Sequence Similarity

Protein Sequence Comparison and Protein Evolution

(What BLAST does/Why BLAST works)

William R. Pearson

www.people.virginia.edu/~wrp
wrp@virginia.edu

1

Sequence Similarity - Conclusions

- · Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10⁻⁶ < E() < 10⁻³ is statistically significant
- Scoring matrices set evolutionary look back horizons not every discovery is distant
- PSI-BLAST can be more sensitive, but with lower statistical accuracy

Establishing homology from statistically significant similarity Why BLAST works

- For most proteins, homologs are easily found over long evolutionary distances (500 My – 2 By) using standard approaches (BLAST, FASTA)
- Difficult for distant relationships or very short domains
- Most default search parameters are optimized for distant relationships and work well

3

This talk is not about:

- · Alignment
 - Alignment quality may be more sensitive to parameter choice
 - Multiple sequences for biologically accurate alignments
- Inferring Protein Function
 - Homology (common ancestry) implies common structure (guaranteed), not necessarily common function
 - Homologs have different functions
 - Non-homologs have similar (or identical) functions

- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant - similarity score statistics?
- · When to trust similarity statistics?
- · Improving sensitivity with PSI-BLAST

Homology <=> structural similarity ? sequence similarity

Bovine trypsin (5ptp) Structure: $E() < 10^{-23}$; RMSD 0.0 A

Sequence: E()< 10⁻⁸⁴

100% 223/223

S. griseus trypsin (1sgt) E()<10⁻¹⁴ RMSD 1.6 A E()<10⁻¹⁹ 36%; 226/223

S. griseus protease A (2sga) E()< 10⁻⁴; RMSD 2.6 A E()< 2.6 25%; 199/181

7

Bovine trypsin (5ptp) Structure: E()<10⁻²³

RMSD 0.0 A

Sequence: E()<10⁻⁸⁴

100% 223/223

Non-homologous proteins have different structures

Subtilisin (1sbt) E() >100

E()<280; 25% 159/275

Cytochrome c4 (1etp)

E() > 100

E()<5.5; 23% 171/190

What BLAST does:

Similarity ? Homology

Why BLAST works:

Statistical ? Biological Significance <=> Significance

Divergence ? Convergence

Some important dates in history

^aBillions of years ago

Protein Family	PAMsa/100 res.	Protein	Lookback time ^b
	/10 ⁸ years		
Pseudogenes	400	45°	Primates,Rodents
Fibrinopeptides	90	200	Mammalian Radiation
Lactalbumins	27	670	Vertebrates
Ribonucleases	21	850	Animals
Hemoglobins	12	1.5 ^d	Plants/Animals
Acid Proteases	8	2.3	Prokayrotic/Eukarotic
Triosphosphate isomeras	se 3	6	Archaen
Glutamate dehydrogenas	se 1	18	?

 $^{\rm a}\text{PAMs},$ point accepted mutations. $^{\rm b}\text{Useful}$ lookback time, 360 PAMs,15% identity. $^{\rm c}\text{Millions}$ of years. $^{\rm d}\text{Billions}$ of years.

11

E. coli proteins vs Human – Ancient Protein Domains

+	+	+	+	+	++
expect	%_id	alen	E coli descr	Human descr	sp_name
+ 2.7e-206	+ 53.8	944	glycine decarboxylase, P	Glycine dehydrogenase [de	++ GCSP HUMAN
1.2e-176	59.5	706	methylmalonyl-CoA mutase	Methylmalonyl-CoA mutase,	MUTA HUMAN
3.8e-176	50.6	803	glycogen phosphorylase [E	Glycogen phosphorylase, 1	PHS1 HUMAN
9.9e-173	55.6	1222	B12-dependent homocystein	5-methyltetrahydrofolate-	METH_HUMAN
1.8e-165	41.8	1031	carbamoyl-phosphate synth	Carbamoyl-phosphate synth	CPSM_HUMAN
5.6e-159	65.7	542	glucosephosphate isomeras	Glucose-6-phosphate isome	G6PI_HUMAN
8.1e-143	53.7	855	aconitate hydrase 1 [Esch	Iron-responsive element b	IRE1_HUMAN
2.5e-134	73.0	459	membrane-bound ATP syntha	ATP synthase beta chain,	ATPB_HUMAN
3.3e-121	55.8	550	succinate dehydrogenase,	Succinate dehydrogenase [DHSA_HUMAN
1.5e-113	60.6	401	putative aminotransferase	Cysteine desulfurase, mit	NFS1_HUMAN
4.4e-111	60.9	460	fumarase C= fumarate hydr	Fumarate hydratase, mitoc	FUMH_HUMAN
1.5e-109	56.1	474	succinate-semialdehyde de	Succinate semialdehyde de	SSDH_HUMAN
3.6e-106	44.7	789	maltodextrin phosphorylas	Glycogen phosphorylase, m	PHS2_HUMAN
1.4e-102	53.1	484	NAD+-dependent betaine al	Aldehyde dehydrogenase, E	DHAG_HUMAN
3.8e-98	53.0	449	pyridine nucleotide trans	NAD(P) transhydrogenase,	NNTM_HUMAN
5.8e-96	49.9	489	glycerol kinase [Escheric	Glycerol kinase, testis s	GKP2_HUMAN
2.1e-95	66.8	328	glyceraldehyde-3-phosphat	Glyceraldehyde 3-phosphat	G3P2_HUMAN
5.0e-91	62.5	368	alcohol dehydrogenase cla	Alcohol dehydrogenase cla	ADHX_HUMAN
6.7e-91	56.5	393	protein chain elongation	Elongation factor Tu, mit	EFTU_HUMAN
9.5e-91	56.6	392	protein chain elongation	Elongation factor Tu, mit	EFTU_HUMAN
2.2e-89	59.1	369	methionine adenosyltransf	S-adenosylmethionine synt	METK_HUMAN
6.5e-88	53.3	422	enolase [Escherichia coli	Alpha enolase (2-phospho-	ENOA_HUMAN
9.2e-88	43.3	536	NAD-linked malate dehydro	NADP-dependent malic enzy	MAOX_HUMAN
7.3e-86	55.5	389	2-amino-3-ketobutyrate Co	2-amino-3-ketobutyrate co	KBL_HUMAN
5.2e-83	44.4	543	degrades sigma32, integra	AFG3-like protein 2 (Para	AF32_HUMAN
+	+	+·	+	+	++

- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant - similarity score statistics?
- · When to trust similarity statistics?
- · Improving sensitivity with PSI-BLAST

Inferring Homology from Statistical Significance

- Real <u>UNRELATED</u> sequences have similarity scores that are indistinguishable from <u>RANDOM</u> sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

```
Query: atp6_human.aa ATP synthase a chain - 226 aa
                   Library: 5190103 residues in 13351 sequences
                                                (len) s-w bits E(13351) % id % sim alen
The best scores are:
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT ( 226) 1400 325.8 5.8e-90 1.000 1.000
sp P00847 ATP6 BOVIN ATP synthase a chain (AT ( 226) 1157 270.5 2.5e-73 0.779 0.951 sp P00848 ATP6 MOUSE ATP synthase a chain (AT ( 226) 1118 261.7 1.2e-70 0.757 0.916
                                                                                           226
sp|P00849|ATP6_XENLA ATP synthase a chain (AT ( 226)
                                                         745 176.8 4.0e-45 0.533 0.847
                                                                                           229
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)
                                                         473 115.0 1.7e-26 0.378 0.721
sp|P00854|ATP6\_YEAST ATP synthase a chain pre ( 259)
                                                         428 104.7 2.3e-23 0.353 0.694
                                                                                           232
sp|P00852|ATP6 EMENI ATP synthase a chain pre ( 256)
                                                         365 90.4 4.8e-19 0.304 0.691
353 87.7 3.2e-18 0.313 0.650
                                                                                           230
sp|P14862|ATP6_COCHE ATP synthase a chain (AT ( 257)
sp|P68526|ATP6_TRITI ATP synthase a chain (AT ( 386)
                                                         309 77.6 5.1e-15 0.289 0.651
                                                                                           235
sp P05499 ATP6 TOBAC ATP synthase a chain (AT ( 395)
                                                         309 77.6 5.2e-15 0.283 0.635
                                                                                          233
sp|P07925|ATP6 MAIZE ATP synthase a chain (AT (
                                                               71.7 2.3e-13 0.311 0.667
                                                   291)
                                                          283
                                                                                           180
sp|P0AB98|ATP6 ECOLI ATP synthase a chain (AT ( 271)
                                                                                          236
                                                         178
                                                              47.9 3.2e-06 0.233 0.585
sp POC2Y5 ATPI_ORYSA Chloroplast ATP synth (A ( 247)
                                                         144
                                                               40.1 0.00062 0.242 0.580
                                                         143 39.9 0.00072 0.250 0.586
sp|P06452|ATPI_PEA Chloroplast ATP synthase a ( 247)
                                                                                          232
sp P27178 ATP6_SYNY3 ATP synthase a chain (AT ( 276)
                                                         142 39.7 0.00095 0.265 0.571
sp P06451 ATPI_SPIOL Chloroplast ATP synthase ( 247)
                                                         138
                                                              38.8 0.0016 0.242 0.580
sp P08444 ATP6 SYNP6 ATP synthase a chain (AT ( 261) sp P69371 ATPI ATRBE Chloroplast ATP synthase ( 247)
                                                         127
                                                              36.3 0.0095 0.263 0.557
                                                                                           167
                                                         126 36.0 0.01 0.221 0.571
126 36.0 0.011 0.240 0.575
                                                                                          231
sp P06289 ATPI_MARPO Chloroplast ATP synthase ( 248)
                                                                                          167
sp P30391 ATPI_EUGGR Chloroplast ATP synthase ( 251)
                                                         123 35.4 0.017 0.257 0.579 214
sp|P19568|TLCA_RICPR ADP,ATP carrier protein ( 498) 122 35.0 0.043 0.243 0.579 152
sp P24966 CYB_TAYTA Cytochrome b
                                                  (379)
sp|P03892|NU2M_BOVIN NADH-ubiquinone oxidored ( 347) 107 31.7 0.31
                                                                            0.261 0.479 211
sp P68092 CYB STEAT Cytochrome b
                                                 (379)
                                                         104 31.0
                                                                             0.277 0.547
                                                                     0.54
                                                                                           137
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored ( 347)
                                                         103 30.8
sp P00156 CYB_HUMAN Cytochrome b
                                                  (380)
                                                         102 30.5 0.74
                                                                             0.268 0.585
                                                                                          205
sp|P15993|AROP ECOLI Aromatic amino acid tr
                                                  (457)
                                                                             0.234 0.622
                                                         103 30.7 0.78
                                                                                          111
sp|P24965|CYB_TRANA Cytochrome b
                                                  (379)
                                                         101 30.3
                                                                    0.87
                                                                             0.234 0.563
                                                                                          158
sp|P29631|CYB_POMTE Cytochrome b
                                                 (308)
                                                          99
                                                              29.9
                                                                    0.95
                                                                             0.274 0.584
                                                                                          113
sp|P24953|CYB_CAPHI Cytochrome b
                                                 (379)
                                                          99 29.8 1.2
                                                                             0.236 0.564 140
```

```
>>sp|P0AB98|ATP6_ECOLI ATP synthase a chain (ATPase protein 6) g (271 aa) s-w opt: 178 2-score: 218.2 bits: 47.9 E(): 3.2e-06
Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264)
                                             2.0
                               MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQ
human
                                 E coli NMTPQDYIGHHLNNLQLDLRTFSLVDPQNPPATFWTINIDSMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIE
      10 20 30 40 50 60 70 80
                     70
                             80
human WLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIATTNLLGLLP------HSF-----TPTTQLSMNLAMAIPLWAG
E coli LVIGFVNGSVKDMYHGKSKLIAPLALTIFVWVFLMNLMDLLPIDLLPYIAEHVLGLPALRVVPSADVNVTLSMALGVF--
               100 110 120 130 140
                                   150
                                            160
                             140
          120
                 130
{\tt human} \quad {\tt TVIMGFRSKIKNALAHFLPQGTPTPL----IPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINL}
      E coli -ILILFYSIKMKGIGGFTKELTLQPFNHWAFIPVNLILEGVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWIL
           170
                  180 190
                                    200
                                            210
                                                   220
             200
                     210
                             220
human PSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT
240
            250
                           260
                                                                       18
```

The PAM250 matrix

19

Where do scoring matrices come from?

frequency of replacement in homologs

$$\lambda S = \log \left(\frac{q_{ij}}{p_i p_j} \right)$$

frequency of alignment by chance

- Scoring matrices can can be designed for different evolutionary distances (less=shallow; more=deep)
- Deep matrices allow more substitution

Pam40

Pam250

	Α	R	N	D	\mathbf{E}	I	L		Α	R	N	D	E	I	L
Α	. 8							Α	2						
R	- 9	12						R	-2	6					
N	-4	-7	11					N	0	0	2				
D	-4	-13	3	11				D	0	-1	2	4			
Е	-3	-11	-2	4	11			E	0	-1	1	3	4		
I	-6	- 7	-7	-10	- 7	12		I	-1	-2	-2	-2	-2	5	
L	-8	-11	- 9	-16	-12	-1	10	L	-2	-3	-3	-4	-3	2	6

```
>>sp|P30391|ATPI_EUGGR Chloroplast ATP synthase a chain precursor (251 aa)
 s-w opt: 123 Z-score: 151.3 bits: 35.4 E(): 0.017
Smith-Waterman score: 123; 25.7% identity (57.9% similar) in 214 aa overlap (21-222:50-243)
human
                      {\tt MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTM}
Euglena VNMFISGIFQIANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF-LSIYTKNL--TLVPANKQIFIELVTEFITDI
                             40
                                             100
                         80
                                  90
      HNTK-GRT----WSLMLVSLIIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHF
human
110
                               120
                                       130
                                              140
               100
                                                        150
             140
                    150
                            160
                                     170
                                             180
                                                     190
{\tt Human} \qquad {\tt LPQGTPTPLIPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILLLTILEIAVAL}
          Euglena KKYVQPTPILLPINILEDFT---KPLSLSFRLFGNILADELVVAVLVSL------VP--LIVPVPLIFLGLF---TSG
               180
                         190 200
                                          210
                                                           220
     210
             220
human IQAYVFTLLVSLYLHDNT
      111 .1. 1 . 1.
Euglena IQALIFATLSGSYIGEAMEGHH
            240
                                                                         21
```

```
Query: atp6_human.aa ATP synthase a chain - 226 aa Library: 5190103 residues in 13351 sequences
The best scores are:
                                                  ( len) s-w bits E(13351) %_id %_sim
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT ( 226) 1400 325.8 5.8e-90 1.000 1.000
                                                                                           226
sp| P00847 | ATP6 BOVIN ATP synthase a chain (AT ( 226) 1157 27.05 2.5e-73 0.779 0.951 sp| P00848 | ATP6_MOUSE ATP synthase a chain (AT ( 226) 1118 261.7 1.2e-70 0.757 0.916
                                                                                           226
sp|P00849|ATP6_XENLA ATP synthase a chain (AT ( 226)
                                                         745 176.8 4.0e-45 0.533 0.847
                                                                                           229
sp P00851 ATP6 DROYA ATP synthase a chain (AT ( 224) sp P00854 ATP6 YEAST ATP synthase a chain pre ( 259)
                                                          473 115.0 1.7e-26 0.378 0.721
                                                                                           222
                                                          428 104.7 2.3e-23 0.353 0.694
                                                                                           232
sp|P00852|ATP6_EMENI ATP synthase a chain pre ( 256)
                                                          365 90.4 4.8e-19 0.304 0.691
sp P14862 ATP6_COCHE ATP synthase a chain (AT ( 257)
                                                          353 87.7 3.2e-18 0.313 0.650
                                                                                           214
sp|P68526|ATP6_TRITI ATP synthase a chain (AT ( 386)
                                                          309 77.6 5.1e-15 0.289 0.651
                                                                                           235
sp P05499 ATP6_TOBAC ATP synthase a chain (AT ( 395)
                                                          309 77.6 5.2e-15 0.283 0.635
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT ( 291)
                                                          283 71.7 2.3e-13 0.311 0.667
sp POAB98 ATP6_ECOLI ATP synthase a chain (AT ( 271) sp POC2Y5 ATPI ORYSA Chloroplast ATP synth (A ( 247)
                                                          178 47.9 3.2e-06 0.233 0.585
                                                          144 40.1 0.00062 0.242 0.580
sp P06452 ATPI_PEA Chloroplast ATP synthase a ( 247)
                                                          143 39.9 0.00072 0.250 0.586
sp P27178 ATP6_SYNY3 ATP synthase a chain (AT ( 276)
                                                          142 39.7 0.00095 0.265 0.571
sp P06451 ATPI_SPIOL Chloroplast ATP synthase ( 247)
                                                          138 38.8 0.0016 0.242 0.580
                                                                                           231
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT ( 261)
                                                          127 36.3 0.0095 0.263 0.557
                                                                                           167
sp P69371 ATPI_ATRBE Chloroplast ATP synthase ( 247)
                                                          126 36.0 0.01 0.221 0.571
sp|P06289|ATPI\_MARPO Chloroplast ATP synthase ( 248)
                                                          126 36.0 0.011 0.240 0.575
                                                                                           167
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase ( 251) 123 35.4 0.017 0.257 0.579 214
sp/P19568/TLCA_RICPR ADP,ATP carrier protein (498) 122 35.0 0.043 0.243 0.579 152
sp|P24966|CYB TAYTA Cytochrome b
                                                                             0.234 0.532 158
                                                          113 33.0 0.13
sp P03892 NU2M_BOVIN NADH-ubiquinone oxidored (347)
                                                          107
                                                               31.7
                                                                             0.261 0.479
sp P68092 CYB_STEAT Cytochrome b
                                                   379)
                                                          104 31.0 0.54
                                                                             0.277 0.547
                                                                                           137
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored ( 347)
                                                          103 30.8 0.58
                                                                             0.201 0.537
                                                                                           149
sp P00156 CYB_HUMAN Cytochrome b
                                                                             0.268 0.585
                                                  (380)
                                                          102
                                                               30.5
                                                                     0.74
                                                                                           205
sp P15993 AROP_ECOLI Aromatic amino acid tr
                                                               30.7 0.78
                                                                             0.234 0.622
                                                   457)
sp|P24965|CYB_TRANA Cytochrome b
                                                   379)
                                                          101
                                                               30.3
                                                                     0.87
                                                                             0.234 0.563
                                                                                           158
sp P29631 CYB POMTE Cytochrome b
                                                  (308)
                                                           99 29.9 0.95
                                                                             0.274 0.584
                                                                                           113
sp|P24953|CYB CAPHI Cytochrome b
                                                  (379)
                                                          99
                                                               29.8
                                                                     1.2
                                                                             0.236 0.564 140
                                                                                               22
```

```
Query: atp6_ecoli.aa ATP synthase a - 271 aa
                     Library: 5190103 residues in 13351 sequences
                                                 len) s-w bits E(13351) %_id %_sim
271) 1774 416.8 3.e-117 1.000 1.000
The best scores are:
                                                                                        alen
sp|POAB98|ATP6_ECOLI ATP synthase a chain (AT (
                                                                                        271
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase ( 247)
                                                       274
                                                            70.4 5.8e-13 0.270 0.616
                                                                                        211
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase (
                                                  247)
                                                        271
                                                             69.7 9.3e-13 0.270 0.607
                                                                                        211
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT (
                                                             69.7 9.9e-13 0.267 0.600
                                                                                        240
 sp P06452 ATPI_PEA Chloroplast ATP synthase a
                                                        266
                                                             68.5 2.1e-12 0.274 0.614
                                                                                        223
sp P30391 ATPI_EUGGR Chloroplast ATP synthase ( 251
                                                             68.3 2.5e-12 0.298 0.596
                                                                                        225
sp POC2Y5 ATPI_ORYSA Chloroplast ATP synthase ( 247)
                                                             67.2 5.4e-12 0.259 0.603
sp P27178 ATP6_SYNY3 ATP synthase a chain (AT ( 276)
                                                        260
                                                             67.1 6.1e-12 0.264 0.578
                                                                                        258
sp|P06289|ATPI_MARPO Chloroplast ATP synthase (
                                                  248)
                                                        250
                                                             64.8 2.7e-11 0.261 0.621
                                                                                        211
sp P07925 ATP6 MAIZE ATP synthase a chain (AT ( 291)
                                                             56.7 8.7e-09 0.259 0.578
                                                        215
                                                                                        232
sp P68526 ATP6_TRITI ATP synthase a chain (AT (
                                                             55.3 3.1e-08 0.259 0.603
sp|P00854|ATP6_YEAST ATP synthase a chain pre (
                                                  259)
                                                        204
                                                             54.2 4.5e-08 0.235 0.578
                                                                                        277
sp|P05499|ATP6 TOBAC ATP synthase a chain (AT
                                                  395)
                                                        189
                                                             50.7 7.8e-07 0.220 0.582
                                                                                        268
sp|P00846|ATP6 HUMAN ATP synthase a chain (AT ( 226)
                                                             48.2 2.5e-06 0.237 0.589
                                                                                        236
                                                        178
sp|P00852|ATP6_EMENI ATP synthase a chain pre (
                                                             48.2 2.8e-06 0.209 0.590
sp|P00849|ATP6_XENLA ATP synthase a chain (AT (
                                                 2261
                                                        173
                                                             47.1 5.5e-06 0.261 0.630
                                                                                        165
sp P00847 ATP6_BOVIN ATP synthase a chain (AT ( 226)
                                                             46.8 6.5e-06 0.233 0.581
                                                        172
                                                                                        236
sp P14862 ATP6_COCHE ATP synthase a chain (AT ( 257)
                                                        171
                                                             46.6 8.7e-06 0.204 0.608
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT ( 226)
                                                             45.5 1.7e-05 0.259 0.617
                                                        166
                                                                                        193
sp P00851 ATP6_DROYA ATP synthase a chain (AT ( 224)
                                                        139
                                                             39.2 0.0013 0.225 0.549
                                                                                        253
sp|P24962|CYB_STELO Cytochrome b
                                                             35.9
                                                                   0.021
                                                                           0.223 0.575
sp|P09716|US17_HCMVA Hypothetical protein HVL (
                                                 293)
                                                        109
                                                             32.3
                                                                   0.21
                                                                           0.260 0.565
                                                                                        131
sp|P68092|CYB_STEAT Cytochrome b
                                                 379)
                                                        109
                                                             32.2
                                                                  0.27
                                                                          0.211 0.562
                                                                                        194
sp|P24960|CYB ODOHE Cytochrome b
                                                                           0.210 0.555
                                                  379)
                                                        104
                                                                  0.61
                                                                                        200
                                                             31.1
sp | P03887 | NU1M_BOVIN NADH-ubiquinone oxidored (
                                                  318)
                                                         98
                                                             29.7
                                                                   1.3
                                                                           0.287 0.545
                                                                                        167
sp | P24992 | CYB_ANTAM Cytochrome b
                                                  379)
                                                         99
                                                             29.9
                                                                   1.4
                                                                           0.192 0.565
                                                                                        193
                                                                                            23
```


- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant - similarity score statistics?
- When to trust similarity statistics?
- Improving sensitivity with PSI-BLAST

25

26

DNA vs protein sequence comparison

The best scores	are:	DNA E(188,018)	tfastx3 E(187.524)	prot. E(331,956)
DMGST	D.melanogaster GST1-1	1.3e-164	4.1e-109	1.0e-109
MDGST1	M.domestica GST-1 gene	2e-77	3.0e-95	1.9e-76
LUCGLTR	Lucilia cuprina GST	1.5e-72	5.2e-91	3.3e-73
MDGST2A	M.domesticus GST-2 mRNA	9.3e-53	1.4e-77	1.6e-62
MDNF1	M.domestica nf1 gene. 10	4.6e-51	2.8e-77	2.2e-62
MDNF6	M.domestica nf6 gene. 10	2.8e-51	4.2e-77	3.1e-62
MDNF7	M.domestica nf7 gene. 10	6.1e-47	9.2e-77	6.7e-62
AGGST15	A.gambiae GST mRNA	3.1e-58	4.2e-76	4.3e-61
CVU87958	Culicoides GST	1.8e-41	4.0e-73	3.6e-58
AGG3GST11	A.gambiae GST1-1 mRNA	1.5e-46	2.8e-55	1.1e-43
BMO6502	Bombyx mori GST mRNA	1.1e-23	8.8e-50	5.7e-40
AGSUGST12	A.gambiae GST1-1 gene	2.3e-16	4.5e-46	5.1e-37
MOTGLUSTRA	Manduca sexta GST	5.7e-07	2.5e-30	8.0e-25
RLGSTARGN	R.legominosarum gstA	0.0029	3.2e-13	1.4e-10
HUMGSTT2A	H. sapiens GSTT2	0.32	3.3e-10	2.0e-09
HSGSTT1	H.sapiens GSTT1 mRNA	7.2	8.4e-13	3.6e-10
ECAE000319	E. coli hypothet. prot.	_	4.7e-10	1.1e-09
MYMDCMA	Methyl. dichlorometh. DH	_	1.1e-09	6.9e-07
BCU19883	Burkholderia maleylacetate re	ed.—	1.2e-09	1.1e-08
NFU43126	Naegleria fowleri GST	_	3.2e-07	0.0056
SP505GST	Sphingomonas paucim	_	1.8e-06	0.0002
EN1838	H. sapiens maleylaceto. iso.	_	2.1e-06	5.9e-06
HSU86529	Human GSTZ1	_	3.0e-06	8.0e-06
SYCCPNC	Synechocystis GST	_	1.2e-05	9.5e-06
HSEF1GMR	H.sapiens EF1g mRNA	_	9.0e-05	0.00065

Table 3: I	DNA and	translated	DNA	similarity	searches

Taxonomic Group	blastx	blastn	blastn	
•		+3/-3	+1/-3	
Bacteria eubacteria				
. Proteobacteria proteobacteria				
Gammaproteobacteria q-proteo.				
Enterobacteriaceae entero.				
Shigella enterobacteria				
Shigella flexneri2a	979	2165	2595	enterobacteria
Escherichia coli CFT073	976	2130	2508	enterobacteria
Escherichia coli 0157:H7	959	2184	2642	enterobacteria
Escherichia coli	758	2253	2817	enterobacteria
Edwardsiella tarda	784	1102	180	enterobacteria
Brucella melitensis 16M	496	854	113	a-proteobacter
Mesorhizobium loti	60			a-proteobacter
Bordetella bronchiseptica RB	330	217		b-proteobacter
Geobacter metallireducens	53			d-proteobacter
Geobacter sulfurreducens PCA	53			d-proteobacter
. Prochlorococcus marinus MIT	517	458		cyanobacteria
. Synechocystis sp. PCC 6803	466	284		cyanobacteria
. Clostridium perfringens str. 13	427			eubacteria
. Streptomyces coelicolor A3(2).	417			high GC Gram+
. Mycobacterium tuberculosis	414	311		high GC Gram+
. Listeria innocua	414	257		eubacteria
. Listeria monocytogenes	414	234		eubacteria
. Enterococcus faecium	411			eubacteria
. Streptomyces avermitilis MA4680	409			high GC Gram+
. Lactococcus lactis	405	183		eubacteria
. Lactobacillus plantarum WCFS1.	390	231		eubacteria
. Bacteroides thetaiotaomicronVPI	387	233		CFB group bact
. Chloroflexus aurantiacus	72			GNS bacteria
. Gloeobacter violaceus PCC 7421	48			cyanobacteria
. Streptomyces viridifaciens	45			high GC Gram+
. Clostridium tetani E88	45			eubacteria

Bit scores from a blastx and blastn searches presented using the BLAST taxonomy summary option. The DNA sequence (M84025) encoding $E.\ coli$ glutamate decarboxylase used to search the bacterial division of Genbank or Genpept. Species that contain a homolog with a bit score ≥ 45 (E() < 10^{-3} for blastx) are shown. The numbers under the blastx and blastn columns indicate the highest bit-score obtained for that taxonomic group.

27

Smith-Waterman

Smith-Waterman

- 1. score every cell:
- $S_{x,y} = max\{$ $S_{x-1,y-1}$ + match_{xy} $S_{x,y-1}$ – gappen $S_{x-1,y}$ – gappen

} 2. follow "traceback"

> NLPYL-I ..: . : QVPLVEI

Outcome: one continuous, optimal gapped alignment

FASTA

- 1. Identify identical matches (length = ktup)
- 2. Extend along diagonal (local maximum)
- 3. Join diagonal segments (DP) (maintain linearity) (optimal sum score)
- 4. Banded Smith-Waterman

NLPYL-I ..: . : QVPLVEI

Outcome: one continuous, near-optimal gapped alignment 30

BLAST

- 1. neighborhood word hits (word length)
- 2. extend from diagonal ends (X-drop threshold)
- 3. report HSP linkages (maintain linearity) (probability)

NL NLP LI
.: .: .:
PL QVP EI

Outcome: multiple HSPs, multiple linkages; only partially aligned

More about scoring matrices ...

PAM series:

- Evolutionary model extrapolated from PAM1
- PAM20: 20% change (mammals)
- PAM250: 250% change (<20% identity)
- · Gap penalties should vary
- shallow matrices (PAM10-40) for short sequences and short distances

BLOSUM series

- Empirically determined, no extrapolation (no model)
- BLOSUM45-50 distant (1/3 bits)
- BLOSUM80 -very highly conserved (not small change), high info/position
- BLOSUM62 1/2 bits

Changing Scoring Parameters

A. Search with MJ0050

NP_416807 NAD(P) binding

	BLO	BLOSUM50 -10/-2				BLOSUM62 -7/-1				BLOSUM62 -11/-1		
The best scores are:	s-w	E()	%_id	alen	s-w	E()	%_id	alen	s-w	E()	%_id	alen
NP_416010 glutamate decarb.	250	e-11	24.9	401	216	e-7	25.3	415	137	e-8	22.9	332
NP_417379 glycine decarb.	169	e-05	22.1	420	163	0.001	23.3	430	88	0.004	22.1	331
NP_417025 aminotransferase	122	0.02	23.6	254	119	0.12	24.5	257	76	0.04	23.7	118
NP_414772 aminoacyl-his.	110	0.15	23.4	188	108	0.74	23.2	311	57	6.9	23.4	188
NP_415139 alkyl hydroperoxide	99	1.1	26.9	156	104	1.5	24.5	233	62	2.0	28.9	97
B. Search with MJ1633												
	BLO	SUM50	-10/-2		BLOSUM62 -7/-1				BLOSUM62 -11/-1			
The best scores are:	s-w	E()	%_id	alen	s-w	E()	%_id	alen	s-w	E()	%_id	alen
NP_417809 KefB	196	e-06	28.2	177	162	0.02	27.3	176	143	e-8	34.4	96
NP_414589 K+ antiporter	175	e-04	25.4	142	141	0.2	24.7	166	131	e-7	25.4	142
NP_415011 transport protein	133	0.03	23.2	142	113	4.4	23.2	142	89	0.005	23.2	142
NP 417748 TrkA	128	0.04	23.7	135	114	2.9	22.2	176	99	e-3	21.8	133
	120					2.7			,,	0-5	21.0	155

33

Where do scoring matrices come from?

Pam40		Pam25	50
A R	N D E	I L A	R N D E I L
A 8		A 2	
R - 9 12		R -2	6
N -4 -7	11	N 0	0 2
D -4 -13	3 11	D 0 -	-1 2 4
E -3 -11	-2 4 11	E 0 -	-1 1 3 4
I -6 -7	-7 -10 -7	' 12 I - 1 -	-2 -2 -2 5
T8 -11	-9 -16 -12	-1 10 т2 -	-3 -3 -4 -3 2 6

 q_{ij} : replacement frequency at PAM40, 250

 $q_{R:N (40)} = 0.000435$ $q_{R:N (250)} = 0.002193$ $p_R = 0.051$ $p_N = 0.043$

 $\lambda_2 S_{ij} = \lg_2 (q_{ij}/p_ip_j) \quad \lambda_e S_{ij} = \ln(q_{ij}/p_ip_j) \quad p_R p_N = 0.002193$

 $\lambda_2 \ S_{R:N(~40)} = \lg_2 (0.000435/0.00219) = -2.333$

 $\lambda_2 = 1/3; \ S_{R:N(~40)} = -2.333/\lambda_2 = -7$

 $\lambda S_{R:N(250)} = Ig2 (0.002193/0.002193) = 0$

		BLOSUM50-10/-2			
		E(320363) f_id	E(320363) f_id	E(320363) f_id	E(320363) f_id
	GSTM1_HUMAN GSTM4_HUMAN GSTM2_MOUSE	1.9e-89 0.867 3.0e-87 0.839		1.4e-184 0.847	2.5e-187 0.847
01	GSTM5_HUMAN GSTM2_HUMAN	4.9e-87 0.876 8.2e-87 0.844	6.9e-114 0.876 8.2e-113 0.844	2.6e-182 0.844	7.2e-195 0.912 1.3e-184 0.844
Class-mu	GSTM1_MOUSE GSTM6_MOUSE	7.0e-83 0.780 1.9e-82 0.775	2.5e-107 0.780 1.0e-106 0.775	4.7e-169 0.780 5.1e-168 0.779	
	GSTM4_MOUSE GSTM5 MOUSE	8.7e-82 0.769 6.9e-73 0.727		7.7e-166 0.769 1.3e-142 0.727	
	GSTM3_HUMAN	8.2e-73 0.731	6.7e-95 0.731		
	GSTM2_CHICK	9.8e-65 0.656		3.0e-117 0.656	
	GST26_FASHE GSTM1 DERPT	2.9e-44 0.495 5.2e-42 0.467		2.7e-59 0.502 5.1e-57 0.505	
	GST27_SCHMA	2.4e-37 0.467	9.5e-49 0.458	4.7e-42 0.470	5.1e-20 0.607
	GSTP1_PIG	2.9e-20 0.327		0.00034 0.409	
Class-pi	GSTP1_XENLA GSTP2 MOUSE	5.2e-19 0.333 8.0e-17 0.294	6.0e-24 0.330 1.3e-20 0.294		
Class-pi	GSTP1_CAEEL	1.1e-16 0.324	4.3e-21 0.319	1.1 0.706	
	GSTP1_HUMAN GSTP1_BUFBU		2.2e-20 0.284 7.2e-18 0.272	0.29 0.467 9.7 0.588	
	GSTPA_CAEEL	1.1e-13 0.298	2.8e-17 0.284	0.002 0.400	
	PTGD2_MOUSE	4.8e-12 0.302			
	PTGD2_RAT PTGD2 HUMAN	4.8e-12 0.302 1.1e-11 0.292			
	PTGD2_CHICK	9.8e-11 0.304	6.9e-13 0.302		
	GSTP2_BUFBU GST MUSDO	2.0e-10 0.288 5.8e-09 0.257	2.2e-12 0.307 2.3e-11 0.251		
	GST_MOSDO GST1_DROME	1.0e-08 0.255			
	GSTA1_MOUSE	1.5e-08 0.279			
Class-	GSTA2_HUMAN GSTA5 HUMAN	6.6e-08 0.286 7.8e-08 0.275	1.2e-08 0.273 1.2e-08 0.259		
	GSTA2_MOUSE	1.1e-07 0.269			
alpha	GSTA3_MOUSE GSTA1 HUMAN	1.3e-07 0.278 3.0e-07 0.272	8.9e-09 0.258 8.0e-08 0.259		
S. P . S.	GST36_CAEEL	3.3e-07 0.256	1.1e-08 0.264		
	GSTA2_CHICK	4.2e-07 0.279	8.0e-08 0.266		

Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- · Short alignments require shallow matrices
- Shallow matrices set maximum look-back time

- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant - similarity score statistics?
- · When to trust similarity statistics?
- · Improving sensitivity with PSI-BLAST

39

Inferring Homology from Statistical Significance

- Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

Smith-Waterman (ssearch)

```
s-w bits E(115640) % id alen
The best scores are:
GTM1_MOUSE Glutathione S-trans ( 218) 1497 363.5 2e-100 1.000 218
GTM2_CHICK Glutathione S-trans ( 220) 958 234.9 1.1e-61
                                                         0.619
                                                                218
GTP_HUMAN Glutathione S-trans (210)
                                      356 91.2 1.8e-18
                                                         0.308
PGD2 MOUSE Glutathione-req. (199)
                                      262
                                           68.8 9.7e-12
                                                         0.319
GTA1_MOUSE Glutathione S-trans ( 223) 229
                                           60.9 2.6e-09 0.284
                                                                225
SC1_OCTDO S-crystallin 1 OL1 ( 215) 228
                                           60.7 3.0e-09 0.269
                                                                219
GTS MUSDO Glutathione S-trans ( 241)
                                      228
                                           60.6 3.4e-09
                                                        0.264
                                                                201
GTS1_CAEEL Prob. Glut. S-trans ( 210) 220
                                           58.8 1.1e-08
                                                         0.284
GTS OMMSL Glutathione S-trans (203) 196
                                           53.0 5.5e-07
                                                         0.258
GTH3_ARATH Glutathione S-trans ( 215) 142 40.1 0.0045 0.310
                                                                126
GTT2_HUMAN Glutathione S-trans ( 244) 132 37.7
                                                  0.027 0.257
                                                                167
GT24_DROME Glutathione S-trans ( 216) 131
                                           37.5
                                                  0.028
                                                        0.255
                                                                153
YFCG_ECOLI Hypothetical GST ( 215) 112
                                           33.0
                                                  0.64
                                                         0.235
                                                                187
YJY1_YEAST hypothetical 30.5
                                                 *1.1*
                                                                149
DCMA METS1 dichloromethane DM ( 267) 103
                                           30.8
                                                 3.7
                                                         0.214
                                                                210
YA42_HAEIN Hypothetical prot. (617) 108
GT01 RAT Glutathione trans (241) 100
                                                         0.283
                                           31.7
                                                 *4.6*
                                                                120
                                           30.1
                                                 5.4
                                                         0.234
                                                                158
DP41_BACHD DNA polymerase I
                                413) 104
                                           30.8
                                                 *5.4*
                                                         0.234
                                                                184
GTH1 WHEAT Glutathione S-trans ( 229)
                                       98
                                           29.6
                                                  7.0
                                                         0.246
                                                                171
LGUL_SOYBN Lactoylglutathione (219)
                                      97 29.4
                                                  7.8
                                                         0.200
VP2 AHSV3 outer capsid prot (1057)
                                      108
                                                 *8.9*
                                                         0.205
                                                                200
                                           31.5
GTH5_ARATH Glutathione S-trans ( 218)
                                      96 29.2
                                                         0.258
                                                  9.2
                                                                 66
DCMA_METSP dichloromethane DM ( 288)
                                       98 29.5
                                                  9.3
                                                         0.195
                                                                200
GTXA_ARATH Glutathione S-trans ( 224)
                                       96
                                           29.1
                                                  9.5
                                                         0.248
                                                                125
SLT_HAEIN Putative soluble 1 (593) 103
                                          30.5 *9.9*
                                                         0.227
```

