

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Análisis Matemático I

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2023-2024

Índice general

1.	Rela	aciones de Problemas	5
	1.1.	El Espacio Euclídeo. Espacios normados y métricos	5
	1.2.	Topología de un espacio métrico	12

1. Relaciones de Problemas

1.1. El Espacio Euclídeo. Espacios normados y métricos.

Ejercicio 1.1.1. Probar que, en cualquier espacio pre-hilbertiano X, el producto escalar se obtiene a partir de la norma mediante la llamada *identidad de polarización*:

$$4(x|y) = ||x + y||^2 - ||x - y||^2 \quad \forall x, y \in X$$

Se tiene que:

$$||x+y||^2 - ||x-y||^2 = (x+y|x+y) - (x-y|x-y) =$$

$$= (x|x) + (x|y) + (y|x) + (y|y) - (x|x) + (x|y) + (y|x) - (y|y) = 4(x|y)$$

donde he usado que (x|y) = (y|x) por ser simétrica, y que $||x|| = \sqrt{(x|x)}$.

Ejercicio 1.1.2. Si X e Y son espacios pre-hilbertianos, es una sana costumbre denotar ambos productos escalares por $(\cdot|\cdot)$ y ambas normas asociadas por $||\cdot||$. Sea $f: X \to Y$ una aplicación lineal que preserva la norma, es decir,

$$||f(x)|| = ||x||$$

Probar que entonces f también preserva el producto escalar:

$$(f(x) \mid f(y)) = (x|y) \quad \forall x, y \in X$$

Tenemos que:

$$4(x|y) \stackrel{(*)}{=} ||x+y||^2 - ||x-y||^2 = ||f(x+y)||^2 - ||f(x-y)||^2 = ||f(x)+f(y)||^2 - ||f(x)-f(y)||^2 =$$

$$\stackrel{(*)}{=} 4(f(x)|f(y)) \Longrightarrow (x|y) = (f(x)|f(y))$$

donde en (*) he aplicado el ejercicio anterior; y he aplicado que por ser f una aplicación lineal se tiene que f(x + y) = f(x) + f(y).

Ejercicio 1.1.3. Probar que todo espacio pre-hilbertiano X de dimensión $N \in \mathbb{N}$, se identifica totalmente con el espacio euclídeo N-dimensional; es decir, existe una biyección lineal $f: X \to \mathbb{R}^N$ que preserva el producto escalar:

$$(f(x)|f(y)) = (x|y) \quad \forall x, y \in X$$

En este sentido podemos decir que el espacio euclídeo N-dimensional es el único espacio pre-hilbertiano de dimensión N.

Sea \mathcal{B}_X una base ortonormal de X, y $\mathcal{B}_{\mathbb{R}}$ una base ortonormal de \mathbb{R}^N .

$$\mathcal{B}_X = \{v_1, \dots, v_n\} \qquad \mathcal{B}_{\mathbb{R}} = \{e_1, \dots, e_n\}$$

Entonces, definimos $f: X \to \mathbb{R}^N$ forma lineal de forma que los vectores de una base de aplican en los de la otra base. Es decir, $f(v_i) = e_i$, $\forall i = 1, ..., n$. Como es una forma lineal y se aplica base en otra base, tenemos que es una biyección lineal.

Sea $x, y \in X$ tal que $x = \sum_{i=1}^{n} a_i v_i$, $y = \sum_{i=1}^{n} b_i v_i$. Comprobemos que preserva el producto escalar.

$$(f(x)|f(y)) = \left(f\left(\sum_{i=1}^{n} a_{i}v_{i}\right) \middle| f\left(\sum_{i=1}^{n} b_{i}v_{i}\right) \right) = \left(\sum_{i=1}^{n} a_{i}f\left(v_{i}\right) \middle| \sum_{i=1}^{n} b_{i}f\left(v_{i}\right) \right) = \left(\sum_{i=1}^{n} a_{i}e_{i}\middle| \sum_{i=1}^{n} b_{i}e_{i}\right) \stackrel{(*)}{=} \sum_{i=1}^{n} a_{i}b_{i} \stackrel{(*)}{=} \left(\sum_{i=1}^{n} a_{i}v_{i}\middle| \sum_{i=1}^{n} b_{i}v_{i}\right) = (x|y)$$

donde en (*) he aplicado que las bases escogidas son ortonormales, por lo que el producto escalar de dos elementos es la suma del producto de sus componentes expresadas en la correspondiente base.

Ejercicio 1.1.4. Probar que, en todo espacio pre-hilbertiano X, se verifica la *identidad del paralelogramo*:

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2 \quad \forall x, y \in X$$

Interpretar geométricamente el resultado.

$$||x+y||^2 + ||x-y||^2 = ||x||^2 + ||y||^2 + 2(x|y) + ||x||^2 + ||y||^2 - 2(x|y) = 2||x||^2 + 2||y||^2$$

Geométricamente, tenemos que la suma de los cuadrados de los lados de un paralelogramo equivale a la suma de los cuadrados de las diagonales.

Ejercicio 1.1.5. Para cualquier espacio pre-hilbertiano X, discutir la posibilidad de que la desigualdad triangular sea una igualdad, es decir, encontrar la condición necesaria y suficiente que deben cumplir dos vectores $x, y \in X$ para verificar que ||x + y|| = ||x|| + ||y||.

La demostración de la desigualdad triangular parte de la desigualdad de Cauchy-Schwartz:

$$||(x|y)|| \le ||x|| ||y|| \quad \forall x, y \in X$$

Además, tenemos que la igualdad se da solo en el caso de que sean linealmente dependientes.

Demostramos ahora la desigualdad triangular a partir de la desigualdad de Cauchy-Schwarz:

$$||x+y||^{2} = ||x||^{2} + ||y||^{2} + 2(x|y) \overset{(1)}{\leqslant} ||x||^{2} + ||y||^{2} + 2|(x|y)| \overset{(2)}{\leqslant} \overset{(2)}{\leqslant} ||x||^{2} + ||y||^{2} + 2||x|| ||y|| = (||x|| + ||y||)^{2}$$

Por tanto, tenemos que se da la igualdad si y solo si se dan las igualdades en (1) y (2).

- La igualdad en (1) se da si y solo si $(x|y) \ge 0$.
- La igualdad en (2) se da si y solo si se da la da desigualdad en Cauchy-Schwarz; y esta se da si y solo si $\{x, y\}$ son linealmente dependientes.

Por tanto, tenemos que se da la igualdad si y solo si ambos vectores son linealmente dependientes y además su producto escalar es positivo.

Ejercicio 1.1.6. Discutir la posibilidad de que la desigualdad triangular para la norma de la suma en \mathbb{R}^N sea una igualdad, es decir, encontrar la condición necesaria y suficiente que deben cumplir dos vectores $x, y \in \mathbb{R}^N$ para verificar la siguiente igualdad: $||x + y||_1 = ||x||_1 + ||y||_1$.

En primer lugar, como la norma 1 no procede de ningún producto escalar, tenemos que no son aplicables los resultados del ejercicio anterior. Demostramos por tanto la desigualdad triangular en el caso de la norma 1:

$$||x+y||_1 = \sum_{k=1}^N |x_k + y_k| \le \sum_{k=1}^N |x_k| + |y_k| = ||x||_1 + ||y||_2, \quad \forall x, y \in \mathbb{R}^n$$

Por tanto, tenemos que se dará la igualdad triangular si y solo si se cumple que $|x_k + y_k| = |x_k| + |y_k|$, $\forall k \in \Delta_N$. Para que esto ocurra, es necesario y suficiente lo siguiente:

$$x_k, y_k \geqslant 0, \quad \forall k \in \Delta_N$$

Ejercicio 1.1.7. Probar que, para N>1, no existe un producto escalar en \mathbb{R}^N cuya norma asociada sea la de la suma, y que lo mismo le ocurre a la norma del máximo. Probar también que, en el espacio vectorial $\mathcal{C}[0,1]$, las normas $||\cdot||_1$ y $||\cdot||_{\infty}$ no son las asociadas a ningún producto escalar.

