CS:1010 DISCRETE STRUCTURES

PRACTICE QUESTIONS LECTURE 11

Instructions

- Try these questions before class. Do not submit!
- (1) How many solutions are there to the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 = 21$$
,

where x_i , i = 1, 2, 3, 4, 5 is a nonnegative integer s.t.

- (a) $x_1 \ge 1$?
- (b) $x_i \ge 2$, for i = 1, 2, 3, 4, 5?
- (c) $0 \le x_1 \le 10$?
- (d) $0 \le x_1 \le 3$, $1 \le x_2 < 4$ and $x_3 \ge 15$?
- (2) How many solutions are there to the inequality $x_1 + x_2 + x_3 \le 11$, where x_1, x_2 , and x_3 are nonnegative integers?[Hint: Introduce an auxiliary variable x_4 s.t. $x_1 + x_2 + x_3 + x_4 = 11$.]
- (3) How many different bit strings can be transmitted if the string must begin with a 1 bit, must include three additional 1 bits (so that a total of four 1 bits is sent), must include a total of 12 0 bits, and must have at least two 0 bits following each 1 bit?
- (4) Solve these recurrences with the initial conditions given.
 - (a) $a_n = -4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$
 - (b) $a_n = a_{n-2}/4$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$
- (5) In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces? A checkerboard is a board of chequered pattern with alternating dark and light color, typically black and white.
- (6) Find the solution to $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ with $a_0 = 7, a_1 = -4$ and $a_2 = 8$.

1

- (7) Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 2n^2$. Find the solution with initial condition $a_1 = 4$.
- (8) Find all solutions of the recurrence relation $a_n = 4a_{n-1} 4a_{n-2} + (n+1)2^n$.

February 7, 2021; Dept of CSE, IIT Hyderabad