Foundation of Cryptography, Lecture 5 MACs and Signatures

Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 30, 2013

Section 1

Message Authentication Code (MAC)

Message Authentication Code (MAC)

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- 2 Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: $Vrfy_k(m, t) = 1$

 $\forall k \in \text{Supp}(\text{Gen}(1^n)), m \in \{0,1\}^n \text{ and } t = \text{Mac}_k(m)$

Message Authentication Code (MAC)

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- **1** Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- 2 Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: $Vrfy_k(m, t) = 1$

 $\forall k \in \text{Supp}(\text{Gen}(1^n)), m \in \{0,1\}^n \text{ and } t = \text{Mac}_k(m)$

Definition 2 (Existential unforgability)

A MAC (Gen, Mac, Vrfy) is existential unforgeable (EU), if \forall PPT A:

$$\Pr[k \leftarrow \operatorname{Gen}(1^n); (m, t) \leftarrow \operatorname{A}^{\operatorname{Mac}_k, \operatorname{Vrfy}_k}(1^n): \\ \operatorname{Vrfy}_k(m, t) = 1 \wedge \operatorname{Mac}_k \text{ was not asked on } m] = \operatorname{neg}(n)$$

• "Private key" definition

- "Private key" definition
- Security definition too strong? Any message? Use of Verifier?

- "Private key" definition
- Security definition too strong? Any message? Use of Verifier?

- "Private key" definition
- Security definition too strong? Any message? Use of Verifier?
- "Replay attacks"

- "Private key" definition
- Security definition too strong? Any message? Use of Verifier?
- "Replay attacks"
- Strong existential unforgeable MACS (for short, strong MAC: infeasible to generate new valid tag (even for message for which a MAC was asked)

Length-restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for $k \in \text{Supp}(G(1^n))$, Mac_k and Vrfy_k only accept messages of length n.

Bounded-query MACs

Definition 4 (ℓ**-time MAC)**

A MAC scheme is existential unforgeable against ℓ queries (for short, ℓ -time MAC), if it is existential unforgeable as in Definition 2, but A can only make ℓ queries.

Section 2

Constructions

Zero-time MAC

Construction 5 (Zero-time MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0, 1\}^n$
- $Mac_k(m) = k$
- $Vrfy_k(m, t) = 1$, iff t = k

Zero-time MAC

Construction 5 (Zero-time MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0, 1\}^n$
- $Mac_k(m) = k$
- $Vrfy_k(m, t) = 1$, iff t = k

Claim 6

The above scheme is zero-time MAC

Zero-time MAC

Construction 5 (Zero-time MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0, 1\}^n$
- $Mac_k(m) = k$
- $Vrfy_k(m, t) = 1$, iff t = k

Claim 6

The above scheme is zero-time MAC

Does it remind you something?

ℓ-wise Independent Hash

Definition 7 (ℓ-wise independent)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is ℓ -wise independent, where $\ell \in \mathbb{N}$, if for every distinct $x_1, \ldots, x_\ell \in \{0,1\}^n$ and every $y_1, \ldots, y_\ell \in \{0,1\}^m$, it holds that $\Pr_{h \in \mathcal{H}}[h(x_1) = y_1 \wedge \cdots \wedge h(x_\ell) = y_\ell] = 2^{-\ell m}$.

ℓ-times, Restricted Length, MAC

Construction 8 (ℓ**-time MAC)**

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

ℓ-times, Restricted Length, MAC

Construction 8 (ℓ**-time MAC)**

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

Claim 9

The above scheme is a length-restricted, ℓ-time MAC

$\ell\text{-times}$, Restricted Length, MAC

Construction 8 (ℓ-time MAC)

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

Claim 9

The above scheme is a length-restricted, ℓ-time MAC

Proof: ?

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof:

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof: Easy to prove if \mathcal{F} is a family of random functions. Hence, also holds in case \mathcal{F} is a PRE.

