Aprendizado de Máquina

Sistemas de Informação Inteligente Prof. Leandro C. Fernandes

Adaptado a partir do material de: Ricardo J. G. B. Campello, Eduardo R. Hruschka e André C. P. L. F. de Carvalho

Tópicos a serem abordados:

- Aprendizado de Máquina Supervisionado
 - Classificação
 - Algoritmo k–NN

- Aprendizado de Máquina Não Supervisionado
 - Agrupamento de Dados
 - Algoritmo das k-médias (k-Means)

Classificação

- Técnica supervisionada que classifica novas instâncias em uma ou mais classes conhecidas
 - Número definido de classes
 - Frequentemente apenas duas (classificação binária)

- Exemplos
 - Diagnóstico, Análise de crédito, ...

Classificação

- Existem várias técnicas, para diferentes contextos de aplicação
 - Sucesso de cada método depende do domínio de aplicação e do problema particular em mãos
 - Técnicas simples muitas vezes funcionam bem!

Análise Exploratória de Dados!

k-Nearest-Neighbors (kNN)

 O Algoritmo k-Vizinhos-Mais-Próximos, ou kNN (k-Nearest-Neighbors) é um dos mais simples e bem difundidos algoritmos do paradigma baseado em instâncias.

- Ideia Básica:
 - Se anda como um pato, "quacks" como um pato, então provavelmente é um pato

Em outras palavras, o kNN tem por objetivo:

 Consiste em classificar a instância t atribuindo a ela o rótulo mais frequentemente dentre as k amostras mais próximas.

Uma medida de proximidade bastante utilizada é a distância Euclidiana: $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

Requer 3 coisas:

- A base de dados de treinamento
- Uma medida de (dis)similaridade entre os objetos da base
- O valor de K: no. de vizinhos mais próximos a recuperar

Para classificar um objeto não visto:

- Calcule a (dis)similaridade para todos os objetos de treinamento
- Obtenha os K objetos da base mais similares (mais próximos)
- Classifique o objeto não visto na classe da maioria dos K vizinhos

k-NN: Visão geométrica para 2 atributos contínuos e dissimilaridade por distância Euclidiana. K = 1, 2 e 3

kNN: Escolha do Valor de K

- Muito pequeno:
 - discriminação entre classes muito flexível
 - porém, sensível a ruído
 - classificação pode ser instável (p. ex. K = 1 abaixo)

kNN: Escolha do Valor de K

- Muito grande:
 - mais robusto a ruído
 - menor flexibilidade de discriminação entre classes
 - privilegia classe majoritária...

kNN: Configuração

- Valor ideal?
 - Depende da aplicação
 - Análise Exploratória dos Dados

- Como calcular as (dis)similaridades...?
 - Existem dezenas de medidas, sendo que aquela mais apropriada depende:
 - do(s) tipo(s) do(s) atributos!
 - do domínio de aplicação!
- Por exemplo:
 - Euclidiana, City Block, Mahalanobis, Casamento Simples (Simple Matching), Jaccard, Cosseno, Pearson, ...

kNN: Um Exemplo

A qual classe pertence este ponto?
Azul ou vermelho?

Calcule para os seguintes valores de k: 1, 3, 5 e 7

- k = 1: não se pode afirmar
- k = 3: vermelho
- k = 5: vermelho
- k = 7: azul
- A classificação pode mudar de acordo com a escolha de k.

- Além da escolha de uma medida apropriada, é preciso condicionar os dados de forma apropriada
 - Por exemplo, atributos podem precisar ser normalizados para evitar que alguns dominem completamente a medida de (dis)similaridade

• Exemplo:

- Altura de uma pessoa adulta normal: 1.4m a 2.2m
- Peso de uma pessoa adulta sadia: 50Kg a 150Kg
- Salário de uma pessoa adulta: \$400 a \$30.000

Exercício

 Normalize os dados abaixo para em [0, 1] e utilizando o kNN com Distância Euclidiana, classifique a última instância para K = 1, 3 e 5. Discuta os resultados.

