MATH 10C: Calculus III (Lecture B00)

mathweb.ucsd.edu/~ynemish/teaching/10c

Today: Partial derivatives

Next: Strang 4.4

Week 5:

- homework 4 (due Friday, October 28)
- regrades of Midterm 1 on Gradescope until October 30

Limit of a function of two variables Def Consider a point (a,b) & R2. A 8-disk centered at point (a,b) is the open disk of radius & centered at (a,b) $\{(x,y) \mid (x-a)^2 + (y-b)^2 < \delta^2 \}$ Def. The limit of f(x,y) as (x,y) approaches (xo, yo) is L lim f(xxy)=L (x,y) → (xo,yo) if for each E>0 there exists a small enough 8>0 such that

if for each $\varepsilon>0$ there exists a small enough $\delta>0$ such that all points in a δ -disk around (x_0,y_0) except possible (x_0,y_0) itself, f(x,y) is no more than ε away from L. (For any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x,y)-L|<\varepsilon$ whenever $|f(x-x_0)^2+(y-y_0)^2<\delta$.)

Limit of a function of two variables

This definition ensures that if $\lim_{x \to a} f(x,y) = L$, then

any way of approaching (20,40) results in the same limit L.

(x,y) → (x0,y0)

f= 1/2

approach (0,0) along the
 line z=0; on this line 0.y² = 0

• approach (0,0) along the curve $x = y^2, y^2 = \frac{1}{2}$

Computing limits. Limit laws

Theorem 4.1 Let
$$\lim_{(\alpha, \gamma) \to (\alpha, b)} f(\alpha, \gamma) = L$$
, $\lim_{(\alpha, \gamma) \to (\alpha, b)} g(\alpha, \gamma) = M$, c -constant

•
$$\lim_{(x,y)\to(a,b)} c = c$$
 • $\lim_{(x,y)\to(a,b)} x = a$ • $\lim_{(x,y)\to(a,b)} y = b$

•
$$\lim_{(x,y)\to(a,b)} [f(x,y) + g(x,y)] = L + M$$
 • $\lim_{(x,y)\to(a,b)} [f(x,y) - g(x,y)] = LM$

• If
$$M \neq 0$$
, $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}$

•
$$\lim_{(x,y)\to(a,b)} [cf(x,y)] = cL$$

•
$$\lim_{(x,y)\to(a,b)} [f(x,y)]^n = \lim_{(x,y)\to(a,b)} \sqrt{f(x,y)} = \sqrt{L}$$

Computing limits. Limit laws

Examples

$$\frac{\sqrt{3x-y}}{(x,y)+(0,0)} = \lim_{(x,y)+(0,0)} \frac{\sqrt{y}}{y} = \lim_{(x,y)+(0,0)} \frac{x-y}{y} = \lim_{(x,y)+(0,0)} \frac{x-y}{y} = \lim_{(x,y)+(0,0)} \frac{x-y}{y} = \lim_{(x,y)+(0,0)} \frac{x^2+xy+y^3}{y^2}$$

$$= \lim_{(x,y)+(0,1)} (x^2+xy+y^3)^2$$

$$= \lim_{(x,y)+(0,1)} (3x-y)$$

$$= \lim_{(x,y)+(0,1)} (3x-y)^2$$

$$= \lim_{(x,y)+(0,1)} (1x-y)^2$$

$$= \lim_{(x,y)+(0,1)} (1x-y$$

Continuity of functions of two variables

Def. A function
$$f(x,y)$$
 is continuous at a point (a,b) if (i) $f(a,b)$ exists;

(ii)
$$\lim_{(x,y)\to(a,b)} f(x,y) = xists; and$$

1. If
$$f(x,y)$$
 and $g(x,y)$ are continuous at (x_0,y_0) , then
$$f(x,y) \pm g(x,y) \quad \text{is continuous at } (x_0,y_0)$$

2. If $\varphi(x)$ is continuous at x_0 and $\varphi(y)$ is continuous at y_0 , then $f(x_0y) = \varphi(x) \psi(y)$ is continuous at (x_0, y_0)

Continuity of functions of two variables

Properties (cont.)

3. If
$$g(x,y)$$
 is continuous at (x_0,y_0) , and $f(z)$ is continuous at $z_0 := g(x_0,y_0)$, then

Continuity of functions of two variables Example $(x^2 + xy + y^3)^2$: $(x^2 + xy + y^3)^2$ is continuous on \mathbb{R}^2 f(g(x,y)) f(x-y) $f(z) = \sqrt{2}$ is continuous for all $z \ge 0$ so 13x-y is continuous for all (2,y) such that 3x-y 20 Similarly, x2 +xy +y3 is continuous on R $f(z) = \frac{1}{z^2}$ is continuous for all $z \neq 0$ $\frac{f(g(x,y))}{SO} = \frac{2^{2}}{(x^{2}+xy+y^{3})^{2}}$ is continuous at all (x,y) such that $x^{2}+xy+y^{3}\neq 0$ Take $(x_0, y_0) = (1, 2)$. Then $3 \cdot 1 - 2 = 1 > 0$, $1^2 + 1 \cdot 2 + 2^3 = 1 \neq 0$ so both f, and fz are continuous at (1,2) and thus [im f. (x,y) f2 (xy) = [im f. (xy) | im f2 (xy) = f. (1,2) f2 (1,2) = 1, (1,2) f2 (1,2)