Started 9/19

Case Study for Geometric Invariance Local Image Features

EECS 442 Computer Vision

Instructor: Jason Corso (jjcorso) web.eecs.umich.edu/~jjcorso/t/

Plan

- What are local image features and why are they useful.
- Local Image Feature Detection
- Invariance
- Local Image Feature Description

1. Detect feature points in both images.

- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.

- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.
- 3. Use the pairs to align the images.

- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.
- 3. Use the pairs to align the images.

Reduction
Matching
Estimation

- - 1. Shift or Translation
 - 2. Scale? Rotation?
 - 3. Affine?
 - 4. Viewpoint?

- - 1. Shift or Translation
 - 2. Scale? Rotation?
 - 3. Affine?
 - 4. Viewpoint?
- 2. Scene layout?

- - 1. Shift or Translation
 - 2. Scale? Rotation?
 - 3. Affine?
 - 4. Viewpoint?
- 2. Scene layout?
- 3. Photometric invariants?

Consider an Application: Detect Object Instances

- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.
- 3. Use the pairs to match object instances.

- 1. Shift or Translation
- 2. Scale? Rotation?
- 3. Affine?
- 4. Viewpoint?
- 2. Scene layout?
- 3. Photometric invariants?
- 4. Character shape invariance? "Font" invariance.

Case Study in Local Image Features

- Basic flow of applications in the case study
- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.
- 3. Use the pairs to solve objective function.

Case Study in Local Image Features

- Basic flow of applications in the case study
- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.
- 3. Use the pairs to solve objective function.

Reduction Matching Estimation

Case Study in Local Image Features

- Basic flow of applications in the case study
- 1. Detect feature points in both images.
- 2. Find corresponding pairs of feature points.
- 3. Use the pairs to solve objective function.
- Other applications of local image features
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation

Reduction Matching Estimation

Advantages of local features

Locality

features are local, so robust to occlusion and clutter

Distinctiveness:

can differentiate a large database of objects

Quantity

hundreds or thousands in a single image

Efficiency

real-time performance achievable

Generality

exploit different types of features in different situations

Challenges

- Repeatability
- Uniqueness
- Invariance w.r.t. Matching

What makes a good feature?

Repeatability

Illumination invariance

Scale invariance

Pose invariance

- Rotation
- Affine

Saliency

Locality

One criterion is uniqueness

Look for image regions that are unusual

Lead to unambiguous matches in other images

How to define "unusual"?

Local measures of uniqueness

Suppose we only consider a small window of pixels

– What defines whether a feature is a good or bad candidate?

Feature detection

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Stop Slides

See hand-written lecture notes for the mathematical derivation of the corner operator.