נושאים במתמטיקה לתלמידי מח"ר - 10444

סמסטר ב2009

פתרון ממ"ן 17

בפתרון זה מומלץ לקרוא את כל הפתרון גם אם אתה חושב שאתה יודע לענות על השאלה.

תשובה 1

 ${f R}^3$ א. כאשר מדובר בקבוצה בת שלושה וקטורים, כדי לבדוק אם הקבוצה פורשת את 8.29 נבדוק אם היא בתייל (בלתי תלויה לינארית), שכן אז נוכל להסתמך על מסקנה ${f R}^3$ לפיה קבוצה של 3 וקטורים ב- ${f R}^3$ היא קבוצה בתייל אם ורק אם היא פורשת את ${f R}^3$ לפי ההגדרה (הגדרה ${f 8.19}$), הקבוצה ${f \{}\underline{u},\underline{v},\underline{w}{f \}}$ היא קבוצה בתייל אם ורק אם מתקיים:

(1)
$$\alpha = \beta = \gamma = 0 \iff \alpha \underline{u} + \beta \underline{v} + \gamma \underline{w} = \underline{0}$$

(2) $\alpha \underline{u} + \beta \underline{v} + \gamma \underline{w} = \underline{0}$: כלומר, אנו בודקים את מערכת המשוואות: אם יש למערכת זו **רק פתרון טריביאלי**, אז הקבוצה הנתונה בתייל, ואם יש למערכת זו **גם פתרון לא טריביאלי**, אז הקבוצה הנתונה תייל.

או, במילים אחרות, הקבוצה הנתונה $\{\underline{u},\underline{v},\underline{w}\}$ היא בתייל אם ורק אם למערכת הלינארית או, במילים אחרות, הקבוצה הנתונה הקבוצה היוויאלי.

נתבונן במערכת המשוואות (2) המתאימה לקבוצה בת שלושת הוקטורים

: זוהי המערכת
$$\{\langle 5,3,4\rangle,\langle 1,2,5\rangle,\langle 1,1,2\rangle\}$$

$$\alpha \langle 5, 3, 4 \rangle + \beta \langle 1, 2, 5 \rangle + \gamma \langle 1, 1, 2 \rangle = \langle 0, 0, 0 \rangle$$

$$\alpha \begin{pmatrix} 5 \\ 3 \\ 4 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(3)
$$\begin{cases} 5\alpha + 1\beta + 1\gamma = 0 \\ 3\alpha + 2\beta + 1\gamma = 0 \\ 4\alpha + 5\beta + 2\gamma = 0 \end{cases}$$

הקבוצה הנתונה היא בת״ל אם ורק אם למערכת הלינארית ההומוגנית (3) אין פתרון לא

נסתכל במטריצת המקדמים החופשיים של מערכת הומוגנית זו:

$$\begin{pmatrix}
5 & 1 & 1 \\
3 & 2 & 1 \\
4 & 5 & 2
\end{pmatrix}$$

שימו לב לכך שבמטריצה זו, למעשה, רשמנו אנכית את שלושת הוקטורים הנתונים זה ליד זה – **כשהסדר אינו חשוב**.

למערכת ההומוגנית של 3 משוואות ב-3 נעלמים אין פתרון לא טריוויאלי אם ורק אם למערכת החומוגנית שקולת שורות למטריצת היחידה I

נדרג, אם כן, את המטריצה המצומצמת (תחילה נחליף את סדר הוקטורים כדי להקל על הדרוג):

$$\begin{pmatrix} 5 & 1 & 1 \\ 3 & 2 & 1 \\ 4 & 5 & 2 \end{pmatrix} \xrightarrow{C_1 \leftrightarrow C_3} \begin{pmatrix} 1 & 1 & 5 \\ 1 & 2 & 3 \\ 2 & 5 & 4 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1 \\ R_3 \to R_3 - 2R_1} \longrightarrow$$

$$\begin{pmatrix} 1 & 1 & 5 \\ 0 & 1 & -2 \\ 0 & 3 & -6 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 3R_2} \begin{pmatrix} 1 & 1 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

המטריצה שקיבלנו אינה שקולת שורות ל-I ולכן למערכת הנידונה יש פתרון לא טריוויאלי ולכן הקבוצה הנתונה תלויה לינארית.

מכאן נקבל, לפי מסקנה 8.29 (3) ו-(4), שהקבוצה הנתונה (קבוצה של 3 וקטורים מכאן נקבל, לפי מסקנה ${\bf R}^3$.

