Logic I: Fast Lecture 02

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic.*

1. Formal Proof: ∧Elim and ∧Intro

Reading: §5.1, §6.1

Conjunction Introduction $(\land Intro)$

$$\begin{vmatrix}
P_1 \\
\downarrow \\
P_n \\
\vdots \\
P_1 \land \dots \land P_n
\end{vmatrix}$$

Conjunction Elimination $(\land Elim)$

$$\begin{vmatrix} P_1 \wedge \dots \wedge P_i \wedge \dots \wedge P_n \\ \vdots \\ P_i \end{vmatrix}$$

2. ∧Intro and ∨Intro: Compare and Contrast

Reading: §6.1

Disjunction Introduction (∨ Intro)

$$\begin{array}{c|c}
P_i \\
\vdots \\
P_1 \lor \dots \lor P_i \lor \dots \lor P_r
\end{array}$$

Let us define a new connective with this truth table:

P1	P2	P1 ∨ P2	P1 ↔ P2
Т	Т	Т	F
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

The following rule is unacceptable. Why?

3. How to Write Proofs

4. Rules of Proof for Identity

Reading: §2.2

Identity Introduction (= Intro)

$$\triangleright \mid \mathsf{n} = \mathsf{n}$$

Identity Elimination (= Elim)

$$\begin{array}{c|c} P(n) \\ \vdots \\ n=m \\ \vdots \\ P(m) \end{array}$$

-LIIII. 1,2

5. DeMorgan: $\neg (A \land B) \Rightarrow \neg A \lor \neg B$

Reading: §3.6

'≒⊨' means 'is logically equivalent to', so for now 'has the same truth table as'.

 $A \rightrightarrows \vDash \neg \neg A$

$$\neg (A \land B) \Rightarrow (\neg A \lor \neg B)$$

$$\neg (A \lor B) \Rightarrow \vdash (\neg A \land \neg B)$$

$$A \longrightarrow B \Rightarrow \neg A \lor B$$

$$\neg(A \longrightarrow B) \dashv \vDash \neg(\neg A \lor B) \dashv \vDash A \land \neg B$$

6. →Intro, →Elim

Reading: §8.1, §8.2

Conditional Introduction $(\rightarrow Intro)$

Conditional Elimination $(\rightarrow \text{Elim})$

$$\begin{vmatrix} P \rightarrow Q \\ \vdots \\ P \\ \vdots \\ Q \end{vmatrix}$$

7. \rightarrow Intro: An Example

8. ∨Intro and ∨Elim

Disjunction Introduction (∨ Intro)

$$\begin{vmatrix}
P_i \\
\vdots \\
P_1 \lor \dots \lor P_i \lor \dots \lor P_r
\end{vmatrix}$$

Disjunction Elimination (V Elim)

9. ∨Elim: An Example

To prove a conclusion from a disjunction, prove it from each disjunct.

10. ¬, ⊥

Reading: §6.3

 \perp Introduction (\perp Intro)

 \perp Elimination (\perp Elim)

11. ¬Elim

Reading: §6.3

Negation Elimination (¬ Elim)

12. Scope: A Mistaken Application of ¬Elim

What is wrong with this proof?

13. ¬Intro

Reading: §5.3, §6.3

Negation Introduction $(\neg Intro)$

