Lógica Computacional

Aula Teórica 19: Exercícios de Resolução em Primeira Ordem

Ricardo Gonçalves

Departamento de Informática

17 de novembro de 2023

Resolventes de Primeira Ordem

Seja:

- ullet C_1 e C_2 duas cláusulas sem variáveis em comum
- A_1 e A_2 duas fórmulas atómicas tal que $A_1 \in C_1$ e $\neg A_2 \in C_2$
- $\{A_1, A_2\}$ é unificável
- σ o unificador mais geral de $\{A_1, A_2\}$

Então, a cláusula

$$[(C_1 - \{A_1\}) \cup (C_2 - \{\neg A_2\})]^{\sigma}$$

é um resolvente de C_1 e C_2 .

E se duas cláusulas partilharem variáveis?

Aplicamos substituição a uma delas (ou às duas) mudando o nome das variáveis, de modo a não terem variáveis em comum.

Resolução em primeira ordem

O sistema dedutivo da Resolução é semelhante ao caso proposicional.

Dada uma fórmula φ tal que $FNS(\varphi)$, uma refutação de φ é uma sequência $C_1 \dots C_n$ de cláusulas tal que:

• $C_n = \emptyset$

Cada C_i é:

- Uma das cláusulas de φ , ou
- obtida de cláusulas anteriores usando Resolução, ou
- ullet renomeação de variáveis de cláusulas anteriores ou de arphi

Teorema

Seja φ tal que $FNS(\varphi)$. Então:

 φ é contraditória se e só se existe refutação de φ .

Nota: há casos patológicos em que uma definição mais geral de resolvente é necessária, mas não vamos explorar aqui.

Resolução e consequência semântica

Teorema

Dadas fórmulas $\varphi_1, \ldots, \varphi_n, \psi, \gamma \in F_{\Sigma}^X$ então:

$$\{\varphi_1,\ldots,\varphi_n\} \models \psi$$

se e só se

existe refutação de γ^S , com $\gamma = (\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \psi)$

Provar correcto um raciocínio

Como proceder?

- Traduzir a afirmação para Lógica de Primeira Ordem:
 - $\{\varphi_1,\ldots,\varphi_n\} \models \psi$
- **2** Converter $(\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \psi)$ para FNCP.
- 3 Converter depois para FNS.
- 4 Usar resolução e encontrar refutação.

Representação do raciocínio

Base de conhecimento

- 4 Amigo do meu amigo, meu amigo é.
- 2 A amizade é uma relação simétrica.
- 3 O João é amigo do Rui.
- 4 A Ana é amiga do Rui.

Será que do conhecimento anterior se pode inferir que:

o O João é amigo da Ana

Assinatura a usar

Considere-se uma assinatura de primeira ordem tal que:

- $\{joao, rui, ana\} \subseteq SF_0$
- $\{Amigo\} \subseteq SP_2$

Representação do raciocínio

Tradução para Lógica de Primeira Ordem

4 Amigo do meu amigo, meu amigo é.

$$\varphi_1 = \forall_x \forall_y \forall_z ((Amigo(x,y) \land Amigo(y,z)) \rightarrow Amigo(x,z))$$

2 A amizade é uma relação simétrica.

$$\varphi_2 = \forall_x \forall_y (Amigo(x, y) \to Amigo(y, x))$$

O João é amigo do Rui.

$$\varphi_3 = Amigo(joao, rui)$$

4 Ana é amiga do Rui.

$$\varphi_4 = Amigo(ana, rui)$$

O João é amigo da Ana

$$\varphi_5 = Amigo(joao, ana)$$

Representação do raciocínio

Afirmação a provar

Base de conhecimento (1)-(4) tem como consequência (5) , isto é:

$$\{\varphi_1,\varphi_2,\varphi_3,\varphi_4\} \models \varphi_5$$

Vamos usar usar Resolução para provar que

$$\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4 \wedge \neg \varphi_5$$

é contraditória.

Conversão para FNS

Para conjunções, podemos colocar cada elemento na FNCP e depois tratamos de colocar os quantificadores no início da fórmula.

$$\varphi_{1} = \forall_{x} \forall_{y} \forall_{z} ((Amigo(x, y) \land Amigo(y, z)) \rightarrow Amigo(x, z))$$

$$\equiv \forall_{x} \forall_{y} \forall_{z} (\neg (Amigo(x, y) \land Amigo(y, z)) \lor Amigo(x, z))$$

$$\equiv \forall_{x} \forall_{y} \forall_{z} (\neg Amigo(x, y) \lor \neg Amigo(y, z) \lor Amigo(x, z))$$

$$\varphi_2 = \forall_x \forall_y (Amigo(x, y) \to Amigo(y, x))$$

$$\equiv \forall_x \forall_y (\neg Amigo(x, y) \lor Amigo(y, x))$$

 φ_3 , φ_4 e $\neg \varphi_5$ já estão na FNCP.

Conversão para FNS

Trocando os nomes das variáveis quantificadas, obtemos então:

$$\forall_{x_0} \forall_{x_1} \forall_{x_2} (\neg Amigo(x_0, x_1) \lor \neg Amigo(x_1, x_2) \lor Amigo(x_0, x_2)) \land \\ \forall_{x_3} \forall_{x_4} (\neg Amigo(x_3, x_4) \lor Amigo(x_4, x_3)) \land \\ Amigo(joao, rui) \land Amigo(ana, rui) \land \neg Amigo(joao, ana)$$

Movendo os quantificadores para o início da fórmula, obtemos:

$$\forall_{x_0} \forall_{x_1} \forall_{x_2} \forall_{x_3} \forall_{x_4} (\\ (\neg Amigo(x_0, x_1) \lor \neg Amigo(x_1, x_2) \lor Amigo(x_0, x_2)) \land \\ (\neg Amigo(x_3, x_4) \lor Amigo(x_4, x_3)) \land \\ Amigo(joao, rui) \land Amigo(ana, rui) \land \neg Amigo(joao, ana))$$

Está na FNS.

