

http://www.icmc.usp.br

SCC-205 Teoria da Computação e Linguagens Formais

João Luís Garcia Rosa¹

¹Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis

2009

Sumário

- 🚺 Teoria da Computação e Linguagens Formais
 - A disciplina SCC 205
 - Objetivos e Programa
 - Avaliação

Sumário

- 🚺 Teoria da Computação e Linguagens Formais
 - A disciplina SCC 205
 - Objetivos e Programa
 - Avaliação

- A disciplina é composta de três partes centrais da Teoria da Computação que têm o objetivo de tentar responder quais são as capacidades e as limitações dos computadores:
 - Teoria das Linguagens Formais e dos Autômatos
 - 2 Teoria da Computabilidade
 - Teoria da Complexidade
- A primeira parte trata das definições e propriedades de modelos matemáticos de computação que têm um papel fundamental em várias áreas da Computação como o processamento de textos, compiladores, definição de linguagens de programação, dentre outras.
- Além desse lado prático, do ponto de vista teórico, para se definir o que é ou não computável é necessário utilizar um modelo matemático que represente o que se entende por computação.

- A segunda parte do curso é centralizada na Tese de Church-Turing e nas evidências dela.
- Church usou um sistema chamado cálculo- λ para definir algoritmo e Turing fez o mesmo com o uso da Máquina de Turing (MT).
- As duas definições foram mostradas serem equivalentes e a conexão entre a noção informal de algoritmo (solúvel efetivamente) e a definição precisa por uma MT foi chamada Tese de Church-Turing: se um problema algorítmico não pode ser resolvido por uma máquina de Turing, então não existe nenhuma solução computável para ele.

- Vários outros modelos de computação (por exemplo, as funções recursivas de Kleene, linguagens formais, RAMs, algoritmos de Markov, linguagens de programação, a máquina de Post) foram propostos e provados terem poder equivalente a Maquina de Turing.
- Assim, estudando qualquer um destes modelos, por exemplo um modelo simples como a Máquina de Turing, é possível aprender sobre as limitações teóricas de todos os computadores.

- Nem todos os problemas algorítmicos, que podem ser resolvidos em princípio, podem ser resolvidos na prática: os recursos computacionais requeridos (tempo ou espaço) podem ser proibitivos.
- Esta observação motiva o estudo da complexidade computacional que será tratada na terceira parte do curso.
- A meta principal da teoria da complexidade é a classificação de problemas de acordo com a dificuldade computacional.
- A meta da teoria da computabilidade é a classificação de problemas em solúveis, parcialmente solúveis e não solúveis e se forem problemas de decisão em problemas decidíveis, parcialmente decidíveis e indecidíveis.

Sumário

- Teoria da Computação e Linguagens Formais
 - A disciplina SCC 205
 - Objetivos e Programa
 - Avaliação

Objetivos

- Dar ao aluno noção formal de algoritmo, computabilidade e do problema de decisão, de modo a deixá-lo consciente das limitações da ciência da computação.
- Aparelhá-lo com as ferramentas de modo a habilitá-lo a melhor enfrentar a solução de problemas com o auxílio do computador.
- Dar subsídios para o aluno poder definir linguagens de programação, isto é, sua sintaxe e semântica, através do estudo das gramáticas formais.

- 1 Linguagens Regulares e Autômatos Finitos
 - Gramáticas e Linguagens
 - A Primeira Linguagem
 - Gramáticas e Linguagens
 - Linguagens Regulares e de Estados Finitos
 - 2 Autômatos de Estados Finitos
 - Autômatos Finitos
 - Arcos-λ
 - Autômato Mínimo
 - 3 Autômatos Finitos com Saída
 - Máquinas de Mealy
 - Máquinas de Moore
 - Exemplos

- 2 Linguagens Livres de Contexto e Autômatos de Pilha
 - Linguagens Livres de Contexto
 - Linguagens Livres de Contexto
 - Lema do Bombeamento para Linguagens Livres de Contexto
 - Formas Normais para Gramáticas Livres de Contexto
 - Autômatos de Pilha
 - A Pilha como Processador de Linguagem
 - O Autômato de Pilha
 - O Teorema da Equivalência
 - Programas, Linguagens e Parsing
 - Linguagens de Programação
 - Parsing
 - Gramáticas Livres de Contexto e a Língua Natural

- 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente
 - Gramáticas e Linguagens Sensíveis ao Contexto
 - Gramáticas e Linguagens Sensíveis ao Contexto
 - O Lema da Cadeia Vazia
 - Prova do Lema da Cadeia Vazia
 - Máquinas de Turing
 - Máquinas de Turing e a Computabilidade
 - Conjunto de Aceitação de uma Máquina de Turing
 - 3 Autômatos Limitados Linearmente
 - Autômatos Limitados Linearmente
 - O Lema do Alfabeto

- 4 Linguagens Recursivamente Enumeráveis e Máquinas de Turing
 - Gramáticas Irrestritas
 - Gramáticas Irrestritas
 - Das Gramáticas para as Máquinas de Turing
 - Das Máquinas de Turing para as Gramáticas
 - A Máquina de Turing Universal
 - A Máquina de Turing e Funções Numéricas
 - A Tese de Church-Turing
 - A Máquina Universal

- 5 Computabilidade e Complexidade
 - Indecidibilidade
 - Máquinas de Turing Não Determinísticas
 - Uma Linguagem que n\u00e3o \u00e9 Recursivamente Enumer\u00e1vel
 - O Problema da Parada e a Indecidibilidade
 - 2 Teoria de Complexidade
 - Complexidade de Tempo
 - Complexidade de Espaço
 - **3** Tratabilidade e Problemas \mathcal{NP} -Completos
 - Tratabilidade
 - A Classe \mathcal{NP}
 - Outras Classes de Problemas

- Aulas:
 - Turma C: Terças/Quintas: 19h00-20h40 sala 4-005

Sumário

- Teoria da Computação e Linguagens Formais
 - A disciplina SCC 205
 - Objetivos e Programa
 - Avaliação

Avaliação

- 3 provas:
 - $P_1 = 22/09$
 - $P_2 = 05/11$
 - $P_3 = 15/12$
- Exercícios e Trabalhos Práticos em grupo, com implementação T₁ e T₂:
 - Apresentação do Trabalho T₁: 28/9 a 02/10.
 - Apresentação do Trabalho T₂: 30/11 a 04/12.
- MP = Média Ponderada das Provas:
 - MP = $P_1 * 0.4 + P_2 * 0.3 + P_3 * 0.3$
- MT = Média Aritmética dos Trabalhos
- MF = Média Final:
 - Se MP \geq 5,0 e MT \geq 5,0 então MF = (7*MP + 3*MT)/10
 - Se MP < 5,0 ou MT < 5,0 então MF = menor valor entre MP e MT

◆ロト ◆問 ト ◆ 臣 ト ◆ 臣 ト 至 目 を 夕 ○ ○

Avaliação: Recuperação

Norma de Recuperação

- 1 prova de recuperação P_R
- Realização: Até a primeira semana de aulas do semestre posterior.
- Critério de Aprovação:
 - Média = $MF + (P_R/2, 5)$, se $P_R \ge 7, 5$; ou
 - Média = Max{MF, P_R}, se P_R < 5,0; ou
 - Média = 5, 0, se 5, $0 \le P_R < 7, 5$.

Bibliografia I

- [1] Hopcroft, J. E., Ullman, J. D. Formal Languages and Their Relation to Automata. Addison-Wesley Publishing Company, 1969.
- [2] Hopcroft, J. E., Ullman, J. D. e Motwani, R. Introdução à Teoria de Autômatos, Linguagens e Computação. Tradução da segunda edição americana. Editora Campus, 2003.
- [3] JFLAP Version 6.0.
 Ferramenta para Diagrama de Estados.
 www.jflap.org.

Bibliografia II

- [4] Mealy, G. H.
 A method for synthesizing sequential circuits.

 Bell Systems Technical Journal 34:5, pp. 1045-1079, 1955.
- [5] Menezes, P. B. Linguagens Formais e Autômatos. Série Livros Didáticos. 4a. Edição. Instituto de Informática da UFRGS. Editora Sagra Luzzatto, 1997.
- [6] Moll, R. N., Arbib, M. A., and Kfoury, A. J. An Introduction to Formal Language Theory. Springer-Verlag, 1988.

Bibliografia III

- [7] Moore, E. F. Gedanken experiments on sequential machines. in C. E. Shannon and J. McCarthy (Eds.), *Automata Studies*, Princeton University Press, pp. 129-153, 1956.
- [8] Rosa, J. L. G. SCE-185 Teoria da Computação e Linguagens Formais. *Notas de Aula.* Ciências de Computação. ICMC-USP, 2008.
- [9] Sipser, M. Introduction to the Theory of Computation. Second Edition, Thomson, 2006.

Bibliografia IV

[10] Taylor, R. G. and Taylor, S. Models of Computation and Formal Languages. Oxford University Press, 1997. Deus Ex Machina:

www.ics.uci.edu/~savoiu/dem/