

ERTMS/ETCS

Train Interface FFFIS

REF: SUBSET-119

ISSUE: 1.0.15

DATE: 2019-06-25

Company	Technical Approval	Management approval
ALSTOM		
AZD		
BOMBARDIER		
CAF		
FAIVELEY TRANSPORT		
HITACHI RAIL STS		
KNORR-BREMSE		
SIEMENS		
THALES		
ΤÜV		
VOITH TURBO		
VOSSLOH		

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

MODIFICATION HISTORY

Version	Date	Modification / Description	Editor
0.1.0	05-09-2013	Submission to sector for review	Armin Weiss
0.1.1	08-10-2013	Review according open SG comments	Armin Weiss
		3.2.1.3.4 added acc. Telco	
		4.3.2.1 deleted acc. Telco	
		Table 4-1 Missing references added	
		5.2.6.2 Names corrected (T)	
		5.3.2.2.2 Reference added	
		5.3.3.7 Reference added	
		5.3.8.7 Reference added	
		5.3.13 added	
		5.5.2.4.1.5 extended due to specific signals for special brake status	
		5.5.2.4.3.2f adapted due to specific signals for special brake status	
0.1.2	11.10.2013	changes see review sheet Subset-119v010_review Armir sheet_ERA_091013_SG v2.doc	
0.1.3	24.10.2013	changes see review sheet Subset-119v010_review Armin sheet_ERA_091013_SG v2.doc	
0.1.4	29.10.2013	changes see review sheet Subset-119v010_review sheet_ERA_091013_SG v3.doc	JP Gilbert
0.1.5	12.11.2013	changes see review sheet Subset-119v010_review sheet_ERA_091013_SG v3.doc	Armin Weiss
		5.1.1.2.1.Explanation for invalid signal values adapted.	
0.1.6	9.12.2013	BT Review	Armin Weiss
0.1.7	10.01.2014	TI acronym added	JP Gilbert
0.1.8	17.01.2014	Review meeting in Berlin	Armin Weiss
0.1.9	11.02.2014	Review of Live meeting	Jean-Pierre
		main brake pipe, main pipe -> brake pipe	Gilbert, Armin
		STM order chapters referring to related trackside order chapters	Weiss

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 2/121 1.0.15

1			
0.1.9.1	12.02.2014	Changes after agreement with SG:	Armin Weiss
		HMI pictograms removed from pictures	
		Area signals in variant 2 removed	
		Variant 1 for special brake inhibition introduced	
0.1.10	27.02.2014	Changes acc. Review meeting in Munich	Armin Weiss
0.1.11	04.03.2014	Changes acc. Review confcall March, 4th	Armin Weiss
0.1.12	25.09.2014	Changes according review Unisig_SG_COM_SS-119v0 1 11_1 0	J.P. Gilbert
0.1.13	16.10.2014	For consistency with Subset-034 and Subset-026 removed Test in progress, Emergency Brake Command Status, EB Command Feedback, and the clause 5.4.1.2.2. Replaced the contents of the following with "to be harmonized" (because the solutions are not part of MR1): Management of Track Conditions including Open MCB and Traction Current Cut-Off, and train data information. Added specifications for STM orders. Deleted TCO Solution 1.	F. Bitsch
1.0.1	20.06.2016	Reworked the document due to solution of the	F. Bitsch
1.0.1	20.00.2010	relevant B3R2 CRs CR0239, CR0539, and CR1163 and consideration of SG comments with agreed corrections.	I . DIGGII
1.0.2	27.07.2016	Correction that change marks are only related to the last official version 0.1.13 and not to pre-versions of 1.0.1. Change mark authors harmonised to "UNISIG". Consideration of SG comments with agreed corrections.	F. Bitsch
1.0.3	25.10.2017	Reworked according to the agreements achieved for CR0539 and CR1163 in 10/2016. Consideration of agreed review comments.	F. Bitsch
1.0.4	20.01.2018	Incorporation of the answers for review comments	F. Bitsch
1.0.5	07.05.2018	Incorporation of the answers for review comments and decisions from the phone conferences 06.03.2018 and 13.4.2018	F. Bitsch

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 3/121 1.0.15

1.0.6	26.05.2018	Incorporation of the decisions from the phone conferences 23. and 24.05.2018	F. Bitsch
1.0.7	14.06.2018	Changes according to discussed review comments received for versions 1.0.4-1.0.6	F. Bitsch
1.0.8	07.09.2018	Rework of train data topic (especially chapter 5.5) based on the discussion on purpose of train data and principles of train data entry from external source	F. Bitsch
1.0.9	21.10.2018	Changes for the train data topic (especially chapter 5.5) due to the discussed review comments. Added new clause 3.3.1.1.	F. Bitsch
1.0.10	11.01.2019	O1.2019 Further changes for chapter 5.5 due to the discussed review comments. 1.1.1.3 re-stored to the formulation of version 1.0.5 due to discussions with UNISIG SC.	
1.0.11	12.04.2019	Changes according to discussed review comments received for versions 1.0.10	F. Bitsch
1.0.12	2 04.06.2019 Changes according to decisions of the telco 24.05.2019 for Special Brake Status, Brake Position, §3.3.1.1, and §5.3.11.1.2.1		F. Bitsch
1.0.13	06.06.2019	Changes according to decisions of the telco 06.06.2019 in 4.3.1.7, 4.3.7, 5.3.1.12, and 5.3.7	F. Bitsch
1.0.14	07.06.2019	Editorial changes. Changes in the name of OBU_TR_SP_Height(K)_BitX for indication of bit0 – bit 4	F. Bitsch
1.0.15	25.06.2019	Editorial changes.	F. Bitsch

SUBSET-119 Train Interface FFFIS Page 4/121 1.0.15

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

TABLE OF CONTENTS

SUBSET-119

1.0.15

1.	INTRO	DDUC	TION	11
	1.1	Sco	pe and Purpose	11
	1.2	Doc	cument Structure	13
	1.3	Ref	erences	13
	1.4	Teri	ms and Abbreviations	14
2.	TRAIN	N INTE	ERFACE	17
	2.1	Arcl	nitecture	17
	2.2	Nan	ning Conventions	20
	2.2.	.1	Signals on the Hard-wired Interface	20
	2.2.	.2	Signals on the Serial Interface	21
3.	GENE		REQUIREMENTS FOR THE HARD-WIRED INTERFACE	
	3.1	Ger	neral Requirements	24
	3.2	Ref	erence Input and Output Architecture (RIO)	24
	3.3	Boo	lean OBU Inputs	26
	3.4	Boo	lean OBU Outputs	27
4.	GENE	RAL	REQUIREMENTS FOR THE SERIAL INTERFACE	29
	4.1	Ger	neral Requirements	29
	4.2	Seri	al Architectures	29
	4.2.	.1	General	29
	4.2.	.2	Architecture a)	29
	4.2.	.3	Architecture b)	31
	4.3	Coc	ling	32
	4.3.	.1	General	32
	4.3.	.2	Serial Interface Table	34
	4.3.	.3	TR Telegram 1	46
	4.3.	.4	TR Telegram 2	48
	4.3.	.5	Variables for Generic Telegram Structures	50
	4.3.	.6	OBU Telegram 1	54
	4.3.	.7	OBU Station Platform (OBU Telegram 2)	57
	4.3.	.8	OBU Telegram 3	60
	4.3.	.9	OBU Telegram 4	62
	4.3.	.10	OBU Telegram 5	63

Train Interface FFFIS

Page 5/121

	4.3.11	OBU Telegram 6	65
	4.3.12	OBU Telegram 7	66
	4.4 MV	B	68
	4.4.1	General	68
	4.4.2	Coding	68
	4.5 CA	N	71
	4.5.1	General	71
	4.5.2	Coding	72
	4.6 EC	N	72
	4.6.1	General	72
	4.6.2	Coding	72
5.	REQUIREM	ENTS FOR THE SIGNALS TO BE EXCHANGED AT THE TRAIN INTERFACE	76
	5.1 Mod	de Control	76
	5.1.1	Sleeping	76
	5.1.2	Passive Shunting	76
	5.1.3	Non Leading	77
	5.1.4	Isolation	77
	5.2 Sigi	nals for the Control of Brakes	78
	5.2.1	Service Brake Command	78
	5.2.2	Brake Pressure	78
	5.2.3	Emergency Brake Interface	79
	5.2.4	Special Brake Inhibition Area – Trackside Orders	85
	5.2.5	Special Brake Inhibition Area – STM Orders	86
	5.2.6	Special Brake Status	87
	5.2.7	Additional Brake Status	89
	5.3 Cor	ntrol of Train Functions	89
	5.3.1	General	89
	5.3.2	Change of Traction System	92
	5.3.3	Powerless Section with Pantograph to be Lowered – Trackside orders	94
	5.3.4	Pantograph – STM Orders	96
	5.3.5	Air Tightness Area – Trackside orders	96
	5.3.6	Air Tightness – STM Orders	97
	5.3.7	Station Platform	98
	5.3.8	Powerless Section with Main Power Switch to be Switched Off – Trackside Ord	ers101

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

	5.3.9	Main Power Switch – STM Orders	102
	5.3.10	Change of Allowed Current Consumption	103
	5.3.11	Traction Cut-Off	104
	5.4 Sig	nals for Train Status Information	105
	5.4.1	Cab Status	105
	5.4.2	Direction Controller	. 106
	5.4.3	Train Integrity	107
	5.4.4	Traction Status	107
	5.4.5	Set Speed	107
	5.5 Tra	in Data	108
	5.5.1	General	108
	5.5.2	Type of Train Data Entry	111
	5.5.3	Train Data Information	111
	5.6 Nat	ional System Isolation	119
6.	CONFIGUR	RATION MANAGEMENT	121

TABLE OF TABLES

Table 1-1 Cross references between Subset-034 and Subset-119	12
Table 1-2 Terms	15
Table 1-3 Abbreviations	16
Table 2-1 Reference to all functional I/O	19
Table 3-1 Definition of signal states	25
Table 3-2 Characteristics for OBU Boolean Inputs	26
Table 3-3 Characteristics for OBU Boolean outputs	28
Table 4-1 Generic Serial Interface Table	45
Table 4-2 Coding for Variables used for Generic Telegram Structures	53
Table 4-3 Meaning of Track Condition Type Values	54
Table 5-1 Coding for enable Sleeping function	76
Table 5-2 Coding for Passive Shunting	76
Table 5-3 Coding for Non Leading	77
Table 5-4 Coding for Isolation (of ETCS)	77
Table 5-5 Coding for Service Brake command	78
Table 5-6 Coding for Brake Pressure	78
Table 5-7 Coding for EB1 and EB2 command	84
Table 5-8 Coding for EB3 command	84
Table 5-9 Coding for Regenerative Brake Inhibit	85
Table 5-10 Coding for Magnetic Shoe Brake Inhibit	86
Table 5-11 Coding for Eddy Current Brake for Service Brake Inhibit	86
Table 5-12 Coding for Eddy Current Brake for Emergency Brake Inhibit	86
Table 5-13 Coding for Regenerative Brakes Inhibition command – STM Orders	86
Table 5-14 Coding for Magnetic Shoe Brake Inhibition command – STM Orders	87
Table 5-15 Coding for Eddy Current Brake for Service Brake Inhibition command – STM Orders	87
Table 5-16 Coding for Eddy Current Brake for Emergency Brake Inhibition command – STM Orders	87

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 8/121

Table 5-17 Coding for Electro Pneumatic Brake Status	88
Table 5-18 Coding for Eddy Current Brake Status	88
Table 5-19 Coding for Regenerative Brake Status	88
Table 5-20 Coding for Magnetic Shoe Brake Status	88
Table 5-21 Coding of variables "OBU_TR_XXX_D_Entry" and "OBU_TR_XXX_D_Change"	91
Table 5-22 Coding of variables "OBU_TR_XXX_D_Exit"	91
Table 5-23 Coding for Change of Traction System	93
Table 5-24 Coding for Lower Pantograph Command	95
Table 5-25 Coding for Pantograph Command – STM Orders	96
Table 5-26 Coding for Air Tightness Area Command	97
Table 5-27 Coding for Air Tightness – STM Orders	97
Table 5-28 Coding for Station Platform	99
Table 5-29 Coding for passing a Powerless Section with Main Power Switch to be Switched Off	102
Table 5-30 Coding for Main Power Switch – STM Orders	103
Table 5-31 Coding for Change of Allowed Current Consumption	104
Table 5-32 Coding for Traction Cut Off	105
Table 5-33 Coding for Cab Status	106
Table 5-34 Coding for Direction Controller	106
Table 5-35 Coding for Traction Status (only for STM)	107
Table 5-36 Coding of variable Train Composition	109
Table 5-37 Coding for Tilting Health Status	109
Table 5-38 Coding of variable Train Type	110
Table 5-39 Coding for Type of Train Data Entry	111
Table 5-40 Coding of variable Brake Percentage	115
Table 5-41 Coding for Brake Position	116
Table 5-42 Coding for train fitted with airtight system	119
Table 5-43 Coding for national system isolated	119

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 9/121 1.0.15

TABLE OF FIGURES

Figure 2-1 Hard-wired and serial links between vehicle and ERTMS/ETCS on-board equipme	ent 17
Figure 3-1 Reference I/O pair	24
Figure 4-1 Architecture a)	30
Figure 4-2 Architecture b)	31
Figure 4-3 Safe Data Transmission via CAN	71
Figure 5-1 EB architecture with electric safety loop	79
Figure 5-2 EB architecture with brake pipe	80
Figure 5-3 EB architecture with one EB line and a serial link	81
Figure 5-4 EB function, Solution 1: 2 EB lines	82
Figure 5-5 EB function, Solution 2: 2 EB lines	83
Figure 5-6 EB function, Solution 3: 1 EB line, serial interface	83
Figure 5-7 Passing a Special Brake Inhibition Area	85
Figure 5-8 Changing the traction system	92
Figure 5-9 Passing a Powerless Section with Pantograph to be Lowered	94
Figure 5-10 Passing an Air Tightness Area	96
Figure 5-11 Station Platform	100
Figure 5-12 Passing a Powerless Section with Main Power Switch to be Switched Off	102
Figure 5-13 Change of Allowed Current Consumption	103
Figure 5-14 TCO function: 1 TCO line and a serial interface	105

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

1. Introduction

1.1 Scope and Purpose

1.1.1.1 This interface specification defines the form fit functional interface between the ERTMS/ETCS on-board equipment and the vehicle. It is the physical implementation of the interface that is functionally specified in [7]. The references for each function specified in [7] are shown in Table 1-1. The safety analysis for each signal is specified in [8] shall be considered along with this subset.

Section of	Name	Section of
Subset-119		Subset-034
5.1.1	Sleeping	2.2.1
5.1.2	Passive Shunting	2.2.2
5.1.3	Non Leading	2.2.3
5.1.4	Isolation	2.2.4
5.2.1	Service Brake Command	2.3.1
5.2.2	Brake Pressure	2.3.2
5.2.3	Emergency Brake Command	2.3.3
5.2.4	Special Brake Inhibition Area – Trackside Orders	2.3.4
5.2.5	Special Brake Inhibit - STM Orders	2.3.5
5.2.6	Special Brake Status	2.3.6
5.2.7	Additional Brake Status	2.3.7
5.3.2	Change of Traction System	2.4.1
5.3.3	Powerless Section with Pantograph to be Lowered - Trackside Orders	2.4.2
5.3.4	Pantograph – STM Orders	2.4.3
5.3.5	Air Tightness Area – Trackside Orders	2.4.4
5.3.6	Air Tightness – STM Orders	2.4.5
5.3.7	Station Platform	2.4.6
5.3.8	Powerless Section with Main Power Switch to be Switched Off – Trackside Orders	2.4.7
5.3.9	Main Power Switch – STM Orders	2.4.8
5.3.10	Change of Allowed Current Consumption	2.4.10
5.3.11	Traction Cut-Off	2.4.9
5.4.1	Cab Status	2.5.1

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 11/121 1.0.15

Section of	Name	Section of
Subset-119		Subset-034
5.4.2	Direction Controller	2.5.2
5.4.3	Train Integrity	2.5.3
5.4.4	Traction Status	2.5.4
5.4.5	Set Speed	2.5.5
5.5.2	Type of Train Data Entry	2.6.1
5.5.1.1.7	Train Composition	2.6.2
5.5.1.1.8	Tilting Health Status	2.6.2
5.5.1.1.9	Train Type	2.6.2
5.5.3.2	Train Category	2.6.2
5.5.3.3	Train Length	2.6.2
5.5.3.4	Traction/Brake Parameters	2.6.2
5.5.3.5	Maximum Train Speed	2.6.2
5.5.3.6	Loading Gauge	2.6.2
5.5.3.7	Axle Load Category	2.6.2
5.5.3.8	Train Fitted with Airtight System	2.6.2
5.6	National System Isolation	2.7

Table 1-1 Cross references between Subset-034 and Subset-119

SUBSET-119 Train Interface FFFIS Page 12/121 1.0.15

- 1.1.1.2 This interface specification aims at minimising the number of interfaces/components needed for the integration of ERTMS/ETCS on-board equipment into a vehicle.
- 1.1.1.3 In order to cover different applications, any Rolling Stock having an ERTMS/ETCS on-board from basic diesel locomotives to high tech train sets, and from existing rolling stock to new trains, several solutions are specified and all shall be supported by the ERTMS/ETCS on-board.

1.2 Document Structure

- 1.2.1.1 Chapter 1 describes the scope and purpose of the document, the terms and abbreviations and the references
- 1.2.1.2 Chapter 2 describes the architecture of the interface and the naming conventions.
- 1.2.1.3 Chapter 3 describes the general requirements for the hard-wired interface.
- 1.2.1.4 Chapter 4 describes the general requirements for the serial interface as well as the specific requirements for the MVB, the CAN and the ECN.
- 1.2.1.5 Chapter 5 describes the requirements for the signals to be exchanged via the TI.

1.3 References

- 1.3.1.1 The following references are used in this document:
 - [1] SUBSET-026 System Requirements Specification
 - [2] ETCS Driver Machine Interface-ERA_ERTMS_015560
 - [3] SUBSET-035 Specific Transmission Module (FFFIS)
 - [4] SUBSET-091 Safety Requirements for the Technical Interoperability of ETCS in Levels 1 & 2
 - [5] TSI LOC&PAS, 2011/291/EU & 2012/464/EU
 - [6] HS TSI RST, 2008/232/EU & 2012/464/EU
 - [7] SUBSET-034 FIS for the Train Interface
 - [8] SUBSET-120 FFFIS TI Safety Analysis
 - [9] SUBSET-080 Failure Modes and Effects Analysis for TIU
 - [10] SUBSET-023 Glossary of Terms and Abbreviations
 - [11] SUBSET-059 Performance Requirements for STMs
 - [12] EN50159 Safety related communication in transmission systems
 - [13] IEC61375-1 TCN Train Communication Network General Architecture

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 13/121 1.0.15

- IEC61375-2-1 TCN Train Communication Network WTB [14] IEC61375-2-3 TCN - Train Communication Network - Communication Profile [15] [16] IEC61375-3-1 TCN - Train Communication Network - MVB IEC61375-3-3 TCN - Train Communication Network - CAN [17] IEC61375-3-4 TCN - Train Communication Network - ECN [18] EN15734 Railway Applications - Braking Systems of High Speed Trains [19] EN16185 Railway Applications - Braking Systems of Multiple Unit Trains [20] [21] EN14478 Railway Applications - Brakes [22] IEC61158-Serie Profinet
- [23] IEC61784-2/-3-3 Profisafe
- [24] CIP Networks Library from ODVA
- [25] SUBSET-040 Dimensioning and Engineering rules
- [26] ERA_ERTMS_040001 Assignment of values to ETCS variables

1.4 **Terms and Abbreviations**

1.4.1.1 Only those terms are listed, which are not defined in the ETCS glossary [10]

Option	Option refers to the case in which the hard-wired interface is used instead of the mandatory serial interface.
Hard-wired Interface	An interface where each signal is transmitted by a separate pair of wires.
Serial Interface	An interface where multiple signals are transmitted via a bus/network or a point-to-point connection. Three types of busses are considered in section 4.
Solution	Solution refers to a mandatory implementation.
Traction Cut Off	Inhibit positive traction effort (i.e. driving effort).

SUBSET-119 Train Interface FFFIS Page 14/121

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

Brake actuator	Device that physically brakes the train.
Pressure switch	Device that measures pressure in a brake pipe, main pipe or brake cylinder. It is actuated by a change in pressure at a level threshold.
Train integrator	The one responsible for integration of ERTMS/ETCS on-board in the vehicle
Cycle time on the serial bus	Time between two successive frames or ports which are cyclically transmitted on the serial bus, see [18].

Table 1-2 Terms

1.4.1.2 Only those abbreviations are listed, which are not defined in [10].

BW	Backward	
CAN	Controller Area Network	
ccs	Control-Command and Signalling	
CR	Change Request	
ECN	Ethernet Consist Network	
EC	Eddy Current Brake	
ECS	Eddy Current Brake for Service Brake	
ECE	Eddy Current Brake for Emergency Brake	
EP	Electro Pneumatic Brake	
FDT	Fault Detection Time as used in [8]	
FW	Forward	
MG	Magnetic Shoe Brake	
MPU	Main Processor Unit	
MVB	Multifunction Vehicle Bus	
MSFE	Maximum Safe Front End	
mSRE	Minimum Safe Rear End	
NID	National Identification	

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 15/121 1.0.15

OBU	ERTMS/ETCS On-Board Unit	
PG	Pantograph	
RIO	Remote Input Output	
RB	Regenerative Brake	
RST	Rolling Stock	
SDT	Safe Data Transmission like defined in [15]	
SID	Safety Identifier	
SSC	Safe Sequence Counter	
TCMS	Train Control and Monitoring System	
TFR	Tolerable Failure Rate	
THR	Tolerable Hazard Rate	
TR	Train	
TSI	Technical Specification for Interoperability	

Table 1-3 Abbreviations

SUBSET-119 Train Interface FFFIS Page 16/121 1.0.15

2. TRAIN INTERFACE

2.1 Architecture

- 2.1.1.1 The Train Interface specified in this document consists of serial interface and hard-wired interface.
- 2.1.1.2 Some signals are only supported over serial interface due to the type of data.
- 2.1.1.3 ERTMS/ETCS on-board equipment shall support the serial interface as defined in this specification and the following four signals on the hard-wired interface: O_EB1_C, O_EB2_C, O_TC1_C, O_IS_S.
- 2.1.1.4 ERTMS/ETCS on-board equipment might also support the signals defined in this specification via the hard-wired interface. In this case, these signals shall be compliant with this specification.
- 2.1.1.5 Serial data shall not be distributed over more than one type of BUS in one specific application.
- 2.1.1.6 Figure 2-1 shows the OBU (green colour) interfaced to the vehicle (blue colour) via hard-wired and serial Interface. The interface itself is drawn in red colour.

Figure 2-1 Hard-wired and serial links between vehicle and ERTMS/ETCS on-board equipment

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 17/121

- 2.1.1.7 Hard-wired interfaces are defined according to the standardized Remote Input Output (RIO) circuits defined in Chapter 3.2
- 2.1.1.8 The ERTMS/ETCS on-board equipment shall support as serial interface one or several of the following types of bus: CAN, MVB and ECN as defined in chapter 4.
- 2.1.1.9 Table 2-1 gives an overview of the functional I/O. Which information shall be transmitted via the serial or hard-wired interface is marked with "M" for mandatory and which can be transmitted via the hard-wired interface is marked with 'O' for optional. On the other hand '-' refers to a case where it is not supported by the interface. Technical requirements for the implementation are described in Chapters 4 and 5.
- 2.1.1.9.1 The simultaneous use of both hard-wired and serial interface for the same functionality is only allowed if required to achieve a safety level as defined in [8] (e.g. EB command, solution 3). Otherwise, either serial or hard-wired interface shall be used for the same function.
- 2.1.1.9.2 If for a given functionality, optionally the hard-wired interface is used, the corresponding signal on the serial interface shall be provided but shall not be evaluated at the receiving end (either train or ERTMS/ETCS on-board unit according to the source of information).
- 2.1.1.9.3 Exception 1: EB command as described in solution 3 shall use both hard-wired and serial interface.
- 2.1.1.9.4 Exception 2: TCO command as described in solution 2 shall use both hard-wired and serial interface.

No	Functional I/O as per [7]	Source	Hard- wired interface	Serial interface
1	Sleeping	TR	0	М
2	Passive Shunting	TR	0	М
3	Non-Leading	TR	0	М
4	Isolation (of ETCS)	OBU	М	-
5	Service Brake Command	OBU	0	М
6	Brake Pressure	TR	-	М
7	Emergency Brake Command	OBU	М	М
10	Regenerative Brake Inhibit	OBU	-	М
11	Magnetic Shoe Brake Inhibit	OBU	-	М
12	Eddy Current Brakes for Service Brake Inhibit	OBU	-	М

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 18/121

13	Eddy Current Brakes for Emergency Brake Inhibit	OBU	-	M
14	Special Brake Inhibit – STM Orders	OBU	0	M
15	Special Brake Status		0	M
16	Additional Brake Status	TR	0	M
17	Change of Traction System	OBU	-	M
18	Powerless Section with Pantograph to be Lowered – Trackside Orders	OBU	-	М
19	Pantograph – STM Orders	OBU	0	M
20	Air Tightness – Trackside Orders	OBU	-	M
21	Air Tightness – STM Orders	OBU	0	M
22	Station Platform	OBU	-	M
23	Powerless Section with Main Power Switch to be Switched Off – Trackside Orders	OBU	-	М
24	Main Power Switch – STM Orders	OBU	0	М
25	Change of Allowed Current Consumption	OBU	-	M
26	Traction Cut-Off	OBU	M	M
27	Cab Status	TR	0	M
28	Direction Controller	TR	0	M
29	Train Integrity (to be harmonized)	TR	to be harmoniz ed	to be harmoniz ed
30	Traction Status (only for STM)	TR	0	M
31	Set Speed (for DMI indication)	TR	-	M
32	Type of Train Data Entry	TR	0	М
33	Train Data Information	TR	O ¹	0
34	National System Isolation	TR	0	M

Table 2-1 Reference to all functional I/O

¹ Only optional for train fitted with airtight system, tilting health status, and brake position. Other signals are available only via serial interface.

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

2.2 Naming Conventions

2.2.1 Signals on the Hard-wired Interface

- 2.2.1.1 The naming conventions are used to ensure identification of each single signal inside of this specification and the associated [8].
- 2.2.1.2 The name of each signal has the following character structure, where each digit indicates the position of a character: 1_23(4)_5_(6)
- 2.2.1.3 Character 1: Signal source

T = Train

O = ERTMS/ETCS on-board equipment

2.2.1.4 Character 2+3(+4): Function or signal short name

AT	Air Tightness	
BW	Backward	
BP	Brake Position	
CS	Cab Status	
СТ	Change of Traction System	
EB1	Emergency Brake 1	
EB2	Emergency brake 2	
ECS	Eddy Current Brake for Service Brake	
ECE	Eddy Current Brake for Emergency Brake	
FAT	Fitted with Airtight System	
FW	Forward	
IS	Isolation (of ETCS)	
MG	Magnetic Shoe Brake	
NL	Non Leading	
PG	Pantograph	
PS	Passive Shunting	
RB	Regenerative Brake	
SB	Service Brake	
SL	Sleeping	
TH	Tilting Health	

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 20/121

TC1	Traction cut-off	
TR	Traction Status (only for STM)	
TT1, TT2	Type of train data entry	

2.2.1.5 Character 5: Signal class

А	Status Cab A
В	Status Cab B
С	Command
E	Enable
F	Feedback of a command
I	Inhibition
S	Status

2.2.1.6 Character 6 (optional): Contact index or number of relay (1 to m) or type of logic for the signal (non-inverted or inverted):

1	First contact related to the same signal	
m	m contact index related to the same signal	
N	The non-inverted signal of an antivalent pair.	
1	The inverted signal of an antivalent pair.	

2.2.1.7 Examples:

O_EB1 C 3 means "Emergency brake 1 command signal contact number 3".

T_SL_E_N means "Sleeping enable not inverted signal".

2.2.2 Signals on the Serial Interface

- 2.2.2.1 The naming conventions are used to ensure identification of the signals on the serial interface inside of this specification and the associated [8].
- 2.2.2.2 The name of each signal has the following structure, where each digit indicates the position: 1_2_3(_4_5)
- 2.2.2.3 1: Signal source

TR = Train side

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 21/121

OBU = ERTMS/ETCS on-board equipment

2.2.2.4 2: Signal sink

TR = Train

OBU = ERTMS/ETCS on-board equipment

2.2.2.5 3: signal name in a readable form, giving information about the corresponding function

AirTightFitted	Train Fitted with Airtight System
ACC	Allowed Current Consumption
AT	Air Tightness
AxleLoadCat	Axle Load Category
TS_NID_CTRACTION	Country identifier of the traction system(s) accepted
	by the engine
TS_M_VOLTAGE	Voltage of traction system(s) accepted by the
	engine
BrakePercentage	Brake percentage
BrakePosition	Brake Position
BrakePressure	Brake Pressure
Brake_Status	Brake Status
CabStatus	Cab Status
CTS	Change of Traction System
DirectionFW	Direction Controller Forward
DirectionBW	Direction Controller Backward
EB3	Emergency Brake 3
ECE / ECEInhibit	Eddy Current Brake for Emergency Brake inhibition
ECS / ECSInhibit	Eddy Current Brake for Service Brake Inhibition
LoadingGauge	Loading Gauge
MGI / MGInhibit	Magnetic Shoe Brake Inhibition
MPS	Main Power Switch
NLEnabled	Non leading
NTCIsolated	National System Isolation
PassiveShunting	Passive Shunting
PG	Pantograph
RBI / RBInhibit	Regenerative Brake Inhibition
	1

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 22/121

ServiceBrake	Service Brake
SetSpeed	Set Speed (for DMI indication)
SP	Station Platform
TCO	Traction Cut-Off
TiltingHealthStatus	Tilting Health Status
Traction_Status	Traction Status (only for STM)
TrainCatCantDef	Train Category Cant Deficiency
TrainComposition	Train Composition
TrainLength	Train Length
TrainSleep	Sleeping
TrainType	Train Type
TypeTrainData	Type of Train Data Entry

2.2.2.6 4_5: if necessary, more detailed information about the signal/function (Status, Feedback, information about possible iterations, additional names, explanation if signal is inverted)

SUBSET-119 Train Interface FFFIS Page 23/121 1.0.15

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

3. GENERAL REQUIREMENTS FOR THE HARD-WIRED INTERFACE

3.1 General Requirements

- 3.1.1.1 For the ERTMS/ETCS on-board the hard-wired interface for the signals specified in clause 2.1.1.3 is mandatory. It shall comply with the requirements in this section.
- 3.1.1.2 The cabling between the vehicle and the ERTMS/ETCS on-board is within the responsibility of the vehicle.

3.2 Reference Input and Output Architecture (RIO)

- 3.2.1.1 Output refers to the information from the OBU to the vehicle.
- 3.2.1.2 Input refers to the information from the vehicle to the OBU.
- 3.2.1.3 For binary inputs and outputs the following architecture is defined:

Figure 3-1 Reference I/O pair

3.2.1.3.1 Note1: Figure represents the functionality of an isolated output, but it is not restricted to a specific design.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 24/121

- 3.2.1.3.2 Characteristics for input signals are specified by the ERTMS/ETCS on-board power supply, whereas the characteristics for the output signals are specified by the vehicle power supply.
- 3.2.1.3.3 Characteristics for input and output signals are listed in the Table 3-2 and Table 3-3.
- 3.2.1.4 Definition of signal states:

Signal	Output	Level
0	Open (high impedance)	Low
1	Closed (low impedance)	High

Table 3-1 Definition of signal states

SUBSET-119 Train Interface FFFIS Page 25/121 1.0.15

3.3 Boolean OBU Inputs

- 3.3.1.1 For input signals, the input information shall be considered as stable whenever the values of the signal remains unchanged for a period greater than the time t_transient_period_inputs which is configurable. During the transient time, the state of the input information has to be considered as unchanged.
- 3.3.1.2 Inputs shall have the following characteristics:

Characteristic	Value		
	24 V + overvoltage according EN 50155		
	 48 V + overvoltage according EN 50155 		
Max. voltage between pins	 72 V + overvoltage according EN 50155 		
	 96 V + overvoltage according EN 50155 		
	 110 V + overvoltage according EN 50155 		
	200 mA for 24 V nominal voltage		
Max. input current in High level*1	 100 mA for 48 V nominal voltage 		
wax. Input current in riightiever	 60 mA for 72 V nominal voltage 		
	 50 mA for 96 V and 110 V nominal voltage 		
Max. L/R*2	• 40ms		
	4 mA for 24 V nominal voltage		
	 4 mA for 48V nominal voltage 		
Min. input current in High level*1	 3 mA for 72V nominal voltage 		
wiin. input current in riigh level	 2 mA for 96V nominal voltage 		
	 2 mA for 110V nominal voltage 		
	 Otherwise: 1 mA and transient peak 		
Max. input current that has to be detected as Low level*3*1	• 250µA		

Table 3-2 Characteristics for OBU Boolean Inputs

- 3.3.1.2.1 *1: Input current is the current that flows through the input pin.
- 3.3.1.2.2 *2: L/R is the fraction of inductance over the resistance of the load.
- 3.3.1.2.3 *3: Higher currents could also be detected as Low level, but should be avoided by the vehicle output.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 26/121

3.4 Boolean OBU Outputs

- 3.4.1.1 In case of two (or more) independent output signals composing a single output, the output information shall be considered as stable whenever the values of the two (or more) signals remain unchanged for a period greater than the time t_transient_period_outputs which is configurable.
- 3.4.1.2 Outputs shall comply with the following characteristics:

Characteristic	Value
	24 V + over-voltage according EN 50155
Max. voltage between output pins in "Open"	 48 V + over-voltage according EN 50155
state	 72 V + over-voltage according EN 50155
	 96 V + over-voltage according EN 50155
	110 V + over-voltage according EN 50155
	1 A for 24 V nominal voltage
Max. continuous current through output in	0.5 A for 48 V nominal voltage
"Closed" state	0.3 A for 72 V nominal voltage
	0.2 A for 96 V and 110 V nominal voltage
	High Power Outputs
	15 mA for 24 V nominal voltage
	 15 mA for 48 V nominal voltage
Lowest possible output current in Closed status	 13 mA for 72 V nominal voltage
Status	10 mA for 96 V nominal voltage
	10 mA for 110 V nominal voltage
	Low Power Outputs
	4 mA for 24 V nominal voltage
	 4 mA for 48 V nominal voltage
	3 mA for 72 V nominal voltage
	2 mA for 96 V nominal voltage
	• 2 mA for 110 V nominal voltage
Max. leakage current in Open status at any voltage	250μΑ
Max. L/R*1	40 ms

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 27/121

Characteristic	Value
Max. allowed time for a signal with two independent outputs to be invalid in transition phase	100 ms (this time covers switching time between independent outputs and contact bouncing time)
Output durability (in operating cycles)	≥ 100.000 electrically at 20 VA load and 40 ms L/R

Table 3-3 Characteristics for OBU Boolean outputs

3.4.1.2.1 *1 L/R is the fraction of inductance over the resistance of the load.

SUBSET-119 Train Interface FFFIS Page 28/121 1.0.15

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

4. GENERAL REQUIREMENTS FOR THE SERIAL INTERFACE

4.1 General Requirements

- 4.1.1.1 For the ERTMS/ETCS on-board the serial interface is mandatory. It shall comply with the requirements in this section.
- 4.1.1.2 This chapter includes the solutions regarding the ECN, MVB and CAN based on [15], [16], [17], [18], [22], [23], and [24].
- 4.1.1.3 All data is transmitted cyclically as process data (see [13] for process data definition).
- 4.1.1.4 Transmission cycle time for the process data on the serial bus shall be the one defined in Table 4-1.

4.2 Serial Architectures

4.2.1 General

4.2.1.1 There are two possible architectures for the transmission of information via a serial bus –architecture a) and b). Both architectures are fit for the transmission of safety related and non-safety related information as defined [8]. It is up to the train integrator to choose for each signal the adequate architecture.

4.2.2 Architecture a)

- 4.2.2.1 Note: This architecture allows the use of hardware which is not able to implement requirements defined in [12] necessary for safety related communication.
- 4.2.2.1.1 Note: The interface on the serial bus regarding port and telegram structure depends on the used I/O module hardware. As the frames on the serial bus of an I/O module hardware depends of its design and is not standardised the interface cannot be standardised.

SUBSET-119 Train Interface FFFIS Page 29/121 1.0.15

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

4.2.2.2 The following figure describes architecture a).

Figure 4-1 Architecture a)

- 4.2.2.3 The architecture can define information signals using either single contact or antivalent contacts.
- 4.2.2.4 When using Architecture a), the following principles shall be used for safety related information:
- 4.2.2.4.1 Information should be derived using antivalent contacts.
- 4.2.2.4.2 In case of antivalent/redundant input/output information is required separate I/O hardware shall be used.

SUBSET-119 Train Interface FFFIS Page 30/121

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

4.2.3 Architecture b)

- 4.2.3.1 Note: This architecture allows the use of hardware which is able to implement requirements defined in [12] necessary for safety related communication.
- 4.2.3.2 This architecture is defined for information signals fully compliant with [15].
- 4.2.3.3 The architecture allows the transmission of both non-safety related and safety related information.
- 4.2.3.4 Using safety devices the TFR achievable depends on the TCMS design (Hardware and software)

Figure 4-2 Architecture b)

SUBSET-119 Train Interface FFFIS Page 31/121

1.0.15

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

- 4.2.3.5 When using Architecture b) safe data transmission shall be applied according to [15] when the required safety integrity level of certain functionality cannot be fulfilled with safety integrity level provided by the serial bus transmission.
- 4.2.3.6 Optionally the TCMS can integrate a gateway to adapt to the bus type defined by the ERTMS/ETCS on-board. The additional transfer delay introduced due the implementation of the gateway shall be below 200ms (worst case).

4.3 Coding

4.3.1 General

- 4.3.1.1 This chapter presents the definition of the data to be transmitted via Bus.
- 4.3.1.2 The structure of the packets defined below is identical for both safety and non-safety related information.
- 4.3.1.3 The packets on the serial bus shall provide for each signal a specific validity bit to be set at source side.
- 4.3.1.3.1 A signal has its validity bit set to false if it is not used on the source side i.e. the signal is spare (the part of a telegram is not used) or the signal is not trustable due to a problem on the source side.
- 4.3.1.3.2 Note: The validity bit is set to TRUE independently on whether the signal is used by the receiver or not.
- 4.3.1.4 Signals not provided from the defined source shall be marked as not used by setting the related validity bit to FALSE at source side.
- 4.3.1.4.1 In case EB command is performed as described in Solution 1 (see §5.2.3.2.7) or Solution 2 (see §5.2.3.2.8), the signal OBU_TR_EB3_Cmd shall not be used.

SUBSET-119 Train Interface FFFIS Page 32/121 1.0.15

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

- 4.3.1.5 The Serial Interface Table 4-1, provided in section 4.3.2, describes for each function the maximum cycle time, signal size in bit, data type for transmission, name on hard-wired interface, name on serial interface and a comment.
- 4.3.1.6 The tables in chapter 4.3.3 to 4.3.12 describing the coding of the different telegrams sent from OBU and TR are derived from Table 4-1. The telegrams for MVB, CAN and ECN differ only in the additional trailer necessary for safe data transmission.
- 4.3.1.7 The telegrams are defined in big endian byte order. The data ordering in telegrams shall be according to [14].
- 4.3.1.8 Spare bits and bytes in the telegrams shall be set to 0.
- 4.3.1.9 If the validity bit is set to 0 a spare value check of this data field shall not take place.

SUBSET-119 Train Interface FFFIS Page 33/121 1.0.15

4.3.2 Serial Interface Table

4.3.2.1 Note: The signal types used in the following table are defined in [14], table 19.

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Sleeping	128 / 100	2	2*BOOLEAN1	TR_OBU_TrainSleep TR_OBU_TrainSleep_Not	Enable sleeping function Coding: See Table 5-1
Passive Shunting	128 / 100	1	BOOLEAN1	TR_OBU_PassiveShunting	Passive shunting Coding: See Table 5-2
Service Brake	128 / 100	1	BOOLEAN1	OBU_TR_ServiceBrake	Service brake command Coding: See Table 5-5
Emergency Brake	128 / 100	1	BOOLEAN1	OBU_TR_EB3_Cmd	EB 3 command Coding: See Table 5-7. Note: the EB command via the serial interface refers to Figure 5-6
Traction Cut Off	128 / 100	1	BOOLEAN1	OBU_TR_TCO_Cmd	Traction cut-off Coding: See Table 5-32
Non Leading	128 / 100	1	BOOLEAN1	TR_OBU_NLEnabled	Non Leading Coding: See Table 5-3

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 34/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Direction Controller	128 / 100	2	2*BOOLEAN1	TR_OBU_DirectionFW, TR_OBU_DirectionBW	Status of Direction controller relative to occupied cab Coding: See Table 5-34
Cab Status	128 / 100	2	2*BOOLEAN1	TR_OBU_CabStatusA, TR_OBU_CabStatusB	Status of Cabs Coding: See Table 5-33
Brake Pressure	128 / 100	8	UNSIGNED8	TR_OBU_BrakePressure	Brake Pressure Coding: See Table 5-6
Special Brake Inhibition Area – Trackside Orders (Regenerative Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_RBI_D_Entry	Remaining distance from the max safe front end to the start location of the regenerative brake inhibition area Coding: See Table 5-21
Special Brake Inhibition Area – Trackside Orders (Regenerative Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_RBI_D_Exit	Remaining distance from the min safe rear end to the end location of the regenerative brake inhibition area Coding: See Table 5-22
Special Brake Inhibit – STM Orders	128 / 100	1	BOOLEAN1	OBU_TR_RBInhibit_Cmd	Regenerative brake inhibit command Coding: See Table 5-13

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 35/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Special Brake Inhibition Area – Trackside Orders (Magnetic Shoe Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_MGI_D_Entry	Remaining distance from the max safe front end to the start location of the magnetic shoe brake inhibition area Coding: see Table 5-21
Special Brake Inhibition Area – Trackside Orders (Magnetic Shoe Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_MGI_D_Exit	Remaining distance from the min safe rear end to the end location of the magnetic shoe brake inhibition area Coding: see Table 5-22
Special Brake Inhibit – STM Orders	128 / 100	1	BOOLEAN1	OBU_TR_MGInhibit_Cmd	Magnetic shoe brake inhibit command Coding: See Table 5-14
Special Brake Inhibition Area – Trackside Orders (Eddy Current Brakes for Service Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_ECS_D_Entry	Remaining distance from the max safe front end to the start location of the inhibition area of the eddy current brake for service brake Coding: See Table 5-21

SUBSET-119 Train Interface FFFIS Page 36/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Special Brake Inhibition Area – Trackside Orders (Eddy Current Brakes for Service Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_ECS_D_Exit	Remaining distance from the min safe rear end to the end location of the inhibition area of the eddy current brake for service brake Coding: see Table 5-22
Special Brake Inhibit – STM Orders	128 / 100	1	BOOLEAN1	OBU_TR_ECSInhibit_Cmd	Eddy current brake inhibit command for service brake Coding: See Table 5-15
Special Brake Inhibition Area – Trackside Orders (Eddy Current Brakes for Emergency Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_ECE_D_Entry	Remaining distance from the max safe front end to the start location of the inhibition area of the eddy current brake for emergency brake Coding: See Table 5-21
Special Brake Inhibition Area – Trackside Orders (Eddy Current Brakes for Emergency Brake Inhibit)	256 / 200	16	INTEGER16, 2's complement	OBU_TR_ECE_D_Exit	Remaining distance from the min safe rear end to the end location of the inhibition area of the eddy current brake for emergency brake Coding: see Table 5-22

SUBSET-119 Train Interface FFFIS Page 37/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Special Brake Inhibit – STM Orders	128 / 100	1	BOOLEAN1	OBU_TR_ECEInhibit_Cmd	Eddy current brakes inhibit command for emergency brake Coding: See Table 5-16
Brake Status	128 / 100	8	BITSET8	TR_OBU_Brake_Status	Brake status Coding for each bit: Bit0: Electro Pneumatic Brake Status (EP_S), see Table 5-17 Bit1: Electro Pneumatic Brake Status (EP_S_Not), see Table 5-17 Bit2: Eddy Current Brake Status (EC_S), see Table 5-18 Bit3: Eddy Current Brake Status (EC_S_Not), see Table 5-18 Bit4: Regenerative Brake Status (RB_S), see Table 5-19 Bit5: Regenerative Brake Status (RB_S_Not), see Table 5-19 Bit6: Magnetic Shoe Brake Status (MG_S), see Table 5-20 Bit7: Magnetic Shoe Brake Status (MG_S_Not), see Table 5-20
Type of Train Data Entry	256 / 200	2	2*BOOLEAN	TR_OBU_TypeTrainData_S1, TR_OBU_TypeTrainData_S2	Type of train data entry. <u>Coding:</u> See Table 5-39
Train Composition	256 / 200	8	UNSIGNED8	TR_OBU_TrainComposition	Train Composition. Coding: bit 04 see Table 5-36 bit 57 set to 0
Tilting Health Status	256 / 200	2	2*BOOLEAN1	TR_OBU_TiltingHealthStatus TR_OBU_TiltingHealthStatus_N ot	Tilting Health Status. Coding: See Table 5-37
Train Type	256 / 200	8	UNSIGNED8	TR_OBU_TrainType	Train Type. Coding: bit 04 see Table 5-38 bit 57 set to 0

SUBSET-119 Train Interface FFFIS Page 38/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Train Data	256 / 200	4	UNSIGNED8	TR_OBU_TrainCatCantDef	Train data: train category cant deficiency Coding: bit 03 see 5.5.3.2.1.3.1 bit 47 set to 0
Train Data	256 / 200	12	UNSIGNED16	TR_OBU_TrainLength	Train data: train length Coding: bit 011 see 5.5.3.3.3.1 bit 1215 set to 0
Train Data	256 / 200	8	UNSIGNED8	TR_OBU_BrakePercentage	Train data: brake percentage Coding: bit 08 see 5.5.3.4.4.3
Train Data	256 / 200	1	4*BOOLEAN1	TR_OBU_BrakePosition1 TR_OBU_BrakePosition1_Not TR_OBU_BrakePosition2 TR_OBU_BrakePosition2_Not	Train data: Brake Position Coding: See Table 5-41
Train Data	256 / 200	8	UNSIGNED8	TR_OBU_LoadingGauge	Train data: loading gauge Coding: see 5.5.3.6.3.1
Train Data	256 / 200	7	UNSIGNED8	TR_OBU_AxleLoadCat	Train data: axle load category Coding: bit 06 see 5.5.3.7.3.1 bit 7 set to 0
Train Data	256 / 200	10	UNSIGNED16	TR_OBU_TS_NID_CTRACTION	Train data: Country identifier of the traction system(s) accepted by the engine Coding: bit 09 see 5.5.3.8.3.1 bit 1015 set to 0
Train Data	256 / 200	4	UNSIGNED8	TR_OBU_TS_M_VOLTAGE	Train data: Voltage of traction system(s) accepted by the engine Coding: bit 03 see 5.5.3.8.3.2 bit 47 set to 0

SUBSET-119 Train Interface FFFIS Page 39/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Train Data	256 / 200	1	BOOLEAN1	TR_OBU_AirTightFitted	Train data: train fitted with airtight system Coding: See Table 5-42
National System Isolation	128 / 100	8	BITSET8	TR_OBU_NTCIsolated	National System Isolation Coding: Coding for each bit (see Table 5-43): Bit0: NTC system 1 (T_IS_S1 / ISS1) Bit1: NTC system 2 (T_IS_S2 / ISS2) Bit2: NTC system 3 (T_IS_S3 / ISS3) Bit3: NTC system 4 (T_IS_S4 / ISS4) Bit4: NTC system 5 (T_IS_S5 / ISS5) Bit5: NTC system 6 (T_IS_S6 / ISS6) Bit6: NTC system 7 (T_IS_S7 / ISS7) Bit7: NTC system 8 (T_IS_S8 / ISS8)
Change of Traction System	128 / 100	16	INTEGER16, 2's complement	OBU_TR_CTS_D_Change	Remaining distance from the max safe front end to the location of change of traction system Coding: see Table 5-21
Change of Traction System	128 / 100	10	UNSIGNED16	OBU_TR_CTS_NewId	Country identifier of the new traction system Coding: bits 09: see Table 5-23 bits 1015: spare bits
Change of Traction System	128 / 100	4	UNSIGNED8	OBU_TR_CTS_New_Voltage	Voltage of the new traction system Coding: bits 03: see Table 5-23 bits 47: spare bits

SUBSET-119 Train Interface FFFIS Page 40/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Powerless Section with Pantograph to be Lowered – Trackside Orders	256 / 200	16	INTEGER16, 2's complement	OBU_TR_PG_D_Entry	Remaining distance from the max safe front end to the start location of the powerless section with pantograph to be lowered Coding: see Table 5-21
Powerless Section with Pantograph to be Lowered – Trackside Orders	256 / 200	16	INTEGER16, 2's complement	OBU_TR_PG_D_Exit	Remaining distance from the min safe front end to the end location of the powerless section with pantograph to be lowered Coding: see Table 5-22
Pantograph – STM Orders	128 / 100	1	BOOLEAN1	OBU_TR_PG_Cmd	Pantograph command Coding: See Table 5-25
Air Tightness Area – Trackside Orders	256 / 200	16	INTEGER16, 2's complement	OBU_TR_AT_D_Entry	Remaining distance from the max safe front end to the start location of the air tightness area Coding: see Table 5-21
Air Tightness Area – Trackside Orders Air Tightness –	256 / 200	16	INTEGER16, 2's complement	OBU_TR_AT_D_Exit OBU_TR_AT_Cmd	Remaining distance from the min safe rear end to the end location of the air tightness area Coding: see Table 5-22 Command air tightness command
STM Orders	100		DOCEMINI	OSS_TN_AT_OMA	Coding: See Table 5-27

SUBSET-119 Train Interface FFFIS Page 41/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Entry1	Remaining distance from the max safe front end to the start location of the platform 1 Coding: See Table 5-21
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Exit1	Remaining distance from the min safe front end to the end location of the platform 1 Coding: see Table 5-22
Station Platform	256 / 200	4	4*BOOLEAN	OBU_TR_SP_Height1_Bit0, OBU_TR_SP_Height1_Bit1, OBU_TR_SP_Height1_Bit2, OBU_TR_SP_Height1_Bit3	Height of the platform 1 Coding: See Table 5-28
Station Platform	256 / 200	2	2*BOOLEAN1	OBU_TR_SP_Right1, OBU_TR_SP_Left1	Side the platform 1 is on. Coding (OBU_TR_SP_Left, OBU_TR_SP_Right): See Table 5-28
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Entry2	Remaining distance from the max safe front end to the start location of the platform 2 <u>Coding:</u> See Table 5-21
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Exit2	Remaining distance from the min safe front end to the end location of the platform 2 Coding: see Table 5-22
Station Platform	256 / 200	4	4*BOOLEAN	OBU_TR_SP_Height2_Bit0, OBU_TR_SP_Height2_Bit1, OBU_TR_SP_Height2_Bit2, OBU_TR_SP_Height2_Bit3	Height of the platform 2 Coding: See Table 5-28
Station Platform	256 / 200	2	2*BOOLEAN1	OBU_TR_SP_Right2, OBU_TR_SP_Left2	Side the platform 2 is on. Coding (OBU_TR_SP_Left, OBU_TR_SP_Right): See Table 5-28

SUBSET-119 Train Interface FFFIS Page 42/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Entry3	Remaining distance from the max safe front end to the start location of the platform 3 <u>Coding:</u> See Table 5-21
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Exit3	Remaining distance from the min safe front end to the end location of the platform 3 Coding: see Table 5-22
Station Platform	256 / 200	4	4*BOOLEAN	OBU_TR_SP_Height3_Bit0, OBU_TR_SP_Height3_Bit1, OBU_TR_SP_Height3_Bit2, OBU_TR_SP_Height3_Bit3	Height of the platform 3 Coding: See Table 5-28
Station Platform	256 / 200	2	2*BOOLEAN1	OBU_TR_SP_Right3, OBU_TR_SP_Left3	Side the platform 3 is on. Coding (OBU_TR_SP_Left, OBU_TR_SP_Right): See Table 5-28
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Entry4	Remaining distance from the max safe front end to the start location of the platform 4 Coding: See Table 5-21
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Exit4	Remaining distance from the min safe front end to the end location of the platform 4 Coding: see Table 5-22
Station Platform	256 / 200	4	4*BOOLEAN	OBU_TR_SP_Height4_Bit0, OBU_TR_SP_Height4_Bit1, OBU_TR_SP_Height4_Bit2, OBU_TR_SP_Height4_Bit3	Height of the platform 4 Coding: See Table 5-28
Station Platform	256 / 200	2	2*BOOLEAN1	OBU_TR_SP_Right4, OBU_TR_SP_Left4	Side the platform 4 is on. Coding (OBU_TR_SP_Left, OBU_TR_SP_Right): See Table 5-28

SUBSET-119 Train Interface FFFIS Page 43/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Entry5	Remaining distance from the max safe front end to the start location of the platform 5 Coding: See Table 5-21
Station Platform	256 / 200	16	INTEGER16, 2's complement	OBU_TR_SP_D_Exit5	Remaining distance from the min safe front end to the end location of the platform 5 Coding: see Table 5-22
Station Platform	256 / 200	4	4*BOOLEAN	OBU_TR_SP_Height5_Bit0, OBU_TR_SP_Height5_Bit1, OBU_TR_SP_Height5_Bit2, OBU_TR_SP_Height5_Bit3	Height of the platform 5 Coding: See Table 5-28
Station Platform	256 / 200	2	2*BOOLEAN1	OBU_TR_SP_Right5, OBU_TR_SP_Left5	Side the platform 5 is on. Coding (OBU_TR_SP_Left, OBU_TR_SP_Right): See Table 5-28
Powerless Section with Main Power Switch to be Switched Off – Trackside Orders	256 / 200	16	INTEGER16, 2's complement	OBU_TR_MPS_D_Entry	Remaining distance from the max safe front end to the start location of the powerless section with main power switch to be switched off Coding: see Table 5-21
Powerless Section with Main Power Switch to be Switched Off – Trackside Orders	256 / 200	16	INTEGER16, 2's complement	OBU_TR_MPS_D_Exit	Remaining distance from the min safe front end to the end location of the powerless section with main power switch to be switched off Coding: see Table 5-22

SUBSET-119 Train Interface FFFIS Page 44/121

Function	maximum cycle time for MVB and CAN / ECN [ms]	signal size[Bit]	signal type for transmission	name on serial interface	Comment
Main Power Switch – STM Orders	128 / 100	1	BOOLEAN1	OBU_TR_MPS_Cmd	MPS open command Coding: See Table 5-30
Change of Allowed Current Consumption	128 / 100	16	INTEGER16, 2's complement	OBU_TR_ACC_D_Change	Remaining distance from the max safe front end to the location of change of allowed current consumption <u>Coding:</u> <u>see Table 5-21</u>
Change of Allowed Current Consumption	128 / 100	10	UNSIGNED16	OBU_TR_ACC_Limit	New allowed current consumption Coding: Bit 09: see Table 5-31 Bit 1015: spare
Traction Status (only for STM)	128 / 100	1	BOOLEAN1	TR_OBU_Traction_Status	Traction status Coding: See Table 5-35
Set Speed value	128 / 100	16	UNSIGNED16	TR_OBU_SetSpeedValue	Set speed value Coding: See Table 5-24
Set Speed display	128 / 100	1	BOOLEAN1	TR_OBU_SetSpeedDisplay	Set speed display Coding: See Table 5-25

Table 4-1 Generic Serial Interface Table

SUBSET-119 Train Interface FFFIS Page 45/121

4.3.2.2 All signals are transmitted over the networks in telegrams according to reference [13]. The list of the various telegrams is given hereafter in the following paragraphs.

