EDA와 시각화

데이터의 특징과 데이터에 내제된 관계를 알아내기 위해 그래프와 통계적 분석 방법을 활용하여 데이터를 탐구하는 것

EDA의 주제

- 1. 저항성의 강조 : 이상치 등 부분적 변동에 대한 민감성 확인
- 2. 잔차계산 : 관찰 값들이 주 경향에서 벗어난 정도 파악
- 3. 자료변수의 재표현 : 변수를 적당한 척도로 바꾸는 것
- 4. 그래프롤 통한 현시성 : 분석 결과를 이해하기 쉽게 시각화하는 것

막대그래프

범주형 데이터를 요약하고 시각적으로 비교하는데 효과적인 그래프

막대그래프로 각 범주의 값의 개수 차이를 비교하고, 값 차이가 많이 날 경우 업/다운 샘플링을 통해 개수가 유사하도록 조정할 수 있음.

plt.bar(x,height,weidh=0.8,bottom=None,align='center',data=None)

x	막대의 x 좌표
height	막대의 높이
width	막대의 너비
bottom	막대 바닥변의 y 좌표(누적 막대그래프를 그릴 때 사용할 수 있음)
align	x 좌표에 대한 막대 정렬 {'center','edge'}

히스토그램

연속형 자료에 대한 도수분포표를 시각화하여 나타낸 것으로 서로 겹치지 않는 특정 구간에 따른 데이 터의 빈도수를 표현

각구간은 연속되어 있으므로 히스토그램의 막대는 서로 붙어있으며, 각 구간의 순서는 임의로 변경하여 나타낼 수 없다.

plt.hist('변수명', bins = None, range=None, density = Fasle, data=df)

bin	히스토그램의 구간의 개수 정의
range	bin의 상한값과 하한값(x.min(), x.max()) 형태로 선언
density	True이면 확률밀도함수를 그리고 반환

```
plt.title('wine alcohol histogram')
plt.hist('alcohol', bins = 8, range =
  (wine['alcohol'].min(),wine['alcohol'].max()), color = 'purple', data = wine)
plt.show()
```


Boxplot

사분위수를 이용하여 수치형 변수값의 분포를 확인하는 그래프

```
import seaborn as sns
import pandas as pd
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
loaded_iris = load_iris() # print(type(iris)) : <class 'sklearn.utils.Bunch'>
iris = pd.DataFrame(loaded_iris.data, columns = loaded_iris.feature_names)
#iris.target은 sklearn.utils.Bunch.target 함수로 분류 결과를 나타냄. pandas Series로
리턴
iris['class'] = loaded_iris.target
iris['class'] = iris['class'].map({0:'Setosa',1:'Versicolour',2:'Virginica'})
#pyplot으로 그린 boxplot
#class는 문자열 변수로 치환하였으므로 박스플롯으로 표현 불가하여 제거하고 나머지 변수를 그림
plt.boxplot(iris.drop(columns='class'))
plt.show()
#class 분류에 따른 sepal width를 boxplot으로 표현
iris[['sepal width (cm)','class']].boxplot(by='class')
plt.show()
#sns로 그린 boxplot
sns.boxplot(x="class",y="sepal width (cm)", data =iris)
plt.show()
```


산점도(Scatter Plot)

관계의 강도 판단: 적합선에 멀리 퍼져있으면 약한 상관관계, 가까이 퍼져 있으면 강한 상관관계

```
#Scatter Plot
import pandas as pd
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
loaded_iris = load_iris()
iris = pd.DataFrame(loaded_iris.data, columns = loaded_iris.feature_names)
iris['class'] = loaded_iris.target
iris['class'].map({0:'Setosa', 1:'Versicolour', 2:'Verginica'})
#pyplot 산점도
plt.title('iris scatter')
plt.xlabel('sepal length (cm)')
plt.ylabel('sepal width (cm)')
plt.scatter(x=iris['sepal length (cm)'], y = iris['sepal width (cm)'], alpha =
0.5)
plt.show()
#seaborn 산점도
import seaborn as sns
sns.scatterplot(x='sepal length (cm)', y = 'sepal width (cm)'
                , data=iris, hue='class',style='class')
```


수평선 그래프

plt.hlines(y,xmin,xmax,colors=None,linestyles='solid')

수직선 그래프

plt.vlines(x,ymin,ymax,colors=None,linestyles='solid')

함수식 그래프

plt.plot(x축, 함수식, data=df, c='color')

최소제곱 다항식 (회귀선)

numpy.polyfit(X,Y,차수)

꺽은선 그래프

시간의 변화에 따라 값이 지속적으로 변화할 때 유용한 그래프 X축이 시점, Y축이 값을 의미 시점에 대한 변화를 보여주는 그래프 이므로 X축 값에 대한 정렬이 필요.

```
#수평선 수직선 그래프
plt.hlines(-6,-10,10,color='grey')
plt.vlines(-6,-10,10,color='red')
#함수식 그래프
#2x+1의 그래프를 그림
def linear_func(x) :
   return 2*x + 1
X = iris['sepal length (cm)']
plt.plot(X, linear\_func(X), c='#789395')
plt.show()
#회귀선 그래프(numpy)
import numpy as np
X,Y = iris['sepal length (cm)'], iris['petal length (cm)']
#1차원 최소제곱 다항식 생성
b1, b0 = np.polyfit(X,Y,1)
plt.scatter(x=X, y=Y, alpha = 0.5)
#1차선 그래프
plt.plot(X,b1*X+b0, color='red')
#2차선 그래프
#차원 최소제곱 다항식 생성, 결과값은 차수개수 +1개가 출력, 높은 차수의 계수부터 출력
#차수개수가 2개이니 3개의 결과값이 생성되고, x**2의 계수부터 출력
c2, c1, c0 = np.polyfit(X,Y,2)
plt.plot(X,c0+c1*X+c2*X**2, color='grey' )
plt.show()
#꺽은선 그래프
iris2 = pd.DataFrame(load_iris().data, columns =
load_iris().feature_names).sort_values(by = 'sepal length (cm)')
iris2['class'] = load_iris().target
```


산점도 행렬

두 개 이상의 변수가 있는 데이터에서 변수들 간의 산점도를 그린 그래프

산점도 행렬 해석방법

- 1. 대각선의 히스토그램을 통해 이상치를 확인한다.
- 2. 종속변수와 설명변수들 간의 관계를 시각적으로 판단한다.
- 3. 종속변수가 수치형인 경우 각 설명변수와의 직선 상관관계를 비교한다.
- 4. 종속변수가 범주형인 경우 종속변수를 잘 구분하는 변수를 파악한다.
- 5. 설명변수 간의 직선 함수관계를 파악하여 다중공선성 문제를 진단한다.

KDE 그래프

히스토그램과 함께 Non-parametric 밀도 추정 방법 중 하나

bin의 크기와 시작 및 종료 위치에 따라서 그래프가 달라지는 히스토그램의 문제점을 개선한 방법, 커널 함수를 사용하여 데이터의 분포를 smooth하게 나타낸 것이다.

scatter matrix(data, alpha=0.5, figsize=(8.8), diagonal='hist')

data	데이터프레임
alpha	투명도(0~1)
figsize	그래프 크기(x,y)
diagonal	대각선 밀도 그래프 종류{hist/kde}

sns.pairplot(iris,diag_kind='auto', hue='Class')

data	데이터 프레임
diag_kind	대각선 밀도 그래프 종류 {auto, hist, kde}
hue	색을 구분할 타겟변수

#산점도 행렬

import pandas as pd

import matplotlib.pyplot as plt

from pandas.plotting import scatter_matrix

from sklearn.datasets import load_iris

iris = load_iris()

iris = pd.DataFrame(iris.data, columns=iris.feature_names)

```
iris['class']=load_iris().target
iris['class']=iris['class'].map({0:'s1',1:'v1',2:'v2'})

#pyplot으로 산점도 행렬 그리기
scatter_matrix(iris,alpha=0.5, figsize = (8,8),diagonal='hist')
plt.show()

#seaborn으로 산점도 행렬 그리기
import seaborn as sns
sns.pairplot(iris,diag_kind='auto',hue='class')
plt.show()
```


상관계수 행렬 그래프

다수의 변수 간 상관관계를 파악하거나 독립변수 간 다중공선성을 파악할 수 있음. 상관관계는 -1~1 사이의 숫자 값으로 출력되고, 0에 가까울 수록 상관관계가 없고 -1에 가까울수록 음의 상관관계, 1에 가까울수록 양의 상관관계를 가짐.

상관계수 구하기

data = data.corr(method = 'pearson') method : 상관분석 방법 {'pearson', 'kendall' , 'spearman'}

상관계수 행렬 그래프

sns.heatmap(data, xticklabels - data.columns, yticklabels=data.columns, cmap='RdBu_r',annot = True)

data	상관행렬을 그릴 데이터의 상관계수 데이터프레임
xticklabels	x축의 라벨명
yticklabels	y축의 라벨명
cmap	히트맵의 색깔 지정
annot	True일 경우 상관관계를 텍스트로 표시

판다스 Profile Report

구분

구분	내용
Overview	데이터세트의 통계정보 및 컬럼의 체크 사항
Variables	컬럼의 통계정보와 Null 정보, 히스토그램 또는 막대그래프 등
Interactions	컬럼쌍별 산점도
Correlations	상관계수 결정 방식 별 상관행렬 그래프
Missing values	값의 개수 및 Null 값의 존재 여부 확인
Sample	가장 처음과 마지막의 10개의 값
Duplicate rows	중복 행

```
import pandas as pd
from sklearn.datasets import load_iris
import pandas_profiling

iris = load_iris()
iris = pd.DataFrame(iris.data, columns = iris.feature_names )
iris['class'] = load_iris().target
iris['class'] = iris['class'].map({0:'s1',1:' v1',2:'v2'})

iris.profile_report()
```