

AFFDL-TR-79-3059 Volume II

A076610

VOL I

AERODYNAMIC INVESTIGATION OF C-141 LEADING EDGE MODIFICATION FOR CRUISE DRAG REDUCTION

n. S. L.

W. T. BLACKERBY
P. R. SMITH
LOCKHEED-GEORGIA COMPANY
86 SOUTH COBB DRIVE
MARIETTA, GEORGIA 30063

JUNE 1979

TECHNICAL REPORT AFFDL-TR-79-3059 Volume II Final Report June 1977 to September 1978

C FILE COPY

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

79 22 5 001

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed and cleared for open publication and/or public release by the appropriate Office of Information (OI), in accordance with AFR 190-17 and DODD 5230.9. There is no objection to unlimited distribution of this report to the public at large, or by DDC to the National Technical Information Service.

This technical report has been reviewed and is approved for publication.

ROBERT A. LARGE, Capt, USAF
Project Engineer/Technical Monitor

ERIC K. LINDBERG, Maj, USAF

Chief, Aerodynamics & Airframe Branch

FOR THE COMMANDER:

PETER BUTKEWICZ, Col, USA

Chief, Aeromechanics Division

Air Force Flight Dynamics Laboratory

AIR FORCE/56780/24 September 1979 — 100

18 AFFDL

9 TR-79-3\$59-VOL-2

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION	
AFFDL-TR-79-3059 Vol. II	halo abbat Hotas Incolerant
S. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERE
AERODYNAMIC INVESTIGATION OF C-141 LEADING	3 V Technical - Final
EDGE MODIFICATION FOR CRUISE DRAG REDUCTION	June 1977 - September 1978
Volume II.	A DECEMBER OF THE PARTY OF THE
	12 LG78ERØ233-VOL-2
W. T. Blackerby	CONTRACT OR GRANT NUMBER(*)
	and the second second second second
P. R./Smith	5 F09503-77-A-0204-0010
9. PERFORMING ORGANIZATION NAME AND ADDRESS	110 00000000000000000000000000000000000
Lockheed - Georgia Company	10. PROGRAM ELEMENT, PROJECT, TASH
86 South Cobb Drive	11/2400/10 02
Marietta, Georgia 30063	16 2494 10-02 (17) 14
11. CONTROLLING OFFICE NAME AND ADDRESS	D 050000 more
Air Force Flight Dynamics Laboratory (FXM)	1 June 79
Wright Patterson AFB, Ohio 45433	13. NUMBER OF PAGES
	318
14. MONITORING AGENCY NAME & ADDRESS(IL different from Controlling Office	e) 15. SECURITY CLASS. (of this report)
(10/210)	Unclassified
(12/01/1	
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unl	imited
	9
(9) timal rept.	Jun 77- Der 10,
Oftinal rept.	Jun 77- Ser 78,
	CONTRACTOR
	CONTRACTOR
17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different	CONTRACTOR
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 6. 18. SUPPLEMENTARY NOTES	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 6. 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 18. KEY WORDS (Continue on reverse side if necessary and identity by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo Transonic, Wing Modification, Wing Drag Rise, Airfoil I	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 6. 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 18. KEY WORDS (Continue on reverse side if necessary and identity by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo Transonic, Wing Modification, Wing Drag Rise, Airfoil I	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo Transonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions.	from Report) Joseph Ming Design, Drag Rise, Wing
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo Transonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions.	from Report) Out of the state
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side it necessary and identify by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo Transonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 10. ABSTRACT (Continue on reverse side it necessary and identify by block number A study of the aerodynamic design and high speed wind to	from Report) diffication, Wing Design, Drag Rise, Wing unnel investigation of wing
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb C-141, Drag Reduction, Fuel Savings, Leading Edge Mo Transonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 10. ABSTRACT (Continue on reverse side if necessary and identify by block number A study of the aerodynamic design and high speed wind to leading edge modifications for cruise drag reduction on the	from Report) diffication, Wing Design, Drag Rise, Wing or) unnel investigation of wing he C-141 aircraft has been
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number C-141, Drag Reduction, Fuel Savings, Leading Edge Monorman Transonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 19. ABSTRACT (Continue on reverse side if necessary and identify by block number A study of the aerodynamic design and high speed wind to leading edge modifications for cruise drag reduction on the completed. Also investigated were the effects of a wing	diffication, Wing Design, Drag Rise, Wing unnel investigation of wing he C-141 aircraft has been swept tip extension and trail-
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number C-141, Drag Reduction, Fuel Savings, Leading Edge Montransonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 19. ABSTRACT (Continue on reverse side if necessary and identify by block number A study of the aerodynamic design and high speed wind the leading edge modifications for cruise drag reduction on the completed. Also investigated were the effects of a wing ing edge anti-drag bodies. These modifications were test	diffication, Wing Design, Drag Rise, Wing or unnel investigation of wing he C-141 aircraft has been swept tip extension and trail- ted in the AEDC 16-Foot
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number C-141, Drag Reduction, Fuel Savings, Leading Edge Montransonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 19. ABSTRACT (Continue on reverse side if necessary and identity by block number A study of the aerodynamic design and high speed wind the leading edge modifications for cruise drag reduction on the completed. Also investigated were the effects of a wing ing edge anti-drag bodies. These modifications were test Transonic Facility, using a 0.044 scale C-141B model, to	from Report) diffication, Wing Design, Drag Rise, Wing or) unnel investigation of wing he C-141 aircraft has been swept tip extension and trail- ted in the AEDC 16-Foot o determine the effects on
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number C-141, Drag Reduction, Fuel Savings, Leading Edge Montransonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 19. ABSTRACT (Continue on reverse side if necessary and identify by block number A study of the aerodynamic design and high speed wind the leading edge modifications for cruise drag reduction on the completed. Also investigated were the effects of a winging edge anti-drag bodies. These modifications were test Transonic Facility, using a 0.044 scale C-1418 model, to C-141 cruise aerodynamic characteristics and wing chord	diffication, Wing Design, Drag Rise, Wing word investigation of wing the C-141 aircraft has been swept tip extension and traileted in the AEDC 16-Foot to determine the effects on the wise pressure distributions.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number C-141, Drag Reduction, Fuel Savings, Leading Edge Montransonic, Wing Modification, Wing Drag Rise, Airfoil I Pressure Distributions. 19. ABSTRACT (Continue on reverse side if necessary and identity by block number A study of the aerodynamic design and high speed wind the leading edge modifications for cruise drag reduction on the completed. Also investigated were the effects of a wing ing edge anti-drag bodies. These modifications were test	diffication, Wing Design, Drag Rise, Wing word investigation of wing the C-141 aircraft has been swept tip extension and traileted in the AEDC 16-Foot to determine the effects on the wise pressure distributions.

