Marketing Analytics

Customer Segmentation (To Create Targeted Advertising Campaigns)

Ana Farida

1. Background

2. Goals and Objectives

3. Data Insights

4. Modelling

Background

- Sebuah perusahaan retail menjual produk regular dan gold berupa wines, fruits, meat, fish dan sweet products.
- Perusahaan ini memiliki 3 sales channels yaitu catalogs, physical stores dan company website.
- Perusahaan ini memiliki ratusan ribu registered customer dan melayani hampir 1 juta pelanggan per tahun.
- Dataset yang digunakan berisi data 2.240 customer dengan fitur socio-demographic firmographicnya.
- Perusahaan ini akan melakukan direct marketing campaign kepada registered customer untuk produk baru yang akan dirilis bulan depan.

Goals & Objectives

 Meningkatkan pendapatan (revenue) dan keuntungan (profit) dari penjualan (sales) produk serta mengurangi biaya (cost) marketing.

- Optimalisasi direct marketing campaign untuk penjualan produk baru yang akan dirilis bulan depan.
- Membuat *predictive model* dengan cara memahami karakteristik customer yang berpotensi untuk membeli produk baru tersebut. (customer segmentation to create targeted advertising campaigns)
- Predictive model dapat diaplikasikan ke dalam data customer lain.
 (di luar splitting dataset yang digunakan (train, validation, test)).

Exploratory Data Analysis (EDA)

Feature	Description	
AcceptedCmp1	1 if costumer accepted the offer in the 1 st campaign, 0 otherwise	
AcceptedCmp2	1 if costumer accepted the offer in the 2 nd campaign, 0 otherwise	
AcceptedCmp3	1 if costumer accepted the offer in the 3 rd campaign, 0 otherwise	
AcceptedCmp4	1 if costumer accepted the offer in the 4th campaign, 0 otherwise	
AcceptedCmp5	1 if costumer accepted the offer in the 5th campaign, 0 otherwise	
Response (target)	1 if costumer accepted the offer in the last campaign, 0 otherwise	
Complain	1 if costumer complained in the last 2 years	
DtCustomer	date of customer's enrollment with the company	
Education	customer's level of education	
Marital	customer's marital status	
Kidhome	number of small children in customer's household	
Teenhome	number of teenagers in customer's household	
Income	customer's yearly household income	
MntFishProducts	amount spent on fish products in the last 2 years	
MntMeatProducts	amount spent on meat products in the last 2 years	
MntFruits	amount spent on fruits in the last 2 years	
MntSweetProducts	amount spent on sweet products in the last 2 years	
MntWines	amount spent on wines in the last 2 years	
MntGoldProds	amount spent on gold products in the last 2 years	
NumDealsPurchases	number of purchases made with discount	
NumCatalogPurchases	number of purchases made using catalogue	
NumStorePurchases	number of purchases made directly in stores	
NumWebPurchases	number of purchases made through company's web site	
NumWebVisitsMonth	number of visits to company's web site in the last month	
Recency	number of days since the last purchase	

RangeIndex: 2240 entries, 0 to 2239 Data columns (total 28 columns):

Data coll	ımns (totai 28 coi	umns):
# Column	Non-Null Count	Dtype
0 ID	2240 non-null	int64
1 Year_Birth	2240 non-null	int64
2 Education	2240 non-null	object
3 Marital_Status	2240 non-null	object
4 Income	2216 non-null	object
5 Kidhome	2240 non-null	int64
6 Teenhome	2240 non-null	int64
7 Dt_Customer	2240 non-null	object
8 Recency	2240 non-null	int64
9 MntWines	2240 non-null	int64
10 MntFruits	2240 non-null	int64
11 MntMeatProducts	2240 non-null	int64
12 MntFishProducts	2240 non-null	int64
13 MntSweetProducts	2240 non-null	int64
14 MntGoldProds	2240 non-null	int64
15 NumDealsPurchases	2240 non-null	int64
16 NumWebPurchases	2240 non-null	int64
17 NumCatalogPurchase	es 2240 non-null	int64
18 NumStorePurchases	2240 non-null	int64
19 NumWebVisitsMonth	2240 non-null	int64
20 AcceptedCmp3	2240 non-null	int64
21 AcceptedCmp4	2240 non-null	int64
22 AcceptedCmp5	2240 non-null	int64
23 AcceptedCmp1	2240 non-null	int64
24 AcceptedCmp2	2240 non-null	int64
25 Response	2240 non-null	int64
26 Complain	2240 non-null	int64
27 Country	2240 non-null	object

Peprocessing Data (Cleaning, Integration, Transformation, Reduction)

Data terdiri dari 2240 rows dan 28 columns.

