## Geometria Analítica

Pedro H A Konzen

18 de abril de 2020

## Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite <a href="http://creativecommons.org/licenses/by-sa/4.0/deed.pt\_BR">http://creativecommons.org/licenses/by-sa/4.0/deed.pt\_BR</a> ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

### Prefácio

Nestas notas de aula são abordados tópicos sobre geometria analítica. Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

# Sumário

| Capa                       |                                                       |          |                                                                                                     |  |  |  |  |  |  | i |    |     |                  |
|----------------------------|-------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|---|----|-----|------------------|
| Licença<br>Prefácio        |                                                       |          |                                                                                                     |  |  |  |  |  |  |   |    | ii  |                  |
|                            |                                                       |          |                                                                                                     |  |  |  |  |  |  |   |    | iii |                  |
| Sumário                    |                                                       |          |                                                                                                     |  |  |  |  |  |  |   | iv |     |                  |
| 1                          | Estudo de retas  1.1 Sistema de coordenadas no espaço |          |                                                                                                     |  |  |  |  |  |  |   |    |     | 1<br>1<br>4<br>4 |
|                            |                                                       | 1.2.3 l  | Equações paramétricas de uma reta .<br>Equações da reta na forma simétrica<br>Exercícios resolvidos |  |  |  |  |  |  |   |    |     | 5<br>6<br>6      |
| Re                         | spos                                                  | stas dos | Exercícios                                                                                          |  |  |  |  |  |  |   |    |     | 9                |
| Referências Bibliográficas |                                                       |          |                                                                                                     |  |  |  |  |  |  |   | 10 |     |                  |

## Capítulo 1

### Estudo de retas

Observação 1.0.1. Neste capítulo, assumimos que os códigos Python têm o seguinte preambulo:

```
from sympy import *
from sympy.plotting import plot3d_parametric_line
```

### 1.1 Sistema de coordenadas no espaço

Um sistema de coordenadas no espaço é constituído de um ponto O e uma base de vetores  $B=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$  no espaço. Dado um tal sistema, temos que cada ponto P determina de forma única um vetor  $\overrightarrow{OP}=(x,y,z)$  e vice-versa. Assim sendo, definimos que o ponto P tem coordenadas (x,y,z).

O ponto O é chamado de **origem** (do sistema de coordenados) e tem coordenadas (0,0,0). Dado um ponto P=(x,y,z), chama-se x de sua **abscissa**, y de sua **ordenada** e z de sua **cota**. As retas que passam por O e têm, respectivamente, as mesmas direções de  $\vec{e}_1$ ,  $\vec{e}_2$  e  $\vec{e}_3$  são chamadas de **eixo** das abscissas, eixo das ordenadas e eixo das cotas. Os planos que contém O e representantes de dois vetores da base B são chamados de **planos** coordenados.

Figura 1.1: Sistema de coordenadas ortonormal.

Salvo explicitado ao contrário, trabalharemos com **sistemas de coordenadas ortogonais**, i.e. sistema cuja base  $B = (\vec{i}, \vec{j}, \vec{k})$  seja ortonormal. Mais ainda, estaremos assumindo que a base é positiva. Veja a Figura 1.1. Observação 1.1.1. (Relação entre pontos e vetores) Seja dado um vetor  $\overrightarrow{AB}$ . Sabendo as coordenadas dos pontos  $A = (x_A, y_A, z_A)$  e  $B = (x_B, y_B, z_B)$ , temos que as coordenadas do vetor  $\overrightarrow{AB}$  são:

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} \tag{1.1}$$

$$= -\overrightarrow{OA} + \overrightarrow{OB} \tag{1.2}$$

$$= -(x_A, y_A, z_A) + (x_B, y_B, z_B)$$
 (1.3)

$$= (x_B - x_A, y_B - y_A, z_B - z_A). (1.4)$$

**Exemplo 1.1.1.** Dados os pontos A = (-1,1,2) e B = (3, -1,0), temos que o vetor  $\overrightarrow{AB}$  tem coordenadas:

$$\overrightarrow{AB} = (3 - (-1), -1 - 1, 0 - 2) = (4, -2, -2).$$
 (1.5)

**Observação 1.1.2.** (Ponto médio de um segmento) Dados os pontos  $A = (x_A, y_A, z_A)$  e  $B = (x_B, y_B, z_B)$ , podemos calcular as coordenadas do ponto médio  $M = (x_M, y_M, z_M)$  do segmento AB, do fato de que  $\overrightarrow{AM} = \overrightarrow{MB}$ . Portanto

$$(x_M - x_A, y_M - y_A, z_M - z_A) = (x_B - x_M, y_B - y_M, z_B - z_M),$$
(1.6)

donde

$$2x_M = x_A + x_B \tag{1.7}$$

$$2y_M = y_A + y_B \tag{1.8}$$

$$2z_M = z_A + z_B. (1.9)$$

Logo, temos  $M = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right).$ 

**Exemplo 1.1.2.** Dados os pontos A = (-1,1,2) e B = (3,-1,0), temos que o ponto médio do segmento AB tem coordenadas:

$$M = \left(\frac{-1+3}{2}, \frac{1+(-1)}{2}, \frac{2+0}{2}\right) = (1,0,1). \tag{1.10}$$

#### Exercícios resolvidos

**ER 1.1.1.** Sejam A = (-1,2,1), B = (1,-2,0) e C = (x,2,2) vértices consecutivos de um triângulo isósceles, cujos lados AC e BC são congruentes. Determine o valor de x.

**Solução.** Sendo os lados AC e BC congruentes, temos  $|\overrightarrow{AC}| = |\overrightarrow{BC}|$ . As coordenadas de  $\overrightarrow{AC}$  são

$$\overrightarrow{AC} = (x - (-1), 2 - 2, 2 - 1) = (x + 1, 0, 1)$$
 (1.11)

e as coordenadas de  $\overrightarrow{BC}$  são

$$\overrightarrow{BC} = (x - 1, 2 - (-2), 2 - 0) = (x - 1, 4, 2).$$
 (1.12)

Então, temos

$$|\overrightarrow{AC}| = |\overrightarrow{BC}| \Rightarrow \sqrt{(x+1)^2 + 0^2 + 1^2} = \sqrt{(x-1)^2 + 4^2 + 2^2}$$
 (1.13)

$$\Rightarrow (x+1)^2 + 0^2 + 1^2 = (x-1)^2 + 4^2 + 2^2 \tag{1.14}$$

$$\Rightarrow x^2 + 2x + 1 + 1 = x^2 - 2x + 1 + 16 + 4 \tag{1.15}$$

$$\Rightarrow 4x = 19 \tag{1.16}$$

$$\Rightarrow x = \frac{19}{4}.\tag{1.17}$$

 $\Diamond$ 

**ER 1.1.2.** Sejam A = (-1,2,1), B = (1, -2,0) e M o ponto médio do intervalo AB. Determine as coordenadas do ponto P de forma que 2AP = AM.

Solução. As coordenadas do ponto médio são

$$M = \left(\frac{-1+1}{2}, \frac{2+(-2)}{2}, \frac{1+0}{2}\right) = \left(0, 0, \frac{1}{2}\right). \tag{1.18}$$

Agora, denotando  $P = (x_P, y_P, z_P)$ , temos

$$2AP = AM \Rightarrow 2(x_P - (-1), y_P - 2, z_P - 1) = \left(0 - (-1), 0 - 2, \frac{1}{2} - 1\right)$$
(1.19)

$$\Rightarrow (2x_p + 2, 2y_P - 4, 2z_P - 2) = \left(1, -2, -\frac{1}{2}\right). \tag{1.20}$$

Portanto

$$2x_P + 2 = 1 \Rightarrow x_P = -\frac{1}{2} \tag{1.21}$$

$$2y_P - 4 = -2 \Rightarrow y_P = 1 \tag{1.22}$$

$$2z_P - 2 = -\frac{1}{2} \Rightarrow z_P = \frac{3}{4}. (1.23)$$

Logo, P = (-1/2, 1, 3/4).

#### Exercícios

Em construção ...

### 1.2 Equações da reta

#### 1.2.1 Equação vetorial de uma reta

Seja r uma reta dada,  $\vec{v}$  um vetor paralelo a r e A um ponto de r (veja a Figura 1.2). Assim sendo, P é um ponto de r se, e somente se, existe  $\lambda \in \mathbb{R}$  tal que

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{1.24}$$

Esta é chamada equação vetorial da reta r.

Figura 1.2: Equação vetorial de uma reta.

Observe que para obtermos uma equação vetorial de uma dada reta, podemos escolher qualquer ponto  $A \in r$  e qualquer vetor  $\vec{v} \parallel r$ ,  $\vec{v} \neq \vec{0}$ . O vetor  $\vec{v}$  escolhido é chamado de **vetor diretor**.

