# Machine learning - Support Vector Machine

Yonghoon Dong

April 14, 2024

#### Linear Regression

Linear models tackle the regression problem, assuming that there exists a linear relation between input  $x \in \mathbb{R}^d$  and output  $y \in \mathbb{R}$ 

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d := \theta^T x$$

where  $\theta_i$  is the parameters that parameterize the mapping from the input space  $\mathcal X$  to output space  $\mathcal Y$ 

### Non-linear Regression : Basis function

Actually, there's no reason for us to insist on using only linear functions. Instead, we will use **basis functions** instead of just linear functions.

### Non-linear Regression : Basis function

In mathematics, a basis function is an element of a particular **basis** for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.

### Non-linear Regression : Basis function

Therefore, we can convert  $h_{\theta}$  as follows

$$h_{\theta}(x) = \sum_{l=0}^{L} \theta_l \phi_l(x) := \theta^T \phi(x)$$

where  $\phi_i:\mathbb{R}^d o \mathbb{R}$  is a basis function and  $\phi(x) = \left(\phi_1(x),\phi_2(x),\dots,\phi_L(x)\right)^T$ 

If we define the loss function by least squares, the batch gradient descent update is

$$\theta \leftarrow \theta + \alpha \sum_{n=1}^{N} \left( y^{(n)} - \theta^{T} \phi(x^{(n)}) \right) \phi(x^{(n)})$$

Since everything is linear, we can express  $\theta$  as a linear combination of basis functions. For simplicity, we assume the initial  $\theta_0$  as 0 where the numbers below theta represent the update index. Then we can express  $\theta_n$  as a linear combination of basis functions

$$\theta_n = \sum_{n=1}^N \beta_n \phi(x^{(n)})$$

Then we can express  $\theta_{n+1}$  as follows

$$\theta_{n+1} = \theta_n + \alpha \sum_{n=1}^{N} \left( y^{(n)} - \theta^T \phi(x^{(n)}) \right) \phi(x^{(n)})$$
(1)

$$= \sum_{n=1}^{N} \beta_n \phi(x^{(n)}) + \alpha \sum_{n=1}^{N} \left( y^{(n)} - \theta^T \phi(x^{(n)}) \right) \phi(x^{(n)})$$
 (2)

$$= \sum_{n=1}^{N} \left( \beta_n + \alpha \left( y^{(n)} - \theta^T \phi(x^{(n)}) \right) \right) \phi(x^{(n)})$$
 (3)

Take 
$$\beta_{n+1} = \beta_n + \alpha \left( y^{(n)} - \theta^T \phi(x^{(n)}) \right)$$

Originally, our goal is to find  $\theta_n$ . However, we already know that  $\theta_n$  can be expressed as a sum of product of  $\beta_n$  and  $\phi(x^{(n)})$ . Therefore, the task of finding  $\theta$  is reduced to finding  $\beta_n$ 

$$\beta_n \leftarrow \beta_n + \alpha \left( y^{(n)} - \theta^T \phi(x^{(n)}) \right)$$
 (4)

$$\beta_n \leftarrow \beta_n + \alpha \left( y^{(n)} - \sum_{m=1}^N \beta_m \phi(x^{(m)})^T \phi(x^{(n)}) \right)$$
 (5)

Note that the pairwise inner products

$$\langle \phi(\mathbf{x}^{(m)}), \phi(\mathbf{x}^{(n)}) \rangle = \phi(\mathbf{x}^{(m)})^T \phi(\mathbf{x}^{(n)})$$

can be pre-calculated for all pairs of m, n

### Kernel Trick: Example

Let  $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ , and let  $\phi(x)$  be the vector that contains all the monomials of x with degree less than or equal to 3.

$$\phi(x) = (1, x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \dots, x_d^2, x_1^3, x_1^2 x_2 \dots, x_d^3)^T$$

We can easily prove that the given basis functions are linearly independent.

