Math 120 QR

Alex Hernandez Juarez
Fall 2024

Contents

Chapter 1		Page 2
1.1	Day 1 notes	2
1.2	Day 2 Notes	2
1.3	Day 2 Reading notes	5

Chapter 1

1.1 Day 1 notes

Definition 1.1.1: Distance Formula

Defintion:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Definition 1.1.2: Equation of a sphere

Defintion: An equation of a sphere with center C(h, k, l), and radius r is

$$(x-h)^2 + (y-k)^2 + (z-l)^2$$

In particular, if the center is the origin O, than an equation of the sphere is

$$x^2 + y^2 + z^2$$

1.2 Day 2 Notes

Definition 1.2.1: The lenght/magnitude of a vecotr

In 2D,
$$\vec{v}=< a,b>: |\vec{v}|=\sqrt{a^2+b^2}$$

In 3D,
$$\vec{v}$$
, $\vec{v}=< a,b,c>: |\vec{v}|=\sqrt{a^2+b^2+c^2}$

A unit vector is a vector of length 1

Question 1

If \vec{v} is a a vector and \vec{a} is a scalar, then what is $|\vec{a}\vec{v}|$

Solution:

$$|a\vec{v}| = |a||\vec{v}|$$

Definition 1.2.2: Vectors in \mathbb{R}^3

The standard basis vectors in \mathbb{R}^3 are

$$i = <1, 0, 0>$$

$$j = <0, 1, 0>$$

$$k = <0, 0, 1>$$

What is special about i,j,k?

Solution:

- Cannot make any of them as a linear combibination of the other three.
- Any vector $\vec{v} \in \mathbb{R}^3$ can be written uniquily as a linear combibination of i,j,k

Example 1.2.1:

$$\vec{v} + \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
$$\vec{v} + \vec{u} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}$$

$$\vec{v} + \vec{u} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}$$

Definition 1.2.3: Dot product

A dot product between v and w is:

In 2D:
$$v \cdot w = v_1 w_1 + v_2 w_2$$

In 3D:
$$v \cdot 2 = v_1 w_1 + v_2 w_2 + v_3 w_3$$

Geometric defintion:

 $|u \cdot w| = |u||w|\cos(\theta)$ where θ is the angle between v and w

Example 1.2.2: Why the 2 defintions are the same

$$v_1 w_1 + v_2 w_2 = |v| |w| \cos(\theta) = p|v|$$

$$p = |w| \cos(\theta)$$

$$v_1 = |v| \cos(\theta)$$

$$v_2 = |v|\sin(\theta)$$

$$w_1 = |w| \cos(\theta)$$

$$w_2 = |w| \sin(\theta)$$

LHS =
$$|v||w| (\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta))$$

LHS =
$$|v||w|\sin(\alpha + \beta)$$

LHS =
$$|v||w|\cos(\theta)$$
 = RHS

Example 1.2.3: what does the def mean

How much effect of \vec{w} act along \vec{v}

Work: $w = \vec{F} \cdot \vec{S}$

Question 3

Find a relation between |v| and $v \cdot v$

Solution: $|v|^2 = v \cdot v$

Question 4

v, w of fixed lengths when is $v \cdot w$ largest?

Solution: v paralell: $\theta = 0$

 $\cos(\theta) = 1$

Example 1.2.4: Projections

Given $\vec{v} \neq \vec{o}$

The project of w on v is proj $w = \left(\frac{\vec{w} \cdot \vec{v}}{|v|}\right) \frac{\vec{v}}{|v|}$

Directon of v is $\frac{\vec{v}}{|v|}$

Dor project of w with direction is:

 $\vec{w} \cdot \frac{\vec{v}}{|v|}$

Question 5

TRUE or False:

u, v, w: vectors $(u \cdot v)w = u(v \cdot w)$

Solution: false

Question 6

TRUE or FALSE:

 $|v - w| = |v| - |w| \text{ if } v \parallel w$

Solution: false

Question 7

When is this ideal square sum happening?

 $|v + w|^2 = |v|^2 + |w|^2$

Solution: when $v \perp w$

Definition 1.2.4: Cross Product

The cross product of two vectors v and w, v * w is a vector u defined by $u \perp v$ and $u \perp w$.

Direction of u is given by the right hand rule

Magnitude: |u| =Area of the parallelogram spanned by v and w.

Day 2 Reading notes 1.3

Definition 1.3.1: Vector Addition

If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

Definition 1.3.2: Scalar Multiplication

If c is a scalar and v is a vector, then the scalar multiple cv is the vector whose length is |c| times the length of v and whose direction is the same as v if c > 0 and is opposite to v if c = 0 or v = 0, then cv = 0

Example 1.3.1:

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{AB} is:

$$a = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Example 1.3.2:

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then:

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

$$\mathbf{a}-\mathbf{b}=\langle a_1-b_1,a_2-b_2\rangle$$

$$c\mathbf{a}=\left\langle ca_{1},ca_{2}\right\rangle$$

Similarly for three demensional vectors

