UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the June 2004 question papers

	9701 CHEMISTRY
9701/01	Paper 1 (Multiple Choice), maximum raw mark 40
9701/02	Paper 2 (Theory 1 – Structured Questions), maximum raw mark 60
9701/03	Paper 3 (Practical 1), maximum raw mark 25
9701/04	Paper 4 (Theory 2 – Structured Questions), maximum raw mark 60
9701/05	Paper 5 (Practical 2), maximum raw mark 30
9701/06	Paper 6 (Options), maximum raw mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9701 (Chemistry) in the June 2004 examination.

	maximum	minimum mark required for grade:		
	mark available	А	В	E
Component 1	40	31	28	18
Component 2	60	47	41	27
Component 3	25	19	17	10
Component 4	60	46	41	24
Component 5	omponent 5 30	23	21	15
Component 6	40	27	24	15

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

JUNE 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9701/01

CHEMISTRY
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	1

Question Number		Question Number	Key
1	С	21	В
2	В	22	D
3	С	23	D
4	В	24	В
5	С	25	Α
6	С	26	D
7	D	27	С
8	В	28	D
9	В	29	Α
10	D	30	D
11	D	31	Α
12	С	32	D
13	В	33	С
14	Α	34	D
15	Α	35	В
16	Α	36	С
17	D	37	Α
18	Α	38	В
19	D	39	D
20	В	40	С

TOTAL 40

JUNE 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/02

CHEMISTRY
Theory 1 (Structured Questions)

[2]

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	2

1 (a) The volume of the gas molecules / atoms / particles is insignificant compared with the volume of the vessel.

There are no forces of attraction between the gas molecules.

All collisions by the gas molecules are perfectly elastics. Any two.

(b) (i) The pressure of / exerted by the gas. [1]
Pa / Nm⁻² [1]

(ii) The volume of the containing vessel [1] m³ / dm³ / cm³ [1]

(iii) The absolute temperature [1] In K or 273 + °C [1]

(c) (i) $pV \approx w/m \times RT$

$$m = (0.103 \times 8.31 \times 297) / (99.5 \times 10^{3} \times 63.8 \times 10^{-6})$$
 [1]
= 40.0 [1]

The gas is argon [1]

(ii) The hydrogen bonds between ammonia molecules (1) are stronger than the Van De Waals' forces between N_2 and Ar molecules (1)

Ammonia is polar / has a dipole (1)

(Any two) [2]

Total = [13]

[2]

2 (a)
$$1s^2$$
 $2s^2 2p^6$ $3s^2 3p^3$ [1]

(c) (i)
$$3NaOH + H_3PO_4 \longrightarrow Na_3PO_4 + 3H_2O$$
 [1]

(ii)
$$(50 \times 0.5) / 1000 = 0.025$$
 (moles) [1]

(iii) conseq. on (i)
$$3 \times .025 = 0.075$$
 (moles) [1]

(d) (i)
$$P_4S_3 + 8O_2 \rightarrow P_4O_{10} + 3SO_2$$
 balanced = 2 marks (or $2P_2O_5$)

OR
$$+6O_2 \longrightarrow P_4O_6 + 3SO_2$$
 unbalanced = 1 mark (or $2P_2O_3$)

(ii)
$$P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$$
 [1]

OR
$$P_4O_6 + 6H_2O$$
 ______ $4H_3PO_3$

$$SO_2 + H_2O \longrightarrow H_2SO_3$$
 [1]

(if SO_3 then e.c.f.) Total = [9]

[2]

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	2

3 (a)
$$CO(NH_2)_2 + H_2O$$
 \longrightarrow $2NH_3 + CO_2$ balanced equation (1) (1) colourless gas

- (b) (i) $N_2 + 3H_2 \leftrightarrow 2NH_3$
 - (ii) 100 ATMs or over 400 - 500°C iron catalyst
 - (iii) Fertiliser, making nitric acid, explosives etc. 1 mark for each

[4]

- (c) (i) (1.2)/(2.4) = 1/20 or 0.05 moles [1]
 - (ii) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ or equivalent [1]
 - (iii) 0.025 mols of H₂SO₄ are required

Vol. of 0.50 mol dm⁻³
$$H_2SO_4$$
 required = $(0.025 \times 1000) / 0.5 = 50 \text{cm}^3$ [1]

(d)

1 mark for each diagram, 1 mark for each correct bond angle If not 3-dimensional diagram – 1 penalty.

[4]

(e)
$$4NH_3 + 3O_2$$
 $2N_2 + 6H_2O$ [1]

N goes from -3 to 0 ——— oxidation [1]
O goes from 0 to -2 reduction [1]

Total = [16]

studyguide.pk

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	2

4 (a) (i) Acid or base, heating / reflux / warm

[1]

(ii) $CH_3(CH_2)_2CO_2CH_3 + H_2O$ _____ $CH_3(CH_2)_2CO_2H + CH_3OH$

[1]

(iii) Solvents (polyesters not in AS syllabus, but allow as plastics, textiles)

[1]

(b) (i)

1 mark for this diagram

(ii)

1 mark for ester link, 1 mark for rest of molecule

[3]

(c) (i)
$$C_6H_{12}O$$
 72 + 12 + 16

$$M_r = 100$$

$$CH_2 = CH - CH = CH - CH_2CH_3$$

[1]

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	2

(d) A test for an alcohol (both alcohol and the product are alkenes)

 $\begin{array}{ll} \text{e.g. sodium} & \text{bubbles of gas} \\ \text{PCl}_5 & \text{misty fumes} \end{array}$

 $H^{+}/Cr_2O_7^{-2-}$ orange turned green conc. H_2SO_4 + carbonylic acid ester smell

NOT Br₂ or H⁺/MnO₄⁻ as it tests positive for both

1 mark for specified test

1 mark for the relevant observation

[2]

Total = [11]

5 (a) Example (1) reason (1) MUST BE ORGANIC

e.g.

PVC (1) used in food packaging (& needs to be inert) (1) Teflon / PTFE (1) used in non-stick kitchenware (1) Freons (1) used as deoderants, anaesthetics etc. (1) CCl_4 etc (1) solvent (1)

3 x 2 [6]

(b) (i) U.V. radiation [1]

Breaks C-Cl bond OR giving Cl free radicals [1]

These react with ozone [1]

(ii) e.g polypropene for PVC alkanes e.g. butane for aerosols

OR equivalent answers $\,$ need not be organic e.g. N_2O as anaesthetic

[2]

Total = [11]

JUNE 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9701/03

CHEMISTRY Practical 1

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	3

Question 1

(a) Table 1.1

Give **one mark** if both weighings are to 2 dp or better, in the correct places in the table, and there is no error in subtraction.

Centres were instructed to provide between 1.70 g and 2.00 g of **FA 1**. If a candidate's mass is clearly a value in this range **x10** or **x 0.1** the mark for Table 1.1 will not be awarded but the "correct" value will be used in assessing the accuracy ratio.

[1]

(b) Titration Table 1.1

Give **one mark** if all final burette readings (except any labelled Rough) are to 2 dp and the readings are in the correct places in the table.

Do not give this mark if "impossible" burette readings (e.g. 23.47 cm³) are given (initial or final readings).

Give **one mark** if there are two titres within 0.10 cm³ and a "correct" average has been calculated.

See instructions in (f) and examples in (g) of Standing Instructions.

The subtraction of a Rough value need only be checked when the Rough value has been included in the selection for calculating the average.

Do not give this mark if there is an error in subtraction or there is no indication of the titres used to calculate the average (ticks/calculation).

[2]

Accuracy

Check and correct if necessary the subtraction in Table 1.1 for the Supervisor. Use the rules in Standing Instructions to obtain a titration value for the Supervisor.

Calculate, correct to 2 decimal places, for each candidate:

Supervisor's mass of Na ₂ CO ₃	x Candidate's Titre (corrected if necessary)
Candidate's mass of Na ₂ CO ₃ (corrected if necessary)	X Candidate 3 Title (corrected if flecessary)

Compare the calculated value with the Titre value obtained by the Supervisor. Assign accuracy marks as follows:

The spread penalty referred to in (g) may have to be applied using the table below

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	3

	Accuracy marks
Mark	Difference from Supervisor
6	up to 0.20
5	0.20+ to 0.40
4	0.40+ to 0.60
3	0.60+ to 0.80
2	0.80+ to 1.00
1	1.00+ to 2.00
0	Greater than 2.00

Spread Penalty	
Range used / cm ³	Deduction
0.20+ to 0.25	1
0.25+ to 0.30	2
0.30+ to 0.40	3
0.40+ to 0.50	4
0.50+ to 0.70	5
Greater than 0.70	6

[6]

In all calculations, ignore evaluation errors if working is shown

(c) Give one mark for
$$M_r$$
 of $Na_2CO_3 = 106$
and one mark for
$$\frac{\text{candidate's mass of } Na_2CO_3}{\text{a calculated } M_r \text{ for } Na_2CO_3} \quad \text{x} \quad 4$$

[2]

(d) Give one mark for ans (c)
$$x = \frac{25}{1000}$$
 OF
$$\frac{\text{candidate's mass of Na}_2\text{CO}_3}{\text{a calculated M}_r \text{ for Na}_2\text{CO}_3} = x = \frac{1}{10}$$

[1]

(e) Give one mark for answer to (d) x 2

Page 3	Mark Scheme	Syllabus	Paper
_	CHEMISTRY – JUNE 2004	9701	3

[1]

(f) Give one mark for answer to (e)
$$x = \frac{1000}{candidate's titre}$$

and **one further mark** for a <u>FULLY CORRECT</u> answer to within 1% of the value calculated by the examiner **using the titre/mass used by the candidate**.

A candidate with an incorrect sub-section, who correctly starts a subsequent sub-section from first principles can gain the evaluation mark.

The correct value is given by: 1.887 x

candidate's mass of sodium carbonate candidate's titre

Do not award this evaluation mark if there are cancelling chemical errors or an M_r other than 106 is used in the calculation.

Ignore rounding to less than 3 significant figures providing evaluation has been shown to 3 significant figures or better.

Examiners should calculate the value, correct to 3 significant figures, and record it in a ring close to the candidate's value.

[2]

Total for Question 1 [15]

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	3

2 FA 4 is a mixture of: FA 5 (Na₂SO₃ which is soluble in water) and FA 6 (CaCO₃ which is insoluble in water)

Tests on Filtrate

	Test	Observations	
(a)	To 1 cm depth of the filtrate in a test-tube, add 1 cm depth of aqueous barium chloride;	White precipitate Accept white solution if a precipitate of unspecified colour has also formed (no contrary colours permitted)	
	followed by 2 cm depth of dilute hydrochloric acid	Precipitate dissolves/disappears or colourless/clear/transparent solution Ignore any reference to slight white "haziness" left in the solution or to evolution of gas. Both parts of the observation are needed for the one mark to be awarded.	
(b)	To 1 cm depth of the filtrate in a test-tube, add 1 cm depth of acidified aqueous potassium dichromate(VI).	(Solution turns) green not blue/green one mark Do not penalise green precipitates	
(c)	To 1 cm depth of the filtrate in a test-tube, add 2 cm depth of dilute hydrochloric acid. Warm the solution and identify the gas given off. Empty and wash away the contents of the tube at the end of this test.	(Gas with reducing properties) A suitable test must be described: turns chromate/dichromate green (blue/green is acceptable here) or decolourises manganate(VII) or (Acidic gas) turns a named indicator an appropriate colour one mark (Allow this mark on addition of HCI in test (a) if not given in (c)) Ignore any lime-water test or reference to CO ₂ (some CaCO ₃ may pass through the filter paper)	1
(d)	To 1 cm depth of the filtrate in a test-tube, add 2 cm depth of aqueous iodine.	(lodine) decolourised or colourless solution or stated diminishing colour (eg. brown to yellow) one mark	

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	3

Give one mark for identifying the anion as sulphite/SO₃²-

providing two pieces of evidence are given in the conclusion that refer to correct observations or there is equivalent unambiguous reference to tests in the table.

- i. white precipitate with barium chloride
- ii dichromate(VI) turns green in test (b)
- iii iodine decolourised

one from

- iv acid/base indicator colour change in (c)
- v dichromate(VI) turns green in (c)

[1]

Observation marks may be awarded in the supporting evidence section where the candidate refers back to a specified test. (Beware of contrary statements)

Give **one mark** for stating that the anion behaves in **(b)** and **(d)** as a: reductant / reducing agent / reducer / oxidisable species (providing a mark has been given in **(b)** or **(d)**).

[1]

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	3

Tests on Residue

	Test	Observations	
(e)	Add 2 cm depth of hydrochloric acid to the residue (FA 6) in the boiling-tube. Use the solution formed in the following tests (f) and (g).	(Gas evolved:) A suitable test must be described: turning lime water milky/cloudy/turbid/chalky one mark	[1]
(f)	To 1 cm depth of the solution remaining after test (e) add aqueous sodium hydroxide.	White precipitate, insoluble in excess Both parts of observation needed one mark	[1]
(g)	To 1 cm depth of the solution remaining after test (e) add aqueous ammonia.	No precipitate / no reaction / solution remains colourless / clear solution (remains but not formed) One mark	[1]

Observation marks may again be awarded in the supporting evidence section where the candidate refers back to a specified test. (Beware of contrary statements)

Give **one mark** if the cation and the anion match the results in tests **(e)**, **(f)** and **(g)**. **and** there is supporting evidence in the conclusion for each ion.

The **anion** is CO₃²⁻ Allow carbonate from effervescence, fizzing or rapid evolution of gas

The cation is Ca²⁺

Matched observations:

Test (f)	Test (g)	Allowable deduction
Unqualified White ppt Do not allow if the ppt was soluble in excess NaOH	No ppt	Ca ²⁺
White ppt insol in excess	White ppt insol in excess	Mg ²⁺
White ppt insol in excess	White ppt sol in excess	No cation matches
White ppt sol in excess	White ppt insol in excess	Al ³⁺ or Pb ²⁺
White ppt sol in excess	White ppt sol in excess	Zn ²⁺
No ppt	White ppt insol in excess	No cation matches
No ppt	White ppt sol in excess	No cation matches
No ppt	No ppt	Ba ²⁺

[1]

Total for Question 2 = [10]

Total for Paper = [25]

JUNE 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Theory 2 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

1

(a)	Mg ²⁺ + 2e ⁻	[1]
(b)	chlorine/Cl ₂	[1]
(c)	smaller A _r larger (atomic/ionic) radius/size	[1] [1]
(d)	(i) the energy change when 1 mol of solid compound is formed from its gaseous ions	[1] [1]
	(ii) Mg ²⁺ (g) + 2Cl ⁻ (g) MgCl ₂ (s) charges + balancing state symbols	[1] [1]
(e)	(i) LE (MgCl ₂) is greater than LE (NaCl) (because) Mg ²⁺ has higher charge / smaller radius than Na ⁺	[1] [1]
	(ii) LE (MgCl ₂) is greater than LE (CaCl ₂) (because) Mg ²⁺ is smaller than Ca ²⁺	[1] [1]
(f)	LE = 349 - 122 - 494 - 107 - 411	
	= -785 (kJ mol ⁻¹)	[3]
	correct answer = [3], with – [1] for one error. OR mark as follows: use of all $5 \Delta H$ values, with x1 multipliers correct signs for all ΔH values [1] negative sign in answer [11]	

Total = [15]

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

(a)	covalent (<i>giant</i> or <i>macro</i>) negates, as also does any reference to ionic bonding) (<i>simple molecular is not enough</i> – <i>look for covalent</i>)	[1]		
	tetrahedral	[1]		
(b)	(i) plotting (allow ±1°) 138 – 151°C (stated in numbers, or read from the graph)	[1] [1]		
	(ii) (b. pt. increases due to) larger intermolecular / van der Waals / induced dipole (NOT permanent dipole) / attractions	[1]		
	due to the larger no. of electrons $\it or$ more shells of electrons (in MX_4)	[1]		
(c)	(i) Si has empty low-lying orbitals or empty d-orbitals (C does not)	[1]		
	(ii) $SiCl_4 + 2H_2O$ \longrightarrow $SiO_2 + 4HCl$	[1]		
	[or $SiCl_4 + 4H_2O$ $Si(OH)_4 + 4HC1$ etc.]			
	(iii) (yes), because Ge also has empty (low lying d-) orbitals	[1]		
(d)	(i) $SiCl_4 + 2Zn$ Si + $2ZnCl_2$ [NOT ionic equation]	[1]		
	(ii) mass = 250 x 2 x 65.4/28.1			
	= 1164 (g) (actually 1163.7 – but allow 1160)	[2]		

allow e.c.f from the stoichiometry of the candidate's equation e.g. allow **582**g for [2] marks if the equation shows the stoichiometry to be 1:1. But if 582g is obtained because the candidate forgot to apply the stoichiometry as given in the equation, award only [1] mark.

correct answer = [2], with - [1] for one error. OR marks as follows: use of 2:1 ration [1] correct use of A_r data for Si and Zn [1]

Total = [12]

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

3

heterogeneous: different phases/states
 or
 homogeneous: same phase/state

· (heterogeneous): adsorption onto the surface

• the correct allocation of the terms heterogeneous and homogeneous to the two exemplar

• example of heterogeneous, e.g. Fe (in the Haber process)

• equation, e.g. $N_2 + 3H_2 \longrightarrow 2NH_3$

• equation, e.g. $S_2O_8^2 + 2I \longrightarrow 2SO_4^2 + I_2$ • how catalyst works, e.g. $Fe^{3+} + I^2 \longrightarrow Fe^{2+} + \frac{1}{2}I_2$

Total = [8]

[space for writing other examples **using iron or its compounds** you may come across. If in doubt consult your TL. Mark as follows:

For heterogeneous: example [1] for homogeneous: example [1]

equation [1] equation [1] mode of action [1]

candidates should include one example of each mode of catalysis]

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

 $C_2H_5CO_2C_2H_5$

C₂H₅OH

(iii) C₂H₅COCl

Total = [7]

[1]

HC1

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

5 (a) (i) Cl_2 + $AlCl_3$ etc. (UV or aq negates)

[1] [1]

(ii) $Br_2 + AlCl_3$ or $AlBr_3$ etc.

(iii) $HNO_3 + H_2SO_4$ conc. + $50^{\circ} < T < 60^{\circ}$

[1] [1]

(b) (i) $A^+ = NO_2^+$ or nitronium ion

[1]

(ii) B is

[1]

(c) (i)

or

[1]

(ii)

[1]

Total = [8]

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

6 (a) (i) NH₃⁺CH₂CO₂⁻ [1] (b) (i) $NH_2CH(CH_3)CO_2H$ + HC1 C1NH₃CH(CH₃)CO₂H [1] (ii) NH₂CH(CH₂OH)CO₂H + NaOH — NH₂CH(CH₂OH)CO₂Na [1] N.B. charges not needed, and deduct only [1] for incorrect side chains Allow ionic equations (c) 0 0 0 ----NHCH2C-NHCH(CH3)C-NHCH(CH2OH)C-PB Correct CO-NH bonding (at least one C=O shown) [1] At least one PB (peptide bond) labeled) [1] 3 residues [1] (the 3 residues don't all have to be different, but must all be either gly, ala or ser) (d) condensation or polyamide [1] deducting 18 from each M_r value (e) [1] (M_r value of 3-residue fragment = **215** if this has been done; otherwise M_r = 269) dividing 600,000 by the M_r value [1] (this would give **2791** if 18 had been deducted from each M_r or 2230 if not) multiplying the answer by 3 (since there are 3 amino acids per residue) [1] (correct answer is 8732. If no 18 had been deducted, answer is 6691) Possible likely answers: 8732 (±10) 6691 (±10) [2] 2791 (±10) 2230 (±10)

[if the answer is none of these, you can award part marks, as above.]

Total = [10]

JUNE 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 9701/05

CHEMISTRY Practical 2

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	5

1 (a) Weighing Table 1.1

Give **one** mark if all **three** weighings are to at least 2 decimal places and in the correct places in the Table.

Give **one** mark for a recorded mass of **FB 1** between **2.80 g and 3.00 g** (both values inclusive)

With-hold one of these marks:

- (i) if there is an error in subtraction which should be correct to number of decimal places shown in the weighing table. (Final zeros may be omitted),
- (ii) the (mass of tube + residual solid) is less than the mass of the empty tube,
- (iii) there is no mass of weighing bottle plus residual zinc

[2]

(b) Temperature Table

Give **one** mark if all **recorded** thermometer readings are to at least 1 decimal place (the table does not have to be complete).

With-hold this mark if all recorded temperatures end with .0(0) or .5(0)

[1]

Accuracy marks

On the Supervisor's script:

Ring the temperature at 2½ minutes (2 minutes, 1½ minutes etc if no temperature recorded at 2½ minutes)

Ring the **highest temperature achieved** when recorded for the first time. **Ignore any temperature recorded at 3 minutes – even if this is the highest temperature recorded**.

Calculate the difference between the two ringed temperatures.

Record, in a ring, this temperature rise, Δt , to the left of the temperature table on page 4.

Candidate scripts

Ring the temperature at $2\frac{1}{2}$ minutes and the **highest temperature achieved** when recorded for the first time in the same way as for the Supervisor.

(Again ignore any temperature recorded at 3 minutes – even if this is the highest temperature recorded.)

Calculate the difference between the two ringed temperatures. Record this temperature rise, Δt , to the left of the temperature table on page 4.

Calculate the difference between the Supervisor's and candidate's value for Δt .

Award accuracy marks as shown on the next page

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	5

The expected temperature rise is about 30 $^{\circ}$ C. If the Supervisor records a temperature rise that is substantially below this figure award Accuracy marks on the sliding scale shown in the following table:

Mark	Difference to S	Supervisor / °C	
Mark	∆t about 30 °C	∆t about 15 °C	
8	up to 1.00	up to 0.50	
7	1.00+ to 1.50	0.50+ to 0.75	
6	1.50+ to 2.00	0.75+ to 1.0	
5	2.00+ to 2.50	1.0+ to 1.25	
4	2.50+ to 3.00	1.25+ to 1.50	
3	3.00+ to 5.00	1.50+ to 2.50	
2	5.00+ to 7.00	2.50+ to 3.50	
1	7.00+ to 10.00	3.50+ to 5.00	
0	Greater than 10.00	Greater than 5.00	

[8]

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	5

1 Graph

(d) Plotting of Points.

It is intended that the Examiner will check the plotting of two temperatures on whole numbers of minutes and one at a ½ minute.

Select and indicate, in the temperature table, the following three temperatures:

i The highest temperature reached, recorded for the first time – the value that has been circled in the temperature table for calculating accuracy marks.

If this initial value falls on a whole number of minutes, select, as the second point to be plotted

ii The first temperature, lower than the highest temperature recorded in the temperature table

If this second temperature also falls on a whole number of minutes, select as the third point to be plotted

iii The next lower temperature that falls on a ½ minute

If this initial value falls on a $\frac{1}{2}$ minute, select, as the second point to be plotted

ii The first temperature, lower than the highest temperature recorded in the temperature table that falls on a whole number of minutes

Select as the third point to be plotted

iii The next lower temperature that also falls on a whole number of minutes

Check the plotting of these three points

Give **one mark** if all three points have been correctly plotted.

The plotted point must be within $\frac{1}{4}$ small square of the correct position on either axis

If the candidate has not plotted one of the selected points apply similar rules to find the first temperature/plot that can be checked.

Award **no plotting mark** to a candidate who has plotted no temperatures at ½ minutes.

Where a maximum temperature is reached after a considerable time and there is no cooling (remaining temperatures are on a plateau) select the maximum and two appropriate points **before** the maximum is reached (one to be on a ½ minute).

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	5

Give one mark if:

an approximately horizontal line has been drawn before the addition of zinc powder,

and

a line or curve of "best fit", with mainly negative slope, has been drawn after continuous cooling commences

Candidates do not have to link the graphs between $2\frac{1}{2}$ and $3\frac{1}{2}$ minutes.

Give **one mark** if there has been any attempt to extrapolate the cooling curve to 3 minutes.

[3]

(e) If the extrapolation mark has been given in (d) give **one** mark if the candidate reads from the graph the extrapolated temperature at 3 minutes. This should be correct to half a small square on either axis.

[1]

(f) Give one mark for $\frac{\text{mass of zinc}}{65.4}$

[1]

(g) Give one mark for $\frac{25}{1000} \times 0.80$ or 2.0×10^{-2}

[1]

(h) Give one mark for

25 x 4.3 x Temperature rise calculated in (e) (Ignore any sign)

Correct units, J or kJ, necessary.

With-hold this mark if J/..... or kJ/.... is shown at this stage.

[1]

(i) Give one mark for

 $\frac{\text{answer to (h)}}{\text{smaller of answer to (f) or (g)}}$ (Ignore moles, /mol, mol¹)

With-hold this mark if the sign or units are incorrect.

Do not penalise incorrect units, already penalised in (h) [1]

Total for Question 1 = [19]

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	5

2

(a) Give **one mark** if the apparatus drawn is suitable for the reaction of lithium with water and the collection of gas. *Do not allow delivery tubes etc to pass through apparatus.*

In assessing apparatus consider "Could it be set up with real apparatus?" "Would it work?"

Give **one further mark** if the apparatus drawn or named in the diagram is suitable for measuring the volume of gas collected.

An unnamed gas syringe or inverted measuring cylinder must show graduations in the diagram to score this mark.

No graduations need be drawn if the apparatus has been correctly labelled.

[2]

- **(b)** Give **one mark** for an answer that involves one of the following:
 - (i) the removal of the oil before weighing (wiping or dissolving in suitable non-aqueous solvent)
 - (ii) removing the oxidised outer layer
 - (iii) cutting the lithium to expose fresh metal to the water

[1]

- (c) Give one mark for a suitable safety measure and reason:
 - (i) use of tweezers or similar/gloves to handle lithium as reactive with moisture on skin
 - (ii) keeping a flame away from the apparatus as hydrogen is flammable
 - (iii) wearing gloves as lithium hydroxide is corrosive / highly alkaline

In parts (b) and (c) ignore non-scoring suggestions

[1]

(d) Give one mark for
$$\frac{100}{24000}$$
 mole of hydrogen (4.17 x 10⁻³)

Give one mark for (mole of hydrogen) x 2 (8.34 x 10⁻³)

Give one mark for $\frac{0.0583}{8.34 \times 10^{-3}} = 6.99599...$

The value evaluated depends on rounding and the stage at which rounding took place.

6.94, 6.99, 6.996, 7.0, 7.02 or 7 are likely to be seen.

[3]

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	5

Some candidates may attempt the calculation using pV = nRT

or
$$pV = \frac{m}{M_r} nRT$$

Give one mark for Moles of Li = $\frac{0.0583}{A_r}$

Give one mark for Moles of $H_2 = \frac{0.0583}{2A_r}$

Give **one mark** for equating to 100 cm³ of gas and evaluating the answer:

 $\frac{0.0583}{2A_r} = \frac{100}{24000}$

Other methods of performing the calculation may be seen and should be fitted into the pattern of the methods above.

Examiners should be confident that the use of the mole ratio, ($2Li \equiv 1H_2$), has been applied by the candidate both correctly and confidently.

Guard against the sudden appearance of an unjustified 2 in a muddled calculation.