Tenemos que en todo espacio pre-hilbertiano X se cumple la identidad del paralelogramo:

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2, \quad \forall x, y \in X$$

Busquemos contraejemplos que demuestren que eso no es cierto para $X = \mathbb{R}^n$ con la norma 1 y la del máximo. Sean los valores siguientes:

$$x = (1, ..., 1)$$
 $x + y = (0, 2, ..., 2)$
 $y = (-1, 1, ..., 1)$ $x - y = (2, 0, ..., 0)$

Veamos que no se cumple la identidad del paralelogramo en \mathbb{R}^n para la norma 1 y el máximo:

$$2||x||_1^2 + 2||y||_1^2 = 2n^2 + 2n^2 = 4n^2 \neq [2(n-1)]^2 + 2^2 = ||x+y||_1^2 + ||x-y||_1^2$$

$$2||x||_{\infty}^2 + 2||y||_{\infty}^2 = 2 \cdot 1^2 + 2 \cdot 1^2 = 4 \neq 8 = 2^2 + 2^2 = ||x+y||_{\infty}^2 + ||x-y||_{\infty}^2$$

Por tanto, en \mathbb{R}^n con la norma 1 y la norma del máximo no se cumple la identidad del paralelogramo. Por tanto, no existe un producto escalar asociado a dichas normas.

Veámoslo para el caso de $\mathcal{C}[0,1]$. Sean los valores siguientes:

$$f(x) = \cos x \ge 0 \in [0, 1]$$
 $(f+g)(x) = \cos x + \sin x \ge 0 \in [0, 1]$
 $g(x) = \sin x \ge 0 \in [0, 1]$ $(f-g)(x) = \cos x - \sin x$

Veámoslo para el caso de la norma 1:

$$||f||_1 = \int_0^1 |\cos x| \ dx = \sin x|_0^1 = \sin 1 \qquad ||g||_1 = \int_0^1 |\sin x| \ dx = -\cos x|_0^1 = -\cos 1 + 1$$
$$||f + g||_1 = \int_0^1 |\sin x + \cos x| \ dx = \sin x - \cos x|_0^1 = \sin 1 - \cos 1 + 1$$

$$||f - g||_1 = \int_0^1 |\cos x - \sin x| \, dx = \int_0^{\frac{\pi}{4}} \cos x - \sin x \, dx + \int_{\frac{\pi}{4}}^1 \sin x - \cos x \, dx =$$

$$= \sin x + \cos x \Big|_0^{\frac{\pi}{4}} + [-\cos x - \sin x]_{\frac{\pi}{4}}^1 = \sqrt{2} - 1 - \cos 1 - \sin 1 + \sqrt{2}$$

Escribimos ahora la identidad del paralelogramo para la norma 1:

$$2||f||_1^2 + 2||g||_1^2 = 2 \cdot \sin^2 1 + 2 \cdot (1 - \cos 1)^2 \neq$$

$$\neq (1 + \sin 1 - \cos 1)^2 + (2\sqrt{2} - 1 - \cos 1 - \sin 1)^2 = ||f + g||_1^2 + ||f - g||_1^2$$

Por tanto, en C[0, 1] con la norma 1 no se cumple la identidad del paralelogramo; por lo que no existe un producto escalar asociado a dicha norma. Veámoslo para la norma del máximo.

$$\begin{split} ||f||_{\infty} &= \max_{x \in [0,1]} \{\cos x\} = 1 \qquad ||g||_{\infty} = \max_{x \in [0,1]} \{\sin x\} = \sin 1 \\ ||f + g||_{\infty} &= \max_{x \in [0,1]} \{\cos x + \sin x\} = \frac{\sqrt{2}}{2} \\ ||f - g||_{\infty} &= \max_{x \in [0,1]} \{|\cos x - \sin x|\} = 1 \end{split}$$

