*This coding assignment was discussed with Haoyuan Zheng, Yuquan Hu and Yuan Zhou.

P1a:

İ	a(i)	alpha(i)	theta(i)	d(i)
0	0	0	None	None
1	0.033	pi/2	theta(1)+pi/2	0.1
2	0.155	0	theta(2)+pi/2	0
3	0.135	0	theta(3)	0
4	0	pi/2	theta(4)+pi/2	0
5	0	0	theta(5)	0

P2a:

(1) Homogeneous matrices first:

H° =	Siho,	$-\sin \theta_1$ $\cos \theta_1$ O	0 0 1 0	0 7 0 1	
H2 =	$\begin{bmatrix} \cos\theta_2 \\ 0 \\ \sin\theta_2 \\ C \end{bmatrix}$	-51h 02 0 COS 02	0 -1 0 0	0 0	
H ₃ =	$-\cos\theta_3$ $\sin\theta_3$ 0	-sihe; cos e3	0 0 1 0	0 0 1	
H3=	$ \begin{bmatrix} \cos \theta_4 \\ -\sin \theta_4 \\ 0 \\ 0 \end{bmatrix} $	-8ihθ4 Cos θ4 O	0 0 1 0	0 0 0	

(2) By multiplying them together (Forward Kinematics), we get the homogeneous transform matrix:

```
 \begin{bmatrix} [\ (-\sin(\theta 2) * \sin(\theta 3) * \cos(\theta 1) \ + \ \cos(\theta 1) * \cos(\theta 2) * \cos(\theta 3)) * \cos(\theta 4) \ + \ (-\sin(\theta 2) * \cos(\theta 1) * \cos(\theta 3) \ - \ \sin(\theta 3) * \cos(\theta 1) * \cos(\theta 2)) * \sin(\theta 4) \ - \ (-\sin(\theta 2) * \sin(\theta 3) * \cos(\theta 1) \ + \ \cos(\theta 1) * \cos(\theta 2)) * \cos(\theta 4) \ + \ (-\sin(\theta 2) * \cos(\theta 1) * \cos(\theta 3) \ - \ \sin(\theta 3) * \cos(\theta 1) * \cos(\theta 2)) * \cos(\theta 4) \ + \ (-\sin(\theta 2) * \cos(\theta 1) * \cos(\theta 3) \ - \ \sin(\theta 3) * \cos(\theta 1) * \cos(\theta 2)) * \cos(\theta 4) \ + \ (-\sin(\theta 1) * \sin(\theta 2) * \sin(\theta 3) \ + \ \sin(\theta 1) * \cos(\theta 2) * \cos(\theta 3) \ + \ \theta 1.155 * \cos(\theta 1) * \cos(\theta 2) \ + \ \theta 1.35 * \sin(\theta 2) * \sin(\theta 3) \ + \ \sin(\theta 1) * \cos(\theta 2) * \cos(\theta 3) \ + \ \sin(\theta 1) * \sin(\theta 2) * \cos(\theta 3) \ - \ \sin(\theta 1) * \sin(\theta 3) * \cos(\theta 2) \ + \ \cos(\theta 1) \ + \ \cos(\theta 1) * \sin(\theta 2) * \sin(\theta 3) \ + \ \sin(\theta 1) * \cos(\theta 2) * \cos(\theta 3) \ + \ \sin(\theta 1) * \sin(\theta 2) * \cos(\theta 3) \ + \ \sin(\theta 1) * \cos(\theta 2) \ + \ \cos(\theta 1) \ + \ \cos(\theta 1) * \cos(\theta 2) \ + \ \cos(\theta 1) \ + \ \cos(\theta 1) * \cos(\theta 2) \ + \ \cos(\theta 1) \ + \ \cos(\theta 1) * \sin(\theta 1) * \cos(\theta 2) * \cos(\theta 2) \ + \ \cos(\theta 1) \ + \ \cos(\theta 1) * \sin(\theta 1) \ + \ \cos(\theta 1)
```

(3) By differentiating theta1, theta2, theta3, theta4, theta5 correspondly in the homogeneous matrix and concatenate the result matrices together, we get the jacobian matrix:

```
 \begin{bmatrix} [-\theta.2175*(\sin(\theta1)*\sin(\theta2)*\sin(\theta3) - \sin(\theta1)*\cos(\theta2)*\cos(\theta3))*\sin(\theta4) + \theta.2175*(\sin(\theta1)*\sin(\theta2)*\cos(\theta3) + \sin(\theta1)*\sin(\theta3)*\cos(\theta2))*\cos(\theta4) \\ 0.2175*(\sin(\theta2)*\sin(\theta3)*\cos(\theta1) - \cos(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta2)*\cos(\theta1)*\cos(\theta3) - \sin(\theta3)*\cos(\theta1)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(\sin(\theta2)*\sin(\theta3)*\cos(\theta1) - \cos(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta2)*\cos(\theta1)*\cos(\theta3) - \sin(\theta3)*\cos(\theta1)*\cos(\theta2))*\sin(\theta4) \\ -0.2175*(-\sin(\theta2)*\sin(\theta3)*\cos(\theta1) + \cos(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta2)*\cos(\theta1)*\cos(\theta3) - \sin(\theta3)*\cos(\theta1)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(-\sin(\theta2)*\sin(\theta3)*\cos(\theta1) + \cos(\theta1)*\cos(\theta2)*\cos(\theta3))*\sin(\theta4) + 0.2175*(-\sin(\theta2)*\cos(\theta1)*\cos(\theta3) - \sin(\theta3)*\cos(\theta1)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(\sin(\theta1)*\sin(\theta2)*\sin(\theta3) - \sin(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta1)*\sin(\theta2)*\cos(\theta3) - \sin(\theta1)*\sin(\theta3)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(\sin(\theta1)*\sin(\theta2)*\sin(\theta3) - \sin(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta1)*\sin(\theta2)*\cos(\theta3) - \sin(\theta1)*\sin(\theta3)*\cos(\theta2))*\sin(\theta4) \\ -0.2175*(-\sin(\theta1)*\sin(\theta2)*\sin(\theta3) + \sin(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta1)*\sin(\theta2)*\cos(\theta3) - \sin(\theta1)*\sin(\theta3)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(-\sin(\theta1)*\sin(\theta2)*\sin(\theta3) + \sin(\theta1)*\cos(\theta2)*\cos(\theta3))*\cos(\theta4) - 0.2175*(-\sin(\theta1)*\sin(\theta2)*\cos(\theta3) - \sin(\theta1)*\sin(\theta3)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(-\sin(\theta1)*\sin(\theta2)*\sin(\theta3) + \cos(\theta2)*\cos(\theta3))*\sin(\theta4) + 0.2175*(-\sin(\theta2)*\cos(\theta3) - \sin(\theta1)*\sin(\theta3)*\cos(\theta2))*\sin(\theta4) \\ 0.2175*(-\sin(\theta2)*\sin(\theta3) + \cos(\theta2)*\cos(\theta3))*\sin(\theta4) + 0.2175*(-\sin(\theta2)*\cos(\theta3) - \sin(\theta3)*\cos(\theta2))*\cos(\theta4) \\ -0.2175*(-\sin(\theta2)*\sin(\theta3) + \cos(\theta2)*\cos(\theta3))*\sin(\theta4) - 0.2175*(-\sin(\theta2)*\cos(\theta3) - \sin(\theta3)*\cos(\theta2))*\cos(\theta4) \\ -0.2175*(-\sin(\theta2)*\sin(\theta3) + \cos(\theta2)*\cos(\theta3))*\sin(\theta4) - 0.2175*(-\sin(\theta2)*\cos(\theta3) + \sin(\theta3)*\cos(\theta2))*\cos(\theta4) \\ -0.2175*(-\sin(\theta2)*\sin(\theta3) + \cos(\theta2)*\cos(\theta3))*\sin(\theta4) - 0
```