VASS reachability algorithm

LC

May 1, 2019

1 Introduction

Let $\mathbb Z$ be the set of integers, $\mathbb N$ the set of natural numbers, and let $\mathbb N_\omega = \mathbb N \cup \{\omega\}$ be the extension thereof with a maximal element ω . A vector addition system of dimension d (VAS) is a finite set of actions $A \subseteq \mathbb Z^d$. An ω -configuration is a vector $c \in \mathbb N_\omega^d$. For two configurations c,d and an action $a \in \mathbb Z^d$, we have a transition $c \stackrel{a}{\longrightarrow} d$ if d = c + a. Let $T \subseteq \mathbb N_\omega^d \times A \times \mathbb N_\omega^d$ be the set of such transitions. Moreover, we write $c \in d$ for the component-wise ordering, and we write $c \subseteq d$ if $c \in d$ and, additionally, whenever $d(i) \neq \omega$, then c(i) = d(i). In other words, $c \subseteq d$ iff d can be obtained from c by making some components equal to ω .

A witness graph is a strongly connected graph G = (S, E, s) where $S \subseteq \mathbb{N}_{\omega}^d$ is a non-empty finite set of configurations, $E \subseteq S \times A \times S$ is a (necessarily finite) set of transitions, and s is a distinguished state in S. Notice that, since G is strongly connected, all states in S have the same set of ω -components. Moreover, the total effect of cycles is unconstrained on ω -components, and necessarily 0 on finite components.

A marked witness graph is a triple $M=(s^{\rm in},G,s^{\rm out})$ where $s^{\rm in},s^{\rm out}\in\mathbb{N}^d_\omega$ are distinguished configurations s.t. $s^{\rm in},s^{\rm out}\sqsubseteq s$. Therefore, if s(i) is finite, then $s(i)=s^{\rm in}(i)=s^{\rm out}(i)$, while if s(i) is infinite, then $s^{\rm in}(i),s^{\rm out}(i)$ are unconstrained—i.e., they can be of different value, and this value can be either finite or infinite. A marked witness graph is forward pumpable if there exists a cycle $s\xrightarrow{\sigma_+}s$ (thus $\sigma_+(i)=0$ if s(i) is finite) fireable from $s^{\rm in}$ s.t. $\sigma_+(i)>0$ on those components i where $s^{\rm in}(i)$ is finite and s(i) is infinite (thus for every n $s^{\rm in}\xrightarrow{\sigma_+^n}s_n$ for some s_n , and $s=\lim_n s_n$). Symmetrically, a marked witness graph is backward pumpable if there exists a cycle $s\xrightarrow{\sigma_-}s$ backward fireable from $s^{\rm out}$ s.t. $\sigma_-(i)<0$ on those components i where $s^{\rm out}(i)$ is finite and s(i) is infinite (thus for every n $s_n\xrightarrow{\sigma_-^n}s^{\rm out}$ for some s_n , and $s=\lim_n s_n$). Intuitively, if M is forward pumpable, then those components which are finite in $s^{\rm in}$ but infinite in s can be pumped to become arbitrarily large, and this can be done without modifying those components which are finite both in $s^{\rm in}$ and

in s.

A marked witness graph sequence is a sequence

$$\xi = M_0, a_1, M_1, \dots, a_k, M_k$$

s.t. $M_j = (s_j^{\text{in}}, G_j, s_j^{\text{out}})$ is a marked witness graph with $G_j = (S_j, E_j, s_j)$, and a_j is an action in A.

Let $\psi_j: E_j \to \mathbb{N}$ be a function counting how many times the edges in G_j are taken, and let its *effect* be

$$|\psi_j| := \sum_{e = (_, a,_) \in E_j} \psi_j(e) \cdot a.$$

We say that ψ_j is *total* if $\psi_j(e) \ge 1$ for every $e \in E_j$, and that it is *balanced* if it satisfies the following flow condition for every $s \in S_j$:

$$\sum_{e=(.,.,s)\in E_j} \psi_j(e) = \sum_{e=(s,.,.)\in E_j} \psi_j(e).$$

Operations on such functions ψ_j are defined component-wise. For two configurations $x_j, y_j \in \mathbb{N}^d$, let $x_j \xrightarrow{\psi_j} y_j$ if $y_j = x_j + |\psi_j|$. Let L_{ξ} be the set of those sequences

$$\pi := x_0 \xrightarrow{\psi_0} y_0 \xrightarrow{a_1} \cdots \xrightarrow{a_k} x_k \xrightarrow{\psi_k} y_k \tag{1}$$

s.t. $x_j \sqsubseteq s_j^{\text{in}}$, $y_j \sqsubseteq s_j^{\text{out}}$, and ψ_j is total and balanced. In particular, x_j agrees with s_i^{in} on the finite components thereof, and similarly for y_j and s_j^{out} .

