arXiv: 24.02.29

TimeXer

Empowering Transformers for **Time** Series Forecasting with e**X**ogenous Variables

arXiv: 24.02.29

TimeXer

Empowering Transformers for **Time** Series Forecasting with e**X**ogenous Variables

24.3.26

- Endogenous & Exogenous
 - Endogenous: 内生的,内因的,内源性的
 - Exogenous:外生的,外因的,外源性的
- **Endogenous variables & Exogenous variables**
 - 内生变量: 只关注感兴趣的目标
 - 外生变量:为内生变量提供有价值的外部信息
- > 通过外生变量引入辅助信息来促进内生变量的预测

- > En. & Ex. (from Datasets)
- (1) ECL: 客户的每小时用电量数据。 将最后一个客户端的用电量作为内生变量,其他客户端作为外生变量。
- (2)天气: 气象站每10分钟收集的21个气象因子。 使用Wet Bulb因子作为内生变量, 其他指标作为外生变量。
- (3) ETT:变压器油温数据。 内生变量为<u>油温</u>,外生变量为6个<u>电力负荷特征</u>。
- (4)**交通:** 高速公路传感器测量的每小时道路占用率。 将最后一个传感器的测量作为内生变量,将其他传感器作为外生变量。

- > 内生变量和外生变量之间: **需要调和差异和依赖性**
- ▶ 外部因素对内生序列的影响:可能是连续和时滞的
 - patchTST: 只能捕获时间依赖性,而不能捕获多变量相关性
 - iTransformer: 无法捕获不同子序列之间的时间变化

> TimeXer

- · 在包含外生变量的基础上,不修改transformer架构
- Self-attention: 对patch-level的内生时序token提取时间相关性
- Cross-attention: 对变量token提取多变量相关性

Original Transformer

Token

Token

Value

Token

PatchTST

04 单 算法实现:问题定义

> 只预测内生时间序列,外生变量是附加因素

内生序列:

$$\mathbf{x}_{1:L} = \{x_1, x_2, ..., x_L\} \in \mathbb{R}^{L \times 1}$$

外生序列:

$$\mathbf{z}_{1:L'} = \{\mathbf{z}_{1:L'}^{(1)}, \mathbf{z}_{1:L'}^{(2)}, ..., \mathbf{z}_{1:L'}^{(C)}\} \in \mathbb{R}^{L \times C}$$

- *L* 和 *L'* 可以不相等
- > 预测问题

$$\widehat{\mathbf{x}} = f(\mathbf{x}_{1:L}, \mathbf{z}_{1:L'}).$$

04 算法实现:整体结构

算法实现: Variate Embedding

▶ 基于itransformer的嵌入方式

- Series → Token
- Series-global representation: 全局标记
- \triangleright 线性层: $L \rightarrow D$, $L' \rightarrow D$

$$\mathbf{V}_{en} = \text{EnVariateEmbed}(\mathbf{x}), \quad \mathbb{R}^L \rightarrow \mathbb{R}^D$$

$$\mathbf{V}_{ex,i} = \text{ExVariateEmbed}\left(\mathbf{z}^{(i)}\right) i \in \{1, \cdots, C\}. \quad \mathbb{R}^{L'} \rightarrow \mathbb{R}^{D}$$

算法实现: Patch Embedding

➤ 基于patchTST的嵌入方式

- Patch → Token
- Patch不重叠
- - P: patch的长度, N: 总Patch个数

算法实现: Patch-wise Self-Attention

- ▶ 内生变量的内在时间依赖性(不预测外生变量)
 - Concat: patch-wise 和 series-wise tokens
 - Attention: $(N + 1) \times (N + 1)$ (N\(\gamma\)patch, 1\(\gamma\)series)
- ➤ Self-attention + 残差 + LN归—化层

$$\widehat{\mathbf{P}}_{en}^{l}, \widehat{\mathbf{V}}_{en}^{l} = \operatorname{LN}\left(\left[\mathbf{P}_{en}^{l}, \mathbf{V}_{en}^{l}\right] + \operatorname{Self-Attn}\left(\left[\mathbf{P}_{en}^{l}, \mathbf{V}_{en}^{l}\right]\right)\right)$$

算法实现: Variate-wise Cross-Attention

- ▶ 内生变量的内在时间依赖性(不预测外生变量)
 - Query: 内生变量series-wise的注意力结果
 - Key 和 Value: 外生变量的token
- ➤ Cross-attention + 残差 + LN归—化层

$$\mathbf{V}_{en}^{l+1} = \mathrm{LN}\left(\widehat{\mathbf{V}}_{en}^{l} + \mathrm{Cross-Attn}\left(\widehat{\mathbf{V}}_{en}^{l}, \mathbf{V}_{ex}, \mathbf{V}_{ex}\right)\right).$$

算法实现:整体结构

05 🗪 实验: 数据集

	Dataset	1		En. Descriptions	Sampling Frequency	Dataset Size	
	Electricity			Electricity Consumption	1 Hour	(18317, 2633, 5261)	
_	Weather	20	Climate Feature	CO2-Concentration	10 Minutes	(36792, 5271, 10540)	
_	ETTh	6	Power Load Feature	Oil Temperature	1 Hour	(8545, 2881, 2881)	
_	ETTm	6	Power Load Feature	Oil Temperature	15 Minutes	(34465, 11521, 11521)	
_	Traffic	861	Road Occupancy Rates	Road Occupancy Rates	1 Hour	(12185, 1757, 3509)	
	NP	2	Grid Load, Wind Power	Nord Pool Electricity Price	1 Hour	(36500, 5219, 10460)	
	РЈМ	2	System Load, SyZonal COMED load	Pennsylvania-New Jersey-Maryland Electricity Price	1 Hour	(36500, 5219, 10460)	
\	BE	2	Generation, System Load	Belgium's Electricity Price	1 Hour	(36500, 5219, 10460)	
	FR	2	Generation, System Load	France's Electricity Price	1 Hour	(36500, 5219, 10460)	
	DE	2	Wind power, Ampirion zonal load	German's Electricity Price	1 Hour	(36500, 5219, 10460)	