#### Kernel Trick: Example

Then, we can pre-calculate  $\langle \phi(x), \phi(z) \rangle$ 

$$\langle \phi(x), \phi(z) \rangle = 1 + \sum_{i \in \{1, \dots, d\}} x_i z_i + \sum_{i, j \in \{1, \dots, d\}} x_i x_j z_i z_j + \sum_{i, j, k \in \{1, \dots, d\}} x_i x_j x_k z_i z_j z_k$$
 (6)

$$=1+\left(\sum_{i=1}^{d}x_{i}z_{i}\right)+\left(\sum_{i=1}^{d}x_{i}z_{i}\right)^{2}+\left(\sum_{i=1}^{d}x_{i}z_{i}\right)^{3}$$
 (7)

$$=1+\langle x,z\rangle+\langle x,z\rangle^2+\langle x,z\rangle^3 \tag{8}$$

We define the **Kernel**  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  such that

$$K(x,z) = \langle \phi(x), \phi(z) \rangle$$

where  $\mathcal{X}$  is a input space. As we mentioned above, it can be pre-calculated.

### Least squares with Kernel Trick

If we apply the kernel trick, the least square algorithm can be written as follows

- Compute all values  $\mathcal{K}(x^{(m)}, x^{(n)})$  for all  $m, n \in \{1, ..., N\}$
- ② Set the initial value of  $\theta$  as 0
- Iterate until it converges

$$\beta_n \leftarrow \beta_n + \alpha \left( y^{(n)} - \sum_{m=1}^N \beta_m K(x^{(m)}, x^{(n)}) \right)$$

Predict of value y for a new input x

$$\theta^{T}\phi(x) = \sum_{n=1}^{N} \beta_{n}\phi(x^{(n)})^{T}\phi(x) = \sum_{n=1}^{N} \beta_{n}K(x^{(n)}, x)$$

#### Least squares with Kernel Trick

Note that since x is a new input,  $K(x^{(n)}, x)$  can not be pre-calculated.

#### Conditions for valid kernels

**1** As we mentioned above,  $K(x^m, x^{(n)})$  can be pre-calculated. So, we can define the **kernel matrix** such that

$$K_{mn} = K(x^m, x^{(n)})$$

- If kernel is valid, the kernel matrix must be symmetric
- If kernel is value, the kernel matrix must be positive semi-definite.

#### Conditions for valid kernels

#### Theorem (Mercer kernel)

For given  $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  to be a valid kernel, it is necessary and sufficient that for any  $\{x^{(1)}, \dots, x^{(N)}\}$  the corresponding kernel matrix is **symmetric and positive semi-definite** 

## Support Vector Machine: Purpose

Consider a case of binary classification problem. We want to find the decision boundary  $W^Tx + b$  i.e. We want to find the best affine function that separate the given classes.



## Support Vector Machine: Two types of Margin

Actually, there are two different types of margin.

- Functional margin: Related to the distance between the given point and the affine function, but its value can be affected by the norm of w.
- @ Geometric margin : Actual distance between the given point and the affine function

## Support Vector Machine: Functional Margin

**Functional margin** for a training example  $(x^{(n)}, y^{(n)})$  is defined by

$$\hat{\gamma}^{(n)} = y^{(n)}(w^T x^{(n)} + b)$$

where  $y^{(n)} \in \{-1,1\}$  . To align with geometric meaning (distance of the given point and the line), w must point towards the side where the label is 1.

# Support Vector Machine: Functional margin

Given a training set  $S = \{(x^{(n)}, y^{(n)})\}$ , we also define the function margin with respect to S as the smallest of the functional margins of the training examples

$$\hat{\gamma} = \min_{n=1,\dots,N} \hat{\gamma}^{(n)}$$

#### Caution

Note that it is different from the functional margin of the given point. It is just a new definition. Don't be confused.

# Support Vector Machine: Functional Margin

One important observation is that the functional margin can be affected by the length of w. So we want to restrict the size of w to 1 so that we can interpret as a actual distance between the given point and the affine function. So, this becomes a new definition: **Geometric Margin** 

## Support Vector Machine: Geometric Margin

**Geometric margin** for a training example  $(x^{(n)}, y^{(n)})$  is defined by

$$\gamma^{(n)} = y^{(n)} \left( \left( \frac{w}{\|w\|} \right)^T x^{(n)} + \frac{b}{\|w\|} \right)$$

where  $y^{(n)} \in \{-1,1\}$ . Actually, it is just a actual distance by scaling the functional margin.

## Support Vector Machine: Geometric Margin

Similar to the functional margin case, we also define the geometric margin with respect to S as the smallest of the functional margins of the training examples

$$\gamma = \min_{n=1,\dots,N} \gamma^{(n)}$$

#### Caution

Note that it is different from the geometric margin of the given point. It is just a new definition. Don't be confused.

# Support Vector Machine: Objective

We want to find the decision boundary that maximize the geometric margin, since it would reflect a very confident set of predictions on the training set.

#### Objective function

$$\max_{\gamma, w, b} imize \ \gamma$$

subject to

$$y^{(n)}(w^T x^{(n)} + b) \ge \gamma, \quad n = 1, ..., N$$
  
 $||w|| = 1$ 

# Support Vector Machine: Objective

However, ||w|| = 1 is non-convex i.e. Our objective function is hard to optimize compared to the convex case.

#### Revised objective function

$$\max_{\hat{\gamma}, w, b} \min \frac{\hat{\gamma}}{\|w\|}$$

subject to

$$y^{(n)}(w^Tx^{(n)}+b) \geq \hat{\gamma}, \quad n=1,...,N$$

Since  $\gamma = \hat{\gamma}/\|w\|$ , our actual objective is still to minimize the geometric margin.

## Support Vector Machine: Objective

We can make  $\hat{\gamma}$  to 1 by changing the norm of w. So, without loss of generality, we can regard it as 1.

#### Revised objective function

maximize 
$$\frac{1}{\|w\|}$$

subject to

$$y^{(n)}(w^Tx^{(n)}+b) \ge 1, \quad n=1,\ldots,N$$

# Support Vector Machine : Objective

Maximizing  $1/\|w\|$  is actually equivalent to minimizing  $1/2\|w\|^2$  because they are monotone function.

#### Revised objective function

$$\underset{w,b}{\textit{minimize}} \ \frac{1}{2} \|w\|^2$$

subject to

$$y^{(n)}(w^Tx^{(n)}+b) \geq 1, \quad n=1,\ldots,N$$

This objective function can be solved by quadratic programming (QP).

Therefore, we can find the optimal w and b very efficiently. Actually, there is a better approach than QP by using the concept of **duality**.

## Optimization problem in standard form

$$minimize_{x} f_0(x)$$

subject to

$$f_i(x) \le 0, \ i = 1, ..., m$$
  
 $h_i(x) = 0, \ i = 1, ..., p$ 

- $x \in \mathbb{R}^d$  is the optimization variable
- $f_0: \mathbb{R}^d \to R$  is the objective or cost function
- $f_i: \mathbb{R}^d \to R, \ i=1,\ldots,m$  are the inequality constraint functions
- $h_i: \mathbb{R}^d \to R, i = 1, ..., p$  are the inequality constraint functions

Consider the inequality constrained problem

$$\underset{x}{minimize} \ f_0(x)$$

subject to

$$f_i(x) \leq 0, i = 1, \ldots, m$$

Barrier methods use a barrier term that approaches the infinite penalty function  $\phi$ .

Let  $\phi(x)$  be a function that is continuous on the interior of the feasible set, and that becomes unbounded as the boundary of the set is approached from its interior:

$$\phi(x) \to \infty$$
 as  $f_i(x) \to 0$ 

There are two examples:

1. Logarithmic function

$$\phi(x) = \sum_{i=1}^{m} \log(f_i(x))$$

2. Inverse function

$$\phi(x) = -\sum_{i=1}^{m} \frac{1}{f_i(x)}$$

Now let  $\mu$  be a positive scalar. Then  $\mu\phi(x)$  will approach  $\sigma(x)$  as  $\mu$  approaches zero.