210 065

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

contis

theory, transonic airfoil theory and experience previously gained with a two-dimensional airfoil leading edge modification program. Force data results were analyzed to determine the effects on C-141 cruise drag, drag rise characteristics and cruise performance. Correlations were made with transonic theory using the measured chordwise pressure distributions. A fuel and cost savings evaluation was made of the selected leading edge configuration based on measured and predicted cruise performance improvements.

FOREWORD

This is the final report on the aerodynamic design, test and analysis of modified wing leading edges for cruise drag reduction on the C-141 aircraft. This work was performed by the Lockheed-Georgia Company, Marietta, Georgia, under Contract No. F09603-77-A-0204-0010 for the Air Force Flight Dynamics Laboratory. The studies and wind tunnel testing were accomplished between June 1977 and September 1978.

This report is published in two volumes. Volume I covers the aerodynamic design approach for modifying an existing 0.044 scale C-141B model for high speed tests at the AEDC 16-Foot Transonic Facility, the analysis and correlation of the wind tunnel results and a fuel and cost savings evaluation of the performance improvements due to the selected leading edge modification. Volume II contains the details of the wind tunnel model, the test program and plotted wind tunnel test results.

Mr. J. D. Wallace was the Program Manager and W. T. Blackerby was the Technical Leader. The wing leading edge modification design was accomplished by P. R. Smith and M. E. Carlton. The technology base for this program, in the form of transonic analysis and numerical optimization methods for wings and airfoils, was developed by the Advanced Flight Sciences Department at Lockheed-Georgia.

The authors wish to thank J. P. Perdue for assistance in conducting the wind tunnel test and W. F. LaBozzetta for assisting with the analysis of the wind tunnel results and preparation of the final report.

Technical direction for this program was provided by Mr. J. K. Johnson of the Air Force Flight Dynamics Laboratory/FXM.

This report is also identified as LG78ER0233 for Lockheed Corporation's internal control purposes.

TABLE OF CONTENTS

SECTION		PAG
alled at	Photograph of the 0.044 Scale C-1418 Mockel Inst	
i 14	Three-View Stetich of the 0.044 Scale C-1418 Wo	
	INTRODUCTION	1
	Sketch Conpactage of the Mostic and Wolffied La	
II	WIND TUNNEL TEST	2
	1. TEST FACILITY and pendential to not the all	2
	2. MODEL AND INSTRUMENTATION	2
	3. TEST CONDITIONS AND SCHEDULE	5
	4. DATA REDUCTION	5
III	BASIC AERODYNAMIC DATA	8

23

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Photograph of the 0.044 Scale C-141B Model Installed at AEDC 16T	23
2	Three-View Sketch of the 0.044 Scale C-141B Model	24
3	Sketch Comparison of the Basic and Modified Leading Edges	27
4	Location of Anti-Drag Bodies	28
5	Photograph of the Anti-Drag Bodies Installed on the Model	29
6	Sketch of the Swept Wing Tip	30
7	Photograph of the Swept Tip Installation	31
8	Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Free Transition	32
9	Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Free Transition, Repeat	34
10	Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code B	36
11	Same as Figure 10, Grit Code C	38
12	Same as Figure 10, Grit Code D	40
13	Same as Figure 10, Grit Code C, Tail-On	42
14	Same as Figure 10, Grit Code C, $R_N = 2.5 \times 10^6 / MAC$	44

FIGURE		PAGI
15	Same as Figure 14, $R_N = 5.4 \times 10^{\circ}/MAC$	46
	Lift, Drag and Fibering Mesent Characteristics for	
16	Lift, Drag and Pitching Moment Characteristics for	48
	W ³⁵ Leading Edge Modification, Free Transition	
17	Lift, Drag and Pitching Moment Characteristics for	50
	W ³⁵ Leading Edge Modification, Fixed Transition, Grit Code B	
18	Same as Figure 17, Grit Code D	52
19	Lift, Drag and Pitching Moment Characteristics	54
	for W ³⁶ Leading Edge Modification, Free Transition	
20	Lift, Drag and Pitching Moment Characteristics	56
	for W^{36} Leading Edge Modification, Fixed Transition, Grit Code B	
21	Same as Figure 20, Grit Code C	58
22	Lift, Drag and Pitching Moment Characteristics for	50
	Baseline Leading Edge, Fixed Transition, Grit Code C, Pylon/Nacelles Off	8.6
	Chorrent so free some Diet willingtone for Vertoug Angles	
23	Same as Figure 22, Grit Code D, Pylon/Nacelles Off	62
24	Lift, Drag and Pitching Moment Characteristics for	64
	W ³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, Pylon/Nacelles Off	
	The state of the s	
25	Lift, Drag and Pitching Moment Characteristics for	66
	Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies	ı,t.,

FIGURE		PAGE
	Same as rigory 14, by = 5,4 x 100 PAGE	
26	Lift, Drag and Pitching Moment Characteristics for	68
	W ³⁵ Leading Edge Modification, Free Transition,	
	Four Anti-Drag Bodies	
27	Lift, Drag and Pitching Moment Characteristics for	70
	Baseline Leading Edge, Fixed Transition, Grit Code C, One Swept Tip	
28	Same as Figure 27, Both Swept Tips	72
29	Chordwise Pressure Distributions for Various Angles	74
	of Attack. Baseline Leading Edge, Free Transition,	
	M = 0.7	
30	Same as Figure 29, M = 0.75	78
31	Same as Figure 29, M = 0.77	82
32	Same as Figure 29, M = 0.79	86
33	Same as Figure 29, M = 0.81	90
34	Chordwise Pressure Distributions for Various Angles	94
	of Attack. Baseline Leading Edge, Fixed Transition,	
	Grit Code C, M = 0.7	
	Cit. Dray and Fibeling Masset Consectation to 100	
35	Same as Figure 34, M = 0.75	98
36	Same as Figure 34, M = 0.77	102
37	Same as Figure 34, M = 0.79	106

FIGURE		PAGE
38	Same as Figure 34, M = 0.81	110
39	Chordwise Pressure Distributions for Various	114
	Angles of Attack. Baseline Leading Edge, Fixed	
	Transition, Grit Code D, M = 0.7	
40	Same as Figure 39, M = 0.75	118
41	Same as Figure 39, M = 0.77	122
42	Same as Figure 39, M = 0.79	126
43	Same as Figure 39, M = 0.81	130
44	Chordwise Pressure Distributions for Various	134
	Angles of Attack. W ³⁵ Leading Edge Modification,	
	Free Transition, M = 0.7	
45	Same as Figure 44, M = 0.75	138
46	Same as Figure 44, M = 0.77	142
47	Same as Figure 44, M = 0.79	146
48	Same as Figure 44, M = 0.81	150
49	Chordwise Pressure Distributions for Various	154
	Angles of Attack. W ³⁵ Leading Edge Modification,	
	Fixed Transition, Grit Code D, M = 0.7	63
	of Artack. W. Leuding Edge Modification, Pixed	
50	Same as Figure 49, M = 0.75	158

FIGURE		PAGE
151	Same as Figure 49, M ≈ 0.77	162
52	Same as Figure 49, M ≈ 0.79	166
53	Same as Figure 49, M ≈ 0.81	170
54	Chordwise Pressure Distributions for Various Angles	174
	of Attack. W^{36} Leading Edge Modification, Fixed Transition, Grit Code B, M = 0.7	
55	Same as Figure 54, M = 0.75	178
56	Same as Figure 54, M = 0.77	182
57	Same as Figure 54, M = 0.79	186
58	Same as Figure 54, M = 0.81	190
59	Chordwise Pressure Distributions for Various Angles of	194
	Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Pylon/Nacelle Off, M = 0.7	
60	Same as Figure 59, M = 0.75	198
61	Same as Figure 59, M = 0.77	202
62	Same as Figure 59, M = 0.79	206
63	Chordwise Pressure Distributions for Various Angles of Attack. W ³⁵ Leading Edge Modification, Fixed	210
	Transition, Grit Code D, Pylon/Nacelle Off, M = 0.7	

FIGURE		PAGE
64	Same as Figure 63, M = 0.75	214
	Atlack, Bacoline Desing Place, Fired Transition, Grit	
65	Same as Figure 63, M = 0.77	218
66	Same as Figure 63, M = 0.79	222
67	Chordwise Pressure Distributions for Various Angles	226
	of Attack. Baseline Leading Edge, Fixed Transition,	
	Grit Code D, Eight Anti-Drag Bodies, M = 0.7	
68	Same as Figure 67, M = 0.75	230
69	Same as Figure 67, M = 0.77	254
70	Same as Figure 67, M = 0.79	238
71	Same as Figure 67, M = 0.81	242
72	Chordwise Pressure Distributions for Various Angles of	246
	Attack. W ³⁵ Leading Edge Modification, Free Transition	
	Four Anti-Drag Bodies, M = 0.7	
73	Same as Figure 72, M = 0.75	250
74	Same as Figure 72, M = 0.77	254
75	Same as Figure 72, M = 0.79	258
76	Same as Figure 72, M = 0.81	262

F	IGURE		PAGE
	77	Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit	266
		Code C, One Swept Tip, M = 0.7	
	78	Same as Figure 77, M = 0.75	270
	79	Same as Figure 77, M = 0.77	274
	80	Same as Figure 77, M ≈ 0.79	278
	81	Same as Figure 77, M = 0.81	282
	82	Chordwise Pressure Distribrutions for Various Angles of Attack. Baseline Leading Edge, Fixed Trans-	286
		ition, Grit Code C, Both Swept Tips, M = 0.7	
	83	Same as Figure 82, M = 0.75	290
	84	Same as Figure 82, M = 0.77	294
	85	Same as Figure 82, M = 0.79	298
	86	Same as Figure 82, M = 0.81	302

LIST OF TABLES

TABLE		PAGE
1	Configuration Symbols	9
2	Model Dimensional Data	11
3	Wing Pressure Orifice Location	16
4	Test Program Summary	17
5	Plot Schedule for Force Data	21
6	Plot Schedule for Pressure Data	22

SECTION I INTRODUCTION

This volume contains information on the wind tunnel test program and results for the C-141 wing leading edge modification studies described in Volume I. The Lockheed-Georgia Company was contracted to prepare an existing C-141B high-speed wind tunnel model for installation and test in the AEDC 16-Foot Transonic Facility for the purpose of evaluating two modified wing leading edges. The wind tunnel test was designated AEDC TF-481 and was conducted during April 1978.

functions is made of studies. Winer worsel componence are made fakes

SECTION II

WIND TUNNEL TEST

1. TEST FACILITY

The test was conducted in the Arnold Engineering Development Center 16-foot Propulsion Transonic Wind Tunnel located at Arnold Air Force Station, Tennessee. This is a continuous flow, closed circuit tunnel with a Mach number operating range from 0.20 to 1.60. Total pressure and Reynolds number range capability are from approximately 200 to 3400 psfa and 0.5 to 5.5 million per foot, respectively, depending on the Mach number.

Test section Cart 2 used in this test is 16 feet square and 40 feet long, with all four walls perforated. The perforated walls allow part of the main flow to be removed into the evacuated surrounding plenum chamber, unchoking the test section near sonic speeds and alleviating blockage and wall effects. A photograph of the model installed in the Cart 2 test section is shown in Figure 1.

2. MODEL AND INSTRUMENTATION

The 0.044 scale C-141 model was used in this test. The model has been used numerous times for both low speed and transonic wind tunnel testing. The wing and empennage are constructed of 4340 steel and the fuselage is made of aluminum. Other model components are made from combinations of metal, plastic, and fiberglass. A list of the model components with identification symbols and reference drawing numbers is shown in Table 1, and model dimensional data for each component is given in Table 2. A three-view sketch of the model is shown in Figure 2.

The C-141B configuration was used throughout the wind tunnel investigation. This is the basic C-141A production configuration with

the 12.320 inch (280 inch full scale) stretched fuselage (B^{12}) and the inflight refueling pod (P^4).

The forward 12% of the wing, full span, is removable. Three leading edge configurations were investigated; basic C-141 (W^{12C}), 3-D CONMIN (W^{35}), and a leading edge based on tailoring a previously tested C-141 2-D airfoil leading edge modification to fit the wing (W^{36}).

A sketch of the comparison of these leading edges is shown in Figure 3. Anti-drag bodies $(\mathbf{Z}^{\mathrm{fl}})$ installed on the wing trailing edge and a swept tip $(\mathbf{Z}^{\mathrm{f6}})$ were also investigated. Location details and installation on the wing are shown in Figures 4 through 7.

The right hand wing contains 118 static pressure orifices located at four spanwise stations, upper and lower surfaces. All the orifices were connected to and recorded from a four module 48 SGM Scanivalve unit located in the fuselage nose. In addition, internal cavity pressure and differential across the balance was measured from two single orifices located fore and aft in the blade cavity and a single orifice located aft of the balance. Tabulation of the wing pressure orifice locations is shown in Table 3.

The model was mounted on a Task 3500-B MK-I-3.5 inch internal balance supported by a blade-sting system. The balance was installed in the model in a rolled and yawed attitude of 180 degrees direction from conventional installation. The balance attached to a blade adapter in the forward fuselage section and was pinned to the model on the right side of the model. The swept blade entered the fuselage along the forward lower centerline and attached to the balance adapter. The forward blade support minimizes support interference effects on the aft fuselage. The blade lower section was attached to a sting adapter and the AEDC PWT 16T "A" sting (S-5.533M-143.29-9.125M).

An AEDC Angular Position Indicator, PWT #9, used as a model angle-of-attack back-up system was mounted in the balance chamber of the fuselage, immediately aft of the balance.

Transition was fixed on the model by means of sparse distributions of Ballotini glass beads applied in strips. Free transition sublimation runs were made for the three wing configurations at the beginning of the test to determine strip location and bead size. The primary transition strip pattern (identified as grid code D) is defined below:

	Location		
(1	nches from	Width	Bead Dia.
Component Le	ading Edge)	(Inches)	(Inches)
Wing (Upper Surface &	0.70	0.05	0.0024
Lower Surface)		0.05	0.0031
Fuselage	0.90	0.10	0.0045
emakeng prike ont 70 no	taniamen	ited and to the	andidal soll
Horizontal Stabilizer	0.60	0.05	0.0038
(Upper & Lower Surfaces)		
Vertical Stabilizer	0.65	0.05	0.0038
(Both Sides)			
Pylons (Inboard and	0.20	0.05	0.0038
Outboard Surfaces)			
Nacelles (External)	0.80	0.05	0.0038

Above measurements were in a streamwise direction.

Additional tests were completed with the transition strip relocated and larger bead diameter on the upper surface of the wing as shown in the test program summary of Table 4.

3. TEST CONDITIONS AND SCHEDULE

All configurations were run at a Reynolds number of 4.8 million per foot (4.69 million based on model wing MAC) and a nominal free-stream Mach number range from M = 0.600 to 0.830. Wing w^{12C} and w^{36} configurations were also run at Reynolds numbers of 2.5 and 5.5 million per foot (2.44 and 5.37 million based on model wing MAC) for scale effects. Six-component force and wing pressure measurements were obtained at zero yaw over an angle-of-attack range from -4° to +6°. Flow visualization photos of fluorene/sublimation and oil flow patterns were obtained for selected configurations as part of the wing transition investigation.

A summary of the test program showing the test conditions, type of data obtained and the corresponding test part numbers are presented in Table 4.

4. DATA REDUCTION

a. Force Data

Six-component force and moment data were recorded from the Task 3500-B internal balance, reduced to coefficient form and transferred to the stability axis system coincident with the reference moment center. Data reduction was based on the following model dimensions:

Wing area, ft² 6.247

Mean aero. chord (MAC), in/ft 11.724/0.977

Span, in/ft 84.302/7.025

Ref. Moment Center FS 40.605*

is the wall the sent the recorded to the sent to WL 10.428 for tested

BL 0.00

Balance Center

FS 40.605

WL 8.800

BL 0.00

*Model MAC FS = Ref. Mom. Ctr. FS = 24.1% Full Scale MAC

The balance output data were reduced to coefficient form based on incompressible dynamic pressure, $q = (\frac{\gamma}{2}PM^2)$ and a balance calibration conducted by the AEDC personnel prior to the test. Balance outputs were also monitored for model-balance dynamics during the test. Blockage and tunnel wall effects were assumed to be negligible due to the small model-tunnel ratio and porous walls of the test section. No corrections for effects of blade-sting tare and interference, nacelle internal drag or flow angularity were applied, as the obective of this test was to identify drag increments between the basic and modified configurations.

Sting indicated pitch and roll angles were determined from output of a strut, internally-mounted, synchro-transmitters. An angular position indicator was mounted in the model aft of the balance as a back-up pitch indicator.

b. Pressure Data

Pressure data were recorded from the +12.5 psid transducers contained in the 48SGM Scanivalve module unit and reduced to coefficient form

$$C_P = \frac{P_M - P_S}{q}$$

where

Cp = pressure coefficient

P_M = model pressure

P_s = freestream or reference static pressure

q = freestream dynamic pressure

During the acquisition of pressure data, computer evaluation of the pressure rate-of-change was used and the transducer output was not acquired for computational purposes until either the rate of change was within acceptable limits or a maximum time delay was reached.

SECTION III

BASIC AERODYNAMIC DATA

The wind tunnel data from AEDC TF-481 is presented in two major sets, force data and chordwise pressure distributions. All the force data is presented first as plots of lift coefficient vs. angle of attack, pitching moment coefficient vs. lift coefficient, and drag vs. lift coefficient. For each configuration, all Mach numbers are included on each figure with the lift and itching moment plots placed together on a single page as part (a) of the figure and the drag polar plotted separately as part (b). Table 5 is a schedule of configurations and figure numbers for the force data plots. The baseline leading edge data is presented in Figures 8 through 15. Figures 8 and 9 are free transition repeat runs. Figures 10 through 12 present the baseline force data for the three types of transition fixing used during the test. Figures 13 through 15 contain tail-on results and data for alternate Reynolds numbers. Force data for modified leading edge W³⁵ are presented in Figures 16 through 18 for free transition and two transition methods. W36 data is presented in Figures 19 through 21. A limited amount of data was obtained with the pylons and nacelles removed from the wing. These results are shown in Figures 22 and 23 for the baseline and Figure 24 for W35. Force data for the anti-drag body configurations tested is presented in Figures 25 and 26 and the swept tip results are presented in Figures 27 and 28.

Chordwise pressure distribution plots begin with Figure 29 and are presented for selected configurations and conditions. Each figure contains data for a particular Mach number and varying angles of attack for all four pressure measuring stations. Data for each station is plotted on a separate page as parts (a), (b), (c), and (d) of the figure. The symbol list on each plot is interpreted as follows: the three columns after each symbol contain the AEDC Part Number, Point and Angle of Attack, respectively; a different symbol is used for the lower surface pressures, thus the double entry for each angle of attack. Table 6 contains a schedule of the configurations plotted showing figure numbers for each.

TABLE 1 CONFIGURATION SYMBOLS

SYMBOLS	COMPONENT SEE THE SEE	DRAWING NOS.
B12	FUSELAGE - C-141B Base; Basic C-141A	07-C141-0167-201A
	Fuselage with 280 inch Full Scale	07-C141-0167-202A
	Extensions	
P8	BULLET FAIRING - Empennage; Vert	07-C141-0108-409
	Horiz. Stab. Intersection	
D ⁴	DORSAL	07-C141-0108-405
H8 50	HORIZONTAL STABILIZER	07-C141-0108-400
K19	PYLONS - Engine Nacelles	07-C141-0108-301
		07-C141-0394-300
N8	NACELLES - Flow Through, with Inlet	07-C141-0108-305
	Spinners	07-C141-0394-300
p4	AERIAL REFUELING POD - Prototype	07-C141-0380-201
	Production	Loft 3R12100
V6	VERTICAL STABILIZER	07-C141-0108-401
W12C	WING - Basic High/Low Speed W12	07-C141-0108-003
	Steel Wing with Removable Leading	07-C141-0108-100
	Edges (Forward 12% Cw). 3 Panels L.E.	07-C141-0108-101
	Each Semi-Span	07-C141-0394-100
		07-C-141-0110-900
w35	WING - W ^{12C} With 3-D CONMIN	
	Leading Edge	07-C141-0394-900
		07-C141-0394-100

SYMBOLS	COMPONENT	DRAWING NO.
W36	WING - W12C With 2-D Test Airfoil	07-C141-0394-901
	(LE6) Tailored to Fit 3-D Wing	07-C141-0394-100
z ^{a2}	ANTENNA FAIRING - Located Top of	07-C141-0108-901
	Fuselage, Aft of Wing	
z ^{fl}	ANTI-DRAG BODIES - Flap Track Fairing	07-C141-0394
	Type, Wing Trailing Edge; 8 per	07-C141-0394
£2	Semi-Span	
z ^{f2}	ANTI-DRAG BODIES - 4 Per Semi-Span	
z ^{G21}	WHEEL WELL FAIRING	07-C141-0108-602
z ^{t6}	WING TIP - Swept; Chord/Span Ratio =	07-C141-0394-101
	1.33/1	
zW7A	WING-FUSELAGE FILLET - C-141A Pro- duction Fillets	07-C141-0108-101
s ¹	B12K19N8P4Za2ZG21ZW7	
s ²	s ¹ without k ¹⁹ n ⁸	

agid or beal

TABLE 2
MODEL DIMENSIONAL DATA

FUSELAGE - B ¹²	
Length, Inches	82.350
Max. Frontal Area, Ft ²	0,305
Max. Equiv. Diameter, Inches	7.480
Fineness Ratio (L/D)	11.009
Nose Location, FS	3.098
Fuselage Reference Line (FRL), WI	L 8.800
EMPENNAGE BULLET FAIRING - b ⁸	
Length, Inches	13.394
Max. Frontal Area, In ²	2.920
Nose Location, FS	78.723
DORSAL - D4	
Location Root Chord L.E., FS	66.007
HORIZONTAL STABILIZER - H ⁸	
Airfoil Section	Root: NACA 64A(010)010.5
CARDO CA	Tip: NACA 64A(010)010.5
Area, Ft ²	0.935
Span, Inches	26.487
Aspect Ratio	5.210
Taper Ratio	J.370
Sweep of 25% Chord, Degrees	25.0
Twist, Degrees	0.0
Dihedral, Degrees	0.0
Root Chord, Inches	7.422
Mean Aerodynamic Chord, Inches	5.442
Tip Chord, Inches	2.746
Location 25% MAC, FS	85.349
WL	24.581
BL BL	5.607

Tail Length, Inches		43.477
Tail Volume Coefficient		0.555
Incidence Settings, Degrees	0, +1, +2	
PYLONS - K ¹⁹	INBOARD	OUTBOARD
Area, Ft ²	0.090	0.093
Span, Inches	1.453	1.517
MAC, Inches	8.800	8.800
Thickness, Streamwise, % Chord	8.000	8.000
Sweep of Leading Edge, Degrees	73.000	73.000
NACELLES - N ⁸		
Area, Side per Nacelle, Ft ²		0.168
Length, Inches		8.256
Max. External Diameter, Inches		2.900
Internal Diameter, Inches - Inle	t	2.244
- Exit		1.940
Internal Area, In ² - Inlet		3.954
- Exit		2.956
Fineness Ratio, $(^{L/D})$ Ext.		2.843
Toe-In, Degrees - Inboard		2.0
- Outboard		1.0
Location of Inlet 9 - INBOARD, F	S	29.104
	WL	8.479
	BL AMERICA	12.272
- OUTBOARD	FS	32.709
	WL	8.163
	BL	20.103
249.5		
AERIAL REFUELING POD - P4		
Length, Inches		8.83
Max. Width, Inches		1.48
Max. Height, Inches		0.88
Leading Edge Location, FS		8.93

Airfoil Section	Root: NACA 64A(012)013
From the support of the second	Tip: NACA 64A(012)013
Area, Ft ²	0.770
Span, Inches	11.577
Mean Aerodynamic Chord, Inches	9.763
Aspect Ratio	1.208
Taper Ratio	0.617
Sweep of 25% Chord, Degrees	35.0
Root Chord, Inches	11.852
Tip Chord, Inches	7.317
Location 25% Mac, FS	80.283
WL.	18.336
BL BL	0.000
Tail Length, Inches	38.962
Tail Volume Coefficient	0.057
* - w ^{12C}	
Airfoil Section	
Root (BL 0.000)	NACA 0013.0-1.10-40/1.575(MOD.)
	MEAN LINE $a_0 = 0.8 (MOD.)$
	DESIGN LIFT COEFFICIENT C1 =
	0.153
Inboard Break (BL 17.804)	NACA 0011.2-1.10-40/1.575(MOD),
	MEAN LINE $a_0 = 0.8 (MOD)$
	DESIGN LIFT COEFFICIENT C ₁ = 0.194
Outboard Break (BL 18.778)	NACA 0011.0 - 1.10 - 40/1.575
	(MOD.)
	MEAN LINE $a_0 = 0.8$ (MOD.)
	DESIGN LIFT COEFFICIENT C1;

TIP	NACA 0010.0 - 2.	20 - 40/1.575
	MEAN LINE 1/2	(NACA 66 @ C1
	1.0 + NACA 230	
	DESIGN LIFT COEF	
	0.452	estioni (locci
Area, Ft ² (S)		6.247
Span (Equiv.), Inches	s/Ft(b)	84.302/7.025
Aspect Ratio (A)		7.9
Taper Ratio (λ)		0.373
MEAN LINE 1.0 + NAC DESIGN LIFT 0.452 Area, Ft ² (S) Span (Equiv.), Inches/Ft(b) Aspect Ratio (A) Taper Ratio (λ) Thickness Ratio (t/c) - Root (BL 0.00) - Inboard Break (BL 1 - Outboard Break (BL - Tip - Mean Sweep of 25% chord, Degrees (Λ 0.25c) - Inb - Out Sweep of Leading Edge, Degrees (Λ L.E.) - Inb - Out Dihedral, Degrees (Γ) - Inboard - Outboard Incidence, Degrees from FRL @ BL 0.00 (i) Twist, Degrees (θ) - Root (BL 0.00) Inboard Break (BL 17.804) Outboard Break (BL 17.804) Tip (BL 42.151) Chord Lengths (Projected), in Root(cr)BL MAC (c̄)BL 1 Inbd. Brk. BL 17.8		0.130
100	- Inboard Break (BL 17.804) 0.112
	- Outboard Break (BL 18.77	8) 0.110
	- Tip	0.100
	- Mean	0.113
Sweep of 25% chord, I	Degrees (A o 250) - Inboard	23.734
y00,0	- Outboard	
Sweep of Leading Edge	e, Degrees (A, E)	
	- Inboard	28.253
	- Outboard	27.285
Dihedral, Degrees (I) - Inboard	-0.941
	- Outboard	-1.195
Incidence, Degrees f	rom FRL @ BL 0.00 (i)	4.891
Twist, Degrees (θ) -	Root (BL 0.00)	0.00
Inboard 1	Break (BL 17.804)	-2.201
Outboard	Break (BL 18.778)	-2.279
		-5.584
Chord Lengths (Project	cted), in Root(cr)BL 0.0	17.547
0 = 1,10 + 40,1,515	MAC (C)BL 17.309	
	Inbd. Brk. BL 17.804	10.591
	Outbd. Brk. BL 18.778	10.379
		5.803
Chord Locations - Ro		28.545
	WL	13.045

	BL	0.00
(MAC (25%)	PS PER TIME	40.605
	WL 512.0 = 1	11.629
	BL	17.309
TIP(L.E.)	FS	50.531
	WL	10.219
	BL	42.151

*NOTE: Wind Tunnel data based on projected wing planform with root chord @ 0° incidence and aero L.E. and 100% chord T.E.

Aero data analysis based on area measured from L.E. to T.E.,
and 25% MAC location referenced to wing reference plane.
W.T. Data 25% MAC location = 24.1% MAC Aero Analysis Data.

ANTENNA	FAIRING	-	za2	

Length, inches	11.616
Width, inches	2.68
Leading Edge Location, FS	41.931
Trailing Edge Location, FS	53.547

WHEEL WELL FAIRINGS - ZG21

Length, Inches	17.776
Max. Frontal Area Per Side, Inches	7.480
Max. Equiv. Diameter, Inches	3.086
Fineness Ratio	5.760
Leading Edge Location, FS	34.936

TABLE 3
WING PRESSURE ORIFICE LOCATIONS

BL 8.127	BL 17.634	BL 26.825	BL 33.437
$\eta = 0.193$	$\eta = 0.418$	$\eta = 0.637$	$\eta = 0.793$

(X/C's FOR ORIFICE LOCATIONS)

UPPER	LOWER	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
0.0	0.02	0.0	0.02	0.0	0.02	0.0	0.02
0.015	0.05	0.015	0.05	0.015	0.05	0.015	0.05
0.03	0.10	0.03	0.10	0.03	0.10	0.03	0.10
0.05	0.20	0.05	0.15	0.05	0.15	0.05	0.15
0.07	0.30	0.07	0.20	0.07	0.20	0.07	0.20
0.09	0.40	0.09	0.30	0.09	0.30	0.09	0.30
0.11	0.50	0.11	0.40	0.11	0.40	0.11	0.40
0.20	0.63	0.15	0.50	0.15	0.50	0.15	0.50
0.30	0.80	0.20	0.65	0.20	0.65	0.20	0.65
0.40	0.95	0.25	0.85	0.25	0.85	0.25	0.85
0.50		0.30		0.30		0.30	
0.63		0.37		0.35		0.35	
0.80		0.40		0.40		0.40	
0.95		0.45		0.45		0.45	
1.0		0.50		0.50		0.50	
		0.60		0.60		0.60	
		0.70		0.70		0.70	
		0.80		0.80		0.80	
		0.90		0.90		0.90	
		0.95		0.95		0.95	
		1.00		1.00		1.00	

TABLE 4
TEST PROGRAM SUMMARY
AEDC TF-481

DESCRIPTION &	CRITT	R _N ×10-6	PV	VT PA	1 6 11	DICT	ED MAC	CH NU	NUMBER		
CONFIGURATION	CODE	PER FT	.600	.700	.750	.770	.780	790	.800	.810	.830
I. SUBLIMATION							15V 7	181	olyis	15-15	l.
1. Free Transition	TE Det		30								
s ¹ w ^{12C}	A	4.8				109					
. I A Received	traci:	181				193					
s ¹ w ³⁵	A	4.8				161					
217 218	815	215 P.U	1			204					
		1				207					
s ¹ w ³⁶	A	4.8				137	1316	7 . jel		TVSE	8_
2. Fixed Transition	1 23	58 LS									
s ¹ w ^{12C}	В	4.8				190					
	С	4.8				105					
	D	4.8				245			DO:	Chart	
s ¹ w ³⁵	D	4.8		*		264			-X.7		
s ¹ w ³⁶	В	4.8				134				54.2	, A

TABLE 4 (CONT'D)

DESCRIPTION & GRI		R _N ×10	-6	PWT PN @ INDICATED MACH NUMBER								
CONFIGURATION		PER F		.600	.700	.750	.770	.780	.790	.800	.810	.830
II. BASE WING (W ^{12C})		50.4	000	1213	19 (0) 1 (98)		712) 802)			3 % X-01		See al.
1. Transition Grit Var.										or d		8 .1
s ¹ w ^{12C}	A	4.		30 196	31 197	33 36 198	37 199		38 200		39 201	
	В			180	181	182	183		184			
	С			46	47	49	50	51	52	53	54	55
	D	•		213	214	215	216		217		218	
2. Reynolds No. Var.										85		
2. Reynolds No. Var.	С	2.	5		61	62	63		64		65	
	С	5.	5		48 60	59	58		57	10 NO	56	
3. Tail On	60 ±											
3. Tail On S ¹ w ^{12C} D ⁴ V ⁶ H ₀ 8b ⁸	С	4.	8	88	89	90	91		92		93	
4. Swept Tips $s^{1}w^{12C}z^{t6}RH$ $s^{1}w^{12C}z^{t6}$	С	4.	8		68	69	70		71		72	
s ¹ w ^{12C} z ^{t6}	С	4.	8		75	76	77		78		79	
5. Pylons-Nacelles Off												
s ² w ^{12C}	C	4.	8	97	98	99	100		101		102	
	D	4.	8		224	222	221		223			
6. Anti-Drag Bodies (8)												
s ¹ w ^{12C} z ^{f1}	D	4.		230 242	232 241	233 240	234 239		235 238		236 237	

TABLE 4 (CONT'D)

DESCRIPTION &	GRIT RNX10		PWT PN @ INDICATED MACH NUMBER								
CONFIGURATION		PER FT		.700	.750	.770	.780	.790	.800	.810	.830
III. 3-D WING (W ³⁵⁾ 1. Transition Grit Var.							eses La	18.3(7)	Foot	A	
Slw35	A	4.8	151	152	153	154	67.19	155	onem.	156	
	В		140	141	142	143	144	145	146	147	148
	D		248	249	250	251		252		253	
2. Pylons-Nacelles Off	BITER	recul									
_S 2 _W 35	D	4.8		256	257	258		259			
3. Anti-Drag Bodies (4) Slw35zf2	D	4.8	267	268	269	270	272	271		273	
IV. 2-D WING (W ³⁶) 1. Transition Grit Var.											
sl _W 36	A	4.8	172	173	174	175		176		177	
	В		112	113	114	115	116	117	118	119	120
	С		164	165	166	167		168		169	
2 Downslan No. Wass											
2. Reynolds No. Var.											
Slw36	В	2.5		125	126	127		128			

TABLE 4 (CONT'D)

WING TRANSITION GRIT CODE:

CODE	DESCRIPTION	STRIP LOCATION	GRIT SIZE (In. Dia.)
A	Free Transition		
В	Heavy Density Grit	4% c Upper Surface	0.0031
		7 1/2% c Lower Surface	0.0031
С	Light Density Grit	4% c Upper Surface	0.0031
		7 1/2% c Lower Surface	0.0031
D	Light Density Grit	0.7 In. from L.E.,	0.0024 (Upper)
		Upper & Lower Surfaces	0.0031 (Lower)

TABLE 5
PLOT SCHEDULE FOR FORCE DATA

DESCRIPTION AND CONFIGURATION	GRIT CODE	R _N x 10 ⁻⁶ /FT	FIGURE NUMBER	
1. Baseline Leading Edge (W ^{12C})	W01748/01	BRID OVE 1633	7.1500000	
sl _W l2C	A	4.8	8	
Repeat	A	4.8	9	
	В	4.8	10	
	С	4.8	11	
	D	4.8	12	
Tail-on	С	4.8	13	
	С	2.5	14	
30 1 23 1 25 1 25 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	С	5.5	15	
2. Modified Leading Edge (W ³⁵)				
s1 _W 35	A	4.8	16	
	В	4.8	17	
	D	4.8	18	
3. Modified Leading Edge (W ³⁶)				
slw36	A	4.8	19	
	В	4.8	20	
GC 100 100 100 100 100 100 100 100 100 10	С	4.8	21	
4. Pylons & Nacelles Off				
S ² W ¹² C	С	4.8	22	
S ² W ¹ 2C	D	4.8	23	
s2 _W 35	D ·	4.8	24	
5. Anti-Drag Bodies				
Sl _W 12C _Z f1	D	4.8	25	
s1 _W 35 _Z f2	A	4.8	26	
Swept Tip				
slw12Czt6(R.H.)	С	4.8	27	
slw12Czt6	С	4.8	28	

TABLE 6
PLOT SCHEDULE FOR PRESSURE DATA

BELDIA NA PED SERVE NA PED	GRIT CODE	R _N x 10 ⁻⁶ /FT	FIGURE NO. AT INDICATE MACH NO.					
DESCRIPTION AND CONFIGURATION			.70	.75	.77	.79	.81	
1.	Baseline Leading Edge (W ^{12C})							
	SlW12C	A	4.8	29	30	31	32	33
	SlW12C	С	4.8	34	35	36	37	38
4-7.	S ¹ W ¹² C	D	4.8	39	40	41	42	43
2.	Modified Leading Edge (W ³⁵)		00-10					
	sl _W 35	A	4.8	44	45	46	47	48
	Sl _W 35	D	4.8	49	50	51	52	53
3.	Modified Leading Edge (W ³⁶)		E.O. 1900	A SOLE	acal i			
	s1 _W 36	В	4.8	54	55	56	57	58
4.	Pylons and Nacelles Off							
	S ² W ^{12C}	D	4.8	59	60	61	62	
	S ² W ³⁵	D	4.8	63	64	65	66	
5.	Anti-Drag Bodies							
	sl _W l2C _Z fl	D	4.8	67	68	69	70	71
	slw35zf2	A	4.8	72	73	74	75	76
6.	Swept Tip							
	slwl2Cztl (one side only)	С	4.8	77	78	79	80	81
	slw12Czt2	С	4.8	82	83	84	85	86

Figure 1. Photograph of the 0.044 Scale C-141B Model Installed at AEDC 16T

a. Side View

Figure 2. Three-View Sketch of the 0.044 Scale C-141B Model

Figure 2. Concluded

Figure 3. Sketch Comparison of the Basic and Modified Leading Edges

Figure 4. Location of Anti-Drag Bodies

Figure 5. Photograph of the Anti-Drag Bodies Installed on the Model

Figure 6. Sketch of Swept Wing Tip

Figure 7. Photograph of the Swept Tip Installation.

Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Free Transition, Repeat Figure

Figure 11. Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code C

Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code D Figure

Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code C, Tail-On Figure 13.

Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code C, $R_N=2.5~{\rm X}~10^6/{\rm MAC}$ Figure 14.

Figure 16. Lift, Drag and Pitching Moment Characteristics for $\rm W^{35}$ Leading Edge Modification, Free Transition

Lift, Drag and Pitching Moment Characteristics for $\rm W^{35}$ Leading Edge Modification, Fixed Transition, Grit Code D Figure 18.

Lift, Drag and Pitching Moment Characteristics for \mathbb{W}^{36} Leading Edge Modification, Free Transition .61 Figure

Lift, Drag and Pitching Moment Characteristics for W³⁶ Leading Edge Modification, Fixed Transition, Grit Code B Figure 20.

Figure 22. Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code C, Pylon/Nacelles Off

Figure 24. Lift, Drag and Pitching Moment Characteristics for W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, Pylon/Nacelles Off

b. Drag Polar Figure 24. Concluded

Figure 25. Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies

Modification, Free Transition, Four Anti-Drag Bodies

Lift, Drag and Pitching Moment Characteristics for Baseline Leading Edge, Fixed Transition, Grit Code C, Both Swept Tips

Figure 29. Chardwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Free Transition, M = 0.7.

Figure 29. Continued

Figure 29. Continued

Figure 29. Concluded

Figure 30 . Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Free Transition, M = 0.75.

Figure 30 . Continued

Figure 30. Continued

Figure 30. Concluded

Figure 31. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Free Transition, M = 0.77.

Figure 31. Continued

Figure 31. Continued

Figure 31. Concluded

Figure 32. Chordwise Pressure Distributions for Yarious Angles of Attack. Baseline Leading Edge, Free Transition, M = 0.79.

Figure 32. Continued

Figure 32. Continued

Figure 32. Concluded

Figure 33. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Free Transition, M = 0.81.

Figure 33. Continued

Figure 33. Continued

Figure 33. Concluded

Figure 34. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, M = 0.7.

Figure 34. Continued

decare

Figure 34. Continued

Figure 34. Concluded

Figure 35. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, M = 0.75.

Figure 35. Continued

Figure 35. Continued

Figure 35. Concluded

Figure 36. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, M = 0.77.

Figure 36. Continued

Figure 36. Continued

Figure 36. Concluded

Figure 37. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, M = 0.79.

Figure 37. Continued

Figure 37. Continued

Figure 37. Concluded

Figure 38. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, M = 0.81.

Figure 38. Continued

Figure 38. Continued

Figure 38. Concluded

Figure 39. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, M = 0.7.

Figure 39. Continued

Figure 39. Continued

Figure 39. Concluded

Figure 40. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, M = 0.75.

Eigure 40. Continued

Figure 40. Continued

Figure 40. Concluded

Figure 41. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, M = 0.77.

Figure 41. Continued

Figure 41. Continued

Figure 41. Concluded

Figure 42. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, M = 0.79.

Figure 42. Continued

Figure 42. Continued

Figure 42. Concluded

Figure 43. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, M = 0.81.

Figure 43. Continued

Figure 43. Continued

Figure 43. Concluded

Figure 44. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, M = 0.7.

Figure 44. Continued

Figure 44. Continued

Figure 44. Concluded

Figure 45. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, M = 0.75.

Figure 45. Continued

Figure 45. Continued

Figure 45. Concluded

Figure 46. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, M = 0.77.

Figure 46. Continued

Figure 46. Continued

Figure 46. Concluded

Figure 47. Chordwise Pressure Distributions for Various Angles of Attack. W^{35} Leading Edge Modification, Free Transition, M = 0.79.

Figure 47. Continued

Figure 47. Continued

Figure 47. Concluded

Figure 48. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, M = 0.81.

Figure 48. Continued

Figure 48. Continued

Figure 48. Concluded

Figure 49. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D. M = 0.7.

Figure 49. Continued

Figure 49. Continued

Figure 49. Concluded

Figure 50. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, M = 0.75.

Figure 50. Continued

Figure 50. Continued

Figure 50. Concluded

Figure 51 . Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, M = 0.77.

Figure 51. Continued

Figure 51. Continued

Figure 51. Concluded

Figure 52. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, M = 0.79.

Figure 52. Continued

Figure 52. Continued

Figure 52. Concluded

Figure 53. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, M = 0.81.

Figure 53. Continued

Figure 53. Continued

Figure 53. Concluded

Figure 54. Chordwise Pressure Distributions for Various Angles of Attack. W³⁶ Leading Edge Modification, Fixed Transition, Grit Code B, M = 0.7.

Figure 54. Continued

Figure 54. Continued

Figure 54. Concluded

Figure 55. Chordwise Pressure Distributions for Various Angles of Attack. W³⁶ Leading Edge Modification, Fixed Transition, Grit Code B, M = 0.75.

Figure 55. Continued

Figure 55. Continued

Figure 55. Concluded

Figure 56. Chordwise Pressure Distributions for Various Angles of Attack. W³⁶ Leading Edge Modification, Fixed Transition, Grit Code B, M = 0.77.

Figure 56. Continued

Figure 56. Continued

Figure 56. Concluded

Figure 57. Chordwise Pressure Distributions for Various Angles of Attack. W³⁶ Leading Edge Modification, Fixed Transition, Grit Code B, M = 0.79.

Figure 57. Continued

Figure 57. Continued

Figure 57. Concluded

Figure 58. Chordwise Pressure Distributions for Various Angles of Attack. W^{36} Leading Edge Modification, Fixed Transition, Grit Code B, M = 0.81.

Figure 58. Continued

Figure 58. Continued

Figure 58. Concluded

Figure 59. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.7.

Figure 59. Continued

Figure 59. Continued

Figure 59. Concluded

Figure 60. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.75.

Figure 60. Continued

Figure 60. Continued

Figure 60. Concluded

Figure 61. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.77.

Figure 61 . Continued

Figure 61. Continued

Figure 61. Concluded

Figure 62. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.79.

Figure 62 . Continued

Figure 62. Continued

Figure 62. Concluded

Figure 63. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.7.

Figure 63 . Continued

Figure 63. Continued

Figure 63. Concluded

Figure 64. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.75.

Figure 64. Continued

Figure 64 . Continued

Figure 64. Concluded

Figure 65. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.77.

Figure 65. Continued

Figure 65 . Continued

Figure 65. Concluded

Figure 66. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Fixed Transition, Grit Code D, Pylon/Nacelles Off, M = 0.79.

Figure 66. Continued

Figure 66 . Continued

Figure 66. Concluded

Figure 67. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies, M = 0.7.

Figure 67. Continued

Figure 67 . Continued

Figure 67. Concluded

Figure 68. Chardwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies, M = 0.75.

Figure 68. Continued

Figure 68. Continued

Figure 68. Concluded

Figure 69. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies, M = 0.77.

Figure 69. Continued

Figure 69 . Continued

Figure 69. Concluded

Figure 70. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies, M = 0.79.

Figure 70. Continued

Figure 70 . Continued

Figure 70. Concluded

Figure 71. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code D, Eight Anti-Drag Bodies, M = 0.81.

Figure 71. Continued

Figure 71 . Continued

Figure 71. Concluded

Figure 72. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, Four Anti-Drag Bodies, M = 0.7.

Figure 72. Continued

Figure 72 . Continued

Figure 72. Concluded

Figure 73. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, Four Anti-Drag Bodies, M = 0.75.

Figure 73. Continued

Figure 73. Continued

Figure 73. Concluded

Figure 74. Chordwise Pressure Distributions for Various Angles of Attack. W^{35} Leading Edge Modification, Free Transition, Four Anti-Drag Bodies, M=0.77.

Figure 74 . Continued

Figure 74. Continued

Figure 74. Concluded

Figure 75. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, Four Anti-Drag Bodies, M = 0.79.

Figure 75. Continued

Figure 75. Continued

Figure 75. Concluded

Figure 76. Chordwise Pressure Distributions for Various Angles of Attack. W³⁵ Leading Edge Modification, Free Transition, Four Anti-Drag Bodies, M = 0.81.

Figure 76 . Continued

Figure 76. Continued

Figure 76 Concluded

Figure 77. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, One Swept Tip, M = 0.7.

Figure 77 . Continued

Figure 77. Continued

Figure 77. Concluded

Figure 78. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, One Swept Tip, M = 0.75.

Figure 78 . Continued

Figure 78. Continued

Figure 78. Concluded

Figure 79. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, One Swept Tip, M = 0.77.

Figure 79 . Continued

Figure 79. Continued

Figure 79. Concluded

Figure 80. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, One Swept Tip, M = 0.79.

Figure 80 . Continued

Figure 80. Continued

Figure 80. Concluded

Figure 81. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, One Swept Tip, M = 0.81.

Figure 81. Continued

Figure 81. Continued

Figure 81. Concluded

Figure 82. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, Both Swept Tips, M = 0.7.

Figure 82. Continued

Figure 82 . Continued

Figure 82. Concluded

Figure 83. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, Both Swept Tips, M = 0.75.

Figure 83. Continued

Figure 83 . Continued

Figure 83. Concluded

Figure 84. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, Both Swept Tips, M = 0.77.

Figure 84 . Continued

Figure 84. Continued

Figure 84. Concluded

Figure 85. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, Both Swept Tips, M = 0.79.

Figure 85 . Continued

Figure 85. Continued

Figure 85. Concluded

Figure 86. Chordwise Pressure Distributions for Various Angles of Attack. Baseline Leading Edge, Fixed Transition, Grit Code C, Both Swept Tips, M = 0.81.

Figure 86 . Continued

Figure 86. Continued

Figure 86. Concluded