# IV.Basic Structural Properties of Networks

January 29, 2018

## 1 All imports

```
In [1]: import numpy as np
    import networkx as nx
    import math
    import itertools
    import matplotlib.pyplot as plt
    import pandas as pd
    import seaborn as sns
```

#### 2 Utils

```
In [2]: def draw(G,**kwargs):
            if len(G)<20:
                nx.draw_spring(G,
                                node_size=400,
                                with_labels=True)
            else:
                nx.draw_spring(G,
                                node_size=10,
                                with_labels=False)
In [3]: def create_undirected_graph(edges):
            G=nx.Graph()
            G.add_edges_from(edges)
            return G
In [4]: def create_directed_graph(edges):
            DG=nx.DiGraph()
            DG.add_edges_from(edges)
            return DG
In [5]: def load_graph_from_tsv(file):
            f = open(file,"r")
            text = f.readlines()
            clean = lambda x:x.strip("\n").split(" ")
            node_pairs = list(map(clean,text[2:]))
```

```
node_pairs = [(int(x[0]),int(x[1])) for x in node_pairs]
node_pairs[:4]
G = nx.Graph()
G.add_edges_from(node_pairs)
return G
```

#### 3 IV.5

Given 2 random variables (or sets of observation) *X* and *Y*, we have

**Pearson Correlation:**  $\frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$ 

**Kendall Correlation:** After ordering the observation pairs, use  $\frac{(number.of.concordant.pairs) - (number.of.discordant.pairs)}{\frac{1}{2}n(n-1)}$ 

**Spearman Correlation:** Pearson correlation after mapping the observations  $X_i$ ,  $Y_i$  to their ranks.

```
In [6]: def build_centrality_measures_dataframe(G):
            # Builds dictionaries with the different metrics
            betweenness = nx.betweenness_centrality(G)
            degree = dict(nx.degree(G))
            closeness = nx.closeness_centrality(G)
            katz = nx.katz_centrality(G)
            pagerank = nx.pagerank(G,alpha=0.5) # The $ \alpha=.85 $ was chosen randomly. Is the
            # Builds a dataframe with the measures as columns and the nodes as rows
            df = pd.DataFrame({'betweenness':betweenness,
                               'degree':degree,
                               'closeness':closeness,
                               'katz':katz,
                               'pagerank':pagerank})
            return df
        # Requires the centrality_measures_dataframe as input
        def correlation_of_centrality_metrics(df):
            # Builds correlation matrices for the different metrics
            for metric in ['pearson', 'kendall', 'spearman']:
                print("\n\n" + str(metric.capitalize()) + ' correlation:')
                print(df.corr(metric))
```

**Dataset used:** The propo dataset used consists of nodes representing proteins and edges representing pairs of interacting proteins.



| Out[8]: |       | betweenness | closeness   | degree      | katz        | pagerank    |
|---------|-------|-------------|-------------|-------------|-------------|-------------|
|         | count | 1870.000000 | 1870.000000 | 1870.000000 | 1870.000000 | 1870.000000 |
|         | mean  | 0.001891    | 0.091932    | 2.435294    | 0.020112    | 0.000535    |
|         | std   | 0.006035    | 0.051226    | 3.164618    | 0.011416    | 0.000374    |
|         | min   | 0.000000    | 0.000000    | 1.000000    | 0.013533    | 0.000313    |
|         | 25%   | 0.000000    | 0.080883    | 1.000000    | 0.014203    | 0.000362    |
|         | 50%   | 0.000000    | 0.112335    | 1.000000    | 0.016208    | 0.000446    |
|         | 75%   | 0.001219    | 0.126392    | 3.000000    | 0.021312    | 0.000548    |
|         | max   | 0.129420    | 0.183020    | 56.000000   | 0.200559    | 0.009283    |

In [9]: correlation\_of\_centrality\_metrics(df)

#### Pearson correlation:

|             | betweenness | closeness | degree   | katz     | pagerank |
|-------------|-------------|-----------|----------|----------|----------|
| betweenness | 1.000000    | 0.297399  | 0.837694 | 0.818457 | 0.739478 |
| closeness   | 0.297399    | 1.000000  | 0.302620 | 0.456009 | 0.090823 |
| degree      | 0.837694    | 0.302620  | 1.000000 | 0.868335 | 0.929309 |
| katz        | 0.818457    | 0.456009  | 0.868335 | 1.000000 | 0.726429 |
| pagerank    | 0.739478    | 0.090823  | 0.929309 | 0.726429 | 1.000000 |

#### Kendall correlation:

|             | betweenness | closeness | degree   | katz     | pagerank  |
|-------------|-------------|-----------|----------|----------|-----------|
| betweenness | 1.000000    | 0.409058  | 0.813356 | 0.548139 | 0.548832  |
| closeness   | 0.409058    | 1.000000  | 0.359753 | 0.713957 | -0.081977 |
| degree      | 0.813356    | 0.359753  | 1.000000 | 0.569681 | 0.638604  |
| katz        | 0.548139    | 0.713957  | 0.569681 | 1.000000 | 0.064198  |
| pagerank    | 0.548832    | -0.081977 | 0.638604 | 0.064198 | 1.000000  |

### Spearman correlation:

|             | betweenness | closeness | degree   | katz     | pagerank  |
|-------------|-------------|-----------|----------|----------|-----------|
| betweenness | 1.000000    | 0.523995  | 0.897253 | 0.676930 | 0.699047  |
| closeness   | 0.523995    | 1.000000  | 0.463058 | 0.880813 | -0.064068 |
| degree      | 0.897253    | 0.463058  | 1.000000 | 0.687259 | 0.764166  |
| katz        | 0.676930    | 0.880813  | 0.687259 | 1.000000 | 0.176845  |
| pagerank    | 0.699047    | -0.064068 | 0.764166 | 0.176845 | 1.000000  |

Out[10]: <seaborn.axisgrid.PairGrid at 0x7f36d0163ac8>

