Билет 1

Понятие множества. Операции над множествами. $\mathit{Билеm}$ не просмотрен $\mathit{Kcowe\"u}$, но проверен $\mathit{Apm\"emom}$

Определение множества

Множество — это совокупность или объединение некоторых предметов произвольной природы, то есть элементов этого множества.

- A, B, ... множество
- a, b, c, ... элемент множества
- a принадлежит $A: a \in A$
- a не принадлежит A: $a \notin A$ или $a \in A$
- A подмножество $B \Rightarrow A \subset B$
- $A = B \Leftrightarrow A \subset B \land B \subset A$
- \varnothing, Λ пустое множество
- $\varnothing \in \{ \forall A \}$

Определение операции сложения

 $\exists \forall A, B$: сумма или объединение A и B — множество C, которое состоит из элементов, принадлежащих либо множеству A, либо множеству B: $C = A \cup B$

 $\bigcup_{\alpha} A_{\alpha}$ — сумма конечного или бесконечного числа множеств.

Определение операции пересечения

 $\exists \forall A, B \colon A \cap B$ пересечение A и B — множество C, состоящее из элементов, которые принадлежат как множеству A, так и множеству $B \colon C = A \cap B$

 $\bigcap_{\alpha} A_{\alpha}$ — пересечение конечного или бесконечного числа множеств.

Свойства сложения и пересечения

- 1. Коммутативность: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- 2. Ассоциативность $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$

Операции сложения и пересечения связанны свойством дистрибутивности:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) (1)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C) (2)$$

Доказательство (1)

- 1. $\sqsupset x \in (A \cup B) \cap C: x \in A \cup B$ и $x \in C \Rightarrow x \in C$ и $(x \in A$ или $x \in B) \Rightarrow x \in A \cap C$ или $x \in B \cap C \Rightarrow x \in (A \cap C) \cup (B \cap C)$
- 2. $\exists x \in (A \cap C) \cup (B \cap C) : x \in A \cap C$ или $x \in B \cap C \Rightarrow x \in C$ и $(x \in A$ или $x \in B) \Rightarrow x \in A \cup B$ и $x \in C \Rightarrow x \in (A \cup B) \cap C \square$.

Доказательство (2)

Аналогично (1)

Определение операции вычитания

 $\exists \forall A,B$: разность A и B — множество элементов C, которые принадлежат множеству A и не принадлежат множеству $B:C=A\backslash B$

Если $A \cap B = \emptyset \Rightarrow A$ и B — дизъюнктные.

$$A \triangle B = (A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$$
 (3)

Пусть S - основное множество, которое содержит все множества, рассматриваемые в совокупности множеств. Если $A \subset S$, то $S \setminus A = CA$ (или A').

Пусть $\exists \{ A_{\alpha} \}$, тогда имеет место следующие соотношения:

Соотношения двойственности
$$\begin{cases} S \backslash \bigcup_{\alpha} A_{\alpha} = \bigcap_{\alpha} (S \backslash A_{\alpha})(4) \\ S \backslash \bigcap_{\alpha} A_{\alpha} = \bigcup_{\alpha} (S \backslash A_{\alpha})(5) \\ C \bigcup_{\alpha} A_{\alpha} = \bigcap_{\alpha} CA_{\alpha}(4') \\ C \bigcap_{\alpha} A_{\alpha} = \bigcup_{\alpha} CA_{\alpha}(5') \end{cases}$$

Пусть $a\in\bigcup_{\alpha}CA_{\alpha}\Rightarrow a\in A_{\alpha}$ при некотором номере α_0

$$a \in S \Rightarrow a \in S \text{ и } a \in A_{\alpha_0} \Rightarrow a \notin \bigcap_{\alpha} A_{\alpha} \text{ и } a \in S \Rightarrow a \in C \bigcap_{\alpha} A_{\alpha}.$$

Пусть
$$a \in C \bigcap_{\alpha} A_{\alpha} \Rightarrow a \in S$$
 и $a \notin A_{\alpha}$ при некотором $\alpha = \alpha' \Rightarrow a \notin \bigcup_{\alpha} A_{\alpha}$ и $a \in S \Rightarrow C \bigcup_{\alpha} A_{\alpha}$