Lab 4

Terrence Jackson

SDEV 300: Building Secure Python Applications

Professor Howard

Apr 9, 2024

Matrix Application

Test Cases

	Input	Expected	Actual	Pass?
Test Case 1: Invalid phone number	Play? Y Phone: apple	Invalid phone number, prompt again	Invalid, please input a phone number in the format XXX-XXX	Yes
Test Case 2: Valid Phone Number	Play? yes Phone: 123-456-8794	Print phone number Prompt for zip	Your phone number: 123-456-8794 Enter your zip code+4 (XXXXX-XXXX):	Yes
Test Case 3: Invalid zip	Play? y Phone: 123-456-8794 Zip: pear	Invalid zip, prompt again	Invalid, please input a phone number in the format XXX-XXXX Enter your zip code+4 (XXXXX-XXXX):	Yes
Test Case 4: Valid zip	Play? y Phone: 123-456-8794 Zip: 12345-1234	Print zip Prompt for first matrix	Your zip code: 12345-1234 Enter your first 3x3 matrix:	Yes

Test Case 5:	apple pear	Invalid, prompt again	Invalid input.Please	Yes
Invalid	tangerine		input a matrix using only	
matrix			integers and floats in the	
			following format:	
			XXX	
			XXX	
			XXX	
			Enter your first 3x3	
			matrix:	
Test Case 6:	Matrix 1:	Print matrices	Your first 3x3 matrix is:	Yes
Matrix	476	Addition:	4.00 7.00 6.00	
Addition	2 3 7	5 12 8	2.00 3.00 7.00	
	9 5 2	5 5 10	9.00 5.00 2.00	
	Matrix 2:	18 11 11	Your second 3x3 matrix	
	1 5 2	Transpose:	is:	
	3 2 3	5 5 18	1.00 5.00 2.00	
	969	12 5 11	3.00 2.00 3.00	
	Selection: a	8 10 11	9.00 6.00 9.00	
		Row mean: 8.333 6.666	You selected Addition.	
		13.333	The results are:	
		Col mean: 9.333 9.333	5.00 12.00 8.00	
		9.666	5.00 5.00 10.00	
		Prompt to play again	18.00 11.00 11.00	
			The Transpose is:	
			5.00 5.00 18.00	
			12.00 5.00 11.00	
			8.00 10.00 11.00	
			The row and column	
			mean values of the	
			results are:	

			Row: 8.33 6.67 13.33 Column: 9.33 9.33 9.67	
Test Case 7: Matrix Subtraction	Matrix 1: 3.4 2.9 4.4 0.6 8.6 9.9 5.1 6.2 6.1 Matrix 2: 1.5 6.5 6.3 3.5 4.1 5.1 1.4 7.8 2.5	Print matrices Subtraction: 1.9 -3.6 -1.9 -2.9 4.5 4.8 3.7 -1.6 3.6 Transpose: 1.9 -2.9 3.7 -3.6 4.5 -1.6	Your first 3x3 matrix is: 3.40 2.90 4.40 0.60 8.60 9.90 5.10 6.20 6.10 Your second 3x3 matrix is: 1.50 6.50 6.30 3.50 4.10 5.10	Yes
		-1.9 4.8 3.6 Row: -1.2 2.13 1.9 Column:0.9 -0.23 2.17 Prompt to play again	1.40 7.80 2.50 You selected Subtraction. The results are: 1.90 -3.60 -1.90 -2.90 4.50 4.80 3.70 -1.60 3.60 The Transpose is: 1.90 -2.90 3.70 -3.60 4.50 -1.60 -1.90 4.80 3.60 The row and column mean values of the results are: Row: -1.20 2.13 1.90 Column: 0.90 -0.23 2.17	

Test Cose 9.	Motrix 1.	Drint matrices	Vous first 2x2 matrix is:	Vag
Test Case 8:	Matrix 1:	Print matrices		Yes
Matrix Mult	6.31 59.2 2.32	Mult:	6.31 59.20 2.32	
	6.61 13.6 45.2	998.08 2485.24 295.21	6.61 13.60 45.20	
	39.5 9.46 3.33	1035.43 3068.69 488.46	39.50 9.46 3.33	
	Matrix 2:	3032.17 932.29 272.28	Your second 3x3 matrix	
	73.9 9.69 5.17	Transpose:	is:	
	8.61 38.8 4.09	998.08 1035.43 3032.17	73.90 9.69 5.17	
	9.51 54.8 8.82	2485.24 3068.69 932.29	8.61 38.80 4.09	
		295.21 488.46 272.28	9.51 54.80 8.82	
		Row: 1259.51 1530.86	You selected Matrix	
		1412.24	Multiplication. The	
		Column: 1688.56	results are:	
		2162.07 351.98	998.08 2485.24 295.21	
		Prompt to play again	1035.43 3068.69	
			488.46	
			3032.17 932.29 272.28	
			The Transpose is:	
			998.08 1035.43	
			3032.17	
			2485.24 3068.69	
			932.29	
			295.21 488.46 272.28	
			The row and column	
			mean values of the	
			results are:	
			Row: 1259.51 1530.86	
			1412.24	
			Column: 1688.56	
			2162.07 351.98	

Test Case 9:	Matrix 1:	Print matrices	Your first 3x3 matrix is:	Yes
Matrix	2.68 8.7 37	Multiplication:	2.68 8.70 37.00	
Element Mult	5 5.27 5.9	93.80 348.00 112.48	5.00 5.27 5.90	
	9.7 0.688 1	30.10 31.09 41.30	9.70 0.69 1.00	
	Matrix 2:	19.30 2.13 18.00	Your second 3x3 matrix	
	35 40 3.04	Transpose:	is:	
	6.02 5.9 7	93.80 30.10 19.30	35.00 40.00 3.04	
	1.99 3.1 18	348.00 31.09 2.13	6.02 5.90 7.00	
		112.48 41.30 18.00	1.99 3.10 18.00	
		Row: 184.76 34.16 13.15	You selected Element by	
		Column: 47.73 127.08	element multiplication.	
		57.26	The results are:	
		Prompt to play again	93.80 348.00 112.48	
			30.10 31.09 41.30	
			19.30 2.13 18.00	
			The Transpose is:	
			93.80 30.10 19.30	
			348.00 31.09 2.13	
			112.48 41.30 18.00	
			The row and column	
			mean values of the	
			results are:	
			Row: 184.76 34.16	
			13.15	
			Column: 47.73	
			127.08 57.26	

Test Case 10: Invalid Selection	Select a matrix operation: tangerine	Invalid, prompt again	Invalid choice. Please enter a valid option. Choice:	Y
Test Case 11: Invalid Y/N	Play? Plum	Invalid, prompt again	Invalid, please input 'yes' or 'no. Do you want to play the Matrix Game? Enter Y for Yes or N for No:	Y
Test Case 12: Valid Y/N continue	Play? Y	Prompt for phone number	Enter your phone number (XXX-XXX-XXXX):	Y

Test Case 1:

```
************* Welcome to the Python Matrix Application********

Do you want to play the Matrix Game?

Enter Y for Yes or N for No: Y

Enter your phone number (XXX-XXX-XXXX): apple

Invalid, please input a phone number in the format XXX-XXX-XXXX

Enter your phone number (XXX-XXX-XXXX):
```

Test Case 2:

Test Case 3:

```
************** Welcome to the Python Matrix Application********

Do you want to play the Matrix Game?

Enter Y for Yes or N for No: y

Enter your phone number (XXX-XXX-XXXX): 123-456-8794

Your phone number: 123-456-8794

Enter your zip code+4 (XXXXX-XXXX): pear

Invalid, please input a phone number in the format XXX-XXXX

Enter your zip code+4 (XXXXX-XXXXX): []
```

Test Case 4:

Test Case 5:

```
Enter your first 3x3 matrix:

apple pear tangerine

Invalid input.Please input a matrix using only integers and floats in the following format:

    X X X

    X X X

    X X X

    Enter your first 3x3 matrix:
```

