Имя, фамилия и номер группы:	

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,2\theta)$ распределения. Оценка $\hat{\theta}=X_1$

- А Состоятельная
- В Асимптотически нормальная
- С Нелинейная

- Несмещённая
- Е Эффективная
- **F** Нет верного ответа.

Вопрос 2 🧍 При проверке гипотезы о равенстве долей используется следующее распределение

- N(0;1)
- lacksquare B $F_{m,n}$

- $\boxed{\mathrm{D}} t_{m+n-2}$

- $\boxed{\mathbf{E}} t_{m+n-1}$
- F Нет верного ответо

Вопрос 3 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

- 3/8
- B 1/8

- C 1/3
- D 1/2

- E 2/3
- **F** Нет верного ответа.

Вопрос 4 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?

- $A \frac{1}{n}$
- 2

- C n
- $\boxed{\mathrm{D}}$ $\frac{1}{2}$

- E 1
- F Нет верного ответа.

Вопрос 5 Величины X_1,\dots,X_n — выборка из нормального распределения. Статистика $U=rac{5-ar{X}}{5/\sqrt{n}}$ применима для проверки

- $\boxed{{\sf A}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 25, только при больших n
- В гипотезы $H_0: \sigma = 5$
- ипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n
- $\boxed{\mathrm{D}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших n
- $\boxed{\mathbb{E}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n
- **F** Нет верного ответа.

Вопрос 6 \clubsuit Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

- $\boxed{\mathbf{B}} \ t_{m+n-1}$

 $\boxed{\mathbf{D}} t_{m+n-2}$

- $\boxed{\mathbb{E}} F_{m+1,n+1}$
- F Нет верного ответа.

$\boxed{\mathrm{D}}$ отвергается при $\alpha=0.05$, не отвергае	ется при $lpha=0.01$		
отвергается при любом разумном зна	ичении α		
F Нет верного ответа.			
Вопрос 8 . Требуется проверить гипотез ний. Несмещённая оценка дисперсии по п			ым выборкам размером 20 и 16 наблюде- . Тестовая статистика может быть равна
A 2	C 4		E 1
1.5	D 1.224		F Нет верного ответа.
Вопрос 9 \clubsuit По выборке X_1, \dots, X_n из норвалы для математического ожидания. Полу дисперсии. Всегда справедливы следующи	учен интервал (a_1,a_2) г		
$\boxed{\mathbf{A}} \ a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$		$\boxed{\mathbf{D}} \ a_1 < 0, b_1 < 0, a_2$	$>0, b_2>0$
$\boxed{\mathbf{B}} \ a_2 - a_1 < b_2 - b_1$		$ a_1 - b_1 = a_2 - b_2 = a_2 - b_2 $	$b_2 $
$\boxed{\mathbb{C}} \ a_2 - a_1 > b_2 - b_1$		F Нет верного отве	ema.
Вопрос 10 \clubsuit — Если величина $\hat{\theta}$ имеет нор нормальное распределение	мальное распределени	те $\mathcal{N}(2; 0.01^2)$, то, согл	асно дельта-методу, $\hat{ heta}^2$ имеет примерно
$\boxed{A} \ \mathcal{N}(2; 4\cdot 0.01^2)$	$\boxed{C} \ \mathcal{N}(4; 4 \cdot 0.01^2)$		$\mathcal{N}(4;16\cdot 0.01^2)$
$\boxed{\mathtt{B}} \ \mathcal{N}(4; 2 \cdot 0.01^2)$	$\boxed{D} \mathcal{N}(4; 8 \cdot 0.01^2)$		F Нет верного ответа.
Вопрос 11 \clubsuit Пусть $X = (X_1, \dots, X_n) - C$	случайная выборка из	экспоненциального р	аспределения с плотностью
	$f(x; heta) = egin{cases} rac{1}{ heta} \exp(- \\ 0 \ \text{при } x \end{cases}$	$\frac{x}{\theta}$) при $x \ge 0,$ $< 0.$	
Информация Фишера $I_n(p)$ равна:			
$\boxed{A} \ n heta^2$	$C \frac{\theta^2}{n}$		$E \mid \frac{\theta}{2}$
$\frac{n}{2}$	$ \begin{array}{c} n \\ \hline D \frac{n}{\theta} \end{array} $		F Нет верного ответа.
Вопрос 12 ♣ Выберите НЕВЕРНОЕ утвер		ervio dvirtimo nacina	
_		скую функцию распро	еделения $\Gamma_n(x)$
$F_n(x)$ является невозрастающей функ B $F_n(x)$ имеет разрыв в каждой точке в			
\square $F_n(x)$ имеет разрыв в каждои точке в \square	ариационного ряда		
D $F_n(x)$ асимптотически нормальна			
$E \mid E(F_n(x)) = F(x)$			
			$\mathcal{N}(\mu;42)$. Оказалось, что $ar{X}=-23$. Про утверждать, что
$\hat{A} \hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$	$\hat{\mu}_{ML} = -23, \hat{\mu}_{ML}$	M = -23	$\boxed{\text{E}} \; \hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$
$\boxed{\mathbf{B}} \ \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} > -23$	$\hat{\mathbf{D}} \hat{\mu}_{ML} = -23, \hat{\mu}_{ML}$		F Нет верного ответа.

Вопрос 7 \clubsuit По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

А Гипотезу невозможно проверить

 \fbox{B} не отвергается при любом разумном значении α \fbox{C} отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$

Вопрос 21 🜲 При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. Гипотеза о том, что кость правильная А Гипотезу невозможно проверить |B| отвергается при lpha=0.01, не отвергается при lpha=0.05не отвергается при любом разумном значении lpha $\boxed{\mathrm{D}}$ отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$ [E] отвергается при любом разумном значении lpha| F | *Нет верного ответа.* Выберите HEBEPHOE утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$ $|\mathbf{A}|$ Функция $\ell(\theta)$ может принимать отрицательные значения |B| Функция $\ell(\theta)$ может принимать положительные значения Функция $\ell(\theta)$ имеет максимум при $\theta=0$ $|\mathsf{D}|$ Функция $\ell(\theta)$ может иметь несколько экстремумов $|\mathsf{E}|$ Функция $\ell(\theta)$ может принимать значения больше единицы Вопрос 23 🜲 🛮 Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен A 14/3 **F** Нет верного ответа. **Вопрос 24** Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если $D E(\hat{\theta}_n) = \theta$ $A \operatorname{Var}(\hat{\theta}_n) \ge Var(\hat{\theta}_{n+1})$ $E Var(\hat{\theta}_n) \to 0$ $P(|\hat{ heta}_n - heta| > t) o 0$ для всех t > 0 $C E(\hat{\theta}_n) \to \theta$ **F** Нет верного ответа. Bonpoc 25 🜲 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале: Пафнутий Андрей Карл 9 Лесенка Erich Krause 8 Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество. $\boxed{\mathrm{A}}$ 1.65, H_0 отвергается $0.58, H_0$ не отвергается [E] 0.43, H_0 не отвергается $\boxed{\mathrm{B}}$ 0.58, H_0 отвергается \square 1.96, H_0 отвергается F | Нет верного ответа. Вопрос 26 🌲 🛮 Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна A 2 B 2/3 **F** Нет верного ответа. Вопрос 27 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, $p \quad 1-p$ По выборке оказалось, что $\bar{X}=4.5.$ Оценка неизвестного p, полученная методом моментов, равна: A 1/3 1/4|E| 2/3D 1/2 В Метод неприменим | F | *Нет верного ответа.*

Вопрос 28 🌲	Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36
занятий он не	посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия
Петрова истин	но и укажите число степеней свободы

A
$$\chi^2 = 24, df = 1$$

$$C \chi^2 = 2, df = 2$$

$$\chi^2 = 36, df = 1$$

$$\boxed{\text{B}} \chi^2 = 14, df = 1$$

$$\boxed{D} \chi^2 = 20, df = 2$$

F Нет верного ответа.

Вопрос 29 \clubsuit Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2>\sigma_0^2$. Критическая область имеет вид

- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- $\boxed{\mathbf{B}} \ (0,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- $\boxed{\mathbb{C}} \ (-\infty,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- $\boxed{\mathbb{D}} \ (A,+\infty)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- $\boxed{\mathbb{E}} \ (0,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- **F** Нет верного ответа.

Вопрос 30 \clubsuit Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

 $\overline{\mathsf{A}}$ $F_{m+1,n+1}$

 t_{m+n-2}

 $\boxed{\mathrm{B}} t_{m+n-1}$

 \square $F_{m-1,n-1}$

Ура! На этой страничке вопросов уже нет:)

Им	я,	фа	ìМ	иј	ш	Я	и	н	ON	ие	p	гŗ	y	П	П	ы:	:																																				
	٠.	٠.	٠.	٠.	٠.	٠.	•	• •	٠.	٠.	•	• •	٠.	٠	٠.	•		•	 •	• •	•	٠.	•	٠.	•	٠.	•	٠.	•	• •	٠.	•	٠.	•	 • •	•	٠.	٠	• •	٠.	•	٠.	٠	• •	٠.	•	٠.	٠.	٠.	•	 •	٠	 •

Вопрос 1 : A B C E F **Вопрос** 2 : **В** В С D E F **Вопрос** 3 : **В** В С D E F Вопрос 4: А C D E F **Вопрос 5** : A B **В** D E F **Вопрос** 6 : **В** В С D Е F Вопрос 7: АВС ВС Вопрос 8 : А C D E F Вопрос 9: АВС В Вопрос 10: АВС В Вопрос 12: B C D E **Вопрос 13** : A B D E F Вопрос 14 : А В С E F **Вопрос 15** : A B C D Вопрос 16: АВВ БВ D Вопрос 17 : А В **Вопрос 18** : **В** В С D Е Вопрос 19 : А В С Вопрос 20 : А В С E F

Вопрос 21 : А В E F D

Вопрос 22 : А В В Б Е

Вопрос 25 : А В D

Вопрос 26 : А В С D

Вопрос 27 : А В

Вопрос 28 : А В С D

Вопрос 29: B C D

Вопрос 30: АВС В

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Для выборки X_1, \dots, X_n , имеющей нормальное распределение, проверяется гипотеза $H_0: \sigma^2 = \sigma_0^2$ против $H_a: \sigma^2 > \sigma_0^2$. Критическая область имеет вид

- $\boxed{\mathbf{A}} \ (0,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- $\boxed{\mathrm{B}}\ (0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- $\boxed{\mathbb{D}} \ (A,+\infty)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- $\boxed{\mathbb{E}} \ (-\infty,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- **F** Нет верного ответа.

Вопрос 2 \clubsuit Величины X_1,\ldots,X_n — выборка из нормального распределения. Статистика $U=\frac{5-\bar{X}}{5/\sqrt{n}}$ применима для проверки

- гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n
- В гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при любых n
- Гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при больших n
- \square гипотезы $H_0: \sigma = 5$
- [E] гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, только при больших n
- **F** Нет верного ответа.

Вопрос 3 🖡 Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

- A 14/3
- B 0

- 2
- D 3

- E 1
- F Нет верного ответа.

Вопрос 4 — Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- A 4

- C 1.224
- D 1

- E 2
- **F** Нет верного ответа.

Вопрос 5 \clubsuit Пусть $X=(X_1,\dots,X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

 $\boxed{\mathbb{E}} \ I_n^{-1}(\theta) \leq \mathrm{Var}(\hat{\theta})$

 $\boxed{\mathbf{B}} \ \operatorname{Var}(\hat{\theta}) \le I_n(\theta)$

F Нет верного ответа.

Вопрос 6 \clubsuit При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

N(0;1)

 $E \mid t_{m+n-1}$

 $\boxed{\mathbf{B}} \ t_{m+n-2}$

D F_m

$lacksquare$ A t_{m+n-1}		n+1			t_{m+n-2}
$lacksquare$ B $F_{m,n}$	$\boxed{\mathbf{D}} F_{m-1},$	n-1			F Нет верного ответа.
Вопрос 9 ♣ Производитель фломастер по 10-балльной шкале:	ов попросил	грёх человек о	оценить де	ва вида ф	рломастеров: «Лесенка» и «Erich Krause»
		Пафнутий	Андрей	Карл	
_	Лесенка Erich Krause	9 8	7 9	6 7	
Вычислите модуль значения статистики мости 0.1 гипотезу о том, что фломастеры		-		ю аппро	оксимацию, проверьте на уровне значи-
$oxed{A}$ 0.43, H_0 не отвергается	C 1.96, H	H_0 отвергается	I		$oxed{\mathbb{E}}$ 0.58, H_0 отвергается
$0.58,H_0$ не отвергается	D 1.65, H	H_0 отвергается	I		F Нет верного ответа.
Вопрос 10 🜲 Выберите НЕВЕРНОЕ утв	ерждение про	логарифмич	ескую фун	кцию пр	равдоподобия $\ell(heta)$
А Функция $\ell(\theta)$ может иметь несколь В Функция $\ell(\theta)$ может принимать зна С Функция $\ell(\theta)$ может принимать отр Функция $\ell(\theta)$ может принимать по Функция $\ell(\theta)$ имеет максимум при Вопрос 11 В Выберите НЕВЕРНОЕ утве А $E(F_n(x)) = F(x)$ В $F_n(x)$ имеет разрыв в каждой точке С $F_n(x)$ асимптотически нормальна $F_n(x)$ является невозрастающей фу E $Var(F_n(x)) = F(x)(1 - F(x))$	ачения большо рицательные спожительные $ heta=0$ верждение про	е единицы значения значения эмпирическу	ую функци	ію распр	ределения $F_n(x)$
Вопрос 12 . Требуется проверить гит блюдений. Несмещённая оценка диспероравна					
A 2	C 4				E 1.224
1.5	D 1				F Нет верного ответа.

Вопрос 7 ♣ Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия

Вопрос 8 \clubsuit Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m

 $\chi^2 = 36, df = 1$

F Нет верного ответа.

 $\boxed{D} \chi^2 = 24, df = 1$

и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

Петрова истинно и укажите число степеней свободы

 $\boxed{A} \chi^2 = 14, df = 1$

Вопрос 13 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

X_i	3	5
$\mathbb{P}(\cdot)$	p	1-p

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

A 1/2

B 1/3

С 2/3 Метод неприменим

F Нет верного ответа.

Вопрос 14 Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=$ $x) = C_n^x p^x (1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

 $\frac{5n}{p(1-p)}$

 $C \frac{n}{5p(1-p)}$

 $B \frac{n}{n(1-n)}$

 $\boxed{\mathbf{D}} \quad \frac{5p(1-p)}{}$

F Нет верного ответа.

Вопрос 15 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

Имеется выборка из трёх наблюдений: $X_1=5, X_2=3, X_3=5$. Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

A = 2/3

С Метод неприменим

E 1/4

B 1/2

F Нет верного ответа.

Bonpoc 16 🜲 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

3/8

E 1/8

B 1/2

F Нет верного ответа.

Вопрос 17 \clubsuit Величины $X_1,\,X_2,\,...,\,X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu;42)$. Оказалось, что $ar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

 $\hat{A} \hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$

 $\hat{\mu}_{ML} = -23, \, \hat{\mu}_{MM} = -23$ $\hat{D} \, \hat{\mu}_{ML} = -23, \, \hat{\mu}_{MM} > -23$

 $\hat{E} \hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$

 $\boxed{\text{B}} \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$

F Нет верного ответа.

Вопрос 18 🐇 Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y . Какое распределение может иметь статистика, используемая в данном случае?

 $F_{m-1,n-1}$

 $C t_{m+n-1}$

 $E \mid t_{m+n-2}$

B $F_{m+1,n+1}$

 $D F_{m,n}$

F Нет верного ответа.

