Домашнее задание 8 Вариант 15

$$A = 4,9$$

$$B = 0.3$$

Число А.

$$A = (4,9)_{10} \approx (4.E(6))_{16}$$

$$A = (0.4E)_{16} * 16^{1}$$

Характеристика числа A: $X_A = P_A + 64 = (65)_{10} = (1000001)_2$

Представление числа А в формате Ф1 имеет вид:

0	10	0 0001		0100 1110
0	1	7	8	15

$$A = (4,9)_{10} = (100.1110\ 0110)_2$$

$$= (0, 1001 \ 1100)_{16} * 2^3$$

Характеристика числа A: $X_A = P_A + 128 = (131)_{10} = (10000011)_2$

Представление числа А в формате Ф2 имеет вид:

0	100	00011	001 1100
15	14	7 6	<u> </u>

Число В.

$$B = (0,3)_{10} = (0,4(C))_{16}$$

$$B = (0.4D)_{16} * 16^{0}$$

Характеристика числа В: $X_B = P_B + 64 = (64)_{10} = (1000000)_2$

Представление числа В в формате Ф1 имеет вид:

$$B = (0,3)_{10} = (0.0100 \ 1100 \ 1)_2$$

$$= (0, 1001 \ 1001)_{16} * 2^{-1}$$

Характеристика числа В: $X_B = P_B + 128 = (127)_{10} = (011111111)_2$

Представление числа В в формате Ф2 имеет вид:

0	0111	1111	001 1	001
15	14	7.6		0

1. Выполнить операцию деления операндов в формате Φ 1.

$$\begin{split} X_C &= X_A - X_B + d \\ d + P_C &= \underbrace{\boldsymbol{P_A} + \boldsymbol{d} - \boldsymbol{P_B}}_{\boldsymbol{P_C}} - d + d \end{split}$$

$$X_C = 1 - (0) + 64 = 65$$

$$P_C = 1$$

N шага	Действие	Делимое	Частное
	A	0 0100 1110	0000 0000
0	[-В]доп	1 1011 0011	
	R_0	0 0000 0001	$R_0 > 0$
	A→4	0 0000 0100	1110 0000
	[-В]доп	1 1011 0011	
	R_0	1 1011 0111	1110 000 <mark>0</mark>
	← R ₀	1 0110 1111	1100 000 0
1	B_{np}	0 0100 1101	
	R_1	1 1011 1100	1100 000 0
	← R ₁	1 0111 1001	1000 00 00
2	B_{np}	0 0100 1101	
	R_2	1 1100 0110	1000 00 00
	$\leftarrow R_2$	1 1000 1101	0000 0 000
3	B_{np}	0 0100 1101	
	R_3	1 1101 1010	0000 0 000
	← R ₃	1 1011 0101	0000 0000
4	B_{np}	0 0100 1101	
	R_4	0 0000 0010	0000 0001
	← R ₄	0 0000 0100	000 0 0010
5	[-В]доп	1 1011 0011	
	R_5	1 1011 0111	000 0 0010
	←R ₅	1 0110 1110	00 00 0100
6	${f B}_{ m np}$	0 0100 1101	
	R_6	1 1011 1011	00 00 0100
	← R ₆	1 0111 0110	0 000 1000
7	B_{np}	0 0100 1101	
	R_7	1 1100 0011	0 000 1000
8	← R ₇	1 1000 0110	0001 000
	\mathbf{B}_{np}	0 0100 1101	
	R_8	1 1101 0011	0001 00 <mark>0</mark>

 $C = (0001.0000)_2 = (1.0)_{16} * 16^1 = 16$

 $C_T = 16,33$

Абсолютная погрешность $A_R = R - R^* = 16,33 - 16 = 0,33$

Относительная погрешность $\delta A = \mid 0{,}33 \mid 16{,}33 \mid * 100\% \approx 2.02\%$

Погрешность полученного результата можно объяснить неточным представлением операндов.

2. Выполнить операцию деления операндов в формате Φ 2.

$$\begin{split} X_C &= X_A - X_B + d \\ d + P_C &= \underline{\boldsymbol{P}_A + \boldsymbol{d} - \boldsymbol{P}_B} - \! d + d \\ \underline{\boldsymbol{P}_C} \end{split}$$

$$X_C = 3 - (-1) + 128 = 132$$

$$P_C = 4$$

N шага	Действие	Делимое	Частное
	M_{A}	0 1001 1100	0000 0000
0	[-В]доп	1 0110 0111	
	R_0	0 0000 0011	0000 000 1
	← R ₀	0 0000 0110	0000 00 10
1	[-В]доп	1 0110 0111	
	R_1	1 0110 1101	0000 00 10
	\leftarrow R ₁	0 1101 1010	0000 0 100
2	B_{np}	0 1001 1001	
	R_2	1 0111 0011	0000 0 100
	← R ₂	0 1110 0110	0000 1000
3	B_{np}	0 1001 1001	
	R ₃	1 0111 1111	0000 100 <mark>0</mark>
	← R ₃	0 1111 1110	000 1 0000
4	B_{np}	0 1001 1001	
	R ₄	1 1001 0111	000 1 0000
	← R ₄	1 0010 1110	00 10 0000
5	B_{np}	0 1001 1001	
	R_5	1 1100 0111	00 10 0000
	←R ₅	1 1000 1110	0 100 0000
6	B_{np}	0 1001 1001	
	R_6	0 0010 0111	0 100 0001
	←R ₆	0 0100 1110	1000 0010
7	[-В]доп	1 0100 1101	
	\mathbf{R}_7	1 1001 1011	1000 001 <mark>0</mark>

 $C = (0.1000\ 0010)_2 *2^{4+1} = 16.25$

 $C_T = 16.33$

Абсолютная погрешность $A_R = R - R^* = 16.33 - 16.25 = 0.08$

Относительная погрешность $\delta A = |0.08 / 16.33| * 100\% \approx 0.48\%$

Погрешность полученного результата можно объяснить неточным представлением операндов.