WHAT IS CLAIMED IS:

1. A heterocycle-containing onium salt shown by the general formula [1] or [35]:

$$(R^1)m$$
 $R \longrightarrow G$
 $(R^2)n$

5 [wherein R is a group shown by the general formula [2]:

$$(R^3)i \qquad (R^4)j \qquad [2]$$

(wherein R^3 and R^4 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_2 is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$X_4$$
 X_3
 R^5
 R^6
 R^6

10

15

20

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); R^1 and R^2 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; m and n are each independently an integer of 0 to 5; and A is a halogen atom or an anion derived from an inorganic

strong acid, an organic acid or a compound shown by the general formula [4]:

$$HM_1(R^7)_4$$
 [4]

10

15

(wherein M_1 is a boron atom or a gallium atom; and R^7 is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group)],

$$R^{26} - \stackrel{\bigoplus}{I} R^{27} A_3 \qquad [35]$$

[wherein R^{26} and R^{27} are each independently an aryl group which may have a halogen atom or a lower alkyl group as a substituent, a group shown by the above-mentioned general formula [2], or a group shown by the above-mentioned general formula [3]; A_3 is a halogen atom or an anion derived from an inorganic strong acid, an organic acid or a compound shown by the general formula [4]; and provided that at least one of R^{26} and R^{27} is a group shown by the above-mentioned general formula [2] or [3], and when only one of R^{26} and R^{27} is a group shown by the above-mentioned general formula [2] or [3], A_3 is an anion derived from an inorganic strong acid shown by the general formula [36];

$$HM_3F_6$$
 [36]

- (wherein M_3 is a phosphorus atom, an arsenic atom or an antimony atom), an organic acid or a compound shown by the general formula [4]].
- An onium salt according to claim 1, wherein the heterocycle-containing onium salt is one shown by the general formula
 [1]:

$$\mathbb{R}^{-\mathbb{S}} \to \mathbb{A}$$
 [1]

[wherein R is a group shown by the general formula [2]:

$$(R^3)i \qquad (R^4)j \qquad [2]$$

(wherein R³ and R⁴ are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group 5 as a substituent; X₂ is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$X_4 \longrightarrow X_3 \longrightarrow \frac{1}{|J|} \qquad [3]$$

$$(R^5)p \qquad (R^6)q$$

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); R^1 and R^2 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; m and n are each independently an integer of 0 to 5; and A is a halogen atom or an anion derived from an inorganic strong acid, an organic acid or a compound shown by the general formula [4]:

 $HM_1(R^7)_4$ [4]

10

15

20

25

(wherein M_1 is a boron atom or a gallium atom; and R^7 is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group)].

3. An onium salt according to claim 1, wherein the heterocycle-containing onium salt is one shown by the general formula [35]:

$$R^{26}$$
 $\stackrel{\bigoplus}{---}$ R^{27} A_3 [35]

[wherein R^{26} and R^{27} are each independently an aryl group which may have a halogen atom or a lower alkyl group as a substituent, a group shown by the general formula [2];

$$(\mathbf{R}^3)_{\mathbf{i}} \qquad (\mathbf{R}^4)_{\mathbf{j}} \qquad [2]$$

5 (wherein R³ and R⁴ are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X₂ is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$X_4 \qquad X_3 \qquad \qquad [3]$$

$$(R^5)p \qquad (R^6)q \qquad \qquad [3]$$

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); A_3 is a halogen atom, or an anion derived from an inorganic strong acid, an organic acid or a compound shown by the general formula $\{4\}$:

 $HM_1(R^7)_4$ [4]

15

20

25

(wherein M_1 is a boron atom or a gallium atom; and R^7 is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group); and provided that at least one of R^{26} and R^{27} is a group shown by the above-mentioned general formula [2] or [3], and when only one of R^{26} and R^{27} is a group shown by the above-mentioned general formula [2] or [3], A_3 is an anion derived from an inorganic strong acid shown by the general formula [36]:

 HM_3F_6 [36]

30 (wherein M₁ is a phosphorous atom, an arsenic atom or an antimony

atom), an organic acid, or a compound shown by the general formula [4])].

4. A salt according to claim 2, wherein the anion derived from 5 an inorganic strong acid, shown by A is one derived from nitric acid, sulfuric acid, halosulfuric acid, perhalogenic acid or a compound shown by the general formula [5]:

+ HM₂F_k [5]

(wherein M_2 is a metalloid atom or a metal atom; and k is an integer of 4 or 6).

- 5. A salt according to claim 4, wherein the metalloid atom shown by M_2 is a boron atom, a silicon atom, a phosphorus atom, an arsenic atom or an antimony atom; and the metal atom shown by M_2 is an aluminum atom, a titanium atom, an iron atom, a nickel atom, a zirconium atom or a gallium atom.
- 6. A salt according to claim 2, wherein the anion derived from the organic acid shown by A is one derived from a sulfonic acid shown by the general formula [6]:

 R^8 —SO₃H [6]

15

20

(wherein R⁸ is an alkyl group, an aryl group or an aralkyl group, which may have a halogen atom), or a carboxylic acid shown by the general formula [7]:

25 R⁹—COOH [7]

(wherein R^9 is an alkyl group, an aryl group or an aralkyl group, which may have a halogen atom).

