Случайная величина и её основные свойства

Обобщение классической вероятности и схемы испытаний Бернулли

На данный момент уже были рассмотрены две вероятностные схемы: классическая вероятность и схема испытаний Бернулли. Однако современная теория вероятностей намного богаче. Изученные схемы являются весьма ограниченными и необходимо сначала построить их естественное обобщение на случай произвольного конечного вероятностного пространства.

Для начала следует напомнить основные положения классической вероятностной схемы и схемы испытаний Бернулли. В обоих схемах присутствует конечное множество всех элементарных исходов Ω , а событием A называется любое его подмножество $A \subseteq \Omega$.

В классической вероятностной схеме каждому элементарному исходу из $\Omega = \{\omega_1, \dots, \omega_n\}$ сопоставляется одинаковая вероятность:

$$\mathsf{P}(\omega_i) := rac{1}{n} \,.$$

В таком случае вероятность события выражается как отношение числа благоприятных исходов |A| к их общему количеству:

$$\mathsf{P}(A) := rac{|A|}{n}$$
 .

В случае схемы испытаний Бернулли множество элементарных исходов состояло из 2^n элементарных событий

$$\Omega = \{\omega_1, \ldots, \omega_{2^n}\},$$

где n — число испытаний. Это связано с тем, что элементарными событиями в данном случае являются последовательности из нулей и единиц реализаций этих испытаний. Тогда для вероятности элементарного исхода верно соотношение

$$\mathsf{P}(\omega = (x_1, \dots, x_n)) = p^{\sum\limits_{i=1}^n x_i} \cdot q^{n - \sum\limits_{i=1}^n x_i},$$

где p — вероятность успеха в одном испытании, а q=1-p — вероятность неудачи.

Выражение для вероятности события имеет более сложный вид, поскольку вероятности элементарных исходов могут отличаться:

$$\mathsf{P}(A) := \sum_{\omega \in A} \mathsf{P}(\omega).$$

Естественное обобщение как классической вероятности, так и схемы Бернулли можно построить следующим образом. Пусть задано произвольное конечное множество объектов:

$$\Omega = \{\omega_1, \ldots, \omega_n\},\$$

где каждый объект ω_i является элементарным исходов, а Ω — пространство элементарных исходов. Вероятности элементарных исходов есть некоторые числа p_i :

$$\mathsf{P}(\omega_1) = p_1, \quad \mathsf{P}(\omega_2) = p_2, \ldots, \quad \mathsf{P}(\omega_n) = p_n,$$

которые должны удовлетворять следующим естественным требованиям:

$$p_i \in (0,1], \qquad p_1 + \ldots + p_n = 1.$$

Эти требования выражают условия того, что вероятность определена корректно.

Событием A будет называться любое подмножество пространства элементарных исходов $A\subseteq \Omega$. Если элементарный исход принадлежит множеству A, то говорят, что он благоприятствует событию A. Вероятность $\mathsf{P}(A)$ события A по определению полагается равной сумме вероятностей всех элементарных исходов, которые благоприятствуют данному событию:

$$\mathsf{P}(A) := \sum_{\omega \in A} p_i.$$

В таком случае несложно получить выражения для отрицания $ar{A}$ события A и пересечения двух событий A и B:

$$\mathsf{P}(ar{A}) = 1 - \mathsf{P}(A), \qquad \mathsf{P}(A \cup B) = \mathsf{P}(A) + \mathsf{P}(B) - \mathsf{P}(A \cap B).$$

Остаются справедливыми и многие оценки, верные в случаях классической схемы или схемы Бернулли, например:

$$\mathsf{P}(A_1 \cup \ldots \cup A_m) \leq \sum_{i=1}^m \mathsf{P}(A_i).$$

Пример. Кость со смещенным центром тяжести будет описываться как раз только что введенной обобщенной конечной вероятностной схемой.

Понятие случайной величины

Понятие случайной величины позволяет более содержательно изучать свойства различных вероятностных пространств. Пусть дано некоторое вероятностное пространство (Ω, P) , то есть задано множество элементарных исходов Ω , на котором корректно определена заданы вероятности всех элементарных исходов.

Вещественнозначная функция, определенная на множестве Ω , называется случайной величиной:

$$\mathcal{E}:\Omega\longrightarrow\mathbb{R}.$$

Важно отметить, что на каждом конкретном элементарном исходе ω случайная величина принимает вполне определенное значение $\xi(\omega)$.

Пример. Пусть $\Omega = \{1,2,3,4,5,6\}$ — пространство исходов при броске игральной кости. Пусть $\xi(\omega) = \omega^2$. До бросания кости неизвестно, какое число выпадет, а значит и каково будет значение $\xi(\omega)$. Однако после броска функция $\xi(\omega)$ примет определенное значение, поскольку реализуется какой-то один элементарный исход.

