- 1. Find the most general antiderivative of the function.
 - (a) $f(x) = x^3 + x^2 + x + 1$
 - (b) $f(x) = e^x \frac{1}{x^2}$
 - (c) $f(x) = \sqrt{3x + 4}$
 - (d) $f(x) = \sec^2(2x) 2\sin x + 3\cos x$
 - (e) $f(x) = 2x \cos(x^2) \frac{2x}{x^2+1}$
 - (f) $f(\textcircled{3}) = \ln \textcircled{3}$ (Hint: what is $(\textcircled{3} \ln \textcircled{3})'$?)

2. Let $\mathcal{Q}(x)$ be a function satisfying

Find $\Omega(x)$.

3. What is the maximum area of a rectangle inscribed in a circle of radius 1?

1. Find the most general antiderivative of the function.

(a)
$$f(x) = x^3 + x^2 + x + 1$$

(b)
$$f(x) = e^x - \frac{1}{x^2}$$

(c)
$$f(x) = \sqrt{3x + 4}$$

(d)
$$f(x) = \sec^2(2x) - 2\sin x + 3\cos x$$

(e)
$$f(x) = 2x\cos(x^2) - \frac{2x}{x^2+1}$$

(f)
$$f(\textcircled{3}) = \ln \textcircled{3}$$
 (Hint: what is $(\textcircled{3} \ln \textcircled{3})'$?)

All C's below are constants.

(a)
$$F(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + C$$

(b)
$$F(x) = e^x + \frac{1}{x} + C$$

(c)
$$F(x) = \frac{1}{3} \frac{2}{3} (3x+4)^{3/2} + C = \frac{2}{9} (3x+4)^{3/2} + C$$

(d) Recall
$$\tan(x)' = \sec^2(x)$$
. $F(x) = \frac{1}{2}\tan(2x) + 2\cos x + 3\sin x + C$.

(e) We have
$$(\textcircled{@} \ln \textcircled{@})' = \ln \textcircled{@} + 1$$
, so $(\textcircled{@} \ln \textcircled{@} - \textcircled{@})' = \ln \textcircled{@}$ and antriderivative is $F(\textcircled{@}) = \textcircled{@} \ln \textcircled{@} - \textcircled{@} + C$.

2. Let $\mathcal{D}(x)$ be a function satisfying

Find $\Omega(x)$.

From $\text{$\Omega''(x)$} = (\text{$\Omega'(x)$})' = \sqrt{x+1}$, we have $\text{$\Omega'(x)$} = \frac{2}{3}(x+1)^{3/2} + C_1$, and $1 = \text{$\Omega'(0)$} = \frac{2}{3} + C_1$ gives $C_1 = \frac{1}{3}, \text{$\Omega'(x)$} = \frac{2}{3}(x+1)^{3/2} + \frac{1}{3}$. Then we have $\text{$\Omega(x)$} = \frac{2}{5}\frac{2}{3}(x+1)^{5/2} + \frac{1}{3}x + C_2 = \frac{4}{15}(x+1)^{5/2} + \frac{1}{3}x + C_2$ and $1 = \text{$\Omega(0)$} = \frac{4}{15} + C_2$ gives $C_2 = \frac{11}{15}$. So the function is

$$\mathcal{L}(x) = \frac{4}{15}(x+1)^{5/2} + \frac{1}{3}x + \frac{11}{15}.$$

3. What is the maximum area of a rectangle inscribed in a circle of radius 1?

Let a,b be the lengths of the sides of the rectangle. Then the length of the diagonal is $\sqrt{a^2+b^2}$, and this equals 2 by the assumption. Since the area is S=ab, our goal is to maximize ab under $\sqrt{a^2+b^2}=2$. We can express b in terms of a as $b=\sqrt{4-a^2}$, and can view $S=ab=a\sqrt{4-a^2}$ as a function in a, where the domain of S(a) is 0 < a < 2. We have $S'(a) = \sqrt{4-a^2} + a\frac{1}{2}\frac{-2a}{\sqrt{4-a^2}} = \frac{4-2a^2}{\sqrt{4-a^2}}$, and the critical number of S(a) is $S'(a) = \frac{4-2a^2}{\sqrt{4-a^2}} = 0 \Leftrightarrow a = \sqrt{2}$ (note that a cannot be $-\sqrt{2}$ since length should be positive). One can check that S(a) increases (resp. decreases) for $0 < a < \sqrt{2}$ (resp. $\sqrt{2} < 2$, hence S attains its absolute maximum (not only local maximum) at $a = \sqrt{2}$, which is $S(\sqrt{2}) = 2$. So the maximum area is 2 that is attained by the square of length $\sqrt{2}$.