TS. NGUYỄN NHƯ HIỀN, TS. NGUYỄN MẠNH TÙNG

ĐIỀU KHIỂN LOGIC VÀ PLC

Sách chuyên khảo dùng cho đào tạo Đại học và Sau đại học ngành Điều khiển & Tự động hoá

MỤC LỤC

Nội dung	Trang
CHƯƠNG 1 : LÝ THUYẾT CƠ SỞ	
§1.1 Những khái niệm cơ bản	3
§1.2. Các phương pháp biểu diễn hàm logic	8
§1.3. Các phương pháp tối thiểu hoá hàm logic	11
§1.4. Các hệ mạch logic	15
§1.5. Grafcet - để mô tả mạch trình tự trong công nghiệp	17
CHƯƠNG 2: MỘT SỐ ỨNG DỤNG MẠCH LOGIC TRONG ĐIỀU	KHIỄN
§2.1. Các thiết bị điều khiển	27
§2.2. Các sơ đồ khống chế động cơ rôto lồng sóc	28
§2.3. Các sơ đồ khống chế động cơ không đồng bộ rôto dây quấn	32
§2.4. Khống chế động cơ điện một chiều	34
CHƯƠNG 3: LÝ LUẬN CHUNG VỀ ĐIỀU KHIỂN LOGIC LẬP TI	RÌNH PLC
§3.1. Mở đầu	36
§3.2. Các thành phần cơ bản của một bộ PLC	37
§3.3. Các vấn đề về lập trình	41
§3.4. Đánh giá ưu nhược điểm của PLC	47
CHƯƠNG 4: BỘ ĐIỀU KHIỂN PLC – CPM1A	
§4.1. Cấu hình cứng	49
§4.2. Ghép nối	53
§4.3. Ngôn ngữ lập trình	54
CHƯƠNG 5: BỘ ĐIỀU KHIỂN PLC - S5	
§5.1. Cấu tạo của họ PLC Step5	58
§5.2. Địa chỉ và gán địa chỉ	59
§5.3. Vùng đối tượng	61
§5.4. Cấu trúc của chương trình S5	62
§5.5. Bảng lệnh của S5 - 95U	63
§5.6. Cú pháp một số lệnh cơ bản của S5	64
CHƯƠNG 6: BỘ ĐIỀU KHIỂN PLC - S7-20	
§6.1. Cấu hình cứng	74
§6.2. Cấu trúc bộ nhớ	77
§6.3. Chương trình của S7-200.	79
§6.4. Lập trình một số lệnh cơ bản của S7-200	80

CHƯƠNG 7: BỘ ĐIỀU KHIỂN PLC - S7-300	
§7.1. Cấu hình cứng	83
§7.2. Vùng đối tượng	86
§7.3. Ngôn ngữ lập trình	88
§7.4. Lập trình một số lệnh cơ bản	89
PHỤ LỤC 1 CÁC PHẦN MỀM LẬP TRÌNH PLC	
1. Tập trình cho OMRON	98
2. Lập trình cho PLC - S5	105
3. Lập trình cho PLC - S7200	111
4. Lập trình cho PLC - S7-300	116
PHỤ LỤC 2 BẢNG LỆNH CỦA CÁC PHẦN MỀM PLC	
1. BẢNG LỆNH CỦA PLC CPM1A	121
2. BẢNG LỆNH CỦA PLC - S5	125
3. BẢNG LỆNH CỦA PLC - S7-200	128
4. BẢNG LỆNH CỦA PLC S7-300	135
TÀI LIỆU THAM KHẢO	

PHẦN 1: LOGIC HAI TRẠNG THÁI VÀ ỨNG DỤNG

CHƯƠNG 1: LÝ THUYẾT CƠ SỞ

§1.1 Những khái niệm cơ bản

1. Khái niệm về logic hai trạng thái

Trong cuộc sống các sự vật và hiện tượng thường biểu diễn ở hai trạng thái đối lập, thông qua hai trạng thái đối lập rõ rệt của nó con người nhận thức được sự vật và hiện tượng một cách nhanh chóng bằng cách phân biệt hai trạng thái đó. Chẳng hạn như nói nước sạch và bẩn, giá cả đắt và rẻ, nước sôi và không sôi, học sinh học giỏi và dốt, kết quả tốt và xấu...

Trong kỹ thuật, đặc biệt là kỹ thuật điện và điều khiển, thường có khái niệm về hai trạng thái: đóng và cắt như đóng điện và cắt điện, đóng máy và ngừng máy...

Trong toán học, để lượng hoá hai trạng thái đối lập của sự vật và hiện tượng người ta dùng hai giá trị: 0 và 1. Giá trị 0 hàm ý đặc trưng cho một trạng thái của sự vật hoặc hiện tượng, giá trị 1 đặc trưng cho trạng thái đối lập của sự vật và hiện tượng đó. Gọi các giá trị 0 hoặc 1 đó là các giá trị logic.

Các nhà bác học đã xây dựng các cơ sở toán học để tính toán các hàm và các biến chỉ lấy hai giá trị 0 và 1 này, hàm và biến đó được gọi là hàm và biến logic, cơ sở toán học để tính toán hàm và biến logic gọi là đại số logic. Đại số logic cũng có tên là đại số Boole vì lấy tên nhà toán học có công đầu trong việc xây dựng nên công cụ đại số này. Đại số logic là công cụ toán học để phân tích và tổng hợp các hệ thống thiết bị và mạch số. Nó nghiên cứu các mối quan hệ giữa các biến số trạng thái logic. Kết quả nghiên cứu thể hiện là một hàm trạng thái cũng chỉ nhận hai giá trị 0 hoặc 1.

2. Các hàm logic cơ bản

Một hàm $y = f(x_1, x_2, ...x_n)$ với các biến x_1, x_2, x_n chỉ nhận hai giá trị: 0 hoặc 1 và hàm y cũng chỉ nhận hai giá trị: 0 hoặc 1 thì gọi là hàm logic.

 $H\grave{a}m\ logic\ m\^{o}t\ bi\'{e}n$: y = f(x)

Với biến x sẽ nhận hai giá trị: 0 hoặc 1, nên hàm y có 4 khả năng hay thường gọi là 4 hàm y_0 , y_1 , y_2 , y_3 các khả năng và các ký hiệu mạch role và điện tử của hàm một biến như trong bảng 1.1

Tên	Bản	g châ	n lý	Thuật	Ký hi	ệu sơ đồ	Ghi
hàm	х	0	1	toán logic	Kiểu role	Kiểu khối điện tử	chú
Hàm không	y_0	0	0	$y_0 = 0$ $y_0 = x\overline{x}$	 0 0	 0 0	
Hàm đảo	y ₁	1	0	$y_1 = \overline{x}$	\overline{X} y_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Hàm lặp (YES)	y ₂	0	1	$y_2 = x$	x y ₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Hàm đơn vị	y ₃	1	1	$y_3 = 3$ $y_3 = x + \overline{x}$	x y ₃		

Trong các hàm trên hai hàm y_0 và y_3 luôn có giá trị không đổi nên ít được quan tâm, thường chỉ xét hai hàm y_1 và y_2

 $H\grave{a}m$ logic hai $bi\acute{e}n$ $y = f(x_1, x_2)$

Với hai biến logic x_1 , x_2 mỗi biến nhận hai giá trị 0 và 1, như vậy có 16 tổ hợp logic tạo thành 16 hàm. Các hàm này được thể hiện trên bảng 1.2

Bång 1.2

Tên hàm]	Bảng	châ	n lý		Thuật toán logic	Ký hiệt	ı sơ đồ	Ghi chú
	X ₁ X ₂	1 1	1 0	0 1	0		Kiểu rơle	Kiểu khối điện tử	
Hàm không	Уо	0	0	0	0	$\begin{vmatrix} y_0 = x_1 \overline{x}_1 \\ + x_2 \overline{x}_2 \end{vmatrix}$			Hàm luôn bằng 0
Hàm Piec	y ₁	0	0	0	1	$y_1 = \overline{x}_1 \overline{x}_2$ $= \overline{x}_1 + \overline{x}_2$	$\overline{x}_1 \overline{x}_2 \overline{y}_1$	x ₁	ı
Hàm cấm x ₁ INHIBÍT x ₁	y ₂	0	0	1	0	$y_2 = \overline{x}_1 x_2$	\overline{X}_1 X_2 \overline{Y}_2	X_1 Y_2 X_2 X_2 X_2 X_2 X_2 X_2 X_2	
Hàm đảo x ₁	y ₃	О	0	1	1	$y_3 = \overline{x}_1$	\overline{X}_1 y_3	$x_1 \longrightarrow 0$	
Hàm cấm x ₂ INHIBíT x ₂	4			x		$y_4 = x_1 \overline{x}_2$	$\begin{array}{c c} x_1 \ \overline{x}_2 \\ \hline \end{array}$	X_2 y_4 y_4 y_4 y_4 y_4 y_4	
Hàm đảo x ₂	у ₅	0	1	0	1	$y_5 = \overline{x}_2$	\overline{X}_2 y_5	x ₂ — o—y ₅	
Hàm hoặc loại trừ XOR	У6	0	1	1	0	$y_6 = x_1 \overline{x}_2 + \overline{x}_1 x_2$	$\begin{array}{c c} X_1 & \overline{X}_2 & y_6 \\ \hline \overline{X}_1 & X_2 & \\ \hline \end{array}$	x_2 x_1 y_6 x_2 x_1 y_6	Cộng module
Hàm Chef-fer	y ₇	0	1	1	i	$y_7 = \overline{x}_1 + \overline{x}_2$ $= \overline{x}_1 x_2$	\overline{X}_2 \overline{Y}_7 \overline{X}_1	x_2 y_7 x_1	

Hàm và AND		-						x ₁ - y _*	
	у ₈	1	0	0	О	$y_8 = x_1 x_2$	X ₁ X ₂ y ₈	X ₂ & y ₈	_
Hàm cùng dấu	y ₉					$y_9 = x_1 x_2 + \overline{x}_1 \overline{x}_2$	$\begin{bmatrix} x_1 & x_2 & y_9 \\ \hline \overline{x}_1 & \overline{x}_2 \end{bmatrix}$	x_1 y_9	
Hàm lặp x ₂	y ₁₀					$y_{10} = x_2$	X ₂ y ₁₀		Chỉ phụ thuộc x ₂
Hàm kéo theo x ₂	y ₁₁					$\mathbf{y}_{11} = \overline{\mathbf{x}}_1 + \mathbf{x}_2$	$\begin{array}{c c} & X_2 & y_{11} \\ \hline \hline \overline{X}_1 & & \end{array}$	$\begin{bmatrix} x_2 & y_1 \\ x_1 & y_2 \end{bmatrix}$	_
Hàm lặp X ₁	У 12					$\mathbf{y}_{12} = \mathbf{x}_1$	X ₁	ł	Chỉ phụ thuộc x ₁
Hàm kéo theo x _i	у13					$y_{13} = x_1 + \overline{x}$	$\begin{bmatrix} x_1 & y_{13} \\ \overline{x}_2 & \end{bmatrix}$	$x_1 \longrightarrow y_{13}$	
Hàm hoặc OR	У ₁₄	1	1	1		$y_{14} = x_1 + x$	v	$\begin{array}{c c} x_1 & y_{14} \\ x_2 & & \\ x_1 & \geq 1 \end{array}$	
Hàm đơn vị	y ₁₅	1	1	1	1	$y_{15} = (x_1 + \overline{x})$ $(x_2 + \overline{x})$	$\begin{array}{c c} x_1 & \overline{x}_2 \\ \hline \overline{x}_1 & \overline{x}_2 \\ \hline \end{array} \begin{array}{c c} y_{15} \\ \hline \end{array}$	•	Hàm luôn bằng l

Các hàm đối xứng nhau qua trục nằm giữa giữa bảng 1.2 là: y_7 và y_8 , nghĩa là $y_0=\overline{y}_{15}$, $y_1=\overline{y}_{14}$...

 $H\grave{a}m\ logic\ n\ bi\acute{e}n\ y = f\left(x_1,\,x_{2,\,\dots}x_n\,\right)$

Với hàm logic n biến, mỗi biến nhận một trong hai giá trị 0 hoặc 1 nên với hàm logic n biến có 2ⁿ tổ hợp biến, mỗi tổ hợp biến lại nhận hai giá trị 0 hoặc 1, do vậy số hàm logic tổng là 22. Do đó, với 1 biến có 4 khả năng tạo hàm, với 2 biến có 16 khả năng tạo hàm, với 3 biến có 256 khả năng tạo hàm. Như vậy, khi số biến tăng thì số hàm có khả năng tạo thành rất lớn.

Trong tất cả các hàm được tạo thành đặc biệt chú ý đến hai loại hàm là hàm tổng chuẩn và hàm tích chuẩn. Hàm tổng chuẩn là hàm chứa tổng các tích mà mỗi tích có đủ tất cả các biến của hàm. Hàm tích chuẩn là hàm chứa tích các tổng mà mỗi tổng đều

có đủ tất cả các biến của hàm.

3. Các phép tính cơ bản

Người ta xây dựng ba phép tính cơ bản giữa các biến logic đó là:

- 1. Phép phủ định (đảo): ký hiệu bằng dấu "-" phía trên ký hiệu của biến.
- 2. Phép cộng (tuyển): ký hiệu bằng dấu "+". (song song).
- 3. Phép nhân (hội): ký hiệu bằng dấu ".". (nối tiếp).

4. Tính chất và một số hệ thức cơ bản

4.1. Các tính chất

Tính chất của đại số logic được thể hiện ở bốn luật cơ bản là: luật hoán vị, luật kết hợp, luật phân phối và luật nghịch đảo.

+ Luât hoán vi:

$$x_1 + x_2 = x_2 + x_1$$

+ Luật kết hợp:

$$x_1 + x_2 + x_3 = (x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$$

$$x_1.x_2.x_3 = (x_1.x_2).x_3 = x_1.(x_2.x_3)$$

+ Luật phân phối:

$$(x_1 + x_2).x_3 = x_1.x_3 + x_2.x_3$$

$$x_1 + x_2 \cdot x_3 = (x_{1+}x_2) \cdot (x_{1+}x_3)$$

Có thể minh hoạ để kiểm chứng tính đúng đắn của luật phân phối bằng cách lập bảng 1.3.

Bång 1.3

\mathbf{x}_1	0	0	0	0	1	1	1	1
X ₂	0	0	1	1	0	0	1	1
X ₃	0	1	0	1	0	1	0	1
$(x_{1}+x_{2}) \cdot (x_{1}+x_{3})$	0	0	0	1	1	1	1	1
$x_1 + x_2.x_3$	0	0	0	1	1	1	1	1

Luật phân phối được thể hiện qua sơ đồ role hình 1.1:

Hình 1.1. Thể hiện luật phân phối

+ Luật nghịch đảo:

$$\overline{\mathbf{x}_1.\mathbf{x}_2} = \overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2; \ \overline{\mathbf{x}_1 + \mathbf{x}_2} = \overline{\mathbf{x}}_1.\overline{\mathbf{x}}_2$$

Cũng minh hoạ tính đúng đắn của luật nghịch đảo bằng cách thành lập bảng 1.4.

X ₁	X ₂	$\overline{\mathbf{x}}_{1}$	$\overline{\mathbf{x}}_{2}$	$\overline{x_1 + x_2}$	$\overline{x}_1.\overline{x}_2$	$\overline{x}_1 + \overline{x}_2$	
0	0	1	1	1	1	1	1
0	1	1	0	0	0	1	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

Luật nghịch đảo được thể hiện qua mạch role như trên hình 1.2:

Hình 1.2. Thể hiện luật nghịch đảo

Luật nghịch đảo tổng quát được thể hiện bằng định lý De Morgan:

$$\overline{x_1.x_2.x_3...} = \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + ...; \quad \overline{x_1 + x_2 + x_3 + ...} = \overline{x}_1.\overline{x}_2.\overline{x}_3...$$

4.2. Các hệ thức cơ bản

Một số hệ thức cơ bản thường dùng trong đại số logic được cho ở bảng 1.5.

Bång 1.5

1	x + 0 = x	10	$x_1.x_2 = x_2.x_1$
2	x.1 = x	11	$x_1 + x_1 x_2 = x_1$
3	x.0 = 0	12	$x_1(x_1 + x_2) = x_1$
4	x+1=1	13	$x_1.x_2 + x_1.\overline{x}_2 = x_1$
5	x + x = x	14	$(x_1+x_2)(x_1+\overline{x}_2) = x_1$
6	x.x = x	15	$x_1+x_2+x_3=(x_1+x_2)+x_3$
7	$x + \overline{x} = 1$	16	$x_1.x_2.x_3 = (x_1.x_2).x_3$
8	$x.\overline{x} = 0$	17	$\overline{x_1 + x_2} = \overline{x}_1 . \overline{x}_2$
9	$x_1 + x_2 = x_2 + x_1$	18	$\overline{x_1.x_2} = \overline{x}_1 + \overline{x}_2$

§1.2. Các phương pháp biểu diễn hàm logic

Có thể biểu diễn hàm logic theo bốn cách là: biểu diễn bằng bảng trạng thái, biểu diễn bằng phương pháp hình học, biểu diễn bằng biểu thức đại số, biểu diễn bằng bảng Karnaugh (bìa Canô).

1. Phương pháp biểu diễn bằng bảng trạng thái

Ở phương pháp này các giá trị của hàm được trình bày trong một bảng. Nếu hàm có n biến thì bảng có n + 1 cột (n cột cho biến và 1 cột cho hàm) và 2ⁿ hàng tương ứng với 2ⁿ tổ hợp của biến. Bảng này thường gọi là bảng trạng thái hay bảng chân lý.

Ví dụ: Một hàm 3 biến $y = f(x_1, x_2, x_3)$ với giá trị của hàm đã cho trước được biểu diễn thành bảng 1.6:

TT tố hợp biến \mathbf{x}_1 \mathbf{X}_{2} y **X**3

Bång 1.6

Ưu điểm của phương pháp biểu diễn bằng bảng là dễ nhìn, ít nhầm lẫn, nhược điểm là cồng kềnh, đặc biệt khi số biến lớn.

2. Phương pháp biểu diễn hình học

Với phương pháp hình học hàm n biến được biểu diễn trong không gian n chiều, tổ hợp biến được biểu diễn thành một điểm trong không gian, phương pháp này rất phức tạp khi số biến lớn nên thường ít dùng.

3. Phương pháp biểu diễn bằng biểu thức đại số

Người ta chứng minh được rằng, một hàm logic n biến bất kỳ bao giờ cũng có thể biểu diễn thành các hàm tổng chuẩn đầy đủ và tích chuẩn đầy đủ.

Cách viết hàm dưới dạng tổng chuẩn đầy đủ

- Hàm tổng chuẩn đầy đủ chỉ quan tâm đến tổ hợp biến mà hàm có giá trị bằng 1
 Số lần hàm bằng 1 sẽ chính là số tích của các tổ hợp biến.
- Trong mỗi tích, các biến có giá trị bằng 1 được giữ nguyên, còn các biến có giá trị bằng 0 thì được lấy giá trị đảo; nghĩa là nếu $x_i = 1$ thì trong biểu thức tích sẽ được viết là x_i , còn nếu $x_i = 0$ thì trong biểu thức tích được viết là $\overline{x_i}$. Các tích này còn gọi là các mintec và ký hiệu là m.
 - Hàm tổng chuẩn đầy đủ sẽ là tổng của các tích đó.

Ví dụ: Với hàm ba biến ở bảng 1.6 trên, có hàm ở dạng tổng chuẩn đầy đủ là:

$$f = \overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_2 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_2 \cdot \overline{x}_3 + x_1 \cdot x_2 \cdot \overline{x}_3 = m_0 + m_2 + m_3 + m_6$$

Cách viết hàm dưới dạng tích chuẩn đầy đủ

- Hàm tích chuẩn đầy đủ chỉ quan tâm đến tổ hợp biến mà hàm có giá trị bằng 0

Số lần hàm bằng không sẽ chính là số tổng của các tổ hợp biến.

Trong mỗi tổng các biến có giá trị 0 được giữ nguyên, còn các biến có giá trị 1 được lấy đảo; nghĩa là nếu $x_i = 0$ thì trong biểu thức tổng sẽ được viết là x_i , còn nếu $x_i = 1$ thì trong biểu thức tổng được viết bằng $\overline{x_i}$. Các tổng cơ bản còn được gọi tên là các Maxtec ký hiệu M.

- Hàm tích chuẩn đầu đủ sẽ là tích của các tổng đó.

Ví dụ: Với hàm ba biến ở bảng 1.6 trên, có hàm ở dạng tích chuẩn đầy đủ là:

$$f = (x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + x_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$$

= $M_1 + M_4 + M_5 + M_7$

4. Phương pháp biểu diễn bằng bỏng Karnaugh (bìa canô)

Nguyên tắc xây dựng bảng Karnaugh là:

- Để biểu diễn hàm logic n biến cần thành lập một bảng có 2ⁿ ô, mỗi ô tương ứng với một tổ hợp biến. Đánh số thứ tự các ô trong bảng tương ứng với thứ tự các tổ hợp biến.
- Các ô cạnh nhau hoặc đối xứng nhau chỉ cho phép khác nhau về giá trị của 1 biến.
 - Trong các ô ghi giá trị của hàm tương ứng với giá trị tổ hợp biến.

Ví dụ l: Bảng Karnaugh cho hàm ba biến ở bảng 1.6 như bảng 1.7 sau:

X_1 X_2 , X_3	00	01	11	10
0	0 1	1	³ 1	2 1
	4	5	7	6 1
1				

Ví dụ 2: Bảng Karnaugh cho hàm bốn biến như bảng 1.8 sau:

X_1, X_2 X_3, X_4	00	01	11	10
00	0 1	1	3 1	2 1
01	4	5	7	6 1
11	12 1	13	15 1	14
10	8	9 I	11	10

§1.3. Các phương pháp tối thiểu hoá hàm logic

Trong quá trình phân tích và tổng hợp mạch logic, phải quan tâm đến vấn đề tối thiểu hoá hàm logic. Bởi vì, cùng một giá trị hàm logic có thể có nhiều hàm khác nhau, nhiều cách biểu diễn khác nhau nhưng chỉ tồn tại một cách biểu diễn gọn nhất, tối ưu về số biến và số số hạng hay thừa số được gọi là dạng tối thiểu. Việc tối thiểu hoá hàm logic là đưa chúng từ một dạng bất kỳ về dạng tối thiểu. Tối thiểu hoá hàm logic mang ý nghĩa kinh tế và kỹ thuật lớn, đặc biệt khi tổng hợp các mạch logic phức tạp. Khi chọn được một sơ đồ tối giản sẽ có số biến (thiết bị) cũng như các kết nối (thiết bị) tối giản, giảm được chi phí vật tư cũng như giảm đáng kể xác suất hỏng hóc do số phần tử nhiều.

Ví dụ: Hai sơ đồ hình 1.3a và hình 1.3b đều có chức năng như nhau, nhưng sơ đồ a số tiếp điểm cần là 3, đồng thời cần thêm 1 role trung gian p, trong khi đó sơ đồ b chỉ cần 2 tiếp điểm, không cần role trung gian.

Hình 1.3: Tối giản hàm logic

Thực chất việc tối thiểu hoá hàm logic là tìm dạng biểu diễn đại số đơn giản nhất của hàm và thường có hai nhóm phương pháp là:

- Phương pháp biến đổi đại số.
- Phương pháp dùng thuật toán.

1. Phương pháp tối thiểu hoá hàm logic bằng biến đổi đại số

Ở phương pháp này cần dựa vào các tính chất và các hệ thức cơ bản của đại số Boole để thực hiện tối giản các hàm logic. Nhưng do tính trực quan của phương pháp nên nhiều khi kết quả đưa ra vẫn không khẳng định rõ được là đã tối thiểu hay chưa. Như vậy, đây không phải là phương pháp chặt chẽ cho quá trình tối thiểu hoá.

Ví dụ: Cho hàm

$$\begin{split} f &= \overline{x}_1 x_2 + x_1 x_2 + x_1 \overline{x}_2 \\ &= (\overline{x}_1 x_2 + x_1 x_2) + (x_1 x_2 + x_1 \overline{x}_2) \\ &= x_2 (\overline{x}_1 + x_1) + x_1 (x_2 + \overline{x}_2) = x_1 + x_2 \end{split}$$

2. Phương pháp tối thiểu hoá hàm logic dùng thuật toán

Phương pháp dùng bảng Karnaugh

Đây là phương pháp thông dụng và đơn giản nhất, nhưng chỉ tiến hành được với hệ có số biến $n \le 6$. Ở phương pháp này cần quan sát và xử lý trực tiếp trên bảng Karnaugh.

Quy tắc của phương pháp là: nếu có 2ⁿ ô có giá trị 1 nằm kề nhau hợp thành một khối vuông hay chữ nhật thì có thể thay 2ⁿ ô này bằng một ô lớn với số lượng biến giảm đi n lần. Như vậy, bản chất của phương pháp là tìm các ô kề nhau chứa giá trị 1 (các ô có giá trị hàm không xác định cũng gán cho giá trị 1) sao cho lập thành hình vuông hay chữ nhật càng lớn càng tốt. Các biến nằm trong khu vực này bị loại bỏ là các biến có giá trị biến đổi, các biến được dùng là các biến có giá trị không biến đổi (chỉ là 0 hoặc l).

Quy lắc này áp dụng theo thứ tự giảm dần độ lớn các ô, sao cho cuối cùng toàn bộ các ô chứa giá trị 1 đều được bao phủ. Cũng có thể tiến hành tối thiểu theo giá trị 0 của hàm nếu số lượng của nó ít hơn nhiều so với giá trị 1, lúc bấy giờ hàm là hàm phủ đinh.

Ví dụ: Tối thiểu hàm

$$f = \overline{x}.\overline{y}.\overline{z} + \overline{x}.\overline{y}.z + x.\overline{y}.\overline{z} + \overline{x}.y.z + x.\overline{y}.z + x.y.z = m_0 + m_1 + m_3 + m_4 + m_5 + m_7$$

+ Lập bảng Karnaugh được như bảng 1.9. Bảng Karnaugh có 3 biến với 6 mintec có giá trị 1.

 2
 x, y
 00
 01
 11
 10

 0
 0
 -1- 2
 6
 4
 -1-

 1
 1
 -- 3
 7
 5
 --

Bång 1.9

- +Tìm nhóm các ô (hình chữ nhật) chứa các ô có giá trị bằng 1, được hai nhóm, nhóm A và nhóm B.
- + Loại bớt các biến ở các nhóm: Nhóm A có biến z=1 không đổi vậy nó được giữ lại còn hai biến x và y thay đổi theo từng cột do vậy mintec mới A chỉ còn biến z: A=z. Nhóm B có biến x và z thay đổi, còn biến \overline{y} không đổi vậy mintec mới B chỉ còn biến \overline{y} : $B=\overline{y}$.

Kết quả tối thiểu hoá là: f = a+b = z+y.

Phương pháp Quine Mc. Cluskey

Đây là phương pháp có tính tổng quát, cho phép tối thiểu hoá mọi hàm logic với số lượng biến lớn.

- a. Một số định nghĩa
- + Đỉnh: là một tích chứa đầy đủ các biến của hàm, nếu hàm có n biến thì đỉnh là tích của n biến.

Đỉnh 1 là đỉnh mà hàm có giá trị bằng 1.

Đỉnh 0 là đỉnh mà hàm có giá trị bằng 0.

Đỉnh không xác định là đỉnh mà tại đó hàm có thể lấy một trong hai giá trí 0 hoặc 1 .

- + Tích cực tiểu: là tích có số biến là cực tiểu để hàm có giá trị bằng 1 hoặc không xác định.
- + Tích quan trọng: là tích cực tiểu mà giá trị hàm chỉ duy nhất bằng 1 ở tích này. b. Tối thiểu hoá bằng phương pháp Quine Mc. Cluskey

Để rõ phương pháp hãy xét ví dụ minh hoạ, tối thiểu hoá hàm $f(x_1,x_2,x_3,x_4)$ Với Các đỉnh bằng 1 là L=2, 3, 7, 12, 14, 15 và các đỉnh có giá trị hàm không xác định là N=6, 13. Các bước tiến hành như sau:

Bước 1: Tìm các tích cực tiểu

- Lập bảng biểu diễn các giá trị hàm bằng 1 và các giá trị không xác định ứng với mã nhị phân của các biến theo thứ tự số số 1 tăng dần (bảng 1.10a.
- Xếp thành từng nhóm theo số lượng chữ số 1 với thứ tự tăng dần. (bảng 1.10b có 4 nhóm: nhóm 1 có 1 số chứa 1 chữ số 1; nhóm 2 gồm 3 số chứa 2 chữ số 1; nhóm 3 gồm 3 số chứa 3 chữ số 1, nhóm 4 có 1 số chứa 4 chữ số 1).
- So sánh mỗi tổ hợp thứ i với tổ hợp thứ i + 1, nếu hai tổ hợp chỉ khác nhau ở một cột thì kết hợp 2 tổ hợp đó thành một tổ hợp mới, đồng thời thay cột số khác nhau của 2 tổ hợp cũ bằng một gạch ngang (-) và đánh dấu v vào hai tổ hợp cũ (bảng 1.10c). Về cơ sở toán học, ở đây để thu gọn các tổ hợp đã dùng tính chất:

•
$$xy + x\overline{y} = x$$
.

• Cứ tiếp tục c ông việc, từ bảng 1.10c chọn ra các tổ hợp chỉ khác nhau 1 chữ số 1 và có cùng vị trí gạch ngang (-) trong một cột, nghĩa là có cùng biến vừa được giản ước ở bảng 1.10c, như vậy có bảng 1.10d.

Bång 1.10

8	a		b		c		d	
Số thập phân	$ \begin{array}{c} \text{Co số 2} \\ x_1x_2x_3x_4 \end{array} $	Số chữ số 1	Số thập phân	$ \begin{array}{c} \text{Co số 2} \\ x_1x_2x_3x_4 \end{array} $	Liên kết	X ₁ X ₂ X ₃ X ₄	Liên kết	x ₁ x ₂ x ₃ x ₄
2	0010	1	2	0010v	2,3	001-v	2,3,6,7 2,6,3,7	0-1-
3	0011	•	3	0011v	2,6	0-10v	6,7,14,15 6,14,7,15	-11-
6 *	0110	2	6	0110v	3,7	0-11v	12,13,14,15	11
12	1100		12	1100v	6,7	011-v		
7	0111		7	0111v	6,14	-110v		
13 *	1101	3	13	1101v	12,13	110-v		
14	1110		14	1110v	12,14	110v		
15	1111		15	1111v	7,15	-111v		
		4			13,15	11-1v		
					14,15	111-v		

Quá trình tiếp tục cho đến khi không còn khả năng kết hợp nữa. Các tổ hợp tìm được ở bảng 1.10d là tổ hợp cuối cùng, các tổ hợp này không còn khả năng kết hợp nữa, đây chính là các tích cực tiểu của hàm đã cho. Theo thứ tự $x_1x_2x_3x_4$, các x_k ở vị trí có dấu (-) được lược bỏ, các x_k ở vị trí giá trị 0 được lấy nghịch đảo, các tích cực tiểu trong ví dụ được viết như sau:

0-1- (phủ các đỉnh 2, 3, 6, 7) ứng với: x_1x_3 .

-11- (phủ các đỉnh 6, 7, 14, 15) ứng với: x₂x₃.

1 1-- (phủ các đỉnh 12, 13, 14, 15) ứng với : x_1x_2 .

Bước 2: Tìm các tích quan trọng

Việc tìm các tích quan trọng cũng được tiến hành theo các bước nhỏ.

Gọi L_i là tập các đỉnh 1 đang xét ở bước nhỏ thứ i, lúc này không quan tâm đến các đỉnh có giá trị không xác định nữa.

Z_i là tập các tích cực tiểu đang ở bước nhỏ thứ i.

 E_i là tập các tích quan trọng ở bước nhỏ thứ i.

 $V \acute{o} i i = 0$

$$L_0 = (2,3,7,12,14,15)$$

$$Z_0 = (\overline{\mathbf{x}}_1 \mathbf{x}_3, \mathbf{x}_2 \mathbf{x}_3, \mathbf{x}_1 \mathbf{x}_2)$$

Xác định các tích quan trọng E_o từ tập L_o và Z_o như sau:

+ Lập bảng trong đó mỗi hàng ứng với một tích cực tiểu thuộc Z_o mỗi cột ứng với một đỉnh thuộc L_o . Đánh dấu "x" vào các ô trong bảng ứng với tích cực tiểu bảng 1.11 (tích x_1x_3 ứng với các đỉnh 2, 3, 7; tích x_2x_3 ứng với các đỉnh 7, 14, 5; tích x_1x_2 ứng với các đỉnh 12, 14, 15 bảng 1.10).

Bång 1.11

Z_0 L_0	2	3	7	12	14	15
\overline{x}_1x_3	(x)	(x)	х			
x ₂ x ₃			х		х	х
x ₁ x ₂			l	(x)	x	x

Xét từng cột, cột nào chỉ có một dấu "x" thì tích cực tiểu (hàng) ứng với nó là tích quan trọng, đổi thành dấu "(x)". Vậy tập các tích quan trọng ở bước này là:

$$E_0 = (\overline{x}_1 x_3, x_1 x_2)$$

Với i = 1

Tìm L_1 từ L_o bằng cách loại khỏi L_o các đỉnh 1 của E_o

Tìm Z_1 từ Z_o bằng cách loại khỏi Z_o các tích trong E_o và các tích đã nằm trong

hàng đã được chọn từ E_o . Khi đã tìm được L_1 , và Z_1 , làm lại như bước i=0 sẽ tìm được tích quan trọng E_1 .

Công việc cứ tiếp tục cho đến khi $L_k = 0$.

Trong ví dụ này vì $E_0 = (\overline{x_1}\overline{x}_3, \, x_1 \, x_2)$ mà các định 1 của $\overline{x_1}\overline{x}_3$ là 2, 3, 7; các đỉnh 1 của $x_1, \, x_2$ là 12, 14, 15 (bỏ qua đỉnh 6, 13 là các đỉnh không xác định); do đó $L_1 = 0$, quá trình kết thúc. Kết quả dạng hàm tối thiểu chính là tổng của các tích cực tiểu. Vậy hàm cực tiểu là:

$$f = \overline{x}_1 x_3 + x_1 x_2.$$

§1.4. Các hệ mạch logic

Các phép toán và định lý của đại số Boole giúp cho thao tác các biểu thức logic. Trong kỹ thuật thực tế là cách nối cổng logic của các mạch logic với nhau (theo kết cấu đã tối giản nếu có). Để thực hiện một bài toán điều khiển phức tạp, số mạch logic sẽ phụ thuộc vào số lượng đầu vào và cách giải quyết bằng loại mạch logic nào, sử dụng các phép toán hay định lý nào. Đây là một bài toán tối ưu nhiều khi có không chỉ một lời giải. Tuỳ theo loại mạch logic mà việc giải các bài toán có những phương pháp khác nhau. Về cơ bản các mạch logic được chia làm hai loại:

- + Mạch logic tổ hợp.
- + Mach logic trình tư.

1. Mạch logic tổ hợp

Mạch logic tổ hợp là mạch mà đầu ra tại bất kỳ thời điểm nào chỉ phụ thuộc tổ hợp các trạng thái của đầu vào ở thời điểm đó. Như vậy, mạch không có phần tử nhớ. Theo quan điểm điều khiển thì mạch tổ hợp là mạch hở, hệ không có phản hồi, nghĩa là trạng thái đóng mở của các phần tử trong mạch hoàn toàn không bị ảnh hưởng bởi trạng thái tín hiệu đầu ra.

Sơ đồ mạch logic tổ hợp như hình 1.4.

Hình 1.4. Mạch tổ hợp

Với mạch logic tổ hợp tồn tại hai loại bài toán là bài toán phân tích và bài toán tổng hợp.

- + Bài toán phân tích có nhiệm vụ là từ mạch tổ hợp đã có, mô tả hoạt động và viết các hàm logic của các đầu ra theo các biến đầu vào và nếu cần có thể xét tới việc tối thiểu hoá mạch.
- + Bài toán tổng hợp thực chất là thiết kế mạch tổ hợp. Nhiệm vụ chính là thiết kế được mạch tổ hợp thoả mãn yêu cầu kỹ thuật nhưng mạch phải tối giản. Bài toán tổng

hợp là bài toán phức tạp, vì ngoài các yêu cầu về chức năng logic, việc tổng hợp mạch còn phụ thuộc vào việc sử dụng các phần tử, chẳng hạn như phần tử là các loại: role công tắc tơ, loại phần tử khí nén hay loại phần tử là bán dẫn, vi mạch... Với mỗi loại phần tử logic được sử dụng thì ngoài nguyên lý chung về mạch logic còn đòi hỏi phải bổ sung những nguyên tắc riêng lúc tổng hợp và thiết kế hệ thống.

Ví dụ: Mạch logic tổ hợp như hình 1.5.

2. Mạch logic trình tự

Mạch trình tự hay còn gọi là mạch dãy (sequential circuits) là mạch trong đó trạng thái của tín hiệu ra không những phụ thuộc tín hiệu vào mà còn phụ thuộc cả trình tự tác động của tín hiệu vào, nghĩa là mạch có nhớ các trạng thái. Như vậy, về mặt thiết bị thì ở mạch trình tự không những chỉ có các phần tử đóng mở mà còn có cả các phần tử nhớ.

Sơ đồ nguyên lý mạch logic trình tự như hình 1.6.

Xét mạch logic trình tự như hình 1.7. Xét hoạt động của mạch khi thay đổi trạng thái đóng mở của x_1 và x_2 . Biểu đổ hình 1.7b mô tả hoạt động của mạch, trong biểu đồ các nét đậm biểu hiện tín hiệu có giá trị 1, còn nét mảnh biểu hiện tín hiệu có giá trị 0.

Hình 1.7. Sơ đồ mạch trình tự

Từ biểu đồ hình 1.7b thấy, trạng thái z=1 chỉ đạt được khi thao tác theo trình tự $x_1=1$, tiếp theo $x_2=1$. Nếu cho $x_2=1$ trước, sau đó cho $x_1=1$ thì cả y và z đều không thể bằng 1.

Để mô tả mạch trình tự có thể dùng bảng chuyển trạng thái, dùng đồ hình trạng thái Mealy, đồ hình trạng thái Moore hoặc dùng phương pháp lưu đồ. Trong đó phương pháp lưu đồ có dạng trực quan hơn. Từ lưu đồ thuật toán dễ dàng chuyển sang dạng đồ hình trạng thái Mealy hoặc đồ hình trạng thái Moore, và từ đó có thể thiết kế

được mạch trình tự.

Với mạch logic trình tự cũng có bài toán phân tích và bài toán tổng hợp.

§1.5. Grafcet - để mô tả mạch trình tự trong công nghiệp

1. Hoạt động của thiết bị công nghiệp theo logic trình tự

Trong dây chuyền sản xuất công nghiệp, các thiết bị máy móc thường hoạt động theo một trình tụ logic chặt chẽ nhằm đảm bảo chất lượng sản phẩm và an toàn cho người và thiết bị.

Một quá trình công nghệ nào đó cũng có thể có ba hình thức điều khiển hoạt động sau:

- + Điều khiển hoàn toàn tự động, lúc này chỉ cần sự chỉ huy chung của nhân viên vận hành hệ thống.
- + Điều khiển bán tự động, quá trình làm việc có liên quan trực tiếp đến các thao tác liên tục của con người giữa các chuỗi hoạt động tự động.
 - + Điều khiển bằng tay, tất cả hoạt động của hệ đều do con người thao tác.

Trong quá trình làm việc để đảm bảo an toàn, tin cậy và linh hoạt, hệ điều khiển cần có sự chuyển đổi dễ dàng từ điều khiển bằng tay sang tự động và ngược lại, vì như vậy hệ điều khiển mới đáp ứng đúng các yêu cầu thực tế.

Trong quá trình làm việc sự không bình thường trong hoạt động của dây chuyền có rất nhiều loại, khi thiết kế phải cố gắng mô tả chúng một cách đầy đủ nhất. Trong số các hoạt động không bình thường của chương trình điều khiển một dây chuyền tự động, người ta thường phân biệt ra các loại sau:

- + Hư hỏng một bộ phận trong cấu trúc điều khiển, lúc này cần phải xử lý riêng phần chương trình có chỗ hư hỏng, đồng thời phải lưu tâm cho dây chuyền hoạt động lúc có hư hỏng và sẵn sàng chấp nhận lại diều khiển khi hư hỏng được sửa chữa xong.
 - + Hư hỏng trong cấu trúc trình tự điều khiển.
- + Hư hỏng bộ phận chấp hành (như hư hỏng thiết bị chấp hành, hư hỏng cảm biến, hư hỏng các bộ phận thao tác...).

Khi thiết kế hệ thống phải tính đến các phương thức làm việc khác nhau để đảm bảo an toàn và xử lý kịp thời các hư hỏng trong hệ thống, phải luôn có phương án can thiệp trực tiếp của người vận hành đến việc dừng máy khẩn cấp, xử lý tắc nghẽn vật liệu và các hiện tượng nguy hiểm khác. Grafcel là công cụ rất hữu ích để thiết kế và thực hiện đầy đủ các yêu cầu của hệ tự động cho các quá trình công nghệ kể trên.

2. Định nghĩa Grafcet

Grafcet là từ viết tắt của tiếng Pháp "Graphe fonctionnel de commande étape transition" (chuỗi chức năng điều khiển giai đoạn - chuyển tiếp), do hai cơ quan AFCET (Liên hợp Pháp về tin học, kinh tế và kỹ thuật) và ADEPA (tổ chức nhà nước về phát triển nền sản xuất tự động hoá) hợp tác soạn thảo tháng 11/1982 được đăng ký

ở tổ chức tiêu chuẩn hoá Pháp. Như vậy, mạng grafcet đã được tiêu chuẩn hoá và được công nhận là một ngôn ngữ thích hợp cho việc mô tả hoạt động dãy của quá trình tự động hoá trong sản xuất.

Mạng grafcet là một đồ hình chức năng cho phép mô tả các trạng thái làm việc của hệ thống và biểu diễn quá trình điều khiển với các trạng thái và sự chuyển đổi từ trạng thái này sang trạng thái khác, đó là một đồ hình định hướng được xác định bởi các phần tử là: tập các trạng thái, tập các điều kiện chuyển trạng thái.

Mạng grafcet mô tả thành chuỗi các giai đoạn trong chu trình sản xuất.

Mạng grafcet cho một quá trình sản xuất luôn luôn là một đồ hình khép kín từ trạng thái đầu đến trạng thái cuối và từ trạng thái cuối về trạng thái đầu.

3. Một số ký hiệu trong grafcet

- Một trạng thái (giai đoạn) được biểu diễn bằng một hình vuông có đánh số thứ tự chỉ trạng thái. Gắn liền với biểu tượng trạng thái là một hình chữ nhật bên cạnh, trong hình chữ nhật này có ghi các tác động của trạng thái đó hình l.8a và b. Một trạng thái có thể tương ứng với một hoặc nhiều hành động của quá trình sản xuất

Trạng thái khởi động được thể hiện bằng 2 hình vuông lồng vào nhau, thứ tự thường là 1 hình 1.8c.

- Trạng thái hoạt động (tích cực) có thêm dấu ở trong hình vuông trạng thái hình 1.8d.

Hình 1.8. Các trạng thái trong grafcet

- Việc chuyển tiếp từ trạng thái này sang trạng thái khác chỉ có thể được thực hiện khi các điều kiện chuyển tiếp được thoả mãn. Chẳng hạn, việc chuyển tiếp giữa các trạng thái 3 và 4 hình 1.9a được thực hiện khi tác động lên biến b, còn chuyển tiếp giữa trạng thái 5 và 6 được thực hiện ở sườn tăng của biến c hình 1.9b, ở hình 1.9c là tác động ở sườn giảm của biến d. Chuyển tiếp giữa trạng thái 9 và 10 hình 1.9d sẽ xảy ra sau 2s kể từ khi có tác động cuối cùng của trạng thái 9 được thực hiện.

Hình 1.9. Điều kiện chuyển tiếp

- Ký hiệu phân nhánh như hình 1.10, ở sơ đồ phân nhánh lại tồn tại hai loại là sơ đồ rẽ nhánh và sơ đồ song song.

Sơ đồ rẽ nhánh là phần sơ đồ có hai điều kiện liên hệ giữa ba trạng thái như hình $1.1a~{\rm và}~b$.

Sơ đồ song song là sơ đồ chỉ có một điều kiện liên hệ giữa 3 trạng thái như hình $1.10 \mathrm{c}$ và d .

 \mathring{O} hình 1.10a, khi trạng thái 1 đang hoạt động, nếu chuyển tiếp t_{12} thoả mãn thì trạng thái 2 hoạt động; nếu chuyển tiếp t_{13} thoả mãn thì trạng thái 3 hoạt động.

 \mathring{O} hình 1.10b nếu trạng thái 7 đang hoạt động và có t_{79} thì trạng thái 9 hoạt động, nếu trạng thái 8 đang hoạt động và có t_{89} thì trạng thái 9 hoạt động.

 \mathring{O} hình 1.10c nếu trạng thái 1 đang hoạt động và có t_{123} thì trạng thái 2 và 3 đồng thời hoạt động.

 \mathring{O} hình 1.10d nếu trạng thái 7 và 8 đang cùng hoạt động và có t_{789} thì trạng thái 9 hoạt động

Hình 1.10. Ký hiệu phân nhánh

Ký hiệu bước nhảy như hình 1.11.

Hình 1.11. Ký hiệu bước nhảy

Hình 1.11a biểu diễn grafcet cho phép thực hiện bước nhảy, khi trạng thái 2 đang hoạt động nếu có điều kiện a thì quá trình sẽ chuyển hoạt động từ trạng thái 2 sang trạng thái 5 bỏ qua các trạng thái trung gian 3 và 4, nếu điều kiện a không được thoả mãn thì quá trình chuyển tiếp theo trình tự 2, 3, 4, 5.

Hình 1.11b khi trạng thái 8 đang hoạt động nếu thoả mãn điều kiện f thì quá trình

chuyển sang trạng thái 9, nếu không thoả mãn điều kiện 8 thì quá trình quay lại trạng thái 7.

4. Cách xây dựng mạng grafcet

Để xây dựng mạng grafcet cho một quá trình nào đó thì trước tiên phải mô tả mọi hành vi tự động bao gồm các giai đoạn và các điều kiện chuyển tiếp, sau đó lựa chọn các dẫn động và các cảm biến rồi mô tả chúng bằng các ký hiệu, sau đó kết nối chúng lại theo cách mô tả của grafcet.

Ví dụ: Để kẹp chặt chi tiết c và khoan trên đó một lỗ hình 1.12 thì trước tiên người điều khiển ấn nút khởi động d để khởi động chu trình công nghệ tự động, quá trình bắt đầu từ giai đoạn 1:

Hình 1.12. Sơ đồ quy trình khoan

- + Giai đoạn 1: S₁ Píttông A chuyển động theo chiều A+ để kẹp chặt chi tiết c. Khi lực kẹp đạt yêu cầu được xác định bởi cảm biến áp suất a₁ thì chuyển sang giai đoan 2.
- + Giai đoạn 2: S_2 đầu khoan B đi xuống theo chiều B+ và mũi khoan quay theo chiều R, khi khoan đủ sâu, xác định bằng nút b_1 thì kết thúc giai đoạn 2, chuyển sang giai đoạn 3.
- + Giai đoạn 3: S_3 mũi khoan đi lên theo chiều B- và ngừng quay. Khi mũi khoan lên đủ cao, xác định bằng b_o thì khoan dừng và chuyển sang giai đoạn 4.
- + Giai đoạn 4: S_4 Píttông A trở về theo chiều A- nới lỏng chi tiết, vị trí trở về được xác định bởi a_0 khi đó muông ngừng chuyển động, kết thúc một chu kỳ gia công.

Sơ đồ grafcet như hình 1.13.

5. Phân tích mạng grafcet

- 5.1. Quy tắc vượt qua, chuyển tiếp
- Một trạng thái trước chỉ chuyển tiếp sang trạng thái sau khi nó đang hoạt động (tích cực) và có đủ điều kiện chuyển tiếp.
- Khi quá trình đã chuyển tiếp sang trạng thái sau thì giai đoạn sau hoạt động (tích cực) và sẽ khử bỏ hoạt động của trạng thái trước đó (giai đoạn trước hết tích cực)

Hình 1.13. Mạng grafcet quá trình khoan

Hình 1.14. Sơ đồ có nhánh chết

Với các điều kiện hoạt động như trên thì có nhiều khi sơ đồ không hoạt động được hoặc hoạt động không tốt. Người ta gọi:

- + Sơ đồ không hoạt động được là sơ đồ có nhánh chết. (Sơ đồ có nhánh chết có thể vẫn hoạt động nếu như không đi vào nhánh chết).
 - + Sơ đồ không sạch là sơ đồ mà tại một vị trí nào đó được phát lệnh hai lần.

Ví **dụ 1**: Sơ đồ hình 1.14 là sơ đồ có nhánh chết. Sơ đồ này không thể làm việc được do S_2 và S_4 không thể cùng tích cực vì giả sử hệ đang ở trạng thái ban đầu S_o nếu có điều kiện 3 thì S_o đã hết tích cực và chuyển sang S_3 tích cực. Sau đó nếu có điều kiện 4 thì S_3 hết tích cực và S_4 tích cực. Nếu lúc này có điều kiện 1 thì S_1 cũng không thể tích cực được vì S_o đã hết tích cực. Do đó không bao giờ S_2 tích cực được nữa, mà để S_5 tích cực thì phải có S_2 và S_4 cùng tích cực kèm điều kiện 5 như vậy hệ sẽ nằm im ở vị trí S_4

Muốn sơ đồ trên làm việc được phải chuyển mạch rẽ nhánh thành mạch song song.

Ví dụ 2: Sơ đồ hình 1.15 là sơ đồ không sạch. Giả sử mạng đang ở trạng thái ban đầu nếu có điều kiện 1 thì sẽ chuyển trạng thái cho cả S_1 và S_3 tích cực, nếu có điều kiện 3 rồi 4 thì sẽ chuyển cho S_5 tích cực, khi chưa có điều kiện 6 mà lại có điều kiện 2 rồi 5 trước thì S_5 lại chuyển tích cực lần nữa. Tức là có hai lần lệnh cho S_5 tích cực, vậy là sơ đồ không sạch.

Ví dụ 3: Sơ đồ hình 1.16 là sơ đồ sạch. Ở sơ đồ này nếu đã có S_3 tích cực (diều kiện 3) thì nếu có điều kiện 1 cũng không có nghĩa vì S_o đã hết tích cực. Như vậy, mạch đã rẽ sang nhánh 2, nếu lần lượt có các điều kiện 4 và 6 thì S_5 sẽ tích cực sau đó nếu có điều kiện 7 thì hệ lại trở về trạng thái ban đầu.

5.2. Phân tích mạng grafcet

Như phân tích ở trên thì nhiều khi mạng grafcet không hoạt động được hoặc hoạt động không tốt. Nhưng đối với các mạng không hoạt động được hoặc hoạt động không tốt vẫn có thể làm việc được nếu như không đi vào nhánh chết. Trong thực tế sản xuất một hệ thống có thể đang hoạt động rất tốt, nhưng nếu vì lý do nào đó mà hệ thống phải thay đổi chế độ làm việc (do sự cố từng phần hoặc do thay đổi công nghệ...) thì có thể hệ thống sẽ không hoạt động được nếu đó là nhánh chết.

Với cách phân tích sơ đồ như trên thì khó đánh giá được các mạng có độ phức - tạp lớn. Do đó, phải xét một cách phân tích mạng grafcet là dùng phương pháp giản đồ điểm.

Để thành lập giản đồ điểm cần đi theo các bước sau:

- + Vẽ một ô đầu tiên cho giản đồ điểm, ghi số 0. Xuất phát từ giai đoạn đầu trên grafcet được coi là đang tích cực, giai đoạn này đang có dấu ".", khi có một điều kiện được thực hiện, sẽ có các giai đoạn mới được tích cực thì:
 - Đánh dấu "." vào các giai đoạn vừa được tích cực trên grafcet,

- Xoá dấu "." Ở giai đoạn hết tích cực trên grafcet,
- Tạo một ô mới trên giản đồ điểm sau điều kiện vừa thực hiện,
- Ghi hết các giai đoạn tích cực của hệ (có dấu ".") vào ô mới vừa tạo.
- + Từ các ô đã thành lập khi một điều kiện nào đó lại được thực hiện thì các giai đoạn tích cực lại được chuyển đổi, lại lặp lại bốn bước nhỏ trên.
- + Quá trình cứ như vậy tiếp tục, có thể vẽ hoàn thiện được giản đồ điểm (sơ đồ tạo thành mạch liên tục, sau khi kết thúc lại trở về điểm xuất phát) hoặc không vẽ hoàn thiện được. Nhìn vào giản đồ điểm sẽ có các kết luận sau:
- Nếu trong quá trình vẽ đến giai đoạn nào đó không thể vẽ tiếp được nữa (không hoàn thiện sơ đồ) thì sơ đồ đó là sơ đồ có nhánh chết, ví dụ 2.
- Nếu vẽ được hết mà ở vị trí nào đó có các điểm làm việc cùng tên thì là sơ đồ không sạch ví dụ 3.
- Nếu vẽ được hết và không có vị trí nào có các điểm làm việc cùng tên thì là sơ đồ làm việc tốt, sơ đồ sạch ví dụ 1 .

Ví dụ 1: Vẽ giản đồ điểm cho sơ đồ sạch hình 1.17a.

 \mathring{O} thời điểm đầu hệ đang ở giai đoạn S_o (có dấu "."), khi điều kiện 1 được thực hiện thì cả S_1 và S_3 cùng chuyển sang tích cực, đánh dấu "." vào S_1 và S_3 xoá dấu "." ở S_o . Vậy, sau điều kiện 1 tạo ô mới và trong ô này cần ghi hai trạng thái tích cực là 1,3. Nếu các điều kiện khác không diễn ra thì mạch vẫn ở trạng thái 1 và 3.

Khi hệ đang ở 1,3 nếu điều kiện 4 được thực hiện thì giai đoạn 4 tích cực (thêm dấu "."), giai đoạn 3 hết tích cực (mất dấu "."). Vậy sau điều kiện 4 tạo ô mới (nối với ô 1,3), ô này ghi hai trạng thái tích cực còn lại trên grafcet là 1, 4.

Hình 1.17. Giản đồ điểm sơ đồ sạch

Khi hệ đang ở 1,3 nếu điều kiện 2 được thực hiện thì giai đoạn 2 tích cực (thêm dấu "."), giai đoạn 1 hết tích cực (mất dấu "."). Vậy sau điều kiện 2 tạo ô mới (nối với ô 1,3), ô này ghi hai trạng thái tích cực còn lại trên grafcet là 2,3.

Khi hệ đang ở 1,4 hoặc 2,3 nếu có điều kiện 5 thì quá trình vẫn không chuyển tiếp vì để chuyển giai đoạn 5 phải có S_2 và S_4 Cùng tích cực kết hợp điều kiện 5.

Khi hệ đang ở 1,4 nếu điều kiện 2 được thực hiện thì giai đoạn 2 tích cực (thêm dấu "."), giai đoạn 1 hết tích cực (mất dấu "."). Vậy sau điều kiện 2 tạo ô mới (nối với ô 1,4), ô này ghi hai trạng thái tích cực còn lại trên grafcet là 2,4.

Khi hệ đang ở 2,3 nếu điều kiện 4 được thực hiện thì giai đoạn 4 tích cực (thêm dấu "."), giai đoạn 3 hết tích cực (mất dấu "."). Vậy sau điều kiện 4 tạo ô mới (nối với ô 2,3), ô này ghi hai trạng thái tích cực còn lại trên grafcet là 2,4.

Khi hệ đang ở 2,4 nếu điều kiện 5 được thực hiện thì giai đoạn 5 tích cực (thêm dấu "."), giai đoạn 2 và 4 hết tích cực (mất dấu "."). Vậy sau điều kiện 5 tạo ô mới (nối với ô 2,4), ô này ghi trạng thái tích cực còn lại trên grafcet là 5.

Khi hệ đang ở 5 nếu điều kiện 6 được thực hiện thì giai đoạn 0 tích cực (thêm dấu "."), giai đoạn 5 hết tích cực (mất dấu "."), hệ trở về trạng thái ban đầu.

Từ giản đồ điểm, thấy không có ô nào có 2 điểm làm việc cùng tên và vẽ được cả sơ đồ, vậy đó là sơ đồ sạch.

Hình 1.14. Sơ đồ có nhánh chết

Ví dụ 2: Vẽ giản đồ điểm cho sơ đồ có nhánh chết hình 1.14

Giản đồ điểm như hình 1.18. Trong trường hợp này không thể vẽ tiếp được nữa vì để S_5 tích cực phải có cả S_2 và S_4 cùng tích cực cùng điều kiện 5, nhưng không có ô nào có 2, 4.

Ví dụ 3: Vẽ giản đồ điểm cho sơ đồ không sạch hình 1.5.

Cách tiến hành vẽ giản đồ điểm như trên, giản đổ điểm như hình 1.19. Từ giản đồ

điểm nhận thấy có nhiều ô có 2 điểm làm việc trùng nhau (cùng tên), vậy đó là sơ đồ không sạch. Ở giản đồ điểm hình 1.19 có thể tiếp tục vẽ giản đồ sẽ mở rộng.

CHƯƠNG 2: MỘT SỐ ỨNG DỤNG MẠCH LOGIC TRONG ĐIỀU KHIỂN

§2.1. Các thiết bị điều khiển

1. Các nguyên tắc điều khiển

Quá trình làm việc của động cơ điện để truyền động một máy sản xuất thường gồm các giai đoạn: khởi động, làm việc và điều chỉnh tốc độ, dừng và có thể có cả giai đoạn đảo chiều. Xét động cơ là một thiết bị động lực, quá trình làm việc và đặc biệt là quá trình khởi động, hãm thường có dòng điện lớn, tự thân động cơ điện vừa là thiết bị chấp hành nhưng cũng vừa là đối tượng điều khiến phức tạp. Về nguyên lý khống chế truyền động điện, để khởi động và hãm động cơ với dòng điện được hạn chế trong giới hạn cho phép, thường dùng ba nguyên tắc khống chế tự động sau:

- Nguyên tắc thời gian: Việc đóng cắt để thay đổi tốc độ động cơ dựa theo nguyên tắc thời gian, nghĩa là sau những khoảng thời gian xác định sẽ có tín hiệu điều khiển để thay đồi tốc độ động cơ. Phần tử cảm biến và khống chế cơ bản ở đây là role thời gian.
- Nguyên tắc tốc độ: Việc đóng cắt để thay đổi tốc độ động cơ dựa vào nguyên lý xác định tốc độ tức thời của động cơ. Phần tử cảm biến và khống chế cơ bản ở đây là role tốc đô.
- Nguyên tắc dòng điện: Biết tốc độ động cơ do mô men động cơ xác định, mà mô men lại phụ thuộc vào dòng điện chạy qua động cơ, do vậy có thể đo dòng điện để khống chế quá trình thay đổi tốc độ động cơ điện. Phần tử cảm biến và khống chế cơ bản ở đây là role dòng điện.

Mỗi nguyên tắc điều khiển đều có ưu nhược điểm riêng, tùy từng trường hợp cụ thể mà chọn các phương pháp cho phù hợp.

2. Các thiết bị điều khiển

Để điều khiển sự làm việc của các thiết bị cần phải có các thiết bị điều khiển.

Để đóng cắt không thường xuyên thường dùng áptômát. Trong áptômát hệ thống tiếp điểm có bộ phân dập hổ quang và các bộ phân tự động cắt mạch để bảo vệ quá tải và ngắn mạch. Bộ phận cắt mạch điện bằng tác động điện từ theo kiểu dòng điện cực đại. Khi dòng điện vượt quá trị số cho phép chúng sẽ cắt mạch điện để bảo vệ ngắn mạch, ngoài ra còn có role nhiệt bảo vệ quá tải.

Phần tử cơ bản của role nhiệt là bản lưỡng kim gồm hai miếng kim loại có độ dãn nở nhiệt khác nhau dán lại với nhau. Khi bản lưỡng kim khi bị đất nóng (thường là bằng dòng điện cần bảo vệ) sẽ bị biến dạng (cong), độ biến dạng tới ngưỡng thì sẽ tác động vào các bộ phận khác để cắt mạch điện.

Các role điện từ, công tắc tơ tác dụng nhờ lực hút điện từ. Cấu tạo của role điện

từ thường gồm các bộ phân chính sau: cuộn hút; mạch từ tĩnh làm bằng vật liệu sắt từ; phần động còn gọi là phần ứng và hệ thống các tiếp điểm.

TT	Tên gọi	Ký hiệu
1	Tiếp điểm cầu dao, máy cắt, áptômát	
	Thường mở	
	Thường đóng	
2	Tiếp điểm công tắctơ, khởi động từ, rơle	
	Thường mở	
	Thường mở khi mở có thời gian	
	Thường mở khi đóng có thời gian	
	Thường đóng	11
	Thường đóng khi mở có thời gian	71
	Thường đóng khi đóng có thời gian	***************************************
3	Tiếp điểm có bộ phận dập hồ quang	
4	Tiếp điểm có bộ phận trả lại vị trí ban đầu bằng tay	
5	Nút ấn thường mở	
	Nút ấn thường đóng	<u>•</u>
6	Cuộn dây rơle, công tắc tơ, khởi động từ	
7	Phần tử nhiệt của rơle nhiệt	

Mạch từ của role có dòng điện một chiều chạy qua làm bằng thép khối, còn mạch từ của role dòng điện xoay chiều làm bằng lá thép kỹ thuật điện. Để chống rung vì lực hút của nam châm điện có dạng xung trên mặt cực người ta đặt vòng ngắn mạch. Sức điện động cảm ứng trong vòng ngắn mạch sẽ tạo ra dòng điện và làm cho từ thông qua vòng ngắn mạch lệch pha với từ thông chính, nhờ đó lực hút phần ứng không bị gián đoạn, các tiếp điểm luôn được tiếp xúc tết.

Tuỳ theo nguyên lý tác động người ta chế tạo nhiều loại thiết bị điều khiến khác nhau như role dòng điện, role điện áp, role thời gian....

Hệ thống tiếp điểm của các thiết bị điều khiển có cấu tạo khác nhau và thường mạ bạc hay thiếc để đảm bảo tiếp xúc tết. Các thiết bị đóng cắt mạch động lực có dòng điện lớn, hệ thống tiếp điểm chính có bộ phận dập hồ quang, ngoài ra còn có các tiếp điểm phụ để đóng cắt cho mạch điều khiển. Tuỳ theo trạng thái tiếp điểm người ta chia ra các loại tiếp điểm khác nhau. Một số ký hiệu thường gặp như bảng 2.1.

§2.2. Các sơ đồ khống chế động cơ rôto lồng sóc

Tuỳ theo công suất và yêu cầu công nghệ mà động cơ không đồng bộ rôto lồng sóc có thể được nối trực tiếp vào lưới điện, dùng đổi nối sao-tam giác, qua điện kháng, qua biến áp tự ngẫu, ngày nay thường dùng các bộ khởi động mềm để khởi động động cơ. Xét một số sơ đồ đơn giản.

1. Mạch khống chế đơn giản

Với động cơ công suất nhỏ có thể đóng trực tiếp vào lưới điện. Nếu động cơ chỉ quay theo một chiều thì mạch đóng cắt có thể dùng cầu dao, áptômát. Với thiết bị đóng cắt này có nhược điểm là khi đang làm việc nếu mất điện, thì khi có điện trở lại động cơ sẽ tự khởi động. Để tránh điều đó dùng khởi động từ đơn để đóng cắt cho động cơ.

Xét sơ đồ đóng cắt có đảo chiều dùng khởi động từ kép như hình 2.1.

Cầu dao trên mạch động lực là cầu dao cách ly (cầu dao này chủ yếu để đóng cắt không tải, để cách ly khi sửa chữa).

Các tiếp điểm T_1 , T_2 , T_3 để đóng động cơ chạy thuận, các tiếp điểm N_1 , N_2 , N_3 để đóng động cơ chạy ngược (đảo thứ tự hai trong ba pha lưới điện).

Các tiếp điểm T_5 và N_5 là các khoá liên động về điện để khống chế các chế độ chạy thuận và ngược không thể cùng đồng thời, nếu đang chạy thuận thì T_5 mở, N_5 không thể có điện, nếu đang chạy ngược thì N_5 mở, T không thể có điện. Ngoài các liên động về điện ở khởi động từ kép còn có liên động cơ khí. Khi cuộn T đã hút thì lẫy cơ khí khoá không cho cuộn N hút nữa, khi cuộn N đã hút thì lẫy cơ khí khoá

Trong mạch dùng hai role nhiệt RN_1 và RN_2 để bảo vệ quá tải cho động cơ, khi động cơ quá tải thì role nhiệt tác động làm các tiếp điểm của nó bên mạch điều khiển mở, các cuộn hút mất điện cắt điện động cơ.

Để khởi động động cơ chạy thuận (hoặc ngược) ấn nút $K D_T$ (hoặc $K D_N$) cuộn hút T có điện, đóng các tiếp điểm $T_1...$ T_3 cấp điện cho động cơ chạy theo chiều thuận, tiếp điểm T_4 đóng lại để tự duy trì.

Để dừng động cơ ấn nút dừng D, các cuộn hút mất điện, cắt điện động cơ khỏi lưới điện, động cơ tự dừng.

Để đảo chiều động cơ trước hết phải ấn nút dùng D, các cuộn hút mất điện mới ấn nút để đảo chiều.

2. Mạch khống chê đảo chiều có giám sát tốc độ

Xét sơ đồ khống chế động cơ rôto lồng sóc quay theo hai chiều và có hãm ngược. Hãm ngược là hãm xảy ra lúc động cơ còn đang quay theo chiều này (do quán tính), nhưng lại đóng điện cho động cơ quay theo chiều ngược lại mà không chờ cho động cơ dừng hẳn rồi mới đóng điện cho động cơ đảo chiều. Hãm ngược có khả năng hãm nhanh vì có thể tạo mô men hãm lớn (do sử dụng cả hai nguồn năng lượng là động năng và điện năng tạo thành năng lượng hãm), tuy vậy dòng điện hãm sẽ lớn và trong ứng dụng cụ thể phải lưu ý hạn chế dòng điện hãm này.

Sơ đồ hình 2.2 thực hiện nhiệm vụ được nhiệm vụ khởi động, đảo chiều. Trong sơ đồ có thêm role trung gian, hai role tốc độ (gắn với động cơ), role tốc độ thuận có tiếp điểm K_T và role tốc độ ngược có tiếp điểm K_N các role này khi tốc độ cao thì các tiếp điểm role kín, tốc độ thấp thì tiếp điểm role hở.

Hình 2.2. Mạch khống chế đảo chiều có giám sát tốc độ

Khi khởi động chạy thuận ấn nút khởi động thuận KĐT, tiếp điểm KĐT $_1$ hở ngăn không cho P có điện, KĐT $_3$ hở ngăn không cho cuộn hút N có điện, tiếp điểm KĐT $_2$ kín cấp điện cho cuộn hút T, các tiếp điểm T $_1$... T $_3$ kín cấp điện cho động cơ chạy thuận, tiếp điểm T $_4$ kín để tự duy trì, tiếp điểm T $_5$ hở cấm cuộn N có điện.

Khi đang chạy thuận cần chạy ngược ấn nút khởi động ngược KĐN, tiếp điểm $K D N_1$ hở không cho P có điện, tiếp điểm $K D N_2$ hở cắt điện cuộn hút T làm mất điện chế độ chạy thuận, tiếp điểm $K D N_3$ kín cấp điện cho cuộn hút N để cấp điện cho chế độ chạy ngược, khi N hút tiếp điểm N_4 kín để tự duy trì.

Nếu muốn dừng ấn nút dừng D, cấp điện cho cuộn hút P, cuộn hút P đóng tiếp điểm P_1 để tự duy trì, hở P_2 cắt đường nguồn đang cấp cho cuộn hút T hoặc N, nhưng lập tức P_3 kín cuộn hút N hoặc T lại được cấp điện, nếu khi trước động cơ đang chạy thuận (cuộn T làm việc) tốc độ đang lớn thì K_T kín, cuộn N được cấp điện đóng điện cho chế độ chạy ngược làm động cơ dừng nhanh, khi tốc độ đã giảm thấp thì K_T mở cắt điện cuộn hút N, động cơ dừng hẳn.

Khi các role nhiệt tác động thì động cơ dừng tự do.

3. Khống chế động cơ lồng sóc kiểu đổi nối y/\(\Delta\) có đảo chiều

Với một số động cơ khi làm việc định mức nối thì khi khởi động có thể nối hình sao làm điện áp đặt vào dây cuốn giảml(do đó dòng điện khởi động giảm. Sơ đồ hình 2.3 cho phép thực hiện đổi nối Y có đảo chiều.

Hình 2.3. Khống chế động cơ lồng sóc kiểu đổi nối γ/Δ có đảo

Trong sơ đồ có khởi động từ T đóng điện cho chế độ chạy thuận, khởi động từ N đóng điện cho chế độ chạy ngược, khởi động từ S đóng điện cho chế độ khởi động hình sao, khởi động từ ỗ đóng điện cho chế độ chạy tam giác. Rơle thời gian Tg để duy trì thời gian khởi động, có hai tiếp điểm Tg_1 là tiếp điểm thường kín mở chậm thời gian Δt_1 , Tg_2 là tiếp điểm thường mở đóng chậm thời gian Δt_2 với $\Delta t_1 > \Delta t_2$.

Khi cần khởi động thuận ấn nút khởi động thuận KĐT, tiếp điểm KĐT $_2$ ngăn không cho cuộn N có điện, tiếp điểm KĐT $_1$ kín đóng điện cho cuộn thuận T, T có điện đóng các tiếp điểm $T_1...T_3$ đưa điện áp thuận vào động cơ, T_4 đóng để tự duy trì, T_5 mở ngăn không cho N có điện, T_6 đóng cấp điện cho role thời gian Tg, đồng thời cấp điện ngay cho cuộn hút S, động cơ khởi động kiểu nối sao, tiếp điểm S_5 mở chưa cho cuộn Δ có điện. Khi Tg có điện, sau thời gian ngắn Δt_2 thì Tg $_2$ đóng chuẩn bị cấp điện cho cuộn hút Δ . Sau khoảng thời gian duy trì Δt_1 tiếp điểm T_{g_1} mở ra cuộn hút S mất điện cắt chế độ khởi động sao của động cơ, tiếp điểm S_5 kín cấp điện cho cuộn hút Δ , đưa động cơ vào làm việc ở chế độ nối tam giác và tự duy trì bằng tiếp điểm Δ_4

Khi cần đảo chiều (nếu đang chạy thuận) ấn nút khởi động ngược KĐN, T mất điện làm T_6 mở quá trình lại khởi động theo chế độ nối sao như trên với cuộn hút N, các tiếp điểm N_1 ... N_3 đổi thứ tự hai trong ba pha (đổi pha A và B cho nhau) làm chiều quay đổi chiều.

§2.3. Các sơ đồ khống chế động cơ không đồng bộ rôto dây quấn

Các biện pháp khởi động và thay đổi tốc độ như động cơ rôto lồng sóc cũng có thể áp dụng cho động cơ rôto dây quấn. Nhưng như vậy không tận dụng được ưu điểm của động cơ rôto dây quấn là khả năng thay đổi dòng khởi động cũng như thay đổi tốc độ bằng cách thay đổi điện trở phụ mắc vào mạch rôto. Do đó, với động cơ rôto dây quấn để giảm dòng khi khởi động cũng như để thay đổi tốc độ động cơ người ta dùng phương pháp thay đổi điện trở phụ mắc vào mạch rôto.

1. Khởi động động cơ rôto dây quấn theo nguyên tắc thời gian

Cách này thường dùng cho hệ thống có công suất trung bình và lớn. Sơ đồ khống chế như hình 2.4.

Trong sơ đồ có 2 role nhiệt RN_1 và RN_2 để bảo vệ quá tải cho động cơ, hai role thời gian 1Tg và 2Tg với hai tiếp điểm thường mở đóng chậm để duy trì thời gian loại điện trở phụ ở mạch rôto.

Để khởi động ấn nút khởi động KĐ cấp điện cho cuộn hút K, các tiếp điểm K_3 , K_2 , K_3 đóng cấp điện cho động cơ, động cơ khởi động với hai cấp điện trở phụ, tiếp điểm K_4 đồng để tự duy trì, tiếp điểm K_5 đồng để cấp điện cho các role thời gian. Sau khoảng thời gian chỉnh định tiếp điểm thường mở đóng chậm 1Tg đóng lại cấp điện cho 1K để loại điện trở phụ R_2 ra khỏi mạch rôto, tiếp điểm $1K_3$ đóng để cấp điện cho role thời gian 2Tg. Sau thời gian chỉnh định tiếp điểm thường mở đóng chậm 2Tg đóng lại cấp điện cho 2K loại nốt điện trở R_1 khỏi mạch khởi động, động cơ làm việc trên đặc tính cơ tự nhiên. Tiếp điểm $2K_4$ để tự duy trì, $2K_5$ cắt điện các role thời gian.

Khi muốn dừng ấn nút dừng D, động cơ được cắt khỏi lưới và dừng tự do.

Hình 2.4. Khởi động động cơ rôto dây quấn theo nguyên tắc thời gian

2. Thay đổi tốc độ động cơ rôto dây quấn bằng thay đổi điện trở phụ

Trong công nghiệp có nhiều máy sản xuất dùng truyền động động cơ rôto dây quấn để điều chỉnh tốc độ như cầu trục, máy cán.... và ở đây thường dùng thêm khâu hãm động năng để dừng máy. Hãm động năng là cách hãm sử dụng động năng của động cơ đang quay để tạo thành năng lượng hãm. Với động cơ rôto dây quấn, muốn hãm động năng thì khi đã cắt điện phải nối các cuộn dây stato vào điện áp một chiều để tạo thành từ thông kích thích cho động cơ tạo mô men hãm. Sơ đồ nguyên lý của hệ thống như hình 2.5.

Động cơ rôto dây quấn có thể quay theo hai chiều, theo chiều thuận nếu 1S, 2S đóng và theo chiều ngược nếu 1S, 3S đóng. Công tắc tơ H để đóng nguồn một chiều lúc hãm động năng, công tắc tơ 1K, 2K để cắt điện trở phụ trong mạch rôto làm thay đổi tốc độ động cơ khi làm việc. Khi hãm động năng toàn bộ điện trở phụ r_1 và r_2 được đưa vào mạch rôto để hạn chế dòng điện hãm, còn điện trở phụ R trong mạch một chiều để đặt giá trị mômen hãm.

Hình 2.5. Thay đổi tốc độ động cơ rôto dây quấn

Trong hệ thống có bộ khống chế chỉ huy kiểu chuyển mạch cơ khí KC. Bộ KC có nguyên lý cấu tạo là một trụ tròn cơ khí, có thể quay hai chiều, trên trục có gắn các tiếp điểm động và kết hợp với các tiếp điểm tĩnh tạo thành các cặp tiếp điểm được đóng cắt tuỳ thuộc vào vị trí quay của trụ. Đồ thị đóng mở tiếp điểm của bộ khống chế

KC được thể hiện trên hình 2.5c. Ví dụ, ở vị trí 0 của bộ khống chế chỉ có tiếp điểm 1-2 đóng, tất cả các vị trí còn lại của các tiếp điểm đều cắt hoặc cặp tiếp điểm 9-1 0 sẽ đóng ở các vị trí 2, 3 bên trái và 2, 3 bên phải.

Hoạt động của bộ khống chế như sau: khi đã đóng điện cấp nguồn cho hệ thống. Ban đầu bộ khống chế được đặt ở vị trí 0 công tắc tơ K có điện, các tiếp điểm K ở mạch khống chế đóng lại, chuẩn bị cho hệ thống làm việc. Nếu muốn động cơ quay theo chiều thuận thì quay bộ KC về phía trái, nếu muốn động cơ quay ngược thì quay bộ KC về phía phải. Giả thiết quay bộ KC về vị trí 2 phía trái, lúc này các tiếp điểm 3-4, 5-6, 9-10 của bộ KC kín, các cuộn dây công tắc tơ 1S, 2S, 1K và các role thời gian 1Tg, 2Tg có điện, các tiếp điểm 1S, 2S ở mạch động lực đóng lại, cuộn dây stato được đóng vào nguồn 3 pha, tiếp điểm 1K trong mạch rôto đóng lại cắt phần điện trở phụ r₂ ra, động cơ được khởi động và làm việc với điện trở phụ r₁ trong mạch rôto, tiếp điểm 1Tg mở ra, 2Tg đóng lai chuẩn bi cho quá trình hãm đông nặng khi dừng. Nếu muốn dừng động cơ thì quay bộ KC về vị trí 0, các công tắc tơ 1S, 2S, 1K và các role thời gian 1Tg, 2Tg mất điện, đông cơ được cắt khỏi nguồn điện 3 pha với toàn bộ điện trở r₁, r₂ được đưa vào rôto, đồng thời tiếp điểm thường kín đóng chậm 1Tg đóng lại (đóng chậm một thời gian ngắn đảm bảo hệ đã được cắt khỏi lưới điện), tiếp điểm thường mở mở chậm 2Tg chưa mở ($\Delta t_2 > \Delta t_1$) công tắc tơ H có điện tiếp điểm H_1 , H_2 đóng lại cấp nguồn một chiều cho stato động cơ và động cơ được hãm động năng. Sau thời gian chỉnh định $\Delta t2$ tiếp điểm thường mở mở chậm mở ra tương ứng với tốc độ động cơ đã đủ nhỏ, cuộn dây H mất điện, nguồn một chiều được cắt khỏi cuộn dây stato, kết thúc quá trình hãm động năng. Trong thực tế, người ta yêu cầu người vận hành khi quay bộ khống chế KC qua mỗi vi trí phải dừng lai một thời gian ngắn để hệ thống làm việc an toàn cả về mặt điện và cơ.

§2.4. Khống chế động cơ điện một chiều

Với động cơ điện một chiều khi khởi động cần thiết phải giảm dòng khởi động. Để giảm dòng khi khởi động có thể đưa thêm điện trở phụ vào mạch phần ứng. Ngày nay nhờ kỹ thuật điện tử và tin học phát triển người ta đã chế tạo các bộ biến đổi một chiều bằng bán dẫn công suất lớn làm nguồn trực tiếp cho động cơ và điều khiển các bộ biến đổi này bằng mạch số logic khả trình. Các bộ biến đổi này nối trực tiếp vào động cơ, việc khống chế khởi động, hãm và điều chỉnh tốc độ đều thực hiện bằng các mạch số khả trình rất thuận tiện và linh hoạt. Tuy nhiên, một số mạch đơn giản vẫn có thể dùng sơ đổ các mạch logic như hình 2.6.

Để khởi động động cơ ấn nút khởi động $K\bar{D}$ lúc đó công tắc tơ K có điện, các tiếp điểm thường mở K, đóng lại để cấp điện cho động cơ với 2 điện trở phụ, K_2 đóng lại để tự duy trì, K_3 đóng lại, K_4 mở ra làm role thời gian 3Tg mất diện, sau thời gian chỉnh định tiếp điểm thường đóng đóng chậm 3Tg, đóng lại làm công tắc tơ 1K có điện, đóng tiếp điểm $1K_1$ loại điện trở phụ r_2 khỏi mạch động cơ và làm role thời gian

2Tg mất điện, sau thời gian chỉnh định tiếp điểm thường đóng chậm $2Tg_1$ đóng lại cấp điện cho công tắc tơ 2K đóng tiếp điểm $2K_2$ loại r_1 ra khỏi mạch động lực quá trình khởi động kết thúc.

Hình 2.6. Khống chế động cơ điện một chiều

Để dừng động cơ ấn nút dừng D lúc đó công tắc tơ K mất điện, tiếp điểm K_1 ở mạch động lực mở ra cắt phần ứng động cơ khỏi nguồn điện. Đồng thời tiếp điểm K_2 K_3 mở ra làm role thời gian 1 Tg mất điện bắt đầu tính thời gian hãm, K_4 đóng lại làm công tắc tơ H có điện đóng tiếp điểm H_1 đưa điện trở hãm R_h vào để thực hiện quá trình hãm. Sau thời gian chỉnh định tiếp điểm thường mở mở chậm 1 Tg $_1$ mở ra, công tắc tơ H mất điện kết thúc quá trình hãm, hệ thống khống chế và mạch động lực trở về trạng thái ban đầu chuẩn bị cho lần khởi động sau.

PHẦN 2: ĐIỀU KHIỂN LOGIC CÓ LẬP TRÌNH (PLC)

CHƯƠNG 3: LÝ LUẬN CHUNG VỀ ĐIỀU KHIỂN LOGIC LẬP TRÌNH PLC

§3.1. Mở đầu

Sự phát triển của kỹ thuật điều khiển tự động hiện đại và công nghệ điều khiển logic khả trình dựa trên cơ sở phát triển của tin học mà cụ thể là sự phát triển của kỹ thuật máy tính.

Kỹ thuật điều khiển logic khả trình PLC (Programmable Logic Control) được phát triển từ những năm 1968 -1970. Trong giai đoạn đầu các thiết bị khả trình yêu cầu người sử dụng phải có kỹ thuật điện tử, phải có trình độ cao. Ngày nay các thiết bị PLC đã phát triển mạnh mẽ và có mức độ phổ cập cao.

Thiết bị điều khiển logic lập trình được PLC là dạng thiết bị điều khiển đặc biệt dựa trên bộ vi xử lý, sử dụng bộ nhớ lập trình được để lưu trữ các lệnh và thực hiện các chức năng, chẳng hạn cho phép tính logic, lập chuỗi, định giờ, đếm, và các thuật toán để điều khiển máy và các quá trình công nghệ. PLC được thiết kế cho các kỹ sư, không yêu cầu cao về kiến thức máy tính và ngôn ngữ máy tính, có thể vận hành. Chúng được thiết kế cho các nhà kỹ thuật có thể cài đặt hoặc thay đổi chương trình. Vì vậy, các nhà thiết kế PLC phải lập trình sẵn sao cho chương trình điều khiển có thể nhập bằng cách sử dụng ngôn ngữ đơn giản (ngôn ngữ điều khiển). Thuật ngữ logic được sử dụng vì việc lập trình chủ yếu liên quan đến các hoạt động logic, ví dụ nếu có các điều kiện A và B thì C làm việc... Người vận hành nhập chương trình (chuỗi lệnh) vào bộ nhớ PLC. Thiết bị điều khiển PLC sẽ giám sát các tín hiệu vào và các tín hiệu ra theo chương trình này và thực hiện các quy tắc điều khiển đã được lập trình.

Các PLC tương tự máy tính, nhưng máy tính được tối ưu hoá cho các tác vụ tính toán và hiển thị, còn PLC được chuyên biệt cho các tác vụ điều khiển và môi trường công nghiệp. Vì vậy các PLC:

- + Được thiết kế bền để chịu được rung động, nhiệt, ẩm và tiếng ồn,
- + Có sẵn giao diện cho các thiết bị vào ra,
- + Được lập trình dễ dàng với ngôn ngữ điều khiển dễ hiểu, chủ yếu giải quyết các phép toán logic và chuyển mạch.

Về cơ bản chức năng của bộ điều khiển logic PLC cũng giống như chức năng của bộ điều khiển thiết kế trên cơ sở các role công tắc tơ hoặc trên cơ sở các khối điện tử đó là:

- + Thu thập các tín hiệu vào và các tín hiệu phản hồi từ các cảm biến,
- + Liên kết, ghép nối các tín hiệu theo yêu cầu điều khiển và thực hiện đóng mở

các mạch phù hợp với công nghệ,

- + Tính toán và soạn thảo các lệnh điều khiển trên cơ sở so sánh các thông tin thu thập được,
 - + Phân phát các lệnh điều khiển đến các địa chỉ thích hợp.

Riêng đối với máy công cụ và người máy công nghiệp thì bộ PLC có thể liên kết với bộ điều khiển số NC hoặc CNC hình thành bộ điều khiển thích nghi. Trong hệ thống của các trung tâm gia công, mọi quy trình công nghệ đều được bộ PLC điều khiển tập trung.

§3.2. Các thành phần cơ bản của một bộ PLC

1. Cấu hình phần cứng

Bộ PLC thông dụng có năm bộ phận cơ bản gồm: bộ xử lý, bộ nhớ, bộ nguồn, giao diện vào/ra và thiết bị lập trình. Sơ đồ hệ thống như hình 3.1.

1.1 Bộ xử lý

Bộ xử lý còn gọi là bộ xử lý trung tâm (CPU), là linh kiện chứa bộ vi xử lý. Bộ xử lý biên dịch các tín hiệu vào và thực hiện các hoạt động điều khiển theo chương trình được lưu trong bộ nhớ của CPU, truyền các quyết định dưới dạng tín hiệu hoạt động đến các thiết bị ra.

Nguyên lý làm việc của bộ xử lý tiến hành theo từng bước tuần tự, đầu tiên các thông tin lưu trữ trong bộ nhớ chương trình được gọi lên tuần tự và được kiểm soát bởi bộ đếm chương trình. Bộ xử lý liên kết các tín hiệu và đưa kết quả điều khiển tới đầu ra. Chu kỳ thời gian này gọi là thời gian quét (scan). Thời gian một vòng quét phụ thuộc vào dung lượng của bộ nhớ, vào tốc độ của CPU. Nói chung chu kỳ một vòng quét như hình 3.2.

Sự thao tác tuần tự của chương trình dẫn dấn một thời gian trễ trong khi bộ đếm của chương trình đi qua một chu trình đầy đủ, sau đó bắt đầu lại từ đầu.

Hình 3.1. Sơ đồ nguyên lý bộ PLC

4. Chuyển dữ liệu từ bộ đệm ảo ra TB ngoại vi vào bộ đệm ảo
3. Truyền thông và kiểm tra lỗi
2. Thực hiện chương trình

Hình 3.2. Vòng quét

Để đánh giá thời gian trễ người ta đo thời gian quét của một chương trình dài 1K byte và coi đó là chỉ tiêu để so sánh các PLC. Với nhiều loại PLC thời gian trễ này có thể tới 20ms hoặc hơn. Nếu thời gian trễ gây trở ngại cho quá trình điều khiển thì phải dùng các biện pháp đặc biệt, chẳng hạn như lặp lại những lần gọi quan trọng trong thời gian một lần quét, hoặc là điều khiển các thông tin chuyển giao để bỏ bớt đi những lần gọi ít quan trọng khi thời gian quét dài tới mức không thể chấp nhận được. Nếu các giải pháp trên không thoả mãn thì phải dùng PLC có thời gian quét ngắn hơn.

1. 2. Bộ nguồn

Bộ nguồn có nhiệm vụ chuyển đổi điện áp AC thành điện áp thấp cho bộ vi xử lý (thường là 5V) và cho các mạch điện đầu ra hoặc các module còn lại (thường là 24V).

1.3. Thiết bị lập trình

Thiết bị lập trình được sử dụng để lập các chương trình điều khiển cần thiết sau đó được chuyển cho PLC. Thiết bị lập trình có thể là thiết bị lập trình chuyên dụng, có thể là thiết bị lập trình cầm tay gọn nhẹ, có thể là phần mềm được cài đặt trên máy tính cá nhân.

1.4. Bộ nhớ

Bộ nhớ là nơi lưu giữ chương trình sử dụng cho các hoạt động điều khiển. Các

dạng bộ nhớ có thể là RAM, ROM, EPROM. Người ta luôn chế tạo nguồn dự phòng cho RAM để duy trì chương trình trong trường hợp mất điện nguồn, thời gian duy trì tuỳ thuộc vào từng PLC cụ thể. Bộ nhớ cũng có thể được chế tạo thành module cho phép dễ dàng thích nghi với các chức năng điều khiển có kích cỡ khác nhau, khi cần mở rộng có thể cắm thêm.

1.5. Giao diện vào/ra

Giao diện vào là nơi bộ xử lý nhận thông tin từ các thiết bị ngoại vi và truyền thông tin đến các thiết bị bên ngoài. Tín hiệu vào có thể từ các công tắc, các bộ cảm biến nhiệt độ, các tế bào quang điện.... Tín hiệu ra có thể cung cấp cho các cuộn dây công tắc tơ, các role, các van điện từ, các động cơ nhỏ... Tín hiệu vào/ra có thể là tín hiệu rời rạc, tín hiệu liên tục, tín hiệu logic... Các tín hiệu vào/ra có thể thể hiện như hình 3.3.

Mỗi điểm vào ra có một địa chỉ duy nhất được PLC sử dụng.

Hình 3.3: Giao diện vào/ra

Các kênh vào/ra đã có các chức năng cách ly và điều hoà tín hiệu sao cho các bộ cảm biến và các bộ tác động có thể nối trực tiếp với chúng mà không cần thêm mạch điện khác.

Tín hiệu vào thường được ghép cách điện (cách ly) nhờ linh kiện quang như hình 3.4. Dải tín hiệu nhận vào cho các PLC cỡ lớn có thể là 5v, 24v, 110v, 220v. Các PLC cỡ nhỏ thường chỉ nhập tín hiệu 24v.

Hình 3.4. Cách ly tín hiệu vào

Tín hiệu ra cũng được ghép cách ly, có thể cách ly kiểu role như hình 3.5a, cách

ly kiểu quang như hình 3.5b. Tín hiệu ra có thể là tín hiệu chuyển mạch 24v, 100mA; 110v, 1A một chiều, thậm chí 240v, 1A xoay chiều tuỳ loại PLC. Tuy nhiên, với PLC cỡ lớn dải tín hiệu ra có thể thay đổi bằng cách lựa chọn các module ra thích hợp.

Hình 3.5. Cách ly tín hiệu ra

2. Cấu tạo chung của PLC

Các PLC có hai kiểu cấu tạo cơ bản là: kiểu hộp đơn và kiểu modulle nối ghép.

Kiểu hộp đơn thường dùng cho các PLC cỡ nhỏ và được cung cấp dưới dạng nguyên chiếc hoàn chỉnh gồm bộ nguồn, bộ xử lý, bộ nhớ và các giao diện vào/ra. Kiểu hộp đơn thường vẫn có khả năng ghép nối được với các module ngoài để mở rộng khả năng của PLC. Kiểu hộp đơn như hình 3.6.

Kiểu module ghép nối gồm các module riêng cho mỗi chức năng như module nguồn, module xử lý trung tâm, module ghép nối, module vào/ra, module mờ, module PID... các module được lắp trên các rãnh và dược kết nối với nhau. Kiểu cấu tạo này có thể được sử dụng cho các thiết bị điều khiển lập trình với mọi kích cỡ, có nhiều bộ chức năng khác nhau được gộp vào các module riêng biệt. Việc sử dụng các module tuỳ thuộc công dụng cụ thể. Kết cấu này khá linh hoạt, cho phép mở rộng số lượng đầu nối vào/ra bằng cách bổ sung các module vào/ra hoặc tăng cường bộ nhớ bằng cách tăng thêm các đơn vị nhớ.

§3.3. Các vấn đề về lập trình

1 Khái niệm chung

PLC có thể sử dụng một cách kinh tế hay không phụ thuộc rất lớn vào thiết bị lập trình. Khi trang bị một bộ PLC thì đồng thời phải trang bị một thiết bị lập trình của cùng một hãng chế tạo. Tuy nhiên, ngày nay người ta có thể lập trình bằng phần mềm trên máy tính sau đó chuyển sang PLC bằng mạch ghép nối riêng.

Sự khác nhau chính giữa bộ điều khiển khả trình PLC và công nghệ role hoặc bán dẫn là ở chỗ kỹ thuật nhập chương trình vào bộ điều khiển như thế nào. Trong điều khiển role, bộ điều khiển được chuyển đổi một cách cơ học nhờ đấu nối dây "điều khiển cứng", còn với PLC thì việc lập trình được thực hiện thông qua một thiết bị lập trình và một ngoại vi chương trình. Có thể chỉ ra quy trình lập trình theo giản đổ hình 3.8.

Để lập trình người ta có thể sử dụng một trong các mô hình sau đây:

Hình 3.8. Quy trình lập trình

- + Mô hình dãy.
- + Mô hình các chức năng.
- + Mô hình biểu đồ nối dây.
- + Mô hình logic.

Việc lựa chọn mô hình nào trong các mô hình trên cho thích hợp là tuỳ thuộc vào loại PLC và điều quan trọng là chọn được loại PLC nào cho phép giao lưu tiện lợi và tránh được chi phí không cần thiết. Đa số các thiết bị PLC lưu hành trên thị trường hiện nay là dùng mô hình dãy hoặc biểu đồ nối dây. Những PLC hiện đại cho phép người dùng chuyển từ một phương pháp nhập này sang một phương pháp nhập khác ngay trong quá trình nhập.

Trong thực tế khi sử dụng biểu đồ nối dây thì việc lập trình có vẻ đơn giản hơn vì nó có cách thể hiện gần giống như mạch role công tắc tơ. Tuy nhiên, với những người đã có sẵn những hiểu biết cơ bản về ngôn ngữ lập trình thì lại cho rằng dùng mô hình dãy dễ dàng hơn, đồng thời với các mạch cỡ lớn thì dùng mô hình dãy có nhiều ưu điểm hơn.

Mỗi nhà chế tạo đều có những thiết kế và phương thức thao tác thiết bị lập trình riêng, vì thế khi có một loại PLC mới thì phải có thời gian và cần phải được huấn luyện để làm quen với nó.

2. Các phương pháp lập trình

Từ các cách mô tả hệ tự động các nhà chế tạo PLC đã soạn thảo ra các phương pháp lập trình khác nhau. Các phương pháp lập trình đều được thiết kế đơn giản, gần với các cách mô tả đã được biết đến. Từ đó nói chung có ba phương pháp lập trình cơ bản là phương pháp bảng lệnh STL, phương pháp biểu đồ bậc thang LAD và phương pháp lưu đồ điều khiển CSF. Trong đó, hai phương pháp bảng lệnh STL và biểu đồ bậc thang LAD được dùng phổ biến hơn cả.

2.1. Một số ký hiệu chung

Cấu trúc lệnh

Một lệnh thường có ba phần chính và thường viết như hình 3.9 (có loại PLC có cách viết hơi khác):

- 1. Địa chỉ tương đối của lệnh (thường khi tập trình thiết bị lập trình tự đưa ra).
- 2. Phần lệnh là nội dung thao tác mà PLC phải tác động lên đối tượng của lệnh, trong lập trình LAD thì phần này tự thể hiện trên thanh LAD, không được ghi ra.
- 3. Đối tượng lệnh, là phần mà lệnh tác động theo yêu cầu điều khiển, trong đối tương lệnh lại có hai phần:
- 4. Loại đối tượng, có trường hợp sau loại đối tượng có dấu ":", có các loại đối tượng như tín hiệu vào, tín hiệu ra, cờ (role nội)...
- 5. Tham số của đối tượng lệnh để xác định cụ thể đối tượng, cách ghi tham số cũng phụ thuộc từng loại PLC khác nhau.

Ký hiệu thường có trong mỗi lệnh:

Các ký hiệu trong lệnh, quy ước cách viết với mỗi quốc gia có khác nhau, thậm chí mỗi hãng, mỗi thời chế tạo của hãng có thể có các ký hiệu riêng. Tuy nhiên, cách ghi chung nhất cho một số quốc gia là:

- Mỹ:
- + Ký hiệu đầu vào là I (In), đầu ra là Q (out tránh nhằm O là không).
- + Các lệnh viết gần đủ tiếng Anh ví dụ ra là out.
- + Lệnh ra (gán) là out.
- + Tham số của lệnh dùng cơ số 10.

- + Phía trước đối tượng lệnh có dấu %.
- + Giữa các số của tham số không có dấu chấm.

Ví dụ: AND% I09; out%Q10.

- Nhât:
- + Đầu vào ký hiệu là X, đầu ra ký hiệu là Y.
- + Các lệnh hầu như được viết tắt từ tiếng Anh.
- + Lệnh ra (gán) là out.
- + Tham số của lệnh dùng cơ số 8.

Vi du: A X 10; out Y 07

- Tây đức
- + Đầu vào ký hiệu là I, đầu ra ký hiệu là Q.
- + Các lệnh hầu như được viết tắt từ tiếng Anh.
- + Lệnh ra (gán) là =
- + Tham số của lệnh dùng cơ số 8.
- + Giữa các số của tham số có dấu chấm để phân biệt khe và kênh.

Vi du: A I 1.0; = Q 0.7.

Ngoài các ký hiệu khá chung như trên thì mỗi hãng còn có các ký hiệu riêng, có bộ lệnh riêng. Ngay cùng một hãng ở các thời chế tạo khác nhau cũng có đặc điểm khác nhau với bộ lệnh khác nhau. Do đó, khi sử dụng PLC thì mỗi loại PLC phải tìm hiểu cụ thể hướng dẫn sử dụng của nó.

Một số ký hiệu khác nhau với các lệnh cơ bản được thể hiện rõ trên bảng 3.1.

2.2. Phương pháp hình thang LAD (Ladder Logic)

Phương pháp hình thang có dạng của biểu đồ nút bấm. Các phần tử cơ bản của phương pháp hình thang là:

+ Tiếp điểm: thường mở

Thương kín + Cuộn dây (mô tả các role)

+ Hộp (mô tả các hàm khác nhau, các lệnh đặc biệt)

Bång 3.1

IEC 1131-3	Misubishi	OMRON	Siemens	Telemec- anique	Spreher và Schuh	Chú thích
LD	LD	LD	A	L	STR	Khởi đầu với tiếp điểm thường mở
LDN	LDI	LD NOT	AN	LN	STR NOT	Khởi đầu với tiếp điểm thường kín
AND	AND	AND	A	A	AND	Phần tử nối tiếp có tiếp điểm mở

IEC 1131-3	Misubishi	OMRON	Siemens	Telemec- anique	Spreher và Schuh	Chú thích
ANDN	ANI	AND NOT	AN	AN	AND NOT	Phần tử nối tiếp có tiếp điểm kín
О	OR	OR	О	О	OR	Phần tử song song có tiêu điểm mở
ORN	ORI	OR NOT	ON	ON	OR NOT	Phần tử song song có tiếp điểm kín
ST	OUT	OUT	=	=	OUT	Lấy tín hiệu ra

Mạng LAD là đường nối các phần tử thành một mạch hoàn chỉnh, theo thứ tự từ trái sang phải, từ trên xuống dưới. Quá trình quét của PLC cũng theo thứ tự này. Mỗi một nấc thang xác định một số hoạt động của quá trình điều khiển. Một sơ đồ LAD có nhiều nấc thang. Trên mỗi phần tử của biếu đồ hình thang LAD có các tham số xác định tuỳ thuộc vào ký hiệu của từng hãng sản xuất PLC.

Ví dụ: Một nắc của phương pháp hình thang như hình 3.10.

Hình 3.10. Phương pháp lập trình thang LAD

Hình 3.10a là kiểu ký hiệu của Misubishi (Nhật)

Hình 3.10b là kiểu ký hiệu của Siemens (Tây đức)

Hình 3.10c là ký hiệu của Allen Bradley

2.3. Phương pháp liệt kê 1ệnh STL (Statement List)

Phương pháp STL gần với biểu đồ logic. Ở phương pháp này các lệnh được liệt kê thứ tự. Tuy nhiên, để phân biệt các đoạn chương trình người ta thường dùng các mã nhớ, mỗi mã nhớ tương ứng với một nấc thang của biểu đồ hình thang. Để khởi đầu mỗi đoạn (tương ứng như khởi đầu một nấc thang) khi lập luôn sử dụng các lệnh khởi đầu như LD, L, A, O... (bảng 3.l). Kết thúc mỗi đoạn thường là lệnh gán cho đầu ra, đầu ra có thể là đầu ra cho thiết bị ngoại vi có thể là đầu ra cho các role nội.

Ví du: Môt đoan STL của PLC S5 (Siemens)

```
I 0.0
               I 0.1
               Q 1.0
                                                  Hình 3.11
Môt đoan STL của PLC S7-200 (Siemens)
       0 LD I 0.1
                                               I 0.1
       1 A I 0.2
       3 = 0.1.0
                                                     Hình 3.12
Một đoạn STL của PLC MELSEC Fl (Nhật)
       0 LD X 400
                                                      X404
                                               X400
       1 O X 403
                                              X403
       2 ANI X 404
       3 OUT Y 433
                                                     Hình 3.13
Một đoạn STL của CPM1A (OMRON)
       0 LD
              000.01
                                          000.01 000.00 000.03
       1 OR
              010.00
       2 AND NOT 000.00
                                          010.00
       3 AND
                 000.03
                                                   Hình 3.14
       4 OUT 010.00
```

2.4. Phương pháp lưu đồ điều khiển CSF (Control System Flow)

Phương pháp lưu đồ điều khiển CSF trình bày các phép toán logic với các ký hiệu đồ hoạ đã được tiêu chuẩn hoá như hình 3.15. Phương pháp lưu đồ điều khiển thích hợp với người đã quen với phép tính điều khiển bằng đại số Boo1e.

Hình 3.15. Phương pháp lập trình CSF

3. Các role nội

Trong các loại PLC có nhiều thuật ngữ dùng để chỉ các linh kiện loại này, ví dụ: role phụ, bộ vạch dấu, cờ hiệu, lưu trữ bít, bít nhớ... Đây là linh kiện cung cấp các chức năng đặc biệt gắn liền với PLC và được dùng phổ biết trong lập trình. Role nội này tương tự như các role trung gian trong sơ đồ role công tắc tơ. Role nội cũng được coi là các đầu ra để nhận các lệnh gán đầu ra, nhưng thực chất đầu ra này không đưa ra ngoài (không phải thiết bị ngoại vi) mà chỉ nằm nội tại trong PLC. PLC nhỏ có thể có tới hàng trăm role nội, các role nội đều được nuôi bằng nguồn dự phòng khi mất điện.

Một số ký hiệu các role nội:

Hãng	Tên gọi	Ký hiệu	Ví dụ
Misubishi	Rơle phụ hoặc bộ đánh dấu	M	M100; M101
Siemens	Cờ hiệu	F	F0.0; F0.1
Sprecher và Schuh	Cuốn dây	С	C001; C002
TelemecaniQue	Bít	В	B0; B1
Toshiba	Role nội	R	R000; R001
Bradley	Lưu trữ bít	В	B3/001 ; B3/002

Vi dụ: Sử dụng role nội (của Misibishi)

- 0 LD X 400
- 1 OR X 403
- 2 ANI X 404
- 3 OUT M 100
- 4 LD M 100
- 5 AND X 401
- 6 OUTY 433

4. Các role thời gian

Trong các hệ thống điều khiển luôn luôn phải sử dụng role thời gian để duy trì thời gian cho quá trình điều khiển. Trong các PLC người ta cũng gắn các role thời gian vào trong đó. Tuy nhiên, thời gian ở đây được xác định nhờ đồng hồ trong CPU. Các role thời gian cũng có các tên gọi khác nhau nhưng thường gọi nhất là bộ thời gian (Time).

Các nhà sản xuất PLC không thống nhất về cách lập trình cho các role thời gian này. Mỗi loại PLC (thậm chí trong cùng hãng) cũng có các ký hiệu và cách lập trình rất khác nhau cho role thời gian. Số lượng role thời gian trong mỗi PLC cũng rất khác nhau.

Điểm chung nhất đối với các role thời gian là các hãng đều coi role thời gian là các đầu ra nội, do đó role thời gian là đầu ra của nấc thang, hay của một đoạn chương trình.

5. Các bộ đếm

Bộ đếm cho phép đếm tần suất xuất hiện tín hiệu vào. Bộ đếm có thể được dùng trong trường hợp đếm các sản phẩm di chuyển trên băng chuyền và số sản phẩm xác định cần chuyển vào thùng. Bộ đếm có thể đếm số vòng quay của trục, hoặc số người đi qua cửa. Các bộ đếm này được cài đặt sẵn trong PLC.

Có hai loại bộ đếm cơ bản là bộ đếm tiến và bộ đếm lùi. Các nhà sản xuất PLC cũng sử dụng các bộ đếm theo những cách khác nhau. Tuy nhiên, cũng như các bộ thời gian, bộ đếm cũng được coi là đầu ra của PLC và đây cũng là đầu ra nội, để xuất tín

hiệu ra ngoài phải qua đầu ra ngoại vi (có chân nối ra ngoài PLC).

§3.4. Đánh giá ưu nhược điểm của PLC

Trước đây, bộ PLC thường rất đắt, khả năng hoạt động bị hạn chế và quy trình lập trình phức tạp. Vì những lý do đó mà PLC chỉ được dùng trong những nhà máy và các thiết bị đặc biệt. Ngày nay do giảm giá liên tục, kèm theo tăng khả năng của PLC dẫn đến kết quả là ngày càng được áp dụng rộng rãi cho các thiết bị máy móc. Các bộ PLC đơn khối với 24 kênh đầu vào và 16 kênh đầu ra thích hợp với các máy tiêu chuẩn đơn, các trang thiết bị liên hợp. Còn các bộ PLC với nhiều khả năng ứng dụng và lựa chọn được dùng cho những nhiệm vụ phức tạp hơn.

Có thể kể ra các ưu điểm của PLC như sau:

- + Chuẩn bị vào hoạt động nhanh: Thiết kế kiểu module cho phép thích nghi nhanh với mọi chức năng điều khiển. Khi đã được lắp ghép thì PLC sẵn sàng làm việc ngay. Ngoài ra nó còn được sử dụng lại cho các ứng dụng khác dễ dàng.
- + Độ tin cậy cao: Các linh kiện điện tử có tuổi thọ dài hơn các thiết bị cơ-điện. Độ tin cậy của PLC ngày càng tăng, bảo dưỡng định kỳ thường không cần thiết còn với mạch role công tắc tơ thì việc bảo dưỡng định kỳ là cần thiết.
- + Dễ dàng thay đổi chương trình: Những thay đổi chương trình được tiến hành đơn giản. Để sửa đổi hệ thống điều khiển và các quy tắc điều khiển đang được sử dụng, người vận hành chỉ cần nhập tập lệnh khác, gần như không cần mắc nối lại dây (tuy nhiên, có thể vẫn phải nối lại nếu cần thiết). Nhờ đó hệ thống rất linh hoạt và hiệu quả.
- + Đánh giá nhu cầu đơn giản: Khi biết các đầu vào và các đầu ra thì có thể đánh giá được kích cỡ yêu cầu của bộ nhớ hay độ dài chương trình. Do đó, có thể dễ dàng và nhanh chóng lựa chọn PLC phù hợp với các yêu cầu công nghệ đặt ra.
- + Khả năng tái tạo: Nếu dùng nhiều PLC với quy cách kỹ thuật giống nhau thì chi phí lao động sẽ giảm thấp hơn nhiều so với bộ điều khiển role, đó là do giảm phần lớn lao động lắp ráp.
- + Tiết kiệm không gian: PLC đòi hỏi ít không gian hơn so với bộ điều khiển role tương đương.
- + Có tính chất nhiều chức năng: PLC có ưu điểm chính là có thể sử dụng cùng một thiết bị điều khiển cơ bản cho nhiều hệ thống điều khiển. Người ta thường dùng PLC cho các quá trình tự động linh hoạt vì dễ dàng thuận tiện trong tính toán, so sánh các giá trị tương quan, thay đổi chương trình và thay đổi các thông số.
- + Về giá trị kinh tế: Khi xét về giá trị kinh tế của PLC phải đề cập đến số lượng đầu ra và đầu vào. Quan hệ về giá thành với số lượng đầu vào/ra có dạng như hình 3.17. Trên hình 3.17 thể hiện, nếu số lượng đầu vào/ra quá ít thì hệ role tỏ ra kinh tế hơn, những khi số lượng đầu vào/ra tăng lên thì hệ PLC kinh tế hơn hẳn.

Khi tính đến giá cả của PLC thì không thể không kể đến giá của các bộ phận phụ không thể thiếu như thiết bị lập trình, máy in, băng ghi... cả việc đào tạo nhân viên kỹ thuật. Nói chung những phần mềm để thiết kế lập trình cho các mục đích đặc biệt là khá đắt. Ngày nay nhiều hãng chế tạo PLC đã cung cấp chọn bộ đóng gói phần mềm đã được thử nghiệm, nhưng việc thay thế, sửa đổi các phần mềm là nhu cầu không thể tránh khỏi, do đó, vẫn cần thiết phải có kỹ năng phần mềm.

Phân bố giá cả cho việc lắp đặt một PLC thường như sau:

- 50% cho phần cứng của PLC.
- 10% cho thiết kế khuân khổ chương trình.
- 20% cho soạn thảo và lập trình.
- 15% cho chạy thử nghiệm.
- 5% cho tài liêu.

Việc lắp đặt một PLC tiếp theo chỉ bằng khoảng 1/2 giá thành của bộ đầu tiên, nghĩa là hầu như chỉ còn chi phí phần cứng.

Có thể so sánh hệ điều khiển role và hệ điều khiển PLC như sau:

- Hệ rơle:
 - + Nhiều bộ phận đã được chuẩn hoá.
 - + Ít nhạy cảm với nhiễu.
 - + Kinh tế với các hệ thống nhỏ.
 - Thời gian lắp đặt lâu.
 - Thay đổi khó khăn
 - Khó theo dõi và kiểm tra các hệ thống lớn, phức tạp.
 - Cần bảo quản thường xuyên.
 - Kích thước lớn.
- Hệ PLC
 - + Thay đổi dễ dàng qua công nghệ phích cắm.
 - + Lắp đặt đơn giản.
 - + Thay đổi nhanh quy trình điều khiển.
 - + Kích thước nhỏ.
 - + Có thể nối với mạng máy tính.
 - Giá thành cao

Bộ thiết bị lập trình thường đắt, sử dụng ít.

CHƯƠNG 4: BỘ ĐIỀU KHIỂN PLC – CPM1A

§4.1. Cấu hình cứng

1. Cấu tạo của họ PLC – CPM1A

PLC – CPM1A thuộc họ OMRON do Nhật bản sản xuất. Đây là loại PLC đơn khối có thể lắp ghép thêm các module và lắp ghép nhiều PLC với nhau. Đơn vị cơ bản của PLC CPM1A như hình 4.1.

Hình 4.1. Hình khối mặt trước PLC CPM1A

Trong đó:

1. Các đèn báo hệ thống:

- + Đèn PWR (xanh): báo nguồn,
- + Đèn RUN (xanh): PLC đang ở chế độ chạy hoặc kiểm tra, (đèn tắt thì PLC đang ở chế độ lập trình hoặc có lỗi),
 - + Đèn ERR/ALM (đỏ): + Sáng: Có lỗi, PLC không hoạt động,
 - + Nháp nháy, hoặc tắt: PLC đang hoạt động,
 - + COMM (da cam): Dữ liệu đang được truyền tới cổng ngoại vi.
- 2. Cổng ghép nối với máy tính hoặc thiết bị lập trình (có nắp đậy).
- 3. Các đèn chỉ thị và địa chỉ ra, (sáng nếu có tín hiệu ra).
- 4. Chân nối cho đầu ra (có nắp đậy).
- 5. Các đèn chỉ thị và địa chỉ vào, (sáng nếu có tín hiệu vào).
- 6. Chân nối cho đầu vào (có nắp đậy).

