Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Nikodem Korohoda

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 1 czerwca 2022

Dany jest układ równań liniowych Ax=b, elementy macierzy A są zadane wzorem

a)
$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{m}{n - i - j + 0.5} \quad dla \quad i \neq j \end{cases}$$

dla k=11, m=3. Za x początkowo przyjęto wektor [1, -1, 1, -1, ...].

1 Zadanie 1.

Metodą Jacobiego rozwiąż układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$ (przyjmując jako niewiadomą wektor \mathbf{x}), przyjmując kolejno kryterium stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

$$2. \quad \left\| Ax^{(i)} - b \right\| < \rho$$

Obliczenia wykonywano dla rozmiarów układu:

3, 4, 5, 7, 9, 11, 15, 19, 25, 30, 40, 50, 75, 100, 200, 300, 400, 500

Dla wartości ro:

$$1.00e - 01, 1.00e - 03, 1.00e - 05, 1.00e - 07$$

Oraz kolejno dla wektorów początkowych:

$$[0,0,0,0,\ldots],[10,10,10,10,\ldots],[100,100,100,100,\ldots]$$

Dla każdej wielkości macierzy w tabeli umieszczono dwa wiersze - odnoszące się odpowiendio do pierszego oraz drugiego sposobu obliczania warunku stopu. w przypadku liczby iteracji umieszczono również wartość błędu między oczekiwaną a otrzymaną wartością

wielkość macierzy	ro=1.00e-01	ro=1.00e-03	ro=1.00e-05	ro=1.00e-07
3	13, 5.05e-02	45, 4.38e-04	78, 4.04e-06	110, 4.30e-08
	27, 5.69e-03	59, 6.00e-05	93, 4.80e-07	125, 5.11e-09
4	19, 5.21e-02	44, 1.37e-03	73, 3.64e-05	107, 6.88e-07
	30, 1.02e-02	56, 2.83e-04	84, 9.53e-06	126, 7.66e-08
5	12, 2.46e-01	51, 9.25e-04	91, 5.79e-06	131, 4.96e-08
	32, 1.44e-02	70, 8.40e-05	110, 5.59e-07	150, 4.99e-09
7	13, 2.01e-01	55, 6.92e-04	98, 4.03e-06	141, 4.44e-08
	31, 1.41e-02	75, 6.68e-05	117, 6.10e-07	159, 6.30e-09
9	13, 1.72e-01	55, 7.77e-04	100, 4.01e-06	144, 4.35e-08
	32, 1.47e-02	74, 6.91e-05	118, 6.42e-07	162, 6.67e-09
11	13, 1.87e-01	58, 5.34e-04	103, 4.70e-06	148, 4.28e-08
	29, 2.00e-02	75, 9.43e-05	121, 7.15e-07	165, 7.59e-09
15	13, 1.81e-01	59, 6.31e-04	105, 4.76e-06	151, 4.49e-08
	29, 2.14e-02	77, 8.85e-05	123, 7.60e-07	169, 7.35e-09
19	13, 1.77e-01	60, 4.48e-04	106, 4.43e-06	153, 4.45e-08
	29, 2.22e-02	77, 9.65e-05	123, 8.84e-07	171, 7.46e-09
25	13, 1.76e-01	61, 5.54e-04	107, 4.86e-06	154, 4.66e-08
	34, 1.16e-02	78, 7.07e-05	124, 8.66e-07	172, 8.01e-09
30	23, 5.07e-02	55, 1.16e-03	89, 3.26e-05	125, 9.16e-07
	39, 7.19e-03	69, 2.56e-04	99, 1.19e-05	137, 2.83e-07
40	23, 4.75e-02	54, 9.30e-04	88, 3.04e-05	125, 9.54e-07
	38, 6.91e-03	70, 1.72e-04	104, 6.81e-06	148, 1.01e-07
50	23, 5.09e-02	55, 1.20e-03	89, 3.55e-05	125, 1.04e-06
	39, 7.34e-03	69, 2.71e-04	99, 1.32e-05	137, 3.27e-07
75	13, 1.78e-01	62, 4.12e-04	110, 4.39e-06	158, 4.59e-08
	29, 2.42e-02	79, 9.96e-05	127, 9.06e-07	175, 9.09e-09
100	23, 4.99e-02	55, 1.23e-03	89, 3.73e-05	127, 9.35e-07
	38, 7.05e-03	70, 1.93e-04	104, 7.92e-06	150, 1.02e-07
200	23, 5.07e-02	55, 1.26e-03	89, 3.89e-05	127, 9.92e-07
	38, 7.09e-03	70, 2.00e-04	104, 8.33e-06	150, 1.10e-07
300	23, 5.10e-02	55, 1.27e-03	89, 3.95e-05	127, 1.01e-06
	38, 7.11e-03	70, 2.03e-04	104, 8.47e-06	152, 9.30e-08
400	23, 5.11e-02	55, 1.27e-03	89, 3.97e-05	127, 1.02e-06
	38, 7.11e-03	70, 2.04e-04	104, 8.54e-06	152, 9.41e-08
500	23, 5.12e-02	55, 1.28e-03	89, 3.99e-05	127, 1.03e-06
	38, 7.11e-03	70, 2.05e-04	104, 8.59e-06	152, 9.47e-08

