Übungstermine: siehe ZEUS

# Übungsblatt 9

#### Aufgabe 9.1: Minimale Spannbäume

a) Bestimmen Sie für den abgebildeten Distanzgraphen einen minimalen Spannbaum nach dem Algorithmus von Prim bzw. Kruskal. Stellen Sie die einzelnen Zwischenschritte graphisch dar.



Man zeige oder widerlege:

- b) Die kürzesten Wege in einem Graphen können anhand des minimalen Spannbaums bestimmt werden.
- c) Der minimale Spannbaum ist stets eindeutig bestimmt.

## Aufgabe 9.2: Spannbäume

Gegen ist folgender rekursiver Algorithmus (Divide-and-Conquer), welcher einen Spannbaum für den Graphen G=(V,E) erzeugt. Teile den Graphen G in zwei möglichst gleich große jeweils zusammenhängende Teilgraphen  $G_1=(V_1,E_1)$  und  $G_2=(V_2,E_2)$  auf  $(-1\leq |V_1|-|V_2|\leq 1)$ . Die Kantenmengen  $E_1$  sowie  $E_2$  bestehen nur aus Kanten, welche zwei Knoten aus  $V_1$  bzw.  $V_2$  verbinden. Wende den Algorithmus nun auf  $G_1$  sowie  $G_2$  an und verbinde die beiden entstandenen Spannbäume durch die günstigste mögliche Kante. Liefert dieser Algorithmus einen minimalen Spannbaum?

## Aufgabe 9.3: Huffman-Codierung

a) Erklären Sie das Prinzip der Huffman-Codierung am Beispiel der angeführten relativen Buchstabenhäufigkeiten.

| Buchstabe | rel. Häufigkeit (in %) | Buchstabe | rel. Häufigkeit (in %) |
|-----------|------------------------|-----------|------------------------|
| a         | 16                     | g         | 12                     |
| b         | 3                      | h         | 7                      |
| c         | 5                      | i         | 1                      |
| d         | 11                     | j         | 10                     |
| e         | 15                     | k         | 6                      |
| f         | 14                     |           |                        |

- b) Erstellen Sie das zugehörige Codebuch und berechnen Sie die mittlere Codewortlänge.
- c) Wie viele Stellen benötigen Sie mindestens, um 11 Zeichen mit einem Binärcode fester Länge zu codieren? Was spricht aber für den Huffman-Code?

# Aufgabe 9.4: Codierung von Doppelzeichen

Gegeben ist das Alphabet  $\Sigma = \{a,b,c\}$  mit p(a) = 0.1, p(b) = 0.3 und p(c) = 0.6. Berechnen Sie einen Huffman-Code für Einzel- und Doppelzeichen und geben Sie die mittlere Codewortlänge pro Zeichen an. Welche Vor- bzw. Nachteile haben die beiden Varianten?

*Hinweis:* Sie können annehmen, dass die Zeichen aus  $\Sigma$  unabhängig voneinander auftreten.

# **Aufgabe 9.5: LZW-Codierung**

Bestimmen Sie die Ausgabe des LZW-Codieralgorithmus für den Text ababababbacaaad. Führen Sie die Codierung ausführlich durch.

# Aufgabe 9.6: (7-4)-Hamming-Code

Gegeben ist der (7-4)-Hamming-Code für die Nachrichten  $m=(m_1,m_2,m_3,m_4)\in M$ .

- a) Codieren Sie die Nachrichten 0110 sowie 1110.
- b) Dekodieren Sie die Codes 0000000 sowie 1011111. Mussten bei der Decodierung Bits rekonstruiert werden? Wenn ja, welche?