K-NN classification

In [1]:

```
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
fruits = pd.read_table('fruit_data_with_colors.txt')
```

In [2]:

```
fruits.head()
```

Out[2]:

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79

In [3]:

```
fruits.shape #59개 데이터 7개 클래스
```

Out[3]:

(59, 7)

In [6]:

```
lookup_fruit_name = dict(zip(fruits.fruit_label.unique(), fruits.fruit_name.unique()))
# x = [1, 2, 3] y = [a, b, c]
# zip (x, y) -> [1, a], [2, b], [3, c]
```

In [7]:

```
lookup_fruit_name
```

Out [7]:

```
{1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}
```

In [11]:

```
from matplotlib import cm

X = fruits[['height', 'width', 'mass', 'color_score']]
y = fruits['fruit_label']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0) #八三는 0
```

In [12]:

```
X_train.head() #랜덤하게
```

Out[12]:

	height	width	mass	color_score
42	7.2	7.2	154	0.82
48	10.1	7.3	174	0.72
7	4.0	5.8	76	0.81
14	7.3	7.6	152	0.69
32	7.0	7.2	164	0.80

In [14]:


```
In [15]:
```

```
X = fruits[['mass', 'width', 'height']]
y = fruits['fruit_label']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
```

In [17]:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 5)
knn.fit(X_train, y_train)
```

Out[17]:

KNeighborsClassifier()

In [18]:

```
knn.score(X_test, y_test)
```

Out [18]:

0.5333333333333333

In [19]:

```
knn.score(X_train, y_train)
```

Out[19]:

0.7954545454545454

In [20]:

```
fruit_prediction = knn.predict([[20, 4.3, 5.5]])
lookup_fruit_name[fruit_prediction[0]]
```

Out[20]:

'mandarin'

In [23]:

```
#parameter change
k_range = range(1, 20)
scores = []

for k in k_range:
    knn = KNeighborsClassifier(n_neighbors = k)
    knn.fit(X_train, y_train)
    scores.append(knn.score(X_test, y_test))
```

In [24]:

scores

Out [24]:

[0.6,

- 0.00000000000000000

- 0.3333333333333333333333

In [25]:

```
plt.figure()
plt.xlabel('k')
plt.ylabel('accuracy')
plt.scatter(k_range, scores)
```


Out [25]:

<matplotlib.collections.PathCollection at 0x1eOeb1abdf0>

In [32]:

```
#Sensitiveness of k-NN classification according to split proportion

t = [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]
knn = KNeighborsClassifier(n_neighbors = 5)

scores = []
for s in t:
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1 - s)
    knn.fit(X_train, y_train)
    scores.append(knn.score(X_test, y_test))
```

In [33]:

scores

Out[33]:

- 0.55555555555556,
- 0.70833333333333334,
- 0.47222222222222,
- 0.5238095238095238,

In [34]:

```
plt.figure()
plt.xlabel('Training set proportion')
plt.ylabel('accuracy')
plt.scatter(t, scores)
```


Out[34]:

<matplotlib.collections.PathCollection at 0x1e0eaf24be0>