Theorem: Let quinging be probability measures on (IR, 3B(IR))

TFAE:

- (i) µn -> µ
- (ii) $\lim_{n\to\infty} E_{\mu n}(f) = E_{\mu}(f)$ for every bounded continuous function
- (iii) $\lim_{n\to\infty} \mu_n(A) = \mu(A)$ for all $A \in 3B(IR)$ such that $\mu(\partial A) = 0$
- (iv) $\lim_{n\to\infty} \mu_n((-\infty,x)) = \mu((-\infty,x))$ for all $x \in \mathbb{R}$ such that $\mu(\{x\}) = 0$
- (v) There exists a probability space (Ω, \mathcal{F}, P) with RVs $\{Y, Yn \}_{n=1}^{\infty}$ such that $Z(Y) = \mu$, $Z(Y_n) = \mu n$ $\forall n$ and $Yn \rightarrow Y$ a.s.
- (vi) $_{n\to\infty}^{lim}$ Eµn(f) = Eµ(f) for every bounded Borel measurable function $f: IR \to IR$ such that µ(Df) = 0.

Proof: (ii) \Rightarrow (iii) because if $f = 1_A$, (vi) \Rightarrow (iii) \downarrow_{IR} 1_A $d\mu n = \mu n(A)$ $\partial A = 1 \times : 1_A$ is discontinuously

Example: For each neIN, let μn be the uniform distribution on $\{\frac{1}{n}, \frac{2}{n}, \frac{2}{n}, \frac{1}{n}, \frac{2}{n}, \frac{2}{n}$

What about $A = [0,1] \setminus Q$? Then $\mu_n(A) = 0$, but $\mu(A) = 1$.

Proof: (ii) = (iv) If $\mu(3x3) = 0$, let $\varepsilon > 0$ be arbitrary. Then F(x) = Eµ (1(00,x)). Let g1,g2: IR -> IR be continuous such that $g_1(t) = \begin{cases} 1 & \text{if } t \leq x - \epsilon \\ 0 & \text{if } t \geq x \end{cases}$ $g_2(t) = \begin{cases} 1 & \text{if } t \leq x \\ 0 & \text{if } t \geq x \neq \epsilon \end{cases}$ Then $1_{(-\infty,x-\epsilon)}(t) \leq g_1(t) \leq 1_{(-\infty,x)}(t) \leq g_2(t) \leq 1_{(-\infty,x+\epsilon)}$, so $E_{\mu n}(g_i) \leq E_{\mu n}(A_{(-\infty,x)}) \leq E_{\mu n}(g_i)$, so by (ii) $F(x-\varepsilon) \leq E\mu(g_i) \leq \limsup_{n \to \infty} F_n(x) \leq E\mu_n(g_i) \leq F(x+\varepsilon)$ sending $\varepsilon \to 0$, F is continuous at X_1 so $n \to \infty$ $F_n(x) = F(x)$. Similar for liminf n-10 Fn(x) = F(x), so we are done