Name:

Yashank Rajvanshi

Project Title:

Predicting Customer Subscription to Bank Term Deposits Using Machine Learning

Business/Problem Context:

Banks often run marketing campaigns to encourage customers to subscribe to term deposits. However, reaching out to all customers is costly and inefficient. Many customers are unlikely to subscribe, while a small subset is highly likely. By predicting which customers are most likely to subscribe, banks can:

- Reduce marketing costs
- Increase campaign effectiveness
- Improve customer targeting and satisfaction

Objective Statement:

Build and deploy a machine learning model to predict whether a customer will subscribe to a term deposit. The goal is to achieve a high predictive performance while handling class imbalance, enabling the bank to prioritize customers with the highest probability of conversion.

Problem Type:

This is a **supervised machine learning classification problem**.

The goal is to predict whether a customer will subscribe to a term deposit after a marketing campaign.

Target Variable:

y → Binary categorical outcome:

- o "yes" → client subscribed
- o "no" → client did not subscribe

Key Input Features (Predictors):

Demographic / Client Information

- age (numeric)
- job (categorical: management, technician, etc.)
- marital (categorical: married, single, divorced)
- education (categorical: primary, secondary, tertiary, unknown)
- default (binary: yes, no)
- housing (binary: yes, no)
- loan (binary: yes, no)

o Contact & Campaign-Related Information

- contact (categorical: unknown, cellular, telephone)
- day (numeric: last contact day of the month)
- month (categorical: jan, feb, ..., dec)
- duration (numeric: last contact duration in seconds)
- campaign (numeric: number of contacts during this campaign)
- pdays (numeric: days since client was last contacted; -1 = never contacted)
- previous (numeric: number of contacts before this campaign)
- poutcome (categorical: outcome of previous campaign)

Assumptions:

- 1. All records in the dataset are independent.
- 2. Target variable y is correctly labeled.
- 3. Past contact information (pdays, previous, poutcome) is reliable and consistent.

Dataset Source:

Link - <u>bank-full-dataset.csv</u> (As given by administrator)

- Dataset was quite clean
- The target balance was not quite favorable (like 1:10 ratio, kind of), which might have impacted my recall rate.

Data Description:

- Shape (45211, 17)
- Features ['age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan',
 'contact', 'day', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'y']
- Missing Value Check –

Class Balance (Target Variable – 'y'):

Preprocessing:

- Outlier Detection
 - These are real customer cases, not data errors. Removing them could throw away valuable information about high-net-worth customers, who might behave very differently in term deposit subscriptions.
 - The dataset is already **imbalanced** (~11–12% "Yes", ~88–89% "No"). Outlier removal tends to disproportionately drop rare positive cases (e.g., people who subscribed but had unusual balances/durations).
 - Unlike linear models, tree-based models are robust to outliers. So outliers don't distort the model — they just become part of separate branches.

Encoding –

- For features like age, balance, duration, campaign, etc., you kept them as is (the model handles numeric features natively). No scaling/normalization was needed because tree-based models (like CatBoost) split based on thresholds, not distances.
- For features like job, marital, education, default, housing, loan, contact, month, poutcome → you applied OneHotEncoder inside a ColumnTransformer. This means each category (e.g., job=admin. or job=technician) was converted into a binary column (0/1).

Exploratory Data Analysis:

Contact Type vs Subscription (Target)

o Campaign Variables vs Subscription (Target)

Models:

1. Logistic Regression (Baseline)

- o It's a simple, interpretable linear model.
- Provides probability outputs, which are useful for business decision-making (e.g., probability of term deposit subscription).
- Serves as a baseline model to compare more advanced methods against.

2. Decision Tree

- Intuitive and easy to visualize/interpret good for explaining "decision rules" to business users.
- Naturally handles both numeric and categorical data (after encoding).
- o Captures nonlinear relationships and feature interactions.

3. LightGBM (Gradient Boosting Trees)

- o One of the fastest and most efficient boosting algorithms.
- Handles large datasets and imbalanced classes effectively.
- Known for high accuracy in tabular data problems.

4. CatBoost (Categorical Boosting)

- Specifically designed to handle categorical features directly, without heavy preprocessing (like one-hot encoding).
- Excellent performance on structured/tabular data, especially marketing datasets with many categorical variables.
- Provides state-of-the-art performance with less hyperparameter tuning compared to other boosting methods.

Feature Engineering:

Domain Knowledge Features:

- Age Bucket Instead of using age as a raw continuous variable, you're grouping customers into age categories. Bucketing helps capture nonlinear relationships for example, "being middle-aged" may matter more than the exact age.
- Contact History Indicators contacted_before: Converts the "pdays" column (days since last contact) into a binary flag → whether the customer was contacted before or not. repeat_contact: Checks if the client had multiple contacts before the current campaign. Past contact history is a strong predictor of whether someone will subscribe.
- Call Duration Flag Creates a binary feature that identifies whether the
 call duration was short (< 1 min) or not. Duration is one of the most
 important predictors in this dataset but converting it into a flag makes it
 easier for some models to interpret.

