Екзаменаційний білет № 8

I. Теоретична частина

- 1. Розв'язок рівнянь методом комбіновани методом.
- 8. Комбінований метод.

Нехай f(a) * f(b) < 0, а f'(x) і f''(x) зберігають постійні знаки на [a,b]. Об'єднуючи методи хорд та дотичних, отримуємо комбінований метод. У цьому методі послідовно обчислюються $x_k^{xop\delta}$ та $x_k^{\delta om}$ за методами хорд і дотичних відповідно. Комбінований метод застосовується на кожному кроці до нового відрізка або $\left[x_k^{xop\delta}, x_k^{\delta om}\right]$, якщо нерухомий правий кінець, або до $\left[x_k^{\delta om}, x_k^{xop\delta}\right]$, якщо нерухомий лівий кінець. Середина відрізка є наближенням до кореня з точністю

$$\varepsilon = \left| x_k^{\partial om} - x_k^{xopo} \right| / 2$$

Тобто процес обчислювань закінчується, коли виконано умову

$$\left| x_k^{\partial om} - x_k^{xop \delta} \right| \le 2 * \varepsilon$$

Якщо після цього за кінцеве наближення до кореня взяти

$$x_k = \left| x_k^{\partial om} - x_k^{xopo} \right| / 2$$

це гаранту€, що

$$|x_k - \zeta| \le \varepsilon$$

2. Симплек метод.

Симплекс-метод — метод розв'язання задачі лінійного програмування, в якому здійснюється скерований рух по опорних планах до знаходження оптимального розв'язку; симплекс-метод також називають методом поступового покращення плану. Метод був розроблений американським математиком Джорджем Данцігом у 1947 році.

Описання методу

Нехай невироджену задачу лінійного програмування представлено в канонічному вигляді

$$\sum_{j=1}^{n} c_j x_j \to \max,$$

$$\sum_{j=1}^{n} A_j x_j = B, \quad x_j \ge 0, \quad j = 1, 2, \dots, n,$$

де
$$X = (x_1, ..., x_n)$$
 — вектор змінних, $C = (c_1,, c_n)$, $B = (b_1, ..., b_m)^\mathsf{T}$, $A_j = (a_{1j}, ..., a_{mj})^\mathsf{T}$, $j = 1, ..., n$ — задані вектори, T — знак транспонування, та $\bar{X} = (\bar{x}_1, \ldots, \bar{x}_m)$

відмінні від нуля компоненти опорного плану, для полегшення пояснення розташовані на перших m місцях вектору X. Базис цього плану — $ar{A}=(A_1,\dots,A_m)$. Тоді

$$\sum_{i=1}^{m}A_{i}\bar{x}_{i}=B_{\text{, (1)}}$$

$$\sum_{i=1}^{m}c_{i}x_{i}=\bar{z}_{0\text{, (2)}}$$

де \overline{z}_0 значення лінійної форми на даному плані. Так як вектор-стовпці матриці A лінійно незалежні, будь який із векторів умов A_i розкладається по них єдиним чином:

$$\sum_{i=1}^{m} A_i x_{ji} = A_j, \qquad j = 1, \dots, n_{+} \text{(3)}$$

$$\sum_{i=1}^{m} c_i x_{ij}, \qquad j = 1, \dots, n_{+} \text{(4)}$$

де x_{ii} коефіцієнт розкладання. Система умов

$$\sum_{i=1}^m A_i x_i + A_k x_k = B, \qquad k \ge m+1 \text{. (5)}$$

$$z_{i} \ge 0$$
, $x_{i} = 0$, $j = m + 1$, ..., $n, j \ne k$ (6

при заданому k визначає в просторі змінних задачі промінь, який виходить із точки, яка відповідає опорному плану, що розглядається. Нехай значення змінної x_k при русі по цьому променю дорівнює θ , тоді значення базисних змінних дорівнюють $x_i(\theta)$. В цих позначеннях рівняння (5) можна представити у вигляді

$$\sum_{i=1}^{m} x_i(\theta) A_i + \theta A_k = B \cdot (7)$$

помноживши рівняння (3) на θ при j = k та віднявши від рівняння (1), отримаємо

$$\sum_{i=1}^m (\bar{x}_i - \theta x_{ik}) A_i + \theta A_k = B_{\cdot (8)}$$

Із рівнянь (7-8) отримаємо

$$x_i(\theta) = \bar{x}_i - \theta x_{ik}, \qquad i = 1, \dots, m.$$
 (9)

Оскільки $x_i(\theta)$ при $\theta=0$ визначають план задачі, то найбільше θ , яке не порушує обмеження $x_i^-(\theta) \ge 0$, визначається із умови

$$heta_0 = \min_{i \in I} rac{ar{x}_i}{x_{ik}}$$
. (10)

де $I = \{i \mid x_{ik} > 0\}.$

В силу невиродженості задачі мінімум досягається не більш ніж для одного i = J та $\theta > 0$. Значення лінійної форми при $\theta = \theta_0$ визначається із рівнянь (9), (4), (2)

$$z_0(\theta_0) = \sum_{i=1}^m c_i x_i(\theta_0) + c_k \theta_0 = \bar{z}_0 - \theta_0 \Delta_k$$

де $\Delta_{\mathbf{k}} = \mathbf{z}_{\mathbf{k}} - - \mathbf{c}_{\mathbf{k}}$. Очевидно, $\Delta_{\mathbf{j}} = \mathbf{0}$ для $j = \mathbf{1}, \ \dots, \ m$.

Нехай $ar{A}=E-$ початковий базис із m одиничних векторів. Всі дані задачі записуються у вигляді симплекс-таблиці (першої ітерації обчислювального процесу). Симплекс-алгоритм розв'язання задачі лінійного програмування складається із наступних операцій:

- 1. $\Delta_k = \min_i \Delta_j$. Якщо Δ_k = 0, тоді план, який розглядається оптимізовано; якщо Δ_k < 0, вектор A_k вводиться в базис;
- 2. знайти θ_0 та /, для якого $\theta_0 = \bar{x}_l/x_l k$, із формули (10). Якщо / = Λ порожня множина, лінійна форма необмежена зверху; якщо / \neq Λ вектор A_l виводиться із базису;
- 3. за знайденими $l,\,k$ обчислити нові значення елементів таблиці за формулами

$$x'_{ij} = \begin{cases} x_{ij} - \frac{x_{lj}}{x_{lk}} x_i k, & \text{if } i \neq l; \\ \frac{x_{lj}}{x_{lk}}, & \text{if } i = l; \end{cases}$$
(12)

де $x_{i0}=\bar{x}_i,\;x_{m+1\,0}=\bar{z}_0,\;x_{m+1\,j}=\Delta_j$ та перейти до виконання операції (1) з новими значеннями всіх $\mathbf{x}_{ij}=\mathbf{x}_{ij}^*$

Перетворення (12) замінює вектор коефіцієнтів $X_k = (x_{1k}, ..., x_{mk})$ на одиничний вектор X_k з $\mathbf{x}_{1k} = 1$. В силу монотонного збільшення x_0 повернення до вже пройденого плану неможливе, а із скінченності кількості опорних планів випливає скінченність алгоритму.

Початковий опорний план з одиничним базисом можна отримати, розв'язавши описаним алгоритмом допоміжну задачу

$$\sum_{i=1}^{m} (-y_{n+i}) \to \max$$

при обмеженнях

$$\sum_{j=1}^{n} a_{ij}x_j + y_{n+i} = b_i, \quad i = 1, \dots, \\ y_{n+1} \ge 0, i = 1, \dots, m : \\ x_j \ge 0, j = 1, \dots, n$$

яка містить одиничний базис, який складається із векторів $A_{\mathsf{n+1}},...,A_{\mathsf{n+m}}$. Цим векторам відповідають штучні змінні із значеннями $\bar{y}_{n+i}=b_i$, i = 1, ..., m. Якщо в оптимальному розв'язку цієї задачі $\sum_{i=1}^m y_{n+i}>0$, вихідна задача не має розв'язку. Якщо ж $\sum_{i=1}^m y_{n+i}=0$ та задача невироджена, оптимальний базис складається лише тільки із векторів

вихідної задачі, які за формулами (12) перетворені в одиничну матрицю. Якщо задача має невироджені плани, значення z_0 може не збільшуватись на ряді ітерацій. Це відбувається через те, що значення відповідних \bar{x}_l дорівнює нулю та визначається неоднозначно. В таких виладках монотонність методу порушується і може трапитись зациклювання, тобто, повернення до вже пройденого базису. Невелика зміна вектора обмежень задачі, яка полягає в заміні величин b_i на b_i + ϵ_i , де ϵ_i достатньо малі, при вдалому виборі ϵ_i не змінюють множину векторів оптимального опорного плану вихідної задачі і робить її невиродженою.

Описаний вище алгоритм називається першим (або прямим) алгоритмом симплекс-методу. Також відомий другий алгоритм (алгоритм із оберненою матрицею). В ньому перетворюється лише матриця A^{-1} , обернена до базисної матриці.

II. Практична частина

За допомогою виключення Гаусса-Жордана обчислити корені системи лінійних рівнянь

$$154x0 + 79x1 + 1x2 + 58x3 + 12x4 = 882$$

$$22x0 + 188x1 + 86x2 + 46x3 + 31x4 = 1214$$

$$9x0 + 23x1 + 176x2 + 82x3 + 58x4 = 906$$

$$30x0 + 75x1 + 99x2 + 267x3 + 62x4 = 1750$$

$$40x0 + 55x1 + 15x2 + 72x3 + 185x4 = 988$$