Понятие случайного графа

Случайный граф является примером вероятностного пространства, на котором позже мы будем демонстрировать описываемые в дальнейшем методы. Случайный граф, вообще говоря, является частным случаем схемы испытаний Бернулли.

Множество вершин случайного графа V_n отождествим с множеством натуральных чисел от 1 до n:

$$V_n = \{1, 2, \dots, n\}.$$

В случайном графе, как видно из определения множества V_n , множество и количество вершин фиксировано, а значит случайными буду ребра графа.

В полном неориентированном графе на n вершинах без кратных ребер полное количество ребер e_i равно C_n^2 :

$$e_1,e_2,\ldots,e_{C_-^2}$$
 .

Теперь пусть зафиксировано число $p\in[0,1]$, которое принимается равным вероятности каждому отдельному ребру независимо от остальных присутствовать всери разре. Фактически имеет место схема Бернулли, где проводятся C_n^2 испытаний: в случае успеха в каком-то из испытаний ребро, которое соответствует этому испытанию, будет присутствовать в случайном графе, а в случае неудачи — будет отсутствовать. Таким образом, в серии из C_n^2 испытаний реализуется случайный граф $G=(V_n,E)$, где V_n — множество вершин, а E — множество ребер.

Каждый граф можно отождествить с элементарным исходом. Вероятность того, что реализуется в результате данной схемы какой-то определенный граф равна

$$\mathsf{P}(G=(V_n,E))=p^{|E|}\cdot q^{C_n^2-|E|}$$

где $\left|E\right|$ — число ребер.

Случайные величины на случайном графе

На графах очень удобно задавать случайные величины, поэтому имеет смысл рассмотреть несколько примеров.

Пример. Пусть $\xi(G) :=$ число треугольников. Например:

$$\xi\left(\square\right) = 0, \qquad \xi\left(\square\right) = 2.$$

Еще раз стоит отметить, что в зависимости от того, какой элементарный исход реализуется, ξ может принимать то или иное конкретное значение. Случайная величина называется случайной только из-за того, что её аргумент — объект из вероятностного пространства. После того, как элементарный исход реализовался, случайная величина принимает конкретное значение.

Распределение случайной величины

Пусть задана случайная величина $\xi:\Omega\longrightarrow \{y_1,\ldots,y_k\}$ на пространстве элементарных событий $\Omega=\{\omega_1,\ldots,\omega_n\}$. Это значит, что заданы значения случайной величины для всех элементарных исходов.

В теории вероятностей часто бывает нужно знать не такую функциональную зависимость, а распределение случайной величины. Распределение случайной величины — это центральное понятие в теории вероятностей. Говорят, что распределение известно, если известны все вероятности того, что ξ принимает какое-то возможное значение y_i :

$$P(\xi = y_i) = P(\{\omega_i : \xi(\omega_i) = y_i\}).$$

Распределение может быть как задано по условию задачи, так и являться искомым в задаче.

Пример. Пусть ξ на пространстве графов — случайная величина, равная числу треугольников в графе. Если граф был построен на n вершинах, то максимальное число треугольников C_n^3 будет наблюдаться в случае полного графа. Тогда говорят, что известно распределение случайной величины ξ , если известны следующие вероятности:

$$\mathsf{P}(\xi=k), \quad k=0,1,\ldots,C_n^3.$$

Вычислить точно распределение функции ξ с помощью численного расчета очень сложно, поэтому очень важны асимптотические методы оценки функций распределений случайных величин.

Математическое ожидание случайной величины

Математическое ожидание случайной величины ξ принято обозначать двумя различными способами.

Обозначение $E\xi$ восходит к английскому выражению "expected value", а $M\xi$ — "mean value".

Q

Математическое ожидание случайной величины ξ , определенной на конечном вероятностном пространстве, определяется согласно следующему выражению **Course**

 $M\xi = \sum_{\omega \in \Omega} \xi(\omega) \cdot \mathsf{P}(\omega).$

В случае классической вероятностной схемы математическое ожидание соответствует среднему арифметическому последовательности из значений случайной величины. Вообще говоря, в любом случае математическое ожидание — это некое среднее значение (своего рода центр масс как в физике), так как $\sum_{\omega \in \Omega} P(\omega) = 1.$ Важно, что математическое ожидание может не принадлежать множеству возможных значений случайной величины.

