顶层结构设计示意图

图 1 DDR Controller

1.参数配置

1.1. 配置控制器

参数列表及说明如下表:

(注: 黑色字体为 0x1 版本,蓝色字体为 0x2 版本新增或与之前版本不一样,红色字体为 0x3 版本新增或与之前版本不一样)

1-11-2	与之則放本个	117							
	63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0	
0x000	Dll_value_0(RD)/Dll_ad	dj_cnt/dll_sync_d	Dll_value_ck(RD)		Dll_init_done(RD)		Version(RD)		
	isable/dll_close_disabl	e							
0x008	Dll_value_4(RD)		Dll_value_3(RD)		Dll_value_2(RD)		Dll_value_1(RD)		
0x010	Dll_value_8(RD)		Dll_value_7(RD)		Dll_value_6(RD)		Dll_value_5(RD)		
0x018	Dll_ck_3	Dll_ck_2	Dll_ck_1	Dll_ck_0	Dll_increment	Dll_start_point	Dll_bypass	Init_start	
0x020	Dq_oe_end_0	Dq_oe_begin_0	Dq_stop_edge_0	Dq_start_edge_0	Rddata_delay_0	Rddqs_lt_half_0	Wrdqs_lt_half_0	Wrdq_lt_half_0	
0x028	Rd_oe_end_0	Rd_oe_begin_0	Rd_stop_edge_0	Rd_start_edge_0	Dqs_oe_end_0	Dqs_oe_begin_0	Dqs_stop_edge_0	Dqs_start_edge_0	
0x030	Enzi_end_0	Enzi_begin_0	Wrclk_sel_0	Wrdq_clkdelay_0	Odt_oe_end_0	Odt_oe_begin_0	Odt_stop_edge_0	Odt_start_edge_0	
0x038	Enzi_stop_0	Enzi_start_0	Dll_oe_shorten_0	Dll_rddqs_n_0	Dll_rddqs_p_0	Dll_wrdqs_0	Dll_wrdata_0	Dll_gate_0	
0x040	Dq_oe_end_1	Dq_oe_begin_1	Dq_stop_edge_1	Dq_start_edge_1	Rddata_delay_1	Rddqs_lt_half_1	Wrdqs_lt_half_1	Wrdq_lt_half_1	
0x048	Rd_oe_end_1	Rd_oe_begin_1	Rd_stop_edge_1	Rd_start_edge_1	Dqs_oe_end_1	Dqs_oe_begin_1	Dqs_stop_edge_1	Dqs_start_edge_1	
0x050	Enzi_end_1	Enzi_begin_1	Wrclk_sel_1	Wrdq_clkdelay_1	Odt_oe_end_1	Odt_oe_begin_1	Odt_stop_edge_1	Odt_start_edge_1	
0x058	Enzi_stop_1	Enzi_start_1	Dll_oe_shorten_1	Dll_rddqs_n_1	Dll_rddqs_p_1	Dll_wrdqs_1	Dll_wrdata_1	Dll_gate_1	
0x060	Dq_oe_end_2	Dq_oe_begin_2	Dq_stop_edge_2	Dq_start_edge_2	Rddata_delay_2	Rddqs_lt_half_2	Wrdqs_lt_half_2	Wrdq_lt_half_2	
0x068	Rd_oe_end_2	Rd_oe_begin_2	Rd_stop_edge_2	Rd_start_edge_2	Dqs_oe_end_2	Dqs_oe_begin_2	Dqs_stop_edge_2	Dqs_start_edge_2	
0x070	Enzi_end_2	Enzi_begin_2	Wrclk_sel_2	Wrdq_clkdelay_2	Odt_oe_end_2	Odt_oe_begin_2	Odt_stop_edge_2	Odt_start_edge_2	
0x078	Enzi_stop_2	Enzi_start_2	Dll_oe_shorten_2	Dll_rddqs_n_2	Dll_rddqs_p_2	Dll_wrdqs_2	Dll_wrdata_2	Dll_gate_2	
0x080	Dq_oe_end_3	Dq_oe_begin_3	Dq_stop_edge_3	Dq_start_edge_3	Rddata_delay_3	Rddqs_lt_half_3	Wrdqs_lt_half_3	Wrdq_lt_half_3	
0x088	Rd_oe_end_3	Rd_oe_begin_3	Rd_stop_edge_3	Rd_start_edge_3	Dqs_oe_end_3	Dqs_oe_begin_3	Dqs_stop_edge_3	Dqs_start_edge_3	
0x090	Enzi_end_3	Enzi_begin_3	Wrclk_sel_3	Wrdq_clkdelay_3	Odt_oe_end_3	Odt_oe_begin_3	Odt_stop_edge_3	Odt_start_edge_3	
0x098	Enzi_stop_3	Enzi_start_3	Dll_oe_shorten_3	Dll_rddqs_n_3	Dll_rddqs_p_3	Dll_wrdqs_3	Dll_wrdata_3	Dll_gate_3	
0x0A0	Dq_oe_end_4	Dq_oe_begin_4	Dq_stop_edge_4	Dq_start_edge_4	Rddata_delay_4	Rddqs_lt_half_4	Wrdqs_lt_half_4	Wrdq_lt_half_4	
0x0A8	Rd_oe_end_4	Rd_oe_begin_4	Rd_stop_edge_4	Rd_start_edge_4	Dqs_oe_end_4	Dqs_oe_begin_4	Dqs_stop_edge_4	Dqs_start_edge_4	
0x0B0	Enzi_end_4	Enzi_begin_4	Wrclk_sel_4	Wrdq_clkdelay_4	Odt_oe_end_4	Odt_oe_begin_4	Odt_stop_edge_4	Odt_start_edge_4	
0x0B8	Enzi_stop_4	Enzi_start_4	Dll_oe_shorten_4	Dll_rddqs_n_4	Dll_rddqs_p_4	Dll_wrdqs_4	Dll_wrdata_4	Dll_gate_4	

0.000	D 15	D 1 : 5	B . 1.5	B 1 . 5	DII. 11 6	D11 1/105	W. 1 1 1 1 5 7	W. 1. 1. 1. 16. 5
	Dq_oe_end_5	Dq_oe_begin_5	Dq_stop_edge_5	Dq_start_edge_5	Rddata_delay_5	Rddqs_lt_half_5	Wrdqs_lt_half_5	Wrdq_lt_half_5
	Rd_oe_end_5	Rd_oe_begin_5	Rd_stop_edge_5	Rd_start_edge_5	Dqs_oe_end_5	Dqs_oe_begin_5	Dqs_stop_edge_5	Dqs_start_edge_5
	Enzi_end_5	Enzi_begin_5	Wrclk_sel_5	Wrdq_clkdelay_5	Odt_oe_end_5	Odt_oe_begin_5	Odt_stop_edge_5	Odt_start_edge_5
0x0D8	Enzi_stop_5	Enzi_start_5	Dll_oe_shorten_5	Dll_rddqs_n_5	Dll_rddqs_p_5	Dll_wrdqs_5	Dll_wrdata_5	Dll_gate_5
0x0E0	Dq_oe_end_6	Dq_oe_begin_6	Dq_stop_edge_6	Dq_start_edge_6	Rddata_delay_6	Rddqs_lt_half_6	Wrdqs_lt_half_6	Wrdq_lt_half_6
0x0E8	Rd_oe_end_6	Rd_oe_begin_6	Rd_stop_edge_6	Rd_start_edge_6	Dqs_oe_end_6	Dqs_oe_begin_6	Dqs_stop_edge_6	Dqs_start_edge_6
0x0F0	Enzi_end_6	Enzi_begin_6	Wrclk_sel_6	Wrdq_clkdelay_6	Odt_oe_end_6	Odt_oe_begin_6	Odt_stop_edge_6	Odt_start_edge_6
0x0F8	Enzi_stop_6	Enzi_start_6	Dll_oe_shorten_6	Dll_rddqs_n_6	Dll_rddqs_p_6	Dll_wrdqs_6	Dll_wrdata_6	Dll_gate_6
0x100	Dq_oe_end_7	Dq_oe_begin_7	Dq_stop_edge_7	Dq_start_edge_7	Rddata_delay_7	Rddqs_lt_half_7	Wrdqs_lt_half_7	Wrdq_lt_half_7
0x108	Rd_oe_end_7	Rd_oe_begin_7	Rd_stop_edge_7	Rd_start_edge_7	Dqs_oe_end_7	Dqs_oe_begin_7	Dqs_stop_edge_7	Dqs_start_edge_7
0x110	Enzi_end_7	Enzi_begin_7	Wrclk_sel_7	Wrdq_clkdelay_7	Odt_oe_end_7	Odt_oe_begin_7	Odt_stop_edge_7	Odt_start_edge_7
0x118	Enzi_stop_7	Enzi_start_7	Dll_oe_shorten_7	Dll_rddqs_n_7	Dll_rddqs_p_7	Dll_wrdqs_7	Dll_wrdata_7	Dll_gate_7
0x120	Dq_oe_end_8	Dq_oe_begin_8	Dq_stop_edge_8	Dq_start_edge_8	Rddata_delay_8	Rddqs_lt_half_8	Wrdqs_lt_half_8	Wrdq_lt_half_8
0x128	Rd_oe_end_8	Rd_oe_begin_8	Rd_stop_edge_8	Rd_start_edge_8	Dqs_oe_end_8	Dqs_oe_begin_8	Dqs_stop_edge_8	Dqs_start_edge_8
0x130	Enzi_end_8	Enzi_begin_8	Wrclk_sel_8	Wrdq_clkdelay_8	Odt_oe_end_8	Odt_oe_begin_8	Odt_stop_edge_8	Odt_start_edge_8
0x138	Enzi_stop_8	Enzi_start_8	Dll_oe_shorten_8	Dll_rddqs_n_8	Dll_rddqs_p_8	Dll_wrdqs_8	Dll_wrdata_8	Dll_gate_8
0x140	Pad_ocd_clk	Pad_ocd_ctl	Pad_ocd_dqs	Pad_ocd_dq	Pad_enzi		Pad_en_ctl	Pad_en_clk
0x148	Pad_adj_code_dqs	Pad_code_dqs	Pad_adj_code_dq	Pad_code_dq		Pad_vref_internal	Pad_odt_se	Pad_modezi1v8
0x150		Pad_reset_po	Pad_adj_code_clk	Pad_code_lk	Pad_adj_code_cmd	Pad_code_cmd	Pad_adj_code_addr	Pad_code_addr
0x158	Pad_comp_code_o		Pad_comp_okn	Pad_	_comp_code_i	Pad_comp_mode	Pad_comp_tm	Pad_comp_pd
0x160	Rdfifo_empty(RD)		Overflow(RD)		Dram_init(RD)	Rdfifo_valid	Cmd_timming	Ddr3_mode
0x168	Ba_xor_row_offset	Addr_mirror	Cmd_delay	Burst_length	Bank/Cs_resync	Cs_zq	Cs_mrs	Cs_enable
0x170	Odt_wr_cs_map		Odt_wr_length	Odt_wr_delay	Odt_rd_cs_map		Odt_rd_length	Odt_rd_delay
0x178								
0x180	Lvl_resp_0(RD)	Lvl_done(RD)	Lvl_ready(RD)		Lvl_cs	tLVL_DELAY	Lvl_req(WR)	Lvl_mode
0x188	Lvl_resp_8(RD)	Lvl_resp_7(RD)	Lvl_resp_6(RD)	Lvl_resp_5(RD)	Lvl_resp_4(RD)	Lvl_resp_3(RD)	Lvl_resp_2(RD)	Lvl_resp_1(RD)
0x190	Cmd_a		Cmd_ba	Cmd_cmd	Cmd_cs	Status_cmd(RD)	Cmd_req(WR)	Command_mode
0x198			Status_sref(RD)	Srefresh_req	Pre_all_done(RD)	Pre_all_req(RD)	Mrs_done(RD)	Mrs_req(WR)
0x1A0	Mr_3_cs_0		Mr_2_cs_0		Mr_1_cs_0		Mr_0_cs_0	
0x1A8	Mr_3_cs_1		Mr_2_cs_1		Mr_1_cs_1		Mr_0_cs_1	
0x1B0	Mr_3_cs_2		Mr_2_cs_2		Mr_1_cs_2		Mr_0_cs_2	
0x1B8	Mr_3_cs_3		Mr_2_cs_3		Mr_1_cs_3		Mr_0_cs_3	
0x1C0	tRESET	tCKE	tXPR	tMOD	tZQCL	tZQ_CMD	tWLDQSEN	tRDDATA
0x1C8	tFAW	tRRD	tRCD	tRP	tREF	tRFC	tZQCS	tZQperiod
0x1D0	tODTL	tXSRD	tPHY_RDLAT	tPHY_WRLAT	tRAS_max			tRAS_min
0x1D8	tXPDLL	tXP	tWR	tRTP	tRL	tWL	tCCD	tWTR
0x1E0	tW2R_diffCS	tW2W_diffCS	tR2P_sameBA	tW2P_sameBA	tR2R_sameBA	tR2W_sameBA	tW2R_sameBA	tW2W_sameBA
0x1E8	tR2R_diffCS	tR2W_diffCS	tR2P_sameCS	tW2P_sameCS	tR2R_sameCS	tR2W_sameCS	tW2R_sameCS	tW2W_sameCS
0x1F0	Power_up	Age_step	tCPDED	Cs_map	Bs_config	Nc	Pr_r2w	Placement_en
0x1F8	Hw_pd_3	Hw_pd_2	Hw_pd_1	Hw_pd_0	Credit_16	Credit_32	Credit_64	Selection_en
0x200	Cmdq_age_16		Cmdq_age_32		Cmdq_age_64		tCKESR	tRDPDEN
0x208	Wfifo_age		Rfifo_age		Power_stat3	Power_stat2	Power_stat1	Power_stat0
0x210	Active_age		Cs_place_0	Addr_win_0	Cs_diff_0	Row_diff_0	Ba_diff_0	Col_diff_0
0x210	Active_age		Cs_place_0	Addr_win_0	Cs_diff_0	Row_diff_0	Ba_diff_0	Col_diff_0

