

Department: ECE

Subject Code: EC-782

Semester: 8th

Final Year Project Progression Report

OBJECT IDENTIFICATION & MOTION DETECTION USING DEEP LEARNING

SUBMITTED BY:

- MAINAK BHATTARJEE (16900320076)
- SAYAN PACHHAL (16900320087)
- KOUSTAV MAJI (16900320088)
- SARBADRITA BHATTACHARJEE (16900320091)
- ABIR BHOWMICK (16901620026)

MENTOR:

PROF. BASAB CHATTERJEE

ACKNOWLEDGEMENT

We extend our heartfelt gratitude to our mentor, **Prof. Basab Kumar Chatterjee**, for his unwavering support and invaluable guidance throughout the course of this project. His ability to simplify complex concepts and convey them in a lucid manner has been instrumental in our understanding and progress.

ECE Department Academy of Technology

CONTENT

01	PROGRESSION MAP	02	ABSTRACT
03	INTRODUCTION	04	LITERATURE SURVEY
05	THEORITICAL BACKGROUND	06	REQUIREMENTS
07	DESIGNING PROCESS	08	FUNCTIONAL DIAGRAM
09	FLOWCHART	10	HOW IT WORKS
11	CONNECTIONS	12	RESULT
13	PRICE COMPARISON	14	APPLICATION
15	CONCLUSION	16	FUTURE PLAN
17	REFERENCES	18	THANK YOU

PROGRESSION MAP

UNDERSTAND

The increasing demand of the security lead us to select this topic. At first we read how the things work from different site, take help from a course form COURSERA. Then sum up the things to build our plan

DEFINE

We have noticed that only Motion detection will not make us different from the others. So we add Object planned Identification part too. And our main motto was to provide this lings at reasonable price.

COMPLETION OF SOFTWERE PART

Till now we have done the coding part for the motion detection part & working on the object detection part. Later on we will be exporting all these into hardware for testing the same

TESTING & FUTURE PLAN

Importing all our code in the hardware, we will be testing it in real-life scenario to achieve better observation & result. Later we will think to scale up this project in future

We have divided our team into 3 segment & each part of our team working on the different portion of the project

ABSTRACT

IMPORTANCE

Object identification and motion detection are vital in computer vision for applications like security, traffic management, and self-driving cars.

FOCUS

Develop a robust and accurate method for object detection and tracking.

CHALLANGES

Detecting and tracking moving objects amidst dynamic scenes with variable backgrounds and lighting poses a significant challenge.

METHODOLOGY

Utilize advanced techniques such as deep learning and neural networks to enhance accuracy and adaptability to changing conditions.

OBJECTIVE

Propose an AI-based approach leveraging deep learning and neural networks.

APPLICATIONS

The proposed approach has implications across various sectors including security, transportation, and autonomous vehicles.

object identification and classification.

CHALLANGES

Address complexities including diverse objects, backgrounds, and lighting conditions.

IMPACT

Empower users to analyze and recognize objects in images of unknown content for various applications.

TASKS

Divided into image classification, object localization, and detection.

FRAMEWORK

Leverage OpenCV, a versatile open-source library for computer vision and image processing.

ALGORITHM

Optical flow (for motion detection) & YOLO v8 (for object identification).

Utilize AI techniques like deep learning and neural networks.

LITERATURE SURVEY

Deep learning-based object identification

Deep learning algorithms
have been shown to be
very effective for object
identification tasks. Deep
learning-based object
identification algorithms
are able to learn complex
patterns in data, which
allows them to identify
objects even in challenging
environments.

https://www.mdpi.com/207 6-3417/10/9/3280

3D object identification

3D object identification is a challenging problem, but there has been significant progress in recent years.

3D object identification algorithms can now be used to identify objects in real-time from video sequences.

https://www.sciencedirect.c om/topics/computerscience/3d-object-detection

Motion sensing with lowcost sensors

Researchers have developed new motion sensing algorithms that can be used with low-cost sensors such as cameras and ultrasonic sensors. This has made it possible to develop affordable motion sensing systems for a wide range of applications.

https://www.mdpi.com/142 4-8220/20/23/6819

THEORETICAL BACKGROUND

Key Technologies of Computer Vision: Object Identification & Motion Detection are two key technologies of Computer Vision

algorithm are a subfield of computer vision that quantify the motion of objects between consecutive frames captured by a camera. They capture the apparent motion of brightness patterns in an image and calculate a velocity for points within it. .

Motion Detection Algorithm: Optical flow

Theoretical Background

Detection of Object Type Causing the Motion: The object which is responsible to creating the motion depending on which response will be provided to user

Object identification Algorithm: The YOLO(You Look Only Once) algorithm divides the input image into a grid of cells, and for each cell, it predicts the probability of the presence of an object and the bounding box coordinates of the object..

Hardware Requirements

USB cable: Features two sets of wires. One set carries the current, other transfers the data signals.

Jumper wires (female to female): used to connect any development board, have connector pins at each end, allow them to connect two points to each other.

ESP32 cam Module: A single 2.4 GHz Wi-Fi-and-Bluetooth combo chip. low-power technology

OV2640 Camera:2MP Mini CCM Compact Camera Modules Compatible with ESP32 Development Board

protocol stack, which allows them to tell the computer what they are so that the computer can load the correct driver, also manage data transactions with the computer.

Software Requirements

Python: High-level programming language known for its simplicity, readability. Python modules used in this project are: OpenCV, YOLO, Supervision, MIME etc.

Arduino UNO: User-friendly integrated development environment (IDE) tailored for programming Arduino microcontroller boards.

PyCharm: A popular integrated development environment (IDE) for Python programming

DESIGNING PROCESS

Step-1

Hardware Setup

Step-2

Controller Configuration

Step-3

Software Development

Step-4

Project Deployment

Step-5

Alert System

and then to a
laptop/desktop using a
USB cable. This step
establishes the
physical connection
between your ESP32
and your development
environment.

Write the script in the
Arduino IDE for
programming the
Controller Board
(ESP32) and to obtain its
IPV4 address in URL
form.

in any IDE (like
PyCharm, VS code etc.)
for object identification
and motion detection
which will use that URL
obtained from the
Arduino IDE to
communicate with
ESP32.

Deploy and test the system in a real-world environment where you want to monitor for movement.

Implement an alert system in your Python script to send an email notification whenever motion is detected. The email includes e the name of detected object that creating the movement.

FUNCTIONAL DIAGRAM

BLOCK DIAGRAM

PIN DIAGRAM

FLOWCHART

HOW IT WORKS

The alert mail

Output

CONNECTIONS

1. Connection of ESP32 with FTDI & Laptop

2. Connection of ESP32 with FTDI

RESULT

4. Tracking of white spot by comparing (i.e. the motion)

5. Getting output as the name of moving object

6. Sending Alert Mail to the subscriber

PRICE COMPARISON

Already available product

- ✓ For Indoor Security Camera Use
- ✓ Night Vision Feature
- ✓ Smart Motion Detection
- ✓ SD Card Capacity: 128 GB
- ✓ HD Quality Video
- ✓ Smartphone Viewing
- ✓ Supports Onvif

Regular Price: **₹2,399.00**

Sale Price: **₹1,699.00**

Our Product

✓ For Indoor Security Camera Use

- ✓ Night Vision Feature
- ✓ Motion Detection
- ✓ Object Identification
- ✓ Storage Enhancement
- ✓ Less power consumption
- ✓ Instant mail alert

Estimated Price					
ESP32	FTDI	USB Micro-B Cable	Jumper Wire	Total	
₹329.00	₹287	₹149.00	₹119.00	₹884.00	

Anomaly and Defect Detection

Robotics and Related Engineering Domains

detect intruders and other potential threats

> Movement around in restricted areas

Industrial Use Cases

Security

Application

Transportation and

Smart City Use Cases

Retail Use Cases

Autonomous Driving, Parking Occupancy

Traffic Monitoring & Road Maintenance

> Contactless Checkout

Inventory Management

ADVANTAGES OVER MARKET PRODUCT

- Provides instant email notification.
- Identifies object causing the result.
- Utilizes predefined dataset for object identification.

TECHNOLOGIES USED

Deep Learning Algorithms, Optical Flow (for motion detection), YOLO v8 (for object identification).

CHALLENGES & SOLUTIONS

- Upgrade hardware for better performance (e.g., Arduino).
- Adapt to challenging environments.

CONCLUSION

FUTURE DIRECTIONS

- Advanced hardware integration.
- Evolving technology adoption.

HARDWARE USED

ESP32-CAM (2 MP camera).

FUTURE PLANS

Integration with IoT: Better camera, fast processors and high network speed can decrease the delay and instant mail alert.

3D object detection: extending object detection systems to 3D images and video sequences

Future plans

Stand Alone approach: Can upload the code direct in controller and that would be a stand alone approach.

Storing of video: We can store the anomaly video as a proof. For that we have to provide a memory card with the microcontroller.

Web/App approach: We can provide an web/app approach for better user experience.

REFERENCES

- 1. https://www.ijraset.com/research-paper/moving-object-detection-using-ml
- 2. https://issuu.com/ijraset/docs/a_literature_review_of_object_detection_using_yolo/s/21496887
- 3. https://www.academia.edu/99058470/A_Literature_Review_of_Object_Detection_using_YOLOv4_Detector
- 4. https://www.mdpi.com/2076-3417/10/9/3280
- 5. https://www.sciencedirect.com/topics/computer-science/3d-object-detection
- 6. https://www.mdpi.com/1424-8220/20/23/6819
- 7. https://robocraze.com/blogs/post/all-about-esp32-camera-module
- 8. https://www.godrej.com/Resources/Support/EVENXCube_22072315.pdf

THANK YOU