Transformations:

- Creates a combined feature that multiplies account balance with age. Captures the **interaction** between wealth and age → e.g., a high balance for a young customer may mean something different than the same balance for an older customer.
- Creates a binary variable showing if a customer has both a housing loan and a personal loan. Customers with multiple loans may be financially constrained and less likely to invest in a term deposit.

Hyperparameter Tuning:

Decision Tree (GridSearchCV):

- For each combination, it:
 - 1. Trains the decision tree.
 - 2. Evaluates performance using cross-validation (e.g., ROC-AUC).
 - 3. Picks the best hyperparameter set.
- The hyperparameters (e.g., max_depth, min_samples_split, criterion) are discrete and manageable in number.
- This ensures we don't miss the best hyperparameters within the search grid.

LightGBM (Optuna):

- It proceeds as follow:
 - 1. Starts with random trials.
 - 2. Uses results to build a probability model of the search space.
 - 3. Chooses the next hyperparameters based on past performance (tries promising regions more often).
- LightGBM has many hyperparameters (e.g., num_leaves, learning_rate, feature_fraction, bagging_fraction). Searching them exhaustively with GridSearch would be too slow. Optuna efficiently finds a good combination in fewer trials.

Catboost (Optuna):

- We tuned hyperparameters like:
 - 1. iterations (number of boosting rounds),
 - 2. depth (tree depth),
 - 3. learning_rate,
 - 4. l2_leaf_reg (regularization),
 - 5. bagging_temperature (sampling strategy),
 - 6. random strength (feature randomness).
- CatBoost has continuous + discrete hyperparameters.
- Optuna can explore promising regions more intelligently, improving ROC-AUC with fewer trials.

Pipeline:

1. Built a preprocessing block

- Scaled all numeric features so they are on the same range.
- Converted categorical features into one-hot encoded vectors (dummy variables).
- Ensured new/unseen categories don't break the model (ignore option).

2. Wrapped preprocessing + model into a pipeline

- Each model (Logistic Regression, Decision Tree, LightGBM, CatBoost) was combined with the same preprocessing block.
- way, you didn't need to preprocess separately for each model.

3. Integrated with model training and tuning

- Logistic Regression was used as a baseline.
- Decision Tree was tuned with GridSearch.
- LightGBM and CatBoost were tuned with Optuna.
- Each optimized model was placed inside its pipeline.

4. Evaluated all models consistently

- Trained each pipeline on the training set.
- Predictions were made using the same pipeline (so preprocessing and prediction were done in one go).
- Metrics like Accuracy, Precision, Recall, F1, ROC-AUC, RMSE were calculated and compared.

5. Saved the final pipeline

- Instead of saving only the trained model, you saved the entire pipeline.
- This makes deployment easy (e.g., in Streamlit/Flask) because raw input data goes straight into the pipeline → preprocessing → model → prediction.

Evaluation Metrics:

	Model	Accuracy	Precision	Recall	F1	ROC-AUC	RMSE
3	CatBoost	0.910870	0.663212	0.483932	0.559563	0.935487	0.298546
2	LightGBM	0.908769	0.653088	0.469754	0.546454	0.932280	0.302044
0	Logistic Regression (Baseline)	0.845737	0.418244	0.814745	0.552741	0.907922	0.392763
1	Decision Tree	0.796970	0.350269	0.860113	0.497812	0.892971	0.450588

Error Analysis:

1. Class Imbalance Effect

- o The dataset has far more "No Term Deposit" cases than "Yes".
- Even though class weights and threshold adjustments were used, the model sometimes still predicts "No" too often.
- This leads to false negatives (customers who actually subscribed but were predicted as non-subscribers).

2. Short Call Durations

- Records with very short call durations (e.g., < 1 minute) often confuse the model.
- Some customers might still subscribe even after a short call, but the model tends to treat short calls as a strong "No" signal.

3. Ambiguous Socio-Economic Profiles

- Middle-aged customers with average balance and education fall into a "gray zone".
- The model sometimes misclassifies these groups because their patterns overlap between "Yes" and "No".

4. Previous Contact History

- Customers not previously contacted are harder to predict.
- The model struggles because "no contact history" can either mean a missed opportunity or genuine disinterest.

Business Interpretation:

1. High ROC-AUC (≈0.93+)

- The model is very effective at ranking customers by likelihood to subscribe.
- This means marketing teams can prioritize who to call first, increasing efficiency.

2. Precision vs. Recall Trade-off

- If threshold is set at 0.5, the model favors precision (avoiding calling uninterested customers) but misses some real subscribers.
- By lowering the threshold (e.g., 0.3), recall improves → fewer missed opportunities, but at the cost of more calls to uninterested clients.

3. Business Actionable Insight

- The model identifies key groups more likely to subscribe (e.g., longer calls, previous positive contact, certain age/education groups).
- Marketing campaigns can be tailored to focus on these profiles.

4. Cost Savings & ROI

- By targeting high-probability customers, the bank can reduce wasted calls.
- This saves agent time, reduces campaign costs, and improves conversion rates.