

Cartesian product of vector spaces

 ${\bf Canonical\ name} \quad {\bf Cartesian Product Of Vector Spaces}$

Date of creation 2013-03-22 15:16:06 Last modified on 2013-03-22 15:16:06 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 8

Author Mathprof (13753)

Entry type Definition
Classification msc 16-00
Classification msc 13-00
Classification msc 20-00
Classification msc 15-00

Suppose V_1, \ldots, V_N are vector spaces over a field \mathbb{F} . Then the Cartesian product $V_1 \times \cdots \times V_N$ is a vector space when addition and scalar multiplication is defined as follows

$$(u_1, \dots, u_N) + (v_1, \dots, v_N) = (u_1 + v_1, \dots, u_N + v_N),$$

 $k(u_1, \dots, u_N) = (ku_1, \dots, ku_N)$

for $u_i, v_i \in V_i, k \in \mathbb{F}$.

For example, the vector space structure of \mathbb{R}^n if defined as above.

Properties

- 1. If V_i are vector spaces and $W_i \subset V_i$ are subspaces, then $W_1 \times \cdots \times W_N$ is a vector subspace of $V_1 \times \cdots \times V_N$.
- 2. The dimension of $V_1 \times \cdots \times V_N$ is dim $V_1 + \cdots + \dim V_N$.