函数的单调性与曲线的凹凸性

王二民(≥wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

单调函数的导数

定理(单调可导函数的导数)

设函数在区间 / 上单调,若函数在区间 / 上可导,则

- 当函数单调递增时,在区间 $I \perp f' \ge 0$,
- 当函数单调递减时,在区间 / 上 f' ≤ 0.
- \bigcirc 结论不能改成严格不等号,如:函数 $f(x) = x^3$ 在 ℝ 上严格单调 递增,但 $f'(0) = 0 \Rightarrow 0$.

设函数 f 在 I 上单调递增,则对任意 $a,x \in I$ 且 $x \neq a$ 有 $\frac{f(x)-f(a)}{x-a} > 0$,从而由函数的可导性及极限的保号性可知

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \ge 0.$$

单调性的判断

定理(单调性的判断)

设函数 f 在区间 I 上连续,在区间 I 的内部可导,则

- 若在 I 的内部 f' > 0, 则 f 在 I 上严格单调递增;
- 若在 I 的内部 f′ < 0, 则 f 在 I 上严格单调递减。
- \bigcirc 定理不要求函数在区间端点处可导。从而可用来证明 √x 在区间 [0,+∞) 上是严格单调递增的。
- \bigcirc 单调性有连接性,即如果 f 在区间 (a,b] 和 [b,c) 上分别单调递增,则 f 在区间 (a,c) 上也单调递增。

推论

若函数 f 在区间 I 上连续,在 I 的内部<mark>除有限个点外</mark>都可导且 f'>0 (或 f'<0),则 f 在 I 上严格单调递增(或递减)。

单调性判断定理的证明

证明. 设 a, b 是区间 I 上的任意两个数且 a < b, 则 $[a,b] \subset I$. 则由题目中的条件可知 f 在 [a,b] 上连续,在 (a,b) 上可导,从而由拉格朗日中值定理可知,存在 $\xi \in (a,b) \subset I$ 使得

$$f(b) - f(a) = f'(\xi)(b - a).$$

若在 I 的内部 f'>0, 则由 $\xi\in(a,b)$ 在 I 的内部可知

$$f(b) - f(a) = f'(\xi)(b - a) > 0.$$

即函数 f 在 l 上严格单调递增。

若在 I 的内部 f' < 0, 则由 $\xi \in (a,b)$ 在 I 的内部可知

$$f(b) - f(a) = f'(\xi)(b - a) < 0.$$

即函数 f 在 I 上严格单调递减。

求函数在区间上的单调性

例 1. 求函数 $f(x) = x - \sin x$ 在 $[-\pi, \pi]$ 上的单调性。

解. 显然 f 在 [-π, π] 上可导,且

$$f'(x) = 1 - \cos x,$$

当 $x \in (-\pi, \pi)$ 时 f'(x) > 0, 所以函数 $f(x) = x - \sin x$ 在 $[-\pi, \pi]$ 上单调递增。

 \bigcirc 实际上,可以证明 f 在 \mathbb{R} 上单调递增。

求函数的单调区间

例 2. 求函数 $f(x) = (x-1)\sqrt[3]{x}$ 的单调区间。

解. 显然 f 在 ℝ 上<mark>连续</mark>,对函数 f 求导可得,当 $x \neq 0$ 时

$$f'(x) = \sqrt[3]{x} + \frac{(x-1)}{3\sqrt[3]{x^2}} = \frac{4x-1}{3\sqrt[3]{x^2}}.$$

解 f'(x) = 0 得驻点 $\frac{1}{4}$, 再结合不可导点 0, 从而

x

$$(-\infty,0)$$
 0
 $(0,\frac{1}{4})$
 $\frac{1}{4}$
 $(\frac{1}{4},+\infty)$
 $f'(x)$
 -
 f 连续
 -
 0
 +

所以函数 f 在区间 $(-\infty, \frac{1}{4}]$ 上严格单调递减,在区间 $[\frac{1}{4}, +\infty)$ 上严格单调递增。