107 בקבוצה הנתונה א 1 וקטורים ולכן, לפי המסקנה ממשפט 8.22, שרשומה בעמי (2 בקבוצה הנתונה א 107), הקבוצה תלויה לינארית (שהרי שורה השמינית (או לפי שאלה 8.30 עבור \mathbf{R}^n), הקבוצה תלויה לינארית (שהרי \mathbf{R}^3), אך ייתכן שהקבוצה פורשת את \mathbf{R}^3

קבוצה נתונה של וקטורים ב- ${f R}^3$ פורשת את ${f R}^3$ אם ורק אם כל וקטור ב- ${f R}^3$ ניתן להצגה כצירוף לינארי של אברי הקבוצה.

כלומר, הקבוצה הנתונה פורשת את \mathbf{R}^3 אם ורק אם לכל וקטור \mathbf{R}^3 קיימים כלומר, הקבוצה הנתונה פורשת את \mathbf{R}^3

(*) $\underline{v}=\sum_{i=1}^4\lambda_i\,\underline{a}_i$ -ש ממשיים כך ש λ_4 -ו λ_3 , λ_2 , λ_1

. הנתונה ארבעת הוקטורים העבוצה הנתונה $\underline{a}_4, \underline{a}_3, \underline{a}_2, \underline{a}_1$ כאשר

: נבדוק זאת: ב- (*) רשום למעשה

$$\langle a,b,c \rangle = \lambda_1 \langle 2,-1,1 \rangle + \lambda_2 \langle 1,2,3 \rangle + \lambda_3 \langle 1,1,1 \rangle + \lambda_4 \langle 0,0,1 \rangle$$

$$= \langle 2\lambda_1 + \lambda_2 + \lambda_3 , -\lambda_1 + 2\lambda_2 + \lambda_3 , \lambda_1 + 3\lambda_2 + \lambda_3 + \lambda_4 \rangle$$

השקול למערכת:

$$\begin{cases} 2\lambda_1 + \lambda_2 + \lambda_3 &= a \\ -\lambda_1 + 2\lambda_2 + \lambda_3 &= b \\ \lambda_1 + 3\lambda_2 + \lambda_3 + \lambda_4 &= c \end{cases}$$

. וו פתרון למערכת יש פתרון אם לכל וקטור (a,b,c $\in \mathbf{R}^3$ יש פתרון למערכת נבדוק

$$\begin{pmatrix} 2 & 1 & 1 & 0 & a \\ -1 & 2 & 1 & 0 & b \\ 1 & 3 & 1 & 1 & c \end{pmatrix} \xrightarrow{R_2 \to R_2 + \frac{1}{2}R_1} \begin{pmatrix} 2 & 1 & 1 & 0 & a \\ R_3 \to R_3 - \frac{1}{2}R_1 & & & \\ & & & \\ &$$

$$\begin{pmatrix} 2 & 1 & 1 & 0 & a \\ 0 & 5 & 3 & 0 & 2b+a \\ 0 & 0 & -1 & 1 & c-a-b \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{pmatrix} R_2 \to \frac{1}{5}R_2 \\ R_3 \to -R_3 \\ R_3 \to -R_3 \\ \hline \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{a}{2} \\ 0 & 1 & \frac{3}{5} & 0 & \frac{2b+a}{2} \\ 0 & 0 & 1 & -1 & a+b-c \end{pmatrix}$$

(נמק ממשי התונה פתרון איש פריו פרים ומכאן קל לראות ומכאן היש פריו פריד ממשי של פריד ומכאן או ומכאן או מצא פתרון מארטי, או מצא פתרון).

לכן כל וקטור ב- ${f R}^3$ ניתן להצגה כקומבינציה לינארית של אברי הקבוצה הנתונה, ולפי ההגדרה שהבאנו קודם, פירושו שהקבוצה הנתונה פורשת את

- יש בדיוק 3 יש בדיוק 3 וקטורים בקבוצה הנתונה אני וקטורים בלבד ולכן מכיוון שלבסיס של 3 וקטורים בקבוצה אניה בסיס, ולכן לא פורשת את (2)8.29 אינה בסיס, ולכן לא פורשת את
 - 4) הקבי בת שלושת הוקטורים היא $\{\langle 1,2,2\rangle,\langle 3,-1,-1\rangle,\langle 2,-5,3\rangle\}$, ולכן, כפי שהסברנו בסעיף 1) של השאלה, אנו בודקים אם היא בתייל. והמערכת המתקבלת ב- (2) היא:

$$\lambda_1 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\lambda_1+3\lambda_2+2\lambda_3=0$$
 : אוו
$$2\lambda_1-\lambda_2-5\lambda_3=0$$

$$2\lambda_1-\lambda_2+3\lambda_3=0$$

: נדרג את המטריצה המתאימה

$$\begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & -5 \\ 2 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & -5 \\ 0 & 0 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 0 & -7 & -9 \\ 0 & 0 & 8 \end{pmatrix}$$

המטריצה שקיבלנו שקולת שורות ל-I -נמק זאת! מכאן נובע כי למערכת (1) יש רק פתרון המטריצה הערכת לולכן הקבוצה הנתונה בת"ל ולפיכך פורשת את ${f R}^3$.

וגם ${f R}^3$ וגם לפי הגדרת בסיס של ${f R}^3$,על מנת שקבוצה תהיה בסיס היא צריכה לפרוש את ${f R}^3$ וגם להיות קבוצה בתייל. בסעיף אי מצאנו שהקבוצה היחידה, ברשימת שלוש הקבוצות הראשונות, שפורשת את ${f R}^3$ היא הקבוצה בסעיף 2). אך קבוצה זו **אינה** בסיס של ${f R}^3$ (לפי מקנה 29.8(2). לכן כל אחת משלוש הקבוצות הראשונות אינה בסיס של

. ${\bf R}^3$ אם בסיס ולכן , ${\bf R}^3$ את בתייל ופורשת (4 הקבוצה בסעיף

תשובה 2

עבור כל אחד מהוקטורים הנתונים בשני הסעיפים הראשונים של השאלה נרצה עבור קיום עבור כל אחד מהוקטורים הנתונים בשני הסעיפים אז $\underline{v}=\langle a,b,c,d \rangle$ - קבועים ממשיים $\lambda_3,\lambda_2,\lambda_1$ כך שאם נסמן את הוקטור ב

(1)
$$v = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$$

$$\langle a,b,c,d \rangle = \lambda_1 \langle 1,-1,1,-1 \rangle + \lambda_2 \langle 1,2,-2,1 \rangle + \lambda_3 \langle 1,3,-3,-5 \rangle$$
 : או

ושוויון זה שקול למערכת המשוואות הבאה:

(2)
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = a \\ -\lambda_1 + 2\lambda_2 + 3\lambda_3 = b \\ \lambda_1 - 2\lambda_2 - 3\lambda_3 = c \\ -\lambda_1 + \lambda_2 - 5\lambda_3 = d \end{cases}$$

א. עבור הווקטור $\langle 1, -8, 8, 1 \rangle$ המערכת (2) היא

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 \\ -\lambda_1 + 2\lambda_2 + 3\lambda_3 = -8 \\ \lambda_1 - 2\lambda_2 - 3\lambda_3 = 8 \\ -\lambda_1 + \lambda_2 - 5\lambda_3 = 1 \end{cases}$$

נעבור למטריצת המקדמים של המערכת:

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ -1 & 2 & 3 & | & -8 \\ 1 & -2 & -3 & | & 8 \\ -1 & 1 & -5 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 3 & 4 & | & -7 \\ 0 & -3 & -4 & | & 7 \\ 0 & 2 & -4 & | & 2 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 3 & 4 & | & -7 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & -2 & | & 1 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 3 & 4 & | & -7 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -2 & | & 1 \\ 0 & 3 & 4 & | & -7 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 10 & | & -10 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

זוהי מערכת אי-הומוגנית ב-3 נעלמים שמטריצת המקדמים שלה שקולת שורות למטריצת $.\underline{u}_3$ -ו $.\underline{u}_2$, $.\underline{u}_1$ למעשה קיבלנו $.\underline{u}_2$, $.\underline{u}_1$ שמתקיים $.\langle 1, -8, 8, 1 \rangle = 3\underline{u}_1 - 1\underline{u}_2 - 1\underline{u}_3$ למעשה קיבלנו גם שמתקיים $.\langle 1, -8, 8, 1 \rangle = 3\underline{u}_1 - 1\underline{u}_2 - 1\underline{u}_3$

עבור הווקטור $\langle 2,2,-1,1 \rangle$ המערכת (2) עבור הווקטור

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 2 \\ -\lambda_1 + 2\lambda_2 + 3\lambda_3 = 2 \\ \lambda_1 - 2\lambda_2 - 3\lambda_3 = -1 \\ -\lambda_1 + \lambda_2 - 5\lambda_3 = 1 \end{cases}$$

: נעבור למטריצת המקדמים של המערכת

$$\begin{pmatrix}
1 & 1 & 1 & | & 2 \\
-1 & 2 & 3 & | & 2 \\
1 & -2 & -3 & | & -1 \\
-1 & 1 & -5 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & | & 2 \\
0 & 3 & 4 & | & 4 \\
0 & -3 & -4 & | & -3 \\
0 & 2 & -4 & | & 3
\end{pmatrix}
R_3 \rightarrow R_3 + R_2
\begin{pmatrix}
1 & 1 & 1 & | & 2 \\
0 & 3 & 4 & | & 4 \\
0 & 0 & 0 & | & 1 \\
0 & 1 & -2 & | & 1.5
\end{pmatrix}$$

, $\langle 0,0,0,1 \rangle$ המטריצה הגענו לשורה שורות על שורות אלמנטריות אלמנטריות על במהלך ביצוע פעולות אלמנטריות על שורות המטריצה ווען פערון והווקטור $\langle 2,2,-1,1 \rangle$ אינו צירוף לינארי של פערכת אין פערון והווקטור

יהיה צירוף \underline{w} = $\left<\alpha,1,\beta,5\right>$ כך שהווקטור β -ו α ו- β לינארי של התנאים שצריכים לקיים היים α . \underline{u}_3 , \underline{u}_2 , \underline{u}_1 לינארי של

עבור וקטור זה המערכת (2) היא

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = \alpha \\ -\lambda_1 + 2\lambda_2 + 3\lambda_3 = 1 \end{cases}$$
$$\lambda_1 - 2\lambda_2 - 3\lambda_3 = \beta$$
$$-\lambda_1 + \lambda_2 - 5\lambda_3 = 5$$

: נעבור למטריצת המקדמים של המערכת

$$\begin{pmatrix} 1 & 1 & 1 & | \alpha \\ -1 & 2 & 3 & | 1 \\ 1 & -2 & -3 & | \beta \\ -1 & 1 & -5 & | 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | \alpha \\ 0 & 3 & 4 & | 1 + \alpha \\ 0 & -3 & -4 & | \beta - \alpha \\ 0 & 2 & -4 & | \alpha + 5 \end{pmatrix} R_3 \rightarrow R_3 + R_2 \begin{pmatrix} 1 & 1 & 1 & | \alpha \\ 0 & 3 & 4 & | 1 + \alpha \\ 0 & 0 & 0 & | \beta + 1 \\ 0 & 1 & -2 & | \frac{1}{2}\alpha + \frac{5}{2} \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & \alpha \\ 0 & 3 & 4 & 1+\alpha \\ 0 & 1 & -2 & \frac{1}{2}\alpha + \frac{5}{2} \\ 0 & 0 & 0 & \beta+1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & \alpha \\ 0 & 1 & -2 & \frac{1}{2}\alpha + \frac{5}{2} \\ 0 & 3 & 4 & 1+\alpha \\ 0 & 0 & 0 & \beta+1 \end{pmatrix} \rightarrow$$

$$(3) \longrightarrow \begin{pmatrix} 1 & 1 & 1 & \alpha \\ 0 & 1 & -2 & \frac{1}{2}\alpha + \frac{5}{2} \\ 0 & 0 & 10 & -\frac{1}{2}\alpha - \frac{13}{2} \\ 0 & 0 & 0 & \beta + 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & \alpha \\ 0 & 1 & -2 & \frac{1}{2}\alpha + \frac{5}{2} \\ 0 & 0 & 1 & -\frac{1}{20}\alpha - \frac{13}{20} \\ 0 & 0 & 0 & \beta + 1 \end{pmatrix}$$

eta = -1 , כלומר, eta + 1 = 0 אם ורק אם פתרון (יחיד) אם ולמערכת או יש פתרון (יחיד) אם ורק אם

lpha -1 -1 כאשר \underline{u}_3 , \underline{u}_2 , \underline{u}_1 לכן הווקטור \underline{w} = $\langle lpha,1,eta,5 \rangle$ הוא צירוף לינארי של

ג. עבור $\alpha=7$, הווקטור $\alpha=7$, הווקטור $\alpha=7$ הוא צירוף לינארי של $\alpha=7$, הווקטור $\alpha=7$, הווקטור $\alpha=7$, הוא צירוף לינארי של $\alpha=7$, והווקטור $\alpha=7$, והווקטור $\alpha=7$ המקדמים שקיבלנו ב-(3), נציב בה $\alpha=7$ ו- $\alpha=7$

ונקבל:

$$\begin{pmatrix} 1 & 1 & 1 & | & 7 \\ 0 & 1 & -2 & | & 6 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 8 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\lambda_{\!_1}=4$$
 , $\lambda_{\!_2}=4$, $\lambda_{\!_3}=-1$: הם אבירוף מקדמי לכן מקדמי

$$\langle 7, 1, -1, 5 \rangle = 4\underline{u}_1 + 4\underline{u}_2 - 1\underline{u}_3$$
 -1

תשובה 3

א. נסמן $A=\left\{ \underline{u},\underline{v},\underline{w}\right\}$ נסמן זוהי קבוצה בלתי תלויה לינארית של . $A=\left\{ \underline{u},\underline{v},\underline{w}\right\}$ וקטורים ב- R³ .

. נסמן B היא בתייל, $B=\left\{3\underline{u}-\underline{v}+\underline{w},-\underline{u}+2\underline{v}+\underline{w},\underline{u}+3\underline{w}\right\}$ נסמן

היא קבוצה בתייל אם ורק אם למערכת B

$$\lambda_1(3\underline{u} - \underline{v} + \underline{w}) + \lambda_2(-\underline{u} + 2\underline{v} + \underline{w}) + \lambda_3(\underline{u} + 3\underline{w}) = \underline{0}$$

יש פתרון טריוויאלי בלבד.

: כלומר, B היא קבוצה בתייל אם ורק אם מתקיים

$$\lambda_1 = \lambda_2 = \lambda_3 = 0 \quad \Leftarrow \quad \lambda_1 (3\underline{u} - \underline{v} + \underline{w}) + \lambda_2 (-\underline{u} + 2\underline{v} + \underline{w}) + \lambda_3 (\underline{u} + 3\underline{w}) = \underline{0}$$
 נבדוק את המערכת.

$$(3\lambda_1 - \lambda_2 + \lambda_3)\underline{u} + (-\lambda_1 + 2\lambda_2)\underline{v} + (\lambda_1 + \lambda_2 + 3\lambda_3)\underline{w} = \underline{0}$$
 מערכת זו שקולה ל-

 $oldsymbol{c}$ י: בת"ל, נובע, מהשוויון האחרון, כי $oldsymbol{A}$

$$\begin{cases} 3\lambda_1 - \lambda_2 + \lambda_3 = 0 \\ -\lambda_1 + 2\lambda_2 = 0 \\ \lambda_1 + \lambda_2 + 3\lambda_3 = 0 \end{cases}$$

נפתור מערכת הומוגנית זו:

$$\begin{pmatrix} 3 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ -1 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 3 \\ 0 & -4 & -8 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

קיבלנו שהמערכת שלנו, מערכת לינארית בת 3 נעלמים ו-3 משוואות, כל המשתנים שלה קיבלנו שהמערכת שתנים חופשיים. ולכן למערכת פתרון יחיד והוא הפתרון הטריביאלי.

ומכאן מתקבל: $\lambda_1 = \lambda_2 = \lambda_3 = 0$, ולכן $\lambda_2 = \lambda_3 = 0$

ב. שוב, $A=\left\{ \underline{u},\underline{v},\underline{w}\right\}$, ולכן זוהי קבוצה בלתי תלויה לינארית של . $A=\left\{ \underline{u},\underline{v},\underline{w}\right\}$. ונתון שזהו בסיס של . \mathbf{R}^3

,
$$C = \{3u - \underline{v} + \underline{w}, -\underline{u} + 2\underline{v} + 3\underline{w}, \underline{u} + \underline{w}\}$$
 נסמן

. כדי לבדוק אם זוהי קבוצה בסיס, נבדוק אם נבדוק אם C

היא קבוצה בתייל אם ורק אם למערכת C

$$\lambda_1(3u-v+w) + \lambda_2(-u+2v+3w) + \lambda_3(u+w) = 0$$

יש פתרון טריוויאלי בלבד.