- 7. A salt according to claim 2, wherein R is a group shown by 30 the general formula [2].
 - 8. A salt according to claim 7, wherein X_2 in the general formula [2] is an oxygen atom.
- 9. A salt according to claim 7, wherein the group shown by the general formula [2] is a xanthonyl group.

- 10. A salt according to claim 2, wherein R is a group shown by the general formula [3].
- 5 11. A salt according to claim 10, wherein each X_3 and X_4 in the general formula [3] is an oxygen atom.
 - 12. A salt according to claim 10, wherein the group shown by the general formula [3] is a coumarinyl group.
- 13. A salt according to claim 2, wherein the sulfonium salt shown by the general formula [1] is diphenyl(xanthene-9-one-2-yl)sulfonium hexafluorophosphate or (coumarin-7-yl)diphenylsulfonium hexafluorophosphate.
 - 14. A salt according to claim 3, wherein the anion derived from the inorganic strong acid shown by A_3 is one derived from nitric acid, sulfuric acid, halosulfuric acid, perhalogenic acid or an inorganic strong acid shown by the general formula [5]:
- $_{20}$ $_{10}^{HM_2F_k}$ $_{10}^{[5]}$ (wherein $_{10}^{M_2}$ is a metalloid atom or a metal atom; and k is an integer of 4 or 6).
- 15. A salt according to claim 14, wherein the metalloid atom shown by M₂ is a boron atom, a silicon atom, a phosphorus atom, an arsenic atom or an antimony atom; and the metal atom shown by M₂ is an aluminum atom, a titanium atom, an iron atom, a nickel atom, a zirconium atom or a gallium atom.
- 30 16. A salt according to claim 3, wherein the anion derived from the organic acid shown by A₃ is one derived from a sulfonic acid shown by the general formula [6]:

 R^8 —SO₃H [6]

10

15

(wherein R⁸ is an alkyl group, an aryl group or an aralkyl group, 35 which may have a halogen atom), or a carboxylic acid shown by the general formula [7]: R⁹—COOH [7]

10

(wherein R^9 is an alkyl group, an aryl group or an aralkyl group, which may have a halogen atom).

- 5 17. A salt according to claim 3, wherein each R^{26} and R^{27} is a group shown by the general formula [2].
 - 18. A salt according to claim 17, wherein X_2 in the general formula [2] is an oxygen atom.
- 19. A salt according to claim 17, wherein the group shown by the general formula [2] is a xanthonyl group.
- 20. A salt according to claim 3, wherein each R^{26} and R^{27} is a group shown by the general formula [3].
 - 21. A salt according to claim 20, wherein each X_3 and X_4 in the general formula [3] is an oxygen atom.
- 20 22. A salt according to claim 20, wherein the group shown by the general formula [3] is a coumarinyl group.
- 23. A salt according to claim 3, wherein the iodonium salt shown by the general formula [35] is bis(xanthene-9-one-2-yl)iodonium hexafluorophosphate or bis(coumarin-7-yl)iodonium hexafluorophosphate.
 - 24. A cationic photopolymerization initiator comprising a heterocycle-containing onium salt shown by the general formula [8]:

30

[wherein R is a group shown by the general formula [2]:

$$(\mathbb{R}^3)_{i}$$

$$(\mathbb{R}^4)_{j}$$
[2]

(wherein R³ and R⁴ are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X₂ is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$X_4 \qquad X_3 \qquad \qquad [3]$$

$$(R^5)p \qquad (R^6)q \qquad \qquad [3]$$

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); R^1 and R^2 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; m and n are each independently an integer of 0 to 5; and A_1 is an anion derived from an inorganic strong acid, a sulfonic acid or a compound shown by the general formula [4]:

 $HM_1(R^7)_4$ [4]

(wherein M_1 is a boron atom or a gallium atom; R^7 is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group)].

25

10

15

20

- 25. A polymerization initiator according to claim 24, wherein A_1 is an anion derived from the compound shown by the general formula [4] or an inorganic strong acid shown by the general formula [5]: HM_2F_k [5]
- 30 (wherein M_2 is a metalloid atom or a metal atom; and k is an integer

of 4 or 6).

5

15

20

25

- 26. A polymerization initiator according to claim 24, wherein the sulfonium salt shown by the general formula [8] is diphenyl (xanthene-9-one-2-yl) sulfonium hexafluorophosphate or (coumarin-7-yl) diphenyl sulfonium hexafluorophosphate.
- 27. A cationic photopolymerization initiator comprising a heterocycle-containing iodonium salt shown by the general formula 10 [37]:

$$R^{26}$$
— $\stackrel{\bigoplus}{I}$ — R^{27} A_4 [37]

[wherein R^{26} and R^{27} are each independently an aryl group which may have a halogen atom or a lower alkyl group as a substituent, a group shown by the general formula [2]:

$$(\mathbb{R}^3)_{\mathbf{i}} \qquad [2]$$

(wherein R^3 and R^4 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_2 is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$X_4 \xrightarrow{X_3} \frac{1}{|I|} \qquad [3]$$

$$(R^5)p \qquad (R^6)q \qquad [3]$$

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); and A_4 is an anion derived from an inorganic strong acid, a sulfonic acid or a compound shown by the general formula [4]:

 $HM_1(R^7)_4$ [4]

(wherein M₁ is a boron atom or a gallium atom; R⁷ is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group); and provided that at least one of R²⁶ and R²⁷ is a group shown by the above-mentioned general formula [2] or [3], and when only one of R²⁶ and R²⁷ is a group shown by the above-mentioned general formula [2] or [3], an inorganic strong acid is one shown by the general formula [36]:

 HM_3F_6 [36]

30

- 10 (wherein M_3 is a phosphorus atom, an arsenic atom or an antimony atom)].
- 28. A polymerization initiator according to claim 27, wherein A_4 is an anion derived from the compound shown by the general formula [4] or an inorganic strong acid shown by the general formula [5]: HM_2F_k [5] (wherein M_2 is a metalloid atom or a metal atom; and k is an integer of 4 or 6).
- A polymerization initiator according to claim 27, wherein the 20 29. salt shown by the general formula [37] is iodonium bis (xanthene-9-one-2-yl) iodonium hexafluorophosphate or bis (coumarin-7-yl) iodonium hexafluorophosphate.
- 25 30. A method for polymerization of an epoxy monomer, which comprises using the polymerization initiator in claim 24.
 - 31. A method for polymerization of a vinyl ether monomer, which comprises using the polymerization initiator in claim 24.
 - 32. A method for polymerization of an epoxy monomer, which comprises using the polymerization initiator in claim 27.
- 33. A method for polymerization of a vinyl ether monomer, which comprises using the polymerization initiator in claim 27.

34. An acid generator for a resist, comprising a sulfonium salt shown by the general formula [9]:

$$(R^1)m$$
 $R \longrightarrow G$
 $(R^2)n$

5

10

15

20

[wherein R is a group shown by the general formula [2]:

$$(R^3)i \qquad (R^4)j \qquad [2]$$

(wherein R^3 and R^4 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_2 is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$\begin{array}{c} X_4 \\ X_3 \\ R^5)p \end{array} \qquad [3]$$

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); R^1 and R^2 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; m and n are each independently an integer of 0 to 5; and A_2 is an anion derived from an inorganic strong acid, an organic acid or a compound shown by the general formula A_2 :

(wherein M_1 is a boron atom or a gallium atom; and R^7 is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group)].

- 5 35. An acid generator according to claim 34, wherein the sulfonium salt shown by the general formula [9] is diphenyl (xanthene-9-one-2-yl) sulfonium hexafluorophosphate or (coumarin-7-yl) diphenyl sulfonium hexafluorophosphate.
- 10 36. An acid generator for a resist, comprising an iodonium salt shown by the general formula [38]:

$$R^{26}$$
— $\stackrel{\bigoplus}{I}$ — R^{27} A_5 [38]

15

20

25

[wherein R^{26} and R^{27} are each independently an aryl group which may have a halogen atom or a lower alkyl group as a substituent, a group shown by the general formula [2]:

$$(R^3)i \qquad (R^4)j \qquad [2]$$

(wherein R^3 and R^4 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_2 is an oxygen atom or a sulfur atom; i is an integer of 0 to 4; and j is an integer of 0 to 3), or a group shown by the general formula [3]:

$$X_4 \qquad X_3 \qquad \qquad [3]$$

$$(R^5)p \qquad (R^6)q \qquad \qquad [3]$$

(wherein R^5 and R^6 are each independently a halogen atom, an alkyl group which may have a halogen atom or an aryl group as a substituent, or an aryl group which may have a halogen atom or a lower alkyl group as a substituent; X_3 and X_4 are each independently an oxygen atom or a sulfur atom; p is an integer of 0 to 2; and q is an integer of 0 to 3); and A_5 is an anion derived from an inorganic strong acid,

an organic acid or a compound shown by the general formula [4]: $HM_1(\mathbb{R}^7)_4$ [4]

(wherein M_1 is a boron atom or a gallium atom; and R^7 is an aryl group which may have a substituent selected from a lower haloalkyl group, a halogen atom, a nitro group and a cyano group); and provided that at least one of R^{26} and R^{27} is a group shown by the above-mentioned general formula [2] or [3], and when only one of R^{26} and R^{27} is a group shown by the above-mentioned general formula [2] or [3], an inorganic strong acid is one shown by the general formula [36]:

10 HM_3F_6 [36] (wherein M_3 is a phosphorus atom, an arsenic atom or an antimony atom)].

37. An acid generator according to claim 36, wherein the iodonium salt shown by the general formula [38] is bis(xanthene-9-one-2-y1)iodonium hexafluorophosphate or bis(coumarin-7-y1)iodonium hexafluorophosphate.