DPP-5 (QUADRATIC EQUATION)

BATCH COURSE TIMINGS 7:15P.M-8:15 P.M(EMERGE CLASS 11^{th})/5 P.M-6:30P.M (EXPERT BATCH)

JAI SHREE RAM

1.	If x^2 - $4x + log_{1/2}a = 0$ does not have two distinct real roots, then maximum value of a is
	(a) ¼ (b) 1/16 (c) -1/4 (d) None
2.	Sum of the real roots of the equation $x^2 + 5 x + 6 = 0$
	(a) Equals to 5 (b) Equals to 10
	(c) Equals to -5 (d) Does not exit
3.	If $c > 0$ and $4a + c < 2b$ then $ax^2 - bx + c = 0$ has a root in the interval
	(a) (0, 2) (b) (2, 4) (c) (0, 1) (d) (-2, 0)
4 .	If α , β are the roots of the equation (x - a) (x -b) + c = 0 then roots of the equation (x - α) (x - β) - c = 0 are
	(a) a + b, b + c (b) a, b
	(c) a, b + c (d) None of these
5.	If roots of equation $x^2 - 2ax + (a^2 + a - 3) = 0$ are real and less
	than 3 then
	(a) $a < 2$ (b) $2 \le a \le 3$ (c) $3 < a \le 4$ (d) $a > 4$
6.	The values of 'a' for which the roots of the equation $x^2 + x + a = 0$ are real and exceed 'a' are -
	(a) 0 < a < 1/4 (b) a < 1/4 (c) a < -2 (d) - 2 < a < 0
7.	The values of 'a' for which the roots of the equation $x^2 + x + a = 0$ are real and exceed 'a' are -
	(a) 0 < a < 1/4 (b) a < 1/4 (c) a < -2 (d) - 2 < a < 0
8.	If roots of the equation $3x^2 + 2(a^2 + 1)x + (a^2 - 3a + 2) = 0$ are of opposite signs, then a lies in the interval -
	$\left(\frac{3}{2},2\right)$
	(a) $(-\infty, 1)$ (b) $(-\infty, 0)$ (c) $(1, 2)$ (d) $(\frac{3}{2}, 2)$
9.	The coefficient of x in the equation $x^2 + px + q = 0$ was taken as 17 in place of 13, its roots were found to be 2 and -15, The roots of the original equation are -
	(a) 3, 10 (b) -3, -10 (c) - 5, -18 (d) None of these
10.	If $x^2 + ax + b$ is an integer for every integer x then
	(a) 'a' is always an integer but 'b' need not be an integer
	(b) 'b' is always an integer but 'a' need not be an integer
	(c) a and b are always integers.
	(d) None of these
11.	The least value of $ a $ for which $\tan \theta$ and $\cot \theta$ are the roots of the equation $x^2 + ax + b = 0$ is-

REF CODE MLJSIRLIVE(10 % OFF) WITH COMPLETE PERSONAL GUIDANCE SUPPORT

DPP-5 (QUADRATIC EQUATION)

BATCH COURSE TIMINGS 7:15P.M-8:15 P.M(EMERGE CLASS 11th)/5 P.M-6:30P.M (EXPERT BATCH)

JAI SHREE RAM

(a) 2

(b) 1

(c) ½

(d) 0

12. The equation formed by decreasing each root of

 $ax^2 + bx + c = 0$ by 1 is $2x^2 + 8x + 2 = 0$, then-

(a) a = -b (b) b = -c (c) c = -a

(d) None of these

 $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{c}{a}} =$ **13.** If the roots of $ax^2 + cx + c = 0$ be in the ratio p : q then

(a) -1 (b) 1 (c) 0 (d) 2

14. The difference of maximum & minimum value of

(a) 1/3

(b) 2/3 (c) -2/3 (d) 4/3

15. If α , β be the roots of $x^2 + px - q = 0 \& \gamma$, δ be the roots of

 $(\alpha - \gamma)(\alpha - \delta)$ $x^2 + px + r = 0$ then $\frac{(\beta - \gamma)(\beta - \delta)}{(\beta - \gamma)(\beta - \delta)} =$

(a) 1

(b) q (c) r (d) q + r

16. If p, q, r be in H.P. and p & r be different having same sign, then the root of equation $px^2 + 2qx + r = 0$ will

(a) Real

(b) Equal

(c) Imaginary

(d) None

ANSWERS

1)b 2)d 3)a 4)b 5)a 6)c 7)c 8)c 9)b 10)b 11)a 12)b 13)c 14)d 15)a 16)c