ДОМАШНЕЕ ЗАДАНИЕ №3 ПО КУРСУ "ДИСКРЕТНАЯ МАТЕМАТИКА"

Модуль 3 — Алгебраические системы Для специальностей ИУ5, 2 курс, 4 семестр 2015 г.

Задача 1

Проверив аксиомы, установить, является ли заданная алгебра с одной бинарной операцией полугруппой? моноидом? группой? Символом $\mathbb O$ в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 1. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1\}$, с операциями сложения матриц. Операция сложения элементов матриц выполняется в аддитивной группе \mathbf{Z}_2^{\oplus} вычетов по модулю 2.

Вариант 2. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операцией умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$$

Операция умножения элементов упорядоченных пар выполняется в мультипликативном моноиде \mathbb{Z}_2 вычетов по модулю 2.

Вариант 3. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1,2\}$, с операцией сложения матриц. Операция сложения элементов матриц выполняется в аддитивной группе \mathbf{Z}_3^{\oplus} вычетов по модулю 3.

Вариант 4. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c \in 2^{\{0,1\}}$, с операцией сложения матриц. Операции сложения элементов матриц выполняются в моноиде $(2^{\{0,1\}}, \cup)$.

Вариант 5. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операцией сложения упорядоченных пар, определенной по следующим правилам:

$$(a, b) + (c, d) = (a \oplus c, b \oplus d).$$

Операция сложения элементов упорядоченных пар выполняется в аддитивной группе \mathbf{Z}_3^{\oplus} вычетов по модулю 3.

Вариант 6. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операцией сложения матриц. Операции сложения элементов матриц выполняются в группе $(2^{\{0,1\}}, \triangle)$.

Вариант 7. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операцией сложения упорядоченных пар, определенной по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d).$$

Операции сложения элементов упорядоченных пар выполняется в моноиде $(\{0,1\}, \vee)$.

Вариант 8. Множество упорядоченных пар (x, y), где $x, y \in 2^{\{0,1\}}$, с операцией умножения упорядоченных пар, определенной по следующим правилам:

$$(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$$

Операция умножения элементов упорядоченных пар выполняется в моноиде $(2^{\{0,1\}}, \cap)$.

Проверив аксиомы, установить, является ли заданная алгебра с одной бинарной операцией полугруппой? Моноидом? Группой? Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 9. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операций сложения матриц. Операции сложения элементов матриц выполняются в моноиде $(2^{\{0,1\}}, \cup)$.

Вариант 10. Множество упорядоченных пар (x, y), где $x, y \in 2^M$ (M — некоторое множество), с операцией сложения упорядоченных пар, определенной по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d).$$

Операция сложения элементов упорядоченных пар выполняется в группе $(2^M, \triangle)$.

Вариант 11. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in \{0,1\}$, с операцией сложения матриц. Операция сложения элементов матриц выполняется в моноиде $(\{0,1\},\ \lor)$.

Вариант 12. Множество чисел вида $x+\sqrt{2}y$, где x и y — рациональные числа, с операцией сложения чисел, определенной по следующему правилу

$$(x_1 + \sqrt{2}y_1) + (x_2 + \sqrt{2}y_2) = (x_1 + x_2) + \sqrt{2}(y_1 + y_2).$$

Операции сложения выполняются в аддитивной группе рациональных чисел.

Вариант 13. Множество матриц вида $\begin{pmatrix} a & b \\ \mathbb{O} & c \end{pmatrix}$, где $a,b,c \in \{0,1\}$ с операцией сложения матриц. Операция сложения элементов матриц выполняется в моноиде $(\{0,1\}, \text{ min})$.

Вариант 14. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ b & c \end{pmatrix}$, где $a,b,c \in 2^{\{0,1\}}$, с операцией сложения матриц. Операция сложения элементов матриц выполняется в моноиде $(2^{\{0,1\}}, \cap)$.

Вариант 15. Множество чисел вида $x+\sqrt{3}y$, где x и y — рациональные числа, с операцией сложения чисел, определенной по следующему правилу

$$(x_1 + \sqrt{3}y_1) + (x_2 + \sqrt{3}y_2) = (x_1 + x_2) + \sqrt{3}(y_1 + y_2).$$

Операция сложения выполняется в аддитивной группе рациональных чисел.

Вариант 16. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операцией сложения, определенной по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d).$$

Операция сложения элементов упорядоченных пар выполняется в моноиде ($\{0,1\}$, max).

Проверив аксиомы, установить, является ли заданная алгебра с одной бинарной операцией полугруппой? Моноидом? Группой? Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 17. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2, 3\}$, с операцией умножения упорядоченных пар, определенной по следующим правилам:

$$(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$$

Операция умножения элементов упорядоченных пар выполняется в мультипликативном моноиде ${\bf Z}_4$ вычетов по модулю 4.

Вариант 18. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1,2,3\}$, с операцией сложения матриц. Операция сложения элементов матриц выполняется в аддитивной группе кольца \mathbf{Z}_4 вычетов по модулю 4.

Вариант 19. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операцией сложения, определенной по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d).$$

Операции сложения элементов упорядоченных пар выполняются в аддитивном моноиде $(\{0,1,2\}, \max)$.

Вариант 20. Множество многочленов степени не выше n, коэффициенты которых — действительные числа, с операцией сложения многочленов, определенной по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i \oplus \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i.$$

Операция сложения действительных чисел выполняется в аддитивной группе действительных чисел.

Вариант 21. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c \in 2^{\{0,1,2,3\}}$, с операцией сложения матриц. Операция сложения элементов матриц выполняется в моноиде $(2^{\{0,1,2,3\}},\ \cup)$.

Вариант 22. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2, 3, 4\}$, с операцией умножения упорядоченных пар, определенной по следующим правилам:

$$(a, b) \cdot (c, d) = (a \odot c, b \odot d).$$

Операция умножения элементов упорядоченных пар выполняется в мультипликативном моноиде ${\bf Z}_5$ вычетов по модулю 5.

Вариант 23. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1,2\}}$, с операцией сложения матриц. Операция сложения элементов выполняется в группе $(2^{\{0,1,2\}}, \triangle)$.

Вариант 24. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in \{0,1\}$, с операцией сложения матриц. Операции сложения элементов матриц выполняется в моноиде ($\{0,1\}$, min).

Проверив аксиомы, установить, является ли заданная алгебра с одной бинарной операцией полугруппой? Моноидом? Группой? Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 25. Множество чисел вида $x+\sqrt{5}y$, где x и y — рациональные числа, с операцией сложения чисел, определенной по следующему правилу

$$(x_1 + \sqrt{5}y_1) + (x_2 + \sqrt{5}y_2) = (x_1 + x_2) + \sqrt{5}(y_1 + y_2).$$

Операция сложения выполняется в аддитивной группе поля рациональных чисел.

Вариант 26. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операцией умножения упорядоченных пар, определенной по следующим правилам:

$$(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$$

Операция умножения элементов упорядоченных пар выполняются в моноиде $(\{0,1\}; \wedge)$.

Вариант 27. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ b & c \end{pmatrix}$, где $a,b,c \in 2^{\{0,1,2\}}$, с операциями сложения матриц. Операция сложения элементов матриц выполняется в моноиде $(2^{\{0,1,2\}},\ \cap)$.

Вариант 28. Множество многочленов степени не выше n, коэффициенты которых — рациональные числа, с операцией сложения многочленов, определенной по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i \oplus \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i.$$

Операция сложения рациональных чисел чисел выполняется в аддитивной группе рациональных чисел.

Вариант 29. Множество матриц вида $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения матриц. Операции сложения и умножения элементов матриц выполняются в моноиде $(2^{\{0,1\}},\ \cap)$.

Вариант 30. Множество многочленов степени не выше n, коэффициенты которых — целые числа, с операцией сложения многочленов, определенной по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i \oplus \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i.$$

Операция сложения целых чисел выполняется в аддитивной группе целых чисел.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) Для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным? Идемпотентным? Замкнутым?
 - б) Для кольца проверить, есть ли в нем делители нуля? является ли кольцо полем?

При решении задачи № 2 использовать результаты, полученные при решении задачи № 1 домашнего задания.

Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 1. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1\}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в поле \mathbb{Z}_2 вычетов по модулю 2.

Вариант 2. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (a \cdot c, b \ cdot d).$

Операции сложения и умножения элементов упорядоченных пар выполняются в поле \mathbb{Z}_2 вычетов по модулю 2.

Вариант 3. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1,2\}$, с операциями сложения и умножения элементов матриц выполняются в поле \mathbf{Z}_3 вычетов по модулю 3.

Вариант 4. Множество матриц вида $\binom{a}{c} \binom{a}{d}$, где $a,b,c \in 2^{\{0,1\}}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в полукольце $(2^{\{0,1\}}, \cup, \cap)$.

Вариант 5. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a \oplus c, b \oplus d); (a, b) \cdot (c, d) = (a \odot c, b \odot d).$$

Операции сложения и умножения элементов выполняются в поле \mathbb{Z}_3 вычетов по модулю 3.

Вариант 6. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в кольце $(2^{\{0,1\}}, \triangle, \cap)$.

Вариант 7. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d);$$
 $(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$

Операции сложения и умножения элементов упорядоченных пар выполняются в полукольце \mathcal{B} .

Вариант 8. Множество упорядоченных пар (x, y), где $x, y \in 2^{\{0,1\}}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d);$$
 $(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$

Операции сложения и умножения элементов упорядоченных пар выполняются в полукольце $(2^{\{0,1\}}, \cup, \cap)$.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) Для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным? Идемпотентным? Замкнутым?
 - б) Для кольца проверить, есть ли в нем делители нуля? является ли кольцо полем?

При решении задачи № 2 использовать результаты, полученные при решении задачи № 1 домашнего задания.

Символом \mathbb{O} в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 9. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения и умножения элементов матриц выполняются в полукольце $(2^{\{0,1\}}, \cup, \cap)$.

Вариант 10. Множество упорядоченных пар (x, y), где $x, y \in 2^M$ (M — некоторое множество), с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d); \quad (a, b) \odot (c, d) = (a \cdot c, b \cdot d).$$

Операции сложения и умножения элементов упорядоченных пар выполняются в кольце $(2^M, \triangle, \cap)$.

Вариант 11. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in \{0,1\}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в полукольце \mathcal{B} .

Вариант 12. Множество чисел вида $x+\sqrt{2}y$, где x и y — рациональные числа, с операциями сложения и умножения чисел, определенным по следующим правилам

$$(x_1 + \sqrt{2}y_1) + (x_2 + \sqrt{2}y_2) = (x_1 + x_2) + \sqrt{2}(y_1 + y_2),$$

$$(x_1 + \sqrt{2}y_1) \cdot (x_2 + \sqrt{2}y_2) = (x_1x_2 + 2y_1y_2) + \sqrt{2}(x_1y_2 + y_1x_2).$$

Операции сложения и умножения рациональных чисел выполняются в поле рациональных чисел.

Вариант 13. Множество матриц вида $\begin{pmatrix} a & b \\ \mathbb{O} & c \end{pmatrix}$, где $a,b,c \in \{0,1\}$ с операциями сложения и умножения элементов матриц выполняются в полукольце ($\{0,1\}$, min, max).

Вариант 14. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ b & c \end{pmatrix}$, где $a,b,c \in 2^{\{0,1\}}$, с операциями сложения и умножения элементов матриц выполняются в полукольце $(2^{\{0,1\}},\ \cap,\ \cup)$.

Вариант 15. Множество чисел вида $x + \sqrt{3}y$, где x и y — рациональные числа, с операциями сложения и умножения чисел, определенным по следующим правилам

$$(x_1 + \sqrt{3}y_1) + (x_2 + \sqrt{3}y_2) = (x_1 + x_2) + \sqrt{3}(y_1 + y_2),$$

$$(x_1 + \sqrt{3}y_1) \cdot (x_2 + \sqrt{3}y_2) = (x_1x_2 + 3y_1y_2) + \sqrt{3}(x_1y_2 + y_1x_2).$$

Операции сложения и умножения рациональных чисел выполняются в поле рациональных чисел.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) Для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным? Идемпотентным? Замкнутым?
 - б) Для кольца проверить, есть ли в нем делители нуля? является ли кольцо полем?

При решении задачи № 2 использовать результаты, полученные при решении задачи № 1 домашнего задания.

Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 16. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d);$$
 $(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$

Операции сложения и умножения элементов упорядоченных пар выполняются в полукольце $(\{0,1\}, \max, \min)$.

Вариант 17. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2, 3\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a \oplus c, b \oplus d); (a, b) \cdot (c, d) = (a \odot c, b \odot d).$$

Операции сложения и умножения элементов упорядоченных пар выполняются в кольце ${\bf Z}_4$ вычетов по модулю 4.

Вариант 18. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1,2,3\}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов матриц выполняются в кольце \mathbf{Z}_4 вычетов по модулю 4.

Вариант 19. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операциями сложения и умножения, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d);$$
 $(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$

Операции сложения и умножения элементов упорядоченных пар выполняются в полукольце $(\{0,1,2\}, \max, \min)$.

Вариант 20. Множество многочленов степени не выше n над полем действительных чисел с операциями сложения и умножения многочленов, определенных по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i \oplus \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i, \qquad \sum_{i=0}^{n} a_i x^i \odot \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i \cdot b_i) x^i.$$

Операции сложения и умножения действительных чисел выполняются в поле действительных чисел.

Вариант 21. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c \in 2^{\{0,1,2,3\}}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в полукольце $(2^{\{0,1,2,3\}}, \cup, \cap)$.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) Для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным? Идемпотентным? Замкнутым?
 - б) Для кольца проверить, есть ли в нем делители нуля? является ли кольцо полем?

При решении задачи № 2 использовать результаты, полученные при решении задачи № 1 домашнего задания.

Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 22. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2, 3, 4\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a \oplus c, b \oplus d);$$
 $(a, b) \cdot (c, d) = (a \odot c, b \odot d).$

Операции сложения и умножения элементов выполняются в поле \mathbb{Z}_5 вычетов по модулю 5.

Вариант 23. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1,2\}}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в кольце $(2^{\{0,1,2\}}, \triangle, \cap)$.

Вариант 24. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in \{0,1\}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в полукольце ($\{0,1\}$, min, max).

Вариант 25. Множество чисел вида $x + \sqrt{5}y$, где x и y — рациональные числа, с операциями сложения и умножения чисел, определенным по следующим правилам

$$(x_1 + \sqrt{5}y_1) + (x_2 + \sqrt{5}y_2) = (x_1 + x_2) + \sqrt{5}(y_1 + y_2),$$

$$(x_1 + \sqrt{5}y_1) \cdot (x_2 + \sqrt{5}y_2) = (x_1x_2 + 3y_1y_2) + \sqrt{5}(x_1y_2 + y_1x_2).$$

Операции сложения и умножения рациональных чисел выполняются в поле рациональных чисел.

Вариант 26. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) \oplus (c, d) = (a + c, b + d);$$
 $(a, b) \odot (c, d) = (a \cdot c, b \cdot d).$

Операции сложения и умножения элементов упорядоченных пар выполняются в полукольце \mathcal{B} .

Вариант 27. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ b & c \end{pmatrix}$, где $a,b,c \in 2^{\{0,1,2\}}$, с операциями сложения и умножения матриц. Операции сложения и умножения элементов матриц выполняются в полукольце $(2^{\{0,1,2\}},\ \cap,\ \cup)$.

Вариант 28. Множество многочленов степени не выше n над полем рациональных чисел с операциями сложения и умножения многочленов, определенных по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i \oplus \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i, \qquad \sum_{i=0}^{n} a_i x^i \odot \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i \cdot b_i) x^i.$$

Операция сложения и умножения рациональных чисел выполняется в поле рациональных чисел.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) Для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным? Идемпотентным? Замкнутым?
 - б) Для кольца проверить, есть ли в нем делители нуля? является ли кольцо полем?

При решении задачи № 2 использовать результаты, полученные при решении задачи № 1 домашнего задания.

Символом © в условии задачи обозначен нейтральный элемент по сложению алгебры, над которой выполняются операции над элементами матриц или упорядоченных пар.

Вариант 29. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения и умножения выполняются в полукольце $(2^{\{0,1\}},\,\cap,\,\cup)$.

Вариант 30. Множество многочленов степени не выше n над полем чисел вида $a+\sqrt{2}b$, где $a,\,b$ — рациональные числа, с операциями сложения и умножения многочленов, определенных по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i \oplus \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i, \qquad \sum_{i=0}^{n} a_i x^i \odot \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i \cdot b_i) x^i.$$

Операция сложения и умножения чисел выполняется в соответствующем поле.