Statistical Inference

Lecture 02a

ANU - RSFAS

Last Updated: Tue Feb 28 15:21:58 2017

Moment Generating Functions

Definition: (Rice Sec. 4.5) Let X be a random variable. The moment generating function (mgf) of X, denoted by $M_X(t)$ or just M(t) is

$$M_{x}(t) = E(e^{tx}).$$

- Provided the expectation exists for t in a neighborhood of 0.
- Facts:
 - **1.** Property C: $M_{a+bX}(t) = E(e^{t(a+bX)}) = e^{ta}E(e^{(bt)X}) = e^{ta}M_X(bt)$.
 - **2. Property D**: $M_{X+Y}(t) = M_X(t)M_Y(t)$ if X and Y are independent. Why?

- Why is this called the MGF?
 - Note (math fact): $e^{tX} = 1 + \frac{tX}{1!} + \frac{(tX)^2}{2!} + \frac{(tX)^3}{3!} + \cdots$
 - $M(t) = 1 + tE(X) + \frac{t^2}{2!}E(X^2) + \frac{t^3}{3!}E(X^3) \cdots$
 - Let's differentiate M(t) with respect to t . . . k times and set t=0:

$$\left. \frac{d^k}{dt^k} M(t) \right|_{t=0} = E(X^k)$$

 Based on the MGF, we can show that linear combinations of independent normal random variables are also normal.

Moment Generating Functions

• MGF of X is $M_X(t) = E\left[e^{tX}\right] = \int e^{tx} f(x) dx$.

Property D Extension: Let X_1, \ldots, X_n be a random sample from a population with moment generating function $M_X(t)$. Then the sample mean has the following mgf:

$$M_{\bar{X}}(t) = E\left[e^{t\bar{X}}\right] = E\left[e^{t(X_1 + \dots + X_n)/n}\right]$$

$$= E\left[e^{tX_1/n} \times \dots \times e^{tX_n/n}\right]$$

$$= E\left[e^{tX_1/n}\right] \times \dots \times E\left[e^{tX_n/n}\right]$$

$$= M_{X_1}(t/n) \times \dots \times M_{X_n}(t/n)$$

$$= [M_X(t/n)]^n$$

Distribution of the Mean of Independent Normal Random Variables

• If $X \sim n(\mu, \sigma^2)$ then the mgf of X is:

$$M_X(t) = E\left[e^{tX}\right] = e^{\mu t + \sigma^2 t^2/2}$$

So For \bar{X} we have:

$$\begin{aligned} M_{\bar{X}}(t) &= \left[\exp\left(\mu t/n + \sigma^2 (t/n)^2/2\right) \right]^n \\ &= \exp\left(n \left(\mu t/n + \sigma^2 (t/n)^2/2\right)\right) \\ &= \exp\left(\mu t + (\sigma^2/n)t^2/2\right) \\ \bar{X} &\sim n(\mu, \sigma^2/n) \end{aligned}$$

Convergence Concepts - Rice Chapter 5

- An important part of probability theory concerns the behavior of sequences of random variables (large sample theory, limit theory, asymptotic theory).
- What can we say about the limiting behavior of sequences of random variables: X_1, X_2, X_3, \ldots ?

Definition: A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if for every $\epsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

Definition: A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

Example: Let $X_n \sim \text{normal}(0, 1/n)$

- We expect X_n to concentrate around 0 as $n \to \infty$.
- Note:

$$\sqrt{n} X_n = Z ~\sim~ \mathrm{normal}(0,1)$$

• Let's first consider convergence in distribution:

$$F_{X_n}(t) = P(X_n < t) = P(\sqrt{n}X_n < \sqrt{n}t)$$

= $P(Z < \sqrt{n}t)$

- If t < 0 then $P(Z < \sqrt{n}t) \to 0$ as $n \to \infty$.
- If t > 0 then $P(Z < \sqrt{n}t) \to 1$ as $n \to \infty$.

