Bhabha scattering is the result of interactions between positrons and electrons. The following diagram represents a collider experiment with collinear electron and positron beams.

Here is the same diagram with momentum and spinor labels.

In a typical collider experiment the momentum vectors are

$$p_{1} = \begin{pmatrix} E \\ 0 \\ 0 \\ p \end{pmatrix} \quad p_{2} = \begin{pmatrix} E \\ 0 \\ 0 \\ -p \end{pmatrix} \quad p_{3} = \begin{pmatrix} E \\ p\sin\theta\cos\phi \\ p\sin\theta\sin\phi \\ p\cos\theta \end{pmatrix} \quad p_{4} = \begin{pmatrix} E \\ -p\sin\theta\cos\phi \\ -p\sin\theta\sin\phi \\ -p\cos\theta \end{pmatrix}$$
 inbound positron inbound electron outbound positron outbound electron

Symbol p is kinetic energy, E is total energy $E = \sqrt{p^2 + m^2}$, and m is electron mass. Polar angle θ is the observed scattering angle. Azimuth angle ϕ cancels out in scattering calculations.

The spinors are

$$v_{11} = \begin{pmatrix} p \\ 0 \\ E+m \\ 0 \end{pmatrix} \qquad v_{12} = \begin{pmatrix} 0 \\ -p \\ 0 \\ E+m \end{pmatrix} \qquad u_{21} = \begin{pmatrix} E+m \\ 0 \\ -p \\ 0 \end{pmatrix} \qquad u_{22} = \begin{pmatrix} 0 \\ E+m \\ 0 \\ p \end{pmatrix}$$
 inbound positron, spin up inbound positron, spin down inbound electron, spin up inbound electron, spin down
$$v_{31} = \begin{pmatrix} p_3^z \\ p_3^x + ip_3^y \\ E+m \\ 0 \end{pmatrix} \qquad v_{32} = \begin{pmatrix} p_3^x - ip_3^y \\ -p_3^z \\ 0 \\ E+m \end{pmatrix} \qquad u_{41} = \begin{pmatrix} E+m \\ 0 \\ p_4^z \\ p_4^x + ip_4^y \end{pmatrix} \qquad u_{42} = \begin{pmatrix} 0 \\ E+m \\ p_4^x - ip_4^y \\ -p_4^z \end{pmatrix}$$
 outbound positron, spin up outbound positron, spin down outbound electron, spin up outbound electron, spin down outbound electron, spin up outbound electron, spin down

The spinors shown above are not individually normalized. Instead, a combined spinor normalization constant $N = (E + m)^4$ will be used.

The following formula computes a probability density $|\mathcal{M}_{abcd}|^2$ for Bhabha scattering where abcd are spin states.

$$|\mathcal{M}_{abcd}|^2 = \frac{e^4}{N} \left| -\frac{1}{t} (\bar{v}_{1a} \gamma^{\mu} v_{3c}) (\bar{u}_{4d} \gamma_{\mu} u_{2b}) + \frac{1}{s} (\bar{v}_{1a} \gamma^{\nu} u_{2b}) (\bar{u}_{4d} \gamma_{\nu} v_{3c}) \right|^2$$

Symbol e is electron charge. Symbols s and t are Mandelstam variables

$$s = (p_1 + p_2)^2$$
$$t = (p_1 - p_3)^2$$

Let

$$a_1 = (\bar{v}_{1a}\gamma^{\mu}v_{3c})(\bar{u}_{4d}\gamma_{\mu}u_{2b})$$
 $a_2 = (\bar{v}_{1a}\gamma^{\nu}u_{2b})(\bar{u}_{4d}\gamma_{\nu}v_{3c})$

Then

$$|\mathcal{M}_{abcd}|^2 = \frac{e^4}{N} \left| -\frac{a_1}{t} + \frac{a_2}{s} \right|^2$$

$$= \frac{e^4}{N} \left(-\frac{a_1}{t} + \frac{a_2}{s} \right) \left(-\frac{a_1}{t} + \frac{a_2}{s} \right)^*$$

$$= \frac{e^4}{N} \left(\frac{a_1 a_1^*}{t^2} - \frac{a_1 a_2^*}{st} - \frac{a_1^* a_2}{st} + \frac{a_2 a_2^*}{s^2} \right)$$

