Современные методы растеризации изображений

Научный руководитель: Парфенов Денис Васильевич, к.т.н., доцент

Исполнитель: Гогинян Борис Андреевич, группа: КМБО-03-16

Цели и задачи работы

Цель работы – сравнение различных реализаций алгоритмов трассировки лучей в нескольких программах рендеринга изображений для определения наиболее фотореалистичного и быстрого.

Задачи:

Построение 3D сцен различной сложности и настройка идентичных параметров для исследуемых рендеров,

Получения набора изображений для сравнения и эталонного изображения,

Построение графиков с использованием метрики PSNR для получения количественной оценки разницы между изображениями

Реалистичный рендеринг

Рис. 1 "Kitchen render" by Marcin Olejarski – luxcore render

Рис. 2 "Head Scan" by Juan C. Gutiérrez – appleseed render

Рис. 3 "Seoul" by Gleb Alexandrov – Cycles render

Концепция Physically-Based Rendering

Уравнение рендеринга

$$L_0(x,\overrightarrow{\omega_0}) = L_e(x,\overrightarrow{\omega_0}) + \int_{\Omega} \left(f_r(x,\overrightarrow{\omega_0},\overrightarrow{\omega_i}) \cdot L_i(x,\overrightarrow{\omega_i}) \cdot (\overrightarrow{\omega_i},\overrightarrow{n}) \right) d\overrightarrow{\omega_i}$$

BSDF

Рис. 4 Материалы, полученные с помощью BSDF (bidirectional scattering distribution function)

Метрики сравнения изображений

Основная метрика для сравнения изображений — PSNR (peak signal-to-noise ratio) — пиковое отношение сигнала к шуму.

$$MSE = \frac{1}{m \cdot n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |I(i,j) - Ihat(i,j)|^2 PSNR = 10 \log_{10} \left(\frac{MAX_I^2}{MSE}\right)$$

В данном исследовании используется функция модуля skimage.metrics языка Python: peak_signal_noise_ratio(image_true, image_test, data_range=None)

Алгоритмы трассировки

Алгоритм Path Tracing

Алгоритмы трассировки

Алгоритм Photon Mapping

Первый этап. Создание фотонной карты

Второй этап. Сбор информации в некотором радиусе

Алгоритмы трассировки

Алгоритм Bidirectional Path Tracing

Сцены для сравнения рендеров

Эксперимент 1

Эксперимент 2

Сцены для сравнения рендеров

Эксперимент 3

Эксперимент 4

Сцены для сравнения рендеров

Эксперимент 5

Результаты

Эксперимент 1

Рис 1. Сравнение качества между всеми рендерами

Средняя скорость роста:
appleseed = **0.00779**Cycles = 0.145291
LuxCore = 0.0328

Рис 2. Процентное соотношение времени в зависимости от числа потоков

скорость фотореалистичность сycles luxcore appleseed

Выводы

- Для моделей в которых преобладает непрямое освещение, лучше использовать двунаправленный алгоритм, в котором лучи трассируются как из источников освещения, так и из камеры SPPM в appleseed или bidirectional path tracing в LuxCore.
- Для простых моделей с преобладанием прямого освещения для наиболее качественного результата следует использовать трассировку пути, реализованную в рендере appleseed, если же в приоритете является время рендеринга, то лучшим выбором будет рендер Cycles.

Спасибо за внимание