# PN-codes, PN-signals and Principles of Spread Spectrum Comms (Part-A)

Professor A. Manikas

Imperial College London

EE303 - Communication Systems

An Overview of Fundamentals

### Table of Contents

- Introduction 3GPP

  - Definition of a SSS
  - Classification of SSS
  - Modelling of b(t) in SSS
  - Applications of Spread Spectrum Techniques
  - Definition of a Jammer
  - Definition of a MAI
  - Processing Gain (PG)
  - Equivalent EUE
- Principles of PN-sequences
  - · Comments on PN-sequences Main Properties An Important "Trade-off"
- m-sequences
  - Shift Registers and Primitive Polynomials
  - Implementation of an 'm-sequence'
  - Auto-Correlation Properties
  - Some Important Properties of m-sequences
  - Cross-Correlation Properties and Preferred m-sequences
  - · A Note on m-sequences for CDMA
- Gold Sequences
  - Introductory Comments
  - Auto-Correlation Properties
  - Cross-Correlation Properties
  - Balanced Gold Sequences
- Appendices
  - Appendix A: Properties of a Purely Random Sequence
  - Appendix B: Auto and Cross Correlation functions of two PN-sequences
  - Appendix C: The concept of a 'Primitive Polynomial' in GF(2)
  - · Appendix D: Finite Field Basic Theory
  - Appendix E: Table of Irreducible Polynomials over GF(2)



### Introduction

• General Block Diagram of a Digital Comm. System (DCS)



### 3GPP

- 3GPP is a cellular communication standard development body (3GPP ≜ 3'd Generation Partnership Project )
  - ▶ Found in 1998
  - Participated by over 100 companies and 1000s of communications experts
  - Globally dominant cellular standard
- 3GPP also
  - developed the 4G standards
  - ▶ is developing standards towards next generation (5G)



### Pre-4G Evolution



HSCDS: High Speed Circuit Switched Data GPRS: General Packet Radio Systems (2+)

EDGE: Enhanced Data Rate GSM Evolution (2+)

UMTS: Universal Mobile Telecommunication Systems (3G)



Note: CDMA  $\in$  Spread Spectrum Comms

 Industry Transformation and Convergence [from Ericsson 2006, LZT 123 6208 R5B]



WCDMA (Wideband CDMA) is a 3G mobile comm system. It is a wireless system where the telecommunications, computing and **media** industry converge and is based on a Layered Architecture design. (Note: CDMA Systems  $\in$  the class of SSS).

40.40.45.45. 5 900

### Definition of a SSS

When a DCS becomes a Spread Spectrum System (SSS)



• LEMMA-1: CS  $\triangleq$  SSS  $\circ$   $\circ$  S<sub>ss</sub>  $\circ$  message bandwidth (i.e. BUE=large)  $\circ$  S<sub>ss</sub>  $\neq$  f{message}  $\circ$  spread is achieved by means of a code which is  $\neq$ f{message} where  $\mathcal{B}_{ss}$ =transmitted SS signal bandwidth

 $\bullet$  our AIM: ways of accomplishing LEMMA-1.

#### NB:

 PCM, FM, etc spread the signal bandwidth but do not satisfy the conditions to be called SSS

- $ightharpoonup B_{\text{transmitted-signal}} \gg B_{\text{message}}$ 
  - $\Rightarrow$ SSS distributes the transmitted energy over a wide bandwidth
  - $\Rightarrow$  SNIR at the receiver input is LOW.

Nevertheless, the receiver is capable of operating successfully because the transmitted signal has distinct characteristics relative to the noise





### (b) CDMA (K users):



- The PN signal b(t) is a function of a PN sequence of  $\pm 1$ 's  $\{\alpha[n]\}$ 
  - ▶ The sequences  $\{\alpha[n]\}$  must agreed upon in advance by Tx and Rx and they have status of password.
  - This implies that :
    - ★ knowledge of  $\{\alpha[n]\}$  ⇒demodulation=possible
    - ★ without knowledge of  $\{\alpha[n]\}$  ⇒demod.=very difficult
  - ▶ If  $\{\alpha[n]\}$  (i.e. "password") is purely random, with no mathematical structure, then
    - ★ without knowledge of  $\{\alpha[n]\}$  ⇒demodulation=impossible
  - However all practical random sequences have some periodic structure. This means:

$$\alpha[n] = \alpha[n + N_c] \tag{1}$$

where  $N_c$  =period of sequence i.e. pseudo-random sequence (PN-sequence)

### Classification of SSS



# Modelling of b(t) in SSS

DS-SSS (Examples: DS-BPSK, DS-QPSK):

$$b(t) = \sum_{n} \alpha[n] \cdot c(t - nT_c)$$
 (2)

where  $\{\alpha[n]\}$  is a sequence of  $\pm 1$ 's;

c(t) is an energy signal of duration  $\mathcal{T}_c = \operatorname{rect}\left\{rac{t}{\mathcal{T}_c}
ight\}$ 



FH-SSS (Examples: FH-FSK)

$$b(t) = \sum_{n} \exp \{ j(2\pi k[n]F_1 t + \phi[n]) \} .c(t - nT_c)$$
 (3)

where  $\{\mathsf{k}[n]\}$  is a sequence of integers such that  $\{\alpha[n]\} \mapsto \{\mathsf{k}[n]\}$  and  $\{\alpha[n]\}$  is a sequence of  $\pm 1$ 's;

c(t) is an energy signal of duration  $\mathcal{T}_c$ 

and with  $\phi[n]= ext{random: pdf}_{\phi[n]}=rac{1}{2\pi} ext{rect}\{rac{arphi}{2\pi}\}$ 

# Applications of Spread Spectrum Techniques

- Interference Rejection: to achieve interference rejection due to:
  - Jamming (hostile interference). N.B.: protection against cochannel interference is usually called anti-jamming (AJ)
  - Other users (Multiple Access Interefence MAI): Spectrum shared by "coordinated " users.
  - Multipath: Self-Jamming by delayed signal
- Energy Density Reduction (or Low Probability of Intercept LPI). LPI' main objectives:
  - to meet international allocations regulations
  - to reduce (minimize) the detectability of a transmitted signal by someone who uses spectral analysis
  - privacy in the presence of other listeners
- Range or Time Delay Estimation

NB: interference rejection = most important application



• Jamming source, or, simply Jammer is defined as follows:

 $\mathsf{Jammer} \triangleq \mathsf{intentional} \; (\mathsf{hostile}) \; \mathsf{interference}$ 



- \* the jammer has full knowledge of SSS design except the jammer does not have the key to the PN-sequence generator,
- ★ i.e. the jammer may have full knowledge of the SSSystem but it does know the PN sequence used.

• Multiple Access Interference (MAI) is defined as follows:



- PG: is a measure of the interference rejection capabilities
- definition:

$$PG \triangleq \frac{B_{ss}}{B} = \frac{1/T_c}{1/T_{cs}} = \frac{T_{cs}}{T_c}$$
 (4)

where B=bandwidth of the conventional system

- PG is also known as "spreading factor" (SF)
- PG = very important in DS-SSS
- PG  $\neq$  very important in FH-SSS



#### Remember:

- ★ Jamming source, or, simply Jammer = intentional interference
- ★ Interfering source = unintentional interference



- ★ With area-B = area-A we can find  $N_i$
- \*  $P_j = 2 \times \underbrace{\text{area} \mathbf{A}}_{} = 2 \times \underbrace{\text{area} \mathbf{B}}_{} = N_j B_j \Rightarrow N_j = \frac{P_j}{B_i}$

- (ロ) (部) (注) (注) 注 り(G

if

$$B_J = qB_{ss}; \ 0 < q \le 1 \tag{5}$$

then

$$EUE_J = \frac{E_b}{N_J} = \frac{P_s.B_J}{P_J.r_b} = \frac{P_s.q.B_{ss}}{P_J.B} = PG \times SJR_{in} \times q \quad (6)$$

$$EUE_{equ} = \frac{E_b}{N_0 + N_J}$$
 (7)

$$= \mathsf{PG} \times \mathsf{SJR}_{in} \times q \times \left(\frac{\mathsf{N}_0}{\mathsf{N}_i} + 1\right)^{-1} \tag{8}$$

where

$$SJR_{in} \triangleq \frac{P_s}{P_I} \tag{9}$$



• SS Transmission in the presence of a Jammer (or MAI)



• SS Reception in the presence of a Jammer (or MAI)



- PN-codes (or PN-sequences, or spreading codes) are sequences of +1s and -1s (or 1s and 0s) having special correlation properties which are used to distinguish a number of signals occupying the same bandwidth.
- Five Properties of Good PN-sequences:

| Property-1 | easy to generate                        |
|------------|-----------------------------------------|
| Property-2 | randomness                              |
| Property-3 | long periods                            |
| Property-4 | impulse-like auto-correlation functions |
| Property-5 | low cross-correlation                   |

## Comments on PN-sequences Main Properties

- Comments on Properties 1, 2 & 3
  - Property-1 is easily achieved with the generation of PN sequences by means of shift registers, while
  - Property-2 & Property-3 are achieved by appropriately selecting the feedback connections of the shift registers.

24 / 47

### Comments on Property-4

- to combat multipath, consecutive bits of the code sequences should be uncorrelated.
   i.e. code sequences should have impulse-like autocorrelation functions.
  - Therefore it is desired that the auto-correlation of a PN-sequence is made as small as possible.
- ► The success of any spread spectrum system relies on certain requirements for PN-codes. Two of these requirements are:
  - 1 the autocorrelation peak must be sharp and large (maximal) upon synchronisation (i.e. for time shift equal to zero)
  - the autocorrelation must be minimal (very close to zero) for any time shift different than zero.
- ▶ A code that meets the requirements (1) and (2) above is the m-sequence which is ideal for handling multipath channels.



▶ The figure below shows a shift register of 5 stages together with a modulo-2 adder. By connecting the stages according to the coefficients of the polynomial  $D^5 + D^2 + 1$  an m-sequence of length 31 is generated (output from Q5).

The autocorrelation function of this m-sequence signal is shown in the previous page





(b)

- Comments on Property-5
  - ▶ If there are a number of PN-sequences

$$\{\alpha_1[k]\}, \{\alpha_2[k]\}, ..., \{\alpha_K[k]\}$$
 (10)

then if these code sequences are not totally uncorrelated, there is always an interference component at the output of the receiver which is proportional to the cross-correlation between different code sequences.

► Therefore it is desired that this cross-correlation is made as small as possible.

## An Important "Trade-off"

- There is a trade-off between Properties-4 and 5.
- In a CDMA communication environment there are a number of PN-sequences

$$\{\alpha_1[k]\}, \{\alpha_2[k]\}, ...., \{\alpha_K[k]\}$$

of period  $N_c$  which are used to distinguish a number of signals occupying the same bandwidth.

- Therefore, based on these sequences, we should be able to
  - ★ combat multipath (which implies that the auto-correlation of a PN-sequence {α<sub>i</sub>[k]} should be made as small as possible)
  - remove interference from other users/signals, (which implies that the cross-correlation should be made as small as possible).



#### However

$$R_{auto}^2 + R_{cross}^2 >$$
 a constant which is a function of period  $N_c$  (11)

i.e. there is a trade-off between the peak autocorrelation and cross-correlation parameters.

Thus, the autocorrelation and cross-correlation functions cannot be both made small simultaneously.

- The design of the code sequences should be therefore very careful.
- N.B.:
  - ▶ A code with excellent autocorrelation is the m-sequence.
  - A code that provides a trade-off between auto and cross correlation is the gold-sequence.



## m-sequences - definition

- m-seq.: widely used in SSS because of their very good autocorrelation properties.
- PN code generator: is periodic
  - i.e. the sequence that is produced repeats itself after some period of time
- Definition: A sequence generated by a linear m-stages Feedback shift register is called a maximal length, a maximal sequence, or simply m-sequence, if its period is

$$N_c = 2^m - 1 \tag{12}$$

(which is the maximum period for the above shift register generator)

• The initial contents of the shift register are called initial conditions.



# Shift Registers and Primitive Polynomials

• The period  $N_c$  depends on the feedback connections (i.e. coefficients  $c_i$ ) and  $N_c = max$ , i.e.  $N_c = 2^m - 1$ , when the characteristic polynomial

$$c(D) = c_m D^m + c_{m-1} D^{m-1} + \dots + c_1 D + c_0$$
 with  $c_0 = 1$  (13)

is a primitive polynomial of degree m.

rule: if 
$$c_i = \begin{cases} 0 \Longrightarrow \text{ no connection} \\ 1 \Longrightarrow \text{ there is connection} \end{cases}$$
 (14)

 Definition of PRIMITIVE polynomial = very important (see Appendix C)



Some Examples of Primitive Polynomials

| degree- <i>m</i> | polynomial      |  |  |
|------------------|-----------------|--|--|
| 3                | $D^3 + D + 1$   |  |  |
| 4                | $D^4 + D + 1$   |  |  |
| 5                | $D^5 + D^2 + 1$ |  |  |
| 6                | $D^6 + D + 1$   |  |  |
| 7                | $D^7 + D + 1$   |  |  |

 Please see Comm Systems LNs (Spread Spectrum Topic) for some tables of irreducible & primitive polynomial over GF(2).

### Implementation of an m-sequence

 use a maximal length shift register i.e. in order to construct a shift register generator for sequences of any permissible length, it is only necessary to know the coefficients of the primitive polynomial for the corresponding value of m

$$f_c = \frac{1}{T_c} = \text{chip-rate} = \text{clock-rate}$$
 (15)



$$c(D) = c_m D^m + c_{m-1} D^{m-1} + \dots + c_1 D + c_0$$
 (16)

with 
$$c_0 = 1$$
 (17)

- Example:  $c(D) = D^3 + D + 1 = \text{primitive} \implies \text{power} = m = 3$ 
  - ightharpoonup coefficients= $(1,0,1,1) \Rightarrow N_c = 7 = 2^m 1$  i.e.period=  $7T_c$



|                   |             |             | o/p         |
|-------------------|-------------|-------------|-------------|
|                   | <b>1</b> st | <b>2</b> nd | <b>3</b> rd |
| initial condition | 1           | 1           | 1           |
| clock pulse No.1  | 0           | 1           | 1           |
| clock pulse No.2  | 0           | 0           | 1           |
| clock pulse No.3  | 1           | 0           | 0           |
| clock pulse No.4  | 0           | 1           | 0           |
| clock pulse No.5  | 1           | 0           | 1           |
| clock pulse No.6  | 1           | 1           | 0           |
| clock pulse No.7  | 1           | 1           | 1           |

 Note that the sequence of 0's and 1's is transformed to a sequence of  $\pm 1$ s by using the following function

EE303: PN and SSComms (Part-A)

Prof. A. Manikas (Imperial College)

## **Auto-Correlation Properties**

• An m-sequ.  $\{\alpha[n]\}$  has a two valued auto-correlation function:

$$R_{\alpha\alpha}[k] = \sum_{n=1}^{N_c} \alpha[n]\alpha[n+k] = \begin{cases} N_c & k = 0 \mod N_c \\ -1 & k \neq 0 \mod N_c \end{cases}$$
(19)

ullet This implies that  $R_{bb}( au)$  is also a "two-valued"



• Remember that a sequence  $\{\alpha[n]\}$  of period  $N_c = 2^m - 1$ , generated by a linear FB shift register, is called a maximal length sequence.

## Some Properties of m-sequences

- ullet There is an appropriate balance of -1s and +1s
  - In any period there are  $\left\{ \begin{array}{ll} N_{c-}=2^{m-1} & \text{No. of -1s} \\ N_{c+}=2^{m-1}-1 & \text{No. of +1s} \end{array} \right\}$  i.e.

$$Pr(+1) \simeq Pr(-1) \tag{20}$$

- shift-property of m-sequences:
  - if  $\{\alpha[n]\}$  is an m-sequence then

$$\{\alpha[n]\} + \underbrace{\{\alpha[n+m]\}}_{\text{shift by } m} = \underbrace{\{\alpha[n+k]\}}_{\text{shift by } k \neq m}$$
(21)



- In a complete SSS we use more than one different m-sequences
  - Thus the number of m-sequs of a given length is an IMPORTANT property
    - because in a CDMA system several users communicate over a common channel so that different -sequences are necessary to distinguish their signals
  - ▶ Number of m-sequs of length  $N_c$ :

No. of m-sequs of length 
$$N_c \triangleq \frac{1}{m} \Phi \{ N_c \}$$
 (22)

where

$$\Phi \{ N_c \} \triangleq \text{Euler totient function}$$
 (23)  
= No of (+)ve integers <  $N_c$  and relative prime to  $N_c$ 

Note: if  $N_c = p.q$  where p, q are prime numbers then

$$\Phi\{N_c\} = (p-1).(q-1) \tag{24}$$

, (, ,

## Cross-Correlation Properties and Preferred m-sequences

- sequences of period  $N_c$  are used to distinguish two signals occupying the same bandwidth.
- A measure of interaction between these signals is their cross-correlation:

$$R_{\alpha_i\alpha_j}[k] = \sum_{n=1}^{N_c} \alpha_i[n] \alpha_j[n+k]$$

- However,
  - there exist certain pairs of sequences that have large peaks and noise-like behaviour in their cross-correlation
  - while others exhibit a rather smooth three valued cross-correlation.
- The latter are called preferred sequences.