Test Case 6:

```
Enter your first 3x3 matrix:
476
2 3 7
9 5 2
Your first 3x3 matrix is:
   4.00
           7.00
                   6.00
   2.00
           3.00
                   7.00
   9.00
           5.00
                   2.00
Enter your second 3x3 matrix:
152
3 2 3
969
Your second 3x3 matrix is:
   1.00
           5.00
                   2.00
   3.00
           2.00
                   3.00
                   9.00
   9.00
           6.00
Select a Matrix Operation from the list below:
a. Addition
b. Subtraction
c. Matrix Multiplication
d. Element by element multiplication
Choice: a
You selected Addition. The results are:
   5.00
         12.00
                   8.00
           5.00
   5.00
                10.00
  18.00
          11.00 11.00
The Transpose is:
   5.00
           5.00 18.00
  12.00
          5.00 11.00
   8.00
          10.00 11.00
The row and column mean values of the results are:
Row:
           8.33
                   6.67
                         13.33
Column:
           9.33
                   9.33
                           9.67
Do you want to play the Matrix Game?
Enter Y for Yes or N for No:
```

Test Case 7:

```
Enter your first 3x3 matrix:
3.4 2.9 4.4
0.6 8.6 9.9
5.1 6.2 6.1
Your first 3x3 matrix is:
    3.40
           2.90
                   4.40
    0.60
            8.60
                    9.90
    5.10
           6.20
                   6.10
Enter your second 3x3 matrix:
Invalid input. Please input a matrix using only inte
  X X X
 X X X
  X X X
Enter your second 3x3 matrix:
1.5 6.5 6.3
3.5 4.1 5.1
1.4 7.8 2.5
Your second 3x3 matrix is:
    1.50
           6.50
                   6.30
            4.10
                    5.10
    3.50
    1.40
           7.80
                   2.50
Select a Matrix Operation from the list below:
a. Addition
b. Subtraction
c. Matrix Multiplication
d. Element by element multiplication
Choice: b
You selected Subtraction. The results are:
    1.90
          -3.60 -1.90
   -2.90
           4.50
                   4.80
    3.70
          -1.60
                   3.60
The Transpose is:
    1.90
           -2.90
                   3.70
   -3.60
           4.50 -1.60
   -1.90
           4.80
                   3.60
The row and column mean values of the results are:
Row:
           -1.20
                    2.13
                           1.90
           0.90 -0.23
                           2.17
Do you want to play the Matrix Game?
Enter Y for Yes or N for No:
```

Test Case 8:

```
Enter your first 3x3 matrix:
6.31 59.2 2.32
6.61 13.6 45.2
39.5 9.46 3.33
Your first 3x3 matrix is:
   6.31 59.20
                   2.32
   6.61 13.60
                45.20
          9.46
  39.50
                  3.33
Enter your second 3x3 matrix:
73.9 9.69 5.17
8.61 38.8 4.09
9.51 54.8 8.82
Your second 3x3 matrix is:
  73.90 9.69
                  5.17
                  4.09
   8.61 38.80
   9.51 54.80
                   8.82
Select a Matrix Operation from the list below:
a. Addition
b. Subtraction
c. Matrix Multiplication
d. Element by element multiplication
Choice: c
You selected Matrix Multiplication. The results are:
 998.08 2485.24 295.21
1035.43 3068.69 488.46
3032.17 932.29 272.28
The Transpose is:
 998.08 1035.43 3032.17
2485.24 3068.69 932.29
 295.21 488.46 272.28
The row and column mean values of the results are:
        1259.51 1530.86 1412.24
Column: 1688.56 2162.07 351.98
Do you want to play the Matrix Game?
```

Test Case 9:

```
Enter your first 3x3 matrix:
2.68 8.7 37
5 5.27 5.9
9.7 0.688 1
Your first 3x3 matrix is:
    2.68
           8.70
                 37.00
    5.00
           5.27
                   5.90
    9.70
           0.69
                   1.00
Enter your second 3x3 matrix:
35 40 3.04
6.02 5.9 7
1.99 3.1 18
Your second 3x3 matrix is:
   35.00 40.00
                  3.04
    6.02
           5.90
                   7.00
   1.99
           3.10 18.00
Select a Matrix Operation from the list below:
a. Addition
b. Subtraction
c. Matrix Multiplication
d. Element by element multiplication
Choice: d
You selected Element by element multiplication. The results are:
  93.80 348.00 112.48
          31.09 41.30
   30.10
  19.30
          2.13 18.00
The Transpose is:
  93.80 30.10 19.30
 348.00 31.09 2.13
 112.48 41.30 18.00
The row and column mean values of the results are:
         184.76 34.16 13.15
Column:
          47.73 127.08
                          57.26
Do you want to play the Matrix Game?
Enter Y for Yes or N for No: □
```

