Aprendizaje Automático y Minería de Datos Regresión lineal

Cristina Tîrnăucă

Dept. Matesco, Universidad de Cantabria

Fac. Ciencias - Grado en Ing. Informática

Datos de entrada y notación

Datos de entrenamiento:

Superficie en m^2 (x)	Precio en euros (y)
88	210000
90	230000
47	95000
111	230000

Tabla: Precio (en euros) según superficie (en metros cuadrados)

Notación:

m = número de ejemplos

 $x = \text{variable de entrada (superficie)}, x^{(i)}$

 $y = \text{variable de salida (precio)}, y^{(i)}$

Objetivo: hallar una recta que mejor se aproxime a los datos.

Regresión lineal univariante

Estimación por mínimos cuadrados ordinarios

Método iterativo

Algorítmo del gradiente descendente, I

Objetivo: hallar $h(x) = \theta_0 + \theta_1 * x$

Bajo condición: el coste $J(\theta_0, \theta_1) = \text{mínimo, donde}$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Idea:

- Empezar con θ_0 y θ_1 al azar
- Modificar θ_0 y θ_1 para reducir $J(\theta_0, \theta_1)$ hasta que (eventualmente) lleguemos a un mínimo.

Método iterativo

Algorítmo del gradiente descendente, II

Idea:

- Empezar con θ_0 y θ_1 al azar
- Modificar θ_0 y θ_1 para reducir $J(\theta_0, \theta_1)$ hasta que (eventualmente) lleguemos a un mínimo.

```
repetir hasta convergencia { \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \\ \text{(para } j = 0 \text{ y } j = 1) \\ \beta \\ \alpha = \text{ratio de aprendizaje}  Modelo de regresión lineal: h(x) = \theta_0 + \theta_1 * x \\ J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left( h(x^{(i)}) - y^{(i)} \right)^2
```

Función de coste - intuiciones, I

Modelo simplificado: $\theta_0 = 0$

Método iterativo

Algorítmo del gradiente descendente, III

repetir hasta convergencia {
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \frac{\partial}{\partial \theta_0} (\frac{1}{2m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2) \frac{\partial}{\partial \theta_0} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)} - y^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)})^2) \frac{\partial}{\partial \theta_1} (\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 * x^{(i)})^2) \frac{\partial}{\partial \theta_1$$

Función de coste - intuiciones, II

Modelo general: θ_0 arbitrario

Función de coste - intuiciones, II

El ratio de aprendizaje α

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

 α muy pequeño: el algoritmo tarda mucho en converger

 α muy grande: el algoritmo no converge

El algorítmo puede converger a un mínimo local incluso cuando α es fijo.

Función de coste - intuiciones, IV Mínimo local / global

Función de coste - intuiciones, III Mínimo local / global

Método analítico

Objetivo: hallar $h(x) = \theta_0 + \theta_1 * x$

Bajo condición: el coste $J(\theta_0, \theta_1) = \text{mínimo, donde}$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Solución analítica:

$$\theta_{0} = \frac{\sum_{i=1}^{m} x^{(i)} * \sum_{i=1}^{m} x^{(i)} y^{(i)} - \sum_{i=1}^{m} x^{(i)} x^{(i)} * \sum_{i=1}^{m} y^{(i)}}{\sum_{i=1}^{m} x^{(i)} * \sum_{i=1}^{m} x^{(i)} - m \sum_{i=1}^{m} x^{(i)} x^{(i)}}$$

$$\theta_{1} = \frac{\sum_{i=1}^{m} x^{(i)} * \sum_{i=1}^{m} y^{(i)} - m \sum_{i=1}^{m} x^{(i)} y^{(i)}}{\sum_{i=1}^{m} x^{(i)} * \sum_{i=1}^{m} x^{(i)} - m \sum_{i=1}^{m} x^{(i)} x^{(i)}}$$