

Lecture 11

- Magnetically Coupled Circuits

Outline

- Mutual inductance
- Transformers

Review: Self Inductance

 Self inductance: reaction of the inductor to the change in current through itself.

$$v = N \frac{d\phi}{dt} = L \frac{di}{\frac{dt}{dt}}$$

$$where L = N \frac{d\phi}{di}$$

Mutual Inductance

 Mutual inductance: reaction of the inductor to change in current through another inductor.

$$\phi_1 = \phi_{11} + \phi_{21}$$
 $\phi_{11} = \mathcal{P}_{11}N_1i_1, \ \phi_{21} = \mathcal{P}_{21}N_1i_1,$
 $\phi_1 = \mathcal{P}_1N_1i_1$

$$v_{1} = \frac{d(N_{1}\phi_{1})}{dt} = N_{1}\frac{d}{dt}(\phi_{11} + \phi_{21})$$
$$= N_{1}^{2}(\mathcal{P}_{11} + \mathcal{P}_{21})\frac{di_{1}}{dt} = N_{1}^{2}\mathcal{P}_{1}\frac{di_{1}}{dt}$$

$$v_2 = \frac{d(N_2\phi_{21})}{dt} = N_2 \frac{d}{dt} (\mathcal{P}_{21}N_1i_1)$$
$$= N_2N_1\mathcal{P}_{21} \frac{di_1}{dt}$$
$$= M_{21} \frac{di_1}{dt}$$

Dot Convention: Defines Directions of Windings

Magnetically Coupled Circuits

- L_1, L_2 : self-inductances
- *M*: mutual inductance
- Dots: indicating polarity of mutually induced voltages.

Analysis

- Relate v_1 , v_2 with i_1 and i_2 .
 - In time domain
 - In phasor domain

Exercise

Calculate the phasor currents I₁, and I₂

Linear Transformers

 A transformer is a magnetic device that takes advantage of mutual inductance.

Called linear if the coils are wound on a magnetically linear material,

i.e. permeability μ is constant.

Revisit exercise

Calculate the phasor voltages V₁, and V₂ across the inductors

Transformer Impedance

- An important parameter to know for a transformer is how the input impedance Z_{in} is seen from the source.
 - Z_{in} is important because it governs the behavior of the primary circuit.

$$\mathbf{Z}_{\text{in}} = \frac{\mathbf{V}}{\mathbf{I}_{1}} = R_{1} + j\omega L_{1} + \left(\frac{\omega^{2}M^{2}}{R_{2} + j\omega L_{2} + \mathbf{Z}_{L}}\right)$$

Reflected impedance from secondary to primary

Energy in a Coupled Circuit

The energy stored in an inductor is

 For coupled inductors, the total energy stored is

$$w = \frac{1}{2} L_1 i_1^2 + \frac{1}{2} L_2 i_2^2 \pm M i_1 i_2$$

The positive sign is selected when the currents both enter or leave the dotted terminals.

Coupling Coefficient k

The system cannot have negative energy

$$\frac{1}{2}L_{1}i_{1}^{2} + \frac{1}{2}L_{2}i_{2}^{2} - Mi_{1}i_{2} \ge 0 \qquad \Longrightarrow \qquad M \le \sqrt{L_{1}L_{2}}$$

 Define a parameter describes how closely M approaches upper limit.

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

- Coupling coefficient, $0 \le k \le 1$.
- determined by the physical configuration of the coils.

- The ideal transformer has:
 - Coils with very large reactance

$$(L_1, L_2, M \rightarrow \infty)$$

- Coupling coefficient k=1.
- Primary and secondary coils are lossless, $R_1 = R_2 = 0$.

$$\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$$

The current is related as:

Reflected impedance

$$\mathbf{Z}_{\mathrm{in}} = \frac{\mathbf{V}_1}{\mathbf{I}_1} =$$

- 1. If V_1 and V_2 are *both* positive or both negative at the dotted terminals, use +n in Eq. (13.52). Otherwise, use -n.
- 2. If I_1 and I_2 both enter into or both leave the dotted terminals, use -n in Eq. (13.55). Otherwise, use +n.

Practice

13.36 As done in Fig. 13.32, obtain the relationships between terminal voltages and currents for each of the ideal transformers in Fig. 13.105.

$$\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$$

The current is related as:

 $\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$

Reflected impedance and source

Ideal Autotransformer

- Autotransformer uses one winding for primary & secondary
 - It does not offer isolation!

$$\mathbf{S}_1 = \mathbf{V}_1 \mathbf{I}_1^* = \mathbf{S}_2 = \mathbf{V}_2 \mathbf{I}_2^*$$

Practice

Find reflected impedance and I₁