Test Case 10:

```
Select a Matrix Operation from the list below:

a. Addition

b. Subtraction

c. Matrix Multiplication

d. Element by element multiplication

Choice: tangerine

Invalid choice. Please enter a valid option.

Choice:
```

Test Case 11:

```
Do you want to play the Matrix Game?
Enter Y for Yes or N for No: plum
Invalid, please input 'yes' or 'no.
Do you want to play the Matrix Game?
Enter Y for Yes or N for No:
```

Test Case 12:

```
Do you want to play the Matrix Game?
Enter Y for Yes or N for No: Y
Enter your phone number (XXX-XXX-XXXX): [
```

Pylint

```
sdev_300 > lab_4 > ≡ pylint_matrix_app.txt

1
2
3 Your code has been rated at 10.00/10 (previous run: 10.00/10, +0.00)
4
```

I didn't run into any major Pylint issues with this exercise. The main trouble I had was with figuring out the order/logic for formatting the matrices to print them out with the amount of decimal places and padding I wanted. As I worked through that, Pylint pointed out that I could use an f string instead of formatting a string after the fact. This helped guide me into the final solution.

Password Exercise

Password	Hash Output	Cracked?
password0	MD5: 305e4f55ce823e111a46a9d50 0bcb86c SHA256: 1f489582f7ea4c208b70219a2 bb6a322227a7516630530a10 ed7f2710cfbe447 SHA512: d68e7bc1c722bca2b82c3e525 dfbd35465f05cae712308d450 a647595fe99778f256001d475 1e265dd1a1a4db3e9fbacac18 97e7834cffe87c3e1461c6824 e94	Yes

password1	MD5: 7c6a180b36896a0a8c02787ee afb0e4c SHA256: 0b14d501a594442a01c68595 41bcb3e8164d183d32937b85 1835442f69d5c94e SHA512: bc547750b92797f955b36112 cc9bdd5cddf7d0862151d03a1 67ada8995aa24a9ad24610b3 6a68bc02da24141ee51670aea 13ed6469099a4453f335cb23 9db5da	Yes
password2	MD5: 6cb75f652a9b52798eb6cf220 1057c73 SHA256: 6cf615d5bcaac778352a8f1f3 360d23f02f34ec182e259897f d6ce485d7870d4 SHA512: 92a891f888e79d1c2e8b82663 c0f37cc6d61466c508ec62b81 32588afe354712b20bb75429 aa20aa3ab7cfcc58836c73430 6b43efd368080a2250831bf7f 363f	Yes
password3	MD5: 819b0643d6b89dc9b579fdfc9 094f28e SHA256: 5906ac361a137e2d286465cd 6588ebb5ac3f5ae955001100b c41577c3d751764 SHA512: 2a64d6563d9729493f91bf5b1 43365c0a7bec4025e1fb0ae67 e307a0c3bed1c28cfb259fc6b e768ab0a962b1e2c9527c5f21 a1090a9b9b2d956487eb97ad 4209	Yes

password4	MD5: 34cc93ece0ba9e3f6f235d4af9 79b16c SHA256: b97873a40f73abedd8d685a7c d5e5f85e4a9cfb83eac268866 40a0813850122b SHA512: 11961811bd4e11f23648afbd2 d5c251d2784827147f1731be 010adaf0ab38ae18e5567c6fd 1bee50a4cd35fb544b3c594e7 d677efa7ca01c2a2cb47f8fb12 b17	Yes
SDEV 300 Building Secure Python Applicationspassword0	MD5: a5f296d3ffb39afb88d66be32 b711b7c SHA256: a4d6e05bb575cfc96d13be337 c20962e9d75dde2a8271f5439 fd58339db9a8cc SHA512: 9b89817baece493621e39569 122f4aa8ee393b4fa2e4c1071 b3d089df063900368511d945 898e8d7eafc6751cf551b2bef 6d86575c71752ce49e056b50 aeb16d	No
SDEV 300 Building Secure Python Applicationspassword1	MD5: bd58db5bd4062a70e9349e16 af7f5a8f SHA256: 4a49193dcc87e27aa6f16288f f27a172a70b6f44cac09fa973 5d01dc07725464 SHA512: 4acafbab9f42c0e306d79a18b 8c97ca0f4d62304e3b7516929 7e2d33f4efefca513adceb7fe6 8d9e9e4daa71f1ca8df404c84 70e3e4e8074d7b032cfd859ce 4b	No

