Time-average constraints in stochastic Model Predictive Control

James Fleming Mark Cannon

ACC, May 2017

Outline

- 1. Motivation
- 2. Problem statement.
- 3. MPC for parametric uncertainty
- 4. Handling time-average constraints
- 5. Numerical example

Motivation

For linear dynamics + additive disturbances parameter uncertainty state/control constraints:

- ▷ Enforcing constraints for all uncertainty realisations can be conservative
- > Some applications allow non-zero constraint violation rate

e.g. engine knock control wind turbine control building climate control

hence consider constraint softening methods:

* Chance constraints

Schwarm 99, Oldewurtel 08, Cannon 11

★ Time-average constraints

Oldewurtel 13, Korda 14

Motivation

- Chance constraints:
 - \star computationally hard & possibly non-convex if invoked explicitly
 - Prékopa 95

- \star hold with confidence < 1 if imposed approximately
 - Campi 08, Calafiore 10

- - * constraints tightened according to observed violation frequency
 - ★ asymptotic limit on average violation rate

Oldewurtel 13, Korda 14

This paper's approach:

* limit on number of violations on any time-interval of a given length

Problem formulation

Control objective:

regulate state x_t to 0 subject to $Fx_t \leq 1$ "sufficiently frequently"

System model:

$$x_{t+1} = A(\omega_t)x_t + B(\omega_t)u_t + w(\omega_t)$$

 ω_t : unknown parameter with polytopic bound, hence

$$x_{t+1} \in \text{Conv}\{A^{(i)}x_t + B^{(i)}u_t + w^{(i)}\}, \quad i = 1, \dots, p$$

Stabilizability assumption:

K,V,g exist such that $\{x\in\mathbb{R}^n:Vx\leq g\}$ is:

- * invariant for $x_{t+1} \in \operatorname{Conv}\{(A^{(i)} + B^{(i)}K)x_t + w^{(i)}\}$
- \star a subset of $\{x: Fx \leq 1\}$

Problem formulation

Consider two types of time-average constraint

Type 1: average number of violations in interval T must not exceed ε

for all
$$t$$
 and given T , require
$$\frac{1}{T}\sum_{k=t}^{t+T-1}M_k\leq \varepsilon$$
 where
$$M_t=\begin{cases} 0, & Fx_t\leq \mathbb{1}\\ 1, & Fx_t\not\leq \mathbb{1} \end{cases}$$

- $\star \text{ implies } \frac{1}{t} \sum_{k=0}^{t-1} M_k \le \varepsilon \text{ for all } t \ge T$
- \star analogous to chance constraint: $\mathbb{P}\big\{Fx_t \not\leq \mathbb{1}\big\} \leq \epsilon$

Problem formulation

Consider two types of time-average constraint

Type 2: average loss over interval T must not exceed \bar{l}

$$\text{for all } t \text{ and given } T, \quad \text{require} \quad \frac{1}{T} \sum_{k=t}^{t+T-1} l(Fx_k - 1\!\!1) \leq \bar{l}$$

where $l: \mathbb{R}^q \to \mathbb{R}$ convex loss function

- * allows higher penalties on larger violations
- \star analogous to expected value constraint: $\mathbb{E}\big\{l(Fx_t-1\!\!1)\big\} \leq \bar{l}$

Outline

- 1. Motivation
- 2. Problem statement
- 3. MPC for parametric uncertainty
- 4. Handling time-average constraints
- 5. Numerical example

Dual Mode Predictions

Predicted control input at time t: $u_{k|t} = Kx_{k|t} + c_{k|t}$, k = 0, 1, ...,

$$c_{k|t} = \begin{cases} \text{decision variable} & k < N & \pmod{1} \\ 0 & k \geq N & \pmod{2} \end{cases}$$

Predicted state trajectories

$$x_{k+1|t} \in \text{Conv}\{\Phi^{(i)}x_{k|t} + B^{(i)}c_{k|t} + w^{(i)}, i = 1 \dots p\}$$

$$\Phi^{(i)} = A^{(i)} + B^{(i)}K$$

e.g. N=4 (1 realisation)

Tube MPC

p uncertainty vertices $\implies x_{k|t}$ belongs to a set with p^k vertices

Bound $x_{k|t}$ using fixed-complexity polytopes $\mathcal{T}_{k|t}$ to avoid exponential growth:

$$egin{aligned} x_{0|t} \in \mathcal{T}_{0|t}, \ x_{k|t} \in \mathcal{T}_{k|t} &\Longrightarrow & x_{k+1|t} \in \mathcal{T}_{k+1|T} \ \mathcal{T}_{N|t}: \text{robustly invariant under } u = Kx \end{aligned}$$

e.g. N=4

Tube MPC

Define
$$\mathcal{T}_{k|t} = \{x : Vx \le \alpha_{k|t}\}, k = 0, 1, \dots$$

- \star fixed face normals, flexibility due to variable $\alpha_{k|t}$
- \star set $\alpha_{k|t} = g$ for all $k \geq N \implies \mathcal{T}_{N|t}$ robustly invariant
- \star optimize $\underline{c}_t = (c_{0|t}, \dots, c_{N-1|t})$ and $\underline{\alpha}_t = (\alpha_{0|t}, \dots, \alpha_{N-1|t})$ at each time t

