Zadania Spotkanie nr 7 **MITP**

ISTOTNE UWAGI DO PONIŻSZYCH ZADAŃ:

- Nie należy stosować zmiennych globalnych;
- Kod winien być pisany przejrzyście z uwzględnieniem wcięć podkreślających poziom polecenia;
- Przed przystąpieniem do wykonania obu zadań proszę zapoznać się ze strukturą przykładowych plików nagłówkowych, na przykład: stdio.h, stdlib.h czy math.h

Proszę zwrócić uwagę na ostatnią linijkę w każdym pliku nagłówkowym.

Czym ona jest i z którymi wierszami tego pliku jest powiązana?

Dlaczego stosujemy warunki przy dołączaniu plików nagłowkowych?

Znając odpowiedzi na powyższe pytania zaproponuj odpowiednią strukturę własnych plików nagłówkowych tj. zawierających definicję odpowiedniej stałej symbolicznej1.

Zad. 14.

W oparciu o definicję struktury POINT zawierającą informację o współrzędnych punktu na płaszczyźnie należy zdefiniować dwie funkcje area i perimeter, a zwracające odpowiednio wartość pola i odwodu trójkąta o wierzchołkach przekazanych do funkcji.

Odpowiednie deklaracje i definicje struktury przedstawiono poniżej:

```
struct POINT;
float area( struct POINT, struct POINT, struct POINT );
float perimeter( struct POINT, struct POINT, struct POINT );
struct POINT {
   int x;
   int y;
};
```

Dodatkowe uwagi:

- Deklaracje struktury i obu funkcji a także definicje struktury należy umieścić w pliku nagłówkowym o nazwie: point.h. Każdą definicję funkcji umieszczamy osobno w danym pliku o stosownych nazwach odpowiadających nazwie danej funkcji tj. area.c i perimeter.c,
- Następnie proszę napisać krótki program testujący (zad14.c), który pobiera od użytkownika współrzędne wierzchołków trójkąta i wypisuje wartość pola i obwodu trójkąta.
- Proszę zwrócić uwagę, że nie każda biblioteka jest dostępna i przed wykonaniem zadania należy zapoznać się opcjami: 1 i L kompilatora gcc.
- Proszę nie stosować typedef a nagłówki definiowanych funkcji muszą być w pełni zgodne z ich deklaracjami, które podano w zadaniu.
- Wartość pola trójkąta należy wyliczać bez korzystania z pierwiastka kwadratowego. (Proszę zastanowić się dlaczego...)
- W powyższych funkcjach nie należy używać żadnych funkcji wejścia-wyjścia (printf, czy scanf). Zaimplementowane funkcje mają odebrać wartość zmiennych strukturalnych, wykonać zadane obliczenia i zwrócić odpowiednią wartość – innymi słowy nie stosujemy pobierania i wypisywania wartości wewnątrz tych funkcji. (Proszę zastanowić się, dlaczego tak powinno się postępować.)

```
<sup>1</sup> Przykładowy ostatni wiersz z pliku stdio.h
          pod macOS:
                                                       pod Debian Linux:
       % tail -1 stdio.h
                                                 % tail -1 stdio.h
       #endif /* _STDIO_H_ */
```

Należy znaleźć inne wiersze, gdzie zdefiniowano stosowną stałą symboliczną oraz zastanowić się jak jest ona powiązana z nazwą pliku. Znalezienie stosownych wierszy pozwoli zrozumieć strukturę plików nagłówkowych i kompilację warunkową. Na przykład za pomocą:

#endif /* !_STDIO_H */

```
% grep _STDIO_H /usr/include/stdio.h | head -2
% grep _STDLIB_H /usr/include/stdlib.h | head -2
% grep _MATH_H /usr/include/math.h | head -2
```

