	22/09 - Aula 16 - Derivando funções trigonométricas
	Ex. Calcule a derivada da função $y=x^{rac{1}{x}}$
	Solução:
	Método 1: Aplicando o logaritmo matural em ambos membros temos
	$ln yx = ln x^{\frac{1}{x}}$
	$(\Rightarrow) \ln y(x) = \frac{1}{x} \cdot \ln x$ $(\Rightarrow) \ln y(x) = \ln x$
	×
	Derivando em x obtemos
	$\frac{y'(x)}{y(x)} = \left(\frac{\ln x}{x}\right) = \frac{\frac{1}{x} \cdot x - \ln x \cdot 1}{x} = \frac{1 - \ln x}{x}$
	y(x) x
	$\Rightarrow y'(x) = y(x) \cdot \left(\frac{1 - \ln x}{x^2}\right) = x^{\frac{1}{x}} \cdot \left(\frac{1 - \ln x}{x^2}\right)$
	$\begin{pmatrix} \times^2 \end{pmatrix} \begin{pmatrix} \times^2 \end{pmatrix}$
	Portanto, 1,
	$y'(x) = x^{\frac{1}{x}} \cdot \left(1 - \ln x\right)$
	\ x ² /
	Método 2: S gia $u(x) = 1$ então $y = x$
	X
	$A' = \begin{pmatrix} x^{(x)} \end{pmatrix} + \begin{pmatrix} x^{(x)} \end{pmatrix}$
	Considerando a base constante Considerando o expoente constante
	Forto 1 $(x^{\alpha})' = \alpha x$, $\alpha \in \mathbb{R}$ constants
	Fato 2 $(\alpha^{x})' = \alpha^{x}$. ln α , α $70 = 7 (\alpha^{u(x)})' = \alpha^{u(x)}$. ln $\alpha \cdot u'(x)$
	Loge
۷ =	$\begin{pmatrix} u(x) \\ x \end{pmatrix} = \lambda \begin{pmatrix} u(x) \\ x \end{pmatrix} + \lambda \begin{pmatrix} u(x) \\ x \end{pmatrix}$
d	$\Rightarrow \qquad \qquad$
	X
	$\Rightarrow y' = x^{\frac{1}{x}} + x^{\frac{1}{x}} l_{mx} \cdot -1 = x^{\frac{1}{x}} \left(1 - l_{mx} \right)$
	$\frac{1}{x^2}$ $\frac{x^2}{x^2}$

```
Teorema 12.1.
                       (\operatorname{sen} x)' = \cos x
                       (\cos x)' = -\sin x
    f(x) = \lim_{x \to \infty} f(x+h) - f(x). Se f(x) = \lim_{x \to \infty} x = x
   (senx) = lim sen (x+h) - senx =
               - lim Denx. Coh + Denh. cox - Denx
(I) \frac{\cosh -1}{\cosh -1} = \frac{\cosh -1}{\cosh -1} = \frac{\cosh -1}{\cosh -1} = -\frac{2}{\cosh -1}
                      h cosh+1 h (cosh+1) h.(cosh+1)
  Denh+co2h=1=> co2h_1=-Jen2h -
  Logo, lim coh-1 _-lim sunh.
 (II) lim senh = 1 ( Limite Fundamental)
                                                              Senx
Analogoment, (co x) = - Jen x
   \frac{d}{dx}(-\lambda exx) = -\frac{d}{dx}\lambda exx = -\beta exx
```

```
Proposição 12.1.
                                               (\operatorname{tg} x)' = \operatorname{sec}^2 x
                                             (\cot x)' = -\csc^2 x
                                              (\sec x)' = \sec x \operatorname{tg} x
                                            (\csc x)' = -\csc x \cot x
                                                 = (Denx) Coox - Senx. (Coox)
                                                        CDX. CDX - Jenx. (- senx)
                .. (cotg x)=
               Aplicação: Esboce o gráfico da função : \int (x) = y dx
                                               Coox=0 (=> x=<u>T</u>++T
311-11-511
                         \frac{1}{2}(x) = 0 ex
                 Pontos críticos de fixi = penx el C = {x ETR | (Denx) = COSX = 0}
                                                                             = \left\{ x \in \mathbb{R} \mid x = \frac{\mathbb{L}}{2} + \mathbb{L} \mathbb{L} = (2k+1) \frac{\mathbb{L}}{2} \right\}
                                                                                1 3 1 5 T , FE _ ...
```


Funções trigonométricas inversas e suas derivadas

OUTC Dem
$$1 = \alpha$$
 \Rightarrow Den $\alpha = 1 \Leftrightarrow \alpha \in [-1, 1] \Rightarrow \alpha = 1$

OUTC Dem $1 = 1$

OUTC Dem