D3 laser grain

Particulate Matter

detection pass sensor

Product Description:

The D3 Particle Detection Sensor is a cutting-edge digital sensor designed based on laser scattering principles. Its primary function is to provide real-time measurement of current particle concentrations, covering a particle size range from 0.3µm to 10µm. Equipped with a variety of digital output interfaces and a unique power-on self-calibration feature, this sensor boasts excellent consistency and stability. Its versatility allows seamless integration into various instruments or equipment related to particle concentration, delivering timely and precise data.

Main Features:

- ♦ Laser scattering principle for precise measurements
- ♦ Real-time responsiveness with continuous data collection support
- Minimum resolution for particle size: 0.3μm
- ♦ Dual-frequency data acquisition technology
- Unique laser self-calibration technology
- ♦ Robust metal shielding shell for excellent anti-interference performance
- ♦ Customizable air outlet direction for a wide range of applications
- ♦ Standard serial port digital output with PWM pulse width output support

Working Principle:

The sensor operates on the laser scattering principle. As air passes through the measurement cavity, suspended particles scatter the laser, and the collected scattered light intensity forms a curve with respect to time. Utilizing the Mie (MIE) theory, the microprocessor calculates the equivalent particle size and the number of particles of different sizes per unit volume. The functional parts of the sensor are illustrated in the block diagram shown in Figure 1.

Figure 1 sensor functional block diagram architecture

Technical indicators

parameter	smallest	typical	max	unit	
Measuring range	0.3	2.5	10	μm micron	
Effective range of particulate matter mass concentration	0	700	-	μg/m3 microgram/cubic meter	
Particulate matter concentration maximum range	≥1000			μg/m3 microgram/cubic meter	
Particulate matter concentration maximum range (PWM)	996			μg/m3 microgram/cubic meter	
Particulate matter mass concentration resolution	-	1	-	μg/m3 microgram/cubic meter	
Weigh the accurate volume	-	0.1	-	L liter	
Particulate matter quantity range	0	-	65535	pieces/0.1L	
DC supply voltage	4.90	5	5.10	V volts	
Interface level	2.7	3.3	3.6	V volts	
Maximum working current	-	-	70	mA milliampere	
Response time	0	1	10	S seconds	
Operating temperature	-10	25	60	°C degrees Celsius	
Storage temperature	-30	25	80	°C degrees Celsius	
Working humidity (non-condensing)	5%	40%	80%	RH	
Storage humidity (non-condensing)	0%	40%	95%	RH	
Particulate matter mass concentration consistency (0~100 ug/m3)	-	±10	-	ug/m3 micrograms/cubic meter	
Particulate matter mass concentration consistency (≥100 ug/m3)	-	±10%	-	ug/m3 micrograms/cubic meter	

PIN1	VCC	power supply 5V
PIN2	GND	power ground
PIN3	NC	NC
PIN4	RXD	Serial port receiving pin (3.3Vlevel)
PIN5	TxD	Serial port transmit pin (3.3Vlevel)
PIN6	RESET	Leave empty when in use. Connecting it low will disable the module.
PIN7	NC	NC
PIN8	PWM	PWM Pulse width signal output pin (3.3Vlevel)

Communication Interface

Notice:

1. PWM The output simply connect PIN1(+5V), PIN2(GND) & PIN8(PWM)

PIN 5	UART	Default output	3.3V interface level
PIN 8	PWM	Default output	3.3V interface level

Note: The UART interface level is 3.3V. If the MCU end operates at 5V, it is advisable to incorporate a level conversion mechanism. Alternatively, a 200-ohm resistor can be connected from MCU TXD to this network. This connection is optional but may be left unaltered if not needed.

Figure 2 For serial communication connect PIN1(+5V), PIN2(GND) & PIN5(TX)

Packet length: 32byte(8BIT)

The data string is as follows:

BYTE0	Starter1	0x42	(fixed)	
BYTE1	Starter2	0x4d	(fixed)	
BYTE2	The upper eight bits of the frame length		Frame length=2×13+2(data+Check Digit)	
BYTE3	Frame length lower eight bits			
BYTE4	PM1.0 High eight digits		expressPM1.0concentration(0.3um~1.0um),	
BYTE5	PM1.0 Lower eight bits		unit μg/m3(standard particulate matter)	
BYTE6	PM2.5 High eight digits		expressPM2.5concentration(0.3um~2.5um),	
BYTE7	PM2.5 Lower eight bits		unit μg/m3(standard particulate matter)	
BYTE8	PM10 High eight digits		expressPM10concentration(0.3um~10um),	
BYTE9	PM10 lower eight digits		unit μg/m3(standard particulate matter)	
BYTE10	PM1.0 High eight digits		expressPM1.0concentration(0.3um~1.0um),	
BYTE11	PM1.0 Lower eight bits		unit μg/m3(under atmospheric environment)	
BYTE12	PM2.5 High eight digits		expressPM2.5concentration(0.3um~2.5um),	
BYTE13	PM2.5 Lower eight bits		unit μg/m3(under atmospheric environment)	
BYTE14	PM10 High eight digits		expressPM10concentration(0.3um~10um),	
BYTE15	PM10 lower eight digits		unit μg/m3(under atmospheric environment)	
BYTE16	High number of particles		express0.1The diameter in the air is 0.3um	
BYTE17	Low number of particles		The number of particles above	
BYTE18	High number of particles		(Already blocked, special request is required) express0.1The diameter in the air is 0.5um	
BYTE19	Low number of particles		The number of particles above	
	·	ļ	(Already blocked, special request is required)	
BYTE20	High number of particles		express0.1The diameter in the air is 1.0um The following number of particles	
BYTE21	Low number of particles		(Already blocked, special request is required)	
BYTE22	High number of particles		express0.1The diameter in the air is 2.5um	
BYTE23	Low number of particles		The following number of particles (Already blocked, special request is required)	
BYTE24	High number of particles		express0.1The diameter in the air is 5.0um	
BYTE25	Low number of particles		The number of particles above (Already blocked, special request is required)	
BYTE26	High number of particles		express0.1The diameter in the air is 10um	
BYTE27	Low number of particles	+	The following number of particles	
DVTF20		+	(Already blocked, special request is required)	
BYTE28			Reserve (ignore)	
BYTE20	Inspection and high position		Chack codo=(PVTE0+PVTE1+++PVTE20)	
BYTE30	Inspection and high position		Check code=(BYTE0+BYTE1++BYTE29). The sum of the previous 30 BYTEs.	
BYTE31	checksum low		THE Sum of the previous 30 Bites.	

Precautions:

- 1. Ensure the metal casing and the sensor's internal power ground are connected, avoiding short-circuits with external circuits or the chassis shell.
- 2. For optimal installation, place the sensor's air inlet and outlet plane near the air holes on the user's machine's inner wall, ensuring a 2cm clearance and no obstructions. Maintain air flow isolation between the inlet and outlet to prevent reverse airflow.
- 3. The equipment's air inlet and outlet openings should not be smaller than the sensor inlet size.
- 4. When using the sensor in purifier products, avoid direct placement in the purifier's air duct. Design an independent structural space for the sensor within the air duct to prevent contamination from the purifier's airflow.
- 5. Install the sensor at a position 15-20cm above the ground to prevent ground dust, floating objects, or large dust particles from hindering fan rotation. Consider using pre-filtration in dusty environments.
- 6. Never disassemble the sensor, including the metal shielding shell, to prevent irreversible damage.
- 7. Ensure data consistency by not using third-party testing instruments or data as a comparison standard. If aligning with third-party testing equipment is necessary, perform data fitting based on actual collection results for calibration.
- 8. The sensor is suitable for ordinary indoor environments. In extreme conditions, such as excessive dust accumulation, oil build-up, or water intrusion, data consistency may be compromised. Avoid use in environments where:
 - a) Annual dust concentration exceeds 300 micrograms/cubic meters for more than 50% of the time or exceeds 500 micrograms/cubic meters for more than 20% of the time.
 - b) Oil fume is present.
 - c) High water mist is present. d) Outdoor use.

Checksum calculation

Byte 1: 0b01000010	0x42	66
Byte 2: 0b01001101	0x4D	77
Byte 3: 0b00000000	0x00	0
Byte 4: 0b00011100	0x1C	28
Byte 5: 0b00000000	0x00	0
Byte 6: 0b00000110	0x06	6
Byte 7: 0b00000000	0x00	0
Byte 8: 0b00001010	0x0A	10
Byte 9: 0b00000000	0x00	0
Byte 10: 0b00001100	0x0C	12
Byte 11: 0b00000000	0x00	0
Byte 12: 0b00000110	0x06	6
Byte 13: 0b00000000	0x00	0
Byte 14: 0b00001010	0x0A	10
Byte 15: 0b00000000	0x00	0
Byte 16: 0b00001100	0x0C	12
Byte 17: 0b00000000	0x00	0
Byte 18: 0b00000000	0x00	0
Byte 19: 0b00000000	0x00	0
Byte 20: 0b00000000	0x00	0
Byte 21: 0b00000000	0x00	0
Byte 22: 0b00000000	0x00	0
Byte 23: 0b00000000	0x00	0
Byte 24: 0b00000000	0x00	0
Byte 25: 0b00000000	0x00	0
Byte 26: 0b00000000	0x00	0
Byte 27: 0b00000000	0x00	0
Byte 28: 0b00000000	0x00	0
Byte 29: 0b00000000	0x00	0
Byte 30: 0b00000000	0x00	0
Byte 31: 0b00000000	0x <mark>00</mark>	0
Byte 32: 0b11100011	0x E3	227
Checksum is 00E3	00E3	227

D3 laser grain Particulate Matter detection pass sensor

Sample code Arduino

https://github.com/ltvanderkrogt/Particulate-Matter-sensor-D3/tree/main