```
In []:
       import os
       import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
       from tabulate import tabulate
       from sklearn.linear_model import LinearRegression, Ridge, Lasso,
       LogisticRegression
       from sklearn.model_selection import train_test_split,
       cross_val_score, GridSearchCV
       from sklearn.metrics import r2_score, mean_squared_error, auc,
       confusion matrix, roc curve
       from itertools import product
       seed_val = 201601058
       np.random.seed(seed val)
       sns.set()
       font_titlesize = 18
       font axeslabelsize = 14
       font_legendsize = 10
```

```
In []: # Loading data
    real_df = pd.read_csv('movieReplicationSet.csv')
    mov_count = 400
    real_df.head()
```

0	NaN	NaN	4.0	NaN	3.0	NaN	NaN	NaN	NaN
1	NaN	NaN	1.5	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN								
3	NaN	NaN	2.0	NaN	3.0	NaN	NaN	NaN	NaN
4	NaN	NaN	3.5	NaN	0.5	NaN	0.5	1.0	NaN

```
In [ ]: # Eliminate rows that have all nans
       rows_dropped = []
       cols_dropped = []
       for i in range(real df.shape[0]):
            row nan count = real df.iloc[i, 1:mov count+1].isna().sum()
            if row_nan_count == mov_count:
               rows dropped.append(i)
       # Eliminate columns that have all nans
       for j in range(1, real_df.shape[1]):
           col_nan_count = real_df.iloc[:, j].isna().sum()
            if col nan count == real df.shape[0]:
                cols dropped.append(j)
       if len(rows dropped) > 0:
            df = real_df.drop(rows_dropped).reset_index(drop=True)
            real_df = real_df.drop(rows_dropped).reset_index(drop=True)
       if len(cols dropped) > 0:
            df = real df.drop(columns = df.columns[cols dropped])
           real df = real df.drop(rows dropped).reset index(drop=True)
```

```
print(f'{len(rows_dropped)} rows and {len(cols_dropped)} were
dropped.')
```

1 rows and 0 were dropped.

```
In []:
    ratings_df = df.iloc[:, :mov_count]

# Calculate column and row averages
    col_avgs = ratings_df.mean(axis = 0)
    row_avgs = ratings_df.mean(axis = 1)

# Replace missing values with the average of the column and row
for i in range(ratings_df.shape[0]):
    for j in range(ratings_df.shape[1]):
        if pd.isna(df.iloc[i, j]):
            # Compute the blend of the column and row means
            blend = round((col_avgs[j] + row_avgs[i]) / 2, 1)
            # Replace the missing value with the blend
            df.iloc[i, j] = blend

df.head()
```

Out[]:

The Life of David Gale (2003)	Wing Commander (1999)	Django Unchained (2012)	Alien (1979)	Indiana Jones and the Last Crusade (1989)	Snatch (2000)	Rambo: First Blood Part II (1985)	Fargo (1996)	Let the Right One In (2008)	B S (20
---	-----------------------------	-------------------------------	-----------------	---	------------------	---	-----------------	--------------------------------------	---------------

0	2.4	2.4	4.0	2.7	3.0	2.7	2.6	2.8	2.6
1	2.4	2.4	1.5	2.7	2.8	2.7	2.5	2.8	2.6
2	2.7	2.7	3.2	3.0	3.0	3.0	2.8	3.1	2.9
3	2.3	2.2	2.0	2.6	3.0	2.5	2.4	2.7	2.5
4	2.2	2.1	3.5	2.5	0.5	2.4	0.5	1.0	2.4

¹⁾ For each of the 400 movies, use a simple linear regression model to predict the ratings. Use the ratings of the other 399 movies in the dataset to predict the ratings of each movie (that means you'll have to build 399

models for each of the 400 movies). For each of the 400 movies, find the movie that predicts ratings the best. Then report the average COD of those 400 simple linear regression models. Please include a histogram of these 400 COD values and a table with the 10 movies that are most easily predicted from the ratings of a single other movie and the 10 movies that are hardest to predict from the ratings of a single other movie (and their associated COD values, as well as which movie ratings are the best predictor, so this table should have 3 columns).

```
In [ ]:
       best predictors = []
       avg cod = []
       best cod = []
       for movie idx in range(mov count):
            # Target movie column
            y = df.iloc[:, movie idx].values.reshape(-1, 1)
            # Create an array to store r2 for model fits for this model
            r2 vals =[]
            not_this_movie = [i for i in range(mov count) if i !=
       movie idx]
            for predictor idx in not this movie:
                # Predictor movie columns
                x = df.iloc[:, predictor idx].values.reshape(-1, 1)
                # Model fitting
                model = LinearRegression()
                model.fit(x, y)
                # Model predictions
                yp = model.predict(x)
                r2 vals.append(r2 score(y, yp))
            max r2 idx = np.argmax(r2 vals)
            if max r2 idx >= movie idx:
                max r2 idx += 1
            best predictors.append(df.columns[max r2 idx])
            best cod.append(np.max(r2 vals))
            avg cod.append(np.mean(r2 vals))
       # Plot the COD values
       plt.hist(avg cod)
       plt.xlabel('COD')
       plt.ylabel('Frequency')
       plt.title('Histogram of Average COD values')
       plt.show()
```

```
# Create a summary dataframe by combining target movies,
cod values, best predictors and their beta values
summary df = pd.DataFrame({'Target movie': df.columns[:mov count],
'avg COD': avg_cod, 'best COD': best_cod, 'Best Predictor':
best_predictors})
summary_df.head(10)
```


Out[]:		Target movie	avg COD	best COD	Best Predictor
	0	The Life of David Gale (2003)	0.275091	0.556450	The King of Marvin Gardens (1972)
	1	Wing Commander (1999)	0.265670	0.559571	Sexy Beast (2000)
	2	Django Unchained (2012)	0.112930	0.234026	The Life of David Gale (2003)
	3	Alien (1979)	0.138351	0.327509	Aliens (1986)
	4	Indiana Jones and the Last Crusade (1989)	0.115277	0.372925	Indiana Jones and the Temple of Doom (1984)
	5	Snatch (2000)	0.215485	0.454504	Slackers (2002)
	6	Rambo: First Blood Part II (1985)	0.142467	0.289481	Pieces of April (2003)
	7	Fargo (1996)	0.141444	0.285784	The King of Marvin Gardens (1972)
	8	Let the Right One In (2008)	0.226720	0.436487	The King of Marvin Gardens (1972)
	9	Black Swan (2010)	0.058105	0.116818	Once Upon a Time in America (1984)

```
top10_df = summary_df.sort_values(by='best COD', ascending =
False).set_index('Target movie').iloc[:10, :]
print(tabulate(top10_df, headers = 'keys', tablefmt = 'psql'))
```

```
----+
                   avg COD | best COD | Best Predictor
Target movie
______
----|
| Erik the Viking (1989) | 0.331554 | 0.723343 | I.Q. (1994)
             | 0.318552 | 0.723343 | Erik the Viking (198
I.Q. (1994)
9)
The Lookout (2007) | 0.33555 | 0.704884 | Patton (1970)
| Patton (1970)
                    | 0.32425 | 0.704884 | The Lookout (2007)
| Best Laid Plans (1999) | 0.314417 | 0.703987 | The Bandit (1996)
The Bandit (1996) | 0.323771 | 0.703987 | Best Laid Plans (199
9)
| Congo (1995)
               | 0.30289 | 0.701036 | The Straight Story (1
999)
| The Straight Story (1999) | 0.323542 | 0.701036 | Congo (1995)
| Heavy Traffic (1973) | 0.322479 | 0.687072 | Ran (1985)
                    | 0.281607 | 0.687072 | Heavy Traffic (1973)
Ran (1985)
----+
```

```
In []: # 10 movies that are difficult to predict from the ratings of
    single other movie
    bottom10_df = summary_df.sort_values(by='best COD', ascending =
    True).set_index('Target movie').iloc[:10, :]
    print(tabulate(bottom10_df, headers = 'keys', tablefmt = 'psql'))
```

```
avg COD | best COD | Best Predictor
| Target movie
_____
| Avatar (2009)
                         | 0.0366044 | 0.0791126 | Indiana Jones a
nd the Kingdom of the Crystal Skull (2008)
Interstellar (2014)
                        | 0.052851 | 0.108968 | Torque (2004)
Black Swan (2010)
                 | 0.0581053 | 0.116818 | Once Upon a Tim
e in America (1984)
Clueless (1995)
                        | 0.0707808 | 0.138304 | Love Story (197
| The Cabin in the Woods (2012) | 0.0645385 | 0.142478 | The Evil Dead
La La Land (2016)
                        | 0.0757999 | 0.146454 | The Lookout (20
| Titanic (1997)
                        | 0.0798079 | 0.155495 | Cocktail (1988)
| 13 Going on 30 (2004) | 0.0843149 | 0.15811 | Can't Hardly Wa
it (1998)
| The Fast and the Furious (2001) | 0.0788591 | 0.168981 | Terminator 3: R
ise of the Machines (2003)
| Grown Ups 2 (2013)
                         | 0.0814149 | 0.170761 | The Core (2003)
+----+
```

2) For the 10 movies that are best and least well predicted from the ratings of a single other movie (so 20 in total), build multiple regression models that include gender identity (column 475), sibship status (column 476) and social viewing preferences (column 477) as additional predictors (in addition to the best predicting movie from question 1). Comment on how R^2 has changed relative to the answers in question 1. Please include a figure with a scatterplot where the old COD (for the simple linear regression models from the previous question) is on the x-axis and the new R^2 (for the new multiple regression models) is on the y-axis.

```
not respond)': 'socialviewing'}, inplace = True)

# Eliminate rows where Gender is not Self-described, or sibship
and social viewing is not reported or if any of these entries are
q2_df = q2_df.drop(q2_df[(q2_df['Gender'] == 3) |
(q2_df['sibship'] == -1) | (q2_df['socialviewing'] ==
-1)].index).dropna(subset = ['Gender'], axis=0)
q2_df.head()
```

Out[]:

The Life of David Gale (2003)	Wing Commander (1999)	Django Unchained (2012)	Alien (1979)	Indiana Jones and the Last Crusade (1989)	Snatch (2000)	Rambo: First Blood Part II (1985)	Fargo (1996)	Let the Right One In (2008)	B S (20
---	-----------------------------	-------------------------------	-----------------	---	------------------	---	-----------------	--------------------------------------	---------------

0	2.4	2.4	4.0	2.7	3.0	2.7	2.6	2.8	2.6
1	2.4	2.4	1.5	2.7	2.8	2.7	2.5	2.8	2.6
2	2.7	2.7	3.2	3.0	3.0	3.0	2.8	3.1	2.9
3	2.3	2.2	2.0	2.6	3.0	2.5	2.4	2.7	2.5
4	2.2	2.1	3.5	2.5	0.5	2.4	0.5	1.0	2.4

```
In []: # One hot encode gender for regression
gender_dummy = pd.get_dummies(q2_df['Gender'], prefix = 'gender',
drop_first = True)
q2_df = q2_df.drop('Gender', axis = 1)

q2_df = q2_df.join(gender_dummy)
q2_df.head()
```

The Life of David Gale (2003)	Wing Commander (1999)	Django Unchained (2012)	Alien (1979)	Indiana Jones and the Last Crusade (1989)		Rambo: First Blood Part II (1985)	Fargo (1996)	Let the Right One In (2008)	B S (20
---	-----------------------------	-------------------------------	-----------------	---	--	---	-----------------	--------------------------------------	---------------

0	2.4	2.4	4.0	2.7	3.0	2.7	2.6	2.8	2.6
1	2.4	2.4	1.5	2.7	2.8	2.7	2.5	2.8	2.6
2	2.7	2.7	3.2	3.0	3.0	3.0	2.8	3.1	2.9
3	2.3	2.2	2.0	2.6	3.0	2.5	2.4	2.7	2.5
4	2.2	2.1	3.5	2.5	0.5	2.4	0.5	1.0	2.4

```
In [ ]: top10_r2 = top10_df['best COD'][0:10].to_numpy()
       bottom10_r2 = bottom10_df['best COD'][0:10].to_numpy()
       top10_predictor = top10_df['Best Predictor'][0:10].to_numpy()
       bottom10_predictor = bottom10_df['Best Predictor']
        [0:10].to_numpy()
       top10_movies = top10_df.index[0:10].to_numpy()
       bottom10_movies = bottom10_df.index[0:10].to_numpy()
       concat_r2 = np.concatenate((top10_r2, bottom10_r2))
       concat_predictor = np.concatenate((top10_predictor,
       bottom10_predictor))
       concat_movies = np.concatenate((top10_movies, bottom10_movies))
       mlg\_cod = []
       for movie_idx in range(20):
           target_name = concat_movies[movie_idx]
           # Target movie column
           y = q2_df[target_name].values.reshape(-1, 1)
           predictors = [concat_predictor[movie_idx], 'sibship',
        'socialviewing', 'gender_2.0']
           X = q2_df[predictors]
           model = LinearRegression()
```

```
model.fit(X, y)

# Model predictions

yp = model.predict(X)

mlg_cod.append(r2_score(y, yp))

# Plot the COD values

plt.plot(top10_r2, mlg_cod[0:10], 'bo', label = 'Top 10')

plt.plot(bottom10_r2, mlg_cod[10:20], 'rs', label = 'Bottom 10')

plt.xlabel('Old R2')

plt.ylabel('New R2')

plt.legend()

plt.show()
```



```
In []: q2_result_df = pd.DataFrame(index = concat_movies)
    q2_result_df['Old CODs'] = concat_r2
    q2_result_df['New CODs'] = mlg_cod
    q2_result_df.head(20)
```

I.Q. (1994) 0.723343 0.722357 The Lookout (2007) 0.704884 0.703801 Patton (1970) 0.704884 0.702488 Best Laid Plans (1999) 0.703987 0.707138 The Bandit (1996) 0.703987 0.707293 Congo (1995) 0.701036 0.698630 The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839			
The Lookout (2007) 0.704884 0.703801 Patton (1970) 0.704884 0.702488 Best Laid Plans (1999) 0.703987 0.707138 The Bandit (1996) 0.703987 0.707293 Congo (1995) 0.701036 0.698630 The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Erik the Viking (1989)	0.723343	0.723456
Patton (1970) 0.704884 0.702488 Best Laid Plans (1999) 0.703987 0.707138 The Bandit (1996) 0.703987 0.707293 Congo (1995) 0.701036 0.698630 The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	I.Q. (1994)	0.723343	0.722357
Best Laid Plans (1999) 0.703987 0.707138 The Bandit (1996) 0.703987 0.707293 Congo (1995) 0.701036 0.698630 The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839	The Lookout (2007)	0.704884	0.703801
The Bandit (1996) 0.703987 0.707293 Congo (1995) 0.701036 0.698630 The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839	Patton (1970)	0.704884	0.702488
Congo (1995) 0.701036 0.698630 The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839	Best Laid Plans (1999)	0.703987	0.707138
The Straight Story (1999) 0.701036 0.699555 Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839	The Bandit (1996)	0.703987	0.707293
Heavy Traffic (1973) 0.687072 0.683754 Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Congo (1995)	0.701036	0.698630
Ran (1985) 0.687072 0.683491 Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	The Straight Story (1999)	0.701036	0.699555
Avatar (2009) 0.079113 0.090646 Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Heavy Traffic (1973)	0.687072	0.683754
Interstellar (2014) 0.108968 0.114530 Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Ran (1985)	0.687072	0.683491
Black Swan (2010) 0.116818 0.112969 Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Avatar (2009)	0.079113	0.090646
Clueless (1995) 0.138304 0.143289 The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Interstellar (2014)	0.108968	0.114530
The Cabin in the Woods (2012) 0.142478 0.150682 La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Black Swan (2010)	0.116818	0.112969
La La Land (2016) 0.146454 0.146517 Titanic (1997) 0.155495 0.155839 13 Going on 30 (2004) 0.158110 0.158590	Clueless (1995)	0.138304	0.143289
Titanic (1997) 0.155495 0.155839	The Cabin in the Woods (2012)	0.142478	0.150682
13 Going on 30 (2004) 0.158110 0.158590	La La Land (2016)	0.146454	0.146517
	Titanic (1997)	0.155495	0.155839
The Fast and the Furious (2001) 0.168981 0.168441	13 Going on 30 (2004)	0.158110	0.158590
	The Fast and the Furious (2001)	0.168981	0.168441
Grown Ups 2 (2013) 0.170761 0.174203	Grown Ups 2 (2013)	0.170761	0.174203

3) Pick 30 movies in the middle of the COD range, as identified by question 1 (that were not used in question 2). Now build a regularized regression model with the ratings from 10 other movies (picked randomly, or deliberately by you) as an input. Please use ridge regression, and make sure to do suitable hyperparameter tuning. Also make sure to report the RMSE for each of these 30 movies in a table, after doing an 80/20 train/test split. Comment on the hyperparameters you use and betas you find by doing so.

```
In []: # Look at the middle 30 movies based on the COD range
    middle_df = summary_df.sort_values(by='best COD', ascending =
    True).set_index('Target movie').iloc[mov_count//2 -
    15:mov_count//2 + 15, :]
    middle_df.head(10)
```

Out[]: best avg COD **Best Predictor** COD **Target movie** Twister (1996) 0.224547 0.411274 Sexy Beast (2000) Aliens (1986) 0.196537 0.412504 Miller's Crossing (1990) Austin Powers: The Spy Who **Austin Powers in Goldmember (2002)** 0.153687 0.412922 Shagged Me (1999) **Austin Powers: The Spy Who** Austin Powers in Goldmember 0.162034 0.412922 Shagged Me (1999) (2002)Gone in Sixty Seconds (2000) 0.199683 0.413679 Change of Habit (1969) 28 Days Later (2002) 0.206534 0.414014 Miller's Crossing (1990) The Big Lebowski (1998) 0.209929 0.414669 Escape from LA (1996) **Blues Brothers 2000 (1998)** 0.201530 0.416080 The 51st State (2001) Goodfellas (1990) 0.214517 0.416278 The Sting (1973) Dances with Wolves (1990) 0.206653 0.422910 The Deer Hunter (1978) In []: q3 df = df[middle df.index] X = df[top10 df.index] idxs = np.arange(X.shape[0]) train_idx, test_idx = train_test_split(idxs, test_size = 0.2, random state = seed val) X train = X.iloc[train idx, :] X test = X.iloc[test idx, :] In []: alphas to try first pass = np.linspace(0, 1000, 100)

```
params = {'alpha': alphas to try first pass}
best alpha = []
for movie idx in range(30):
    # Target movie column
    y = q3 df.iloc[:, movie idx].values.reshape(-1, 1)
    y train = y[train idx, :]
    clf = GridSearchCV(Ridge(), params, scoring = 'r2', n_jobs=-1,
cv = 10).fit(X train, y train)
    best alpha.append(clf.best params ['alpha'])
print(np.round(np.asarray(best_alpha), 3))
[ 80.808  80.808  30.303  50.505  141.414  70.707  30.303  151.515
                                                            50.505
101.01 50.505 30.303 40.404 60.606 40.404 10.101 50.505
                                                            90.909
 80.808 121.212 50.505 80.808 50.505 30.303 232.323 50.505
                                                            60.606
181.818 80.808 30.3031
```

```
In []: alphas_to_try_second_pass = np.linspace(25, 250, 200)
   params = {'alpha': alphas_to_try_second_pass}
```

```
best_alpha = []
        for movie idx in range(30):
           # Target movie column
           y = q3 df.iloc[:, movie_idx].values.reshape(-1, 1)
           y_train = y[train_idx, :]
           clf = GridSearchCV(Ridge(), params, scoring = 'r2', n jobs =
        -1, cv = 10).fit(X train, y train)
           best alpha.append(clf.best params ['alpha'])
        print(np.round(np.asarray(best_alpha), 3))
       [ 81.533 77.01 27.261 45.352 141.457 65.704 29.523 150.503 51.005
        103.015 54.397 30.653 41.96 65.704 37.437 25.
                                                          55.528 95.101
         83.794 121.106 51.005 84.925 47.613 35.176 233.04 54.397 61.181
        179.899 83.794 28.3921
In [ ]: RMSE_train = np.zeros((30,))
        RMSE test = np.zeros((30,))
        betas = np.zeros((30, 10))
        intercepts = np.zeros((30,))
        for movie idx in range(30):
           # Target movie column
           y = q3 df.iloc[:, movie idx].values.reshape(-1, 1)
           y_train = y[train_idx, :]
           y_test = y[test_idx, :]
            # Initialize and fit model to train data
           model = Ridge(alpha = best alpha[movie idx], random state =
        seed val)
           model.fit(X train, y train)
            # Compute betas
           betas[movie idx, :] = np.round(model.coef [0], 2)
            intercepts[movie idx] = np.round(model.intercept , 2)
           # Generate train and test predictions
           yp train = model.predict(X train)
           yp_test = model.predict(X_test)
            # Compute RMSE for train and test
            RMSE train[movie idx] = mean squared error(y train, yp train,
        squared = False)
```

```
RMSE_test[movie_idx] = mean_squared_error(y_test, yp_test,
squared = False)
```

```
q3_summary_df = pd.DataFrame(index = q3_df.columns, columns =
range(0, 10))
for ii in range(q3_summary_df.shape[0]):
        q3_summary_df.iloc[ii, :] = betas[ii, :]
q3_summary_df['Intercept'] = intercepts
q3_summary_df['alpha'] = np.round(best_alpha, 2)
q3_summary_df['RMSE train'] = np.round(RMSE_train, 2)
q3_summary_df['RMSE test'] = np.round(RMSE_test, 2)
q3_summary_df.head(30)
```

	0	1	2	3	4	5	6	7	8	9	Intercept	alph
Twister (1996)	0.06	0.08	0.13	0.1	0.13	0.09	0.08	0.05	0.09	0.1	0.32	81.5
Aliens (1986)	0.1	0.11	0.13	0.18	0.07	0.09	0.06	0.11	0.08	0.1	0.20	77.0
Austin Powers in Goldmember (2002)	0.1	0.05	0.19	0.26	0.06	0.1	-0.01	0.04	0.19	0.16	-0.28	27.20
Austin Powers: The Spy Who Shagged Me (1999)	0.12	0.23	0.1	0.2	0.17	0.11	0.07	0.12	0.11	-0.03	-0.35	45.3
Gone in Sixty Seconds (2000)	0.04	0.02	0.12	0.1	0.1	0.13	0.06	0.05	0.06	0.05	0.69	141.4(
28 Days Later (2002)	0.09	0.0	0.09	0.18	0.07	0.14	0.05	0.08	0.12	0.1	0.41	65.70
The Big Lebowski (1998)	0.07	0.02	0.17	0.2	0.2	0.01	-0.05	0.04	0.15	0.2	0.37	29.5
Blues Brothers 2000 (1998)	0.08	0.06	0.09	0.05	0.06	0.12	0.07	0.09	0.07	0.09	0.67	150.50
Goodfellas (1990)	0.12	0.17	0.04	0.18	0.04	0.08	0.1	0.04	0.15	0.09	0.44	51.0
Dances with Wolves (1990)	0.08	0.1	0.07	0.08	0.09	0.1	0.04	0.07	0.12	0.08	0.59	103.0
The Green Mile (1999)	0.09	0.01	0.11	0.15	0.04	0.09	0.03	0.13	0.13	0.12	0.68	54.40
The Blue Lagoon (1980)	0.1	0.07	0.27	0.12	0.01	0.11	0.05	0.17	0.02	0.03	0.28	30.6
Uptown Girls (2003)	0.16	0.15	0.07	0.15	0.14	0.12	0.04	0.17	0.05	0.06	0.03	41.90
The Machinist (2004)	0.07	0.09	0.06	0.1	0.12	0.01	0.02	0.13	0.13	0.15	0.45	65.70
Knight and Day (2010)	0.14	0.14	0.07	0.07	0.19	0.23	-0.06	0.14	-0.01	0.03	0.30	37.4
The Evil Dead (1981)	0.16	0.22	0.1	0.14	0.15	0.03	0.04	0.03	-0.05	0.15	0.23	25.00
Men in Black (1997)	0.17	0.07	0.19	0.16	0.1	0.1	0.03	0.11	0.1	0.03	0.28	55.5
Men in Black II (2002)	0.13	0.06	0.12	0.13	0.12	0.07	0.1	0.12	0.12	0.14	0.05	95.10
Equilibrium (2002)	0.08	0.09	0.03	0.02	0.08	0.03	0.07	0.09	0.11	0.1	0.86	83.7!

	0	1	2	3	4	5	6	7	8	9	Intercept	alph
The Good the Bad and the Ugly (1966)	0.07	0.11	0.09	0.07	0.11	0.12	0.04	0.11	0.07	0.09	0.67	121.1
The Rock (1996)	0.15	0.06	0.14	0.07	0.18	0.12	-0.01	0.01	0.09	0.02	0.66	51.0
Let the Right One In (2008)	0.04	0.05	0.08	0.12	0.06	0.09	0.1	0.06	0.11	0.1	0.60	84.9:
You're Next (2011)	0.07	0.07	0.16	0.16	0.09	0.16	0.0	0.11	0.04	0.09	0.13	47.6
Reservoir Dogs (1992)	0.07	0.01	0.05	0.22	0.08	0.06	0.07	0.21	0.09	0.18	0.27	35.18
The Poseidon Adventure (1972)	0.06	0.07	0.04	0.05	0.07	0.07	0.08	0.06	0.07	0.06	0.90	233.04
The Prestige (2006)	0.16	0.16	0.04	-0.01	0.12	0.08	0.11	0.14	0.12	-0.01	0.73	54.40
There's Something About Mary (1998)	0.08	0.16	0.06	0.19	0.09	0.07	0.16	0.11	0.07	0.05	0.07	61.1
The Mummy Returns (2001)	0.06	0.08	0.09	0.1	0.08	0.09	0.09	0.07	0.1	0.08	0.56	179.90
The Mummy (1999)	0.13	0.1	0.12	0.05	0.08	0.03	0.1	0.11	0.13	0.11	0.37	83.7!
Just Married (2003)	0.17	0.03	0.08	0.03	0.08	0.1	-0.06	0.27	0.14	0.15	0.10	28.39

4) Repeat question 3) with LASSO regression. Again, make sure to comment on the hyperparameters you use and betas you find by doing so.

```
In []: q4_df = df[middle_df.index]
X = df[top10_df.index]
idxs = np.arange(X.shape[0])
train_idx, test_idx = train_test_split(idxs, test_size = 0.2,
random_state = seed_val)
X_train = X.iloc[train_idx, :]
X_test = X.iloc[test_idx, :]
```

```
alphas_to_try_first_pass = np.linspace(1e-14, 1, 100)
params = {'alpha': alphas_to_try_first_pass}
best_alpha = []
for movie_idx in range(30):
```

```
# Target movie column
            y = q4 df.iloc[:, movie idx].values.reshape(-1, 1)
            y train = y[train idx, :]
            clf = GridSearchCV(Lasso(), params, scoring = 'r2', n jobs=-1,
        cv = 10).fit(X train, y train)
            best alpha.append(clf.best params ['alpha'])
        low idx = np.where(np.asarray(best alpha) < 1e-13)[0]</pre>
        print(np.asarray(best alpha))
        [1.01010101e-02 1.01010101e-02 1.01010101e-02 1.01010101e-02
         2.02020202e-02 1.00000000e-14 1.01010101e-02 1.01010101e-02
         1.01010101e-02 1.01010101e-02 1.01010101e-02 1.01010101e-02
         1.01010101e-02 1.01010101e-02 1.01010101e-02 1.00000000e-14
         1.01010101e-02 1.01010101e-02 1.01010101e-02 1.01010101e-02
         1.01010101e-02 1.01010101e-02 1.01010101e-02 1.01010101e-02
         2.02020202e-02 1.01010101e-02 1.01010101e-02 2.02020202e-02
        1.01010101e-02 1.01010101e-02]
In [ ]: alphas_to_try_second_pass = np.linspace(1e-3, 1e-1, 200)
        params = {'alpha': alphas to try second pass}
        best alpha = []
        for movie idx in range(30):
            # Target movie column
            y = q4 df.iloc[:, movie idx].values.reshape(-1, 1)
            y train = y[train idx, :]
            clf = GridSearchCV(Lasso(), params, scoring = 'r2', n jobs=-1,
        cv = 10).fit(X train, y train)
            best_alpha.append(clf.best_params_['alpha'])
        best alpha = np.asarray(best alpha)
        best alpha[low idx] = 1e-14
        print(best alpha)
        [5.47738693e-03 6.96984925e-03 6.96984925e-03 9.45728643e-03
         1.54271357e-02 1.00000000e-14 5.47738693e-03 9.95477387e-03
         5.47738693e-03 9.45728643e-03 5.47738693e-03 4.48241206e-03
         2.49246231e-03 6.47236181e-03 1.49748744e-03 1.00000000e-14
         1.34371859e-02 1.34371859e-02 4.48241206e-03 8.46231156e-03
         5.97487437e-03 6.96984925e-03 1.49748744e-03 4.97989950e-03
         2.13969849e-02 5.47738693e-03 4.97989950e-03 1.59246231e-02
        4.97989950e-03 1.99497487e-03]
In [ ]: RMSE_train = np.zeros((30,))
        RMSE test = np.zeros((30,))
        betas = np.zeros((30, 10))
        intercepts = np.zeros((30,))
        for movie idx in range(30):
```

```
# Target movie column
    y = q4 df.iloc[:, movie idx].values.reshape(-1, 1)
   y train = y[train idx, :]
   y_test = y[test_idx, :]
    # Initialize and fit model to train data
   model = Lasso(alpha = best alpha[movie idx], random state =
seed val)
   model.fit(X_train, y_train)
   # Compute betas
   betas[movie idx, :] = np.round(model.coef , 2)
    intercepts[movie idx] = np.round(model.intercept , 2)
   # Generate train and test predictions
   yp train = model.predict(X train)
   yp_test = model.predict(X_test)
    # Compute RMSE for train and test
   RMSE train[movie idx] = mean squared error(y train, yp train,
squared = False)
    RMSE_test[movie_idx] = mean_squared_error(y_test, yp_test,
squared = False)
```

Out[]:		0	1	2	3	4	5	6	7	8	9	Intercept	
	Twister (1996)	0.0	0.09	0.28	0.06	0.26	0.02	0.09	0.0	0.06	0.1	0.22	5.4
	Aliens (1986)	0.09	0.13	0.12	0.4	0.02	0.04	0.0	0.16	0.01	0.06	0.12	6.96
	Austin Powers in Goldmember (2002)	0.1	0.0	0.18	0.37	0.0	0.09	0.0	0.0	0.29	0.12	-0.23	6.96
	Austin Powers: The Spy Who Shagged Me (1999)	0.0	0.42	0.0	0.35	0.27	0.03	0.0	0.12	0.0	0.0	-0.29	9.4
	Gone in Sixty Seconds (2000)	0.0	0.0	0.17	0.14	0.04	0.39	0.0	0.0	0.0	0.0	0.66	1.5
	28 Days Later (2002)	0.15	-0.29	-0.19	0.52	0.02	0.36	-0.09	0.11	0.38	0.0	0.20	1.00
	The Big Lebowski (1998)	0.0	0.0	0.12	0.27	0.27	0.0	-0.0	0.0	0.1	0.24	0.39	5.4
	Blues Brothers 2000 (1998)	0.11	0.0	0.08	0.0	0.0	0.38	0.0	0.08	0.0	0.18	0.52	9.9
	Goodfellas (1990)	0.09	0.26	0.0	0.32	0.0	0.03	0.05	0.0	0.27	0.01	0.40	5.4
	Dances with Wolves (1990)	0.02	0.11	0.0	0.07	0.05	0.21	0.0	0.0	0.34	0.03	0.57	9.4
	The Green Mile (1999)	0.03	-0.0	0.06	0.25	0.0	0.06	0.0	0.2	0.22	0.1	0.63	5.4
	The Blue Lagoon (1980)	0.1	0.05	0.53	0.0	0.0	0.03	0.0	0.26	0.0	0.0	0.23	4.4
	Uptown Girls (2003)	0.18	0.14	0.0	0.27	0.19	0.08	-0.0	0.29	0.0	0.0	-0.05	2.49
	The Machinist (2004)	0.0	0.05	0.0	0.1	0.17	-0.0	-0.0	0.21	0.2	0.18	0.39	6.4
	Knight and Day (2010)	0.13	0.18	0.0	0.06	0.23	0.44	-0.25	0.21	-0.06	0.03	0.20	1.4
	The Evil Dead (1981)	0.17	0.4	0.14	0.17	0.26	-0.06	0.02	-0.04	-0.38	0.3	0.18	1.00
	Men in Black (1997)	0.34	0.0	0.37	0.15	0.04	0.0	0.0	0.09	0.01	0.0	0.39	1.3
	Men in Black II (2002)	0.17	0.0	0.05	0.22	0.16	0.0	0.01	0.19	0.1	0.19	0.05	1.3
	Equilibrium (2002)	0.06	0.1	0.0	-0.0	0.09	0.0	0.0	0.14	0.25	0.1	0.76	4.4

