Graph Theory Fall 2021

Assignment 7

Due at 5:00 pm on Wednesday, November 17

Questions with a (*) are each worth 1 bonus point for 453 students.

- 1. Some questions about drawing Q_k graphs on surfaces.
 - A. Show that Q_3 can be drawn on the plane.
 - B. Use the fact that Q_4 is bipartite and a total edge count argument to show that Q_4 cannot be drawn on the plane.
 - C. Draw Q_4 on the torus (use the $aba^{-1}b^{-1}$ square representation drawn below). HINT: Q_4 is isomorphic to $C_4 \times C_4$.

D. Show that $g(Q_5) \ge 5$. Recall that for Q_5 we have n=32 and m=80. As a first step, use a total edge count argument to show that $r \le 40$. Feed this information into Euler's formula

$$n-m+r=2-2 g(Q_5).$$

E. (*) Generalize the strategy in part D to obtain a "meaningful" lower bound for $g(Q_k)$. Here, recall that $n=2^k$ and $m=k2^{k-1}$.

2. The Petersen graph P is depicted:

- A. Use a total edge count argument to show that P is non-planar. You may use the fact that P has no triangles or 4-cycles as subgraphs.
- B. Draw P on a torus without the edges crossing.

3. Draw $K_{4,4}$ on a torus without the edges crossing. Suggestion: Start with your two partite sets (every edge joins a red vertex to a blue vertex) arranged as shown:

