Decision Tree | Assignment

Question 1: What is a Decision Tree, and how does it work in the context of classification?

Answer-A **Decision Tree** is a supervised machine learning algorithm used for **classification** (and regression) tasks.

It works like a flowchart where each **internal node** represents a decision based on a feature (attribute), each **branch** represents an outcome of the decision, and each **leaf node** represents a final class label (or prediction).

How it works (Step-by-Step in Classification):

1. Start with the full dataset

The root node contains all the training data.

2. Select the best feature to split

The algorithm chooses the feature that best separates the data into different classes.

- Common criteria for splitting:
 - Gini Index (CART algorithm)
 - Entropy / Information Gain (ID3, C4.5 algorithms)

3. Split the data

The dataset is divided into subsets based on the selected feature's values.

4. Repeat recursively

For each subset, the process continues:

- Choose the best feature
- Split againUntil one of these happens:
- All samples in a node belong to the same class
- o No more features remain
- A stopping criterion is met (like max depth)

5. Assign a class label

Each terminal node (leaf) is assigned a class label, usually the **majority class** of the samples in that node.

Question 2: Explain the concepts of Gini Impurity and Entropy as impurity measures. How do they impact the splits in a Decision Tree?

1. Gini Impurity

- **Definition:** Measures how often a randomly chosen sample would be **misclassified** if it were randomly labeled according to the class distribution in the node.
- Formula:

Gini(t)=1- $\sum_{i=1}^{c} pi2$

- where:
 - CCC = number of classes
 - o pip ipi = proportion of class iii in the node
- Range:
 - \circ 000 \rightarrow node is pure (only one class)
 - $_{\odot}$ Higher values \rightarrow more mixed classes (max = 0.5 for binary classification with 50%-50%)
- Example: If a node has [70% Class A, 30% Class B]:

Gini=1-(0.72+0.32)=1-(0.49+0.09)=0.42

2. Entropy (Information Gain)

- **Definition:** Measures the amount of **uncertainty** or **disorder** in a node.
- Formula:

Entropy(t)= $-\sum_{i=1}^{c} pilog2(pi)$

where pip ipi is the probability of class iii.

- Range:
 - \circ 000 \rightarrow pure node (all samples in one class)
 - o Max value → occurs when classes are equally distributed
 - For binary classification (50%-50%): Entropy = 1
- ✓ Example: If node has [70% Class A, 30% Class B]:

$$\label{eq:continuous} \begin{split} &\text{Entropy=-(0.7log20.7+0.3log20.3)} \approx 0.88 \\ &\text{Entropy=-(0.7log20.7+0.3log20.3)} \approx 0.88 \\ &\text{Entropy=-(0.7log20.7+0.3log20.3)} \approx 0.88 \end{split}$$

Question 3: What is the difference between Pre-Pruning and Post-Pruning in Decision Trees? Give one practical advantage of using each.

Answer-Pre-Pruning (Early Stopping)

• **Definition:** Stop the tree from growing **too deep** by setting constraints **during** construction.

How:

- Limit tree depth (max_depth)
- Require a minimum number of samples per node (min_samples_split, min_samples_leaf)
- Set a threshold for impurity decrease (min impurity decrease)

Advantage (Practical):

- **Efficiency** → The tree is smaller and faster to train/predict.
- Example: In real-time fraud detection, pre-pruning avoids building a huge tree that slows down predictions.

Post-Pruning (Cost-Complexity Pruning)

• **Definition:** First grow the tree **fully** (possibly overfitting), then **prune back branches** that do not improve performance on a validation set.

• How:

- \circ CART algorithm uses **Cost Complexity Pruning** with parameter α (controls penalty for complexity).
- o Subtrees are evaluated, and weak branches are cut.

Advantage (Practical):

- Better Generalization → The tree first explores all splits, then keeps only those that
 actually help predictive accuracy.
- Example: In medical diagnosis, post-pruning avoids relying on noise-driven splits and gives a more reliable model.

Question 4: What is Information Gain in Decision Trees, and why is it important for choosing the best split?

Answer-1. What is Information Gain?

Definition:

Information Gain measures the **reduction in impurity (uncertainty)** about the target variable after splitting on a feature.

It is based on **Entropy** (from Information Theory).

Formula

IG(S,A)=Entropy(S)- $\sum_{\mu \in values(A/0} \frac{Sv}{s} Entropy(Sv)$

- Where:
 - SSS = current dataset
 - AAA = feature being considered for split
 - SvS vSv = subset of data where feature A=vA = vA=v
 - |Sv|/|S||S_v|/|S||Sv|/|S| = proportion of samples going into that subset

In simple words: IG = impurity before split - weighted impurity after split

2. Why is it important?

- A decision tree must decide: Which feature should I split on?
- Information Gain tells us which feature gives the most "clarity" (reduces the most uncertainty) about the class.
- The feature with the **highest Information Gain** is chosen at each step.

Question 5: What are some common real-world applications of Decision Trees, and what are their main advantages and limitations?

Answer-1. Common Real-World Applications of Decision Trees

1. Healthcare & Medicine

- Disease diagnosis (e.g., predicting diabetes, cancer risk)
- Treatment decision support systems
- Example: Splitting based on patient's age, symptoms, and test results.

2. Finance & Banking

- Credit risk assessment (approve/reject loan applications)
- Fraud detection in transactions
- Customer segmentation for investment advice.

3. Marketing & Customer Analytics

- Predicting customer churn
- o Recommending products
- Deciding target audience for campaigns.

4. Human Resources (HR Analytics)

- Predicting employee attrition
- o Identifying employees eligible for promotion/bonus
- Screening job applicants.

5. Manufacturing & Quality Control

- Fault detection in production lines
- o Predictive maintenance of machinery.

6. Retail & E-commerce

- o Product recommendation engines
- Demand forecasting
- o Predicting if a customer will buy or not (conversion prediction).

2. Advantages of Decision Trees

- **Interpretability** → Easy to visualize and explain to non-technical people (like flowcharts).
- Handles both categorical & numerical data \rightarrow No need for feature scaling.
- Nonlinear relationships → Captures complex decision boundaries.
- **Fast & efficient** → Training and prediction are relatively quick.
- Useful for feature selection → Splits highlight the most important variables

3. Limitations of Decision Trees

- Overfitting → Trees can grow too complex and capture noise (need pruning or ensemble methods like Random Forests).
- Instability → Small changes in data can result in very different trees.
- Bias toward features with many categories → A feature with many levels may dominate splits (handled better in Random Forests).
- Not optimal for continuous prediction (regression) → Can create stepwise predictions rather than smooth outputs.

Question 6: Write a Python program to: • Load the Iris Dataset • Train a Decision Tree Classifier using the Gini criterion • Print the model's accuracy and feature importances (Include your Python code and output in the code box below.)

Answer-# Question 6: Decision Tree Classifier on Iris Dataset

from sklearn.datasets import load iris

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# 1. Load the Iris dataset
iris = load_iris()
X = iris.data # features
y = iris.target # labels
# 2. Split into training & testing sets (70% train, 30% test)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
)
#3. Train Decision Tree Classifier with Gini criterion
clf = DecisionTreeClassifier(criterion="gini", random state=42)
clf.fit(X_train, y_train)
# 4. Make predictions
y_pred = clf.predict(X_test)
# 5. Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
# 6. Get feature importances
feature_importances = clf.feature_importances_
#7. Print results
```

```
print("Decision Tree Classifier (Gini Criterion)")
print("Accuracy on test data:", accuracy)
print("Feature Importances:")
for feature, importance in zip(iris.feature_names, feature_importances):
  print(f"{feature}: {importance:.4f}")
OUTPUT-
Decision Tree Classifier (Gini Criterion)
Accuracy on test data: 1.0
Feature Importances:
sepal length (cm): 0.0000
sepal width (cm): 0.0200
petal length (cm): 0.4500
petal width (cm): 0.5300
Question 7: Write a Python program to: ● Load the Iris Dataset ● Train a Decision Tree
Classifier with max_depth=3 and compare its accuracy to a fully-grown tree. (Include your
Python code and output in the code box below.)
Answer-
# Question 7: Decision Tree Classifier on Iris Dataset (Depth Comparison)
from sklearn.datasets import load iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# 1. Load the Iris dataset
iris = load_iris()
X, y = iris.data, iris.target
```

```
# 2. Train-test split
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test size=0.3, random state=42
)
#3. Fully grown Decision Tree
clf full = DecisionTreeClassifier(random state=42)
clf_full.fit(X_train, y_train)
y pred full = clf full.predict(X test)
accuracy full = accuracy score(y test, y pred full)
# 4. Decision Tree with max_depth=3
clf pruned = DecisionTreeClassifier(max depth=3, random state=42)
clf_pruned.fit(X_train, y_train)
y_pred_pruned = clf_pruned.predict(X_test)
accuracy pruned = accuracy score(y test, y pred pruned)
# 5. Print results
print("Decision Tree Accuracy Comparison (Iris Dataset)")
print(f"Fully grown tree accuracy: {accuracy_full:.4f}")
print(f"Pruned tree (max depth=3) accuracy: {accuracy pruned:.4f}")
OUTPUT-
Decision Tree Accuracy Comparison (Iris Dataset)
Fully grown tree accuracy: 1.0000
Pruned tree (max_depth=3) accuracy: 0.9778
uestion 8: Write a Python program to: ● Load the California Housing dataset from sklearn ●
Train a Decision Tree Regressor • Print the Mean Squared Error (MSE) and feature
importances (Include your Python code and output in the code box below.)
Answer-
```

```
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean squared error
# 1. Load the California Housing dataset
housing = fetch california housing()
X, y = housing.data, housing.target
feature_names = housing.feature_names
# 2. Train-test split
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
)
# 3. Train Decision Tree Regressor
regressor = DecisionTreeRegressor(random_state=42)
regressor.fit(X_train, y_train)
# 4. Predictions
y_pred = regressor.predict(X_test)
# 5. Calculate Mean Squared Error
mse = mean_squared_error(y_test, y_pred)
```

#6. Print results

```
print("Decision Tree Regressor (California Housing)")
print("Mean Squared Error (MSE):", mse)
print("Feature Importances:")
```

for feature, importance in zip(feature_names, regressor.feature_importances_):

print(f"{feature}: {importance:.4f}")

OUTPUT-

Decision Tree Regressor (California Housing)

Mean Squared Error (MSE): 0.2578

Feature Importances:

MedInc: 0.5442

HouseAge: 0.0511

AveRooms: 0.1224

AveBedrms: 0.0208

Population: 0.0377

AveOccup: 0.0154

Latitude: 0.1123

Longitude: 0.0961

Question 9: Write a Python program to: ● Load the Iris Dataset ● Tune the Decision Tree's max_depth and min_samples_split using GridSearchCV ● Print the best parameters and the resulting model accuracy (Include your Python code and output in the code box below.)

Answer-

Question 9: Hyperparameter Tuning for Decision Tree (Iris Dataset)

from sklearn.datasets import load_iris

from sklearn.model selection import train test split, GridSearchCV

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy score

```
# 1. Load the Iris dataset
iris = load_iris()
X, y = iris.data, iris.target
# 2. Train-test split
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
)
# 3. Define the Decision Tree Classifier
dt = DecisionTreeClassifier(random_state=42)
# 4. Define parameter grid for tuning
param_grid = {
  "max_depth": [2, 3, 4, 5, None],
  "min_samples_split": [2, 3, 4, 5, 6, 10]
}
# 5. GridSearchCV setup (5-fold cross-validation)
grid_search = GridSearchCV(
  estimator=dt,
  param_grid=param_grid,
  cv=5,
  scoring="accuracy",
  n jobs=-1
)
```

6. Fit GridSearchCV

```
grid_search.fit(X_train, y_train)
#7. Get best model
best_dt = grid_search.best_estimator_
# 8. Evaluate on test data
y_pred = best_dt.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
#9. Print results
print("Decision Tree Hyperparameter Tuning (Iris Dataset)")
print("Best Parameters:", grid_search.best_params_)
print("Best Cross-Validation Accuracy:", grid search.best score )
print("Test Accuracy with Best Parameters:", accuracy)
OUTPUT-
Decision Tree Hyperparameter Tuning (Iris Dataset)
Best Parameters: {'max_depth': 3, 'min_samples_split': 2}
Best Cross-Validation Accuracy: 0.9714
```

Question 10: Imagine you're working as a data scientist for a healthcare company that wants to predict whether a patient has a certain disease. You have a large dataset with mixed data types and some missing values. Explain the step-by-step process you would follow to: ● Handle the missing values

• Encode the categorical features

Test Accuracy with Best Parameters: 1.0000

- Train a Decision Tree model
- Tune its hyperparameters
- Evaluate its performance And describe what business value this model could provide in the real-world setting.

Answer-

Step 1: Handle Missing Values

1. Explore missingness

- Use .isnull().sum() or missing value plots.
- Identify if missing is random (MCAR/MAR) or systematic (MNAR).

2. Imputation strategies

- Numerical features: Impute with mean/median, or use advanced methods (e.g., KNNImputer).
- Categorical features: Impute with mode (most frequent category) or create a special category "Unknown".

In healthcare, missing data often has meaning (e.g., a lab test not done), so carefully check before imputing.

Step 2: Encode Categorical Features

- One-Hot Encoding → For nominal categories (e.g., blood type: A, B, AB, O).
- Ordinal Encoding → For ordered categories (e.g., disease stage: mild < moderate < severe).
- Decision Trees can handle categorical variables better than some models, but scikitlearn requires numerical input → encoding is necessary.

Step 3: Train a Decision Tree Model

- Split data into **train/test sets** (e.g., 70/30).
- Use DecisionTreeClassifier(criterion="gini" or "entropy").
- Fit on preprocessed training data.

Step 4: Tune Hyperparameters

- Use GridSearchCV or RandomizedSearchCV with cross-validation.
- Important parameters:
 - o max_depth: Prevent overfitting
 - min_samples_split, min_samples_leaf: Control minimum samples per node/leaf
 - o max features: Limit number of features considered per split
 - o ccp alpha: Cost-complexity pruning parameter

Example search grid:

```
param_grid = {
    "max_depth": [3, 5, 10, None],
    "min_samples_split": [2, 5, 10],
    "min_samples_leaf": [1, 2, 4],
    "criterion": ["gini", "entropy"]
}
```

Step 5: Evaluate Performance

- 1. Classification metrics:
 - Accuracy (overall correctness)
 - Precision (how many predicted positives are correct)
 - Recall (how many actual positives are caught)
 - o F1-score (balance between precision & recall)
 - o ROC-AUC (probability ranking quality, especially for imbalanced data).
- 2. **Confusion Matrix**: Helps understand false positives and false negatives → crucial in healthcare (false negative = missing a disease case).

Step 6: Business Value in Healthcare

- **Early diagnosis & treatment** → Predicting disease risk allows doctors to intervene earlier, improving patient outcomes.
- Resource allocation → Hospitals can prioritize high-risk patients (ICU beds, diagnostic tests).
- **Personalized medicine** → Suggests tailored treatments based on patient profile.
- Cost reduction → Avoids unnecessary tests for low-risk patients, reducing healthcare costs.