

Machine Predictive Maintenance Classification Description

CS 677 Data Science in Python

Final project

Haowen Wang

Dataset Description

UID: unique identifier ranging from 1 to 10000

Productid: consisting of a letter L, M, or H for low (50% of all products), medium (30%), and high (20%) as product quality variants and a variant-specific serial number

Air Temperature [K]: generated using a random walk process later normalized to a standard deviation of 2 K around 300 K

Process Temperature [K]: generated using a random walk process normalized to a standard deviation of 1 K, added to the air temperature plus 10 K.

Rotational Speed [rpm]: calculated from Powe power of 2860 W, overlaid with a normally distributed noise

Torque [Nm]: torque values are normally distributed around 40 Nm with an $\ddot{l}f = 10$ Nm and no negative values.

Tool Wear [min]: The quality variants H/M/L add 5/3/2 minutes of tool wear to the used tool in the process.

Target : Failure or Not

Failure Type : Type of Failure

Feature Selection and Tasks

Feature Selection:

- Numeric Inputs: Air temperature, process temperature, rotational speed, torque and tool wear.
- Categorical Input: productid(consisting of letter L, M, or H as product quality variants)
- Target Variables: Target(Binary outcomes consisting of 0 and 1), Failure Type(Multi-class outcomes)

► Tasks:

- Implement multiple machine learning models to predict either binary outcomes of Target and multiclass outcomes of failure type.
- Explore feature importance from different models.

- Data point overview from pair plot.
- Clear patterns of positive outcome class from Target column compared to other datapoints in the dataset.

Data Cleaning And Preprocessing For Binary Outcomes

- No missing values in my dataset
- Since my project consists of multiple machine learning models which requires different data preprocessing steps, column transformation is implemented at preprocessing steps
- Split the dataset with 50% training and 50% testing data

Modeling and Tunning

- Pipeline function is deployed here because it is convenient when working with various model types
- Tunning models' performance is critical, allowing models itself to enhance the ability of capturing positive cases
- GridSearchCV from Sklearn provides us with algorithm of hyper-parameter optimization methods for tunning
- Input parameters vary depending on different model
- Best parameters are found and fit to generate new model for classification purpose
- Summary statistics and feature importance if available

Parameters

Models	Parameters
Naïve Bayesian	Var smoothing: 0.1
Logistic	C: 1, penalty: l2, solver: liblinear
Decision Tree	Max depth: 10, max features: None, min samples leaf: 2, min samples split: 10
Random Forest	Default
K-NN	metric: manhattan, n neighbors: 13, weights: distance
Gaussian SVM	C: 100, gamma: 0.1, kernel: rbf
LDA	n components: 1, shrinkage: auto, solver: lsqr
QDA	Reg param: 0.8
AdaBoost	Base estimator: DecisionTreeClassifier, learning rate: 0.01, n estimators: 50
XgBoost	gamma: 0, learning rate: 0.2, max depth: 5, min child weight: 1, n estimators: 50

	TP	FP	TN	FN	accuracy	TPR	TNR
Model							
naive bayesian	36	39	4798	127	0.97	0.22	0.99
logistic	30	11	4826	133	0.97	0.18	1.00
decision tree	100	42	4795	63	0.98	0.61	0.99
random forest	93	13	4824	70	0.98	0.57	1.00
K-NN model k_13	27	10	4827	136	0.97	0.17	1.00
Gaussian SVM	90	18	4819	73	0.98	0.55	1.00
LDA	60	40	4797	103	0.97	0.37	0.99
QDA	31	11	4826	132	0.97	0.19	1.00
AdaBoost	107	16	4821	56	0.99	0.66	1.00
XGBoost	105	22	4815	58	0.98	0.64	1.00

Summarized Results For Binary Outcomes

- AdaBoost(Tree) has the highest overall accuracy
- AdaBoost, Gaussian SVM and decision tree are more efficient in predicting maintenance failures.

	p_df_RF	
	_importance	Column_Name
	0.315828	Rotational speed [rpm]
	0.224035	Process temperature [K]
	0.157056	Torque [Nm]
	0.151477	Туре
	0.127611	Air temperature [K]
	0.005034	Tool wear [min]
re_	imp_df_LG	
eatur	e_importance	Column_Name
		ooiaiiii_itaiiio
	2.561496	Rotational speed [rpm]
	2.561496	Rotational speed [rpm]
	2.561496 1.869376	Rotational speed [rpm] Process temperature [K]
	2.561496 1.869376 1.516970	Rotational speed [rpm] Process temperature [K] Type
	2.561496 1.869376 1.516970 0.698144	Rotational speed [rpm] Process temperature [K] Type Torque [Nm]
	2.561496 1.869376 1.516970 0.698144 -1.007482	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K]
	2.561496 1.869376 1.516970 0.698144 -1.007482	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K]
	2.561496 1.869376 1.516970 0.698144 -1.007482 -1.517753	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K]
ure_:	2.561496 1.869376 1.516970 0.698144 -1.007482 -1.517753	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K]
ure_:	2.561496 1.869376 1.516970 0.698144 -1.007482 -1.517753 imp_df_DT	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K] Tool wear [min]
ure_:	2.561496 1.869376 1.516970 0.698144 -1.007482 -1.517753 imp_df_DT e_importance	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K] Tool wear [min] Column_Name
ure_:	2.561496 1.869376 1.516970 0.698144 -1.007482 -1.517753 imp_df_DT e_importance 0.355000	Rotational speed [rpm] Process temperature [K] Type Torque [Nm] Air temperature [K] Tool wear [min] Column_Name Rotational speed [rpm]