Tabela 1: Liczby iteracji dla wektora $[0,\,0,\,0,\,0,\,\ldots]$

wielkość macierzy	ro=1.00e-01	ro=1.00e-03	ro=1.00e-05	ro=1.00e-07
3	1.99e-04	6.10e-04	1.04e-03	1.45e-03
	4.70e-04	1.01e-03	1.59e-03	2.12e-03
4	2.80e-04	6.19e-04	1.03e-03	1.53e-03
	5.45e-04	1.01e-03	1.52e-03	2.27e-03
5	2.28e-04	6.27e-04	1.15e-03	1.66e-03
	4.84e-04	1.01e-03	1.58e-03	2.15e-03
7	1.89e-04	7.44e-04	1.33e-03	1.88e-03
	4.48e-04	1.06e-03	2.08e-03	3.09e-03
9	2.81e-04	1.12e-03	2.02e-03	2.90e-03
	7.60e-04	1.52e-03	2.35e-03	3.21e-03
11	2.97e-04	1.25e-03	2.22e-03	3.21e-03
	6.03e-04	1.53e-03	2.75e-03	3.52e-03
15	3.64e-04	1.59e-03	2.78e-03	4.00e-03
	6.70e-04	1.75e-03	2.78e-03	3.84e-03
19	4.18e-04	1.85e-03	3.46e-03	4.79e-03
	7.31e-04	1.92e-03	3.03e-03	4.22e-03
25	5.18e-04	2.32e-03	4.07e-03	5.86e-03
	8.99e-04	2.04e-03	3.23e-03	4.48e-03
30	1.01e-03	2.52e-03	4.06e-03	5.66e-03
	1.15e-03	2.02e-03	2.89e-03	3.98e-03
40	1.30e-03	3.02e-03	4.90e-03	6.95e-03
	1.23e-03	2.22e-03	3.34e-03	4.93e-03
50	1.67e-03	3.91e-03	6.29e-03	8.99e-03
	1.83e-03	2.71e-03	3.87e-03	5.31e-03
75	1.44e-03	6.69e-03	1.20e-02	1.70e-02
	1.58e-03	4.35e-03	7.18e-03	9.88e-03
100	7.33e-03	8.17e-03	1.70e-02	2.57e-02
	2.64e-03	4.72e-03	7.10e-03	1.01e-02
200	6.70e-03	1.57e-02	4.75e-02	3.82e-02
	4.27e-03	8.79e-03	1.21e-02	1.84e-02
300	9.70e-03	2.32e-02	4.66e-02	5.31e-02
	5.98e-03	1.04e-02	1.56e-02	3.27e-02
400	1.18e-02	2.78e-02	4.48e-02	6.90e-02
	6.94e-03	1.28e-02	2.39e-02	3.87e-02
500	1.37e-02	3.19e-02	5.92e-02	7.99e-02
	9.39e-03	3.08e-02	2.71e-02	3.64e-02

