EXERCICE N°1

En utilisant le sens de variation de la fonction inverse, déterminer l'intervalle auquel appartient dans chacun des cas suivants :

1)
$$x \in [5; 20]$$

2)
$$x \in [1000; 2000]$$

3)
$$x \in [-4; -1]$$

4)
$$x \in [-5000; -3000]$$

$$x \in [-5000; -3000]$$
 5) $x \in [10^6; 10^{15}]$

6)
$$x \in \left[-\frac{3}{5}; -\frac{1}{2} \right]$$

EXERCICE N°2

Soit x un nombre réel tel que $\frac{1}{10} < x < 1$

Pour chaque proposition, dire si elle est vraie ou fausse en justifiant.

1)
$$\frac{1}{x} > 10$$

2)
$$1 < \frac{1}{x} \le 10$$

3)
$$0 < \frac{1}{r} < 100$$

EXERCICE N°3

Résoudre graphiquement :

1)
$$\frac{1}{x} \leq 4$$

$$2) \qquad \frac{1}{x} \geqslant 2$$

2)
$$\frac{1}{x} \ge 2$$

3) $\frac{1}{x} < -2$

4)
$$\frac{1}{x} > -\frac{1}{2}$$

EXERCICE N°4

Résoudre les équations suivantes pour tout réel x non nul.

1)
$$\frac{-3}{x} = 0$$

2)
$$\frac{4}{x} = \frac{3}{x} + 2$$

3)
$$-\frac{5}{x} + 2 = \frac{3}{x} - 1$$

4)
$$\frac{4}{r} + \frac{1}{2} = 0$$

EXERCICE N°5

Résoudre les inéquations suivantes pour tout nombre réel x non nuls.

1)
$$\frac{2}{x} \le 3$$

2)
$$-\frac{3}{x} > 6$$

3)
$$-\frac{1}{r} + 3 \ge 0$$

4)
$$\frac{3}{x} + 1 \le \frac{4}{x}$$

EXERCICE N°6

On considère un point variable M sur la branche de l'hyperbole représentant la fonction inverse définie par :

$$f(x) = \frac{1}{x}$$
 sur l'intervalle $]0 ; +\infty[$

Comment l'aire du rectangle grisé évolue-t-elle M se déplace sur la branche de lorsque l'hyperbole?

EXERCICE N°1

En utilisant le sens de variation de la fonction inverse, déterminer l'intervalle auquel appartient dans chacun des cas suivants :

1)
$$x \in [5; 20]$$

2)
$$x \in [1000; 2000]$$

3)
$$x \in [-4; -1]$$

4)
$$x \in [-5000; -3000]$$

$$x \in [-5000; -3000]$$
 5) $x \in [10^6; 10^{15}]$

6)
$$x \in \left[-\frac{3}{5}; -\frac{1}{2} \right]$$

EXERCICE N°2

Soit x un nombre réel tel que $\frac{1}{10} < x < 1$

Pour chaque proposition, dire si elle est vraie ou fausse en justifiant.

1)
$$\frac{1}{x} > 10$$

2)
$$1 < \frac{1}{x} \le 10$$

3)
$$0 < \frac{1}{r} < 100$$

EXERCICE N°3

Résoudre graphiquement :

1)
$$\frac{1}{x} \leq 4$$

$$2) \qquad \frac{1}{x} \geqslant 2$$

2)
$$\frac{1}{x} \ge 2$$

3) $\frac{1}{x} < -2$

4)
$$\frac{1}{x} > -\frac{1}{2}$$

EXERCICE N°4

Résoudre les équations suivantes pour tout réel x non nul.

1)
$$\frac{-3}{x} = 0$$

2)
$$\frac{4}{x} = \frac{3}{x} + 2$$

3)
$$-\frac{5}{x} + 2 = \frac{3}{x} - 1$$

4)
$$\frac{4}{r} + \frac{1}{2} = 0$$

EXERCICE N°5

Résoudre les inéquations suivantes pour tout nombre réel x non nuls.

1)
$$\frac{2}{x} \le 3$$

2)
$$-\frac{3}{x} > 6$$

3)
$$-\frac{1}{r} + 3 \ge 0$$

4)
$$\frac{3}{x} + 1 \le \frac{4}{x}$$

EXERCICE N°6

On considère un point variable M sur la branche de l'hyperbole représentant la fonction inverse définie par :

$$f(x) = \frac{1}{x}$$
 sur l'intervalle $]0 ; +\infty[$

Comment l'aire du rectangle grisé évolue-t-elle M se déplace sur la branche de lorsque l'hyperbole?