

Data Collection and Preprocessing Phase

Date	20 July 2024
Team ID	SWTID1720110595
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	ID Customer_care_calls
Univariate Analysis	Distribution of Customer_care_calls 3500 -


```
# Outliers and Anomalies
                                z_scores = np.abs(stats.zscore(data[numerical_features]))
                                outliers = np.where(z scores > 3)
                                print("Outliers detected:", outliers)
                                for feature in numerical features:
Outliers and Anomalies
                                    plt.figure(figsize=(10, 4))
                                    sns.boxplot(data[feature])
                                    plt.title(f'Boxplot of {feature}')
                                    plt.show()
                                data_cleaned = data[(z_scores < 3).all(axis=1)]</pre>
Data Preprocessing Code Screenshots
Loading Data
                                 # Data preprocessing
                                 data = data.fillna(method='ffill')
Handling Missing Data
Data Transformation
                                data['Total_Interaction'] = data['Customer_care_calls'] * data['Customer_rating']
Feature Engineering
                                data['Cost_per_Weight'] = data['Cost_of_the_Product'] / data['Weight_in_gms']
```


Serialize the preprocessor
with open('preprocessor.pkl', 'wb') as f:
pickle.dump(preprocessor, f)

Serialize the trained stacking pipeline
with open('model.pkl', 'wb') as f:
pickle.dump(stacking_pipeline, f)