SDEV 300 Building Secure Python Applicationspassword2	MD5: 0262b28aa50e457d70bacd6b 94964d67 SHA256: 9c6dc4fd63c6efd2a18cd94c0 a2d60fc5760092a12b4060c71 4027a397c0de1b SHA512: 80a6b834856b20c452e99047 3e0e762e71c4d90d7acac9452 5c0b7dc741c15827deccb694e 85238a925751b0aeb52a9cd0 543fb822135863b87caba654 273872	No
SDEV 300 Building Secure Python Applicationspassword3	MD5: f5685f3bbbc8a086eaaf6c1c83 d8ab51 SHA256: bff1bf711c9b4f277771f6d15d 290de04b7f870c7f91dfe1cc9 5d1e613531aa5 SHA512: 5519462e880c41a8b8e6542b 96023302de3d1e3a8007692f 6761b70aaaea45499821ef4d1 cb0705f244a7a0ac05ada08a0 e74d7c1591ee53c159c57574c c2887	No
SDEV 300 Building Secure Python Applicationspassword4	MD5: 845a35fde2542ca0771390bbf d48da4f SHA256: e26c3dbc23f04ef086da53402 77ee3af326cc042550ff2413b 29428fc4daf9df SHA512: 125a8167819608c8ee094581 ba1feb183865da17165f250ff 6a178a066d48cc19e990d0e7 289aaa127a70cbbbb6554564 a10c62d891404c06b203d499 440b0cd	No

c <v6vs'nff< th=""><th>MD5: d884d2f35e69fc4bf08e2eacb 7c64054 SHA256: bc15070a95fe377431967671 dbeea2f2d306c479728a56ffa 06a3241fe17c1a7 SHA512: e0bd297cf4e1a804667bc2cd6 61139e2e41796ace04e1dc8cf c0de47e7e3a2805c9008b0b8 458dbc126b74a8dddb6e7c09 02f51ffe966cf166684d013a0f 47b7</th><th>No</th></v6vs'nff<>	MD5: d884d2f35e69fc4bf08e2eacb 7c64054 SHA256: bc15070a95fe377431967671 dbeea2f2d306c479728a56ffa 06a3241fe17c1a7 SHA512: e0bd297cf4e1a804667bc2cd6 61139e2e41796ace04e1dc8cf c0de47e7e3a2805c9008b0b8 458dbc126b74a8dddb6e7c09 02f51ffe966cf166684d013a0f 47b7	No
*lCYS#yfo!2Ggc	MD5: 1c53d9f014bedd4ccdf1382b7 5aada10 SHA256: 867129f755aae4fee7944f6bd b346d53b95099f9e6b2842d5 9cb4516cf920213 SHA512: 52304291d399381988e268ac d62d07ec4b1bdd7a8bc1bbd2f bb3e0c83258750839b20aee7 381977010e9ded20e51d2a07 bbf3b39a553809092b4bfdf88 70a64e	No
y.Oiz4w/5LWnY?0uP?ZK	MD5: 17b7aff43ae73e51dc96a23d8 7f9a9aa SHA256: d07f6d04a0ffb9d9d0b91088b 7a69dc756b674dd477e269a1 8db33c038f0ace9 SHA512: 244e3b6879f9bcdda5839755 d87ad53cc9b4bb4069f558f2f f846bb70cccbf88aa286d228f d1216e9fac8c345e3ad120fa5 4cd2cecc55fc183433b24f977 b0ad	No