By adding a barrier term of the form  $\mu\phi(x)$  to the objective, we obtain a 'barrier function'

$$\beta_{\mu}(x) = f_0(x) + \mu \phi(x)$$



Figure: Illustration of barrier method

#### Lagrangian via barrier method

Let our original problem as follows

$$minimize_{x} f_0(x)$$

subject to

$$f_i(x) \leq 0, i = 1, \ldots, m$$

## Lagrangian via barrier method

One way to make this inequality constraint to equality constraint is using a penalty function.

$$\underset{x}{minimize} \left[ f_0(x) + \sum_{i=1}^m P_i(f_i(x)) \right]$$

where

$$P_i(x) = \begin{cases} \infty & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

## Lagrangian via barrier method

However, it has a problem because it is non-differentiable at x=0. This problem can't be fixed even though we change  $\infty$  to some large value. Therefore, we take a linear function as a penalty function.

$$P_i(x) = \lambda_i x$$

where  $\lambda_i \geq 0$ 

#### Note

It is quite natural. If we choose x that doesn't satisfy the constraints, it rewards. On the other hand, if we choose x that doesn't satisfy the constraints, it penalize.

## Lagrangian via barrier method

The problem is that it could change the optimal value. If we take the maximum of  $\lambda_i$ , we can act as a original penalty function. Therefore, the original function can be express as

$$\underset{x}{minimize} \left[ f_0(x) + \underset{\lambda}{maximize} \sum_{i=1}^m \lambda_i f_i(x) \right]$$
 (9)

$$= \underset{x}{minimize} \ \underset{\lambda}{maximize} \left[ f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right]$$
 (10)

#### Caution

It is actually a min-max problem which means the order is very important.

## Lagrangian via barrier method

### Definition (Lagrangian)

$$\mathcal{L}(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

where  $\mathcal{L}: \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ 

### Definition (Primal objective)

minimize maximize 
$$\mathcal{L}(x, \lambda, \nu)$$

## Lagrange Dual function

### Definition (Lagrange dual function)

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}, \lambda, \nu)$$
  
=  $\inf_{\mathbf{x} \in \mathcal{D}} \left( f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$ 

where  $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ 

## Lower bound property of Dual function

#### Theorem

If  $\lambda \succeq 0$ , then  $g(\lambda, \nu) \leq p^*$  where  $p^*$  is a optimal value of the primal.

#### Proof.

If  $\bar{x}$  is feasible and  $\lambda \succ 0$ , then

$$f_0(\bar{x}) \geq \mathcal{L}(\bar{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible  $\bar{x}$  gives  $p^* \geq g(\lambda, \nu)$ 



## Lagrange Dual problem

For each pair  $(\lambda, \nu)$  with  $\lambda \succeq 0$ , the Lagrange dual function gives us a **lower bound** on the optimal value  $p^*$  of the optimization problem. Thus we have a lower bound that depends on some parameters  $\lambda, \nu$ .

## Lagrange Dual problem

The natural question is "What is the 'best' lower bound that can be obtained from the Lagrange dual function?". This leads to the optimization problem

### Definition (Lagrange dual problem)

maximize 
$$g(\lambda, \nu)$$

subject to

$$\lambda \succeq 0$$

# Weak and Strong Duality

- Weak duality  $d^* \leq p^*$  (where  $d^*$  is the optimal value of the dual problem)
  - 1 it always hold for any optimization problems
  - 2 it can be used to find non-trivial lower bounds for difficult problem
- 2 strong duality :  $d^* = p^*$ 
  - 1 it does not hold in general
  - (usually) holds for convex problems
  - conditions that guarantee strong duality in convex problems are called constraint qualifications

### Slater's condition

One simple constraint qualification is **Slater's condition** Let our problem is as follows

minimize 
$$f_0(x)$$

subject to

$$f_i(x) \leq 0 \quad i = 1, \dots, m \tag{11}$$

$$Ax = b \tag{12}$$

where  $f_0, \ldots, f_m$  is a convex function.

### Slater's condition

If there exists an  $x \in \text{relint } \mathcal{D}$  such that

$$f_i(x) < 0 \quad i = 1, \dots, m \tag{13}$$

$$Ax = b \tag{14}$$

Such a point is sometimes called strictly feasible

#### Caution

Slater's theorem states that strong duality holds if Slater's condition holds and the problem is convex.

