Lecture 14

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Reading: Cryer and Chen (2008): Chapter 3.3-3.4; Chapter 6.4; Chapter 11.3-11.4

MATH 4070: Regression and Time-Series Analysis

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mod

Squares Regression

Time Series Analysis

purious Correlation nd Prewhitening

Whitney Huang Clemson University

Agenda

- Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening
- MATHEMATICAL AND STATISTICAL SCIENCE Chemical Visited Statistical Science
- Regression Mode
- Squares Regression
- Time Series Analysis

- Time Series Regression Models
- 2 Generalized Least Squares Regression
- **3** Unit Root Tests in Time Series Analysis
- Spurious Correlation and Prewhitening

$$Y_t = m_t + \eta_t,$$

where

- m_t captures the mean of $\{Y_t\}$, i.e., $\mathbb{E}(Y_t)$ = m_t
- $\{\eta_t\}$ is a zero mean stationary process with ACVF $\gamma_{\eta}(\cdot)$

The component $\{m_t\}$ may depend on time t, or possibly on other explanatory series

Regression Mod

Squares Regression

ime Series Analysis

- Constant trend model: For each t let m_t = β_0 for some unknown parameter β_0
- Simple linear regression: For unknown parameters β_0 and β_1 ,

$$m_t = \beta_0 + \beta_1 x_t,$$

where $\{x_t\}$ is some explanatory variable indexed in time (may just be a function of time or could be other series)

Harmonic regression: For each t let

$$m_t = A\cos(2\pi\omega t + \phi),$$

where A>0 is the amplitude (an unknown parameter), $\omega>0$ is the frequency of the sinusoid (usually known), and $\phi\in(-\pi,\pi]$ is the phase (usually unknown). We can rewrite this model as

$$m_t = \beta_0 x_{1,t} + \beta_1 x_{2,t},$$

where $x_{1,t} = \cos(2\pi\omega t)$ and $x_{2,t} = \sin(2\pi\omega t)$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

rime Series Regression Mod

eneralized Least quares Regressio

Unit Root Tests in Time Series Analysis

$$Y_t = m_t + \eta_t,$$

where

$$m_t = \beta_0 + \sum_{j=1}^p \beta_j x_{j,t},$$

and $\{\eta_t\}$ is a mean zero stationary process with ACVF $\gamma_n(\cdot)$ We can write the linear model in matrix notation:

$$Y = X\beta + \eta$$
,

where $Y = (Y_1, \dots, Y_n)^T$ is the observation vector, the coefficient vector is $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$, $\boldsymbol{\eta} = (\eta_1, \dots, \eta_n)^T$ is the error vector, and the design matrix is

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p,2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p,n} \end{bmatrix}$$

Regression with Time Series Errors. Unit Root Tests.

Suppose $\{\eta_t\}$ is i.i.d. $N(0, \sigma^2)$. Then the ordinary least squares (OLS) estimate of β is

$$\hat{\boldsymbol{\beta}}_{\text{OLS}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y},$$

with

$$\hat{\sigma}^2 = \frac{\left(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}_{\text{OLS}} \right)^T \left(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}_{\text{OLS}} \right)}{n - (p + 1)}$$

- Gauss-Markov theorem: $\hat{\beta}_{OLS}$ is the best linear unbiased estimator (BLUE) of β
- We have

$$\hat{\boldsymbol{\beta}}_{\text{OLS}} \sim \text{N}(\boldsymbol{\beta}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1})$$

is independent of

$$\frac{(n-(p+1))\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-(p+1)}$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mo

Generalized Least
Squares Regression

Unit Root Tests in Time Series Analysis

Temperatures and Tree Ring Proxies [Jones & Mann, 2004]

Residuals from a linear regression fit are correlated in time ⇒ OLS is not appriate here ⊚

10

Lag

15

20

-0.2

0

Regression with
Time Series Errors,
Unit Root Tests,
Spurious
Correlations, and
Prewhitening

Regression I

quares Regression

Unit Root Tests in Time Series Analysis

When dealing with time series the errors $\{\eta_t\}$ are typically correlated in time

• Assuming the errors $\{\eta_t\}$ are a stationary Gaussian process, consider the model

$$Y = X\beta + \eta$$
,

where η has a multivariate normal distribution, i.e., $\eta \sim N(\mathbf{0}, \Sigma)$

