Assignment 4.5 + Smoothing 1(SNLP Tutorial 5)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

25th, 27th May 2021

Assignment 4

- Exercise 1: Huffman encoding
- Exercise 2: Conditional entropy of DNA
- Bonus: Huffman encoding adaptations

OOV words

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 2

OOV words

- What about * and *?
- OOV rate?
- \bullet 3/12 = 25%
- Solutions?

OOV words

 How do we even know this will be an issue?

Subword Units

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams
- ullet E.g. bedclothes became white o bed @cloth @es be @came @white
- Used heavily in any modern NLP (MT, LM, QA, ...)

Questions

- Can we still get an unknown "word"?
- How do we define perplexity for subword language models?

Smoothing

- Words present in vocabulary, but have ~0 probabilities
- Words present in vocabulary, but have unseen context

Solution: Assign probability mass from frequent events to infrequent events (Smoothing/Discounting)

• Will cover different smoothing methods over the next few tutorials

Additive smoothing (add- α -smoothing)

Distribution

- Add zero counts to frequency table
- **6** ≥ 5 **3** ≥ 2 **9** 0
 - Increase all counts by $\alpha=1$
 - Increase all counts by $\alpha = 1$ 6+1 > 5+1 3+1 2+1 9 0+1 4 0+1
 - Divide by N = 22

Perplexity

- Relative frequencies on test corpus:
- 0.33 $\geqslant 0.17$ $\bigcirc 0.17$ $\bigcirc 0.17$ $\bigcirc 0.08$ $\bigcirc 0.08$
 - Recall perplexity formula:

$$PP = \exp -\sum_{w,h} f(w,h) \cdot \log_2 p(w|h) \tag{1}$$

Additive smoothing (add- α -smoothing)

Distribution

- Add zero counts to frequency table
- **1** 6 ≥ 5 **3** 2 **0** 0
 - ullet Increase all counts by lpha=1
- 0+1 🤌 5+1 🍆 3+1 🔓 2+1 🚇 0+1 🧆 0+1
 - Divide by N = 22
- $\stackrel{\smile}{=}$ 0.32 $\stackrel{\smile}{>}$ 0.27 $\stackrel{\smile}{=}$ 0.18 $\stackrel{\smile}{=}$ 0.13 $\stackrel{\bigcirc}{=}$ 0.05 $\stackrel{\diamondsuit}{=}$ 0.05

Perplexity

- Relative frequencies on test corpus:

- 0.33 $\stackrel{>}{>}$ 0.17 $\stackrel{\bigcirc}{\square}$ 0.17 $\stackrel{\searrow}{\triangleright}$ 0.08 $\stackrel{\diamondsuit}{\square}$ 0.08
- $\text{pp. } 2^{-(0.33\cdot(-1.64)+0.17\cdot(-1.89)+0.17\cdot(-4.32)+0.17\cdot(-2.47)+0.08\cdot(-2.94)+0.08\cdot(-4.32))} = 2^{(-2.6)} \approx 6^{-1.04}$
- What would be PP with unsmoothed model?

Additive smoothing: Bigrams

Recall the additive smoothing formula for unigrams:

$$C^*(w_i) = C(w_i) + \alpha \tag{2}$$

$$N^* = \sum_{w_i \in V} C^*(w_i) = N + \alpha |V| \tag{3}$$

$$p^*(w_i) = \frac{C(w_i) + \alpha}{N^*} = \frac{C(w_i) + \alpha}{N + \alpha|V|}$$
(4)

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$
(5)

Smoothen the bigram count: $C(w_{i-1}, w_i) \rightarrow C(w_{i-1}, w_i) + \alpha$

Additive smoothing: Bigrams

Additive smoothing: Bigrams: bigram counts

• Collect bigram counts & condtional probabilities for history A

Bigram	$C(A, w_i)$	C(A)	$\frac{C(A,w_i)}{CA)}$
AE	3	6	1/2
AA	2	6	1/3
AB	1	6	1/6

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C(A, w_i)$	C(A)	$\frac{C_{\alpha}(A,w_i)}{C(A)}$
AE	3 + 1	6	4/6
AA	2 + 1	6	3/6
AB	$1{+}1$	6	2/6
\rightarrow AF	0 + 1	6	1/6

- Not a probability distribution!
- Solution: We need to adjust the divisor a tiny bit. But how tiny?

Additive smoothing: Bigrams: normalization

- Add $\alpha \cdot 4$ to history count
- Pretend that we have seen the history |V| = 4 times more.

Bigram	$C(A) + \alpha V $	$\frac{C_{\alpha}(A, w_i)}{C(A) + \alpha V }$
AE	6 + 4	4/10
AA	6 + 4	3/10
AB	6 + 4	2/10
\rightarrow AF	6 + 4	1/10

• Now the probabilities sum up to 1: 4/10 + 3/10 + 2/10 + 1/10 = 1

Additive smoothing: Bigrams: normalization

- We encounter another n-gram AD
- What is |V| now?

Bigram	$C(A) + \alpha V $	$\frac{C_{\alpha}(A,w_i)}{C(A)+\alpha V }$
AE	6 + 5	4/11
AA	6 + 5	3/11
AB	6 + 5	2/11
$\to AF$	6 + 5	1/11
\rightarrow AD	6 + 5	1/11

- *C*(*A*) is constant, unsmoothed count
- Probabilities sum up to 1: 4/11 + 3/11 + 2/11 + 1/11 + 1/11 = 1

Additive smoothing: Bigrams: general case

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(6)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V_{(w_{i-1}, \bullet)}|}$$
(7)

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(8)

Additive smoothing: Bigrams: general case

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(9)

- ullet We already know the shared (train + test) vocabulary V
- $V_{(A,\bullet)}$ is then $AA, AB, AC, AD, AE, AF \Rightarrow |V_{(A,\bullet)}| = 6 = |V|$
- We find that the formula we found is identical to the one on the lecture slides!

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha|V|}$$
(10)

Backing-off

MARY HAD A LITTLE LAMB

- Consider the bigram (LITTLE MARY)
- Consider the trigram (HAD A LAMB)

For a trigram $p(w_3|w_2, w_1)$, use probability of bigram $P(w_3|w_2)$, else back-off to unigram probability $P(w_3)$.

$$0.5 \cdot p(w_3|w_2, w_1) + 0.25 \cdot p(w_3|w_2) + 0.25 \cdot p(w_3)$$

 $0.5 \cdot p(|amb|a, had) + 0.25 \cdot p(|amb|a) + 0.25 \cdot p(|amb|a)$

Will be covered in more detail in further tutorials.

Count Trees

Assignment 5

- Exercise 1: OOV Words
- Exercise 2: Additive smoothing
- Exercise 3: Perplexity, infinite smoothing, interpolation
- Bonus: Other language models

Resources

- UdS SNLP Class: https://teaching.lsv.uni-saarland.de/snlp/
- Additive smoothing: https://en.wikipedia.org/wiki/Additive_smoothing
- n-gram count trees: http://ssli.ee.washington.edu/WS07/notes/ngrams.pdf
- n-gram models: https://web.stanford.edu/~jurafsky/slp3/3.pdf
- Ount-trees figure: https://www.w3.org/TR/ngram-spec/