Determinação de raízes de funções: Método das Secantes

Marina Andretta/Franklina Toledo

ICMC-USP

5 de setembro de 2012

Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Determinação de raízes de funções

Estamos interessados em resolver o problema de encontrar uma raiz (ou uma solução) de uma equação da forma

$$f(x)=0,$$

para uma dada função $f: \mathbb{R} \to \mathbb{R}$.

Já vimos que podemos utilizar o Método de Newton para resolver o problema de encontrar uma raiz de uma função não-linear.

Uma desvantagem do Método de Newton é a necessidade do cálculo da primeira derivada da função. Muitas vezes este cálculo é muito difícil ou muito custoso computacionalmente.

Para evitar o cálculo destas derivadas, faremos um pequena modificação no Método de Newton.

Por definição,

$$f'(p_{k-1}) = \lim_{x \to p_{k-1}} \frac{f(x) - f(p_{k-1})}{x - p_{k-1}}.$$

Tomando $x = p_{k-2}$, temos que

$$f'(p_{k-1}) \approx \frac{f(p_{k-2}) - f(p_{k-1})}{p_{k-2} - p_{k-1}} = \frac{f(p_{k-1}) - f(p_{k-2})}{p_{k-1} - p_{k-2}}.$$

Lembre-se que, no Método de Newton,

$$p_k = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})}.$$

Usando a aproximação de $f'(p_{k-1})$, temos

$$p_k = p_{k-1} - \frac{f(p_{k-1})(p_{k-1}-p_{k-2})}{f(p_{k-1})-f(p_{k-2})},$$

para $k \geq 2$.

Esta modificação do Método de Newton é chamada de Método das Secantes.

Começando com duas aproximações iniciais p_0 e p_1 , a aproximação p_2 é a intersecção da reta que liga $(p_0, f(p_0))$ e $(p_1, f(p_1))$, com o eixo x.

De modo geral, a aproximação p_k é a intersecção da reta que liga $(p_{k-2}, f(p_{k-2}))$ e $(p_{k-1}, f(p_{k-1}))$, com o eixo x.

Algoritmo

Método das Secantes: dados aproximações iniciais p_0 e p_1 , uma tolerância TOL > 0 e o número máximo de iterações MAXIT, devolve a solução aproximada p ou uma mensagem de erro.

Passo 1: Faça $k \leftarrow 1$.

Passo 2: Enquanto $k \leq MAXIT$, execute os passos 3 a 6:

Passo 3: Faça
$$p \leftarrow p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$
.

Passo 4: Se
$$|p-p_1| < TOL$$
 ou $\frac{|p-p_1|}{|p|} < TOL$ ou $|f(p)| < TOL$, então devolva p como solução e pare.

Passo 5: Faça $p_0 \leftarrow p_1$ e $p_1 \leftarrow p$.

Passo 6: Faça $k \leftarrow k + 1$.

Passo 7: Escreva "o método falhou após MAXIT iterações" e pare.

Exemplo

Suponha que devamos obter uma aproximação de uma solução de $f(x) = \cos(x) - x = 0$.

Vamos aplicar o Método das Secantes para resolver este problema. Utilizaremos, como aproximações iniciais os pontos $p_0 = 0.5$ e $p_1 = \pi/4$.

Os pontos gerados pelo Método das Secantes, neste caso, são dados por

$$p_k = p_{k-1} - \frac{(\cos(p_{k-1}) - p_{k-1})(p_{k-1} - p_{k-2})}{(\cos(p_{k-1}) - p_{k-1}) - (\cos(p_{k-2}) - p_{k-2})},$$

para $k \ge 2$.

Exemplo

A tabela a seguir fornece os valores p_k obtidos usando o Método das Secantes.

k	p_k	$f(p_k)$
0	0.5000000000	0.377582562
1	0.7853981635	-0.078291382
2	0.7363841388	0.004517719
3	0.7390581392	0.000045177
4	0.7390851493	-0.000000027
5	0.7390851332	0.000000000

Exemplo - Método das Secantes × Método de Newton

Outra possibilidade é aplicar o Método de Newton para encontrar uma raiz de f. Neste caso, p_k é dado por

$$p_k = p_{k-1} - \frac{\cos(p_{k-1}) - p_{k-1}}{-\sin(p_{k-1}) - 1},$$

para $k \ge 1$.

Utilizaremos $p_0 = \pi/4$.

Exemplo - Método das Secantes × Método de Newton

A tabela a seguir fornece os valores p_k obtidos usando o Método das Secantes e o Método de Newton. Note que, mesmo sem a necessidade do cálculo das derivadas, o Método das Secantes, neste caso, converge quase tão rápido quanto o Método de Newton.

	Secantes		Newton	
k	p_k	$f(p_k)$	p_k	$f(p_k)$
0	0.5000000000	0.377582562		
1	0.7853981635	-0.078291382	0.7853981635	-0.078291382
2	0.7363841388	0.004517719	0.7395361337	-0.000754875
3	0.7390581392	0.000045177	0.7390851781	-0.000000075
4	0.7390851493	-0.000000027	0.7390851332	0.000000000
5	0.7390851332	0.000000000		