

5.1 Biochemical Oxygen Demand (BOD)

- BOD measures O₂ consumed by microorganisms;
- In decomposing (in)organic matter in water;
- Wastewater from sewage treatment plants;
 - \Rightarrow organic materials decomposition, $-O_2$;
- Chemical oxidation of inorganic matter;
 - \Rightarrow extraction of O_2 via chemical reaction;
- Common, environmental parameter;
- Measures the extent to which oxygen within a sample can support microbial life.

UEM

5.1 Biochemical Oxygen Demand (BOD)

- Test: Measure O₂ consumed during a specified period of time (5 days at 20 °C);
- Rate of O₂ consumption is affected by
 - Temperature, pH, microorganisms presence, and organic and inorganic material type.
- BOD directly affects DO in rivers and streams;
- ↑ BOD, more rapid oxygen depletion;
- \Rightarrow < O_2 is available to aquatic life.

UEM

5.1 Biochemical Oxygen Demand (BOD)

- Consequences of high BOD = low DO:
 - aquatic organisms stressed, suffocate, and die.
- Sources of BOD:
 - leaves and woody debris;
 - dead plants and animals;
 - animal manure;

- effluents from pulp and paper mills, wastewater treatment plants, feedlots, and food-processing plants;
- failing septic systems; and urban storm water runoff.

5.1 Biochemical Oxygen Demand (BOD)

- BOD Test to determine the relative O₂ requirements of wastewaters, effluents and polluted waters.
- cBOD
 - carbonaceous BOD
 - Inhibits nitrogenous oxygen demand
- BOD₅
 - carbonaceous + nitrogenous oxygen demand

5.1 Biochemical Oxygen Demand (BOD)

- BOD₅ Test
 - Fill airtight bottle
 - Incubate at specific temperature for 5 days.
 - Measure DO before and after incubation.
 - BOD₅ is computed from the difference between initial and final DO.

5.2 Dissolved Oxygen (DO)

- Stream both produces and consumes O₂;
- + O₂: atmosphere and plants photosynthesis;
- O₂ measured in its dissolved form DO;
- Best indicators of water ecosystem's health;
- Necessary for good water quality;

USMI

5.2 Dissolved Oxygen (DO)

- DO distribution vary due to hydraulic regimes:
- ⇒ DO reservoirs ≠ rivers;
- >DO in running water than still water.

USM

5.2 Dissolved Oxygen (DO)

- $-O_2$: Respiration, decomposition, and various chemical reactions;
- If > O₂ is consumed than produced;
- DO levels decline;
- Sensitive animals may move away/weaken/die;
- Fluctuate seasonally and over 24-hour period;
- In response to temperature & biological activity;
- water and lower its O2 content.

5.2 Dissolved Oxygen (DO)

- \downarrow DO = indication of pollutant influx;
- For maintenance of aquatic health, DO should approach *saturation*;
- Saturation conc is in equilibrium with the partial pressure of atmospheric O₂;
- DO $>= 7.0 \text{ mg/L} \Rightarrow \text{aquatic ecosystem health}$;
- DO $< 5.0 \text{ mg/L} \Rightarrow$ stress aquatic life;
- \downarrow DO \Rightarrow greater the stress.

UGM

5.2 Dissolved Oxygen (DO)

- O₂ remains below 1-2 mg/L for a few hours can result in large fish kills;
- DO can range from 0-18 ppm;
- But most natural water systems require 5-6 ppm to support a diverse population;
- DO level in good fishing waters generally averages about 9.0 ppm.

UEM

5.2 Dissolved Oxygen (DO)

DO (ppm = mg/L)	Water Quality			
5-14	Good. Supports life.			
3-5	Poor. Stressful to many organisms.			
0-3	Bad (hypoxia). Lethal to many organisms.			

Primary Production

- \pm O₂ = primary production (algae);
- Daytime: algal photosynthesis +O₂ > Respiration-O₂;
- \Rightarrow DO > saturation level, i.e., super-saturation;
- Night time: photosynthesis, algal respiration ↓ DO significantly.

USM

Primary Production

- In biologically productive (eutrophic) lakes, DO can become supersaturated;
- O₂ is produced by algae or rooted aquatic plants more quickly;
- Than it can escape into the atmosphere;
- 100 percent saturation = DO conc in water is in equilibrium with O₂ in the atmosphere;
- When DO conc > 110 percent saturation, harm may come to certain fish.

UEM

Eutrophication

- Occurs when large quantities of nutrients such as nitrates and phosphates enter an aquatic environment.
- Sources of these nutrients include animal wastes, agricultural runoff, and sewage.

MEN

Eutrophication

- Some fish are unable to survive without this light, but for them an even more serious problem arises when the algae begin to die.
- At this point, oxygen-demanding bacteria take over the ecosystem, decomposing the algae and using up dissolved oxygen in the process.
- These bacteria increase the biological oxygen demand (BOD) of the ecosystem.

Tasik Harapan

- Tasik Harapan is highly eutrophicated;
- Wild fluctuation of DO over the diurnal cycle;
- Reaching > 18 mg/L in late afternoon;
- Mechanical aerator not effective;
- Does not remove the source of nutrients;
- Adding DO is meaningless in TH;

USM

Tasik Harapan

- Mudball and EM solution did not appear to reduce the degree of eutrophication in TH;
- Addition of mudballs may even ↑ turbidity;
- And add additional nutrients;
- Further complicate eutrophication process;
- Removal of sediment from the lake bottom;
- Viable option that deserves more careful study;

Tasik Harapan

- Sediment removal is sustainable in long run;
- If a source of water can be found:
- In the form of rainwater harvesting;
- To provide flow to Tasik Harapan;
- Should be closely look at in the near future.

UGM

Reaeration

- Another mechanism that may * or | PO : or transfer through air-water inte
- Typically, transfer is from atm water (*reaeration*);
- DO in most natural waters is
- Supersaturated conditions: ne from water body to atmospher
- Measurement: DO meter;
- Converts signals from a probe into mg/L.

USM

5.2 Dissolved Oxygen (DO)

- Introduction of untreated sewage;
- Into a stream originally unpolluted;
- Will deplete the DO levels in the stream.

Figure 5.1 DO sag that occurs below sewage discharges into streams

5.2 Dissolved Oxygen (DO)

- As $O_2 \downarrow$, atmospheric oxygen enters water;
- To compensate for O₂ deficit;
- Initially, O₂ consumption dwarfs reaeration;
- As the organic matter assimilated and O₂ drop;
- ⇒ Depletion & reaeration in balance.

5.2 Dissolved Oxygen (DO)

- Lowest or critical level of $O_2 = DO sag$;
- Beyond this point, reaeration dominates;
- O₂ levels begin to rise;
- Location and magnitude of this critical cone;
- Depends on:
 - loading size,
 - stream's flow and morphometry,
 - temperature, etc.

USM

5.3 Streeter-Phelps Eqn

- Streeter-Phelps model: 2 primary mechanisms governing DO in a stream receiving sewage:
 - decomposition of organic matter;
 - O₂ reaeration.
- 1st step in modelling DO sag: characterize the strength of the wastewater;
- Focus on the decomposition process;
- By measuring the amount of oxygen consumed, i.e. BOD.

USM

5.3 Streeter-Phelps Eqn

• BOD oxidation in a uniformly mixed segment is generally written as a first order reaction:

$$\frac{d\ell}{dt} = -\alpha\ell + \gamma \tag{5.1}$$

where $\ell = BOD$ concentration, mg/L;

t = time, day;

 $\gamma = BOD Loading, mg/L/d;$

 α = first-order deoxygenation rate constant, d^{-1} ;

USM

5.3 Streeter-Phelps Eqn

• DO mass balance equation:

$$\frac{dc}{dt} = -\alpha \ell + \beta \left(c_s - c \right) \tag{5.2}$$

where c = DO concentration, mg/L;

 c_s = saturated DO concentration, mg/L;

 β = first-order reaeration rate constant, d^{-1} ;

Reaeration

• DO reaeration: $\beta(c_s - c)$

$$c_s > c \implies (c_s - c) > 0$$

$$\beta > 0 \implies \beta(c_s - c) > 0$$

$$\frac{dc}{dt} = +\beta \left(c_s - c \right)$$

O₂ from atmosphere enters water

MeU

Reaeration

• DO reaeration: $\beta(c_s - c)$

$$c_s < c \implies (c_s - c) < 0$$

 $\beta > 0 \implies \beta(c_s - c) < 0$

$$\frac{dc}{dt} = -\beta \left(c_s - c \right)$$

O₂ in water escape to atmosphere

USM

5.3 Streeter-Phelps Eqn

Before proceeding to other aspects of BOD-DO modeling, let's review some of the parameters that relate to BOD-DO.

- BOD Decay Rate α
- BOD Loading γ
- DO Saturation c_s
- Reaeration Rate β

USM

5.3.1 BOD Decay Rate α

- BOD bottle decay typical values: 0.05-0.5 d⁻¹;
- Mean of about **0.15** d⁻¹;
- Info used to estimate a 95 % response time;
- For the bottle test as $t_{95} = 3/0.15 = 20 d$;
- Long measurement period is unacceptable;
- Adopt a 5-day BOD (BOD₅) test.

Table 5.1 Typical values of the BOD decomposition rate for various levels of treatment

Treatment	α (d ⁻¹) at 20 °C
Untreated	0.35 (0.20 - 0.50)
Primary	$0.20 \ (0.10 - 0.30)$
Activated sludge	0.075 (0.05 - 0.10)

- Raw sewage = mixture of compounds;
- From easily decomposable sugars;
- To refractory substances (longer to decay);
- Waste treatment selectively remove former;
- BOD decay rates is lower for treated sewage.

5.3 Streeter-Phelps Eqn

Before proceeding to other aspects of BOD-DO modelling, let's review some of the parameters that relate to BOD-DO.

- BOD Decay Rate α
- BOD Loading γ
- DO Saturation c_s
- Reaeration Rate β

5.3.2 BOD Loading γ

• BOD loading (mass/time) = BOD conc of wastewater (effluent) released into a body of water.

Table 5.2 Typical loading rates for untreated domestic sewage

	Per-capita flow rate (m³ capita-1 d-1)	Per-capita CBOD (m³ capita-1 d-1)	CBOD conc (mg/L)	
TT 1. 1				
United	0.57 (150)*	125 (0.275)**	220	
States	0.57 (150)	123 (0.273)	220	
Developing	0.10 (50)*	60 (0 122)**	320	
countries	0.19 (30)	00 (0.132)		
Developing	0.57 (150)*	(m ³ capita ⁻¹ d ⁻¹) 125 (0.275)** 60 (0.132)**	220	

UEM

Table 5.2 Typical loading rates for untreated domestic sewage

- US flow rate ↑ higher standard of living;
- Per capita BOD generation rate \(\frac{1}{2} \) garbage disposals and other accoutrements of a developed economy;

	Per-capita flow rate (m³ capita-1 d-1)	Per-capita CBOD (m³ capita-1 d-1)	CBOD conc (mg/L)
United States	0.57 (150)*	125 (0.275)**	220
Developing countries	0.19 (50)*	60 (0.132)**	320

USM

Table 5.2 Typical loading rates for untreated domestic sewage

- Average conc in developing countries is generally \(\backslash \) - lower water;
- ↓ water use in developing countries outweighs the higher per capita US BOD contribution.

	Per-capita flow rate (m³ capita-1 d-1)	Per-capita CBOD (m³ capita-1 d-1)	CBOD conc (mg/L)
United States	0.57 (150)*	125 (0.275)**	220
Developing countries	0.19 (50)*	60 (0.132)**	320

USM

5.3.2 BOD Loading γ

- Raw waste from palm oil processing factory;
- Before treatment, can reach 30000 mg/L BOD;
- Proper treatment \Rightarrow 300 mg/L or lower;
- Department of Environment (DOE);
- Receiving Water Quality Criteria for Malaysia in 1985;
- Aim: Develop a water quality management approach for the long term water quality of the nation's water resources.

USM

5.3.2 BOD Loading γ

- Environment Quality (Sewerage and Industrial Effluents) Regulations 1979;
- Effluent quality: Standards A and B;
- Standard A : $\leq 20 \text{ mg/L BOD}$;
- Standard B : $\leq 50 \text{ mg/L BOD}$;
- Effluent discharged upstream of a water supply intake should meet Standard A;
- Effluent discharged downstream has to meet Standard B.