求函数单调区间的基本步骤

- 求函数 f 的定义域 D (假设 f 在 D 上连续)。
- ② 考察函数 f 的可导性(假设仅有有限个不可导点),并求 其导函数 f'(x).
- 利用不可导点和导数为 0 的点,把函数的定义域 D 为成一个个小区间 I (尽量包含区间端点)。
- ③ 求出函数 f 在每个小区间 I 上单调(f 在 I 上连续,在 I 的内部 f' ≠ 0,从而 f 在 I 上必有单调性)。
- 连接相邻单调性相同且有公共点的区间,得到函数的单调区间。

求函数的单调区间

例 3. 考察函数 $f(x) = x^3 - 12x - 5$ 的单调性,求其单调区间。

 \mathbf{M} . 显然 $f \in \mathbb{R}$ 上有定义且可导,对函数 f 求导得

$$f'(x) = 3x^2 - 12 = 3(x + 2)(x - 2).$$

解 f'(x) = 0 得驻点 -2 和 2, 从而

$$x$$
 $(-\infty, -2)$ -2 $(-2, 2)$ 2 $(2, +\infty)$ $f'(x)$ + 0 - 0 +

所以函数 f 在区间 $(-\infty, -2]$ 和 $[2, +\infty)$ 上分别严格单调递增,在区间 [-2, 2] 上严格单调递减。

用单调性证明不等式

例 4. 证明不等式 e^x ≥ 1 + x.

解. 记 $f(x) = e^x - x - 1$, 显然函数 f 在 \mathbb{R} 上可导,且 $f'(x) = e^x - 1.$

解 f'(x) = 0 得驻点 0, 从而

$$x (-\infty,0) 0 (0,+\infty)$$

 $f'(x) - 0 +$

所以函数在区间 $(-\infty, 0]$ 上严格单调递减,在区间 $[0, +\infty)$ 上严格单调递增。从而 f(x) > f(0) = 0,即 $e^x > x + 1$,当且仅当 x = 0 时取等号。

引例

$$f''(x) = c < 0$$

$$f''(x)=c>0$$

凹凸性

定义(凹函数)

如果对任意满足 $\alpha + \beta = 1$ 的正数 α 和 β , 及区间 I 上任意两个<mark>不同</mark>的点 x_1 和 x_2 , 都有

$$f\big(\alpha x_1 + \beta x_2\big) \leq \alpha f(x_1) + \beta f(x_2).$$

则称 f 是区间 I 上的**凹函数**,并称曲线 $y = f(x), x \in I$ 在 x-y 坐标系下是**凹的**(或**向上凹的**或**向下凸的**)。

- 若把 < 换成 ≥ 对应的有凸函数、向上凸的、向下凹的等概念。
- 若把不等号改为严格不等号,则有严格凹和严格凸的概念。
- 凹凸性不能简单地连接,如 W 形曲线不是凹的。
- 凹的和凸的不是对立的,如 C 形的曲线即不是凹的也不是凸的。
- 按照这里的定义,一段曲线是凹的还是凸的与选取的坐标系有关, 所以完整的说法是曲线在坐标系下是凹的或凸的。

凹函数的图像

设
$$x_1 < x_2$$
 且 $x = \alpha x_1 + \beta x_2$, 则再由 $\alpha + \beta = 1$ 解关于 α 和 β 的方程组可得 $\alpha = \frac{x_2 - x_1}{x_2 - x_1}$, $\beta = \frac{x - x_1}{x_2 - x_1}$, 从而
$$\frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_2) - f(x)}{x_2 - x_1}$$

凹函数的性质

凹函数的性质

设 f 是区间 I 上的凹函数,定义

$$F(x,y)=\frac{f(x)-f(y)}{x-y} \qquad x\in I, y\in I, x\neq y.$$

则对于任意 $a \in I$, 函数 F(x, a) 是关于 x 的单调递增的函数。

- 开区间上的凹函数一定连续。
- 若凹函数在一点可导,则函数图象在此点处切线的上方。
- 设函数 *f* 在区间 (*a*, *b*] 和 [*b*, *c*) 上都是凹的(或凸的),若 *f* 在 *b* 处可导,则 *f* 在 (*a*, *b*) 上是凹的(或凸的)。
- 若凹函数可导,则其导数必单调递增且连续。
- 若凹函数在一点二阶可导,则此点处的二阶导数必非负。

