задачи

- 1. Даны векторы $\vec{a}=\overrightarrow{AB},\ \vec{b}=\overrightarrow{CD},\ \vec{c}=\overrightarrow{EF}.$ Найти вектор $\vec{u},$ если
 - 1) $\vec{u} = 3\vec{a} 2\vec{b} + \vec{c}$,
 - 2) $\vec{u} = 4\vec{b} \frac{3\vec{c}}{2}$.
- 2. Проверить на чертеже справедливость тождеств:
 - 1) $(\vec{a} + \vec{b}) + (\vec{a} \vec{b}) = 2\vec{a}$,
 - 2) $(\vec{a} + \vec{b}) (\vec{a} \vec{b}) = 2\vec{b}$,
 - 3) $\vec{a} + \vec{b} \vec{c} = \vec{a} \vec{c} + \vec{b} = \vec{b} + \vec{a} \vec{c}$,

 - 4) $\frac{\vec{a}}{2} + \frac{\vec{b}}{2} = \frac{\vec{a} + \vec{b}}{2}$, 5) $\frac{\vec{a} \vec{b}}{2} + \vec{b} = \frac{\vec{a} + \vec{b}}{2}$
 - 6) $(\vec{a} + \frac{\vec{b}}{2}) (\vec{b} + \frac{\vec{a}}{2}) = \frac{1}{2}(\vec{a} \vec{b}),$
 - 7) $(\vec{a} + \frac{\vec{b}}{2}) + (\vec{b} + \frac{\vec{a}}{2}) = \frac{3}{2}(\vec{a} + \vec{b}).$
- **3.** Какой геометрической особенностью должны обладать векторы \vec{a} и \vec{b} , чтобы имело место равенство:
 - 1) $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$.
 - 2) $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$
 - 3) $|\vec{a} + \vec{b}| = |\vec{a}| |\vec{b}|$,
 - 4) $|\vec{a} \vec{b}| = |\vec{a}| + |\vec{b}|$?
- 4. Какому геометрическому условию должны удовлетворять векторы \vec{a} и $ec{b}$, чтобы имело место соотношение:
 - 1) $|\vec{a} + \vec{b}| > |\vec{a} \vec{b}|$
 - 2) $|\vec{a} + \vec{b}| < |\vec{a} \vec{b}|$?
- 5. Какому геометрическому условию будут удовлетворять неколлинеарные векторы \vec{p} и \vec{q} , если представитель вектора $\vec{p} + \vec{q}$ с началом в некоторой точке делит пополам угол между представителем векторов \vec{p} и \vec{q} с началом в той же точке?
- **6.** Дан параллелограмм \overrightarrow{ABCD} . Полагая $\overrightarrow{AC}=\overrightarrow{c},$ $\overrightarrow{BD}=\overrightarrow{d},$ выразить через \vec{c} и \vec{d} векторы \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA} определяемые сторонами этого параллелограмма.
- 7. В параллелограмме ABCD обозначены: $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$. Выразить через \vec{a} и \vec{b} векторы \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} и \overrightarrow{MD} , где M есть точка пересечения диагоналей параллелограма.
- 8. Точки K и L служат серединами сторон BC и CD параллелограмма \overrightarrow{ABCD} . Полагая $\overrightarrow{AK} = \vec{k}$ и $\overrightarrow{AL} = \vec{l}$, выразить через \vec{k} и \vec{l} векторы \overrightarrow{BC} и \overrightarrow{CD} .

- **9.** В четырехугольнике \overrightarrow{ABCD} (плоском или пространственном) положим $\overrightarrow{AB} = \overrightarrow{m}, \ \overrightarrow{BC} = \overrightarrow{n}, \ \overrightarrow{CD} = \overrightarrow{p}, \ \overrightarrow{DA} = \overrightarrow{q}.$ Найти вектор \overrightarrow{EF} , где E и F середины диагоналей AC и BD соответственно.
- **10.** В правильном 8-угольнике $\overrightarrow{ABCDEFGH}$ положим $\overrightarrow{AB} = \vec{a}, \overrightarrow{BC} = \vec{b}, \overrightarrow{CD} = \vec{c}, \overrightarrow{DE} = \vec{d}$. Выразить каждый из векторов: $\overrightarrow{BF}, \overrightarrow{BG}, \overrightarrow{FD}, \overrightarrow{DG}, \overrightarrow{DH}, \overrightarrow{CG}, \overrightarrow{CA}$ через $\vec{a}, \vec{b}, \vec{c}, \vec{d}$.
- **11.** Дан тетраэдр \overrightarrow{OABC} . Полагая $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$, выразить через \vec{a} , \vec{b} и \vec{c} векторы \overrightarrow{MN} , \overrightarrow{PQ} , \overrightarrow{RS} , где M, P, R середины ребер OA, OB, OC, а N, Q, S середины противоположных ребер соответственно.
- **12.** Показать, что: 1) из $\lambda \vec{a} = \lambda \vec{b}$, $\lambda \neq 0$ вытекает $\vec{a} = \vec{b}$; 2) из $\lambda \vec{a} = \mu \vec{a}$ вытекает $\lambda = \mu$ (сокращение равенств).
- 13. Дан правильный шестиугольник ABCDEF. Найти отношение векторов: $\frac{\overrightarrow{BC}}{\overrightarrow{AD}}$, $\frac{\overrightarrow{BC}}{\overrightarrow{EF}}$, $\frac{\overrightarrow{CF}}{\overrightarrow{AB}}$ и $\frac{\overrightarrow{AB}}{\overrightarrow{BC}}$, если они существуют.
- **14.** В равностороннем треугольнике $ABC\ M$ середина стороны BC, O центр треугольника. Имеет ли смысл и в случае утвердительного ответа чему равно каждое из выражений:

$$1)\overrightarrow{AO}:\overrightarrow{AM};$$

$$2)\overrightarrow{MO}:\overrightarrow{AO};$$

$$3)\overrightarrow{OA}:\overrightarrow{OB}?$$

- **15.** ABCD параллелограмм, M точка пересечения его диагоналей, O точка пространства, отличная от M. Вычислить $(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$: \overrightarrow{OM} .
 - **16.** Показать, что если векторы \vec{a} , \vec{b} , \vec{c} коллинеарны $(\vec{b} \neq \vec{0}, \ \vec{c} \neq \vec{0})$, то

$$\frac{\vec{a}}{\vec{b}} \cdot \frac{\vec{b}}{\vec{c}} = \frac{\vec{a}}{\vec{c}}.$$

- 17. Дан собственный (то есть ненулевой и неразвернутый) угол AOB. Векторы \vec{a} и \vec{b} параллельны сторонам угла OA и OB соответственно. Найти все векторы, параллельные биссектрисе угла AOB.
- **18.** Точки F и E служат серединами сторон AB и CD четырехугольника ABCD. Доказать, что

$$\overrightarrow{FE} = \frac{\overrightarrow{BC} + \overrightarrow{AD}}{2}.$$

Вывести отсюда теоремы: 1) о средней линии трапеции, 2) о средней линии треугольника.

- 19. На сторонах треугольника ABC построены параллелограммы $ABML,\ BCPN,\ ACQR.$ Доказать, что из векторов $\overrightarrow{RL},\ \overrightarrow{MN}$ и \overrightarrow{PQ} можно составить треугольник. 1
- **20.** Проверить, что из векторов, определяемых медианами треугольника, можно составить другой треугольник.
- **21.** Из медиан треугольника ABC построен новый треугольник $A_1B_1C_1$, а из его медиан треугольник $A_2B_2C_2$. Показать, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны, и найти отношение подобия.
- **22.** Как изменится сумма компланарных векторов, если все слагаемые векторы будут повернуты в одном и том же направлении на один тот же угол?
- 23. Доказать, что сумма парных произведений длины каждой стороны треугольника на единичный вектор, перпендикулярный к этой стороне, равна нулю. (Предполагается, что единичные векторы направлены от соответствующих сторон треугольника или все три во внутреннюю область треугольника, или все три во внешнюю область).
- 24. Доказать, что сумма векторов, определяемых центром правильного n-угольника и его вершинами, равна нулю.
- **25.** К точке приложены четыре различные компланарные силы \vec{F}_1 , \vec{F}_2 , \vec{F}_3 , \vec{F}_4 одинаковой величины F. Зная, что углы между \vec{F}_1 и \vec{F}_2 , \vec{F}_2 и \vec{F}_3 , \vec{F}_3 и \vec{F}_4 равны 72° , найти величину и направление равнодействующей.

2. РАДИУС-ВЕКТОР ТОЧКИ

задачи

- **26.** Отрезок AB разделен точками $C_1, C_2, ..., C_{n-1}$ на n равных частей. Найти отношения $\lambda_1, \lambda_2, ..., \lambda_{n-1}$, в которых точки $C_1, C_2, ..., C_{n-1}$ делят отрезок AB.
- **27.** Найти радиус-вектор точки C, симметричной с точкой $A(\vec{r}_A)$ относительно точки $B(\vec{r}_B)$.

- **28.** Даны радиусы-векторы \vec{r}_1 , \vec{r}_2 , \vec{r}_3 трех последовательных вершин A, B, C параллелограмма. Найти радиусы-векторы четвертой вершины D и точки пересечения диагоналей M.
- **29.** Зная радиусы-векторы \vec{r}_1 , \vec{r}_2 , \vec{r}_3 вершин треугольника, найти радиусвектор точки пересечения его медиан.
- **30.** В треугольнике \overrightarrow{ABC} проведена биссектриса \overrightarrow{AD} угла \overrightarrow{A} . Выразить вектор \overrightarrow{AD} через векторы \overrightarrow{AB} и \overrightarrow{AC} .
- **31.** Даны три последовательные вершины трапеции $A_1(\vec{r}_1)$, $B_2(\vec{r}_2)$ и $C_3(\vec{r}_3)$. Найти радиусы-векторы: \vec{r}_4 четвертой вершины D, \vec{r}' точки пересечения диагоналей и \vec{r}'' точки пересечения боковых сторон, зная, что основание AD в λ раз больше основания BC.
- **32.** Зная радиусы-векторы $\vec{r}_{A'}$, \vec{r}_{B} , \vec{r}_{D} , \vec{r}_{A} четырех вершин параллелепипеда ABCDA'B'C'D', найти радиусы-векторы четрыех остальных его вершин.
- **33.** На стороне AD и на диагонале AC параллелограмма ABCD взяты соответственно точки M и N так, что $AM=\frac{1}{5}AD$ и $AN=\frac{1}{6}AC$. Показать, что точки M, N и B лежат на одной прямой. В каком отношении делит точка N отрезок MB? Решить задачу в более общем виде, предполагая, что

$$AM = \frac{1}{n}AD$$
, $AN = \frac{1}{n+1}AC$.

- **34.** В точках $M_1(\vec{r}_1)$, $M_2(\vec{r}_2)$, ... $M_n(\vec{r}_n)$ помещены массы m_1 , m_2 , ..., m_n . Найти радиус-вектор центра тяжести этой системы материальных точек. Как выразиться радиус-вектор центра тяжести для случая равных масс?
- ${f 35.}$ Показать, что сумма векторов, определяемых центром тяжести системы n материальных точек и каждой из этих точек, равна нулю, если во всех точках сосредоточены равные массы.
- **36.** Доказать, что радиус-вектор центра правильного многоугольника есть среднее арифметическое радиусов-векторов вершин этого многоугольника.
- **37.** Где выбрать полюс, чтобы сумма радиусов-векторов всех вершин параллелограмма равнялась нулю?
- **38.** Доказать: для того, чтобы три точки $A(\vec{r}_1), B(\vec{r}_2), C(\vec{r}_3)$ лежали на одной прямой, необходимо и достаточно существование трех чисел $\alpha_1, \alpha_2, \alpha_3,$ не равных одновременно нулю и таких, что

$$\alpha_1 \vec{r_1} + \alpha_2 \vec{r_2} + \alpha_3 \vec{r_3} = \vec{0}$$
 и $\alpha_1 + \alpha_2 + \alpha_3 = 0$.

Доказать с помощью векторной алгебры следующие теоремы элементарной геометрии:

- **39.** Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали, пересекались и делились пополам.
- 40. Отрезок, соединяющий середины диагоналей трапеции, параллелен основаниям и равен их полуразности.
- 41. Если в четырехугольнике проведены три отрезка, соединяющие соответственно: 1) середины двух противоположных сторон, 2) середины двух других противоположных сторон, 3) середины диагоналей, то эти отрезки пересекаются в одной точке, которая служит их общей серединой. Перенести этот результат с четырехугольника на тетраэдр.
- **42.** Прямая, соединяющая точку пересечения диагоналей трапеции с точкой пересечения боковых сторон, делит основания трапеции пополам.
 - 43. Медианы треугольника пересекаются в одной точке.
- **44.** Отрезки, соединяющие середины противоположных ребер тетраэдра, проходят через одну и ту же точку и делятся в ней пополам.
 - 45. Биссектрисы треугольника пересекаются в одной точке.

3. ПРОЕКЦИЯ И ЧИСЛЕННОЕ ЗНАЧЕНИЕ ПРОЕКЦИИ ВЕКТОРА. РАЗЛОЖЕНИЕ ВЕКТОРА. КООРДИНАТЫ ВЕКТОРА

задачи

- **46.** Дан треугольник ABC. Чему равна проекция вектора \overrightarrow{BC} на сторону AC параллельно стороне AB?
- **47.** Пусть в трапеции ABCD AB и CD боковые стороны. Чему равно численное значение проекции вектора \overrightarrow{CD} на вектор \overrightarrow{AB} параллельно основанию трапеции?
- **48.** При каком взаимном расположении вектора \vec{a} и прямых l и h на плоскости проекция вектора \vec{a} на прямую l параллельно прямой h равна: 1) нулевому вектору, 2) вектору \vec{a} ?
- **49.** Доказать, что два вектора будут равны, если проекции их на прямую l параллельно любой направляющей h (плоскости α) совпадают.

- **50.** Определить фигуру, образованную концами представителей с общим началом всех векторов плоскости (пространства), имеющих одинаковые численные значения проекции на вектор \vec{b} параллельно прямой h (плоскости α).
- **51.** Зная, что длина вектора \vec{c} равна 6, а численное значение его ортогональной проекции на единичный вектор \vec{i} равна -3, найти угол между векторами \vec{a} и \vec{i} .
- **52.** Численные значения ортогональных проекций векторов \vec{a} , \vec{b} , \vec{c} , \vec{d} на вектор \vec{e} соответственно равны 6, -1, -10, 5. Найти угол между векторами \vec{e} и $\vec{u} = \vec{a} + \vec{b} + \vec{c} + \vec{d}$, если $\vec{u} \neq \vec{0}$.
- **53.** Дана правильная треугольная пирамида SABC. Найти ортогональную проекцию вектора \overrightarrow{AB} на прямую SC и ортогональную проекцию вектора \overrightarrow{SC} на прямую AB.
- **54.** Дана равнобочная трапеция ABCD. Угол между нижним основанием AD и стороной AB равен $\frac{\pi}{3}$. Разложить по векторам \overrightarrow{AB} и \overrightarrow{AD} векторы, определяемые сторонами и диагоналями трапеции.
- \overrightarrow{AB} : На представителях трех некомпланарных векторов $\overrightarrow{AB} = \vec{p}$, $\overrightarrow{AD} = \vec{q}$ и $\overrightarrow{AA'} = \vec{r}$ построен параллелепипед ABCDA'B'C'D'. Разложить по \vec{p} , \vec{q} , \vec{r} векторы, определяемые ребрами, диагоналями и диагоналями граней этого параллелепипеда.
- **56.** Разложить вектор $\vec{s}=\vec{a}+\vec{b}+\vec{c}$ по векторам $\vec{l}=\vec{a}+\vec{b}-2\vec{c},\ \vec{m}=\vec{a}-\vec{b},\ \vec{n}=2\vec{b}+3\vec{c}.$
- **57.** Векторы \overrightarrow{AB} и \overrightarrow{AD} , определяемые смежными сторонами параллелограмма \overrightarrow{ABCD} , взяты в качестве базисных. Найти координаты векторов \overrightarrow{AD} и \overrightarrow{BC} .
- **58.** Векторы \overrightarrow{AB} и \overrightarrow{AC} двух сторон ABC приняты за базисные. Найти координаты векторов \overrightarrow{AE} , \overrightarrow{BF} , \overrightarrow{CG} , определяемых медианами треугольника.
- **59.** Векторы, определяемые двумя сторонами правильного шестиугольника, исходящими из одной вершины, приняты за базисные. Найти координаты векторов, определяемых диагоналями шестиугольника, исходящими из той вершины.
 - 60. Найти коллинеарные между собой векторы среди векторов:

1)
$$\vec{a}(2,-7)$$
, $\vec{b}(-3,8)$, $\vec{c}(-3,-8)$, $\vec{d}(-4,14)$;

2)
$$\vec{a}(1,-1,1)$$
, $\vec{b}(2,2,2)$, $\vec{c}(1,2,-3)$, $\vec{d}(-3,-6,9)$.

- **61.** При каком α векторы $\vec{a}(-2,3), \, \vec{b}(1,\alpha)$ будут коллинеарными?
- **62.** Даны три вектора $\vec{a}(2,4)$, $\vec{b}(-3,1)$ и $\vec{c}(5,-2)$. Найти координаты векторов: 1) $2\vec{a}+3\vec{b}-5\vec{c}$; 2) $\vec{a}+24\vec{b}+14\vec{c}$.
- **63.** Даны векторы $\vec{a}(-1,-2),\ \vec{b}(3,5),\ \vec{c}(4,-3).$ Можно ли из их представителей построить треугольник?
- **64.** Зная векторы $\overrightarrow{AB}(-1,3)$ и $\overrightarrow{BC}(4,-5)$, найти координаты вектора $\frac{2}{3}\overrightarrow{CA}$.
 - 65. Будут ли линейно зависимыми векторы:
 - 1) $\vec{a}(2,-7)$, $\vec{b}(4,-10)$;
 - 2) $\vec{a}(-2, 1, 0, \vec{b}(3, 2, -1), \vec{c}(-1, 4, -1).$
- **66.** Разложить вектор \vec{c} по векторам \vec{a} и \vec{b} в каждом из следующих случаев:
 - 1) $\vec{a}(4,-2)$, $\vec{b}(3,5)$, $\vec{c}(1,-7)$;
 - 2) $\vec{a}(5,4)$, $\vec{b}(-3,0)$, $\vec{c}(19,8)$;
 - 3) $\vec{a}(-6,2)$, $\vec{b}(4,7)$, $\vec{c}(9,-3)$.
- **67.** Разложить вектор \vec{d} по векторам \vec{a} , \vec{b} и \vec{c} в каждом из следующих случаев:
 - 1) $\vec{a}(2,3,1)$, $\vec{b}(5,7,0)$, $\vec{c}(3,-2,4)$, $\vec{d}(4,12,-3)$;
 - 2) $\vec{a}(5, -2, 0)$, $\vec{b}(0, -3, 4)$, $\vec{c}(-6, 0, 1)$, $\vec{d}(25, -22, 16)$;
 - 3) $\vec{a}(3,5,6)$, $\vec{b}(2,-7,1)$, $\vec{c}(12,0,6)$, $\vec{d}(0,20,18)$.
- **68.** Координаты вектора \vec{a} по базису $(\vec{e_1},\vec{e_2})$ равны α и β . Каковы будут координаты этого вектора, если в качестве базисных векторов взять $\vec{e'_1} = -\frac{3}{4}\vec{e_1}$ и $\vec{e'_2} = 2\vec{e_2}$?
- **69.** Вектор \vec{a} относительно базиса $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ имеет координаты $\alpha,\ \beta,\ \gamma.$ Доказать, что векторы

$$\vec{e}_{1}' = \vec{e}_{2} - \frac{1}{2}\vec{e}_{1}, \quad \vec{e}_{2}' = -\frac{2}{3}\vec{e}_{3}, \quad \vec{e}_{3}' = \vec{e}_{3} + 2\vec{e}_{2}$$

образуют базис и найти координаты вектора \vec{a} относительно нового базиса.

4. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ

ЗАДАЧИ

70. Найти скалярное произведение векторов \vec{a} и \vec{b} в каждом из следующих случаев:

1)
$$|\vec{a}| = 7$$
, $|\vec{b}| = 4$, $\hat{\vec{a}} \, \hat{\vec{b}} = \frac{\pi}{4}$;

2)
$$|\vec{a}| = 2$$
, $|\vec{b}| = 5$, $\widehat{\vec{a}} \, \widehat{\vec{b}} = \frac{2\pi}{3}$;
3) $|\vec{a}| = 3$, $|\vec{b}| = 8$, $\vec{a} \uparrow \uparrow \vec{b}$;

3)
$$|\vec{a}| = 3$$
, $|\vec{b}| = 8$, $\vec{a} \uparrow \uparrow \vec{b}$;

4)
$$|\vec{a}| = 1$$
, $|\vec{b}| = 1$, $\vec{a} \uparrow \downarrow \vec{b}$.

71. Верны ли равенства:

1)
$$\vec{a}a = \vec{a}^2$$
;

2)
$$(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2\vec{a}\vec{b} + \vec{b}^2$$
;

3)
$$(\vec{a}, \vec{b})^2 = \vec{a}^2 \vec{b}^2$$
;

4)
$$(\vec{a} + \vec{b}, \vec{a} - \vec{b}) = \vec{a}^2 - \vec{b}^2;$$

5)
$$(\vec{a}, \vec{b}) : (\vec{a}, \vec{c}) = \vec{b} : \vec{c};$$

6)
$$(\vec{a}, \vec{b})\vec{c} = \vec{a}(\vec{b}, \vec{c});$$

7)
$$(\vec{a} + \vec{p}, \vec{b}) = (\vec{a}, \vec{b})$$
?

- **72.** Как связаны между собой векторы \vec{a} и \vec{b} , удовлетворяющие условию $(\vec{a}, \vec{c}) = (\vec{b}, \vec{c})$, где $\vec{c} \neq \vec{0}$? Можно ли утверждать, что $\vec{a} = \vec{b}$?
- 73. Решить уравнение $(\vec{a}, \vec{x}) = \alpha$, где \vec{x} неизвестный вектор $(\vec{a}, \alpha$ данные).
- 74. Доказать, что $(\vec{a}-\vec{b})^2 = \vec{a}^2 2(\vec{a},\vec{b}) + \vec{b}^2$. Какую теорему элементарной геометрии выражает это тождество? В частности при $\vec{a} \perp \vec{b}$?
- **75.** Доказать, что $(\vec{a}+\vec{b})^2+(\vec{a}-\vec{b})^2=2\vec{a}^2+2\vec{b}^2$. Какую теорему элементарной геометрии выражает это тождество?
- **76.** Доказать, что векторы $\vec{p} = \vec{a}(\vec{b}, \vec{c}) \vec{b}(\vec{a}, \vec{c})$ и \vec{c} перпендикулярны друг другу.
- 77. В треугольнике ABC проведены медианы $AL,\,BM,\,CN.$ Доказать, что $(\overrightarrow{AB}, \overrightarrow{CN}) + (\overrightarrow{BC}, \overrightarrow{AL}) + (\overrightarrow{CA}, \overrightarrow{BM}) = 0.$
- 78. Пусть ABC треугольник, O точка пространства (в плоскости треугольника или вне ее). Показать, что $(\overrightarrow{AB}, \overrightarrow{OC}) + (\overrightarrow{BC}, \overrightarrow{OA}) + (\overrightarrow{CA}, \overrightarrow{OB}) =$ 0.
- 79. Пусть ABC треугольник, L, M и N середины сторон BC, CA и AB соответственно, O — точка пространства (в плоскости треугольника или вне ее). Показать, что $(\overrightarrow{AB}, \overrightarrow{ON}) + (\overrightarrow{BC}, \overrightarrow{OA}) + (\overrightarrow{CA}, \overrightarrow{OM}) = 0$.
- **80.** Дан прямоугольник ABCD и точка пространства O (в плоскости треугольника или вне ее). Показать, что $(\overrightarrow{OA}, \overrightarrow{OC}) = (\overrightarrow{OB}, \overrightarrow{OD})$.
- **81.** Дан прямоугольник ABCD и точка пространства O (в плоскости треугольника или вне ее). Показать, что $\overrightarrow{OA}^2 + \overrightarrow{OC}^2 = \overrightarrow{OB}^2 + \overrightarrow{OD}^2$.

- **82.** Дан равнобедренный треугольник ABC (AB=BC). Доказать, что биссектриса угла B является высотой.
 - 83. Доказать, что диагонали ромба взаимно перпендикулярны.
- **84.** Доказать, что вписанный угол, опирающийся на диаметр круга, прямой.
- **85.** В прямоугольном треугольнике ABC опущен перпендикуляр CH на гипотенузу AB. Доказать, что $AH:BH=AC^2:BC^2$.
- 86. В параллелограмме \overrightarrow{ABCD} опущена высота \overrightarrow{BH} на сторону \overrightarrow{AD} . Выразить вектор \overrightarrow{BH} через векторы \overrightarrow{AB} и \overrightarrow{AD} .
- 87. Дана окружность и точка M внутри нее. Через точку M проведены две взаимно перпендикулярные секущие, первая секущая пересекает окружность в точках A и A_1 , вторая в точках B и B_1 . Показать, что вектор $\overrightarrow{MA} + \overrightarrow{MB}$ перпендикулярен прямой A_1B_1 .
- 88. От одной точки отложены три вектора \vec{a} , \vec{b} и \vec{c} . Зная, что расстояние между концами представителей векторов \vec{a} и \vec{b} равно расстоянию между концами представителей векторов \vec{b} и \vec{c} , показать, что векторы $\vec{a} + \vec{c} 2\vec{b}$ и $\vec{a} \vec{c}$ перпендикулярны друг другу.
- **89.** Доказать, что если прямая перпендикулярна двум пересекающимся прямым, проведенным на плоскости, то она перпендикулярна и любой третьей прямой, проведенной на той же плоскости.
- **90.** Доказать, что если прямая составляет равные углы с тремя различными попарно непараллельными прямыми, лежащими в некоторой плоскости, то она перпендикулярна этой плоскости.
 - 91. Доказать, что высоты треугольника пересекаются в одной точке.
- **92.** Доказать, что перпендикуляры, восстановленные из середин сторон треугольника, пересекаются в одной точке.
- 93. Вычислить длину диагонали параллелепипеда, выходящей из точки O, зная длины трех его ребер, выходящих из той же точки, и углы между этими ребрами.
- **94.** Выразить длину медианы CD треугольника ABC через длины сторон этого треугольника.
 - **95.** В треугольнике ABC проведена биссектриса CD. Доказать, что

$$CD = \frac{2BC \cdot CA \cdot \cos\frac{C}{2}}{BC + CA}.$$

- **96.** Выразить длину биссектрисы CD угла треугольника ABC через длины сторон этого треугольника.
- 97. В треугольнике ABC проведена биссектриса CD. Доказать, что $CD^2 = AC \cdot BC AD \cdot BD$.
- **98.** Выразить длину высоты CD треугольника ABC через длины сторон этого треугольника.
- 99. В треугольнике ABC точка D делит сторону AB в отношении λ . Выразить длину отрезка CD через три стороны треугольника и λ .
- **100.** В треугольнике ABC проведен отрезок A'B' параллельно AB (A' лежит на AC, B' на BC). Показать, что если AB' = BA', то треугольник ABC равнобедренный.
- **101.** Доказать, что сумма квадратов медиан треугольника относится к сумме квадратов его сторон как 3:4.
- **102.** В треугольнике ABC точки $D,\,E,\,F$ делят соответственно стороны $BC,\,CA,\,AB$ в отношении $\lambda.$ Показать, что

$$\frac{AD^2 + BE^2 + CF^2}{AB^2 + BC^2 + CA^2} = \frac{1 + \lambda + \lambda^2}{(1 + \lambda)^2}.$$

