

Machine Learning

Clustering

Unsupervised learning introduction

Supervised learning

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$$

Unsupervised learning

Training set:
$$\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

Machine Learning

Clustering

K-means algorithm

Input:

- K (number of clusters) \leftarrow
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ \longleftarrow

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
Repeat {

Cluster for i = 1 to m

c^{(i)} := index (from 1 to K) of cluster centroid closest to x^{(i)}

for k = 1 to K

\Rightarrow \mu_k := average (mean) of points assigned to cluster k

x^{(i)} \times x^{(i)} \times x^{(i)} \times x^{(i)} \Rightarrow x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} + x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)} \times x^{(i)} = 2

\Rightarrow x^{(i)} \times x^{(i)
```

K-means for non-separated clusters

S,M,L

Machine Learning

Clustering Optimization objective

K-means optimization objective

- $ightharpoonup c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

Optimization objective:

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n cluster assignment step  \text{Minimize } \mathbb{F}(m) \text{ wit } \mathbb{C}^{(n)}, \mathbb{C}^{(2)}, \ldots, \mathbb{C}^{(n)} \in \mathbb{R}^n  Repeat \{
                   c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                               closest to x^{(i)}
           for k = 1 to K
                    \mu_k := average (mean) of points assigned to cluster k
                              minimize J(...) wat Il, ...,
```


Machine Learning

Clustering

Random initialization

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
           c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                  closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

 $\label{eq:should_loss} \text{Should have } K < m$

Randomly pick \underline{K} training examples.

Set μ_1, \ldots, μ_K equal to these K examples. $\mu_i = \chi^{(i)}$

$$\mu_{z} = \chi^{(i)}$$

Local optima I (((), (m), M, (Mx))

Random initialization

```
For i = 1 to 100 { Randomly initialize K-means. Run K-means. Get c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K. Compute cost function (distortion) J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

