STA723 Case Study - Group 1

Melody Jiang, Irene Ji, Keru Wu 1/20/2020

Abstract

This report was commissioned to analyze the data from the National Collaborative Perinatal Project(CPP). The report evaluates association between exposures Dichlorodiphenyldichloroethylene (DDE) & Polychlorinated Biphenyls (PCBs) and the risk of preterm birth. After EDA and data preprocessing, we carry out principle component analysis (PCA) for dimensionality reduction, and adopt the Generalized Additive Model (GAM) as well as its Bayesian counterpart for analysis. Our approach successfully captures the nonlinearity between interested variables and risk of premature delivery, and it also aligns with known conclusions in epidemiology. Our results demonstrate that exposure to higher concentrations of DDE and PCBs are associated higher risk of preterm birth.

1. Introduction

The dataset taken from CPP includes 2380 samples of women and their childrenwhich was studied by Longnecker et al. (2001). A particular focus of this study was to determine the association between chemical exposures to woen and adverse pregnancy and developmental outcomes in their children. DDE and PCBs are of primary interest among all exposures, both of which are breakdown products in the body of chemicals. These chemicals build up fatty deposits and exist universally in our body, therefore impacting our health. The dataset also contains other variables such as age, race, smoking status, etc. Levels of cholesterol and triglycerides are available as well. The goal of our analysis is to assess how DDE and PCBs relate the risk of preterm birth, which is defined as deliveries occurring lower than 37 weeks.

Our findings demonstrate that there are positive association between two interested exposures and the risk of preterm birth. Higher concentrations of DDE and PCBs are related to higher risk of premature delivery. Although various PCBs show diffrent significance in the relationship, generally they all contribute to higher risk. Some noticable PCBs are pcb_074, pcb_105, pcb_118, pcb_153 and pcb_170. Another finding of our analysis is that when concentration of these exposures is below a lower bound, both exposures have almost no effect, while they have a constant effect when they are beyond a higher bound. This result indicate flat regions in the association and could be studied in the future.

2. Materials & Methods

However, frequentist approach may overestimate uncertainty and produce a non-significant p-value. In addition, residual plot of previous GAM model indicates that assumptions of frequentist GAM could be unwarranted. To improve performance of our model, we instead use a Bayesian Generalized Additive Model. We add priors on the common regression coefficients and priors on the standard deviations of the smooth terms. We use default settings in $stan_gamm4$ function in R package rstanarm, which adopts a weak informative normal prior for all common regression coefficients and standard deviations of the smooth terms.

3. Results

3.1 Exploratary Data Analysis

3.2 Main Results

Results from our Bayesian Generalized Additive Model align with previous results in frequentist approach. In Figure 1, higher concentration of DDE and PCBs is related to higher risks for pregnant women. In addition, both DDE and the first principle component have significant p-values, indicating the importance of these exposures in the relationship with the response. If we further consier use estimates of Bayesian GAM to check residual assumptions of GAM, Figure 2 verifies the correctness of Bayesian GAM, which outperforms that of frequentist approach. Furthermore, estimated effects of DDE and PCBs have narrower credible intervals compared to frequentist ones. It also captures some flat regions when concentration is relatively low and high.

3.3 Sensitivity Analysis

Frequentist GAM and Bayesian GAM give confidence intervals and credible intervals for measuring the effects respectively. Generally speaking, Bayesian GAM has narrower intervals and more significant p-values in anova tests. Both models show one common result that when concentrations of DDE & PCBs become higher, uncertainty increase greatly. This is partially due to the fact that we have limited data for higher level concentrations.

In addition, how to deal with the collinearity of PCBs and carry out dimensionality reduction has great influence in our approach. Our adopted PCA approach has the best performance compared to simple sum and factor analysis, which either have low sigfinicance for PCBs, or become unwarranted after model check.

4. Discussion

This report has analyzed how DDE and PCBs relate to the risk of premature delivery. After preprocessing data (e.g. impute missing data) and dimensionality reduction (PCA), we build up different models for the data and finally adopt the Generalized Additive Model (GAM) and its Bayesian version. Our approach has advantages that it captures the nonlinearity relationship between exposures and outcomes, and it also fits confounding variables. We conclude that higher exposure to DDE and certain PCBs may be associated with higher risk of premature delivery.

The first extension of our approach is to deal with different centers specially. Our model demonstrates that center 15 and center 37 may deviate from others, which genrally collect samples with higher risks. There are other ways which may perform better in dealing with centers. One can adopt a Bayesian hierarchical model which specifies different variances between centers. Another more direct extension of our GAM model is to include mixed effect. We may use Generalized Additive Mixed Model (GAMM) to consider random effect of centers and it can also be applied to other categorical variables like smoking status and race.

After we find out that DDE and PCBs are related to higher risk of preterm birth, we can examine the trend of exposures effects more accurately. Specifying a special prior (e.g. guarantee monotonicity) may benefit from narrower credible intervals compared to frequentist approach and naive bayes approach.

Furthermore, interaction between chemicals also impacts human health outcomes. Collinearity among PCBs indicates the need for a general dimension reduction method or a variable selection approach. Ferrari and Dunson (2019) build up a bayesian factor model designed for interactions. High correlation

between exposure levels can be explained in this flexible dimension reduction approach. Another future research direction is to include penalty in GAM for variable selection.

References

Figure 1: Bayesian Generalized Additive Model

Figures and Tables

Figure 2: Bayesian GAM model check