(e) Give one mark for variable conditions (temperature or pressure) / $24 \, \mathrm{dm}^3$ is approximate V_m

AND

Give one further mark for a 'chemical' or 'procedural' reason such as:

(i) lithium is covered with a layer of oxide **or** lithium reacts with "air" / moisture in the air after or

during weighing / cutting / transfer

- (ii) residual oil on the lithium
- (iii) insufficient water for all the lithium to react **or** excess lithium do **not** give this mark for "not all of the Li reacts"
- (iv) loss of gas at start before apparatus is sealed do **not** give this mark for general loss of gas or leaking apparatus

[2]

(f) Give one mark for stating that a titration would be used or evaporation to dryness of LiOH or a salt prepared from LiOH + weighing the solid remaining after evaporation

[1]

- (g) Give one mark for reference to one of
 - (i) standard or standard / standardised acid used in the titration
 - (ii) obtaining concordant titres
 - (iii) % error in pipette and burette is very small (or equivalent)
 - (iv) the end-point of a titration is sharp / precise (or equivalent)
 - (v) balances weigh to 3 decimal places (or better)

The answer to (g) must be related to the answer in (f).

[1]

Total for Question 2 = [11] Total for Paper = [30]

JUNE 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9701/06

CHEMISTRY Options

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

Biochemistry

1. (a)

(1)

 β – pleated sheet (1)

Stabilising bonds are C==O | | | | | | H—N

(1) [4]

(b) (i) pH changes affect R groups

High pH
$$-CO_2H + OH^- \rightarrow -CO_2^-$$

or
$$-NH_3^+ + OH^- \rightarrow -NH_2$$
 (1)

Low pH
$$-NH_2$$
. + $H^+ \rightarrow -NH_3^+$

or
$$-CO_2^- + H^+ \rightarrow -CO_2H$$
 (1)

Change in pH breaks hydrogen bonds between groups (1)

Heavy metals form salts

$$--CO_2H + Ag^+ \rightarrow --CO_2^-Ag^+ + H^+$$
 (1)

and break disulphide links

--CH₂—S—S—CH₂-- + Cu²⁺
$$\rightarrow$$
 2 -CH₂—S⁻ Cu²⁺ (1) [5]

(c) The cooking of an egg - bonds are broken by heat

Or The solidifying of milk by bacteria in cheese/yoghurt - pH is changed

[1]

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

2. (a) (i) $CH_2 - O - CO - R$ glycerol ester displayed phosphate (1) CH - O - CO - R | O | | $CH_2 - O - P - OX^+$ | O^-

(ii) Phosphate has a negative charge on –P—O , positive on X (1) [4]

Protein increases the flexibility of the bilayer (1)

van der Waals' forces between the alkyl groups of phospholipids (1)

ionic and H-bonds between phosphate residues / protein and the aqueous cell fluid (1) [6]

studyguide.pk

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

Environmental Chemistry

- **3.** (a) (i) At night plant respiration occurs, but negligible photosynthesis (1)
 - (ii) In winter lower temperatures and less sunlight reduce photosynthesis(1)

[2]

- **(b)** (i) Two of : $CH_4 N_2O$, O_3 , CFCs or H_2O (2 x 1)
 - (ii) Gases absorb infrared energy by increased bond vibration (1) Some of this i.e. re-emitted back to Earth (1)

[4]

(c) CO₂ dissolves in water and can react to form HCO₃ and CO₃ ions

$$CO_2(g) \leftrightarrow CO_2(aq)$$
 (1)

$$CO_2(aq) + H_2O \leftrightarrow H^+ + HCO_3^-$$
 (1)

$$HCO_3 \leftrightarrow H^+ + CO_3^{2-}$$
 (1)

- Some dissolved CO₂ is used by plankton in photosynthesis (1)
- CO_2 is more soluble under pressure. (1)
- CO₃²—ions can react with Ca²⁺ ions and CaCO₃ is precipitated (1) [max 4]

(1) (1)

(1) [3]

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	6

4.	(a)	Gaps between small pa or Water binds to mine	articles prod rals	uce capillary	/ action	(1)
	(b)	In sandy soils, the deca in large pores	ay of organio	c materials ir	ncreases CO ₂		1)
		In clay soils waterloggii Anaerobic decompositi		s reducing co	onditions prom		1)
	(c)	(i)					
				etrahedral la	-		
			C	ctahedral la	yer		
			-	-	-		
		hydrogen	-	-	-		
		bonding ———	-	-	-		
			<u>-</u> -	-	-		
			-	-	-		
			te	trahedral lay	/er		
			00	ctahedral lay	/er		(2)
		(ii) Water cannot ento between them	er the gap b	etween the l	layers due to h	nydrogen bon	nding (1)
		Thus the soil does	s not expand	d on wetting	or contract on	drying out	(1) [4]

(d) Reduced by increased amount of humus Reduced by increased amount of $\mathrm{A}l^{3^+}$

Increased by increased amount of Ca2+

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

Phase Equilibria

5. (a) Enthalpy/energy required to convert one mole of the liquid into the gaseous phase

(1) [1]

