

use R! Group of San Francisco Bay Area

2009 Kickoff Meeting at Predictive Analytics World 2009

www.meetup.com/R-Users/

The R and Science of Predictive Analytics: Four Case Studies in R

Panel:

Bo Cowgill, Google Itamar Rosenn, Facebook David Smith, Revolution Computing Jim Porzak, The Generations Network

Moderator: Michael Driscoll, Dataspora LLC

What is R?

- A programming language designed for
 - Data manipulation
 - Statistics
 - Data Visualization
- Why sets it apart?
 - Developed by statisticians
 - Free, open source
 - Extensibility via packages

First there was S

- R is the free (GNU), open source, version of S
 - S developed by John Chambers et al while at Bell Labs in 80's
 - For "data analysis and graphics" (with statistics emphasis)
 - Ver. 4 defined by the "Green Book" Programming with Data, 1998
- R was initially written in early 1990's
 - by Robert Gentleman and Ross Ihaka
 - Statistics Department of the University of Auckland
 - GNU GPL release in 1995
 - "R" is before "S", as "HAL" is before "IBM"
- Since 1997 a core group of ± 20 developers
 - Since 1997 a core group of ± 20 developers
 - Continually developed with a new 0.1 level release ~ 6 months

A Simple R Example

- > plot(short.velocity ~ blood.glucose,
 data=thuesen)
- > fit <- lm(short.velocity ~ blood.glucose,
 data=thuesen)</pre>
- > summary(fit)

Call:

lm(formula = short.velocity ~ blood.glucose, data = thuesen)
Residuals:

```
Min 1Q Median 3Q Max -0.40141 -0.14760 -0.02202 0.03001 0.43490
```

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *

Residual standard error: 0.2167 on 21 degrees of freedom Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

- > abline(fit, col = "red")
- > predict(fit, data.frame(blood.glucose = 15))
 1

1.427253

Current State of R

As of October, 2004

- V2.0 Released October, 2004
- Windows, Mac, Linux & Unix ports
- Over 400 submitted packages from "abind" to "zoo"
- 12th newsletter (Volume 4/2) published September 2004
- The first useR! R User Conference held in Vienna May 2004
- ~400 R-help messages per week
- ~ Dozen texts specifically on R or with R examples and code
- R language generally accepted to be more powerful than S-Plus
- Some interesting GUI work in progress

As of February, 2009

- V2.8.1 Released December, 2008
- Vista, Ubuntu, 64bit versions
- 1697 packages; "ADaCHG" to "zyp" (+37 Omega, +296 Bioconductor)
- 23rd Newsletter(Vol. 8/2), October 2008
- 5th useR! this July in Rennes, France
- ~ 700 R-help messages per week
- 74 texts now listed on r-project, including: Software for Data Analysis, Programming with R by John Chambers
- R ~ universally taught & used academically for development
- JGR, Rattle, RCmdr, ...
- Interesting large application work in progress including R in the clouds

Finding Prediction Methods in R

- CRAN Task Views for quick guide to packages:
 - Machine Learning & Statistical Learning http://cran.cnr.berkeley.edu/web/views/MachineLearning.html
 - Multivariate Statistics
 http://cran.cnr.berkeley.edu/web/views/Multivariate.html
- R News for introductory articles.
 - Search PDFs for "predict("
 - 33 hits in 13 issues
- Max Kuhn's caret Package: Building Predictive Models in R Using the caret Package www.jstatsoft.org/v28/i05

Models supported by caret (1 of 4)

Model	method Value	Package	Tuning Parameters		
	"Dual-Use	e Models"			
Generalized linear model	glm	stats	None		
Recursive Partitioning	rpart	rpart	maxdepth		
	ctree	party	mincriterion		
	ctree2	party	maxdepth		
Boosted Trees	gbm	gbm	interaction.depth,		
			n.trees, shrinkage		
	blackboost	gbm	maxdepth, mstop		
	ada	ada	maxdepth, iter, nu		
Other Boosted Models	glmboost	mboost	mstop		
	gamboost	mboost	mstop		
Random Forests	rf	${\tt randomForest}$	mtry		
	cforest	party	mtry		
Bagged Trees	treebag	ipred	None		
Neural Networks	nnet	nnet	decay, size		
Partial Least Squares	pls	pls, caret	ncomp		
Sparse Partial Least Squares	spls	spls, caret	K, eta, kappa		
Support Vector Machines	svmRadial	kernlab	sigma, C		
(RBF kernel)			~ *		
Support Vector Machines	svmPoly	kernlab	scale, degree, C		
(polynomial kernel)			, , , , , , , , , , , , , , , , , , , ,		
Gaussian Processes	gaussprRadial	kernlab	sigma		
(RBF kernel)					
Gaussian Processes	gaussprPoly	kernlab	scale, degree		
(polynomial kernel)			,		
,- ,					

Models supported by caret (2 of 4)

