

内置高压MOSFET电流模式PWM+PFM控制器系列

描述

SD6834是用于开关电源的内置高压MOSFET外置采样电阻的电流模式PWM+PFM控制器系列产品。

该电路待机功耗低,启动电流低。在待机模式下,电路进入 打嗝模式,从而有效地降低电路的待机功耗。

电路的开关中心频率为25~67KHz,随负载而定。抖动的开关频率,可以获得较低的EMI。

内置峰值电流补偿电路,可以使不同交流电压输入时极限峰值电流一致。上电时,峰值电流补偿最大,然后逐渐达到平衡,可以减小在上电过程中变压器的应力,防止变压器饱和。还可以通过CS端电阻调节极限峰值电流。

电路内部集成了各种异常状态保护功能。包括欠压锁定,过 压保护,过载保护,脉冲前沿消隐,原线圈过流保护和温度保护 功能。在电路发生保护以后,电路可以不断自动重启,直到系统 正常为止。

应用

* 开关电源

主要特点

- * 能源之星2.0标准
- * 低启动电流(3uA)
- * 随负载而变的开关频率可以提高效率
- * 抖动的开关频率可以降低EMI
- * 过压、原线圈过流、过载、过温保护
- * 外置峰值电流采样电阻
- * 欠压锁定
- * 内部集成高压MOSFET
- * 自动重启
- * 峰值电流补偿电路
- * 初始化峰值电流最大补偿,实现软启动功能
- * 打嗝模式
- * 逐周期限流

产品规格分类

产品名称	封装类型	打印名称	材料	包装	
SD6834	DIP-8-300-2.54	SD6834	无铅	料管	

典型输出功率能力

÷	190~265V		85~265V		
产品	适配器	开放式	适配器	开放式	
SD6834	14W	19W	12W	15W	

内部框图

极限参数

参数	符号	参数范围	单 位
漏栅电压(R _{GS} =1MΩ)	V_{DGR}	650	V
栅源(地)电压	V_{GS}	±30	V
漏端电流脉冲 ^{注1}	I _{DM}	10	Α
漏端连续电流(Tamb=25°C)	I _D	2.5	Α
信号脉冲雪崩能量 ^{注2}	E _{AS}	140	mJ
供电电压	V _{CC,MAX}	28	V
反馈输入端电压	V_{FB}	-0.3~7	V
峰值电流采样端电压	V _{CS}	-0.3~2	V
容许功耗	P _D	6.3	W
环境热阻	θја	77	°C/W
表面热阻	θјс	20	°C/W
工作结温	TJ	+150	°C
工作温度范围 T		-25~+85	°C
贮存温度范围	T _{STG}	-55~+150	°C

注: 1. 脉冲宽度由最大结温决定;

2. L=51mH, T」=25°C(起始)。

电气参数(感应MOSFET部分,除非特殊说明, T_{amb}=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V_{GS} =0 V , I_D =50 μ A	650			V
泰柳 [2] 2 2 4 4 3 5		V _{DS} =650V, V _{GS} =0V			50	μΑ
零栅压漏端电流	I _{DSS}	V _{DS} =480V, V _{GS} =0V T _{amb} =125°C			200	μΑ
拉大果将只 落中加	_	V _{GS} =10V, I _D =0.5A	2.3	3.4	4.5	Ω
静态漏源导通电阻	R _{DS(ON)}	V _{GS} =10V, I _D =1.25A	2.5	3.6	4.7	Ω
输入电容	C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1MHz	224	320	416	pF
输出电容	Coss	V_{GS} =0V, V_{DS} =25V, f=1MHz	28	41	54	pF
反向传输电容	C _{RSS}	V_{GS} =0V, V_{DS} =25V, f=1MHz	0.9	1.3	1.7	pF
导通延迟时间	T _{D(ON)}	V_{DD} =0.5B V_{DSS} , I_D =25mA	9.1	13	16.9	ns
上升时间	T _R	V_{DD} =0.5B V_{DSS} , I_D =25mA	21.7	31	40.3	ns
关断延迟时间	T _{D(OFF)}	V_{DD} =0.5B V_{DSS} , I_D =25mA	12.6	18	23.4	ns
下降时间	T _F	V_{DD} =0.5B V_{DSS} , I_D =25mA	14	20	26	ns

