Structured Query Language SQL - DDL

- SQL Overview
- SQL Datatypes
- DDL statements

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Database Management System (DBMS) Embedded **Applications** SQL Commands **DBMS** Query Evaluation Engine Files and Access Methods Concurrency Recovery Buffer Manager Control Manager Disk Space Manager Data Indexes Database Catalog CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Relational Model - History

- □ Before: records, pointers, sets, etc.
 - Hierarchical Data Model (IBM IMS,1966-68)
 - Network Data Model (CODASYL DBTG, 1969)
- □ Introduced by E.F. Codd in 1970
- Revolutionary!
- □ First systems: 1977-8
 - System R; Ingres
- □ Turing award in 1981

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

SQL

- SQL is the query language for the System R developed at IBM San Jose [Astraham, Gray, Linsday, Selinger,...]
- SQL is the de-facto standard on most RDBMS
- Most successful standardization effort
 - SQL (ANSI 1986)
 - SQL1 (ANSI 1989)
 - SQL2 or SQL92 (ANSI 1992)
 - SQL3 (ANSI 1999/2000/2003) -- Core and Packages
 - SQL 2008
 - SQL 2013

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

o

Database Languages

- Data Definition Language (DDL):
 - Define schemas
 - Define Integrity Constraints
 - Example: unique SIDs
 - More...
- Data Manipulation Language (DML):
 - To ask questions = *Query*
 - Example: Which students have GPA > 3.75?
 - To insert, delete and update data

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Ω

Basic SQL-DDL COMMANDS

For database schemas:

CREATE SCHEMA, DROP SCHEMA

For tables:

CREATE TABLE, DROP TABLE, ALTER TABLE

For domains:

CREATE DOMAIN, DROP DOMAIN [SQL99]

For views:

CREATE VIEW, DROP VIEW

For integrity constraints

CREATE IC, DROP IC

For Indexes [defunct in SQL2]

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Database Schema

- CREATE SCHEMA database-name
 AUTHORIZATION database-name
- E.g. CREATE SCHEMA micro_db
 AUTHORIZATION panos;
- □ DROP SCHEMA <db-name> [RESTRICT | CASCADE];
 - Restrict: removes the schema if the db has no data
 - Cascade: removes everything, data and definitions
- E.g., DROP SCHEMA micro_db RESTRICT;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Schema and Catalog

- □ SQL2, SQL3 support multiple database schemas
- Catalog contains the definitions of database schemas
- INFORMATION SCHEMA
 - Schemas and Base relations (tables)
 (tbl_name, creator, #of_tuples, tuple_length, #of_attributes...)
 - Attributes of Relations (columns)
 (tbl_name, atrb_name, type, format, order, key_no, ...)
 - Indexes

(tbl_name, index_name, key_attribute,...)

- Authorization
- Integrity
- Naming of tables: Schema_name.Table_name
- Query: Describe table name; or using SELECT

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

11

Create Table

```
E.g., CREATE TABLE Students (

sid CHAR (20),
name CHAR (20),
psid INTEGER,
age INTEGER,
gpa REAL,
Constraint Student_PK
PRIMARY KEY (sid));
```

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

10

Constraints on Attributes

- Constraints:
 - NOT NULL
 - DEFAULT value
 - without the DEFAULT-clause, the default value is NULL
 - PRIMARY KEY (attribute-list)
 - UNIQUE (attribute list)
 - allows the specification of alternative key
 - FOREIGN KEY (key) REFERENCES table (key)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

13

Create Table Schema

```
CREATE TABLE STUDENT
     SID INTEGER,
      Name CHAR (20),
      PSID INTEGER NOT NULL, -- REQUIRED for AK
           INTEGER.
           REAL,
      GPA
      Major CHAR (10),
      CONSTRAINT STUDENT PK
        PRIMARY KEY (SID),
      CONSTRAINT STUDENT_UN
        UNIQUE (PSID).
      CONSTRAINT STUDENT FK
        FOREIGN KEY (Major) REFERENCES Department (DNO)
        ON UPDATE CASCADE ON DELETE NO ACTION
CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh
                                                             14
```

SQL Datatypes

- Numeric
 - Fixed numbers, approximate numbers, formatted numbers
- Character Strings
 - fixed & varying length, CLOBS [SQL99], foreign language
- Bit Strings
 - fixed & varying length, BLOBS [SQL99]
- Temporal Data
 - date, time and timestamp, intervals
- NULL value valid for all types

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

15

SQL Numeric Data

- □ Exact Numbers: Two integer types with different ranges:
 - INTEGER (or INT) and SMALLINT
 - The range of numeric types is implementation dependent
- Approximate Numbers: Three floating point types:
 - FLOAT[precision], REAL, and DOUBLE PRECISION
 - Users can define the precision for FLOAT
 - The precision of REAL and DOUBLE PRECISION is fixed
 - Floating point numbers can in decimal or scientific notation
- Formatted Numbers: These are decimal numbers
 - DECIMAL(i,j), DEC(i,j) or NUMERIC(i,j)
 - i = precision (the total # of digits excluding decimal point)
 - j = scale (the # of fractional digits. The default is zero)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

40

Observations on Numeric types

- □ They are like the datatype in C
 - BIGINT for long integer or integer
- Truncation is towards 0
- □ Rounding is business instead of Scientific

• [0..4] ↓ 0

[0..4] ↓ 0

• [6..9] ↑ 1

[5..9] 1

- Half times of 5 is 0 and half 1
- Some systems use Number() for floating
- Money or Currency data are numeric data with a currency sign: \$, £, €, ¥

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

17

SQL Character Strings

- □ A character string is a sequence of *printable* chars
- In SQL, a character string is denoted by enclosing it in *single quotes*. 'Hello SQL'
- Character strings types
 - Fixed length n: CHAR(n) or CHARACTER(n)
 - Varying length of maximum n:
 VARCHAR(n) or CHAR VARYING (n)
 -VARCHAR2(n) in Oracle
 - The default value of n is 1, representing a single character.
 Also, CHAR or CHARACTER
 - CLOBS(Size): Character Large Objects [SQL99]
 - size specified in kilobytes (K), megabytes (M), or gigabytes (G)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

SQL Character Strings

- Concatenation operator: II
 - 'abc' | XYZ' results in 'abcXYZ'
- Foreign-language characters (ISO-defined chars):
 - NATIONAL CHAR(n)
 - NATIONAL VARCHAR(n)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

19

SQL Temporal Data

- DATE data type
- □ TIME and TIMESTAMP data types
- □ INTERVAL data type.
 - INTERVAL data type represents periods of time

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

21

SQL Bit Strings

- Bit strings are sequences of binary digits, or bits
- □ In SQL, a bit string is denoted by enclosing it in *single quotes*: B'0101100110'
- Bit String types
 - Fixed length n: BIT(n)
 - Varying length of maximum n.
 VARBIT(n) or BIT VARYING (n)
- The default value for n is 1.
 - BLOBS (size): Binary Large Objects [SQL99]
 - □ size specified in kilobytes (K), megabytes (M), or gigabytes (G)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

20

Date and Time

- □ DATE (10 positions) stores calendar values representing YEAR, MONTH, and DAY: YYYY-MM-DD
- □ TIME defines HOURS, MINUTES, and SECONDS in a twenty-four-hour notation: HH:MM:SS
- TIME(i) defines / additional decimal fractions of seconds: HH: MM: SS: ddd...d
- □ TIME WITH TIME ZONE includes the displacement [+13:00 to -12:59] from standard universal time zone: HH:MM:SS{+/-}hh:mm
 - hh are the two digits for the TIMEZONE_HOUR and mm the two digits for TIMEZONE_MINUTE
- □ TIMESTAMP represents a complete date and time with 6 fractions of seconds and optional time zone.

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

DATETIME Type & Oracle DATE

- □ DATETIME is not a valid ANSI SQL type
- □ Not supported by Oracle Oracle DATE = ANSI TIMESTAMP
- MySQL DATETIME is used as a TIMESTAMP
 - MySQL DATETIME supported range is '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
 - MySQL TIMESTAMP supported range is '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC
 - has varying properties, depending on the MySQL version and the SQL mode the server is running in.
- Transarc-SQL: No TIMESTAMP
 - DATETIME: 1753-01-01 to 9999-12-31[hh:mm:ss:nnn]
 - DATETIME2: 0001-01-01 00:00:00.00000000 to 9999-12-31 23:59:59.9999999

