1В. Количество максимумов на отрезке

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

Реализуйте структуру данных для эффективного вычисления значения максимального из нескольких подряд идущих элементов массива, а также количества элементов, равных максимальному на данном отрезке.

Входные данные

В первой строке вводится одно натуральное число N ($1 \leq N \leq 100\,000$) — количество чисел в массиве.

Во второй строке вводятся N чисел от 1 до $100\,000$ — элементы массива.

В третьей строке вводится одно натуральное число K ($1 \leq K \leq 30\,000$) — количество запросов на вычисление максимума.

В следующих K строках вводится по два числа — номера левого и правого элементов отрезка массива (считается, что элементы массива нумеруются с единицы).

Выходные данные

Для каждого запроса выведите в отдельной строке через пробел значение максимального элемента на указанном отрезке массива и количество максимальных элементов на этом отрезке.

```
Входные данные

5
2 2 2 1 5
2
2 3
2 5

Выходные данные

Скопировать

Скопировать
```

1С. Нолики

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

Дедус любит давть своим ученикам сложные задачки. На этот раз он придумал такую задачу:

Рейтинг всех его учеников записан в массив A. Запросы Дедуса таковы:

- 1. Изменить рейтинг i-го ученика на число x
- 2. Найти максимальную последовательность подряд идущих ноликов в массиве A на отрезке [l,r].

Помогите бедным фиксикам избежать зверского наказания за нерешение задачи на этот раз.

Входные данные

В первой строке входного файла записано число N ($1 \leq N \leq 500\,000$) – количество учеников. Во второй строке записано N чисел – их рейтинги, числа по модулю не превосходящие 1000 (по количеству задач, которые ученик решил или не решил за время обучения). В третьей строке записано число M ($1 \leq M \leq 50\,000$) – количество запросов. Каждая из следующих M строк содержит описания запросов:

```
«UPDATE і х» – обновить i-ый элемент массива значением x (1 \leq i \leq N, |x| \leq 1000) 
«QUERY 1 г» – найти длину максимальной последовательности из нулей на отрезке с l по r. (1 \leq l \leq r \leq N)
```

Выходные данные

В выходной файл выведите ответы на запросы «QUERY» в том же порядке, что и во входном файле

```
Входные данные

5
328 0 0 0 0 0
5
QUERY 1 3
UPDATE 2 832
QUERY 3 3
QUERY 2 3
UPDATE 2 0

Выходные данные

Скопировать

Скопировать
```

1D. Катый ноль

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Реализуйте эффективную структуру данных, позволяющую изменять элементы массива и вычислять индекс k-го слева нуля на данном отрезке в массиве.

Входные данные

В первой строке вводится одно натуральное число N ($1 \le N \le 200\,000$) — количество чисел в массиве. Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива. В третьей строке вводится одно натуральное число M ($1 \le M \le 200\,000$) — количество запросов. Каждая из следующих M строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (s — вычислить индекс k-го нуля, u — обновить значение элемента). Следом за s вводится три числа — левый и правый концы отрезка и число k ($1 \le k \le N$). Следом за u вводятся два числа — номер элемента и его новое значение.

Выходные данные

Для каждого запроса s выведите результат. Все числа выводите в одну строку через пробел. Если нужного числа нулей на запрашиваемом отрезке нет, выводите -1 для данного запроса.

```
Входные данные

5
0 0 3 0 2
3
u 1 5
u 1 0
s 1 5 3

Выходные данные

Скопировать
```

1Е. Ближайшее большее число справа

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Дан массив a из n чисел. Нужно обрабатывать запросы:

- set(i, x) присвоить новое значение элементу массива a[i] = x;
- ullet get (i, $oldsymbol{\mathrm{x}}$) найти $\min k$: $k \geq i$ и $a_k \geq x$.

Входные данные

Первая строка входных данных содержит два числа: длину массива n и количество запросов m ($1 \le n, m \le 200\,000$).

Во второй строке записаны n целых чисел – элементы массива a ($0 \le a_i \le 200\,000$).

Следующие m строк содержат запросы, каждый запрос содержит три числа t, i, x. Первое число t равно 0 или 1 – тип запроса. t=0 означает запрос типа set, t=1 соответствует запросу типа get, $1 \leq i \leq n$, $0 \leq x \leq 200\,000$. Элементы массива нумеруются с единицы.

Выходные данные

На каждой запрос типа get на отдельной строке выведите соответствующее значение k. Если такого k не существует, выведите -1.

```
Входные данные

4 5
1 2 3 4
1 1 1
1 1 3
1 1 5
0 2 3
1 1 3

Выходные данные

Скопировать

1
3
-1
2
```

1Н. Сережа и скобочки

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

У Сережи есть строка s длины n, состоящая из символов «(» и «)».

Сереже нужно ответить на m запросов, каждый из которых характеризуется двумя целыми числами l_i, r_i . Ответом на i-ый запрос является длина наибольшей правильной скобочной подпоследовательности последовательности $s_{l_i}, s_{l_{i+1}}, \ldots, s_{r_i}$. Помогите Сереже ответить на все запросы.

Входные данные

Первая строка содержит последовательность символов без пробелов $s_1, s_2, \ldots, s_n (1 \le n \le 10^6)$. Каждый символ это либо «(», либо «)». Вторая строка содержит целое число $m (1 \le m \le 10^5)$ количество запросов. Каждая из следующих m строк содержит пару целых чисел. В i-ой строке записаны числа $l_i, r_i, (1 \le l_i \le r_i \le n)$ — описание i-го запроса.

Выходные данные

Выведите ответ на каждый запрос в отдельной строке. Ответы выводите в порядке следования запросов во входных данных.

Пример

```
входные данные
                                                                                      Скопировать
())(())(())(
11
2 3
1 2
1 12
8 12
5 11
2 10
                                                                                      Скопировать
выходные данные
0
2
10
4
6
6
```

Примечание

Подпоследовательностью длины |x| строки $s=s_1s_2\dots s_{|s|}$ (где |s| — длина строки s) называется строка $x=s_{k_1}s_{k_2}\dots s_{k_|x|}$ ($1\leq k_1< k_2<\dots < k_{|x|}\leq |s|$).

Правильной скобочной последовательностью называется скобочная последовательность, которую можно преобразовать в корректное арифметическое выражение путем вставок между ее символами символов «1» и «+». Например, скобочные последовательности «()()», «(())» — правильные (полученные выражения: «(1)+(1)», «((1+1)+1)»), а «)(» и «(» — нет.

Для третьего запроса искомая последовательность будет «()».

Для четвертого запроса искомая последовательность будет (()())())».

2А. Максимум на подотрезках с добавлением на отрезке

ограничение по времени на тест: 0.5 секунд ограничение по памяти на тест: 256 мегабайт

Реализуйте эффективную структуру данных для хранения массива и выполнения следующих операций: увеличение всех элементов данного интервала на одно и то же число; поиск максимума на интервале.

Входные данные

В первой строке вводится одно натуральное число $N(1 \leq N \leq 100000)$ — количество чисел в массиве.

Во второй строке вводятся N чисел от 0 до 100000 — элементы массива.

В третьей строке вводится одно натуральное число $M(1 \leq M \leq 30000)$ — количество запросов.

Каждая из следующих M строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (m — найти максимум, a — увеличить все элементы на отрезке).

Следом за m вводятся два числа — левая и правая граница отрезка.

Следом за a вводятся три числа — левый и правый концы отрезка и число add, на которое нужно увеличить все элементы данного отрезка массива ($0 \le add \le 100000$).

Выходные данные

Выведите в одну строку через пробел ответы на каждый запрос m.

```
      входные данные
      Скопировать

      5
      2 4 3 1 5

      5
      5

      m 1 3
      3 2 4 100

      m 1 3
      3 5 5 10

      m 1 5
      Скопировать

      4 104 104
      Скопировать
```

Oкна

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

Входные данные

В первой строке входного файла записано число окон n ($1 \le n \le 50\,000$).

Следующие n строк содержат координаты окон $x_{i,1}, y_{i,1}, x_{i,2}, y_{i,2}$, где $(x_{i,1}, y_{i,1})$ — координаты левого верхнего угла i-го окна, а $(x_{i,2},y_{i,2})$ — правого нижнего (на экране компьютера y растет сверху вниз, а x — слева направо). Все координаты — целые числа, по модулю не превосходящие 10^{6}

Выходные данные

выходные данные

1 1

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенных пробелом координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т. е. покрывающими свои граничные точки.

Примеры

```
Скопировать
входные данные
0033
1144
выходные данные
                                                                          Скопировать
2
1 3
входные данные
                                                                          Скопировать
0011
выходные данные
                                                                          Скопировать
1
0 1
                                                                          Скопировать
входные данные
0011
0112
1021
1122
```

Скопировать

3А. Разреженные таблицы

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Входные данные

В первой строке входного файла даны три натуральных числа $n, m \ (1\leqslant n\leqslant 10^5, 1\leqslant m\leqslant 10^7)$ и $a_1\ (0\leqslant a_1<16\ 714\ 589)$ — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и $v_1\ (1\leqslant u_1,v_1\leqslant n)$ — первый запрос.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589.$$

Например, при n=10, $a_1=12345$ получается следующий массив: a = (12345, 305498, 7048017, 11694653, 1565158, 2591019, 9471233, 570265, 13137658, 1325095).

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + ans_i + 2i) \bmod n) + 1, \\ v_{i+1} = ((13 \cdot v_i + 593 + ans_i + 5i) \bmod n) + 1,$$

где ans_i — ответ на запрос номер i.

Обратите внимание, что u_i может быть больше, чем v_i .

Выходные данные

В выходной файл выведите u_m , v_m и ans_m (последний запрос и ответ на него).

входные данные	Скопировать
10 8 12345 3 9	
выходные данные	Скопировать
5 3 1565158	

3В. Звёзды

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Вася любит наблюдать за звёздами. Но следить за всем небом сразу ему тяжело. Поэтому он наблюдает только за частью пространства, ограниченной кубом размером $n \times n \times n$. Этот куб поделен на маленькие кубики размером $1 \times 1 \times 1$. Во время его наблюдений могут происходить следующие события:

- 1. В каком-то кубике появляются или исчезают несколько звёзд.
- К нему может заглянуть его друг Петя и поинтересоваться, сколько видно звезд в части пространства, состоящей из нескольких кубиков.

Входные данные

Первая строка входного файла содержит натуральное число $1 \le n \le 128$. Координаты кубиков — целые числа от 0 до n-1. Далее следуют записи о происходивших событиях по одной в строке. В начале строки записано число m. Если m равно:

- 1. Тогда за ним следуют 4 числа x, y, z ($0 \le x, y, z < N$) и k ($-20000 \le k \le 20000$) координаты кубика и величина, на которую в нем изменилось количество видимых звёзд;
- 2. Тогда за ним следуют 6 чисел $x_1,\,y_1,\,z_1,\,x_2,\,y_2,\,z_2$ ($0 \le x_1 \le x_2 < N,\,0 \le y_1 \le y_2 < N,\,0 \le z_1 \le z_2 < N$), которые означают, что Петя попросил подсчитать количество звезд в кубиках (x,y,z) из области: $x_1 \le x \le x_2,\,y_1 \le y \le y_2,\,z_1 \le z \le z_2$;
- Это означает, что Васе надоело наблюдать за звёздами и отвечать на вопросы Пети. Эта запись встречается во входном файле только один раз и будет последней.

Количество записей во входном файле не больше 100 002.

Выходные данные

Для каждого Петиного вопроса выведите искомое количество звёзд.

```
Входные данные

2
2 1 1 1 1 1 1
1 0 0 0 1
1 0 1 0 3
2 0 0 0 0 0 0
2 0 0 0 0 1 0
1 0 1 0 -2
2 0 0 0 1 1 1
3

Выходные данные

Скопировать

О
1
4
2
```

4A. Set

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Реализуйте множество с использованием хеш-таблицы.

B данной задаче запрещено пользоваться стандартной библиотекой языка (классами std::set, std::unordered set и подобными в C++ и их аналогами в других языках программирования).

Входные данные

Входные данные содержат описание операций, которые необходимо выполнить. Каждая строка содержит одну из следующих операций:

- insert x добавить элемент x в множество. Если элемент уже есть в множестве, не нужно ничего делать.
- delete x удалить элемент x из множества. Если элемента нет в множестве, не нужно ничего делать.
- exists x если элемент x есть в множестве, необходимо вывести «true». В противном случае необходимо вывести «false».

Все числа, используемые в запросах целые и не превосходят ${f 10}^9$ по модулю.

Выходные данные

Для каждой операции exists выведите результат ее работы.

входные данные	Скопировать
insert 2	
insert 5	
insert 3	
exists 2	
exists 4	
insert 2	
delete 2	
exists 2	
выходные данные	Скопировать
true	
false	
false	

4B. LinkedHashMap

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Peanusyйтe LinkedHashMap с использованием хеш-таблицы.

В данной задаче запрещено пользоваться стандартной библиотекой языка (классами std::map, std::unordered_map и подобными в C++ и их аналогами в других языках программирования).

Входные данные

Входные данные содержат описание операций, которые необходимо выполнить. Каждая строка содержит одну из следующих операций:

- put x y добавить в соответствие ключу x значение y. Если такой ключ уже есть, значение нужно изменить на y.
- delete x удалить ключ x. Если элемента нет, не нужно ничего делать.
- get x если ключ x есть, необходимо вывести соответствующее ему значение. В противном случае необходимо вывести «none».
- prev x вывести значение, соответствующее ключу, который был вставлен позже всех, но до ключа x. Если такого ключа нет, или ключа x нет, необходимо вывести «none».
- next x вывести значение, соответствующее ключу, который был вставлен раньше всех, но после ключа x. Если такого ключа нет, или ключа x нет, необходимо вывести «none».

Все ключи и значения — строки из латинских букв длиной не более 20 символов.

Выходные данные

Для каждой операции get, prev и next выведите результат ее работы.

входные данные	Скопировать
put zero a	
put one b	
put two c	
put three d	
put four e	
get two	
prev two	
next two	
delete one delete three	
get two	
prev two	
next two	
next four	
выходные данные	Скопировать
с	
b	
d d	
c c	
a	
е	
none	

4D. Хеш-код

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Согласно документации стандартной библиотеки Java, хеш-код для строки вычисляется как:

$$s[0] \cdot 31^{n-1} + s[1] \cdot 31^{n-2} + ... + s[n-1]$$

Где s[i] — это i-й символ строки, n длина строки. Для вычисления используются целые 32-битные числа в форме дополнения до двух.

Вы собираетесь взломать сервера одной известной компании. Чтобы вы смогли выполнить атаку, вам нужны k различных строк, которые имеют одинаковые хеш-коды. К сожалению, сервера этой компании не принимают строки запроса, содержащие буквы отличные от английских букв нижнего и верхнего регистров.

Напишите программу, которая генерирует такие строки.

Входные данные

Первая строка содержит целое число k — количество необходимых строк запроса для генерации ($2 \le k \le 1000$).

Выходные данные

Необходимо вывести k различных непустых строк, каждая из которых имеет длину не более 1000 символов. Все строки должны состоять только из английских букв верхнего или нижнего регистров и иметь равный хеш-код.

5А. И снова сумма...

ограничение по времени на тест: 3 секунды ограничение по памяти на тест: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству l < x < r.

Входные данные

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add((i+y) \bmod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Выходные данные

Для каждого запроса выведите одно число — ответ на запрос.

5В. Вперёд!

ограничение по времени на тест: 3 секунды ограничение по памяти на тест: 256 мегабайт

{256 мегабайт}

Капрал Дукар любит раздавать приказы своей роте. Самый любимый его приказ — «Вперёд!». Капрал строит солдат в ряд и отдаёт некоторое количество приказов, каждый из которых звучит так: «Рядовые с l_i по l_j — вперёд!»

Перед тем, как Дукар отдал первый приказ, солдаты были пронумерованы от 1 до n слева направо. Услышав приказ «Рядовые с l_i по l_j — вперёд!», солдаты, стоящие на местах с l_i по l_j включительно, продвигаются в начало ряда в том же порядке, в котором были.

Например, если в какой-то момент солдаты стоят в порядке 2, 3, 6, 1, 5, 4, то после приказа «Рядовые с 2 по 4 — вперёд!», порядок будет таким: 3, 6, 1, 2, 5, 4. А если потом Капрал вышлет вперёд солдат с 3 по 4, то порядок будет уже таким: 1, 2, 3, 6, 5, 4.

Вам дана последовательность приказов Капрала. Найдите порядок, в котором будут стоять солдаты после исполнения всех приказов.

Входные данные

В первой строке входного файла указаны числа n и m ($2\leqslant n\leqslant 100\,000$, $1\leqslant m\leqslant 100\,000$) — число солдат и число приказов. Следующие m строк содержат приказы в виде двух целых чисел: l_i и r_i ($1\leqslant l_i\leqslant r_i\leqslant n$).

Выходные данные

Выведите в выходной файл n целых чисел — порядок, в котором будут стоять солдаты после исполнения всех приказов.

входные данные	Скопировать
6 3	
2 4	
3 5	
2 2	
выходные данные	Скопировать
1 4 5 2 3 6	

6A. LCA Problem

ограничение по времени на тест: 5 секунд ограничение по памяти на тест: 256 мегабайт

Задано подвешенное дерево, содержащее n ($1 \le n \le 10^5$) вершин, пронумерованных от 0 до n-1. Требуется ответить на m ($1 \le m \le 10^6$) запросов о наименьшем общем предке для пары вершин.

Запросы генерируются следующим образом. Заданы числа a_1,a_2 и числа x,y,z. Числа a_3,\ldots,a_{2m} генерируются следующим образом: $a_i=(x\cdot a_{i-2}+y\cdot a_{i-1}+z)\mod n$. Первый запрос имеет вид (a_1,a_2) . Если ответ на i-1-й запрос равен v, то i-й запрос имеет вид $(a_{2i-1}+v)\mod n$, a_{2i} .

Входные данные

Первая строка содержит два числа: n и m. Корень дерева имеет номер 0.

Вторая строка содержит n-1 целых чисел, i-е из этих чисел равно номеру родителя вершины i. Третья строка содержит два целых числа в диапазоне от 0 до n-1: a_1 и a_2 .

Четвертая строка содержит три целых числа: x,y,z, эти числа неотрицательны и не превосходят $\mathbf{10^9}$.

Выходные данные

Выведите в выходной файл сумму номеров вершин — ответов на все запросы.

входные данные	Скопировать
3 2	
0 1	
2 1	
1 1 0	
выходные данные	Скопировать
2	
входные данные	Скопировать
1 2	
0 0	
1 1 1	
выходные данные	Скопировать
0	

6С. Самое дешевое ребро

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Все ребра имеют веса (стоимости). Вам нужно ответить на M запросов вида "найти у двух вершин минимум среди стоимостей ребер пути между ними".

Входные данные

В первой строке файла записано одно числ — n (количество вершин).

В следующих n-1 строках записаны два числа — x и y. Число x на строке i означает, что x — предок вершины i, y означает стоимость ребра.

$$x < i, |y| \le 10^6$$

Далее m запросов вида (x,y) — найти минимум на пути из x в y ($x \neq y$).

Ограничения: $2 \leq n \leq 5 \cdot 10^4$, $0 \leq m \leq 5 \cdot 10^4$.

Выходные данные

Выведите m ответов на запросы.

входные данные	Скопировать
5	
1 2	
1 3	
2 5	
3 2	
2	
2 3	
4 5	
выходные данные	Скопировать
2	
2	

7В. Прибавление на пути

ограничение по времени на тест: 4 секунды ограничение по памяти на тест: 256 мегабайт

Задано дерево. В каждой вершине есть значение, изначально все значения равны нулю. Требуется обработать запрос прибавления на пути и запрос значения в вершине.

Входные данные

В первой строке задано целое число n — число вершин в дереве ($1 \leq n \leq 3 \cdot 10^5$).

В следующих n-1 строках заданы ребра дерева: по два целых числа v и u в строке — номера вершин, соединенных ребром ($1 \le v, u \le n$).

В следующей строке задано целое число m — число запросов ($1 \leq m \leq 5 \cdot 10^5$).

Следующие m строк содержат запросы в одном из двух форматов:

- + v и d прибавить число d во все значения в вершинах на пути от v до u ($1 \le v, u \le n$; $1 \le d \le 10^9$);
- ? v вывести значение в вершине v ($1 \le v \le n$).

Выходные данные

Выведите ответы на все запросы.

```
Входные данные

Скопировать

1 2
1 3
3 4
3 5
5
+ 2 5 1
? 3
+ 1 1 2
? 1
? 3

Выходные данные

Скопировать

Скопировать
```

1A. RMQ

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

Реализуйте структуру данных, которая на данном массиве из N целых чисел позволяет узнать максимальное значение на этом массиве и индекс элемента, на котором достигается это максимальное значение.

Входные данные

В первой строке вводится натуральное число N ($1 \leq N \leq 10^5$) – количество элементов в массиве. В следующей строке содержатся N целых чисел, не превосходящих по модулю 10^9 – элементы массиваб гарантируется, что в массиве нет одинаковых элементов. Далее идет число K ($0 \leq K \leq 10^5$) – количество запросов к структуре данных. Каждая из следующих K строк содержит два целых числа l и r ($1 \leq l \leq r \leq N$) – левую и правую границы отрезка в массиве для данного запроса.

Выходные данные

Для каждого из запросов выведите два числа: наибольшее значение среди элементов массива на отрезке от \boldsymbol{l} до \boldsymbol{r} и индекс одного из элементов массива, принадлежащий отрезку от \boldsymbol{l} до \boldsymbol{r} , на котором достигается этот максимум.

входные данные	Скопировать
5 7 3 1 6 4 3 1 5 2 4 3 3	
выходные данные	Скопировать
7 1 6 4 1 3	