2. HISTORY OF ORGANIC chronicling the GARDENING offects of DOT

Farming in the olden times on the env.

Agricultural practices (from Roman books) animal dang crop rotation

8 the mon) Abramatin.

manure application

· green manure - growing plants planed back into

· tillage] กพา

• use of lime ปูนหาว เสียงขอกลด้ว

· growth of legumes for soil improvement

 traditional(natural) farming- no synthetic chemicals, practiced for thousands of years

introduced inorganic methods

 conventional farming—> used synthetic chemical fertilisers and pesticides

- ++productivity, profitability

Pre-World War II

- first 40 years of 20th century-rapidly changed farming

· gasoline-powered engines -> the era of the tractor.

· reduced need for farm labor

improved plant varieties

labor-saving machinery

chemical fertilisers and pesticides

farmer population —decreasing

bigger fields, more specialised cropping
 Justus von Liebig: for increasing efficiency

German chemist

· "father of the chemical tertilizer" - / living things promoted importance of adding inorganic minerals as plant nutrition

· Law of the Minimum-growth controlled not by total amount of resources available but by the scarcest resource(limiting lactor)

Sir John Lawes:

· produced superphosphate from the phosphate in rock,

Research Station found the

 investigates impact of inorganic and organic fertilizers in crop yields

- Haber and Bosch → nobel prizes

developed process that converts nitrogen

gas into ammonia evolved into NH4NO3 - nitrate fertilizer . Parke you paralysis.

Lever long lasting.

technology - organophosphate nerve gas - insecticides

DDT - pesticide that were useful

MMII

brought

Slaunching the era of major cause at dismbility. seems hat of WINT pesticide use

DOT was wedge control maluria & typhic.

After World War II

widespread use as DDT

· insects became resistant

chemicals did not decomposed rapidly. persisted in environment

· banned in many countries

"Silent Spring"- Rachel Carson - Us boxong DOT

biomagnification- when chemicals become concentrated in tissues as they move up the food chain, bioman... cam only happen when.

· fat soluble chemicals

long life span

· biologically active (reactive to organic matter)

pesticide overuse

The Green Revolution 1960's

increase in crop production through

· new high-yielding varieties opply a lot of water and fertilizer

· controlled irrigation supply water.

chemical fertiliser

· chemical pesticides - insecticides , fungicides , harbicides , etc

machinery

machinery
 consequences of orienting toward economic

· increased yield

· negative impact on farmers and environment

lead to monoculture cropping system

- leads to loss of genetic diversity

Problems with Chemical

Farming

decrease in soil fertility

need to use more chemical fertilisers every year (pesticide resistance) - to ashtere similar year

increase in disease and pest problems

contaminated water

contaminate produce

Modern Organic Farming

Sir Albert Howard: "father of modern

forganic agriculture" British botanist An Agricultural Testament, problems of plant diseases, soil erosion under chemical agriculture

- Natural farming:

no-till system for small-scale grain | North 16 production

· Principles: of natural tarming

no plowing

no chemical fertilisers

no pesticides

ducks, carps helps eat pests and slugs

ground covered using straw from previous crop as mulch

Kyusei(saving) Nature Farming

Molichi Olada

1 of 11

catastrophic crop tails

+ ununic : protein, struck, int., etc.

imes of organic material degraded further

burn crop residues

 destroys little läyer and diminishes amount of OM in soil

5. remove crop residues -> decrease nutrient in the

 crop residues should be returned to soil as manure/composts

6. tillage/plowing - compaction of soil below the

 increases aeration depth of tillage speeds up decomposition

- mulch- organic/inorganic

- C:N ratio -> OM is made up of 400, % N

carbon- structural frameworks and energy nitrogen- protein and enzyme productions

high N = high decomposition rate

Adam with . C:N low = too hot = kills microorganism (excess N)

C:N high = not enough N (excess c, too life N)

