Part 1

My model's performance: ~0.8613 accuracy

Better Performing

Gradient Boosting	0.782-0.880
Classifier	
MLP Classifier	0.840-0.871
Random Forest	0.825-0.873
Classifier	
SVC	0.664-0.897

Worse Performing

Decision Tree	0.777-0.798
Classifer	
ExtraTree Classifier	0.737-0.775
GaussianNB	0.511
KNeighbours	0.838-0.854
Classifer	
LinearSVC	0.484-0.836
Logistic Regression	0.836-0.842
Passive Aggressive	0.773-0.776
Classifier	
SGD Classifier	0.813-0.819

Part 2

- a) Before implementing the bias mitigation strategy, the model was fairly accurate (80-84%)
- b) The African-American subgroup had relatively high likelihood (~25%) of being predicted to reoffend. Other metrics: Asian and Native subgroups are extremely unlikely to reoffend (close to 0%), Caucasian and "Other" subgroups are both unlikely (~5%), Hispanic subgroup is very unlikely (~4%).
- c) The African-American subgroup was unreasonably likely to be predicted to reoffend. The African-American subgroup had a higher likelihood of being classified as a false positive than all other subgroups: ~6% of all positives were falsely assigned, while for all other classes ~0% of all positives were falsely assigned.
- d) With the class-balanced training, the accuracy is relatively lower (unbalanced: ~92%, balanced 82%) but the bias is significantly lower. The model is overall less likely to classify samples as positive (risk of reoffense). However, in terms of unreasonably high likelihoods of being classified positively, the bias has been sufficiently mitigated: nearly 0% of samples were classified incorrectly (1/729).