## KKT condition

We now assume that the functions  $f_i$ ,  $h_i$  are differentiable and therefore have open domains. Let  $x^*$  and  $(\lambda^*, \nu^*)$  be any primal and dual optimal points with zero duality gap.

## KKT condition

### Theorem (KKT condition)

Primal constraints

$$f_i(x^*) \leq 0 \quad i = 1, \dots, m \quad h_i(x^*) = 0 \quad i = 1, \dots, m$$
 (15)

- 2 Dual constraints:  $\lambda^* \succeq 0$
- **3** Complementary slackness :  $\lambda_i f_i(x^*) = 0$  i = 1, ..., m
- Stationary condition

$$abla f_0(x^*) + \sum_{i=1}^m \lambda_i^* 
abla f_i(x^*) + \sum_{i=1}^p 
u_i^* 
abla h_i(x^*) = 0$$

## Revisit support vector machine objective

The primal optimization problem in support vector machine problem is

### Primal problem of support vector machine

$$\underset{w,b}{\textit{minimize}} \ \frac{1}{2} \|w\|^2$$

subject to

$$y^{(n)}(w^Tx^{(n)}+b) \geq 1, \quad n=1,\ldots,N$$

The constraint for each training example can be rewritten as follows

$$g_i(w) = -y^{(n)}(w^Tx^{(n)} + b) + 1 \le 0$$

## Revisit support vector machine objective

From the KKT complementary slackness condition, we will have  $\lambda_i > 0$  only for the training examples that have functional margin exactly equal to one (i.e.  $g_i(x) = 0$ ).



### **Support vectors**

refer to the examples corresponding to constraints that hold with equality,  $a_i(w) = 0$ 

Figure: Illustration of support vector

## Lagrangian in support vector machine

The Lagrangian for our optimization problem can be constructed as follows

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \lambda_n [y^{(n)}(w^T x^{(n)} + b) - 1]$$

# KKT condition for support vector machine

By stationary condition,

$$\nabla_{w}\mathcal{L}(w,b,\lambda) = w - \sum_{n=1}^{N} \lambda_{n} y^{(n)} x^{(n)} = 0$$
 (16)

$$\Rightarrow w^* = \sum_{n=1}^N \lambda_n y^{(n)} x^{(n)} \tag{17}$$

$$\frac{\partial}{\partial b}\mathcal{L}(w,b,\lambda) = \sum_{n=1}^{N} \lambda_n y^{(n)} = 0$$
 (18)

# KKT condition for support vector machine

By dual feasibility

$$a_n \geq 0, \quad n = 1, \ldots, N$$

By complementary slackness

$$\sum_{n=1}^{N} a_n y^{(n)} = 0$$

# KKT condition for support vector machine

Instead of solving primal problem, we want to solve dual problem instead.

$$\max_{\lambda} \min_{w,b} \mathcal{L}(w,b,\lambda) \tag{19}$$

$$= \max_{\lambda} mize \left[ \sum_{n=1}^{N} \lambda_{n} - \frac{1}{2} \sum_{m,n=1}^{N} y^{(m)} y^{(n)} \lambda_{m} \lambda_{n} (x^{(m)})^{T} x^{(n)} - b \sum_{n=1}^{N} \lambda_{n} y^{(n)} \right]$$
(20)

$$= \max_{\lambda} \sum_{n=1}^{N} \lambda_{n} - \frac{1}{2} \sum_{m,n=1}^{N} y^{(m)} y^{(n)} \lambda_{m} \lambda_{n} (x^{(m)})^{T} x^{(n)}$$
(21)

subject to

$$\lambda_n \ge 0, \quad n = 1, \dots, N \tag{22}$$

$$\sum_{n=1}^{N} \lambda_n y^{(n)} = 0 \tag{23}$$

## Prediction of new input

Suppose we have fit our model's parameters to a training set, and then we can make a prediction at a new input  $\boldsymbol{x}$ 

$$(w^*)^T x + b = \left(\sum_{n=1}^N \lambda_n y^{(n)} x^{(n)}\right)^T x + b = \sum_{n=1}^N \lambda_n y^{(n)} \langle x^{(n)}, x \rangle + b$$

#### Caution

Note that  $\lambda_i$  will be zero except for the support vectors