2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

game

Language: en-LVA

Spēle

Jian-Jia ir jauns puisis, kuram patīk spēlēt spēles. Kad viņam uzdod jautājumu, viņam labāk patīk atbildēt netieši nekā sniegt precīzu atbildi. Jian-Jia satika draudzeni Mei-Yu un izstāstīja viņai par Taivānas lidojumu tīklu. Taivānā ir \boldsymbol{n} pilsētas (sanumurētas $0,...,\boldsymbol{n-1}$), dažas no tām ir savienotas ar lidojumiem. Katrs no lidojumiem savieno tieši divas pilsētas un var tikt izmantots jebkurā no virzieniem.

Mei-Yu prasīja Jian-Jia-m, vai, izmantojot lidojumus, ir iespējams nokļūt no jebkuras uz jebkuru pilsētu (ar tiešo lidojumu vai ar pārsēšanos). Jian-Jia nevēlas uzreiz atbildēt, bet ierosina spēlēt spēli. Mei-Yu var viņam uzdot jautājumus formā "Vai pilsētas \boldsymbol{x} un \boldsymbol{y} savieno tiešs lidojums?", un Jian-Jia uzreiz atbildēs. Mei-Yu par katru pilsētu pāri prasīs tieši vienu reizi, prasot pavisam $\boldsymbol{r}=n(n-1)/2$ jautājumus. Mei-Yu uzvar spēlē, ja pēc pirmo \boldsymbol{i} jautājumu uzprasīšanas, kur $\boldsymbol{i}<\boldsymbol{r}$, viņa var izsecināt, vai lidojumu tīkls ir saistīts vai nav - t.i., ar lidojumiem ir iespējams nokļūt no katras uz katru pilsētu (ar tiešo lidojumu vai ar pārsēšanos) vai nav. Pretējā gadījumā - t.i., ja viņai vajag izmantot visus \boldsymbol{r} jautājumus, tad uzvar Jian-Jia.

Lai spēle Jian-Jia-am būtu interesantāka, draugi nolēma, ka viņš spēles gaitā var aizmirst īsto Taivānas lidojumu tīklu un, ņemot vērā Mei-Yu uzdotos jautājumus, izdomāt lidojumu tīklu spēles gaitā un sniegt atbildes par to. Jūsu uzdevums ir palīdzēt Jian-Jia-am uzvarēt spēlē, izdomājot atbildes uz jautājumiem.

Piemēri

Spēles noteikumi tiks izskaidroti ar trim piemēriem. Katrā piemērā ir n=4 pilsētas un r=6 jautājumu un atbilžu kārtas.

Pirmajā piemērā (sekojošajā tabulā), Jian-Jia *zaudē*, jo pēc ceturtās kārtas Mei-Yu droši zina, ka starp katrām divām pilsētām ir iespējams aizlidot, neatkarīgi no tā, kādas būs Jian-Jia atbildes uz piekto un sesto jautājumu.

kārta	jautājums	atbilde
1	0, 1	jā
2	3, 0	jā
3	1, 2	nē
4	0, 2	jā
5	3, 1	nē
6	2, 3	nē

Nākamajā piemērā Mei-Yu pēc trešās kārtas var pierādīt, ka neatkarīgi no nākamajām Jian-Jia atbildēm uz atlikušajiem jautājumiem no nultās uz pirmo pilsētu *nebūs iespējams* nokļūt, tātad Jian-Jia atkal zaudē.

kārta	jautājums	atbilde
1	0, 3	nē
2	2, 0	nē
3	0, 1	nē
4	1, 2	jā
5	1, 3	jā
6	2, 3	jā

Pēdējā piemērā Mei-Yu nevar noteikt, vai no katras uz katru pilsētu iespējams aizlidot, neuzdodot visus sešus jautājumus, tāpēc Jian-Jia uzvar. Tieši tāpēc, ka Jian-Jia atbildēja ar $j\bar{a}$ uz pēdējo jautājumu, varēja noskaidrot, ka ir iespējams ar lidojumiem nokļūt no jebkuras pilsētas jebkurā citā. Taču, ja Jian-Jia uz pēdējo jautājumu būtu atbildējis $n\bar{e}$, tad nebūtu iespējams nokļūt no jebkuras pilsētas jebkurā citā, izmantojot lidojumus.

kārta	jautājums	atbilde
1	0, 3	nē
2	1, 0	jā
3	0, 2	nē
4	3, 1	jā
5	1, 2	nē
6	2, 3	jā

Uzdevums

Lūdzu uzrakstiet programmu, kas palīdzētu Jian-Jia-am uzvarēt spēlē. Ievērojiet, ka ne Mei-Yu, ne Jian-Jia nezina viens otra stratēģiju. Mei-Yu var prasīt jautājumus par pilsētu pāriem jebkurā secībā un Jian-Jia jāatbild uz tiem nekavējoties, nesagaidot nākamos jautājumus. Jums jārealizē sekojošas divas funkcijas:

- initialize (n) -- Jūsu initialize tiks izsaukta pašā sākumā ar parametru *n*, kas apraksta pilsētu skaitu.
- hasEdge (u, v) -- Pēc tam r = n(n-1)/2 reizes tiks izsaukta funkcija hasEdge. Šie izsaukumi atbildīs Mei-Yu uzdotajiem jautājiem to izdarīšanas secībā. Jums jāatbild, vai starp pilsētām u un v ir tiešais lidojums. Precīzāk, atgrieziet 1, ja ir tiešais lidojums, bet citādāk 0.

Apakšuzdevumi

Katrs apakšuzdevums sastāv no vairākām spēlēm. Par apakšuzdevumu Jūs saņemsiet punktus tikai tad, ja Jūsu programma uzvar visas spēles par labu Jian-Jia-am.

apakšuzdevums	punkti	n
1	15	n=4
2	27	$4 \le n \le 80$
3	58	$4 \le n \le 1500$

Realizācijas detaļas

Jums jāiesūta tieši viens fails ar nosaukumu game.c, game.cpp vai game.pas. Šajā failā jārealizē apakšprogrammas, kas aprakstītas iepriekš ar norādīto signatūru.

C/C++ programma

```
void initialize(int n);
int hasEdge(int u, int v);
```

Pascal programma

```
procedure initialize(n: longint);
function hasEdge(u, v: longint): longint;
```

Paraugtestētājs

Paraugtestētājs lasa ievadu šādā formātā:

- rinda 1: n
- lacktriangledown nākamās $m{r}$ rindas: katra rinda satur divus veselus skaitļus u un v, kas apraksta jautājumu par pilsētām $m{u}$ un $m{v}$.