대수적으로 이차부등식 풀기
$$(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$$
 (Solving Quadratic Inequalities $(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra)

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

Let $D = b^2 - 4ac$

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$
Let $D = b^2 - 4ac$

Let
$$D=b^2-4ac$$
 $D>0$: Let

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

Let $D = b^2 - 4ac$

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

Let $D = b^2 - 4ac$

$$ax^2 + bx + c > 0 \; (a>0,\; b,c\in\mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and β

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and β be roots

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and β be roots of

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$

$$ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$.

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$.

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha$

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha$ or

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ proof
- D = 0

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ • proof
- D = 0

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ • proof
- D = 0 $\therefore x$

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ proof
- D = 0 $\therefore x \neq -\frac{b}{2a}$

$$ax^2 + bx + c > 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ • proof
- D = 0 $\therefore x \neq -\frac{b}{2a}$ proof
- D < 0</p>

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ • proof
- D = 0 $\therefore x \neq -\frac{b}{2a}$ proof
- D < 0

$$ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $\therefore x < \alpha \text{ or } x > \beta$ proof
- D = 0 $\therefore x \neq -\frac{b}{2a}$ proof
- D < 0 $\therefore \mathbb{R} \quad \text{proof}$

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c > 0$$

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

From Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let α and β

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let α and β be roots

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let α and β be roots of $ax^2 + bx + c = 0$

Solving Quadratic Inequalities $(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$.

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $(\because b^2 - 4ac > 0)$

Solving Quadratic Inequalities $(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$. $(\because b^2 - 4ac > 0)$

$$(x - \alpha)(x - \beta) > 0$$

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0$$

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow$$

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

ii)
$$x - \alpha < 0, x - \beta < 0$$

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow$$

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow x < \alpha$$

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)>0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow x < \alpha$$

by i), ii)

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow x < \alpha$$

by i), ii) ...

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0, x - \beta > 0 \Rightarrow x > \beta$$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow x < \alpha$$

by i), ii) $\therefore x < \alpha$

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) > 0$$

i)
$$x - \alpha > 0$$
, $x - \beta > 0 \Rightarrow x > \beta$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow x < \alpha$$

by i), ii) $\therefore x < \alpha$ or

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)>0$$

i)
$$x - \alpha > 0$$
, $x - \beta > 0 \Rightarrow x > \beta$

ii)
$$x - \alpha < 0, x - \beta < 0 \Rightarrow x < \alpha$$

by i), ii) $\therefore x < \alpha \text{ or } x > \beta$

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

Home Start
$$ax^2 + bx + c > 0$$

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start Find
$$ax^2+bx+c > 0 \quad (a>0, \ b,c\in\mathbb{R})$$

$$x^2+\frac{b}{a}x+\frac{c}{a} > 0 \quad (\because a>0)$$

From Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$

Home
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} > 0$$

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, \ b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} > 0$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} > 0$ $\left(x + \frac{b}{2a}\right)^2 > 0 \quad (\because b^2 - 4ac = 0)$

Home
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} > 0$$

$$\left(x + \frac{b}{2a}\right)^2 > 0 \quad (\because b^2 - 4ac = 0)$$

$$\therefore x \neq -\frac{b}{2a}$$

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

→ Home → Start → End

Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c > 0$$

Solving Quadratic Inequalities $(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start Find
$$ax^2+bx+c>0 \quad (a>0,\ b,c\in\mathbb{R})$$
 $x^2+\frac{b}{a}x+\frac{c}{a}>0 \quad (\because a>0)$

Home Start Lend
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$

Home Start Find
$$ax^{2} + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} > 0$$

$$\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} > 0$$

Home Start Find
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} > 0$$

$$\therefore \mathbb{R}$$

Home
$$ax^2 + bx + c > 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} > 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} > 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} > 0$$

 $\therefore \mathbb{R} (:: b^2 - 4ac < 0)$

Github:

https://min7014.github.io/math20210502002.html

Click or paste URL into the URL search bar, and you can see a picture moving.