

REDES LOCALES

MEDIOS FÍSICOS – ETHERNET

Modelo de Comunicación

Fourier

Ancho de Banda

Conceptos

IMPEDANCIA CARACTERÍSTICA

$$z_0 = \sqrt{\frac{R + jL\omega}{G + jC\omega}}$$

R = Resistencia

L = Inductancia

G = Conductancia

C = Capacitancia

 $\omega = 2 \pi f$

j = Factor imaginario

LONGITUD DE ONDA

$$\lambda = \frac{c}{f}$$

c = Velocidad de la onda

f = Frecuencia de la onda

$$\lambda = \lambda_0 \eta$$

 λ_0 = Longitud de onda en el vacío

 η = Índice de refracción del material

Conceptos: Decibel

El Decibelio es una medida de la diferencia entre dos niveles de potencia:

$$N_{db} = 10 \log_{10}(\frac{P1}{P2})$$

También Mide Diferencias de Tensión:

$$P = V^2/R$$

$$N_{db} = 10 \log_{10} \frac{V_1^2/R}{V_2^2/R} = 20 \log_{10} (V_1/V_2)$$

Cuando Necesitamos tener una medida absoluta:

$$N_{dbW} = 10 \log_{10}(\frac{P_1}{1W})$$

Relaciones Importantes

Teorema de Muestreo de Nyquist-Shannon:

Si se muestrea una señal x(t), que tiene su componente de mayor frecuencia en F_{max} , se puede reconstruir la señal mediante interpolación si se cumple que:

$$F_{sampling} > 2F_{max}$$

Relaciones Importantes

Relación Señal - Ruido:

$$SNR_{db} = 10 \log(\frac{Potencia de la Señal}{Potencia de la ruido})$$

Nyquist: Capacidad del Canal para señal multinivel

$$Capacidad_{[bps]} = 2 W_{[hz]} \log M_{level}$$

Shannon: Capacidad del Canal en relación al ruido

$$Capacidad_{[bps]} = W_{[hz]} \log(1 + \frac{s}{N})$$

IORMAS IA/TIA

Common Standars

Premises Standards

Component Standards

568-C.0

Generic Telecomunication Cabling for Customer Premises

568.C1

Comercial Building Telecommunications Cabling

568.C2

Balanced Twisted Pair Telecommunications Cabling and Components

569-C

Commercial Building Standards for Telecommunications Pathways and Spaces 570-B

Residential Telecommunications Infrastructure

568.C3

Optical Fiber Cabling Components

606-A

Administrations Standard for Telecommunication Infrastructure of Commercial Buildings

607-A

Grounding and bonding requirements for

Telecommunication in

commercial buildings

758-A

Customer-Owned Outside Plant Telecommunications Infrastructure

Telecommunications Centers

942

Infrastructure for Data

862

Building Automation System Cabling Standard for Comercial Buildings

1005

Telecommunications Infrastructure for Industrial Premises

Fuente: EIA/TIA

ANSI EIA/TIA

La EIA (Electronic Industry Association) y la TIA (Telecommunications Industry Association) son asociaciones de fabricantes, y han publicado normas de cableado estructurado que se han convertido en estándares de ANSI.

Cableado Estructurado T586C.

Caminos y espacios comerciales T569.

Cableado residencial T570A

Cableado Estructurado

Pin	T568A Pair	T568B Pair	10BASE-T 100BASE-TX	1000BASE-T Signal ID	Wire	T568A Color	T568B Color	Pins on plug face (socket is reversed)
1	3	2	TX+	DA+	tip	white/green stripe	white/orange stripe	
2	3	2	TX-	DA-	ring	green solid	orange solid	
3	2	3	RX+	DB+	tip	white/orange stripe	white/green stripe	
4	1	1	_	DC+	ring	blue solid	blue solid	
5	1	1	ā	DC-	tip	white/blue stripe	white/blue stripe	
6	2	3	RX-	DB-	ring	orange solid	green solid	
7	4	4	÷	DD+	tip	white/brown stripe	white/brown stripe	
8	4	4	-	DD-	ring	brown solid	brown solid	

Straight-Thru vs Crossover

DE MENDOZA

... luego de nuestro viaje por las definiciones y sus raíces...

¡Vayamos al grano!

Pérdida por Retorno: (Return Loss) Es una medida del grado de desadaptación de impedancia. Es la relación, entre la amplitud de la onda reflejada y la dela onda transmitida.

Pérdida por Inserción: (Insertion Loss) Es una medida de la atenuación que sufre la señal al viajar por el medio.

Retardo de Propagación: (Propagation Delay) Es el tiempo que demora la señal en recorrer toda la longitud del par evaluado. Se mide en nanosegundos.

Diferencias en el Retardo de Propagación: (Propagation Delay Skew) Es la diferencia de retardo entre dos pares.

NEXT y FEXT: (Near End Crosstalk y Far End Crosstalk)

Es la diafonía inducida por un par (el par perturbador) en otros pares (pares perturbados), medida en el extremo cercano y lejano, con respecto al ingreso de la señal en el par perturbador.

PSNEXT y PSFEXT: (Powersum Near End Crosstalk y Powersum Far End Crosstalk)

Es la suma de las potencias de diafonía inducida por tres pares (perturbadores), en un par (perturbado), medida en el extremo cercano y lejano, con respecto al ingreso de la señal en los pares perturbadores.

ACRN y ACRF: (Attenuation to Crosstalk Ratio – Near End y Attenuation to Crosstalk Ratio – Far End(También se denomina ELFEXT))

Es la medida de la relación SNR. Se calcula: NEXT-Insertion Loss o FEXT-Insertion Loss, respectivamente. Mientras más alto sea el valor, mejor.

PSACRN y PSACRF: (Powersum Attenuation to Crosstalk Ratio – Near End y Powersum Attenuation to Crosstalk Ratio – Far End)

Es la medida de la relación SNR de varios perturbadores a la señal de un par.

Se calcula: PSNEXT-Insertion Loss o PSFEXTInsertion Loss, respectivamente. Mientras más alto sea el valor, mejor.

A partir de categoría 6A a 500 Mhz, se empiezan a notar los efectos de los cables de red cercanos, por eso se habla de Alien Crosstalk.

Esto genera nuevos parámetros como:

ANEXT y AFEXT.

PSANEXT y PSAFEXT.

PSAACRF y PSAACRN.

Estos parámetros son homólogos a los vistos para perturbaciones entre pares.

Test para TIA-568-C.2

Parámetros	3 (16 Mhz)	5e (100 Mhz)	6 (250 Mhz)	6A (500 Mhz)
Wire Map	\checkmark	$\sqrt{}$	$\sqrt{}$	V
Longitud	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Insertion Loss	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
NEXT	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Delay Skew		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
ACR-F o ELFEXT		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Return Loss		$\sqrt{}$	\checkmark	$\sqrt{}$
PS ACR-N		$\sqrt{}$	\checkmark	$\sqrt{}$
PS ACR-F		$\sqrt{}$	\checkmark	$\sqrt{}$
PS NEXT		$\sqrt{}$	\checkmark	$\sqrt{}$
ANEXT				$\sqrt{}$
PS ANEXT				$\sqrt{}$
A ACR-F				$\sqrt{}$
PS A ACR-F				$\sqrt{}$

A ensuciarse las manos....

Armando Cables 🙂

Para los curiosos..... es.flukenetworks.co

Soluciones.... Aprenda ;-)