(b) One correct observation about the difference in ΔH_{vap} with such different Values of M_r

(1)

Cyclohexane — van der Waals' forces only, ethanol — H-bonding

(1)

H-bonding stronger than van der Waals'

(1) [max 2]

axes (1)

points and plot (1)

(ii) 66.7°C at 0.3 mole fraction cyclohexane

(1) [3]

(d) (i) cyclohexane 0.3 x 35.7 = 10.7 ethanol 0.7 x 83.9 = 58.7 (1)

 ΔH_{vap} of mixture = 69.4 kJ mol⁻¹

(1)

(ii) Mixing the two liquids will break the H-bonds in ethanol This reduces the $\Delta H_{\it vap}$

(1)

(1) [4]

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

6. (a) (i) Reflux for a long period (6+ hours) with 6M HCl Use specified enzymes e.g. trypsin (1)

kept wet in buffer (1)

(iii) From the positions to which they move (1)

Under standard conditions (and times) (1)

Compare with reference samples (1)

Use of locating agent / ninhydrin / iodine (1)

glycine (1)

[max 7]

- Lysine | Aspartic acid + (1)

less movement than asp. (1)

moves to negative

[max 3]

[6]

Page 7	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

Spectroscopy

7.	(a) Yellow colour of a sunflower is due to the other colours being absorbed OR only yellow being reflected	(1)
	Electrons move from low to higher energy orbitals	(1)
	Yellow colour of streetlights is due to emission	(1)
	Excited electrons fall from high to lower energy orbitals	(1) [4]

(b) (i)
$$CH_3{}^c \\ | \\ CH_3{}^a - CH_2{}^b - C - CH_3{}^c \\ | \\ OH^d$$

Peak of height 6 at 1.2 δ is produced by H_c (1) Peak of height 3 at 0.9 δ is produced by H_a (1) Peak of height 2 at 1.5 δ is produced by H_b (1) Peak of height 1 at 3.2 δ is produced by H_d (1) (ii) Peak at 3.2 δ disappears (1) -OH proton exchanges with D₂O (1) (1)

D does not absorb (in this part of the spectrum)

Page 8	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

8.	(a) C-O is composed of different atoms, which produces a dipole	(1)
	When the bond vibrates, the dipole changes, absorbing in the ir	(1) [2]
	(b) 1740 cm ⁻¹	(1)
	1050 cm ⁻¹ OR 1240 cm ⁻¹ — → C—O	(1)
	Functional group is ester	(1) [max 2]
	(c) M + 1 → ¹³ C	(1)
	M + 2 → Halogen atom (C <i>l</i> or Br)	(1)
	M + 4 Second halogen atom	(1)
	M + 2 peak approx equal in height to M + 4 Br	(1) [4]
	(d) m/e 29 \longrightarrow $C_2H_5^+$	(1)
	m/e 43 \longrightarrow C ₃ H ₇ ⁺ or CH ₃ CO ⁺	(1) [2]

[max 6]

Page 9	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

Transition Elements

- 9. (a) An atom, ion or molecule that has a lone pair of electrons that can form a dative bond to the metail ion (1) [2]
 - **(b)** Examples NH_3 or H_2O or CI (1)

$$H_3N: \longrightarrow Cr^{3+} \text{ or } H_2O: \longrightarrow Cr^{3+} \text{ or } {}^-Cl: \longrightarrow Cr^{3+}$$
 (1)

(c) (i)

Oxygens circled (1), nitrogens circled (1)

(ii) K_c for the 2^{nd} equilibrium is very large so well over to the RHS (1)

All Cd^{2+} ions will be complexed and flushed out via the kidneys (1)

Calcium is no problem since K_c is 10^6 smaller (1)

Zinc has a similar K_c to cadmium and will also be flushed out (1)

Solution is to give zinc as dietary supplement (1)

studyguide.pk

Page 10	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	6

10. (a) (i) Green (1) (1)

(iii) $MnO_2 + \frac{1}{2}O_2 + 2OH^- \rightarrow MnO_4^{2-} + H_2O$ (1)

(iv) $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (1) $(H^+ + e^- \rightarrow \frac{1}{2} H_2 \text{ scores}(1))$

(v) $MnO_4^{2-} + H_2O \rightarrow MnO_4^{-} + \frac{1}{2}H_2 + OH^{-}$ (1)

(b) $3MnO_4^2 - + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$

(1) for correct species, (1) for balancing [2]

(c) SO₃²⁻ requires 2 electrons change to SO₄²⁻

Therefore Mn^{VII} has been reduced to Mn^v (1)

Suggest MnO_4^{3-} (1)

 $SO_3^{2-} + MnO_4^{-} + 2OH^{-}$ -> $MnO_4^{3-} + SO_4^{2-} + H_2O$ (1)

