Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский Университет ИТМО»

Мегафакультет Трансляционных информационных технологий Факультет информационных технологий и программирования

Лабораторная работа №4.

По дисциплине «Прикладная математика»

Методы решения СЛАУ

Выполнили: Студенты M32061 Величко Максим Иванович, 334786 Гусев Андрей Александрович, 336515 Бонет Станислав, 334349

Проверила: Преподаватель практики Гомозова Валерия Эдуардовна

Санкт-Петербург, 2023

1. Реализация метода Гаусса с выбором ведущего элемента для решения СЛАУ

Метод заключается в том, что приводит матрицу к ступенчатому виду, т. е. получение нулей под главной диагональю и нахождение неизвестных снизу вверх.

Числа, на которые производится деление в методе Гаусса, называются ведущими или главными элементами. Таким образом, в начале каждого этапа прямого хода решения системы следует добавить логику перестановки строк для выполнения приведенного условия.

Чтобы уменьшить влияние ошибок округления и исключить деление на нуль на каждом этапе прямого хода, уравнения системы переставляют так, чтобы деление проводилось на наибольший по модулю в данном столбце элемент.

```
def gaussian_elimination(A, b):
   n = len(A)
    for i in range(n):
        max_index = i
        for j in range(i + 1, n):
            if abs(A[j][i]) > abs(A[max_index][i]):
                max_index = j
        A[[i, max_index]] = A[[max_index, i]]
        b[[i, max_index]] = b[[max_index, i]]
        # Приведение матрицы к треугольному виду
        for j in range(i + 1, n):
            factor = A[j][i] / A[i][i]
            A[j] -= factor * A[i]
            b[j] -= factor * b[i]
   x = np.zeros(n)
    for i in range(n - 1, -1, -1):
        x[i] = (b[i] - np.dot(A[i][i + 1:], x[i + 1:])) / A[i][i]
```

Проведем исследование на системах с матрицами A^k:

Берем значения для k[1..3], причем, генерируем матрицы такого вида, K = 1:

```
Matrix A^(k):

[[11.1 -2. -2. -4. -3.]

[-3. 11. -2. -4. -2.]

[-2. -3. 12. -3. -4.]

[-2. -4. -1. 10. -3.]

[-1. -4. -3. -3. 11.]]

Condition number: 1008.588161192836

Gauss solution: [133.48766583 134.46987724 134.61390445 134.5383215 134.79741379]

Gauss error: 298.25173333433844
```

K = 2:

```
Matrix A^(k):

[[11.01 -3. -1. -3. -4. ]

[-2. 10. -3. -4. -1. ]

[-1. -1. 7. -3. -2. ]

[-2. -1. -1. 8. -4. ]

[-3. -1. -3. -2. 9. ]]

Condition number: 9593.956377472812

Gauss solution: [1504.54247741 1505.7834803 1505.99524346 1505.77816088 1505.83312732]

Gauss error: 3364.357894355949
```

K = 3:

График зависимости ошибок от К

Число обусловленности квадратных матриц возрастает с увеличением параметра k, что приводит к ухудшению точности решения. Однако точность решения при использовании метода Гаусса с выбором ведущего элемента остается в среднем стабильной при изменении параметра k до определённого значения. Это объясняется тем, что данный метод позволяет избежать проблемы плохой обусловленности матрицы и гарантирует стабильность решения системы линейных уравнений. Погрешность решения увеличивается с увеличением числа обусловленности матрицы.

2. Реализация алгоритма LU — разложения с использованием разреженно — строчного формата хранения матрицы, а также метода решения СЛАУ с использованием LU — разложения.

Суть метода заключается в том, что матрица коэффициентов **A** представляется в виде произведения матриц **L** и **U**, где **L** – нижнетреугольная матрица, **U** – верхнетреугольная матрица, все диагональные элементы которой равны 1. Вектор В в ходе разложения не изменяется.

