DIVING INTO THE LINEAR MODEL

DEEPER INTO THE WORLD OF LINEAR MODELS

- 1. Are groups different: T, F, and Multiple Comparisons
- 2. Linear Regression
- 3. Nonlinear Regression

THE KNEE'S THE THING!

- Test if shining light behind knees or on eyes helped jet lag
- Also a control group with no light
- n=7

MANY QUESTIONS

- 1. Are groups different from o?
- 2. Are groups different from each other?
- 3. Are groups a meaningful explanatory variable?

WHICH OF THESE GROUPS DIFFER: A JOB FOR T

THE PROBLEM OF MULTIPLE COMPARISONS

SOLUTIONS TO MULTIPLE COMPARISONS?

- 1. Ignore it a test is a test
- 2. Lower your α given m = # of comparisons
 - Bonferroni α/m
 - False Discovery Rate $k\alpha/m$ where k is rank of test
- 3. Other multiple comparinson correction
 - Tukey's Honestly Significant Difference

NO CORRECTION

```
##
## Pairwise comparisons using t tests with pooled SD
##
## data: jetlag$shift and jetlag$treatment
##
## control eyes
## eyes 0.0029 -
## knee 0.9418 0.0044
##
## P value adjustment method: none
```

BONFERRONI CORRECTIONS

```
##
## Pairwise comparisons using t tests with pooled SD
##
## data: jetlag$shift and jetlag$treatment
##
## control eyes
## eyes 0.0088 -
## knee 1.0000 0.0132
##
## P value adjustment method: bonferroni
```

FDR

```
##
## Pairwise comparisons using t tests with pooled SD
##
## data: jetlag$shift and jetlag$treatment
##
## control eyes
## eyes 0.0066 -
## knee 0.9418 0.0066
##
## P value adjustment method: fdr
```

TUKEY TEST

```
jet_aov <- aov(shift ~ treatment, data=jetlag)</pre>
```

```
TukeyHSD(jet_aov)
```

```
##
    Tukey multiple comparisons of means
       95% family-wise confidence level
##
##
## Fit: aov(formula = shift ~ treatment, data = jetlag)
##
## $treatment
##
                       diff
                                   lwr
                                                     p adj
                                              upr
## eyes-control -1.24267857 -2.1682364 -0.3171207 0.0078656
## knee-control -0.02696429 -0.9525222 0.8985936 0.9969851
## knee-eyes
                1.21571429 0.2598022 2.1716263 0.0116776
```

VISUALIZING COMPARISONS

DEEPER INTO THE WORLD OF LINEAR MODELS

- 1. Are groups different: T, F, and Multiple Comparisons
- 2. Linear Regression
- 3. Nonlinear Regression

AGING SEALS

ARE OLDER SEALS BIGGER?

ARE OLDER SEALS BIGGER?

THE STEPS OF STATISTICAL MODELING

- 1. What is your question?
- 2. What model of the world matches your question?
- 3. Build a test
- 4. Evaluate test assumptions
- 5. Evaluate test results
- 6. Visualize

OUR QUESTION AND MODEL

Question 1: Are older seals bigger?

Question 2: How much do seals grow per day?

$$Length_i = \beta_0 + \beta_1 A g e_i + \epsilon_i$$

MORE LINEAR MODELS

$$Length_i = \beta_0 + \beta_1 A g e_i$$

```
seal_mod_linear <- lm(length.cm ~ age.days, data=seals)</pre>
```

WAS THIS LINEAR? FITTED VERSUS RESIDUALS

TESTING OUR ERROR GENERATING PROCESS

QQS EVERYWHERE

IS OUR MODEL ANY GOOD? F-THAT!

anova(seal_mod_linear)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
age.days	1	90861.81	90861.80648	2815.841	О
Residuals	9663	311806.52	32.26809	NA	NA

T FOR COEFFICIENTS

summary(seal_mod_linear)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	115.7667505	0.1763751	656.3668	О
age.days	0.0023706	0.0000447	53.0645	О

HOW MUCH VARIATION DOES OUR MODEL EXPLAIN?

 $1 - Var_{residual}/Var_{total}$

$$R^2 = 0.2256493$$

VISUALIZATION

```
seal_base <- ggplot(seals, aes(x=age.days, y=length.cm)) +
  geom_point() +
  theme_grey(base_size=14) +
  stat_smooth(method="lm")</pre>
```

VISUALIZATION

DEEPER INTO THE WORLD OF LINEAR MODELS

- 1. Are groups different: T, F, and Multiple Comparisons
- 2. Linear Regression
 - 3. Nonlinear Regression

RESIDUALS V. FITTED FISHY...

A DIFFERENT DATA GENERATING PROCESS?

POSSIBLE NONLINEAR DATA GENERATING PROCESSES

WHAT SHAPE IS THE DATA GENERATING PROCESS?

A NEW MODEL

$$y = \beta_0 + \beta_1 \log(x) + \epsilon$$

```
seal_mod_log <- lm(log(length.cm) ~ I(log(age.days)), data=seals)</pre>
```

DID IT FIX THE RESIDUALS PROBLEM?

STILL MUST EVALUATE ERROR GENERATING PROCESS

HOW MUCH VARIATION DOES OUR MODEL EXPLAIN?

 $1 - Var_{residual}/Var_{total}$

 $R^2 = 0.2500709$

VISUALIZATION

```
seal_base +
  stat_smooth(method="lm", formula=y ~ I(log(x)))
```

