A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EF

Bookmark

Show all steps: ON

ON

Problem

Let G be a group; let H and K be subgroups of G, with H a normal subgroup of G. Prove the following:

 $H \cap K$ is a normal subgroup of K

Step-by-step solution

Step 1 of 3

Suppose that G is any group and let H, K are the subgroups of G, with H a normal subgroup of G. Objective is to prove that H K is a normal subgroup of K.

Since H and K both are subgroups of G, therefore their intersection H K will also be a subgroup of G. Also H K is a subset of K. Task is to show that H K is a normal subgroup of K. That is, there is a need to show that

 $kak^{-1} \in H$ K

for all $k \in K$, and $a \in H$ K.

Comment

Step 2 of 3

Let $a \in H$ K. Then $a \in H$ and $a \in K$. Since H is a normal subgroup of G, therefore for some $k \in G$ and A in A,

 $kak^{-1} \in H$

Being K as a subgroup, the condition $a \in K$ and $k \in K$ implies that

 $kak^{-1} \in K$

Since $kak^{-1} \in H$ and $kak^{-1} \in K$. Therefore, $kak^{-1} \in H$ K, for some $k \in K$, and $a \in H$ K.

	Step 3 of 3
Hence, H	K is a normal subgroup of K .
Comment	