1 κ precondition test

Consider a discretised incompressible Magnetohydrodynamics problem of the following form

$$\mathcal{K}_{\text{MH}} = \begin{pmatrix}
A + O & B^T & C^T & 0 \\
B & 0 & 0 & 0 \\
-C & 0 & M & D^T \\
0 & 0 & D & 0
\end{pmatrix}.$$
(1)

Using the inner-outer precondition

$$\mathcal{K}_{\text{MH}} = \begin{pmatrix}
F & B^T & C^T & 0 \\
0 & -S & 0 & 0 \\
-C & 0 & M+X & 0 \\
0 & 0 & 0 & L
\end{pmatrix},$$
(2)

from [Dan's thesis] and [Michael's thesis] as a starting point we re-oder the variables to (u,b,p,r) to yield

$$\mathcal{M}_{\text{MH}} = \begin{pmatrix} F & C^T & B^T & 0\\ -C & M + X & 0 & 0\\ 0 & 0 & -S & 0\\ 0 & 0 & 0 & L \end{pmatrix}. \tag{3}$$

Using the preconditioner $\mathcal{M}_{\mathrm{MHD}}$ depends on an efficient way to implement

$$\mathcal{M}_{\text{outer}} = \begin{pmatrix} F & C^T \\ -C & M + X \end{pmatrix}^{-1}.$$
 (4)

The approach used in [Dan's thesis] and [Michael's thesis] was to approximate $\mathcal{M}_{\text{outer}}$ with an "inner" GMRES solve taking the block diagonal matrices as

the preconditioner. However, this inner solver limits the efficiency of the preconditioning approach, therefore consider different possible approximations of $\mathcal{M}_{\text{outer}}$ may increase the performance of this approach. Performing block LDL decomposition gives two possible preconditions of the following form

$$\mathcal{M}_{1} = \begin{pmatrix} F & 0 \\ 0 & M + X + CF^{-1}C^{T} \end{pmatrix}, \quad \mathcal{M}_{2} = \begin{pmatrix} F + C^{T}(M+X)^{-1}C & 0 \\ 0 & M + X \end{pmatrix}.$$
(5)

It has been show that using \mathcal{M}_1 or \mathcal{M}_2 as a preconditioner for a Kyrlov subspace method yields exactly 3 eigenvalues [Murphy, Golub, Wathen]. Therefore, \mathcal{M}_1^{-1} or \mathcal{M}_2^{-1} may yield possible alternative and better approximations to $\mathcal{M}_{\text{outer}}$.

1.1 Approximation of $C^TA^{-1}C$ and $C\tilde{A}^{-1}C^T$ where A and \tilde{A} are Laplacians

The operator $\tilde{\mathcal{F}}u$ is given by

$$C\tilde{A}^{-1}C^{T}(u) = -b \times \{\nabla \times \Delta^{-1}[\nabla \times (u \times b)]\},$$

$$= -b \times \nabla \times \Delta^{-1}\nabla \times (u \times b).$$
 (6)

The second operator $\mathcal{F}b$ is given by

$$C^{t}A^{-1}C(b) = \nabla \times ([\Delta^{-1}\{-b \times (\nabla \times b)\}] \times b),$$

$$= -\nabla \times ([\frac{1}{2}\Delta^{-1}\nabla(b \cdot b)] \times b - [\Delta^{-1}(b \cdot \nabla)b] \times b),$$

$$= -\frac{1}{2}\nabla \times \Delta^{-1}\nabla(b \cdot b) \times b - \nabla \times \Delta^{-1}(b \cdot \nabla)b) \times b,$$

$$= \nabla \times \Delta^{-1}(-\frac{1}{2}\nabla(b \cdot b) \times b - (b \cdot \nabla)b) \times b),$$

$$= [\nabla \times \Delta^{-1}(\nabla \times b) \times b] \times b.$$
(7)

The efficiency of the two approaches $\mathcal{F}b$ and $\tilde{\mathcal{F}}u$ rely on a good approximation of $\nabla \times \Delta^{-1}\nabla$. In the resent technical report from [Phillips et. al] they

showed that

$$\nabla \times \Delta^{-1} \nabla c = -c.$$

Using this identity the two operators simplify to:

$$\tilde{\mathcal{F}}u = b \times (u \times b), \quad \mathcal{F}b = (b \times b) \times b.$$

