ACTIVIDAD PRÁCTICA RADIACIÓN DE CUERPO NEGRO

Física Moderna — Ingeniería en Nanotecnología

DATOS GENERALES

■ Duración: 45 minutos

■ Modalidad: Trabajo colaborativo en equipos de 3-4 estudiantes

• Materiales: Computadora/tablet con acceso a internet, calculadora, hoja de trabajo impresa

Objetivos

Al finalizar esta actividad, el estudiante será capaz de:

- Analizar experimentalmente la distribución espectral de la radiación de cuerpo negro a diferentes temperaturas
- Verificar las leyes de Wien y Stefan-Boltzmann utilizando datos de simulación
- Determinar la constante de Planck mediante análisis gráfico
- Comparar las predicciones de la física clásica con el modelo cuántico de Planck

INTRODUCCIÓN

La simulación PhET "Radiación de Cuerpo Negro" permite explorar el comportamiento del espectro de emisión térmica a diferentes temperaturas. En esta actividad, utilizaremos este simulador para verificar las leves fundamentales de la radiación térmica y analizar cómo la cuantización de la energía de Planck resolvió la "catástrofe ultravioleta" que predecía la física clásica.

Instrucciones

- 1. Formen equipos de 3-4 integrantes
- 2. Accedan al simulador PhET: https://phet.colorado.edu/es/simulation/blackbody-spectrum
- 3. Completen cada una de las secciones siguientes, registrando sus observaciones y resultados
- 4. Discutan las preguntas de análisis en equipo
- 5. Preparen una breve presentación (2-3 minutos) con sus conclusiones principales

1. PARTE 1: VERIFICACIÓN DE LA LEY DE WIEN

1.1. Procedimiento:

- 1. En el simulador, muestra tanto el "Espectro de cuerpo negro" como la "Curva de Rayleigh-Jeans"
- 2. Para cada temperatura de la tabla, determina la longitud de onda (λ) correspondiente al máximo de emisión
- 3. Registra también la intensidad máxima (valor pico) para cada temperatura

1.2. Tabla de datos:

Temperatura (K)	λ máximo (nm)	Producto $\lambda \cdot T$ (nm·K)	Intensidad máxima (W/m²
3000			
4000			
5000			
6000			
7000			

1.3. Análisis:

- 1. Calculen el producto $\lambda \cdot T$ para cada temperatura
- 2. ¿Es este producto aproximadamente constante? ¿Cuál es su valor promedio?
- 3. Comparen su valor promedio con la constante de Wien teórica ($b=2,898\times 10^{-3}$ m·K)
- 4. Calculen el porcentaje de error

Preguntas de Análisis

Preguntas:

- 1. ¿Cómo cambia la posición del máximo del espectro al aumentar la temperatura?
- 2. ¿Qué implicaciones tiene esto para el color aparente de objetos a diferentes temperaturas?
- 3. ¿Podría utilizar esta ley para estimar la temperatura de una estrella basándose en su color? Explique.

2. PARTE 2: VERIFICACIÓN DE LA LEY DE STEFAN-BOLTZMANN

2.1. Procedimiento:

1. Mantengan habilitada la opción "Mostrar intensidad"

- 2. Para cada temperatura de la tabla, anoten la intensidad total (W/m^2) indicada en el simulador
- 3. Calculen el cociente entre la intensidad total y T^4

2.2. Tabla de datos:

Temperatura (K)	Intensidad total (W/m²)	Intensidad/ T^4 (W/m ² /K ⁴)
3000		
4000		
5000		
6000		
7000		

2.3. Análisis:

- 1. ¿Es el cociente Intensidad/ T^4 aproximadamente constante?
- 2. Calculen el valor promedio de este cociente
- 3. Comparen su valor con la constante de Stefan-Boltzmann teórica ($\sigma = 5.67 \times 10^{-8}$ W/m²K⁴)
- 4. Calculen el porcentaje de error

Preguntas de Análisis

Preguntas:

- 1. Si la temperatura de un objeto se duplica, ¿en qué factor aumenta la intensidad total radiada?
- 2. ¿Por qué es tan importante la ley de Stefan-Boltzmann para aplicaciones como la termografía?
- 3. Un horno industrial opera a 1500 K. Si se incrementa su temperatura a 1800 K, ¿en qué porcentaje aumentará la energía radiada?

3. PARTE 3: LA CATÁSTROFE ULTRAVIOLETA

3.1. Procedimiento:

- 1. Configurar la temperatura en 5000 K
- 2. Habilitar tanto la curva de cuerpo negro (Planck) como la curva de Rayleigh-Jeans
- 3. Observar ambas curvas, particularmente en la región de longitudes de onda cortas
- 4. Tomar varios puntos donde ambas curvas difieren significativamente

3.2. Tabla de datos:

Longitud de onda (nm)	Intensidad Planck (W/m²/nm)	Intensidad Rayleigh-Jeans (V
200		
400		
600		
1000		
2000		

3.3. Análisis:

- 1. ¿En qué región del espectro las diferencias entre las predicciones clásica y cuántica son más significativas?
- 2. ¿Qué sucede con la curva de Rayleigh-Jeans a longitudes de onda muy cortas?
- 3. En la región de longitudes de onda largas, ¿convergen ambas curvas? ¿Por qué?

