Scaling Infrastructure to Support Multi-Trillion Parameter LLM Training

Mikhail Isaev¹, Nic McDonald², Rich Vuduc¹ ¹Georgia Institute of Technology, ²Nvidia

How we model LLMs

Calculon is a new open source analytical model for LLM co-design. It takes three specifications: (a) LLM architecture; (b) LLM execution strategy defining parallelism and optimizations; and (c) HW system description.

It produces time and resource utilization **prediction**, in a format similar to profiler output

Calculon exploits **LLM's repetitive nature** – same computation repeats over again.

Just six LLM parameters define a single Transformer block. LLM parameters and execution strategy builds an LLM execution DAG

How we scale LLMs

We can grow model width (hidden size), or model depth (number of layers). Model ratio - a ratio between width and

DP overlap section for a single chunk

There is **no consensus** on how to scale LLMs. We picked **linear ratio scaling** implied by the current LLM models.

TABLE I ASPECT RATIOS OF CURRENT LLMS.				TABLE II TWELVE MULTI-TRILLION PARAMETER LLMS, FROM 1T TO				
Name	Hidden	# Blocks	Aspect Ratio	Name	Hidden	# Blocks	Aspect Ratio	
GPT2-1.5B [16]	1600	48	33.3	1T	24,576	128	192	
Jurassic-6.5B [10]	4096	32	128	2T	32,768	160	204.8	
PaLM-8B [3]	4096	32	128	4T	40,960	192	213.3	
GPT3-13B [2]	5140	40	128.5	7T	50,176	224	224	
Megatron-40B [11]	6144	40	153.6	11 T	60,416	256	236	
PaLM-62B [3]	8192	64	128	18T	70.656	288	245	

Name	Hidden	# Blocks	Aspect Ratio	Name	Hidden
GPT2-1.5B [16]	1600	48	33.3	1T	24,576
Jurassic-6.5B [10]	4096	32	128	2T	32,768
PaLM-8B [3]	4096	32	128	4T	40,960
GPT3-13B [2]	5140	40	128.5	7 T	50,176
Megatron-40B [11]	6144	40	153.6	11 T	60,416
PaLM-62B [3]	8192	64	128	18T	70,656
Chinchilla-64B [4]	8192	80	102.4	26T	81,920
GPT3-175B [2]	12288	96	128	37T	94,208
Jurassic-175B [10]	13824	76	181.9	53T	106,496
Megatron-309B [11]	16384	96	170.7	72T	119,808
TuringNLG-530B [20]	20480	105	195	96T	134,144
PaLM-540B [3]	18432	118	156	128T	148,480
Megatron-1T [11]	25600	128	200		
				400	

Model width and depth should change in the large power-of-two steps to provide best performance for tensor and pipeline parallelism

256 blocks

254 blocks

PP comm DP comm

How can we train 100+T LLMs with 75% MFU?

Key takeaways

- 1. Training a **100T**-parameters LLM takes **1 TiB** of offload memory per GPU with bidirectional bandwidth of 100 GB/s
- 2. Larger LLMs need larger HBM even with offload memory
- 3. Small pipeline parallelism with interleaved schedule helps overlap data parallel communication
- 4. Smaller LLMs around **1T struggle to scale to 16k** GPUs due to various parallelism bottlenecks
- 5. Smaller LLMs utilize larger data parallelism due to fewer weights and gradients, smaller tensor parallel communication overlap; batch size is the limiting factor
- 6. Increasing tensor parallelism is limited by fast network size, smaller time for communication overlap, lower efficiency of matrix multiplication

This analysis is made possible with **Calculon**, an open sourced LLM analytical model for fast HW/SW co-design for LLM training Find us at https://github.com/calculon-ai

Memory consumption breakdown, 4096 GPUs

1T model time and memory consumption breakdown for different system configurations

How tensor offloading works

Fast memory with lower capacity only keeps a few currently used transformer blocks.

Rest is offloaded to slower memory.

No overhead if enough time to **prefetch** tensors for the **next layer** and **offload** tensors for the previous layer during current layer's compute.

That depends on **memory bandwidth** and amount of compute.

How big and how fast should offload memory be?

100 GB/s is enough for offloading, allowing to use CXL or eth attached memory. **1-2 TiB is enough** for most applications on different scale. Smaller systems need more memory, smaller models need more bandwidth.

Relative efficiency of offload memory compared to infinite bandwidth case

