Amendments to the Claims:

Please amend claims 1-3 and 13-20, as shown in the following listing of claims. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A video circuit for processing video signals which show images on a display panel with linear light transition, comprising a gamma correction circuit, a quantizer and a sub-field generator circuit, wherein a coarse adjustment of the quantization is made in a first random-access memory and a fine adjustment of the quantization is made in a second random-access memory, wherein multiple quantization errors of different neighboring pixels of a current pixel are used to quantize the current pixel generate a pixel value to be displayed on the display panel, wherein the pixel value to be displayed and the multiple quantization errors of the different neighboring pixels satisfy;

$$\begin{split} & \underbrace{PVTBD = rounded\left(X_{(x,y)} + CV + a \times QE\left(X_{(x-l,y-l)}\right) + b \times QE\left(X_{(x,y-l)}\right)}_{+ c \times QE\left(X_{(x+l,y-l)}\right) + d \times QE\left(X_{(x-l,y)}\right))_{\bullet}} \end{split}$$

where PVTBD represents the pixel value to be displayed, rounded() represents a rounding function, CV represents a constant value to perform the rounding function, X(x,y) represents the current pixel that is located in column x and line y of an image, QE(X(x-t,y-t)) represents quantization error of a neighboring pixel that is located in column x-1 and line y-1 of the image, QE(X(x,y-t)) represents quantization error of a neighboring pixel that is located in column x and line y-1 of the image, QE(X(x+t,y-t)) represents quantization error of a neighboring pixel that is located in column x+1 and line y-1 of the image, QE(X(x-t,y-t)) represents quantization error of a neighboring pixel that is located in column x-1 and line y of the image, and a, b, c and d represent multiplier coefficients for QE(X(x-t,y-t)), QE(X(x,y-t)), QE(X(x,y-t)), QE(X(x-t,y-t)) and QE(X(x-t,y)), respectively.

- 2. (currently amended) A video circuit for processing video signals which display images on a display panel with linear light transition, comprising a gamma correction circuit, a quantizer and a sub-field generation circuit, wherein most significant bits are quantized in a first random-access memory and least significant bits are quantized in a second random-access memory, wherein-multiple-quantization-errors of different-neighboring pixels of a current pixel are used to quantize the current pixel the first random-access memory is physically separate from the second random-access memory.
- 3. (currently amended) A video circuit for processing video signals which show images on a display panel with linear light transition, comprising a gamma correction means, a quantization means and a sub-field generation means wherein the quantization means is a random-access memory, wherein multiple quantization errors of different neighboring pixels of a current pixel are used to-quantize the current pixel generate a pixel value to be displayed on the display panel, wherein the pixel value to be displayed and the multiple quantization errors of the different neighboring pixels satisfy:

$$PVTBD = rounded (X_{(x,y)} + CV + a \times QE(X_{(x-1,y-1)}) + b \times QE(X_{(x,y-1)})$$

$$+ c \times QE(X_{(x-1,y-1)}) + d \times QE(X_{(x-1,y)})_{1}$$

where PVTBD represents the pixel value to be displayed, rounded() represents a rounding function, CV represents a constant value to perform the rounding function, X(x,y) represents the current pixel that is located in column x and line y of an image, QE(X(x-t,y-t)) represents quantization error of a neighboring pixel that is located in column x-1 and line y-1 of the image, QE(X(x,y-t)) represents quantization error of a neighboring pixel that is located in column x and line y-1 of the image, QE(X(x+t,y-t)) represents quantization error of a neighboring pixel that is located in column x+1 and line y-1 of the image, QE(X(x-t,y-t)) represents quantization error of a neighboring pixel that is located in column x-1 and line y of the image, and a, b, c and d represent multiplier coefficients for QE(X(x-t,y-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), QE(X(x-t)), respectively.

4. (previously presented) A video circuit as claimed in claim 3, wherein the random-

access memory additionally performs dequantization.

5. (previously presented) A video circuit as claimed in claim 3 wherein the random-

access memory is said gamma correction means.

6. (previously presented) A video circuit as claimed in claim 4, wherein an inverse

gamma circuit is arranged downstream of the random-access memory.

7. (previously presented) A video circuit as claimed in claim 3, wherein the random-

access memory is said sub-field generating means.

8. (previously presented) A video circuit as claimed in claim 7, wherein sub-field

generation values are applied to a filter via a conversion means and a dequantization

means

9. (previously presented) A video circuit as claimed in claim 8, wherein the filter applies

values to an adder which is situated in an input area of a second signal which represents

pixel values of a neighboring line.

10. (previously presented) A video circuit as claimed in claim 9, wherein sub-field

generation values are applied to the adder via a second conversion means and a second

dequantization means.

11. (previously presented) A video circuit as claimed in claim 9, wherein pixel values of

the neighboring line are quantized in a quantization means and sub-fields are generated in a further sub-field generation means wherein a further second random-access memory is

the state of the s

said further quantization means and said further sub-field generation means.

12. (canceled)

13. (currently amended) A video circuit as claimed in claim 1 further comprising:

Attorney Docket No. NL02 0769 US Serial No. 10/524,968 .