Model	method Value	Package	Tuning Parameters			
$Regression\ Models$						
Linear Least Squares	lm	stats	None			
Multivariate Adaptive Regression Splines	earth, mars	earth	degree, nprune			
Bagged MARS	bagEarth	caret, earth	degree, nprune			
M5 Rules	M5Rules	RWeka	pruned			
Elastic Net	enet	elasticnet	lambda, fraction			
The Lasso	lasso	elasticnet	fraction			
Projection Pursuit Regression	ppr	stats	nterms			
Penalized Linear Models Regression Splines	penalized	penalized	lambda1, lambda2			
Relevance Vector Machines (RBF kernel)	rvmRadial	kernlab	sigma			
Relevance Vector Machines (polynomial kernel)	rvmPoly	kernlab	scale, degree			
Supervised Principal Components	superpc	superpc	n.components, threshold			

Models supported by caret (3 of 4)

Model	method Value	Package	Tuning Parameters			
Classification Models						
Linear Discriminant Analysis	lda	MASS	None			
Quadratic Discriminant Analysis	qda	MASS	None			
Stabilised Linear Discriminant Analysis	slda	ipred	None			
Shrinkage Linear Discriminant Analysis	sda	sda	diagonal			
Sparse Linear Discriminant Analysis	sparseLDA	sparseLDA	NumVars, lambda			
Stepwise Diagonal Discriminant Analysis	sddaLDA, sddaQDA	SDDA	None			
Regularized Discriminant Analysis	rda	klaR	lambda, gamma			
Mixture Discriminant Analysis	mda	mda	subclasses			
Penalized Discriminant Analysis	pda pda2	mda mda	lambda df			

Models supported by caret (4 of 4)

Model	method Value	Package	Tuning Parameters
Flexible Discriminant Analysis (MARS basis)	fda	mda, earth	degree, nprune
Bagged FDA	bagFDA	caret, earth	degree, nprune
Logistic/Multinomial Regression	multinom	nnet	decay
LogitBoost	logitboost	caTools	nIter
Logistic Model Trees	LMT	RWeka	iter
C4.5 decision trees	J48	RWeka	C
Least Squares Support Vector Machines (RBF kernel)	lssvmRadial	kernlab	sigma
k Nearest Neighbors	knn3	caret	k
Nearest Shrunken Centroids	pam	pamr	threshold
Naive Bayes	nb	klaR	usekernel
Generalized Partial Least Squares	gpls	gpls	K.prov
Learned Vector Quantization	lvq	class	k

From Table 1 in Max Kuhn's caret package vignette *The caret Package:* : http://cran.cnr.berkeley.edu/web/packages/caret/index.html

Bo Cowgill, Google

Itamar Rosenn, Facebook

David Smith, Revolution Computing

Revolution R Enterprise

An enhanced, high-performance distribution of R, designed for use in commercial environments.

http://www.revolution-computing.com

ParallelR

Easy-to-use parallel computing with R on multicore workstations and clusters

Revolutions blog

News about R, statistics and the world of open-source

http://blog.revolution-computing.com

Predicting with Random Forests

- 1. Build trees with mtry random features on bootstrap samples of training data
- 2. Run the new data down each tree in the forest (independent, parallelizable)
- 3. Take a majority vote (classification), average (regression), or other single-valued output function of all the tree results

Sequential Implementation

```
library (randomForest)
rf <- randomForest (x, y, ntree=1000)</pre>
```

Parallel Implementation with ParallelR

```
library (randomForest)
library (foreach) # from ParallelR 2.0
wc <- workerCount (getSleigh())
n <- ceiling (1000/wc)
rf <- foreach (j=rep(n, wc), COMBINE=combine, PACKAGES='randomForest') %dopar% randomForest (x, y, ntree=j)</pre>
```


Jim Porzak, The Generations Network

Jim's Marketing Analytics Example

More examples in my talk tomorrow with Alex Kriney from Sun.

Discussion

Q&A

Appendix

Getting Started with R

R Links

- R Homepage: www.r-project.org
 - The official R site
- R Foundation: www.r-project.org/foundation
 - Central reference point for R development
 - Holds copyright / GPL of R software & docs
- Local CRAN: cran.cnr.berkeley.edu
 - Find yours at: cran.r-project.org/mirrors.html
 - Current binaries, docs, FAQs, & more!
- JGR Site: jgr.markushelbig.org/JGR.html

R Basics – Learning More

Wikipedia

http://en.wikipedia.org/wiki/R_(programming_language)

An Introduction to R

http://cran.cnr.berkeley.edu/doc/manuals/R-intro.html

Links to all "official" manuals (html & pdf)

http://cran.cnr.berkeley.edu/manuals.html

R Graph Gallery

http://addictedtor.free.fr/graphiques/

R Wiki

http://wiki.r-project.org/rwiki/doku.php

For SAS & SPSS users (Bob Muenchen's Rosetta Stone)

http://rforsasandspssusers.com/