183.605 Machine Learning for Visual Computing Assignment 2

Group 12: Hanna Huber (0925230) Lena Trautmann (1526567) Elisabeth Wetzer (0726681)

January 3, 2017

1 Assignment 2

1.1 The dual optimization problem

Tasks:

- Generate a suitable training set of linearly separable data
- Plot the input vectors in \mathbb{R}^2 and visualize corresponding target values (e.g. by using color).

Figure 1: Plot of the input vectors with the target value visualized by colour.

Figure 1 shows the input vectors.

• Visualize the support vectors and plot the decision boundary.

Figure 2: Plot of the transformed input vectors with the target value visualized by colour.

Figure 2 shows the transformed input vectors.

1.2 The kernel trick

Tasks:

• Try different values for σ (the RBF parameter).

The radial basis function kernel is defined by $K(x,y)=exp(-\frac{\|x-y\|^2}{\sigma^2})$. The corresponding support vectors are shown in Figure 3 for different values of the RBF parameter σ . In the lecture notes about RBF-networks, we discussed a selection of $\sigma=2*avgdist$, where avgdist denotes the average distance of the centers. Having distances between the data points of approximately 10 units (or slightly more), $\sigma=25$ is then selected.

• Generate a non-linearly separable training set, plot the data, visualize the support vectors and plot the decision boundary.

Figure 3: Support Vectors for different values of the RBF parameter $\sigma.$

Figure 4: Plot of the decision boundary in the original data space found by the perceptron (green curve) together with labelled data points.