0	1	2	3	4	5	6	/	8	9	Intercept	
0.0	0.18	0.08	0.0	0.16	0.23	0.0	0.15	0.0	0.12	0.54	8.4
0.25	0.0	0.24	0.0	0.27	0.06	-0.0	0.0	0.0	0.0	0.65	5.9
0.0	0.0	0.0	0.22	0.0	0.17	0.14	0.0	0.25	0.05	0.56	6.96
0.03	0.06	0.21	0.25	0.05	0.27	-0.08	0.16	-0.0	0.07	-0.03	1.4
0.0	0.0	0.0	0.37	0.09	0.0	0.0	0.37	0.0	0.23	0.23	4.97
0.0	0.1	0.0	0.0	0.13	0.03	0.16	0.02	0.12	0.02	1.03	2.10
0.22	0.2	0.0	-0.0	0.15	0.0	0.06	0.2	0.1	-0.0	0.70	5.4
0.0	0.27	0.0	0.39	0.08	0.0	0.24	0.09	0.0	0.0	0.00	4.97
0.0	0.05	0.07	0.19	0.03	0.16	0.09	0.0	0.27	0.01	0.49	1.59
0.24	0.04	0.21	-0.0	0.0	-0.0	0.06	0.13	0.28	0.05	0.22	4.97
0.2	-0.0	0.05	0.0	0.05	0.07	-0.19	0.48	0.19	0.15	0.02	1.99
	0.0 0.25 0.0 0.03 0.0 0.00 0.22 0.0 0.0	0.0 0.18 0.25 0.0 0.0 0.0 0.03 0.06 0.0 0.0 0.0 0.1 0.22 0.2 0.0 0.27 0.0 0.05	0.0 0.18 0.08 0.25 0.0 0.24 0.0 0.0 0.0 0.03 0.06 0.21 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.0 0.27 0.0 0.0 0.05 0.07 0.24 0.04 0.21	0.0 0.18 0.08 0.0 0.25 0.0 0.24 0.0 0.0 0.0 0.22 0.22 0.03 0.06 0.21 0.25 0.0 0.1 0.0 0.37 0.22 0.2 0.0 -0.0 0.22 0.2 0.0 -0.0 0.22 0.2 0.0 -0.0 0.0 0.27 0.0 0.39 0.24 0.04 0.21 -0.0	O.0. O.18 O.08 O.0 O.16 0.25 O.0 O.24 O.0 O.27 0.0 O.0 O.2 O.0 0.03 O.06 O.21 O.25 O.05 0.0 O.0 O.37 O.09 0.0 O.1 O.0 O.37 O.13 0.22 O.2 O.0 -O.0 O.15 0.0 O.27 O.0 O.39 O.08 0.0 O.05 O.07 O.19 O.03 0.24 O.04 O.21 -O.0 O.0	0.0 0.18 0.08 0.0 0.16 0.23 0.25 0.0 0.24 0.0 0.27 0.06 0.0 0.0 0.22 0.0 0.17 0.03 0.06 0.21 0.25 0.05 0.27 0.0 0.0 0.0 0.37 0.09 0.0 0.02 0.1 0.0 0.0 0.13 0.03 0.22 0.2 0.0 -0.0 0.15 0.0 0.22 0.2 0.0 -0.0 0.15 0.0 0.22 0.2 0.0 -0.0 0.15 0.0 0.22 0.27 0.0 0.39 0.08 0.0 0.0 0.05 0.07 0.19 0.03 0.16 0.24 0.04 0.21 -0.0 0.0 -0.0 -0.0	0.0 0.18 0.08 0.0 0.16 0.23 0.0 0.25 0.0 0.24 0.0 0.27 0.06 -0.0 0.0 0.0 0.22 0.0 0.17 0.14 0.03 0.06 0.21 0.25 0.05 0.27 -0.08 0.0 0.0 0.0 0.37 0.09 0.0 0.0 0.0 0.1 0.0 0.30 0.13 0.03 0.16 0.22 0.2 0.0 -0.0 0.15 0.0 0.06 0.02 0.27 0.0 0.39 0.08 0.0 0.24 0.0 0.027 0.0 0.39 0.03 0.16 0.24 0.0 0.05 0.07 0.19 0.03 0.16 0.09 0.24 0.04 0.21 -0.0 0.0 -0.0 0.0 0.0	0.0 0.18 0.08 0.0 0.16 0.23 0.0 0.15 0.25 0.0 0.24 0.0 0.27 0.06 -0.0 0.0 0.0 0.0 0.20 0.22 0.0 0.17 0.14 0.0 0.03 0.06 0.21 0.25 0.05 0.27 -0.08 0.16 0.0 0.0 0.0 0.37 0.09 0.0 0.0 0.37 0.0 0.1 0.0 0.37 0.09 0.0 0.0 0.37 0.22 0.2 0.0 0.13 0.03 0.16 0.02 0.22 0.2 0.0 -0.0 0.15 0.0 0.06 0.2 0.02 0.2 0.0 0.39 0.08 0.0 0.04 0.09 0.0 0.05 0.07 0.19 0.03 0.16 0.09 0.0 0.24 0.04 0.21 -0.0 0.0 -0.0 0.06 0.13	0.0 0.18 0.08 0.0 0.16 0.23 0.0 0.15 0.0 0.25 0.0 0.24 0.0 0.27 0.06 -0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.17 0.14 0.0 0.25 0.03 0.06 0.21 0.25 0.05 0.27 -0.08 0.16 -0.0 0.0 0.0 0.21 0.25 0.09 0.0 0.0 0.37 0.0 0.0 0.0 0.0 0.37 0.09 0.0 0.0 0.37 0.0 0.02 0.1 0.0 0.0 0.13 0.03 0.16 0.02 0.12 0.22 0.2 0.0 -0.0 0.15 0.0 0.06 0.2 0.1 0.0 0.27 0.0 0.39 0.03 0.16 0.09 0.0 0.2 0.0 0.05 0.07 0.19 0.03 0.16 0.09 0.0 0.27 0.24 0.04 0.21 -0.0 0.	0.0 0.18 0.08 0.0 0.16 0.23 0.0 0.15 0.0 0.12 0.25 0.0 0.24 0.0 0.27 0.06 -0.0 0.0 0.0 0.0 0.0 0.0 0.22 0.0 0.17 0.14 0.0 0.25 0.05 0.03 0.06 0.21 0.25 0.05 0.27 -0.08 0.16 -0.0 0.07 0.0 0.0 0.37 0.09 0.0 0.0 0.37 0.0 0.23 0.0 0.1 0.0 0.37 0.09 0.0 0.0 0.37 0.0 0.23 0.2 0.2 0.0 0.13 0.03 0.16 0.02 0.12 0.02 0.2 0.2 0.0 0.39 0.08 0.0 0.24 0.09 0.0 0.2 0.0 0.0 0.05 0.07 0.19 0.03 0.16 0.09 0.0 0.27 0.01 0.24 0.04 0.04 0.21 -0.0 0.0	0.0 0.18 0.08 0.0 0.16 0.23 0.0 0.15 0.0 0.12 0.54 0.25 0.0 0.24 0.0 0.27 0.06 -0.0 0.0 0.0 0.0 0.65 0.0 0.0 0.0 0.22 0.0 0.17 0.14 0.0 0.25 0.05 0.56 0.03 0.06 0.21 0.25 0.05 0.27 -0.08 0.16 -0.0 0.07 -0.03 0.0 0.0 0.0 0.37 0.09 0.0 0.0 0.37 0.0 0.23 0.23 0.0 0.1 0.0 0.13 0.03 0.16 0.02 0.12 0.02 1.03 0.22 0.2 0.0 0.15 0.0 0.06 0.2 0.1 -0.0 0.70 0.0 0.27 0.0 0.39 0.03 0.16 0.09 0.0 0.0 0.0 0.09 0.0 0.05 0.07 0.06 0.13 0.23 0.01 0.02