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family $\mathcal{H}=\{\mathcal{H}_n\colon \{0,1\}^*\mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Not known to be implied by OWF

Length restricted MAC ⇒ **MAC**

Construction 13 (Length restricted MAC ⇒ MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an efficient function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$

Length restricted MAC ⇒ **MAC**

Construction 13 (Length restricted MAC ⇒ MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an efficient function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$

Claim 14

Assume $\mathcal H$ is an efficient collision-resistant family and (Gen, Mac, Vrfy) is existential unforgeable, then (Gen', Mac', Vrfy') is existential unforgeable MAC.

Length restricted MAC \implies MAC

Construction 13 (Length restricted MAC → MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an efficient function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $\bullet \ \mathsf{Vrfy}'_{k,h}(t,m) = \mathsf{Vrfy}_k(t,h(m))$

Claim 14

Assume $\mathcal H$ is an efficient collision-resistant family and (Gen, Mac, Vrfy) is existential unforgeable, then (Gen', Mac', Vrfy') is existential unforgeable MAC.

Proof: ?

Section 3

Signature Schemes

Defining Signature Schemes

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- **1** Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2** Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- **3** Vrfy (v, m, σ) outputs 1 (YES) or 0 (NO)

```
Consistency: Vrfy_{\nu}(m, \sigma) = 1 for any (s, \nu) \in Supp(Gen(1^n)), m \in \{0, 1\}^* and \sigma \in Supp(Sign_s(m))
```

Defining Signature Schemes

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- **1** Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- **3** Vrfy (v, m, σ) outputs 1 (YES) or 0 (NO)

Consistency: $Vrfy_{\nu}(m, \sigma) = 1$ for any $(s, \nu) \in Supp(Gen(1^n))$, $m \in \{0, 1\}^*$ and $\sigma \in Supp(Sign_s(m))$

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if \forall PPT A

$$\Pr[(s, v) \leftarrow \operatorname{Gen}(1^n); (m, \sigma) \leftarrow \operatorname{A}^{\operatorname{Sign}_s}(1^n, v):$$
 $\operatorname{Vrfy}_v(m, \sigma) = 1 \wedge \operatorname{Sign}_s \text{ was not asked on } m] = \operatorname{neg}(n)$

Signature ⇒ MAC

- Signature \(\infty \) MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF

- Signature \(\infty \) MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given

- Signature \(\infty \) MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

- Signature \(\infty \) MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

Defining Signature Schemes cont.

- Signature \(\infty \) MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

Theorem 17

OWFs imply strong existential unforgeable signatures.

Section 4

OWFs ⇒ **Signatures**

Length-restricted signatures

Definition 18 (Length-restricted Signatures)

Same as in Definition 15, but for $(s, v) \in \text{Supp}(G(1^n))$, Sign_s and Vrfy_v only accept messages of length n.

Definition 19 (ℓ**-time signatures)**

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Definition 19 (ℓ**-time signatures)**

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted, one-time signatures can be used to construct one-time signatures.

Definition 19 (ℓ-time signatures)

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted, one-time signatures can be used to construct one-time signatures.

Proof?

Definition 19 (ℓ**-time signatures)**

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted, one-time signatures can be used to construct one-time signatures.

Proof?

Proposition 21

Wlg, the signer of a one-time signature is deterministic

OWF \Longrightarrow Length Restricted, One Time Signature

Construction 22 (length-restricted, one-time signature)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- \bullet Gen(1ⁿ):
 - **o** $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$,
 - **2** $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$
 - $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1))$
- **2** Sign(s, m): $\sigma = (s_1^{m_1}, \dots, s_n^{m_n})$
- **3** Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$: check that $f(\sigma_i) = v_i^{m_i}$ for all $i \in [n]$

OWF \Longrightarrow Length Restricted, One Time Signature

Construction 22 (length-restricted, one-time signature)

- Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.
- \bullet Gen(1ⁿ):
 - **1** $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$
 - **2** $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$
 - $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1))$
- **2** Sign(s, m): $\sigma = (s_1^{m_1}, \dots, s_n^{m_n})$
- **3** Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$: check that $f(\sigma_i) = v_i^{m_i}$ for all $i \in [n]$

Lemma 23

Assume that f is a OWF, then scheme from Construction 22 is a length restricted one-time signature scheme

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert f.

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert f.

