⊕ Section 3.10

11. Consider the use of hidden Markov models for classifying sequences of four visible states, A-D. Train two hidden Markov models, each consisting of three hidden states (plus a null initial state and a null final state), fully connected, with the following data. Assume that each sequence starts with a null symbol and ends with an end null symbol (not listed).

sample	ω_1	ω_2
1	AABBCCDD	DDCCBBAA
2	ABBCBBDD	DDABCBA
3	ACBCBCD	CDCDCBABA
4	AD	DDBBA
5	ACBCBABCDD	DADACBBAA
6	BABAADDD	CDDCCBA
7	BABCDCC	BDDBCAAAA
8	ABDBBCCDD	BBABBDDDCD
9	ABAAACDCCD	DDADDBCAA
10	ABD	DDCAAA

- (a) Print out the full transition matrices for each of the models.
- (b) Assume equal prior probabilities for the two models and classify each of the following sequences: ABBBCDDD, DADBCBAA, CDCBABA, and ADBBBCD.
- (c) As above, classify the test pattern BADBDCBA. Find the prior probabilities for your two trained models that would lead to equal posteriors for your two categories when applied to this pattern.
- 49. Explore the close relationship between Bayesian belief nets and hidden Markov models as follows.
 - (a) Prove that the forward and the backward equations for hidden Markov models are special cases of Eq. 84.
 - (b) Use your answer to explain the relationship between these two general classes of models.