Optimization for Data Science Lecture 09: Accelerated Gradient

Kimon Fountoulakis

School of Computer Science University of Waterloo

08/10/2019

Previous lecture: existence of an estimate sequence

• We proved that for convex and differentiable functions there exists an estimate sequence $\{\phi_k,\lambda_k,x_k\}_{k\in\mathbb{N}_0}$ with

•
$$\phi_0(x) := f(x_0) + \frac{L}{2} ||x - x_0||_2^2$$

•
$$\lambda_k \leq \frac{c}{k^2}$$

Accelerated gradient

 We constructed a sequence in our attempt to prove this result. The sequence is given by the following algorithm:

```
Pick an arbitrary x_0

Set \gamma_0 = 0

Set z_0 = x_0

Set \phi_0(x) := f(x_0) + \frac{L}{2} ||x - x_0||_2^2

while termination criterion is not satisfied do
```

$$\begin{aligned} y_{k-1} &:= (1 - \gamma_k) x_{k-1} + \gamma_k z_{k-1} \\ \phi_k(x) &:= (1 - \gamma_k) \phi_{k-1} + \gamma_k (f(y_{k-1}) + \nabla f(y_{k-1})^T (x - y_{k-1})) \\ z_k &:= \operatorname{argmin}_{x \in \mathbb{R}^n} \phi_k(x) \\ x_k &:= y_{k-1} - \frac{1}{L} \nabla f(y_{k-1}) \end{aligned}$$

end

How to pick γ_k

- In this algorithm we cannot pick γ_k arbitrarily, it has to satisfy:
 - $\gamma_k \in [0,1]$
 - Let $\lambda_k := (1 \gamma_k)\lambda_{k-1}$ and $\gamma_0 = 1$, then γ_k must satisfy $\lambda_k/\gamma_k^2 \ge 1$.
 - $\lambda_k \le c/k^2$ for some constant c > 0.

How to pick γ_k

• It can be shown that by setting γ_k as

•
$$\gamma_0 = \gamma_1 = \gamma_2 = \gamma_3 = 0$$

•
$$\gamma_k = 2/k$$
 for all $k \ge 4$

• Then the previous conditions are satisfied.

Simplified accelerated gradient

• However, accelerated algorithm is still complicated due to the step $z_k := \min_{x \in \mathbb{D}^n} \phi_k(x)$.

• This step can be simplified to

$$z_k := z_{k-1} - \frac{\gamma_k}{\lambda_k} \frac{1}{L} \nabla f(y_{k-1})$$

Simplified accelerated gradient

Set
$$\gamma_0 = 0$$

Set $z_0 = x_0$

while termination criterion is not satisfied do

$$\gamma_{k} := \begin{cases} \frac{2}{k} & k \ge 4 \\ 0 & \text{otherwise} \end{cases}$$

$$y_{k-1} := (1 - \gamma_{k})x_{k-1} + \gamma_{k}z_{k-1}$$

$$z_{k} := z_{k-1} - \frac{\gamma_{k}}{\lambda_{k}} \frac{1}{L} \nabla f(y_{k-1})$$

$$x_{k} := y_{k-1} - \frac{1}{L} \nabla f(y_{k-1})$$

end

Iteration complexity: smooth functions

• If $\nabla f(x)$ is Lipschitz continuous then

	Gradient Descent	Accelerated Gradient
Non-convex	$\mathcal{O}\left(\frac{L}{\epsilon}\right)$	-
Convex	$\mathscr{O}\left(rac{L}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\epsilon}}\right)$
Strongly convex	$\mathcal{O}\left(\frac{L}{\delta}\log\frac{1}{\epsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\delta}}\log\frac{1}{\epsilon}\right)$

Iteration complexity: non-smooth functions

 These results were obtained by smoothing the objective function first. D is a constant due to smoothing.

Gradient Descent

Accelerated Gradient

Non-convex

$$\mathcal{O}\left(\frac{D}{\epsilon^2}\right)$$

Convex

$$\mathcal{O}\left(\frac{D}{\epsilon^2}\right)$$

$$\mathcal{O}\left(\frac{D}{\delta\epsilon}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{\sqrt{D}}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{D}{\delta\epsilon}\log\frac{1}{\epsilon}\right) \qquad \mathcal{O}\left(\sqrt{\frac{D}{\delta\epsilon}}\log\frac{1}{\epsilon}\right)$$

Optimization for Data Science Lecture 09: Stochastic Gradient

Kimon Fountoulakis

School of Computer Science University of Waterloo

08/10/2019

Outline of this lecture

- ML loss functions
- Stochastic gradient
- Iteration complexity
- Practical issues

Data

- We are given n data points (a_i, b_i) i = 1, ..., n.
- $a_i \in \mathbb{R}^d$ is a sample/vector of length d, i.e., for each sample we have d features.
- b_i are the given labels. It can be real or binary or more generally an integer.