Вопрос 19 \clubsuit Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

 $P(|\hat{\theta}_n - \theta| > t) \rightarrow 0$ для всех t > 0

 $D E(\hat{\theta}_n) = \theta$

 $|B| \operatorname{Var}(\hat{\theta}_n) \ge Var(\hat{\theta}_{n+1})$

 $E E(\hat{\theta}_n) \to \theta$

 $C \operatorname{Var}(\hat{\theta}_n) \to 0$

А отвергается при люоом разумном зна	чении $lpha$		
не отвергается при любом разумном :	значении α		
\fbox{C} отвергается при $lpha=0.05$, не отвергае	тся при $\alpha=0.01$		
D Гипотезу невозможно проверить			
$oxed{\mathbb{E}}$ отвергается при $lpha=0.01$, не отвергае	тся при $\alpha=0.05$		
F Нет верного ответа.			
Вопрос 21 ♣ По случайной выборке из 2 дисперсии $\hat{\sigma}^2 = 25$. В рамках проверки гип			
$oxed{A}$ отвергается при $lpha=0.01$, не отвергае	тся при $lpha=0.05$		
$\overline{\ B}$ отвергается при $lpha=0.05$, не отвергае	-		
С не отвергается при любом разумном :	значении $lpha$		
D Гипотезу невозможно проверить			
отвергается при любом разумном зна	чении α		
F Нет верного ответа.			
Вопрос 22 🗘 Выберите НЕВЕРНОЕ утвера	ждение про метод ман	ксимального правдопо	добия (ММП):
Оценки ММП асимтотически нормал:	ьны $\mathcal{N}(0;1)$		
В ММП оценки не всегда совпадают с о	ценками метода моме	ентов	
С ММП применим для зависимых случ			
D При выполнении технических предпо		состоятельны	
E ММП применим для оценивания дву			
Вопрос 23 \clubsuit Величины X_1, \ldots, X_n — вы тическим ожиданием и известной дисперс. Обозначим φ_1 и φ_2 вероятности ошибок пессоотношение	ией. На уровне значим	мости $lpha$ проверяется ги	
$\boxed{\mathbf{A}} \ \varphi_1 = 1 - \alpha$	$\boxed{C} \ \varphi_2 = 1 - \alpha$		$\boxed{\mathbf{E}} \ \varphi_1 + \varphi_2 = \alpha$
$\varphi_1 = \alpha$	$ \begin{array}{c} \boxed{C} \varphi_2 = 1 - \alpha \\ \boxed{D} \varphi_2 = \alpha \end{array} $		F Нет верного ответа.
Вопрос 24 👫 При проверке гипотезы о ра		зуется следующее рас	пределение
\overline{A} $F_{m-1,n-1}$			N(0;1)
$\overline{\mathbb{B}}$ t_{m+n-2}	$\overline{\mathbb{D}}$ t_{m+n-1}		F Нет верного ответа.
Вопрос 25 \clubsuit Пусть $X = (X_1, \dots, X_n) - C$			
$\mathbf{F}_{n} = (\mathbf{F}_{1}, \dots, \mathbf{F}_{n})$	$f(x; \theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{1}{\theta}) & \text{при } x \end{cases}$		спределения с плотпостью
Информация Фишера $I_n(p)$ равна:			
$oxed{A} \frac{ heta}{n}$	$\frac{n}{\theta^2}$		$\mathbb{E} \frac{\theta^2}{n}$
$\boxed{\mathrm{B}} \ n heta^2$	$\boxed{\mathrm{D}} \frac{n}{\theta}$		F Нет верного ответа.
Вопрос 26 \clubsuit По выборке X_1, \ldots, X_n из интервалы для математического ожидания вестной дисперсии. Всегда справедливы сл	и. Получен интервал (ϵ	(a_1,a_2) при известной д	гандартным формулам доверительные дисперсии и интервал (b_1,b_2) при неиз-
$\begin{bmatrix} A \end{bmatrix} a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$		$\boxed{\mathbf{D}} \ a_2 - a_1 > b_2 - b_1$	
$ a_1 - b_1 = a_2 - b_2 $			
\boxed{C} $a_1 < 0, b_1 < 0, a_2 > 0, b_2 > 0$		F Нет верного отве	ma.

Вопрос 20 🐇 При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. Гипотеза о том, что кость правильная

	Пусть $X = (X_1, \dots, X_n)$ — случайная выборка и	з равномерного на $(0,\theta)$ распределения. При како	м значении
константы c от	ценка $\hat{ heta} = car{X}$ является несмещённой?		
A 1	2	$oxed{{\sf E}}$ $rac{1}{2}$	
lacksquare B n	$\boxed{\mathrm{D}} \frac{1}{n}$	F Нет верного ответа.	
Вопрос 28 🌲	Дана реализация выборки: 3, 1, 2. Несмещённая о	ценка дисперсии равна	
A 1/2	C 1/3	E 2	
1	D 2/3	F Нет верного ответа.	
Вопрос 29 🌲	Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из	равномерного на $(0,2\theta)$ распределения. Оценка $\hat{\theta}$	$=X_1$
А Эффекти	вная	Несмещённая	
В Состояте	льная	Е Асимптотически нормальная	
С Нелиней	ная	F Нет верного ответа.	
Вопрос 30 🕹 нормальное ра	Если величина $\hat{ heta}$ имеет нормальное распределениаспределение	ле $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{ heta}^2$ имее	т примерно
$\boxed{\mathbf{A}} \ \mathcal{N}(4; 8 \cdot 0)$	0.01^2) $\boxed{\texttt{C}} \ \mathcal{N}(2; 4 \cdot 0.01^2)$	$lacksquare$ $\mathcal{N}(4; 4\cdot 0.01^2)$	

F Нет верного ответа.

 $\boxed{D}~\mathcal{N}(4; 2\cdot 0.01^2)$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B **D** E F

Вопрос 2 : **В** В С D E F

Вопрос 3 : А В П Д Б Г

Вопрос 5 : А В С Е Е

Вопрос 6: В С D Е F

Вопрос 7 : A B C D **F**

Вопрос 8 : А В С D F

Вопрос 10: АВС ВС

Вопрос 11 : А В С Е

Вопрос 13 : А В С D F

Вопрос 14 : **В** В С D E F

Вопрос 15 : А В С Е Е Е

Вопрос 16 :

Вопрос 17 : A B D E F

Вопрос 18 : **В** В С D E F

Вопрос 19 : **В** С D E F

Вопрос 20 : А С С Б Е Г

Вопрос 21 : А В С D 🖪 F

Вопрос 22 : **В** В С D Е

Вопрос 23 : А С С Б Е F

Вопрос 25 : А В В Б Б Б

Вопрос 26 : А С С Б Е Г

Вопрос 27 : А В В Б Б Б

Вопрос 28 : A C D E F

Вопрос 29 : А В С Е Е

Вопрос 30 : A C D E F

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 💲 При проверке гипотезы о равенстве долей используется следующее распределение

$$\boxed{\mathbb{C}} t_{m+n-2}$$

$$oxed{E} F_{m-1,n-1}$$

$$\boxed{\mathrm{D}} t_{m+n-1}$$

F Нет верного ответа.

Вопрос 2 👫 При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

$$A t_{m+n-2}$$

$$E F_{m-1,n-1}$$

$$\boxed{\mathbf{B}} \ t_{m+n-1}$$

$$D$$
 F_m

F *Нет верного ответа.*

Вопрос 3 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

$$A \operatorname{Var}(\hat{\theta}) = I_n(\theta)$$

$$\operatorname{Var}(\hat{\theta}) \cdot I_n(\theta) = 1$$

$$[E] I_n^{-1}(\theta) \leq \operatorname{Var}(\hat{\theta})$$

$$\boxed{\mathbf{B}} I_n^{-1}(\theta) \ge \operatorname{Var}(\hat{\theta})$$

$$\square$$
 $Var(\hat{\theta}) \leq I_n(\theta)$

Вопрос 4 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{ heta} = c ar{X}$ является несмещённой?

$$C$$
 $\frac{1}{n}$

$$D$$
 $\frac{1}{2}$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}$$

F Нет верного ответа.

Вопрос 5 👫 Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

| F | *Нет верного ответа.*

Bonpoc 6 🖡 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

3/8

B 1/2

| F | *Нет верного ответа.*

Вопрос 7 🐥 Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

A 14/3

B 1

B 2

F Нет верного ответа.

Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

- $\boxed{\mathsf{A}}$ 0.58, H_0 отвергается

 $0.58, H_0$ не отвергается

В 1.65, H_0 отвергается

- $\boxed{\mathrm{D}}$ 0.43, H_0 не отвергается
- **F** Нет верного ответа.

Вопрос 10 \clubsuit По выборке X_1, \dots, X_n из нормального распределения строятся по стандартным формулам доверительные интервалы для математического ожидания. Получен интервал (a_1,a_2) при известной дисперсии и интервал (b_1,b_2) при неизвестной дисперсии. Всегда справедливы следующие соотношения:

$$|a_1 - b_1| = |a_2 - b_2|$$

$$\boxed{\mathbf{B}} \ a_2 - a_1 < b_2 - b_1$$

$$C$$
 $a_2 - a_1 > b_2 - b_1$

$$\boxed{\mathbf{D}} \ a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix} a_1 < 0, b_1 < 0, a_2 > 0, b_2 > 0$$

F *Нет верного ответа.*

Вопрос 11 \clubsuit Величины $X_1, X_2, ..., X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu; 42)$. Оказалось, что $\bar{X} = -23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

$$\boxed{\mathbf{A}} \; \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} > -23$$

$$\hat{\mathbf{C}}$$
 $\hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$

$$[E] \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$$

$$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} = -23$$

Вопрос 12 \clubsuit Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^2$ имеет примерно нормальное распределение

A
$$\mathcal{N}(2; 4 \cdot 0.01^2)$$

$$\boxed{\mathsf{C}} \ \mathcal{N}(4; 8 \cdot 0.01^2)$$

$$\mathcal{N}(4; 16 \cdot 0.01^2)$$

$$\boxed{\mathbf{B}} \ \mathcal{N}(4; 4 \cdot 0.01^2)$$

$$\boxed{\textbf{D}}~\mathcal{N}(4;2\cdot 0.01^2)$$

Вопрос 13 🌲 🛮 Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

A
$$\chi^2 = 24, df = 1$$

$$C$$
 $\chi^2 = 20, df = 2$ C $\chi^2 = 14, df = 1$

$$\chi^2 = 36, df = 1$$

B
$$\chi^2 = 2, df = 2$$

$$D \chi^2 = 14, df = 1$$

F Нет верного ответа.

Вопрос 14 \clubsuit Величины X_1,\dots,X_n — выборка из нормального распределения. Статистика $U=rac{5-ar{X}}{5/\sqrt{n}}$ применима для провер-

|A| гипотезы $H_0: \sigma = 5$

В гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших n

гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n

 \square гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, только при больших n

