International Rectifier

Strong/RFET™ IRFS7437PbF IRFSL7437PbF

Applications

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free
- Halogen-Free

HEXFET® Power MOSFET

V _{DSS}	40V
R _{DS(on)} typ.	1.4m Ω
max.	1.8m Ω
I _{D (Silicon Limited)}	250A①
I _{D (Package Limited)}	195A

G	D	S
Gate	Drain	Source

Base Part Number Package Type		Standard Page	ck	Orderable Part Number
Base Fart Hamber	i dokage Type	Form	Quantity	Orderable Fair Hamber
IRFSL7437PbF	TO-262	Tube	50	IRFSL7437PbF
IRFS7437PbF	D2Pak	Tube	50	IRFS7437PbF
IRFS7437PbF	D2Pak	Tape and Reel Left	800	IRFS7437TRLPbF

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	250 ①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	180	A
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	195	^
I _{DM}	Pulsed Drain Current ②	1000	
P _D @T _C = 25°C	Maximum Power Dissipation	230	W
	Linear Derating Factor	1.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ⁽⁴⁾	3.0	V/ns
T_{J}	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10lbf·in (1.1N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ^③	350	mJ
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ®	500	
I _{AR}	Avalanche Current ②	See Fig. 14, 15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ②		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.65	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) , D ² Pak ®		40	C/VV

Static @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.029		V/°C	Reference to 25°C, I _D = 1 mA ^②
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.4	1.8		$V_{GS} = 10V, I_D = 100A$
			2.0			$V_{GS} = 6.0V, I_D = 50A$
V _{GS(th)}	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}, I_D = 150\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 40V, V_{GS} = 0V$
				150		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
R_G	Internal Gate Resistance		2.2		Ω	

- \odot Calculated continuous current based on maximum allowable junction \odot Pulse width \leq 400 μ s; duty cycle \leq 2%. temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- 2 Repetitive rating; pulse width limited by max. junction temperature.
- R_G = 25 $\!\Omega,\,I_{AS}$ = 100 A, V_{GS} =10 V.
- $\textcircled{4} \ \ I_{SD} \leq 100 A, \ di/dt \leq 1166 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_{J} \leq 175^{\circ} C.$

- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\ensuremath{\mathfrak{D}}$ Coss eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{DSS}}.$
- 9 This value determined from sample failure population, starting T_J = 25°C, L=0.095mH, R_G = 25 Ω , I_{AS} = 100A, V_{GS} =10V

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	160			S	$V_{DS} = 10V, I_{D} = 100A$
Q_{q}	Total Gate Charge		150	225	nC	$I_{D} = 100A$
Q_{gs}	Gate-to-Source Charge		41			$V_{DS} = 20V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		51			V _{GS} = 10V ^⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		99			$I_D = 100A$, $V_{DS} = 20V$, $V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		19		ns	$V_{DD} = 20V$
t _r	Rise Time		70			$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time		78			$R_G = 2.7\Omega$
t _f	Fall Time		53			V _{GS} = 10V ^⑤
C _{iss}	Input Capacitance		7330		pF	$V_{GS} = 0V$
Coss	Output Capacitance		1095			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		745			f = 1.0 MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related) ②		1310			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V, \text{ See Fig. } 11$
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		1735		ĺ	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			250①	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			1000	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage		1.0	1.3	V	$T_J = 25^{\circ}C$, $I_S = 100A$, $V_{GS} = 0V$ \odot
t _{rr}	Reverse Recovery Time		30		ns	$T_J = 25^{\circ}C$ $V_R = 34V$,
			30			$T_J = 125^{\circ}C$ $I_F = 100A$
Q _{rr}	Reverse Recovery Charge		24		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \odot
			25			$T_{J} = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		1.3		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical C_{OSS} Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in
- excess of T_{imax}. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,IC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D\;(ave)} = 1/2\;(\;1.3\text{·BV·I}_{av}) = \triangle\text{T/}\,Z_{thJC}\\ I_{av} = 2\triangle\text{T/}\left[1.3\text{·BV·}Z_{th}\right]\\ E_{AS\;(AR)} = P_{D\;(ave)}\cdot t_{av} \end{split}$$

Fig 17. Threshold Voltage vs. Temperature

Fig. 19 - Typical Recovery Current vs. dif/dt

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig. 21 - Typical Stored Charge vs. di_f/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 23a. Unclamped Inductive Test Circuit

Fig 24a. Switching Time Test Circuit

Fig 25a. Gate Charge Test Circuit

Fig 23b. Unclamped Inductive Waveforms

Fig 24b. Switching Time Waveforms

Fig 25b. Gate Charge Waveform

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

S			Ŋ		
M B	MILLIM	ETERS	INC	HES	O T E S
0	MIN.	MAX.	MIN.	MAX,	E S
Α	4.06	4.83	.160	.190	
Α1	0.00	0.254	,000	.010	
b	0.51	0,99	.020	.039	
b1	0.51	0,89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1,73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
с2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6,86	-	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245	_	4
е	2.54	BSC	.100	BSC	
Н	14,61	15.88	,575	.625	
L	1,78	2.79	,070	.110	
L1	_	1,68	_	.066	4
L2	_	1,78	_	.070	
L3	0.25	BSC	.010	BSC	1

NOTES:

- 1, DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

LEAD ASSIGNMENTS

DIODES

1.- ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.- CATHODE

3.- ANODE

HEXEET

IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN

3.- SOURCE

2, 4.- COLLECTOR 3.- EMITTER

D²Pak (TO-263AB) Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

S Y M			N		
l B	MILLIM	ETERS	INC	HES	O T E S
O L	MIN.	MAX.	MIN.	MAX,	E S
Α	4,06	4,83	.160	.190	
A1	2.03	3.02	.080	.119	
ь	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
ь2	1.14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
С	0,38	0,74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
e	2,54	BSC	.100	BSC	
L	13.46	14.10	.530	.555	
L1	_	1.65	-	.065	4
L2	3.56	3,71	.140	.146	

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED $^{\circ}$ 0.127 [.005"] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6, CONTROLLING DIMENSION; INCH.
- 7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER

HEXFET

- 1.- ANODE (TWO DIE) / OPEN (ONE DIE)
 2, 4.- CATHODE
- 2.- DRAIN 3.- SOURCE 4.- DRAIN

3.- ANODE

TO-262 Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

D²Pak Tape & Reel Information

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- 4 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Industrial ^{††} (per JEDEC JESD47F ^{†††} guidelines)			
Moisture Sensitivity Level	D2Pak	MS L1		
iviolsture sensitivity Level	TO-262	(per JEDEC J-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Revision History

1101101011111011	or y
Date	Comment
	Updated data sheet based on corporate template.
4/30/2014	• Updated typo on the fig.19 and fig.21, unit of y-axis from "A" to "nC" on page7.
	Updated package outline and part marking on page 9 & 10.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/