CLAIMS

We claim:

4

5

6 7

1

2

3

4

5

6

7

8

9

10

1. A multi-tasking operating system for managing simultaneous access to scarce or serially re-usable resources by multiple process threads, comprising:

at least one resource;

a plurality of threads; and

a stationary queue for allocating access to said resource amonst said threads.

2. A multi-tasking operating system stationary queue for managing simultaneous access to scarce or serially re-usable resources by multiple process threads, the stationary queue comprising:

a sleep code routine for generating a unique block identifier when a process thread temporarily cannot gain access to said resource and must be suspended; and

a wakeup code routine for generating a unique run identifier when a next thread in line is to be re-animated and granted access to said resource.

		\mathcal{C}
1	3.	The system of claim 2, further comprising:
2		a wait counter for counting the cumulative number of
3		threads that have been temporarily denied the resource;
4		a satisfied counter for counting the cumulative number
5		of threads that have been denied access and
6		subsequently granted access to said resource;
7		said sleep code routine being responsive to said wait
8		counter for generating said run identifier; and
9		said wakeup code routine being responsive to said
10		satisfied counter for generating said run identifier.
1	4.	A method for managing simultaneous access to scarce or
2	seri	ally re-usable resources by multiple process threads,
3	comp	rising the steps of:
4		responsive to a request\for a resource which is not
5		available, creating a block identifier based on the
6		number of threads temporarily denied the resource; and
7		blocking the thread using said block identifier.

4

5

6

7

8

	lacksquare
l	5. A method for managing simultaneous access to scarce or
2	serially re-usable resources by multiple process threads,
3	comprising the steps of:

responsive to a resource becoming available, creating a run identifier based on the number of threads that have been first forced to wait and have been subsequently satisfied; and

running the thread using said run identifier.

1	6. A method for managing simultaneous access to scarce or
2	serially re-usable resources by multiple process threads,
3	comprising the steps of:
4	responsive to a request for a resource which is not
5	available
6	creating a block identifier based on the number of
7	threads\temporarily denied the resource; and
8	blocking the thread using said block identifier;
9	and
10	responsive to a resource becoming available,
11	creating a run identifier based on the number of
12	threads that have been first forced to wait and
13	have been subsequently satisfied; and
14	running the thread using said run identifier.

1	7. $ackslash$ A memory device for storing signals for
2	controlling the operation of a computer to manage
3	simultaneous access to scarce or serially re-usable
4	resources by multiple process threads, according to the
5	steps of
6	responsive to a request for a resource which is not
7	available,
8	creating\a block identifier based on the number of
9	threads temporarily denied the resource; and
10	blocking the thread using said block identifier;
11	and
12	responsive to a resource becoming available,
13	creating a run identifier based on the number of
14	threads that have been first forced to wait and
15	have been subsequently satisfied; and
16	running the thread using said run identifier.

1	8. A memory device for storing signals to structure
2	the components of a digital computer to form a stationary
3	queue for managing simultaneous access to scarce or serially
4	re-usable resources by multiple process threads, comprising:
5	a sleep code routine for generating a unique block
6	identifier when a process thread temporarily cannot
7	gain access to said resource and must be suspended;
8	
9	a wakeup code routine for generating a unique run
10	identifier when a hext thread in line is to be
11	re-animated and granted access to said resource;
12	a wait counter for counting the cumulative number of
13	threads that have been temporarily denied the resource;
14	a satisfied counter for counting the cumulative number
15	of threads that have been denied access and
16	subsequently granted access to said resource;
17	said sleep code routine being responsive to said wait
18	counter for generating said run identifier; and
19	said wakeup code routine being responsive to said
20	satisfied counter for generating said run identifier.