Cálculo Numérico - Lista de exercícios 02

- 1) Considere a função $f(x) = x\cos(x) 2$.
- a) Usando tabelamento ou gráfico encontre um intervalo [a,b] que contenha um zero positivo da função e um intervalo [a,b] que contenha um zero negativo da função.
- b) Usando o Método da Bissecção diminua os intervalos até que $|b_k a_k| < 2\epsilon$, com $\epsilon = 0.1$.
- c) Qual é o valor da aproximação x_k para o zero positivo que você encontrou? Qual é o valor da aproximação x_k para o zero negativo que você encontrou?
- 2) As raízes da equação $x^2-x-2=0$ são 2 e -1. Pelo Método Iterativo Linear, calcule um aproximação para a raiz 2, com $\epsilon=10^{-4}$. Escolha uma função iteração $\varphi(x)$ adequada.
- 3) Usando o Método Iterativo Linear, determine uma aproximação para uma raiz, com $\epsilon=10^{-2}$, das seguintes funções:
- a) $f(x) = 5x e^x$
- b) $f(x) = x^2 sen(x) + 2$

Use o método de gráfico ou o tabelamento para encontrar a aproximação inicial x_0 . Analise a convergência para cada escolha da função iteração $\varphi(x)$.

- 4) Usando o Método de Newton, determine uma aproximação para as soluções, com $\epsilon = 10^{-5}$, das seguintes equações (use o gráfico para encontrar um intervalo que contém um única raiz e a aproximação inicial x_0):
- a) $sen(x) e^x = 0$
- b) x cos(x) = 0
- c) $3x^2 = e^x$
- d) $x^2 + sen(x) = 1$.

5)

- a) Encontre um intervalo que contenha um zero da função $f(x) = x^2 1 + sen(x)$.
- b) Diminua o tamanho do intervalo utilizando duas iterações do Método da Bissecção.
- c) Use o Método de Newton, com x_0 sendo o ponto médio do intervalo encontrado, para encontrar uma aproximação da raiz com erro absoluto menor que 10^{-4} .
- 6) Determinar os zeros dos polinômios com precisão $\epsilon=0.0001$
- a) $P_3(x) = x^3 5x^2 x + 5$
- b) $P_4(x) = x^4 12x^2 13x 12$

usando o Método de Newton e algoritmo de Briot-Ruffini, quando necessário.