NAIVE BAYES CLASSIFIER

Jérémie Cabessa Laboratoire DAVID, UVSQ

Introduction

INTRODUCTION

INTRODUCTION

- ▶ Dans le cadre de l'apprentissage supervisé, on distingue deux types de méthodes:
- Méthodes de régression
 La variable d'output (réponse) est quantitative.
- Méthodes de classification
 La variable d'output (réponse) est qualitative

INTRODUCTION

INTRODUCTION

- Dans le cadre de l'apprentissage supervisé, on distingue deux types de méthodes:
- Méthodes de régression La variable d'output (réponse) est quantitative.

- Dans le cadre de l'apprentissage supervisé, on distingue deux types de méthodes:
- Méthodes de régression La variable d'output (réponse) est quantitative.
- Méthodes de classification La variable d'output (réponse) est qualitative.

INTRODUCTION

- Un classifieur de Bayes naïf (naive Bayes classifier) est une méthode de classification basée sur le théorème de Bayes.

- ▶ Un classifieur de Bayes naïf (naive Bayes classifier) est une méthode de classification basée sur le *théorème de Bayes*.
- Un naive Bayes classifier possède un petit nombre de paramètres à estimer: linéaire par rapport au nombre de variables.
- L'apprentissage de ces paramètres admet une solution analytique (closed-form solution) calculable en temps linéaire.

INTRODUCTION

- ▶ Un classifieur de Bayes naïf (naive Bayes classifier) est une méthode de classification basée sur le *théorème de Bayes*.
- Un naive Bayes classifier possède un petit nombre de paramètres à estimer: linéaire par rapport au nombre de variables.
- L'apprentissage de ces paramètres admet une solution analytique (closed-form solution) calculable en temps linéaire.

PROBABILITÉS CONDITIONNELLES

- ightharpoonup Soit p une mesure de probabilité et A et B deux évènements de probabilité non nulle.
- ightharpoonup La probabilité conditionnelle de A sachant B est

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

 $p(A \mid B)$ représente la probabilité que l'évènement A advienne sachant que l'évènement B a eu lieu.

PROBABILITÉS CONDITIONNELLES

- ➤ Soit *p* une mesure de probabilité et *A* et *B* deux évènements de probabilité non nulle.
- ► La probabilité conditionnelle de A sachant B est

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

 $p(A \mid B)$ représente la probabilité que l'évènement A advienne sachant que l'évènement B a eu lieu.

PROBABILITÉS CONDITIONNELLES

- ➤ Soit p une mesure de probabilité et A et B deux évènements de probabilité non nulle.
- ► La probabilité conditionnelle de A sachant B est

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

 $\triangleright p(A \mid B)$ représente la probabilité que l'évènement A advienne sachant que l'évènement B a eu lieu.

La formule de la probabilité conditionnelle implique les relations suivantes:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)} \qquad \Rightarrow \quad p(A \cap B) = p(A \mid B) p(B)$$

$$p(B \mid A) = \frac{p(B \cap A)}{p(A)} = \frac{p(A \cap B)}{p(A)} \quad \Rightarrow \quad p(A \cap B) = p(B \mid A) p(A)$$

Les equations ci-dessus impliquent le théorème de Bayessus implication de Bayessus implication de Bayes implication de Bayessus implication de Bayess

$$p(A \mid B) p(B) = p(B \mid A) p(A)$$

La formule de la *probabilité conditionnelle* implique les relations suivantes:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)} \qquad \Rightarrow \quad p(A \cap B) = p(A \mid B) \ p(B)$$

$$p(B \mid A) = \frac{p(B \cap A)}{p(A)} = \frac{p(A \cap B)}{p(A)} \quad \Rightarrow \quad p(A \cap B) = p(B \mid A) \ p(A)$$

Les equations ci-dessus impliquent le théorème de Bayessus impliquent le théorème de Bayessus

$$p(A \mid B)p(B) = p(B \mid B)$$

La formule de la *probabilité conditionnelle* implique les relations suivantes:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)} \qquad \Rightarrow \quad p(A \cap B) = p(A \mid B) p(B)$$

$$p(B \mid A) = \frac{p(B \cap A)}{p(A)} = \frac{p(A \cap B)}{p(A)} \qquad \Rightarrow \quad p(A \cap B) = p(B \mid A) p(A)$$

Les equations ci-dessus impliquent le théorème de Bayes

$$p(A \mid B) p(B) = p(B \mid A) p(A)$$
ssi
$$p(A \mid B) = \frac{p(B \mid A) p(A)}{-(B)}$$

Théorème de Bayes

Introduction

La formule de la *probabilité conditionnelle* implique les relations suivantes:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)} \qquad \Rightarrow \quad p(A \cap B) = p(A \mid B) p(B)$$

$$p(B\mid A) = \frac{p(B\cap A)}{p(A)} = \frac{p(A\cap B)}{p(A)} \quad \Rightarrow \quad p(A\cap B) = p(B\mid A)\,p(A)$$

