VARIATIONAL BAYESIAN MONTE CARLO

Luigi Acerbi

Email: luigi.acerbi@gmail.com Twitter: @AcerbiLuigi

MOTIVATION

Goal: Bayesian inference with expensive black-box statistical models

Models in science and machine learning

- Likelihood: $p(\mathcal{D}|\boldsymbol{x})$ (data \mathcal{D} , parameters $\boldsymbol{x} \in \mathcal{X} \subseteq \mathbb{R}^D$)
- No detailed information (e.g., no gradient)
- Moderately costly evaluation ($\gtrsim 1 \, \mathrm{s}$)
- Typical budget up to 500-1000 func. evals.

Bayesian inference

- Posterior: $p(\boldsymbol{x}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{x})p(\boldsymbol{x})}{p(\mathcal{D})}$ (in usable form)
- Marginal likelihood: $p(\mathcal{D}) = \int p(\mathcal{D}|\boldsymbol{x})p(\boldsymbol{x})d\boldsymbol{x}$

Why Bayesian inference?

- Uncertainty and trade-offs between parameters
- $p(\mathcal{D})$ as principled metric of model selection
- Potential machine learning application: *AutoML*

Problem: Existing methods for (approximate) Bayesian inference (e.g., MCMC, ADVI) require many likelihood evals. or knowledge of the model

KEY IDEAS

Variational inference (VI)

- Approximate $p(\boldsymbol{x}|\mathcal{D})$ with $q_{\boldsymbol{\phi}}(\boldsymbol{x})$
- Minimize KL $[q_{\phi}(\boldsymbol{x})||p(\boldsymbol{x}|\mathcal{D})] = \mathbb{E}_{q_{\phi}} \left|\log \frac{q_{\phi}(\boldsymbol{x})}{p(\boldsymbol{x}|\mathcal{D})}\right|$

$$\underset{\text{maximize}}{\Longrightarrow} \text{ELBO}(\boldsymbol{\phi}) = \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}} \left[\log p(\mathcal{D}|\boldsymbol{x}) p(\boldsymbol{x}) \right]}_{\text{expected log joint}} + \underbrace{\mathcal{H}[q_{\boldsymbol{\phi}}(\boldsymbol{x})]}_{\text{entropy}}$$

- VI casts inference into optimization + integration
- Obtains $q_{\phi}(\boldsymbol{x})$ and $\text{ELBO}(\phi) \leq \log p(\mathcal{D})$

Bayesian quadrature (BQ)

- ullet Evaluate integral involving (expensive) fcn. f
- Approximate f with Gaussian process (GP)

$$Z = \int \underbrace{p(\boldsymbol{x})}_{\text{Gaussian GP}} \underbrace{f(\boldsymbol{x})}_{\text{GP}} d\boldsymbol{x}$$

- For some GPs, posterior p(Z) is analytical
- Past work applied BQ to compute $p(\mathcal{D})$ [2,3,4]

 $VI + BQ \Rightarrow VBMC$

ALGORITHMIC DETAILS

Gaussian process representation

- Sample GP hyperparameters (later optimize)
- Squared exponential covariance, Gaussian noise
- Mean fcn.: $m_{NQ}(\boldsymbol{x}) = m_0 \frac{1}{2} \sum_{i=1}^{D} \frac{\left(x^{(i)} x_{m}^{(i)}\right)^2}{\omega^{(i)^2}}$

Variational posterior

$$q_{\phi}(\boldsymbol{x}) = \sum_{k=1}^{K} w_k \mathcal{N}\left(\boldsymbol{x}; \boldsymbol{\mu}_k, \sigma_k^2 \boldsymbol{\Sigma}\right) \quad \boldsymbol{\Sigma} \equiv \mathrm{diag}[\boldsymbol{\lambda}^2]$$

- *K* set adaptively each iteration (except *warm-up*)
- Expected log joint is analytical, entropy via Monte Carlo ⇒ Optimize with SGD (Adam)

