Stability of Nobelium isotopes against decay

G.Tripathy¹,* C. Dash², P. Mohanty¹, K. K. Jena³, P. K. Moharana⁴, B. B. Sahu^{1*}

¹ School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, India

² Department of Physics, Maharaja Sriram Chandra Bhanja Deo University, Baripada-757003,India

³ Department of Applied Physics and Ballistics, Fakir Mohan University, Balasore-756019, India

⁴ Department of Physics, School of IKST, KISS Deemed to be University, Bhubaneswar 751024, India

* email: 2081130@kiit.ac.in; bbsahufpy@kiit.ac.in

Introduction:

In the region of trans-fermium elements the nuclear shell structure acquires special importance for the nuclear stability as the fission barriers decreases to zero. The investigation of the radioactive decay properties is one of the main directions of modern nuclear physics and has recently made great progress due to the use of efficient detector arrays. We have calculated the binding energy (B.E.) hence Q-value of even-even isotopes of Nobelium (Z =102, A = 234-312) within relativistic mean field model (RMF) [1-3] with NL3* force parameter [4].

Theoretical Formulation: Modified Royer Formula (MROYER)

To calculate $Log_{10}T_{1/2}(\alpha)$ we use modified Royer formula by Akrawy *et al.*[5]

Log₁₀T_{1/2}
$$\alpha$$
{N-Z}(s) = a + b A^{1/6} $\sqrt{Z}{+}\frac{cZ}{\sqrt{Q_{\alpha}}}$ + dI+eI²

Where I = A and a, b, c, d, are constant parameters taken from royer formula pdf. Here Q^{α} is the energy released during alpha decay.

Modified Universal Decay Law (MUDL)

By adding the asymmetry term to Universal decay law it gets modified and known as modified universal decay law [6], Which is

$$Log_{10}^{T_{1/2}^{\alpha}} = a \qquad Z_{\alpha}Z_{d}\sqrt{\frac{A}{Q_{\alpha}}} + b$$

$$\sqrt{AZ_{\alpha}Z_{d}(A_{A_{\alpha}A_{\alpha}}^{\frac{1}{3}} + A_{\alpha}^{\frac{1}{3}})} + c + dI + eI^{2}$$

Here $A = \overline{A_{\alpha} + A_d}$ where A_d and A_{α} are mass number of daughter and alpha particle respectively, $I = \frac{N-Z}{A}$ is the asymmetry term,

a,b,c,d,e are constant parameters taken from [6] **Spontaneous Fission**

The formula for $T_{1/2}$ of spontaneous fission [7]

18
$$T_{sf}^{1/2} = \exp \left\{ 2 \pi \left[c_0 + c_1 A + c_2 z^2 + c_3 z^4 + c_4 (N - z)^2 \right] \right\}$$

$$(0.13323A^{\frac{z^2}{1}} - 11.64)$$

This is valid for even-even nuclei ,here Z,N and A are atomic number ,neutron number and mass number respectively $.c_0$, c_1, c_2, c_3, c_4 are constant parameters from [7]

Universal Decay Law (UDL)

To calculate the half life of Cluster decay (T $_{1/2}$) from Z=102 for 12 C & 14 C (instead of $^{\alpha}$)respectively using Universal decay law

Log
$$T_{1/2}^{\alpha} = Z_{\alpha}Z_{d}\sqrt{\frac{A}{Q_{\alpha}}} + b\sqrt{AZ_{\alpha}Z_{d}(A_{d}^{\frac{1}{3}} + A_{\alpha}^{\frac{1}{3}})} + c$$

Here all the symbols have usual meaning ,&a,b,c are constant parameters taken from [6]

Conclusion:

From the Table-1, it is clear that favourable decay mode for most of the nuclei is spontaneous fission except Z=102, N=152, 154. Our study indicates a constant deformation in the isotope chain of nobelium around the neutron shell closure N=152 and /or 154.

