MATH 111 - CALCULUS AND ANALYTIC GEOMETRY I

Lecture 20 Worksheet

Fall 2020

Subhadip Chowdhury

Oct 2

TITLE: Derivatives of Inverse Functions

SUMMARY: We will find derivative of inverse trigonometric and inverse functions in general.

§A. Inverse Trignonometric Functions

First of all, we will have a brief review of inverse trigonometric functions. Trigonometric functions are periodic, so they fail to be one-to-one, and thus do not have inverse functions. However, we can restrict the domain of each trigonometric function so that it is one-to-one on that domain.

For instance, consider the sine function on the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Because no output of the sine function is repeated on this interval, the function is one-to-one and thus has an inverse. Thus, the function $f(x) = \sin x$ with domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and range [-1, 1] has an inverse function f^{-1} such that

$$f^{-1}:[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

We call f^{-1} the arcsine function and write $f^{-1}(y) = \arcsin(y)$. It is especially important to remember that

$$y = \sin(x)$$
 and $x = \arcsin(y)$

say the same thing. "The arcsine of y" means "the **angle** whose sine is y." For example, $\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}$ means that $\frac{\pi}{6}$ is the angle whose sine is $\frac{1}{2}$ which is equivalent to writing $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$.

Figure 1: A graph of $f(x) = \sin x$ (in blue), restricted to the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, along with its inverse, $f^{-1}(x) = \arcsin(x)$ (in magenta).

§B. Derivative of arcsin

Next, we determine the derivative of the arcsine function. Letting $g(x) = \arcsin(x)$, our goal is to find g'(x). since g(x) is the angle whose sine is x it is equivalent to write

$$\sin(g(x)) = x$$

Differentiating both sides of the previous equation, we have

$$\frac{d}{dx}[\sin(g(x))] = \frac{d}{dx}[x]$$

The right hand side is simply 1, and by applying the chain rule applied to the left side,

$$\cos(g(x))g'(x) = 1$$

Solving for g'(x), it follows that

$$g'(x) = \frac{1}{\cos(g(x))}$$

Finally, we recall that $g(x) = \arcsin(x)$, so the denominator of g'(x) is the function $\cos(\arcsin(x))$, or in other words, "the cosine of the angle whose sine is x." A bit of right triangle trigonometry allows us to simplify this expression considerably.

Figure 2: The right triangle that corresponds to the angle $\theta = \arcsin(x)$.

Let's say that $\theta = \arcsin(x)$, so that θ is the angle whose sine is x. We can picture θ as an angle in a right triangle with hypotenuse 1 and a vertical leg of length x, as shown in figure (2). The horizontal leg must be $\sqrt{1-x^2}$ by the Pythagorean Theorem.

Now, because $\theta = \arcsin(x)$, the expression for $\cos(\arcsin(x))$ is equivalent to $\cos(\theta)$. From the figure,

$$\cos(\arcsin(x)) = \cos(\theta) = \sqrt{1 - x^2}.$$

Substituting this expression into our formula, $g'(x) = \frac{1}{\cos(\arcsin(x))}$, we have now shown that

$$g'(x) = \frac{1}{\sqrt{1 - x^2}}$$

Theorem B.1

For all real numbers x such that -1 < x < 1

$$\frac{d}{dx}[\arcsin(x)] = \frac{1}{\sqrt{1-x^2}}$$

§C. Derivative of arctan

The derivative of $\arctan x$ is given by

$$\frac{d}{dx}[\arctan(x)] = \frac{1}{1+x^2}$$

■ Question 1.

Deriavtion of the formula

The following prompts will lead you to develop the derivative of the inverse tangent function yourself!

- (a) Let $r(x) = \arctan(x)$. Use the relationship between the arctangent and tangent functions to rewrite this equation using only the tangent function.
- (b) Differentiate both sides of the equation you found in (a). Solve the resulting equation for r'(x), writing r'(x) as simply as possible in terms of a trigonometric function evaluated at r(x).
- (c) Recall that $r(x) = \arctan(x)$. Update your expression for r'(x) so that it only involves trigonometric functions and the independent variable x.
- (d) Introduce a right triangle with angle θ so that $\theta = \arctan(x)$. What are the three sides of the triangle?
- (e) In terms of only x and 1, what is the value of $\cos(\arctan(x))$?
- (f) Use the results of your work above to find an expression involving only 1 and x for r'(x).

■ Question 2.

Derivative Practice

Compute the derivative of the following functions.

(i) $f(x) = x^3 \arctan(x) + e^x \ln(x)$

- (ii) $p(t) = 2^{t \arcsin(t)}$
- (iii) $h(z) = (\arcsin(5z) + \arctan(4-z))^{27}$
- (iv) $s(y) = \cot(\arctan(y))$

(v) $m(v) = \ln\left(\sin^2(v) + 1\right)$

(vi) $g(w) = \arctan\left(\frac{\ln(w)}{1+w^2}\right)$

§D. Derivative of the Inverse Function

Suppose f and g are differentiable functions that are inverses of each other, i.e. y = f(x) if and only if x = g(y). Then we can write f(g(x)) = x for every x in the domain of f^{-1} . Differentiating both sides of this equation, we have

$$\frac{d}{dx}[f(g(x))] = \frac{d}{dx}[x]$$

3

and by the chain rule,

$$f'(g(x))g'(x) = 1$$

Solving for g'(x), we have $g'(x) = \frac{1}{f'(g(x))}$. In other words,

Theorem D.1

Suppose that the domain of a function f is an open interval \mathbf{I} and that f is differentiable and one-to-one on this interval. Then f^{-1} is differentiable at any point x in the range of f at which $f'(f^{1-}(x)) \neq 0$, and its derivative is

$$\frac{d}{dx}[f^{-1}(x)] = \frac{1}{f'(f^{-1}(x))}$$

The formula for the derivatives of arcsin and arctan obtained above are just applications of this result.

■ Question 3.

Let g denote the inverse function of f. Suppose

$$f(3) = -6$$
, $f'(3) = 2/3$, $f(-6) = 2$, $f'(2) = 1$,

$$f'(-6) = 3$$
, $f'(-1) = -6$, $f'(-6) = 5$

What is g'(-6)?

■ Question 4.

Let g(x) be the inverse function of $f(x) = 2x^3 + x + 1$. What is g'(4)?

■ Question 5.

Let $f(x) = 2x - \sin(x)$ (graphed below) and let g(x) be the inverse function of f(x). Then find $g'(2\pi)$.

