MATH466/MATH766 Math of machine learning Appendix VC Inequality and Error of Binary Classification

- (
References:	
i icici ci iccs.	

Todays contents:

- VC inequality
- A corollary

Important concepts:

•

Recommend reading:

.

Binary Classification

H is a collection of binary classifiers on
$$X$$

 $H := \{h: X \Rightarrow \{0,1\}\}$

Risk: R(h) =
$$\mathbb{E}_{(X,Y)} \sim P_{x,y} = 1_{h(X) \neq Y}$$

Emp Risk:
$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n 1_{h(X_i) \neq Y}$$
 $(X_i, Y_i) \sim_{iid} P_{x,Y}$

Let
$$\hat{h}_n := \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_n(h)$$
 (empirical minimizer)

want to know
$$\frac{R(\hat{h}_n)}{\text{hadon}} - \min_{h \in \mathcal{H}} R(h)$$

$$= \left(R(\hat{h}_{n}) - \hat{R}_{n}(\hat{h}_{n})\right) + \left(\hat{R}_{n}(\hat{h}_{n}) - \hat{R}_{n}(\hat{h}^{*})\right) + \left(\hat{R}_{n}(\hat{h}^{*}) - R(\hat{h}^{*})\right)$$

$$\leq |R(\hat{h}_{n}) - \hat{R}_{n}(\hat{h}_{n})| + |\hat{R}_{n}(\hat{h}^{*}) - R(\hat{h}^{*})|$$

$$\leq 2 \sup_{h \in H} |\hat{R}_n(h) - R(h)|$$

2. Want to know $Pr[\sup_{h\in \mathcal{H}} |\hat{R}_n(h) - R(h)| \leq \varepsilon]$

Denote $A := \{Ah : h \in \partial e\}$ where $Ah := \{(x,y) \in X \times \{0,1\} : h(x) \neq y\}$ the set of misclassification cases under h

then $R(h) = Pr[(X,Y) \in A_h \mid (X,Y) \sim P_{X,Y}] =: \mu(A_h)$ $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n 1_{(X_i,Y_i) \in A_h} =: \mu_n(A_h)$

Thoun in lec 20: VA = VH

3. Assume $Z \sim P_Z$, $Z_1, Z_2, ..., Z_n \sim id P_Z$ For a set A, denote $\mu(A) := Pr[Z \in A]$ $\mu_n(A) := \frac{1}{n} \sum_{i=1}^n 1_{Z_i \in A}$ Want to know $Pr[Sup[\mu_n(A) - \mu(A)] \in E]$

r. v.

4. Bounded Difference Inequality (McDiarmid's inequality)

Def (bounded difference property) $f: \mathbb{Z}_1 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_n \to \mathbb{R}$ $\exists c_1, c_2, \cdots, c_n s.t.$

for all i=1,2,...,n and all $3_1 \in \mathbb{Z}_1$, $3_2 \in \mathbb{Z}_2$, ..., $3_n \in \mathbb{Z}_n$ $\sup_{3_1' \in \mathbb{Z}_1} \left| f(3_1,3_2,...,3_1',...,3_n) - f(3_1,3_2,...,3_1,...,3_n) \right| \leq C_i$ (substituting the i-th coordinate changes the value of f at most C_i)

Thm. Let
$$f$$
 satisfies BDP $w|$. $C_1, C_2, ..., C_n$

$$Z_1, Z_2, ..., Z_n \text{ are independent } r.v., Z_i \in Z_i \text{ for all } i$$
Then for any $E > 0$

$$\Pr\left[f(Z_1, \dots, Z_n) - \mathbb{E}[f(Z_1, \dots, Z_n)] \ge \varepsilon\right]$$

$$\Pr\left[f(Z_1, \dots, Z_n) - \mathbb{E}[f(Z_1, \dots, Z_n)] \le -\varepsilon\right]$$

$$\stackrel{\text{lef}}{=} \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

In our setting $C_1 = C_2 = \cdots = C_n = \frac{1}{n}$

5. VC inequality

Let
$$d := V_A$$

then $\mathbb{E}\left[\sup_{A \in A} |\mu_n(A) - \mu(A)|\right] \leq 2\sqrt{\frac{2d \log(2en/d)}{n}}$

With probability 1-8

$$R(\hat{h}_n) \leq \min_{h \in \mathcal{H}} R(h) + 4\sqrt{\frac{2d \log(2en/d)}{n}} + \sqrt{\frac{\log(2/\delta)}{2n}}$$