

10 Rec's PUT/PTO 2 3 JUN 2004

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年7月10日(10.07.2003)

PCT

(10) 国際公開番号 WO 03/056621 A1

(51) 国際特許分類7:

H01L 21/324

(21) 国際出願番号:

PCT/JP02/13477

(22) 国際出願日:

2002年12月25日(25.12.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2001-394791

2001年12月26日(26.12.2001)

(71) 出願人 (米国を除く全ての指定国について): コマツ 電子金属株式会社 (KOMATSU DENSHI KINZOKU KABUSHIKI KAISHA) [JP/JP]; 〒254-0014 神奈川県 平塚市 四之宮 3 丁目 2 5 番 1 号 Kanagawa (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 安藤 正彦 (ANDO,Masahiko) [JP/JP]; 〒254-0014 神奈川県 平塚 市四之宮3丁目25番1号コマツ電子金属株式 会社内 Kanagawa (JP). 湯山 勝 (YUYAMA, Masaru) [JP/JP]; 〒254-0014 神奈川県 平塚市 四之宮3丁目 25番1号 コマツ電子金属株式会社内 Kanagawa (JP). 芳野 史朗 (YOSHINO, Shiro) [JP/JP]; 〒254-0014 神奈川県 平塚市 四之宮3丁目25番1号 コマツ電 子金属株式会社内 Kanagawa (JP).

/毓葉有/

- (54) Title: METHOD FOR VANISHING DEFECTS IN SINGLE CRYSTAL SILICON AND SINGLE CRYSTAL SILICON
- (54) 発明の名称: 単結晶シリコンの欠陥消滅方法および単結晶シリコン

(57) Abstract: A method for vanishing defects in a single crystal silicon, which comprises subjecting a single crystal silicon prepared by the CZ method to an oxidizing treatment and then to an ultra high temperature heat treatment at a temperature of at least about 1300 °C, or comprises subjecting a single crystal silicon which is prepared by the CZ method and is not subjected to an oxidizing treatment (a bare wafer) to an ultra high temperature heat treatment in an oxygen atmosphere and at a temperature of higher than 1200°C and lower than 1310°C. The method allows the vanishment of void defects present in a single crystal silicone with reliability.

- 1...SILICON WAFER (SILICON SUBSTRATE)
- 2...OXIDIZED FILM
- 3...VOID DEFECT
- A...NO PRETREATMENT
- B...STACK
- C...ULTRA HIGH TEMPERATURE ANNEALING AT 1300°C OR HIGHER
- D...ENLARGED VOID DEFECT

- (74) 代理人: 木村 高久,外(KIMURA, Takahisa et al.); 〒 104-0043 東京都中央区 湊1丁目8番11号千代ビ — 国際調査報告書 ル6階 Tokyo (JP).
- (81) 指定国 (国内): JP, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

添付公開書類:

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

単結晶シリコン内に存在するボイド欠陥を確実に消滅させる。CZ法により製造 された単結晶シリコンに対して酸化処理を行い、少なくとも1300°C近傍の温 度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消 滅させることができる。またCZ法により製造され、酸化処理が行われていない単 結晶シリコン (ペアウエーハ) に対して、酸素雰囲気でかつ1200° Cを超えて 1310° C未満の範囲内の温度で超高温熱処理を行うことにより、単結晶シリコ ン中に存在するボイド欠陥を消滅させることができる。

明細書

単結晶シリコンの欠陥消滅方法および単結晶シリコン

技術分野

本発明は、C Z 法により製造された単結晶シリコンに関し、特に、C Z 法による成長直後の単結晶シリコン内に存在するボイド欠陥を消滅させる方法および消滅させる処理が施された単結晶シリコンに関する。

背景技術

シリコンウェーハは、C Z 法 (チョクラルスキー法) によりインゴットを成長させることにより製造される。

すなわちCZ炉内には石英るつぼが設けられている。この石英るつぼ内で多結晶シリコン(Si)が加熱され溶融される。溶融が安定化すると、引上げ機構によって石英るつぼ内のシリコン融液から単結晶シリコンのインゴットが引き上げられる。

溶融過程で石英るつぼから酸素が溶出し、これが単結晶シリコンのインゴット内に熔解する。このため通常、単結晶シリコンインゴットの中には 5×10^{17} (個/cm³) $\sim 2 \times 10^{18}$ (個/cm³) (ASTM F121-79) 程度の酸素が含まれている。なお本明細書で、酸素濃度の数値は、ASTM F121-79で定める規格に依るものとする。

融液と単結晶インゴットの境界であるメルト部分は、引き上げられるとすぐに冷えるわけではなく熱履歴を経て冷却される。この熱履歴の過程で、一般的な引上げ条件では空孔が過飽和となる。そして空孔が集まって単結晶シリコンインゴットの成長直後(As-grown)にボイド欠陥と呼ばれる多面体の空洞の欠陥が形成される。シリコンインゴットは過飽和に酸素が溶け込まれている状態なので空洞の内側に冷却過程で酸化膜が形成される。ボイド欠陥はCZ法による単結晶成長中に形成される欠陥であることからGrown-in欠陥といわれている。なおボイド欠陥がシリコンウェーハの表面に顕れた欠陥ピットのことをCOPという。

ボイド欠陥は、シリコンウェーハにデバイス層を積層して半導体デバイスを製造する際に、歩留まり、製造された半導体デバイスの信頼性に悪影響を与える。

このためポイド欠陥を消滅させる必要があるが、従来より、ボイド欠陥を消滅させるためには、シリコンウェーハを高温でアニールすればよいと考えられていた。しかしシリコンウェーハを1枚づつアニールすることにすると、熱歪みが生じてシリコンウェーハを支持している支持部材に応力がかかり耐久性が損なわれるおそれがあったり、スリップという結晶欠陥が生じることがあった。

そこで、特開平10-74771号公報では、シリコンウェーハを1枚ずつ高温 熱処理するのではなくスタックアニールすることにより、上記問題点を解決してい る。すなわち上記公報には、

- (a)シリコンウェーハを複数枚積層して一群となし、一群以上のシリコンウェーハを垂直方向にスタック配置し、一群のシリコンウェーハを一定の姿勢にして高温熱処理(スタックアニール)することにより、ボイド欠陥を消滅せんとする発明が記載されている。
- (b) またシリコンウェーハを、1100° Cから1380° Cの温度範囲で高温熱処理すれば、ボイド欠陥が消滅することが記載されている。この場合、熱処理の雰囲気は、酸素ガス雰囲気、酸素ガス含有雰囲気、不活性ガス雰囲気、還元性ガス雰囲気といった考えられる全ての雰囲気で、ボイド欠陥が消滅することが記載されている。
- (c) またスタック配置したシリコンウェーハは、熱処理後にシリコンウェーハの 剥離が困難であることから、予めシリコンウェーハに酸化膜を形成した上で水素や アルゴンガスの雰囲気下でスタックアニールすることにより、熱処理後の剥離を容 易ならしめることが記載されている。

このように従来は、シリコンウェーハを高温熱処理をすることによりボイド欠陥 が消滅するものと考えられていた。

そこで、本発明者らは、上記公報に記載された温度条件および雰囲気条件で追試を行った。

この結果、シリコンウェーハ中のボイド欠陥は消滅するどころか、逆に肥大化することが明らかになった。

図1の(b)、(c)は、追試の内容を概略的に示している。

同図1(b)に示すように、酸素が低濃度(初期酸素濃度で 9×10^{17} (ato ms/cc)程度)で含まれているシリコンウェーハ(シリコン基板) 1を用意する。このシリコンウェーハ1中には、成長直後(As-grown)における直径が100nm程度のボイド欠陥3が存在している。

そして、このシリコンウェーハ1に対して、酸素ガス雰囲気(酸素ガスが酸素分圧で100%)ないしは酸素ガス含有雰囲気(酸素ガスが酸素分圧で0.5%以上)で、かつ1300°以上の超高温熱処理を施す。この結果、シリコンウェーハ1中のボイド欠陥3は、成長直後(As-grown)における直径100nm程度から直径500nm程度の大きさに肥大化していることが観察された。また同図1(c)に示すようにシリコンウェーハ1をスタック配置して、このスタック配置した複数のシリコンウェーハ1に対して、同じく酸素ガス雰囲気ないしは酸素ガス含有雰囲気で、かつ1300°C以上の超高温熱処理を施したところ、最上位および最下位のシリコンウェーハ1の酸化膜2側、中間のシリコンウェーハ1の外周において、ボイド欠陥3が同様に肥大化していることが観察された。

なお、アルゴンガスなどの不活性ガスの雰囲気、あるいは水素ガスなどの還元性ガスの雰囲気で1300° C以上の高温熱処理を施すことにすると、シリコンウェーハ1から昇華、脱離する酸化シリコンSiOxにより、反応管やボートなどが汚染したり、SiCボートそのものの劣化を引き起こす。このような炉内の汚染、炉の耐久性の低下を防ぐために、1300° C以上の高温熱処理を行うときには、実質的には酸素ガス含有雰囲気若しくは酸素ガス雰囲気で熱処理を行うことが必須となる。

発明の開示

本発明はこうした実状に鑑みてなされたものであり、単結晶シリコン内に存在するボイド欠陥を確実に消滅させることができるようにすることを解決課題とするものである。

そこで本発明の第1発明の方法では、

CZ法により製造された単結晶シリコンに対して酸化処理を行う工程と、

少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする。

第1発明によれば、図1(a)に示すように、CZ法により製造された単結晶シリコン1に対して酸化処理を行い、少なくとも1300° C近傍の温度で超高温熱処理を行うことにより(図16参照)、単結晶シリコン1中に存在するボイド欠陥3を消滅させることができる。

第2発明の方法では、

CZ法により製造された単結晶シリコンに対して酸化処理を行い、396nm~400nmの範囲の最低膜厚の初期酸化膜を形成する工程と、

少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする。

第2発明によれば、図1(a)に示すように、CZ法により製造された単結晶シリコン1に対して酸化処理を行い、396nm~400nmの範囲の最低膜厚の初期酸化膜2を形成し(図11、図14参照)、少なくとも1300° C近傍の温度で超高温熱処理を行うことにより(図16参照)、単結晶シリコン1中に存在するボイド欠陥3を消滅させることができる。

