Bildbasierte Navigation mit Neuronalen Netzen: Kolloquium

Jan Robert Rösler

April 28, 2019

- Technischer Hintergrund
- 2 Idee
- 8 Entwurf
- 4 Ergebnis
- Schluss

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

Deep Learning

Deep Learning

Künstliche neuronale Netze sind universelle Funktionsapproximatoren.

Deep Learning

Berechnung mit Backpropagation.

Forwardpass

Backwardpass

Deep Learning mit Bildern

Wie können Bilder in neuronalen Netzen verarbeitet werden?

Möglich:

Matrix zu einem einspaltigen Inputvektor umwandeln.

Problem:

- Räumliche Information geht verloren
- Hoher Rechenaufwand

Convolutional-Layer

- Input Bilddaten als Matrix
- Neuronenaktivität wird über diskrete Faltung mit Faltungsmatrix (convolution) berechnet
- Extrahierung von Bildeigenschaften in feature-maps

Pooling-Layer

Subsampling der prägnanten Bildteile.

max pool with 2x2 filters and stride 2

6	8
3	4

Aktivierungsfunktion - ReLU

Das Rectified-Linear-Unit wandelt den mittels Faltung ermittelten Neuroneninput in den Output um. F(x) = max(0,x)

Vanishing Gradient Problem

Wird der durch Backpropagation berechnete Gradient an einer Stelle eines (tiefen) neuronalen Netzes sehr klein oder sogar Null, erfahren die Gewicht der früheren Layer sehr kleine oder gar keine Aktualisierungen mehr. Der "verschwindende" Gradient hält das Netz vom Lernen ab.

Residual Networks

Annahme:

Die Funktion H(x) ist die optimale Lösung für ein Problem. Sie soll approximiert werden.

Residual Networks

Identity Shortcut

Umwandlung:

Statt H(x) wird H(x) = F(x) + x gelernt. F(x) ist das Residual, die Differenz H(x) - x.

Residual Networks

Identity Shortcut

Vorteile:

- Freier Gradientenfluss
- Durch lernen von F(x)=0
 wird H(x) = x
 →Identitätsfunktion leicht
 zu erlernen

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

DroNet

Projekt der ETH Zürich:

Lenkwinkel- und Kollisionsbestimmung mit einem neuronalen Netz. Trainiert auf einem öffentlichen Datensatz mit Fahrbahnbildern, angewendet auf einer Drohne.

Input:

200x200 Pixel Graustufenbild

Output:

Lenkwert von -1 (rechts) bis 1 (links) und Kollisionswahrscheinlichkeit in Prozent

DroNet

Architektur

Idee

Anstoß: DroNet Projekt ETH Zürich

Rahmen: Carolo-Cup

Basis: HAW Teststrecke, Carolo-Cup Fahrzeugplattform

Ziel: Entwicklung einer bildbasierten Fahrzeugsteuerung mit einem

neuronalen Netz

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

Daten

Bilder sammeln

- Algorithmus TeamWorstcase
- ca 20.000 Aufnahmen
- 6000 davon geeignet für Training

Daten

Bildverarbeitung

Architektur

Anpassungen

Training

Steuerung

- Technischer Hintergrund
- 2 Idee
- 6 Entwurf
- 4 Ergebnis
- Schluss

Auswertung

Training

•

Auswertung

Testfahrt

→ Aufnahmen

Testfahrt

Performance messen - Metrik

$$Autonomiewert = \left(1 - \frac{\text{Anzahl Fehler} \cdot 2s}{\text{Fahrzeit in Sekunden}}\right) \cdot 100 \tag{1}$$

Testfahrt

Performancemessung

Algorithmus	Fehler Runde 1	Fehler Runde 2
DroNet	16	12
Carolo-Projekt	7	11
BA-RR	3	5

Gesamtfahrzeit = 120 Sekunden

Runde 1 im Uhrzeigersinn (60 Sekunden)

Runde 2 gegen den Uhrzeigersinn (60 Sekunden)

Testfahrt

Performancevergleich

Algorithmus	Autonomiewert
DroNet	53 %
Carolo-Projekt	70 %
BA-RR	87 %

Auswertung

Visualisierung

Sichtbarmachen von wichtigen Bildbereichen:

Betrachtung der Veränderung des Outputs bei einer Veränderung des Inputs.

Hervorheben der Bildpunkte, die für

- eine Erhöhung (Linkskurve)
- eine Verminderung (Rechtskurve)

des Lenkwerts besonders von Bedeutung sind. Hellere Bildbereiche kennzeichnen diese Bedeutung.

Attention-Heatmap

Linkskurve

Attention-Heatmap

Rechtskurve

Attention-Heatmap

Kreuzung

Links

Rechts

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

Bewertung

Zielsetzung:

- Steuerung mit neuronalem Netz entwickelt
- Erprobung der Steuerung in Testfahrt
 - →Ziel erreicht

Bewertung

Zielsetzung:

- Steuerung mit neuronalem Netz entwickelt
- Erprobung der Steuerung in Testfahrt
 - →Ziel erreicht

Aber:

- Begrenzte Testumgebung
 - →Generalisierbarkeit unklar

Ausblick

Ansatzpunkte weiterer Fragestellungen:

Quellen