4.2.6. Вычисление в поле Галуа

Напомним некоторые определения из алгебраических основ:

<u>Поле</u> F_p — это множество p элементов, на котором определены операции сложения и умножения, обладающие свойствами коммуникативности, ассоциативности и дистрибутивности, при этом относительно этих двух операций существуют нейтральные элементы и $\forall a$ существует обратный элемент относительно операции сложения, $\forall b \neq 0$ существует обратный элемент относительно операции умножения.

Пусть $f(\lambda)$ — неприводимый многочлен над полем F , для него существует конечное расширение поля F , содержащее все корни многочлена $f(\lambda)$ — поле разложения.

<u>Группа</u> — это непустое множество G с алгебраической операцией * на нем, для которой выполняются аксиомы:

- 1. Операция * ассоциативна $\forall a, b, c \in G : a * (b * c) = (a * b) * c$.
- 2. В $G \exists e$ единичный элемент такой, что $\forall a \in G : a * e = e * a = a$.
- 3. $\forall a \in G \ \exists a^{-1} \in G : a * a^{-1} = a^{-1} * a = e$.

Если дополнительно группа удовлетворяет аксиоме:

4. $\forall a,b \in G : a * b = b * a$.

То это абелева (коммуникативная) группа.

<u>Кольцом</u> называется множество R с двумя бинарными операциями $(+,\cdot)$ такими, что:

- 1. R абелева группа относительно операции + .
- 2. Операция умножения ассоциативна: $\forall a, b, c \in R : (ab)c = a(bc)$;
- 3. Выполняется закон дистрибутивности $\forall a, b, c \in R : a(b+c) = cb + ac$.

Кольцо классов вычетов Z_p называется <u>полем Галуа</u> порядка p и обозначается GF(p) (где p – простое). В поле Галуа определены операции $+,-,^*,/$.

Теорема 1.

Поле Галуа $GF(p^n)$ есть поле разложения всякого неприводимого многочлена $f(\lambda)$ степени n над полем $F_p = GF(p)$.

Арифметика поля Галуа широко используется в криптографии. Данное поле содержит только числа конечного размера, при делении отсутствуют ошибки округления. Многие криптосистемы основаны на GF(p), где p — большое простое число.

Криптографы также используют арифметику по модулю неприводимых многочленов степени n , коэффициентами которых являются целые числа по модулю q , где q — простое число. Эти поля называются $GF(q^n)$.

Пример (байтовые операции)

Рассмотрим поле Галуа $GF(2^8)$. Оно может интерпретироваться как работа с битами одного байта, который будет рассматриваться как элемент этого конечного поля с бинарными операциями: \oplus_{ℓ} .

Сложение: \oplus – это поразрядное суммирование по модулю 2.

Умножение — это умножение полиномов, соответствующих байтам, но по модулю неприводимого двоичного полинома $m(x) = x^8 + x^4 + x^3 + x + 1$ (11 B_{16}).

Элемент этого поля может быть представлен в полиномиальном виде:

$$b(x) = b_7 x^7 + ... + b_1 x + b_0$$
, где $b_i - i$ -ый бит байта b .

Например: $b = 87_{10} = 1010111_2$, тогда $b(x) = x^6 + x^4 + x^2 + x + 1$.

Сложение:
$$\frac{(87+131)_{10} = (x^6 + x^4 + x^2 + x + 1) \oplus (x^7 + x + 1) =}{= x^7 + x^6 + x^4 + x^2}$$

<u>Умножение</u>: умножение на x эквивалентно побитовому сдвигу влево на один бит. Операция умножения $b(x) \cdot x$ с последующим приведением по модулю полинома m(x) обозначается xtime(b).

Умножение на x^i эквивалентно побитовому сдвигу влево на i бит и равносильна k -кратной композиции xtime(b) .

$$(87 \cdot 19)_{10} = (x^6 + x^4 + x^2 + x + 1) \cdot (x^4 + x + 1)$$

Умножаем $\left(x^6+x^4+x^2+x+1\right)$ на $1=x^0$, то есть сдвигаем на 0 бит, получаем: $\left(x^6+x^4+x^2+x+1\right)$.

Умножаем $\left(x^6+x^4+x^2+x+1\right)$ на $x=x^1$, то есть сдвигаем на 1 бит, получаем: $\left(x^7+x^5+x^3+x^2+x\right)$.

Чтобы умножить $\left(x^6+x^4+x^2+x+1\right)$ на x^4 надо произвести умножение на $x^0 \div x^4$, и результат сложить. Поэтому:

Умножаем $\left(x^7+x^5+x^3+x^2+x\right)$ на $x:\left(x^8+x^6+x^4+x^3+x^2\right)$, приводим по $m(x)=x^8+x^4+x^3+x+1$ и получаем : $\left(x^6+x^2+x+1\right)$.

Умножаем $(x^6 + x^2 + x + 1)$ на $x: (x^7 + x^3 + x^2 + x)$.

Умножаем $(x^7 + x^3 + x^2 + x)$ на $x : (x^8 + x^4 + x^3 + x^2)$, приводим по $m(x) = x^8 + x^4 + x^3 + x + 1$ и получаем : $(x^2 + x + 1)$.

