Projeto de Sistemas Digitais

- Arthur Alexandre Nascimento
- Eduardo Vinicius Betim
- Fábio Pereira dos Santos
- Rafael Francisco Réus

Algoritmo de divisão

```
Algoritmo divseq
  1 Início{
       A \leftarrow \text{ent1}; B \leftarrow \text{ent2}; \text{cont} \leftarrow 0; \text{pronto} \leftarrow 0;
       if B!=0 then {
         while A >= B \{
            cont \leftarrow cont + 1;
        A \leftarrow A - B; 
         quoc \leftarrow cont; resto \leftarrow A;
 8
         pronto\leftarrow 1; erro\leftarrow 0;
 9
10
       else
11
         pronto\leftarrow1; erro\leftarrow1;
12 }
```

FSMD

Bloco Operativo

State Machine Viewer

RTL Viewer - Topo

RTL Viewer - BO

RTL Viewer - BC

Comparação N = 4 e N = 8

Flow Status	Successful - Wed Nov 25 16:51:03 2020
Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	divisor
Top-level Entity Name	divisor
Family	Cyclone II
Device	EP2C35F672C6
Timing Models	Final
Total logic elements	33 / 33,216 (< 1 %)
Total combinational functions	21 / 33,216 (< 1 %)
Dedicated logic registers	26 / 33,216 (< 1 %)
Total registers	26
Total pins	21 / 475 (4 %)
Total virtual pins	0
Total memory bits	0 / 483,840 (0 %)
Embedded Multiplier 9-bit elements	0 / 70 (0 %)
Total PLLs	0/4(0%)

Flow Status	Successful - Wed Nov 25 16:55:59 2020
Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	divisor
Top-level Entity Name	divisor
Family	Cyclone II
Device	EP2C35F672C6
Timing Models	Final
Total logic elements	50 / 33,216 (< 1 %)
Total combinational functions	34 / 33,216 (< 1 %)
Dedicated logic registers	46 / 33,216 (< 1 %)
Total registers	46
Total pins	37 / 475 (8 %)
Total virtual pins	0
Total memory bits	0 / 483,840 (0 %)
Embedded Multiplier 9-bit elements	0 / 70 (0 %)
Total PLLs	0/4(0%)

Bc alternativo

Flow Status	Successful - Wed Dec 09 18:00:24 2020
Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	divisor
Top-level Entity Name	divisor
Family	Cyclone II
Device	EP2C35F672C6
Timing Models	Final
Total logic elements	55 / 33,216 (< 1 %)
Total combinational functions	35 / 33,216 (< 1 %)
Dedicated logic registers	47 / 33,216 (< 1 %)
Total registers	47
Total pins	37 / 475 (8 %)
Total virtual pins	0
Total memory bits	0 / 483,840 (0 %)
Embedded Multiplier 9-bit elements	0 / 70 (0 %)
Total PLLs	0/4(0%)

	Data Port	Clock Port	Rise	Fall	Clock Edge	Clock Reference
1	erro	clk	6.438	6.438	Rise	clk
2	pronto	clk	6.843	6.843	Rise	dk
3	✓ quoc[*]	clk	6.420	6.420	Rise	dk
1	quoc[0]	clk	6.421	6.421	Rise	dk
2	quoc[1]	clk	6.421	6.421	Rise	clk
3	quoc[2]	clk	6.421	6.421	Rise	dk
4	quoc[3]	clk	6.642	6.642	Rise	clk
5	quoc[4]	clk	6.664	6.664	Rise	dk
6	quoc[5]	clk	6.420	6.420	Rise	clk
7	quoc[6]	clk	6.616	6.616	Rise	dk
8	quoc[7]	clk	6.661	6.661	Rise	clk
4	✓ resto[*]	dk	6.074	6.074	Rise	clk
1	resto[0]	clk	6.100	6.100	Rise	clk
2	resto[1]	clk	6.400	6.400	Rise	clk
3	resto[2]	clk	6.365	6.365	Rise	clk
4	resto[3]	clk	6.481	6.481	Rise	clk
5	resto[4]	clk	6.346	6.346	Rise	clk
6	resto[5]	clk	6.361	6.361	Rise	dk
7	resto[6]	clk	6.074	6.074	Rise	clk
8	resto[7]	clk	6.358	6.358	Rise	clk

Comparação N = 4 e N = 8

	Data Port	Clock Port	Rise	Fall	Clock Edge	Clock Reference
1	erro	clk	6.750	6.750	Rise	clk
2	pronto	dk	7.227	7.227	Rise	dk
3	∨ quoc[*]	clk	6.392	6.392	Rise	dk
1	quoc[0]	dk	6.392	6.392	Rise	dk
2	quoc[1]	clk	6.585	6.585	Rise	dk
3	quoc[2]	dk	6.603	6.603	Rise	dk
4	quoc[3]	clk	6.600	6.600	Rise	dk
4	✓ resto[*]	clk	6.342	6.342	Rise	dk
1	resto[0]	clk	6.402	6.402	Rise	dk
2	resto[1]	dk	6.342	6.342	Rise	dk
3	resto[2]	dk	6.595	6.595	Rise	dk
4	resto[3]	dk	6.610	6.610	Rise	clk

	Data Port	Clock Port	Rise	Fall	Clock Edge	Clock Reference
1	erro	clk	6.613	6.613	Rise	clk
2	pronto	clk	7.186	7.186	Rise	dk
3	✓ quoc[*]	clk	6.270	6.270	Rise	dk
1	quoc[0]	clk	6.370	6.370	Rise	dk
2	quoc[1]	clk	6.358	6.358	Rise	dk
3	quoc[2]	clk	6.270	6.270	Rise	dk
4	quoc[3]	clk	6.411	6.411	Rise	dk
5	quoc[4]	clk	6.523	6.523	Rise	dk
6	quoc[5]	clk	6.528	6.528	Rise	dk
7	quoc[6]	clk	6.357	6.357	Rise	dk
8	quoc[7]	clk	6.396	6.396	Rise	dk
4	✓ resto[*]	clk	6.333	6.333	Rise	dk
1	resto[0]	clk	6.370	6.370	Rise	dk
2	resto[1]	clk	6.333	6.333	Rise	clk
3	resto[2]	clk	6.838	6.838	Rise	clk
4	resto[3]	clk	6.351	6.351	Rise	clk
5	resto[4]	clk	6.582	6.582	Rise	dk
6	resto[5]	clk	6.550	6.550	Rise	dk
7	resto[6]	clk	6.840	6.840	Rise	clk
8	resto[7]	clk	6.370	6.370	Rise	clk

Simulação 12 / 3 - 4 bits

Simulação 12 / 5 - 4 bits

Simulação 12 / 3 - 8 Bits

Cálculo do tempo para execução (N=8 bits)

Primeiro algoritmo

Divisor: $00000001_2 \rightarrow 1_{10}$ Divisor: $00000001_2 \rightarrow 1_{10}$

Dividendo: $11111111_2 \rightarrow 255_{10}$ Dividendo: $111111112 \rightarrow 255_{10}$

Tempo de clock: aproximadamente 7,2 ns Tempo de clock: aproximadamente -- ns

Segundo algoritmo

514 transições de estado → 514 x 7,2 = 769 transições de estado → 769 x --- =

3700,8 ns

Testbench

```
LIBRARY ieee:
USE ieee.std logic 1164.ALL;
USE ieee.numeric std.ALL;
USE std.textio.ALL:
USE ieee.std logic textio.ALL; -- para tratamento de arquivos e texto
ENTITY divisor tb IS
END divisor tb;
ARCHITECTURE tb OF divisor tb IS
   COMPONENT divisor IS
       PORT (
           reset, clk, inicio : IN STD LOGIC;
           entl, ent2 : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
           pronto, erro : OUT STD LOGIC;
           quoc, resto : OUT STD LOGIC VECTOR(3 DOWNTO 0)
       );
   END COMPONENT:
   CONSTANT clk period : TIME := 20 ns;
   SIGNAL clk, reset, inicio : STD LOGIC;
   SIGNAL ent1, ent2 : STD LOGIC VECTOR(3 DOWNTO 0);
   SIGNAL pronto, erro : STD LOGIC;
   SIGNAL quoc, resto : STD LOGIC VECTOR(3 DOWNTO 0);
```

```
clock gen : PROCESS
    BEGIN
        clk <= '1';
        WAIT FOR clk period/2;
        clk <= '0';
        WAIT FOR clk period/2;
    END PROCESS;
    file io : PROCESS
        VARIABLE read col from input buf : line; -- buffers de entrada e saida
        FILE input buf : text; -- text is keyword
        VARIABLE write col to output buf : line;
        FILE output buf : text; -- text is keyword
        VARIABLE val_A, val_B : STD_LOGIC_VECTOR(3 DOWNTO 0); -- entradas A e B do arquivo
        VARIABLE val SPACE : CHARACTER; -- para espacos
    BEGIN
        file_open(input_buf, "C:\\Users\\Fabio\\Documents\\QuartusProject\\STD_LAB\\divisor\\entradas.txt", read_mode);
        file_open(output_buf, "C:\\Users\\Fabio\\Documents\\QuartusProject\\STD_LAB\\divisor\\saidas_tb.txt", write_mode);
        WAIT UNTIL reset = '0'; -- espera reset desligar
        WHILE NOT endfile (input_buf) LOOP
            readline (input buf, read col from input buf);
            read (read col from input buf, val A);
            read (read col from input buf, val SPACE); -- read in the space character
            read(read col from input buf, val B);
            -- Pass the read values to signals
            ent1 <= val A;
            ent2 <= val B;
            WAIT UNTIL pronto'EVENT and pronto = '0';
            WAIT FOR 2 ns;
            write (write col to output buf, quoc);
            write (write col to output buf, val SPA--CE);
            write (write col to output buf, resto);
            writeline (output buf, write_col_to_output_buf); --
        END LOOP:
        write (write col to output buf, STRING' ("SIMULACAO CONCLUIDA"));
        writeline (output buf, write col to output buf); --
        file close (input buf);
        file close (output buf);
        WAIT:
    END PROCESS:
END tb:
```

UUT : ENTITY work.divisor PORT MAP (reset, clk, inicio, entl, ent2, pronto, erro, quoc, resto);

BEGIN

reset <= '1', '0' AFTER 5 ns;

inicio <= '1';

Conclusão

- Aumento de aprox. 50% na quantidade de elementos lógicos comparando 4 e
 8 bits.
- O tempo mínimo de clock até a saída diminui levemente na versão com 8 bits (sinal pronto maior atraso).

Fim

Divisor - Relatório

O algoritmo usado funciona da seguinte maneira: "A" é o dividendo e "B" é o divisor. "B" logicamente deve ser diferente de 0. A cada ciclo, "B" é subtraído de "A" e o valor da variável de contador incrementa em 1, mostrando assim quantas vezes "B" cabe dentro de "A". A divisão acaba quando A chegar a zero.

Grande parte do código pôde ser reaproveitado do multiplicador, e o único componente "novo" é o comparador A >= B. Sobre a máquina de estados: O estado S1 é de início. O estado S2 confere se a divisão acabou e se a entrada "B" é diferente de zero. Vai para S3 enquanto a divisão não termina, S4 quando está pronta, e "Erro" quando a entrada B é zero. S4 é responsável por liberar os valores finais de saída do circuito, quociente e resto, e por indicar que o algoritmo está pronto.

No bloco operativo, temos o registrador A, que acumula o valor de "A", registrador B, que guarda a entrada constante "B", e o registrador "Cont" que incrementa "1" a cada ciclo. Os registradores "Quoc" e "Resto" são responsáveis por guardar a saída até que ela esteja pronta para ser liberada, quando o algoritmo estiver completo. Temos dois comparadores, A >= B e B != 0, além de um somador e um subtrator, respectivamente responsáveis por incrementar "Cont" e decrementar "A".

Comparando 4 e 8 bits, o número de elementos lógicos teve um aumento de aproximadamente 50%. Entretanto, o tempo mínimo de clock até a saída diminuiu levemente.