Mason Blanford CS-225: Discrete Structures in CS Assignment 10 Canvas Exercise Set Page 1

Canvas Problem

Use Dijkstra's algorithm to find the shortest path from b to j.

Rules for Djikstra's algorithm:

Add the vertex of least distance to set S.

Find the least distance from the first to the current vertex, accessed only if S has the vertex.

Adding vertices to S fixes their distances as constants.

With two vertices of same distance, add either.

Step 0: Set empty set S and each vertex to infinity, as their paths are undetermined.

Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	0	∞									

Continued on next page

Mason Blanford CS-225: Discrete Structures in CS Assignment 10 Canvas Exercise Set Page 2

Canvas Problem (Continued)

The current fastest route is emboldened in each step.

Step 1: Add a, the first vertex, to set S.

Update the distance to each a-adjacent vertex:

b is distance 3;

e = 5; and

h=4.

	Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
ſ	0	{}	0	∞									
ſ	1	<i>{a}</i>	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞

Step 2: Add b to set S. Update the columns:

 $a \in S$;

$$c = 2$$
, but $b + c = 3 + 2 = 5$;

$$b + e = 3 + 5 = 8 > 5$$
, e; and

$$f = 7$$
, but $b + f = (a, b) + f = 3 + 7 = 10$.

Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	<i>{a}</i>	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞
2	$\{a,b\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	10, (a, b)	∞	4, h	∞	∞	∞

Step 3: Add h to set S. Update the columns:

 $a \in S$;

$$h+e=4+7=11>5, e;$$

$$h + f = 4 + 5 = 9 < 10, (a, b)$$
; and

$$i = 2$$
, but $(a, h) + i = 4 + 2 = 6$.

	Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
	0	{}	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
	1	<i>{a}</i>	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞
	2	$\{a,b\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	10, (a, b)	∞	4, h	∞	∞	∞
Γ	3	$\{a,b,h\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	9, (a, h)	∞	4 (a, h)	6, (a, h)	∞	∞

 $Continued\ on\ next\ page$

Mason Blanford CS-225: Discrete Structures in CS Assignment 10 Canvas Exercise Set

Page 3

Canvas Problem (Continued)

Step 4: Add e to set S, though $c=e\equiv 5=5$. Update the columns:

 $\begin{array}{l} a \in S; \\ e+b=(a,e)+b=5+5=10>3, b; \\ e+f=(a,e)+f=5+4=9=9, (a,h); \text{ and } \\ h \in S. \end{array}$

Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	<i>{a}</i>	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞
2	$\{a,b\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	10, (a, b)	∞	4, h	∞	∞	∞
3	$\{a,b,h\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	9, (a, h)	∞	4 (a, h)	6, (a, h)	∞	∞
4	$\{a, b, h, e\}$	0, a	3, (a, b)	5, (a, b)	∞	5, (a, e)	9, (a, h)	∞	4, (a, h)	6, (a, h)	∞	∞

Step 5: Add c to set S, as e didn't yield less distance. Update the columns:

 $\begin{array}{l} b\in S;\\ c+d=(b+c)+d=(3+2)+3=5+3=8;\\ c+f=(b+c)+f=(3+2)+2=5+2=7<9(a,h); \text{ and} \end{array}$

g = 6, but (a, c) + g = 5 + 6 = 11.

Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	$\{a\}$	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞
2	$\{a,b\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	10, (a, b)	∞	4, h	∞	∞	∞
3	$\{a,b,h\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	9, (a, h)	∞	4 (a, h)	6, (a, h)	∞	∞
4	$\{a,b,h,e\}$	0, a	3, (a, b)	5, (a, b)	∞	5, (a, e)	9, (a, h)	∞	4, (a, h)	6, (a, h)	∞	∞
5	$\{a,b,h,e,c\}$	0, a	3, (a, b)	5, (a, c)	8, (a, c)	5, (a, e)	7, (a, c)	11, (a, c)	4, (a, h)	6, (a, h)	∞	∞

Step 6: Add i to set S. Update the columns:

i + f = (a, i) + f = 6 + 4 = 10 < 7, (a, c); $h \in S$; and

j = 6, but (a, i) + j = 6 + 6 = 12.

Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	$\{a\}$	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞
2	$\{a,b\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	10, (a, b)	∞	4, h	∞	∞	∞
3	$\{a,b,h\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	9, (a, h)	∞	4 (a, h)	6, (a, h)	∞	∞
4	$\{a,b,h,e\}$	0, a	3, (a, b)	5, (a, b)	∞	5, (a, e)	9, (a, h)	∞	4, (a, h)	6, (a, h)	∞	∞
5	$\{a,b,h,e,c\}$	0, a	3, (a, b)	5, (a, c)	8, (a, c)	5, (a, e)	7, (a, c)	11, (a, c)	4, (a, h)	6, (a, h)	∞	∞
6	$\{a,b,h,e,c,i\}$	0, a	3, (a, b)	5, (a, c)	8, (a, c)	5, (a, e)	7, (a, c)	11, (a, c)	4, (a, h)	6, (a, i)	12, (a, i)	∞

Continued on next page

Mason Blanford

CS-225: Discrete Structures in CS

Assignment 10

Canvas Exercise Set

Page 4

Canvas Problem (Continued)

Step 7: Vertex j is reached, but path [...]

 $[\ldots]$ isn't necessarily the shortest route.

Add f to set S. Update the columns:

 $b \in S$;

 $c \in S$;

 $e \in S$;

$$f + g = (a, f) + g = 7 + 4 = 11 = 11, (a, c);$$

 $h \in S$;

 $i \in S$; and

$$j = 3$$
, but $f + j = (a, f) + j = 7 + 3 = 10 < 12, (a, i)$

Step	S	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	$\{a\}$	0, a	3, b	∞	∞	5, e	∞	∞	4, h	∞	∞	∞
2	$\{a,b\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	10, (a, b)	∞	4, h	∞	∞	∞
3	$\{a,b,h\}$	0, a	3, (a, b)	5, (a, b)	∞	5, e	9, (a, h)	∞	4 (a, h)	6, (a, h)	∞	∞
4	$\{a,b,h,e\}$	0, a	3, (a, b)	5, (a, b)	∞	5, (a, e)	9, (a, h)	∞	4, (a, h)	6, (a, h)	∞	∞
5	$\{a,b,h,e,c\}$	0, a	3, (a, b)	5, (a, c)	8, (a, c)	5, (a, e)	7, (a, c)	11(a,c)	4, (a, h)	6, (a, h)	∞	∞
6	$\{a,b,h,e,c,i\}$	0, a	3, (a, b)	5, (a, c)	8, (a, c)	5, (a, e)	7, (a, c)	11(a,c)	4, (a, h)	6, (a, i)	12, (a, i)	∞
7	$\{a,b,h,e,c,i,f\}$	0, a	3, (a, b)	5, (a, c)	8, (a, c)	5, (a, e)	7, (a, c)	11(a,c)	4, (a, h)	6, (a, i)	10, (a, f)	∞

Answer: A shorter route to j is now possible, but a viable route still exists in 8, (a, d). Check the d-adjacent vertices:

 $c \in S$;

$$(a,d) + g = 8 + 7 = 15 > 11(a, f)$$
; and

$$z = 2$$
, but $(a, d) + z = 8 + 2 = 10$.

Paths (a, f) and (a, z) are distance 10, but (a, z) hasn't yet reached j, and traveling an edge of distance 0 isn't possible.

So, the shortest route from a to j is:

$$a, b, c, f, j$$
= distances $0 + 3 + 2 + 2 + 3$

= distance 10