Programming Lab

Parte 9

Lavorare veramente 2: fittiamo un modello

Stefano Alberto Russo

Cosa vuol dire fare il "fit" di un modello

- Per "fit" di un modello si intende farlo "aderire" ai dati.
- Per esempio, stimare i coefficienti di una retta (detto anche regressione lineare) o di una curva (regressione esponenziale)

Come si fa il "fit" di un modello

 Per calcolare i coefficienti di queste funzioni in modo che "aderiscano" al meglio ai dati si usano metodologie statistiche di minimizzazione della distanza, <u>punto per punto</u>, tra i dati e la curva (più o meno).

→ Non lo vedremo, ma lo studierete a breve.

Cosa vuol dire fare il "fit" di un modello

 Minimizzando la distanza punto punto trovo i coefficienti che mi fanno aderire meglio la mia retta o curva e posso calcolare l'errore, che mi permette di valutare il modello (come vedremo la prossima ed ultima lezione)

Cosa vuol dire fare il "fit" di un modello

Minimizzando la distanza punto punto trovo i coefficienti che mi fanno aderire meglio la mia retta o curva e posso calcolare l'errore, che mi permette di valutare il modello (come vedremo la prossima ed ultima lezione)

RMSE = 60.9

a = 4.65e-16, b = 2.53e-03, c = 1.35e+02

Come faremo noi un "fit" di esempio

 Vediamo un esempio molto più semplice di una retta o una curva esponenziale, perchè in fin dei conti fare il "fit" di un modello vuol dire semplicemente sfruttare i dati per modellare meglio il fenomeno.

→ Prenderemo l'incremento medio delle vendite di shampoo su *tutto* il dataset, non solo sugli ultimi tre (o "n") mesi come fatto l'altra volta.

Il nostro modello "fittabile"

Creiamo un nuovo modello per le vendite dello shampoo, tale per cui:

Le vendite dello shampoo al tempo t+1 sono date da

- la variazione media negli **n** mesi precedenti,
- applicata sulle vendite al tempo **t**.
- mediata con la variazione media su tutto il dataset

Esempio

Mese	Passo temporale	Vendite
Maggio	non rilevante	8
Giugno	non rilevante 19	
Luglio	non rilevante	31
Agosto	non rilevante 41	
Settembre	t-2	50
Ottobre	t-1	52
Novembre	t (adesso)	60
Dicembre	t+1	?

Uso tre mesi precedenti per la predizione (n=3)

Esempio

Mese	Passo temporale	Vendite
Maggio	non rilevante	8
Giugno	non rilevante	19
Luglio	non rilevante	31
Agosto	non rilevante	41
Settembre	t-2	50
Ottobre	t-1	52
Novembre	t (adesso)	60
Dicembre	t+1	60 + ((((11+12+10) / 3) + ((2+8) / 2)) / 2) = 68

(con il modello dell'altra lezione era **65**)

Predizioni a confronto sulle vendite di shampoo

Predizioni a confronto sulle vendite di shampoo

Esercizio (preambolo)

Ci accorgiamo che andremmo a scrivere la stessa logica (di calcolo delle variazioni) più volte, e che in generale sto avendo più "tipi" di modelli.

- vorrò avere un metodo di supporto per le variazion
 - → (i.e. compute_avg_variation)
- ed una classe base

(nelle dispense è spiegato tutto molto meglio, ora ci interessa solo di inquadrare il problema)

L'oggetto Model di base

Creiamo un oggetto *Model* come base. Avrà due metodi principali:

- il metodo "fit" per fittare il modello su dei dati, e
- il metodo "predict" per ottenere delle previsioni a partire da altri dati.

```
class Model():
    def fit(self, data):
        # Fit non implementanto nella classe base
        raise NotImplementedError('Metodo non implementato')

    def predict(self, data):
        # Predict non implementanto nella classe base
        raise NotImplementedError('Metodo non implementato')
```

Esercizio

Estendete il modello della lezione precedente **TrendModel** come **FitTrendModel**, andando ad implementare il metodo *fit()*.

Il fit deve, come appena descritto, calcolare l'incremento medio su tutto il dataset e salvarlo da qualche parte (es: self.historical_avg_variation).

Poi, sovrascrivete il metodo *predict()* in modo che usi l'incremento medio su tutto il dataset come descritto nelle slides precedenti.

Usate l'esempio numerico delle slides prima di provare con i dati delle vendite di shampoo!!

P.S.: per graficare i dati e/o la predizione:

```
data = [8,19,31,41,50,52,60]
prediction = 68

from matplotlib import pyplot
pyplot.plot(data + [prediction], color='tab:red')
pyplot.plot(data, color='tab:blue')
pyplot.show()
```

(una volta che si vede il grafico, premere assieme "crontol" e "c" nel terminale per "uccidere" lo script Python, liberando lo schermo e riprendendo il controllo del terminale)