RecordArrays: Structured Arrays with a Twist

NumPy also provides the np.recarray class, which is almost identical to the structured arrays just described, but with one additional feature: fields can be accessed as attributes rather than as dictionary keys. Recall that we previously accessed the ages by writing:

```
In[15]: data['age']
Out[15]: array([25, 45, 37, 19], dtype=int32)
```

If we view our data as a record array instead, we can access this with slightly fewer keystrokes:

```
In[16]: data_rec = data.view(np.recarray)
       data rec.age
Out[16]: array([25, 45, 37, 19], dtype=int32)
```

The downside is that for record arrays, there is some extra overhead involved in accessing the fields, even when using the same syntax. We can see this here:

```
In[17]: %timeit data['age']
       %timeit data_rec['age']
       %timeit data rec.age
1000000 loops, best of 3: 241 ns per loop
100000 loops, best of 3: 4.61 µs per loop
100000 loops, best of 3: 7.27 µs per loop
```

Whether the more convenient notation is worth the additional overhead will depend on your own application.

On to Pandas

This section on structured and record arrays is purposely at the end of this chapter, because it leads so well into the next package we will cover: Pandas. Structured arrays like the ones discussed here are good to know about for certain situations, especially in case you're using NumPy arrays to map onto binary data formats in C, Fortran, or another language. For day-to-day use of structured data, the Pandas package is a much better choice, and we'll dive into a full discussion of it in the next chapter.