Note 14. Integer Partitions and Exponential Generating Function

1 Integer Partitions

Definition: For any positive integer n, a **partition** of n is a grouping of n into positive unordered summands. The number of partitions of n is denoted p(n).

P(0) = 1 (by convention)

Examples:

$$P(1) = 1$$
: 1
 $P(2) = 2$: 2,1+1
 $P(3) = 3$: 3,2+1,1+1+1
 $P(4) = 5$: 4,3+1,2+2,2+1+1,1+1+1+1

Note that: If summands were ordered, this would be equivalent to finding the number of non-negative integer solutions to

$$x_1 + x_2 + \cdots + x_n = n$$
.

But non-order makes this different.

Problem 1. what is p(n)?

Recall Note 11-generating function. We can use generating functions to find out.

Solution. It is equivalent to find the number of solutions to

$$n = 1 \times k_1 + 2 \times k_2 + 3 \times k_3 + \cdots \times k_n.$$

For each possible summand (1, 2, 3, ...), we list all the possibilites:

Summands:

$$1 \times k_1$$
: range 0, 1, 2, 3, ...; function $1 + x + x^2 + x^3 + x^4 + \dots = \frac{1}{1 - x}$
 $2 \times k_2 : 0, 2, 4, 6, \dots; 1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$
 $3 \times k_3 : 0, 3, 6, 9, \dots; 1 + x^3 + x^6 + x^9 + \dots = \frac{1}{1 - x^3}$

The contributions to the total sum n by summands of size i can be represented by $\frac{1}{1-x^i}$. So p(n) is the coefficient of x^n in:

$$f(x) = \prod_{i=1}^{n} \frac{1}{1 - x^i}$$

This problem is also equivalent to find the number of solutions to

$$n = 1 \times k_1 + 2 \times k_2 + 3 \times k_3 + \cdots + n \times k_n + n + 1 \times k_{n+1}$$
.

Because k_{n+1} should be 0. In this case, the generating function is

$$g(x) = \prod_{i=1}^{n=1} \frac{1}{1 - x^i}$$

And p(n) is the coefficient of x^n in g(x).

Note that

$$g(x) = f(x)(1 + x^{n+1} + x^{2(n+1)} + x^{3(n+1)} + \dots) = f(x) + f(x)x^{n+1}(1 + x^{n+1} + x^{2(n+1)} + x^{3(n+1)} + \dots).$$

Since $f(x)x^{n+1}$ doesn't contribute to the coefficient of x^n , we know the coefficient of x^n in g(x) is the same as f(x). Therefore, p(n) is also the coefficient of x^n in:

$$F(x) = \prod_{i=1}^{\infty} \frac{1}{1 - x^i}$$

Problem 2. Find the number, $p_o(n)$, of partitions of n into odd summands.

Solution. Equation:

$$n = 1 \times k_1 + 3 \times k_2 + 5 \times k_3 + \cdots.$$

Summands:

$$1 \times k_1 : 0, 1, 2, 3, \dots; 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

$$3 \times k_2 : 0, 3, 6, \dots; 1 + x^3 + x^6 + \dots = \frac{1}{1 - x^3}$$

$$5 \times k_3 : 0, 5, 10, \dots; 1 + x^5 + x^{10} + \dots = \frac{1}{1 - x^5}$$

$$(2i + 1) \times k_i : 0, 2i + 1, 2(2i + 1), \dots; 1 + x^{2i+1} + x^{2(2i+1)} + \dots = \frac{1}{1 - x^{2i+1}}$$

So the GF for the sequence $(p_o(n))_{n>0}$ is:

$$f(x) = \prod_{i=0}^{\infty} \frac{1}{1 - x^{2i+1}}$$

Check $p_o(5)$: Obviously, $p_o(5) = 3$ since 5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1. Next, we compute the coefficient of x^5 in f(x).

$$f(x) = (1 + x + x^2 + x^3 + \dots)(1 + x^3 + x^6 + \dots)(1 + x^5 + x^10 + \dots)\dots$$

Since terms x^k for $k \ge 6$ do not contribute to the coefficient of x^5 , they can be omitted. Therefore the coefficient is equivalent to the coefficient of x^5 in the following q(x).

$$q(x) = (1 + x + x^2 + x^3 + x^4 + x^5)(1 + x^3)(1 + x^5) = (1 + x + x^2 + x^3 + x^4 + x^5)(1 + x^3 + x^5 + x^8).$$

Obviously, the coefficient 3. This matches our earlier count, so the result is verified.

Problem 3. Find the number of partitions of n into even summands.

Solution. Equation

$$n = 2 \times k_1 + 4 \times k_2 + 6 \times k_3 + \cdots$$

Summands:

$$2 \times k_1 : 0, 2, 4, \dots; 1 + x^2 + x^4 + \dots = \frac{1}{1 - x^2}$$
$$4 \times k_2 : 0, 4, 8, \dots; 1 + x^4 + x^8 + \dots = \frac{1}{1 - x^4}$$

$$(2i) \times k_i : 0, 2i, 2(2i), \dots; 1 + x^{2i} + x^{2(2i)} + \dots = \frac{1}{1 - x^{2i}}$$

So the GF is:

$$f(x) = \prod_{i=1}^{\infty} \frac{1}{1 - x^{2i}}$$

Problem 4. Find the number of partitions of n into odd summands, each of which appears an odd number of times (or not at all).

Solution. Equation

$$n = 1 \times k_1 + 3 \times k_2 + 5 \times k_3 + \cdots$$

Each appears an odd number of times (or not at all) means $k_i = 0$ or odd. Summands:

$$1 \times k_1 : 0, 1, 3, \dots; 1 + x + x^3 + \dots = 1 + \sum_{i=0}^{\infty} x^{2i+1}$$
$$3 \times k_2 : 0, 3, 9, \dots; 1 + x^3 + x^9 + \dots = 1 + \sum_{i=0}^{\infty} x^{3(2i+1)}$$
$$(2m+1) \times k_i : 0, 2m+1, 3(2m+1), \dots; 1 + x^{2m+1} + x^{3(2m+1)} + \dots = 1 + \sum_{i=0}^{\infty} x^{(2m+1)(2i+1)}$$

So the GF is:

$$f(x) = \prod_{m=0}^{\infty} \left(1 + \sum_{i=0}^{\infty} x^{(2m+1)(2i+1)} \right)$$

The number of such partitions is the coefficient of x^n in f(x).

Problem 5. Find the number $P_d(n)$ of partitions of n into distinct summands.

Solution. Equation

$$n = 1 \times k_1 + 2 \times k_2 + 3 \times k_3 + \cdots \times k_n$$

Distinct summands means $k_i = 0$ or 1.

Summands:

$$1 \times k_1$$
: $0, 1$; $1 + x$ or $= \frac{1 - x^2}{1 - x}$.
 $2 \times k_2$: $0, 2$; $1 + x^2 = \frac{1 - x^4}{1 - x^2}$.
 $3 \times k_3$: $0, 3$; $1 + x^3 = \frac{1 - x^6}{1 - x^3}$.

So the GF is:

$$f(x) = \prod_{k=0}^{\infty} (1 + x^k)$$

Problem 6. $p_o(n) = p_d(n)$ (The number of partitions into odd parts equals the number of partitions into distinct parts.)

Solution. NOTE THAT the GF of $(p_d(n))_{n>0}$ is

$$f(x) = (1+x)(1+x^2)(1+x^3)(1+x^4)\cdots$$

$$= \frac{1-x^2}{1-x} \cdot \frac{1-x^4}{1-x^2} \cdot \frac{1-x^6}{1-x^3} \cdot \frac{1-x^8}{1-x^4} \cdots$$

$$= \frac{1}{1-x} \cdot \frac{1}{1-x^3} \cdot \frac{1}{1-x^5} \cdots$$

equals the GF of $(p_o(n))_{n\geq 0}$. So $p_o(n)=p_d(n)$.

Strategy: If two sequences are generated by the same GF, they must be equal (so each term is equal).

Problem 7. Show that the number of partitions of n where no summand appears more than twice is equal to the number of partitions of n where no summand is divisible by 3.

Exercise.

2 Exponential Generating Function (EGF)

Recall

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

Definition 2.1. For a sequence a_0, a_1, a_2, \ldots , the exponential generating function (EGF) is given by:

$$f(x) = a_0 + a_1 x + \frac{a_2 x^2}{2!} + \frac{a_3 x^3}{3!} + \dots = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}$$

Recall: The generating function (GF) is given by:

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$$

Problem 8. Find the EGF for the sequence (1, 1, 1, 1, ...).

Solution.

$$f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x$$

Problem 9. Find the EGF for the sequence (1, -1, 1, -1, ...).

Solution.

$$f(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots = e^{-x}$$

Problem 10. Find the sequence generated by the following EGF

$$\frac{e^x + e^{-x}}{2}$$

Solution.

$$\frac{e^{x} + e^{-x}}{2} = \frac{1}{2} \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots \right)$$

$$= \frac{1}{2} \cdot 2 \left(1 + 0 + \frac{x^{2}}{2!} + 0 + \frac{x^{4}}{4!} + \dots \right)$$

$$= 1 + 0 + \frac{x^{2}}{2!} + 0 + \frac{x^{4}}{4!} + \dots$$

So the sequence is (1, 0, 1, 0, 1, 0, ...).

Problem 11. Find the sequence generated by the following EGF

$$\frac{e^{x}-e^{-x}}{2}$$

Exercise.

Concerning EGF, you only need to understand the content presented above; all other topics are beyond the scope of the exam.