NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA 1505 Mathematics I Tutorial 3

- 1. Find the area of the following region.
 - (a) The region bounded between $y = \frac{1}{2} \sec^2 x$, $y = -4 \sin^2 x$, $x = -\frac{\pi}{3}$ and $x = \frac{\pi}{3}$.
 - (b) The region in the first quadrant bounded by y = x, $y = \frac{1}{4}x^2$ and below y = 1.
 - (c) The region bounded by $y = 4 x^2$, y = 2 x, x = -2 and x = 3.

Ans. (a) $\frac{4}{3}\pi$ (b) $\frac{5}{6}$ (c) $\frac{49}{6}$

- 2. (a) Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.
 - (b) The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

Ans. (a) $\frac{64}{15}\sqrt{2}\pi$ (b) $\frac{8}{3}\pi$

3. Find the radius of convergence of the following series.

(a) $\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n}$ (b) $\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n}$ (c) $\sum_{n=1}^{\infty} (-1)^n (4x+1)^n$ (d) $\sum_{n=1}^{\infty} \frac{3^n x^n}{n!}$ (e) $\sum_{n=1}^{\infty} n^n x^n$ (f) $\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$

Ans. (a) 1 (b) 1/3 (c) 1/4 (d) ∞ (e) 0 (f) 1/4

4. Find the sum of the geometric series inside the interval of convergence

 $1 - \frac{1}{2}(x-3) + \frac{1}{4}(x-3)^2 - + \dots + (-\frac{x-3}{2})^n + \dots$

Ans. $\frac{2}{r-1}$

5. Find the Taylor series for the following functions:

(a)
$$\frac{x}{1-x}$$
 at $x=0$;

(b)
$$\frac{1}{x^2}$$
 at $x = 1$;

(c)
$$\frac{x}{1+x}$$
 at $x = -2$;

Ans. (a)
$$\sum_{n=0}^{\infty} x^{n+1}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n (n+1)(x-1)^n$ (c) $2 + \sum_{n=1}^{\infty} (x+2)^n$

6. Find a quadratic (2nd degree) polynomial to approximate each of the following functions near x = 0:

(i)
$$e^{\sin x}$$
 and (ii) $\ln(\cos x)$.

Ans. (i)
$$\frac{1}{2}x^2 + x + 1$$
 (ii) $-\frac{1}{2}x^2$

7. Let

$$S = \sum_{n=0}^{\infty} \frac{1}{n! (n+2)}.$$

In this question, we will introduce two different ways to find the value of S, one by integration and the other by differentiation.

- (i) Integrate the Taylor series of xe^x to show that S=1.
- (ii) Differentiate the Taylor series of $\frac{e^x-1}{x}$ to show that S=1.