	This	question	paper	contains	4	printed	pages
--	------	----------	-------	----------	---	---------	-------

	 	 	 	 	 	·
Roll No.						
	 -					

S. No. of Question Paper: 5579

Unique Paper Code : 2372013603

Name of the Paper : Econometrics (DSC-NEP)

Name of the Course : B.Sc.(H) Statistics

Semester : VI

Duration: 3 Hours Maximum Marks: 90

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question no. 1 is compulsory.

Attempt five more questions choosing at least 2 from each section.

Use of non-programmable scientific calculator is allowed.

- 1. (a) Fill in the blanks:

 - (ii) For GLM, we can express e = Mu, where matrix $M = \dots$

 - (v) If there exists high multicollinearity, then the regression coefficients are
 - (b) State whether True/False. If Flase, then give the correct statement.
 - (i) Farrar Glauber test offers a solution to the problem of Heteroscedasticity.

- (ii) Multicollinearity is a violation of assumption pertaining to error terms.
- (iii) The ordinary least squares procedure yields the BLUE of parameters of a General Linear model.
- (iv) Aitken estimator is used when the X matrix is not a full rank matrix.
- (v) A hypothesis such as $H_0: \beta_2 = \beta_3 = 0$ can be tested using the t test.
- (c) (i) Consider the data:

Y	-4	-2	0 .	2	4
X_2	1	2	3	4	5
X_3	5	7	9	11	13

Can the parameters of the model, $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$ be estimated?

Why or why not, if not then what linear functions of these parameters can you estimate? Show the necessary calculations.

(ii) From a cross-sectional data on 59 countries, the following regression was obtained:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

Running the auxiliary regression

$$e_1^2 = -5.8417 + 2.5629 X_{2i} + 0.6918 X_{3i} - 0.4081(X_{2i})^2$$

- 0.049 $(X_{3i})^2 + 0.0015(X_{2i})(X_{3i})$;

with $R^2=0.1148$. Test the presence of heteroscedasticity using White's Heteroscedasticity test. (given that the chi-square value at 5% level of significance is 11.0705). $5,5,2\frac{1}{2},2\frac{1}{2}$

Section-A

2. (i) Consider the following two models for n sample observations:

Model I :
$$Y_t = \beta_1 + \beta_2 X_t + u_t$$

$$\text{Model II : } \mathbf{Y}_t = \alpha_1 \, + \, \alpha_2 \, \left(\mathbf{X}_t \, - \, \, \overline{\mathbf{X}} \, \right) \, + \, u_t$$

Obtain the expressions of OLS estimators of β_1 , β_2 , α_1 and α_2 . Show that OLS estimators of β_1 and α_1 are not identical, however, OLS estimators of β_2 and α_2 are identical. Also, obtain expressions for variances of OLS estimators of β_1 , β_2 , α_1 and α_2 .

- (ii) For General Linear model, obtain $100(1-\alpha)\%$ confidence interval for E $[Y_{n+1} | \underline{c}]$ where $\underline{c}' = (1, X_{2,n+1}, \dots, X_{k,n+1})$. Also obtain $100(1-\alpha)\%$ confidence interval for the individual value Y_{n+1} .
- 3. (i) Obtain the estimates of the coefficients of the linear relation.

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

subject to the linear restriction $\beta_2 = \beta_3$. It is given that n = 25, X'X =

$$= \begin{bmatrix} 20 & 0 \\ 0 & 40 \end{bmatrix} \text{ and } X'Y = \begin{bmatrix} 15 \\ 25 \end{bmatrix}.$$

- (ii) Describe the terms "perfect Multicollinearity" and "high-but-imperfect Multicollinearity". Discuss the consequences when OLS formulae are applied to both of the cases? Illustrate your answer with the help of a suitable example.
- 4. (i) Discuss the solutions of Multicollinearity.
 - (ii) Discuss the method based on Frisch Confluence Analysis to detect the presence of Multicollinearity. 7,8

P.T.O.

Section-B

- 5. (i) Explain the Cochrane-Orcutt iterative procedure for a 2-variable regression model where disturbances follow first order autoregressive scheme.
 - (ii) For the two variable regression model, $Y_t = \beta_1 + \beta_2 X_t + u_t$ where $u_t = \rho u_{t-1} + \epsilon_t$ with $E(\epsilon_t) = 0$, $v(\epsilon_t) = \sigma_g^2$ and $cov(\epsilon_t, \epsilon_s) = 0$, for $t \neq s$, derive the expression for the mean and variance-covariance matrix of u, where

- 6. (i) Discuss the test based on V on Neumann ratio for the detection of autocorrelation. If the value of the Durbin Watson test statistic is d=1.875 based on 28 sample observations, then obtain the value of Von Neumann ratio.
 - (ii) In a two variables regression model $Y_i = \beta_1 + \beta_2 X_i + u_i$, where $E(u_i) = 0$, $V(u_i) = \sigma^2 X_i^2$ for all i = 1, 2, n, derive the expression of the Generalized least square estimator of β_2 along with its variance. Further obtain the variance of OLS estimator of β_2 under heteroscedasticity. Comment on the performance of the estimators by using the values of $X_i = 1, 2, 3, 4, 5$.
- 7. (i) Discuss the Goldfeld-Quandt test for heteroscedasticity. How do you proceed with the test when there is more than one variable in the model?
 - (ii) For the General Linear Model, $\underline{Y} = X\underline{\beta} + \underline{u}$, where $\underline{E}(\underline{u}) = \underline{0}$ and $\underline{E}(\underline{u}\underline{u}') = V$, where V is a known symmetric positive definite matrix. Find the best linear unbiased predictor of a single value of the regressand y_0 , given the row vector of prediction regressors \underline{x}_0 .