פתרון <u>מקוצר</u> למטלה 13 , קורס 20406 , סמסטר 2024ג.

כתב: חזי נוימן.

פתרון מקוצר הוא פתרון שמכיל את כל האלמנטים המתמטיים החשובים. הוא מכיל תתי שאלות שאתם נדרשים להשיב עליהן על מנת לחדד נקודות בחומר הלימוד. נכנה זאת קריאה אקטיבית.

שאלה 1

- א. הראו כי הפונקציה $u(x) = \frac{3x^2-1}{1+x-x^3}$ ומצאו את הקדומה העוברת בהראו כי הפונקציה השטח הכלוא בין גרף הפונקציה וציר איקס. (0,0) . חשבו השטח הכלוא בין גרף הפונקציה וציר איקס.
 - . $\int\limits_{0}^{2\pi}\left|\cos^{3}x\right|dx$ את (כולל הסבר ושימוש בקדומה) . $\cos^{3}x$ ב. מצאו קדומה של

פתרון שאלה 1 סעיף א

הפונקציה רציפה כמנת פולינום הרציפים לכל איקס. המכנה אינו מתאפס כי בקטע שלנו $. \; 1 + x - x^3 = 1 + x(1 - x^2) \ge 1 > 0$

נחשב קדומה בשיטת ההצבה:

$$U(x) = \int u(x)dx = \int \frac{3x^2 - 1}{1 + x - x^3} dx = \frac{1}{\begin{vmatrix} y = 1 + x - x^3 \\ dy = (1 - 3x^2) dx \end{vmatrix}} \int \frac{-dy}{y} = -\ln|y| + K = -\ln|1 + x - x^3| + K$$

$$= -\ln(1 + x - x^3) + K$$

למה מותר להשמיט את הערך המוחלט י 🍍

הקדומה עוברת בנקודה נתונה. ניישם זאת ונקבל K=0

$$U(x) = \int u(x)dx = -\ln(1 + x - x^{3})$$

. $x=\frac{1}{\sqrt{3}}$ היא מתאפסת בנקודה בקטע הפונקציה בקטע וו $\mathbf{u}(\mathbf{x})$ הפונקציה הנתונה בקטע שלנו בערך כך:

. B ושטח A רואים שיש שני שטחים בין ציר איקס ובין הגרף של הפונקציה. שטח

$$S_a = \int_{1/\sqrt{3}}^{1} u(x)dx$$
 ; $S_b = \int_{0}^{1/\sqrt{3}} -u(x)dx$

למעשה יש לחשב את אותה קדומה שכבר חישבנו !

$$S_a = \int_{1/\sqrt{3}}^{1} u(x)dx = \underbrace{U(1)}_{0} - U(\frac{1}{\sqrt{3}}) = \ln(1 + \frac{2}{3\sqrt{3}})$$

$$S_b = \int_{0}^{1/\sqrt{3}} -u(x)dx = -\{U(\frac{1}{\sqrt{3}}) - U(0)\} = \underbrace{U(0)}_{0} - U(\frac{1}{\sqrt{3}}) = \ln(1 + \frac{2}{3\sqrt{3}})$$

ולכן השטח המבוקש הוא:

$$S_a + S_b = 2 \cdot \ln(1 + \frac{2}{3\sqrt{3}}) \approx 0.65$$

פתרון שאלה 1 סעיף ב

מציאת הקדומה, שיטת ההצבה:

$$F(x) = \int \cos^3(x) dx = \int \cos^2(x) \cdot \cos x dx$$
$$= \int [1 - \sin^2(x)] \cdot \cos x dx \qquad \boxed{y = \sin x \text{ and } dy = \cos x dx}$$
$$= \int [1 - y^2] dy = y - \frac{y^3}{3} + K = \sin x - \frac{\sin^3 x}{3} + K$$

יש דרכים רבות לחישוב האינטגרל המבוקש. זכרו כי מצאנו קדומה ל- $\cos^3(x)$ ולכן המשימה העיקרית שלנו היא להשתחרר מהערך המוחלט.

