Prezime i ime (tiskanim slovima):	18. IIPNJA 2015. JMBAG:
Izjavljujem da tijekom izrade ove zadaće neću od drugoga p sredstvima. Ove su radnje teška povreda Kodeksa ponašanj	orimiti niti drugome pružiti pomoć, te da se neću koristiti nedopuštenim a te mogu uzrokovati i trajno isključenje s Fakulteta. Izjavljujem da mi
Dozvoljeno je koristiti isključivo službene šalabahtere (popis pojedine cjeline programa. Rješenja teorijskih zadatka treba na	naredaba FRISC-a i ARM-a). Programe treba pisati uredno i komentirati pisati na ovaj papir. <u>Završni ispit traje 135 minuta.</u>
	ve 1101-1010. Napišite stanja zastavica poslije oduzimanja. , Predznak= Mora se vidjeti način izračunavanja zastavica.
	redstavlja broj, a u 6-bitnom formatu 2'k predstavlja avlja broj, a u 4-bitnom formatu 2'k predstavlja
	ajima ima 8 priključaka za podatke, priključak čiji čiji smjer je Ova dva priključka nazivaju
2.b (2 boda): Sklop FRISC-DMA treba kopirati podata od adrese 2000 do adrese 20FC. Kopiranje treba oba	k sa memorijske lokacije 1000 u sve lokacije memorijskog bloka viti pomoću krađe ciklusa, a kraj prijenosa javiti prekidom. DMA nicijalizaciji treba poslati DMA-sklopu i na koje adrese:
	odatka na adresu
BREQ BACK "BUS"	ama za "BUS" trebate naznačiti tko upravlja sabirnicom):
3.a (2 boda): Koliko traje izvođenje ovog odsječka na procesoru ARM7:ciklusa. Kraj svake naredbe napišite koliko puta se izvodi i koliko traje pojedino izvođenje (npr. 3 x 1c + 1 x 2c znači da naredba tri puta traje 1 ciklus i jednom traje 2 ciklusa).	MOV R0,#3 MOV R1,#0 LOOP LDR R2,[R10],#4 ADD R1,R1,R2 SUBS R0,R0,#1 BNE LOOP STR R1,[R10]
	MIA R13!, {R1,R2,R3} u R13 bit će vrijednost stavak za rad sa stogom, naredba će glasiti:
	a brzoj memoriji. Pristup se sastoji od i takt(ova) CLOCK-a. Cijeli pristup efektivno traje samo
takt(ova) jer	
	(objasnite u 1 rečenici, što ARM radi s fazama).
	uspoređuju se dvije vrijednosti: i
Ako je skok prema "nat Predviđanjem skoka, pokušava se umanjiti utjecaj	rag", tada se predviđa da će se hazarda.
- reamangem skoka, pokasava se umanjih utjećaj	

3.e (1,5 bod): Prilikom prihvata brzog prekida FIQ, ARM <u>automatski</u> izvoc	di sijedece kora

4. FRISC (10 bodova) Na FRISC su spojena dva sklopa GPIO i jedan CT. Adrese vanjskih jedinica odaberite sami.

Napisati program za FRISC koji pomoću sklopa GPIO_1 prima podatke i sprema ih kao 8-bitne podatke u memoriju od adrese 1000₁₆. Spremnost sklopa GPIO_1 treba ispitivati programski (tj. uvjetno).

Kad se sa GPIO_1 primi 100₁₆ podataka, treba prestati s primanjem pa pričekati 5 sekundi. Kašnjenje treba ostvariti pomoću sklopa CT koji postavlja zahtjev za prekid NMI. Na CT-ov priključak CNT spojen je signal frekvencije 1 kHZ.

Nakon što protekne 5 sekundi, treba bezuvjetno poslati 100_{16} 8-bitnih podataka sa adrese 1000_{16} na sklop GPIO_2, ali tako da se između svaka dva slanja čeka 0,1 sekundu (i ovo kašnjenje treba ostvariti pomoću CT-a i prekida NMI). Nakon toga treba zaustaviti procesor.

5. ARM (7 bodova) Za procesor ARM napišite potprogram TOUPPER koji prima jedan ASCII-znak preko stoga. Znak treba ispitati i ako se radi o malom slovu (znakovi 'a' do 'z' imaju ASCII-kodove od 97₁₀ do 122₁₀), onda ga treba pretvoriti u veliko slovo (znakovi 'A' do 'Z' imaju ASCII-kodove od 65₁₀ do 90₁₀). Ako se radi o ostalim ASCII-znakovima, oni ostaju nepromijenjeni. Povratni ASCII-znak vraća se pozivatelju preko registra RO.

Napišite potprogram POTP koji treba sva mala slova u stringu pretvoriti u velika, i to korištenjem potprograma TOUPPER. POTP prima adresu stringa preko lokacije iza naredbe poziva potprograma. String je niz bajtova u kojima su ASCII-znakovi terminirani NUL-znakom (ASCII kod 0).

Napišite glavni program koji obrađuje tekst smješten u memoriji tako da u cijelom tekstu pomoću potprograma POTP pretvara sva mala slova u velika. Tekst je u memoriji smješten kao niz stringova i to na sljedeći način. Stringovi se nalaze na memorijskim adresama koje nisu fiksno zadane, ali sve adrese stringova zapisane su redom od adrese 1000₁₆ na dalje. Broj stringova također nije fiksno zadan, ali je niz njihovih adresa terminiran podatkom FFFFFFFF.

6. ARM (10 bodova) ARM sa GPIO-om i RTC-om (adrese im odaberite sami) <u>beskonačno</u> ispituje temperaturu i na temelju njene razlike od <u>željene</u> temperature upravlja uređajem za grijanje/hlađenje. Korisnik može u bilo kojem trenutku promijeniti željenu temperaturu.

Na vrata A sklopa GPIO spojen je temperaturni sklop kao na predavanjima:

- bitovi 0-5, ulazni, iznos temperature
- bit 6, ulazni, potvrda od temperaturnog sklopa da je postavljena valjana temperatura
- bit 7, izlazni, dojava temperaturnom sklopu da je temperatura pročitana

Na vrata B sklopa GPIO spojene su dvije tipke $\oplus i \ominus$. Također je spojen uređaj za grijanje/hlađenje:

- bit 0, ulazni, spojena je tipka ⊕ za povećavanje <u>željene</u> temperature za 1 stupanj
- bit 1, ulazni, spojena je tipka ⊖ za smanjivanje željene temperature za 1 stupanj
- bitovi 2-3, izlazni, spojen je uređaj za grijanje/hlađenje (00=uređaj je isključen, 01=uređaj grije, 11=uređaj hladi)

Svake sekunde treba očitati temperaturu i na temelju toga upravljati uređajem za grijanje/hlađenje. Kašnjenje treba ostvariti sklopom RTC na koji je spojen 1 kHZ, a RTC generira IRQ.

Početna <u>željena</u> temperatura je 20 stupnjeva. Tipke ⊕ i ⊖ (na bitovima 0 i 1 na portu B) postavljaju stanje 1 kad su pritisnute, a 0 kad nisu pritisnute. Pomoću njih korisnik može uvećati ili umanjiti <u>željenu</u> temperaturu za 1 stupanj, ali ne izvan granica od 10 do 30 stupnjeva (takvi pokušaji se ignoriraju). Da bi se utvrdilo da je tipka pritisnuta, prvo treba čekati da odgovarajući priključak na portu B postane 1, a zatim da se tipka otpusti, tj. da postane 0. Zbog jednostavnosti, pretpostavite da korisnik nikad ne pritisne obje tipke istodobno. Također pretpostavite da se tipke ignoriraju tijekom obrade prekida.

RJEŠENJA

1.a (1 bod): 4-bitna ALU oduzima binarne brojeve 1101-1010. Napišite stanja zastavica poslije oduzimanja. Prijenos=1, Posudba=0, Preljev=0, Ništica=0, Predznak=0. **Mora se vidjeti način izračunavanja zastavica.** 1. b. (1 bod): Podatak 101011₂ u 6-bitnom NBC-u predstavlja broj ____43___, a u 6-bitnom formatu 2'k predstavlja broj <u>-21</u>. Podatak 0101₂ u 4-bitnom NBC-u predstavlja broj <u>5</u>, a u 4-bitnom formatu 2'k predstavlja <u>5</u>. 2.a (1 bod): FRISC-GPIO za spajanje s vanjskim uređajima ima 8 priključaka za podatke, priključak ____ smjer je <u>izlazni</u> i priključak <u>STROBE</u> čiji smjer je <u>ulazni</u>. Ova dva priključka nazivaju se priključcima za rukovanje (ili sinkronizaciju ili handshaking) 2.b (2 boda): Sklop FRISC-DMA treba kopirati podatak sa memorijske lokacije 1000 u sve lokacije memorijskog bloka od adrese 2000 do adrese 20FC. Kopiranje treba obaviti pomoću krađe ciklusa, a kraj prijenosa javiti prekidom. DMA je na adresi FFFF0000. Napišite koje sve podatke pri inicijalizaciji treba poslati DMA-sklopu i na koje adrese: 1000 se šalje na adresu FFFF0000 podatak <u>2000</u> se šalje na adresu <u>FFFF0004</u> podatak 40 ili 3F (64 ili 63₁₀) se šalje na adresu FFFF0008 podatak <u>%B 0111</u> se šalje na adresu FFFF000C Nakon toga, DMA-prijenos treba pokrenuti slanjem podatka bilo kojeg na adresu FFFF0010

2.c (2 boda) Nacrtajte vremenski dijagram stanja na sabirničkim linijama prilikom DMA-prijenosa zaustavljanjem procesora, ako DMA prenosi 3 podatka (unutar dijagrama za "BUS" trebate naznačiti tko upravlja sabirnicom)::

BREQ se aktivira tijekom CPU-ciklusa

BACK se aktivira na kraju ili iza CPU-ciklusa

BREQ se aktivira na kraju DMA-ciklusa

BACK se aktivira na početku CPU-ciklusa

3.a (2 boda): Koliko traje izvođenje ovog odsječka na procesoru ARM7: 28 ciklusa. Kraj svake naredbe napišite koliko puta se izvodi i koliko traje pojedino izvođenje (npr. 3 x 1c + 1 x 2c znači da naredba tri puta traje 1 ciklus i jednom traje 2 ciklusa).

MOV R0,#3 $1 \times 1c + 2c$ MOV R1,#0 1c X LOOP LDR R2, [R10], #4 3 x 3c ADD R1, R1, R2 3 x 1c SUBS R0, R0, #1 3 x 1c BNE LOOP 3с STR R1, [R10]

3.b (0,5 boda): Početno je R13 = 100₁₀, a nakon STMIA R13!, {R1,R2,R3} u R13 bit će vrijednost 112 . Ako u naredbi **STMIA** umjesto "IA" želimo koristiti nastavak za rad sa stogom, naredba će glasiti: **STMEA** . .

3.c (1 bod): ARM na sabirnici AMBA-AHB pristupa brzoj memoriji. Pristup se sastoji od <u>adresne</u> podatkovne__ faze, od kojih svaka traje _1 takt(ova) CLOCK-a. Cijeli pristup efektivno traje samo __1_takt(ova) jer se adresna faza trenutnog pristupa preklapa s podatkovnom fazom prethodnog pristupa___ (objasnite u 1 rečenici, što ARM radi s fazama).

3.d (1 bod): Prilikom statičkog predviđanja skoka, uspoređuju se dvije vrijednosti: PC ili adresa naredbe skoka i adresa odredišta skoka . Ako je skok prema "natrag", tada se predviđa da će se <u>doći do grananja/skoka</u> . Predviđanjem skoka, pokušava se umanjiti utjecaj <u>upravljačkog ili kontrolnog</u> hazarda.

3.e (1,5 bod): Prilikom prihvata brzog prekida FIQ, ARM automatski izvodi sljedeće korake:

R14_fiq = adresa sljedeće naredbe + 4		
SPSR fig = CPSR		
CPSR [04.] = 10001 ili prelazak u FIQ način rada		
CPSR[5] = 0 ili prelazak u arm način rada/izvođenja		
CPSR[6] = 1 ili onemogući/zabrani brze prekide/FIQ		
CPSR[7] = 1 ili onemogući/zabrani obične prekide/IRQ		
PC = 1C		

4. FRISC (10 bodova) Na FRISC su spojena dva sklopa GPIO i jedan CT. Adrese vanjskih jedinica odaberite sami.

Napisati program za FRISC koji pomoću sklopa GPIO_1 prima podatke i sprema ih kao 8-bitne podatke u memoriju od adrese 1000₁₆. Spremnost sklopa GPIO_1 treba ispitivati programski (tj. uvjetno).

Kad se sa GPIO_1 primi 100₁₆ podataka, treba prestati s primanjem pa pričekati 5 sekundi. Kašnjenje treba ostvariti pomoću sklopa CT koji postavlja zahtjev za prekid NMI. Na CT-ov priključak CNT spojen je signal frekvencije 1 kHZ.

Nakon što protekne 5 sekundi, treba bezuvjetno poslati 100_{16} 8-bitnih podataka sa adrese 1000_{16} na sklop GPIO_2, ali tako da se između svaka dva slanja čeka 0,1 sekundu (i ovo kašnjenje treba ostvariti pomoću CT-a i prekida NMI). Nakon toga treba zaustaviti procesor.

```
PIO1 CR
              EQU
                      OFFFF0000
                                    ; adrese svih VJ
PIO1 DR
              EQU
                      OFFFF0004
PIO1 STAT
              EQU
                      OFFFF0008
PIO1_END
              EQU
                      OFFFF000C
PIO2 CR
              EQU
                      OFFFF1000
PIO2_DR
              EQU
                      OFFFF1004
CT CR
              EQU
                      OFFFF1000
CT_LR
              EQU
                      OFFFF1004
CT IACK
              EQU
                      OFFFF1008
CT IEND
              EQU
                      OFFFF100C
       ORG
              0
       MOVE 10000, SP
       JP
              GLAVNI
       ORG
              0C
                     ; potprogram za NMI
       PUSH RO
                     ; spremanje konteksta
       PUSH R1
       MOVE SR, RO
       PUSH RO
       STORE RO, (CT IACK); dojava prihvata prekida
       LOAD
              RO, (BROJAC)
                            ; provjera stanja slanja podataka:
              RO, 100
                             ; ako je brojač = 100, onda još nije bilo slanja i treba poslati prvi podatak
       CMP
       JR_NE U_SLANJU
                             ; ako je brojač != 100, onda je slanje u tijeku
; prvi prekid: sve je primljeno i 5 sekundi je prošlo
; preprogramiraj CT na 0,1 sekundu, treba poslati samo novu konstantu, a upravljačka riječ i dalje vrijedi
PRVO SLANJE
       MOVE %D 100, R0
       STORE RO, (CT LR)
       ; nastavi dalje s izvođenjem, tj. pošalji prvi podatak
U SLANJU
              ; inače se nalazimo unutar slanja
       LOAD R1, (ADRESA) ; dohvati adresu
                             ; dohvati podatak (bajt)
       LOADB RO, (R1)
       ADD
              R1, 1, R1
                             ; povećaj i spremi adresu
       STORE R1, (ADRESA)
       STORE RO, (PIO2 DR) ; dohvaćeni podatak bezuvjetno šalji na PIO 2
       LOAD RO, (BROJAC)
                            ; dohvati, smanji i spremi brojač poslanih podataka
       SUB
              RO, 1, RO
       STORE RO, (BROJAC)
       CMP
              RO, 0
                             ; provjeri je li sve poslano
       JR NE VAN
                             ; ako nije sve poslano, onda idi na normalan izlazak
```

```
SVE POSLANO ; ako je sve poslano, treba postaviti oznaku GOTOVO (za zaustavljanje)
      MOVE 1, RO
                                          nije lijepo, ali može i ovdje samo HALT
      STORE RO, (GOTOVO)
VAN
      STORE RO, (CT IEND) ; dojava kraja posluživanja
      POP
                           ; obnova konteksta i povratak
      MOVE RO, SR
      POP
             R1
      POP
             R0
      RETN
GOTOVO
             DW
                           ; oznaka za zaustavljanje procesora
ADRESA
             DW
                    1000 ; adresa za slanje na PIO 2
BROJAC
             DW
                    100
                           ; brojač za slanje na PIO 2
**********************
GLAVNI; početak glavnog programa
       MOVE %B 0001, R0
                           ; inicijalizacija ulaznog načina bez prekida za PIO 1
      STORE RO, (PIO1 CR)
      MOVE %B 0010, R0
                           ; inicijalizacija postavljanja bitova za PIO 2 (može i izlazni 0000)
      STORE RO, (PIO2 CR)
      ; petlja za primanje 100 podataka od PIO_1 i njihovo spremanje u memoriju na adresu 1000
       MOVE 1000, R1
                           ; adresa za spremanje
      MOVE 100, R2
                           ; brojač za petlju
CEKAJ LOAD RO, (PIO1_STAT)
                                  ; čekaj spremnost PIO_1
      CMP RO, 0
      JR EQ CEKAJ
                              ; briši spremnost PIO_1
      STORE RO, (PIO1_STAT)
      LOAD RO, (PIO1 DR)
                                  ; primi podatak od PIO 1
                                  ; dojavi kraj posluživanja
      STORE RO, (PIO1_END)
                           ; spremi podatak u memoriju (bajt)
      STORE RO, (R1)
       ADD R1, 1, R1
                           ; povećaj adresu
      SUB R2, 1, R2
                           ; smanji brojač petlje i ponavljaj petlju
      JR_NZ CEKAJ
SVE PRIMLJENO
                    ; svih 100 podataka je primljeno, inicijalizirati CT da proizvede kašnjenje od 5 sekundi
      MOVE %D 5000, R0
                           ; vremenska konstanta
      STORE RO, (CT LR)
      MOVE %B 111, R0
                           ; upravljačka riječ: CT radi i generira NMI
      STORE RO, (CT_CR)
LOOP LOAD RO, (GOTOVO) ; prazna petlja s ispitivanjem oznake za zaustavljanje procesora
      CMP
             R0, 0
      JR_EQ LOOP
      HALT
```

Napomena: Prekidni potprogram može se napisati kraće, ali uz preprogramiranje CT-a kod svakog prekida. Bilo bi dovoljno provjeriti kraj podataka i poslati podatak ako nije kraj, a zatim preprogramirati CT na 0,1 sek.

5. ARM (7 bodova) Za procesor ARM napišite potprogram TOUPPER koji prima jedan ASCII-znak preko stoga. Znak treba ispitati i ako se radi o malom slovu (znakovi 'a' do 'z' imaju ASCII-kodove od 97₁₀ do 122₁₀), onda ga treba pretvoriti u veliko slovo (znakovi 'A' do 'Z' imaju ASCII-kodove od 65₁₀ do 90₁₀). Ako se radi o ostalim ASCII-znakovima, oni ostaju nepromijenjeni. Povratni ASCII-znak vraća se pozivatelju preko registra R0.

Napišite potprogram POTP koji treba sva mala slova u stringu pretvoriti u velika, i to korištenjem potprograma TOUPPER. POTP prima adresu stringa preko lokacije iza naredbe poziva potprograma. String je niz bajtova u kojima su ASCII-znakovi terminirani NUL-znakom (ASCII kod 0).

