Predicting composite ultimate failure with support vector machines: a comparison of classical and quantum kernels

G. Tosti Balducci¹, B. Chen¹, M. Möller³, M. Gerritsma², R. de Breuker¹

¹ TU Delft, Aerospace Structures and Materials
² TU Delft, Flow Physics and Technology
³ TU Delft, Applied Mathematics

Introduction

- why using data-based substructures?
- prototypical substructures (OHCP)
 - symmetric, quasi-isotropic

SVM and kernels

SVM equation; kernels in the svm equation; RBF kernel; quantum kernels; kernel-target alignment.

Results

test accuracy vs C (pre-/post-alignment)

Open questions

 tbd

References

[1] http://www.lipsum.com/feed/html