Алгоритм

```
1. Создаем матрицы L = \begin{pmatrix} l_{1,1} & 0 & 0 \\ l_{2,1} & l_{2,2} & 0 \\ l_{3,1} & l_{3,2} & l_{3,3} \end{pmatrix} и U = A = \begin{pmatrix} 10 & -7 & 0 \\ -3 & 6 & 2 \\ 5 & -1 & 5 \end{pmatrix} 2. Для каждого столбца \mathbf{j} = 1... 3 матрицы L будем вычислять l_{i,j} как l_{i,j} = \frac{u_{j,j}}{u_{i,j}} Для каждой строки c_i вычислим c_i = c_i - l_{i,j} \cdot c_j 3. Выполняем шаг 2 пока \mathbf{j} <= 3 4. Получем L = \begin{pmatrix} 1 & 0 & 0 \\ l_{2,1} & 1 & 0 \\ l_{3,1} & l_{3,2} & 1 \end{pmatrix} и U = \begin{pmatrix} u_{1,1} & u_{1,2} & u_{1,3} \\ 0 & u_{2,2} & u_{2,3} \\ 0 & 0 & u_{3,3} \end{pmatrix} Такие, что \mathbf{A} = \mathbf{L} \cdot \mathbf{U}
```

Вот код, который реализует данный алгоритм:

```
def lu_decomposition_sparse(A):
    n = A.shape[0]
    L = csr_matrix((n, n), dtype=float)
    U = csr_matrix((n, n), dtype=float)

for k in range(n):
    L[k, k] = 1.0
    U[k, k] = A[k, k] - L[k, :k].dot(U[:k, k].toarray().flatten())

for j in range(k + 1, n):
    U[k, j] = A[k, j] - L[k, :k].dot(U[:k, j].toarray().flatten())

for i in range(k + 1, n):
    L[i, k] = (A[i, k] - L[i, :k].dot(U[:k, k].toarray().flatten())) / U[k, k]

return L, U
```

Проведем исследование на системах с матрицами A^k:

Берем значения для k[1..3], причем, генерируем матрицы такого вида, как и методе Гаусса, но получаем уже такие результаты:

```
==== k = 1 ====

Matrix A^(k):

[[10.1 -3. -4. -1. -2.]

[-3. 14. -4. -3. -4.]

[-1. -2. 7. -3. -1.]

[-4. -2. -1. 9. -2.]

[-4. -4. -2. -3. 13.]]

Condition number: 857.649916408113

Gauss solution: [135.23214858 136.35991034 136.63464617 136.3509446 136.43772014]

Gauss error: 302.3252991795029

LU solution: [135.23214858 136.35991034 136.63464617 136.3509446 136.43772014]

LU error: 302.3252991795072
```

```
[[ 9.01 -1.
[-1.
Condition number: 7965.646989343022
Gauss solution: [1522.49886827 1524.10593029 1523.95473065 1523.89769126 1524.29741965]
Gauss error: 3404.974889682394
LU solution: [1522.49886827 1524.10593028 1523.95473065 1523.89769126 1524.29741965]
LU error: 3404.974889680644
Matrix A^(k):
[[11.001 -2.
                -2.
 [-2.
               13.
                        13.
                                     ]]
Condition number: 110562.89643639071
Gauss solution: [20195.92134006 20197.37363431 20197.64675886 20197.45666417
20198.15440634]
Gauss error: 45160.323339316186
LU solution: [20195.9213401 20197.37363435 20197.6467589 20197.45666421
20198.15440638]
LU error: 45160.32333940403
```

И получаем такой график:

Matrix A^(k):

LU-разложение является модификацией метода Гаусса. Поэтому, в общем и целом, можно отметить, что значение ошибок будут примерно равны.

3. Реализация итерационного метода решения СЛАУ (метод Зейделя, Якоби или верхней релаксации на выбор). Метод Зейделя.

Метод Зейделя представляет собой некоторую модификацию метода итераций. Основная его идея заключается в том, что при вычислении (k + 1)-го приближения неизвестной x_i учитываются уже вычисленные ранее (k + 1)-е приближения неизвестных $x_1, x_2, ..., x_{i-1}$.

Пусть получена эквивалентная система (4.2). Выберем произвольно начальные приближения корней $x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}$. Далее, предполагая, чтоk-ые приближения $x_2^{(k)}$ корней известны, согласно Зейделю будем строить (k+1)-е приближения корней по формулам:

```
\begin{aligned} x_{1}^{(k+1)} &= \beta_{1} + \alpha_{12} x_{2}^{(k)} + \alpha_{13} x_{3}^{(k)} + \ldots + \alpha_{1n} X_{n}^{(k)}, \\ x_{2}^{(k+1)} &= \beta_{2} + \alpha_{21} X_{1}^{(k+1)} + \alpha_{23} X_{2}^{(k)} + \ldots + \alpha_{2n} X_{n}^{(k)}, \\ &\vdots &\vdots &\vdots \\ x_{n}^{(k+1)} &= \beta_{n} + \alpha_{n1} X_{1}^{(k+1)} + \alpha_{n2} X_{2}^{(k+1)} + \ldots + \alpha_{nn} X_{n}^{(k)} & (k = 0, 1, 2, \ldots). \end{aligned} 
(4.5)
```

Заметим, что указанные выше условия сходимости для простой итерации остается верной для итерации по методу Зейделя. Обычно метод Зейделя дает лучшую сходимость, чем метод простой итерации, но приводит к более громоздким вычислениям.

Вот код, реализующий данный алгоритм:

```
def seidel(A, b, x0, tol=1e-6, max_iter=100):
    n = len(A)
    x = x0.copy()
    iterations = 0
    residual = np.linalg.norm(A @ x - b)

while residual > tol and iterations < max_iter:
    for i in range(n):
        x[i] = (b[i] - A[i, :i] @ x[:i] - A[i, i + 1:] @ x[i + 1:]) / A[i, i]

iterations += 1
    residual = np.linalg.norm(A @ x - b)

return x, iterations, residual</pre>
```

Проведем исследование на системах с матрицами A^k:

Берем значения для k[1..3], причем, генерируем матрицы такого вида, как и в предыдущих методах, но получаем уже такие результаты:

```
==== k = 1 ====
Matrix A^(k):
[[ 8.1 -2. -3. -1. -2. ]
Condition number: 680.7116804044987
Gauss solution: [123.30062444 124.60856378 124.52667261 124.82729706 125.05530776]
Gauss error: 276.07657906144755
LU solution: [123.30062444 124.60856378 124.52667261 124.82729706 125.05530776]
LU error: 276.07657906144755
Seidel solution: [50.88359879 51.60891685 51.62406352 51.86301952 52.17531425]
Seidel error: 113.21833439663148
==== k = 2 ====
Matrix A^(k):
Condition number: 9723.445459873146
Gauss solution: [1453.00896287 1454.1975323 1454.2104528 1454.27214527 1454.32499127]
LU solution: [1453.00896287 1454.1975323 1454.2104528 1454.27214527 1454.32499127]
LU error: 3249.01326170381
Seidel solution: [46.7004893 46.96494255 47.06246963 47.2059473 47.36214023]
```

И такой график:

Обычно метод Зейделя дает лучшую сходимость, чем метод простой итерации, но приводит к более громоздким вычислениям.

Получаем в итоге такой результат в сравнении всех трех методов:

```
D:\PriMat_lab4\venv\Scripts\python.exe D:\PriMat_lab4\task4.py

Solution:
[1 2 3]

Number of iterations: 2

Residual: 0.0

==== k = 1 ====

Matrix A^(k):
[[11.1 -3. -4. -1. -3.]
[-4. 8. -1. -1. -2.]
[-3. -1. 10. -2. -4.]
[-1. -1. -4. 9. -3.]
[-2. -1. -4. -3. 10.]

Condition number: 845.9033091829343

Gauss solution: [170.77348066 171.86187845 172.2320442 172.56353591 172.50276243]

Gauss error: 382.34078200134735

LU solution: [170.77348066 171.86187845 172.2320442 172.56353591 172.50276243]

LU error: 382.34078200134735

Seidel solution: [54.70728815 55.26395823 55.48870698 55.8083148 55.90583069]

Seidel error: 121.7237477534876

Number of iterations: 100

Residual: 6.158360994683913
```

```
Matrix A^(k):
Condition number: 5080.537566400623
Gauss solution: [663.01517143 664.35599092 664.44451081 664.4140485 664.47628718]
Gauss error: 1482.829342916583
LU solution: [663.01517143 664.35599092 664.44451081 664.4140485 664.47628718]
LU error: 1482.829342916474
Seidel solution: [54.59253958 54.78751051 54.93141142 55.05498366 55.25370924]
Seidel error: 120.57885365504613
Number of iterations: 100
Residual: 6.35544493374146
==== k = 3 ====
Matrix A^(k):
Condition number: 110002.86673275416
Gauss solution: [18540.04252296 18541.06047713 18541.25939043 18541.17812419
18541.31159927]
Gauss error: 41456.63417961985
LU solution: [18540.04252305 18541.06047722 18541.25939052 18541.17812428
18541.31159936]
LU error: 41456.6341798192
Seidel solution: [48.74974573 48.89826037 49.09326162 49.21849745 49.43329438]
Seidel error: 107.5083758492769
Number of iterations: 100
```

Из предоставленных данных видно, что при увеличении числа обусловленности матриц A^(k) увеличивается ошибка решения для всех трех методов: метода Гаусса, LU-разложения и метода Зейделя. Это связано с тем, что высокая обусловленность матрицы указывает на то, что даже небольшие изменения в правой части системы могут привести к значительным изменениям в решении. В результате получаем большие ошибки решения.

Кроме того, можно заметить, что метод Зейделя сходится медленнее, чем метод Гаусса и LU-разложение. Это видно по количеству итераций, которое для метода Зейделя составляет 100 на каждом шаге k. Это может быть связано с особенностями выбранного начального приближения и условиями сходимости метода Зейделя.

Также следует отметить, что остатки (residuals) для всех трех методов остаются относительно стабильными на каждом шаге k.

В целом, можно сделать вывод, что при увеличении числа обусловленности матрицы решение системы линейных уравнений становится менее точным, и ошибка решения увеличивается для всех методов.

4. Оценка зависимости числа обусловленности и точности полученного решения в зависимости от параметра k:

Для этого задания (task5.py) мы используем весь код из task4 для генерации матриц, но уже с другим шагом для k[1..5] и получаем такие результаты:

```
Solution:
[1 2 3]
Number of iterations: 2
Residual: 0.0
Matrix A^(k):
[[ 5.1 -2. -1.
                      -1. 1
                      -1. ]
[-2.
Condition number: 663.765899491648
Gauss error: 210.01166115825256
LU error: 210.01166115824773
Seidel error: 111.30912931481849
Matrix A^(k):
[[ 9.01 -2.
[-2.
Condition number: 10256.35486597093
Gauss error: 4014.174526702706
LU error: 4014.1745267028987
Seidel error: 149.83274347047742
```

```
==== k = 3 ====
Matrix A^(k):
[[13.001 -4.
[-3.
[-1.
                                    ]]
                              16.
Condition number: 127381.01861419619
Gauss error: 42667.31335523672
LU error: 42667.313355252074
Seidel error: 123.4617061705256
Matrix A^(k):
[[11.0001 -4.
                                   8.
Condition number: 747513.7089762808
Gauss error: 263178.7448058398
LU error: 263178.7448058398
Seidel error: 115.90143198882215
```

И такие графики для каждого из наших методов:

Из предоставленных данных видно, что с увеличением параметра k, который отвечает за диагональное преобладание матрицы, числа обусловленности матриц A^(k) также увеличиваются. Это означает, что матрицы становятся более плохо обусловленными, и решение системы линейных уравнений становится более чувствительным к погрешностям в данных или округлении.

Как следствие, ошибка решения системы уравнений с помощью метода Гаусса и LUразложения также увеличивается с увеличением числа обусловленности. Это отражено в значениях ошибок, которые растут с каждым шагом k.

Однако метод Зейделя демонстрирует более стабильную ошибку в решении, независимо от значения k. Это может быть связано с итерационным характером метода Зейделя, который позволяет достигать определенной точности независимо от числа обусловленности.

Таким образом, можно сделать вывод, что чем выше числа обусловленности матрицы, тем более неустойчивыми и неточными становятся решения системы линейных уравнений при использовании прямых методов, таких как метод Гаусса и LU-разложение. В то же время метод Зейделя остается относительно стабильным при различных значениях числа обусловленности.

