44 座標平面上で, x 座標と y 座標が共に整数である点を格子点という. 格子点上を次の規則に従って動く点 P を考える.

- 最初に、点 P は原点 O にある.
- 点 P は 1 秒ごとに隣接する格子点に 1 マス移動する. ここで隣接するとは, 例えば (2,3) に対して (1,3),(3,3),(2,2),(2,4) の 4 点のことである.

(東太).

- 4 点それぞれ,移動する確率は $\frac{1}{4}$ である. (1) 点 P が最初から 6 秒後に直線 y=x 上にある確率を求めよ.
- (2) 点 P が最初から 6 秒後に原点 O にある確率を求めよ.

(2) 6 利後に厚色にみにす、LX下根のとかり、

70+1	K-1	7+1	7-1	石軍平
3	3	0	0	(#)3·(#)3·6C3
2	2_	Ţ	Ţ	(4)2-(4)2-(4)4). 6C1.5C1.4C2
(l	2	2	(4)·(4)·(4)·(4)²(4)²
0	0	3	3	(4)3-6C3

サースよは何かかみには、

y-2=0 47++13"7".

一种的点下移事可多的?

· 6种的問证, Y-7ca/值的十一一十一一一的一个同国数(3回引的) 癸四十十二十一

$$P = \left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^3 \times 6 \quad (3)$$

$$= \frac{5}{16}$$

p- 25	(4)6 }, C3-x2+ 6 C1.5(1.4C2 x2)
	$\frac{1}{4^6}$ (40 + 360)
	$\frac{25}{4^4} = \frac{25}{256}$
	4