Sistemas de Control II

Tarea 1

Profesor: Sergio Laboret

Alumno: Angeloff Jorge

Polo 1	Polo 2	Cero	Ganancia
0	-2	_	5

1. Análisis de un sistema analógico con muestreador y retentor de orden cero

1.1. Obtención de la función de transferencia continua G(s)

```
G = zpk([], [0 -2], [5]);
Tm = 0.15;
```

Se define el sistema continuo como una función de transferencia en forma de ceros, polos y ganancia, con polos en s=0 y s=-2, sin ceros, y ganancia K=5. El tiempo de muestreo se establece en 0.15 segundos.

```
G =

5
-----
s (s+2)

Continuous-time zero/pole/gain model.

Model Properties

Tm =

0.1500
```

Figura 1: Definición de la función de transferencia continua

1.2. Transformación a un sistema discreto con retención ZOH

```
Gd = c2d(G, Tm, 'zoh');
```

La transformación discreta con retención de orden cero permite obtener la función de transferencia $G_d(z)$ del sistema. Esto representa al sistema cuando es muestreado con periodo T_m .

Figura 2: Funcion de transferencia discreta obtenida mediante ZOH

1.3. Mapa de polos y ceros del sistema continuo y discreto

```
pzmap(G);
pzmap(Gd);
```

Comparar los mapas de polos y ceros del sistema continuo y su contraparte discreta revela cómo el muestreo afecta la localización de los polos.

Figura 3: Mapas de polos y ceros del sistema continuo (izq.) y discreto (der.)

1.4. Efecto de aumentar el periodo de muestreo

```
Gd1 = c2d(G, 10*Tm, 'zoh');
pzmap(Gd1);
```

Al aumentar el tiempo de muestreo, los polos del sistema discreto se acercan al origen del plano z, lo cual reduce la velocidad de respuesta del sistema.

Figura 4: Sistema con T_m aumentado. Funcion de transferencia (izq.), mapa de polos y cero (der.)

1.5. Respuesta al escalón y análisis de estabilidad

```
step(G)
step(Gd1)
```

La respuesta discreta con Gd1 muestra una rampa creciente: el sistema es marginalmente estable, pero no acotado.

Figura 5: Respuesta al escalón de sistema continuo (izq.) y discreto Gd1 (der.)

1.6. Tipo de sistema y error en estado estacionario

```
Kp = dcgain(Gd)
F = feedback(Gd,1)
step(F)
ess = 1 / (1 + Kp)
```

 $G_d(z)$ es de tipo 1 por su polo en z=1. Esto implica que el error ante una entrada escalón es cero, confirmado por el cálculo del error en estado estacionario y la respuesta al escalón.

Figura 6: Sistema realimentado F(z) y $e_{SS}(izq.)$. Respuesta al escalón (der.)

1.7. Respuesta ante una rampa

```
t = 0:Tm:100*Tm;
lsim(F, t, t)
```

La salida sigue la rampa con un error constante, dado que el sistema puede seguir señales de tipo rampa pero con error proporcional a $1/K_v$.

Figura 7: Respuesta ante entrada tipo rampa

1.8. Lugar de raíces de los sistemas continuo y discreto

```
rlocus(G)
rlocus(Gd)
```

El sistema continuo es estable para toda K>0. El sistema discreto G_d es estable para K<5,41.

Figura 8: Lugar de raíces: continuo G (arr.) y discreto G_d (aba.)

1.9. Efecto del aumento del periodo de muestreo en la estabilidad

rlocus(Gd1)

Al aumentar el tiempo de muestreo, la ganancia crítica de estabilidad disminuye. El sistema se vuelve inestable con menor ganancia: para K < 0.934 sigue siendo estable.

Figura 9: Lugar de raíces para sistema muestreado con mayor T_m

Conclusión

En este trabajo se analizaron las diferencias entre un sistema continuo y su versión discreta obtenida con retención de orden cero. Se comprobó cómo el proceso de muestreo afecta la ubicación de los polos, la estabilidad y la respuesta del sistema.

Se vio que aumentar el tiempo de muestreo reduce la estabilidad del sistema discreto, y que la ganancia crítica baja en consecuencia. También se observó que el sistema discreto es de tipo 1, lo que garantiza error cero ante un escalón y error constante ante una rampa.

Por último, con el lugar de raíces se visualizó cómo cambia la estabilidad al variar la ganancia y el tiempo de muestreo, lo cual es fundamental para el diseño de controladores digitales.