

Spectral Methods

Advanced Machine Learning for NLP Jordan Boyd-Graber
TENSOR APPROACH

Big Idea

- You have a model
- What correlations should you see if model true
- Can you reverse the model from these correlations?

Big Idea

- You have a model
- What correlations should you see if model true
- Can you reverse the model from these correlations?
- Yes!

Simple Example: Mixture of Multinomials

Mixture of Multinomials

- k topics: $\phi_1, \dots \phi_k$
- Observe topic i with probability θ_i
- Observe m (exchangeable) words w_1 , $dotsw_m$ iid from μ_i
- Given: m-word documents
- Goal: ϕ 's, θ

Vector notation

- One-hot word encoding $w_1 = [0, 1, 0, \dots]^T$
- φ_i are probability vectors
- Conditional probabilities are parameters

$$\Pr[w_1] = \mathbb{E}[w_1 | \text{topic} i] = \phi_i \tag{1}$$

Method of Moments

- Find parameters consisten with observed moments
- Alternative to EM / objective-based techniques
- Topic model moments

$$\Pr[w_1] \tag{2}$$

$$\Pr[w_1, w_2] \tag{3}$$

$$\Pr[w_1, w_2, w_e] \tag{4}$$

First Moment

With one word per document,

$$\Pr[w_1] = \sum_{i=1}^k \theta_i \phi_i \tag{6}$$

Not identifiable: only d numbers

Problem setup

(Tensor) Want to find good solution to

$$T = \sum_{t=1}^{d} \theta_t \vec{\phi}_t \otimes \vec{\phi}_t \otimes \vec{\phi}_t \tag{7}$$

 \circ \otimes is dyadic product, creating a $d \times d \times d$ matrix (similar to $d \times d$). Anchor term

Problem setup

(Tensor) Want to find good solution to

$$T = \sum_{t=1}^{d} \theta_t \vec{\phi}_t \otimes \vec{\phi}_t \otimes \vec{\phi}_t \tag{7}$$

- ⊗ is dyadic product, creating a d × d × d matrix (similar to d × d

 Anchor term
- (Matrix) Want to find eigendecomposition of

$$M = \sum_{t=1}^{n} \theta_t \vec{\phi}_t \vec{\phi}_t^{\top} \tag{8}$$

• But we won't see actual M, it will have error $\mathscr E$

Problem setup

(Tensor) Want to find good solution to

$$T = \sum_{t=1}^{d} \theta_t \vec{\phi}_t \otimes \vec{\phi}_t \otimes \vec{\phi}_t \tag{7}$$

- ⊗ is dyadic product, creating a d × d × d matrix (similar to d × d

 Anchor term
- (Matrix) Want to find eigendecomposition of

$$M = \sum_{t=1}^{n} \theta_t \vec{\phi}_t \vec{\phi}_t^{\top}$$
 (8)

- But we won't see actual M, it will have error $\mathscr E$
 - Unique if θ_i are
 - Solveable if $||\mathcal{E}||_2 < \min_{i \neq j} |\theta_i \theta_j|$

Power iteration

- Allows you to find individual eigenvalue / eigenvector pairs
- Matrix: linearly quickly $O(\log \frac{1}{\|\mathscr{E}\|})$
- Tensor: quadratically quickly $O\Bigl(\log\log\frac{1}{||\mathcal{E}||}\Bigr)$
- Both require gap between largest and second-largest θ_i

```
Input: T \in \mathbb{R}^{n \times n \times n}.
```

Initialize: $\widetilde{T} := T$.

For i = 1, 2, ..., n:

- 1. Pick $\vec{x}^{(0)} \in \mathbb{S}^{n-1}$ unif. at random.
- 2. Run tensor power iteration with \widetilde{T} starting from $\vec{x}^{(0)}$ for N iterations.
- 3. Set $\hat{\mathbf{v}}_i := \vec{x}^{(N)} / \|\vec{x}^{(N)}\|$ and $\hat{\lambda}_i := f_{\widetilde{T}}(\hat{\mathbf{v}}_i)$.
- 4. Replace $\widetilde{T} := \widetilde{T} \hat{\lambda}_i \ \hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_i$.

Output: $\{(\hat{\mathbf{v}}_i, \hat{\lambda}_i) : i \in [n]\}.$

Alternative: Direct Minimization

$$\left\| T - \sum_{t} \theta_{t} \phi_{t} \otimes \phi_{t} \otimes \phi_{t} \right\|_{F}^{2} \tag{9}$$

- Use gradient descent to directly optimize parameters
- Wins over "standard" approaches because fewer observations
- Disliked by theory folks

Spectral Methods

- If you only care about high-level patterns
- You can often get that from statistical summaries
- Ignore the data!
- These approaches often have nice runtimes