

planetmath.org

Math for the people, by the people.

omega limit set

Canonical name OmegaLimitSet
Date of creation 2013-03-22 13:18:42
Last modified on 2013-03-22 13:18:42
Owner mathcam (2727)
Last modified by mathcam (2727)

Numerical id 5

Author mathcam (2727)

 $\begin{array}{lll} \text{Entry type} & \text{Definition} \\ \text{Classification} & \text{msc } 37\text{B}99 \\ \text{Classification} & \text{msc } 34\text{C}05 \\ \text{Synonym} & \omega\text{-limit set} \\ \text{Synonym} & \alpha\text{-limit set} \\ \text{Related topic} & \text{LimitCycle} \\ \text{Defines} & \text{alpha limit set} \end{array}$

Let $\Phi(t,x)$ be the flow of the differential equation x'=f(x), where $f\in C^k(M,\mathbb{R}^n)$, with $k\geq 1$ and M an open subset of \mathbb{R}^n . Consider $x\in M$.

The omega limit set of x, denoted $\omega(x)$, is the set of points $y \in M$ such that there exists a sequence $t_n \to \infty$ with $\Phi(t_n, x) = y$.

Similarly, the alpha limit set of x, denoted $\alpha(x)$, is the set of points $y \in M$ such that there exists a sequence $t_n \to -\infty$ with $\Phi(t_n, x) = y$.

Note that the definition is the same for more general dynamical systems.