• The generalized least squares (GLS) estimate of β is

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = \left(\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y},$$

with

$$\hat{\sigma}^2 = \frac{\left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_{\text{GLS}} \right)^T \left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_{\text{GLS}} \right)}{n - (p+1)}$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Models

nit Poot Tosts in

purious Correlation

14.8

Distributional Properties of Estimators

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Mode

Squares Regression

Time Series Analysis

Spurious Correlation and Prewhitening

Gauss-Markov theorem: $\beta_{\rm GLS}$ is the best linear unbiased estimator (BLUE) of β

We have

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} \sim N(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \Sigma^{-1} \boldsymbol{X} \right)^T)$$

• The variance of linear combinations of $\hat{\beta}_{GLS}$ is less than or equal to the variance of linear combinations of $\hat{\beta}_{OLS}$, that is:

$$\operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}\right) \leq \operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}\right)$$

MATHEMATICAL AND STATISTICAL SCIENCE: Cleanson University

A two-step procedure

- Stimate β by OLS, calculating the residuals $\hat{\eta} = Y X\hat{\beta}_{OLS}$, and fit an ARMA to $\hat{\eta}$ to get Σ
- 2 Re-estimate β using GLS
- Alternatively, we can consider one-shot maximum likelihood methods

Conoralized Least

Init Poot Tosts in

Ime Series Analysis

Likelihood-Based Regression Methods

Model:

$$Y = X\beta + \eta$$
,

where $\eta \sim N(\mathbf{0}, \Sigma)$

$$\Rightarrow Y \sim N(X\beta, \Sigma)$$

We maximum the Gaussian likelihood

$$L_n(\boldsymbol{\beta}, \boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^2)$$

$$= (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp \left[-\frac{1}{2} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T \Sigma^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \right]$$

with respect to the regression parameters β and ARMA parameters ϕ , θ , σ^2 simultaneously

Regression with Time Series Errors. **Unit Root Tests.** Correlations, and

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Let's conduct a Monte Carlo simulation with the following data-generating mechanism:

$$Y_t = 3 + 0.5x_{ty} + \eta_t,$$

where $\eta_t = 0.8\eta_{t-1} + Z_t - 0.4Z_{t-1}, Z_t \sim N(0, 1)$.

- Simulate 500 replications, each with 200 data points
- ② Apply the two-step procedure: fit OLS, extract residuals, estimate ARMA model for $\hat{\Sigma}$, then refit using GLS.
- Apply the one-step procedure to jointly estimate regression and ARMA parameters
- Compare the estimation performance

Regression Models

uares Regression

Time Series Analys

Comparing Regression Slope Estimates

Method	OLS	GLS	MLE
Bias	-4e-4	9e-4	9e-4
Sd	0.046	0.035	0.035
CI coverage	90.8%	93.6%	93.6%
CI width	0.162	0.129	0.129

Regression with
Time Series Errors,
Unit Root Tests,
Spurious
Correlations, and
Prewhitening

Regression Mode

Squares Regression

Unit Root Tests in Time Series Analysis

Comparing ARMA Estimates

Method	GLS	MLE
Bias	-0.038	-0.036
Sd	0.090	0.089
CI coverage	96.6%	96.2%
CI width	0.330	0.328

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Model

Squares Regression

Time Series Analysis

$$Y_t = m_t + \eta_t$$

where

$$m_t = \beta_0 + \beta_1 t$$
 $\{\eta_t\}$ is some ARMA (p,q) process

- Scientific Question: Is there evidence that the lake level has changed linearly over the years 1875-1972?
- Statistical Hypothesis:

Regression Models

Squares Regression

Init Root Tests in

Spurious Correlation

Fitting Result form the Two-Step Procedure

OLS:

lm(formula = LakeHuron ~ years)

Residuals:

Min 1Q Median 3Q Max -2.50997 -0.72726 0.00083 0.74402 2.53565

Coefficients:

Estimate Std. Error t value (Intercept) 625.554918 7.764293 80.568 years -0.024201 0.004036 -5.996

AR: arima(x = lm\$residuals, order = c(2, 0, 0), include.mean = FALSE)

Coefficients:

ar1 ar2 1.0050 -0.2925 s.e. 0.0976 0.1002

Refit GLS
Will leave it to you as an exercise

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Mode

Squares Regression

Time Series Analysis

Fitting Result from One-Step MLE

```
> mle <- arima(LakeHuron, order = c(2, 0, 0),
               xreg = cbind(rep(1,length(LakeHuron)), years),
               include.mean = FALSE)
> mle
Call:
arima(x = LakeHuron, order = c(2, 0, 0), xreq = cbind(rep(1, length(LakeHuron))),
    years), include.mean = FALSE)
Coefficients:
                  ar2 rep(1, length(LakeHuron))
         ar1
     1.0048 -0.2913
                                        620.5115
s.e. 0.0976
              0.1004
                                         15.5771
        years
      -0.0216
s.e. 0.0081
```

 $sigma^2$ estimated as 0.4566: log likelihood = -101.2, aic = 212.4

Regression with
Time Series Errors,
Unit Root Tests,
Spurious
Correlations, and
Prewhitening

Regression M

Squares Regression

Unit Root Tests in Time Series Analysis

MLE Fit Diagnostics

X-squared = 6.2088, df = 19, p-value = 0.9974

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Models

Squares Regression

Time Series Analysis

Comparing Confidence Intervals

Regression Slope β_1 :

Method	2.5%	Point Est.	97.5%
OLS	-0.0322	-0.0242	-0.0162
MLE	-0.0374	-0.0216	-0.0057

AR ϕ_1 :

Method	2.5%	Point Est.	97.5%
GLS	0.813	1.005	1.196
MLE	0.813	1.005	1.196

AR ϕ_2 :

Method	2.5%	Point Est.	97.5%
GLS	-0.489	-0.293	-0.096
MLE	-0.488	-0.291	-0.095

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Mode

quares Regression

Unit Root Tests in Time Series Analysis

Unit Root Tests: Tests for Non-Stationarity

Suppose we have X_1, \dots, X_n that follow the model

$$(X_t - \mu) = \phi(X_{t-1} - \mu) + Z_t,$$

where $\{Z_t\}$ is a $WN(0, \sigma^2)$ process

A unit root test considers the following hypotheses:

$$H_0: \phi = 1 \text{ versus } H_a: |\phi| < 1$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Model

Squares Regression

Time Series Analysis

Unit Root Tests: Tests for Non-Stationarity

Suppose we have X_1, \dots, X_n that follow the model

$$(X_t - \mu) = \phi(X_{t-1} - \mu) + Z_t,$$

where $\{Z_t\}$ is a $WN(0, \sigma^2)$ process

A unit root test considers the following hypotheses:

$$H_0: \phi = 1 \text{ versus } H_a: |\phi| < 1$$

• Note that where $|\phi| < 1$ the process is stationary (and causal) while $\phi = 1$ leads to a nonstationary process

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Models

Unit Poet Tosts in

Unit Root Tests: Tests for Non-Stationarity

Suppose we have X_1, \dots, X_n that follow the model

$$(X_t - \mu) = \phi(X_{t-1} - \mu) + Z_t,$$

where $\{Z_t\}$ is a $WN(0, \sigma^2)$ process

A unit root test considers the following hypotheses:

$$H_0: \phi = 1 \text{ versus } H_a: |\phi| < 1$$

- Note that where $|\phi| < 1$ the process is stationary (and causal) while $\phi = 1$ leads to a nonstationary process
- Exercise: Letting $Y_t = \nabla X_t = X_t X_{t-1}$, show that

$$Y_t = (1 - \phi)\mu + (\phi - 1)X_{t-1} + Z_t$$

= $\phi_0^* + \phi_1^* X_{t-1} + Z_t$,

where
$$\phi_0^* = (1 - \phi)\mu$$
 and $\phi_1^* = (\phi - 1)$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Mode

Squares Regression

Time Series Analysis

 \bullet We can estimate ϕ_0^\star and ϕ_1^\star using ordinary least squares

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mode

Squares Regression

Snurious Correlation

- We can estimate ϕ_0^* and ϕ_1^* using ordinary least squares
- Using the estimate of ϕ_1^* , $\hat{\phi}_1^*$, and its standard error, $\hat{SE}(\hat{\phi}_1^*)$, the Dickey-Fuller statistics is

$$T = \frac{\hat{\phi}_1^*}{\hat{SE}(\hat{\phi}_1^*)}$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Models

Squares Regression

Spurious Correlation

- \bullet We can estimate ϕ_0^\star and ϕ_1^\star using ordinary least squares
- Using the estimate of ϕ_1^* , $\hat{\phi}_1^*$, and its standard error, $\hat{SE}(\hat{\phi}_1^*)$, the Dickey-Fuller statistics is

$$T = \frac{\hat{\phi}_1^*}{\hat{\mathrm{SE}}(\hat{\phi}_1^*)}$$

• Under H_0 this statistic follows a Dickey-Fuller distribution. For a level α test we reject if the observed test statistic is smaller than a critical value C_{α}

$$\begin{array}{c|cccc} \alpha & 0.01 & 0.05 & 0.10 \\ \hline C_{\alpha} & -3.43 & -2.86 & -2.57 \end{array}$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Mode

quares Regression

Time Series Analysis

- We can estimate ϕ_0^* and ϕ_1^* using ordinary least squares
- Using the estimate of ϕ_1^* , $\hat{\phi}_1^*$, and its standard error, $\hat{SE}(\hat{\phi}_1^*)$, the Dickey-Fuller statistics is

$$T = \frac{\hat{\phi}_1^*}{\hat{\mathrm{SE}}(\hat{\phi}_1^*)}$$

• Under H_0 this statistic follows a Dickey-Fuller distribution. For a level α test we reject if the observed test statistic is smaller than a critical value C_{α}

$$\begin{array}{c|cccc} \alpha & 0.01 & 0.05 & 0.10 \\ \hline C_{\alpha} & -3.43 & -2.86 & -2.57 \\ \end{array}$$

 We can extend to other processes (AR(p), ARMA(p,q), and MA(q))—see Brockwell and Davis [2016, Section 6.3] for further details Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mod

Squares Regression

Spurious Correlation

Unit Root Test: Simulated Examples

Recall

$$\nabla X_t = \phi_0^* + \phi_1^* X_{t-1} + Z_t,$$

where
$$\phi_0^* = (1 - \phi)\mu$$
 and $\phi_1^* = (\phi - 1)$

Let's demonstrate the test with a simulated random walk (ϕ = 1) and a simulated white noise (ϕ = 0)

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Models

quares Regression

Unit Root Tests in Time Series Analysis

Unit Root Test: Simulated Examples Cont'd

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mode

Squares Regression

Unit Root Tests in Time Series Analysis

Unit Root Test: Simulated Examples Cont'd

> diff.wn <- diff(wn)</pre>

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Models

Squares Regression

Unit Hoot Tests in Time Series Analysis

Augmented Dickey-Fuller Test in R

Augmented Dickey-Fuller (ADF) Test: to check for the presence of a unit root in a time series and determine if the series is stationary

 H_0 : The time series has a unit root (non-stationary)

 H_1 : The time series is stationary

If *p*-value < significance level (e.g., 0.05), reject $H_0 \Rightarrow$ stationary

```
> library(tseries)
> adf.test(wn)
Augmented Dickey-Fuller Test

data: rw
Dickey-Fuller = -1.9203, Lag order = 7, p-value
0.612
0.612
alternative hypothesis: stationary

adf.test(wn)
Warning in adf.test(wn): p-value smaller than printed
Augmented Dickey-Fuller Test

data: wn
Dickey-Fuller = -7.8953, Lag order = 7, p-value = 0.01
0.01
alternative hypothesis: stationary
```

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mode

Squares Regressi

Unit Root Tests in Time Series Analysis

Lagged Regression and Cross-Covariances

Consider the lagged regression model:

$$Y_t = \beta_0 + \beta_1 X_{t-d} + \varepsilon_t,$$

where X's are iid random variables with variance σ_X^2 and the ε 's are also white noise with variance σ_ε^2 and are independent of the X's

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Mod

quares Regression

Spurious Correlation

Lagged Regression and Cross-Covariances

Consider the lagged regression model:

$$Y_t = \beta_0 + \beta_1 X_{t-d} + \varepsilon_t,$$

where X's are iid random variables with variance σ_X^2 and the ε 's are also white noise with variance σ_ε^2 and are independent of the X's

The cross-covariance function of $\{Y_t\}$ and $\{X_t\}$ is

$$\gamma_{XY}(h) = \mathbb{E}\left[\left(X_{t+h} - \mu_X\right)\left(Y_t - \mu_Y\right)\right],$$

and the cross-correlation function (CCF) is

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}.$$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Mod

uares Regression

Time Series Analysis

Lagged Regression and Cross-Covariances

Consider the lagged regression model:

$$Y_t = \beta_0 + \beta_1 X_{t-d} + \varepsilon_t,$$

where X's are iid random variables with variance σ_X^2 and the ε 's are also white noise with variance σ_ε^2 and are independent of the X's

The cross-covariance function of $\{Y_t\}$ and $\{X_t\}$ is

$$\gamma_{XY}(h) = \mathbb{E}\left[\left(X_{t+h} - \mu_X\right)\left(Y_t - \mu_Y\right)\right],$$

and the cross-correlation function (CCF) is

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}.$$

If d>0, we say X_t leads Y_t , and we have CCF is identically zero except for lag h=-d, where CCF is $\frac{\beta_1\sigma_X}{\sqrt{\beta_1^2\sigma_X^2+\sigma_\varepsilon^2}}$

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Mod

uares Regression

Unit Root Tests in Time Series Analysis

Lagged Regression and Its CCF

Consider the following reggression model:

$$Y_t = X_{t-2} + \varepsilon_t,$$

where $X_t \overset{i.i.d}{\sim} \mathrm{N}(0,1)$, $\varepsilon_t \overset{i.i.d}{\sim} \mathrm{N}(0,0.25)$, and X's and ε 's are independent to each other. The CCF is $\frac{1}{\sqrt{1+0.25}}$ = 0.8944 when h = -2, and 0 otherwise

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Mod

uares Regression

Spurious Correlation

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Mod

Squares Regression

Spurious Correlation

Example: X_t and Y_t are independent, but both follow an AR(1)

• Temporal dependence makes the horizon blue dashed lines $(\pm 1.96/\sqrt{n})$ unreliable

Example: X_t and Y_t are independent, but both follow an AR(1)

Regression with
Time Series Errors,
Unit Root Tests,
Spurious
Correlations, and
Prewhitening

Time Series Regression Mod

uares Regression

Spurious Correlation

- Temporal dependence makes the horizon blue dashed lines $(\pm 1.96/\sqrt{n})$ unreliable
- This can lead to spurious correlations

Example: X_t and Y_t are independent, but both follow an AR(1)

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Regression Mod

quares Regression

Spurious Correlation

Spurious Correlations: An Example with Milk and Electricity Data

Time

- Observed Correlation: Milk production and electricity usage show a high correlation due to shared seasonal patterns
- Temporal Dependence: Both series exhibit seasonality and autocorrelation, making raw correlations misleading
- Key Takeaway: Spurious correlations highlight the need for detrending and deseasonalizing in time series analysis

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Models

Squares Regression

purious Correlation

Prewhitening: A technique to remove autocorrelation in a time series before analyzing cross-correlations

Steps in Prewhitening:

• Fit a time series model (e.g., ARMA) to $\{X_t\}$ and filter it to obtain residuals

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Models

Squares Regression

Spurious Correlation

nd Prewhitening

Prewhitening: A technique to remove autocorrelation in a time series before analyzing cross-correlations

Steps in Prewhitening:

- Fit a time series model (e.g., ARMA) to $\{X_t\}$ and filter it to obtain residuals
- ullet Apply the same model to $\{Y_t\}$ for consistent filtering

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Models

quares Regression

Fine Series Analysis

Prewhitening: A technique to remove autocorrelation in a time series before analyzing cross-correlations

Steps in Prewhitening:

- Fit a time series model (e.g., ARMA) to $\{X_t\}$ and filter it to obtain residuals
- Apply the same model to {Y_t} for consistent filtering
- Compute the cross-correlation of the residuals

Regression with Time Series Errors. **Unit Root Tests.** Correlations, and

Prewhitening: A technique to remove autocorrelation in a time series before analyzing cross-correlations

Steps in Prewhitening:

- Fit a time series model (e.g., ARMA) to $\{X_t\}$ and filter it to obtain residuals
- Apply the same model to $\{Y_t\}$ for consistent filtering
- Compute the cross-correlation of the residuals

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series

quares Regression

Jnit Root Tests in Time Series Analysis

Steps in Prewhitening:

- Fit a time series model (e.g., ARMA) to $\{X_t\}$ and filter it to obtain residuals
- Apply the same model to $\{Y_t\}$ for consistent filtering
- Compute the cross-correlation of the residuals

```
x <- arima.sim(n = 180, list(ar = 0.9))
y <- arima.sim(n = 180, list(ar = 0.9))
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))
ccf(x, y)
prewhiten(x, y)</pre>
```


Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series Regression Model

Squares Regression

Spurious Correlation

Applying Prewhitening to the Milk and Electricity Data Example

```
> me.dif = ts.intersect(diff(diff(milk, 12)),
```

- + diff(diff(log(electricity), 12)))
- > prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')
- > par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
- > prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')

Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Time Series
Regression Models

Squares Regression

Time Series Analysis

Courious Correlation