4.3.3 TR Telegram 1

TR Telegram 1			
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset
TR_OBU_TrainSleep	BOOLEAN1		0.0
TR_OBU_TrainSleep_Not	BOOLEAN1		0.1
TR_OBU_PassiveShunting	BOOLEAN1		0.2
TR_OBU_NLEnabled	BOOLEAN1		0.3
TR_OBU_DirectionFW	BOOLEAN1		0.4
TR_OBU_DirectionBW	BOOLEAN1		0.5
TR_OBU_CabStatusA	BOOLEAN1		0.6
TR_OBU_CabStatusB	BOOLEAN1		0.7
TR_OBU_TypeTrainData_S1	BOOLEAN1		1.0
TR_OBU_TypeTrainData_S2	BOOLEAN1		1.1
Spare1	BOOLEAN1		1.2
Spare2	BOOLEAN1		1.3
TR_OBU_Traction_Status	BOOLEAN1		1.4
TR_OBU_AirTightFitted	BOOLEAN1		1.5
TR_OBU_SetSpeedDisplay	BOOLEAN1		1.6

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 46/121

TR Telegram 1	TR Telegram 1					
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset			
Spare3	BOOLEAN1		1.7			
TR_OBU_BrakePressure	UNSIGNED8		2.0			
TR_OBU_NTCIsolated	BITSET8		3.0			
TR_OBU_Brake_Status	BITSET8		4.0			
Spare4	UNSIGNED8		5.0			
TR_OBU_SetSpeedValue	UNSIGNED16		6.0			
Spare5	UNSIGNED16		8.0			
Spare6	UNSIGNED16		10.0			
Spare7	UNSIGNED16		12.0			
Spare8	UNSIGNED16		14.0			
Spare9	UNSIGNED16		16.0			
Spare10	UNSIGNED16		18.0			
Spare11	UNSIGNED16		20.0			
Validity1	UNSIGNED16	Validity of value of variables contained in the first two bytes of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 1.0 is in bit 8. The validity of the signal with offset 1.7 is in bit 15.	22.0			
Validity2	UNSIGNED16	Validity of value of variables contained in bytes 2 to 21 of the	24.0			

SUBSET-119 Train Interface FFFIS Page 47/121

TR Telegram 1						
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset			
		telegram. The validity of the signal with offset 2.0 is in bit 0. The validity of the signal with offset 20.0 is in bit 11.				

4.3.4 TR Telegram 2

TR Telegram 2			
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset
TR_OBU_TiltingHealthStatus	BOOLEAN1		0.0
TR_OBU_TiltingHealthStatus_Not	BOOLEAN1		0.1
TR_OBU_BrakePosition1	BOOLEAN1		0.2
TR_OBU_BrakePosition1_Not	BOOLEAN1		0.3
TR_OBU_BrakePosition2	BOOLEAN1		0.4
TR_OBU_BrakePosition2_Not	BOOLEAN1		0.5
Spare1	BOOLEAN1		0.6
Spare2	BOOLEAN1		0.7
TR_OBU_TrainType	UNSIGNED8		1.0
TR_OBU_Train Composition	UNSIGNED8		2.0
TR_OBU_BrakePercentage	UNSIGNED8		3.0

SUBSET-119 Train Interface FFFIS Page 48/121

TR Telegram 2				
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset	
TR_OBU_TrainCatInt	UNSIGNED16		4.0	
TR_OBU_TrainLength	UNSIGNED16		6.0	
TR_OBU_LoadingGauge	UNSIGNED8		8.0	
TR_OBU_AxleLoadCat	UNSIGNED8		9.0	
TR_OBU_TrainCatCantDef	UNSIGNED8		10.0	
TR_OBU_TS_M_VOLTAGE	UNSIGNED8		11.0	
TR_OBU_TS_NID_CTRACTION	UNSIGNED16		12.0	
Spare3	UNSIGNED16		14.0	
Spare4	UNSIGNED16		16.0	
Spare5	UNSIGNED16		18.0	
Spare6	UNSIGNED16		20.0	
Validity1	UNSIGNED8	Validity of value of variables contained in bytes 0 to 7 of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 1.0 is in bit 8. The validity of the signal with offset 10.0 is in bit 15.	22.0	
Validity2	UNSIGNED16	Validity of value of variables contained in bytes 11 to 20 of the telegram. The validity of the signal with offset 11.0 is in bit 0. The validity of the signal with offset 20.0 is in bit 5.	24.0	

SUBSET-119 Train Interface FFFIS Page 49/121

4.3.5 Variables for Generic Telegram Structures

- 4.3.5.1 The OBU telegrams 1 to 2 shall have a static telegram structure, see clause 5.3.1.2. The OBU telegrams 3 to 7 shall have a generic telegram structure, see clause 5.3.1.2.
- 4.3.5.2 The track conditions which shall be transmitted with generic telegram structure (see clause 5.3.1.2) have the same data structure.
- 4.3.5.3 Coding for variables used for generic telegram structures

Name	Size	Meaning
OB _TR_TC_ID1,	8 bits	Track condition ID.
OB _TR_TC_ID2,		The purpose of the track condition ID is to
OB _TR_TC_ID3,		be able to distinguish more easily the track
OB _TR_TC_ID4,		conditions to be transmitted among
OB _TR_TC_ID5,		themselves.
OB _TR_TC_ID6,		0x00 to 0xFF are set for track conditions
OB _TR_TC_ID7,		which are transmitted. For the next track
OB _TR_TC_ID8,		condition to be transmitted the next value
OB _TR_TC_ID9,		shall be set. The Track condition ID of one
OB _TR_TC_ID10,		track condition shall not change as long as
OB _TR_TC_ID11,		this track condition is transmitted. Note:
OB _TR_TC_ID12,		this means that if, while the OBU is
OB _TR_TC_ID13,		transmitting a track condition, a track
OB _TR_TC_ID14,		condition ID becomes free (this ID was
OB _TR_TC_ID15,		used for the transmission of another track
OB _TR_TC_ID16,		condition which transmission is now
OB _TR_TC_ID17,		terminated), the OBU will continue the

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 50/121

OB _TR_TC_ID18, OB _TR_TC_ID19, OB _TR_TC_ID20 OB _TR_TC_TYPE1, OB _TR_TC_TYPE2, OB _TR_TC_TYPE3, OB _TR_TC_TYPE4, OB _TR_TC_TYPE5, OB _TR_TC_TYPE6, OB _TR_TC_TYPE7, OB _TR_TC_TYPE7, OB _TR_TC_TYPE9, OB _TR_TC_TYPE10, OB _TR_TC_TYPE11, OB _TR_TC_TYPE11, OB _TR_TC_TYPE12, OB _TR_TC_TYPE13, OB _TR_TC_TYPE14, OB _TR_TC_TYPE15, OB _TR_TC_TYPE16, OB _TR_TC_TYPE16, OB _TR_TC_TYPE17, OB _TR_TC_TYPE18, OB _TR_TC_TYPE18, OB _TR_TC_TYPE19, OB _TR_TC_TYPE20 OBU TR D ENTRY1,	8 bits	transmission of this track condition keeping the same ID, even if the new free ID has a lower value than the currently used one. Track Condition Type. For each type of track condition there is an unambiguous value. The used value indicates which type of track condition is transmitted. The values are defined in Table 4-3.
OBU_TR_D_ENTRY1, OBU_TR_D_ENTRY2, OBU_TR_D_ENTRY3, OBU_TR_D_ENTRY4,	าง มแร	point D (OBU_TR_XXX_D_Entry) for the respective Track Condition Type, see Table 5-21.

SUBSET-119 Train Interface FFFIS Page 51/121

OBU_TR_D_ENTRY5,		
OBU_TR_D_ENTRY6,		
OBU_TR_D_ENTRY7,		
OBU_TR_D_ENTRY8,		
OBU_TR_D_ENTRY9,		
OBU_TR_D_ENTRY10,		
OBU_TR_D_ENTRY11,		
OBU_TR_D_ENTRY12,		
OBU_TR_D_ENTRY13,		
OBU_TR_D_ENTRY14,		
OBU_TR_D_ENTRY15,		
OBU_TR_D_ENTRY16,		
OBU_TR_D_ENTRY17,		
OBU_TR_D_ENTRY18,		
OBU_TR_D_ENTRY19,		
OBU_TR_D_ENTRY20		
OBU_TR_D_EXIT1,	16 bits	Remaining distance to the end location
OBU_TR_D_EXIT2,		point E (OBU_TR_XXX_D_Exit) for the
OBU_TR_D_EXIT3,		respective Track Condition Type, see
OBU_TR_D_EXIT4,		Table 5-22.
OBU_TR_D_EXIT5,		
OBU_TR_D_EXIT6,		
OBU_TR_D_EXIT7,		
OBU_TR_D_EXIT8,		
OBU_TR_D_EXIT9,		
OBU_TR_D_EXIT10,		
OBU_TR_D_EXIT11,		

SUBSET-119 Train Interface FFFIS Page 52/121

OBU_TR_D_EXIT12,		
OBU_TR_D_EXIT13,		
OBU_TR_D_EXIT14,		
OBU_TR_D_EXIT15,		
OBU_TR_D_EXIT16,		
OBU_TR_D_EXIT17,		
OBU_TR_D_EXIT18,		
OBU_TR_D_EXIT19,		
OBU_TR_D_EXIT20		

Table 4-2 Coding for Variables used for Generic Telegram Structures

- 4.3.5.4 If with track condition variables no track condition information is transmitted the respective validity bit shall be set to "0".
- 4.3.5.5 Meaning of the Track Condition Type Values and the relation to Track Condition Distance Variables

Value of OB _TR_TC_TYPExx	Type of Track Condition / Meaning	Variable to be allocated to OBU_TR_D_ENTRYxx	Variable to be allocated to OBU_TR_D_EXITxx
0x00	Regenerative Brake Inhibition	OBU_TR_RBI_D_Entry	OBU_TR_RBI_D_Exit
0x01	Magnetic Shoe Brake Inhibition	OBU_TR_MGI_D_Entry	OBU_TR_MGI_D_Exit
0x02	Eddy Current Brake for SB Inhibition	OBU_TR_ECS_D_Entry	OBU_TR_ECS_D_Exit
0x03	Eddy Current Brake for EB Inhibition	OBU_TR_ECE_D_Entry	OBU_TR_ECE_D_Exit
0x04	Air Tightness Section	OBU_TR_AT_D_Entry	OBU_TR_AT_D_Exit

SUBSET-119 Train Interface FFFIS Page 53/121

0x05	Powerless Section with Pantograph to be Lowered	OBU_TR_PG_D_Entry	OBU_TR_PG_D_Exit
0x06	Powerless Section with Main Power switch to be Switched Off	OBU_TR_MPS_D_Entry	OBU_TR_MPS_D_Exit
0x07 to 0xFF	Spare values	-	-

Table 4-3 Meaning of Track Condition Type Values

4.3.5.6 Note: There is a simple indication of going back to initial state or keep the current setting for the track conditions which consists in stopping to provide information for this track condition, which means sending the special value "8000h" for the remaining distance to the start and end location or to the location of change according to §5.3.1.12. This applies for the transmission with the static telegram structure and also with the generic telegram structure.

4.3.6 OBU Telegram 1

OBU Telegram 1				
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset	
OBU_TR_ServiceBrake	BOOLEAN1		0.0	
OBU_TR_EB3_Cmd	BOOLEAN1		0.1	
OBU_TR_TCO_Cmd	BOOLEAN1		0.2	
OBU_TR_RBInhibit_Cmd	BOOLEAN1		0.3	
OBU_TR_MGInhibit_Cmd	BOOLEAN1		0.4	

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 54/121

OBU Telegram 1				
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset	
OBU_TR_ECSInhibit_Cmd	BOOLEAN1		0.5	
OBU_TR_ECEInhibit_Cmd	BOOLEAN1		0.6	
OBU_TR_AT_Cmd	BOOLEAN1		0.7	
OBU_TR_MPS_Cmd	BOOLEAN1		1.0	
OBU_TR_PG_Cmd	BOOLEAN1		1.1	
Spare1	BOOLEAN1		1.2	
Spare2	BOOLEAN1		1.3	
Spare3	BOOLEAN1		1.4	
Spare4	BOOLEAN1		1.5	
Spare5	BOOLEAN1		1.6	
Spare6	BOOLEAN1		1.7	
Spare7	UNSIGNED16		2.0	
OBU_TR_CTS_D_Change	INTEGER16	Change of Traction System	4.0	
OBU_TR_CTS_NewId	UNSIGNED16		6.0	
OBU_TR_CTS_NewVoltage	UNSIGNED8		8.0	
Spare8	UNSIGNED8		9.0	
OBU_TR_ACC_D_Change	INTEGER16	Change of Allowed Current Consumption	10.0	

SUBSET-119 Train Interface FFFIS Page 55/121

OBU Telegram 1				
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset	
OBU_TR_ACC_Limit	UNSIGNED16		12.0	
Spare9	UNSIGNED16		14.0	
Spare10	UNSIGNED16		16.0	
Spare11	UNSIGNED16		18.0	
Spare12	UNSIGNED16		20.0	
Validity1	UNSIGNED16	Validity of value of variables contained in the first two bytes of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 1.0 is in bit 8. The validity of the signal with offset 1.7 is in bit 15.	22.0	
Validity2	UNSIGNED16	Validity of value of variables contained in bytes 2 to 19 of the telegram. The validity of the 1 st signal with offset 2.0 is in bit 0. The validity of the signal with offset 20.0 is in bit 10.	24.0	

SUBSET-119 Train Interface FFFIS Page 56/121

4.3.7 OBU Station Platform (OBU Telegram 2)

OBU Station Platform				
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset	
Validity1	BOOLEAN1	Variables for element 1 are used	0.0	
Validity2	BOOLEAN1	Variables for element 2 are used	0.1	
Validity3	BOOLEAN1	Variables for element 3 are used	0.2	
Validity4	BOOLEAN1	Variables for element 4 are used	0.3	
Validity5	BOOLEAN1	Variables for element 5 are used	0.4	
Spare1	BOOLEAN1	-	0.5	
Spare2	BOOLEAN1	-	0.6	
Spare3	BOOLEAN1	-	0.7	
OBU_TR_SP_Left1	BOOLEAN1		1.0	
OBU_TR_SP_Right1	BOOLEAN1		1.1	
Spare4	BOOLEAN1		1.2	
Spare5	BOOLEAN1		1.3	
OBU_TR_SP_Height1_Bit0	BOOLEAN1		1.4	
OBU_TR_SP_Height1_Bit1	BOOLEAN1		1.5	
OBU_TR_SP_Height1_Bit2	BOOLEAN1		1.6	
OBU_TR_SP_Height1_Bit3	BOOLEAN1		1.7	

SUBSET-119 Train Interface FFFIS Page 57/121

OBU Station Platform			
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset
OBU_TR_SP_Left2	BOOLEAN1		2.0
OBU_TR_SP_Right2	BOOLEAN1		2.1
Spare6	BOOLEAN1		2.2
Spare7	BOOLEAN1		2.3
OBU_TR_SP_Height2_Bit0	BOOLEAN1		2.4
OBU_TR_SP_Height2_Bit1	BOOLEAN1		2.5
OBU_TR_SP_Height2_Bit2	BOOLEAN1		2.6
OBU_TR_SP_Height2_Bit3	BOOLEAN1		2.7
OBU_TR_SP_Left3	BOOLEAN1		3.0
OBU_TR_SP_Right3	BOOLEAN1		3.1
Spare8	BOOLEAN1		3.2
Spare9	BOOLEAN1		3.3
OBU_TR_SP_Height3_Bit0	BOOLEAN1		3.4
OBU_TR_SP_Height3_Bit1	BOOLEAN1		3.5
OBU_TR_SP_Height3_Bit2	BOOLEAN1		3.6
OBU_TR_SP_Height3_Bit3	BOOLEAN1		3.7
OBU_TR_SP_Left4	BOOLEAN1		4.0
OBU_TR_SP_Right4	BOOLEAN1		4.1

SUBSET-119 Train Interface FFFIS Page 58/121

OBU Station Platform			
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset
Spare10	BOOLEAN1		4.2
Spare11	BOOLEAN1		4.3
OBU_TR_SP_Height4_Bit0	BOOLEAN1		4.4
OBU_TR_SP_Height4_Bit1	BOOLEAN1		4.5
OBU_TR_SP_Height4_Bit2	BOOLEAN1		4.6
OBU_TR_SP_Height4_Bit3	BOOLEAN1		4.7
OBU_TR_SP_Left5	BOOLEAN1		5.0
OBU_TR_SP_Right5	BOOLEAN1		5.1
Spare12	BOOLEAN1		5.2
Spare13	BOOLEAN1		5.3
OBU_TR_SP_Height5_Bit0	BOOLEAN1		5.4
OBU_TR_SP_Height5_Bit1	BOOLEAN1		5.5
OBU_TR_SP_Height5_Bit2	BOOLEAN1		5.6
OBU_TR_SP_Height5_Bit3	BOOLEAN1		5.7
OBU_TR_SP_D_Entry1	INTEGER16		6.0
OBU_TR_SP_D_Exit1	INTEGER 16		8.0
OBU_TR_SP_D_Entry2	INTEGER16		10.0
OBU_TR_SP_D_Exit2	INTEGER 16		12.0

SUBSET-119 Train Interface FFFIS Page 59/121

OBU Station Platform			
Data name	Туре	Description (as a complement to Table 4-1)	Byte.Bit Offset
OBU_TR_SP_D_Entry3	INTEGER16		14.0
OBU_TR_SP_D_Exit3	INTEGER 16		16.0
OBU_TR_SP_D_Entry4	INTEGER16		18.0
OBU_TR_SP_D_Exit4	INTEGER 16		20.0
OBU_TR_SP_D_Entry5	INTEGER16		22.0
OBU_TR_SP_D_Exit5	INTEGER 16		24.0

4.3.8 OBU Telegram 3

OBU Telegram 3				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
OB _TR_TC_ID1	UNSIGNED8	-	0x00 to 0xff	0.0
OB _TR_TC_TYPE1	UNSIGNED8	-	0x00 to 0x06	1.0
OBU_TR_D_ENTRY1	INTEGER16	-	OBU_TR_xxx_D_Entry	2.0
OBU_TR_D_EXIT1	INTEGER16	-	OBU_TR_xxx_D_Exit	4.0
OB _TR_TC_ID2	UNSIGNED8	-	0x00 to 0xff	6.0
OB _TR_TC_TYPE2	UNSIGNED8	-	0x00 to 0x06	7.0

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 60/121

OBU Telegram 3	OBU Telegram 3				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset	
OBU_TR_D_ENTRY2	INTEGER16	-	OBU_TR_xxx_D_Entry	8.0	
OBU_TR_D_EXIT2	INTEGER16	-	OBU_TR_xxx_D_Exit	10.0	
OB _TR_TC_ID3	UNSIGNED8	-	0x00 to 0xff	12.0	
OB _TR_TC_TYPE3	UNSIGNED8	-	0x00 to 0x06	13.0	
OBU_TR_D_ENTRY3	INTEGER16	-	OBU_TR_xxx_D_Entry	14.0	
OBU_TR_D_EXIT3	INTEGER16	-	OBU_TR_xxx_D_Exit	16.0	
OB _TR_TC_ID4	UNSIGNED8	-	0x00 to 0xff	18.0	
OB _TR_TC_TYPE4	UNSIGNED8	-	0x00 to 0x06	19.0	
OBU_TR_D_ENTRY4	INTEGER16	-	OBU_TR_xxx_D_Entry	20.0	
OBU_TR_D_EXIT4	INTEGER16	-	OBU_TR_xxx_D_Exit	22.0	
Validity	UNSIGNED16	-	Validity of value of variables contained in bytes 0 to 22 of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 22.0 is in bit 16.	24.0	

SUBSET-119 Train Interface FFFIS Page 61/121

4.3.9 OBU Telegram 4

OBU Telegram 4				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
OB _TR_TC_ID5	UNSIGNED8	-	0x00 to 0xff	0.0
OB _TR_TC_TYPE5	UNSIGNED8	-	0x00 to 0x06	1.0
OBU_TR_D_ENTRY5	INTEGER16	-	OBU_TR_xxx_D_Entry	2.0
OBU_TR_D_EXIT6	INTEGER16	-	OBU_TR_xxx_D_Exit	4.0
OB _TR_TC_ID6	UNSIGNED8	-	0x00 to 0xff	6.0
OB _TR_TC_TYPE6	UNSIGNED8	-	0x00 to 0x06	7.0
OBU_TR_D_ENTRY6	INTEGER16	-	OBU_TR_xxx_D_Entry	8.0
OBU_TR_D_EXIT6	INTEGER16	-	OBU_TR_xxx_D_Exit	10.0
OB _TR_TC_ID7	UNSIGNED8	-	0x00 to 0xff	12.0
OB _TR_TC_TYPE7	UNSIGNED8	-	0x00 to 0x06	13.0
OBU_TR_D_ENTRY7	INTEGER16	-	OBU_TR_xxx_D_Entry	14.0
OBU_TR_D_EXIT7	INTEGER16	-	OBU_TR_xxx_D_Exit	16.0
OB _TR_TC_ID8	UNSIGNED8		0x00 to 0xff	18.0
OB _TR_TC_TYPE8	UNSIGNED8	-	0x00 to 0x06	19.0
OBU_TR_D_ENTRY8	INTEGER16	-	OBU_TR_xxx_D_Entry	20.0
OBU_TR_D_EXIT8	INTEGER16	-	OBU_TR_xxx_D_Exit	22.0

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 62/121

OBU Telegram 4				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
Validity	UNSIGNED16	-	Validity of value of variables contained in bytes 0 to 22 of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 22.0 is in bit 16.	24.0

4.3.10 OBU Telegram 5

OBU Telegram 5				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
OB _TR_TC_ID9	UNSIGNED8	-	0x00 to 0xff	0.0
OB _TR_TC_TYPE9	UNSIGNED8	-	0x00 to 0x06	1.0
OBU_TR_D_ENTRY9	INTEGER16	-	OBU_TR_xxx_D_Entry	2.0
OBU_TR_D_EXIT9	INTEGER16	-	OBU_TR_xxx_D_Exit	4.0
OB _TR_TC_ID10	UNSIGNED8	-	0x00 to 0xff	6.0
OB _TR_TC_TYPE10	UNSIGNED8	-	0x00 to 0x06	7.0
OBU_TR_D_ENTRY10	INTEGER16	-	OBU_TR_xxx_D_Entry	8.0
OBU_TR_D_EXIT10	INTEGER16	-	OBU_TR_xxx_D_Exit	10.0

SUBSET-119 Train Interface FFFIS Page 63/121

OBU Telegram 5	OBU Telegram 5				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset	
OB _TR_TC_ID11	UNSIGNED8	-	0x00 to 0xff	12.0	
OB _TR_TC_TYPE11	UNSIGNED8	-	0x00 to 0x06	13.0	
OBU_TR_D_ENTRY11	INTEGER16	-	OBU_TR_xxx_D_Entry	14.0	
OBU_TR_D_EXIT11	INTEGER16	-	OBU_TR_xxx_D_Exit	16.0	
OB _TR_TC_ID12	UNSIGNED8	-	0x00 to 0xff	18.0	
OB _TR_TC_TYPE12	UNSIGNED8	-	0x00 to 0x06	19.0	
OBU_TR_D_ENTRY12	INTEGER16	-	OBU_TR_xxx_D_Entry	20.0	
OBU_TR_D_EXIT12	INTEGER16	-	OBU_TR_xxx_D_Exit	22.0	
Validity	UNSIGNED16	-	Validity of value of variables contained in bytes 0 to 22 of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 22.0 is in bit 16.	24.0	

SUBSET-119 Train Interface FFFIS Page 64/121

4.3.11 OBU Telegram 6

OBU Telegram 6				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
OB _TR_TC_ID13	UNSIGNED8	-	0x00 to 0xff	0.0
OB _TR_TC_TYPE13	UNSIGNED8	-	0x00 to 0x06	1.0
OBU_TR_D_ENTRY13	INTEGER16	-	OBU_TR_xxx_D_Entry	2.0
OBU_TR_D_EXIT13	INTEGER16	-	OBU_TR_xxx_D_Exit	4.0
OB _TR_TC_ID14	UNSIGNED8	-	0x00 to 0xff	6.0
OB _TR_TC_TYPE14	UNSIGNED8	-	0x00 to 0x06	7.0
OBU_TR_D_ENTRY14	INTEGER16	-	OBU_TR_xxx_D_Entry	8.0
OBU_TR_D_EXIT14	INTEGER16	-	OBU_TR_xxx_D_Exit	10.0
OB _TR_TC_ID15	UNSIGNED8	-	0x00 to 0xff	12.0
OB _TR_TC_TYPE15	UNSIGNED8	-	0x00 to 0x06	13.0
OBU_TR_D_ENTRY15	INTEGER16	-	OBU_TR_xxx_D_Entry	14.0
OBU_TR_D_EXIT15	INTEGER16	-	OBU_TR_xxx_D_Exit	16.0
OB _TR_TC_ID16	UNSIGNED8	-	0x00 to 0xff	18.0
OB _TR_TC_TYPE16	UNSIGNED8	-	0x00 to 0x06	19.0
OBU_TR_D_ENTRY16	INTEGER16	-	OBU_TR_xxx_D_Entry	20.0
OBU_TR_D_EXIT16	INTEGER16	-	OBU_TR_xxx_D_Exit	22.0

SUBSET-119 Train Interface FFFIS Page 65/121

OBU Telegram 6				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
Validity	UNSIGNED16	-	Validity of value of variables contained in bytes 0 to 22 of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 22.0 is in bit 16.	24.0

4.3.12 OBU Telegram 7

OBU Telegram 7				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
OB _TR_TC_ID17	UNSIGNED8	-	0x00 to 0xff	0.0
OB _TR_TC_TYPE17	UNSIGNED8	-	0x00 to 0x06	1.0
OBU_TR_D_ENTRY17	INTEGER16	-	OBU_TR_xxx_D_Entry	2.0
OBU_TR_D_EXIT17	INTEGER16	-	OBU_TR_xxx_D_Exit	4.0
OB _TR_TC_ID18	UNSIGNED8	-	0x00 to 0xff	6.0
OB _TR_TC_TYPE18	UNSIGNED8	-	0x00 to 0x06	7.0
OBU_TR_D_ENTRY18	INTEGER16	-	OBU_TR_xxx_D_Entry	8.0
OBU_TR_D_EXIT18	INTEGER16	-	OBU_TR_xxx_D_Exit	10.0

SUBSET-119 Train Interface FFFIS Page 66/121

OBU Telegram 7				
Data name (structure and fixed generic content)	Туре	Default values	Values per type of track condition	Byte.Bit Offset
OB _TR_TC_ID19	UNSIGNED8	-	0x00 to 0xff	12.0
OB _TR_TC_TYPE19	UNSIGNED8	-	0x00 to 0x06	13.0
OBU_TR_D_ENTRY19	INTEGER16	-	OBU_TR_xxx_D_Entry	14.0
OBU_TR_D_EXIT19	INTEGER16	-	OBU_TR_xxx_D_Exit	16.0
OB _TR_TC_ID20	UNSIGNED8	-	0x00 to 0xff	18.0
OB _TR_TC_TYPE20	UNSIGNED8	-	0x00 to 0x06	19.0
OBU_TR_D_ENTRY20	INTEGER16	-	OBU_TR_xxx_D_Entry	20.0
OBU_TR_D_EXIT20	INTEGER16	-	OBU_TR_xxx_D_Exit	22.0
Validity	UNSIGNED16	-	Validity of value of variables contained in bytes 0 to 22 of the telegram. The validity of the signal with offset 0.0 is in bit 0. The validity of the signal with offset 22.0 is in bit 16.	24.0

SUBSET-119 Train Interface FFFIS Page 67/121

4.4 MVB

4.4.1 General

- 4.4.1.1 The physical layer shall be ESD+ or EMD.
- 4.4.1.2 The interface shall be implemented in accordance with [16].
- 4.4.1.3 The safe data transmission shall be implemented in accordance with [15].
- 4.4.1.4 Note: Only the telegram part which is termed as "send telegram" in [15], figure B.13 "MVB-VDP" is defined in this Subset.

4.4.2 Coding

4.4.2.1 TR Telegram 1

Properties:

Port address: configurable

Source device: TR

Sink device: OBU

Data class: Process data, 32 bytes

Maximum cycle time: 128 ms

TR Telegram 1			
Data name	Туре	Description	Byte.Bit Offset
Content according to TR Telegram 1 (see chapter 4.3.3) 0.0			
Safe data transmission trailer according to [15]			26.0

SUBSET-119 Train Interface FFFIS Page 68/121

4.4.2.2 TR Telegram 2

Properties:

Port address: configurable

Source device: TR

Sink device: OBU

Data class: Process data, 32 bytes

Maximum cycle time: 256 ms

TR Telegram 2			
Data name	Туре	Description	Byte.Bit Offset
Content according to TR Telegram 2 (see chapter 4.3.4)			0.0
Safe data transmission trailer according to [15]			26.0

4.4.2.3 OBU Telegram 1

Properties:

Port address: configurable

Source device: OBU

Sink device: TR

Data class: Process data, 32 bytes

Maximum cycle time: 128 ms

OBU Telegram 1			
Data name	Туре	Value Interpretation	Byte.Bit Offset
Content according to OBU Telegram 1 (see chapter 4.3.6)			0.0
Safe data transmission trailer according to [15]			26.0

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 69/121

4.4.2.4 OBU Station Platform Telegram (OBU Telegram 2)

Properties:

Port address: configurable

Source device: OBU

Sink device: TR

Data class: Process data, 32 bytes

Maximum cycle time: 256 ms

OBU Station Platform				
Data name	Туре	Value Interpretation	Byte.Bit Offset	
Content according to OBU Station Platform (see chapter 4.3.7) 0.0				
Safe data transmission trailer according to [15] 26.0			26.0	

4.4.2.5 OBU Telegram 3 to OBU Telegram 7

Properties:

Port address: configurable

Source device: OBU

Sink device: TR

Data class: Process data, 32 bytes

Maximum cycle time: 256 ms

OBU Telegram 3 OBU Telegram 7			
Data name	Туре	Value Interpretation	Byte.Bit Offset
Content according to OBU Telegram 3 to OBU Telegram 7 (see chapters 0 to 4.3.12)			0.0
Safe data transmission trailer according to [15]			26.0

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 70/121

4.5 CAN

4.5.1 General

- 4.5.1.1 The interface shall be implemented in accordance with [17],
- 4.5.1.2 The safe data transmission shall be implemented in accordance with [15] (MVB).
- 4.5.1.2.1 An MVB telegram shall be constructed at sender side to calculate the CRC and shall be split for transmission in 5 CAN telegrams, each with a different CAN telegram identifier, see Figure 4-3.
- 4.5.1.2.2 At receiver side the CAN telegrams shall be merged again to an MVB telegram to check the CRC.
- 4.5.1.2.3 All telegrams (CAN and MVB) of the same sequence shall use the same SSC value taken over from the MVB telegram.

Figure 4-3 Safe Data Transmission via CAN

4.5.1.3 Note: Only the telegram part which is termed as "send telegram" in [15], figure B.13 "MVB-VDP" is defined in this Subset.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 71/121

4.5.2 Coding

- 4.5.2.1 CAN is using MVB coding, see chapter 4.4.2.
- 4.5.2.2 CAN telegram numbers are configurable according to [17].

4.6 ECN

4.6.1 General

- 4.6.1.1 The interface shall be implemented in accordance with [18].
- 4.6.1.2 The safe data transmission shall be implemented in accordance with [15].
- 4.6.1.3 Note: Only the telegram part which is termed as "send telegram" in [15], figure B.6 "ETB-VDP" is defined in this Subset.

4.6.2 Coding

4.6.2.1 TR Telegram 1

Properties:

Comld: configurable

Source device: TR

Sink device: OBU

Data class: Process data

Maximum cycle time of source device: 100 ms

Dataset ID: configurable

TR Telegram 1			
Data name	Туре	Description	Byte.Bit Offset
Content according to TR Telegram 1 (see chapter 4.3.3)			0.0
Padding	UNSIGNED16	SDT trailer needs to start at 4 byte alignment	26.0
Safe data transmission trailer according to [15]			28.0

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 72/121

4.6.2.2 TR Telegram 2

Properties:

Comld: configurable

Source device: TR

Sink device: OBU

Data class: Process data

Maximum cycle time of source device: 200 ms

Dataset ID: configurable

TR Telegram 2			
Data name	Туре	Description	Byte.Bit Offset
Content according to TR Telegram 1 (see chapter 4.3.4)			0.0
Padding	UNSIGNED16	26.0	
Safe data transmission trailer according to [15]			28.0

SUBSET-119 Train Interface FFFIS Page 73/121

4.6.2.3 OBU Telegram 1

Properties:

Comld: configurable

Source device: OBU

Sink device: TR

Data class: Process data

Maximum cycle time of source device: 100 ms

Dataset ID: configurable

OBU Telegram 1			
Data name	Туре	Value Interpretation	Byte.Bit Offset
Content according to OBU Telegram 1 (see chapter 4.3.6)			0.0
Padding	UNSIGNED16	26.0	
Safe data transmission trailer according to [15]			28.0

4.6.2.4 OBU Station Platform Telegram (OBU Telegram 2)

Properties:

Comld: configurable Source device: OBU

Sink device: TR

Data class: Process data

Maximum cycle time of source device: 200 ms

Dataset ID: configurable

OBU Station Platform			
Data name	Туре	Value Interpretation	Byte.Bit Offset
Content according to OBU Telegram 2 (see chapter 4.3.7)			0.0
Padding	UNSIGNED16	26.0	
Safe data transmission trailer according to [15]			28.0

SUBSET-119 Train Interface FFFIS Page 74/121

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

4.6.2.5 OBU Telegram 3 to OBU Telegram 7

Properties:

ComId: configurable

Source device: OBU

Sink device: TR

Data class: Process data

Maximum cycle time of source device: 200 ms

Dataset ID: configurable

OBU Telegram 1 OBU Telegram 7			
Data name	Туре	Value Interpretation	Byte.Bit Offset
Content according to OBU Station Platform (see chapters 0 to 4.3.12)			0.0
Padding	UNSIGNED16 SDT trailer needs to start at 4 byte alignment		26.0
Safe data transmission trailer according to [15]			28.0

SUBSET-119 Train Interface FFFIS Page 75/121

5. REQUIREMENTS FOR THE SIGNALS TO BE EXCHANGED AT THE TRAIN INTERFACE

5.1 Mode Control

5.1.1 Sleeping

- 5.1.1.1 Architecture
- 5.1.1.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.1.1.2 Coding

T_SL_E_N / TR_OBU_TrainSleep	T_SL_E_I / TR_OBU_TrainSleep_Not	Meaning
0	0	Invalid
0	1	Sleeping not requested
1	0	Sleeping requested
1	1	Invalid

Table 5-1 Coding for enable Sleeping function

- 5.1.1.3 Safety Requirements
- 5.1.1.3.1 Safety requirements shall apply as defined in [8].