 It can be shown that the cross-correlation of preferred sequences takes on values from the set

$$\{-1, -R_{cross}, R_{cross} - 2\} \tag{25}$$

where

$$R_{cross} = \begin{cases} 2^{\frac{m+1}{2}} + 1 & m = odd \\ 2^{\frac{m+2}{2}} + 1 & m = even \end{cases}$$
 (26)

$$R_{b_ib_i}(\tau)$$
 =preferred:



$$R_{b_ib_j}(\tau) \stackrel{\text{NoN}}{\Rightarrow}$$
 foreferred:



EE303: PN and SSComms (Part-A)

## A Note on m-sequences for CDMA

- Because of the high cross-correlation between m-sequences, the interference between different users in a CDMA environment will be large.
  - ► Therefore, m-sequences are not suitable for CDMA applications.
- However, in a complete synchronised CDMA system, different offsets of the same m-sequence can be used by different users.
  - In this case the excellent autocorrelation properties (rather than the poor cross-correlation) are employed.
  - Unfortunately this approach cannot operate in an asynchronous environment.



# Gold Sequences

- Although m-sequences possess excellent randomness (and especially autocorrelation) properties, they are not generally used for CDMA purposes as it is difficult to find a set of m-sequences with low cross-correlation for all possible pairs of sequences within the set.
- However, by slightly relaxing the conditions on the autocorrelation function, we can obtain a family of code sequences with lower cross-correlation.
- Such an encoding family can be achieved by Gold sequences or Gold codes which are generated by the modulo-2 sum of two *m*-sequences of equal period.



- The Gold sequence is actually obtained by the modulo-2 sum of two m-sequences with different phase shifts for the first m-sequence relative to the second.
- Since there are  $N_c = 2^m 1$  different relative phase shifts, and since we can also have the two m-sequences alone, the actual number of different Gold-sequences that can be generated by this procedure is  $2^{m}+1$ .



## **Auto-Correlation Properties**

- Gold sequences, however, are not maximal length sequences.
- Therefore, their auto-correlation function is not the two valued one given by Equ. (19), i.e.

$$\{N_c, -1\} \tag{27}$$

 The auto-correlation still has the periodic peaks, but between the peaks the auto-correlation is no longer flat.



• Example of a Gold Sequence of  $N_c = 127 = 2^7 - 1$ 



ullet Example of an m-sequence of  $N_c=127=2^7-1$ 



# Cross-Correlation Properties

- Gold-sequences have the same cross-correlation characteristics as preferred m-sequences,
   i.e. their cross-correlation is three valued.
- Gold sequences have higher  $R_{auto}$  and lower  $R_{cross}$  than m-sequences, and the trade-off (see Equ. 11) between these parameters is thus verified.

### Balanced Gold codes.

- Balanced Gold Sequence: The number of "-1s" in a code period exceed the number of "1s" by one as is the case for m-sequences.
- We should note that not all Gold codes (generated by modulo-2 addition of 2 m-sequences) are balanced, i.e. the number of "-1s" in a code period does not always exceed the number of "1s" by one.
- For example, for m = odd only  $2^{m-1} + 1$  code sequences of the total  $2^m + 1$  are balanced, while the rest code  $2^{m-1} 1$  sequences have an excess or a deficiency of -1s.
- For m = 7, for instance, only 65 balanced Gold codes can be produced, out of a total possible of 129. Of these, 63 are non-maximal and two are maximal length sequences.
- Balanced Gold codes have more desirable spectral characteristics than non-balanced.
- Balanced Gold codes are generated by appropriately selecting the relative phases of the two original m-sequences.
- SUMMARY: By selecting any preferred pair of primitive polynomials it is easy to construct a very large set of PN-sequences (Gold-sequences).
   Thus, by assigning to each user one sequence from this set, the interference from other users is minimised.



## **Appendices**

- Appendix A: Properties of a purely random sequence
- Appendix B: Auto and Cross Correlation functions of two PN-sequences
- Appendix C: The concept of a 'Primitive Polynomial' in GF(2)
- Appendix D: Finite Field - Basic Theory
- Appendix E: Table of Irreducible Polynomials over GF(2)

