Colorful ultrasonic

1. Learning objectives

In this course, we will learn how to use STM32F103RCT6 to control colorful ultrasonic module.

2. Prepare before class

The hardware required is several DuPont lines, STM32F103RCT6 development board, and colorful ultrasonic module.

Colorful ultrasound	STM32F103RCT6
VCC	5V
RGB	PA7
ECHO	PB6
GND	GND

Ultrasonic

Code interpretation

Ultrasonic trigger and receive pin initialization

Ultrasound acquisition distance function

```
30
    float bsp_getUltrasonicDistance(void)
31 ⊟ {
      float length = 0, sum = 0;
32
33
      ul6 tim;
34
      unsigned int i = 0;
35
36
      while(i != 5)
37
38
        ultasonic_Trig();
39
        GPIO_SetBits(TRIG_PORT, TRIG_PIN);
40
        delay us(20);
41
        GPIO_ResetBits(TRIG_PORT, TRIG_PIN);
42
        ultasonic_Echo();
43
44
        while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == RESET);
45
        TIM_Cmd (TIM3, ENABLE);
46
47
        while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == SET);
48
49
        TIM Cmd (TIM3, DISABLE);
50
        tim = TIM_GetCounter(TIM3);
51
52
        length = (tim + overcount * 1000) / 58.0;
53
54
55
        sum = length + sum;
        TIM3->CNT = 0;
overcount = 0;
56
57
58
        delay_ms(1);
59
      length = sum / 5;
60
      return length;
61
62
```

Timer initialization

```
void bsp_Ultrasonic_Timer3_Init(void)
 66 ⊟ {
 67
        TIM TimeBaseInitTypeDef TIM TimeBaseInitStructer;
        NVIC InitTypeDef NVIC InitStructer;
 68
 69
 70
       RCC APBlPeriphClockCmd(RCC APBlPeriph TIM3, ENABLE);
 71
 72
 73
        TIM DeInit (TIM3);
 74
        TIM TimeBaseInitStructer.TIM Period = 999;
 75
        TIM TimeBaseInitStructer.TIM Prescaler = 71;
 76
        TIM TimeBaseInitStructer.TIM ClockDivision = TIM CKD DIV1;
 77
        TIM TimeBaseInitStructer.TIM CounterMode = TIM CounterMode Up;
 78
       TIM TimeBaseInit(TIM3, &TIM TimeBaseInitStructer);
 79
 80
       TIM ITConfig (TIM3, TIM IT Update, ENABLE);
 81
       NVIC PriorityGroupConfig(NVIC PriorityGroup 2);
 82
 83
 84
       NVIC_InitStructer.NVIC_IRQChannelPreemptionPriority = 0;
       NVIC_InitStructer.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructer.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructer.NVIC_IRQChannelCmd = ENABLE;
 85
 86
 87
 88
 89
       NVIC Init(&NVIC InitStructer);
       TIM Cmd (TIM3, DISABLE);
 90
 91
 92 }
 93
 94 void TIM3 IRQHandler (void)
 95 ⊟ {
 96 if (TIM_GetITStatus(TIM3,TIM_IT_Update) != RESET)
97 = {
 98
          TIM_ClearITPendingBit(TIM3, TIM_IT_Update);
 99
          overcount++;
100 -
101 }
```

Experimental phenomenon

After flashing the program, press the reset key, and the baud rate is 9600. The serial port shows the ultrasonic ranging distance.

```
CSB: 439
                                                                                                 ٨
CSB:439
CSB: 471
CSB: 7
CSB:5
CSB:4
CSB:4
CSB:4
CSB:6
CSB: 7
CSB:354
CSB:16
CSB:16
CSB:17
CSB: 18
CSB:20
CSB:25
CSB:568
CSB:568
```

RGB Lights

Code interpretation

GPIO PA7 initialization

WS2812 initialization

```
void ws2812_Init(void) {
  ws2812_GPI0_Init();
  ws2812_SPI_Init();
  ws2812_DMA_Init();
  ws2812_AllShutOff();
  delay_ms(WS2812_LED_NUM * 10);
}
```

Breathing lamp implementation function

```
void ws2812 All LED one Color breath(uint16 t interval time, uint32 t GRB_color){
  uint8_t i = 0;
 uint16_t j = 0;
 rgb color.G = GRB color>>16;
 rgb_color.R = GRB_color>>8;
  rgb_color.B = GRB_color;
 for(i=1;i<=100;i++){
     brightnessAdjust(i/100.0f, rgb color);
   for (j=0;j<WS2812 LED_NUM;j++) {
     ws2812_Set_one_LED_Color(j, ((rgb_color.G<<16) | (rgb_color.R<<8) | (rgb_color.B)));
   ws2812_Send_Data();
   delay_ms(interval_time);
 for(i=100;i>=1;i--){
     brightnessAdjust(i/100.0f, rgb color);
   for(j=0;j<WS2812_LED_NUM;j++) {
     ws2812_Set_one_LED_Color(j, ((rgb_color.G<<16) | (rgb_color.R<<8) | (rgb_color.B)));
   ws2812 Send Data();
   delay ms (interval time);
```

The marquee implementation function

```
void horse_race_lamp(uint16_t interval_time)
{
    u8 i,color;

    for(i = 0; i < WS2812_LED_NUM; i++)
} {
//        ws281x_setPixe1RGB(i,255,255,0);
        color = rand()%7;
        set_pixe1_rgb(i,color);
        ws281x_ShutoffPixe1(i-1);
        delay_ms(interval_time);
}

ws281x_ShutoffPixe1(WS2812_LED_NUM-1);
    delay_ms(interval_time);
}</pre>
```

The flow light implements the function.

```
void Running_water_lamp( uint8_t green ,uint8_t red ,uint8_t blue, uint16_t interval_time )
{
    uint16_t i;
    for(i = 0; i < WS2812_LED_NUM; i++)
    {
        ws281x_setPixe1RGB(i, green, red, blue);
        delay_ms(interval_time);
    }
    ws2812_AllShutOff();
    delay_ms(interval_time);
-}</pre>
```

Light up all lights.

```
void ws2812_AllOpen(uint8_t red ,uint8_t green ,uint8_t blue)

{
    uint16_t i, j;
    for(j = 0; j < ws2812_LED_NUM; j++)

{
        for(i = 0; i < 24; ++i)

        {
            ws2812_data_buffer[j][i] = (((ws281x_color(red, green, blue) << i) & 0X800000) ? SIG_1 : SIG_0);
        }
        ws2812_Send_Data();
        delay_ms(10);
}</pre>
```

Randomly turn on a light

```
void srand lamp(uintl6 t interval time)
∃ {
   static wint8 t tmp,i;
   uint8 t k, color;
   tmp = rand()%(WS2812 LED NUM);
   color = rand()%7;
   if(i==0)
     memset (tmp flag, 50, WS2812 LED NUM);
     tmp flag[i] = tmp;
     set_pixel_rgb(tmp,color);
     delay ms (interval time);
     1++;
   else if(i>=WS2812 LED NUM)
     return ;
   }
   for (k=0; k<i; k++)
     if (tmp == tmp flag[k])
       return ;
     }
   }
```

2. Experimental phenomenon

After flashing the program, press the reset key; Colorful ultrasound achieves different RGB effects.

