Final Análisis Funcional

Espacios de Hilbert

1. Propiedades Elementales

Definición Si \mathcal{X} es un espacio vectorial sobre un cuerpo \mathbb{F} , un semi-producto interno es $u: \mathcal{X} \times \mathcal{X} \to \mathbb{F}$ tal que $\forall \alpha, \beta \in \mathbb{F}$ y $x, y, z \in \mathcal{X}$:

- $u(\alpha x + \beta y, z) = \alpha u(x, z) + \beta u(y, z)$
- $u(\alpha x + \beta y, z) = \bar{\alpha}u(x, z) + \bar{\beta}u(y, z)$
- $u(x,x) \ge 0$
- u(x,y) = u(y,x)

Observación u(0,y) = u(x,0) = 0

Si $u(x,x)=0 \Longrightarrow x=0$ entonces u es un producto interno, lo notaremos: $u(x,y)=\langle x,y\rangle$

Proposición 1.1 Si $\langle .,. \rangle$ es un semi producto interno en \mathcal{X} , entonces:

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle \quad \forall x, y \in \mathcal{X}$$

Es más, la igualdad se da si $\exists \alpha, \beta \neq 0 / \langle \alpha x + \beta y, \alpha x + \beta y \rangle = 0$

Demostración Sea $\alpha \in \mathbb{F}$ y $x, y \in \mathcal{X}$, entonces:

$$0 \le \langle x - \alpha y, x - \alpha y \rangle = \langle x, x \rangle - \alpha \langle y, x \rangle - \overline{\alpha} \langle x, y \rangle + |\alpha|^2 \langle y, y \rangle$$

Supongamos que $\langle y, x \rangle = be^{i\theta}$, $b \ge 0$ y sea $\alpha = te^{-i\theta}$ con $t \in \mathbb{R}$, entonces:

$$0 \leq \langle x, x \rangle - 2bt + t^2 \langle y, y \rangle \iff 0 \geq 4b^2 - 4\langle x, x \rangle \langle y, y \rangle \iff |\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$$

Corolario 1.2 Si $\langle .,. \rangle$ es un producto interno en \mathcal{X} , entonces $||x|| = \langle x,x \rangle^{\frac{1}{2}}$ es una norma en \mathcal{X} .

Proposición 1.3 Sean $f_1, f_2, ..., f_n \in \mathcal{H}$ espacio de Hilbert, entonces:

$$||f_1 + f_2 + \dots + f_n||^2 = \sum_{i=0}^n ||f_i||^2$$

Demostración Paja

Proposición 1.4 Si \mathcal{H} es un espacio de Hilbert y $f, g \in \mathcal{H}$ entonces:

$$||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2)$$
(1)

Reciprocamente si \mathcal{H} es un Banach tal que su norma $\|.\|$ cumple 1, entonces $\|.\| = \langle ., . \rangle^{\frac{1}{2}}$ para un producto interno tal que \mathcal{H} es Hilbert.

Demostración ⇒) Es fácil

 \iff Supongamos que vale 1 y que $\mathbb{F} = \mathbb{R}$ y sea $u(x,y) = \frac{1}{4} \|x+y\|^2 - \frac{1}{4} \|x-y\|^2$, veamos que es un producto interno.

- u(x,y) = u(y,x)Trivial
- $||x|| = u(x,x)^{\frac{1}{2}}$ $u(x,x) = \frac{1}{4} ||2x||^2 = \frac{4}{4} ||x||^2 = ||x||^2$. Como ambos son positivos listo.
- u es $\mathcal{X} \times \mathcal{X}$ continua Por definción $\|.\|$, sumar y restar son continuos y composición de continuas es continua.

Operadores en Espacios de Hilbert