Recursion and Induction

Problem 1

Prove by induction that

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1$$
 for $n > 1$

Solution

Let P(n) be the proposition that $1 \cdot 1! + 2 \cdot 2! + ... + n \cdot n! = (n+1)! - 1$. We will prove that P(n) holds for all $n \ge 1$ by induction on n.

Base case n = 1. 1.1! = 1 = 2! - 1 = (1+1)! - 1 so P(1) holds.

Inductive case. Assume P(k) holds for some $k \in \mathbb{N}_{>0}$. That is $1 \cdot 1! + 2 \cdot 2! + \ldots + k \cdot k! = (k+1)! - 1$. Then

$$1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k! + (k+1) \cdot (k+1)! = (k+1)! - 1 + (k+1) \cdot (k+1)!$$
 (Induction hypothes's)
= $(1+k+1)(k+1)! - 1$
= $((k+1)+1)(k+1)! - 1$

so P(k+1) holds.

Therefore, by the Principle of Induction, P(n) holds for all $n \ge 1$.

Problem 2

Let $\Sigma = \{1, 2, 3\}.$

- (a) Give a recursive definition for the function sum : $\Sigma^* \to \mathbb{N}$ which, when given a word over Σ returns the sum of the digits. For example $\mathsf{sum}(1232) = 8$, $\mathsf{sum}(222) = 6$, and $\mathsf{sum}(1) = 1$. You should assume $\mathsf{sum}(\lambda) = 0$.
- (b) For $w \in \Sigma^*$, let P(w) be the proposition that for all words $v \in \Sigma^*$, sum(wv) = sum(w) + sum(v). Prove that P(w) holds for all $w \in \Sigma^*$.
- (c) Consder the function rev : $\Sigma^* \to \Sigma^*$ defined recursively as follows:
 - $rev(\lambda) = \lambda$
 - For $w \in \Sigma^*$ and $a \in \Sigma$, rev(aw) = rev(w)a

Prove that for all words $w \in \Sigma^*$, sum(rev(w)) = sum(w)

Solution

(a) We give a definition using the recursive nature of Σ^* :

$$sum(\lambda) = 0$$

$$sum(a.w) = a + \sum (w).$$

(b) We first need the recursive definition of concatenation:

$$\lambda.v = v$$

$$(aw).v = a(w.v)$$

We will now prove P(w) for all $w \in \Sigma^*$ by structural induction on w.

Base case ($w = \lambda$).

$$\begin{array}{ll} \operatorname{sum}(wv) &= \operatorname{sum}(\lambda.v) \\ &= \operatorname{sum}(v) & \operatorname{Definition of concatenation} \\ &= 0 + \operatorname{sum}(v) \\ &= \operatorname{sum}(\lambda) + \operatorname{sum}(v) & \operatorname{Definition of sum} \\ &= \operatorname{sum}(w) + \operatorname{sum}(v) & \end{array}$$

So $P(\lambda)$ holds.

Inductive case (w = aw'**).** Assume P(w') holds, that is for all $v \in \Sigma^*$, sum(w'v) = sum(w') + sum(v). Then for all $v \in \Sigma^*$ and all $a \in \Sigma$:

$$\begin{array}{ll} \operatorname{sum}((aw')v) &= \operatorname{sum}(a(w'v)) & \operatorname{Definition \ of \ concatenation} \\ &= a + \operatorname{sum}(w'v) & \operatorname{Definition \ of \ sum} \\ &= a + \operatorname{sum}(w') + \operatorname{sum}(v) & \operatorname{Inductive \ hypothesis} \\ &= \operatorname{sum}(aw') + \operatorname{sum}(v) & \operatorname{Definition \ of \ sum} \end{array}$$

So P(w') implies P(aw') for all $a \in \Sigma$.

Therefore, by the Principle of Structural Induction, P(w) holds for all $w \in \Sigma^*$.

(c) Let P(w) be the proposition that $\operatorname{sum}(\operatorname{rev}(w)) = \operatorname{sum}(w)$. We will show that P(w) holds for all words $w \in \Sigma^*$ by structural induction on w.

Base case ($w = \lambda$ **).** From the definition of rev we have: $sum(rev(\lambda)) = sum(\lambda)$. So $P(\lambda)$ holds.

Inductive case (w = aw'**).** Suppose P(w') holds, that is sum(rev(w')) = sum(w'). For any $a \in \Sigma$ we have:

$$\begin{array}{ll} \operatorname{sum}(\operatorname{rev}(aw')) & = \operatorname{sum}(w'a) & \operatorname{Definition\ of\ rev} \\ & = \operatorname{sum}(w') + \operatorname{sum}(a) & \operatorname{From\ } (b) \\ & = \operatorname{sum}(w') + a + \operatorname{sum}(\lambda) & \operatorname{Definition\ of\ sum} \\ & = a + \operatorname{sum}(w') + 0 & \operatorname{Definition\ of\ sum} \\ & = \operatorname{sum}(aw') & \operatorname{Definition\ of\ sum} \end{array}$$

So P(w') implies P(aw') for all $a \in \Sigma$.

Therefore, by the Principle of Structural Induction, P(w) holds for all $w \in \Sigma^*$.

Problem 3

Define $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ recursively as follows: f(m,0) = 0 for all $m \in \mathbb{N}$ and f(m,n+1) = m + f(m,n).

- (a) Let P(n) be the proposition that f(0,n) = f(n,0). Prove that P(n) holds for all $n \in \mathbb{N}$.
- *(b) Let Q(m) be the proposition $\forall n, f(m,n) = f(n,m)$. Prove that Q(m) holds for all $m \in \mathbb{N}$.

Solution

1. We show that P(n) holds for all $n \in \mathbb{N}$ by induction.

Base case: n = 0. Since f(0,0) = f(0,0), P(0) holds.

Inductive case. Now suppose P(n) holds. Then

$$f(0, n + 1) = 0 + f(0, n)$$
 (Def)
= 0 + f(n, 0) (IH)
= 0 (Def)
= $f(n + 1, 0)$.

So $P(n) \to P(n+1)$, and thus P(n) holds for all $n \in \mathbb{N}$.

2. We will prove by induction that f(m,n) = mn, from which it follows that f(m,n) = mn = nm = f(n,m). Let R(n) be the proposition that: for all m, f(m,n) = mn.

Base case: n = 0. From the definition of f, f(m, 0) = 0 = 0.m for all m. So R(0) holds.

Inductive case. Suppose that R(n) holds. That is, for all m, f(m,n) = mn. Then, for all m,

$$f(m, n+1) = m + f(m, n)$$
 Definition of f
= $m + mn$ Induction hypothesis
= $m(n+1)$.

So R(n+1) holds. Thus, R(n) implies R(n+1), so by the Principle of Induction f(m,n) = mn for all m and n. Therefore f(m,n) = f(n,m).

Problem 4^{\dagger} (20T2)

Let $\Sigma = \{a, b\}$ and define $f : \Sigma^* \to \mathbb{R}$ recursively as follows:

- $f(\lambda) = 0$,
- $f(aw) = \frac{1}{2} + \frac{1}{2}f(w)$ for $w \in \Sigma^*$, and
- $f(bw) = -\frac{1}{2} + \frac{1}{2}f(w)$ for $w \in \Sigma^*$.

- (a) What is f(abba)?
- (b) Prove that $f(w) \in (-1,1)$ for all $w \in \Sigma^*$
- (c) Prove, or give a counterexample to disprove:
 - (i) *f* is injective
 - (ii) Im(f) = (-1, 1)

Solution

(a) We have

$$\begin{array}{lll} f(\lambda) &= 0 \\ f(a) &= \frac{1}{2} + \frac{1}{2} f(\lambda) &= \frac{1}{2} \\ f(ba) &= -\frac{1}{2} + \frac{1}{2} f(a) &= -\frac{1}{2} + \frac{1}{4} &= -\frac{1}{4} \\ f(bba) &= -\frac{1}{2} + \frac{1}{2} f(ba) &= -\frac{1}{2} - \frac{1}{8} &= -\frac{5}{8} \\ f(abba) &= \frac{1}{2} + \frac{1}{2} f(bba) &= \frac{1}{2} - \frac{5}{16} &= \frac{3}{16} \end{array}$$

- (b) For $w \in \Sigma^*$, let P(w) be the proposition that $f(w) \in (-1,1)$. We will show P(w) is true for all $w \in \Sigma^*$, by structural induction on w.
 - Base case: $w = \lambda$. We have $f(\lambda) = 0 \in (-1, 1)$, so $P(\lambda)$ is true.
 - Inductive case: Suppose P(w') holds for $w' \in \Sigma^*$. That is $f(w') \in (-1,1)$. Then $\frac{1}{2}f(w') \in (-\frac{1}{2},\frac{1}{2})$.

Consider w = aw'. We have

$$f(w) = f(aw') = \frac{1}{2} + \frac{1}{2}f(w') \in (\frac{1}{2} - \frac{1}{2}, \frac{1}{2} + \frac{1}{2}) = (0, 1) \subseteq (-1, 1)$$

So P(aw') holds.

Now consider w = bw'. We have

$$f(w) = f(bw') = -\frac{1}{2} + \frac{1}{2}f(w') \in (-\frac{1}{2} - \frac{1}{2}, -\frac{1}{2} + \frac{1}{2}) = (-1, 0) \subseteq (-1, 1)$$

So P(bw') holds.

Therefore, if P(w') holds, P(xw') holds for all $x \in \Sigma$.

It follows, by structural induction, that P(w) holds for all $w \in \Sigma^*$.

(c) (i) This is true. Suppose f is not injective. Let f(x) = f(y) with $x \neq y$, and choose x so that length(()x) is minimal. That is, if f(x') = f(y') and length(()x') < length(()x) then x' = y'.

From (b), we have the following observation:

- $f(\lambda) = 0$
- $f(aw) \in (0,1)$, so f(aw) > 0, and
- $f(bw) \in (-1,0)$, so f(bw) < 0.

We also observe, from algebraic manipulation, that for all $w \in \Sigma^*$:

$$f(w) = 2f(aw) - 1 = 2f(bw) + 1.$$

Now, if $x = \lambda$ then f(y) = 0, so $y = \lambda$ which is a contradiction. If x = ax' then f(x) > 0, so f(y) > 0, so y = ay'. But then

$$f(x') = 2f(x) - 1 = 2f(y) - 1 = f(y')$$

so x' = y' (by the minimality of x). But then x = ax' = ay' = y, which is a contradiction. Finally, if x = bx' then f(x) < 0, so f(y) < 0, so y = by'. But then

$$f(x') = 2f(x) + 1 = 2f(y) + 1 = f(y')$$

so x' = y' (by the minimality of x). But then x = bx' = by' = y, which is a contradiction. Therefore f is injective.

- (ii) This is false. We observe the following:
 - $f(\lambda) = 0$ is rational.
 - If f(w) is rational, then $f(aw) = \frac{1}{2} + \frac{1}{2}f(w)$ and $f(bw) = -\frac{1}{2} + \frac{1}{2}f(w)$ are both rational.

It follows, by structural induction, that f(w) is rational for all $w \in \Sigma^*$.

But then there is no $w \in \Sigma^*$ such that $f(w) = \frac{1}{\sqrt{2}} \in (-1,1)$. Therefore $Im(f) \neq (-1,1)$.

Alternative proof. We will show that there is no w such that $f(w) = \frac{1}{3}$.

Suppose $f(w) = \frac{1}{3}$. As observed in (c)(i), since f(w) > 0, we have w = aw' for some word w'. Therefore,

$$f(w') = 2f(w) - 1 = \frac{2}{3} - 1 = -\frac{1}{3}.$$

Now, as observed in (c)(ii), since f(w') < 0, we have w' = bw'' for some word w''. But then,

$$f(w'') = 2f(w') + 1 = -\frac{2}{3} + 1 = \frac{1}{3} = f(w)$$

Since f is injective (as shown in (b)), we have w = w''. However, w = aw' = abw'', so this is a contradiction.

Therefore, there is no w such that $f(w) = \frac{1}{3}$.

Problem 5

Let $\Sigma = \{0, 1\}$

- (a) Recursively define a function str2num : $\Sigma^+ \to \mathbb{N}$ that converts a non-empty word over Σ to the number that one obtains by viewing the word as a binary number. For example str2num(1100) = 12, str2num(0111) = 7, str2num(0000) = 0.
- (b) Recursively define a function num2str : $\mathbb{N} \to \Sigma^+$ that converts a number to its (shortest) binary representation. *Hint: you may want to use* div *and* %.
- (c) Writing your functions as code in the natural way,
 - (i) Give an asymptotic upper bound in terms of length(()w) on the running time to compute str2num(w).

(ii) Give an asymptotic upper bound in terms of n on the running time to compute num2str(n).

Solution

- (a) One approach:
 - str2num(0) = 0
 - str2num(1) = 1
 - $\bullet \ \operatorname{str2num}(0w) = \operatorname{str2num}(w) \ \text{for} \ w \in \Sigma^+$
 - $\bullet \ \operatorname{str2num}(1w) = 2^{\operatorname{length}(w)} + \operatorname{str2num}(w) \ \operatorname{for} \ w \in \Sigma^+$
- (b) One approach:
 - num2str(0) = 0
 - num2str(1) = 1
 - $\operatorname{num2str}(n) = \operatorname{num2str}(n \text{ div } 2).\operatorname{num2str}(n \% 2)$ where . is string concatenation, for $n \ge 2$.

Solution (ctd)

(c) (i) The "natural" code is:

```
\begin{split} & \mathsf{str2num}(w): \\ & \mathsf{if} \ w = 0: \\ & \mathsf{return} \ 0 \\ & \mathsf{else} \ \mathsf{if} \ w = 1: \\ & \mathsf{return} \ 1 \\ & \mathsf{else} \ \mathsf{if} \ w = 0w': \\ & \mathsf{return} \ \mathsf{str2num}(w') \\ & \mathsf{else} \ \mathsf{if} \ w = 1w': \\ & \mathsf{return} \ 2^{\mathsf{length}(w')} + \mathsf{str2num}(w') \end{split}
```

The running time for each of these lines, excluding the recursive calls, is O(1). Computing length(w) takes $O(\operatorname{length}(w))$ time unless we store w "smartly" using a complex data structure that keeps track of the length of w. If we let T(n) denote the running time of $\operatorname{str2num}(w)$ when $\operatorname{length}(w) = n$ we see that the first recursive call (line 6) will take O(1) + T(n-1) time; whereas the second call (line 8) will take O(1) + O(n) + T(n-1) time. In the worst case, we will always execute the statement that takes the longest time giving us the following recurrence for T(n):

$$T(1) \in O(1)$$
 $T(n) \le O(1) + O(n) + T(n-1).$

Therefore, using the linear form of the Master Theorem, $T(n) \in O(n^2)$.

(ii) The "natural" code is:

```
\begin{aligned} & \text{num2str}(n): \\ & \text{if } n=0: \\ & \text{return 0} \\ & \text{else if } n=1: \\ & \text{return 1} \\ & \text{else:} \\ & \text{return num2str}(n \text{ div 2}).\text{num2str}(n \% 2) \end{aligned}
```

Let T(n) denote the running time of num2str(n). We observe that num2str(n % 2) will execute in O(1) time, and with a suitable method of storing words, concatenating the single symbol will also take O(1) time. So the final line will take T(n/2) + O(1) time to execute. For $n \ge 2$ this line will always get executed, giving us the following recurrence for T(n):

$$T(0), T(1) \in O(1)$$
 $T(n) \le O(1) + T(n/2)$

Using the Master Theorem, we have a = 1, b = 2, c = d = 0, so we are in Case 2, and $T(n) \in O(\log n)$.