A marked witness graph sequence ξ as above is *perfect* if, for every j:

- the witness graph M_j is both forward and backward pumpable,
- $s_i^{\text{in}} = \sup X_j$ and $s_i^{\text{out}} = \sup Y_j$, and
- for every $e \in E_i$, $\sup \Psi_i(e) = \omega$,

where X_j , Y_j , and Ψ_j are the sets of x_j , y_j , and ψ_j in the sequence L_{ξ} above. Let M_{ξ} be the set of sequences

$$\rho := z_0 \xrightarrow{\varphi_0} z_1 \xrightarrow{\varphi_1} \cdots \xrightarrow{\varphi_k} z_{k+1} \tag{2}$$

with $z_j \in \mathbb{N}^d$ and $\varphi_j : E_j \to \mathbb{N}$, s.t. $z_j(i) = 0$ if $s_j^{\mathsf{in}}(i)$ is finite, $z_{j+1}(i) = 0$ if $s_j^{\mathsf{out}}(i)$ is finite, and φ_j is balanced. For two such sequences $\rho, \rho' \in M_{\xi}$, let $\rho + \rho'$ be the sequence $z_0 + z_0' \xrightarrow{\varphi_0 + \varphi_0'} z_1 + z_1' \xrightarrow{\varphi_1 + \varphi_1'} \cdots \xrightarrow{\varphi_k + \varphi_k'} z_{k+1} + z_{k+1}'$. Notice that the zero sequence $0 \xrightarrow{0} 0 \xrightarrow{0} \cdots \xrightarrow{0} 0$ is in M_{ξ} , and that M_{ξ} is additive, in the sense that $\rho, \rho' \in M_{\xi}$ implies $\rho + \rho' \in M_{\xi}$. Similarly, it is subtractive in the sense

that $\rho \leq \rho'$ implies $\rho' - \rho \in M_{\xi}$. For $\pi \in L_{\xi}$ as in (1) and $\rho \in M_{\xi}$, let $\pi + \rho$ be the sequence

$$\pi+\rho:=x_0+z_0\xrightarrow{\psi_0+\varphi_0}y_0+z_1\xrightarrow{a_1}x_1+z_1\xrightarrow{\psi_1+\varphi_1}\cdots\xrightarrow{\psi_k+\varphi_k}y_k+z_{k+1}.$$

We have that L_{ξ} is additive relatively to M_{ξ} in the sense that $\pi \in L_{\xi}$ and $\rho \in M_{\xi}$ implies $\pi + \rho \in L_{\xi}$.

Let $\pi_0 := x_0^0 \xrightarrow{\psi_0^0} y_0^0 \xrightarrow{a_1} \cdots \xrightarrow{\psi_k^0} y_k^0$ and $\pi_1 := x_0^1 \xrightarrow{\psi_0^1} y_0^1 \xrightarrow{a_1} \cdots \xrightarrow{\psi_k^1} y_k^1$ be two sequences in L_ξ . Notice that $y_j^1 - x_{j+1}^1 = a_{j+1} = y_j^0 - x_{j+1}^0$, and thus $y_j^1 - y_j^0 = x_{j+1}^1 - x_{j+1}^0$. For $\pi_0 \leqslant \pi_1$, let $\pi_1 - \pi_0$ be the sequence

$$\pi_1 - \pi_0 := z_0 \overset{\psi_0^1 - \psi_0^0}{- \to} z_1 \overset{\psi_1^1 - \psi_1^0}{- \to} z_2 \cdots \overset{\psi_k^1 - \psi_k^0}{- \to} z_{k+1},$$

where $z_j := x_j^1 - x_j^0$ for $j \leq k$ and $z_{k+1} := y_k^1 - y_k^0$ otherwise.

