

STATE OF NEW YORK
MARIO M. CUOMO, Governor

DEPARTMENT OF TRANSPORTATION
JAMES L. LAROCCA, Commissioner

1220 WASHINGTON AVE., STATE CAMPUS, ALBANY, NEW YORK 12232

Jenst for mys - neture to were

PAR DEC 17,080 D. d. T. Jiet.

TECHNICAL REPORT 84-5

ASPHALT CEMENT MONITOR PROGRAM - SUMMER 1983

materials bureau technical services division

APRIL, 1984

TECHNICAL REPORT 84-5

ASPHALT CEMENT MONITOR PROGRAM SUMMER 1983

Prepared by

Ronald L. Zack Senior Engineering Materials Chemist

Steven J. Palko Senior Engineering Materials Technician

April 1984

MATERIALS BUREAU
JAMES J. MURPHY, DIRECTOR

NEW YORK STATE DEPARTMENT OF TRANSPORTATION 1220 WASHINGTON AVENUE, ALBANY, NY 12232

Preface

Each year the Materials Bureau conducts a monitor testing program in cooperation with various suppliers of asphalt cement. Samples are obtained by Bureau personnel and split for testing by both the supplier and the Bureau in accordance with standard AASHTO test procedures. This report summarizes the results of the 1983 program.

a. Comparison TFO: Data

NYSDOT
Library
Wolf Road, POD 34
Libany, New York 12232

edalory?

designation with derived suppliers of models countries and object to the project in the project in the countries of the count

NYSDOT Strany O Welf Road, POD 34 Damy, New York 1223

TABLE OF CONTENTS

I.	Introduction	Page	1
II.	Sample Information	Page	2
III.	Tests Performed	Page	3
IV.	Test Data and Sample Identification Forms	Page	3
٧.	New York State Department of Transportation Specification for Asphalt Cement	Page	11
VI.	Summary of Test Results	Page	19
VII.	Test Results	Page	20
VIII.	Statistical Analysis of Test Results	Page	32
IX.	Graphs and Charts of Related Material Information		
	A. Comparison TFOT Data B. Asphaltene Dispersion Data	Page Page	

THE OF COUNTY

the report to the second state of the second s

The British and Courte of Selected Helphild

A. Commenteen Fedt 300 per control of Account from the con

I. Introduction

During July and August, 1983, personnel from the Materials Bureau Chemical Laboratory Section obtained twenty-one samples from four-teen suppliers of asphalt cement. These samples represented many of the sources which had supplied material to the Department during the 1983 construction season including Normal, Canadian, Mid-Continent, Bos Can, Mexican and Venezuelan crude sources.

At the time of sampling, the twenty-one samples were split into two parts. One part was given to the asphalt supplier while the other was returned to the Bureau's Laboratory. All tests were conducted in accordance with the applicable AASHTO test procedure.

Two standard test report forms and one sample identification form were provided by the Bureau for recording sample information and all test results. Each supplier submitted the test results to the Bureau for review and incorporation into this report.

II. Sample Information

A. The distribution of the samples by grade was as follows:

Grade	Number of Samples
Flux	3
AC-5	2
AC-15	3 11 11 12 12
AC-20	8
85/100	5

B. The supplier, location, crude source and lot numbers are tabulated below.

	771		
Cunn14 or	Location	Tot	Crude Source
Supplier Chevron	Perth Amboy	Lot	Bos Can - Maya
Marathon	Tonawanda	13	Mid-Continent
United Refining	Warren, PA	-	Canadian & Mid Continent
United Kerining	warren, in		Canadian a Mid Continent
	AC-5		
Supplier	Location	Lot	Crude Source
B.P. Petro Canada	Oakville, Ont.	51/58	Canadian
United Refining	Warren, PA	6	Mid-Continent
	,		
	AC-15	5	
Supplier	Location	Lot	Crude Source
B.P. Petro Canada	Oakville, Ont.	107/108	Canadian
Marathon	Tonawanda	15	Mid-Continent
United Refining	Warren, PA	11	Canadian
0 1.	AC-20	_	
Supplier	Location	Lot	Crude Source
Arco	Philadelphia	31 16	Normal
Chevron Cibro	Perth Amboy	21	Bos Can Bos Can
Exxon	Albany Linden	10	Normal
Monoco	Pittsford, NY	2	Bos Can
Parco	Stamford, CT	24	Normal
Petro Canada	Montreal, Que.	1	Mex. and Venez.
West Bank	Perth Amboy	5	Bos Can
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	202011 21111009		200 0011
	85/10	00	
Suppler	Location	Lot	Crude Source
B. P. Petro Canada	Oakville, Ont.	107/108	Canadian
Esso Canada	Montreal, Que.	1	Can. and Mex.
Gulf Canada	Montreal, Que.	2	Mexican
Petro Canada	Montreal, Que.	7	Mex. and Venez.
Shell Canada	Montreal, Que.	-	Eastern and Canadian

III. Test Performed

- A. Tests required by Department of Transportation Specification: (all tests not required on all items of asphalt cement)
 - Viscosity @ 140°F, Absolute, (AASHTO T202) Viscosity @ 275°F, Kinematic, (AASHTO T201) Penetration @ 77°F, (AASHTO T49) Ductility @ 39.2°F, (AASHTO T51)
 - 3. 4.
 - Flash Point, Cleveland Open Cup, (AASHTO T48) Solubility in Trichloroethylene, (AASHTO T44) 5.

- % Loss on Thin Film Oven Test Residue, (AASHTO T179)
 Penetration @ 770 F on Thin Film Oven Test Residue (AASHTO T49)
- Penetration @ 77°F Ratio (% of Original) between the Thin Film Oven Test Residue and the Penetration @ 77°F on the

original sample Viscosity @ 140°, Absolute on Thin Film Oven 10. Test Residue (AASHTO T202)

- Ductility @ 77°F on Thin Film Oven Test Residue (AASHTO T51) 11.
- B. Additional tests not required by Department of Transportation Specifications:
 - Penetration @ 39.2°F (AASHTO T49)
 - Penetration Ratio: 39.20F/770F

Ductility @ 77°F, (AASHTO T51) Specific Gravity @ 77°F (AASHTO T228)

Softening Point, Ethylene Glycol (AASHTO T53) Viscosity @ 275°F, Kinematic, on Thin Film Oven Test Residue (AASHTO T201)

Ductility @ 60°F on Thin Film Oven Test Residue (AASHTO T51)

Viscosity @ 140°F, Absolute, Ratio, between viscosity @ 140°F, Absolute on Thin Film Oven Test Residue Sample and the original sample.

A Settling Test to Evaluate the Relative Degree of Dispersion of Asphaltenes.

10. Chemical Analysis of asphalt cement.

C. A Penetration Viscosity Number (PVN) and a Penetration Index Number (PIN) has been computed for each asphalt cement sample.

IV. Test Data and Sample Identification Forms

On the following pages are the Standard Test Report and Sample Identification Forms used for this project.

PRIMARY SOURCE	LOCATION
CRUDE SOURCE	SAMPLED AT
SAMPLED BY	DATE SAMPLED
ITEM NO.	GRADE TYPE
LOT NO,	DATE OF CERTIFICATION

REMARKS:

NEW YORK STATE

DEPARTMENT OF TRANSPORTATION

MATERIALS BUREAU

1983 ASPHALT MONITOR PROGRAM

TEST NO.

	TEST NO.
PRIMARY SOURCE	LOCATION
LOT NO. ITEM NO.	GRADE TYPE
CRUDE SOURCE	AASHTO RESULTS
1. Viscosity Ratio @ 140 F	
a.) Viscosity of Original Sample, (poises)	T 202
b.) Viscosity After T.F.O.T., (poises)	T 202
2. Viscosity @ 275 F, Centistokes	T 201
3. Penetration @ 77 F, 100g., 5 sec.	T 49
4. Penetration @ 39.2 F, 200g., 60 sec.	T 49
5. Penetration Ratio (39.2°F/77°F) 100	
6. Ductility @ 39.2 F, 1 cm/min., cm.	T 51
7. Ductility @ 77 F, 5cm/min., cm.	T 51
8. Flash Point C.O.C., F	T 48
9. Solubility in Trichloroethylene	Т 44
10. Loss on Heating T.F.O.T., Percent, 325F @ 5	Hrs T 179
11. Specific Gravity @ 77 F	T 228
12. Ductility @ 60 F, T.F.O.T., 5cm/min., cm.	T 51
13. Ductility @ 77 F, T.F.O.T., 5cm/min., cm.	T 51
14. Penetration @ 77 F, T.F.O.T., 100g., 5 sec.	T 49
a.) Percent of Original	
15. Viscosity @275 F After T.F.O.T. (cst)	T 201
16. Penetration Viscosity Number, PVN	
17. Softening Point, Ethylene Glycol, F	T 53
18. Penetration Index Number, PIN	

NEW YORK STATE DEPARTMENT OF TRANSPORTATION MATERIALS BUREAU

1983 ASPHALT MONITOR PROGRAM

•		TEST NO.
PRIMARY SOURCE		LOCATION
LOT NO.	ITEM NO.	GRADE TYPE
CRUDE SOURCE		
<u>AS</u>	PHALT COMPOSITION ANA	<u>LYSIS</u>
ASPHALTENES, %		
SATURATES, %		
NAPHTHENE AROMATICS,	%	
POLAR AROMATICS, %		
A Settling Test to E Asphaltenes	valuate the Relative 1	Degree of Dispersion of
SETTLEMENT TIME, MIN	UTES	