Tube constraints

Inclusion constraints:

$$\mathcal{T}_{k|t} \subseteq \left\{ x : \Phi^{(i)} x + B^{(i)} c_{k|t} + w^{(i)} \in \mathcal{T}_{k+1|t}, \right.$$
$$i = 1, \dots, p \right\}$$

Feasibility constraints:

$$\mathcal{T}_{k|t} \subseteq \{x : Fx \leq \mathbb{1}\}$$

Impose these conditions using

$$\{x: V_1x \leq g_1\} \subseteq \{x: V_2x \leq g_2\} \quad \text{iff} \quad \exists \, H \geq 0 \ \text{ s.t. } HV_1 = V_2, \ Hg_1 \leq g_2$$

Tube constraints

Proposition

$$\rhd \ \mathcal{T}_{k|t} \subseteq \left\{x: \Phi^{(i)}x + B^{(i)}c_{k|t} + w^{(i)} \in \mathcal{T}_{k+1|t}, \ i=1,\dots,p\right\} \text{ if }$$

$$\Gamma^{(i)}\alpha_{k|t} + VB^{(i)}c_{k|t} + Vw^{(i)} \leq \alpha_{k+1|t}$$
 for some $\Gamma^{(i)} \geq 0$ satisfying $\Gamma^{(i)}V = V\Phi^{(i)}$

$$\mathcal{T}_{k|t}\subseteq \big\{x:Fx\le 1\big\} \text{ if }$$

$$\Lambda\alpha_{k|t}\le 1\!\!1}$$
 for some $\Lambda>0$ satisfying $\Lambda V=F$

Determine $\Gamma^{(i)}$, Λ offline by minimizing the row-sums:

$$\Gamma_{j}^{(i)} = \arg\min_{y} \{ \mathbb{1}^{\top} y : y^{\top} V = V_{j} \Phi^{(i)}, \ y \ge 0 \}$$

$$\Lambda_{j} = \arg\min_{y} \{ \mathbb{1}^{\top} y : y^{\top} V = F_{j}, \ y \ge 0 \}$$

then $\Gamma^{(i)}$, Λ are sparse with at most n non-zero elements in each row

Cost function

Penalise deviation from a target set $\Omega=\{x:Wx\leq h\}$, Ω robustly invariant under u=Kx

Quadratic cost:

$$J_t = \min_{s_{0|t} \in \Omega} \sum_{k=0}^{\infty} \mathbb{E} \Big(\|x_{k|t} - s_{k|t}\|_Q^2 + \|u_{k|t} - Ks_{k|t}\|_R^2 \Big)$$

where $s_{k+1|t} = \Phi(\omega_{k|t}) s_{k|t} + w(\omega_{k|t})$, $k = 0, 1, \dots$

Proposition

Let $x_{0|t} = x_t$, then

$$J_t = \min_{s_t \in \Omega} \left\| \begin{bmatrix} x_t - s_t \\ \underline{c}_t \end{bmatrix} \right\|_P^2$$

where $P - \mathbb{E} \big\{ \Psi^\top(\omega) P \Psi(\omega) \big\} = \bar{Q}$, with

$$\Psi(\omega) = \begin{bmatrix} A(\omega) + B(\omega)K & B(\omega)E \\ 0 & S \end{bmatrix} \qquad \bar{Q} = \begin{bmatrix} Q + K^\top RK & K^\top RE \\ E^\top RK & E^\top RE \end{bmatrix}$$

and $E\underline{c}_t = c_{0|t}$, $S\underline{c}_t = [c_{1|t} \cdots c_{N-1|t} \ 0]^{\top}$

Outline

- 1. Motivation
- 2. Problem statement
- 3. MPC for parametric uncertainty
- 4. Handling time-average constraints
- 5. Numerical example

Time-average constraints

Relaxed constraints: $Fx_{k|t} \leq \mathbb{1} + r b_{k|t}$, where

r: determines maximum constraint violation

 $b_{k|t}$: 0 or 1 depending on M_{t-T+1}, \ldots, M_t

Enforce the time-average violation limit via constraints, for $k = 1, \dots, N-1$:

$$v_{k|t} \leq \epsilon \quad \text{where} \quad v_{k|t} = \frac{1}{T} \sum_{j=t-(T-1)+k}^t M_j + \frac{1}{T} \sum_{j=1}^k b_{k|t}$$

