Resumão de Álgebra A Vinícius Claudino Ferraz

$\varphi(p) = p - 1$	(1)
$\varphi(p^n) = p^{n-1}(p-1)$	(2)
$m = p_1^{n_1} \cdots p_r^{n_r} \Rightarrow \varphi(m) = p_1^{n_1 - 1} \cdots p_r^{n_r - 1} (p_1 - 1) \cdots (p_r - 1)$	(3)
$(a,m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$	(4)
$(a,p) = 1 \Rightarrow a^{p-1} \equiv 1 \mod p$	(5)
$a^p \equiv a \mod p$	(6)
$ax \equiv b \mod m, (a, m) = 1 \Rightarrow x \equiv ba^{\varphi(m)-1} \mod m$	(7)
$(p-1)! + 1 \equiv 0 \mod p$	(8)
$(n-1)! + 1 \equiv 0 \mod n \Rightarrow n \in \text{primo}.$	(9)
$(m_i,m_j)=1, X\equiv a_i \mod m_i \Rightarrow M=\Pi m_i, M_i=\frac{M}{m_i}, M_ix_i\equiv 1 \mod m_i, \exists !X\equiv \Sigma m_ix_ia_i \mod M$	(10)
$C \equiv aP + b \mod 26$	(11)
$P \equiv a^{-1}(C - b) \mod 26$	(12)
$C_i \equiv P_i + k_i \mod 26$	(13)
$C \equiv AP \mod 26$	(14)
$P \equiv A^{-1}C \mod 26$	(15)
$C \equiv P^e \mod p$	(16)
$de \equiv 1 \mod (p-1)$	(17)
(e, p-1) = 1	(18)
$C^d \equiv P \mod p$	(19)
$n = p_1 p_2$	(20)
$(e, \varphi(n)) = 1$	(21)
$C \equiv P^e \mod n$	(22)
$de \equiv 1 \mod \varphi(n)$	(23)
$C^d \equiv P \mod n$	(24)