

Общероссийский математический портал

В. П. Чуев, С. Б. Шабалина, Достаточные условия однолистности функций, аналитических в неограниченных областях с границами, для которых отношение длины дуги к хорде конечно, *Тр. сем. по краев.* задачам, 1992, выпуск 27, 134–140

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.205.19.235

7 июня 2024 г., 16:25:22

В.П. Чуев, С.Б. Шабалина

ДОСТАТОЧНЫЕ УСЛОВИЯ ОДНОЛИСТНОСТИ ФУНКЦИЙ, АНАЛИТИЧЕСКИХ В НЕОГРАНИЧЕННЫХ ОБЛАСТЯХ С ГРАНИЦАМИ, ДЛЯ КОТОРЫХ ОТНОШЕНИЕ ДЛИНЫ ЛУГИ К ХОРЛЕ КОНЕЧНО

Рассмотрим класс $\mathcal{M}(C)$ односвязных областей G с границами $\mathcal{X}=\partial G$. Здесь \mathcal{X} — локально спрямляемая кривая, $\mathcal{Z}=\infty$ \in \mathcal{X} , для которой

$$\sup_{\mathcal{Z}_1,\,\mathcal{Z}_2\in\mathcal{Z}}\ell\left(\mathcal{Z}_1,\,\mathcal{Z}_2\right)/\left|\mathcal{Z}_1-\mathcal{Z}_2\right|=C\left(1\leq C<\infty\right)\;,\tag{I}$$
 где $\ell\left(\mathcal{Z}_1,\,\mathcal{Z}_2\right)$ — длина дуги $\mathcal{Z}_1\,\mathcal{Z}_2\subset\mathcal{X}\;$, соединяющей точки \mathcal{Z}_1 и \mathcal{Z}_2 .

Теорема. Пусть f(z) — аналитическая в области $G \in \mathcal{M}(C)$ функция и $\lim_{z \to \infty} f(z)/z > 0$. Существуют положительные постоянные a(C) и b(C) , зависящие только от C , такие, что если вы — полняется неравенство

 $dist(z,\partial G)|f'(z)/f'(z)| \leq a(C), z \in G,$

или

$$dist^{2}(z,\partial G) | \{ f(z),z \} | \leq b(C), z \in G,$$
 $\{ f(z),z \} = (f''/f')' - 2^{-2}(f''/f')^{2}, \text{ то } f(z) \text{ однолистна в } G.$

Впервые этот результат был получен Л.Альфорсом (см., напр., [I]). С тех пор вопрос о явном виде $\alpha(\mathcal{C})$ и $\mathcal{B}(\mathcal{C})$ остается открытым. Постоянные, которые будут получены в ходе доказательства теоремы, позволяют, хотя и достаточно грубо, оценить $\alpha(\mathcal{C})$ и $\mathcal{B}(\mathcal{C})$ снизу. При этом существенно используется методика Т.Г.Латфуллина [2].

І. Вспомогательные результаты

Зафиксируем точку $\mathcal{Z}_o \in \mathcal{L} = \partial G(G \in \mathcal{M}(\mathcal{C}))$ и построим с центром в этой точке окружность произвольного радиуса: $\mathcal{S}_o = \{\mathcal{Z}: |\mathcal{Z}-\mathcal{Z}_o| = \rho, 0<\rho<\infty$. Кривая \mathcal{L} разобьет \mathcal{S}_o на конечное число связных дуг, из которых мы выберем дугу \mathcal{O} , целиком лежащую в области G , концы которой \mathcal{Z}_1 и \mathcal{Z}_2 лежат на \mathcal{L} по разные стороны от \mathcal{Z}_o . Тогда $|\mathcal{Z}_o-\mathcal{Z}_1|=|\mathcal{Z}_o-\mathcal{Z}_2|\leq \ell(\mathcal{Z}_1,\mathcal{Z}_2)/2\leq \ell(\mathcal{Z}_1,\mathcal{Z}_2)$. Таким образом, справедлива

Лемма I. Для угловой меры
$$\mathcal{L}$$
 дуги \mathcal{E} имеем $\mathcal{L} \gg 2$ агс sin $\mathcal{C}^{-1} = \mathcal{L}_0$.

Этот же результат справедлив для \mathscr{G} из \mathscr{G}_{-} , так как $G = C \setminus \bar{G} \in \mathcal{R}(C)$.

Обозначим через $\mathcal{G}(\zeta)$ функцию, конформно отображающую верхнюю подуплоскость $\mathcal{H} = \{ \mathcal{L} : \mathcal{I}_m \, \mathcal{L} > \mathcal{O} \}$ на область $\mathcal{G} \in \mathcal{M}(\mathcal{C})$ с неподвижными точками O

<u>Πενικά</u> 2. Φυμκιμα $S(x) = sign(x) \ell(0, \varphi(x)), x \in \partial H$, удовлетворяет М-условию Альфорса, т.е.

$$M^{-1} \leq \frac{S(x+t) - S(x)}{S(x) - S(x-t)} \leq M ,$$

THE $M = M(C) \leq Ce^{2\pi - d_0}$

Докажем правую оценку. Полагая $\mathcal{Z}_{\star} = \varphi(x+t)$, $\mathcal{Z}_{a} = \varphi(x)$, $\mathcal{Z}_{a} = \varphi(x)$ $= \varphi(x-t)$, получим

$$\frac{S(x+t)-S(x)}{S(x)-S(x-t)} \leqslant \frac{C|\mathcal{Z}_{+}-\mathcal{Z}_{0}|}{|\mathcal{Z}_{0}-\mathcal{Z}_{-}|}$$

Если $|\mathcal{Z}_+ - \mathcal{Z}_o| \le |\mathcal{Z}_o - \mathcal{Z}_-|$, то $M = \mathcal{C}$. Пусть $|\mathcal{Z}_+ - \mathcal{Z}_o| > |\mathcal{Z}_o - \mathcal{Z}_-|$. С центром в точке $\mathcal{Z}_{\epsilon} \in \mathcal{Z}$ построим кольцо K(R,r) с граничными окружностями радиусов $R = |\mathcal{Z}_+ - \mathcal{Z}_n|$ и $r = |\mathcal{Z}_- - \mathcal{Z}_n|$ ветственно. Обозначим через $\mathcal{Z}\left(\mathcal{Z}_{\varrho},\mathcal{Z}_{-}\right)$ образ отрезка [x-t,x]при отображении φ , а через $\mathscr{L}(\mathscr{Z}_+)$ — образ полуинтервала $[x+t,\infty[\,,\,\mathscr{L}(\mathscr{Z}_0\,,\mathscr{Z}_-)\,\cap\,\mathscr{L}(\mathscr{Z}_+)\,=\,\emptyset$. Для модуля семейства кри вых f, лежащих в G и соединяющих $\mathcal{Z}(\mathscr{Z}_{o},\mathscr{Z}_{-})$ и $\mathcal{Z}(\mathscr{Z}_{+})$,имеem

 $m(r) \leq \iint \rho dx dy / \inf \left(\int \rho |dz| \right)^2$,

где $\rho = 1/|\mathcal{Z} - \mathcal{Z}_o|$ – метрика, допустимая в области \mathcal{G} . В силу леммы I угловая мера дуг, принадлежащих ${\mathcal G}$ из ${\mathcal M}({\mathcal C})$, не превосходит $2\pi-\alpha_o$, следовательно, числитель этой дроби оце — нивается сверху величиной $(2\pi-\alpha_o)$ in R/r . Кроме того,

$$\inf_{\gamma \in \Gamma} \int \rho |d\alpha| > \int_{\Gamma} \rho |d\alpha| = \ln R/r$$
Takum oopasom,

$$m(\Gamma) \leq (2\pi - d_0) / \ln R / r$$
.

