

Lineáris egyenletrendszerek

Összeállította: dr. Leitold Adrien egyetemi docens

Leontieff-modellek

- Leontieff-modellek: input-output modellek a gazdaság leírására
 - legyen n féle, egymással összefüggésben lévő ágazat, amelyek mindegyike egy-egy jószágot termel;
 - a saját jószágának termeléséhez minden ágazatnak szüksége van inputra legalább egy másik ágazat jószágából;
 - minden ágazatnak az általa előállított jószágból ki kell elégítenie a többi ágazat igényeit és egy bizonyos külső igényt is (végső kereslet);

Leonteff-modellek (folyt.)

Adatok:

• a_{ij} : a j-edik jószág egységnyi mennyiségének előállításakor az i-edik jószágból felhasznált mennyiség; $(i,j=1,\ldots,n)$

input (vagy termelési) együtthatók

- b_i:az i-edik jószág iránti külső igény; (i = 1, ...,n)
 végső kereslet
- Probléma: Mennyit termeljenek az egyes ágazatok az egyes jószágokból, hogy a többi ágazat igényét és a végső keresletet biztosítani tudják?

Leontieff-modellek (folyt.)

- Legyen x_1, \ldots, x_n az egyes jószágokból előállított mennyiség.
- Feltesszük, hogy az input követelmények egyenesen arányosak a megtermelt outputokkal, azaz x_j mennyiségű j-edik jószág előállításához az iedik jószágból felhasznált mennyiség: a_{ij}·x_j.
- Ha az egyes jószágokból $x_1, ..., x_n$ mennyiségeket állítunk elő, akkor ehhez az i-edik jószágból felhasznált összmennyiség: $a_{i1} \cdot x_1 + a_{i2} \cdot x_2 + ... + a_{in} \cdot x_n$
- Az *i*-edik jószágra vonatkozó kereslet és kínálat egyensúlya szerint: $x_i = a_{i1} \cdot x_1 + a_{i2} \cdot x_2 + ... + a_{in} \cdot x_n + b_i$

A Leontieff-rendszerek általános alakja

A teljes modell:

$$(x_1) = a_{11}(x_1) + a_{12}(x_2) + \dots + a_{1n}(x_n) + b_1$$

 $(x_2) = a_{21}(x_1) + a_{22}(x_2) + \dots + a_{2n}(x_n) + b_2$

• • • • • • •

$$(x_n) = a_{n1} \cdot x_1 + a_{n2} \cdot x_2 + \dots + a_{nn} \cdot x_n + b_n$$

Rendezve az egyenletrendszert:

$$(1-a_{11})\cdot x_1 - a_{12}\cdot x_2 - \dots - a_{1n}\cdot x_n = b_1$$

$$-a_{21}\cdot x_1 + (1-a_{22})\cdot x_2 - \dots - a_{2n}\cdot x_n = b_2$$

$$\dots$$

$$-a_{n1}\cdot x_1 - a_{n2}\cdot x_2 - \dots + (1-a_{nn})\cdot x_n = b_n$$

Leontieff-modellek (folyt.)

Megjegyzés:

A fenti lineáris egyenletrendszer olyan (x_1, \ldots, x_n) megoldása érdekel bennünket, ahol az x_i értékek nemnegatívak.

4

Lineáris egyenletrendszerek általános alakja

Általános (részletes) alak:

$$a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n = b_1$$

 $a_{21} \cdot x_1 + \dots + a_{2n} \cdot x_n = b_2$
 \vdots
 $a_{m1} \cdot x_1 + \dots + a_{mn} \cdot x_n = b_m$

m egyenlet n ismeretlen: x_1, \ldots, x_n

Jelölések:

$$\underline{a}_{1} = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \ \underline{a}_{2} = \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \underline{a}_{n} = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{m} \end{pmatrix}, \quad \underline{x} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

Lin. egyenletrendszerek általános alakja (folyt.)

Tömörebb alak:

$$\underline{a}_1 \cdot x_1 + \underline{a}_2 \cdot x_2 + \dots + \underline{a}_n \cdot x_n = \underline{b}$$

Jelölés:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}_{m \times n}$$
 együtthatómátrix

■ Tömör alak:

$$A \cdot \underline{x} = \underline{b}$$

Homogén és inhomogén egyenletrendszerek

Homogén egyenletrendszer:

Az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszert homogénnek nevezzük, ha $\underline{b} = \underline{o}$.

Inhomogén egyenletrendszer:

Az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszert inhomogénnek nevezzük, ha $\underline{b} \neq \underline{o}$.

- Megjegyzések:
 - Az $A \cdot \underline{x} = \underline{o}$ homogén lineáris egyenletrendszer mindig megoldható, az $\underline{x} = \underline{o}$ megoldásvektort triviális megoldásnak nevezzük.
 - Az $A \underline{x} = \underline{b}$ lineáris egyenletrendszert konzisztensnek nevezzük, ha megoldható, inkonzisztensnek, ha nem oldható meg.

A megoldhatóság feltétele

- Lineáris egyenletrendszerek megoldhatóságának szükséges és elégséges feltétele:
- 1. Az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszer megoldható \Leftrightarrow a \underline{b} vektor előáll az A együtthatómátrix oszlopvektorainak lineáris kombinációjával.
- 2. Az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszer megoldható \Leftrightarrow $r(A) = r([A,\underline{b}])$, ahol $[A,\underline{b}]$ az egyenletrendszer kibővített mátrixa:

$$[A, \underline{b}] = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}_{m \times (n+1)}.$$

Lin. egyenletrendszer megoldása

Lin. egyenletrendszer megoldása :

Tegyük fel, hogy az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszer megoldható, azaz $r(A) = r([A,\underline{b}]) = k$.

