# Math GR6262 Algebraic Geometry Assignment # 5

Benjamin Church

February 24, 2020

# 1 Problem 1

Let k be a field and X be a scheme over  $\operatorname{Spec}(k)$ . The map  $f: X \to \operatorname{Spec}(k)$  gives a map on stalks  $f^{\#}: k \to \mathcal{O}_{X,x} \to k(x)$  for each point  $x \in X$ . By Lemma 3.1, a morphism  $\operatorname{Spec}(k) \to X$  is determined exactly by specifying a point  $x \in X$  and an inclusion  $k(x) \to k$ . However, a k-rational point is a morphism  $\operatorname{Spec}(k) \to X$  as k-schemes so the diagram,



is required to commute. This implies that the induced map on stalks is required to commute,



The commutativity of this diagram shows that  $f^{\#}: k \to k(x)$  must be an isomorphism. Thus given a k-rational point x we have shown that  $f^{\#}: k \to k(x)$  is an isomorphism. Furthermore for any point  $x \in X$  if  $f^{\#}: k \to k(x)$  is an isomorphism then its inverse  $p^{\#}: k(x) \to k$  clearly makes the diagram above commute and thus, by the Lemma, induces a morphism of k-schemes  $\operatorname{Spec}(k) \to X$  so x is k-rational.

To show that all such points are closed, I will prove the stronger fact that if k(x) is a finite extension of k then x is a closed point. Assume k(x) is a finite extension of k. On each affine open  $x \in U$ , the corresponding prime  $\mathfrak{p}$  gives a domain  $A/\mathfrak{p}$  and thus inclusions

$$k \, \, {\longrightarrow} \, \, A/\mathfrak{p} \, \, {\longrightarrow} \, \, S_{\mathfrak{p}}^{-1}(A/\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p} A_{\mathfrak{p}} = k(p)$$

showing that  $A/\mathfrak{p}$  is a finite-dimensional k-algebra domain and thus a field. Therefore  $\mathfrak{p}$  is maximal and thus closed in U. Therefore we have shown that x is closed in every affine open neighborhood. Therefore there exists a closed  $C \subset X$  such that  $C \cap U = \{x\}$  and thus

$$U^{C} \cup \{x\} = (U \setminus \{x\})^{C} = (C^{C} \cap U)^{C} = C \cup U^{C}$$

is closed. Now let  $\{U_{\alpha}\}$  be an affine cover of X. If  $x \in U_{\alpha}$  then we have shown that  $U_{\alpha}^{C} \cup \{x\}$  is closed otherwise  $x \in U_{\alpha}^{C}$  so  $U_{\alpha}^{C} \cup \{x\}$  is closed. Therefore, using the fact that  $U_{\alpha}$  cover X, the set

$$\bigcap_{\alpha} U_{\alpha}^{C} \cup \{x\} = \left(\bigcap_{\alpha} U_{\alpha}\right) \cup \{x\} = \emptyset \cup \{x\} = \{x\}$$

is closed.

## 2 0CYH

#### 2.1

Consider the ring  $R = \mathbb{C}$  and the category  $\mathbf{Mod}_{\mathbb{C}}$  of  $\mathbb{C}$ -vectorspaces. Denote by  $\mathrm{Hom}_{\overline{\mathbb{C}}}(V,W)$  the  $\mathbb{C}$ -vectorspace of  $\mathbb{C}$ -anti-linear functions i.e. functions  $\varphi: V \to W$  such that  $\varphi(\lambda v) = \overline{\lambda}\varphi(v)$  for  $\lambda \in \mathbb{C}$ . This space is a  $\mathbb{C}$ -vector space under standard addition and multiplication because  $\lambda \varphi$  is still anti-linear.