В итоге получаем:

$$(87 \cdot 19)_{10} = (x^6 + x^4 + x^2 + x + 1) \cdot (x^4 + x + 1) =$$

$$= (x^2 + x + 1) \oplus (x^7 + x^5 + x^3 + x^2 + x) \oplus (x^6 + x^4 + x^2 + x + 1) =$$

$$= x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x.$$

Другой способ умножения:

$$(87 \cdot 19)_{10} = (x^{6} + x^{4} + x^{2} + x + 1) \cdot (x^{4} + x + 1) = x^{10} + x^{8} + x^{6} + x^{5} + x^{4} + x^{4} + x^{7} + x^{5} + x^{3} + x^{2} + x + x^{4} + x^{6} + x^{4} + x^{2} + x + 1 = x^{10} + x^{8} + x^{7} + x^{3} + 1.$$

Полученный результат приводим по модулю $m(x) = x^8 + x^4 + x^3 + x + 1$:

$$x^{10} + x^8 + x^7 + x^3 + 1 \mod (x^8 + x^4 + x^3 + x + 1) =$$

= $x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$

Следовательно, $(87 \cdot 19)_{10} = x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$.

И ещё один способ умножения:

Представляем 87 и 19 в двоичном виде: $(87)_{10} = (1010111)_2$, $(19)_{10} = (10011)_2$. Представляем 19 в виде $(19)_{10} = (10011)_2 = (10000)_2 \oplus (00010)_2 \oplus (00001)_2$. Тогда

$$(87.19)_{10} = (1010111)_2 \cdot (10000)_2 \oplus (1010111)_2 \cdot (00010)_2 \oplus (1010111)_2 \cdot (00001)_2$$

Для удобства перейдём к записи в столбик:

10101110000

$$\leftarrow$$
 это $(1010111)_2 \cdot (10000)_2$
 \oplus 00010101110
 \leftarrow это $(1010111)_2 \cdot (00010)_2$
 \oplus 00010101111
 \leftarrow это $(1010111)_2 \cdot (00010)_2$

Обозначим соответствующий полученному результату полином за $s_0(x)$: $s_0(x) = x^{10} + x^8 + x^7 + x^3 + 1$. Пусть maxdegree (p(x)) — максимальная степень полинома p(x). Тогда maxdegree $(s_0(x)) = 10$, maxdegree (m(x)) = 8.

Т.к. $maxdegree\ (s_0\ (x)) \ge maxdegree\ (m\ (x))$, то теперь полученный результат нужно привести по модулю $m(x) = x^8 + x^4 + x^3 + x + 1$. Для этого складываем по модулю 2 полученный результат с полиномом m(x), умноженным на x^k , где $k = maxdegree\ (s_0\ (x)) - maxdegree\ (m\ (x)) = 10 - 8 = 2$:

10110001001

$$\oplus$$
 10001101100 \leftarrow 9TO $m(x) \cdot x^2 = (100011011)_2 \cdot (100)_2$

Обозначим соответствующий полученному результату полином за $s_1(x)$: $s_1(x) = x^8 + x^7 + x^6 + x^5 + x^2 + 1$

Т.к. снова $maxdegree(s_1(x)) \ge maxdegree(m(x))$, то выполняем аналогичное сложение с полиномом m(x), умноженным на x^0 :

111100101

$$\oplus$$
 100011011 \leftarrow 9TO $m(x) \cdot x^0 = (100011011)_2 \cdot (1)_2$

Теперь получили полином $s_2(x)$: $s_2(x) = x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$. Для него maxdegree $(s_2(x)) < maxdegree(m(x))$, поэтому $s_2(x)$ является результатом умножения 87_{10} на 19_{10} :

$$(87 \cdot 19)_{10} = x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x.$$

Пример (операции с 4-байтовыми векторами)

Любой многочлен принадлежащий $GF(2^8)$ степени не больше 3 может быть представлен 4-х байтовым вектором.

Сложение 4-х байтовых векторов производится ⊕ побитово.

Умножение: с последующим приведением по модулю полинома $M(x) = x^4 + 1$.

Пусть дано два многочлена: $a(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$, $b(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0$. Их произведение равно $c(x) = c_6 x^6 + ... + c_1 x + c_0$, где:

$$c_{0} = a_{0} \cdot b_{0}$$

$$c_{1} = a_{1} \cdot b_{0} \oplus a_{0} \cdot b_{1}$$

$$c_{2} = a_{2} \cdot b_{0} \oplus a_{1} \cdot b_{1} \oplus a_{0} \cdot b_{2}$$

$$c_{3} = a_{3} \cdot b_{0} \oplus a_{2} \cdot b_{1} \oplus a_{1} \cdot b_{2} \oplus a_{0} \cdot b_{3}$$

$$c_{4} = a_{3} \cdot b_{1} \oplus a_{2} \cdot b_{2} \oplus a_{1} \cdot b_{3}$$

$$c_{5} = a_{3} \cdot b_{2} \oplus a_{2} \cdot b_{3}$$

$$c_{6} = a_{3} \cdot b_{3}$$

Далее приводим c(x) по модулю M(x) и окончательно получаем, что если $d(x) = a(x) \otimes b(x)$, то:

$$\begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} a_0 & a_3 & a_2 & a_1 \\ a_1 & a_0 & a_3 & a_2 \\ a_2 & a_1 & a_0 & a_3 \\ a_3 & a_2 & a_1 & a_0 \end{bmatrix} \cdot \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Примерами алгоритмов шифрования, основанных на вычисление в поле Галуа является RIJNDAEL (AES), A5/1.