第3発明の方法では、

CZ法により製造された単結晶シリコンのプロックに対して酸化処理を行う工程と、

少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、単結晶シリコンのブロック中に存在するポイド欠陥を消滅させる工程と

を含むことを特徴とする。

第3発明は、第1発明の方法を単結晶シリコンのプロックに適用することができる。

第4発明の方法では、

CZ法により製造された単結晶シリコンのウェーハに対して酸化処理を行う工程と、

前記単結晶シリコンウェーハを複数枚積み重ねる工程と、

前記複数枚積み重ねられた単結晶シリコンウェーハに対して少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、各単結晶シリコンウェーハ中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする。

第4発明は、第1発明の方法を単結晶シリコンを複数枚積み重ねたものに適用することができる。

第5発明では、第1発明~第4発明において、

 $0.5\% \sim 100\%$ の酸素分圧の雰囲気で前記超高温熱処理を行うことを特徴とする。

第6発明では、第1発明~第4発明において、

前記単結晶シリコン中の酸素濃度は、 14×10^{17} (atoms/cc) 以下であること

を特徴とする。

第7発明では、第1発明~第4発明において、

前記超高温熱処理が行われる温度まで昇温する過程に、前記酸化処理を行うステップを設けたこと

を特徴とする。

第8発明では、第1発明~第4発明において、

前記超高温熱処理が行われる温度まで昇温する過程に、1200°C以下の温度で前記酸化処理を行うステップを設けたこと

を特徴とする。

第9発明では、第1発明~第4発明において、

前記超高温熱処理が行われる温度まで昇温する過程または当該温度から降温する過程に、400°C~1000°Cの温度で単結晶シリコンに酸素析出核を形成する熱処理を行うステップを設けたこと

を特徴とする。

第10発明では、第1発明~第4発明において、

前記超高温熱処理が行われた後に、400° C~1000° Cの温度で単段また

は多段の熱処理を更に行い、単結晶シリコンに酸素析出核を形成すること を特徴とする。

第11発明の方法では、

C Z 法により製造され、酸化処理が行われていない単結晶シリコンに対して、酸素雰囲気でかつ1200°Cを超えて1310°C未満の範囲内の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させること

を特徴とする。

第11発明によれば、CZ法により製造され、酸化処理が行われていない単結晶シリコン (ベアウエーハ) に対して、図17に示すように、酸素雰囲気でかつ1200° Cを超えて1310° C未満の範囲内の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させることができる。

第12発明では、単結晶シリコンが、

CZ法により製造され、初期酸化膜を表面に形成した後に、少なくとも1300°C近傍の温度による超高温熱処理が施されてなることを特徴とする。

第12発明は、第1発明の方法を、物の発明で特定したものである。

第13発明では、単結晶シリコンが、

C Z 法により製造された単結晶シリコンであって、3 9 6 n m ~ 4 0 0 n m の範囲の最低膜厚の初期酸化膜を表面に形成した後に、少なくとも 1 3 0 0° C 近傍の温度による超高温熱処理が施されてなることを特徴とする。

第13発明は第2発明の方法を、物の発明で特定したものである。

第14発明では、単結晶シリコンのブロックが、

C Z 法により製造された単結晶シリコンのプロックであって、初期酸化膜を表面 に形成した後に、少なくとも 1 3 0 0° C 近傍の温度による超高温熱処理が施されてなることを特徴とする。

第13発明は第3発明の方法を、物の発明で特定したものである。

第15発明では、単結晶シリコンが、

C Z 法により製造され、初期酸化膜を表面に形成していない状態で、酸素雰囲気でかつ1200°Cを超えて1310°C未満の範囲内の温度の超高温熱処理が

施されてなることを特徴とする。

第15発明は第11発明の方法を、物の発明で特定したものである。

第16発明の方法では、

C Z法により製造され、酸化処理が行われていない単結晶シリコンを、酸素ガス雰囲気あるいは酸素ガス含有雰囲気で超高温まで昇温して超高温熱処理を施し更に降温することにより、単結晶シリコン中に存在するボイド欠陥を消滅させる単結晶シリコンの欠陥消滅方法において、

前記単結晶シリコン中の初期酸素濃度、前記超高温まで昇温する過程の雰囲気の酸素分圧、前記超高温熱処理を施す際の雰囲気の酸素分圧、前記超高温熱処理が行われる温度の各パラメータを調整することにより、前記単結晶シリコン中に存在するボイド欠陥を消滅させるようにしたこと

を特徴とする。

第17発明では、第16発明において、

前記超高温熱処理を施す際の雰囲気の酸素分圧を50%以上とし、前記超高温まで昇温する過程の雰囲気の酸素分圧を、25%未満とし、超高温熱処理が行われる温度を、1200°Cを超えて1310°C未満の範囲内の温度とすること

を特徴とする。

第18発明では、第16発明において、

前記超高温熱処理を施す際の雰囲気の酸素分圧を、25%以上とし、前記超高温まで昇温する過程の雰囲気の酸素分圧を、25%以上とし、超高温熱処理が行われる温度を、1200°C以上の温度とすること

を特徴とする。

第19発明では、第16発明において、

前記超高温熱処理を施す際の雰囲気の酸素分圧、前記超高温まで昇温する過程の雰囲気の酸素分圧を25%以上とし、超高温熱処理が行われる温度を、1240° C以上の温度とすること

を特徴とする。

第20発明では、第16発明において、

前記単結晶シリコン中の初期酸素濃度が、10×10¹⁷ (atoms/cc) よりも高

い高酸化濃度になるに伴い、超高温熱処理が行われる温度を、1260°Cよりも高温側に移行させるとともに、前記超高温熱処理を施す際の雰囲気の酸素分圧、前記超高温まで昇温する過程の雰囲気の酸素分圧を25%よりも高圧側に移行させること

を特徴とする。

本発明者らは実験を行い、ボイド欠陥3を消滅させる条件が、

- ①単結晶シリコン1中の初期酸素濃度
- ②高温アニール時の温度まで昇温する過程の雰囲気の酸素分圧
- ③高温アニールを施す際の雰囲気の酸素分圧
- ④高温アニールが行われる温度

の各パラメータによって変化することを発見するに至った。ボイド欠陥3を消滅する各パラメータの範囲は以下のように具体的に特定される。

- 1) 高温アニール時の酸素分圧を、50%以上とし、高温アニール時の温度まで昇温中の雰囲気の酸素分圧を、25%未満とすれば、少なくとも1200°Cを超えて1310°C未満の範囲で、ボイド欠陥3を消滅させることができる。
- 2) 高温アニール時の酸素分圧を、25%以上とし、高温アニール時の温度まで昇温中の雰囲気の酸素分圧を、25%以上とすれば、高温アニール時の温度が1200°C以上で、ボイド欠陥3を消滅させることができる。
- 3) 雰囲気の酸素分圧(高温アニール時、昇温時)を25%以上とし、高温アニール時の温度を、1240° C以上の温度とすれば、ボイド欠陥3を消滅させることができる。
- 4) 単結晶シリコン1中の初期酸素濃度が、 10×10^{17} (atoms/cc) よりも高い高酸化濃度になるに伴い、高温アニール時の温度を、 1260° Cよりも高温側に移行させるとともに、雰囲気の酸素分圧(高温アニール時、昇温時)を25%よりも高圧側に移行させることで、ボイド欠陥3を消滅させることができる。

図面の簡単な説明

図1は実施形態と従来技術を比較して示す図である。

図2は比較例1における条件と結果を示す図である。

- 図3は実施例1における条件と結果を示す図である。
- 図4は実施例2における条件と結果を示す図である。
- 図5は実際例3における条件と結果を示す図である。
- 図6は実施例6における条件と結果を示す図である。
- 図7は熱処理レシピを例示する図である。
- 図8は熱処理後の欠陥による散乱像を示す写真である。
- 図9は熱処理前の欠陥による散乱像を示す写真である。
- 図10は肥大化したボイド欠陥のTEM写真である。
- 図11は実施例2の結果を示す図であり、初期酸化膜厚と高温アニール後のボイド欠陥のサイズの関係を示す図である。
 - 図12は肥大化した欠陥の散乱像を示す写真である。
 - 図13は欠陥が収縮消滅した水準ウェーハの観察結果を示す写真である。
- 図14は実施例3の結果を示す図であり、初期酸化膜厚と高温アニール後のボイド欠陥のサイズの関係を示す図で、酸化膜形成方法の違いによりボイド欠陥を消滅させるに必要な初期酸化膜厚が変化する様子を説明する図である。
 - 図15は熱処理レシピを例示する図である。
- 図16は実施例4の結果を示す図であり、高温アニール時の温度と高温アニール 後のボイド欠陥のサイズの関係を示す図で、初期酸素濃度の大きさによりボイド欠 陥を消滅させるに必要な温度が変化する様子を説明する図である。
- 図17は実施例5の結果を示す図であり、高温アニール時の温度と高温アニール 後のボイド欠陥のサイズの関係を示す図で、ベアウェーハを熱処理する際の臨界温 度を説明する図である。
- 図18は初期酸素濃度、昇温中の雰囲気の酸素分圧、高温アニール時の温度を変化させたときの高温アニール後のボイド欠陥のサイズの変化を示す表である。
- 図19は昇温中、高温アニール時の雰囲気の酸素分圧を同じ圧とした実験結果を示す表であり、雰囲気の酸素分圧、初期酸素濃度、高温アニール時の温度と高温アニール後のボイド欠陥サイズの変化との関係を示す表である。
- 図20は昇温中の酸素分圧の違いによって変化するボイド欠陥を消滅させる温度範囲を示すグラフであり、高温アニール時の温度と高温アニール後のボイド欠陥

サイズとの関係を示すグラフである。

図21は酸素分圧の大きさがポイド欠陥の消滅に及ぼす効果を示すグラフであり、高温アニール時の温度と高温アニール後のポイド欠陥サイズとの関係を示すグラフである。

図22は雰囲気の酸素分圧の違いによって変化するボイド欠陥を消滅させる温度範囲を示すグラフであり、高温アニール時の温度と高温アニール後のボイド欠陥サイズとの関係を示すグラフである。

