18-100 Introduction to Electrical and Computer Engineering

Lecture 02 Circuits

L06: Professional Identity, Professional Responsibility, and Ethics

Schodula (Subject to Change)

Scriedule (Subject to Change)						
Week	Week Date		Day	Lecture Topic		
	1	10.10	M	LO4. Intra Dhunia		

L01: Intro, Physics, EM, Leveling Students 13-Jan | M

М

W

М

W

М

W

М

W

М

W

М

W

М

W

15-Jan | W

20-Jan

22-Jan

27-Jan

29-Jan

3-Feb

5-Feb

10-Feb

12-Feb

17-Feb

19-Feb

24-Feb

26-Feb

3-Mar

5-Mar

4

5

6

7

Exam 1

L11: Computers

L12: Op Amps SPRING BREAK

SPRING BREAK

L02: Circuits Basics

L03: Equivalent Circuits

Martin Luther King Celebration (No Lecture)

L07: Capacitors, RC Time Constants, RC Circuits

L04: Semiconductors, Diodes, LEDs

L08: Inductors, RL Time Constants, 555

L09: Binary, Logic Gates, Boolean Logic

L10: Latches, Registers, RAM, Flip-Flops

L05: MOSFETs to Simple Gates

ochedule (Subject to Change)					
	3-Mar	М	SPRING BREAK		
	5 Mar	۱۸/	CDDING DDEAK		

5-Mar w SPRING BREAK

8 10-Mar М

W

М

W

М

W

М

W

М

W

М

W

М

W

Period

12-Mar

17-Mar

19-Mar

24-Mar

26-Mar

31-Mar

2-Apr

7-Apr

9-Apr

14-Apr

16-Apr

21-Apr

23-Apr

Exams

9

10

11

12

13

14

Final

L13: Arduino Programming Case Study

Schedule (Subject to Change)

Conversion

Exam 2

L21: Crypto

L24: Al and ML

L22: IoT and Cloud

L25: Course wrap up

L15: Analog-to-Digital (ADC) and Digital-to-Analog (DAC)

L17: Wireless Communication: Modulation to Protocols

Exam 3 (Scheduled by Registrar during the Final Exams Period)

L19: Complex Numbers, Phasors, and Impedence

L23: Information Theory and Data Compression

L14: Serial Communication Protocols

L18: Review/Exam Preview

L16: Time Varying Signals and Spectra (Trig)

L20: Analog Filters, LC Circuits, Resonance

Objectives of this Lecture

- Ideal voltage sources and current sources each have one job
- Circuit nodes
- Conductors and resistors
- Ohm's Law
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)

Electrical and Computer Engineering Models

$$\Lambda V = IR$$

$$\sum i_{IN} = \sum i_{OUT}$$

$$\sum v_{UP} = \sum v_{DOWN}$$

Alessandro Volta (1745 – 1827)

- Professor of Chemistry
- Discovered methane (CH₄)
- Friend of Luigi Galvani
- Believed electrical flow was due to dissimilar metals, not "animal electricity
- Created a "pile" of stacked silver and zinc plates separated by an electrolyte (soaked cloth or paper)
- Each stacked pile could generate 1V to 2V (1799)
- Stacks could be connected in series or parallel

Carnegie Mellon

Real Batteries

- Cannot provide infinite current
- Essentially, they have a built-in resistance that limits their maximum current

nominal voltage: 1.5 V

Conditions

Zn / KOH-H₂O / MnO₂

open circuit voltage: 1.57...1.65 V new battery after 1 year storage at 20°C

rated:

battery type:

battery size:

capacity

2800 mAh d

all measurements at 20°C ambient discharge at 10mA load; 24hours/day End Voltage (EV): 0.8V

Alkaline Manganese (Mercury free)

IEC: LR6; JIS: AM-3; ANSI: 15A; MN1500; Mignon

typical service output

L	oad	10Ω	1000mA	1.5w/ 0.65w	1000 mA	3.3Ω	250mA	3.9Ω	100mA	24Ω	43Ω
Test	mode	24h/d	24h/d	2s/28s 5min/h	10s/m 1h/d	4m/h 8h/d	1h/d	1h/d	1h/d	15s/m 8h/d	4h/d
End v	oltage	0.9V	0.9V	1.05V	0.9V	0.9V	0.9V	V8.0	0.9V	1.0V	0.9V
U	nit	h	m	pulse	pulse	m	h	h	h	h	h
Applic	ations	Reference	Reference	Digital still camera	Photo flash	Portable lighting	CD/ Electronic games	Motor/ toy	Digital audio	Remote control	Radio/ Clock
Indianal.	MAD	18.5	38.0	55	380	300	7.0	7.0	21.0	42.0	89.0
Initial	Normal	19.5	50.0	70	450	320	7.8	7.5	22.5	45.0	91.5
Stored	MAD	18.2	30.0	45	300	280	6.7	6.7	20.5	41.0	87.0
1 year	Normal	18.8	40.0	60	360	300	7.2	7.2	21.5	43.0	89.0

internal resistance: $\leq 0.25 \Omega$ at 1kHz, sine wave measurement according to IEC 896-2

18-100 S25 L02 Circuits Carnegie Mellon

Real

Batteries Are Modeled as Ideal Voltage Sources

- Cannot provide infinite current
- Essentially, they have a built-in resistance that limits their maximum current

• One job:

$$V_{positive} = V_{negative} + V_{supply}$$

• Can do this for **any** current $(1A, 1mA, 0A, +\infty A, -\infty A...)$

Ideal Voltage Sources ($V_{positive} = V_{negative} + V_{supply}$)

Ideal Current Sources

• One job: $I_{IN} = I_{SUPPLY} = I_{OUT}$

 Can do this for any voltage (1V, 1mV, 0V, +∞V, -∞V...)

- A point where two or more elements have a common connection
- The voltage or potential at any node is constant across the node

How to find the nodes: 1) Put down dots on any wires that don't have dots

- A point where two or more elements have a common connection
- The voltage or potential at any node is constant across the node

How to find the nodes: 1) Put down dots on any wires that don't have dots

2) Find out if any dots can be connected just by wires, if they are, one is a duplicate and erase it

- A point where two or more elements have a common connection
- The voltage or potential at any node is constant across the node

How to find the nodes: 1) Put down dots on any wires that don't have dots

2) Find out if any dots can be connected just by wires, if they are, one is a duplicate and erase it

Same

- A point where two or more elements have a common connection
- The voltage or potential at any node is constant across the node

1) Put down dots on any wires that don't have dots How to find the nodes:

- 2) Find out if any dots can be connected just by wires, if they are, one is a duplicate and erase it
- 3) Check for any wires that don't have dots and repeat

18-100 S25 L02 Circuits Carnegie Mellon

18-100 S25 L02 Circuits Carnegie Mellon

18-100 S25 L02 Circuits Carnegie Mellon

Current Flowing through **Nearly** Ideal Conductors

- When a voltage differential is applied, electrons flow freely and uniformly
- No voltage or potential drop across the ideal conductor
- Electrons don't lose any energy as they flow
- $10\Omega / 1000$ feet = 0.005Ω over 6 inches

18-100 S25 L02 Circuits

Carnegie Mellon

Système international (SI) Units Table 1-1: Fundamental and electrical SI units. Dimension Unit Symbol

Dimension	Unit	Symbol
Fundamental:		
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric charge	coulomb	C
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd
Electrical:		
Current	ampere	A
Voltage	volt	V
Resistance	ohm	Ω
Capacitance	farad	F
Inductance	henry	Н
Power	watt	W
Frequency	hertz	Hz

Table 1-2: Multiple and submultiple prefixes.

Prefix	Symbol	Magnitude
exa	Е	10 ¹⁸
peta	P	10^{15}
tera	T	10^{12}
giga	G	10 ⁹
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

https://services.publishing.umich.edu/Books/C/Circuit-Analysis-and-Design2

18-100 S25 L02 Circuits Carnegie Mellon

Current Flowing through **Nearly** Ideal Conductors

- When a voltage differential is applied, electrons flow freely and uniformly
- No voltage or potential drop across the ideal conductor
- Electrons don't lose any energy as they flow
- $10\Omega / 1000$ feet = 0.005Ω over 6 inches

Resistors = Lower Conductivity, Fewer Free Electrons

- Electrons passing through a resistor will experience a voltage drop or loss in energy (remember, 1V = 1J/C)
- This energy loss is usually converted to heat (resistor = electrical friction)
- Loss of energy (per unit of charge) results in a drop in voltage across the resistor

$$\Delta V = IR$$

Ohm's Law

• Voltage drop (ΔV) across a resistive (R) material is proportional to the flowing current I

$$\Delta V = IR = V_{POS} - V_{NEG} = V_{FROM} - V_{TO}$$

- The current, *I*, flows **into** the positive terminal of the voltage drop
- Positive current will flow from a higher voltage to a lower voltage

18-100 S25 L02 Circuits Carnegie Mellon

Inside a Carbon Film (Cheap!) Resistor

Cross section

Outer coating removed

Resistance Is Affected by Geometry and Material Properties

R	_	0	ℓ
<i>L</i> \		ρ	\overline{A}

ℓ: length (m)

A: cross-sectional area (m²)

 ρ : resistivity (Ω ·m)

Material	Resistivity (ρ, Ω⋅m)		
Silver	1.62 × 10 ⁻⁸		
Copper	1.72 × 10 ⁻⁸		
Gold	2.44 × 10 ⁻⁸		
Carbon	1 × 10 ⁻⁵		
Silicon	2.3×10^3		
Glass	~10 ¹²		
Air	~10 ¹⁶		

Resistor Color Code

- First 2 (or 3) bands denote the first digits in the resistance value
- 3rd (or 4th) band denotes an order-of-magnitude multiplier (i.e. 10^x)
- Final band denotes the tolerance
 - ±5% is common for carbon film resistors (tan body)
 - ±1% is common for metal film resistors (blue body)

Breadboarding Your Circuits

Topside

rails

One row

rails

the breadboard in half, restricting electricity to one half or the other.

