VE320 – Summer 2021

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 5 Carrier Transport Phenomena

Outline

5.1 Carrier drift

- 5.2 Carrier diffusion
- 5.3 Graded impurity distribution

Drift current density

Drift current

$$I_{drf} = \frac{\Delta Q}{\Delta t} = \frac{q p_0 A_c \Delta L}{\Delta t} = q p_0 A_c v_d$$

for p type semiconductor, $p_0 \gg n_0$

ρ: charge density

$$I_{drf} = \frac{\Delta Q}{\Delta t} = \frac{q p_0 \Delta L A_c}{\Delta t} = \frac{p_0 q}{p_0 q} v_d A_c$$

Drift current density

Drift current

$$I_{drf} = \frac{\Delta Q}{\Delta t} = \frac{q p_0 A_c \Delta L}{\Delta t} = q p_0 A_c v_d$$

for p type semiconductor, $p_0 \gg n_0$

ρ: charge density

$$I_{drf} = \frac{\Delta Q}{\Delta t} = \frac{q p_0 \Delta L A_c}{\Delta t} = \frac{p_0 q}{p_0 q} v_d A_c$$

$$L = \frac{1}{2}at^{2} \rightarrow t = \sqrt{2L/a}$$

$$\rightarrow vd = at = \sqrt{2La} = \sqrt{2LqE/m_{cp}^{*}}$$

$$E = V/L \rightarrow vd = \sqrt{2qV/m_{cp}^{*}}$$

$$\therefore I_{drf} = q p_0 \sqrt{2qV/m_{cp}^*} A_c$$

However, Ohm's Law tells us: $I = \sigma \cdot V$

Drift current density

Resistor heating up by current

Thermal vibration of lattice ←→ phonon

impurity

Impurity scattering

$$F = m_{cp}^* \frac{dv}{dt} = qE \implies v = \frac{qEt}{m_{cp}^*}$$
 if the initial drift velocity is zero

But the scattering is a random process

 \Rightarrow the mean time between collisions: τ_{cp}

Drift current density

$$v_d pprox \left(rac{q au_{cp}}{m_{cp}^*}
ight)E \quad \Rightarrow \quad rac{v_d}{E} = rac{q au_{cp}}{m_{cp}^*} = \mu_p \; (for \; holes)$$

$$rac{v_d}{E} = rac{q au_{cn}}{m_{cn}^*} = \mu_n \; (for \; electrons)$$

$$I_{drf} = \frac{\Delta Q}{\Delta t} = \frac{q p_0 A_c \Delta L}{\Delta t} = q p_0 A_c v = q p_0 A_c \mu_p E = q p_0 A_c \mu_p \frac{V}{L} = \sigma \cdot V$$

Drift current density

Hole drift current

Electron drift current

$$J_{p_{\parallel}drf} = q p_0 \mu_p E$$

$$J_{n_{\parallel}drf} = q n_0 \mu_n E$$

Both electrons and holes contribute to current:

$$J_{drf} = q(p_0\mu_p + n_0\mu_n)E$$

Table 5.1 | Typical mobility values at T = 300 K and low doping concentrations

	μ_n (cm ² /V-s)	$\mu_p (\text{cm}^2/\text{V-s})$
Silicon	1350	480
Gallium arsenide	8500	400
Germanium	3900	1900

Mobility effect

$$\frac{v_d}{E} = \frac{q\tau_{cp}}{m_{cp}^*} = \mu_p$$

$$\frac{v_d}{E} = \frac{q\tau_{cn}}{m_{cn}^*} = \mu_n$$

Resistor heating up by current

Thermal vibration of lattice ←→ phonon

Lattice scatterings shorten $\tau_{cp} \Rightarrow \mu_L \propto T^{-3/2}$

• Impurity scatterings $Impurity\ scatterings\ shorten\ \tau_{cp} \Rightarrow\ \mu_I \propto \frac{T^{3/2}}{N_d^+ + N_a^-}$

Mobility effect

Conductivity

$$J_{drf} = q(p_0 \mu_p + n_0 \mu_n) E \implies \rho = \frac{1}{\sigma} = \frac{1}{q(\mu_n n + \mu_p p)}$$

For n-type doped semiconductor:

$$\rho = \frac{1}{\sigma} = \frac{1}{q\mu_n n} = \frac{1}{q\mu_n N_d}$$

For p-type doped semiconductor:

$$\rho = \frac{1}{\sigma} = \frac{1}{q\mu_n p} = \frac{1}{q\mu_n N_a}$$

Conductivity

Previously... Ionization of dopants

Velocity saturation

$$\frac{1}{2}mv_{th}^2 = \frac{3}{2}kT = 0.03885eV (300K)$$

 \Rightarrow thermal velocity $v_{th} \approx 10^7$ cm/s

Drift velocity $v_d = \mu_n E$

$$\Rightarrow E = \frac{v_d}{\mu_n} = \frac{10^7 cm/s}{1350 cm^2/(Vs)} = 7 \times 10^3 V/cm$$

Velocity saturation

$$v_d \rightarrow v_{th}$$

- Electric field is heating up electrons
- Electrons transfer energy to lattice to reach thermal equilibrium

$$v_n = \frac{v_s}{\left[1 + \left(\frac{E_{\text{on}}}{E}\right)^2\right]^{1/2}}$$

$$v_p = \frac{v_s}{\left[1 + \left(\frac{E_{op}}{E}\right)^2\right]^{1/2}}$$

Probably a typo in textbook

Velocity saturation

Problem Example

A bar of p-type silicon at 300K in the figure below has a cross-sectional area $A = 10^{-6}$ cm² and a length $L = 1.2 \times 10^{-3}$ cm. For an applied voltage of 5V, a current of 2mA is required. What is the required (a) resistance, (b) resistivity, and (c) impurity doping concentration? (d) What is the resulting hole mobility?

