<u>CSC3005 Laboratory/Tutorial 2 Solution: Data Preprocessing and Classification Analysis I</u>

5. Theory on PCA

Step 1: Find covariance matrix

Data matrix
$$\mathbf{X} = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$$

$$\operatorname{cov}(\mathbf{X}) = \frac{1}{N-1} (\mathbf{X} - \mathbf{\mu})^T (\mathbf{X} - \mathbf{\mu})$$

where μ is the mean of the data for each column and N is the number of data record.

$$\mu = \begin{bmatrix} \frac{4+0}{2} & \frac{0+8}{2} \\ \frac{4+0}{2} & \frac{0+8}{2} \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}$$

Therefore

$$cov(\mathbf{X}) = \frac{1}{2-1} \begin{pmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \end{pmatrix}^T \begin{pmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \end{pmatrix}$$

$$cov(\mathbf{X}) = \begin{pmatrix} \begin{bmatrix} 2 & -4 \\ -2 & 4 \end{bmatrix} \end{pmatrix}^T \begin{pmatrix} \begin{bmatrix} 2 & -4 \\ -2 & 4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & -2 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ -2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 * 2 + (-2 * -2) & 2 * -4 + (-2 * 4) \\ -4 * 2 + (4 * -2) & -4 * -4 + 4 * 4 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & -16 \\ -16 & 32 \end{bmatrix}$$

Step 2: Find eigenvalues and eigenvectors

Let λ be the eigenvalues of the cov(X)

$$\det(\lambda \mathbf{I}\text{-}\mathrm{cov}(\mathbf{X})) = 0$$

For λI -cov(X)

$$\lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 8 & -16 \\ -16 & 32 \end{bmatrix} \\
\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 8 & -16 \\ -16 & 32 \end{bmatrix} = \begin{bmatrix} \lambda - 8 & 16 \\ 16 & \lambda - 32 \end{bmatrix}$$

Therefore

$$\det(\lambda \mathbf{I} \cdot \cot(\mathbf{X})) = 0$$

$$\begin{vmatrix}
[\lambda-8 & 16 \\
16 & \lambda-32
\end{bmatrix} = 0$$

$$(\lambda-8)(\lambda-32) - 16 * 16 = 0$$

$$\lambda^2 - 32\lambda - 8\lambda + 256 - 256 = 0$$

$$\lambda^2 - 40\lambda = 0$$

$$\lambda(\lambda - 40) = 0 \rightarrow \lambda = 0 \text{ or } \lambda = 40$$

For $\lambda = 0$

$$\begin{aligned} & (\lambda \text{I-cov}(\mathbf{X})) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \\ & \begin{bmatrix} \lambda \text{-8} & 16 \\ 16 & \lambda \text{-32} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \\ & \begin{bmatrix} 0 \text{-8} & 16 \\ 16 & 0 \text{-32} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \\ & \begin{bmatrix} -8 & 16 \\ 16 & -32 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \end{aligned}$$

Using first row

$$-8v_1 + 16v_2 = 0$$

$$\to v_1 = 2v_2$$

Therefore first eigenvector is

$$\mathbf{v_1} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

if $v_2 = 1$

For $\lambda = 40$

$$(\lambda \text{I-cov}(\mathbf{X}))$$
 $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$

$$\begin{bmatrix} \lambda - 8 & 16 \\ 16 & \lambda - 32 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$
$$\begin{bmatrix} 40 - 8 & 16 \\ 16 & 40 - 32 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$
$$\begin{bmatrix} 32 & 16 \\ 16 & 8 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

Using first row

$$32v_1 + 16v_2 = 0$$

$$\rightarrow v_1 = -0.5v_2$$

Therefore second eigenvector is

$$\mathbf{v_2} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

if $v_2 = 1$

Since second eigenvector has the eigenvalue of 40 which is the largest power, therefore the second eigenvector will be used as the primary eigenvector principal component

The projection of PC1 on data will be given as

$$(\mathbf{X} - \mathbf{\mu}) \cdot \mathbf{v}_2 = \begin{pmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -4 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2*-0.5-4 \\ -2*-0.5+4 \end{bmatrix} = \begin{bmatrix} -5 \\ 5 \end{bmatrix}$$

Hence 2x2 matrix of **X** that contains 2 features become 2x1 vectors that contains one PC component that capture the 2 features. Hence, dimension reduction!!!

7. Work out the Impurity Measure and Information Gain for Decision Tree

Step 1: Work out the Parent Entropy for the two classes

	Name	Warm-blooded	Gives Birth	Aquatic Creature	Aerial Creature	Has Legs	Hibernates	Class
0	human	1	1	0	0	1	0	mammals
1	python	0	0	0	0	0	1	non-mammals
2	salmon	0	0	1	0	0	0	non-mammals
3	whale	1	1	1	0	0	0	mammals
4	frog	0	0	1	0	1	1	non-mammals
5	komodo	0	0	0	0	1	0	non-mammals
6	bat	1	1	0	1	1	1	mammals
7	pigeon	1	0	0	1	1	0	non-mammals
8	cat	1	1	0	0	1	0	mammals
9	leopard shark	0	1	1	0	0	0	non-mammals
10	turtle	0	0	1	0	1	0	non-mammals
11	penguin	1	0	1	0	1	0	non-mammals
12	porcupine	1	1	0	0	1	1	mammals
13	eel	0	0	1	0	0	0	non-mammals
14	salamander	0	0	1	0	1	1	non-mammals

Parent (root)	Count	Probability of Class
Class 1 : Mammals	5	5
		$p_1 = \frac{15}{15}$
Class 2 : Non Mammals	10	10
		$p_2 = \frac{15}{15}$

Entropy =-
$$\sum_{i=1}^{2} p_i \log_2(pi) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 = -\frac{5}{15} \log_2 \frac{5}{15} - \frac{10}{15} \log_2 \frac{10}{15} = 0.918$$

Step 2: Find the best split. Work out the Entropy and Information Gain for all features by splitting all feature into two Node.

Warm Blooded	N1	N1 Probability of Class	N2	N2 Probability of Class
	(Yes=1)		(No=0)	
Class 1:	5	. 5	0	0
Mammals		$p_1 = \frac{1}{7}$		$p_1 = \frac{1}{8}$
Class 2:	2	2	8	8
Non-Mammals		$p_2 = \frac{1}{7}$		$p_2 = \frac{1}{8}$
Entropy		$-\frac{5}{7}log_2\frac{5}{7} - \frac{2}{7}log_2\frac{2}{7} = 0.863$		$-\frac{0}{8}log_2\frac{0}{8} - \frac{8}{8}log_2\frac{8}{8} = 0$
$Entropy_{Split}$		$\frac{7}{15}Entropy_{N1} + \frac{8}{15}Entropy_{N2}$	$=\frac{7}{15}*0.8$	$63 + \frac{8}{15} * 0 = 0.403$
Δ_{info}	0.918-0.4	03=0.515		

Give Birth	N1	N1 Probability of Class	N2	N2 Probability of Class
	(Yes=1)		(No=0)	
Class 1:	5	5	0	0
Mammals		$p_1 = \frac{1}{6}$		$p_1 = \frac{1}{9}$
Class 2:	1	1	9	9
Non-Mammals		$p_2 = \frac{1}{6}$		$p_2 = \frac{1}{9}$
Entropy		$-\frac{5}{6}log_2\frac{5}{6} - \frac{1}{6}log_2\frac{1}{6} = 0.65$		$-\frac{0}{9}log_2\frac{0}{9} - \frac{9}{9}log_2\frac{9}{9} = 0$
$Entropy_{Split}$		6 9	- 6	9 . 0 = 0.26
		$\frac{6}{15}Entropy_{N1} + \frac{5}{15}Entropy_{N2}$	$_{2}=\frac{1}{15}*0.$	$65 + \frac{1}{15} * 0 = 0.26$
Δ_{info}	0.918-0.2	6= 0 658		
Δ_{info}	0.010 0.2	· <u>0.000</u>		

Aquatic	N1	N1 Probability of Class	N2	N2 Probability of Class
Creature	(Yes=1)		(No=0)	
Class 1:	1	1	4	4
Mammals		$p_1 = \frac{1}{8}$		$p_1 = \frac{1}{7}$
Class 2:	7	. 7	3	3
Non-Mammals		$p_2 = \frac{1}{8}$		$p_2 = \frac{1}{7}$
Entropy		$-\frac{1}{8}log_2\frac{1}{8} - \frac{7}{8}log_2\frac{7}{8} = 0.544$		$-\frac{4}{7}\log_2\frac{4}{7} - \frac{3}{7}\log_2\frac{3}{7} = 0.985$
$Entropy_{Split}$	-	$\frac{8}{15}Entropy_{N1} + \frac{7}{15}Entropy_{N2} =$	$\frac{8}{15} * 0.544$	$2 + \frac{7}{15} * 0.985 = 0.750$
Δ_{info}	0.918-0.7	50=0.169		

Aerial	N1	N1 Probability of Class	N2	N2 Probability of Class
Creature	(Yes=1)		(No=0)	
Class 1:	1	1	4	4
Mammals		$p_1 = \frac{1}{2}$		$p_1 = \frac{13}{13}$
Class 2:	1	1	9	9
Non-Mammals		$p_2 = \frac{1}{2}$		$p_2 = \frac{13}{13}$
Entropy		$-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$		$-\frac{4}{13}log_2\frac{4}{13} - \frac{9}{13}log_2\frac{9}{13} = 0.89$
$Entropy_{Split}$		$\frac{2}{15}Entropy_{N1} + \frac{13}{15}Entropy_{N2}$	$=\frac{2}{15}*1$	$+\frac{13}{15} * 0.89 = 0.905$
Δ_{info}	0.918-0.9	05=0.013		

Has Legs	N1	N1 Probability of Class	N2	N2 Probability of Class
	(Yes=1)		(No=0)	
Class 1:	4	4	1	1
Mammals		$p_1 = \frac{10}{10}$		$p_1 = \frac{1}{5}$
Class 2:	6	6	4	4
Non-Mammals		$p_2 = \frac{10}{10}$		$p_2 = \frac{1}{5}$
Entropy		$-\frac{4}{10}log_2\frac{4}{10} - \frac{6}{10}log_2\frac{6}{10}$		$-\frac{1}{5}\log_2\frac{1}{5} - \frac{4}{5}\log_2\frac{4}{5} = 0.722$
		= 0.971	10	
$Entropy_{Split}$	<u>-</u>	$\frac{10}{15}Entropy_{N_1} + \frac{5}{15}Entropy_{N_2} =$	$\frac{10}{-}$ * 0.971	$+\frac{3}{2}*0.722=0.888$
	-	15 15 15	15	15
Δ_{info}	0.918-0.8	88=0.003		

Hibernates	N1	N1 Probability of Class	N2	N2 Probability of Class
	(Yes=1)		(No=0)	
Class 1:	2	2	3	3
Mammals		$p_1 = \frac{1}{5}$		$p_1 = \frac{10}{10}$
Class 2:	3	3	7	7
Non-Mammals		$p_2 = \frac{1}{5}$		$p_2 = \frac{10}{10}$
Entropy		$-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.971$		$-\frac{3}{10}\log_2\frac{3}{10} - \frac{7}{10}\log_2\frac{7}{10} = 0.881$
$Entropy_{Split}$	1	$\frac{5}{5}Entropy_{N1} + \frac{10}{15}Entropy_{N2} = \frac{1}{5}$	5 15 * 0.971	$+\frac{10}{15} * 0.881 = 0.9111$
Δ_{info}	0.918-0.9	111=0.007		

Give Birth Feature has the highest information gain of <u>0.658</u>, therefore it will be selected as the first node. Under Give Birth Feature, N2 node has the pure classification with [mammal, non-mammal]=[0 9]. However, its N1 node has impurity in classification with [mammal, non-mammal]=[5 1]. There is 1 data that results 1 label of non-mammal. As such, this N1 node need to split further.

Step 3 : Repeat the whole process as in step 2 but with Birth feature N1 node as the parent node that has entropy =0.65 and Give Birth=1

Warm Blooded	N1	N1 Probability of Class	N2	N2 Probability of Class	
	(Yes=1)		(No=0)		
Class 1:	5	5	0	0	
Mammals		$p_1 = \frac{1}{5}$		$p_1 = \frac{1}{1}$	
Class 2:	0	0	1	1	
Non-Mammals		$p_2 = \frac{1}{5}$		$p_2 = \frac{1}{1}$	
Entropy		$-\frac{5}{5}log_2\frac{5}{5} - \frac{0}{5}log_2\frac{0}{5} = 0$		$-\frac{0}{1}log_2\frac{0}{1} - \frac{1}{1}log_2\frac{1}{1} = 0$	
$Entropy_{Split}$	$\frac{5}{6}Entropy_{N1} + \frac{1}{6}Entropy_{N2} = \frac{5}{6} * 0 + \frac{1}{6} * 0 = 0$				
Δ_{info}	0.65-0= <u>0.</u>	<u>65</u>			

Aquatic	N1	N1 Probability of Class	N2	N2 Probability of Class	
Creature	(Yes=1)		(No=0)		
Class 1:	1	1	4	4	
Mammals		$p_1 = \frac{1}{2}$		$p_1 = \frac{1}{4}$	
Class 2:	1	1	0	0	
Non-Mammals		$p_2 = \frac{1}{2}$		$p_2 = \frac{1}{4}$	
Entropy		$-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$		$-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$	
$Entropy_{Split}$	$\frac{2}{6}Entropy_{N1} + \frac{4}{6}Entropy_{N2} = \frac{2}{6} * 1 + \frac{4}{6} * 0 = 0.333$				
Δ_{info}	0.65-0.333=0.317				

Aerial Creature	N1 (Yes=1)	N1 Probability of Class	N2 (No=0)	N2 Probability of Class
Class 1: Mammals	1	$p_1 = \frac{1}{1}$	4	$p_1 = \frac{4}{5}$
Class 2: Non-Mammals	0	$p_2 = \frac{0}{1}$	1	$p_2 = \frac{1}{5}$
Entropy		$-\frac{1}{1}log_2\frac{1}{1} - \frac{0}{1}log_2\frac{0}{1} = 0$		$-\frac{4}{5}log_2\frac{4}{5} - \frac{1}{5}log_2\frac{1}{5} = 0.722$
$Entropy_{Split}$	$\frac{1}{6}Entropy_{N1} + \frac{5}{6}Entropy_{N2} = \frac{1}{6} * 0 + \frac{5}{6} * 0.722 = 0.602$			
Δ_{info}	0.65-0.60	2=0.048		

Has Legs	N1	N1 Probability of Class	N2	N2 Probability of Class
	(Yes=1)		(No=0)	
Class 1:	4	4	1	1
Mammals		$p_1 = \frac{1}{4}$		$p_1 = \frac{1}{2}$
Class 2:	0	0	1	1
Non-Mammals		$p_2 = \frac{1}{4}$		$p_2 = \frac{1}{2}$
Entropy		$-\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$		$-\frac{1}{2}log_2\frac{1}{2} - \frac{1}{2}log_2\frac{1}{2} = 1$
Entropy _{Split}	$\frac{4}{6}Entropy_{N1} + \frac{2}{6}Entropy_{N2} = \frac{4}{6} * 0 + \frac{2}{6} * 1 = 0.333$			$+\frac{2}{6} * 1 = 0.333$
Δ_{info}	0.65-0.333=0.317			

Hibernates	N1	N1 Probability of Class	N2	N2 Probability of Class
	(Yes=1)		(No=0)	
Class 1:	2	2	3	3
Mammals		$p_1 = \frac{1}{2}$		$p_1 = \frac{1}{4}$
Class 2:	0	0	1	1
Non-Mammals		$p_2 = \frac{1}{2}$		$p_2 = \frac{1}{4}$
Entropy		$-\frac{2}{2}\log_2\frac{2}{2} - \frac{0}{2}\log_2\frac{0}{2} = 0$		$-\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.811$
		$-\frac{1}{2}log_2\frac{1}{2} - \frac{1}{2}log_2\frac{1}{2} = 0$		$-\frac{1}{4}log_2\frac{1}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.811$

$Entropy_{Split}$	$\frac{2}{6}Entropy_{N1} + \frac{4}{6}Entropy_{N2} = \frac{2}{6} * 0 + \frac{4}{6} * 0.811 = 0.541$
Δ_{info}	0.65-0.541=0.109

Warm Blooded Feature has the highest information gain of <u>0.65</u>, therefore it will be selected as the second node. Under warm blooded Feature, both N1 and N2 node has the pure classification with [mammal, non-mammal]=[5 0] and [0 1] respectively. As such, no need to split further. The Decision Tree Classifier is the same design as in Question 6 solution

