Course Contents and Rules

Aprendizagem Aplicada à Segurança

Mestrado em Cibersegurança DETI-UA

Professor

- Prof. Paulo Salvador
 - Email: salvador@ua.pt
 - Web: https://paulosalvador.net
 - Discord: https://discord.gg/bPPpKy5
 - Change your nickname to your real name and ask for AAS role.
 - Office: IEETA
- Prof.a Pétia Georgieva
 - Email: petia@ua.pt
 - Gabinete: IEETA
- Office hours
 - Flexible!
 - E-mail to schedule.

Course Objectives

- Learn fundamental machine learning concepts relevant for computer security.
- Learn how to apply machine learning techniques for anomaly detection in computational systems and communication networks.

Contents

- Machine Learning (ML)
 - Basic ML concepts and applications in the field of computer/informatics security,
 - Clustering and classification ML tasks.
 - Supervised and unsupervised ML.
 - Neural networks, deep learning.
- Perception of the behavior of network entities.
 - Perception as a basic technique for detecting evidence of attacks / intrusions.
 - Perception based on users, computer systems or networks.
 - Perception based on signatures or behaviors.
 - Detection of data/objects manipulation.
- Detection of behavioral anomalies using learning.
 - Classification and detection of network traffic anomalies.
 - Classification and detection of anomalous events in computer systems.

Evaluation

- Final Grade =
 - 50% * Theoretical Grade + 50% * Practice Grade
- Minimal grade: 7.0 in each component.
 - Theoretical Grade
 - → Exam (100%) Exam and/or Repeat Exam Seasons
 - Best grade is the one considered to calculate final grade.
 - Practice Grade
 - Project (100%) in groups of 2 students (or 1 exceptionally).
 - First Presentation (40%) December 10th
 - » Problem identification.
 - » Proposal of solution.
 - » Only presentation with slides, no report!
 - Final Presentation (60%) last class.
 - » Presentation of results and demonstration of working solution.
 - During presentations/demo students must answer to specific questions. Grades may be different within a group.
 - Repeat Exam Season
 - The project can be improved (or fully redone).
 - Best grade is the one considered to calculate final grade.

Classes Planning (tentative)

[Class	Friday		Professor	Obs.
1	15-061	Introduction. Network and systems attack vectors. IDS/IPS. Forensics.		PS/PG	
2		Network and systems monitoring, data acquisition and data pre-processing.	TP: Data Acquisition	PS	
3	29-Oct		TP: Data Acquisition	PS	
4	05-Nov	Features Extraction	TP: Data Processing and Features Extraction	PS	
5	12-Nov		TP: Data Processing and Features Extraction	PS	
6	19-Nov		TP: Data Processing and Features Extraction	PS	
7		Univariate/Multivariate Gaussian Distribution	TP: Anomaly detection	PG	
8	U3-Dec	regularization.	TP: Regression	PG	
9		Artificial Neural Networks (ANN) Support Vector Machines (SVM)	TP: Classification	PG	Proj.: Problem idea and Planning
10	17-Dec	K-means clustering - Data dimensionality reduction - PCA (Principal components analysis)	TP:Clustering	PG	
	24-Dec	Férias Natal			
	31-Dec	Férias Natal			
11	07-Jan	Introduction to DL. Convolutional Neural Networks (CNN)	TP: Deep Learning	PG	
12	14-Jan	Project		PS	
13	21-Jan	Project		PS/PG	Proj.: Results and Demo
11	24-Dec 31-Dec 07-Jan 14-Jan	- PCA (Principal components analysis) Férias Nata Férias Nata Introduction to DL. Convolutional Neural Networks (CNN) Project	al	PG PS	Proj.: Results and Demo

Bibliography

- Course slides.
- Chio, C., & Freeman, D. (2018). Machine Learning and Security: Protecting Systems with Data and Algorithms. O'Reilly Media, Inc.. ISBN 978-1491979907
- Maloof, M. A. (Ed.). (2006). Machine learning and data mining for computer security: methods and applications. Springer Science & Business Media. ISBN 978-1846280290
- Santos, O. (2015). Network Security with NetFlow and IPFIX: Big Data Analytics for Information Security. Cisco Press. ISBN 978-1587144387
- Collins, M., & Collins, M. S. (2014). Network security through data analysis: building situational awareness. O'Reilly Media, Inc.. ISBN 978-1587144387
- Gardner, B., & Thomas, V. (2014). Building an information security awareness program: Defending against social engineering and technical threats. Elsevier. ISBN 978-0124199675
- Bhaiji, Y. (2008). Network security technologies and solutions (CCIE professional development series). Pearson Education. ISBN 978-1587052460