$\mathsf{Hedge}(\eta)$

Online Convex Optimization

Yoav Freund

February 17, 2020

Material follows Chapters 1,2,3 of "Online Convex Optimization" / Elad Hazan.

Outline

OCO

Standard Convex Optimization

Online Convex optimization

Online Linear Optimization

- ▶ Instance: $(\mathbf{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$
- ▶ Predictor: $\mathbf{w}_t \in \mathbb{R}^d$
- ► Loss ℓ (**w** · **x**, **y**) (online regression = square loss)
- ▶ Regret: $\mathbf{R}_t(\mathbf{u}) = \sum_{i=1}^t \left[\ell(\mathbf{w}_t \cdot \mathbf{x}_t, y_t) \ell(\mathbf{u} \cdot \mathbf{x}_t, y_t) \right]$

Online convex Optimization

- ▶ Optimizer chooses point: $\mathbf{x}_t \in \mathbb{R}^d$
- Adversary chooses convex loss function $f_t : \mathbb{R}^d \to \mathbb{R}$
- optimizer chooses Loss $f_t(\mathbf{x}_t)$
- ▶ Regret: $\mathbf{R}_T = \sup_{f_1,...,f_T} \left[\sum_{t=1}^T f_t(\mathbf{x}_t) \min_{\mathbf{u}} \sum_{t=1}^T f_t(\mathbf{u}) \right]$

Standard convex optimization

- not online convex optimization (CO) has been studied much longer than Online convex optimization (OCO)
- OCO bounds use measures of convexity from CO.
- f is a given convex function.
- K is a convex set.
- ► Goal: find $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$
- Method: gradient descent.
- rate of convergence: rate at which $h_t = f(\mathbf{x}_t) f(\mathbf{x}^*)$ decreases.

The sub-gradient

- ▶ $f: \mathbb{R}^d \to \mathbb{R}$ is convex.
- ▶ $\nabla f(\mathbf{x})$ is the set of vectors $\mathbf{g} \in \mathbb{R}^d$ such the $\forall \mathbf{y}, f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{g} \cdot (\mathbf{y} \mathbf{x})$
- ▶ If f is differentiable at x, then $\nabla f(x)$ has only one element.
- ▶ Otherwise $\nabla f(\mathbf{x})$ is a continuously infinite set.

Basic Gradient descent

- 1. **input:** f, T initial point $\mathbf{x}_1 \in \mathcal{K}$, sequence of step sizes $\{\eta_t\}$
- 2. For t = 1, ..., T do:
- 3. Update: $\mathbf{y}_{t+1} = \mathbf{x}_t \eta_t \nabla f(\mathbf{x}_t)$
- 4. Project: $\mathbf{x}_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1})$
- 5. End For
- 6. Return \mathbf{x}_{t+1}

Degrees of convexity

- ▶ f(x) is convex if $\forall x, y, f(y) \ge f(x) + \nabla f(x) \cdot (y x)$
- ► f(x) is α -strongly convex if $\forall \mathbf{x}, \mathbf{y}, f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} \mathbf{x}) + \frac{\alpha}{2} ||\mathbf{x} \mathbf{y}||^2$
- ► f(x) is β -smooth if $\forall \mathbf{x}, \mathbf{y}, f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} \mathbf{x}) + \frac{\beta}{2} ||\mathbf{x} \mathbf{y}||^2$

Conditioning number

- ▶ If *f* is both α-strongly convex and β-smooth we say it is γ-well conditioned where: $\gamma = \frac{\alpha}{\beta} \le 1$
- ▶ What is the meaning of $\gamma = 1$?

Basic Bound on Basic Gradient Descent

- If f is γ -well conditioned.
- and $\eta_t = \frac{1}{\beta}$
- $h_{t+1} \leq h_1 \exp\left(\frac{\gamma t}{4}\right)$

Reduction to smooth, not strongly convex functions

Reduction to non-smooth, strongy convex functions

Reduction to convex functions

Online Gradient Descent

 $f_t(\mathbf{x}_t)$ instead of $f(\mathbf{x}_t)$