Les equations ci-dessus impliquent le théorème de Bayes

$$p(A \mid B) p(B) = p(B \mid A) p(A)$$

$$p(A \mid B) = \frac{p(B \mid A) p(A)}{p(B)}$$

La formule de la *probabilité conditionnelle* implique les relations suivantes:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)} \qquad \Rightarrow \quad p(A \cap B) = p(A \mid B) p(B)$$

$$p(B \mid A) = \frac{p(B \cap A)}{p(A)} = \frac{p(A \cap B)}{p(A)} \quad \Rightarrow \quad p(A \cap B) = p(B \mid A) p(A)$$

Les equations ci-dessus impliquent le théorème de Bayes:

$$\begin{array}{ccc} p(A\mid B)\,p(B) & = & p(B\mid A)\,p(A)\\ & \text{ssi}\\ p(A\mid B) & = & \frac{p(B\mid A)\,p(A)}{p(B)} \end{array}$$

▶ Le théorème de Bayes s'utilise lorsqu'on désire calculer $p(A \mid B)$ mais que cette quantité est difficile à estimer à partir des data.

$$p(A \mid B) = \frac{p(B \mid A) \, p(A)}{p(B)}$$

- ▶ Il est alors possible de calculer $p(A \mid B)$ à partir de $p(B \mid A)$, qui et potentiellement plus facile à estimer à partir des data.
- ▶ En résumé, la probabilité conditionnelle $p(A \mid B)$ peut s'exprimer à partir de sa probabilité conditionnelle "inverse" $p(B \mid A)$.

Le théorème de Bayes s'utilise lorsqu'on désire calculer $p(A \mid B)$ mais que cette quantité est difficile à estimer à partir des data.

$$p(A \mid B) = \frac{p(B \mid A) p(A)}{p(B)}$$

- ▶ Il est alors possible de calculer $p(A \mid B)$ à partir de $p(B \mid A)$, qui et potentiellement plus facile à estimer à partir des data.
- ▶ En résumé, la probabilité conditionnelle $p(A \mid B)$ peut s'exprimer à partir de sa probabilité conditionnelle "inverse" $p(B \mid A)$.

Le théorème de Bayes s'utilise lorsqu'on désire calculer $p(A \mid B)$ mais que cette quantité est difficile à estimer à partir des data.

$$p(A \mid B) = \frac{p(B \mid A) p(A)}{p(B)}$$

- ▶ Il est alors possible de calculer $p(A \mid B)$ à partir de $p(B \mid A)$, qui et potentiellement plus facile à estimer à partir des data.
- ▶ En résumé, la probabilité conditionnelle $p(A \mid B)$ peut s'exprimer à partir de sa probabilité conditionnelle "inverse" $p(B \mid A)$.

▶ Basé sur une étude de Kahneman & Tversky:

- Steve est d'un tempérament doux, timide, plutôt introverti. Bien qu'il soit très aimable, il semble montrer peu d'attention envers les autres personnes. Il a tendance à être très ordonnée et montre un intérêt marqué pour tout ce qui est de l'ordre du détail.
- ► Laquelle de ces affirmations semble la plus plausible?
- (A) Steve est libraire.
- (B) Steve est agriculteur.

▶ Basé sur une étude de Kahneman & Tversky:

Steve est d'un tempérament doux, timide, plutôt introverti. Bien qu'il soit très aimable, il semble montrer peu d'attention envers les autres personnes. Il a tendance à être très ordonnée et montre un intérêt marqué pour tout ce qui est de l'ordre du détail.

- ► Laquelle de ces affirmations semble la plus plausible?
- (A) Steve est libraire.
- $({ t B})$ Steve est agriculteur.

ce qui est de l'ordre du détail.

- ▶ Basé sur une étude de Kahneman & Tversky: Steve est d'un tempérament doux, timide, plutôt introverti. Bien qu'il soit très aimable, il semble montrer peu d'attention envers les autres personnes. Il a tendance à être très ordonnée et montre un intérêt marqué pour tout
- ► Laquelle de ces affirmations semble la plus plausible?
- (A) Steve est libraire.
- (B) Steve est agriculteur.

- ▶ Basé sur une étude de Kahneman & Tversky: Steve est d'un tempérament doux, timide, plutôt introverti. Bien qu'il soit très aimable, il semble montrer peu d'attention envers les autres personnes. Il a tendance à être très ordonnée et montre un intérêt marqué pour tout ce qui est de l'ordre du détail.
- ► Laquelle de ces affirmations semble la plus plausible?
- (A) Steve est libraire.
- (B) Steve est agriculteur.

- ▶ Basé sur une étude de Kahneman & Tversky: Steve est d'un tempérament doux, timide, plutôt introverti. Bien qu'il soit très aimable, il semble montrer peu d'attention envers les autres personnes. Il a tendance à être très ordonnée et montre un intérêt marqué pour tout ce qui est de l'ordre du détail.
- Laquelle de ces affirmations semble la plus plausible?
- (A) Steve est libraire.
- (B) Steve est agriculteur.

Basé sur une étude de Kahneman & Tversky: Steve est d'un tempérament doux, timide, plutôt introverti. Bien qu'il soit très aimable, il semble montrer peu d'attention envers les autres personnes. Il a tendance à

être très ordonnée et montre un intérêt marqué pour tout

- Laquelle de ces affirmations semble la plus plausible?
- (A) Steve est libraire.
- (B) Steve est agriculteur.

ce qui est de l'ordre du détail.