: כלומר, C היא קבוצה בתייל אם ורק אם מתקיים

$$\lambda_1 = \lambda_2 = \lambda_3 = 0 \quad \Leftarrow \quad \lambda_1 (3\underline{u} - \underline{v} + \underline{w}) + \lambda_2 (-\underline{u} + 2\underline{v} + 3\underline{w}) + \lambda_3 (\underline{u} + \underline{w}) = \underline{0}$$
 נבדוק את המערכת.

$$(3\lambda_1 - \lambda_2 + \lambda_3)\underline{u} + (-\lambda_1 + 2\lambda_2)\underline{v} + (\lambda_1 + 3\lambda_2 + 1\lambda_3)\underline{w} = \underline{0}$$
 בערכת זו שקולה ל-

 $oldsymbol{c}$ מכיוון שהקבוצה A בת"ל, נובע, מהשוויון האחרון, כי

$$\begin{cases} 3\lambda_1 - \lambda_2 + \lambda_3 = 0 \\ -\lambda_1 + 2\lambda_2 = 0 \\ \lambda_1 + 3\lambda_2 + \lambda_3 = 0 \end{cases}$$

נפתור מערכת הומוגנית זו:

$$\begin{pmatrix} 3 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 1 \\ -1 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & 1 \\ 0 & -10 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & 1 \\ 0 & 5 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

קיבלנו שלמערכת של משתנה אחד חופשי, ולכן יש לה אינסוף פתרונות. ולכן C ת"ל, ולפיכך אינה בסיס של \mathbf{R}^3 .

תשובה 4

: אם מתקיים ורק אם ורק אם בתייל אם ורק אם מתקיים $V = \left\{ \underline{u}, \underline{v}, \underline{w} \right\}$ א.

(1)
$$\alpha = \beta = \gamma = 0 \iff \alpha \underline{u} + \beta \underline{v} + \gamma \underline{w} = \underline{0}$$

. שעבורם מתקיים (1), נמצא אותם. ערכי לכן ערכי ערכי λ שעבורם מתקיים (1), נמצא אותם. אם $\alpha \underline{u} + \beta \underline{v} + \gamma \underline{w} = \underline{0}$ אם $\alpha \underline{u} + \beta \underline{v} + \gamma \underline{w} = \underline{0}$ מתקיים :

$$\alpha(\underline{a} + \lambda \underline{b}) + \beta(\underline{b} + \lambda \underline{c}) + \gamma(\underline{c} + \lambda \underline{a}) = \underline{0}$$

$$(\alpha + \lambda \gamma)\underline{a} + (\beta + \lambda \alpha)\underline{b} + (\gamma + \lambda \beta)\underline{c} = 0$$
:13

-נתון ש- A בת"ל, לכן משוויון זה נובע ש

$$\alpha + \lambda \gamma = \beta + \lambda \alpha = \gamma + \lambda \beta = 0$$

 $: \ lpha, eta, \gamma$ שוויון זה מייצג, למעשה, מערכת משוואות הומוגנית שהנעלמים בה הם

(2)
$$\begin{cases} \alpha + \lambda \gamma = 0 \\ \lambda \alpha + \beta = 0 \\ \lambda \beta + \gamma = 0 \end{cases}$$

שמטריצת המקדמים המצומצמת שלה היא:

$$\begin{pmatrix} 1 & 0 & \lambda \\ \lambda & 1 & 0 \\ 0 & \lambda & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - \lambda R_1} \begin{pmatrix} 1 & 0 & \lambda \\ 0 & 1 & -\lambda^2 \\ 0 & \lambda & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 - \lambda R_2} \begin{pmatrix} 1 & 0 & \lambda \\ 0 & 1 & -\lambda^2 \\ 0 & 0 & 1 + \lambda^3 \end{pmatrix}$$

קיבלנו שלמערכת החומוגנית יש פתרון יחיד אם ורק אם $\lambda^3\neq -1$ או $1+\lambda^3\neq 0$ הסומר, יש פתרון יחיד יש פתרון $\lambda^3\neq -1$. $\lambda\neq -1$

לכן, לכל $\lambda \neq -1$ הפתרון הטריוויאלי, כלומר לכן, לכל לכן, לכל $\lambda = -1$ הפתרון מערכת לכן. . $\alpha = \beta = \gamma = 0$

. קיבלנו, לפי (1), כי לכל $\lambda \neq -1$ הקבוצה V בתייל.