CENTERLINE

This line divides

POWER BUS

Each side of the breadboard has a pair of vertical connections marked - and +

+ POWER: Each + sign runs power

anywhere in the vertical column.

HORIZONTAL ROWS Each series of 5 sockets marked

a-e and f-j are connected. Components connected to a row will be connected to any other part inserted in the same row.

components in this kit are breadboardfriendly and can be easily installed and removed.

5 : INTRO

- Schematics represent connections between elements, not necessarily their relative or actual physical locations on a circuit board
- MODEL: Remember, every part of a node is at the same potential
- MODEL: Voltage does not drop across a node, only across circuit elements

Schematic Symbols

Power Sources

Other components

Schematic vs. Breadboard Wiring

 Schematics show how components are connected, not where they are

- Use side rails for your power connections.
- Use colors to make it easier to follow a circuit.
- Standard: Red/Black for power connections.

18-100 S25 L02 Circuits

Labeling Voltages

- When analyzing circuits, every element generally has a voltage difference across it and a current through it
- For resistors, current enters the positive terminal
- Not sure which way to draw ΔV or I? Guess! It will work out either way!

Kirchhoff's Current Law (KCL) and Voltage Law (KVL)

$$\sum I_{in} = \sum I_{out}$$

What goes in, must come out

KCI

$$\sum V_{up} = \sum V_{down}$$

What goes up, must come down

KVL

 $0A = I_1 + I_2 + I_3 + I_4$

18-100 S25

Kirchhoff's Current Law (KCL)

 $I_1 + I_2 + I_3 = I_4$

Changing the direction of a current changes its sign

Kirchhoff's Voltage Law (KVL)

$$\sum V_{up} = \sum V_{down}$$

Independent of ground!

$$12V + 3V = V_5$$

Kirchhoff's Voltage Law (KVL) Write Three (3) KVL Equations

$$\sum V_{up} = \sum V_{down}$$

Kirchhoff's Voltage Law (KVL) Write Three (3) KVL Equations

$$\sum V_{up} = \sum V_{down}$$

Kirchhoff's Voltage Law (KVL) Write Three (3) KVL Equations

$$\sum V_{up} = \sum V_{down}$$

Kirchhoff's Voltage Law (KVL)

 $\sum V_{up} = \sum V_{down}$

Example: $V_1 = ? V_2 = ?$

Reference Voltage

$$I = \frac{\Delta V}{R} = \frac{12V - 4V}{1k\Omega} = 8mA$$

Ground location does not matter

+8V-

3V

4V

(Ground)

$$=\frac{\Delta V}{R} = \frac{12V - 4V}{1k\Omega} = 8mA$$

Ground value

4V

18-100 S25 L02 Circuits Carnegie Mellon

Measuring Voltage with Your Digital Multimeter (DMM)

18-100 S25 L02 Circuits Carnegie Mellon

Measuring Voltage with Your Digital Multimeter (DMM)

Measuring Current with Your Digital Multimeter (DMM)

mA

- Current must flow THROUGH the DMM for it to be measured!
- Break open the circuit

Measuring Current with Your Digital Multimeter (DMM)

mA

- Current must flow THROUGH the DMM for it to be measured!
- Break open the circuit

Measuring Current with Your Digital Multimeter (DMM)

mA

- Current must flow THROUGH the DMM for it to be measured!
- Break open the circuit
- Connect probes

18-100 S25 L02 Circuits

Be Careful When You Are Measuring Current

$$24.74mA = \frac{12V}{150 + 4700}$$

18-100 S25 L02 Circuits Carnegie Mellon

Be Careful When You Are Measuring Current

Be Careful When You Are Measuring Current

- Because current travels through the sensitive DMM, excess current can destroy it! :(
- DMMs include a fuse that "blows" or selfdestructs when excess current starts to flow
- By giving its life, the \$0.25 fuse can protect the \$10 - \$1,000 DMM

Fuse

Schematic Symbol

Damaged Fuse

Sources: Digikey

Objectives of this Lecture

- Ideal voltage sources and current sources each have one job
- Circuit nodes
- Conductors and resistors
- Ohm's Law
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)

What Do You Need to Do Next?

- 1. Take the Lecture 2 Quiz on canvas!
- 2. Check out Piazza and Gradescope
- 3. Take a look at HW01, Note 01, and Lab 1

