Вероятности

Определение 1. Пусть Ω — вероятностное пространство (некоторое множество). Назовём *алгеброй событий* $\mathscr F$ некоторое семейство подмножеств множества Ω , такое, что

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \Rightarrow \overline{A} = \Omega \backslash A \in \mathscr{F}$ ($\Omega \backslash A$ обозначает дополнение до множества A в множестве Ω). В частности, $\{\varnothing\} \in \mathscr{F}$.
- $A_1,...,A_n\in\mathscr{F}\Rightarrow\bigcup_{i=1}^nA_i\in\mathscr{F}.$ Более того, если $\{A_i\}$ счётная последовательность множеств, то $\bigcup_{i=1}^\infty A_i\in\mathscr{F}.$

Элементы семейства \mathscr{F} называются событиями.

Пример 1. Пусть Ω — конечное множество. В качестве алгебры событий \mathscr{F} возьмём множество всех подмножеств Ω (это понятие имеет смысл в силу конечности Ω). В этом случае одноэлементные подмножества (т. е. просто элементы) вероятностного пространства Ω называются элементарными исходами.

Задача 1. Пусть A,B — события в Ω , принадлежащие алгебре событий \mathscr{F} . Докажите, что $A\cap B\in\mathscr{F},\,A\backslash B\in\mathscr{F}.$

Задача 2. Пусть $A_1, ..., A_n$ — некоторые события в Ω . Рассмотрим наименьшую по включению алгебру \mathscr{F} событий, содержащую все данные события. Какое наибольшее число элементов может быть в этой алгебре? (Число элементов в \mathscr{F} — это число подмножеств Ω , входящих в \mathscr{F}).

Определение 2. Наименьшая алгебра множеств \mathscr{F} , содержащая все множества $A_1, ..., A_n$, называется алгеброй, порожедённой множествами $A_1, ..., A_n$ и обозначается $\mathscr{F}\{A_1, ..., A_n\}$.

Пример 2. Рассмотрим отрезок прямой [0,1]. И рассмотрим алгебру \mathscr{F} , порождённую всевозможными открытыми подмножествами отрезка, то есть открытыми полуинтервалами (a,b) отрезка и полуинтервалами [0,a) и (a,1]. Такая алгебра называется борелевской (в честь французского математика Эмиля Бореля (1871-1956). Аналогично можно определить борелевскую алгебру в фиксированном квадрате (круге) или фиксированном кубе (шаре). Соответствующая алгебра для квадрата будет натягиваться на пересечения кружочков с данным фиксированным квадратом, а для куба — на пересечения всех возможных шариков трёхмерного пространства с кубом.

Определение 3. Пусть дано вероятностное пространство Ω с выделенной в нём алгеброй событий \mathscr{F} . Тогда функция $\mathbb{P}:\mathscr{F}\to [0,1]$ называется вероятностной мерой, если:

- $\mathbb{P}(A) \geqslant 0$ для любого события A из алгебры событий \mathscr{F} .
- $\mathbb{P}(\Omega) = 1$.
- Для любой счётной (в частности, конечной) последовательности попарно непересекающихся множеств $\{A_i\}$ из \mathscr{F} выполнено $\mathbb{P}(A_1 \cup A_2 \cup A_3 \cup ...) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) + ...$

Пример 3. Пусть Ω — конечное множество, состоящее из n элементов. Возьмём в качестве алгебры событий \mathscr{F} просто все возможные подмножества множества Ω . Как говорилось в примере 1, в этом случае элементы множества Ω называются элементарными исходами. Припишем всем точкам по одинаковому весу 1/n, то есть для каждого элемента ω множества Ω мы будем иметь $\mathbb{P}(\{\omega\}) = 1/n$. Тогда вероятность произвольного события A из m элементов будет равна $\mathbb{P}(A) = \mathbb{P}(\{\omega_1\} \cup ... \cup \{\omega_m\}) = 1/n + 1/n + ... + 1/n = m/n$. В этом случае элементы множества A называются благоприятными исходами. То есть вероятность события A есть отношение числа благоприятных элементарных исходов к общему числу элементарных исходов.

Пример 4. Рассмотрим в качестве Ω отрезок [0,1] с борелевской алгеброй событий на нём из примера 2. Определим вероятностную меру на образующих элементах алгебры, то есть на интервалах и полуинтервалах, как обычную длину, т. е. $\mathbb{P}([a,b]) = \mathbb{P}([a,b]) = \mathbb{P}((a,b]) = \mathbb{P}((a,b]) = b-a$, если $a \leq b$ и $a,b \in [0,1]$. Если исходно отрезок Ω имел неединичную длину, то чтобы получить меру на таком отрезке, нужно будет произвести нормировку, то есть делить длину события-отрезка на длину всего отрезка-пространства.

Пример 5. Можно рассмотреть в качестве Ω квадрат $[0,1] \times [0,1]$ и определить меру $\mathbb P$ на прямоугольниках через обычную площадь. Если квадрат неединичный, то здесь работает то же соображение, что и с отрезком — нужно произвести нормировку: мерой будет отношение площади фигуры к площади всего квадрата.

Задача 3. Пусть $A \subset B$, где A и B принадлежат алгебре событий \mathscr{F} на вероятностном пространстве Ω . Докажите, что $\mathbb{P}(A) \leqslant \mathbb{P}(B)$.

Задача 4. Докажите, что $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ для любых двух элементов A и B алгебры событий \mathscr{F} на вероятностном пространстве Ω .

В каждой задаче ниже желательно сначала определить вероятностное пространство, алгебру событий. Если алгебра событий дискретна, то требуется понять, что представляют собой элементарные исходы и что является благоприятными исходами. Если же алгебра недискретная, например, Ω является отрезком квадратом и т. п., то требуется выделить интересующее событие и отыскать его длину, площадь и т. п. (либо отношение его площади к площади всего пространства, если изначально оно не нормировано на 1).

Задача 5. Три усталых ковбоя зашли в салун, и повесили свои шляпы на бизоний рог при входе. Когда глубокой ночью ковбои уходили, они были не в состоянии отличить одну шляпу от другой и поэтому разобрали три шляпы наугад. Найдите вероятность того, что никто из них не взял свою собственную шляпу.

Задача 6. В игре «Поле Чудес» ведущий предложил игроку угадать, в какой из трёх коробок лежит приз. Игрок делает выбор. После этого ведущий открывает заведомо пустую коробку. Что выгоднее для игрока: поменять свой выбор (выбрать другую закрытую коробку) или не менять выбор?

Задача 7. В магазине на полку слева направо нужно расставить 10 одинаковых книг Франца Кафки, 5 одинаковых книг Германа Гессе, 7 одинаковых книг Оскара Уйалда, 8 одинаковых книг Стивена Кинга и 10 одинаковых книг Рэя Брэдбери именно в таком порядке. Но уставшая продавщица Зинаида расставила их все, как попало. С какой вероятностью Зинаида правильно расставит книги?

Задача 8. На новогоднюю ёлку повесили 100 лампочек в ряд. Затем лампочки стали переключаться по следующему алгоритму: зажглись все, через секунду погасла каждая вторая лампочка, ещё через секунду каждая третья лампочка переключилась: если горела, то погасла и наоборот. Через секунду каждая четвёртая лампочка переключилась, ещё через секунду — каждая пятая и так далее. Через 100 секунд всё закончилось. Найдите вероятность того, что случайно выбранная после этого лампочка горит (лампочки не перегорают и не бьются).

Задача 9. Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?

Задача 10. Прутик ломают в двух случайных точках. Найдите вероятность того, что из трёх получившихся частей можно составить треугольник.

Задача 11. На бесконечную шахматную доску, у которой все поля – квадраты со стороной 4, наудачу бросают монету радиусом 1. Какова вероятность того, что монета целиком попадёт в один в квадрат?

Задача 12. Гриша и Маша решили встретиться на автобусной остановке с 10:00 до 11:00. Гриша случайно приходит в этот промежуток времени на остановку и ждёт 10 минут, после чего уходит. Маша делает так же. Какова вероятность того, что они встретятся?