Febre	Enjôo	Mancha	Diagnóstico
0	1	3	doente
1	0	2	saudável
2	1	3	doente
2	0	0	saudável
0	0	4	doente
1	0	1	???

kNN Ponderado

- Na versão básica do algoritmo, a indicação da classe de cada vizinho possui o mesmo peso para o classificador
 - 1 voto (+1 ou -1) por vizinho mais próximo
- Isso torna o algoritmo muito sensível à escolha de K
- Uma forma de reduzir esta sensibilidade é ponderar cada voto em função da distância ao respectivo vizinho
 - Heurística Usual: Peso referente ao voto de um vizinho decai de forma inversamente proporcional à distância entre esse vizinho e o objeto em questão

Exercício

 Repita o exercício anterior com a ponderação de votos pelo inverso da Distância Euclidiana e discuta o resultado, comparando com o resultado anterior

Febre	Enjôo	Mancha	Diagnóstico
0	1	3	doente
1	0	2	saudável
2	1	3	doente
2	0	0	saudável
0	0	4	doente
1	0	1	???

kNN: Características

- kNN não constrói explicitamente um modelo
 - Isso torna a classificação de novos objetos relativamente custosa computacionalmente
 - É necessário calcular as distâncias de cada um dos objetos a serem classificados a todos os objetos da base de instâncias rotuladas armazenada
 - Problema pode ser amenizado com algoritmos e estruturas de dados apropriados (além do escopo deste curso)

kNN: Características

- Sensíveis ao projeto
 - Escolha de K e da medida de (dis)similaridade...
- Podem ser sensíveis a ruído
 - Pouco robustos para K pequeno
- É sensível a atributos irrelevantes
 - distorcem o cálculo das distâncias
- Podem ter poder de classificação elevado
 - Função de discriminação muito flexível para K pequeno

Classificação x Clustering

Classificação:

 Aprender um método para predizer as categorias (classes) de instâncias não vistas a partir de exemplos prérotulados (classificados)

Agrupamento de Dados (*Clustering*):

 Encontrar os rótulos das categorias (grupos ou clusters) diretamente a partir dos dados

Agrupamento de Dados (Clustering)

- Aprendizado não supervisionado
 - Encontrar grupos "naturais" de objetos não rotulados...
 - tais que objetos em um mesmo grupo sejam similares ou relacionados entre si e diferentes ou não relacionados aos demais

Definindo o que é um *Cluster*

- Conceitualmente, definições são subjetivas:
 - Homogeneidade (coesão interna)...
 - Heterogeneidade (separação entre grupos)...
- É preciso formalizar matematicamente
 - Existem diversas medidas
 - Em geral, baseadas em algum tipo de (dis)similaridade
 - Por exemplo, distância Euclidiana

Clustering

- Assim como para classificação, existem várias técnicas, para diferentes contextos de aplicação
 - Sucesso de cada método depende do domínio de aplicação e do problema particular em mãos
 - Análise Exploratória de Dados!

k-Means

- O Algoritmo k-Means é um dos mais simples e populares algoritmos de agrupamento de dados.
 - Minimiza as distâncias intra-grupos
 - indiretamente maximiza as distâncias inter-grupos

k-Means (k-Médias)

- 1. Escolher aleatoriamente um número k de protótipos (centros) para os clusters
- Atribuir cada objeto para o cluster de centro mais próximo (segundo alguma distância, e.g. Euclidiana)
- 3. Mover cada centro para a média (centróide) dos objetos do cluster correspondente
- 4. Repetir os passos 2 e 3 até que algum critério de convergência seja obtido:
 - número máximo de iterações
 - limiar mínimo de mudanças nos centróides

Escolher 3 centros iniciais

Atribuir cada objeto ao cluster de centro + próximo

Mover cada centro para o vetor médio do cluster (centróide)

Re-atribuir objetos aos clusters de centróides mais próximos

Mover centros dos clusters...

Aspectos importantes ...

- O resultado pode variar significativamente dependendo da escolha das sementes (protótipos) iniciais;
- k-means pode "ficar preso" em ótimos locais;
- Exemplo:
 - Como evitar?

Resumo do k-Means

Vantagens

- Simples e intuitivo
- Possui complexidade computacional linear em todas as variáveis críticas
- Eficaz em muitos cenários de aplicação e produz resultados de interpretação simples
- Considerado um dentre os 10 mais influentes algoritmos em mineração de dados

Desvantagens

- k = ?
- Sensível à inicialização dos protótipos e a outliers
- Limita-se a encontrar clusters volumétricos / globulares
- Cada item deve pertencer a um único cluster (partição rígida, ou seja, sem sobreposição)
- Limitado a atributos numéricos