Projet: Ingénierie des Télécoms 2

Thème : Etudes et Simulations de la chaîne de de réception typique (LNB)

Réalisé par : Saliou Mohamadou Encadré par : Nabil Arsalane

2023-2024

Plan

Introduction

- 1) Chapitre I : Généralités
- 2) Chapitre II : La chaîne de réception typique (LNB)
- 3) Chapitre III : Simulations et Résultats

Conclusion

Introduction

- Télécommunications : (longue distance, maritimes et aériennes);
- Observation météorologique;
- Connectivité Internet : (services Internet haut débit);
- Diffusion télévisuelle ;

Orbites géostationnaires

R=RT+h, RT=6378,14 km

d'où
$$v=\sqrt{rac{G imes M_T}{R_T+h}}$$
 : $v=3,074~{
m km.\,s^{-1}}$.

$$h = \left(rac{G imes M_T imes T^2}{4\pi^2}
ight)^{rac{1}{3}} - R_T$$
 soit $h = 35786~km$.

Les facteurs intervenant dans les liaisons TX/RX

PIRE	PIRE=10log Pt*G
Affaiblissement dans le trajet	$A=(4*\pi)^2*(v/\text{lamda})^2 \Leftrightarrow A=22+20\log v$
Gain à l'entrée du récepteur	Parabolique de 60 cm de diamètre, avec un rendement de 70% à 12 GHz, on obtient un gain de 36 dB
	C/N=E+G-A-10log T -10log B -10log k
Rapport C/N (Carrier/Noise ou porteuse/bruit)	C/N =6 : très bruyant, mauvaise qualité d'image, pas de couleur. C/N =8 : seuil limite, quelques traces de bruit. C/N =10 : bonne réception, bonnes couleurs. C/N =12 : excellente réception, qualité TV par câble.

Types de LNB

Bandes de fréquences et modulation des signaux satellitaires

Bandes de fréquences	
Bande Ku: TX:[13,75 GHz et 14,5 GHz]; RX:[10,7 GHz et 12,75 GHz]	vers les consommateurs
Bande Ka: 17,7 GHz à 30 GHz.	Internet à haut débit
Bande C: TX: [5,9 GHz et 6,4 GHz]; RX: [3,7 GHz et 4,2 GHz]	Services gouvernementaux
Modulation des signaux	
QPSK(signaux radio) 8PSK; 16QAM	DVB-S/DVB-S2(Norme)

Chapitre 2 : la chaîne de réception typique(LNB)

Description du LNB

Chapitre 2 : la chaîne de réception typique(LNB)

Analyse des perturbations et des obstacles dans la réception

Temps Clair : Qualité du signal optimale

Pluie Légère : Légère dégradation de la qualité

Pluie Intense : Forte dégradation de la qualité

Chapitre 2 : la chaîne de réception typique(LNB)

Montage des antennes paraboliques

Fixation

Connexions des câbles

Pointage

Modélisation de la chaîne de réception

Simulation des paramètres d'impédance et Gain

Simulation des paramètres d'impédance et Gain : résultats

Simulation des paramètres d'impédance et Gain : résultats

Résultats

Conclusion

Conclusion:

- Amélioration de la Qualité de la Réception
- Connectivité Mondiale

Contraintes:

- Restriction sur la Documentation (LNB)
- Problèmes avec les réglages de paramètres

Perspective:

 Penser à améliorer l'efficacité énergétique du LNB(réduire son empreinte carbone)

Merci pour Votre Attention