Escribimos ahora la identidad del paralelogramo para la norma del máximo:

$$2||f||_{\infty}^{2} + 2||g||_{\infty}^{2} = 2(1 + \sin^{2} 1) \neq \frac{3}{2} = \frac{1}{2} + 1^{2} = ||f + g||_{\infty}^{2} + ||f - g||_{\infty}^{2}$$

Por tanto, en C[0,1] con la norma del máximo no se cumple la identidad del paralelogramo; por lo que no existe un producto escalar asociado a dicha norma.

Ejercicio 1.1.8. Sea X un espacio vectorial y sean $\mu, \nu: X \to \mathbb{R}$ dos normas en X. En cada uno de los siguientes casos, probar que la función $\|\cdot\|: X \to \mathbb{R}$, definida para todo $x \in X$ en la forma que se indica, es una norma en X:

1. $||x|| = \mu(x) + \nu(x)$:

Comprobamos las tres condiciones:

- $||x|| = \mu(x) + \nu(x) \ge 0$ por ser la suma de términos no-negativos. Además, se tiene que $||x|| = 0 \iff \mu(x) = \nu(x) = 0 \iff x = 0$.
- $||\lambda x|| = \mu(\lambda x) + \nu(\lambda x) = |\lambda| [\mu(x) + \nu(x)] = |\lambda| ||x||.$
- $||x+y|| = \mu(x+y) + \nu(x+y) \leqslant \mu(x) + \nu(x) + \mu(y) + \nu(y) = ||x|| + ||y||.$
- 2. $||x|| = \max\{\mu(x), \nu(x)\}$

Comprobamos las tres condiciones:

- $||x|| = \max\{\mu(x), \nu(x)\} \ge 0$ por ser $\mu(x), \nu(x) \ge 0$. Además, se tiene que $||x|| = 0 \Longleftrightarrow \mu(x) = \nu(x) = 0 \Longleftrightarrow x = 0$.
- $||\lambda x|| = \max\{\mu(\lambda x), \nu(\lambda x)\} = \max\{|\lambda| \mu(x), |\lambda| \nu(x)\} = |\lambda| \max\{\mu(x), \nu(x)\}$ y, por la definición de la norma, $|\lambda| ||x||$.
- Probamos la desigualdad triangular:

$$||x+y|| = \max\{\mu(x+y), \nu(x+y)\} \leqslant \max\{\mu(x) + \mu(y), \nu(x) + \nu(y)\} \stackrel{(*)}{\leqslant} \min\{\mu(x), \nu(x)\} + \max\{\mu(y), \nu(y)\} = ||x|| + ||y||$$

donde en (*) he aplicado lo siguiente:

$$\mu(x) + \mu(y) \le \max\{\mu(x), \nu(x)\} + \max\{\mu(y), \nu(y)\}$$

 $\nu(x) + \nu(y) \le \max\{\mu(x), \nu(x)\} + \max\{\mu(y), \nu(y)\}$

3. $||x|| = [\mu(x)^2 + \nu(x)^2]^{1/2}$

Comprobamos las tres condiciones:

- $||x|| = [\mu(x)^2 + \nu(x)^2]^{1/2} \geqslant 0$ por ser raíz de la suma de términos nonegativos. Además, se tiene que $||x|| = 0 \iff \mu(x) = \nu(x) = 0 \iff x = 0$.
- $||\lambda x|| = [\mu(\lambda x)^2 + \nu(\lambda x)^2]^{1/2} = [\lambda^2 (\mu(x)^2 + \nu(x)^2)]^{1/2} = |\lambda| ||x||.$

• Verificamos la desigualdad triangular:

$$\begin{aligned} ||x+y|| &= \left[\mu(x+y)^2 + \nu(x+y)^2\right]^{1/2} \leqslant \\ &\leqslant \left[(\mu(x) + \mu(y))^2 + (\nu(x) + \nu(y))^2\right]^{1/2} \leqslant \\ &\leqslant \left[\mu(x)^2 + \mu(y)^2 + \nu(x)^2 + \nu(y)^2\right]^{1/2} \leqslant \\ &\stackrel{(*)}{\leqslant} \left[\mu(x)^2 + \nu(x)^2\right]^{1/2} + \left[\mu(y)^2 + \nu(y)^2\right]^{1/2} = ||x|| + ||y|| \end{aligned}$$

donde en (*) he aplicado que, $\forall a, b, c, d \in \mathbb{R}$, se tiene que:

$$\sqrt{a+b+c+d} \leqslant \sqrt{a+c} + \sqrt{b+d} \iff$$

$$\iff a+b+c+d \leqslant a+c+b+d+2\sqrt{(a+c)(b+d)} \iff 0 \leqslant 2\sqrt{(a+c)(b+d)}$$

Ejercicio 1.1.9. Probar que la función $\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por:

$$\rho(x,y) = |y - x|^{1/2} \quad \forall x, y \in \mathbb{R}$$

es una distancia en \mathbb{R} .

Comprobemos las tres condiciones para que sea una distancia:

- 1. $\rho(x,y)=|y-x|^{1/2}\geqslant 0$ trivialmente. Además, $\rho(x,y)=|y-x|^{1/2}=0\Longleftrightarrow y=x.$
- 2. $\rho(x,y) = |y-x|^{1/2} = \rho(y,x) = |x-y|^{1/2}$ ya que, en \mathbb{R} , se tiene que |y-x| = |x-y|.
- 3. $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$.

$$\rho(x,z) = |z - x|^{1/2} = |z - x + y - y|^{1/2} = \sqrt{|y - x + z - y|} \leqslant \sqrt{|y - x| + |z - y|} \leqslant \sqrt{|y - x| + |z - y|} \leqslant \sqrt{|y - x|} + \sqrt{|z - y|} = \rho(x,y) + \rho(y,z)$$

Ejercicio 1.1.10. Sean X un espacio normado, Y un espacio vectorial y $f:Y\to X$ una aplicación lineal e inyectiva. Probar que, definiendo

$$||y|| = ||f(y)||, \qquad y \in Y$$

se obtiene una norma en Y. Establecer un resultado análogo para espacios métricos.

Demostramos que la norma así definida efectivamente es una norma.

- $||y|| = ||f(y)|| \ge 0$ por ser ||f(y)|| una norma vectorial. Además, se tiene que $||y|| = ||f(y)|| = 0 \iff f(y) = 0 \iff y = 0$, donde la última doble implicación se debe a que f es inyectiva.
- $||\lambda y|| = ||f(\lambda y)||$. Por ser f lineal, tenemos que $||f(\lambda y)|| = ||\lambda f(y)||$, y por ser esta una norma en X, tenemos que $||\lambda f(y)|| = |\lambda| ||f(y)||$. Por hipótesis, tenemos que $|\lambda| ||f(y)|| = |\lambda| ||y||$, por lo que se tiene que $||\lambda y|| = |\lambda| ||y||$.

• Comprobemos la desigualdad triangular:

$$||x+y|| = ||f(x+y)|| \stackrel{(*)}{=} ||f(x)+f(y)|| \le ||f(x)|| + ||f(y)|| = ||x|| + ||y||$$

donde en (*) hemos empleado que f es una aplicación lineal.

