

# 00358 - FCAMHQ 250-44-50 n15450 MANUAL DA COMUNICAÇAO ETHERNET - MODBUS TCP

As fontes de alimentação estão equipadas com uma porta de comunicação Ethernet, através do qual podem ser operadas e monitoradas remotamente.

Através de qualquer interface virtual residente em um PC, desenvolvida pelo usuário, poder-se-á alterar os valores (preset) de diversos parâmetros da fonte, obter os valores atualmente ajustados, as condições de operação atuais do equipamento (status), e também realizar a leitura das medições realizadas pela fonte.

Ao energizar o equipamento, o usuário deverá aguardar que a interface apresente a tela de execução (aproximadamente 15 segundos após a energização) antes de enviar qualquer comando pela porta serial ou pela ethernet. Esse tempo é necessário para a sua completa inicialização.

Ao enviar qualquer comando pela Ethernet, o usuário deverá aguardar pela resposta enviada pela fonte antes de enviar outro comando. O tempo necessário para a finalização do processamento dos comandos é de no máximo 500 milisegundos.

O equipamento trabalha no modo "escravo", ou seja, somente responde a comandos enviados pelo "mestre", não iniciando uma comunicação.

Ao ligar o equipamento, a sua interface local está habilitada, podendo ser operada manualmente.

Toda comunicação entre o computador e o equipamento é feita no modo mestre-escravo, através de requisições. O equipamento trabalha no modo escravo, aguardando que sejam enviadas requisições.

# **CONFIGURAÇÕES DA PORTA ETHERNET:**

Padrão Tipo: assíncrono (half-duplex).

Conexões tipo: RJ 45. Fator Serial: 130

# Seção 01 ESTRUTURA DO PROTOCOLO DE COMUNICAÇÃO MODBUS/TCP

Esta seção descreve de forma geral o protocolo de leitura e envio de dados via rede MODBUS/TCP. Todas as operações são realizadas via porta 502. A comunicação é *half-duplex*, ou seja, a requisição e a resposta entre os dispositivos nunca ocorrem simultaneamente.

O protocolo MODBUS/TCP utiliza pacote de dados para comunicação, sendo cada pacote composto por 2 bytes. Caso um número maior seja transmitido, o byte mais significativo é enviado primeiro, por exemplo:

16 - bits 0x1234 MODBUS - 0x12 0x34

Neste protocolo, as requisições e respostas são realizadas através de funções (como por exemplo, de leitura e escrita), onde cada função tem uma ordem no envio de dados. Todas as requisições e respostas são antecedidas pela seguinte sequência de bytes:

| Byte             | Significado               | Valor Usual |
|------------------|---------------------------|-------------|
| Byte 0           | ID de transação           | 0           |
| Byte 1           | ID de transação           | 0           |
| Byte 2           | ID de protocolo           | 0           |
| Byte 3           | ID de protocolo           | 0           |
| Byte 4           | Tamanho da mensagem (MSB) | 0           |
| Byte 5           | Tamanho da mensagem (LSB) | Variável    |
| Byte 6           | Identificador da unidade  | Variável    |
| Byte7            | Código da função MODBUS   | Variável    |
| Byte 8 em diante | Mensagem                  | Variável    |

As fontes Supplier utilizam as funções de leitura (Read Multiple Registers – FC 03) e escrita (Write Multiple Registers – FC 16). Devido às funcionalidades disponíveis nas fontes, as funções de leitura e escrita padrões do protocolo não são utilizadas em sua totalidade.

Primeiramente serão explicadas as funções padrão do protocolo *MODBUS*. Em seguida, serão apresentadas as simplificações necessárias quando utilizando esse protocolo com as fontes *Supplier*.

Para a comunicação com as fontes Supplier, são utilizadas apenas dois tipos de requisições do protocolo Modbus: FC03 – Ler múltiplos registradores e FC16 – Escrever múltiplos registradores. A seguir são detalhadas cada uma destas requisições.

#### Ler múltiplos registradores (FC 03):

A requisição da função de leitura gerada pelo *master* é composta por 5 bytes, conforme mostrado na tabela 1. O primeiro byte corresponde ao código da função (03). Os bytes 2 e 3 correspondem ao endereço inicial de leitura, sendo os bytes 4 e 5 as quantidades de endereços a serem lidos a partir do endereço inicial.

Tabela 1. Requisição da função Read Multiple Registers (FC 03):

| Byte 1           | Byte 2                                  | Byte 3 | Byte 4                      | Byte 5                      |
|------------------|-----------------------------------------|--------|-----------------------------|-----------------------------|
| Código da Função | Código da Função Endereço inicial (MSB) |        | Qtde. de<br>endereços (MSB) | Qtde. de<br>endereços (LSB) |
| 03               | Х                                       | Х      | Х                           | Х                           |

Onde "X" é pode assumir qualquer valor (oito bits).

A resposta gerada pelo *slave* é composta por um byte de identificação da função, um byte com a quantidade de bytes a serem enviados (2 x qtde de endereços), e o restante de bytes com os valores armazenados nos endereços solicitados, conforme a tabela 2.

Tabela 2. Resposta da função Read Multiple Registers (FC 03):

| Byte 1           | Byte 2            | Byte 3                    | Byte 4                    | Byte 5             |
|------------------|-------------------|---------------------------|---------------------------|--------------------|
| Código da Função | Contagem de bytes | Valor Endereço<br>1 (MSB) | Valor Endereço<br>1 (LSB) | Qtde. de endereços |
| 03               | Х                 | Х                         | Х                         | Х                  |

Por exemplo, a leitura de dois endereços, a partir do endereço 0x00 de um *slave* cuja identificação é 0x09, retornando os valores 0x0005 e 0x000A, conterá os seguintes pacotes:

Tabela 3. Requisição gerada pelo *master*:

| Byte:        | 0    | 1    | 2    | 3    | 4    | 5                      | 6    | 7            | 8                        | 9                       | 10                     | 11                     |
|--------------|------|------|------|------|------|------------------------|------|--------------|--------------------------|-------------------------|------------------------|------------------------|
| Significado: |      | Pre  | fixo |      |      | Tamanho da<br>mensagem |      | Cod.<br>Fun. | End.<br>Inicial<br>(MSB) | End<br>Inicial<br>(LSB) | Qtde.<br>End.<br>(MSB) | Qtde.<br>End.<br>(LSB) |
| Valor (Hex)  | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x06                   | 0x09 | 0x03         | 0x00                     | 0x00                    | 0x00                   | 0x02                   |

Tabela 4. Resposta enviada pelo *slave*.

| Byte:        | 0       | 1    | 2    | 3    | 4    | 5              | 6    | 7            | 8              | 9            | 10           | 11           | 12           |
|--------------|---------|------|------|------|------|----------------|------|--------------|----------------|--------------|--------------|--------------|--------------|
| Significado: | Prefixo |      |      |      |      | nho da<br>agem | UI   | Cod<br>.Fun. | Cont.<br>Bytes | End 1<br>MSB | End 1<br>LSB | End 2<br>MSB | End 2<br>LSB |
| Valor (Hex)  | 0x00    | 0x00 | 0x00 | 0x00 | 0x00 | 0x07           | 0x09 | 0x03         | 0x04           | 0x00         | 0x05         | 0x00         | 0x0A         |

#### Escrever múltiplos registradores (FC-16):

A função de escrita permite escrever em n endereços, a partir de um endereço inicial. As requisições e respostas funcionam de maneira similar às da função de leitura, conforme pode ser visto nas tabelas 5 e 6.

O primeiro byte da requisição corresponde ao código da função (16 em decimal, 10 em hexadecimal). Os bytes 2 e 3 correspondem ao registrador inicial, e os bytes 4 e 5 correspondem à quantidade de endereços a serem escritos. Os bytes seguintes contém as informações a serem gravadas nos endereços especificados.

Tabela 5. Requisição da função Preset Multiple Registers (FC 16):

| Byte 1                 | Byte 2                       | Byte 3                       | Byte 4                         | Byte 5                         | Byte 6        | Byte 7                   | Byte 8                   | Byte 9                    | Byte 10                          |
|------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|---------------|--------------------------|--------------------------|---------------------------|----------------------------------|
| Código<br>da<br>Função | Endereço<br>inicial<br>(MSB) | Endereço<br>inicial<br>(LSB) | Qtde. de<br>endereços<br>(MSB) | Qtde. de<br>endereços<br>(LSB) | Byte<br>count | Valor<br>End. 1<br>(MSB) | Valor<br>End. 1<br>(LSB) | Valor<br>End. n.<br>(MSB) | Valor<br>End. <i>n.</i><br>(LSB) |
| 0x10<br>(Hex)          | х                            | Х                            | Х                              | Х                              | Х             | Х                        | Х                        | Х                         | Х                                |

O primeiro byte de resposta é o código da função. Os bytes 2 e 3 correspondem ao número do primeiro registrador, e os bytes 4 e 5 correspondem à quantidade de registradores nos quais foram escritos.

