Probabilistic Robotics Course

Dynamic Bayesian Networks (Filtering)

Giorgio Grisetti

grisetti@diag.uniroma1.it

Department of Computer Control and Management Engineering Sapienza University of Rome

Overview

- Probabilistic Dynamic Systems
- Dynamic Bayesian Networks (DBN)
- Inference on DBN
- Recursive Bayes Equation

Dynamic System Deterministic

View

- $f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$: transition function
- $h(\mathbf{x}_t)$: observation function
- \mathbf{X}_{t-1} : previous state
- \mathbf{X}_t : current state
- \mathbf{u}_{t-1} : previous control/action

- \mathbf{z}_t : current observation
- Δt : delay

Dynamic System Probabilistic View

- $p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})$: transition model
- $p(\mathbf{z}_t \mid \mathbf{x}_t)$: observation model
- \mathbf{X}_{t-1} : previous state
- \mathbf{X}_t : current state
- \mathbf{u}_{t-1} : previous control/action

- \mathbf{z}_t : current observation
- Δt : delay

Evolution of a Dynamic System: State

Let's start from a known initial state distribution $p(\mathbf{x}_0)$.

Evolution of a Dynamic System:Control

A control \mathbf{u}_0 becomes available.

Evolution of a Dynamic System: Transition

The transition model $p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})$ correlates the current state \mathbf{x}_1 with the previous control \mathbf{u}_0 and the previous state \mathbf{x}_0 .

Evolution of a Dynamic System: Observation

The observation model $p(\mathbf{z}_t \mid \mathbf{x}_t)$ correlates the observation \mathbf{z}_1 and the current state \mathbf{x}_1 .

Evolution of a Dynamic System

This leads to a recurrent structure, that depends on the *time* t.

Dynamic Bayesian Networks (DBN)

- Graphical representations of stochastic dynamic processes
- Characterized by a recurrent structure

States in a DBN

The domain of the states x_t , the controls u_t and the observations z_t are not restricted to be boolean or discrete.

Examples:

- Robot localization, with a laser range finder
 - ullet States $\mathbf{x}_t \in SE(2)$ sometries on a plane
 - $oldsymbol{z}$ Observations $oldsymbol{z}_t \in \mathfrak{R}^{\#beams}$, laser range measurements
 - ullet Controls $\mathbf{u}_t \in \mathfrak{R}^2$, translational and rotational speed
- HMM (Hidden Markov Model)
 - ullet States $\mathbf{x}_t \in [X_1, \dots, X_{N_x}]$, finite states
 - ullet Observations $\mathbf{z}_t \in [Z_1, \dots, Z_{N_z}]$, finite observations
 - $oldsymbol{u}_t \in [U_1,\ldots,U_{N_u}]$, finite controls

Inference in a DBN requires to design a data structure that can represent a *distribution* over states.

Typical Inferences in a DBN

In a dynamic system, usually¹ we know:

- the observations $\mathbf{z}_{1:T}$ made by the system, because we measure them.
- the controls $\mathbf{u}_{0:T-1}$, because we *issue* them

Typical inferences in a DBN:

name	query	known
Filtering	$p(\mathbf{x}_T \mathbf{u}_{T-1},\mathbf{z}_{1:T})$	$oxed{\mathbf{u}_{0:T-1}, \mathbf{z}_{1:T}}$
Smoothing	$p(\mathbf{x}_t \mathbf{u}_{0:T-1}, \mathbf{z}_{1:T}), \ 0 < t < T$	$\mathbf{u}_{0:T-1},\mathbf{z}_{1:T}$
Max a Posteriori	$\operatorname{argmax}_{\mathbf{x}_{0:T}} p(\mathbf{x}_{0:T} \mid \mathbf{u}_{0:T-1}, \mathbf{z}_{1:T})$	$\mathbf{u}_{0:T-1},\mathbf{z}_{1:T}$

Typical Inferences in a DBN

Using the traditional tools for Bayes Networks is not a good idea:

- too many variables (potentially infinite) render the solution intractable
- the domains are not necessarily discrete

However, we can exploit the recurrent structure to design procedures that take advantage of it

DBN Inference: Filtering

Given:

- the sequence of all observations $\mathbf{Z}_{1:T}$ up to the current time T
- lacktriangle the sequence of all controls $\,{f u}_{0:T-1}$

we want to compute the distribution over the current state

$$p(\mathbf{x}_T|\mathbf{u}_{0:T-1},\mathbf{z}_{1:T})$$

DBN Inference: Smoothing

Given:

- the sequence of all observations ${f Z}_{1:T}$ up to the current time T
- the sequence of all controls ${f u}_{0:T-1}$ we want to compute the distribution over a past state $p({f x}_k|{f u}_{0:T-1},{f z}_{1:T})$

Knowing also the controls $\mathbf{u}_{0:T-1}$ and the observations $\mathbf{z}_{1:T}$ after time k, leads to more accurate estimates than pure filtering.