电气参数(除非特殊说明, V_{CC}=12V, T_{amb}=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
欠压部分						
上电启动电压 V _{START}			14.5	15.5	17.0	V
关断电压	V _{STOP}		7.5	8.3	9.5	V
振荡部分						
振荡频率最大值	f _{OSCMAX}	V _{FB} =3V	61	67	73	KHz
振荡频率最小值	f _{OSCMIN}	V _{BURL} <v<sub>FB<v<sub>BURH</v<sub></v<sub>	20	25	30	KHz
振荡频率抖动最大值	f _{MOD}	振荡频率最大	±1.5	±2.5	±3.5	KHz
振荡频率随温度的变化率		25°C≤T _{amb} ≤+85°C		±5	±10	%
最大占空比	D _{MAX}		72	77	82	%
反馈部分		,				
反馈源电流最大值	I _{FBMAX}	V _{FB} =0V	0.7	0.9	1.1	mA
反馈关断电压(过载保护)	V_{SD}		3.8	4.3	4.8	V
反馈关断延迟时间	T _{SD}	FB 从 0V 瞬间上升至 5V	15	27	40	ms
关断延迟电流 I _{DELAY}		V _{FB} =5V	3	5.5	8	μΑ
CS部分		,				
CS最大值	V _{CSMAX}		0.7	0.9	1.1	V
打嗝模式控制						
打嗝模式高电平	V_{BURH}	FB 电压	0.40	0.50	0.60	V
打嗝模式低电平	V _{BURL}	FB 电压	0.25	0.35	0.45	V
保护部分						
过压保护	V _{OVP}	Vcc电压	23	24.5	26	V

参数	符号	测 试 条 件	最小值	典型值	最大值	单位
过温保护	T _{OTP}		125	150	175	ů
前沿消隐时间	T_LEB		250	325	450	ns
总待机电流部分						
启动电流	I _{START}	V _{CC} 从 0V 上升至 12V	1	3	10	μА
静态电流	I _{STATIC}	V _{FB} =0V	1.0	1.9	3.0	mA
工作电流	I _{OP}	V _{FB} =3V	1.2	2.2	3.2	mA

管脚排列图

注:建议用户使用时将5脚与Drain端接在一起,可以更好地辅助散热。

管脚说明

管脚号	管脚名称	I/O	功能描述
1	GND		地
2	CS	I	峰值电流采样端
3	V _{CC}	I	正电源输入端
4	FB	I/O	反馈输入端
5	NC	-	空脚
6、7、8	Drain	0	功率 MOSFET 开关漏端

功能描述

SD6834是用于离线式开关电源集成电路。电路含有高压功率MOSFET,优化的栅驱动电路以及电流模式PWM+PFM控制器。控制器包含有振荡频率发生器及各个保护功能。振荡电路产生的频率抖动,可以降低 EMI。最大峰值电流补偿减小了电路启动时变压器的应力。通过CS端电阻可以调节极限峰值电流。在轻载时,电路采用打嗝模式,可以有效地降低电路的待机功耗。保护功能包括:欠压锁定,过压保护,过载保护,原线圈过流保护和温度保护功能。电路的前沿消隐功能,保证MOSFET的开通有最短的时间,消除了由于干扰引起的MOSFET的误关断。使用SD6834可减少外围元件,增加效率和系统的可靠性,可用于正激变换器和反激式变换器。

1. 欠压锁定和自启动电路

开始时,电路由高压AC通过启动电阻对 V_{cc} 脚的电容充电。当 V_{cc} 充到 15.5V,电路开始工作。电路正

常工作以后,如果电路发生保护,输出关断,FB源电流也关断,由于电路此时供电由辅助绕组提供, V_{cc} 开始降低,当 V_{cc} 低于 8.3V,控制电路整体关断,电路消耗的电流变小,又开始对 V_{cc} 脚的电容充电,启动电路重新工作。

2. 频率抖动和降频模式

为了降低 EMI,本电路使得振荡频率不断的变化,减小在某一个单一频率的对外辐射。振荡频率在一个很小的范围内变动,从而简化 EMI 设计,更容易满足要求。中心频率 67KHz 时变化的规律是:4ms 时间之内±2.5KHz 范围变化,共有 63 个频率点。