Proszę utworzyć stosowny plik nagłówkowy: matrix.h w którym należy umieścić deklaracje stosownych funkcji, definicję struktury MATRIX_S oraz wprowadzić za pomocą polecenia typedef nazwę MATRIX stanowiącą alias dla struktury MATRIX_S. Definicja struktury została przedstawiona w ramce. Deklaracje oznaczone nawiasem klamrowym należy potraktować jako pewne propozycje i zmodyfikować je zgodnie z potrzebami. Wykorzystując zdefiniowany alias proszę utworzyć również brakujące deklaracje funkcji a następnie definicje wszystkich funkcji oraz program testujący ich działanie (zad15.c). Opis działania funkcji przedstawiono w tabeli.

```
struct MATRIX S {
   int x; /* liczba wierszy */
   int y; /* liczba kolumn */
   int * wsk; /* adres tablicy x*y elementowej */
                                                      Proszę zastanowić się i zaproponować
MATRIX m create(int, int);
                                                       własne deklaracje funkcji, kiedy będzie
                                                      to potrzebne, rozważając:
int m_remove(MATRIX * );
                                                         jak najlepiej przekazywać zmienną
int m scanf(MATRIX *, int, int);
                                                         strukturalną do danej funkcji.
                                                         czy w każdym języku (C/C++)
int m scanf (MATRIX *);
                                                         można przeciążać funkcje
int m printf(MATRIX);
```

m_create	Tworzy zmienną typu MATRIX na podstawie przekazanego rozmiaru. <u>UWAGA</u> : Wewnątrz zmiennej należy utworzyć dynamicznie tablicę jednowymiarową o rozmiarze stanowiącym iloczyn liczby wierszy i liczby kolumn. Funkcja zwraca wartość MATRIX z odpowiednio ustawionymi polami. Jeśli tablica nie została utworzona to wartości wszystkich pól mają być wyzerowane;
m_remove	Zwalnia pamięć i zeruje wartości w zmiennej typu MATRIX . <u>UWAGA</u> : Funkcja zwraca wartość 1 jeśli operacja została wykonana poprawnie lub 0 gdy nie udało się wykonać czynności – na przykład przekazany adres zmiennej typu MATRIX wynosi NULL ;
m_get	Pozwala na odczytanie wartości znajdujących się w określonym miejscu (współrzędne) określonej macierzy;
m_put	Pozwala wstawić określoną wartość w określone miejsce danej macierzy;
m_printf	Wyświetla strukturę macierzy tj. wartości poszczególnych komórek macierzy. UWAGA: Funkcja zwraca wartość 1 jeśli operacja została wykonana poprawnie lub 0 gdy nie udało się wykonać czynności – na przykład wartość pola wsk wynosi NULL lub wartości dowolnego pola rozmiaru są mniejsze lub równe zero;
m_scanf m_scanf_	Proszę zaproponować dwie różne implementacje funkcji. W pierwszym przypadku dana funkcja pozwala wypełnić wartościami (przekazanym od użytkownika w trakcie działania tej funkcji) całą istniejącą macierz. W drugim przypadku powinna sprawdzić, czy macierz istnieje, a jeśli tak, to czy rozmiary są zgodne i w zależności od tego utworzyć macierz, jeśli tablica wartości nie istnieje, wykorzystać, jeśli istnieje i rozmiar jej zgodny to ją wykorzystać, jeśli jest inny, to zwolnić pamięć i utworzyć na nowo właściwy obszar lub użyć realloc do zmiany rozmiaru pamięci. Po weryfikacji przekazanej macierzy i ewentualnym wykonaniu opisanych czynności funkcja ta powinna później zadziałać jak jej poprzedni odpowiednik (może warto wywołać wtedy w odpowiedni sposób: m_scanf?); UWAGA: Proszę zwrócić uwagę, że przeciążanie funkcji pojawia się dopiero w C++. Funkcje zwracają wartość stanowiącą rozmiar tablicy w bajtach lub zero, jeśli pojawił się problem, na przykład przekazano niewłaściwy rozmiar macierzy, nie udało się zmienić rozmiaru tablicy, itp.

Dodatkowe uwagi:

- Tylko w funkcjach: m_printf i m_scanf można używać funkcji wejścia-wyjścia (printf i scanf). Pozostałe funkcji służą tylko i wyłącznie do wykonania pewnych działań i komunikacja z użytkownikiem bezpośrednio nie zachodzi
- Jeśli funkcje nie mają zwracać specyficznej wartości np. wartości elementu macierzy, to należy przyjąć zasadę, że zwracają one wartość **0** w przypadku błędu. (Szczegóły opisano w tabelce powyżej)
- Należy zapoznać się z poleceniem **typedef** a następnie zdefiniować alias **MATRIX** dla struktury **MATRIX** S;
- Deklaracje (oraz def. struktury i aliasu **MATRIX**) należy umieścić w pliku nagłówkowym: **matrix.h**, definicje funkcji w osobnych plikach (<u>każda</u> funkcja w <u>osobnym pliku</u>!!! o nazwie takiej jak nazwa funkcji + rozszerzenie .c)