USACO 2017 12월 대회 Platinum, 2017년 12월 15-18일

문제 1. 저울대

입력 파일: balance.in 출력 파일: balance.out 시간 제한: 2 seconds 메모리 제한: 256 megabytes

새 헛간의 마굿간을 지을 돈을 모으기 위하여, 소 베시는 저울대에서 앞뒤로 움직이면서 균형을 잡는 놀라운 서커스를 하기 시작했다.

베시가 버는 돈의 양은 최종적으로 저울대에서 점프하는 위치와 고나련 되어있다. 저울대의 위치는 왼쪽에서 오른쪽으로 $0,1,\cdots,N+1$ 의 번호가 붙어있다. 만약 베시가 0 혹은 N+1에 도달하면 저울대에서 떨어져서 돈을 받을 수 없다.

만약 베시가 k번 위치에 있다면, 다음 중 하나를 할 수 있다.

- 1. 동전을 던진다. 만약 뒷면이 나오면 k-1번 위치로 간다. 앞면이 나오면 k+1번 위치로 간다. (앞뒷면이 나올 확률은 각각 $\frac{1}{2}$ 이다.)
- 2. 저울대에서 점프를 하여 f(k) 만큼의 돈을 번다. $(0 \le f(k) \le 10^9)$

베시의 움직임은 무작위 동전에 영향을 받기 때문에 어떤 결과가 나올지 보장할 수 없다는 것을 알고 있다. 하지만, 시작하는 위치에 따라서 최적의 결정들을 할 때 벌 수 있는 돈의 기댓값을 구하고 싶다. ("최적의" 라는 뜻은, 돈의 기댓값을 최대로 하는 것이다.) 예를 들어, 전략이 1/2의 확률로 10, 1/4의 확률로 8, 1/4의 확률로 10, 1/4의 확률로

입력 형식

첫째 줄에는 정수 N이 주어진다. 다음 N개의 줄에는 $f(1) \cdots f(N)$ 이 주어진다.

출력 형식

N개의 줄을 출력하여라. i 번째 줄에는 i번 위치에서 시작해서, 최적의 전략을 사용하였을 때 벌 수 있는 돈의 기댓값의 10^5 배를 가장 가까운 정수로 반올림하여 출력하여라.

예제

balance.in	balance.out
2	150000
1	300000
3	

문제 2. 정리하자

입력 파일: itout.in 출력 파일: itout.out 시간 제한: 2 seconds 메모리 제한: 512 megabytes

농부 존은 $1 \cdots N$ 의 번호가 붙은 일렬로 서 있는 N마리의 소를 가지고 있다. $(1 \le N \le 10^5)$

농부 존은 소가 증가하는 순서대로 정렬되기를 원하지만, 현재는 정리가 되어있지 않다. 예전에 농부 존은 놀라운 "버블정렬" 알고리즘을 사용하여 소를 정렬했지만, 오늘은 귀찮다고 생각한다. 한번에 하나씩 특정한 소를 불러 정렬 할 것이다. 어떤 소가 불렸을 때, 그 소는 (자신의 관점에서) 정리가 되도록 움직일 것이다. 그소의 오른쪽에 있는 소의 번호가 더 작아질 때 까지, 오른쪽에 있는 소와 자리를 바꿀 것이다. 그후, 왼쪽에 있는 소의 번호가 더 커질 때 까지, 왼쪽에 있는 소와 자리를 바꿀 것이다. 최종적으로, 소는 정리되었다. 그소의 입장에서는 왼쪽에 있는 소가 작은 번호를, 오른쪽에 있는 소가 큰 번호를 가진다.

농부 존은 어떤 소의 부분집합을 골라서, 이 부분집합을 차례대로 보면서 (번호가 증가하는 순서로) 소를 불러 N마리의 소가 정리될 때 까지 반복할 것이다. 예를 들어, 번호 $\{2, 4, 5\}$ 번 소를 부분집합으로 고르면, 2번 소를 부르고, 4번 소를 부르고, 5번 소를 부를 것이다. N마리의 소가 정렬되지 않았다면, 같은 소에게 계속 계속 반복해서 부를 것이다.

농부 존은 어떤 소들이 집중하는지 모르기 때문에, 이 부분집합의 크기를 최소로 하고 싶다. 그리고 농부 존은 K가 행운의 숫자라고 생각 하고 있다. 소가 최종적으로 모두 정렬되어있게 하는 크기가 최소인 부분집합 중 사전순으로 K 번째 집합을 찾아라.

집합 S가 T보다 작기 위해서는, S와 T의 원소들을 오름차순으로 정렬 했을 때, 정렬된 두 수열에 대해서, S를 정렬한 수열이 사전순으로 작다는 의미이다. 예를 들어, $\{1,\ 3,\ 6\}$ 은 $\{1,\ 4,\ 5\}$ 보다 사전순으로 작다.

배점

3/16의 점수에 해당하는 데이터에서는 $N \le 6$ 이고 K=1 이다.

추가되는 5/16의 점수에 해당하는 데이터에서는 K=1 이다.

추가되는 8/16의 점수에 해당하는 데이터에서는 추가 제한조건이 없다.

입력 형식

첫째 줄에는 정수 N이 주어진다. 둘째 줄에는 정수 K $(1 \le K \le 10^{18})$ 이 주어진다. 셋째 줄에는 N개의 공백으로 구분된 정수가 주어지고, 왼쪽부터 오른쪽 까지 소의 번호가 주어진다.

적어도 K개의 올바른 부분집합이 존재함이 보장된다.

출력 형식

첫째 줄에는 최소 크기 부분집합의 크기를 출력해야 한다. 다음 부터 사전순으로 K번째 최소 집합을 번호가 증가하는 순서대로 한 줄에 하나씩 출력해야 한다.

제하

itout.in	itout.out
4 1	2
4 2 1 3	1
	4

참고 사항

배열 4 2 1 3으로 시작한다. 농부 존이 1번 소를 부른 이후로 배열은 1 4 2 3이 된다. 4번 소를 부른 이후에 배열은 1 2 3 4 가 되고, 정렬되었다.

USACO 2017 12월 대회 Platinum, 2017년 12월 15-18일

문제 3. 소 모임

입력 파일: gathering.in 출력 파일: gathering.out

시간 제한: 2 seconds 메모리 제한: 256 megabytes

소들은 거대한 모임을 위해서 세계 곳곳에서 모였다. N마리의 소가 있고, N-1쌍의 소가 서로를 안다. 모든 소는 몇몇 서로 아는 관계를 거쳐서 모두 알 수 있다.

매우 재밌는 시간을 보냈지만, 이제 하나하나씩 떠날 시간이 왔다. 그들은 떠날 때 소가 두 마리 이상 있을 때는, 남아있는 모든 소에게 적어도 한 마리의 친구가 있도록 떠나고 싶다. 또한, 수하물 공간 문제 때문에, M쌍의 소 (a_i,b_i) 가 있어서, a_i 번 소가 b_i 번 소보다 먼저 떠나야 한다. a_i 번 소와 b_i 번 소는 친구일 수도, 아닐 수도 있다.

각 소에 대해서, 해당하는 소가 떠나는 마지막 소가 될 수 있는지를 구하여라. 위 조건을 만족하면서 떠날 수 있는 방법이 존재하지 않을 수도 있다.

입력 형식

첫째 줄에는 공백으로 구분된 두 정수 N, M이 주어진다.

둘째 줄부터 N 번째 줄 까지의 i번째 줄에는 x_i 와 y_i 가 주어지고, $1 \le x_i, y_i \le N, x_i \ne y_i$ 이며, x_i 번 소와 y_i 번 소가 친구라는 것을 의미한다.

N+1 번째 줄 부터 N+M 번째 줄 까지의 i번째 줄에는 a_i 와 b_i 가 주어지고, $1 \le a_i, b_i \le N$, $a_i \ne b_i$ 이며, a_i 번 소가 b_i 번 소가 떠나기 전에 떠나야 한다는 것을 의미한다.

 $1 \le N, M \le 10^5$ 임이 보장된다. 20% 점수에 해당하는 테스트 케이스에 대해서는 $N, M \le 3000$ 임이 보장된다.

출력 형식

N개의 각 줄에 d_i 를 출력하여라. i번째 소가 마지막으로 떠날 수 있으면 $d_i = 1$ 이고, 아니면 $d_i = 0$ 이다.

예제

gathering.in	gathering.out
5 1	0
1 2	0
2 3	1
3 4	1
4 5	1
2 4	