Условие лабораторной работы

Разработать имитационную модель функционирования одноканальной разомкнутой СМО с одним типом заявок. Пользователь должен задавать интенсивность поступления заявок и интенсивность их обслуживания. Буфер имеет бесконечную ёмкость. Пользователю должны отображаться значения интенсивности поступления заявок, интенсивности обслуживания и загрузка.

равномерное распределение;

Теоретическая часть

1. Распределения

Случайная величина имеет равномерное распределение на отрезке [a;b], где $a,b \in \mathbb{R}$, если её плотность распределения $f_X(x)$ имеет следующий вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b] \\ 0, & x \notin [a;b] \end{cases}$$

Интегрируя функцию плотности распределения, можно получить соответствующую её функцию распределения:

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x < b. \\ 1, & x \ge b \end{cases}$$

2. Понятия планирования эксперимента

Эксперимент – система операции, воздействий и (или) наблюдений, направленных на получение информации об объекте при исследовательских испытаниях.

Опыт – воспроизведение исследуемого явления в определённых условиях проведения эксперимента при возможности регистрации его результатов.

План эксперимента – совокупность данных, определяющих число, условия и порядок реализации опытов.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям.

Фактор – переменная величина, по предположению влияющая на результаты эксперимента.

Отклик – наблюдаемая случайная переменная, по предположению зависящая от факторов.

Функция отклика — зависимость математического ожидания отклика от факторов. Значение наблюдаемой переменной, полученное в ходе эксперимента, складываются из функции отклика и погрешности значения, полученного в результате эксперимента:

$$y = f(x) + \varepsilon(x),$$

где f(x) – функция отклика, $\varepsilon(x)$ – ошибка эксперимента.

Планирование эксперимента позволяет строить регрессионную модель и предсказать результаты будущих экспериментов в точке факторного пространства — пространства, координатные оси которого соответствуют значениям факторов.

Примеры работы программы

Моделирование выполняется с помощью метода Δt , который заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент t. Достоинством данного метода является равномерность протягивания модельного времени. Основной недостаток этого принципа заключается в значительных затратах машинного времени на реализацию моделирования системы. При недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Интенсивность поступления заявок λ — частота появления событий в единицу времени. Интенсивность обработки заявки μ — частота обработки событий в единицу времени. Загрузка ρ — отношение интенсивности потока поступления к интенсивности обработки:

$$\rho = \frac{\lambda}{\mu}.$$

С помощью параметра ρ можно оценить, находится ли система в стационарном режиме (для стационарного режима $\rho < 0$).

При моделировании на параметрах по умолчанию ([a, b] = [0; 10], σ = 5) в среднем были получены следующие значения:

- 1) интенсивность поступления заявок $\lambda = 0.20$;
- 2) интенсивность обработки заявок $\mu = 4,29$;
- 3) загрузка $\rho = 0.05$.

В работе был проведён пассивный эксперимент. График, представленный на рисунке 1, отражает зависимость времени ожидания от загрузки. При варьировании параметров при проведении пассивных экспериментов система находится в стационарном состоянии, но, если загрузка превышает единицу, система переходит в нестационарное состояние. На основе проведённых экспериментов можно оценить интервалы варьирования факторов.

Рисунок 1. График.