Fw=qliYQ10u@"hx>5T-g NSX	MD5: 4b5aab614583766a4189dfcc1 86c9adf SHA256: ecaafd5de712aa6dad972181a 891e6d5f9d3de26d8e6a0b50f 55c93555575452 SHA512: 4b600be93013c4efe19f4cf24 030bec1df281f0ee44e764deb 3e276148e57e8b6822b82948 ee56cb5d17b0021ac9f734bc2 69339eaa740f755c936af957c 8de6	No
?s,oq"hce\oC?R <aixf\v#46d Aa`+G</aixf\v#46d 	MD5: 1c4b1a32b6509f347c8c7226f 96b5650 SHA256: a3399f83c0b5bb9828bb467d 22c3cf7652bac4569414adf27 f9b08f506c8bca9 SHA512: 1c9f1508f015f8e9d59aafcb24 6948a405b6b3bdd1f336b5fc4 b4c535f1ee6a95164558e8d17 d68697afd8b549ca9ae72101b ff5b84aff2bf800c71d6bf3420 6	No
SDEV 300 Building Secure Python Applications9W\&Ag~k[Q	MD5: 6cd7e583e357f9ee3c9cec3ac e34a9e9 SHA256: a30f8f8a1795ab3b776dc6d66 186d77510beb432551c2876a 62110ab5f0067f4 SHA512: d4f9d86015f964c35ac4cb6e8 23539b0ffabfc492efcb009330 bd772e9cae961aebe3386c817 e4bb351a75e1548d4fa23c7a7 feb7176083c4afc2ee6beb0c3 12	No

SDEV 300 Building Secure Python Applicationsa"kS4b2@`?S U x8	MD5: 7894f5c33a761c07e067e27d8 1943625 SHA256: 187a7622360ff1f20878d8353 0651f9cfb966109b9484eb360 c6314dc1d7878c SHA512: cb7dad1d99707bb1e8604313 c352d4a7a7c8d02f3a6c56f19 2d25b6c3f74d59c4ec01fc002 2596103243904afff629f14dfe e3adf80d80a3e634f5eca442df 35	No
SDEV 300 Building Secure Python Applications's&=_NQ4Gz2> <58)f52V	MD5: dfc4976a6fde8815ce01d7653 6ad55de SHA256: 78f9fda59f3be8ad627eaeb75 b0d297f3d3f54d73cf9e01b70 47bf113607600c SHA512: 1df65378feef910310f0722b8 5659c3041cd60aee1372dbb6 9f5649a5f17d958647f2d6886 5f7b4cdb13b7d78af34753f91 23b21785af0d725c8f5ae8671 830f	No
SDEV 300 Building Secure Python ApplicationsXmInPb;[@fqP*g-]p)l7]oZ\y	MD5: 596738cd106256d3634fac3d 55827409 SHA256: fca320c0bf73d6d495c9cfe61 7bed1808b087e2cdd311aeb0 cab72814ec998aa SHA512: 19a53d0ef797528380113b66 31f90799678318850ca01a8ab 186ff0002c7ffd2f824a611250 481e2e58e1085abad684cd07e 38a4fae5eaccb27400209406d eb1	No

SDEV 300 Building Secure Python Applications>is\$slo?u[}Vr(& "sh1vpJg)~IW7tC	MD5: d2df1afcb4ba622baef24919e b93016d SHA256: 17f2b1acc3c597a7730645865 eb958a450d4069e65d095932 7709a500209e3f8 SHA512: 77d65c3768ef50c67973d489 389e43c97b7987f9715ba3f87 be83a6a981f4ddee08b09062d 9e587bff3d81b4606f45eb782 f4872ab50718334b207319bd 49df4	No
--	--	----

Reflection

The trend that stood out to me was that the different hashing algorithms did not have any impact on whether a password was cracked or not. The easy passwords were all cracked across all three hashing algorithms. Moving on to salting passwords and more complex passwords led to a complete failure to crack even the simpler MD5 hash. As a user, this activity has convinced me that it is important to generate sufficiently secure passwords. A user will never know what hashing algorithm is used (if any). In the same vein, a user will never know if a salt is used to help secure their password. The best way to ensure security is through a complex password. As a developer, I think I need to experiment more with the various hashing algorithms. After this activity, I am not yet clear on the pros and cons of each. As I build new applications that require passwords, I now know about salting and how useful it is with making even the simplest of passwords more difficult to crack.