Contrôle d'algèbre linéaire N°1

Durée :	1 heure 30 minutes	Barème sur 15 points

NOM:			
		Groupe	
PRENOM.		_	_

1. On considère le théorème suivant :

$$T: \quad \forall m, n \in \mathbb{N}, \quad m \leq 3 \quad \text{et} \quad n \leq 3 \quad \Longrightarrow \quad m \cdot n \neq 15$$

- a) Démontrer T par l'absurde.
- b) Expliciter nonT, la négation de T.
- c) On note R l'énoncé réciproque de T. Ecrire R et montrer à l'aide d'un contre-exemple que R est faux.

4 pts

2. Soit A un sous-ensemble de \mathbb{R} et

$$f: \mathbb{R}_+ \times A \longrightarrow \mathbb{R}_+ \times \mathbb{R}_+$$

$$(x,y) \longmapsto f(x,y) = (x, \frac{y^2}{y-2}).$$

- a) Déterminer le plus grand sous-ensemble $A\subset\mathbb{R}$ pour que f soit une application.
- b) Expliciter l'ensemble $\operatorname{Im} f$ puis le représenter graphiquement (1 unité = 1 carré).
- c) Soit $K = \mathbb{R}_+ \times \{3\}$. Déterminer $f^{-1}(f(K))$.

5 pts

3. Soient les applications f et g définies par

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}^* \times \mathbb{R}$$
 $g: \mathbb{R}^* \times \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto (1 + \sqrt{x}, x - \sqrt{x} - 2)$ $(x, y) \longmapsto \frac{y}{x} - x$.

- a) f est-elle injective? Justifier votre réponse.
- b) Déterminer $\operatorname{Im} f$ et le représenter graphiquement. (Echelle: 1 unité = 2 carrés.)
- c) Montrer que f est non surjective à l'aide d'un contre-exemple.
- d) Définir l'application $g \circ f$.
- e) $g \circ f$ est-elle injective? Justifier votre réponse.

6 pts