| Source of Variation of | Sum of<br>Squares                                           | Degrees of<br>freedom    | Mean<br>Square                                                                             | $\begin{array}{c} \text{Computed} \\ f \end{array}$                                                                                                                    |
|------------------------|-------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model                  | $\sum_{i=1}^{m} n_i (\bar{y}_{i.} - \bar{y}_{})^2$          | m-1                      | $\frac{\sum_{i=1}^{m} n_i (\bar{y}_{i.} - \bar{y}_{})^2}{m-1}$                             | $\frac{\left(\sum_{i=1}^{m} n_{i} - m\right) \sum_{i=1}^{m} n_{i} (\bar{y}_{i} - \bar{y}_{})^{2}}{(m-1) \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i})^{2}}$ |
| Error                  | $\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$ | $\sum_{i=1}^{m} n_i - m$ | $\frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2}{\sum_{i=1}^{m} n_i - m}$ |                                                                                                                                                                        |
| Total                  | $\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{})^2$   | $\sum_{i=1}^{m} n_i - 1$ |                                                                                            |                                                                                                                                                                        |

The advantages of choosing equal sample sizes over the choice of unequal sample sizes are: 1) the f ratio is insensitive to slight departures from the assumption of equal variances for the m populations when the sample are of equal sizes; and 2) the choice of equal sample size minimizes the probability of committing a type II error.

## Example

|                     | _    | Group       |          |              |           |                      |           |             |       |
|---------------------|------|-------------|----------|--------------|-----------|----------------------|-----------|-------------|-------|
| -                   |      | 1           | 2        | 3            | 4         | 5                    |           |             |       |
|                     |      | 551         | 595      | 639          | 417       | 563                  |           |             |       |
|                     |      | 457         | 580      | 615          | 449       | 631                  |           |             |       |
|                     |      | 450         | 508      | 511          | 517       | 522                  |           |             |       |
|                     |      | 731         | 583      | 573          | 438       | 613                  |           |             |       |
|                     |      | 499         | 633      | 648          | 415       | 656                  |           |             |       |
| 8                   |      | 632         | 517      | 677          | 555       | 679                  |           |             |       |
|                     | otal | 3320        | 3416     | 3663         | 2791      | 3664                 | 16854     |             |       |
| M                   | lean | 553.33      | 569.33   | 610.50       | 465.19    | 610.67               | 561.80    |             |       |
|                     |      | A           | J        |              |           | Mi+                  | M2+ M2    | + Uc        | 0     |
| ution               |      |             |          |              | M4        | 2                    | 4         |             | (     |
| = 12, 13 $= 7, 219$ |      | $S_2^2 = 2$ | 302.6667 | $7, S_3^2 =$ | 3593.5, S | $\frac{1}{4}^2 = 3,$ | 318.5667, | $S_5^2 = 3$ | 455.4 |

| Source of<br>Variation of | Sum of<br>Squares | Degrees of freedom | Mean<br>Square | $\begin{array}{c} \text{Computed} \\ f \end{array}$ |            |
|---------------------------|-------------------|--------------------|----------------|-----------------------------------------------------|------------|
| Group                     | 85,356            | 4                  | 21,339         | 4.30                                                | Reject Ito |
| Error                     | 124,021           | 25                 | 4,961          |                                                     | - Why )    |
| Total                     | 209,377           | 29                 |                |                                                     |            |

The critical value  $f_{0.05}(4,25)=2.76$ . Thus,  $H_0: \mu_1=\mu_2=\mu_3=\mu_4=\mu_5$  is rejected.

Ho: 
$$\frac{\mu_1 + \mu_2 + \mu_5 + \mu_5}{4} = \mu_4$$

where  $\frac{\mu_1}{4} = \mu_4$ 

wher

E (N: -1)



Regs.s. = SSW1 + SSW2 + SSW3 + SSW4

provided that W1, W2, W3, W4 are orthogonal

Now, W1 = M1 + M2 + M3 - 4M4 + MS



| Source of Variation of | Sum of<br>Squares                                           | Degrees of freedom       | Mean<br>Square                                                                             | $\begin{array}{c} \text{Computed} \\ f \end{array}$                                                                                                 |
|------------------------|-------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Model                  | $\sum_{i=1}^{m} n_{i} (\bar{y}_{i.} - \bar{y}_{})^{2}$      | m-1                      | $\frac{\sum\limits_{i=1}^{m}n_{i}(\bar{y}_{i},-\bar{y}_{})^{2}}{m-1}$                      | $\frac{(\sum_{i=1}^{m} n_i - m) \sum_{i=1}^{m} n_i (\bar{y}_{i.} - \bar{y}_{})^2}{(m-1) \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2}$ |
| Error                  | $\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$ | $\sum_{i=1}^{m} n_i - m$ | $\frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2}{\sum_{i=1}^{m} n_i - m}$ |                                                                                                                                                     |
| Total                  | $\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{})^2$   | $\sum_{i=1}^{m} n_i - 1$ |                                                                                            |                                                                                                                                                     |

The advantages of choosing equal sample sizes over the choice of unequal sample sizes are: 1) the f ratio is insensitive to slight departures from the assumption of equal variances for the m populations when the sample are of equal sizes; and 2) the choice of equal sample size minimizes the probability of committing a type II error.

## Example

|        |                                         | Group                                                            |                                                                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|--------|-----------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | 2                                       | 3                                                                | 4                                                                                         | 5                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 551    | 595                                     | 639                                                              | 417                                                                                       | 563                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 457    | 580                                     | 615                                                              | 449                                                                                       | 631                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 450    | 508                                     | 511                                                              | 517                                                                                       | 522                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 731    | 583                                     | 573                                                              | 438                                                                                       | 613                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 499    | 633                                     | 648                                                              | 415                                                                                       | 656                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 632    | 517                                     | 677                                                              | 555                                                                                       | 679                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 3320   | 3416                                    | 3663                                                             | 2791                                                                                      | 3664                                                                                                                                                                                                                                                    | 16854                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 553.33 | J. €<br>569.33                          | 610.50                                                           | 465.19                                                                                    | 610.67                                                                                                                                                                                                                                                  | 561.80                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Q      | V                                       | X                                                                |                                                                                           | 13                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | 457<br>450<br>731<br>499<br>632<br>3320 | 457 580<br>450 508<br>731 583<br>499 633<br>632 517<br>3320 3416 | 457 580 615<br>450 508 511<br>731 583 573<br>499 633 648<br>632 517 677<br>3320 3416 3663 | 457     580     615     449       450     508     511     517       731     583     573     438       499     633     648     415       632     517     677     555       3320     3416     3663     2791       553.33     569.33     610.50     465.19 | 457     580     615     449     631       450     508     511     517     522       731     583     573     438     613       499     633     648     415     656       632     517     677     555     679       3320     3416     3663     2791     3664       3320     3416     3663     2791     3664       340     3416     3663     3661     3661     3661 |  |  |  |  |

 $S_{1}^{2} = 12,133.8667, S_{2}^{2} = 2,302.6667, S_{3}^{2} = 3593.5, S_{4}^{2} = 3,318.5667, S_{5}^{2} = 3,455.4667, S_{7}^{2} = 7,219.8897$   $SSW_{2} + SSW_{3} + SSW_{4} = R_{9} S.S. - SSW_{1}$  = 15,321

| •               | Source of<br>Variation of   | Sum of<br>Squares           | Degrees of freedom | Mean<br>Square                | $\begin{array}{c} \text{Computed} \\ f \end{array}$ |            |
|-----------------|-----------------------------|-----------------------------|--------------------|-------------------------------|-----------------------------------------------------|------------|
| M1 + M2+ M3-4M4 | Group<br>+ Us = W1<br>Error | 85,356<br>70,035<br>124,021 | 4 7 4-1<br>25      | = 3 21,339<br>70,035<br>4,961 | 4.30<br>70,035 \$ =                                 | : 14.12    |
|                 | Total                       | 209,377                     | / 29               |                               |                                                     | > Fo.05,1, |
|                 |                             |                             |                    |                               |                                                     | (1         |

The critical value  $f_{0.05}(4,25)=2.76$ . Thus,  $H_0: \mu_1=\mu_2=\mu_3=\mu_4=\mu_5$  is rejected.

The critical value  $j_{0.05}(4,20) = 2.70$ . Thus,  $n_0 \cdot p_1 = p_2 = p_3 = p_4 = p_5$  is rejected.

Mean Square for  $SSW_2$ ,  $W_3$ ,  $W_4$ )  $C_1 = 1$ ,  $C_2 = 1$ ,  $C_3 = 1$ ,  $C_4 = -4$ ,  $C_5 = 1$  =  $\frac{15,321}{3} = 5,107$  S.S. for contrast  $C_1 = \frac{15,321}{3} = \frac{5,107}{4961} = \frac{5,107}{4961$ 

regs.s. = SSW1 + SSW2 + SSW3 + SSW4 provided that W1, W27 W3, W4 are orthogonal Now, W= MI+ M2+ M2-4M4+ MS orthogonal contrast W, = = billi = bili = 0 W2 = = Copi = Co=0 Orthogonal of Erbici =0 If NI=NI=---= Nm=N => = bicc=0 W1 = M1+M2 + M3 - +M4 + MS - b = VT W2 = M1 + M2 - (M3 + M5) W3 = M1-M2 W4 = M3 - M5 S.S. for untrast = ( The Co Mi)

If  $\omega_1$  and  $\omega_2$  are orthogonal, then the quantities  $SSW_1$  and  $SSW_2$  are components of SSA (i.e., S.S. for group in our example), each with a single degree of freedom. The treatment sum of squares with m-1 degrees of freedom can be partitioned into at most m-1 independent single-degree-of-freedom contrast sum of squares satisfying the identity

$$SSA = SSW_1 + SSW_2 + \ldots + SSW_{m-1}$$

if the contrasts are orthogonal to each other.

## Example

Find the contrast sum of squares corresponding to the orthogonal contrasts

$$\omega_1 = \mu_1 + \mu_2 + \mu_3 + \mu_5 - 4\mu_4$$

$$\omega_2 = \mu_1 + \mu_2 - \mu_3 - \mu_5$$

and carry out appropriate tests of significance.

## Solution

One can write down two additional contrasts orthogonal to the first two such as

$$\omega_3 = \mu_1 - \mu_2$$

$$\omega_4 = \mu_3 - \mu_5$$

|                                          | Source of<br>Variation of | Sum of<br>Squares | Degrees of freedom | Mean<br>Square | $\begin{array}{c} \text{Computed} \\ f \end{array}$ |               |
|------------------------------------------|---------------------------|-------------------|--------------------|----------------|-----------------------------------------------------|---------------|
|                                          | Groups                    | 85,356            | 4                  | 21,339         | 4.30                                                |               |
| 11 51 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1  | (1,2,3,5) vs 4            | 70,035            | 1                  | 70,035         | 14.12                                               | 14,883 < 424  |
| M, +42 + M3-44+ + 12= W1 = 2W2 = W3 = W3 | = (1,2)  vs  (3,5)        | 14,553            | 1                  | 14,553         | 2.93                                                |               |
| Mi+ W2 - M2 - MS - W2                    | = (1)  vs  (2)            | 768               | 1                  | 768            | 0.15                                                | 4.961         |
| M1 - M2 7W                               | 4 = (3)  vs  (5)          | 0.08              | 1                  | 0.08           | 0.00                                                | Calt repet Ho |
|                                          | Error                     | 124,021           | 25                 | 4,961          |                                                     | J             |
| M3- M5                                   |                           |                   |                    |                |                                                     | -             |

The contrast  $\omega_1$  is not significant when compared to the critical value  $f_{0.05}(1,25) = 4.24$ . However, the f value of 14.12 for  $\omega_2$  is significant and the hypothesis

29

$$H_0: \mu_1 + \mu_2 + \mu_3 + \mu_5 = 4\mu_4$$

209,377

is rejected.

Total

lwo-way ANOVA two categoral varables e.g. "method" = 1,2 = one dummy "variety" 1,2,3 7 two dummy level of wethod Model I Regression model B3 00 53 to y = β + d, + M, & + β, + V, & + β2 + V2, & + C& R=1, -, Σηνοία THOMIR & VIR 7 + V12 + M1, R + V2, R ) A varety interaction Botdit BINT Bo+d1+B2+812 BotXI >> Not a general Bo + B1 model Bo + B2 M11 - M21 = Bo M12 - M22 = In gueral M13-M23 \* Categoral varable 1 (Factor A) Mij A  $M_{11}$   $M_{12}$   $M_{13}$  wethod = 1  $M_{21}$   $M_{22}$   $M_{23}$  we had = 2 a levels => (a-1) dummy (90) lategral varable 2 (Factor B) b levels => (b-1) during (cj 3 variety parallel curves JR= Pot = di Ji, k + = Bj Cj, k + = = j= (8ij) \* gi, k \* Cj, k + Ck. Clork = 0 ga, &=0 J=1, -- b-1 interaction &= 1, - FINO; terms between (b-1) tems (a-1) resterms columns in X two cutegoral varables Columns Columns in X

