

Введение в экономико-математическое моделирование

Лекция 7. Динамическое программирование

канд. физ.-матем. наук, доцент Д. В. Чупраков usr10381@vyatsu.ru

Структура лекции

- 1 Динамическое программирование
- 2 Постановка задачи динамического программирования
- Принцип оптимальности Беллмана
- 4 Некоторые задачи
- 5 Резюме и источники

Динамическое программирование

Динамическое программирование — это метод нахождения оптимальных решений в задачах с многоэтапной структурой.

Многие экономические процессы расчленяются на шаги естественным образом. Это все процессы планирования и управления, развивающиеся во времени.

- из года в год меняется возраст машин и оборудования;
- трудозатраты меняются от работы к работе в рамках сетевой модели;
- руководство предприятием требует принятия решений в зависимости от свершившихся событий.

Очевидно, в таких задачах необходимо принимать оптимальные решения не только на текущий момент, но и на весь рассматриваемый период в целом с учетом возможных изменений параметров.

ДП связано с именем Ричарда Беллмана, который сформулировал принцип, позволяющий существенно сократить

Управляемая система без памяти

- ▶ Конечность числа шагов:
 - В результате управления система S переводится из начального состояния S_0 в состояние S_n .
- На каждом шаге $k = \{1, 2, ..., n\}$ принимается допустимое управляющее решение x_k .
- Система без памяти: $S_k = \varphi(S_{k-1}, x_k)$ Состояние системы S_k в конце k-го шага определяется:
 - ightharpoonup предшествующим состоянием S_{k-1}
 - ightharpoonup цправлением x_k
 - не зависит от других состояний и управлений

Управляемая система:
$$S_0 \xrightarrow{x_1} S_1 \xrightarrow{x_2} S_2 \xrightarrow{x_3} \dots \xrightarrow{x_{n-1}} S_{n-1} \xrightarrow{x_n} S_n$$
. Управление: $X = (x_1, x_2, \dots, x_{n-1}, x_n)$

Постановка задачи ДП

Показатель эффективности управления — целевая функция

$$F=F(S_0,X)$$

Предположим, F имеет свойство аддитивности:

$$F = \sum_{k=1}^{n} f_k(S_{k-1}, x_k) = f_1(S_0, x_1) + f_2(S_1, x_2) + \ldots + f_n(S_{n-1}, x_n)$$

 f_k — показатель эффективности управления на k-м шаге.

Общая формулировка задачи динамического программирования

Определить такое допустимое управление $X=(x_1,x_2,\ldots,x_{n-1},x_n)$, переводящее систему S из состояния S_0 в состояние S_n , при котором целевая функция $F=F(S_0,X)$ принимает наибольшее значение.

Особенности модели ДП

- 1. Задача оптимизации интерпретируется как *п*-шаговый процесс управления.
- 2. Целевая функция (ЦФ) сумма ЦФ на каждом шаге.
- 3. Выбор управления на *k*-ом шаге зависит только от состояния системы к этому шагу и не влияет на предшествующие шаги (нет обратной связи).
- 4. Состояние системы после *k*-го шага управления зависит от предшествующего состояния и управления.
- 5. На каждом шаге управление x_k зависит от конечного числа управляющих переменных, а состояние S_k от конечного числа параметров.

Принцип оптимальности Беллмана

Вопрос:

Что такое оптимальность управления на k-м шаге?

Чсловный оптимальный выигрыш $W_k(S)$ — величина выигрыша от k-го шага и до конца, если k-ый шаг начинается с некоторого состояния S.

$$F_k(S_{k-1}) = f_k(S_{k-1}, x_k) + f_{k+1}(S_k, x_{k+1}) + \ldots + f_n(S_{n-1}, x_n)$$

Принцип оптимальности Беллмана

Принимая решение k-ом шаге, нужно выбрать управление x_k так, чтобы условный оптимальный выигрыш $F_k(S_{k-1})$ был максимальным.

Ограничение: Управление на данном шаге не должно оказывать влияние на предшествующие шаги.

Последний шаг управления

- ▶ S_{n-1} состояние системы к началу n-го шага;
- ► S_n конечное состояние;
- ▶ X_n = x_n допустимое управляющее воздействие;
- $ightharpoonup f_n(S_{n-1},x_n)$ целевая функция n-го шага.

По принципу оптимальности $F_n(S_{n-1}, X_n) = f_n(S_{n-1}, x_n) \to \max$.

