集合论与图论 第八讲 图

孙猛

北京大学数学科学学院信息科学系

http://www.is.pku.edu.cn/~sunm sunmeng@math.pku.edu.cn

图

- 图的基本概念
- 通路与回路

无向图的定义

定义

设A、B为任意两个集合,称 $\{\{a,b\} \mid a \in A \land b \in B\}$ 为A与B的无序积,记作A&B。

- 无序积中的无序对 $\{a,b\}$ 记为 $\{a,b\}$,并且允许a=b。
- 注意: 无论a与b是否相等,均有(a,b) = (b,a)。

- 一个无向图是一个有序的二元组(V, E),记作G,其中
 - V ≠ Ø称为G的顶点集,其元素称为顶点或结点;
 - ② E称为边集,它是无序积V&V的多重子集,其元素称为无向边, 简称为边。

有向图的定义和图的图形表示

定义

- 一个有向图是一个有序的二元组(V, E),记作D,其中
 - ① V≠ Ø称为 D的顶点集, 其元素称为顶点或结点;
 - ② E称为边集,它是笛卡尔积V×V的多重子集,其元素称为<mark>有向</mark>边,简称为边。

对于无向图G和有向图D,可用圆圈表示顶点,顶点之间的线段表示无向边,用有向线段表示有向边,给出无向图或有向图的图形表示。

例

画出下面二图的图形:

- ① $G = \langle V, E \rangle$, $\not = \forall V = \{v_1, v_2, v_3, v_4, v_5\}$, $E = \{(v_1, v_1), (v_1, v_2), (v_2, v_1), (v_2, v_3), (v_3, v_1), (v_3, v_4)\}$;
- ② $D = \langle V, E \rangle$, $\not = v_1, v_2, v_3, v_4$, $E = \{\langle v_1, v_2 \rangle, \langle v_1, v_2 \rangle, \langle v_1, v_3 \rangle, \langle v_3, v_1 \rangle, \langle v_2, v_3 \rangle, \langle v_3, v_4 \rangle, \langle v_4, v_4 \rangle\}$.

图的基本概念

- 在图的定义中,用 *G和D分*别表示无向图和有向图,有时也用 *G*泛指一个图(无向图或有向图),但是 *D*只能表示有向图。
- 为方便起见,有时用V(G), E(G)分别表示图G的顶点集和边集,用V(D), E(D)表示有向图D的顶点集和边集,另外,用|V(G)|, |E(G)|和|V(D)|,|E(D)|分别表示G和D的顶点数和边数。
- 若|V(G)| = n (或|V(D)| = n), 则称G (或D)为n阶图 (或n 阶有向图)。
- 对图G来说,若|V(G)|和|E(G)|均为有限数,则称G为有限图。
- 无向图用 $e_k = (v_i, v_j)$ 表示边,有向图用 $e_k = \langle v_i, v_j \rangle$ 表示有向边。有向图D中各有向边的箭头都去掉得到的无向图G称为D的基图。
- 在图G中,若 $E(G) = \emptyset$,则称G为零图,此时若|V(G)| = n,则称 G 为n阶零图,记为 N_n ,称 N_1 为平凡图。
- 图的运算可能产生顶点集为空集的结果,规定顶点集为Ø的图为空图,记为Ø。
- 图的图形表示中顶点和边都不标定字母的图称为非标定图,顶点或边用字母标定的图称为标定图。

图的基本概念

定义

设 $G = \langle V, E \rangle$ 为一个无向图, $e_k = (v_i, v_j) \in E$, 则称 v_i, v_j 为 e_k 的端点, e_k 与 v_i (e_k 与 v_j) 是彼此相关联的。若 $v_i \neq v_j$,则称 e_k 与 v_i (e_k 与 v_j) 的关联次数为1,若 $v_i = v_j$,则称 e_k 与 v_i 的关联次数为2,此时称 e_k 为环。设 $v_l \in V$, $v_l \neq v_i$,则称 e_k 与 v_l 的关联次数为0。设 $D = \langle V, E \rangle$ 为一个有向图, $e_k = \langle v_i, v_j \rangle \in E$,称 v_i, v_j 为 e_k 的端点,并称 v_i 为 e_k 的始点, v_j 为 e_k 的终点,若 $v_i = v_j$,称 e_k 为D中的一个环。无论在无向图还是有向图中,无边关联的顶点均称为孤立点。

定义

设 $G = \langle V, E \rangle$ 为一个无向图,对任意的 $v_i, v_j \in V$,若存在边 $e_k \in E$,使得 $e_k = (v_i, v_j)$,则称 v_i 与 v_j 是彼此相邻的,简称相邻的。 对于任意的 $e_k, e_l \in E$,若 e_k 与 e_l 至少有一个公共端点,则称 e_k 与 e_l 是彼

対寸仕意的 $e_k,e_l \in E$,右 e_k 与 e_l 至少有一个公共端点,则称 e_k 与 e_l 定復 此相邻的,简称相邻的。

设 $D = \langle V, E \rangle$ 为一个有向图,对任意的 $v_i, v_j \in V$,若存在边 $e_k \in E$,使得 $e_k = \langle v_i, v_i \rangle$,则称 v_i 邻接到 v_i , v_i 邻接于 v_i 。

图的基本概念

- 设G为任意一个无向图,对任意的 $v \in V(G)$,
 - 称 $\{u \mid u \in V(G) \land (u,v) \in E(G) \land u \neq v\}$ 为v的邻域,记作 $N_G(v)$ 。
 - 称N_G(v)∪{v}为v的闭邻域,记作N_G(v)。
 - 称{e | e与v相关联}为v的关联集,记作I_G(v)。
- 设D为任意一个有向图,对任意的v∈V(D),
 - 称 $\{u \mid u \in V(D) \land \langle v, u \rangle \in E(D) \land u \neq v\}$ 为v的后继元集,记作 $\Gamma_D^+(v)$ 。
 - 称 $\{u \mid u \in V(D) \land \langle u, v \rangle \in E(D) \land u \neq v\}$ 为v的先驱元集,记作 $\Gamma_D(v)$ 。
 - 称Γ⁺_D(v) ∪ Γ⁻_D(v) 为 v 的 邻域, 记作 N_D(v)。
 - 称N_D(v)∪{v}为v的闭邻域,记作N_D(v)。

多重图与简单图

- 设G为一无向图, $e_{i_1}, e_{i_2}, \cdots, e_{i_r} \in E(G)$, $r \geq 2$,若 $e_{i_s} = (v_i, v_j)$, $1 \leq s \leq r$,称 $e_{i_1}, e_{i_2}, \cdots, e_{i_r}$ 为平行边,r为边 (v_i, v_j) 的重数。
- 设D为一有向图, $e_{i_1},e_{i_2},\cdots,e_{i_r}\in E(D),\ r\geq 2,\ \exists e_{i_s}=\langle v_i,v_j\rangle,\ 1\leq s\leq r,\ 称e_{i_1},e_{i_2},\cdots,e_{i_r}$ 为平行边,r为有向边 $\langle v_i,v_j\rangle$ 的重数。
- 称含平行边的图为多重图,不含平行边也不含环的图为简单图。

结点的度数

- 设无向图G = (V, E),对于任意的 $v \in V$,称v作为G中边的端点的次数之和为v的度数,简称度,记作 $d_G(v)$,在不混淆的情况下可简记为d(v)。
- 设有向图 $D = \langle V, E \rangle$,对于任意的 $v \in V$,称v作为D中边的始点的次数之和为v的出度,记作 $d_D^+(v)$,简记为 $d^+(v)$ 。称v作为D中边的终点的次数之和为v的入度,记作 $d_D^-(v)$,简记为 $d^-(v)$ 。称 $d_D^+(v) + d_D^-(v)$ 为v的度数,记作 $d_D(v)$,简记为d(v)。

