A High-fidelity Flow for High-Performance RISC-V CPU Design

Luke Yen, Yuanbo Fan, Wei-Han Lien

tenstorrent

Challenges in high-performance RISC-V CPU Design

Tedious Process

- Years of efforts
 - Design, implementation & tape-out
- Many turn-arounds
 - uArch tuning based on PPA goals
- IP progress tracking
 - Internal verification & regression
 - External visibility & validation

Performance Projections

- Starting from pre-silicon stage
- Target applications/benchmarks

Collaboration

- Customized features
 - Branch predictor & prefetcher
- Sub-system
 - Cache & memory
- Vector unit design

Methodology

Instruction Set Simulator (i.e. Whisper)

- Available: Github Link
- Simulation
 - Speed: ~100M instructions per second
 - Static trace generation
 - Co-simulation (with performance model)
- Tracing Methodology
 - ✓ Random/systematic sampling
 - ✓ Representative phases (i.e. simpoints)
 - ✓ Warmup traces (for branch and I/D cache)
- Limitation
 - ☐ Static linking
 - ☐ Single-thread simulation

Cycle-Accurate Performance Model

- Cycle-accurate, event-driven Model
 - Highly flexible and configurable
 - Trace-driven simulation
- Performance Metrics
 - Such as IPC, total execution cycles, cache misses, TLB misses, branch mispredicts
- Visualization & Debug
 - Pipetrace: a visual representation of the pipeline execution over time

PPA-orientated Tuning

Tradeoff: Projection Accuracy vs. Simulation Speed

- The tracing flow consists of several steps including:
 - ✓ Whisper simulation
 - ✓ Benchmark profiling
 - ✓ Snapshot generation
 - ✓ Trace generation
- Customized microbenchmark
 - C/C++ tests
 - Major uarch components & timing paths
 - Critical perf. metrics (e.g. data cache hit latency, issue bandwidth)
- Calibration & Validation
 - Tradeoffs: Low projection error vs 10x simulation speedup

Confidential

End-to-end co-simulation

DEEPSJENG R 0.98 EXCHANGE2 R 1.01 1.02 GCC R 1.03 0.93 LEELA R 0.99 0.99 MCF R 0.98 OMNETPP R 0.93 PERLBENCH R 0.98 0.99 X264 R 0.97 0.97 XALANCBMK R 0.96 XZ R 1.00 1.00 GEOMEAN 0.99 0.97

Note: normalized by performance projected by 100M simpoints

Tenstorrent RISC-V O-o-O Processor Family

3-Wide Decode

One Design and 5 IPs in a year

4-Wide Decode

Alastor
Client and Edge

8-Wide Decode Ascalon Server, Laptop, and HPC

Decode Width

Future Collaboration

Instruction Set Simulator (Whisper)

Target applications/benchmarks & sharable traces

Compiler development & optimization

