STREAM POWER & BEDROCK EROSION density Energy A Thy PE-mahit mass gravitational acceleration Control PE=PY 9 Z elevation hand bed hathickness of flow elevation hand bed had had PE. > PE, -> loss of PE downstream Heat: Shear > turbulence "Shear heating" Kinetic Energy: flow velocity (a) bedrock ension (c) <u>υ</u>() <u>υ</u>, ()) <u>υ</u>, () <u>υ</u>, () <u>υ</u>, () <u>υ</u>, () <u>υ</u>, () <u>υ</u>, () <u>υ</u>, (<u>)</u> <u>υ</u>, () <u>υ</u>, (<u>)</u> <u>υ</u>, (a) KE= 2ma

Refore M=0

What is the rate of bedrock crosion? What is the rate of PE>KE conversion
Stran Power
Rate of PE loss in a channel cross section per unit time
Cross section:
PE= pt gz
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KE, hed
Y = MxMyM2 The Control volume.
- pAx Aylor g (Az) & what is rate of water drap of water even at on? Vertical distance
time
The Same The
$sin(a) = \frac{u_z}{a}$

Small angle formula

if
$$\alpha$$
 is small.

then $\cos(\alpha) \approx 1$
 $\sin(\alpha) \approx \tan(\alpha) = 5$

$$S = \frac{\overline{U}_z}{\overline{U}} \longrightarrow \overline{U}_z = \overline{U} S = \frac{\Lambda z}{\Lambda +}$$

Redargular channel approximation

$$\omega = \frac{\Omega}{b} = pg \frac{Q}{b} S = pg \frac{S}{b}$$
(one of a channel that the content width the content width)

What about sheer stres?

$$\omega = Pg \frac{Q}{b} S \qquad Q = Ay \Delta z \overline{a}$$

W= Tb U

Darcy-Weisbach

$$\omega = \zeta_b \bar{u} = \frac{\zeta_b^{3/2}}{\sqrt{\rho c_f}} = \rho g \frac{Q}{b} S$$

Relating unit stream power to bedrock crosion
$\omega = \rho g \frac{Q}{b} S$ Unit stream Power (a) $PE \rightarrow KE$ (per time) If unitorm flow $\frac{d}{dx} (\hat{z})$
(b) PESME (per time) Mechanod — heat (shear heater) everyo breaking things! guess july 1
Rock with the condition one were
$ \left[$
5: Digital elevation models b: High-resolution imagery Q: Difficult
Cook drange-bostn area Redork drange-bostn area (EMPIRICAL Profer Pro
Figreur, Pha) Pho 20.6~1.0 A Q = PA

$$\xi = k A^{1/2} S^{1}$$
 $f(y) = 1$
 $f(y)$