Tabela 2: Czas obliczeń dla wektora $[0,\,0,\,0,\,0,\,\ldots]$ w sekundach

wielkość macierzy	ro=1.00e-01	ro=1.00e-03	ro=1.00e-05	ro=1.00e-07
3	33, 4.31e-02	65, 4.59e-04	98, 4.24e-06	130, 4.51e-08
	47, 5.91e-03	81, 4.73e-05	113, 5.04e-07	145, 5.36e-09
4	25, 1.42e-01	53, 4.58e-03	89, 7.25e-05	128, 8.20e-07
	33, 5.15e-02	67, 8.99e-04	108, 8.20e-06	148, 8.21e-08
5	34, 6.11e-02	75, 4.21e-04	115, 4.37e-06	155, 4.61e-08
	53, 5.69e-03	95, 4.21e-05	135, 4.50e-07	175, 4.70e-09
7	37, 4.31e-02	80, 4.50e-04	123, 4.30e-06	165, 4.63e-08
	57, 5.19e-03	99, 5.72e-05	141, 6.17e-07	185, 5.35e-09
9	37, 3.88e-02	81, 4.29e-04	125, 4.43e-06	169, 4.45e-08
	55, 6.01e-03	99, 6.65e-05	143, 6.75e-07	187, 6.76e-09
11	39, 4.19e-02	84, 4.43e-04	129, 4.34e-06	173, 4.74e-08
	57, 6.89e-03	101, 7.69e-05	147, 6.84e-07	191, 7.46e-09
15	40, 4.59e-02	86, 4.37e-04	132, 4.31e-06	177, 4.71e-08
	57, 7.86e-03	103, 7.92e-05	149, 7.83e-07	195, 7.73e-09
19	40, 4.81e-02	87, 4.41e-04	133, 4.64e-06	180, 4.41e-08
	57, 8.49e-03	105, 7.43e-05	151, 7.80e-07	197, 8.18e-09
25	39, 4.20e-02	86, 4.75e-04	133, 4.67e-06	180, 4.69e-08
	57, 7.36e-03	103, 8.75e-05	151, 8.02e-07	197, 8.87e-09
30	28, 1.82e-01	62, 5.58e-03	102, 1.09e-04	151, 9.18e-07
	43, 3.04e-02	79, 9.87e-04	127, 9.47e-06	175, 8.89e-08
40	28, 1.78e-01	58, 9.44e-03	106, 9.07e-05	153, 9.67e-07
	42, 4.48e-02	81, 1.01e-03	129, 9.83e-06	177, 9.52e-08
50	29, 1.29e-01	62, 5.94e-03	104, 1.00e-04	152, 9.84e-07
	43, 3.19e-02	81, 8.87e-04	129, 8.96e-06	176, 9.78e-08
75	42, 4.55e-02	90, 4.58e-04	138, 4.65e-06	186, 4.73e-08
	59, 8.76e-03	107, 9.00e-05	155, 9.15e-07	203, 9.31e-09
100	30, 1.51e-01	58, 1.01e-02	107, 9.35e-05	155, 9.64e-07
	42, 4.68e-02	83, 9.19e-04	131, 9.50e-06	179, 9.79e-08
200	30, 1.52e-01	58, 1.03e-02	107, 9.76e-05	156, 9.35e-07
	42, 4.74e-02	83, 9.50e-04	131, 1.00e-05	180, 9.58e-08
300	29, 1.49e-01	58, 1.03e-02	107, 9.91e-05	156, 9.55e-07
	41, 4.95e-02	83, 9.61e-04	132, 9.28e-06	180, 9.83e-08
400	29, 1.49e-01	58, 1.04e-02	108, 9.09e-05	156, 9.66e-07
	41, 4.97e-02	83, 9.67e-04	132, 9.37e-06	180, 9.96e-08
500	28, 1.86e-01	58, 1.04e-02	108, 9.14e-05	156, 9.73e-07
	41, 4.98e-02	83, 9.70e-04	132, 9.43e-06	180, 1.00e-07

