PR11 - ggplot

조성우

2020 5월 28일

1. ggplot2 기초

• ggplot2 plot의 기본성분

1.1. ggplot2 기본 사용법

• mtcars를 활용: wt(중량) mpg(연비) cyl(실린더의 개수)

library(ggplot2)
head(mtcars)

mpg	cyl	disp	hp	drat	wt	qsec	vs	am
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
21.0	6	160	110	3.90	2.620	16.46	0	1
21.0	6	160	110	3.90	2.875	17.02	0	1
22.8	4	108	93	3.85	2.320	18.61	1	1
21.4	6	258	110	3.08	3.215	19.44	1	0
18.7	8	360	175	3.15	3.440	17.02	0	0
18.1	6	225	105	2.76	3.460	20.22	1	0
	<dbl> 21.0 21.0 22.8 21.4 18.7</dbl>	<dbl> <dbl> <dbl> 21.0 6 21.0 6 22.8 4 21.4 6 18.7 8</dbl></dbl></dbl>	<dbl> <dbl> <dbl> <dbl> </dbl> 21.0 6 160 21.0 6 160 22.8 4 108 21.4 6 258 18.7 8 360</dbl></dbl></dbl>	<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 21.0 6 160 110 21.0 6 160 110 22.8 4 108 93 21.4 6 258 110 18.7 8 360 175</dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>	<dbl> 21.0 6 160 110 3.90 21.0 6 160 110 3.90 22.8 4 108 93 3.85 21.4 6 258 110 3.08 18.7 8 360 175 3.15</dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>	<dbl> 21.0 6 160 110 3.90 2.620 21.0 6 160 110 3.90 2.875 22.8 4 108 93 3.85 2.320 21.4 6 258 110 3.08 3.215 18.7 8 360 175 3.15 3.440</dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>	<dbl> <d> <dbl> <d> <dbl> <d> <dbl> </dbl></d> </dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></d> </dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></d> 21.4 6 258 110 3.08 3.215 19.44 18.7 8 360 175 3.15 3.440 17.02</dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>	<dbl> <dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>

p <- ggplot(data=mtcars,aes(x=wt,y=mpg,colour=cyl)) ; p</pre>

• geom_point()함수를 추가하여 산점도 표현

p <- p+geom_point() ; p</pre>

- ggplot 객체의 구조
 - summary를 보면 대략적인 그래프를 짐작할 수 있음
 - mapping을 보면 x,y축의 데이터와 색상을 결정짓는 변수를 확인 가능함
 - geom_point()는 산점도 그래프라는 의미
 - ∘ stat_identity는 통계변환이 identity, 즉 변환이 없는 상태의 데이터라는 것을 의미
 - position identity도 데이터 위치가 어떠한 조정도 없었다는 것을 의미
 - na.rm=False는 결측값 제거를 하지 않았다는 것을 의미함

```
class(p)
```

```
## [1] "gg" "ggplot"
```

attributes(p)

```
## $names
## [1] "data" "layers" "scales" "mapping" "theme"
## [6] "coordinates" "facet" "plot_env" "labels"
##
## $class
## [1] "gg" "ggplot"
```

```
summary(p)
```

```
## data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
## mapping: x = \sim wt, y = \sim mpg, colour = \sim cyl
## faceting: <ggproto object: Class FacetNull, Facet, gg>
##
       compute_layout: function
##
       draw_back: function
##
       draw_front: function
##
       draw_labels: function
##
       draw_panels: function
       finish_data: function
##
##
       init_scales: function
##
       map_data: function
##
       params: list
##
       setup_data: function
##
       setup_params: function
##
       shrink: TRUE
       train_scales: function
##
##
       vars: function
##
       super: <ggproto object: Class FacetNull, Facet, gg>
##
## geom_point: na.rm = FALSE
## stat_identity: na.rm = FALSE
## position_identity
```