最大(最小)度数

设G为无向图,令

$$\Delta(G) = \max\{d(v) \mid v \in V(G)\}\$$

$$\delta(G) = \min\{d(v) \mid v \in V(G)\}\$$

则 $\Delta(G)$, $\delta(G)$ 分别为G的最大度数和最小度数,简称最大度和最小度。

• 设D为一个有向图,类似可定义D中的最大度数 $\Delta(D)$ 和最小度数 $\delta(D)$ 。另外,令

$$\Delta^{+}(D) = \max\{d^{+}(v) \mid v \in V(D)\}$$

$$\delta^{+}(D) = \min\{d^{+}(v) \mid v \in V(D)\}$$

$$\Delta^{-}(D) = \max\{d^{-}(v) \mid v \in V(D)\}$$

$$\delta^{-}(D) = \min\{d^{-}(v) \mid v \in V(D)\}$$

它们依次称为D的最大出度,最小出度,最大入度,最小入度。

• \overline{A} 者 G 为 n 阶 无 向 简 单 图,则 $\Delta(G) \leq n-1$, \overline{A} D 为 n 阶 有 向 简 单 图,则 $\Delta(D) \leq 2(n-1)$ 。

图论的基本定理(握手定理)

定理

设
$$G = \langle V, E \rangle$$
为一个无向图, $V = \{v_1, v_2, \cdots, v_n\}$, $|E| = m$,则
$$\sum_{i=1}^n d(v_i) = 2m$$
。

定理

设
$$D = \langle V, E \rangle$$
为一个有向图, $V = \{v_1, v_2, \cdots, v_n\}$, $|E| = m$,则
$$\sum_{i=1}^n d(v_i) = 2m \, \text{且} \sum_{i=1}^n d^+(v_i) = \sum_{i=1}^n d^-(v_i) = m.$$

推论

任何图G(无向图或有向图)中, 奇度数顶点的个数是偶数。

• 度数为奇数的顶点称为奇度顶点, 度数为偶数的顶点称为偶度顶点。

度数列

定义

设 $G = \langle V, E \rangle$ 为一无向图, $V = \{v_1, v_2, \cdots, v_n\}$,称 $(d(v_1), d(v_2), \cdots, d(v_n))$ 为G的度数列。

- 对于顶点编好号的给定图G, 它的度数列是惟一确定的。
- 对于任意给定的非负整数列, $\mathbf{d} = (d_1, d_2, \cdots, d_n)$,若存在以 $V = \{v_1, v_2, \cdots, v_n\}$ 为顶点集的n阶图 G,以 \mathbf{d} 为度数列,则称 \mathbf{d} 是可图化的。特别地,若存在以 $V = \{v_1, v_2, \cdots, v_n\}$ 为顶点集的n阶简单图 G,以 \mathbf{d} 为度数列,则称 \mathbf{d} 是可简单图化的。

 $\mathbf{d} = (d_1, d_2, \dots, d_n)$ ($d_i \ge 0$ 且为整数, $i = 1, 2, \dots, n$) 在什么条件之下是可图化的? 在什么条件之下是可简单图化的?

整数列可图化的充要条件

定理

$$\mathbf{d}=\left(d_1,d_2,\cdots,d_n\right)$$
 $(d_i\geq 0$ 且为整数, $i=1,2,\cdots,n$)是可图化的当且仅当 $\sum_{i=1}^n d_i=0 \pmod 2$ 。

且仅当
$$\sum_{i=1}^{n} d_i = 0 \pmod{2}$$
。

整数列可图化的充要条件

例

下面给出的两个整数列,哪个是可图化的?

(1)
$$\mathbf{d} = (5, 4, 4, 3, 3, 2); (2) \mathbf{d} = (5, 3, 3, 2, 1).$$

整数列可简单图化的充要条件

定理

设非负整数列
$$\mathbf{d} = (d_1, d_2, \cdots, d_n) \ (n-1 \ge d_1 \ge d_2 \ge \cdots \ge d_n \ge 0)$$

则**d**是可简单图化的当且仅当对于每个整数r, $1 \le r \le (n-1)$, $\sum_{i=1}^{r} d_i$

$$\leq r(r-1) + \sum_{i=r+1}^{n} \min\{r, d_i\}, \quad \mathbb{E}\sum_{i=1}^{n} d_i = 0 \pmod{2}.$$

例

判断下列各非负整数列是否是可简单图化的?

(1)
$$\mathbf{d} = (5, 4, 3, 2, 2, 1);$$
 (2) $\mathbf{d} = (5, 4, 4, 3, 2);$

(3)
$$\mathbf{d} = (3, 3, 3, 1);$$
 (4) $\mathbf{d} = (6, 6, 5, 4, 3, 3, 1);$

(5)
$$\mathbf{d} = (5, 5, 3, 3, 2, 2, 2);$$
 (6) $\mathbf{d} = (d_1, d_2, \dots, d_n),$ $d_1 > d_2 > \dots > d_n$

 $d_n \geq 1$.

整数列可简单图化的充要条件

定理

设非负整数列
$$\mathbf{d} = (d_1, d_2, \cdots, d_n)$$
, $\sum_{i=1}^n d_i = 0 \pmod{2}$,且 $(n-1) \ge d_1 \ge d_2 \ge \cdots \ge d_n \ge 0$,则 \mathbf{d} 是可简单图化的当且仅当 $\mathbf{d}' = (d_2 - 1, d_3 - 1, \cdots, d_{d_1+1} - 1, d_{d_1+2}, \cdots, d_n)$ 是可简单图化的。

例

判断下列两个非负整数列是否是可简单图化的?

(1)
$$\mathbf{d} = (5, 5, 4, 4, 2, 2);$$
 (2) $\mathbf{d} = (4, 4, 3, 3, 2, 2).$

图的同构

定义

设 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$ 为两个无向图,若存在双射函数 $f: V_1$ $\to V_2$,对于任意的 $v_i, v_j \in V_1$ $(f(v_i), f(v_j) \in V_2)$, $(v_i, v_j) \in E_1$ 当且仅 当 $(f(v_i), f(v_j)) \in E_2$ 且 (v_i, v_j) 与 $(f(v_i), f(v_j))$ 重数相同,则称 G_1 与 G_2 同构,记为 $G_1 \cong G_2$ 。

定义

设 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$ 为两个有向图,若存在双射函数 $f: V_1 \rightarrow V_2$,对于任意的 $v_i, v_j \in V_1$ ($f(v_i), f(v_j) \in V_2$), $\langle v_i, v_j \rangle \in E_1$ 当且仅 当 $\langle f(v_i), f(v_j) \rangle \in E_2$ 且 $\langle v_i, v_j \rangle$ 与 $\langle f(v_i), f(v_j) \rangle$ 重数相同,则称 G_1 与 G_2 同构,记为 $G_1 \cong G_2$ 。

图的同构

完全图和竞赛图

- 设G为n ($n \ge 1$) 阶无向简单图,若G中每个顶点均与其余的n-1个顶点相邻,则称G为n阶无向完全图,记作 K_n 。
- 设D为n ($n \ge 1$) 阶有向简单图,若对于任意的 $v_i, v_j \in V(D)$ ($v_i \ne v_j$),均有 $\langle v_i, v_j \rangle \in E(D) \land \langle v_j, v_i \rangle \in E(D)$,则称D为n阶有向完全图。
- 设D为n ($n \ge 1$) 阶有向简单图,若对于任意的 $v_i, v_j \in V(D)$ ($v_i \ne v_j$),有向边 $\langle v_i, v_j \rangle$ 和 $\langle v_j, v_i \rangle$ 中有且仅有一个属于E(D),则称D为n阶竞赛图。

正则图

定义

设G为n ($n \ge 1$) 阶无向简单图,若对于任意的 $v \in V(G)$,均有d(v) = k,则称G为k-正则图。

- n阶零图Nn是0-正则图;
- 无向完全图K_n是(n-1)-正则图;
- Petersen图是3-正则图;
- 上面的图是Plato图,其中(a),(b),(d)为3-正则图,(c)为4-正则图,(e)为5-正则图。

r部图

定义

设 $G = \langle V, E \rangle$ 为一个n阶无向图,若V能分成 $r(r \geq 2)$ 个互不相交的子集 V_1, V_2, \cdots, V_r ,使得G中任何一条边的两个端点都不在同一个 V_i ($i = 1, 2, \cdots, r$)中,则称G为r部图,记为 $G = \langle V_1, V_2, \cdots, V_r, E \rangle$ 。特别地,当r = 2时,称 $G = \langle V_1, V_2, E \rangle$ 为二部图(或称偶图)。设G是简单r部图,若对任意的i($i = 1, 2, \cdots, r$), V_i 中任一个顶点均与 V_j ($j \neq i$)中所有顶点相邻,则称G为完全r部图,当 $|V_i| = n_i$ 时,记 $G = K_{n_1,n_2,\cdots,n_r}$,当r = 2时,完全二部图 $G = K_{n_1,n_2,\cdots,n_r}$,

r部图

在n阶完全r部图 K_{n_1,n_2,\cdots,n_r} 中, $n=\sum_{i=1}^r n_i$, $m=\sum_{i< j} n_i n_j$ 。当n,r固定后, n_1,n_2,\cdots,n_r 各取何值时,使得该n阶完全r部图中,边数m达到最大?

