Hinweise für die Tutorien

18 RELATIONEN

18.1 ÄQUIVALENZRELATIONEN

18.1.1 Definition

- die Eigenschaften reflexiv, symmetrisch und transitiv an Beispielrelationen klar machen
- evtl. auch Relationen vorführen, die nur zwei oder eine oder gar keine dieser Eigenschaften haben
- Darstellung von Relationen als gerichtete Graphen: Woran sieht man
 - Reflexivität?
 - Symmetrie?
 - Transitivität?
- Wie sieht der Graph einer Äquivalenzrelation aus: "Klumpen", in denen jeder mit jedem verbunden ist, zwischen den Klumpen nichts (die Klumpen heißen später Äquivalenzklassen)

18.1.2 Äquivalenzklassen und Faktormengen

noch mal das Beispiel Kongruenz modulo n; nehmen wir n = 5; also $x \equiv y \pmod{5}$; das gilt, wenn x - y ganzzahliges Vielfaches von 5 ist:

- ..., -10, -5, 0, 5, 10, ... sind alle äquivalent zueinander, also
 - $[0] = \{..., -10, -5, 0, 5, 10, ...\}$ oder kurz $[0] = 5\mathbb{Z}$ (mit der Komplexschreibweise aus Abschnitt 13.2.4 im Skript)
 - statt [0] hätte man auch [5] oder [-10] oder [2783012931025] schreiben können.
- da $1 \not\equiv 0 \pmod{5}$, ist [1] eine *andere* Äquivalenzklasse.
 - $[1] = 1 + 5\mathbb{Z}$; genauso gut könnte man schreiben $[1] = -24 + 5\mathbb{Z}$
- Bitte klar machen: für $x \neq y$ kann [x] = [y] sein
- Beweisen: wenn $x \equiv y$, dann [x] = [y]
 - wenn $z \in [x]$, dann $x \equiv z$, also wegen Symm. auch $z \equiv x$
 - mit $x \equiv y$ und Transitivität folgt $z \equiv y$,
 - also $y \equiv z$, also $z \in [y]$
 - also $[x] \subseteq [y]$.
 - umgekehrt geht es genauso.
- Beweisen: Wenn ein z sowohl in [x] als auch in [y] ist, dann ist [x] = [y].
 - Wenn $z \in [x]$ und $z \in [y]$, dann $x \equiv z$ und $y \equiv z$,
 - also wegen Symmetrie $x \equiv z$ und $z \equiv y$,
 - also wegen Transitivität $x \equiv y$
 - also (eben gesehen) [x] = [y]
 - Äquivalenzklassen sind also entweder disjunkt oder gleich. "halbe Überlappungen" gibt es nicht

Faktormenge von Z für Kongruenz modulo 5

- hinreichend langes Überlegen zeigt: die Äquivalenzklassen [0], [1], [2], [3] und [4] sind alle paarweise verschieden: für je zwei der Zahlen ist die Differenz offensichtlich positiv, aber echt kleiner als 5.
- Aber für jedes andere $x \in \mathbb{Z}$ gibt es eine äquivalente Zahl zwischen 0 und 4, nämlich den Rest bei Division durch 5.
- Also gibt es nur fünf Äquivalenzklassen:

$$\mathbb{Z}_{1=5} = \mathbb{Z}_{5} = \{[0], [1], [2], [3], [4]\}$$

18.2 KONGRUENZRELATIONEN

18.2.1 Verträglichkeit von Relationen mit Operationen

18.2.2 Wohldefiniertheit von Operationen mit Äquivalenzklassen

Arithmetik modulo n

• im Skript nachgerechnet: wenn

$$x_1 \equiv x_2 \pmod{n}$$
 also $x_1 - x_2 = kn$
und $y_1 \equiv y_2 \pmod{n}$ also $y_1 - y_2 = mn$

dann auch

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}.$$

• analog zeigt man, dass dann auch

$$x_1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n}$$

denn

$$x_1 \cdot y_1 = (x_2 + kn) \cdot (y_2 + mn) = x_2 \cdot y_2 + (x_2m + ky_2 + km)n$$

also ist $x_1 \cdot y_1 - x_2 \cdot y_2$ offensichtlich ganzzahliges Vielfaches von n.

also kann man mit den Äquivalenzklassen rechnen, indem man immer irgendein Element jeder Ä.klasse hernimmt und mit ihnen rechnet ("repräsentantenweise"); Beispiel n = 5:

$$[3] + [4] = [3+4] = [7] = [2]$$

$$[2] + [3] = [2+3] = [5] = [0]$$
aber auch $[2] + [3] = [7] + [-12] = [7-12] = [-5] = [0]$

$$[2] \cdot [3] = [2 \cdot 3] = [6] = [1]$$

- wann ist $[x] \cdot [y] = [0]$? Dafür muss xy äquivalent zu 0 sein, also Vielfaches von 5. Da 5 eine Primzahl ist, muss dann schon x oder y Vielfaches von 5 gewesen sein, also [x] = [0] oder [y] = [0].
- Es ergeben sich die folgenden Tabellen:

+	[0]	[1]	[2]	[3]	[4]			[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]		[0]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[4]	[0]		[1]	[0]	[1]	[2]	[3]	[4]
[2]	[2]	[3]	[4]	[0]	[1]	und	[2]	[0]	[2]	[4]	[1]	[3]
[3]	[3]	[4]	[0]	[1]	[2]		[3]	[0]	[3]	[1]	[4]	[2]
[4]	[4]	[0]	[1]	[2]	[3]		[4]	[0]	[4]	[3]	[2]	[1]

18.3 HALBORDNUNGEN

18.3.1 Grundlegende Definitionen

- Man erarbeite, dass die Relation \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \iff \exists u : vu = w$ eine Halbordnung ist:
 - Reflexivität: gilt wegen $w_1\varepsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq_p w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_1$. Also ist $w_1u_1u_2 = w_2u_2 = w_1$. Also muss $|u_1u_2| = 0$ sein, also $u_1 = u_2 = \varepsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq_p w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq_p w_3$.
- Das folgende ist *keine* Halbordnung auf A^* : $w_1 \subseteq w_2 \iff |w_1| \le |w_2|$. Studenten überlegen lassen: Antisymmetrie ist verletzt. (Reflexivität und Transitivität sind erfüllt.)
- Vielleicht noch mal Rekapitulation des Begriffs "Potenzmenge"?
- die drei Eigenschaften von Halbordnungen für \subseteq auf 2^M durchgehen ...

Hasse-Diagramm

- man lässt überall die trivial ergänzbaren Kringel weg
- und lässt von den übrigen Pfeilen diejenigen weg, die man aus anderen mittels Transitivität "konstruieren" kann

18.3.2 "Extreme" Elemente

• Man male Hassediagramme von Halbordnungen, bei denen irgendwelche Teilmengen kleinste/größte/.... Elemente besitzen oder nicht besitzen.

18.3.3 Vollständige Halbordnungen

18.3.4 Stetige Abbildungen auf vollständigen Halbordnungen

- Aus dem Skript: Gegeben sei Terminalzeichenalphabet $T = \{a, b\}$ und als halbgeordnete Menge D die Potenzmenge $D = 2^{T^*}$ der Menge aller Wörter mit Inklusion als Halbordnungsrelation. Die Elemente der Halbordnung sind also Mengen von Wörtern, d. h. formale Sprachen. Kleinstes Element der Halbordnung ist die leere Menge \emptyset . Wie weiter vorne erwähnt, ist diese Halbordnung vollständig.
- Es sei $v \in T^*$ ein Wort und $f_v : D \to D$ die Abbildung $f_v(L) = \{v\}L$, die vor jedes Wort von L vorne v konkateniert.
- Behauptung: f_v ist stetig.
- Beweis: Es sei $L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$ eine Kette und $L = \bigcup L_i$ ihr Supremum. $f_v(L_i) = \{vw \mid w \in L_i\}$, also $\bigcup_i f_v(L_i) = \{vw \mid \exists i \in \mathbb{N}_0 : w \in L_i\} = \{v\}\{w \mid \exists i \in \mathbb{N}_0 : w \in L_i\} = \{v\}\bigcup_i L_i = f(\bigcup_i L_i)$.
- analog für Konkatenation von rechts
- Das ist der wesentliche Teil von dem, was im Skript aus Bequemlichkeit weggelassen wurde bei der letzten Andeutung zu "Grammatiken als Gleichungssysteme".

18.4 ORDNUNGEN

lexikographische Ordnung erster und zweiter Art

- Man betrachte Beispiele für ⊑₁ ("Wörterbuchordnung"):
 - Warum ist aa ⊑₁ aabba?
 - Warum ist aa ⊑₁ bba?
 - Warum ist aaaaa ⊑₁ bba?
 - Warum ist aaaab ⊑₁ aab?
- Man betrachte Beispiele für ⊑₂ (primär nach Länge, erst danach alphabetisch ordnen):
 - Warum ist aa ⊑2 aabba?
 - Warum ist aa ⊑₂ bba?
 - Warum ist bba \sqsubseteq_2 aaaaa? (vergleiche \sqsubseteq_1 !)
 - Warum ist $aab ⊆_2 aaaab$? (vergleiche $⊆_1$!)