

CIRCUITOS ELÉCTRICOS

Problemas resolvidos

Circuitos Eléctricos - 2019/2020

- 1 Efectuaram-se as seguintes medições de tensão aos terminais de uma fonte de alimentação DC de laboratório:
- > 75V, com a fonte em aberto;
- \succ 60V, tendo-se ligado previamente uma resistência de 20 Ω entre os terminais da fonte.

Com base nestes dados, calcule o equivalente de Thévenin da fonte de alimentação.

Como sabemos, uma fonte de tensão real pode representarse pelo circuito...

... que tem, portanto, a mesma forma que o equivalente de Thévenin dessa fonte, com $v_T = v_S$ e $R_T = R_i$.

IV-3

Circuitos Eléctricos - 2019/2020

Antes de prosseguir, recordemos, mais um vez, o omnipresente e infinitamente recorrente, divisor de tensão © ...

Divisor de tensão

$$v_2 = \frac{R_2}{R_1 + R_2} v_s$$

Medição em circuito aberto: 75V

$$v_{oc} = 75V = v_T$$

Medição com resistência de 20Ω : 60V

$$v_R = \frac{20}{R_T + 20} \, 75 = 60V$$

$$R_T = 5\Omega$$

IV-5

Circuitos Eléctricos - 2019/2020

O equivalente de Thévenin da fonte de alimentação é portanto.

2 – Calcule os equivalentes de Thévenin e de Norton entre os terminais A e B do circuito.

IV-7

Circuitos Eléctricos - 2019/2020

1º Passo: Comecemos por determinar a resistência de Thévenin (R_T) que é, como sabemos, igual à resistência de Norton (R_N) .

Segundo a definição, esta resistência é:

• a resistência equivalente vista aos terminais do circuito quando este é desativado, ou seja, quando todas as fontes independentes de tensão são curto-circuitadas e todas as fontes independentes de corrente são abertas (as fontes dependentes mantêm-se).

desactivando as fontes...

Circuitos Eléctricos - 2019/2020

2º Passo: calculo de ou v_T e i_N

Equivalente de Thévenin

Equivalente de Norton

Sabemos que $i_N = v_T/R_T$

portanto, podemos optar por determinar ou v_T ou i_N ... o que for mais fácil de obter!

IV-11

Circuitos Eléctricos - 2019/2020

v_T é igual à tensão em circuito aberto

i_N é igual à corrente de curto-circuito

Calculemos a tensão em circuito aberto

Usando análise nodal

Nó v_x :

$$\frac{500 - v_x}{8} = \frac{v_x}{12} + \frac{v_x - v_T}{5.2}$$

Nó A:

$$10 + \frac{500 - v_T}{30} + \frac{v_x - v_T}{5.2} = 0$$

Resolvendo...

$$v_x = 360V$$

$$v_T = 425V$$

IV-13

Circuitos Eléctricos - 2019/2020

O cálculo da corrente de curto-circuito seria, no entanto, mais fácil!...

$$i_N = 10 + i_1 + i_2$$
$$= 10 + \frac{500}{30} + \frac{v_y}{5.2}$$

$$v_y = \frac{5.2//12}{8 + (5.2//12)} 500 = 156.1V$$

$$i_N = 56.67A$$

Os equivalentes de Thévenin e de Norton são portanto

Equivalente de Thévenin

Equivalente de Norton

Notar que, como era de esperar, verifica-se $i_N = v_T/R_T$

Nota: Neste problema fizemos duas análises separadas para obter v_T e i_N mas em geral basta calcular um destes valores. O outro obtém-se usando a relação acima.

IV-15

Circuitos Eléctricos - 2019/2020

- 3 Calcule:
- a) A potência dissipada na resistência de 4Ω ;
- b) O novo valor que esta resistência deve ter de forma a que dissipe, neste circuito, a potência máxima.

Dado que

- \succ as duas alíneas do problema se referem à resistência de 4Ω ;
- uma delas remete para o Teorema da Máxima Transferência de Potência...

... a melhor estratégia passa por determinar primeiro o Equivalente de Thévenin visto por esta resistência.

IV-17

Circuitos Eléctricos - 2019/2020

Começemos por simplificar o circuito...

IV-18

Este é o circuito *visto* pela resistência de 4Ω

Vamos portanto calcular o Equivalente de Thévenin entre A e B

IV-19

Circuitos Eléctricos - 2019/2020

Resistência equivalente

Tensão em circuito aberto

Nó A:

$$\frac{20 - v_T}{8} = \frac{v_T}{2} + 5$$

Resolvendo...

$$v_T = -4V$$

Com o Equivalente de Thévenin é agora muito fácil responder às questões:

Equivalente de Thévenin

a) A potência dissipada na resistência de 4Ω ?

$$P = RI^{2}$$

$$= 4\left(\frac{-4}{4+1.6}\right)^{2}$$

$$= 2.04W$$

IV-21

Circuitos Eléctricos - 2019/2020

b) Novo valor da resistência de forma a que dissipe a potência máxima?

Equivalente de Thévenin

Teorema da máxima transferência de potência: Uma fonte real de tensão com resistência interna R_S , fornece a potência máxima quando a resistência de carga tem o valor $R_L = R_S$

Portanto, o novo valor da resistência deve ser 1.6Ω .

- 4 Um amperímetro é usado para medir a corrente i_0 , indicando o valor 2.1A. Determine:
- a) A resistência interna do amperímetro;
- b) A percentagem de erro introduzida pelo amperímetro na medição.

IV-23

Circuitos Eléctricos - 2019/2020

O problema diz respeito ao ramo onde está a resistência de 4.8Ω, portanto o melhor é começarmos por determinar o Equivalente de Thévenin visto por esta resistência.

Dado que o circuito inclui uma fonte dependente, vamos usar aqui o Método Universal, substituindo a resistência de 4.8Ω por uma fonte de tensão de teste, de valor ν .

Aplicação do Método Universal

• Vamos então analisar o circuito de forma a obter uma expressão de *v* em função de *i*, com a forma

$$v = ai + b$$

Dos coeficientes a e b concluiremos

$$R_T = a$$
 e $v_T = b$

IV-25

Circuitos Eléctricos - 2019/2020

Usando análise nodal...

Nó v:
$$\frac{24-v}{2} + i = \frac{v-v_x}{4}$$

Nó
$$v_x$$
: $\frac{v - v_x}{4} = 2.5i_0 + \frac{v_x}{16}$

Sabendo que $i_0 = -i$ obtém-se

$$\begin{cases} v + 10i = \frac{5}{4}v_x \\ -3v + 4i = -v_x - 48 \end{cases}$$

Eliminando v_x , obtemos...

Circuitos Eléctricos - 2019/2020

Modelo do amperímetro

Podemos considerar que o amperímetro usado na medição é constituído por um amperímetro ideal em série com uma resistência.

Ligar o amperimetro em série com a resistência de 4.8Ω no circuito original, é o mesmo que ligar este conjunto ao Equivalente de Thévenin determinado:

IV-29

Circuitos Eléctricos - 2019/2020

Nestas condições o valor medido de i_0 foi 2.1A, portanto

$$\frac{240/11}{(60/11) + R_A + 4.8} = 2.1$$

$$R_{\Delta} = 135m\Omega$$

Sem o amperímetro presente no circuito o valor de i_{θ} seria

$$\frac{240/11}{(60/11)+4.8} = 2.13A$$

O erro introduzido pelo amperímetro é portanto
$$\frac{2.1-2.13}{2.13} = -0.014 \rightarrow -1.4\%$$

IV-31

Circuitos Eléctricos - 2019/2020

5 – Determine o equivalente de Thévenin entre os terminais A e B do circuito.

Como o circuito contém uma fonte dependente, vamos usar o Método Universal.

Por um lado:
$$v_1 = \frac{5}{5+10}v_2 = \frac{v_2}{3}$$

... e por outro:
$$v_2 = 6v_z = 6(100 - v_1)$$

IV-33

Circuitos Eléctricos - 2019/2020

Conjugando as duas equações obtemos $v_2 = 200V$

$$i = \frac{v - 200}{40} \Leftrightarrow v = 40i + 200$$

Equivalente de Thévenin

Portanto

$$v_T = 200V$$
 $R_T = 40\Omega$

6 – Determine a resistência equivalente entre os terminais X e Y.

IV-35

Circuitos Eléctricos - 2019/2020

Note-se, antes de mais, que este circuito não permite associação de resistências em série ou em paralelo para obter R_{eq} .

Na prática, se tivéssemos que medir esta resistência, aplicaríamos uma tensão ν entre os terminais X e Y, mediamos a corrente i e, finalmente, calcularíamos R_{eq} fazendo $R_{eq} = \nu/i$.

É isso mesmo que podemos fazer!

Usando análise nodal...

Nó v_1 :

$$\frac{v_1}{30} + \frac{v_1 - v_2}{10} + \frac{v_1 - v}{10} = 0$$

Nó v_2 :

$$\frac{v_2}{20} + \frac{v_2 - v_1}{10} + \frac{v_2 - v}{50} = 0$$

Usando KCL no nó inferior...

$$\frac{v_1}{30} + \frac{v_2}{20} = i$$

Eliminando as incógnitas v_1 e v_2 obtemos...

$$\frac{v}{i} = 21.7\Omega = R_{eq}$$

IV-37

Circuitos Eléctricos - 2019/2020

- 7 Um condensador de $0.25\mu F$ é percorrido pela corrente i do gráfico abaixo. Sabendo que v(0) = 0, calcule
- a) A carga no condensador para $t = 15 \mu s$;
- b) A tensão no condensador para t = 30 μs;
- c) A energia armazenada no condensador para $t > 50 \mu s$.

• A partir do gráfico dado poderíamos começar por exprimir algebricamente i(t), integrando depois as equações correspondentes a cada intervalo de tempo, de forma a responder às questões pedidas.

• ... mas uma maneira mais expedita de chegar lá é calculando áreas.

Vejamos:

IV-39

Circuitos Eléctricos - 2019/2020

a)
$$q(t = 15 \mu s) = ?$$

Num qualquer instante *t*₁ a carga no condensador pode ser calculada por

$$q(t_1) = \int_{0}^{t_1} i(t)dt + q(0)$$

Como $v(\theta) = 0$, então $q(\theta) = 0$ e a carga pode ser obtida calculando a área:

$$\acute{A}rea_{[0,15]} = \frac{5x400}{2} + (15-5)x400 = 5000nC = 5\mu C$$

b)
$$v(t = 30 \mu s) = ?$$

Num qualquer instante t₁ a tensão no condensador é dada por

$$v(t_1) = \frac{1}{C} \int_{0}^{t_1} i(t)dt + v(0)$$

Calculamos então a área de 0

a 30 µs :

$$\acute{A}rea_{[0,30]} = \acute{A}rea_{[0,15]} + (20 - 15)x400 - \left[(30 - 20)x200 + \frac{(30 - 20)x100}{2} \right]$$

$$\acute{A}rea_{[0,30]} = 4.5 \mu C \qquad \rightarrow \qquad v(30 \mu s) = \frac{4.5 \mu C}{0.25 \mu F} = 18V$$

IV-41

Circuitos Eléctricos - 2019/2020

c)
$$E_C(t = 50 \mu s) = ?$$

Calculamos *v(50 µs)* pela área total

$$v(50\mu s) = \frac{2.5\mu C}{0.25\mu F} = 10V$$

$$\rightarrow E_{\rm C}(50\mu s) = \frac{1}{2}Cv^2 = \frac{1}{2}x0.25x10^2 = 12.5\mu J$$

8 – Determine o valor da capacidade equivalente no circuito abaixo. Todos os condensadores são de 1μF.

IV-43

Circuitos Eléctricos - 2019/2020

Como sempre, começamos por redesenhar o circuito de maneira a evidenciar séries e paralelos...

IV-45

9 – No circuito abaixo considere $i_1(0) = 20mA$. Calcule

- a) A tensão v(t);
- b) A energia armazenada na bobina de 6H em t = 5ms.

IV-47

Circuitos Eléctricos - 2019/2020

$$i_{1}(t) = \frac{1}{L} \int_{0}^{t} v(t)dt + i_{1}(0) = \frac{1}{6} \int_{0}^{t} -28.8e^{-200t}dt + 0.02$$

$$= \frac{1}{6} \left(-\frac{1}{200} \right) (-28.8)e^{-200t} \Big|_{0}^{t} + 0.02 = 24e^{-200t} - 4 \quad [mA]$$

$$i_{1}(5ms) = 4.83mA \qquad W = \frac{1}{2} Li_{1}^{2} = 70 \mu J$$

IV-49

Circuitos Eléctricos - 2019/2020

10 – Usando o Principio da Sobreposição, calcule no circuito abaixo

- a) $v_C(t)$;
- b) $v_I(t)$.

Circuitos Eléctricos - 2019/2020

1) Considerando só as fontes DC

Do circuito tiramos: $v_{L1} = 0V$

$$i_R + 20 = 30 \iff i_R = 10mA$$

 $-v_{C1} + v_R + 9 = 0 \iff v_{C1} = 9 + (20x0.01) = 9.2V$

IV-53

Circuitos Eléctricos - 2019/2020

2) Considerando só a fonte AC

Do circuito tiramos: $v_{C2} = 0V$

$$v_{L2}(t) = -L\frac{d}{dt}i(t) = -0.06\frac{d}{dt}(0.04\cos 10^3 t) = 2.4\sin 10^3 t$$
 [V]

Aplicando o Teorema da Sobreposição:

$$v_C(t) = v_{C1} + v_{C2} = 9.2 + 0 = 9.2V$$

$$v_L(t) = v_{L1} + v_{L2} = 0 + 2.4 \sin 10^3 t = 2.4 \sin 10^3 t$$
 [V]

11 – Sabendo que, no circuito abaixo, i(t) é dada por

$$i(t) = 5e^{-2000t} \cos 4000t \quad [A] \quad t \ge 0$$

Calcule $v_L(\theta)$ e $v_C(\theta)$.

 40Ω

IV-55

Circuitos Eléctricos - 2019/2020

Começamos por calcular a tensão na bobina

$$v_L = L \frac{d}{dt} i(t)$$

$$=0.01\frac{d}{dt} \left(5e^{-2000t}\cos 4000t\right)$$

$$=0.01\left[5(-2000)e^{-2000t}\cos 4000t + 5e^{-2000t}(-4000\sin 4000t)\right]$$

$$v_L = -100e^{-2000t} (\cos 4000t + 2\sin 4000t)$$
 [V]

IV-55

Calculamos agora os valores

para t = 0

$$v_L = -100e^{-2000t} (\cos 4000t + 2\sin 4000t)$$

$$v_L(0) = -100V$$

Aplicando KVL:

$$-v_C(0) + v_R(0) + v_L(0) = 0$$
$$v_C(0) = 40i(0) - 100$$

$$v_C(0) = 40x5 - 100 = 100V$$

$$i(t) = 5e^{-2000t} \cos 4000t$$
$$i(0) = 5A$$

IV-57