

www.datascienceacademy.com.br

Matemática Para Machine Learning

E-book
Eigenvectors, Eigenvalues, PCA,
Covariance e Entropy
Parte 3

Embora tenhamos introduzido as matrizes como algo que transformou um conjunto de vetores em outro, outra maneira de pensar nelas é como uma descrição dos dados que capturam as forças atuantes, as forças pelas quais duas variáveis podem se relacionar, expressas por sua variância e covariância.

Imagine que nós componhamos uma matriz quadrada de números que descrevem a variância dos dados e a covariância entre as variáveis. Essa é a matriz de covariância. É uma descrição empírica dos dados que observamos.

Encontrar os autovetores e os autovalores da matriz de covariância é o equivalente a adaptar essas linhas retas de componentes principais à variância dos dados. Por quê? Porque os autovetores rastreiam as principais linhas de força, e os eixos de maior variância e covariância ilustram onde os dados são mais suscetíveis a mudanças.

Pense assim: se uma variável muda, ela está sendo afetada por uma força conhecida ou desconhecida. Se duas variáveis mudam juntas, é provável que seja porque uma esteja agindo sobre a outra, ou ambas estão sujeitas à mesma força oculta e sem nome.

Quando uma matriz executa uma transformação linear, os autovetores rastreiam as linhas de força que se aplicam à entrada; quando uma matriz é preenchida com a variância e covariância dos dados, os autovetores refletem as forças que foram aplicadas ao dado. Um aplica força e o outro reflete isso.

Autovalores são simplesmente os coeficientes ligados aos autovetores, que dão magnitude aos eixos. Nesse caso, eles são a medida da covariância dos dados. Ao classificar seus autovetores em ordem de seus autovalores, do maior para o menor, você obtém os componentes principais em ordem de importância.

Para uma matriz 2 x 2, uma matriz de covariância pode ter esta aparência:

[1.07 0.63] [0.63 0.64]

Os números na parte superior esquerda e inferior direita representam a variância das variáveis x e y, respectivamente, enquanto os números idênticos na parte inferior esquerda e superior direita representam a covariância entre x e y. Por causa dessa identidade, essas matrizes são conhecidas como simétricas. Como você pode ver, a covariância é positiva, pois o gráfico próximo ao topo da seção PCA aponta para cima e para a direita (veja imagem abaixo).

Se duas variáveis aumentam e diminuem juntas (uma linha indo para cima e para a direita), elas têm uma covariância positiva, e se uma diminui enquanto a outra aumenta, elas têm uma covariância negativa (uma linha indo para baixo e para a direita).

Observe que, quando uma variável ou outra não se move, e o gráfico não mostra movimento diagonal, não há nenhuma covariância. Covariância responde à pergunta: essas duas variáveis dançam juntas? Se uma permanece nula enquanto a outra se move, a resposta é não.

Além disso, na equação abaixo, você perceberá que há apenas uma pequena diferença entre a covariância e a variância.

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

VS.

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$

O melhor de calcular a covariância é que, em um espaço de alta dimensão em que você não consegue enxergar relacionamentos variáveis, pode saber como duas variáveis se movem juntas pelo caráter positivo, negativo ou inexistente de sua covariância. (Correlação é um tipo de covariância normalizada, com um valor entre -1 e 1.)

Em suma, a matriz de covariância define a forma dos dados. O espalhamento diagonal ao longo dos autovetores é expresso pela covariância, enquanto o espalhamento alinhado ao eixo x e y é expresso pela variância.

A causalidade tem um nome ruim nas estatísticas, então aqui está uma definição mais suave e prática:

Embora não seja totalmente preciso, pode ajudar pensar em cada componente como uma força causal no exemplo do basquetebol holandês visto na Parte 2 deste e-book, com o primeiro componente principal sendo a idade; o segundo possivelmente gênero; a terceira nacionalidade (implicando os diferentes sistemas de saúde dos países), e cada um deles ocupando sua própria dimensão em relação à altura. Cada um age na altura em diferentes graus. Você pode ler covariância como traços de causa possível.

Mudança de Base

Como os autovetores da matriz de covariância são ortogonais entre si, eles podem ser usados para reorientar os dados dos eixos x e y para os eixos representados pelos componentes principais. Você volta a basear o sistema de coordenadas para o conjunto de dados em um novo espaço definido por suas linhas de maior variação.

Os eixos x e y que mostramos acima são chamados de base de uma matriz, isto é, eles fornecem os pontos da matriz com coordenadas x, y. Mas é possível reformular uma matriz ao longo de outros eixos; por exemplo, os autovetores de uma matriz podem servir como base de um novo conjunto de coordenadas para a mesma matriz.

No gráfico acima, mostramos como o mesmo vetor v pode ser situado diferentemente em dois sistemas de coordenadas, os eixos x e y em preto e os outros dois eixos mostrados pelos traços vermelhos. No primeiro sistema de coordenadas, v = (1,1), e no segundo, v = (1,0), mas v em si não mudou. Vetores e matrizes podem, portanto, ser abstraídos dos números que aparecem dentro dos colchetes.

Isso tem implicações profundas, uma das quais é que não existe um sistema de coordenadas naturais, e objetos matemáticos no espaço n-dimensional estão sujeitos a múltiplas descrições. (Alterar as bases das matrizes também facilita sua manipulação).

Uma mudança de base para vetores é aproximadamente análoga a mudar a base para números; isto é, a quantidade nove pode ser descrita como 9 na base dez, como 1001 em binário e como 100 na base três (ou seja, 1, 2, 10, 11, 12, 20, 21, 22, 100 <- isto é "nove"). Mesma quantidade, símbolos diferentes; mesmo vetor, coordenadas diferentes.

Consulte as referências abaixo. Continuamos na Parte 4.

Referências:

https://math.stackexchange.com/questions/24456/matrix-multiplication-interpreting-and-understanding-the-process/24469#24469

https://pdfs.semanticscholar.org/9dfa/3d30681788aac5077ede7b0ba2f7c4ac501e.pdf

https://news.ycombinator.com/item?id=10080415

https://skymind.ai/wiki/eigenvector

https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture18-pca.pdf

https://arxiv.org/pdf/1407.2904.pdf

http://www.uta.fi/sis/mtt/mtts1-dimensionality reduction/drv lecture3 jan28update.pdf

http://mathworld.wolfram.com/MatrixDiagonalization.html