

New Product

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistor (NPN)

Features

- NPN Silicon Epitaxial Transistor for switching and amplifier applications.
- As complementary type, the PNP transistor 2N4403 is recommended.
- On special request, this transistor is also manufactured in the pin configuration TO-18.
- This transistor is also available in the SOT-23 case with the type designation MMBT4401,

Mechanical Data

Case: TO-92 Plastic Package

Weight: approx. 0.18g

Packaging Codes/Options:

E6/Bulk – 5K per container, 20K/box E7/4K per Ammo mag., 20K/box

Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	40	V	
Collector-Base Voltage	Vсво	60	V	
Emitter-Base Voltage	VEBO	6.0	V	
Collector Current	Ic	600	mA	
Power Dissipation at T _A = 25°C Derate above 25°C	Ptot	625 5.0	mW mW/°C	
Power Dissipation at Tc = 25°C Derate above 25°C	Ptot	1.5 12	mW mW/°C	
Thermal Resistance Junction to Ambient Air	R⊖JA	200	°C/W	
Thermal Resistance Junction to Case	Rejc	83.3	°C/W	
Junction Temperature	Tj	150	°C	
Storage Temperature Range	Ts	-55 to +150	°C	

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	V(BR)CBO	I _C = 0.1 mA, I _E = 0	60	_	_	V
Collector-Emitter Breakdown Voltage ⁽¹⁾	V(BR)CEO	Ic = 1 mA, IB = 0	40	_	_	V
Emitter-Base Breakdown Voltage	V(BR)EBO	I _E = 0.1 mA, I _C = 0	6.0	_	_	V
Collector-Emitter Saturation Voltage	VCEsat	I _C = 150 mA, I _B = 15 mA I _C = 500 mA, I _B = 50 mA	_	_	0.40 0.75	V
Base-Emitter Saturation Voltage	V _{BEsat}	I _C = 150 mA, I _B = 15 mA I _C = 500 mA, I _B = 50 mA	0.75 —	_	0.95 1.20	V
Collector Cutoff Current	ICEV	V _{EB} = 0.4 V, V _{CE} = 35 V	_	_	100	nA
Base Cutoff Current	IBEV	VEB = 0.4 V, VCE = 35 V	_	_	100	nA
DC Current Gain	hFE	VCE = 1 V, IC = 0.1 mA VCE = 1 V, IC = 1 mA VCE = 1 V, IC = 10 mA VCE = 1 V, IC = 150 mA VCE = 2 V, IC = 500 mA	20 40 80 100 40		 300 	_
Input Impedance	hie	VCE = 10 V, IC = 1 mA f = 1 kHz	1.0	_	15	kΩ
Voltage Feedback Ratio	hre	VCE = 10 V, IC = 1 mA f = 1 kHz	0.1 • 10-4	_	8 • 10 ⁻⁴	_
Current Gain-Bandwidth Product	fT	VcE = 5 V, Ic = 20 mA f = 100 MHz	250	_	_	MHz
Collector-Base Capacitance	Ссво	VcB = 5 V, IE = 0, f = 1.0 MHz	_	_	6.5	pF
Emitter-Base Capacitance	Сево	Vcb = 0.5 V, Ic = 0, f = 1.0 MHz	_	_	30	pF
Small Signal Current Gain	h _{fe}	VCE = 10 V, IC = 1 mA, f = 1 kHz	40	_	500	_
Output Admittance	hoe	VCE = 10 V, IC = 1 mA, f = 1 kHz	1.0	_	30	μS

Electrical Characteristics (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Delay Time (see fig. 1)	t _d	I _C = 150 mA, I _{B1} = 15 mA V _{CC} = 30 V, V _{BE} = 2.0 mA	_	_	15	ns
Rise Time (see fig. 1)	tr	I _C = 150 mA, I _{B1} = 15 mA V _{CC} = 30 V, V _{BE} = 2.0 mA	_	_	20	ns
Storage Time (see fig. 2)	ts	I _{B1} = I _{B2} = 15 mA V _{CC} = 30 V, I _C = 150 mA	_	_	225	ns
Fall Time (see fig. 2)	tf	I _{B1} = I _{B2} = 15 mA VCC = 30 V, IC = 150 mA	_	_	30	ns

Switching Time Equivalent Test Circuit

Figure 1 - Turn-ON Time

Figure 2 - Turn-OFF Time

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.