

El espacio afín

Tema 4

Mar Angulo Martínez mar.angulo@u-tad.com

Tema 4.- El espacio afín

- 4.1. Espacio afín y espacio afín métrico.
- 4.2. Sistemas de referencia. Coordenadas.
- 4.3. Cambio de sistema de referencia.
- 4.4. Variedades afines: ecuaciones paramétricas y cartesianas.
- 4.5. Variedad afín generada por un conjunto de puntos.
- 4.6.Intersección y suma de variedades afines.
- 4.7. Aplicaciones afines. Expresión matricial de una aplicación afín.

- Un conjunto $A \neq \emptyset$ se llama **Espacio afín sobre V** si hay definida una aplicación en V espacio vectorial: $A \times A \longrightarrow V$ que a cada par de elementos de A: (A,B) les hace corresponder un único vector \overrightarrow{AB} que verifica:
 - 1) Para cada $A \in A$ y para cada $v \in V$, existe un único elemento B tal que $\overrightarrow{AB} = v$
 - \square 2) Para cada A,B,C \in A, se verifica que \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}
- Los elementos del conjunto A se denominan puntos. Si \overrightarrow{AB} =v decimos que v es el vector que tiene origen en A y extremo en B
- La dimensión del espacio afín A es la dimensión del espacio vectorial V. Si V es de dimensión finita, A es un **espacio afín de dimensión finita**
- ☐ El espacio vectorial V se denomina **espacio de dirección de A.**

- Un conjunto $A \neq \emptyset$ se llama **Espacio afín sobre V** si hay definida una aplicación en V espacio vectorial: $A \times V \longrightarrow A$ que a cada par de elementos $(P, v) \longrightarrow Q = P + v$
 - 1) Para cada par de puntos $(P, Q) \in A$ existe un único $v \in V$, tal que P + v = Q

\$ Ejemplo 1 Un espacio afín sencillo

En R^2 dados dos puntos $P=(a_1,a_2)$ y $Q=(b_1,b_2)$ definimos $v=\overrightarrow{PQ}=(b_1-a_1,b_2-a_2)\in R^2$

verifica que 1) P + v = Q

Y por como hemos definido la aplicación es fácil comprobar que si tomamos $R = (c_1, c_2)$

y w= \overrightarrow{QR} = $(c_1-b_1,c_2-b_2)\in R^2$: se verifica que (P+u)+v=P+(u+v)

- □ Propiedades de un espacio afín
 - □ P+v=P ← v=0
 - $\square \forall P, Q \in A, \overrightarrow{QP} = -\overrightarrow{PQ}$
 - $\square \forall P, Q, R \in A, \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ (relación de Chasles)
 - $\square \forall P, Q, P', Q' \in A, si \overrightarrow{PQ} = \overrightarrow{P'Q'}, entonces \overrightarrow{PP'} = \overrightarrow{QQ'}$
- 1) $P+v=P \longleftrightarrow v=\overrightarrow{PP} \qquad (P+u)+v=P+(u+v)$ $(P+\overrightarrow{PP})+\overrightarrow{PP}=P+(\overrightarrow{PP}+\overrightarrow{PP}) \longrightarrow \overrightarrow{PP}=\overrightarrow{PP}+\overrightarrow{PP} \longrightarrow \overrightarrow{PP}=0$
- 2) Basta sumar $\overrightarrow{PQ} + \overrightarrow{QP} = 0$ Son, por tanto, opuestos
- 4) $\overrightarrow{SIPQ} = \overrightarrow{P'Q'}$ sumando a ambos miembros $\overrightarrow{QP'} : \overrightarrow{PQ} + \overrightarrow{QP'} = \overrightarrow{QP'} + \overrightarrow{P'Q'} \Longrightarrow \overrightarrow{PP'} = \overrightarrow{QQ'}$

- ☐ La forma bilineal f se denomina **producto escalar** f(x,y) =<x,y>=x.y y la matriz asociada a un producto escalar se llama **matriz de Gram**
- □ Cuando V es un espacio vectorial euclídeo, decimos que A es un **espacio afín métrico o espacio afín euclídeo**

¿Cuál es entonces la diferencia entre espacio afín y espacio afín métrico?

¡Distancias y ángulos!

