

Оптимизация методов предикции воображаемых движений в интерфейсе мозг-компьютер

- Факультет: Радиофизический
- Кафедра: Теории колебаний и автоматического регулирования
- Студент: Михеев Егор

Электроэнцефалография (ЭЭГ)

Является методом электрофизиологического мониторинга для регистрации электрической активности головного мозга. Этот не инвазивный метод, заключается в размещении электродов вдоль скальпа (черепа).

Интерфейсы мозг-компьютер (ИМК)

Это система позволяющая осуществлять обмен информацией между мозгом и вычислительным устройством.

- Медицина управление устройствами позволит помочь парализованным людям, людям с двигательными ограничениями, людям с отсутствующими конечностями.
- Бытовое так же позволит повысить уровень комфорта позволив людям интерактивно и без дополнительных физических действий управлять бытовыми приборами.
- Рекреационные цели построение систем управления в компьютерных играх, дополненной и виртуальной реальности.

Объемная проводимость

Электрический заряд мозга поддерживается миллиардами нейронов. Нейроны электрически заряжены (или «поляризованы») мембранными транспортными белками, которые перекачивают ионы через их мембраны. Нейроны постоянно обменивают ионы с внеклеточной средой, например, для поддержания потенциала покоя и распространения потенциалов действия.

Мозговые ритмы

ЭЭГ показывает колебания на разных частотах

Полоса	Гц	Локализация	Активность
Дельта	< 4	Спереди у взрослых, сзади у детей; Высокоамплитудные волны	Медленный сон
Тета	4-7	Находится в местах, не связанных с задачами	Быстрый сон, сонливость, торможение
Альфа	8- 15	Задние области головы, с обеих сторон, выше по амплитуде на доминирующей стороне. Центральные зоны (c3-c4) в состоянии покоя	Расслабленность
Бета	16- 31	С обеих сторон, симметричное распределение, наиболее очевидное спереди; Волны с малой амплитудой	Активное мышление, сосредоточенность, высокая готовность, тревожность
Гамма	>32	Соматосенсорная кора	Сенсорная обработка, звук, зрение
Мю	8- 12	Сенсомоторная кора	Состояние покоя двигательных нейронов

Большая часть сигналов мозга, наблюдаемого в скальпе ЭЭГ, находится в диапазоне 1-20 Гц

Зеркальные нейроны

Система зеркальных нейронов была открыта в 1990-е у макак [9]. В ходе исследований были обнаружены нейроны, которые возбуждались, когда макаки выполняли простые задания, а также когда макаки наблюдали как кто-то другой выполнял такие же несложные задания.

• зеркальные нейроны возбуждаются не только во время двигательной активности, но также отвечают на намерение

Десинхронизация Мю ритма

Этот метод мониторинга активности мозга основан на том факте, что когда группа нейронов находится в состоянии покоя они, как правило, возбуждаются синхронно. Если оператор МКИ мысленно представит движение («событие»), произойдет десинхронизация (связанная с «событием»). Нейроны, которые до этого возбуждались синхронно, приобретут свои индивидуальные, не похожие друг на друга паттерны возбуждения. Это приведёт к уменьшению амплитуды регистрируемого сигнала

Организация измерений

- ЭЭГ запись получается путем помещения электродов на кожу головы с помощью проводящего геля или пасты
- Месторасположение и названия электродов определяются Международной системой 10-20
- Каждый электрод подключен к одному входу дифференциального усилителя (один усилитель на пару электродов);
- Общий электрод сравнения системы соединен с другим входом каждого дифференциального усилителя. Эти усилители усиливают напряжение между активным электродом и эталонным (обычно 1000-100000 раз, или 60-100 дБ усиления по напряжению)

Синхронный VS Асинхронный

- Асинхронный или спонтанный ЭЭГ сигнал, который может быть просмотрен непосредственно во время записи.
- Связанный с событиями потенциал (ERP) это измеренная реакция мозга, которая является прямым результатом специфического сенсорного, когнитивного или моторного события. Более формально это любой стереотипный электрофизиологический ответ на стимул.

Задача

Оптимизация методов предикции воображаемых движений в интерфейсе мозг-компьютер

Подобрать оптимальные модели предикции воображаемых движений испытуемыми.

- оптимизация сбора обучающих данных (исключение внешних шумов, схема электродов, выбор референтного электрода)
- предварительная "механическая" предобработка данных обучения (границы активностей, удаление зон артефактов)
- оптимизация частотной фильтрации сигнала (выделение диапазона частот, на котором происходит десинхронизация ритмов)
- выбор метода перехода декодирования сигнала (определение признакового пространства для обучения классификатора)
- подбор оптимального алгоритма классификации и его гиперпараметров

Контроль артефактов

• EOG, EMG, EKG

Выбор стратегии декодирования

Данные ЭЭГ представляют собой временной ряд

$$D = \{(x_t, y_t)\}, t \in T = \{1...T\}$$

, состоящий из наблюдений в Т различных моментов времени. Каждое наблюдение содержит показания n датчиков и принадлежащие одному из классов меток, характеризующих соответствующие режимы активностей. Исходное пространство объекты - признаки включает в себя нестационарные колебательные процессы, происходящие на различных частотах, которые не поддаются прямой интерпретации классификаторами. Поэтому необходимо выполнить переход в информативное пространство новых признаков.

