

Global United Technology Services Co., Ltd.

Report No.: GTSE13060083501

FCC REPORT

Applicant: SHENZHEN VOGUE INDUSTRIES CO., LTD.

Address of Applicant: Bldg. 38, 5th Cuigang Industry Zone, Huaide Village, Fuyong

Town, Bao'an District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: PC7015, PC7005, PC7008B, PC7025, PC7035, PC7518A,

PC7568, PC7569

FCC ID: V97PC7015

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2012

Date of sample receipt: June 05, 2013

Date of Test: June 06-13, 2013

Date of report issued: June 13, 2013

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 13, 2013	Original

Prepared By:	Sam. Gao	Date:	June 13, 2013	
	Project Engineer			
Check By:	Hans. Hu	Date:	June 13, 2013	
	Reviewer			

3 Contents

	P	age
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF EUT	5
	5.3 Test mode	6
	5.4 DESCRIPTION OF SUPPORT UNITS	6
	5.5 Test Facility	7
	5.6 TEST LOCATION	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	9
	7.1 ANTENNA REQUIREMENT:	9
	7.2 CONDUCTED EMISSIONS	10
	7.3 CONDUCTED PEAK OUTPUT POWER	13
	7.4 CHANNEL BANDWIDTH	18
	7.5 POWER SPECTRAL DENSITY	23
	7.6 BAND EDGES	28
	7.6.1 Conducted Emission Method	28
	7.6.2 Radiated Emission Method	31
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	36
	7.7.2 Radiated Emission Method	41
8	TEST SETUP PHOTO	56
9	EUT CONSTRUCTIONAL DETAILS	58

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	SHENZHEN VOGUE INDUSTRIES CO., LTD.	
Address of Applicant:	Bldg. 38, 5th Cuigang Industry Zone, Huaide Village, Fuyong Town, Bao'an District, Shenzhen, China	
Manufacturer:	SHENZHEN VOGUE INDUSTRIES CO., LTD.	
Address of Manufacturer:	Bldg. 38, 5th Cuigang Industry Zone, Huaide Village, Fuyong Town, Bao'an District, Shenzhen, China	

5.2 General Description of EUT

Product Name:	Tablet PC		
Model No.:	PC7015, PC7005, PC7008B, PC7025, PC7035, PC7518A, PC7568, PC7569		
Remark:	Only the Model No. PC7015 was tested, since the electrical circuit design, PCB layout, Electrical Parts and Figure are identical to the basic model, except the outer decoration.		
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz		
	802.11n(HT40): 2422MHz~2452MHz		
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11		
	802.11(HT40): 7		
Channel separation:	5MHz		
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)		
	802.11g/802.11n(H20)/802.11n(H40):		
	Orthogonal Frequency Division Multiplexing (OFDM)		
Antenna Type:	Integral Antenna		
Antenna gain:	2 dBi (declare by Applicant)		
Power supply:	Adapter:		
	Model No.: AW018WR-0500200UV		
	Input: 100~240V~50/60Hz 0.5A Max.		
	Output: 5.0V 2A		
	DC 3.7V Li-ion Battery		

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Channel Fre							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)			
rest channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.4 Description of Support Units

None.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

• Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

Tel: 0755-27798480

Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2013	Mar. 28 2015		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 6, 2012	Dec. 5, 2013		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 03 2012	Jul. 02 2013		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 24 2013	Feb. 23 2014		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2012	June 28 2013		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 29 2013	Mar. 28 2015		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 30 2013	Mar. 29 2014		
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 30 2013	Mar. 29 2014		
11	Coaxial cable	GTS	N/A	GTS210	Mar. 30 2013	Mar. 29 2014		
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 30 2013	Mar. 29 2014		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 03 2012	Jul. 02 2013		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 03 2012	Jul. 02 2013		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2012	June 28 2013		
16	Band filter	Amindeon	82346	GTS219	Mar. 30 2013	Mar. 29 2014		

Cond	Conducted Emission:							
Item Test Equipment		Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 08 2011	Sep. 07 2013		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 03 2012	Jul. 02 2013		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 03 2012	Jul. 02 2013		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jul. 03 2012	Jul. 02 2013		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 03 2012	Jul. 02 2013		
6	Coaxial Cable	GTS	N/A	GTS227	Jul. 03 2012	Jul. 02 2013		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Barometer	ChangChun	DYM3	GTS257	July 10 2012	July 09 2013			

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:	Fraguency range (MU=)	Limit (d	lBuV)				
	Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Tool ook an	* Decreases with the logarithm	of the frequency.					
Test setup:	Reference Plane						
Test procedure:	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
rest procedure.	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted 						
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement data

Line:

Trace: 60

Condition : FCC PART15 CLASSC QP LISN-2012 LINE

Job No. : 835RF Test mode : WIFI mode

Test Engineer: Yang

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	0. 219 0. 459 1. 123 2. 201	45. 93 41. 37 31. 49 33. 55	-0. 26 -0. 23 -0. 21 -0. 21 -0. 24 -0. 43	0.10 0.10 0.10 0.10	45.80 41.26 31.38 33.41	62.88 56.71 56.00 56.00	-17. 08 -15. 45 -24. 62 -22. 59	Peak Peak Peak Peak

Neutral:

Trace: 58

Condition : FCC PART15 CLASSC QP LISN-2012 NEUTRAL

Job No. Test mode : WIFI mode

Test Engineer: Yang

000	Distincer.		LISN	Cable		Limit	Over		
	Freq		Factor					Remark	
	MHz	dBuV	dB	dB	dBuV	dBuV	dB		_
1 2 3 4	0.538 1.345	41.87 43.09 32.45	-0.08 -0.08 -0.10	0.10 0.10	41.89 43.11 32.45	56.41 56.00 56.00	-14.52 -12.89 -23.55	QP QP QP	
5 6			-0.12 -0.31						

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

Project No.: GTSE130600835RF

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Peak Outp	Limit(dBm)	Result		
1031 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(abin)	Nosun
Lowest	7.17	7.03	7.02	5.28		Pass
Middle	7.12	7.07	6.99	5.40	30.00	
Highest	7.18	7.01	7.05	5.46		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

802.11g Test mode:

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE130600835RF

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Channel Ban	Limit(KHz)	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Littit(IXI12)	Nesuit
Lowest	10.061	16.579	17.849	36.423		Pass
Middle	10.070	16.568	17.849	36.434	>500	
Highest	10.057	16.584	17.847	36.455		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Project No.: GTSE130600835RF

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Project No.: GTSE130600835RF

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Power Spec	Limit(KHz)	Result		
Test CIT	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Littit(Ki iz)	Nesuit
Lowest	-4.88	-8.93	-10.52	-15.79		Pass
Middle	-5.31	-9.48	-11.37	-15.74	8.00	
Highest	-5.61	-9.35	-11.14	-15.50		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 24 of 63

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

802.11g

Lowest channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Highest channel

Lowest channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205			
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to					
34, 34, 37	2500MHz) data		, ,			
Test site:	Measurement D					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
·		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Limit:	Freque		Limit (dBuV/	m @3m)	Value	
		•	54.0	-	Average	
	Above 1	GHZ	74.0		Peak	
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier					
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement. 4. For each sus and then the and the rotathe maximum. 5. The test-recesspecified Ba. 6. If the emission the limit specified by the EUT where the second se	t a 3 meter can be position of the set 3 meters che was mount theight is varietermine the made vertical polarit. Spected emission antenna was table was turn reading. Server system would be reported to the could be reported argin would be server as the position of the could be reported argin would be server as the position of the could be reported argin would be server as the server as the position of the could be reported argin would be server as the position of the could be reported as the position of the could be reported as the position of the posit	mber. The taken he highest race away from the ed on the tope of from one maximum value inizations of the from 0 decorates are to Pearlaximum Hole EUT in peak ting could be ted. Otherwise e re-tested or	ole was rotadiation. The interference of a variable of the field one antenna was arrangents from 1 regrees to 360 M Detect Fund Mode, mode was stopped and the emissing by one under the stopped one by one under the stopped one the emissing by one under the emissing by one under the emissing by one under the emissing the stopped and the emissing by one under the emissing the stopped and the	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find	
Test Instruments:	Refer to section	6.0 for details	3			
Test mode:	Refer to section					
Test results:	Pass					

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.11b		Te	st channel:		Lowest		
Peak value:	Peak value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	47.50	27.38	3.91	34.83	43.96	74.00	-30.04	Horizontal
2400.00	50.70	27.38	3.93	34.83	47.18	74.00	-26.82	Horizontal
2390.00	49.30	27.38	3.91	34.83	45.76	74.00	-28.24	Vertical
2400.00	51.40	27.38	3.93	34.83	47.88	74.00	-26.12	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	36.82	27.38	3.91	34.83	33.28	54.00	-20.72	Horizontal
2400.00	39.42	27.38	3.93	34.83	35.90	54.00	-18.10	Horizontal
2390.00	37.99	27.38	3.91	34.83	34.45	54.00	-19.55	Vertical
2400.00	41.23	27.38	3.93	34.83	37.71	54.00	-16.29	Vertical
Test mode:	Test mode: 802.11b		Te	st channel:		Highest		
Peak value:	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	48.83	27.32	3.99	34.86	45.28	74.00	-28.72	Horizontal
2500.00	46.51	27.35	4.00	34.87	42.99	74.00	-31.01	Horizontal
2483.50	49.53	27.32	3.99	34.86	45.98	74.00	-28.02	Vertical
2500.00	48.16	27.35	4.00	34.87	44.64	74.00	-29.36	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)		Polarization
2483.50	35.05	27.32	3.99	34.86	31.50	54.00	-22.50	Horizontal
2500.00	31.75	27.35	4.00	34.87	28.23	54.00	-25.77	Horizontal

2500.00 Remark:

2483.50

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

3.99

4.00

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

34.86

34.87

33.42

29.48

Global United Technology Services Co., Ltd.

36.97

33.00

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

27.32

27.35

-20.58

-24.52

54.00

54.00

Vertical

Vertical

Test mode:		802.1	1g	Te	st channel:		Lowest	
Peak value:		·						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	52.28	27.38	3.91	34.83	48.74	74.00	-25.26	Horizontal
2400.00	54.48	27.38	3.93	34.83	50.96	74.00	-23.04	Horizontal
2390.00	54.20	27.38	3.91	34.83	50.66	74.00	-23.34	Vertical
2400.00	55.93	27.38	3.93	34.83	52.41	74.00	-21.59	Vertical
Average va	lue:	•			•	•	•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	40.51	27.38	3.91	34.83	36.97	54.00	-17.03	Horizontal
2400.00	42.35	27.38	3.93	34.83	38.83	54.00	-15.17	Horizontal
2390.00	41.40	27.38	3.91	34.83	37.86	54.00	-16.14	Vertical
2400.00	42.88	27.38	3.93	34.83	39.36	54.00	-14.64	Vertical
Test mode:		802.1	1g	Те	st channel:		Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.13	27.32	3.99	34.86	48.58	74.00	-25.42	Horizontal
2500.00	48.91	27.35	4.00	34.87	45.39	74.00	-28.61	Horizontal

Average value:

2483.50

2500.00

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.18	27.32	3.99	34.86	37.63	54.00	-16.37	Horizontal
2500.00	39.30	27.35	4.00	34.87	35.78	54.00	-18.22	Horizontal
2483.50	43.07	27.32	3.99	34.86	39.52	54.00	-14.48	Vertical
2500.00	40.91	27.35	4.00	34.87	37.39	54.00	-16.61	Vertical

34.86

34.87

50.29

48.21

74.00

74.00

-23.71

-25.79

Vertical

Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

3.99

4.00

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd.

53.84

51.73

27.32

27.35

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Test mode:

Report No.: GTSE13060083501

Lowest

Peak value:	1	· · · · · · · · · · · · · · · · · · ·		,		!		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	52.23	27.38	3.91	34.83	48.69	74.00	-25.31	Horizontal
2400.00	54.01	27.38	3.93	34.83	50.49	74.00	-23.51	Horizontal
2390.00	48.33	27.38	3.91	34.83	44.79	74.00	-29.21	Vertical
2400.00	50.27	27.38	3.93	34.83	46.75	74.00	-27.25	Vertical
Average va	lue:	•	•		•	•	•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	35.03	27.38	3.91	34.83	31.49	54.00	-22.51	Horizontal
2400.00	37.41	27.38	3.93	34.83	33.89	54.00	-20.11	Horizontal
2390.00	36.26	27.38	3.91	34.83	32.72	54.00	-21.28	Vertical
2400.00	38.32	27.38	3.93	34.83	34.80	54.00	-19.20	Vertical
Test mode:		802.1	1n(H20)	Te	st channel:	ŀ	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.63	27.32	3.99	34.86	47.08	74.00	-26.92	Horizontal
2500.00	48.98	27.35	4.00	34.87	45.46	74.00	-28.54	Horizontal
2483.50	52.73	27.32	3.99	34.86	49.18	74.00	-24.82	Vertical
2500.00	49.89	27.35	4.00	34.87	46.37	74.00	-27.63	Vertical
Average va	lue:							

Preamp

Factor

(dB)

34.86

34.87

34.86

34.87

Level

(dBuV/m)

37.16

35.18

38.07

36.23

Limit Line

(dBuV/m)

54.00

54.00

54.00

54.00

Test channel:

802.11n(HT20)

Remark:

Frequency

(MHz)

2483.50

2500.00

2483.50

2500.00

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Cable

Loss

(dB)

3.99

4.00

3.99

4.00

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd.

Read

Level

(dBuV)

40.71

38.70

41.62

39.75

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Antenna

Factor

(dB/m)

27.32

27.35

27.32

27.35

Over

Limit

(dB)

-16.84

-18.82

-15.93

-17.77

Polarization

Horizontal

Horizontal

Vertical

Vertical

Test mode:

Peak value:

Report No.: GTSE13060083501

Lowest

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	51.49	27.38	3.91	34.83	47.95	74.00	-26.05	Horizontal
2400.00	52.75	27.38	3.93	34.83	49.23	74.00	-24.77	Horizontal
2390.00	52.56	27.38	3.91	34.83	49.02	74.00	-24.98	Vertical
2400.00	56.54	27.38	3.93	34.83	53.02	74.00	-20.98	Vertical
Average va	lue:			•	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	36.65	27.38	3.91	34.83	33.11	54.00	-20.89	Horizontal
2400.00	39.69	27.38	3.93	34.83	36.17	54.00	-17.83	Horizontal
2390.00	36.83	27.38	3.91	34.83	33.29	54.00	-20.71	Vertical
2400.00	39.41	27.38	3.93	34.83	35.89	54.00	-18.11	Vertical
				I.	I.			
Test mode:		802.1	1n(HT40)	Tes	st channel:	F	lighest	
Peak value	:			-				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	54.18	27.32	3.99	34.86	50.63	74.00	-23.37	Horizontal
2500.00	50.03	27.35	4.00	34.87	46.51	74.00	-27.49	Horizontal
2483.50	54.04	27.32	3.99	34.86	50.49	74.00	-23.51	Vertical
2500.00	50.39	27.35	4.00	34.87	46.87	74.00	-27.13	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.59	27.32	3.99	34.86	38.04	54.00	-15.96	Horizontal
2500.00	39.37	27.35	4.00	34.87	35.85	54.00	-18.15	Horizontal
2483.50	41.45	27.32	3.99	34.86	37.90	54.00	-16.10	Vertical
2500.00	39.48	27.35	4.00	34.87	35.96	54.00	-18.04	Vertical
Remark:								

Test channel:

802.11n(HT40)

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen, China 518102

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Test mode:

802.11b

Lowest channel

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Test mode:

802.11g

Lowest channel

30MHz~10GHz

Agilent Peak Search Ref 10 dBm Next Peak Next Pk Right Next Pk Left Min Search gAv Start 10.00 GHz •Res BW 100 kHz Stop 25.00 GHz Sweep 1.434 s (601 pts) Pk-Pk Search X Axis 24.70 GHz Mkr → CF More 1 of 2 Copyright 2000-2006 Agilent Technologies

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

R L

Peak Search

Next Peak

Mkr → CF

More 1 of 2

Test mode:

802.11n(HT20)

Atten 20 dB

Agilent

Lowest channel

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Test mode:

802.11n(HT40)

Lowest channel

30MHz~10GHz

R L Peak Search L 24.55 GHz -65.27 dBm Next Peak Ref 10 dBm Atten 20 dB Next Pk Right Next Pk Left Min Search ^ Stop 25.00 GH; Sweep 1.434 s (601 pts) Start 10.00 GHz #VBW 300 kHz Pk-Pk Search Res BW 100 kH: Type Freq Amplitude -65.27 dBm X Axis 24.55 GHz Mkr → CF More 1 of 2 Copyright 2000-2006 Agilent Technologies

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

Highest channel

30MHz~10GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

FCC Part15 C Se	ection 15.209								
ANSI C63.4: 200	ANSI C63.4: 2003								
30MHz to 25GHz	-								
Measurement Dis	stance: 3m								
Frequency	Detector	RBW	VBW	Value					
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak					
Abovo 1GHz	Above 1GHz Peak 1MHz 3MHz								
Above 10112	Above 1GHz Peak 1MHz 10Hz								
Frequen	су	Limit (dBuV/	/m @3m)	Value					
30MHz-88	MHz	40.0	0	Quasi-peak					
88MHz-216	6MHz	43.5	0	Quasi-peak					
216MHz-96	0MHz	46.0	0	Quasi-peak					
960MHz-1	GHz	54.0	0	Quasi-peak					
Above 10	2H-7	54.0	0	Average					
Above 10	JI 12	74.0	0	Peak					
Tum 7.8m 7.8m	4m	Hoi	ntenna Tower						
	Measurement Dis Frequency 30MHz-1GHz Above 1GHz Frequency 30MHz-88 88MHz-216 216MHz-96 960MHz-1 Above 1GHz Below 1GHz Ground Plane Above 1GHz	Measurement Distance: 3m Frequency Detector 30MHz-1GHz Quasi-peak Peak Peak Peak Peak Peak Peak Peak	Measurement Distance: 3m Frequency Detector RBW 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Peak 1MHz Frequency Limit (dBuV/ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Below 1GHz Above 1GHz Above 1GHz	Measurement Distance: 3m Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (dBuV/m @ 3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 54.00 Below 1GHz Antenna Tower Antenna Tower Antenna Tower Antenna Tower Antenna Tower Antenna Tower					

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
34.04	39.98	16.02	0.60	32.06	24.54	40.00	-15.46	Vertical
138.87	47.43	17.47	1.50	31.94	34.46	43.50	-9.04	Vertical
194.45	48.31	15.30	1.81	32.12	33.30	43.50	-10.20	Vertical
222.17	51.49	15.03	1.97	32.15	36.34	46.00	-9.66	Vertical
277.09	44.62	15.35	2.25	32.17	30.05	46.00	-15.95	Vertical
68.15	45.13	14.37	0.93	31.89	28.54	40.00	-11.46	Horizontal
138.87	48.98	20.22	1.50	31.94	38.76	43.50	-4.74	Horizontal
148.44	51.13	17.68	1.56	31.98	38.39	43.50	-5.11	Horizontal
222.17	54.40	13.72	1.97	32.15	37.94	46.00	-8.06	Horizontal
277.09	54.78	14.85	2.25	32.17	39.71	46.00	-6.29	Horizontal

■ Above 1GHz

Test mode:		802.11b		Test c	hannel:	Lowes	t	
Peak value:				'				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	30.29	31.23	8.62	24.17	45.97	74.00	-28.03	Vertical
7236.00	30.44	35.51	11.68	26.52	51.11	74.00	-22.89	Vertical
9648.00	30.50	37.49	14.16	25.44	56.71	74.00	-17.29	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	29.53	31.13	8.62	24.17	45.11	74.00	-28.89	Horizontal
7236.00	29.13	35.61	11.68	26.52	49.90	74.00	-24.10	Horizontal
9648.00	29.50	37.39	14.16	25.44	55.61	74.00	-18.39	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average valu								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	28.89	31.23	8.62	24.17	44.57	54.00	-9.43	Vertical
7236.00	23.31	35.51	11.68	26.52	43.98	54.00	-10.02	Vertical
9648.00	19.90	37.49	14.16	25.44	46.11	54.00	-7.89	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	25.43	31.13	8.62	24.17	41.01	54.00	-12.99	Horizontal
7236.00	21.23	35.61	11.68	26.52	42.00	54.00	-12.00	Horizontal
9648.00	16.80	37.39	14.16	25.44	42.91	54.00	-11.09	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

802.11b

Test mode:

Report No.: GTSE13060083501

Middle

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	32.02	31.17	8.66	24.10	47.75	74.00	-26.25	Vertical
7311.00	31.35	35.59	11.71	26.71	51.94	74.00	-22.06	Vertical
9748.00	31.95	37.59	14.25	25.38	58.41	74.00	-15.59	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	30.69	31.27	8.66	24.10	46.52	74.00	-27.48	Horizontal
7311.00	28.80	35.69	11.71	26.71	49.49	74.00	-24.51	Horizontal
9748.00	28.96	37.69	14.25	25.38	55.52	74.00	-18.48	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
	Level	Factor	Loss	Factor			Limit	polarization Vertical
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
(MHz) 4874.00	Level (dBuV) 28.13	Factor (dB/m) 31.17	Loss (dB) 8.66	Factor (dB) 24.10	(dBuV/m) 43.86	(dBuV/m) 54.00	Limit (dB) -10.14	Vertical
(MHz) 4874.00 7311.00	Level (dBuV) 28.13 22.52	Factor (dB/m) 31.17 35.59	Loss (dB) 8.66 11.71	Factor (dB) 24.10 26.71	(dBuV/m) 43.86 43.11	(dBuV/m) 54.00 54.00	Limit (dB) -10.14 -10.89	Vertical Vertical
(MHz) 4874.00 7311.00 9748.00	Level (dBuV) 28.13 22.52 19.67	Factor (dB/m) 31.17 35.59	Loss (dB) 8.66 11.71	Factor (dB) 24.10 26.71	(dBuV/m) 43.86 43.11	(dBuV/m) 54.00 54.00 54.00	Limit (dB) -10.14 -10.89	Vertical Vertical Vertical
(MHz) 4874.00 7311.00 9748.00 12185.00	Level (dBuV) 28.13 22.52 19.67	Factor (dB/m) 31.17 35.59	Loss (dB) 8.66 11.71	Factor (dB) 24.10 26.71	(dBuV/m) 43.86 43.11	(dBuV/m) 54.00 54.00 54.00 54.00	Limit (dB) -10.14 -10.89	Vertical Vertical Vertical Vertical
(MHz) 4874.00 7311.00 9748.00 12185.00 14622.00	Level (dBuV) 28.13 22.52 19.67 *	Factor (dB/m) 31.17 35.59	Loss (dB) 8.66 11.71	Factor (dB) 24.10 26.71	(dBuV/m) 43.86 43.11	(dBuV/m) 54.00 54.00 54.00 54.00 54.00	Limit (dB) -10.14 -10.89	Vertical Vertical Vertical Vertical Vertical
(MHz) 4874.00 7311.00 9748.00 12185.00 14622.00 17059.00	Level (dBuV) 28.13 22.52 19.67 *	Factor (dB/m) 31.17 35.59 37.59	Loss (dB) 8.66 11.71 14.25	Factor (dB) 24.10 26.71 25.38	(dBuV/m) 43.86 43.11 46.13	(dBuV/m) 54.00 54.00 54.00 54.00 54.00 54.00 54.00	Limit (dB) -10.14 -10.89 -7.87	Vertical Vertical Vertical Vertical Vertical Vertical
(MHz) 4874.00 7311.00 9748.00 12185.00 14622.00 17059.00 4874.00	Level (dBuV) 28.13 22.52 19.67 * * 26.79	Factor (dB/m) 31.17 35.59 37.59	Loss (dB) 8.66 11.71 14.25	Factor (dB) 24.10 26.71 25.38	(dBuV/m) 43.86 43.11 46.13	(dBuV/m) 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00	Limit (dB) -10.14 -10.89 -7.87	Vertical Vertical Vertical Vertical Vertical Vertical Horizontal
(MHz) 4874.00 7311.00 9748.00 12185.00 14622.00 17059.00 4874.00 7311.00	Level (dBuV) 28.13 22.52 19.67 * * 26.79 21.5	Factor (dB/m) 31.17 35.59 37.59 31.27 35.69	Loss (dB) 8.66 11.71 14.25 8.66 11.71	Factor (dB) 24.10 26.71 25.38 24.10 26.71	(dBuV/m) 43.86 43.11 46.13 42.62 42.19	(dBuV/m) 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00	Limit (dB) -10.14 -10.89 -7.87 -11.38 -11.81	Vertical Vertical Vertical Vertical Vertical Vertical Horizontal Horizontal
(MHz) 4874.00 7311.00 9748.00 12185.00 14622.00 17059.00 4874.00 7311.00 9748.00	Level (dBuV) 28.13 22.52 19.67 * * 26.79 21.5 15.26	Factor (dB/m) 31.17 35.59 37.59 31.27 35.69	Loss (dB) 8.66 11.71 14.25 8.66 11.71	Factor (dB) 24.10 26.71 25.38 24.10 26.71	(dBuV/m) 43.86 43.11 46.13 42.62 42.19	(dBuV/m) 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00	Limit (dB) -10.14 -10.89 -7.87 -11.38 -11.81	Vertical Vertical Vertical Vertical Vertical Vertical Horizontal Horizontal Horizontal

Test channel:

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Shenzhen, China 518102

Test mode:		802.11b		Test	channel:	High	est	
Peak value:		1	ı		1		T	1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	31.73	31.31	8.70	24.05	47.69	74.00	-26.31	Vertical
7386.00	31.63	35.91	11.76	26.90	52.40	74.00	-21.60	Vertical
9848.00	31.20	38.04	14.31	25.30	58.25	74.00	-15.75	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	29.60	31.21	8.70	24.05	45.46	74.00	-28.54	Horizontal
7386.00	28.85	35.91	11.76	26.90	49.62	74.00	-24.38	Horizontal
9848.00	28.54	37.94	14.31	25.30	55.49	74.00	-18.51	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	27.81	31.31	8.70	24.05	43.77	54.00	-10.23	Vertical
7386.00	24.89	35.91	11.76	26.90	45.66	54.00	-8.34	Vertical
9848.00	19.08	38.04	14.31	25.30	46.13	54.00	-7.87	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	26.10	31.21	8.70	24.05	41.96	54.00	-12.04	Horizontal
7386.00	21.85	35.91	11.76	26.90	42.62	54.00	-11.38	Horizontal
9848.00	14.84	37.94	14.31	25.30	41.79	54.00	-12.21	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Shenzhen, China 518102

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.64	30.98	8.62	24.17	45.07	74.00	-28.93	Vertical
7236.00	30.54	35.36	11.68	26.52	51.06	74.00	-22.94	Vertical
9648.00	31.16	37.24	14.16	25.44	57.12	74.00	-16.88	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	26.55	31.86	8.61	24.17	42.85	74.00	-31.15	Horizontal
7236.00	27.70	36.36	11.68	26.52	49.22	74.00	-24.78	Horizontal
9648.00	28.18	38.34	14.16	25.44	55.24	74.00	-18.76	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	20.94	30.98	8.62	24.17	36.37	54.00	-17.63	Vertical
7236.00	22.34	35.36	11.68	26.52	42.86	54.00	-11.14	Vertical
9648.00	17.86	37.24	14.16	25.44	43.82	54.00	-10.18	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	17.75	31.86	8.61	24.17	34.05	54.00	-19.95	Horizontal
7236.00	18.41	36.36	11.68	26.52	39.93	54.00	-14.07	Horizontal
9648.00	19.85	38.34	14.16	25.44	46.91	54.00	-7.09	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark

Shenzhen, China 518102

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.90	31.12	8.66	24.10	45.58	74.00	-28.42	Vertical
7311.00	30.96	35.54	11.71	26.71	51.50	74.00	-22.50	Vertical
9748.00	30.37	37.34	14.25	25.38	56.58	74.00	-17.42	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	28.02	32.12	8.66	24.12	44.68	74.00	-29.32	Horizontal
7311.00	27.72	36.44	11.71	26.71	49.16	74.00	-24.84	Horizontal
9748.00	28.59	38.44	14.25	25.38	55.90	74.00	-18.10	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average valu	ne:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	22.60	31.12	8.66	24.10	38.28	54.00	-15.72	Vertical
7311.00	22.46	35.54	11.71	26.71	43.00	54.00	-11.00	Vertical
9748.00	16.97	37.34	14.25	25.38	43.18	54.00	-10.82	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	18.47	32.12	8.66	24.12	35.13	54.00	-18.87	Horizontal
7311.00	18.47	36.44	11.71	26.71	39.91	54.00	-14.09	Horizontal
9748.00	19.19	38.44	14.25	25.38	46.50	54.00	-7.50	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark

Shenzhen, China 518102

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	High	est	
Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	30.59	30.96	8.70	24.05	46.20	74.00	-27.80	Vertical
7386.00	30.87	35.76	11.76	26.90	51.49	74.00	-22.51	Vertical
9848.00	30.07	37.89	14.31	25.30	56.97	74.00	-17.03	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	27.35	31.96	8.70	24.05	43.96	74.00	-30.04	Horizontal
7386.00	27.93	36.76	11.76	26.90	49.55	74.00	-24.45	Horizontal
9848.00	25.17	38.59	14.31	25.30	52.77	74.00	-21.23	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average valu	ue:						•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	22.99	30.96	8.70	24.05	38.60	54.00	-15.40	Vertical
7386.00	22.17	35.76	11.76	26.90	42.79	54.00	-11.21	Vertical
9848.00	15.57	37.89	14.31	25.30	42.47	54.00	-11.53	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	18.03	31.96	8.70	24.05	34.64	54.00	-19.36	Horizontal
7386.00	18.74	36.76	11.76	26.90	40.36	54.00	-13.64	Horizontal
9848.00	16.43	38.59	14.31	25.30	44.03	54.00	-9.97	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark

Shenzhen, China 518102

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	T20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	30.91	31.94	8.62	24.17	47.30	74.00	-26.70	Vertical
7236.00	32.13	36.34	11.68	26.52	53.63	74.00	-20.37	Vertical
9648.00	30.91	38.22	14.16	25.44	57.85	74.00	-16.15	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	31.70	30.72	8.61	24.17	46.86	74.00	-27.14	Horizontal
7236.00	31.70	34.81	11.68	26.52	51.67	74.00	-22.33	Horizontal
9648.00	34.10	37.00	14.16	25.44	59.82	74.00	-14.18	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val		T	T	1			T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	26.71	31.94	8.62	24.17	43.10	54.00	-10.90	Vertical
7236.00	25.43	36.34	11.68	26.52	46.93	54.00	-7.07	Vertical
9648.00	19.71	38.22	14.16	25.44	46.65	54.00	-7.35	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	27.10	30.72	8.61	24.17	42.26	54.00	-11.74	Horizontal
7236.00	24.90	34.81	11.68	26.52	44.87	54.00	-9.13	Horizontal
9648.00	19.90	37.00	14.16	25.44	45.62	54.00	-8.38	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark

Shenzhen, China 518102

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	33.16	29.88	8.66	24.10	47.60	74.00	-26.40	Vertical
7311.00	31.27	36.50	11.71	26.71	52.77	74.00	-21.23	Vertical
9748.00	30.66	38.43	14.25	25.38	57.96	74.00	-16.04	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	32.36	30.62	8.61	24.17	47.42	74.00	-26.58	Horizontal
7311.00	30.69	35.10	11.71	26.71	50.79	74.00	-23.21	Horizontal
9748.00	31.37	37.00	14.25	25.38	57.24	74.00	-16.76	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:	•	•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.06	29.88	8.66	24.10	43.50	54.00	-10.50	Vertical
7311.00	22.87	36.50	11.71	26.71	44.37	54.00	-9.63	Vertical
9748.00	18.56	38.43	14.25	25.38	45.86	54.00	-8.14	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	27.76	30.62	8.61	24.17	42.82	54.00	-11.18	Horizontal
7311.00	24.49	35.10	11.71	26.71	44.59	54.00	-9.41	Horizontal
9748.00	17.87	37.00	14.25	25.38	43.74	54.00	-10.26	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark

Shenzhen, China 518102

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	T20)	Test	channel:	High	est	
Peak value:		•	,	,				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	32.13	32.03	8.70	24.05	48.81	74.00	-25.19	Vertical
7386.00	32.69	36.64	11.76	26.90	54.19	74.00	-19.81	Vertical
9848.00	31.30	38.75	14.31	25.30	59.06	74.00	-14.94	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	31.33	30.58	8.66	24.12	46.45	74.00	-27.55	Horizontal
7386.00	30.93	35.32	11.76	26.90	51.11	74.00	-22.89	Horizonta
9848.00	30.43	37.45	14.31	25.30	56.89	74.00	-17.11	Horizontal
12310.00	*					74.00		Horizonta
14772.00	*					74.00		Horizonta
17234.00	*					74.00		Horizonta
Average val	ue:		•				•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
4924.00	27.63	32.03	8.70	24.05	44.31	54.00	-9.69	Vertical
7386.00	23.79	36.64	11.76	26.90	45.29	54.00	-8.71	Vertical
9848.00	17.90	38.75	14.31	25.30	45.66	54.00	-8.34	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	26.73	30.58	8.66	24.12	41.85	54.00	-12.15	Horizonta
7386.00	24.53	35.32	11.76	26.90	44.71	54.00	-9.29	Horizonta
9848.00	18.33	37.45	14.31	25.30	44.79	54.00	-9.21	Horizonta
12310.00	*					54.00		Horizonta
14772.00	*					54.00		Horizonta
17234.00	*					54.00		Horizonta

Remark

Shenzhen, China 518102

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40)		Test channel:		Lowest		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	28.10	32.12	8.63	24.15	44.70	74.00	-29.30	Vertical
7266.00	29.12	36.58	11.69	26.58	50.81	74.00	-23.19	Vertical
9688.00	29.32	38.43	14.21	25.41	56.55	74.00	-17.45	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4844.00	28.34	31.52	8.63	24.15	44.34	74.00	-29.66	Horizontal
7266.00	29.13	36.08	11.69	26.58	50.32	74.00	-23.68	Horizontal
9688.00	29.56	37.83	14.21	25.41	56.19	74.00	-17.81	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:		•		-			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	23.90	32.12	8.63	24.15	40.50	54.00	-13.50	Vertical
7266.00	19.62	36.58	11.69	26.58	41.31	54.00	-12.69	Vertical
9688.00	16.12	38.43	14.21	25.41	43.35	54.00	-10.65	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4844.00	23.94	31.52	8.63	24.15	39.94	54.00	-14.06	Horizontal
7266.00	20.13	36.08	11.69	26.58	41.32	54.00	-12.68	Horizontal
9688.00	15.56	37.83	14.21	25.41	42.19	54.00	-11.81	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*		-			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Shenzhen, China 518102

Test mode:		802.11n(H	IT40)	Test	Test channel:		Middle	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.72	32.05	8.66	24.10	46.33	74.00	-27.67	Vertical
7311.00	28.03	36.57	11.71	26.71	49.60	74.00	-24.40	Vertical
9748.00	27.89	38.37	14.25	25.38	55.13	74.00	-18.87	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	29.98	31.65	8.66	24.10	46.19	74.00	-27.81	Horizontal
7311.00	28.95	36.07	11.71	26.71	50.02	74.00	-23.98	Horizontal
9748.00	28.58	37.87	14.25	25.38	55.32	74.00	-18.68	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:		•		•		•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	25.52	32.05	8.66	24.10	42.13	54.00	-11.87	Vertical
7311.00	21.13	36.57	11.71	26.71	42.70	54.00	-11.30	Vertical
9748.00	16.39	38.37	14.25	25.38	43.63	54.00	-10.37	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	24.48	31.65	8.66	24.10	40.69	54.00	-13.31	Horizontal
7311.00	20.85	36.07	11.71	26.71	41.92	54.00	-12.08	Horizontal
9748.00	14.48	37.87	14.25	25.38	41.22	54.00	-12.78	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40) Test channel:		channel:	Highest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	27.62	32.08	8.68	24.08	44.30	74.00	-29.70	Vertical
7356.00	27.94	36.55	11.74	26.84	49.39	74.00	-24.61	Vertical
9808.00	28.24	38.72	14.29	25.33	55.92	74.00	-18.08	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4904.00	28.57	31.58	8.68	24.08	44.75	74.00	-29.25	Horizontal
7356.00	28.44	36.05	11.74	26.84	49.39	74.00	-24.61	Horizontal
9808.00	28.40	38.22	14.29	25.33	55.58	74.00	-18.42	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	24.02	32.08	8.68	24.08	40.70	54.00	-13.30	Vertical
7356.00	21.54	36.55	11.74	26.84	42.99	54.00	-11.01	Vertical
9808.00	14.94	38.72	14.29	25.33	42.62	54.00	-11.38	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4904.00	24.37	31.58	8.68	24.08	40.55	54.00	-13.45	Horizontal
7356.00	19.34	36.05	11.74	26.84	40.29	54.00	-13.71	Horizontal
9808.00	16.50	38.22	14.29	25.33	43.68	54.00	-10.32	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Shenzhen, China 518102

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.