Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)\cdot kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$

	$\sigma^{\#1}_{2^+lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1}^{\#1}$ α	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}$ ikt $_1$
$f_{1}^{\#1}\alpha\beta$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
	- <u>[£]1</u>						
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha^{\beta} \left[k^2 \left(2 r_3 + r_5 \right) \right]$	$\omega_1^{#2} + \alpha \beta$ $-\frac{t_1}{\sqrt{2}}$	$f_1^{\#1} + \alpha \beta \qquad \frac{i k t_1}{\sqrt{2}}$	$\omega_1^{#1} +^{\alpha}$ 0	$\omega_1^{\#2} + \alpha = 0$	$f_{1}^{\#1} + \alpha$ 0	$f_1^{#2} + \alpha = 0$

$\omega_{2}^{*1}_{+}$ α_{β}^{*1} f_{2}^{*1} α_{β}^{*1} ω_{2}^{*1} $a_{eta\chi}$	0	0	<u>41</u> 2	
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0	
	$\omega_{2}^{#1} + \alpha^{\beta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$	

 $2r_5\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{1}{2}t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\beta} - \frac{1}{2}t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\beta} - \frac{1}{2}t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\lambda} +$

Quadratic (free) Lagrangian density

uge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$t_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0 \ 3$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 jk $\sigma_{2+}^{\#1}\alpha\beta$ == 0 5	Total constraints:

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$6 k^2 r_3$	0	0	0
$f_{0}^{\#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	-t ₁
	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$ $\tau_{0}^{\#1}$	T ₀ ^{#2} c	$\sigma_{0}^{\#1}$

	$\sigma_{0}^{\#_{1}}$	$\tau_{0}^{\#_{1}}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
#1 0+ †	$\frac{1}{6 k^2 r_3}$	0	0	0
^{#1} ₀ + †	0	0	0	0
#2 0+ †	0	0	0	0
^{#1} †	0	0	0	$-\frac{1}{t_1}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 < -2 r_3 \&\& t_1 < 0 || t_1 > 0$