

Komunikasi Data dan Jaringan Komputer

D3 – Manajemen Informatika

Muhammad Iqbal, M.Kom, MTCNA, MTCRE, MTCWE, ACTR

ILMU KOMPUTER

Computer Hardware and Networking Laboratory
Jl. Prof. Dr. Ir Sumantri Brojonegoro No.1, Gedong Meneng,
Rajabasa, Bandarlampung, Lampung 35141

Email: muhammadiqbal@fmipa.unila.ac.id, iqdwita@gmail.com

Mobile: 081284387257

- MATA KULIAH : KOMUNIKASI DATA DAN JARINGAN KOMPUTER
- KODE MATA KULIAH: MIN516111
- SKS: 3(2-1)
- SEMESTER: 2

NETWORK ACCESS

Chapter 4: Objectives

Students will be able to:

- Explain how physical layer protocols and services support communications across data networks.
- Build a simple network using the appropriate.
- Explain the role of the data link layer in supporting communications across data networks.
- Compare media access control techniques and logical topologies used in networks.

Chapter 4

- 4.1 Physical Layer Protocols
- 4.2 Network Media
- 4.3 Data Link Layer Protocols
- 4.4 Media Access Control
- 4.5 Summary

Connecting to the Network

Home Router

Connecting to the Network

Connecting to the Wired LAN

Network Interface Cards

Connecting to the Wireless LAN with a Range Extender

The Physical Layer

In diagrams, signals on the physical media are depicted by this line symbol.

Physical Layer Media

Sample electrical signals transmitted on copper cable

Representative light pulse fiber signals

Microwave (wireless) signals

Physical Layer Standards

Standard organization	Networking Standards	
ISO	 ISO 8877: Officially adopted the RJ connectors (e.g., RJ-11, RJ-45) ISO 11801: Network cabling standard similar to EIA/TIA 568. 	
EIA/TIA	 TIA-568-C: Telecommunications cabling standards, used by nearly all voice, video and data networks. TIA-569-B: Commercial Building Standards for Telecommunications Pathways and Spaces TIA-598-C: Fiber optic color coding TIA-942: Telecommunications Infrastructure Standard for Data Centers 	
ANSI	• 568-C: RJ-45 pinouts. Co-developed with EIA/TIA	
ITU-T	• G.992: ADSL	
IEEE	 802.3: Ethernet 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth 	

Physical Layer Fundamental Principles

Media	Physical Components	Frame Encoding Technique	Signalling Method
Copper cable	UTPCoaxialConnectorsNICsPortsInterfaces	 Manchester Encoding Non-Return to Zero (NRZ) techniques 4B/5B codes are used with Multi-Level Transition Level 3 (MLT-3) signaling 8B/10B PAM5 	 Changes in the electromagnetic field Intensity of the electromagnetic field Phase of the electromagnetic wave
Fiber Optic cable	 Single-mode Fiber Multimode Fiber Connectors NICs Interfaces Lasers and LEDs Photoreceptors 	 Pulses of light Wavelength multiplexing using different colors 	A pulse equals 1.No pulse is 0.
Wireless media	Access PointsNICsRadioAntennae	 DSSS (direct-sequence spread-spectrum) OFDM (orthogonal frequency division multiplexing) 	Radio waves

Bandwidth

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10^6 bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10^9 bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10^12 bps

Throughput

Types of Physical Media

Copper Cabling

Characteristics of Copper Media

Copper Media

Unshielded Twisted-Pair (UTP) Cable

Shielded Twisted-Pair (STP) Cable

Coaxial Cable

Cooper Media Safety

The separation of data and electrical power cabling must comply with safety codes.

Cables must be connected correctly.

Installations must be inspected for damage.

Equipment must be grounded correctly.