DBN Inference: Maximum a Posteriori

Given:

- the sequence of all observations ${f Z}_{1:T}$ up to the current time T
- the sequence of all controls $\mathbf{u}_{0:T-1}$ we want to find the most likely *trajectory* of states $\mathbf{x}_{0:T}$. \blacksquare In this case we are not seeking for a distribution. Just the most likely *sequence*.

DBN Inference: Belief

- Algorithms for performing inference on a DBN keep track of the *estimate* of a distribution of states.
- This distribution should be stored in an appropriate data structure.
- The structure depends on:
 - the knowledge of the characteristics of the distribution (e.g. Gaussian)
 - the domain of the state variables (e.g. continuous vs discrete)

When we write $b(\mathbf{x}_t)$ we mean our current belief of $p(\mathbf{x}_t|...)$

• The algorithms for performing inference on a DBN work by updating a belief.

DBN Inference: Belief

• In the simple case of a system with discrete state $\mathbf{x} \in \{X_{1:n}\}$, the belief can be represented through an \mathbf{x} array of float values. Each cell of the array $\mathbf{x}[i] = p(\mathbf{x} = X_i)$ contains the probability of that state

 If our system has a continuous state and we know it is distributed according to a Gaussian, we can represent the belief through its parameters (mean and covariance matrix)

• If the state is continuous but the distribution is unknown, we can use some approximate representation (e.g. weighed samples of state values).

Filtering: Bayes Recursion

We want to compute: $p(\mathbf{x}_T|\mathbf{u}_{0:T-1},\mathbf{z}_{1:T})$

We know:

- the observations $\mathbf{z}_{1:T}$
- lacktriangle the controls $\mathbf{u}_{0:T-1}$
- $p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})$: the transition model. It is a function that, given the previous state \mathbf{x}_{t-1} and control \mathbf{u}_{t-1} , tells us how likely it is to land in state \mathbf{x}_t .
- $p(\mathbf{z}_t \mid \mathbf{x}_t)$: the observation model. It is a function, that given the current state \mathbf{x}_t , tells us how likely it is to observe \mathbf{z}_t .
- $b(\mathbf{x}_{t-1})$: is our belief about the previous state

$$p(\mathbf{x}_{t-1} \mid \mathbf{u}_{0:t-2}, \mathbf{z}_{1:t-1})$$

Filtering: Bayes Rule

$$p(\mathbf{x}_T|\mathbf{u}_{0:T-1},\mathbf{z}_{1:T}) = \tag{1}$$

splitting Z_t ≡

$$= p(\underbrace{\mathbf{x}_T}_A \mid \underbrace{\mathbf{z}_T}_B, \underbrace{\mathbf{u}_{0:t-1}, \mathbf{z}_{-1}}_C)$$
 (2)

$$p(A|B,C) = \frac{p(B|A,C)p(A|C)}{p(B|C)}$$

recall the conditional Bayes rule

$$= \frac{p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})p(\mathbf{x}_{t} \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})}{p(\mathbf{z}_{t} \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})}$$

$$(3)$$

Filtering: Denominator

let the denominator

$$\eta_t = 1/p(\mathbf{z}_t \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})$$
 (4)

Note that η_t does not depend on the state \mathbf{x} , thus to the extent of our computation is just a normalizing constant.

We will come back to the denominator later.

Filtering: Observation model

• our filtering equation becomes:

$$\eta_t p(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1}) p(\mathbf{x}_t \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})$$

Recall that $p(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})$ means this:

• if we know \mathbf{X}_t , we do not need to know $\mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1}$ to predict \mathbf{z}_t , since the state \mathbf{X}_t encodes all the knowledge about the past (Markov assumption):

$$p(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1}) = p(\mathbf{z}_t \mid \mathbf{x}_t)$$

thus, our current equation is:

$$p(\mathbf{x}_t \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t}) = \eta_t p(\mathbf{z}_t \mid \mathbf{x}_t) p(\mathbf{x}_t \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})$$

Still the second part of the equation is obscure.

Our task is to manipulate it, to get something that matches our preconditions.

Knowing \mathbf{x}_{t-1} would make our life much easier, as we could repeat the trick done for the observation model:

Knowing x_{t-1} would make our life much easier, as we could repeat the trick done for the observation model:

• thus: $p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1}) = p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})$ (8)

The sad truth is that we do not have \mathbf{x}_{t-1} , however:

recalling the probability identities:

marginalization:
$$p(A|C) = \sum_{B} p(A,B|C)$$

chain rule:
$$p(A,B|C) = p(A|B,C)p(B|C)$$

by combining the two above we obtain:

$$p(A|C) = \sum_{B} p(A|B,C)p(B|C)$$

 let's look again at our problematic equation, and put some letters

$$p(\mathbf{x}_{t} \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1}) = \sum_{A} \sum_{C} \mathbf{x}_{t-1} p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = \sum_{A} \mathbf{x}_{t-1} p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = \sum_{A} \mathbf{z}_{t-1} p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = \sum_{A} \mathbf{z}_{t-1} p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = \sum_{A} \mathbf{z}_{t-1} p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = \sum_{A} \mathbf{z}_{t-1} p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = \sum_{A} \mathbf{z}_{t-1} p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}$$

 putting in the result of Eq. (8), we highlight the transition model as:

$$= \sum_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})$$
(12)

$$p(A|C) = \sum_{B} p(A|B,C)p(B|C)$$

Filtering: Wrapup

 after our efforts, we figure out that the recursive filtering equation is the following:

$$p(\mathbf{x}_t \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t}) =$$

$$\eta_t p(\mathbf{z}_t \mid \mathbf{x}_t) \sum_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1})$$

Yet, if in the last term of the product in the summation, we would not have a dependency from \mathbf{u}_{t-1} , we would have a *recursive* equation.

Luckily we have:

$$p(\mathbf{x}_{t-1} \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t-1}) = p(\mathbf{x}_{t-1} \mid \mathbf{u}_{0:t-2}, \mathbf{z}_{1:t-1})$$

Since the last control has no influence on \mathbf{x}_{t-1} , if we don't know \mathbf{x}_t .

Filtering: Wrapup

we can finally write the recursive equation of filtering as:

$$\overbrace{p(\mathbf{x}_t \mid \mathbf{u}_{0:t-1}, \mathbf{z}_{1:t})}^{b(\mathbf{x}_t)} =$$

$$\eta_t p(\mathbf{z}_t \mid \mathbf{x}_t) \sum_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \underbrace{p(\mathbf{x}_{t-1} \mid \mathbf{u}_{0:t-2}, \mathbf{z}_{1:t-1})}_{b(\mathbf{x}_{t-1})}$$

During the estimation, we do not have the true distribution, but rather the beliefs *estimate*.

• We can then write the full recursive filter, that tells us how to update a current belief once new observations/controls become available:

$$b(\mathbf{x}_t) = \eta_t p(\mathbf{z}_t \mid \mathbf{x}_t) \sum_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) b(\mathbf{x}_{t-1})$$

Normalizer: η_t

The *normalizer* η_t is just a constant ensuring that $b(\mathbf{x}_t)$ is still a probability distribution:

$$\eta_t = \frac{1}{\sum_{\mathbf{x}_t} p(\mathbf{z}_t \mid \mathbf{x}_t) \sum_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) b(\mathbf{x}_{t-1})}$$

Filtering: Alternative

Formulation

Predict: incorporate in the last belief $b_{t-1|t-1}$ the most recent control \mathbf{u}_{t-1} .

Ingredients:

Transition model

 \mathbf{x}_{t-1}

Control \mathbf{u}_{t-1}

The control is known, so we can work with a "2D" distribution selected according to the current control \mathbf{u}_{t-1} .

Filtering: Alternative Formulation

Predict:

• From the transition model and the last state, compute the following joint distribution through *chain rule*:

$$p(\mathbf{x}_t, \mathbf{x}_{t-1}|t-1) = p(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \underbrace{p(\mathbf{x}_{t-1}|t-1)}_{b_{t-1}|t-1}$$

• From the joint, remove \mathbf{x}_{t-1} through *marginalization:*

$$\underbrace{p(\mathbf{x}_t|t-1)}_{b_{t|t-1}} = \sum_{\mathbf{x}_{t-1}} p(\mathbf{x}_t, \mathbf{x}_{t-1}|t-1)$$

Programmatically (discrete case)

```
BeliefType b_pred = BeliefType::Zero;
for (x_i : X)
  for (x_j: X)
    b_pred[x_j] += b[x_i]*transitionModel(x_j,x_i,u);
```

Filtering: Alternative Formulation

Update: incorporate in the predicted belief $b_{t|t-1}$ the new measurement \mathbf{z}_t

\mathbf{x}_t

Ingredients

Predicted belief

• Known measurement \mathbf{z}_t

Filtering: Alternative Formulation

Update: from the predicted belief $b_{t|t-1}$, compute the joint distribution that predicts the observation.

• Joint over state and measurement (chain rule):

$$p(\mathbf{x}_t, \mathbf{z}_t | t) = p(\mathbf{z}_t | \mathbf{x}_t) p(\mathbf{x}_t, | t - 1)$$

Condition on the actual measurement:

$$\underbrace{p(\mathbf{x}_t|t)}_{b_{t|t}} = \frac{p(\mathbf{x}_t, \mathbf{z}_t|t)}{p(\mathbf{z}_t|t)}$$

Programmatically (discrete case)

```
float normalizer=0;
for (x_i : X) {
    b[x_i] = b_pred[x_i] * observationModel(z,x_i);
    normalizer += b[x_i];
}
b *= 1./normalizer;
```