onit I

Curren,

$$F(A,B,C) = AB' + BA' + BC' + CB'$$

F	c \	B	A
0	0	0	0
ſ	1	0	0
1	Ö	1	0
1	1	1	0
1	0	O	1
1)	0	1
ı	0	ı	î
0	1	l l	1

Here

$$F(A,B,C) = AB' + BA' + BC' + CB'$$

= $(A \times ORB) + (B \times ORC)$

The con The tollowing boolean logic implements

XOR garter_ Henre, they cannot be linearly

separable.

If we draw a 30- figure, we get:

Except the inputs (0,0,0) and (1,1,1), all others are excitatory. Only these & two are into inhibitory. Judging from two figure, it is clear that we cannot generate such a 2D-plane that can separate the planes, ic, it is not linearly separable.