LOCATION AND ENVIRONMENTAL CONTROL

Dr. Zhiyi Wei SUSTC

The internal structure of cells

Protein function in cell is context-dependent

- Temporal control
 - Gene expression
 - Protein turnover
- Spatial control
 - Every protein location is constrained

Cross-section of mitochondria

Drew by Goodsell

Precise localization of proteins is a central feature of both spatial and temporal organization

- Activities of protein kinases are highly depended on their locations
- The number of protein kinase genes in the human genome is ~500
- The number of identified human protein phosphorylation site is more than 100,000
- Thus, kinases must have less than absolute specificity
- How are kinases prevented from phosphorylating "wrong" protein at an inappropriate time and place?
- One answer is to target the kinase to the same location as its "correct" substrate, a location different from that for any other potential substrate
 - Specificity can be altered if required by relocation of kinase and/or substrate

Protein targeting

- How can proteins be targeted to their destinations
- Signal sequence/motif
 - ER: "KDEL"
 - Nucleus: "KRKR"
- Post-translational targeting mechanism
 - Signaling complex: phosphorylation
 - Plasma membrane: lipid anchor
- Protein-protein interaction
 - Scaffold proteins

Environmental conditions for proteins

- Proteins are diverse while their working environment is similar
- pH
 - ~7 in cell
- Redox potential
 - Reducing environment in the interiors of cells
 - Disulfide bonds are difficult to form in cytosol

pH changes in specialized compartments

Endosomal vesicles with acidic pH regulated by ATP-dependent proton pump

Nature Reviews | Molecular Cell Biology

Control by pH

- Changes in pH can drastically alter protein structure and function
- pH changes leads to
 - Surface charge distribution
 - Changes of electrostatic interactions inside a protein or between proteins

Cathepsin D
A aspartyl protease
Inactive in neutral pH (cytosol)

Active in low pH (endosome)

Redox potential regulators in cell

Cell Death and Disease, 2013

Control by redox environment

The redox switch of thiolase

Nature Communication, 2015

Diphtheria toxin