2. Các thông số kỹ thuật

2.1. Các loại CPM1A

Trong họ CPM1A có các PLC sau:

Mã hiệu	Nguồn cung cấp	Số đầu vào	Số đầu ra	Tổng số I/O	
CPM1A-10CDR-A	AC	6	1	10	
CPM1A-10CDR-D	DC	6	4	10	
CPM1A-20CDR-A	AC	12	0	20	
CPM1A-20CDR-D	DC	12	0	20	
CPM1A-30CDR-A	AC	18	12	30	
CPM1A-30CDR-D	AD	10	12	30	
CPM1A-40CDR-A	AC	24	16	40	
CPM1A-40CDR-D	DC	2 4	10	40	

2.2. Thông số chung

Mục		10-đầu I/O	20-đầu I/O	30-đầu I/O	40-đầu I/O		
Điên áp	Kiểu AC	100 đến 240°	100 đến 240v AC, 50/60 Hz				
cung cấp	Kiểu DC	24v DC	24v DC				
Phạm vi	Kiểu AC	85 đến 264 v	AC				
điện áp	Kiểu DC	20,4 đến 26,4	4v DC				
Tiêu thụ	Kiểu AC	max 30 VA		max 60 VA			
điện	Kiểu DC	max 6 W		max 20 W			
Dòng điên		max 30 A		max 60 A			
Nguồn cấp ra	áp	24 VDC					
(chỉ có kiểu AC)	dòng	200 mA		300 mA			
Điện trở cách ly		20 MΩ min. (tại 500v DC) giữa cực AC và cực tiếp địa.					
Độ bền xung lực		147m/s² (20G) ba lần mỗi chiều X, Y và Z					
Nhiệt độ môi trườ	ng	Nhiệt độ làm việc: 0 đến 55C°					
		Nhiệt đô bảo quản: -20 đến 75C°					
Đô ẩm môi trường	5	10% to 90% (with no condensation)					
Môi trường làm vi	iệc	Không làm việc trong môi trường khí đốt					
Thời gian cho	gián đoạn	Kiểu AC: min 10ms; Kiểu DC: min 2ms. (Thời gian					
nguồn		gián đoạn tính khi nguồn nhỏ hơn 85% định mức)					
Trong lượng	Kiểu AC	Max 400 g	Max 500 g	Max 600 g	Max 700 g		
CPU	Kiểu DC	Max 300 g	Max 400 g	Max 500 g	Max 600 g		

2.3 Các đặc trưng

N	Лџс	10 - đầu I/O	20 - đầu I/O	30 - đầu I/O	40 - đầu I/O	
Độ dài lệnh		Từ 1 đến 5 từ c	ho 1 lệnh			
Kiểu lệnh		Lệnh cơ bản: 14; lệnh đặc biệt: 77 kiểu, tổng 135 lệnh				
Thời gian th	ực hiện	Lệnh cơ bản: 0	,72 đến 16,2 <i>μs</i>			
		Lệnh đặc biệt: 12,375 μs (lệnh MOV)				
Dung lượng	chương trình	2.048 từ (Words)				
Vào ra cực	Chỉ CPU	6 input	12 input	18 input	24 input	
đại		4 output	8 output	12 output	16 output	
	Có module			54 input	60 input	
	mở rộng			36 output	40 output	

Mục	10 - đầu I/O 20 - đầu I/O 30 - đầu I/O 40 - đầu I/O			
Vào dạng bít	00000 đến 00915 (Words 0 đến 9)			
Ra dạng bít	01000 đến 01915 (Words 10 to 19)			
Từ bít (vùng IR)	5 1 2 bits : IR20000 to 23115 (words IR 200 to IR 231)			
Bít đặc biệt (vùng SR)	384 bits: SR 23200 to 25515 (words SR 232 to IR 255)			
Bít nhớ tạm thời (vùng TR)	8 bits (TR0 to TR7)			
Bít giữ (vùng HR)	320 bits: HR 0000 to HR 1915 (words HR 00 to HR 19)			
Bít bổ trơ (Vùng AR)	256 bits:AR 0000 to AR 1515 (words AR 00 to AR 15)			
Bít liên kết (vùng LR)	256 bits: LR 0000 to LR 1515 (words LR 00 to LR 15)			
Timers/Cunters	128 Timers/counters (TIM/CNT 000 to TIM/CNT 127) 100 - ms Timers: TIM 000 to TIM 127 10 - ms Timers: TIM 00 to TIM 127			
Nhớ dữ liệu	Read/write: 1.024 words (DM 0000 to DM 1023) Read-only: 512 words (DM 6144 to DM 6655)			
Xử lý ngắt	2 điểm (thời gian phản ứng: A điểm (thời gian phản ứng: Max 0,3 ms.) 4 điểm (thời gian phản ứng: Max: 0,3 ms)			
Bảo vệ bộ nhớ	HR, AR, Số liệu trong vùng nhớ nội dung và số đếm được bảo vệ khi nguồn bị gián đoạn.			
Sao lưu bộ nhớ	Tụ điện dự phòng: số liệu nhớ (đọc/viết), bít giữ, bít nhớ bổ trợ, bộ đếm (20 ngày trong điều kiện nhiệt độ 25°C)			
Chức năng tự chuẩn đoán	CPU bị hỏng, I/O lỗi đường dẫn, lỗi bộ nhớ.			
Chương trình kiểm tra	Không có lệnh kết thúc, lỗi của chương trình (liên tục kiểm tra trong thời gian làm việc)			
Bộ đếm tốc độ cao	1 bộ: 5 kHz 1 pha, hoặc 2.5 kHz 2 pha Kiểu tăng dần: 0 đến 65.535 (16 bíts) Kiểu tăng/giảm: -32.767 đến 32.767 (16 bíts)			
Nhập hằng số thời gian	Có thể đặt 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, 32 ms, 64 ms, hoặc 128 ms			
Đặt tín hiệu analog	2 đường (0 đến 200 BCD)			

2.4. Cấu trúc vùng nhớ

Dũ	r liệu	Từ (words)	Bít	Chức năng
IR	vào	IR 000 đến IR 009 (10 words)	IR 00000 đến IR 00915 (160 bíts)	Các bít này có thể làm việc ở vùng vào ra mở rộng
	Ra	IR 010 đến IR 019 (10 words)	IR 01000 đến IR 01915 (160 bíts)	
	làm việc	Ir 200 đến IR 231 (32 words)		Các từ bít này có thể sử dụng tuỳ ý trong chương trình
SR		SR 232 đến SR 255 (24 words)	SR 23200 đến 25515 (384 bíts)	Những bít này phục vụ cho chức năng đặc biệt như cờ và bít điều khiển.
TR			TR 0 đến TR 7 (8 bíts)	Bít này được sử dụng ở trạng thái đóng mở trong chương trình phân nhánh

Dữ	liệu	Từ (words)	Bít	Chức năng
HR		HR 00 đến HR 19 (20 words)	HR 0000 dấn HR 1915 (320 bíts)	Những bít này lưu giữ trạng thái đóng mở khi mất nguồn ngoài.
Ar		AR 00 đến HR 15 (1 6 words)	AR 0000 đến HR 1515 (256 bíts)	Những bít này phục vụ cho chức năng đặc biệt như cờ và bít điều khiển.
LR		LR 00 đến LR 15 (16 words)	LR 00000 đến LR 1515 (256 bíts)	Sử dụng để kết nối với PC khác
Timer couter		TC 000 đến TC 127 (tim	ner/counter)	Số giống nhau sử dụng cho cả thuế và couter.
DM	Đọc /viết	DM 0000 ÷ DM 0999 DM 1022 ÷ DM 1023 (1,002 words)		DM là dữ liệu chỉ truy cập dạng từ (words). Các dữ liệu dạng từ (words) được cất giũ khi mất nguồn.
	Ghi lỗi	DM 1000 đến DM 1021 (22 words)		Sử dụng để ghi thời gian sự cố và lỗi xuất hiện. Từ đây có thể đọc/ghi khi lỗi xuất hiện.
	Chỉ đọc	DM 6144 đến DM 6599 (456 words)		Không thể ghi đè lên chương trình
	Cài đặt PC	Dài 6600 đến DM 6655 (%6 words)	-	sử dụng đến nhiều vùng tham số để điều khiển làm việc của PC

Chú ý:

- 1. Bít IR và LR khi chưa sử dụng cho các chức năng chính thì có thể sử dụng như bít làm việc.
- 2. Nội dung của vùng HR, LR, Counter, và vùng đọc/ghi DM có thể được lưu giữ bằng tụ điện ở nhiệt độ 25°C, với thời gian 20 ngày.
- 3. Khi truy nhập các số PV, TC thì dữ liệu dạng từ (words), khi truy cấp vào cờ thì dữ liệu dạng bít.
- 4. Dữ liệu trong DM 6144 đến DM 6655 không thể ghi đè từ chương trình nhưng có thể thay đổi từ thiết bị ngoài "Peripheral Device".
- 2.5. Cực vào ra các bít vùng IR cho vào ra mở rộng

Bảng sau cho biết các bít vùng IR dùng cho module vào ra mở rộng của CPM1A và các loại module mở rộng.

Số vào/ra của CPU	Điểm nối CPU (địa chỉ)		Điểm nối vùng mở rộng (địa chỉ)		Nguồn	Số module
cua CFU	Vào	Ra	Vào	Ra		
	6 điểm:	4 điểm:			AC	CPM1A-10CDR-A
10		01000 ÷ 01003			DC	CPM1A-10CDR-D
	12 điểm:	8 điểm :			AC	CPM1A-20CDR-A
20	00000 ÷ 00011	01000 ÷ 01007			DC	CPM1A-20CDR-D

Số vào/ra của CPU		oi CPU (địa chỉ)		i vùng mở địa chỉ)	Nguồn	Số module
cua Cr U	Vào	Ra	Vào	Ra		
	18 điểm:	12 điểm:	36 điểm:	24 điểm:	AC	CPM1A-30CDR-A
	00000 ÷	01000 ÷	00200 ÷	01200 ÷	DC	CPM1A-30CDR-D
30	00011	01007	00211	01207		
	00100 ÷	01100÷		01300 ÷		
	00105		J	01307		
	20 điểm:	iio uiciii .		01400 ÷	AC	CPM1A-40CDR-A
40	00000÷	01000 ÷	00411	01407	DC	CPM1A-40CDR-D
40	00011	11007				
		01100 ÷				
	00111	01107				

§4.2. Ghép nối

PLC CPM1A có thể ghép nối với 32 bộ PLC cùng loại thành hệ thống. Để lập trình cho PLC thì có thể ghép nối nó với thiết bị lập trình cầm tay, bộ lập trình chuyên dụng hoặc máy tính tương thích.

1. Ghép nối với thiết bị lập trình cầm tay: Nối trực tiếp cáp của thiết bị cầm tay vào PLC như hình 4.2.

Hình 4.2. Ghép nối PLC với thiết bị lập trình cầm tay

2. Ghép nổi với thiết bị lập trình chuyên dụng hoặc máy tính tương thích

Hình 4.3. Ghép nối với lập trình chuyên dụng hoặc

Khi ghép nối với máy tính tương thích người ta dùng cáp nối chuẩn RS-232C và

bộ phối hợp RS-232 (hoặc RS-422) hoặc cáp chuyển đổi loại CQMI-CIF02. Ghép nối với thiết bị lập trình chuyên dụng như hình 4.3. PLC được ghép nối với cổng nối tiếp (COM) của máy tính.

3. Ghép nối nhiều PLC và máy tính

Có thể ghép thành hệ thống nhờ nối các PLC - CPM1A với nhau, số PLC - CPM1A có thể ghép tối đa là 32, hệ thống này có thể nối với máy tính tương thích, sơ đồ như hình 4.4. Chiều dài lớn nhất cho phép của cáp RS-422 là 500 m.

Hình 4.4. Ghép nối nhiều PLC

§4.3. Ngôn ngữ lập trình

1. Cấu trúc chương trình PLC CPM1A

Các chương trình điều khiển với PLC CPM1A có thể được viết ở dạng đơn khối hoặc đa khối.

Chương trình đơn khối

Chương trình đơn khối chỉ viết cho các công việc tự động đơn giản, các lệnh được viết tuần tự trong một khối. Khi viết chương trình đơn khối người ta dùng khối OBI. Bộ PLC quét khối theo chương trình, sau khi quét đến lệnh cuối cùng nó quay trở lai lênh đầu tiên.

Chương trình đa khối (có cấu trúc)

Khi nhiệm vụ tự động hoá phức tạp người ta chia chương trình điều khiển ra thành từng phần riêng gọi là khối. Chương trình có thể xếp lồng khối này vào khối kia. Chương trình đang thực hiện ở khối này có thể dùng lệnh gọi khối để sang làm việc

với khối khác, sau khi đã kết thúc công việc ở khối mới nó quay về thực hiện tiếp chương trình đã tạm dừng ở khối cũ.

2. Bảng lệnh của PLC – PCM1A

Xem phần "Bảng lệnh" phu lục 2

3. Lập trình các lệnh logic cơ bản của PLC – PCM1A

Với PLC này có:

12 đầu vào với đia chỉ xác đinh từ 000.00 đến 000.11.

8 đầu ra với địa chỉ xác định từ 010.00 đến 010.07.

Khi lập trình phần mềm lập trình đã tự hiểu các địa chỉ trên, không cần đưa khái niêm để phân biệt vào/ra. Nếu đưa thêm khái niêm vào/ra (X/Y) phần mềm sẽ không chấp nhận.

Kết thúc chương trình phải có lệnh kết thúc END chương trình mới chạy.

3.1. Lênh AND

Lập trình dang LAD (có thể lập trình dang STL và kiểm tra lai dang LAD).

```
LD
       00.00
                                                                  010.00
                                   000.00
                                            000.03
                                                     000.04
AND
       000.03
AND
       000.04
OUT
       010.00
                                        END (01)
+ Xem lại chương trình từ
                                              Hình 4.5. Lênh AND
```

- biểu tượng (phần phụ lục 1)
- + Chon trang thái MONITOR hoặc trang thái PROGRAM (STOP/PRG) nhờ Shift + F10 hoặc biểu tượng "PLC Mode". Đổ chương trình sang PLC từ biểu tượng hoặc từ đường dẫn (như phụ lục l).
- + Chon trang thái MONITOR hoặc trang thái RUN nhờ Shift + F10 hoặc biểu tượng "PLC Mode" để chạy chương trình.

3.2. Lênh AND NOT

Dạng STL	
LD	000.03
AND NOT	00.00
AND	000.04
OUT	010.00
END	
4 1 4 1 00 0	OT T

3.3. Lệnh OR: Dạng SLT

```
LD
       000.03
OR
       000.04
OR
       000.05
```


OUT 010.02

END

3.4. Lệnh OR NOT

Dạng STL

LD 00.03

OR NOT 00.04

OR 000.05

OUT 010.02

END

3. 5. Lệnh OR giữa hai 1ệnh AND

Dạng STL

LD 000.03

AND 000.04

LD 000.05

AND 000.06

OR LD

OUT 010.00

END

3.6. Lệnh thời gian trễ

Dạng STL

LD 000.03

TIM 000 #010

LD TIM000

OUT 010.00

END

Chú ý:

+ Trong lệnh (TIM 000 #010) loạt số đầu chỉ số hiệu của role thời gian (role thời

gian số 0), loạt số thứ hai chỉ thời gian đặt (10s)

+ Khi đầu vào 000.03 có giá trị 1 thì bộ thời gian bắt đầu tính thời gian, khi đủ 10s thì bộ thời gian cho giá trị ra, tức đầu ra 010.00 có giá trị 1.

3.7. Bộ đếm

LD 000.03

LD 000.00

010.00

000.04

000.03

CNT000 #005 LD CNT000 OUT010.00 END

Chú ý:

- + Đầu vào thứ nhất (000.03) là đầu vào đếm, mỗi khi đầu vào này nhận giá trị 1 thì bộ đếm đếm một lần.
- + Đầu vào thứ hai (000.00) là đầu vào reset bộ đếm, khi đầu vào này nhận giá trị 1 thì bộ đếm bị reset về trạng thái ban đầu.
- + Trong lệnh (CNT 001 #0051 loạt số đầu chỉ số hiệu của bộ đếm (bộ đếm số 1 loạt số thứ hai chỉ số đếm đã đặt (5 số), khi đầu vào 000.03 đạt 5 lần giá trị 1 thì bộ đếm cho giá trị ra, tức đầu ra 010.00 có giá trị 1.

CHƯƠNG 5: BỘ ĐIỀU KHIỂN PLC - S5

§5.1. Cấu tạo của họ PLC Step5

PLC Step 5 thuộc họ Simatic do hãng Siemens sản xuất. Đây là loại PLC hỗn hợp vừa đơn khối vừa đa khối. Cấu tạo cơ bản của loại PLC này là một đơn vị cơ bản sau đó có thể ghép thêm các module mở rộng về phía bên phải, có các module mở rộng tiêu chuẩn S5-100U. Những module ngoài này bao gồm những đơn vị chức năng mà có thể là hợp lại cho phù hợp với những nhiệm vụ kỹ thuật cụ thể.

1. Đơn vị cơ bản

Đơn vị cơ bản của PLC S5-95U như hình 5.1.

Hình 5.1. Hình khối mặt trước PLC S5-95U

Trong đó:

- 1. Ngăn để ắc quy,
- 2. Công tắc mở điện ắc quy,
- Công tắt mở nguồn,
- 4. Bảng ổ cắm và đèn báo cho đầu vào và ra logic, có: 16 đầu vào từ I32.0 đến I33.7; 16 đầu ra từ Q32.0 đến Q33.7,
 - 5. Đầu nối nguồn 24v cho khối cơ bản,
- 6. Giao diện cho đầu vào bộ ngắt IW59.0 đến IW59.3 và đầu vào bộ đếm IW36 đến IW38,
 - 7. Giao diện nối tiếp với máy lập trình hoặc máy tính,
 - 8. Giao diện tiếp nhận module nhớ ngoài,
 - 9. Giao diện cho đầu vào ra analog,
 - 10. Công tắc chọn chế độ RUN, STOP,

- 11. Đèn báo chế độ STOP,
- 12. Đèn báo chế độ RUN,
- 13. Đèn báo lỗi.

2. Các module vào ra mở rộng

Khi quá trình tự động hoá đòi hỏi số lượng đầu và đầu ra nhiều hơn số lượng sẵn có trên đơn vị cơ bản hoặc khi cần những chức năng đặc biệt thì có thể mở rộng đơn vị cơ bản bằng cách gá thêm các module ngoài. Tối đa có thể gá thêm 8 module vào ra qua 8 vị trí có sẵn trên panen về phía phải. Thường Step 5 sử dụng các module mở rộng:

- + Module vào, ra số duy trì,
- + Module vào, ra số không duy trì lấy từ S5-100U,
- + Module vào, ra tương tự không duy trì lấy từ S5-100U,
- + Module thông tin không duy trì CCP.
- * Quy ước các chân của module mở rộng như hình 5.2.
- + Chân l: Dương nguồn (L+),
- + Chân 2: Âm nguồn (M),
- + Chân 4: Kênh số 0,
- + Chân 3: Kênh số 1,
- + Chân 6: Kênh số 2,
- + Chân 5 : Kênh số 3,
- + Chân 8: Kênh số 4,
- + Chân 7: Kênh số 5,
- + Chân 1 0 : Kênh số 6 +

Chân 9: Kênh số 7.

Hình 5.2. Sơ đồ chân module mở rông

§5.2. Địa chỉ và gán địa chỉ

Trong PLC các địa chỉ cần gửi thông tin đến hoặc lấy thông tin đi đều phải có địa chỉ để liên lạc. Địa chỉ là con số hoặc tổ hợp các con số đi theo sau chữ cái. Chữ cái chỉ loại địa chỉ, con số hoặc tổ hợp con số chỉ số hiệu địa chỉ.

Trong PLC có những bộ phận được gán địa chỉ đơn như bộ thời gian (T), bộ đếm (C) và cờ (F), chỉ cần một trong 3 chữ cái đó kèm theo một số là đủ, ví dụ: T1, C32, F6...

Các địa chỉ đầu vào và đầu ra cùng với các module chức năng có địa chỉ phức, cách gán địa chỉ giống nhau. Xét cách gán địa chỉ cho các đầu vào, ra.

Có hai loai đầu vào ra:

+ Đầu vào ra trên khối cơ bản (gắn liền với CPU), các đầu vào ra này có địa chỉ

không đổi, với S5-95U là I32.0 đến I33.7, Q32.0 đến Q33.3,

+ Đầu vào ra trên các module mở rộng thì địa chỉ phụ thuộc vào vị trí lắp đặt của module trên panen. Chỗ lắp module trên panen gọi là khe (slot), các khe đều có đánh số, khe số 0 đứng liền với đơn vị cơ bản và cứ thế tiếp tục.

1. Địa chỉ vào/ra trên module số

Khi lắp module số vào ra lên một khe nào lập tức nó được mang số hiệu của khe đó. Trên mỗi module thì mỗi đầu vào ra là một kênh, các kênh đều được đánh số. Địa chỉ của mỗi đầu vào ra là số ghép của số hiệu khe và kênh, số hiệu khe đứng trước, số hiệu kênh đứng sau, giữa hai số có dấu chấm. Số hiệu khe và kênh như hình 5. 3.

Ví dụ: Địa chỉ của kênh số 2 trên module cắm vào khe số 0 là 0.2.

K	he số:	0	1 2	2 3.		
	Đơn	0	0	0	0	
	vị cơ bản	1	1	1	1	
	bản	:	:	:	:	
		7	7	7	7	

Hình 5.3. Số hiệu khe và kênh trên module số

Mỗi đầu vào ra trên module số chỉ thể hiện được tại một thời điểm một trong hai trạng thái "1" hoặc "0". Như vậy, mỗi kênh của module số chỉ được biểu diễn bằng một bít số liệu, vì vậy địa chỉ của kênh trên module số còn được gọi là địa chỉ bít, mỗi module mang nhiều kênh tức là chứa nhiều bít, thường là 8 bít hay một byte, vì vậy địa chỉ khe còn gọi là địa chỉ byte.

Module số có thể được lắp trên bất kỳ khe nào trên panen của PLC.

2. Địa chỉ vào ra trên module tương tự

Để diễn tả một giá trị tương tự phải cần nhiều bít. Trong PLC S5 người ta dùng 16 bít (một word). Các lệnh tương tự có thể được gán địa chỉ byte hoặc địa chỉ word khi dùng lệnh nạp hoặc truyền.

Chỉ có thể lắp module tương tự vào khe 0 đến 7. Mỗi khe có 4 kênh, mỗi kênh mang 2 địa chỉ đánh số lừ 64 + 65 (đầu khe 0) đến 126 + 127 (cuối khe 7) như hình 5.4.

Như vậy, mỗi kênh mang địa chỉ riêng không kèm theo địa chỉ khe, đọc địa chỉ kênh là đã biết nó nằm ở khe nào.

Vi dụ: Một module tương tự lắp vào khe số 2 trên đó kênh số 0 mang địa chỉ byte 80 và 81.

Tanc s	so. 0	1 2	3	7 3	O			
Đơn	64+65	72+73	80+81	88+89	96+97	104+105	112+113	120+121
vị cơ	66+67	74+75	82+83	90+91	98+99	106+107	114+115	122+123
bản	68+69	76+77	84+85	92+93	100+101	108+109	116+117	124+125
	70+71	78+79	86+87	94+95	102+103	110+111	118+119	126+127

Hình 5.4. Địa chỉ module tương tự

Khe số: 0

§5.3. Vùng đối tượng

TT	Tên tham số	Diễn giải	Vùng tham số
1	ACCUM 1	Åc quy 1	
2	ACCUM2	Åc quy 2	
3	BN	Hằng số byte	-127 đến 127
4	С	Bộ đếm - Có nhớ	0 đến 7
		- Không nhớ	8 đến 127
5	CC0/CC1	Mã điều kiện 1 và mã điều kiện 2	
6	D	Số liệu dạng bít	0.0 đến 255.15
7	DB	Khối số liệu	2 đến 255
8	DL	Từ (word) dữ liệu trái	0 đến 255
9	DR	Từ (word) dữ liệu phải	0 đến 225
10	DW	Từ (word) dữ liệu	0 đến 255
11	F	Cờ - Có nhớ	0.0 đến 63.7
		- Không nhớ	64.0 đến 255.7
12	FB	Khối hàm	0 đến 255
13	FW	Từ (word) cờ - Có nhớ	0 đến 62
		- Không nhớ	64 đến 254
14	FY	Từ (word) byte - Có nhớ	0 đến 63
	_	- Không nhớ	64 đến 255
15	I	Đầu vào bít	0.0 đến 127.7
16	IB	Đầu vào byte	0 đến 127
17	Iw	Đầu vào từ (word)	0 đến 126
18	KB	Hằng số 1 byte	0 đến 255
19	KC	Hằng số đếm	0 đến 999
20	KF	Hằng số	-32768 đến 32677
21	KH	Hằng số dạng cơ số 16	0000 đến FFFF
22	KM	Hằng số bít dạng byte	Mỗi byte 16 bít
23	KS	Hằng số cho ký tự	2 ký tự ASCII
24	KT	Hằng số cho thời gian	0.0 dấn 999.3
25	KY	Hằng số	0 đến 255 cho mỗi byte
26	OB	Khối tổ chức (khối đặc biệt: 1, 3, 13, 21, 31, 34, 251)	0 đến 255
27	PB	Khối chương trình	0 đến 255
28	PB/PY	Đệm ngoại vi vào ra	0 đến 127
29	PII	Bộ đệm đầu vào	
30	PIQ	Bộ đệm đầu ra	

TT	Tên tham số	Diễn giải	Vùng tham số
31	PW	Đệm ngoại vi dạng từ (word)	0 đến 125
32	Q	Đấu ra bít	0.0 đến 127.7
33	QB	Đầu ra dạng byte	0 đến 127
34	QW	Đầu ra dạng từ (word)	0 đến 125
35	RS	Vùng số liệu hệ thống	0 đến 255
36	SB	Khối dãy	0 đến 255
37	Т	Bộ thời gian	0 đến 127

§5.4. Cấu trúc của chương trình S5

1. Cấu trúc chương trình

Các chương trình điều khiển với PLC S5 có thể được viết ở dạng đơn khối hoặc đa khối.

Chương trình đơn khối

Chương trình đơn khối chỉ viết cho các công việc tự động đơn giản, các lệnh được viết tuần tự trong một khối. Khi viết chương trình đơn khối người ta dùng khối OBI. Bộ PLC quét khối theo chương trình, sau khi quét đến lệnh cuối cùng nó quay trở lai lênh đầu tiên.

Chương trình đa khối (có cấu trúc)

Khi nhiệm vụ tự động hoá phức tạp người ta chia chương trình điều khiển ra thành từng phần riêng gọi là khối. Chương trình có thể xếp lồng khối này vào khối kia. Chương trình đang thực hiện ở khối này có thể dùng lệnh gọi khối để sang làm việc với khối khác, sau khi đã kết thúc công việc ở khối mới nó quay về thực hiện tiếp chương trình đã tạm dừng ở khối cũ.

Người lập trình có thể xếp lồng khối này vào khối kia thành lớp, tối đa là 16 lớp Nếu số lớp vượt quá giới hạn thì PLC tự động về trạng thái ban đầu.

2. Khối và đoạn (Block and Segment)

Cấu trúc mỗi khối gồm có:

- + Đầu khối gồm tên khối, số hiệu khối và xác định chiều dài khối.
- + Thân khối: Thể hiện nội dung khối và được chia thành đoạn (Segment) thực hiện từng công đoạn của quá trình tự động hoá sản xuất. Mỗi đoạn lại bao gồm một số dòng lệnh phục vụ việc giải bài toán logic. Kết quả của phép toán logic được gửi vào RLO (Result of logic operation). Việc phân chia chương trình thành các đoạn cũng ảnh hưởng đến RLO. Khi bắt đầu một đoạn mới thì tạo ra một giá trị RLO mới, khác với giá trị RLO của đoạn trước.
 - + Kết thúc khối: Phần kết thúc khối là lênh kết thúc khối BE.

Các loại khối:

* Khối tổ chức OB (Organisation Block):

Khối tổ chức quản lý chương trình điều khiển và tổ chức việc thực hiện chương trình

* Khối chương trình PB (Program Block):

Khối chương trình sắp xếp chương trình điều khiển theo chức năng hoặc các khía cạnh kỹ thuật.

* Khối dãy SB (Sequence Block):

Khối dãy là loại khối đặc biệt được điều khiển theo chương trình dãy và được xử lý như khối chương trình.

* Khối chức năng FB (Function Block):

Khối chức năng là loại khối đặc biệt dùng để lập trình các phần chương trình điều khiển tái diễn thường xuyên hoặc đặc biệt phức tạp. Có thể gán tham số cho các khối đó và chúng có một nhóm lệnh mở rộng.

* Khối dữ liệu DB (Dâm Block):

Khối dữ liệu lưu trữ các dữ liệu cần thiết cho việc xử lý chương trình điều khiển.

§5.5. Bảng lệnh của S5 - 95U

Các lệnh của chương trình S5 được chia thành ba nhóm là:

1. Nhóm lệnh cơ bản

Nhóm lệnh cơ bản gồm những lệnh sử dụng cho các chức năng, thực hiện trong các khối tổ chức OB, khối chương trình PB, khối dãy SB và khối chức năng FB. Ngoại trừ hai lệnh số học +F và -F chỉ được biểu diễn bằng phương pháp dãy lệnh STL, còn lại tất cả các lệnh cơ bản khác đều có thể được biểu diễn bằng cả ba phương pháp đó là bảng lệnh STL, lưu đồ điều khiển CSF và biểu đồ bậc thang LAD.

2. Nhóm lệnh bổ trợ

Nhóm lệnh bổ trợ bao gồm các lệnh sử dụng cho các chức năng phức tạp, ví dụ như các lệnh thay thế, các chức năng thử nghiệm, các lệnh dịch chuyển hoặc chuyển đổi...

Các lệnh bổ trợ dùng trong khối chức năng và được biểu diễn bằng phương pháp bảng lệnh STL. Chỉ có rất ít lệnh được sử dụng ở phương pháp lưu đồ.

3. Nhóm lệnh hệ thống

Các lệnh hệ thống được phép thâm nhập trực liếp vào hệ thống điều hành và chỉ có thể được biểu diễn bằng phương pháp bảng lệnh STL. Chỉ khi thực sự am hiểu về hệ thống mới nên sử dụng các lệnh hệ thống.

Diễn dải của các lệnh xem phần "Bảng lệnh" phụ lục 2.

§5.6. Cú pháp một số lệnh cơ bản của S5

1. Nhóm lệnh logic cơ bản

Khi thực hiện lệnh đầu tiên của một loạt phép toán logic thì nội dung của đối tượng lệnh được lấy vào sẽ được nạp ngay vào RLO (kết quả của phép toán logic) mà không cần thực hiện phép toán.

Đối tượng của các lệnh logic là: I, Q, F, T, C

1.1 Lệnh A

Lập trình dạng STL (có thể lậu trình dạng LAD và kiểm tra lại dạng STL).

- + Ấn Enter để trở về màn hình Output.
- + Ấn Shift-F5 để Xem dạng LAD và CSF, dạng LAD như hình 5.6.
- + Ấn Shift-F7 để cất chương trình và đổ chương trình sang PLC, chọn yes để xác nhận việc đổ đè chương trình lên chương trình cũ trong PLC (khi cất thì PLC phải để ở chế độ STOP).
 - + Bật công tắc của CPU về chế độ RUN để chạy chương trình.

1.2. Lệnh AN

Lập trình dạng STL

A	I	32.0
AN	I	32.1
A	I	32.2
=	Q	32.0
		BE

Hình 5.7. Lệnh AN

1.3. Lệnh O

Lập trình dạng STL

. 1	•	_
Ο	I	32.0
O	I	32.1
O	I	32.2
=	Q	32.0
BE		

1.4. Lệnh ON

Lập trình dạng STL

O I 32.0

1.5. Lệnh O giữa hai lệnh A

Lập trình dạng STL

A I 32.0

A I 32.1

O

A I 32.2

A I 32.3

= Q 32.0

BE

Hình 5.9: Lệnh ON

Q32.0

:BE

I 32.0

I 32.1

I 32.2

Hình 5.10. Lệnh O giữa hai lệnh A

1.6. Lệnh "(" và lệnh ")"

Lập trình dạng STL

O I 32.0

O

A I 32.1

A(

O I 32.2

O I 32.3

= Q 32.0

BE

Hình 5.11. Lệnh "(" và lệnh ")"

2. Nhóm lệnh set và reset

Các lệnh set và reset để lưu giữ hoặc xoá bỏ kết quả của phép toán logic được hình thành trong bộ xử lý.

Đối tượng của các lệnh này là I, Q, F.

Ví dụ l:

A I 32.0 S Q 32.0 A I 32.1 R Q 32.0

Hình 5.12. Lệnh set /reset

NOP0

Khi đầu vào I32.0 có thì đầu ra Q32.0 có và được giữ lại cho dù I32.0 mất, chỉ khi I32.1 có thì lại xoá nhớ làm Q32.0 về không.

Lệnh NOP 0 là lệnh giữ chỗ cho phương pháp LAD. Vì có đầu ra Q chưa dùng, muốn phương pháp LAD vẽ được hình thì phải đưa lệnh NOP 0 vào.

Ví dụ 2:

A	Ι	32.0
R	F	17
A	I	32.1
S	F	17
A	F	17
=	Q	32.0

Hình 5.13. Lệnh set /reset

Đây là ví dụ về lệnh sét trội, vì khi I32.0 có trạng thái 1 thì nó sẽ xoá trạng thái tín hiệu trên cờ F17 về "0" cho đến khi I32.1 có trạng thái 1 thì nó sẽ đặt trạng thái 1 cho cờ F17 sau đó không phụ thuộc I32.0 nữa. Khi cờ nhận trạng thái 1 thì sẽ gán cho đầu ra Q32.0 trạng thái 1. Khi cả I32.0 và I32.1 cùng có trạng thái 1 thì cờ sẽ có trạng thái 1 vì lênh sét ở sau, gọi là ưu tiên sét.

3. Nhóm lệnh nạp và truyền

Lệnh nạp và truyền để trao đổi thông tin giữa các vùng đối tượng lệnh khác nhau.

Lệnh nạp và truyền để chuẩn bị giá trị thời gian và giá trị đếm cho các lệnh thời gian và lệnh đếm, nạp hằng số phục vụ việc xử lý chương trình.

Lượng thông tin được nạp và truyền thông qua hai thanh ghi tích luỹ ACCU1 và ACCU2. Thanh ghi tích luỹ là thanh ghi đặc biệt trong PLC dùng để lưu trữ tạm thời các thông tin. Mỗi thanh ghi có độ dài 16 bít.

Có thể nạp hoặc truyền các đối tượng theo byte hoặc từ (word). Để trao đổi theo byte, thông tin lưu trữ trong byte phải tức là byte thấp của thanh ghi, số bít còn thừa (ngoài 8 bít) được đặt không. Có thể dùng các lệnh khác nhau để xử lý các thông tin trong hai thanh ghi.

Các lệnh thuộc nhóm này là:

Lệnh nạp L: Nội dung của đối tượng (đơn vị byte) được chép vào ACCU1 không phụ thuộc vào RLO và RLO cũng không bị ảnh hưởng. Nội dung trước đó của ACCU1 được chuyển dịch sang ACCU2, nội dung cũ của ACCU2 sẽ bị mất.

Ví dụ: Nạp liên tiếp IB7 và IB8 từ vùng đệm PII vào thanh ghi tích luỹ, có sơ đồ nạp như hình 5.14.

Lệnh truyền T: Nội dung của ACCU1 được gán cho đối tượng lệnh không phụ thuộc RLO và RLO cũng không bị ảnh hưởng. Khi truyền thì thông tin từ ACCU1 được chép vào vùng nhớ đã được địa chỉ hoá (ví dụ vùng đệm đầu ra PIQ). Nội dung của ACCU1 không bị mất. Giá trị trước đó của vùng đệm đầu ra PIQ bị mất. Mô tả lệnh như hình 5.15.

Lệnh LD: Số đếm và số thời gian được nạp vào ACCU1 dạng mã BCD, không phụ thuộc vào RLO và RLO cũng không bị ảnh hưởng.

Hình 5.15. Lệnh truyền

Đối tượng của các lệnh này là:

- + Lệnh L: IB, IW, QB, QW, FY, FW, DR, DL, DW, PB/PY, PW, T, C, KM, KH, KF, KY, KB, KS, KT, KC.
 - + Lệnh T: IB, IW, QB, QW, FY, FW, DR, DL, DW, PB/PY, PW.
 - + Lệnh LD: T, C.

4. Nhóm lệnh thời gian

Chương trình điều khiển sử dụng các lệnh thời gian để theo dõi, kiểm soát và quản lý các hoạt động có liên quan đến thời gian.

4.1. Nạp giá trị thời gian

Khi một bộ thời gian được khởi phát thì nội dung trong ACCU1 (dạng từ 16 bít) được dùng làm giá trị tính thời gian. Do đó, muốn dùng các lệnh thời gian phải nạp giá trị thời gian cần đặt vào ACCU1 trước khi bộ thời gian hoạt động.

Có thể nạp các kiểu dữ liệu sau dùng cho các lệnh thời gian:

- + KT: giá trị thời gian hằng số.
- + DW: từ (word) dữ liệu.
- + IW: từ (word) đầu vào.
- + QW: từ (word) đầu ra.
- + FW: từ (word) cờ.

Trừ loại KT các loại còn lại phải ở dạng mã BCD.

• Nạp thời gian hằng số: L KT 40.2

Trong lệnh có: KT chỉ rõ là hằng số.

Số 40: hệ số (có thể gán từ 0 đến 999).

Số 2: là mã, có 4 mã: 0 tương ứng 0,01s;

1 tương ứng 0,1s;

2 tương ứng 1s;

3 tương ứng 10s.

