浙江工商大学 2016 / 2017 学年第一学期考试试卷

课程名称:	线性代数(理)	考试方式:	<u> 闭卷</u>	完成时限:	120 分钟

班级名称: ______ 学号: _____ 姓名: _____

题号	1	=	=	四	总分
分值	15	15	65	5	100
得分					
阅卷人					

- 一、单项选择题(每小题3分,共15分)
- 1、若 α_1 , α_2 , α_3 , β_1 , β_2 都是四维列向量,且四阶行列式 $|(\alpha_1, \alpha_2, \alpha_3, \beta_1)|=m$, $|(\alpha_1, \alpha_2, \beta_2, \alpha_3)|=n$, 则行列式 $|(\alpha_1, \alpha_2, \alpha_3, \beta_1 + \beta_2)| = ($)

$$(A)$$
 $m+n$

(A)
$$m+n$$
 (B) $-(m+n)$ (C) $n-m$

$$(D)$$
 $m-1$

2.
$$abla A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix}, B P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,则必有()

(A)
$$AP_1P_2=B$$

(B)
$$A P_2 P_1 = B$$

(A)
$$AP_1P_2=B$$
 (B) $AP_2P_1=B$ (C) $P_1P_2A=B$ (D) $P_2P_1A=B$

(D)
$$P_2P_1A=B$$

3、若线性方程组
$$\begin{cases} x_1 + kx_2 - x_3 = 0 \\ 4x_2 + x_3 = 0 \end{cases}$$
 只有零解,则 k 可为 ().
$$kx_1 - 7x_2 - x_3 = 0$$

- (A) 0
- (B) -3 (C)-1 (D)-1 或 -3
- 4、若向量组 $\alpha_1,\alpha_2,...,\alpha_s$ 的秩为 r,则()
- (B) 向量组中任意 r 个向量线性无关
- (C) 向量组中任意 r+1 个向量必线性相关
- (D) 向量组的极大线性无关组所含的向量个数小于 r
- 5、设 λ 是 n 阶矩阵 A 的一个特征值,则 A 的伴随矩阵 A^* 的一个特征值是(
 - (A) $\lambda |A|$
- (B) $\lambda^{-1}|A|$
- (C) $\lambda^{n-1}|A|^n$ (D) $\lambda^{-1}|A|^{n-1}$

第1页共6页

二、填空题(每小题3分,共15分)

1、设行列式
$$D = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}$$
 ,则 $A_{41} - A_{42} + A_{43} - A_{44} =$ ______。

- 2、设 A,B 都是三阶方阵,若|A|=-1,|B|=3,则 $\begin{vmatrix} 2A & A \\ O & B \end{vmatrix} =$ ______。
- 3、设齐次线性方程组 $x_1+x_2+...+x_n=0$,则其基础解系中所含向量个数为_____。
- 4、设四阶方阵 A 与 B 相似,A 的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$,则 $|2B^{-1}-3E|=$ ______。

5、设实矩阵
$$A = \begin{pmatrix} 2-a & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3+a \end{pmatrix}$$
为正定矩阵,则 a 的取值范围是______。

三、计算题(6小题,共65分)

2、矩阵
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
,且满足方程 $A^*X = A^{-1} - 2X$,其中 A^* 为 A 的伴随矩阵,求矩阵 X 。 (10 分)

3、设有 $\alpha_1 = (2,1,3,-1)^T$, $\alpha_2 = (3,-1,2,0)^T$, $\alpha_3 = (1,3,4,-2)^T$, $\alpha_4 = (4,-3,1,1)^T$, 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩及其一个极大线性无关组,其余向量用极大无关组表示。 (11 分)

4、a.b 为何值时线性方程组 $\begin{cases} x_1+x_2+x_3+x_4=0\\ x_2+2x_3+2x_4=1\\ -x_2+(a-3)x_3-2x_4=b \end{cases}$ 有唯一解,有无穷多解,无解。 $3x_1+2x_2+x_3+ax_4=-1$

当有无穷多解时,用向量形式表示其通解。 (12分)

- 5、已知二次型 $f(x_1, x_2, x_3) = 5x_1^2 2x_1x_2 + 6x_1x_3 + 5x_2^2 6x_2x_3 + cx_3^2$ 的秩为 2。
- (1) 求参数 c; (2) 求一个正交变换 X = CY 将其二次型化为标准型. (14 分)

6、
$$R^3$$
中两组基为: $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$; $\boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\boldsymbol{\beta}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\boldsymbol{\beta}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

(1)求由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵A;

$$(2)求 \xi = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} 在基 \alpha_1, \alpha_2, \alpha_3 \text{ 下的坐标}.$$
 (10 分)

四、证明题:设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,且 $\beta_1 = \alpha_1 + \alpha_2 + \alpha_3$, $\beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3$, $\beta_3 = \alpha_1 + 2\alpha_2 + 3\alpha_3$,判断向量组 $\beta_1, \beta_2, \beta_3$ 的线性相关性,并证明之。(5分)