

If You Can Measure It, Consider it Predicted

HOW IT WORKS

You instrument anything

2. You <u>publish</u> numbers

so that our system can initiate ...

3. A live, open contest between algorithms authored by anyone, anywhere

yielding ongoing short-term forecasts

THE ALTERNATIVE

In M5, 93% of data scientists underperformed exponential smoothing (post)

\$10 PER STREAM / YEAR

\$5 PRIZE-MONEY \$2 TECHNOLOGY COSTS \$3 PROFIT / STREAM / YR

ANCHOR CUSTOMER: INTECH

Using 6000 streams now

Likely to ramp to 60000 streams

See <u>live stream example</u> and <u>live one hour ahead predictions</u>

HOUSE ALGORITHMS ENSURE QUALITY

Private and <u>open source</u> house algorithms informed by <u>ongoing live</u> <u>benchmarking</u> of all <u>popular Python packages</u>

Name	Rating	Games	Active	Seconds	Dependencies
tsa_precision_combined_ensemble	2100.0	27	yes	583.1	statsmodels, timemachines
tsa_p2_d0_q1	2082.0	399	yes	172.9	statsmodels, timemachines
orbit_lgt_24	2049.0	14	yes	51.7	orbit-ml, timemachines
tsa_p1_d0_q1	2018.0	380	yes	107.0	statsmodels, timemachines
bats_damped_arma	2018.0	19	yes	1089.1	tbats, timemachines
sk_ae_add_damped	1990.0	1084	yes	11.4	sktime, timemachines
tsa_precision_d0_ensemble	1984.0	41	yes	282.1	statsmodels, timemachines
sk_autoarima	1974.0	72	yes	151.4	sktime, timemachines
		-			•
elo_fastest_univariate_balanced_ensemble	1719.0	1470	yes	0.7	timemachines
nprophet_p2_hypocratic	1712.0	449	yes	36.7	neuralprophet, timemachines
elo_fastest_residual_aggressive_ensemble	1709.0	1806	yes	2.7	timemachines
bats_arma	1704.0	12	yes	252.7	tbats, timemachines
tsa_aggressive_theta_ensemble	1685.0	1180	yes	3.5	statsmodels, timemachines
pycrt_median_8	1674.0	4	yes	2879.6	pycaret, timemachines
	•				
fbprophet_univariate	1598.0	238	yes	154.8	prophet, timemachines

Classic

 Ensembles of classical models or extensions like TBATS, re-fit and re-calibrated every data point at great computational cost, are the most reliable across diverse time series.

Machine Learning

• Includes noble attempts to use neural networks such as neuralprophet (<u>results</u>).

Popular

 Facebook Prophet has been downloaded twice as often as any other package. But see our <u>article</u>.

COMPETITION: PAAS

	Microprediction	AWS Forecast AutoBox	Explorium PredictHQ	Causalens, DataRobot	BlueMix, Predix
Starts immediately	~	X	X	X	X
Software free	~	X	X	X	X
Accurate	~	?	?	?	?
Brings in data	~	X	~	X	X
Continuously improves		X	?	?	X
Eventually unbeatable		X	X	X	X

EVENTUALLY UNBEATABLE

ACCURACY OF THE PREDICTION NETWORK GETS BETTER ALL THE TIME

TAM EXAMPLES ~ \$20b

Direct	Count	Each ('000s)		Total (billions)
Hedge funds	4000		500	2
Licenced brokers	600000		2.5	1.5
Transport companies	1000000		5	5
Manufacturing companies	700000		5	3.5
Agribusiness	2700000		1	2.7
Brokers	600000		1	0.6
				15.3
OEM				
CRM providers	2000		2000	4
IoT platform providers	600		2,000	1.2
Alternative data vendors	400		1000	0.4
				5.6

Sector survey in **book**

Artificial Intelligence as a Service

AI-AAS **\$92b** by 2030, CAGR of 39% Precedence Research, 2021 (link)

Automated Machine Learning

AutoML **\$15b** by 2030, CAGR of 45% ResearchAndMarkets.com, Feb '22 (link)

NEEDED IN EVERY SUB-SUB-SECTOR

From Chapter 2 of Microprediction: Building An Open Al Network

Category	Example Sub-cat.	Example Sub-sub cat.
Recognition	Image	Facial
Search	Travel	Personalization
Recommendation	Ad-tech	Click-throughs
Government	Open cities	Flight status
Sales and CRM	Repeat shopping	Visitation
Internet of things	Homes	Usage
Environment	Air	Pollutants
Transport	Driving	Distracted driver
Manufacturing	Industrial control	Predictive maintenance
Agriculture	Juice	Orange juice
Finance	Investment banking	Commercial loans
Energy	Power	Wind
Medicine	Inventory	Hospital stays

Table 2.1: Fanout in taxonomy of categories of applications for crowd-sourced microprediction. For each major category we list only one sub-category. For each sub-category I list only one sub-sub-subcategory.

EXAMPLE USAGE PATTERN

Business need:

Ongoing performance analysis of in-house models

Immediate solution: Send model errors

From Chapter 9 of Microprediction: Building An Open Al Network

NON-FINANCIAL EXAMPLE

Live wind speed

Chance of wind-speed exceeding 40 mph one hour hence

Decision: Implement Public Safety Power Shutoff, potentially costing billions.

ADDITIONAL PRODUCTS and CHANNELS

Enhance any data stream. Improve any prediction.

Enterprise Data, API Aggregators

 CloudQuant (agreed), Snowflake marketplace, Open FACTSET, Thomson Reuters marketplace, RapidAPI, Quandl, Dawex, Bloomberg, Refinitiv, Informatica, IBM, Oracle, Azure ML service, IDC

Prediction-AAS OEM Partnerships

- Amazon TS
- Google AI
- Azure ML studio
- IBM

Early adopters

- Energy
- Finance (Intech, Market-makers, Fraud detection)
- Industrial applications and IoT
- Cyber
- Ad Tech

See also:

https://alternativedata.org/data-providers/

PROGRESS

Stable platform

... at www.microprediction.org has operated smoothly for over a year, handled a billion predictions in aggregate

Performance

The two users of <u>precise</u> are 2nd, 19th out of 186 teams in a worldwide <u>contest</u>

Benchmarking

... of dozens of popular open-source packages and <u>Elo ratings</u>

Mindshare

- Rapid ascent to top tier DS commentator
- 20,000+ LI 2,000 new in Sep '22
- ~1,000 in slack

Insight

Intech investments discovered novel covariance estimation techniques

ABOUT PETER COTTON

Entrepreneur

- Founded Julius Finance in 2007, raising 1M seed capital.
- Renamed "Benchmark Solutions" with 25M Series A in 2009.
- Invented and wrote a scalable system for autonomous, real-time, curved-based pricing of bonds and credit default swaps en masse.
- Sold FIX data feeds to buy and sell side credit market participants.
- Received \$86M verbal to buy company from IDC.
- Technology sold to Bloomberg and integrated into the terminal as BBG:BMRK.

Leader, inventor and builder

- Lead <u>Morgan Stanley</u>'s quantitative credit analytics effort 2002-2006, having identified shortcomings in existing risk analytics for CDOs, and convinced the firm to address them.
- Responsible for numerous new approaches to trading adopted by <u>J.P. Morgan</u>: the use of control theory, data science platforms, microstructure inference and privacy preserving computation.
- Author of Python packages for time-series, optimization, online estimation, structure learning in keras. Approximately 500,000 downloads (<u>GitHub/microprediction</u>).
- Diverse theoretical contributions in partial differential equations, time-series analysis, sports analytics, quantitative finance, epidemiology, statistics and so forth (<u>GitHub/microprediction/home</u>). Author of 8 US Patents.
- Creator and maintainer of a live exchange at microprediction.org that has processed approximately one billion predictions.

Recommended as the #1 content provider ... above **Yann LeCun**

Blog | 12 min

Is Facebook's "Prophet" the Time-Series Messiah, or Just a Very Naughty Boy?

Published on February 3, 2021

Richad Nieves-Becker • 1st

Data science leader helping new DS leaders lead with joy & impact | Sr. ... 1w • 🔇

There are only 4 data science people on LI that I drop everything for to read their content.

Why? They blow my mind and help me solve my problems.

Follow them:

1. Peter Cotton .Pdf

The creator of Micropredictions. The Prometheus of forecasting. Reminds me how much I don't know.

His hot takes are too clever for the plebs. I love it.

His takedown of Facebook Prophet is legendary. Reminds me of the raptor in Jurassic Park. "Clever girl..."

Oh yeah - he wrote a book you should buy on open prediction networks.

2. Yann LeCun

One of the creators of the convolutional net and Chief Al Scientist at Meta.

At least half his content blows my mind. One of the best at framing problems on the frontiers of machine learning.

Reminds me that deep learning isn't just blind empiricism and expensive compute.

The best researchers are philosophers first and ask the right questions.

3. Cassie Kozyrkov

FINISH THE DATA SCIENCE PROJECT WHILE SITTING THROUGH THE FIRST MEETING

SUMMARY: FUNDING GOALS

Raising \$5m

- Generic prediction API and clients.
- Providing autonomous prediction of rapidly changing instrumented processes, and data feed enhancements.
- Anticipated burn \$2-3m. 7 technical, 2 non-tech ramping; prize-money, hardware, services, rent, overhead.

2

Scale: 3rd party estimates USD:

- AutoML addressable market \$15b by 2030, 45% CAGR (<u>source</u>) with 60% adopting (<u>source</u>)
- AI-AAS \$92 Bn by 2030, at a CAGR of 39%. (<u>source</u>)
- Global Alt-data \$143b 2030, CAGR 54% (<u>source</u>)
- IoT \$2.5T., CAGR 26% (<u>source</u>)

3

Moats:

- Serve as central registrar
- Data feedback
- Algorithm feedback
- Preferred enterprise microprediction oracle