El resultado análogo para espacios métricos es:

Sean X un espacio métrico, Y un conjunto y $f:Y\to X$ una aplicación inyectiva. Probar que, definiendo

$$d(y,y') = d[f(y),f(y')], \qquad y,y' \in Y$$

se obtiene una distancia en Y. Demostrémoslo:

- $d(y, y') = d[f(y), f(y')] \ge 0$ por ser d[f(y), f(y')] una distancia. Además, se tiene que $d(y, y') = d[f(y), f(y')] = 0 \iff f(y) = f(y') \iff y = y'$, donde la última doble implicación se debe a que f es inyectiva.
- La simetría se obtiene trivialmente por ser d[f(y), f(y')] una distancia en X.
- Comprobemos la desigualdad triangular:

$$d(y, y') = d[f(y), f(y')] \le d[f(y), f(z)] + d[f(z), f(y')] = d(y, z) + d(z, y')$$

Nótese que para los espacios métricos no se impone que Y sea un espacio vectorial ni que f sea una forma lineal inyectiva. Tan solo se imponen que X sea un conjunto e Y una aplicación inyectiva.

1.2. Topología de un espacio métrico

Ejercicio 1.2.1. Probar que, en todo espacio métrico, la distancia queda determinada cuando se conocen las bolas abiertas. En el caso particular de un espacio normado, probar que la norma queda determinada cuando se conoce la bola abierta unidad.

Ejercicio 1.2.2. Sea X un espacio normado, $x, y \in X$ y $r, \rho \in \mathbb{R}^+$. Probar que:

1.
$$B(x,r) \cap B(y,\rho) = \emptyset \iff ||y-x|| < r + \rho$$
.

2.
$$B(y, \rho) \subset B(x, r) = \emptyset \iff ||y - x|| < r - \rho$$
.

¿Son ciertos los resultados análogos en un espacio métrico cualquiera?

Ejercicio 1.2.3. Dar un ejemplo de una familia numerable de abiertos de \mathbb{R} cuya intersección no sea un conjunto abierto.

Ejercicio 1.2.4. Si A es un subconjunto no vacío de un espacio métrico E con distancia d, se define la distancia de un punto $x \in E$ al conjunto A por

$$d(x,A) = \inf\{d(x,a) \mid a \in A\}$$

Probar que $\overline{A} = \{x \in E \mid d(x, A) = 0\}.$

Ejercicio 1.2.5. Sea X un espacio normado, $x \in X$ y $r \in \mathbb{R}^+$, probar que

1.
$$\overline{B(x,r)} = \overline{B}(x,r)$$
,

2.
$$B(x,r) = [\overline{B}(x,r)]^{\circ}$$

Deducir que $Fr(B(x,r)) = Fr(\overline{B}(x,r)) = S(x,r)$. ¿Son ciertos estos resultados en un espacio métrico cualquiera?

Ejercicio 1.2.6. Para un intervalo $J \subset \mathbb{R}$, calcular los conjuntos J° , \overline{J} , J' y Fr J.

Ejercicio 1.2.7. En el espacio métrico \mathbb{R} y para cada uno de los conjuntos \mathbb{N} , \mathbb{Z} , \mathbb{Q} y $\mathbb{R} \setminus \mathbb{Q}$, calcular su interior y su cierre, sus puntos de acumulación, sus puntos aislados y su frontera.

Ejercicio 1.2.8. Si un subconjunto A de un espacio métrico E verifica que $A' = \emptyset$, probar que la topología inducida por E en A es la discreta. ¿Es cierto el recíproco?

Ejercicio 1.2.9. Sean $\{x_n\}$ e $\{y_n\}$ sucesiones convergentes en un espacio métrico E con distancia d. Probar que la sucesión $\{d(x_n, y_n)\}$ es convergente y calcular su límite.

Ejercicio 1.2.10. Sea $E = \prod_{k=1}^{N} E_k$ un producto de espacios métricos y $A = \prod_{k=1}^{N} A_k \subset E$,

donde $A_k\subset E_k$ para todo $k\in I_N$. Probar que $A^\circ=\prod\limits_{k=1}^NA_k^\circ$ y $\overline{A}=\prod\limits_{k=1}^N\overline{A_k}$. Deducir que A es un abierto de E si, y sólo si, A_k es un abierto de E_k para todo $k\in\Delta_N$, mientras que A es un cerrado de E si, y sólo si, A_k es un cerrado de E_k para todo $k\in\Delta_N$.