Geometry of linear optimization

15.093: Optimization

Dimitris Bertsimas Alexandre Jacquillat

Sloan School of Management Massachusetts Institute of Technology

Reminder: linear optimization

Formulation (General form)

$$\min \quad oldsymbol{c}^ op oldsymbol{x}$$
 s.t. $Aoldsymbol{x} > oldsymbol{b}$

Formulation (Standard form)

$$egin{array}{ll} \min & oldsymbol{c}^ op oldsymbol{x} \ s.t. & oldsymbol{A} oldsymbol{x} = oldsymbol{b} \ oldsymbol{x} \geq oldsymbol{0} \end{array}$$

- A linear optimization problem minimizes or maximizes a linear objective function over a feasible region defined by linear constraints
- ullet Notation: $oldsymbol{a}_i$ is the $i^{ ext{th}}$ row of the matrix $oldsymbol{A}$ and $oldsymbol{A}_j$ is its $j^{ ext{th}}$ column

$$\boldsymbol{A}\boldsymbol{x} \geq \boldsymbol{b} \iff \boldsymbol{a}_i^{\top}\boldsymbol{x} \geq b_i, \forall i = 1, \cdots, m \iff \sum_{j=1}^n \boldsymbol{A}_j x_j \geq \boldsymbol{b}$$

- Every linear optimization problem can be written in standard form
- The structure of linear optimization problems involves the geometry of the polyhedron defining the feasible region
 - Characterization of a "corner" in a polyhedron via a basis
 - Critical role of "corners" of a polyhedron in linear optimization

Linear optimization example

General form

Standard form

Geometry of polyhedron

Polyhedron: definitions

- ullet A linear constraint creates a hyperplane: $\{oldsymbol{x} \in \mathbb{R}^n : oldsymbol{a}^ op oldsymbol{x} = oldsymbol{b}\}$
- ullet A hyperplane defines a *halfspace*: $\{oldsymbol{x} \in \mathbb{R}^n : oldsymbol{a}^ op oldsymbol{x} \leq oldsymbol{b}\}$
- ullet Finite intersection of halfspaces is a *polyhedron*: $\{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{A} oldsymbol{x} \leq oldsymbol{b} \}$
- A bounded polyhedron is called a polytope

Possible outcomes in linear optimization

Unique optimal solution

Unboundedness: no optimum

Multiple optimal solutions

Infeasibility: no feasible solution

Corner of polyhedron: extreme point

Definition

 $m{x}$ is an extreme point of polyhedron $\mathcal{P} = \{ m{x} \in \mathbb{R}^n : m{A}m{x} \leq m{b} \}$ if:

$$\nexists \boldsymbol{y}, \boldsymbol{z} \in \mathcal{P}, \lambda \in (0,1) : \boldsymbol{x} = \lambda \boldsymbol{y} + (1-\lambda)\boldsymbol{z}.$$

Corner of polyhedron: vertices

Definition

 $m{x}$ is a vertex of polyhedron $\mathcal{P} = \{ m{x} \in \mathbb{R}^n : m{A}m{x} \leq m{b} \}$ if:

 $\exists oldsymbol{c} \in \mathbb{R}^n : oldsymbol{x} ext{ is the unique optimum of } \min_{oldsymbol{x} \in \mathcal{P}} oldsymbol{c}^ op oldsymbol{x}.$

Corner of polyhedron: basic feasible solutions (BFS)

ullet Consider a polyhedron ${\mathcal P}$ with equality and inequality constraints:

$$\mathcal{P} = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i^{\top} \boldsymbol{x} = b_i, \forall i \in \mathcal{M}_0, \ \boldsymbol{a}_i^{\top} \boldsymbol{x} \leq b_i, \forall i \in \mathcal{M}_1 \}$$

Definition (active constraints, or tight constraints)

The active constraints at $x \in \mathbb{R}^n$ are $\mathcal{I}(x) = \{i \in \mathcal{M}_0 \cup \mathcal{M}_1 : a_i^\top x = b_i\}.$

Definition (basic feasible solution)

 $m{x}$ is a basic feasible solution if $m{x} \in \mathcal{P}$ and $\{m{a}_i, i \in \mathcal{I}(m{x})\}$ span \mathbb{R}^n .

Corner of polyhedron: equivalence

Theorem

Let $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron and $x \in \mathcal{P}$.

