

蛤爾濱工業大學 (深圳)

Harbin Institute of Technology, Shenzhen

实验报告

课程名称:	系统与控制
学生姓名:	
学生学号:	
学生专业:	
开课学期:	
报告时间:	
指导教师:	

哈尔滨工业大学(深圳)

实验一 典型系统的时域响应实验

一、 实验目的

- 1. 了解比例环节、积分环节、比例积分环节、惯性环节和典型二阶系统的模拟电路构成。
- 2. 掌握各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
- 3. 了解各种参数变化对典型环节动态特性的影响。

二、 实验设备及元器件

- 1.PC 机一台
- 2.NI ELVIS 一台
- 3.Circuits Control Board 1 (自动控制原理课程实验套件 1)

Uo(S)

4.导线 15 根

三、实验原理

图 1-1 比例环节方框图 (2) 传递函数:

 $\frac{U_{o}(S)}{U_{i}(S)} = K$

(3) 模拟电路图:

(4) 阶跃响应:

$$U_o(t) = K \quad (t \ge 0)$$

其中 $K = \frac{R1}{R0}$

图 1-2 比例环节模拟电路图

- (5) 理想与实际阶跃响应曲线对照:
- ① 取 RO = 200K: R1 = 100K

② 取 R0 = 200K; R1 = 200K

积分环节 (I)

(1) 方框图:

(2) 传递函数:

$$\frac{U_o(S)}{U_i(S)} = \frac{1}{TS}$$

(3) 模拟电路图:

图 1-4 积分环节模拟电路图

(4) 阶跃响应:

$$U_o(t) = \frac{1}{T}t \quad (t \ge 0)$$

其中 T = ROC

(5) 理想与实际阶跃响应曲线对照:

① 取 R0 = 200K; C = 1uF

3. 比例积分环节 (PI)

(1) 方框图:

图 1-5 比例积分环节方框图

(2) 传递函数:

$$\frac{U_o(S)}{U_i(S)} = K + \frac{1}{TS}$$

(3) 模拟电路图:

R0=R1=200K; C=1uF或2uF 图 1-6 比例积分环节模拟电路图

(4) 阶跃响应:

$$U_o(t) = K + \frac{1}{T}t$$
 (t ≥ 0)
其中 $K = \frac{R1}{R0}$; $T = ROC$

- (5) 理想与实际阶跃响应曲线对照:
 - ① 取 R0 = R1 = 200K; C = 1uF

② 取 R0 = R1 = 200K; C = 2uF

5. 典型的二阶系统

(1) 方框图:

(2) 模拟电路图:

图 1-10 二阶系统模拟电路图

(3) 系统开环传递函数:

$$\begin{split} G(s) &= \frac{K_1}{T_0 S(T_1 S + 1)} = \frac{K_1/T_0}{S(T_1 S + 1)} \\ &\sharp + , \;\; \text{开环增益为K} = \; \frac{K_1}{T_0} \end{split}$$

(4) 实验内容:

在开始实验之前, 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 分别的理论值, 再将

4. 惯性环节 (T)

(1) 方框图:

图 1-7 惯性环节方框图

(2) 传递函数:

$$\frac{U_o(S)}{U_i(S)} = \frac{K}{TS + 1}$$

(3) 模拟电路图:

图 1-8 惯性环节模拟电路图

(4) 阶跃响应:

$$U_{o}(t) = K(1 - e^{-\frac{t}{T}})$$

 $\not \perp + K = \frac{R1}{R0}$; $T = R1C$

- (5) 理想与实际阶跃响应曲线对照:
 - ① 取 R0 = R1 = 200K; C = 1uF

② 取 R0 = R1 = 200K; C = 2uF

理论值应用到模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。 在本实验中:

$$T_0 = 1s$$
, $T_1 = 0.2s$; $K_1 = \frac{200}{R} \Rightarrow K = \frac{200}{R}$

系统闭环传递函数为:

$$W(S) = \frac{\omega_n^2}{S^2 + 2\zeta\omega_n S + \omega_n^2} = \frac{5K}{S^2 + 5S + 5K}$$

其中, 自然振荡角频率为:

$$\omega_n = \sqrt{\frac{K}{T_1}} = 10 \sqrt{\frac{10}{R}}$$

阻尼比:

$$\zeta = \frac{5}{2\omega_n} = \frac{\sqrt{10R}}{40}$$

四、实验过程与实验数据及结果分析

(简述实验过程的步骤和方法,填写表格,并分析实验结果)

表 1. 典型环节特征参数

典型环节	NO.	R_0	R_1	С	Solution		
1. 比例环节	1.1	10k	100k	-	K=0.99		
	1.2	100k	100k	-	K=1.00		
	1.3	200k	100k	-	K=0.50		
2 40 /\ 17 +1	2.1.1	20k	-	1uF	T=0.0231		
	2.1.2	100k	-	1uF	T=0.1005		
	2.1.3	200k	-	1uF	T=0.1837		
2. 积分环节	2.2.1	20k	-	2uF	T=0.0412		
	2.2.2	100k	-	2uF	T=0.1941		
	2.2.3	200k	-	2uF	T=0.3824		
	3.1.1	100k	200k	1uF	K=2.039	T=0.0818	
2 比例和公环芸	3.1.2	200k	200k	1uF	K=1.013	T=0.1688	
3. 比例积分环节	3.2.1	100k	200k	2uF	K=2.122	T=0.1981	
	3.2.2	200k	200k	2uF	K=1.091	T=0.3515	
	4.1.1	100k	200k	1uF	K=1.998	T=0.163	
4. 惯性环节	4.1.2	200k	200k	1uF	K=1.002	T=0.171	
	4.2.1	100k	200k	2uF	K=2.002	T=0.340	
	4.2.2	200k	200k	2uF	K=1.001	T=0.328	
5. 分析时间常数 T 对惯性环节响 应速度的影响 当 T 较小时,系统需要更长的时间来达到稳态值,系统的响应较慢。当 T 较小时,系统能够更快地响应外部的变化,系统具有更快的响应速度。							

表 2. 典型环节响应曲线截图

表 3. 典型二阶系统瞬态性能指标实验结果

典型二系时响	R(KΩ) K		۲	$\sigma_p(\%)$		$t_p(s)$		$t_s(s)$		阻尼类型	
		K	K ω_n	ξ	理论值	实测值	理论值	实测值	理论值	实测值	阻心矢室
	10	10	10	0.25	44.43%	41.78%	0.324	0.270	1.2	0.932	欠阻尼
	50	4	4.47	0.56	11.96%	9.57%	0.848	0.748	1.198	1.030	欠阻尼
	160	1.25	2.5	1							临界阻尼
	200	1	2.24	1.12							过阻尼

注: K、 $ω_n$ 、ξ的值需要根据二阶系统传函表达式计算。

表 4. 典型二阶系统时域响应曲线截图

