Moments and Characteristic Functions Instructor's Notes

Fu Tianwen Yao Chaorui Zhao Feng April 4, 2019

Contents

Mo	ments	
1.1	Definition of Moments	
1.2	Description of Moments	
Cha	aracteristic Functions	
2.1	Moment Generating Functions	
2.2	Characteristic Function	
	2.2.1 Basic information about complex numbers	
	2.2.2 Definition of Characteristic Functions	
	2.2.3 Basic Properties [1]	
2.3	Common Distributions and Their Characteristic Functions	
Evo	amples and Applications of Characteristic Functions	
	1.1 1.2 Cha 2.1 2.2	

1 Moments

1.1 Definition of Moments

Generally, in math, the n-th moment of a real-valued continuous function about center c is: [2]

$$\mu_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$

In particular, for probability density functions f (or cumulative density function F), the moments are given by

$$\mu'_n = E[X^n] = \int_{-\infty}^{\infty} x^n dF(x) = \int_{-\infty}^{\infty} x^n f(x) dx$$

Also we have the definition of the central moment [3]:

$$\mu_n = E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx$$

Generally central moments are more useful. Not to be confused with mean μ .

1.2 Description of Moments

The first moment is the mean of a random variable, i.e.

$$\mu = E[X]$$

The second moment is related to the variance of a random variable:

$$Var[X] = E[X^2] - E[X]^2$$

In fact the variance is just the second central moment:

$$Var[X] = \mu_2 = E[(X - E[X])^2]$$

As for the third central moment, a related concept is skewness. Below shows two random variables with the same mean variance however different in skewness[4]:

Figure 1: Negative and Positive Skew Diagrams

With all moments up to the order of infinity we can describe the **characteristics** of a probability distribution.

2 Characteristic Functions

2.1 Moment Generating Functions

Definition 2.1 Let X be a random variable with probability density function f(x). If there is a positive number h such that

$$\int_{-\infty}^{\infty} e^{tx} f(x) dx$$

exists and is finite for h < t < h, then the function defined by

$$M(t) = E[e^{tX}]$$

is called the moment-generating function of X (or of the distribution of X). [5]

The r-th moment about the origin can be achieved from the moment generating function by evaluating the r-th derivative[6]:

$$M^{(r)}(0) = E[X^r]$$

Also notice the relation between the Taylor Expansion and the moments.

2.2 Characteristic Function

Notice that e^{tx} is not a "good" function in the sense that it is not bounded and may not converge under some circumstances. Before going to characteristic functions, we first get acquainted with knowledge of complex numbers:

2.2.1 Basic information about complex numbers

Let z=a+bi, where $a,b\in\mathbb{R}$, and $i=\sqrt{-1}$ is the imaginary unit. z is then called a complex number and a,b are called the real and imaginary parts of z, denoted by $a=\mathrm{Re}(z),b=\mathrm{Im}(z)$ respectively. (Consider i as rotation by $\frac{\pi}{2}$ counterclockwise in the complex plane)

The conjugate of a complex number $z=a+bi, a,b\in\mathbb{R}$ is $\hat{z}=a-bi$, we also define the modulus (or length) of z to be $|z|=z\hat{z}$. Notice that |z| is a non-negative real number. Euler's formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

The formula comes from Taylor's Series. It also gives rise to the polar representation of a complex number, i.e. $z=re^{i\theta}$, where r is the modulus and θ is the phase. From this we also have that $|e^{i\theta}|=1$ for any θ .

2.2.2 Definition of Characteristic Functions

Definition 2.2 Let X be a random variable and denote by F the cumulative distribution function of X. The characteristic function $\varphi = \varphi_X$ of X (or of F, in which case we also write φ_F) is defined by [1]

$$\varphi_X(t) := E[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} dF(x), t \in \mathbb{R}$$

2.2.3 Basic Properties [1]

Theorem 2.1 If X and Y are independent random variables then the characteristic function of their sum is

$$\varphi_{X+Y}(t) = \varphi_X \cdot \varphi_Y.$$

Corollary 2.1.1 The product of two characteristic functions is a characteristic function

Remark If X and Y are random variables such that $\varphi_{X+Y} = \varphi_X \cdot \varphi_Y$, then in general we do not conclude X and Y are independent. (See page 13 in [1])

Theorem 2.2 For any $a, b \in \mathbb{R}$,

$$\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at).$$

Theorem 2.3 Every characteristic function φ has the following properties:

- (i) f(0) = 1,
- (ii) |f(t)| <= 1,
- (iii) $f(-t) = \overline{f(t)}$
- (iv) f is continuous on \mathbb{R}

2.3 Common Distributions and Their Characteristic Functions

Table 1: Characteristic Functions for Common Distributions[7]

Distribution	PMF/PDF	Characteristic Function
Constant $X \equiv a$	-	$\phi_X(t) = e^{iat}.$
Binomial $X \sim Binomial(m, p)$	$p_X(n) = \binom{n}{m} p^n (1-p)^{m-n}$	$\phi_X(t) = (pe^{it} + (1-p))^m$
Poisson $X \sim Poisson(\lambda)$	$p_X(n) = \frac{\lambda^n}{n!} e^{-\lambda}$	$\phi_X(t) = e^{\lambda(e^{it} - 1)}$
Normal $X \sim N(0, 1)$	$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	$\phi_X(t) = e^{-\frac{t^2}{2}}$
Normal $Y \sim N(\mu, \sigma^2)$	$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$	$\phi_Y(t) = e^{it\mu - \frac{\sigma^2 t^2}{2}}$

3 Examples and Applications of Characteristic Functions

To be continued...

References

- [1] T. M. Bisgaard and S. Zoltán, Characteristic functions and moment sequences: positive definiteness in probability. Huntington, N.Y.: Nova Science Publishers, 2000.
- [2] Wikipedia contributors, "Moment (mathematics) Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Moment_(mathematics) &oldid=886051824, 2019. [Online; accessed 8-March-2019].

- [3] Wikipedia contributors, "Central moment Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Central_moment&oldid=866322488, 2018. [Online; accessed 8-March-2019].
- [4] Wikipedia contributors, "Skewness Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Skewness&oldid=886052950, 2019. [Online; accessed 8-March-2019].
- [5] R. V. Hogg, Probability and statistical inference. ninth edition.. ed., 2015.
- [6] Penn State University, "Stat 414 / 415 probability theory and mathematical statistics finding moments."
- [7] Aktuella kurssidor vid Matematiska institutionen Stockholms universitet, "Lecture 10: Characteristic Functions." https://kurser.math.su.se/pluginfile.php/5149/mod_resource/content/1/lecture-10b.pdf. [Online; Accessed 4-April-2019].