Define the contravariant functor  $F: \mathbf{Mod}_{\mathbb{C}} \to \mathbf{Mod}_{\mathbb{C}}$  given by  $F(V) = \mathrm{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})$  what I might call the *anti*-dual space. For maps  $f: V \to W$  and  $f \in \mathrm{Hom}_{\overline{\mathbb{C}}}(W, \mathbb{C})$  take  $F(f): \varphi \mapsto \varphi \circ f$ . Then, since f is  $\mathbb{C}$ -linear and  $\varphi$  is  $\mathbb{C}$ -anti-linear,

$$\varphi \circ f(\lambda v) = \varphi(\lambda f(v)) = \bar{\lambda}\varphi \circ f(v)$$

so  $\varphi \circ f \in \operatorname{Hom}_{\overline{\mathbb{C}}}(V,\mathbb{C})$ . Clearly, F is additive since function composition commutes with addition. Finally, consider,  $F(\lambda f)(\varphi) = \varphi \circ (\lambda f) = \bar{\lambda}(\varphi \circ f)$ . However, the map  $(\lambda \cdot F(f))(\varphi) = \lambda(\varphi \circ f)$  is not equal, so F is not  $\mathbb{C}$ -linear but rather  $\mathbb{C}$ -anti-linear.

### 2.2

Let R be a commutative ring and N and R-module. Consider the functor  $F: \mathbf{Mod}_R \to \mathbf{Mod}_R$  given by  $F(M) = M \otimes_R N$ . We know that F is left-adjoint to the internal hom functor  $\operatorname{Hom}_R(N, -)$  i.e. there is a natural isomorphism,

$$\operatorname{Hom}_{R}(M \otimes_{R} N, K) \cong \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(N, K))$$

Therefore, by general abstract nonsense (see Lemma 3.2) F preserves all colimits. In particular F preserves cokernels and therefore is right-exact and F preserved all coproducts and thus all direct sums in the category  $\mathbf{Mod}_R$ . Finally, take a map  $f: M \to M'$  and consider  $F(rf) = (rf) \otimes \mathrm{id}_N : M \otimes_R N \to M' \otimes_R N$ . However,

$$((rf) \otimes \mathrm{id}_N)(m \otimes n) = (rf(m)) \otimes n = r(f(m) \otimes n) = r(f \otimes \mathrm{id}_N)(m \otimes n)$$

and therefore F(rf) = rF(f) so F is R-linear.

#### 2.3

Let  $F : \mathbf{Mod}_R \to \mathbf{Mod}_R$  be a R-linear, right-exact functor preserving all direct sums. First we will consider the action of F on free modules. Let I be some index set and take,

$$P = \bigoplus_{i \in I} R$$

Because F preserves arbitrary direct sums (coproducts) we have,

$$F(P) = F\left(\bigoplus_{i \in I} R\right) = \bigoplus_{i \in I} F(R) = \bigoplus_{i \in I} (R \otimes_R F(R)) = \left(\bigoplus_{i \in I_1} R\right) \otimes_R F(R) = P \otimes_R F(R)$$

where we have used the fact that tensor product commutes with arbitrary direct sums. We now need to show that these functors are *naturally* equivalent on free objects. Let  $\eta_P : F(P) \to P \otimes_R F(P)$  be the isomorphism constructed above. Let,

$$P_1 = \bigoplus_{i \in I_1} R \qquad P_2 = \bigoplus_{i \in I_2} R$$

then consider a map  $f: P_1 \to P_2$ . Since  $P_1$  is free this map is equivalent to a sequence of maps  $f_i: R \to P_2$  for  $i \in I_1$ . Using the explicit construction of the coproduct in the category  $\mathbf{Mod}_R$  we have maps,

$$R \xrightarrow{\iota_i} \bigoplus_{i \in I_1} R \xrightarrow{f} \bigoplus_{r \in I_2} R \xrightarrow{} \prod_{i \in I_2} R \xrightarrow{\pi_j} R$$

notate the composition by  $f_{ij}: R \to R$  and  $f_i = f \circ \iota_i: R \to P_2$ . Since  $f_{ij}$  is an R-module map it is uniquely determined by  $f_{ij}(1) = r_{ij} \in R$ . We may intrinsically define the projection maps  $\pi_j: R^{I_2} \to R$  via the universal property applied to the maps  $\mathrm{id}_R: R_i \to R_i$  on factor i and the zero map on all other factors. Therefore, because F preserves the universal property of the coproduct it preserves these projection and inclusion maps. Now consider the diagram,

$$F(P_1) \xrightarrow{F(f)} F(P_2)$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$\bigoplus_{i \in I_1} F(R) \xrightarrow{\oplus F(f_i)} \bigoplus_{i \in I_2} F(R)$$

$$\downarrow^{\eta_1} \qquad \qquad \downarrow^{\eta_2}$$

$$P_1 \otimes_R F(R) \xrightarrow{f \otimes \operatorname{id}_{F(R)}} P_2 \otimes_R F(R)$$

The upper square commutes giving a natural isomorphism because F preserves arbitrary direct sums. We must show that the lower square commutes. The maps  $\eta_P$  take a sequence

$$(a_i) \in \bigoplus_{i \in I} F(R)$$

under the isomorphisms,

$$\bigoplus_{i \in I} F(R) \longrightarrow \bigoplus_{i \in I} (R \otimes_R F(R)) \longrightarrow \left(\bigoplus_{r \in I} R\right) \otimes_R F(R)$$

$$(a_i) \mapsto (1 \otimes a_i) \mapsto \sum_{i \in I} \delta_i \otimes a_i$$

where I have defined the sequence  $\delta_i = \iota_i(1) \in P = \mathbb{R}^I$ . Then,

$$(f \otimes \mathrm{id}_{F(R)}) \circ \eta_1((a_i)) = (f \otimes \mathrm{id}_{F(R)}) \left( \sum_{i \in I_1} \delta_i \otimes a_i \right) = \sum_{i \in I_1} f(\delta_i) \otimes a_i = \sum_{i \in I_1} f_i(1) \otimes a_i$$

Because,  $f(\delta_i) = f \circ \iota_i(1) = f_i(1)$ .

Next, consider,

$$\eta_2 \circ \oplus F(f)((a_i)) = \eta_2 \left( \sum_{i \in I_1} F(f_i)(a_i) \right) = \sum_{i \in I_1} \eta_2(F(f_i)(a_i)) = \sum_{i \in I_1} \sum_{j \in I_2} \delta_j \otimes F(\pi_j) \circ F(f_i)(a_i)$$

because projecting a sequence in  $F(R)^{I_2}$  to its components uses the map  $F(\pi_2)$  which lifts  $\mathrm{id}_{F(R)}$ :  $F(R) \to F(R)$  exactly on factor i and zero elsewhere. Therefore,

$$F(\pi_i) \circ F(f_i) = F(\pi_i \circ f_i) = F(f_{ij})$$

However,  $f_{ij} = r_{ij} id_R$  so, using the fact that F is an R-linear functor, we find that,

$$F(f_{ij}) = F(r_{ij}id_R) = r_{ij}F(id_R) = r_{ij}id_{F(R)}$$

Therefore,

$$\eta_2 \circ \oplus F(f)((a_i)) = \sum_{i \in I_1} \sum_{j \in I_2} \delta_j \otimes r_{ij} a_i = \sum_{i \in I_1} \sum_{j \in I_2} r_{ij} \delta_j \otimes a_i$$

Furthermore, summing over the support of  $f_i(1)$  we find,

$$f_i(1) = \sum_{j \in I_2} \iota_j \circ \pi_j \circ f_i(1) = \sum_{j \in I_2} \iota_j \circ f_{ij}(1) = \sum_{j \in I_2} \iota_j(r_{ij}) = \sum_{j \in I_2} r_{ij}\iota_j(1) = \sum_{j \in I_2} r_{ij}\delta_j$$

Finally,

$$\eta_2 \circ \oplus F(f)((a_i)) = \sum_{i \in I_1} \sum_{j \in I_2} r_{ij} \delta_j \otimes a_i = \sum_{i \in I_1} f_i(1) \otimes a_i = (f \otimes \mathrm{id}_{F(R)}) \circ \eta_1((a_i))$$

which proves that these isomorphisms are natural.

To prove the proposition, take  $M \in \mathbf{Mod}_R$  and take the first two terms of any free resolution of M,

$$P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$$

Now applying both the functor F and the functor  $(-) \otimes_R F(R)$  to this sequence and using the natural isomorphism defined above gives a commutative diagram,

$$F(P_1) \xrightarrow{F(f)} F(P_0) \xrightarrow{F(M)} F(M) \xrightarrow{0} 0$$

$$\downarrow^{\eta_{P_1}} \qquad \downarrow^{\eta_{P_2}} \qquad \downarrow$$

$$P_1 \otimes_R F(R) \xrightarrow{f \otimes \mathrm{id}_{F(R)}} P_0 \otimes_R F(R) \xrightarrow{M} R(R) \xrightarrow{0} 0$$

with exact rows because by F and  $(-) \otimes_R F(R)$  are right-exact i.e. preserve cokernels. Therefore, because the downward maps are isomorphisms then the induced map  $F(M) \to M \otimes_R F(R)$  is an isomorphism. Because a morphism  $M \to N$  lifts to a morphism of free resolutions over M and N this constructed isomorphism is natural. Therefore  $F \cong (-) \otimes_R F(R)$ .

#### 2.4

Let I be some infinite index set and consider the functor  $F: \mathbf{Mod}_R \to \mathbf{Mod}_R$  given by  $F(X) = \operatorname{Hom}_R(R^I, X)$  where

$$R^I = \bigoplus_{i \in I} R$$

I claim that F is R-linear, right-exact but does not preserve arbitrary direct sums and thus cannot be tensor product by any fixed module (since that functor does preserve direct sums). First, take  $r \in R$  and  $f: A \to B$  then for  $\varphi: R^I \to A$  we have  $F(rf): F(A) \to F(B)$  takes  $F(rf): \varphi \mapsto rf \circ \varphi = r(f \circ \varphi) = rF(f)$ . Furthermore, from the definition of an abelian category, the hom functor is additive. Next,  $R^I$  is a free R-module and therefore a projective which is equivalent to the functor  $F(-) = \operatorname{Hom}_R(R^I, -)$  being exact (and in particular right-exact). Finally, consider,

$$F\left(\bigoplus_{i\in I}R\right) = F(R^I) = \operatorname{Hom}_R\left(R^I, R^I\right)$$

We have the map  $id_{R^I} \in Hom_R(R^I, R^I)$ . However, I claim that,

$$\operatorname{id}_{R^I} \notin \bigoplus_{i \in I} \operatorname{Hom}_R(R^I, R)$$

because  $id_{R^I}$  is nonzero projected onto each factor  $p_i: R^I \to R$  and since I is infinite this cannot be an element of the direct sum which only contains sequences with finite support. Therefore,

$$F\left(\bigoplus_{i\in I}R\right) = \operatorname{Hom}_{R}\left(R^{I}, R^{I}\right) \neq \bigoplus_{i\in I}\operatorname{Hom}_{R}\left(R^{I}, R\right) = \bigoplus_{i\in I}F(R)$$

so F does not preserve arbitrary coproducts and thus cannot be the tensor product functor with any fixed module.

## 3 Lemmas

**Lemma 3.1.** Let X be a scheme and K a field. A morphism  $\operatorname{Spec}(K) \to X$  is the same as specifying a point  $p \in X$  and an inclusion  $\iota : k(p) \to K$  where  $k(p) = \mathcal{O}_{X,x}/\mathfrak{m}_x$  is the residue field at x.

*Proof.* Let  $(f, f^{\#})$ : Spec  $(K) \to X$  be a morphism. Then take the image  $\{p\} = f((0))$ . Furthermore, we have a sheaf map,

$$f^{\#}: \mathcal{O}_X(U) \to \mathcal{O}_{\mathrm{Spec}(K)}(f^{-1}(U)) = \begin{cases} K & p \in U \\ 0 & p \notin U \end{cases}$$

Consider the commutative diagram,

$$\mathcal{O}_{X}(U) \xrightarrow{f^{\#}} \mathcal{O}_{\mathrm{Spec}(K)}(f^{-1}(U))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{X,x} \xrightarrow{f_{x}^{\#}} \mathcal{O}_{\mathrm{Spec}(K),(0)}$$

On opens U with  $p \notin U$  clearly the map  $f^{\#}: \mathcal{O}_X(U) \to \mathcal{O}_{\operatorname{Spec}(K)}(f^{-1}(U))$  is the zero map. Otherwise, the map  $\mathcal{O}_{\operatorname{Spec}(K)}(f^{-1}(U)) \to \mathcal{O}_{\operatorname{Spec}(K),(0)}$  is the identity. Therefore, the above diagram determines  $f^{\#} = f_x^{\#} \circ \operatorname{res}_{U,x}$  uniquely from the stalk map

$$f_x^\#: \mathcal{O}_{X,x} \to \mathcal{O}_{\mathrm{Spec}(K),(0)} = K$$

Furthermore,  $f_x^\#$  must be a local so  $f_x^\#(\mathfrak{m}_x) = (0)$  since (0) is maximal in K. Therefore, this map factors through  $k(p) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ . Therefore,  $f^\#$  is determined from the map  $k(p) \to K$  (which is an inclusion) via the canonical composition,

$$\mathcal{O}_X(U) \longrightarrow \mathcal{O}_{X,x} \longrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_x \stackrel{f_x^\#}{\longrightarrow} K$$

**Lemma 3.2.** Let  $F: \mathcal{C} \to \mathcal{D}$  and  $G: \mathcal{D} \to \mathcal{C}$  be functors and left F be left adjoint to G that is  $F \dashv G$ . Then F preserves all colimits and G preserves all limits.

*Proof.* Let  $\mathscr{I}$  be a fixed category and  $J: \mathcal{I} \to \mathcal{C}$  some diagram. Let  $\Delta: \mathcal{C} \to \mathcal{C}^{\mathscr{I}}$  be the constant functor (taking  $A \in \mathcal{C}$  to the constant functor with image A). Then I claim that colim:  $\mathcal{C}^{\mathscr{I}} \to \mathcal{C}$  is left adjoint to  $\Delta: \mathcal{C} \to \mathcal{C}^{\mathscr{I}}$ . Therefore, for any  $X \in \mathcal{D}$ , consider,

$$\operatorname{Hom}_{\mathcal{D}}(F(\operatorname{colim} J), X) \cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} J, G(X)) \cong \operatorname{Hom}_{\mathcal{C}^{\mathscr{I}}}(J, \Delta \circ G(X))$$

Any natural transformation  $\eta: J \to \Delta \circ G(X)$  is a set of maps  $\eta_A: J(A) \to G(X)$  for each  $A \in J$  such that,

$$J(A) \xrightarrow{J(f)} J(B)$$

$$\eta_A \downarrow \qquad \qquad \downarrow \eta_B$$

$$G(X) \xrightarrow{\operatorname{id}_{G(X)}} G(X)$$

However, the natural equivalence,

$$\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$$

gives an equivalent natural transformation  $\eta': F \circ J \to \Delta(X)$ . Therefore we have shown that,

$$\operatorname{Hom}_{\mathcal{C}^{\mathscr{I}}}(J, \Delta \circ G(X)) \cong \operatorname{Hom}_{\mathcal{D}^{\mathscr{I}}}(F \circ J, \Delta(X))$$

Therefore, we have,

$$\operatorname{Hom}_{\mathcal{D}}(F(\operatorname{colim} J), X) \cong \operatorname{Hom}_{\mathcal{D}^{\mathscr{I}}}(F \circ J, \Delta(X)) \cong \operatorname{Hom}_{\mathcal{D}}(\operatorname{colim}(F \circ J), X)$$

Furthermore, by the injectivity of the Yoneda embedding there is a natural equivalence  $F(\text{colim }J)\cong \text{colim }(F\circ J)$  so F is cocontinuous. The case for right adjoints is exactly dual.