EE 381V: Special Topics on Unsupervised Learning

Spring 2018

Lecture 7: February 8th

Lecturer: Professor Alex Dimakis

Scribes: Justin Lewis, Dany Haddad

This lecture's notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

Topics Covered

- Submodularity
- Feature selection (see [KG05-1])
- Nemhauser's proof for greedy maximization of submodular functions

7.1 Definitions

Entropy

Given a set, S, of discrete random variables, define the set function $f_H(S): 2^V \to \mathbb{R}$

$$f_H(S) = H(X_S) = -\sum_{x_i \in S} p(x_i) \log p(x_i)$$

and for differential entropy:

$$f_H(S) = H(X_S) = -\int_{\mathcal{X}_S} p(x) \log p(x) dx$$

Mutual Information

Given random vectors Y and X_S , define the following as the mutual information between them $f_I(S): 2^V \to \mathbb{R}$

$$f_I(S) = I(Y; X_S) = H(Y) - H(Y|X_S)$$

7.2 Properties

Lemma 7.1. f_H is submodular.

Proof. Consider subsets A and B of random variables, \mathcal{X} , where $A \subseteq B$. Also consider a random variable $X_m \notin A \cup B$

$$f_H(A \cup \{m\}) - f_H(X_A) = H(X_A, X_m) - H(X_A) = H(X_m | X_A)$$

and similarly

$$f_H(B \cup \{m\}) - f_H(X_B) = H(X_m|X_B)$$

Since conditioning on a larger set of random variables cannot increase the entropy:

$$H(X_m|X_B) \le H(X_m|X_A)$$

 $f_H(B \cup \{m\}) - f_H(X_B) \le f_H(A \cup \{m\}) - f_H(X_A)$

Note 1. $2^{H(X)}$ is the volume of the support set of X.

In the discrete case we can show that f_H is also monotone. Howevers, in the continuous case, this function is no longer monotone. (TODO: counterexample).

Example 1. Consider $X_1, ..., X_n$ jointly gaussian random variables with pdf:

$$p(x) = \frac{1}{\sqrt{2\pi|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

The differential entropy of a subset indexed by S is given by:

$$H(X_S) = \frac{1}{2} 2\pi e \log \det \Sigma_s$$

Where Σ_S denotes the submatrix of the covariance matrix Σ formed by taking only the variables indexed by S. So to choose the subset of k variables with the largest entropy, we must maximize the determinant of Σ_S .

Proposition 7.2. Mutual information is, in general, not submodular.

Proof. Consider X, Y independent $Bernoulli(\frac{1}{2})$ random variables. Let $Z = X \oplus Y$. So:

$$H(Z) = H(Z|X) = H(Z|Y) = 1 \text{ and } H(Z|X \cup Y) = 0$$
$$\implies H(Z) - H(Z|X) \le H(Z|Y) - H(Z|X \cup Y)$$

Claim 7.3. Mutual information is monotone. This follows immediately from the fact that conditioning does not increase entropy.

Proposition 7.4. TODO: fix this proof Given sets S and U of random variables such that the elements of S are independent of each other conditioned on X_U , then $f_I(A) = I(U; A)$ is submodular for all $A \subseteq S \cup U$.

Proof. Let $W = U \cup S$ and $C = A \cup B$ such that $A, B \subseteq W$. So:

$$\begin{split} H(U|C) &= H(U|A \cup B) \\ &= H(U \cup A) - H(A \cup B) \\ &= H(A|U) + H(U) - H(C) \\ &= H(U) - H(C) + \sum_{Y \in C \cap S} H(Y|U) \end{split}$$

Where the last step follows using the chain rule for the joint entropy. H (U) is constant, H (C) is submodular and Y CS H (Y — U) is linear in C on U S and hence on W . \Box

Figure 7.1: An undirected graphical model where the elemets of S are independent conditioned on U

This claim holds if the distribution factorizes according to an undirected graphical model similar to 7.1. Recall the conditional independence properties we can infer from an undirected graphical model.

7.3 Optimization

Consider the chain rule of entropy:

$$H(X_1,...,X_n) = H(X_S) + H(X_{S^c}|X_S)$$

Since $H(X_1,...,X_n)$ has no dependence on S, maximizing the entropy of the subset S, is equivalent to minimizing the uncertainty of the unobserved set, S^c :

$$\max_{s:|s|\leq k} H(X_S) = \min_{s:|s|\leq k} H(X_{S^c}|X_S)$$

This requires us to maximize a monotone submodular function. The greedy algorithm selects the element with the largest discrete derivative at iteration i.

7.3.1 latex reference

Here is an itemized list:

- this is the first item;
- this is the second item.

Here is an enumerated list:

- 1. this is the first item;
- 2. this is the second item.

Here is an exercise:

Exercise: Show that $P \neq NP$.

Here is how to define things in the proper mathematical style. Let f_k be the AND - OR function, defined by

 $^{^{1}}$ see Krause & Golovia survey: <a href="https://las.inf.ethz.ch/files/krause12survey.pdf

$$f_k(x_1, x_2, \dots, x_{2^k}) = \begin{cases} x_1 & \text{if } k = 0; \\ AND(f_{k-1}(x_1, \dots, x_{2^{k-1}}), f_{k-1}(x_{2^{k-1}+1}, \dots, x_{2^k})) & \text{if } k \text{ is even}; \\ OR(f_{k-1}(x_1, \dots, x_{2^{k-1}}), f_{k-1}(x_{2^{k-1}+1}, \dots, x_{2^k})) & \text{otherwise.} \end{cases}$$

Theorem 7.5. This is the first theorem.

Proof. This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between x and y:

```
if x or y or both are in S then answer accordingly else  \begin{aligned} &\text{Make the element with the larger score (say } x) \text{ win the comparison} \\ &\text{if } F(x) + F(y) < \frac{n}{t-1} \text{ then} \\ &F(x) \leftarrow F(x) + F(y) \\ &F(y) \leftarrow 0 \end{aligned}   \begin{aligned} &\text{else} \\ &S \leftarrow S \cup \{x\} \\ &r \leftarrow r+1 \end{aligned}   \end{aligned}  endif
```

This concludes the proof.

7.4 Next topic

Here is a citation, just for fun [CW87].

References

- [KG05-1] Krause, Andreas and Guestrin, Carlos, "Near-optimal sensor placements," Proceedings of the fifth international conference on Information processing in sensor networks IPSN 06, 2005.
- [KG05-2] Krause, Andreas and Guestrin, Carlos, "Near-optimal Nonmyopic Value of Information in Graphical Models," *Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence*, 2005.