PROGRAMME DE COLLES

SUP MPSI 2

Semaine 19

Du 19 au 23 février 2024.

MECANIQUE 1:

Mécanique 4 MOUVEMENTS DE PARTICULES CHARGEES DANS DES CHAMPS ELECTRIQUES ET MAGNETIQUES UNIFORMES ET STATIONNAIRES

EN TD UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.4. Mouvement de particules chargées de uniformes et stationnaires	ans des champs électrique et magnétostatique,
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant. Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
Mouvement d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur vitesse initial est perpendiculaire au champ magnétostatique.	Déterminer le rayon de la trajectoire et le sens de parcours.

ARCHITECTURE DE LA MATIERE:

Structure Mat 1

CLASSIFICATION PERIODIQUE DES ELEMENTS

EN COURS ET TD.

Notions et contenus	Capacités exigibles
Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.
	Positionner dans le tableau périodique et reconnaître les métaux et non métaux.

STRUCTURE ELECTRONIQUE DES MOLECULES

EN COURS ET TD.

Notions et contenus	Capacités exigibles
4.2.1 Structure des entités chimiques	
Modèle de la liaison covalente Liaison covalente localisée. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Citer les ordres de grandeur de longueurs et d'énergies de liaisons covalentes. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Identifier les écarts à la règle de l'octet.
Géométrie et polarité des entités chimiques Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.	Associer qualitativement la géométrie d'une entité à une minimisation de son énergie. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.
	Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique donnée d'une molécule. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule de géométrie donnée.

Structure Mat 3 FORCES INTERMOLECULAIRES ; SOLVANTS

EN COURS ET TD.

Notions et contenus	Capacités exigibles
4.2.2. Relations structure des entités - propriétés physiques macroscopiques	
Interaction entre entités Interactions de van der Waals. Liaison hydrogène ou interaction par pont hydrogène.	Citer les ordres de grandeur énergétiques des interactions de van der Waals et de liaisons hydrogène. Interpréter l'évolution de températures de changement d'état de corps purs moléculaires à l'aide de l'existence d'interactions de van der Waals ou par pont hydrogène.
Solubilité ; miscibilité. Grandeurs caractéristiques et propriétés de solvants moléculaires : moment dipolaire, permittivité relative, caractère protogène. Mise en solution d'une espèce chimique moléculaire ou ionique.	Associer une propriété d'un solvant moléculaire à une ou des grandeurs caractéristiques. Interpréter la miscibilité ou la non-miscibilité de deux solvants. Interpréter la solubilité d'une espèce chimique moléculaire ou ionique.

LE MOMENT CINETIQUE

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.5. Moment cinétique	
Moment cinétique d'un point matériel par rapport à un point et par rapport à un axe orienté.	Relier la direction et le sens du vecteur moment cinétique aux caractéristiques du mouvement.
Moment cinétique d'un système discret de points par rapport à un axe orienté.	Utiliser le caractère algébrique du moment cinétique scalaire.
Moment d'une force par rapport à un point ou un axe orienté.	Calculer le moment d'une force par rapport à un axe orienté en utilisant le bras de levier.
Théorème du moment cinétique en un point fixe dans un référentiel galiléen. Conservation du moment cinétique.	Identifier les cas de conservation du moment cinétique.

Mécanique 7 MOUVEMENT DANS UN CHAMP DE FORCES CENTRALES - CAS NEWTONIEN

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles	
2.6. Mouvements dans un champ de force ce	ntrale conservatif	
Point matériel soumis à un champ de force centrale.	Établir la conservation du moment cinétique à partir du théorème du moment cinétique. Établir les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.	
Point matériel soumis à un champ de force centrale conservatif Conservation de l'énergie mécanique. Énergie potentielle effective. État lié et état de diffusion.	Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement. Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective. Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique. Capacité numérique : à l'aide d'un langage de programmation, obtenir des trajectoires d'un point matériel soumis à un champ de force centrale conservatif.	

ATTENTION, le chapitre n'est pas terminé. Les interactions newtoniennes n'ont pas encore été traitées. Seules les forcées centrales (générales) ont été vues.

Questions de cours à choisir parmi les suivantes :

- ✓ Q1: Savoir construire les 4 premières lignes du tableau périodique, en y plaçant les blocs s, p et d. Y ajouter les 4 familles alcalin, alcalino-terreux, halogène et gaz rares. Préciser la position des métaux / non métaux. Savoir y placer un élément (jusqu'à Z=36) en connaissant son numéro atomique et/ou savoir déduire un numéro atomique d'un élément, connaissant sa position, savoir établir sa configuration électronique externe et son schéma de Lewis (blocs s ou p). Savoir définir l'électronégativité d'un élément; Connaitre son évolution dans la classification périodique (§ V).
- ✓ Q2: Pour les molécules de HCl, CO₂, CH₄, H₂O, NH₃: Savoir dessiner leur schéma de Lewis; Savoir donner leur forme géométrique liée à la méthode VSEPR et l'ordre de grandeur des angles et savoir les dessiner correctement; Savoir dire si ce sont des molécules polaires et savoir dessiner le moment dipolaire s'il y en a un. (Le colleur doit fournir les numéros atomiques).
- ✓ Q3 : Savoir refaire l'exercice d'application sur l'interprétation des températures de changements d'état (§ III).
- ✓ Q4 : Savoir refaire l'exercice d'application sur la solubilité de différents gaz (§IV. 5).
- ✓ Q5 : Savoir définir moment cinétique d'un point matériel par rapport à un point et un axe. Savoir définir moment d'une force par rapport à un point et un axe. Comprendre la notion de bras de levier (§ I & II).
- ✓ Q6 : Savoir énoncer et démontrer le théorème du moment cinétique par rapport à un point et par rapport à un axe (§ III).
- ✓ Q7 : Savoir appliquer le théorème du moment cinétique/axe au pendule simple pour retrouver l'équation différentielle du mouvement. Calcul des moments en utilisant la notion de bras de levier. (§ IV).
- ✓ Q8 : Savoir appliquer le théorème du moment cinétique/au point O au pendule simple pour retrouver l'équation différentielle du mouvement. (§ IV).
- ✓ Q9 : Conservation du moment cinétique pour un champ de forces centrales et conséquences : planéité du mouvement & loi des aires (§ 1.2a).
- ✓ Q10 : Conservation de l'énergie mécanique pour un champ de forces centrales et savoir retrouver l'énergie potentielle effective. Savoir faire la discussion graphique à partir de l'énergie potentielle effective (§ 1.2.b).

Exercice d'application de Q3 : Températures de changement d'état :

(D'après Centrale-Supélec)

On a représenté ci-contre l'évolution des températures d'ébullition sous une pression de 1 bar des composés hydrogénés des éléments des colonnes 14 et 17 de la classification périodique en fonction de la masse molaire moléculaire du composé.

- 1 Pourquoi les composés hydrogénés des éléments de la colonne 14 ont-ils des températures d'ébullition plus faibles que celles des composés hydrogénés des éléments de la colonne 17 ?
- 2 Pourquoi la température d'ébullition augmente-t-elle de HCl à HI ?
- 3 Interpréter l'anomalie apparente observée pour HF. <u>Données</u>: Les composés AH₄ des éléments de la colonne 14 sont de géométrie tétraédrique.

Les rayons des atomes augmentent quand on descend dans un groupe de la classification périodique.

Exercice d'application de Q4 : Solubilité de différents gaz :

On indique ci-dessous les valeurs de la solubilité s de différents gaz dans l'eau à 25°C, exprimée en mol.L⁻¹, sous la pression atmosphérique.

gaz	H_2	CH ₄	C_2H_6
S	8,0.10 -4	1,5.10 ⁻³	2,0.10 -3

- 1 Comment peut-on interpréter l'évolution constatée ?
- 2 On indique ci-après les valeurs de la solubilité s de deux gaz triatomiques dans l'eau, exprimée en mol.L ⁻¹, sous la pression atmosphérique.

gaz	CO_2	SO_2
S	3,8.10 ⁻²	1,77

Comment peut-on interpréter l'importante différence observée ?

3 – Cette même solubilité est égale à 31,1 mol.L ⁻¹ dans le cas de l'ammoniac NH₃. Comment expliquer cette valeur aussi importante de la solubilité comparée aux valeurs précédemment rencontrées dans l'exercice ?