PROJECT REPORT

PROJECT: EFFECTIVE AUTOMATED PREDICTION OF VERTEBRAL COLUMN PATHOLOGIES.

MENTOR: MR. ASHWANI THAPLIYAL

Submitted by:

Ankush Kamboj

ACKNOWLEDGEMENT

I have taken efforts in this project. However, it would not have been possible without the kind support and help of my mentor Mr. Ashwini Thapliyal. I would like to extend my sincere thanks to him for guiding me through the field of Medical Diagnosis, for constant supervision, motivation as well as for providing necessary information regarding the project.

I would also like to express my gratitude towards the members of Oil and Natural Gas Corporation for their kind co-operation and encouragement which helped me in completion of this project.

CERTIFICATE

This is to certify that this project titled "Effective Automated Prediction of Vertebral Column Pathologies" submitted by Ankush Kamboj (DTU/2K15/CO/032) in partial fulfilment for the requirements for the award of Bachelor of Technology Degree in Computer Engineering (COE) at Delhi Technological University is an authentic work carried out by the student under my supervision and guidance. To the best of my knowledge, the matter embodied in the report has not been submitted to any other university or institute for the award of any degree or diploma.

Mr. Ashwani Thapliyal Oil and Natural Gas Corporation

ABSTRACT

Medical science is characterized by the correct diagnosis of a disease and its accurate classification to avoid complexities at treatment/medication stage. This is often accomplished by a physician based on experience without much signal processing aids. It is envisioned that a sophisticated and intelligent medical diagnostic/classification system may be helpful in making right decisions

Classifying data is one of the most common task in Machine learning. Machine learning provides one of the main features for extracting knowledge from large databases from enterprises operational databases. Machine Learning in Medical Health Care is an emerging field of very high importance for providing prognosis and a deeper understanding of medical data. Most machine learning methods depend on a set of features that define the behavior of the learning algorithm and directly or indirectly influence the performance as well as the complexity of resulting models.

We investigate different algorithms such as **KNearest Neighbors**, **Random forest**, **Logistic Regression** along with **back-propagation Neural Network (BPNN** for the diagnosis of spondylolisthesis and Disk-Hernia. We then use this model to deploy our application to automate priority-based follow-up appointment scheduling and also forward referral application to make appointments with specialty hospitals.

The system has been implemented in Python platform and trained using proprietary dataset and benchmark dataset from UCI machine learning repository.

CONTENTS

- 1. Introduction
 - (1) Vertebral Column
 - (2) Experiment Setup
 - (3) Proposed method for diagnosis of vertebral column disorders
 - (a) Methodology
 - (b) Pre-Processing
 - (c) Design Classifier
 - (d) Post-Processing
 - (e) Material
- 2. Classifiers Structure
 - a. Feedforward Backpropagation Neural Network
 - b. Logistic Regression
 - c. Fuzzy k-NN
 - d. Random Forest
- 3. Data Analytics
- 4. Algorithm Implementation

INTRODUCTION

Vertebral Column

Various physical diseases come with age, of which many are inherited and inevitable. The vertebral column plays an important role in body motion, which supports the head and trunk and protects the nerves governing body activities and sensations. In addition, it is the main transfer passage of the nerves

Vertebral column is an integral part of human body. It is a structure which consists of usually thirty-three vertebrates, out of which twenty-four are articulating and nine are fused vertebras. It is found in the dorsal aspect of the torso and is separated by number of intervertebral discs. These thirty-three vertebras are divided in five different groups which include seven vertebrae in cervical curve, twelve vertebrae in thoracic curve, five vertebrae in lumbar curve and nine vertebrae in sacral curve. Intervertebral discs are interposed between the vertebral bodies, and serve not only as shock absorber for the column but also provide the normal mobility between the adjacent vertebrae. Each disc consists of a soft central portion of spongy material. The two vertebral disorders discussed in this paper are disc hernia and spondylolisthesis. Disc hernia is an intervertebral disc protrusion that is produced by the effect of flexion force acting upon the most mobile portions of the spine. A sudden strain with the spine in an unguarded position will rupture the tough annulus, allowing portions of the torn annulus and soft nucleus to escape into the spinal canal. Spondylolisthesis is a condition in which a lower lumbar vertebra, usually the fifth slips forward through the plain of the intervertebral disc below it and so carries with it the whole of the upper portion of the spine.

Experiment Setup

The problem area of vertebral column in humans is spinal cord. Here we have taken data set having values for six biomechanical features used to classify orthopedic patients into 3 classes (normal, disk hernia or spondylolisthesis) or 2 classes (normal or abnormal). The first task involves in categorizing patients as fit in to one out of three categories: Normal (100 patients), Disk Hernia (60 patients) or Spondylolisthesis (150 patients). For the second task, the categories Disk Hernia and Spondylolisthesis were combined into a single category labelled as 'abnormal'. Thus, the second task consists in classifying patients as fitting to one out of two categories: Normal (100 patients) or Abnormal (210 patients). Each patient is characterized in the data set by six biomechanical attributes resultant from the shape and alignment of the pelvis and lumbar spine (in this order): pelvic occurrence, pelvic tilt, lumbar lordosis position, sacral slope, pelvic radius and mark of Spondylolisthesis. The following settlement is used for the class labels: DH (Disk Hernia), Spondylolisthesis (SL), Normal (NO) and Abnormal (AB). A herniated disk and Spondylolisthesis are two possibly painful circumstances that can affect the steadiness and function of the spinal column. While herniation affects the discs between the spinal bones (vertebrae), Spondylolisthesis affect the bones themselves.

PROPOSED METHOD FOR DIAGNOSIS OF VERTEBRAL COLUMN DISORDERS

A: Methodology:

We have used four classifiers to diagnose vertebral column disorders, which includes a kNN classifier, a logistic regression model, a backpropagation neural network and random forest classifier. The disorders are classified as disc hernia spondylolisthesis and normal patients. The methodology used by all the classifiers is divided in to three phases. The detail of these phases is discussed below. Figure 1 presents the block diagram of these phases.

Phase 1: Pre-Processing

In this phase the data is first collected. During the collection the attributes are selected after discussing them with the doctor. We have incorporated all the attributes as they are significant and have a huge influence on the class labels. Next the data is analyzed and cleaned. In the cleaning process the missing and noisy values are handled. Afterwards the data is normalized. Subsequently, each sample in the data set is allotted its targets class. The entire data set is divided into two sets, the training and the test sets. In case of the validation set, the training set is further divided in to two sub groups, the training group and the validation group. After this the dataset is ready to be provided to the classifiers.

Phase 2: Design Classifier

After the pre-processing is complete, the data is presented to the classifiers. All the classifiers belong to the supervised learning category. For the supervised classifier the training set includes both the samples and their targets. These trained classifiers learn the pattern from the samples provided to them and diagnose the correct disorder. Each classifier is trained two times with two different datasets; i.e. the 60% ratio and the 10-fold cross validation. The performance of all four classifiers is evaluated. If the classifier is not trained the training process is repeated with different structure and functions.

Phase 3: Post-Processing

In this phase the results of the trained classifiers are converted into a form that is easily understandable. The results show whether a person is normal or has a vertebral column disorder and the type of disorder either disc hernia or spondylolisthesis.

B: Material

The data set used for classifying vertebral column disorders is taken from the UCI machine learning database. The dataset contains 310 samples out of which 60 samples are of disc hernia, 150 samples of spondylolisthesis and 100 normal samples. Each sample has six attributes. All the attributes are numerical. The second and sixth attribute

contains some samples having negative values as well. All these attributes are used to classify between disc hernia, spondylolisthesis and normal patients. The attribute along with their minimum and maximum values are presented in table I and figure.

Attributes	Values	
	Minimum	Maximum
Pelvic Incidence	26.1479	129.834
Pelvic Tilt	-3.7599	49.4319
Lumbar Lordosis Angle	14.00	125.7424
Sacral Slope	13.3669	121.4296
Pelvic Radius	70.0826	163.071
Degree Spondylolisthesis	-11.0582	418.5431

CLASSIFIERS STRUCTURE

A. Feedforward Backpropagation Neural Network

The NN we used has an architecture 6-5-4-3. The input layer has 6 nodes because each sample has six features and so there are six values in each input record. The hidden and the output layers have 5, 4 and 3 neurons respectively. These neurons perform all the computation. The activation or transfer function we used for both the hidden and output layer neurons is hyperbolic tangent sigmoid function. It is relatively faster than the other activation functions.