- a. Apakah data type tidak sesuai?
- b. Apakah ada duplicates, missing values, outliers?
- c. Apakah distribusi tidak sesuai?
- a. Semua data type sesuai, kecuali:
 - 1. Income = data type berupa object harus diubah menjadi float (terdapat whitespace pada nama kolom).
 - 2. Dt_Customer = data type berupa object harus diubah menjadi date.

b.

- 1. Tidak ada duplicate data.
- 2. Missing values pada column Income sebanyak 24. Adanya outliers menyebabkan distribusinya tidak normal, sehingga missing values diisi dengan nilai mediannya bukan meannya.
- 3. Mencari kecenderungan distribusi data dan menemukan outliers pada data numerik dengan cara extract, transform serta visualisasi data

Berusia 30 hingga 45

Berpendidikan Graduation (S1) dan PhD (S3)

Data Insights (1)

Descriptive analysis dengan menggunakan data historis customer (masa lampau) untuk mengidentifikasi karakteristik customer yang cenderung menerima / merespon positif campaign.

Berpenghasilan \$40,000 - \$80,000

Berstatus Single dan Married

Response

0 : Negative (Tidak Tertarik)

1 : Positive (Tertarik)

Tidak memiliki anak (0) / sedikit anak (1 anak)

Tahun Membership (2012)

Data Insights (2)

Last transaction / tanggal pembelian terakhir (kurang dari 30 hari)

Transaksi Pembelian \$1,000-\$2,000

Response

- 0 : Negative (Tidak Tertarik)
- 1 : Positive (Tertarik)

Response 1.000000 MntWines 0.247254 MntMeatProducts 0.236335 MntGoldProds 0.139850 MntFruits 0.125289 MntSweetProducts 0.117372 MntFishProducts 0.111331

Membeli Wines dan MeatProducts

	Response
Response	1.000000
NumCatalogPurchases	0.220810
NumWebPurchases	0.148730
NumStorePurchases	0.039363
NumDealsPurchases	0.002238

Membeli lewat Catalog dan Web

Data Insights (3)

Jumlah transaksi pembelian 10-25 kali

Negara asal SP (Spain) dan ME(Mexico)

	Response
Response	1.000000
AcceptedCmp5	0.326634
AcceptedCmp1	0.293982
AcceptedCmp3	0.254258
AcceptedCmp4	0.177019
AcceptedCmp2	0.169293

Menerima Campaign 5, 1, 3

Response

0 : Negative (Tidak Tertarik)

1 : Positive (Tertarik)

Modelling

-Predictive analysis dengan menggunakan model dari data historis customer untuk memprediksi performance model.

-Modelling terdiri dari

x = independent variable (karakteristik customer) terhadap
y = dependent variable / target (customer response, kemungkinan campaign direspon positif atau
tidak).

- -Modelling menggunakan Logistic Regression (probabilitas akurasi 0.746 atau 74.6%) dan Random Forest (probabilitas akurasi 0.882 atau 88.2%).
- -Performance Stability Check dengan menggunakan Model Random Forest karena probabilitas akurasi lebih tinggi dibandingkan Logistic Regression.
- -Model Random Forest diterapkan pada data lain, dihasilkan probabilitas akurasi 0.878 atau 87.8%. Perbedaan probabilitas akurasi yang tidak jauh mengindikasikan bahwa performance model cukup stabil untuk dapat diaplikasikan untuk memprediksi probabilitas respon ratusan ribu registered customer lainnya.

```
d. Performance Stability Check
```

```
x_full_train_final=pd.concat([x_train_final, x_valid_final])
y_full_train_final=pd.concat([y_train_final, y_valid_final])

model=RandomForestClassifier(random_state=42)
model.fit(x_full_train_final, y_full_train_final)

RandomForestClassifier(random_state=42)

y_test_pred=model.predict_proba(x_test_final)[:, 1]
print('RandomForest ROCAUC Result: ', roc_auc_score(y_test_final, y_test_pred).round(3))

RandomForest ROCAUC Result: 0.878
```


Logistic Regression

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import roc_auc_score

model=LogisticRegression(random_state=42)
model.fit(x_train_final, y_train_final)
model.predict_proba(x_valid_final)[:, 1]
y_valid_pred=model.predict_proba(x_valid_final)[:, 1]

 $\label{eq:print} \textbf{print}(\texttt{'Logistic Regression ROCAUC Result: ', roc_auc_score(y_valid_final, y_valid_pred).round(3))}$

Logistic Regression ROCAUC Result: 0.746

Random Forest

from sklearn.ensemble import RandomForestClassifier

model=RandomForestClassifier(random_state=42)
model.fit(x_train_final, y_train_final)

RandomForestClassifier(random state=42)

y_valid_pred=model.predict_proba(x_valid_final)[:, 1]
print('Random Forest ROCAUC Result: ', roc_auc_score(y_valid_final, y_valid_pred).round(3))

Random Forest ROCAUC Result: 0.882