1. [Marks 20]

Consider the propositions,

p: You drive over 120 km per hour.

q: You get caught by Saher camera.

Express the following propositions using p and q and logical connectives, i.e. \wedge (and), \vee (or), and \neg (not).

A	You drive over 120 km per hour, but you do not get caught by Saher camera.	PATE
В	You will get caught by Saher camera if you drive over 120 km per hour.	P-9
С	If you do not drive over 120 km per hour, then you will not get caught by Saher camera.	7P ->79
D	Driving over 120 km per hour is sufficient for getting caught by Saher camera.	P - 9
Е	You did get caught by Saher camera, but you did not drive over 120 km per hour.	9 17P

2. [Marks 10]

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

3. [Marks 10]

Consider the set $S = \{\emptyset, a, 2, (b, 3)\}$. Write the subset of the power set of S where each element has a cardinality of 3.

4. [Marks 10]

Let
$$f(x) = 1/x^2$$
 and $g(x) = x/\sqrt{x+1}$. Compute:
a. $(f \circ g)(x) = f(g(x)) = f(\frac{x}{\sqrt{x+1}}) = \frac{1}{(\frac{x}{\sqrt{x+1}})^2} = \frac{x+1}{x^2}$
b. $(f \circ f)(x) = f(f(x)) = f(\frac{1}{x^2}) = \frac{1}{(\frac{1}{x^2})^2} = x^4$
[Marks 10]

Find the prime factorization of the number 197351.

6. [Marks 10]

You are given the sequence $a_{35} = 45$, $a_{36} = 53$, $a_{37} = 61$ and $a_{38} = 69$. Find the sum $\sum_{k=10}^{20} a_k$. Show all the details.

= 7.112.233

7. [Marks 10]

Determine if the numbers: 22, 35, and 63 are pairwise relatively prime.

8. [Marks 10]

Pairwise relatively prime Calculate the summation, $\sum_{i=1}^{n} \prod_{j=1}^{n} c$. Show all the details. (22,35), (22,63), (35,63)

$$\rightarrow \sum_{i=1}^{n} c^{i} = \frac{c^{n+1}-c}{c-1}$$

Q6:
$$a_{35} = 45$$
, $a_{36} = 53$, $a_{37} = 61$, $a_{38} = 69$

$$\sum_{K \ge 10}^{20} a_{K} = a_{10} + a_{11} + a_{12} + ... + a_{20}$$

$$a_{K} = a_{1} + 8(K-1)$$

$$K = 35$$

$$45 = a_{1} + 8(34)$$

$$a_{1} = 45 - 8(34)$$

$$a_{1} = -227$$

* 9K= -227 + 8(K-1)

$$\sum_{k=10}^{20} -227 + 8(k-1) = \sum_{k=10}^{20} -227 + 8\sum_{k=10}^{20} (K-1)$$

$$= -227 \cdot 11 + 8\sum_{k=10}^{20} K - \sum_{k=10}^{20} 8$$

$$= 8\left[\sum_{k=10}^{20} K - \sum_{k=10}^{20} K\right] - 8 \cdot (20 - 10 + 1)$$

$$= 8\left[\frac{1}{2} \cdot 20 \cdot 21 - \frac{1}{2} \cdot 9 \cdot 10\right] - 8 \cdot 11$$

-2497 + 1232 = -1265