Но в силу конформной инвариантности модуля семейств кривих m(l) = 1. Поэтому

При доказательстве левой оценки аналогичные рассуждения прово - дятся для отношения

$$[S(x)-S(x-t)]/[S(x+t)-S(x)].$$

Пусть $F(\mathcal{L})$ является K —квазиконформным отображением \mathcal{H} на $G \in \mathcal{P}\!\!R(\mathcal{C}), \mathcal{X} = \partial G = F(\partial \mathcal{H})$, $F(\infty) = \infty$, причем $\mathcal{E}(\mathcal{H}(x_1), F(x_2)) = |x_1 - x_2|$ для любых двух точек x_1 , $x_2 \in \partial \mathcal{H}$. Справедлива

Лемма 3. Справедливы неравенства

$$\mathcal{D}^{-1} \leqslant \frac{\operatorname{dist}(\mathcal{Z}, \partial \mathcal{G})}{\operatorname{dist}(\mathcal{Z}, \partial \mathcal{H})} \leq \mathcal{D} , \quad \mathcal{Z} = \mathcal{F}(\mathcal{Z}) ,$$

с положительной постоянной $\mathcal{D} \leq \mathcal{C} \exp \left[(\mathcal{R} - \mathcal{L}_{\alpha}/2) \mathcal{K} \right]$.

Для получения левой оценки предположим, что $\delta(\mathcal{Z})/\delta(\mathcal{Z})$ $<\mathcal{C}^{-1}, \delta(\mathcal{Z}) = dist(\mathcal{Z}, \partial \mathcal{G}), \delta(\mathcal{Z}) = dist(\mathcal{Z}, \partial \mathcal{H})$ (если $\delta(\mathcal{Z})/\delta(\mathcal{Z}) > \mathcal{C}^{-1}$, то $\mathcal{D} = \mathcal{C}$). На \mathcal{Z} выберем точку $\mathcal{Z}_{\mathcal{C}}$ так, что $|\mathcal{Z} - \mathcal{Z}_{\mathcal{C}}| = \delta(\mathcal{Z})$. Обозначим через $\mathcal{Z}_{\mathcal{C}}$ все те точки кривой \mathcal{Z} , которые отстоят вдоль \mathcal{Z} от $\mathcal{Z}_{\mathcal{C}}$ на расстояние, не меньшее, чем $\delta(\mathcal{Z})$, а через \mathcal{T} – прямолинейный отрезок, соединяющий \mathcal{Z} и $\mathcal{Z}_{\mathcal{C}}$. С центром в точке $\mathcal{Z}_{\mathcal{C}}$ построим кольцо $K(\mathcal{R}', \mathcal{F}')$ с граничными окруж – ностями радиусов $\mathcal{R}' = \delta(\mathcal{Z})/\mathcal{C}$ и $\mathcal{F}' = \delta(\mathcal{Z})$ соответственно. Тогда, как и при доказательстве леммы $\mathcal{Z}_{\mathcal{C}}$, для модуля семейства кривых \mathcal{C} , лежащих в области \mathcal{C} и соединяющих $\mathcal{Z}_{\mathcal{C}}$ и \mathcal{C} , полу – чим

$$M(\Gamma) \leq (2\pi - \alpha_0) / \ln(R'/r')$$
.

С другой стороны, в силу *К*-квазиинвариантности модуля семейства кривых

$$M(\Gamma) \geqslant K^{-1}M(\Gamma')$$
,

где Γ' - прообраз семейства Γ' при отображении $F(\mathcal{C})$. Применим в плоскости \mathcal{C} преобразование $(\mathcal{C}-\mathcal{X}_o)^2/\delta^2(\mathcal{C})$ ($\mathcal{X}_o=\mathcal{F}^{-1}(\mathcal{F}_o)$) и дополним преобразованное семейство Γ' кривыми, содержащими отрезки из интервала (0,1), что не изменит $\mathcal{M}(\Gamma')$ ([1],

с.38 - 39). Минимум $M(\Gamma')$ достигается и, как нетрудно убедиться. равен 2 . Итак.

$$2/K \leq (2\pi - d_0) / \ln (R'/\Gamma')$$

или

$$\delta(z)/\delta(\zeta) \geq \left[Ce^{(\sqrt{3}-\alpha_o/2)K}\right]^{-1}$$
.

Для получения правой оценки предположим, что $\delta(\mathcal{Z})/\delta(\zeta) \geq 1$. Hyoth $t = F((x_o - \delta(\xi), x_o + \delta(\xi))), x_o = \Re \xi, x_o = F(x_o), \Re' = \Re \xi$ $=\delta(x)$, $r'=\delta(c)$. Обозначим через ho некоторый неограниченный континуум, содержащий точку $\mathscr F$, лежащий в области $\mathscr G$ и не имеющий общих точек с $\mathcal{K}(\mathcal{R}', r')$. Рассуждения, описанные выше, приводят к неравенству

$$\delta(z)/\delta(\varsigma) \leq \epsilon^{(7-4_0/2)K}$$

Таким образом, $\mathcal{D} \leq Ce^{(\overline{y_i} - d_o/2)K}$

2. Доказательство теоремы

Построим квазиконформное отражение $\mathcal{A}(\mathcal{Z})$: $\mathcal{G} = \bar{\mathcal{C}} \setminus \bar{\mathcal{G}} \to \mathcal{G}$ относительно кривой $\mathcal{X} = \partial \mathcal{G}$ следующим образом. Пусть $\varphi: \mathcal{H}$ $ightarrow \mathcal{G}$ функция, конформно отображающая верхнюю полуплоскость \mathcal{H} на область \mathcal{G} , $\mathcal{G}:\mathcal{H}\to\mathcal{G}_{-}$ – функция, конформно отобра – жающая нижнюю полуплоскость \mathcal{H}_{\perp} на \mathcal{G}_{\perp} , причем $\varphi_{\perp}(0)=\varphi_{\perp}(0)$, $\lim_{z\to\infty} \varphi_{\pm}(z) = \infty$. Как показано в лемме 2, такие функции $S_{\pm}(x)$ и $S_{-}(x)$ удовлетворяют М-условию Альфорса, причем M=M(C). В этом случае $S_{+}^{-1}(S_{-}^{-1})$ можно продолжить до K -квазиконформного отображения $\mathcal{H}_{+}(\mathcal{H}_{-})$ полуплоскости $\mathcal{H}_{+}(\mathcal{H}_{-})$ на себя, причем $K \leq M^2$ ([I], [3]). Определим в \mathcal{H}_{+} и \mathcal{H}_{-} две функции: $\mathcal{F} = \mathcal{G}_{+} \circ \mathcal{H}_{+}$ и $\mathcal{F} = \mathcal{G}_{-} \circ \mathcal{H}_{-}$. Как показано в [2], такие функции являются квазиизометрическими отображениями, коэффициент квази -

Нетрудно видеть, что функция

$$\lambda(z) = F_+ \circ \overline{F^{-1}(z)}, \quad z \in G_-,$$

осуществляет квазиконформное отражение относительно \mathcal{Z} = $\partial \mathcal{G}$. Коэффициент квазиконформности $\mathcal{K}_{\mathbf{1}}$ этого отображения не превосхо – дит M^4 (суперпозиция двух квазиконформных отображений), а ко эффициент квазиизометрии \mathcal{K}_{A}^{*} не превосходит $\mathcal{N}^{2}(C)$ (суперпозиция двух квазиизометрических отображений).

изометрии K^* не превосходит $N(C) = 16 \mathcal{Q} M^2 (M+1)$.

Для доказательства достаточного условия однолистности в виде ограничения на |f''(z)/f'(z)| мы определим функцию

$$g(z) = \begin{cases} f(z) &, & z \in G, \\ f \circ \lambda + (z - \lambda) f' \circ \lambda, & z \in G_{-} \end{cases}$$

Эта функция конформна в $G(f'(x) \neq 0)$ при $x \in G$) и, как мы покажем ниже, она квазиконформна в G . А так как \mathcal{Z} = ∂G – квазиконформная кривая, то отсюда следует, что к $q(\mathcal{J})$ применима теорема Адамара ([4], c.164), согласно которой $\check{g}(\mathcal{X})$ — гомео морфизм всей плоскости на себя $(g(\infty) = \infty)$ в силу поведения $f(\mathcal{Z})$ mpu $\mathcal{Z} \to \infty$).