5. Провести аналогические исследования на матрицах Гильберта, которые строятся согласно формуле:

$$a_{ij}=rac{1}{i+j-1}, \qquad i,j=1,..,n$$
 Где n – размерность матрицы

- Матрица Гильберта является симметричной положительно определённой матрицей.
 Более того, матрица Гильберта является вполне положительной матрицей.
- Матрица Гильберта является примером ганкелевой матрицы.
- Определитель матриц Гильберта может быть выражен явно, как частный случай определителя Коши. Определитель матрицы Гильберта $n \times n$ равен

$$\det(H) = \frac{c_n^4}{c_{2n}},$$

где

$$c_n = \prod_{i=1}^{n-1} i^{n-i} = \prod_{i=1}^{n-1} i!.$$

Для этого задания выберем n[3..6] и получим уже такие результаты:

```
[1 2 3]
Number of iterations: 2
Residual: 0.0
           0.33333333 0.25
[0.33333333 0.25 0.2
Gauss error: 285.6676390492988
LU error: 285.6676390492988
Seidel error: 242.93521497633745
Matrix Hilbert(n):
[[1. 0.5 0.33333333 0.25 [0.5 0.33333333 0.25 0.2
[0.33333333 0.25 0.2
[0.25 0.2 0.1664
                                   0.166666671
                       0.16666667 0.14285714]]
Condition number: 15513.73873892924
Gauss error: 3236.7619622087523
LU error: 3236.7619622077077
Seidel error: 347.27992886821045
```

Condition numbers: [524.0567775860644, 15513.73873892924, 476607.2502422687, 14951058.6424659]
Gauss errors: [285.6676390492988, 3236.7619622087523, 31629.606067946934, 281080.01222710055]
LU errors: [285.6676390492988, 3236.7619622077077, 31629.60606768418, 281080.0122302293]
Seidel errors: [242.93521497633745, 347.27992886821045, 571.6749603373157, 845.977710173911]

И получим такой график сравнения каждого метода:

Можно заметить, что методы Гаусса и LU – разложения получили идентичные результаты.

Из представленных данных видно, что числа обусловленности матриц Гильберта быстро растут с увеличением размерности матрицы п. Это указывает на то, что матрицы Гильберта являются плохо обусловленными и приводят к большим ошибкам при решении систем линейных уравнений.

Метод Гаусса и LU-разложение показывают сходные значения ошибок, которые также возрастают с увеличением размерности матрицы. Это говорит о том, что оба метода чувствительны к высокому числу обусловленности и дают сопоставимую точность решения системы уравнений.

Метод Зейделя также демонстрирует увеличение ошибки с увеличением размерности матрицы, но ошибка остается сопоставимой с ошибками методов Гаусса и LU-разложения. Это может быть связано с тем, что метод Зейделя имеет итерационный характер и может достичь определенной точности, несмотря на высокое число обусловленности матрицы.

Таким образом, матрицы Гильберта являются плохо обусловленными, что ведет к большим ошибкам при решении систем линейных уравнений. Метод Зейделя остается относительно стабильным при различных размерностях матрицы, но также не избавлен от ошибок.

6. Сравнение между собой прямые и итерационные методы по эффективности методов в зависимости от размеров п матрицы: n in {10, 50, 100, 10^3, 10^4, 10^5}

Таким же образом строим матрицы Гилберта, что и для предыдущего задания, но уже другой размерности. Из-за увеличения размерности матрицы, время программы, затраченное на решения матриц, достигает ужасающих значений, мы не смогли дождаться для 10^5 размерности, но получаем результаты:

```
=== Прямой метод (Гаусс) ===
Гаусс times: [0.0, 0.003586292266845703, 0.015044689178466797, 2.530501365661621, 988.4858531951904]
=== Итерационный метод (Зейдель) ===
Seidel times: [0.07261061668395996, 0.24374723434448242, 0.4872090816497803, 6.448711633682251, 149.61970233917236]
```

И получаем такой график:

Execution Times for Different Matrix Sizes

Из полученных результатов видно, что время выполнения прямого метода (Гаусса) растет значительно медленнее, чем время выполнения итерационного метода (Зейделя), с увеличением размерности матрицы.