Rateless Erasure Codes

Karthik GVB, Fathima Zarin Faizal

Department of Electrical Engineering **IIT Bombay**

- Motivation
- 2 LT Codes
- Raptor Codes
- Conclusion

The BEC

Consider the binary erasure channel:

¹Image source: Wikipedia

The BEC

Motivation •000

Consider the binary erasure channel:

For example, the Internet.

¹Image source: Wikipedia

TCP/IP

Motivation 0000

• Do we really need a feedback channel?

TCP/IP

Motivation 0000

• Do we really need a feedback channel? No.

- Do we really need a feedback channel? No.
- Sending Mars pics back to Earth using this?

- Do we really need a feedback channel? No.
- Sending Mars pics back to Earth using this? If you want to wait that long.

- Do we really need a feedback channel? No.
- Sending Mars pics back to Earth using this? If you want to wait that long.
- Broadcast channels?

- Do we really need a feedback channel? No.
- Sending Mars pics back to Earth using this? If you want to wait that long.
- Broadcast channels? Dead.

TCP/IP

- Do we really need a feedback channel? No.
- Sending Mars pics back to Earth using this? If you want to wait that long.
- Broadcast channels? Dead.

This calls for some coding theory rescue.

Motivation 0000

What to expect from an erasure correcting code

What to expect from an erasure correcting code

• Recover info despite lost bits

Motivation 0000

What to expect from an erasure correcting code

- Recover info despite lost bits
- Correct as many erasures as possible

- Recover info despite lost bits
- Correct as many erasures as possible
- (Almost (?)) no feedback

What to expect from an erasure correcting code

- Recover info despite lost bits
- Correct as many erasures as possible
- (Almost (?)) no feedback
- Fast algorithms

Consider (N, K) RS codes over F_{2^l} .

Consider (N, K) RS codes over F_{2^l} .

Advantages

• Needs just K/N transmitted symbols

Consider (N, K) RS codes over F_{2^l} .

Disadvantages

Motivation 0000

Require small N, K, q

Consider (N, K) RS codes over F_{2^l} .

Disadvantages

Motivation ○○○●

- Require small N, K, q
- $K(N-K)\log_2 N$ packet operations

Consider (N, K) RS codes over F_{2^l} .

Disadvantages

- Require small N, K, q
- $K(N-K)\log_2 N$ packet operations
- Need to estimate p_e

Consider (N, K) RS codes over F_{2^l} .

Disadvantages

- Require small N, K, q
- $K(N-K)\log_2 N$ packet operations
- Need to estimate p_e

What if estimated p_e is lesser?

Consider (N, K) RS codes over F_{2^l} .

Disadvantages

Motivation

- Require small N, K, q
- $K(N-K)\log_2 N$ packet operations
- Need to estimate p_e

What if estimated p_e is lesser?

Enter rateless erasure codes.

LT Codes

The Encoder $^{\rm 2}$

Water drops \equiv encoded packets

Water drops \equiv encoded packets

• Source file: $K\ell$ bits

Water drops \equiv encoded packets

• Source file: $K\ell$ bits

Water drop: ℓ encoded bits

Water drops \equiv encoded packets

- Source file: $K\ell$ bits
- Water drop: ℓ encoded bits
- Collect $\approx K$ drops

Fountain code encoder

The encoding process ²

Complexity of decoding algorithm determined by #edges in this graph (Image source: [1])

• Linear map from $F_{2^K} o F_{2^N}$

(K, \mathcal{D}) fountain code

- Linear map from $F_{2^K} o F_{2^N}$
- $\bullet \ x \in F_{2^K}, y \in F_{2^{\mathbb{N}}}$

(K, \mathcal{D}) fountain code

- Linear map from $F_{2^K} \to F_{2^N}$
- $x \in F_{2K}, y \in F_{2N}$
- ullet Coordinates are independent rvs generated using the dist. ${\cal D}$

(K, \mathcal{D}) fountain code

- Linear map from $F_{2^K} \to F_{2^N}$
- $x \in F_{2^K}, y \in F_{2^N}$
- ullet Coordinates are independent rvs generated using the dist. ${\cal D}$

To generate an output symbol y_i :

- Linear map from $F_{2^K} \to F_{2^N}$
- $x \in F_{2K}, y \in F_{2N}$
- ullet Coordinates are independent rvs generated using the dist. ${\cal D}$

To generate an output symbol y_i :

1 Sample \mathcal{D} to obtain a weight w from 1 to K

- Linear map from $F_{2K} \to F_{2N}$
- $x \in F_{2K}, y \in F_{2N}$
- ullet Coordinates are independent rvs generated using the dist. ${\cal D}$

To generate an output symbol y_i :

- **1** Sample \mathcal{D} to obtain a weight w from 1 to K
- $v \in F_{2K}$ of weight w is chosen uniformly at random

- Linear map from $F_{2K} \to F_{2N}$
- $x \in F_{2K}, y \in F_{2N}$
- ullet Coordinates are independent rvs generated using the dist. ${\cal D}$

To generate an output symbol y_i :

- Sample \mathcal{D} to obtain a weight w from 1 to K
- $v \in F_{2K}$ of weight w is chosen uniformly at random
- $y_i = \sum_i v_j x_j$

Setting up the problem

 A reliable decoding algorithm of length N for a Fountain code is an algorithm which can recover the K input symbols from any set of output symbols and errs with a probability that is at most 1/K

Setting up the problem

- A reliable decoding algorithm of length N for a Fountain code is an algorithm which can recover the K input symbols from any set of output symbols and errs with a probability that is at most 1/K
- **Cost** = Expected #arithmetic operations

Setting up the problem

- A reliable decoding algorithm of length N for a Fountain code is an algorithm which can recover the K input symbols from any set of output symbols and errs with a probability that is at most 1/K
- **Cost** = Expected #arithmetic operations

Design objective: \mathcal{D} should enable simple linear time decoding of $\{x_1, \ldots, x_K\}$ as soon as any $K(1 + \epsilon)$ of y-s are received.

Proposition

If an LT-Code with K input symbols has a reliable decoding algorithm, then there is a constant c such that the associated graph has at least cKIn(K) edges.

Proposition

If an LT-Code with K input symbols has a reliable decoding algorithm, then there is a constant c such that the associated graph has at least cKIn(K) edges.

Proof: By reliable decoding, we mean that error probability is at most $1/K^{u}(u \text{ is some constant})$

Proposition

If an LT-Code with K input symbols has a reliable decoding algorithm, then there is a constant c such that the associated graph has at least cKIn(K) edges.

<u>Proof</u>: By reliable decoding, we mean that error probability is at most $1/K^{u}(u \text{ is some constant})$

Let the LT-Code has the degree distribution $\rho(d)$ and let \mathcal{G} denotes decoding graph(a bipartite graph with K input nodes and N output nodes).

(Continuation)

Consider an output node and degree d is chosen, then for any input node ν in \mathcal{G} , the probability that the input node ν is not a neighbour of the output node is 1 - d/K

(Continuation)

Consider an output node and degree d is chosen, then for any input node ν in \mathcal{G} , the probability that the input node ν is not a neighbour of the output node is 1 - d/K

In general, the probability that the input node ν is not a neighbour of an output node is

$$\sum_{d} \rho(d) \cdot (1 - d/K) = 1 - a/K$$

(Continuation)

Consider an output node and degree d is chosen, then for any input node ν in \mathcal{G} , the probability that the input node ν is not a neighbour of the output node is 1 - d/K

In general, the probability that the input node ν is not a neighbour of an output node is

$$\sum_{d} \rho(d) \cdot (1 - d/K) = 1 - a/K$$

where a is the average degree of an output node, and so the probability that ν is not a neighbour any of the output nodes is $(1 - a/K)^N$.

(Continuation)

Consider an output node and degree d is chosen, then for any input node ν in $\mathcal G$, the probability that the input node ν is not a neighbour of the output node is 1-d/K

In general, the probability that the input node $\boldsymbol{\nu}$ is not a neighbour of an output node is

$$\sum_{d} \rho(d) \cdot (1 - d/K) = 1 - a/K$$

where a is the average degree of an output node, and so the probability that ν is not a neighbour any of the output nodes is $(1 - a/K)^N$. By Taylor expansion of ln(1-x) gives,

$$ln(1-a/K) \ge (a/K)/(1-a/K) \implies (1-a/K)^N \ge e^{-\alpha/(1-\alpha/n)}$$

where $\alpha = aN/K$

(Continuation)

Now, $(1 - a/K)^N \le 1/K^u$ as probability of error is lower bounded by the probability that there is an uncovered node,

(Continuation)

Now, $(1 - a/K)^N \le 1/K^u$ as probability of error is lower bounded by the probability that there is an uncovered node.

$$e^{-\alpha/(1-\alpha/n)} \le 1/K^{u}$$

$$\implies \alpha \ge \ln(K) \frac{u}{1 + u \ln(K)/N}$$

$$\ge c \ln(K)$$

where
$$c = u/(log(2)(1 + uln(3)/3))$$

(Continuation)

Now, $(1 - a/K)^N \le 1/K^u$ as probability of error is lower bounded by the probability that there is an uncovered node,

$$e^{-\alpha/(1-\alpha/n)} \le 1/K^{u}$$

$$\implies \alpha \ge \ln(K) \frac{u}{1 + u \ln(K)/N}$$

$$\ge c \ln(K)$$

where
$$c = u/(log(2)(1 + uln(3)/3))$$

$$aN \ge cKlog(K)$$

aN is the average number of edges in the graph \mathcal{G} .

Ideal Soliton distribution

$$\rho(d)$$
 for $d = \{1, 2, \dots, K\}$

- $\rho(1) = 1/K$
- For all $i = 2, \dots, K$, $\rho(i) = 1/i(i-1)$.

Ideal Soliton distribution

$$\rho(d)$$
 for $d = \{1, 2, \dots, K\}$

- $\rho(1) = 1/K$
- For all $i = 2, \dots, K$, $\rho(i) = 1/i(i-1)$.
- Average degree $\approx ln(K)$ which implies that the sum of degrees of K encoding symbols is on average Kln(K)

Ideal Soliton distribution

$$\rho(d)$$
 for $d = \{1, 2, \dots, K\}$

- $\rho(1) = 1/K$
- For all $i = 2, \dots, K$, $\rho(i) = 1/i(i-1)$.
- Average degree $\approx ln(K)$ which implies that the sum of degrees of K encoding symbols is on average Kln(K)
- Is good only in an expected sense

Robust Soliton distribution

$$\mu(\cdot)$$
, Let $R = cln(K/\delta)\sqrt{K}$, Define $\tau(\cdot)$ as follows,

$$\tau(i) = \begin{cases} R/ik & \text{for } i = 1, \cdots, K/R - 1\\ Rln(R/\delta)/K & \text{for } i = K/R\\ 0 & \text{for } i = K/R + 1, \cdots, K \end{cases}$$

Add the Ideal Soliton distribution $\rho(\cdot)$ to $\tau(\cdot)$ and normalize to obtain $\mu(\cdot)$:

•
$$\beta = \sum_{i=1}^{K} \rho(i) + \tau(i)$$

Robust Soliton distribution

$$\mu(\cdot)$$
, Let $R = cln(K/\delta)\sqrt{K}$, Define $\tau(\cdot)$ as follows,

$$\tau(i) = \begin{cases} R/ik & \text{for } i = 1, \cdots, K/R - 1 \\ Rln(R/\delta)/K & \text{for } i = K/R \\ 0 & \text{for } i = K/R + 1, \cdots, K \end{cases}$$

Add the Ideal Soliton distribution $\rho(\cdot)$ to $\tau(\cdot)$ and normalize to obtain $\mu(\cdot)$:

- $\beta = \sum_{i=1}^{K} \rho(i) + \tau(i)$
- For all $i = 1, \dots, K$, $\mu(i) = (\rho(i) + \tau(i))/\beta$