长期预测——用电量,天气,变压器油温,交通:一个内生EN.,多个外生EX. 短期预测——5个主要市场的电价短期预测数据集:电价作为内生变量,两个在实践中有影响的外生变量

25 实验: 短期预测

patch长度为24,用168预测24

Money	TIMEXER	ITRANS.	RLINEAR	PATCHTST	CROSS.	TIDE	TIMESNET	DLINEAR	SCINET	S TATIONARY	AUTO.
Model	(OURS)	(2023)	(2023)	(2022)	(2022)	(2023)	(2023A)	(2023)	(2022A)	(2022B)	(2021)
METRIC	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
NP	0.238 0.268	0.265 0.300	0.335 0.340	0.2670.284	0.245 0.289	0.335 0.340	0.2500.289	0.309 0.321	0.373 0.368	0.294 0.308	0.402 0.398
PJM	0.0880.188	0.097 0.197	0.124 0.229	0.106 0.209	0.149 0.198	0.124 0.228	0.0970.195	0.1080.215	0.143 0.259	0.122 0.228	0.168 0.267
BE	0.3740.241	0.394 0.270	0.520 0.337	0.403 0.264	0.436 0.294	0.523 0.336	0.4190.288	0.463 0.313	0.7310.412	0.433 0.289	0.500 0.333
FR	0.381 0.211	0.439 0.233	0.507 0.290	0.411 0.220	0.440 0.216	0.5100.290	0.4310.234	0.4290.260	0.855 0.384	0.466 0.242	0.519 0.295
DE	0.4400.418	0.479 0.443	0.574 0.498	0.461 0.432	0.540 0.423	0.568 0.496	0.5020.446	0.5200.463	0.565 0.497	0.483 0.447	0.674 0.544
AVG	0.304 0.265	0.335 0.289	0.4120.339	0.3300.282	0.362 0.284	0.412 0.338	0.3400.290	0.3660.314	0.533 0.384	0.360 0.303	0.453 0.368
		·	·		·						

patch长度为16,历史序列长度为96,预测{96,192,336,720}

Model	TIMEXER (OURS)	ITRANS. (2023)	RLINEAR (2023)	PATCHTST (2022)	CROSS. (2022)	TIDE (2023)	TIMESNET (2023A)	DLINEAR (2023)	SCINET (2022A)	STATIONARY (2022B)	AUTO. (2021)
METRIC	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ECL	0.3360.414	0.365 0.442	0.444 0.486	0.394 0.446	0.344 0.412	2 0.419 0.468	0.4100.476	0.393 0.457	0.427 0.490	0.372 0.450	0.495 0.528
WEATHER	0.002 0.031	0.002 0.031	0.002 0.029	0.002 0.031	0.005 0.055	5 0.0020.029	0.097 0.115	0.006 0.066	0.0070.071	0.002 0.031	0.0060.060
ЕТТн1	$ 0.0740.210\>$	0.075 0.211	0.084 0.224	0.078 0.215	0.285 0.447	7 0.083 0.223	0.076 0.215	0.1160.259	0.437 0.565	0.110 0.256	0.1300.282
ЕТТн2	0.183 0.337	0.199 0.352	0.205 0.356	0.192 0.345	1.027 0.873	8 0.205 0.356	0.2100.362	0.224 0.369	1.155 0.955	0.262 0.405	0.242 0.386
ЕТТм1	0.051 0.169	0.053 0.175	0.053 0.173	0.053 0.173	0.4110.548	8 0.0530.173	0.054 0.175	0.066 0.188	0.098 0.241	0.077 0.204	0.085 0.230
ЕТТм2	0.116 0.252	0.127 0.267	0.1220.261	0.1200.258	0.976 0.769	0.1220.261	0.129 0.271	0.126 0.263	0.685 0.713	8 0.207 0.333	0.154 0.305
TRAFFIC	0.150 0.227	0.161 0.246	0.324 0.412	0.173 0.253		0.324 0.411	0.171 0.264	0.323 0.404	0.447 0.500	0.361 0.361	0.302 0.353

实验:消融实验——屏蔽外生变量

使用完整的内生序列,对外生序列掩码从0~99%

05 实验:消融实验——不同嵌入层的有效性

T: temporal token; V: variate token

DESIGN	 En. 	Ex.	ET	Гн2	ETT	Гм2	TRAFFIC	
			MSE	MAE	MSE	MAE	MSE	MAE
OURS	T+V	V	0.183	0.337	0.116	0.252	0.150	0.227
REPLACE	T+V	T	0.192	0.343	0.122	0.259	0.158	0.239
w/o	w/o V w/o T	V	0.197	0.347	0.117	0.254	0.158	0.239
W/O	w/o T	V	0.188	0.341	0.118	0.256	0.152	0.233

实验:模型分析——变量间的相关性

交叉注意力机制中的内生变量和外生变量之间相关性的注意力图

实验:模型分析——表示分析

CKA相似度:比较两个特征空间的相似性

绿色空心点: itransformer用所有序列表示;

绿色点: itransformer只用内生变量的序列表示

实验:模型分析——不同外生变量的回望窗口

内生变量的长度固定为96,并增加外生变量的长度

实验:模型分析——多变量预测

数据集中的变量视为相互独立的内生变量,每个变量考虑所有其他变量作为外生变量

谢谢观看

MANY THANKS!

24.3.26