$$a = tansig(n) = \frac{2}{1 + e^{(-2*n)}} - 1$$

Where **n** is a value of the hidden and output layer neurons given to the hyperbolic tangent sigmoid activation function. The error is calculated using the mean squared error performance function:

$$Eav = 1/N \sum_{n=1}^{N} E(n)$$

Where \mathbf{E}_{av} is the average error of the network, \mathbf{N} is the total number of training samples and $\mathbf{E}(\mathbf{n})$ is the network error. The learning algorithm used is the gradient descent with momentum weight and bias learning function. It changes the weights in such a way that it reduces the error between the output and the targets. The learning function is:

$$dW = mc * dWprev + (1 - mc) * lr * gW$$

Where **dW** is the weight change for a particular neuron from its input and error, **dW**_{prev} is previous weight change, **Ir** is the learning rate in our case it is 0.01, **mc** is momentum constant which is 0.9 in our situation and **W** is either the weight or bias. The weights are changed based on the gradient decent method. The training algorithm we used is a variant of backpropagation algorithm which is levenberg-marquardt backpropagation. It is based on the error correction rule. The backpropagation algorithm uses the jacobian matrix which contains first derivative of network error with respect to the weights and bias. The Levenberg-Marquardt algorithm is a combination of steepest descent and the gauss-newton algorithm. Its updating rule is:

$$w_{k+1} = w_k - [J^T J + \mu I]^{-1} J^T e$$

Where ${\bf w}$ is the weight, ${\bf J}$ is the jacobian matrix, ${\bf T}$ means transpose, ${\boldsymbol \mu}$ is the combination coefficient which is always positive, I is the identity matrix, and e is the error. The ${\bf J}^t{\bf e}$ is the gradient. The combination coefficient allows the Levenberg–Marquardt algorithm to switch between the steepest decent and netwon algorithms during the training process. The training set provided to FFNN is divided in two parts the training set and the validation set. The validation set monitors the training process and stops

training when the error starts to increase instead of decrease. Both the data distribution (80% ratio and 10-fold cross validation) used the same FFNN

architecture, training, learning, activation and performance functions. The weights are converged after 100 epochs in case of 80% ratio data distribution approach whereas in 10-fold approach weights are converged after 50 epochs.

B: Logistic Regression

Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is also known in the literature as logit regression, maximum -entropy classification (MaxEnt) or the log-linear classifier. In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function.

The implementation of logistic regression in scikit-learn can be accessed from class Logistic-Regression. This implementation can fit a multiclass (one-vs-rest) logistic regression with optional L2 or L1 regularization.

As an optimization problem, binary class L2 penalized logistic regression minimizes the following cost function:

$$\min_{w,c} \frac{1}{2} w^T w + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

Similarly, L1 regularized logistic regression solves the following optimization problem:

$$\min_{w,c} ||w||_1 + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

Definition of the logistic function:

An explanation of logistic regression can begin with an explanation of the standard logistic function. The logistic function is useful because it can take an input with any value from negative to positive infinity, whereas the output always takes values between zero and one and hence is interpretable as a probability. The logistic function is defined as follows:

$$\sigma(t) = \frac{e^t}{e^t + 1} = \frac{1}{1 + e^{-t}}$$

C: Fuzzy k-Nearest Neighbours

In pattern recognition, the kNearest Neighbors algorithm (or kNN for short) is a nonparametric method used for classification and regression. In both cases, the input consists of the k closest training examples in the feature space. kNN is a type of instance-based learning, or lazy learning, where the function is only approximated locally and all computation is deferred until classification. The kNN algorithm is among the simplest of all machine learning algorithms. Both for classification and regression, it can be useful to assign weight to the contributions of the neighbors, so that the nearer neighbors contribute more to the average than the more distant ones. For example, a common weighting scheme consists in giving each neighbor a weight of 1/d, where d is the distance to the neighbor. The neighbors are taken from a set of objects for which the class (for kNN classification) or the object property value (for kNN regression) is known. This can be thought of as the training set for the algorithm, though no explicit training step is required. A shortcoming of the kNN algorithm is that it is sensitive to the local structure of the data.

The basis of the algorithm is to assign membership as a function of the vector's distance from its k-nearest neighbors and those neighbors' memberships in the possible classes. The fuzzy algorithm is similar to the crisp version in the sense that it must also search the labeled sample set for the k-nearest neighbors. Beyond obtaining these k samples, the procedures differ considerably. While the fuzzy Kk-nearest neighbor procedure is also a classification algorithm the form of its results differ from the crisp version. The fuzzy k-nearest neighbor algorithm assigns class membership to a sample vector rather than assigning the vector to a particular class. The advantage is that no arbitrary assignments are made by the algorithm. In addition, the vector's membership values should provide a level of assurance to accompany the resultant classification.

