Flow

- 1. Dataset Overview
- 2. Features Extraction and Preprocessing
- 3. Block Diagram of Model
- 4. LSTM Forward Propagation
- 5. Softmax and Cross Entropy Loss function
- 6. Backward Propagation in LSTM
- 7. Results
- 8. Challenges
- 9. Future Work

Dataset Overview

- 1. Tensorflow Speech Recognition Challenge November 2017 [1].
- 2. It includes 65000, 1 second long utterances of 30 short words, by thousands of different people. (1800 -2000 .wav files/word)
- 3. labels_to_keep = ['yes', 'no', 'up', 'down', 'left', 'right', 'on', 'off', 'stop', 'go', '_background_noise_','unknown']. This is the subset of data, I am considering.
- 4. Each .wav file is of 1 second duration only,
- 5. So 12 class classification problem.

Dataset Statistics [2]

```
{'_background_noise_': 0,
  'down': 1,
  'go': 2,
  'left': 3,
  'no': 4,
  'off': 5,
  'on': 6,
  'right': 7,
  'stop': 8,
  'unknown': 9,
  'up': 10,
  'yes': 11}
```

Word	Number of Utterances			
Backward	1,664			
Bed	2,014			
Bird	2,064			
Cat	2,031			
Dog	2,128			
Down	3,917			
Eight	3,787			
Five	4,052			
Follow	1,579			
Forward	1,557			
Four	3,728			
Go	3,880			
Happy	2,054			
House	2,113			
Learn	1,575			
Left	3,801			
Marvin	2,100			
Nine	3,934			

No	3,941		
Off	3,745		
On	3,845		
One	3,890		
Right	3,778		
Seven	3,998		
Sheila	2,022		
Six	3,860		
Stop	3,872		
Three	3,727		
Tree	1,759		
Two	3,880		
Up	3,723		
Visual	1,592		
Wow	2,123		
Yes	4,044		
Zero	4,052		

Feature Extraction-Log Spectrogram (81 X 100)

1. Hann Window

10 Values Hann Window

100 Values Hann Window

Feature Extraction

- 1. 1 second .way file so 1000ms.
- 2. Window size taken is 10 ms, so 100 frames per audio file are there.
- 3. Sample rate = 16000 Hz. Each frame of 10ms contains 160 samples.
- 4. No overlapping of window is done.
- 5. Computed a log spectrogram with consecutive Fourier transforms over all frames.
- Each frame spectrogram gives 81 values. Hence 81X100 feature vector.

Same Frame before and after taking log

Block Diagram of Model

Model (Implemented in Keras)

Layer (type)	Output	Shape	Param #
lstm_1 (LSTM)	(None,	256)	365568
dense_1 (Dense)	(None,	128)	32896
dropout_1 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	12)	1548
Total params: 400,012 Trainable params: 400,012 Non-trainable params: 0			

Model insights

- 1. Dropout Used: 0.2
- 2. Activation at last layer: Softmax
- 3. Cross Entropy Loss function is used.
- 4. Gradient Descent used for backpropagation.
- 5. Training: Testing (80:20)

```
X_train.shape (46601, 81, 100)
X_test.shape (11651, 81, 100)
Y_train.shape (46601, 12)
Y_test.shape (11651, 12)
```

Basic LSTM cell for sequential data [3]

forget gate

C(t-1)

input gate

cell state

output gate

h(t-1)

h(t)

C(t)

Activations:

Pink Circle: Sigmoid Blue Circle: Tanh

C- Cell State h- Hidden State

X(t)

Equations inside LSTM cell [3]

$$\begin{aligned} i_t &= \sigma(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) \\ f_t &= \sigma(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) \\ c_t &= f_tc_{t-1} + i_t tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c) \\ o_t &= \sigma(W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o) \\ h_t &= o_t tanh(c_t) \end{aligned}$$

So it can be clearly seen that weight parameters are given to each operation which will get updated during training the model. Calculating h(t) and c(t) counts for **forward propagation**.

Softmax Function at last layer

- 1. Given a vector of real numbers, it converts each value to a probability,
- 2. It gives the P(y=class | x).
- 3. The output node with maximum probability is assigned the corresponding class.

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

Error Function- Categorical Cross Entropy Loss

P(A) - Probability of Happening of event A

I(A) = -log(P(A)), Information Content of A

Loss Function

$$-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

O- Observed/predicted value

C- Class Label, M Classes

y - Binary value(0/1), 1 if correct classification

p- probability values after softmax

BPTT (Backward Propagation Through Time) [4]

A traditional approach where Average of Derivatives of Timestamps t and t+1 is taken for weight updates of LSTM at (t-1) timestamp.

Results

Comparisons	Winner (31 Classes) [6]	Paper [7]	Our Model (12 classes)
Accuracy	91.060 %	94 %	88.31 %

Challenges

- 1. Computation Time for feature extraction is more for bigger dataset.
- 2. Storage issues: Loading a big feature vector.
- 3. Deeper the network, greater the time complexity.
- 4. Deciding Hyperparameters and Model (Layers).

What is Learnt from Project?

- 1. Learnt about how LSTM is used for sequence to sequence learning.
- 2. Understood basic ML algorithms.
- 3. Feature Extraction from Audio.
- 4. Understood why ASR is a tough problem.
- 5. Learnt basics of Keras and Pytorch.

Future Work

- 1. Feature Dimension Reduction can be done. Eg. By using Autoencoder. So that complexity for feature vector processing can be minimized.
- Simulated Annealing and other approaches can be used instead of Gradient Descent but it's complexity is high.
- 3. Dataset containing audio of sentences can be taken as input for output label as text sentences and hybrid models (CNN-RNN-GRU-LSTM) can be used.

References

- 1. https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
- 2. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. arXiv: 1804.03209, Apr. 2018.
- 3. K. Greff, R. K. Srivastava, J. Koutn´ık, B. R. Steunebrink, and J. Schmidhuber. LSTM: A search space odyssey. CoRR, abs/1503.04069, 2015. (IEEE transaction paper)
- 4. A Tutorial On Backward Propagation Through Time (BPTT) In The Gated Recurrent Unit (GRU) RNN . Minchen Li Department of Computer Science , The University of British Columbia, minchenl@cs.ubc.ca
- 5. A. Graves, A.-R. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013, pp. 6645–6649.
- 6. Winner: Heng CherKeng, Deep Learning/Computer Vision Freelancer, Singapore
- 7. Jaejun Lee, Raphael Tang, and Jimmy Lin. 2018. JavaScript Convolutional Neural Networks for Keyword Spotting in the Browser: An Experimental Analysis. arXiv:1810.12859.