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

- Extreme point: geometric representation of a "corner" of polyhedron
- Vertex: there exists an objective function for which a corner point is the optimal solution of a linear optimization problem
 - Conversely, whenever a linear optimization problem admits an optimal solution, one optimal solution lies on a vertex (established later on)
- Basic feasible solution: algebraic representation, useful for algorithms
- → Equivalent viewpoints: we can use algebra (BFS) to characterize optimal solutions (vertices) via geometric properties (extreme points)

Geometry of linear optimization Construction of basic feasible solutions

Construction of basic feasible solutions

Geometric vs. standard representation

Geometric representation

$$\mathcal{P} = \{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{A} oldsymbol{x} \leq oldsymbol{b} \}$$

- $A \in \mathbb{R}^{m \times n}$
- \mathcal{P} lives in \mathbb{R}^n
- Easier to visualize
- Harder to work with algebraically

Algebraic representation

$$\mathcal{P} = \{oldsymbol{x} \in \mathbb{R}^n_+ : oldsymbol{A}oldsymbol{x} = oldsymbol{b}\}$$

- $A \in \mathbb{R}^{m \times n}$; full row rank m < n
- \mathcal{P} lives in \mathbb{R}^{n-m}
- Harder to visualize
- Easier to work with algebraically

BFS for standard form polyhedra: characterization

$$\mathcal{P} = \{ \boldsymbol{x} \in \mathbb{R}^n_+ : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \}, \text{ with } \boldsymbol{A} \in \mathbb{R}^{m \times n} \text{ of full row rank } (m \leq n)$$

Theorem

x is a basic feasible solution if and only if:

- $\mathbf{a}_i^{\top} \mathbf{x} = b_i$ for all $i = 1, \dots, m$
- There exist indices $B(1), \dots, B(m)$ such that $A_{B(1)}, \dots, A_{B(m)}$ are linearly independent and such that $x_i = 0, \forall j \neq B(1), \cdots, B(m)$
- $x_i \geq 0$ for all $j = 1, \dots, n$
- Reminder: x is a basic feasible solution if $x \in \mathcal{P}$ and there exist nactive constraints defined by n linearly independent vectors.
 - We have m active constraints from Ax = b
 - We impose n-m additional ones from the non-negativity constraints
 - By linear independence, the resulting n active constrains span \mathbb{R}^n
 - Feasibility question: Does the solution satisfy $x \ge 0$?

BFS for standard form polyhedra: construction

- → Procedure for constructing basic feasible solutions
 - 1. Separate A into $B = [A_{B(1)} \cdots A_{B(m)}]$ that comprises m linearly independent columns and N that comprises the other n-m columns
 - 2. Set $x_i = 0$ for all $i \notin B(1), \dots, B(m)$
 - 3. Solve $Bx_B = b$ for $x_{B(1)}, \dots, x_{B(m)}$
 - **4**. Check whether $x_B \geq 0$:
 - x is a basic feasible solution if $x_B > 0$
 - x is not a basic feasible solution otherwise
 - The m indices $B(1), \dots, B(m)$ form a basis
 - Basic variables $x_{B(1)}, \cdots, x_{B(m)}$ can be non-zero
 - Non-basic variables must be zero

Algebraic representation

$$egin{aligned} m{A}m{x} &= m{b} &\longrightarrow [m{B} \ m{N}]m{x} &= m{b} \ m{x}_N &= m{0} & m{x}_B &= m{B}^{-1}m{b} \ m{x} &\geq m{0} \end{aligned}$$

Geometric intuition

Algebraic example

$$\underbrace{\begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{A} x = \underbrace{\begin{bmatrix} 8 \\ 12 \\ 4 \\ 6 \end{bmatrix}}_{b}$$

$$A = [B \ N]$$

$$\boldsymbol{x} = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{8}, \mathbf{12}, \mathbf{4}, \mathbf{6})^{\top}$$

 $\implies x$ basic feasible solution

$$A = [B \ N]$$

$$oldsymbol{x} = (\mathbf{0}, \mathbf{0}, \mathbf{4}, \mathbf{0}, ext{-}\mathbf{12}, \mathbf{4}, \mathbf{6})^{ op}$$

x not a basic feasible solution

Back to our original example

General form

Standard form

Back to our original example: finding BFS

General form

- BFS: 3 linearly independent constraints active
- → Choose 3 active constraints

$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_3 = 3 \\ x_2 = 0 \end{cases}$$