Tabela 6. Resposta da função *Preset Multiple Registers* (FC 16):

| Byte 1           | Byte 2                    | Byte 3                    | Byte 4                         | Byte 5                      |
|------------------|---------------------------|---------------------------|--------------------------------|-----------------------------|
| Código da Função | Endereço inicial<br>(MSB) | Endereço inicial<br>(LSB) | Qtde. de<br>endereços<br>(MSB) | Qtde. de<br>endereços (LSB) |
| 0x10             | Х                         | Х                         | Х                              | Х                           |

#### Seção 02

#### PROTOCOLO DE COMUNICAÇÃO MODBUS/TCP COM FONTES SUPPLIER

Nesta seção será demonstrado o protocolo de comunicação MODBUS/TCP para comunicação com fontes *Supplier*. Primeiramente está mostrado o frame de requisição das fontes, seguido pelos passos necessários que devem ser seguidos para o processo de comunicação, seguido pelos protocolos de envio e leitura de dados. Na seção 03 estão as tabelas com os códigos dos comandos.

#### Ler múltiplos registradores (FC 03):

As alterações na função de leitura são as seguintes:

- Ao invés de enviar o endereço inicial de escrita (bytes 2 e 3 do protocolo FC 16), será enviado o código de identificação (ID) no byte 2 e o código de comando da fonte (COM) no byte 3 (ver Tabela 7);
- Não será mais necessário especificar a quantidade de bytes a serem lidos (bytes 4 e 5 da requisição FC 03), a fonte enviará todos os dados necessários de acordo com o comando pelo usuário.

Por exemplo, para ler o código de identificação da fonte cujo número serial é 231 (Comando 254), o pacote de requisição do ma*ster* será o seguinte:

| Byte 1           | yte 1 Byte 2        |      | Byte 4      | Byte 5      |
|------------------|---------------------|------|-------------|-------------|
| Código da Função | Código da Função ID |      | Dado 1 (DH) | Dado 2 (DL) |
| 0x03             | 0x00                | 0xFE | 0x00        | 0x00        |

A resposta da fonte será a seguinte:

| Byte 1              | Byte 2     | Byte 3         | Byte 4         |
|---------------------|------------|----------------|----------------|
| Código da<br>Função | Byte Count | Dados<br>(MSB) | Dados<br>(LSB) |
| 0x03                | 0x02       | DH             | DL             |

O frame completo enviado será o seguinte:

| Byte  | 0                         | 1 | 2    | 3    | 4    | 5              | 6    | 7            | 8    | 9    | 10 | 11 |
|-------|---------------------------|---|------|------|------|----------------|------|--------------|------|------|----|----|
| Sig.  | Prefixo                   |   |      |      |      | nho da<br>agem | UI   | Cod.<br>Fun. | ID   | СОМ  | DH | DL |
| Valor | or 0x00 0x00 0x00 0x00 0x |   | 0x00 | 0x06 | 0x00 | 0x03           | 0x00 | 0xFE         | 0x00 | 0x00 |    |    |

O frame completo recebido será o seguinte:

| Byte  | 0    | 1    | 2    | 3    | 4    | 5              | 6    | 7            | 8             | 09 | 10 |
|-------|------|------|------|------|------|----------------|------|--------------|---------------|----|----|
| Sig.  |      | Pre  | fixo |      |      | nho da<br>agem | UI   | Cod.<br>Fun. | Byte<br>Count | DH | DL |
| Valor | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x05           | 0x00 | 0x03         | 0x02          | DH | DL |

#### Write Multiple Registers (FC 16):

As alterações na função de escrita são as seguintes:

- Ao invés de enviar o endereço inicial de escrita (bytes 2 e 3 do protocolo FC 16), será enviado o código de identificação (ID) no byte 2 e o código de comando da fonte (COM) no byte 3 (ver Tabela 7);
- A quantidade de endereços (bytes 4 e 5) deve ser definida como 0x0001;
- A quantidade de dados (byte count) é sempre o dobro da quantidade de endereços, neste caso será sempre 0x02;
- Nos bytes 7 e 8 será enviada a informação desejada para o comando selecionado.
- Para os comandos que requerem valores específicos, as informações de DH e DL são mostradas na Tabela 7.
- Para comandos que premitem uma faixa variada de valores, o dado a ser enviado é calculado da seguinte maneira: Multiplica-se o valor desejado pelo "fator de escala" (conforme Tabela 7) e o resultado em Hexa (16 bis) é enviado tomando-se os 8 bits mais significativos (MSB) como DH e os 8 bits menos significativos (LSB) como DL.