对于固定的正整数n, r(n > r),存在 $k, s(k \ge 1, 0 \le s < r)$,使得n = kr + s,即 $n_1 = n_2 = \cdots = n_s = k + 1$, $n_{s+1} = n_{s+2} = \cdots = n_r = k$,此时 K_{n_1,n_2,\cdots,n_r} 的边数最多,即m取最大值。记边数m达到最大值的n阶完全r部图 K_{n_1,n_2,\cdots,n_r} 为 $T_r(n)$,它的边数m记为 $t_r(n)$ 。

设 $G = \langle V_1, V_2, \cdots, V_r, E \rangle$ 为任意的n阶r部图,设 $n_i = |V_i|$,则G的边数m满足 $m \leq \sum_{i < i} n_i n_j \leq t_r(n)$,当 $m = t_r(n)$ 时,必有 $G \cong T_r(n)$ 。

子图

定义

设 $G = \langle V, E \rangle$, $G' = \langle V', E' \rangle$ 为两个图(同为无向图或同为有向图),若 $V' \subseteq V$ 且 $E' \subseteq E$,则称G'是G的子图,G为G'的母图,记作 $G' \subseteq G$ 。

已知 $G' \subseteq G$,又

- 若 $V' \subset V$ 或 $E' \subset E$,则称G'是G的真子图;
- $\dot{a}V' = V$, 则称G'为G的生成子图;

设 $G = \langle V, E \rangle$ 为一图, $V_1 \subset V$,且 $V_1 \neq \emptyset$,称以 V_1 为顶点集,以G中两个端点都在 V_1 中的边组成边集 E_1 的图,为G的 V_1 导出的子图,记作 $G[V_1]$ 。

又设 $E_1 \subset E \perp E_1 \neq \emptyset$,称以 E_1 为边集,以 E_1 中的边关联的顶点为顶点集 V_1 的图,为G的 E_1 导出的子图,记作G[E_1]。

子图

补图

定义

设 $G = \langle V, E \rangle$ 为n阶简单图(无向或有向),称以V为顶点集,以使G成为n阶完全图的所有添加边组成的集合为边集的图为G的补图,记作 \overline{G} 。若 $G \cong \overline{G}$,则称G为自补图。

自补图G的阶n应满足什么条件?

定义

设 $G = \langle V, E \rangle$ 为一无向图,

- ① 设 $e \in E$,用G e表示从G中去掉边e,称为删除e。设 $E' \subset E$,用G E'表示从G中删除E'中的所有边,称为删除E'。
- ② 设 $v \in V$,用G v表示从G中去掉v以及v关联的一切边,称为删除D点,又设D0、用D0、用D0、从D0、不为删除D0。,称为删除D0。
- ③ 设 $e = (u, v) \in E$,用 $G \setminus e$ 表示从G中删除e,将e的两个端点u, v用一个新的顶点w代替(w也可取成u或v),使w关联除e外的u, v 关联的一切边,称为边e 的收缩。
- ④ 设 $u, v \in V$ (u, v可能相邻也可能不相邻),用 $G \cup (u, v)$ (或G + (u, v))表示在u, v之间加一条边(u, v),称为加新边。