43

Low gap penalties can reduce sensitivity

```
s-w bits E(115640) %_id alen
The best scores are:
GTM1_MOUSE Glutathione S-tran ( 218) 1497 164.0 2.3e-40 1.000 218
GTM2_CHICK Glutathione S-tran ( 220) 958 107.5 2.4e-23
                                                      0.619
GTP HUMAN Glutathione S-tran (210)
                                    378 46.8 4.2e-05
                                                      0.308
PGD2 MOUSE Glutathione-req. (199)
                                    311
                                         39.9 0.0048
                                                      0.319
                                                             204
GTA1_MOUSE Glutathione S-tran (223) 296 38.1
                                               0.019
                                                      0.313
                                                             233
SC1_OCTDO S-crystallin 1 OL1 ( 215) 286 37.2
                                                0.035
                                                      0.272
                                                             224
GTS MUSDO
          Glutathione S-tran ( 241)
                                    279
                                         36.2
                                                0.077
                                                      0.274
GTS_OMMSL Glutathione S-tran (203)
                                    241 32.6
                                                 0.81
                                                      0.261
GTH3 ARATH Glutathione S-tran (215)
                                    190
                                         27.1
                                                  38
                                                      0.293
                                                             198
GTT2 HUMAN Glutathione S-tran ( 244) 189 26.7
                                                      0.271
                                                  55
                                                             210
GTT1_MUSDO Glutathione S-tran ( 208) 183 26.4
                                                  58
                                                      0.276
                                                             199
MAAI VIBCH Probable maleylace ( 215)
                                    184
                                         26.5
                                                  58 0.235
                                                             247
YFCG_ECOLI Hypothetical GST-
                             (215) 184 26.5
                                                  58 0.246
                                                             224
                            ( 220) 184
GTXA TOBAC prob. Glutathione
                                         26.4
                                                  62
                                                      0.250
                                                             204
GTH1 WHEAT Glutathione S-tran (229) 185 26.4
                                                  63 0.246
                                                             236
GTH7 ARATH Glutathione S-tran (214)
                                   180 26.1
                                                  77 0.254
                                                             228
                             (558)
T1MH_METJA Putative type I r
                                    210
                                         27.3
                                                 *85* 0.255
                                                             275
DP41_BACHD DNA polymerase I
                             (413)
                                    200 26.8
                                                 *86* 0.244
                                                             234
GTH2_WHEAT Glutathione S-tran (291) 188
                                         26.3
                                                  90 0.247
```

FASTA search – low complexity regions

```
Search with complete grou_drome:
The best scores are:
                                                               bits E(14548)
                                                          opt
RGHUB1 GTP-binding regulatory protein beta-1 chai ( 341)
                                                          237
                                                               46.6
                                                                     3.5e-05
RGBOB1 GTP-binding regulatory protein beta-1 chai ( 341)
                                                               46.6
                                                                     3.5e-05
RGHUB3 GTP-binding regulatory protein beta-3 chai ( 341)
                                                               46.0
                                                                     5.2e-05
                                                          233
RGMSB4 GTP-binding regulatory protein beta-4 chai ( 341)
                                                          232 45.8 5.7e-05
PIHUPF salivary proline-rich glycoprotein precurs
                                                  (252)
                                                          224 44.5 *0.00010*
RGFFB GTP-binding regulatory protein beta chain
                                                  (347)
PIRT3 acidic proline-rich protein precursor - rat ( 207)
PIHUB6 salivary proline-rich protein precursor PR ( 393)
                                                          203
                                                               41.6 *0.0012*
CGBO2S collagen alpha 2(I) chain - bovine (fragme
                                                  ( 403)
                                                          195 40.5 *0.0027*
WMBEW6 capsid protein - human herpesvirus 1 (stra
                                                    636)
                                                          192 40.2 *0.0051*
W4WLB5 E4 protein - human papillomavirus type 5b
                                                  (246)
                                                          170
                                                               36.6 *0.024*
OZZQMY circumsporozoite protein precursor - Plasm ( 368)
                                                          172
                                                               37.1 *0.026*
FOMVME gag polyprotein - murine leukemia virus (s (537)
                                                          161 35.6 *0.10*
Search with seg-ed grou_drome: (low complexity regions removed)
                                                          opt bits E(14548)
The best scores are:
RGHUB3 GTP-binding regulatory protein beta-3 chai ( 341)
                                                          233 56.5 3.6e-08
                                                  (341)
RGMSB4 GTP-binding regulatory protein beta-4 chai
                                                          232
                                                               56.3 4.1e-08
RGHUB2 GTP-binding regulatory protein beta-2 chai ( 341)
                                                          228 55.5 7.2e-08
RGBOB1 GTP-binding regulatory protein beta-1 chai
                                                  (341)
                                                          225
                                                               54.9 1.1e-07
                                                  (347)
                                                               54.5 1.5e-07
RGFFB GTP-binding regulatory protein beta chain
                                                          223
                                                    423)
BVBYMS MSI1 protein - yeast (Saccharomyces cerevi
                                                          135
                                                               37.0 *0.033*
ERHUAH coatomer complex alpha chain homolog - hum
                                                  (1225)
                                                          134
                                                               37.1 *0.088*
```

pseg removes low-complexity regions

A28468 chromogranin A precursor - human

RGOOBE GTP-binding regulatory protein beta chain

>gi|17380405|sp|P16371|GROU_DROME Groucho protein (Enhancer of split M9/10)

paaggpppqgp 9-19 20-131 TKFTTADTLERTKEEFNFLOAOYHSTKLEC EKLSNEKTEMORHYVMYYEMSYGLNVEMHK OTEIAKRLNTLINOLLPFLOADHOOOVLOA VERAKOVTMOET.NT.TTGOOTHA 132-143 pmqpqqppqvpp 144-281 ALNPFGALGATMGLPHGPQGLLNKPPEHHR PDIKPTGLEGPAAAEERLRNSVSPADREKY RTRSPLDIENDSKRRKDEKLOEDEGEKSDO DLVVDVANEMESHSPRPNGEHVSMEVRDRE SLNGERLEKPSSSGIKQE 282-297 rppsrsgssssrstps 298-310 LKTKDMEKPGTPG akartptpnaaapapgvnpk 331-351 ${\tt qmmpqgpppagypgapyqrpa}$ 352-719 DPYORPPSDPAYGRPPPMPYDPHAHVRTNG TPHPSALTGGKPAYSFHMNGEGSLOPVPFP PDALVGVGIPRHARQINTLSHGEVVCAVTI SNPTKYVYTGGKGCVKVWDISOPGNKNPVS OLDCLORDNYIRSVKLLPDGRTLIVGGEAS NLSIWDLASPTPRIKAELTSAAPACYALAI SPDSKVCFSCCSDGNIAVWDLHNEILVRQF OGHTDGASCIDISPDGSRI,WTGGI,DNTVRS

ATVYEVIY

WDLREGRQLQQHDFSSQIFSLGYCPTGDWL AVGMENSHVEVLHASKPDKYQLHLHESCVL SLRFAACGKWFVSTGKDNLLNAWRTPYGAS IFQSKETSSVLSCDISTDDKYIVTGSGDKK

46

MYPSPVRH

(458)

(342) 120

122

34.4 *0.21* 33.9 0.22

Statistical estimates from random shuffles

- BLAST estimates statistical significance from simulations of "normal" (average composition) proteins
- FASTA estimates statistical significance from the distribution of similarity scores obtained during the database search (selects 60,000 unrelated sequence scores from the database of *real* proteins)
- What if the sequences are different from most proteins, but similar to each other, e.g. membrane proteins?
- PRSS estimates statistical significance by producing hundreds of shuffled (random) sequences with the same length and composition, and then estimates λ and K from comparisons against those proteins

prss - uniform and window shuffle

```
>LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein 6 - Escherichia coli
MASENMTPOD YIGHHLNNLQ LDLRTFSLVD PQNPPATFWT INIDSMFFSV VLGLLFLVLF
 RSVAKKATSG VPGKFQTAIE LVIGFVNGSV KDMYHGKSKL IAPLALTIFV WVFLMNLMDL
 LPIDELPYTA EHVLGLPALR VVPSADVNVT LSMALGVFIL ILFYSIKMKG IGGFTKELTL
 QPFNHWAFIP VNLILEGVSL LSKPVSLGLR LFGNMYAGEL IFILIAGLLP WWSQWILNVP
 WAIFHILIT LOAFIEMVLT IVYLSMASEE H
 >1wec6 0 shuffled
 GMPISVLLFK PPEVLLVFLL SVMGTNFPAW GGFIMKGFKI VSFVGWVRFV AVAGHLALYK
 TITRDVNIVKS AVFGSALLHP LLLQLSEINL VFVNILINIKI RTAYVHGMTL LSHISLIFPAS
GEGVFSDMLM IITWNSASVL SGLDMFANIA LLGNPLLMTN IVIILQRKFI ATTKFSLADI
 HLHKQYSWDG MMSHTLIIFS ALELWVQNGD IFIPLNEYIL PFTLYVPNWL ITQALVVALV
 ELPGOOIDAE PLFLLPIPFS EKTWYGDIMF L
PRSS34 - 1000 shuffles; uniform shuffle
 unshuffled s-w score: 178; bits(s=178|n_1=271): 34.8 p(178) < 2.005e-06
For 10000 sequences, a score >= 178 is expected 0.02005 times
 >lwec6 0 shuffled window: 10
EDSMANTMPD HQNILGYHLN DLRTSDFVLL FTQAPWPTPN SMNIDIVFSF VLLVLLFFGL
 SRGAVKATKS EQVTGIKFAP VVSGVILGFN HDKGMSLYKK VLPIIFLAAT DWLMNFVLLM
 IIDLYLLAPP ERVGHPLLAL APNVVVSVDT MLFLIGSALV IFSLMKGIKY TTIFGLEKGL
 OAWNFFPHIP NISVEVGLIT GLPVRSSLKI MFLELAGNGY PFGTITITLA SLINVWPWOW
 IAIIWTIFHL VQMTFFLAIL VSESELMIYA H
PRSS34 - 1000 shuffles; window shuffle, window size: 20
unshuffled s-w score: 178; bits(s=178|n l=271): 34.5 p(178) < 2.601e-06
For 10000 sequences, a score >= 178 is expected 0.02602 times
                                                                                       49
```

Local alignments - calmodulin

```
46.1% identity in 76 aa overlap (1-76:77-149); score: 222 E(10000): 2.7e-10
10 20 30 40 50 60
      {\tt MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADG}
mchu
      mchu
                           100
       80
                   90
                                    110
                                             120
      NGTIDFPEFLTMMARK
      DGQVNYEEFVQMMTAK
mchu
 34.3% identity in 105 aa overlap (11-111:47-147); score: 187 E(10000): 6.7e-08 20 30 40 50 60
      {\tt AEFKEAFSLFDKDGDGTITTKELGTVM-RSLGQNPTEAELQDMINEVDADGNGTIDFPEF}
      mchu

        50
        60
        70
        80
        90

        70
        80
        90
        100
        110

mchu
      ---LTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMT
      110
               120
                            130
                                      140
 34.2% identity in 38 aa overlap (1-37:113-146); score: 68 E(10000): 10 20 30
      MADQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM
      50
```


- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant - similarity score statistics?
- · When to trust similarity statistics?
- · Improving sensitivity with PSI-BLAST

	_	aps, algorit	-
Matrix:	BLOSUM50	BLOSUM62	BLASTP
Gap open/extend	-10/-2	-11/-1	-11/-1
The best scores are:	bits E(13351)	bits E(13351)	bits E()
ATP6_HUMAN ATP synthase a chai	297.7 1.7e-81	373.6 2.4e-104	296 3e-81
ATP6_BOVIN ATP synthase a chai		310.7 2.0e-85	253 2e-68
ATP6_MOUSE ATP synthase a chai		302.9 4.4e-83	245 5e-66
ATP6_XENLA ATP synthase a chai			142 9e-35
ATP6_YEAST ATP synthase a ch		90.1 5.7e-19	93 5e-20
ATP6_EMENI ATP synthase a chai		76.6 6.8e-15	75 2e-14
ATP6_DROYA ATP synthase a chai		75.4 1.4e-14	101 2e-22
ATP6_COCHE ATP synthase a cha			75 1e-14
ATP6_ECOLI ATP synthase a ch		49.1 1.4e-06	
ATP6_TRITI ATP synthase a ch	45.0 3.3e-05		
ATP6_TOBAC ATP synthase a chai		47.0 8.6e-06	80 3e-16
ATP6_MAIZE ATP synthase a chai		44.9 2.6e-05	
ATPI_PEA Chloroplast ATP syn			
ATPI_SPIOL Chloroplast ATP syn			
ATPI_ATRBE Chloroplast ATP s	34.0 0.044		
ATPI_MARPO Chloroplast ATP syn	33.2 0.075		
HBA_ODOVI Hemoglobin subunit a		31.9 0.11	
*AROP_ECOLI Aromatic amino ac	32.1 0.31		
ATPI_EUGGR Chloroplast ATP syn			
ATP6_SYNP6 ATP synthase a chai			
TLCA_RICPR ADP,ATP carrier pro		29.7 1.7	
ATP6_SYNY3 ATP synthase a chai		31.8 0.22	28 1.9
ATPI_ORYSA Chloroplast ATP	30.1 0.65	32.2 0.15	
*GLUC_MYOSC Glucagon precursor			
*VP6_BPPH6 Protein P6 *GLUC LEPSP Glucagon precursor	29.1 0.85 27.7 1.		
*ADH1 MOUSE Alcohol dehydrogena			

Metazoan ATP Synthases

CLUSTAL W (1.81) multiple sequence alignment

,	()	
ATP6_BOVIN	MNENLFTSFITPVILGLPLVTLIVLFPSLLFPTSNRLVSNRFVTLQQWMLQLVSKQMMSIHNSKGQTWT-LML	
ATP6_MOUSE	MNENLFASFITPTMMGFPIVVAIIMFPSILFPSSKRLINNRLHSFQHWLVKLIIKQMMLIHTPKGRTWT-LMI	
ATP6_HUMAN	MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWS-LML	
ATP6 XENLA	$ exttt{MNLSFFDQFMSPVILGIPLIAIAMLDPFTLISWPIQSNGFNNRLITLQSWFLHNFTTIFYQLTSP-GHKWA-LLL}$	
ATP6_DROYA	MMTNLFSVFDPSAIFNLSLNWLSTFLGLLMIPSIYWLMPSRYNIFWNSILLTLHKEFKTLLGPSGHNGSTFIF	
_	* .:* *:.: : : : ** :: . : : . : ::::::::	
ATP6_BOVIN	$ exttt{MSLILFIGSTNLLGLLPHSFTPTTQLSMNLGMAIPLWAGAVITGFRNKTKASLAHFLPQGTPTPLIPMLVIIETI}$	
ATP6 MOUSE	VSLIMFIGSTNLLGLLPHTFTPTTQLSMNLSMAIPLWAGAVITGFRHKLKSSLAHFLPQGTPISLIPMLIIIETI	
ATP6 HUMAN	VSLIIFIATTNLLGLLPHSFTPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPLIPMLVIIETI	
ATP6 XENLA	TSLMLLLMSLNLLGLLPYTFTPTTQLSLNMGLAVPLWLATVIMASKP-TNYALGHLLPEGTPTPLIPVLIIIETI	
ATP6_DROYA	ISLFSLILFNNFMGLFPYIFTSTSHLTLTLSLALPLWLCFMLYGWINHTQHMFAHLVPQGTPAILMPFMVCIETI	
	**:::	
ATP6_BOVIN	${\tt SLFIQPMALAVRLTANITAGHLLIHLIGGATLALMSISTTTALITFTILILLTILEFAVAMIQAYVFTLLVSLYLHDNT}$	
ATP6_MOUSE	${\tt SLFIQPMALAVRLTANITAGHLLMHLIGGATLVLMNISPPTATITFIILLLLTILEFAVALIQAYVFTLLVSLYLHDNT}$	
ATP6_HUMAN	SLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT	
ATP6_XENLA	${\tt SLFIRPLALGVRLTANLTAGHLLIQLIATAAFVLLSIMPTVAILTSIVLFLLTLLEIAVAMIQAYVFVLLLSLYLQENV}$	
ATP6_DROYA	SNIIRPGTLAVRLTANMIAGHLLLTLLGNTGPSMSYLLVTFLLVAQIALLVLESAVTMIQSYVFAVLSTLYSSEVN	
_	* :*:* :*.*****: ****: : : : : : : : *::* * **::**:**	

55

PSI-BLAST ATP6_HUMAN - 4 iterations

Results from round:	(1)	(2)	(3)	(4)	
Sequences producing significant alignments:	Score	E	Score	E	Score	E	Score	E
	(bits)	Value	(bits)	Value	(bits)	Value	(bits)	Value
ATP6_HUMAN ATP synthase a chain (ATPase protein 6)	296	3e-81	257	1e-69	241	2e-62	222	5e-59
ATP6_BOVIN ATP synthase a chain (ATPase protein 6)	253	2e-68	257	2e-69	239	8e-65	230	2e-61
ATP6_MOUSE ATP synthase a chain (ATPase protein 6)	245	5e-66	247	3e-66	234	4e-64	225	6e-60
ATP6_XENLA ATP synthase a chain (ATPase protein 6)	142	9e-35	227	1e-60	189	3e-49	177	2e-45
ATP6_DROYA ATP synthase a chain (ATPase protein 6)	101	2e-22	206	3e-54	209	5e-55	196	4e-51
(2)								
ATP6_YEAST ATP synthase a chain precursor (ATPase prot	93	5e-20	97	3e-21	199	4e-52	191	2e-49
ATP6_TRITI ATP synthase a chain (ATPase protein 6)	83	5e-17	96	5e-21	218	1e-57	236	4e-63
(3)								
ATP6_TOBAC ATP synthase a chain (ATPase protein 6)	80	3e-16	90	4e-19	200	2e-52	230	3e-61
ATP6_MAIZE ATP synthase a chain (ATPase protein 6)	76	5e-15	88	1e-18	198	1e-51	219	5e-58
ATP6_COCHE ATP synthase a chain (ATPase protein 6)	75	1e-14	86	9e-18			197	2e-51
ATP6_EMENI ATP synthase a chain precursor (ATPase prot	75	2e-14	84	3e-17	123	5e-29	181	2e-46
(4)								
ATP6_ECOLI ATP synthase a chain (ATPase protein 6)	42	1e-04	40	5e-04	46	8e-06	49	1e-06
ATPI_SPIOL Chloroplast ATP synthase a chain precursor			32	0.12	36	0.006	39	0.001
ATP6_SYNY3 ATP synthase a chain (ATPase protein 6)	28	1.9	32	0.16	44	5e-05	45	1e-05
ATPI_MARPO Chloroplast ATP synthase a chain precursor			31	0.21	44	4e-05	44	3e-05
ATPI_PEA Chloroplast ATP synthase a chain precursor (A			31	0.32	37	0.005		
LAMA2_MOUSE Laminin subunit alpha-2 precursor (Laminin			31	0.34				
ATPI_ATRBE Chloroplast ATP synthase a chain precursor			31	0.39	41	2e-04		
ATP6_SYNP6 ATP synthase a chain (ATPase protein 6)			28	1.7	41	2e-04		
ATPI_EUGGR Chloroplast ATP synthase a chain precursor					39	0.001		
ATPI_ORYSA Chloroplast ATP synthase a chain precursor			28	1.9	36	0.008		
ATPI_ATRBE Chloroplast ATP synthase a chain precursor					36	0.009	38	0.002
ATP6_ASPAM ATP synthase a chain (ATPase protein 6)							36	0.008
POLG_KUNJM Genome polyprotein [Contains: Capsid protei.		5.0						
POL_HTL1C Gag-Pro-Pol polyprotein (Pr160Gag-Pro-Pol) [.		5.0						
POLG_DEN2J Genome polyprotein [Contains: Capsid protei.	27	5.2	26	7.0				

0 0 0 0 0 0 0

Sensitive searches with PSI-BLAST

- PSI-BLAST improves sensitivity by building a Position Specific Scoring Matrix (PSSM)
 - models ancestral sequence (consensus distribution)
 - similar to PFAM HMM (but less sophisticated weights, gaps)
- · Sensitivity improves with additional iterations
 - model moves to base of tree
- Statistical estimates are difficult
 - once a sequence is in, it is "significant" validation must be done before a sequence is included
- Very diverse families may not produce a well defined PSSM
 - similar problems with HMMs have lead to "clans"

59

Sequence Similarity - Conclusions

- Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself) 10⁻⁶ < E() < 10⁻³ is statistically significant
- Scoring matrices set evolutionary look back horizons not every discovery is distant
- PSI-BLAST can be more sensitive, but with lower statistical accuracy

Discussion (exam) questions

- 1. What is the difference between similarity and homology? When does high identity not imply homology? What conclusions can be drawn from homology?
- 2. What is the range of an expectation value (E()-value)? If you compare a sequence to 50,000 random(unrelated) sequences, what should the expectation value for the highest of the 50,000 similarity scores be (on average)?
- 3. In a sequence similarity database search, you identify a statistically significant similarity (E()<0.005), but the alignment is relatively short (50 aa). How might you determine whether the alignment reflects a genuine homology, or a random sequence match?
- 4. What scoring matrix should be used to identify protein orthologs that have diverged over the past 100 My (e.g. human/mouse)?
- 5. When the *M. janaschii* genome was first sequenced, Venter and his colleagues stated that almost 60% of the open reading frames (proteins or genes) were novel to this organism. (For bacteria like *E. coli* or *H. influenzae*, a similar number would be 20 40%.) On what would they base such a statement? Is it likely to be correct?