Air temperature [K]

Tool wear [min]

0.076562

0.000000

Feature Importance From Binary Outcome Models

- Rotational Speed contributes most among all four models.
- ► Tool wear contributes the least predictive power among them.
- Slightly different results of Torque, Process temp and Type among Random Forest Model, Logistic Regression Model and AdaBoost.

feature_imp_df_AB

	Feature_importance	Column_Name
3	0.329015	Rotational speed [rpm]
4	0.208947	Torque [Nm]
2	0.172684	Process temperature [K]
0	0.146546	Туре
1	0.123758	Air temperature [K]
5	0.002858	Tool wear [min]

Multi-Class Classification

- My target variable becomes column Failure Type which contains 6 outcome categories
- Preprocessing steps are implemented the same way as before
- Split the data with 50% training set and 50% testing set
- Models such as XGBoost require specific label encoding method for classification

Parameters

Models	Parameters
Naïve Bayesian	Var smoothing: 0.1
Logistic	Multi class=multinomial, solver=lbfgs, C: 10, penalty: l2
Random Forest	criterion=entropy, Default
AdaBoost	Base estimator: RandomForestClassifier(criterion='entropy', random_state=3), learning rate: 0.01, n estimators: 50
XgBoost	objective=multi:softmax, gamma: 0.1, learning rate: 0.1, max depth: 4, min child weight: 2, n estimators: 100, num class: 6

accuracy

Model

naive bayesian	0.9516
logistic	0.9812
random forest	0.9808
AdaBoost	0.9798
XGBoost	0.9838

Summarized Results For Multi-class Prediction

- XGBoost Model provides the highest accuracy overall.
- ► Naïve Bayesian Model provides the least accuracy here.

conf_matrix_NLR

	Heat Dissipation Failure	No Failure	Overstrain Failure	Power Failure	Random Failures	Tool Wear Failure
Heat Dissipation Failure	26	18	3	0	0	0
No Failure	13	4812	2	6	0	1
Overstrain Failure	0	11	34	0	0	0
Power Failure	1	6	6	34	0	0
Random Failures	0	7	0	0	0	0
Tool Wear Failure	0	19	1	0	0	0

conf_matrix_NRF

	Heat Dissipation Failure	No Failure	Overstrain Failure	Power Failure	Random Failures	Tool Wear Failure
Heat Dissipation Failure	22	20	4	1	0	0
No Failure	1	4828	2	3	0	0
Overstrain Failure	0	23	22	0	0	0
Power Failure	1	12	2	32	0	0
Random Failures	0	7	0	0	0	0
Tool Wear Failure	0	20	0	0	0	0

conf_matrix_NAB

	Heat Dissipation Failure	No Failure	Overstrain Failure	Power Failure	Random Failures	Tool Wear Failure
Heat Dissipation Failure	22	20	4	1	0	0
No Failure	2	4826	1	5	0	0
Overstrain Failure	0	24	21	0	0	0
Power Failure	1	14	2	30	0	0
Random Failures	0	7	0	0	0	0
Tool Wear Failure	0	20	0	0	0	0

Confusion Matrix for Multi-Class Outcomes

feature_imp_df_NRF

Column_Name	Feature_importance	
Rotational speed [rpm]	0.281549	3
Process temperature [K]	0.233290	2
Torque [Nm]	0.199051	4
Туре	0.148997	0
Air temperature [K]	0.110868	1
Tool wear [min]	0.004920	5

feature_imp_df_NLG

Column_Name	Feature_importance	
Туре	7.910659	0
Tool wear [min]	0.692992	5
Rotational speed [rpm]	-2.619535	3
Torque [Nm]	-2.732763	4
Air temperature [K]	-5.498331	1
Process temperature [K]	-6.738190	2

feature_imp_df_NAB

Column_Name	Feature_importance	
Rotational speed [rpm]	0.270914	3
Process temperature [K]	0.245492	2
Torque [Nm]	0.193578	4
Туре	0.153775	0
Air temperature [K]	0.109238	1
Tool wear [min]	0.005315	5

Feature Importance From Multi-class Outcome Models

Different results of feature importance from different models.

Clustering

Clustering

- > 3 clusters are implemented here
- No pure cluster
- Cluster 1 has the highest proportion of positive outcome class compared to others

Navigating Challenges

- ► Feature that contributes most to the predictive power of my models does not show a clear pattern in pair plot visualization.
- Containing categorical inputs even it is preprocessed does not make sense in distance-based models such as K-NN and SVM.
- After dropping, accuracy rate and TPR rate decreased which leads to worse performance of distance-based models.

Future Improvements

- Hyper parameter optimization of some particular models takes too much which are computationally inefficient
- Dataset is under sampled since positive outcome class represents only 5% of the entire dataset
- Naïve Bayesian model requires adjustment because the dataset might not be normally distributed
- Implement both Gaussian NB model and Multinomial NB model to compare the performance
- Explore further models such as neural networks

