ECE 343 Electronics II

Exam e^0

Feb. 20, 2019

Name: Spancer Coulette

- Make sure you write your name on all pages.
- Detailed descriptions of how you solved the problem will get you maximum partial credit if your final answer is wrong.
- You must provide the correct unit along with your answer in the answer areas. An answer without its unit will be considered incorrect.
- You may use any calculator, as long as it is a calculator and not another instrument being used in calculator mode.
- A table of commonly used constants, parameters and equations was provided to you in class and on BlackBoard.
- Unless noted otherwise, assume room temperature conditions, i.e. T = 300K
- All MOSFETs in this exam are enhancement-mode MOSFETs, as studied in class to date.

Question	Grade	Out of
#1	15	15
#2	20	20
#3	20	22
#4	16	16
#5	22	27
Total Grade	93	100

YES OPIE!!

E	CE 343 Electronics II	Exam e^0	· Feb. 20, 2019
1	Name: Sage	all Con latte	
1. (1 Ti	5 pts.) Each correct answer is worth	n +1 points. <i>Indicate if the fo</i>	ollowing statements are
T	_Active loads are preferred in IC dedevices.	esign because large gains ca	n be obtained with small
F	_A cascode amplifier has a larger of amplifier when biased with the sa		single stage common source
F	If a BJT and a MOSFET are biase have the larger intrinsic gain.	ed with the same current, the	MOSFET will most likely
T	_A BJT's intrinsic gain is device pa	arameter dependent.	
	_A cascode amplifier has larger vo because it has larger output resista		e common source amplifier
	_A source follower is a suitable che input resistance of the amplifier.	oice to put before a commor	n gate stage to increase the
I	_A cascode current mirror's advant current is more stable with respec		
F	_A simple current mirror has a sma mirror.	aller voltage compliance ran	ge than a cascode current
F	_Active loads don't have any advan	ntages over resistors for disc	crete amplifier circuits.
T	_A common gate amplifier is a cur	rent buffer.	
F	_The body effect makes a MOSFE	T's threshold voltage magn	itude smaller.
T	Biasing amplifiers with current m point stability.	irrors instead of resistor net	works ensures operating
T	_Using a current mirror as a load a voltages from the small-signal vol		r to decouple the DC bias
F	_An amplifier's performance is ind	lependent of temperature.	
F	_A MOSFET is a current controlle	d current source.	

Name: Spenser Goolette

- (20 points). Each of the questions below are quick calculation questions, usually requiring a single equation.
 - a) A BJT is biased with a nominal collector current of $I_{C0} = 2$ mA has an output resistance of $r_0 = 40 \text{ k}\Omega$ and a collector-emitter voltage drop of $V_{CE} = 8 \text{ V}$. What is the actual collector current, assuming $V_{\text{CE,sat}}$ is negligible?

Ice Ico (1+ AVOE) [- 13 +1] Amb = DI $I_{c} = \frac{\partial \cdot \partial / m A}{V_{A}} = 49k \cdot \partial_{m} = 8$

b) What is the intrinsic gain A_0 of a BJT which has $r_0 = 300 \text{ k}\Omega$ at $I_C = 200 \mu\text{A}$?

 $\Gamma_0 = \frac{VA}{IC} = 300k = \frac{VA}{2000}$

A0 = 2,31 KV/V

1/4= CC

 $A_{3} = \frac{V_{A}}{V_{+}} = \frac{60}{36m} = 2,307,69230 8$

c) What is the output resistance of a MOSFET which has $L = 0.5 \mu m$, $V_A' = 8 V/\mu m$, and is biased with $I_{DS} = 100 \mu A$? ro = _ HOK 2

Co = VA'L Γο= 81/200 05 μm = HOK

d) A MOSFET cascode current mirror is biased such that the transistors have a small signal transconductance of $g_m = 0.1$ mA/V and an output resistance of $r_0 = 200$ k Ω ?

Rout = rorrot gmro2 = gmro Rout = 4,4M1 actual, 4,4Ms

approx: 4 M D

e) A MOSFET has an intrinsic gain of $A_0 = 50$ V/V when biased with $I_{DS} = 400$ μA . What is its intrinsic gain when it is biased with $I_{DS} = 100 \mu A$?

Ao &

 $A_0 = \frac{100}{100}$

J: In = - 2. TIOS

Name: Proce Godotte

3. (22 points) The small-signal equivalent circuit of a two-stage amplifier is shown in the figure below. The transistors have been replaced with their hybrid- π equivalent circuits. The component values are given below.

 $g_{m1} = 5 \text{ mA/V}$

 $r_{o1} = 20 \text{ k}\Omega$

 $g_{m2} = 40 \text{ m} \Lambda/V$

 $r_{02} = 40 \text{ k}\Omega$

 $R_1 = 20 \text{ k}\Omega$

 $R_2 = 5 k\Omega$

 $R_3 = 40 \text{ k}\Omega$

- (a) Identify if the transistors are MOSFET or BJT. Explain how you determined transistor
- (b) Identify each of the two stages: CS / CE, CG / CB, or SF / EF.
- (c) Calculate the overall voltage gain, G_V, of the amplifier.

C. Gv= Avi. Avz Av, = R, 11 R2/19 = 201/15/ = 0.9524 1/V Avz = -9m2 (roz 1/ R3) Avz = - 40~A/V (HOK) HOK) Gv= -762 V/V

(a) Transistor 1 MOSFET Transistor 2_BJ (b) Stage 1 Stage 2

Name: Sugar Contette

4. (16 points) The current mirror in the figure below is designed with MOSFETs that have $k_n = 10 \text{ mA/V}^2$ and $V_t = 0 \text{ V}$. The circuit is to have $I_{load} = 20 \text{ mA}$ and $I_{ref} = 200 \text{ \muA}$. $V_{DD} = +10 \text{ V}$. Calculate the values of R_S and R_{RFF} needed to meet these design specifications.

KaslomAlv2 MOSERT II and He are the same Iout = = kn Voi? 20m= = 10mA/12. Vov. Vove Viner = 2 Voya- Vasa Vs Nova=Vasa= 2 I ref = = = 1 Kn Vove Vov = 12. 10 mA/v2. Vov? Vov = 1 = 10 mA/v2. Vov? Vov = 0.2 V Vov = Vas - Ve $V_{GS} = V_{G} - V_{S}$ $V_{S} = V_{G} - V_{GS} = 0.7$ $V_{S} = 1.8$ $R_{S} = \frac{1.9}{200\mu} = 9K\Omega$ $R_{ref} = \frac{V_{DD} - V_{G}}{1000\mu} = \frac{10 - 2}{2000\mu} = HOK\Omega$

> RREF 40KS RS 9KS

Name: Sporce Growlette

5. (27 points) The common gate amplifier in figure 5 below is from lab project Task 2. The MOSFETs are the ALD1106 NMOS and ALD1107 PMOS FETs, whose relevant parameters are given below. The signal source resistance is $R_{\text{sig}} = 1 \text{ k}\Omega$ and the load resistance is $R_{\text{L}} = 100 \text{ k}\Omega$. The bias current is $I_{\text{ref}} = 100 \text{ \mu}\Lambda$. The coupling capacitances Cs and CD are very large. The supply voltages are $\pm 5 \text{ V}$.

ALD 1107: $\mu_p C_{ox} W/_L = 200 \,^{\mu A}/_{V^2}$, $V_{tp} = -0.75 \,\text{V}$, $\lambda = 0.03$

 $/\sqrt{\text{ALD 1106: } \mu_n C_{ox} W/_L} = 500 \, \mu A/_{V^2}, V_{tn} = 0.75 \, \text{V}, \lambda = 0.03$

 $\mathbb{C}(\mathbf{a})$ Draw the small signal equivalent model of the amplifier.

What are the input resistance and output resistance of the amplifier, including the effects of R_{sig} and R_L ?

(c) What is the overall voltage gain, Gv, of the amplifier?

