

FOURTH YEAR MEETING & THESIS OUTLINE

Exploration of Crystal Nucleation Phenomena Through Molecular Simulation

Author Hayden Scheiber

Supervisor Dr. Gren PATEY

Committee
Dr. Yan WANG
Dr. Mark THACHUK
Dr. Keng CHOU

DateTimeLocationMonday, October 4th 202111:00 AMCHEM D317

1 Analysis of the relative stability of lithium halide crystal structures: Density functional theory and classical models

- This project is a explores the relative energetics of low-lying lithium halide crystal structures using both density functional theory and pairwise classical models.
- There is a large amount of work associated with this project, I expect it will occupy approximately 1/4 to 1/3 of the thesis.
- **Status: 100** % **complete.** This project is published.¹.

2 Bayesian Optimization for Lithium Halide Forcefields: Exploring the Limits of Pairwise Additive Potentials for Molecular Simulation

- This project employs a machine learning technique, Bayesian optimization, for finding pairwise lithium halide forcefields that reproduce known experimental or theoretical quantities.
- **Status: 90** % **complete.** All relevant project code, most data collection, and most data analysis is complete.

3 The NiAs Crystal Structure of LiI: Low Energy, but Never Observed

- This project combines aspects of both chapter 1 and 2, employing the high-quality reference data we produced in chapter 1 with the methodology from chapter 2 to explore why the (T = 0, P = 0) energy of LiI in the NiAs structure is lower than LiI in the rocksalt structure, yet NiAs is not observed experimentally.
- **Status: 70** % **complete.** Relevant project code is complete and much of the data is collected. A few more simulations are required.

4 Convolutional Neural Networks with Steinhart Order Parameters: Machine Learning for Structure Detection in Molecular Simulation

- This project came out of the need to distinguish different lithium halide crystal structures in simulation. It employs neural networks for local crystal structure detection.
- **Status: 80** % **complete.** Relevant project code is complete. Still need to decide on an interesting simulation to showcase this project, then write it up.

5 Competitive Nucleation of LiX Crystal Structures

- This project is still in progress, but will use aspects of several previous chapters to explore competitive nucleation in LiX crystal structures.
- Status: 20 % complete.

Expected date of program completion: September 2022.

¹Scheiber, H. O., and G. N. Patey. The Journal of Chemical Physics 154.18 (2021): 184507