Visualizing Quantum Mechanics

Shaeema Zaman Ahmed Founder, Science Melting Pot

My Journey

B.Sc, M.Sc. Physics Department of Physics & **Astrophysics**

Science Educator & Communicator, India

Founder PhD

Quantum Games and Simulations, Marie-Curie EU project, Denmark

Science Education, Outreach, Diversity

Outline

- What is quantum mechanics?
- Properties of a quantum system
- Quantum mechanics terminology
- Quantum harmonic oscillator

Quantum Mechanics describes the physics at the atomic scale

© Copyright. 2013. University of Waikato. All rights reserved. www.sciencelearn.org.nz

WAVE-PARTICLE DUALITY

PROBABILISTIC

QUANTUM MECHANICS

Basic Properties

UNCERTAINTY

DISCRETE QUANTITIES; QUANTA

What makes a quantum system so special?

Double-Slit Experiment

Source: Quantum Kate, SDU Denmark

Key Points

- Superposition:
 - Being in two places at once/multiple quantum states at once!

- Wave-Particle Duality:
 - Electrons can be both waves and particles

- Role of Observer:
 - If we want to observe if it's a wave or particle, then it chooses to be one!
 - Not observing 2 states at the same time, but one of these states with e.g. 50% chance

Source: Physics Reimagined (Univ. Paris-Saclay, CNRS)

In 1925, Erwin Schrödinger designed an equation that enabled him to find the energies of any quantum particle. Such particles display a "quantized" behavior: they can only have certain energies and they jump suddenly from one energy level to another.

SCHRÖDINGER'S QUANTUM LIFE

SUDDENLY JUMPING FROM ONE MOOD TO ANOTHER

Source: Physics Reimagined (Univ. Paris-Saclay, CNRS)

A HISTORY OF THE ATOM: THEORIES AND MODELS

How have our ideas about atoms changed over the years? This graphic looks at atomic models and how they developed.

SOLID SPHERE MODEL

PLANETARY MODEL

JOHN DALTON

NIELS BOHR

ERWIN SCHRÖDINGER

Quantum Basics: Mathematical Terminology

Quantum Basics ...

Probability density

Gives us the probability of finding a particle at a given time and place

Wave Function & Probability Density

- (a) 1s electrons can be "found" anywhere in this solid sphere, centered on the nucleus
- (b) The electron density map plots the points where electrons could be. The higher density of dots indicates the physical location in which the electron cloud is most dense
- (c) Electron density is shown as a function of distance from the nucleus (r) as a graphical representation of the same data used to generate figure b.
- (d) The total probability of finding an electron is plotted as a function of distance from the nucleus (r).

How do we know

Wavefunction describes the state of a quantum object

Schrödinger Equation

(F = ma)

Quantum Basics

Spectrum

Each potential will give us a set of energy states and energy values that a quantum particle can have

Source: Wikimedia Commons

Energy is quantized: Discrete energy levels

Source: The Quantum Atlas

An example: Quantum Harmonic Oscillator

Important model systems in quantum mechanics

 The vibrations of a diatomic molecule are an example of a version of the quantum harmonic oscillator.

x=0 represents the equilibrium separation between the nuclei.

Energy spectrum in different potentials

Each potential has its own spectrum of energy levels and their corresponding wave functions

$$V(x) = \frac{1}{2}a^2x^2$$

$$V(x) = \begin{cases} 0 & |x| < a \\ \infty & \text{otherwise} \end{cases}$$

$$V(x) = a^2 x^4$$

$$V(x) = a|x|$$

(a)

Spacing between energy levels is equal

(b)

Spacing between energy levels is increasing

(c)

?

(d)

?

Energy spectrum in different potentials

Each potential has its own spectrum of energy levels and their corresponding wave functions

$$V(x) = \frac{1}{2}a^2x^2$$

(a)

spacing between energy levels is equal

$$V(x) = \begin{cases} 0 & |x| < a \\ \infty & \text{otherwise} \end{cases}$$

spacing between energy levels is increasing

(b)

$$V(x) = a^2 x^4$$

(c)

spacing between energy levels is increasing

$$V(x) = a|x|$$

(d)

spacing between energy levels is decreasing

That's all for today-Thank you!

For questions, reach out to me on Discord or email me at info@sciencemeltingpot.com