V. NEW YORK STATE DEPARTMENT OF TRANSPORTATION SPECIFICATIONS FOR ASPHALT CEMENT

TABLE 702-1

ASPHALT CEMENTS FOR PAVING

		мах.	100	10,000	nt mix e . Sheet Open surface mixes.
702-0500	AC-20		.0	1 50	Hot plant mix moderate climate. She mixes. Open graded surfac course mixes.
		. Min.	1		Ho mo c1 mi
400	5	Max.	1800	7500	nt mix e
702-0400	AC-15	Min.	1200 275 60 435(225) 99.0	. 09	Hot plant mix moderate climate.
0		Max.	1200	5000	mix nate. fix.
702-0300	AC-10	η.	800 250 70 425(219) 99.0	2	Hot plant mix cold climate. Recycle Mix.
		Min.	800 250 70 425 99	75	Hot Co.
200	2	Max.	200	2500	nt mix 1d . Re- ix.
702-0200	AC -5	Min.	400 175 120 350(177) 99.0		Hot plant mix very cold climate. Recycle Mix.
00		Max.	300	1250	Mix
702-0100	AC-2.5	Min.	200 125 200 325(163) 99.0	100	Recycle N
-		M	202 202 333	10	Re
17			3t)g, 5s	in), P	ra1
SNATION	GRADE	ements	C), P C), cs 5C),10((C)	rom Thi F(60C) F(25C) m	a general
DESIG	VISCOSITY GRADE	Test Requirements	JF (60 5F(135 77F (2: 50C, F	idue fi est y, 140 y, 77] in., ci	ly as guide
MATERIAL DESIGNATION	VISC	Test	Viscosity 140F (60 C), P Viscosity 275F(135 C), cSt Penetration 77F (25C),100g, 5s Flash Point COC, F(C) Solubility in Trichloroethylene,%	Tests on Residue from Thin Film Oven Test Viscosity, 140 F(60C), P Ductility, 77 F(25C) 5 cm/min., cm	TYPICAL USES (intended only as a information guide)
M			Viscos Viscos Penetr Flash Solubi	Tests Film Vi Du	TYPICA (inten infor

TABLE 702-2
MISCELLANEOUS ASPHALT CEMENTS

702-0600	85-100	Min Max	85 100 280 450 99.5	.85 47 75 Hot plant mix moderate climate
MATERIAL DESIGNATION	GRADE	TEST REQUIREMENTS	Penetration, 77F(25C), 100g, 5s Viscosity, 275F(135C), cSt Flash Point, COC, F Solubility in trichloroethylene, % Ductility, 39.2F(4C), 1cm/min., cm	Tests on residue from Thin-film Oven Test (AASHTO T179) Loss on Heating, 325F, 5h, % Penetration, % original Ductility, 77F(25C), 5cm/min., cm Typical Uses

SPECIFICATION CHEVRON ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	600	800
Viscosity, 275F(135C), cst	200	-
Penetration, 77F(25C), 100g., 5 sec.	140	190
Flash Point, C.O.C., F	350	•
Solubility in Trichloroethylene, %	99.0	-
Tests on Residue from Thin Film Oven Test:	,	
Viscosity, 140F(60C), Poises	-	3200
Ductility, 77F(25C), 5cm/min., cm.	100	-

SPECIFICATION MARATHON ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	. 400	600
Viscosity, 275F(135C), cst	175	-
Penetration, 77F(25C), 100g., 5 sec.	175	225
Flash Point, C.O.C., F	350	-
Solubility in Trichloroethylene, %	99.0	-
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises	-	2500
Ductility, 77F(25C), 5cm/min., cm.	100	-

SPECIFICATION UNITED REFINING ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	300	500
Viscosity, 275F(135C), cst	125	-
Penetration, 77F(25C), 100g., 5 sec.	150	200
Flash Point, C.O.C, F	350	-
Solubility in Trichloroethylene, %	99.0	
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises		2500
Ductility, 77F(25C), 5cm/min., cm.	`100	-

VI. Summary of Test Results

Test results for all twenty-one asphalt cement samples met New York State Department of Transportation Specification requirements. The following exceptions are noted below:

- A. Exxon, Linden, AC-20, Lot 10, Normal Crude penetration at 77°F, 58
 Specification Requirement 60 to 100 meets Substantial Compliance Limits
- B. United Refining, Warren, PA, AC-5, Lot 6, Mid-Continent Crude penetration at 77°F
 Specification Requirement 120 to 200 does not meet Specification Requirement or Substantial Compliance Limits

viscosity at 140°F, Absolute 805 poises Specification Requirement 400 to 600 does not meet Specification Requirement or Substantial Compliance Limits

C. Shell Canada, Montreal, Que., 85/100, Lot -, Eastern and Canadian Crude penetration at 77°F 83
Specification Requirement 85 to 100
meets Substantial Compliance Limits

VII. Test Results

On the following pages is a tabulation of all test results. The column headed by the name of the test contains the test result determined by the Materials Bureau. The column headed by "Comparative Results" contains the test result provided by the supplier for the test indicated in the column immediately to the left.

198	ASPHALT CEMEN	7			PENETRATION	
MON	LITOR PROGRAM		RATION 2°F	COMPARATIVE	RATIO	COMPARATIVE
AC	SUPPLIER-LOCATION-LO	OT			39.2°/77°F	RESULTS.
ELUX	CHEVRON, PERTH AMBOY	_	2	*	36	*
ELUX	I JAKA I TION TO TOTAL TRANSPORT	3	7	62	30	30
FLUX	UNITED REF., WARREN	_	4	*	27	*
			-			
:		<u></u>	5		31	
	(4		4.6	
				-14		
5	B.P. PETRO CAN., OAKVILLES	1/58	_	*	28	*
5	UNITED REF., WARREN	6		*	32	*
		<u>X</u>	,		30	
	6	<u> </u>	5		2.8	
15	B.P. PETRO CAN., OAKVILLE T	07		*	31	*
15	MARATHON, TONAWANDA	15		29	32	31
15	UNITED REF. WARREN	11		19	32	29
10	UNITED NEFT WAR					
		\overline{X}		24	32	30
		6		7.1	0.6	1.4
20	ARCO, PHILADELPHIA	31		25	35	38
20	CHEVRON, PERTH AMBOY	160		*	38	*
20		21		6	35	7
20	CIBROTALDAN	10		*	33	*
20	EXXON, LINDEN			*	35	*
20	MONOCO, PITTSFORD	24		*	32	*
20	TARCO)			27	40	37
20	PETRO CAN., MONTREAL			*	37	*
20	WEST BANK, PERTH AMBOY	2		- A.	9	
		=	-	19	36	27
-		X			2.6	التستسمين
-		0	-	11.6	2.0	17.6
	1	07/		¥-	21	*
35/10	O B.P. PETRO CAN., OAKVILLE	/10	8	12	31	
35/10	DO ESSO CAN. MONTREAL			43	37	47
35/10	OGULF CAN, MONTREAL			35	37	36
35/10	OPETRO CAN., MONTREAL			32	34	35
35/10	OO SHELL CAN, MONTREAL			*	34	*
		区		37	35	39
		6		5.7	2.5	6.7
	* RESULTS NOT GI	VEN	1			

VII. Test Results

On the following pages is a tabulation of all test results. The column headed by the name of the test contains the test result determined by the Materials Bureau. The column headed by "Comparative Results" contains the test result provided by the supplier for the test indicated in the column immediately to the left.