Time-average constraints

Relaxed constraints: $Fx_{k|t} \leq 1 + r b_{k|t}$, where

r: determines maximum constraint violation

 $b_{k|t}$: 0 or 1 depending on M_{t-T+1}, \ldots, M_t

Enforce the time-average violation limit via constraints, for $k=1,\ldots,N-1$:

$$v_{k|t} \leq \epsilon \quad \text{where} \quad v_{k|t} = \frac{1}{T} \sum_{j=t-(T-1)+k}^t M_j + \frac{1}{T} \sum_{j=1}^k b_{k|t}$$

hence

$$\begin{split} v_{0|t} &= v_{1|t-1} - \tfrac{1}{T} b_{1|t-1} + \tfrac{1}{T} M_t \\ v_{k|t} &= v_{k-1|t} - \tfrac{1}{T} M_{t-T+k} + \tfrac{1}{T} b_{k|t}, \quad \text{for all } k \geq 1 \end{split}$$

so if
$$v_{k-1|t}-\frac{1}{T}M_{t-T+k}+\frac{1}{T}\leq\epsilon$$
, then $b_{k|t}=1$ is allowed otherwise, set $b_{k|t}=0$

MPC Algorithm

Initialize: $M_{-T} = \cdots = M_{-1} = 0$. At each time $t = 0, 1, \ldots$:

- 1. determine M_t and $v_{0|t}$ given x_t
- 2. for each k = 1, ..., N 1:

(a).
$$b_{k|t}:= \begin{cases} 1 & \text{if } v_{k-1|t}-\frac{1}{T}M_{t-T+k}+\frac{1}{T}\leq \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

- (b). $v_{k|t} := v_{k-1|t} \frac{1}{T}M_{t-T+k} + \frac{1}{T}b_{k|t}$
- 3. solve the QP:

$$\begin{aligned} (\underline{c}_t^*, \underline{\alpha}_t^*, s_t^*) &:= \underset{\underline{c}_t, \underline{\alpha}_t, s_t}{\operatorname{argmin}} & \left\| \begin{bmatrix} x_t - s_t \\ \underline{c}_t \end{bmatrix} \right\|_P^2 \\ \text{s.t.} & Vx_t \leq \alpha_{0|t}, \ Ws_t \leq h \\ & \Lambda \alpha_{k|t} \leq \mathbb{1} + b_{k|t} \, r \\ & \Gamma^{(i)} \alpha_{k|t} + VB^{(i)} c_{k|t} + Vw^{(i)} \leq \alpha_{k+1|t} \\ & \text{for } k = 0, \dots, N-1, \ \alpha_{t+N|t} = g \end{aligned}$$

4. $u_t := Kx_t + c_{0|t}^*$

Lemma

If step 3 is feasible at time t, then for k < N-1 we have

$$v_{k|t+1} \le v_{k+1|t}$$
 and $b_{k+1|t} = 1 \implies b_{k|t+1} = 1$

Lemma

If step 3 is feasible at time t, then for k < N-1 we have

$$v_{k|t+1} \leq v_{k+1|t} \quad \text{ and } \quad b_{k+1|t} = 1 \implies b_{k|t+1} = 1$$

Lemma

If step 3 is feasible at time t, then for k < N-1 we have

$$v_{k|t+1} \le v_{k+1|t}$$
 and $b_{k+1|t} = 1 \implies b_{k|t+1} = 1$

 \star for all k < N-1 we have

$$v_{k|t+1} - v_{k+1|t} = \frac{1}{T}(M_{t+1} - b_{1|t}) + \frac{1}{T} \sum_{j=1}^{k} (b_{j|t+1} - b_{j+1|t})$$

and $M_{t+1}=1 \implies b_{1|t}=1$ since step 3 is feasible at t $\implies v_{k|t+1}=v_{k+1|t}$ in step 2

$$\begin{array}{ll} M_{t+1}=0 \implies b_{1|t}=1 \text{ or } 0 \\ \implies v_{k|t+1}=v_{k+1|t}-\frac{1}{T} \text{ or } v_{k+1|t} \text{ in step 2} \end{array}$$

 \star therefore step 2 cannot tighten constraints at t+1 for k < N-1

hence step 3 feasible at $t \implies$ step 3 feasible at t+1

Theorem

If step 3 is feasible at t = 0 then for all $t \ge 0$ we have

$$\frac{1}{T} \sum_{k=t}^{t+T-1} M_k \le \epsilon$$

- \star Step 3 enforces the constraint $Fx_{1|t} \leq \mathbb{1} + rb_{1|t}$, so that $M_{t+1} \leq b_{1|t}$
- \star Step 2 chooses $b_{1|t}$ so that $v_{1|t} \leq \epsilon$