Robust Soliton distribution

$$\mu(\cdot)$$
, Let $R = cln(K/\delta)\sqrt{K}$, Define $\tau(\cdot)$ as follows,

$$\tau(i) = \begin{cases} R/ik & \text{for } i = 1, \cdots, K/R - 1\\ Rln(R/\delta)/K & \text{for } i = K/R\\ 0 & \text{for } i = K/R + 1, \cdots, K \end{cases}$$

Add the Ideal Soliton distribution $\rho(\cdot)$ to $\tau(\cdot)$ and normalize to obtain $\mu(\cdot)$:

- $\bullet \ \beta = \sum_{i=1}^{K} \rho(i) + \tau(i)$
- For all $i=1,\cdots,K,\ \mu(i)=(\rho(i)+\tau(i))/\beta$
- ullet δ is the allowable failure probability
- Average degree $\approx ln(K/\delta)$

• LT codes have complexity at least K ln K

- LT codes have complexity at least K ln K
- Can we recover all data in linear time from $\mathcal{O}(K)$ code symbols?

- LT codes have complexity at least K ln K
- Can we recover all data in linear time from $\mathcal{O}(K)$ code symbols? No, as this is a probabilistic model

- LT codes have complexity at least K ln K
- Can we recover all data in linear time from $\mathcal{O}(K)$ code symbols? No, as this is a probabilistic model But can recover a large fraction! How much?

Raptor Codes o●ooo

The problem with LT codes

Essentially T balls (edges) thrown into K bins (i/p symbols) independently and uniformly

The problem with LT codes

Essentially T balls (edges) thrown into K bins (i/p symbols) independently and uniformly Prob. of an empty bin $= \left(1 - \frac{1}{K}\right)^T \approx e^{-T/K}$

The problem with LT codes

Essentially T balls (edges) thrown into K bins (i/p symbols) independently and uniformly Prob. of an empty bin $= \left(1 - \frac{1}{\kappa}\right)^T \approx e^{-T/K}$ Expected fraction not covered = $Ke^{-T/K}/K = e^{-T/K}$

The problem with LT codes

Essentially T balls (edges) thrown into K bins (i/p symbols) independently and uniformly Prob. of an empty bin = $(1 - \frac{1}{\kappa})^T \approx e^{-T/K}$ Expected fraction not covered = $Ke^{-T/K}/K = e^{-T/K}$ Hence can recover a large fraction of the data!

Raptor codes: An easy fix

Raptor codes: An easy fix

• Use weaker LT code with small average degree \overline{d}

Raptor codes: An easy fix

- Use weaker LT code with small average degree \overline{d}
- Expected unrecoverable fraction $f \approx e^{-d}$

Raptor codes: An easy fix

- Use weaker LT code with small average degree \overline{d}
- Expected unrecoverable fraction $f \approx e^{-\overline{d}}$
- Use $(\frac{K}{1-f}, K)$ erasure correcting block code as outer code

Raptor codes: An easy fix

- Use weaker LT code with small average degree \overline{d}
- Expected unrecoverable fraction $f \approx e^{-\overline{d}}$
- Use $(\frac{K}{1-f}, K)$ erasure correcting block code as outer code

The outer code just needs to be able to correct erasures with an erasure rate of f

Raptor Codes 00000

Raptor codes: An example

#packets decoded vs #received packets 4

Summary

Summary

Performance of fountain codes on BEC ≫ block codes, TCP/IP

- Performance of fountain codes on BEC ≫ block codes, TCP/IP
- Useful in storage and broadcast applications

References

- [1] D.J.C. MacKay.
 - Fountain Codes

IEE Proceedings online no. 20050237, 2005.

- [2] Michael Luby.
 - LT Codes.

The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., 54:271–282, 2002.

- [3] Emina Soljanin.
 - Raptor codes: From a math idea to LTE eMBMS. 2015.
- [4] Amin Shokrollahi.
 - Raptor Codes.

IEEE Transactions on Inforamtion Theory, 52(6), 2006.

Thank you