THREE-DIMENSIONAL VIEWING (Sections 12-1 and 12-2 in *Computer Graphics*)

- Projections
 - parallel projections
 - perspective projections
- Viewing Transformation
 - specifying the view plane
 - view volumes
 - clipping

Introduction

- two-dimensional viewing
 - clip
 - map from the window to the viewport
 - convert from normalized device coordinates to physical device coordinates
- three-dimensional viewing
 - from where shall we view the scene?
 - inside?
 - outside?
 - above?
 - below?
 - from the side?
 - how shall we project the scene onto the two-dimensional viewing surface?

Projections

- parallel projections
 - points on an object are projected to the viewing surface along parallel lines

perspective projections

 points on an object are projected to the viewing surface along lines that converge to a center of projection

Parallel Projection

- produces realistic views, but does not preserve relative dimensions
- distant lines are foreshortened

 we'll assume that the view projection plane is at z = 0 in left-handed coordinates

parallel projections

• orthographic projection: direction of projection is perpendicular to the projection plane

oblique projection is not perpendicular to the projection plane

orthographic projections

- common projections
 "elevations"
 - - front
 - side
 - rear
 - "plan"
 - top

orthographic projections, continued

- axonometric projections
 - projection is not parallel to a principal axis
 - isometric: the projection-plane normal makes equal angles with each principal axis (all three principal axes are foreshortened equally, retaining relative proportions)

- transformation equations
 - orthographic parallel projection
 - $x_p = x$
 - **y**p = **y**
 - $\mathbf{z}_p = \mathbf{0}$

oblique projections

$$x_p = x + z(L \cos\phi)$$

 $y_p = y + z(L \sin\phi)$

oblique projections, continued

$$P_{\text{parallel}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ L & \cos\phi & L & \sin\phi & 0 & 0 \\ 0 & -0 & 0 & 1 \end{bmatrix}$$

- parallel orthographic projection
 L = 0
- parallel oblique projection
 L ≠0

common parallel oblique projections

 cavalier: lines perpendicular to the projection plane are preserved in length

 cabinet: lines perpendicular to the projection plane have one-half their length

perspective projections

 project points along projection lines that meet at the center of projection

• by similar triangles

perspective projections, continued

• in homogeneous coordinates

$$[x_h \ y_h \ z_h \ w] = [x \ y \ z \ 1] \begin{bmatrix} 1 \ 0 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1/d \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$$

where

$$w = \frac{z}{d} + 1$$

and

$$[x_p \ y_p \ z_p \ 1] = [x_h/w \ y_h/w \ z_h/w \ 1]$$

- the homogeneous coordinate must become 1
- in general, w is different for each coordinate

vanishing points

- parallel lines (which are not parallel to the projection plane) appear to converge at a vanishing point
- parallel lines which are parallel to a principal axis converge at a principal vanishing point
- the orientation of the projection plane determines the number of principal vanishing points, producing one-point, two-point, or three-point projections

Viewing Transformation

 a three-dimensional scene can be viewed from any position in three-dimensional space, with any viewing direction and with the view plane in any orientation and of any size

specifying the view plane

• define the view plane in the viewing (or eye) coordinate system

establishing viewing coordinates

- pick a view reference point to be the origin of viewing coordinates
- pick a view up vector relative to the viewpoint along the y axis in viewing coordinates
- use a left-handed coordinate system so that objects further away have larger z values

transform to the viewing coordinate system

- 1. Reflect relative to the *xy* plane, reversing the sign of each *z* coordinate. This changes the left-handed viewing coordinate system to a right-handed system.
- 2. Translate the view reference point to the origin of the world coordinate system.
- 3. Rotate about the world coordinate *x* axis to bring the viewing coordinate *z* axis into the *xz* plane of the world coordinate system.
- 4. Rotate about the world coordinate y axis until the z axes of both systems are aligned.
- 5. Rotate about the world coordinate z axis to align the viewing and world y axes.

view volumes

• a projection window determines how much of a scene is visible

- defined by minimum and maximum values for x and

y on the view plane

- the projection window defines a view volume
 - a parallel projection produces an infinite parallelepiped

a perspective projection produces a frustrum

- (truncated pyramid) with the apex at the center

of projection

view volumes, continued

- the center of projection can be anywhere
- perspective projections can be orthographic or oblique to the view of plane

 parallel projections can be orthographic and oblique to the view plane

view volumes, continued

• a near plane and a far plane produce a finite view volume

clipping

- save only points, line segments, and polygons within the view volume for projection onto the view plane
- extend two-dimensional clipping methods test vertices (x, y, z) against view volume boundaries (Ax + By + Cz + D = 0)
 - > 0: outside
 - < 0: inside
 - = 0: on the boundary

THREE-DIMENSIONAL VIEWING

- Projections
 - parallel projections
 - perspective projections
- Viewing Transformation
 - specifying the view plane
 - view volumes
 - clipping