5.3 Streeter-Phelps Eqn

Before proceeding to other aspects of BOD-DO modelling, let's review some of the parameters that relate to BOD-DO.

- BOD Decay Rate α
- BOD Loading γ
- DO Saturation c_s
- Reaeration Rate β

5.3.3 DO Saturation c_s

- $c_s = O_2$ saturation constant;
- Highest DO conc achieved under certain circumstances;
- Several env factors affect DO saturation:
 - -temperature, salinity and partial pressure variations due to elevation.
- Several empirical derived equations have been developed to predict how these factors influence saturation.

U£M	5	5.3.3	DO	Satu	ıratio	on c_s		
Town °C				Salinit	y (ppt)			
Temp °C	0	5	10	15	20	25	30	35
0	14.60	14.11	13.64	13.18	12.74	12.31	11.90	11.50
2	13.81	13.36	12.91	12.49	12.07	11.67	11.29	10.91
4	13.09	12.67	12.25	11.85	11.47	11.09	10.73	10.38
6	12.44	12.04	11.65	11.27	10.91	10.56	10.22	9.89
8	11.83	11.46	11.09	10.74	10.4	10.07	9.75	9.44
10	11.28	10.92	10.58	10.25	9.93	9.62	9.32	9.03
12	10.77	10.43	10.11	9.80	9.50	9.21	8.92	8.65
14	10.29	9.98	9.68	9.38	9.1	8.82	8.55	8.29
16	9.86	9.56	9.28	9.00	8.73	8.47	8.21	7.97
18	9.45	9.17	8.90	8.64	8.38	8.14	7.90	7.66
20	9.08	8.81	8.56	8.31	8.06	7.83	7.60	7.38
22	8.73	8.48	8.23	8.00	7.77	7.54	7.33	7.12
24	8.40	8.16	7.93	7.71	7.49	7.28	7.07	6.87
26	8.09	7.87	7.65	7.44	7.23	7.03	6.83	6.64
28	7.81	7.59	7.38	7.18	6.98	6.79	6.61	6.42
30	7.54	7.33	7.14	6.94	6.75	6.57	6.39	6.22

5.3 Streeter-Phelps Eqn

Before proceeding to other aspects of BOD-DO modelling, let's review some of the parameters that relate to BOD-DO.

- BOD Decay Rate α
- BOD Loading γ
- DO Saturation c_s
- Reaeration Rate β

UGM

5.3.4 Reaeration Rate β

- Many investigators have developed formulas;
- For predicting reaeration in streams and rivers;
- Comprehensive reviews (Bennett and Rathbun, 1972; Bowie et al., 1985; USEPA, 1985);
- For standing waters, e.g. lakes, impoundments and wide estuaries, wind becomes the predominant factor in causing reaeration.

5.4 Interim National River WQ Standards

- WQ data were used to determine WQ status;
- Rivers in Malaysia;
- Status: Clean, slightly polluted or polluted;
- River classification: Class I, II, III, IV or V;
- Based upon Water Quality Index (WQI) and Interim National Water Quality Standards for Malaysia (INWQS).

5.4 Interim National River WQ Standards

- WQI is computed based upon 6 main parameters as follows.
 - Biochemical Oxygen Demand (BOD)
 - Chemical Oxygen Demand (COD)
 - Ammoniacal Nitrogen (NH₃N)
 - -pH
 - Dissolved Oxygen (DO)
 - Suspended Solids (SS)
- Other parameters, e.g. heavy metals and bacteria, according to site requirement.

UGM	Table 5.4 Classification of rivers in Malaysia
Class	Use
Class I	Conservation of natural environment,
	Water Supply I – practically no treatment necessary,
	Fishery I – very sensitive aquatic species.
Class IIA	Water supply II – conventional treatment required, Fishery II – sensitive aquatic species.
Class IIB	Recreational use with body contact
Class III	Water supply III – extensive treatment required,
	Fishery III – common, of economic value, and
	tolerant species livestock drinking
Class IV	Irrigation
Class V	None of the above

5.5 BOD-DO Dynamics

- BOD-DO model formed based upon mass balance principles;
- As a result of various processes involved;
- And sources and sinks that influence conc;
- BOD sources: industrial waste, domestic sewage and runoff from agriculture or rain;
- DO loss is caused by various processes;
- BOD oxidation and aquatic plant respiration.

UGM

5.5 BOD-DO Dynamics

- BOD and DO conc are also influenced by hydraulic processes;
- E.g. advective flow and dispersion;
- Simplification: Photosynthesis and respiration processes assumed to cancel out each other;
- Hence, both processes are omitted from the mass balance equation.

- Eqns (5.1a) and (5.7): change in BOD and DO (deficit) in the opened bottle;
- Use of deficit simplifies differential equation.

Example 5.1

A bottle opened to reaeration and filled with polluted water has the following characteristics:

$$\ell_0 = 17.98 \text{ mg/L} \quad c_0 = 6.681 \text{ mg/L} \quad c_s = 8.418 \text{ mg/L}$$

$$\beta = 0.97 \text{ d}^{-1} \qquad \alpha = 0.40 \text{ d}^{-1}$$

Find $\ell(t)$ and c(t) after

(a)
$$1/3 \times 10^4$$
 s; (b) $5/3 \times 10^4$ s; (c) $1/3 \times 10^5$ s.

Also, find the critical time t_c , critical DO deficit D_c and critical DO c_c .

UGM **Example 5.1 – Solution** First, list the relevant equations: Find $\ell(t)$ and c(t) $$\begin{split} D(t) &= D_0 e^{-\beta t} + \frac{\alpha \ell_0}{\beta - \alpha} \left(e^{-\alpha t} - e^{-\beta t} \right) \\ &= D_1 + D_2 \\ \text{with } D_1 &= D_0 e^{-\beta t} \text{ and } D_2 = \frac{\alpha \ell_0}{\beta - \alpha} \left(e^{-\alpha t} - e^{-\beta t} \right) \end{split}$$ after (a) $1/3 \times 10^4$ s; (b) $5/3 \times 10^4$ s; (c) $1/3 \times 10^5$ s. Also, find the $t_{c} = \left(\frac{1}{\beta - \alpha}\right) \ln \left[\frac{\beta}{\alpha} \left(1 - \frac{D_{0}(\beta - \alpha)}{\alpha \ell_{0}}\right)\right]$ critical time t_c , critical DO deficit D_c and critical $D_c = \left(\frac{\alpha}{\beta}\right) \ell_0 e^{-\alpha t_c} \quad , \quad c_c = c_s - D_c$ DO c_c .

Example 5.1 – Solution

 $D_0 = c_s - c_0 = 8.418 - 6.681 = 1.737 \text{ mg/L}$ $\beta - \alpha = 0.97 - 0.40 = 0.57 \text{ d}^{-1}$

(a) After $1/3 \times 10^4$ s

$$\ell = 17.98 \times \exp\left(\frac{-0.4 \times 1/3 \times 10^4}{86400}\right) = 17.70 \text{ mg/L}$$

$$D_1 = 1.737 \times \exp\left(\frac{-0.97 \times 1/3 \times 10^4}{86400}\right) = 1.673 \text{ mg/L}$$

$$D_2 = 17.98 \times \left(\frac{0.4}{0.57}\right) \times \left[\exp\left(\frac{-0.4 \times 1/3 \times 10^4}{86400}\right) - \exp\left(\frac{-0.97 \times 1/3 \times 10^4}{86400}\right)\right]$$

 $\therefore D = D_1 + D_2 = 1.673 + 0.2697 = 1.943 \text{ mg/L}$

and c = 8.418 - 1.943 = 6.475 mg/L

USMI

Example 5.1 – Solution

(b) After $5/3 \times 10^4 \,\text{s}$

 $\ell = 16.64 \text{ mg/L}$

D = 2.66 mg/L

c = 5.76 mg/L

(c) After $1/3 \times 10^5$ s

 $\ell = 15.41 \text{ mg/L}$ D = 3.33 mg/L

c = 5.09 mg/L

Equation (5.12):

 $t_c = 1.294 \text{ day}$

Equation (5.13):

 $D_c = \left(\frac{0.4}{0.97}\right) (17.98) e^{(-0.4 \times 1.294)}$

= 4.418 mg/L

 $c_c = c_s - D_c = 8.418 - 4.418$

=4.0 mg/L

UGM

5.6 BOD-DO Model for River

- Determined by considering hydrological processes;
- E.g. advective flow and dispersion;
- In addition to deoxygenation and reaeration;
- Finite segment method discussed in Chapter 3 can be employed

for this purpose.

5.6 BOD-DO Model for River

• Mass balance eqn for BOD in segment *i*:

 $V_i \frac{d\ell}{dt} = Q_{i-1,i} \cdot \ell_{i-1} - Q_{i,i+1} \cdot \ell_i$ Advective flow $+\overline{E}_{i-1,i}(\ell_{i-1}-\ell_i)+\overline{E}_{i,i+1}(\ell_{i+1}-\ell_i)$ Dispersion $-K_r V_i \ell_i \pm W_i$ Reaction

• Mass balance eqn for DO in segment *i* :

 $V_{i} \frac{dc}{dt} = Q_{i-1,i} \cdot c_{i-1} - Q_{i,i+1} \cdot c_{i}$ Advective flow

 $+ \overline{E}_{i-1,i} (c_{i-1} - c_i) + \overline{E}_{i,i+1} (c_{i+1} - c_i)$ Dispersion $-K_r V_i \ell_i + K_a (c_s - c_i) V_i$ Reaction (5.15)

UEM

5.6 BOD-DO Model for River

(5.16)

 \overline{E} m³/s = bulk dispersion coefficient; $Q \text{ m}^3/\text{s} = \text{advective flow};$

 $c \text{ kg/m}^3 = DO \text{ concentration};$ $A \text{ m}^2 = \text{cross sectional area};$

 $c_{\rm s}$ kg/m³ = DO saturation level; u m/s = velocity; $E \text{ m}^2/\text{s} = \text{dispersion coefficient};$ ℓ kg/m³ = BOD concentration;

 $V \,\mathrm{m}^3 = \mathrm{segment} \,\mathrm{volume};$ K_r s⁻¹ = deoxygenation (decay) rate;

 Δx m = segment length;

 K_a s⁻¹ = reaeration rate.

5.6 BOD-DO Model for River

- When $\Delta x \to 0$;
- Assume E = 0, W = 0
- Eqns (5.14) and (5.15) become:

$$0 = u \frac{\partial c}{\partial x} \qquad (5.18)$$

$$\frac{dc}{dx} = -\left(\frac{K_r}{u}\right)\ell + \left(\frac{K_a}{u}\right)(c_s - c) \qquad (5.20)$$

USM

5.6 BOD-DO Model for River

$$\frac{d\ell}{dx} = -\left(\frac{K_r}{u}\right)\ell$$

$$\frac{dc}{dx} = -\left(\frac{K_r}{u}\right)\ell + \left(\frac{K_a}{u}\right)(c_s - c) \tag{5.20}$$

Let
$$x = ut$$
 or $t = x/u$. (5.21)

$$\frac{d\ell}{dt} = -K_r \ell \quad , \quad \ell(0) = \ell_0 \tag{5.22}$$

$$\frac{dc}{dt} = -K_r \ell + K_a \left(c_s - c \right) , \quad c(0) = c_0 \quad (5.23)$$

UGM

Example 5.2

A uniform river has a velocity of u = 0.3 m/s and other characteristics as follows:

$$c_s = 8.418 \text{ mg/L}$$
 $K_a = 0.97 \text{ d}^{-1}$ $K_r = 0.40 \text{ d}^{-1}$

At x = 0 km, BOD and DO concentrations are:

$$\ell_0 = 17.98 \text{ mg/L}$$
 $c_0 = 6.681 \text{ mg/L}$

Find $\ell(x)$ and c(x) at (a) x = 1 km; (b) x = 5 km; (c) x = 10 km. Also, find the critical time t_c , critical DO deficit D_c and critical DO c_c . Sketch the graph of $\ell(x)$ and c(x).

USM

Example 5.2 – Solution

The relation x = ut with u = 0.3 m/s are used here. Hence, x = 1 km is equivalent to $t = 1/3 \times 10^4$ s. Thus, all equations used in Example 5.1 are used here with x = 0.3t.

This means that the answers here are similar to the answers in Example 5.1 with x = ut and u = 0.3 m/s.

