CS 540 Fall 2019

Problem 2. Constraint Satisfaction Problems [20 points]

Consider the following graph representing 7 countries on a map that needs to be colored using three different colors, 1, 2 and 3, so that no adjacent countries have the same color. Adjacencies are represented by edges in the graph. We can represent this problem as a CSP where the variables are the countries and the values are the colors.

- (a) [5] What are the domains of all the variables after applying Forward Checking inference with variables ordered alphabetically (from A to G) and values ordered increasingly (from 1 to 3), assuming you start with each variable having all possible values except it is known that A has value 1 and E has value 2?
- (b) [10] Apply the Backtracking Search algorithm (Figure 6.5 in the textbook) with Forward Checking inference (Section 6.3.2), assuming you start with each variable having *all* possible values. Variables and values are chosen following alphabetical ordering of the variables (A to G) and increasing order of the values (1 to 3), respectively. Show your result as a search tree where each node in the tree shows each variable with its set of possible values. Arcs in the search tree should be labeled with an assignment of a selected value to a selected variable. If a solution is found, show the final coloring of the map. The search tree only needs to show nodes and arcs until a single solution is found.
- (c) [5] What are the domains of all the variables after applying Arc-Consistency (AC-3) inference (Figure 6.3) with variables ordered alphabetically and values ordered increasingly, assuming you start with each variable having all possible values except it is known that A has value 1, B has value 1, and C has value 2? List all the possible outcomes.

(C). A=1	1: 1, 2, 3	B: 1, 2, 3	C: 1, 2, 3	D= 1, 2, 3	E: 1, 2, 3	F: 1, 2, 3	G= 1, 2, 3
	4: 1	B: 1,2,3	C: 2,3	D: 1. 2, 3	E: 2,3	F; 1.2,3	G= 1, 2, 3
propagate:		B= 1, 2, 3	C=2,3	D:1, 2,3	E: 2,3	F: 1,2,3	G= 1, 2, 3
B=1	<i>\:</i> \	B: 1	C: 2,3	D: 2,3	E: 2, 3	F: 2,3	G. 2,3
propagati c=2(e A=1	B: 1	C: 2,3	D: 2,3	E: 2,3	F: 2,3	G: 2,3
	> A = 1	B= 1	C: 2	D: 2,3	E:3	F: 2,3	G. 2,3
	(1) A: 1	B: 1	C: 2	D; 2,3	E: 3	F: 2	G.
	② A: 1	B= 1	C: 2	D: 2,3	E: 3	F:	G= 2
	3 A= 1	B: 1	C: 2	D: 3	E:3	F: 2	G=
	4 A= 1	B= 1	C: 2	D: 2	E:3	F:	Gz 2
	5 A= 1	B= 1	C: 2	D: 2,3	E:	F: 3	G= 2
	Answe	er J					
	•						