Với số trên thì thời gian được tính là $\Delta t = 40 \text{ x } 1\text{s} = 40\text{s}$.

Mã càng nhỏ thì giá trị thời gian càng chính xác, vì vậy nên dùng mã nhỏ.

• *Nạp thời gian dưới dạng đầu vào, đầu ra, hoặc từ dữ liệu*: Ví dụ muốn nạp một giá trị thời gian từ một từ dữ liệu DW2 vào ACCU1, viết lệnh sau:

LDW2

Như vậy, trước khi thực hiện lệnh này thì giá trị thời gian đã được lưu sẵn trong từ dữ liệu DW2 dưới dạng mã BCD.

Ví dụ trong DW2 có các số như hình 5.16:

Hình 5.16. Hằng số thời gian dạng mã BCD

Mã thời gian cũng được sử dụng như trên.

$$\Delta t = 638 \times 1s = 638s$$
.

Vậy, trước khi dùng lệnh nạp trên phải dùng chương trình điều khiển để viết giá trị thời gian vào từ dữ liệu DW2. Ví dụ để viết giá trị thời gian 27s vào từ dữ liệu DW2 trong khối DB3 rồi sau đó nạp vào ACCU1 như sau:

- C DB3
- L KT 270. 1
- T DW2

. . .

L DW2

4.2. Đọc giá trị thời gian hiện hành

Có thể dùng hai lệnh L và LD để đưa giá trị thời gian hiện hành của bộ thời gian T vào ACCU1 để xử lý.

- L Tl % đọc giá trị thời gian dạng nhị phân.
- LD Tl % đọc giá trị thời gian dạng BCD.

Chú ý: Lệnh L và T đi với T và C thì bao giờ cũng đọc giá trị nhị phân còn đi với các đối tượng khác thì cũng có thể đọc giá trị nhị phân hoặc dạng BCD tuỳ theo trường hợp cụ thể.

4.3. Các lênh

1. Bộ thời gian xung SP

Bộ thời gian được khởi phát lên 1 tại sười lên của RLO khi RLO là 1 thì bộ thời gian vẫn duy trì trạng thái 1 cho đến khi đạt giá trị đặt mới xuống. Nhưng khi RLO về không thì bộ thời gian về không ngay.

Lập trình dạng STL (có thể lập trình dạng LAD và kiểm tra lại dạng STL).

Hình 5.17. Giản đồ thời gian và dạng LAD lệnh SP

Khi lập trình còn ba chân R, BI và DE chưa sử dụng phải dùng lệnh NOP để giữ chỗ. Chân R là chân để xoá giá trị thời gian hiện hành, chân BI là chân để lấy giá trị thời gian hiện thời dạng nhị phân, chân DE là chân để lấy giá trị thời gian hiện thời dạng mã BCD, có thể dùng lệnh L hoặc LD để đọc các giá trị thời gian.

2. Bộ thời gian mở rộng SE

Bộ thời gian xung mở rộng SE được khởi phát lên 1 tại sườn lên của RLO sau đó không phụ thuộc RLO nữa cho đến khi đủ thời gian đặt mới về không.

Lập trình dạng STL

Hình 5.18. Giản đồ thời gian lênh SE

NOP0

A T2

= Q 33.0

BE

3. Bộ thời gian bắt đầu trễ SD

Thời gian bắt đầu chậm hơn so với sườn lên của RLO một khoảng bằng thời gian đặt trong lệnh. Khi RLO về không thì bộ thời gian cũng bị đặt ngay về không.

Lập trình dạng STL.

C	DB	3
L	KT	50.1
T	FW	16
A	I	33.0
L	F	W16
NOP0		
NOP0		
NOP0		
=	Q	33.0
BE		

Hình 5.19. Giản đồ thời gian lệnh SD

4. Bộ thời gian bắt đầu trễ lưu trữ SS

Thời gian bắt đầu chậm hơn so với sườn lên của RLO một khoảng thời gian bằng thời gian đặt trong lệnh và sau đó không phụ thuộc RLO nữa. Nó chỉ về không khi có lệnh xoá R.

A	I	33.0
L	KT	500.0
SS	T	4
A	I	32.0
R	T	4
NOP		0
NOP		0
A	T	4
=	Q	32.0
BE		

 $H inh \ 5.20.$ Giản đồ thời gian và dạng LAD $\ l enh \ SS$

5. Bộ thời gian tắt trễ SF

Bộ thời gian lên 1 tại sườn lên của RLO. Khi RLO về không thì bộ thời gian tiếp tục duy trì trạng thái một khoảng thời gian nữa bằng khoảng đã đặt trong lệnh rồi mới về không. Để xoá thời gian dùng lệnh R, khi có lệnh R từ 0 lên 1 thì bộ thời gian được đặt về không và trạng thái tín hiệu vẫn giữ 0 cho đến khi bộ thời gian được khởi phát lại.

Hình 5.21. Giản đồ thời gian và dang LAD lênh SF

5. Nhóm lệnh đếm

5.1. Nạp giá trị đếm

Cũng như bộ thời gian khi một bộ đếm được khởi phát thì nội dung trong ACCU1 (dạng từ 16 bít) được dùng làm giá trị đếm. Do đó, muốn dùng các lệnh đếm phải nạp giá trị đếm vào ACCU1 trước khi bộ đếm hoạt động.

Có các kiểu dữ liệu sau dùng cho các lệnh đếm:

- + KC: giá trị hằng số.
- + DW: từ (word) dữ liệu.
- + IW: từ (word) đầu vào.
- + QW: từ (word) đầu ra.
- + FW: từ (word) cờ.

Trừ loại KC các loại còn lại phải ở dạng mã BCD.

Nạp giá trị đếm hàng số. L KC 38

Số đếm từ 0 đến 999

 Nạp số đếm dưới dạng đầu vào, đầu ra, hoặc từ dữ liệu: Ví dụ muốn nạp một giá tri đếm từ môt từ dữ liêu DW2 vào ACCU1, viết lênh sau:

LDW2

Như vậy, trước khi thực hiện lệnh này thì giá trị đếm đã được lưu sẵn trong từ dữ liêu DW2 dưới dang mã BCD.

Ví dụ trong DW2 có các số như hình 5.22:

Hình 5.22. Nạp giá trị đếm dạng mã BCD

Với lệnh trên thì số 638 được nạp vào DW2.

• Đối tượng của lệnh: Cả hai lệnh đếm chỉ có một đối tượng là bộ đếm C với các số hiệu tuỳ thuộc loại PLC.

5.2. Chuẩn bị thực hiện các lệnh đếm

- + Đặt bộ đếm: Sau khi đã nạp giá trị đếm dùng lệnh S để cho bộ đếm làm việc.
- + Xoá bộ đếm: Khi đã đếm tới một giá trị nào đó dùng lệnh R để xoá, tức là ngừng đếm và đưa giá trị đếm về không, nếu không dùng lệnh này khi đếm đủ giá trị đặt bộ đếm giữ nguyên trạng thái không về không.
- + Quét bộ đếm: Dùng lệnh logic boole để quét bộ đếm (ví dụ lệnh A). Nếu bộ đếm chưa về không thì kết quả quét có trạng thái 1.
- + Xuất ra trạng thái bộ đếm hiện hành: Có thể dùng lệnh L và LD để đưa trạng thái bộ đếm hiện hành vào ACCU1 để xử lý sau này, lệnh L dùng cho số nhị phân, lệnh LD dùng cho số BCD.

4.3. Các lệnh

1. Lệnh đếm xuống CD

Số đếm giảm đi một đơn vị lúc xuất hiện một sườn lên của RLO. Khi RLO về không số đếm không bị ảnh hưởng.

A	I	32.1
CD	C	1
NOP		0
A	I	32.2
L	CK	7
S	C	1
NOP		0

Hình 5.23. Lệnh đếm xuống CD

NOP 0 NOP 0 A C 1 BE

Chân BI là chân để lấy giá trị đếm hiện thời dạng nhị phân, chân DE là chân để lấy giá trị đếm hiện thời dạng mã BCD, có thể dùng lệnh L hoặc LD để đọc các giá trị đếm.

2. Lênh đếm lên CU

Số đếm tăng một đơn vị lúc xuất hiện sườn lên của RLO. Khi RLO về không số đếm không bi ảnh hưởng.

A	I	32.1
CU	C	1
NOP0		
NOP0		
NOP0		
A	I	33.1
R	C	1
NOP		0
NOP		0
A	C	1
=	Q	33.1
BE		

Hình 5.24. Lệnh đếm lên CU

CHƯƠNG 6: BỘ ĐIỀU KHIỂN PLC - S7-20

§6.1. Cấu hình cứng

PLC Step 7 thuộc họ Simatic do hãng Siemens sản xuất. Đây là loại PLC hỗn hợp vừa đơn khối vừa đa khối. Cấu tạo cơ bản của loại PLC này là một đơn vị cơ bản sau đó có thể ghép thêm các module mở rộng về phía bên phải. Có các module mở rộng tiêu chuẩn. Những module ngoài này bao gồm những đơn vị chức năng mà có thể tổ hợp lại cho phù hợp với những nhiệm vụ kỹ thuật cụ thể.

1. Đơn vị cơ bản

1.1. Cấu trúc đơn vị có bản

Đơn vị cơ bản của PLC S7-200 (CPU 3 14) như hình 6. 1

Hình 6.1. Hình khối mặt trước PLC S7-200

Trong đó:

- 1. Chân cắm cổng ra,
- 2. Chân cắm cổng vào,
- 3. Các đèn trạng thái:

SF (đèn đỏ): Báo hiệu hệ thống bị hỏng,

RUN (đèn xanh): Chỉ định rằng PLC đang ở chế độ làm việc,

STOP (đèn vàng): Chỉ định rằng PLC đang ở chế độ dừng,

- 4. Đèn xanh ở cổng vào chỉ định trạng thái tức thời của cổng vào,
- 5. Cổng truyền thông,
- 6. Đèn xanh ở cổng ra chỉ định trạng thái tức thời của cổng ra,
- 7. Công tắc.

Chế độ làm việc: Công tắc chọn chế độ làm việc có ba vị trí

+ RUN: cho phép PLC thực hiện chương trình trong bộ nhớ. PLC sẽ tự chuyển

về trạng thái STOP khi máy có sự cố, hoặc trong chương trình gặp lệnh STOP, do đó khi chạy nên quan sát trạng thái thực của PLC theo đến báo.

- + STOP: cưỡng bức PLC dừng công việc đang thực hiện, chuyển về trạng thái nghỉ. Ở chế độ này PLC cho phép hiệu chỉnh lại chương trình hoặc nạp một chương trình mới.
- + TERM: cho phép PLC tự quyết định một chế độ làm việc (hoặc RUN hoặc STOP)

Chỉnh định tương tự: Núm điều chỉnh tương tự đặt dưới nắp đậy cạnh cổng ra, núm điều chỉnh tương tự cho phép điều chỉnh tín hiệu tương tự với góc quay được 270°.

Pin và nguồn nuôi bộ nhớ: Nguồn pin được tự động chuyển sang trạng thái tích cực khi dung lượng nhớ bị cạn kiệt và nó thay thế nguồn để dữ liệu không bị mất.

Cổng truyền thông: S7-200 sử dụng cổng truyền thông nối tiếp RS 485 với phích cắm 9 chân để phục vụ cho việc ghép nối với thiết bị lập trình hoặc với các PLC khác. Tốc độ truyền cho máy lập trình kiểu PPI là 9600 boud. Các chân của cổng truyền thông là:

- 1. đất
- 2. 24v DC
- 3. truyền và nhận dữ liệu
- 4. không dùng
- 5. đất
- 6. 5v DC (điện trở trong 100Ω
- 7. 24v DC (1 20 ma)
- 8. truyền và nhân dữ liêu
- 9. không dùng.

Hình 6.2. Cổng truyền thông

1.2. Thông số

• Với CPU 214:

- + 14 cổng vào và 10 cổng ra logic, có thể mở rộng thêm 7 module bao gồm cả module analog,
 - + Tổng số cổng vào và ra cực đại là: 64 vào, 64 ra,
- + 2048 từ đơn (4 Kbyte) thuộc miền nhớ đọc/ghi không đổi để lưu chương trình (vùng nhớ giao diện với EFROM),
- + 2048 từ đơn (4 Kbyte) thuộc miền nhớ đọc/ghi để ghi dữ liệu, trong đó có 512 từ đầu thuộc miền không đổi,
- + 128 bộ thời gian (times) chia làm ba loại theo độ phân dải khác nhau: 4 bộ 1ms 16 bộ 10 ms và 108 bộ 100 ms,

- + 128 bô đếm chia làm hai loại: chỉ đếm tiến và vừa đếm tiến vừa đếm lùi,
- + 688 bít nhớ đặc biệt để thông báo trạng thái và đặt chế độ làm việc,
- + Các chế độ ngắt và xử lý ngắt gồm: ngắt truyền thông, ngắt theo sườn lên hoặc xuống, ngắt thời gian, ngắt của bộ đếm tốc độ cao và ngắt truyền xung,
 - + Ba bộ đếm tốc độ cao với nhịp 2 KHZ và 7 KHZ,
 - + 2 bộ phát xung nhanh cho dãy xung kiểu I7ro hoặc kiểu PWM,
 - + 2 bộ điều chỉnh tương tự,
- + Toàn bộ vùng nhớ không bị mất dữ liệu trong khoảng thời gian 190^h khi PLC bị mất nguồn cung cấp.

Với CPU 212:

- + 8 cổng vào và 6 cổng ra logic, có thể mở rộng thêm 2 module bao gồm cả module analog,
 - + Tổng số cổng vào và ra cực đại là: 64 vào, 64 ra,
- + 512 từ đơn (lkbyte) thuộc miền nhớ đọc/ghi không đổi để lưu chương trình (vùng nhớ giao diện với EFROM),
 - + 512 từ đơn lưu dữ liệu, trong đó có 100 từ nhớ đọc/ghi thuộc miền không đổi,
 - + 64 bộ thời gian trễ (times) trong đó: 2 bộ 1 ms, 8 bộ 10 ms và 54 bộ 100 ms,
 - + 64 bộ đếm chia làm hai loại: chỉ đếm tiến và vừa đếm tiến vừa đếm lùi,
 - + 368 bít nhớ đặc biệt để thông báo trạng thái và đặt chế độ làm việc,
- + Các chế độ ngắt và xử lý ngắt gồm: ngắt truyền thông, ngắt theo sườn lên hoặc xuống, ngắt thời gian, ngắt của bộ đếm tốc độ cao và ngắt truyền xung,
- + Toàn bộ vùng nhớ không bị mất dữ liệu trong khoảng thời gian 50h khi PLC bị mất nguồn cung cấp.

2. Các module vào ra mở rộng

Khi quá trình tự động hoá đòi hỏi số lượng đầu và đầu ra nhiều hơn số lượng sẵn có trên đơn vị cơ bản hoặc khi cần những chức năng đặc biệt thì có thể mở rộng đơn vị cơ bản bằng cách gá thêm các module ngoài. Tối đa có thể gá thêm 7 module vào ra qua 7 vị trí có sẵn trên panen về phía phải. Địa chỉ của các vị trí của module được xác định bằng kiểu vào ra và vị trí của module trong rãnh, bao gồm có các module cùng kiểu. Ví dụ một module cổng ra không thể gán địa chỉ module cổng vào, cũng như module tương tự không thể gán địa chỉ như module số và ngược lại.

Các module số hay rời rạc đều chiếm chỗ trong bộ đệm, tương ứng với số đầu vào ra của module.

Cách gán địa chỉ được thể hiện trên hình 6.3.

CPU 214	Module 0	Module 1	Module 2	Module 3	Module 4
	(4 vào, 4 ra)	(8 vào)	analog	(8 ra)	analog
			(3 vào, 1 ra))	(3vào,1 ra)
IO.0 QO.O	I2.0	13.0	AIW0	Q3.0	AIW8
IO.1 QO.1	I2.1	I3.1	AIW2	Q3.1	AIW10
IO.2 QO.2	I2.2	I3.2	AIW3	Q3.2	AIW 12
IO.3 QO.3	I2.3	I3.3	AIW4	Q3.3	
IO.4 QO.4		I3.4		Q3.4	AQW4
IO.5 QO.5	Q2.0	13.5	AQWO	Q3.5	
IO.6 QO.6	Q2.1	I3.6		Q3.6	
IO.7 QO.7	Q2.2	I3.7		Q3.7	
I1.0 Q1.0	Q2.3				
I1.1 Ql.1					
I1.2					
I1.3					
I1.4					
I1.5					

Hình 6.3. Địa chỉ các module mở rộng của S7-200

§6.2. Cấu trúc bộ nhớ

Bộ nhớ của PLC S7-200 được chia thành 4 vùng chính đó là:

1. Vùng nhớ chương trình

Vùng nhớ chương trình là miền bộ nhớ được sử dụng để lưu giữ các lệnh chương trình. Vùng này thuộc kiểu không đổi (non-volatile) đọc / ghi được.

2. Vùng tham số

Vùng tham số lưu giữ các tham số như: từ khoá, địa chỉ trạm... vùng này thuộc vùng không đổi đọc / ghi được.

3. Vùng dữ liệu

Vùng dữ liệu để cất các dữ liệu của chương trình gồm kết quả của các phép tính, các hằng số trong chương trình.... vùng dữ liệu là miền nhớ động, có thể truy nhập theo từng bít, byte, từ (word) hoặc từ kép.

Vùng dữ liệu được chia thành các vùng nhớ nhỏ với các công dụng khác nhau đó là:

STT	STT Tên tham số	Diễn giải	Tham số		
311	Tell tilalli so	Dien giai	CPU 212	CPU214	
1	V	Là miền đọc ghi	0.0 ÷1023.7	$0.0 \div 4095.7$	
2	I	Đệm cổng vào	$0.0 \div 7.7$	$0.0 \div 7.7$	
3	Q	Đệm cổng ra	$0.0 \div 7.7$	$0.0 \div 7.7$	
4	M	Vùng nhớ nội	0.0 ÷ 15.7	$0.0 \div 31.7$	
5	SM chỉ đọc	Vùng nhớ đặc biệt	$0.0 \div 29.7$	$0.0 \div 29.7$	
6	SM đọc/ghi	Vùng nhớ đặc biệt	30.0 ÷ 45.7	30.0 ÷ 85.7	

Địa chỉ truy nhập được quy ước với công thức:

* Truy nhập theo bít:

Tên miền + địa chỉ byte . chỉ số bít.

Ví dụ: V 150.4 là địa chỉ bít số 4 của byte 150 thuộc miền V

* Truy nhập theo byte:

Tên miền + B và địa chỉ byte.

Ví dụ: VB150 là địa chỉ byte 150 thuộc miền V.

* Truy nhập theo từ (word):

Tên miền + W và địa chỉ byte cao của từ.

Ví dụ: VW150 là địa chỉ từ đơn gồm hai byte 150 và 151 thuộc miền V, trong đó byte 150 có vai trò byte cao của từ.

* Truy nhập theo từ kép:

Tên miền + D và địa chỉ byte cao của từ.

Ví dụ: VD150 là địa chỉ từ kép gồm bốn byte 150, 151, 152 và 153 thuộc miền V, trong đó byte 150 có vai trò byte cao, 153 có vai trò là byte thấp của tử kép.

Tất cả các byte thuộc vùng dữ liệu đều có thể truy nhập bằng con trỏ. Con trỏ được định nghĩa trong miền V hoặc các thanh ghi AC1, AC2, AC3. Mỗi con trỏ chỉ địa chỉ gồm 4 byte (từ kép). Quy ước sử dụng con trỏ để truy nhập như sau:

& + địa chỉ byte cao

 $Vi d\mu$: + AC1 = &VB150 là thanh ghi AC1 chứa địa chỉ byte 150 thuộc miền V.

- + VD100 = &VW150 là từ kép VD100 chứa địa chỉ byte cao của từ đơn VW150 thuộc miền V.
- + AC2 : &VD150 là thanh ghi AC2 chứa địa chỉ byte cao 150 của từ kép VD150 thuộc miền V.

Toán hạng * (con trỏ): là lấy nội dung của byte, từ hoặc từ kép mà con trỏ đang chỉ vào. Với các địa chỉ đã xác định trên có các ví dụ:

Ví dụ: + Lấy nội dung của byte VB150 là: *ACI.

- + Lấy nội dung của từ đơn VW150 là: *VD100.
- + Lấy nội dung của từ kép VD150 là: *AC2.

Phép gán địa chỉ và sử dụng con trỏ như trên cũng có tác dụng với những thanh ghi 16 bít của bộ thời gian, bộ đếm thuộc đối tượng.

4. Vùng đối tượng

Vùng đối tượng để lưu giữ dữ liệu cho các đối tượng lập trình như các giá trị tức thời, giá trị đặt trước của bộ đếm, hay bộ thời gian. Dữ liệu kiểu đối tượng bao gồm các thanh ghi của bộ thời gian, bộ đếm, các bộ đếm cao tốc, bộ đệm tương tự và các thanh ghi AC.

Kiểu dữ liệu đối tượng bị hạn chế rất nhiều vì các dữ liệu kiểu đối tượng chỉ được ghi theo mục đích cần sử dụng của đối tượng đó.

TT	Tên	Diễn giải	Tham số		
11	tham số		CPU 212	CPU 214	
1	ACO	ắc quy 0 (không có khả năng làm	ắc quy 0 (không có khả năng làm con trỏ)		
2	AC	ắc quy	1 ÷ 3	1 ÷ 3	
3	C	Bộ đếm	0 ÷ 63	0 đến 127	
4	HSC	Bô đếm tốc độ cao		0 đến 2	
5	AW	Bộ đệm cổng vào tương tự	0 ÷ 30	0 đến 30	
6	AQW	Bộ đệm cổng ra tương tự	0 ÷ 30	0 đến 30	
7	T	Bộ thời gian	0 ÷ 63	0 đến 127	

§6.3. Chương trình của S7-200

1. Cấu trúc chương trình S7-200

Các chương trình điều khiển PLC S7-200 được viết có cấu trúc bao gồm chương trình chính (main program) sau đó đến các chương trình con và các chương trình sử lý ngắt như hình 6.4

- Chương trình chính được kết thúc bằng lệnh kết thúc chương trình MEND
- Chương trình là một bộ phận của chương trình, chương trình con được kết thúc bằng lệnh RET. Các chương trình con phải được viết sau lệnh kết thúc chương trình chính MEND.

Hình 6.4. Cấu trúc chương trình của S7-200

- Các chương trình xử lý ngắt là một bộ phận của chương trình, các chương trình xử lý ngắt được kết thúc bằng lệnh RETI. Nếu cần sử dụng chương trình xử lý ngắt phải viết sau lệnh kết thúc chương trình chính MEND.

Các chương trình con được nhóm lại thành một nhóm ngay sau chương trình chính, sau đó đến ngay các chương trình xử lý ngắt. Có thể tự do trộn lẫn các chương trình con và chương trình xử lý ngắt đằng sau chương trình chính.

2. Bảng lệnh của S7-200

Xem phần phụ lục 2.

§6.4. Lập trình một số lệnh cơ bản của S7-200

1. Lệnh LD và lệnh A

Lập trình dạng STL

LD	I	0.0
A	I	0.1
A	I	0.2
=	Q	1.0

2. Lệnh AN

Lập trình dạng STL

LD	I	0.0
AN	I	0.1
A	I	0.2
=	Q	1.0

3. Lệnh O

Lập trình dạng STL

LD	I	0.0
O	I	0.1
O	I	0.2
=	Q	1.0

4. Lệnh ON

Lập trình dạng STL LD I 0.0 ON I 0.1

O I 0.2= Q 1.0

5. Lệnh OLD

Lập trình dạng STL

6. Lệnh ALD

Lập trình dạng STL

Hình 6.6. Lệnh AN

Hình 6.7. Lệnh O

Hình 6.8. Lệnh ON

Hình 6.9: Lệnh OLD

Hình 6.10. ALD

LD	I	0.0
LD	I	0.1
O	I	0.2
ALD		
=	O	1.0

7. Lệnh LPS, LRD,LPP

Lập trình dạng STL

LD I 0.0

LD I 0.1

O I 0.2

ALD

= Q 0.0

LRD

LD I 0.3

0 I 0.4

ALD = Q 0.1

LPP

AI 0.5 = Q 0.2

8. Lệnh TON

NETWORK 1

LD I0.0

AN I0.1

ION T32, VW0

NETWORK 2

LD T32 = Q0

9. Lệnh TONR

NETWORK 1

LD I0.0

AN I0.1

TONR T32, VW0

NETWORK 2

LD T32 = Q0.0

10. Lệnh CTU

NETWORK 1

LD I0.0

Hình 6.11. Lệnh LPS, LRD, LPP

Hình 6.12. Lệnh TON

Hình 6.13. Lệnh TONR

Hình 6.14. Lệnh CTU

LD I0.2

CTU C0, +12

NETWORK 2

LD C0 = Q0.0

11. Lệnh CTUD

NETWORK 1

LD I0.0

LD I0.2

LD I0.1

CTUD C48, VW0

NETWORK 2

LD C0 = Q0.0

Hình 6.15. Lệnh CTUD

CHƯƠNG 7: BỘ ĐIỀU KHIỂN PLC - S7-300

§7.1. Cấu hình cứng

1. Cấu tạo của họ PLC- S7-300

PLC Step S7-300 thuộc họ Simatic do hãng Siemens sản xuất. Đây là loại PLC đa khối. Cấu tạo cơ bản của loại PLC này là một đơn vị cơ bản (chỉ để xử lý) sau đó ghép thêm các module mở rộng về phía bên phải, có các module mở rộng tiêu chuẩn. Những module mở rộng này bao gồm những đơn vị chức năng mà có thể là hợp lại cho phù hợp với những nhiệm vụ kỹ thuật cụ thể.

1.1. Đơn vi cơ bản

Đơn vị cơ bản của PLC S7-300 như hình 7.1.

Hình 7.1. Hình khối mặt trước CPU-314

Trong đó:

Các đèn báo:

- + Đèn SF: báo lỗi CPU,
- + Đèn BAF: báo nguồn ắc quy,
- + Đèn DC 5v: Báo nguồn 5v,
- + Đèn RUN: Báo chế độ PLC đang làm việc,
- + Đèn STOP: Báo PLC dang ở chế độ dừng.
- 2. Công tắc chuyển đổi chế độ:
- + RUN-P: Chế độ vừa chạy vừa sửa chương trình,
- + RUN: Đưa PLC vào chế độ làm việc,
- + STOP: Để PLC ở chế đô nghỉ,
- + MRES: Vị trí chỉ định chế độ xoá chương trình trong CPU.

Muốn xoá chương trình trong PLC thì giữ nút bấm về vị trí MRES để đèn STOP nhấp nháy, khi thôi không nhấp nháy thì nhả nhanh tay. Làm lại nhanh một lần nữa (không để ý đèn STOP) nếu đèn vàng nháy nhiều lần là xong, nếu không thì phải làm lai.

1.2. Các kiểu module

Tuỳ theo quá trình tự động hoá đòi hỏi số lượng đầu vào và đầu ra mà phải lắp thêm bao nhiêu module mở rộng cũng như loại module cho phù hợp. Tối đa có thể gá thêm 32 module vào ra trên 4 panen (rãnh), trên mỗi panen ngoài module nguồn, CPU và module ghép nối còn gá được 8 các module về bên phải. Thường Step 7- 300 sử dụng các module sau:

- + Module nguồn PS,
- + Module ghép nối IM (Intefare Module),
- + Module tín hiệu SM (Signal Module):
 - Vào số các loại: 8 kênh, 16 kênh, 32 kênh,
 - Ra số các loại: 8 kênh, 16 kênh, 32 kênh,
 - Vào ra số các loại: 8 kênh vào 8 kênh ra, 16 kênh vào 16 kênh ra,
 - Vào tương tự các loại: 2 kênh, 4 kênh, 8 kênh,
 - Ra tương tự các loại: 2 kênh, 4 kênh, 8 kênh,
 - Vào, ra tương tự các loại: 2 kênh vào 2 kênh ra, 4 kênh vào 4 kênh ra,
- + Module hàm (Function Module),
 - Đếm tốc độ cao,
 - Truyền thông CP 340, CP340- 1, CP341,
- + Module điều khiển (Control Module):
 - Module điều khiển PID,
 - Module điều khiển Fuzzy,
 - Module điều khiển rô bốt,
 - Module điều khiển động cơ bước,
 - Module điều khiển động cơ servo.

2. Địa chỉ và gán địa chỉ

Trong PLC các bộ phận con gửi thông tin đến hoặc lấy thông tin đi đều phải có địa chỉ để liên lạc. Địa chỉ là con số hoặc tổ hợp các con số đi theo sau chữ cái. Chữ cái chỉ loại địa chỉ, con số hoặc tổ hợp con số chỉ số hiệu địa chỉ.

Trong PLC có những bộ phận được gán địa chỉ đơn như bộ thời gian (T), bộ đếm (C).... chỉ cần một trong 3 chữ cái đó kèm theo một số là đủ, *ví dụ::* T1, C32...

Các địa chỉ đầu vào và đầu ra cùng với các module chức năng có cách gán địa chỉ giống nhau. Địa chỉ phụ thuộc vào vị trí gá của module trên panen. Chỗ gá module

trên pancn gọi là khe (Slot), các khe đều có đánh số, khe số 1 là khe đầu tiên của và cứ thế tiếp tục.

①. Đia chỉ vào ra trên module số:

Khi gá module số vào ra lên một khe nào lập tức nó được mạng địa chỉ byte của khe đó, mỗi khe có 4 byte địa chỉ.

Trên mỗi module thì mỗi đầu vào, ra là một kênh, các kênh đều có địa chỉ bít là 0 đến 7. Địa chỉ của mỗi đầu vào, ra là số ghép của địa chỉ byte và địa chỉ kênh, địa chỉ byte đứng trước, địa chỉ kênh đứng sau, giữa hai số có dấu chấm. Khi các module gá trên khe thì địa chỉ được lính tử byte đầu của khe, các đầu vào và ra của một khe có cùng địa chỉ. Địa chỉ byte và địa chỉ kênh như hình 7.2.

Ví dụ: Module 2 dấu vào, 2 đầu ra số gá vào khe số 5 rãnh 0 có địa chỉ là 14.0,I4.1 và Q4.0, Q4.1.

Module số có thể được gá trên bất kỳ khe nào trên panen của PLC.

2. Địa chỉ vào ra trên module tương tự

Để diễn tả một giá trị tương tự phải cân nhiều bít. Trong PLC S7-300 người ta dùng 16 bít (một word) cho một kênh. Một khe có 8 kênh với địa chỉ đầu liên là PIW256 hoặc PQW256 (byte 256 và 257) cho đến PIW766 hoặc PQW766 như hình 7.3

Module tương tự có thể được gá vào bất kỳ khe nào trên panen của PLC.

Vi dụ: Một module tương tự 2 vào, 1 ra gá vào khe số 6 rãnh 0 có địa chỉ là PIW288, PIW290, PQW288.

Chú ý: Các khe trống bao giờ cũng có trạng thái tín hiệu "0".

§7.2. Vùng đối tượng

1. Các vùng nhớ

Bång 7.1

TT	Tên tham số	Diễn giải	vùng tham số
1	I	Đầu vào bít	0.0 đến 65535.7
2	IB	Đầu vào byte	0 đến 65535
3	IW	Đầu vào từ	0 đến 65534
4	ID	Đầu vào tử kép	0.0 đến 65532
5	Q	Đầu ra bít	0 đến 65535.7
6	QB	Đầu ra byte	0 đến 65535
7	QW	Đầu ra từ	0 đến 65534
8	QD	Đầu ra từ kép	0 đến 65532
9	M	Nhớ nội dạng bít	0.0 đến 255.7
10	MB	Nhớ nội dạng byte	0 đến 255
11	MW	Nhớ nội dạng từ	0 đến 254
12	MD	Nhớ nội dạng từ kép.	0 đến 252
13	PIB	Vùng đệm đầu vào dạng byle	0 đến 65535
14	PIW	Vùng đệm đầu vào dạng tử	0 đến 65534
15	PID	Vùng đệm đầu vào dạng từ kép	0 đến 65532
16	PQB	Vùng đệm đầu ra dạng byte	0 đến 65535
17	PQW	Vùng đệm đầu ra dạng từ	0 đến 65534
18	PQD	Vùng đệm đầu ra dạng tử kép	0 đến 65532
19	T	Bộ thời gian	0 đến 255
20	С	Bộ đếm	0 đến 255
21	DBX	Khối dữ liệu kiểu BD dạng bít	0.0 đến 65535.7
22	DBB	Khối dữ liệu kiểu BD dạng byte	0 đến 65535
23	DBW	Khối dữ liệu kiểu BD dạng tử	0 đến 65534
24	DBD	Khối dữ liệu kiểu BD dạng từ kép	0 đến 65532

TT	Tên tham số	Diễn giải	vùng tham số
25	DIX	Khối dữ liệu kiểu BI dạng bít	0.0 đến 65535.7
26	DIB	Khối dữ liệu kiểu BI dạng byte	0 đến 65535
27	DIW	Khối dữ liệu kiểu BI dạng từ	0 đến 65534
28	DID	Khối dữ liệu kiểu BI dạng tử kép	0 đến 65532
29	L	Vùng dữ liệu tạm thời dạng bít 0.0 đến 6553	
30	LB Vùng dữ liệu tạm thời dạng byte 0 đến 65		0 đến 65535
31	LW	Vùng dữ liệu lạm thời dạng lử 0 đến 6553	
32	LD	Vùng dữ liệu tạm thời dạng từ kép	0 đến 65532

2. Nhập các hằng số

Các hằng số được viết gồm phần đầu và tham số di liền nhau *ví dụ*: B#16#1A là số: viết dạng byte, cơ số 16, giá trị là 1A tương ứng cơ số thập phân là 26.

Các hằng số về thời gian được viết theo các ký hiệu: D (Date) ngày_ H (Hours) giờ M (minuter) phút_ S (seconds) giây_ MS (milliseconds) mili giây *ví dụ* 2D_23H_10M_50S_13MS là: 2 ngày, 23 giờ, 10 phút, 50 giây, 13 mili giây.

Các kiểu viết hằng số được thể hiện trên bảng 7.2:

Bång 7.2

Loại	Bít	Cơ số	Phần dầu	Phạm vi tham số
Byte	8	16	B#16#	0 đến rF
Từ	16	2	2#	0 đến 1111_1111_1111_1111
		16	W# 16#	0 đến FFFF
		BCD	C#	0 đến 999
		10 không dấu	В#	(0,0) đến (255,255)
Từ kép	32	16 10 không dấu	2#	0 đến 1111_1111_1111_1
			DW#16#	1111_1111_1111
			B#	0000_0000 đến FFFF_FFFF
				(0,0,0,0) đến (255,255,255,255)
Số thực	16	có dấu	(không có)	- 32768 đến 32767
Số thực	32	có dấu	L#	- 2147483648 đến + 2147483647
Số thực	32	dấu phảy động	(không có)	lớn hơn ± 3,402823 e + 38
				nhỏ hơn ± 1.175495e - 38
Thời gian	16	giờ_phút_	S5T#	0H_0M_0S_10MS
	32	giây_miligiây		2H_46M_30S_0MS
		ngày_giò_	<i>T#</i>	-24D_20H_31M_23S_648MS đến
		phút_giây_ miligiây		24D_20H_31M_23S_647MS
Ngày		Năm_tháng_ngày	D#	1990-1-1 đến 2168-12-31
mi v	22	. 17	TOD!	0 0 0 0 16 22 50 50 000
Thời gian	32	giờ:phút:	TOD#	0:0:0:0 đến 23:59:59.999
của ngày		giây.ngày	٠,	77.6. (1 () 1 () 77.4.
Ký tự	8		• • • •	Viết các ký tự như 'HA'

§7.3. Ngôn ngữ lập trình

1. Cấu trúc chương trình S7-300

Các chương trình điều khiển với PLC S7-300 có thể được viết ở dạng đơn khối hoặc đa khối.

Chương trình đơn khối

Chương trình đơn khối chỉ viết cho các công việc tự động đơn giản, các lệnh được viết tuần tự trong một khối. Khi viết chương trình đơn khối người ta dùng khối OB1. Bộ PLC quét khối theo chương trình, sau khi qua đến lệnh cuối cùng nó quay trở lại lệnh đầu tiên.

Chương trình đa khối (có cấu trúc)

Khi nhiệm vụ tự động hoá phức tạp người ta chia chương trình điều khiển ra thành từng phần riêng gọi là khối. Chương trình có thể xếp lồng khối này vào khối kia. Chương trình đang thực hiện ở khối này có thể dùng lệnh gọi khối để sang làm việc với khối khác, sau khi đã kết thúc công việc ở khối mới nó quay về thực hiện tiếp chương trình đã tạm dừng ở khối cũ.

Các khối được xếp thành lớp. Mỗi khối có:

- + Đầu khối gồm tên khối, số hiệu khối và xác định chiều dài khối.
- + Thân khối: Thể hiện nội dung khối và được chia thành đoạn (Segment) thực hiện từng công đoạn của tự động hoá sản xuất. Mỗi đoạn lại bao gồm một số dòng lệnh phục vụ việc giải bài toán logic. Kết quả của phép toán logic được gửi vào RLO (Result of logic operation). Việc phân chia chương trình thành các đoạn cũng ảnh hưởng đến RLO. Khi bắt đầu một đoạn mới thì tạo ra một giá trị RLO mới, khác với giá trị RLO của đoạn trước.
 - + Kết thúc khối: Phấn kết thúc khối là lệnh kết thúc khối BEU.

