

Práctica 6: Diseño con memoria RAM

Diseñar una memoria RAM y usar *attribute* para realizar indicaciones a la herramienta de síntesis. *Entradas*: clkFPGA, we, data_in, data_out, addr *Salida*: leds 0 a 7

Para esta práctica es imprescindible consultar el *Vivado Design Suite User Guide - Synthesis*

Seguir los siguientes pasos:

1) Diseñar una RAM de 8 palabras de 8 bits con escritura síncrona y lectura asíncrona. La RAM estará inicialmente vacía (rellenarla con "0"). Con esta descripción, ¿qué tipo de RAM va a inferir Vivado?.

11144011	
RAM distribuida	

Sintetizarla y comprobarlo. Realizar una captura de pantalla del informe de síntesis:

- 2) Probar el diseño en la FPGA: comprobar que inicialmente la RAM está vacía. Escribir en cada posición de memoria el número = pos. memoria + 3. En la posición 000 escribiremos 00000011, en la 001 un 00000100 etc. Revisar que el contenido de la memoria ha quedado correctamente escrito. Probar a escribir otro número en una posición de memoria cualquiera y comprobar que ha quedado correctamente escrito.
- 3) Cambiar el diseño para aumentar el tamaño de la RAM a una de 2 14 palabras de 32 bits.

¿Qué tipo de memoria va a inferir Vivado?.

```
RAM distribuida
```

Comprobarlo en el informe de síntesis.

4) Cambiar el diseño de la RAM para que la herramienta de síntesis asigne nuestra memoria RAM a los bloques de RAM de la FPGA (BRAM).

Comprobarlo en el informe de síntesis. Realizar una captura de pantalla del informe de síntesis:

Block RAM: Final Mapping	Report +	4	.	.	.	44	
Module Name RTL Object	PORT A (Depth x Width) W R PORT B (Depth x Width)	W	R	Ports driving FF	RAMB18	RAMB36	
BRAM RAM0_reg	16 K x 32(READ_FIRST) W R		l	Port A	0	16	

Sara Román, con licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.

Prácticas DAS 20/21

5) Buscar qué atributo es necesario para que con el mismo diseño de 4) la herramienta de síntesis ubique nuestra RAM en LUTs y añadirlo al código VHDL.

Comprobarlo en el informe de síntesis. Realizar una captura de pantalla del informe de síntesis:

ttttttt	
Module Name RTL Object Inference Size (Depth x Width) Primitives	
BRAM_LUT	

Nota: guardad cada versión de RAM debidamente comentada → indicad en los comentarios qué tipo de RAM infiere para cada diseño.

Entrega: mostrar el funcionamiento del apartado 2 en el laboratorio junto a este cuadernillo con los códigos VHDL de las distintas versiones y las capturas de pantalla del informe de síntesis