ME760 Engineering Analysis I

Homework Set 4

1. Estimate an upper bound for the spectral radius of the following matrix. Compare this bound to the actual spectral radius. Show your work.

due: Monday, Oct. 19, 2020

$$\mathbf{A} = \left(\begin{array}{ccc} 7 & 0 & 3 \\ 2 & 1 & 1 \\ 2 & 0 & 2 \end{array} \right)$$

- 2. Given the curve C: $\mathbf{r}(u) = \mathbf{i} \cos u + \mathbf{j} 2 \sin u$, find
 - (a) a tangent vector $\mathbf{r}'(u)$ and the corresponding unit vector $\hat{\mathbf{r}}'(u)$,
 - (b) \mathbf{r}' and $\hat{\mathbf{r}}'$ at the point $P: (1/2, \sqrt{3}, 0)$, and
 - (c) the equation of the line through P that is tangent to the curve. Sketch the curve and the tangent.
- 3. Find the length of the circular helix $\mathbf{r}(u) = \mathbf{i}a\cos u + \mathbf{j}a\sin u + \mathbf{k}u$ from (a,0,0) to $(a,0,2\pi)$.
- 4. Sketch $\mathbf{r}(t) = \mathbf{i}(R\sin\omega t + \omega Rt) + \mathbf{j}(R\cos\omega t + R)$ taking R = 1 and $\omega = 1$. This curve is called a cycloid and is the path of a point on the rim of a wheel of radius R that rolls without slipping along the x-axis. Find the velocity \mathbf{v} and the acceleration \mathbf{a} at the maximum and minimum y-values of the curve.
- 5. The flow of heat in a temperature field takes place in the direction of the maximum decrease of temperature. For the temperature field $T(x, y, z) = z/(x^2 + y^2)$ find this direction and magnitude of the heat flow in general and explicitly at the point (0, 1, 2).
- 6. Find the unit normal (a) to the surface ax + by + cz + d = 0 at any point P, and (b) to the surface $x^2 + y^2 + z^2 = 26$ at the point (1, 4, 3).
- 7. Find the divergence of $(-iy + jx)/(x^2 + y^2)$.
- 8. Prove that $\nabla \cdot (\nabla \times \mathbf{v}) = 0$.