9 Intercent

5) Compute the average movie enjoyment for each user (using only real, non-imputed data). Use these averages as the predictor variable X in a logistic regression model. Sort the movies order of increasing rating (also using only real, non-imputed data). Now pick the 4 movies in the middle of the score range as your target movie. For each of them, do a median split (now using the imputed data) of ratings to code movies above the median rating with the Y label 1 (= enjoyed) and movies below the median with the label 0 (= not enjoyed). For each of these movies, build a logistic regression model (using X to predict Y), show figures with the outcomes and report the betas as well as the AUC values. Comment on the quality of your models. Make sure to use cross-validation methods to avoid overfitting.

```
In []: # Predictors
X = real_df.iloc[:, :mov_count].mean(axis = 1).values.reshape(-1,
1) # average movie enjoyment for each user

# Target
avg_movie_rating = real_df.iloc[:, :mov_count].mean(axis =
```

```
0).sort values(ascending = True)
predictor movies = avg movie rating[len(avg movie rating)//2 -
2:len(avg movie rating)//2 + 2].index
y rating = df[predictor movies]
cv score = []
auc score = []
betas = []
intercepts = []
for mov in predictor movies:
    # Median-split target variable
   y = (y_rating[mov]>=y_rating[mov].median()).replace({True:1,
False: 0})
    # Split data into train and test
   X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size = 0.2, random_state=seed_val)
   # Logistic Regression Model
   model = LogisticRegression(penalty = 'none', random_state =
seed val)
    cv score.append(cross val score(model, X train, y train, cv =
10, scoring = 'roc_auc').mean())
   model.fit(X_train, y_train)
    betas.append(model.coef [0][0])
    intercepts.append(model.intercept [0])
   # Evaluate the model
   p pred = model.predict proba(X test)
   y pred = model.predict(X test)
   # score = model.score(X test, y test)
    conf m = confusion matrix(y test, y pred, normalize = 'all')
    # report = classification report(y, y pred)
    fpr, tpr, _ = roc_curve(y_test, p_pred[:, 1])
    auc_score.append(auc(fpr, tpr))
    fig, ax = plt.subplots(1, 2, figsize = (10, 5))
   plt.suptitle(f'Target movie: {mov}')
   ax[0].plot(fpr, tpr, 'ro-')
    ax[0].set_xlabel('FPR')
    ax[0].set ylabel('TPR')
    ax[0].set_title('ROC Curve')
```

```
ax[1] = sns.heatmap(conf_m*100, annot = True, fmt = '.2f')
ax[1].xaxis.set(ticklabels=('Predicted 0s', 'Predicted 1s'))
ax[1].yaxis.set(ticklabels=('Actual 0s', 'Actual 1s'))
ax[1].set_title('Confusion Matrix')
plt.show()
```

Target movie: Fahrenheit 9/11 (2004)

Target movie: Happy Gilmore (1996)

Target movie: Diamonds are Forever (1971)

Target movie: Scream (1996)


```
In []: q5_df = pd.DataFrame(index = predictor_movies)
q5_df['cv score'] = cv_score
q5_df['auc'] = auc_score
q5_df['beta'] = betas
q5_df['intercept'] = intercepts
q5_df
```

Out[]:		cv score	auc	beta	intercept
	Fahrenheit 9/11 (2004)	0.971195	0.956612	10.825480	-31.365859
	Happy Gilmore (1996)	0.928488	0.887393	6.227364	-17.959968
	Diamonds are Forever (1971)	0.966630	0.966598	9.155192	-26.492592
	Scream (1996)	0.901363	0.887824	5.076217	-14.564222