The expected probability density $\langle |\mathcal{M}|^2 \rangle$ is computed by summing $|\mathcal{M}_{abcd}|^2$ over all spin states and then dividing by the number of inbound states. There are four inbound states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 |\mathcal{M}_{abcd}|^2$$

$$= \frac{e^4}{4N} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 \left(\frac{a_1 a_1^*}{t^2} - \frac{a_1 a_2^*}{st} - \frac{a_1^* a_2}{st} + \frac{a_2 a_2^*}{s^2} \right)$$

Use the Casimir trick to replace sums over spins with matrix products.

$$f_{11} = \frac{1}{N} \sum_{\text{spins}} a_1 a_1^* = \text{Tr}\left((\not p_1 - m)\gamma^{\mu}(\not p_3 - m)\gamma^{\nu}\right) \text{Tr}\left((\not p_4 + m)\gamma_{\mu}(\not p_2 + m)\gamma_{\nu}\right)$$

$$f_{12} = \frac{1}{N} \sum_{\text{spins}} a_1 a_2^* = \text{Tr}\left((\not p_1 - m)\gamma^{\mu}(\not p_2 + m)\gamma^{\nu}(\not p_4 + m)\gamma_{\mu}(\not p_3 - m)\gamma_{\nu}\right)$$

$$f_{22} = \frac{1}{N} \sum_{\text{spins}} a_2 a_2^* = \text{Tr}\left((\not p_1 - m)\gamma^{\mu}(\not p_2 + m)\gamma^{\nu}\right) \text{Tr}\left((\not p_4 + m)\gamma_{\mu}(\not p_3 - m)\gamma_{\nu}\right)$$

Hence

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left(\frac{f_{11}}{t^2} - \frac{f_{12}}{st} - \frac{f_{12}^*}{st} + \frac{f_{22}}{s^2} \right)$$

Run "bhabha-scattering-1.txt" to verify the Casimir trick.

The following momentum formulas are equivalent to the Casimir trick. (Recall that $a \cdot b = a^{\mu} g_{\mu\nu} b^{\nu}$)

$$f_{11} = 32(p_1 \cdot p_2)(p_3 \cdot p_4) + 32(p_1 \cdot p_4)(p_2 \cdot p_3) - 32m^2(p_1 \cdot p_3) - 32m^2(p_2 \cdot p_4) + 64m^4$$

$$f_{12} = -32(p_1 \cdot p_4)(p_2 \cdot p_3) - 16m^2(p_1 \cdot p_2) + 16m^2(p_1 \cdot p_3) - 16m^2(p_1 \cdot p_4)$$

$$- 16m^2(p_2 \cdot p_3) + 16m^2(p_2 \cdot p_4) - 16m^2(p_3 \cdot p_4) - 32m^4$$

$$f_{22} = 32(p_1 \cdot p_3)(p_2 \cdot p_4) + 32(p_1 \cdot p_4)(p_2 \cdot p_3) + 32m^2(p_1 \cdot p_2) + 32m^2(p_3 \cdot p_4) + 64m^4$$

In Mandelstam variables $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$ the formulas are

$$f_{11} = 8s^2 + 8u^2 - 64sm^2 - 64um^2 + 192m^4$$

$$f_{12} = -8u^2 + 64um^2 - 96m^4$$

$$f_{22} = 8t^2 + 8u^2 - 64tm^2 - 64um^2 + 192m^4$$

High energy approximation

When $E \gg m$ a useful approximation is to set m=0 and obtain

$$f_{11} = 8s^2 + 8u^2$$

$$f_{12} = -8u^2$$

$$f_{22} = 8t^2 + 8u^2$$

For m = 0 the Mandelstam variables are

$$s = 4E^{2}$$

$$t = -2E^{2}(1 - \cos \theta) = -4E^{2}\sin^{2}(\theta/2)$$

$$u = -2E^{2}(1 + \cos \theta) = -4E^{2}\cos^{2}(\theta/2)$$

It follows that

$$s^2 t^2 = 256 E^8 \sin^4(\theta/2)$$

The corresponding expected probability density is

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left(\frac{f_{11}}{t^2} - \frac{f_{12}}{st} - \frac{f_{12}^*}{st} + \frac{f_{22}}{s^2} \right)$$

$$= \frac{e^4}{4s^2t^2} \left(s^2 f_{11} - st f_{12} - st f_{12}^* + t^2 f_{22} \right)$$

$$= \frac{e^4}{4s^2t^2} \left(s^2 \left(8s^2 + 8u^2 \right) + 16stu^2 + t^2 \left(8t^2 + 8u^2 \right) \right)$$

$$= \frac{e^4}{1024E^8 \sin^4(\theta/2)} \left(256E^8 \cos^4 \theta + 1536E^8 \cos^2 \theta + 2304E^8 \right)$$

$$= \frac{e^4}{4\sin^4(\theta/2)} \left(\cos^4 \theta + 6\cos^2 \theta + 9 \right)$$

$$= \frac{e^4}{4 \sin^4(\theta/2)} \left(\cos^4 \theta + 3 \right)^2$$

$$= \frac{e^4}{4 \sin^4(\theta/2)} \left(\sin^4 \theta + 3 \right)^2$$

Run "bhabha-scattering-2.txt" to verify.

Cross section

This is the differential cross section for Bhabha scattering.

$$\frac{d\sigma}{d\Omega} = \frac{\langle |\mathcal{M}|^2 \rangle}{64\pi^2 s} = \frac{e^4}{1024\pi^2 E^2} \frac{\left(\cos^2 \theta + 3\right)^2}{\sin^4(\theta/2)}$$

Substituting $e^4 = 16\pi^2\alpha^2$ yields

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{64E^2} \frac{(\cos^2 \theta + 3)^2}{\sin^4(\theta/2)}$$

We can integrate $d\sigma$ to obtain a cumulative distribution function. Recall that

$$d\Omega = \sin\theta \, d\theta \, d\phi$$

Hence

$$d\sigma = \frac{\alpha^2}{64E^2} \frac{\left(\cos^2\theta + 3\right)^2}{\sin^4(\theta/2)} \sin\theta \, d\theta \, d\phi$$

Let $I(\theta)$ be the following integral of $d\sigma$.

$$I(\theta) = \left(\frac{64E^2}{\alpha^2}\right) \frac{1}{2\pi} \int_0^{2\pi} \int d\sigma$$
$$= \int \frac{\left(\cos^2 \theta + 3\right)^2}{\sin^4(\theta/2)} \sin \theta \, d\theta, \quad a \le \theta \le \pi$$

Angular support is limited to an arbitrary a > 0 because I(0) is undefined. Assume that $I(\theta) - I(a)$ is computable given θ by either symbolic or numerical integration.

Let C be the normalization constant

$$C = I(\pi) - I(a)$$

Then the cumulative distribution function $F(\theta)$ is

$$F(\theta) = \frac{I(\theta) - I(a)}{C}, \quad a \le \theta \le \pi$$

The probability of observing scattering events in the interval θ_1 to θ_2 can now be computed.

$$P(\theta_1 \le \theta \le \theta_2) = F(\theta_2) - F(\theta_1)$$

Probability density function $f(\theta)$ is the derivative of $F(\theta)$

$$f(\theta) = \frac{dF(\theta)}{d\theta} = \frac{1}{C} \frac{(\cos^2 \theta + 3)^2}{\sin^4(\theta/2)} \sin \theta$$

Run "bhabha-scattering-3.txt" to draw $f(\theta)$ for $a=\pi/4=45^{\circ}$.

Probability distribution for 45° bins $(a = 45^{\circ})$.

θ_1	θ_2	$P(\theta_1 \le \theta \le \theta_2)$
0°	45°	
45°	90°	0.83
90°	135°	0.13
135°	180°	0.04

Note: The closed form of $I(\theta)$ is

$$I(\theta) = -\frac{1}{3}\cos(3\theta) - 2\cos(2\theta) - \frac{111}{3}\cos\theta - \frac{32}{\sin^2(\theta/2)} - 128\log(\sin\theta), \quad a \le \theta \le \pi$$

Data from SLAC SPEAR experiment

The following Bhabha scattering data is adapted from SLAC-PUB-1501.

	Bin	x_k, x_{k+1}	y
(Smallest θ)	1	0.6, 0.5	4432
	2	0.5, 0.4	2841
	3	0.4, 0.3	2045
	4	0.3, 0.2	1420
	5	0.2, 0.1	1136
	6	0.1, 0.0	852
	7	0.0, -0.1	656
	8	-0.1, -0.2	625
	9	-0.2, -0.3	511
	10	-0.3, -0.4	455
	11	-0.4, -0.5	402
(Largest θ)	12	-0.5, -0.6	398

Data column y is the observed number of scattering events per bin.

To compute predicted counts \hat{y} , integrate the probability density function over each bin and multiply by the total number of observed counts.

$$P_k = C^{-1} \int_{\arccos(x_k)}^{\arccos(x_{k+1})} \frac{(\cos^2 \theta + 3)^2}{\sin^4(\theta/2)} \sin \theta$$
$$\hat{y}_k = P_k \sum y$$

Bin	x_k, x_{k+1}	y	\hat{y}
1	0.6, 0.5	4432	4598
2	0.5, 0.4	2841	2880
3	0.4, 0.3	2045	1955
4	0.3, 0.2	1420	1410
5	0.2, 0.1	1136	1068
6	0.1, 0.0	852	843
7	0.0, -0.1	656	689
8	-0.1, -0.2	625	582
9	-0.2, -0.3	511	505
10	-0.3, -0.4	455	450
11	-0.4, -0.5	402	411
12	-0.5, -0.6	398	382

The coefficient of determination R^2 measures how well predicted values fit the real data. Let y be observed counts per bin and let \hat{y} be predicted counts per bin. Then

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.997$$

The result indicates that the model $\langle |\mathcal{M}|^2 \rangle$ explains 99.7% of the variance in the data.

Run "bhabha-scattering-4.txt" to verify.

Data from DESY PETRA experiment

The following table shows DESY PETRA Bhabha scattering data obtained from HEP Data. 1

x	y
-0.73	0.10115
-0.6495	0.12235
-0.5495	0.11258
-0.4494	0.09968
-0.3493	0.14749
-0.2491	0.14017
-0.149	0.1819
-0.0488	0.22964
0.0514	0.25312
0.1516	0.30998
0.252	0.40898
0.3524	0.62695
0.4529	0.91803
0.5537	1.51743
0.6548	2.56714
0.7323	4.30279

¹www.hepdata.net/record/ins191231 (Table 3, 14.0 GeV)

Data x and y have the following relationship with the cross section model.

$$x = \cos \theta \qquad y = \frac{d\sigma}{d\Omega}$$

The differential cross section for Bhabha scattering is

$$\frac{d\sigma}{d\Omega} = \frac{\langle |\mathcal{M}|^2 \rangle}{64\pi^2 s} = \frac{\alpha^2}{2s} \left(\frac{s^2 + u^2}{t^2} + \frac{2u^2}{st} + \frac{t^2 + u^2}{s^2} \right)$$

The predicted cross section \hat{y} is computed from data x and beam energy E as

$$\hat{y} = \frac{\alpha^2}{2s} \left(\frac{s^2 + u^2}{t^2} + \frac{2u^2}{st} + \frac{t^2 + u^2}{s^2} \right) \times (\hbar c)^2 \times 10^{37}$$

where

$$s = 4E2$$

$$t = -2E2(1 - x)$$

$$u = -2E2(1 + x)$$

Factor $(\hbar c)^2$ converts the result to SI and factor 10^{37} converts square meters to nanobarns.

The following table shows \hat{y} for $E = 7.0 \,\text{GeV}$.

x	y	\hat{y}	
-0.73	0.10115	0.110296	
-0.6495	0.12235	0.113816	
-0.5495	0.11258	0.120101	
-0.4494	0.09968	0.129075	
-0.3493	0.14749	0.141592	
-0.2491	0.14017	0.158934	
-0.149	0.1819	0.182976	
-0.0488	0.22964	0.216737	
0.0514	0.25312	0.264989	
0.1516	0.30998	0.335782	
0.252	0.40898	0.44363	
0.3524	0.62695	0.615528	
0.4529	0.91803	0.9077	
0.5537	1.51743	1.45175	
0.6548	2.56714	2.60928	
0.7323	4.30279	4.61509	

The coefficient of determination R^2 measures how well predicted values fit the real data.

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.995$$

The result indicates that the model $d\sigma$ explains 99.5% of the variance in the data.

Run "bhabha-scattering-5.txt" to verify.

Notes

Here are a few notes about how the Eigenmath scripts work. In component notation the trace operators of the Casimir trick become sums over the repeated index α .

$$f_{11} = \left((\not p_1 - m)^{\alpha}{}_{\beta} \gamma^{\mu\beta}{}_{\rho} (\not p_3 - m)^{\rho}{}_{\sigma} \gamma^{\nu\sigma}{}_{\alpha} \right) \left((\not p_4 + m)^{\alpha}{}_{\beta} \gamma_{\mu}{}^{\beta}{}_{\rho} (\not p_2 + m)^{\rho}{}_{\sigma} \gamma_{\nu}{}^{\sigma}{}_{\alpha} \right)$$

$$f_{12} = (\not p_1 - m)^{\alpha}{}_{\beta} \gamma^{\mu\beta}{}_{\rho} (\not p_2 + m)^{\rho}{}_{\sigma} \gamma^{\nu\sigma}{}_{\tau} (\not p_4 + m)^{\tau}{}_{\delta} \gamma_{\mu}{}^{\delta}{}_{\eta} (\not p_3 - m)^{\eta}{}_{\xi} \gamma_{\nu}{}^{\xi}{}_{\alpha}$$