Lemma 1. Let $\pi_0, \pi_1 \in L_{\xi}$ with $\pi_0 \leqslant \pi_1$. Then, $\pi_1 - \pi_0 \in M_{\xi}$.

Proof. Since $y_j^1(i) = y_j^0(i) = s_j^{\text{out}}(i)$ for those coordinates i's s.t. $s_j^{\text{out}}(i)$ is finite, and $s_j^{\text{out}}(i)$ is finite iff $s_{j+1}^{\text{in}}(i)$ is finite, we have $z_j(i) = 0$ in this case, as required. Moreover, since ψ_j^0, ψ_j^1 are balanced and $\psi_j^0 \leq \psi_j^1$, then also $\psi_j^1 - \psi_j^0$ is balanced.

Let \hat{L}_{ξ} and \hat{M}_{ξ} be the respective subsets of minimal elements of L_{ξ} and M_{ξ} . Those two sets are finite since \leq is a wqo. We have the following decomposition result.

Lemma 2. $L_{\xi} = \hat{L}_{\xi} + \hat{M}_{\xi}^*$.

Proof. The right-to-left containment follows immediately by additivity $M_{\xi}+M_{\xi}\subseteq M_{\xi}$ and by relative additivity $L_{\xi}+M_{\xi}\subseteq L_{\xi}$. For the other direction, let $\pi\in L_{\xi}$. If π is minimal, we are done. Otherwise, there exists a minimal $\hat{\pi}\in \hat{L}_{\xi}$ s.t. $\hat{\pi}\leqslant\pi$. Let $\rho_0:=\pi-\hat{\pi}$, which is in M_{ξ} by Lemma 1. If ρ_0 is minimal, we are done since $\pi=\hat{\pi}+\rho_0$. Otherwise, there exists a minimal $\hat{\rho}_0\in \hat{M}_{\xi}$ s.t. $\hat{\rho}_0\leqslant\rho_0$ and $\rho_1:=\rho_0-\hat{\rho}_0$ is in M_{ξ} by subtractivity. If ρ_1 is minimal, then we are done since $\rho_0=\hat{\rho}_0+\rho_1$. Otherwise, we can repeat this process and after a finite number of step we will get a finite sequence of minimal $\hat{\rho}_0,\ldots,\hat{\rho}_h\in \hat{M}_{\xi}$ s.t. $\rho_0=\hat{\rho}_0+\cdots+\hat{\rho}_h$, thus showing $\pi\in\hat{L}_{\xi}+\hat{M}_{\xi}^*$.

We call a sequence in M_{ξ} as in (2) diagonal if

- $z_j(i) > 0$ if $s_j^{\mathsf{in}}(i) = \omega$,
- $z_{j+1}(i) > 0$ if $s_{j}^{out}(i) = \omega$ (iff $s_{j+1}^{in}(i) = \omega$), and
- φ_j is total.

Lemma 3. If ξ is perfect, then there exists a diagonal solution in M_{ξ} .

OLD INCOMPLETE PROOF. The following lemma allows us to extract runs from perfect marked witness graph sequences.

Lemma 4. If ξ is a perfect marked witness graph sequence, then for every $n \in \mathbb{N}$ there are configurations $x'_{n,0}, y'_{n,0}, \dots, x'_{n,k}, y'_{n,k} \in \mathbb{N}^d$ and sequences of actions $\delta_{n,0}, \delta_{n,1}, \dots, \delta_{n,k} \in A^*$ admitting a run

$$x_{n,0} \xrightarrow{\delta_{n,0}} y_{n,0} \xrightarrow{a_0} x_{n,1} \xrightarrow{\delta_{n,1}} \cdots \xrightarrow{a_k} x_{n,k} \xrightarrow{\delta_{n,k}} y_{n,k},$$
 (3)

s.t.

- $x_{n,j} \sqsubseteq s_i^{\mathsf{in}}$ and $y_{n,j} \sqsubseteq s_j^{\mathsf{out}}$, and
- $\lim_n x_{n,j} = s_i^{\text{in}}$ and $\lim_n y_{n,j} = s_i^{\text{out}}$.