 $F_n^*(S_{n-1})$ — максимум целевой функции n-го шага если система была в состоянии S_{n-1} .

$$F_n^*(S_{n-1}) = \max_{x_n} \{f_n(S_{n-1}, x_n)\}$$

 $x_n^*(S_{n-1})$ — условно оптимальное управление на n-ом шаге — решение x_n , при котором достигается $F_n^*(S_{n-1})$.

Решив задачу нахождения максимума функции одной переменной x_n найдем $F_n^*(S_{n-1})$ и $x_n^*(S_{n-1})$.

Предпоследний шаг управления

В силц аддитивности

$$F_{n-1}(S_{n-2}, X_{n-1}) = f_{n-1}(S_{n-2}, X_{n-1}) + F^*(S_{n-1})$$

для $X_{n-1} = (x_{n-1}, x_n^*)$, где x_n^* — оптимальное управление n-го шага.

По принципу оптимальности $F_{n-1}(S_{n-2}) \to \max$.

$$F_{n-1}^*(S_{n-2}) = \max_{x_{n-1}} \{ f_{n-1}(s_{n-2}, x_{n-1}) + F_n^*(S_{n-1}) \} =$$

$$= \max_{x_{n-1}} \{ f_{n-1}(S_{n-2}, x_{n-1}) + F_n^*(\varphi(S_{n-2}, x_{n-1})) \}$$

т. к. $S_{n-1} = \varphi(S_{n-2}, x_{n-1}).$

Решив задачу нахождения максимума функции одной переменной x_{n-1} найдем

$$F_n^*(S_{n-1})$$
 и $X_{n-1}^* = (x_{n-1}^*(S_{n-2}), x_n^*(S_{n-1})).$

Рекуррентное соотношение Беллмана

 $F_k^*(S_{k-1})$ — условный максимум целевой функции, полученной на n-k+1 шагах, начиная с k-го до конца

Основное рекуррентное соотношение Беллмана

$$F_k^*(S_{k-1}) = \max_{x_k} \left\{ f_k(s_{k-1}, x_k) + F_{k+1}^*(S_k) \right\}$$

$$F_{k+1}(S_k) = \max_{x_i} \sum_{i=k+1}^n f_i(S_{i-1}, x_i)$$

$$S_k = \varphi(S_{k-1}, x_k)$$

Схема применения метода ДП

1. Рассматриваем последний шаг и находим условный максимум целевой функции для каждого S_{n-1}

$$F_n^*(S_{n-1}) = \max_{x_n} \{f_n(s_{n-1}, x_n)\}$$

2. Двигаясь с конца, для каждого k находим условные максимумы целевой функции за n-k+1 шагов, начиная с k-го до конца по всем возможным управлениям x_k :

$$F_k^*(S_{k-1}) = \max_{x_k} \{ f_k(S_{k-1}, x_k) + F_{k+1}^*(S_k, x_{k+1}) \},$$

Получаем последовательности условных оптимумов и условно оптимальных решений соответственно:

$$F_n^*(S_{n-1})$$
 $F_{n-1}^*(S_{n-2})$ \cdots $F_2^*(S_1)$ $F_1^*(S_0)$ $\times_n^*(S_{n-1})$ $\times_{n-1}^*(S_{n-2})$ \cdots $\times_2^*(S_1)$ $\times_1^*(S_0)$

3. Искомый оптимум целевой функции — $F_1^*(S_0)$; оптимальное решение — $X^* = (x_1^*, x_2^*, \dots, x_n^*)$.

Некоторые задачи, решаемые методом динамического программирования

Поиск оптимального маршрута

Прокладывается участок дороги из пункта A в пункт B по пересеченной местности. Требуется провести дорогу, чтобы суммарные затраты на сооружение участка были минимальные.

Формализация:

- Участок местности разбивается на сеть узлов.
- Узлы соединяются дугами, веса w; которых обозначают затраты на строительство данного куска дороги.
- Требуется в полученном графе найти путь наименьшей стоимости.

$$W = \sum w_i \to \min$$

Поиск оптимального маршрута. Граф

-	9	8	9	10	9	В
7	7	6 13	8 9	7 12	7 9	8
6	6	6 10	9 11	6	10	12
8	9	9 12	8 8	9 11	9 9	5
9	9	10	9 9	5 7	6 9	9
10 A	10	11 6	10 8	8 12	10	11