Podemos definir el ángulo entre dos vectores

Distancia	entre	dos	puntos	P	y	Q	es	la	norma	del	vector	\overrightarrow{PQ}
que determin	an											

$$d(P,Q)=||\overrightarrow{PQ}||$$

Propiedades de la distancia

Si P, Q y R son puntos de un espacio afín métrico, se cumple que:

- \Box d(P,Q)=0 si y sólo si P=Q
- \Box d(P,Q)=d(Q,P)
- \Box d(P,R) \leq d(P,Q) + d(Q,R)

❖ Ejemplo 2 Un espacio afín sencillo

En el espacio afín métrico R^n , utilizando el producto escalar usual, la distancia entre $P=(a_1, a_2, ...a_n)$ y $Q=(b_1, b_2, ...b_n)$ es $d(P,Q)=\sqrt{(b_1-a_1)^2+(b_2-a_2)^2+\cdots+(b_n-a_n)^2}$

Producto escalar de dos vectores

Definimos el producto escalar de dos vectores (en función de sus coordenadas) $\vec{u} = (x_1, x_2,...x_n)$ y $\vec{v} = (y_1, y_2,...y_n)$ como: \vec{u} . $\vec{v} = x_1, y_1 + x_2, y_2 + x_n, y_n$

Producto escalar de dos vectores

Definimos el producto escalar de dos vectores como: \vec{u} . $\vec{v} = |\vec{u}||\vec{v}|$. $\cos \alpha$ siendo α el ángulo formado por los dos vectores

☐ Ángulo entre dos vectores

$$cos\alpha = \frac{\vec{u}. \vec{v}}{|\vec{u}|.|\vec{v}|} = \frac{x_{1.} y_{1} + x_{2.} y_{2} + x_{n.} y_{n}}{\sqrt{x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2}} \cdot \sqrt{y_{1}^{2} + y_{2}^{2} + \cdots + y_{n}^{2}}}$$

Sistemas de referencia. Coordenadas

- En un espacio afín A de dimensión finita n sobre V llamamos **Sistema de referencia cartesiano** a cada conjunto R={O,B} en el que O es un punto de A que es el **origen del sistema de referencia** y B es una **base** del espacio vectorial V.
- Entonces dado cualquier punto $P \in A$, el vector \overrightarrow{OP} tiene unas **coordenadas** únicas respecto de la base B $\overrightarrow{OP} = (x_1, x_2, ...x_n)_B$
- □ Las coordenadas del punto P en el sistema de referencia R={O,B}

son las coordenadas del vector \overrightarrow{OP} respecto de la base B

Sistemas de referencia. Coordenadas

- \square En un sistema de referencia R, dados dos puntos $P=(a_1, a_2, ...a_n)$ y $Q=(b_1, b_2, ...b_n)$ el vector $\overrightarrow{PQ}=\overrightarrow{PO}+\overrightarrow{OQ}=\overrightarrow{OQ}-\overrightarrow{OP}=(b_1-a_1,b_2-a_2,...b_n-a_n)$ en la base B.
- ☐ Si A es un espacio afín métrico y la base B es ortonormal (de vectores ortogonales y unitarios) se dice que R es un sistema de referencia rectangular y

$$d(P,Q) = \left| |\overrightarrow{PQ}| \right| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

Conclusión

En un espacio afín euclídeo (métrico) tienen sentido los mismos conceptos que en un espacio vectorial euclídeo:

distancias

ángulos

ortogonalidad

☐ Cambio de sistema de referencia

Dados dos sistemas de referencia R={O,B}={O, $u_1, u_2, ...u_n$ } y R'={O',B'}={O', $v_1, v_2, ...v_n$ } en un espacio afín A de dimensión n, tratamos de encontrar las ecuaciones que relacionan las coordenadas de un mismo punto P respecto de R: $(x_1, x_2, ...x_n)_R$ y respecto de R': $(y_1, y_2, ...y_n)_{R'}$

> Recuerda:

- $\triangleright (x_1, x_2, ...x_n)$ coordenadas de P en el sistema de referencia R
- (y₁, y₂, ...y_n) coordenadas de P en el sistema de referencia R´
- \triangleright $(b_1, b_2, ...b_n)$ coordenadas del punto O´ en el sistema de referencia R