| E | гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n

m и n . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение	D 45 8 T 6		
По выборке оказанось, что \bar{X} — Выберите НЕВЕРНОЕ утверждение про зыпирическую функцию распределения $F_n(x)$ — Выберите НЕВЕРНОЕ утверждение про зыпирическую функцию распределения $F_n(x)$ —			, , , , , , , , , , , , , , , , , , , ,
По выборке оказанось, что \bar{X} — Выберите НЕВЕРНОЕ утверждение про зыпирическую функцию распределения $F_n(x)$ — Выберите НЕВЕРНОЕ утверждение про зыпирическую функцию распределения $F_n(x)$ —	\Box t_{m-1} 2	. 1 . 1	E F
Вопрос 16 & Выберите НЕВЕРНОЕ утверждение про эмпирическую функцию распределения $F_n(x)$ A $F_n(x)$ акомитотически пормальна $F_n(x)$ вызычеся невозрастающей функцией $F_n(x)$ вызычеся невозрастающей функцией $F_n(x)$ вызычеся невозрастающей функцией $F_n(x)$ вызычеся невозрастающей функцией $F_n(x)$ $F_n(x)$ вызычеся невозрастающей функцией $F_n(x)$		n-1, n-1 $n+1, n+1$	
			_ ,
	<u> </u>		fuerbodeness - n(e)
		онного ряда	
Вопрос 17 \$ Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотиостью $f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{\pi}{\theta}) & \text{при } x \geq 0, \\ 0 & \text{при } x < 0. \end{cases}$ Информация Фишера $I_n(p)$ равна: $\begin{bmatrix} \frac{n}{\theta^2} & \sum_{n} & \sum_{n} \frac{\theta^2}{n} & E & n\theta^2 \\ E & n\theta^2 & E & Hem sepaceo omsema. \end{bmatrix}$ Вопрос 18 \$ Пусть $X = (X_1, \dots, X_n)$ — случайная выборка на равномерного на $(0, 2\theta)$ распределения. Оценка $\hat{\theta} = X_1$ А Эффективная В Несмещённая С Асимптотически нормальная В Нелинейная С лучайные величины X_1, X_2 и X_3 независимы и одинаково распределены, $\begin{bmatrix} X_1 & 3 & 5 \\ F(\cdot) & p & 1 - p \end{bmatrix}$ Имеется выборка из трёх наблюдений: $X_1 = 5, X_2 = 3, X_3 = 5$. Оценка неизвестного p , полученная методом максимального правдополобия, равна: [А $1/2$ В $1/4$ В $1/3$ В Нет вериссо ответа. Вопрос 20 \$ Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, $\begin{bmatrix} X_1 & 3 & 5 \\ F(\cdot) & p & 1 - p \end{bmatrix}$ По выборке оказалось, что $X = 4.5$. Оценка неизвестного p , полученная методом моментов, равна: [В $1/4$ В $1/4$ В $1/4$ В $1/4$ В $1/4$ По выборке оказалось, что $X = 4.5$. Оценка неизвестного p , полученная методом моментов, равна: [В Метод неприменим] [В М	_ ` '	•	
$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) & \text{при } x \geq 0, \\ 0 \text{ при } x < 0. \end{cases}$ Информация Фишера $I_n(p)$ равна:	$\boxed{\mathbf{E}} \ \mathbf{E}(F_n(x)) = F(x)$		
Информация Фишера $I_n(p)$ равна: В $\frac{n}{n^2}$ С $\frac{\rho^2}{n}$ Е $n\theta^2$ В $\frac{n}{n}$ Р	Вопрос 17 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайн	ая выборка из экспоненциалы	ного распределения с плотностью
	f(x; heta	$\theta = egin{cases} rac{1}{ heta} \exp(-rac{x}{ heta}) \ ext{при} \ x \geq 0, \ 0 \ ext{при} \ x < 0. \end{cases}$	
	Информация Фишера $I_n(p)$ равна:		
	$ \mathbf{C} \frac{\theta^2}{\theta^2} $		$oxed{{ m E}} n heta^2$
Вопрос 18 \$ Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из равномерного на $(0, 2\theta)$ распределения. Оценка $\hat{\theta} = X_1$ А Эффективная В Несмещённая С Асимптотически нормальная Вопрос 19 \$ Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,			
Несмещённая Е Нелинейная С Асимптотически нормальная F Нет верного ответа. Вопрос 19 & Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, X_i 3 5 $p(\cdot)$ p 1 - p Имеется выборка из трёх наблюдений: X_1 = 5, X_2 = 3, X_3 = 5. Оценка неизвестного p , полученная методом максимального правдоподобия, равна: [A] 1/2 С Метод неприменим E 2/3 [B] 1/4 1/3 F Нет верного ответа. Вопрос 20 ф. Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, X_i 3 5 $p(\cdot)$ p 1 - p По выборке оказалось, что X_i = 4.5. Оценка неизвестного p , полученная методом моментов, равна: X_i 3 5 $p(\cdot)$ p 1 - p X_i 3 5 $p(\cdot)$ p X_i 3 5 $p(\cdot)$ p X_i 3 5 $p(\cdot)$	Вопрос 18 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайна	ая выборка из равномерного н	ла $(0,2 heta)$ распределения. Оценка $\hat{ heta}=X_1$
Несмещённая Е Нелинейная С Асимптотически нормальная F Нет верного ответа. Вопрос 19 & Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, X_i 3 5 $p(\cdot)$ p 1 - p Имеется выборка из трёх наблюдений: X_1 = 5, X_2 = 3, X_3 = 5. Оценка неизвестного p , полученная методом максимального правдоподобия, равна: [A] 1/2 С Метод неприменим E 2/3 [B] 1/4 1/3 F Нет верного ответа. Вопрос 20 ф. Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, X_i 3 5 $p(\cdot)$ p 1 - p По выборке оказалось, что X_i = 4.5. Оценка неизвестного p , полученная методом моментов, равна: X_i 3 5 $p(\cdot)$ p 1 - p X_i 3 5 $p(\cdot)$ p X_i 3 5 $p(\cdot)$ p X_i 3 5 $p(\cdot)$	А Эффективная	D Состоятель	ьная
Вопрос 19 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,	Несмещённая	Е Нелинейна	я
Имеется выборка из трёх наблюдений: $X_1=5, X_2=3, X_3=5$. Оценка неизвестного p , полученная методом максимального правдоподобия, равна: А $1/2$ С Метод неприменим Е $2/3$ В $1/4$ $1/3$ F Hem верного ответа. Вопрос 20 & Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,	С Асимптотически нормальная	F Нет верног	о ответа.
Имеется выборка из трёх наблюдений: $X_1=5$, $X_2=3$, $X_3=5$. Оценка неизвестного p , полученная методом максимального правдоподобия, равна: [А] $1/2$ [С] Метод неприменим [Е] $2/3$ [Е] $1/4$ [Е] $1/3$ [Е] $1/4$ [Е] $1/3$ [Е] $1/4$ [В] $1/4$	Вопрос 19 \clubsuit	независимы и одинаково раст	пределены,
Имеется выборка из трёх наблюдений: $X_1=5$, $X_2=3$, $X_3=5$. Оценка неизвестного p , полученная методом максимального правдоподобия, равна: [А] $1/2$ [С] Метод неприменим [Е] $2/3$ [Е] $1/4$ [Е] $1/3$ [Е] $1/4$ [Е] $1/3$ [Е] $1/4$ [В] $1/4$		$\overline{X_i}$ 3 5	
Имеется выборка из трёх наблюдений: $X_1=5, X_2=3, X_3=5$. Оценка неизвестного p , полученная методом максимального правдоподобия, равна: [A] $1/2$ [C] Метод неприменим [E] $2/3$ [E] $1/3$ [F]			
$oxed{\mathbb{A}}\ 1/2$ $oxed{\mathbb{C}}\ $ Метод неприменим $oxed{\mathbb{E}}\ 2/3$ $oxed{\mathbb{B}}\ 1/4$ $oxed{\mathbb{E}}\ 1/3$ $oxed{\mathbb{F}}\ $ Нет верного ответа. $oxed{\mathbb{E}}\ 1/3$ $oxed{\mathbb{F}}\ $ Нет верного ответа. $oxed{X}\ $ Вопрос 20 $oxed{\mathbb{A}}\ $ Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены, $oxed{X}\ \ \ \ \ \ \ \ \ \ \ \ \ $		$=3, X_3=5$. Оценка неизвес	тного p , полученная методом максимального
$egin{array}{cccccccccccccccccccccccccccccccccccc$	_	етол неприменим	E 2/3
Вопрос 20 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,			
$ \frac{\overline{X_i} 3 5}{\mathbb{P}(\cdot) p 1-p} $ По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p , полученная методом моментов, равна: $ \boxed{ 1/4 } \qquad \qquad \boxed{ \mathbb{C} 1/3 } \qquad \qquad \boxed{ \mathbb{E} \text{Метод неприменим} } $ $\boxed{ \mathbb{B} 2/3 } \qquad \qquad \boxed{ \mathbb{D} 1/2 } \qquad \qquad \boxed{ \mathbb{F} \text{Hem верного ответа.} } $ $ \boxed{ \text{Вопрос 21 \$} \text{Пусть } X=(X_1,\ldots,X_n) - \text{случайная выборка из биномиального распределения } $		независимы и одинаково расг	
По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p , полученная методом моментов, равна:	•		•
По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p , полученная методом моментов, равна:		$\frac{X_i}{\mathbb{D}(1)}$ $\frac{3}{n}$ $\frac{5}{n}$	
\blacksquare 1/4 \Box 1/3 \Box Метод неприменим \Box 2/3 \Box 1/2 \Box Нет верного ответа. Вопрос 21 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна: \Box $\frac{5n}{p(1-p)}$ \Box $\frac{5p(1-p)}{n}$			
$oxed{\mathbb{B}}$ 2/3 $oxed{\mathbb{D}}$ 1/2 $oxed{\mathbb{F}}$ Нет верного ответа. $ oxed{\mathbf{Bonpoc 21}} \begin{tabular}{l}{\mathbb{F}} \end{array}$ Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна: $ oxed{\mathbb{E}} \ \frac{5p(1-p)}{n} $	По выборке оказалось, что $\bar{X}=4.5$. Оценка неизве	стного p , полученная методом	моментов, равна:
Вопрос 21 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна: $\boxed{\mathbb{A} \ \frac{p(1-p)}{5n}} \qquad \boxed{\mathbb{E} \ \frac{5p(1-p)}{n}}$	■ 1/4 C 1/	3	Е Метод неприменим
$x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:	B 2/3 D 1/	2	F Нет верного ответа.
	Вопрос 21 ♣ Пусть $X=(X_1,\ldots,X_n)$ — случайн $x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ р	ая выборка из биномиального авна:	распределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=$
	$\boxed{\mathbf{A}} \frac{p(1-p)}{5n}$	$\begin{bmatrix} 5n \\ 1-p \end{bmatrix}$	$\boxed{E} \frac{5p(1-p)}{n}$
	1		

Вопрос 22 🕹 Последовательность оценок	$\theta_1, \theta_2, \dots$ называется состоя	тельной, если
$\boxed{\mathbf{A}} \ \mathbf{E}(\hat{\theta}_n) = \theta$	D,	$\operatorname{Var}(\hat{\theta}_n) \ge Var(\hat{\theta}_{n+1})$
$P(\hat{ heta}_n - heta > t) o 0$ для всех $t > 0$	E 1	$\mathbb{E}(\hat{ heta}_n) o heta$
$\boxed{\mathbb{C}} \operatorname{Var}(\hat{\theta}_n) \to 0$	F	Нет верного ответа.
тическим ожиданием и известной дисперс	ией. На уровне значимости	еделенной случайной величины с неизвестным матема- $lpha$ проверяется гипотеза $H_0: \mu = \mu_0$ против $H_a: \mu \neq \mu_0$. гственно. Между параметрами задачи всегда выполнено
$\boxed{\mathbf{A}} \ \varphi_1 + \varphi_2 = \alpha$	$\varphi_1 = \alpha$	$\boxed{\mathbf{E}} \ \varphi_2 = 1 - \alpha$
$\boxed{\mathrm{B}} \ \varphi_1 = 1 - \alpha$	$\varphi_1 = \alpha$ $\boxed{D} \varphi_2 = \alpha$	F Нет верного ответа.
		ено выборочное среднее $\bar{X}=25$ и несмещённая оценка $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0
$\boxed{\mathbf{A}}$ отвергается при $\alpha=0.05$, не отвергае	тся при $\alpha=0.01$	
В не отвергается при любом разумном з	вначении α	
С Гипотезу невозможно проверить		
отвергается при любом разумном зна		
$\boxed{{\sf E}}$ отвергается при $\alpha=0.01$, не отвергае	тся при $\alpha=0.05$	
F Нет верного ответа.		
		по двум нормальным выборкам размером 20 и 16 наила 60 , по второй -90 . Тестовая статистика может быть
A 1.224	C 4	1.5
B 1	C 4D 2	
Вопрос 26 👫 Выберите НЕВЕРНОЕ утвер:	ждение про метод максима	льного правдоподобия (ММП):
А ММП оценки не всегда совпадают с о	ценками метода моментов	
В При выполнении технических предпо		тельны
Оценки ММП асимтотически нормал		
 ММП применим для оценивания дву:		
Е ММП применим для зависимых случ		
Вопрос 27 👫 При подбрасывании играль		выпала 105 раз. Гипотеза о том, что кость правильная
<u>А</u> Гипотезу невозможно проверить		
не отвергается при любом разумном з		
\square отвергается при $\alpha=0.05$, не отвергае	-	
\square отвергается при $\alpha=0.01$, не отвергае		
Е отвергается при любом разумном зна	чении α	
F Нет верного ответа.		
Вопрос 28 🌲 Выберите НЕВЕРНОЕ утвера	ждение про логарифмическ	сую функцию правдоподобия $\ell(heta)$
$oxed{A}$ Функция $\ell(heta)$ может принимать значе		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	экстремумов	
$oxed{B}$ Функция $\ell(heta)$ может иметь несколько $oxed{C}$ Функция $\ell(heta)$ может принимать поло	экстремумов жительные значения	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	экстремумов жительные значения	

Вопрос 29 \clubsuit Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

 $oxed{A} t_{m+n-1}$ $oxed{C} F_{m,n}$ $oxed{E} t_{m+n-2}$ $oxed{B} F_{m+1,n+1}$ $oxed{F}$ Hem верного ответа.

Вопрос 30 . Для выборки X_1,\dots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2>\sigma_0^2$. Критическая область имеет вид

 $\boxed{\mathbf{A}} \ (A,+\infty)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$

 $\blacksquare \quad (A,+\infty)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 - \alpha$

 $\boxed{\mathbb{C}} \ (0,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 - \alpha$

 $\boxed{\mathbb{D}} \ (0,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$

 $\boxed{\mathbb{E}} \ (-\infty,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 - \alpha$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 2 : A B D E F

Вопрос 3 : А В В D Е F

Вопрос 4 : **В** В С D E F

Вопрос 6 : **В** С D E F

Вопрос 7: А В С Е Е

Вопрос 8 : **В** В С D E F

Вопрос 9 : A B C D **F**

Вопрос 10 : **В** С D E F

Вопрос 11 : А 📕 С D Е F

Вопрос 12 : A B C D F

Вопрос 13 : АВС Б Б Г

Вопрос 14 : А В В Б Б Б

Вопрос 15 : **В** В С D Е F

Вопрос 16 : А С D Е

Вопрос 17 : **В** В С D Е F

Вопрос 19 : А В С Е Е

Вопрос 20 : **В** С D E F

Вопрос 21 : А В 🔳 D Е F

Вопрос 23 : А В Т Д Б Г

Вопрос 24 : А В С Е Е Г

Вопрос 25 : А В С D F

Вопрос 26 : А В Т Т Т

Вопрос 27 : А С С Б Е Г

Вопрос 28 : АВС Е

Вопрос 29 : А В С Е Е

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 🦂 По выборке X_1,\ldots,X_n из нормального распределения строятся по стандартным формулам доверительные интервалы для математического ожидания. Получен интервал (a_1,a_2) при известной дисперсии и интервал (b_1,b_2) при неизвестной дисперсии. Всегда справедливы следующие соотношения:

- A $a_2 a_1 < b_2 b_1$
- $\boxed{\mathbf{B}} \ a_2 a_1 > b_2 b_1$
- $|a_1 b_1| = |a_2 b_2|$

- $\boxed{\mathbf{D}}$ $a_1 < 0, b_1 < 0, a_2 > 0, b_2 > 0$
- $\begin{bmatrix} \mathbf{E} \end{bmatrix} a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$
- **F** *Нет верного ответа.*

Вопрос 2 \clubsuit Величины $X_1, X_2, ..., X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu; 42)$. Оказалось, что $\bar{X} = -23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

Вопрос 3 \clubsuit Если величина $\hat{ heta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{ heta}^2$ имеет примерно нормальное распределение

A $\mathcal{N}(4; 4 \cdot 0.01^2)$

 $\mathcal{N}(4; 16 \cdot 0.01^2)$

 $E \mathcal{N}(2; 4 \cdot 0.01^2)$

B $\mathcal{N}(4:2\cdot0.01^2)$

 $D \mathcal{N}(4; 8 \cdot 0.01^2)$

F Нет верного ответа.

Вопрос 4 🌲 💮 Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1.224

B 2

D 1

F Нет верного ответа.

Вопрос 5 👫 🛮 Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

 $|A| \chi^2 = 24, df = 1$

 $C \chi^2 = 14, df = 1$

 $\chi^2 = 36, df = 1$

 $B \chi^2 = 2, df = 2$

 $\boxed{D} \chi^2 = 20, df = 2$

F *Нет верного ответа.*

Вопрос 6 \clubsuit По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- А Гипотезу невозможно проверить
- [B] отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$
- отвергается при любом разумном значении lpha
- |D| не отвергается при любом разумном значении α
- | E | отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$
- | F | *Нет верного ответа.*

Вопрос 7 \clubsuit Пусть $X = (X_1, \dots, X_n)$ называется эффективной, если	— случайная выборка	и $I_n(\theta)$	9) — инфо	рмация	и Фишера. Тогда несмещённая оценка $\hat{ heta}$
$\boxed{A} \ I_n^{-1}(\theta) \geq Var(\hat{\theta})$	$\boxed{C} \ \mathrm{Var}(\hat{\theta}) = I_n(\theta)$				$\operatorname{Var}(\hat{ heta}) \cdot I_n(heta) = 1$
	$\boxed{\mathbf{D}} \ I_n^{-1}(\theta) \le \operatorname{Var}(\hat{\theta})$				F Нет верного ответа.
Вопрос 8 \clubsuit Величины X_1, \ldots, X_n — в	ыборка из нормального	распре	еделения.	Статист	гика $U=rac{5-ar{X}}{5/\sqrt{n}}$ применима для проверки
$oxed{f A}$ гипотезы $H_0: \mu=5$ при известно	й дисперсии, равной 5,	при лн	юбых n		
гипотезы $H_0: \mu = 5$ при известно	й дисперсии, равной 25	, при л	тюбых n		
\square гипотезы $H_0: \mu=5$ при известно		•			
$[D]$ гипотезы $H_0: \mu=5$ при известно	й дисперсии, равной 25	, тольк	ко при бол	тьших <i>п</i>	ι
$oxed{E}$ гипотезы $H_0:\sigma=5$					
[F] Нет верного ответа.					
Bonpoc 9 ♣ При проверке гипотезе о р известных, но не равных дисперсиях, те				-	рмальных выборках размеров m и n при
$\boxed{\mathbf{A}} t_{m+n-2}$					N(0;1)
$lacksquare$ B F_m	$\boxed{D} \ t_{m+n-1}$				F Нет верного ответа.
Вопрос 10 \clubsuit Пусть $X = (X_1, \dots, X_n)$ $x) = C_n^x p^x (1-p)^{n-x}$. Информация Фиц		із бинс	омиально	го распр	ределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=$
$oxed{f A} rac{n}{5p(1-p)}$	$\frac{5n}{p(1-p)}$				$\boxed{\mathrm{E}} \frac{p(1-p)}{5n}$
$ \begin{array}{c} $	$ \begin{array}{c} $				F Нет верного ответа.
	F(- F)				
Вопрос 11 \clubsuit Пусть $X = (X_1, \dots, X_n)$	— случайная выборка и	із равн	номерного	на (0, 2	$(2 heta)$ распределения. Оценка $\hat{ heta}=X_1$
А Состоятельная		D	Асимпто	тически	и нормальная
Несмещённая		E	Нелиней	ная	
С Эффективная		F	Нет верн	юго отв	ema.
Bonpoc 12 ♣ Производитель фломасто по 10-балльной шкале:	еров попросил трёх чело	овек оі	ценить дв	а вида ф	рломастеров: «Лесенка» и «Erich Krause»
	Пафну	тий	Андрей	Карл	
	Лесенка Erich Krause	9 8	7 9	6 7	
	Effcii Krause	0	9		
Вычислите модуль значения статистики мости 0.1 гипотезу о том, что фломастер				о аппро	оксимацию, проверьте на уровне значи-
$oxed{f A}$ 1.65, H_0 отвергается	$lue{C}$ 0.58, H_0 отверг	ается			$0.58,H_0$ не отвергается
$lacksquare$ В 1.96, H_0 отвергается	$\boxed{{ m D}}$ 0.43, H_0 не отво	ергает	ся		F Нет верного ответа.
Вопрос 13 🌲 🛮 Дана реализация выборк	ки: 3, 1, 2. Несмещённая	оценк	а дисперс	сии равн	на
A 1/2	1				E 2
B 2/3	D 1/3				F Нет верного ответа.