Properties of UTP Cabling

UTP Cabling Standards

Category 5 and 5e Cable (UTP)

- Used for Data transmission
- Cat 5 supports 100
 Mbps and can support
 1000 Mbps but it is not
 recommended
- Cat 5e supports 1000 Mbps

UTP Connectors

Types of UTP Cable

Cable Type	Standard	Application	
Ethernet Straight-through	Both ends T568A or both ends T568B	Connecting a network host to a network device such as a switch or hub.	
Ethernet Crossover	One end T568A, other end T568B	Connecting two network hosts. Connecting two network intermediary devices (switch to switch, or router to router).	
Rollover	Cisco proprietary	Connect a workstation serial port to a router console port, using an adapter.	

T568A T568B

Types of UTP Cable

UTP Cabling

Testing UTP Cables

Properties of Fiber Optic Cabling

Fiber Media Cable Design

Types of Fiber Media

- Small Core
- Less Dispersion
- · Suited for long distance applications
- · Uses lasers as the light source
- Commonly used with campus backbones for distances of several thousand meters

- Larger core than single mode cable
- Allows greater dispersion and therefore, loss of signal
- Suited for long distance applications, but shorter than single mode
- · Uses LEDs as the light source
- Commonly used with LANs or distances of a couple hundred meters within a campus network

Network Fiber Connectors

ST Connectors

SC Connectors

LC Connector

Duplex Multimode LC Connectors

Fiber Optic Cabling

Testing Fiber Cables

Optical Time Domain Reflectometer (OTDR)

Fiber versus Copper

Implementation issues	Copper media	Fibre-optic
Bandwidth supported	10 Mbps – 10 Gbps	10 Mbps – 100 Gbps
Distance	Relatively short (1 – 100 meters)	Relatively High (1 – 100,000 meters)
Immunity to EMI and RFI	Low	High (Completely immune)
Immunity to electrical hazards	Low	High (Completely immune)
Media and connector costs	Lowest	Highest
Installation skills required	Lowest	Highest
Safety precautions	Lowest	Highest

Properties of Wireless Media

Types of Wireless Media

- IEEE 802.11 standards
- Commonly referred to as Wi-Fi.
- Uses CSMA/CA
- Variations include:
 - 802.11a: 54 Mbps, 5 GHz
 - 802.11b: 11 Mbps, 2.4 GHz
 - 802.11g: 54 Mbps, 2.4 GHz
 - 802.11n: 600 Mbps, 2.4 and 5 GHz
 - 802.11ac: 1 Gbps, 5 GHz
 - 802.11ad: 7 Gbps, 2.4 GHz, 5 GHz, and 60 GHz

- IEEE 802.15 standard
- Supports speeds up to 3 Mbps
- Provides device pairing over distances from 1 to 100 meters.

- IEEE 802.16 standard
- Provides speeds up to 1 Gbps
- Uses a point-to-multipoint topology to provide wireless broadband access.

Wireless LAN

Cisco Linksys EA6500 802.11ac wireless router

802.11 Wi-Fi Standards

Standard	Maximum Speed	Frequency	Backwards compatible
802.11a	54 Mbps	5 GHz	No
802.11b	11 Mbps	2.4 GHz	No
802.11g	54 Mbps	2.4 GHz	802.11b
802.11n	600 Mbps	2.4 GHz or 5 GHz	802.11b/g
802.11ac	1.3 Gbps (1300 Mbps)	2.4 GHz and 5.5 GHz	802.11b/g/n
802.11ad	7 Gbps (7000 Mbps)	2.4 GHz, 5 GHz and 60 GHz	802.11b/g/n/ac

The Data Link Layer

Data Link Sublayers

Network				
Data Link	LLC Sublayer			
Data Link	MAC Sublayer			
Physical		802.3 Ethernet	802.11 Wi-Fi	802.15 Bluetooth

Media Access Control

Data link layer protocols govern how to format a frame for use on different media.

At each hop along the path, an intermediary device accepts frames from one medium, decapsulates the frame and then forwards the packets in a new frame. The headers of each frame are formatted for the specific medium that it will cross.

Providing Access to Media

Layer 2 Frame Structure

Formatting Data for Transmission

Creating a Frame

Layer 2 Standards

Data Link Layer

Physical Layer

LLC Sublayer

> MAC Sublayer

Physical Layer

IEEE 802.2

IEEE 802.3 (Ethernet)

Ethernet

IEEE 802.3u (FastEthernet)

IEEE 802.3z (GigabitEthernet)

IEEE 802.3ab (GigabitEthernet over Copper)

Token Ring/iEEE 802.6

FDD

LAN Specification

OSI Layers

Data Link Layer Standards

Standard organization	Networking Standards
IEEE	 802.2: Logical Link Control (LLC) 802.3: Ethernet 802.4: Token bus 802.5: Token passing 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth 802.16: WiMax
ITU-T	 G.992: ADSL G.8100 - G.8199: MPLS over Transport aspects Q.921: ISDN Q.922: Frame Relay
ISO	 HDLC (High Level Data Link Control) ISO 9314: FDDI Media Access Control (MAC)
ANSI	X3T9.5 and X3T12: Fiber Distributed Data Interface (FDDI)

Controlling Access to the Media

Physical and Logical Topologies

Common Physical WAN Topologies

Point-to-point topology

Hub and spoke topology

Full mesh topology

Physical Point-to-Point Topology

WAN Topologies

Logical Point-to-Point Topology

Half and Full Duplex

Physical LAN Topologies

Physical Topologies

Star topology

Extended star topology

Bus topology

Ring topology

Logical Topology for Shared Media

Contention-Based Access

Characteristics	Contention-Based Technologies
 Stations can transmit at any time Collision exist There are mechanisms to resolve contention for the media 	 CSMA/CD for 802.3 Ethernet networks CSMA/CA for 802.11 wireless networks

Multi-Access Topology

Controlled Access

Characteristics Only one station can transmit at a time Devices wishing to transmit must wait their turn No collisions May use a token passing method Controlled Access Technologies Token Ring (IEEE 802.5) Fiber Distributed Data Interface (FDDI)

Ring Topology

The Frame

In a fragile environment, more controls are needed to ensure delivery. The header and trailer fields are larger as more control information is needed.

In a protected environment, we can count on the frame arriving at its destination. Fewer controls are needed, resulting in smaller fields and smaller frames.

Less effort needed to ensure delivery = lower overhead = faster transmission rates

Data Link Frame

The Header

Header					
Start Frame	Address	Type/ Length	Data	FCS	STOP FRAME

Layer 2 Address

Logical Multi-Access Topology

Logical Point-to-Point Topology

Data Link Frame

The Trailer

LAN and WAN Frames

Ethernet Frame

A Common Data Link Layer Protocol for LANs

Preamble - used for synchronization; also contains a delimiter to mark the end of the timing information.

Destination Address - 48 bit MAC address for the destination node.

Source Address - 48 bit MAC address for the source node.

Type - value to indicate which upper layer protocol will receive the data after the Ethernet process is complete.

Data or payload - this is the PDU, typically an IPv4 packet, that is to be transported over the media.

Frame Check Sequence (FCS) - A value used to check for damaged frames.

Point-to-Point Protocol Frame

A Common Data Link Protocol for WANs

Frame

Field Flag Address Control Protocol Data	FCS
Size 1 byte 1 byte 1 byte 2 bytes variable 2 o	or 4 bytes

Flag - A single byte that indicates the beginning or end of a frame. The flag field consists of the binary sequence 01111110.

Address - A single byte that contains the standard PPP broadcast address. PPP does not assign individual station addresses.

Control- A single byte that contains the binary sequence 00000011, which calls for transmission of user data in an unsequenced frame.

Protocol- Two bytes that identify the protocol encapsulated in the data field of the frame. The most up-to-date values of the protocol field are specified in the most recent Assigned Numbers Request For Comments (RFC).

Data - Zero or more bytes that contain the datagram for the protocol specified in the protocol field.

Frame Check Sequence (FCS) - Normally 16 bits (2 bytes). By prior agreement, consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.

802.11 Wireless Frame

Summary

- Physical Layer Protocols
- Network Media
- Data Link Layer Protocols
- Media Access Control

Cisco | Networking Academy® Mind Wide Open™