図23は高温アニール時の温度によって変化するボイド欠陥を消滅させる雰囲気の酸素分圧の範囲を示すグラフであり、雰囲気の酸素分圧と高温アニール後のボイド欠陥サイズとの関係を示すグラフである。

図24は昇温中の雰囲気の酸素分圧の違いによって変化するボイド欠陥を消滅させる温度範囲を示すグラフであり、高温アニール時の温度と高温アニール後のボイド欠陥サイズとの関係を示すグラフである。

図25は雰囲気の酸素分圧の違いによって変化するボイド欠陥を消滅させる温度範囲を示すグラフであり、高温アニール時の温度と高温アニール後のボイド欠陥 サイズとの関係を示すグラフである。

図26は高温アニール時の温度によって変化するボイド欠陥を消滅させる雰囲気の酸素分圧の範囲を示すグラフであり、雰囲気の酸素分圧と高温アニール後のボイド欠陥サイズとの関係を示すグラフである。

発明を実施するための最良の形態

以下図面を参照して本発明に係る単結晶シリコンの欠陥消滅方法および単結晶シリコンの実施の形態について説明する。

なお本明細書では、「単結晶シリコン」という用語を、単結晶シリコンのブロック(インゴット)、ブロックからスライスされたシリコンウェーハ(シリコン基板)、シリコンウェーハを複数枚、スタック配置したもの、のすべてを包含する意味で使用するものとする。

図1(a)は本発明の方法の第1の実施形態を概略的に示している。

・第1の実施形態

まずCZ法により成長された単結晶シリコンのインゴット(ブロック)をスライスして、シリコンウェーハ1を取得する。このシリコンウェーハ1は、酸素が低濃度で含まれている。具体的には、 9×10^{17} (atoms/cc) (ASTM F121-79)程度の初期酸素濃度で酸素がシリコンウェーハ1に含まれているものとする。このシリコンウェーハ1中には、成長直後 (As-grown) における直径が100nm程度のボイド欠陥3が存在している。

つぎに、シリコンウェーハ1を酸化処理して、シリコンウェーハ1に対して40 0nm以上の厚さの酸化膜2を形成する。

つぎに、0.5%以上の酸素が含有された酸素雰囲気下で、かつ1300°C以上の温度で、超高温熱処理(アニール)を、シリコンウェーハ1に施す。

この結果、シリコンウェーハ1内に存在していたボイド欠陥3が消滅した。

以上のように従来技術では、図1(b)、図1(c)を用いて説明したように、酸素ガス含有雰囲気かつ1300°C以上の超高温アニールの前工程で酸化処理を行わなかったためボイド欠陥3が肥大化していたが、本実施形態では、酸素ガス含有雰囲気かつ1300°C以上の超高温アニールの前工程で酸化処理を行ったためボイド欠陥3を消滅させることができた。

ただし図1(c)に示すようにシリコンウェーハ1をスタックアニールした場合には、超高温アニールの前処理として酸化処理を行わなくてもボイド欠陥3が収縮する現象がみられた。ボイド欠陥3が収縮したのは、最上位および最下位のシリコンウェーハ1の酸化膜2側、中間のシリコンウェーハ1の外周を除いた部位であり、特にシリコンウェーハ1同士を積み重ねた界面ではボイド欠陥3は消滅していた。最上位および最下位のシリコンウェーハ1の酸化膜2側、中間のシリコンウェーハ1の外周ではボイド欠陥3は収縮せずに肥大化していた。

図1(a)では、一枚のシリコンウェーハ1に対して酸化処理、高温熱処理を行っているが、複数枚のシリコンウェーハ1それぞれに酸化処理を施し、これら複数枚のシリコンウェーハ1をスタック配置し、これらスタック配置した複数枚のシリコンウェーハ1に対して酸素ガス含有雰囲気で1300°C以上の超高温アニールを施してもよい。この場合には従来技術と異なり、最上位および最下位のシリコンウェーハ1の酸化膜2側、中間のシリコンウェーハ1の外周でポイド欠陥3を消

滅させることができる。

以上のように本実施形態によれば、酸素ガス含有雰囲気かつ1300° C以上の超高温熱処理の前工程で酸化処理を行うようにしているため、シリコンウェーハ1 あるいはスタック配置したシリコンウェーハ1中のボイド欠陥3を確実に消滅させることができる。なお本実施形態では、単結晶シリコンのブロック(インゴット)からスライスしたシリコンウェーハ1に対して酸化処理、高温熱処理を行う場合を想定しているが、単結晶シリコンのブロックに直接、酸化処理、高温熱処理を施してもよく、この場合には単結晶シリコンのブロック中に存在するボイド欠陥3を確実に消滅させることができる。

ここでボイド欠陥3の消滅のメカニズムについて考察する。

一般にシリコンウェーハ1上に熱酸化膜2が形成する際に、酸化膜形成に伴う体 積膨脹により、シリコンウェーハ1と酸化膜2の界面からシリコンウェーハ1の内 部方向へ格子間シリコンが注入されることが知られている。

高温熱処理に先行する前酸化処理の有無いかんによって、高温処理中の酸化膜成長レートが影響を受ける。すなわち初期酸化膜形成を行っていないシリコンウェーハ1では、その後の酸素ガス含有雰囲気下の高温処理中に急激に酸化が進むのに対して、初期酸化膜形成シリコンウェーハでは酸化膜成長レートは遅くなる。

ここで酸化レートが高いシリコンウェーハ1の内部でボイド欠陥3が肥大化するとすれば、ボイド欠陥3が空孔クラスタであることから、格子間シリコン注入では説明できず、むしろ空孔注入のような現象が起きているはずである。

そこで、詳細なメカニズムは不明であるにしても"1300° C以上の高温熱処理では空孔が注入される"と仮定した場合に、欠陥の収縮、肥大化の減少は以下のように説明される。

すなわち1300° C以上の高温熱処理をシリコンウェーハ1に施す場合に、シリコンウェーハ1中の酸素濃度がその温度における固溶限以下であるときは、ボイド欠陥3の内壁の酸化膜が溶解し、空孔クラスタとしてのボイド欠陥3は溶体化して消滅する方向に向かうものと考えられる。しかし高温処理下でシリコンウェーハ1の表面から内部へ空孔の注入があると仮定した場合、空孔がボイド欠陥3に集まりボイド欠陥3そのものが肥大化すると考えられる。ボイド欠陥3の肥大化を防ぐ

ためには、空孔注入を起こさないようにしなければならない。空孔注入を起こさないためには、酸化レートが低くなる条件で高温アニールを行う必要がある。

酸化膜2を形成しない雰囲気下、たとえば不活性ガスの雰囲気あるいは還元性ガスの雰囲気では、シリコンウェーハ1中のボイド欠陥3が収縮する方向に向かうことが考えられる。

しかし、このような雰囲気下で1300° C以上の高温熱処理をシリコンウェーハ1に施すと、前述したようにシリコンウェーハ1から酸化シリコンSiOxが脱離して、反応管やボートなどの炉内部品が汚染したり、SiCボートそのものの劣化を引き起こす。このような炉内の汚染、炉の耐久性の低下が予測されるために、現実的には1300° C以上の高温熱処理を行うときには、不活性ガスの雰囲気あるいは還元性ガスの雰囲気で行うことは困難であり、実質的には酸素ガス含有雰囲気若しくは酸素ガス雰囲気で熱処理を行うことが必須となる。

シリコンウェーハ1を積み重ねたスタック配置では、積み重ね界面に酸素ガスが十分に回らないと考えられ、実質上低酸化レート条件となる。このためスタック配置では積み重ね界面でボイド欠陥が収縮する方向に向かうが、積み重ねられたシリコンウェーハ1のうち上下2枚のシリコンウェーハ1では高酸化条件となるためボイド欠陥3は肥大化する。

以下、シリコン酸化膜の厚さ、高温熱処理時の温度条件、雰囲気条件等を具体的に示した各実施例について説明する。

まず各実施例と効果を対比するために比較例を説明する。

・比較例 1

試料として直径が $200 \,\mathrm{mm}$ で、酸素濃度が 11×10^{17} (atoms/cc) (AST M F121-79) で、P型のペアウェーハつまり自然酸化膜のみが表面に形成されたシリコンウェーハ1が準備され、このシリコンウェーハ1に対して図2に示す温度条件、雰囲気条件で高温アニールを行った。

アニール温度レシピは、図7に熱処理レシピ1として示され、700° Cより徐々に温度を上昇させ、1300° C \sim 1390° Cの範囲内の各最高温度 1300° C、1350° C、1390° Cまで上昇させた。この最高温度で2時間熱処理を施した後、徐々に温度を低下させていった。

アルゴンガスをペースにして酸素分圧が $0.5\% \sim 100\%$ の範囲内の各酸素分 $E0.5\% \sim 30\% \sim 100\%$ の雰囲気でアニールを行った。

つぎに熱処理の前後でボイド欠陥3のサイズの変化を、赤外散乱法で観察した。 つまりボイド欠陥3を、赤外トモグラフでレーザ散乱欠陥(LSTD)として捕ら え、熱処理の前後のボイド欠陥3のサイズの変化を分析、評価した。計測器は三井 金属鉱業製MO401を使用した。

図8は熱処理後の欠陥による散乱像を示しており、図9は熱処理前の欠陥による 散乱像を示している。

図8は酸素分圧が0.5%の雰囲気で、1350°Cで2時間熱処理した場合の 散乱像を示している。

これら図8、図9を比較してわかるように、図9に示す熱処理前の欠陥による散 乱像に比べて、図8では散乱強度が増大して欠陥が肥大化していることがわかる。 すなわち図8では欠陥の肥大化により、1視野の計測で高密度の欠陥が検出されている。通常レーザ径が6μm以内の欠陥のみ散乱するものとして扱うが、欠陥が肥大化しているため有効レーザ径から外れた位置に存在する欠陥が散乱欠陥として顕在化している。欠陥がレーザの中心付近にあるとき個々の欠陥は最大散乱強度を示す。図8の写真で、矢印で示す欠陥がレーザ径の中心付近で計測された散乱像である。同様の条件で計測した図9の熱処理前の散乱像と比較して欠陥が肥大化していることがわかる。

