

# **Fourier Analysis**

Author: Javier Duoandikoetxea

**Date:** August 26, 2023

## **Contents**

1 Fourier Series and Integrals

1

## **Chapter 1 Fourier Series and Integrals**

We will go through the book's notes in this document. Chapter 1 is organized as follows:

- 1. Fourier coefficients and Series
- Criteria for pointwise convergence
- 3. Convergence in norm
- 4. summability methods
- 5. The fourier transform of  $L^1$  functions
- 6. Schwartz class and tempered distributions
- 7. Fourier transform on  $L^p$ , for 1
- 8. Convergence and summability of Fourier Integrals
- 9. Further results

**Some Notations** The Lebesgue measure in  $\mathbb{R}^n$  will be denoted using dx, and on the unit sphere  $S^{n-1}$  will be  $d\sigma$ . Let  $a=(a_1,...,a_n)\in\mathbb{N}^n$  be a multiindex, and  $f:\mathbb{R}^n\to\mathbb{C}$ , then

$$D^a f = \frac{\partial^{|a|} f}{\partial_{x_1}^{a_1} \dots \partial_{x_n}^{a_n}}$$

where  $|a| = a_1 + ... + a_n$ .

#### Theorem 1.1 (Minkowski's integral inequality.)

Given  $(X, \mu)$ ,  $(Y, \nu)$  as  $\sigma$ -finite measure spaces, we have the following inequality

$$\left(\int_X \left| \int_Y f(x,y) d\nu(y) \right|^p d\mu(x) \right)^{1/p} \le \int_Y \left(\int_X |f(x,y)^p d\mu(x) \right)^{1/p} d\nu(y)$$

Taking  $\nu$  to be the counting measure over a two point set S=1,2 gives the usual Minkowski inequality

$$||f_1 + f_2||_{L^p} \le ||f_1||_{L^p} + ||f_2||_{L^p}$$

We will use  $\mathcal{D}$  to denote the space of test functions, i.e.  $C_c^{\infty}$ , and  $\mathcal{S}$  to denote the space of Schwartz functions. Recall the dual of  $\mathcal{D}$ , denoted as  $\mathcal{D}'$  is the space of distributions, and  $\mathcal{S}'$  is the space of temperate distributions.

#### Definition 1.1 (Convolution of distribution)

Let  $T \in \mathcal{D}'$ , and  $f \in \mathcal{D}$ , then we define

$$T * f(x) = \langle T, \tau_x \tilde{f} \rangle$$

where  $\tilde{f}(y) = f(-y)$ , and  $\tau_x f(y) = f(x+y)$ . Hence it can be read as  $T * f(x) = \langle T, f(x-y) \rangle$ 

### 1.0.1 1.1 Review of definitions

We now do some math. If f is a trigonometric series, of the form

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{2\pi i nx}$$

Then we find  $c_n$  for any fixed n by multiplying f(x) by  $e^{-2\pi i nx}$ , and integrate. Namely, we have

$$\int_{0}^{1} \sum_{n} c_{n} e^{2\pi i nx} \cdot e^{-2\pi i nx} = \int_{0}^{1} c_{n} = c_{n}$$

We denote the additive group of  $\mathbb{R}/\mathbb{Z}$  by  $\mathbb{T}$ , which gives [0,1), and naturally identifies with  $S^1$ . Hence, saying a function f defined on  $\mathbb{T}$  is the same as saying f is defined on  $\mathbb{R}$  with period 1.

Fix  $f \in L^1(\mathbb{T})$ , we associate the sequence  $\{\hat{f}(n)\}$  of f defined by

$$\hat{f}(k) = \int_0^1 f(x)e^{-2\pi i nx} dx$$

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi i nx}$$

And its Fourier series defined as

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi i nx}$$

1.0.2 1.2