1198	SASPHALTICEMENT		ABSOLUTE		KINEMATIC			·			PENETRATION	
MO	NITOR PROGRAM	CRUDE	MILLOSITY	COMPARATIVE	V150051TY	COMPARATIVE	PENETRATION	COMPARATIVE	PENETRATION	COMPARATIVE	RATIO	COMPARATIVE
	SUPPLIER-LOCATION-LOT	JOORCE	C 140 F	KESOLIS	@275°F	RESULTS	e77°F	RESULTS	@39.2°F	RESULTS	39.2°/77°F	
	CHEVRON, PERTH AMBOY -	BOSCAN/MAYA	735	*	282	*	165	*	59	*	36	*
	MARATHON, TONAWANDA 13	MID CONT.		460	202	200.8	196	206	59	62	30	30
I-LUX	UNITED REF. WARREN -	CAN. MID-CONT	374	*	165	*	150	*	4.1	*	27	*
												,
-	X		518		216		170		53		31	
-	6		191.3		59.8		23.5		10.4		4.6	
-												
5	B.P. PETRO CAN., OAKVILLE 51/58		581	586	231	230	151	153	42	*	28	*
5	UNITED REF., WARREN 6	MID-CONT.	805	*	234	*	94	*	30	*	32	*
	\overline{x}		693		233		123		36		30	
	6		158.4		2.1		40.3		8.5		2.8	
15	B.P. PETRO CAN., OAKVILLE 107	CANADIAN	1314	1340	340	340	87	85	27	*	31	*
15		MID-CONT.	1379	1491	346	339.4	87	94	28	29	32	31
15	UNITED REF. WARREN 11	CANADIAN	1615	1640	350	334	62	65	20	19	32	29
5	$\overline{\mathbf{x}}$		1436	1490	345	338	79	81	25	24	32	30
	6		158.4	150.0	5.0	3.3	14.4	14.8	4.4	7.1	0.6	1.4
					7:0	0.0		14.0	7.4		0.0	1.7
20	ARCO, PHILADELPHIA 31	NORMAL	2231	2242	438	375	65	65	23	25	35	38
20	CHEVRON, PERTH AMBOY 16	BOSCAN	1818	1797	422	423	89	88	34	*	38	*
20	CIBRO, ALBANY 21	BOSCAN	2310	2292	507	505	88	91	31	6	35	7
20	EXXON, LINDEN 10	NORMAL	2057	2054	404	416	58	66	19	*	33	*
20	MONOCO, PITTSFORD 2	BOSCAN		1830	430	*	84	85	29	*	35	*
20	PARCO, STAMFORD 24	NORMAL	1905	1915	394	*	62	65	20	*	32	*
20	PETRO CAN., MONTREAL 1	MEX. VENZ.		2030	396	380	70	74	28	27	40	37
	WEST BANK, PERTH AMBOY 5	BOSCAN	2322	2252	498	493	85	83	31	*	37	*
		ZZAIV						00		A		, K
	$\overline{\mathbf{x}}$		2056	2052	436	_432	75	77	27	19	36	27
	6		208.8	195.4	43.9	55.4	12.7	10.9	5.5	11.6	2.6	والمستقد المستقدان
0				12.			.1~.1	10.7	2.2	11.0	2.0	17.6
85/100	B.P. PETRO CAN., OAKVILLE 107/108	CANADIAN	1312	1340	340	340	87	85	27	*	31	*
		CAN. MEX.	1570	1792	359	345	86	91	32			*
		MEXICAN	1260	1497	329	329	96	97	35	43 35	37	47
		MEX. VENZ.	1337	1350	328	319	89	92			37	36
		EASTERN CAN		*	314	*	83	*	30 28	32 *	34	35
21100	THELL CAN, I TON I KEAL	LATIERN I CAN		7,5		7.		- A	60	*	34	*
	$\overline{\mathbf{x}}$		1366	1495	334	333	88	91	70	77	7-	7.0
	Ê		119.1	210.8	16.7	11.6	4.9		30	37	35	39
			112.1	210.0	10.1	11.0	4.7	4.9	3.2	5.7	2.5	6.7
	* RESULTS NOT GIVEN											

1633	ASPHALT CEMENT		I.		T.F. O. T.	
MON	ITOR PROGRAM	CR	FTY			COMPARATIVE
AC	SUPPLIER-LOCATION-LOT	50		RESULTS	RATIO	RESULTS
FLUX	CHEVRON, PERTH AMBOY -	Bos	8	*	4.35	*
FLUX	MARATHON, TONAWANDA 13	M	J,	1008	2.11	2.19
FLUX	UNITED REF., WARREN -	CAN	J	*	2.62	*
,	$\overline{\times}$		2		3.03	
	<u> </u>		.9		1.17	
5	B.P. PETRO CAN., OAKVILLE 51/58	CA	2	1094	1.96	1.87
5		MI	()	*	2.78	*
	UNITED REF. WARREN	1-11				
	~		0		2.37	
	×		.5		0.58	
	0					
15	7 7 D - (. 0 . 107/)	2497	2.05	1.86
15	B. P. PETRO CAN., OAKVILLE 108			3618	2.60	2.43
15	MARATHON, TONAWANDA 15		4	3831	2.80	2.34
15	UNITED REF., WARREN 11	CA				
			9	3315	2.48	2.21
	<u>×</u>		5	716.7	0.39	0.31
	5			110.1	0.07	0.51
			13	5515	2.62	2.46
20	ARCO, PHILADELPHIA 31	N	13	6216	3.11	3.46
20	CHEVRON, PERTH AMBOY 16	B	0	6926	3.27	3.02
20	CIBRO, ALBANY 21	B	8	3034	2.01	
20	EXXON, LINDEN 10	N	08	*	3.52	1,48 *
20	MONOCO, PITTSFORD 2	B		*		*
20	PARCO, STAMFORD 24	N	-6		2.23	
20	PETRO CAN, MONTREAL 1	ME	-3	6284	3.40	3.10
20	WEST BANK, PERTH AMBOY 5	B	6	4171	2.65	1.85
		-	7	E =	0.0-	2=/
	$\overline{\mathbf{x}}$	1	.3	5358	2.85	2.56
	X	2	.0	1475.6	0.56	0.77
		-			-	
35/100	B.P. PETRO CAN., OAKVILLE 107/108		el	2497	2.10	1.86
	ESSO CAN., MONTREAL 1	10	93	4995	3.37	2.79
1 .	GULF CAN, MONTREAL 2		5	4782	3.30	3.19
	PETRO CAN, MONTREAL 7	M	73	3880	2.67	2.87
,		EA	06	*	2.59	*
221100	THELL CAN, ITON I KEAL	E44				
			8	4039	2.81	2.68
	X 6		.9	1135.6	0.53	0.57
	* RESULTS NOT GIVEN	man				

198	SASPHALI CEMENT		T.F.O.T.		I.F.O.T.		IT.F.O.T.		T.F. O.T.		T.F.O.T.	
MO!	SUPPLIER - LOCATION - LOT	CRUDE	L055	COMPARATIVE	DUCTILITY	COMPARATIVE		COMPARATIVE		COMPARATIVE		COMPARATIVE
a dx	LUENION P.	SOURCE	0/0	RESULTS	600°E	RESULTS	@77°F	RESULTS	@140°F	RESULTS	RATIO	RESULTS
CLUS	/ 10/4-2	BOSCAN/MAYA		*	61.0	*	150.0+	*	3198	*	4.35	*
111	UNITED REF., WARREN -	MID-CONT.		0.270	150.0+	150.0+	150.0+	150.0+	937	1008	2.11	2.19
FLU.	WARREN -	CAN. MID-CONT	0.050	*	25.50	*	119.50	*	981	*	2.62	*
									·			
-	X		0.523		78.8		139.8		1705		3.03	,
-	6		0.642		64.1		17.6		1292.9		1.17	
=	200 - 1	-										
5	B.P. PETRO CAN., OAKVILLE 51/58	CANADIAN	+0.053 GAIN	+0.060GAIN	150.0+	*	150.0+	150.0+	1139	1094	1.96	1.87
5	UNITED REF., WARREN 6	MID-CONT.	0.100	*	15.75	*	150.0+	*	2240	*	2.78	*
-												
-	X		0.050		82.9		150.0+		1690		2.37	
	6	*	0.071		94.9				778.5		0.58	
1-									1		0.20	
15	B. P. PETRO CAN., OAKVILLE 108	CANADIAN	+0.0736AIN	+0.0806AIN	113.0	*	150.0+	150.0+	2691	2497	2.05	1.86
15	MARATHON, IONAWANDA 15	MID-CONT.	0.269	0.280	102 50	117.0	150.0+		3591	3618	2.60	2.43
15	UNITED REF., WARREN 11	CANADIAN	+0.068 GAIN	+0.050 GAIN	15.25	23.0	150.0+		4514	3831	2.80	2.34
	•										2.00	2.04
	X		0.090	0.093	76.9	70.0	150.0+		3599	3315	2.48	2.21
	6		0.155	0.162	53.7	66.5			911.5	716.7	0.39	0.31
										110.1	0.57	0.51
20	ARCO, PHILADELPHIA 31	NORMAL	0.046	0.030	22.50	33.0	150.0+	100.0	5843	5515	2.62	2.46
20	CHENRON, PERTH AMBOY 16			0.080	33.0	35.0	150.0+	100.0+	5660	6216	3.11	3.46
20		BOSCAN		0.590	30.75	86.50	150.0+		7550	6926	3.27	
20	EXXON, LINDEN 10	NORMAL	+0.054 GAIN	0.000	78.50	*	150.0+	105.0	4138	3034	2.01	3.02
20	MONOCO, PITTSFORD 2	BOSCAN	0.182	*	29.0	*	150.0+	*	6408	*	3.52	1.48 *
20	PARCO, STAMFORD 24	NORMAL	+0.034 (AIN	*	39.0	*	150.0+	*	4246	*	2.23	*
20	PETRO CAN., MONTREAL 1	MEX. NENZ	0.153	0.190	12.0	10.0	82.50	100.0+	6743	6284	3.40	
20				0.223	94.0	20.0	150.0+	77.0	6156	4171	2.65	3.10
	·					~ 0.0	120.0		0170	4111	2.67	1.85
	$\overline{\mathbf{x}}$		0.218	0.186	42.3	_36.9	141.6		5843	5358	2 0 =	25/
	6		0.270	0.217	28.5	29.5	23.9		1173.0	1475.6	2.85	2.56
					20.		20.2		1175.0	14 (5.6	0.56	0.77
85/100	B.P. PETRO CAN., OAKVILLE 107/108	CANADIAN	+0.082 GAIN	to 080 (41)	117.0	*	1500+	150.0+	2761	2407	210	
85/100	ESSO CAN, MONTREAL 1	CAN MEX	0.025	0.012	13.50	150.0 +	108.50	150.0+	5293	2497	2.10	1.86
	GULF CAN, MONTREAL 2			0.060	16.50	18.0	144.50	135.0	4155	4995	3.37	2.79
	PETRO CAN., MONTREAL 7			0.010	34.25	40.0				4782	3.30	3.19
	SHELL CAN, MONTREAL -			*	17.50	*	150.0+	*		3880	2.67	2.87
			·		11.70	7.5	150.0 1		3506	*	2.59	*
	$\overline{\mathbf{x}}$	·	0.024	0021	39.8	69.3	140.6		7050	4070		
	6	42		0.027	43.9				3858	4039	2.81	2.68
	* RESULTS NOT GIVEN		J. OZW	0.021	10.7	70.7	18.1		942.9	1135.6	0.53	0.57
	DESCENSIVE ONEN											

