

Title: GENERATION OF XENOGENIC BODIES Filicants: Kucherlapati, et al. EXPF

Appl. No.: 08/923,138
1 of 17

NO. EI125455694US

FIG. I

FIG. 2

Title: GENERATION OF XENOGENIC APBODIES Accents: Kucherlapati, et al. Appl. No.: 08/923,138 2 of 17

FIG. 3

FIG. 4

BY OLAGE SUCCLASE

Title: GENERATION OF XENOGENIC ANTODIES

Appl. No.: 08/923,138

FIG. 5

FIG. 6

BY CLASS CULCCLASS

Title: GENERATION OF XENOGENIC AND RODIES Appl. No.: 88/923,138 4 of 17

FIG. 7

Title: GENERATION OF XENOGENIC APPRICACE.

Appl. No.: 08/923,138

BY DRAFTSMAN Title: GENERATION OF XENOGENIC TIBODIES

licants: Kucherlapati, et al.

Appl. No.: 08/923,138

BY CLASS SUBCLASS

Title: GENERATION OF XENOGENIC ANTIODIES Appl. nts: Kucherlapati, et al. Appl. No.: 08/923,138

FIG. 11

DRAFTSMA:

Applicants Cherlapati, et al. Appl. No.: 08/923,138 9 of 17

Title: GENERATION OF XENOGENIC AND ODIES Appl. ants: Kucherlapati, et al. Appl. No.: 08/923,138 10 of 17

•		
(2	
()
Ĺ	ľ	-

	20	100	150 150		200 200		250 250	΄.	259 300 22 21	
RI	TCTC ACTCACCTGT GCCATCTCCG GGGACAGTGT CTCTAGCAAC ICTC ACTCACCTGT GCCATCTCCG GGGACAGTGT CTCTAGCGAC CONTRACTOR	SCTT GGAMCTGGAT CAGGCAGTCC CCATCGAGAG GCCTTGAGTG SCTT GGAMCTGGAT CAGGCAGTCC CCATCGAGAG ACCTTGAGTG	AAGG ACATACTACA GGICCAAGIG GTATAATGAT TATGCAGTAT AAGG ACATACTACA GGICCAAGIG GTATAATGAT TATGCAGAGT	VH6	TCGAATAACC ATCAACCCAG A TCGGATIJACC ATCAACCCAG A	VH6	AGC TGAACTCTGT GACTCCCGAG GACACGGCTG TGTATTACTG	AHA NHE	IGAT ATAGCEGCAG CTGGTACCCT CTTTGACTAC TGGGGCCAGG IGGT ATAGCAGCAG CTGGTAG IGGT ATAGCAGCAG CTGGTAG	-
CDR1		Germline VH6 Hybridoma K4.1.6 Germline JH4 Germline D(N1)	Germline VH6 Hybridoma K4.1.6 ACTGGGAAGG Germline JH4 Germline D(N1)		GTGAA GTGAA	THE DIME	Germline VH6 TCCTGCAGC Hybridoma K4.1.6 TCCTGCAGC Germline JH4.	(NI)	Germline VH6 TACAAGAGA- Hybridoma K4.1.6 TACAAGAGAT Germline JH4	

Title: GENERATION OF XENOGENIC ANTIONDIES Appl. Sec. 108/923,138 Appl. No.: 08/923,138 12 of 17

87 DRAFTSMA \

TCTAT 259 45		CTGGG 400		259 414 45	21
CCCC ATCTGTCTA	m γ1	ATGG TGACCCTGG			
A CGACACCCC	E .	T AACTCCATGG			
TCAGCCCAAA		TGCCCAAACT	m y 1		
CACCGTCTCC TCAGCCCAAA CGACACCCCC ATCTGTCTAT		CCACTGGCCC CTGGATCTGC TGCCCAAACT AACTCCATGG TGACCCTGGG		AGGG	1
GAACCCTGGT GAACCCTGGT	JH4	CCACTGGCC		ATGCCTGTCA	m 7.1
Germline VH6 Hybridoma K4.1.6 Germline JH4 Germline D(N1)		Germline VH6 Hybridoma K4.1.6 Germline JH4 Germline D(N1)		Germline VH6 Hybridoma K4.1.6 Germline JH4	Germline D(N1)