- ➤ Si on laisse de côté la question des *préjugés* ou des *stéréotypes* que l'on peut avoir sur différentes professions, la plupart des gens répondent que:
- Steve a bien plus de chance d'être libraire qu'agriculteur.
- Mais cette réponse est irrationnelle... Pourquoi?

- ➤ Si on laisse de côté la question des *préjugés* ou des *stéréotypes* que l'on peut avoir sur différentes professions, la plupart des gens répondent que:
- ► Steve a bien plus de chance d'être libraire qu'agriculteur.
- Mais cette réponse est irrationnelle... Pourquoi?

Théorème de Bayes

- Si on laisse de côté la question des préjugés ou des stéréotypes que l'on peut avoir sur différentes professions, la plupart des gens répondent que:
- Steve a bien plus de chance d'être libraire qu'agriculteur.
- Mais cette réponse est irrationnelle... Pourquoi?

- Les gens oublient totalement de prendre en compte la proportion de libraire libraires et d'agriculteurs dans la population!
- Aux USA, il semble qu'il y ait bien plus d'agriculteurs que de libraires!
- ▶ Supposons que la population compte 20 fois plus d'agriculteurs que de libraires: même si Steve semble montrer des "traits" de libraires, il reste assez peu probable qu'il soit effectivement libraire...

- Les gens oublient totalement de prendre en compte la proportion de libraire libraires et d'agriculteurs dans la population!
- Aux USA, il semble qu'il y ait bien plus d'agriculteurs que de libraires!
- Supposons que la population compte 20 fois plus d'agriculteurs que de libraires: même si Steve semble montrer des "traits" de libraires, il reste assez peu probable qu'il soit effectivement libraire...

THORÈME DE BAYES

0000000000

- Les gens oublient totalement de prendre en compte la proportion de libraire libraires et d'agriculteurs dans la population!
- Aux USA, il semble qu'il y ait bien plus d'agriculteurs que de libraires!
- ➤ Supposons que la population compte 20 fois plus d'agriculteurs que de libraires: même si Steve semble montrer des "traits" de libraires, il reste assez peu probable qu'il soit effectivement libraire...

- ightharpoonup On a 10 libraires et 200 agriculteurs. De plus, 80% des libraires et 10% des agriculteurs et correspondent à la description.
- $ightharpoonup p(libraire \mid description) = \frac{8}{8+20} \approx 28.57\%$

Théorème de Bayes

- ightharpoonup On a 10 libraires et 200 agriculteurs. De plus, 80% des libraires et 10% des agriculteurs et correspondent à la description.

10% of farmers fit the description

◆□▶ ◆周▶ ◆三▶ ◆三▶ ● めの○

Théorème de Bayes

- ightharpoonup On a 10 libraires et 200 agriculteurs. De plus, 80% des libraires et 10% des agriculteurs et correspondent à la description.
- $ightharpoonup p(libraire \mid description) = \frac{8}{8+20} \approx 28.57\%$

Introduction

80% of librarians fit the description

10% of farmers fit the description

NAIVE BAYES CLASSIFIER

- ▶ **Hypothèse** *H*: Steve est libraire.
- **Évidence** *E*: Steve est d'un tempérament doux, timide, ...
- ▶ **Prior:** Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ **Likelihood:** Probabilité de l'évidence étant donné que l'hypothèse est vraie $p(E \mid H) = 80\%$.
- ▶ (Likelihood bis): Probabilité de l'évidence étant donné que l'hypothèse est fausse $p(E \mid \neg H) = 10\%$.
- Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).

- ► **Hypothèse** *H*: Steve est libraire.
- **Évidence** *E*: Steve est d'un tempérament doux, timide, ...
- ▶ **Prior:** Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ **Likelihood:** Probabilité de l'évidence étant donné que l'hypothèse est vraie $p(E \mid H) = 80\%$.
- ▶ (Likelihood bis): Probabilité de l'évidence étant donné que l'hypothèse est fausse $p(E \mid \neg H) = 10\%$.
- Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).

- ► **Hypothèse** *H*: Steve est libraire.
- **Évidence** *E*: Steve est d'un tempérament doux, timide, ...
- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ **Likelihood:** Probabilité de l'évidence étant donné que l'hypothèse est vraie $p(E \mid H) = 80\%$.
- ▶ (Likelihood bis): Probabilité de l'évidence étant donné que l'hypothèse est fausse $p(E \mid \neg H) = 10\%$.
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).

- ► Hypothèse *H*: Steve est libraire.
- **Évidence** *E*: Steve est d'un tempérament doux, timide, ...
- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ **Likelihood**: Probabilité de l'évidence étant donné que l'hypothèse est vraie $p(E \mid H) = 80\%$.
- ▶ (Likelihood bis): Probabilité de l'évidence étant donné que l'hypothèse est fausse $p(E \mid \neg H) = 10\%$.
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).

THÉORÈME DE BAYES

- ► **Hypothèse** *H*: Steve est libraire.
- **Évidence** *E*: Steve est d'un tempérament doux, timide, ...
- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ **Likelihood**: Probabilité de l'évidence étant donné que l'hypothèse est vraie $p(E \mid H) = 80\%$.
- ▶ (Likelihood bis): Probabilité de l'évidence étant donné que l'hypothèse est fausse $p(E \mid \neg H) = 10\%$.
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).