Cómo hacer un cambio de sistema de referencia

- $(x_1, x_2, ...x_n)$ coordenadas de P en el sistema R: $=x_1 u_1 + x_2 u_2 + ...x_n u_n$
- $(y_1, y_2, ...y_n)$ coordenadas de P en el sistema R': $=y_1 v_1 + y_2 v_2 + ... + y_n v_n$
- \blacktriangleright $(b_1, b_2, ...b_n)$ coordenadas de 0' en el sistema de referencia R: $0' = b_1 u_1 + b_2 u_2 + ...b_n u_n$
- \triangleright Como $\overrightarrow{OP} = \overrightarrow{OO'} + \overrightarrow{O'P} : =$

$$x_1 u_1 + x_2 u_2 + ... x_n u_n = b_1 u_1 + b_2 u_2 + ... b_n u_n + y_1 v_1 + y_2 v_2 + ... y_n v_n =$$

= $b_1 u_1 + b_2 u_2 + ... b_n u_n + y_1 (a_{11}u_1 + ... + a_{n1}u_n) + y_2 (a_{12}u_1 + ... + a_{n2}u_n) + ... y_n (a_{1n}u_1 + ... + a_{nn}u_n)$

Así, las ecuaciones del cambio de sistema de referencia quedan:

$$x_1 = b_1 + a_{11}y_1 + a_{12}y_2 + ... + a_{1n}y_n$$

$$x_2 = b_2 + a_{21}y_1 + a_{22}y_2 + ... + a_{2n}y_n$$

$$...$$

$$x_n = b_n + a_{n1}y_1 + a_{n2}y_2 + ... + a_{nn}y_n$$

La expresión matricial de estas ecuaciones será:
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

(|coordenadas de vectores de B' en base B|)

O bien

$$\begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ b_1 & a_{11} & \dots & a_{1n} \\ b_2 & a_{21} & \dots & a_{2n} \\ \vdots \\ b_n & a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$M_{D(n)} = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 0 \end{pmatrix}$$

 $M_{R'R} = \begin{pmatrix} 1 & 0 \\ \vec{b} & A_{B'B} \end{pmatrix}$ Matriz de cambio de sistema de referencia de R' a R

$$\begin{pmatrix} 1 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ b_1 & a_{11} & \dots & a_{1n} \\ b_2 & a_{21} & \dots & a_{2n} \\ \vdots \\ b_n & a_{n1} & \dots & a_{nn} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad M_{RR'} = \begin{pmatrix} 1 & 0 \\ \vec{b} & A_{B'B} \end{pmatrix}^{-1}$$

$$Matriz de cambio de sistema$$

$$de referencia de R a R'$$

de referencia de R a R'

* Ejemplo 3 Cómo hacer un cambio de sistema de referencia

en un espacio afín A_2 de dimensión 2 consideramos los sistemas de referencia $R=\{O,u_1,u_2\}$ y $R'=\{O',v_1,v_2\}$ tal que $OO'=3u_1+3u_2$ $v_1=2u_1-u_2$ $v_2=-u_1+2u_2$

> cambio de referencia de R´ a R

> Como
$$\overrightarrow{OP} = \overrightarrow{OO'} + \overrightarrow{O'P} : =$$

 $x_1 u_1 + x_2 u_2 = 3u_1 + 3u_2 + y_1 v_1 + y_2 v_2 =$
 $3 u_1 + 3u_2 + y_1 (2u_1 - u_2) + y_2 (-u_1 + 2u_2)$

Así, las ecuaciones del cambio de sistema de referencia quedan:

$$x_1 = 3 + 2y_1 - y_2$$
 $x_2 = 3 - y_1 + 2y_2$ $\begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{0}{2} & \frac{0}{1} \\ \frac{1}{3} & \frac{1}{2} & -1 \\ \frac{1}{3} & \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} 1 \\ y_1 \\ y_2 \end{pmatrix}$

Matriz de cambio de sistema de referencia de R´ a R: permite calcular, a partir de las coordenadas de un punto en R´, las coordenadas en R

> cambios de referencia de R'a R y de R a R'

- Cambio de R'a R : Elementos de R 'en R
 - ➤ Si (2,3) son las coordenadas de P en el sistema R´, ¿cuáles son sus coordenadas en R?

$$\begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & -1 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}$$

$$M_{R'R}$$

- Cambio de R a R': Elementos de R en R'
 - ➤ Si (3,5) son las coordenadas de P en el sistema R, ¿cuáles son sus coordenadas en R´?