1.2. ggplot2로 barplot 그리기

- 실린더 수에 대한 barplot을 그림
- 막대는 기어의 개수에 따라 서로 다른 facet에 출력
- facet이란 독립된 subplot이 그려지는 패널구조를 의미
- 결과값을 보면 3개의 subplot이 있는 것을 확인 할 수 있음
- 산점도 색상옵션으로 colour인수사용, barplot은 색상옵션으로 fill인수 사용

```
b <-ggplot(data=mtcars,aes(x=factor(cyl),fill=factor(cyl)))
b <- b + geom_bar(width=.5) #bar의 넓이를 정의
b <- b + facet_grid(.~gear) #기어 개수에 따른 facet 분할
b
```


1.3. ggplot Layer

- ggplot은 Layer를 쌓아가는 방식으로 사용
- ggplot = layers + scales + coordinate system
- layers = data + mapping + geom + stat + position
- scales와 coordinate system은 그림을 그릴 캔버스의 개념
- layers가 실제 그리는 그림
- data, mapping, geom 등등으로 하나씩 중첩해가면서 plot을 그림
- geom의 요소 또한 중첩 가능

```
p <- ggplot(mtcars,aes(wt,mpg))
p <- p+geom_point() ; p</pre>
```


p <- p+geom_smooth(method="loess") #라인 그래프 smooth 그리기 p

`geom_smooth()` using formula 'y ~ x'

summary(p)

```
## data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
## mapping: x = \sim wt, y = \sim mpg
## faceting: <ggproto object: Class FacetNull, Facet, gg>
##
       compute_layout: function
##
       draw_back: function
##
       draw_front: function
       draw_labels: function
##
##
       draw_panels: function
##
       finish_data: function
##
       init_scales: function
##
       map_data: function
##
       params: list
##
       setup_data: function
##
       setup_params: function
##
       shrink: TRUE
##
       train_scales: function
##
       vars: function
##
       super: <ggproto object: Class FacetNull, Facet, gg>
## -
## geom_point: na.rm = FALSE
## stat_identity: na.rm = FALSE
## position_identity
##
## geom_smooth: na.rm = FALSE, orientation = NA, se = TRUE, flipped_aes = FALSE
## stat_smooth: na.rm = FALSE, orientation = NA, se = TRUE, method = loess
## position_identity
```

• 동일한 결과를 다르게 표현

```
p <- ggplot(mtcars,aes(wt,mpg)) +
geom_point() +
geom_smooth(method="loess") #라인 그래프 smooth 그리기
```

```
## 'geom_smooth()' using formula 'y \sim x'
```


1.4. ggplot 요약

2. ggplot2 함수군

2.1. Plot creating 함수군

- 기초 플롯인 ggplot 클래스 객체를 생성
- 가장 많이 사용하는 함수는 ggplot()과 qplot()
 - ∘ ggplot() 함수는 dataframe 객체로 플롯을 그릴 떄 사용
 - 。 qplot() 함수는 각 변수가 독립적인 객체로 존재할 때 사용

qplot(mtcars\$wt,mtcars\$mpg)

• qplot() 함수는 geo을 지정하지 않을 경우 point로 적용됨

• ggplot은 모든 그래픽 인수들을 구체적으로 지정해야함

qplot(mtcars\$wt, mtcars\$mpg, geom="point")

qplot(wt,mpg, data=mtcars, geom="point") #그래프는 위와 동일함

2.2. Geoms 함수군

- geometric 요소를 지정하기 위한 함수군
- 선,점,막대,박스,파이 등을 생각하면 됨

2.2.1. geom_point() 산점도

```
p <- ggplot(data = mtcars, aes(wt, y=mpg))
p + geom_point(colour="orange",size=6)</pre>
```


2.2.2 geom_bar() 막대 그래프

```
p <- ggplot(mtcars, aes(factor(cyl)))
p + geom_bar()</pre>
```


geom_bar를 aes함수로 꾸미기

```
p <- ggplot(mtcars, aes(factor(cyl)))
p + geom_bar(aes(fill=cyl),colour="black")</pre>
```


2.2.3. geom_boxplot() 박스플롯

```
p <- ggplot(mtcars, aes(factor(cyl),mpg)) #기본 박스플랏
p <- p + geom_boxplot()
p
```