5. PLANT GROWTH AND FACTORS AFFECTING IT

binomial nomenclature: Genus, species

Plant groups

1. Bryophytes

· phylum Bryophyta

non-vascular plants (don't conduct tissue)

limited size

 damp places · ex: moss

2. Ferns

vascular

reproduces by spores

· no true leaves; only fronds

3. Gymnosperms

reproduce with seeds found in cones

evergreen

4. Angiosperms

reproduce by flowers

monocot: flower parts in multiples of 3

cothedin . dicot: flower parts in multiples of 4 in 5 Agronomic crops: grown for grain, feed, for

processing into oil, starch, protein, flour

- rice, sugarcane, spices&herbs, cotton,

Horticultural crops: garden plants

 fruits, vegetables, ornamentals Alpral Rections

Plantgrowth

- plant increase by cell division and enlargement

Measuring growth

increase in fresh weight, dry weight

volume

- length

surface area

Shoot growth

determinate

indeterminate

Venetive = au inu by a mil

Plant growth patterns

Annuals

herbaceous plants

life cycle=1 growing season

germination—growth—flowering—death

Biennuals

· herbaceous plants

 life cycle = 2 growing seasons
 germination → growth → flowering → dormancy (repeat)

Perennials

herbaceous or woody -

· life cycle= more than 2

Basic requirements for plant

growth

HEO+COETTIGHTE -- CHOH-+Q - oxygen, co2

> กเราให้งพังผลต่อกาลาบลุมลักษณะที่ประกูของพัช photosynthesis, photomorphogenesis โพลส์กิลาสารส์

minerals 1 mary - marro-chonpics cang /micro

appropriate temperatures

- hormones

Tropisms - growth responses to a stimuli

- phototropism: light กระตบส์และต้องที่การางเสีย photoperiod < shortday plant longday plant

gravitropism: gravity

thigmotropism: touch

Root system

primary-root system · tap root, lateral root

- fibrous root system - รูกฟอป

adventitious root

root functions:

absorb water, nutrients

provide stability

synthesise plant hormones

· store energy produced by plants

Hormones

Auxins

· cell elongation

Cytokinins

apical (ขอด) dominance

 delay leaf senescence(process leading to death)

Gibberellins

seed germination

stem elongation

Abscisic acid

seed dormancy

stress hormone

- Ethylene

fruit ripening

standaring while position

6. PLANT NUTRITION

Nutrients Reservoirs

(soil) water and minerals

air carbon dioxide

branching root system and shoot system of vascular plant ensure networking with both reservoirs

Macronutrients and Micronutrients

- most organic mass comes from CO2 in the air, but also depends on soil nutrients
- chemical elements essential for plant to complete life cycle
- macronutrients (9 essential elements)
 - · plants require them in large amounts
 - · COHNKCa Mg PS
- micronutrients
 - · need in small amounts
 - · CI Fe Zn Mn B Cu Ni Mo

Fertiliser

- commercially produced mined/prepared by industrial processes
- organic fertilisers- manure, fishmeal, compost

Nitrogen-

- greatest effect on plant growth
- -> macronutrient
 - · provides proteins, nucleic acids, chlorophyll, host of other important organic molecules
- -> dead organic material DECO MPOSITION.
 - bacteria and fungi break down organic N into nitrate ions so plants can use

Nutrients mobility

- mobile while in a solution of water .
- move from roots to shoots

Mineral deficiency

- symptoms depend on nutrient's function and mobility of nutrient
- deficiency of mobile nutrient
 - · affects older organs (young tissues can more efficiently draw minerals)
- deficiency of less mobile nutrient
 - · affects young organs (old tissue has store of minerals to fall back on)
- most common deficiencies:
 - · nitrogen, potassium, phosphorus

Requirement for optimum growth

- growth media
- light
- water

- temperature

GROWTH M FOUR - fertiliser soilless mix- organic+inorganic substances that provide sufficient support for plant growth

- no topsoil
- common components:
 - · peat moss: nutrient&moisture holding capacity
 - · perlite: aerate soil
 - vermiculite: moisture holding capacity
 - · coir: hold water and air
 - · sand: reduce overall water holding cap
 - rice husk: drainage of growth media

[advantages:]

- · uniform :doesn't vary in components, texture, nutrients
- sterile
- · can be manipulated
- personalised
- lightweight-easy to ship/move

- disadvantages:

- added more frequently
 - lack minor plant food elements that soil usually has
- lightweight—wind can blow dry pots over
- · difficult to transplant plant from soil to
- · high cost

Field Grown Vs. Container

- Icontainer disadvantages
 - need more water
 - above ground, dry quicker
 - become pot-bound
 - higher start-up cost