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

23

Functions on Dates

- All systems provide functions under different names
 - for constructing a date from strings or integers
 - for extracting out the month, day, or year from a date
 - for displaying dates in different ways
- Examples,
 - CAST(string AS DATE) [SQL2: CAST(<value> AS <type>)]
 e.g., CAST('2002-02-18' AS DATE)
 - MAKEDATE (int year, int month, int day) or DATE (int year, int month, int day)
 e.g., MAKEDATE(1999, 12, 31)
 - EXTRACT (MONTH/DAY/YEAR FROM <date>) [SQL3]
 - YEAR(<date>), MONTH(<date>), DAY(<date>)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

2/

Constructing Date Functions in Oracle

Oracle	Returns
TO_CHAR(d,format)	character-string equivalent of d based on format
TO_DATE(s,format)	date corresponding to s based on format
TO_TIMESTAMP(s, format)	date corresponding to s based on format

Examples:

- •TO_DATE('2011-FEB-18', 'YYYY-MON-DD')
- •TO_DATE('02182011' , 'MMDDYYYY')
- TO_CHAR(mydate, DY) → returns sun, mon, tue, wed, thu, fri, sat

Format	Description
MM	Month number
MON	3-letter abbreviation of month
MONTH	Fully spelled-out month
D	Number of days in the week
DD	Number of days in the month
DDD	Number of days in the year
DY	3-letter abbreviation of day of week
DAY	Fully spelled-out day of week
Y, YY, YYY, YYYY	Last 1, 2, 3 or 4 digits of year
HH12, HH24	Hours of the day (1-12 or 0-23)
MI	Minutes of hour
SS	Seconds of minute
AM	Display AM or PM depending on time

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

25

Resolving Spec Ambiguity

- TO_DATE('02182011' , 'MMDDYYYY')
- It parses to the longest keyword.
- Examples:
 - 'DYY' = DY and YTO_DATE('WED7', 'DYY') = 01-FEB-17
 - 'DDDYYYY' = DDD and YYYY
 TO_DATE('3232017', 'DDDYYYY') = 19-NOV-17
 - 'DYYY' = DY and YYTO_DATE('WED17', 'DYYY') = 01-FEB-17

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Example of Date Functions

Oracle	SQLServer	MySQL		Returns	
SYSDATE	CURRENT_TIMESTAMP CURRENT_TIMES delegart:		STAMP	current date and time on the server	
STODATE	GETDATE()	year,yy,yyyy,		tile server	
	DATEADD(datepart,n,d)	quarter,qq,q, month,mm,m,	ERVAL n u)	d + n	
		dayofyear,dy,y,	ERVAL n u)	d – n	
ADD_MONTHS(d,n)		day,dd,d,		n months after d	
	DATEDIFF(datepart,d1,d2)	week,wk,ww,		d2 – d1	
MONTHS_BETWEEN(d2,d1)		hour,hh,		d2 – d1 in months	
NEXT_DAY(d, weekday)		minute,mi,n, second,ss,s,		next date after d that falls on weekday	
LAST_DAY(d)		millisecond,ms		last day of the month to which d belongs	

Operations on Dates

- □ Datetime (+ or -) Interval = Datetime
- □ Datetime Datetime = Interval

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

- □ Interval (* or /) Number = Interval
- □ Interval (+ or -) Interval = Interval
- Examples (ANSI SQL):
 - (CURRENT_DATE + INTERVAL '1' MONTH)
 - (CURRENT_DATE INTERVAL '18' DAY)
 - (CURRENT_DATE BirthDate)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

29

Example of Date Functions

Oracle	SQLServer	MySQL	Returns	
OVODATE	CURRENT_TIMESTAMP	CURRENT_TIMESTAMP SYSDATE()	cu (units):	
SYSDATE	GETDATE()	NOW()	SECOND	
	DATEADD(datepart,n,d)	DATE_ADD(d,INTERVAL n u)	d MINUTE	
		DATE_SUB(d,INTERVAL n u)	d HOUR	
ADD_MONTHS(d,n)			n MONTH	
	DATEDIFF(datepart,d1,d2)		d: YEAR	
MONTHS_BETWEEN(d2,d1)			d DAY_HOUR	
NEXT_DAY(d, weekday)			ne DAY_MINUTE fa DAY_SECOND	
LAST_DAY(d)			la HOUR_MINUTE w HOUR_SECOND	
MINUTE SEC YEAR_MONT				
CS1555/2055, Panos K.	Chrysanthis - University of	of Pittsburgh	28	

Intervals

- An interval results when two dates are subtracted.
 E.g., AdmitDate DischargeDate
- □ Two interval data types: **Year-Month** & **Day-Time**
- Format: INTERVAL start-field(p) [TO end-field(fs)]
 - p is the precision (default is 2 digits)
 - fs is the fractional second precision, which is only applicable to DAY/TIME (default is 6 digits)
- Year-Month intervals:
 - INTERVAL YEAR, INTERVAL YEAR(p), INTERVAL MONTH, INTERVAL MONTH(p), INTERVAL YEAR TO MONTH, INTERVAL YEAR(p) TO MONTH
 - E.g., INTERVAL YEAR (2) to MONTH could be [0-0, 99-11]

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Intervals...

