Examen partiel (1er mars 2023)

Exercice 1. Soit E un ouvert connexe de \mathbb{R}^2 . On sait qu'une fonction $h: E \to \mathbb{R}$ est constante si $\partial h/\partial x(v) = \partial h/\partial y(v) = 0$ pour tout $v \in E$. Soit maintenant D un ouvert connexe de \mathbb{C} .

- a) Soit $f \in \mathcal{O}(D)$ telle que $f(z) \in \mathbb{R}$ pour tout $z \in D$. Utiliser les équations de Cauchy-Riemann pour montrer que f est constante.
- b) Déterminer toutes les fonctions $f: D \to \mathbb{C}$ telles que $f \in \mathcal{O}(D)$ et $\overline{f} \in \mathcal{O}(D)$.
- c) Si $f \in \mathcal{O}(D)$ est telle que |f| est constant. Utiliser $f \cdot \overline{f} = |f|^2$ pour montrer que f est constante.
- d) Soit $u(x,y) = \sin(x)\sinh(y)$ et $v(x,y) = \cos(x)\cosh(y)$. Utiliser les équations de Cauchy-Riemann pour montrer que f(x+iy) := u(x,y) + iv(x,y) est holomorphe sur \mathbb{C} .

Exercice 2. Nous rappelons qu'une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est dite harmonique si elle est deux fois partiellement dérivable, ses dérivées partielles sont continues, et $\frac{\partial^2}{\partial x^2}f + \frac{\partial^2}{\partial y^2}f = 0$. Soit D un ouvert connexe de \mathbb{C} et soit $R_{I,J} := I + iJ = \{a + ib \mid a \in I, b \in J\}$ pour deux intervalles I,J bornés et ouverts de \mathbb{R} . Soit $u:D\to\mathbb{R}$ harmonique. On cherche à déterminer $v:D\to\mathbb{R}$ telle que $u+iv\in\mathcal{O}(D)$.

- a) On sait que $f \in \mathcal{O}(D) \Rightarrow f' \in \mathcal{O}(D)$. Rappeler pourquoi les parties réelles et imaginaires de $f \in \mathcal{O}(D)$ sont harmoniques.
- b) Fixons dans la suite $(x_0, y_0) \in D$. Si $u + iv \in \mathcal{O}(R_{I,J})$, montrer qu'il existe une fonction $h \in \mathcal{C}^1(I)$ telle que

$$v(x,y) = \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t)dt + h(x).$$

c) Si $u + iv \in \mathcal{O}(R_{I,J})$, montrer que

$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial}{\partial x} \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t)dt - h'(x)$$

et en déduire que

$$-\frac{\partial u}{\partial y}(x,y_0) = h'(x).$$

- d) Trouver explicitement une fonction $v: R_{I,J} \to \mathbb{R}$ telle que $f(x+iy) := u(x,y) + iv(x,y) \in \mathcal{O}(R_{I,J})$.
- e) Montrer que u(x,y) = xy est harmonique. Trouver une fonction v(x,y) telle que

$$f(x+iy) = xy + iv(x,y) \in \mathcal{O}(\mathbb{C}).$$