Watering

- need more water in active growth and flowering stage
- hydrogen in water key nutrient for photosynthesis
- water is carrier of dissolved nutrients from soil into roots
- water sustains plant cells
- no water= dead plants
- factors affecting watering:
 - · weather, soil type, plant type
 - · media- more porous mix=more water
 - · size of container- small ones dry out faster
 - type of container
- · surface mulch-mulch reduce needs of water
- when to water:
- observation: wilt/ loss of color/dullness ighting
- light intensity requirements vary from plants
 - · direct sun

partial sun/weak sun - indirect/filtered light

Temperature

- daytime temp 20-30C
- right temp drop 5-10C below daytime temp

Air Conditioning

- can trouble plants
- should be located away from direct air flows Hu midity
- need additional moisture if atmosphere dry Pruning
- shapes the plant
- more compact
- train growth/form of plant
- remove dead/diseased parts

7. PLANT-MICROBE INTERACTION

- microbe- microscopic organisms
 - virus
 - bacterium
 - fungus
 - nematode—roundworms

positive interactions

- symbiosis- long-term interactions b/w diff biological species (benefits both)
 - rhizobium
 - nitrogen fixing bacteria associating with roots of legumes
 - green manure
 - mycorrhiza
 - assoc of fungus and roots of plants
 - fungus transfers nutrients to plants
 - ectomycorrhiza
 - surrounds root
 - endomycorrhiza
 - penetrates intracellular cells of roots
 - produces vesicular-arbuscular mycorrhiza VAM: collect food, nutrients exchange
 - rhizosphere microorganism
 - · high microbial density
 - · induce plant growth, releases
 - auxin, gibberellin
 - keeps moisture
- ເປັນວາ inhibit growth of soil pathogen
 - decrease soil toxicity
 - · nutrient recycling | n notaral control agent.
 - · ex. trichoderma is la soil fungus that com destray
 - lichen
 - · association of fungus + plant, algae

the Pythium, a plant partogen

- · metabolites leaked from both
- · fungus surrounds algal cells to provide moisture,co2

- air pollution indicator
- Crustose: cover substrate like crust

T susceptible plant

rosc

the

- Foliose: leafy form
- Fruticose: shrubby form

negative interactions

- parasitism/pathogen: parasite benefits
 - from host - causes plant disease 3 frctus
 - · how:
 - nutrient competition
 - inhibition of plant metabolism
 - inhibition of vascular system
 - destroy plant cells for nutrients
 - - fungal diseases—leaf spots, powdery mildew
 - bacterial diseases soft rot, leaf blight, wilt
 - viral diseases—ringspot, mosaic
 - nematode diseases
 - · cyst
 - · foliar
 - higher parasitic plant disease
 - 3 Factors that cause disease:
 - virulent pathogen
 - susceptible plant
 - suitable environment for a disease
 - how pathogens damage plants?
 - wounds
 - natural openings: stomata, hydathodes, lenticels
 - direct penetration: cuticle, epidermal cells
 - symptoms:
 - leaf spot
 - leaf blight
 - mosaic
 - stem rot
 - wilt

8. PEST CONTROL /

- pest- organisms that cause damage to agriculture by feeding on it
 - · pathogens
 - · insects
 - · rats

Control Methods

- Resistant varieties: pest cannot eat it
- Mechanical control: destroy diseased plant by burning)
- crop rotation: plant non-host plant of pathogen
- trap crops: attractive host plant to (eer) insects away from main crops
- natural chemicals: soap water

- biological control: control pathogens by natural enemies
 - antibiosis
 - nematode trapping fungi
 - competition
 - biocontrol agents out-compete pathogenic microbes
 - parasite
 - control by trichoderma
 - Bacterial antagonists
 - bacillus, pseudomonas, streptomyces
 - fungal antagonists
 - gliocladium, trichoderma
 - insect control
 - Repel plants for pest insects:
 - Anise Hyssop—cabbage moths
 - Borage—Aphids, Colorado Potato Beetles, Squash Bugs
 - Pot Marigolds—Asparagus beetles
 - Bacterial pathogens of insects:
 - Bacillus popilliae (milky disease)
 - bacillus thuringiensis- kills caterpillar
 - Fungal pathogens of insects
 - zygomycota
 - ascomycotina
 - cordyceps sinensis
 - metarhizium anisopliae (green fungus)
 - beauveria bassiana (white fungus

9. ORGANIC FERTILISER

- fertiliser- materials occurring naturally or commercially produced for application to soil
 - · add deficient nutrients
 - costs 20% of all crop productions
 - increases yield by 50%
- profitable when:
 - based on soil test
 - · added in efficient manner
 - soil is managed
- unprofitable when:
 - · soil moisture limited
 - · pest and adverse temps are problem
 - increased yield has less market value than cost of fertiliser

