Molly Menzel

Research Interests

Climate dynamics, atmospheric circulation and dynamics, atmosphere-ocean interactions

Education

2017 - present Johns Hopkins University | Baltimore, MD

Ph.D. Earth and Planetary Sciences 4.0 GPA

2015 - 2017 McGill University | Montreal, QC

M.Sc. Atmospheric and Oceanic Sciences 3.8 GPA

2010 - 2014 Virginia Tech | Blacksburg, VA

B.S. Engineering Science and Mechanics 3.55 GPA

Experience

2017 - present Johns Hopkins University, Department of Earth and Planetary Science

Current project: understanding the dynamic behavior of the subtropical jet and its impact on other aspects of the atmospheric circulation, analyzing IPCC CMIP5 datasets and designing idealized model simulations

2015 - 2017 McGill University, Department of Atmospheric and Oceanic Sciences

Thesis project: examined the impact of direct effects of ${\rm CO_2}$ radiative forcing on the efficiency of deep ocean heat uptake, perturbed Modular Ocean Model simulations and analyzed IPCC CMIP5 simulations

2014 - 2015 World Race, Adventures in Missions (AIM)

Travelled to a new country each month (11 months total) to aid existing organizations in efforts to develop local communities

2013 - 2014 Virginia Tech, Department of Engineering Science and Mechanics

Capstone Project: computationally modeled fluid flow of a batoids locomotion as well as built bio-mimetic robot to optimize efficiency and stealth of underwater vehicles

Journal Publications

Menzel, Molly E., Darryn Waugh, and Kevin Grise (2019): Disconnect between Hadley Cell and Subtropical Jet variability and response to increased CO2. Geophysical Research Letters.

Menzel, Molly E. and T. M. Merlis (2019): Connecting direct effects of CO2 radiative forcing to ocean heat uptake and circulation. *Journal of Advances in Modeling Earth Systems*.

Sharp, Nicholas, Virginia Hagen-Gates, Evan Hemingway, Molly Syme*, Juelyan Via, Jeffrey Feaster, Javid Bayandor, Sunghwan Jung, Francine Battaglia, and Andrew Kurdila (2014): "Computational analysis of undulatory batoid motion for underwater robotic propulsion." In Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers. 2014

Conference Presentations

2019	AMS 22 nd Conference on Atmospheric and Oceanic Fluid Dynamics
	$Joint\ DynVar MIP/CMIP6\ and\ SPARC\ DynVar\ \&\ SNAP\ Workshop$
2018	AGU Fall Meeting
2017	AMS 21st Conference on Atmospheric and Oceanic Fluid Dynamics

Awards

2019	Outstanding Student Oral Presentation Award, 22nd Atmospheric and
	Oceanic Fluid Dynamics Conference
2014	Dan H. Pletta Award, Outstanding Department Senior Research Project

Teaching and Outreach

2019	Guest Lecturer and Teaching Assistant Johns Hopkins University
	AS.270.378/641: Present and Future Climates
2019	Completion of Teaching Institute Johns Hopkins Teaching Academy
2017	Outreach Faith Presbyterian Church
2016 - 2017	Teaching Assistant McGill University
	ATOC 181: Introduction to Atmospheric Science
	ATOC 215: Oceans, Weather and Climate
2014	Physics Outreach Virginia Tech Physics Department
	Elementary, middle, and high school classrooms
2013	Teaching Assistant Johns Hopkins Center for Talented Youth
	Principles of Engineering Design

References

Dr. Darryn Waugh | Johns Hopkins University

Dr. Timothy Merlis | McGill University

^{*}Published under maiden name