凹函数的切线

可导函数凹凸性的判断

定理(凹凸性的判断)

设函数 f 在区间 I 上连续,在 I 的内部可导,则

- 若 f' 严格单调递增,则 f 在区间 l 上严格凹;
- 若 f′ 严格单调递减,则 f 在区间 l 上严格凸。
- \bigcirc 定理表明,若 f 可导,则 f 的凹凸性就是 f' 的单调性。

定理(凹凸性的判断)

设函数 f 在区间 I 上连续,在 I 的内部可导,若对任意 I 的内点 a, f 的图像都在其在点 (a,f(a)) 处的切线的上方,即

$$f(x) > f(a) + f'(a)(x - a), \qquad x \in I, x \neq a,$$

则 f 在 I 上严格凹。

二阶可导函数凹凸性的判断

定理(凹凸性的判断)

设函数 f 在区间 I 上连续,在 I 的内部二阶可导,则

- 若 f" > 0, 则函数 f 在区间 / 上严格凹;
- 若 f" < 0, 则函数 f 在区间 / 上严格凸。
- \bigcirc 定理并不要求函数在区间端点处可导。从而可用定理证明 \sqrt{x} 在 [0,+∞) 上的严格凸性。

推论

若函数 f 在区间 I 上连续,在 I 的内部一阶可导,在 I 上除有限个点外都二阶可导且 f'' > 0(或 f'' < 0),则 f 在 I 上严格单调凹(或凸)。

考察函数的凹凸性

例 5. 考察函数 $f(x) = \ln x$ 的凹凸性。

解. 函数 f 的定义域为 $(0, +\infty)$, 在其内 f 二阶可导且 $f''(x) = -\frac{1}{x^2} < 0$, 所以 $f(x) = \ln x$ 为严格凸函数。

例 6. 考察函数 $f(x) = x^4$ 的凹凸性。

解. 易知函数 f 在 \mathbb{R} 上二阶可导且 $f''(x) = 12x^2$, 从而当 $x \neq 0$ 时都有 f''(x) > 0, 所以 $f(x) = x^4$ 为严格凹函数。

例 7. 考察函数 $f(x) = x^3$ 的凹凸性。

解. 易知函数 f 在 \mathbb{R} 上二阶可导且 f''(x) = 6x, 当 x > 0 时有 f''(x) > 0, 所以 f 在 $[0, +\infty)$ 上严格凹; 当 x < 0 时有 f''(x) < 0, 所以 f 在 $(-\infty, 0]$ 上严格凸。

拐点

定义(拐点)

设函数 f 在点 a 的某个邻域内连续,若存在 δ_1 , δ_2 > 0, 使得函数在区间 $(a - \delta_1, a]$ 上严格凹(严格凸)但在区间 $[a, a - \delta_2)$ 上严格凸(严格凸),则称 a 为**函数** y = f(x) **的拐点**,称点 (a, f(a)) 为**曲线** y = f(x) **的拐点**。

🗘 曲线的拐点只与曲线本身有关,与坐标系无关。

定理(拐点的必要条件)

设 a 是函数 f 的拐点,若函数 f 在点 a 处二阶可导,则 f''(a) = 0.

 $\bigcap f''(a) = 0$ 不是拐点的充分条件,如:设 $f(x) = x^4$,则 f''(0) = 0,但 f 是严格凹的,没有拐点。

考察曲线的凹凸性

例 8. 考察曲线 $y = x^4 - 2x^3 + 1$ 的凹凸性及拐点。

解. 显然,函数
$$y = x^4 - 2x^3 + 1$$
 在 \mathbb{R} 上二阶导,且 $f'(x) = 4x^3 - 6x^2$ $f''(x) = 12x^2 - 12x = 12x(x - 1)$

解 f''(x) = 0 得 x = 0 或 x = 1, 从而

所以所求曲线在 $x \in (-\infty, 0]$ 和 $x \in [1, +\infty)$ 对应的两段上分别是凹的,在 $x \in [0, 1]$ 对应的一段上是凸的,曲线的拐点为 x = 0 和 x = 1 对应的点 (0, 1) 和 (1, 0).

考察曲线的拐点

例 9. 考察曲线 $y = \sqrt[3]{x}$ 的拐点。

解. 易知,函数 $y = \sqrt[3]{x}$ 连续,且当 x ≠ 0 时,函数二阶可导

$$y' = \frac{1}{3}x^{-\frac{2}{3}},$$
 $y'' = -\frac{2}{9}x^{-\frac{5}{3}},$

当 x < 0 时 y'' > 0, 所以 $x \in (-\infty, 0]$ 对应的一段曲线是凹的,当 x > 0 时 y'' < 0, 所以 $x \in [0, +\infty)$ 对应的一段曲线是凸的,所以曲线 $y = \sqrt[3]{x}$ 的拐点是 x = 0 时所对应的点 (0, 0).

 \bigcirc 问题可等价为"求曲线 $x = y^3$ 的拐点"。

作业: 习题 3-4

- 3.(1), 3.(4),
- 4,
- 5.(1).

凸集

定义(凸集)

设 $\Omega \subset \mathbb{R}^n$. 若对于任意 $A \in \Omega$ 和任意 $B \in \Omega$ 都有直线段 AB 上所有的点都属于集合 Ω , 则称 Ω 为**凸集**。

线段 AB 可以表示为

$$\overrightarrow{OA} + \lambda \overrightarrow{AB} = (1 - \lambda)\overrightarrow{OA} + \lambda \overrightarrow{OB}$$
 $\lambda \in [0, 1].$

$$\lambda \in [0, 1].$$

当 $\lambda = 0$ 时表示点 A_1 当 $\lambda = 1$ 时表示点 B_2 记 $\lambda_1 = 1 - \lambda_1$ $\lambda_2 = \lambda_3$ 则上式可表示为

$$\lambda_1 \overrightarrow{OA} + \lambda_2 \overrightarrow{OB}$$

$$\lambda_1, \lambda_2 \ge 0, \lambda_1 + \lambda_2 = 1.$$

函数凹凸性的性质

定理

设 f 是区间 I 上的凹函数,则对任意 $x_1, x_2, \cdots, x_n \in I$ 以及正数 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 使得 $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$ 都有 $f(\alpha_1 x_1 + \cdots + \alpha_n x_n) \leq \alpha_1 f(x_1) + \cdots + \alpha_n f(x_n).$

○ 定理可记为,对于凹函数而言,线性组合的函数值小于或等于函数值的线性组合。

凹凸性等价定义的证明

证明 用数学归纳法,由定义 n=2 时显然成立,假设 n=k 时定理 成立,则对任意 $x_1, \dots, x_{n-1} \in I$ 以及正数 $\alpha_1, \dots, \alpha_{n-1}$ 使得 $\alpha_1 + \dots + \alpha_{b+1} = 1$ 都有 $f(\alpha_1 X_1 + \cdots \alpha_b X_b + \alpha_{b+1} X_{b+1})$ $= f \left(\alpha_1 X_1 + \dots + \alpha_{k-1} X_{k-1} + (\alpha_k + \alpha_{k+1}) \frac{\alpha_k X_k + \alpha_{k+1} X_{k+1}}{\alpha_k + \alpha_{k+1}} \right)$ $\leq \alpha_1 f(x_1) + \dots + \alpha_{k-1} f(x_{k-1}) + (\alpha_k + \alpha_{k+1}) f\left(\frac{\alpha_k x_k + \alpha_{k+1} x_{k+1}}{\alpha_k + \alpha_{k+1}}\right)$ $\leq \alpha_1 f(x_1) + \dots + \alpha_{k-1} f(x_{k-1}) + (\alpha_k + \alpha_{k+1}) \cdot \frac{\alpha_k f(x_k) + \alpha_{k+1} f(x_{k+1})}{\alpha_k + \alpha_{k+1}}$ $= \alpha_1 f(x_1) + \cdots + \alpha_{b-1} f(x_{b-1}) + \alpha_b f(x_b) + \alpha_{b+1} f(x_{b+1})$ $= \alpha_1 f(x_1) + \cdots + \alpha_b f(x_b) + \alpha_{b+1} f(x_{b+1})$ 即 n = k + 1 时定理成立,定理得证。