BA ODVES mechanic

DRAFTSMAR

	200	100	150 150	191 200 6	197 250 38	197 300 38	197 350 38	
	CTAAGCTGCT CTAAGCTGCT	CGATTCAGTG CGATTCAGTG	CCTGCAGGCT	TTCCGCTCAC GCTCAC	GCTGCACCAT	TGGATACTGC	GCCAAAGTAC	
	GGACAGCCTC CTAAGCTGCT GGACAGCCTC CTAAACTGCT B3	GGTCCCTGAC GGTCCCTGAC B3	CCATCAGCAG CCATCAGCAG B3	TATTATAGT- TATTATAGTC	ACGAACTGTG AC	AGTTGAAATC TGGATACTGC	TCCCAGAGAG	
	CTTGGTACCA GCAGAAACCA CTTGGTACCA GCAGAAACCA CDR2	SGGAATCCGG SGGAATCCGG	TTCACTCTCA	CTGTCAGCAA	TGGAGATCAA	TCTGATGAGC	ATAACTTCTA	
· [CTTGGTACCA CTTGGTACCA CTTGGTACCA	GCATCTACCC	TGGGACAGAT TGGGACAGAT	CAGITTATTA	GGGACCAAGG GGGACCAAGG GGGACCAAGG	CTTCCGGCCA	TGCCTGCTGA	
CDR1	AACTACTTAG AACTACTTAG	CATTTACTGG CATTTACTGG	GCAGCGGGTC GCAGCGGGTC	GAAGATGTGG GAAGATGTGG	TTTCGGCGGA TTTCGGCGGA	CTGTCTTCAT	CTCTGTTGTG	ı∡ı₹ž
	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 Germline JK4	Germline B3 Hybridoma K4.1 GErmline JK4

Title: GENERATION OF XENOGENIC ANTIBO S Applicants. Xucherlapati, et al. Appl. No.: 08/923,138 14 of 17

Z.	32 20 20 20 20 20 20 20 20 20 20 20 20 20		100		150		200	
T Servaceter eccaretes secarages erraseda	AGACCCTCTC ACTCACCTGT GCCATCTCCG GGGACAGTGT CTCTAGCGAC	CDR2	GAT CAGGCAGTCC CCATCGAGAG GCCT GAT CAGGCAGTCC CCATCGAGAG GCCT	AHA ———————————————————————————————————	GCTGGGAAGG ACATACTACA GGTCCAAGTG GTATAATGAT TATGCAGTAT GCTGGGAAGG ACATACTACA GGTCCAAGTG GTATAATGAT TATGCAGTUT	VH6	CTGTGAAAAG TCGAATAACC ATCAACCCAG ACACATCCAA GAACCAGTTC CTGTGAAAAG TCGAATAACC ATCAACCAG ACACATCCAA GAACCAGTTC	9HA
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Hybridoma D5.1.4 Germline JH4 Germline D(N1) Germline hWu		Germline VH6 Hybridoma D5.1.4 Germline JH4	Germline hMu	Germline VH6 Hybridoma D5.1.4 Germline JH4		Germline VH6 Hybridoma D5.1.4 Germline JH4	

Title: GENERATION OF XENOGENIC ANTEODIES Appl. nts: Kucherlapati, et al. Appl. No.: 08/923,138 15 of 17

FIG. 18B

	r		
250 250	259 300 20 15	259 350 15 27	400 400 43 15
TCCTGCAGC TGAACTCTGT GACTCCCGAG GACACGGCTG TGTATTACTG TCCCTGCAGC TGAACTCTGT GACTCCCGAG GACACGGCTG TGTATTACTG	TGCAAGAGAT ATAGCAGTGG CTGGCGTCCT CTTTGACTGC TGGGGCCAAG TGCAAGAGAT ATAGCAGCAG CTGGCGTCCT CTTTGACTAC TGGGGCCAAG WHGT ATAGCAGCAG CTGGJH4	GAACCCTGGT CACCGTCTCC TCAGGGAGTG CATCCGCCCC AACCCTTTTC GAACCCTGGT CACCGTCTCC TCAGGGAGTG CATCCGCCC AACCCTTTTC	CCCTCGTCT CCTGTGAGAA TTCCCCGTCG GATACGAGCA GCGTGGCCGT CCCCTCGTCT CCTGTGAGAA TTCCCCGTCG GATACGAGCA GCGTGGCCGT CCCCTCGTCT CCTGTGAGAA TTCCCCGTCG GATACGAGCA GCGTGGCCGT
Germline VH6 Hybridoma D5.1.4 Germline JH4 Germline D(N1) Germline hMu	Germline VH6 Hybridoma D5.1.4 Germline JH4 Germline K(N1) Germline hMu	Germline VH6 Hybridoma D5.1.4 Germline JH4 Germline D(N1) Germline hMu	Germline VH6 Hybridoma D5.1.4 Germline JH4 Germline D(N1) Germline hMu

TSMATE TO THE TOTAL TO THE TENT OF THE TEN

	d	
	<u>ത</u>	
	<u>ල</u>	
	正	
,	رير	

Germline B3 Hybridoma D5.1.4 Germline JK3 Germline CK	GACATCGTGA TGACCCAGTC TCCAGACTCC CTGGCTGTGT CTCTGGGCGA
Germline B3 Hybridoma D5.1.4 Germline JK3 Germline CK	GAGGGCCACC ATCAACTGCA AGTCCAGCCA GAGTGTTTTA TACAGGTCCAACC ATCAACTGCA AGTCCAGCCA GAGTGTTTTA TACAGGTCCAACC ATCAACTGCA AGTCCAGCCA GAGTGTTTTA TACAGGTTCCAACC ATCAACTGCA AGTCCAGCCCA GAGTGTTTTA TACAGGTTCCAACC ATCAACTGCA AGTCCAGCCA GAGTGTTTTA TACAGGTTCCA
Germline B3 Hybridoma D5.1.4 Germline JK3 Germline CK	ACAATAAGAA CTACTTAGCT TGGTACCAGC AGAAACCAGG ACAGCCTCCT GCAATAAGAA CTACTTAGCT TGGTACCAGC AGAAACCAGG ACAGCCTCCT
Germline B3 Hybridoma D5.1.4 Germline JK3 Germline CK	AAGCTGCTCA TITACTGGGC ATCTACCCGG GAATCCGGGG TCCCTGACCG AAACTACTCA TTTACTGGGC ATCTACCCGG GAATCCGGGG TCCCTGACCG AAACTACTACTCA TTTACTGGGC ATCTACCCGG GAATCCGGGG TCCCTGACCG AAACTACTACTCA TTTACTGGGC ATCTACCCGG GAATCCGGGG TCCCTGACCG AAACTACTACTCA TTTACTGGGC ATCTACCTGG GAATCCGGGG TCCTTGACCGG
Germline B3 Hybridoma D5.1.4 Germline JK3 Germline CK	ATTCAGTGGC AGCGGGTCTG GGACAGATTT CACTCTCACC ATCAGCAGCC ATTCAGTGGC AGCGGGTCTG GGACAGATTT CACTCTCACC ATCGGCAGCC

DRAFTSMAR

Title: GENERATION OF XENOGENIC APPLICATION OF

ne B3 ne JK3 ne CK ne CK ne B3 ne CK ne CK	TGCAGGCTGA AGATGTGGCA GTTTATTACT GTCAGCAATA TTATAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGT
XX XX XX XX	TGCACCATCT GTCTTCATCT TCCCGCCATC TGATGAGCAG TTGAAATCTG TGCACCATCT GTCTTCATCT TCCCGCCATC TGATGAGCAG TTGAAATCTG CK
	GAACTGCCTC TGTTGTGTGC CTGCTGAATA ACTTCTATCC CAGAGAGGCC GAACTGCCTC TGTTGTGTGC CTGCTGAATA ACTTCTATCC CAGAGAGGCC
33 D5.1.4 IK3 :K	AAAGTACAGT GGAAGGTGGA TAACGCCCTC CAATCGGGTT GGGGAAAAA AAAGTACAGT GGAAGGTGGA TAACGCCCTC CAATCGGGT