Lecture #7

Syntax Analysis - I

Syntax Analysis

- **1. if** (**acid** < base) ++acid;
 - **Parser Input:** K_IF, (, <ID, acid>, <, <ID, base>,), ++, <ID, acid>, DELIM
 - Parser Output:

- After lexical analysis, we have a series of tokens.
- In syntax analysis (or parsing), we want to interpret what those tokens mean.
- Goal: Obtain the *structure* described by the series of tokens Report *errors* if the tokens do not properly encode a structure.

Formal Grammar

A grammar, G, is a 4-tuple $G=\{S,N,T,P\}$, where:

S is a starting symbol; N is a set of non-terminal symbols; T is a set of terminal symbols; P is a set of production rules.

Example:

LAUGH → LAUGH hah rule 1
/ hah rule 2

We can use this grammar to create sentences: E.g.:

Rule Sentential Form

- LAUGH
- 1 LAUGH hah
- 2 hah hah

Such a sequence of rewrites is called a derivation

Derivations

$$\alpha A\beta \rightarrow \alpha \gamma \beta$$
 if $A \rightarrow \gamma$

$$\begin{cases} \alpha \to \alpha \\ \alpha \stackrel{*}{\to} \beta \quad \text{and} \quad \beta \to \gamma \quad \text{then} \quad \alpha \stackrel{*}{\to} \gamma \end{cases}$$

$$S \stackrel{*}{\Rightarrow} \alpha$$

α is a sentential form

α is a sentence if it contains only terminal symbols

The process of discovering a derivation for some sentence is called parsing!

Regular Grammars and DFAs

- We need a *language* for describing valid strings of tokens and a method for distinguishing valid from invalid strings of tokens.
- Regular Grammar Productions have the form: $A \rightarrow xB$ or $A \rightarrow \epsilon$
- Regular Grammar to DFA:
 - Terminal symbols *Input alphabet* for the DFA
 - Non-terminal symbols Represent States
 - If a production has the form: $A \rightarrow \varepsilon$, then 'A' is an accepting state
 - A production of the form $A \rightarrow xB$ denotes a transition from state 'A' to state 'B' on input symbol 'x'.

Syntax Analysis using DFAs?

• Can we do syntax analysis with DFAs?

We could design a grammar for expressions of the form 'num + num' using a DFA

- Programming languages have recursive structures
 - For eg: $EXPR \rightarrow if EXPR$ then EXPR else EXPR | OTHER |
- DFAs cannot count cannot handle such programming structures
 - Example: Regular grammars cannot define: *Expressions with* properly balanced parentheses $\{(^i)^i \mid i \geq 0\}$ [S \rightarrow (S) | ϵ]
 - Similarly: Functions with properly nested block structure

Push Down Automata

- The situation can be handled if the DFA is augmented with *memory*
 - Memory implemented as a stack
 - Such an automata is called *Push Down Automata* (*PDA*)
- State table for a PDA that recognizes nested parentheses:

		Input Symbol		
		()	EOF
State	0	Push 1	Error	Accept
	1	Push 1	Pop	Error

 Determine the stack values and actions at each step as the following string is parsed: (() (()))

Context Free Grammars

- PDAs have the power to accept Context Free Grammars (CFGs)
- Formally a CFG G = (T, N, S, P), where:
 - T is the set of <u>terminal</u> symbols in the grammar (i.e., the set of tokens returned by the lexical analyzer)
 - N, the <u>non-terminals</u>, are variables that denote sets of (sub)strings occurring in the language. These impose a structure on the grammar.
 - S is the *goal symbol*, a distinguished non-terminal in N denoting the entire set of strings in L(G).
 - P is a finite set of <u>productions</u> specifying how terminals and non-terminals can be combined to form strings in the language. Each production must have a single non-terminal on its left hand side.

Context Free Grammars

• A possible CFG for arithmetic operations:

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

• Input string: id * id + id

$$E \rightarrow E + E$$

$$\rightarrow E * E + E$$

$$\rightarrow id * E + E$$

$$\rightarrow id * id + E$$

$$\rightarrow id * id + id$$

$$Left-Most Derivation$$

- Inorder traversal of the leaves give the original input string
- All derivations of a string should yield the same parse tree

Ambiguity

- Derivation defines a parse tree
- A grammar is *ambiguous* if more than one right-most or left-most derivations may be obtained for some string / sentence
- Equivalently, a grammar is ambiguous if more than one parse tree may be obtained for some string

Eliminating Ambiguity

- Ambiguity is bad
 - Leaves meaning of some programs ill-defined
 - Leaves up to the compiler which parse tree to accept
- Several ways to handle ambiguity
- Layering (most direct)

$$E \rightarrow E + E \mid E * E \mid (E) \mid id \longrightarrow E' + E \mid E'$$

$$E \rightarrow id * E' \mid id \mid (E) * E' \mid (E)$$

- Enforces precedence of '*' over '+'
- E controls '+' and E' controls '*'
- All the '+'s will be handled before any of the '*'s
- '*'s will always be nested more deeply inside the parse tree than the '+'s

Eliminating Ambiguity

Another Expression

 $E \rightarrow if E then E | if E then E else E | OTHER$

- The expression: if \mathbf{E}_1 then if \mathbf{E}_2 then \mathbf{E}_3 else \mathbf{E}_4 has two separate parse trees
- The property that we want is: else matches the closest unmatched then
- Can be resolved as:

 $E \rightarrow MIF | UIF$ $MIF \rightarrow if E then MIF else MIF | OTHER$ $UIF \rightarrow if E then E | if E then MIF else UIF$

Eliminating Left-Recursion

Direct Left-Recursion

$$A \rightarrow A\alpha \mid \beta$$

$$\downarrow$$

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

$$A \rightarrow A\alpha 1 \mid ... \mid A\alpha m \mid \beta 1 \mid ... \mid \beta n$$

$$\downarrow$$

$$A \rightarrow \beta 1 A' \mid ... \mid \beta n A'$$

$$A' \rightarrow \alpha 1 A' \mid ... \mid \alpha n A' \mid \epsilon$$

Eliminating Left-Recursion

Indirect Left-Recursion

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$

Algorithm

```
Arrange the non-terminals in some order A_1,...,A_n. for (i in 1..n) { for (j in 1..i-1) { replace each production of the form A_i \rightarrow A_j \gamma by the productions A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid ... \mid \delta_k \gamma where A_j \rightarrow \delta_1 \mid \delta_2 \mid ... \mid \delta_k } eliminate the immediate left recursion among A_i productions }
```

Left Factoring

$$A \rightarrow \alpha\beta1 \mid ... \mid \alpha\beta n \mid \gamma$$

$$A \rightarrow \alpha A' \mid \gamma$$

$$A' \rightarrow \beta1 \mid ... \mid \beta n$$

Next Lecture

Top-Down Parsing