Principles of Organic Gardening

- soil food web- microorganisms provide nutrients to plants and soil

Soil Organisms

- photosynthesizer- plants, algae&bacteria
 - capture energy, fix CO2
- decomposers- bacteria & fungi
 - · break down residue
 - retain nutrients in biomass
- mutualist- bacteria & funcqi
 - · enhance plant growth

- fix nitrogen
- deliver nutrients
- earthworms- break down residue, enhance soil structure

n = growing a

a in sequer

pecies

1a

Requirements of living system:

- food
- air
- water
- shelter
- (living organism

Feeding soil a balanced diet:

- compost
- cover crops
- organic mulches
- organic residues
- other organic nutrients

Organic VS. Chemical

Fertilisers

- organic slower rate of release-
 - in response to environmental factors
 - soil moisture and temperature
- chemical bad for environment
- Advantages of organic fertilisers:
 - mild, non-caustic materials
 - slow release=available longer
 - high OM content=improvements in soil
 - of sources of many essential elements
 - recycling of materials
- Disadvantages:
 - · low concentration of nutrients= large application
 - slow release=don't supply plant's immediate needs
 - concentration too low to supply needs
 - Improvement expensive

Organic amendments

- increase OM content in soil
- increase nutrient storage capabilities
- supplies plant nutrients
- stabilizes pH
- promotes beneficial microbial populations

Pre-plant preparations

- soil analysis*
- · adjust pH -> because diff to change pH after establishment
- · adding soil amendments prior to planting
- Fertilizers: numbers on the bag (ratio) N: P200: K20
 - total N
 - available P205
 - Soluble K2O
- Law of Minimum—Justus vol Liebig
- Role of Mineral Nutrients
 - affect crop quality and yield
 - direct
 - indirect

- N excess= cell บวม

TREANTO

Manure

- low nutrition per volume
- rapidly decay
- heat generating
- unpleasant odor

Cover Crops

- green manure
- grasses/legumes
- planted after harvest of primary crop
- benefits:
 - reduced soil erosion
 - · improve soil structure
 - · suppress weeds, insects, diseases,/
 - · enhance soil fertility

Compost

- organic fertiliser produced by composting organic materials
- organic waste)-> biological reduction->

tto i-

ng t

ucin

- greens 7 Min 1 2001
- Browns → N-rich anterests
- brownscomposting methods:
 - · without aeration
 - slow, smelly
 - with aeration
 - rapid, not smelly
 - · conventional composting
 - layer organic materials (30cm)
 - overlay with animal manure (5cm)
 - repeat 4-5 times
 - water
 - cover on top with soil to keep humid
 - · to make quicker compost:
 - make good mixture
 - control temperature
 - aerate compost heap
 - optimize humidity-not too wet/dry
 - add effective microorganisms
 - สารเร่ง
 - · composting requires:
 - · heating
 - · covering with white fiber
 - done when:
 - · temperature-room temp
 - · color dark brown
 - fine, aggregate, irregular shape and size texture
 - · no bad smell
 - some seedlings/mushrooms can grow on
 - why compost is better than manure
 clean (heating kills pathogenic disease)
 - · no smell

- why compost:
 - · cheap
 - · simple
 - · no chemicals which kill soil organisms
 - · better plant and water quality
- what should not be used as organic fertilisers
 - · heavy metal/toxin contaminated materials
 - strong acid/base
 - · wood-hard to decompose
 - · diseased manure
 - · green manure with risk of weed
- use coffee grounds, rain-tree leaves

Crop Residue

- portion of plant remaining in soil after harvest
- maintains OM
- can harbor disease and insect pests
 - · avoided by crop rotation
- benefits:
 - · increased OM content
 - · increased soil aggregation
 - · prevents soil crusting, erosion
 - · improves water infiltration rates
 - · provides nutrients

Mulches

- keep soil cool in summer
- retain soil moisture \(\square\)
- adds organic matter, helps in nutrition
- improves soil structure
- reduce weed pressure
 - increase soil water holding capacity

Ground vs. Foliar Application

- Ground: most efficient way to apply nitrogen, phosphorus, potassium, magnesium
 - large amounts
- Foliar: boron, zinc, copper, manganese
 - · small amounts

