Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:		
	Herbst	46112
Kennwort:	2006	2006
Arbeitsplatz-Nr.:		

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Fach: Informatik (Unterrichtsfach)

Einzelprüfung: Theoretische Informatik

Anzahl der gestellten Themen (Aufgaben): 2

Anzahl der Druckseiten dieser Vorlage: 5

Bitte wenden!

Thema Nr. 1

Sämtliche Teilaufgaben sind zu bearbeiten!

Teilaufgabe l

Gegeben sei der nicht-deterministische endliche Automat M mit dem Eingabealphabet $\Sigma=\{a,b\}$, der Zustandsmenge $Q=\left\{q_0,\,q_1,\,q_2,\,q_3\right\}$, Anfangszustand q_0 , Endzustand q_3 und der Übergangsfunktion δ mit:

$$\begin{split} & \left(q_0,a\right) \mapsto \left\{q_1\right\}, \\ & \left(q_0,b\right) \mapsto \left\{q_2\right\}, \\ & \left(q_1,b\right) \mapsto \left\{q_1,\,q_2,\,q_3\right\}, \\ & \left(q_2,a\right) \mapsto \left\{q_3\right\}, \\ & \left(q_3,a\right) \mapsto \left\{q_3\right\}, \\ & \left(q_3,a\right) \mapsto \left\{q_3\right\}, \\ & \left(q,x\right) \mapsto \mathscr{D} \qquad \text{für alle übrigen } \left(q,x\right) \in Q \times \Sigma \end{split}$$

L(M) sei die von M akzeptierte Sprache.

- a) Beweisen Sie:
 - al) $abbba \in L(M)$
 - a2) In jedem $w \in L(M)$ kommt a mindestens einmal vor.
 - a3) Zu jedem $n \in \mathbb{N}$ gibt es ein $w \in L(M)$, in dem a mehr als n-mal vorkommt.
- b) Geben Sie eine reguläre (Typ-3-) Grammatik an, die L(M) erzeugt.
- c) Konstruieren Sie aus M einen deterministischen endlichen Automaten, der L(M) akzeptiert.
- d) Geben Sie einen regulären Ausdruck an, der L(M) beschreibt.

Teilaufgabe 2

Gegeben seien das Alphabet $\Sigma = \{a,b\}$, die Grammatik $G = (\{S,A\},\Sigma,S,P)$ mit der aus den Produktionsregeln

$$S \rightarrow Ab$$

$$A \rightarrow b \mid aAa$$

bestehenden Menge P sowie die Sprache $L=\left\{a^nba^nb\ | n\geq 0\right\}$ über \sum .

- a) Beweisen Sie: L ist die von G erzeugte Sprache.
- b) Beweisen Sie: L ist nicht regulär.
- c) Überführen Sie G in Chomsky-Normalform.

Teilaufgabe 3

Es seien Σ ein Alphabet, a ein Zeichen von Σ und L_1 und L_2 zwei Sprachen über Σ . Gelten folgende Aussagen? Begründen Sie Ihre Antworten.

- a) Sind L_1 und L_2 semi-entscheidbar, so ist $L_1 \setminus L_2$ semi-entscheidbar.
- b) Sind L_1 und L_2 entscheidbar, so ist die Funktion $f: \sum^* \to \sum^*$ mit

$$f(w) = \begin{cases} a & \text{falls } w \in L_{_{\!\! 1}} \cap L_{_{\!\! 2}} \\ aa & \text{sonst} \end{cases}$$

berechenbar.

- c) Ist L_1 mit einer deterministischen Turing-Maschine mit einer Zeitkomplexität O(n) entscheidbar, so gilt dies auch für $\sum^* \backslash L_1$. (n ist die Länge der jeweiligen Eingabe.)
- d) Sind sowohl L_1 als auch L_2 mit einer deterministischen Turing-Maschine mit einer Zeitkomplexität $O(n^2)$ entscheidbar, so gilt dies auch für $L_1 \cup L_2$. (n ist die Länge der jeweiligen Eingabe.)

Thema Nr. 2

Aufgabe 1 (reguläre Sprachen und endliche Automaten)

Die Elemente einer regulären Sprache können durch deterministische oder nicht-deterministische endliche Automaten erkannt werden.

