Time Series Analysis: Second laboratory

5 de febrero de 2020

Second Laboratory contents.

- Simulation of an AR(p) processes.
- Effects on ACF and PACF of changes in specifications of the AR(1)
- Simulation of a MA(q) processes
- Effects on ACF and PACF of changes in specifications of the MA(1)
- Tentative identification of ARMA models for series in data market.

Simulation of an AR(p) models.

Codigo en R for an AR(1)

x<-arima.sim(list(ar=0.8),n=200, rand.gen=rnorm)

Simulation of an AR(p) models.

Codigo en R for an AR(3)

x < -arima.sim(list(ar=c(0.4, -0.2, 0.3)), n=200)

10 20 30 40 50

Simulated AR(3) process

Time

60

Effects on ACF and PACF of changes in specifications of the AR(1).

```
arfun<-function(N.n.phi.s.c){
#simulates N AR(p) processes with n observations, parameter phi standard deviation of a=s
M=matrix(ncol=N.nrow=n)
for (i in 1:N){
x=arima.sim(list(ar=phi),sd=s,n)
M[.i]=x+c
#Computes the variance ACF and PACF
variance=matrix(ncol=N.nrow=1)
m=matrix(ncol=N,nrow=1)
rho=matrix(ncol=N.nrow=25)
pi=matrix(ncol=N.nrow=24)
for(i in 1:N){
variance[i]=var(M[.i])
m[i]=mean(M[.i])
r=acf(M[,i], lag.max=24,plot=FALSE)
rhof.il=r$acf
pr=acf(M[,i],lag.max=24,type="partial",plot=FALSE)
pi[,i]=pr$acf
#boxplots for the ACF and PACF of lags 1 to 4
par(mfrow=c(2,2))
boxplot(rho[2,],rho[3,],rho[4,],rho[5,], main="ACF coefficients for lags 1 to 4")
boxplot(pi[1,],pi[2,],pi[3,],pi[4,], main="PACF coefficients for lags 1 to 4")
plot(variance[1:N].type="I", main="Variance of the generated processes")
plot(m[1:N],type="l", main="Mean of the generated processes")
```

Effects on ACF and PACF of changes in specifications of the AR(1).

Codigo en R for simulated AR(1) processes

arfun(200,60,0.8,1,0)

ACF coefficients for lags 1 to 4

PACF coefficients for lags 1 to 4

Variance of the generated process

Mean of the generated processes

Assignment. Deadline Feb, 13th.

Use the function arfun to discuss changes in the unconditional mean and variances, and in the ACF and PACF coefficients when:

- The paramater N=number of simulated processes changes.
- The parameter n=number of observations for each process changes.
- \blacksquare The parameter ϕ changes.
- The parameter c=constant of the process changes.
- The parameter σ_a^2 changes.