D: Random Forests

Random forests are built by combining the predictions of several trees, each of which is trained in isolation. Unlike in boosting (Schapire & Freund, 2012) where the base models are trained and combined using a sophisticated weighting scheme, typically the trees are trained independently and the predictions of the trees are combined through averaging. There are three main choices to be made when constructing a random tree. These are the method for splitting the leafs, the type of predictor to use in each leaf, and the method for injecting randomness into the trees. Specifying a method for splitting leafs requires selecting the shapes of candidate splits as well as a method for evaluating the quality of each candidate. Typical choices here are to use axis aligned splits, where data are routed to subtrees depending on whether or not they exceed a threshold value in a chosen dimension; or linear splits, where a linear combination of features are thresholded to make a decision. The threshold value in either case can be chosen randomly or by optimizing a function of the data in the leafs. In order to split a leaf, a collection of candidate splits are generated and a criterion is evaluated to choose between them. A simple strategy is to choose among the candidates uniformly at random, as in the models analyzed in Biau et al. (2008). A more common approach is to choose the candidate split which optimizes a purity function over the leafs that would be created. The most common choice for predictors in each leaf is to use the average response over the training points which fall in that leaf. Criminisi et al. (2011) explore the use of several different leaf predictors for regression and other tasks, but these generalizations are beyond the scope of this paper. We consider only simple averaging predictors here. Injecting randomness into the tree construction can happen in many ways. The choice of which dimensions to use as split candidates at each leaf can be randomized, as well as the choice of coefficients for random combinations of features. In either case, thresholds can be chosen either randomly or by optimization over some or all of the data in the leaf.

DATASET ANALATICS

A: Cross-Sections

B: PCA (2-components) Plot

C: PCA (3-components) Plot:

D: Polar Representation:

<u>E: Parallel Coordinates (Normalized):</u>

F: Parallel Coordinates:

7/23/2018 fuzzy-kNN

```
In [1]: from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model selection import train_test_split, cross_val_score
        from sklearn import metrics
        from sklearn.preprocessing import normalize,scale
        from sklearn.decomposition import PCA
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.decomposition import PCA as sklearnPCA
        from pandas.plotting import parallel coordinates
In [2]: #importing dataset and converting to datasframe
        header = ['pelvic_incidence', 'pelvic_tilt', 'lumbar_lordosis_angle', 'sacr
        al_slope', 'pelvic_radius', 'grade_of_spondylolisthesis', 'label']
        df = pd.read csv('./vertebral column data/column 3C.dat', sep=' ', header=N
        one, names=header)
        print(df.dtypes)
        pelvic_incidence
                                       float64
        pelvic tilt
                                       float64
        lumbar_lordosis_angle
                                       float64
        sacral slope
                                       float64
        pelvic_radius
                                       float64
        grade of spondylolisthesis
                                       float64
        label
                                        object
        dtype: object
In [3]: # extracting features and lables
        x = df.iloc[:,0:6]
        y = df.iloc[:,6]
        # split into training and test subsets
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4)
        print(x test.shape)
        (124, 6)
In [4]: | model = KNeighborsClassifier(n neighbors=5, weights='distance')
In [5]: #10-fold cross validation
        scores = cross_val_score(model, x, y, scoring='accuracy', cv=10)
        # print scores
        print ("10-Fold Accuracy : ", scores.mean()*100)
```

10-Fold Accuracy: 83.5483870967742

7/23/2018 fuzzy-kNN

```
In [6]: #creation of the confusion matrix
        model.fit(x_train,y_train)
        print ("Testing Accuracy : ",model.score(x_test, y_test)*100)
        color_dict = {'DH' : 'cyan', 'SL' : 'magenta', 'NO' : '#1B1B1B'}
        predicted_test = model.predict(x_test)
        predicted = model.predict(x)
        predicted_test_proba = model.predict_proba(x_test)
        Testing Accuracy: 85.48387096774194
In [7]: # confusion matrix
        cm = metrics.confusion_matrix(y_test, predicted_test, labels=['DH', 'NO',
        'SL'])
        print (cm)
        print()
        print (metrics.classification_report(y_test, predicted_test))
        [[18 4 0]
         [10 28 2]
         [ 1 1 60]]
                     precision
                                  recall f1-score
                                                     support
                 DH
                          0.62
                                    0.82
                                              0.71
                                                           22
                 NO
                          0.85
                                    0.70
                                               0.77
                                                           40
                          0.97
                                    0.97
                 SL
                                              0.97
                                                           62
```