$$\begin{pmatrix} 1 \\ y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & -1 \\ 3 & -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2/3 \\ 4/3 \end{pmatrix}$$

El espacio afín. Rectas y planos

- Variedad lineal (afín) que pasa por P y tiene a F como subespacio de dirección
 - $B=\{P+\vec{v}/P\in A, \vec{v}\in F\}\ donde\ F\ es\ un\ subespacio\ vectorial\ de\ E$
- \square El plano afín R^2 Sistema de referencia: $\{0=(0,0), e_1=(1,0), e_2=(0,1)\}$
- \square El espacio afín R^3 Sistema de referencia: {0=(0,0,0), e_1 = (1,0,0), e_2 =(0,1,0), e_3 =(0,0,1)}
- \square Rectas en \mathbb{R}^3 son variedades de dimensión 1 engendradas por 2 puntos (un punto y 1 vector)
- \square Planos en \mathbb{R}^3 son variedades de dimensión 2 engendradas por 3 puntos no alineados (un punto y 2 vectores linealmente independientes)

□ Teorema

B es una variedad afín (lineal) de A si y sólo si puede expresarse como B={P+v/P∈ $A~y~v~\in$ S} =P+L< $v_1,~v_2,...~v_k$ } siendo S un subespacio

vectorial de V

B es la variedad lineal que pasa por P y tiene a S como subespacio de dirección.

O de otra forma:

☐ Si P es un punto del espacio afín A y W es un subespacio vectorial de V, L={B∈ $A / \overrightarrow{AB} \in W$ } se llama **variedad afín** que pasa por el punto A y tiene espacio de dirección W

Idea intuitiva

- ☐ Una variedad afín es el conjunto de soluciones de un sistema de ecuaciones lineales.
- ☐ Es un concepto análogo al de subespacio vectorial en el ámbito de la geometría afín (una variedad lineal es lo que intuitivamente denominaríamos «subespacio afín»).
- ☐ Geométricamente, es la generalización a cualquier dimensión de la idea de rectas y planos.

- ❖ Ejemplo 4 Una recta en el plano es una variedad afín
- Recta que pasa por P=(0,0) y tiene vector director $\vec{d}=(1,0)$: subespacio vectorial L<(1,0)>
- Recta que pasa por P=(1,-1) (en general P \neq (0,0)) y tiene $\vec{d}=(1,0)$: subespacio afín A= P+S=(1,-1)+L<(1,0)>
 - y L<(1,0)> es el subespacio vectorial asociado al espacio afín A.

❖ Ejemplo 5 Ecuaciones de una variedad afín

■ En un espacio afín de dimensión 3 sobre R, respecto de un sistema de referencia R, consideramos la variedad afín L que pasa por el punto (1,2,-1) y tiene espacio de dirección

$$W = \begin{cases} x + 2y + 3z = 0 \\ x + y - z = 0 \end{cases}$$

- W es un subespacio vectorial (conjunto de soluciones de un sistema lineal homogéneo)
- Ecuaciones implícitas de L≡ $\begin{cases} x + 2y + 3z = a \\ x + y z = b \end{cases}$ Imponemos que P= (1,2,-1) verifica las

restricciones
$$\Rightarrow$$
 a=2; b=4 \Rightarrow L \equiv $\begin{cases} x + 2y + 3z = 2 \\ x + y - z = 4 \end{cases}$ \Rightarrow L \equiv $\begin{cases} x = 6 + 5\lambda \\ y = -2 - 4\lambda \\ z = \lambda \end{cases}$

- Dependencia e independencia afín
- Se llama rango de un conjunto de puntos $\{P_{0}, P_{1}, P_{2}, ..., P_{k}\}$ al rango del sistema de vectores $\{\overrightarrow{P_{0}P_{1}}, \overrightarrow{P_{0}P_{2}}, ..., \overrightarrow{P_{0}P_{k}}\}$
- Los puntos $\{P_{0}, P_{1}, P_{2}, ..., P_{k}\}$ son afínmente independientes si los vectores $\{\overline{P_{0}P_{1}}, \overline{P_{0}P_{2}}, ..., \overline{P_{0}P_{k}}\}$ son linealmente independientes.
- En caso contrario, los puntos se dicen afínmente dependientes
- ☐ Un conjunto de n+1 puntos afínmente independientes siempre es **base de**

un espacio afín de dimensión n

Variedades afines. Variedad afín generada por un conjunto de puntos

■ Variedad afín generada por un conjunto de puntos

 $P=\{P_{0,},P_{1,},P_{2,}...P_{k}\}$. Se denota L(P) es la menor variedad afín que contiene al conjunto P.