Preguntas de Análisis

Preguntas:

- 1. Explique, en términos de la hipótesis cuántica de Planck, por qué la intensidad real disminuye a altas frecuencias.
- 2. ¿Por qué se denomina "catástrofe ultravioleta" al problema de la predicción clásica?
- 3. ¿Qué implicaciones físicas tendría la predicción clásica si fuera correcta?

4. PARTE 4: ANÁLISIS COMPARATIVO DE ES-PECTROS

4.1. Procedimiento:

- 1. Configurar el simulador para mostrar simultáneamente espectros a diferentes temperaturas
- 2. Observar y registrar el espectro para las siguientes fuentes:

4.2. Análisis comparativo:

Fuente	Temperatura (K)	λ máximo (nm)	Región espectral	Apariencia
			dominante	visual
Temperatura ambiente	300			
Filamento de	3000			
tungsteno				
Sol	5800			
Estrella azul	12000			
Radiación	2.7			
cósmica de fon-				
do				

4.3. Análisis:

- 1. ¿Qué porcentaje de la radiación a temperatura ambiente es visible para el ojo humano?
- 2. ¿Por qué no podemos "ver" el calor emitido por objetos a temperatura ambiente?
- 3. ¿Cómo se relaciona la temperatura de una estrella con su color?

Preguntas de Análisis

Preguntas:

- 1. ¿Por qué la radiación cósmica de fondo tiene su máximo en la región de microondas?
- 2. Un objeto tiene su pico de emisión en aproximadamente 900 nm. ¿De qué color se vería y cuál sería su temperatura aproximada?
- 3. ¿Por qué el filamento de las bombillas incandescentes debe alcanzar temperaturas tan altas para ser eficiente?

PARTE 5: APLICACIONES TECNOLÓGICAS Y **5.** CIENTÍFICAS

Análisis de aplicaciones: 5.1.

Para cada una de las siguientes aplicaciones, identifiquen qué aspecto de la radiación de cuerpo negro es relevante y cómo se utiliza:

5.1.1. 1. Iermograna infrarroja:
Principio físico utilizado:
Rango de temperaturas típico:
• Ventajas y limitaciones:
5.1.2. 2. Determinación de la temperatura de estrellas: • Método utilizado:
 Información adicional que se puede obtener: Limitaciones del método:
5.1.3. 3. Diseño de hornos industriales y procesos térmicos:
■ Consideraciones importantes basadas en la radiación térmica:
Optimización energética:
Aplicaciones en nanotecnología:
5.1.4. 4. Radiación cósmica de fondo:
■ Significado cosmológico:
■ Temperatura actual y su significado:
■ ¿Cómo se determinó que era radiación de cuerpo negro?:

PARTE 6: IMPLICACIONES CONCEPTUALES 6. E HISTÓRICAS

Reflexión

Reflexión:

Discutan en grupo y elaboren una respuesta consensuada para cada una de las siguientes preguntas:

- 1. ¿Por qué la solución al problema del cuerpo negro marcó el inicio de la física cuántica?
- 2. ¿Qué tuvo que "sacrificar" Planck de la física clásica para resolver el problema de la radiación del cuerpo negro?
- 3. ¿Cómo afectó la hipótesis cuántica de Planck a la visión mecanicista del mundo que prevalecía en la física hasta ese momento?
- 4. ¿Qué otras teorías o descubrimientos fueron posibles gracias a la introducción del concepto de cuantización de la energía?

CONCLUSIONES Y RESULTADOS

Е	lal	oren	un	resumen	de .	los	princi	pales	hal	lazgo	S V	conc	lusiones	de l	la	activi	dad	l:

- 1. Valor experimental obtenido para la constante de Wien: ____
- 2. Valor experimental obtenido para la constante de Stefan-Boltzmann:
- 3. Principal diferencia entre la predicción clásica y la cuántica:
- 4. Aplicación más relevante de la radiación de cuerpo negro en el campo de la nanotecnología: _
- 5. Reflexión final sobre la importancia histórica y conceptual del trabajo de Planck:

ENTREGABLES

Al finalizar la actividad, cada equipo debe entregar:

- 1. Esta hoja de trabajo completada con todos los datos y respuestas
- 2. Gráficas elaboradas (pueden ser hechas a mano o en computadora)
- 3. Un breve informe con sus conclusiones (máximo una página)

CRITERIOS DE EVALUACIÓN

Criterio	Puntuación máxima					
Recolección precisa de datos	20 puntos					
Cálculos y análisis correctos	25 puntos					
Gráficas bien elaboradas	15 puntos					
Respuestas a preguntas de análisis	25 puntos					
Conclusiones y reflexiones	15 puntos					
Total	100 puntos					

RECURSOS DE APOYO

- Simulador PhET: https://phet.colorado.edu/es/simulation/blackbody-spectrum
- Constante de Wien: $b = 2,898 \times 10^{-3} \text{ m} \cdot \text{K}$
- Constante de Stefan-Boltzmann: $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$
- \bullet Constante de Planck: $h=6.626\times 10^{-34}~\mathrm{J\cdot s}$
- Constante de Boltzmann: $k = 1.381 \times 10^{-23} \text{ J/K}$
- Velocidad de la luz: $c = 3{,}00 \times 10^8 \text{ m/s}$