Textura

Rivera

Textura

- Padrão visual que possui algumas propriedades de homogeneidade que não resultam simplesmente de uma cor ou intensidade. Aspecto visual da superfície.
- Relacionada com coeficientes de uniformidade, densidade, aspereza, regularidade, intensidade, dentre outros, oriundos da probabilidade de ocorrência de variações tonais.

Área mínima: elemento básico de textura ou texel ou texton

Textura não pode ser definida em um pixel, mas sim através e uma região de conjunto de pixels.

Espaço de Textura

Pode ser vantajoso assumir que o padrão da imagem se repete fora desse intervalo
 T (s, t) = Im [| (1 - s) N | mod

$$T(s, t) = Im [\lfloor (1 - s) N \rfloor \mod N, \lfloor t M \rfloor \mod M]$$

cor rgb do texel atribuída ao pixel

texel correspondente ao ponto

Mapeamento

A especificação dos vértices dos polígonos e precedida da especificação do ponto da textura (texel) que ai mapeia.


```
glBindTexture(GL_TEXTURE_2D,texID);
glBegin(GL_QUADS);
glTexCoord2f(0,0); glVertex3f(-1.0f, -1.0f, 0.0f);
glTexCoord2f(1,0); glVertex3f( 1.0f, -1.0f, 0.0f);
glTexCoord2f(1,1); glVertex3f( 1.0f, 1.0f, 0.0f);
glTexCoord2f(0,1); glVertex3f(-1.0f, 1.0f, 0.0f);
glEnd();
```

• A escolha de coordenadas no espaço das texturas e "livre".

Espaço de textura Espaço de objeto

Parametrização da Esfera

Parametrização do Cilindro

 χ

Função de mapeamento

$$x = \cos \theta$$

$$y = \sin \theta$$

$$z = z$$

$$\theta = 2\pi \cdot s$$

$$z = t$$

Função de mapeamento inversa

$$\theta = \arctan \frac{y}{x}$$

$$z = z$$

$$s = \frac{\theta}{2\pi}$$

$$t = z$$

Parametrizando Objetos Genéricos

- O que fazer quando o objeto não comporta uma parametrização natural?
- Uma sugestão é usar um mapeamento em 2 estágios [Bier e Sloan]:
 - Mapear textura sobre uma superfície simples como cilindro, esfera, etc aproximadamente englobando o objeto
 - Mapear superfície simples sobre a superfície do objeto. Pode ser feito de diversas maneiras
 - Raios passando pelo centróide do objeto
 - Raios normais à superfície do objeto
 - Raios normais à superfície simples
 - · Raios refletidos

Exemplos

Parametrização esférica

Projetada em um cubo

Projetada em um cilindro

Efeitos especiais com mapeamento de textura **Bump mapping**

- Utiliza texturas para perturbar a direção do vetor normal de cada ponto da superfície (Blinn, 1978).
 - Não modifica a forma da superfície.
 - Modelo de iluminação usa o vetor normal modificado.

Esfera com textura difusa

Bump map

Esfera com textura difusa e bump mapping

Efeitos especiais com mapeamento de textura **Bump mapping**

- Simula detalhes na superficie sem a necessidade de criar geometria.
- Por outro lado:
 - Não produz silhuetas corretas.
 - Não simula oclusão entre os detalhes.
 - Não simula sombras entre os detalhes.

Efeitos especiais com mapeamento de textura Displacement mapping

- Semelhante ao bump mapping, porém modifica a geometria.
 - Cada texel do displacement map é um valor de deslocamento do vértice ao longo do vetor normal.

Característica da textura

Entropía (E) da imagem: número avaliador da aleatoriedade

$$E = \sum_{i=1}^{m} \left[p_i \lg_2 \left(\frac{1}{p_i} \right) \right]$$
 m: número texels na imagem
$$p_i$$
: probabilidade de i-ésimo texel seja utilizada novamente

$$E = 0$$

E = 0.9149

E = 5.8766

E = 5.9851

E = 6.2731

Coeficiente de Hurst

Geometria fractal em análise textural

• índice numérico para identificação

$$D = \frac{\ln N}{\ln \left(\frac{1}{r}\right)}$$
 N: número de partes de uma imagem I r: factor de escala

Hurst usado para dimenão fractal (DE):

- Determinação da rugosidade de superfície terrestre
- Classificação da imagem
- Tipos de paisagens
- Fraturas de superfícies
- Desgastes, eroção, corroção, etc.

√ <u>18</u>	√13	$\sqrt{10}$	3	√10	√13	√ <u>18</u>
$\sqrt{13}$	$\sqrt{8}$	$\sqrt{5}$	2	$\sqrt{5}$	√8	√13
√10	$\sqrt{5}$	$\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{5}$	√10
3	2	1	0	1	2	3
√10	$\sqrt{5}$	$\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{5}$	√10
√13	√8	$\sqrt{5}$	2	$\sqrt{5}$	$\sqrt{8}$	√13
√18	√13	√10	3	√10	√13	√18

N=9

	0	1	2	3	4	5	6
0	85	70	86	92	60	102	202
1	91	81	98	113	86	119	189
2	96	86	102	107	74	107	194
3	101	91	113	107	83	118	198
4	99	68	107	107	76	118	194
5	107	94	93	115	83	115	198
6	94	98	98	107	81	115	194

Imagem 7 x 7

Coeficiente de Hurst

- Determinar: $\Delta g \rightarrow maior$ diferença de nível de cinza para cada classe
 - Buscar o maior e menor tom da região
 - determinar a diferença por vez
- Obter os logaritmos de cada diferença
- Obter ajuste da reta y = bx + a

$$b = \frac{n\sum \ln d \ln \Delta g - \sum \ln d \sum \ln \Delta g}{n\sum (\ln d)^2 - \sum (\ln d)^2}$$

$$a = \frac{\sum \ln \Delta g}{n} - b \frac{\sum \ln d}{n}$$

Distância (d) ln d		Diferença de nível de cinza(4g)	ln (4g)
d=1	0.000	113-83=30	3.401
d = $\sqrt{2}$	0.346	113-74=39	3.663
d=2	0.693	118-74=44	3.784
$d=\sqrt{5}$	0.804	118-68=50	3.912
$d=\sqrt{8}$	1.039	119-68-51	3.931
d=3	1.098	198-68=130	4.867
$d=\sqrt{10}$	1.151	198-60=138	4.297
$d=\sqrt{13}$	1.282	198-60=138	4.297
$d=\sqrt{18}$	1,445	202-60=142	4.955

Interações	$\ln d$	ln⊿g	ln <i>d</i> ln⊿g	$(\ln d)^2$
1	0,00000	3,40120	0,00000	0,00000
2	0,34657	3,66356	1,26969	0,12011
3	0,69315	3,78419	2,62300	0,48045
4	0,80472	3,91202	3,14808	0,64757
5	1,03972	3,93183	4,08800	1,08102
6	1,09861	4,86753	5,34753	1,20695
7	1,15129	4,92725	5,67271	1,32547
8	1,28247	4,92725	6,31908	1,64474
9	1,44519	4,95583	7,16209	2,08856
Σ	7,86173	38,37067	35,63019	8,59489
Σ/n	0,874	4,263		_
n	9		-	

	0	1	2	3	4	5	6
0	85	70	86	92	60	102	202
1	91	81	98	113	86	119	189
2	96	86	102	107	74	107	194
3	101	91	113	107	83	118	198
4	99	68	107	107	76	108	194
5	107	94	93	115	83	115	198
6	94	98	98	107	81	115	194
	√18	45		3	-	<u> </u>	60
	√18	√13	√10	,	√10	√13	.√I8
	$\sqrt{13}$	√8	√5	2	√5	√8	$\sqrt{13}$
	√10	√5	$\sqrt{2}$	1	√2	√ 5	√10
	3	2	1	0	1	2	3
	√10	√5	$\sqrt{2}$	1	$\sqrt{2}$	√5	√10
	$\sqrt{13}$	√8	√5	2	√5	√8	$\sqrt{13}$
	./12	./13	ъ/ <u>ГО</u>	3	₂/i∩	J13	

A reta neste caso tem a equação: y = 1,2229x+3,1952.

Coeficiente de Hurst: inclinação da reta, b=1,2229.

Coeficiente de Hurst: inclinação da reta, b=1,2229.

De segmento de imagem com C. de Hurst define a mesma altura

a) Imagem monocromática

b) Gráfico da imagem