Hence

$$\frac{1}{T} \sum_{k=t-T-2}^{t+1} M_k \le \frac{1}{T} \sum_{k=t-T-2}^{t} M_k + \frac{1}{T} b_{1|t} = v_{1|t} \le \epsilon$$

Closed loop stability

Theorem

Let $\phi_t=(x_t-s_t,\underline{c}_t)$, then there exists $\delta\in(0,1)$ such that, for all $t\geq0$, $\mathbb{E}\big\{\|\phi_t\|_P^2\big\}\leq \delta^{(t/n)-1}\|\phi_0\|_P^2$

- \star Hence convergence: $x_t \to s_t$ and $c_t \to 0$ in mean square
- \star Result follows from feasibility at time t+1 of

$$(c_{1|t}^*, \dots, c_{N-1|t}^*, 0), \quad (\alpha_{1|t}^*, \dots, \alpha_{N-1|t}^*, g), \quad \Phi(\omega_t) s_t^* + w(\omega_t)$$

which implies

$$\mathbb{E}\{\|\phi_{t+1}\|_{P}^{2}\} - \|\phi_{t}\|_{P}^{2} \le -\|\phi_{t}\|_{\bar{Q}}^{2} \qquad \forall t \ge 0$$

$$\text{Model parameters:} \ \ A(\omega) = A_0 + \Delta_A^{(1)} \omega_1 + \Delta_A^{(2)} \omega_2 + \Delta_A^{(3)} \omega_3$$

$$B(\omega) = B_0 + \Delta_B^{(1)} \omega_4 + \Delta_B^{(2)} \omega_5$$

$$w(\omega) = w^{(1)} \omega_6 + w^{(2)} \omega_7$$

where ω_1,\ldots,ω_7 are independent, uniformly distributed on [0,1] and

$$\begin{split} A_0 &= \begin{bmatrix} -1.9 & -1.4 \\ 0.7 & 0.5 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 1 \\ -0.25 \end{bmatrix} \\ \Delta_A^{(1)} &= \begin{bmatrix} 0.01 & 0.05 \\ -0.05 & -0.01 \end{bmatrix}, \quad \Delta_A^{(2)} &= \begin{bmatrix} -0.01 & -0.05 \\ 0 & -0.01 \end{bmatrix}, \quad \Delta_A^{(3)} &= \begin{bmatrix} 0 & 0 \\ 0.05 & 0.02 \end{bmatrix} \\ \Delta_B^{(1)} &= \begin{bmatrix} 0.03 \\ -0.02 \end{bmatrix}, \quad \Delta_B^{(2)} &= \begin{bmatrix} -0.03 \\ 0.02 \end{bmatrix}, \quad w^{(1)} &= \begin{bmatrix} 0.2 \\ -0.2 \end{bmatrix}, \quad w^{(2)} &= \begin{bmatrix} -0.2 \\ 0.2 \end{bmatrix} \end{split}$$

- $\,\rhd\,$ Cost parameters: $Q=I,\ R=1$ $\Omega={\rm min.\ RPI\ set\ under}\ u=Kx$
- \triangleright Prediction and constraint horizons: N=T=3
- ho Time-average constraint: $\sum_{k=t}^{t+2} M_t \leq 1$, $\epsilon = 1/3$

$$\Pr\{[-0.5 \ 1]x_{1|t} > 1\} \le 1/3$$

Time-average constraints

Chance constraints

	MPC with chance constraints	MPC with time-average constraints
% constraints satisfied, at $t=2$	68	66
average solver time (ms)	132	69
closed-loop cost	198.3	195.2

- ★ Chance constraints imposed via sampling with (greedy) discarding, with # samples limited by requirement for similar computation
- \star Fair comparison since both methods satisfy ensemble-average constraints

Conclusions

- - enforced over an arbitrary time-interval
 - satisfied robustly in transients as well as asymptotically
- ▶ MPC algorithm:
 - recursively feasible and robustly stable
 - computational requirement similar to robust MPC
- Impose limits on time-average of loss function using similar approach (details in proceedings)
- Sequential computation of tightening parameters is suboptimal but same approach allows for simultaneous optimization (requires MIQP)

Conclusions

- - enforced over an arbitrary time-interval
 - satisfied robustly in transients as well as asymptotically
- ▶ MPC algorithm:
 - recursively feasible and robustly stable
 - computational requirement similar to robust MPC
- Impose limits on time-average of loss function using similar approach (details in proceedings)
- ▷ Sequential computation of tightening parameters is suboptimal but same approach allows for simultaneous optimization (requires MIQP)

Thank you for your attention!