W07 - Homework

Stepwise problems - Fri. 11:59pm

Sequences

01

L'Hopital practice - converting indeterminate form

By imitating the technique in from the L'Hopital's Rule example, find the limit of the sequence:

$$a_n = \sqrt{n} \, \ln \left(1 + rac{1}{n}
ight)$$

02

Squeeze theorem

Determine whether the sequence converges, and if it does find its limit:

(a)
$$a_n = \frac{\cos^2 n}{2^n}$$
 (b) $b_n = (2^n + 3^n)^{1/n}$

(Hint for (b): Verify that $3 \le b_n \le (2 \cdot 3^n)^{1/n}$ by comparing the 2^n to another copy of 3^n .)

Series

03

General term of a series

Write this series in summation notation:

$$\frac{1}{1} - \frac{2^2}{2 \cdot 1} + \frac{3^3}{3 \cdot 2 \cdot 1} - \frac{4^4}{4 \cdot 3 \cdot 2 \cdot 1} + \cdots$$

(Hint: Find a formula for the general term a_n .)

04

M Geometric series

Compute the following summation values using the sum formula for geometric series.

(a)
$$\sum_{n=0}^{\infty} 5^{-n}$$
 (b) $\sum_{n=0}^{\infty} \frac{2+3^n}{5^n}$ (c) $\sum_{n=-4}^{\infty} \left(-\frac{4}{9}\right)^n$ (d) $\sum_{n=0}^{\infty} e^{3-2n}$

Regular problems - Mon. 10:00am

Sequences

05

Computing a sequence by terms

Calculate the first four terms of each sequence from the given general term:

(a)
$$\cos \pi n$$

(b)
$$\frac{n!}{2^n}$$

(c)
$$(-1)^{n+1}$$

$$\frac{n}{n+1}$$

(e)
$$\frac{3^n}{n!}$$

(a)
$$\cos \pi n$$
 (b) $\frac{n!}{2^n}$ (c) $(-1)^{n+1}$ (d) $\frac{n}{n+1}$ (e) $\frac{3^n}{n!}$ (f) $\frac{(2n-1)!}{n!}$

06

General term of a sequence

Find a formula for the general term (the n^{th} term) of each sequence:

(a)
$$\frac{1}{1}$$
, $\frac{-1}{8}$, $\frac{1}{27}$,

(b)
$$\frac{2}{6}$$
, $\frac{3}{7}$, $\frac{4}{8}$, ...

(a)
$$\frac{1}{1}$$
, $\frac{-1}{8}$, $\frac{1}{27}$, ... (b) $\frac{2}{6}$, $\frac{3}{7}$, $\frac{4}{8}$, ... (c) $\frac{3}{5}$, $-\frac{4}{25}$, $\frac{5}{125}$, $-\frac{6}{625}$, ...

07

Limits and convergence

For each sequence, either write the limit value (if it converges), or write 'diverges'.

(a)
$$b_n = \frac{5n-1}{12n+9}$$
 (b) $b_n = (-1)^n \left(\frac{5n-1}{12n+9}\right)$ (c) $a_n = \sqrt{4+\frac{1}{n}}$ (d) $a_n = \cos^{-1}\left(\frac{n^3}{n^3+1}\right)$

(c)
$$a_n = \sqrt{4 + \frac{1}{n}}$$
 (d)

$$a_n = \cos^{-1}\left(rac{n^3}{n^3+1}
ight)$$

(d)
$$a_n = 10 + \left(-\frac{1}{9}\right)^n$$
 (e) $a_n = 10 + \left(-\frac{1}{9}\right)^n$ (f) $c_n = 1.01^n$ (g) $a_n = 2^{1/n}$

(f)
$$c_n = 1.01^n$$

(g)
$$a_n = 2^{1/n}$$

(h)
$$c_n = \frac{n!}{9^n}$$
 (i) $a_n = \frac{3n^2 + n + 2}{2n^2 - 3}$ (j) $a_n = \frac{\cos n}{n}$ (k) $d_n = \ln 5^n - \ln n!$

$$(j) a_n = \frac{\cos n}{n}$$

$$(k) d_n = \ln 5^n - \ln n!$$

$$\text{(l) } a_n = \left(2 + \frac{4}{n^2}\right)^{1/3} \qquad \text{(m) } c_n = \ln\left(\frac{2n+1}{3n+4}\right) \qquad \text{(n) } y_n = \frac{e^n}{2^n} \qquad \text{(o) } a_n = \frac{(\ln n)^2}{n}$$

(m)
$$c_n = \ln \left(rac{2n+1}{3n+4}
ight)$$

(n)
$$y_n = \frac{e^n}{2^n}$$

$$(o) \ a_n = \frac{(\ln n)^2}{n}$$

(p)
$$a_n = \frac{(-1)^n (\ln n)^2}{n}$$
 (q) $b_n = \frac{3-4^n}{2+7\cdot 4^n}$ (r) $a_n = \left(1+\frac{1}{n}\right)^n$ (s) $a_n = \frac{1}{\ln\left(1+\frac{1}{n}\right)}$

(q)
$$b_n = rac{3 - 4^n}{2 + 7 \cdot 4^n}$$

$$\text{(r) } a_n = \left(1 + \frac{1}{n}\right)^n$$

(s)
$$a_n = \frac{1}{\ln\left(1 + \frac{1}{n}\right)}$$

(t)
$$a_n = n \sin \frac{\pi}{n}$$

Series

08

\square Repeating digits

Using the geometric series formula, find the fractional forms of these decimal numbers:

(a)
$$0.\overline{2} = 0.222222...$$

(b)
$$0.4\overline{9} = 0.4999999...$$

Series from its partial sums

Suppose we know that the *partial sums* S_n of a series $S = \sum_{n=1}^{\infty} a_n$ are given by the formula $S_n = 5 - \frac{2}{n^2}$.

- (a) Compute a_3 .
- (b) Find a formula for the general term a_n .
- (c) Find the sum S.

10

Geometric series - partial sums and total sum

Consider the series:

$$\sum_{n=1}^{\infty} \frac{(-8)^{n-1}}{9^n}$$

- (a) Compute a formula for the N^{th} partial sum S_N . (You may apply the known formula or derive it again in this case using the "shift method.")
- (b) By taking the limit of this formula as $N \to \infty$, find the value of the series.
- (c) Find the same value of the series by computing a_0 and r and plugging into $S=\frac{a_0}{1-r}$.

11

Total area of infinitely many triangles

Find the area of all the triangles as in the figure:

(The first triangle from the right starts at 1, and going left they never end.)