Find potential cholesterol genes by using CHTC

Anne Huen Wai Wong

Hongwei Pan

Shuyang Chen

Xiyue Wang

Data Description

Two datasets come from archs4
: https://amp.pharm.mssm.edu/archs4/download.htm
.

Human genes dataset : 4.9GB

Mouse genes dataset: 4.8GB

Analyze liver samples (main organ to process cholesterols)

Purpose

To find potential cholesterol genes by CHTC

Measuring Similarity

Assumption: With similar distributions may have similar functions.

LDLR: A commonly known cholesterol gene

"The LDLR gene provides instructions for making a protein called a low-density lipoprotein receptor."

-- Genetics Home Reference

Measurement Criteria: Biweight Midcorrelation (median-based)

 Metric based on median rather than mean, more robust, less sensitive to outliers

Top 10 genes correlated with LDLR in human genes:

	gene	bicorrelation	p-value	
1	SND1	0.6985117	8.43e-243	VCP
2	VCP	0.6932201	1.15e-237	-Valosin-containing protein
3	PHB2	0.6928290	2.73e-237	-Important for the
4	FKBP4	0.6907002	2.93e-235	cholesterol-accelerated
5	PITRM1	0.6884732	3.74e-233	
6	AFG3L2	0.6878611	1.41e-232	degradation
7	IMMT	0.6861711	5.37e-231	
8	FAF2	0.6859340	8.94e-231	
9	PSMD3	0.6846405	1.42e-229	
10	MAPKAP1	0.6843025	2.93e-229	

Top 10 genes correlated with LDLR in human genes:

0.6985117 0.6932201 0.6928290 0.6907002 0.6884732 0.6878611 0.6861711 0.6859340 0.6846405	8.43e-243 1.15e-237 2.73e-237 2.93e-235 3.74e-233 1.41e-232 5.37e-231 8.94e-231 1.42e-229	IMMT -Encoded mitochondrial inner membrane proteinOxidation helps the process of building up cholesterol.
SND1 VCP PHB2 FKBP4 PITRM1 AFG3L2 IMMT FAF2 PSMD3	SND1 0.6985117 VCP 0.6932201 PHB2 0.6928290 FKBP4 0.6907002 PITRM1 0.6884732 AFG3L2 0.6878611 IMMT 0.6861711 FAF2 0.6859340 PSMD3 0.6846405	VCP 0.6932201 1.15e-237 PHB2 0.6928290 2.73e-237 FKBP4 0.6907002 2.93e-235 PITRM1 0.6884732 3.74e-233 AFG3L2 0.6878611 1.41e-232 IMMT 0.6861711 5.37e-231 FAF2 0.6859340 8.94e-231 PSMD3 0.6846405 1.42e-229
	0.6985117 0.6932201 0.6928290 0.6907002 0.6884732 0.6878611 0.6861711 0.6859340 0.6846405	0.6985117 8.43e-243 0.6932201 1.15e-237 0.6928290 2.73e-237 0.6907002 2.93e-235 0.6884732 3.74e-233 0.6878611 1.41e-232 0.6861711 5.37e-231 0.6859340 8.94e-231 0.6846405 1.42e-229

Top 10 genes correlated with LDLR in mouse genes:

	gene	bicorrelation	p-value
1	AKAP1	0.8481386	<2.225074e-308
2	AC01	0.8453033	<2.225074e-308
3	ZFYVE1	0.8439302	<2.225074e-308
4	PEX5	0.8427288	<2.225074e-308
5	CDS2	0.8336746	<2.225074e-308
6	HECTD3	0.8310280	<2.225074e-308
7	VAV2	0.8273318	<2.225074e-308
8	D17WSU92E	0.8265241	<2.225074e-308
9	RAB5B	0.8263013	<2.225074e-308
10	TRAK1	0.8260291	<2.225074e-308

Conclusion

- There might be probability to narrow relevant genes down by finding highly correlated genes.
- There is obvious difference between the LDLR gene of human and mouse.

Weakness

- Huge amounts of samples might reduce p-value.
- There might be other influence factors that are able to decide the expression of genes.