Warm-up

- Clamp K = 2, $w_1 = w_2 = 1/2$
- Ends when ELCBO improvement slows down
- ELCBO(ϕ , f) = ELBO(ϕ , f) β _{LCB} · SD [$\mathbb{E}_{\phi}f$]

VARIATIONAL BAYESIAN MONTE CARLO (VBMC) [1]

In each iteration *t*:

- 1. Actively sample new points \boldsymbol{x}^* , evaluate $f = \log p(\mathcal{D}|\boldsymbol{x}^*)p(\boldsymbol{x}^*)$
- 2. train GP model of the log joint *f*
- 3. update variational posterior q_{ϕ_t} by optimizing the ELBO

Loop until reaching termination criterion

Ready-to-use MATLAB package at: https://github.com/lacerbi/vbmc

RESULTS

Methods: Simple Monte Carlo (SMC), Annealed importance sampling (AIS), Bayesian Monte Carlo (BMC) [2], Doubly-Bayesian quadrature (BBQ) [3], WSABI [4], Posterior estimation via GPs (AGP, BAPE), VBMC-U (a_{us}), VBMC-P (a_{pro})

Synthetic densities: Lumpy, Student, Cigar families $\times D \in \{2, 4, 6, 8, 10\}$ (Left column: D = 2 examples)

Neuronal model: Two real neuronal datasets with D = 7 (*Right column*: Posterior for V2 dataset)

Performance metrics

- A: Median absolute error of the log marginal likelihood (LML) wrt. ground truth
- **B:** Median "Gaussianized" symmetrized KL divergence (gsKL) bw. algorithm's posterior and ground truth

ACTIVE SAMPLING

Optimize acquisition function

$$\boldsymbol{x}^* = \arg\max a(\boldsymbol{x})$$

Goal: Evaluate $\mathbb{E}_{\phi}[f] = \int q_{\phi}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ \Longrightarrow 'Vanilla' uncertainty sampling:

$$a_{\rm us}(\boldsymbol{x}) = V(\boldsymbol{x})q_{\boldsymbol{\phi}}(\boldsymbol{x})^2$$

Goal: Evaluate $\mathbb{E}_{\phi_1}[f]$, $\mathbb{E}_{\phi_2}[f]$, ..., $\mathbb{E}_{\phi_T}[f]$ \Longrightarrow Prospective uncertainty sampling:

$$a_{\text{pro}}(\boldsymbol{x}) = V(\boldsymbol{x})q_{\boldsymbol{\phi}}(\boldsymbol{x})\exp\left(\overline{f}(\boldsymbol{x})\right)$$

DISCUSSION

VBMC produces good approximations on realistic problems, outperforming other methods – why?

BMC,BBQ,WSABI: $Z = \int p(\boldsymbol{x})p(\mathcal{D}|\boldsymbol{x})d\boldsymbol{x}$ VBMC: $\mathcal{I}_k = \int q_k(\boldsymbol{x})\log\left[p(\boldsymbol{x})p(\mathcal{D}|\boldsymbol{x})\right]d\boldsymbol{x}$

Future directions

- Port VBMC to other languages (Python!)
- Nonstationarity, model mismatch and robustness
- Alternative GP representations
- More principled algorithmic solutions
- Killer application in machine learning?

REFERENCES

- [1] Acerbi, L. (2018). Variational Bayesian Monte Carlo. In NeurIPS 2018. arXiv:1810.05558
- [2] Ghahramani, Z. & Rasmussen, C. E. (2002) Bayesian Monte Carlo. In NIPS 2002.
- [3] Osborne, M., Duvenaud, D. K., Garnett, R., Rasmussen, C. E., Roberts, S. J., & Ghahramani, Z. (2012) Active learning of model evidence using Bayesian quadrature. In *NIPS* 2012.
- [4] Gunter, T., Osborne, M. A., Garnett, R., Hennig, P., & Roberts, S. J. (2014) Sampling for inference in probabilistic models with fast Bayesian quadrature. In *NIPS* 2014.