Compatibility with Disk like Transfer Systems II JMM 2025

David DeMark, Mike Hill, Yigal Kamel, Nelson Niu, Kurt Stoeckl*,
Danika Van Niel and Guoqi Yan

Slides Part I

Slides Part II

Transfer Systems

Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subset . Then, \mathcal{O} is said to be a G-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

Transfer Systems

Definition

Let \mathcal{O} be a binary relation on Sub(G) refining \subset . Then, \mathcal{O} is said to be a G-transfer system if it is closed under

- conjugation,
- restriction, and
- composition.

Theorem (A.2 of [Rub21])

Let R be a binary relation on Sub(G) refining \subset . Let T(R) denote the closure of R under

- conjugation, then
- restriction, and then
- composition.

Then T(R) is the smallest G-transfer system containing R.

Example

Theorem (A.2 of [Rub21])

Let R be a binary relation on Sub(G) refining \subset . Let T(R) denote the closure of R under

- conjugation, then
- restriction, and then
- composition.

Then T(R) is the smallest G-transfer system containing R.

Disk like Transfer Systems

Definition

We say a transfer system \mathcal{O} is **disk like** if it admits the presentation $\mathcal{O} = \mathcal{T}(D_G)$, where D_G is a set of relations/transfers with target G.

- Left, a non-disk like $C_{p^2,q}$ -transfer system.
- Mid, a non-disk like $C_{p^2,q}$ -transfer system.
- ullet Right, a disk like $C_{p^2,q}$ -transfer system, its generators in solid green.

Saturated Transfer Systems

Definition

A transfer system $\mathcal O$ is **saturated** if it satisfies the 2 out of 3 property.

- Left, a saturated $C_{p^2,q}$ -transfer system.
- Mid, a saturated $C_{p^2,q}$ -transfer system.
- \bullet Right, a non-saturated $\mathit{C}_{p^2,q}\text{-transfer}$ system.

Compatible Transfer Systems

Definition ([Cha24, Definition 4.6])

Let \mathcal{O}_a and \mathcal{O}_m be a pair of G-transfer systems such that $\mathcal{O}_m \subseteq \mathcal{O}_a$. We say $(\mathcal{O}_a, \mathcal{O}_m)$ are **compatible** if we can complete all squares of the form

$$\begin{array}{cccc}
 & C & & \\
A & & B & \\
A \cap B & &
\end{array}$$

with $e, r \in \mathcal{O}_m$ and $a \in \mathcal{O}_a$.

Maximal Compatible Transfer Systems

Proposition ([BH22])

If $(\mathcal{O}_a, \mathcal{O}_m)$ and $(\mathcal{O}_a, \mathcal{O}_m')$ are both compatible, then $(\mathcal{O}_a, \mathcal{O}_m \vee \mathcal{O}_m')$ is compatible.

Corollary

For a fixed transfer system \mathcal{O}_a ,

- ullet there exists a maximal compatible transfer system \mathcal{O}_m , and
- \bullet all other compatible transfers systems are sub-transfer systems of $\mathcal{O}_m.$

Why?

Work including [BH15, GW18, BBR21, BP21, Rub21, BMO24, Cha24], provides the correspondences

 N_{∞} -operads
Additive Transfers
Multiplicative Norms
Bi-incomplete Transfers and Norms

Transfer Systems
Disk Like Transfer Systems
Saturated Transfer Systems
Compatible Transfer Systems

Why?

Work including [BH15, GW18, BBR21, BP21, Rub21, BMO24, Cha24], provides the correspondences

 N_{∞} -operads
Additive Transfers
Multiplicative Norms
Bi-incomplete Transfers and Norms

Transfer Systems
Disk Like Transfer Systems
Saturated Transfer Systems
Compatible Transfer Systems

Corollary

For a fixed transfer system \mathcal{O}_a ,

- ullet there exists a maximal compatible transfer system \mathcal{O}_m , and
- ullet all other compatible transfers systems are sub-transfer systems of \mathcal{O}_m .

Thus identifying the maximal compatible transfer system identifies all bi-incomplete/compatible multiplicative norms for a fixed additive transfer.

Maximal Compatible Pairs of Disk like Transfers of $C_{p,q}$

How?

In Part 1 with David, we saw that

Proposition (DHKNSVNY)

The maximal compatible transfer \mathcal{O}_m of \mathcal{O}_a is always saturated.

Is \mathcal{O}_m the 'maximal saturated sub-transfer system' of \mathcal{O}_a ?

How?

In Part 1 with David, we saw that

Proposition (DHKNSVNY)

The maximal compatible transfer \mathcal{O}_m of \mathcal{O}_a is always saturated.

Is \mathcal{O}_m the 'maximal saturated sub-transfer system' of \mathcal{O}_a ?

No!

- **1** There can exist multiple incomparable saturated transfer systems smaller than \mathcal{O}_a .
- ② Saturated elements can exist in the open interval $(\mathcal{O}_m, \mathcal{O}_a)$.

There can be multiple incomparable saturated transfer systems smaller than \mathcal{O}_a

Saturated elements can exist in the open interval $(\mathcal{O}_m, \mathcal{O}_a)$

Computing \mathcal{O}_m

Worst case need to check A B for all $e, r \in \mathcal{O}_m$ and $a \in \mathcal{O}_a$.

Computing \mathcal{O}_m

Worst case need to check
$$A \nearrow B$$
 for all $e, r \in \mathcal{O}_m$ and $a \in \mathcal{O}_a$.

Lemma (DHKNSVNY)

If $\mathcal{O}_a = Comp(Rest(Conj(B_a)))$ and $\mathcal{O}_m = Comp(Rest(Conj(B_m)))$. Then, $(\mathcal{O}_a, \mathcal{O}_m)$ are compatible, if, and only if, $\mathcal{O}_m \subseteq \mathcal{O}_a$ and

$$C$$
 $A \nearrow B$
 $A \cap B$

Computing \mathcal{O}_m

Worst case need to check
$$A \nearrow B$$
 for all $e, r \in \mathcal{O}_m$ and $a \in \mathcal{O}_a$.

Lemma (DHKNSVNY)

If $\mathcal{O}_a = Comp(Rest(Conj(B_a)))$ and $\mathcal{O}_m = Comp(Rest(Conj(B_m)))$. Then, $(\mathcal{O}_a, \mathcal{O}_m)$ are compatible, if, and only if, $\mathcal{O}_m \subseteq \mathcal{O}_a$ and

$$C$$
 $A \nearrow B$
 B for all $e, f \in Rest(Conj(B_m))$ and $a \in Rest(Conj(B_a))$.

Also: It is possible to not conjugate one of the sets of generators!

Proposition (DHKNSVNY)

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

$$\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \; \textit{such that} \;$$

Idea:

- Delete the top left factors of all saturation failures in \mathcal{O}_a .
- Every occurrence of the pattern above deletes e, r and c.

Proposition (DHKNSVNY)

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

$$\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \; \textit{such that} \;$$

Proof sketch:

Proposition (DHKNSVNY)

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

$$\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \; \textit{such that} \;$$

Proof sketch:

• $e \in \mathcal{O}_m$ if, and only if, $(\mathcal{O}_a, T(e))$ is compatible.

Proposition (DHKNSVNY)

The complement of the maximal compatible transfer system of \mathcal{O}_a satisfies

$$\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \; \textit{such that} \;$$

Proof sketch:

- $e \in \mathcal{O}_m$ if, and only if, $(\mathcal{O}_a, T(e))$ is compatible.
- Then check the compatibility of $(\mathcal{O}_a, T(e))$ with prior lemma.

Case: $\mathcal{O}_m^c = \emptyset$

Case: $\mathcal{O}_m^c = \emptyset$

Proposition (DHKNSVNY)

$$\mathcal{O}_m^c := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in Res(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \text{ such that } \}$$

Proposition (DHKNSVNY)

A transfer system \mathcal{O}_a is self compatible, if, and only if, it is saturated.

Proof:

- If \mathcal{O}_a is saturated then $\mathcal{O}_m^c = \emptyset$.
 - Every saturation failure of \mathcal{O}_a is in $\mathcal{O}_m^c = \emptyset$, thus \mathcal{O}_a is saturated.

Example: Computing \mathcal{O}_m in C_{p^2,q^2} using the complement

 $\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \text{ such that }$

Example: Computing \mathcal{O}_m in C_{p^2,q^2} using the complement

 $\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \text{ such that }$

Example: Computing \mathcal{O}_m in \mathcal{C}_{p^2,q^2} using the complement

 $\mathcal{O}^c_m := \mathcal{O}_a \setminus \mathcal{O}_m = \{e \in \mathcal{O}_a : \exists r, r' \in \textit{Res}(e), a \in \mathcal{O}_a, \not\exists a' \in \mathcal{O}_a \text{ such that }$

Some Questions and Future Directions

- How can we use the disk like assumption to aid in computing \mathcal{O}_m ?
- Can we use subset bounds on \mathcal{O}_m for faster computation?
- Can we compute all maximal compatible pairs for all disk like transfer systems of a fixed group *G* in a relatively efficient manner?
 - i.e. maybe it is 'hard' to compute \mathcal{O}_m for arbitrary \mathcal{O}_a ,
 - but we can induct to all $(\mathcal{O}_a, \mathcal{O}_m)$ from computing $(T(H \to G), \mathcal{O}_m)$?

Mentioned Sources I

- [BBR21] Scott Balchin, David Barnes, and Constanze Roitzheim. N_{∞} -operads and associahedra. *Pacific J. Math.*, 315(2):285–304, 2021.
 - [BH15] Andrew J. Blumberg and Michael A. Hill. Operadic multiplications in equivariant spectra, norms, and transfers. *Adv. Math.*, 285:658–708, 2015.
 - [BH22] Andrew J. Blumberg and Michael A. Hill. Bi-incomplete Tambara functors. In *Equivariant topology and derived algebra*, volume 474 of *London Math. Soc. Lecture Note Ser.*, pages 276–313. Cambridge Univ. Press, Cambridge, 2022.
- [BMO24] Scott Balchin, Ethan MacBrough, and Kyle Ormsby. Composition closed premodel structures and the Kreweras lattice. European J. Combin., 116:Paper No. 103879, 22, 2024.
 - [BP21] Peter Bonventre and Luís A. Pereira. Genuine equivariant operads. *Adv. Math.*, 381:Paper No. 107502, 133, 2021.

Mentioned Sources II

- [Cha24] David Chan. Bi-incomplete Tambara functors as \mathcal{O} -commutative monoids. *Tunis. J. Math.*, 6(1):1–47, 2024.
- [GW18] Javier J. Gutiérrez and David White. Encoding equivariant commutativity via operads. *Algebr. Geom. Topol.*, 18(5):2919–2962, 2018.
- [Rub21] Jonathan Rubin. Detecting Steiner and linear isometries operads. *Glasg. Math. J.*, 63(2):307–342, 2021.