學號:R05546022 系級:工工所碩二 姓名:謝立成

請實做以下兩種不同 feature 的模型, 回答第 (1) ~ (3) 題:

- (1) 抽全部 **9** 小時內的□染源 **feature** 的一次項**(**加 **bias)**
- (2) 抽全部 **9** 小時內 **pm2.5** 的一次項當作 **feature(**加 **bias)** 備註:
 - a. NR 請皆設□ 0. 其他的數□不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差□ (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

9hr	All feature	only pm2.5
Private	7.4663	7.4401
public	5.3011	5.6272
RMSE	6.4748	6.5962

We can see that although only PM2.5 can train the public data lower, the private data is better when all feature is taken into account.

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時, 討論其變化

5hr	All feature	only pm2.5	
Private	7.7375	7.579	
public	5.3782	5.7919	
RMSE	6.6631	6.7449	

Same result as above, but is poorer than that of 9 hour training

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

It appears to be little difference when λ is different

	Regularization(λ)	public	private	<i>RMSE</i>
all	0.1	7.4663	5.301	6.4748
features	0.01	7.4663	5.301	6.4748
	0.001	7.4663	5.301	6.4748
	0.001	7.4663	5.3011	6.4748
only	0.1	7.7375	5.3782	6.6631
pm2.5	0.01	7.7375	5.3782	6.6631
	0.001	7.7375	5.3782	6.6631
	0.001	7.7375	5.3782	6.6631

- - (a) $(X^TX)X^Ty$
 - $(b) \ (X^TX)^{\text{-}0}X^Ty$
 - $(c) \ (X^TX)^{\text{-}1}X^Ty$
 - (d) $(X^TX)^{-2}X^Ty$

ANS : (c)

$$L = \sum_{1}^{N} (y - w^{T} X)^{T} (y - w^{T} X)$$

Minimize loss:

$$\frac{dL}{dW} = 2 \times (x^{T}y - x^{T}xw) = 0$$

$$\rightarrow \hat{w} = (x^{T}x)^{-1} x^{T}y$$