Proof. By Lemma 3, let ρ be a diagonal sequence in M_{ξ} ; cf. (2). Let $\sigma_{+,j}$ and $\sigma_{-,j}$ be two cycles on s_j witnessing that M_j is forward and backward pumpable, respectively. Thus, $\sigma_{+,j}$ pumps those finite components in s_i^{in} which are unbounded in s_j , and symmetrically $\sigma_{-,j}$ unpumps the finite components in s_i^{out} which are unbounded in s_i . However, those cycles can have a negative effect on the other infinite components of s_i (which are thus infinite also on s_i^{in} , or s_j^{out} , respectively), and we want to avoid it. Moreover, we would like to find a cycle on s_j which will "undo" the effect of $\sigma_{+,j}, \sigma_{-,j}$ except perhaps for some additional increase on the unbounded components in $s_i^{\mathsf{in}}, s_i^{\mathsf{out}}$. Since ρ is diagonal, φ_i is total. By summing up ρ sufficiently many times (since M_{ξ} is additive) we can assume w.l.o.g. that φ_j is total even after removing $\sigma_{+,j}, \sigma_{-,j}$, i.e.,

$$\varphi_{i} - |\sigma_{+,i}|_{E_{i}} - |\sigma_{-,i}|_{E_{i}} \geqslant 1.$$
 (4)

Since $z_j(i) > 0$ on unbounded coordinates i of s_j^{in} , and similarly $z_{j+1}(i) > 0$ on unbounded coordinates i of s_j^{out} (equiv. of s_{j+1}^{in}), and since M_{ξ} is additive, by summing up ρ sufficiently many times we can further assume w.l.o.g. that for every prefix γ_+ of $\sigma_{+,j}$ and for every prefix γ_- of $\sigma_{-,j}$,

$$z_i(i) + |\gamma_+(i)| > 0 \qquad \text{if } s_i^{\mathsf{in}}(i) = \omega, \tag{5}$$

$$\begin{split} z_{j}(i) + |\gamma_{+}(i)| &> 0 & \text{if } s_{j}^{\mathsf{in}}(i) = \omega, \\ z_{j+1}(i) + |\gamma_{-}(i)| &> 0 & \text{if } s_{j}^{\mathsf{out}}(i) = \omega \text{ (iff } s_{j+1}^{\mathsf{in}}(i) = \omega). \end{split} \tag{5}$$

By (4) and Lemma ??, there exists a total cycle

$$s_j \xrightarrow{w_j} s_j$$

s.t. $|w_j|_{E_j}$ equals the quantity (4) above. By repeating $\sigma_{+,j}$ sufficiently many times we can assume w.l.o.g. that for every prefix γ of w_i we have

$$z_j(i) + |\sigma_{+,j}(i)| + |\gamma(i)| \ge 0 \qquad \text{if } s_j(i) = \omega. \tag{7}$$

Putting together (2), (4), and (7), we get... NO! you need to start from $x_j + z_j$!

$$z_j \xrightarrow{\sigma_{+,j}} z_j + |\sigma_{+,j}| \xrightarrow{w_j} z_j + |\sigma_{+,j}| + |w_j| = z_{j+1} - |\sigma_{-,j}|.$$
 (8)

Let π be a solution in L_{ξ} ; cf.(1). Then ψ_j is balanced and again by Lemma ?? there exists a cycle

$$s_j \xrightarrow{\alpha_j} s_j$$

s.t. $|\alpha_j|_{E_j} = \psi_j$. However, this does not necessarily imply $x_j \xrightarrow{\alpha_j}$. Since $x_j \sqsubseteq s_j^{\text{in}} \sqsubseteq s_j$, this means that the executability of α_j depends only on whether unbounded components on s_j can be made arbitrarily large in x_j . There are two kinds of such unbounded components: The first kind are those components which are finite in s_j^{in} but unbounded in s_j (those can be pumped by $\sigma_{+,j}$), and the second kind are those components which unbounded in s_j^{in} (and thus also in s_j). We address here this second kind (the first kind will be addressed later), by choosing z_j to be large enough s.t., for every prefix γ of α_j ,

$$z_i(i) + |\gamma(i)| \ge 0$$
 if $s_i^{\text{in}}(i) = \omega$ (and thus $s_i(i) = \omega$). (9)