Các loai khối:

* Khối tổ chức OB (Organisation Block)

Khối tổ chức quản lý chương trình điều khiển và tổ chức việc thực hiện chương trình.

* Khối hàm số FC (Functions)

Khối hàm số FC là một chương trình do người sử dụng tạo ra hoặc có thể sử dụng các hàm chuẩn sẵn có của SIEMENS.

* Khối hàm FB (Function Block)

Khối hàm là loại khối đặc biệt dùng để lập trình các phần chương trình điều khiển tái diễn thường xuyên hoặc đặc biệt phức tạp. Có thể gán tham số cho các khối đó và chúng có một nhóm lệnh mở rộng. Người sử dụng có thể tạo ra các khối hàm mới cho mình, có thể sử dụng các khối hàm sẵn có của SIEMENS.

* Khối dữ liêu: có hai loại là

+ Khối dữ liệu dùng chung DB (Sllared Data Block)

Khối dữ liệu dùng chung lưu trữ các dữ liệu chung cần thiết cho việc xử lý chương trình điều khiển.

+ Khối dữ liệu riêng DI (Instance Data Block)

Khối dữ liệu dùng riêng lưu trữ các dữ liệu riêng cho một chương trình nào đó trong việc xử lý chương trình điều khiển.

Ngoài ra trong PLC S7-300 còn hàm hệ thống SFC (System Function) và khối hàm hệ thống SFB (System Function Block).

2. Bảng lệnh của S7-300

Xem phần phụ lục 2.

§7.4. Lập trình một số lệnh cơ bản

1. Nhóm lệnh 1ogic

1.1 Lệnh LD và lệnh A

Lập trình dạng STL

$$=$$
 Q 1.0

1 2. Lệnh AN

Lập trình dạng STL

$$=$$
 Q 1.0

1.3. Lệnh O

Lập trình dạng STL

$$=$$
 Q 1.0

1.4. Lênh ON

Lập trình dạng STL.

Hình 7.5. Lệnh AN

Hình 7.6: Lệnh O

$$O I 0.2$$

= $Q 1.0$

1.5. Lệnh A và lệnh O

Lập trình dạng STL

A I 0.0 A I 0.1 O I 0.2

Q

1.0

1.6. Lệnh "(" và lệnh ")"

=

Lập trình dạng STL

A I 0.0
A(
O I 0.1
O I 0.2
)
= Q 1.0

10.0 10.1 Q1.0

10.2

110.1 Lệnh OLD

Hình 7.9. Lệnh "(" và lệnh")"

17. Lập trình với vùng dữ liệu tạm thời L

0.0 A I 20.0 = L L 20.0 Α A(I 0.1 O Ι 0.2 O) Q 0.0 = A L 20.0 A(0.3 O I I O 0.4) 0.1 Q 20.0 Α L

I

Q

0.5

0.2

Hình 7.10. Lập trình với vùng dữ liệu tạm thời

A

=

1.8. Lập trình với bít nhớ nội M

2. Nhóm lệnh thời gian

Chương trình điều khiển sử dụng các lệnh thời gian để theo dõi, kiểm soát và quản lý các hoạt động có liên quan đến thời gian.

Khi một bộ thời gian được khởi phát thì giá trị thời gian cần được nạp vào thanh ghi CV (Current value). Do đó, muốn dùng các lệnh thời gian phải nạp giá trị thời gian cần đặt vào thanh ghi CV trước khi bộ thời gian hoạt động.

Có thể nạp các kiểu dữ liệu sau dùng cho các lệnh thời gian:

- + Dữ liệu thời gian thực: S5T#H_M_S_MS
- + Dạng số nguyên 16 bít: W#16#.... (ở dạng mã BCD)
- Nạp thời gian thực: L S5T#10s

Với lệnh trên giá trị thời gian được nạp là 10s

• Nạp thời gian dạng mã BCD:

Ví dụ: L W#16#2127

Số trên sẽ được nạp vào thanh ghi CV dạng mã BCD như hình 7. 12.

Trong thanh ghi CV thì:

Ba số cuối chỉ hệ số: Số 127 (có thể gán từ 0 đến 999)

Số đầu chỉ mã số: Số 2. có 4 mã:

0 tương ứng 0,01 s

1 tương ứng 0,1 s

2 tương ứng 1s

3 tương ứng 10s

Với số đã vào thanh ghi CV như trên thì thời gian được tính là

$$\Delta t : 127 \times 1s = 127s$$
.

Với mã càng nhỏ thì giá trị thời gian càng chính xác, vì vậy nên dùng mã nhỏ.

Hình 7.12. Nạp hằng số thời gian dạng mã BCD

Trong các bộ thời gian của S7-300 ngoài tín hiệu kích thích chính (bắt đầu) như các bộ thời gian của các PLC khác, còn có tín hiệu kích thích cưỡng bức, tín hiệu kích thích cưỡng bức cho phép tính lại thời gian từ đầu khi có sườn lên của tín hiệu này, tuy nhiên tín hiệu kích thích cưỡng bức chỉ có giá trị khi tín hiệu kích thích chính có giá trị 1. Lệnh thực hiện kích thích cưỡng bức (có điều kiện) là: FR.

Lệnh FR chỉ có ở dạng lập trình STL. Bộ thời gian cũng có thể dùng lệnh R dễ xoá.

2.1. Bộ thời gian xung SP

Bộ thời gian được khởi phát lên 1 tại sười lên của RLO khi RLO là 1 thì bộ thời gian vẫn duy trì trạng thái 1 cho đến khi đạt giá trị đặt mới xuống. Nhưng khi RLO về không thì bộ thời gian về không ngay.

Có hai kiểu lập trình:

Kiểu thứ nhất có lênh NOP:

A	I	0.1			
L	S5T#	S5T#10S			
SP	T	1			
A	I	0.2			
R	T	1			
NOP	0				
NOP	0				
A	T	1			
=	Q	1.0			

Dạng LA D hình 7. 13.

Hình 7.13. Dang LAD và giản đồ thời gian lênh SP kiểu 1

Trong lập trình trên còn hai chân BI và BCD chưa sử dụng phải dùng lệnh NOP để giữ chỗ. Chân BI là chân để lấy giá trị thời gian hiện thời dạng nhị phân, chân BCD là chân để lấy giá trị thời gian hiện thời dạng mã BCD, có thể dùng lệnh L hoặc LC để đọc các giá trị thời gian.

Kiểu thứ hai (không dùng lệnh NOP)

2.2. Bộ thời gian mở rộng SE

Bộ thời gian xung mở rộng SE được khởi phát lên 1 lại sườn lên của RLO sau đó không phụ thuộc RLO nữa cho đến khi đủ thời gian đặt mới về không. Cũng tương tự như bộ thời gian SP, ở các bộ thời gian khác cũng luôn có hai kiểu lập trình.

Thời gian bắt đầu chậm hơn so với sườn của RLO một khoảng bằng

Hình 7.15. Lênh SE

thời gian đặt trong lệnh. Khi RLO về không thì bộ thời gian cũng bị đặt ngay về

không.

2.4.Bộ thời gian bắt đầu trễ 1ưu trữ SS

Thời gian bắt đầu chậm hơn so với sườn lên của RLO một khoảng thời gian bằng thời gian đặt trong lệnh và sau đó không phụ thuộc RLO nữa. Nó chỉ về không khi có lênh xoá R.

Hình 7.17. Lệnh SS

2.5. Bộ thời gian tắt trễ SF

Bộ thời gian lên 1 tại sườn lên của RLO. Khi RLO về không thì bộ thời gian tiếp tục duy trì trạng thái một khoảng thời gian nữa bằng khoảng đã đặt trong lệnh rồi mới về không. Để xoá thời gian dùng lệnh R, khi có lệnh R từ 0 lên 1 thì bộ thời gian được đặt về không và trạng thái tín hiệu vẫn giữ 0 cho đến khi bộ thời gian được khởi phát

lai.

Giá trị trong thanh ghi CV (current value) là giá trị đếm tức thời

của bộ đếm, CV luôn không âm, do đó lệnh đếm lùi sẽ không dẫn khi CV = 0.

Giá trị đếm PV có thể được đặt trước bằng lệnh L, ví dụ L C#4 (đặt giá trị đếm bằng 4). Tuy nhiên, khác với bộ thời gian, giá trị đếm chỉ được nạp vào CV khi có lệnh đặt bộ đếm (S). Nếu không đặt giá trị đếm thì bộ đếm có thể vẫn tiến hành đếm (chỉ khi CV = 0 thì không đếm lùi).

Giá trị đầu ra của bộ đếm sẽ là 1 nếu $CV \neq 0$, bằng 0 nếu CV = 0.

Bộ đếm có thể được xoá chủ động bằng tín hiệu xoá R.

Cũng tương tự như bộ thời gian, bộ đếm cũng có thể dùng lệnh kích đếm (đếm cưỡng bức) FR (lệnh có điều kiện), bộ đếm cũng đếm xung khi điều kiện của FR đảm bảo. Lệnh FR chỉ có ở dạng lập trình STL.

Có thể dùng lệnh L hoặc LD để đọc giá trị tức thời của bộ đếm vào ACCU1 để xử lý. Lệnh L đọc số dạng cơ số 2, lệnh LD đọc số dạng BCD.

3.1. Lệnh đếm lên CU

I	0.0
C	2
101	
C	2
Q	1.0
	C 101

Lệnh BLD để hiển thị dạng LAD. Với các lệnh trên khi đầu vào IO 0 có sườn lên thì giá trị bộ đếm CV tăng thêm 1 đơn vị, tức là khi đã có chỉ một lần sườn lên của 10.0 thì đầu ra Qui luôn là 1 (không xoá).

Chân CV là chân để lấy giá trị đếm dạng nhị phân, chân CV_BCD là chân để lấy giá trị đếm dạng mã BCD, có thể dùng lệnh L hoặc LC để đọc các giá trị đếm.

3.2. Lệnh đếm xuống CD

Trong phần lập trình trên có: Lệnh L C#4 là nạp số đếm bằng 4. Trên hình 7.20 khi 10.0 có trước, bộ đếm vẫn không làm việc vì khi đó CV = 0, cho đến khi có lệnh đặt bộ đếm, 10.1 có thì bộ đếm bắt đầu được nạp giá trị đếm, CV = 4. Từ khi này mỗi lần 10.0 có thì giá trị đếm giảm một đơn vị, sau 4 xung vào giá trị đếm CV = 0 Khi $CV \neq 0$ đầu ra Q1.0 có, khi CV = 0 đầu ra Q1.0 mất.

3.3. Lênh đếm vừa tiến vừa lùi

A	I	0.0
CU	C	1
A	I	0.1
CD	C	1
A	I	0.2
L	C#3	
A	I	0.3
R	C	1

Hình 7.21. Xung đếm lệnh đếm xuống CD

L C 1
T MW 0
LC C 1
T MW 1
A C 1
= Q 1.0

Từ giản đồ nhận thấy: khi đầu vào đếm tiến có lập tức bộ đếm làm việc, giá trị đếm tăng 1 đơn vị, $CV \neq 0$, đầu ra Q 1.0 có. Tiếp đó đầu vào đếm lùi có, do do bộ đếm lại giảm 1 đơn vị (CV = O) đầu ra Q1.0 lại mất.

Tuy nhiên, nếu đầu vào đếm lùi có trước thì bộ đếm không đếm vì khi đó CV = 0 Tiếp đó dấu vào đặt bộ đếm SET có làm giá trị đếm được nạp vào CV (CV = 3), từ đó nếu có đầu đếm tiến thì giá trị đếm tăng 1 đơn vị, có đầu đếm lùi giá trị đếm giảm 1 đơn vị, đầu ra Q1.0 có. Khi có đầu RESET giá trị đếm lập tức về 0, đầu ra Q1.0 về 0.

PHỤ LỤC 1 CÁC PHẦN MỀM LẬP TRÌNH PLC

1. Tập trình cho OMRON

1. Phần mềm SYSWIN (cho OMRON)

Phần hướng dẫn được thực hiện trên version 3.2.

1.1. Khởi động

Hình P.1. Khởi động phần mềm SYSWIN

- 1. Khởi động máy tính ở chế độ Windows, bật công tác nguồn của khối PLC.
- 2. Khởi động phần mềm SYSWIN từ biểu tượng hoặc từ file chương trình như hình P. 1. Cửa sổ màn hình ban đầu có dạng như hình P.2. Trong cửa sổ có 2 thanh công cụ hỗ trợ cho quá trình soạn thảo chính là:
 - Thanh trên: ngoài một số chức năng như soạn thảo văn bản bình thường còn một số chức năng để soạn thảo lệnh như chỉ ra trên hình P.3.
 - Thanh dọc: Lần lượt tử trên là: Con trỏ (để chọn), tiếp điểm thường hỏ, thường kín, thanh nối ngang, thanh nối dọc, cuộn dây thường mỏ, cuộn dây thường đóng, khối hàm (RUN), bộ thời gian (TIM), bộ đếm (CNT).

Hình P.2. Màn hình ban đầu

- 3. Kiểm tra một số điều kiện trước khi tập trình:
- + Kiểm tra xem máy tính đã được kết nối với PLC chưa. Khi máy tính đã được kết nối với PLC thì biểu tượng kết nối sáng, nếu chưa được kết nối thì nháy vào biểu tượng kết nối hệ thống sẽ tự kết nối với PLC.
- + Nếu sự kết nối không thực hiện được có thể phải khai báo lại cổng như chỉ ra trên hình P.4. (đường dẫn Project \ Communications).

1.2. Soan thảo: Theo LAD

- 1. Mở một file chương trình mới hoặc một file chương trình đã có (chế độ mặc định đã có một file mới được mở ra).
 - 2. Nháy chuột trái vào khối muốn chọn (tiếp điểm, cuộn dây. khối hàm....).
- 3. Đưa con cho đến vị trí đặt lệnh (vị trí tô đen), nháy chuột trái và vào địa chỉ lệnh (đầu vào có các địa chỉ: 0, đến 11; đầu ra có các địa chỉ: 1000 đến 1007).
- 4. Khi cần ghi chú thích dưới mỗi lệnh thì chọn lệnh cần ghi chú thích, vào hộp SYM: (ở phía dưới màn hình như chỉ ra trên hình P.2) ghi những điều cần chú thích, câu chú thích phải liền nhau (không dùng dấu cách) sau đó chọn Store.
- 5. Kết thúc một Network chèn thêm Network một từ biểu tượng như chỉ ra trên hình P.3.
- 6. Nếu soạn sai Network nào thì đánh dấu và xoá Network đó từ biểu tượng hình P.3.

Hình P.3. Một số chức năng chính

- 7. Tiến hành soan thảo hết các Network.
- 8. *Kết thúc chương trình phải có lệnh kết thúc*. Muốn vào lệnh kết thúc thì chọn Netwoks và vị trí lệnh kết thúc, chọn FUN, nháy vào vị trí đặt lệnh, sau đó vào tên lệnh END(01) như chì ra trên hình P.3, hoặc chọn các khối ở mục Select sau đó chọn OK.
- 9. Để đổ chương trình sang PLC chọn Online \ Download program to PLC như trên hình P.5.
- Chú ý: Khi đổ chương trình sang PLC thì PLC phải đang ở trạng thái **MONITOR** hoặc trạng thái **PROGRAM** (**STOP/PRG**). Muốn chuyển đổi các trạng thái trên thì chọn Shift + F10 hoặc biểu tượng "PLC Mode" như hình P.3.
- 10 Để chạy chương trình chọn trạng thái **MONITOR** hoặc **RUN** tử biểu tượng "PLC Mode".

Hình P.4. Khai báo cổng ghép nối

2. Sử dụng thiết bị lập trình cầm tay (cho OMRON)

2.1. Cấu tạo thiết bị lập trình cầm tay

Thiết bị lập trình cầm tay có các khối chính như hình P.6.

- 1. Màn hình
- 2. Công tắc chọn chế độ: có 3 chế độ
- * PROGRAM: chế độ này để lập trình hoặc thực hiện các thay đổi chương trình,
- * MONITOR: Chế độ này để thay đổi các giá trị của bộ đếm và thời gian trong khi PLC vẫn đang vận hành,
- * **RUN**: Chế độ này để chạy chương trình dã nạp trong PLC (khi PLC đang ở chế độ này thì không đổ chương trình mới sang PLC được).
 - 3. Các phím lệnh,
 - 4. Các phím số,
 - 5. Các phím hàm.

Hình P.5. Đổ chương trình sang PLC

Hình P.6. Ghép nối PLC với thiết bị lập trình cầm tay

2.2. Các phím lệnh

FUN	Các lệnh ứng dụng đặc biệt	TIM	Lệnh điều khiển thời gian
LD H H	Lệnh nhập các tiếp điểm vào chương trình. (lệnh bắt đầu một Network).	CNT	Lệnh điều khiển bộ đếm
OR - -	Lệnh OR (nối song song)	NOT	Dùng kèm với các lệnh LD, AND, OR, OUT để thực hiện phép nghịch đảo
AND 	Lệnh AND (nối nối tiếp)	TR	Thiết lập các rơ le tạm thời
OUT -OH	Lệnh ra	AR HR	Thiết lập các rơ le duy trì
SET	Chỉ thị vận hành của bộ ghi dịch	SHIFT	Dùng để thay đổi các chức năng của các phím nhiều chức năng
A 0	Các phím số 0 đến 9 để nhập số thập phân, hexa.	CLR	Lệnh xoá trước khi lập trình

2.3. Thủ tục vào lệnh

1. Khởi động bộ tập trình cầm tay, công tắc chọn chế độ để ở chế độ **PROGRAM** hoặc chế độ **MONITOR**, vào **PASSWORD** (từ khoá) theo thứ tự sau:

- 2. Bắt đầu chương trình mới cần sử dụng lệnh CLR để xoá chương trình cũ.
- 3. Các lệnh được vào theo thứ tư:
- + Tên lệnh (các lệnh bát đầu một NETWORK là lệnh LD).
- + Tham số của lệnh: Không cần vào các số không đứng trước.
- + Kết thúc một lệnh là WRITE (viết vào PLC).
- 4. Kết thúc một chương trình phải có lệnh kết thúc. Lệnh kết thúc vào theo thứ tự:

Ví dụ: Chương trình của một mạch tự duy trì dạng LAD và STL như hình P.7:

6. Để chạy chương trình chuyển công tắc chọn chế độ sang RUN.

2. Lập trình cho PLC - S5

Sử dụng phần mềm Step5 for Win.

1. Trình tự thao tác

Hình P.8. Khởi động Step 5

Hình P.9. Màn hình ban đầu

- 1. Khởi động máy tính ở chế độ Windows, bật công tắc khối nguồn PS của PLC, công tắc của khối CPU để ở vị trí STOP.
 - 2. chạy trình Step5 từ file chương trình như hình P.8.

Màn hình chế độ bắt đầu có dạng như hình P.9.

- 3. Vào lúc \ Project \ Set (phần này có thể đái nhiều tham số, xem phần đặt tham số hình P.12 đến P. 17). Cần đặt 3 tham số cơ bản.
 - + Chon PLC \ Mode để đặt chế đô Online (chế đô kết nối với PLC).
 - + Chọn Blocks \ Representation để đặt chế độ soạn thảo STL.
- + Chọn Blocks \ Program Eile để tạo file mới, (nếu cần mở một file đã có thì vào đường dẫn và lên file, nếu sử dụng file ngay buổi làm việc trước và chương trình trước đây đã kết nối với PLC thì bỏ qua bước này) sau đó ấn Enter.
- 4. Vào chế độ soạn thảo từ Editor \ Step 5 Block...., hoặc ấn F1 (Edit). Màn hình trước soạn thảo có dạng như hình P.10.

Trong đó:

Block lisl: Vào tên của khối hoặc nhiều khối để soạn thảo.

Confirm before orerwriting: Nếu được chọn thì khi ghi đè máy sẽ hỏi lại dễ khẳng định, không chọn thì khối sửa đổi được ghi đè lên ngay sau khi bấm Enter.

Hình P.10. Màn hình trước soan thảo

Update assignment: Nếu được chọn thì file biểu tượng *ZO.INI thay đổi thì file nguồn *ZO.SEQ cũng được điều chỉnh, nếu không chọn thì fitc nguồn *ZO.SEQ không được điều chỉnh.

Update XRF: Nếu được chọn thì file *XR.INI chứa tham chiếu chéo được điều chỉnh hoặc được tạo nếu chưa tồn tại trước đó, nếu không chọn thì file *XR.INI chứa tham chiếu chéo không được điều chỉnh.

5. Trong mục Source chọn PLC để kết nối trực tiếp với PLC. Trong mục Selection \ Block list vào khối OB1 dễ soạn thảo (có thể vào các khối khác nếu cần), trong mục Options không chọn như hình P.10 sau đó chọn Edit (ấn Enter), nếu làm việc với file mới thì máy tự động vào luôn màn hình Edit như hình P.11b nếu làm việc với file cũ thì máy vào màn hình Output như hình P.11a.

Trong đó: hình P.11a

Fl (Disp Symbb) Cho phép thay đổi hoặc đặt tên ký hiệu (symb), chú thích các toán hạng dùng trong khối chương trình đang soạn thảo.

F2 (Reference): Hiển thị tham chiếu chéo.

F3 (Serach): Tìm kiểm các toán hạng đơn lẻ trong khối đang soạn thảo.

F5 (Seg Fct): Hiện các chức năng soạn thảo cho phép làm việc với các đoạn của khối như chép, xoá, chèn,...

F6 (Edit): Chuyển sang chế độ soạn thảo.

F7 (Enter): Lưu trữ khối nếu có sự thay dồi hoặc trở về menu chính.

F8 (Cancet): Trở về menu chính.

Shift-F1 (Addresses): hiện địa chỉ tương đối của các lệnh trong khối (với STL).

Shift F2 (Liu no): Cho phép vào sổ thư viện.

Shift F3 (Symb.OFF): Cho phép hiển thị toán hạng dưới dạng tuyết đối.

Shift F4 (Symb Com): Cho phép hiện thị dòng chú thích ký hiệu các toán hạng.

Shift-F5(→LAD): Cho phép chuyển đổi các dạng STL, CSF, LAD.

Shift -F6 (Seg com): Cho phép vào soạn thảo tiêu đề và các chú thích của mỗi đoạn chương trình trong khối nếu có chọn Wich Comments ở hình P.13 (Btocks).

Shift F7 (Save): Lưu trữ khối soạn thảo vào file.

Shift-F1 (Help): Vào phần trợ giúp.

- 6. Nếu đang ở màn hình Output cần sửa chữa hoặc soạn thảo mới thì chọn F6 (Edit) để vào màn hình soạn thảo Edit, với chương trình có nhiều đoạn (Segment) thì ấn F5 (Seg Fct) sau đó ấn Fl (- 1) hoặc F2 (+ 1) để chọn các đoạn trước hoặc sau đoạn hiện thời.
 - 7. Khi đang ở màn hình soạn thảo Edit có thể tiến hành soạn thảo:
- + Để vào một câu lệnh thường không cần quan tâm đến cấu trúc và có thể gõ liên tục liền nhau, hết một dòng ấn Enter máy sẽ tự động chèn vào các ký tự trống ngăn cách.
 - + Soạn thảo hết một đoạn (Segment) ấn F6 (Seg End) để sang đoạn mới.
- + **Kết thúc chương trình phải có lệnh BE**, ấn Enter và chọn yes để xác nhận máy sẽ trở về màn hình Output.
- 8. Ấn Shift-F5 để xem dạng LAD và CSF. Nếu chương trình có nhiều đoạn (Segment) thì ấn F5 (Seg Fct) sau đó ấn Fl (-l) hoặc F2 (+l) để xem lần lượt hết các đoan trước hoặc sau đoan hiện thời.
- 9. Ấn Shift-F7 để cất chương trình và đổ chương trình sang PLC, chọn yes để xác nhận việc đổ đè chương trình lên chương trình cũ trong PLC (khi cất thì PLC phải để ở chế độ STOP).

2. Đặt tham số cho việc soạn thảo chương trình

Vào File \ Project \ Set để sẽ đặt các tham số cần thiết liên quan đến việc soạn thảo chương trình. Các tham số này được hiển thị trong 6 trang màn hình hình P.12

đến P. 1 7, các trang màn hình có thể chuyển đổi bằng con trỏ. Mỗi trang có các phím chức năng có thể sử dụng như:

- + Edit F2: Vào chế đô soan thảo.
- + Select F3: Thay đổi tham số tại vị trí con trỏ.
- + Project... F6: Cất tham số dã thay đổi.
- + Info F7: Hiện thông tin về vùng hiện tại mà tại đó có con trỏ.
- + Help Shift F8: Vào phần trợ giúp.
- + Enter: Chấp nhận sự thay đổi.
- + Cancel ESC: Giữ nguyên trạng thái cũ, trở về màn hình trước đó.

Hình P.12. Trang 1

- * Trang 1 (PLC): như hình P.12
- + Mode(: Chọn chế độ nối với PLC (Online), và không có PLC (Ofnine).
- + PLC type: Loại PLC
- + Interface: Chọn giao diện.
- + Parameter: Địa chỉ cổng giao diện.
- + Path name: Đặt tên đường dẫn nối kết. Nêu cả trình name và Path file đều đặt thì hệ thống tìm cách thiết lập hay dừng việc nối kết thông qua dường dẫn đã chọn này mỗi khi có sự thay đổi chế độ làm việc.
 - + Path file: Tên file chứa đường dẫn Path name.

Hình P.13. Trang 2

- * Trang 2 (Blocks): như hình P. 13
- + Program File: Vào đường dẫn, mở file mới hoặc mở file đã có.
- + Representation: Đặt chế độ soạn thảo STL, LAD. CSF.
- + STL addresses: Địa chỉ của STL.
- +With comments: Cho phép ẩn, hiện dòng chú thích.
- + With Checksum: Kiểm tra việc truyền số liệu ra PLC.
- * Trang 3.(Symbols): như hình P.14
- + Symbols file: Đặt tên file biểu tượng (*ZO.INI).
- + Assigment lisl: Đặt tên của file danh sách (ZO.SEQ).
- + Symbol length: Đặt độ dài ký hiệu biểu tượng, cho phép từ 8 đến 24 ký tự.
- + Comment length: Đạt độ dài dòng chú thích, cho phép nhiều nhất là 40 ký tự.
- + *Display symbolic:* Cho phép toán hạng thể hiện dưới dạng biểu tượng (symbolic) hay dạng tuyệt đối (absolute).
 - + Operands symbolic: Cho phép lập trình được với symbolic operands.

Hình P.14. Trang 3

Hình P.15. Trang 4

- * Trang 4 (Documetation): như hình P.15.
- + Footer file: Vào tên file chứa các thông tin cần thiết ở cuối mỗi trang khi in và

được tạo ra trong Documentation.

- + Dọc comm file: Đặt tên file (*SU.INI) chứa các lệnh tạo tài liệu.
- + Printer file: Đặt tên file chưa thông tin về tham số in được chọn trong menu Documentation như kích cỡ giấy, số dòng trong mỗi trang in, cổng giao tiếp với máy in...
 - + Printer interface: Chọn giao diện với máy in.
 - + Documetation to: Đặt chế độ làm việc cho phép in tài liệu.

Hình P.16. Trang 5

- * Trang 5 (Options): hình P.16
- + Profect directory: Định thư mục làm việc.
- * Trang 6 (EFROM): như hình P. 17
- + SYSID file: Đặt tên file (*SD.INI) chứa các thông tin nhận dạng hệ thống các khối dùng trong việc nạp EFROM.

Hình P.17. Trang 6

3. Lập trình cho PLC - S7200

1 Sử dụng phần mềm Step7-200 for Win

Thao tác chuẩn bị (phần hướng dẫn viết theo Version 3.2)

- Khởi động máy tính ở chế độ Windows, bật công tắc khối nguồn PS của PLC, công tắc của khối CPU để ở vị trí STOP.
 - 2. Chạy trình Step7 từ biểu tượng hoặc từ file chương trình như hình P.18. Màn hình chế độ bắt đầu có dạng như hình P. 19.
- 3. Nếu ở Project [CPU.....] có loại CPU khác thì nháy nút phải chuột vào Project [CPU.....] để chọn lại CPU.

Hình P.18. Biểu tượng và đường dẫn file chương trình Step7

- 4. Vào File để mở một file mới hoặc file đã có.
- 5. Vào View để chọn chế độ soạn thảo STL (hoặc LAD hoặc FBD).
- 6. Tiến hành soạn thảo chương trình theo STL (nếu soạn thảo chương trình theo LAD thì có thể sử dụng các khâu, khối phía trái màn hình soạn thảo). Khi soạn thảo chỉ cần cách lệnh và đối tượng lệnh một nhịp (dấu cách), không cần chú ý chữ in và chữ thường, máy sẽ tự dịch và chỉnh chữ cho phù hợp. Trong quá trình soạn thảo có thể ghi các chú thích nếu cần.
 - 7. Vào View để xem lại dạng LAD (Ladder) hoặc RBD.
- 8. Dịch chương trình từ biểu tượng hoặc từ PLC \ compile, nếu muốn dịch cả chương trình thì từ PLC \ compile All. Khi dịch chương trình các lỗi sẽ được thông báo ở phần thông báo trạng thái.
- 9. Đổ chương trình sang PLC từ biểu tượng hoặc từ File \ Download, có thể phải kiểm tra lại cảm ghép nối cho phù hợp tử Communications.
- 10 Muốn cất, in chương trình..., có thể thực hiện từ biểu tượng hoặc vào File chon chế đô cất và chế đô in cần thiết.

Hình P.19. Màn hình soạn thảo

2. Sử dụng phần mềm Step7-200 for Dos

Thao lác chuẩn bi:

- 1. Khởi động máy tính ở chế độ Windows.
- 2. Chạy trình S7-200 từ biểu tượng hoặc từ file chương trình, màn hình chế độ bắt đầu có dạng như hình P.20.

Trong hình P.20:

EXIT-F1: Thoát.

SETUP-F2: Chọn ngôn ngữ, đặt cú pháp cho biến nhớ. Chú ý ngôn ngữ giao diện để ở chế đô International

ONLENE-F4: Khi máy tính có nối với PLC.

COLOR-F6: Chọn mầu.

PGMS-F7: Chương trình quản lý file.

OFLINE-F8: Khi máy tính không nối với PLC.

Chữ PID chỉ tên file đang sử dụng.

Hình P.20. Màn hình bắt đầu của SIEP7-Micro/Dos

- 3. Chọn PGMS, ấn phím F7 *(các phần tiếp sau thao tác chọn và ấn phím được viết gọn thành PGMS-F7)*, vào chương trình quản lý file để mở file mới hoặc file đã có. Để mở file mới chọn DIR-F5 vào ổ đĩa, chọn SELECT-F8 để xác nhận, ấn Enter để hiện các thư mục, chọn thư mục sau đó chọn SELECT-F8 để xác nhận, chọn EXIT-F1 thoát về màn hình trước đó, đặt tên file và chọn SELECT-F8 để xác nhận, chọn ABORT-F1 để về màn hình ban đầu, ấn file và đường dẫn đã được thiết lập.
 - 4. Chọn chế độ ONLINE-F4, rồi xác nhận địa chỉ cổng ghép nối với PLC.
 - 5. Ấn F7 để chọn chế độ soạn thảo LAD hoặc STL.
- 6. Chọn EDIT-F2 để vào chế độ soạn thảo, phía dưới màn hình soạn thảo có dòng thư mục hướng dẫn các cách và các lệnh để soạn thảo.
 - 7a. Soạn thảo với STL dòng hướng dẫn có dạng như hình P.2 1:

]	EXIT-F1	INSNW-F2	DELLN-F4	INSLN-F5	DELFLD-F6	UNDO-F8	
i							1

Hình P.21. Dòng hướng dẫn soạn thảo STL

Trong đó: EXIT-F1: thoát về trang trước đó,

INSNW-F2: Chèn một network phía trên con trỏ,

DELLN-F4: Xóa một dòng có con trỏ,

INSLN-F5: Chèn một dòng phía trên con trỏ,

DELFLD-F6: Xóa tham số nơi con trỏ.

Sử dụng các phím $\leftarrow \uparrow \rightarrow \downarrow$ và phím ENTER để di chuyển con trỏ đến vị trí soạn thảo.

7b. Soạn thảo với LAD dòng hướng dẫn có dạng như hình P.22: dấu cộng ở cuối dòng thể hiện thư mục vẫn còn cần ấn phím Spacebar để chuyển đổi.

Hình P.22. Dòng hướng dẫn soạn thảo LAD

Trong đó: EXIT-F1: Thoát về trang màn hình trước đó,

Các phím F2 đến F7 (dòng trên) để chọn các tiếp điểm, cuộn dây, hộp,

ENTER-F8: Xác định một network đã được soạn thảo,

HORZ-F1: để kẻ một đoạn ngang từ vị trí con trỏ sang phải,

VERT-F2: để kể một đoạn dọc từ vị trí con trỏ xuống dưới,

HORZD-F3: để xóa một đoạn ngang,

VERTD-F4: để xóa một đoan dọc.

Sử dụng các phím ← ↑ → ↓ để di chuyển con trỏ đến vị trí soạn thảo.

Khi soạn xong một tiếp điểm, hộp... dùng phím ENTER để xác nhận.

Khi soạn xong một network phải dùng F8 để xác nhận, nếu dùng ENTER có nghĩa muốn xuống dòng để mở rộng (nhánh) cho network.

- 8. Chọn EXIT-F1 để trở về màn hình trước đó.
- 9. Chọn STL-F7 để xem dạng STL.
- 10 Chọn WRITDK-F8 để đổ chương trình sang PLC.
- 11 Muốn in chương trình, hoặc thực hiện các thao tác lựa chọn khác thì làm theo chỉ dẫn ở dòng thư mục cuối màn hình hoặc vào phần Help.

4. Lập trình cho PLC - S7-300

Sử dụng phần mềm S7-300.

1. Khởi động

Hình P.23. Đường dẫn khởi động Step 7

- 1. Khởi động máy tính ở chế độ Windows, bật công tắc nguồn của khối nguồn PS của PLC, công tắc của khối CPU để ở vị trí STOP.
- 2. Khởi động phần mềm Step7 tử biểu tượng hoặc từ file chương trình như hình P.23.

2. Cài đặt phần cứng

- 1. Công tắc của CPU phải để ở chế độ STOP.
- 2. Vào File để tạo một thư mục chương trình mới (hoặc mở một thư mục chương trình đã có) (vì một chương trình của S7-300 là cả thột thư mục "Project"). Một chương trình của S7-300 sẽ có dạng như hình P.24 (khi đã tạo đủ). Nếu mở một thư mục chương trình đã có sẵn chương trình thì có thể bỏ qua một số bước sau.
- 3. Mở thư mục chương trình "*Project*" để chèn phần cứng từ Insert / Station / Simatic 300 Station.
 - 4. Mở thư mục Simatic 300(1) để cài đặt phần cứng.
- 5. Mở thư mục Hardware để bắt đầu cài đặt phần cứng, màn hình ban đầu để cài đặt phần cứng có dạng như hình P.25.
- 6. Nháy vào dấu "+" của SIMATIC 300 để chọn lần lượt các khối của cấu hình cứng. Nên chon các khối thực trên PLC như trên hình P.26.

Hình P.24. Cấu trúc chương trình Step 7 Hình P.25. Hướng dẫn cài đặt phần cứng

Phải nháy vào dấu "+" để mở chương trình.

- + Chọn giá đỡ: Chọn RACK-300 và chọn Rail.
- + Chọn khối nguồn: Chọn PS-300 và chọn nguồn đã có.
- + *Chọn khối CPU:* Chọn CPU-300 và chọn CPU 314, chọn loại có tham số (được chỉ ra ở phần thể hiện tham số hình P.26) như tham số của CPU hiện có (được chỉ ra ở dòng trên cùng và dòng dưới cùng của CPU.
- + *Chọn khối giao diện:* IM (Interfare), khi cần khối ghép nối thì chọn khối ghép nối, nếu không có có thể bỏ qua. Khi bỏ qua khối ghép nối phải để trống vị trí của khối ghép nối (vị trí 3 của Rail hình P.26).
- + *Chọn các khối vào ra:* Chọn SM-300 và lần lượt chọn các khối vào ra theo đúng mã hiệu được ghi trên dòng đầu và dòng cuối mỗi khối.
- + *Chọn khối ghép nối:* CP-300 và chọn CP340 RS 232C. Khối ghép nối này để ghép nối với các thiết bị ngoài. Màn hình sau khi chọn khối có dạng như hình P.26.
- 7. Đổ cấu hình sang PLC tử PLC \ Download hoặc biểu tượng, nhấn OK để xác nhận địa chỉ giá đỡ (Rack), địa chỉ CPU và địa chỉ cổng ghép nối.