- Check that (1, 1, 1), (0, 0, 1) and (0,1,0) span \mathbb{R}^3
- Solve x = (1, 0, 3)

Standard form

$$A = \left[egin{array}{ccccccccc} 1 & 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 3 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{array}
ight] \ B = \left[egin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 \end{array}
ight]$$

$$m{x}_B = m{B}^{-1}m{b} = \left[egin{array}{cccc} m{1} & m{0} & -m{1} & m{0} \ m{0} & m{0} & m{1} & m{0} \ -m{1} & m{1} & m{1} & m{0} \ m{0} & m{0} & -m{1} & m{1} \end{array}
ight] \left[egin{array}{c} 4 \ 2 \ 3 \ 6 \end{array}
ight]$$

$$\implies x = (1, 0, 3, 0, 1, 0, 3)^{\top}$$

 $\implies x$ basic feasible solution

Geometry of linear optimization Degeneracy

Degeneracy

Degeneracy of basic solutions

General form

$$\mathcal{P} = \{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{A} oldsymbol{x} \leq oldsymbol{b} \}$$

$$\mathcal{I}(oldsymbol{x}) = \{ i : oldsymbol{a}_i^{ op} oldsymbol{x} = b_i \}$$

- ullet $oldsymbol{x}$ BFS: $\{oldsymbol{a}_i, i \in \mathcal{I}(oldsymbol{x})\}$ span \mathbb{R}^n
- x is nondegenerate if $|\mathcal{I}(x)| = n$
- \boldsymbol{x} is degenerate if $|\mathcal{I}(\boldsymbol{x})| > n$

Standard form

$$egin{aligned} \mathcal{P} &= \{oldsymbol{x} \in \mathbb{R}^n_+ : oldsymbol{A} oldsymbol{x} = oldsymbol{b} \} \ oldsymbol{x} &= [oldsymbol{x}_B \ oldsymbol{x}_N], \ oldsymbol{x}_N = oldsymbol{0}, \ oldsymbol{x}_B = oldsymbol{B}^{-1} oldsymbol{b} \end{aligned}$$

- \boldsymbol{x} is nondegenerate if it contains exactly n-m zeros
- x is degenerate if it contains more than n-m zeros

Degeneracy: example

General form

$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 = 2 \\ 3x_2 + x_3 = 6 \\ x_3 = 0 \end{cases}$$

Standard form

$$x = \begin{bmatrix} 2 & 2 & 0 & 0 & 0 & 3 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Remarks on degeneracy

- Degeneracy is not a purely geometric property, but depends on the representation of a polyhedron
 - $\mathcal{P} = \{ \boldsymbol{x} \in \mathbb{R}^3 : x_1 x_2 = 0, x_1 + x_2 + 2x_3 = 2, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \}$: (0,0,1) is degenerate
 - $\mathcal{P} = \{ \boldsymbol{x} \in \mathbb{R}^3 : x_1 x_2 = 0, x_1 + x_2 + 2x_3 = 2, x_1 \ge 0, x_3 \ge 0 \}$: (0,0,1) is nondegenerate
- A basic feasible solution corresponds to a unique extreme point
- The converse, however, is not true in the presence of degeneracy
 - Under non-degeneracy, an extreme point corresponds to a single basis
 - Under degeneracy, an extreme point corresponds to possibly many bases
- → Degeneracy creates "confusion" regarding the definition of the basis
 - General form: which active constraints define an extreme point?
 - Standard form: which basic columns to consider?
- → Algorithmic challenges in presence of degeneracy

Existence and optimality of extreme points

Geometric intuition and visualization

No extreme points

- → The polyhedron contains a line
- → The polyhedron has no extreme points

Extreme points

- → The polyhedron contains no line
- → The polyhedron has extreme points

Optimality

 \rightarrow LO solution lies at an extreme point of the polyhedron

Existence of extreme points

Definition

A polyhedron $\mathcal{P} \subseteq \mathbb{R}^n$ contains a line if:

$$\exists \boldsymbol{x} \in \mathcal{P}, \boldsymbol{d} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\} : \boldsymbol{x} + \lambda \boldsymbol{d} \in \mathcal{P} \ \forall \lambda \in \mathbb{R}$$

Theorem

Let $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$. The following statements are equivalent:

- 1. The polyhedron \mathcal{P} has at least one extreme point.
- 2. The polyhedron \mathcal{P} does not contain a line.
- 3. There exist n vectors out of a_1, \dots, a_m that are linearly independent.

Corollary

Nonempty polyhedra in standard form contain an extreme point.

Corollary

Nonempty bounded polyhedra contain an extreme point.

Optimality of extreme points: statement and proof

$$(LO): \quad \min_{oldsymbol{x} \in \mathcal{P}} \quad oldsymbol{c}^ op oldsymbol{x}, \quad ext{where } \mathcal{P} = \{oldsymbol{x} \in \mathbb{R}^n : oldsymbol{A} oldsymbol{x} \geq oldsymbol{b}\}$$

Theorem

If \mathcal{P} does not contain a line and (LO) admits an optimal solution, then there exists an optimal solution that is an extreme point of \mathcal{P} .

- Let $z^* = \min_{x \in \mathcal{P}} c^{\top} x$ be the optimal objective value, and $Q = \{x \in \mathcal{P} : c^{\top}x = z^*\}$ be the set of optimal solutions
- $Q \subseteq \mathcal{P}$, so Q does not contain a line. Thus, Q admits an extreme point, which we denote by x^*
- Claim: x^* is an extreme point of \mathcal{P} .
 - By contradiction, $\boldsymbol{x}^* = \lambda \boldsymbol{y} + (1 \lambda) \boldsymbol{w}, \ \boldsymbol{y}, \boldsymbol{w} \in \mathcal{P}, 0 < \lambda < 1$. Then: $\underbrace{\mathbf{c}^{\top} \mathbf{x}}_{=z^*} = \lambda \underbrace{\mathbf{c}^{\top} \mathbf{y}}_{>z^*} + (1 - \lambda) \underbrace{\mathbf{c}^{\top} \mathbf{w}}_{>z^*} \implies \mathbf{c}^{\top} \mathbf{y} = \mathbf{c}^{\top} \mathbf{w} = z^*$
 - o $y, w \in \mathcal{Q}$ and x^* is not an extreme point of \mathcal{Q} . Contradiction.
- $\to x^*$ is an extreme point of $\mathcal P$ and an optimal solution of (LO)

Optimality of extreme points: significance

$$(LO): \quad \min_{\boldsymbol{x} \in \mathcal{P}} \quad \boldsymbol{c}^{\top}\boldsymbol{x}, \quad \text{where } \mathcal{P} = \{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}\}$$

Theorem

If \mathcal{P} does not contain a line and (LO) admits an optimal solution, then there exists an optimal solution that is an extreme point of \mathcal{P} .

- A linear optimization problem has three possible outcomes:
 - 1. There exists no feasible solution
 - 2. The problem is unbounded and there exists no optimal solution
 - 3. An extreme point of the polyhedron is an optimal solution
- Fundamental theorem: we can solve a linear optimization problem by restricting the search to the extreme points of the polyhedron
 - → Transformation of an infinite solution space into a finite one
- Still, a polyhedron admits an exponential number of extreme points
 - → Need for efficient solution algorithms

Geometry of linear optimization Conclusion

Conclusion

Geometry of linear optimization

$$\max x_1 + x_2$$
s.t. $0.5x_1 + x_2 \le 4$

$$x_1 + 0.5x_2 \le 4.5$$

$$0 \le x_1 \le 4$$

$$0 < x_2 < 3$$

- The feasible region in an LO problem defines a polyhedron
- A constraint is active/binding in x if it is satisfied with equality
- A "corner" x of a polyhedron can be defined in three equivalent ways
 - Extreme point: not on the line between two other points
 - Vertex: x is the unique optimum for some linear objective function
 - BFS: there are n linearly independent active constraints in x
- Under mild conditions, a polyhedron admits (many) extreme points
- Then, if an LO problem admits an optimal solution, there exists an extreme point that is optimal

Summary

Takeaway

Three equivalent ways to describe the "corner" of a polyhedron: vertex, extreme point, and basic feasible solution.

Takeaway

If a linear optimization problem admits an optimal solution, one optimal solution lies at an extreme point of the polyhedron.

Takeaway

Problem in standard form: non-negative variables $x \geq 0$ and equality constraints Ax = b, which is useful to construct basic feasible solutions.

Takeaway

Degenerate problems: extreme points with more active constraints than "necessary", so a BFS can be associated with several possible bases.