Tabela 3: Liczby iteracji dla wektora $[10,\,10,\,10,\,10,\,\ldots]$

wielkość macierzy	ro=1.00e-01	ro=1.00e-03	ro=1.00e-05	ro=1.00e-07
3	6.75e-04	1.28e-03	1.94e-03	2.55e-03
	1.24e-03	2.09e-03	2.92e-03	3.73e-03
4	5.45e-04	1.12e-03	1.88e-03	2.69e-03
	8.85e-04	1.75e-03	2.82e-03	3.86e-03
5	7.83e-04	1.69e-03	2.57e-03	3.48e-03
	1.40e-03	2.52e-03	3.62e-03	4.67e-03
7	9.64e-04	2.02e-03	3.10e-03	4.15e-03
	1.56e-03	2.70e-03	3.85e-03	5.01e-03
9	1.04e-03	2.24e-03	3.48e-03	4.88e-03
	1.73e-03	2.76e-03	3.99e-03	5.18e-03
11	1.22e-03	2.58e-03	4.17e-03	5.30e-03
	1.69e-03	3.03e-03	4.31e-03	5.56e-03
15	1.47e-03	3.26e-03	5.14e-03	6.76e-03
	1.88e-03	3.50e-03	4.89e-03	6.36e-03
19	1.94e-03	3.90e-03	5.77e-03	7.74e-03
	1.93e-03	3.49e-03	5.02e-03	6.52e-03
25	2.03e-03	4.44e-03	6.93e-03	9.24e-03
	2.04e-03	3.66e-03	5.38e-03	7.03e-03
30	1.68e-03	3.65e-03	5.99e-03	8.87e-03
	1.64e-03	2.55e-03	3.87e-03	5.33e-03
40	2.07e-03	4.22e-03	7.09e-03	9.50e-03
	1.79e-03	3.03e-03	4.43e-03	5.78e-03
50	2.57e-03	4.73e-03	7.38e-03	1.39e-02
	2.19e-03	4.09e-03	6.52e-03	8.87e-03
75	5.73e-03	1.16e-02	1.87e-02	2.54e-02
	4.31e-03	7.20e-03	1.06e-02	1.38e-02
100	5.18e-03	1.01e-02	1.84e-02	3.65e-02
	3.87e-03	8.46e-03	3.86e-02	3.38e-02
200	1.88e-02	3.87e-02	4.00e-02	5.29e-02
	5.16e-03	9.86e-03	1.56e-02	2.76e-02
300	1.16e-02	2.33e-02	4.31e-02	6.52e-02
	6.10e-03	1.22e-02	1.95e-02	3.64e-02
400	1.41e-02	2.86e-02	6.09e-02	8.78e-02
	2.11e-02	2.10e-02	2.58e-02	3.43e-02
500	2.20e-02	3.33e-02	6.68e-02	1.04e-01
	9.87e-03	1.99e-02	3.12e-02	4.28e-02

