SOLUTIONS TO THE 2010 EXAM FOR MT5823

J. D. MITCHELL

(1) (a) [Easy - Routine and similar to tutorial questions] Using the algorithm from lectures, using 14 multiplications we compute that the elements of S are:

$$t_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 2 & 4 & 5 & 6 & 7 & 1 \end{pmatrix}, t_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 1 & 4 & 5 & 6 & 7 & 2 \end{pmatrix},$$

$$t_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 1 & 4 & 5 & 6 & 7 & 3 \end{pmatrix}, t_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 6 & 6 & 4 & 4 & 6 & 7 & 6 \end{pmatrix},$$

$$t_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 6 & 6 & 4 & 4 & 6 & 7 & 7 \end{pmatrix}, t_{6} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 6 & 7 & 4 & 4 & 6 & 7 & 4 \end{pmatrix},$$

$$t_{7} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 6 & 7 & 4 & 4 & 6 & 7 & 5 \end{pmatrix}$$

To show that S is not a monoid, note that t_3 is the unique element in S with rank 7 and so $t_3s \neq t_3$ and $st_3 \neq t_3$ for all $s \in S \setminus \{t_3\}$. Also t_3 does not fix its image, and so it is not an idempotent. Thus S has no identity and is not a monoid.

Idempotents in S are precisely those elements that fix their images. Thus, by inspection, t_1, t_4, t_5 , and t_6 are the idempotents of S.

- (b) [Moderate not seen before] The images of t_4, t_5 , and t_6 are equal to $\{4, 6, 7\}$ and since they all fix this image, the set $\{t_4, t_5, t_6\}$ is a subsemigroup of S. The image of t_1 is $\{1, 2, 4, 5, 6, 7\}$ and so $st_1 = t_1$ for all $s \in \{t_4, t_5, t_6\}$. On the other hand, $t_1s = t_4$ for all $s \in \{t_4, t_5, t_6\}$. It follows that $\{t_1, t_4, t_5, t_6\}$ is a subsemigroup of S.
- (c) [Easy book work] The Vagner's Representation Theorem states that every inverse semigroup S is isomorphic to an (inverse) subsemigroup of some symmetric inverse semigroup I_X .

It is not true that every subsemigroup of I_X is inverse. Let

$$f = \begin{pmatrix} 1 & 2 \\ - & 1 \end{pmatrix}.$$

Then $\langle f \rangle = \{f, \emptyset\}$ where \emptyset denote the partial bijection

$$\begin{pmatrix} 1 & 2 \\ - & - \end{pmatrix}$$
.

It follows that for all $g \in \langle f \rangle$, $fgf = \emptyset \neq f$ and so f has no inverse in $\langle f \rangle$.

(d) [Moderate - Similar to tutorial questions] The semigroup S is not inverse. There are several ways to answer this question. We saw in part (a) that $t_3st_3 \neq t_3$ for all $s \in S$. It follows that t_3 does not have an inverse in S and so S is not an inverse semigroup. From the algorithm used to find the elements of S in part (a) we can draw the left and right Cayley graphs of S. Since the strongly connected components of the left and right Cayley graphs correspond to the \mathcal{L} - and \mathcal{R} -classes of S, it follows that the \mathcal{L} -classes of S are:

$$\{t_1, t_2\}, \{t_3\}, \{t_4, t_5, t_6\}, \{t_7\}$$

and the \mathcal{R} -classes of S are:

$$\{t_1, t_2\}, \{t_3\}, \{t_4\}, \{t_5, t_6\}, \{t_7\}.$$

Hence the number of \mathcal{L} -classes of S is 4, and the number of \mathcal{R} -classes is 5. [Note that in an inverse semigroup the numbers of \mathcal{L} -classes and \mathcal{R} -classes are equal and so this provides an alternative way of showing that S is not an inverse semigroup.]

J. D. MITCHELL

(e) [Moderate - Similar to tutorial questions] A semigroup is simple if it has one \mathcal{J} -class and a semigroup is Clifford if it is inverse and every \mathcal{H} -class of S is a group. Green's \mathcal{J} - and \mathcal{D} -relation coincide on finite semigroups, and so to show that S is not simple it suffices to prove that S has more than one \mathcal{D} -classe. Since \mathcal{D} -classes are a union of \mathcal{L} -classes, it follows that the \mathcal{D} -classes of S are:

$$\{t_1, t_2\}, \{t_3\}, \{t_4, t_5, t_6\}, \{t_7\}.$$

In particular, S is not simple.

The semigroup S is not inverse and so it is not Clifford.

(2) (a) [Easy - Similar to tutorial questions] By a theorem from lectures, a semigroup U is simple if and only if for all $a,b \in U$ there exist $s,t \in U$ such that sat = b. Since T is simple and $p_{\lambda i}sp_{\lambda i}, t \in T$, there exist $u,v \in T$ such that $u(p_{\lambda i}sp_{\lambda i})v = t$.

$$(j, u, \lambda)(i, s, \lambda)(i, v, \mu) = (j, up_{\lambda i}sp_{\lambda i}v, \mu) = (j, t, \mu),$$

and so S is simple.

Let T be a group. Then T is simple since $g^{-1}gh = h$ for all $g, h \in T$. It follows from the first part of the question that S is simple.

(b) [Moderate - Similar to tutorial questions] A semigroup U is regular if for all $x \in U$ there exists $y \in U$ such that xyx = x.

Let $t \in T$ be arbitrary. Since S is simple, for all $i \in I$ and $\lambda \in \Lambda$ there exists $(j, s, \mu) \in S$ such that

$$(i, t, \lambda)(j, s, \mu)(i, t, \lambda) = (i, t, \lambda).$$

Hence $(i, tp_{\lambda j}sp_{\mu,i}t, \lambda) = (i, t, \lambda)$ and, in particular, $tp_{\lambda,j}sp_{\mu,i}t = t$, as required.

(c) [Moderate - Similar to tutorial questions] The semigroup T is regular since every element is an idempotent and so xxx = x for all $x \in T$.

Let P denotes the 1×1 sandwich matrix:

$$(a)$$
.

Then for any element $(1, x, 1) \in S$ we have that

$$(1,b,1)(1,x,1)(1,b,1) = (1,bp_{11}xp_{11}b,1) = (1,b(axab),1)$$

= $(1,ba,1) = (1,a,1)$

since axab = a. Hence (1, b, 1) is not regular, and so S is not regular.

(d) [Hard - Not seen before] Recall that if xyx = x, then yxy is an inverse for x. $(\Rightarrow) (i, x, \lambda) \in S$ is regular implies there exists $(j, y, \mu) \in S$ such that

$$(i, x, \lambda)(j, y, \mu)(i, x, \lambda) = (i, x, \lambda).$$

Hence $xp_{\lambda j}yp_{\mu i}x=x$ and so $p_{\lambda j}yp_{\mu i}xp_{\lambda j}yp_{\mu i}\in p_{\lambda j}Tp_{\mu i}$ is an inverse for x. (\Leftarrow) Let $y\in T$ such that $p_{\lambda j}yp_{\mu i}$ is an inverse for x. Then

$$(i, x, \lambda)(j, y, \mu)(i, x, \lambda) = (i, xp_{\lambda i}yp_{\mu i}x, \lambda) = (i, x, \lambda)$$

and so (i, x, λ) is regular.

- (3) (a) [Moderate similar to tutorial questions] Let H be an \mathcal{H} -class of S and let $x \in H$. Then, by a theorem from lectures, either $H^2 \cap H = \emptyset$ or H is a group. Since $x^2 = x \in H$, it follows that H is a group. Hence H contains at most one idempotent, its identity. Since every element of H is an idempotent, it follows that H contains only one element of S.
 - (b) [Easy book work] Since S is a band, S is periodic and so a theorem from lectures tells us that $\mathcal{D} = \mathcal{J}$.
 - (c) [Moderate not seen before] Since $x = x^2 \in Sx$, we have that

$$(x,y) \in \mathcal{L} \iff S^1 x = S^1 y \iff Sx \cup \{x\} = Sy \cup \{y\}$$

$$\iff Sx = Sy$$

and

$$(x,y) \in \mathcal{R} \iff xS^1 = yS^1 \iff xS \cup \{x\} = yS \cup \{y\}$$

 $\iff xS = yS.$

Since $Sx = Sx^2 \subseteq SxS$ and $xS = x^2S \subseteq SxS$, we have that

$$(x,y) \in \mathcal{D} \iff (x,y) \in \mathcal{J} \iff S^1 x S^1 = S^1 y S^1$$

 $\iff SxS \cup Sx \cup xS \cup \{x\} = SyS \cup Sy \cup yS \cup \{y\}$
 $\iff SxS = SyS,$

as required.

- (d) [Hard not seen before] (i) \Rightarrow (ii) Let $x \in S$ be fixed. If $xy \in xS$ is arbitrary, then $xy = xyx \in xSx$ and so $xS \subseteq xSx$. Also, clearly, $xSx \subseteq xS$ and so xS = xSx, as required.
 - (ii) \Rightarrow (iii) Certainly, $Sx = Sxx \subseteq SxS$. If $yxz \in SxS$ is arbitrary, then $xz \in xS = xSx$ and so there exists $t \in S$ such that xz = xtx. Hence $y(xz) = yxtx \in Sx$.
 - (iii) \Rightarrow (iv) Since $\mathcal{L} \subseteq \mathcal{D}$, it suffices to show that $\mathcal{D} \subseteq \mathcal{L}$. So, if $(x,y) \in \mathcal{D}$, then since S is periodic, $(x,y) \in \mathcal{J}$. Hence SxS = SyS and so Sx = Sy by (iii). That is, $(x,y) \in \mathcal{L}$.
 - (iv) \Rightarrow (v) Let $(x,y) \in \mathcal{R}$. Then $(x,y) \in \mathcal{D}$ and so $(x,y) \in \mathcal{L}$. It follows that $(x,y) \in \mathcal{H}$ and so, by part (a), x = y.
 - (v) \Rightarrow (vi) Since S is a band, $x^2 = x$ and so $(x, x) \in \rho$ for all $x \in S$. Hence ρ is reflexive.
 - If $(x,y),(y,x)\in \rho$, then xy=y and yx=x. Hence $(xy)x=x(yx)=x^2=x$ and xy=xy. Thus $(xy,x)\in \mathcal{R}$ and so x=xy=y since \mathcal{R} is trivial. Hence ρ is antisymmetric.
 - If $(x,y),(y,z)\in \rho$, then xy=y and yz=z. Thus xz=xyz=yz=z and so $(x,z)\in \rho$.
 - (vi) \Rightarrow (i) Since ρ is a partial order, it follows that it is antisymmetric and so if $(s,t),(t,s)\in\rho$, then s=t. In other words, if st=t and ts=s, then s=t. So, if $s,t\in S$ are arbitrary, then $sts\cdot st=st\cdot st=st$ and $st\cdot sts=sts$. Thus st=sts, as required.