0.85

0.86

124

avg / total

0.87

7/23/2018 fuzzy-kNN

```
In [8]:
        # mean normalization and feature scaling
        x_norm = (x - x.mean())/(x.max() - x.min())
        # principle component analysis
        pca = PCA(n_components=2) #2-dimensional PCA
        # print(pca.fit_transform(x_norm))
        transformed = pd.DataFrame(pca.fit transform(x norm))
        # print(transformed.iloc[[0,1,2],:])
        # plot
        fig = plt.figure(figsize=(15,8))
        ax1 = fig.add subplot(121)
        ax1.scatter(transformed[y=='DH'][0], transformed[y=='DH'][1], label='Disk H
        ernia', c='cyan')
        ax1.scatter(transformed[y=='NO'][0], transformed[y=='NO'][1], label='Norma
        l', c='#1B1B1B')
        ax1.scatter(transformed[y=='SL'][0], transformed[y=='SL'][1], label='Spondi
        lolysthesis', c='magenta')
        ax1.legend()
        ax1.set_title('Original Data')
        ax2 = fig.add subplot(122)
        ax2.scatter(transformed[predicted=='DH'][0], transformed[predicted=='DH'][1
        ], label='Disk Hernia', c='cyan')
        ax2.scatter(transformed[predicted=='NO'][0], transformed[predicted=='NO'][1
        ], label='Normal', c='#1B1B1B')
        ax2.scatter(transformed[predicted=='SL'][0], transformed[predicted=='SL'][1
        ], label='Spondilolysthesis', c='magenta')
        ax2.legend()
        ax2.set_title('Predictions fuxxy-kNN')
        plt.tight_layout(pad=0.4, w_pad=1.5, h_pad=2.0)
        plt.show()
```



```
In [1]: from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn import metrics
    from sklearn.decomposition import PCA

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [2]: header = ['pelvic_incidence', 'pelvic_tilt', 'lumbar_lordosis_angle', 'sacr
 al_slope', 'pelvic_radius', 'grade_of_spondylolisthesis', 'label']
 df = pd.read_csv(filepath_or_buffer='./vertebral_column_data/column_3C.dat'
 , header=None, sep=' ', names=header)
 print(df.dtypes)

```
pelvic_incidence float64
pelvic_tilt float64
lumbar_lordosis_angle float64
sacral_slope float64
pelvic_radius float64
grade_of_spondylolisthesis float64
label object
```

```
In [3]: x = df.iloc[:, 0:6]
y = df.iloc[:, 6]

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4)
```

```
In [5]: # 10 fold cross-validation
scores = cross_val_score(model, x, y, scoring='accuracy', cv=10)
print('10 fold accuracy: {}'.format(scores.mean()*100))
```

10 fold accuracy: 83.87096774193547

```
In [6]: # creation of confusion matrix
        model = model.fit(x_train, y_train)
        print('Testing accuracy: {}'.format(model.score(x_test, y_test)*100))
        predicted = model.predict(x)
        cm = metrics.confusion_matrix(y, predicted, labels=['DH', 'NO', 'SL'])
        print(cm)
        print(metrics.classification_report(y, predicted))
        Testing accuracy: 84.67741935483872
        [[ 41 17
                    2]
         [ 17
                    2]
               81
            2
                3 145]]
                     precision
                                  recall f1-score
                                                      support
                 DH
                          0.68
                                     0.68
                                               0.68
                                                           60
                 NO
                          0.80
                                     0.81
                                               0.81
                                                          100
                 SL
                          0.97
                                     0.97
                                               0.97
                                                          150
```

0.86

0.86

310

0.86

avg / total

```
In [11]: # mean normalization and feature scaling
         x \text{ norm} = (x - x.mean())/(x.max() - x.min())
         # principle component analysis
         pca = PCA(n_components=2) #2-dimensional PCA
         # print(pca.fit_transform(x_norm))
         transformed = pd.DataFrame(pca.fit transform(x norm))
         predicted = pd.DataFrame(predicted[:]).iloc[:, 0]
         # print(transformed[y=='DH'])
         # plot
         fig = plt.figure(figsize=(15,8))
         ax1 = fig.add subplot(121)
         ax1.scatter(transformed[y=='DH'][0], transformed[y=='DH'][1], label='Disk H
         ernia', c='cyan')
         ax1.scatter(transformed[y=='NO'][0], transformed[y=='NO'][1], label='Norma
         l', c='#1B1B1B')
         ax1.scatter(transformed[y=='SL'][0], transformed[y=='SL'][1], label='Spondi
         lolysthesis', c='magenta')
         ax1.legend()
         ax1.set_title('Original Data')
         ax2 = fig.add_subplot(122)
         ax2.scatter(transformed[predicted=='DH'][0], transformed[predicted=='DH'][1
         ], label='Disk Hernia', c='cyan')
         ax2.scatter(transformed[predicted=='NO'][0], transformed[predicted=='NO'][1
         ], label='Normal', c='#1B1B1B')
         ax2.scatter(transformed[predicted=='SL'][0], transformed[predicted=='SL'][1
         ], label='Spondilolysthesis', c='magenta')
         ax2.legend()
         ax2.set_title('Predictions Logistic Regression')
         plt.tight_layout(pad=0.4, w_pad=1.5, h_pad=2.0)
         plt.show()
```


7/23/2018 RandomForest

```
In [1]: from sklearn.preprocessing import LabelEncoder, StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import confusion_matrix
    from sklearn import metrics

import numpy as np
import pandas as pd
```

```
In [2]: dataset = pd.read_csv('./vertebral_column_data/column_3C.dat', delimiter =
    ' ', header = None)
    X = dataset.iloc[:,0:-1].values
    Y = dataset.iloc[:,-1].values
```

```
In [3]: le = LabelEncoder()
    Y = le.fit_transform(Y)
    #Y = np.reshape(Y,(310,1))
    #onehotencoder = OneHotEncoder(categorical_features=[0])
    #Y = onehotencoder.fit_transform(Y).toarray()

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.2,random_state = 0)
```

```
In [4]: sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)

classifier = RandomForestClassifier(n_estimators=10, criterion = 'entropy',
    random_state = 0)
    classsifier = classifier.fit(X_train,Y_train)
```

7/23/2018 RandomForest

```
In [5]: Y_pred = classifier.predict(X_test)
        reverse = dict(zip(range(3),['DH','NO','SL']))
        Y_test = np.vectorize(reverse.get)(Y_test)
        Y_pred = np.vectorize(reverse.get)(Y_pred)
        cm = confusion_matrix(Y_test, Y_pred)
        print(cm)
        print(metrics.classification_report(Y_test, Y_pred))
        [[ 3 9 1]
         [ 1 16 2]
         [ 0 1 29]]
                     precision
                                  recall f1-score
                                                      support
                          0.75
                                    0.23
                                               0.35
                 DH
                                                           13
                 NO
                          0.62
                                    0.84
                                               0.71
                                                           19
                 SL
                          0.91
                                    0.97
                                               0.94
                                                           30
        avg / total
                          0.78
                                    0.77
                                               0.74
                                                           62
```

Using TensorFlow backend.

```
In [2]: dataset = pd.read_csv('./vertebral_column_data/column_3C.dat', delimiter =
    ' ', header = None)
    X = dataset.iloc[:,0:-1].values
    Y = dataset.iloc[:,-1].values

le = LabelEncoder()
    Y = le.fit_transform(Y)
    Y = np.reshape(Y,(310,1))
    onehotencoder = OneHotEncoder(categorical_features=[0])
    Y = onehotencoder.fit_transform(Y).toarray()
```

In [4]: classifier.fit(X_train,Y_train,epochs = 100, batch_size = 10)

```
Epoch 1/100
cc: 0.4718
Epoch 2/100
cc: 0.4839
Epoch 3/100
cc: 0.4839
Epoch 4/100
cc: 0.4839
Epoch 5/100
cc: 0.4839
Epoch 6/100
cc: 0.4839
Epoch 7/100
cc: 0.5081
Epoch 8/100
cc: 0.6210
Epoch 9/100
cc: 0.6774
Epoch 10/100
248/248 [============= ] - 0s 150us/step - loss: 0.8507 - a
cc: 0.7016
Epoch 11/100
cc: 0.7177
Epoch 12/100
248/248 [=============== ] - 0s 117us/step - loss: 0.7513 - a
cc: 0.7097
Epoch 13/100
cc: 0.6895
Epoch 14/100
248/248 [============= ] - 0s 121us/step - loss: 0.6892 - a
cc: 0.6935
Epoch 15/100
700 - 0s 135us/step - loss: 0.6687 - acc: 0.6895
Epoch 16/100
cc: 0.6935
Epoch 17/100
cc: 0.6976
Epoch 18/100
248/248 [=============== ] - 0s 131us/step - loss: 0.6279 - a
cc: 0.7016
Epoch 19/100
cc: 0.7016
```

