582206 Laskennan mallit, syksy 2012

1. Harjoitusten malliratkaisut

- 1. (a) $\emptyset \subseteq \emptyset$ sillä tyhjä joukko on jokaisen joukon osajoukko
 - (b) $\emptyset \notin \emptyset$ sillä tyhjässä joukossa ei ole yhtään alkiota
 - (c) $\emptyset \in \{\emptyset\}$
 - (d) $\emptyset \subseteq \{\emptyset\}$
 - (e) $\{a,b\} \in \{a,b,c,\{a,b\}\}$
 - (f) $\{a,b\}\subseteq\{a,b,\{a,b\}\}$ sillä a ja b kuuluvat oikeinpuoleiseen joukkoon

 - (h) $\{\{a,b\}\}\in \mathcal{P}(\{a,b,\{a,b\}\})$
 - (i) $\{a, b, \{a, b\}\} \{a, b\} = \{\{a, b\}\} \neq \{a, b\}$
- 2. (a) $(\{1,3,5\} \cup \{3,1\}) \cap \{3,5,7\} = \{1,3,5\} \cap \{3,5,7\}$ = $\{3,5\}$

(b)
$$\bigcup \{\{3\}, \{3, 5\}, \bigcap \{\{5, 7\}, \{7, 9\}\}\} = \bigcup \{\{3\}, \{3, 5\}, \{5, 7\} \cap \{7, 9\}\}\}$$
$$= \bigcup \{\{3\}, \{3, 5\}, \{7\}\}\}$$
$$= \{3\} \cup \{3, 5\} \cup \{7\}$$
$$= \{3, 5, 7\}$$

(c)
$$(\{1,2,5\} - \{5,7,9\}) \cup (\{5,7,9\} - \{1,2,5\}) = \{1,2\} \cup \{7,9\}$$

= $\{1,2,7,9\}$

- (d) $\mathcal{P}(\{7,8,9\}) \mathcal{P}(\{7,9\}) = \{\{8\}, \{7,8\}, \{8,9\}, \{7,8,9\}\}$ Tulosjoukkoon siis jäävät ne osajoukot joissa esiintyy 8.
- (e) $\mathcal{P}(\emptyset) = \{\emptyset\}$

3. (a)
$$\{1\} \times \{1,2\} \times \{1,2,3\} = \{(1,1),(1,2)\} \times \{1,2,3\}$$

= $\{(1,2,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3)\}$

(b) $\emptyset \times \{1,2\} = \emptyset$ $(a,b) \in \emptyset \times \{1,2\} \Rightarrow a \in \emptyset$ ja koska tyhjässä joukossa ei ole yhtään alkiota, on karteesinen tulo tyhjän joukon kanssa aina tyhjä joukko.

(c)
$$\mathcal{P}(\{1,2\}) \times \{1,2\} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \times \{1,2\}$$

= $\{(\emptyset,1), (\emptyset,2), (\{1\},1), (\{1\},2),$
 $(\{2\},1), (\{2\},2), (\{1,2\},1), (\{1,2\},2)\}$

(d) $\mathcal{P}(\{\varepsilon\}) = \{\emptyset, \{\varepsilon\}\}\$

(a)

- 4. Ovatko seuraavat väittämät tosia? Selitä miksi jos ovat tai eivät ole.
 - Väite. $\{\varepsilon\}^* = \{\varepsilon\}$ Todistus. $\{\varepsilon\}^* = \{w_1 w_2 \dots w_n \mid w_i \in \{\varepsilon\} \text{ kaikilla } i \in \{1, \dots, n\}\}$ $= \{w_1 w_2 \dots w_n \mid w_i = \varepsilon \text{ kaikilla } i \in \{1, \dots, n\}\}$ $= \{\varepsilon^n \mid n \ge 1\}$ $= \{\varepsilon\} \quad \Box$

(b)

Väite. Mielivaltaisella aakkostolla Σ ja millä tahansa kielellä $L \subseteq \Sigma^*$, $(L^*)^* = L^*$.

To distus.

 $L^* \subseteq (L^*)^*$:

Olkoon $w \in L^*$. Nyt

$$w \in (L^*)^* = \{w_1 \dots w_n \mid n \ge 0, \forall i \in \{1, \dots, n\} : w_i \in L^*\}$$

asettamalla n = 1 ja $w_1 = w$.

 $(L^*)^* \subseteq L^*$:

Olkoon $w \in (L^*)^*$.

Tällöin $w = w_1 w_2 \dots w_n$ missä $w_i \in L^*$ jokaisella $i \in \{1, \dots, n\}$.

Olkoon $i \in \{1, \dots, n\}$.

Nyt $w_i = w_{i,1}w_{i,2}\dots w_{i,k_i}$ missä $w_{i,j} \in L$ joten

$$w = w_1 w_2 \dots w_n$$

= $w_{1,1} \dots w_{1,k_1} \dots w_{n,k_n} \in L^*$

Nyt siis $w \in L^*$ ja siten $(L^*)^* \subseteq L^*$.

On siis osoitettu, että $L^* \subseteq (L^*)^*$ ja $(L^*)^* \subseteq L^*$, joten $(L^*)^* = L^*$.

(c)

Väite. Jos $a \neq b$, $niin \{a, b\}^* = \{a\}^* \circ (\{b\} \circ \{a\}^*)^*$.

Todistus. Olkoon $w \in \{a, b\}^*$ ja merkitään $A = \{a\}^* \circ (\{b\} \circ \{a\}^*)^*$. Todistetaan, että $w \in A$ induktiolla merkkijonon pituuden |w| suhteen.

Alkuaskel |w| = 0 eli $w = \varepsilon$. Nyt $\varepsilon = \varepsilon \varepsilon \in A$.

Induktioaskel Oletetaan, että $u \in A$ kun |u| < |w|.

- Jos w = au jollain $u \in \{a,b\}^*$, niin induktio-oletuksen nojalla $u \in A$ ja $u = u_1u_2$ missä $u_1 \in \{a\}^*$ ja $u_2 \in (\{b\} \circ \{a\}^*)^*$. Nyt $au_1 \in \{a\}^*$ ja siten $w = (au_1)u_2 \in A$.
- Jos taas w = bu jollain $u \in \{a, b\}^*$, on $u = u_1 \dots u_n$.
 - Jos $u_i \neq b$ jokaisella $i \in \{1, ..., n\}$, niin tällöin $u = a^n$, $bu \in (\{b\} \circ \{a\}^*)^*$ ja $w = \varepsilon(bu) \in A$.
 - Jos $u_i = b$ jollain $i \in \{1, \ldots, n\}$, jaetaan

$$u = u_1 \dots u_j u_{j+1} \dots u_n$$

missä u_{j+1} on ensimmäinen b merkkijonossa u. Nyt

$$bu_1 \dots u_j = ba^j \in (\{b\} \circ \{a\}^*)^*$$

ja induktio-oletuksen nojalla $u_{j+1} \dots u_n \in A$. Nyt $u_{j+1} \dots u_n = v_1 v_2$ missä

$$v_1 \in \{a\}^* \text{ ja } v_2 \in \{\{b\} \circ \{a\}^*\}^*.$$

Tällöin $v_1 = a^k$ jollain $k \ge 1$. Kuitenkin $u_{j+1} = b$, joten $v_1 = \varepsilon$ ja $u_{j+1} \dots u_n = v_2 \in \{\{b\} \circ \{a\}^*\}^*$. Nyt

$$bu_1 \dots u_j \in \{b\} \circ \{a\}^*$$

ja $u_{j+1} \dots u_n \in \{\{b\} \circ \{a\}^*\}^*$

joten $w = \varepsilon(bu) \in A$.

Olkoon sitten $w \in A$. Nyt $w = u_1 \dots u_n$ missä $u_i \in \{a, b\}$ kaikilla i. Siten $w \in \{a, b\}^*$. On siis osoitettu, että $\{a, b\}^* \subseteq A$ ja $A \subseteq \{a, b\}^*$ joten joukot ovat samat. \square

(d)

Väite. Jos Σ on mielivaltainen aakkosto, $\varepsilon \in L_1 \subseteq \Sigma^*$ ja $\varepsilon \in L_2 \subseteq \Sigma^*$, niin $(L_1 \circ \Sigma^* \circ L_2)^* = \Sigma^*$.

Todistus. Merkitään $L = (L_1 \circ \Sigma^* \circ L_2)^*$.

 $L \subseteq \Sigma^*$:

Olkoon $w \in L$. Nyt $w = l_1 v l_2$ jollain $l_1 \in L_1, v \in \Sigma^*$ ja $l_2 \in L_2$ ja koska

$$l_1 \in L_1 \subseteq \Sigma^* \Rightarrow l_1 \in \Sigma^*$$

 $l_2 \in L_2 \subseteq \Sigma^* \Rightarrow l_2 \in \Sigma^*$

niin $w = l_1 v l_2 \in \Sigma^* \circ \Sigma^* \circ \Sigma^* = \Sigma^*$. Siis $L \subseteq \Sigma^*$.

 $\Sigma^* \subset L$:

Olkoon $w \in \Sigma^*$. Nyt $w = \varepsilon w \varepsilon$ ja koska $\varepsilon \in L_1$ ja $\varepsilon \in L_2$, niin $w \in L$. Siis $\Sigma^* \subseteq L$. Koska $\Sigma^* \subseteq L$ ja $L \subseteq \Sigma^*$, niin $\Sigma^* = L = (L_1 \circ \Sigma^* \circ L_2)^*$.

(e)

Väite. Kaikilla kielillä L, $\emptyset \circ L = L \circ \emptyset = \emptyset$.

Todistus. Jos $uv \in \emptyset \circ L$, niin $u \in \emptyset$. Koska tyhjässä joukossa ei ole yhtään alkiota, niin myös $\emptyset \circ L$ on tyhjä joukko. Vastaavasti tapauksella $L \circ \emptyset$. Siis $\emptyset \circ L = L \circ \emptyset = \emptyset$. \square

- 5. Olkoon $\Sigma = \{a, b\}$. Esitä joitakin esimerkkejä merkkijonoista, jotka kuuluvat tai eivät kuulu alla määriteltyihin joukkoihin.
 - (a) $\{w \mid w = uu^R u \text{ jollakin } u \in \Sigma \circ \Sigma\}$ Joukkoon kuuluvat siis merkkijonot aaaaaa, bbbbbb, abbaab ja baabba.
 - (b) $\{w \mid ww = www\}$

Jos ww = www, niin |ww| = |www| ja 2|w| = 3|w|. Tämä pätee vain jos |w| = 0, joten $w = \varepsilon$. Joukkoon kuuluu siis vain tyhjä merkkijono.

(c) $\{w \mid uvw = wvu \text{ joillakin } u, v \in \Sigma^*\}$

Valitaan $u=v=\varepsilon.$ Nytuvw=w=wvu kaikilla w. Joukkoon kuuluvat siis kaikki mahdolliset merkkijonot.

(d) $\{w \mid www = uu \text{ jollakin } u \in \Sigma^*\}$

Esimerkiksi ab kuuluu joukkoon, sillä (ab)(ab)(ab) = (aba)(aba). Toisaalta abbb ei kuulu määriteltyyn joukkoon, sillä

$$(abbb)(abbb)(abbb) = (abbbab)(bbabbb)$$

mutta

$$abbbab \neq bbabbb$$

Tämä esimerkki näyttää että kuuluvuusehdoksi ei riitä pituuden parillisuus.

6. Milloin yhtälö $L^+ = L^* - \{\varepsilon\}$ on tosi? Tässä $L^+ = \{l_1 l_2 \dots l_k \mid k \ge 1 \text{ ja } l_i \in L \text{ kaikilla } i\}$ Väite. $L^+ = L^* - \{\varepsilon\}$ jos ja vain jos $\varepsilon \notin L$.

Todistus. Jos $w \in L$, niin $w \in L^+$. Täten jos $\varepsilon \notin L^+$, niin $\varepsilon \notin L$. Jos $\varepsilon \notin L$, niin ei ole olemassa merkkijonoa $l_1 l_2 \dots l_k = \varepsilon$ missä $l_i \in L$ kaikilla i. Täten $\varepsilon \notin L^+$. Muistetaan lisäksi, että $L^* = L^+ \cup \{\varepsilon\}$. Nyt pätee

$$\varepsilon \notin L \Leftrightarrow \varepsilon \notin L^{+}$$

$$\Leftrightarrow L^{+} = L^{+} - \{\varepsilon\}$$

$$\Leftrightarrow L^{+} = (L^{+} \cup \{\varepsilon\}) - \{\varepsilon\}$$

$$\Leftrightarrow L^{+} = L^{*} - \{\varepsilon\}$$

Siis
$$\varepsilon \notin L \Leftrightarrow L^+ = L^* - \{\varepsilon\}.$$

- 7. Etsi seuraavat ehdot täyttävät merkkijonot.
 - (a) Kaksi erillaista viiden mittaista merkkijonoa, joilla täsmälleen samat alimerkkijonot lukuunottamatta sanoja itseään.
 - Merkkijonoilla ababa ja babab on alimerkkijonot ε , a, b, ab, ba, aba, bab, ja baba.
 - (b) Merkkijono joka koostuu merkeistä a ja b eikä ole kahden palindromin ketjutus. abaabb on halutunlainen, sillä se ei itsessään ole palindromi, ja lisäksi a(baabb), (ab)aabb, aba(abb), (abaa)bb ja (abaab)b eivät ole kahden palindromin ketjutuksia.
 - (c) Viiden merkin mittainen merkkijono joka sisältää kaikki mahdolliset aakkoston $\{a,b\}$ kahden mittaiset merkkijonot alimerkkijonoinaan.
 - Kaikki kahden mittaiset merkkijonot aakkostosta $\{a,b\}$ ovat aa,bb,ab ja ba. Merkkijono abbaa sisältää nämä kaikki.