- DAY-TIME intervals: the fields can be a contiguous selection from DAY, HOUR, MINUTE, SECOND
- E.g.,
 - INTERVAL DAY TO HOUR
 - -[0:0, 99:23] (day:hours)
 - INTERVAL DAY(1) TO HOUR
 - -[0:0, 9:23] (days:hours)
 - INTERVAL DAY TO MINUTE
 - -[0:0:0, 99:23:59] (days:hours:minutes)
 - INTERVAL SECOND(8)
 - INTERVAL DAY(5) to SECOND(10)
 - INTERVAL MINUTE(3) to SECOND

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

31

Quick Example.. Student Table

	SID	Name	PSID	Age	GPA
	546007	Jones	689065	18	3.4
Γ	546100	Smith	987452	18	3.2
	546500	Smith	342875	19	3.8

```
CREATE TABLE Student

( sid CHAR(20),
  name CHAR(20),
  psid INTEGER,
  age INTEGER,
  gpa REAL,
  Constraint Student_PK
  PRIMARY KEY(sid));
```


CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Table Schema Storing Option

```
CREATE TABLE STUDENT

( SID INTEGER,
    Name CHAR (20),
    PSID INTEGER NOT NULL,
    AGE INTEGER,
    GPA REAL,
    CONSTRAINT STUDENT_PK
    PRIMARY KEY (SID),
    CONSTRAINT STUDENT_AK
    UNIQUE (PSID)

)

IS TABLESPACE {tablespace | users}; -- In Oracle
    ON {filegroup | DEFAULT}; -- In SQLServer

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh 33
```

```
Table Schema (MySQL)
```

```
CREATE TABLE STUDENT

( SID INTEGER,
    Name CHAR (20),
    PSID INTEGER NOT NULL,
    AGE INTEGER,
    GPA REAL,
    CONSTRAINT STUDENT_PK
    PRIMARY KEY (SID),
    CONSTRAINT STUDENT_AK
    UNIQUE (PSID)

) Engine = INNODB; -- Required in MySQL to support FK

Other options: ARCHIVE, CSV, HEAP, Memory, myisam, ndbcluster

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh 34
```

Table Schema (DB2)

```
CREATE TABLE STUDENT

( SID INTEGER NOT NULL, -- REQUIRED for PK,
    Name CHAR (20),
    PSID INTEGER NOT NULL, -- REQUIRED for AK,
    AGE INTEGER,
    GPA REAL,
    CONSTRAINT STUDENT_PK
    PRIMARY KEY (SID),
    CONSTRAINT STUDENT_AK
    UNIQUE (PSID)

) IN userspace1;
```

Discarding a Table

- □ DROP TABLE <db-name> [RESTRICT | CASCADE];
 - Restrict: removes the table it is not referenced
 - Cascade: removes the table and all references to it
- Oracle Example:
 - DROP TABLE Student CASCADE CONSTRAINTS;
 - DROP TABLE Student PURGE;
 - PURGE RECYCLEBIN;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

36

Creating Domains

- Domain is a schema component for defining datatype macros
 - Basic datatype
 - DEFAULT value
 - CHECK (validity conditions)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Examples:

CREATE DOMAIN sectno_dom AS SMALLINT;

CREATE DOMAIN gpa_dom DECIMAL (3,2) DEFAULT 0.00;

CREATE DOMAIN ssn dom CHAR(11)

CONSTRAINT ssn_dom_value

CHECK (VALUE BETWEEN '000-00-0000' AND '999-99-9999');

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

37

Removing a Domain

- □ DROP DOMAIN < dname> [RESTRICT | CASCADE];
 - Restrict: removes the domain it is not used
 - Cascade: removes the domain and replaces all its uses to its underlying datatype
- Example:
 - CREATE DOMAIN gender_dom AS CHAR(1)