0x218	Fastpd_age		Cs_place_1	Addr_win_1	Cs_diff_1	Row_diff_1	Ba_diff_1	Col_diff_1		
0x218	Slowpd_age		Cs_place_1 Cs_place_2	Addr_win_2	Cs_diff_2		Ba_diff_2	Col_diff_2		
0x228	Selfref_age	Cs_place_3 Addr_win_3			Cs_diff_3		Ba_diff_3	Col_diff_3		
0x230	Win_mask_0		Cs_place_5	Addi_wiii_5						
0x238	Win_mask_1				Win_base_0 Win_base_1					
0x240	Win_mask_2				Win_base_2					
0x248	Win_mask_3				Win_base_3					
0x250	WIII_IIIdSK_3	Cmd_monitor	Axi_monitor		Ecc_code(RD)	Ecc_enable	Int_vector	Int_enable		
0x258		Cind_mointor	Axi_momtor		Ecc_codc(ND)	Lec_chaoic	III_vector	Int_chable		
0x260	Ecc_addr(RD)									
0x268	Ecc_data(RD)									
0x270	Lpbk_ecc_mask(RD)	Prbs_init			Lpbk_error(RD)	Prbs_23	Lpbk_start	Lpbk_en		
0x278	Lpbk_ecc(RD)	1105_IIII	Lpbk_data_mask(RI	D)	Lpbk_correct(RD)		Lpbk_counter(RD)	Ерок_сп		
0x278	Lpbk_data_r(RD)		_pen_dutu_mask(KI		-post_concet(RD)		_ron_counter(ND)			
0x288	Lpbk_data_f(RD)									
0x288	Axi0_bandwidth_w				Axi0_bandwidth_r					
0x298	Axi0_latency_w				Axi0_latency_r					
0x2A0	Axi1_bandwidth_w				Axi1_bandwidth_r					
0x2A8					Axi1_latency_r					
0x2B0	Axi2_bandwidth_w				Axi2_bandwidth_r					
0x2B8					Axi2_latency_r					
	Axi3_bandwidth_w				Axi3_bandwidth_r					
0x2C8	Axi3_latency_w				Axi3_latency_r					
0x2D0					Axi4_bandwidth_r					
	Axi4_latency_w				Axi4_latency_r					
0x2E0	Cmdq0_bandwidth_v	v			AXI4_latency_r Cmdq0_bandwidth_r					
0x2E8	Cmdq0_latency_w	<u>'</u>			Cmdq0_latency_r					
	Cmdq1_bandwidth_v	v			Cmdq1_bandwidth_r					
0x2F8	Cmdq1_latency_w	•			Cmdq1_latency_r					
0x300	Cmdq2_bandwidth_v	v			Cmdq1_latency_r Cmdq2_bandwidth_r					
0x308	Cmdq2_latency_w				Cmdq2_latency_r					
0x310	Cmdq3_bandwidth_v	v			Cmdq3_bandwidth_r					
0x318	Cmdq3_latency_w				Cmdq3_latency_r					
0x320	tRESYNC_length	tRESYNC_shift	tRESYNC_max	tRESYNC_min	Pre_predict		tXS	tREF_low		
0x328			RESTINC_MIN TRESTINC_MIN TRESTINC_MIN					tRESYNC_delay		
	Stat_en	Rdbuffer_max	Retry	Wr_pkg_num	Rwq_rb	Stb_en	Addr_new	tRDQidle		
0x338				Rd_fifo_depth	Retry_cnt					
0x340	tREFretention					Ref_num	tREF_IDLE	Ref_sch_en		
0x348										
0x350	Lpbk_data_en									
0x358						Lpbk_ecc_mask_en	Lpbk_ecc_en	Lpbk_data_mask_en		
0x360			Int_ecc_cnt_fatal	Int_ecc_cnt_error	Ecc_cnt_cs_3	Ecc_cnt_cs_2	Ecc_cnt_cs_1	Ecc_cnt_cs_0		
0x368										

0x370	Prior_age3		Prior_age2		Prior_age1		Prior_age_0		
0x378								Row_hit_place	
0x380	Zq_cnt_1				Zq_cnt_0				
0x388	Zq_cnt_3				Zq_cnt_2				

1.2. 详细说明列表

(注:该表中的默认值均为 DDR3_1600 匹配参数)

0x000	位域	读写	默认值	说明
Dll_close_disable	57:57	读写	0x0	在版本 0x3 中:
				不动态关闭 dll 功能
Dll_sync_disable	56:56	读写	0x0	在版本 0x3 中:
				关闭 dll 的 sync 功能
Dll_value_0	56:48	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2 中:
				为 Dll_adj_cnt
				在版本 0x3 中:
				为 Dll_adj_cnt 和 Dll_sync_disable
Dll_adj_cnt	55:48	读写	0x7	在版本 0x1 中:
				为 Dll_value_0
				在版本 0x2/0x3 中
				调整时机控制信号
				每过 dll_adj_cnt 周期后 dll 调整一个码
Dll_value_ck	40:32	只读	0x0	时钟组 DLL 锁定值
Dll_init_done	25:16	只读	0x0	控制器内部 DLL 锁定信号
				[25:17]: 恒为 0,无实际意义
				[16:16]: DLL 锁定标志
Version	15:0	只读	0x3	控制器版本号
0x008				
Dll_value_4	56:48	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
Dll_value_3	40:32	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
Dll_value_2	24:16	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
Dll_value_1	8:0	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义

				在版本 0x2/0x3 中:
				保留
0x010				
Dll_value_8	56:48	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
Dll_value_7	40:32	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
Dll_value_6	24:16	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
Dll_value_5	8:0	只读	0x0	在版本 0x1 中:
				恒为0,无实际意义
				在版本 0x2/0x3 中:
				保留
0x018				
Dll_ck_3	63:56	读写	0x12	时钟3延迟值
				[63:63]: bypass 控制
				[62:56]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_ck_2	55:48	读写	0x12	时钟2延迟值
				[55:55]: bypass 控制
				[54:48]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_ck_1	47:40	读写	0x12	时钟1延迟值
				[47:47]: bypass 控制
				[46:40]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_ck_0	39:32	读写	0x12	时钟0延迟值
				[39:39]: bypass 控制
				[38:32]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_increment	31:24	读写	0x4	每次 DLL 下溢时,起始延迟单元增加个数
Dll_start_point	23:16	读写	0x10	DLL 初始化的起始延迟单元个数
Dll_bypass	8:8	读写	0x0	DLL 初始化 bypass 控制。
				该位只有当 Dll_init_done 一直无法锁定时需要设置,以使
				内存控制器初始化可以继续进行。
				正确设置该位的方法是在 Init_start 有效一段时间后再设
				为 1。而且设置之前相应的 DLL 延迟的最高位(bypass
				控制)也应该设置

Init_start	0:0	读写	0x0	控制器初始化开始。
				只有当其它的所有相关参数设置好了之后才可以将该位
				置位,使控制器进行初始化,并向内存发起初始化。只有
				这个操作完成后内存空间才可以被访问,否则内存空间不
				可被外部访问。
0x020				
Dq_oe_end_0	58:56	读写	0x2	在版本 0x1 中:
				第 0 组数据输出有效时期的结束时间,不可小于
				Dq_oe_begin_0
				在版本 0x2/0x3 中:
				该信号位宽为 2,仅[1:0]有效,意义同上
Dq_oe_begin_0	50:48	读写	0x2	在版本 0x1 中:
				第 0 组数据输出有效时期的开始时间,不可大于
				Dq_oe_end_0
				在版本 0x2/0x3 中:
				该信号位宽为 2, 仅[1:0]有效, 意义同上
Dq_stop_edge_0	41:40	读写	0x0	第0组数据输出有效时期的结束相位, 其与 Dq_oe_end_0
				组合得到的时钟边沿不可早于 Dq_start_edge_0 与
				Dq_oe_begin_0 组合得到的时钟边沿
				0- 比为1时提前1/4周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2- 比为1时推后1/4周期
				3 - 比为1时推后1/2周期
Dq_start_edge_0	33:32	读写	0x0	第 0 组数据输出有效时期的开始相位,其与
				Dq_oe_begin_0 组合得到的时钟边沿不可晚于
				Dq_stop_edge_0 与 Dq_oe_end_0 组合得到的时钟边沿
				0 - 比为1时提前1/4周期
				1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
				2- 比为1时推后1/4周期
				3- 比为1时推后1/2周期
Rddata_delay_0	24:24	读写	0x1	读返回数据在 FIFO 中延迟一周期输出
Rddqs_lt_half_0	16:16	读写	0x0	当读返回 DQS 信号(延时后)相比内部时钟的延迟小于
				半周期时需要设为1
Wrdqs_lt_half_0	8:8	读写	0x0	当 Dll_wrdqs_0 的设置小于 0x40 时需要设为 1
Wrdq_lt_half_0	0:0	读写	0x0	当 Dll_wrdata_0 的设置小于 0x40 时需要设为 1
0x028				
Rd_oe_end_0	58:56	读写	0x1	在版本 0x1 中:
				第 0 组数据读采样有效时期的结束时间,不可小于
				Rd_oe_begin_0
				在版本 0x2/0x3 中:
	1			该信号位宽为 2, 仅[1:0]有效, 意义同上
Rd_oe_begin_0	50:48	读写	0x1	在版本 0x1 中:
				第 0 组数据读采样有效时期的开始时间,不可大于
				Rd_oe_end_0

		1	在版本 0x2/0x3 中:
			该信号位宽为 2,仅[1:0]有效,意义同上
D1	\±.57		
Rd_stop_edge_0 41:40	读写	0x0	第 0 组数据读采样有效时期的结束相位,其与
			Rd_oe_end_0 组合得到的时钟边沿不可早于
			Rd_start_edge_0 与 Rd_oe_begin_0 组合得到的时钟边沿
			0- 比为1时提前1/4周期
			1 – 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
			2- 比为1时推后1/4周期
			3 - 比为1时推后1/2周期
Rd_start_edge_0 33:32	读写	0x0	第 0 组数据读采样有效时期的开始相位, 其与
			Rd_oe_begin_0 组合得到的时钟边沿不可晚于
			Rd_stop_edge_0 与 Rd_oe_end_0 组合得到的时钟边沿
			0- 比为 1 时提前 1/4 周期
			1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
			2- 比为1时推后1/4周期
			3- 比为1时推后1/2周期
Dqs_oe_end_0 26:24	读写	0x2	在版本 0x1 中:
			第 0 组数据写 DQS 有效时期的结束时间,不可小于
			Dqs_oe_begin_0
			在版本 0x2/0x3 中:
			该信号位宽为 2,仅[1:0]有效,意义同上
Dqs_oe_begin_0 18:16	读写	0x1	在版本 0x1 中:
Dqs_oc_ocgin_o		OAT	第 0 组数据写 DQS 有效时期的开始时间,不可大于
			別 0 組数据 3 DQS 有級的類的月如时间,不可入 1 Dqs_oe_end_0
			在版本 0x2/0x3 中:
D 1 0 00	\+.57		该信号位宽为 2,仅[1:0]有效,意义同上
Dqs_stop_edge_0 9:8	读写	0x1	第 0 组数据写 DQS 有效时期的结束相位,其与
			Dqs_oe_end_0 组合得到的、时钟边沿不可早于
			Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿
			0- 比为 1 时提前 1/4 周期
			1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
			2- 比为1时推后1/4周期
			3- 比为1时推后1/2周期
Dqs_start_edge_0 1:0	读写	0x1	第 0 组数据写 DQS 有效时期的开始相位, 其与
			Dqs_oe_begin_0 组合得到的时钟边沿不可晚于
			Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿
			0- 比为1时提前1/4周期
			1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
			2- 比为1时推后1/4周期
			3- 比为1时推后1/2周期
0x030			
Enzi_end_0 57:56	读写	0x1	在版本 0x1 中:
			保留
			在版本 0x2/0x3 中:

				第 0 组数据读 DQ/DQS 有效时期的结束时间,不可小于
				Enzi_begin_0。当 pad_enzi 为 1 时该参数不起作用。
Enzi_begin_0	49:48	读写	0x0	在版本 0x1 中:
Elizi_begiii_0	49.46		OXO	保留
				在版本 0x2/0x3 中:
				第 0 组数据读 DQ/DQS 有效时期的开始时间,不可大于
				Enzi_end_0。当 pad_enzi 为 1 时该参数不起作用。
Wrclk_sel_0	40; 40	读写	0x1	在版本 0x1 中:
wicik_sei_0	40; 40	以 习	OXI	保留
				在版本 0x2/0x3 中:
				第 0 组数据写 DQ 的驱动时钟选择
				1-选择驱动时钟为 clk_wrdqs,
W 1 11 1 1 0	20.20	生位	0.0	0-选择驱动时钟为 clk_wrdq
Wrdq_clk_delay_0	28:28	读写	0x0	第 0 组数据写 DQ 延迟控制信号
0.1. 1.0	25.24)土 <i>仁</i>	0.2	在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一拍
Odt_oe_end_0	26:24	读写	0x2	在版本 0x1 中:
				第0组数据读 ODT (控制器内部) 有效时期的结束时间,
				不可小于 Odt_oe_begin_0
				在版本 0x2/0x3 中:
				该信号位宽为 2, 仅[1:0]有效, 意义同上
Odt_oe_begin_0	18:16	读写	0x1	在版本 0x1 中:
				第 0 组数据读 ODT (控制器内部) 有效时期的开始时间,
				不可大于 Odt_oe_end_0
				在版本 0x2/0x3 中:
				该信号位宽为 2, 仅[1:0]有效, 意义同上
Odt_stop_edge_0	9:8	读写	0x0	第 0 组数据读 ODT (控制器内部) 有效时期的结束相位,
				其与 Odt_oe_end_0 组合得到的时钟边沿不可早于
				Odt_start_edge_0 与 Odt_oe_begin_0 组合得到的时钟边沿
				0 - 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
				2- 比为1时推后1/4周期
				3 - 比为1时推后1/2周期
Odt_start_edge_0	1:0	读写	0x0	第0组数据读ODT(控制器内部)有效时期的开始相位,
				其与 Odt_oe_begin_0 组合得到的时钟边沿不可晚于
				Odt_stop_edge_0 与 Odt_oe_end_0 组合得到的时钟边沿
				0 - 比为1时提前1/4周期
				1 – 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
				2- 比为1时推后1/4周期
				3- 比为1时推后1/2周期
0x038				
Enzi_stop_0	57:56	读写	0x1	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				第 0 组数据读 DQ/DQS 有效时期的结束相位, 其与

				Engiand 0.组合组到的时轴油机不可且工具 · · · o b
				Enzi_end_0 组合得到的时钟边沿不可早于 Enzi_start_0 与
				Enzi_begin_0 组合得到的时钟边沿。当 pad_enzi 为 1 时该
				参数不起作用。
				0- 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2- 比为1时推后1/4周期
				3 - 比为 1 时推后 1/2 周期
Enzi_start_0	49:48	读写	0x2	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				第 0 组数据读 DQ/DQS 有效时期的开始相位,其与
				Enzi_end_0 组合得到的时钟边沿不可早于 Enzi_start_0 与
				Enzi_begin_0 组合得到的时钟边沿。当 pad_enzi 为 1 时该
				0- 比为1时提前1/4周期
				1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿
				2 - 比为1时推后1/4周期
				3- 比为1时推后1/2周期
Dll_oe_shorten_0	46:40	读写	0x0	在版本 0x1/0x2 中:
Dil_oe_siloiteil_o	40.40		UXU	保留
				在版本 0x3 中:
				Bit0: dq_oe_shorten, 允许缩短第 0 组数据写 dq 打开窗
				Bit1: dqs_oe_shorten, 允许缩短第 0 组数据写 dqs 打开窗
				П
				Bit2: rd_oe_shorten,允许缩短第0组数据读 gate 打开窗
				П
				Bit3: odt_oe_shorten, 允许缩短第 0 组数据 CPU 端 odt
				打开窗口
				Bit4: enzi_shorten,允许缩短第0组数据 pad 接收端打开
				窗口
Dll_rddqs_n_0	39:32	读写	0x20	读 DQSn 采样延迟值
				[39:39]: bypass 控制
				[38:32]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_rddqs_p_0	31:24	读写	0x20	读 DQSp 采样延迟值
				[31:31]: bypass 控制
				[30:24]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_wrdqs_0	23:16	读写	0x7F	写 DQS 延迟值
				[23:23]: bypass 控制
				[22:16]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_wrdata_0	15:8	读写	0x60	写数据延迟值(应该比 DQS 提前 1/4 周期)
חום_wruata_0	13.0	以 刊	UAUU	→ 外担を心団 (四 K II D V)

				[15:15]: bypass 控制
				[14:8]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_gate_0	7:0	读写	0x0	读 DQS 采样有效时期控制延迟值
_c _				[7:7]: bypass 控制
				[6:0]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
0x040				
0x138				
0x140				
Pad_ocd_clk	58:56	读写	0x0	时钟引脚输出阻抗控制
				000-40 欧姆
				001 – 30 欧姆
				010-24 欧姆
				011 - 20 欧姆
				100-15 欧姆
Pad_ocd_ctl	50:48	读写	0x0	控制引脚输出阻抗控制
				000 – 40 欧姆
				001 – 30 欧姆
				010 – 24 欧姆
				011 – 20 欧姆
				100-15 欧姆
Pad_ocd_dqs	40:40	读写	0x0	DQS 引脚输出阻抗控制
				0-34 欧姆
				1-40 欧姆
Pad_ocd_dq	32:32	读写	0x0	DQ 引脚输出阻抗控制
				0-34 欧姆
				1-40 欧姆
Pad_enzi	24:16	读写	0x0	分别对应9个数据组的引脚输入使能
				1 - 使能
				0- 高阻
Pad_en_ctl	8:8	读写	0x1	控制引脚输出使能
				1 - 使能
				0- 高阻
Pad_en_clk	7:0	读写	0x0	时钟引脚输出使能
				1- 使能
				0- 高阻
0x148				
Pad_adj_code_dqs	63:56	读写	0x0	设置当 Pad_code_dqs[0]有效时 DQS 信号附加 CODE
•				[7:4] N_CODE: 1 使能, 0 关闭
				[3:0] P_CODE: 0 关闭, 1 使能
 		1	1	

				Bit 2:在 Bit 0 有效时,附加在输出及 ODT 上
				Bit 1:在 Bit 0 有效时,附加在 SLEWRATE 上
				Bit 0: 附加 CODE 使能, 1 有效
Pad_adj_code_dq	47:40	读写	0x0	设置当 Pad_code_dq[0]有效时 DQ 信号附加 CODE
				[7:4] N_CODE: 1 使能, 0 关闭
				[3:0] P_CODE: 0 关闭, 1 使能
Pad_code_dq	34:32	读写	0x0	DQ 信号附加 CODE 使能设置
				Bit 2: 在 Bit 0 有效时,附加在输出及 ODT 上
				Bit 1: 在 Bit 0 有效时,附加在 SLEWRATE 上
				Bit 0: 附加 CODE 使能,1 有效
Pad_vref_internal	16:16	读写	0x0	使能内部 VREF 分压电路
				1 - 同时使用内部 VREF 分压与外部引脚输出电压
				0- 只使用外部引脚输出电压
Pad_odt_se	8:8	读写	0x0	引脚匹配电阻值控制
				0-60 欧姆
				1 – 120 欧姆
Pad_modezi1v8	24:24	读写	0x0	PAD MODE ZI 1v8
				1 – 使用 PAD 的 ZITEST 输入
				0 – 使用 PAD 的 ZI 输入
0x150				
Reset_ctrl	49:48	读写	0x0	内存控制器复位引脚输出状态控制
				Bit 0: 复位信号使能。
				 为 1 时,保持引脚输出为低;
				为 0 时,由 Bit 1 控制由有效电平
				Bit 1: 复位信号有效电平。
				为0时,低有效;
				为1时,高有效
Pad_adj_code_clk	47:40	读写	0x0	设置当 Pad_code_clk[0]有效时 CLK 信号附加 CODE
				[7:4] N_CODE: 1 使能, 0 关闭
				[3:0] P_CODE: 0 关闭,1 使能
Pad_code_clk	34:32	读写	0x0	CLK 信号附加 CODE 使能设置
Lua_codo_cir	31.32		OAO .	Bit 2: 在 Bit 0 有效时,附加在输出及 ODT 上
				Bit 1: 在 Bit 0 有效时,附加在 SLEWRATE 上
				Bit 0: 附加 CODE 使能,1 有效
Pad adi code amd	31:24	读写	0x0	设置当 Pad_code_cmd[0]有效时 CMD 信号附加 CODE
Pad_adj_code_cmd	31.24	以刊	UAU	反直当 Pad_code_cind[0]有效的 CMD 信 5 附加 CODE [7:4] N_CODE: 1 使能, 0 关闭
Ded and 1	10.16	法定	00	[3:0] P_CODE: 0 关闭,1 使能
Pad_code_cmd	18:16	读写	0x0	CMD 信号附加 CODE 使能设置
				Bit 2: 在 Bit 0 有效时,附加在输出及 ODT 上
				Bit 1: 在 Bit 0 有效时,附加在 SLEWRATE 上
		\+ 		Bit 0: 附加 CODE 使能,1 有效
Pad_adj_code_addr	15:8	读写	0x0	设置当 Pad_code_addr[0]有效时 ADDR 信号附加 CODE
ì		i	i e	1.17.41 N. CODE. 1./面能 0. 美国
				[7:4] N_CODE: 1 使能, 0 关闭 [3:0] P_CODE: 0 关闭, 1 使能

Pad_code_addr	2:0	读写	0x0	ADDR 信号附加 CODE 使能设置
 				Bit 2:在 Bit 0 有效时,附加在输出及 ODT 上
l				Bit 1:在 Bit 0 有效时,附加在 SLEWRATE 上
l				Bit 0: 附加 CODE 使能, 1 有效
0x158				
Pad_comp_code_o	57:48	只读	0x0	引脚补偿单元自动调节调整值
l				在版本 0x1 中:
l				Pad_comp_code_o 位于 0x158[39:32]
Pad_comp_okn	40:40	只读	0x0	引脚补偿单元自动调节完成标志
Pad_comp_code_i	33:24	读写	0xF0	引脚补偿单元手动设置值
l				在版本 0x1 中:
l				Pad_comp_code_i 位于 0x158[31:24]
l				[7:4] N_CODE: 1 使能, 0 关闭
l				[3:0] P_CODE: 0 关闭, 1 使能
l				在版本 0x2/0x3 中:
l				[9:5] N_CODE: 1 使能, 0 关闭
l				[4:0] P_CODE: 0 关闭, 1 使能
Pad_comp_mode	16:16	读写	0x0	引脚补偿单元设置
l				1 - 手动设置 CODE
l				0 - 自动调节 CODE
Pad_comp_tm	8:8	读写	0x0	外部引脚测试模块使能
l				1 - 使用引脚 COMP_NOUT/COMP_POUT 连接电阻
l				0 - 使用引脚 COMP_REXT 连接电阻
Pad_comp_pd	0:0	读写	0x1	引脚补偿单元 Power Down
l				1 – Power Down
l				0- 正常工作
0x160				
Rdfifo_empty	56:48	只读	0x0	PHY 中收集每个 SLICE 的读 FIFO 错误读出标志,当对
l				应的 FIFO 为空时发生出队列操作时有效。可以用于判断
l				Rdfifo_valid 无效时,tPHY_RDLAT 的值是否设置过小
l				每一位分别对应于 SLICE8 SLICE0
Overflow	40:32	只读	0x0	PHY 中每个 SLICE 中的读 FIFO 溢出标志,每一位分别
l				对应于 SLICE8 SLICE0
Dram_init	27:24	只读	0x0	DRAM 初始化完成标志,在 Init_start 设置之后才会生效,
l				每一位分别对应于一个片选
	-)±.77	0x1	表示使用 PHY 内部逻辑控制读数据同步时间
Rdfifo_valid	16:16	读写	UXI	(A) (A) [11]
Rdfifo_valid	16:16	() ()	UXI	该位无效时,这个同步时间由 tPHY_RDLAT 决定
Rdfifo_valid Cmd_timing	16:16 9:8	读写	0x0	
				该位无效时,这个同步时间由 tPHY_RDLAT 决定
				该位无效时,这个同步时间由 tPHY_RDLAT 决定 控制线 2T/3T 功能使能
				该位无效时,这个同步时间由 tPHY_RDLAT 决定 控制线 2T/3T 功能使能 0 – 1T
				该位无效时,这个同步时间由 tPHY_RDLAT 决定 控制线 2T/3T 功能使能 0 – 1T 1 – 2T
				该位无效时,这个同步时间由 tPHY_RDLAT 决定 控制线 2T/3T 功能使能 0-1T 1-2T 2-3T

D12 1	1.0	注, 它	0.1	大监士 0.1 H
Ddr3_mode	1:0	读写	0x1	在版本 0x1 中:
				使用 DDR2 模式时将该位设为 0
				使用 DDR3 模式时将该位设为 1 在版本 0x2/0x3 中:
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				使用 DDR2 模式时将该位设为 0
				使用 DDR3 STD 模式时将该位设为 1
0.160				使用 DDR3 ECB 模式时将该位设为 3
0x168	60.56	\±.57	0.4	**************************************
Ba_xor_row_offset	60:56	读写	0x4	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				表示地址译码时 bank 需要与 row 中的某些位数进行异或
				Bit[4]: 表示异或使能
				Bit[3:0]:表示 bank 需要与 row 地址的高位进行异或,具
		\ 		体是指的 row 地址的高(16-该值)位
Addr_mirror	51:48	读写	0x0	表示该 CS 对应的地址需要进行地址镜像
Cmd_delay	41:40	读写	0x0	表示命令总线需要的附加延迟
				有效值为 0/1/2
				与其他几个参数需要满足关系式:
				tRDDATA - Cmd_delay - Cmd_timing = CASLAT -3
				tPHY_WRLAT - Cmd_delay - Cmd_timing = WRLAT - 4
Burst_length	35:32	读写	0x7	表示 DRAM 总线上的突发请求长度,该参数设置应与
				MRS 参数一致。
				突发长度为8时设为4'h7,突发长度为4时设为4'h3
Bank/cs_resync	27:24	读写	0x7/0x1	在版本 0x1 中:
				表示每个片选上的 Bank 数量
				Bank 数为 2 时:
				需设置 Ba_diff = 2 , Addr_win[3:2] = 2' b01
				Bank 数为 4 时:
				需设置 Ba_diff = 1 , Addr_win[3:2] = 2' b10
				Bank 数为 8 时:
				需设置 Ba_diff = 0 , Addr_win[3:2] = 2' b11
				在版本 0x2 中:
				保留
				在版本 0x3 中:
		\+ 		使能对应片选信号的 resync 请求
Cs_zq	19:16	读写	0x1	使能对应片选信号的 ZQ 请求
Cs_mrs	11:8	读写	0x1	使能对应片选信号的 MRS 请求
Cs_enable	3:0	读写	0x1	使能对应片选信号
0x170				
Odt_wr_cs_map	63:48	读写	0x8421	对应 CS 发送写命令时,使能的 ODT 信号
				Bit [15:12]: CS3 发读时对应 ODTx 是否有效, x=30
				Bit [11: 8]: CS2 发读时对应 ODTx 是否有效, x=30
				Bit [7:4]: CS1 发读时对应 ODTx 是否有效, x=30

				Bit [3: 0]: CS0 发读时对应 ODTx 是否有效, x=30
Odt_wr_length	43:40	读写	0x5	发送写命令时, ODT 信号有效时钟周期数减一后的值(也
&				就是说 ODT 有效的时间长度等于 odt_wr_length 加 1)
Odt_wr_delay	35:32	读写	0x0	发送写命令时,ODT 信号与写命令的起始间隔
Odt_rd_cs_map	31:16	读写	0x1144	对应 CS 发送读命令时,使能的 ODT 信号
out_ru_es_map	31.10		OATT	Bit [15:12]: CS3 发读时对应 ODTx 是否有效, x=30
				Bit [11: 8]: CS2 发读时对应 ODTx 是否有效, x=30
				Bit [7:4]: CS1 发读时对应 ODTx 是否有效, x=30
				Bit [3: 0]: CS0 发读时对应 ODTx 是否有效, x=30
Odt_rd_length	11:8	读写	0x5	发送读命令时, ODT 信号有效时钟周期数减一后的值(也
Out_ru_rengtii	11.0		UNS	就是说 ODT 有效的时间长度等于 odt_rd_length 加 1)
Odt_rd_delay	3:0	读写	0x1	发送读命令时,ODT 信号与读命令的起始间隔
0x170	3.0	<u> </u>	UAT .	人之及前(n),ODI II 3 7 及前(1)10月间
0X170				
0x180				
Lvl_resp_0	63:56	只读	0x0	Leveling 操作时,第 0 数据组的反馈信号
Lvl_done	48:48	只读	0x0	Leveling 操作时,表示 Lvl_resp_*有效信号
Lvl_ready	40:40	只读	0x0	Leveling 操作时,表示当前控制器已经进入 Leveling 操作
Lvi_leady	40.40	八以	OXO	模式。(用户程序正确设置 Lvl_mode 的值后,应该对这
				个寄存器进行采样,如果值为 1 表示可以对控制器发起
				Leveling 请求,也就是说,此时才可以将设 Lvl_req 为 1)
Lvl_cs	27:24	读写	0x1	Leveling 操作时,当前控制的片选信号
tLVL_DELAY	23:16	读写	0x10	Leveling 操作时,有效采样延迟周期
ILVL_DELAT	25:10	以	OXIO	单位为时钟周期
Lvl_req	8:8	只写	0x0	Leveling 操作时,向外发起 Leveling 操作请求
Lvl_req Lvl_mode	1:0	读写	0x0	Leveling 模式使能
Lvi_mode	1.0	以	OXO	00 – 正常功能模式
				00- 正市功能模式 01- Write Leveling 模式
0.100				10 – Gate Leveling 模式
0x188	62.56	口法	0.0	1 1 根析性 签 0 数据如始后建定日
Lvl_resp_8	63:56	只读	0x0	Leveling 操作时,第 8 数据组的反馈信号
				当 Lvl_mode == 1 时,为数据线上的反馈
				当 Lvl_mode == 2 时
				Bit[7:5]: 内部有效读 DQS 时钟上升沿计数器
				Bit[4:2]: 内部有效读 DQS 时钟下升沿计数器
				Bit[1:0]: 内部 gate 采样读 DQS 的反馈
				对于一个正确配置的 Gate Leveling 操作来说
				Bit[7:5] 与 Bit[4:2] 应该在每一次 Leveling_req 增加
				Burst_length/2 个计数,否则需要调整 Dll_gate_x 的值
		H /+		- I Blank M - W.B.C.C.
Lvl_resp_7	55:48	只读	0x0	Leveling 操作时,第 7 数据组的反馈信号
Lvl_resp_6	47:40	只读	0x0	Leveling 操作时,第 6 数据组的反馈信号
Lvl_resp_5	39:32	只读	0x0	Leveling 操作时,第 5 数据组的反馈信号

Lvl_resp_4	31:24	只读	0x0	Leveling 操作时,第 4 数据组的反馈信号
Lvl_resp_3	23:16	只读	0x0	Leveling 操作时,第 3 数据组的反馈信号
Lvl_resp_2	15:8	只读	0x0	Leveling 操作时,第2数据组的反馈信号
Lvl_resp_1	7:0	只读	0x0	Leveling 操作时,第1数据组的反馈信号
0x190	7.0	八庆	OAO	Leveling Mirelly Will Management 1
Cmd_a	63:48	读写	0x0	命令发送模式下,对 DRAM 发出的地址线信号
Cmd_ba	42:40	读写	0x0	命令发送模式下,对 DRAM 发出的 ba 线信号
Cmd_cmd	34:32	读写	0x0	命令发送模式下,对 DRAM 发出的控制信号
ema_vmu	0.102	~ ,		bit2 – RASn
				bit1 – CASn
				bit0 – WEn
Cmd_cs	27:24	读写	0x0	命令发送模式下,对 DRAM 发出的片选信号
Status_cmd	16:16	只读	0x0	表示控制器进入命令发送模式,在 command_mode 设置
_				之后才会生效
Cmd_req	8:8	只写	0x0	命令发送模式下,对 DRAM 发出一次控制命令
Command_mode	0:0	读写	0x0	使控制器进入命令发送模式
0x198				
Status_sref	43:40	只读	0x0	已经进入自刷新模式,每位分别对应一个片选
Srefresh_req	35:32	读写	0x0	自刷新控制信号,设1进入自刷新,设0退出自刷新
Pre_all_done	27:24	只读	0x0	Precharge All 操作完成
Pre_all_req	19:16	只写	0x0	请求发出 Precharge All 命令,每位分别对应一个片选
Mrs_done	8:8	只读	0x0	命令模式下,表示 MRS 命令发送完毕
Mrs_req	0:0	只写	0x0	命令模式下,向 DRAM 发出一次 MRS 命令,发送的命
				令序列为
				MRS2、MRS3、MRS1、MRS0
0x1A0				
Mr_3_cs_0	63:48	读写	0x0000	向 DRAM CS 0 发送 MRS 3 命令时对应的值
Mr_2_cs_0	47:32	读写	0x0018	向 DRAM CS 0 发送 MRS 2 命令时对应的值
Mr_1_cs_0	31:16	读写	0x0004	向 DRAM CS 0 发送 MRS 1 命令时对应的值
Mr_0_cs_0	15:0	读写	0x0d60	向 DRAM CS 0 发送 MRS 0 命令时对应的值
0x1A8				
Mr_3_cs_1	63:48	读写	0x0000	向 DRAM CS 1 发送 MRS 3 命令时对应的值
Mr_2_cs_1	47:32	读写	0x0018	向 DRAM CS 1 发送 MRS 2 命令时对应的值
Mr_1_cs_1	31:16	读写	0x0004	向 DRAM CS 1 发送 MRS 1 命令时对应的值
Mr_0_cs_1	15:0	读写	0x0d60	向 DRAM CS 1 发送 MRS 0 命令时对应的值
0x1B0				
Mr_3_cs_2	63:48	读写	0x0000	向 DRAM CS 2 发送 MRS 3 命令时对应的值
Mr_2_cs_2	47:32	读写	0x0018	向 DRAM CS 2 发送 MRS 2 命令时对应的值
Mr_1_cs_2	31:16	读写	0x0004	向 DRAM CS 2 发送 MRS 1 命令时对应的值
Mr_0_cs_2	15:0	读写	0x0d60	向 DRAM CS 2 发送 MRS 0 命令时对应的值
0x1B8				
Mr_3_cs_3	63:48	读写	0x0000	向 DRAM CS 3 发送 MRS 3 命令时对应的值
Mr_2_cs_3	47:32	读写	0x0018	向 DRAM CS 3 发送 MRS 2 命令时对应的值

Mr_1_cs_3	31:16	读写	0x0004	向 DRAM CS 3 发送 MRS 1 命令时对应的值
Mr_0_cs_3	15:0	读写	0x0D60	向 DRAM CS 3 发送 MRS 0 命令时对应的值
0x1C0				
tRESET	63:56	读写	0x28	DRAM 初始化前的复位时间
				单位为 4096 个时钟周期
tCKE	55:48	读写	0x70	DRAM 初始化从复位释放到 CKE 有效时间
				单位为 4096 个时钟周期
tXPR	47:40	读写	0x80	DRAM 初始化从 CKE 有效到 MRS 命令的时间
				单位为时钟周期
tMOD	39:32	读写	0x0C	发送 MRS 命令后至下一条命令的时间间隔
				单位为时钟周期
tZQCL	31:24	读写	0x03	发送 ZQCL 命令后至下一条命令的时间间隔
				单位为 256 个时钟周期
tZQ_CMD	23:16	读写	0x04	不同片选之间发送 ZQ 命令的时间间隔
				单位为时钟周期
tWLDQSEN	15:8	读写	0x20	Write Leveling 中,从 MRS 到 DQS 为低的时间间隔
				单位为时钟周期
tRDDATA	7:0	读写	0x08	从发送读命令到发送读数据有效命令的时间间隔。
				单位为时钟周期
				与其他几个参数需要满足关系式:
				tRDDATA - Cmd_delay - Cmd_timing = CASLAT - 3
				该参数最小设置值为 2
0x1C8				
0x1C8 tFAW	61:56	读写	0x30	连续打开 4 个 Bank 的最小允许时间
tFAW				单位为时钟周期
	61:56	读写读写	0x30 0x06	单位为时钟周期 打开两个行之间的最小间隔时间
tFAW tRRD	50:48	读写	0x06	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期
tFAW				单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间
tFAW tRRD tRCD	50:48	读写读写	0x06 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期
tFAW tRRD	50:48	读写	0x06	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期
tFAW tRRD tRCD	50:48	读写读写	0x06 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中:
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中:
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF
tFAW tRRD tRCD tRP tREF	50:48 43:40 39:32 31:24	读。读读读写	0x06 0x09 0x09 0x0C	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF 在该版本中,单位为 16 个时钟周期
tFAW tRRD tRCD	50:48 43:40 39:32	读写读写	0x06 0x09 0x09	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF 在该版本中,单位为 16 个时钟周期
tFAW tRRD tRCD tRP tREF	50:48 43:40 39:32 31:24	读读读读读	0x06 0x09 0x09 0x0C	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF 在该版本中,单位为 16 个时钟周期 刷新操作需要时间 单位为时钟周期
tFAW tRRD tRCD tRP tREF	50:48 43:40 39:32 31:24	读。读读读写	0x06 0x09 0x09 0x0C	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF 在该版本中,单位为 16 个时钟周期 刷新操作需要时间 单位为时钟周期 ZQCS 操作需要时间
tFAW tRRD tRCD tRP tREF tREF	50:48 43:40 39:32 31:24 23:16	读读读读读读读	0x06 0x09 0x09 0x0C 0x85	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF 在该版本中,单位为 16 个时钟周期 刷新操作需要时间 单位为时钟周期 ZQCS 操作需要时间 单位为时钟周期
tFAW tRRD tRCD tRP tREF	50:48 43:40 39:32 31:24	读读读读读	0x06 0x09 0x09 0x0C	单位为时钟周期 打开两个行之间的最小间隔时间 单位为时钟周期 打开行到对应行的读写操作之间的最小间隔时间 单位为时钟周期 Precharge 操作需要时间 单位为时钟周期 在版本 0x1 中: 同一片选刷新操作之间的时间间隔 单位为 256 个时钟周期 在版本 0x2/0x3 中: 同一片选刷新操作之间的时间间隔的 Bit[11:4],与 0x320 寄存器的 tREF_low 组成完整的 tREF 在该版本中,单位为 16 个时钟周期 刷新操作需要时间 单位为时钟周期 ZQCS 操作需要时间

				无论在什么模式下,该参数都不可设为0。
0x1D0				
tODTL	59:56	读写	0x0A	Write Leveling 之从 ODT 无效到发 MRS 命令时间间隔
				单位为时钟周期
tXSRD	55:48	读写	0x02	从自刷新模式恢复到第一条访问之间的最小时间间隔
				单位为 256 个时钟周期
tPHY_RDLAT	43:40	读写	0x09	读内存操作的 PHY 内部读数据同步时间
				0x5 时一般可以正常工作,极端情况下可以将这个值增加
				或减小。减小可能会影响到读数据的正确性,增加会增加
				读操作的延迟
				当 Rdfifo_valid 有效时,这个配置不起作用
				单位为时钟周期
tPHY_WRLAT	36:32	读写	0x05	从发送写命令到发送写数据的时间间隔。
_				单位为时钟周期
				与其他几个参数需要满足关系式:
				tPHY_WRLAT - Cmd_delay - Cmd_timing = WRLAT - 4
				「
tRAS_max	25:8	读写	0x00000	在版本 0x1 中:
_				行打开的最长有效时间
				单位为时钟周期
				在版本 0x2/0x3 中:
				保留
tRAS_min	5:0	读写	0x1C	行打开的最短有效时间
				单位为时钟周期
0x1D8				
tXPDLL	63:56	读写	0x14	从离开 Power down (DLL 关闭) 状态到下一个命令的间
				隔时间
				单位为始终周期
tXP	55:48	读写	0x05	从离开 Power down (DLL 打开) 状态到下一个命令的间
				隔时间
tWR	44:40	读写	0x0C	写恢复时间
				单位为时钟周期
				该参数设置值应大于等于 MRS 中设置值
tRTP	34:32	读写	0x06	读到 Precharge 操作的间隔时间
				单位为时钟周期
tRL	27:24	读写	0x0A	读操作延迟,相当于 CASLAT
				单位为时钟周期
				该参数设置值应大于等于 MRS 中设置值
tWL	19:16	读写	0x08	写操作延迟,相当于 WRLAT
				单位为时钟周期
				该参数设置值应大于等于 MRS 中设置值
tCCD	11:8	读写	0x04	两个读写操作之间的最小间隔时间
	11.0			单位为时钟周期
tWTR	3:0	读写	0x06	写操作到读操作之间的最小间隔时间
ι 11 11 11 11 11 11 11 11 11 11 11 11 11	3.0	庆刊	UAUU	ラボド対欧体下へ同時数年間間的目

				单位为时钟周期
0x1E0				
tW2R_diffCS	61:56	读写	0x03	不同 CS 上的写操作到读操作之间的间隔时间减去 1 的值单位为时钟周期,最小值等于 tCCD+tWL-tRL,一般应增加 2 或更多
tW2W_diffCS_adj	53:48	读写	0x0	不同 CS 上的写操作到写操作之间的附加间隔时间 单位为时钟周期,一般应增加 2 或更多
tR2P_sameBA_adj	45:40	读写	0x0	相同 Bank 上的读操作到 Precharge 之间的附加间隔时间单位为时钟周期
tW2P_sameBA_adj	37:32	读写	0x0	相同 Bank 上的写操作到 Precharge 之间的附加间隔时间 单位为时钟周期
tR2R_sameBA_adj	29:24	读写	0x0	相同 Bank 上的读操作到读操作之间的附加间隔时间 单位为时钟周期
tR2W_sameBA_adj	21:16	读写	0x0	相同 Bank 上的读操作到写操作之间的附加间隔时间 单位为时钟周期
tW2R_sameBA_adj	13:8	读写	0x0	相同 Bank 上的写操作到读操作之间的附加间隔时间 单位为时钟周期
tW2W_sameBA_adj	5:0	读写	0x0	相同 Bank 上的写操作到写操作之间的附加间隔时间 单位为时钟周期
0x1E8				
tR2R_diffCS_adj	61:56	读写	0x01	不同 CS 上的读操作到读操作之间的附加间隔时间 单位为时钟周期,一般应增加 2 或更多
tR2W_diffCS	53:48	读写	0x06	不同 CS 上的读操作到写操作之间的间隔时间减去 1 的值单位为时钟周期,最小值等于 tCCD+tRL-tWL,一般应增加 2 或更多
tR2P_sameCS	44:40	读写	0x0	相同 CS 上的读操作到 Precharge 之间的间隔时间减去 1 的值单位为时钟周期
tW2P_sameCS	37:32	读写	0x0	相同 CS 上的读操作到读操作之间的附加间隔时间 单位为时钟周期
tR2R_sameCS_adj	27:24	读写	0x0	相同 CS 上的读操作到读操作之间的附加间隔时间 单位为时钟周期
tR2W_sameCS_adj	21:16	读写	0x0	相同 CS 上的读操作到写操作之间的附加间隔时间 单位为时钟周期
tW2R_sameCS_adj	13:8	读写	0x0	相同 CS 上的写操作到读操作之间的附加间隔时间 单位为时钟周期
tW2W_sameCS_adj	5:0	读写	0x0	相同 CS 上的写操作到写操作之间的附加间隔时间 单位为时钟周期
0x1F0				
Power_up	59:56	读写	0x0	分别对应四个 CS。设为 1 时,可以使对应的 CS 离开或者不进入 Power down 状态。
Age_step	55:48	读写	0x8	Power down 计数器步长。
tCPDED	47:40	读写	0x1	CKE 为 0 后,命令和地址总线失效时间

				单位为时钟周期
Cs_map	39:32	读写	0xE4	CS 地址映射控制,每两位分别对应地址译码后的 CS 与
				真实 CS 之间的映射关系
Bs_config	31:24	读写	0xFF	命令调度 CS 状态使能
				Bit7: CS3 对应状态机状态使能
				1-使能; 0-禁用(下同)
				Bit6: CS3 对应状态机状态重置
				1-解复位; 0-重置(下同)
				Bit5: CS2 对应状态机状态使能
				Bit4: CS2 对应状态机状态重置
				Bit3: CS1 对应状态机状态使能
				Bit2: CS1 对应状态机状态重置
				Bit1: CSO 对应状态机状态使能
				Bit0: CS0 对应状态机状态重置
Nc	18:16	读写	0x0	多通道模式使能
				000 - 普通 64 位模式
				001 - 多通道模式
				011 - 普通 16 位模式
				101 – 普通 32 位模式
				其它 – 保留
Pr_r2w	11:8	读写	0x1	在版本 0x1 中:
				读操作优先级是否高于写操作
				在版本 0x2/0x3 中:
				保留
Placement_en	0:0	读写	0x1	使能读写命令重排逻辑
0x1F8				
Hw_pd_3	59:56	读写	0x0	从低到高分别对应 Active Standby, Fast Power Down, Slow
				Power Down 和 Self Refresh。设为 1 表示允许 CS3 进入对
				应的低功耗状态。
				需要注意的是,该值不能配置为 4 'h8 和 4 'h9,因为
				SelfRefresh 不能在没有进行 precharge 的情况下进行。
				另外, bit2 和 bit1 只能不能同时有效, 具体与 MR0 的 A12
				相匹配:
				MR0 的 A12 : 为 0,仅能使能 bit2,
				为 1,仅能使能 bit1。
Hw_pd_2	51:48	读写	0x0	设为1表示允许 CS2 进入对应的低功耗状态。
Hw_pd_1	43:40	读写	0x0	设为1表示允许 CS1 进入对应的低功耗状态。
Hw_pd_0	35:32	读写	0x0	设为1表示允许 CS0 进入对应的低功耗状态。
Credit_16	29:24	读写	0x4	在版本 0x1 中:
				16 位通道优先级设置
				在版本 0x2/0x3 中:
				保留
Credit_32	21:16	读写	0x8	在版本 0x1 中:
				32 位通道优先级设置

				在版本 0x2/0x3 中:
G 11 11	12.5)+ F		保留
Credit_64	13:8	读写	0x10	在版本 0x1 中:
				64 位通道优先级设置
				在版本 0x2/0x3 中:
				保留
Selection_en	0:0	读写	0x1	在版本 0x1 中:
				不同通道优先级调度使能
				在版本 0x2/0x3 中:
				保留
0x200				
Cmdq_age_16	59:48	读写	0xC00	16 位通道调度最大超时时间
Cmdq_age_32	43:32	读写	0xC00	32 位通道调度最大超时时间
Cmdq_age_64	27:16	读写	0xC00	64 位通道调度最大超时时间
tCKESR	15:8	读写	0x07	自刷新时,CKE 为低的最短时间
				单位为时钟周期
tRDPDEN	7:0	读写	0x0C	从发出 RD/RDA 命令到进入低功耗状态的时间间隔
				单位为时钟周期
0x208				
Wfifo_age	59:48	读写	0xC00	在版本 0x1 中:
				写队列中命令最大超时时间。
				在版本 0x2/0x3 中:
				保留
Rfifo_age	43:32	读写	0xF80	读队列中命令最大超时时间。
Power_stat3	27:24	只读	0x0	从低到高分别对应 Active Standby, Fast Power Down, Slow
				Power Down 和 Self Refresh。设为 1 表示 CS3 处于对应的
				低功耗状态。
Power_stat2	19:16	只读	0x0	设为 1 表示 CS2 处于对应的低功耗状态。
Power_stat1	11:8	只读	0x0	设为 1 表示 CS1 处于对应的低功耗状态。
Power_stat0	3:0	只读	0x0	设为 1 表示 CSO 处于对应的低功耗状态。
0x210				
Active_age	63:48	读写	0x08	Active Standby 低功耗状态计数器
Cs_place_0	40:40	读写	0x0	普通模式或窗口 0 译码时 CS 在地址中的位置
				0 – 译码方式为{CS、ROW、BA、COL}
				1- 译码方式为
				关闭 addr_new: {ROW[x-1:0]、ROW[:x]、CS、BA、COL};
				打开 addr_new: {ROW[y+x-1:y]、CS、ROW[:y]、BA、
				ROW[y-1:0]、COL};
				其中, x表示 CS 的位宽, y表示 ROW 的低位位宽, y由
				addr_new[3:0]决定。
Addr_win_0	35:32	读写	0xF	普通模式或窗口 0 地址命中及配置
11001_7/111_0	33.32	K-7		Bit [3:2]: 窗口使用 DRAM 的 Bank 数
				11-8 bank; 10-4 bank; 01-2 bank; 00- 保留
				Bit [1:0]: 窗口使用 DRAM 位数
				DIL[1.0]: 図口区用 DKAM 世剱

				11-64位: 10-32位: 01-16位: 00-保留
Cs_diff_0	27:24	读写	0x0	普通模式或窗口 0 实际使用的 CS 译码前地址与 2 之差
	27.21			当 Pm_nc 有效时,
				对于 64 位窗口,应该为 2;
				对于 32 位窗口,应该为 1;
				对于16位窗口,应该为0
Row_diff_0	19:16	读写	0x2	普通模式或窗口0实际使用的行地址线个数与16之差
Kow_diff_o	19.10		UXZ	这个值等于 16 – 实际使用的行地址线个数
D 1.cc o	0.0	进 官	0.0	普通模式或窗口 0 实际使用的 BA 线个数与 3 之差
Ba_diff_0	9:8	读写	0x0	
G 1 1100 0	2.0	\±.57	0.6	这个值等于 3 – 实际使用的 BA 线个数
Col_diff_0	3:0	读写	0x6	普通模式或窗口 0 实际使用的列地址线个数与 16 之差
				这个值等于 16 - 实际使用的列地址线个数
0x218				
Fastpd_age	63:48	读写	0x08	Fast Powerdown 低功耗状态计数器
Cs_place_1	40:40	读写	0x0	在版本 0x1 中:
				普通模式或窗口 1 译码时 CS 在地址中的位置
				0 - 译码方式为{CS、ROW、BA、COL}
				1 - 译码方式为{ROW、CS、BA、COL}
				在版本 0x2/0x3 中:
				保留
Addr_win_1	35:32	读写	0xF	在版本 0x1 中:
				普通模式或窗口 1 地址命中及配置
				Bit [3:2]: 窗口使用 DRAM 的 Bank 数
				11-8 bank; 10-4 bank; 01-2 bank; 00- 保留
				Bit [1:0]: 窗口使用 DRAM 位数
				11-64位; 10-32位; 01-16位; 00-保留
				在版本 0x2/0x3 中:
				保留
Cs_diff_1	27:24	读写	0x0	在版本 0x1 中:
es_um_1	27.21		o Ao	普通模式或窗口 1 实际使用的 CS 译码前地址与 2 之差
				当 Pm_nc 有效时,
				对于 64 位窗口,应该为 2;
				对于 32 位窗口, 应该为 1;
				对于 16 位窗口,应该为 0
				在版本 0x2/0x3 中:
D 1100 4	10.11	\+ F		保留
Row_diff_1	19:16	读写	0x2	在版本 0x1 中:
				普通模式或窗口1实际使用的行地址线个数与16之差
				这个值等于 16 – 实际使用的行地址线个数
				在版本 0x2/0x3 中:
				保留
Ba_diff_1	9:8	读写	0x0	在版本 0x1 中:
				普通模式或窗口 1 实际使用的 BA 线个数与 3 之差
				这个值等于 3- 实际使用的 BA 线个数

				左岭★ 02/02 由
				在版本 0x2/0x3 中: 保留
G 1 1100 1	2.0	\±.57	0.5	
Col_diff_1	3:0	读写	0x6	在版本 0x1 中:
				普通模式或窗口1实际使用的列地址线个数与16之差
				这个值等于 16- 实际使用的列地址线个数
				在版本 0x2/0x3 中:
				保留
0x220				
Slowpd_age	63:48	读写	0x08	Slow Powerdown 低功耗状态计数器
Cs_place_2	40:40	读写	0x0	在版本 0x1 中:
				普通模式或窗口 2 译码时 CS 在地址中的位置
				0 - 译码方式为{CS、ROW、BA、COL}
				1 - 译码方式为{ROW、CS、BA、COL}
				在版本 0x2/0x3 中:
				保留
Addr_win_2	35:32	读写	0xF	在版本 0x1 中:
				普通模式或窗口 2 地址命中及配置
				Bit [3:2]: 窗口使用 DRAM 的 Bank 数
				11-8 bank; 10-4 bank; 01-2 bank; 00- 保留
				Bit [1:0]: 窗口使用 DRAM 位数
				11-64位; 10-32位; 01-16位; 00-保留
				在版本 0x2/0x3 中:
				保留
Cs_diff_2	27:24	读写	0x0	在版本 0x1 中:
				普通模式或窗口 2 实际使用的 CS 译码前地址与 2 之差
				当 Pm_nc 有效时,
				对于 64 位窗口,应该为 2;
				对于 32 位窗口,应该为 1;
				 对于 16 位窗口,应该为 0
				在版本 0x2/0x3 中:
				保留
Row_diff_2	19:16	读写	0x2	在版本 0x1 中:
now_am_2	15.10		OAL	普通模式或窗口2实际使用的行地址线个数与16之差
				这个值等于 16 - 实际使用的行地址线个数
				在版本 0x2/0x3 中:
				保留
Ba_diff_2	898	读写	0x0	在版本 0x1 中:
Da_uIII_2	070	以刊	UXU	普通模式或窗口 2 实际使用的 BA 线个数与 3 之差
				这个值等于 3 – 实际使用的 BA 线个数
				在版本 0x2/0x3 中:
G 1 1122 5	2.5	\+ →		保留
Col_diff_2	3:0	读写	0x6	在版本 0x1 中:
				普通模式或窗口 2 实际使用的列地址线个数与 16 之差
				这个值等于 16- 实际使用的列地址线个数

				在版本 0x2/0x3 中:
				保留
0x228				PASTER PA
Selfref_age	63:48	读写	0x08	Selfrefresh 低功耗状态计数器
Cs_place_3	40:40	读写	0x0	在版本 0x1 中:
				普通模式或窗口 3 译码时 CS 在地址中的位置
				0 – 译码方式为{CS、ROW、BA、COL}
				1 – 译码方式为{ROW、CS、BA、COL}
				在版本 0x2/0x3 中:
				保留
Addr_win_3	35:32	读写	0xF	在版本 0x1 中:
				普通模式或窗口 3 地址命中及配置
				Bit [3:2]: 窗口使用 DRAM 的 Bank 数
				11-8 bank; 10-4 bank; 01-2 bank; 00- 保留
				Bit [1:0]: 窗口使用 DRAM 位数
				11-64位; 10-32位; 01-16位; 00-保留
				在版本 0x2/0x3 中:
				保留
Cs_diff_3	27:24	读写	0x0	在版本 0x1 中:
				普通模式或窗口 3 实际使用的 CS 译码前地址与 2 之差
				当 Pm_nc 有效时,
				对于64位窗口,应该为2;
				对于 32 位窗口,应该为 1;
				对于 16 位窗口,应该为 0
				在版本 0x2/0x3 中:
				保留
Row_diff_3	19:16	读写	0x2	在版本 0x1 中:
				普通模式或窗口3实际使用的行地址线个数与16之差
				这个值等于 16- 实际使用的行地址线个数
				在版本 0x2/0x3 中:
				保留
Ba_diff_3	9:8	读写	0x0	在版本 0x1 中:
				普通模式或窗口3实际使用的BA线个数与3之差
				这个值等于 3 - 实际使用的 BA 线个数
				在版本 0x2/0x3 中:
				保留
Col_diff_3	3:0	读写	0x6	在版本 0x1 中:
				普通模式或窗口3实际使用的列地址线个数与16之差
				这个值等于 16- 实际使用的列地址线个数
				在版本 0x2/0x3 中:
				保留
0x230				
Win_mask_0	59:32	读写	0xFFFFF00	在版本 0x1 中:
				0 号窗口 MASK,对应地址[47:20]

				在版本 0x2/0x3 中:
				内存地址范围的 MASK,对应地址[47:20]
W. I O	27.0	14.17	0.000000	
Win_base_0	27:0	读写	0x0000000	在版本 0x1 中:
				0 号窗口 BASE,对应地址[47:20]
				在版本 0x2/0x3 中:
				内存地址范围的 BASE,对应地址[47:20]
0x238				
Win_mask_1	59:32	读写	0xFFFFF00	在版本 0x1 中:
				1 号窗口 MASK,对应地址[47:20]
				在版本 0x2/0x3 中:
				内存地址范围的 MASK, 对应地址[47:20], 为支持 3CS
				的情况而设置
Win_base_1	27:0	读写	0x0000100	在版本 0x1 中:
				1号窗口 BASE,对应地址[47:20]
				在版本 0x2/0x3 中:
				内存地址范围的 BASE, 对应地址[47:20], 为支持 3CS 的
				情况而设置
0x240				
Win_mask_2	59:32	读写	0xFFFFF00	在版本 0x1 中:
				2 号窗口 MASK,对应地址[47:20]
				在版本 0x2/0x3 中:
				保留
Win_base_2	27:0	读写	0x0000200	在版本 0x1 中:
WIII_base_2	27.0		0x0000200	2 号窗口 BASE,对应地址[47:20]
				在版本 0x2/0x3 中:
				保留
0x248				
	59:32	读写	0xFFFFF00	在版本 0x1 中:
Win_mask_3	39.32	以 与	UXFFFF00	
				3 号窗口 MASK,对应地址[47:20]
				在版本 0x2/0x3 中:
				保留
Win_base_3	27:0	读写	0x0000300	在版本 0x1 中:
				3 号窗口 BASE,对应地址[47:20]
				在版本 0x2/0x3 中:
				保留
0x250				
Cmd_monitor	55:48	读写	0x0	在版本 0x1 中:
				Bit 7: 使能命令队列
				3 监控功能
				Bit 6: 复位命令队列 3 性能计数值
				Bit 5: 使能命令队列 2 监控功能
				Bit 4: 复位命令队列 2 性能计数值
				Bit 3: 使能命令队列 1 监控功能
				Bit 2: 复位命令队列 1 性能计数值
			1	Almost And A - Imperior

				D. J. HOVA A RI TI O HEADY OF
				Bit 1: 使能命令队列 0 监控功能
				Bit 0: 复位命令队列 0 性能计数值
				在版本 0x2/0x3 中:
				Bit 1: 使能命令队列监控功能
				Bit 0: 复位命令队列性能计数值
				其他:保留
Axi_monitor	41:32	读写	0x0	使能 AXI 命令队列性能监控,每两位控制一个 AXI 监控
				模块,控制方法与 Cmd_monitor 相同
Ecc_code	31:24	只读	0x0	第一次发生 ECC 错误时从内存读出的校验码
				记录的出错信息的时机由 Int_vector[0]或 Int_vector[1]由 0
				变 1 时触发,使用 Ecc_enable[3]进行配置
Ecc_enable	20:16	读写	0x0	ECC 功能使能
				Bit-5: 使能读后写模式,即所有的带数据屏蔽的写行为都
				 需要进行先读数据再写入的过程。
				Bit-3:设置保存 ECC 出错信号时机
				0- 出现 ECC 错时触发; 1- 出现两位错时触发
				Bit-2: 使能写时 ECC 校验错的内部总线报错(异常)
				Bit-1: 使能读时 ECC 校验错的内部总线报错(异常)Bit-0:
				使能 ECC 功能(只在 64 位模式下有效)
Int_vector	9:8	读写	0x0	中断向量寄存器
int_vector	7.0		OAO	Bit-1: ECC 两位校验错
				Bit-0: ECC 校验错(包括一位错与两位错)
				对这个寄存器的读操作将得到当前的 ECC 出错情况,对
				这个寄存器的"写1"操作将清除对应的位
Int_enable	1:0	读写	0x0	中断使能寄存器
Int_enable	1.0	以 与	OXO	Bit-1: ECC 两位校验错中断使能
				Bit-0: ECC 校验错中断使能(包括一位错与两位错)
0x258				Bit-0: ECC 仅独钼中断反形(包括 位钼与两位钼)
UX258				
0-260				
0x260	60.0	H)+	0.0	数 Nath Pag Hyuri ウェナンキル い は bi ii
Ecc_addr	63:0	只读	0x0	第一次发生 ECC 错误时向内存读的出错地址
				记录的出错信息的时机由 Int_vector[0]或 Int_vector[1]由 0
				变 1 时触发,使用 Ecc_enable[3]进行配置
0x268				
Ecc_data	63:0	只读	0x0	第一次发生 ECC 错误时从内存读出的数据
				记录的出错信息的时机由 Int_vector[0]或 Int_vector[1]由 0
				变 1 时触发,使用 Ecc_enable[3]进行配置
0x270				
Lpbk_ecc_mask	57:56	只读	0x0	自循环测试第一次出错时的 ECC MASK 值
				Bit 1: 对应于 ECC MASK 的上升沿数据
	<u> </u>			Bit 0: 对应于 ECC MASK 的下降沿数据
Prbs_init	54:32	读写	0x10	自循环测试时使用的 PRBS 初始值
Inhk error				
Lpbk_error	24:24	只读	0x0	自循环测试出错

				1 – PRBS 23
				0 – PRBS 7
Lpbk_start	8:8	读写	0x0	自循环测试开始
Lpbk_en	0:0	读写	0x0	自循环测试模式使能
0x278	0.0	, ,		H M TOGETHE
Lpbk_ecc	63:48	只读	0x0	自循环测试第一次出错时的 ECC 值
. –				Bit [63:54]: 对应于 ECC 的上升沿数据
				Bit [53:48]: 对应于 ECC 的下降沿数据
Lpbk_data_mask	47:32	只读	0x0	自循环测试第一次出错时的 DQM 值
				Bit [47:40]: 对应于 DQM 的上升沿数据
				Bit [39:32]: 对应于 DQM 的下降沿数据
Lpbk_correct	31:16	只读	0x0	自循环测试第一次出错时的 PRBS 编码
				Bit [31:24]: 对应于上升沿数据
				Bit [23:16]: 对应于下降沿数据
Lpbk_counter	15:0	只读	0x0	自循环测试第一次出错时的计数周期
0x280				
Lpbk_data_r	63:0	只读	0x0	自循环测试第一次出错时的 DQ 上升沿数据
0x288				
Lpbk_data_f	63:0	只读	0x0	自循环测试第一次出错时的 DQ 下降沿数据
0x290				
Axi0_bw_w	63:32	只读	0x0	AXI0 写带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
Axi0_bw_r	31:0	只读	0x0	AXI0 读带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
0x298				
Axi0_latency_w	63:32	只读	0x0	AXIO 写延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
Axi0_latency_r	31:0	只读	0x0	AXIO 读延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
0x2A0				
Axi1_bw_w	63:32	只读	0x0	AXI1 写带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
Axi1_bw_r	31:0	只读	0x0	AXII 读带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
0x2A8				
Axi1_latency_w	63:32	只读	0x0	AXII 写延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
Axi1_latency_r	31:0	只读	0x0	AXII 读延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
0x2B0		P		
Axi2_bw_w	63:32	只读	0x0	AXI2 写带宽性能计数值
		H /+		这个值表示 1M 个时钟周期里总线数据有效的周期数
Axi2_bw_r	31:0	只读	0x0	AXI2 读带宽性能计数值

				这个值表示 1M 个时钟周期里总线数据有效的周期数
0x2B8				
Axi2_latency_w	63:32	只读	0x0	AXI2 写延迟性能计数值
AXI2_latency_w	03.32	八庆	OXO	这个值表示 256K 个访问的总延迟周期之和
Axi2_latency_r	31:0	只读	0x0	AXI2 读延迟性能计数值
Axiz_latency_r	31.0	八以	UXU	这个值表示 256K 个访问的总延迟周期之和
0x2C0				这个值表示 250K 个切问的总型及问期之和
	62.22	口法	0.0	AVI2 宣世帝林弘、李庆
Axi3_bw_w	63:32	只读	0x0	AXI3 写带宽性能计数值 这个值表示 1M 个时钟周期里总线数据有效的周期数
	21.0	口、土	0.0	
Axi3_bw_r	31:0	只读	0x0	AXI3 读带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
0x2C8				
Axi3_latency_w	63:32	只读	0x0	AXI3 写延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
Axi3_latency_r	31:0	只读	0x0	AXI3 读延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
0x2D0				
Axi4_bw_w	63:32	只读	0x0	AXI4 写带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
Axi4_bw_r	31:0	只读	0x0	AXI4 读带宽性能计数值
				这个值表示 1M 个时钟周期里总线数据有效的周期数
0x2D8				
Axi4_latency_w	63:32	只读	0x0	AXI4 写延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
Axi4_latency_r	31:0	只读	0x0	AXI4 读延迟性能计数值
				这个值表示 256K 个访问的总延迟周期之和
0x2E0				
Cmdq0_bw_w	63:32	只读	0x0	命令队列 0 写带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
Cmdq0_bw_r	31:0	只读	0x0	命令队列0读带宽性能计数值
-				这个值表示 64K 个时钟周期里总线数据有效的周期数
0x2E8				
Cmdq0_latency_w	63:32	只读	0x0	命令队列 0 写延迟性能计数值
1 = 3=				这个值表示 64K 个访问的总延迟周期之和
Cmdq0_latency_r	31:0	只读	0x0	命令队列0读延迟性能计数值
emaqo_money_r	21.0	7,0		这个值表示 64K 个访问的总延迟周期之和
0x2f0				
Cmdq1_bw_w	63:32	只读	0x0	在版本 0x1 中:
1 -——				命令队列1写带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
				在版本 0x2/0x3 中:
				保留
Cmdq1_bw_r	31:0	只读	0x0	在版本 0x1 中:
Ciliuq1_bw_f	31:0	八以	UXU	江

				命令队列1读带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
				在版本 0x2/0x3 中:
				保留
0x2f8				
Cmdq1_latency_w	63:32	只读	0x0	在版本 0x1 中:
				命令队列1写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
				在版本 0x2/0x3 中:
				保留
Cmdq1_latency_r	31:0	只读	0x0	在版本 0x1 中:
				命令队列1读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
				在版本 0x2/0x3 中:
				保留
0x300	45.51	E V÷		till boards
Cmdq2_bw_w	63:32	只读	0x0	在版本 0x1 中:
				命令队列2写带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
				在版本 0x2/0x3 中:
		H 14		保留
Cmdq2_bw_r	31:0	只读	0x0	在版本 0x1 中:
				命令队列2读带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
				在版本 0x2/0x3 中: 保留
0x308				
Cmdq2_latency_w	63:32	只读	0x0	在版本 0x1 中:
emuqz_latency_w	03.32	八庆	UAU	命令队列 2 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
				在版本 0x2/0x3 中:
				保留
Cmdq2_latency_r	31:0	只读	0x0	在版本 0x1 中:
				命令队列 2 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
				在版本 0x2/0x3 中:
				保留
0x310				
Cmdq3_bw_w	63:32	只读	0x0	在版本 0x1 中:
				命令队列 3 写带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
				在版本 0x2/0x3 中:
				保留
		<u> </u>		

				命令队列3读带宽性能计数值
				这个值表示 64K 个时钟周期里总线数据有效的周期数
				在版本 0x2/0x3 中:
				保留
0x318				
Cmdq3_latency_w	63:32	只读	0x0	在版本 0x1 中:
				命令队列 3 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
				在版本 0x2/0x3 中:
				保留
Cmdq3_latency_r	31:0	只读	0x0	在版本 0x1 中:
				命令队列3读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
				在版本 0x2/0x3 中:
				保留
0x320				
tRESYNC_length	56:63	读写	0x8	在版本 0x1/0x2 中:
				保留
				在版本 0x3 中:
				Resync 命令请求保持的时间。当 cs_resync 不为 4' b0 时,
				该值不得小于 0
tRESYNC_shift	55:48	读写	0x8	在版本 0x1/0x2 中:
				保留
				在版本 0x3 中:
				该参数与 tRESYNC_max/tRESYNC_max 配合使用,表示
				两个 resync 命令之间的时间间隔。当 cs_resync 不为 4'
				b0 时,该值不得小于 0
tRESYNC_max	47:40	读写	0x30	在版本 0x1/0x2 中:
				保留
				在版本 0x3 中:
				该参数移位 tRESYNC_shift 后,表示两个 resync 命令之
				间的最大间隔。当 cs_resync 不为 4'b0 时,该值不得小
DEGRACE :	20.22	\±. 5→	0.10	于 0
tRESYNC_min	39:32	读写	0x10	在版本 0x1/0x2 中:
				保留
				在版本 0x3 中:
				该参数移位 tRESYNC_shift 后,表示两个 resync 命令之
				间的最小间隔。当 cs_resync 不为 4'b0 时,该值不得小工。
Pro prodict	31:16	读写	0x1	于 0 在版本 0x1/0x2 中:
Pre_predict	31:10	以与	UXI	任版本 0x1/0x2 中: 保留
				採笛 在版本 0x3 中:
				Bit3-0: 使能对应片选信号的预 PRECHARGE 操作
]			Bit15-4: 该 BANK 在空闲此段时间后,可以发出

				PRECHARGE 的操作
tXS	15:8	读写	0x60	在版本 0x1/0x2 中:
				保留
				在版本 0x3 中:
				从自刷新模式恢复到第一条不需要锁定 DLL 的访问之间
				的最小时间间隔
tREF_low	3:0	读写	0x0	在版本 0x1 中:
titel _low	3.0		OAO	保留
				在版本 0x2/0x3 中:
				同一片选刷新操作之间的时间间隔的 Bit[3:0]
				在该版本中,单位为 16 个时钟周期
0x328				ESTATE TO THE PROPERTY.
tRESYNC_delay	7:0	读写	0x10	在版本 0x1/0x2 中:
tres inc_delay	7.0		OATO	保留
				在版本 0x3 中:
				命令总线空闲该时间后,才能发出 resync 命令请求。当
				cs_resync 不为 4'b0 时,该值不得小于 0
0x330				es_resync (1/7) 4 66 kg / MEET 183 1 6
Stat_en	56:56	读写	0x0	在版本 0x1 中:
Stat_on	20.50		o Ao	保留:
				在版本 0x2/0x3 中:
				在 retry 使能的情况下,使能对重发送(retry)次数的统
				计。
Rdbuffer_max	54:48	只读	0x0	在版本 0x1 中:
resourci_max	31.10		o Ao	保留;
				在版本 0x2/0x3 中:
				表示读数据 FIFO 中用到的 FIFO 项数最大值
Retry	40:40	读写	0x0	在版本 0x1 中:
Rouy	10.40		OAO	保留;
				在版本 0x2/0x3 中:
				使能读队列的重发送功能。
Wr_pkg_num	37:32	读写	0x10	在版本 0x1 中:
,,,_pkg_num	37.32	 	OATO	保留
				在版本 0x2/0x3 中:
				写队列连续发送写请求的个数
Rwq_rb	24:24	读写	0x0	在版本 0x1 中:
	21.27	~ 3		保留
				在版本 0x2/0x3 中:
				使能读写轮转的切换模式
Stb_en	16:16	读写	0x1	在版本 0x1 中:
510_0H	10.10	<u></u> ζ-3		保留
				在版本 0x2/0x3 中:
				流模式读预取使能
Addr_new	12:8	读写	0x0	在版本 0x1 中:
/ Mull_licw	12.0	庆一	UAU	上/以个 UAI 门;

				保留
				在版本 0x2/0x3 中:
				Bit4 表示新的译码方式使能,
				Bit[3:0]表示地址偏移量。
				译码方式具体为:
				{ cs、row[:x]、bank、row[x-1:0]、col},其中 x 由
				addr_new[3:0]决定。Addr_new[3:0]需要满足以下条件:
				Col_width + channel_width ≤
				$12 + addr_new[3:0] \le$
				Col_width + channel_width + row_width •
				其中,Col_width = 16 - col_diff_0;
				$Row_width = 16 - row_diff_0;$
				当 nc 为 0,时,Channel_width 为 3; nc 为 3 时,
				channel_width 为 2; nc 为 5 时,Channel_width 为 1。
tRDQidle	7:0	读写	0xA	在版本 0x1 中:
				保留
				在版本 0x2 中:
				Bit3-0:表示当读操作占用总线时,其请求空闲时间为(15-
				该值)个时间周期时,将切换到写操作
				Bit7:4: 保留
				在版本 0x3 中:
				表示当读操作占用总线时,其请求空闲时间为该值表示的
				时间周期时,将切换到写操作
0x338				
Rd_fifo_depth	37:34	读写	0x0	在版本 0x1 中:
				保留;
				在版本 0x2/0x3 中:
				Bit3:表示此时使能的读数据 FIFO 深度是 32;
				Bit2:表示此时使能的读数据 FIFO 深度是 16;
				Bit1:表示此时使能的读数据 FIFO 深度是 8;
				Bit0:表示此时使能的读数据 FIFO 深度是 4;
				 当 bit[3:0]有两个及其以上使能时,高位的优先级较高。
Retry ont	31:0	只读		当 bit[3:0]有两个及其以上使能时,高位的优先级较高。 在版本 0x1 中:
Retry_cnt	31:0	只读		在版本 0x1 中:
Retry_cnt	31:0	只读		在版本 0x1 中: 保留
Retry_cnt	31:0	只读		在版本 0x1 中: 保留 在版本 0x2/0x3 中:
·	31:0	只读		在版本 0x1 中: 保留
0x340			0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。
·	31:0	只读	0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。 在版本 0x1 中:
0x340			0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。 在版本 0x1 中: 保留
0x340			0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。 在版本 0x1 中: 保留 在版本 0x2/0x3 中:
0x340			0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。 在版本 0x1 中: 保留 在版本 0x2/0x3 中: 它与内存周期的积应稍小于内存的 refresh retention time。
0x340			0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。 在版本 0x1 中: 保留 在版本 0x2/0x3 中: 它与内存周期的积应稍小于内存的 refresh retention time。 通常内存的 refresh retention time 为 64ms 或 32ms。
0x340			0x30D400	在版本 0x1 中: 保留 在版本 0x2/0x3 中: 在 stat_en 使能的情况下,统计的重发送(retry)次数。 在版本 0x1 中: 保留 在版本 0x2/0x3 中: 它与内存周期的积应稍小于内存的 refresh retention time。

				In Sa
				保留
				在版本 0x2/0x3 中:
				该值加1后,表示刷新可提前/推后的个数。
tREF_IDLE	15:8	读写	0x0F	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				表示在命令队列空闲该段时间后,控制器发送 REF 命令
Ref_sch_en	1:0	读写	0x1	在版本 0x1 中:
				保留
				在版本 0x2 中:
				Bit0 使能刷新调度功能。需要注意的是,该功能在低功耗
				时需要关闭。
				Bit1 保留
				在版本 0x3 中:
				Bit0 使能刷新调度功能。
				Bit1 使能低功耗时刷新调度功能。当低功耗使能时
				(hw_pd0/1/2/3 有效),bit1 应该与 bit0 保持一致。
0x348				
0x350				
Lpbk_data_en	63:0	读写	0xffff_ffff_ffff_ffff	在版本 0x1 中:
Lpok_data_en	03.0			保留
				在版本 0x2/0x3 中:
				使能自循环测试模式下数据比较,设为0时不比较相应位
0x358	T			
Lpbk_ecc_mask_en	16:16	读写	0x1	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				使能自循环测试模式下 ECC 屏蔽比较,设为 0 时不比较
				对应位
Lpbk_ecc_en	15:8	读写	0xff	在版本 0x1 中:
1 – –				保留
				在版本 0x2/0x3 中:
				使能自循环测试模式下 ECC 比较,设为 0 时不比较对应
		\		位
Lpbk_data_mask_en	7:0	读写	0xff	在版本 0x1 中:
				保留
1				
				在版本 0x2/0x3 中:
				在版本 0x2/0x3 中: 使能自循环测试模式下数据屏蔽比较,设为 0 时不比较对
0x360				使能自循环测试模式下数据屏蔽比较,设为0时不比较对
0x360 Ecc_int_cnt_fatal	47:40	读写	0x00	使能自循环测试模式下数据屏蔽比较,设为0时不比较对
	47:40	读写	0x00	使能自循环测试模式下数据屏蔽比较,设为 0 时不比较对应位 在版本 0x1 中:
	47:40	读写	0x00	使能自循环测试模式下数据屏蔽比较,设为0时不比较对应位

				ECC 两位出错引起的中断次数统计
Ecc_int_cnt_error	39:32	读写	0x00	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				ECC 出错引起的中断次数统计
Ecc_cnt_cs_3	31:24	读写	0x00	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				CS3 的 Ecc 出错次数
Ecc_cnt_cs_2	23:16	读写	0x00	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				CS2 的 Ecc 出错次数
Ecc_cnt_cs_1	15:8	读写	0x00	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				CS1 的 Ecc 出错次数
Ecc_cnt_cs_0	7:0	读写	0x00	在版本 0x1 中:
				保留
				在版本 0x2/0x3 中:
				CS0 的 Ecc 出错次数
0x368				
0x370				
Prior_age3	15:0	读写	0x55	在版本 0x1/0x2 中:
				保留
				在 版本 0x3 中:
				优先级为 3 的命令, (0xff-该值)为命令在队列中等待的时
				间。该优先级的等待时间最短
Prior_age2	15:0	读写	0x44	在版本 0x1/0x2 中:
				保留
				在 版本 0x3 中:
				优先级为 2 的命令, (0xff-该值)为命令在队列中等待的时
				间。
Prior_age1	15:0	读写	0x33	在版本 0x1/0x2 中:
				保留
				在 版本 0x3 中:
				优先级为 1 的命令, (0xff-该值)为命令在队列中等待的时
				间。
Prior_age0	15:0	读写	0x22	在版本 0x1/0x2 中:
				保留
				在 版本 0x3 中:
				优先级为 0 的命令, (0xff-该值)为命令在队列中等待的时
				间。该优先级的等待时间最长

0x378							
Row_hit_place	0:0	读写	0x0	在版本 0x1/0x2 中:			
				保留			
				在 版本 0x3 中:			
				命令队列中出现有前端行命中,后端行冲突的情况,该值			
				为1新命令插在行命中前面,反之则插在新命令后面。			
0x380	0x380						
Zq_cnt_1	63:32	只读	0x0	在版本 0x1/0x2 中:			
				保留			
				在 版本 0x3 中:			
				表示 cs1 进行 ZQ 校准的次数。			
Zq_cnt_0	31:0	只读	0x0	在版本 0x1/0x2 中:			
				保留			
				在 版本 0x3 中:			
				表示 cs0 进行 ZQ 校准的次数。			
0x388							
Zq_cnt_3	63:32	只读	0x0	在版本 0x1/0x2 中:			
				保留			
				在 版本 0x3 中:			
				表示 cs3 进行 ZQ 校准的次数。			
Zq_cnt_2	31:0	只读	0x0	在版本 0x1/0x2 中:			
				保留			
				在 版本 0x3 中:			
				表示 cs2 进行 ZQ 校准的次数。			

2.软件编程指南

2.1. 初始化操作

初始化操作由软件向寄存器 Init_start (0x018) 写入 1 时开始,在设置 Init_start 信号之前,必须将其它所有寄存器设置为正确的值。

软硬件协同的 DRAM 初始化过程如下:

- (1) 软件向所有的寄存器写入正确的配置值,但是 Init_start (0x018) 在这一过程中必须保持为 0;
 - (2) 软件将 Init_start (0x018) 设置为 1, 这将导致硬件初始化的开始;
- (3) PHY 内部开始初始化操作,DLL 将尝试进行锁定操作。如果锁定成功,则可以从 Dll_init_done (0x000) 读出对应状态,并可以从 Dll_value_ck (0x000) 读写当前锁定延迟线个数; 如果锁定不成功,则初始化不会继续进行(此时可以通过设置 Dll_bypass (0x018) 使得初始化继续执行);
- (4) DLL 锁定(或者 bypass 设置)之后,控制器将根据对应 DRAM 的初始化要求向 DRAM 发出相应的初始化序列,例如对应的 MRS 命令, ZQCL 命令等等;
 - (5) 软件可以通过采样 Dram_init (0x160) 寄存器来判断内存初始化操作是否完成。

2.2. 复位引脚的控制

为了在 STR 等状态下更加简单地控制复位引脚,可以通过 reset ctrl 寄存器进行特别的复位

引脚(DDR_RESETn)控制,主要的控制模式有两种:

- (1) 一般模式, reset_ctrl[1:0] == 2'b00。这种模式下, 复位信号引脚的行为与一般的控制模式相兼容。主板上直接将 DDR RESETn 与内存槽上的对应引脚相连。引脚的行为是:
 - 未上电时:引脚状态为低;
 - 上电时: 引脚状态为低;
 - 控制器开始初始化时,引脚状态为高;
 - 正常工作时,引脚状态为高。

时序如下图所示:

- (2) 反向模式, reset_ctrl[1:0] == 2'b10。这种模式下,复位信号引脚在进行内存实际控制的时候,有效电平与一般的控制模式相反。所以主板上需要将 DDR_RESETn 通过反向器与内存槽上的对应引脚相连。引脚的行为是:
 - 未上电时:引脚状态为低;
 - 上电时: 引脚状态为低;
 - 控制器开始配置时: 引脚状态为高;
 - 控制器开始初始化时:引脚状态为低;
 - 正常工作时: 引脚状态为低。

时序如下图所示:

- (3) 复位禁止模式,pm_reset_ctrl[1:0] == 2'b01。这种模式下,复位信号引脚在整个内存工作期间,保持低电平。所以主板上需要将 DDR_RESETn 通过反向器与内存槽上的对应引脚相连。引脚的行为是:
 - 始终为低;

时序如下图所示:

由后两种复位模式相配合,就可以直接在使用内存控制器的复位信号的情况下实现 STR 控制。当整个系统从关闭状态下启动时,使用(2)中的方法来使用内存条正常复位并开始工作。当系统从 STR 中恢复的时候,使用(3)中的方法来重新配置内存条,使得在不破坏内存条原有状态的条件上使其重新开始正常工作。

2.3. Leveling

Leveling 操作是在 DDR3 中,用于智能配置内存控制器读写操作中各种信号间相位关系的操作。通常它包括了 Write Leveling、Read Leveling 和 Gate Leveling。在本控制器中,只实现了 Write Leveling 与 Gate Leveling,Read Leveling 没有实现,软件需要通过判断读写的正确性来实现 Read Leveling 所完成的功能。除了在 Leveling 过程中操作的 DQS 相位、GATE 相位之外,还可以根据这些最后确认的相位来计算出写 DQ 相位、读 DQ 相位的配置方法。

2.3.1 Write Leveling

Write Leveling 用于配置写 DOS 与时钟之间的相位关系,软件编程需要参照如下步骤。

- (1) 完成控制器初始化,参见上一小节内容;
- (2) 将 hardware_pd3/2/1/0(0x1f8) 设置为 4'b0, cs_resync、cs_zq(0x168) 设置为 4'b0, ref_sch_en(0x340)设置为 1'b0;
 - (3) 将 Dll_wrdqs_x (x = 0...8) 设置为 0;
 - (4) 设置 Lvl_mode (0x180) 为 2'b01;
 - (5) 采样 Lvl_ready (0x180) 寄存器,如果为 1,表示可以开始 Write Leveling 请求;
 - (6) 设置 Lvl_req(0x180) 为 1;
 - (7) 采样 Lvl_done (0x180) 寄存器,如果为 1,表示一次 Write Leveling 请求完成;
- (8) 采样 Lvl_resp_x (0x180、0x188) 寄存器,如果为 0,则将对应的 Dll_wrdqs_x[6:0]增加 1,并重复执行 5-7;如果为 1,则表示 Write Leveling 操作已经成功;
 - (9) 此时 Dll_wrdqs_x 的值就应该是正确的设置值。

至此 Write Leveling 操作结束。如果这个过程中,第一次采样就发现 Lvl_resp_x 为 1,则这个结果是有问题的,应该检查其它的寄存器是否有错误的设置,这些寄存器可能包括 Wrdqs_lt_half、Dqs_start_edge、Dqs_stop_edge、Dqs_oe_begin、Dqs_oe_end。

- (10) 接着根据 Dll_wrdqs_x 的值是否小于 0x40 来设置 Wrdqs_lt_half_x;
- (11) 根据 Dll_wrdqs_x 的值是否小于 0x20 来设置 Dll_wrdata_x。如果 Dll_wrdqs_x > 0x20, Dll wrdata x = Dll wrdqs x 0x20, 否则 Dll wrdata x = Dll wrdqs x + 0x60;
 - (12) 根据 Dll_wrdata_x 的值是否小于 0x40 来设置 Wrdata_lt_half_x;
 - (13) 判断是否存在以下情况:不同的 Dll_wrdata_x 值在 0x40 附近,且有跨越 0x40 边界的情

况出现(指有的 Dll_wrdata_x 略小于 0x40, 有的 Dll_wrdata_x 略大于 0x40)。如果出现这种情况,设置对应 Wrdata_lt_half_x == 0数据组的 Write_clk_delay_x 为 1。再将 tPHY_WRDATA 与 tRDDATA 的值减 1;

- (14) 将 Lvl_mode (0x180) 设置为 2'b00, 退出 Write Leveling 模式;
- (15) 在 write leveling 做完后,将 cs_zq(0x168)设置为与 cs_enable(0x168)一致,并且重新进行 初始化操作:先将 init_start(0x018)置为 1'b0,再置为 1'b1,接着等待 dram_init(0x160)即完成了重新初始化的操作。

2.3.2 Gate Leveling

Gate Leveling 用于配置控制器内使能采样读 DQS 窗口的时机,软件编程参照如下步骤。

- (1) 完成控制器初始化,参见上一小节内容;
- (2) 完成 Write Leveling,参见上一小节内容;
- (3) 将 cs_zq(0x168)设置为 4'b0;
- (4) 将 Dll_gate_x (x = 0...8) 设置为 0;
- (5) 设置 Lvl_mode (0x180) 为 2'b10;
- (6) 采样 Lvl_ready (0x180) 寄存器,如果为 1,表示可以开始 Gate Leveling 请求;
- (7) 设置 Lvl_req (0x180) 为 1;
- (8) 采样 Lvl_done (0x180) 寄存器,如果为 1,表示一次 Gate Leveling 请求完成;
- (9) 采样 Lvl_resp_x[0] (0x180、0x188) 寄存器。如果第一次采样发现 Lvl_resp_x[0]为 1,则 将对应的 Dll_gate_x[6:0]增加 1,并重复执行 6-8,直至采样结果为 0,否则进行下一步;
- (10)如果采样结果为 0,则将对应的 Dll_gate_x[6:0]增加 1,并重复执行 6-9;如果为 1,则表示 Gate Leveling 操作已经成功;

至此 Gate Leveling 操作结束,此时 Dll_gate_x[6:0]与 Dll_wrdata_x[6:0]的和实际上就是读 DQS 相对于 PHY 内部时钟的相位关系。下面根据 Leveling 的结果对各个参数进行调整。

- (11)如果 Dll_gate_x[6:0] 与 Dll_wrdata_x[6:0] 的 和 小 于 0x20 或 者 大 于 0x60 , 那 么 Dll_rddqs_lt_halt 设置为 1。因为 rddqs 的相位关系实际上等于在输入的读 DQS 基础上再 延迟 1/4。
- (12)此时如果 Dll_gate_x 的值大于 0x40,则将 Dll_gate_x 的值减去 0x40;否则将其设为 0 即可。
- (13)调整完毕后,再分别进行两次 Lvl_req 操作,观察 Lvl_resp_x[7:5]与 Lvl_resp_x[4:2]的值变化,如果各增加为 Burst_length/2,则继续进行第 13 步操作;如果不为 4,可能需要对 Rd_oe_begin_x 进行加一或减一操作,如果大于 Burst_length/2,很可能需要对 Dll_gate_x 的值进行一些微调
- (14)将 Lvl_mode (0x180) 设置为 2'b00, 退出 Gate Leveling 模式;
- (15)完成了以上的 write leveling 和 gate leveling 后,将 hardware_pd3/2/1/0、cs_resync、cs_zq、ref_sch_en(0x340)这7组配置参数重新配置,以保证内存控制器的正常配置操作。

2.4. 单独发起 MRS 命令

内存控制器向内存发出的 MRS 命令次序分别为:

MR2_CS0、MR2_CS1、MR2_CS2、MR2_CS3、

MR3_CS0、MR3_CS1、MR3_CS2、MR3_CS3、

MR1_CS0、MR1_CS1、MR1_CS2、MR1_CS3、

MR0_CS0、MR1_CS1、MR1_CS2、MR1_CS3。

其中,对应 CS 的 MRS 命令是否有效,是由 Cs_mrs 决定,只有 Cs_mrs 上对应每个片选的位

有效,才会真正向 DRAM 发出这个 MRS 命令。对应的每个 MR 的值由寄存器 Mr*_cs*决定。这些值同时也用于初始化内存时的 MRS 命令。

具体操作如下:

- (1) 将寄存器 Cs mrs (0x168)、Mr* cs* (0x190 0x1B8) 设置为正确的值;
- (2) 设置 Command mode (0x190) 为 1, 使控制器进入命令发送模式;
- (3) 采样 Status_cmd (0x190),如果为 1,则表示控制器已进入命令发送模式,可以进行下一步操作,如果为 0,则需要继续等待;
- (4) 写 Mrs_req (0x198) 为 1, 向 DRAM 发送 MRS 命令;
- (5) 采样 Mrs_done (0x198), 如果为 1,则表示 MRS 命令已经发送完毕,可以退出,如果为 0,则需要继续等待;
- (6) 设置 Command mode (0x190) 为 0, 使控制器退出命令发送模式。

2.5. 任意操作控制总线

内存控制器可以通过命令发送模式向 DRAM 发出任意的命令组合,软件可以设置 Cmd_cs、Cmd_cmd、Cmd_ba、Cmd_a (0x168),在命令发送模式下向 DRAM 发出。

具体操作如下:

- (1) 将寄存器 Cmd cs、Cmd cmd、Cmd ba、Cmd a (0x190) 设置为正确的值;
- (2) 设置 Command_mode (0x190) 为 1, 使控制器进入命令发送模式;
- (3) 采样 Status_cmd (0x190),如果为 1,则表示控制器已进入命令发送模式,可以进行下一步操作,如果为 0,则需要继续等待;
- (4) 写 Cmd_req (0x190) 为 1, 向 DRAM 发送命令;
- (5) 设置 Command_mode (0x190) 为 0, 使控制器退出命令发送模式。

2.6. 自循环测试模式控制

自循环测试模式可以分别在测试模式下或者正常功能模式下使用,为此,本内存控制器分别 实现了两套独立的控制接口,一套用于在测试模式下由测试端口直接控制,另一套用于在正常功 能模式下由寄存器配置模块进行配置使能测试。

这两套接口的复用使用端口 test_phy 进行控制,当 test_phy 有效时,使用控制器的 test_端口进行控制,此时的自测试完全由硬件控制;当 test_phy 无效时,使用软件编程的 pm_*的参数进行控制。使用测试端口的具体信号含义可以参考寄存器参数中的同名部分。

这两套接口从控制的参数来说基本一致,仅仅是接入点不同,在此介绍软件编程时的控制方法。具体操作如下:

- (1) 将内存控制器所有的参数全部正确设置;
- (2) 将寄存器 Lpbk en (0x270) 设为 1;
- (3) 将寄存器 Init_start (0x018) 设为 1;
- (4) 采样寄存器 Dll_init_done (0x000),如果这个值为 1,表示 DLL 已经锁定,可以进行下一步操作;如果这个值为 0,则需要继续等待;(当使用测试端口进行控制的时候,因为看不到这个寄存器的输出,所以不需要采样这个寄存器,而只需要在此处等待一定的时间,以确保 DLL 锁定完成,再进行下一步操作);
- (5) 将寄存器 Lpbk_start (0x270) 设为 1; 此时自循环测试正式开始。
- 到此为止自循环测试已经开始,软件需要经常检测是否有错误发生,具体操作如下:
- (6) 采样寄存器 Lpbk_error (0x270), 如果这个值为 1, 表示有错误发生, 此时可以通过 Lpbk_* 等观测用寄存器 (0x270、0x278、0x280、0x288) 来观测第一个出错时的错误数据和正确

数据;如果这个值为0,表示还没有出现过数据错误。

2.7. ECC 功能使用控制

ECC 功能只有在 64 位模式下可以使用。

Ecc enable 包括以下 4 个控制位:

Ecc_enable[0]控制是否使能 ECC 功能,只有设置了这个有效位,才会使能 ECC 功能。

Ecc_enable[1]控制是否通过处理器内部的读响应通路进行报错,以使得出现 ECC 两位错的读访问能立即导致处理器核的异常发生。

Ecc_enable[2]控制是否通过处理器内部的写响应通路进行报错,以使得出现 ECC 两位错的写访问(读后写)能立即导致处理器核的异常发生。

Ecc_enable[3]控制寄存器内记录出错信息的触发时机。这些出错信息在没有软件进行处理的情况下不会连续触发,只会记录第一次出错时的信息。这些信息包括 Ecc_code, Ecc_addr, Ecc_data。当 Ecc_enable[3]为 0 的情况下,只要出现了 ECC 错误(包括 1 位错与 2 位错),这个记录就会被触发,当 Ecc_enable[3]为 1 的情况下,只有出现了 ECC 两位错,这个记录才会被触发。而这个"第一次"指的是中断向量寄存器的对应位被置位。也就是说,记录的是导致中断发生的那一次访问。

除此之外, ECC 出错还可以通过中断方式通知处理器核。这个中断通过 Int_enable 进行控制。中断包括两个向量, Int_vector[0]表示出现 ECC 错误(包括 1 位错与 2 位错), Int_vectr[1]表示出现 ECC 两位错。Int_vector 的清除通过向对应位写 1 实现。