10. POSTHARVEST MANAGEMENT

- 1/3 of fresh produce harvested lost between harvest and consumption
- post-harvest management- deals with time period from harvest to ultimate utilization/ death of product
- post-harvest loss
 - · nutritional value
 - flavor
 - · economic value
- post-harvest problems:
 - weight loss

· fruit blemish

· fruit softening

· peel wilting

chilling injury

- factors affecting post-harvest quality

internal

transpiration

- respiration

ethylene production

changes of chemical compositions

development & growth of product

external

- temperature

- humidity

gaseous compositions

- light

- gravity

diseases, insects

Ethylene : Hormone (fruit ripering)

effects of ethylene

· chlorophyll degradation

abscission

· fruit softening

· changes of carbohydrate

stimulate flower senescence

stimulated when plant tissues are injured

- fruits

· climatcteric fruit

- increased respiration (colular)

- increased ethylene production ex Representation

(epiotia)

softening

chlorophyll degradation

- aroma,flavor

Harvesting Index

- days after planting

- days after anthesis

- days after fruiting

 physical measurements: color, shape, size, firmness

biochemical measurements

- physiological measurements: ethylene production, respiration

Management techniques for fruits and vegetables

- harvesting

· time, tool

· man and animal labor

· machine harvesting

cleaning/sorting/grading/sizing

treatment(cold/heat/waxing)

· cooling: aircooling, hydro-cooling, ice cooling

· heating: hot-water immersion, high temperature forced air, vapour heat insect control

- prolong shelf life

· wax- from plant, animal, petroleum, synthetic

· control of ethylene

- air ventilation, activated charcoal

packing—storage

 contain, protect produce from compression bruising, vibration rubbing

types:

- sack and net, basket, wooden crates,...

- transport

retail handling

Guidelines

pollution sources should be identified

product should be protected with nonorganic product

- organic and non-organic should be be stored/transported together

use biodegradable material for packaging

CERTIFICATION

5 consumer questions/issues

· does the food product affect health of my family?

· does production of food product treat animals in humane way?

are production processes environmentally friendly?

· are other people affected by production/ processing techniques?

· does product conform to my religious

Branding Vs. Certification

- branding- identifies seller's goods from those of others

certification- guarantee standards

· purpose: support consumer confidence in meaning of organic label

Defining "Organic"

 foods produced w/o hormones, insecticides, chemical fertilizers, genetic modifications

certified organic—labeled by USDA

- who should be certified?

· anyone who labels their products as 'organic'

farmers think that:

costly

· complicated

· impossible to satisfy

- Benefits:

· higher prices for goods

increased market access

· improved price stabilization

ogens and pests that is continuously cropp 3 of various crops soil nutrients.

3 5011 intial seasons

ity by alternal

costs:

- · price of attaining certification
- · production process changes
- record keeping costs
- brand design&marketing

producer payoff from certification

· immediate recognition by high-income consumers

 customers willing to pay for healthy, socially responsible food

first-party/self certification Name 1

- "truth-in-labeling laws" • no generally accepted standards
- third-party certification
 - established umbrella program
 - certifying party does not benefit from sale of good
 - · functions:
 - standard setting: specify criteria, quality
 - testing/inspection
 - provide labels to certified producers
 - enforcement: continued testing
 - types of certifying agencies:
 - government agencies
 - NGOs
 - private companies
 - · steps to certification
 - select certifier
 - submit application and organic system plan
 - history of substances applied to land for previous 3 years
 - organic products being grown/ processed
 - organic plan—practices/substances used in production
 - documents reviewed by certifier
 - on-site inspection/ re-inspection
 - inspection report review
 - certification.
 - IFOAM accreditation (international federation of organic agricultural movement)
 - ACT (alternative agriculture Network)
 - 85 NGOs working on sustainable agriculture
 - organic agriculture certification thailand
 - farming system in harmony of ecology without using synthetic chemicals and artificial fertilisers
 - in-line with IFOAM norms
 - certification programme covers
 - · crop production, processing, wild products, input manufacturing, aquaculture, smallholder groups

- farm certification~3 year process +/-
 - yearly maintenance of certification
- organic markets—increasing

12. AGRICULTURAL TECHNOLOGY VS. **ORGANIC** GARDENING

- biotechnology- use of biological organisms in agricultural &industrial processes to make products valuable to humans
 - · tearless onions