Hình P.26. Các khối đã được chon

3. Soạn thảo chương trình

- 1. Trở về thư mục chương trình chính "Project", xác nhận việc cất cấu hình cứng vài file.
- 2. Mở thư mục chương trình chính "Project" để chèn chương trình soạn thảo vào từ Insert / program / S7 Program.
- 3. Mở thư mục S7 Program, trong đó sẽ có các thư mục: Source File, Symbols, Blocks.
- 4. Mở thư mục Blocks, nếu cần thì chèn thêm các khối (Blocks) cần thiết khác cho chương trình từ Insert / S7 Blocks.
- 5. Mở khối OB1 nếu lập trình trên khối OB1, chọn kiểu lập trình STL từ Language (có thể chọn kiểu lập trình khác) rồi chọn OK. Màn hình lập trình có dạng như hình P.27.
- 6. Có thể chọn chế độ online để kết nối trực tiếp với PLC hoặc omine không nối trực tiếp với PLC, chọn chế độ omine khi soạn xong chương trình phải đổ sang PLC.
 - 7. Có thể đặt tên cho khối, tên cho đoạn (Networks) và các chú thích nếu cần.
- 8. Tiến hành soạn thảo, khi soạn thảo chỉ cần cách mã lệnh và đối tượng lệnh một nhịp máy sẽ tự động dịch khoảng cách cho phù hợp.
- 9. Soạn thảo hết một Networks thì chèn thêm Networks mới từ biểu tượng hoặc Insert / Network.
 - 10. Xem lại dạng LAD hoặc FBD từ View / LAD hoặc View / FBD.
- 11. Soạn thảo xong đổ chương trình sang PLC từ biểu tượng hoặc từ PLC / Download để kiểm tra, khi đổ chương trình PLC phải để ở trạng thái STOP.

Hình P.27. Màn hình soan thảo

Chú ý: Khi lập trình có thể các ký hiệu không đúng (không lập trình được, chẳng hạn gõ địa chỉ I 0.0 báo lỗi, gõ M 0.0 thì nhận) là do chọn ngôn ngữ không đúng. Để kiểm tra ngôn ngữ làm như sau:

- + Tử màn hình soạn thảo như hình P.27 chọn **Options/customize**... được cửa sổ như hình P.28.
- + Trong cửa số Editor hình P.28, hộp kiểm Mnemonics phải là Internectiona như hình P.28a. Nếu trong hộp kiểm Mnemonics là SMATIC như hình P.28b là sai ngôn ngữ (dùng tiếng Đức). Muốn đổi ngôn ngữ để có thể lập trình được phải quay lại màn hình ban đầu như hình P.24 và tiến hành các bước:
- + Từ màn hình P.24 chọn **Options/customize**... được cửa sổ của màn hình Customize như hình P.29. Trong màn hình Customize ở cửa sổ Language tại hộp kiểm Language phải chọn English, lại hộp kiểm Mnemonics phải chọn English như hình P.29 sau đó nhấn OK.

PHỤ LỤC 2 BẢNG LỆNH CỦA CÁC PHẦN MỀM PLC

1. BẢNG LỆNH CỦA PLC CPM1A

TT	Tên lệnh	Mô tả
1	AND	Nhân logic trạng thái của bít xác định với điều kiện thực hiện.
2	AND LD	Nhân logic các kết quả của các khối xác định.
3	AND NOT	Nhân logic giá trị đảo của bít xác định với điều kiện thực hiện.
4	CNT	Đếm lùi.
5	LD	Khởi động một dãy lệnh với trạng thái của bít xác định hoặc dễ định nghĩa một khối logic được dùng với ANDLD hoặc ORLD.
6	LD NOT	Khởi động một dãy lệnh với nghịch đảo của bít xác định.
7	OR	Cộng logic trạng thái của bít xác định với điều kiện thực hiện.
8	OR LD	Cộng kết quả của các khối định trước.
9	OR NOT	Cộng logic nghịch đảo bít xác định với điều kiện thực hiện.
10	OUT	Đưa ra cổng ra giá trị của bít thực hiện.
11	OUT NOT	Đưa ra cổng ra giá trị nghịch đảo của bít thực hiện
12	TIM	Quá trình thời gian trễ ON
13	NOP	Không thực hiện gì cả, quá trình chuyển sang lệnh bên cạnh.
14	END	Lệnh kết thúc chương trình.
15	IL	Nếu điều kiện khoá chéo là OFF tất cả các đầu ra là OFF và toàn bộ thời gian
16	ILC	(time) sẽ phục hồi giữa IL này (02) và IL khác (03). Các lệnh khác được điều hành như là lệnh NOP (00), bộ đếm vẫn duy trì.
17	JMP	Nếu điều kiện nhảy bị tắt (OFF) tất cả các lệnh giữa JMP (04) và JME (05)
18	JME	tương ứng bị bỏ qua.
19	FAL	Phát một lỗi không tiền định và cho ra FAL vào bộ lập trình cầm tay.
20	FALS	Phát một lỗi tiền định và cho ra FALS vào bộ lập trình cầm tay.
21	STEP	Khi dùng với bít điều khiển sẽ xác định điểm bắt đầu một bước mới và phục hồi (R) bước trước đó. Khi không dùng với bít điều khiển sẽ xác định điểm cuối của việc thực hiện bước.
22	SNXT	Dùng với một bít điều khiển để chỉ ra kết thúc bước, phục hồi bước và bắt đầu bước tiếp theo.
23	SET	Tạo ra bộ ghi dịch bít.
24	KEEP	xác định một bít như là một chốt điều khiển bởi các đầu vào đất và phục hồi.
25	CNTR	Tăng hoặc giảm số đếm bởi một trong số các tín hiệu vào.
26	DIFU	Đặt bít xác định cho một chu kỳ tại sườn trước của xung vào.
27	DIFD	Nhân logic trạng thái của bít xác định với điều kiện thực hiện.
28	TIMH	Bộ thời gian tốc độ cao có trễ
29	WSFT	Dịch chuyển dữ liệu giữa các từ đầu và cuối trong nhóm từ, viết 0 vào từ đầu
30	CMP	so sánh nội dung của 2 từ và đưa ra kết quả ở các cờ GR, EQ, LE.
31	MOV	Chép dữ liệu nguồn (từ hoặc hằng số) vào từ dịch.
32	MVN	Đảo dữ liệu nguồn (từ hoặc hằng số) sau đó chép nó vào từ đích
33	BIN	Chuyển dữ liệu 4 số dạng BCD trong từ nguồn thành dữ liệu nhị phân 16 bít và dưa dữ liệu dã được chuyển vào từ kết quả.

TT	Tên lệnh	Mô tả
34	BCD	Chuyển dữ liệu nhị phân trong từ nguồn thành BCD sau đó dưa dữ liệu đã
		chuyển mã ra từ kết quả.
35	ASL	Dịch từng bít trong từ đơn của dữ liệu về bên trái có CY
36	ASR	Dịch từng bít trong từ đơn của dữ liệu về bên phải có CY
37	ROL	Quay các bít trong từ đơn của dữ liệu một bít về bên trái có CY
38	ROR	Quay các bít trong từ đơn của dữ liệu một bít về bên phải có CY
39	COM	Đảo trạng thái bít của một từ dữ liệu.
40	ADD	Cộng 2 giá trị BCD 4 số với nội dung của CY và đưa kết quả đến từ ghi kết quả đặc biệt.
41	SUB	Trừ một giá trị BCD 4 số và CY từ một giá trị BCD 4 bít khác và đưa kết quả
42	MUL	Nhân 2 giá trị BCD 4 số và đưa kết quả tới từ kết quả đặc biệt.
43	DIV	Chia số BCD 4 số cho số bị chia BCD 4 số và đưa kết quả tới từ kết quả đặc biệt.
44	ANDW	Nhân logic 2 từ vào 16 bít và đặt bít tương ứng vào từ kết quả nếu các bít tương ứng trong các từ vào đều ON.
45	ORW	Cộng logic 2 từ vào 16 bít và đặt bít tương ứng vào từ kết quả nếu các bít tương ứng trong dữ liệu vào là ON.
46	XORW	Cộng đảo (EXNOR) 2 từ 16 bít và đặt bít vào từ kết quả khi các bít tương ứng trong các từ vào có trạng thái khác nhau.
47	XNRW	Cộng đảo (EXNOR) 2 từ 16 bít và đặt bít vào tử kết quả khi các bít tương ứng trong các từ vào có cùng trạng thái.
48	INC	Tăng từ BCD 4 số lên 1 đơn vị.
49	DEC	Giảm từ BCD 4 số đi 1 đơn vị.
50	STC	Đặt cờ mang sang (bật ON, CY)
51	CLC	Xoá cờ mang sang (tắt OF, CY)
52	TRSM	Khởi đầu dữ liệu, không dùng với CQM 1 -CPU 11/21 -E.
53	MSG	Hiển thị thông báo 16 vị trí tên bộ lập trình.
54	ADB	Cộng 2 giá trị Hexa 4 số với nội dung của CY và gửi kết quả tới từ kết quả xác định.
55	SBB	Trừ giá trị Hexa 4 số cho một giá trị Ilexa 4 số, CY và gửi kết quả tới từ kết quả.
56	MLB	Nhân 2 số trị Hexa 4 số và gửi kết quả tới từ kết quả xác định.
57	DVB	Chia số trị Hexa 4 số cho số Hexa 4 số và gửi kết quả tới từ kết quả xác định
58	ADDL	Cộng 2 giá trị 8 số (2 trừ một) và nội dung của CY và gửi kết quả tới các tử kết quả xác định.
59	SUBL	Trừ giá trị BCD 8 số cho một giá trị BCD 8 số và CY và gửi kết quả vào từ kết quả.
60	MULL	Nhân 2 giá trị BCD 8 số và gửi kết quả vào các từ kết quả xác định.
61	DIVL	Chia số BCD 8 số cho số BCD 8 số và gửi kết quả đến các từ kết quả xác định.
62	BINL	Chuyển giá trị BCD thành các từ nhị phân nguồn liên kết và đưa dữ liệu chuyển đổi đến 2 từ kết quả liên tiếp.
63	BCDL	Chuyển giá trị nhị phân thành hai từ BCD nguồn liên tiếp và dưa dữ liệu dã chuyển đổi đến 2 từ kết quả liên tiếp.
64	XFER	Chuyển 1 số từ nguồn liên tiếp thành từ đích liên tiếp
65	BSET	sao chép nội dung 1 từ hoặc 1 hằng số thành một số từ liên tiếp.

TT	Tên lệnh	Mô tả
66	ROOT	Bình phương (khai căn) của giá trị BCD 8 số và đưa ra kết quả số nguyên 4
		chữ số đã cắt ngắt và gửi kết quả ra 1 tử định trước.
67	XCIIG	Trao đổi nội dung của hai từ khác nhau.
68	@COLM	Chép 16 bít của một từ xác định vào một cột bít của các tử 16 bít liên tiếp.
69	CPS	So sánh hai giá trị nhị phân 16 bít (4 số) đã đánh dấu và đưa kết quả đến các cờ GR, EQ, LE.
70	CPSL	So sánh hai giá trị nhị phân 32 bít (8 số) dã đánh dấu và đưa kết quả đến các cờ GR, EQ, LE.
71	@DBS	Chia 1 giá trị nhị phân 16 bít đã đánh dấu cho một giá trị khác và dưa kết quả nhị phân 32 bít đã đánh dấu vào từ R đến R+l.
72	@DBSL	Chia 1 giá trị nhị phân 32 bít đã đánh dấu cho một giá trị khác và đưa kết quả nhị phân 64 bít đã đánh dấu vào từ R+3 đến R.
73	@FCS	Kiểm tra lỗi trong dữ liệu truyền bởi lệnh Host linh.
74	@FPD	Tim lỗi trong cụm các lệnh.
75	@HEX	Chuyển đổi dữ liệu ASCII thành dữ liệu hexa.
76	@HKY	Vào dữ liệu hexa đến 8 số từ bàn 16 phím.
77	@HMS	Chuyển đổi dữ liệu giây (s) thành dữ liệu giờ (h) và phút (mm).
78	@XE	Chép một bít của cụm 16 lừ liền liếp vào từ xác định.
79	@MAX	Tìm giá trị cực đại trong không gian dữ liệu xác định và đưa giá trị này tới từ khác.
80	@MBS	Nhân nội dung nhị phân đánh dấu của hai từ và đưa kết quả nhị phân 8 bít đã đánh dấu vào R+l và R.
81	@MBSL	Nhân hai giá trị nhị phân 32 bít (8 số) đã đánh dấu và đưa kết quả nhị phân 16 bít đã đánh dấu vào R+3 đến R.
82	@MIN	Tìm giá trị cực tiểu trong không gian dữ liệu xác định và đưa giá trị này vào từ khác.
83	@NEG	Chuyển đổi nội dung hexa 4 chữ số của từ nguồn thành phần bù modul 2 của nó và đưa kết quả vào R.
84	@NEGL	Chuyển đổi nội dung hexa 8 chữ số của từ nguồn thành phần bù modul 2 của nó và đưa kết quả vào R và R+l.
85	PID	(Chỉ có CQM1-CPV43E) thể hiện điều khiển PID dựa trên các thông số xác định.
86	@PLS2	(Chỉ có CQM 1 -CPV43E) Tăng tốc độ xung ra từ 0 tới tần số đích.
87	@PWM	(Chỉ có CQM 1 -CPV43E) Đưa ra cổng một và hai các xung có tỷ số luân phiên xác định (0%-99%).
88	@RXD	Nhập dữ liệu thông qua cổng liên lạc.
89	@SCL2	(Chỉ có CQM 1-CPV43E) Chuyển đổi tuyến tính một giá trị hexa 4 số đã đánh dấu thành giá trị số BCD 4 chữ số.
90	@SCL3	(Chỉ có CQM 1 -CPV43E) Chuyển đổi tuyến tính một giá trị BCD 4 chữ số thành giá trị hexa 4 chữ số đã đánh dấu.
91	@SEC	Chuyển đổi dữ liệu giờ (h) và phút thành dữ liệu giây (s).
92	@SBBL	Trừ đi một giá trị nhị phân 8 chữ số (bình thường hoặc đánh dấu) trả giá trị khác và đưa kết quả ra R và R +1.
93	@SRCH	Kiểm tra phạm vi xác định của bộ nhớ dùng cho dữ liệu xác định. Đưa các địa chỉ từ các từ trong phạm vi chứa dữ liệu.
94	@SUM	Tính tổng nội dung các từ trong phạm vi xác định của bộ nhớ.

TT	Tên lệnh	Mô tả
95	@XFRB	Chép trạng thái của nhiều nhất là 255 bít nguồn xác định vào các bít đích xác định.
96	@ZCP	So sánh một từ với một dải xác định bởi giới hạn thấp và cao và đưa kết quả đến các cờ GR, EQ, LE.
97	ZCPL	So sánh một giá trị 8 chữ số với một dải xác định bởi các giới hạn thấp và cao sau đó dưa kết quả đến các cờ GR, EQ, LE.
98	SLD	Dịch trái dữ liệu giữa các từ đầu và cuối một chữ số (4 bít) về lề bên trái.
99	SRD	Dịch phải dữ liệu giữa các từ đầu và cuối một chữ số (4 bít) về bên phải.
100	MLPX	Chuyển đổi 4 chữ số hexa trong từ nguồn thành giá trị thập phân tử 0 đến 15 và ghi vào các từ hoặc các bít kết quả có vị trí tương ứng với giá trị được chuyển đổi.
101	DMPX	Xác định vị trí ON cao nhất trong từ nguồn và chuyền các bít tương ứng vào tử kết quả.
102	SDEC	Chuyển giá trị hexa từ nguồn đến dữ liệu cho hiện thị 7 thanh.
103	DIST	Chuyển một tử của dữ liệu nguồn đến từ cuối mà địa chỉ của nó được cho bởi từ cuối cộng với OFF SET.
104	CON	Lỗi dữ liệu từ nguồn và viết nó vào từ cuối.
<u> </u>	MOVB	Truyền bít xác định của tử hoặc bằng số nguồn đến bít xác định của từ cuối.
106	MOVD	Chuyển nội dung hexa của các chữ số nguồn 4 bít xác định đặt các chữ số cuối xác định. tối đa là 4 chữ số.
107	SFTR	Dịch dữ liệu trong từng nguồn hoặc chữ cuối các từ nguồn xác định về hên trái hoặc bên phải.
108	TCMP	So sánh giá trị hexa 4 chữ số với giá trị trong bảng gồm 16 từ.
109	ASC	Chuyển đổi các giá trị hexa từ nguồn thành mã ASII 8 bít bắt đầu tại nửa tận cùng bên trái hoặc phải của từ đầu xác định.
110	SBS	Gọi và thực hiện chương trình con.
111	SBN	Đánh dấu bắt đầu của chương trình con.
	RET	Kết thúc của chương trình con và trở về chương trình chính.
	IOFF	Làm tươi tất cả đầu vào và ra giữa từ đầu và tử cuối.
	MACRO	Gọi và thực hiện chương trình con để thay thế các từ vào ra.
115	@ASFT	Tạo một bộ ghi dịch để trao đổi nội dung của các từ liên kết khi một trong các từ là 0.
116	@MCMP	so sánh một cụm 16 từ liên tiếp với một cụm 16 từ liên tiếp khác.
117	@RXD	Đảo dữ liệu thông qua một cổng liên lạc (cổng COM).
118	@TXD	Gửi dữ liệu thông qua một cổng liên lạc.
119	CMPL	So sánh 2 đại lượng hexa 8 chữ số.
120	@INI	Khởi động và dừng quá trình đếm, so sánh và chuyển PV của bộ đếm, dừng đầu ra xung.
121	@PRV	Đọc PV của bộ đếm và dữ liệu trạng thái cho bộ đếm có tốc độ cao nhất.
122	@CTBL	So sánh PV của bộ đếm và phát một bản trực tiếp hoặc là khởi động quá trình chạy.
123	@SPED	Đưa ra các xung với tần số xác định (10 Hz – 50 kHz trong các bộ 10 Hz) tần số ra có thể thay đổi trong khi các xung đang được đưa ra.
124	@PULS	Đưa ra một số xác định các xung có tần số xác định, đầu ra xung không dừng cho đến khi số lượng xung đã được đưa ra hết.
125	@SCL	Thể hiện sự đổi thang đo cho giá trị tính toán.
126	@BCNT	Đếm tổng số các bít đang chạy (ON) trong cụm từ xác định.

TT	Tên lệnh	Mô tả
127	@BCMP	Quyết định xem giá trị của một từ có nằm trong phạm vi xác định bởi giới
		hạn dưới và trên.
128	@STIM	Điều khiển Time khoảng dùng cho các ngắt thủ tục.
129	DSW	Đưa vào dữ liệu BCD 4 hoặc 8 chữ số từ một chuyển mạch số.
130	7SEG	Chuyển dữ liệu BCD 4 hoặc 8 chữ số thành dạng hiển thị 7 thanh.
131	@INT	Thể hiện điều khiển và ngắt như là mặt nạ hoặc không mặt nạ các bít ngắt
		cho các ngắt vào ra.
132	@ACC	Cho (CQM 1-CPV43-E) cùng với PVLS (-) ACC (-) điều khiển tăng tốc và giảm tốc các xung ra từ cổng 1 và 2.
133	@ABDL	Cộng hai giá trị nhị phân 8 chữ số (dữ kiện thường hoặc đóng dấu) và đưa kết quả ra R và R +1.
134	@APR	Thể hiện các phép tính sin, cosin hoặc các tiệm cận tuyến lính.
135	AVG	Cộng một số xác định các từ hexa và tính giá trị chính, quay dấu thập phân đi một khoảng 4 chữ số.

2. BẢNG LỆNH CỦA PLC - S5 (Siemens - Tây Đức) TT | Tên lệnh | Mô tả

TT	Tên lệ	nh	Mô tả
2.1. (Các lệnh	ı co	bản: (Sử dụng với khối OB, PB, FB, SB)
2.1.1	'. Nhóm	lệnh	n đại số logic Bool
1)		Dùng để đóng ngoặc biểu thức đã mở ngoặc trước đó, lệnh này không có đối tượng.
2	A	n	Thực hiện lệnh AND giữa nội dung của RLO với giá trị của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
3	A(Thực hiện lệnh AND giữa nội dung trong RLO với phép toán trong ngoặc (có đóng ngoặc), kết quả phép toán nạp vào RLO.
4	AN	n	Thực hiện lệnh AND giữa nội dung của RLO với giá trị nghịch đảo của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
5	О	n	Thực hiện lệnh OR giữa nội dung của RLO với giá trị của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
6	O(Thực hiện lệnh OR giữa nội dung trong RLO với phép toán trong ngoặc (có đóng ngoặc), kết quả phép toán nạp vào RLO.
7	ON	n	Thực hiện lệnh OR giữa nội dung của RLO với giá trị nghịch đảo của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
2.1.2	. Lệnh s	set, 1	eset
8	=	n	Nội dung của RLO hiện hành được gán cho đối tượng n.
9	R	n	Nếu nội dung của RLO là 1 thì trạng thái tín hiệu 0 sẽ được gán cho đối tượng n và trạng thái này không thay đổi khi RLO thay đổi
10	S	n	Nếu nội dung RLO là 1 thì trạng thái tín hiệu 1 sẽ được gán cho đối tượng n và trạng thái này không thay đổi khi RLO thay đổi.
2.1.3.	. Lệnh nạ	ıp và	truyền
11	L	n	Nội dung của đối tượng lệnh (đơn vị byte) được sao chép vào ACCU1 không phụ thuộc vào RLO, nội dung trước đó của ACCU1 chuyển sang ACCU2.
12	LD	n	Nạp nội dung đối tượng n (dạng mã BCD) vào ACCU1 không phụ thuộc RLO.
13	T	n	Nội dung của ACCU1 truyền cho đối tượng n (đơn vị byte) không phụ thuộc RLO, ví dụ truyền cho vùng đệm đầu ra.

TT	Tên lệnh	Mô tả			
2.1.4	2.1.4 lệnh về thời gian				
14	R T	Xoá bộ thời gian nếu RLO = 1			
15	SD	Bộ thời gian chậm sau sườn lên của RLO một khoảng bằng thời gian đặt, khi RLO về 0 thì bộ thời gian về không ngay.			
16	SE	Bộ thời gian lên 1 khi RLO chuyển từ 0 lên 1 (sườn lên) và duy trì dữ thời gian đặt, không phụ thuộc RLO nữa.			
17	SF	Bộ thời gian lên 1 tại sườn lên của RLO, khi RLO về không thì bộ thời gian còn duy trì một khoảng thời gian bằng thời gian đặt.			
18	SP	Bộ thời gian lên 1 khi RLO chuyển tử 0 lên 1 (sườn lên) và duy trì cho đến khi đạt thời gian đã đặt (RLO = 1), khi RLO = 0 thì bộ thời gian về 0 ngay.			
19	SS	Bộ thời gian chậm sau sườn lên của RLO một khoảng bằng thời gian đặt và không phụ thuộc RLO nữa, nó chỉ về không khi có lệnh xoá R.			
2.1.5	. Lệnh của l	bộ đếm			
20	CD	Số đếm giảm 1 đơn vị tại sườn lên của RLO sau đó không phụ thuộc RLO nữa.			
21	CU	Số đếm tăng 1 đơn vị tại sườn lên của RLO sau đó không phụ thuộc RLO nữa.			
22	R C	Xoá bộ đếm nếu RLO = 1			
23	S C	Đặt bộ đếm nếu RLO = 1			
2.1.6	. Các lệnh t	oán học			
24	!=F	So sánh bằng nhau của hai thanh ghi ACCU1 và ACCU2 (dạng bít)			
25	+F	Cộng nội dung hai thanh ghi ACCU1 và ACCU2, kết quả nạp vào ACCU1 (lệnh này chỉ có ở STL).			
26	<=F	So sánh đối tượng lệnh trong thanh ghi ACCU2 có nhỏ hơn hay bằng ở ACCU1 không ?			
27	<f< td=""><td>So sánh đối tượng lệnh trong thanh ghi ACCU2 có nhỏ hơn ở ACCU1 không?</td></f<>	So sánh đối tượng lệnh trong thanh ghi ACCU2 có nhỏ hơn ở ACCU1 không?			
28	> <f< td=""><td>So sánh đối tượng lệnh trong hai thanh ghi ACCU1 và ACCU2 xem có khác nhau không ?</td></f<>	So sánh đối tượng lệnh trong hai thanh ghi ACCU1 và ACCU2 xem có khác nhau không ?			
29	>=F	So sánh đối tượng lệnh trong thanh ghi ACCU2 có lớn hơn hay bằng ở ACCU1 không?			
30	>F	So sánh đối tượng lệnh trong thanh ghi ACCU2 có lớn hơn ở ACCU1 không?			
31	-F	Trừ nội dung ở thanh ghi ACCU1 với nội dung ở thanh ghi ACCU2, kết quả nạp vào ACCU1 (lệnh này chỉ có ở STL).			
2.1.7	2.1.7. Các lệnh gọi khối.				
32	C n	Gọi khối dữ liệu DB, không phụ thuộc vào RLO, quét chương trình không bị gián đoạn, RLO không bị ảnh hưởng.			
33	G	Tạo lập hoặc xoá khối dữ liệu độc lập với RLO.			
34	JC n	Nhảy sang làm việc ở khối n nếu RLO = 1.			
35	JU n	Nhảy sang làm việc ở khối n, không phụ thuộc RLO và RLO không bị ảnh hưởng.			
2.1.8	. Các lệnh k	,			
36	BE .	Lệnh kết thúc khối.			
37	BEC	Lệnh kết thúc có điều kiện giữa khối (RLO = 1)			
38	BEU	Lệnh kết thúc không điều kiện giữa khối, không phụ thuộc RLO.			

TT	Tên lệnh	Mô tả
	. Các lệnh	
	NOP 0	Mã lệnh 16 bít trong RAM đều bằng 0 (để giữ chỗ).
40	NOP 1	Mã lệnh 16 bít trong RAM đều bằng 1 (để giữ chỗ).
	0. Lệnh dừn	
41	STP	Lệnh dừng cuối chương trình, bộ PLC đi vào trạng thái nghỉ.
2.2. (Các Iênh thơ	uy thế (chỉ dùng với khối FB)
		đại số logic Bool thay thế.
	A=	Lệnh AND thay thế.
43	AN=	Lệnh AND đảo thay thế.
44	AW	Tổ hợp từng bít theo luật logic AND.
45	DO=	Lệnh DO thay thế.
46	O=	Lệnh OR thay thế.
47	ON=	Lệnh OR đảo thay thế.
48	OW	Tổ hợp từng bít theo luật logic OR.
49	XOR	Tổ hợp từng bít theo luật logic OR đặc biệt.
2.2.2	. Các lệnh v	về bít.
50	RU	Lệnh xoá bít không điều kiện.
51	SU	Đặt một bít vô điều kiện.
52	ТВ	Trắc nghiệm bít cho trạng thái tín hiệu 1
53	TBN	Trắc nghiệm bít cho trạng thái tín hiệu 0.
2.2.3	. Lệnh sét, 1	eset thay thế.
54	==	Lệnh gán thay thế.
55	RB=	Lệnh xoá đối tượng lệnh hình thức.
56	RD=	Lệnh xoá đối tượng lệnh hình thức dạng số.
57	S=	Lệnh đặt đối tượng lệnh hình thức.
2.2.4	. Các lệnh v	về thời gian và đếm
58	FR=	Lệnh khả thi thay thế.
59	SD=	Lệnh khởi động bộ thời gian bắt đầu trễ hình thức.
60	SEC=	Khởi động bộ thời gian mở rộng hoặc bộ đếm.
61	SFD=	Lệnh khởi động bộ thời gian tắt trễ hoặc bộ đếm xuống.
62	SP=	Lệnh khởi động bộ thời gian xung hình thức.
63	SSU=	Lệnh khởi động bộ thời gian bắt đầu trễ.
2.2.5	. Các lệnh r	ıap là truyền.
64	L=	Lệnh nạp thay thế.
65	LD=	Lệnh nạp đối tượng hình thức dạng cơ số BCD.
66	LW=	Lệnh nạp mẫu bít của đối tượng lệnh hình thức.
67	T=	Lệnh truyền đối tượng lệnh hình thức.
2.2.6	. Các lệnh c	
68	CTW	Nội dung ACCU1 được chuyển đổi từng bít một.
69	CSW	Bổ sung cho 2.
2.2.7	. Các 1ệnh	dịch chuyển.
70	SLW	Dãy bít trong ACCU1 dịch sang trái.
71	SRW	Dãy bít trong ACCU1 dịch sang phải.

TT	Tên lệnh	Mô tả
2.2.8	. Các lệnh	nhảy.
72	JC=	Nhảy có điều kiện (RLO = 1)
73	JM=	Nhảy nếu kết quả là âm (CC1 = 0, CC0 = 1).
74	JN:	Nhảy nếu kết quả là (0,0) (CC1 = 1, CC0 = 0).
75	JO=	Nhảy khi cờ tràn.
76	JP=	Nhảy nếu kết quả là dương (CC1 = 1, CC0 = 0).
77	JU=	Nhảy không điều kiện.
78	JZ=	Nhảy nếu kết quả là 0 (CC1 = 0, CC0 = 0)
2.2.9	. Các lệnh	khác.
79	D	Giảm nội dung trong ACCU1.
80	DO	Xử lý từ cờ hoặc từ dữ liệu.
81	FR TO	Tác động vào TIME hoặc COUTER cả khi không có biến đổi sườn để khởi động bộ thời gian, đặt một bộ đếm đếm lên hoặc đếm xuống.
82	I	Tăng nội dung trong ACCU1.
83	IA	Lệnh cấm ngắt.
84	LRS	Nạp miền dữ liệu hệ thống (nạp miền RS vào ACCU1).
85	RA	Cho phép ngắt.
2.2.1	0. Nhóm l	ênh hệ thống.
86	ADD	Lệnh cộng một hằng số.
87	JC n	Nhảy sang làm việc ở khối n nêu RLO = 1.
88	JU n	Nhảy sang làm việc ở khối n, không phụ thuộc RLO và RLO không bị ảnh hưởng.
89	LIR	Lệnh nạp gián tiếp thanh ghi.
90	RU	Lệnh xoá bít không điều kiện.
91	STS	lệnh dừng tức khắc.
92	SU	Đặt một bít vô điều kiện.
93	TAK	Lệnh trao đổi nội dung thanh ghi.
94	TIR	Lệnh truyền gián tiếp thanh ghi.
95	TNB	Lệnh truyền một trường dữ liệu.

3. BẢNG LỆNH CỦA PLC - S7-200 (Siemens - Tây Đức)

TT	Tên	lệnh	Mô tả
3.1.	Các lệ	nh thụ	rc hiện vô điều kiện
1	=	N	Giá trị bít đầu tiên trong ngăn xếp được sao chép sang điểm n chỉ dẫn trong lệnh.
2	=I	N	Giá trị bít đầu tiên trong ngăn xếp được sao chép trực tiếp sang điểm n chỉ dẫn ngay khi lệnh được thực hiện.
3	A	N	Giá trị bít đầu tiên của ngăn xếp được thực hiện bằng phép tính AND với điểm n chỉ dẫn trong lệnh. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
4	AB<=	n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu giá trị byte n1 không lớn hơn giá trị của byte n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
5	AB=	n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu giá trị của hai byte n1 và n2 thoả mãn n1 = n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.

TT	Tên lệnh	Mô tả
6	AB>= n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu giá trị của hai byte n1 và n2 thoả mãn n1 ≥ n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
7	AD<= n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai từ kép (4byte) n1 và n2 thoả mãn n1 ≤ n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
8	AD>= n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai từ kép (4byte) n1 và n2 thoả mãn n1 ≥ n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
9	A D = n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai từ kép (4byte) n1 và n2 thoả mãn n1 = n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
10	AI N	Lệnh AND được thực hiện tức thời giữa giá trị của bít đầu tiên trong ngăn xếp với điểm n được chỉ dẫn. Kết quả được ghi lại vào bít đầu của ngăn xếp.
11	ALD	Thực hiện lệnh AND giữa giá trị của bít đầu tiên và của bít thứ hai trong ngăn xếp. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp, các giá trị còn lại trong ngăn xếp được kéo lên một bít.
12	AN N	Thực hiện lệnh AND giữa giá trị của bít dấu tiên trong ngăn xếp với giá trị nghịch đảo của điểm n trong chỉ dẫn. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp
13	ANI N	Thực hiện tức thời lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị nghịch đảo của điểm n trong chỉ dẫn. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
14	$AR \le n1, n2^{(5)}$	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai số thực n1 và n2 thoả mãn n1 ≤ n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
15	AR= n1,n2 ⁽⁵⁾	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai số thực n1 và n2 thoả mãn n1 = n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
16	$AR >= n1, n2^{(5)}$	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai số thực n1 và n2 thoả mãn n1 ≥ n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
17	AW<= n 1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai từ $n1$ và $n2$ thoả mãn $n1 \le n2$. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
18	AW= n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai tử n1 và n2 thoả mãn n1 = n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
19	AW>= n1,n2	Thực hiện lệnh AND giữa giá trị của bít đầu tiên trong ngăn xếp với giá trị 1 nếu nội dung của hai từ n1 và n2 thoả mãn n1 ≥ n2. Kết quả được ghi lại vào bít đầu tiên của ngăn xếp.
20	CTU Cxx,PV	Khởi động bộ đếm tiến theo sườn lên tín hiệu đầu vào. Bộ đếm được đặt lại trạng thái ban đầu (Reset) nếu đầu vào R của bộ đếm được kích.
21	CTDU Cxx,PV	Khởi động bộ đếm tiến theo sườn lên tín hiệu đầu vào thứ nhất và đếm lùi theo sườn lên tín hiệu thứ hai. Bộ đếm được đặt lại trạng thái ban đầu (reset) nêu đầu vào R của bộ đếm được kích.
22	ED	Đặt giá trị logic 1 vào bít đầu tiên của ngăn xếp khi xuất hiện sườn xuống của tín hiệu.

TT	Tên lệnh	Mô tả
23	EU	Đặt giá trị logic 1 vào bít đầu tiên của ngăn xếp khi xuất hiện sườn lên của
		tín hiệu.
24	LD n	Nạp giá trị logic của điểm n chỉ dẫn trong lệnh vào bít đầu tiên của ngăn xếp.
25	LDB<= n1,n2	Bít đầu tiên của ngăn xếp nhận giá trị logic 1 nếu nội dung hai byte n1 và n2 thoả mãn n1 \leq n2.
26	LDB= n1,n2	Bít đầu tiên của ngăn xếp nhận giá trị logic 1 nếu nội đung hai byte n1 và $n2$ thoả mãn $n1 = n2$.
27	LDB>= n1,n2	Bít đầu tiên của ngăn xếp nhận giá trị logic 1 nếu nội dung hai byte n1 và n2 thoả mãn n1 \geq n2.
28	LDD= n1,n2	Bít đầu tiên của ngăn xếp nhận giá trị logic 1 nếu nội dung hai từ kép n1 và $n2$ thoả mãn $n1 = n2$.
29	LDD>= n1,n2	Bít đầu tiên của ngăn xếp nhận giá trị logic 1 nếu nội dung hai từ kép n1 và n2 thoả mãn n1 \geq n2.
30	LDI n	Lệnh nạp tức thời giá trị logic của tiếp điểm n chỉ dẫn trong lệnh vào bít đầu tiên trong ngăn xếp.
31	LDN n	Lệnh nạp giá trị logic nghịch đảo của tiếp điểm n chỉ dẫn trong lệnh vào bít đầu tiên trong ngăn xếp.
	LDNI n	Lệnh nạp tức thời giá trị logic nghịch đảo của tiếp điểm n chỉ dẫn trong lệnh vào bít đầu tiên trong ngăn xếp
	$LDR \le n1, n2^{(5)}$	Bít đầu tiên trong ngăn xếp nhận giá trị logic 1 nếu nội dung hai số thực n1 và n2 thoả mãn n1 \leq n2.
34	LDR= n1,n2 ⁽⁵⁾	Bít đầu tiên trong ngăn xếp nhận giá trị logic 1 nếu nội dung hai số thực n1 và n2 thoả mãn $n1 = n2$.
35	$LDR >= n1, n2^{(5)}$	Bít đầu tiên trong ngăn xếp nhận giá trị logic 1 nếu nội dung hai số thực n1 và n2 thoả mãn n1 \geq n2.
36	LDW<=n1,n2 ⁽⁵⁾	Bít đầu tiên trong ngăn xếp nhận giá trị logic 1 nếu nội dung hai từ n1 và n2 thoả mãn n1 \leq n2.
37	LDW= n1,n2 ⁽⁵⁾	Bít đầu tiên trong ngăn xếp nhận giá trị logic 1 nếu nội dung hai từ n1 và $n2$ thoả mãn $n1 = n2$.
38	LDW>=n1,n2 ⁽⁵⁾	Bít đầu tiên trong ngăn xếp nhận giá trị logic 1 nếu nội dung hai từ n1 và n2 thoả mãn n1 \geq n2.
39	LPP	Kéo nội dung của ngăn xếp lên một bít. Giá trị mới của bít trên là giá trị cũ của bít dưới, độ sâu của ngăn xếp giảm đi một bít.
40	LPS	Sao chép giá trị bít đầu tiên trong ngăn xếp vào bít thứ hai. Nội dung còn lại của ngăn xếp bị đẩy xuống một bít.
	LRD	Sao chép giá trị của bít thứ hai vào bít đầu tiên trong ngăn xếp. Giá trị còn lại của ngăn xếp giữ nguyên.
42	MEND (1)(2)	Kết thúc phần chương trình trong một vòng qua.
43	NOT	Đảo giá trị của bít đầu tiên trong ngăn xếp.
44	O n	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với điểm n chỉ dẫn trong lệnh. Kết quả được ghi vào bít đầu tiên trong ngăn xếp.
45	OB<= n1, n2	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu nội dung hai byte n1 và n2 thoả mãn n1 \leq n2. Kết quả được ghi vào bít đầu tiên trong ngăn xếp.
46	OB= n1, n2	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu nội dung hai byte n1 và n2 thoả mãn n1 = n2. Kết quả được ghi vào bít đầu tiên trong ngăn xếp.

