

AMENDMENTS TO CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A high speed search method in a speech encoder using an order character of LSP (Line Spectrum Pair) parameters in an LSP parameter quantizer using SVQ (Split Vector Quantization) used in a low-speed transmission speech encoder, the high-speed search method comprising the steps of:

rearranging a first codebook by replacing the first codebook with a new codebook in which a number of code vectors in the new codebook are arranged in an order according to an element value of a reference row of the first codebook for determining a range of code vectors to be searched; and

determining a search range by using an order character between a given target vector and an arranged code vector to obtain an optimal code vector,

wherein the rearranging step comprises the steps of:

selecting the reference row in the first codebook by using a plurality of voice data, and then determining an optimal arrangement position (Nm) in which an average search range is minimized; and

replacing the first codebook with the new codebook in which a number (Lm) of code vectors in the new codebook are arranged in a descending order according to the element value of a selected said reference row.

2. (Canceled)

3. (Currently Amended) ~~The~~ A high-speed search method as claimed in claim 1 in a speech encoder using an order character of LSP (Line Spectrum Pair) parameters in an LSP parameter

quantizer using SVO (Split Vector Quantization) used in a low-speed transmission speech encoder, the high-speed search method comprising the steps of:

rearranging a first codebook by replacing the first codebook with a new codebook in which a number of code vectors in the new codebook are arranged in an order according to an element value of a reference row of the first codebook for determining a range of code vectors to be searched; and

determining a search range by using an order character between a given target vector and an arranged code vector to obtain an optimal code vector,

wherein the code vector-obtaining step obtaining an optimal code vector comprises the step steps of:

determining the search range by forward and backward comparison of the element value of the reference row in the first codebook and element values of positions before and after a reference position in the target vector; and

obtaining an error criterion ($E_{l,m}$) having high computational complexity by using the following equation only within the determined search range:

$$E_{l,m} = (\mathbf{p}_m - \mathbf{p}_{l,m})^T \mathbf{W}_m (\mathbf{p}_m - \mathbf{p}_{l,m})$$

$$0 \leq m \leq M - 1$$

$$1 \leq l \leq L_m$$

where \mathbf{p} is an LSP code vector divided into M sub-vectors, each of which consists of L_m code vectors,

where \mathbf{p}_m is a target vector to search the m^{th} codebook, and $\mathbf{p}_{l,m}$ corresponds to an l^{th} code vector in a codebook for an m^{th} sub-vector,

where l,m in the subscript of $E_{l,m}$ are indices that represent the l^{th} index of the m^{th} codebook, i.e., the letters “ l ” and “ m ,” and

where superscript T designates the transpose of $(\mathbf{p}_m - \mathbf{p}_{l,m})$ for purposes of determining the dot product of $(\mathbf{p}_m - \mathbf{p}_{l,m})$ and $\mathbf{W}_m (\mathbf{p}_m - \mathbf{p}_{l,m})$ in order to calculate the least-mean-square error $E_{l,m}$, and

where \mathbf{W}_m is a weighting matrix for the m^{th} sub-vector and obtained by a non-quantized LSP code vector \mathbf{p} .

4. (Currently Amended) The high-speed search method as claimed in claim 3, wherein the search range is an average number with which an element value of the n^{th} row in the first codebook and element values in the $n+1^{\text{th}}$ and $n-1^{\text{th}}$ positions of the target vector satisfy the order character.
5. (Currently Amended) A high-speed search method in the G.729 fixed codebook with decreased computational complexity without loss of tone quality, the high-speed search method comprising the steps of:
 - arranging position indexes of tracks (t_0, t_1, t_2) in a descending order according to a correlation level ($d'(n)$);
 - determining a range to search a track (t_3) according to the indexes arranged in a descending order; and
 - canceling the detecting and searching processes for indexes which have a low probability.
6. (Currently Amended) The high-speed search method in the G.729 fixed codebook as claimed in claim 5, wherein the arranging step comprises the step of:
 - comparing correlation vectors of all of pulse position indexes in each track to arrange the position indexes in a descending order.
7. (Currently Amended) The high-speed search method in the G.729 fixed codebook as claimed in claim 5, wherein the search range-determining step comprises the steps of:
 - adding correlation values of each pulse position index for a pulse position index combination of the tracks (t_0, t_1, t_2); and
 - comparing an added result with a threshold (C_{th}) determined before searching the fixed codebook to search track (t_3) using ~~an~~ the added result more than the threshold.
8. (Currently Amended) The high-speed search method in the G.729 fixed codebook as claimed in claim 5, wherein the canceling step comprises the step of:

Serial Number 09/749,782

canceling the searching process processes for the range where an added result is less than a threshold.