Predictive Modeling of Brazilian Basis Risk: Insights from Time Series and ML Analysis

Coffee Series and Brazilian Coffee Basis Risk

Basis Risk

Coffee Series Descriptive Statistics

	br_price	br_price_adj	fut_price	br_basis
count	6515.000000	6515.000000	6515.000000	6515.000000
mean	138.433088	104.653779	129.811604	-25.157825
std	59.825587	45.227437	49.486644	9.009344
min	30.920000	23.375155	41.500000	-98.992103
25%	103.840000	78.501813	101.875000	-29.039687
50%	127.380000	96.297775	121.100000	-23.507018
75%	169.150000	127.875401	153.350000	-19.279366
max	349.390000	264.134711	304.900000	3.641727

Time Series used in the study

```
<class 'pandas.core.frame.DataFrame'>
PeriodIndex: 4911 entries, 1996-09-03 to 2016-12-29
Freq: D
Data columns (total 5 columns):
#
    Column
                 Non-Null Count
                                Dtype
 0 br_price 4911 non-null
                                float64
    br_price_adj 4911 non-null
                                float64
2 fut_price 4911 non-null
                                float64
3
    br basis 4911 non-null
                                float64
    fx
                 4911 non-null float64
dtypes: float64(5)
memory usage: 230.2 KB
```

Brazilian coffee Basis Decomposition

Brazilian coffee Basis Correlation

	br_price	br_price_adj	fut_price	br_basis
br_price	1.000000	1.000000	0.778723	-0.132908
br_price_adj	1.000000	1.000000	0.778723	-0.132908
fut_price	0.778723	0.778723	1.000000	-0.725300
br_basis	-0.132908	-0.132908	-0.725300	1.000000

Train Test Split

Base Model - ARIMA(1,1,3)

SARIMAX Results							
Dep.	Variable:	b	or_basis	No. Obse	ervations:	16	604
	Model:	ARIMA	(1, 1, 3)	Log L	ikelihood.	-3309.0	003
	Date:	Fri, 01 De	ec 2023		AIC	6628.0	007
	Time:	08	8:58:29		BIC	6654.9	905
	Sample:	01-0	3-2017		HQIC	6637.9	994
		- 08-0	8-2023				
Covariar	псе Туре:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	0.7644	0.065	11.682	0.000	0.636	0.893	
ma.L1	-0.8820	0.067	-13.091	0.000	-1.014	-0.750	
ma.L2	0.0041	0.028	0.143	0.886	-0.052	0.060	
ma.L3	-0.0072	0.027	-0.265	0.791	-0.060	0.046	
sigma2	3.6347	0.083	43.573	0.000	3.471	3.798	
Ljun	g-Box (L1)	(Q): 0.0	0 Jarqu	ie-Bera (J	IB): 671.	30	
	Prob	(Q): 1.0	0	Prob(J	IB): 0.	00	
Heterosl	kedasticity	(H): 3.6	4	Ske	ew: -0.	37	
Prob(l	H) (two-sid	ed): 0.0	0	Kurto	sis: 6.	08	
					- Arisan		

ARIMA(1,1,1)

SARIMAX Results							
Dep.	Variable:	l	br_basis	No. Obse	rvations:	16	04
	Model:	ARIM	A(1, 1, 1)	Log Li	kelihood	-3309.0	27
	Date:	Fri, 01 D	ec 2023		AIC	6624.0	55
	Time:	0	8:59:26		BIC	6640.1	93
	Sample:	01-	03-2017		HQIC	6630.0	47
		- 08-0	8-2023				
Covaria	nce Type:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	0.7743	0.037	20.806	0.000	0.701	0.847	
ma.L1	-0.8908	0.027	-33.557	0.000	-0.943	-0.839	
sigma2	3.6349	0.082	44.480	0.000	3.475	3.795	
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 676.45							
	Prob	o(Q): 0.9	96	Prob(J	3): 0.	00	
Heteros	kedasticity	(H): 3.6	65	Ske	w: -0.	37	
Prob(H) (two-sid	led): 0.0	00	Kurtos	is: 6	.10	

XGBoost Model

XGBRegressor

XGBRegressor(base score=None, booster=None, callbacks=None, colsample bylevel=None, colsample bynode=None, colsample bytree=None, device=None, early stopping rounds=None, enable categorical=False, eval metric=None, feature types=None, gamma=0.005, grow policy=None, importance type=None, interaction constraints=None, learning rate=0.05, max bin=None, max cat threshold=None, max cat to onehot=None, max delta step=None, max depth=8, max leaves=None, min child weight=None, missing=nan, monotone constraints=None, multi_strategy=None, n_estimators=400, n_jobs=None, num parallel tree=None, random state=42, ...)

Prophet Model

Models Comparison

	Base model	ARIMA_111	XGBoost	Prophet
MAE	1.419698	1.419602	4.544749	10.098708
RMSE	2.028188	2.028214	7.071423	11.639217

Conclusion

In conclusion, the **ARIMA(1,1,1)** model emerged as the most effective among the studied models, showcasing its robust performance in modeling the Brazilian basis risk time series.

This model not only excelled in short-term predictions but also demonstrated competence in long-term forecasting. On the other hand, **XGBoost** proved to be a valuable tool, particularly well-suited for short to mid-term forecasts, offering reliable insights into the dynamics of the basis risk.

Overall, both the ARIMA and XGBoost models present strong capabilities in capturing and predicting the complexities of the Brazilian basis risk, making them practical and valuable tools for practitioners, hedgers, and investors. The accurate predictions generated by these models can serve as valuable inputs for informed decision-making in real-world applications.