Методы декодирования:

- Анализ независимых компонент ІСА
- Метод главных компонент РСА
- Выделение пространственных структур CSP
- Сравнение матриц ковариации в пространстве Римана

Классификация

- LDA Линейный дискриминантный анализатор Фишера
- Наивный Баесовский классификатор
- Метод k-ближайших соседей
- Метод решающих деревьев
- Метод опорных векторов SVM
- Многослойный прецептрон

В рамках данной работы была разработана библиотека классов со следующими возможностями:

- Струкурированная организация сбора и хранения данных эксперимента.
- Пакетная верификация данных эксперимента, позволяющих проводить тестирование моделей классификации
- Пакетная физическая предобработка данных частотная фильтрация, выравнивание длительности эпох, обрезка эпох
- Интеграция с внешней библиотекой обработки данных энцефалографии.
- Интеграция с библиотеками анализа данных

Структура каталогов эксперимента

• Испытание - Генерация или загрузка метаданных испытания. Первым шагом является создание метафайлов по каждому испытанию в эксперименте, можно встроить скрипт в процесс обучения модели, можно сгенерировать уже на готовом наборе данных.

```
from EEG.info import info_exp

root = "C:\\eeg\\01exp\\"
name = "20161210_GSH_001"

test = info_exp(root + name)
test.resp_name = 'Иван Иванов'
test.description = 'Эксперимент с обратной связью'
test.labels_names = [u'шум', u'левое', u'правое', u'отдых']
test.getinfo()
```

- Предобработка данных на этом этапе производится первоначальная "механическая" обработка данных, выравнивается продолжительность активностей, отсеиваются граничные данные сменяющие активности, генерируется standalone файл содержаший в себе все необходимые данные трейнов и тестов для использования в последующей обработке.
- Испытание Выравнивание данных, механический отсев зон появления артефактов файл.

```
from EEG.info import info_exp
from EEG.preprocessing import aligner_exp

root = "C:\\eeg\\01exp\\"
name = "20161129_DBS_001"

test = aligner_exp(root + name)
test.align(250,250)
```

Experiment status: True; Num tests: 12 Align status: True Respondent name: Ольга Ветрова Description: Эксперимент с обратной связью Labels_names: [удалено, отдых, левая, правая] Frequency: 1000 Count train activities: 45 Time of activity: 4500 Type_chanels: eeg Montage: standard_1005 List tests

20161129_173025 20161129_173919 20161129_174505

Частотная фильтрация

Выбор стратегии декодирования

Выбор классификаторов

Предварительный анализ качества классификации.

Алгоритм	MAX	MEAN	MIN	DISP
LDA	1	0.803	0.567	0.129
Наивный Баес	1	0.803	0.533	0.136
К-ближайших соседей	0.967	0.867	0.767	0.056
Деревья решений	0.933	0.786	0.6	0.096
SVM	1	0.844	0.666	0.109
Нейронная сеть	0.933	0.783	0.6	0.102
Логистическая регрессия	0.967	0.728	0.6	0.112
RVC	0.967	0.775	0.367	0.165

Проведение пакетного анализа

- Тесты: 3 респондента с верификацией 10-13 тестирований
- Обрезка переходных зон между активностями: 0 и 150 милисекунд
- Фильтрация частот: 0-20Гц, 10-16Гц, 6-16 Гц
- Декодирование: Метод общих пространственных структур, Матрицы ковариации в пространстве Римана
- Классификаторы: LinearDiscriminantAnalysis, GaussianNB, KNeighborsClassifier, DecisionTreeClassifier, SVC, NN, LogisticRegression

Итого: 252 теста

Результаты:

Плоскость	Метод	Прирост	
Отсечение перехода	150мс	4.56%	
Частотная фильтрация	6-16Гц	10,51%	
Частотная фильтрация	10-16Гц	30.96%	
Декодер	CSP	17%	
Классификатор	LDA	25.78%	
Классификатор	SVC	25.5%	
Классификатор	NB	23.5%	
Классификатор	KN	22.05%	

Выводы

- Самым важным фактором влияющим на улучшение качества предикации является отсечение неинформативных частот.
- Наилучший метод перехода в иное пространство признаков показал метод общих пространственных структур прирост составил существенные 17%
- Среди классификаторов образовался кластер из нескольких методов, с практически одинаковыми результатами, стоит среди них провести оценку дисперсии качества предикации.
- Предположение о существенном улучшении модели при отсечении некоторого временного участка в момент смены активности не подтвердилось.