Vibrational Analysis of Water Using the SPC Force Field Model

Jesse Maki & Emma Brugman

CHEM 279

Project Introduction

Team

Jesse Maki

Implemented: Lennard-Jones Potential Angle Potential Energy Hessian Matrix Plotting

Emma Brugman

Implemented:
Coulombic energy
Bond Angle Energy
Mass-weighting &
Diagonalization
Plotting

Topic & Objectives

Vibrational Analysis of Water Using the SPC Force Field Model

Objectives:

- Input Geometry to Building the Atomic System
- 2. Initialize SPC/E Model and Compute Force and Energy Calculations
- 3. Hessian Matrix Calculation
- 4. Mass-weighted Hessian Matrix
- 5. Initialize SPC/FW Model and Compute Vibrational Modes (Eigenvalues & Wavelengths)

02

Methodology

Input Files & Geometry

- Provides initial atomic coordinates of water molecules.
- H20 files are already defined as theoretical optimum due to rigid model constraints.

```
3
8 0.000000 0.000000 0.000000
1 0.000000 1.012000 0.000000
1 0.000000 -0.405300 0.927300
```


SPC/E

- Models water as a rigid isosceles triangle with fixed geometry.
- Bond length: 1.0 Å (O-H); H-O-H angle: 109.47°
- Coulombic + Lennard-Jones Energy

$$E_{LJ} = \sum_{i < j, \, O-O \, Pairs} 4\varepsilon_{O} \left[\left(\frac{\sigma_{O}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{O}}{r_{ij}} \right)^{6} \right], \, for \, r_{ij} < r_{cutoff}$$

$$E_{coulomb} = \sum_{i < j} \frac{q_i q_j}{r_{ij}}, for r_{ij} > 0 \text{ and } r_{ij} < r_{cutoff}$$

Parameter	Original Theoretical Values	Converted to Atomic Units
σ_{oo}	3.166 Å	5.9819129309 Bohr
ε ₀₀	0.650 kJ mol ⁻¹	0.000247572 Hartrees
$r_{o\scriptscriptstyle H}$	1.000 Å	1.88973 Bohr
< _{HOH}	109.47°	1.91061193 Radian
$q_{_{O}}$	-0.8476e	-0.8476e
$q_{_H}$	0.4238	0.4238e
Polarization Constant	1.25 kcal/mol	0.001992 Hartree

SPC/FW

- Models water as a flexible 3-site molecule with harmonic bond and angle potentials
- Bond length (0-H): 1.012 Å; H-O-H angle: 113.24°
- Intermolecular Coulombic + Lennard Jones + Bond Energy + Angle Energy

$$V^{ ext{inter}} = \sum_{ij}^{ ext{all pairs}} \left\{ 4\epsilon_{ij} \left[\left(rac{\sigma_{ij}}{R_{ij}}
ight)^{12} - \left(rac{\sigma_{ij}}{R_{ij}}
ight)^6
ight] + rac{q_i q_j}{R_{ij}}
ight\}$$

Parameter	Value	Converted to Atomic Units		
σ_{oo}	3.165492 Å	5.982 Bohr		
ε ₀₀	0.1554253 kcal mol ⁻¹	0.000247 Hartrees		
q_o	-0.82 e	-0.82 e		
$q_{_H}$	0.41e	0.41 e		
k_b	1059.162 kcal. mol ⁻¹ Å ⁻²	0.474 Hartree/Bohr ²		
r^{eq}_{OH}	1.012 Å	1.912 Bohr		
k _a	75.90 kcal. mol ⁻¹ rad ⁻²	0.145 Hartree/Radians ²		
$\vartheta^{eq}<_{HOH}$	113.24°	1.976 Radians		
$V_{ m band} = rac{1}{2} k_{ m e} (r - r_0)^2 V_{ m angle} = rac{1}{2} k_{ m e} (heta - heta_0)^2$				

$$V_{
m bond} = rac{1}{2} k_r (r-r_0)^2 \quad V_{
m angle} = rac{1}{2} k_ heta (heta - heta_0)^2$$

Forces & Hessian Matrix

Force Calculation: $F_i \approx -\frac{E(x_i+h)-E(x_i-h)}{2h}$

- Method: Central difference approximation for numerical derivatives.
- Gradient of potential energy, used to compute the Hessian.