► Hypothèse *H*: Steve est libraire.

THORÈME DE BAYES

0000000000

- **Évidence** *E*: Steve est d'un tempérament doux, timide, ...
- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ **Likelihood**: Probabilité de l'évidence étant donné que l'hypothèse est vraie $p(E \mid H) = 80\%$.
- ▶ (Likelihood bis): Probabilité de l'évidence étant donné que l'hypothèse est fausse $p(E \mid \neg H) = 10\%$.
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).

- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).
- Notre croyance que Steve est libraire est passée de 4.76% (croyance a priori) à 28.57% (croyance a posteriori).
- La différence entre le *prior* et le *posterior* est appelée belief updating ou belief revision (révision des croyances).

THÉORÈME DE BAYES

- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).
- Notre croyance que Steve est libraire est passée de 4.76% (croyance a priori) à 28.57% (croyance a posteriori).
- La différence entre le *prior* et le *posterior* est appelée belief updating ou belief revision (révision des croyances).

Théorème de Bayes

- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).
- Notre croyance que Steve est libraire est passée de 4.76% (croyance a priori) à 28.57% (croyance a posteriori).
- La différence entre le *prior* et le *posterior* est appelée belief updating ou belief revision (révision des croyances).

THORÈME DE BAYES

0000000000

- ▶ **Prior**: Probabilité de l'hypothèse avant de recevoir une évidence: $p(H) = \frac{10}{210} = \frac{1}{21} \approx 4.76\%$
- ▶ Posterior: Probabilité de l'hypothèse étant donné l'évidence $p(H \mid E) = \frac{8}{8+20} \approx 28.57\%$ (ce que l'on cherche).
- Notre croyance que Steve est libraire est passée de 4.76% (croyance a priori) à 28.57% (croyance a posteriori).
- La différence entre le *prior* et le *posterior* est appelée belief updating ou belief revision (révision des croyances).

Théorème de Bayes

► On a donc

$$p(H \mid E) = \frac{8}{8+20}$$

$$= \frac{210 p(H) p(E \mid H)}{210 p(H) p(E \mid H) + 210 p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(H) p(E \mid H) + p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) + p(E \cap \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E)}$$

On obtient alors le théorème de Baves.

Théorème de Bayes

► On a donc

$$p(H \mid E) = \frac{8}{8+20}$$

$$= \frac{210 p(H) p(E \mid H)}{210 p(H) p(E \mid H) + 210 p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(H) p(E \mid H) + p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) + p(E \cap \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E)}$$

On obtient alors le théorème de Baves.

► On a donc

$$p(H \mid E) = \frac{8}{8+20}$$

$$= \frac{210 p(H) p(E \mid H)}{210 p(H) p(E \mid H) + 210 p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(H) p(E \mid H) + p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) + p(E \cap \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) p(E \mid H)}$$

On obtient alors le théorème de Baves.

THORÈME DE BAYES

000000000

► On a donc

$$p(H \mid E) = \frac{8}{8+20}$$

$$= \frac{210 p(H) p(E \mid H)}{210 p(H) p(E \mid H) + 210 p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(H) p(E \mid H) + p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) + p(E \cap \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E)}$$

On obtient alors le théorème de Baves.

Théorème de Bayes

On a donc

$$p(H \mid E) = \frac{8}{8+20}$$

$$= \frac{210 p(H) p(E \mid H)}{210 p(H) p(E \mid H) + 210 p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(H) p(E \mid H) + p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) + p(E \cap \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E)}$$

► On a donc

$$p(H \mid E) = \frac{8}{8+20}$$

$$= \frac{210 p(H) p(E \mid H)}{210 p(H) p(E \mid H) + 210 p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(H) p(E \mid H) + p(\neg H) p(E \mid \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E \cap H) + p(E \cap \neg H)}$$

$$= \frac{p(H) p(E \mid H)}{p(E)}$$

On obtient alors le théorème de Bayes.

- ▶ Soient $X = (X_1, ..., X_P)$ des variables explicatives et Y une variable réponse qualitative à valeurs dans $C = \{c_1, ..., c_K\}$.
- Soit un train set

$$S = \{(\boldsymbol{x_i}, y_i) \in \mathbb{R}^P \times C : i = 1, \dots, N\}.$$

- ▶ Soient $X = (X_1, ..., X_P)$ des variables explicatives et Y une variable réponse qualitative à valeurs dans $C = \{c_1, ..., c_K\}$.
- Soit un train set

$$S = \{(\boldsymbol{x_i}, y_i) \in \mathbb{R}^P \times C : i = 1, \dots, N\}.$$

MODÈLE PROBABILISTE

Le modèle probabiliste pour un classifieur consiste à calculer la probabilité conditionnelle, étant donné un point x, d'appartenir à chacune des classes c_k , i.e.

$$p(Y = c_k \mid \boldsymbol{X} = \boldsymbol{x})$$
 pour tout $k = 1, \dots, K$

Ensuite, on associe x à la classe \hat{c} dont la probabilité conditionnelle est maximale, i.e.,

$$\hat{c} = \arg\max_{c_k \in C} p(Y = c_k \mid \boldsymbol{X} = \boldsymbol{x})$$

Modèle probabiliste

Le modèle probabiliste pour un classifieur consiste à calculer la probabilité conditionnelle, étant donné un point x, d'appartenir à chacune des classes c_k , i.e.

$$p(Y = c_k \mid \boldsymbol{X} = \boldsymbol{x})$$
 pour tout $k = 1, \dots, K$

Ensuite, on associe x à la classe \hat{c} dont la probabilité conditionnelle est maximale, i.e.,

$$\hat{c} = \arg\max_{c_k \in C} p(Y = c_k \mid \boldsymbol{X} = \boldsymbol{x})$$

Introduction

- Pour un point \boldsymbol{x} on abrège $p(Y = c_k \mid \boldsymbol{X} = \boldsymbol{x})$ par $p(c_k \mid \boldsymbol{x})$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_k, x_1, \ldots, x_P) = p(x_1, \ldots, x_P, c_k)$$

- Pour un point \boldsymbol{x} on abrège $p(Y = c_k \mid \boldsymbol{X} = \boldsymbol{x})$ par $p(c_k \mid \boldsymbol{x})$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{2}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k}) p(x_{3}, ..., x_{P}, c_{k})$$

$$= ...$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$
...

- Pour un point \boldsymbol{x} on abrège $p(Y=c_k \mid \boldsymbol{X}=\boldsymbol{x})$ par $p(c_k \mid \boldsymbol{x})$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_{k}, x_{1}, \dots, x_{P}) = p(x_{1}, \dots, x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, \dots, x_{P}, c_{k}) p(x_{2}, \dots, x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, \dots, x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, \dots, x_{P}, c_{k}) p(x_{3}, \dots, x_{P}, c_{k})$$

$$= \dots$$

$$= p(x_{1} \mid x_{2}, \dots, x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, \dots, x_{P}, c_{k})$$

$$\dots$$

- Pour un point x on abrège $p(Y = c_k \mid X = x)$ par $p(c_k \mid x)$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{2}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k}) p(x_{3}, ..., x_{P}, c_{k})$$

$$= ...$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$
...
$$p(x_{P}, x_{1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

- Pour un point \boldsymbol{x} on abrège $p(Y=c_k \mid \boldsymbol{X}=\boldsymbol{x})$ par $p(c_k \mid \boldsymbol{x})$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{2}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{3}, ..., x_{P}, c_{k})$$

$$= ...$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$= p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$

$$...$$

$$p(x_{P-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

- Pour un point x on abrège $p(Y = c_k \mid X = x)$ par $p(c_k \mid x)$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{2}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{3}, ..., x_{P}, c_{k})$$

$$= ...$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$

$$...$$

$$p(x_{P-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

- Pour un point x on abrège $p(Y = c_k \mid X = x)$ par $p(c_k \mid x)$.
- Une application répétée de la règles des probabilités conditionnelles donne:

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k}) p(x_{2}, ..., x_{P}, c_{k})$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k}) p(x_{3}, ..., x_{P}, c_{k})$$

$$= ...$$

$$= p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$

$$...$$

$$p(x_{P-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

▶ On introduit l'hypothèse naïve d'indépendance conditionnelle: chaque X_i est indépendant des autres caractéristiques X_j , conditionnellement à Y, i.e.

$$p(x_j \mid x_{j+1}, \dots, x_P, c_k) = p(x_j \mid c_k)$$

Exemple: Classification de fruits à partir de divers attributs (couleur, forme, etc.). L'hypothèse naïve dit:

$$p(X_1 = rouge \mid X_2 = rond, Y = pomme)$$

= $p(X_1 = rouge \mid Y = pomme)$

▶ On introduit l'hypothèse naïve d'indépendance conditionnelle: chaque X_i est indépendant des autres caractéristiques X_j , conditionnellement à Y, i.e.

$$p(x_j \mid x_{j+1}, \dots, x_P, c_k) = p(x_j \mid c_k)$$

► Exemple: Classification de fruits à partir de divers attributs (couleur, forme, etc.). L'hypothèse naïve dit:

$$p(X_1 = rouge \mid X_2 = rond, Y = pomme)$$

= $p(X_1 = rouge \mid Y = pomme)$

Introduction

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$

$$...$$

$$p(x_{n-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

$$= p(x_{1} \mid c_{k}) p(x_{2} \mid c_{k}) p(x_{3} \mid c_{k}) ... p(c_{k})$$

$$= p(c_{k}) \prod_{j=1}^{P} p(x_{j} \mid c_{k})$$
(1)

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$
...
$$p(x_{n-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

$$= p(x_{1} \mid c_{k}) p(x_{2} \mid c_{k}) p(x_{3} \mid c_{k}) \cdots p(c_{k})$$

$$= p(c_{k}) \prod_{j=1}^{P} p(x_{j} \mid c_{k})$$
(1)

HYPOTHÈSE NAÏVE

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$

$$...$$

$$p(x_{n-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

$$= p(x_{1} \mid c_{k}) p(x_{2} \mid c_{k}) p(x_{3} \mid c_{k}) ... p(c_{k})$$

$$= p(c_{k}) \prod_{j=1}^{P} p(x_{j} \mid c_{k})$$
(1)

$$p(c_{k}, x_{1}, ..., x_{P}) = p(x_{1} \mid x_{2}, ..., x_{P}, c_{k})$$

$$p(x_{2} \mid x_{3}, ..., x_{P}, c_{k})$$

$$...$$

$$p(x_{n-1} \mid x_{P}, c_{k}) p(x_{P} \mid c_{k}) p(c_{k})$$

$$= p(x_{1} \mid c_{k}) p(x_{2} \mid c_{k}) p(x_{3} \mid c_{k}) ... p(c_{k})$$

$$= p(c_{k}) \prod_{i=1}^{P} p(x_{j} \mid c_{k})$$
(1)

▶ Par le théorème de Bayes et l'équation (1), on a finalement:

$$p(c_k \mid x_1, \dots, x_P) = \frac{p(c_k, x_1, \dots, x_P)}{p(x_1, \dots, x_P)} = \frac{p(c_k) \prod_{j=1}^P p(x_j \mid c_k)}{p(x_1, \dots, x_P)}$$

En résumé, la formule d'un naive Bayes classifier est

$$p(c_k \mid \boldsymbol{x}) = \frac{1}{p(\boldsymbol{x})} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

ightharpoonup Ainsi, la **prédiction** \hat{c} du classifieur est donnée par

$$\hat{c} = rg \max_{c_k \in C} p(c_k \mid \boldsymbol{x}) = rg \max_{c_k \in C} p(c_k) \prod_{i=1}^P p(x_j \mid c_k)$$

Par le théorème de Bayes et l'équation (1), on a finalement:

$$p(c_k \mid x_1, \dots, x_P) = \frac{p(c_k, x_1, \dots, x_P)}{p(x_1, \dots, x_P)} = \frac{p(c_k) \prod_{j=1}^P p(x_j \mid c_k)}{p(x_1, \dots, x_P)}$$

En résumé, la formule d'un naive Bayes classifier est:

$$p(c_k \mid \boldsymbol{x}) = \frac{1}{p(\boldsymbol{x})} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

ightharpoonup Ainsi, la **prédiction** \hat{c} du classifieur est donnée par

$$\hat{c} = \arg\max_{c_k \in C} p(c_k \mid \boldsymbol{x}) = \arg\max_{c_k \in C} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

Par le théorème de Bayes et l'équation (1), on a finalement:

$$p(c_k \mid x_1, \dots, x_P) = \frac{p(c_k, x_1, \dots, x_P)}{p(x_1, \dots, x_P)} = \frac{p(c_k) \prod_{j=1}^P p(x_j \mid c_k)}{p(x_1, \dots, x_P)}$$

En résumé, la formule d'un naive Bayes classifier est:

$$p(c_k \mid \boldsymbol{x}) = \frac{1}{p(\boldsymbol{x})} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

ightharpoonup Ainsi, la **prédiction** \hat{c} du classifieur est donnée par

$$\hat{c} = \arg\max_{c_k \in C} p(c_k \mid \boldsymbol{x}) = \arg\max_{c_k \in C} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

ESTIMATION DES PARAMÈTRES

On a donc:

Introduction

$$p(c_k \mid \boldsymbol{x}) = \frac{1}{p(\boldsymbol{x})} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

- ▶ Grâce au théorème de Bayes et à notre hypothèse naïve, on a pu exprimer la probabilité conditionnelle $p(c_k \mid x)$ à partir de $p(c_k)$ et des probabilités conditionnelles "inverses" $p(x_i \mid c_k)$.
- ▶ Mais que valent $p(c_k)$ et $p(x_j | c_k)$? Comment estimer $p(c_k)$ et $p(x_j | c_k)$ à partir des data?

ESTIMATION DES PARAMÈTRES

On a donc:

$$p(c_k \mid \boldsymbol{x}) = \frac{1}{p(\boldsymbol{x})} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

- ▶ Grâce au théorème de Bayes et à notre hypothèse naïve, on a pu exprimer la probabilité conditionnelle $p(c_k \mid \boldsymbol{x})$ à partir de $p(c_k)$ et des probabilités conditionnelles "inverses" $p(x_j \mid c_k)$.
- ▶ Mais que valent $p(c_k)$ et $p(x_j \mid c_k)$? Comment estimer $p(c_k)$ et $p(x_j \mid c_k)$ à partir des data?

On a donc:

 $p(c_k \mid \boldsymbol{x}) = \frac{1}{p(\boldsymbol{x})} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$

- ▶ Grâce au théorème de Bayes et à notre hypothèse naïve, on a pu exprimer la probabilité conditionnelle $p(c_k \mid x)$ à partir de $p(c_k)$ et des probabilités conditionnelles "inverses" $p(x_i \mid c_k)$.
- ▶ Mais que valent $p(c_k)$ et $p(x_j \mid c_k)$? Comment estimer $p(c_k)$ et $p(x_j \mid c_k)$ à partir des data?

ESTIMATION DES PARAMÈTRES

- ▶ Estimation des "class priors": l'estimation des $p(Y = c_k) = p(c_k)$ pour k = 1, ..., K à partir des data est simple.
- ▶ Soit on suppose que toutes les K classes c_1, \ldots, c_K sont équiprobables, auquel cas on a:

$$p(c_k) = \frac{1}{K}$$
 , pour tout $k = 1, \dots, K$.

Ou alors on estime $p(c_k)$ comme la proportion d'éléments du train set S qui sont de la classe c_k , i.e.

$$p(c_k) = \frac{|S_k|}{N}$$
 , pour tout $k = 1, \dots, K$.

où S_k est le sous-dataset de S formé des éléments de classe c_k .

Introduction

ESTIMATION DES PARAMÈTRES

- ▶ Estimation des "class priors": l'estimation des $p(Y = c_k) = p(c_k)$ pour k = 1, ..., K à partir des data est simple.
- ▶ Soit on suppose que toutes les K classes c_1, \ldots, c_K sont équiprobables, auquel cas on a:

$$p(c_k) = \frac{1}{K}$$
 , pour tout $k = 1, \dots, K$.

Ou alors on estime $p(c_k)$ comme la proportion d'éléments du train set S qui sont de la classe c_k , i.e.

$$p(c_k) = \frac{|S_k|}{N}$$
 , pour tout $k = 1, \dots, K$.

où S_k est le sous-dataset de S formé des éléments de classe c_k .

Naive Bayes Classifier

ESTIMATION DES PARAMÈTRES

- ▶ Estimation des "class priors": l'estimation des $p(Y = c_k) = p(c_k)$ pour k = 1, ..., K à partir des data est simple.
- lackbox Soit on suppose que toutes les K classes c_1,\ldots,c_K sont équiprobables, auquel cas on a:

$$p(c_k) = \frac{1}{K}$$
 , pour tout $k = 1, \dots, K$.

• Ou alors on estime $p(c_k)$ comme la proportion d'éléments du train set S qui sont de la classe c_k , i.e.

$$p(c_k) = \frac{|S_k|}{N}$$
 , pour tout $k = 1, \dots, K$.

où S_k est le sous-dataset de S formé des éléments de classe c_k .

Naive Bayes Classifier

Gaussian Naive Bayes Classifier

- ▶ Estimation des "feature distributions": l'estimation des $p(X_j = x_j \mid Y = c_k) = p(x_j \mid c_k)$ pour $j = 1, \ldots, p$ $k = 1, \ldots, K$ à partir des data diffère selon la nature des data.
- Si les features X_i sont *continues*, on suppose généralement que chaque $p(X_j \mid Y = c_k)$ suit une *loi normale*, i.e.

$$p(X_j = x_j \mid Y = c_k) \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$$

On obtient alors un Gaussian naive Bayes classifier.

Gaussian Naive Bayes Classifier

- ▶ Estimation des "feature distributions": l'estimation des $p(X_j = x_j \mid Y = c_k) = p(x_j \mid c_k)$ pour $j = 1, \ldots, p$ $k = 1, \ldots, K$ à partir des data diffère selon la nature des data.
- Si les features X_i sont *continues*, on suppose généralement que chaque $p(X_j \mid Y = c_k)$ suit une *loi normale*, i.e.

$$p(X_j = \mathbf{x_j} \mid Y = c_k) \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$$

On obtient alors un Gaussian naive Bayes classifier.

Naive Bayes Classifier

Gaussian Naive Bayes Classifier

- ▶ Estimation des "feature distributions": l'estimation des $p(X_j = x_j \mid Y = c_k) = p(x_j \mid c_k)$ pour $j = 1, \ldots, p$ $k = 1, \ldots, K$ à partir des data diffère selon la nature des data.
- Si les features X_i sont *continues*, on suppose généralement que chaque $p(X_j \mid Y = c_k)$ suit une *loi normale*, i.e.

$$p(X_j = \mathbf{x_j} \mid Y = c_k) \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$$

On obtient alors un Gaussian naive Bayes classifier.

GAUSSIAN NAIVE BAYES CLASSIFIER

Pour tout $j=1,\ldots,p$ et pour tout $k=1,\ldots,K$, on estime la moyenne μ_{jk} et la variance σ_{jk}^2 par

$$\mu_{jk} = \frac{1}{|S_k|} \sum_{(\boldsymbol{x}, y) \in S_k} x_j \text{ et } \sigma_{jk}^2 = \frac{1}{(|S_k| - 1)} \sum_{(\boldsymbol{x}, y) \in S_k} (x_j - \mu_{jk})^2$$

où S_k est le sous-dataset S formé des éléments qui sont de classe k.

lacktriangle On a donc 2PK paramètres (c'est peu !).

Gaussian Naive Bayes Classifier

Pour tout $j=1,\ldots,p$ et pour tout $k=1,\ldots,K$, on estime la moyenne μ_{jk} et la variance σ_{jk}^2 par

$$\mu_{jk} = \frac{1}{|S_k|} \sum_{(\boldsymbol{x}, y) \in S_k} x_j \text{ et } \sigma_{jk}^2 = \frac{1}{(|S_k| - 1)} \sum_{(\boldsymbol{x}, y) \in S_k} (x_j - \mu_{jk})^2$$

où S_k est le sous-dataset S formé des éléments qui sont de classe k.

▶ On a donc 2PK paramètres (c'est peu !).

Gaussian Naive Bayes Classifier

► Ensuite, puisque $p(X_j = \mathbf{x}_j \mid c_k) \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$, on a

$$p(\mathbf{x}_j \mid c_k) = \frac{1}{\sqrt{2\pi\sigma_{jk}^2}} e^{-\frac{(\mathbf{x}_j - \mu_{jk})^2}{2\sigma_{jk}^2}}$$

Ainsi, pour tout point $x = (x_1, \dots, x_P)$ et toute classe c_k , nous avons tout ce qu'il faut pour calculer les formules du naive Bayes classifier:

$$p(c_k \mid \boldsymbol{x}) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

$$\hat{c} = \arg \max_{c_k \in C} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

GAUSSIAN NAIVE BAYES CLASSIFIER

► Ensuite, puisque $p(X_j = \mathbf{x_j} \mid c_k) \sim \mathcal{N}(\mu_{jk}, \sigma_{jk}^2)$, on a

$$p(\mathbf{x}_j \mid c_k) = \frac{1}{\sqrt{2\pi\sigma_{jk}^2}} e^{-\frac{(\mathbf{x}_j - \mu_{jk})^2}{2\sigma_{jk}^2}}$$

Ainsi, pour tout point $x = (x_1, \dots, x_P)$ et toute classe c_k , nous avons tout ce qu'il faut pour calculer les formules du naive Bayes classifier:

$$p(c_k \mid \boldsymbol{x}) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

$$\hat{c} = \arg \max_{c_k \in C} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

NAIVE BAYES CLASSIFIER

MULTINOMIAL NAIVE BAYES CLASSIFIER

▶ Si les features X_i sont *discrètes*, on suppose généralement que le vecteur de features $p(\boldsymbol{X} \mid Y = c_k)$ (et non chaque feature individuelle) suit une *loi multinomiale*, i.e.

$$p(X = \mathbf{x} \mid Y = c_k) \sim Multinomial(\pi_{1k}, \dots, \pi_{Pk})$$

où π_{jk} représente la probabilité que le j-ième évènement apparaisse dans la classe c_k .

On obtient alors un multinomial naive Bayes classifier.

000000000000000

MULTINOMIAL NAIVE BAYES CLASSIFIER

 \triangleright Si les features X_i sont discrètes, on suppose généralement que le vecteur de features $p(X \mid Y = c_k)$ (et non chaque feature individuelle) suit une loi multinomiale, i.e.

$$p(X = \mathbf{x} \mid Y = c_k) \sim Multinomial(\pi_{1k}, \dots, \pi_{Pk})$$

où π_{ik} représente la probabilité que le j-ième évènement apparaisse dans la classe c_k .

On obtient alors un multinomial naive Bayes classifier.

MULTINOMIAL NAIVE BAYES CLASSIFIER

Pour tout $j=1,\ldots,p$ et pour tout $k=1,\ldots,K$, on estime la probabilité π_{ik} par

$$\pi_{jk} = \frac{\sum_{\boldsymbol{x} \in S_k} x_j}{\sum_{j'=1}^{P} \sum_{\boldsymbol{x} \in S_k} x_{j'}}$$

000000000000000

où S_k est le sous-dataset S formé des éléments qui sont de classe k.

Pour tout $j=1,\ldots,p$ et pour tout $k=1,\ldots,K$, on estime la probabilité π_{jk} par

$$\pi_{jk} = \frac{\sum_{\boldsymbol{x} \in S_k} x_j}{\sum_{j'=1}^{P} \sum_{\boldsymbol{x} \in S_k} x_{j'}}$$

Naive Bayes Classifier

où S_k est le sous-dataset S formé des éléments qui sont de classe k.

▶ On a donc PK paramètres (c'est peu !).

MULTINOMIAL NAIVE BAYES CLASSIFIER

► Ensuite, puisque $p(X = \mathbf{x} \mid c_k) \sim Multinomial(\pi_{1k}, \dots, \pi_{Pk})$, on a

$$p(\mathbf{x} \mid c_k) = \left(\frac{\sum_{j=1}^P x_j!}{x_1! \cdots x_P!}\right) \pi_{1k}^{x_1} \dots \pi_{Pk}^{x_P}$$

$$p(c_k \mid \boldsymbol{x}) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$
 $\hat{c} = \arg\max_{c_k \in C} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$

MULTINOMIAL NAIVE BAYES CLASSIFIER

▶ Ensuite, puisque $p(X = \mathbf{x} \mid c_k) \sim Multinomial(\pi_{1k}, \dots, \pi_{Pk})$, on a

$$p(\boldsymbol{x} \mid c_k) = \left(\frac{\sum_{j=1}^P x_j!}{x_1! \cdots x_P!}\right) \pi_{1k}^{x_1} \dots \pi_{Pk}^{x_P}$$

Ainsi, pour tout point $x = (x_1, \dots, x_P)$ et toute classe c_k , nous avons tout ce qu'il faut pour calculer les formules du naive Bayes classifier:

$$p(c_k \mid \boldsymbol{x}) \propto p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

$$\hat{c} = \arg \max_{c_k \in C} p(c_k) \prod_{j=1}^{P} p(x_j \mid c_k)$$

BIBLIOGRAPHIE

3Blue1Brown.

Bayes theorem, the geometry of changing beliefs.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).

An Introduction to Statistical Learning: with Applications in R, volume 103 of Springer Texts in Statistics.

Springer, New York.

Wikipedia contributors (2023).

Naive bayes classifier — Wikipedia, the free encyclopedia.