Por exemplo, para alterar o valor de tensão de todas as fases (205) para 220V, o pacote à ser enviado deve ser:

| Byte 1              | Byte 2        | Byte 3  | Byte 4 | Byte 5                     | Byte 6 | Byte 7         | Byte 8         |
|---------------------|---------------|---------|--------|----------------------------|--------|----------------|----------------|
| Código da<br>Função | Identificador | Comando |        | Quantidade de<br>endereços |        | Dado 1<br>(DH) | Dado 2<br>(DL) |
| 0x10                | 0x00          | 0xCD    | 0x00   | 0x01                       | 0x02   | 0x6F           | 0xB8           |

#### A resposta da fonte será a seguinte:

| Byte 1              | Byte 2        | Byte 3  | Byte 4                  | Byte 5                  |
|---------------------|---------------|---------|-------------------------|-------------------------|
| Código da<br>Função | Identificador | Comando | Qtde endereços<br>(MSB) | Qtde endereços<br>(LSB) |
| 0x10                | 0x00          | 0xCD    | 0x00                    | 0x01                    |

#### O frame completo enviado será o seguinte:

| Byte  | 0    | 1    | 2       | 3    | 4             | 5              | 6    | 7            | 8    | 9    | 10   | 11            | 12            | 13   | 14   |
|-------|------|------|---------|------|---------------|----------------|------|--------------|------|------|------|---------------|---------------|------|------|
| Sig.  |      | Pre  | Prefixo |      | Tamar<br>mens | nho da<br>agem | UI   | Cod.<br>Fun. | ID   | СОМ  |      | tidade<br>LSB | Byte<br>Count | DH   | DL   |
| Valor | 0x00 | 0x00 | 0x00    | 0x00 | 0x00          | 0x09           | 0x00 | 0x10         | 0x00 | 0xFE | 0x00 | 0x01          | 0x02          | 0x6F | 0xB8 |

#### O frame completo recebido será o seguinte:

| В  | yte  | 0    | 1    | 2    | 3    | 4                      | 5    | 6    | 7           | 8    | 9    | 10   | 11            |
|----|------|------|------|------|------|------------------------|------|------|-------------|------|------|------|---------------|
| S  | ig.  |      | Pre  | fixo |      | Tamanho da<br>mensagem |      | UI   | Cod.<br>Fun | ID   | СОМ  |      | tidade<br>LSB |
| Va | alor | 0x00 | 0x00 | 0x00 | 0x00 | 0x00                   | 0x06 | 0x00 | 0x10        | 0x14 | 0xCD | 0x00 | 0x01          |

Quando o aplicativo desenvolvido já manipula os dados de modo a formar automaticamente o frame completo do protocolo modbus, pode-se dizer que são necessários informar apenas as seguintes informações: qual requisição será utilizada (escrita ou leitura), o endereço de escrita/leitura, a quantidade de endereços e os dados a serem escritos (caso a requisição seja de escrita).

Desta forma, pode-se dizer que a composição do frame do protocolo Modbus segue a seguinte regra:

Para escrita: a requisição será a FC16. O endereço é a composição dos campos "ID" e "COM" apresentados na Tabela 7. A quantidade de endereços pode sempre ser mantida igual a 01 endereço, já que a fonte não irá processar as informações além do primeiro endereço. O dado a ser enviado é a composição dos campos "DH" e "DL".

Para leitura: a requisição será FC03. O endereço é a composição dos campos "ID" e "COM" apresentados na Tabela 7. A quantidade de endereços é a composição dos campos "DH" e "DL" (quando especificado na Tabela 7) ou é definida igual a 01 endereço (quando não especificado na tabela).

Para a requisição de leitura, como a fonte irá ignorar a informação da quantidade de endereços, a resposta terá uma quantidade de dados de acordo com o comando, e está especificado nas tabelas da seção 03. Caso o aplicativo faça a checagem do número de endereços solicitado com o número de endereços da resposta, pode ser incluída a informação da quantidade de endereços na requisição de leitura. Neste caso, o comando será processado normalmente e o tamanho da resposta estará de acordo com a solicitação enviada.

## Seção 03

## **CÓDIGOS DE COMANDO**

A seguir são apresentadas as tabelas contendo as seqüências de dados que devem ser enviadas para a fonte, bem como as respostas recebidas para cada operação desejada.

Tabela 7. Descrição dos comandos aceitos pela fonte

|                                                | 3  |              |    |    |    | tos pera              |                                                                                                |
|------------------------------------------------|----|--------------|----|----|----|-----------------------|------------------------------------------------------------------------------------------------|
| Descrição                                      | ID | СОМ          | DH | DL | FC | Fator<br>de<br>Escala | Função                                                                                         |
| Amplitude da harmônica                         | 1  | 1 a 51       | DH | DL | 16 | FS                    | Envio do valor da amplitude da<br>harmônica correspondente<br>(NH – número da harmônica)       |
| Frequência<br>fundamental                      | Х  | 80           | DH | DL | 16 | FS                    | Envio do valor da freqüência fundamental das harmônicas                                        |
| Defasagem da<br>harmônica                      | 1  | 101 a<br>151 | DH | DL | 16 | FS                    | Envio do valor da defasagem da<br>harmônica correspondente<br>(NH – número da harmônica + 100) |
| Confirma<br>composição do<br>sinal             | Х  | 200          | Х  | Х  | 16 | 1                     | Confirma os harmônicos enviados<br>e recalcula o sinal de saída da<br>fonte                    |
|                                                | Х  | 202          | Х  | Χ  | 16 | -                     | Iniciar rampa aceleração                                                                       |
| Geração                                        | Х  | 203          | Χ  | Х  | 16 | -                     | Desligar a saída                                                                               |
|                                                | Χ  | 204          | Χ  | Χ  | 16 | -                     | Iniciar rampa desaceleração                                                                    |
| Escrever valor tensão                          | 1  | 205          | DH | DL | 16 | FS                    | Escreve o valor de tensão de saída                                                             |
| Freqüência de saída                            | Х  | 208          | DH | DL | 16 | FS                    | Escrever o valor da Freqüência                                                                 |
| Rampa de aceleração                            | Х  | 209          | DH | DL | 16 | FS                    | Escrever o tempo da rampa de aceleração                                                        |
| Rampa de desaceleração                         | Х  | 210          | DH | DL | 16 | FS                    | Escrever o tempo da rampa de desaceleração                                                     |
| Ler valores setados                            | Х  | 211          | Х  | Х  | 03 | FS                    | Ver Tabela 8                                                                                   |
| Ler os valores<br>das correntes e<br>potencias | Х  | 212          | Х  | Х  | 03 | FS                    | Ver Tabela 9                                                                                   |
| Status da fonte                                | Χ  | 213          | Χ  | Χ  | 03 | -                     | Ver Tabela 11                                                                                  |
| Reset do alarme                                | Χ  | 214          | 0  | Χ  | 16 |                       | reset da memória do ultimo erro                                                                |
| Tiesel do alaime                               | Χ  | 214          | 10 | Χ  | 16 |                       | reset do erro atual                                                                            |
| Rampa de                                       | Χ  | 215          | 0  | Χ  | 16 | -                     | partida sem rampa de tensão                                                                    |
| subida                                         | Χ  | 215          | 10 | Χ  | 16 |                       | partida com rampa V                                                                            |
| Subida                                         | Χ  | 215          | 20 | Χ  | 16 | -                     | partida com rampa V/F                                                                          |
| Dampa da                                       | Χ  | 216          | 0  | Χ  | 16 |                       | parada sem rampa                                                                               |
| Rampa de descida                               | Χ  | 216          | 10 | Χ  | 16 | -                     | parada com rampa V                                                                             |
| uesolua                                        | Χ  | 216          | 20 | Χ  | 16 | -                     | parada com rampa V/F                                                                           |
| Defasagem                                      | 1  | 217          | DH | DL | 16 | FS                    | escreve o valor da defasagem da fase U                                                         |
| Sincronismo                                    | Χ  | 218          | Χ  | 0  | 16 |                       | Sincronismo desligado                                                                          |
| GITIGIOTIISTITO                                | Χ  | 218          | Χ  | 10 | 16 |                       | SIncronismo ligado                                                                             |
| Valor Sag/Swell                                | Υ  | 220          | DH | DL | 16 | -                     | Escreve o valor do Sag/Swell                                                                   |
| Fase inicial do<br>Sag/Swell                   | Υ  | 221          | DH | DL | 16 | -                     | Escreve o valor da fase inicial<br>Sag/Swell                                                   |

| <i>Hold</i> do    | Υ | 222 | DH  | DL  | 16 | _ | Escreve o valor da fase final      |
|-------------------|---|-----|-----|-----|----|---|------------------------------------|
| Sag/Swell         | ' | 222 | ווט | DL  | 10 |   | Sag/Swell                          |
| Fase final do     | Υ | 223 | DH  | DL  | 16 |   | Escreve o valor da fase inicial    |
| Sag/Swell         | ı | 220 | חט  | DL  | 10 |   | Sag/Swell                          |
| Repetições do     | Υ | 224 | DH  | DL  | 16 |   | Escreve o valor da fase inicial    |
| Sag/Swell         | ī | 224 | חט  | DL  | 16 | - | Sag/Swell                          |
| Intervalo do      | Υ | 225 | DH  | DL  | 16 |   | Escreve o valor da fase inicial    |
| Sag/Swell         | Ť | 225 | חט  | DL  | 16 | - | Sag/Swell                          |
| Atraso do         | Υ | 226 | DH  | DL  | 16 |   | Escreve o valor da fase inicial    |
| Sag/Swell         | Ť | 220 | חט  | DL  | 16 | - | Sag/Swell                          |
| Outros            |   |     |     |     |    |   | Escreve o valor da fase inicial    |
| parâmetros do     | Х | 227 | DH  | DL  | 16 | - |                                    |
| Sag/Swell         |   |     |     |     |    |   | Sag/Swell                          |
| Carragar tagta    | Х | 228 | Х   | Х   | 16 |   | Escreve o valor da fase inicial    |
| Carregar teste    | ^ | 220 | ^   | ^   | 10 | 1 | Sag/Swell                          |
| Para Teste        | Χ | 229 | Χ   | 10  | 16 | - | Para teste de Sag/Swell            |
| Inicia Teste      | Х | 229 | Χ   | 20  | 16 | - | Inicia teste de Sag/Swell          |
| Pausa Teste       | Χ | 229 | Χ   | 30  | 16 | - | Pausa teste de Sag/Swell           |
| Leitura do Status | Х | 000 | V   | Х   | 00 |   | Leitura do status do Sag/Swell(ver |
| do Sag/Swell      | ^ | 230 | Х   | ^   | 03 | - | Tabela 16)                         |
|                   | Х | 235 | Χ   | 0   | 16 | - | desliga o autoreset                |
| Auto reset        | Х | 235 | Χ   | 10  | 16 | - | liga o autoreset                   |
|                   | Χ | 235 | Χ   | 100 | 03 | - | lê o status (Ver Tabela 12)        |
| Ler o código de   |   |     |     |     |    |   |                                    |
| identificação da  | Х | 254 | Χ   | Х   | 03 | 1 |                                    |
| fonte             |   |     |     |     |    |   |                                    |

X – Valor indiferente (pode ser usado 0 (zero))

DH – Dado desejado (MSB)

DL - Dado desejado (LSB)

FS – Fator serial

CS - Checksum Calculado

Y - Os 4 bits menos significativos indicam a fase que se está escrevendo ou 0 para escrever nas 3 fases.

Y - Os 4 bits mais significativos indicam qual é a seqüencia do teste que está sendo configurado.

Caso seja confirmada a integridade da informação, o processador interno procurará identificar qual é o comando solicitado, dentre os listados na Tabela anterior.

Se um comando válido for detectado, o processador executará a rotina específica relativa ao comando. Caso contrário, uma resposta de "erro" será enviada pela fonte.

Para as requisições de "Escrita" de valor ou preset, um retorno será enviado, confirmando que a informação foi aceita. Caso o valor enviado não seja aceito, uma resposta de "erro" será enviada pela fonte.

Na ocorrência de um alarme, o contator de saída do equipamento é desligado, o valor da amplitude é zerado e o relé de indicação de falha ("contato-

seco") é acionado. Como o equipamento funciona no modo "Escravo" o equipamento não envia qualquer informação pela porta Ethernet, a menos que seja requisitado.

Tabela 8. Ordem dos dados de retorno da requisição de "Leitura" do comando 211.

| Oamanda  | Durbo do |                                                                  |
|----------|----------|------------------------------------------------------------------|
| Comando  | Byte de  | Descrição                                                        |
| Recebido | retorno  | 2000.1940                                                        |
|          | 1º       | 1º byte de informação da "tensão setada de saída" (MSB)          |
|          | 2º       | 2º byte de informação da "tensão setada de saída" (LSB)          |
|          | 3º       | 1º byte de informação da "freqüência atual ajustada" (MSB)       |
|          | 4º       | 2º byte de informação da "freqüência atual ajustada" (LSB)       |
|          | 5º       | 1º byte de informação do "tempo de rampa de aceleração" (MSB)    |
|          | 6º       | 2º byte de informação do "tempo de rampa de aceleração" (LSB)    |
|          | 7º       | 1º byte de informação do "tempo de rampa de desaceleração" (MSB) |
|          | 8º       | 2º byte de informação do "tempo de rampa de desaceleração" (LSB) |
|          | 9º       | 1º byte de informação da "defasagem da saída" (MSB)              |
|          | 10⁰      | 2º byte de informação da "defasagem da saída" (LSB)              |
| 211      |          | Byte de informação do "tipo rampa de subida"                     |
|          | 11º      | 0 = Sem Rampa                                                    |
|          | 11       | 10 = Rampa V                                                     |
|          |          | 20 = Rampa V/F                                                   |
|          |          | Byte de informação do "tipo rampa de descida"                    |
|          | 12º      | 0 = Sem Rampa                                                    |
|          | 12-      | 10 = Rampa V                                                     |
|          |          | 20 = Rampa V/F                                                   |
|          |          | Byte de informação do "estado do sincronismo"                    |
|          | 13º      | 0 = Desligado                                                    |
|          |          | 10 = Ligado                                                      |
| i        | 14º      | 0                                                                |

Tabela 9. Ordem dos dados de retorno da requisição de "Leitura" do comando 212.

| Comando<br>Recebido | Byte de retorno | Descrição                                                     |
|---------------------|-----------------|---------------------------------------------------------------|
|                     | 1º              | 1º byte de informação da "tensão atual da saída" (MSB)        |
|                     | 2º              | 2º byte de informação da "tensão atual da saída" (LSB)        |
|                     | 3º              | 1º byte de informação da "corrente eficaz da saída" (MSB)     |
|                     | 4º              | 2º byte de informação da "corrente eficaz da saída" (LSB)     |
| 212                 | 5 ⁰             | 1º byte de informação da "potência ativa da saída" (MSB)      |
|                     | 6 ⁰             | 2º byte de informação da "potência ativa da saída" (LSB)      |
|                     | <b>7</b> º      | Byte de "range ativo"                                         |
|                     | 1-              | {[(RangeU) - 1] * 100} + {[(RangeV) - 1] * 10} + (RangeW) - 1 |
|                     | 8º              | 0                                                             |

Para determinação do valor recebido, usa-se o seguinte método:

- Multiplica-se o valor do 1º byte de informação (MSB) por 256.
- Soma-se o resultado com o 2º byte de informação (LSB).
- Divide o resultado pelo fator de escala (ver Tabela 7).
- Aplica-se o fator multiplicativo conforme o range de leitura.

A informação do range segue a seguinte regra:

Tomando o valor em decimal presente no 21º byte, o algarismo da centena indica o range. Os algarismos da dezena e da unidade são reservados para fontes trifásicas.

Se o algarismo é zero, indica range 1. Se o algarismo é 1, indica range 2, se o algarismo é 2, indica range 3.

Tabela 10. Fatores de escala para leituras de tensão, corrente e potência.

| Range | e Ativo | Tensã | o Corrente | Potencia |
|-------|---------|-------|------------|----------|
|       | 1       | x 1   | x 1        | x 1000   |
|       | 2       | x 1   | x 0,1      | x 100    |
|       | 3       | x 1   | x 0,1      | x 10     |

Tabela 11. Ordem dos dados de retorno da requisição de "Leitura" do comando 213.

| <u>13.</u> |                                                   |
|------------|---------------------------------------------------|
| •          | Descrição                                         |
| retorno    |                                                   |
| 4.0        | Byte de status de "Em Geração" (saída energizada) |
| 1º         | 0 = geração parada                                |
|            | 10 = em geração                                   |
|            | Byte de status de "Em Modo Remoto" (opcional)     |
| 2⁰         | 0 = em modo local                                 |
|            | 10= em modo remoto                                |
|            | Byte de status de "Em Rampa"                      |
|            | 0 = fim de rampa                                  |
|            | 10 = em execução de rampa de subida V             |
| 20         | 20 = em execução de rampa de descida V/F          |
| 3-         | 30 = em execução de rampa de subida F             |
|            | 40 = em execução de rampa de descida V            |
|            | 50 = em execução de rampa de descida V/F          |
|            | 60 = em execução de rampa de descida F            |
|            | Byte de status de "Alarme"                        |
|            | 0 = sem alarme                                    |
|            | 10 = em alarme de sobretemperatura                |
| 40         | 20 = em alarme de sobrecarga                      |
| 4=         | 30 = em alarme de sobrecorrente                   |
|            | 40 = em alarme de sobretensão no inversor         |
|            | 50 = em alarme de curto-circuito no inversor      |
|            | 60 = em alarme de alta corrente média             |
|            | Byte de "memória de alarme".                      |
|            | 0 = nenhum alarme                                 |
|            | 10 = sobretemperatura                             |
| <b>5</b> 0 | 20 = sobrecarga                                   |
| 5≚         | 30 = sobrecorrente                                |
|            | 40 = sobretensão no inversor                      |
|            | 50 = curto-circuito no inversor                   |
|            | 60 = alta corrente média                          |
| 6º         | 0                                                 |
|            | Byte de retorno  1º  2º  3º  4º  5º               |

Tabela 12. Ordem dos dados de retorno da requisição "Leitura" do comando 235.

| Comando<br>Recebido | Byte de<br>Retorno | Descrição                                        |
|---------------------|--------------------|--------------------------------------------------|
| 235                 | 1º                 | Status do Autoreset: 0 = desligado 10 = ligado   |
|                     | 2⁰                 | Retorno do código de requisição de leitura = 100 |

Tabela 13. Ordem dos dados de retorno da requisição "Leitura" do comando 236.

| Comando<br>Recebido | Byte de<br>Retorno | Descrição                                        |
|---------------------|--------------------|--------------------------------------------------|
| 236                 | 1º                 | Status do Bloqueio CC: 0 = desligado 10 = ligado |
|                     | 2º                 | Retorno do código de requisição de leitura = 100 |

Tabela 14. Ordem dos dados de retorno da requisição "Leitura" do comando 254.

| Comando<br>Recebido | Byte de retorno | Descrição                               |
|---------------------|-----------------|-----------------------------------------|
| 254                 | 1º              | 1º byte de identificação da fonte (MSB) |
| 234                 | 2⁰              | 2º byte de identificação da fonte (LSB) |

#### Tratamento de erros:

Sempre que houver um problema na informação processada pela fonte, sejam eles relacionados com a informação recebida, ou mesmo por problema no processamento do comando, os seguintes códigos de erro serão apresentados:

Resposta da fonte para um erro com solicitação de Read Multiple Registers (FC 03):

| Byte  | 0       | 1    | 2    | З                      | 4    | 5    | 6            | 7             | 8  |
|-------|---------|------|------|------------------------|------|------|--------------|---------------|----|
| Sig.  | Prefixo |      |      | Tamanho da<br>mensagem |      | UI   | Cod.<br>Fun. | Error<br>Code |    |
| Valor | 0x00    | 0x00 | 0x00 | 0x00                   | 0x00 | 0x03 | 0x00         | 0x83          | EC |

Resposta da fonte para um erro com solicitação de Write Multiple Registers (FC 16):

| Byte  | 0    | 1    | 2    | 3    | 4    | 5              | 6    | 7            | 8             |
|-------|------|------|------|------|------|----------------|------|--------------|---------------|
| Sig.  |      | Pre  | fixo |      |      | nho da<br>agem | UI   | Cod.<br>Fun. | Error<br>Code |
| Valor | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x03           | 0x00 | 0x90         | EC            |

A Tabela 15 apresenta os valores possíveis para o código de erro (EC) que podem ser enviados pela fonte:

Tabela 15. Códigos de erro enviados pela fonte

| Error Code (EC) | Descrição                                                              |
|-----------------|------------------------------------------------------------------------|
| 1               | ERRO DE COMANDO. Resposta dada para uma requisição, estando a          |
| Į.              | combinação ID + COMANDO não especificado na Tabela 7                   |
| 3               | ERRO DE DADO. Resposta dada para uma requisição de "Escrita" de valor, |
| 3               | estando o valor resultante de DH e DL fora da faixa permitida.         |
| C               | Time-out no processamento do comando. Pode ser causado por um problema |
| 6               | de comunicação entre a placa ethernet e a placa da IHM.                |

Tabela 16 – Ordem dos dados de retorno da requisição "Leitura do Status de Sag-Swell" do comando 230.

| Comando<br>Recebido | Byte de retorno | Descrição                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 1º              | Tipo de testes (1-Sag, 2-Swell, 3-Deg. V/F, 4-Deg. de Fase).                                                                                                                                                                                                                                                                                                                                        |
|                     |                 | Etapa do teste Sag:  0 e 1 - Inicialização do teste.  2 - Durante afundamento.  3 - Temporização entre repetições do mesmo teste.  4 - Verifica se é a última repetição a ser executada do teste atual.  5 - Verifica se há mais testes a serem executados.  6 - Temporização entre testes diferentes.  7,8 e 9 - NA                                                                                |
| 230                 | 2º              | Etapa do teste Swell:  0 e 1 - Inicialização do teste.  2 - Iniciando o afundamento/elevação.  3 - Durante afundamento/elevação.  4 e 5 - Finalizando afundamento/elevação.  6 - Temporização entre repetições do mesmo teste.  7 - Verifica se é a última repetição a ser executada do teste atual.  8 - Verifica se há mais testes a serem executados.  9 - Temporização entre testes diferentes. |
|                     |                 | Etapa do Degrau V/F:<br>0 e 1 - Inicialização do teste.<br>2 – Executando o degrau.<br>3 a 9 - Temporização entre testes diferentes.                                                                                                                                                                                                                                                                |
|                     | 3º              | Estado do teste(0-Desligado,1-Ligado,2-Pausado).                                                                                                                                                                                                                                                                                                                                                    |
|                     | 4º              | Número do teste que está sendo executado.                                                                                                                                                                                                                                                                                                                                                           |
|                     | 5º              | Número de testes configurados.                                                                                                                                                                                                                                                                                                                                                                      |
|                     | 6º              | Número da repetição sendo executada do teste atual.                                                                                                                                                                                                                                                                                                                                                 |