$$L(P) = P_0 + L(\overrightarrow{P_0 P_1}, \overrightarrow{P_0 P_2}, ..., \overrightarrow{P_0 P_k})$$

- Es la intersección de todas las variedades afines que contienen al conjunto P
- \square Su subespacio asociado es el generado por los vectores $\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, ..., \overrightarrow{P_0P_k}$

- **Ejemplo 6** Independencia afín. Variedad afín generada por un conjunto de puntos
- En un espacio afín de dimensión 4 sobre R, consideramos

$$P_1 = (1,2,1,2)$$
 $P_2 = (1,1,1,1)$ $P_3 = (-1,2,0,0)$ $P_4 = (0,2,1,0)$

¿Cuál es la variedad afín generada por estos puntos? Es la variedad que pasa por el punto P_1 y tiene espacio de dirección generado por los vectores

$$\overrightarrow{P_1P_2}$$
=(0,-1,0,-1)

$$\overrightarrow{P_1P_2} = (0,-1,0,-1)$$
 $\overrightarrow{P_1P_3} = (-2,0,-1,-2)$

$$\overrightarrow{P_1P_4} = (-1,0,0,-2)$$

¿son linealmente independientes?

$$rang\begin{pmatrix} 0 & -1 & 0 & -1 \\ -2 & 0 & -1 & -2 \\ -1 & 0 & 0 & -2 \end{pmatrix} = rang\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} = 3$$

Son l.i. ← Ptos afínmente independientes

- Ecuaciones paramétricas de la variedad afín que generan los puntos P_1 , P_2 , P_3 , P_4
- $(x_1, x_2, x_3, x_4) = (1,2,1,2) + \alpha(1,0,0,2) + \beta(0,1,0,1) + \gamma(0,0,1,-2)$ (Ecuación vectorial) $x_1 = 1 + \alpha$ $x_2 = 2 + \beta$ (Ecuaciones paramétricas) $x_3 = 1 + \gamma$ $x_4 = 2 + 2\alpha + \beta 2\gamma$

Ejemplo 7 Variedad afín generada por un conjunto de puntos

- Una recta es una variedad afín de dimensión 1 de \mathbb{R}^3 : viene definida por dos puntos: P_1, P_2
 - ó de forma equivalente, por un punto y un vector de dirección
- Un plano es una variedad afín de dimensión 2 de \mathbb{R}^3 : viene definida por tres puntos: P_1, P_2, P_3
 - ó de forma equivalente, por un punto y dos vectores de dirección $\overrightarrow{P_1P_2}$ y $\overrightarrow{P_1P_3}$

Resumen

K+1 puntos de la variedad que sean afínmente independientes

a (a≤k)vectores l.i del subespacio y k+1-a ptos afínmente independientes ¿Qué datos son necesarios para definir una variedad afín de dimensión k?

Un punto de la Vectorial de Subespacio

Intersección y suma de variedades afines

☐ Ap	licación	afín
------	----------	------

Si consideramos A y A' espacios afines cuyos espacios vectoriales asociados son V y

V', respectivamente, f: A — A' es una **aplicación afín** si existe un punto

 $O \in A$ tal que la correspondencia $\vec{f} : V \longrightarrow V'$ dada por \vec{f} $(\overrightarrow{OX}) = \overrightarrow{f(O)f(X)}$ es una aplicación lineal.

Ejemplo 8 Expresión de una aplicación afín

- f: R^3 se define como f(x,y,z)=(x+y+1, x-z, x+y+z-1)
- Entonces \vec{f} $(\overrightarrow{OX}) = \overrightarrow{f(O)f(X)} = (x+y+1, x-z, x+y+z-1)-(1,0,-1)= (x+y, x-z, x+y+z)$ es una aplicación lineal. Su matriz asociada $M_{B_C} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$

- Ejemplo 9 La identidad como aplicación afín
- Id: $A \longrightarrow A$ se define como Id(X)=X para cada X∈ A verifica para cualquier $O \in A$ que $\vec{I}: V \longrightarrow V$ es \vec{I} $(\overrightarrow{OX}) = \overrightarrow{Id(O)Id(X)} = \overrightarrow{OX}$
- Es la aplicación identidad en V y por tanto es una aplicación lineal.

