Design and Analysis of Algorithms: Lecture 2

Ben Chaplin

Contents

1	\mathbf{Div}	ivide & Conquer		
	1.1	Paradigm	1	
2	The	Convex Hull problem		
	2.1	Definitions	1	
	2.2	Brute-force algorithm	1	
	2.3	Brute-force runtime	2	
	2.4	Divide & conquer algorithm	2	

1 Divide & Conquer

1.1 Paradigm

Given a problem of size n, the general strategy of divide & conquer can be summarized:

- 1. Divide the problem into $a\ (a \ge 1)$ subproblems of size $\frac{n}{b}\ (b > 1)$.
- 2. Recursively solve subproblems.
- 3. Combine solutions of the subproblems into one overall solution.

2 The Convex Hull problem

2.1 Definitions

Definition. Given a set of points S on the real plane, **convex hull of S** (CH(S)) is the smallest convex polygon containing all of the points in S.

We'll represent a convex hull as a sequence of points in clockwise order.

2.2 Brute-force algorithm

Algorithm 1 Brute-force algorithm for the Convex Hull problem

Input

- S a set of points in the real plane, where:
 - 1. no two points have the same x-coordinate,
 - 2. no two points have the same y-coordinate,
 - 3. and no three points are colinear

Output

CH(S) the convex hull of S (as a sequence of points in clockwise order)

```
C ← {}
for each pair of points p, q ∈ S do
Draw the line which holds both points
if all remaining points lie on one side of the line then
Add the points p, q to C
end if
end for
return the elements of C, clockwise-ordered
```

2.3 Brute-force runtime

The brute-force algorithm:

- 1. iterates $O(n^2)$ times (line 2)
- 2. during each, iterates O(n) times (line 4)

The sorting of the elements before returning runs in linear time and occurs only once, therefore, **Algorithm 1** runs in $O(n^3)$ time.

2.4 Divide & conquer algorithm

Algorithm 2 Divide & conquer algorithm for the Convex Hull problem

Input

- S a set of points in the real plane, where:
 - 1. no two points have the same x-coordinate,
 - 2. no two points have the same y-coordinate,
 - 3. and no three points are colinear

Output

CH(S) the convex hull of S (as a sequence of points in clockwise order)

1: b