Algorithm 24 (Inv)

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- ② If $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{j^*} = j^*$ abort. Otherwise, use s to answer the query.
- 3 Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{j^*} \neq j^*$, abort. Otherwise, return σ_{j^*} .

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert f.

Algorithm 24 (Inv)

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- ② If $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{j^*} = j^*$ abort. Otherwise, use s to answer the query.
- 3 Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{j^*} \neq j^*$, abort. Otherwise, return σ_{j^*} .
 - v is distributed as is in the real "signature game"

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert f.

Algorithm 24 (Inv)

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- ② If $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{j^*} = j^*$ abort. Otherwise, use s to answer the query.
- 3 Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{j^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .
 - v is distributed as is in the real "signature game"
 - v is independent of i* and j*.

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert f.

Algorithm 24 (Inv)

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- ② If $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{j^*} = j^*$ abort. Otherwise, use s to answer the query.
- 3 Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{j^*} \neq j^*$, abort. Otherwise, return σ_{j^*} .
 - v is distributed as is in the real "signature game"
 - v is independent of i* and j*.
 - Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for every $n \in \mathcal{I}$.

Stateful schemes (also known as, Memory-dependant schemes)

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

Stateful schemes (also known as, Memory-dependant schemes)

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

Make sense in many applications (e.g., smartcards)

Stateful schemes (also known as, Memory-dependant schemes)

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

- Make sense in many applications (e.g., smartcards)
- We'll later use it a building block for building stateless scheme

Stateful schemes - Naive Construction

Let (Gen, Sign, Vrfy) be a one-time signature scheme.

Construction 26 (Naive construction)

- $\operatorname{Gen}'(1^n)$: $\operatorname{Set}(s_1, v_1) \leftarrow \operatorname{Gen}(1^n)$.
- $\operatorname{Sign}'_{s_1}(m_i)$, where m_i is *i*'th message to sign:

 - 2 Let $\sigma_i = \operatorname{Sign}_{s_i}(m_i, v_{i+1})$
 - 3 Output $\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i).^a$
- Vrfy'_{v_1} $(m, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_i, v_{i+1}, \sigma_i))$: Check that
 - **1** Vrfy_{v_i} $((m_j, v_{j+1}), \sigma_j) = 1$ for every $j \in [i]$
 - $m_i = m$

 $a_{\sigma_0'}$ is the empty string.

Stateful schemes - Naive Construction

Let (Gen, Sign, Vrfy) be a one-time signature scheme.

Construction 26 (Naive construction)

- $\operatorname{Gen}'(1^n)$: $\operatorname{Set}(s_1, v_1) \leftarrow \operatorname{Gen}(1^n)$.
- $\operatorname{Sign}'_{s_1}(m_i)$, where m_i is *i*'th message to sign:
 - **1** Let $(s_{i+1}, v_{i+1}) \leftarrow \text{Gen}(1^n)$
 - 2 Let $\sigma_i = \operatorname{Sign}_{s_i}(m_i, v_{i+1})$
 - 3 Output $\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i).^a$
- Vrfy'_{v_1} $(m, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_i, v_{i+1}, \sigma_i))$: Check that
 - **1** Vrfy_{v_i} $((m_j, v_{j+1}), \sigma_j) = 1$ for every $j \in [i]$
 - $\mathbf{Q} m_i = m$

We sometimes refer to (s_1, v_1) generated by Gen above as (s', v')

 $a_{\sigma_0'}$ is the empty string.

Naive Construction cont.

 The state of Sign' is used for maintaining the recently used private key (e.g., s_i) and to prevent from using the same one-time signature twice.

Naive Construction cont.

- The state of Sign' is used for maintaining the recently used private key (e.g., s_i) and to prevent from using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures

Naive Construction cont.

- The state of Sign' is used for maintaining the recently used private key (e.g., s_i) and to prevent from using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Uses the fact that (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key)

Lemma 27

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Lemma 27

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Proof: Let A' be a PPT that breaks the security of (Gen', Sign', Vrfy') with respect to $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$, we present PPT A that breaks the security of (Gen, Sign, Vrfy).

Lemma 27

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Proof: Let A' be a PPT that breaks the security of (Gen', Sign', Vrfy') with respect to $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$, we present PPT A that breaks the security of (Gen, Sign, Vrfy).

 We assume for simplicity that p also bounds the query complexity of A'

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- **3** Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

v_j was sampled by Sign'

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- **3** Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

- v_i was sampled by Sign'
- Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\widetilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- Sign' has output $\sigma'_{\widetilde{i}-1}=(m_1,v_2,\sigma_1),\ldots,(m_{\widetilde{i}-1},v_{\widetilde{i}},\sigma_{\widetilde{i}-1})$
- Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

- v_i was sampled by Sign'
- Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\widetilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$
- $\operatorname{Vrfy}_{s_{\widetilde{i}}}(\widetilde{m}, \sigma_{\widetilde{i}}) = 1$

Let $rv(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

- v_i was sampled by Sign'
- Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\widetilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$
- $\operatorname{Vrfy}_{s_{\widetilde{i}}}(\widetilde{m}, \sigma_{\widetilde{i}}) = 1$
- $\operatorname{Sign}_{s_{\tilde{i}}}$ was not queried by Sign' on \widetilde{m} and output $\sigma_{\tilde{i}}$.

Let rv $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

- **3** Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

- v_i was sampled by Sign'
- Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\widetilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$
- $\operatorname{Vrfy}_{s_{\widetilde{i}}}(\widetilde{m}, \sigma_{\widetilde{i}}) = 1$
- Sign_{s_i} was not queried by Sign' on \widetilde{m} and output $\sigma_{\widetilde{i}}$.
- Sign_{s;} was queried at most once by Sign'

Definition of A

Algorithm 29 (A)

Input: v, 1ⁿ
Oracle: Sign_s

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - ▶ On the i^* 'th call to $\operatorname{Sign}'_{s'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{j*}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_p, v_p, \sigma_p)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > p$))

Definition of A

Algorithm 29 (A)

Input: v, 1ⁿ
Oracle: Sign_s

- ① Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i*'th call to Sign'_{s'}, set v_{i*} = v (rather then choosing it via Gen)
 - When need to sign using s_{j∗}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_p, v_p, \sigma_p)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > p$))
 - The emulated game A'Sign's' has the same distribution as the real game.

Definition of A

Algorithm 29 (A)

Input: v, 1ⁿ
Oracle: Sign_s

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - ▶ On the i^* 'th call to $\operatorname{Sign}'_{S'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{j∗}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_p, v_p, \sigma_p)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > p$))
 - The emulated game A'Sign'_{s'} has the same distribution as the real game.
 - Sign_s is called at most once

Definition of A

Algorithm 29 (A)

Input: v, 1ⁿ Oracle: Sign_s

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i*'th call to Sign'_{s'}, set v_{i*} = v (rather then choosing it via Gen)
 - When need to sign using s_{j*}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_p, v_p, \sigma_p)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > p$))
 - The emulated game A'Sign's' has the same distribution as the real game.
 - Sign_s is called at most once
 - A breaks (Gen, Sign, Vrfy) whenever $i^* = \tilde{i}$.

A "Somewhat"-stateful Scheme

A one-time scheme (Gen, Sign, Vrfy)

Construction 30 (A "Somewhat"-stateful Scheme)

- Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ).
- Sign'_s(m): choose unused $\bar{r} \in \{0,1\}^n$
 - For i = 0 to n 1: if $a_{\overline{r}_1, \dots, i}$ was not set before:
 - For both $j \in \{0, 1\}$, let $(s_{\overline{r}_1, \dots, j}, v_{\overline{r}_1, \dots, j}) \leftarrow \text{Gen}(1^n)$
 - **2** Let $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_1,...,i}} (a_{\bar{r}_1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - $\textbf{2} \ \, \mathsf{Output} \left(\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}} = \mathsf{Sign}_{s_{\overline{r}}}(m) \right)$
- Vrfy'_{V_{λ}} $(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_{1}, \dots, n-1}, \sigma_{\overline{r}})$ Check that
 - **○** Vrfy_{$V_{\bar{r}_1,...,i}$} ($a_{\bar{r}_1,...,i}$, $\sigma_{\bar{r}_1,...,i}$) = 1 for every $i \in \{0,...,n-1\}$
 - 2 Vrfy_{$v_{\overline{r}}$} $(m, \sigma_{\overline{r}}) = 1$, for $v_{\overline{r}} = (a_{\overline{r}})_{\overline{r}[n]}$

• More efficient scheme — Enough to construct tree of depth $\omega(\log n)$ (i.e., to choose $\overline{r} \in \{0,1\}^{\ell \in \omega(\log n)}$)

- More efficient scheme Enough to construct tree of depth $\omega(\log n)$ (i.e., to choose $\overline{r} \in \{0,1\}^{\ell \in \omega(\log n)}$)
- Sign' does not keep track of the message history.

- More efficient scheme Enough to construct tree of depth $\omega(\log n)$ (i.e., to choose $\overline{r} \in \{0,1\}^{\ell \in \omega(\log n)}$)
- Sign' does not keep track of the message history.
- Each leaf is visited at most once.

- More efficient scheme Enough to construct tree of depth $\omega(\log n)$ (i.e., to choose $\overline{r} \in \{0,1\}^{\ell \in \omega(\log n)}$)
- Sign' does not keep track of the message history.
- Each leaf is visited at most once.
- Each one-time signature is used once.

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Proof: ?

Let Π_n be the set of all functions from $\bigcup_{i=1}^n \{0,1\}^i$ to $\{0,1\}^{q(n)}$ for some "large enough" $q \in \text{poly}$ and let \mathcal{H} be a CRH.

Construction 32 (Inefficient stateless Scheme)

• Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{q(n)}$ and $h \leftarrow \mathcal{H}_n$, and output $(s' = (s, \pi, h), v' = v)$

Let Π_n be the set of all functions from $\bigcup_{i=1}^n \{0,1\}^i$ to $\{0,1\}^{q(n)}$ for some "large enough" $q \in \text{poly}$ and let \mathcal{H} be a CRH.

Construction 32 (Inefficient stateless Scheme)

- Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{q(n)}$ and $h \leftarrow \mathcal{H}_n$, and output $(s' = (s, \pi, h), v' = v)$
- Sign'_s(m): choose $\bar{r} = \pi(h(m))_{1,...,n}$.
 - ① For i = 0 to n 1: if $a_{\overline{r}_1,...,i}$ was not set before:
 - $\bullet \quad \text{For both } j \in \{0,1\}, \, \text{let } (s_{\overline{r}_1,\ldots,i,j}, v_{\overline{r}_1,\ldots,i,j}) \leftarrow \text{Gen}(1^n; \pi(\overline{r}_1,\ldots,i,j))$
 - **2** Let $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_1}} (a_{\bar{r}_1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - ② Output $(\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}} = \operatorname{Sign}_{s_{\overline{r}}}(m))$
- Vrfy': unchanged

Let Π_n be the set of all functions from $\bigcup_{i=1}^n \{0,1\}^i$ to $\{0,1\}^{q(n)}$ for some "large enough" $q \in \text{poly}$ and let \mathcal{H} be a CRH.

Construction 32 (Inefficient stateless Scheme)

- Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{q(n)}$ and $h \leftarrow \mathcal{H}_n$, and output $(s' = (s, \pi, h), v' = v)$
- Sign'_s(m): choose $\bar{r} = \pi(h(m))_{1,...,n}$.
 - For i = 0 to n 1: if $a_{\overline{r}_1,...,i}$ was not set before:
 - $\bullet \quad \text{For both } j \in \{0,1\}, \text{ let } (s_{\overline{r}_1,\ldots,i,j}, v_{\overline{r}_1,\ldots,i,j}) \leftarrow \text{Gen}(1^n; \pi(\overline{r}_1,\ldots,i,j))$
 - **2** Let $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_1,...,i}} (a_{\bar{r}_1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - $\textbf{ Output } (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}} = \operatorname{Sign}_{s_{\overline{r}}}(m))$
- Vrfy': unchanged
- A single one-time signature key might be used several times, but always on the same message

Let Π_n be the set of all functions from $\bigcup_{i=1}^n \{0,1\}^i$ to $\{0,1\}^{q(n)}$ for some "large enough" $q \in \text{poly}$ and let \mathcal{H} be a CRH.

Construction 32 (Inefficient stateless Scheme)

- Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{q(n)}$ and $h \leftarrow \mathcal{H}_n$, and output $(s' = (s, \pi, h), v' = v)$
- Sign'_s(m): choose $\bar{r} = \pi(h(m))_{1,...,n}$.
 - For i = 0 to n 1: if $a_{\overline{r}_1,...,i}$ was not set before:
 - $\bullet \quad \text{For both } j \in \{0,1\}, \text{ let } (s_{\overline{r}_1,\ldots,i,j}, v_{\overline{r}_1,\ldots,i,j}) \leftarrow \text{Gen}(1^n; \pi(\overline{r}_1,\ldots,i,j))$
 - **2** Let $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_1,...,i}} (a_{\bar{r}_1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - $\textbf{ Output } (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}} = \operatorname{Sign}_{s_{\overline{r}}}(m))$
- Vrfy': unchanged
- A single one-time signature key might be used several times, but always on the same message

Let Π_n be the set of all functions from $\bigcup_{i=1}^n \{0,1\}^i$ to $\{0,1\}^{q(n)}$ for some "large enough" $q \in \text{poly}$ and let \mathcal{H} be a CRH.

Construction 32 (Inefficient stateless Scheme)

- Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{q(n)}$ and $h \leftarrow \mathcal{H}_n$, and output $(s' = (s, \pi, h), v' = v)$
- Sign'_s(m): choose $\bar{r} = \pi(h(m))_{1,...,n}$.
 - For i = 0 to n 1: if $a_{\overline{r}_1,...,i}$ was not set before:
 - For both $j \in \{0,1\}$, let $(s_{\overline{r}_1,\ldots,i,j}, v_{\overline{r}_1,\ldots,i,j}) \leftarrow \operatorname{Gen}(1^n; \pi(\overline{r}_1,\ldots,i,j))$
 - **2** Let $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_1}} (a_{\bar{r}_1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - ② Output $(\bar{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\bar{r}_{1,\dots,n-1}}, \sigma_{\bar{r}_{1,\dots,n-1}}, \sigma_{\bar{r}} = \operatorname{Sign}_{s_{\bar{r}}}(m))$
- Vrfy': unchanged
- A single one-time signature key might be used several times, but always on the same message

Efficient scheme:

Let Π_n be the set of all functions from $\bigcup_{i=1}^n \{0,1\}^i$ to $\{0,1\}^{q(n)}$ for some "large enough" $q \in \text{poly}$ and let \mathcal{H} be a CRH.

Construction 32 (Inefficient stateless Scheme)

- Gen'(1ⁿ): Set $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{q(n)}$ and $h \leftarrow \mathcal{H}_n$, and output $(s' = (s, \pi, h), v' = v)$
- Sign'_s(m): choose $\bar{r} = \pi(h(m))_{1,...,n}$.
 - For i = 0 to n 1: if $a_{\overline{r}_1,...,i}$ was not set before:
 - $\bullet \quad \text{For both } j \in \{0,1\}, \, \text{let } (s_{\overline{r}_1,\ldots,i,j}, v_{\overline{r}_1,\ldots,i,j}) \leftarrow \text{Gen}(1^n; \pi(\overline{r}_1,\ldots,i,j))$
 - **2** Let $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_1,...,i}} (a_{\bar{r}_1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - $\textbf{ Output } (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}_{1,\dots,n-1}}, \sigma_{\overline{r}} = \operatorname{Sign}_{s_{\overline{r}}}(m))$
- Vrfy': unchanged
- A single one-time signature key might be used several times, but always on the same message

Efficient scheme: use PRF

Getting rid of the CRH

Getting rid of the CRH

Definition 33 (target collision resistant (TCR))

A function family $\mathcal{H}=\{\mathcal{H}_n\}$ is target collision resistant, if any pair of PPT's A_1,A_2 :

$$\Pr[(x, a) \leftarrow \mathsf{A}_1(1^n); h \leftarrow \mathcal{H}_n; x' \leftarrow \mathsf{A}_2(a, h): \\ x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

Getting rid of the CRH

Definition 33 (target collision resistant (TCR))

A function family $\mathcal{H}=\{\mathcal{H}_n\}$ is target collision resistant, if any pair of PPT's A_1,A_2 :

$$\Pr[(x, a) \leftarrow \mathsf{A}_1(1^n); h \leftarrow \mathcal{H}_n; x' \leftarrow \mathsf{A}_2(a, h): \\ x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

Theorem 34

OWFs imply efficient compressing TCRs.

