Линейная алгебра, тема 1. Векторы и тригонометрия

Вектор в линейной алгебре — это направленный отрезок, для которого указаны его начало и конец. Обозначение: \vec{a} или \overline{AC} .

Главные характеристики вектора: длина и направление. Пока они неизменны, вектор можно как угодно перемещать в пространстве. Если же изменить один из этих параметров, то получится новый вектор.

Вектор в линейной алгебре — это упорядоченный набор числовых данных. Запись вектора алгебраически: $\vec{a}=(1,2,17)$.

Длиной вектора \overline{AB} называют длину отрезка AB. Обозначение: $|\overline{AB}|$.

Нулевой вектор — вектор, у которого совпадают начало и конец. Длина нулевого вектора равна нулю. $|\vec{0}|=0$.

С точки зрения геометрии два вектора **равны**, если они одинаково направлены и их длины равны.

С точки зрения линейной алгебры два вектора $\vec{a}=(\alpha_1,\alpha_2,...,\alpha_n)$ и $\vec{b}=(\beta_1,\beta_2,...,\beta_n)$ равны, если равны все их соответствующие координаты. То есть $\forall \ 1\leqslant i\leqslant n \ \alpha_i=\beta_i.$

Сложение и вычитание векторов. Геометрический подход

Правило треугольника:

- 1. Отложить первый вектор от точки (0,0).
- 2. Отложить от его конца второй вектор.
- 3. Суммой будет вектор, начало которого совпадает с началом первого вектора, а конец с концом второго.

Правило параллелограмма:

- 1. Отложить оба вектора от точки (0,0).
- 2. От конца первого вектора отложить вектор, равный второму.
- 3. От конца второго вектора отложить вектор, равный первому.
- 4. Вектором суммы будет диагональ полученного параллелограмма, исходящая из точки (0,0).

Правило многоугольника:

- 1. Отложить первый вектор от точки (0,0).
- 2. Отложить от его конца второй вектор, от конца второго третий и так далее.
- 3. Суммой будет вектор, начало которого в точке (0,0), а конец в конце последнего вектора.

Чтобы вычесть вектор, нужно заменить его на противоположно направленный и дальше воспользоваться любым методом сложения.

Сложение и вычитание векторов. Алгебраический подход

$$egin{aligned} \overline{a} &= (lpha_1, lpha_2, ..., lpha_n) \ \overline{b} &= (eta_1, eta_2, ..., eta_n) \ \overline{a} &+ \overline{b} &= (lpha_1 + eta_1, lpha_2 + eta_2, ..., lpha_n + eta_n) \ \overline{a} &- \overline{b} &= (lpha_1 - eta_1, lpha_2 - eta_2, ..., lpha_n - eta_n) \end{aligned}$$

Масштабирование векторов

Скаляр — это величина, которая имеет только численное значение.

Произведение и частное геометрически:

Произведением ненулевого вектора \vec{a} на скаляр k называют вектор \vec{b} , длина которого равна $|k|\cdot |\vec{a}|.$

Разделить вектор \vec{b} на число k — это найти такой вектор \vec{a} , который в произведении с числом k даст вектор \vec{b} .

Вместо деления $ec{b}:k$ можно выполнить умножение $ec{b}\cdot rac{1}{k}.$

Произведение и частное в координатах:

Скаляр нужно умножить на каждую координату по отдельности. При делении значение каждой координаты нужно разделить на скаляр. Если вектор $\vec{k}=(-6,5)$, то вектор $\vec{k}:2=(-3,2.5)$, а $-1.5\vec{k}=(9,-7.5)$.

Условие коллинеарности

Ненулевые векторы \vec{a} и \vec{b} коллинеарны, если существует такое число k, что $\vec{b}=k\cdot\vec{a}.$ Число k называют коэффициентом коллинеарности.

Чтобы найти число k, надо разделить вектор \vec{b} на вектор \vec{a} . Неколлинеарные векторы делить друг на друга нельзя.

Два ненулевых вектора $\vec{b}=(\beta_1,\beta_2,...,\beta_n)$ и $\vec{a}=(\alpha_1,\alpha_2,...,\alpha_n)$ коллинеарны, если их координаты пропорциональны, то есть $\dfrac{\beta_1}{\alpha_1}=\dfrac{\beta_2}{\alpha_2}=...=\dfrac{\beta_n}{\alpha_n}=k.$

Если у векторов есть нулевые координаты, то такие векторы коллинеарны, если у них нулевые координаты стоят на одинаковых местах, а отношения остальных координат одинаковы.

Основы тригонометрии

Синус острого угла — это отношение противолежащего катета к гипотенузе.

Косинус острого угла — это отношение прилежащего катета к гипотенузе.

Тангенс острого угла — это отношение противолежащего катета к прилежащему. Также тангенс определяют как отношение синуса к косинусу.

Градусы \rightarrow **Радианы**: умножить на π , разделить на 180.

Радианы \rightarrow **Градусы**: умножить на 180, разделить на π .

Для произвольной точки K=(x,y), лежащей на единичной окружности и образующей угол α между радиусом OK и положительным направлением оси Ox :

Синус lpha — это ордината точки K, $\sinlpha=y$.

Косинус lpha — это абсцисса точки K , $\cos lpha = x$.

$$-1 \leqslant \sin \alpha \leqslant 1; \ -1 \leqslant \cos \alpha \leqslant 1$$

Тангенс α — это отношение ординаты точки к её абсциссе при $x \neq 0$, $\lg \alpha = \frac{y}{x}$.

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos \alpha$$

α	0°	30°	45°	60°	90°	120°	135°	150°	180°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-rac{\sqrt{2}}{2}$	$-rac{\sqrt{3}}{2}$	-1
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} lpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Арксинус ($\arcsin x$) и **арккосинус** ($\arccos x$) нужны для того, чтобы по известному синусу или косинусу определить сам угол.

Косинус принимает все возможные значения от -1 до 1 на отрезке $[0,\pi]$. Поэтому арккосинус однозначно возвращает углы только из этого отрезка.

Синус принимает значения от -1 до 1 на отрезке $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. И арксинус вернёт угол из этого отрезка.

Векторы в Python

Для создания именованных переменных подходят все буквы латинского алфавита, подчёркивания и числа. Число не может быть первым символом в имени.

```
bus_number = 11
```

Чтобы сохранить в переменную текстовую строку, заключите текст в двойные или одинарные кавычки.

```
believe_string = 'Мы в вас верим!'
```

Функция работает с данными, написанными внутри её скобок. Эти данные называют аргументом функции. Если данных много, их перечисляют через запятую.

Для вывода на экран используют функцию print().

Комментарий пишут после знака #.

Чтобы вызывать функции из определённой библиотеки, её сначала нужно подключить через import.

Вывод вектора на экран:

```
import numpy as np
v = np.array([2, 15, 6])
print(v)
```

Для создания нулевого вектора есть специальная функция np.zeros(). В качестве аргумента указывают количество координат.

```
import numpy as np
a = np.zeros(4)
print(a)
```

Сложение и вычитание на языке Python

Десятичные дроби пишут через точку.

Прибавление числа к каждой координате:

```
import numpy as np
a = np.array([2, 3, 7])
print(a + 10)
```

Ответ:

```
[12 13 17]
```

Прибавление вектора:

```
import numpy as np
a = np.array([2, 3, 7])
b = np.array([4, 6, 11])
print(a + b)
```

Ответ:

```
[ 6 9 18]
```

Произведение и частное в Python:

В качестве знака умножения на Python используют 💌. Пропускать его нельзя.

Символ деления на языке Python — это 🖊.

```
import numpy as np

a = np.array([3.7, 4.8, 4.2, 7.2, 7.6])
c = 1.2 * a
d = a / 2
print(c)
print(d)
```

Ответ:

```
[4.44 5.76 5.04 8.64 9.12]
[1.85 2.4 2.1 3.6 3.8 ]
```