Поскольку несколько элементарных исходов могут давать одно и то же значение случайной величины, это определение можно переписать, сгруппировав такие элементарные исходы:

$$egin{aligned} M\xi &= \sum_{\omega \in \Omega} \xi(\omega) \cdot P(\omega) = y_1 \left(\sum_{\omega: \xi(\omega) = y_1} P(\omega)
ight) + y_2 \left(\sum_{\omega: \xi(\omega) = y_2} P(\omega)
ight) + \ldots + y_k \left(\sum_{\omega: \xi(\omega) = y_k} P(\omega)
ight) = \ &= y_1 P(\xi = y_1) + y_2 P(\xi = y_2) + \ldots + y_k P(\xi = y_k) = \sum_{j=1}^k y_j P(\xi = y_j). \end{aligned}$$

Последняя формула является естественным проявлением того факта, что математическое ожидание можно вычислить исходя из знания распределения случайной величины.

Замечание. Однако часто бывает наоборот: математическое ожидание считается легче, чем распределение, и дает возможность получить некоторые важные свойства этого распределения, не вычисляя его.

Математическое ожидание обладает свойством линейности: пусть ξ_1, ξ_2 — две произвольные случайные величины на конечном вероятностном пространстве, а c_1, c_2 — произвольные вещественные числа, тогда

$$M(c_1\xi_1+c_2\xi_2)=c_1M\xi_1+c_2M\xi_2.$$

Это свойство непосредственно следует из определения математического ожидания.

Пример 1. Найти математическое ожидание случайной величины ξ , равной числу треугольников в случайном графе:

$$M\xi = \sum_{k=0}^{C_n^3} k \cdot \mathsf{P}(\xi = k).$$

Чтобы решить данную задачу, необходимо обойти вычисление величины $\mathsf{P}(\xi=k)$ с помощью свойства линейности математического ожидания. Действительно:

$$\xi(G) = \xi_1(G) + \ldots + \xi_{c_n^3}(G),$$

где $\xi_i(G)$ — случайная величина, которая равна 1, если треугольник с номером i принадлежит графу G, и равна нулю в иных случаях. Тогда, так как $M\xi_i=\mathsf{P}(\xi_i=1)=p^3$, получаем искомое математическое ожидание:

$$M\xi = M\xi_1 + \ldots + M\xi_{c_n^3} = C_n^3 p^3.$$

Пример 2. В схеме испытаний Бернулли рассматривается случайная величина, которая равна количеству успехов во всех испытаниях:

$$\mu_n = \sum_{i=1}^n \xi_i,$$

где ξ_i — случайная величина, которая равна 1, если в i-ом испытании был успех, и равна нулю в случае неудачи. Тогда несложно можно получить выражение для математического ожидания:

Q

Линейность математического ожидания является исключительно полезным свойством, которое, при всей своей тривиальности, позволяет рассчитывать математическое ожидание даже тогда, когда мы не знаем распределение случайной величины.

Неравенство Маркова.

Теорема. Пусть случайная величина ξ принимает только неотрицательные значения. Пусть дано положительное число a>0. Тогда вероятность $\mathsf{P}(\xi\geq a)$ того, что случайная величина ξ не меньше a, удовлетворяет неравенству:

$$\mathsf{P}(\xi \geq a) \leq rac{M\xi}{a}$$
 .

Док-во. Согласно определению математического ожидания:

$$M\xi = \sum_{j=1}^k y_j \mathsf{P}(\xi = y_j) = \sum_{j: y_j \geq a} y_j \mathsf{P}(\xi = y_j) + \sum_{j: y_j < a} y_j \mathsf{P}(\xi = y_j).$$

Поскольку значения случайной величины неотрицательны: $y_j \ge 0$, второе слагаемое в последнем выражении можно оценить снизу нулем.

$$M\xi \geq \sum_{j: y_j \geq a} y_j \mathsf{P}(\xi = y_j) \geq a \sum_{j: y_j \geq a} \mathsf{P}(\xi = y_j) = a \mathsf{P}(\xi \geq a).$$

Откуда следует требуемое выражение:

$$\mathsf{P}(\xi \geq a) \leq rac{M\xi}{a}$$
.

Теорема. Пусть вероятность проведения ребра случайного графа p=p(n) такова, что $np(n) \to 0$ при $n \to \infty$. Тогда с асимптотической вероятностью 1 в случайном графе нет треугольников: $\mathsf{P}(\xi=0) \to 1$ при $n \to \infty$.

Док-во. Согласно неравенству Маркова:

$$\mathsf{P}(\xi = 0) = 1 - \mathsf{P}(\xi \ge 1) \ge 1 - M\xi = 1 - C_n^3 p^3.$$

Так как np(n) o 0, то $C_n^3p^3=rac{n(n-1)(n-2)}{6}\,p^3\simrac{n^3p^3}{6} o 0.$ Откуда следует требуемое утверждение: $\mathsf{P}(\xi=0) o 1.$

Дисперсия случайной величины

Дисперсия $D\xi$ случайной величины ξ определяется следующим образом:

$$D\xi := M(\xi - M\xi)^2.$$

Дисперсия позволяет оценить разброс случайной величины относительно её среднего значения, то есть найти среднеквадратичное отклонение ξ от своего среднего значения.