TT	Tên	lệnh	Mô tả
47	OB>=	n1, n2	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
			nội dung hai byte n1 và n2 thoả mãn n1 ≥ n2. Kết quả được ghi vào bít đầu
			tiên trong ngăn xếp.
48	OD<=	n1, n2	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
			nội dung hai từ kép n1 và n2 thoả mãn n1 ≤ n2. Kết quả được ghi vào bít
49	OD=	n1, n2	đầu tiên trong ngăn xếp. Thực hiện toán tử OR giữa hít đầu tiên của ngặn vấp với giá trị loạis 1 nấu
49	OD-	111, 112	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu nội dung hai từ kép n1 và n2 thoả mãn n1 = n2. Kết quả được ghi vào bít
			đầu tiên trong ngăn xếp.
50	OD>=	n1, n2	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
			nội dung hai từ kép n1 và n2 thoả mãn n1 ≥ n2. Kết quả được ghi vào bít
			đầu tiên trong ngăn xếp.
51	OI	n	Thực hiện tức thời toán tử OR giữa bít đầu tiên của ngăn xếp với điểm n chỉ dẫn trong lệnh. Kết quả được ghi vào bít đầu tiên trong ngăn xếp.
52	OLD		Thực hiện toán tử OR giữa bít đầu và bít thứ hai trong ngăn xếp. Kết quả
			được ghi vào bít đầu tiên trong ngăn xếp, các giá trị còn lại của ngăn xếp
53	ON	n	được chuyển lên một bít. Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic
33	ON	n	nghịch đảo của điểm n chỉ dẫn trong lệnh. Kết quả được ghi vào bít đầu
			tiên trong ngăn xếp
54	ONI	n	Thực hiện tức thời toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị
			logic nghịch đảo của điểm n chỉ dẫn trong lệnh. Kết quả được ghi vào bít
	0.70	1 0(5)	đầu tiên trong ngăn xếp.
55	OR<=	n1,n2 ⁽⁵⁾	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
			hai số thực n1 và n2 thoả mãn n1 \leq n2. Kết quả được ghi lại vào bít đầu trong ngăn xếp
56	OR=	n1,n2 ⁽⁵⁾	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
		,	hai số thực n1 và n2 thoả mãn n1 = n2. Kết quả ghi vào bít đầu trong ngăn
			xếp.
57	OR>=	n1,n2 ⁽⁵⁾	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
			hai số thực n1 và n2 thoả mãn n1 > n2. Kết quả ghi lại vào bít đầu trong
58	OW/-	n1,n2 ⁽⁵⁾	ngăn xêp. Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu
36	O W <-	111,112	hai từ n1 và n2 thoả mãn n1 < n2. Kết quả được ghi lại vào bít đầu trong
			ngăn xếp.
59	OW=	n1,n2 ⁽⁵⁾	Thực hiện toán tử OR giữa bít đầu liên của ngăn xếp với giá trị logic 1 nếu
			hai từ n1 và n2 thoả mãn n1 = n2. Kết quả được ghi lại vào bít đầu trong
60	OW	1 2(5)	ngăn xếp.
60	Ow>=	n1,n2 ⁽⁵⁾	Thực hiện toán tử OR giữa bít đầu tiên của ngăn xếp với giá trị logic 1 nếu hai từ n1 và n2 thoả mãn n1 \geq n2. Kết quả được ghi lại vào bít đầu trong
			ngăn xếp.
61	RET	(1)(3)(4)	Lệnh thoát khỏi chương trình con và trả điều khiển chương trình đã gọi nó.
62	RET	(2)(3)(4)	Lệnh thoát khỏi chương trình xử lý ngắt (interrupt) và trả điều khiển
			chương trình chính.
3.2.	Các lệ	nh có đi	èu kiện
63	*R	IN1,	Thực hiện phép nhân hai số thực (32bít) IN1 và IN2. Kết quả được ghi lại
		IN2 ⁽⁵⁾	vào IN2.
64	/R	IN1,	Thực hiện phép chia hai số thực (32bít) IN1 và IN2. Kết quả được ghi lại
		IN2 ⁽⁵⁾	vào IN2.

TT	Têr	lệnh	Mô tả
65	+D	IN1, IN2	Thực hiện phép cộng hai số nguyên kiểu từ kép IN1 và IN2. Kết quả được ghi lại vào IN2.
66	+I	IN1, IN2	Thực hiện phép cộng hai số nguyên kiểu từ IN1 và IN2. Kết quả được ghi lại vào IN2.
67	+R	IN1, IN2 ⁽⁵⁾	Thực hiện phép cộng hai số thực (32bít) lại và IN2. Kết quả được ghi lại vào IN2.
68	ANDD	IN1, IN2	Thực hiện toán tử AND giữa các giá trị kiểu từ kép IN1 và IN2. Kết quả được ghi lại vào IN2.
69	ANDW	IN1, IN2	Thực hiện toán tử AND giữa các giá trị kiểu từ IN1 và IN2. Kết quả được ghi lại vào IN2.
70	AICH	INT, EVENT	Khai báo chương trình xử lý ngắt INT theo kiểu EVENT
71	АТН	INT, OUT, LEN	Biến đổi một sâu ký tự tử mã ASCII từ vị trí IN (kiểu byte) với độ dài LEN (kiểu byte) sang mã hexa (cơ số 16) và ghi vào mảng kể từ byte OUT.
72	ATT	DATA TABLE	Nối một giá trị kiểu từ DATA (2 byte) vào bảng TABLE.
73	BCDI	IN	Biến đổi một giá trị từ mã BCD có độ dài 2 byte sang kiểu nguyên. Kết quả được ghi lại vào IN.
74	BMB	IN, OUT,N	Sao chép một mảng gồm N byte kể từ vị trí đầu IN (byte) vào mảng có vị trí là OUT (kiểu byte)
75	BMW	IN, OUT,N	sao chép một mảng từ (2 byte) với độ dài N (1 byte) và vị trí dầu IN (2 byte) vào mảng có vị trí đầu OUT.
76	CALL	n ⁽¹⁾⁽⁶⁾	Gọi chương trình con được đánh nhãn n.
77	CRET	(1)(3)(4)	Kết thúc một chương trình con và trả điều khiển về chương trình đã gọi nó.
78	CRETI	(2)(3)(4)	Kết thúc một chương trình xử lý ngắt và trả điều khiển về chương trình chính.
79	-D	IN1, IN2	Thực hiện phép trừ hai số nguyên kiểu từ kép IN1 và IN2. Kết quả được ghi lại vào IN2.
80	DECD	IN	Giảm giá trị của từ kép IN đi một đơn vị.
81	DECO	IN, OUT	Giải mã giá trị của một byte IN sau đó gán giá trị 1 vào bít của từ OUT (2 byte) có chỉ số là IN.
82	DECW	IN	Giảm giá trị của từ IN đi một đơn vị.
83	DSIS	(1)	vô hiệu hoá tất cả các ngắt (interrupt).
84	DIV	IN1, IN2	Chia số nguyên 16 bít, được xác định là từ thấp của IN2 (kiểu từ kép), cho IN1 kiểu lừ. Kết quả được ghi lại vào từ IN2.
85	DTCH	EVENT	Vô hiệu hoá một ngắt kiểu EVENT
86	DTR	IN, OUT ⁽⁵⁾	Chuyển đổi một số nguyên 32 bít IN có dấu sang thành một số thực 32 bít OUT
87	ENCO	IN,OUT	Chuyển đổi chỉ số của bít thấp nhất có giá trị logic 1 trong từ IN sang thành một số nguyên và ghi vào bít cuối của byte OUT.
88	ENI	(1)	Đặt tất cả các ngắt vào chế độ tích cực.
89		TABLE, DATA ⁽⁵⁾	Lấy giá trị đã được cho vào đầu tiên ra khỏi bảng và chuyển nó đến vùng dữ liệu DATA được chỉ dẫn trong lệnh.
90	FILL	IN, OUT,N	Đổ giá trị từ IN vào một mảng nhớ gồm N từ (N có kiểu byte) bắt đầu từ vị trí OUT (kiểu từ).

TT	Tê	n lệnh	Mô tả
91	FND<		Xác định vị trí ô nhớ trong bảng SRC (kiểu từ), kể từ ô cho bởi INDX
		PATRRI	(kiểu từ, = 0 nếu từ đầu bảng) mà ở đó giá trị nhỏ hơn giá trị của PATRN
		NDX ⁽⁵⁾	(kiểu từ).
92	END<>	,	Xác định vị trí ô nhớ trong bảng SRC (kiểu từ), kể từ ô cho bởi INDX
		PATRRI, NDX ⁽⁵⁾	(kiểu từ, = 0 nếu từ đầu bảng) mà ở đó giá trị khác giá trị của PATRN
0.2			(kiểu từ).
93	FND=	SRC, PATRRI,	Xác định vị trí ô nhớ trong bằng SRC (kiểu từ), kể từ ô cho bởi INDX
		NDX ⁽⁵⁾	(kiểu từ, = 0 nếu từ đầu bảng) mà ở đó giá trị bằng giá trị của PATRN (kiểu từ).
94	FND>		Xác định vị trí ô nhớ trong bảng SRC (kiểu từ), kể từ ô cho bởi INDX
74	TND	PATRRI,	(kiểu từ, = 0 nếu từ đầu bảng) mà ở đó giá trị lớn hơn giá trị của PATRN
		$NDX^{(5)}$)	(kiểu từ).
95	FOR	INDEX	Thực hiện các lệnh nằm giữa FOR và NEXT theo kiểu xoay vòng với bộ
		INITIAL,	đếm số vòng INDEX (kiểu từ), bắt đầu từ vòng số INITIAL (kiểu từ) và
		FINAL ⁽¹⁾⁵	kết thúc tại vòng FINAL (từ).
96	HDEF		Xác định kiểu thuật toán MODE cho bộ đếm tốc độ cao HSC (byte).
		MODE ⁽¹⁾	
97	HSC	n	Đưa bộ đểm tốc độ cao số n vào trạng thái tích cực.
98	HTA	IN,OUT,	Chuyển đổi một số hệ hexa IN (kiểu byte) thành dãy ký tự mã ASCII và
	_	LEN	ghi vào mảng byte bắt đầu bằng byte OUT với độ dài LEN (kiểu byte).
99	-I	IN1, IN2	Thực hiện phép trừ hai số nguyên kiểu từ IN1 và IN2. Kết quả được ghi
100	IDCD	INI	lại vào IN2.
		IN	Chuyển đổi giá trị nguyên là (kiểu từ) thành giá trị BCD và ghi lại vào IN.
101		IN	Tăng giá trị của từ kép IN lên một đơn vị.
		IN N ⁽¹⁾⁽²⁾⁽⁴⁾	Tăng giá trị của từ IN lên một đơn vị.
			Khai báo nhãn n cho chương trình xử lý ngắt.
104	INVD	IN	Lấy phần bù kiểu một (đảo giá trị logic của các bít) của một từ kép IN và ghi lại vào in.
105	JMP	XX	Chuyển điều khiển vào ô nhớ định bằng nhãn xx trong chương trình được khai báo bởi lệnh LBL.
106	LBL	XX	Đặt nhãn xx trong chương trình, định hướng cho lệnh nhảy JMP.
107	LIFO	TABLE,	Lấy giá trị đã được cho vào bảng sau cùng ra khỏi bảng TABLE và
		DATA ⁽⁵⁾	chuyển nó đến vùng dữ liệu DATA (kiểu từ).
108	MOVB	IN, OUT	Sao giá trị của byte IN sang byte OUT.
109	MOVD	IN, OUT	Sao giá trị của từ kép IN sang từ kép OUT.
110	MOVR		Sao số thực IN sang OUT.
		OUT ⁽⁵⁾	
		IN, OUT	
112	MUL	IN1, IN2	Nhân hai số nguyên 16 bít IN1 với hai byte thấp của số nguyên 32 bít IN2 sau đó ghi lại kết quả vào IN2.
113	NETR	TABLE, PORT ⁽⁵⁾	Khởi tạo truyền thông để đọc dữ liệu tử ngoại vi qua cổng loét vào bảng TABLE.
114	NETW	TABLE, PORT ⁽⁵⁾	Khởi tạo truyền thông để ghi dữ liệu của bảng TABLE ra ngoại vi qua cổng PORT.
115	NEXT	(1)(5)(7)	Lệnh kết thúc vòng lặp FOR NEXT.
116	NOP		Lệnh rỗng.
117	ORD	IN1, IN2	Thực hiện toán tử OR cho hai từ kép IN1 và IN2, sau đó ghi kết quả lại vào IN2.

TT	Tên lệnh		Mô tả
118	ORW	IN1, IN2	Thực hiện toán tử OR cho hai từ IN1 và IN2, sau đó ghi kết quả lại vào IN2.
119	PLS	xx ⁽⁵⁾	Đưa bộ phát xung nhanh đã được định nghĩa trong bộ nhớ đặc biệt vào trạng thái tích cực. Xung được đưa ra cổng Qx.x.
120	R	S_BíT,n	Xoá một mảng gồm n bít kể từ địa chỉ S_BíT (kiểu bít).
121	-R	IN1, NT2 ⁽⁵⁾	Thực hiện phép trừ hai số thực (32bít) IN1 và IN2. Kết quả được ghi lại vào IN2.
122	Ri	S_BíT,n	Xoá tức thời một mảng gồm n bít kể từ địa chỉ S_BíT.
123	RLD	IN, n	Quay tròn từ kép IN sang trái n bít.
124	RLW	IN, n	Quay tròn tử IN sang trái n bít.
125	RRD	IN, n	Quay tròn từ kép IN sang phải n bít.
126	RRW	IN, n	Quay tròn từ IN sang phải n bít.
127	S	S_BíT,n	Đặt giá trị logic 1 vào một mảng n bít kể từ địa chỉ S_BíT.
128	SBR	$N^{(1)(2)(4)}$	Khai báo nhãn n cho chương trình con.
129	SEG	IN, OUT	Chuyển đổi giá trị của 4 bít thấp trong byte IN sang thành mã tương ứng cho thanh ghi 7 nét và ghi vào OUT
130	SHRB	DATA, S_BíT,n	Dịch thanh ghi gồm n 0 bít có bít thấp nhất là S_BíT sang trái nếu n>0. hoặc sang phải nếu n<0. Giá trị của bít DATA được đưa vào bít trống của thanh ghi sau khi dịch (bít S_BíT nếu n>0, hoặc bít S_BíT nếu n<0)
131	SI	S_BíT,n	Đặt tức thời giá trị logic 1 vào mảng n bít kể từ bít S_BíT.
132	SLD	IN,n	Dịch từ kép IN sang trái một bít.
-	SLW	IN,n	Dịch từ IN sang trái một bít.
-	SQRT	IN, OUT	Lấy căn bậc hai của số thực 32 bít IN và ghi kết quả vào OUT (32bít).
-	SRD	IN,n	Dịch từ kép IN sang phải một bít.
136	SRW	IN,n	Dịch từ IN sang phải một bít.
137	STOP	·	Dừng "mềm" chương trình.
138	SWAP	IN	Đổi chỗ hai bít đầu tiên và cuối cùng của byte IN cho nhau.
139	TODR	T ⁽⁵⁾	Đọc giờ và ngày tháng sau hiện thời từ đồng hồ và ghi vào bộ đệm 8 byte đầu là T.
140	TODW	T ⁽⁵⁾	Ghi vào đồng hồ giá trị thời gian, ngày, tháng từ bộ đệm 8 byte với byte đầu là T.
141	TON	Txx, PT	Khởi động bộ phát thời gian trễ Txx với thời gian trễ đặt trước là tích của PT (kiểu từ) và độ phân giải của bộ thời gian Txx được chọn.
142	TONR	Txx, PT	Khởi động bộ phát thời gian trễ có nhớ Txx với thời gian trễ đặt trước là tích của PT(kiểu từ) và độ phân giải của bộ thời gian Txx được chọn.
143	TRUNG	G IN, OUT ⁽⁵⁾	Chuyển đổi một số thực 32 bít IN thành một số nguyên 32 bít có đấu và ghi vào OUT.
144	WDR		Đặt chuẩn lại bộ phát xung kiểm tra.
145	XMT	TABLE, PORT	Truyền nội dung của bảng TABLE đến cổng PORT.
146	XORD	IN1, IN2	Thực hiện toán tử exclusive OR cho các bít của hai từ kép IN1 và IN2. Kết quả được ghi lại vào IN2.
	XORW	IN2	Thực hiện toán tử exclusive OR cho các bít của hai từ IN1 và IN2. Kết quả được ghi lại vào IN2.
(1)	Những lệnh không thực hiện được trong chương trình xử lý ngắt. Lệnh INT chỉ có thể là lệ bắt đầu của chương trình xử lý ngắt.		

(2)	Những lệnh không thực hiện được trong chương trình con. Lệnh SBR chỉ có thể là lệnh bắt
	đầu của chương trình con.
(3)	Những lệnh có kèm chức năng ghi lại nội dung của ngăn xếp trước đó.
(4)	Những lệnh không sử dụng được trong chương trình chính.
(5)	Những lệnh chỉ có trong CPU 214.
(6)	Ghi nhớ lại nội dung tức thời của ngăn xếp. Đặt TOS lên 1 và gán giá trị logic 0 vào các bít còn
	lại của ngăn xếp.
(7)	Đặt TOS lên 1.

4. BẢNG LỆNH CỦA PLC S7-300 (SIEMENS - Tây đức)

TT	Tên lệnh	Mô tả
1	+ n	Cộng với hằng số được viết ở điểm n.
2	= n	Nội dung của RLO hiện hành được gán cho đối tượng n.
3)	Dùng để đóng ngoặc biểu thức đã mở ngoặc trước đó, lệnh này không có đối tượng.
4	+AR1 n	Cộng nội dung của ACCU1 hoặc nội dung tại con trỏ n với nội dung có địa chỉ ở thanh ghi 1.
5	+AR2 n	Cộng nội dung của ACCU1 hoặc nội dung tại con trở n với nội dung có địa chỉ ở thanh ghi 2.
6	+D	Cộng 2 số nguyên 32 bít ở ACCU1 và ACCU2, kết quả để ở ACCU1.
7	-D	Trừ số nguyên 32 bít ở ACCU2 cho số nguyên 32 bít ở ACCU1, kết quả để ở ACCU1.
8	*D	Nhân 2 số nguyên 32 bít ở ACCU1 và ACCU2, kết quả để ở ACCU1.
9	/D	Chia số nguyên 32 bít ở ACCU2 cho số nguyên 32 bít ở ACCU1, kết quả để ở ACCU1.
10	==D	So sánh hai số nguyên 32 bít ở ACCU1 và ACCU2 có bằng nhau không.
11	⇔D	So sánh hai số nguyên 32 bít ở ACCU1 và ACCU2 xem có khác nhau không.
12	>D	So sánh số nguyên 32 bít ở ACCU2 có lớn hơn số nguyên 32 bít ở ACCU1 không.
13	<d< td=""><td>So sánh số nguyên 32 bít ở ACCU2 có nhỏ hơn số nguyên 32 bít ở ACCU1 không.</td></d<>	So sánh số nguyên 32 bít ở ACCU2 có nhỏ hơn số nguyên 32 bít ở ACCU1 không.
14	>=D	So sánh số nguyên 32 bít ở ACCU2 có lớn hơn hay bằng số nguyên 32 bít ở ACCU1 không.
15	<=D	So sánh số nguyên 32 bít ở ACCU2 có nhỏ hơn hay bằng số nguyên 32 bít ở ACCU1 không.
16	+I	Cộng 2 số nguyên 16 bít ở ACCU1 và ACCU2, kết quả để ở ACCU1.
17	-I	Trừ số nguyên 16 bít ở ACCU2 cho số nguyên 16 bít ở ACCU1, kết quả để ở ACCU1.
18	*I	Nhân 2 số nguyên 1 6 bít ở ACCU1 và ACCU2, kết quả để ở ACCU1.
19	/I	Chia số nguyên 16 bít ở ACCU2 cho số nguyên 16 bít ở ACCU1, kết quả để ở ACCU1.
20	==I	So sánh hai số nguyên 16 bít ở ACCU1 và ACCU2 có bằng nhau không.
21	⇔l	So sánh hai số nguyên 16 bít ở ACCU1 và ACCU2 xem có khác nhau không.
22	>I	So sánh số nguyên 16 bít ở ACCU2 có lớn hơn số nguyên 16 bít ở ACCU1 không.

TT	Tên lệnh	Mô tả
23	<i< td=""><td>So sánh số nguyên 16 bít ở ACCU2 có nhỏ hơn số nguyên 16 bít ở ACCU1 không.</td></i<>	So sánh số nguyên 16 bít ở ACCU2 có nhỏ hơn số nguyên 16 bít ở ACCU1 không.
24	>= <u>I</u>	So sánh số nguyên 16 bít ở ACCU2 có lớn hơn hay bằng số nguyên 16 bít ở ACCU1 không.
25	<=I	So sánh số nguyên 16 bít ở ACCU2 có nhỏ hơn hay bằng số nguyên 16 bít ở ACCU1 không.
26	+R	Cộng 2 số thực 32 bít ở ACCU1 và ACCU2, kết quả để ở ACCU1.
27	-R	Trừ số thực 32 bít ở ACCU2 cho số thực 32 bít ở ACCU1, kết quả để ở ACCU1.
28	*R	Nhân 2 số thực 32 bít ở ACCU1 và ACCU2, kết quả để ở ACCU1.
29	/R	Chia số thực 32 bít ở ACCU2 cho số thực 32 bít ở ACCU1, kết quả để ở ACCU1.
30	==R	So sánh hai số thực 32 bít ở ACCU1 và ACCU2 có bằng nhau không.
31	⇔R	So sánh hai số thực 32 bít ở ACCU1 và ACCU2 xem có khác nhau không.
32	>R	So sánh số thực 32 bít ở ACCU2 có lớn hơn số thực 32 bít ở ACCU1 không.
33	<r< td=""><td>So sánh số thực 32 bít ở ACCU2 có nhỏ hơn số thực 32 bít ở ACCU1 không.</td></r<>	So sánh số thực 32 bít ở ACCU2 có nhỏ hơn số thực 32 bít ở ACCU1 không.
34	>=R	So sánh số thực 32 bít ở ACCU2 có lớn hơn hay bằng số thực 32 bít ở ACCU1 không.
35	<=R	So sánh số thực 32 bít ở ACCU2 có nhỏ hơn hay bằng số thực 32 bít ở ACCU1 không.
36	A n	Thực hiện lệnh AND giữa nội dung của RLO với giá trị của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
37	A(Thực hiện lệnh AND giữa nội dung trong RLO với phép toán trong ngoặc (có đóng ngoặc), kết quả phép toán nạp vào RLO.
38	ABS	Lấy giá trị tuyệt đối của số thực 32 bít.
39	AD	Thực hiện lệnh AND giữa nội dung trong ACCU1 và ACCU2, kết quả để ở ACCU1 (32 bít).
40	AN n	Thực hiện lệnh AND giữa nội dung của RLO với giá trị nghịch đảo của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
41	AN(Thực hiện lệnh AND giữa nội dung của RLO với giá trị nghịch đảo của biểu thức trong ngoặc (có đóng ngoặc), kết quả ghi vào RLO.
42	AW	Thực hiện lệnh AND giữa nội dung trong ACCU1 và ACCU2, kết quả để ở ACCU1 (16 bít).
43	BEC	Lệnh kết thúc có điều kiện giữa khối (RLO:l)
44	BEU	Lệnh kết thúc khối không điều kiện, không phụ thuộc RLO.
45	BLD	Hiển thị lệnh của chương trình.
46	BTD	Chuyển số dạng mã BCD sang số nguyên 32 bít.
47	BTI	Chuyển số dạng mã BCD sang số nguyên 16 bít.
48	CAD	Đổi thứ tự byte trong ACCU1 (32 bít).
49	CAR	Chuyển nội dung thanh ghi 1 với nội dung thanh ghi 2.
50	CAW	Đổi thứ tự byte trong ACCU1 (16 bít)
51	CALL	Lệnh gọi khối.
52	CC	Lệnh gọi khối có điều kiện.

TT	Tên lện	Mô tả
53	CD	Số đếm giảm 1 đơn vị tại sườn lên của RLO sau đó không phụ thuộc RLO
		nữa.
54	CDB	Chuyên khối dữ liệu chung thành khối dữ liệu riêng.
55	CLR	xoá RLO (RLO = 0)
56	CU	Số đếm tăng 1 đơn vị tại sườn lên của RLO sau đó không phụ thuộc RLO nữa.
57	DEC	Giảm nội dung trong ACCU1 đi một đơn vị.
58	DTB	Đổi số nguyên 32 bít thành số dạng mã BCD.
59	DTR	Đổi số nguyên 32 bít thành số thực.
60	IN	Chọn lấy sườn âm của RLO.
61	FP	Chọn lấy sườn dương của RLO.
62	FR 7	Khởi tạo bộ thời gian TIME cả khi không có biến đổi sườn để khởi động bộ thời gian.
63	FR (Khởi tạo bộ đếm COUTER cả khi không có biến đổi sườn để đặt một bộ đếm đếm lên hoặc đếm xuống.
64	INC	Tăng số trong ACCU1 lên một đơn vị.
65	INVD	Lấy phần bù một của số nguyên 32 bít.
66	INVI	Lấy phần bù một của số nguyên 16 bít.
67	ITB	Đổi số nguyên 16 bít thành số dạng mã BCD.
68	ITD	Đổi số nguyên 16 bít thành số nguyên 32 bít.
69	JBI r	Nhảy sang làm việc ở nhãn n nếu BR = 1.
70	JC n	Nhảy sang làm việc ở nhãn n nếu RLO = 1.
71	JCB r	Nhảy sang làm việc ở nhãn n nếu RLO = 1 và BR = 1.
72	JCN n	Nhảy sang làm việc ở nhãn n nếu RLO = 0.
73	JL n	Nhảy đến nhãn ghi ở n.
74	JM	Nhảy nếu kết quả là âm (CC1 = 0, CC0 = 1)
75	JMZ	Nhảy nếu kết quả là âm hoặc bằng không (CC1 = 0 hoặc 0, CC0 = 0 hoặc 1).
76	JN	Nhảy nếu kết quả là khác không (CC1 = 1 hoặc 0, CC0 = 0 hoặc 1).
77	JNB r	Nhảy sang làm việc ở nhãn n nếu RLO = 0 và BR = 0 .
78	JNBI r	Nhảy sang làm việc ở nhãn n nếu BR = 0.
79	JO n	Nhảy sang làm việc ở nhãn nếu VO = 1.
80	JOS n	Nhảy sang làm việc ở khối n nếu OS = 0.
81	JP	Nhảy nếu kết quả là dương (CC1 = 1, CC0 = 0).
82	JPZ	Nhảy nếu kết quả là lớn hơn hoặc bằng không (CC1 = 0 hoặc 1, CC0 = 0 hoặc 0).
83	JU r	Nhảy sang làm việc ở nhãn n, không phụ thuộc RLO và RLO không bị ảnh hưởng.
84	JUO	Nhảy nếu (CC1 = 1, CC0 = 1).
85	JZ	Nhảy nếu kết quả là không (CC1 = 0, CC0 = 0).
86	L r	Nội dung của đối tượng lệnh (đơn vị byte) được sao chép vào ACCU1 không phụ thuộc vào RLO, nội dung trước đó của ACCU1 chuyển sang ACCU2.
87	L C	Nạp giá trị tức thời (số nguyên) của bộ đếm vào ACCU1
88	LT	Nạp giá trị tức thời (số nguyên) của bộ thời gian vào ACCU 1.
89	L DBLG	Nạp độ dài của khối dữ liệu DB vào ACCU1.
	1.	

TT	Tên lệnh		Mô tả
90	L	DBNO	Nạp số của khối dữ liệu DB vào ACCU1.
91	L	DILG	Nạp độ dài của khối dữ liệu DI vào ACCU1.
92	L	DINO	Nạp số của khối dữ liệu DI vào ACCU1.
93	L	STW	Nap từ trạng thái vào ACCU1.
94	LAR 1		Nạp địa chỉ vào thanh ghi 1 từ ACCU1.
95	LAR 1	n	Nạp địa chỉ vào thanh ghi 1 từ vị trí n ghi trong lệnh.
96	LAR 1	AR2	Nạp địa chỉ vào thanh ghi 1 từ thanh ghi 2.
97	LAR 1	P#	Nạp vào thanh ghi 1 tử địa chỉ tại con trỏ (số thực kép).
98	LAR2		Nạp địa chỉ vào thanh ghi 2 từ ACCU1.
99	LAR2	n	Nạp địa chỉ vào thanh ghi 2 từ vị trí n ghi trong lệnh.
100	LAR2	P#	Nạp vào thanh ghi 2 từ địa chỉ tại con trỏ (số thực kép).
101	LC	С	Nạp số đệm hiện thời dạng mã BCD vào ACCU1.
102	LC	T	Nạp giá trị thời gian hiện thời dạng mã BCD vào ACCU1.
103	LOOP	n	Lặp lại từ nhãn n.
104	MCR(Cất kết quả của phép tính logic vào vùng MCR.
105)MCR		Kết thúc vùng MCR.
106	MCRA		Kích hoạt vùng MCR.
107	MCRD		Thôi kích hoạt vùng MCR.
108	MOD		Phép chia lấy phần dư của số nguyên 32 bít ở ACCU2 cho số nguyên 32 bít ở ACCU1, kết quả để ở ACCU1.
109	NEGD		Lấy số bù hai của số nguyên 32 bít.
110	NEGI		Lấy số bù hai của số nguyên 16 bít.
111	NEGR		Lấy dấu âm cho số thực 32 bít.
112	NOP	0	Mã lệnh 16 bít trong RAM đều bằng 0 (để giữ chỗ).
113	NOP	1	Mã lệnh 16 bít trong RAM đều bằng 1 (để giữ chỗ).
114	NOT		Đặt trạng thái không cho RLO.
115	О	n	Thực hiện lệnh OR giữa nội dung của RLO với giá trị của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
116	O(Thực hiện lệnh OR giữa nội dung trong RLO với phép toán trong ngoặc (có đóng ngoặc), kết quả phép toán nạp vào RLO.
117	OD		Thực hiện lệnh OR giữa nội dung trong ACCU1 và ACCU2, kết quả để ở ACCU1 (32 bít).
118	ON	n	Thực hiện lệnh OR giữa nội dung của RLO với giá trị nghịch đảo của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
119	ON(Thực hiện lệnh OR giữa nội dung của RLO với giá trị nghịch đảo phép toán trong ngoặc (có đóng ngoặc), kết quả ghi vào RLO.
120	OPN		Mở khối dữ liệu.
121	OW		Thực hiện lệnh OR giữa nội dung trong ACCU1 và ACCU2, kết quả để ở ACCU1 (16 bít).
122	POP		Chuyển nội dung ở ACCU2 sang ACCU1.
123	PUSH		Chuyển nội dung ở ACCU1 sang ACCU2.
124	R	n	Nếu nội dung của RLO là 1 thì trạng thái tín hiệu 0 sẽ được gán cho đối tượng n và trạng thái này không thay đổi khi RLO thay đổi.
125	R	T	Xoá bộ thời gian nếu RLO = 1
126	R	С	Xoá bộ đếm nếu RLO = 1

TT	Tên l	ệnh	Mô tả
127	RLD	n	Quay tròn tử kép ở ACCU1 sang trái n bít.
128	RLDA		Quay tròn từ kép ở ACCU1 sang trái 1 bít qua CC 1.
129	RND		Đổi số thực 32 bít thành số nguyên 32 bít (bỏ phần thập phân).
130	RND+		Đổi số thực 32 bít thành số nguyên 32 bít, nếu là số dương thì làm tròn tăng, là số âm thì bỏ phần thập phân.
131	RND-		Đổi số thực 32 bít thành số nguyên 32 bít, nếu là số âm thì làm tròn tăng, là số dương thì bỏ phần thập phân.
132	RRD	n	Quay tròn từ kép ở ACCU1 sang phải n bít.
133	RRDA		Quay tròn từ kép ở ACCU1 sang phải 1 bít qua CC 1.
134	S	n	Nếu nội dung RLO là 1 thì trạng thái tín hiệu 1 sẽ được gán cho đối tượng n và trạng thái này không thay đổi khi RLO thay đổi.
135	S	C	Đặt bộ đêm nếu RLO = 1
136	SAVE		Cất kết quả của phép tính logic vào thanh ghi BR.
137	SD		Bộ thời gian chậm sau sườn lên của RLO một khoảng bằng thời gian đặt, khi RLO về 0 thì bộ thời gian về không ngay.
138	SE		Bộ thời gian lên 1 khi RLO chuyển từ 0 lên 1 (sườn lên) và duy trì đủ thời gian dặt, không phụ thuộc RLO nữa.
139	SET		Đặt RLO = 1
140	SF		Bộ thời gian lên 1 tại sườn lên của RLO, khi RLO về không thì bộ thời gian còn duy trì một khoảng thời gian bằng thời gian đặt.
141	SLD	n	Dịch tử kép trong ACCU1 sang trái n bít hoặc số bít dịch được nạp vào ACCU2.
142	SLW	n	Dịch từ đơn trong ACCU1 sang trái n bít hoặc số bít dịch được nạp vào ACCU2.
143	SP		Bộ thời gian lên 1 khi RLO chuyển tử 0 lên 1 (sườn lem và duy trì cho đến khi đạt thời gian đã đặt (RLO = 1), khi RLO = 0 thì bộ thời gian về 0 ngay.
144	SRD	n	Dịch tử kép trong ACCU1 sang phải n bít hoặc số bít dịch được nạp vào ACCU2.
145	SRW	n	Dịch tử đơn trong ACCU1 sang phải n bít hoặc số bít dịch được nạp vào ACCU2.
146	SS		Bộ thời gian chậm sau sườn lên của RLO một khoảng bằng thời gian đặt và không phụ thuộc RLO nữa, nó chỉ về không khi có lệnh xoá R.
147	SSD	n	Dịch số nguyên 32 bít trong ACCU1 sang phải n bít hoặc số bít dịch được nạp vào ACCU2. các bít trống được chèn bít dấu của số nguyên.
148	SSI	n	Dịch số nguyên 16 bít trong ACCU1 sang phải n bít hoặc số bít dịch được nạp vào ACCU2, các bít trống được chèn bít dấu của số nguyên.
149	T	n	Nội dung của ACCU1 truyền cho đối lượng n (đơn vị byte) không phụ thuộc RLO, ví dụ truyền cho vùng đệm đầu ra.
150	T	STW	Truyền từ trạng thái tới ACCU1.
	TAK		Lệnh trao đổi nội dung trong ACCU1 và ACCU2.
152	TAR1		Truyền địa chỉ trong thanh ghi 1 đến ACCU1.
153	TAR1	n	Truyền địa chỉ trong thanh ghi 1 đến vị trí được chỉ trong lệnh.
154	TAR1	AR2	Truyền địa chỉ trong thanh ghi 1 đến thanh ghi 2.
155	TAR2		Truyền địa chỉ trong thanh ghi 2 đến ACCU1.
156	TAR2	n	Truyền địa chỉ trong thanh ghi 2 đến vị trí được chỉ trong lệnh.
157	TRUNC		Chuyển số thực 32 bít trong ACCU1 thành số nguyên 32 bít có dấu.

TT	Tên lệnh	Mô tả
158	UC	Lệnh gọi khối không điều kiện.
159		Thực hiện lệnh OR (đặc biệt) giữa nội dung của RLO với giá trị của điểm n (đơn vị bít) chỉ dẫn trong lệnh, kết quả ghi vào RLO.
160	X(Thực hiện lệnh OR (đặc biệt) giữa nội dung trong RLO với phép toán trong ngoặc (có đóng ngoặc), kết quả phép toán nạp vào RLO.
161	XN n	Thực hiện lệnh OR (đặc biệt) giữa nội dung của RLO với giá trị nghịch đảo của điểm n, kết quả ghi vào RLO.
162	XN(Thực hiện lệnh OR (đặc biệt) giữa nội dung của RLO với giá trị nghịch đảo phép toán trong ngoặc (có đóng ngoặc), kết quả ghi vào RLO.
163	XOD	Thực hiện lệnh OR (đặc biệt) giữa các bít của hai từ kép.
164	XOW	Thực hiện lệnh OR (đặc biệt) giữa các bít của hai từ đơn

TÀI LIỆU THAM KHẢO

- 1. Nguyễn Trọng Thuần, Điều khiển logic và ứng dụng, Nhà xuất bản Khoa học và kỹ thuật, 2000.
- 2. Nguyễn Doãn Phước, Phan Xuân Minh, Vũ Văn Hà. *Tự động hoá tới Simatic S7-300*, Nhà xuất bản Khoa học và kỹ thuật, 2000.
- 3. Tăng Văn Mùi. Nguyễn Tiến Dũng, Điều khiển logic lập trình PLC, Nhà xuất bản thống kê, 2003.
- 4. Nguyễn Doãn Phước, Phan Xuân Minh, *Tự động hoá với Simatic S7-200*, Nhà xuất bản Khoa học và kỹ thuật, 2000.
- 5. A Bigincr's guide to PLC, OMROM ASIA PACIFIC, Singapor 1996.
- 6. SIMATIC S5. Program examples for Programmable Controllers. 1992.
- 7. Simatic Step 7 Statemenl Lisl Reference Manual, Siemen AG, Automation Group, Industrial Automation Systems, 1995.