Post Optimal Analysis

TMKT48 Design Optimization

Post Optimal Analysis

- Can we trust the optimization results? (Have we found the optimum?)
 - Convergence History
- Choose a solution

- How sensitive is the solution to each variables?
 - Sensitivity Analysis

Convergence History

- Plot the evolution of the variables and the objectives for the optimization
- Have we covered the design space?
 - Balance between
 - Exploitation (investigate current best area)
 - Exploration (try to find better areas)
- Does the convergence speed seem reasonable?

Convergence in Parameters

$$f(x_1, x_2) = \sin(\pi x_1)\sin(\pi x_2)$$

Convergence of optimization variables. This shows the max relative spread dx of all (both) variables

Convergence in Parameters

Convergence of optimization variables. This shows the max relative spread dx of all (both) variables

The convergence expressed as –n log2 max(dx), and a straight line corresponding to the theoretical convergence rate for the Complex algorithm.

Example 1

- The Convergence Speed seems good
- It is probably quite easy to find the optimum
- The optimization seems OK

Example 2

- The Convergence Speed is way too fast
- The algorithm probably ended up in a bad place
- The optimization seems suspicious.

Example 3

• The speed is good in the beginning, then slow

 It seems easy to find a promising region, but difficult to find the optimum

• The optimization is probably OK

Theoretical Convergence Rate of Complex

• The average degree of contraction in each step

$$\frac{\mathsf{D}x_{k+1}}{\mathsf{D}x_k} = \left(\frac{\partial}{2}\right)^{\frac{1}{2m}}$$

- We move each point on average two times
- There are m points

Theoretical Convergence Rate of Complex

• There are m points

$$\frac{\mathsf{D}x_{k+1}}{\mathsf{D}x_k} = \left(\frac{\mathcal{A}}{2}\right)^{\frac{1}{2m}}$$

- m=K*n
- n= number of variables
- K = 2 as standard setting

Theoretical Convergence Rate of Complex

• There are m points

$$\frac{\mathsf{D}x_{k+1}}{\mathsf{D}x_k} = \left(\frac{\mathcal{A}}{2}\right)^{\frac{1}{2m}}$$

• m=K*n

$$\frac{\Delta x_{k+1}}{\Delta x_k} = \left(\frac{\alpha}{2}\right)^{\frac{1}{2\kappa n}}$$

Information Gain in the Complex Method

- Increase in Information = Reduced area in the design space where the optimum can be.
 - (Claude Shannon 1947)
- The increase in information in each step for Complex is: (Times n because there are n parameters that are gaining information)

$$\Delta I = -n\log_2\frac{\Delta x_{k+1}}{\Delta x_k} = -n\log_2\left(\frac{\alpha}{2}\right)^{\frac{1}{2\kappa n}} = -\log_2\left(\frac{\alpha}{2}\right)^{\frac{1}{2\kappa}}$$

Complex Contraction/Convergence

The increase in information I in each step

$$\Delta I = -\log_2\left(\frac{\alpha}{2}\right)^{\frac{1}{2\kappa}}$$

• Example: $\alpha=1.3$, K=2 yields

$$\Delta I = -\log_2 \left(\frac{1.3}{2}\right)^{\frac{1}{2*2}} = 0.155$$

• The amount of information gain in each step is ΔI =0.155

- Difficult to give specific instructions
 - Extremely problem/application dependent

- Possible to investigate graphically for two objectives.
- Difficult to display more than four identities in a graph
 - X1
 - X2
 - Color
 - Size

• Avoid areas where you gain very little in f_i while f_j is drastically worsened

- Similar to the MOO-lectures
 - Closest to utopian point
 - Fuzzy logic
 - Weighted sum

Example Pareto Front

f1	f2
1	11
2	7
3	4
4	2
5	1

- Non-Linear Weighting
 - Normalized with $f_{jo}=f_{j}^{*}$

$$F = \sum_{j=1}^{k} w_j \left(\frac{f_j}{f_{j0}}\right)^2$$

The square penalizes the end solutions

$$-1^{2}=1$$

$$-0.5^2=0.25$$

f1	f2	Value
1	11	122
2	7	53
3	4	25
4	2	20
5	1	26

Pareto Front

- Wang, Z., & Rangaiah, G. P. (2017). Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization. Industrial & Engineering Chemistry Research, 56(2), 560-574.
- They compared different numerical methods
- The methods were divided into three categories and the best in their study were...

- Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
 - Closest to Utopian point
 - Furthest from worst imaginable point

f1	f2	Value
1	11	0.427
2	7	0.522
3	4	0.624
4	2	0.618
5	1	0.573

- Grey Relational Analysis (GRA)
 - Does not need any user input
 - The largest value is best

f1	f2	Value
1	11	0.3
2	7	0.285
3	4	0.287
4	2	0.296
5	1	0.3

- Net Flow Method (NFM)
 - Three parameters needed
 - Indifference threshold (10% of objective range)
 - Preference threshold (20%)
 - Veto threshold (80%)

f1	f2	Value
1	11	0.64
2	7	0.25
3	4	0.29
4	2	-1.39
5	1	0.20

Pareto Front

My Personal Way of Choosing

- See if I can find any obvious best point
- Remove points that have a really bad objective value
- Try to see if I can combine several objectives together so I only have 2-3 values to consider
 - > Easier to see graphically
- Pick 2-3 solutions that are good for different objectives
- Discuss the picked solutions with someone else
 - Project members
 - Managers

Questions?