5.1.2 Passive Shunting

- 5.1.2.1 Architecture
- 5.1.2.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.1.2.2 Coding

T_PS_E / TR_OBU_PassiveShunting	Meaning
0	Passive shunting not permitted
1	Passive shunting permitted

Table 5-2 Coding for Passive Shunting

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 76/121

- 5.1.2.3 Safety Requirements
- 5.1.2.3.1 Safety requirements according to [8].

5.1.3 Non Leading

- 5.1.3.1 Architecture
- 5.1.3.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.1.3.2 Coding

T_NL_E / TR_OBU_NLEnabled	Meaning
0	Non-leading not permitted
1	Non-leading permitted

Table 5-3 Coding for Non Leading

- 5.1.3.3 Safety Requirements
- 5.1.3.3.1 Safety requirements shall apply as defined in [8].

5.1.4 Isolation

- 5.1.4.1 Architecture
- 5.1.4.1.1 Reference architecture as defined in Chapter 3 is allowed.
- 5.1.4.1.2 The signal shall be generated directly by the ERTMS/ETCS isolation device.

5.1.4.2 Coding

O_IS_S	Meaning
0	ERTMS/ETCS on-board not isolated
1	ERTMS/ETCS on-board isolated

Table 5-4 Coding for Isolation (of ETCS)

- 5.1.4.3 Safety Requirements
- 5.1.4.3.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 77/121

5.2 Signals for the Control of Brakes

5.2.1 Service Brake Command

- 5.2.1.1 Architecture
- 5.2.1.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.2.1.2 Coding

O_SB_C / OBU_TR_ServiceBrake	Meaning
0	Service brake not commanded
1	Service brake commanded

Table 5-5 Coding for Service Brake command

- 5.2.1.3 Safety Requirements
- 5.2.1.3.1 Safety requirements shall apply as defined in [8].

5.2.2 Brake Pressure

- 5.2.2.1 General
- 5.2.2.1.1 Note: The value of air pressure input represents either the pressure in the brake cylinders or in the UIC brake pipe, see [7], 2.3.2.3.1.
- 5.2.2.2 Architecture
- 5.2.2.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

5.2.2.3 Coding

Name	Size	Meaning	
TR_OBU_BrakePressure	8 bits	0	0.0 bar
		1 60	Steps of 0.1 bar up to 6 bar
		61 255	Spare values

Table 5-6 Coding for Brake Pressure

5.2.2.4 Safety Requirements

5.2.2.4.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 78/121

5.2.3 Emergency Brake Interface

- 5.2.3.1 General
- 5.2.3.1.1 Two standard ways of transfer of the emergency brake command within the vehicle and train consist exist according to [5], [19], [20] and [21]:
 - Electrical safety line (Figure 5-1)
 - Pneumatic brake pipe according to (Figure 5-2)
- 5.2.3.2 Emergency Brake Command
- 5.2.3.2.1 Figure 5-1 shows a possible integration of an ERTMS/ETCS on-board on each end vehicle of a consist into an emergency brake architecture based on an electric safety line, where the emergency brake command is transmitted by de-energizing electric actors. Relays K1 and K2 are the transfer components.
- 5.2.3.2.1.1 Note: This is only a principle drawing not showing all details of the safety loop.
- 5.2.3.2.2 EB lines are redundant for safety reasons. The contacts of the ERTMS/ETCS on-board in each line shall be controlled separately in order to be able to test each line independently.
- 5.2.3.2.3 Notes to all figures: All contacts are drawn in position "no power" which corresponds to "EB commanded". Actors 1, m and n are devices (valves, relays, electronic inputs of brake control etc.) either on one vehicle or distributed over the consist or distributed over the train. In addition, "ETCS" refers to ERTMS/ETCS on-board equipment.

Figure 5-1 EB architecture with electric safety loop

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 79/121

5.2.3.2.4 The following figure shows a possible integration of an ERTMS/ETCS on-board on each end vehicle into an emergency brake architecture based on a brake pipe where the emergency brake command is transmitted by venting a pneumatic pipe. In this architecture the transfer components are the valves controlled by the EB lines and venting the brake pipe.

Figure 5-2 EB architecture with brake pipe

5.2.3.2.5 The following figure shows another possible integration of an ERTMS/ETCS on-board on each end vehicle. The second EB line is implemented by using the serial interface to the TCMS. The further transmission from the TCMS to the brake system is out of scope, but needs to be considered in the safety case (see safety requirements referenced in section 5.2.3.2.13)

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 80/121

Figure 5-3 EB architecture with one EB line and a serial link

- 5.2.3.2.6 In sections 5.2.3.2.7, 5.2.3.2.8 and 5.2.3.2.9 harmonized solutions for the EB command interface are defined.
- 5.2.3.2.7 Architecture Solution 1: Four NO contacts for two EB lines (see figure 5-4).

SUBSET-119 Train Interface FFFIS Page 81/121

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

Figure 5-4 EB function, Solution 1: 2 EB lines

- 5.2.3.2.7.1 The contacts O_EB1_C_1 and O_EB1_C_2 are part of the same relay and form only one signal named O_EB1_C. O_EB2_C_1 and O_EB2_C_2 are part of another single relay and form another signal named O_EB2_C.
- 5.2.3.2.8 Architecture Solution 2: Two NO contacts for two EB lines

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 82/121

Figure 5-5 EB function, Solution 2: 2 EB lines

5.2.3.2.9 Architecture Solution 3: One NO contact for one EB line and serial interface

Figure 5-6 EB function, Solution 3: 1 EB line, serial interface

5.2.3.2.10 General Architecture

- 5.2.3.2.10.1 For O_EB1_C and O_EB2_C only reference architecture as defined in Chapter 3 is allowed.
- 5.2.3.2.11 For OBU_TR_EB3_Cmd only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.2.3.2.12 Coding

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 83/121

O_EB1_C	O_EB2_C	Meaning
0	0	EB commanded
0	1	Fault in normal operation
1	0	Fault in normal operation
1	1	EB not commanded from ERTMS/ETCS on-board

Table 5-7 Coding for EB1 and EB2 command

- 5.2.3.2.12.1 Vehicle shall apply EB in any cases in which the coding for "EB command" is different from O_EB1_C = 1 and O_EB2_C = 1.
- 5.2.3.2.12.2 Fault in normal operation is considered whenever the values of O_EB1_C and O_EB2_C remain different for a period greater than 2s. The failure has to be detected by the vehicle.

OBU_TR_EB3_Cmd	Meaning
0	EB commanded (vehicle shall apply EB)
1	EB not commanded from ERTMS/ETCS on-board

Table 5-8 Coding for EB3 command

- 5.2.3.2.13 Safety Requirements
- 5.2.3.2.13.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 84/121

5.2.4 Special Brake Inhibition Area – Trackside Orders

Figure 5-7 Passing a Special Brake Inhibition Area

- 5.2.4.1 This is a track condition to be handled although not included in chapter 5.3. Chapter 5.3.1 also applies for Special Brake Inhibition Area.
- Note: In [1], 5.20.5 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide the remaining distance to the start location point D (OBU_TR_XXX_D_Entry) and the remaining distance to the end location point E (OBU_TR_XXX_D_Exit) to the ERTMS/ETCS external function (e.g. TCMS).
- 5.2.4.3 Architecture
- 5.2.4.4 Only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.2.4.5 Coding

Name	Size	Meaning
OBU_TR_RBI_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_RBI_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-9 Coding for Regenerative Brake Inhibit

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 85/121

Name	Size	Meaning
OBU_TR_MGI_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_MGI_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-10 Coding for Magnetic Shoe Brake Inhibit

Name	Size	Meaning
OBU_TR_ECS_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_ECS_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-11 Coding for Eddy Current Brake for Service Brake Inhibit

Name	Size	Meaning
OBU_TR_ECE_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_ECE_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-12 Coding for Eddy Current Brake for Emergency Brake Inhibit

- 5.2.4.6 Safety Requirements
- 5.2.4.6.1 Safety requirements shall apply as defined in [8].

5.2.5 Special Brake Inhibition Area – STM Orders

- 5.2.5.1 Architecture
- 5.2.5.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.
- 5.2.5.2 Coding
- 5.2.5.2.1 Regenerative brake inhibition command

Name	Size	Meaning
OBU_TR_RBInhibit_Cmd	Binary output or	0: Regenerative Brake is not to be inhibited
O_RB_I	(1 bit on bus)	1: Regenerative Brake is to be inhibited

Table 5-13 Coding for Regenerative Brakes Inhibition command – STM Orders

5.2.5.2.2 Magnetic shoes brakes inhibition command

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 86/121

Name	Size	Meaning
OBU_TR_MGInhibit_Cmd	Binary output or	0: Magnetic Shoe Brake is not to be
O_MG_I	(1 bit on bus)	inhibited
		1: Magnetic Shoe Brake is to be inhibited

Table 5-14 Coding for Magnetic Shoe Brake Inhibition command – STM Orders

5.2.5.2.3 Eddy current brakes for service brake inhibition command

Name	Size	Meaning
OBU_TR_ECSInhibit_Cmd O ECS I	Binary output or (1 bit on bus)	0: Eddy Current Brake for Service Brake is not to be inhibited
0_200_1	(1 bit on bus)	1: Eddy Current Brake for Service Brake is to be inhibited

Table 5-15 Coding for Eddy Current Brake for Service Brake Inhibition command – STM Orders

5.2.5.2.4 Eddy current brakes for emergency brake inhibition command

Name	Size	Meaning
OBU_TR_ECEInhibit_Cmd	Binary output or	0: Eddy Current Brake for Emergency
O_ECE_I	(1 bit on bus)	Brake is not to be inhibited
		1: Eddy Current Brake for Emergency
		Brake is to be inhibited

Table 5-16 Coding for Eddy Current Brake for Emergency Brake Inhibition command – STM Orders

5.2.6 Special Brake Status

- 5.2.6.1 General
- 5.2.6.1.1 The inhibition of a special brake results in a different model to be used by the ERTMS/ETCS on-board internally. Hence informing the ERTMS/ETCS on-board about the status of a specific special brake can be relevant to calculate the brake model that has to be used.
- 5.2.6.2 Architecture
- 5.2.6.2.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.
- 5.2.6.3 Coding
- 5.2.6.3.1 Electro Pneumatic Brake Status

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 87/121

T_EP_S_N / EP_S	T_EP_S_I / EP_S_Not	Meaning
0	0	Invalid
0	1	Brake not active, see definition in [7], §2.3.6.5.
1	0	Brake active, see definition in [7], §2.3.6.5.
1	1	Invalid

Table 5-17 Coding for Electro Pneumatic Brake Status

5.2.6.3.2 Eddy Current Brake Status

T_EC_S_N / EC_S	T_EC_S_I / EC_S_Not	Meaning
0	0	Invalid
0	1	Brake not active, see definition in [7], §2.3.6.5.
1	0	Brake active, see definition in [7], §2.3.6.5.
1	1	Invalid

Table 5-18 Coding for Eddy Current Brake Status

5.2.6.3.3 Regenerative Brake Status

T_RB_S_N / RB_S	T_RB_S_I / RB_S_Not	Meaning
0	0	Invalid
0	1	Brake not active, see definition in [7], §2.3.6.5.
1	0	Brake active, see definition in [7], §2.3.6.5.
1	1	Invalid

Table 5-19 Coding for Regenerative Brake Status

5.2.6.3.4 Magnetic Shoe Brake Status

T_MG_S_N / MG_S	T_MG_S_I / MG_S_Not	Meaning
0	0	Invalid
0	1	Brake not active, see definition in [7], §2.3.6.5.
1	0	Brake active, see definition in [7], §2.3.6.5.
1	1	Invalid

Table 5-20 Coding for Magnetic Shoe Brake Status

5.2.6.4 Safety Requirements

5.2.6.4.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 88/121

5.2.7 **Additional Brake Status**

- 5.2.7.1 Additional brakes shall be handled in the same manner like special brakes.
- 5.2.7.2 Currently no brakes which would qualify for "additional brakes" in the meaning of [1] are known.

Control of Train Functions 5.3

5.3.1 General

- 5.3.1.1 Note: The structure of the telegrams is defined in 4.3.5 to 4.3.12.
- 5.3.1.2 Note: A fixed data structure is used for track conditions with a specific structure and for which specific rules are foreseen in SS-040:
 - 5 track conditions Station Platform
 - 1 track condition Change of Traction System
 - 1 track condition Change of Allowed Current Consumption

Note: A generic data structure is used for transmitting track conditions that have the same data structure. Up to 20 track conditions can be transmitted by using the generic data structure. 20 has been selected in order to fulfill the rule of Subset-040, 4.3.2 I) for these track conditions:

- track condition Regenerative Brake Inhibition
- track condition Magnetic Shoe Brake Inhibition
- track condition Eddy Current Brake for SB Inhibition
- track condition Eddy Current Brake for EB Inhibition
- track condition Air Tightness Section
- track condition Powerless Section with Pantograph to be Lowered
- track condition Powerless Section with Main Power switch to be Switched Off
- 5.3.1.3 For the generic data structure part the track conditions shall be dynamically allocated to the generic telegram data structure.
- 5.3.1.4 Note: The final content of a telegram is determined dynamically and depends on the track conditions information needed to be transmitted at the moment the message is created.
- 5.3.1.5 Note: The Track Conditions themselves are specified in [1].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

Train Interface FFFIS SUBSET-119 Page 89/121

- 5.3.1.6 Note: The specifications on how to perform the functions on the vehicle side are outside the scope of ERTMS/ETCS. Therefore, they are not part of this document and are not part of any other UNISIG document. This includes also a possibly needed merging of track condition of the same type in case the TCMS receives several track conditions of the same type.
- 5.3.1.7 Due to trackside topology two track conditions of the same type can be encountered within a short period of time or short distance. It is the responsibility of the TCMS to act in accordance with the characteristics of the vehicle. Example: The TCMS could decide to keep the flaps closed between two adjacent tunnels.
- 5.3.1.8 The ERTMS/ETCS on-board shall receive the information related to the Track Conditions from the trackside, process it and forward it to the ERTMS/ETCS external function (e.g. TCMS) via the TI. In this application data of Numerical signal type is used and therefore this information can be transmitted to the ERTMS/ETCS external function (e.g. TCMS) only via the serial interface. The information from ERTMS/ETCS on-board shall be used by the ERTMS/ETCS external function (e.g. TCMS) to perform all necessary actions at the right time (e.g. to change the traction system at the given location). This means that the ERTMS/ETCS external function (e.g. TCMS) has to take into account relevant delay times (e.g. for opening the main power switch).
- 5.3.1.9 The generation of the information forwarded to the ERTMS/ETCS external function (e.g. TCMS) shall start as specified in chapter 5.20 of [1].
- 5.3.1.10 If the Track Condition data refer to a single location (reference point) and not to a track section, then only the start location has to be considered which in this case is equal to the exit point. Example: Change of allowed current consumption.
- 5.3.1.11 The cycle time for the Track Condition variables on the serial interface shall be according to Table 4-1.
- 5.3.1.12 Data type used for the remaining distances is an INTEGER16 (2's complement) with a resolution of 1 meter (see Table 5-21 and Table 5-22).

Value range	Meaning
8000h (special value)	No remaining distance to the start location of a track condition of the considered type or to the location of a change of traction system is provided to the train.
7FFFh (special value)	The value to be transmitted is higher than the highest value of the transmittable range. This special value is a flag indicating that the remaining distance value to be transmitted is higher than the max value of the range, i.e. > 32766 m.
8001h (special value)	The value to be transmitted is lower than the lowest value of the transmittable range. This special value is a flag indicating that the remaining distance value to be transmitted is lower

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 90/121

	than the min value of the range, i.e. < -32766 m.
7FFEh to 0000h	This value represents the remaining distance to the start
(32766 m to 0 m)	location of the track section.
8002h to FFFFh (-32766 m to -1 m)	

Table 5-21 Coding of variables "OBU_TR_XXX_D_Entry" and "OBU_TR_XXX_D_Change"

Value range	Meaning
8000h (special value)	No remaining distance to end location of a track condition of the considered type is provided to the train. The initial state is required for the track condition. In case of ACC and CTS the current settings of the track condition shall be kept.
7FFFh (special value)	The value to be transmitted is higher than the highest value of the transmittable range. This special value is a flag indicating that the remaining distance value to be transmitted is higher than the max value of the range, i.e. > 32766 m.
8001h (special value)	The value to be transmitted is lower than the lowest value of the transmittable range. This special value is a flag indicating that the remaining distance value to be transmitted is lower than the min value of the range, i.e. < -32766 m.
7FFEh to 0000h (32766 m to 0 m) 8002h to FFFFh (-32766 m to -1 m)	This value represents the remaining distance to the end location of the track section.

Table 5-22 Coding of variables "OBU_TR_XXX_D_Exit"

- 5.3.1.13 Note: It is possible that the distance provided jumps (backwards or forwards) e.g. due to ETCS internal reset of odometry inaccuracy.
- 5.3.1.14 Note: The vehicle side has to consider the impact if a driver overrules commands for a track condition.
- 5.3.1.15 Note: For vehicles without serial interface a project specific adaptation is necessary which allows to command the ETCS Track Condition orders via hard-wired interface by computing all individual commands required to manage the Track Condition functions. Whether the function to transform the remaining distances into elementary commands is implemented inside the EVC or in any other device in the vehicle is a project specific matter.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 91/121

5.3.2 Change of Traction System

- 5.3.2.1 Note: In [1], 5.20.6 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide
 - the remaining distance (OBU_TR_CTS_D_Change) to the location of change of traction system (point F),
 - the new traction system (OBU_TR_CTS_NewId) and
 - the new voltage (OBU_TR_CTS_NewVoltage)

to the ERTMS/ETCS external function (e.g. TCMS).

5.3.2.2 Architecture

5.3.2.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

Figure 5-8 Changing the traction system

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 92/121

5.3.2.3 Coding

Name	Size	Meaning
OBU_TR_CTS_D_Change	16 bits	See Table 5-21, resolution: 1 ≡ 1 m.
OBU_TR_CTS_NewId	10 bits	The new traction system (NID_CTRACTION). For coding refer to NID_CTRACTION as defined in [1], 7.5.1.86.1. If M_VOLTAGE is 0 the value shall not be considered. Only 10 bits are used. The values from 1024 to 65535 are spare values.
OBU_TR_CTS_NewVoltage	4 bits	The new voltage (M_VOLTAGE). For coding refer to M_VOLTAGE as defined in [1], 7.5.1.78. Only 4 bits are used. The values from 16 to 255 are spare values.

Table 5-23 Coding for Change of Traction System

- 5.3.2.3.1 Note: In practice the change of traction system Track Condition may be used combined with another Track Condition e.g. a powerless section with pantograph to be lowered.
- 5.3.2.3.2 When receiving "change of traction system" information in which the variable OBU_TR_CTS_D_Change is set to the special value 8000h (see Table 5-21), the vehicle shall not consider the variables OBU_TR_CTS_NewId and OBU_TR_CTS_NewVoltage contained in this information.
- 5.3.2.4 Safety Requirements
- 5.3.2.4.1 Safety requirements shall apply as defined in [8].

SUBSET-119 Train Interface FFFIS Page 93/121

5.3.3 Powerless Section with Pantograph to be Lowered – Trackside orders

Figure 5-9 Passing a Powerless Section with Pantograph to be Lowered

SUBSET-119 Train Interface FFFIS Page 94/121

- 5.3.3.1 Note: In [1], 5.20.2 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide the remaining distance to the start location point D (OBU_TR_PG_D_Entry) and the remaining distance to the end location point E (OBU_TR_PG_D_Exit) to the ERTMS/ETCS external function (e.g. TCMS).
- 5.3.3.2 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to cut off the traction when the max safe front end of the train reaches the point H.
- 5.3.3.3 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to switch off the main circuit breaker when the max safe front end of the train reaches the point I.
- 5.3.3.4 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to lower the pantograph when the max safe front end of the train reaches the point J.
- 5.3.3.5 Note: The ERTMS/ETCS external function (e.g. TCMS) commands the pantograph not to be lowered the when the min safe rear end of the train reaches the point K.
- 5.3.3.6 Note: The ERTMS/ETCS external function (e.g. TCMS) commands the main circuit not to be switched off when the min safe rear end of the train reaches the point L.
- 5.3.3.7 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to change the traction to be available when the min safe rear end of the train reaches the point M.
- 5.3.3.8 Note: When the min safe rear end of the train reaches the point G the traction is available.
- 5.3.3.9 Note: The points H, I, J, K, L, M, and G are only for illustration for the sequence of the actions. The train could also control each pantograph separately and therefore react according to the location of the various pantographs, not according to the location of the train front/rear end as assumed in the figure.
- 5.3.3.10 Architecture
- 5.3.3.10.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

5.3.3.11 Coding

Name	Size	Meaning
OBU_TR_PG_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_PG_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-24 Coding for Lower Pantograph Command

- 5.3.3.12 Safety Requirements
- 5.3.3.12.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 95/121

5.3.4 Pantograph – STM Orders

- 5.3.4.1 Architecture
- 5.3.4.1.1 Reference architecture as defined in Chapter 3 or serial interface is allowed.
- 5.3.4.2 Coding

Name	Size	Meaning
O_PG_C / OBU_TR_PG_Cmd	Binary output or (1 bit on bus)	0: Lower Pantograph 1: Raise pantograph

Table 5-25 Coding for Pantograph Command – STM Orders

- 5.3.4.3 Safety requirements
- 5.3.4.3.1 Safety requirements shall apply as defined in [8].

5.3.5 Air Tightness Area – Trackside orders

Figure 5-10 Passing an Air Tightness Area

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 96/121

- 5.3.5.1 Note: In [1], 5.20.4 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide the remaining distance to the start location point D (OBU_TR_AT_D_Entry) and the remaining distance to the end location point E (OBU_TR_AT_D_Exit) to the ERTMS/ETCS external function (e.g. TCMS).
- 5.3.5.2 Architecture
- 5.3.5.3 Only serial connection (bus) as defined in Chapter 4 is allowed.

5.3.5.4 Coding

Name	Size	Meaning
OBU_TR_AT_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_AT_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-26 Coding for Air Tightness Area Command

- 5.3.5.5 Safety Requirements
- 5.3.5.5.1 Safety requirements shall apply as defined in [8].

5.3.6 Air Tightness – STM Orders

- 5.3.6.1 Architecture
- 5.3.6.1.1 Reference architecture as defined in Chapter 3 or serial interface is allowed.

5.3.6.2 Coding

Name	Size	Meaning
OBU_TR_AT_Cmd	Binary output or	0: Open air conditioning intake
O_AT_C	(1 bits on bus)	1: Close air conditioning intake

Table 5-27 Coding for Air Tightness – STM Orders

- 5.3.6.3 Safety requirements
- 5.3.6.3.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 97/121

5.3.7 Station Platform

- 5.3.7.1 Note: In [1], 5.20.8 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide
 - the remaining distance to the start location point D (OBU_TR_SP_D_Entry(K)),
 - the remaining distance to the end location point E (OBU_TR_SP_D_Exit(K)),
 - the height of the platform above rail level (OBU_TR_SP_Height(K)),
 - and the position of the platform (OBU_TR_SP_Left(K) and OBU_TR_SP_Right(K))
- 5.3.7.2 Architecture
- 5.3.7.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

to the ERTMS/ETCS external function (e.g. TCMS).

5.3.7.3 Coding

Name	Size	Meaning
OBU_TR_SP_D_Entry(K)	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_SP_D_Exit(K)	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.
OBU_TR_SP_Height(K)_Bit0,	4 bits	The height of the platform above rail level
OBU_TR_SP_Height(K)_Bit1,		(derived from M_PLATFORM [1],
OBU_TR_SP_Height(K)_Bit2,		7.5.1.75.5).
OBU_TR_SP_Height(K)_Bit3		Coding (Bit 3 / Bit 2 / Bit 1 / Bit 0):
		0000: 200 mm
		0001: 300-380 mm
		0010: 550 mm
		0011: 580 mm
		0100: 680 mm
		0101: 685 mm
		0110: 730 mm
		0111: 760 mm
		1000: 840 mm
		1001: 900 mm
		1010: 915 mm
		1011: 920 mm
		1100: 960 mm
		1101: 1100 mm

[©] This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 98/121 1.0.15

		1110 – 1111: Spare
OBU_TR_SP_Right(K), OBU_TR_SP_Left(K)	2 bits	The position of the platform (derived from Q_PLATFORM [1], 7.5.1.126.2).
		Coding (OBU_TR_SP_Left(K) (Bit 1) / OBU_TR_SP_Right(K) (Bit 0)):
		00: no platform (default value)
		01: right
		10: left
		11: both sides

Table 5-28 Coding for Station Platform

5.3.7.3.1 Note:

K= number of stored information in the on-board (see [25], 4.3.2.1.1 t))

.

K= 0 no valid information

K= 1 first station platform

K= 2 second station platform

. . .

K= 5 fifth station platform

5.3.7.3.2 When receiving "station platform" information in which, for a value of index K, both the variables OBU_TR_SP_D_Entry(K) and OBU_TR_SP_D_Exit(K) are set to the special value 8000h (see Table 5-21 and Table 5-22 respectively), the vehicle shall not consider the variables OBU_TR_SP_Height(K)_Bit0, OBU_TR_SP_Height(K)_Bit1, OBU_TR_SP_Height(K)_Bit2, OBU_TR_SP_Height(K)_Bit3, OBU_TR_SP_Left(K) and OBU_TR_SP_Right(K) contained in this information.

5.3.7.4 Safety Requirements

5.3.7.4.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 99/121

Figure 5-11 Station Platform

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 100/121 1.0.15

5.3.8 Powerless Section with Main Power Switch to be Switched Off – Trackside Orders

- 5.3.8.1 Note: In [1], 5.20.3 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide the remaining distance to the start location point D (OBU_TR_MPS_D_Entry) and the remaining distance to the end location point E (OBU_TR_MPS_D_Exit) to the ERTMS/ETCS external function (e.g. TCMS).
- 5.3.8.2 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to cut off the traction before the max safe front end of the train reaches the point H.
- 5.3.8.3 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to switch off the main circuit breaker before the max safe front end of the train reaches the point I.
- 5.3.8.4 Note: The ERTMS/ETCS external function (e.g. TCMS) commands the main circuit not to be switched off when the min safe rear end of the train reaches the point L.
- 5.3.8.5 Note: The ERTMS/ETCS external function (e.g. TCMS) commands to change the traction to be available when the min safe rear end of the train reaches the point M.
- 5.3.8.6 Note: When the min safe rear end of the train reaches the point G the traction is available.
- 5.3.8.7 Note: The points H, I, L, M, and G are only for illustration for the sequence of the actions.
- 5.3.8.8 Architecture
- 5.3.8.8.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

SUBSET-119 Train Interface FFFIS Page 101/121

Figure 5-12 Passing a Powerless Section with Main Power Switch to be Switched Off

5.3.8.9 Coding

Name	Size	Meaning
OBU_TR_MPS_D_Entry	16 bits	See Table 5-21 Resolution: 1 ≡ 1 m.
OBU_TR_MPS_D_Exit	16 bits	See Table 5-22 Resolution: 1 ≡ 1 m.

Table 5-29 Coding for passing a Powerless Section with Main Power Switch to be Switched
Off

- 5.3.8.10 Safety Requirements
- 5.3.8.11 Safety requirements shall apply as defined in [8].

5.3.9 Main Power Switch – STM Orders

- 5.3.9.1 Architecture
- 5.3.9.1.1 Reference architecture as defined in Chapter 3 or serial interface is allowed.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 102/121

5.3.9.2 Coding

Name	Size	Meaning
O_MPS_C / OBU_TR_MPS_Cmd	Binary output or (1 bit on bus)	O: Main Power Switch to be switched off Hain Power Switch NOT to be switched off

Table 5-30 Coding for Main Power Switch - STM Orders

- 5.3.9.3 Safety requirements
- 5.3.9.3.1 Safety requirements shall apply as defined in [8].

5.3.10 Change of Allowed Current Consumption

- 5.3.10.1 Note: In [1], 5.20.7 it is specified between which locations the ERTMS/ETCS on-board equipment shall provide the remaining distance (OBU_TR_ACC_D_Change) to the location of change of allowed current consumption (point F) and the new current limit (OBU_TR_ACC_Limit) to the ERTMS/ETCS external function (e.g. TCMS).
- 5.3.10.2 Architecture
- 5.3.10.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

Figure 5-13 Change of Allowed Current Consumption

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 103/121

5.3.10.3 Coding

Name	Size	Meaning
OBU_TR_ACC_D_Change	16 bits	See Table 5-21, resolution: 1 ≡ 1 m.
OBU_TR_ACC_Limit	10 bits	New current limit (M_CURRENT).
		(For coding, Min value and Max value refer to
		M_CURRENT as defined in [1], 7.5.1.62.1).
		Only 10 bits are used. The values from 1024
		to 65535 are spare values.

Table 5-31 Coding for Change of Allowed Current Consumption

- 5.3.10.3.1 When receiving "change of allowed current consumption" information in which the variable OBU_TR_ACC_D_Change is set to the special value 8000h (see Table 5-21), the vehicle shall not consider the variable OBU_TR_ACC_Limit contained in this information.
- 5.3.10.4 Safety Requirements
- 5.3.10.5 Safety requirements shall apply as defined in [8].

5.3.11 Traction Cut-Off

- 5.3.11.1 General
- 5.3.11.1.1 The following signal is defined as the traction cut off as soon as the train passes the warning limit (see Table 1-2) of the braking curve model as defined in [1].
- 5.3.11.1.2 Note: With traction cut-off the driving force is cut. Electrical traction could still be used for braking, depending on the specific vehicle implementation.
- 5.3.11.1.2.1 The Traction Cut-Off command is used as defined in [1] 3.13.9.3.2.3 a) and 3.13.2.2.8.1.
- 5.3.11.1.2.2 Architecture

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 104/121 1.0.15

Figure 5-14 TCO function: 1 TCO line and a serial interface

5.3.11.2 Coding

O_TC1_C	OBU_TR_TCO_Cmd	Meaning
1	1	Traction cut-off not commanded
0	1	Traction cut-off commanded.
1	0	Traction cut-off commanded.
0	0	Traction cut-off commanded.

Table 5-32 Coding for Traction Cut Off

- 5.3.11.3 Safety Requirements
- 5.3.11.3.1 Safety requirements shall apply as defined in [8].

5.4 Signals for Train Status Information

5.4.1 Cab Status

- 5.4.1.1 Architecture
- 5.4.1.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 105/121

5.4.1.2 Coding

T_CS_A / TR_OBU_CabStatusA	T_CS_B / TR_OBU_CabStatusB	Meaning
TR_OBO_CabStatusA	TR_OBO_CabStatusB	
0	0	no cab active
1	0	Cab A active
0	1	Cab B active
1	1	Invalid

Table 5-33 Coding for Cab Status

- 5.4.1.2.1 In case the ETCS on-board unit receives the status of two cabs (Cab A and Cab B), the status of Cab A shall be connected to the "Cab Status A" input and the status of Cab B shall be connected to the "Cab Status B" input.
- 5.4.1.2.2 Note: In case the train is fitted with two ETCS on-board units (one on each end of the train), it is sufficient to provide only the cab status signal related to the local cab.
- 5.4.1.3 Safety Requirements
- 5.4.1.3.1 Safety requirements shall apply as defined in [8].

5.4.2 Direction Controller

- 5.4.2.1 Architecture
- 5.4.2.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.4.2.2 Coding

T_FW_S / TR_OBU_DirectionFW	T_BW_S / TR_OBU_DirectionBW	Meaning
0	0	Neutral (no direction selected)
1	0	Forward (relative to active cab)
0	1	Backward (relative to active cab)
1	1	Invalid

Table 5-34 Coding for Direction Controller

- 5.4.2.2.1 For handling of invalid value please refer to [8].
- 5.4.2.3 Safety requirements
- 5.4.2.3.1 Safety requirements shall apply as defined in [8].

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 106/121

5.4.3 Train Integrity

5.4.3.1 To be harmonized.

5.4.4 Traction Status

- 5.4.4.1 Architecture
- 5.4.4.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.4.4.2 Coding

T_TR_S / TR_OBU_Traction_Status	Meaning
0	Traction is Off
1	Traction is On

Table 5-35 Coding for Traction Status (only for STM)

- 5.4.4.2.1 Note: "Traction off" refers to traction zero or negative (electro-dynamic brake) whereas "traction on" refers when traction is positive.
- 5.4.4.3 Safety Requirements
- 5.4.4.3.1 Safety requirements shall apply as defined in [8].

5.4.5 Set Speed

- 5.4.5.1 Architecture
- 5.4.5.1.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

5.4.5.2 Coding

Name	Size	Meaning	
TR_OBU_SetSpeedValue	16 bits	0 600	Set speed in steps of 1 km/h up to 600 km/h
		601 65535	Spare values

Table 5-24 Coding for Set Speed value

Name	Size	Meaning
TR_OBU_SetSpeedDispla	Binary output or	1: set speed to be displayed
У	(1 bits on bus)	0: set speed not to be displayed

Table 5-25 Coding for Set Speed display

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 107/121

- 5.4.5.3 Safety Requirements
- 5.4.5.3.1 Safety requirements shall apply as defined in [8].

5.5 Train Data

5.5.1 General

- 5.5.1.1.1 This section specifies three ways of providing train data to ETCS on-board via the Train Interface:
 - One train type. This "identifier" is used by the ETCS on-board to select the appropriate train data set among the pre-configured ones.
 - The train data themselves.
 - An information which allows to derive train data in a project specific way.
- 5.5.1.1.2 The following sections specify which of these three ways applies for each train data element.
- 5.5.1.1.3 A "train data set" represents a set of train data consisting of all the data that are specified in 5.5.1.1.9.
- 5.5.1.1.4 The selection of the fixed train data set among the pre-configured is determined based on "train type" input, see 5.5.1.1.9.
- 5.5.1.1.5 The train data can be derived from train composition input and from tilting health status input. These inputs are specified in 5.5.1.1.7 and 5.5.1.1.8. Which train data shall be derived from these inputs is project specific.
- 5.5.1.1.6 When the train does not provide a train data element the corresponding validity bit is set to 0, see 4.3.1.3.1. This might be a degraded situation, which has to be handled project specific (e.g. by using existing pre-defined values or train data have to be entered manually).

5.5.1.1.7 Train Composition

- 5.5.1.1.7.1 The train composition input can be used for instance to deduce the values of the train data Cant Deficiency, Traction Model, Maximum Train Speed, Loading Gauge, Train length, Train Fitted with Airtight System, and Axle Load Category (see section 5.5.3).
- 5.5.1.1.7.2 The number of values of the "train composition" to use and their meaning is project specific.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 108/121

- 5.5.1.1.7.3 If no train composition value is provided the validity bit shall be set to FALSE.
- 5.5.1.1.7.4 Architecture
- 5.5.1.1.7.4.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

5.5.1.1.7.5 Coding

Name	Size	Meaning
TR_OBU_TrainComposition	5 bits	The values of this "train composition"
		information are "composition 1",
		"composition 2", "composition 3",
		"composition 4" etc. Value range: 0 to 31.
		The meaning of "composition 1",
		"composition 2", "composition 3",
		"composition 4", etc. is specific to the
		considered project.

Table 5-36 Coding of variable Train Composition

- 5.5.1.1.8 Tilting Health Status
- 5.5.1.1.8.1 In case of tilting trains, the tilting health status input can be used to deduce the values of the train data Cant Deficiency, Maximum Train Speed, and Loading Gauge (see section 5.5.3).
- 5.5.1.1.8.2 Architecture
- 5.5.1.1.8.2.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.5.1.1.8.3 Coding

T_TH_S_N /	T_TH_S_I/	Meaning
TR_OBU_TiltingHealthStatus	TR_OBU_TiltingHealthStatus_Not	
0	0	Invalid
0	1	Tilting system not operational
1	0	Tilting system operational
1	1	Invalid

Table 5-37 Coding for Tilting Health Status

- 5.5.1.1.9 Train Type
- 5.5.1.1.9.1 Each train type shall represent a combination of all train data, see [1], 3.18.3.2:
- 5.5.1.1.9.2 The number of values of "train type" to use and their meaning is project specific.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 109/121

- 5.5.1.1.9.3 If no train type value is provided the validity bit shall be set to FALSE.
- 5.5.1.1.9.4 Architecture
- 5.5.1.1.9.4.1 Only serial connection (bus) as defined in Chapter 4 is allowed.

5.5.1.1.9.5 Coding

Name	Size	Meaning	
TR_OBU_TrainType	5 bits	0 31	A train data set is selected among pre-configured train data sets input.

Table 5-38 Coding of variable Train Type

- 5.5.1.1.10 ERTMS/ETCS on-board equipment principle regarding the consideration of the train data inputs received from the train interface
- 5.5.1.1.10.1 The ERTMS/ETCS on-board equipment shall consider the train data inputs according to the following principle:
- 5.5.1.1.10.1.1 If the "type of train data entry" input has the value "fixed", the ERTMS/ETCS on-board shall only consider the "train type" input.
- 5.5.1.1.10.1.2 If the "type of train data entry" input has the value "flexible":
 - For the train data that cannot be deduced from the "train composition" input nor the "tilting health status" input, the ERTMS/ETCS on-board shall only consider the corresponding train data variables.
 - For the train data that can be deduced from the "train composition" input and/or the "tilting health status" input, the ERTMS/ETCS on-board equipment shall consider either the corresponding train data variables or the "train composition" and "tilting health status" inputs depending on the configuration of the ERTMS/ETCS on-board equipment performed in the project.
- 5.5.1.1.10.1.3 If the type of train data entry input has the value "switchable", the ERTMS/ETCS onboard equipment shall either apply 5.5.1.1.10.1.1 or 5.5.1.1.10.1.2 depending on the last train data window layout selected by the driver (see section 11.3.9.7 in [2]):
 - The ETCS on-board shall apply 5.5.1.1.10.1.1 when the last train data window layout selected by the driver is "Fixed train data entry".
 - The ETCS on-board shall apply 5.5.1.1.10.1.2 when the last train data window layout selected by the driver is "Flexible train data entry".

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 110/121 1.0.15

5.5.2 Type of Train Data Entry

- 5.5.2.1 General
- 5.5.2.1.1 This input indicates the type of train data entry configuration to be applied (see clause 11.3.9.6 of [2] (DMI spec)).
- 5.5.2.2 Architecture
- 5.5.2.2.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.5.2.3 Coding

T_TT_S1 / TR_OBU_TypeTra inData_S1	T_TT_S2 / TR_OBU_TypeTrai nData_S2	Meaning
0	0	Invalid
1	0	Fixed
0	1	Flexible
1	1	Switchable

Table 5-39 Coding for Type of Train Data Entry

- 5.5.2.4 Safety Requirements
- 5.5.2.4.1 Safety requirements shall apply as defined in [8].

5.5.3 Train Data Information

- 5.5.3.1 General
- 5.5.3.1.1 The following solutions require a serial bus system connection between ERTMS/ETCS on-board equipment and train control system. Only some train data can be implemented on hard-wired interface. Such an implementation is an option (see Table 2-1 with footnote 1).
- 5.5.3.1.2 Note: The procedure "Changing Train Data from sources different from the driver" only starts if a change of input information, which affects train data, is detected on an ERTMS/ETCS on-board external interface (see [1], 5.17.2.2, S0). Therefore, the train data validated by the driver are not changed as long as inputs on the Train Interface, which affects these train data, do not change.
- 5.5.3.1.3 Note: Axle Number is a purely static data element and is set only by configuration in the ETCS on-board. These data are not part of train data by external sources in Subset 119. Also the List of National Systems Available On-board is out of scope of the standardized train interface. In [7] National System Isolation is related only to STMs.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 111/121

- 5.5.3.1.4 Note: "Other international category" is not transferred via Train Interface since "brake position" input is transferred.
- 5.5.3.2 Train Category
- 5.5.3.2.1 Cant Deficiency
- 5.5.3.2.1.1 The train interface allows the ETCS on-board to determine the cant deficiency value as follows:
 - By selecting the train data set including the adequate cant deficiency value based on the "train type" input.
 - By selecting/calculating the adequate cant deficiency value in a project specific way based on the "train composition" and "tilting health status" inputs.
 - By receiving the value of the cant deficiency from the train interface.
- 5.5.3.2.1.2 Architecture for transferring the variable via TI
- 5.5.3.2.1.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.5.3.2.1.3 Coding
- 5.5.3.2.1.3.1 It is a 4 bit variable with a specific meaning as defined in [1], 7.5.1.82.2.
- 5.5.3.2.1.4 Safety Requirements
- 5.5.3.2.1.4.1 Safety requirements shall apply as defined in [8].
- 5.5.3.3 Train Length
- 5.5.3.3.1 The train interface allows the ETCS on-board to determine the train length value as follows:
 - By selecting the train data set including the adequate train length value based on the "train type" input.
 - By selecting/calculating the adequate train length value in a project specific way based on the "train composition" input.
 - By receiving the value of the train length from the train interface.
- 5.5.3.3.2 Architecture for transferring the variable via TI
- 5.5.3.3.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.5.3.3.3 Coding

SUBSET-119 Train Interface FFFIS Page 112/121

- 5.5.3.3.3.1 The train length is transmitted to the ERTMS/ETCS on-board as 12 bit variable in [m] according to [1], 7.5.1.56.
- 5.5.3.3.4 Safety Requirements
- 5.5.3.3.4.1 Safety requirements shall apply as defined in [8].
- 5.5.3.4 Traction / Brake Parameters
- 5.5.3.4.1 General
- 5.5.3.4.1.1 The traction / brake parameters consist of the time for traction cut-off (T_traction_cut_off) (traction model) and several brake models.
- 5.5.3.4.1.2 A brake model parameter set corresponding to each different train configuration or different actual states of the brake system (e. g. brakes defective) shall be predefined (by the train integrator) and stored in the ERTMS/ETCS on-board.
- 5.5.3.4.1.3 Note: Correction factors for the emergency deceleration are not transmitted via TI. This data is pre-configured in the ETCS on-board (linked to each EB speed dependent deceleration model, see [1] 3.13.2.2.9.1.2).
- 5.5.3.4.1.4 Note: Correction factor for gradient on normal service deceleration is not transmitted via TI. This data is pre-configured in the ETCS on-board.
- 5.5.3.4.1.5 Note: Taking into account the last two clauses the following parameters have to be considered as traction / brake parameters from the parameters listed in [1], 3.18.3.2:
 - Traction model
 - Brake build up time model and speed dependent deceleration model
 - · Brake percentage
 - Brake position
 - Nominal rotating mass
- 5.5.3.4.2 Traction Model
- 5.5.3.4.2.1 The train interface allows the ETCS on-board to determine the traction model value (value of time delay T_traction_cut_off as per [1] 3.13.2.2.2.1) as follows:
 - By selecting the train data set including the adequate traction model value based on the "train type" input.
 - By selecting/calculating the adequate traction model value in a project specific way based on the "train composition" input.

SUBSET-119 Train Interface FFFIS Page 113/121 1.0.15

- 5.5.3.4.2.2 Note: the traction model value can depend on the train length value and the selection of the adequate traction model value can therefore be based on the train composition input.
- 5.5.3.4.3 Brake build up time model and speed dependent deceleration model:
- 5.5.3.4.3.1 The train interface allows the ETCS on-board to determine the brake build up time model values (T_brake_emergency values and T_brake_service values, see [1] 3.13.2.2.3.2) and speed dependent deceleration model values (A_brake_emergency(V) and A_brake_service(V), see [1] 3.13.2.2.3.1) as follows:
 - By selecting the train data set including the adequate brake build up time model values and the speed dependent deceleration model values based on the "train type" input plus the status of special brakes (see [1] 3.13.2.2.6.2).
 - By calculating the adequate brake build up time value in a project specific way
 using the conversion models based on 'brake position' and 'train length' and by
 calculating the adequate speed dependent deceleration model values by applying
 the conversion model to the brake percentage value.
- 5.5.3.4.3.2 The speed dependent deceleration models related to the normal service brake are preconfigured in the ETCS on-board and the selection of the appropriate model is based on the service brake deceleration at zero speed, A_brake_service(V=0), deduced from the full service brake model and the brake position (see 5.5.3.4.5).
- 5.5.3.4.4 Brake percentage
- 5.5.3.4.4.1 The train interface allows the ETCS on-board to determine the brake percentage value as follows:
 - By selecting the train data set including the adequate brake percentage value based on "train type" input.
 - By selecting/calculating the adequate brake percentage value in a project specific way based on the "train composition" input.
 - By receiving the value of the brake percentage from the train interface based on a "brake percentage" input, which is acquired by other means than ETCS train data entry.
- 5.5.3.4.4.2 Architecture for transferring the variable via TI
- 5.5.3.4.4.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.5.3.4.4.3 Coding

SUBSET-119 Train Interface FFFIS Page 114/121 1.0.15

Name	Size	Meaning	
TR_OBU_BrakePercentage	8 bits	0 9	Spare values
		10 250	See [1], A.3.11, resolution: 1 %
		251 255	Spare values

Table 5-40 Coding of variable Brake Percentage

5.5.3.4.5 Brake position

- 5.5.3.4.5.1 The train interface allows the ETCS on-board to determine the brake position value as follows:
 - By selecting the train data set including the adequate brake position value based on "train type" input.
 - By selecting/calculating the adequate brake position value in a project specific way based on the "train composition" input.
 - By receiving the value of the brake position from the train interface which is read e.g. from a switch installed at vehicle level.
- 5.5.3.4.5.2 Architecture for transferring the variable via TI
- 5.5.3.4.5.2.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.

5.5.3.4.5.3 Coding

T_BP_S1_N /	T_BP_S1_I /	T_BP_S2_N /	T_BP_S2_I/	Meaning (see [1], 3.13.2.2.4.1)
TR_OBU_ BrakePosition1	TR_OBU_Brake Position1_Not	TR_OBU_ BrakePosition2	TR_OBU_Brake Position2_Not	(See [1], 3.13.2.2.4.1)
0	0	0	0	Invalid
0	0	0	1	Invalid
0	0	1	0	Invalid
0	0	1	1	Invalid
0	1	0	0	Invalid
0	1	0	1	Invalid
0	1	1	0	Passenger train in P
0	1	1	1	Invalid
1	0	0	0	Invalid

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 115/121 1.0.15

T_BP_S1_N /	T_BP_S1_I /	T_BP_S2_N /	T_BP_S2_I /	Meaning
TR_OBU_ BrakePosition1	TR_OBU_Brake Position1_Not	TR_OBU_ BrakePosition2	TR_OBU_Brake Position2_Not	(see [1], 3.13.2.2.4.1)
4	_			<u> </u>
1	0	0	1	Freight train in P
1	0	1	0	Freight train in G
1	0	1	1	Invalid
1	1	0	0	Invalid
1	1	0	1	Invalid
1	1	1	0	Invalid
1	1	1	1	Invalid

Table 5-41 Coding for Brake Position

- 5.5.3.4.6 Nominal rotating mass
- 5.5.3.4.6.1 The train interface allows the ETCS on-board to determine the nominal rotating mass value as follows:
 - By selecting the train data set including the adequate nominal rotating mass value based on the "train type" input.
 - By selecting/calculating the adequate nominal rotating mass value in a project specific way based on the "train composition" input.
- 5.5.3.4.7 Safety Requirements
- 5.5.3.4.7.1 Safety requirements shall apply as defined in [8].
- 5.5.3.5 Maximum Train Speed
- 5.5.3.5.1 The train interface allows the ETCS on-board to determine the maximum train speed value as follows:
 - By selecting the train data set including the adequate maximum train speed value based on the "train type" input.
 - By selecting/calculating the adequate maximum train speed value in a project specific way based on the "train composition" and "tilting health status" inputs.
- 5.5.3.5.2 Note: Maximum train speed variable is not transmitted via TI.

SUBSET-119 Train Interface FFFIS Page 116/121

- 5.5.3.5.3 The maximum train speed is a 7 bit variable with values in steps of 5 km/h according to [1], 7.5.1.160.
- 5.5.3.5.4 Safety Requirements
- 5.5.3.5.4.1 Safety requirements shall apply as defined in [8].
- 5.5.3.6 Loading Gauge
- 5.5.3.6.1 The train interface allows the ETCS on-board to determine the loading gauge value as follows:
 - By selecting the train data set including the adequate loading gauge value based on the "train type" input.
 - By selecting/calculating the adequate loading gauge value in a project specific way based on the "train composition" and "tilting health status" inputs.
 - By receiving the value of the loading gauge from the train interface.
- 5.5.3.6.2 Architecture for transferring the variable via TI
- 5.5.3.6.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed
- 5.5.3.6.3 Coding
- 5.5.3.6.3.1 The loading gauge is transmitted as 8 bit variable with values according to [1], 7.5.1.68.
- 5.5.3.6.4 Safety Requirements
- 5.5.3.6.4.1 Safety requirements shall apply as defined in [8].
- 5.5.3.7 Axle Load Category
- 5.5.3.7.1 The train interface allows the ETCS on-board to determine the axle load category value as follows:
 - By selecting the train data set including the adequate axle load category value based on "train type" input.
 - By selecting/calculating the adequate axle load category value in a project specific way based on the "train composition" input.
 - By receiving the value of the axle load category from the train interface.
- 5.5.3.7.2 Architecture for transferring the variable via TI

SUBSET-119 Train Interface FFFIS Page 117/121 1.0.15

- 5.5.3.7.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.5.3.7.3 Coding
- 5.5.3.7.3.1 The axle load category is transmitted as 7 bit variable with values according to [1], 7.5.1.62.
- 5.5.3.7.4 Safety Requirements
- 5.5.3.7.4.1 Safety requirements shall apply as defined in [8].
- 5.5.3.8 Traction system(s) accepted by the engine
- 5.5.3.8.1 The train interface allows the ETCS on-board to determine the traction system(s) accepted by the engine value as follows:
 - By selecting the train data set including the adequate traction system(s) accepted by the engine values based on "train type" input.
 - By selecting/calculating the adequate traction system(s) accepted by the engine values in a project specific way based on the "train composition" input.
 - By receiving the values of the traction system(s) accepted by the engine from the train interface.
- 5.5.3.8.2 Architecture for transferring the variable via TI
- 5.5.3.8.2.1 Only serial connection (bus) as defined in Chapter 4 is allowed.
- 5.5.3.8.3 Coding
- 5.5.3.8.3.1 The TS_NID_CTRACTION is transmitted as a 10 bit variable with values according to [1], 7.5.1.86.1.
- 5.5.3.8.3.2 TS_M_VOLTAGE is transmitted as a 4 bit variable with values according to [1], 7.5.1.78.
- 5.5.3.8.3.3 Note: It has to be considered that new value definitions are possible due to updates of [26].
- 5.5.3.8.4 Safety Requirements
- 5.5.3.8.4.1 Safety requirements shall apply as defined in [8].
- 5.5.3.9 Train Fitted with Airtight System
- 5.5.3.9.1 The train interface allows the ETCS on-board to determine the train fitted with airtight system value as follows:

SUBSET-119 Train Interface FFFIS Page 118/121 1.0.15

- By selecting the train data set including the adequate train fitted with airtight system value based on "train type" input.
- By selecting/calculating the adequate train fitted with airtight system value in a project specific way based on the "train composition" input.
- By receiving the value of the train fitted with airtight system from the train interface.
- 5.5.3.9.2 Architecture for transferring the variable via TI
- 5.5.3.9.2.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.
- 5.5.3.9.3 Coding

T_FAT_S / TR_OBU_AirTightFitted	Meaning
0	Train not fitted with airtight system.
1	Train fitted with airtight system.

Table 5-42 Coding for train fitted with airtight system

- 5.5.3.9.4 Safety Requirements
- 5.5.3.9.4.1 Safety requirements shall apply as defined in [8].

5.6 National System Isolation

- 5.6.1.1 Architecture
- 5.6.1.1.1 Reference architecture as defined in Chapter 3 or serial connection (bus) as defined in Chapter 4 is allowed.
- 5.6.1.2 Coding
- 5.6.1.2.1 Due to the fact that there are multiple existing NTC systems, it shall be possible to configure up to at least eight (see [3]) signals referring to different national systems.

T_IS_Sx / ISSx	Meaning
0	NTCx not isolated
1	NTCx isolated

Table 5-43 Coding for national system isolated

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 119/121

- 5.6.1.3 Safety Requirements
- 5.6.1.3.1 Safety requirements shall apply as defined in [8].

SUBSET-119 Train Interface FFFIS Page 120/121 1.0.15

6. CONFIGURATION MANAGEMENT

6.1.1.1 The following table lists the configuration data related to the Train Interface, which shall be considered for offline agreement.

Nr.	Configuration Items	Description
1.	Train Interface version X applicable for the interface	The applicable Train Interface version X is the version implemented by both the vehicle and the ERTMS/ETCS on-board equipment.
		X=1: SS-119 ed. 0.0.13 is implemented
		X=2: SS-119 ed. 1.1.0 is implemented
2.	Transient period time	Unit: ms
	t_transient_period_inputs for Boolean OBU Inputs	Range: 0-1000
		Resolution: 1 ms
3.	Transient period time	Unit: ms
	t_transient_period_outputs for Boolean OBU Outputs	Range: 0-1000
	·	Resolution: 1 ms

6.1.1.2 Note: For serial bus the user data version (udv) in the SDT trailer (see [15]) is set according to the selected interface version X.

© This document has been developed and released by UNISIG in collaboration with Faiveley Transport, Knorr-Bremse, TÜV, Voith Turbo and Vossloh

SUBSET-119 Train Interface FFFIS Page 121/121 1.0.15