JOURNÉE DE LA ROBOTIQUE UL 2023

Prospectif #3

SYNTHÈSE CINÉMATIQUE ET OPTIMISATION D'UN ROBOT PARALLÈLE CINÉMATIQUEMENT REDONDANT À (6+2) DEGRÉS DE LIBERTÉ POUR L'INTERACTION PHYSIQUE HUMAIN ROBOT

Joshua Flight, Étudiant à la maîtrise

Sous la supervision de : Clément Gosselin

CONTEXTE ET MOTIVATION

Le robot HEXA à 6 degrés de liberté

- Léger
- Agile
- Utile pour des opérations de pickand-place

J. Hesselbach, C. Bier, A. Campos, and H. Löwe, "Direct kinematic singularity detection of a hexa parallel robot," Proceedings - IEEE International Conference on Robotics and Automation, pp. 3238–3243, 2005.

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

Présence de singularités à l'intérieur de l'espace de travail

J. Hesselbach, C. Bier, A. Campos, and H. Löwe, "Direct kinematic singularity detection of a hexa parallel robot," Proceedings - IEEE International Conference on Robotics and Automation, pp. 3238–3243, 2005.

Ajout de redondance cinématique pour éviter les singularités

DISCUSSIONS ET RÉSULTATS

DÉTECTION D'OBJETS DANS LES NUAGES DE POINTS BASÉE SUR LES MASQUES

William Guimont-Martin, Étudiant à la maîtrise

Sous la supervision de : Philippe Giguère

Affiliation: Norlab

CONTEXTE ET MOTIVATION

TRAVAUX DE RECHERCHE

RÉSULTATS ET DISCUSSION

Nuage de points en vue vol d'oiseau

Prédictions du réseau de neurones

ANALYSIS AND DESIGN OF A NOVEL (6+3)-DOF KINEMATICALLY REDUNDANT PARALLEL ROBOT

Zhou Zhou, Étudiant(e) au doctorat

Sous la supervision de : Clément Gosselin

MOTIVATION

6-DoF Stewart Robot [1]

Introduce kinematic redundancies

(6+3)-DoF KRP Robot^[2]

Kinematically redundant parallel

THE NEW LEG DESIGN

Advantages:

- Large workspace
- Simple structure
 Disadvantages:
- Large moving inertia

Novel Leg^[3]

Advantages:

- Small moving inertia Disadvantages:
- Small workspace
- Complex structure

Improved Leg

Collinearly distributed motors

are applied to enlarge the workspace and simplify the structure while keeping the small moving inertia

SOME RESEARCH ON THE NEW ROBOT

Leg Design

Grasping Control

The Novel KRP robot

Prototype Design^[4]

Kinematic and Dynamic modelling

ÉLABORATION D'UNE MÉTHODE DE DÉTECTION ET DE CARACTÉRISATION DES OCCLUSIONS PRÉSENTES DANS LES NUAGES DE POINTS MASSIFS RÉSIDENTIELS À L'AIDE DE L'APPRENTISSAGE PROFOND

William Albert, Étudiant à la maîtrise

Sous la supervision de Sylvie Daniel et la co-supervision de Denis Laurendeau

CONTEXTE ET MOTIVATION

Sinistrés et dommages matériels en hausse dans les milieux résidentiels¹

Guillaume Levasseur, Le Devoir, Au printemps 2019, des milliers de citoyens de Sainte-Marthe-sur-le-Lac, dans les Laurentides, ont été évacués.

Évaluation des points d'entrée de l'eau et prédiction des dommages

PROBLÉMATIQUE

Nuage de points en milieu urbain vs. en milieu résidentielle

Identification d'objets vs. identification d'occlusions

Occlusions, ouvertures et espaces vides

TRAVAUX DE RECHERCHE

CARACTÉRISATION IN-SITU DE TERRAIN À PARTIR DE DONNÉES DE CONSOMMATION ÉLECTRIQUE

Damien LaRocque Étudiant(e) à la maîtrise

Sous la supervision de : François Pomerleau

Affiliation: Norlab

CONTEXTE ET MOTIVATION

- Difficulté à estimer la consommation d'énergie
- Nécessaire pour :
 - Planification de trajectoire
 - Gestion de flottes
 - Missions spatiales

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

DISCUSSIONS ET RÉSULTATS

- Étendre l'analyse à d'autres types de sol
- Utiliser les valeurs / la classification du type de terrain pour
 - affiner des estimations de consommation
 - détecter un changement de terrain
 - meilleure commande

QUESTIONS POUR PROSPECTIF #3