

SMILERPractical Online Traffic Classification

Presented by Baohua Yang

September 14, 2011

Baohua Yang, Guangdong Hou, Lingyun Ruan, Yibo Xue and Jun Li

Content

- Background
- Theory and Design
- Evaluation Results
- Conclusion

• What is Traffic Classification (TC)?

- Why do we need TC?
 - · QoS
 - Security
 - Performance
 - · And...

- What does a practical TC solution require?
 - Accuracy
 - Early identification
 - Flexibility
 - Speed

	Accuracy	Early Identification	Flexibility	Speed
Port-based	\odot			©
DPI on payload	\odot			
Traditional Machine learning				
SMILER	\odot		\odot	\odot

• SMILER: a SeMi-supervIsed Learning based classifiER to meet all these requirements!

Content

- Background
- Theory and Design
- Evaluation Results
- Conclusion

Supervised Machine Learning

Supervised Machine Learning

· Semi-supervised Machine Learning is better.

Extend 2-class classification to multi-class?

- From 2-class to Multi-class
 - For each pair in the two categories, a binary-class classifier will be trained. For N classes in total, N(N-1)/2 classifiers will be generated.
 - A voting is carried out among all classifiers to gain the final prediction label.

NSLAB@RIIT of TSINGHUA UNIVERSITY

Hybrid Scheme to improve accuracy.

Observation

- C-factor
 - A confidence factor by the distance $\frac{|R|}{||W||}$ from the hyper-plane.
 - Range in [0.5,1.0], when $\frac{|R|}{||W||}$ approaches ∞ , C should approach 1.0; when $\frac{|R|}{||W||}$ approaches 0, C should be 0.5.

$$C = \frac{1}{1 + e^{-\frac{|R|}{||w||}}}$$

• C-factor

- Hybrid Scheme
 - Basic Idea: Transfer the traffic with lower *C-factor* value to other accurate classifiers, e.g., DPI-based ones.

How to handle disordered packets?

- Packet disorder
 - Disordered packets may happen after multi-path transferring.
 - Most existing techniques are based on packet reassembling, which might increase latency and storage while waiting for unreachable packets.
 - Utilize missing feature classification techniques, e.g., set missing features to 0.

Content

- Background
- Theory and Design
- Evaluation Results
- Conclusion

- Trace sets
 - Collected on 2008 and 2010 in a large campus network.
 - · Classification on 6 representative applications.
 - Web (non-video HTTP)
 - · Video (over HTTP)
 - · FTP
 - · SMTP
 - · BT
 - · SSH

- Measure parameters
 - E.g., classify traffic of X type and Not-X type

Traffic/Result	Classify as X	Classify as Not-X	
Traffic of X	True Positive	False Negative	
Traffic of Not-X	False Positive	True Negative	

- Measure parameters
 - Precision
 - $\cdot TP/(TP+FP)$
 - · Classified as X, and how much is real X?
 - · Recall
 - $\cdot TP/(TP+FN)$
 - Real X, and how much is classified as X?
 - Accuracy
 - $\cdot (TP+TN)/(TP+TN+FP+FN)$
 - · Correct classification ratio for all traffic.

Results with Different Number of Packets

Results over different applications

SMILER vs. Supervised Machine Learning

Disordered Packets

Hybrid scheme improvement

Classification Speed

Content

- Background
- Theory and Design
- Evaluation Results
- Conclusion

Conclusion

- SMILER is practical in online classification.
 - Accurate
 - over 95% accuracy with sizes of first 5 packets.
 - Early identification
 - · No detection on packet content.
 - Flexibility
 - Easy to integrate with other approaches.
 - Speed
 - 8X~30X over DPI.

Thanks

Any question?