つぎに欠陥の形態を確認するために、赤外トモグラフ観察により得られた散乱欠陥の位置をマーキングし、FIB加工によりTEM(透過型電子顕微鏡)観察用サンプルを作成した。そして欠陥を透過型電子顕微鏡で観察した。

図10はTEM (透過型電子顕微鏡)で捕らえた欠陥の写真を示す。

同図10に示すようにTEM観察したところ欠陥の肥大化を確認することができた。肥大化した欠陥は直径400nmのサイズであり、シリコンインゴットの成長直後 (As-grown) で通常観察される直径100~150nmのサイズの欠陥と比較して著しく肥大化していることがわかった。

さらにEDX分析を行った結果、この欠陥の内部およびシリコンマトリックス界 面からシリコン以外の信号、酸素による信号が得られていないことから散乱強度が 増大している欠陥は、ボイド欠陥3であることが確認され、ボイド欠陥3の形態の まま肥大化されたことが確認された。

温度、酸素分圧を変えて同様の観察を行った。この結果は図2に示される。

図2において使用される符号を説明すると、「×」は熱処理後にボイド欠陥3が肥大化したことを示し、「△」は熱処理後にボイド欠陥3が収縮したことを示し、「○」は熱処理後にボイド欠陥3が消滅したことを示す。なお、これら符号は後述する図3~図6においても同様の意味で用いる。

同図2に示すように、1300° C、1350° C、1390° Cの各熱処理温度と、0.5%、30%、100%の各酸素分圧とをそれぞれ組み合わせた各条件の場合について、処理温度が1300° Cでかつ酸素分圧が100%という特定の条件の場合を除き、熱処理後にボイド欠陥3が肥大化しているという結果を得た。

以上のことから、シリコンウェーハ1に酸化処理を施すことなくベアウェーハのままで0.5%以上の酸素分圧の雰囲気で、かつ1300°C~1390°Cの温度範囲で高温アニールを行うと、特定の場合を除き、ボイド欠陥3はシリコンインゴット成長直後(As-grown)のサイズと比較して肥大化するという結論を得た。

・実施例 1

上記比較例 1 と同一仕様のシリコンウェーハ1 を準備した。つまり試料として直径が200 mmで、酸素濃度が 11×10^{17} (atoms/cc) (ASTM F121-79) で、P型のシリコンウェーハ1 を準備した。

つぎに、このシリコンウェーハ1に対して1100°Cで80分間、熱酸化処理を施して、表面に700nmの初期酸化膜2を形成した。なお熱酸化処理は、Wet酸化処理として行われた。Wet酸化処理とは、水蒸気を含む雰囲気下で行う酸化処理のことをいうものとする。ここで初期酸化膜とは、高温アニールを行う前にシリコンウェーハ1に形成されている酸化膜のことをいうものとする。

つぎに、初期酸化膜2が形成されたシリコンウェーハ1に対して、上記比較例1 と同一の条件下で高温アニールを実施した。

すなわちアニール温度レシビは、図7に熱処理レシビ1として示され、700° Cより徐々に温度を上昇させ、1300°C~1390°Cの範囲内の各最高温度 1300°C、1350°C、1390°Cまで上昇させた。この最高温度で2時 間熱処理を施した後、徐々に温度を低下させていった。

アルゴンガスをベースにして酸素分圧が0.5%~100%の範囲内の各酸素分 E0.5%、30%、100%の雰囲気でアニールを行った。

つぎに熱処理の前後でボイド欠陥3のサイズの変化を、赤外散乱法で観察した。 さらにTEM観察し、EDX分析を行ったところ、ボイド欠陥3の形態のまま欠陥 が熱処理後に消滅ないしは収縮していることが確認された。

図3に熱処理の各条件(各水準)とボイド欠陥3のサイズの変化(×:肥大化、 Δ:収縮、〇:消滅)との関係を示す。

同図3に示すように、1300°C、1350°C、1390°Cの各熱処理温度と、0.5%、30%、100%の各酸素分圧とをそれぞれ組み合わせた各条件(各水準)のいずれの場合についても、熱処理後にボイド欠陥3が消滅ないしは収縮しているという結果を得た。

以上のことから、シリコンウェーハ1に酸化処理を施した上で0.5%以上の酸素分圧の雰囲気で、かつ1300°C~1390°Cの温度範囲で高温アニールを行うと、ボイド欠陥3は消滅するか、シリコンインゴット成長直後(As-grown)のサイズと比較して収縮するという結論を得た。

・実施例2

上記実施例1で、初期酸化膜2の膜厚を700nmにすればボイド欠陥3が消滅ないしは収縮することが確認されたため、つぎに初期酸化膜2の膜厚をパラメータとしてボイド欠陥消滅の効果を確認する実験を行った。

上記比較例 1、実施例 1 と同一仕様のシリコンウェーハ 1 を準備した。つまり試料として直径が 2 0 0 mmで、酸素濃度が 1 1 × 1 0 1 7 (atoms/cc) (ASTM F1 21-79) で、P型のシリコンウェーハ 1 を準備した。

つぎに、このシリコンウェーハ1に対して1100° Cで、Wet酸化処理を施して、表面に45 nm、175 nm、394 nm、500 nm、700 nmの初期酸化膜2が形成された各水準の試料を作成した。

つぎに、酸化膜2が形成されたシリコンウェーハ1に対して、高温アニールを実施した。

すなわちアニール温度レシビは、図7に熱処理レシビ1として示され、700°

Cより徐々に温度を上昇させ、最高温度1350°Cまで上昇させた。この1350°Cで2時間熱処理を施した後、徐々に温度を低下させていった。

アルゴンガスをベースにして酸素分圧が0.5%~100%の範囲内の各酸素分 E0.5%、30%、100%の雰囲気でアニールを行った。

つぎに熱処理の前後でボイド欠陥3のサイズの変化を、赤外散乱法で観察した。 さらにTEM観察し、EDX分析を行ったところ、ボイド欠陥3の形態のまま欠陥 が熱処理後に消滅ないしは収縮ないしは肥大化しており、ボイド欠陥消滅の効果は 初期酸化膜2の膜厚の影響を受けていることが確認された。

図12、図13は前述した図8と同様の写真であり高温アニール後の欠陥による散乱像を示している。図12は膜厚45nmの初期酸化膜2が形成されたシリコンウェーハ1について計測した結果を示し、図13は膜厚700nmの初期酸化膜2が形成されたシリコンウェーハ1について計測した結果を示す。図12、図13は酸素分圧が0.5%の雰囲気で、1350°Cで2時間熱処理した場合の散乱像を示している。

欠陥の消滅の判断は、シリコンウェーハの径方向に20mmにわたる観察を行い 欠陥による散乱がみられないことを基準にした。

図12に示すように、ボイド欠陥3の肥大化により、1視野(200 μ m×185 μ m)の測定で見かけ上高密度の欠陥が観察されている。通常欠陥サイズの場合有効レーザ径が6 μ m程度となるが、肥大化した欠陥の場合さらに広い入射領域からの散乱をとらえるためである。

図13に示すように径方向に 20000μ mのスキャンを行った結果、ボイド欠陥による散乱は観察されなかった。

これら図12、図13を比較してわかるように、図12に示す膜厚45nmの場合にはボイド欠陥3は肥大化しているのに対して、図13に示す膜厚700nmの場合にはボイド欠陥3が消滅していることがわかる。

欠陥が消滅したシリコンウェーハ1の欠陥消滅の深さを調べるために、低倍率の 測定を行ったところ、深さ方向全域にわたりボイド欠陥3が存在していないことが 確認された。

図4に、雰囲気(酸素分圧0.5%、30%、100%)、初期酸化膜2の膜厚

(45 nm、175 nm、394 nm、500 nm、700 nm) と、ボイド欠陥 3 のサイズの変化 (\times :肥大化、 \triangle :収縮、 \bigcirc :消滅)との関係を示す。なお比較 例として自然酸化膜 (膜厚 0) の場合も掲げている。

同図4に示すように、酸素分圧が0.5%の場合には、初期酸化膜2の膜厚が396nmでもボイド欠陥3の収縮がみられた。また酸素分圧いかんにかかわらずにボイド欠陥3を消滅させるには、少なくとも500nmの膜厚の初期酸化膜2を形成することが必要であるという結果を得た。

また図11は、酸素分圧が100%の雰囲気で高温アニール(1350°Cで2時間アニール)を行った後のボイド欠陥3のサイズを、初期酸化膜2の膜厚をパラメータとしてプロットしたグラフを示している。図11の横軸が初期酸化膜2の膜厚(nm)であり、縦軸が熱処理後のボイド欠陥3のサイズ(a. u)である。図11において一点鎖線は、シリコンインゴット成長直後(As-grown)のボイド欠陥3のサイズを示している。

同図11に示すように初期酸化膜2の膜厚が396nm未満ではボイド欠陥3は、As-grown時のボイド欠陥3のサイズに比して肥大化しておりボイド欠陥消滅の効果はないと考えられるが、膜厚が396nm以上になると急激にボイド欠陥3のサイズは収縮しボイド欠陥消滅の効果が急激に高まっていることがわかる。初期酸化膜2の厚さが500nmになるとボイド欠陥3のサイズは測定限界(D. L)以下のサイズまで収縮しボイド欠陥3が消滅していることがわかる。したかってボイド欠陥3を消滅させる効果は、396nm~500nmの範囲内の膜厚以上で得られるものと考えられる。

· 実施例3

上記実施例2で、ボイド欠陥3を消滅させるために必要な初期酸化膜2の最低膜厚(しきい値)が確認されたため、つぎに高温アニール前の酸化膜形成方法によって最低膜厚が変動することを確認する実験を行った。

上記比較例 1、実施例 1、実施例 2 と同一仕様のシリコンウェーハ 1 を準備した。 つまり試料として直径が 2 0 0 mmで、酸素濃度が 1 1 \times 1 0 1 7 (atoms/cc) (A STM F121-79) で、 P型のシリコンウェーハ 1 を準備した。

つぎに、このシリコンウェーハ1に対して、下記各種酸化膜形成方法を適用して

初期酸化膜2を形成した。各種酸化膜形成方法ごとの処理温度を下記に示す。

- ①Wet酸化処理 …処理温度1100°C
- ②dry酸化処理 …処理温度1100°C
- ③CVD (化学蒸着法) …処理温度430°C

なおdry酸化処理は、Wet酸化処理と同様に熱酸化であり、Wet酸化処理と異なり 水蒸気を含まない乾燥した雰囲気下で行う酸化処理のことをいうものとする。

酸化膜厚55~840nmの範囲内の各膜厚の初期酸化膜2が形成された各水 準の試料を作成した。

つぎに、酸化膜2が形成されたシリコンウェーハ1に対して、高温アニールを実施した。

すなわちアニール温度レシピは、図7に熱処理レシピ1として示され、700° Cより徐々に温度を上昇させ、最高温度1350° Cまで上昇させた。この1350° Cで2時間熱処理を施した後、徐々に温度を低下させていった。酸素分圧が100%の雰囲気でアニールを行った。

つぎに熱処理の前後でボイド欠陥3のサイズの変化を、赤外散乱法で観察した。 さらにTEM観察し、EDX分析を行ったところ、ボイド欠陥3の形態のまま欠陥 が熱処理後に消滅ないしは収縮ないしは肥大化しており、ボイド欠陥を消滅させる に必要な初期酸化膜2の最低膜厚は、酸化膜形成方法の影響を受けて変動すること が確認された。

図5に、初期酸化膜厚(55~840nm)、酸化膜形成方法(Wet酸化処理、dry酸化処理、CVD)と、ボイド欠陥3のサイズの変化(×:肥大化、Δ:収縮、O:消滅)との関係を示す。

同図5に示すように、dry酸化処理、Wet酸化処理、CVDの順番で、ボイド欠陥3を消滅させる効果が低くなっており、この順番でボイド欠陥3を消滅させるに必要な初期酸化膜2の最低膜厚が大きくなっていくという結果を得た。

また図14は、図11と同様の高温アニール条件、つまり酸素分圧が100%の雰囲気かつ1350°Cで2時間アニールを行った後のボイド欠陥3のサイズを、酸化膜形成方法(dry酸化処理、Wet酸化処理、CVD)、初期酸化膜厚をパラメータとしてプロットしたグラフを示している。図14の横軸が初期酸化膜2の膜厚

(nm)であり、縦軸が熱処理後のポイド欠陥3のサイズ(a.u)である。図1 4において〇印でプロットした破線で示す特性は、dry酸化処理を行った場合を示 し、●印でプロットした実線で示す特性は、Wet酸化処理を行った場合を示し、△ 印でプロットした一点鎖線で示す特性は、CVDを行った場合を示している。

同図14に示すように、急激にボイド欠陥3のサイズが収縮しボイド欠陥消滅の効果が急激に高まる初期酸化膜2の厚さ(ボイド欠陥を消滅させるに必要な最低膜厚)は、dry酸化処理、Wet酸化処理、CVDの順番で大きくなっていくことがわかる。dry酸化処理の場合には、ボイド欠陥3を消滅させるために、膜厚400nm以上の初期酸化膜2を形成する必要がある。したがってdry酸化処理、Wet酸化処理、CVDの全ての酸化膜形成方法についてボイド欠陥3を消滅させるには、少なくとも膜厚400nmの初期酸化膜2を高温アニール前にシリコンウェーハ1に形成しておくことが必要であると考えられる。

したがって上記実施例 2、実施例 3 の結果から、ボイド欠陥 3 を消滅させるには、 3 9 6 n m \sim 4 0 0 n m の範囲の最低膜厚の初期酸化膜 2 を高温アニール前にシリコンウェーハ 1 に形成しておくことが必要であると考えられる。

・実施例4

つぎにシリコンウェーハ1中の初期酸素濃度によってボイド欠陥を消滅させる に必要な高温アニール時の温度が変動することを確認する実験を行った。ここで初 期酸素濃度とは、熱処理を行う前にシリコンウェーハ1中に含有されている酸素濃 度のことをいうものとする。

上記比較例 1、実施例 2 とほぼ同一仕様のシリコンウェーハ1 を準備した。つまり試料として直径が 2 0 0 mmで、P型のシリコンウェーハ1 を準備した。実施例 4 の場合には、初期酸素濃度が、

- ① 1.0×1.0^{17} (atoms/cc) (ASTM F121-79)
- 212×10^{17} (atoms/cc) (ASTM F121-79)

の各試料を準備した。

つぎに、このシリコンウェーハ1に対して1100°Cで80分間、Wet酸化処理による酸化処理を施し、膜厚700nmの初期酸化膜2を形成した。

つぎに、酸化膜2が形成されたシリコンウェーハ1に対して、高温アニールを実

施した。

すなわちアニール温度レシビは、図15に熱処理レシビ2として示され、700°Cより徐々に温度を上昇させ、1260°C~1350°Cの範囲の各最高温度まで上昇させた。そしてこの最高温度から徐々に温度を低下させていった。酸素分圧が0.5%の雰囲気でアニールを行った。図7では最高温度でのアニール時間は2時間であったが、図15では温度を昇降させただけで最高温度での滞在時間は0とした。

つぎに熱処理の前後でボイド欠陥3のサイズの変化を、赤外散乱法で観察した。 さらにTEM観察し、EDX分析を行ったところ、ボイド欠陥3の形態のまま欠陥 が熱処理後に消滅ないしは収縮ないしは肥大化しており、ボイド欠陥を消滅させる に必要な高温アニール時の温度つまり図15に示すアニール温度レシピの最高温 度は、初期酸素濃度の影響を受けて変動することが確認された。

図16は、酸素分圧が0.5%の雰囲気で高温アニールを行った後のボイド欠陥 3のサイズを、初期酸素濃度(1.0×1.0^{17} (atoms/cc)(ASTM F121-79)、 1.2×1.0^{17} (atoms/cc)(ASTM F121-79))、高温アニール時の温度をパラメータとしてプロットしたグラフを示している。図1.6の横軸が高温アニール時の温度(°C)であり、縦軸が熱処理後のボイド欠陥3のサイズ(a.u)である。図1.6において〇印でプロットした破線で示す特性は、初期酸素濃度 1.0×1.0^{17} (atoms/cc)(ASTM F121-79)の場合を示し、 \blacksquare 印でプロットした実線で示す特性は、初期酸素濃度が 1.2×1.0^{17} (atoms/cc)(ASTM F121-79)の場合を示している。

同図14に示すように、ボイド欠陥3のサイズが収縮しボイド欠陥消滅の効果が顕れる高温アニール時の温度(ボイド欠陥を消滅させるに必要な最低温度)は、初期酸素濃度が高くなるほど、大きくなっていくことがわかり1300° C近傍で急激にボイド欠陥3のサイズに収縮していることから、1300° C近傍でボイド欠陥消滅の効果が顕れると考えられる。初期酸素濃度が10×1 0^{17} (atoms/cc) (ASTM F121-79) の場合には、高温アニール時の温度が1280° C以上でボイド欠陥3が縮小し始めている。したがって、より酸素濃度を低くすれば1280° C程度でボイド欠陥消滅の効果が顕れると考えられる。

また酸素濃度が高くなるとボイド欠陥消滅の効果を得るには、より高温でアニールをしなければならないが、初期酸素濃度が 1.4×1.0^{17} (atoms/cc) (ASTM F121-79) 以下であれば、許容される温度(1.380° C)以下でボイド欠陥消滅の効果が顕れると予測される。また実際に、初期酸素濃度が 1.4×1.0^{17} (atoms/cc) (ASTM F121-79) のシリコンウェーハ1を準備し、Wet酸化により初期酸化膜2を 7.00° n m形成した後、図7に示す熱処理レシピ1を用いて処理温度 1.30° C、酸素分圧0.5%雰囲気で高温アニールを実施したところ、ボイド欠陥3は消滅することが確認された。

したがってボイド欠陥 3 を消滅させるには、少なくとも 1 3 0 0 ° C近傍の温度(1 2 8 0 ° C \sim 1 3 0 0 ° C)で高温アニールを行うことが必要であると考えられる。また高温アニールを施してボイド欠陥 3 を消滅させるには、初期酸素濃度を1 4×1 0 17 (atoms/cc)(ASTM F121-79)以下に抑える必要があると考えられる。

・実施例 5

前述したように従来技術では、ベアウェーハ(酸化処理が施されていないシリコンウェーハ)を、酸化雰囲気でかつ、1100°Cから1380°Cの温度範囲で高温熱処理すれば、ボイド欠陥3が消滅することが記載されている。しかし、高温熱処理前に酸化処理を行わなかったベアウエーハの場合、1100°Cから1380°Cまでの全ての温度でボイド欠陥3が消滅するわけではなく、ボイド欠陥3が消滅する温度に臨界点があることが下記実験で明らかになった。

上記比較例 1 と同一仕様のシリコンウェーハ 1 を準備した。つまり試料として直径が 2 0 0 mmで、酸素濃度が 1 1 × 1 0 1 7 (atoms/cc) (ASTM F121-79) で、P型のベアウエーハ 1 を準備した。

つぎに、このペアウエーハ1に対して、高温アニールを実施した。

すなわちアニール温度レシビは、図7と同様であり、700°Cより徐々に温度を上昇させ、1200°C~1390°Cの範囲内の各最高温度まで上昇させた。

この最高温度で2時間熱処理を施した後、徐々に温度を低下させていった。

酸素分圧が100%の雰囲気でアニールを行った。

つぎに熱処理の前後でボイド欠陥3のサイズの変化を、赤外散乱法で観察した。

さらにTEM観察し、EDX分析を行ったところ、ボイド欠陥3の形態のまま欠陥が熱処理後に消滅ないしは肥大化していることが確認された。

図 6 に高温アニール時の各温度 (1200° C~1390° C) とボイド欠陥 3 のサイズの変化 (x: 肥大化、O: 消滅) との関係を示す。

同図 6 に示すように、1200° Cではボイド欠陥 3 のサイズの変化はみられず、1310° C、1320° C、1350° C、1390° Cではボイド欠陥 3 が肥大化しているが、1240° C、1260° C、1280° C、1300° Cの各温度でボイド欠陥 3 が消滅しているという結果を得た。

