CS 577- Intro to Algorithms

Reductions (Part 2)

Dieter van Melkebeek

November 12, 2020

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Notation

 $A \leq^p B$: A reduces to B in polynomial time.

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Notation

 $A \leq^p B$: A reduces to B in polynomial time.

Example polynomial-time reductions

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Notation

 $A \leq^p B$: A reduces to B in polynomial time.

Example polynomial-time reductions

▶ Bipartite Matching \leq^p Integral Max Flow

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Notation

 $A \leq^p B$: A reduces to B in polynomial time.

Example polynomial-time reductions

- ▶ Bipartite Matching \leq^p Integral Max Flow
- Between different versions of Independent Set

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Notation

 $A \leq^p B$: A reduces to B in polynomial time.

Example polynomial-time reductions

- ▶ Bipartite Matching \leq^p Integral Max Flow
- Between different versions of Independent Set
- ▶ Satisfiability \leq^p Independent Set

Definition

An independent set in a graph G = (V, E) is a subset $S \subseteq V$ such that $E \cap S \times S = \emptyset$.

Definition

An independent set in a graph G = (V, E) is a subset $S \subseteq V$ such that $E \cap S \times S = \emptyset$.

Optimization problem

Input: graph G

Output: independent set S of G such that |S| is maximized

Definition

An independent set in a graph G = (V, E) is a subset $S \subseteq V$ such that $E \cap S \times S = \emptyset$.

Optimization problem

Input: graph G

Output: independent set S of G such that |S| is maximized

Search problem

Input: graph G, $k \in \mathbb{N}$

Output: independent set S of G such that $|S| \ge k$, or report

that no such set exists

Definition

An independent set in a graph G = (V, E) is a subset $S \subseteq V$ such that $E \cap S \times S = \emptyset$.

Optimization problem

Input: graph G

Output: independent set S of G such that |S| is maximized

Search problem

Input: graph G, $k \in \mathbb{N}$

Output: independent set S of G such that $|S| \ge k$, or report

that no such set exists

Decision problem

Input: graph G, $k \in \mathbb{N}$

Output: whether independent set S with $|S| \ge k$ exists in G

▶ Decision \leq^p Search

▶ Decision ≤^p Search

```
1: if Search(G, k) = "no solution" then
```

- 2: **return** "no"
- 3: **else**
- 4: **return** "yes"

▶ Decision \leq^p Search

```
1: if Search(G, k) = "no solution" then
```

2: **return** "no"

3: **else**

4: **return** "yes"

► Search \leq^p Optimization

▶ Decision ≤^p Search

```
1: if Search(G, k) = "no solution" then

2: return "no"

3: else

4: return "yes"
```

▶ Search \leq^p Optimization

```
1: I \leftarrow \text{Optimization}(G)
2: if |I| \ge k then
3: return I
4: else
5: return "no solution"
```

Linear search for maximum size

▶ Linear search for maximum size

```
1: k \leftarrow 0
```

2: while Search $(G, k) \neq$ "no solution" do

3: $k \leftarrow k + 1$

4: **return** Search(G, k)

Linear search for maximum size

```
1: k \leftarrow 0
```

2: while Search $(G, k) \neq$ "no solution" do

$$k \leftarrow k + 1$$

4: **return** Search(G, k)

▶ Binary search reduces number of queries from O(|V|) to $O(\log |V|)$.

▶ Vertex v has to be in *every* independent set of size at least k \Leftrightarrow Decision $(G - \{v\}, k) =$ "no"

- ▶ Vertex v has to be in *every* independent set of size at least k \Leftrightarrow Decision $(G \{v\}, k) =$ "no"
- ► Reluctant approach

- ▶ Vertex v has to be in *every* independent set of size at least k \Leftrightarrow Decision $(G \{v\}, k) =$ "no"
- ► Reluctant approach

```
    if Decision(G, k) = "no" then
    return "no solution"
    I ← V
    for each v ∈ V do
    if Decision(G|<sub>I\{v\}</sub>, k) = "yes" then
    I ← I \ {v\}
    return I
```

- ▶ Vertex v has to be in *every* independent set of size at least k \Leftrightarrow Decision $(G \{v\}, k) =$ "no"
- ► Reluctant approach

```
    if Decision(G, k) = "no" then
    return "no solution"
    I ← V
    for each v ∈ V do
    if Decision(G|<sub>I\{v\}</sub>, k) = "yes" then
    I ← I \ {v}
    return I
```

► Considering vertices in lexicographical order results in independent set of size at least k with the lexicographically first characteristic vector.