Since $x_j \sqsubseteq s_j^{\mathsf{in}}$ and $s_j^{\mathsf{in}} \xrightarrow{\sigma_{+,j}^n} \cdot$ by construction, the only obstacle to $x_j \xrightarrow{\sigma_{+,j}^n} \cdot$ is that unbounded components in s_j^{in} are "too small" in x_j . This is what z_j is for, since not only z_j is strictly positive on unbounded coordinates of s_j^{in} , but it remains so after executing every prefix of $\sigma_{+,j}$; cf. (5). Consequently,

$$x_j + z_j \xrightarrow{\sigma_{+,j}} x_j + z_j + |\sigma_{+,j}|. \tag{10}$$

In order to be able to execute α_j next, we need to run $\sigma_{+,j}$ sufficiently many times until finite components in s_j^{in} which are unbounded in s_j are large enough. Since $\sigma_{+,j}(i) > 0$ on those components, there exists n large enough s.t. for every prefix γ of α_j ,

$$n \cdot |\sigma_{+,j}(i)| + |\gamma(i)| \ge 0$$
 if $s_i^{\mathsf{in}}(i) < \omega$ and $s_j(i) = \omega$. (11)

Combining (9) with (11), we get for every prefix γ of α_i

$$z_i(i) + n \cdot |\sigma_{+,i}(i)| + |\gamma(i)| \ge 0 \qquad \text{if } s_i(i) = \omega. \tag{12}$$

We are now ready to put all the pieces together. For every $n \in \mathbb{N}$, we define $x'_{n,j}, y'_{n,j}$, and $\delta_{n,j}$ as

$$x'_{n,j} := x_j + n \cdot z_j, \tag{13}$$

$$y'_{n,j} := y_j + n \cdot z_{j+1}$$
, and (14)

$$\delta_{n,j} := \sigma_{+,j}^n \cdot \alpha_j \cdot w_j^n \cdot \sigma_{-,j}^n. \tag{15}$$

For sufficiently large n, there is a run as in (3) of the form:

$$x'_{n,j} = x_j + n \cdot z_j \qquad \qquad \stackrel{\sigma^n_{+,j}}{\longrightarrow} \qquad \text{(by (10))}$$

$$x_j + n \cdot z_j + n \cdot |\sigma_{+,j}| \qquad \stackrel{\alpha_j}{\longrightarrow} \qquad \text{(by (1),(12))}$$

$$y_j + n \cdot z_j + n \cdot |\sigma_{+,j}| \qquad \stackrel{w^n_j}{\longrightarrow} \qquad \text{(by (8))}$$

$$y_j + n \cdot z_{j+1} - n \cdot |\sigma_{-,j}| \qquad \stackrel{\sigma^n_{-,j}}{\longrightarrow}$$

$$y_j + n \cdot z_{j+1} = y'_{n,j}.$$

This implies the previous lemma and shows that preruns are adherent to runs.

Lemma 5. Let ξ be a perfect marked witness graph sequence. For every $\pi \in L_{\xi}$ there exists a run $\pi' \in L_{\xi}$ s.t. $\pi \leqslant \pi'$.

Proof. Let π be a solution in L_{ξ} as in (1), and let ρ be a diagonal sequence in M_{ξ} as in (2), which exists by Lemma 3. We partition components into the following types:

Type I Components which are finite (and equal) in s_i^{in}, s_j^{out}, s_j .

Type IIⁱⁿ Components which are finite in s_i^{in} but infinite in s_j .

Type II^{out} Components which are finite in s_i^{out} but infinite in s_j .

Type IIIⁱⁿ Components which are infinite in s_i^{in} (thus also in s_j).

Type III^{out} Components which are infinite in s_i^{out} (thus also in s_j).

Notice that Type IIⁱⁿ \cup Type IIIⁱⁿ = Type II^{out} \cup Type III^{out}. Since ψ_j is balanced, by Lemma ?? there exists a cycle $s_j \xrightarrow{\tilde{\psi}_j} s_j$ s.t. $|\tilde{\psi}_j|_{E_j} = \psi_j$. Notice that $\tilde{\psi}_j$ is already executable on Type I components:

$$x_j(i) \xrightarrow{\tilde{\psi}_j(i)} x_j(i) = y_j(i)$$
 if i is Type I. (16)

In order to execute $\tilde{\psi}_j$ we need to pump Type IIⁱⁿ and Type IIIⁱⁿ components.