Покажем, что функция $g(\mathcal{Z})$ квазиконформна в \mathcal{G}_{\perp} (см.[I], [5]). Для этого убедимся, что\ $g_{\mathcal{Z}}^{-}/g_{\mathcal{Z}}$ \ < 1 для $\mathscr{Z}\in\mathcal{G}_{-}$, а это эквивалентно проверке следующего неравенства

$$|\mathcal{Z} - \lambda(\mathcal{Z})|(|\lambda_{\mathcal{Z}}| + |\lambda_{\mathcal{Z}}|)| f''(\lambda)/f'(\lambda)| < 1, \ \mathcal{Z} \in \mathcal{G}_{-}$$
.

В силу свойств отображения λ имеем

$$| d\lambda | \ge || \lambda_{\overline{z}} | - | \lambda_{z} || | dz | \qquad M$$

$$(K_{\lambda}^{*})^{-1} | dz | \le | d\lambda | \le K_{\lambda}^{*} | dz | .$$

Учитывая эти оценки, нетрудно установить, что

$$|\lambda_{\mathcal{Z}}| + |\lambda_{\bar{\mathcal{Z}}}| \leq M^4(\mathcal{C}) N^2(\mathcal{C})$$
.

Обозначим через $\mathscr C$ прямодинейный отрезок, соединяющий $\mathscr E$ и $\mathcal A(\mathscr E)$, а через $\mathscr O(s)$ образ прямодинейного отрезка, соеди няющего точки \gtrsim и \gtrsim при отображении

$$\varphi = \begin{cases} F_+, & \varepsilon \in \overline{H}_+ \\ F_-, & \varepsilon \in H_- \end{cases},$$

где $\succeq' = \mathcal{F}^{-1}(\mathfrak{F})$, $\mathfrak{F} \in \mathcal{G}_{-}$. Тогда, с учетом леммы 3, обеспечивающей квазиизометричность \mathcal{F}_+ и \mathcal{F}_- , получаем

$$|\mathcal{Z} - \lambda(\mathcal{Z})| = |\int\limits_{\mathcal{C}} d\mathcal{Z}| \le |\int\limits_{\mathcal{P}(\mathcal{S})} d\mathcal{Z}| \le 2N\mathcal{D} \, \delta(\lambda)$$
 . Окончательно име м

$$|\mathcal{Z} - \mathcal{A}(\mathcal{Z})| (|\mathcal{A}_{\mathcal{Z}}| + |\mathcal{A}_{\mathcal{Z}}|) \leq 2M^4 N^3 \mathcal{D} \delta(\mathcal{A}).$$

Таким образом, существует константа $a(\mathcal{C})$, которая обеспечивает квазиконформность $g\left(\mathcal{Z}\right)$ в области \mathcal{G}_{-} при выполнении

условий теоремы. Это обеспечивает гомеоморфность $g(\mathcal{J})$, а значит и однолистность $f(\mathcal{Z})$ в области G .

Для того, чтобы получить достаточное условие однолистности функции $f(\mathcal{Z})$ в виде ограничения на $|\{f(\mathcal{Z}),\,\mathcal{Z}\}|$, где $\{\circ,\circ\}$ шварциан, функцию $g(\mathcal{Z})$ определим следующим образом:

$$g(z)=\left\{egin{array}{ll} f(z) &, &z\in G \ , \ f\circ \lambda + \dfrac{(z-\lambda)f'\circ \lambda}{1-rac{1}{2}(z-\lambda)f''\circ \lambda/f'\circ \lambda} &, &z\in G \ . \end{array}
ight.$$
 В этом случае проверка неравенства $|g_{\overline{z}}/g_z|<1$ для $z\in G$

 $\epsilon\,\mathcal{G}$ сводится к проверке того, что

$$2^{-1}|_{\mathcal{Z}} - \lambda(\mathcal{Z})|^2 (|\lambda_{\overline{\mathcal{Z}}}| + |\lambda_{\mathcal{Z}}|)| \left\{ f(\lambda), \lambda \right\} | < 1 , \quad \lambda \in G.$$
 Ясно, что оценки, полученные для $|\mathcal{Z} - \lambda(\mathcal{Z})|$ и $|\lambda_{\overline{\mathcal{Z}}}| + |\lambda_{\mathcal{Z}}|$,

позволяют установить существование константы $\mathscr{E}(\mathcal{C})$, зависящей только от \mathcal{C} , и обеспечивающей однолистность $\mathcal{I}(\mathcal{Z})$ в области G при выполнении условий теоремы и в этом случае.