• box-plot을 aes함수로 꾸미기

p + geom_boxplot(aes(fill=factor(carb))) #박스 내부를 carb 팩터로 구분하여 표현

p + facet_grid(~am) #am을 기준으로 facet 분리

2.2.4. geom_histogram() 히스토그램

```
# install.packages("ggplot2movies")
library(ggplot2movies)
p <- ggplot(movies,aes(rating))
p <- p+geom_histogram()
p</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
# binwidth: histogram의 막대의 넓이 조절
p <- p+geom_histogram(binwidth=1)
p
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


*Histogram에 확률밀도곡선 표현

head(movies)

title <chr></chr>	year <int></int>	length <int></int>	budget <int></int>	rating <dbl></dbl>	votes <int></int>	r1 <dbl></dbl>		r3 <dbl< th=""><th>r4 ×dbl></th></dbl<>	r4 ×dbl>
\$	1971	121	NA	6.4	348	4.5	4.5	4.5	4.5
\$1000 a Touchdown	1939	71	NA	6.0	20	0.0	14.5	4.5	24.5
\$21 a Day Once a Month	1941	7	NA	8.2	5	0.0	0.0	0.0	0.0
\$40,000	1996	70	NA	8.2	6	14.5	0.0	0.0	0.0
\$50,000 Climax Show, The	1975	71	NA	3.4	17	24.5	4.5	0.0	14.5
\$pent	2000	91	NA	4.3	45	4.5	4.5	4.5	14.5

```
p <- ggplot(movies,aes(rating))</pre>
```

p <- p + geom_histogram(aes(y=..density..,fill=..count..)) ; p#히스토그램 그리기 =

p <- p + geom_density(colour="red") ; p#확률밀도곡선 그리기

p <- p + scale_fill_gradient(low="white",high="#496ff5") ; p#그라데이션 추가

2.2.5. geom_density() 확률밀도곡선

```
p <- ggplot(movies,aes(rating))
p <- p +geom_density()
p</pre>
```


- 여러개의 확률밀도곡선 그리기
- aes(fill=factor(mpaa))인수로 mpaa를 분류한 rating의 확률밀도곡선 그리기

```
p <- ggplot(movies,aes(rating))
p <- p + geom_density(aes(fill=factor(mpaa),alpha=0.2))
p</pre>
```


3.leaflet

- leaflet 패키지는 interactive한 그래프를 그릴 수 있는 패키지
- 구글맵과 오픈스트리트 맵을 이용하여 공간데이터를 시각화 함

```
#install.packages(leaflet)
library(leaflet)

## Warning: package 'leaflet' was built under R version 3.6.3

library(dplyr)

## Warning: package 'dplyr' was built under R version 3.6.3

## ## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## ## filter, lag

## The following objects are masked from 'package:base':
## ## intersect, setdiff, setequal, union
```

```
m = leaflet() %>% addTiles()
m = m %>% setView(127.0462, 37.2830, zoom =15) #아주대 경도위 위도 설정
m %>% addPopups(127.0462, 37.2830, 'Here is Ajou University!')
```


leaflet 예제

- addTiles()함수와 addAwesomeMarkers함수 사용
- 서울시 교통 돌발상황 조회 서비스 데이터 중 일부를 사용하여 지도에 표시하기

데이터로드 및 시각화

```
traffic <- read.csv("traffic.csv", fileEncoding="utf-8")
range(traffic$start.pos.x) #돌발상황 시작점 경도
```

[1] 0.0000 129.1827

range(traffic\$start.pos.y) #돌발상황 시작점 위도

[1] 0.00000 37.69728

traffic1 <- traffic[traffic\$start.pos.x!=0 & traffic\$start.pos.y!=0,] #na값 제거(0인값)

leaflet(traffic1) %>% addTiles() %>%
addAwesomeMarkers(~start.pos.x, ~start.pos.y)

출처 ###### 1. R을 활용한 데이터 시각화 - 유충현,홍석학 ###### 2.ggplot2 - 김성근 ###### 3.R라뷰 -서진수

PR11 연습문제

- 주어진 BGCON CUST DATA.csv 파일을 사용하여 다음을 해결하시오.
- BGCON_CUST_DATA.csv는 2016년 빅콘테스트에서 제공된 보험사기여부 데이터를 수정 가공한 것 입니다.
- 각 열 이름의 의미는 다음과 같습니다.
 - 。 ID : 고객을 구분하는 고유번호
 - SIU: Y의 경우 보험사기자, N의 경우 일반고객
 - GENDER: 성별 1은 남성, 성별 2는 여성
 - AGE: 고객 연령
 - RESI COST: 고객의 거줒 주택가격 추정값 (단위:만원)
 - ∘ FP_CA: (당사 FP로서의) Y:경력 있음, N:경력 없음
 - RGST: 최초 당사의 고객으로서의 등록 년월
 - CTPR: 고객의 거주 시/도
 - ∘ WEDD: Y:결혼함,N: 결혼 안함(계약 당시에는 결호하지 않았던 상태 포함)
 - CHLD : 고객의 자녀 수DMND_AMT : 청구금액PAYM_AMT : 지불금액

문제 1

• 거주지 가겨이 100000 이상인 고객에 한하여 다음을 생성하시오.