**Exemplo 1.2.1.** Seja r a reta que passa pelos pontos A = (-1, -1, -2) e B = (2,1,3) (veja a Figura 1.3). O vetor

$$\vec{v} = \overrightarrow{AB} = (2 - (-1), 1 - (-1), 3 - (-2)) = (3, 2, 5)$$
 (1.25)

é um vetor diretor de r. Desta forma, uma equação vetorial da reta r é

$$\overrightarrow{AP} = \lambda \overrightarrow{v}. \tag{1.26}$$

Figura 1.3: Esboço da reta discutida no Exemplo 1.2.1.

#### 1.2.2 Equações paramétricas de uma reta

Seja r uma reta que passa pelo ponto  $A=(x_A,y_A,z_A)$  e tenha vetor diretor  $\vec{v}=(v_1,v_2,v_3)$ . Assim,  $P=(x,y,z)\in r$  se, e somente se, existe  $\lambda\in\mathbb{R}$  tal que

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{1.27}$$

Equivalentemente,

$$(x - x_A, y - y_A, z - z_A) = \lambda(v_1, v_2, v_3). \tag{1.28}$$

Então,

$$x - x_A = \lambda v_1, \tag{1.29}$$

$$y - y_A = \lambda v_2, \tag{1.30}$$

$$z - z_A = \lambda v_3, \tag{1.31}$$

donde

$$x = x_A + \lambda v_1, \tag{1.32}$$

$$y = y_A + \lambda v_2, \tag{1.33}$$

$$z = z_A + \lambda v_3, \tag{1.34}$$

as quais são chamadas de equações paramétricas da reta r.

**Exemplo 1.2.2.** A reta r discutida no Exemplo 1.2.1 tem equações paramétricas

$$x = -1 + 3\lambda,\tag{1.35}$$

$$y = -1 + 2\lambda, \tag{1.36}$$

$$z = -2 + 5\lambda. \tag{1.37}$$

De fato, tomando  $\lambda=0$ , temos  $(x,y,z)=(-1,-1,-2)=A\in r$ . E, tomado  $\lambda=1$ , temos  $(x,y,z)=(-1+3,-1+2,-2+5)=(2,1,3)=B\in r$ . Ou seja, as equações paramétricas acima representam a reta que passa pelos pontos  $A\in B$ .

Com o Sympy, podemos plotar o gráfico de r usando o seguinte código<sup>1</sup>:

<sup>&</sup>lt;sup>1</sup>Veja a Observação 1.0.1.

#### 1.2.3 Equações da reta na forma simétrica

Seja r uma reta que passa pelo ponto  $A = (x_A, y_A, z_A)$  e tem  $\vec{v} = (v_1, v_2, v_3)$  como vetor diretor. Então, r tem as equações paramétricas

$$x = x_A + v_1 \lambda, \tag{1.38}$$

$$y = y_A + v_2 \lambda, \tag{1.39}$$

$$z = z_A + v_3 \lambda. \tag{1.40}$$

Isolando  $\lambda$  em cada uma das equações, obtemos

$$\frac{x - x_A}{v_1} = \frac{y - y_A}{v_2} = \frac{z - z_A}{v_3},\tag{1.41}$$

as quais são as equações da reta na forma simétrica.

**Exemplo 1.2.3.** No Exemplo 1.2.2, consideramos a reta r de equações paramétricas

$$x = -1 + 3\lambda, \tag{1.42}$$

$$y = -1 + 2\lambda, \tag{1.43}$$

$$z = -2 + 5\lambda. \tag{1.44}$$

Para obtermos as equações de r na forma simétrica, basta isolarmos  $\lambda$  em cada equação. Com isso, obtemos

$$\frac{x+1}{3} = \frac{y+1}{2} = \frac{z+2}{5}. (1.45)$$

#### 1.2.4 Exercícios resolvidos

**ER 1.2.1.** Seja r a reta que passa pelo ponto A = (-1, -1, -2) e tem  $\vec{v} = (3,2,5)$  como vetor diretor. Determine o valor de x de forma que P = (x,0,1/2) seja um ponto de r.

