Intro to Algebra W3-2

fat

March 8, 2024

Proof of theorem 4+6.

We first prove that $F(\alpha) = F[\alpha]$. Clearly, $F[\alpha] \subseteq F(\alpha)$. We now prove $F(\alpha) \subseteq F[\alpha]$. Let $f(\alpha)/g(\alpha) \in F(\alpha)$, $g(\alpha) \neq 0$. Let $m(x) = m_{\alpha,F}(x)$. Now since m(x) is irreducible over F and has the property that $p(\alpha) = 0 \Leftrightarrow m(x)|p(x)$. The assumption $g(\alpha) \neq 0$ implies GCD(g(x), m(x)) = 1. (GCD(m(x), h(x)) is either 1 or m(x) since m(x) is irreducible over F.) Then since F[x] is a PID, $\exists a(x), b(x) \in F[x]$ s.t. a(x)g(x) + b(x)m(x) = 1.

$$\Rightarrow a(\alpha)g(\alpha) = 1 \Rightarrow g(\alpha)^{-1} = a(\alpha)$$

$$\Rightarrow \frac{f(\alpha)}{g(\alpha)} = f(\alpha)a(\alpha) \in F[\alpha]$$

$$\Rightarrow F(\alpha) \subseteq F[\alpha]$$

We now prove that

$$F[x]/_{(m(x))} \simeq F[\alpha]$$

Define $\phi: F[x] \to F[\alpha]$ by $f(x) \mapsto f(\alpha)$. It is a surjective ring homomorphism with $ker(\phi) = \{f(x) \in F[x] : f(\alpha) = 0\} (= I_{\alpha}) = (m(x))$.

$$\Rightarrow F[x]/(m(x)) \simeq F[\alpha]$$

We now prove that $\{1, \alpha, ..., \alpha^{n-1}\}$ is a basis for $F(\alpha)$ over F, where n = deg(m(x)). For $f(\alpha) \in F[\alpha] = F(\alpha), \exists ! q(x), r(x) \in F[x]$ s.t.

$$\begin{cases} f(x) = q(x)m(x) + r(x) \Rightarrow f(\alpha) = r(\alpha) \\ r(x) = 0 \text{ or } deg(r(x)) < deg(m(x)) \end{cases}$$

This implies that every element of $F[\alpha]$ can be written as $r(\alpha)$ for some $r(x) \in F[x]$ with r(x) = 0 or $deg(r) \le n-1$. $\Rightarrow \{1, \alpha, ..., \alpha^{n-1}\}$ spans $F[\alpha] = F(\alpha)$. Now if $a_0, ..., a_{n-1}$ are elements of F s.t. $a_0 + a_1\alpha + ... + a_{n-1}\alpha^{n-1} = 0$. Then $m(x)|(a_0 + a_1x + ... + a_{n-1}x^{n-1})$ Thus, $\{1, \alpha, ..., \alpha^{n-1}\}$ is linearly independent over F.

Example 1. $F = \mathbb{R}, \alpha = i = \sqrt{-1}, m(x) = x^2 + 1$. According to the proof of the theoren, to find $(ai + b)^{-1}$, where $a, b \neq 0$. We shall find s(x), t(x) s.t. $s(x)(ax + b) + t(x)(x^2 + 1) = 1$. Then $(ai + b)^{-1} = s(i)$. We have

$$x^{2} + 1 = (a^{-1}x - \frac{b}{a^{2}})(ax + b) + 1 + \frac{b^{2}}{a^{2}}$$

$$\Rightarrow s(x) = \frac{x/a - b/a^2}{+b^2/a^2} = \frac{ax - b}{a^2 + b^2}$$
$$(ai + b)^{-1} = s(i) = \frac{ai - b}{a^2 + b^2}$$

Remark 1. If α is transcendental over F, then $F(\alpha) \simeq F(x)$.

Proposition 1. α is algebraic over $F \Leftrightarrow [F(\alpha):F] < \infty$.

Proof.

We have proved \Rightarrow in Theorem 4 + 6. Conversely, assume that $[F(\alpha):F]=n<\infty$. Consider $1,\alpha,...,\alpha^n$. Since $\#\{1,\alpha,...,\alpha^n\}=n+1>dim_F(F(\alpha))=n,\ \exists a_0,...,a_n\in F,\ \text{not all zero s.t.}\ a_0+a_1\alpha+...+a_n\alpha^n=0.\ \Rightarrow \alpha$ is algebraic over F.

Corollary 1. If K/F is a finite extension, then K/F is an algebraic extension. (The converse is not true in general.)

Theorem 1. Let L/K/F. Then [L:F] = [L:K][K:F].

Example 2. Claim $\sqrt{2} \ni \mathbb{Q}(2^{1/3})$.

Proof.

iWe have $[\mathbb{Q}(2^{1/3}):\mathbb{Q}]=3$. Now if $\sqrt{2}\in\mathbb{Q}(2^{1/3})$, then $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(2^{1/3})$ and $[\mathbb{Q}(2^{1/3}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$, which is impossible.

Proof of Theorem.

Note that if any of the degree is ∞ , then both sides are equal to ∞ . So we assume that [L:K]=m, [K:F]=n are finite. Let $\{\alpha,...,\alpha_m\}$ be a basis for L over K, $\{\beta_1,...,\beta_n\}$ be a basis for K over F.

Claim. $\{\alpha_i\beta_j: i=1,...,m, j=1,...,n\}$ is a basis for L over F.

Proof.

Given $r \in L$. Since $\{\alpha_1, ..., \alpha_n\}$ is a basis for L/K, we have

$$r = \sum_{i=1}^{m} a_i \alpha_i$$
 for some $a_i \in K$

Then because $\{\beta_1, ..., \beta_n\}$ is a basis for K over F, we have for each i

$$a_i = \sum_{j=1}^n b_{ij} \beta_j$$
 for some b_{ij}

$$\Rightarrow r = \sum_{i=1}^{m} (\sum_{j=1}^{n} b_{ij} \beta_j) \alpha_i \in \text{ span of } \{\alpha_i \beta_j\}$$

$$\Rightarrow L \subseteq span\{\alpha_i\beta_j\}$$

Now assume that c_{ij} are elements of F s.t.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \alpha_i \beta_j = 0$$

Then

$$0 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} c_{ij} \beta_j\right) \alpha_i$$

Since $\{\alpha_1,...,\alpha_m\}$ is linearly independent over K. We have $\sum_{j=1}^n c_{ij}\beta_j = 0 \ \forall i$. Then since $\{\beta_1,...,\beta_n\}$ is linearly independent over F, we have $c_{ij} = 0 \ \forall i,j$