 CONSTRAINT gender_dom_value

 CHECK ((VALUE IN ('F', 'f', 'M', 'm')) OR (VALUE IS NULL));
 - DROP DOMAIN gender_dom CASCADE;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Example Schema

```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10),

CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));
```

CHECK (Value IN ('CS', 'Film', 'History')); CREATE TABLE Student (Sid INTEGER, Name CHAR(20), Age INTEGER, GPA REAL, Major M_Code, CONSTRAINT STUDENT_PK

CHECK Constraint and DOMAIN

CREATE DOMAIN M Code AS CHAR (10)

PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis – University of Pittsburgh

Example... Minor &Constraints

```
CREATE DOMAIN M_Code AS CHAR (10)
CHECK (value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major M_Code,
Minor ..., what constraints are needed for Minor?
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

41
```

```
CREATE DOMAIN M_Code AS CHAR(10)
CHECK (value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (
Sid INTEGER, Name CHAR(20),
Age INTEGER,
GPA REAL,
Major M_Code,
Minor M_Code,
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

AS CHAR(10)

CHECK (value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (
Sid INTEGER, Name CHAR(20),
Age INTEGER,
COLUMN (CS)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

42
```

Example: attribute- and tuple-based CREATE DOMAIN M Code AS CHAR (10) CHECK (value IN ('CS', 'Film', 'History')); **CREATE TABLE** Student (Sid INTEGER, Name CHAR (20), Age INTEGER, IC1: attribute-GPA REAL, tuple-Major M Code, based Minor M Code, CHECK (Major != Minor), ° **CONSTRAINT STUDENT PK** PRIMARY KEY (Sid)); CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh 43

45

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh


```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10)
CHECK (Major IN ('CS', 'Film', 'History')),

CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));
```

CHECK Constraint Minor in-line

```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10)
CHECK (Major IN ('CS', 'Film', 'History')),
Minor CHAR (10)
CHECK ((Minor IN ('CS', 'Film', 'History'))
AND (Major != Minor)),
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh
```

Specify Constraints Separately

```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER, GPA REAL,
Major CHAR (10), Minor CHAR (10),
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid),
CONSTRAINT STUDENT_Major
CHECK (Major IN ('CS', 'Film', 'History')),
CONSTRAINT STUDENT_Minor
CHECK (Minor IN ('CS', 'Film', 'History')),
CONSTRAINT STUDENT_Major_Minor
CHECK (Major != Minor));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh 48
```

CHECK Constraint 2

```
No Create Domain in Oracle, so ...

CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL
CHECK (GPA>=0.0 AND GPA <= 4.0);
Major CHAR (10)
CHECK (Major IN ('CS', 'Film', 'History'));
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh 49
```

Constraint Management

ALTER TABLE Student DROP
CONSTRAINT STUDENT_Major_Minor;

ALTER TABLE Student ADD

CONSTRAINT STUDENT_Major_Minor
CHECK (Major != Minor);

- □ To modify a constraint:
 - drop it first then add a new one

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Table Schema Fvolution

- □ The ALTER command allows to alter the domain of an attribute, add and drop an attribute or constraint
- ALTER TABLE <table-name> ALTER [COLUMN]
 - Domain change of an attribute

E.g., ALTER TABLE Student
ALTER QPA DECIMAL(4.2):

- Warning: Type Narrowing is possible as in C/C++
- Set or drop the default value of an attribute

E.g.1, ALTER TABLE SECTION

ALTER COLUMN Head DROP DEFAULT;

E.g.2, ALTER TABLE SECTION

ALTER Head SET DEFAULT NULL;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

51

Modifying a Table Schema...

- □ ALTER TABLE <table-name> ADD [COLUMN]

 ALTER TABLE LIBRARIAN

 ADD Gender gender dom;
- □ ALTER TABLE <tbl-name> DROP [COLUMN]... [Option]
 - CASCADE option

ALTER TABLE SECTION

DROP COLUMN Head CASCADE;

RESTRICT option (default)

ALTER TABLE SECTION

DROP Head RESTRICT;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

53

Table Schema Evolution in Oracle

- □ ALTER TABLE <table-name> MODIFY [COLUMN]
 - Domain change of an attribute
 E.g., ALTER TABLE Student
 MODIFY QPA DECIMAL(4,2);
 - Set or drop the default value of an attribute

E.g.1, ALTER TABLE SECTION

MODIFY COLUMN Head DROP DEFAULT:

E.g.2, ALTER TABLE SECTION

MODIFY Head SET DEFAULT NULL;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh