ITI Francisco José de Caldas

Taller de Cálculo (P. Mejoramiento)

¡Este taller es opcional!

Fecha límite de entrega: martes 6 de septiembre

PARA CADA UNA DE LAS SIGUIENTES PREGUNTAS DEBE ESCOGER **UNA Y SOLO UNA** DE LAS OPCIONES DE RESPUESTA.

- 1. Sea $f(x) = \frac{5x \sqrt{-x}}{x^3 1}$, entonces $\lim_{x \to -1} f(x)$ es
 - A. 3

C. $\frac{-5+\sqrt{2}}{2}$

B. $-\frac{7}{2}$

- D. Indeterminado
- **2.** El valor del límite para la función $f(x) = \frac{x^4 16}{x^2 + 4}$ cuando $x \to -2$ es
 - A. 0

C. $-\frac{9}{4}$

B. 8

- D. Indeterminado
- **3.** Cuando x tiende a 5 a función

$$f(x) = \frac{\sqrt{x^2 - 5x + 6} - \sqrt{6}}{x - 5}$$

tiende a

A. $\frac{5}{12}$

C. $\frac{5\sqrt{6}}{12}$

B. $-\frac{7}{2\sqrt{6}}$

- D. Indeterminado
- 4. Usando aproximaciones sucesivas puede estimarse de manera numérica un límite para una función f(x); a manera de ejemplo, si x tiende a 2 entonces los valores $x=1.9,\ x=1.99,\ x=1.99,\ ...$, así como $x=2.1,\ x=2.01,\ x=2.001,...$ pueden usarse para acotar razonablemente el límite o, por el contrario, determinar si este es indeterminado.

Usando esta idea para la función

$$f(x) = \frac{\sqrt{5} - \sqrt{x - 1}}{x^2 - 36}$$

se llega que $\lim_{x\rightarrow6}f\left(x\right)$ es de aproximadamente

A. 0.0256

C. -0.0186

- B. 0.3082
- D. -0.5156
- 5. Usando la definición

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

para la función $f(x) = \frac{x+3}{x-1}$ y desarrollando es posible reducir, como parte del proceso, a uno de los siguientes límites. Este es:

A.
$$\lim_{h\to 0} \frac{-4}{(x+1)(x+h-1)}$$

B.
$$\lim_{h \to 0} \frac{4x+h}{(x+1)(x+h-1)}$$

C.
$$\lim_{h \to 0} \frac{-4x}{(x+1)(x+h-1)}$$

D.
$$\lim_{h\to 0} \frac{4+h}{(x+1)(x+h-1)}$$

Formato de respuestas

Nombre:

Grado:

#	A	В	С	D
1	0	0	0	0
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc