We have dynamic programming, what else do we need?

Running time: $O(n^2)$ on two sequences of length n

Memory: basic implementation ${\cal O}(n^2)$, but can be done in ${\cal O}(n)$

We need a more efficient algorithm, particularly for comparative genomics

Heuristic alignment

- Trade sensitivity for speed (some alignments not found)
- Reduce the search to "promising" parts of the matrix

Heuristic local alignment

BLASTN [Altschul et al 1990], FASTA [Pearson 1988]

- Find short exact matches of length k (seeds)
- Extend hits along diagonals to ungapped alignments
- Connect alignments on nearby diagonals to gapped alignment
- Possibly optimize by dynamic programming

Heuristic local alignment

Example: start from **seeds** of length k=2 (in practice we would use k=11 or more)

- 1. find hits
- 2. ungapped
- 3. gapped

Running time of heuristic local alignment

Algorithm

- Find seeds (short exact matches of length *k*)
- Expensive step: extend/connect seeds to longer alignments

Random seeds of length *k*: not part of any high-scoring alignment.

These are filtered in the extension step, but they slow down the program

How many random hits?

Two unrelated nucleotides match with probability $1/4\,$

We have k matches in a row with probability 4^{-k}

Expected number of false positives roughly $nm4^{-k}$

Increase of k by 1 means cca 4-fold decrease of spurious seeds

Sensitivity of heuristic local alignment

Algorithm

- Find seeds (short exact matches of length *k*)
- Expensive step: extend/connect seeds to longer alignments

Some alignments not found: high score but no seed of length k

Example: CA-GTCCTA no seed of length $k \geq 4$

CATGTCATA

Sensitivity: fraction of real alignments containing a seed of length k

Can we estimate the sensitivity?

Assume random ungapped alignment of length ${\cal L}$

Every position match with probability p

Sensitivity $f(L, p) = \Pr(\text{alignment contains } k \text{ consecutive matches})$

(human-mouse: $p \approx 0.7$)

 $a_n=$ number of binary sequences of length n that do not contain k adjacent 1s (k=2)

0	00	000	0000	$a_0 = 2^0 = 1$, since $n < k$ (empty string)
1	01	001	0001	
	10	010	0010	$a_1 = 2^1 = 2$, since $n < k$
	11	011	0011	
		100	0100	$a_2=2+1=3$, i.e, #(".0") + #(".1")
		101	0101	
		110	0110	$a_3 = 3 + 2 + 0 = 5$
		111	0111	i.e, #("0") + #("1") + #(".11")
			1000	
			1001	$a_4 = 5 + 3 = 8$
			1010	i.e, #("0") + #("1") + #("11")
			1011	
			1100	$a_n = a_{n-1} + a_{n-2}$
			1101	$a_n = a_{n-1} + a_{n-2} + a_{n-3} + \ldots + a_{n-k}$
			1110	
			1111	

 $a_n={\it number}$ of binary sequences of length n that do not contain k adjacent 1s (k=3)

0	00	000	0000	$a_0 = 2^0 = 1$, since $n < k$ (empty string)
1	01	001	0001	
	10	010	0010	$a_1 = 2^1 = 2$, since $n < k$
	11	011	0011	
		100	0100	$a_2 = 2^2 = 4$, since $n < k$
		101	0101	
		110	0110	$a_3 = 4 + 2 + 1 = 7$
		111	0111	i.e, #("0") + #("1") + #("11")
			1000	
			1001	$a_4 = 7 + 4 + 2 = 13$
			1010	i.e, #("0") + #("1") + #("11")
			1011	
			1100	$a_n = a_{n-1} + a_{n-2} + a_{n-3}$
			1101	$a_n = a_{n-1} + a_{n-2} + a_{n-3} + \ldots + a_{n-k}$
			1110	
			1111	

How to find short exact matches?

- Create a **dictionary** of *k*-mers (short substrings of length *k*) from the first sequence.
- ullet Search for all k-mers from the second sequence in the dictionary

Exmple: CAGTCCTAGA vs CATGTCATA

Dictionary	•
-------------------	---

	. • • .	- y -
AG	2,	8
CA	1	
CC	5	
СТ	6	
GA	9	
GΤ	3	
TA	7	
TC	4	

Search for:

$$\begin{array}{cccc} \text{CA} & \rightarrow & 1 \\ \text{AT} & \rightarrow & - \\ \text{TG} & \rightarrow & - \\ \text{GT} & \rightarrow & 3 \\ \text{TC} & \rightarrow & 4 \\ \text{CA} & \rightarrow & 1 \\ \text{AT} & \rightarrow & - \\ \text{TA} & \rightarrow & 7 \end{array}$$