Parcial II, Logica 2005

- 1. V o F, justifique.
 - (a) Sean A y B τ-álgebras y sea C una subálgebra de A × B. Entonces hay subálgebras A₁ y B₁ de A y B respectivamente, tales que C = A₁ × B₁.
 - Sea $\varphi = \varphi(x_1) \in F^{\tau}$. Entonces $\forall x_1 \forall x_2 ((\varphi(x_1) \land (x_1 \equiv x_2)) \rightarrow \varphi(x_2))$ es universalmente válida.

Sea $\tau = (\emptyset, \{f\}, \emptyset, a)$ con a(f) = 1. Para cada $n \ge 2$ sea C_n la τ álgebra que tiene por universo el conjunto $\{0, 1, ..., n-1\}$ y $f^{C_n}(0) = 1$, $f^{C_n}(1) = 2, ..., f^{C_n}(n-2) = n-1$, $f^{C_n}(n-1) = 0$,

- (g) Si $F: \mathbb{C}_m \to \mathbb{C}_n$ es un homomorfismo entonces F(0) = 0.
- (d) $C_5 \times C_{21} \cong C_{105}$.
- (e) C2 × C21 ≅ C42
- (f) Hay un homomorfismo invectivo $F: \mathbb{C}_{10} \to \mathbb{C}_{10} \times \mathbb{C}_{2}$.
- (g) Sean $m \ge n \ge 1$. Hay un homomorfismo sobre $F: \mathbb{C}_m \to \mathbb{C}_n$.
- 2. Probar que dado un tipo τ , φ fórmula, ψ sentencia, A estructura de tipo τ y $\vec{a} \in A^{\mathbb{N}}$, se tiene que

 $V^{\mathbf{A}}(((\forall x_1 \varphi \to \psi) \to \exists x_1 (\varphi \to \psi)), \vec{a}) = 1.$