

For each model $M_i \in \mathcal{M}$

 $\Omega^{j} = f_{Mi}^{-1} [D_{G} \cap f_{Mi} (\Omega_{0}^{j})]$

Construct the specialized inputs

robust numerical simulation without spurious effects
macroscopically meaningful flow dynamics
inundation of a designated region

Define the codomain of plausible outputs - D_G

For each model $M_j \in \mathcal{M}$ For each model $M_j \in \mathcal{M}$ For each piece of observed data $D_i \in \mathcal{D}$ Construct the partial solutions $\Omega_i^{\ j} = f_{Mi}^{\ -1}[D_i \cap f_{Mi}(\Omega^j)]$ For each model $M_j \in \mathcal{M}$ Statistical summary of: $f_{Mj}(\Omega^j) - \text{plausible outputs}$ $f_{Mj}(\Omega_i^j) - \text{partial solutions}$ $f_{Mj}(\Omega_{i1}^j \cap ... \cap \Omega_{ik}^j)$ intersection of partial solutions