また図17は、酸素分圧が100%の雰囲気で2時間、高温アニールを行った後のボイド欠陥3のサイズを、高温アニール時の温度をパラメータとしてプロットしたグラフを示している。図17の横軸が高温アニール時の温度(°C)であり、縦軸が熱処理後のボイド欠陥3のサイズ(a.u)である。図17において一点鎖線は、シリコンインゴット成長直後(As-grown)のボイド欠陥3のサイズを示している。

同図17に示すように温度が1200° C以下あるいは1310° C以上ではボイド欠陥3は、As-grown時のサイズと変わりはないか肥大化しておりボイド欠陥消滅の効果はないと考えられるが、1200° Cを超えて1310° C未満の温度範囲ではボイド欠陥3のサイズはAs-grown時のサイズに比して収縮していると考えられボイド欠陥消滅の効果を得ていることがわかる。さらに温度範囲を1240° C~1300° Cの範囲まで狭めれば、ボイド欠陥3が完全に消滅していることがわかる。

したがってベアウエーハに対して酸素雰囲気下で高温アニールを施してボイド 欠陥 3 を消滅させるには、1200° Cを超えて1310° C未満の温度範囲で高温アニールを行うことが必要であると考えられる。また望ましくは1240° C~ 1300° Cの温度範囲で高温アニールを行うことが必要であると考えられる。

・実施例 6

上記実施例1~4では、シリコンウェーハ1に対して酸化処理、高温熱処理を行っているが、複数枚のシリコンウェーハ1それぞれに酸化処理を施し、これら複数枚のシリコンウェーハ1をスタック配置し、これらスタック配置した複数枚のシリ

コンウェーハ1に対して酸素雰囲気(酸素分圧0.5%~100%)で1300° C近傍温度以上の超高温アニールを施してもよい。この場合には従来技術と異なり、 図1(c)において最上位および最下位のシリコンウェーハ1の酸化膜2側、中間 のシリコンウェーハ1の外周でボイド欠陥3を消滅させることができる。

また実施例1~4では、単結晶シリコンのブロック (インゴット) からスライス したシリコンウェーハ1に対して酸化処理、高温熱処理を行う場合を想定している が、単結晶シリコンのブロックに直接、酸化処理、高温熱処理を施してもよく、こ の場合には単結晶シリコンのブロック中に存在するボイド欠陥3を消滅させることができる。

· 実施例 7

上記実施例5では、ベアウェーハ1に対して高温熱処理を行っているが、複数枚のベアウェーハ1をスタック配置し、これらスタック配置した複数枚のベアウェーハ1に対して酸素雰囲気(酸素分圧0.5%~100%)で、かつ1200°Cを超えて1310°C未満の温度範囲で(望ましくは1240°C~1300°Cの温度範囲で)超高温アニールを施してもよい。この場合には従来技術と異なり、図1(c)において最上位および最下位のベアウェーハ1の酸化膜2側、中間のベアウェーハ1の外周でボイド欠陥3を消滅させることができる。

また実施例5では、単結晶シリコンのブロック (インゴット) からスライスした ベアウェーハ1に対して高温熱処理を行う場合を想定しているが、単結晶シリコン のブロックに直接、高温熱処理を施してもよく、この場合には単結晶シリコンのブロック中に存在するボイド欠陥3を消滅させることができる。

・実施例8

実施例1~4では、図7または図15に示す熱処理レシビ1または熱処理レシビ2で超高温熱処理を行うようにしている。そこで図7または図15において超高温熱処理が行われる温度まで昇温する過程に、酸化処理を行い初期酸化膜2を形成するステップを設けることができる。

この場合、超高温熱処理が行われる温度まで昇温する過程に、1200°C以下の温度で酸化処理を行うステップを設けることができる。

・実施例 9

実施例1~5では、図7または図15に示す熱処理レシビ1または熱処理レシビ2で超高温熱処理を行うようにしている。そこで図7または図15において超高温熱処理が行われる温度まで昇温する過程または当該温度から降温する過程に、400°C~1000°Cの温度で単結晶シリコン1に酸素析出核を形成する熱処理を行うステップを設けることができる。単結晶シリコン1に酸素析出核を形成することにより単結晶シリコン1にイントリンシックゲッタリング(IG)の能力を付与することができる。

この場合、超高温熱処理が行われた後に、 $400°C\sim1000°C$ の温度で単段または多段の熱処理を更に行い、単結晶シリコン1に酸素析出核を形成することができる。

· 実施例 1 0

上記実施例5では、ベアウエーハ(酸化処理が施されていないシリコンウェーハ) に対して酸素分圧が100%の雰囲気下で高温アニールを施してボイド欠陥3を 消滅させるには、1200° Cを超えて1310° C未満の温度範囲で高温アニールを行うことが必要であることが明らかになった。

本発明者らはその後実験を行い、ボイド欠陥3を消滅させる条件が、

- ①単結晶シリコン1中の初期酸素濃度
- ②高温アニール時の温度まで昇温する過程の雰囲気の酸素分圧
- ③高温アニールを施す際の雰囲気の酸素分圧
- ④高温アニールが行われる温度

の各パラメータによって変化することを発見するに至り、そのボイド欠陥3が消滅 する各パラメータの範囲を特定した。以下説明する。

図18は、高温アニール時の雰囲気の酸素分圧を100%にし、単結晶シリコンの初期酸素濃度、昇温中の雰囲気の酸素分圧、高温アニール時の温度を変化させたときのボイド欠陥3のサイズの変化(×:肥大化、△:収縮、〇:消滅)を表にて示す。高温アニールは酸素分圧が100%の酸素雰囲気で2時間行った。

(1) 初期酸素濃度が低い(10×10¹⁷ (atoms/cc))場合

図18の表中、初期酸素濃度を 10×10^{17} (atoms/cc) にし昇温中の雰囲気の酸素分圧を0.5%とした場合は、図17の場合に相当し、高温アニール時の温

度が1200°Cを超えて1310°C未満の温度範囲でボイド欠陥3が縮小または消滅したが、高温アニール時の温度を1310°C以上にするとボイド欠陥が肥大化した。

これに対して初期酸素濃度を 1.0×1.0^{17} (atoms/cc) のままとし、昇温中の雰囲気の酸素分圧を1.0.0%にして昇温中も高温アニール時と同じ酸素雰囲気にした場合には、高温アニール時の温度を1.3.1.0° C以上にしてもボイド欠陥3を消滅させることができた。

(2) 初期酸素濃度が高い(15×10¹⁷ (atoms/cc))場合

初期酸素濃度を 1.5×1.0^{17} (atoms/cc) にし昇温中の雰囲気の酸素分圧を0.5%にした場合には、高温アニール時の温度が1.2.8.0% C以下の範囲でポイド欠陥のサイズは殆ど変化しなかった。高温アニール時の温度を1.3.0.0% C以上にすることでポイド欠陥3が肥大化する傾向がみられた。

これに対して初期酸素濃度を 1.5×10^{17} (atoms/cc) のままとし、昇温中の雰囲気の酸素分圧を1.0.0%にして昇温中も高温アニール時と同じ酸素雰囲気にした場合には、高温アニール時の温度を1.3.2.0° C以上にすることでボイド欠陥 3.66 を消滅させることができた。

図19は昇温中の雰囲気の酸素分圧と高温アニール時の雰囲気の酸素分圧をそれぞれ同じにした場合の実験結果であり、初期酸素濃度、雰囲気の酸素分圧(高温アニール時、昇温中)、高温アニール時の温度と、ボイド欠陥3のサイズの変化(×:肥大化、Δ:収縮、〇:消滅)との関係を表にて示す。高温アニールは2時間行った。

(1) 初期酸素濃度が低い(10×10¹⁷ (atoms/cc))場合

図19の表中、初期酸素濃度を 10×10^{17} (atoms/cc) にし、雰囲気の酸素 分圧を25%以上にし高温アニール時の温度を 1260° C以上にすることでボイド欠陥3が消滅した。

(2) 初期酸素濃度が高い(15×10¹⁷ (atoms/cc))場合

初期酸素濃度を 1.5×10^{17} (atoms/cc) にした場合には、高温アニール時の温度が1.2.8.0° C以下では、雰囲気の酸素分圧によらずボイド欠陥3のサイズは殆ど変化していない。しかし高温アニール時の温度を1.3.0.0° C以上にし雰囲気

の酸素分圧を75%以上に高くすることでボイド欠陥3をほぼ消滅させることができた。

更に実験を行い図18、図19のデータを補完した。図20~図26は、図18、図19に示すデータおよびこれを補完したデータをグラフで示す。

図20は、図18の表中、初期酸素濃度が10×10¹⁷ (atoms/cc) の場合に相当する実験結果をグラフで示しており、横軸を高温アニール時の温度(°C)とし、縦軸を熱処理後のボイド欠陥3のサイズ(a.u)としている。図20において○でプロットしたものは、昇温中の雰囲気の酸素分圧が0.5%の場合を示し、●でプロットしたものは、昇温中の雰囲気の酸素分圧が100%の場合を示している。

図20から、雰囲気の酸素分圧が高いほどボイド欠陥3を消滅させる効果が大きく、ボイド欠陥3を消滅させることができる高温アニール時の温度範囲が1200°C~1310°Cの範囲から1200°C以上の広範囲の温度範囲まで拡大しているのがわかる。

雰囲気の酸素分圧が高いほどボイド欠陥3を消滅させる効果が大きいということは、図21に示す実験結果からあきらかである。

図21はベアウエーハに対して1300°Cの温度で2時間高温アニールを施したときの雰囲気中の酸素分圧とボイド欠陥サイズとの関係を示している。図21の横軸は高温アニール時の酸素分圧(%)であり縦軸は熱処理後のボイド欠陥3のサイズ(a. u)である。