$$|\cos^3(x)| = |\cos^2(x)\cos(x)| = \cos^2(x) \cdot |\cos(x)|$$

את הפונקציה cosx אנו מכירים ובפרט יודעים מתי היא חיובית ומתי היא שלילית. נרשום תחומים וכך נוכל להשתחרר סופית מהערך המוחלט על הקוסינוס.

$$x \in \left[0, \frac{\pi}{2}\right]$$
 OR $x \in \left[\frac{\pi}{2}, 2\pi\right] \Rightarrow \cos x \ge 0 \Rightarrow |\cos(x)| = \cos x$
 $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ $\Rightarrow \cos x \le 0 \Rightarrow |\cos(x)| = -\cos x$

: נמשיך כך

$$\int_{0}^{2\pi} \left| \cos^{3} x \right| dx = \int_{0}^{\pi/2} \left| \cos^{3} x \right| dx + \int_{\pi/2}^{3\pi/2} \left| \cos^{3} x \right| dx + \int_{3\pi/2}^{2\pi} \left| \cos^{3} x \right| dx$$

$$= \int_{0}^{\pi/2} \cos^{3} x dx + \int_{\pi/2}^{3\pi/2} -\cos^{3} x dx + \int_{3\pi/2}^{2\pi} \cos^{3} x dx$$

$$= \left[F(x) \right]_{0}^{\pi/2} + (-1) \cdot \left[F(x) \right]_{\pi/2}^{3\pi/2} + \left[F(x) \right]_{3\pi/2}^{2\pi}$$

$$= F(\frac{\pi}{2}) - F(0) + (-1) \cdot \left\{ F(\frac{3\pi}{2}) - F(\frac{\pi}{2}) \right\} + F(2\pi) - F(\frac{3\pi}{2})$$

$$= 2F(\frac{\pi}{2}) + F(2\pi) - F(0) - 2F(\frac{3\pi}{2})$$

. F כעת נחשב את הביטויים האלה שהרי מצאנו את

$$F(x) = \sin x - \frac{\sin^3 x}{3}$$
 \Rightarrow $F(\frac{\pi}{2}) = \frac{2}{3}$; $F(2\pi) = 0$; $F(0) = 0$; $F(\frac{3\pi}{2}) = -\frac{2}{3}$

: סיכום

$$\int_{0}^{2\pi} \left| \cos^{3} x \right| dx = 2F(\frac{\pi}{2}) + F(2\pi) - F(0) - 2F(\frac{3\pi}{2}) = \frac{8}{3}$$

שימו לב כי פתרנו את השאלה ללא שימוש בשטחים או סימטריות כלשהן. פשוט חישבנו את "אינטגרל.

שאלה 2

פתרון שאלה 2

נתחיל מהסוף. מתקיים f(-x)=-f(x) כלומר **הפונקציה אי זוגית**. ולכן בכל קטע סימטרי סביב נתחיל מהסוף. מתקיים [-r,r] האינטגרל הוא אפס. x=0

ניגש לעיקר.

ראשית שימו לב שבקטע [0,r] **הפונקציה אי שלילית**. לאור זאת השטח מתחת הגרף ועד ציר איקס הוא פשוט האינטגרל של הפונקציה בקטע המתאים.

יהיא אינטגרל נחשב אינטגרל . $S=\int\limits_0^{3/2}x\cos^2(\pi x)dx$ הוא היא כיצד נחשב אינטגרל זהי כלומר השטח בקטע בקטע והוא $\left[0,\frac{3}{2}\right]$

ראשית ייננקה את πx על ידי הצבה.

$$S = \int_{0}^{3/2} x \cos^{2}(\pi x) dx = \int_{0}^{3\pi/2} \int_{0}^{3\pi/2} \frac{t}{\pi} \cos^{2}(t) \frac{dt}{\pi} = \frac{1}{\pi^{2}} \cdot \int_{0}^{3\pi/2} t \cos^{2}(t) dt$$

כעת נמיר את הביטוי הריבועי למשהו שאינו ריבועי.

מכירים את הנוסחא הידועה מטריגונומטריה! (הדפסנו אותה בצבע אדום) 💖

$$S = \frac{1}{\pi^2} \cdot \int_0^{3\pi/2} t \cos^2(t) dt = \frac{1}{\pi^2} \cdot \int_0^{3\pi/2} t \cdot \frac{1 + \cos 2t}{2} dt = \frac{1}{2\pi^2} \cdot \int_0^{3\pi/2} (t + t \cdot \cos 2t) dt$$

את מה שאנו יודעים לחשב כבר כעת, נחשב.

$$S = \frac{1}{2\pi^2} \cdot \int_0^{3\pi/2} (t + t \cdot \cos 2t) dt = \frac{1}{2\pi^2} \cdot \left[\frac{t^2}{2} \right]_0^{3\pi/2} + \frac{1}{2\pi^2} \cdot \int_0^{3\pi/2} t \cdot \cos 2t dt$$
$$= \frac{9}{16} + \frac{1}{2\pi^2} \cdot \int_0^{3\pi/2} t \cdot \cos 2t dt$$

. 9/16 נמקו היטב את קבלת המספר 🥙

ייננקה את 2t" על ידי הצבה פשוטה.

$$S = \frac{9}{16} + \frac{1}{2\pi^2} \cdot \int_0^{3\pi/2} t \cdot \cos 2t dt = \frac{9}{|y=2t|} \frac{9}{16} + \frac{1}{2\pi^2} \cdot \int_0^{3\pi} \frac{y}{2} \cdot \cos y \frac{dy}{2}$$
$$= \frac{9}{16} + \frac{1}{8\pi^2} \cdot \int_0^{3\pi} y \cdot \cos y dy$$

את האינטגרל האחרון נחשב בעזרת אינטגרציה בחלקים. אין כרגע טעם לגרור את כל הקבועים – נתרכז באינטגרל עצמו.

$$\int_{0}^{3\pi} y \cdot \cos y dy = \left[y \cdot \sin y \right]_{0}^{3\pi} - \int_{0}^{3\pi} 1 \cdot \sin y dy = \left[0 - 0 \right] - \left[-\cos y \right]_{0}^{3\pi} = -2$$

:סיכום החישוב

$$S = \frac{9}{16} + \frac{1}{8\pi^2} \cdot \int_{0}^{3\pi} y \cdot \cos y dy = \frac{9}{16} + \frac{1}{8\pi^2} \cdot (-2) = \frac{9}{16} - \frac{1}{4\pi^2} \approx 0.54$$

הזינו בוולפארם אלפא ככה ותוכלו לראות את הגרף ואת התשובה הסופית.

שאלה 3 (🌤)

.
$$\int\limits_0^p f(x)dx=k$$
 נניח כי $f(x)=f(x+p)$ לכל $f(x)=f(x+p)$

יאת שאלה קשה וטריקית!

!
$$\int_{-p/2}^{p/2} f(x)dx$$
 מה ערכו של האינטגרל

התחילו כך: .
$$\int\limits_{-p/2}^{p/2}f(x)dx=\int\limits_{-p/2}^{0}f(x)dx+\int\limits_{0}^{p/2}f(x)dx=\dots:$$
התחילו כך: . . באינטגרל על הקטע השלילי

... באינטגרל על הקטע החיובי אל תגעו. התקדמו כעת... $\mathbf{t} = -\mathbf{x}$

פתרון שאלה 3

$$\int_{-p/2}^{p/2} f(x)dx = \int_{((\#))-p/2}^{0} f(x)dx + \int_{0}^{p/2} f(x)dx =$$

$$\equiv \int_{y=-x}^{0} \int_{dy=-dx}^{0} f(-y)(-dy) + \int_{0}^{p/2} f(x)dx = \int_{((\#))}^{p/2} \int_{0}^{0} f(-y)dy + \int_{0}^{p/2} f(x)dx$$

$$\equiv \int_{((\#))}^{p/2} \int_{0}^{p/2} f(p-y)dy + \int_{0}^{p/2} f(x)dx = \int_{((\#))}^{p/2} \int_{p/2}^{p/2} f(z)(-dz) + \int_{0}^{p/2} f(x)dx$$

$$= \int_{p/2}^{p} f(z)(dz) + \int_{0}^{p/2} f(x)dx = \int_{0}^{p} f(x)dx = k$$

נסכם

. המעבר הראשון ((#)) הוא פיצול האינטגרל בקטע המלא לאינטגרציה על שני קטעים.

- המעבר השני הוא ההצבה המוצעת בתרגיל באינטגרל הראשון. שימו לב כיצד החלפנו את הגבולות בהתאם להצבה שעשינו.
 - . המעבר ((*)) הוא היפוך הגבולות ובהתאם סילוק המינוס
 - . המעבר ((**)) הוא מעבר משמעותי הוספנו P למשתנה בפונקציה לפי נתוני השאלה
- המעבר הבא ((***)) הוא הצבה נוספת. שימו לב כיצד גבולות האינטגרל משתנים לפי ההצבה הצבה באינטגרל הראשון.
 - . המעבר האחרון הוא פשוט איחוד האינטגרל על שני קטעים לקטע אחד

סיימנו.

שאלה 4 - שימוש במשפט 5.6.7 ועוד אלמנטים.

[יורדת עבור איקס חיובי
$$y = \frac{1}{x}$$
 יורדת $\frac{1}{x} = \frac{2}{3\pi} \le \int_{2\pi}^{3\pi} \frac{\sin x}{x} dx \le \frac{1}{\pi}$ יורדת עבור איקס חיובי

פתרון שאלה 4

$$\int_{2\pi}^{3\pi} \frac{\sin x}{x} dx \le \int_{2\pi}^{3\pi} \frac{\sin x}{2\pi} dx = \frac{1}{2\pi} \int_{2\pi}^{3\pi} \sin x \, dx = \frac{1}{2\pi} \cdot 2 = \frac{1}{\pi}$$

$$\int_{2\pi}^{3\pi} \frac{\sin x}{x} dx \ge \int_{2\pi}^{3\pi} \frac{\sin x}{3\pi} dx = \frac{1}{3\pi} \int_{2\pi}^{3\pi} \sin x dx = \frac{1}{3\pi} \cdot 2 = \frac{2}{3\pi}$$

סיימנו.

<u>שאלה 5</u>

. יש בדיוק שני שורשים $\ln(x) = (x-2)^2$ א. הוכיחו כי למשוואה

{ הכי גדול ו B הכי קטן A הקבועים צריכים להיות הדוקים כלומר

. נמקו היטב. [-1,1] לכל $A \leq \left|e^{3x}+x-1\right| \leq B$ -נמקו שליליים אי שליליים מצאו ב. ב. מצאו קבועים אי

פתרון שאלה 5 סעיף א

. $f(x) = \ln(x) - (x-2)^2$ נגדיר פונקציית עזר

אם היו שלושה שורשים אזי הנגזרת הראשונה חייבת להתאפס לפחות פעמיים (רול) ולכן הנגזרת השנייה חייבת להתאפס לפחות פעם אחת (רול) .

הנגזרת השנייה היא $f''(x) = -\frac{1}{x^2} - 2$ היא מסקנה: אין שלושה או וביטוי היא הנגזרת השנייה היא

יותר שורשים. כל שנותר הוא להוכיח שיש שני שורשים.

. היעזרו ומשפט עה"ב. f(1) ; f(2) ; f(10) : חשבו את

סיימנו.

פתרון שאלה 5 סעיף ב

הפונקציה בתוך הערך המוחלט היא פונקציה עולה – בדקו על ידי גזירה. .

$$A = \underbrace{e^{-3\cdot 1} - 1 - 1}_{f(-1)} \le \underbrace{e^{3x} + x - 1}_{f(x)} \le \underbrace{e^{3\cdot 1} + 1 - 1}_{f(1)} = B$$
 פונקציה זאת עולה ולכן

$$\frac{e^{-3}-2}{\text{negative}} \le e^{3x} + x - 1 \le e^3$$

כלומר מצאנו כי

י מדוע .
$$0 \le |e^{3x} + x - 1| \le e^3$$

אם נפעיל ערך מוחלט נקבל:

המספר החיובי ${
m e}^{\Lambda}3$ אינו מושפע. אגף שמאל חייב להיות אפס כי זאת תכונה של ערך מוחלט. חשוב להבין זאת שהרי יש נקודה בה הפונקציה היא אפס , הנקודה ${
m x=0}$. לכן אלו הם החסמים המבוקשים.

. מצאו את הטעות בטיעון הבא 💖

.
$$2-e^{-3} \leq e^{3x}+x-1 \leq e^3$$
 כלומר $\left|e^{-3}-2\right| \leq e^{3x}+x-1 \leq e^3$ נפעיל ערך מוחלט ונקבל פיצור נמרץ.

שאלה 6 - פונקציות טריגונומטריות הפוכות (סעיפים 8.2, 8.1)

[אין קשר בין סעיפי השאלה]

א. מצאו את ערכי הקבועים שיבטיחו גזירות לכל איקס עבור הפונקציה הבאה:

$$f(x) = \begin{cases} \frac{a-x}{x} & x \ge 1\\ b - \arctan x & x < 1 \end{cases}$$

- . יש להגיע לתשובה מהצורה $\frac{\pi}{n}$ כאשר $\frac{\pi}{n}$ כאשר . $\int\limits_{0}^{2/\sqrt{3}} \frac{dx}{9x^2+4}$. יש להגיע לתשובה מהצורה
 - . $\int \arctan(\sqrt{x}) dx$ אינטגרל עם מספר שלבים. מצאו את קינוח, אינטגרל עם מספר שלבים

פתרון שאלה 6 סעיף א

הנקודות הפונקציה מוגדרת בכל אר בכל אר הנקודות הפונקציה מוגדרת הנקודה שיש להתייחס אליה היא נקודת ההטלאה בכל אר הנקודות הפונקציה מוגדרת היטב , רציפה וגזירה.

תנאי הכרחי לגזירות היא רציפות בנקודה. הגבולות מימין ומשמאל ברי חישוב. נחשב ונשווה.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) \Rightarrow \frac{a-1}{1} = b - \arctan 1 \Rightarrow \boxed{a-1 = b - \frac{\pi}{4}}$$

נגזור מימין ומשמאל וניעזר במשפט עמוד 180. נקבל ...

$$\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^-} f'(x) \Rightarrow \boxed{-a = -0.5}$$

.x=1 בנקודה בנקודה היא רציפה היא הפונקציה ($b=\frac{\pi-2}{4}$ החירה בנקודה מצאנו כי מצאנו (

סיימנו.

פתרון שאלה 6 סעיף ב

. הציבו y=3x והתקדמו

פתרון שאלה 6 סעיף ג

$$\int \arctan(\sqrt{x})dx = \int 2y \arctan y dy$$

התחילו בהצבה $y=\sqrt{x}$ וקבלו

התקדמו כעת בעזרת אינטגרציה בחלקים עד לסיום החישוב.

$$\int \arctan(\sqrt{x})dx = \int \underbrace{2y}_{u'} \cdot \underbrace{\arctan y}_{v} dy$$

$$= \underbrace{y^{2}}_{u} \cdot \underbrace{\arctan y}_{v} - \int \underbrace{y^{2}}_{u} \cdot \underbrace{\frac{1}{1+y^{2}}}_{v'} dy$$

$$= y^{2} \cdot \arctan y - \int \underbrace{\frac{y^{2}}{1+y^{2}}}_{1+y^{2}} dy = y^{2} \cdot \arctan y - \int \underbrace{\frac{y^{2}+1-1}{1+y^{2}}}_{1+y^{2}} dy$$

$$= y^{2} \cdot \arctan y - \left[1 - \frac{1}{1+y^{2}}\right] dy$$

$$= y^{2} \cdot \arctan y - \left[y - \arctan y\right] + k$$

$$= x \cdot \arctan(\sqrt{x}) - \sqrt{x} + \arctan(\sqrt{x}) + k$$

$$= (x+1) \cdot \arctan(\sqrt{x}) - \sqrt{x} + k$$

סוף פתרון מטלה 13