We first pump Type IIⁱⁿ components. Let σ_j^+ and σ_j^- be two cycles on s_j witnessing that M_j is forward and backward pumpable, respectively. By definition, σ_j^+ can be executed from s_j^{in} , thus

$$x_j(i) \xrightarrow{\sigma_j^+(i)} x_j(i) + |\sigma_j^+(i)|$$
 if i is Type I or Type IIⁱⁿ. (17)

Since σ_j^+ is strictly positive on Type IIⁱⁿ components, by pumping it sufficiently many times, we can assume w.l.o.g.

$$x_j(i) + |\sigma_j^+|(i) \xrightarrow{\tilde{\psi}_j(i)} y_j(i) + |\sigma_j^+|(i) \quad \text{if } i \text{ is Type II}^{\text{in}}.$$
 (18)

We now pump Type IIIⁱⁿ components. On those components, z_j is strictly positive (and zero elsewhere). By pumping ρ (using additivity) we can assume w.l.o.g. that Type IIIⁱⁿ components in z_j are sufficiently large to enable both σ_j^+ and $\tilde{\psi}_j$:

$$z_j(i) \xrightarrow{\sigma_j^+(i)} z_j(i) + |\sigma_j^+|(i) \quad \text{if } i \text{ is Type III}^{\text{in}},$$
 (19)

$$z_j(i) \xrightarrow{\tilde{\psi}_j(i)} z_j(i) + |\psi_j|(i)$$
 if i is Type IIIⁱⁿ. (20)

We need one last assumption about ρ . We would like to find a cycle on s_j which will "undo" the effect of $\sigma_{+,j}, \sigma_{-,j}$ except perhaps for some additional increase on Type IIIⁱⁿ components. By pumping ρ we can assume w.l.o.g. that φ_j is total even after removing $\sigma_{+,j}$ and $\sigma_{-,j}$. Consequently, by Lemma ??, there exists a total cycle $s_j \xrightarrow{w_j} s_j$ s.t. $|w_j|_{E_j} = \varphi_j - |\sigma_{+,j}|_{E_j} - |\sigma_{-,j}|_{E_j}$ and

$$x_j(i) \xrightarrow{w_j} y_j(i)$$
 if i is Type I, (21)

$$z_j(i) + |\sigma_j^+|(i) \xrightarrow{w_j} z_{j+1}(i) - |\sigma_j^-|(i)$$
 otherwise. (22)

(Notice that $x_j(i) = y_j(i)$ and $z_j(i) = z_{j+1}(i) = |\sigma_j^+|(i) = |\sigma_j^-|(i) = |w_j| = 0$ if i is Type I.) We can now construct our run $\pi' = x_0' \xrightarrow{\delta_0} y_0' \xrightarrow{a_1} \cdots \xrightarrow{a_k} x_k \xrightarrow{\delta_k} y_k$ as follows:

$$\begin{aligned} x_j' &:= x_j + z_j, \\ y_j' &:= y_j + z_{j+1}, \text{ and} \\ \delta_j &:= \sigma_i^+ \cdot \tilde{\psi}_j \cdot w_j \cdot \sigma_i^-. \end{aligned}$$

Indeed, we have:

$$x'_{j} = x_{j} + z_{j} \qquad \qquad \stackrel{\sigma_{j}}{\longrightarrow} \qquad \text{(by (17) and (19))}$$

$$x_{j} + z_{j} + |\sigma_{j}^{+}| \qquad \stackrel{\tilde{\psi}_{j}}{\longrightarrow} \qquad \text{(by (16), (18), and (20))}$$

$$y_{j} + z_{j} + |\sigma_{j}^{+}| \qquad \stackrel{w_{j}}{\longrightarrow} \qquad \text{(by (21) and (22))}$$

$$y_{j} + z_{j+1} - |\sigma_{j}^{-}| \qquad \stackrel{\sigma_{j}^{-}}{\longrightarrow} \qquad \qquad y_{j} + z_{j+1} = y'_{j}.$$