Projet Labyrinthe

Algorithmes et Structures de Donnée

Juan-Carlos Barros et Daniel Kessler

14 mai 2021

Projet Labyrinthe

- Algorithme
- Structure de Donnée

Projet Labyrinthe

- AlgorithmeA*
- Structure de Donnée

Projet Labyrinthe

- AlgorithmeA*
- Structure de Donnée
 Priority Queue

Table des matières

- Quel algorithme pour résoudre quel problème?
 - Choix du problème
 - Choix de l'Algorithme
- 2 Algorithme A*
 - Pseudo-Code
 - Heuristique et Priorité
 - Structure de données "Priority Queue"
 - Idée de preuve
 - Exemple de résolution
- 3 Complexité
- Tests avec Python
- Conclusion

• Cherche-t-on un chemin quelconque?

- Cherche-t-on un chemin quelconque?
 - Oui, on ne traversera le labyrinthe qu'une seule fois.
 - ▶ On veut le chemin le plus court, pour peut-être le réutiliser.

- Cherche-t-on un chemin quelconque?
 - Oui, on ne traversera le labyrinthe qu'une seule fois.
 - ▶ On veut le chemin le plus court, pour peut-être le réutiliser.

- Cherche-t-on un chemin quelconque?
 - Oui, on ne traversera le labyrinthe qu'une seule fois.
 - ▶ On veut le chemin le plus court, pour peut-être le réutiliser.
- Connait-on les coordonnées de la sortie dès le départ ?

- Cherche-t-on un chemin quelconque?
 - Oui, on ne traversera le labyrinthe qu'une seule fois.
 - ▶ On veut le chemin le plus court, pour peut-être le réutiliser.
- Connait-on les coordonnées de la sortie dès le départ ?
 - Oui, et cette information pourra nous aider.
 - ▶ Non, le lieu de la sortie partie des inconnues.

- Cherche-t-on un chemin quelconque?
 - Oui, on ne traversera le labyrinthe qu'une seule fois.
 - ▶ On veut le chemin le plus court, pour peut-être le réutiliser.
- Connait-on les coordonnées de la sortie dès le départ ?
 - Oui, et cette information pourra nous aider.
 - Non, le lieu de la sortie partie des inconnues.

Un problème, plusieurs solutions

- Breadth-First Search
 - garantit de trouver une solution si elle existe
 - solution optimale si tous les pas sont égaux

Un problème, plusieurs solutions

- Breadth-First Search
 - garantit de trouver une solution si elle existe
 - solution optimale si tous les pas sont égaux
- Dijkstra
 - choisit où explorer selon les distances déjà parcourues
 - garantit de trouver le plus court chemin

Un problème, plusieurs solutions

- Breadth-First Search
 - garantit de trouver une solution si elle existe
 - solution optimale si tous les pas sont égaux
- Dijkstra
 - choisit où explorer selon les distances déjà parcourues
 - garantit de trouver le plus court chemin
- A*
 - nécessite de connaître les coordonnées de la sortie
 - choisit où explorer selon les distances déjà parcourues et la distance à la sortie

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D: Nil\}$ et une liste de coûts d'accès avec $\{D: 0\}$.

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D: Nil\}$ et une liste de coûts d'accès avec $\{D: 0\}$.

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D:Nil\}$ et une liste de coûts d'accès avec $\{D:0\}$.

Tant que la file d'attente n'est pas vide,

ullet extraire (pop) la cellule prioritaire C de la file d'attente

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D: Nil\}$ et une liste de coûts d'accès avec $\{D: 0\}$.

- ullet extraire (pop) la cellule prioritaire C de la file d'attente
- si *C* est la cellule d'arrivée *A*, retourner le chemin qui y amène (via backtracking sur les prédecesseurs)

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D:Nil\}$ et une liste de coûts d'accès avec $\{D:0\}$.

- ullet extraire (pop) la cellule prioritaire C de la file d'attente
- si *C* est la cellule d'arrivée *A*, retourner le chemin qui y amène (via backtracking sur les prédecesseurs)
- sinon, pour chaque vosin V de C qui n'est pas déjà accessible à moindre co'ut

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D: Nil\}$ et une liste de coûts d'accès avec $\{D: 0\}$.

- ullet extraire (pop) la cellule prioritaire C de la file d'attente
- si *C* est la cellule d'arrivée *A*, retourner le chemin qui y amène (via backtracking sur les prédecesseurs)
- sinon, pour chaque vosin V de C qui n'est pas déjà accessible à moindre co'ut
 - mémoriser le prédecesseur de V et le coût d'accès à V

pseudo-code

Démarrer une file d'attente avec la cellule de départ D, une liste de prédécesseurs avec $\{D:Nil\}$ et une liste de coûts d'accès avec $\{D:0\}$.

- ullet extraire (pop) la cellule prioritaire C de la file d'attente
- si *C* est la cellule d'arrivée *A*, retourner le chemin qui y amène (via backtracking sur les prédecesseurs)
- sinon, pour chaque vosin V de C qui n'est pas déjà accessible à moindre co'ut
 - ightharpoonup mémoriser le prédecesseur de V et le coût d'accès à V
 - ▶ ajouter V à la file d'attente

La priorité d'une cellule ${\it C}$ en attente est le coût estimé d'un chemin complet passant par cette cellule.

 $\mathsf{priorit\acute{e}} = \mathsf{co\^{u}t_r\acute{e}el} \; (D \to C) + \mathsf{co\^{u}t_estim\acute{e}} \; (C \to S)$

La priorité d'une cellule \mathcal{C} en attente est le coût estimé d'un chemin complet passant par cette cellule.

priorité = coût_réel
$$(D \to C)$$
 + coût_estimé $(C \to S)$

La distance restante depuis une cellule jusqu'à l'arrivée doit être estimée sans jamais surestimer.

La priorité d'une cellule \mathcal{C} en attente est le coût estimé d'un chemin complet passant par cette cellule.

priorité = coût_réel
$$(D \to C)$$
 + coût_estimé $(C \to S)$

La distance restante depuis une cellule jusqu'à l'arrivée doit être estimée sans jamais surestimer.

• La distance de Manhattan $|\Delta x| + |\Delta y|$ est un bon estimateur si les mouvements permis sont horizontaux et verticaux.

La priorité d'une cellule C en attente est le coût estimé d'un chemin complet passant par cette cellule.

$$\mathsf{priorit\acute{e}} = \mathsf{co\^{u}t_r\acute{e}el} \; (D \to C) + \mathsf{co\^{u}t_estim\acute{e}} \; (C \to S)$$

La distance restante depuis une cellule jusqu'à l'arrivée doit être estimée sans jamais surestimer.

- La distance de Manhattan $|\Delta x| + |\Delta y|$ est un bon estimateur si les mouvements permis sont horizontaux et verticaux.
- Une **heuristique nulle** ramène A* à l'algorithme de Dijkstra (ou Breadth-First Search sur grille carrée).

File d'attente : "Priority Queue"

- Structure permettant insertion avec priorité et "pop" rapide de l'élément prioritaire
- Implémentation en Python en tant que binary heap avec le module heapq
- Dans cette implémentation, vérifier si vide en O(1), insertion et "pop" en $O(\log(n))$ où n est le nombre d'objets en attente ¹

 $^{1. \ \ \, \}text{cf. https://www.cs.princeton.edu/ wayne/kleinberg-tardos/pdf/BinomialHeaps.pdf} \\ \bigcirc \\$

L'heuristique h(C, S) qui estime le chemin restant doit satisfaire deux conditions.

L'heuristique h(C, S) qui estime le chemin restant doit satisfaire deux conditions.

1 l'inégalité trianguaire : $h(C_1, S) \le r(C_1, C_2) + h(C_2, S)$ où C_1, C_2 sont deux cellules, $r(C_1, C_2)$ et la distance réelle entre elles.

Elle garantit de trouver la sortie, sans se "perdre" dans des boucles éventuelles.

L'heuristique h(C, S) qui estime le chemin restant doit satisfaire deux conditions.

- ① l'inégalité trianguaire : h(C₁, S) ≤ r(C₁, C₂) + h(C₂, S) où C₁, C₂ sont deux cellules, r(C₁, C₂) et la distance réelle entre elles.
 Elle garantit de trouver la sortie, sans se "perdre" dans des boucles éventuelles.
- 2 l'heuristique ne sur-estime jamais une distance

L'heuristique h(C, S) qui estime le chemin restant doit satisfaire deux conditions.

- ① l'inégalité trianguaire : h(C₁, S) ≤ r(C₁, C₂) + h(C₂, S) où C₁, C₂ sont deux cellules, r(C₁, C₂) et la distance réelle entre elles.
 Elle garantit de trouver la sortie, sans se "perdre" dans des boucles éventuelles.
- l'heuristique ne sur-estime jamais une distance Cela garantit qu'il n'y a pas de chemin plus court que celui trouvé.

L'heuristique h(C, S) qui estime le chemin restant doit satisfaire deux conditions.

- l'inégalité trianguaire : $h(C_1, S) \le r(C_1, C_2) + h(C_2, S)$ où C_1, C_2 sont deux cellules, $r(C_1, C_2)$ et la distance réelle entre elles. Elle garantit de trouver la sortie, sans se "perdre" dans des boucles
- l'heuristique ne sur-estime jamais une distance
 Cela garantit qu'il n'y a pas de chemin plus court que celui trouvé.
 Par contradiction :

éventuelles.

L'heuristique h(C, S) qui estime le chemin restant doit satisfaire deux conditions.

- l'inégalité trianguaire : h(C₁, S) ≤ r(C₁, C₂) + h(C₂, S) où C₁, C₂ sont deux cellules, r(C₁, C₂) et la distance réelle entre elles.
 Elle garantit de trouver la sortie, sans se "perdre" dans des boucles éventuelles.
- l'heuristique ne sur-estime jamais une distance Cela garantit qu'il n'y a pas de chemin plus court que celui trouvé. Par contradiction : s'il y en avait un, il aurait été estimé correctement ou sous-estimé, et serait donc prioritaire par rapport à un chemin complet trop long, vu qu'un chemin complet a une priorité calculée uniquement en coût réel.

Exemple de résolution

Objectif

Trouver le chemin le plus court entre le **D**épart et l'**A**rrivée

Exemple de résolution

Chaque noeud est à une distance réelle de l'arrivée, mais ces distances ne sont pas encore connues.

Exemple de résolution

Le départ est mis en file d'attente, avec une priorité 0.

Le seul voisin est évalué :

- coût réel pour y accéder : 1
- coût heuristique pour la suite : 17
- coût heuristique total (priorité) : 18

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

L'algorithme poursuit son chemin. Parfois deux choix ont la même priorité.

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

L'algorithme poursuit son chemin. Parfois deux choix ont la même priorité.

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

L'algorithme poursuit son chemin. Parfois deux choix ont la même priorité.

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Légende :

- coût réel jusqu'ici
- coût heuristique pour la suite
- coût heuristique total

Un chemin vers la sortie a été trouvé!

Complexité

Le pire des cas sera réalisé par un labyrinthe dont le meilleur chemin revient souvent en arrière (s'éloigne de l'arrivée). Dans ce cas, aucun gain n'est réalisé par rapport à l'algorithme de Dijsktra (ou "heuristique nulle").

Complexité

Le pire des cas sera réalisé par un labyrinthe dont le meilleur chemin revient souvent en arrière (s'éloigne de l'arrivée). Dans ce cas, aucun gain n'est réalisé par rapport à l'algorithme de Dijsktra (ou "heuristique nulle").

Dans ce cas, on aura visité toutes les N cellules. Les coûts de lecture/écriture dans la file d'attente sont en $O(\log(n))$ où n est le nombre d'éléments dans la "frontière" d'exploration, donc $n \sim O(\sqrt{N})$. Les autres opérations sont à coût comparable ou moindre. L'ensemble de la recherche sera donc en $O(N\log(N))$.

Complexité

Le pire des cas sera réalisé par un labyrinthe dont le meilleur chemin revient souvent en arrière (s'éloigne de l'arrivée). Dans ce cas, aucun gain n'est réalisé par rapport à l'algorithme de Dijsktra (ou "heuristique nulle").

Dans ce cas, on aura visité toutes les N cellules. Les coûts de lecture/écriture dans la file d'attente sont en $O(\log(n))$ où n est le nombre d'éléments dans la "frontière" d'exploration, donc $n \sim O(\sqrt{N})$. Les autres opérations sont à coût comparable ou moindre. L'ensemble de la recherche sera donc en $O(N\log(N))$.

Cependant, le "worst case" ne rend pas justice à A* dont le but est justement d'éviter la plupart du temps le "worst case" avec un bon choix d'heuristique.

Tests avec Python

```
marge = QueuePrioritaire(grid.start)
cout_reel = {grid.start: 0}
parent = {grid.start: None}
while True:
    noeud_courant = marge.pop()
    if noeud courant is None:
        raise ValueError("la grille n'a pas de solution")
    if noeud_courant == grid.out:
        break # chemin optimal trouvé
    # ... traiter noeud courant
```

la suite dans : https://github.com/Dalker/ASD_labyrinthe/

Tests avec Python

A* with null heuristic

A* with Manhattan heuristic

Tests avec Python

```
* Comparaison heuristique nulle vs Manhattan distance *
solveur1 = heuristique 0, solveur2 = heuristique Manhattan
30x30 : generate=0.1019s solve1=0.0060s solve2=0.0022s
40x40 : generate=0.1814s solve1=0.0096s solve2=0.0086s
50x50 : generate=0.5002s solve1=0.0228s solve2=0.0204s
60x60 : generate=0.8701s solve1=0.0280s solve2=0.0199s
70x70 : generate=1.0461s solve1=0.0451s solve2=0.0391s
80x80 : generate=1.4218s solve1=0.0563s solve2=0.0423s
```

Conclusion

- . . .
- Robot-Aspirateur