二、主要计算题

1、已知灰度图像 f(x,y) 如下矩阵所示,求经过变换后的图像 g(x,y), 变换函数如图 4-1。

解: $\begin{bmatrix} 255 & 0 & 255 \\ 255 & 255 & 255 \\ 255 & 0 & 255 \end{bmatrix}$

2、已知一幅 64X64 像素的数字图像有 8 个灰度级,各灰度级出现的概率如下表,试将此图像进行直方图均衡化。

f(x, y)	n_k	n_k/n
0	560	0. 14
1/7	920	0. 22
2/7	1040	0. 26
3/7	705	0. 17
4/7	356	0.09
5/7	267	0.06
6/7	170	0.04
1	78	0.02

解:

$$\begin{split} s_0 &= T(r_0) = \sum_{j=0}^0 P_r(r_j) = P_r(r_0) = 0.14 \\ s_1 &= T(r_1) = \sum_{j=0}^1 P_r(r_j) = P_r(r_0) + P_r(r_1) = 0.36 \\ s_2 &= T(r_2) = \sum_{j=0}^2 P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) = 0.62 \\ s_3 &= T(r_3) = \sum_{j=0}^3 P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) + P_r(r_3) = 0.79 \\ s_4 &= T(r_4) = \sum_{j=0}^4 P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) + P_r(r_3) + P_r(r_4) = 0.88 \\ s_5 &= T(r_5) = \sum_{j=0}^5 P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) + P_r(r_3) + P_r(r_4) + P_r(r_5) = 0.94 \\ s_6 &= T(r_6) = \sum_{j=0}^6 P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) + P_r(r_3) + P_r(r_4) + P_r(r_5) + P_r(r_6) = 0.98 \\ s_5 &= T(r_7) = \sum_{j=0}^7 P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) + P_r(r_3) + P_r(r_4) + P_r(r_5) + P_r(r_6) + P_r(r_7) = 1 \\ s_0 &= 0.14 \approx \frac{1}{7}, s_1 = 0.36 \approx \frac{3}{7}, s_2 = 0.62 \approx \frac{4}{7}, s_3 = 0.79 \approx \frac{6}{7}, \\ s_4 &= 0.88 \approx \frac{6}{7}, s_5 = 0.94 \approx 1, s_6 = 0.98 \approx 1, s_7 = 1 \\ s_0 &= \frac{1}{7}, s_1 = \frac{3}{7}, s_2 = \frac{4}{7}, s_3 = \frac{6}{7}, s_4 = 1, \end{split}$$

r0 经变换得 s0=1/7, 所以有 5 6 0 个像素取 s0 这个灰度值,

r1 映射到 s1=3/7, 所以有 9 2 0 个像素取 s1=3/7 这一灰度值,

r2 映射到 s2=4 /7,有 1 0 4 0 个像素取 s2=5 /7 这一灰度值。

 \mathbf{r} 3 和 \mathbf{r} 4 均映射到 \mathbf{s} 3=6/7 这一灰度级,所以有 7 0 5 + 3 5 6 = 1 0 6 1 个 像素取这个值。

r5、r6 和 r7 均映射到 s4=1 这一灰度级,有 2 6 7 + 1 7 0 + 7 8=5 15 个像素取 s4=1 这个新灰度值。

f(x,y)	n_k	n_k/n
0	560	0. 14
1	920	0. 22
2	1040	0. 26
3	1061	0. 26
4	515	0.12

3、设图像如图 5-1 所示,分别求经平滑和高通锐化的结果,其中边缘点

保持不变,平滑算子为
$$H = \frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 $H = \frac{1}{9}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 锐化算子

$$H = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \qquad H = \frac{1}{9} \begin{bmatrix} -1 & -1 \\ -1 & 8 \\ -1 & -1 \end{bmatrix}$$

1∉	1∉	3∉	4₽	5∉	٦
2∉	1∉	4∻	5₽	5∉	٦
2∉	3∉	5÷	4₽	5÷	٦
3∉	2∉	3∉	3₽	2∉	٦
4∻	5∉	4∻	1₽	14	٦

解:均值滤波结果:

1	1	3	4	5
2	2	3	4	5
2	3	3	4	5
3	3	3	3	2
4	5	4	1	1

高通锐化结果:

1	1	3	4	5
2	-13	6	5	5
2	2	15	0	5
3	-13	-14	-1	2
4	5	4	1	1

4、对图像发 f2 进行 8 邻鱼进行邻域平均滤波。

$$f_2 = \begin{bmatrix} 1 & 2 & 1 & 4 & 3 \\ 1 & 2 & 2 & 3 & 4 \\ 5 & 7 & 6 & 8 & 9 \\ 5 & 7 & 6 & 8 & 8 \\ 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

5、对图像 f_2 进行中值滤波,模板大小为 3×3 。

$$f2 = \begin{bmatrix} 1 & 5 & 25 & 10 & 20 & 20 \\ 1 & 7 & 25 & 10 & 10 & 9 \\ 3 & 7 & 10 & 10 & 2 & 6 \\ 1 & 0 & 8 & 7 & 2 & 1 \\ 1 & 1 & 6 & 50 & 2 & 2 \\ 2 & 3 & 9 & 7 & 2 & 0 \end{bmatrix}$$

解:

$$f2 = \begin{bmatrix} 1 & 5 & 25 & 10 & 20 & 20 \\ 1 & 7 & 10 & 10 & 10 & 9 \\ 3 & 7 & 8 & 10 & 7 & 6 \\ 1 & 3 & 8 & 7 & 2 & 1 \\ 1 & 2 & 7 & 7 & 2 & 2 \\ 2 & 3 & 9 & 7 & 2 & 0 \end{bmatrix}$$

6、已知二值图象 f_3 ,写出用结构元素 S(阴影处为原点)对其分别进行腐蚀和膨胀运算结果。

$$S = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

解:

膨胀结果 =
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

7、对图 4-3 采用基于区域生长的方法进行图像分割,种子像素选为图中斜线画出的像素,给出生长准则为:邻近像素与当前区域灰度差值 T<=2,选用 8 邻域,请画出这两种情况下的分割结果,重新作图,将分割出来的目标区域用斜线标明。

1	0	4	7	5
1	0	4	7	7
0	1	5	5	5
2	0	5	6	5
2	2	5	6	4

图 4-3

解:

T<=2 的分割结果

1	0	4	7	5
1	0	4	7	7
0	1	5	5	5
2	0	5	6	5
2	2	5	6	4