Многочлены

1. Дан многочлен $f = a_n x^n + \ldots + a_0 \in \mathbb{R}[x]$ такой, что $a_n \geqslant 1 |a_n| \geqslant |a_i|$ для любого i от 0 до n. Докажите, что все его комлексные корни по модулю не превосходят $|2a_n|$.

На самом деле верна следующая оценка: для любого $f \in \mathbb{C}[x]$ корни многочлена лежат в окружности с центром в θ и радиусом a+1, где a — наибольший из модулей коэффициентов f.

- **2.** Дан многочлен $f = a_n x^n + \ldots + a_0 \in \mathbb{C}[x]$. Докажите, что центры масс корней многочленов f и f' совпадат.
- **3.** а) Пусть z_1, z_2, \ldots, z_n точки комплексной плоскости, являющиеся вершинами выпуклого n-угольника. Известно, что точка z удовлетворяет уравнению $\frac{1}{z-z_1} + \frac{1}{z-z_2} + \cdots + \frac{1}{z-z_n} = 0$. Докажите, что точка z лежит внутри этого n-угольника. 6) **Теорема Гаусса-Люка.** Корни производной многочлена $f \in \mathbb{C}[x]$ принадлежат выпуклой оболочке корней самого многочлена f.
- **4.** Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?