## ¿Qué es la estructura muscular?

Organización en el espacio de los componentes musculares (entendidos como materia)

## 1 HASTA LA FIBRA MUSCULAR



**ENDOMYSIUM** 

TO PUE CO

MUSCLE FIBRE

**EPIMYSIUM** 

**PERIMYSIUM** 



Repasar en estos gráficos la estructura muscular hasta el nivel de la fibra muscular

ructure showing the arrangement of the connec-

cle fibres and muscle fibre bundles



IDENTIFICAR LOS HACES DE FIBRAS PRIMARIOS Y SECUNDARIOS



IDENTIFICAR FIBRA MUSCULAR, ENDOMISIO, PERIMISIO Y VASOS SANGUÍNEOS



IDENTIFICAR FIBRA MUSCULAR, ENDOMISIO, PERIMISIO Y VASOS SANGUÍNEOS



#### TEJIDO ADIPOSO ¿HAY LUGAR PARA LA GRASA EN EL MÚSCULO? ¿DÓNDE?



### 2. LA FIBRA MUSCULAR

The image below shows a short part of one muscle fibre, but even this contains many nuclei (the dark blobs).



¿Qué fuentes o rutas metabólicas tiene la fibra muscular para obtener energía (producir ATP)?

## FIBRA MUSCULAR FRAGMENTADA POR UN DAÑO FÍSICO IDENTIFICAR LAS MIOFIBRILLAS





Myofibril (2,500 per fiber) 8,000 samomeres per myofibril

#### LA FIBRA MUSCULAR

DIFERENCIAR ENTRE MIOFIBRILLA Y MIOFILAMENTO





Explicar brevemente (dos líneas) la función principal del sarcolema en la contracción muscular, ver diapositiva 23.







ACTINA
TROPONINA
Y
TROPOMIOSINA

Explicar brevemente (2 líneas) la función de la troponina y tropomiosina en la contracción muscular.
Ver diapositiva 23.

#### DESCRIPCIÓN DEL MECANISMO DE CONTRACCIÓN MUSCULAR

- 1- Despolarización del sarcolema y membranas del retículo sarcoplásmico por impulso nervioso.
- 2- Salida de Ca<sup>2+</sup> del retículo sarcoplásmico que cambia la estructura de la troponina y permite el inicio de la contracción muscular.
- 3- Con la troponina cambiada y en presencia de Mg<sup>2+</sup> se produce una hidrólisis del ATP que está unido a la cabeza de miosina y se desliga el ADP y P de la misma.
- 4- Debido a la hidrólisis del ATP la miosina avanza sobre la activa.
- 5- Después del avance un nuevo ATP se une a la miosina que provoca la separación del complejo actina-miosina.
- 6- Se repite 3, 4 y 5 mientras dure el impulso nervioso (contracción sostenida).
- 7- Cuando cesa el impulso nervioso el Ca<sup>2+</sup> vuelve al retículo sarcoplasmático por medio de bombas que necesitan ATP.
- 8- Sin Ca<sup>2+</sup> en el sarcoplasma la troponina cambia de configuración y aunque el ATP se une a la cabeza de la miosina no se puede producir su la unión actina y miosina ni la hidrólisis del ATP.

## Contracción muscular



#### **RELACIÓN 2.1**

La calidad de la carne varía de un animal a otro pero dentro del mismo animal también hay variación.

Las canales de animales de abasto mamíferos tienen más de **300 músculos**, que **varían** en diversos aspectos de su composición o estructura relacionados con los atributos de calidad sensorial de la carne:

Dentro de las características de calidad sensorial resaltaremos algunas de las más importantes

- 1. Color
- 2. Dureza
- 3. Jugosidad
- 4. Flavor u olor

¿Mencionar alguna propiedad (medible) de la estructura muscular (cantidad, disposición espacial de los componentes estructurales del músculo) que esté relacionada directa o indirectamente con alguno de esos 4 atributos de calidad?

#### **RELACIÓN 2.2**

La cantidad o abundancia de algunos orgánulos celulares en la fibra muscular tiene un papel importante sobre la calidad de la carne

- Retículo sarcoplasmático
- Mitocondrias
- Gránulos de glucógeno
- Gotas lipídicas
- •<u>Lisosomas</u>
- Miofibrillas

¿Puedes indicar y justificar alguna relación posible entre la cantidad de alguna de las organelas de la célula muscular con alguno de los atributos de calidad sensorial de la carne (color, flavor, dureza o jugosidad? (es decir, el posible papel de las organelas elegidas en la calidad de la carne)

# RELACIÓN 2.3 DESESTRUCTURACIÓN Después de lo visto anteriormente,

Relacionar los tratamientos físicos a los que se somete la carne durante su manipulación y conservación con su efecto sobre la estructura muscular.

¿Puedes mencionar y explicar dos cambios principales en la estructura muscular cuando se pica la carne, otros dos cuando se congela y otros dos cuando se almacena a refrigeración?