Вопрос 14 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \geq 0, \\ 0 \text{ при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

 $A \frac{n}{\theta}$

 $\frac{\theta}{B}$

C $\frac{\theta^2}{n}$

n n n

 $\boxed{\mathbb{E}} \ n\theta^2$

F Нет верного ответа.

Вопрос 15 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

A 1/8

B 1/2

C 1/3

3/8

E 2/3

F Нет верного ответа.

Вопрос 16 \clubsuit Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

 $\begin{array}{|c|c|}
\hline A & F_{m,n} \\
\hline B & t_{m+n-1}
\end{array}$

 t_{m+n-2}

 $\begin{array}{c|c}
\hline
D & F_{m-1,n-1}
\end{array}$

 $\boxed{\mathbb{E}} F_{m+1,n+1}$

F Нет верного ответа.

Вопрос 17 🗍 Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

A 1

B 14/3

C 0

D 3

F] Нет верного ответа.

Вопрос 18 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

A 1/2

С Метод неприменим

E 2/3

1/4

D 1/3

F Нет верного ответа.

Вопрос 19 \clubsuit — Случайные величины $X_1,\,X_2$ и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

Имеется выборка из трёх наблюдений: $X_1=5,\,X_2=3,\,X_3=5.$ Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

1/3

C 1/2

Е Метод неприменим

B 2/3

D 1/4

Вопрос 20 🦂	При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. І	ипотеза о том, что кость правильная
А отвергае	тся при $lpha=0.05$, не отвергается при $lpha=0.01$	
В отвергае	тся при $lpha=0.01$, не отвергается при $lpha=0.05$	
С отвергае	тся при любом разумном значении $lpha$	
D Гипотез	у невозможно проверить	
не отвер	гается при любом разумном значении $lpha$	
<u></u> Нет вер	ного ответа.	
тическим ожи	Величины X_1,\dots,X_n — выборка из нормально распределенной случай данием и известной дисперсией. На уровне значимости α проверяется ги и φ_2 вероятности ошибок первого и второго рода соответственно. Между	лотеза $H_0: \mu=\mu_0$ против $H_a: \mu eq\mu_0.$
$\boxed{\mathbf{A}} \ \varphi_1 = 1 -$	$C \varphi_2 = 1 - \alpha$	$leve{E} \ arphi_2 = lpha$
$\boxed{\mathbf{B}} \ \varphi_1 + \varphi_2$		F Нет верного ответа.
Вопрос 22 🌲	Выберите НЕВЕРНОЕ утверждение про метод максимального правдопод	добия (ММП):
Оценки	ММП асимтотически нормальны $\mathcal{N}(0;1)$	
В При выг	олнении технических предпосылок оценки ММП состоятельны	
= -	именим для оценивания двух и более параметров	
= -	именим для зависимых случайных величин	
Е ММП оп	енки не всегда совпадают с оценками метода моментов	
Вопрос 23 🌲	Выберите НЕВЕРНОЕ утверждение про эмпирическую функцию распре	деления $F_n(x)$
$lacksquare A$ $Var(F_n(x))$	F(x)(1 - F(x))	
$lacksquare$ B $F_n(x)$ из	иеет разрыв в каждой точке вариационного ряда	
$lue{C}$ $F_n(x)$ ac	имптотически нормальна	
\square $E(F_n(x))$		
$F_n(x)$ ян	ляется невозрастающей функцией	
Вопрос 24 ♣ блюдений. Не равна	Требуется проверить гипотезу о равенстве дисперсий по двум нормал смещённая оценка дисперсии по первой выборке составила 60, по второй	
A 2	C 4	E 1.224
1.5	C 4D 1	F Нет верного ответа.
	Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ ценка $\hat{\theta}=c\bar{X}$ является несмещённой?	9) распределения. При каком значении
A 1		$oxed{{\sf E}} n$
${\mathbb{B}} \frac{1}{n}$	$\overline{\mathbb{D}}$ $\frac{1}{2}$	
Вопрос 26 🕹	Выберите НЕВЕРНОЕ утверждение про логарифмическую функцию пра	вдоподобия $\ell(heta)$
А Функция	и $\ell(heta)$ может принимать положительные значения	
В Функци	и $\ell(heta)$ может принимать значения больше единицы	
Функци	н $\ell(heta)$ имеет максимум при $ heta=0$	
D Функция	и $\ell(heta)$ может принимать отрицательные значения	
Е Функция	н $\ell(heta)$ может иметь несколько экстремумов	

Вопрос 27 🕹	При проверке гипотезы о равенстве долей используется с	следующее распределение
$\boxed{\mathbf{A}} \ t_{m+n-1}$	N(0;1)	$\boxed{\mathtt{E}} \ t_{m+n-2}$
$lacksquare$ B $F_{m,n}$	$lacksquare$ $F_{m-1,n-1}$	F Нет верного ответа.
Вопрос 28 🕹	Случайные величины X и Y распределены нормально	-

сперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

 $\boxed{\mathbf{A}} \ F_{m+1,n+1}$ $\boxed{\mathsf{C}} t_{m+n-1}$ $F_{m-1,n-1}$ $\boxed{\mathrm{B}} F_{m,n}$ $\boxed{\mathrm{D}} t_{m+n-2}$ **F** Нет верного ответа.

Вопрос 29 \clubsuit Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

 $\boxed{\mathbf{A}} \operatorname{Var}(\hat{\theta}_n) \geq Var(\hat{\theta}_{n+1})$ $\boxed{\mathbf{D}} \ \operatorname{Var}(\hat{\theta}_n) \to 0$ $\boxed{\mathbf{E}} \mathbf{E}(\hat{\theta}_n) = \theta$ $P(|\hat{\theta}_n - \theta| > t) \rightarrow 0$ для всех t > 0 $\boxed{\mathbb{C}} \ \mathbb{E}(\hat{\theta}_n) \to \theta$ **F** Нет верного ответа.

Вопрос 30 \clubsuit Для выборки X_1,\dots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2>\sigma_0^2$. Критическая область имеет вид

- $oxed{A}$ $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = lpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- $\boxed{\mathbb{C}}$ (0,A), где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- $\boxed{\mathbb{D}} \ (0,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- $\boxed{\mathbb{E}} \ (-\infty,A)$, где Aтаково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 \alpha$
- **F** Нет верного ответа.

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B **D** E F

Вопрос 2: АВСВЕБ

Вопрос 3 : А В В Б Б F

Вопрос 4 : A B C D **F**

Вопрос 5 : A B C D **F**

Вопрос 6 : A B D E F

Вопрос 7 : A B C D **F**

Вопрос 8 : A C D E F

Вопрос 9 : A B C D **F**

Вопрос 10 : A B D E F

Вопрос 11 : A **С** D E F

Вопрос 12 : A B C D F

Вопрос 13 : АВВ ББ Б

Вопрос 14 : А В С Е Е Г

Вопрос 15 : А В С Е Е Г

Вопрос 16 : А В В Б Б Е

Вопрос 17 : A B C D **F**

Вопрос 19 : ____ В С D Е F

Вопрос 20 : A B C D **F**

Вопрос 21 : A B C E F

Вопрос 22: В В С D Е

Вопрос 23 : А В С D

Вопрос 24 : А С С Б Е Г

Вопрос 25 : А В В D Е F

Вопрос 26 : АВВ В В

Вопрос 27 : А В В D Е F

Вопрос 28 : АВС Б F

Вопрос 29 : А С D Е F

Вопрос 30 : А С С Б Е Г

Имя, фамилия и номер группы:

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Величины X_1, \dots, X_n — выборка из нормального распределения. Статистика $U = \frac{5 - \bar{X}}{5 / \sqrt{n}}$ применима для проверки

- [A] гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при больших n
- |B| гипотезы $H_0: \sigma = 5$
- $|\mathsf{C}|$ гипотезы $H_0:\mu=5$ при известной дисперсии, равной 25, только при больших n
- $|{
 m D}|$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n
- гипотезы $H_0: \mu=5$ при известной дисперсии, равной 25, при любых n
- | F | *Нет верного ответа.*

Вопрос 2 🌲 💮 Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером mи n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

$$t_{m+n-2}$$

$$E \mid F_{m,n}$$

$$\boxed{\mathsf{B}} \ t_{m+n-1}$$

D
$$F_{m-1,n-1}$$

F Нет верного ответа.

Вопрос 3 \clubsuit Величины $X_1,\,X_2,\,...,\,X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu;42)$. Оказалось, что $ar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

$$\hat{\mathbf{A}} \hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$$

$$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} = -23$$

$$\hat{E} \hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$$

$$\begin{bmatrix} E \end{bmatrix} \hat{\mu}_{ML} < -23 \ \hat{\mu}_{MM} = -23 \end{bmatrix}$$

B
$$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$$

$$\hat{D}$$
 $\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} > -23$

Вопрос 4 🐇 Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

$$\boxed{{\bf A}} \ \chi^2 = 14, d\!f = 1$$

$$C \chi^2 = 2, df = 2$$

$$\chi^2 = 36, df = 1$$

B
$$\chi^2 = 20, df = 2$$

Вопрос 5 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=$ $(x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

$$\boxed{\mathbf{A}} \quad \frac{5p(1-p)}{n}$$

$$\boxed{\mathsf{C}} \quad \frac{p(1-p)}{5n}$$

$$E \frac{n}{p(1-p)}$$

$$\frac{5n}{p(1-p)}$$

$$\boxed{\mathbf{D}} \ \frac{n}{5p(1-p)}$$

F *Нет верного ответа.*

Вопрос 6 \clubsuit Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^2$ имеет примерно нормальное распределение

 $\mathcal{N}(4; 16 \cdot 0.01^2)$

$$C \mathcal{N}(2; 4 \cdot 0.01^2)$$

$$E \mathcal{N}(4; 8 \cdot 0.01^2)$$

 $B \mathcal{N}(4; 2 \cdot 0.01^2)$

$$\boxed{\mathbf{D}} \ \mathcal{N}(4; 4 \cdot 0.01^2)$$

F Нет верного ответа.

Вопрос 7 👫 💮 Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

1.5

E | 1.224

B 2

D 1

Вопрос 9 👫 Последовательность оценов	$\hat{ heta}_1,\hat{ heta}_2,$ называется с	остоятельной, ес	сли	
$oxed{f A} \; { m E}(\hat{ heta}_n) o heta$		$\boxed{\mathbb{D}} \ \mathbb{E}(\hat{\theta}_n) = \theta$		
$lacksquare P(\hat{ heta}_n - heta > t) o 0$ для всех $t > 0$		$\boxed{\mathbb{E}} \operatorname{Var}(\hat{\theta}_n) \to$	÷ 0	
		F Нет верно	ого ответ	ma.
Вопрос 10 . Производитель фломастер по 10-балльной шкале:	ов попросил трёх чело	век оценить два	вида ф	ломастеров: «Лесенка» и «Erich Krause»
_	Пафнут	ий Андрей 1	<u> </u>	
_	Лесенка	9 7	6	
_	Erich Krause	8 9	7	
Вычислите модуль значения статистики мости 0.1 гипотезу о том, что фломастеры			аппрон	ксимацию, проверьте на уровне значи-
$oxed{f A}$ 0.43, H_0 не отвергается	$\boxed{\mathbb{C}}$ 0.58, H_0 отверга	ется		$lacksquare$ 1.96, H_0 отвергается
0.58, H_0 не отвергается	$\boxed{ exttt{D}}$ 1.65, H_0 отверга	ется		F Нет верного ответа.
Вопрос 11 \clubsuit По выборке X_1, \ldots, X_n и интервалы для математического ожидани вестной дисперсии. Всегда справедливы с	ия. Получен интервал ((a_1, a_2) при изве		гандартным формулам доверительные дисперсии и интервал (b_1,b_2) при неиз-
$\boxed{\mathbf{A}} \ a_2 - a_1 < b_2 - b_1$		$\boxed{D} \ a_2 - a_1 >$	$b_2 - b_1$	
$\boxed{\mathbf{B}} \ a_1 < 0, b_1 < 0, a_2 > 0, b_2 > 0$		$\boxed{\mathtt{E}} \ a_1 > 0, b_1$	$> 0, a_2$	$>0, b_2>0$
$ a_1 - b_1 = a_2 - b_2 $		F Нет верно	ого ответ	ma.
Вопрос 12 . Требуется проверить гип блюдений. Несмещённая оценка дисперстравна				пьным выборкам размером 20 и 16 на- й — 90 . Тестовая статистика может быть
\overline{A} 4	C 1			E 2
■ 1.5	D 1.224			
Вопрос 13 \clubsuit Величины X_1, \dots, X_n — в тическим ожиданием и известной диспер Обозначим φ_1 и φ_2 вероятности ошибок п соотношение	сией. На уровне значи	мости α провер	яется ги	
$\boxed{\mathbf{A}} \ \varphi_2 = 1 - \alpha$	$\boxed{C} \ \varphi_1 = 1 - \alpha$			$\varphi_1 = \alpha$
$\boxed{\mathbf{B}} \ \varphi_1 + \varphi_2 = \alpha$	$\boxed{D} \ \varphi_2 = \alpha$			F Нет верного ответа.
Вопрос 14 🕏 Выберите НЕВЕРНОЕ утве	рждение про эмпирич	ескую функцию	распре	деления $F_n(x)$
$\boxed{\mathbf{A}} \ F_n(x)$ асимптотически нормальна				
$\boxed{\mathbf{B}} \ \mathbf{E}(F_n(x)) = F(x)$				
$lacksquare$ $F_n(x)$ является невозрастающей фун	кцией			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	вариационного ряда			

Вопрос 8 \clubsuit При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при

N(0;1)

F Нет верного ответа.

известных, но не равных дисперсиях, тестовая статистика имеет распределение

 $\boxed{\mathbf{A}} \ t_{m+n-1}$

lacksquare B F_m

 $\boxed{\mathsf{C}} \ t_{m+n-2}$

 $\boxed{\mathsf{D}} \ F_{m-1,n-1}$

Dollhoc 12	Выберите НЕВЕРНОЕ утв	ерждение про	логарифми	ческую фуні	кцию пр	авдо	оподобия $\ell(heta)$
А Функция	$\ell(heta)$ может принимать зн	ачения больш	е единицы				
В Функция	$\ell(heta)$ может иметь несколь	ько экстремум	ов				
С Функция	$\ell(heta)$ может принимать от	рицательные з	значения				
D Функция	$\ell(heta)$ может принимать по	ложительные	значения				
Функция	$\ell(heta)$ имеет максимум при	$\theta = 0$					
-		личины X и n					ия гипотезы о равенстве дисперсий . Какое распределение может иметь
$\boxed{A} \ t_{m+n-1}$		F_{m-1}	$n\!-\!1$			Е	$F_{m,n}$
$\boxed{B} \ F_{m+1,n+1}$		$ \begin{array}{c c} F_{m-1,} \\ \hline D t_{m+n-1} \end{array} $	-2				Нет верного ответа.
Вопрос 17 🌲	Пусть $X=(X_1,\dots,X_n)$ енка $\hat{ heta}=car{X}$ является нес	— случайная		равномерног	го на (0,		аспределения. При каком значении
$\boxed{A} \frac{1}{2}$		2				Е	n
B 1		${D} \frac{1}{n}$				F	Нет верного ответа.
Вопрос 18 ♣ по 10-балльной	-	ров попросил	трёх человен	к оценить де	за вида ф	рлом	астеров: «Лесенка» и «Erich Krause»
			Пафнутий	Андрей	Карл		
		Лесенка	9	7	6		
		Erich Krause	8	9	7		
Точное P -знач	ение (P-value) статистики	теста знаков	равно				
Точное <i>P</i> -значе	ение (<i>P-</i> value) статистики	С 2/3	равно				3/8
	ение (P-value) статистики		равно			F	3/8 Нет верного ответа.
A 1/2 B 1/8	ение (<i>P-</i> value) статистики Дана реализация выборк	C 2/3D 1/3		енка дисперс	сии равн	Г	
A 1/2 B 1/8		C 2/3D 1/3		нка дисперс	сии равн	Б на Е	Нет верного ответа.
A 1/2 B 1/8		C 2/3 D 1/3 u: 3, 1, 2. Hecm		енка дисперс	сии равн	E	Нет верного ответа.
A 1/2 B 1/8 Bonpoc 19 ♣ 1 B 1/2		С 2/3 D 1/3 и: 3, 1, 2. Несмо С 1/3 D 2/3	ещённая оцє	-	•	E	Нет верного ответа. 2 Нет верного ответа.
A 1/2 B 1/8 Bonpoc 19 ♣ 1 B 1/2 Bonpoc 20 ♣	Дана реализация выборк	С 2/3 D 1/3 и: 3, 1, 2. Несмо С 1/3 D 2/3 и: 3, 1, 2. Выбо	ещённая оцє	-	•	E F Boro	Нет верного ответа. 2 Нет верного ответа. порядка равен
A 1/2 B 1/8 Bonpoc 19 ♣ 1 B 1/2	Дана реализация выборк	С 2/3 D 1/3 и: 3, 1, 2. Несмо С 1/3 D 2/3 и: 3, 1, 2. Выбор	ещённая оцє	-	•	E F B000	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3
A 1/2 B 1/8 Bonpoc 19 ♣ 1 B 1/2 Bonpoc 20 ♣ A 3 2	Дана реализация выборк	С 2/3 D 1/3 и: 3, 1, 2. Несми С 1/3 D 2/3 и: 3, 1, 2. Выбор С 0 D 1	ещённая оце рочный нача	альный мом	ент пер	E F Boro E F	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа.
A 1/2 B 1/8 Bonpoc 19 ♣ 1 B 1/2 Bonpoc 20 ♣ A 3 2	Дана реализация выборк Дана реализация выборк	С 2/3 D 1/3 и: 3, 1, 2. Несмо С 1/3 D 2/3 и: 3, 1, 2. Выбор С 0 D 1 1, X ₂ и X ₃ неза	ещённая оце рочный нача ависимы и о	альный мом динаково ра	ент пер	E F Boro E F	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа.
A 1/2 B 1/8 Bonpoc 19 ♣ 1 B 1/2 Bonpoc 20 ♣ A 3 2	Дана реализация выборк Дана реализация выборк	С 2/3 D 1/3 и: 3, 1, 2. Несмо С 1/3 D 2/3 и: 3, 1, 2. Выбор С 0 D 1 1, X ₂ и X ₃ неза	ещённая оце рочный нача ависимы и о	альный мом динаково ра	ент пер	E F Boro E F	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа.
A 1/2 B 1/8 Bonpoc 19 ♣ I B B 1/2 Bonpoc 20 ♣ A 3 I 2 Bonpoc 21 ♣	Дана реализация выборка Дана реализация выборка Случайные величины X_1 ка из трёх наблюдений: \mathcal{I}	С 2/3 D 1/3 и: 3, 1, 2. Несмо С 1/3 D 2/3 и: 3, 1, 2. Выбор С 0 D 1 1, X ₂ и X ₃ нез	ещённая оце $egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	альный мом динаково ра	ент пері аспредел	Е	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа.
A 1/2 B 1/8 Bonpoc 19 ♣ I B 1/2 Bonpoc 20 ♣ A 3 I 2 Bonpoc 21 ♣ Имеется выбор: правдоподобия	Дана реализация выборка Дана реализация выборка Случайные величины X_1 ка из трёх наблюдений: \mathcal{I}	$egin{array}{c} C & 2/3 \\ \hline D & 1/3 \\ \hline M: 3, 1, 2. \ \mbox{Hecmo} \\ \hline C & 1/3 \\ \hline D & 2/3 \\ \hline M: 3, 1, 2. \ \mbox{Выбор} \\ \hline C & 0 \\ \hline D & 1 \\ \hline 1, X_2 \ \mbox{и} \ X_3 \ \mbox{нess} \\ \hline X_1 = 5, X_2 = 5 \\ \hline \end{array}$	ещённая оце $egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	альный мом динаково ра	ент пері аспредел	Е Вого Е Б пены	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа. ,
A 1/2 B 1/8 Bonpoc 19 ♣ I B 1/2 Bonpoc 20 ♣ A 3 I 2 Bonpoc 21 ♣ Wheeter выбор правдоподобия A 2/3	Дана реализация выборка Дана реализация выборка Случайные величины X_1 ка из трёх наблюдений: \mathcal{I}	$egin{array}{c} C & 2/3 \\ \hline D & 1/3 \\ \hline M: 3, 1, 2. \ \mbox{Hecmo} \\ \hline C & 1/3 \\ \hline D & 2/3 \\ \hline M: 3, 1, 2. \ \mbox{Выбо} \\ \hline C & 0 \\ \hline D & 1 \\ \hline 1, X_2 \ \mbox{и} \ X_3 \ \mbox{нess} \\ \hline X_1 & = 5, X_2 & = 3 \\ \hline \hline 1/3 \\ \hline \end{array}$	ещённая оце $egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	альный мом динаково ра	ент пері аспредел	Е Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа. , олученная методом максимального Метод неприменим
A 1/2 B 1/8 Bonpoc 19 ♣ I B 1/2 Bonpoc 20 ♣ A 3 I 2 Bonpoc 21 ♣ Имеется выбор: правдоподобия	Дана реализация выборка Дана реализация выборка Случайные величины X_1 ка из трёх наблюдений: \mathcal{I}	$egin{array}{c} C & 2/3 \\ \hline D & 1/3 \\ \hline M: 3, 1, 2. \ \mbox{Hecmo} \\ \hline C & 1/3 \\ \hline D & 2/3 \\ \hline M: 3, 1, 2. \ \mbox{Выбор} \\ \hline C & 0 \\ \hline D & 1 \\ \hline 1, X_2 \ \mbox{и} \ X_3 \ \mbox{нess} \\ \hline X_1 = 5, X_2 = 5 \\ \hline \end{array}$	ещённая оце $egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	альный мом динаково ра	ент пері аспредел	Е Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б	Нет верного ответа. 2 Нет верного ответа. порядка равен 14/3 Нет верного ответа. ,

Вопр	oc 22 🐥	При подбрасывании игралы	ной кости 600 раз шестері	ка выпала 105 раз. Г	ипотеза о том, что кость правильная
	не отвер	гается при любом разумном з	начении α		
В	отвергае	тся при $lpha=0.01$, не отвергает	еся при $\alpha=0.05$		
C	отвергае	тся при $lpha=0.05$, не отвергает	еся при $\alpha=0.01$		
D	отвергае	тся при любом разумном знач	иении α		
E	Гипотезу	невозможно проверить			
F	Нет верн	юго ответа.			
		Для выборки X_1,\dots,X_n , и Критическая область имеет ви		пределение, провеј	ряется гипотеза $H_0:\sigma^2=\sigma_0^2$ против
	$(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$A) = 1 - \alpha$		
В	(0, A), гд	е A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$:	$= \alpha$		
С	(0, A), гд	е A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$:	$=1-\alpha$		
D	$(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$A) = \alpha$		
		, где A таково, что $\mathbb{P}(\chi^2_{n-1} < X)$			
		иого ответа.	,		
	•				
Вопр	oc 24 🖺	Выберите НЕВЕРНОЕ утверж	кдение про метод максим	ального правдопод	цобия (MMII):
A	ММП оц	енки не всегда совпадают с оп	енками метода моменто	В	
	_	именим для зависимых случа			
С		олнении технических предпо		оятельны	
	Оценки	ММП асимтотически нормаль	ны $\mathcal{N}(0;1)$		
E	ММП пр	именим для оценивания двух	и более параметров		
					реднее $ar{X}=25$ и несмещённая оценка сделать вывод, что гипотеза H_0
A	не отвер:	гается при любом разумном з	начении $lpha$		
	_	тся при $lpha=0.01$, не отвергает			
C	отвергае	тся при $lpha=0.05$, не отвергает	еся при $lpha=0.01$		
D	Гипотезу	невозможно проверить			
	отвергае	тся при любом разумном знач	иении α		
F	Нет верн	иого ответа.			
Вопр	oc 26 🌲	Пусть $X = (X_1, \dots, X_n) - \mathbf{c}$	пучайная выборка из рав	номерного на $(0,2 heta$	$\hat{ heta}$) распределения. Оценка $\hat{ heta}=X_1$
A	Эффекти	вная	D	Нелинейная	
В	Состояте	льная		Несмещённая	
C	Асимпто	тически нормальная	F] Нет верного отвег	na.
Вопр	oc 27 🐥	Пусть $X = (X_1, \dots, X_n) - \mathbf{c}$	пучайная выборка из экс	поненциального ра	спределения с плотностью
			$f(x; heta) = egin{cases} rac{1}{ heta} \exp(-rac{x}{ heta}) \ \mathbf{r} \ 0 \ \mathrm{пр} \mathbf{u} \ x < 0 \end{cases}$	при $x \ge 0$,	
Инфо	рмация 🤄	Ришера $I_n(p)$ равна:			
Δ	$\underline{\theta}$		$C \theta^2$	I	$oxed{E} n heta^2$
A	$\frac{\overline{n}}{n}$		$\frac{C}{n}$		
	$\frac{n}{\theta^2}$		$\boxed{\mathrm{D}} \frac{n}{\theta}$		<u></u> F Нет верного ответа.

Вопрос 28 🧍 При проверке гипотезы о равенстве долей используется следующее распределение

- $\boxed{\mathbf{A}} \ t_{m+n-2}$
- B $F_{m,n}$

- $\boxed{\mathbb{C}} t_{m+n-1}$
- N(0;1)

- $\boxed{\mathbb{E}} F_{m-1,n-1}$
- **F** Нет верного ответа.

Вопрос 29 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} \hline X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

A 1/3 B 2/3

- C 1/2
- D Метод неприменим

- 1/4
- **F** Нет верного ответа.

Вопрос 30 \clubsuit Пусть $X=(X_1,\dots,X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

 $\boxed{\mathbf{A}} \ I_n^{-1}(\boldsymbol{\theta}) \leq \mathrm{Var}(\hat{\boldsymbol{\theta}})$

 $\boxed{\mathbb{C}} \operatorname{Var}(\hat{\theta}) \leq I_n(\theta)$

 $\operatorname{Var}(\hat{\theta}) \cdot I_n(\theta) = 1$

 $\boxed{\mathbb{B}} \ I_n^{-1}(\theta) \geq \mathrm{Var}(\hat{\theta})$

 $\boxed{\mathbf{D}} \ \mathrm{Var}(\hat{\theta}) = I_n(\theta)$

Ура! На этой страничке вопросов уже нет :)

Имя	т, ф	aı	MΙ	IJ	ия	1 1	1	н	ΟN	ıe	p	гį	Э	п	П	ы	:																						
	• •		٠.	٠.	٠.	•				٠.					٠.							٠.	•	 					 •		٠.							 	

Вопрос 1 : A B C D **Вопрос** 2 : **В** В С D E F Вопрос 3: А В D E F **Вопрос** 4 : A B C D **Вопрос** 6 : **В** В С D Е F **Вопрос** 7 : **В** В С D E F Вопрос 8 : А В С D Вопрос 10 : А С Б Е Г Вопрос 11 : А В В О Вопрос 12 : А CD E F Вопрос 13 : А В С D Вопрос 14 : А В В Б Е Вопрос 15 : А В С D **Вопрос 16** : A B D E F Вопрос 17 : А В В О Вопрос 18 : А В С D | **Вопрос 19** : **В** В С D E F Вопрос 20 : А |C| D E Вопрос 21 : А В |D|E F Вопрос 22 : B C D E F **Вопрос 23**: В С D E F Вопрос 24 : А В С Вопрос 25 : А В С Вопрос 26 : А В С D Вопрос 27 : А С Вопрос 28 : А В С

Вопрос 29 : A B C D | Вопрос 30 : A B C D |

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Bonpoc 1 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

E 1

F Нет верного ответа.

$$A$$
 $I_n^{-1}(\theta) \ge \operatorname{Var}(\hat{\theta})$

$$\operatorname{Var}(\hat{\theta}) \cdot I_n(\theta) = 1$$

$$\boxed{\mathsf{E}} \ \mathsf{Var}(\hat{\theta}) = I_n(\theta)$$

$$\boxed{\mathbf{B}} \ I_n^{-1}(\theta) \leq \operatorname{Var}(\hat{\theta})$$

$$\boxed{\mathbf{D}} \operatorname{Var}(\hat{\theta}) \leq I_n(\theta)$$

F Нет верного ответа.

Вопрос 3 🌲 — Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

A 0

C 1

E 14/3

D 3

F Нет верного ответа.

Вопрос 4 \clubsuit Величины X_1,\dots,X_n — выборка из нормального распределения. Статистика $U=rac{5-ar{X}}{5/\sqrt{n}}$ применима для проверки

- $\boxed{\mathbf{B}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших n
- $\boxed{\mathbb{C}}$ гипотезы $H_0: \sigma = 5$
- $\boxed{\mathbf{D}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n
- гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n
- **F** Нет верного ответа.

Вопрос 5 \clubsuit При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

 $oxed{A} F_m$

N(0;1)

 $\boxed{\mathsf{E}} \ t_{m+n-2}$

 $\boxed{\mathbf{B}} \ t_{m+n-1}$

F Нет верного ответа.

Вопрос 6 \clubsuit Выберите НЕВЕРНОЕ утверждение про эмпирическую функцию распределения $F_n(x)$

- $\fbox{B}\ F_n(x)$ имеет разрыв в каждой точке вариационного ряда
- \blacksquare $F_n(x)$ является невозрастающей функцией
- $\boxed{\mathbb{E}} \ \mathbb{E}(F_n(x)) = F(x)$

Вопрос 7 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \geq 0, \\ 0 \text{ при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

 $\frac{n}{\theta^2}$ $\boxed{\mathbf{B}} \quad \frac{n}{\theta}$

C $\frac{\theta^2}{n}$

 $E \int \frac{\theta}{n}$

F Нет верного ответа.

Вопрос 8 🌲 Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна

1

B 1/3

C 2/3

D 1/2

E 2

F Нет верного ответа.

Вопрос 9 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное *P*-значение (*P*-value) статистики теста знаков равно

A 1/8

3/8

C 1/2

D 2/3

E 1/3

F Нет верного ответа.

Вопрос 10 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

Имеется выборка из трёх наблюдений: $X_1=5,\,X_2=3,\,X_3=5.$ Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

1/3

B 1/2

C 2/3

D Метод неприменим

E 1/4

F Нет верного ответа.

Вопрос 11 \clubsuit Величины X_1,\ldots,X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости α проверяется гипотеза $H_0: \mu = \mu_0$ против $H_a: \mu \neq \mu_0$. Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

 $\boxed{\mathbf{A}} \ \varphi_2 = \alpha$ $\boxed{\mathbf{G}} \ \varphi_1 = \alpha$

 $\boxed{\mathsf{C}} \ \varphi_1 + \varphi_2 = \alpha$

 $\boxed{\mathbf{E}} \ \varphi_1 = 1 - \alpha$

 $\boxed{\mathbf{D}} \ \varphi_2 = 1 - \alpha$

| F | *Нет верного ответ*

Bonpoc 12 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

 $lack{A}$ 1.96, H_0 отвергается

 \square 1.65, H_0 отвергается

 \blacksquare 0.58, H_0 отвергается

 $\boxed{\mathrm{B}}$ 0.43, H_0 не отвергается

 $0.58, H_0$ не отвергается

Вопрос 13 Пусть $X = (X_1, \dots, X_n) - x) = C_n^x p^x (1-p)^{n-x}$. Информация Фишер		биномиального распр	ределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=$
$\boxed{\text{A}} \frac{p(1-p)}{5n}$	$\frac{5n}{p(1-p)}$		$\boxed{E} \ \frac{n}{5p(1-p)}$
$\boxed{\mathrm{B}} \frac{n}{p(1-p)}$	$\boxed{\mathbf{D}} \frac{5p(1-p)}{n}$		F Нет верного ответа.
	ьной кости 600 раз шес	стерка выпала 105 раз.	Гипотеза о том, что кость правильная
$oxed{A}$ отвергается при $lpha=0.01$, не отверга	ется при $\alpha=0.05$		
не отвергается при любом разумном	значении α		
С Гипотезу невозможно проверить			
$\boxed{\mathrm{D}}$ отвергается при $\alpha=0.05$, не отверга	-		
Е отвергается при любом разумном зн	ачении α		
<u></u> Нет верного ответа.			
Вопрос 15 \clubsuit По выборке X_1, \ldots, X_n и интервалы для математического ожидани вестной дисперсии. Всегда справедливы с	я. Получен интервал ((a_1,a_2) при известной	стандартным формулам доверительные дисперсии и интервал (b_1,b_2) при неиз-
$\boxed{\mathbf{A}} \ a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$		$\boxed{\mathbf{D}} \ a_2 - a_1 < b_2 - b_1$	L
$\boxed{\mathbf{B}} \ a_1 < 0, b_1 < 0, a_2 > 0, b_2 > 0$		$ a_1 - b_1 = a_2 -$	$ b_2 $
$\boxed{\mathbb{C}} \ a_2 - a_1 > b_2 - b_1$		F Нет верного отв	ema.
Вопрос 16 👫 При проверке гипотезы о р	равенстве долей исполн	ьзуется следующее рас	спределение
$lacksquare$ A t_{m+n-2}			$lacksquare$ $F_{m,n}$
N(0;1)	$\boxed{\mathrm{D}} t_{m+n-1}$		F Нет верного ответа.
Вопрос 17 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ —	случайная выборка из	равномерного на $(0,2)$	$(2 heta)$ распределения. Оценка $\hat{ heta}=X_1$
А Асимптотически нормальная		О Состоятельная	
В Эффективная		Е Нелинейная	
Несмещённая		F Нет верного отв	ema.
Вопрос 18 ♣ Требуется проверить гипо блюдений. Несмещённая оценка дисперсиравна			
A 1.224	C 1		1.5
B 2	D 4		F Нет верного ответа.
Вопрос 19 👫 Последовательность оцено	к $\hat{ heta}_1,\hat{ heta}_2,$ называется с	состоятельной, если	
$oxed{A}\ E(\hat{ heta}_n) o heta$			
$P(\hat{ heta}_n - heta > t) o 0$ для всех $t > 0$		$\boxed{\mathbb{E}} \ \mathbb{E}(\hat{\theta}_n) = \theta$	
$\boxed{\mathbb{C}} \operatorname{Var}(\hat{\theta}_n) \ge Var(\hat{\theta}_{n+1})$		F Нет верного отв	ema.
Вопрос 20 👫 Выберите НЕВЕРНОЕ утвер	рждение про логарифм	ическую функцию пр	авдоподобия $\ell(heta)$
$oxed{f A}$ Функция $\ell(heta)$ может иметь нескольк	о экстремумов		
$\boxed{\mathrm{B}}$ Функция $\ell(heta)$ может принимать поло	ожительные значения		
\fbox{C} Функция $\ell(heta)$ может принимать знач	ления больше единиць	ı	
\boxed{D} Функция $\ell(heta)$ может принимать отри	ицательные значения		

Функция $\ell(\theta)$ имеет максимум при $\theta=0$

Вопрос 21 ♣ Величины $X_1,X_2,,X_{2016}$ оценки метода моментов, $\hat{\mu}_{MM},$ и метода ма	независимы и одинаково распределены, $\hat{\mu}_{ML}$, можно			
$\hat{\mathbf{A}} \hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$	\hat{C} $\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$	$\hat{\mathbf{E}} \hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$		
$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} = -23$	C $\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$ D $\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} > -23$	F Нет верного ответа.		
Вопрос 22 \clubsuit По случайной выборке из 20 дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипо				
А не отвергается при любом разумном з	начении α			
\fbox{B} отвергается при $lpha=0.01$, не отвергает	еся при $\alpha=0.05$			
отвергается при любом разумном знач	нении α			
Потезу невозможно проверить				
$\stackrel{\square}{\sqsubseteq}$ отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$				
F Нет верного ответа.				
Вопрос 23	меющей нормальное распределение, пров д	еряется гипотеза $H_0: \sigma^2 = \sigma_0^2$ против		
$oxed{f A}$ $(-\infty,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$4) = 1 - \alpha$			
$oxed{\mathbb{B}}$ $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$A) = \alpha$			
$\boxed{\mathbb{C}}$ $(0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$ =	$= \alpha$			
$(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$4) = 1 - \alpha$			
$oxed{\mathbb{E}}\ (0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$ =	$=1-\alpha$			
F Нет верного ответа.				
Вопрос 24 \clubsuit Требуется проверить гипоте m и n . Если дисперсии неизвестны, но равн				
$oxed{A} F_{m,n}$	$C \mid t_{m+n-1}$			
	$ \begin{array}{ c c }\hline C & t_{m+n-1} \\\hline D & F_{m+1,n+1} \\\hline \end{array} $	F Нет верного ответа.		
Вопрос 25 . Юрий Петров утверждает, чт занятий он не посетил ни одного. Вычисли Петрова истинно и укажите число степеней	го обычно посещает половину занятий по (ите значение критерия хи-квадрат Пирсона			
$\boxed{\mathbf{A}} \chi^2 = 20, df = 2$	$\chi^2 = 36, df = 1$			
$\begin{bmatrix} X & -20, dy - 2 \end{bmatrix}$ $\begin{bmatrix} B \end{bmatrix} \chi^2 = 2, df = 2$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\$	F Нет верного ответа.		
Вопрос 26 \clubsuit Если величина $\hat{\theta}$ имеет норм нормальное распределение				
$\boxed{A} \ \mathcal{N}(4; 2 \cdot 0.01^2)$	$\boxed{C} \; \mathcal{N}(4; 4 \cdot 0.01^2)$	$\boxed{E} \ \mathcal{N}(4; 8 \cdot 0.01^2)$		
$\boxed{\mathbb{B}} \ \mathcal{N}(2; 4 \cdot 0.01^2)$		F Нет верного ответа.		
Вопрос 27 ♣ Случайные величины X_1, X	$_{2}$ и X_{3} независимы и одинаково распредел	ены,		
<u>.</u>				
	X_i 3 5			

$$\begin{array}{ccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5.$ Оценка неизвестного p, полученная методом моментов, равна:

С Метод неприменим A 1/21/4 $\boxed{B} \ 1/3$ D 2/3**F** Нет верного ответа.

Вопрос 28 \clubsuit Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y . Какое распределение может иметь статистика, используемая в данном случае?					
$F_{m-1,n-1}$	$lacksquare$ t_{m+n-2}	$lacksquare$ t_{m+n-1}			
$lacksquare$ B $F_{m+1,n+1}$	$ \begin{array}{c} \boxed{\mathbb{C}} \ t_{m+n-2} \\ \boxed{\mathbb{D}} \ F_{m,n} \end{array} $	F Нет верного ответа.			
Вопрос 29 \clubsuit Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?					
A 1	\boxed{C} $\frac{1}{2}$	$\boxed{ extbf{E}} \frac{1}{n}$			
2	$\boxed{\mathtt{D}}$ n	F Нет верного ответа.			
Вопрос 30 🜲 Выберите НЕВЕРНОЕ утверждение про метод максимального правдоподобия (ММП):					
А ММП применим для оп	ценивания двух и более параметров				
Оценки ММП асимтот	ически нормальны $\mathcal{N}(0;1)$				
[С] При выполнении технических предпосылок оценки ММП состоятельны					
D ММП применим для зависимых случайных величин					
Е ММП оценки не всегда совпадают с оценками метода моментов					

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : **В** В С D E F

Вопрос 3 : А С С Б Е Г

Вопрос 4 : A B C D **F**

Вопрос 6 : А В С Е

Вопрос 7 : **В** В С D E F

Вопрос 8 : **В** В С D E F

Вопрос 10 : **В** С D E F

Вопрос 12: АВСЕБ

Вопрос 13 : АВВ ББ Б

Вопрос 14 : А С С Б Е F

Вопрос 15 : А В С D F

Вопрос 16 : A C D E F

Вопрос 17 : А В П Д Б Е

Вопрос 18 : АВСБББ

Вопрос 19 : А С С Б Е Г

Вопрос 20 : [А] [В] [С] [П]

Вопрос 21 : A **С** D E F

Вопрос 22 : А В В D Е F

Вопрос 23 : А В С Е Е

Вопрос 25 : A B **D** E F

Вопрос 26 : А В С Е Е

Вопрос 27 : АВС Б Б Г

Вопрос 28 : В В С D Е F

Вопрос 29 : А 🔳 С D Е F

Вопрос 30 : А С Б Е

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 & Выберите НЕВЕРНОЕ утверждение про эмпирическую функцию распределения $F_n(x)$

- \fbox{A} $F_n(x)$ имеет разрыв в каждой точке вариационного ряда
- |C| $F_n(x)$ асимптотически нормальна
- \square $E(F_n(x)) = F(x)$
- $F_n(x)$ является невозрастающей функцией

Bonpoc 2 🖡 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

A 1.65, H_0 отвергается

[C] 0.58, H_0 отвергается 0.58, H_0 не отвергается $| C | 0.58, H_0$ отвергается

[E] 1.96, H_0 отвергается

 $\begin{bmatrix} B \end{bmatrix}$ 0.43, H_0 не отвергается

F Нет верного ответа.

Bonpoc 3 \clubsuit Величины X_1, \dots, X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости lpha проверяется гипотеза $H_0: \mu=\mu_0$ против $H_a: \mu
eq\mu_0.$ Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

$$\boxed{\mathbf{A}} \ \varphi_1 = 1 - \alpha$$

$$\boxed{\mathbf{C}} \ \varphi_1 + \varphi_2 = \alpha$$

$$\boxed{\mathbf{E}} \ \varphi_2 = 1 - \alpha$$

$$\boxed{\mathbf{B}} \ \varphi_2 = \alpha$$

$$\varphi_1 = \alpha$$

F Нет верного ответа.

Вопрос 4 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \geq 0, \\ 0 \text{ при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

$$A \frac{\theta}{n}$$

$$C \mid \frac{n}{\theta}$$

$$\boxed{\mathbb{E}} n\theta^2$$

 $B \frac{\theta^2}{n}$

F Нет верного ответа.

Вопрос 5 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из равномерного на $(0, \theta)$ распределения. При каком значении константы c оценка $\hat{ heta} = c ar{X}$ является несмещённой?

2

 \mathbb{B} $\frac{1}{n}$

D 1

Вопрос 6 \clubsuit Случайные величины X и Y бирается m наблюдений случайной величи статистика, используемая в данном случае?	ны X и n наблюдений случайной величин	
$\boxed{\mathbb{A}} F_{m,n}$	$C \mid t_{m+n-2}$	$\boxed{E} \ F_{m+1,n+1}$
		F Нет верного ответа.
Вопрос 7 \clubsuit Случайные величины X_1, X_2		
1,7		,
	$egin{array}{cccc} X_i & 3 & 5 \ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$	
	$\frac{\mathbb{P}(\cdot) p 1-p}{}$	
Имеется выборка из трёх наблюдений: X_1 = правдоподобия, равна:	$X_{1}=5, X_{2}=3, X_{3}=5$. Оценка неизвестного	p, полученная методом максимального
1/3	C 1/2	E 1/4
B 2/3	D Метод неприменим	F Нет верного ответа.
Вопрос 8 \clubsuit По выборке X_1, \dots, X_n из норговалы для математического ожидания. Получ дисперсии. Всегда справедливы следующие	нен интервал (a_1,a_2) при известной диспер	
$\boxed{\mathbf{A}} \ a_2 - a_1 < b_2 - b_1$	$\boxed{\mathtt{D}} \ a_2 - a_1 > b_2 - b_1$	L
$\boxed{\mathbf{B}} \ a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$		
$ a_1 - b_1 = a_2 - b_2 $	F Нет верного отв	ета.
Вопрос 9 Случайные величины X_1, X_2	и X_3 независимы и одинаково распределе	ены,
	X_i 3 5	
	$egin{array}{cccc} X_i & 3 & 5 \ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$	
По выборке оказалось, что $\bar{X}=4.5$. Оценка		ентов, равна:
A 1/2	С Метод неприменим	E 1/3
1/4	D 2/3	F Нет верного ответа.
Вопрос 10 🕹 При проверке гипотезы о ра	венстве долей используется следующее рас	пределение
N(0;1)		
$\overline{\mathbb{B}}$ t_{m+n-1}	$$ $$ $$ $$ $$ $$ $$ $$ $$ $$	F Нет верного ответа.
	езу о равенстве дисперсий по двум норма	льным выборкам размером 20 и 16 на-
A 4	C 2	E 1.224
B 1	1.5	F Нет верного ответа.
Вопрос 12 Пусть $X=(X_1,\dots,X_n)$ — называется эффективной, если	случайная выборка и $I_n(heta)$ — информация	и Фишера. Тогда несмещённая оценка $\hat{ heta}$
$oxed{f A} { m Var}(\hat{ heta}) \leq I_n(heta)$	$\boxed{C} \ Var(\hat{\theta}) = I_n(\theta)$	$\boxed{\mathbb{E}} \ I_n^{-1}(\theta) \geq \mathrm{Var}(\hat{\theta})$
$\mathbf{Var}(\hat{\theta}) \cdot I_n(\theta) = 1$	$\boxed{ \boxed{ \mathbb{D}} \ I_n^{-1}(\theta) \leq \mathrm{Var}(\hat{\theta}) }$	F Нет верного ответа.
Вопрос 13 ♣ Величины $X_1,X_2,,X_{2016}$ оценки метода моментов, $\hat{\mu}_{MM}$, и метода м	независимы и одинаково распределены, . $\hat{\mu}_{ML}$, можно	
\triangle $\hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$	$\boxed{C} \; \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$	$\boxed{\mathrm{E}} \; \hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$
$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} = -23$		F Нет верного ответа.

Вопрос 14 ♣ При проверке гипотезе при известных, но не равных дисперсия	_			-	х нормальных выборках размеров m и n
$lacksquare$ A $F_{m-1,n-1}$	N(0;1)				$\boxed{E} \ t_{m+n-2}$
$\overline{\mathbb{B}}$ t_{m+n-1}	$\overline{\mathbb{D}}$ F_m				F Нет верного ответа.
Вопрос 15 🗍 Дана реализация выборн	ки: 3, 1, 2. Выборочный на	ачал	ьный мом	іент пер	вого порядка равен
A 14/3	C 1				E 0
— 2	D 3				
Вопрос 16 \clubsuit Пусть $X = (X_1, \dots, X_n)$	— случайная выборка из	рав	номерног	о на (0,	$(2 heta)$ распределения. Оценка $\hat{ heta}=X_1$
А Асимптотически нормальная		D	Состоят	ельная	
Несмещённая		E] Нелинеі	йная	
С Эффективная		F] Нет вер	ного отв	eema.
Вопрос 17 🌲 — Дана реализация выборн	ки: 3, 1, 2. Несмещённая о	цен	ка диспер	сии раві	на
1	C 2				E 2/3
B 1/2	D 1/3				F Нет верного ответа.
Вопрос 18 👫 При подбрасывании игр	альной кости 600 раз шес	стері	ка выпала	. 105 раз.	. Гипотеза о том, что кость правильная
А Гипотезу невозможно проверить					
\fbox{B} отвергается при $lpha=0.05$, не отвер	огается при $\alpha=0.01$				
не отвергается при любом разумно	ом значении $lpha$				
$\boxed{\mathrm{D}}$ отвергается при $lpha=0.01$, не отвер	огается при $\alpha=0.05$				
Е отвергается при любом разумном	значении α				
F Нет верного ответа.					
Вопрос 19 🌲 🛮 Выберите НЕВЕРНОЕ ут	верждение про логарифм	иче	скую фун	кцию пр	равдоподобия $\ell(heta)$
$\boxed{\mathbf{A}}$ Функция $\ell(heta)$ может принимать по	оложительные значения				
$oxed{B}$ Функция $\ell(heta)$ может принимать з	начения больше единицы	I			
Функция $\ell(heta)$ имеет максимум при	и $\theta = 0$				
$\boxed{\mathrm{D}}$ Функция $\ell(heta)$ может принимать от	грицательные значения				
$\stackrel{\frown}{\mathbb{E}}$ Функция $\ell(heta)$ может иметь нескол	ько экстремумов				
Вопрос 20 ♣ Производитель фломасто по 10-балльной шкале:	еров попросил трёх челов	век с	оценить ді	ва вида (фломастеров: «Лесенка» и «Erich Krause»
	Пафнути	ий	Андрей	Карл	
	Лесенка	9	7	6	
	Erich Krause	8	9	7	
Точное P -значение (P -value) статистик	и теста знаков равно				
3/8	C 2/3				E 1/2
B 1/3	D 1/8				F Нет верного ответа.
Вопрос 21 Если величина $\hat{\theta}$ имеет н нормальное распределение	нормальное распределени	ие Л	$f(2; 0.01^2)$, то, согл	пасно дельта-методу, $\hat{ heta}^2$ имеет примерно
$\boxed{\mathbf{A}} \ \mathcal{N}(4; 4 \cdot 0.01^2)$	$\mathcal{N}(4;16\cdot 0.01^2)$				$lacksquare$ $\mathcal{N}(4; 2\cdot 0.01^2)$
$\boxed{\mathbf{B}} \ \mathcal{N}(4; 8 \cdot 0.01^2)$	$\boxed{\begin{array}{c} D \\ \mathcal{N}(2; 4 \cdot 0.01^2) \end{array}}$				F Нет верного ответа.

$[\underline{\underline{A}}]$ гипотезы $H_0: \mu=5$ при известной	дисперсии, равной 25, толь	ько при больших n
\fbox{B} гипотезы $H_0: \mu=5$ при известной	дисперсии, равной 5, при б	5ольших n
$\boxed{\mathbb{C}}$ гипотезы $H_0: \mu=5$ при известной	дисперсии, равной 5, при л	любых n
\boxed{D} гипотезы $H_0:\sigma=5$		
гипотезы $H_0: \mu = 5$ при известной	дисперсии, равной 25, при	любых п
[F] Нет верного ответа.		
Вопрос 25 \clubsuit Для выборки X_1, \dots, X_n $H_a: \sigma^2 > \sigma_0^2$. Критическая область имеет		спределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против
$oxed{f A}$ $(0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$A) = \alpha$	
$lacksquare$ В $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1}+1)$	$< A) = \alpha$	
$\blacksquare \ (A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1})$	$< A) = 1 - \alpha$	
$oxed{\mathbb{D}}\ (-\infty,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1})$	$< A) = 1 - \alpha$	
$\boxed{\mathbb{E}} \ (0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$4) = 1 - \alpha$	
F Нет верного ответа.		
Вопрос 26 \clubsuit Пусть $X = (X_1, \dots, X_n)$ – $x) = C_n^x p^x (1-p)^{n-x}$. Информация Фише		номиального распределения $Bi(5,p)$. Известно, что $\mathbb{P}(X=$
$\boxed{A} \frac{5p(1-p)}{n}$	$\frac{5n}{p(1-p)}$	$ \underbrace{\mathbb{E}}_{5n} \frac{p(1-p)}{5n} $
$oxed{B} rac{n}{p(1-p)}$	$\boxed{\mathbf{D}} \ \frac{n}{5p(1-p)}$	F Нет верного ответа.
Вопрос 27 🌲 🛮 Выберите НЕВЕРНОЕ утво	ерждение про метод максим	мального правдоподобия (ММП):
 А ММП применим для оценивания д 	вух и более параметров	
В ММП применим для зависимых слу	учайных величин	
С При выполнении технических пред	цпосылок оценки ММП состо	гоятельны
Оценки ММП асимтотически норма	альны $\mathcal{N}(0;1)$	
Е ММП оценки не всегда совпадают с	оценками метода моментов	ЭВ
Вопрос 28 ♣ Требуется проверить гипо m и n . Если дисперсии неизвестны, но ра	· -	ических ожиданий в двух нормальных выборках размером за имеет распределение
t_{m+n-2}		$lacksquare$ $F_{m,n}$
$\boxed{\mathrm{B}} \ F_{m+1,n+1}$	$\boxed{\mathrm{D}} t_{m+n-1}$	F Нет верного ответа.
	4	

 $\boxed{\mathbf{D}} \ \mathbf{E}(\hat{\theta}_n) \to \theta$

 $E \mid E(\hat{\theta}_n) = \theta$

Вопрос 23 ♣ Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия

Вопрос 24 \clubsuit Величины X_1,\ldots,X_n — выборка из нормального распределения. Статистика $U=rac{5-ar{X}}{5/\sqrt{n}}$ применима для провер-

 $\boxed{\mathbb{C}} \ \chi^2 = 24, df = 1$

 $\boxed{D} \chi^2 = 20, df = 2$

F Нет верного ответа.

 $\boxed{ \mathbb{E} } \ \chi^2 = 14, df = 1$

F Нет верного ответа.

Вопрос 22 Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

 $\boxed{\mathbf{A}} \operatorname{Var}(\hat{\theta}_n) \to 0$

 $\chi^2 = 36, df = 1$

 $\boxed{\mathbf{B}} \operatorname{Var}(\hat{\theta}_n) \ge Var(\hat{\theta}_{n+1})$

 $P(|\hat{ heta}_n - heta| > t) o 0$ для всех t > 0

Петрова истинно и укажите число степеней свободы

	езу о равенстве математических ожиданий п по обеим выборкам известны, совпадают и авна	
A 1.224 B 1	C 2 1.5	E 4F Нет верного ответа.
дисперсии $\hat{\sigma}^2=25$. В рамках проверки гил	200 наблюдений было оценено выборочное потезы $H_0: \mu = 20$ против $H_a: \mu > 20$ мож	
А Гипотезу невозможно проверить В отвергается при $\alpha = 0.05$, не отвергае С отвергается при $\alpha = 0.01$, не отвергае	_	
отвергается при любом разумном зна Е не отвергается при любом разумном		
F Нет верного ответа.		

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : А В С D

Вопрос 2 : А В С Е Е

Вопрос 3 : А В С Е Е

Вопрос 4: А В С Е Е

Вопрос 5 : **В** В С D E F

Вопрос 7 : **В** В С D E F

Вопрос 8 : А В Т Т Е Г

Вопрос 10 : **В** С D E F

Вопрос 11 : А В С Е Е

Вопрос 14 : A B **В** D E F

Вопрос 17 : **В** В С D Е F

Вопрос 18 : A B **В** D E F

Вопрос 19 : А В В О Е

Вопрос 20 : В В С D Е F

Вопрос 21 : А В 🔳 D Е F

Вопрос 22 : АВВ В Б Б Б

Вопрос 24 : A B C D **Б** F

Вопрос 25 : А В В Б Б Б

Вопрос 26 : A B D E F

Вопрос 27 : А В С Е

Вопрос 28 : **В** В С D E F

Вопрос 29 : А В С Е Е

Вопрос 30 : А В С Е Е

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Bonpoc 1 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

A 1/2

B 1/3

3/8

D 1/8

E 2/3

F Нет верного ответа.

Вопрос 2 \clubsuit По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- $oxed{A}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- отвергается при любом разумном значении α
- С Гипотезу невозможно проверить
- $\boxed{\mathrm{D}}$ отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$
- $\boxed{\mathrm{E}}$ не отвергается при любом разумном значении lpha
- **F** Нет верного ответа.

Вопрос 3 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \geq 0, \\ 0 \text{ при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

 $A \frac{\theta^2}{n}$

 $\boxed{\mathbf{B}} n\theta^2$

 $\frac{n}{\theta^2}$

 $D \frac{\theta}{n}$

 $\mathbb{E}^{\frac{r}{\theta}}$

F Нет верного ответа.

Вопрос 4 \clubsuit Величины X_1,\dots,X_n — выборка из нормального распределения. Статистика $U=rac{5-ar{X}}{5/\sqrt{n}}$ применима для проверки

- $\boxed{{\sf A}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 25, только при больших n
- гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n
- \fbox{C} гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n
- $\boxed{\mathbf{D}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших n
- $lackbox{E}$ гипотезы $H_0:\sigma=5$
- **F** Нет верного ответа.

Вопрос 5 \clubsuit Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^2$ имеет примерно нормальное распределение

A $\mathcal{N}(2; 4 \cdot 0.01^2)$

 $\mathbb{C} \ \mathcal{N}(4; 4 \cdot 0.01^2)$

 $\mathcal{N}(4; 16 \cdot 0.01^2)$

 $\boxed{\textbf{B}} \ \mathcal{N}(4; 2 \cdot 0.01^2)$

 $\boxed{\mathbf{D}} \ \mathcal{N}(4; 8 \cdot 0.01^2)$

Вопрос 14 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

 $0.58, H_0$ не отвергается

 \square 1.96, H_0 отвергается

[E] 0.58, H_0 отвергается

 $\begin{bmatrix} \mathbf{B} \end{bmatrix}$ 0.43, H_0 не отвергается

 \square 1.65, H_0 отвергается

F Нет верного ответа.

Вопрос 15 🖡 При проверке гипотезы о равенстве долей используется следующее распределение

 $A F_{m-1,n-1}$

 $C F_{m,n}$

N(0;1)

 $\boxed{\mathrm{B}} t_{m+n-2}$

 $\boxed{\mathrm{D}} t_{m+n-1}$

F Нет верного ответа.

Вопрос 16 ♣ Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

 $\chi^2 = 36, df = 1$

 $C \chi^2 = 2, df = 2$

 $E \chi^2 = 14, df = 1$

 $\boxed{B} \quad \chi^2 = 24, df = 1$

 $\boxed{D} \chi^2 = 20, df = 2$

F Нет верного ответа.

Вопрос 17 🗍 Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

A 1

 \overline{C} 0

E 3

2

D 14/3

F Нет верного ответа.

Вопрос 18 \clubsuit Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

 $\overline{|A|} F_{m+1,n+1}$

 t_{m+n-2}

 $[E] F_{m-1, n-1}$

 $\boxed{\mathsf{B}} t_{m+n-1}$

 $D F_{m,n}$

F Нет верного ответа.

Вопрос 19 🌲 Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

А Метод неприменим

C 1/3

1/4

B 1/2

D 2/3

F Нет верного ответа.

Вопрос 20 \clubsuit Величины X_1,\ldots,X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости α проверяется гипотеза $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$. Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

 $\boxed{\mathbf{A}} \ \varphi_2 = \alpha$

 $\varphi_1 = \alpha$

 $\boxed{\mathbf{E}} \varphi_1 = 1 - \alpha$

 $\boxed{\mathbf{B}} \ \varphi_1 + \varphi_2 = \alpha$

 $\boxed{\mathbf{D}} \ \varphi_2 = 1 - \epsilon$

F Нет верного ответа.

Вопрос 21 & Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x) = C_n^x p^x (1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

 $\boxed{\mathbf{A}} \quad \frac{n}{5p(1-p)}$

C $\frac{p(1-p)}{5n}$

 $E \frac{5p(1-p)}{n}$

 $\boxed{\mathbf{B}} \quad \frac{n}{p(1-p)}$

 $\frac{5n}{p(1-p)}$

Вопрос 22 ♣ Для выборки X_1, \dots, X_n , имею $H_a: \sigma^2 > \sigma_0^2$. Критическая область имеет вид	щей нормальное распределение, про	веряется гипотеза $H_0: \sigma^2 = \sigma_0^2$ против		
$\boxed{\mathbf{A}}\ (0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = lpha$				
$(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) =$	$1-\alpha$			
\square $(-\infty,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) =$				
$\boxed{\mathbb{D}} \ (A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) =$				
$\mathbb{E} \ (0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1$ -				
F Hem верного ответа.	a			
тет верного ответа.				
Вопрос 23 \clubsuit Пусть $X = (X_1, \dots, X_n) - $ случа	йная выборка из равномерного на $(0,$	$2\theta)$ распределения. Оценка $\hat{\theta}=X_1$		
А Нелинейная	D Состоятельная			
В Эффективная	Е Асимптотическ	ки нормальная		
Несмещённая	F Нет верного от	вета.		
Вопрос 24 ♣ Величины $X_1,X_2,,X_{2016}$ неза оценки метода моментов, $\hat{\mu}_{MM}$, и метода максил		, $\mathcal{N}(\mu;42)$. Оказалось, что $\bar{X}=-23$. Про но утверждать, что		
$\hat{\mathbf{A}} \ \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$		$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} = -23$		
B $\hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$ D	$\hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$	F Нет верного ответа.		
Вопрос 25 🌲 🛮 Выберите НЕВЕРНОЕ утвержден:	ие про логарифмическую функцию п	травдоподобия $\ell(heta)$		
$oxed{A}$ Функция $\ell(heta)$ может принимать положите:	льные значения			
\fbox{B} Функция $\ell(heta)$ может принимать значения	больше единицы			
Функция $\ell(\theta)$ имеет максимум при $\theta=0$				
$\boxed{\mathrm{D}}$ Функция $\ell(heta)$ может принимать отрицател	ъные значения			
$\boxed{ ext{E}}$ Функция $\ell(heta)$ может иметь несколько экстр	ремумов			
Вопрос 26 . Требуется проверить гипотезу о р 20 и 16 наблюдений. Истинные дисперсии по об равна 1. Тестовая статистика может быть равна		по двум нормальным выборкам размером и равны 16. Разница выборочных средних		
1.5	4	E 2		
B 1.224 D	1			
Вопрос 27 🧍 Дана реализация выборки: 3, 1, 2.	. Несмещённая оценка дисперсии рав	зна		
A 2 C	2/3	E 1/2		
B 1/3	1	F Нет верного ответа.		
Вопрос 28 🌲 🛮 Выберите НЕВЕРНОЕ утвержден:	ие про метод максимального правдог	подобия (ММП):		
А ММП оценки не всегда совпадают с оценка	ами метода моментов			
В ММП применим для зависимых случайны	х величин			
Оценки ММП асимтотически нормальны $\mathcal{N}(0;1)$				
ММП применим для оценивания двух и более параметров				
Е При выполнении технических предпосыло	ок оценки ММП состоятельны			

Вопрос 29 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

X_i	3	5
$\mathbb{P}(\cdot)$	p	1-p

Имеется выборка из трёх наблюдений: $X_1=5,\,X_2=3,\,X_3=5.$ Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

А Метод неприменим

C 2/3

E 1/2

1/3

D 1/4

F Нет верного ответа.

Вопрос 30 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?

A $\frac{1}{n}$

2

 $\lceil E \rceil n$

B 1

 $\boxed{\mathrm{D}}$ $\frac{1}{2}$

Ура! На этой страничке вопросов уже нет:)

Имя, фамилия и номер группы:

Вопрос 1 : A B D E F

Вопрос 3 : A B D E F

Вопрос 5 : А В С D

Вопрос 6: А В С D |

Вопрос 7: В В С D Е

Вопрос 8 : A B D E F

Вопрос 9: А В С Е Г

Вопрос 10: АВС В

Вопрос 11 : А В В Б Б Б

E Вопрос 12 : А CD

Вопрос 14 : **В** В С D E F

Вопрос 15 : А В С D

Вопрос 16 : **В** В С D E F

Вопрос 17 : А С О

Вопрос 18 : А В В Б Б Б

Вопрос 19 : А В С D

Вопрос 20 : А В В

Вопрос 21 : А В С |

Вопрос 22 : А С О

Вопрос 23 : А В В О

Вопрос 24 : А В С D

Вопрос 25 : А В В О

Вопрос 26: В С D Е F

Вопрос 27 : А В С Вопрос 28 : А В В О Е

Вопрос 29 : А С С Б Е Г

Вопрос 30 : А В В Б Б Б

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

X_i	3	5
$\mathbb{P}(\cdot)$	p	1-p

Имеется выборка из трёх наблюдений: $X_1 = 5$, $X_2 = 3$, $X_3 = 5$. Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

А Метод неприменим

C 2/3

E 1/2

1/3

D 1/4

F Нет верного ответа.

Вопрос 2 \clubsuit Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

 $P(|\hat{ heta}_n - heta| > t) o 0$ для всех t > 0

 $\boxed{\mathsf{B}} \ \operatorname{Var}(\hat{\theta}_n) \ge Var(\hat{\theta}_{n+1})$

E $E(\hat{\theta}_n) \to \theta$

 $C \operatorname{Var}(\hat{\theta}_n) \to 0$

F Нет верного ответа.

Вопрос 3 \clubsuit Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,2\theta)$ распределения. Оценка $\hat{\theta}=X_1$

А Эффективная

Пелинейная

Несмещённая

Е Асимптотически нормальная

С Состоятельная

F Нет верного ответа.

Вопрос 4 \clubsuit Величины X_1,\dots,X_n — выборка из нормального распределения. Статистика $U=rac{5-\bar{X}}{5/\sqrt{n}}$ применима для проверки

гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n

 $\boxed{\mathrm{B}}$ гипотезы $H_0:\sigma=5$

 $\boxed{\mathbb{C}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших n

 $\boxed{\mathbf{D}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n

[E] гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, только при больших n

F Нет верного ответа.

Вопрос 5 \clubsuit Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1.224

C 4

E 2

B 1

1.5

F Нет верного ответа.

Вопрос 6 \clubsuit Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

 $\frac{n}{p(1-p)}$

 $\boxed{\mathsf{C}} \quad \frac{p(1-p)}{5n}$

 $E \frac{5p(1-p)}{n}$

 $\frac{5n}{p(1-p)}$

 $\boxed{\mathbf{D}} \ \frac{n}{5p(1-p)}$

оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

$$\hat{A} \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} > -23$$

$$\boxed{\underline{C}} \hat{\mu}_{ML} = -23, \hat{\mu}_{MM} < -23$$

$$\hat{\mathbf{E}} \hat{\mu}_{ML} > -23, \hat{\mu}_{MM} = -23$$

$$\hat{B}$$
 $\hat{\mu}_{ML} < -23, \hat{\mu}_{MM} = -23$

$$\hat{\mu}_{ML} = -23, \hat{\mu}_{MM} = -23$$

Вопрос 15 \clubsuit Для выборки X_1, \dots, X_n $H_a: \sigma^2 > \sigma_0^2$. Критическая область имеет	, имеющей нормальное рас вид	спределение, проверяется гипотеза $H_0: \sigma^2 = \sigma_0^2$ против
$oxed{A}$ $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1})$		
$(1, +\infty)$, де A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$		
\square ($-\infty$, A), где A таково, что $\mathbb{P}(\chi^2_{n-1})$		
$(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1})$		
\mathbb{E} $(0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$		
F Hem sephoro omsema.	1) 1 &	
	annomina prikapia na ava	поненциального распределения с плотностью
Bonpoc 16 \Rightarrow Hyers $A = (A_1, \dots, A_n)$	- случаиная выоорка из эксі	поненциального распределения с плотностью
	$f(x; \theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ г.} \\ 0 \text{ при } x < 0 \end{cases}$	при $x \ge 0$,
Информация Фишера $I_n(p)$ равна:		
$oxed{A} \frac{ heta}{n}$	$\boxed{C} \frac{\theta^2}{n}$	$oxed{\mathbb{E}}$ $rac{n}{ heta}$
$oxed{B} n heta^2$	$\frac{n}{\theta^2}$	F Нет верного ответа.
Вопрос 17 👶 Выберите НЕВЕРНОЕ утво	ерждение про эмпирическу:	ю функцию распределения $F_n(x)$
$\boxed{A} \ E(F_n(x)) = F(x)$		
$F_n(x)$ является невозрастающей фу	нкцией	
$\boxed{\mathbf{C}} \text{ Var}(F_n(x)) = F(x)(1 - F(x))$,	
$\boxed{\mathbb{D}} \ F_n(x)$ асимптотически нормальна		
$\stackrel{\frown}{\mathbb{E}} F_n(x)$ имеет разрыв в каждой точке	е вариационного ряда	
		нено выборочное среднее $ar{X}=25$ и несмещённая оценка з $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0
отвергается при любом разумном з		
\Box В отвергается при $\alpha=0.01$, не отверг		
$\overline{\mathbb{C}}$ отвергается при $\alpha=0.05$, не отверг	ается при $\alpha=0.01$	
D не отвергается при любом разумног	м значении α	
Е Гипотезу невозможно проверить		
F Нет верного ответа.		
тическим ожиданием и известной диспер	рсией. На уровне значимост	пределенной случайной величины с неизвестным математи $lpha$ проверяется гипотеза $H_0:\mu=\mu_0$ против $H_a:\mu eq\mu_0$ ветственно. Между параметрами задачи всегда выполнено
$\boxed{\mathbf{A}} \ \varphi_2 = \alpha$	$\boxed{\mathbf{C}} \ \varphi_1 = 1 - \alpha$	$\boxed{E} \ \varphi_1 + \varphi_2 = \alpha$
$\boxed{\mathrm{B}} \ \varphi_2 = 1 - \alpha$	$\varphi_1 = \alpha$	F Нет верного ответа.
Вопрос 20 🕹 Выберите НЕВЕРНОЕ утво	ерждение про метод максим	мального правдоподобия (ММП):
А ММП применим для оценивания д	зух и более параметров	
В ММП применим для зависимых слу		
С При выполнении технических пред	цпосылок оценки ММП сост	оятельны

Оценки ММП асимтотически нормальны $\mathcal{N}(0;1)$

E ММП оценки не всегда совпадают с оценками метода моментов

Вопрос 21 \clubsuit Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^2$ имеет примерно

Вопрос 29 Выберите НЕВЕРНОЕ утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$

- Функция $\ell(\theta)$ имеет максимум при $\theta=0$
- $\boxed{\mathrm{B}}$ Функция $\ell(\theta)$ может иметь несколько экстремумов
- $\boxed{\mathbb{C}}$ Функция $\ell(\theta)$ может принимать положительные значения
- $\boxed{\mathrm{D}}$ Функция $\ell(\theta)$ может принимать отрицательные значения
- [E] Функция $\ell(\theta)$ может принимать значения больше единицы

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

- A 1/2
- 1/4

- C 1/3
- D Метод неприменим

- E 2/3
- **F** Нет верного ответа.

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 2 : **В** В С D E F

Вопрос 4 : **В** В С D E F

Вопрос 5 : A B C **E** F

Вопрос 6 : А С С Б Е Г

Вопрос 7 : A B **D** E F

Вопрос 8 : A B C D **F**

Вопрос 9 : A B C D **F**

Вопрос 11 : **В** В С D Е F

Вопрос 12 : **В** В С D E F

Вопрос 13 : АВВ В Б Б Б

Вопрос 14 : А В С Е Е F

Вопрос 15 : А В С Е Е

Вопрос 16 : A B C E F

Вопрос 17 : А С С Б Е

Вопрос 18 : В С D Е F

Вопрос 19: АВСЕБ

Вопрос 20 : А В С Е

Вопрос 21 : А В С Е Е

Вопрос 22 : A B D E F

Вопрос 23 : А В С Е Е

Вопрос 24 : A B C E F

Вопрос 25 : А В С Е Е Г

Вопрос 26 :

Вопрос 27 : **В** В С D E F

Вопрос 29 : **В** В С D Е

Вопрос 30 : А **■** С D E F

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Bonpoc 1 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- A 2
- B 1.224

- C 4
- - F Нет верного ответа.

Вопрос 2 \clubsuit Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

- $A \to \theta$
- $\boxed{\mathbf{B}} \operatorname{Var}(\hat{\theta}_n) \to 0$
- $C E(\hat{\theta}_n) = \theta$

- $P(|\hat{ heta}_n heta| > t) o 0$ для всех t > 0
- **F** Нет верного ответа.

Вопрос 3 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

 $oxed{f A}$ 0.58, H_0 отвергается

 \square 1.65, H_0 отвергается

 $oxed{\mathbb{E}}$ 0.43, H_0 не отвергается

 $lacksquare{B}$ 1.96, H_0 отвергается

- lacksquare 0.58, H_0 не отвергается
- **F** Нет верного ответа.

Bonpoc 4 ♣ Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

- 3/8
- B 1/3

- C 2/3
- D 1/8

- E 1/2
- F Нет верного ответа.

Вопрос 5 \blacksquare Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

- $\boxed{\mathbf{A}} \quad \frac{n}{p(1-p)}$
- $\boxed{\mathbf{B}} \quad \frac{p(1-p)}{5n}$

- C $\frac{n}{5p(1-p)}$
- $\begin{array}{c|c}
 \hline
 D & \frac{5p(1-p)}{n}
 \end{array}$

- $\frac{5n}{p(1-p)}$
- **F** Нет верного ответа.

Вопрос 21 \clubsuit Если величина $\hat{ heta}$ имеет норм нормальное распределение	альное распределени	ле $\mathcal{N}(2;0.01^2)$, то, согла	асно дельта-методу, $\hat{ heta}^2$ имеет примерно		
$\boxed{A} \ \mathcal{N}(4; 4 \cdot 0.01^2)$	$\mathcal{N}(4; 16 \cdot 0.01^2)$		$\boxed{E} \ \mathcal{N}(2; 4\cdot 0.01^2)$		
$\boxed{\mathrm{B}} \ \mathcal{N}(4; 2 \cdot 0.01^2)$	$\boxed{D} \mathcal{N}(4; 8 \cdot 0.01^2)$		F Нет верного ответа.		
Вопрос 22 \clubsuit Пусть $X = (X_1, \dots, X_n)$ — называется эффективной, если	случайная выборка и	$I_n(heta)$ — информация	Фишера. Тогда несмещённая оценка $\hat{\theta}$		
$\boxed{\mathbf{A}} \ I_n^{-1}(\theta) \geq \mathrm{Var}(\hat{\theta})$	$\boxed{C} \; Var(\hat{\theta}) = I_n(\theta)$		$\operatorname{Var}(\hat{\theta}) \cdot I_n(\theta) = 1$		
$\boxed{\mathbf{B}} \ I_n^{-1}(\theta) \le \operatorname{Var}(\hat{\theta})$	$\boxed{\mathbf{D}} \operatorname{Var}(\hat{\theta}) \leq I_n(\theta)$		F Нет верного ответа.		
Вопрос 23 \clubsuit Пусть $X = (X_1, \dots, X_n) - c$	лучайная выборка из	равномерного на $(0, 2)$	$ heta$) распределения. Оценка $\hat{ heta} = X_1$		
А Асимптотически нормальная		D Состоятельная			
В Нелинейная		Несмещённая			
С Эффективная		F Нет верного отве	ma.		
Вопрос 24 🌲 При проверке гипотезы о ра	венстве долей исполь	зуется следующее рас	пределение		
$oxed{A} F_{m,n}$			$\boxed{E} \ t_{m+n-2}$		
N(0;1)	$\boxed{ D} t_{m+n-1}$		F Нет верного ответа.		
Вопрос 25 \clubsuit — Для выборки X_1, \dots, X_n , и $H_a: \sigma^2 > \sigma_0^2$. Критическая область имеет ви		распределение, прове	еряется гипотеза $H_0: \sigma^2 = \sigma_0^2$ против		
$\boxed{\mathbf{A}}$ $(-\infty,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$4) = 1 - \alpha$				
$\boxed{\mathbb{B}} \ (A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$(4) = \alpha$				
$(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$	$4) = 1 - \alpha$				
$\boxed{\mathbb{D}} \ (0,A)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A)$:	$=1-\alpha$				
$[{f E}]$ $(0,A)$, где A таково, что ${\mathbb P}(\chi^2_{n-1} < A) = lpha$					
F Нет верного ответа.					
Вопрос 26 ♣ При проверке гипотезе о рапри известных, но не равных дисперсиях, т		-	нормальных выборках размеров m и n		
$\boxed{\mathbf{A}} \ F_{m-1,n-1}$	$\boxed{C} \ t_{m+n-2}$		N(0;1)		
$lacksquare$ B F_m	$ \begin{array}{ c c }\hline C & t_{m+n-2} \\\hline D & t_{m+n-1}\end{array} $		F Нет верного ответа.		
Вопрос 27 Случайные величины X_1, X_2	$ar{x}_2$ и X_3 независимы и	одинаково распредел	ены,		
	$\overline{X_i}$ 3	5			
	$egin{array}{ccc} X_i & 3 \ \hline \mathbb{P}(\cdot) & p \end{array}$	1-p			
Имеется выборка из трёх наблюдений: $X_1 = 1$ правдоподобия, равна:			p, полученная методом максимального		
А Метод неприменим	C 2/3		E 1/4		
1/3	D 1/2		F Нет верного ответа.		

Вопрос 28 \clubsuit Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

X_i	3	5
$\mathbb{P}(\cdot)$	p	1-p

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

С Метод неприменим

E 2/3

B 1/3

D 1/2

F Нет верного ответа.

Вопрос 29 \clubsuit По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- $\boxed{\mathsf{A}}$ отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$
- $\boxed{\mathrm{B}}$ не отвергается при любом разумном значении lpha
- отвергается при любом разумном значении lpha
- Гипотезу невозможно проверить
- $oxed{\mathbb{E}}$ отвергается при lpha=0.05, не отвергается при lpha=0.01
- **F** Нет верного ответа.

Вопрос 30 ♣ Требуется проверить гипотезу о равенстве дисперсий по двум нормальным выборкам размером 20 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 60, по второй − 90. Тестовая статистика может быть равна

A 4

C 1.224

1.5

B 2

D 1

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C **E** F

Вопрос 2 : A B C D **F**

Вопрос 3 : А В С Е Е

Вопрос 4 : **В** В С D E F

Вопрос 5 : А В С D 🖪 F

Вопрос 6 : A B C D **F**

Вопрос 7 : A B C D **F**

Вопрос 8 : A B **D** E F

Вопрос 9: 📕 В С D Е F

Вопрос 10 : A B C D **F**

Вопрос 11 : А 🔳 С D Е

Вопрос 12 : В В С D Е

Вопрос 13 : A C D E F

Вопрос 14 : АВСЕЕ

Вопрос 15 : A B D E F

Вопрос 16 : А С D Е

Вопрос 17 : A B C E F

Вопрос 19 : АВВ В Б Б Б

Вопрос 20: АВСЕЕ

Вопрос 22 : A B C D F

Вопрос 23 : А В С D F

Вопрос 25 : А В В Б Б Б Б

Вопрос 26 : А В С D 🖬 F

Вопрос 27 : A C D E F

Вопрос 28 : В В С D Е F

Вопрос 29 : А В 🔳 D Е F

Вопрос 30 : АВС Б Б