为提高效率,本电路采用降频模式。采用方式有二:

- 一、通过检测FB管脚输出下拉电流 I_{FB} 来降低频率f。当 I_{FB} 在典型电流 I_1 以上时,频率f从典型值 67KHz开始降低,一直到典型电流 I_2 以上时降低至典型值 25KHz。变化关系如下左图所示。
- 二、通过检测FB管脚输出下拉电流I_{FB}来改变峰值电流I_{PK}的变化率。变化关系如下右图所示。

3. 峰值电流采样电阻

本电路采用在CS端外置采样电阻(Rcs)实现峰值电流限制。极限峰值电流由下式决定:

$$I_{PKMAX} = 0.9 / R_{CS}$$

4. 峰值电流补偿和初始化

在不同交流电压输入时极限峰值电流变化很大,本电路通过峰值电流补偿可以使不同交流电压输入时极

限峰值电流一致。输入的交流电压越高,峰值电流补偿越大;轻负载时,峰值电流补偿消失。打嗝模式没有峰值电流补偿。

为减小在上电过程中变压器的应力,防止变压器饱和,上电时,峰值电流补偿最大,然后逐渐达到平衡。达到平衡的时间随负载而定。

5. 打嗝模式

该方式可以有效地降低待机功耗。当 FB 大于 0.5V,正常工作;当 0.35V<FB <0.5V 时有两种情况,一种情况是,FB 电压由低到高,此时与低于 0.35V 情况一样,开关不动作。另一种情况是,FB 电压由高到低,为减小开关损耗,避免开关导通时间过短,此时调高电流比较器的比较点,增加导通时间。打嗝模式下,开关频率降低至 25KHz。

在打嗝模式下,开关调节情况如下: 轻载时,FB 电压在约 0.5V 以下。当 FB 电压由高到低变化时,由于电流比较器的比较点较高,输出功率较大,输出电压升高(升高的快慢取决于负载的大小),使得 FB 下降,直至 FB 电压低于 0.35V;当 FB<0.35V,开关不动作,输出电平下降(下降的快慢取决于负载的大小),使得 FB 升高。当负载较轻时,以上动作重复变化,输出间断脉冲,减少了开关次数,实现了较低的功耗。

6. 前沿消隐

在本电流控制环路中,当开关导通瞬间会有脉冲峰值电流,如果此时采样电流值,会产生错误触发动作, 前沿消隐用于消除这种动作。在开关导通之后的一段时间内,采用前沿消隐消除这种误动作。在电路有输出驱动以后,PWM 比较器的输出要经过一个前沿消隐时间才能去控制关断输出。

7. 过压保护

当 V_{CC} 上的电压超过过压保护点电压时,表示负载上发生了过压,此时关断输出。该状态一直保持,直到电路发生上电重启。

8. 过载保护

当电路发生过载,会导致FB电压的升高,当FB电压升高到反馈关断电压以上并且经过反馈关断延迟时间后,输出关断。该状态一直保持,直到电路发生上电重启。

9. 逐周期峰值电流限制

在每一个周期,峰值电流值有比较器的比较点决定,该电流值不会超过峰值电流限流值,保证MOSFET上的电流不会超过额定电流值。当电流达到峰值电流以后,输出功率就不能再变大,从而限制了最大的输出功率。如果负载过重,会导致输出电压变低,反映到FB端,导致FB升高,发生过载保护。

10. 原线圈过流保护

如果次级二极管短路,或变压器短路,会引起该现象。此时,不管前沿消隐时间,一旦过流,过 200ns 马上保护,且对每一个周期都起作用。在 CS 端电压达到 1.7 伏时,发生这个保护。当发生该保护时,输出关断。该状态一直保持,直到发生欠压以后,电路启动。

11. 过温保护

为了保护电路不会损坏,防止电路过热,电路会发生过温保护,关断输出。该状态一直保持,冷却后电 路重新启动。

典型应用电路图

注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

封装外形图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否 完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

附:

修改记录:

日期	版本号	描述	页码
2011.11.02	1.0	原版	
2012.04.11	1.1	修改"电气参数(MOSFET部分)"、"电气参数"和"封装外形图"	