Here we notice that for the simplification of $\mathcal{F}b$ has an $b \times b$ term which is identically zero. However, since the equations are linearised then

$$\mathcal{F}b = (b^k \times b) \times b^k.$$

In 2-dimensions, let $b^k=(b_1^k,b_2^k,0)$ and $b=(b_1,b_2,0)$ then

$$(b^k \times b) \times b^k = \begin{pmatrix} (b_2^k)^2 & -b_1^k b_2^k \\ -b_1^k b_2^k & (b_1^k)^2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Using $u = (u_1, u_2, 0)$ and linearising around the two magnetic terms in $\tilde{\mathcal{F}}u$ yields

$$b_k \times (u \times b_k) = \begin{pmatrix} (b_2^k)^2 & -b_1^k b_2^k \\ -b_1^k b_2^k & (b_1^k)^2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

1.2 Numerical testing

Construction of the precondition

$$\begin{pmatrix}
F & C^{T} & B^{T} & 0 \\
0 & M + X + CF^{-1}C^{T} & 0 & 0 \\
0 & 0 & S & 0 \\
0 & 0 & 0 & L
\end{pmatrix}, (8)$$

produces the following results

1	DoF	AV solve Time	Total picard time	picard iterations	Av Outer its
1	51	0.012178	0.455623	5	11.6
2	163	0.034960	0.543420	5	25.8
3	579	0.134840	1.109627	5	33.0
4	2179	1.488171	8.177399	5	35.2
5	8451	99.375478	498.770225	5	36.6

Table 1: $\kappa = 1$, $\nu_m = 1$ and $\nu = 1$

1	DoF	AV solve Time	Total picard time	picard iterations	Av Outer its
1	51	0.011994	0.536929	6	11.5
2	163	0.034794	0.649704	6	26.3
3	579	0.133624	1.359779	6	34.0
4	2179	1.463671	9.618563	6	36.7
5	8451	83.979013	505.978769	6	37.3

Table 2: $\kappa = 10, \, \nu_m = 1$ and $\nu = 1$

1	DoF	AV solve Time	Total picard time	picard iterations	Av Outer its
1	51	0.011866	0.616299	7	10.9
2	163	0.034967	0.756720	7	26.7
3	579	0.134432	1.582807	7	34.1
4	2179	1.464692	11.227711	7	36.4
5	8451	87.282682	613.476128	7	37.6

Table 3: $\kappa = 100$, $\nu_m = 1$ and $\nu = 1$

Now consider the following preconditioner

$$\begin{pmatrix}
F - C^{T}(M+X)^{(}-1)C & C^{T} & B^{T} & 0 \\
0 & M+X & 0 & 0 \\
0 & 0 & S & 0 \\
0 & 0 & 0 & L
\end{pmatrix}, (9)$$

Using this preconditioner yields:

1	DoF	AV solve Time	Total picard time	picard iterations	Av Outer its
1	51	0.012170	0.454375	5	11.6
2	163	0.034755	0.541899	5	25.8
3	579	0.134306	1.105293	5	33.0
4	2179	1.484157	8.151595	5	35.2
5	8451	117.987729	591.895518	5	36.6

Table 4: $\kappa=1,\,\nu_m=1$ and $\nu=1$

1	DoF	AV solve Time	Total picard time	picard iterations	Av Outer its
1	51	0.013092	3.153271	6	11.5
2	163	0.036800	0.730741	6	26.3
3	579	0.140951	1.440613	6	34.0
4	2179	1.817301	11.879250	6	36.7
5	8451	114.076549	686.811843	6	37.3

Table 5: $\kappa = 10, \, \nu_m = 1$ and $\nu = 1$

1	DoF	AV solve Time	Total picard time	picard iterations	Av Outer its
1	51	0.013156	3.384350	7	10.9
2	163	0.038609	0.911713	7	26.7
3	579	0.152467	1.862579	7	34.1
4	2179	2.115897	15.969938	7	36.4
5	8451	112.773827	792.175312	7	37.6

Table 6: $\kappa=100,\,\nu_m=1$ and $\nu=1$