Breeding Technology

Black Tomatoes

Grafting (Mono)

- TomTato
 - · tomato+potato -
- Potato Tom

Hydroponics < Nutrient Film Technique LSEG

- grow plants in solution of nutrients necessary for plant growth rather than in direct soil
- uses some synthetic chemicals

Plant Tissue Culture

- growth and development of plant seeds, organs, explants, tissues, cells on nutrient media under sterile conditions
- generates lots of plants at a time
- reasons to use tissue culture:

 virus-free reproduction < production |
- make many identical clones
- micropropagation- asexual reproduction
- tissue culture medium
 - · water, mineral salts, carbon sources, vitamins, plant growth regulators

Transgenic plant many transporter

- Gene technology
 - · foreign genes can be introduced
 - faster than traditional plant breeding
 - · specific genes can be transferred
 - more control than traditional plant breeding
- Transgenic plant technologies
 - require tissue culture
 - DNA recombination- taking DNA of 1 organism and moving it to another
 - result= genetically modified organisms (GMOs)

if lack—add fertiliser

too much machinery = compact soil

 not enough rainfall · irrigation

soil too compacted

plant disease pesticide

· plow

from less farmers

10 of 11

of the soonest time

MerA gene - plants can grow on mercurium contaminated soils

/- Flavr Savr tomato anti-softening gene (Flavr Savr Sene)

harvest in green

yirus resistance

at ce

er pe

sing

ophy

hines

JICE

acc

nefi

818

n.

- Use naked DNA Ulingari

- coat DNA onto beads

- use air pressure to

method

fire into tissuo

then tor ornstormed planst.

Plant transformation,

medium

igold or tungsteni

· (coat protein)

· transgenes: PRSV coat protein, CymMV coat protein

- golden rice: transgenic rice with genes for production of vitamin A

GM-rice -> prevent and treat vitamin A ond iron deficiencies.

- monoculture=soil deteriorates
 - · lessens productivity of soil
- inseciticides, fungicides
 - expensive, toxic pollutants, diseases resistance
 - · carcinogenic
- herbicides: toxic pollutants, more resistant weeds
- less cooperation among neighbours
- lower quality nutrient levels in produce

inorganic fertilisers

- · problems:
 - micronutrient depletion
 - high energy consumption

organic fertilisers

- lower nutrient content, solubility, nutrient release rates than inorganic ffertilisers
- advantages
 - improve soil aggregate
 - improve moisture-retaining capability
 - prevent topsoil erosion
 - increase nutrient absorptions in soil
 - · use less fertiliser
 - release nutrients at slower, more consistent rate
 - less nutrient waste
 - prevent disease
 - long-lasting
 - disadvantages
 - dilute source of nutrients compared to inorganic
 - more variable than inorganic
 - may contain pathogens
 - more labor needed to compost organic fertiliser

14. BENEFITS OF ORGANIC GARDENING

- insecticides
 - · carbofuran-highly toxic
 - chlorpyrifos—risk of lung cancer
 baygon
- Thailand 5th amount of insecticides used
- 4th herbicide use
- pesticides
 - hormone disrupters
 - risk of breast cancer
 - non-persistent, moderately persistent, persistent
- roundup harbicide (glyphosate)

popular chemical weed killer

has glyphosate

- Atrazine

- top selling herbicide
- detected in many rivers, water supplies

ppe

ating

es or

- · castrate male frogs into females
- Borax (sodium borate)
 - · found in detergents, cosmetics
 - · risk liver cancer

polystyrene foam boxes

- · leak chemicals into food under heat
- · contains benzene
 - cause bone marrow damage, leukemia
 - cancer-causing substance

polyvinyl chloride (PVC)

- · contains phthalates
 - makes it soft and flexible (bottles, baby's teething rings, nail polish)
 - subjected to heat—leak into beverage —acidic

- polycarbonate

- · drinking bottles, food containers
- releases bisphenol A
 - makes them clear and unbreakable
 - retard brain development
- beer and coke cans
 - phosphoric acid (makes it fizzy) interacts with aluminium can
 - can make a hole in the can over time
 - aluminium dissolved into liquid
 - aluminium poisoning
 - · poisonous to nervous system
- cosmetics
 - · contain magnesium aluminium silicate
 - prevent caking, give smooth application
- conventional farming results in <u>higher crude</u> protein content but poorer quality protein than organic content
 - high N levels = lower content of essential amino acids