Math 101 Homework 6

Jeff Carney

February 3, 2017

4.8

(a)

<u>Proof that S is bounded above:</u> Let $s \in S$. By the definition of S and T, $\exists t \in T \text{ s.t. } s \leq t$. Thus, t is an upper bound for S. Therefore S is bounded above.

<u>Proof that T is bounded below:</u> Let $t \in T$. By the definition of S and T, $\exists s \in S \text{ s.t. } s \leq t$. Thus, s is a lower bound for T. Therefore T is bounded below.

(b)

WTS lub(S) \leq glb(T). We can prove that this by contradiction. Assume that lub(S) > glb(T). Then we know, by the Density of Rationals, that $\exists m, n \in \mathbb{Z} \text{ s.t. } \frac{m}{n}$ is between lub(S) and glb(T). Let m be the midpoint between lub(S) and glb(T). Note that by the definition of a greatest lower bound, $\exists t \in T \text{ s.t. } t < m$. And by the definition of a least upper bound, $\exists s \in S \text{ s.t. } m < s$. So t < m < s, but this violates the definition of S and T $\Rightarrow \Leftarrow$. Thus lub(S) \leq glb(T).

- (c) If S = [1, 5] and T = [5, 10], then the definitions of S and T in our problem are satisfied and $S \cap T = 5$.
- (d) If S = (1, 5) and T = (5, 10), then the definitions of S and T in our problem are satisfied, lub(S) = glb(T) = 5, and $S \cap T = \emptyset$.

4.10

We are given that a>0. WTS $\exists n\in\mathbb{N} \text{ s.t } \frac{1}{n}< a< n$. Let $n=\frac{a^2+1}{a}$. I claim that $\frac{1}{n}< a< n$, that is $\frac{a}{a^2+1}< a<\frac{a^2+1}{a}$. First we will show that $\frac{a}{a^2+1}< a$:

$$\frac{a}{a^2 + 1} < a$$

$$a < a^3 + a$$

$$0 < a^3$$

This is true because a > 0. Thus, $\frac{a}{a^2+1} < a$. Now we will show the second half of the inequality, $a < \frac{a^2+1}{a}$:

$$a < \frac{a^2 + 1}{a}$$
$$a^2 < a^2 + 1$$
$$0 < 1$$

This is true. Thus, $a<\frac{a^2+1}{a}$. Combining what we know we have that $\frac{a}{a^2+1}< a<\frac{a^2+1}{a}$ as we desired.

4.14a

WTS lub(A + B) = lub(A) + lub(B).

First we can show that for each $b \in B$, lub(A + B) - b is an upper bound for A. This can be proved by contradiction. Assume that $\exists b \in B$ s.t. lub(A+B)-b is not an upper bound for A. Then we know $\exists a \in A$ s.t. a > lub(A+B)-b. Thus, $a + b > lub(A + B) \Rightarrow \Leftarrow$ because $a + b \in A + B$, so it cannot be greater than lub(A + B). Therefore, for each $b \in B$, lub(A + B) - b is an upper bound for A. Thus for each $b \in B$, $lub(A) \le lub(A + B)$ - $b \Rightarrow n \le lub(A + B)$ - lub(A). Thus, lub(A + B) - lub(A) is an upper bound for B. Therefore, $lub(B) \le lub(A + B)$ - $lub(A) \Rightarrow lub(A) + lub(B) \le lub(A + B)$.

We know that $\forall a \in A$, $\text{lub}(A) \ge a$. And $\forall b \in B$, $\text{lub}(B) \ge b$. Thus, $\forall a \in A$ and $b \in B$, $\text{lub}(A) + \text{lub}(B) \le a + b \le \text{lub}(A + B)$. So, $\text{lub}(A) + \text{lub}(B) \le \text{lub}(A + B)$.

Given that $lub(A) + lub(B) \le lub(A + B)$ and $lub(A) + lub(B) \le lub(A + B)$, lub(A) + lub(B) = lub(A + B).

4.15

We are given $a,b \in \mathbb{R}$. WTS $\forall n \in \mathbb{N}$ if $a \leq b + \frac{1}{n}$, then $a \leq b$. Let $A = \{a\}$, $B = \{b\}$, and $C = \{\frac{1}{n}|n \in \mathbb{N}\}$. We proved in the last homework that $\mathrm{glb}(C) = 0$. There is only one element, b, in B, thus the $\mathrm{glb}(B) = b$. By 4.14a, we know that $\mathrm{glb}(B+C) = \mathrm{glb}(B) + \mathrm{glb}(C)$ where $B+C = \{b+\frac{1}{n}|\forall n \in \mathbb{N}\}$. Thus $\mathrm{glb}(B+C) = b$. There is only one element in A, thus $\mathrm{lub}(A) = a$. Given that $\forall n \in \mathbb{N}$ if $a \leq b+\frac{1}{n}$, we know, by 4.8b, that $\mathrm{lub}(A) \leq \mathrm{glb}(B) \Rightarrow a \leq b$.