Jelölje $B_{m \times k}$ az A együtthatómátrix k db lin. független oszlopvektorából felépülő mátrixot, továbbá $R_{m \times (n-k)}$ az A együtthatómátrix maradék n-k db oszlopvektorából felépülő mátrixot. A megfelelő indexű ismeretlenek alkossák az \underline{x}_B és \underline{x}_R vektorokat. Ekkor:

$$B \cdot \underline{x}_B + R \cdot \underline{x}_R = \underline{b}$$

Lin. egyenletrendszer megoldása (folyt.)

Mivel a *B* oszlopvektorai az *A* együtthatómátrix oszlopvektorainak egy maximális lin. független részhalmazát képezik, így az *R* oszlopvektorai és a *b* vektor előállnak a *B* oszlopvektorainak lineáris kombinációjával. Ezért van olyan *D* mátrix és *d* vektor, melyekre:

$$R = B \cdot D$$
 és $\underline{b} = B \cdot \underline{d}$, ahol:

- a D mátrix az R oszlopvektorainak a B oszlopvektoraira vonatkozó koordinátáit tartalmazza,
- a <u>d</u> vektor a <u>b</u> vektornak a <u>B</u> oszlopvektoraira vonatkozó koordinátáit tartalmazza.

Így:

$$B \cdot \underline{x}_B + B \cdot D \cdot \underline{x}_R = B \cdot \underline{d}$$
, ebből: $B(\underline{x}_B + D \cdot \underline{x}_R - \underline{d}) = \underline{o}$.

Lin. egyenletrendszer "megoldó képlete"

Innen, mivel B oszlopvektorai lin. függetlenek:

$$\underline{x}_B + D \cdot \underline{x}_R - \underline{d} = \underline{o}$$
, azaz:

$$\underline{x}_B = \underline{d} - \underline{D} \cdot \underline{x}_R$$
 "megoldó képlet"

- \underline{x}_{R} : a kötött ismeretlenek vektora
- x_R : a szabad ismeretlenek vektora

A szabad ismeretlenek számát az egyenletrendszer szabadsági fokának hívjuk.

Megoldásvektorok száma

- Homogén lin. egyenletrendszer megoldásvektorainak számára vonatkozó állítások:
- 1. Az $A \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek csak triviális megoldása van $\Leftrightarrow r(A) = n$, ahol n az ismeretlenek száma.
- 2. Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek van triviálistól különböző megoldása is $\Leftrightarrow r(A) < n$, ahol n az ismeretlenek száma.

Megjegyzés: ebben az esetben az egyenletrendszernek végtelen sok megoldásvektora van.

Homogén-inhomogén egyenletrendszer-pár

 Homogén-inhomogén egyenletrendszer megoldáshalmazai közötti kapcsolat:

Tekintsük az $A \cdot \underline{x} = \underline{o}$ és $A \cdot \underline{x} = \underline{b}$ homogén-inhomogén egyenletrendszer-párt. Jelölje

- M₀ a homogén egyenletrendszer megoldáshalmazát,
- M az inhomogén egyenletrendszer megoldáshalmazát,
- <u>x</u>₀ az inhomogén egyenletrendszer egy rögzített megoldásvektorát.

Ekkor: $M = M_0 + \{\underline{x}_0\}$.

Lineáris egyenletrendszerek: összefoglalás

Megoldásvektorok száma	Homogén lin. e.r. $A_{m \times n} \cdot \underline{x} = \underline{o}$	Inhomogén lin. e.r. $A_{m \times n} \cdot \underline{x} = \underline{b}$
Nincs megoldás (Az e. r. nem oldható meg.)		$r(A) < r([A, \underline{b}])$ $M = \emptyset$
1 db. megoldásvektor (Az e.r. egyértelműen megoldható.)	$r(A) = n$ $M_0 = \{ \underline{o} \}$	$r(A) = r([A, \underline{b}]) = n$ $M = \{\underline{x}_0\}$
Végtelen sok megoldásvektor	$r(A) < n$ M_0	$r(A) = r([A, \underline{b}]) < n$ $M = M_0 + \{\underline{x}_0\}$

A Cramer-szabály

Tekintsük az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszert, ahol az A együtthatómátrix négyzetes: $A = [\underline{a}_1 \ \underline{a}_2 \ \dots \ \underline{a}_n]_{n \times n}$. Legyen

- D = det(A),
- $D_1 = det([\underline{b} \ \underline{a}_2 \ \dots \ \underline{a}_n]),$
- $D_2 = det([\underline{a}_1 \ \underline{b} \ \dots \ \underline{a}_n]),$

...

Ekkor:

$$D \cdot x_k = D_k$$
, $k = 1, \ldots, n$.

A Cramer-szabály következményei

- Következmények:
- 1. Ha $D\neq 0$, akkor az egyenletrendszer egyértelműen megoldható és a megoldásvektor k-adik komponense: $x_k = D_k / D$, k = 1, ..., n.
- 2. Ha D=0 és valamely k-ra $D_k\neq 0$, akkor az egyenletrendszer nem oldható meg.
- 3. Ha $D=D_1=\ldots=D_n=0$ és $r(A)=r([A,\underline{b}])$, akkor az egyenletrendszernek végtelen sok megoldásvektora van.

(Ebben az esetben a megoldásvektorok előállítására a Cramer-szabály nem alkalmas.)

A Cramer-szabály következményei (folyt.)

- 4. Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek csak triviális megoldása van $\Leftrightarrow D \neq 0$.
- 5. Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek létezik triviálistól különböző megoldása is $\Leftrightarrow D = 0$. (Ebben az esetben az egyenletrendszernek végtelen sok megoldásvektora van, de ezeket a Cramer-szabállyal nem tudjuk előállítani.)