Betrachten Sie folgenden nicht-deterministischen endlichen Automaten

$$A_{\!\!1} = \left(\left\{q_1,q_2,q_3,q_4,q_5\right\}, \left\{0,1\right\}, \delta, q_1, \left\{q_4\right\} \right) \text{ mit Zustandsmenge } \left\{q_1,q_2,q_3,q_4,q_5\right\} \text{ Eingabealphabet } \left\{0,1\right\}, \text{ Anfangszustand } q_1 \text{ und Endzustandsmenge } \left\{q_4\right\}. \text{ Die Übergangsfunktion } \delta \text{ sei durch folgende Tabelle definiert:}$$

1 1
$\big\} \hspace{0.2cm} \big \hspace{0.2cm} \big\{q_{_5}\big\} \hspace{0.2cm} \big \hspace{0.2cm} \big\{q_{_5}\big\}$
$\left\{q_{_{5}}\right\} \qquad \left\{q_{_{5}}\right\}$

- a) Zeichnen Sie das Übergangsdiagramm des Automaten mit Zuständen und Übergangskanten.
- b) Beschreiben Sie die von A_1 erkannte reguläre Sprache L_1 , indem Sie eine mathematisch exakte Definition der Menge der erkannten Worte über $\{0,1\}$ angeben. Begründen Sie Ihre Antwort.
- c) Geben Sie einen möglichst kurzen regulären Ausdruck an, der die Sprache L_1 beschreibt.
- d) Wandeln Sie den nicht-deterministischen endlichen Automaten A_1 in einen deterministischen endlichen Automaten A_2 um, indem Sie die Teilmengenkonstruktion anwenden. Konstruieren Sie dazu ausgehend vom Anfangszustand von A_1 die ε -Folgezustände der jeweils entstehenden Zustände. Geben Sie für A_2 sowohl ein Übergangsdiagramm als auch eine tabellenförmige Darstellung der Übergangsfunktion an.
- e) Definieren Sie die Äquivalenz von Zuständen in endlichen Automaten.
- f) Bestimmen Sie mit Hilfe des Table-Filling-Verfahrens alle äquivalenten Zustände von A₂. Bauen Sie dazu die vollständige Tabelle mit Zustandspaaren schrittweise auf und markieren Sie, ob die jeweiligen Zustände unterscheidbar sind. Erläutern Sie jeden durchgeführten Schritt. Fassen Sie anschließend die äquivalenten Zustände zusammen und konstruieren Sie den resultierenden deterministischen endlichen Automaten A₃, indem Sie für A₃ ein Übergangsdiagramm und eine tabellenförmige Darstellung der Übergangsfunktion angeben.
- g) Gibt es einen deterministischen endlichen Automaten mit weniger Zuständen als A_3 , der die reguläre Sprache L_1 erkennt? Begründen Sie Ihre Antwort kurz. Geben Sie gegebenenfalls einen deterministischen endlichen Automaten mit weniger Zuständen als A_3 an.

Aufgabe 2 (kontextfreie Sprachen und Kellerautomaten)

- a) Betrachten Sie die kontextfreie Sprache $L=\left\{a^nb^n;n\geq 1\right\}$ über dem Alphabet $\{a,b\}$. Geben Sie eine kontextfreie Grammatik G mit Terminalsymbolen, Nichtterminalsymbolen und Produktionen an, die L erzeugt.
- b) Konstruieren Sie einen nicht-deterministischen Kellerautomaten $K=(Q,\Sigma,\Gamma,\delta,q_{_0},Z_{_0},F)$, der L erkennt. Geben Sie eine genaue Definition aller Elemente des Kellerautomaten mit einer mathematisch exakten Definition der Übergangsrelation δ an. Erläutern Sie die Arbeitsweise des Kellerautomaten und begründen Sie, warum K alle Worte aus L erkennt.
- c) Erläutern Sie den Unterschied zwischen nicht-deterministischen und deterministischen Kellerautomaten durch Angabe der exakten Definitionen. Welche Unterschiede in den Verarbeitungsschritten gibt es?
- d) Kann die Sprache $L = \{a^n b^n; n \ge 1\}$ durch einen deterministischen Kellerautomaten erkannt werden? Begründen Sie Ihre Antwort.
- e) Betrachten Sie die folgende kontextfreie Grammatik $G = (\{S\}, \{0,1,+,*\}, P, S)$ mit den Produktionen $P = \{S \to S + S, S \to S * S, S \to 0, S \to 1\}$. Beweisen Sie, dass diese Grammatik mehrdeutig ist.

Aufgabe 3 (Berechenbarkeit und Turingmaschinen)

- a) Konstruieren Sie eine deterministische Turingmaschine zum Erkennen der Sprache $L = \left\{0^n 1^n; n \geq 1\right\}$ über dem Alphabet $\left\{0,1\right\}$. Beim Start der Turingmaschine stehe das Eingabewort $w \in \left\{0,1\right\}^*$ auf dem Band. Erläutern Sie die Rolle der Zustände der von Ihnen konstruierten Turingmaschine und geben Sie die Übergangsfunktion in Tabellenform an.
- b) Illustrieren Sie die Arbeitsweise der von Ihnen konstruierten Turingmaschine, in dem Sie die Berechnungsschritte für die Eingabe 0011 als Konfigurationsübergänge angeben.
- c) Erläutern Sie die Funktionsweise nichtdeterministischer Turingmaschinen. Erkennen nicht-deterministische Turingmaschinen dieselbe Sprachklasse wie deterministische Turingmaschinen? Geben Sie eine ausführliche Begründung für Ihre Antwort.