Representação em cláusulas

Temos então 5 cláusulas:

```
C_{1} = \{\neg Amigo(x_{0}, x_{1}), \neg Amigo(x_{1}, x_{2}), Amigo(x_{0}, x_{2})\}
C_{2} = \{\neg Amigo(x_{3}, x_{4}), Amigo(x_{4}, x_{3})\}
C_{3} = \{Amigo(joao, rui)\}
C_{4} = \{Amigo(ana, rui)\}
C_{5} = \{\neg Amigo(joao, ana)\}
```

Resolução: o conjunto de cláusulas é contraditório

```
\begin{split} C_1 &= \{ \neg Amigo(x_0, x_1), \, \neg Amigo(x_1, x_2), \, Amigo(x_0, x_2) \} \\ C_2 &= \{ \neg Amigo(x_3, x_4), \, Amigo(x_4, x_3) \} \\ C_3 &= \{ Amigo(joao, rui) \} \\ C_4 &= \{ Amigo(ana, rui) \} \\ C_5 &= \{ \neg Amigo(joao, ana) \} \end{split}
```

	Dedução	Justificação
1	$\{\neg A(joao, ana)\}$	C_5
2	$\{(\neg A(x_0, x_1), \neg A(x_1, x_2), A(x_0, x_2))\}$	$\mid C_1 \mid$
3	$\{(\neg A(joao, x_1), \neg A(x_1, ana)\}$	Res(1,2) $\{x_0/joao, x_2/ana\}$
4	$\{A(joao, rui)\}$	C_3
5	$\{\neg A(rui, ana)\}$	Res(3,4) $\{x_1/rui\}$
6	$\{\neg A(x_3, x_4), A(x_4, x_3)\}$	C_2
7	$\{\neg A(ana, rui)\}$	Res(5,6) $\{x_3/ana, x_4/rui\}$
8	$\{A(ana,rui)\}$	$\mid C_4 \mid$
9	Ø	Res(7,8)

Mais um exemplo

Mostre, usando Resolução, a seguinte consequência semântica:

$$\{\exists_x P(f(x)), \exists_x P(x) \to (\forall_x S(x) \lor \forall_x Q(x)), \exists_x \neg S(x)\} \models Q(a)$$

Vamos mostrar que a seguinte fórmula é contraditória:

$$\varphi = \exists_x P(f(x)) \land (\exists_x P(x) \to (\forall_x S(x) \lor \forall_x Q(x))) \land \exists_x \neg S(x) \land \neg Q(a)$$

Vamos começar por colocar na FNCP:

$$\begin{split} \varphi &= \exists_x \, P(f(x)) \wedge (\neg \exists_x P(x) \vee (\forall_x S(x) \vee \forall_x Q(x))) \wedge \exists_x \neg S(x) \wedge \neg Q(a) & \quad [\mathsf{passo}(1)] \\ &\equiv \exists_x \, P(f(x)) \wedge (\forall_x \neg P(x) \vee (\forall_x S(x) \vee \forall_x Q(x))) \wedge \exists_x \neg S(x) \wedge \neg Q(a) & \quad [\mathsf{passo}(2)] \\ &\equiv \exists_{x_1} \, P(f(x_1)) \wedge (\forall_{x_2} \neg P(x_2) \vee \forall_{x_3} S(x_3) \vee \forall_{x_4} Q(x_4)) \wedge \exists_{x_5} \neg S(x_5) \wedge \neg Q(a) & \quad [\mathsf{passo}(3)] \\ &\equiv \exists_{x_1} \forall_{x_2} \forall_{x_3} \forall_{x_4} \exists_{x_5} (P(f(x_1)) \wedge (\neg P(x_2) \vee S(x_3) \vee Q(x_4)) \wedge \neg S(x_5) \wedge \neg Q(a)) & \quad [\mathsf{passo}(4)] \end{split}$$

Esta última fórmula está na FNP. Na verdade está na FNCP.

Colocar na FNS

$$\forall_{x_2}\forall_{x_3}\forall_{x_4}(P(f(b))\wedge(\neg P(x_2)\vee S(x_3)\vee Q(x_4))\wedge\neg S(g(x_2,x_3,x_4))\wedge\neg Q(a))$$

Resolução: o conjunto de cláusulas é contraditório

$$C_1 = \{P(f(b))\}\$$

$$C_2 = \{\neg P(x_2), S(x_3), Q(x_4)\}\$$

$$C_3 = \{\neg S(g(x_2, x_3, x_4))\}\$$

$$C_4 = \{\neg Q(a)\}\$$

	Dedução	Justificação
1	$\{P(f(b))\}$	C_1
2	$\{\neg P(x_2), S(x_3), Q(x_4)\}$	C_2
3	$ \left\{ S(x_3), Q(x_4) \right\} $	Res(1,2) $\{x_2/f(b)\}$
4	$ \{ \neg Q(a) \}$	C_4
5	$ \{S(x_3)\} $	Res(3,4) $\{x_4/a\}$
6	$\{\neg S(g(x_6, x_7, x_8))\}$	$C_3\{x_2/x_6, x_3/x_7, x_4/x_8\}$
7	Ø	Res(5,6) $\{x_3/g(x_6,x_7,x_8)\}$

Resolução: exercícios

Usando resolução, mostre que: