביצענו מוגדר ולכן השלמנו אם כך את בסיס האינדוקציה ולכן נעבור $eg V(P)=\mathbb T$ להוכיח את המהלך. נניח ש $eg V(P)=V_
eg V(P)=V_
eg V(P)$

- $ar v(arphi)=V_\lnot(ar v(lpha))=\mathbb T$ אם $ar v(lpha)=V_\lnot(ar v(lpha))=V_\lnot(ar v$
- . אם $\bar{v}(\varphi)=\mathbb{T}$ אז אם $\bar{v}(\alpha)=\bar{v}(\beta)=\mathbb{T}$ ולכן $\alpha,\beta\in\Sigma$ אם מ־2 אז מ־3 אז מ־3 אז מ־3 אז מ־3 אם $\varphi\in\alpha\wedge\beta$ אם פרכות $\bar{v}(\alpha)=\bar{v}(\alpha$

- $.ar{v}(arphi)=\mathbb{T}$ אם $lpha\in\Sigma$ אם הכלליות הכלליות אלא ללא $arphi\in\Sigma$ אז אם $arphi=lpha\vee\beta$ אם $.ar{v}(arphi)=V_{\lor}(ar{v}(lpha),ar{v}(eta))=\mathbb{F}$ אם ראן הכלליות אם ראן היא ראם ראן האם ר
- $.ar{v}(arphi)=\mathbb{T}$ אז מ־5 ולכן נובע חללא הגבלת הכלליות מ־5 וללא מ־5 אז מ־5 אז מ־6 א אם י $arphi=lpha\in\Sigma$ אז מ־7 אז מבע אז אם מכללי הערכת שוב מכללי הערכת היס אז נובע חלכן מובע מכללי הערכת אם מכללי מכללי הערכת אם מכללי הערכת אם מכללי הערכת אם מכללי מכ
- $ar v(arphi)=\mathbb T$ אם מתקבל ההכרח ש־ $arphi=\alpha$ אז באופן דומה נפצל למקרים על תנאי $arphi=\alpha\leftrightarrow\beta$ אם ישר $ar v(arphi)=\mathbb T$ אז לא הגבלת הכלליות $lpha, \neg eta\in\Sigma$ ונובע בהכרח אז ללא הגבלת הכלליות

השלמנו את מהלך האינדוקציה ולכן ξ מתקיים.

'סעיף ב

 $.\Sigma \vdash^H \neg \alpha$ וגם $\Sigma \vdash^H \alpha$ עבורו α פסוק אין אם עבור עקבית עקבית Σ תיקרא פסוקים קבוצת נוכיח אז לכל עקבית עבור אז אז לכל אז עקבית עבור $\Sigma \vdash^H \beta$ מתקיים אז לכל אז עקבית עבור אז לכל פסוק

הוכחה. TODO

 $.arphi \in form_L$ תהי חסים יחסים לתחשיב לתחשיב תהי

'סעיף א

. $\exists x \varphi \vdash \neg(\forall x(\neg \varphi))$ נוכיה שמתקיים

הוכחה. נבנה עץ היסק ב־KE להוכחת הטענה.

- $\neg(\neg(\forall x(\neg\varphi)))$.1
- כללי שלילה, $\forall x(\neg \varphi)$.2
 - הנחה $\exists x \varphi$.3
- c עד קיים, הוספת עד , $arphi_c^x$.4
- וסתירה, כללי לכל, הצבה ל-2, וסתירה , $\neg \varphi^x_c$.5

נבחין כי במהלך האחרון הסתמכנו על הזהות $-\varphi_c^x = -\varphi_c^x$ אשר הוכחנו שמתקיימת בתרגילים קודמים. מעץ ההיסק שמצאנו אכן מתקיים $-x\varphi \vdash -(\forall x(\neg\varphi))$

'סעיף ב

. $\forall x \varphi \vdash \neg(\exists x(\neg \varphi))$ נוכיח שמתקיים

הטענה. כמו בסעיף הקודם נבנה עץ היסק ב־KE עבור הטענה.

- $\neg(\neg(\exists x(\neg\varphi)))$.1
- כללי שלילה, $\exists x(\neg \varphi)$.2
- c עד הוספת, כללי קיים, כללי קיים, $arphi_c^x$
 - הנחה איספת הנחה, $\forall x \varphi$.4
- וסתירה, כללי לכל, הצבה, וסתירה φ_c^x .5

ומצאנו כי קיים עץ היסק מתאים לטענה.

 $.L_{P,f}$ ב קבוע קבוע סימני dו ו-cמשתנה, קבוע קבוע שם שם t ,ווסחה, עהי φ

'סעיף א

 $.{(\varphi^x_t)}^c_d = {(\varphi^c_d)}^x_{t^c_d}$ שמתקיים שמתקיים

בוע. אריך להשתמש בזה ש־t שם עצם קבוע.