Hessian Matrix: $H_{ij} \approx -\frac{F_i(x_j^+ h) - F_i(x_j^- h)}{2h}$

- Method: Central difference approximation for numerical derivatives
- Captures curvature of energy surface

```
======= Force Calculation ========

Central Difference Forces (Hartree/Bohr):
0 0 0
-3.6361e-04 -1.9095e-04 5.5455e-04
-5.4853e-04 5.1940e-04 2.9030e-05
```

Mass-weighting & Diagonalization

Mass-weighting

• Rescales Hessian using atomic masses:

$$ilde{H}_{ij} = rac{H_{ij}}{\sqrt{m_i m_j}}$$

Diagonalization

- Solves for eigenvalues (ω^2) to get normal modes
- Eigenvalues > 0: vibrational frequency

$$u_i = \sqrt{\lambda_i} imes 5140.484532$$

- Eigenvalues < 0: imaginary frequency
- Converts eigenvalues (ω^2) to frequencies in wavenumbers (cm⁻¹) using the conversion factor: 5140.484532 cm⁻¹

Mode classification

- Degrees of freedom (H2O): 3N = 9
- 3 translational modes + 3 rotational modes = 6
- So, 9-6 = 3 vibrational modes

Results

- Each absorption peak corresponds to a vibrational mode
 - Bending mode: ~1600 cm^-1
 - O-H Stretch (symmetric and asymmetric): ~3200-3650 cm^-1
- Libarations: ~400-900 cm^-1
- Water's IR spectrum is widely researched, making it ideal for validating computational models

IR Spectroscopy


```
Frequencies (cm^-1):
    Imaginary (-0.15959)
    Imaginary (-0.06901)
    Imaginary (-0.00597)
    Imaginary (-0.00434)
    214.00076 cm^-1
    1361.21608 cm^-1
    1427.41430 cm^-1
    1438.60926 cm^-1
    1510.15642 cm^-1
```


Frequencies (cm^-1):
 Imaginary (-0.00034)
 Imaginary (-0.00000)
 Imaginary (-0.00000)
 0.12060 cm^-1
 53.22013 cm^-1
 86.56577 cm^-1
 1502.25602 cm^-1
 3592.24853 cm^-1
 3677.14667 cm^-1

1H20 molecule

Discussion

Hydrogen Bonding

Mode	3 H₂O Molecules (cm⁻¹)	H-Bonded System (cm ⁻¹)	Assignment
1–10	Imaginary	Imaginary	Rotations / Translations
11	5.36	0.00514	Low-frequency translation
12	10.73	0.00618	Low-frequency vibration
13	28.03	8.87	Intermolecular vibration
14	37.56	94.79	Intermolecular bend
15	47.80	207.10	Intermolecular bend
16	478.48	270.95	Bending (HOH) mode
17	481.90	681.42	Bending (HOH) mode
18	487.93	783.23	Bending (HOH) mode
19	1495.52	857.31	Bending mode
20	1496.04	1431.32	Bending \$mode
21	1496.85	1435.15	Bending mode
22	3605.38	3601.30	Stretching (OH)
23	3605.68	3603.87	Stretching (OH)
24	3605.90	3605.55	Stretching (OH)
25	3663.86	3687.49	Free OH stretch
26	3664.18	3691.61	Free OH stretch
27	3664.39	3699.93	Free OH stretch

3 H20 molecule - 2.2 A

3 H20 molecule - 5 A

Thank You

Ouestions?

References

- 1. http://www.sklogwiki.org/SklogWiki/index.php/SPC/E model of water
- 2. http://www.sklogwiki.org/SklogWiki/index.php/SPC/Fw_model_of_water
- https://en.wikipedia.org/wiki/Water_model
- 4. https://water.lsbu.ac.uk/water/water_vibrational_spectrum.html
- 5. https://www.colby.edu/chemistry/PChem/Hartree.html
- 6. https://pubmed.ncbi.nlm.nih.gov/17115765/

Future Directions

Expand the theory to allow ion analysis (Zundel Cation)