Introduction to Information Security 14-741/18-631 Fall 2021 Unit 2: Lecture 2 Asymmetric Key Cryptography

Limin Jia

liminjia@andrew

This lecture's agenda

Outline

- Public key cryptography
 - **▼** Diffie-Hellman
 - **▼** Public key encryption schemes
 - A concrete implementation: RSA
 - Digital signature schemes

Objectives

▼ Continue our overview of basic cryptographic techniques

Difficulties w/ symmetric keys

- Suppose Alice wants to talk to Bob but doesn't want Eve to be able to listen
- Symmetric crypto
 - ▼ E.g., DES, AES...

How can Alice and Bob share the secret key?

More difficulties w/ sym. keys

More difficulties w/ sym. keys

More difficulties w/ sym. keys

- Attempts to solve the problem of secret key distribution by having people compute the secret key independently, using publicly available information and personal secrets
- Proposed by Diffie & Hellman in 1976
 - Different way of doing crypto than had been proposed in the previous 4,000+ years
 - Foundation for public key crypto (RSA, ElGamal, etc)

■ Side notes:

- Merkle credited by Hellman as a strong inspiration for the design
- Similar method developed in the 1960s at GCHQ (UK) by James Ellis, but classified...

Merkle, Hellman and Diffie (1977)

Alice

- 1. Agree g (base) and p (prime)
- 2. Make information public (doesn't matter who gets it)

Bob

3A. Pick secret value A

Alice

- 1. Agree g (base) and p (prime)
- 2. Make information public (doesn't matter who gets it)

3B. Pick secret value B

Bob

4A. Send $g^A \mod p$

Insecure physical channel

3A. Pick secret value A

Alice

- 1. Agree *g* (base) and *p* (prime)
- 2. Make information public (doesn't matter who gets it)

4B. Send $g^B \mod p$

3B. Pick secret value B

Bob

4A. Send $g^A \mod p$

Insecure physical channel

3A. Pick secret value A

Alice

5A. Compute $(g^B \mod p)^A \mod p = g^{AB} \mod p$

5B. Compute $(g^A \mod p)^B \mod p = g^{AB} \mod p$

4B. Send $g^B \mod p$

3B. Pick secret value B

Bob

Insecure physical channel

Why Diffie-Hellman works

Eve

Based on hard discrete logarithm problem

- Given two large prime numbers g and p, and $x = g^A \mod p$, computing A is very hard
- The best known algorithm for finding A is **exponential** in time, (i.e., roughly **equivalent** to a brute force attack)
- Eve (eavesdropper)
 - \blacksquare Can easily get $g^A \mod p$, $g^B \mod p$
 - But can't compute (easily) g^{AB} mod p without A and B
- Later work on asymmetric key encryption use different hard mathematical problems

What's missing?

Desired properties:

- Only Alice and Bob know K
- After exchange, if Alice thinks she shares a key K with Bob, then Bob also thinks he shares the same key K with Alice

■ Diffe-Hellman key exchange

■ Does not provide authentication of the protocol participants

4A. Send $g^A \mod p$

Goal: exchange a shared secret key between Alice and Bob

4B. Send $g^B \mod p$

Bob

Man-in-the-Middle

Desired properties:

- Only Alice and Bob know K
- After exchange, if Alice thinks she shares a key K with Bob, then Bob also thinks he shares the same key K with Alice

Outline

- Diffe-Hellman key exchange
- Asymmetric (public) key crypto
 - Public key encryption schemes
 - A concrete implementation: RSA
 - Digital signature schemes

Public key (asymmetric) crypto

- Everybody has a key pair: private and public key
- Private key is not communicated to anyone
- Public key is freely distributed
- Allows encryption and authentication
- Side note:
 - Diffie and Hellman conjectured this existed

Requirements

- Public (encryption) and private (decryption) keys must be different
- Private key must be impossible (or, more formally, "extremely hard to") to derive from the public key
- The ciphertext should not reveal anything about the private key
- Must be easy to encrypt/decrypt if knowing the right keys

Informal Definition of Public Key Encryption

A public key encryption scheme is a triple

$\langle G, E, D \rangle$ of efficiently computable functions

 \blacksquare G outputs a "public key" K and a "private key" K^{-1}

$$\langle K, K^{-1} \rangle \leftarrow G(\cdot)$$

 \blacksquare E takes public key K and plaintext m as input, and outputs a ciphertext

$$c \leftarrow E_{K}(m)$$

ightharpoonup D takes a ciphertext c and private key K^{-1} as input, and outputs \perp or a plaintext

$$m \leftarrow D_{K^{-1}}(c)$$

- **¬** If $c \leftarrow E_K(m)$ then $m \leftarrow D_{K^{-1}}(c)$
- ▶ If $c \leftarrow E_K(m)$, then c and K should reveal "no information" about m

Public key encryption

RSA (1975-1978)

- Developed shortly after Diffie-Hellman paper
- Takes its name from the initials of its inventors
 - Ron **R**ivest
 - ▼ Adi Shamir
 - ▼ Leonard Adelman
- Possibly best known public key algorithm
- Allows encryption and authentication
- Clifford Cocks (w/ James Ellis and Malcolm Williamson), at GCHQ (UK), invented independently a particular case of this method 3 years before RSA, but it was classified by British intelligence
 - Declassified in 1997

Shamir, Rivest and Adelman ↑
From: http://www.usc.edu/dept/molecular-science/RSApics.htm

RSA

Key generation:

- Note That It is a such that $p \neq q$, randomly and independently of each other.
- Pick integer e coprime with (p-1)(q-1) (i.e., gcd(e, (p-1)(q-1)) = 1)
- ▼ Compute d such that

ed = 1 mod
$$(p-1)(q-1)$$
 i.e., ed mod $(p-1)(q-1) = 1$

- ▼ Private key =(n=pq,d)
- ▼ Public key = (n=pq, e)

Encryption:

- \blacksquare $E_{(n, e)}(m) = m^e \mod n$
- Decryption:
 - $D_{(n,d)}(c) = c^d \mod n$

Why RSA works

- **ed mod** (p-1)(q-1) = 1
- \blacksquare $\mathbf{n} = \mathbf{pq}$
- $\mathbf{E}_{(\mathbf{n}, e)}(\mathbf{m}) = \mathbf{m}^e \mod \mathbf{n}$
- Need $D_{K}^{-1}(E_{K}(m)) = m$
- (m^e mod n)^d mod n = m^{ed} mod n = m^{h(p-1)(q-1)+1} mod n = m mod n

Follows from Fermat's little theorem Or use Chinese remainder theorem

Why RSA works

Hard problems:

- Integer factorization
 - \neg Given a number n, find its prime factorization, i.e.,

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} p_4^{e_4} \dots$$

- **¬**Computationally infeasible to find large prime factorization of N = pq if p and q are large prime numbers
- RSA problem:
 - **¬**Given $c = m^e \mod n$ and (n,e), compute m
 - ■The best algorithm so far is to factor n

A note on RSA

- Only presented the mathematical intuition
- Deploying RSA in practice is nowhere near that simple
 - ▼ You need specific "add-ons" to avoid vulnerabilities (OAEP for encryption)
- Choosing parameters properly is paramount
 - Safely choosing and validating primes is mandatory
 - E.g., commonly chosen e=3 turns out to be less secure than previously thought
 - Instantiated as Bleichenbacher attack (2006) against Firefox
 - Now 65537 is recommended

 Now 65537 is recommended
- Properly using RSA in practice requires more study/effort

More Attacks on RSA (don't be naive!)

- Don't pick e=3 (Hastad's Broadcast attack)
 - If you get three identical messages to different people
 - \blacksquare C1=M³ mod N1, C2 = M³ mod N2, C3 = M³ mod N3
 - Thinese remainder theorem gives C' = M³ mod N1*N2*N3 = M³
 - $Arr M^3$ < N1*N2*N3 so M = cube root of C' (because M < N1, N2, N3)

More Attacks on RSA (don't be naive!)

■ Timing Attacks

- ▼ Powermod algorithm uses repeated squaring and multiplication
- Measure time to figure out if multiplications occur

Power Attacks

■ Measure smartcard power consumption during signature generation

Digital Signatures (Informal Definition)

- A digital signature scheme is a triple $\langle G, S, V \rangle$ of efficiently computable algorithms
 - G outputs a "public key" K and a "private key" K-1

$$< K, K^{-1} > \leftarrow G(\cdot)$$

■ S takes a "message" m and K^{-1} as input and outputs a "signature" σ

$$\sigma \leftarrow S_{K^{-1}}(m)$$

 \blacksquare V takes a message m, signature σ and public key K as input, and outputs a bit b

$$b \leftarrow V_K(m, \sigma)$$

■ If $\sigma \leftarrow S_{K^{-1}}(m)$ then $V_K(m, \sigma)$ outputs 1 ("valid")

Security requirement

¬ Given only K and message/signature pairs $\{< m_i, S_{K^{-1}}(m_i)>\}_i$, it is computationally infeasible to compute $< m, \sigma>$ such that

$$V_K(m, \sigma) = 1$$

for any new $m \neq m_i$

Digital Signatures (Public key authentication)

Scenario:

- Alice signs a message M with her **private** key
- Bob can verify that M comes from Alice using Alice's **public** key
- No one but Alice could sign the message that way (duplicating a private key is impossible unless the key is leaked)

■ Very effective defense against man-in-the middle attacks

■ But you need a trusted way to verify keys (e.g. certificate authority that signs them)

Public key authentication (e.g., RSA)

Digital signatures compromises

Existential forgery

■ The attacker manages to forge a signature of (at least) one message, but not necessarily of his choice

Selective forgery

■ The attacker manages to forge a signature of (at least) one message of his choice

Universal forgery

■ The attacker manages to forge a signature of any message

■ Total break

■ The attacker can compute the signer's private key

Comparison sym vs. asym crypto

Symmetric crypto (AES)

- Need shared secret
- 256-bit key for high security
- 1,000,000 ops/s on a 1 GHz processor

>100x speedup in hardware

Asymmetric crypto*

- Need authentic public key
- 2048-bit key (RSA)
- 100 signatures/s and 1,000 verifications/s (RSA) on 1 GHz processor
- ~ 10x speedup in hardware

Take away slide

- Exchanging secret keys is difficult, and doesn't scale well
- Diffie-Hellman-Merkle key exchange protocol makes each party independently compute the secret key based on
 - \neg publicly available information (g, p),
 - their own secret (A and B)
 - partial information about the other party's secret
 - Scheme does not support authentication

Public key crypto

- Builds on Diffie-Hellman-Merkle's ideas
- ▼ Provides encryption and authentication
 - Encryption: use the recipient's public key
 - Authentication: use your private key
- Much slower than symmetric cryptography
- Must be careful with implementation!

Digital signatures

- Rely on public key crypto
- Useful for authentication, and to thwart man-in-the-middle attacks