9.4 1) Soit $x \in \mathbb{R}$.

La propriété f(x) f(-x) = 1 établie à l'exercice 9.2 s'écrit en l'occurrence $\exp(x) \exp(-x) = 1$.

Puisque $\exp(x) \neq 0$, en divisant cette dernière équation par $\exp(x)$, on obtient la formule $\exp(-x) = \frac{1}{\exp(x)}$.

2) Soit $y \in \mathbb{R}$.

On pose $\varphi_y(x) = \exp(x+y) \exp(-x)$.

$$\varphi'_{y}(x) = (\exp(x+y) \exp(-x))'$$

$$= (\exp(x+y))' \exp(-x) + \exp(x+y) (\exp(-x))'$$

$$= \exp'(x+y) \underbrace{(x+y)'}_{1} \exp(-x) + \exp(x+y) \exp'(-x) \underbrace{(-x)'}_{-1}$$

$$= \exp'(x+y) \exp(-x) - \exp(x+y) \exp'(-x)$$

$$= \exp(x+y) \exp(-x) - \exp(x+y) \exp(-x)$$

$$= 0$$

Comme $\varphi_y'(x) = 0$ pour tout $x \in \mathbb{R}$, la fonction φ_y est constante.

On constate que
$$\varphi_y(0) = \exp(0+y) \exp(-0) = \exp(y) \exp(0)$$

= $\exp(y) \cdot 1 = \exp(y)$.

Donc
$$\exp(y) = \varphi_y(0) = \varphi_y(x) = \exp(x+y) \exp(-x) = \exp(x+y) \frac{1}{\exp(x)}$$

Il suffit de multiplier cette dernière égalité par $\exp(x)$ pour obtenir la formule $\exp(x) \exp(y) = \exp(x + y)$.

3)
$$\exp(x-y) = \exp(x+(-y)) = \exp(x) \exp(-y) = \exp(x) \frac{1}{\exp(y)} = \frac{\exp(x)}{\exp(y)}$$

4) Si
$$y=1,$$
 la propriété est clairement vérifiée :

$$\exp(x \, y) = \exp(x \cdot 1) = \exp(x) = (\exp(x))^{1} = (\exp(x))^{y}$$

Montrons que si la formule $\exp(x y) = (\exp(x))^y$ est vraie pour un certain $y \in \mathbb{N}$, alors elle l'est aussi pour y + 1.

$$\exp(x(y+1)) = \exp(xy+x) = \exp(xy)\exp(x) = (\exp(x))^y \exp(x) = (\exp(x))^{y+1}$$