```
Epoch 20/100
cc: 0.7056
Epoch 21/100
cc: 0.7056
Epoch 22/100
cc: 0.7097
Epoch 23/100
cc: 0.7097
Epoch 24/100
cc: 0.7137
Epoch 25/100
cc: 0.7218
Epoch 26/100
cc: 0.7218
Epoch 27/100
cc: 0.7258
Epoch 28/100
cc: 0.7258
Epoch 29/100
cc: 0.7339
Epoch 30/100
cc: 0.7419
Epoch 31/100
cc: 0.7379
Epoch 32/100
cc: 0.7419
Epoch 33/100
cc: 0.7460
Epoch 34/100
cc: 0.7460
Epoch 35/100
cc: 0.7460
Epoch 36/100
cc: 0.7581
Epoch 37/100
248/248 [=============== ] - 0s 135us/step - loss: 0.4662 - a
cc: 0.7621
Epoch 38/100
cc: 0.7661
```

```
Epoch 39/100
cc: 0.7702
Epoch 40/100
cc: 0.7742
Epoch 41/100
cc: 0.7782
Epoch 42/100
cc: 0.7823
Epoch 43/100
cc: 0.7823
Epoch 44/100
cc: 0.7823
Epoch 45/100
cc: 0.7823
Epoch 46/100
cc: 0.7823
Epoch 47/100
cc: 0.7863
Epoch 48/100
cc: 0.7863
Epoch 49/100
cc: 0.7863
Epoch 50/100
cc: 0.7863
Epoch 51/100
cc: 0.7863
Epoch 52/100
cc: 0.7863
Epoch 53/100
cc: 0.7863
Epoch 54/100
cc: 0.7863
Epoch 55/100
c: 0.7863
Epoch 56/100
cc: 0.7863
Epoch 57/100
cc: 0.7863
```

```
Epoch 58/100
cc: 0.7863
Epoch 59/100
cc: 0.7903
Epoch 60/100
cc: 0.7863
Epoch 61/100
cc: 0.8024
Epoch 62/100
cc: 0.8065
Epoch 63/100
cc: 0.8065
Epoch 64/100
cc: 0.8024
Epoch 65/100
cc: 0.8065
Epoch 66/100
cc: 0.8145
Epoch 67/100
cc: 0.8185
Epoch 68/100
cc: 0.8185
Epoch 69/100
cc: 0.8145
Epoch 70/100
cc: 0.8226
Epoch 71/100
248/248 [============= ] - 0s 112us/step - loss: 0.3752 - a
cc: 0.8185
Epoch 72/100
cc: 0.8226
Epoch 73/100
cc: 0.8266
Epoch 74/100
cc: 0.8226
Epoch 75/100
cc: 0.8266
Epoch 76/100
cc: 0.8266
```

```
Epoch 77/100
cc: 0.8266
Epoch 78/100
cc: 0.8266
Epoch 79/100
cc: 0.8226
Epoch 80/100
cc: 0.8226
Epoch 81/100
cc: 0.8266
Epoch 82/100
cc: 0.8387
Epoch 83/100
cc: 0.8306
Epoch 84/100
cc: 0.8266
Epoch 85/100
cc: 0.8306
Epoch 86/100
cc: 0.8347
Epoch 87/100
cc: 0.8347
Epoch 88/100
cc: 0.8387
Epoch 89/100
cc: 0.8387
Epoch 90/100
cc: 0.8427
Epoch 91/100
cc: 0.8387
Epoch 92/100
cc: 0.8468
Epoch 93/100
cc: 0.8508
Epoch 94/100
248/248 [================ ] - 0s 121us/step - loss: 0.3285 - a
cc: 0.8589
Epoch 95/100
cc: 0.8710
```

Out[4]: <keras.callbacks.History at 0x7fc05b9ded68>

```
In [5]: Y_pred = classifier.predict(X_test)
Y_pred = (Y_pred>0.5).astype(float)
print(Y_pred)
```

[[0. 1. 0.] [0. 0. 1.] [1. 0. 0.] [0. 0. 1.] [1. 0. 0.] [0. 1. 0.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [1. 0. 0.] [0. 1. 0.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [1. 0. 0.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [1. 0. 0.] [0. 0. 1.] [0. 1. 0.] [0. 1. 0.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 1. 0.] [0. 1. 0.] [0. 0. 1.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.]

[0. 1. 0.] [0. 0. 1.]

[0. 0. 1.] [0. 1. 0.] [1. 0. 0.] [0. 1. 0.] [0. 1. 0.]]