同図21に示すように、雰囲気中の酸素分圧を高くするに伴いボイド欠陥3を消滅させる効果が大きくなっていくことがわかる。雰囲気の酸素分圧が40%付近からボイド欠陥3が縮小しており、雰囲気の酸素分圧が75%以上でボイド欠陥3がほぼ消滅しているのがわかる。

図22は初期酸素濃度が 10×10^{17} (atoms/cc) の場合であって、昇温中の雰囲気の酸素分圧と高温アニール時の雰囲気の酸素分圧を同じとしたときに、各酸素分圧0.5%、25%、50%、100%ごとに高温アニール時の温度とボイド欠陥サイズとの関係を示したものである。図22の横軸は高温アニール時の温度(°C)であり縦軸は熱処理後のボイド欠陥3のサイズ(a.u)である。

図23は初期酸素濃度が 10×10^{17} (atoms/cc) の場合であって、昇温中の雰囲気の酸素分圧と高温アニール時の雰囲気の酸素分圧を同じ一定圧としたときに、各高温アニール時温度 1260° C、 1280° C、 1300° C、 1340° Cごとに雰囲気の酸素分圧とボイド欠陥サイズとの関係を示したものである。図 2300 であり機軸は雰囲気の酸素分圧(%)であり縦軸は熱処理後のボイド欠陥3のサイズ (a. u)である。

これら図22、図23に示すように雰囲気の酸素分圧を25%以上にし、高温アニール時の温度を1240° C以上にすれば、ボイド欠陥3を消滅させることができるのがわかる。

図24は初期酸素濃度が 15×10^{17} (atoms/cc) の場合であって、昇温中の雰囲気の酸素分圧を0.5%、100%に変化させたときに高温アニール時の温度とボイド欠陥サイズとの関係を示したものである。図24の横軸は高温アニール時の温度(°C)であり縦軸は熱処理後のボイド欠陥3のサイズ(a.u)である。

図25は初期酸素濃度が 15×10^{17} (atoms/cc) の場合であって、昇温中の雰囲気の酸素分圧と高温アニール時の雰囲気の酸素分圧を同じとしたときに、各酸素分圧 25%、50%、75%、100%ごとに高温アニール時の温度とボイド欠陥サイズとの関係を示したものである。図25の横軸は高温アニール時の温度(°C)であり縦軸は熱処理後のボイド欠陥3のサイズ(a. u)である。

図26は初期酸素濃度が 15×10^{17} (atoms/cc) の場合であって、昇温中の雰囲気の酸素分圧と高温アニール時の雰囲気の酸素分圧を同じ一定圧としたときに、各高温アニール時温度 1260° C、 1280° C、 1300° C、 1340° Cごとに雰囲気の酸素分圧とボイド欠陥サイズとの関係を示したものである。図 260° C の横軸は雰囲気の酸素分圧(%)であり縦軸は熱処理後のボイド欠陥3のサイズ (a. u)である。

これら図24~図26に示すように、単結晶シリコン中の初期酸素濃度を、 10×10^{17} (atoms/cc) よりも大きい高酸化濃度 (15×10^{17} (atoms/cc) にすると、高温アニールが行われる温度を、 1260° Cよりも高温側に移行させるとともに、雰囲気の酸素分圧を25%よりも高圧側に移行させなければ、ボイド欠陥 3を消滅させることができないことがわかる。

以上のことからつぎのことがあきらかになる。

- 1) 高温アニール時の雰囲気の酸素分圧を、50%以上とし、高温アニール時の温度まで昇温中の雰囲気の酸素分圧を、25%未満とすれば、少なくとも1200° Cを超えて1310° C未満の範囲で、ボイド欠陥3を消滅させることができる。
- 2) 高温アニール時の雰囲気の酸素分圧を、25%以上とし、高温アニール時の温度まで昇温中の雰囲気の酸素分圧を、25%以上とすれば、高温アニール時の温度が1200° C以上で、ボイド欠陥3を消滅させることができる。
- 3) 雰囲気の酸素分圧(高温アニール時、昇温時)を25%以上とし、高温アニール時の温度を、1240° C以上の温度とすれば、ボイド欠陥3を消滅させることができる。
- 4) 単結晶シリコン中の初期酸素濃度が、 10×10^{17} (atoms/cc) よりも高い高酸化濃度になるに伴い、高温アニール時の温度を、 1260° Cよりも高温側に移行させるとともに、雰囲気の酸素分圧(高温アニール時、昇温時)を25%よりも高圧側に移行させることで、ボイド欠陥3を消滅させることができる。

産業上の利用可能性

本発明は単結晶シリコンのウェーハに熱処理を施す場合のみならず単結晶シリコンのブロック (インゴット)、シリコンウェーハを複数枚、スタック配置したものに熱処理を施す場合についても適用される。

請求の範囲

1. CZ法により製造された単結晶シリコンに対して酸化処理を行う工程と、

少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする

単結晶シリコンの欠陥消滅方法。

2. C Z法により製造された単結晶シリコンに対して酸化処理を行い、3 96nm~400nmの範囲の最低膜厚の初期酸化膜を形成する工程と、

少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする

単結晶シリコンの欠陥消滅方法。

3. C Z法により製造された単結晶シリコンのブロックに対して酸化処理を行う工程と、

少なくとも1300° C近傍の温度で超高温熱処理を行うことにより、単結晶シリコンのプロック中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする

単結晶シリコンの欠陥消滅方法。

4. C Z 法により製造された単結晶シリコンのウェーハに対して酸化処理を行う工程と、

前記単結晶シリコンウェーハを複数枚積み重ねる工程と、

前記複数枚積み重ねられた単結晶シリコンウェーハに対して少なくとも1300°C近傍の温度で超高温熱処理を行うことにより、各単結晶シリコンウェーハ中に存在するボイド欠陥を消滅させる工程と

を含むことを特徴とする

単結晶シリコンの欠陥消滅方法。

5. 0.5%~100%の酸素分圧の雰囲気で前記超高温熱処理を行うこと

を特徴とする請求範囲1~4に記載の単結晶シリコンの欠陥消滅方法。

6. 前記単結晶シリコン中の初期酸素濃度は、14×10¹⁷ (atoms/cc) 以下であること

を特徴とする請求範囲1~4に記載の単結晶シリコンの欠陥消滅方法。

7. 前記超高温熱処理が行われる温度まで昇温する過程に、前記酸化処理を行うステップを設けたこと

を特徴とする請求範囲1~4に記載の単結晶シリコンの欠陥消滅方法。

8. 前記超高温熱処理が行われる温度まで昇温する過程に、1200°C以下の温度で前記酸化処理を行うステップを設けたこと

を特徴とする請求範囲1~4に記載の単結晶シリコンの欠陥消滅方法。

9. 前記超高温熱処理が行われる温度まで昇温する過程または当該温度から 降温する過程に、400°C~1000°Cの温度で単結晶シリコンに酸素析出核 を形成する熱処理を行うステップを設けたこと

を特徴とする請求範囲1~4に記載の単結晶シリコンの欠陥消滅方法。

- 10. 前記超高温熱処理が行われた後に、400°C~1000°Cの温度で単段または多段の熱処理を更に行い、単結晶シリコンに酸素析出核を形成することを特徴とする請求範囲1~4に記載の単結晶シリコンの欠陥消滅方法。
- 11. CZ法により製造され、酸化処理が行われていない単結晶シリコンに対して、酸素雰囲気でかつ1200°Cを超えて1310°C未満の範囲内の温度で超高温熱処理を行うことにより、単結晶シリコン中に存在するボイド欠陥を消滅させること

を特徴とする

単結晶シリコンの欠陥消滅方法。

- 12. CZ法により製造され、初期酸化膜を表面に形成した後に、少なくとも 1300° C近傍の温度による超高温熱処理が施されてなることを特徴とする単結晶シリコン。
- 13. CZ法により製造された単結晶シリコンであって、396nm~400nmの範囲の最低膜厚の初期酸化膜を表面に形成した後に、少なくとも1300°C近傍の温度による超高温熱処理が施されてなることを特徴とする単結晶シ

リコン。

- 14. C2法により製造された単結晶シリコンのプロックであって、初期酸化膜を表面に形成した後に、少なくとも1300°C近傍の温度による超高温熱処理が施されてなることを特徴とする単結晶シリコンのプロック。
- 15. C Z 法により製造され、初期酸化膜を表面に形成していない状態で、酸素雰囲気でかつ1200°Cを超えて1310°C未満の範囲内の温度の超高温熱処理が施されてなることを特徴とする単結晶シリコン。
- 16. CZ法により製造され、酸化処理が行われていない単結晶シリコンを、酸素ガス雰囲気あるいは酸素ガス含有雰囲気で超高温まで昇温して超高温熱処理を施し更に降温することにより、単結晶シリコン中に存在するボイド欠陥を消滅させる単結晶シリコンの欠陥消滅方法において、

前記単結晶シリコン中の初期酸素濃度、前記超高温まで昇温する過程の雰囲気の酸素分圧、前記超高温熱処理を施す際の雰囲気の酸素分圧、前記超高温熱処理が行われる温度の各パラメータを調整することにより、前記単結晶シリコン中に存在するボイド欠陥を消滅させるようにしたこと

を特徴とする単結晶シリコンの欠陥消滅方法。

17. 前記超高温熱処理を施す際の雰囲気の酸素分圧を50%以上とし、前記超高温まで昇温する過程の雰囲気の酸素分圧を、25%未満とし、超高温熱処理が行われる温度を、1200°Cを超えて1310°C未満の範囲内の温度とすること

を特徴とする請求範囲16記載の単結晶シリコンの欠陥消滅方法。

18. 前記超高温熱処理を施す際の雰囲気の酸素分圧を、25%以上とし、 前記超高温まで昇温する過程の雰囲気の酸素分圧を、25%以上とし、超高温熱処 理が行われる温度を、1200°C以上の温度とすること

を特徴とする請求範囲16記載の単結晶シリコンの欠陥消滅方法。

19. 前記超高温熱処理を施す際の雰囲気の酸素分圧、前記超高温まで昇温する過程の雰囲気の酸素分圧を25%以上とし、超高温熱処理が行われる温度を、1240°C以上の温度とすること

を特徴とする請求範囲16記載の単結晶シリコンの欠陥消滅方法。

20. 前記単結晶シリコン中の初期酸素濃度が、10×10¹⁷ (atoms/cc)よりも高い高酸化濃度になるに伴い、超高温熱処理が行われる温度を、1260° Cよりも高温側に移行させるとともに、前記超高温熱処理を施す際の雰囲気の酸素分圧、前記超高温まで昇温する過程の雰囲気の酸素分圧を25%よりも高圧側に移行させること

を特徴とする請求範囲16記載の単結晶シリコンの欠陥消滅方法。

FIG. 2

	アル	/ゴン中の酸素:	分圧
│ 処理温度/時間 │	0.5%	30 %	100%
1300℃ 2時間	×	×	
1350℃ 2時間	×	×	. X
1390℃ 2時間	×	×	×

×:肥大化 △:収縮 ○:消滅

FIG. 3

	アル	ンゴン中の酸素分	}圧
処理温度/時間	0.5 %	30 %	100%
1300℃ 2時間	0	Δ .	Δ
1350℃ 2時間	0	0	0
1390℃ 2時間	0	0	0

×:肥大化 △:収縮 ○:消滅

F1G. 4

				初期酸化膜[阿 (nm)		
処理温度/時間	雰囲気	0(自然酸化膜)	45 nm	175 nm	ши 96E	500 nm	mn 007
1350℃ 2時間	0.5 %0 ₂ /Ar	×	×	×	V	0	0
1350℃ 2時間	30 % O ₂ / Ar	×	×	×	×	0	0
1350℃ 2時間	100%0%	×	×	×	×	С	C

3/20 **差替え用紙 (規則26)**

FIG. 5

酸化膜厚	酸化膜形成法	ボイド欠陥
440	CVD	Δ
720	CVD	Δ
55	dry酸化	×
164	dry酸化	×
274	dry酸化	×
400	dry酸化	0
840	dry酸化	0
75	we t 酸化	×
159	we t 酸化	×
377	we t 酸化	×
720	we t 酸化	0

×:肥大化 △:収縮 ○:消滅

FIG. 6

		酸素分圧	
処理温度/時間	ボイド欠陥		
1200℃ 2時間	変化無し		
1240℃ 2時間	0		
1260℃ 2時間	0		
1280℃ 2時間	0		
1300℃ 2時間	0		
1310℃ 2時間	×		
1320℃ 2時間	×		
1350℃ 2時間	×		
1390℃ 2時間	×		

×:肥大化 △:収縮 ○:消滅

FIG. 7

FIG. 8

5/20 差替え用紙(規則26)

FIG. 9

6/20 差替え用紙 (規則26)

FIG. 10

7/20

100 初期酸化膜厚 (nm) As-grownの欠陥サイズ 3000 350 250 200 150 100 50 ≦D.L. (.u.s) 太下せ腳交斗 /木

8/20 芝 馨 え 用 紙 (規則26)

FIG. 12

FIG. 13

9/20

差替え用紙 (規則26)

FIG. 14

FIG. 15

10/20 差替え用紙(規則26)

FIG. 16

FIG. 17

11/20

差替え用紙(規則26)

FIG. 18

		初期酸	素濃度	
 	10e17(a	toms/cc)	15e17(a	t oms/cc)
温度	昇温中	雰囲気	昇温中	雰囲気
	0.5%	100%	0.5%	100%
1200℃	変化無し	変化無し	変化無し	変化無し
1210℃	Δ	Δ	変化無し	変化無し
1220℃	Δ	Δ	変化無し	変化無し
1230℃	Δ	0	変化無し	変化無し
1240℃	0	0	変化無し	変化無し
1260℃	0	0	変化無し	変化無し
1280℃	0	0	変化無し	変化無し
1300℃	0	0	X	Δ
1310℃	X	0	X	0
1320℃	×	0	X	0
1330℃	X	0	X	0
1340℃	×	0	X	0
1350℃	X	0	X	0

肥大化 収縮 消滅 ×

ΔΟ

F. 19

			熱処理の	熱処理の中酸素雰囲	冥	(昇温中を含む)		
迴 麼	初期酸素濃度	表濃度:10	:10e17 atoms/cc	ms/cc	+		5e17 atoms,	ms/cc
	25%	20%	%S <i>L</i>	100%	25%	20%	75%	100%
1260°C	0	0	0	0	変化無し	変化無し	変化無し	数化無し
1280°C	0	0	0	0	変化無し	変化無し	変化無し	数化無し
1300°C	0	0	0	0	変化無し	7	٥	◁
1320°C	0	0	0	0	×	Δ	۷	0
1340°C	0	0	0	0	×	∇	۷	0
1350°C	0	0	0	0	×	V	V	0

13/20

差替え用紙 (規則26)

FIG. 20

14/20

差替え用紙(規則26)

FIG. 21

15/20

FIG. 22

... 16/20 差替え用紙 (規則26**)**

FIG. 23

17/20

差替え用紙 (規則26)

FIG. 24

18/20

差替え用紙 (規則26)

FIG. 25

19/20 差替え用紙 (規則26)

FIG. 26

20/20

差替え用紙 (規則26)

	SIFICATION OF SUBJECT MATTER C1 ⁷ H01L21/324		
According to	o International Patent Classification (IPC) or to both na	tional classification and IPC	
B. FIELD	S SEARCHED		
Minimum d	ocumentation searched (classification system followed C1 H01L21/26-21/268, H01L21/3		/00
Jitsu Koka:	ion searched other than minimum documentation to the 190 Shinan Koho 1922–1996 i Jitsuyo Shinan Koho 1971–2003	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho	o 1994–2003 o 1996–2003
Electronic d	ata base consulted during the international search (nam	e of data base and, where practicable, sea	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap		Relevant to claim No.
X Y	ADACHI, N. et al., "Reduction by High Temperature Annealing Electrochemical Society, 2000 pages 350 to 353	y", Journal of the	1,5,7,8,11, 15,18,19,20 6
X Y	JP 7-201874 A (NEC Corp.), 04 August, 1995 (04.08.95), Full text; Figs. 1 to 9 (Fam	nily: none)	1,5,7-10,17, 18 6
х		CORP.), 6074479 A 99044245 A	1,2,4,5, 9-13,15,18, 19
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.	<u> </u>
* Specia "A" docum conside "E" earlier date "L" docum cited to special "O" docum means "P" docum than th	I categories of cited documents: ent defining the general state of the art which is not ered to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other I reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later the priority date claimed actual completion of the international search	"T" later document published after the interpriority date and not in conflict with the understand the principle or theory und document of particular relevance; the considered novel or cannot be considered step when the document is taken alone document of particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent. Date of mailing of the international sear	he application but cited to lerlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be p when the document is a documents, such in skilled in the art family
13 M	March, 2003 (13.03.03)	25 March, 2003 (25	
	nailing address of the ISA/ nnese Patent Office	Authorized officer	
Facsimile N	lo.	Telephone No.	

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	JP 9-194294 A (Sumitomo Sitix Corp.), 29 July, 1997 (29.07.97), Full text; Figs. 1 to 3 (Family: none)	3,4
Y	UMENO Shigeru et al., "Dependence of Grown-in Defect Behavior on Oxygen Concentration in Czochralski Silicon Crystals", Japanese Journal of Applied Physics Part 1, Vol.38, No.10, 10 October, 1999 (10.10.99), pages 5725 to 5730	6
A	WIJARANAKULA, W. et al., "Effect of high- temperature annealing on the dissolution of the D-defects in n-type Czochralski silicon", Applied Physics Letters, Vol.64, No.8, 21 February, 1994 (21.02.94), pages 1030 to 1032	1-20
A	EP 1035235 A1 (SHIN-ETSU HANDOTAI CO., LTD.), 27 August, 1999 (27.08.99), Full text; Figs. 1 to 10 & WO 00/12786 A1	1-20

Α.	発明の属する分野の分類	(国際特許分類	(I P	C))
----	-------------	---------	-------	----	---

Int. Cl' H01L21/324

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ H01L21/26-21/268, H01L21/322-21/326, C30B1/00-35/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

C

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

関連すると認められる文献

1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Х	ADACHI. N et. al.,	1, 5, 7,
	'Reduction of Grown-In Defects by High Temperature Annealing',	8, 11, 1 5, 18, 1
;	Journal of The Electrochemical Society,	9, 20
Y	2000, Vol. 147, No. 1, pp. 350-353	6

|x| C欄の続きにも文献が列挙されている。

┃ ┃ パテントファミリーに関する別紙を参照。

- 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 13.03.03

25.03.03

国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 萩原 周治

9835 4 L

電話番号 03-3581-1101 内線 3496

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 7-201874 A (日本電気株式会社) 1995.08.04, 全文,第1-9図 (ファミリーなし)	1, 5, 7- 10, 17, 18
X	EP 889510 A1 (SUMITOMO SITIX CORPORATION) 1999. 01. 07, 全文,第1-18図 & JP 10-74771 A 全文,第1-18図 & US 5931662 A & US 6074479 A & WO 98/00860 A1 & KR 99044245 A	1, 2, 4, 5, 9- 13, 15, 18, 19
X	 & TW 348273 B JP 9-194294 A (住友シチックス株式会社) 1997.07.29, 全文,第1-3図 (ファミリーなし) 	3, 14
Y	UMENO Shigeru et. al., 'Dependence of Grown-in Defect Behavior on Oxygen Concentration in Czochralski Silicon Crystals', Japanese Journal of Applied Physics Part 1, Vol. 38, No. 10, 1999. 10. 10, pp. 5725-5730	6
A	WIJARANAKULA. W et. al., 'Effect of high-temperature annealing on the dissolution of the D-defects in n-type Czochralski silicon', Applied Physics Letters, Vol. 64, No. 8, 1994. 02. 21, pp. 1030-1032	1-20
А	EP 1035235 A1 (SHIN-ETSU HONDOTAI CO., LTD) 1999. 08. 27, 全文, 第1-10図 & WO 00/12786 A1	1-20