Confidential Containers

Chris Butler
Chief Architect CTO Organization
chris butler@redhat.com

Dave Ripani Solution Architect rippa@redhat.com

Agenda

- Confidential Computing 101
- Confidential containers architecture
- Demo 1: Protecting data in memory
- RATS architecture
- Use case scenarios

Focus areas for confidential computing

Multi-level security

Compartmented data

Physical asset compromise

Demo 1: - Showing it protects memory

- Scenario 1: Standard containers (I go to root in the box and find it)
- Scenario 2: kata containers (e.g. shim qemu) get in as root; use gcore / find string
- Scenario 3: 'CoCo' container go in dump memory show we can't find it.

Demo 2:

- Attestation and releasing secret
 - Showing in a TDX container I can get the secret otherwise I can't

Deployment arch (high level)

Multicluster

_

Confidential computing enforces cryptographic protection of applications and data

storing

→ at-rest

LUKS, GnuPG,...

transmitting

→ in-transit

OpenSSL, TLS,...

processing

→ in-use

Confidential Computing is about protecting data in-use. (incl. integrity)

Enforcing that you do not trust the system admins or infra provider admins

Data in use

How does Confidential Computing work?

Confidential Containers (CNCF)

Confidential Containers is an open source community working to enable cloud native confidential computing by leveraging

Trusted Execution Environments to protect containers and data.

Confidential Containers across cloud & bare metal

- Peer-pods evolves the OSC solution from bare metal to hypervisors and public cloud
- Peer-pods code repositories enhance the <u>kata containers</u> project and the <u>confidential containers</u> project

Demo one

Memory isolation in confidential containers

```
apiVersion: v1
                                                        kind: Pod
                                                        metadata:
                                                         name: coco-demo
                                                         annotations:
                                                           io.katacontainers.config.hypervisor.default vcpus: "2"
                                                           io.katacontainers.config.hypervisor.default memory: "4096"
                                                          runtimeClassName: kata-cc-tdx
Select a CoCo runtime
                                                          #runtimeClassName: kata
                                                         initContainers:
                                                         - name: fetch-key
                                                           image: registry.access.redhat.com/ubi9/ubi:9.3
                                                           command:
                                                           - sh
Pull data a 'secret' in
                                                            - curl -L https://qist.githubusercontent.com/butler54/21a0.../raw.txt -o /keys/maqickey.txt
                                                           volumeMounts:
                                                           - name: keys
                                                             mountPath: /keys
                                                         containers:
                                                          - name: coco-demo
                                                           image: registry.access.redhat.com/ubi9/ubi:9.3
Do nothing
                                                            command:
                                                            - sleep
                                                            - "36000"
                                                           securityContext:
                                                             privileged: false
No special privileges
                                                             seccompProfile:
                                                               type: RuntimeDefault
                                                           volumeMounts:
                                                           - name: keys
                                                             mountPath: /keys
Store the secret in memory
                                                         volumes:
                                                          - name: keys
                                                            emptyDir:
                                                             medium: Memory
```


Threat Vectors:

Pod Images: Risk of tampering/access.

Pod Memory: Infrastructure provider access.

Pod Data: Provider tampering/access.

EncryptedWorkloads

Remote Attestation

Confidential Computing

Establishing a chain of trust

REMITS

Remote Attestation RH INTERNAL USE ONLY

Confidential Computing Services

- Key Management Service (KMS) A service for securely storing, managing and backing up of cryptographic keys used by applications and users.
- Image Build Service Services used to build confidential containers or VM images for end users.
- Image Registry A service that is used to store encrypted and/or signed container and VM images required for CC workloads. Examples of such registries include Quay.io, Docker Hub, CSPs provided registries, etc.

- Attestation Service The primary purpose of the attestation service is to validate the evidence provided by the hardware TEE. This is the *Verifier*, as defined in the RATS architecture.
- **Key Broker Service (KBS)** The KBS is the *Relying Party*, as defined by the RATS architecture. Following are its primary functions:
 - Receive evidence from the Attester (confidential VM or container) via a challenge-response protocol.
 - Relay the evidence to the Attestation
 Service for verification.
 - Apply appraisal policy for the returned Attestation Results to assess the trustworthiness of the Attester.
 - Interact with the Key Management Service to retrieve the keys and then send them back to the Attester.

Application Service

Calls a confidential service

TEE

Is created.
Wants to start a pod and wants to get pod from some registry

Local registry

Holds encrypted pod images.

Assumptions

Fraud detection demo scenario with model encryption

Fraud detection demo scenario with model encryption

Fraud detection demo scenario with CoCo

Categorization of Use cases

What use cases are our customers telling us about?

Partner Interaction

2 protected datasets interacting in confidential container

Edge use case

Protecting Edge device data in the public cloud for aggregation

Secure Cloudburst

Using the public cloud to for peak workload or shared resources

Total Tenant Isolation

Isolating OpenShift Tenants

IP Protection/Integrity

Protection of supplier data and business logic in customer environments

Digital Sovereignty

Encapsulating and moving workload from one provider to the next.

Confidential Computing Usecase (Fraud Analysis)

- Analyse transactions for fraud.
- Al model has been trained on premise.
- Transaction data and customer data is on premise.
- Goal is to use that Al model. Unfortunately company has not yet upgraded environment with GPUs.
- Usage of public cloud is difficult due to regulatory and GDPR requirements.

Confidential compute for 'high to low' computing

Next steps

Validated Patterns : Simplifying the creation of use cases

FAQ

- How is the kata vm integrity protected?
 - Dm-verity is used to measure rootfs integrity
- What about oc exec / oc copy etc
 - oc exec is disabled by tenant side configuration (in the enclave) which is protected by the dm-verity device map

Key links

- OpenShift Sandbox Containers [GA]
- Confidential Containers [Upstream]
- Scripts used today
- Containers used today
- CoCo Blogs
 - What is the Confidential Containers project?
 - Understanding the Confidential Containers Attestation Flow
 - CoCo architecture
 - CoCo quick start guide
 - CoCo release notes

The End

Hardware implementations

- So this confidentiality needs to be implemented at the hardware level.
 - AMD SEV SNP: Confidentiality on a Core based VM and on the Memory https://www.amd.com/en/processors/epyc-confidential-computing-cloud
 - Intel SGX (core based) and TDX (VM)
 https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/security-accelerators-product-brief.html
 - IBM z HyperProtect + Secure Execution
 HSM modules available to enable confidential computing environments
 - ARM CCA
 https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
 - AWS Nitro
 https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system
 - RISC-V (plan)
 https://github.com/riscv-non-isa/riscv-ap-tee/blob/main/specification/riscv-cove.pdf

Confidential Computing Organizations

- There are 2 standardizing organizations:
 - CCC (founded 2019)
 - The Confidential Computing Consortium (CCC) brings together hardware vendors, cloud providers, and software developers to accelerate the adoption of Trusted Execution Environment (TEE) technologies and standards.
 - https://confidentialcomputing.io/

You're in good company.

intel.

- CNCF (accepted 03/2022)
 - The Cloud Native Computing Foundation (CNCF) hosts critical components of the global technology infrastructure.

https://www.cncf.io/

Red Hat (member)

CNCF Members · Platinum

Red Hat is a software company that offers enterprise open source software solutions.

