CPSC 320: NP-Completeness Practice Problems*

1 NP True or False

Let X and X' be decision problems, where both problems have Yes instances and No instances. Indicate whether each of the following statements must be true, might be false, or is an open question.

1.	Suppose that P \neq NP. If $X \leq_p X'$ and X' is NP-complete, then X is NP-complete. \bigcirc True \bigcirc False \bigcirc Open Question
2.	If X is in P and X' is NP-complete, then $X \leq_p X'$. Orrue False Open Question
3.	If X is in NP and X' is NP-complete, then $X' \leq_p X$. \bigcirc True \bigcirc False \bigcirc Open Question

^{*}Copyright Notice: UBC retains the rights to this document. You may not distribute this document without permission.

4.	decision proble give a (correct	is come to you with a fascinating and important computational problem, the SnigSnag em. Suppose that you prove that the SnigSnag problem belongs to the class NP, and by polynomial-time reduction from SnigSnag to 3-SAT. Have you then proved that the solem is NP-Complete?
	○ Yes	○ No
5.		be two NP-complete problems. Is it the case that there is a polynomial-time reduction, and $also$ a polynomial-time reduction from P_2 to P_1 ?
	○ Yes	○ No
2	Exam Brea	akout Rooms
must versic exam A in the	be placed in di on of the exam. as that need to an instance of the e class and the a problem is to de	le during COVID-19 stipulates that students who have been collaborating on classwork fferent breakout rooms for the final exam, and each breakout room must get a different Anne and the TAs would like to minimize the number of breakout rooms (and different be prepared). The Exam Assignment optimization problem is n lists, where n is the number of students with list provides the classmates that have collaborated with the i th student in the class etermine the minimum number of breakout rooms needed, so as to satisfy the university
1.	Describe a dec	eision version of the Exam Assignment optimization problem.
2.	Assuming that	$P \neq NP$, is your decision problem in P or is it NP-complete?

3 More P vs NP-complete

A. B.	Vertex Cover Subset Sum	D. E.	Graph Colouring Traveling Salesperson	G. H.	Bipartite Matching 3-SAT			
	-		Minimum Spanning Tree s a "disguised" version of o that each problem is in P o	ne of	3-Dimensional Matching the problems above. Assuming that P ≠ NP-complete.			
1. Radio frequencies must be assigned to cell towers, but two towers whose signals could interfere very each other cannot be assigned the same frequency. A problem instance is a set of towers and a list pairs of towers that interfere with each other, plus a positive integer k . The question is whether number of radio frequencies needed is at most k .								
) NP-complete) In P							
a	positive integer k , y	ou wa	ant to know if there is a sta	ble m	ngs of n employers and n applicants, plus natching in which at least k applicants get this problem in P or is it NP-complete?			
ki <i>C</i> A	ndergartner to a so $[i]$. The family of easignment problem	chool. ach ch is to	The number of kinderga nild has provided an unranl	rtner ked se dren	ard urgently needs to assign each incoming i that can attend school i is capped at et of preferred schools. The Kindergarten can be assigned to one of their preferred set $C[i]$ kindergartners.			
T	he problem is to de	eterm		partit	that provides the weights of $n > 1$ people sioned into two teams that are perfectly all weight of team 2.			

Consider these well-known problems (mostly, but not all, NP-complete, assuming that $P \neq NP$).