, ואז, $\lambda = -1$ בסעיף הקודם נובע ש- V תלויה לינארית אם ורק אם (1) ב.

(3)
$$\begin{cases} \underline{u} = \underline{a} - \underline{b} \\ \underline{v} = \underline{b} - \underline{c} \\ \underline{w} = \underline{c} - \underline{a} \end{cases}$$

-אנו מחפשים קבועים ממשיים β, α כך ש

$$\underline{w} = \alpha \underline{u} + \beta \underline{v}$$

$$= \alpha (\underline{a} - \underline{b}) + \beta (\underline{b} - \underline{c})$$

$$= \alpha \underline{a} + (\beta - \alpha) \underline{b} - \beta \underline{c}$$

$$\underline{w} = \underline{c} - \underline{a}$$
:(3) מצד שני, לפי (3):

לכן, נשווה מקדמים ונקבל:

$$egin{cases} lpha=-1 \ eta-lpha=0 \ eta=-1 \end{cases}$$
 מערכת משוואות שפתרונה הוא $\underline{w}=-\underline{u}-\underline{v}$

תשובה 5

א. נפתור את המערכת הנתונה. מטריצת המקדמים המצומצמת היא:

$$\begin{pmatrix} 1 & 1 & 3 & 1 \\ 2 & 1 & 5 & 2 \\ 1 & 0 & 2 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_2} \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

.(וודאו אתי). $s,t\in\mathbf{R}$ עבור $\langle -2s-t,-s,s,t\rangle$ וודאו אתי).

-ם. אם נסמן פתרון כללי של המערכת ב- \underline{p} הרי ש

$$\underline{p} = \begin{pmatrix} -2s - t \\ -s \\ s \\ t \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 0 \end{pmatrix} s + \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} t = s\underline{u}_2 + t\underline{u}_1$$

. \underline{u}_2 ו - ו של בצירוף המערכת ניתן המערכת של פתרון שכל מצאנו, אם כן, שכל מצאנו

ג. יהיו

$$\underline{u}_1 = \langle -1, 0, 0, 1 \rangle
\underline{u}_2 = \langle -2, -1, 1, 0 \rangle
\underline{u}_3 = \langle 0, \alpha, 1, 1 \rangle
\underline{u}_4 = \langle 0, 1, 1, \beta \rangle$$

. ${f R}^4$ היא בסיס של $\left\{ \underline{u}_1, \underline{u}_2, \underline{u}_3, \underline{u}_4 \right\}$ כך שהקבוצה eta, α כדי שהקבוצה $\left\{ \underline{u}_1, \underline{u}_2, \underline{u}_3, \underline{u}_4 \right\}$ תהיה בסיס של ${f R}^4$ יש לדרוש שהיא תהיה בת״ל, שהרי לפי מסקנה (4)8.29, קבוצה בת 4 וקטורים ב- ${f R}^4$ היא בסיס של ${f R}^4$ אם ורק אם היא בת״ל

 $\{\underline{u}_1,\underline{u}_2,\underline{u}_3,\underline{u}_4\}$ בת"ל: נוכיח שהקבוצה

אנו עושים זאת כפי שעשינו בתשובה לשאלה 1!

לא אפרט שוב הכל, אך כשאתם פותרים שאלה כזאת בממן או בבחינה, עליכם לפרט את כל השיקולים!

(*)
$$a\underline{u}_1 + b\underline{u}_1 + c\underline{u}_3 + d\underline{u}_4 = \underline{0} \qquad \qquad : אנו בודקים את מערכת המשוואות$$

אם יש למערכת זו **רק פתרון טריביאלי**, אז הקבוצה הנתונה בתייל, ואם יש למערכת זו גם פתרון לא טריביאלי, אז הקבוצה הנתונה תייל.

נתבונן במערכת המשוואות (*) המתאימה לקבוצה בת ארבעת הוקטורים

: זוהי המערכת .
$$\{\langle -1,0,0,1\rangle,\langle -2,-1,1,0\rangle,\langle 0,\alpha,1,1\rangle,\langle 0,1,1,\beta\rangle\}$$

$$a \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} + b \begin{pmatrix} -2\\-1\\1\\0 \end{pmatrix} + c \begin{pmatrix} 0\\\alpha\\1\\1 \end{pmatrix} + d \begin{pmatrix} 0\\1\\1\\\beta \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

$$\begin{cases}
-a-2b &= 0 \\
-b+\alpha c+d=0 \\
b+c+d=0 \\
a+c+\beta d=0
\end{cases}$$

הקבוצה הנתונה היא בת"ל אם ורק אם למערכת הלינארית ההומוגנית (**) אין פתרון לא טריוויאלי.

נסתכל במטריצת המקדמים החופשיים של מערכת הומוגנית זו:

$$\begin{pmatrix}
-1 & -2 & 0 & 0 \\
0 & -1 & \alpha & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & \beta
\end{pmatrix}$$

למערכת ההומוגנית של 4 משוואות ב-4 נעלמים אין פתרון לא טריוויאלי אם ורק אם למערכת החומוגנית שקולת שורות למטריצת היחידה I

נדרג, אם כן, את המטריצה המצומצמת:

$$\begin{pmatrix} -1 & -2 & 0 & 0 \\ 0 & -1 & \alpha & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & \beta \end{pmatrix} \xrightarrow{R_1 \to -R_1} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -1 & \alpha & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -2 & 1 & \beta \end{pmatrix}$$

$$\xrightarrow{R_3 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & \alpha & 1 \\ 0 & -2 & 1 & \beta \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & \alpha + 1 & 2 \\ 0 & 0 & 3 & \beta + 2 \end{pmatrix}$$

$$\xrightarrow{R_3 \leftrightarrow R_4} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & \beta + 2 \\ 0 & 0 & \alpha + 1 & 2 \end{pmatrix} \xrightarrow{R_4 \to R_4 - \frac{\alpha + 1}{3} R_3} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & \beta + 2 \\ 0 & 0 & 0 & 2 - \frac{\alpha + 1}{3} (\beta + 2) \end{pmatrix}$$

המטריצה שקיבלנו שקולת שורות למטריצת היחידה, I , אם ורק אם

. ואז למערכת הנידונה אין פתרון לא טריוויאלי ,
$$2 - \frac{\alpha+1}{3}(\beta+2) \neq 0$$

 $\frac{6-(\alpha+1)(\beta+2)}{3}\neq 0$ שם ורק אם לינארית. תלויה בלתי בלתי הנתונה בלתי ולכן ולכן הקבוצה הנתונה בלתי הלויה לינארית.

$$6 - (\alpha + 1)(\beta + 2) \neq 0$$
 או

4 לפוצה (קבוצה (4), $\underline{u}_1,\underline{u}_2,\underline{u}_3,\underline{u}_4$ (קבוצה של (4)8.29), שהקבוצה הנתונה ($\alpha+1$)($\beta+2$) לפיס של \mathbf{R}^4 אם α 0 בסיס של (\mathbf{R}^4 1).

תשובה 6

א. הטענה אינה נכונה. נוכיח זאת.

. n=2 , k=3 . $A=\left\{\left\langle 1,0\right\rangle ,\left\langle 2,0\right\rangle ,\left\langle 0,0\right\rangle \right\}$ נבחר כדוגמא נגדית:

ב. הטענה אינה נכונה. נוכיח זאת.

. n=2 , k=3 . $A=\left\{\left\langle 1,0\right\rangle ,\left\langle 2,0\right\rangle ,\left\langle 0,1\right\rangle \right\}$ נבחר כדוגמא נגדית:

מתקיים $\underline{a}_3 = \left<0,1\right>$ אינו לינארית. אך הווקטור $\underline{a}_3 = \left<0,1\right>$ אינו ניתן לתיאור לינארי של שאר וקטורי A נמק זאת (הנימוק כמו בסעיף א' של השאלה).

ג. הטענה אינה נכונה. נוכיח זאת.

. n=2 , k=3 . $A=\left\{\left\langle 1,0\right\rangle ,\left\langle 2,0\right\rangle ,\left\langle 0,0\right\rangle \right\}$ נבחר כדוגמא נגדית:

. מתקיים k > n לכן k > n מתקיים

-אם נבחר $\lambda_1=\lambda_2=\lambda_3=1$ נקבל ש

$$\lambda_{1}\left\langle 1,0\right\rangle +\lambda_{2}\left\langle 2,0\right\rangle +\lambda_{3}\left\langle 0,0\right\rangle =1\left\langle 1,0\right\rangle +1\left\langle 2,0\right\rangle +1\left\langle 0,0\right\rangle =\left\langle 3,0\right\rangle \neq\left\langle 0,0\right\rangle =\underline{0}$$