**Solução.** P=(x,0,1/2) é um ponto de r se, e somente se, existe  $\lambda\in\mathbb{R}$  tal que

$$\overrightarrow{AP} = \lambda \overrightarrow{v}. \tag{1.46}$$

Ou seja,

$$\left(x - (-1), 0 - (-1), \frac{1}{2} - (-2)\right) = \lambda(3, 2, 5). \tag{1.47}$$

Ou, equivalentemente,

$$\left(x+1,1,\frac{5}{2}\right) = \lambda(3,2,5). \tag{1.48}$$

Usando a segunda coordenada destes vetores, temos

$$1 = \lambda \cdot 2 \Rightarrow \lambda = \frac{1}{2}.\tag{1.49}$$

Assim, da primeira coordenada dos vetores, temos

$$x + 1 = \lambda 3 \Rightarrow x + 1 = \frac{3}{2}$$
 (1.50)

$$\Rightarrow x = \frac{3}{2} - 1 = \frac{1}{2}.\tag{1.51}$$

 $\Diamond$ 

ER 1.2.2. Seja r a reta de equações paramétricas

$$x = 1 - \lambda, \tag{1.52}$$

$$y = \lambda, \tag{1.53}$$

$$z = -3. (1.54)$$

Determine uma equação vetorial de r.

**Solução.** Nas equações paramétricas de uma reta, temos que os coeficientes constantes estão associados a um ponto da reta. Os coeficientes de  $\lambda$  estão associados a um vetor diretor. Assim sendo, das equações paramétricas da reta r, temos que  $A=(1,0,-3)\in r$  e  $\vec{v}=(-1,1,0)$  é um vetor diretor. Logo, temos que a reta r tem equação vetorial

$$\overrightarrow{AP} = \lambda \overrightarrow{v}, \tag{1.55}$$

com A = (1,0,3) e  $\vec{v} = (-1,1,0)$ .

 $\Diamond$ 

**ER 1.2.3.** Sabendo que r é uma reta que passa pelos pontos A = (2, -3, 1) e B = (-1, 1, 0), determine o valor de t tal que

$$x = 2 + t\lambda, \tag{1.56}$$

$$y = -2 + 4\lambda, \tag{1.57}$$

$$z = 1 - \lambda,\tag{1.58}$$

sejam equação paramétricas de r.

**Solução.** Para que estas sejam equações paramétricas de r, é necessário que  $\vec{v} = (t,4,-1)$  seja um vetor diretor de r. Em particular,  $\vec{v} \parallel \overrightarrow{AB}$ . Logo, existe  $\beta \in \mathbb{R}$  tal que

$$(t,4,-1) = \beta(-1-2,1-(-3),0-1) = \beta(-3,4,-1). \tag{1.59}$$

Das segunda e terceira coordenadas, temos  $\beta=1$ . Daí, comparando pela primeira coordenada, temos

$$t = -3\beta \Rightarrow t = -3. \tag{1.60}$$

 $\Diamond$ 

ER 1.2.4. Seja r uma reta, cujas equações na forma simétrica são

$$\frac{x+1}{2} = \frac{y-2}{3} = \frac{1-z}{2}. (1.61)$$

Determine equações paramétricas desta reta e faça um esboço de seu gráfico.

**Solução.** Podemos obter equações paramétricas desta reta a partir de suas equações na forma simétrica. Para tanto, basta tomar o parâmetro  $\lambda$  tal que

$$\lambda = \frac{x+1}{2},\tag{1.62}$$

$$\lambda = \frac{y-2}{3},\tag{1.63}$$

$$\lambda = \frac{1-z}{2}.\tag{1.64}$$

Daí, isolando  $x, y \in z$  em cada uma destas equações, obtemos

$$x = -1 + 2\lambda,\tag{1.65}$$

$$y = 2 + 3\lambda, \tag{1.66}$$

$$z = 1 - 2\lambda. \tag{1.67}$$

Para fazermos um esboço do gráfico desta reta, basta traçarmos a reta que passa por dois de seus pontos. Por exemplo, tomando  $\lambda=0$ , temos  $A=(-1,2,1)\in r$ . Agora, tomando  $\lambda=1$ , temos  $B=(1,5,-1)\in r$ . Desta forma, obtemos o esboço dado na Figura 1.4.

Figura 1.4: Esboço do gráfico da reta r do Exercício Resolvido 1.2.4.

 $\Diamond$ 

# Resposta dos Exercícios

# Referências Bibliográficas

[1] D.A. de Mello and R.G. Watanabe. Vetores e uma iniciação à geometria analítica. Livraria da Física, 2. edition, 2011.