1. Unterrichtseinheit zur Wärmelehre Einführung in die Wärmelehre

Heiko Schröter

20. Juli 2021

Wärmelehre

Die Wärmelehre beschäftigt sich mit dem Wärmezustand von Körpern, den Wärmemengen und den Eigenschafts- und Zustandsänderungen von Stoffen bei unterschiedlichen Wärmezuständen.

Abbildung: Temperaturmessgeräte der Technik

Ziele für die heutige Unterrichtseinheit

Einführung in die Wärmelehre

- Beschreibung der Temperatur als Zustandsgröße
- Herausarbeiten der Temperaturskalen
- Welche Temperaturmessverfahren gibt es?
- Beschreibung der Wärme als Energieform
- Wie sieht die Temperaturkurve beim Erwärmen von Eis aus?

Temperatur als Zustandsgröße I

Das Temperaturempfinden ist subjektiv und deshalb zur Temperaturermittlung ungeeignet.

Abbildung: subjektives Wärmeempfinden

Temperatur als Zustandsgröße II

Temperatur ist eine messbare Größe, eine Zustandsgröße und ist eine skalare (richtungsunabhängige) Größe.

- Die SI-Basiseinheit der Temperatur ist das **Kelvin**¹ mit dem Kurzzeichen **K** und dem Formelzeichen *T*.
- Im Alltagsleben und in der Technik wird überwiegend die **Celsius-Temperaturskala**² verwendet, mit dem Formelzeichen ϑ .

¹Lord William Kelvin, englischer Physiker (1824 bis 1907)

²Anders Celsius, schwedischer Physiker (1701 bis 1744) () () () () () () () ()

Temperaturskalen I

Temperaturskalen II

Die Celsius-Skala

Wasser schmilzt bzw. erstarrt (gefriert), und Wasser siedet (verdampft) bzw. kondensiert (verflüssigt) in Abhängigkeit vom vorhandenen Luftdruck, bei einer bestimmten, d.h. festen Temperatur.

Temperaturskalen

Die Temperaturmessverfahren sind immer indirekte Messverfahren.

Körperfarbe, Körperform, Abmessungen der Körper, Elektrischer Widerstand, Kontaktspannung

- Flüssigkeitsthermometer
- Bimetallthermometer
- Elektrisches Widerstandsthermometer
- Das Thermoelement
- Pyrometer
- Segerkegel
- Thermochromfarben
- Thermographie

Veränderung des Volumens

unterschiedlicher Längenausdehnungskoeffizient

Änderung des elektrischen Widerstands

Änderung der Thermospannung

Änderung der Wärmestrahlung (IR-Strahlung)

Veränderung der Form

Thermochromfarben

 $\label{local-bound} Abbildung: Von IIVQ - Tijmen Stam - Eigenes Werk, CC BY-SA 3.0, \\ https://commons.wikimedia.org/w/index.php?curid=804449$

Veränderung der Farbe

Thermographie

Änderung der Wärmestrahlung (IR-Strahlung)

Beschreibung der Wärme als Energieform I

Energie kann in verschiedenen Arten auftreten, und ist meist von einer Art in eine andere Art umwandelbar.

- Mechan. Energie
- Kernenergie
- Chemische Energie
- Elektrische Energie
- Druckenergie
- Wärmeenergie u.a.

Simulation von Temperaturänderungen mittels Algoodo

Beschreibung der Wärme als Energieform II

Die Wärme ist eine Energieform. Man bezeichnet sie als Wärmeenergie.

- Die SI-Einheit der Wärmeenergie ist die Energieeinheit Joule³ mit dem Kurzzeichen J und dem Formelzeichen Q.
- Im Alltagsleben und in der Technik werden häufig die größeren Einheiten Kilojoule (kJ) und Megajoule (MJ) verwendet.

$$1\,J=1\,N\,m=1\,W\,s$$

Beschreibung der Wärme als Energieform III

Die früher gebräuchliche Einheit der Wärmeenergie war die Kilokalorie.

1kcal $\approx 4,19$ kJ

Der Mechanismus der Wärmespeicherung

Bei Zuführung von Wärmeenergie erhöht sich die Bewegungsenergie der Elementarbausteine und umgekehrt nimmt diese bei Wärmeabfuhr ab.

Beschreibung der Wärme als Energieform IV

Temperaturverlauf beim Erwärmen von Eis I

Temperaturverlauf beim Erwärmen von Eis II

 $Q_1
ightarrow ext{Temperaturerh\"ohung bis 0 °C}$

 $Q_2 \rightarrow$ Schmelzen des Eises bei 0 °C

 $Q_3 \rightarrow$ Temperaturerhöhung von 0 °C bis 100 °C

 $Q_4
ightarrow ext{Verdampfen des Wassers bei } 100\,^{\circ} ext{C}$

 $Q_5
ightarrow ext{Temperaturerh\"ohung des Dampfes \"uber } 100\,^{\circ}\text{C}$

Sensible und latente Wärmeenergie	
sensible Wärme	Die zu- oder abgeführte Energie ändert die
	Körpertemperatur.
latente Wärme	Die zu- oder abgeführte Energie ändert den
	Aggregatzustand oder die Gitterstruktur des
	Körpers bei konstanter Temperatur.