• We see that we end up with a point mass at 0.

$$X_n \stackrel{D}{\rightarrow} 0$$

• Note: We had the consideration "for all t which F is continuous".

$$F_{x_n}(0) = 1/2 \neq F(0) = 1$$

But we meet the condition, so we are set!

ullet Now lets consider convergence in probability. For any $\epsilon>0$ we have:

$$P(|X_n - 0| > \epsilon) = P(|X_n - 0|^2 > \epsilon^2)$$

• Now using Markov's inequality:

$$P(|X_n| > \epsilon) = P(|X_n - 0|^2 > \epsilon^2)$$

$$= P(X_n^2 > \epsilon^2)$$

$$\leq \frac{E(X_n^2)}{\epsilon^2} = \frac{1}{n\epsilon^2} \to 0.$$

As $n \to \infty$, so

$$X_n \stackrel{P}{\rightarrow} 0$$
.

Theorem: The following relationships hold:

- **1.** $X_n \stackrel{P}{\to} X$ implies $X_n \stackrel{D}{\to} X$.
- 2. If $X_n \stackrel{D}{\to} X$ and if P(X = c) = 1 (i.e. a point mass) for some real number c, then $X_n \stackrel{P}{\to} X$.

In general the reverses do not hold.

Theorem: Let X_n , X, Y_n , Y be random variables. Let g be a continuous function:

- **1.** If $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$, then $X_n + Y_n \stackrel{P}{\to} X + Y$.
- **2.** If $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{D}{\to} c$, then $X_n + Y_n \stackrel{D}{\to} X + c$.
- **3.** If $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$, then $X_n Y_n \stackrel{P}{\to} XY$.
- **4.** If $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{D}{\to} c$, then $X_n Y_n \stackrel{D}{\to} Xc$.
- **5.** If $X_n \stackrel{P}{\to} X$, then $g(X_n) \stackrel{P}{\to} g(X)$.
- **6.** If $X_n \stackrel{D}{\to} X$, then $g(X_n) \stackrel{D}{\to} g(X)$.

Theorem A: The Weak Law of Large Numbers

- Let X_1, X_2, \ldots be iid random variables.
- $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$.
- Let $\bar{X}_n = \sum_{i=1}^n X_i/n$.
- Then $X_n \stackrel{P}{\to} \mu$.

Proof:

$$P(|\bar{X}_n - \mu| > \epsilon) = P((\bar{X}_n - \mu)^2 > \epsilon^2)$$

$$\leq \frac{E((\bar{X}_n - \mu)^2)}{\epsilon^2} = \frac{V(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0$$

as $n \to \infty$.

Central Limit Theorem

Rice Chap 5 Theorem B (extended a bit):

- Let X_1, X_2, \ldots , be a sequence of i.i.d. random variables whose mgfs exist in a neighborhood around 0 (that is, $M_{X_i}(t)$ exists for |t| < h for some positive h).
- Let $E[X_i] = \mu$ and $V[X_i] = \sigma^2 > 0$. Both μ and σ^2 exist because the mgf exists.
- Define $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Let $G_n(x)$ denote the cdf of $\frac{(\bar{X}-\mu)}{\sigma/\sqrt{n}}$
- The for any x, $-\infty < x < \infty$, we have:

$$\lim_{n\to\infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} exp(-y^2/2) dy = \text{normal}(0,1)$$

Proof:

- Application mgf for sums of random variables.
- Taylor series expansion of the mgf around 0.
- Use of the properties of mgfs $(E[X], E[X^2])$.
- Remainder of the Taylor series expansion goes to zero.
- $\bullet \ \lim_{n\to\infty} \left(1+\tfrac{x}{n}\right)^n = e^x$
- What does the theorem tell us?
 - From very little assumptions we end up with normality.
 - However, for a given sample size we don't know how good the approximation is. n = 30?
 - For each situation, if you can computationally check, you may wish to do so.

Proof:

- Define $Y_i = \frac{X_i \mu}{\sigma}$. Thus E(Y) = 0 and V(Y) = 1.
- Consider:

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{1}{\sqrt{n}} \sum Y_i$$

• We have a summation, so let's use the MGF:

$$M_{\frac{1}{\sqrt{n}}\sum_{Y_i}(t)}=M_{\sum_{Y_i}}(t/\sqrt{n})=\left(M_Y\left(t/\sqrt{n}
ight)
ight)^n$$

• Now do a Taylor series expansion of the MGF around 0.

$$M_Y(t/\sqrt{n}) = \sum_{k=0}^{\infty} M_Y^{(k)}(0) \frac{(t/\sqrt{n})^k}{k!}$$

Note:
$$M_Y^{(k)}(0) = \frac{d^k}{dt^k} M_Y(t) \Big|_{t=0}$$

Recall:

$$e^{tX} = 1 + \frac{tX}{1!} + \frac{(tX)^2}{2!} + \frac{(tX)^3}{3!} + \cdots$$

$$E\left(e^{tX}\right) = 1 + \frac{tE[X]}{1!} + \frac{t^2E[X^2]}{2!} + \frac{t^3E[X^3]}{3!} + \cdots$$

- So by construction of Y we have:
- $M_Y^{(0)}(0) = 1$
- $M_Y^{(1)}(0) = 0$
- $M_Y^{(2)}(0) = 1$

$$\sum_{k=0}^{\infty} M_{Y}^{(k)}(0) \frac{(t/\sqrt{n})^{k}}{k!} = 1 + 0 + \frac{(t/\sqrt{n})^{2}}{2!} + M_{Y}^{(3)}(0) \frac{(t/\sqrt{n})^{3}}{3!} \cdots$$

$$= 1 + \frac{(t/\sqrt{n})^{2}}{2!} + M_{Y}^{(3)}(0) \frac{(t/\sqrt{n})^{3}}{3!} \cdots$$

$$= 1 + \frac{(t/\sqrt{n})^{2}}{2!} + R_{Y}\left(\frac{t}{\sqrt{n}}\right)$$

• It can be shown for a fixed $t \neq 0$:

$$\lim_{n\to\infty}\frac{R_Y\left(t/\sqrt{n}\right)}{\left(1/\sqrt{n}\right)^2}=\lim_{n\to\infty}nR_Y\left(t/\sqrt{n}\right)=0$$

• We also note that at t = 0 we have:

$$R_Y\left(0/\sqrt{n}\right)=0$$

$$\sum_{k=0}^{\infty} M_{Y}^{(k)}(0) \frac{(t/\sqrt{n})^{k}}{k!} = 1 + 0 + \frac{(t/\sqrt{n})^{2}}{2!} + M_{Y}^{(3)}(0) \frac{(t/\sqrt{n})^{3}}{3!} \cdots$$

$$= 1 + \frac{(t/\sqrt{n})^{2}}{2!} + R_{Y}(t/\sqrt{n})$$

$$= 1 + \frac{1}{n} \left(\frac{t^{2}}{2} + nR_{Y}(t/\sqrt{n})\right)$$

$$= 1 + \frac{a_{n}}{n}$$

Math Fact: Let $a_1, a_2, ...$ be a sequence of number converging to a, that is $\lim_{n\to\infty} a_n = a$ then

$$\lim_{n\to\infty} \left(1 + \frac{a_n}{n}\right)^n = e^a$$

Now consider:

$$M_{rac{1}{\sqrt{n}}\sum Y_i}(t) = \left(M_Y\left(t/\sqrt{n}
ight)
ight)^n = \left(1 + rac{a_n}{n}
ight)^n
ightarrow \exp\left(t^2/2
ight)$$

as $n \to \infty$. Since $a_n \to a = t^2/2$. So we have the moment generating function for a standard normal distribution.

CLT Example

- **1.** For i = 1, ... S = 10,000:
 - 1.1 Draw a sample of n=10 from an exponential distribution with mean $\beta = 5$.

$$f(x) = \frac{1}{\beta} exp(-x/\beta)$$

- **1.2** Take the mean of X_1, \ldots, X_n .
- **2.** Make a histogram of the $\bar{X}_1, \ldots, \bar{X}_S$.

```
##

S <- 10000
n <- 10
x.bar <- rep(0, S)
for(s in 1:S){
    x.bar[s] <- mean(rexp(n, rate=1/5))
}</pre>
```

• Sample size of n = 10 is pretty right skewed!

hist(x.bar, prob=TRUE, col="yellow")

• Let's try n = 30. Still a bit right skewed, but much better.

hist(x.bar, prob=TRUE, col="yellow")