Tabela 4: Czas obliczeń dla wektora $[10,\,10,\,10,\,10,\,\ldots]$ w sekundach

wielkość macierzy	ro=1.00e-01	ro=1.00e-03	ro=1.00e-05	ro=1.00e-07
3	49, 4.23e-02	81, 4.50e-04	114, 4.15e-06	146, 4.41e-08
	63, 5.79e-03	97, 4.64e-05	129, 4.93e-07	161, 5.25e-09
4	39, 2.41e-01	71, 5.28e-03	108, 7.65e-05	148, 7.67e-07
	49, 7.07e-02	87, 8.49e-04	128, 7.65e-06	168, 7.68e-08
5	55, 4.36e-02	95, 4.53e-04	136, 4.31e-06	176, 4.46e-08
	75, 4.36e-03	115, 4.66e-05	155, 4.88e-07	195, 5.08e-09
7	58, 4.74e-02	101, 4.29e-04	143, 4.65e-06	186, 4.50e-08
	77, 5.62e-03	119, 6.18e-05	163, 5.38e-07	205, 5.78e-09
9	60, 4.50e-02	104, 4.31e-04	148, 4.28e-06	191, 4.74e-08
	77, 7.02e-03	121, 7.18e-05	165, 7.20e-07	209, 7.20e-09
11	61, 4.19e-02	106, 4.34e-04	150, 4.71e-06	195, 4.63e-08
	79, 6.78e-03	123, 7.51e-05	169, 6.69e-07	213, 7.30e-09
15	62, 4.70e-02	108, 4.51e-04	154, 4.44e-06	200, 4.39e-08
	79, 8.13e-03	125, 8.15e-05	171, 8.06e-07	217, 7.96e-09
19	63, 4.32e-02	109, 4.67e-04	156, 4.46e-06	202, 4.67e-08
	81, 7.41e-03	127, 7.87e-05	173, 8.27e-07	219, 8.67e-09
25	63, 4.58e-02	111, 4.30e-04	158, 4.33e-06	205, 4.34e-08
	81, 8.03e-03	127, 9.00e-05	175, 8.19e-07	221, 9.05e-09
30	40, 5.23e-01	80, 9.97e-03	128, 9.23e-05	175, 9.52e-07
	57, 8.82e-02	103, 1.04e-03	151, 9.83e-06	199, 9.21e-08
40	42, 4.41e-01	80, 1.06e-02	129, 9.25e-05	176, 9.88e-07
	57, 9.33e-02	105, 9.37e-04	153, 9.11e-06	200, 9.72e-08
50	42, 4.46e-01	80, 1.08e-02	129, 9.60e-05	177, 9.50e-07
	59, 7.74e-02	105, 9.63e-04	153, 9.55e-06	201, 9.45e-08
75	65, 4.57e-02	114, 4.34e-04	162, 4.41e-06	210, 4.48e-08
	81, 1.00e-02	131, 8.52e-05	179, 8.67e-07	227, 8.81e-09
100	42, 4.60e-01	82, 9.62e-03	130, 9.83e-05	179, 9.20e-07
	59, 8.24e-02	105, 1.06e-03	155, 9.06e-06	203, 9.34e-08
200	42, 4.66e-01	82, 9.93e-03	131, 9.41e-05	179, 9.90e-07
	59, 8.43e-02	107, 9.15e-04	155, 9.65e-06	204, 9.24e-08
300	40, 5.69e-01	82, 1.00e-02	131, 9.58e-05	180, 9.24e-07
	59, 8.50e-02	107, 9.29e-04	155, 9.87e-06	204, 9.51e-08
400	40, 5.70e-01	82, 1.01e-02	131, 9.67e-05	180, 9.36e-07
	59, 8.54e-02	107, 9.36e-04	155, 9.98e-06	204, 9.64e-08
500	40, 5.71e-01	82, 1.01e-02	131, 9.73e-05	180, 9.43e-07
	59, 8.56e-02	107, 9.41e-04	155, 1.00e-05	204, 9.73e-08

Tabela 5: Liczby iteracji dla wektora [100, 100, 100, 100, ...]

