Math 55a, Assignment #7, October 31, 2003

Definitions and Notations. Let V be a finite-dimensional vector space over a field \mathbb{F} . The set of all \mathbb{F} -linear maps from V to itself is denoted by $\operatorname{End}_{\mathbb{F}}(V)$.

An \mathbb{F} -vector subspace \mathcal{L} of $\operatorname{End}_{\mathbb{F}}(V)$ is called a *Lie algebra* (or more precisely, a Lie subalgebra of $\operatorname{End}_{F}(V)$) if ST - TS belongs to \mathcal{L} whenever both S and T belong to \mathcal{L} .

One denotes ST - TS by [S, T]. For subsets \mathcal{A} and \mathcal{B} of \mathcal{L} let $[\mathcal{A}, \mathcal{B}]$ be the set of all [A, B] with $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

For $A \in \mathcal{L}$, one uses $\operatorname{ad}_{\mathcal{L}} A$ (or simply $\operatorname{ad} A$) to denote the element of $\operatorname{End}_{\mathbb{F}}(\mathcal{L})$ which sends $S \in \mathcal{L}$ to [A, S]. For a subset \mathcal{A} of \mathcal{L} one uses $\operatorname{ad}_{\mathcal{L}} \mathcal{A}$ (or simply $\operatorname{ad} \mathcal{A}$) to denote the set of all $\operatorname{ad}_{\mathcal{L}} A$ with $A \in \mathcal{A}$.

Inductively let $\mathcal{L}^1 = \mathcal{L}^{(1)} = \mathcal{L}$, $\mathcal{L}^n = [\mathcal{L}, \mathcal{L}^{n-1}]$, and $\mathcal{L}^{(n)} = [\mathcal{L}^{(n-1)}, \mathcal{L}^{(n-1)}]$ for integers $n \geq 2$. The Lie algebra \mathcal{L} is called *nilpotent* if $\mathcal{L}^N = 0$ for some positive integer N. The Lie algebra \mathcal{L} is called *solvable* if $\mathcal{L}^{(N)} = 0$ for some positive integer N.

An \mathbb{F} -vector subspace \mathcal{I} of \mathcal{L} is called an *ideal* if $[S,T] \in \mathcal{I}$ for all $S \in \mathcal{L}$ and $T \in \mathcal{I}$.

Problems 1-7 below (with $\mathbb{F} = \mathbb{C}$) lead to the construction of an \mathbb{F} -basis of V with respect to which the matrix of every element in certain subsets of $\mathcal{L}_{\mathbb{F}}(V)$ can be simultaneously put into upper triangular form. The subsets being considered are solvable Lie algebras.

Consider the following statement which is indexed by a positive integer n and is meant for all V and \mathcal{L} as long as the dimension of \mathcal{L} over \mathbb{C} as a \mathbb{C} -vector space is n.

(†)_n Let V be a \mathbb{C} -vector space of finite positive dimension. Let \mathcal{L} be a Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(V)$. Let n be the dimension of \mathcal{L} over \mathbb{C} as a \mathbb{C} -vector space. If for every $S \in \mathcal{L}$ there exists some positive integer $N = N_S$ (which may depend on S) such that $S^N = 0$ as an element of $\operatorname{End}_{\mathbb{C}}(V)$, then there exists some nonzero element $v \in V$ such that Sv = 0 for all $S \in \mathcal{L}$.

Problem 1. Let V be a \mathbb{C} -vector space of finite positive dimension. Let \mathcal{L} be a Lie subalgebra of $\mathrm{End}_{\mathbb{C}}(V)$. Let n be the dimension of \mathcal{L} over \mathbb{C} as a \mathbb{C} -vector space. Let \mathcal{K} be a maximal proper Lie subalgebra of \mathcal{L} (which

means that \mathcal{K} is a Lie subalgebra of \mathcal{L} not equal to \mathcal{L} and that, if \mathcal{A} is a Lie subalgebra of \mathcal{L} which contains \mathcal{K} but not equal to \mathcal{K} , then \mathcal{A} must be equal to \mathcal{L}). Assume that Statement $(\dagger)_k$ holds for any $k \leq n-1$. Suppose that for every $S \in \mathcal{K}$ there exists some positive integer $N = N_S$ (which may depend on S) such that $S^N = 0$ as an element of $\operatorname{End}_{\mathbb{C}}(V)$. Prove that \mathcal{K} is an ideal of \mathcal{L} . (Hint: Consider the subset $\operatorname{ad}_{\mathcal{L}}\mathcal{K}$ of $\operatorname{End}_{\mathbb{C}}(\mathcal{L})$ and let \mathcal{T} be the subset of $\operatorname{End}_{\mathbb{C}}(\mathcal{L}/\mathcal{K})$ induced by $\operatorname{ad}_{\mathcal{L}}\mathcal{K}$. Let ℓ be the dimension of \mathcal{T} as a \mathbb{C} -vector space. Apply $(\dagger)_{\ell}$ to the case where V (respectively \mathcal{L}) in it is replaced by \mathcal{L}/\mathcal{K} (respectively \mathcal{T}) to find A in \mathcal{L} but not in \mathcal{K} such that $[S, A] \in \mathcal{K}$ for all $S \in \mathcal{K}$. Verify that $\mathcal{K} + \mathbb{C}A$ is a Lie subalgebra of \mathcal{L} . Need to check that $\ell \leq n-1$ and that for every $T \in \mathcal{T}$ there exists some integer m which may depend on T such that $T^m = 0$ as element of $\operatorname{End}_{\mathbb{C}}(\mathcal{L}/\mathcal{K})$.)

Problem 2. Use Problem 1 to prove $(\dagger)_n$ by induction on n. (Hint: Let \mathcal{K} be a maximal Lie subalgebra of \mathcal{L} (and allow \mathcal{K} to be just $\{0\}$). By Problem 1, \mathcal{K} is an ideal and $\dim_{\mathbb{C}} \mathcal{K}$ must be n-1. Let W be the \mathbb{C} -vector subspace of V consisting of all $v \in V$ with Sv = 0 for all $S \in \mathcal{K}$. By $(\dagger)_{n-1}$ the dimension of W over \mathbb{C} must be positive. Pick some element S in \mathcal{L} but not in \mathcal{K} and, by considering the element of $\mathrm{End}_{\mathbb{C}}(W)$ induced by S, verify that the null space of S contains a nonzero element of W.)

Problem 3. Use Problem 2 to prove the following. Let V be a \mathbb{C} -vector space of finite positive dimension m. Let \mathcal{L} be a Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(V)$. If for every $S \in \mathcal{L}$ there exists some positive integer $N = N_S$ (which may depend on S) such that $S^N = 0$, then there exists a \mathbb{C} -basis e_1, \dots, e_m of V such that $Se_j \in \mathbb{C}e_1 \oplus \dots \oplus \mathbb{C}e_{j-1}$ for $1 \leq j \leq m$ and for any $S \in \mathcal{L}$ and, as a consequence, the matrix of every element of \mathcal{L} with respect to the \mathbb{C} -basis e_1, \dots, e_m of V is in upper triangular form with all the diagonal entries zero.

Problem 4. Use Problem 3 to prove the following theorem of Engel. Let \mathcal{L} be a Lie algebra (of finite positive dimension over \mathbb{C}). Show that there exists some positive integer p such that

$$[S_1, [S_2, \cdots, [S_{p-1}, S_p] \cdots]] = 0$$

for all $S_1, S_2, \dots, S_p \in \mathcal{L}$ if and only if for every $S \in \mathcal{L}$ there exists some positive integer $N = N_S$ (which may depend on S) such that

$$[S_1, [S_2, \cdots, [S_N, T] \cdots]] = 0$$

for all $T \in \mathcal{L}$ when $S_j = S$ for $1 \leq j \leq N$. In other words, if for every $S \in \mathcal{L}$ one has $(\operatorname{ad}_{\mathcal{L}}S)^N = 0$ for some positive integer $N = N_S$ (which may depend on S), then \mathcal{L} is a nilpotent Lie algebra. (*Hint:* Apply Problem 3 when V (respectively \mathcal{L}) is replaced by \mathcal{L} and $\operatorname{ad}_{\mathcal{L}}\mathcal{L}$.)

