```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
```

Out[2]:

	Feature 1	Feature 2	Feature 3	Target
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [3]: x = df.iloc[:,:-1]
y = df.iloc[:,-1:]
```

```
In [4]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size= 0.2,random_sta
```

```
In [5]: x_train.shape
```

Out[5]: (160, 3)

```
In [6]: x_test.shape
```

Out[6]: (40, 3)

In [7]: from sklearn.linear_model import LinearRegression

```
In [8]:
         lr = LinearRegression()
         lr.fit(x_train,y_train)
Out[8]:
          ▼ LinearRegression
          LinearRegression()
In [9]:
         y_pred = lr.predict(x_test)
In [10]: lr.coef_
Out[10]: array([[ 0.04458402, 0.19649703, -0.00278146]])
In [11]: lr.intercept_
Out[11]: array([2.99489303])
         from sklearn.metrics import mean_squared_error
In [12]:
In [13]: mean_squared_error(y_test,y_pred)
Out[13]: 4.402118291449685
```

```
In [14]: plt.plot(x_test, y_test, "*", color = "green")
    plt.plot(x_test, y_pred, "+", color = "red")
    plt.title("Performance testing")
    plt.xlabel("Input")
    plt.xticks(np.linspace(1, 500, 10))
    plt.ylabel("Output")
    plt.show()
```

Performance testing

In []: