探究不同材质杯子在不同液体残留下的最 佳清洗频率

董柏霖,张展搏,孙敏涵 2025年9月16日

摘要

目录

1	引言		3	
2	材料与方法			
	2.1	材料与试剂	3	
	2.2	微生物培养基配制	3	
	2.3	微生物培养环境	3	
	2.4	实验方法	3	
	2.5	数据处理方法	3	
		2.5.1 数据清洗	3	
		2.5.2 数据预处理	4	
3	结果与讨论			
	3.1	结果	4	
		3.1.1 单一材料比较数据	4	
		3.1.2 同种液体比较数据	4	
		3.1.3 综合比较	5	
	3.2	分析与讨论	5	
		3.2.1 最佳承装液体	5	
		3.2.2 最佳承装容器	5	
		3.2.3 原因分析	5	
4	结论与创新点			
	4.1	结论	5	
	4.2	创新点	5	
5	问题与反思			
	5.1	现有问题	5	
	5.2	反思与改进方案	6	
	5.3		6	
6	收获		6	

1 引言

1 引言

2 材料与方法

- 2.1 材料与试剂
- 2.2 微生物培养基配制
- 2.3 微生物培养环境
- 2.4 实验方法

2.5 数据处理方法

由于种种原因,实验获得的数据不能直接作为分析的对象,因此,对 数据进行相关预处理是十分必要的。

2.5.1 数据清洗

在我们获取的数据中,包含许多异常数据与缺失值,我们主要采用添加偏置的方法修正一组异常项;同时使用函数拟合的方式填补缺失值。

偏置项 引入原因:由于本实验分批次完成(1-2 天一组,3-5 天一组),故每一组的初始条件(初始菌落数)不同,对于 3-5 天这组,我们会通过对其添加偏置项来修正它的初始菌落数目,从而得出较为合理的数据。

即对于某一组菌落数据 $x = x_1, x_2, x_3, x_4, x_5$,经过修正后的数据则表示为: $x_{cor} = x_1, x_2, x_3 + \theta, x_4 + \theta, x_5 + \theta(\theta)$ 为偏置项)

引入方法: 大部分偏置项的确定依赖于 1-2 天(即正常组)的培养情况,确保在调整后图像光滑;

函数拟合 引入原因:由于缺少部分数据,导致我们只能通过函数拟合的方式预测可能的缺失数据。而由于缺失数据周围有正常数据,所以拟合的结果具有一定的可信度。

对于铁片组数据有如下函数 (x 代表天数, y 代表带菌量):

1. 铁片-无菌水: $y = 100.43x^2 - 240.36x + 203.13$

3 结果与讨论 4

- 2. 铁片-沁葡水: $y = 29.35 \times e^{0.96x}$, 以第 3 天为 x = 0
- 3. 铁片-乌龙茶: $y = 352 \times e^{-0.64 \times (x-2)}$ (以第 2 天为起点开始衰减)

2.5.2 数据预处理

为了分析的简便,我们事先对数据进行了预处理,主要是对数据进行 Min-Max 归一化,将数据线性映射到 [0,1] 空间内。公式表达为:

$$\hat{x} = \frac{x - \min(X)}{\max(X) - \min(X)}, \hat{x} \in [0, 1]$$

$$\tag{1}$$

其中, \hat{x} 表示归一化后的数据,X 为同种材料、同种饮料的数据集。

3 结果与讨论

- 3.1 结果
- 3.1.1 单一材料比较数据

铁片

陶瓷片

3.1.2 同种液体比较数据

无菌水

沁葡水

乌龙茶

4 结论与创新点

5

- 3.1.3 综合比较
- 3.2 分析与讨论
- 3.2.1 最佳承装液体
- 3.2.2 最佳承装容器
- 3.2.3 原因分析

4 结论与创新点

4.1 结论

综上所述,我们根据实验数据与严谨的处理、分析过程后得出如下结论:

- 结论 1
- 结论 2
- 结论3

4.2 创新点

在我们的研究中,我们实现了如下创新:

- 创新点 1
- 创新点 2
- 创新点 3

5 问题与反思

5.1 现有问题

在本次研究中,出现了如下问题,可能会导致实验数据偏差从而得出错误的结论,包括但不限于:

6 收获 6

- 1. 问题 1
- 2. 问题 2

5.2 反思与改进方案

针对如上问题 5, 我们提出了如下解决方案:

- 1. 解决方案 1
- 2. 解决方案 2

5.3 未来展望

针对以上问题及解决方案,我们希望未来能够进一步跟进研究,得出更多可靠、更完备的结论,包括但不限于:

- 展望 1
- 展望 2

6 收获

致谢

本论文的顺利完成,离不开众多师长、同学和亲友的鼎力支持与帮助。在此,我们谨向他们致以最诚挚的谢意。

首先,我要衷心感谢我的导师张阳老师。从论文的选题、框架设计到 具体内容的修改完善,张老师都倾注了大量心血,给予了我悉心的指导和 无私的帮助。张老师严谨的治学态度、深厚的学术素养和诲人不倦的师者 风范,令我受益匪浅,并将激励我在未来的学习和工作中不断前进。

感谢在学习期间所有为我授业解惑的老师们,他们的精彩课程为我打下了坚实的专业基础,拓宽了我的学术视野。

感谢实验室的各位同门和同学们,在论文写作过程中,我们相互探讨、共同进步,你们的陪伴和支持让我在科研道路上不再孤单。

感谢参与本论文评审和提出宝贵意见的各位专家学者,他们的真知灼 见为论文的完善提供了重要指导。

最后,我要向我的家人表示最深切的感谢。你们的理解、支持和鼓励 是我能够安心完成学业和论文写作的坚强后盾。

由于本人学识水平有限,论文中难免存在疏漏和不足之处,恳请各位 老师和专家批评指正。

参考文献