

Инструменты аналитика данных для решения прикладных задач лекция 2

Инструменты интеграции и удаление файлов (ETL)

1. ETL-инструмент должен быть простым в освоении.

Специалист не должен тратить полжизни на изучение нового ПО, а просто взять и практически сразу начать работать с ним.

коннекторы к ним с нуля.

2. В нём должно быть предусмотрено максимальное количество готовых коннекторов. Мы все пользуемся плюс-минус одними и теми же системами: от 1С до SAP, Oracle, AmoCRM, Google Analytics. И никто не хочет программировать

3. Инструмент должен быть универсальным и работать с разными ВІ системами.

Это облегчает переход аналитиков и разработчиков из одной компании в другую — если на прошлом месте работы, например, использовали QlikView, а на новом — Visiology, желательно сохранить возможность пользоваться тем же ETL-инструментом.

4. ETL не должен ограничивать развитие аналитики.

У многих ETL-инструментов есть критическая проблема — в них несложно реализовать простенькие вещи, но для более сложных задач приходится искать новый инструмент, который сможет расти вместе с тобой.

5. Получить недорогой (а лучше — полностью бесплатный) инструмент, причем не только на время "пробного периода", а насовсем, чтобы пользоваться им без ограничений.

Extract, Transform и Load — это 3 концептуально важных шага, определяющих, каким образом устроены большинство современных пайплайнов данных.

На сегодняшний день это базовая модель того, как сырые данные сделать готовыми для анализа.

Extract. Это шаг, на котором датчики принимают на вход данные из различных источников (логов пользователей, копии реляционной БД, внешнего набора данных и т.д.), а затем передают их дальше для последующих преобразований.

Transform. Это «сердце» любого **ETL**, этап, когда мы применяем бизнес-логику и делаем фильтрацию, группировку и агрегирование, чтобы преобразовать сырые данные в готовый к анализу датасет. Эта процедура требует понимания бизнес задач и наличия базовых знаний в области.

Load. Загрузка обработанных данных.

Полученный набор данных может быть использован конечными пользователями, а может являться входным потоком к еще одному ETL.

Работа ETL системы

Функции ETL системы

Поток данных из нескольких систем-источников (обычно OLTP) и система приемник (обычно OLAP)

1.Процесс загрузки — Его задача затянуть в ETL данные произвольного качества для дальнейшей обработки, на этом этапе важно сверить суммы пришедших строк, если в исходной системе больше строк, чем в RawData то значит — загрузка прошла с ошибкой;

2. Процесс валидации данных — на этом этапе данные последовательно проверяются на корректность и полноту, составляется отчет об ошибках для исправления;

3. Процесс мэппинга данных с целевой моделью — на этом этапе к валидированной таблице пристраивается еще n-столбцов по количеству справочников целевой модели данных, а потом по таблицам мэппингов в каждой пристроенной ячейке, в каждой строке проставляются значения целевых справочников. Значения могут проставляться как 1:1, так и *:1, так и 1:* и *:*, для настройки последних двух вариантов используют формулы и скрипты мэппинга, реализованные в ETL-инструменте;

4. Процесс агрегации данных — этот процесс нужен из-за разности детализации данных в OLTP и OLAP системах.

OLAP-система — это полностью денормализованная таблица фактов и окружающие ее таблицы справочников, максимальная детализация сумм **OLAP** — это количество перестановок всех элементов всех справочников.

OLTP-система может содержать несколько сумм для одного и того же набора элементов справочников.

Можно было-бы убивать OLTP-детализацию еще на входе в ETL, но тогда мы потеряли бы «аудиторский след». Этот след нужен для построения Drill-down отчета, который показывает — из каких строк OLTP, сформировалась сумма в ячейке OLAP-системы. Поэтому сначала делается мэппинг на детализации OLTP, а потом в отдельной таблице данные «схлопывают» для загрузки в OLAP;

5. Выгрузка в целевую систему — это технический процесс использования коннектора и передачи данных в целевую систему.

Рынок ETL

ETL-инструменты

VISUAL ETL

SCRIPT ETL


```
[OCOSTCENTER_TEXT]:
 [DATEFROM] as [DATEFROM. Valid-From Date],
 [DATETO] as [DATETO. Valid-to date],
 [KOKRS] as [KOKRS.Controlling Area],
 [KOSTL] as [KOSTL.Cost Center],
 [LANGU] as [LANGU.Language Key],
 [TXTMD] as [TXTMD.Medium description],
 [TXTSH] as [TXTSH.Short description];
SQL EXTRACTOR OCOSTCENTER_TEXT
TFRMEIHOD T // tRFC transfer method
//UPDMODE F // full extractor
UPDMODE C // initial extraction, to be followed by delta extractions
//UPDMODE D // delta extraction
//INITRNR <NR> // Resend extraction
//IDOC <NR> // Resend single IDoc
EXTRLANGUAGE E
LOGSYS QTQVCEXTR2
WHERE
KOKRS I EQ 1000
//STORE * FROM [OCOSTCENTER_TEXT] INTO FULL_OCOSTCENTER_TEXT.QVD;
STORE * FROM [OCOSTCENTER_TEXT] INTO INIT_OCOSTCENTER_TEXT.QVD;
//LET vDate=Replace(now(),':','');
//STORE * FROM [OCOSTCENTER_TEXT] INTO DELTA_OCOSTCENTER_TEXT$ (vDate) .QVD;
DROP TABLE [OCOSTCENTER_TEXT];
```


Инструменты аналитики Работа в ETL-системе Talend

ETL Job1

ETL Job2

ETL Job3

СПАСИБО ЗА ВНИМАНИЕ