注意: 简单图经过边的收缩或加新边后,可变成非简单图。

设
$$G_1 = \langle V_1, E_1 \rangle, G_2 = \langle V_2, E_2 \rangle$$
为两个图。

- ② 若 $E_1 \cap E_2 = \emptyset$,则称 $G_1 与 G_2$ 是边不交的,或边不重的。

定义

设 $G_1 = \langle V_1, E_1 \rangle, G_2 = \langle V_2, E_2 \rangle$ 均为无孤立点的图。

- ① 称以 $E_1 \cup E_2$ 为边集,以 $E_1 \cup E_2$ 中边关联的顶点组成的集合为顶点集的图为 G_1 与 G_2 的并图,记作 $G_1 \cup G_2$ 。
- ② 称以 $E_1 \cap E_2$ 为边集,以 $E_1 \cap E_2$ 中边关联的一切顶点组成的集合为顶点集的图为 G_1 与 G_2 的交图,记作 $G_1 \cap G_2$ 。
- ③ 称以 $E_1 E_2$ 为边集,以 $E_1 E_2$ 中边关联的一切顶点组成的集合为顶点集的图为 G_1 与 G_2 的差图,记作 $G_1 G_2$ 。
- ④ 称以 $E_1 \oplus E_2$ (\oplus 为对称差运算)为边集,以 $E_1 \cup E_2$ 中边关联的一切顶点组成的集合为顶点集的图为 G_1 与 G_2 的<mark>环和</mark>,记作 $G_1 \oplus G_2$ 。
 - 当 $G_1 = G_2$ 时, $G_1 \cup G_2 = G_1 \cap G_2 = G_1(G_2)$, $G_1 G_2 = G_2 G_1$ = $G_1 \oplus G_2 = \emptyset$ (空图);
- 当 G_1 与 G_2 边不重时, $G_1 \cap G_2 = \emptyset$, $G_1 G_2 = G_1$, $G_2 G_1 = G_2$, $G_1 \oplus G_2 = G_1 \cup G_2$ 。

定义

设 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$ 为两个不交无向图。称以 $V = V_1 \cup V_2$ 为顶点集,以 $E = E_1 \cup E_2 \cup \{(u, v) | u \in V_1 \land v \in V_2\}$ 为边集的图G 为 G_1 与 G_2 的联图,记作 $G = G_1 + G_2$ 。

由定义可知 $K_r+K_s=K_{r+s}$ 且 $N_r+N_s=K_{r,s}$ 。 若 $|V_1|=n_1$, $|E_1|=m_1$, $|V_2|=n_2$, $|E_2|=m_2$,则联图中顶点数 $n=n_1+n_2$,边数 $m=m_1+m_2+n_1n_2$ 。

定义

设 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$ 为两个无向简单图。称以 $V = V_1 \times V_2$ 为 顶点集,以 $E = \{(\langle u_i, u_j \rangle, \langle v_k, v_s \rangle) | \langle u_i, u_j \rangle, \langle v_k, v_s \rangle \in V_1 \times V_2 \wedge (u_i = v_k \wedge u_j + v_s) + v_s \wedge u_i + v_k \wedge u_j = v_s \wedge u_i + v_k \wedge u_j + v_s \wedge u_i + v_k \wedge u_i + v$

用0,1分别表示K2的两个端点,令

$$Q_1 = \mathcal{K}_2,$$
 $Q_2 = \mathcal{K}_2 \times Q_1,$
 \dots
 $Q_k = \mathcal{K}_2 \times Q_{k-1}, k \ge 3$

则称 Q_k 为k-方体图。

图

- 图的基本概念
- 。通路与回路

无向图中的通路与回路

定义

设 G为无向标定图, G中顶点与边的交替序列 $\Gamma = v_{i_0}e_{j_1}v_{i_1}e_{j_2}\cdots e_{j_l}v_{i_l}$ 称为顶点 v_{i_0} 到顶点 v_{i_1} 的通路, 其中 $v_{i_{r-1}},v_{i_r}$ 为 e_{j_r} 的端点, $r=1,2,\cdots,I$, v_{i_0},v_{i_1} 分别 称为 Γ 的 始点 和 终点, Γ 中 边数 I 称为 Γ 的 长度。 若 $v_{i_0}=v_{i_1}$,则 称 通路 Γ 为 回路。

若 Γ 的所有边各异,则称 Γ 为简单通路,此时若 $v_{i_0} = v_{i_1}$,则称 Γ 为简单回路。

若Г的所有顶点(除 v_{i_0} 与 v_{i_1} 可能相同外)各异,所有边也各异,则称Г为初级通路,或称Г为一条路径,此时若 $v_{i_0}=v_{i_1}$,则称Г为初级回路或圈,并将长度为奇数的圈称为奇圈,长度为偶数的圈称为偶圈。若Г中有边重复出现,则称Г为复杂通路,又此时若 $v_{i_0}=v_{i_1}$,则称Г为复杂回路。

有向图中通路、回路及其分类的定义与无向图类似,只是注意有向图中通路与回路中有向边方向的一致性,即在 $\Gamma=v_{i_0}e_{j_1}v_{i_1}e_{j_2}\cdots e_{j_l}v_{i_l}$ 中, $v_{i_{r-1}}$ 必为 e_{j_r} 的始点,而 v_{i_r} 必为 e_{j_r} 的终点, $r=1,2,\cdots,I$,并且初级回路也简称为圈。

通路与回路的表示法

定义中通路(回路)表示为顶点与边的交替序列,除此之外还有如下的简便方法表示通路与回路:

- ① 用边的序列表示通路(回路)。上一定义中的 $\Gamma = v_{i_0} e_{j_1} v_{i_1} e_{j_2} \cdots e_{j_l} v_{i_l} = v_{i_0} e_{j_1} v_{i_1} e_{j_2} \cdots e_{j_l}$ 。
- ② 在简单图中用顶点的序列表示通路(回路)。前面的Γ在简单图中可表示为ν_{in}ν_i,····ν_{ii}。
- 为了写出非标定图中的通路(回路),将非标定图先标成标定图,或只标定所求通路(回路),然后再写出通路(回路)。
- 将图中的通路(回路)在图外重新画出。

图的周长与围长

定义

在含圈的无向简单图G中,称G中最长圈的长度为G的<mark>周长</mark>,记作c(G),称G中最短圈的长度为G的<mark>围长</mark>,记作g(G)。

例

- 无向完全图 $K_n(n \ge 3)$ 的周长为n,围长为3。
- 完全二部图 $K_{n,n}(n \ge 2)$ 的周长为2n,围长为4。

通路与回路的性质

定理

在n阶图G中,若从顶点 v_i 到 v_j ($v_i \neq v_j$) 存在通路,则从 v_i 到 v_j 存在长度小于等于n-1的通路。

推论

在n阶图G中,若从顶点 v_i 到 v_j ($v_i \neq v_j$) 存在通路,则从 v_i 到 v_j 存在长度小干等干n-1的路径。

定理

在n阶图G中,若存在从顶点 v_i 到自身的回路,则存在从 v_i 到自身长度小干等干n的回路。

推论

在n阶图G中,若存在从顶点v;到自身的简单回路,则一定存在v;到自身的长度小于等于n的初级回路(圈)。

扩大路径法

设 $G = \langle V, E \rangle$ 为n阶无向图, $E \neq \emptyset$,设 $\Gamma_I = v_0 v_1 \cdots v_l$ 为G中的一条路径,若始点 v_0 与 Γ_I 外的某顶点相邻,就将该顶点及关联的边扩到 Γ_I 中来,若新路径的始点还与新的路径外的顶点相邻,就再将它及其相关联的边扩到新的路径中来,得到更新的路径,继续这一过程,直到最后所得路径的始点不与其它所有路径外的任何顶点相邻为止,设终止时的路径为 $\Gamma_{I+k} = v_0 v_1 \cdots v_{I+k}, \ k \geq 0$ 。再对 Γ_{I+k} 的终点 v_{I+k} 继续上述过程,设最终得到的路径为 $\Gamma_{I+k+r} = v_0 v_1 \cdots v_{I+k+r}, \ k, r \geq 0$,它的始点 v_0 与终点 v_{I+k+r} 不与 v_0 的任何顶点相邻。则称 v_0 与终点 v_0 ,并称用构造极大路径证明定理或命题的方法为"扩大路径法"。

类似地,可以在有向图D中构造"极大路径",只需注意,当从路径 的始点νω扩大时,需要找Γ外的邻接到νω的顶点,而从路径的终点νη扩 大时,需要找Γ外的邻接于νμ的顶点。 集合论与图论第八讲 图 通路与回路

扩大路径法

例

设G为n $(n \ge 3)$ 阶无向简单图, $\delta(G) \ge 2$,证明G中存在长度大于等于3的圈。

扩大路径法

例

设 $D = \langle V, E \rangle$ 为有向简单图, $\delta(D) \geq 2$,且 $\delta^-(D) > 0$, $\delta^+(D) > 0$,证明D中存在长度大于等于 $\max\{\delta^-(D), \delta^+(D)\} + 1$ 的圈。