1. $X = U \angle V^T$

TO PROVE :

Let us write v in the basis of the columns of v as $v = Z\alpha_i v_i$. ||v|| = 1 and $||v_i|| = 1 \forall i$, so, $\alpha_i \le 1$

We can write x as

 $\leq T_1^2$ (neighted average is always less than or equal to the $||xv|| \leq \sigma_1$ max value)

max ||xv|| < 0, //

2. TO PROVE:

For any x, the span of the first k right Singular vectors gives a solution to the best-fit subspace problem for dimension k.

We can prove this by Induction:

1. Base Condition:

For any x, the span of the first two right Singular rectors gives a solution to the best-fit Subspace problem for dimension 2.

2. Assume that the span of the first [k-1] right Singular vectors gives a solution to the best-fit subspace problem for dimension k-1.

i.e. span of first k-1 right singular vectors maximizes var (S; x)

dim (S) = k-1

3. To prove: span of first k right singular vectors maximizes var(s; x)

dim(s):k

$$\operatorname{var}(S, x) = \underset{i=1}{\overset{k}{\sim}} \|x \cdot V_{i}\|^{2}$$

Assume the best-fit subspace to be s?

$$Var(s^*; x) = \sum_{i=1}^{k} ||x \cdot w_i||^2$$
, we we are orthonormal bases for s^* .

We know that the first (k-1) right singular vectors had the maximum variance across any possible (k-1) orthonormal vectors.

So
$$\underset{i=1}{\overset{k-1}{2}} \|x \cdot v_i\|^2 \ge \underset{i=1}{\overset{k-1}{2}} \|x \cdot w_i\|^2 = 0$$

CLAIM: We can choose the orthonormal basis $\{\omega_1, \omega_2 \dots \omega_k\}$ for S^* such that ω_k is perpendicular to the subspace $\overline{S} = Span \{V_1, V_2 \dots V_{k-1}\}$

For the given subspace \overline{S} , we know that v_k is given by

So, as
$$\omega_{k}$$
 is also perpendicular to S

$$|| \times \cdot v_{k}|| \geq || \times \cdot \omega_{k}||$$

$$|| \times \cdot v_{k}||^{2} \geq || \times \cdot \omega_{k}||^{2} - 2$$

$$|| + 2|$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot \omega_{k}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot v_{i}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot v_{i}||^{2}$$

$$|| \times \cdot v_{i}||^{2} \geq || \times \cdot v_{i}||^{2}$$

$$|| \times \cdot v_{i}||^{2}$$

dim (s) = k //

- 3. 1. Find largest Right Singular Vector of Y= xTx using Power Iteration. Let it be v.
 - 2. Find 0, = 1/4.4,11
- or $\sigma_{i} = \{i \times i : \forall_{i}\}$
- 3. y = y 0, I

- and $\overline{y} = y \sigma_i^2 I$
- 4. Now find the largest Right Singular Vector of Y using Power Iteration- Largest Right Singular Vector of \$\overline{y}\$ is the Smallest right singular vector of > (and hence x)

Power Iteration given y

- Initialize v as o

- Output T

4. a. L(y) =
$$\angle (x_{ij} - y_{ij})^2$$

$$\nabla_{L}(y) = -2(x_{ij} - y_{ij}) \cdot 0_{ij}$$

$$\nabla L(y) = -2(x-y).0$$

b. a.

```
def SVP(X, 0, lr, T=1000):
    k = 5
    n = 1000; d = 500;
    X_pred = np.random.normal(0, 1, (n, d))
    costs = []

    for i in range(T):
        c = cost(X, X_pred, 0)
        Y = X_pred - lr * gradient(X, X_pred, 0)
        utrue, strue, vtrue = scipy.sparse.linalg.svds(Y, k = 5)
        X_pred = utrue @ np.diag(strue) @ vtrue
        costs.append(c)

    return np.array(costs)
```


5. a.

T	Time
In-built	6.122656726837159
10	0.611600136756897
20	1.2323015213012696
30	1.834072232246399
40	2.435634708404541
50	3.0591841459274294
60	3.6913986682891844
70	4.280641365051269
80	4.8633181095123295
90	5.455540823936462
100	6.042231750488281

b. We average across 10 runs. Multiple runs provide différent graphs.

Distance to optimum for T = 1000:

[single run]

