RNA-seq analysis with DESeq2:: cheat sheet

Background

The **DESeq2** package provides tools that enable you to:

- 1. Perform **differential expression analysis** of count data produced by RNA sequencing
- 2. Effectively visualize these count data

Installation

Run the following to install DESeq2 from **Bioconductor**

if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DESeq2")

Load DESeq2

library(DESeq2)

Create dds object

Create a **DESeqDataSet** (dds) object from counts data stored in a **counts**

Inspect dds object

counts(dds)

View counts matrix (only first three rows and columns are shown here)

	sample1	sample2	sample3
ENSG00000223972	0	0	0
ENSG00000227232	14	28	17
ENSG00000278267	8	4	3

colData(dds)

View sample information

	Cell	Type	Condition
sample1	Cell1	Epithelial	mock
sample2	Cell1	Epithelial	mock
sample3	Cell1	Epithelial	mock
sample4	Cell1	Epithelial	KD
sample5	Cell1	Epithelial	KD
sample6	Cell1	Epithelial	KD

Subset dds object

dds[1:5,]

Choose first 5 genes

dds[,1:3]

Choose first 3 samples

dds[, dds\$Condition == "mock"]

Choose samples that belong to "mock" condition

Sample PCA plots

Apply variance stabilizing transformation

vsd <- vst(dds, blind=FALSE)</pre>

Apply regularized log transformation

rld <- rlog(dds, blind=FALSE)</pre>

plotPCA(vsd, intgroup="Condition")

Sample PCA plot for vst-transformed data

plotPCA(rld, intgroup="Condition")

Sample PCA plot for rlog-transformed data

Differential Expression

Perform estimation of size factors, estimation of dispersion, Negative Binomial GLM fitting and Wald statistics

```
dds <- DESeq(dds)
```

results(dds)

Extract a results table

Extract a results table, specifying the numerator and denominator for fold-changes

mcols(res)\$description

Print descriptions of results table columns

Visualize Results

plotMA(res)

Plot log fold changes versus mean expression (MA plot)

Log fold change shrinkage

Performs log fold change shrinkage

MA plot

