• Prove De Morgan's Law

Proof.
$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$
,

- 1. $(A \cup B)^{\complement} \subseteq A^{\complement} \cap B^{\complement}$ Let $x \in (A \cup B)^{\complement}$, so $x \notin (A \cup B)$, definition complement, and $x \notin A$ or $x \notin B$, definition \cup ,
 - (a) $x \notin A$ then $x \in A^{\complement}$, definition complement, and $x \in A^{\complement} \cap B^{\complement}$ by composition
 - (b) Follows from 1a.

$$(A \cup B)^{\complement} \subseteq A^{\complement} \cap B^{\complement}$$

2.
$$A^{\complement} \cap B^{\complement} \subseteq (A \cup B)^{\complement}$$

Let $x \in A^{\complement} \cup B^{\complement}$,
so $x \in A^{\complement}$ and $x \in B^{\complement}$ by definition \cap ,
which implies $x \notin A$ or $x \notin B$ by definition complement,
and $x \notin (A \cup B)$ definition \cup ,
so $x \in (A \cup B)^{\complement}$ definition complement,
 $\therefore (A^{\complement} \cap B^{\complement}) \subseteq (A \cup B)^{\complement}$
which means that $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$

Q.E.D.

Prove Triangle Inequality using cases Show $|x + y| \le |x| + |y|$

Proof.

This means that we have four cases to consider,

- 1. $x \ge 0, y \ge 0$
- 2. $x \ge 0, y < 0$
- 3. x < 0, y > 0
- 4. x < 0, y < 0

1.
$$|x + y| = x + y$$

and
 $|x| + |y| = x + y$
 $\implies |x + y| = |x| + |y|$
and $|x + y| \le |x| + |y|$
2.

1.
$$|y| \ge x$$

 $|x+y| = -(x+y)$
and
 $|x| + |y| = x - y$

$$\implies 0 \le x$$
and $0 \le 2x \implies 0 \le x + x$

$$\implies -y \le x + x - y$$

$$\implies -x - y \le x - y$$

$$\implies -(x + y) \le x - y$$

$$\implies |x + y| = -(x + y) \le x - y = |x| + |y|$$

$$\implies |x + y| \le |x| + |y|$$

$$\implies |x + y| \le |x| + |y|$$

- 2. |y| < x which implies |x + y| = x + y and |x| + |y| = x y, y < 0 by assumption, $\implies 2y < 0$, $x + y \le x y$,
- **3.** Follows from 2

4.
$$|x+y| = -(x+y) = -x - y$$

and so $|x| + |y| = -x - y$
$$\implies |x+y| = |x| + |y|$$
$$\implies |x+y| \le |x| + |y|$$

Q.E.D.

Example 1.3.5 Determine the set $a = \{x \mid |x - 17| = |2x + 8|$

Example 1.3.6 For $c \ge 0$, define the set $A_c = \{x \mid |x-2| + |x-10| = c\}$