Module 2: Central tendency, shape, and difference in means

MSIR 525

Monday, September 23, 2019

Recap of Module 1 (check list from syllabus; see pages 1-2)

- We learned about the NHST framework
- We developed an understanding of p-values and how they can be used to inform evidence-based management decisions
- We compared different types of error that can threaten our inferences and conclusions
 - We also learned how one can attempt to avoid these errors and disclosures that must be given if a study is underpowered
- We contrasted three different research designs (e.g. observational) and two different data collection approaches (e.g., longitudinal)
- We learned about different data sources and data types
- We summarized several types of validity and phenomena that may threaten them

- 9/23/2019
 - Central tendency and shape; interpretation and communication; issues in datasets

- 9/23/2019
 - Central tendency and shape; interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a *t*-test)

- 9/23/2019
 - Central tendency and shape; interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
 - Assess whether or not multiple means are *statistically different from each other (i.e., ANOVA test)

- 9/23/2019
 - Central tendency and shape; interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
 - Assess whether or not multiple means are *statistically different from each other (i.e., ANOVA test)
- 10/2/2019
 - Module 2 recap and software tutorial (R <u>must</u> be installed by this date!!)

- 9/23/2019
 - Central tendency and shape; interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
 - Assess whether or not multiple means are *statistically different from each other (i.e., ANOVA test)
- 10/2/2019
 - Module 2 recap and software tutorial (R <u>must</u> be installed by this date!!)
- 10/7/2019
 - In-class exercise for credit (i.e., a hackathon)
 - Applying what we learned in M2 to ascertain whether or not a meaningful group difference exists

• Let's get started! ©

Frequency distribution

• Frequency distribution

• A table or graph that shows each possible score along with the number of times that score was observed in the data.

Frequency distribution

• A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data					
		Job	Pay		
Stress	WLB	satisfaction	satisfaction		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		
7	2	3	6		
7	4	4	7		
7	5	4	7		

• Frequency distribution

• A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data					
		Job	Pay		
Stress	WLB	satisfaction	satisfaction		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		
7	2	3	6		
7	4	4	7		
7	5	4	7		

Table 2. Frequency Distribution						
			Job	Pay		
Rating	Stress	WLB	satisfaction	satisfaction		
10	0	0	0	3		
9	0	0	0	0		
8	0	2	1	0		
7	3	0	3	2		
6	2	0	0	2		
5	2	1	0	0		
4	0	1	2	0		
3	0	0	1	0		
2	0	3	0	0		
1	0	0	0	0		
0	0	0	0	0		
Count	7	7	7	7		

• Frequency distribution

 A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data				
		Pay		
Stress	WLB	satisfaction	satisfaction	
5	8	7	9	
5	8	7	9	
6	2	7	9	
6	2	8	6	
7	2	3	6	
7	4	4	7	
7	5	4	7	

	Table 2. Frequency Distribution					
				Job	Pay	
	Rating	Stress	WLB	satisfaction	Satisticition	
	10	0	0	0	3	
	9	0	0	SUP	0	
	8	0	2	Τ		
	7	ak	0	ARPI	2	
	M	2	0	VK	2	
C	,	2	1	O	0	
	4	0	1	2	0	
	3	0	0	1	0	
	2	0	3	0	0	
	1	0	0	0	0	
	0	0	0	0	0	
	Count	7	7	7	7	

Frequency distribution

 A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data				
		Job	Pay	
Stress	WLB	satisfaction	satisfaction	
5	8	7	9	
5	8	7	9	
6	2	7	9	
6	2	8	6	
7	2	3	6	
7	4	4	7	
7	5	4	7	

- Relative frequency
 - Compared to the (raw) frequency itself, this is a way to make even better sense of observed data

- Relative frequency
 - Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
 - Represents how often a response is observe relative to the total number of responses
 - "What proportion of the respondents gave a rating of 7 for stress?"

Relative frequency

- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
 - "What proportion of the respondents gave a rating of 7 for stress?"

Relative frequency =
$$\frac{frequency \ of \ response}{total \ number \ of \ responses}$$

Relative frequency

- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
 - "What proportion of the respondents gave a rating of 7 for stress?"

Relative frequency =
$$\frac{frequency \ of \ response}{total \ number \ of \ responses}$$
$$= \frac{3}{7} = 43\%$$

- Cumulative frequency and cumulative percentage
 - An assessment of the total frequency (percentage) of all categories up to and including the category of interest

- Cumulative frequency and cumulative percentage
 - An assessment of the total frequency (percentage) of all categories up to and including the category of interest

Cumulative frequency_n = frequency_n + cumulative frequency_{n-1}

Table 3. Frequency Distributions for Stress					
		Relative	Cumulative	Cumulative	
Rating	Frequency	frequency	frequency	percentage	
10	0	0 (0%)	7	1.0 (100%)	
9	0	0 (0%)	7	1.0 (100%)	
8	0	0 (0%)	7	1.0 (100%)	
7	3	.43 (43%)	7	1.0 (100%)	
6	2	29 (29%)	4	.58 (58%)	
5	2	.29 (29%)	2	.29 (29%)	
4	0	0 (0%)	0	0 (0%)	
3	0	0 (0%)	0	0 (0%)	
2	0	0 (0%)	0	0 (0%)	
1	0	0 (0%)	0	0 (0%)	
0	0	0 (0%)	0	0 (0%)	

- Cumulative frequency and cumulative percentage
 - An assessment of the total frequency (percentage) of all categories up to and including the category of interest

Cumulative percentage_n = percentage_n + cumulative percentage_{n-1}

Table 3. Frequency Distributions for Stress					
		Relative	Cumulative	Cumulative	
Rating	Frequency	frequency	frequency	percentage	
10	0	0 (0%)	7	1.0 (100%)	
9	0	0 (0%)	7	1.0 (100%)	
8	0	0 (0%)	7	1.0 (100%)	
7	3	.43 (43%)	7	1.0 (100%)	
6	2	29 (29%)	4	.58 (58%)	
5	2	.29 (29%)	2	.29 (29%)	
4	0	0 (0%)	0	0 (0%)	
3	0	0 (0%)	0	0 (0%)	
2	0	0 (0%)	0	0 (0%)	
1	0	0 (0%)	0	0 (0%)	
0	0	0 (0%)	0	0 (0%)	

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data				
		Job	Pay	
Stress	WLB	satisfaction	satisfaction	
5	8	7	9	
5	8	7	9	
6	2	7	9	
6	2	8	6	
7	2	3	6	
7	4	4	7	
7	5	4	7	

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Job	Pay		
Stress	WLB	satisfaction	satisfaction		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		
7	2	3	6		
7	4	4	7		
7	5	4	7		

Average job satisfaction rating =
$$\frac{7+7+7+8+3+4+4}{7}$$
 = 5.71

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Job	Pay		
Stress	WLB	satisfaction	satisfaction		
6	2	8	6		
5	8	7	9		
5	8	7	9		
6	2	7	9		
7	4	4	7		
7	5	4	7		
7	2	3	6		

Average job satisfaction rating =
$$\frac{7+7+7+8+3+4+4}{7}$$
 = 5.71

Step 2: Rearrange observed data (largest → smallest)

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data				
		Job	Pay	
Stress	WLB	satisfaction	satisfaction	
6	2	8	6	
5	8	7	9	
5	8	7	9	
6	2	7	9	
7	4	4	7	
7	5	4	7	
7	2	3	6	

Step 1: Calculate column mean (average)

Average job satisfaction rating =
$$\frac{7+7+7+8+3+4+4}{7}$$
 = 5.71

Step 2: Rearrange observed data (largest \Rightarrow smallest)

Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data				
		Job	Pay	
Stress	WLB	satisfaction	satisfaction	
6	2	8	6	
5	8	7	9	
5	8	7	9	
6	2	7	9	
7	4	4	7	
7	5	4	7	
7	2	3	6	

Step 1: Calculate column mean (average)

Average job satisfaction rating =
$$\frac{7+7+7+8+3+4+4}{7}$$
 = 5.71

Step 2: Rearrange observed data (largest \Rightarrow smallest)

Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

Step 4: Calculate "high" vs. "low" frequencies and percentages

```
4 out 7 = "high" scores
4/7 = .57 (57%)
```

```
3 out 7 = "low" scores
3/7 = .43 (43%)
```

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data				
		Job	Pay	
Stress	WLB	satisfaction	satisfaction	
6	2	8	6	
5	8	7	9	
5	8	7	9	
6	2	7	9	
7	4	4	7	
7	5	4	7	
7	2	3	6	

Step 1: Calculate column mean (average)

Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

Step 2: Rearrange observed data (largest \rightarrow smallest)

Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

Step 4: Calculate "high" vs. "low" frequencies and percentages

Central tendency

• Mean, median, mode

Central tendency

• Mean, median, mode

Central tendency

• Mean, median, mode

• Honestly, we are mostly just interested in the **mean**

Variance

Skewness

Kurtosis

Shape

Skewness

Kurtosis

Threats to descriptive statistics

Missing data

Outliers

Range restriction

Interpreting descriptive statistics