0 = 2, b = 3In Example in p.11 or d1, B1, B2, 81x, 812 Model I (ANOVA table) y For top fixed i,j Yijk = M + di + Bj + Yij + Pijk i=1, -, a j=1, —, b Vorety E(y) 806=0 E(y)

1 M+X1+ B1+811

2 M+X1+ B2+812

M12 MB M+XI K+B1 M21 M22 M+ B2 M23 Categoral New varable with M, X, B, B2, 6 whenown para. 6 livels (11, 12, T11, V12 (3,21,22,23) 6 wknown paraulters In general, Ez1, -ca  $R = \begin{pmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{pmatrix}$   $= \begin{pmatrix} m_{11} \\ m_{12} \\ m_{21} \\ m_{22} \\ m_{23} \end{pmatrix}$   $= \begin{pmatrix} m_{11} \\ m_{12} \\ m_{21} \\ m_{22} \\ m_{23} \end{pmatrix}$   $= \begin{pmatrix} m_{11} \\ m_{12} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{24} \\ m_{25} \end{pmatrix}$   $= \begin{pmatrix} m_{11} \\ m_{12} \\ m_{22} \\ m_{24} \\ m_{24} \\ m_{25} \\ m_{25}$ Yijk = Mij + Pijk

|                                    |                   | Variety         |                                                     |                  |                 |
|------------------------------------|-------------------|-----------------|-----------------------------------------------------|------------------|-----------------|
| Method                             | 1                 | 2               | 3                                                   | Sum              | CSS             |
| 1.                                 | 22.3              | 19.8            | 20                                                  | Ress.S           |                 |
|                                    | 25.8              | 28.3            | 17                                                  |                  |                 |
|                                    | 22.8              | 26.8            | 24                                                  | 三至皇              | IJY             |
|                                    | 28.3              | 27.3            | 22.5                                                | c=1 ]=1          | K21 (0          |
|                                    | 21.3              | 26.8            | 28                                                  | (1)              |                 |
| Ju.)                               | 18.3              | 26.8            | 22.5                                                | = 61.3           | 33333 +         |
| Jii.) Sum                          | 138.8             | 155.8           | 134                                                 | 428.6            | +               |
|                                    | 0                 | ~               | $\sim$                                              |                  |                 |
| Corrected S.S.                     | (61.333333)       | 47.333333       | (68.833333)                                         | 221.237778       | = 581           |
| 0                                  | 10.4              | 0.4 =           | 11.0                                                | 1 1              |                 |
| 2                                  | 16.4              | 24.5            | 11.8                                                | W. 4             | $= \frac{1}{2}$ |
| *                                  | 14.4              | 16              | 14.3                                                |                  |                 |
|                                    | 21.4              | 11              | 21.3                                                | N2               | V.              |
|                                    | 19.9              | 7.5             | 6.3                                                 | 7 7=             | 1002            |
|                                    | 10.4              | 14.5            | 7.8                                                 | 6                | = 7             |
|                                    | 21.4              | 15.5            | 13.8                                                |                  | 00 3            |
| $\operatorname{Sum}$               | 103.9             | 89              | 75.3                                                | 268.2            | = 19            |
| Corrected S.S.                     | 97.208333         | 163.833333      | 143.375                                             | 472.62           | X               |
| Sum Corrected S.S.                 | 242.7<br>260.0425 | 244.8<br>583.02 | 209.3<br>499.349167                                 | 696.8<br>1408.53 |                 |
| Source of Sum<br>Variation of Squa |                   | Mean<br>Square  | $\begin{array}{c} \text{Computed} \\ f \end{array}$ |                  |                 |
| Method 714.67                      | 1111 1            | 714.671111      | 36.84                                               |                  | /               |
| Variety 66.117                     | 222 2             | 33.058611       | 1.71                                                |                  |                 |
| Interaction 45.823                 | 889 2             | 22.911944       | 1.18                                                |                  |                 |
| Error 581.91                       | 6667 30           | 19.397222       |                                                     |                  |                 |
| Total 1408.52                      | 28889 35          |                 |                                                     |                  |                 |

Test "interaction" effect is equivalent to test  $H_0: \mu_{11}-\mu_{21}=\mu_{12}-\mu_{22}=\mu_{13}-\mu_{23}.$ 

As the interaction terms are not significant, we re-construct the ANOVA table.

- (1-x) (00%) C.I. for Mij = Jij. ± toy, & \$1 (nij-1) \frac{6}{\lambda\_{nij}} Ho = Moj = Mojo tobi = Gir-Mis Reject Ho if I tobs > tay2, = = (nij -1) Ito= Mij = M for i, j. (ANOVA model) Model and Ho = Yijk = M + Pijk ( Represoir model ) yr = Po+ Ck W 1 Ho = di = 0, Bj = 0, Vij = 0 dif. of total S.S. d.f.g.llessis. all rey. coeff =0 1=(N-1) From Chapter 1, Section 4 Fobs = Reg S.S. / df reg S.S. Reg S.S. / df. reg S.S. al total S.S. - ResS.S. \$ \$ (Nig-1) Refert Ho if Fobs > Fx, ab-1, N-ab - Court reject 140 STOP!

- Reject Ho => continue to do analysis

|                           |                   |                    | Variety        | MAN 100                                             |            |                        |
|---------------------------|-------------------|--------------------|----------------|-----------------------------------------------------|------------|------------------------|
| Met                       | thod              | 1                  | 2              | 3                                                   | Sum        | CSS                    |
|                           | 1                 | 22.3               | 19.8           | 20                                                  |            |                        |
|                           |                   | 25.8               | 28.3           | 17                                                  |            |                        |
|                           |                   | 22.8               | 26.8           | 24                                                  |            |                        |
|                           |                   | 28.3               | 27.3           | 22.5                                                |            |                        |
|                           |                   | 21.3               | 26.8           | 28                                                  |            |                        |
|                           |                   | 18.3               | 26.8           | 22.5                                                |            |                        |
| Sı                        | ım                | 138.8              | 155.8          | 134                                                 | 428.6      |                        |
| Correc                    | ted S.S.          | 61.333333          | 47.333333      | 68.833333                                           | 221.237778 |                        |
|                           | 2                 | 16.4               | 24.5           | 11.8                                                |            |                        |
|                           |                   | 14.4               | 16             | 14.3                                                |            |                        |
|                           |                   | 21.4               | 11             | 21.3                                                |            |                        |
|                           |                   | 19.9               | 7.5            | 6.3                                                 |            |                        |
|                           |                   | 10.4               | 14.5           | 7.8                                                 |            |                        |
|                           |                   | 21.4               | 15.5           | 13.8                                                |            |                        |
| St                        | um                | 103.9              | 89             | 75.3                                                | 268.2      |                        |
| Correc                    | ted S.S.          | 97.208333          | 163.833333     | 143.375                                             | 472.62     |                        |
| S1                        | um                | 242.7              | 244.8          | 209.3                                               | 696.8      |                        |
| Correc                    | ted S.S.          | 260.0425           | 583.02         | 499.349167                                          | 1408.53    | total S.S.             |
|                           |                   |                    |                |                                                     | a b        | hij -                  |
| Source of<br>Variation of | Sum of<br>Squares | Degrees of freedom | Mean<br>Square | $\begin{array}{c} \text{Computed} \\ f \end{array}$ | 5 j=1      | E, (4) k - y           |
| Method                    | 714.671111        | 1                  | 714.671111     | 36.84                                               |            | 100                    |
| Variety                   | 66.117222         | 2                  | 33.058611      | 1.71                                                |            | overall<br>Saiple mean |
| Interaction               | 45.823889         | 2                  | 22.911944      | 1.18                                                |            | Saiple mean            |
| Error                     | 581.916667        | 30                 | 19.397222      |                                                     |            |                        |
| Total                     | 1408.528889       | 35                 |                |                                                     |            |                        |

Test "interaction" effect is equivalent to test  $H_0: \mu_{11} - \mu_{21} = \mu_{12} - \mu_{22} = \mu_{13} - \mu_{23}$ .

As the interaction terms are not significant, we re-construct the ANOVA table.

Total S.S. = 
$$1408.53$$
  $N-1=35$ 

Res S.S. =  $581.916667$   $N-ab=30$ 

Preg SS. =  $826.612222$   $aiff.=5$ 
 $F = \frac{826.612222}{19.397222}$  =  $8.522996$  >  $Faos,5,30$ 

Reject Ho:  $\mu ij = \mu$  for all  $i, j$