Napišite glavni program koji obrađuje tekst smješten u memoriji tako da u cijelom tekstu pomoću potprograma POTP pretvara sva mala slova u velika. Tekst je u memoriji smješten kao niz stringova i to na sljedeći način. Stringovi se nalaze na memorijskim adresama koje nisu fiksno zadane, ali sve adrese stringova zapisane su redom od adrese 1000₁₆ na dalje. Broj stringova također nije fiksno zadan, ali je niz njihovih adresa terminiran podatkom FFFFFFFF.

```
GLAVNIMOVE SP, #10<12
                            ; inicijalizacija pokazivača stoga
       MOVE R2, #10<8
                            ; na 1000 je niz adresa od stringova
LOOP
      LDR
              R1, [R2], #4
                            ; učitavanje adrese jednog stringa s pomakom adrese
                            ; usporedba sa terminatorom FFFFFFF ...
       CMN
             R1, #1
       BEQ
              KRAJ
                            ; ... i izlazak iz petlje u slučaju pronalaska teminatora
       STR
              R1, PARAM
                            ; stavi adresu na mjesto za parametar
              POTP
                            ; obradi string pomoću potprograma
       BL
PARAM DW
              0
                            ; mjesto za slanje parametra
       В
                            ; ponovi za sljedeći string
             LOOP
KRAJ
      SWI 123456
  *******************
POTP
      STMFD SP!, {R0,R1}
                            ; spremi kontekst
                            ; pročitaj parametar u R1 i pomakni adresu povratka
       LDR
              R1, [LR], #4
       STMFD SP!,{LR}
                            ; LR se tek sada sprema jer je prethodno morao biti povećan za 4.
                            ; Alternativni načini spremanja i obnove konteksta su prikazani ispod rješenja.
       ; u R1 je adresa stringa, treba obraditi znak po znak
LOOP1 LDRB
             R0, [R1]
                            ; dohvaćanje pojedinih znakova iz stringa u registar RO
       CMP
              RO, #0
                            ; ispitivanje kraja stringa (usporedba s NUL-znakom, tj. sa nulom)
       BEQ
             VAN
                            ; ako je NUL-znak, onda izlazak izvan petlje
       STMFD SP!, {R0}
                            ; znak iz R0 treba staviti na stog kao parametar za TOUPPER
       BL
             TOUPPER
       ADD
              SP, SP, #4
                            ; ukloniti parametar sa stoga
       STRB
             RO, [R1],#1
                            ; spremi obrađeni znak natrag u string i pomakni adresu na sljedeći znak
       В
             LOOP1
                            ; natrag na obradu sljedećeg znaka u stringu
       LDMFD SP!, {LR}
VAN
                            ; obnova konteksta s povratkom - ne može jedna naredba LDM zbog redoslijeda
                            ; spremanja registara (niži indeks - niža adresa)
       LDMFD SP!,{R0,R1}
       MOV PC, LR
```

.********************** TOUPPER ; nema spremanja konteksta jer se mijenja samo RO preko kojega se ionako vraća rezultat RO, [SP] ; čitanje parametra (tj. ASCII-znaka) sa stoga LDR CMP RO, #%D 97 ; usporedba znaka sa slovom 'a' ; ako je znak "manji" od 'a', nema promjene (može i MOVLO PC,LR) BLO IZLAZ RO, #%D 122 ; usporedba znaka sa slovom 'z' CMP ; ako je znak "veći" od 'z', nema promjene (može i MOVHI PC,LR) BHI IZLAZ ; inače je znak između 'a' i 'z' i treba ga pretvoriti u veliko slovo RO, RO, #%D 32; pretvorba iz malih u velika slova, rezultat se vraća preko RO SUB IZLAZ MOV PC, LR ; povratak DRUGAČIJE RJEŠENJE spremanja konteksta za POTP: STMFD SP!, {R0,R1,LR} POTP LDR **R1**, [LR] VAN LDMFD SP!, {R0,R1, LR} ADD LR, LR, #4 MOV PC, LR ili još kraće:

LDMFD SP!, {R0,R1, LR}

ADD PC, LR, #4

VAN

6. ARM (10 bodova) ARM sa GPIO-om i RTC-om (adrese im odaberite sami) <u>beskonačno</u> ispituje temperaturu i na temelju njene razlike od <u>željene</u> temperature upravlja uređajem za grijanje/hlađenje. Korisnik može u bilo kojem trenutku promijeniti željenu temperaturu.

Na vrata A sklopa GPIO spojen je temperaturni sklop kao na predavanjima:

- bitovi 0-5, ulazni, iznos temperature
- bit 6, ulazni, potvrda od temperaturnog sklopa da je postavljena valjana temperatura
- bit 7, izlazni, dojava temperaturnom sklopu da je temperatura pročitana

Na vrata B sklopa GPIO spojene su dvije tipke \oplus i \ominus . Također je spojen uređaj za grijanje/hlađenje:

- bit 0, ulazni, spojena je tipka ⊕ za povećavanje <u>željene</u> temperature za 1 stupanj
- bit 1, ulazni, spojena je tipka ⊖ za smanjivanje željene temperature za 1 stupanj
- bitovi 2-3, izlazni, spojen je uređaj za grijanje/hlađenje (00=uređaj je isključen, 01=uređaj grije, 11=uređaj hladi)

Svake sekunde treba očitati temperaturu i na temelju toga upravljati uređajem za grijanje/hlađenje. Kašnjenje treba ostvariti sklopom RTC na koji je spojen 1 kHZ, a RTC generira IRQ.

Početna <u>željena</u> temperatura je 20 stupnjeva. Tipke ⊕ i ⊖ (na bitovima 0 i 1 na portu B) postavljaju stanje 1 kad su pritisnute, a 0 kad nisu pritisnute. Pomoću njih korisnik može uvećati ili umanjiti <u>željenu</u> temperaturu za 1 stupanj, ali ne izvan granica od 10 do 30 stupnjeva (takvi pokušaji se ignoriraju). Da bi se utvrdilo da je tipka pritisnuta, prvo treba čekati da odgovarajući priključak na portu B postane 1, a zatim da se tipka otpusti, tj. da postane 0. Zbog jednostavnosti, pretpostavite da korisnik nikad ne pritisne obje tipke istodobno. Također pretpostavite da se tipke ignoriraju tijekom obrade prekida.

```
ORG
              0
       B GLAVNI
PREKIDNI
              ; prekidni potprogram za IRQ, FIQ se ne koristi pa se može napisati ovdje
       STMFD SP!, {R0, R1, R2}
                                    ; spremi kontekst
       LDR
              R1, GPIO ADR
                                    ; dohvat adresa od GPIO i CT
       LDR
              R2, CT_ADR
       ; posluži CT
       MOV
              RO, #0
       STR
              RO, [R2, #0C]
                           ; obriši brojilo
       STR
              RO, [R2, #08]
                            ; dojavi prihvat prekida
       ; očitanje temperature sa vrata A od sklopa GPIO
CEKAJ
      LDR
              R0, [R1]
                                    ; čekaj na spremnost temperaturnog sklopa, tj. čekaj...
       ANDS R2, R0, #%B 01000000 ; ... na dizanje u jedinicu bita 6 porta A
       BEQ
              CEKAJ
              RO, RO, #%B 10000000 ; digni i spusti signal na bitu 7 porta A
       ORR
       STR
       EOR
              RO, RO, #%B 10000000
       STR
              RO, [R1]
       ; upravljanje grijanjem/hlađenjem na temelju očitane temperature
              RO, RO, #%B 00111111 ; čišćenje viška bitova da se dobije iznos temperature u RO
       AND
       LDR
              R2, ZELJENA
                                    ; dohvat željene temperature
       CMP
              RO, R2
                                    ; usporedi: trenutna <?> željena
       ; upravljanje - tj. postavljanje bitova za uključivanje isključivanje uređaja za grijanje/hlađenje
       MOVEQ
                     R2,%B 0000
                                    ; ako je temperatura jednaka željenoj, isključi uređaj za grijanje/hlađenje
                     R2,%B 1100
                                    ; ako je temperatura veća od željene, uključi hlađenje
       MOVHI
       MOVLO
                     R2,%B 0100
                                    ; ako je temperatura manja od željene, uključi grijanje
                                    ; pošalji stanje uređaja na port B
       STR
              R2, [R1,#4]
       LDMFD SP!, {R0, R1, R2}
                                    ; obnova konteksta i izlazak
       SUBS PC, LR, #4
```

```
GLAVNI MOVE SP, #10<12
                                    ; inicijalizacija stoga i adresa VJ-a
       LDR
              R1, GPIO_ADR
       LDR
              R2, CT_ADR
       MOV R0, #%B 10000000
                                     ; smjerovi na vratima A od GPIO-a
       STR
              RO, [R1,#8]
       MOV
              RO, #%B 00000011
                                     ; smjerovi na vratima B od GPIO-a
       STR
              RO, [R1,#0C]
       LDR
              RO, TISUCU
                                     ; konstanta brojenja za CT (može i MOV R0,%D250<2)
       STR
              RO, [R2,#4]
       MOV
              RO, #%B 1
                                     ; upravljačka riječ za CT (koriste se prekidi)
       STR
              R0, [R2,#10]
       MRS
              RO, CPSR
                                     ; dozvoli IRQ
       BIC
              RO, RO, #%B 10000000
       MSR
              CPSR_c, R0
TIPKE
      LDR
              RO, [R1, #4]
                                     ; učitati i ispitati stanje tipaka sa porta B
       ANDS R3, R0, #%B 1
                                     ; eliminirati sve ostale bitove osim tipke +
       BNE
              PLUS
                                     ; pritisnut je +
       ANDS R3, R0, #%B 10
                                     ; eliminirati sve ostale bitove osim tipke -
       BNE
              MINUS
                                     ; pritisnut je -
       В
              TIPKE
                                     ; inače nije ništa pritisnuto, nastavi s ispitivanjem tipki
                                     ; učitati stanje tipaka sa porta B (zbog čekanja na otpuštanje tipke +)
PLUS
       LDR
              R0[R1, #4]
       ANDS R3, R0, #%B 1
                                     ; eliminirati sve ostale bitove osim tipke +
       BNE
              PLUS
                                     ; pritisnut je +, čekaj da se otpusti
       LDR
              RO, ZELJENA
                                     ; povećaj željenu temperaturu
       ADD
              RO, RO, #1
       CMP
              R0, #%D 30
                                     ; provjeri je li temperatura veća ili manja od granice 30
                                     ; ako je manja ili jednaka (LS), zapiši je u memoriju (inače nema promjene)
       STRLS RO, ZELJENA
       В
              TIPKE
                                     ; povratak na čekanje pritiska bilo koje tipke
MINUS LDR
              R0[R1, #4]
                                     ; učitati stanje tipaka sa porta B (zbog čekanja na otpuštanje tipke -)
       ANDS R3, R0, #%B 10
                                     ; eliminirati sve ostale bitove osim tipke -
       BNE
              MINUS
                                     ; pritisnut je -, čekaj da se otpusti
       LDR
                                     ; smanji željenu temperaturu
              RO, ZELJENA
       SUB
              RO, RO, #1
       CMP
              R0, #%D 10
                                     ; provjeri je li temperatura veća ili manja od granice 10
       STRHS RO, ZELJENA
                                     ; ako je veća ili jednaka (HS), zapiši je u memoriju (inače nema promjene)
       В
              TIPKE
                                     ; povratak na čekanje pritiska bilo koje tipke
  ********************
GPIO ADR
              DW
                      OFFFF0000
                                     ; proizvoljne adrese vanjskih jedinica
CT_ADR
              DW
                      0FFFF1000
TISUCU
              DW
                      %D 1000
                                     ; konstanta za RTC
ZELJENA
              DW
                      %D 20
                                     ; varijabla koja čuva željenu temperaturu
```