```
setwd("C:\\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Users\\Use
```


문제2

• 보험사기 고객에 대하여 다음을 생성하시오(성별에 따라 구분할 것)

```
BC_cust2 <- BC_cust[BC_cust$SIU=="Y",]

p <- ggplot(BC_cust2,aes(AGE))
p <- p + geom_bar()
p <- p + facet_grid(~GENDER) ; p</pre>
```


문제 3

• 보험사기 고객중 지불금액이 4000000 이상이고 14000000 이하인 고객에 대하여 다음을 생성하시오.

BC_cust3 <- BC_cust2[BC_cust2\$PAYM_AMT > 4000000 & BC_cust2\$PAYM_AMT < 14000000,]
BC_cust3</pre>

		SIU <fctr></fctr>	GENDER <int></int>		RESI_COST <int></int>	FP_CA <fctr></fctr>		CTPR <fctr></fctr>		•
23	6849	Υ	2	65	3793	Y	199809	강원	N	
209	21885	Υ	1	33	14274	N	200405	강원	Υ	
318	11797	Υ	1	55	3129	N	200306	강원	N	
1564	2209	Υ	2	44	15555	N	201312	경기	Υ	
3106	6692	Υ	1	35	20972	N	201202	경기	N	
3195	1258	Υ	1	36	9745	N	200306	경기	N	
3663	7430	Υ	2	54	9504	N	200306	경기	Υ	
4209	19867	Υ	1	27	8703	N	200705	경기	N	
5289	8229	Υ	2	58	26111	N	200102	경남	Υ	
5558	14946	Υ	1	50	12083	N	200104	경남	Υ	
I-10 of 29	7 rows 1-1	0 of 13 o	columns				Previous	1 2	3 N	lex

```
p <- ggplot(data=BC_cust3,aes(x=AGE,y=PAYM_AMT))
p <- p + geom_point(aes(colour=CTPR,size=CHLD))

p <- p+geom_smooth(method="loess")
p</pre>
```


문제 4

• 당사 FP로서의 경력이 있는 고객에 대하여 다음을 생성하시오.

```
BC_cust4 <- BC_cust[BC_cust$FP_CA=="Y",]
p <- ggplot(BC_cust4,aes(factor(CTPR)))
p + geom_bar(aes(fill=SIU))</pre>
```


문제 5

• 보험 사기고객이 아닌 고객에 대하여 다음을 생성하시오

```
BC_cust5 <- BC_cust[BC_cust$SIU=="N",]

p <- ggplot(BC_cust5,aes(AGE))

p <- p + geom_histogram(aes(y=..density..,fill=..count..))

p <- p + geom_density(colour="black")

p</pre>
```


문제6

• 각 시도별 보험사기 고객 비율(per)를 구하여 다음을 생성하시오.

2020. 5. 30.

```
library(leaflet)
library(dplyr)
setwd("C:\\Users\\JS\\Users\\JS\\Vorth\Desktop\\Vorth\Users\\Desktop\\Vorth\Users\\Desktop\\Vorth\Users\\Desktop\Users\Users\\Desktop\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Union\Users\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Uni
BC_cust<- read.csv("BGCON_CUST_DATA.csv") #읽어오기
BC_cust1 <- select(BC_cust,CTPR,SIU) # 지역과 보험사기여부만으로 데이터프레임을 재구성합니다
ratiofunc <- function(a,b) { #각 시도별 보험사기 백분율을 계산하기위한 함수를 정의합니다.(a=
데이터셋, b=지역명 )
   ratio1 = NULL
    ratio1.1 = NULL
    ratio1 <- select(subset(a,CTPR==b),SIU)
   ratio1.1 <- select(subset(ratio1,SIU=="Y"),SIU)
    c <- length(ratio1.1$SIU) / length(ratio1$SIU)
    return(c)
}
Region <- c("강원", "경기", "경남", "경북", "광주", "대구", "대전", "부산", "서울", "세종", "울산", "인
천","전남","전북","제주","충남","충북") #지역명 변수 선언
ratioGroup <- 0
                                   #앞서 정의했던 함수를 반복문으로 각 시도별 보험사기 백분율을 한번에 구해줍
LICH
for (i in 1:length(Region)){
    ratioGroup[i] <- ratiofunc(BC_cust1,Region[i])</pre>
}
FF <- data.frame(Region,ratioGroup) #보험사기 백분율과 앞서 선언한 지역명변수를 FF 데이터프레
임으로 구성합니다.
FF <-FF[order(FF$ratioGroup),] #보험사기백분율의 크기순으로 정렬합니다.
rownames(FF) <- NULL #재정렬한 순서에 맞춰 행이름을 재설정해줍니다
PER<-0 #총 17지역이므로 17중 순위에맞게 백분위를 계산해줍니다 PER변수에 백분위가 차례로 들어갈
 것입니다.
totalRG \leftarrow for (i in 1:17){
    PER[i] <- i/17 *100
FF<- data.frame(FF.PER) #보험사기백분율 FF데이터프레임과 PER함수를 묶어줍니다
#-- leaflet 활용 시작----/
pal3<-colorBin(palette="YI0rRd", domain=c(0,100), bins = 8, pretty=F, alpha = T) #0~100을 8클래
스로 나눈 파레트를 만듭니다.
pal <-colorFactor(palette = "YIOrRd", domain=NULL)</pre>
#----
class <- c("c1","c1","c2","c2","c3",'c3',"c4",'c5','c5','c5','c6','c6','c7','c7','c8','c8','c8'
) #기존 데이터프레임의 백분위를 범례의 구간별로 할당할 벡터 class를 선언해줍니다
# C1: 0 - 15
# C2: 15- 25
```

2020. 5. 30.

```
# C3: 25 - 38
# C4: 38 - 50
# C5: 50 - 62
# C6: 62 - 75
# C7: 75 - 88
# C8: 88 - 100
FF<- data.frame(FF,class) #FF와 class를 병합합니다
L.L <- read.csv("KOR_LAT_LON.csv") #위.경도 데이터를 불러옵니다
colnames(L.L)<- c("Region", "Lat", "Lon") #위경도데이터의 열이름을 바꿔줍니다
GG<-NULL
HH<-NULL
for (i in 1:length(FF$Region)){ #앞서 FF에서 범죄백분율 크기 기준으로 정렬되었던 지역명의 순
서대로 맞추어서 위경도데이터를 재구성합니다.
 GG<- L.L[L.L$Region==FF$Region[i],]
 H \leftarrow GG[,2:3]
 HH<-bind_rows(HH,H)
FF <- bind_cols(FF,HH) #위의 반복문으로 FF순서에맞춰 재구성된 HH를 FF에 합쳐줍니다
m=0
m = leaflet() %>% addTiles() %>% # /eaflet 활용부분입니다.
 setView(126.9860,37.54100,zoom=7) #snapshot에서 보여줄 경도와 위도 확대정도를 설정합니다
m = m %>% addLegend(pal = pal3, #addLegend는 범례생성함수입니다.
                values = FF$ratioGroup,
                position = "bottomright",
                 title = "ratio",
                 labFormat = labelFormat(suffix="%",between="%–")) #맨끝에 and '-'뒤에
%를 붙여주도록 설정합니다
m %>% addCircleMarkers(data=FF,radius=5,color= ~pal(class),) #문제의 예시에 맞게 크기를 radiu
s로 조절하고 FF 데이터프레임에 맞춘 circles를 찍어줍니다
```

Assuming "Lon" and "Lat" are longitude and latitude, respectively