Хорошо известная связь между $dist(a,\partial G)$ и плотностью гиперболической метрики $ho_{\mathcal{D}}(\mathcal{A})$ области \mathcal{D} относительно точки ж (см., напр..[1]):

$$[4 \operatorname{dist}(\mathcal{Z},\partial G)]^{-1} \leq \rho_{\mathcal{D}}(\mathcal{Z}) \leq [\operatorname{dist}(\mathcal{Z},\partial G)]^{-1},$$

позволяет записывать полученные достаточные условия однолистности с включением как $dist(z,\partial G)$, так и $\rho_{\mathcal{D}}(z)$.

В заключение отметим, что полученный результат можно перенести и на области, границы которых лежат в конечной части плоскости и для которых выполняется условие, аналогичное (І), однако при этом приходится вводить некоторые дополнительные условия, сужающие рассматриваемый класс областей.

Авторя одагодарят участников семинара за полезное обсужде ние данной работы.

Литература

- І. Альфорс Л. Лекции по квазиконформным отображени ям. - М.: Мир, 1969. - 133 с.
- 2. Лат фуллин Т.Г.Геометрическая характеристика квазиизометрического образа полуплоскости // Теория отображений.

ее обобщения и приложения: Сб.науч.тр. - Киев: Наукова думка, 1982. - С.116 - 126.

- 3. T a n D. On the dilatation estimates for Beurling Ahlfors quasiconformal extension // Proc. Amer. Math. Soc. 1987. V.100. N 4. P.655 660.
- 4. Стоилов С. Лекции о топологических принципах теории аналитических функций. М.: Наука, 1964. 227 с.
- 5. Аксентьев Л. А., Шабалин П. Л. Условия однолистности с квазиконформным продолжением и их применение // Изв. вузов. Мат. 1983. № 2. С.6 14.

Доложено на семинаре 25 января 1988 г.

Е.А.Широкова

РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ НАПОРНОЙ ФИЛЬТРАЦИИ В НЕОДНОРОДНОМ ИЗОТРОПНОМ ГРУНТЕ ПРИ ЗАДАНИИ РАСПРЕДЕЛЕНИЯ НАПОРОВ КАК ФУНКЦИИ ПАРАМЕТРА \boldsymbol{x}

Обратная задача напорной фильтрации в анизотропном неоднородном грунте в случае конечного фильтрующего слоя была поставлена в [І]. Там же указан метод решения этой задачи, основанный на результатах В.Н.Монахова и С.Н.Антонцева и связанний с отображением области, получаемой в плоскости обобщенного потенциала, на каноническую область с помощью функции, удовлетворяющей квазилинейному уравнению Бельтрами. Существование и единствен ность такого отображения доказаны [2], однако способ построения отображающей функции не указан. В случае, когда фильтрующий слой бесконечен по глубине, подобная задача не рассматривалась. В случае однородного грунта переход от конечного слоя к беско нечному связан с расширением множества решений - появлением в выражении иля функции, отображающей каноническую область на область фильтрации, слагаемого, умноженного на произвольную веще ственную константу A [3]. В нашем случае такое слагаемое также появится, однако призвол константы A ограничен.

Постановка задачи. Пусть требуется найти неизвестный контур $L_{_{\mathcal{Z}}}(\mathcal{BC})$ подземной части непроницаемой плотины, если вдоль $L_{_{\mathcal{Z}}}$ с концами в точках $\mathcal{B}(\mathcal{O},\mathcal{O})$ и $\mathcal{C}(\mathcal{C},\mathcal{O})$ задано распределе-