Submission Under 37 CFR 1.114

- a filter configured to process the multiple quantization errors of the different neighboring pixels of the current pixel to generate a processing result, wherein the filter comprises multiplier elements, adders and serially connected delay elements; and
- an adder configured to combine the processing result with the current pixel to generate a combined result, $\bar{\tau}$
 - wherein the quantizer quantizes the current pixel using the combined result.
- 14. (currently amended) A video circuit as claimed in claim 2 further comprising:
- a filter configured to process the multiple quantization errors of the different neighboring pixels of the a current pixel to generate a processing result, wherein the filter comprises multiplier elements, adders and serially connected delay elements; and
- - wherein the quantizer quantizes the current pixel using the combined result.
- 15. (currently amended) A video circuit as claimed in claim 3 further comprising:
- a filter configured to process the multiple quantization errors of the different neighboring pixels of the current pixel to generate a processing result, wherein the filter comprises multiplier elements, adders and serially connected delay elements; and
- an adder configured to combine the processing result with the current pixel to generate a combined result, σ
- wherein the quantization means quantizes the current pixel using the combined result.
- 16. (currently amended) A video circuit as claimed in claim 13 further comprising memory configured to store-a-the constant value, wherein the adder is further configured to add the processing result, the constant value and the current pixel to generate the combined result.

17. (currently amended) A video circuit as claimed in claim 1, wherein the constant value is 1/2. 16, wherein the combined result, the constant value and the multiple quantization errors of the different neighboring pixels satisfy:

 $CR = X_{(x,y)} + CV + a \times QE(X_{(x-1,y-1)} + b \times QE(X_{(x,y-1)} + c \times QE(X_{(x,y-1)}) + d \times QE(X_{(x,y-y)}) + d \times QE(X_{(x,y-y)})$

- 18. (currently amended) A video circuit as claimed in claim 13 further comprising a rounding circuit coupled to the adder and the quantizer, wherein the rounding circuit is configured to perform a the rounding function on the combined result to generate a rounded result, wherein the quantizer quantizes the current pixel using the rounded result.
- 19. (currently amended) A video circuit as claimed in claim 2, wherein multiple quantization errors of different neighboring pixels of a current pixel are used to generate a pixel value to be displayed on the display panel, wherein the pixel value to be displayed and the multiple quantization errors of the different neighboring pixels satisfy;

$$\frac{PVTBD = rounded\left(X_{(x,y)} + CV + a \times QE(X_{(x-1,y-1)}) + b \times QE(X_{(x,y-1)})\right)}{+ c \times QE(X_{(x,x-1,y-1)}) + d \times QE(X_{(x,y-1)}))_{\bullet}}$$

where *PVTBD* represents the pixel value to be displayed, rounded() represents a rounding function, *CV* represents a constant value to perform the rounding function, X(x,y) represents the current pixel that is located in column x and line y of an image, QE(X(x-y,y)) represents quantization error of a neighboring pixel that is located in column x-1 and line y-1 of the image, QE(X(x,y,y)) represents quantization error of a neighboring

pixel that is located in column x and line y-1 of the image, QE(X(x+i,y-i)) represents quantization error of a neighboring pixel that is located in column x+1 and line y-1 of the image, OE(X(x-i,y)) represents quantization error of a neighboring pixel that is located in column x-1 and line v of the image, and a, b, c and d represent multiplier coefficients for OE(X(x-i,y-i)), OE(X(x,y-i)), OE(X(x+i,y-i)) and OE(X(x-i,y)), respectively, 14 further comprising memory configured to store a constant value, wherein the adder is further configured to add the processing result, the constant value and the current pixel to generate the combined result, wherein the combined result, the constant value and the multiple quantization errors of the different neighboring pixels satisfy: $CR = X_{(x,y)} + CV + a \times QE(X_{(x-1,y-1)}) + b \times QE(X_{(x,y-1)}) + c \times QE(X_{(x+1,y-1)}) + d \times QE(X_{(x-1,y)})$ where CR represents the combined result, CV represents the constant value, X(x,y) represents the current pixel that is located in column x and line y of an image, QE(X(x-4,y-4) represents quantization error of a neighboring pixel that is located in column x-1 and line v-1 of the image, OE(X(x,y,y)) represents quantization error of a neighboring pixel that is located in column x and line v-1 of the image, $OE(X(x+\iota,v-\iota))$ represents quantization error of a neighboring pixel that is located in column x+1 and line y-1 of the image, OE(X(x-x,y)) represents quantization error of a neighboring pixel that is located in column x-1 and line y of the image, and a, b, e and d represent multiplier coefficients for $OE(X(x-\iota,y-\iota))$, $OE(X(x,y-\iota))$, $OE(X(x+\iota,y-\iota))$ and $OE(X(x-\iota,y))$, respectively.

20. (currently amended) A video circuit as claimed in claim 3, wherein the constant value is 1/2, 15 further comprising memory configured to store a constant value, wherein the adder is further configured to add the processing result, the constant value and the current pixel to generate the combined result, wherein the combined result, the constant value and the multiple quantization errors of the different neighboring pixels satisfy: $CR = X_{(x,y)} + CV + a \times QE(X_{(x-1,y-1)} + b \times QE(X_{(x,y-1)} + c \times QE(X_{(x,1,y-1)}) + d \times QE(X_{(x-1,y)})$ where CR represents the combined result, CV represents the constant value, X(x,y) represents the current pixel that is located in column x and line y of an image, QE(X(x-1,y-1)) represents quantization error of a neighboring pixel that is located in column x and line y-1 of the image, QE(X(x,y-1)) represents quantization error of a neighboring

pixel that is located in column x and line y 1 of the image, QE(X(x+I,y-I)) represents quantization error of a neighboring pixel that is located in column x+1 and line y-1 of the image, QE(X(x-I,y)) represents quantization error of a neighboring pixel that is located in column x-1 and line y of the image, and a, b, e and d represent multiplier coefficients for QE(X(x-I,y-I)), QE(X(x,y-I), QE(X(x+I,y-I)) and QE(X(x-I,y)), respectively.