连续函数的凹凸性

设函数 f 在区间 I 上<mark>连续</mark>,若对于任意 a,b ∈ I 且 a ≠ b 都有

$$f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2},$$

则 f 是区间 I 上的凹函数。

 \bigcirc 注意定义中的条件"函数 f 在区间 I 上连续",没有此条件,函数 f 不一定是凹函数。

凹凸性判断定理的证明

设 $x_1 < x_2$, $\alpha > 0$, $\beta > 0$ 且 $\alpha + \beta = 1$, 若 $x = \alpha x_1 + \beta x_2$, 则 $x_1 < x < x_2$, 由 f' 的单调性和拉格朗日中值定理可知存在 $\xi_1 \in (x_1,x)$, $\xi_2 \in (x,x_2)$ 使得

$$f(x) - f(x_1) = f'(\xi_1)(x - x_1) < f'(x)(x - x_1) = \beta f'(x)(x_2 - x_1),$$

$$f(x) - f(x_2) = f'(\xi_2)(x - x_2) < f'(x)(x - x_2) = \alpha f'(x)(x_1 - x_2)$$

从而

$$\alpha(f(x)-f(x_1))+\beta(f(x)-f(x_2))<0,$$

整理可得

$$f(x) = \alpha f(x) + \beta f(x) < \alpha f(x_1) + \beta f(x_1).$$

即 $f(\alpha x_1 + \beta x_2) < \alpha f(x_1) + \beta f(x_2)$, 定理得证。

用凹凸性证明不等式

定理 (Jessen's inequality)

设 f 是区间 I 上的严格凹函数, $x_1, x_2, \cdots, x_n \in I$,则对任 意 $w_1, w_2, \cdots, w_n \in \mathbb{R}^+$ 都有

$$f\left(\frac{w_1x_1+\cdots+w_nx_n}{w_1+\cdots+w_n}\right)\leq \frac{w_1f(x_1)+\cdots+w_nf(x_n)}{w_1+\cdots+w_n}$$

且仅当 $x_1 = x_2 = \dots = x_n$ 时取等号。

此不等式可以看成是凹函数的定义式,对应于 x_i 的系数为 $\alpha_i = \frac{w_i}{w_1+\cdots+w_n}$, 此时自然有 $\alpha_1+\cdots+\alpha_n=1$.

当函数 f 是严格凸函数时,只需要把定理中的小于等于号 \leq 改为大于等于号 \geq 即可。

几何算术平均不等式

例 10. 证明对任意正数 x_1, x_2, \dots, x_n , 都有

$$\frac{x_1+x_2+\cdots+x_n}{n} \geq \sqrt[n]{x_1\cdot x_2\cdots x_n}.$$

解. 不难验证 $(\ln x)^n = -\frac{1}{x^2} < 0$, 从而 $\ln \mathbb{R}^+$ 上的凸函数,从而对于任意正数 x_1, x_2, \cdots, x_n 有

$$\ln \frac{x_1 + x_2 + \dots + x_n}{n} \le \frac{\ln x_1 + \ln x_2 + \dots + \ln x_n}{n}$$

$$= \frac{1}{n} \ln \left(x_1 \cdot x_2 \cdots x_n \right)$$

$$= \ln \left(\sqrt[n]{x_1 \cdot x_2 \cdots x_n} \right)$$

再由 ln 是严格单调递增函数,题目中的不等式得证。