Proposición

- Proposición
- La composición de dos aplicaciones afines es una aplicación afín
- Una aplicación afín es inyectiva (suprayectiva) si y sólo si lo es la aplicación lineal asociada
- Consideramos f:A → A′ y g: A′ → A′ aplicaciones afines
- $\overrightarrow{gof} \ (\overrightarrow{PQ}) = \overrightarrow{(gof)(P)(gof)(Q)} = \overrightarrow{g[f(P)]g[f)(Q)} = \overrightarrow{g} \ \overrightarrow{f(P)]f(Q)} = (\overrightarrow{g} \circ \overrightarrow{f})(\overrightarrow{PQ})$

definición de la aplicación lineal asociada a (gof) \vec{g}

definición de la aplicación lineal $ec{f}$

definición de la composición de aplicaciones

- f es inyectiva significa que f(P)=f(Q) → P=Q
- Entonces \vec{f} $(\overrightarrow{PQ}) = \overrightarrow{f(P)f(Q)} = \overrightarrow{0}$ y comof $(\overrightarrow{PQ}) = \overrightarrow{f}$ $(\overrightarrow{0})$ tenemosf $(\overrightarrow{0}) = \overrightarrow{0} \longrightarrow f$ inyectiva
- Si $f(O) \in A'$, entonces cualquier punto de A'es de la $forma X' = f(O) + v'con v' \in A'$, y si \vec{f} es suprayectiva: $v' = \vec{f}(v) = \vec{f}(\vec{OX}) = \overline{f(O)f(X)} \longrightarrow f(X) = f(O) + v' = X' \longrightarrow f(O) + v' = X'$

Expresión analítica de una aplicación afín

Si consideramos A y A' espacios afines de dimensión finita (n y m) y los sistemas de referencia R={O,B} y R'={O',B'}, una aplicación afín f: A \longrightarrow A' queda completamente determinada si conocemos f(O) y la aplicación lineal asociada \overrightarrow{f} puesto que \overrightarrow{f} (\overrightarrow{OX}) = $\overrightarrow{f(O)f(X)}$. Entonces

$$f(X) = f(0) + \overrightarrow{f}(\overrightarrow{OX})$$

☐ Expresión matricial de una aplicación afín

- ightharpoonup Si $(c_1, c_2, ... c_m) = [f(O)]_{R'}$:coordenadas de f(O) en el sistema de referencia R'
- $(x_1, x_2, ...x_n) = X_R$:coordenadas de X en el sistema de referencia R
- $(y_1, y_2, ... y_m) = f(X)_{R'}$: coordenadas de f(X) en el sistema de referencia R'

$$\Rightarrow \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = A_{BB'}(\vec{f}): \textbf{\textit{es la matriz asociada a }} \vec{f} \text{ en las bases B y B'}.$$

 \triangleright ¿Cuál será la expresión matricial de f(X) = f(0) + \overrightarrow{f} (\overrightarrow{OX})?

¿Cuál es la expresión matricial?

$$Y=C+AX$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{pmatrix} + \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \qquad A_{BB'}$$

$$A_{BB'}(\vec{f}) = (A)$$

O también...

$$\begin{pmatrix} \frac{1}{y_1} \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_1 & a_{11} & \dots & a_{1n} \\ c_2 & a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \ddots & \ddots \\ c_m & a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} \frac{1}{x_1} \\ x_2 \\ \vdots \\ x_n \end{pmatrix} M_{BB'}(f)$$

$$M_{BB'}(f) = \left(\frac{I + 0}{C + A}\right)$$

- **Ejemplo 10** Expresión matricial de una aplicación afín
- f: $R^3 \longrightarrow R^3$ se define como f(x,y,z)=(x+y+1, x-z, x+y+z-1)
- Entonces \vec{f} $(\overrightarrow{OX}) = \overrightarrow{f(O)f(X)} = (x+y+1, x-z, x+y+z-1)-(1,0,-1)= (x+y, x-z, x+y+z)$ es una aplicación lineal. Su matriz asociada $M_{B_C} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$