前章でサンプリングした 500個*3ステップ のサンプル列に ついて

- \triangleright 図9.5の(A), (C)はそれぞれ β_1 (切片), β_2 (傾き)のサンプリング過程
- $\triangleright \beta_1$ (切片)は1.7~2.2, β_2 (傾き)は-0.1~0.3のパラメータ

- ▶図9.5の(B), (D)はそれぞれ β_1 (切片), β_2 (傾き)の周辺事後分布
- ▶周辺事後分布とは?
 - …同時事後分布 $p(\beta_1,\beta_2|Y)$ を β_1 もしくは β_2 で積分することで得られる片方のパラメータのみの事後分布(たぶん)

- パラメータ β_1 , β_2 の95%信用区間とその解釈
 - $> \beta_1 : 1.805 \sim 2.143$
 - \cdots 「 β_1 の値の範囲は95%の事後確率で1.805 ~ 2.143になる」
 - $> \beta_2$: -0.050 ~ 0.209
 - \cdots 「 β_2 の値の範囲は95%の事後確率で-0.050 ~ 0.209になる?」

傾き β_2 が負だと体サイズが大きいほど種子数が少ないという考察に \rightarrow β_2 が正だと主張する方法にはどのようなものがあるか

- β₂が正だと主張する方法にはどのようなものがあるか
 - ▶サンプリング数を増やす(推定誤差を減らす)
 - ▶β₂>0となる確率を述べる
 - …例えば1500のサンプルのうち1350が $\beta_2 > 0$ の範囲にある場合は「 $\beta_2 > 0$ となる確率は0.90」と述べることができる?