```
report.json Sun Jul 22 15:12:45 2018 1
{
   "pelvic_incidence": 33.03,
   "pelvic_tilt": 12.55,
   "lumbar_lordosis_angle": 49.61,
   "sacral_slope": 60.48,
   "pelvic_radius": 88.67,
   "grade_of_spondylolisthesis": -0.75
}
```

```
mail.py
              Sun Jul 22 15:10:09 2018
import smtplib
from configparser import ConfigParser
from email.mime.text import MIMEText
def sendmail(to, message):
    config = ConfigParser()
    config.read('credentials.ini')
    gmail_user = config.get('email', 'username')
    gmail_password = config.get('email', 'pwd')
    sent_from = gmail_user
    try:
        msg = MIMEText(message)
        msg['Subject'] = 'Medical Report for Vertebral Column Test'
        msg['From'] = gmail_user
        msg['To'] = to
        server = smtplib.SMTP_SSL('smtp.gmail.com', 465)
        server.ehlo()
        server.login(gmail_user, gmail_password)
        server.sendmail(sent_from, to, msg.as_string())
        server.close()
       print('Email sent!')
    except:
        print('Unable to process mail...')
```

```
patient.py
                 Sun Jul 22 14:49:28 2018
import json
class Patient:
    def __init__(self, cpf, name, address, telephone, email):
        self.cpf = cpf
        self.name = name
        self.address = address
        self.telephone = telephone
        self.email = email
    @classmethod
    def from_input(cls):
        return cls(
            input('CPF: '),
            input('NAME: '),
            input('Address: '),
            input('Telephone: '),
            input('Email: ')
            )
class VertebralColumnReport:
    def __init__(self, patient, report):
        self.id = patient
        self.pelvic_incidence = report['pelvic_incidence']
        self.pelvic_tilt = report['pelvic_tilt']
        self.lumbar_lordosis_angle = report['lumbar_lordosis_angle']
        self.sacral_slope = report['sacral_slope']
        self.pelvic_radius = report['pelvic_radius']
        self.grade_of_spondylolisthesis = report['grade_of_spondylolisthesis']
    def tolist(self):
        return [self.pelvic_incidence,
            self.pelvic_tilt,
            self.lumbar_lordosis_angle,
            self.sacral_slope,
            self.pelvic_radius,
            self.grade_of_spondylolisthesis]
    def todict(self):
        return {
            'pelvic_incidence' : self.pelvic_incidence,
            'pelvic_tilt' : self.pelvic_tilt,
            'lumbar_lordosis_angle' : self.lumbar_lordosis_angle,
            'sacral_slope' : self.sacral_slope,
            'pelvic_radius' : self.pelvic_radius,
            'grade_of_spondylolisthesis' : self.grade_of_spondylolisthesis
```

```
Sun Jul 22 15:11:27 2018
main.py
from patient import Patient, VertebralColumnReport
from FuzzyKnn import knn
from headers import *
from mail import sendmail
label = {'DH' : 'Disk Hernia', 'NO' : 'Normal', 'SL' : 'Spondilolysthesis'}
def printdetails(user, predicted, probability):
   print()
   print('DETAILED REPORT FOR PATIENT {}'.format(user.name))
   print('Diagnosed: {}'.format(label[predicted]))
    accuracy = probability[predicted]
   print('Accuracy: {}%'.format(accuracy))
   print()
    if predicted != 'NO' and accuracy > 75:
        action = 'Booked Follow-up Appointment\nReference for Speciality Hospital also forward
ed.\n'
        print('-'*60)
        # call Appointment Scheduler Module
        print ('Follow Up Appointment Scheduled with priority : HIGH')
        print('-'*60)
        # call reference builder
        print('Forwarded report for reference with Speciality Hospital')
        print('-'*60)
    elif (predicted != 'NO' and accuracy > 50):
        action = 'Booked Follow-up Appointment'
        # call Appointment Scheduler Module
        print('-'*60)
        print('Follow Up Appointment Scheduled with priority : MODERATE')
        print('-'*60)
    else :
        action = 'Booked Follow-up Appointment'
        print('-'*60)
        # call Appointment Scheduler Module
        print('Follow Up Appointment Scheduled with priority : LOW')
        print('-'*60)
    msg = 'Diagnosed: {}\nAccuracy: {}\n{}'.format(label[predicted], accuracy, action)
    # print(msg, user.email)
    sendmail(user.email, msg)
def main():
    user = Patient.from_input()
    report_path = input('Report Path: ')
    with open(report_path) as file:
        report = json.load(file)
    vcr = VertebralColumnReport(user, report)
    data = pd.DataFrame(vcr.todict(), index=[0])
    predicted, predicted_proba = knn(data)
    probability = {'DH' : predicted_proba[0][0]*100, 'NO' : predicted_proba[0][1]*100, 'SL' :
predicted_proba[0][2]*100}
    printdetails(user, predicted[0], probability)
if __name__ == '__main__':
    main()
```