References:

- [1] G. A. Lalazissis et al., Nuclear Physics A, 608(2), 202 (1996)
- [2] R. R. Swain et al Chinese Phys. C 42 084102 (2018)
- [3] R R Swain, and B.B. Sahu,2019. Chinese Physics C, 43(10), p.104103.
- [4] Lalazissis, G.A. et al. Physics Letters B, 671, 36-41. (2009)
- [5] Akrawy, D.T. et al. Physical Review C, 100, 034608. (2019)
- [6] Akrawy, D.T. et al. IJMPE, 28, 1950075. (2019)

[7] Saxena, G. et al. IJMPE, 28, 1950008. (2019)

Table:1

Α	N	LogT _{1/2} (\alpha)	LogT _{1/2} (\alpha)	LogT _{1/2} (s)	LogT _{1/2}	LogT _{1/2}	Favourabl
11	1	(s)	(s)	SF	(s)	$(s) (^{14}{}_{6}C)$	e Decay
		(MROYER)	(MUDL)	22	$\begin{pmatrix} 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 $	(UDL)	Mode
		(1.1110 1 111)	(1.1022)		(UDL)	()	
234	132	-5.264	-6.04141	-99.7196	0.2328		SF
236	134	-4.363	-5.0731	-81.6644	3.286	8.477	SF
238	136	-2.133	-2.72638	-65.262	8.573	12.647	SF
240	138	-1.239	-1.77889	-50.5117	13.105	18.583	SF
242	140	-1.411	-1.94892	-37.4128	17.298	22.52	SF
244	142	-0.692	-1.1944	-25.9648	18.186	26.569	SF
246	144	0.43	-2.34677	-16.1659	19.216	26.343	SF
248	146	9.351	9.27794	-8.0159	25.538	31.41	SF
250	148	4.092	3.78129	-1.5138	23.822	27.699	SF
252	150	3.748	3.4079	3.3410	25.934	27.481	SF
254	152	5.106	4.8060	6.5489	27.468	27.715	α
256	154	6.558	6.29958	8.1112	28.137	27.713	α
258	156	8.336	8.1293	8.0282	30.928	26.618	SF
260	158	10.642	10.50589	6.3007	35.649	28.242	SF
262	160	12.378	12.28477	2.9294	40.452	31.105	SF
264	162	13.806	13.7395	-2.0852	44.21	33.794	SF
266	164	10.395	10.13927	-8.7425	44.194	33.032	SF
268	166	10.366	10.06749	-17.0417	44.259	31.592	SF
270	168	11.565	11.27387	-26.9828	45.434	31.567	SF
272	170	15.465	15.2973	-38.5644	48.458	32.83	SF
274	172	20.738	20.7522	-51.7862	57.292	38.692	SF
276	174	16.871	16.6623	-66.6478	63.531	43.346	SF
278	176	20.651	20.5544	-83.1485	63.022	47.643	SF
280	178	22.615	22.5485	-101.2881	64.07	46.582	SF
282	180	15.258	14.8073	-121.0658	61.784	41.93	SF
284	182	18.348	17.9731	-142.4810	60.116	40.631	SF
286	184	17.138	16.6465	-165.5337	57.411	37.705	SF
288	186	7.174	6.1748	-190.2229	49.414	29.698	SF
290	188	17.899	17.3098	-216.5485	48.423	28.126	SF
292	190	22.602	22.15337	-244.5099	44.008	26.487	SF
294	192	22.895	22.39033	-274.1065	58.526	22.735	SF
296	194	27.426	27.05203	-305.3388	69.645	31.354	SF
298	196	38.466	38.51353	-338.2048	81.453	38.563	SF
300	198	51.067	51.60446	-372.7050	101.482	45.553	SF
302	200	55.602	56.26916	-408.8390	124.954	54.202	SF
304	202	72.307	73.64801	-446.6063	155.018	64.148	SF
306	204	84.864	86.69298	-486.006	170.174	73.47	SF
308	206	93.791	95.94593	-527.039	179.555	75.146	SF
310	208	127.05	130.62323	-569.7039	195.714	76.585	SF
312	210	132.164	135.89143	-614.0005	205.551	76.507	SF