Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	19/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

Actividades

Trabajo: Ejercicios sobre programación lineal

Objetivos

Llevar a cabo diferentes ejercicios poniendo de manifiesto que se han adquirido las competencias correspondientes a los métodos de prueba.

Descripción de la actividad

Se plantean los siguientes ejercicios:

Ejercicio 1

Dado el siguiente problema de programación lineal:

Minimizar
$$2x_1 - 2x_2$$

Sujeto a
$$\begin{cases} x_1 + x_2 \le 6 \\ x_1 + 2x_2 \ge 4 \\ x_1 \ge 0; x_2 \ge 0 \end{cases}$$

a. Dibuja las inecuaciones, la región factible y la función objetivo.

Primero <u>dibujamos nuestras inecuaciones</u>, como $x_1 \ge 0$ $x_2 \ge 0$, nuestra gráfica estará representada en el eje positivo tanto x_1 como x_2 .

$$x_1 + x_2 \le 6$$
 para $x_1 = 0 \Rightarrow x_2 = 6$
para $x_2 = 0 \Rightarrow x_1 = 6$
 $x_1 + 2x_2 \ge 4$ para $x_1 = 0 \Rightarrow x_2 = 2$
para $x_2 = 0 \Rightarrow x_1 = 4$

Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	10/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

Ahora calculamos la región factible:

Sustituimos $x_1 = x_2 = 0$ en la primera inecuación $\rightarrow 0 + 0 \le 6 \rightarrow 0 \le 6$ Verdadero

Sustituimos $x_1 = x_2 = 0$ en la segunda inecuación $\rightarrow 0 + 2*0 \ge 4 \rightarrow 0 \ge 4$ Falso

La región factible la hemos pintado del color gris en el gráfico

Calculamos la <u>función Objetivo</u> en función de los puntos obtenidos. Primero calculamos dichos puntos (x_1, x_2) de la región factible:

(0,6),(6,0),(0,2),(4,0)

A continuación los sustituimos en la función objetivo:

$$f(x_1, x_2) = 2x_1 - 2x_2$$

1.
$$f(0,6) = 2*0 - 2*6 = -12$$

2.
$$f(6,0) = 2*6 - 2*0 = 12$$

3.
$$f(0,2) = 2*0 - 2*2 = -4$$

4.
$$f(4,0) = 2*4 - 2*0 = 8$$

Nuestro valor de la función objetivo es Z = -12 para los puntos (0,6).

b. Representa el problema en forma distensionada, en la versión de sistema de ecuaciones y matricial.

Primero pasamos nuestro sistema de inecuaciones a sistema de ecuaciones con variables de holgura:

Minimizar
$$2x_1 - 2x_2$$

Sujeto a
$$\begin{cases} x_1 + x_2 \le 6 \\ x_1 + 2x_2 \ge 4 \\ x_1 \ge 0 \ ; \ x_2 \ge 0 \end{cases}$$

$$\Rightarrow \begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 + 2x_2 - x_3 = 4 \\ 2x_1 - 2x_2 = Z \end{cases}$$

$$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} x_1 + \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} x_2 + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} x_3 = \begin{bmatrix} Z \\ 6 \\ 4 \end{bmatrix}$$

c. Obtén las soluciones del problema en caso de que tenga solución (si no es así, justificalo).

Como hemos obtenido en el apartado a),

Las soluciones son:

$$x_1 = 0$$

$$x_2 = 6$$

$$Z = -12$$

Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	10/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

Ejercicio 2

Dado el siguiente problema de programación lineal:

$$\text{Minimizar} \quad 3x_1 + 3x_2 \\ \text{Sujeto a} \quad \begin{cases} x_1 + 2x_2 \leq 4 \\ x_1 - x_2 \geq 1 \\ x_1 \geq 0 \ ; \ x_2 \geq 0 \end{cases}$$

a. Dibuja las inecuaciones, la región factible y la función objetivo.

Primero <u>dibujamos nuestras inecuaciones</u>, como $x_1 \ge 0$ $x_2 \ge 0$, nuestra gráfica estará representada en el eje positivo tanto x_1 como x_2 .

$$x_1 + 2x_2 \le 4 \text{ para } x_1 = 0 \Rightarrow x_2 = 2$$

para $x_2 = 0 \Rightarrow x_1 = 4$
 $x_1 - x_2 \ge 1 \text{ para } x_1 = 0 \Rightarrow x_2 = -1$

para $x_2 = 0 \Rightarrow x_1 = 1$

 X_1

Ahora calculamos la región factible:

Sustituimos $x_1 = x_2 = 0$ en la primera inecuación $\rightarrow 0 + 0 \le 4 \rightarrow 0 \le 4$ Verdadero

Sustituimos $x_1 = x_2 = 0$ en la segunda inecuación $\rightarrow 0 - 0 \ge 4 \rightarrow 0 \ge 1$ Falso

La región factible la hemos pintado del color gris en el gráfico

Calculamos la <u>función Objetivo</u> en función de los puntos obtenidos. Primero calculamos dichos puntos (x_1, x_2) de la región factible:

(0,2),(1,0),(4,0)

A continuación los sustituimos en la función objetivo:

$$f(x_1, x_2) = 3x_1 + 3x_2$$

1.
$$f(0,2) = 3*0 - 3*2 = 6$$

2.
$$f(1,0) = 3*1 - 3*0 = 3$$

3.
$$f(4,0) = 3*4 - 3*0 = 12$$

Nuestro valor de la función objetivo es Z = 3 para los puntos (1,0).

Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	10/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

b. Representa el problema en forma distensionada, en la versión de sistema de ecuaciones y matricial.

Primero pasamos nuestro sistema de inecuaciones a sistema de ecuaciones con variables de holgura:

Minimizar
$$3x_1 + 3x_2$$

Sujeto a
$$\begin{cases} x_1 + 2x_2 \le 4 \\ x_1 - x_2 \ge 1 \\ x_1 \ge 0 \ ; \ x_2 \ge 0 \end{cases}$$
 \Rightarrow

$$\begin{cases} x_1 + 2x_2 + x_3 = 4 \\ x_1 - x_2 - x_3 = 1 \\ 3x_1 + 3x_2 = Z \end{cases}$$

$$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} x_2 + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} x_3 = \begin{bmatrix} Z \\ 4 \\ 1 \end{bmatrix}$$

c. Obtén las soluciones del problema en caso de que tenga solución (si no es así, justificalo).

Como hemos obtenido en el apartado a),

Las soluciones son:

$$x_1 = 1$$

$$x_2 = 0$$

$$Z = 3$$

Ahora lo resolvemos con el método de Simplex:

Paso 1. Escribimos la función objetivo como una igualdad a cero sumando las variables de holgura con coeficiente cero y conservando positivo el coeficiente de Z. Convertimos las desigualdades en igualdades al sumarles una variable de holgura h_i. Esta variable representa la cantidad que le falta a la desigualdad para ser igualdad.

$$Z - 3x_1 - 3x_2 + 0h_1 + 0h_2 + 0h_3 = 0$$

 $x_1 + 2x_2 + h_1 = 4$
 $x_1 + x_2 - h_2 + h_3 = 1$

Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	10/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

Paso 2. Formamos la tabla símplex o tabla inicial.

V. básicas	Z	X1	X2	h ₁	h ₂	hз	Solución
Z	1	-3	-3	0	0	0	0
h ₁	0	1	2	1	0	0	4
h ₂	0	1	-1	0	-1	1	1

Escribimos en nuestra tabla todas las variables originales del modelo y las variables de holgura y colocamos todos los coeficientes en sus respectivos campos.

La primera solución sería:

$$Z = 0$$

$$h_1 = 4$$

$$h_2 = 1$$

Con la tabla inicial símplex asociada al modelo de PL se continúa para encontrarla solución óptima (si es que existe) o bien determinar que el problema no tiene solución óptima.

Paso 3. Al estar en un problema de minimización tenemos que coger el valor de la fila Z y variables originales más positivo, en nuestro caso al ser -3 ambos coeficientes cogemos el primero y dividimos la solución entre las variables de holgura:

V. básicas	Z	X1	X2	h ₁	h ₂	hз	Solución	
Z	1	-3	-3	0	0	0	0	
h ₁	0	1	2	1	0	0	4	
h ₂	0	1	-1	0	-1	1	1	

$$4/1 = 4$$
 $1/1 = 1$

Cogemos el valor más pequeño y este será nuestro elemento pivote de renglones.

Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	10/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

Paso 4. Hacemos los elementos de la columna superiores 0 operando con los renglones utilizando el seleccionado anteriormente como pivote:

	V. básicas	Z	X1	X2	h ₁	h ₂	h ₃	Solución	
R_0	Z	1	-3	-3	0	0	0	0	$R_0 + 3R_2$
R_1	h ₁	0	1	2	1	0	0	4	$R_1 - R_2$
R_2	h ₂	0	1	-1	0	-1	1	1	R_2

Escribimos la tabla resultante:

	V. básicas	Z	X1	X2	h ₁	h ₂	hз	Solución
R_0	Z	1	0	-6	0	-3	3	3
R_1	h ₁	0	0	3	1	1	-1	3
R ₂	X ₁	0	1	-1	0	-1	1	1

La última operación por realizar es transferir los calores de la solución de la tabla a alas variables básicas:

Ī	X ₁ = 1
	$X_2 = 0$
	Z = 3

Asignatura	Datos del alumno	Fecha
Álgebra y	Apellidos: González Pradas	10/01/0000
Matemática Discreta	Nombre: Ernesto	18/01/2020

Rúbrica

Programación Lineal (valor real: 5 puntos)	Descripción	Puntuación máxima (puntos)	Peso %
Resolución	Se resuelven adecuadamente los 2 ejercicios	5	50%
Planteamiento	El planteamiento y desarrollo de los ejercicios es óptimo	3	30%
Lenguaje Matemático	El lenguaje matemático empleado es correcto y riguroso	2	20%
		10	100 %

Envío de la actividad

Deberá entregarse un documento (.DOC o .PDF) con el resultado de los ejercicios a través de la plataforma de envío de actividades.