

CS551: Introduction to Deep Learning

End Semester, Spring 2017 IIT Patna

Attempt all questions. Do not write anything on the question paper.

Time: 3 Hrs

Full marks: 50

1. What is early stopping? Show that it acts as regularizer.

(3+5)

2. Below is a diagram of a small convolutional neural network that converts a 13x13 image into 4 output values. The network has the following layers/operations from input to output: convolution with 3 filters, max pooling, ReLu, and finally a fully-connected layer. For this network we will not be using any bias/offset parameters (b). Please answer the following questions about this network.

- (a) How many weights in the convolutional layer do we need to learn?
- (b) How many ReLu operations are performed on the forward pass?
- (c) How many weights do we need to learn for the entire network?
- (d) State True or false: A fully-connected neural network with the same size layers as the above network $(13 \times 13 \rightarrow 3 \times 10 \times 10 \rightarrow 3 \times 5 \times 5 \rightarrow 4 \times 1)$ can represent any classifier that the above convolutional network can represent.
- (e) What is the disadvantage of a fully-connected neural network compared to a convolutional neural network with the same size layers? (2+2+2+1+1)
- 3. Explain backpropagation methodology in the context of recurrent neural network. What are the issues in computation of the gradients here? (6+2)
- 4. Given a set of m points $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ in \mathbb{R}^n and we want represent these points in k dimension where k < n. Propose a suitable methodology for it. (10)
- 5. Let's consider a simple 3 state Markovian Decision Process with two actions L and R. The transition probabilities are:

Action L	Outcomes		
	State 1	State 2	State 3
In state 1	0	1/4	3/4
In state 2	3/4	0	1/4
In state 3	1/4	3/4	0

Action R	Outcomes		
	State 1	State 2	State 3
In state 1	0	3/4	1/4
In state 2	1/4	0	3/4
In state 3	3/4	1/4	0

The reward in state 2 is 1 and 0 elsewhere. The discount factor is 0.5.

- (a) Show the utility (value) estimates for the first three iterations of the value iteration algorithm. To make things simpler, assume that you keep a copy of the utility estimates from the previous iteration and use those in the new iteration. You may start with U(1) = U(2) = U(3) = 0
- (b) Using the approximately optimal values of the utility U(1) = U(3) = 0.5 and U(2) = 1.25, compute the best action for state 1 from these values numerically. Explain how you did it. (7+3)
- 6. Write a short note on batch normalization.

(6)