wielkość macierzy	ro=1.00e-01	ro=1.00e-03	ro=1.00e-05	ro=1.00e-07
3	2.64e-04	4.09e-04	9.28e-04	1.79e-03
	1.02e-03	1.56e-03	2.02e-03	2.75e-03
4	5.63e-04	9.93e-04	1.51e-03	2.05e-03
	8.29e-04	1.44e-03	2.15e-03	2.80e-03
5	8.45e-04	1.42e-03	2.03e-03	2.56e-03
	1.29e-03	2.03e-03	2.74e-03	3.43e-03
7	1.02e-03	1.73e-03	2.46e-03	3.18e-03
	1.41e-03	2.17e-03	2.95e-03	3.74e-03
9	1.17e-03	2.06e-03	2.92e-03	3.77e-03
	1.49e-03	2.35e-03	3.19e-03	4.08e-03
11	1.34e-03	2.31e-03	3.25e-03	4.22e-03
	1.62e-03	2.55e-03	3.48e-03	4.37e-03
15	1.69e-03	2.87e-03	4.13e-03	5.34e-03
	1.74e-03	2.74e-03	3.74e-03	4.81e-03
19	2.06e-03	3.52e-03	5.02e-03	6.53e-03
	1.97e-03	3.05e-03	4.15e-03	5.29e-03
25	2.44e-03	4.31e-03	6.33e-03	8.31e-03
	2.22e-03	3.46e-03	4.71e-03	5.99e-03
30	1.89e-03	3.68e-03	5.94e-03	8.43e-03
	1.72e-03	3.09e-03	4.51e-03	5.96e-03
40	2.54e-03	4.78e-03	7.71e-03	1.05e-02
	1.89e-03	3.45e-03	4.99e-03	6.88e-03
50	3.23e-03	6.08e-03	9.77e-03	1.34e-02
	2.36e-03	4.18e-03	6.05e-03	7.94e-03
75	7.80e-03	1.34e-02	1.91e-02	2.46e-02
	4.73e-03	7.34e-03	1.05e-02	1.34e-02
100	6.75e-03	1.29e-02	2.09e-02	3.76e-02
	4.43e-03	7.04e-03	1.02e-02	1.40e-02
200	1.24e-02	2.40e-02	3.83e-02	5.74e-02
	6.59e-03	1.21e-02	1.74e-02	2.28e-02
300	1.64e-02	3.37e-02	5.57e-02	8.83e-02
	1.96e-02	2.04e-02	2.33e-02	3.96e-02
400	1.98e-02	4.13e-02	6.83e-02	1.01e-01
	1.07e-02	2.15e-02	2.92e-02	4.12e-02
500	2.35e-02	4.85e-02	8.59e-02	1.22e-01
	1.39e-02	2.92e-02	3.82e-02	5.88e-02

Tabela 6: Czas obliczeń dla wektora [100, 100, 100, 100, ...] w sekundach

2 Zadanie 2.

Dowolną metodą znajdź promień spektralny macierzy iteracji (dla różnych rozmiarów układu – takich, dla których znajdowane były rozwiązania układu). Sprawdź, czy spełnione są założenia o zbieżności metody dla zadanego układu. Opisz metodę znajdowania promienia spektralnego.

wielkość macierzy	promień spektralny
3	6.85819e-01
4	8.91331e-01
5	8.63095e-01
7	8.64686e-01
9	8.65468e-01
11	8.65961e-01
15	8.66554e-01
19	8.66899e-01
25	8.67208e-01
30	9.07278e-01
40	9.07915e-01
50	9.08301e-01
75	8.67847e-01
100	9.09080e-01
200	9.09471e-01
300	9.09601e-01
400	9.09666e-01
500	9.09705e-01

Tabela 7: Wartości promienia spektralnego

Do wyliczania promienia spektralnego wykorzystano funkcje eigvals z biblioteki numpy. Znajduje ona wartości własne macierzy, a jako że wszystkie są mniejsze od 1 (w tabeli przedstawiono maksimum z wartości własnych) to układy są zbieżne.

Sposób wyliczania wartości własnych: macież wyjściowa mnożona jest przez macierz ortogonalną oraz jej transpozycje

3 Wnioski

Drugi warunke stopu wymusza dłuższe działanie algorytmu oraz więcej jego iteracji. Pozwala jednak na uzyskanie lepszego przybliżenia. Promień spektralny dla badanych wielkości macierzy jest zawsze mniejszy od 1, jednak nieznacznie, zatem układy będą powoli zbiegać do rozwiązań