Lista-7 – Potenciais Termodinâmicos Termodinâmica- Prof. José Alexandre

 $1^{\underline{0}}$) (7.4) Use a equação

$$f = c_v(T - T_0) - c_v T \ln\left(\frac{T}{T_0}\right) - RT \ln\left(\frac{v}{v_0}\right) - s_0(T - T_0) + f_0$$

para deduzir:

- a) a equação de estado;
- b) a equação de energia;
- c) a função de Gibbs;
- d) a entalpia de um gás ideal.

 $2^{\underline{0}}$) (7.5) Use a equação

$$f = c_v(T - T_0) - c_v T \ln\left(\frac{T}{T_0}\right) - a\left(\frac{1}{v} - \frac{1}{v_0}\right) - RT \ln\left(\frac{v - b}{v_0 - b}\right) - s_0(T - T_0) + f_0$$

para deduzir:

- a) a equação de estado;
- b) a equação de energia de um gás de van der Waals.

 $3^{\underline{0}}$) (7.8) A expressão

$$f = RT \ln \left(\frac{v_0}{v}\right) + CvT^2$$

onde *C* é uma constante positiva, fornece uma especificação razoável das propriedades de um gás a temperaturas e pressões normais? Determine as equações de estado e da energia para esse gás.

 4^{0}) A energia livre de Gibbs de certo sistema é dada por

$$G(P,T) = RT \ln \left[\frac{aP}{(RT)^{\frac{5}{2}}} \right]$$

onde a é uma constante. Determine o calor específico à pressão constante.

- $5^{\underline{0}}$) Sabendo que para um gás Pv=RT e $u=c_v(T-T_0)+u_0$, determine:
 - a) a entropia;
 - b) a entalpia;
 - c) a função de Helmholtz
 - d) a função de Gibbs.
- 6º) Determine a pressão de vapor de um líquido em equilíbrio com seu vapor sob a hipótese que o calor latente de vaporização por partícula não depende da pressão ou da temperatura e que se comporta como um gás ideal.

Resposta:
$$P(T) = P_0 e^{-\frac{l(T-T_0)}{RT}T_0}$$
.

 7^{0}) Usando o gráfico fornecido, que representa a curva de transição vapor-líquido da água, calcule, para a água à temperatura de 100°C, as diferenças entre os valores da fase de vapor e líquida da entalpia, energia interna e entropia. Dados: À temperatura de 100°C: densidade da água líquida $\rho_{l} = 958,3 \text{ kg/m}^{3}$, densidade do vapor d'água $\rho_{v} = 0,5977 \text{ kg/m}^{3}$ e pressão máxima de vapor $P_{v} = 1,014 \times 10^{5} \text{ N/m}^{2}$.

Resposta: $\Delta h_{vl}=2,23\times 10^6$ J/kg; $\Delta u_{vl}=2,06\times 10^6$ J/kg; $\Delta s_{vl}=5,98$ kJ/K.kg.

- 8º) A pressão sobre um bloco de cobre, que tem massa de 1,00 kg, é elevada, em um processo isotérmico e reversível, 0,1 a 100 MPa. Sabendo que a temperatura do bloco é de 15°C, para esse processo determine (por kg):
 - a) O trabalho realizado sobre o bloco;
 - b) a variação de entropia;
 - c) o calor trocado;
 - d) a variação de energia interna.

Dados: $\beta = 5.00 \times 10^{-5} \text{ K}^{-1}$, $k = 8.60 \times 10^{-12} \text{ m}^2/\text{N}$, $\rho_{cu} = 8.94 \times 10^3 \text{ kg/m}^3$.

Resposta:
$$w = -4.8 \text{ J/kg}$$
; $\Delta s = -0.559 \text{ J/K.kg}$; $q = -161 \text{ J/kg}$; $\Delta u = -156.2 \text{ J/kg}$.

- 9^{0}) Mostre que a energia interna de um material cuja equação de estado tem a forma P = f(V)T onde f(V) é uma função somente do volume f(V) é uma função somente do volume V, é independente do volume.
- 10-17⁰) Francis W. Sears e Gerhard L. Salinger, *Termodinâmica, Teoria Cinética e Termodinâmica Estatística*, 3ª Edição, Guanabara Dois (1979): 7.3, 7,4, 7.5, 7.6, 7.8, 7.10, 7.11, 7.12, 7.13, 7.15.