# FUNDAMENTALS OF QUANTITATIVE DESIGN

## **Contents and objective**

- Getting familiar with terms & concepts
- Overall trends
- Figure of merit (metrics)
- Computer design principles

## MicroProcessor Performance

#### Move to multi-processor



#### Points to Note

- The 52% growth per year is because of faster clock speeds and architectural innovations (led to 25x higher speed)
- Clock speed increases have dropped to 1% per year in recent years
- The 22% growth includes the parallelization from multiple cores
- Moore's Law: transistors on a chip double every 18-24 months

## **Clock Speed Increases**



## Recent Microprocessor Trends



## Classes of Computers

- Personal Mobile Device (PMD)
  - e.g. start phones, tablet computers
  - Emphasis on energy efficiency and real-time
- Desktop Computing
  - Emphasis on price-performance
- Servers
  - Emphasis on availability, scalability, throughput
- Clusters / Warehouse Scale Computers
  - Emphasis on availability and price-performance
  - Sub-class: Supercomputers, emphasis: floating-point performance and fast internal networks
- Embedded Computers
  - Emphasis: price

## **Choosing Programs to Evaluate Perf.**

#### Toy benchmarks

- e.g., quicksort, puzzle
- No one really runs. Scary fact: used to prove the value of RISC in early 80's

#### Synthetic benchmarks

- Attempt to match average frequencies of operations and operands in real workloads.
- e.g., Whetstone, Dhrystone
- Often slightly more complex than kernels; But do not represent real programs

#### Kernels

- Most frequently executed pieces of real programs
- Good for focusing on individual features not big picture
- Tend to over-emphasize target feature

#### Real programs

 e.g., gcc, spice, SPEC2006 (standard performance evaluation corporation), TPCC, TPCD, PARSEC, SPLASH



# **Transistor dimension (Area)**

- Feature size
  - Also called geometry, process node
  - Minimum size of transistor or wire in x or y dimension
  - 10 microns in 1971 to .032 microns in 2011,
    .016 microns in 2016
  - Leads to chip-miniaturization
  - Allows fitting more transistors on a chip

## Throughput and Latency

- Bandwidth or throughput
  - Total work done in a given time
  - 10,000-25,000X improvement for processors
  - 300-1200X improvement for memory and disks
- Latency or response time
  - Time between start and completion of an event
  - 30-80X improvement for processors
  - 6-8X improvement for memory and disks

# **Measuring Performance**

- Typical performance metrics:
  - Response time
  - Throughput
- Speedup of X relative to Y
  - Execution time<sub>Y</sub> / Execution time<sub>X</sub>
- Execution time
  - Wall clock time: includes all system overheads
  - CPU time: only computation time