Examples of Loss Functions

- Squared error: $f_i(x):=\frac{1}{2}(a_i^Tx-b_i)^2$, where $a_i\in\mathbb{R}^d$ is the i-th sample with d features and $b_i\in\mathbb{R}$ is the label.
- Absolute error: $|a_i^T x b_i|$, robust to outliers.
- Hinge loss: $\max\{0,1-b_ia_i^Tx\}$, better for binary labels b_i
- Logistic loss: $\log(1 + \exp(-b_i a_i^T x))$, better for binary labels b_i and also it's a smooth function.

Finite-Sum Optimization Problems

We will consider optimization problems of this form

$$\min_{x \in \mathbb{R}^n} r(x) + \frac{1}{n} \sum_{i=1}^n \bar{f}_i(x)$$

- Function r(x) is the regularization, e.g., $r(x):=\frac{\lambda}{2}\|x\|_2^2$, where $\lambda>0$ is the regularization parameter.
- Functions $\bar{f}_i(x)$ measure loss w.r.t given labels

Standard Form

• By setting $f_i(x) := \bar{f}_i(x) + r(x)$, we will convert the above problem to the "standard" finite-sum form:

$$\min_{x \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

$$\underbrace{\int_{i=1}^n f(x)}_{f(x)}$$

Gradient Descent (again)

• Assuming that each f_i is differentiable then gradient descent is equivalent to:

$$x_{k+1} := x_k - \frac{1}{L} \frac{1}{n} \sum_{i=1}^n \nabla f_i(x)$$

- where L is the Lipschitz constant of $\frac{1}{n}\sum_{i=1}^{n}\nabla f_{i}(x)$.
- iteration cost is linear in n, since we have to compute n gradients, one for each sample f_i .

Stochastic Gradient Method

• Assuming that each f_i is differentiable then stochastic gradient is equivalent to:

• Pick randomly a sample i

•
$$x_{k+1} := x_k - \alpha_k \nabla f_i(x)$$

 iteration cost is now independent of n, but how many iterations?

Comments on Stochastic Gradient

• Proving the worst-case iteration complexity result also requires $\mathbb{E}[\|\nabla f_i x(k)\|_2^2] \leq B^2$, where B^2 is a constant.

• There are multiple strategies for setting the step-sizes α_k and each one gives a different worst-case iteration complexity result.

Comments on Stochastic Gradient

- For example, for convex functions we have the following:
- If $B^2 = 0$, then by setting $\alpha_k = 1/L$, we get the usual rate $\mathcal{O}(1/t)$.
- If $\alpha_k = 1/k$, then we get rate $\mathcal{O}(1/\log t)$
- If $\alpha_k = 1/\sqrt{k}$, then we get rate $\mathcal{O}(\log t/\sqrt{t})$
- If $\alpha_k = \alpha$ for some constant α , then we get rate $\mathcal{O}(1/t + \alpha)$. This means implies that the minimum expected norm of the gradient will never go to zero and then algorithm only converges to a neighborhood of a stationary point. Also, this rate appears to be converging sub-linearly initially, but then stagnates!

Iteration complexity for smooth functions

• If $\nabla f(x)$ is Lipschitz continuous, and $\mathbb{E}\left[\|\nabla f_i(x_k)\|_2^2\right] \leq B^2$ (for stochastic gradient), then

Grad	lient	Desc	ent
MIUU			

Accelerated Gradient

Stochastic Gradient

Non-convex

$$\mathcal{O}\left(\frac{L}{\epsilon}\right)$$

$$\mathcal{O}\left(LB^2e^{\frac{1}{\epsilon}}\right)$$

Convex

$$\mathcal{O}\left(\frac{L}{\epsilon}\right)$$

$$\mathcal{O}\left(\sqrt{\frac{L}{\epsilon}}\right)$$

$$\mathcal{O}\left(LB^2e^{\frac{1}{\epsilon}}\right)$$

Strongly convex

$$\mathcal{O}\left(\frac{L}{\delta}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{L}{\delta}\log\frac{1}{\epsilon}\right) \qquad \mathcal{O}\left(\sqrt{\frac{L}{\delta}}\log\frac{1}{\epsilon}\right)$$

$$\mathcal{O}\left(\frac{LB^2}{\delta}\frac{1}{\epsilon}\right)$$

Comments on Stochastic Gradient

- Stochastic gradient has sub-linear rate even for strongly convex functions where full-gradient methods have linear convergence.
- However, each iteration is much cheaper since the iteration cost in independent of the number of samples n.

 Stochastic methods converge very fast to a low accuracy solution but then they stagnate.

Why would we consider stochastic methods?

- For two reasons
 - Extremely cheap iteration cost. Very good when we have millions (or more) data points and each data point is low-dimensional. This is good when we do not want to access all data points at each iteration.
 - Fast convergence to low accuracy. For most AI/ML problems a low accuracy solution to the optimization problem is good enough to obtain high accuracy w.r.t domain metrics of measuring performance, e.g., precision/recall.

Why would we consider stochastic methods?

- Stochastic Gradient is used everywhere in ML nowadays.
- In contrast to what theory says, practitioners use fixed step-sizes.
- Usually, you start with a large step-size which you keep for few iterations, then if there is no progress you decrease the step-size.

Why would we consider stochastic methods?

- Recently, there have been many variants of stochastic gradient that fix in practice the slow convergence issue.
 We will study some of these in the next lectures. Some examples are
 - Hybrid Deterministic-Stochastic
 - Mini-batching
 - Accelerated methods
 - Averaging gradients

Termination Criterion of Stochastic Gradient

- Usually we terminate an algorithm if the norm of the gradient is small.
- However, in this algorithm we only access one sample per iteration. This means that we cannot compute the norm of the whole gradient.
- If we do compute the norm of the whole gradient at each iteration, then this defeats the purpose of stochastic gradient.

Some options for terminating stochastic gradient

- Predefined maximum number of iterations
- Predefined upper bound for the running time
- Stop when the norm of the gradient of the chosen sample is small.
- Measure the norm of the whole gradient every n iterations, if it is small then terminate.
- Use your validation data and terminate the algorithm when precision/recall (or your preferred metric) are large enough.

Some options for terminating stochastic gradient

- Measure validation error every n iterations
- Stop if the validation error starts overfitting

Non-smooth loss functions

- What if the loss functions f_i are non-smooth? We have two options
 - Smooth them and then use stochastic-gradient (previous lectures)
 - Use stochastic sub-gradient method (this lecture)

Sub-differential and subgradient

- We can generalize the notion of a gradient by using the definition of convexity.
- Recall that the definition of convexity is: $f(y) \ge f(x) + \nabla f(x)^T (y x)$
- We define the sub-differential set at x as:

$$\partial f(x) := \{ g \in \mathbb{R}^n \mid f(y) \ge f(x) + g^T(y - x) \, \forall y \in \mathbb{R}^n \}$$

• We call an element $g \in \partial f(x)$ a sub-gradient of f at x.

Visualization: lower bound of convex smooth function

Visualization: lower bound of convex non-smooth function

Optimality conditions for non-smooth functions

- A point x^* is a minimizer iff $0 \in \partial f(x^*)$.
- This means that there exists a sub-gradient at x^* which is equal to zero.
- This follows directly from the definition of subgradient:

$$f(y) \ge f(x^*) + 0^T (y - x^*) \ \forall y \iff 0 \in \partial f(x^*)$$

Example

• Define $f(x) := \max(f_1(x), f_2(x))$, where f_1, f_2 are convex and differentiable.

- If $f_1(x) = f_2(x)$ for some x, then $\partial f(x) := \left\{ g \in \mathbb{R}^n \mid t \nabla f_1(x) + (1-t) \nabla f_2(x) \ \forall t \in [0,1] \right\}$
- If $f_1(x) > f_2(x)$ for some x, then $\partial f(x) := \nabla f_1(x)$
- If $f_1(x) < f_2(x)$ for some x, then $\partial f(x) := \nabla f_2(x)$

Example

• Define f(x) := |x|

- $\partial f(x) = 1$ if x > 0
- $\partial f(x) = -1$ if x < 0
- $\partial f(x) \in [-1,1]$ if x = 0

Sub-gradient calculus

- Weak sub-gradient calculus: rules for finding one sub-gradient
 - Sufficient for most algorithms for non-smooth convex problems
 - If you can evaluate f(x), you can usually compute a subgradient
- Strong sub-gradient calculus: rules for finding $\partial f(x)$ (all sub-gradients)
 - Some algorithms, optimality conditions need the entire subdifferential.
 - Usually, it is difficult to compute

Next lecture

- More sub-gradient calculus and more examples
- Stochastic **sub**-gradient method.
- Iteration complexity
- Commentary on how to implement stochastic (sub)gradient methods.
- More advanced stochastic methods