Outline

5.1 Carrier drift

5.2 Carrier diffusion

5.3 Graded impurity distribution

Diffusion current density

Diffusion current density

Net rate of electron flow in the +x direction at x=0:

$$F_n = \frac{1}{2}n(-l)v_{th} - \frac{1}{2}n(+l)v_{th} = \frac{1}{2}v_{th}[n(-l) - n(+l)]$$

$$n(-l) = n(0) - l\frac{dn}{dx}$$

$$n(+l) = n(0) + l\frac{dn}{dx}$$

$$F_n = -v_{th}l\frac{dn}{dx}$$

Electron current density: $J = -qF_n = qv_{th}l\frac{dn}{dx}$

Diffusion current density

In the end, l is limited to be the mean free path $v_{th}\tau_{cn}$, $v_{th}l$ will become a constant (D_n) at a given temperature for specific material

Electron diffusion current density:
$$J_{nx|dif} = -qF_n = qD_n \frac{dn}{dx}$$

 D_n is called the electron diffusion coefficient

Hole diffusion current density:
$$J_{px|dif} = qF_p = -qD_p \frac{dp}{dx}$$

D_p is called the hole diffusion coefficient

Diffusion current density

Total current density

$$J = J_{drf} + J_{dif} = J_{n|drf} + J_{p|drf} + J_{n|dif} + J_{p|dif}$$

$$= qn\mu_n E_x + qp\mu_p E_x + qD_n \frac{dn}{dx} - qD_p \frac{dp}{dx}$$

$$J = qn\mu_n E_x + qp\mu_p E_x + qD_n \nabla n - qD_p \nabla p$$

Problem Example

The hole density in silicon is given by $p(x) = 10^{16} \exp(-x/L_p)$ ($x \ge 0$) where $L_p = 2 \times 10^{-4}$ cm. Assume the hole diffusion coefficient is $D_p = 8 \text{cm}^2/\text{s}$. Determine the hole current density at $x = 2 \times 10^{-4}$ cm.

$$J_{p|diff} = -qD_p \frac{dp}{dx}$$

Outline

- 5.1 Carrier drift
- 5.2 Carrier diffusion
- 5.3 Graded impurity distribution

Induced electric field

• Induced electric field

The Einstein relation

$$E_x = -\frac{d\phi}{dx} = \frac{1}{q} \frac{dE_i}{dx}$$
$$= \frac{1}{q} \frac{kT}{n(x)} \frac{dn(x)}{dx}$$

$$\phi = \frac{1}{q} (E_F - E_i)$$

$$E_x = -\frac{d\phi}{dx} = \frac{1}{q} \frac{dE_i}{dx}$$

$$n = n_i \exp(\frac{E_F - E_i}{kT})$$

$$E_F - E_i = kT ln(n/n_i)$$

Drift current = diffusion current

 $J_{n,drift} = qn(x)\mu_n|E|$

The Einstein relation

$$J_{n,drift} = qn(x)\mu_n|E| = qD_n \frac{dn(x)}{dx} = J_{n,diff}$$

$$qn(x)\mu_n \left(\frac{1}{q} \frac{kT}{n(x)} \frac{dn(x)}{dx}\right) = qD_n \frac{dn(x)}{dx}$$

$$qn(x)\mu_n \left(\frac{1}{q} \frac{kT}{n(x)} \frac{dn(x)}{dx}\right) = qD_n \frac{dn(x)}{dx}$$

$$E_x = -\frac{d\phi}{dx} = \frac{1}{e} \frac{dE_i}{dx}$$
$$= \frac{1}{q} \frac{kT}{n(x)} \frac{dn(x)}{dx}$$

$$D_n = \frac{\mu_n kT}{q}$$

Problem Example

Assume the donor concentration in an n-type semiconductor at T =300K is given by $N_d(x) = 10^{16} exp(-x/L)$ where $L = 2 \times 10^{-2}$ cm. Determine the induced electric field and drift current density in the semiconductor at $x = 2 \times 10^{-2}$ cm. Note $\mu_n \approx 1350 \text{ cm}^2/\text{Vs}$ and $1200 \text{ cm}^2/\text{Vs}$ near the doping concentration of $3.68 \times 10^{15} \text{ cm}^{-3}$ and 10^{16} cm^{-3} , respectively.

$$E_{x} = \frac{1}{q} \frac{kT}{n(x)} \frac{dn(x)}{dx}$$