You may use JFLAP to help yourself work on these exercises.

You may wish to go through the tutorial sections: "Context-free Grammar" and "Pushdown Automata" available at http://www.jflap.org/modules/ (accessible through the left yellow navigation pane) or go through the relevant chapters in the JFLAP book (available as PDF with JFLAP in Moodle).

(1) Consider the following PDA

- 1) Produce the formal definition for the above NFA. This should consist of:
 - The set of states $Q = \{ \boxed{\ \ }, \boxed{\ \ }, \boxed{\ \ }, \boxed{\ \ }, \boxed{\ \ }$
 - The input alphabet $\Sigma = \{ \square, \square \}$
 - The stack alphabet $\Gamma = \{ \square, \square \}$
 - The transition function, $\delta\colon Q\times \Sigma_\varepsilon\times \Gamma_\varepsilon\to 2^{Q\times \Gamma_\varepsilon}$, in table form

Σ_{ε} :	a			b			ε		
Γ_{ε} :	•	0	ε	•	0	ε	•	0	ε
q_0									$\{(q_1,\circ)\}$
q_1			$\{(q_2,ullet)$	$\{(q_3,\varepsilon)\}$					
q_2									
q_3				$\{(q_3,\varepsilon)\}$					
q_4									

The \emptyset entries have been left blank to make the table easier to read.

- The set of accept states $F = \{ \boxed{}, \boxed{} \}$
- 2) Simulate the following strings: (For each step record: the state, the symbol just read and the stack contents)

aaab aaaab aab aaaabb

3) Use **set notation** to describe the language recognized by this PDA.

(2) For each of the Context-Free Grammars (CFGs) given below, give answers to the accompanying questions (together with short justifications where needed)

1)

$$\begin{array}{ccc} A & \to & \mathtt{bb}A\mathtt{b} \mid B \\ B & \to & \mathtt{a}B \mid \varepsilon \end{array}$$

Use the grammar to derive the following strings

bbab bbb a^6 $b^4a^3b^2$

2)

$$egin{array}{lll} S &
ightarrow & { t a}A{ t bb} \mid { t b}B{ t aa} \ A &
ightarrow & { t a}A{ t bb} \mid arepsilon \ B &
ightarrow & { t b}B{ t aa} \mid arepsilon \end{array}$$

Use the grammar to derive the following strings (where possible):

aabbbb bbaaaa aabb baa

3) Here $\Sigma = \{a, +, \times, (,)\}.$

$$\begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T \times F \mid F \\ F & \rightarrow & (E) \mid \mathbf{a} \end{array}$$

Give parse trees for each of the following strings

4) You are given the following CFG productions

- 1. What are the variables (non-terminals)? $V = \{ [, [,], [,] \} \}$
- 2. What are the terminals? $\Sigma = \{ [], [] \}$
- 3. What is the start variable?
- 4. Give three strings in L(G) _____, _____,
- 5. Give three strings not in L(G) _____, _____,
- 6. True or False:
 - (a) $T o \mathtt{aba}$
 - (b) $T \stackrel{*}{\rightarrow} aba$
 - (c) $T \rightarrow T$
 - (d) $T \stackrel{*}{\rightarrow} T$
 - (e) $XXX \xrightarrow{*} aba$
 - (f) $X \stackrel{*}{\to} {\tt aba}$
 - (g) $T \stackrel{*}{\rightarrow} XX$
 - (h) $T \xrightarrow{*} XXX$
 - (i) $S \xrightarrow{*} \varepsilon$

Notation:

→: in *one* step;*→: in *zero or*more steps

(3) Convert the following GNFAs into **regular grammars**.

(4) Design a PDA and a CFG for the following language over $\Sigma = \{a, b\}$

$$L = \{ w \mid w = (ab)^n \text{ or } w = a^{4n}b^{3n} \text{ for } n \ge 0 \}.$$

Do this in two steps:

- 1) Explain the idea used, i.e. how does the stack help you?
- 2) Design a state diagram for the PDA.
- 3) Design a CFG.
- (5) A string w is a *palindrome* if $w = w^R$, where w^R is formed by writing the symbols of w in reverse order, e.g. if w = 011 then $w^R = 110$.

Design PDAs and CFGs for each of the following languages

- 1) $\{w \mid w = b^n a b^n, n \ge 0\}$
- 2) $\{w \in w^R \mid w \in \{a, b\}^*\}$ (so it is defined over the alphabet $\{a, b, c\}$)
- 3) $\{ww^R \mid w \in \{a, b\}^*\}$
- 4) The language of palindromes over {a, b}
- 5) The language of palindromes over {a, b} whose length is a multiple of 3

 Hint: Consider the even and odd length cases first.
- (6) (Ambiguity) Sometimes a grammar can generate the same string in several different ways, with several different parse trees, and likely several different meanings. If this happens, we say that the string is derived *ambiguously* in that grammar, which is then qualified as being an **ambiguous** grammar.

Consider the CFG

$$E \rightarrow E + E \mid E \times E \mid (E) \mid a$$

Derive the string $a + a \times a$ in two different ways using parse trees, and explain their (different) meanings.

Now note that the following alternative CFG is *not* ambiguous:

$$\begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T \times F \mid F \\ F & \rightarrow & (E) \mid a \end{array}$$

What is the parse tree for the previous example string $(a + a \times a)$? What is the parse tree for $(a + a) \times a$?

- (1) Design CFGs generating the following languages.
 - 1) The language of all strings over {a, b} with a single symbol 'b' located *exactly in the middle* of the string.

```
\{b, aba, abb, bba, bbb, aabaa, \ldots\}
```

- 2) The language of strings over $\{a, b\}$ containing an equal number of a's and b's.
- 3) The language of strings with twice as many a's as b's.
- 4) $\{a^ib^j \mid i, j \ge 0 \text{ and } i \ge j\}$
- 5) $\{a^ib^j \mid i, j \ge 0 \text{ and } i \ne j\}$ (Complement of the language $\{a^nb^n \mid n \ge 0\}$)
- 6) The language of strings over {a, b} containing more a's than b's. (e.g. abaab)
- 7) $\{w \# x \mid w, x \in \{0, 1\}^* \text{ and } w^R \text{ is a substring of } x\}$
- 8) $\{x_1\#x_2\#\cdots\#x_k\mid k\geq 1, \text{ each } x_i\in\{a,b\}^*, \text{ and for some } i \text{ and } j, x_i=x_i^R\}$

Give informal descriptions of PDAs for the above languages. (How would you use the stack?)

- (2) Let $\Sigma = \{a, b\}$ and let B be the language of strings that contain at least one b in their second half. In other words, $B = \{uv \mid u \in \Sigma^*, v \in \Sigma^* b \Sigma^* \text{ and } |v| \leq |u|\}$.
 - 1) Give a PDA that recognizes *B*.
 - 2) Give a CFG that generates *B*.
- (3) Let

$$\begin{array}{lll} C & = & \{x\#y \mid x,y \in \{\mathtt{0},\mathtt{1}\}^* \text{ and } x \neq y\} \\ D & = & \{x\#y \mid x,y \in \{\mathtt{0},\mathtt{1}\}^* \text{ and } |x| = |y| \text{ but } x \neq y\} \end{array}$$

Show that *C* and *D* are both CFLs by producing PDAs or CFGs for them.

(4) Give a **counter example** to show that the following construction fails to prove that the class of context-free languages is closed under star.

Let A be a CFL that is generated by the CFG $G = (V, \Sigma, R, S)$. Add the new rule $S \to SS$ and call the resulting grammar G'. This grammar is supposed to generate A^* .

Note: the class of **context-free languages** is actually **closed under the regular operations** (union, concatenation, and star) but the above argument fails to prove closure under star. What is missing?

Extend your class for simulating NFAs from lab 2 to simulate PDAs.