▶ Vertex v can be in *some* independent set of size at least k \Leftrightarrow Decision $(G - (\{v\} \cup G(v)), k - 1) = "yes"$

- ▶ Vertex v can be in *some* independent set of size at least k \Leftrightarrow Decision $(G (\{v\} \cup G(v)), k 1) =$ "yes"
- Eager approach

- ▶ Vertex v can be in *some* independent set of size at least k \Leftrightarrow Decision $(G (\{v\} \cup G(v)), k 1) =$ "yes"
- ► Eager approach

```
1: if Decision(G, k) = "no" then
2: return "no solution"
3: I \leftarrow \emptyset; S \leftarrow V
4: while S \neq \emptyset do
5: pick v \in S; S \leftarrow S \setminus \{v\}
6: if Decision(G|_{S \setminus G(v)}, k-1) = "yes" then
7: I \leftarrow I \cup \{v\}
8: S \leftarrow S \setminus G(v)
9: k \leftarrow k-1
10: return I
```

- ▶ Vertex v can be in *some* independent set of size at least k \Leftrightarrow Decision $(G (\{v\} \cup G(v)), k 1) =$ "yes"
- ► Eager approach

```
1: if \operatorname{Decision}(G, k) = \text{"no" then}

2: return "no solution"

3: I \leftarrow \emptyset; S \leftarrow V

4: while S \neq \emptyset do

5: pick v \in S; S \leftarrow S \setminus \{v\}

6: if \operatorname{Decision}(G|_{S \setminus G(v)}, k-1) = \text{"yes" then}

7: I \leftarrow I \cup \{v\}

8: S \leftarrow S \setminus G(v)

9: k \leftarrow k-1

10: return I
```

Considering vertices in lexicographical order results in independent set of size at least k with the lexicographically last characteristic vector.

Boolean Formulas

Boolean Formulas

Definition

Boolean Formulas

Definition

ightharpoonup Base case: variables x_1, x_2, \ldots

- ightharpoonup Base case: variables x_1, x_2, \ldots
- ► Constructors:

- ightharpoonup Base case: variables x_1, x_2, \ldots
- ► Constructors:
 - \circ Conjunction (AND): \wedge

- \triangleright Base case: variables x_1, x_2, \ldots
- Constructors:
 - Conjunction (AND): ∧
 - $\circ~$ Disjunction (inclusive OR): \vee

- \triangleright Base case: variables x_1, x_2, \ldots
- Constructors:
 - Conjunction (AND): ∧
 - o Disjunction (inclusive OR): ∨
 - Negation: ¬

- ▶ Base case: variables x_1, x_2, \ldots
- Constructors:
 - Conjunction (AND): ∧
 - o Disjunction (inclusive OR): ∨
 - Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

Definition

- Base case: variables x₁, x₂, . . .
- Constructors:
 - Conjunction (AND): ∧
 - o Disjunction (inclusive OR): ∨
 - Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

Definition

- ▶ Base case: variables $x_1, x_2, ...$
- Constructors:
 - Conjunction (AND): ∧
 - o Disjunction (inclusive OR): ∨
 - Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

Restricted types

Literal: variable x, negated variable \overline{x}

Definition

- Base case: variables x₁, x₂, . . .
- Constructors:
 - Conjunction (AND): ∧
 - Disjunction (inclusive OR): ∨
 - o Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

- ▶ Literal: variable x, negated variable \overline{x}
- Clause: disjunction of literals

Definition

- Base case: variables x₁, x₂, . . .
- Constructors:
 - Conjunction (AND): ∧
 - Disjunction (inclusive OR): ∨
 - Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

- ▶ Literal: variable x, negated variable \overline{x}
- Clause: disjunction of literals
- Conjunctive normal form (CNF): conjunction of clauses

Definition

- Base case: variables x₁, x₂, . . .
- Constructors:
 - Conjunction (AND): ∧
 - Disjunction (inclusive OR): ∨
 - o Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

- Literal: variable x, negated variable \overline{x}
- Clause: disjunction of literals
- Conjunctive normal form (CNF): conjunction of clauses

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

Definition

- Base case: variables x₁, x₂, . . .
- Constructors:
 - Conjunction (AND): ∧
 - Disjunction (inclusive OR): ∨
 - o Negation: ¬

$$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4$$

- ▶ Literal: variable x, negated variable \overline{x}
- Clause: disjunction of literals
- Conjunctive normal form (CNF): conjunction of clauses

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

Search version

Input: Boolean formula φ

Search version

Input: Boolean formula φ

Output: satisfying assignment of φ , i.e., a setting of the

variables to true/false that makes φ evaluate to true;

or report that no such setting exists

Search version

Input: Boolean formula φ

Output: satisfying assignment of φ , i.e., a setting of the

variables to true/false that makes φ evaluate to true;

or report that no such setting exists

Decision version

Input: Boolean formula φ

Output: whether φ has a satisfying assignment

Search version

Input: Boolean formula φ

Output: satisfying assignment of φ , i.e., a setting of the

variables to true/false that makes φ evaluate to true;

or report that no such setting exists

Decision version

Input: Boolean formula φ

Output: whether φ has a satisfying assignment

Restricted problems

Search version

Input: Boolean formula φ

Output: satisfying assignment of φ , i.e., a setting of the

variables to true/false that makes φ evaluate to true;

or report that no such setting exists

Decision version

Input: Boolean formula φ

Output: whether φ has a satisfying assignment

Restricted problems

ightharpoonup CNF-SAT: φ is CNF

Search version

Input: Boolean formula φ

Output: satisfying assignment of φ , i.e., a setting of the variables to true/false that makes φ evaluate to true;

or report that no such setting exists

Decision version

Input: Boolean formula φ

Output: whether φ has a satisfying assignment

Restricted problems

ightharpoonup CNF-SAT: φ is CNF

▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., CNF with each clause containing at most k literals

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

ightharpoonup Input: CNF-formula φ

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

ightharpoonup Output: satisfying assignment for φ , or report none exists

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

- **Output**: satisfying assignment for φ , or report none exists
- ▶ Reduction makes one query: (G, k)

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

- ightharpoonup Output: satisfying assignment for φ , or report none exists
- ightharpoonup Reduction makes one query: (G, k)
- Mapping reduction

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j \text{ where } C_j = \vee_{r=1}^{k_j} \ell_{jr} \text{ and } \ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$$

- ightharpoonup Output: satisfying assignment for φ , or report none exists
- Reduction makes one query: (G, k)
- Mapping reduction, i.e., translation of CNF-SAT instance φ into Independent Set instance (G, k) with same decision:

ightharpoonup Input: CNF-formula arphi

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

- lacktriangle Output: satisfying assignment for φ , or report none exists
- ightharpoonup Reduction makes one query: (G, k)
- Mapping reduction, i.e., translation of CNF-SAT instance φ into Independent Set instance (G, k) with same decision: φ is satisfiable $\Leftrightarrow G$ has independent set of size at least k.

$$(x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \bigvee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

- lacktriangle Output: satisfying assignment for φ , or report none exists
- Reduction makes one query: (G, k)
- Mapping reduction, i.e., translation of CNF-SAT instance φ into Independent Set instance (G, k) with same decision: φ is satisfiable $\Leftrightarrow G$ has independent set of size at least k.
- Reduction runs in polynomial time.

ightharpoonup Input: CNF-formula arphi

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$$

$$\wedge_{j=1}^m C_j$$
 where $C_j = \vee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots x_n, \overline{x_n}\}$

- ightharpoonup Output: satisfying assignment for φ , or report none exists
- ▶ Reduction makes one query: (G, k)
- Mapping reduction, i.e., translation of CNF-SAT instance φ into Independent Set instance (G, k) with same decision: φ is satisfiable $\Leftrightarrow G$ has independent set of size at least k.
- Reduction runs in polynomial time.
- Gadget reduction

Construction

For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$, and include the edge $(x_i, \overline{x_i})$.