	9	8	9	10	9	В
7	7	6 13	8 9	7 12	7 9	8
6	6	6 10	9 11	6	10	12
8	9	9 12	8 8	9 11	9 9	5
9	9	10	9 9	5 7	6 9	9
1 A	0 10	11 6	10 8	8 12	10	11

	9	8	28 9	19 10	9	В
7	7	6	8	7	7	8
	7	13	9	26 12	16 9	8
6	6	6 10	9 11	6 6	10	12
	-0	10	11	- 0	26 14	20
8	9	9 12	8 8	9 11	9 9	5
		12				25
9		10	9 9	5 7	6	9
	9	11	9		9	
10	0	11	10	8	10	11
A	10	6	8	12	10	

Ответ и структура решения

- Обратным ходом найдены общие затраты на строительство дороги 78 условных единиц
- ▶ Прямым проходом "по карте" находим оптимальный план: X = (4 вправо, 3 вверх, 1 вправо, 2 вверх, 1 вправо).

Проблема экономического планирования

Pecypc — величина, которую система использует для производства полезного продукта.

Например:

- деньги
- время
- **▶** ГСМ
- ▶ Объем склада

Ресурс ограничен!

Как распределить ресурс между отдельными элементами системы, чтобы суммарный эффект был максимальным?

Задача экономического планирования

- ▶ Пусть есть начальный капитал K.
- **Р** Его можно потратить на предприятия P_1, P_2, \ldots, P_n
- ▶ Каждое предприятие работает в течении *т* лет.
- X_{it} количество средств вкладываемых в t-ом году, в i-ое предприятие.
- $ightharpoonup f_i(X_{it})$ доход предприятия i за год t, зависящий от вложенных средств
- Средства тратятся, принося доход, а новых средств не поступает и полученный доход не вкладывается.

Требуется так распределить капитал между предприятиями, чтобы суммарный доход был максимален:

$$F = \sum f_i(X_{ij}) \to \max, \qquad \sum X_{ij} \leqslant K$$

Распределение ресурсов на 2 предприятия

- К начальный капитал.
- lacktriangle Его можно потратить на предприятия P_1 и P_2
- ▶ Каждое предприятие работает в течении m лет.
- $ightharpoonup X_t$ вложения в t-ом году, в предприятие P_1 .
- $ightharpoonup Y_t$ вложения в t-ом году, в предприятие P_2 .
- $ightharpoonup f(X_t)$ доход предприятия P_1 за год t,
- $ightharpoonup g(Y_t)$ доход предприятия P_2 за год t,
- Целевая функция суммарный доход

$$W = \sum_{t=1}^{m} (f(X_t) + g(Y_t)) \to \max,$$

Планирования поддержки 2 предприятий

- ightharpoonup Состоянием системы является количество средств k_t в конце t-го года.
- lacktriangle Управление Y_t может быть записано как $Y_t = k_{t-1} X_t$.
- ▶ Функции возврата. В конце *t*-го года
 - ightharpoonup в первой отрасли остаются средства $\varphi(X_i)$;
 - ightharpoonup во второй $\psi(Y_t) = \psi(k_{t-1} X_t)$.

Составим рекурсивное соотношение Беллмана

$$W_t^*(k_{t-1}) = \max_{X_t} \left\{ f(X_t) + g(k_{t-1} - X_t) + W_{t+1}^* \left(\varphi(X_t) + \psi(k_{t-1} - X_t) \right) \right\}$$

Решение методом ДП

Движемся с конца к началу На последнем шаге t = m:

$$W_{m}^{*}(k_{m-1}) = \max_{X_{m}} \left\{ f(X_{t}) + g(k_{m-1} - X_{m}) \right\}$$

На предпоследнем шаге t = m - 1:

$$W_t^*(k_{t-1}) = \max_{X_t} \left\{ f(X_t) + g(k_{t-1} - X_t) + W_{t+1}^* \left(\varphi(X_t) + \psi(k_{t-1} - X_t) \right) \right\}$$

и так далее...

В момент начала управления t = 0:

- $k_0 = k$ капитал еще не потрачен.
- ightharpoonup Оптимальное значение: $W_{\max} = W_1^*(k)$
- ightharpoonup Расходы: X_1 , $y_1 = k X_1$.

Геометрическая интерпретация

Распределение средств — движение внутрь треугольника.

Найти оптимальный способ распределения средств P=100 тыс. руб между двумя предприятиями на три года, если вложенные средства в первое предприятие дают доход f(x)=0.9x и возвращаются в размере $\varphi(x)=0.5x$. Аналогично, для второго предприятия g(x)=0.8x и $\psi(x)=0.7x$.

► На последнем шаге t = 3. Распределяемый запас k₂. Первое предприятие может получить X₃ ∈ [0, k₂]. Вычислим условный оптимум 3-го шага:

$$W_3^*(k_2) = \max_{X_3} \{ f(X_3) + g(k_2 - X_3) \} =$$

$$= \max_{X_3} \{ 0.9X_3 + 0.8(k_2 - X_3) \} = \max_{X_3 \in [0, k_2]} \{ 0.1X_3 + 0.8k_2 \} = 0.9k_2$$

При
$$X_3 = k_2$$

Пример II

- ightharpoonup На предпоследнем шаге t=2.
 - ightharpoonup Распределяемый запас k_1 .
 - **▶** Первое предприятие может получить X_3 ∈ [0, k_1].

Вычислим условный оптимум 2-го шага:

$$W_{2}^{*}(k_{1}) = \max_{X_{2}} \left\{ f(X_{2}) + g(k_{1} - X_{2}) + W_{3}^{*} \left(\varphi(X_{2}) + \psi(k_{1} - X_{2}) \right) \right\} =$$

$$= \max_{X_{2}} \left\{ 0.9X_{2} + 0.8k_{1} - 0.8X_{2} + 0.9 \left(0.5X_{2} + 0.7(k_{1} - X_{2}) \right) \right\} =$$

$$= \max_{X_{2}} \left\{ 0.1X_{2} + 0.8k_{1} + 0.9(0.7k_{1} - 0.2X_{2}) \right\} =$$

$$= \max_{X_{2} \in [0, k_{1}]} \left\{ 1.43k_{1} - 0.08X_{2} \right\} = 1.43k_{1}$$

При
$$X_2 = 0$$

Пример III

- ightharpoonup На первом шаге t=1.
 - ightharpoonup Распределяемый запас $k_0 = 100$.
 - ▶ Первое предприятие может получить $X_1 \in [0, 100]$.

Вычислим условный оптимум 2-го шага:

$$W_{1}^{*}(k_{0}) = \max_{X_{1}} \left\{ f(X_{1}) + g(k_{0} - X_{1}) + W_{2}^{*} \left(\varphi(X_{1}) + \psi(k_{0} - X_{1}) \right) \right\} =$$

$$= \max_{X_{1}} \left\{ 0.9X_{1} + 80 - 0.8X_{1} + 1.43 \left(0.5X_{1} + 0.7(100 - X_{1}) \right) \right\} =$$

$$= \max_{X_{1}} \left\{ 0.1X_{2} + 80 + 1.43(70 - 0.2X_{1}) \right\} =$$

$$= \max_{X_{1} \in [0,100]} \left\{ 180.1 - 0.186X_{1} \right\} = 180.1$$

При
$$X_1=0$$

Максимальный доход — 180.1 тыс. руб.

Составим оптимальный план:

Год	Ресурс	P_1	P_2
1	$k_0 = 100$	$X_1 = 0$	$Y_1 = 100$
2	$k_1 = \varphi(X_1) + \psi(Y_1) = 0.7 \cdot 100 = 70$	$X_2 = 0$	$Y_2 = 70$
3	$k_2 = \varphi(X_2) + \psi(Y_2) = 0.7 \cdot 70 = 49$	$X_3 = 49$	$Y_3 = 0$

К настоящему моменту вы знаете:

- 1. Что такое метод динамического программирования.
- 2. Как решать задачу экономического планирования (распределения ресурсов на *m* лет между *n* предприятиями).

3.

Чбедитесь, что вы не только знаете, но и умеете применять рассмотренные методы.

Вам нужно освоить:

- 1. Решение задачи распределения ресурсов Кремер Н. Ш. Исследование операций в экономике §12.3 с. 253–260.
- 2. Решение задачи о замене оборудования Кремер Н. Ш. Исследование операций в экономике §12.5 с. 265–270.

По такому поводу жду от Вас конспект этой лекции в который войдет:

- Принцип и формулы Беллмана
- ▶ Задача распределения ресурсов. Формулировка+Пример
- Задача планирования. Формулировка+Пример
- ▶ Задача о замене оборудования. Формулировка+Пример

Источники информации

- ▶ Исследование и оптимизация моделей: Кремер Н. Ш.
 Исследование операций в экономике глава 12 с. 245–273.
- ► Все материалы по курсу здесь: https://cloud.mail.ru/public/48BX/47oESuaQQ