Resolução de Problemas do Livro

Cálculo e Álgebra Linear: Vol 1: Vetores no plano e funções de uma variáve. (Kaplan, W.; Lewis, D. J.)

por

Igo da Costa Andrade

Referência

KAPLAN, W.; LEWIS, D. J.. Cálculo e Álgebra Linear: Vol 1: Vetores no plano e funções de uma variáve.. Rio de Janeiro, Ed. Univ, de Brasilia, 1972.

Capítulo 0: Introdução

PROBLEMAS

1 (a) Encontre um inteiro x tal que $10\sqrt{2} < x < 10\sqrt{3}$.

Solução

Observemos que $10\sqrt{2}$, x e $10\sqrt{3}$ são números positivos. Então:

• Pela primeira desigualdade, temos:

$$10\sqrt{2} < x \Rightarrow \begin{cases} (10\sqrt{2}) \cdot (10\sqrt{2}) < (10\sqrt{2}) \cdot x \\ (10\sqrt{2}) \cdot x < x \cdot x \end{cases} \Rightarrow \begin{cases} 200 < (10\sqrt{2}) \cdot x \\ (10\sqrt{2}) \cdot x < x^2 \end{cases}$$
$$\Rightarrow 200 < x^2$$

• Pela segunda desigualdade, temos:

$$x < 10\sqrt{3} \Rightarrow \begin{cases} x \cdot x < (10\sqrt{3}) \cdot x \\ (10\sqrt{3}) \cdot x < (10\sqrt{3}) \cdot (10\sqrt{3}) \end{cases} \Rightarrow \begin{cases} x^2 < (10\sqrt{3}) \cdot x \\ (10\sqrt{3}) \cdot x < 300 \end{cases}$$
$$\Rightarrow x^2 < 300$$

Combinando os resultados acima, obtemos:

$$\begin{aligned} 10\sqrt{2} < x < 10\sqrt{3} \Rightarrow 200 < x^2 < 300 \Rightarrow x^2 = 225, 256, 289 \\ \Rightarrow x = 15, 16, 17. \end{aligned}$$

(b) Encontre um inteiro x tal que $-5\sqrt{2} < x < -3\sqrt{3}$.

Solução:

Observemenos que $-5\sqrt{2}$, $x = -3\sqrt{3}$ são todos números negativos.

• Pela primeira desigualdade:

$$-5\sqrt{2} < x \Rightarrow \begin{cases} (-5\sqrt{2}) \cdot (-5\sqrt{2}) > (-5\sqrt{2}) \cdot x \\ (-5\sqrt{2}) \cdot x > x^2 \end{cases} \Rightarrow \begin{cases} 50 > (-5\sqrt{2}) \cdot x \\ (-5\sqrt{2}) \cdot x > x^2 \end{cases}$$
$$\Rightarrow 50 > x^2$$

• Pela segunda desigualdade,

$$x < -3\sqrt{3} \Rightarrow \begin{cases} x \cdot x > (-3\sqrt{3}) \cdot x \\ (-3\sqrt{3}) \cdot x > (-3\sqrt{3}) \cdot (-3\sqrt{3}) \end{cases} \Rightarrow \begin{cases} x^2 > (-3\sqrt{3}) \cdot x \\ (-3\sqrt{3}) \cdot x > 27 \end{cases}$$
$$\Rightarrow x^2 > 27$$

Combunando os resultados acima, tem-se:

$$-5\sqrt{2} < x < -3\sqrt{3} \Rightarrow 50 > x^2 > 27 \Rightarrow x^2 = 49 \text{ ou } 36$$
$$\Rightarrow x^2 = (-7)^2 \text{ ou } (-6)^2$$
$$\Rightarrow x = -7 \text{ ou } -6$$

(c) Encontre um número racional x tal que $\sqrt{2} < x < \sqrt{3}$.

Solução:

$$\sqrt{2} < x < \sqrt{3} \Rightarrow (\sqrt{2})^2 < x^2 < (\sqrt{3})^2 \Rightarrow 2 < x^2 < 3$$

A título de exemplo, façamos:

$$\sqrt{2} < x < \sqrt{3} \Rightarrow 2 < x^2 < 3$$
$$\Rightarrow \frac{200}{100} < x^2 < \frac{300}{100}$$