198	3 ASPHALI CEMEN				
MO	NITOR PROGRAM	IFIC -IITY	COMPARATIVE	C.O.C.	COMPARATIVE
AC	SUPPLIER - LOCATION - LO.	7°F		POINTOF	RESULTS
	CHEVRON, PERTH AMBOY -	25	*	442	*
	MARATHON, TONAWANDA 13	17	1.017	555	570
ELUX	UNITED REF., WARREN -	00	*	600	*
	X	14		532	
	6	13		81.4	
		10		01.4	
5	B.P. PETRO CAN., OAKVILLE 51/5	8, 7	1 010	570	(0)
5	UNITED REF. WARREN 6	7	1.019	578	601
		07	*	580	*
1	\overline{x}			F-76	
	X 6	72		579	
9000000		07		1.4	
15	B.P. PETRO CAN , OAKVILLE 107/10	8			
15	MARATHON, TONAWANDA 10	Y /	1.023	610	614
15	UNITED REF. WARREN 1	16	1.027	557	590
17	UNITED REF., WARREN	9	1.022	615	625
-	~				
	X	-12	1.024	594	610
	0	04	0.003	32.1	17.9
20	A - P				
20	ARCO, PHILADELPHIA 31	-8	1.027	655	565
20	CHEVRON, PERTH AMBOY I	2	1.029	520	510
20	CIBRO, ALBANY 21	3	1.033	480	460
20	EXXON, LINDEN IC	5	1.032	665	550+
20	MONOGO, PITTSFORD 2	10	*	531	*
20	PARCO, STAMFORD 24	5	*	642	*
20	PETRO CAN., MONTREAL	1	1.025	560	590
20	WEST BANK, PERTHAMBOY	5	1.031	520	510
			1.031	720	
	× 6	8	1.030	572	
	6	03	0.003	71.8	
			0.003	1.0	
35/100	B.P. PETRO CAN OAKVILLE	28	1007	(20	(11
	ESSO CAN, MONTREAL 1	4	1.023	620	614
	GULF CAN, MONTREAL 2	4-	1.028	625	575
	PETRO CAN, MONTREAL	7	1.028	590	560
	SHELL CAN, MONTREAL	- 12	1.023	575	600+
		10	*	564	*
	X				
	X	14	1.026	595	
	* RESULTS NOT GIVEN	3	0.003	27.0	~
	LESOLIS NOT ONEN				

198	3 ASPHALL GEMENT		T.F. O. T.		T.F.O.T.		T.F.O.T.	•	SPECIFIC		6.0.6.	
Mo	NITOR PROGRAM	CRUDE	VISCOSITY	COMPARATIVE	PENETRATION	COMPARATINE	PENETRATION	COMPARATIVE	GRAVITY	COMPARATIVE	FLASH	COMPARATIVE
	SUPPLIER - LOCATION - LOT	SOURCE	@275°F	RESULTS	@77°F	RESULTS	RATIO	RESULTS	@77°F	أكانتنا فالمستحدد	POINT, F	
		BOSCAN/MAYA	537	*	68	*	41.2	*	1.025	*	442	*
	MARATHON, TONAWANDA 13	MID-CONT.	275	276	112	117	57.1	56.8	1.017	1.017	555	570
FLUX	UNITED REF., WARREN -	CAN. MID-CONT	. 223	*	78	*	52.0	*	1.000	*	600	*
	$\overline{\mathbf{x}}$		345		86		50.1		1.014		532	
	<u> </u>		168.3		23.1		8.1		0.013		81.4	
5	B.P. PETRO CAN , OAKVILLE 51/58	CANADIAN	302	*	91	98	60.3	64.1	1.017	1.019	578	601
5			332	*	56	*	59.6	*	1.007	*	580	*
	The state of the s	Tribe CD IQ 1:										
	\overline{x}		317		73.5		60.0		1.012		579	
	ô		21.2		24.7		0.5		0.007		1.4	
			21.6		24.1		0.)		0.001			
15	B.P. PETRO CAN., OAKVILLE 107/108	CANADIAN	444	*	52	56.5	59.8	66.5	1.022	1.023	610	614
15	MARATHON, TONAWANDA 15			499	50	51	57.5	54.3	1.026	1.027	557	590
15		1		490	39	41	62.9	63.1	1.019	1.022	615	625
	UNITED REF, WARREN 11	CANADIAN	701	470	33	41	96.7	03.1	1.012	1.022		
-	7	1.	487	105	47	50	60.1	61.3	1.022	1.024	594	610
-	<u>X</u>	1.		495					0.004	0.003	32.1	17.9
-	0		37.0	6.4	7.0	7.9	2.7	6.3	0.004	0.005	J.Z. 1	10.7
20	A - P		115	530	12	4./	112	70.8	1.028	1.027	655	565
20	ARCO, PHILADELPHIA 31		645	539	43	46	66.2		1.032		520	510
20	CHEVRON, PERTH AMBOY 16		690	766	52	49	58.4	55.7		1.029	480	460
20	CIBRO, ALBANY 21	BOSCAN		831	48	54	54.5	59.3	1.033	1.033		
20	EXXON, LINDEN 10	NORMAL	544	476	40	44	69.0	66.7	1.025	1.032	665	550+
20	MONOCO, PITTSFORD 2			*	48	*	57.1	*	1.029	*	531	*
20	PARCO, STAMFORD 24			*	42	*	67.7	*	1.025	*	642	
20	PETRO CAN., MONTREAL !			665	43	42	61.4	56.8	1.024	1.025	560	590
20	WEST BANK, PERTHAMBOYS	BOSCAN	765	694	52	56	61.2	67.5	1.030	1.031	520	510
C.						40			1 000	1 070	F70	
	X		681	662	46	49	61.9	62.8	1.028	1.030	572	
2	6		118.1	134.3	4.6	5.6	5.3	6.3	0.003	0.003	71.8	
2											,	
85/100	B.P. PETRO CAN OAKVILLE 107/108	CANADIAN	452	*	53	56.5	60.9	66.5	1.022	1.023	620	614
	ESSO CAN, MONTREAL 1	CAN. MEX.	566	487	51	57	59.3	62.6	1.027	1.028	625	575
	GULF CAN, MONTREAL 2	MEXICAN	517	496	58	58	60.4	59.8	1.027	1.028	590	560
85/10	PETRO CAN, MONTREAL 7		1	488	53	52	59.6	56.5	1.022	1.023	575	600+
85/100	SHELL CAN, MONTREAL -	EAST. CAN.	1	*	52	*	62.7	*	1.020	*	564	*
110												
	X		493	490	53	56	60.6	61.4	1.024	1.026	595	
	6		50.3	4.9	2.7	2.7	1.3	4.2	0.003	0.003	27.0	
	*RESULTS NOT GIVEN											
	IN KESULIS NOT GIVEN											

Mo	NITOR	PROGRAM	1	6	MING	COMPARATIVE	IPVN	
		-LOCATION-		5	°F	RESULTS	1 4 14	COMPARATIVE RESULTS
ELUX	CHEVRON, PE	ERTH AMBOY	****	Bo	9	*	-0.161	*
FLUX	MARATHON,	TONAWANDA	13	M	5	98.5	-0.513	-0.459
FLUX	UNITED RE	F., WARREN		CA	5	*	-1.177	*
			$\overline{\mathbf{x}}$		0		-0.617	
			0		0		0.516	
							0.210	
5	B.P. PETRO	AN , OAKVILLE	51/58	C	8	*	-0.608	-0.600
5		F. WARREN		M	1	*	-1.109	*
							1.102	7.5
			X		3		-0.859	
			6				0.354	
							0.574	
15	B.P. PETRO	AN-, OAKVILLE	107/108	C	3	*	-0.625	-0.650
15		, TONAWAND				111	-0.599	1
15	4	F. WARREN		C		123		-0.543
	UNITEDRE	P.) WARREN		-		125	-0.928	-0.949
			$\overline{\nabla}$			117	-0.717	-0.714
			8		=	8.5		-0.714
						0.7	0.183	0.210
20	ARCO, PHIL	ADEL DULA	31	1	5	126	-05/2	-0.704
20		PERTH AMBO		B		*		-0.784
20	CIBRO, ALB		21	B		105		-0.285
	The second secon		10	N			-0.013	
20	EXXON, L		2	P		*	-0.791	-0.621
20	MONOCO, PI			N	ا تستسل	*	-0.313	*
20	PARCO, STA		24				-0.761	*
20	PETRO LAN	MONTREAL	1/5	M		126	-0.631	-0.633
20	WEGT DAN	K, PERTH AME	50Y 7	2		*	-0.081	-0.124
,			$\overline{\nabla}$			110	0.420	
			X				-0.429	
			<u> </u>			12.1	0.300	0.322
-1			107/			7/	F	
15/100	B.P. VETRO	CAN., OAKVILI	E /108	3 .		*	-0.625	-0.650
		MONTREAL		C			-0.556	-0.554
		MONTREAL		7			-0.567	-0.556
		, MONTREA		M			-0.655	-0.661
35/100	SHELL CAN	1., MONTREA	L -	E	2	*	-0.794	*
-			X			117	-0.639	-0.605
			0			1.7	0.096	0.058
	* RESULT	5 NOT GI	VEN					
4								

M	ONITOR PROGRAM	CRUDE	2.1621	,								
AC	SUPPLIER-LOCATION-LOT	SOURCE	DUCTILITY @39.2°F	COMPARATIVE	C77°F	COMPARATIVE	SOLUBILITY %/0	COMPARATIVE	SOFTENING	COMPARATIVE	PVN	COMPARATIVE
FLUX		BOSCAN/MAYA		*		RESULTS			POINT, F	RESULTS		RESULTS *
FLUX	MARATHON, TONAWANDA 13	MID - CONT	150 0+	15.0+	150.0+	*	99.98	*	109	*	-0.161	
FLUX	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CAN MID-CONT		<u> 12,0 ∓</u>	150.0+		99.97	99.81	105	98.5	-0.513	-0.459
	The same of the sa	LAN.IMID-CONT	17.50	*	108.25	*	99.90	*	115	*	-1.177	*
	X		0/ 2									
	S S		96.2		136.1		99.95		110		-0.617	
			69.7		24.1		0.04		5.0		0.516	
5	800											
5	B.P. PETRO CAN., OAKVILLE 51/58	CANADIAN	150.0+	15.0+		*	99.91	99.90	108	*	-0.608	-0.600
12	UNITED REF., WARREN 6	MID-CONT.	8.75	*	150.0+	*	99.36	*	118	*	-1.109	*
-												
-	X		79.4		150.0+		99.64		113		-0.859	
-	5		99.9				0.39		7.1		0.354	
											,	
15	B.P. PETRO CAN., OAKVILLE 107/108	CANADIAN	13.75	15.0+	150.0+	*	99.90	99.75	118	*	-0.625	-0.650
15	MARATHON, TONAWANDA 15	MID-CONT.	38.0	15.0+		150.0+		99.84	118	111		-0.543
15		CANADIAN		*	150.0+		99.54	*	124	123		-0.949
											0.720	U.7 1.7
	$\overline{\mathbf{x}}$		19.8		150.0+		99.81	99.80	120	117	-0.717	-0.714
	× ×		16.1				0.23	0.06	3.5	8.5	0.183	0.210
							0.20	\cup . \cup ω	<u> </u>	0.7	0.105	0.210
20	ARCO, PHILADELPHIA 31	NORMAL	8.25	*	150.0+	130.0	99.96	99.99	125	126	-0.563	-0.784
20	CHEVRON, PERTH AMBOY 16		22.0	*	150.0+	*	99.97	99.97	121	*		-0.285
20	CIBRO, ALBANY 21	BOSCAN	63.0	*	150.0+		99.99	99.98	122	105	-0.013	
20	EXXON, LINDEN 10	NORMAL	8.25	*	150.0+	*	99.95	99.97	124	*	-0.791	1
20	MONOCO, PITTSFORD 2	BOSCAN	18.25	*	150.0+	*	99.98	*	123	*		-0.621 *
20		NORMAL	8.75	*	150.0+	*	99.92	*		*	-0.313	*
20		MEX. VENZ.	8.50	9.0	150.0+	140.0+		99.89	122		-0.761	<u> </u>
	WEST BANK, PERTH AMBOY 5		84.0	*	150.0+				124	126		-0.633
	WEST DANK, TEKTH AMBOY S	DUSCAN	07.0	A	170.0	120.0+	77.70	99.90	120	*	-0.081	-0.124
	7		27.6		1500+		20.05	0005	107	110	0.400	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		29.3		150.0+		99.95	99.95	123	119		-0.404
			27.3				0.04	0.04	1.7	12.1	0.300	0.322
lac l	107/		15.50	15.0	15001	¥	00.00	00.75	1:5	21/	r	
05/100	B.P. PETRO CAN., OAKVILLE 107/108	CANADIAN	15.50	15.0 +	150.0+	*	99.90	99.75	118	*		-0.650
	ESSO CAN., MONTREAL 1	CAN. MEX.	11.0	9.0	150.0+	150.0+	99.94	99.99	120	116		-0.554
	GULF CAN, MONTREAL 2	MEXICAN		14.0	150.0+	150.0+		99.80	118	119		-0.556
	PETRO CAN, MONTREAL 7			25.0+	150.0+	140.0+		99.92	117	116		-0.661
85/100	SHELL CAN., MONTREAL -	EAST. CAN.	10.75	*	150.0+	*	99.66	*	120	*	-0.794	*
-												
-	\overline{X}		13.9		150.0+		99.86	99.87	119	117	-0.639	-0.605
-	6		3.2				0.12	0.11	1.3	1.7	0.096	
	* RESULTS NOT GIVEN											
	·											

1983 ASPHALT CEMENT	
MONITOR PROGRAM	CAR
AC SUPPLIER - LOCATION - LOT	GATICS
LUX CHEVRON, PERTH AMBOY -	Вс. 2
LUX MARATHON, TONAWANDA 13	M.5
LUX UNITED REF., WARREN -	ca. 9
$\overline{\chi}$	1.2
<u>X</u>	3
5 B.P. PETRO CAN., OAKVILLE 51/58	3
	7.9
5 UNITED REF., WARREN 6	
	6
<u> </u>	8
1571	
15 B.P. PETRO CAN., OAKVILLE 107/108	44
15 MARATHON, TONAWANDA 15	N. I
15 UNITED REF., WARREN 11	4.2
X	6
6	2
20 ARCO, PHILADELPHIA 31	.8
20 CHEVRON, PERTH AMBOY 16	.3
20 CIBRO, ALBANY 21	.2
20 EXXON, LINDEN 10	.0
20 MONOCO, PITTSFORD 2	
20 PARCO, STAMFORD 24	6
20 PETRO CAN, MONTREAL 1	N. 9
20 WEST BANK, PERTH AMBOY 5	4
$\overline{\mathbf{x}}$	9
6	4
5/100 B.P. PETRO CAN., OAKVILLE 107/108	3
5/100 ESSO CAN, MONTREAL 1	. 9
5/100 GULF CAN, MONTREAL 2	.2
5/100 PETRO CAN, MONTREAL 7	.9
	E.O
ZIO ZIIZEE CAN, II ION INERE	
7	5
5	5
*RESULTS NOT GIVEN	
IN KEDULIO NOT GIVEN	

15	183 ASPHALT CEMENT										
	TONLIUR PROGRAM	CRUDE	5		SETTLEMENT			0/0	0/0		
A	C SUPPLIER - LOCATION - LOT	SOURCE	PIN	COMPARATIVE		ASPHALTENES %/0	SATURATES		POLAR		
EL	JX CHEVRON, PERTH AMBOY -	BOSCAN/MAYA	+0245	*	MINUTES		%	AROMATICS.			
FL	IX MARATHON, TONAWANDA 13	MID	10.245		27.8	17.0	9.0	27.5	38.2		
FL	JX UNITED REF., WARREN -	PILE-CONT.	10.124	-1.346	38.2	11.0	11.5	29.9	42.5		
	WAKKEN	CAN MID-GNT	T1.022	*	92.8	11.2	18.0	30.8	33.9		
	- Channelle										
H	X		+0.464		52.9	13.1	12.8	29.4	38.2		
-	6		0.487		34.9	3.4	4.6	1.7	4.3		
-	DANIELE 21170	CANADIAN	-0.330	*	32.1	10.7	14.0	29.1	41.3		,
E	UNITED REF., WARREN 6	MID-CONT	-0.136	*	99.7	14.0	18.4	29.5	35.9		
			0.100		7.1	14.0	10.4	29.7	57.7		
	\overline{x}		-0.233		1 E O	12 1	1.4	20.7	70 /		
	× 6				65.9	12.4	16.2	29.3	38.6		
			0.137		47.8	2.3	3.1	0.3	3.8		
11	B.P. PETRO CAN . OAKULL FIOTING		0.070								
	THE PARTIES INCO	CANADIAN	-0.370		30.7	11.6	10.0	29.6	42.4		
	MARATHON, TONAWANDA 15	MID-CONT.	-0.370	-1.334	36.1	13.1	8.8	26.8	45.1		
1	UNITED REF., WARREN 11	CANADIAN	-0.406	-0.424	66.3	12.3	11.6	30.0	40.2		
_											
L	<u>X</u>		-0.382	-0.879	44.4	12.3	10.1	28.8	42.6		
	6	1	0.021	0.643	19.2	0.8	1.4	1.7	2.5		
			0.021	0.045	12.2	0.0	1.4	1.1	2.")		
2	ARCO, PHILADELPHIA 31	NORMAL	-0.145	-0.008	38.1	15.8	101	20.2	200		
2	CHEVRON, PERTH AMBOY 16	BOSCAN		*	21.7		10.1	29.3	39.8		
2		1				18.5	14.6	29.9	33.3		
20		BOSCAN		-2.564	17.3	17.0	7.8	21.6	44.2		
2		NORMAL		*	33.8	12.5	9.2	29.8	42.0		
4		BOSCAN		*	27.6	17.7	9.9	25.2	40.1		
20				*	30.0	12.9	10.1	28.5	41.6		
20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MEX. VENZ.	-0.086	+0.349	52.7	17.0	11.9	28.5	36.9		
12	WEST BANK, PERTH AMBOY 5	BOSCAN	-0.125	*	25.7	16.1	7.8	28.0	41.4		
	$\overline{\times}$		-0.109	-0.741	30.9	15.9	10.2	27.6	39.9		
	6		0.367	1.589	11.0	2,2	2.2	2.8	3.4		
				1.707	1.	2,2	F. L	2.0	J. 4		
85	00 B.P. PETRO CAN., OAKVILLE 107/108	CANIADIANI	-0370	*	26.9	11.2	9 /	202	112		
							9.6	29.2	44.3		
		CAN. MEX.			35.3	17.0	11.6	29.5	36.9		
		MEXICAN			38.0	16.8	12.2	27.8	36.2		
		MEX. VENZ.			48.3	15.1	12.0	27.7	38.9		
85	00 SHELL CAN, MONTREAL -	EAST CAN.	-0.195	*	93.5	14.3	11.8	32.5	36.0		
-											
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	-0.238	-0.323	48.4	14.9	11.4	29.3	38.5		
	6		0.173	0.386	26.3	2.4	1.1	1.9	3.5		
	* RESULTS NOT GIVEN										

Only one supplier submitted Asphalt Composition Analysis Results to the Materials Bureau.

Petro-Canada, Montreal, Que.

Ac-20 and 85/100

Comparison test results are noted as follows:

Asphalt Composition Analysis

11	7	-	0	ч
A	o.	- 4	- U	ı

	Materials Bureau	Petro-Canada
%Asphaltenes,	17.0	20.2
%Saturates,	11.9	16.2
% Naphthene Aromatics	28.5	25.8
%Polar Aromatics	36.9	35.3

85/100

	Materials Bureau	Petro-Canada
%Asphaltenes,	. 15.1	13.4
%Saturates,	12.0 .	14.9
%Naphthene Aromatics,	27.7	24.7
%Polar Aromatics,	38.9	42.1

VIII. Statistical Analysis of Test Results

The mean, range and standard deviation were determined for the number of samples tested in each grade of asphalt cement. For each test, this statistical information has been determined separately for the Materials Bureau results and when applicable, the comparable results submitted by the supplier.

A. Absolute Viscosity @ 140°F (Poises)

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples Mean Range Stan. Deviation		2 693 581 to 805 158.4	3 1436 1314 to 1615 158.4	8 2056 1818 to 2322 208.8	5 1366 1260 to 1570 119.1
	Comparative		130.4	200.0	***/ ° *
	FLUX	AC-5	AC-15	AC-20	85/100

	FLUX	AC-5	AC-15	AC-20	92/100
No. of Samples Mean	1	1_	$\frac{3}{1490}$	<u>8</u> 2052	4 14 9 5
Range		-	1340 to 1640	1797 to 2292	1340 to 1792
Stan. Deviation	n –	-	150.0 ·	195.4	210.8

B. Kinematic Viscosity @ 275°F (Centistokes)

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	$\frac{3}{216}$	2 233	3 345	<u>8</u> 4 <u>3</u> 6	<u>5</u> 334
Mean Range 165	to 282	231 to 234	340 to 350	394 to 507	314 to 359
Stan. Deviation	59.8	2.1	5.0	43.9	16.7

2. Comparative Results

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	1	<u>3</u>	<u>6</u>	4
Mean			338	432	333
Range	٠ ـــ		334 to 340	375 to 505	319 to 354
Stan. Deviation	-	-	3.3	55.4	11.6

C. Penetration @ 77°F

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	. 8	5
Mean	170	$1\overline{2}3$	79	75	88
Range	150 to 196	94 to 151	62 to 87	58 to 89	83 to 96
Stan. Deviation	23.5	40.3	14.4	. 12.7	4.9

2. Comparative Results

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	1	3	8	4
Mean	Ξ	_	81	77	$9\overline{1}$
Range	-	-	.65 to 94	65 to 91	85 to 97
Stan. Deviation	-	_	14.8	10.9	4.9

D. Penetration @ 39.2°F

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	<u>3</u>	2	3	8	5
Mean	53	36	25	27	30
Range	41 to 59	30 to 42	20 to 28	19 to 34	27 to 35
Stan. Deviation	10.4	8.5	4.4	5.5	3.2

2. Comparative Results

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	0	2	3	3
Mean	Ξ	_	. 24	$1\overline{9}$	37
Range		-	19 to 29	6 to 27	32 to 43
Stan. Deviation	~	-	7.1	11.6	5.7

E. Penetration Ratio

(Penetration @ 39.2°F + Penetration @ 77°F x 100)

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	31	30	32	36	35
Range	27 to 36	28 to 32	31 to 32	32 to 40	31 to 37
Stan. Deviation	4.6	2.8	0.6	2.6	2.5

Stan. Deviation

2.	Comparative Results						
	FLUX	AC-5	AC-15	AC-20	85/100		
No. of Samples	<u>1</u>	<u>0</u>	2	3	3		
Mean	-	-	30	27	39		
Range	-	-	29 to 31	7 to 38	35 to 47		

F. Thin Film Oven Test, % Loss

(Samples which showed weight gains were calculated as 0.000% Loss)

1.4

17.6

6.7

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	0.523	0.050	0.090	0.218	$0.\overline{0}24$
Range	0.050 to	0.000 to	0.000 to	0.000 to	0.000 to
	1.254	0.100	0.269	0.814	0.064
Stan. Deviation	0.642	0.071	0.155	0.270	0.026

Comparative Results

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	<u>1</u>	1	<u>3</u>	6	4
Mean	-	-	0.093	0.186	$0.\overline{0}21$
Range		~~	0.000 to	0.000 to	0.000 to
			0.280	0.590	0.060
Stan. Deviation	-		0.162	0.217	0.027

G. Thin Film Oven Test, Ductility @ 60°F, 5cm/min. (Centimeters)

1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	<u>3</u>	2	3	8	5
Mean	78.8	82.9	76.9	$4\overline{2}.3$	39.8
Range	25.50 to	15.75 to	15.25 to	12.0 to	13.50 to
	150.0+	150.0+	113.0	94.0	117.0
Stan. Deviation	64.1	94.9	53.7	28.5	43.9

2. Comparative Results

No. of Samples Mean	1	0 -	AC-15 2 70.0	AC-20 <u>5</u> 36.9	85/100 3
Range	-	-	23.0 to	10.0 to	69.3 18.0 to
Stan. Deviation	-	-	117.0 66.5	86.50 29.5	150.0+ 70.7

H. Thin Film Oven Test, Ductility @ 77°F, 5cm/min. (Centimeters)

1.	Materials Bure	eau			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	. <u>8</u>	<u>5</u>
Mean	$1\overline{3}9.8$	150.0+	150.0+	141.6	140.6
Range	119.50 to	150.0+	150.0+	82.50 to	108.50 to
	150.0+			150.0+	150.0+
Stan. Deviation	17.6	-	nue .	23.9	18.1
2.	Comparative Re	esults			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	1	3	6	4
Mean	Ξ	-	_	=	_
Range	-	-	140.0 t0	77.0 to	100.0+ to
			150.0+	150.0+	150.0+
Stan. Deviation	_			_	

I. Thin Film Oven Test, Absolute Viscosity @ 140°F (Poises)

1.	Materials Bur	eau			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	1705	1690	3599	5843	3858
Range	937 to	1139 to	2691 to	4138 to	2761 to
	3198	2240	4514	7550	5293
Stan. Deviation	1292.9	778.5	911.5	1173.0	942.9
2.	Comparative R	esults			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	<u>1</u>	1	3	6	4
Mean	_	-	3315	5358	4039
Range		-	2497 to	3034 to	2497 to
			3831	6926	4995
Stan. Deviation	-	-	716.7	1475.6	1135.6

<u>J. Absolute Viscosity @ 140°F Ratio</u> (After TFOT Viscosity @ 140°F : Original Viscosity @ 140°F)

1.	Materials Bu	reau			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	3.03	2.37	2.48	2.85	2.81
Range	2.11 to	1.96 to	2.05 to	2.01 to	2.10 to
	4.35	2.78	2.80	3.52	3.37
Stan. Deviation	n 1.17	0.58	0.39	0.56	0.53

2. C	omparative F				0 = 1 = 0 =
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	<u>1</u>	<u>1</u>	3	6	4
Mean	-	-	2.21	2.56	2.68
Range	-	-	1.86 to	1.48 to	1.86 to
g. b. 1.1			2.43	3.46	3.19
Stan. Deviation	-	_	0.31	0.77	0.57
77 ml. 4	E41 O T-	W		0 07E 0E	
		est, Kinema	tic Viscosity	@ 2/5 F	
(Cent	istakes)				
1. M	aterials Bur	.0011			
T. II	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8 8	5
Mean	3 4 5	$3\frac{2}{17}$	4 8 7	6 <u>8</u> 1	493
Range	223 to	302 to	444 to	543 to	443 to
	537	332	509	897	566
Stan. Deviation	168.3	21.2	37.0	118.1	50.3
Deans Dovidabion			3, 00	220.2	3013
2. C	omparative R	lesults			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	0	2	6	3
Mean		<u>0</u>	495	662	490
Range	-	_	490 to	476 to	487 to
			499	831	496
Stan. Deviation	-	_	6.4	134.3	4.9
L. Thin	Film Oven Te	st, Penetr	ation @ 77°F		
1. M	aterials Bur	eau			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	<u>3</u>	<u>2</u>	<u>3</u>	8	<u>5</u>
Mean	86	73.5	47	46	53
Range	68 to	56 to	39 to	40 to	51 to
~~~	112	91	52	52	58
Stan. Deviation	23.1	24.7	7.0	4.6	2.7
2. C	omparative F				0 = 1 = 0 0
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	1	<u>3</u>	<u>6</u>	<u>4</u> 5 <del>6</del>
Mean	-	-	50	49	
Range	-		41 to	42 to	52 to
Stan. Deviation			56.5	56 5 6	58
Stan. Deviation	,	_	7.9	5.6	2.7

# M. Penetration @ 77°F Ratio (After TFOT Penetration @ 77°F + Original Penetration @ 77°F x 100)

1	1.	Materials Bure	au			
•	. •	FLUX	AC-5	AC-15	AC-20	85/100
No. of Sample	es	<u>3</u>	2	3	8	5
Mean		50.1	$6\overline{0}.0$	60.1	61.9	60.6
Range		41.2 to	59.6 to	57.5 to	54.5 to	59.3 to
		57.1	60.3	62.9	69.0	62.7
Stan. Deviati	ion	8.1	0.5	2.7	5.3	1.3
	2	Commontion Do	1			
2	2.	Comparative Re FLUX	AC-5	AC-15	AC-20	05/100
No. of Sample	26			3	6 AC-20	85/100 4
Mean	<b>C</b> 5	<u> 1</u>	<u> </u>	$6\overline{1}.3$	$6\frac{0}{2}.8$	61-4
Range		_	_	54.3 to	55.7 to	56.5 to
nunge				66.5	70.8	66.5
Stan. Deviati	ion	_	960	6.3	6.3	4.2
<u>N.</u> <u>S</u>	Spec	ific Gravity @	77°F			
1	L.	Materials Bure				0= /= 00
v 6 6 1		FLUX	AC-5	AC-15	AC-20	85/100
No. of Sample	es	3	2	<u>3</u>	8	5
Mean .		1.014 1.000 to	1.012	1.022 1.019 to	1.028	1.024
Range		1.000 20	1.007 to		1.024 to	1.020 to 1.027
Stan. Deviati	ion	0.013	1.017 0.007	1.026 0.004	1.033 0.003	0.003
Stall. Deviati	LOII	0.013	0.007	0.004	0.003	0.003
. 2	2.	Comparative Re	sults			
		FLUX	AC-5	AC-15	AC-20	85/100
No. of Sample	es	<u>1</u>		3	6	4
Mean		-	<u>1</u>	1.024	1.030	1.026
Range		-		1.022 to	1.025 to	1.023 to
				1.027	1.033	1.028
Stan. Deviati	ion	-	-	0.003	0.003	0.003
0 1	m3	-b Deduct Classe	11 0	Cup, °F		
<u>0.</u> <u>F</u>	rias	sh Point, Cleve	land Open	cup, r		,
1	1.	Materials Bure	au			
		FLUX	AC-5	AC-15	AC-20	85/100
No. of Sample	es	3	2	3	8	5
Mean		532	579	5 <del>9</del> 4	5 <del>7</del> 2	59 <del>5</del>
Range		442 to	578 to	557 to	480 to	564 to
		600	580	615	665	625
Stan. Deviati	ion	81.4	1.4	32.1	71.8	27.0

2. C	omparative Res				
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	<u>1</u>	.3	<u>6</u>	4
Mean	-	-	610	-	-
Range	_		590 to	460 to	560 to
			625	550+	600+
Stan. Deviation	-	-	17.9	_	-
P. Ducti	lity @ 39.2°F,	1cm/min	Original Sa	mn1e	
	imeters)	, ICM/MILIT. 9	Oliginal ba	шрте	
1. M	aterials Burea	ıu			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	96.2	79.4	$1\overline{9}.8$	27.6	13.9
Range	17.50 to	8.75 to	7.50 to	8.25 to	10.75 to
	150.0+	150.0+	38.0	84.0	18.50
Stan. Deviation	69.7	99.9	16.1	29.3	3.2
2. C	omparative Res				0.7.14.00
N	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	<u>1</u>	2	<u>1</u>	4
Mean	-	~		-	0.0 05.01
Range Stan. Deviation	_		15.0+	-	9.0 to 25.0+
Stan. Deviation	_		-	-	-
		·			
Q. Ducti	lity @ 77°F, 5	cm/min	Original Sam	ple	
	imeters)			•	
	imeters)				
	imeters) aterials Burea			•	
1. Ma	aterials Burea	AC-5	AC-15	AC-20	85/100
1. Ma	aterials Burea FLUX 3	AC-5 2	AC-15 3	AC-20	<u>5</u>
1. Man No. of Samples Mean	aterials Burea FLUX 3 136.1	AC-5 2 150.0+	AC-15 <u>3</u> 150.0+	AC-20 8 150.0+	$\frac{5}{150.0+}$
1. Ma	aterials Bures FLUX  3 136.1 108.25 to	AC-5 2	AC-15 3	AC-20	<u>5</u>
1. Ma No. of Samples Mean Range	aterials Bures FLUX  3 136.1 108.25 to 150.0+	AC-5 2 150.0+	AC-15 <u>3</u> 150.0+	AC-20 8 150.0+	$\frac{5}{150.0+}$
1. Man No. of Samples Mean	aterials Bures FLUX  3 136.1 108.25 to	AC-5 2 150.0+	AC-15 <u>3</u> 150.0+	AC-20 8 150.0+	$\frac{5}{150.0+}$
1. Ma No. of Samples Mean Range Stan. Deviation	aterials Burea FLUX 3 136.1 108.25 to 150.0+ 24.1	AC-5 2 150.0+ 150.0+	AC-15 <u>3</u> 150.0+	AC-20 8 150.0+	$\frac{5}{150.0+}$
1. Ma No. of Samples Mean Range Stan. Deviation	aterials Bures FLUX  3 136.1 108.25 to 150.0+	AC-5 2 150.0+ 150.0+ - sults	AC-15 3 150.0+ 150.0+	AC-20 8 150.0+ 150.0+	50.0+ 150.0+ -
1. Man No. of Samples Mean Range Stan. Deviation 2. Co	aterials Burea FLUX 3 136.1 108.25 to 150.0+ 24.1	AC-5 2 150.0+ 150.0+ - sults AC-5	AC-15 3 150.0+ 150.0+ -	AC-20 8 150.0+ 150.0+	5 150.0+ 150.0+ - 85/100
1. Ma No. of Samples Mean Range Stan. Deviation	sterials Burea FLUX 3 136.1 108.25 to 150.0+ 24.1 comparative Res	AC-5 2 150.0+ 150.0+ - sults	AC-15 3 150.0+ 150.0+	AC-20 8 150.0+ 150.0+	50.0+ 150.0+ -
1. Man No. of Samples Mean Range Stan. Deviation 2. Co	sterials Burea FLUX 3 136.1 108.25 to 150.0+ 24.1 comparative Res	AC-5 2 150.0+ 150.0+ - sults AC-5	AC-15 3 150.0+ 150.0+ -	AC-20 8 150.0+ 150.0+	5 150.0+ 150.0+ - 85/100
1. Ma No. of Samples Mean Range Stan. Deviation 2. Co No. of Samples Mean	sterials Burea FLUX 3 136.1 108.25 to 150.0+ 24.1 comparative Res	AC-5 2 150.0+ 150.0+ - sults AC-5	AC-15 3 150.0+ 150.0+ - AC-15 2 -	AC-20 8 150.0+ 150.0+ - AC-20 4 -	5 150.0+ 150.0+ - 85/100 $\frac{3}{-}$
1. Ma No. of Samples Mean Range Stan. Deviation 2. Co No. of Samples Mean	sterials Burea FLUX 3 136.1 108.25 to 150.0+ 24.1 comparative Res	AC-5 2 150.0+ 150.0+ - sults AC-5	AC-15 3 150.0+ 150.0+ - AC-15 2 140.0+ to	AC-20 8 150.0+ 150.0+ - AC-20 4 120.0+ to	$ \begin{array}{r}                                     $

## R. Solubility in Trichloroethylene, (%)

1.	Materials Bure	011			
1.	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8 8	5
Mean	99.95	99.64	99.81	99.95	99.86
Range	99.90 to	99.36 to	99.54 to	99.86 to	99.66 to
	99.98	99.91	99.98	99.99	99.94
Stan. Deviation	0.04	0.39	0.23	0.04	0.12
					3,12
2.	Comparative Re	sults			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1_	<u>1</u>	2	6	4
Mean	_	Ξ	99.80	99.95	99 <b>.</b> 87
Range	-	-	99.75 to	99.89 to	99.75 to
			99.84	99.99	99.99
Stan. Deviation	-	-	0.06	0.04	0.11
0.5	booloo Doint E	4·h1 01-	1 (9E)		
S. Sof	tening Point, E	thylene Gly	/ce1, (°F)		
			/ce1, (°F)		
<u>s.</u> <u>sof</u>	Materials Bure	au		AC-20	85/100
1.	Materials Bure FLUX	au AC-5	AC-15	AC-20 8	85/100 5
	Materials Bure	au		AC-20 <u>8</u> 123	85/100 5 11 <del>9</del>
1. No. of Samples Mean	Materials Bure FLUX 3	au AC-5 2	AC-15 3	8	<u>5</u>
1. No. of Samples	Materials Bure FLUX 3/110	au AC-5 <u>2</u> 113	AC-15 3 120	$\frac{8}{123}$	11 <del>9</del>
1. No. of Samples Mean	Materials Bure FLUX 3 110 105 to	au AC-5 2 113 108 to	AC-15 3 120 118 to	$\frac{8}{123}$ 120 to	5 119 117 to
No. of Samples Mean Range	Materials Bure FLUX 3/110 105 to 115	au AC-5 2 113 108 to 118	AC-15 3 120 118 to 124	$\frac{8}{123}$ 120 to 125	119 117 to 120
No. of Samples Mean Range Stan. Deviation	Materials Bure FLUX 3/110 105 to 115	au AC-5 2 113 108 to 118 7.1	AC-15 3 120 118 to 124	8 123 120 to 125 1.7	119 117 to 120 1.3
No. of Samples Mean Range Stan. Deviation 2.	Materials Bure FLUX 3 110 105 to 115 5.0  Comparative Re FLUX	AC-5 2 113 108 to 118 7.1 sults AC-5	AC-15 3 120 118 to 124 3.5	8 123 120 to 125 1.7	119 117 to 120
1. No. of Samples Mean Range Stan. Deviation 2. No. of Samples	Materials Bure FLUX  3 110 105 to 115 5.0  Comparative Re	AC-5 2 113 108 to 118 7.1 sults AC-5	AC-15  3 120 118 to 124 3.5	8 123 120 to 125 1.7 AC-20 3	119 117 to 120 1.3 85/100
No. of Samples Mean Range Stan. Deviation 2. No. of Samples Mean	Materials Bure FLUX 3 110 105 to 115 5.0  Comparative Re FLUX	AC-5 2 113 108 to 118 7.1 sults	AC-15  3 120 118 to 124 3.5	8 123 120 to 125 1.7 AC-20 3 119	$ \begin{array}{r}                                     $
1. No. of Samples Mean Range Stan. Deviation 2. No. of Samples	Materials Bure FLUX 3 110 105 to 115 5.0  Comparative Re FLUX	AC-5 2 113 108 to 118 7.1 sults AC-5	AC-15  3 120 118 to 124 3.5	8 123 120 to 125 1.7 AC-20 3	119 117 to 120 1.3 85/100

# T. Penetration Viscosity Number, (PVN)

Stan. Deviation

The penetration viscosity number, PVN, is an indicator of the temperature susceptibility of asphalt cements. Lower PVN indicates greater temperature susceptibility. It is suggested that an asphalt cement with a PVN less than -0.5 is temperature susceptible.

8.5

12.1

1.7

$$PVN = \frac{Log A - Log V}{Log A - Log B} x \quad (-1.5)$$

Where Log A = 4.25800 - 0.79674 Log (Penetration @  $77^{\circ}F$ ) Log B = 3.46289 - 0.61094 Log (Penetration @  $77^{\circ}F$ ) Log V = Log (Viscosity @  $275^{\circ}F$ , Kinematic)

The results indiate that most of these asphalt cements are temperature susceptible by PVN criteria.

### 1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	. 8	5
Mean	$-0.\overline{617}$	-0.859	-0.717	$-0.4\overline{29}$	$-0.63\overline{9}$
Range	-0.161 to	-0.608 to	-0.599 to	-0.013 to	-0.556 to
	-1.177	-1.109	-0.928	-0.791	-0.794
Stan. Deviation	0.516	0.354	0.183	0.300	0.096
2. Co	omparative Re	sults			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	1	3	6	4
Mean	=	=	-0.714	-0.404	$-0.\overline{605}$
Range	-	-	-0.543 to	+0.021 to	-0.554 to
			-0.949	-0.784	-0.661
Stan. Deviation		_	0.210	0.322	0.058

### U. Penetration Index Numbers, (PIN)

The penetration Index Number is another indicator of temperature susceptibility of asphalt cements. Large negative values of PIN indicate greater temperature susceptibility. "Typical" asphalts have values between +2 and -2.

$$PIN = \frac{30}{1 + 90 PTS} - 10$$

PTS = Penetration Temperature Susceptibility

PTS = 
$$\frac{\text{Log } 800 - \text{Log (Penetration @ 77°F)}}{\text{Softening Point (°F)} - 77°F}$$

### 1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	+0.464	$-0.\overline{2}33$	-0.382	-0.109	$-0.2\overline{3}8$
Range	+0.124 to	-0.136 to	-0.370 to	+0.291 to	-0.071 to
	+0.1022	-0.330	-0.406	-0.687	-0.464
Stan. Deviation	0.487	0.137	0.021	0.367	0.173

2. Comparative Results

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	1	0	2	3	3
Mean	-	-	<del>-</del> 0.879	-0.741	-0.323
Range	- Max	-	-0.424 to	+0.349 to	+0.123 to
			-1.334	-2.564	-0.562
Stan. Deviation	-	-	0.643	1.589	0.386

# V. A Settling Test to Evaluate The Relative Degree of Dispersion of Asphaltenes

by

- H. Plancher ) Laramie Energy Technology Center
  J. C. Petersen ) U.S. Department of Energy
  P.O. Box 3395
  Laramie, Wyoming 82071
- A. J. Hoiberg )

  S. C. Suhaka )

  R&D Center

  Ken Caryl Ranch
  Denver, Colorado 80217

The asphaltene settling test is used to evaluate the relative degree of dispersion of asphaltenes from paving asphalts. This test distinguishes differences in asphaltene settling times of asphalts in their hexane-maltene solutions. The test involves digesting asphalt in n-hexane, transferring the contents into a graduated cylinder and measuring the time required for the asphaltene meniscus to settle to the 25 ml. mark of a 50 ml. cylinder. Slower settling times indicate a greater degree of dispersion of the asphaltenes and thus a more compatible asphalt, which in turn is considered to be an important property that contributes to asphalt durability. The test is extremely sensitive to changes in asphalt composition. Time is reported in minutes.

#### 1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	. 8	5
Mean	$5\overline{2}.9$	$6\overline{5}.9$	44.4	30.9	48.4
Range	27.8 to	32.1 to	30.7 to	17.3 to	26.9 to
	92.8	99.7	66.3	52.7	93.5
Stan. Deviation	34.9	47.8	19.2	11.0	26.3

# W. Asphalt Composition Analysis, by Liquid Chromatographic Separation and Densimetric Characterization

(Proposed) 1983 Annual ASTM Standards, Section 4, Volume 04.03, pages 792 to 799.

The purpose is to separate the four generic fractions present in asphalt. These fractions are saturates, naphthene aromatics, polar aromatics, and asphaltenes. The relative amount of each fraction plays a role in determining the physical properties of the asphalt. These properties include viscosity, ductility, softening point and temperature susceptibility.

### The procedure follows:

The percent asphaltene is determined by dispersing the asphalt in n-heptane and refluxing. The insolubles are the asphaltenes.

The remaining three fractions are determined by absorbing the deasphaltened n-heptane solution on a calcined alumina chromatography column and eluting (removing) each fraction with a different solvent. Saturates are eluted with n-heptane. Naphthene aromatics are eluted with toluene. Polar Aromatics are eluted with 50/50 toluene - methanol solution, followed by trichloroethylene. The solvents are then evaporated and weight precentages of each fraction with respect to the original asphalt sample are determined.

### Asphaltenes, %

1.	Materials Bure	au			
	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	13.1	$1\overline{2}.4$	12.3	15.9	14.9
Range	11.0 to	10.7 to	11.6 to	12.5 to	11.2 to
	17.0	14.0	13.1	18.5	17.0
Stan. Deviation	3.4	2.3	0.8	2.2	2.4

# Saturates, %

1.	Materials Bur	eau			
	FLUX	. AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	12.8	16.2	10.1	10.2	11.4
Range	9.0 to	14.0 to	8.8 to	7.8 to	9.6 to
	18.0	18.4	11.6	14.6	12.2
Stan. Deviation	4.6	3.1	1.4	2.2	1.1

## Naphthene - Aromatics, %

### 1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	29.4	29.3	28.8	$2\overline{7}.6$	29.3
Range	27.5 to	29.1 to	26.8 to	21.6 to	27.7 to
	30.8	29.5	30.0	29.9	32.5
Stan. Deviation	1.7	0.3	1.7	2.8	1.9

### Polar Aromatics, %

### 1. Materials Bureau

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	3	2	3	8	5
Mean	38.2	38.6	42.6	39.9	38.5
Range	33.9 to	35.9 to	40.2 to	33.3 to	36.0 to
	42.5	41.3	45.1	44.2	44.3
Stan. Deviation	4.3	3.8	2.5	3.4	3.5

# IX. Graphs and Charts of Related Materials Information

On the following pages are found a series of graphs and charts providing a comparison of Thin Film Oven Test Before and After, and charts showing Asphaltene Dispersion Settling Test.



























## COMPARISON 85/100 BEFORE VS. AFTER THIN FILM OVEN TEST





## COMPARISON 85/100 BEFORE VS. AFTER THIN FILM OVEN TEST







A = Flux, CHEVRON, PERTHAMBOY B = Flux, MARATHON, TONAWANDA

C = Flux, UNITED REF, WARREN



A=AC-5, B.P. PETRO CANADA, OAKVILLE B=AC-5, UNITED REF., WARREN, PA.





A=AC-15, B.P. PETRO CAN., OAKVILLE, ONT. B=AC-15, MARATHON, TONAWANDA C=AC-15, UNITED REF., WARREN, PA.

5.). P.









A=85/100, B.P. Petro Can., Oakville D=85/100, Petro Can., Montreal B=85/100, Esso Can., Montreal E=85/100, Shell Can., Montreal 5.3.P. C=85/100, GULF CAN., MONTREAL



