Natural Language Processing Linear Models and Neural Networks

Felipe Bravo-Marquez

July 23, 2019

Supervised Learning

- The essence of supervised machine learning is the creation of mechanisms that can look at examples and produce generalizations. [Goldberg, 2017]
- We design an algorithm whose input is a set of labeled examples, and its output is a function (or a program) that receives an instance and produces the desired label.
- Example: if the task is to distinguish from spam and not-spam email, the labeled examples are emails labeled as spam and emails labeled as not-spam.
- It is expected that the resulting function will produce correct label predictions also for instances it has not seen during training.
- This approach differs from designing an algorithm to perform the task (e.g., manually designed rule-based systems).

Parameterized Functions

- Searching over the set of all possible functions is a very hard (and rather ill-defined) problem. [Goldberg, 2017]
- We often restrict ourselves to search over specific families of functions.
- Example: the space of all linear functions with d_{in} inputs and d_{out} outputs,
- Such families of functions are called hypothesis classes.
- By restricting ourselves to a specific hypothesis class, we are injecting the learner with inductive bias.
- Inductive bias: a set of assumptions about the form of the desired solution.
- Some hypothesis classes facilitate efficient procedures for searching for the solution. [Goldberg, 2017]

Linear Models

One common hypothesis class is that of high-dimensional linear function:

$$f(\vec{x}) = \vec{x} \cdot W + \vec{b}$$

$$\vec{x} \in \mathcal{R}^{d_{in}} \quad W \in \mathcal{R}^{d_{in} \times d_{out}} \quad \vec{b} \in \mathcal{R}^{d_{out}}$$
(1)

- The vector \vec{x} is the input to the function.
- The matrix W and the vector \vec{b} are the **parameters**.
- The goal of the learner is to set the values of the parameters W and \vec{b} such that the function behaves as intended on a collection of input values $\vec{x}_{1:k} = \vec{x}_1, \ldots, \vec{x}_k$ and the corresponding desired outputs $\vec{y}_{1:k} = \vec{y}_1, \ldots, \vec{y}_k$
- The task of searching over the space of functions is thus reduced to one of searching over the space of parameters. [Goldberg, 2017]

- Consider the task of distinguishing documents written in English from documents written in German.
- This is a binary classification problem

$$f(\vec{x}) = \vec{x} \cdot \vec{w} + b \tag{2}$$

 $d_{out} = 1$, \vec{w} is a vector, and b is a scalar.

- The range of the linear function in is $[-\infty, \infty]$.
- In order to use it for binary classification, it is common to pass the output of f(x) through the sign function, mapping negative values to -1 (the negative class) and non-negative values to +1 (the positive class).

- Letter frequencies make for quite good predictors (features) for this task.
- Even more informative are counts of letter bigrams, i.e., pairs of consecutive letters.
- One may think that words will also be good predictors i.e., using a bag of word representation of documents.
- · Letters, or letter-bigrams are far more robust.
- We are likely to encounter a new document without any of the words we observed in the training set.
- While a document without any of the distinctive letter-bigrams is significantly less likely. [Goldberg, 2017]

- We assume we have an alphabet of 28 letters (a–z, space, and a special symbol for all other characters including digits, punctuations, etc.)
- Documents are represented as 28 \times 28 dimensional vectors $\vec{x} \in \mathcal{R}^{784}$.
- Each entry \(\vec{x}_{[i]}\) represents a count of a particular letter combination in the document, normalized by the document's length.
- For example, denoting by \vec{x}_{ab} the entry of \vec{x} corresponding to the letter bigram ab:

$$x_{ab} = \frac{\#ab}{|D|} \tag{3}$$

where #ab is the number of times the bigram ab appears in the document, and |D| is the total number of bigrams in the document (the document's length).

Character-bigram histograms for documents in English (left, blue) and German(right,green). Underscores denote spaces. Only the top frequent character-bigrams are showed.

⁰Source:[Goldberg, 2017]

 Previous figure showed clear patterns in the data, and, given a new item, such as:

- We could probably tell that it is more similar to the German group than to the English one (observe the frequency of "th" and "ie").
- We can't use a single definite rule such as "if it has th its English" or "if it has ie its German".
- While German texts have considerably less "th" than English, the "th" may and does occur in German texts, and similarly the "ie" combination does occur in English.

- The decision requires weighting different factors relative to each other.
- We can formalize the problem in a machine-learning setup using a linear model:

$$\hat{y} = sign(f(\vec{x})) = sign(\vec{x} \cdot \vec{w} + b)$$

$$= sign(\vec{x}_{aa} \times \vec{w}_{aa} + \vec{x}_{ab} \times \vec{w}_{ab} + \vec{x}_{ac} \times \vec{w}_{ac} \dots + b)$$
(4)

• A document will be considered English if $f(\vec{x}) \ge 0$ and as German otherwise.

Intuition

- 1. Learning should assign large positive values to \vec{w} entries associated with letter pairs that are much more common in English than in German (i.e., "th").
- 2. It should also assign negative values to letter pairs that are much more common in German than in English ("ie", "en").
- Finally, it should assign values around zero to letter pairs that are either common or rare in both languages.

Log-linear Binary classifcation

- The output $f(\vec{x})$ is in the range $[-\infty,\infty]$, and we map it to one of two classes $\{-1,+1\}$ using the sign function.
- This is a good fit if all we care about is the assigned class.
- We may be interested also in the confidence of the decision, or the probability that the classifier assigns to the class.
- An alternative that facilitates this is to map instead to the range [0, 1], by pushing the output through a squashing function such as the sigmoid σ(x):

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{5}$$

resulting in:

$$\hat{y} = \sigma(f(\vec{x})) = \frac{1}{1 + e^{-\vec{x} \cdot \vec{w} + b}} \tag{6}$$

The Sigmoid function

The Sigmoid function

- The sigmoid function is is monotonically increasing, and maps values to the range [0, 1], with 0 being mapped to ½.
- When used with a suitable loss function (discussed later) the binary predictions made through the log-linear model can be interpreted as class membership probability estimates:

$$\sigma(f(\vec{x})) = P(\hat{y} = 1|\vec{x})$$
 of \vec{x} belonging to the positive class. (7)

- We also get $P(\hat{y} = 0 | \vec{x}) = 1 P(\hat{y} = 1 | \vec{x}) = 1 \sigma(f(\vec{x}))$
- The closer the value is to 0 or 1 the more certain the model is in its class membership prediction, with the value of 0.5 indicating model uncertainty.

Multi-class Classification

- Most classification problems are of a multi-class nature: examples are assigned to one of k different classes.
- Example: we are given a document and asked to classify it into one of six possible languages: English, French, German, Italian, Spanish, Other.
- Possible solution: consider six weight vectors \$\vec{w}_{EN}\$, \$\vec{w}_{FR}\$, ... and biases (one for each language).
- Predict the language resulting in the highest score:

$$\hat{y} = f(\vec{x}) = \operatorname{argmax}_{L \in \{EN, FR, GR, IT, SP, O\}} \quad \vec{x} \cdot \vec{w}_L + b_L$$
 (8)

Multi-class Classification

• The six sets of parameters $\vec{w}_L \in \mathcal{R}^{784}$ and b_L can be arranged as a matrix $W \in \mathcal{R}^{784 \times 6}$ and vector $\vec{b} \in \mathcal{R}^6$, and the equation re-written as:

$$\vec{\hat{y}} = f(\vec{x}) = \vec{x} \cdot W + \vec{b}$$

$$prediction = \hat{y} = \operatorname{argmax}_i \vec{\hat{y}}_{[i]}$$
(9)

• Here $\vec{p} \in \mathcal{R}^6$ is a vector of the scores assigned by the model to each language, and we again determine the predicted language by taking the argmax over the entries of \vec{p} .

- Consider the vector $\vec{\hat{y}}$ resulting from applying a trained model to a document.
- The vector can be considered as a representation of the document.
- It captures the properties of the document that are important to us: the scores of the different languages.
- The representation $\vec{\hat{y}}$ contains strictly more information than the prediction $\arg\max_{\hat{i}} \vec{\hat{y}}_{\hat{i}\hat{l}}$.
- Example: \$\vec{y}\$ can be used to distinguish documents in which the main language is German, but which also contain a sizeable amount of French words.
- Clustering documents based on $\vec{\hat{y}}$ could help to discover documents written in regional dialects, or by multilingual authors.

- The vectors \vec{x} containing the normalized letter-bigram counts for the documents are also representations of the documents.
- Arguably containing a similar kind of information to the vectors $\hat{\hat{y}}$.
- However, the representations in \vec{p} is more compact (6 entries instead of 784) and more specialized for the language prediction objective.
- Clustering by the vectors \(\vec{x} \) would likely reveal document similarities that are not due to a particular mix of languages, but perhaps due to the document's topic or writing styles.

- The trained matrix $W \in \mathcal{R}^{784 \times 6}$ can also be considered as containing learned representations.
- We can consider two views of W, as rows or as columns.

Two views of the W matrix. (a) Each column corresponds to a language. (b) Each row corresponds to a letter bigram. Source: [Goldberg, 2017].

- A column of W can be taken to be a 784-dimensional vector representation of a language in terms of its characteristic letter-bigram patterns.
- We can then cluster the 6 language vectors according to their similarity.
- Each of the 784 rows of W provide a 6-dimensional vector representation of that bigram in terms of the languages it prompts.

- Representations are central to deep learning.
- One could argue that the main power of deep-learning is the ability to learn good representations.
- In the linear case, the representations are interpretable.
- We can assign a meaningful interpretation to each dimension in the representation vector.
- For example: each dimension corresponds to a particular language or letter-bigram.

- Deep learning models, on the other hand, often learn a cascade of representations of the input that build on top of each other.
- These representations are often not interpretable.
- We do not know which properties of the input they capture.
- However, they are still very useful for making predictions.

One-Hot Vector Representation

- The input vector \$\vec{x}\$ in our language classification example contains the normalized bigram counts in the document \$D\$.
- This vector can be decomposed into an average of |D| vectors, each corresponding to a particular document position i:

$$\vec{x} = \frac{1}{|D|} \sum_{i=1}^{|D|} \vec{x}^{D_{[i]}}$$
 (10)

- Here, D_[i] is the bigram at document position i.
- Each vector $\vec{x}^{D_{[i]}} \in \mathcal{R}^{784}$ is a one-hot vector.

One-Hot Vector Representation

- A one-hot vector: all entries are zero except the single entry corresponding to the letter bigram D_[i], which is 1.
- The resulting vector \vec{x} is commonly referred to as an averaged bag of bigrams (more generally averaged bag of words , or just bag of words).
- Bag-of-words (BOW) representations contain information about the identities of all the "words" (here, bigrams) of the document, without considering their order.
- A one-hot representation can be considered as a bag-of-a-single-word.

One-Hot Vector Representation

One-hot vectors of words. Source: https://medium.com/@athif.shaffy/one-hot-encoding-of-text-b69124bef0a7.

Log-linear Multi-class Classification

- In the binary case, we transformed the linear prediction into a probability estimate by passing it through the sigmoid function, resulting in a log-linear model.
- The analog for the multi-class case is passing the score vector through the softmax function:

$$\operatorname{softmax}(\vec{x})_{[i]} = \frac{e^{\vec{x}_{[i]}}}{\sum_{j} e^{\vec{x}_{[j]}}}$$
 (11)

Resulting in:

$$\hat{\vec{y}} = \operatorname{softmax}(\vec{x} \cdot W + \vec{b})$$

$$\hat{\vec{y}}_{[\vec{l}]} = \frac{e^{(\vec{x} \cdot W + \vec{b})_{[\vec{l}]}}}{\sum_{j} e^{(\vec{x} \cdot W + \vec{b})_{[j]}}}$$
(12)

• The softmax transformation forces the values in $\hat{\vec{y}}$ to be positive and sum to 1, making them interpretable as a probability distribution.

Limitations of linear models: the XOR problem

- The hypothesis class of linear (and log-linear) models is severely restricted.
- For example, it cannot represent the XOR function, defined as:

$$xor(0,0) = 0$$

 $xor(1,0) = 1$
 $xor(0,1) = 1$
 $xor(1,1) = 0$ (13)

Limitations of linear models: the XOR problem

• There is no parameterization $\vec{w} \in \mathbb{R}^2$, $b \in \mathbb{R}$ such that:

$$(0,0) \cdot \vec{w} + b < 0$$

$$(14)$$

Limitations of linear models: the XOR problem

 To see why, consider the following plot of the XOR function, where blue Os denote the positive class and green Xs the negative class.

• It is clear that no straight line can separate the two classes.

Nonlinear input transformations

• If we transform the points by feeding each of them through the nonlinear function $\phi(x_1,x_2)=[x_1\times x_2,x_1x_2]$, the XOR problem becomes linearly separable.

• The function ϕ mapped the data into a representation that is suitable for linear classification.

Nonlinear input transformations

We can now easily train a linear classifier to solve the XOR problem.

$$\hat{\mathbf{y}} = f(\vec{\mathbf{x}}) = \phi(\vec{\mathbf{x}}) \cdot \vec{\mathbf{w}} + \mathbf{b} \tag{15}$$

- Problem: we need to manually define the function φ.
- This process is dependent on the particular dataset, and requires a lot of human intuition.
- Solution: define a trainable nonlinear mapping function, and train it in conjunction with the linear classifier.
- Finding the suitable representation becomes the responsibility of the training algorithm.

Trainable mapping functions

- The mapping function can take the form of a parameterized linear model.
- Followed by a nonlinear activation function g that is applied to each of the output dimensions:

$$\hat{y} = f(\vec{x}) = \phi(\vec{x}) \cdot \vec{w} + b$$

$$\phi(\vec{x}) = g(\vec{x}W' + \vec{b}')$$
(16)

Trainable mapping functions

- By taking $g(x) = \max(0, x)$ and $W' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \vec{b}' = \begin{pmatrix} -1 & 0 \end{pmatrix}$.
- We get an equivalent mapping to $[x_1 \times x_2, x_1 + x_2]$ for the our points of interest (0,0), (0,1), (1,0), and (1,1).
- This successfuly solves the XOR problem!
- Learning both the representation function and the linear classifier on top of it at the same time is the main idea behind deep learning and neural networks.
- In fact, previous equation describes a very common neural network architecture called a multi-layer perceptron (MLP).

Questions?

Thanks for your Attention!

References I

Goldberg, Y. (2017).

Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1):1–309.