Föreläsning 3 - Trädmodeller

Josef Wilzen

2020-08-17

Outline

- Introduktion
- 2 Trädmodeller
- Metoder f\u00f6r beslutstr\u00e4d
- 4 Regularisering
- 5 Kommentarer om beslutsträd

Introduktion

- Denna vecka:
 - ► Trädmodeller
 - Naive Bayes, k närmaste grannar, ensemblemetoder
- Nästa vecka: Neurala nätverk

Övervakad inlärning - Klassificering

- Målet är att dela upp objekt i ett antal förutbestämda klasser
- Ex:
 - Upptäcka spam-mail baserat på texten i mailen
 - Klassificera god- eller elakartad tumör baserat på medicinska bilder

Exempeldata

Klassificerarens uppgift är att anpassa en målfunktion f (att bygga upp en modell f) som kartlägger varje attributmängd x till en av förbestämda klasser y

ID	x1	x2	х3	x4	x5	x6	х7	У
	Body			Aquatic	Aerial			
Name	temperature	Skin cover	Gives birth	creature	creature	Has legs	Hibernates	Class label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	non-mamma
salmon	cold-blooded	scales	no	yes	no	no	no	non-mamma
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	non-mamma
komodo	cold-blooded	scales	no	no	no	yes	no	non-mamma
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	non-mamma
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
shark	cold-blooded	scales	yes	yes	no	no	no	non-mamma
turtle	cold-blooded	scales	no	semi	no	yes	no	non-mamma
penguin	warm-blooded	feathers	no	semi	no	yes	no	non-mamma
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	no	yes	no	no	no	non-mamma
salamander	cold-blooded	none	no	semi	no	yes	yes	non-mamma

- Klassificering och regression:
- Linjära modeller:
 - Linjär regression
 - (Linjär) logistisk regression
 - Lätta att skatta och tolka
 - Vissa problem går inte att lösa!

100 obs, två förklarande variabler x_1 och x_2 , y är binär

Beslutsregel:

$$x_2 \cdot (1 + exp(-25 \cdot (x_1 - 0.5))) > 1$$

Linjär regression:

- givet $X = (x_1, x_2, ..., x_p)$, $y: y = X\beta$
- Vi kan transformera variablerna i X
- Polynomregression: $X = (x, x^2, x^3, ..., x^p)$
- Andra exempel: log(x), \sqrt{x} , cos(x), exp(x), interaktioner, stegfunktioner, diskretisering, dummy-kodning
- Kallas i maskininlärning för "feature engineering"
 - Svårt att veta transformation vi ska göra för ett givet problem!
 - Svårt med komplexa datastrukturer: text, bilder mm

Inom maskininlärning:

- Olika metoder för att kunna anpassa mer generella icke-linjära modeller
- Vi vill "automatiskta" transformationer av de förklarande variablerna
 - ► Som hjälper oss att prediktera *y*
- Vi vill kunna hantera många variabler, och av olika typ.

Icke-linjära modeller

Exempel:

- Trädmodeller
- Neurala nätverk
- Splines
- Local regression
- Generlized additive models (GAM)
- Support vector machines
- K-närmaste grannar

Trädmodeller

- Modellen defineras som ett träd (datorstruktur), ofta binärt
- Icke-parametrisk metod
- Två steg:
 - ① Dela upp variabelrummet i icke överlappade regioner $\{R_1, R_2, R_3, \dots, R_J\}$: axelparallella rektanglar
 - 2 Alla obs i en regioner har samma anpassade värde
- Både regression och klassificering
- Hur ska vi dela upp? Vilktiga principer:
 - recursive binary splitting
 - top-down, greedy

Beslutsträdets uppbyggnad

- Rotnod (N1)
- Noder (alla N)
- Löv/slutnoder (N4-N7)
- Regler
- Varje löv har ett tilldelat klassvärde baserat på någon röstningsmetod

Exempel

Hur bygger man upp ett beslutsträd?

Hunt's algoritm

- Givet Datamängd $D_t = \{(X_{1i}, \dots, X_{pi}, Y_i), i = 1 \dots n\}, t$ -akuell nod
- Om alla Y_i är lika, markera t som löv med klassvärde Y_i
- Om inte, använd testregeln för att dela upp Dt i Dt1...Dtn, och sedan kör Hunt(Dt1,t1),..., Hunt(Dtn,tn) tills alla noder fått en klass
 - Recursive partioning

Exempel

Hunt's algoritm forts.

- Alternativt avslutskriterium:
 - Alla objekt i en nod har identiska attributvärden
 - Noden deklareras som ett löv med klassvärde av majoriteten
- Olika testregler:
 - Binära attribut –> binär uppdelning
 - Nominala attribut -> binär eller mångfaldig uppdelning
 - Ordinala attribut -> uppdelning som bevarar attributsföljden
 - Interval-attribut -> uppdelning till uteslutande intervall

Sammanfattning av skapandet

- Dela upp observationer f
 ör att separera angivna klasser
 - Olika testregler ska jämföras
- Att avsluta processen
 - Fortsätt dela upp i noder tills alla observationer i löven hör till samma klass, eller har exakt samma attributvärden
 - Bestäm en regel för tidig avslutning

CART

- CART = Classification and Regression Tree
- Skillnader mellan kontinuerliga och diskreta utfall

CART - Regressionsträd

- Minimera felfunktionen $\sum (y_i f_i)^2$ är dyrt för alla olika f_i och uppdelningar
- Istället: Leta efter en variabel (x) och en uppdelning (s) som minimerer

$$R_1(j,s) = \{x | x_j \le s\}$$
 $R_2(j,s) = \{x | x_j > s\}$

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_{1(j,s)}} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_{2(j,s)}} (y_i - c_2)^2 \right]$$

 c_j skattas ofta som medelvärdet av obs i region R_j .

CART - Regressionsträd

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could not result from recursive binary splitting. Top Right: The output of recursive binary splitting on a two-dimensional example. Bottom Left: A tree corresponding to the partition in the top right panel. Bottom Right: A perspective plot of the prediction surface corresponding to that tree.

CART - Klassificeringsträd

Vi behöver ett mått för att utvädera om en regel är bra eller inte! Definiera proportioner:

$$p_k = \frac{1}{s} \sum_{i=1}^{s} 1_{(y_i = k)}$$

Definiera föroreningsmått:

- Entropy = $\sum_{i=0}^{c-1} p_i \cdot log_2(p_i)$
 - Små värden bra
- Gini = $1 \sum_{i=0}^{c-1} p_i^2$
 - Total varians för alla klasser, små värden bra
- Felkvot (misclassification error) = $1 max(p_i)$
 - Små värden bra

CART - Klassificeringsträd

Välj uppdelning som maximerar informationsvinst

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- där I (⋅) är ett föroreningsmått
- N är antal objekt i föräldranoden
- v_j är barnnod j
- $\frac{N(v_j)}{N}$ relativa vikter för varje barnnod
- $N(v_j)$ är antal objekt

Klassificeringsträd

- Prediktioner g\u00f6rs med majoritetsr\u00f6stning om det finns blandade klasser i ett l\u00f6v
- Vi vill att löven i så hög utsträckning ska ha obs med en klass
- Entropy och Gini är bättre föroeringsmått, då ge ger renare löv
 - Används vid träning
- Felkvot använd ofta för att utvärdera modellen på testdata

Regularisering

Trädmodeller överpassar lätt! Hög varians!

Hur motverkas överanpassning?

- Förbeskärning (pre-pruning):
 - Sluta expandera trädet när informationsvinsten är lägre än en vald tröskel
 - Kräv ett visst minsta antal obs i varje löv
 - ▶ Problem: Vilken tröskel ska väljas? Hantera liten vinst ett steg \rightarrow stor vinst nästa steg?
- Efterbeskärning (post-pruning):
 - lacktriangle Beskär ett helt utväxt träd ightarrow ersätt ett delträd med ett löv

Efterbeskärning - Klassificeringsträd

Ett stort träd \rightarrow komplex modell \rightarrow överanpassning

- lacktriangledown Välj ett delträd, T, där |T| är antalet löv i T
- Minimera

$$C_{\alpha}(T) = \sum_{v \in L\ddot{o}v\,i\,T} N(v) \cdot I(v) + \alpha |T|$$

- Detta kallas för "cost complexity pruning"
- ullet Använd korsvalidering för att skatta lpha, välj det värde som ger minst valideringsfel
- Notera: detta är likt idén i lasso

Skatta regressionsträd med cost complexity pruning

Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Linjär regression:

$$f(x) = \beta_0 + \sum_{i=1}^{p} x_i \beta_i$$

Regressionsträd:

$$f(x) = \sum_{i=1}^{M} c_i 1_{(x \in R_i)}$$

FIGURE 8.7. Top Row: A two-dimensional classification example in which the true decision boundary is linear, and is indicated by the shaded regions. A classical approach that assumes a linear boundary (left) will outperform a decision tree that performs splits parallel to the axes (right). Bottom Row: Here the true decision boundary is non-linear. Here a linear model is unable to capture the true decision boundary (left), whereas a decision tree is successful (right).

4 日 5 4 周 5 4 3 5 4 3 5 6

Fördelar:

- Lätta att förstå och tolka
- Klarar av olika responsvariabler
- Kräver inte så mycket datahantering innan
- Funkar på relativt stora dataset
- Icke-parameterisk metod: antal "parametrar" beror på data
- Automatisk variabelselektion
- Kan anpassa många olika sorters funktioner
 - Klarar av olika sorters variabler
 - Starkt korrelerade attribut påverkar inte

Nackdelar:

- Sämre prediktiv förmåga än vissa andra metoder
- Orubusta: överanpassar lätt
- Omöjligt att hitta det optimala trädet pga snåla algoritmer
- Vissa enkla funktioner kräver komplext träd: tex en linjär funktion

Förbättringar:

- Bagging
- Random forest
- Boosting
- BART: Bayesian Additive Regression Trees
 - ► Inte denna kurs

Avslut

- Frågor? Kommentarer?
- Kurshemsidan
- Labben