Замечание. Более простое выражение $M(\xi-M\xi)$ не подходит для оценки разброса распределения вокруг среднего значения, так как:

$$M(\xi - M\xi) = M(\xi) - M(M\xi) = M(\xi) - M(\xi) = 0.$$

Выражение для вычисления дисперсии можно преобразовать с помощью свойства линейности:

$$M(\xi - M\xi)^2 = M(\xi^2 - 2\xi \cdot M\xi + (M\xi)^2) = M\xi^2 - 2M\xi \cdot M\xi + (M\xi)^2 = M\xi^2 - (M\xi)^2.$$

То есть

Неравенство Чебышёва

Пусть η — любая случайная величина. Пусть b>0, тогда выполняется неравенство

$$\mathsf{P}(|\eta-M\eta|\geq b)\leq rac{D\eta}{b^2}\,.$$

Док-во. Согласно неравенству Маркова при $\xi = \left(\eta - M\eta
ight)^2 \geq 0$ и $a=b^2$:

$$\mathsf{P}(\xi \geq a) \leq rac{M \xi}{a} \quad \implies \quad \mathsf{P}\Big((\eta - M \eta)^2 \geq b^2\Big) \leq rac{M (\eta - M \eta)^2}{b^2} = rac{D \eta}{b^2} \,.$$

Здесь было использовано определение дисперсии. Таким образом:

$$\mathsf{P}(\xi \geq a) \leq rac{D\eta}{b^2}$$
 .

Неравенство доказано.

Асимптотическое число треугольников в случайном графе

Теорема. Пусть n растет и p=p(n), причем $np(n)\to +\infty$. Тогда $\mathsf{P}(\xi\ge 1)\to 1$, то есть асимптотически почти наверное в случайном графе есть треугольники.

Док-во. Для вероятности $\mathsf{P}(\xi \geq 1)$ можно произвести следующие оценки, используя неравенство Чебышёва:

$$\mathsf{P}(\xi \ge 1) = 1 - \mathsf{P}(\xi \le 0) = 1 - \mathsf{P}(-\xi \ge 0) = 1 - \mathsf{P}(M\xi - \xi \ge M\xi) \ge 1 - \mathsf{P}(|\xi - M\xi| \ge M\xi) \ge 1 - \frac{D\xi}{(M\xi)^2} \,.$$

Для дисперсии можно привести следующие выражения:

$$D\xi = M\xi^2 - (M\xi)^2, \qquad M\xi^2 = M(\xi_1 + \ldots + \xi_{C_n^3})^2 = M\Biggl(\xi_1^2 + \ldots + \xi_{C_n^3}^2 + \sum_{i
eq j} \xi_i \xi_j\Biggr),$$

где $\xi_i=\xi_i^2$: \[\xi_i = \left\{ \begin{aligned} 1, \quad &\text{если \$i\$-ая тройка вершин образует треугольник}\\ 0, \quad &\text{иначе} \end{aligned} \right... \] Так как $\xi_i\xi_j=1$ тогда и только тогда, когда обе тройки i и j образуют треугольник:

$$M\xi^2=C_n^3p^3+\sum_{i\neq j}M(\xi_i\xi_j)=C_n^3p^3+\sum_{i\neq j}P$$
(тройки ${
m i}$ и ${
m j}$ образуют треугольники).

Такая ситуация может возникнуть в одном из трех случаев:

Случай 1: тройки не имеют общих элементов

coursera

Случай 2: тройки имеют ровно один общий элемент

Случай 3: тройки имеют ровно два общих элемента

В первом и втором случаях нужные 6 ребер присутствуют в случайном графе с вероятностью p^6 , в третьем случае таких ребер 5 и вероятность будет p^5 . Тогда:

$$egin{split} M(\xi_i \xi_j) &= (C_n^3 C_{n-3}^3 + C_n^3 3 C_{n-3}^2) p^6 + C_n^3 3 (n-3) p^5. \ & rac{D \xi}{(M \xi)^2} = rac{1}{M \xi} + rac{(C_n^3 \cdot C_{n-3}^3 + C_n^3 \cdot 3 \cdot C_{n-3}^2) p^6}{(C_n^3 p^3)^2} + rac{3 C_n^3 (n-3) p^5}{(C_n^3 p^3)^2} - 1 \end{split}$$

Так как

$$M\xi=C_n^3p^3\simrac{n^3p^3}{6} o\infty$$
 при $np(n) o\infty,$

можно получить следующие асимптотические оценки

В итоге $rac{D\xi}{\left(M\xi
ight)^2} o 0$, что и требовалось доказать.

Пометить как выполненное