Construction

For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$, and include the edge $(x_i, \overline{x_i})$.

Construction

For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$, and include the edge $(x_i, \overline{x_i})$.

Properties

Maximum size of independent set is *n*.

Construction

For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$, and include the edge $(x_i, \overline{x_i})$.

- Maximum size of independent set is n.
- Bijection between
 - independent sets of maximum size and
 - assignments to variables x_1, x_2, \dots, x_n .

Construction

For each clause C_j for $j \in [m]$, include a clique (complete graph) on k_j new vertices, where $k_j =$ number of literals of C_j . Label each vertex of the clique with a unique literal of C_j .

Construction

For each clause C_j for $j \in [m]$, include a clique (complete graph) on k_j new vertices, where $k_j =$ number of literals of C_j . Label each vertex of the clique with a unique literal of C_j .

Properties

Maximum size of independent set is m.

Construction

For each clause C_j for $j \in [m]$, include a clique (complete graph) on k_j new vertices, where $k_j =$ number of literals of C_j . Label each vertex of the clique with a unique literal of C_j .

- Maximum size of independent set is m.
- Bijection between
 - o independent sets of maximum size and
 - o choices of literal in each clause C_j for $j \in [m]$.

Construction of G

Construction of G

Disjoint union of all variable gadgets and clause gadgets.

Construction of G

- ▶ Disjoint union of all variable gadgets and clause gadgets.
- ▶ For each vertex of a variable gadget with label ℓ , and each vertex of a clause gadget with label $\overline{\ell}$, include the edge between them.

Construction of G

- Disjoint union of all variable gadgets and clause gadgets.
- ▶ For each vertex of a variable gadget with label ℓ , and each vertex of a clause gadget with label $\overline{\ell}$, include the edge between them.

Construction of G

- Disjoint union of all variable gadgets and clause gadgets.
- For each vertex of a variable gadget with label ℓ , and each vertex of a clause gadget with label $\overline{\ell}$, include the edge between them.

Properties

▶ Max independent set size in G is at most n + m.

Construction of G

- Disjoint union of all variable gadgets and clause gadgets.
- For each vertex of a variable gadget with label ℓ , and each vertex of a clause gadget with label $\overline{\ell}$, include the edge between them.

- Max independent set size in G is at most n + m.
- ▶ Independent set of size n in variable part can be extended with vertex in gadget of clause $C_j \Leftrightarrow$ assignment satisfies C_j .

Construction of G

- Disjoint union of all variable gadgets and clause gadgets.
- For each vertex of a variable gadget with label ℓ , and each vertex of a clause gadget with label $\overline{\ell}$, include the edge between them.

- Max independent set size in G is at most n + m.
- ▶ Independent set of size n in variable part can be extended with vertex in gadget of clause $C_j \Leftrightarrow$ assignment satisfies C_j .
- Max independent set size in G is at least $k \doteq n + m$ $\Leftrightarrow \varphi$ has a satisfying assignment

Construction of G

- ▶ Disjoint union of all variable gadgets and clause gadgets.
- For each vertex of a variable gadget with label ℓ , and each vertex of a clause gadget with label $\overline{\ell}$, include the edge between them.

- Max independent set size in G is at most n + m.
- ▶ Independent set of size n in variable part can be extended with vertex in gadget of clause $C_j \Leftrightarrow$ assignment satisfies C_j .
- Max independent set size in G is at least $k \doteq n + m$ $\Leftrightarrow \varphi$ has a satisfying assignment
- Bijection between
 - o independent sets of size n + m in G and
 - satisfying assignments to $x_1, x_2, ..., x_n$ combined with choices of satisfying literal in each clause C_j for $j \in [m]$.