Problem 5. Let \mathbb{F} be a field and V be a \mathbb{F} -vector space of finite positive dimension n. Let \mathcal{L} be a Lie subalgebra of $\operatorname{End}_{\mathbb{F}}(V)$. Assume that \mathcal{L} is solvable as a Lie algebra. Show that there exists an ideal \mathcal{K} in \mathcal{L} which, as a \mathbb{F} -vector subspace of \mathcal{L} , has dimension n-1 over \mathbb{F} . (Hint: verify that $[\mathcal{L}, \mathcal{L}]$ is a proper \mathbb{F} -vector subspace of \mathcal{L} and choose \mathcal{K} to be a proper \mathbb{F} -vector subspace of \mathcal{L} which contains $[\mathcal{L}, \mathcal{L}]$.)

Problem 6. Let \mathbb{F} be a field such that the sum of m copies of the identity element 1 of F is a nonzero element of F for any positive integer m. Let V be an \mathbb{F} -vector space of finite positive dimension n. Let \mathcal{L} be a Lie subalgebra of $\mathrm{End}_{\mathbb{F}}(V)$ and \mathcal{K} be an ideal in \mathcal{L} .

- (a) Let v be a nonzero element of V and λ be an \mathbb{F} -linear map from \mathcal{K} to \mathbb{F} such that $Sv = \lambda(S)v$ for $S \in \mathcal{K}$. Let $T \in \mathcal{L}$ and ℓ be the smallest integer such that $v, Tv, \dots, T^{\ell}v$ are \mathbb{F} -linearly dependent. Let U be the ℓ -dimensional \mathbb{F} -vector space of V spanned by $v, Tv, \dots, T^{\ell}v$. Show that every element $S \in \mathcal{K}$ maps U to U and its matrix with respect to the \mathbb{F} -basis $v, Tv, \dots, T^{\ell-1}v$ of V is in upper triangular form whose diagonal entries are all equal to $\lambda(S)$. As a consequence, show that $\lambda([S,T]) = 0$ for every $S \in \mathcal{K}$. (Hint: For any $S \in \mathcal{K}$, use $ST^{j}v = TST^{j-1}v + [S,T]T^{j-1}v$ and $[S,T] \in \mathcal{K}$ and induction on j to show that $ST^{j}v$ is equal to $\lambda(S)T^{j}v$ plus some element of the \mathbb{F} -vector subspace of V spanned by $v, Tv, \dots, T^{j-1}v$.)
- (b) Let λ be an \mathbb{F} -linear map from \mathcal{K} to \mathbb{F} and let W be the \mathbb{F} -vector subspace of V consisting of all $w \in V$ such that $Sw = \lambda(S)w$ for all $S \in \mathcal{K}$. Show that every element T of \mathcal{L} maps W to W. (Hint: For $S \in \mathcal{K}$ use STw = TSw + [S,T]w for all $S \in \mathcal{K}$ and use the last conclusion of Part (a).)

Problem 7. Let V be a \mathbb{C} -vector space of finite positive dimension n. Let \mathcal{L} be a solvable Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(V)$. Prove that there exists some nonzero element v of V such that v is an eigenvector for every element of \mathcal{L} . Prove, as a consequence, the following theorem of Lie. There exists a

 \mathbb{C} -basis of V with respect to which the matrix of every element of \mathcal{L} is in upper triangular form. (*Hint*: Use Problem 5 to find an ideal \mathcal{K} in \mathcal{L} which has dimension n-1 over \mathbb{C} . Let W be the \mathbb{C} -vector subspace of V consisting of all elements $w \in V$ (plus 0) which are at the same time eigenvectors of all elements of \mathcal{K} . By induction on n-1, W is nonzero. Pick $T \in \mathcal{L}$ which is not in \mathcal{K} . By Part (b) of Problem 6, T maps W to W. Choose an element of W which is an eigenvector of T.)