Using modular arithmetic to spped up calculations

Learning Objectives. By the end of class, students will be able to:

- Use Wilson's Theorem to find the least nonnegative residue modulo a prime
- Use Fermat's Little Theorem to find the least nonnegative residue modulo a prime.

Reading None

Multiplicative inverses using Wilson's Theorem

First, some important algebra for multiplicative inverses

Example 1. (a) Let n be an odd positive integer. Then

$$2\left(\frac{n+1}{2}\right) = n+1 \equiv 1 \pmod{n}.$$

So $\frac{n+1}{2}$ is the multiplicative inverse of 2 modulo n.

Think-Pair-Share 0.1. Why is $\left(\frac{n+1}{2}, n\right) = 1$?

We also have that $n - \frac{n+1}{2} = \frac{n-1}{2}$ and $n-2 \equiv -2 \pmod{n}$, so $\frac{n-1}{2}$ is the multiplicative inverse of n-2 modulo n. Another way to see this is

$$-2\left(\frac{n-1}{2}\right) = -n + 1 \equiv 1 \pmod{n}.$$

(b) Let m and n be positive integers such that $n \equiv 1 \pmod{m}$. Then there exists $k \in \mathbb{Z}$ such that n = mk + 1 by the ??. Then

$$-m\left(\frac{n-1}{m}\right) = -n+1 \equiv 1 \pmod{n}.$$

(c) Let m and n be positive integers such that $n \equiv -1 \pmod{m}$. Then there exists $k \in \mathbb{Z}$ such that n = mk - 1 by definition. Then

$$m\left(\frac{n+1}{m}\right) = n+1 \equiv 1 \pmod{n}.$$

Example 2. (a) Practice with Wilson's Theorem: Find $\frac{31!}{23!}$ (mod 11).

$$x \equiv \frac{31!}{23!} \equiv 24(25)(26)(27)(28)(29)(30)(31) \pmod{11}$$

$$\equiv 2(3)(4)(5)(6)(7)(8)(9) \pmod{11}.$$

Then $-x \equiv 10! \equiv -1 \pmod{11}$. Therefore, $x \equiv 1 \pmod{11}$.

Learning outcomes:

Author(s): Claire Merriman

(b) Let p be an odd prime p, then $2(p-3)! \equiv -1 \pmod{p}$.

Proof Let p be an odd prime, then $(p-1)! \equiv -1 \pmod{p}$ by Wilson's Theorem. Multiplying both sides of the congruence by -1 gives $(p-2)! \equiv 1 \pmod{p}$. Since (p-2)! = (p-3)!(p-2) by the definition of factorial, $p-2 \equiv -2 \pmod{p}$ is the multiplicative inverse of (p-3)! modulo p. Thus,

$$-2(p-3)! \equiv 1 \pmod{p}$$
$$2(p-3)! \equiv -1 \pmod{p}.$$

Finding least nonnegative residue Fermat's Little Theorem

Example 3. (a) Find the least nonnegative residue of 29^{202} modulo 13.

First, note that $29 \equiv 3 \pmod{13}$ and 202 = 12(10) + 82 = 12(10) + 12(6) + 10 = 12(16) + 10. Thus,

$$29^{202} \equiv 3^{202} \equiv (3^{12})^{16} 3^{10} \equiv 1^{16} 3^{10} \pmod{13}$$

From here, we have two options:

Keep reducing: For this problem, this is the easier method:

$$3^{10} \equiv (3^3)^3 3 \equiv (27)^3 3 \equiv 3 \pmod{13}$$
.

Find inverse: Note that $3^{12} \equiv 1 \pmod{13}$, so 3^{10} is the multiplicative inverse of $3^2 \equiv 9 \pmod{13}$. Since $9(3) \equiv 1 \pmod{13}$, $3^{10} \equiv 1 \pmod{13}$.

(b) Find the least nonnegative residue of 71⁷¹ modulo 17.

First, note that $71 \equiv 3 \pmod{17}$ and 71 = 8(8) + 7. Thus,

$$71^{71} \equiv 3^{71} \equiv (3^8)^8 3^7 \equiv 1^8 3^7 \pmod{17}$$

Then

$$3^7 \equiv 3^3(3^3)(3) \equiv 10(10)(3) \equiv 10(-4) \equiv -6 \equiv 11 \pmod{17}.$$

Corollary (Corollary 2.14). Let p be a prime. If $a \in \mathbb{Z}$ with $p \nmid a$, then a^{p-2} is the multiplicative inverse of a modulo p.

Think-Pair-Share 0.2. Prove: Let p be a prime. If $a, k \in \mathbb{Z}$ with $p \nmid a$ and $0 \le k < p$, then a^{p-k} is the multiplicative inverse of a^k modulo p.

Proof Let p be a prime. If $a \in \mathbb{Z}$ with $p \nmid a$, then by Fermat's Little Theorem, $a^{p-1} \equiv 1 \pmod{p}$. If $k \in \mathbb{Z}$ with $0 \le k < p$, then $a^{p-1} = a^{p-k}a^k$. Thus, $a^{p-k}a^k \equiv 1 \pmod{p}$.

Example 4. Find all incongruent solutions to $9x \equiv 21 \pmod{23}$.

Since(9,23) = 1, there is only one incongruent solution modulo 23. By Corollary 2.14, 9^{21} is the multiplicative inverse of 9 modulo 23. Thus, $x \equiv 21(9^{21}) \pmod{23}$.

Alternately, 3^{20} is the multiplicative inverse of 3^2 modulo 23, so $x \equiv 21(3^{20}) \equiv (3^{21})7 \pmod{23}$. Since 3^{21} is the multiplicative inverse of 3 modulo 23, so $3^{21} \equiv 8 \pmod{23}$. Thus, $x \equiv 7(8) \equiv 10 \pmod{23}$.

Example 5. Let p be prime and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$. Then $a^p \equiv b^p \pmod{p}$ if and only if $a \equiv b \pmod{p}$.

Proof Let p be prime and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$.

- (\Leftarrow) If $a \equiv b \pmod{p}$, then $a^p \equiv b^p \pmod{p}$ by repeated applications of Proposition 2.4.
- (\Rightarrow) If $a^p \equiv b^p \pmod{p}$, then by Fermat's Little Theorem,

$$a \equiv a^{p-1}a \equiv b^{p-1}b \equiv b \pmod{p}$$
.

Warning 1. This statement is only true for primes. Since

$$1^2 \equiv 3^2 \equiv 5^2 \equiv 7^2 \pmod{8}, \quad 2^2 \equiv 6^2 \pmod{8},$$

$$1^8 \equiv 3^8 \equiv 5^8 \equiv 7^8 \pmod{8}, \quad 2^8 \equiv 6^8 \pmod{8}.$$