Definition 35 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential unforgeable (for short, target one-time signature), if for any pair of PPT's A_1 , A_2

```
\begin{aligned} & \text{Pr}\big[(m,a) \leftarrow \mathsf{A}_1(1^n); (s,v) \leftarrow \mathsf{Gen}(1^n); \\ & (m',\sigma) \leftarrow \mathsf{A}(a,\mathsf{Sign}_s(m)) \colon m' \neq m \land \mathsf{Vrfy}_v(m',\sigma) = 1\big] \\ & = \mathsf{neg}(n) \end{aligned}
```

Definition 35 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential unforgeable (for short, target one-time signature), if for any pair of PPT's A_1 , A_2

$$\begin{aligned} & \text{Pr}\big[(m,a) \leftarrow \mathsf{A}_1(1^n); (s,v) \leftarrow \mathsf{Gen}(1^n); \\ & (m',\sigma) \leftarrow \mathsf{A}(a,\mathsf{Sign}_s(m)) \colon m' \neq m \land \mathsf{Vrfy}_v(m',\sigma) = 1\big] \\ & = \mathsf{neg}(n) \end{aligned}$$

Claim 36

OWFs imply target one-time signatures.

Definition 37 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential unforgeable (for short, random one-time signature), if for any PPT A and any samplable ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$, it holds that

```
\begin{aligned} & \text{Pr}\big[m \leftarrow \mathcal{M}_n; (s, v) \leftarrow \text{Gen}(1^n); (m', \sigma) \leftarrow \text{A}(m, \text{Sign}_s(m)) : \\ & m' \neq m \land \text{Vrfy}_v(m', \sigma) = 1\big] \\ & = \text{neg}(n) \end{aligned}
```

Definition 37 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential unforgeable (for short, random one-time signature), if for any PPT A and any samplable ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$, it holds that

$$\begin{aligned} & \text{Pr}\big[m \leftarrow \mathcal{M}_n; (s, v) \leftarrow \text{Gen}(1^n); (m', \sigma) \leftarrow \text{A}(m, \text{Sign}_s(m)) : \\ & m' \neq m \land \text{Vrfy}_v(m', \sigma) = 1\big] \\ & = \text{neg}(n) \end{aligned}$$

Claim 38

Assume (Gen, Sign, Vrfy) is target one-time existential unforgeable, then it is random one-time existential unforgeable.

Assume that the underlying one-time signature scheme is target one-time and the hash function (e.g., \mathcal{H}) is a TCR, then Construction 32 is existential unforgeable signature scheme.

Assume that the underlying one-time signature scheme is target one-time and the hash function (e.g., \mathcal{H}) is a TCR, then Construction 32 is existential unforgeable signature scheme.

Proof:

Assume that the underlying one-time signature scheme is target one-time and the hash function (e.g., \mathcal{H}) is a TCR, then Construction 32 is existential unforgeable signature scheme.

Proof:

 Prove that if the underlying signature scheme is target one-time, then Construction 30 is stateful existential unforgeable

Assume that the underlying one-time signature scheme is target one-time and the hash function (e.g., \mathcal{H}) is a TCR, then Construction 32 is existential unforgeable signature scheme.

Proof:

- Prove that if the underlying signature scheme is target one-time, then Construction 30 is stateful existential unforgeable
- Prove that Construction 32 when used with a CRH is existential unforgeable signature scheme

Assume that the underlying one-time signature scheme is target one-time and the hash function (e.g., \mathcal{H}) is a TCR, then Construction 32 is existential unforgeable signature scheme.

Proof:

- Prove that if the underlying signature scheme is target one-time, then Construction 30 is stateful existential unforgeable
- Prove that Construction 32 when used with a CRH is existential unforgeable signature scheme
- Show that the underlying CRH can be safely replaced with a TCR