$$f_{22} = \left((\not p_1 - m)^{\alpha}{}_{\beta} \gamma^{\mu\beta}{}_{\rho} (\not p_2 + m)^{\rho}{}_{\sigma} \gamma^{\nu\sigma}{}_{\alpha} \right) \left((\not p_4 + m)^{\alpha}{}_{\beta} \gamma_{\mu}{}^{\beta}{}_{\rho} (\not p_3 - m)^{\rho}{}_{\sigma} \gamma_{\nu}{}^{\sigma}{}_{\alpha} \right)$$

To convert the above formulas to Eigenmath code, the γ tensors need to be transposed so that repeated indices are adjacent to each other. Also, multiply γ^{μ} by the metric tensor to lower the index.

$$\gamma^{\beta\mu}_{\ \rho} \rightarrow {\rm gammaT = transpose(gamma)}$$
 $\gamma^{\beta}_{\ \mu\rho} \rightarrow {\rm gammaL = transpose(dot(gmunu,gamma))}$

Define the following 4×4 matrices.

Then for f_{11} we have the following Eigenmath code. The contract function sums over α .

$$(\not\!\!p_1 - m)^\alpha{}_\beta \gamma^{\mu\beta}{}_\rho (\not\!\!p_3 - m)^\rho{}_\sigma \gamma^{\nu\sigma}{}_\alpha \quad \rightarrow \quad \text{T1 = contract(dot(X1,gammaT,X3,gammaT),1,4)}$$

$$(\not\!\!p_4 + m)^\alpha{}_\beta \gamma_\mu{}^\beta{}_\rho (\not\!\!p_2 + m)^\rho{}_\sigma \gamma_\nu{}^\sigma{}_\alpha \quad \rightarrow \quad \text{T2 = contract(dot(X4,gammaL,X2,gammaL),1,4)}$$

Next, multiply then sum over repeated indices. The dot function sums over ν then the contract function sums over μ . The transpose makes the ν indices adjacent as required by the dot function.

$$f_{11} = \operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu}) \operatorname{Tr}(\cdots \gamma_{\mu} \cdots \gamma_{\nu}) \quad \rightarrow \quad \texttt{f11 = contract(dot(T1, transpose(T2)))}$$

Follow suit for f_{22} .

$$(\not\!\!p_1-m)^\alpha{}_\beta\gamma^{\mu\beta}{}_\rho(\not\!\!p_2+m)^\rho{}_\sigma\gamma^{\nu\sigma}{}_\alpha \quad \rightarrow \quad \text{T1 = contract(dot(X1,gammaT,X2,gammaT),1,4)}$$

$$(\not\!\!p_4+m)^\alpha{}_\beta\gamma_\mu{}^\beta{}_\rho(\not\!\!p_3-m)^\rho{}_\sigma\gamma_\nu{}^\sigma{}_\alpha \quad \rightarrow \quad \text{T2 = contract(dot(X4,gammaL,X3,gammaL),1,4)}$$

Hence

$$f_{22} = \operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu}) \operatorname{Tr}(\cdots \gamma_{\mu} \cdots \gamma_{\nu}) \quad o \quad exttt{f22} = ext{contract(dot(T1,transpose(T2)))}$$

The calculation of f_{12} begins with

$$\begin{split} (\not\!p_1 - m)^\alpha{}_\beta \gamma^{\mu\beta}{}_\rho (\not\!p_2 + m)^\rho{}_\sigma \gamma^{\nu\sigma}{}_\tau (\not\!p_4 + m)^\tau{}_\delta \gamma_\mu{}^\delta{}_\eta (\not\!p_3 - m)^\eta{}_\xi \gamma_\nu{}^\xi{}_\alpha \\ \rightarrow \quad \mathsf{T} = \mathsf{contract}(\mathsf{dot}(\mathsf{X1},\mathsf{gammaT},\mathsf{X2},\mathsf{gammaT},\mathsf{X4},\mathsf{gammaL},\mathsf{X3},\mathsf{gammaL}),\mathsf{1},\mathsf{6}) \end{split}$$

Then sum over repeated indices μ and ν .

$$f_{12} = \operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu} \cdots \gamma_{\mu} \cdots \gamma_{\nu}) \quad o \quad ext{f12} = ext{contract(Contract(T,1,3))}$$