Computabilità e Algoritmi (Computabilità) 20 Giugno 2012

Esercizio 1

Considerare la variante URM⁻della macchina URM ottenuta sostituendo l'istruzione successore S(n) con l'istruzione predecessore P(n). L'esecuzione di P(n) sostituisce il contenuto r_n del registro n con $r_n - 1$. Dire quale relazione sussiste tra l'insieme \mathcal{C}^- delle funzioni calcolabili con la macchina URM⁻ e l'insieme \mathcal{C} delle funzioni calcolabili con la macchina URM. Sono uno contenuto nell'altro? L'inclusione è stretta? Motivare le risposte.

Esercizio 2

Esiste una funzione totale non calcolabile $f: \mathbb{N} \to \mathbb{N}$ con la proprietà che $f(x) = x^2$ per ogni $x \in \mathbb{N}$ tale che $\varphi_x(x) \downarrow$? Motivare adeguatamente la risposta fornendo un esempio di tale funzione, se esiste, o dimostrando che non esiste, altrimenti.

Esercizio 3

Detto $A = \{x \mid \varphi_x \text{ è totale}\}$, dimostrare che $\bar{K} \leq_m A$.

Esercizio 4

Dato $X \subseteq \mathbb{N}$ si definisca $inc(X) = X \cup \{x+1 : x \in X\}$. Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : inc(W_x) = E_x\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Dimostrare che data $f: \mathbb{N} \to \mathbb{N}$ funzione totale calcolabile iniettiva, l'insieme $C_f = \{x: f(x) \in W_x\}$ non è saturato.