University of Michigan LoG(M)

Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff

Failure of Converse Theorems of Gauss Sums Modulo ℓ

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff

University of Michigan

February 27, 2025

Failure of the Converse Theorem in Modular Fields

University of Michigan LoG(M)

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff

- **Observation:** Recent work by Bakeberg–Gerbelli-Gauthier–Goodson–Iyengar–Moss–Zhang shows that when we reduce Gauss sums modulo a prime ℓ , distinct characters can yield identical Gauss sums. This contradicts the usual Converse Theorem [2].
 - **Motivation:** Such failures challenge the uniqueness of characters under modular reduction, with potential repercussions in cryptography and coding theory (where mod ℓ operations are common).

Our Plan:

- Investigate these counterexamples for n = 2 in more depth.
- Extend to larger n, aiming to identify precisely when and why the theorem breaks down mod ℓ .
- Refine conjectures regarding character uniqueness in modular settings.
- Utilize SageMath to generate and analyze new examples.

Introduction

University of Michigan LoG(M)

Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin

- Gauss sums are essential in number theory and finite field analysis.
- We break down key concepts before defining Gauss sums rigorously.
- This will provide a structured understanding before analyzing the code.

Definition of a Group

University of Michigan LoG(M)

- A group G is a non-empty set equipped with a binary operation $\cdot : (a, b) \mapsto a \cdot b$, satisfying:
 - **1** Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a, b, c \in G$.
 - 2 Identity: There exists an element e such that $e \cdot a = a \cdot e = a \quad \forall a \in G$.
 - Inverse: Each $a \in G$ has an inverse a^{-1} such that $a \cdot a^{-1} = e$.
- A group is called **abelian** if $a \cdot b = b \cdot a \quad \forall a, b \in G$.
- A group is called **cyclic** if it can be generated by a single element. That is, G is cyclic if there exists an element $a \in G$ such that $G = \langle a \rangle$.

Definition of a Field

University of Michigan LoG(M)

- A **field** \mathbb{F} is a set with two operations: addition (+) and multiplication (·), satisfying:
 - \blacksquare ($\mathbb{F},+$) is an abelian group under addition.
 - **2** $(\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}, \cdot)$ is an abelian group under multiplication.
 - $\begin{tabular}{ll} \textbf{3} & \textbf{There exist identity elements } 0 \in \mathbb{F} \mbox{ (the additive identity)} \\ & \textbf{and } 1 \in \mathbb{F} \mbox{ (the multiplicative identity), such that:} \\ \end{tabular}$

$$a + 0 = a$$
, $a \cdot 1 = a \quad \forall a \in \mathbb{F}$.

- **4** Distributive law: $a \cdot (b+c) = a \cdot b + a \cdot c \quad \forall a,b,c \in \mathbb{F}$.
- A **finite field** (or Galois field) \mathbb{F}_q has q elements, where q is a prime power.
- For every finite field \mathbb{F}_q , the multiplicative group \mathbb{F}_q^* is cyclic.

Example: The Field \mathbb{F}_3

University of Michigan LoG(M)

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff

- Elements: $\mathbb{F}_3 = \{0, 1, 2\}.$
- Identity Elements:
 - Additive identity: 0, since $a + 0 = a \quad \forall a$.
 - Multiplicative identity: 1, since $a \cdot 1 = a \quad \forall a \neq 0$.

Inverses:

- Additive inverse: $1 + (2) = 3 \equiv 0 \pmod{3}$, $2 + (1) \equiv 0 \pmod{3}$, $0 = 0 \pmod{3}$.
- Multiplicative inverse: $1 \cdot (1) = 1 \pmod{3}$, $2 \cdot (2) = 4 \equiv 1 \pmod{3}$.

Example of Closure and Associativity:

- Closure: $1+2=0 \mod 3$, stays in \mathbb{F}_3 .
- Associativity: (1+2)+1=0+1=1 is the same as 1+(2+1)=1+0=1.
- This satisfies all field axioms.

Definition of a character

University of Michigan LoG(M)

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff ■ Let *G* be a finite group of order *n*. A *character* of *G* is a group homomorphism

$$\chi: G \to \mathbb{C}^*$$
.

That is,
$$\chi(g_1g_2)=\chi(g_1)\chi(g_2) \quad \forall g_1,g_2\in G$$

- Since $\chi(1_G \cdot g) = \chi(1_G)\chi(g) \quad \forall g \in G$, we must have $\chi(1_G) = 1$.
- $(\chi(g))^n = \chi(g^n) = \chi(1_G) = 1 \quad \forall g \in G$, so the value of $\chi(g)$ is an *n*th roots of unity.
- **Example:**
 - Let $G = \langle g \rangle$ be a finite cyclic group of order n. Then $\chi(g) = e^{\frac{2\pi i}{n}}$. For a fixed integer j, $0 \le j \le n-1$, the function

$$\chi_j(g^k) = e^{\frac{2\pi i j k}{n}}, k = 0, 1, ..., n-1$$

defines a character of G.

Gauss Sums: Definition

University of Michigan LoG(M)

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff

- The Gauss sum is an element of \mathbb{C} (and is zero when ψ is trivial) and is associated with the field \mathbb{F}_{a^m} .
- Given a finite field \mathbb{F}_{q^m} and two characters:
 - Multiplicative character $\theta : \mathbb{F}_{q^m}^* \to \mathbb{C}^*$.
 - Additive character $\psi : \mathbb{F}_{q^m} \to \mathbb{C}^*$.
 - lacksquare The norm $\mathrm{N}_{\mathbb{F}_{q^m}/\mathbb{F}_q}:\mathbb{F}_{q^m} o\mathbb{F}_q$
 - lacksquare The trace $\mathrm{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}:\mathbb{F}_{q^m} o\mathbb{F}_q$
- The Gauss sum is defined as:

$$G(\theta \times \alpha, \psi) = \sum_{\mathbf{x} \in \mathbb{F}_{q^m}^*} \theta(\mathbf{x}) \, \alpha \left(N_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\mathbf{x}) \right) \, \psi \left(\operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\mathbf{x}) \right),$$

■ The function $\alpha: \mathbb{F}_q^* \to \mathbb{C}^*$ is an additional multiplicative character used for twisting.

Twisted Gauss Sum

University of Michigan LoG(M)

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff **Definition:** We consider the case when m=2. The twisted Gauss sum is an element of $\mathbb C$ (and is zero when ψ is trivial) and is associated with the field $\mathbb F_{q^2}$. If $G(\alpha,\psi)$ is a standard Gauss sum for a multiplicative character α and an additive character ψ , a twisted Gauss sum is of the form:

$$G(\Theta \times \alpha, \Psi) = \sum_{x \in \mathbb{F}_{q^2}^*} \Theta(x) \cdot \alpha(N(x)) \cdot \Psi(\operatorname{tr}(x)), \qquad (1)$$

where:

- $lackbox{ } \Theta$ and lpha are multiplicative characters of $\mathbb{F}_{q^2}^*$, mapping $\mathbb{F}_{q^2}^*$ to \mathbb{C}^* .
- lackloss Ψ is an additive character of \mathbb{F}_{q^2} , mapping \mathbb{F}_{q^2} to \mathbb{C}^* .
- N(x) represents the norm function $N : \mathbb{F}_{q^2} \to \mathbb{F}_q$.
- $\operatorname{tr}(x)$ represents the trace function $\operatorname{tr}: \mathbb{F}_{q^2} \to \mathbb{F}_q$.

The Converse Theorem of Gauss Sums [1]

University of Michigan LoG(M)

James Evans, Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin Yost-Wolff

Theorem

We consider the case when m=2. Consider two multiplicative characters θ_1 and θ_2 of $\mathbb{F}_{q^2}^*$. Let $\psi:\mathbb{F}_q\to\mathbb{C}^*$ be a fixed non-trivial additive character. Suppose $\theta_1\mid_{\mathbb{F}_q^*}=\theta_2\mid_{\mathbb{F}_q^*}$, and suppose \forall multiplicative characters $\alpha:\mathbb{F}_q^*\to\mathbb{C}^*$, the following equality holds:

$$G(\theta_1 \times \alpha, \psi) = G(\theta_2 \times \alpha, \psi),$$

then

$$\theta_1 = \theta_2$$
 or $\theta_1 = \theta_2^q$.

Macro Purpose of the Code

University of Michigan LoG(M)

- The purpose of this code is to generate a **table of Gauss** sums over the finite field \mathbb{F}_{a^2} .
- In this table:
 - Each **row** corresponds to a multiplicative character α .
 - **Each column** corresponds to a multiplicative character θ .
 - \blacksquare The additive character ψ is **fixed** throughout.
- For a given pair (θ, α) , the table stores the value of the twisted Gauss sum: $G(\theta \times \alpha, \psi)$.

Constructing the Table

University of Michigan LoG(M)

- The multiplicative generator of $\mathbb{F}_{q^2}^*$ is used to systematically construct different possible characters.
- Raising the generator to different powers gives distinct character mappings for α and θ .
- Each row and each column corresponds to a different possible character created from the generator.
- An entry in the table represents the twisted Gauss sum for the combination of those two particular characters.

Relation to the Converse Theorem

University of Michigan LoG(M)

- This structure allows us to compare different character mappings.
- The table provides a framework for analyzing the behavior of twisted Gauss sums in relation to the Converse Theorem.
- Understanding how character mappings interact helps in proving or refuting generalizations of Gauss sum identities.

Gauss Sum Table Example Output

University of Michigan LoG(M)

$\theta \backslash \alpha$	0	1		q-1
0	G(0,0)	G(0,1)		G(0, q-1)
1	G(1,0)	G(1, 1)		G(1,q-1)
2	G(2,0)	G(2,1)		G(2,q-1)
:	:	:	٠.	:
$q^{2} - 1$	$G(q^2-1,0)$	$G(q^2-1,1)$		$G(q^2-1,q-1)$

Applying the Converse Theorem

University of Michigan LoG(M)

- The Converse Theorem of Gauss Sums states that if two multiplicative characters produce identical Gauss sums across all additive characters ψ and all multiplicative characters α , then θ_1 and θ_2 must be identical or related by a well-understood transformation.
- In the Gauss sum table, each row corresponds to a different multiplicative character θ , and each column corresponds to a different multiplicative character α .
- To apply the theorem:
 - Identify two rows in the table where all entries match across all ψ and α values.
 - Highlight these rows and investigate the corresponding θ_1 and θ_2 .
 - Check whether θ_1 and θ_2 are identical or related by a known transformation.
- This process helps verify whether the Converse Theorem holds in our computed Gauss sum table

References

University of Michigan LoG(M)

Acknowledgments

University of Michigan LoG(M)

Xinning Ma, Yanshun Zhang Mentors: Dr. Elad Zelingher, Calvin

Thank You!

We extend our gratitude to:

Dr. Elad Zelingher and Calvin Yost-Wolff

for their guidance, insights, and contributions to this research.