- 103. Зная длины 6 ребер тетраэдра, определить длины трех отрезков, соединяющих попарно середины противоположных ребер.
- ${f 104.}$ Зная длины a и b сторон прямоугольника, найти косинус угла между диагоналями.
- **105.** В правильном шестиугольнике ABCDEF обозначим через M и N соответственно середины сторон CD и DE. Под каким углом пересекаются прямые AM и BN?
- **106.** Подобрать α так, чтобы векторы $2\vec{l}-4\vec{m}$ и $\alpha\vec{l}+\vec{m}$, где $|\vec{l}|=2$, $|\vec{m}|=3,$ $\widehat{\vec{l}\vec{m}}=\frac{2\pi}{3}$, были взаимно перпендикулярны.
- **107.** Найти угол при вершине равнобедренного треугольника, зная, что медианы, проведенные из концов основания этого треугольника, взаимно перпендикулярны.
- **108.** В прямоугольном равнобедренном треугольнике проведены медианы из вершин острых углов. Вычислить угол между ними.
- **109.** В равнобедренном треугольнике угол при вершине равен α . Найти угол между медианами углов при основании.

- **110.** Медианы AL и BM треугольника ABC взаимно перпендикулярны. Показать, что $\cos C \geq \frac{4}{5}$.
 - **111.** Показать, что во всяком треугольнике ABC

$$\operatorname{ctg} A + \operatorname{ctg} B + \operatorname{ctg} C = \frac{BC^2 + CA^2 + AB^2}{4S}$$

где S — площадь треугольника ABC.

- **112.** Векторы $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$ попарно ортогональны. Показать, что ctg A : ctg B : ctg $C = a^2 : b^2 : c^2$ (A, B, C углы треугольника ABC).
- **113.** Зная длины 6 ребер тетраэдра, найти угол между двумя противоположными ребрами.
- **114.** Доказать, что в прямоугольном треугольнике катет является средними пропорциональными между всей гипотенузой и ортогональной прекцией этого катета на гипотенузу.
- **115.** Зная длины сторон треугольника \overrightarrow{ABC} , найти численное значение ортогональной проекции вектора \overrightarrow{AC} на вектор \overrightarrow{AB} .
- **116.** Зная длины сторон треугольника ABC, найти численное значение ортогональной проекции вектора \overrightarrow{CM} , определяемого медианой, на вектор \overrightarrow{AB} .
- **117.** Зная длины сторон треугольника ABC, найти численное значение ортогональной проекции вектора \overrightarrow{CN} , определяемого биссектрисой, на вектор \overrightarrow{AB} .

В следующих задачах, если не оговорено противное, базис предполагается ортонормированным.

- **118.** Вычислить скалярное произведение векторов \vec{a} и \vec{b} , в каждом из следующих случаев:
 - 1) $\vec{a}(4,3)$, $\vec{b}(1,7)$;
 - 2) $\vec{a}(6, -8), \vec{b}(12, 9);$
 - 3) $\vec{a}(7,2)$, $\vec{b}(-4,5)$.
 - **119.** Даны три вектора: $\vec{a}(5,2),\ \vec{b}(7,-3)$ и $\vec{c}(0,4).$
 - 1) Вычислить выражение $3(\vec{a}, \vec{b}) + 3(\vec{a}, \vec{c}) 4\vec{c}^2$;
 - 2) Найти координаты вектора $(\vec{a}, \vec{b})\vec{c} \vec{a}(\vec{b}, \vec{c})$.
- **120.** Найти угол между диагоналями параллелограмма, построенного на представителях векторов $\vec{a}(5,10)$ и $\vec{b}(3,-4)$.
- **121.** При каком x векторы $\vec{a}(x,3)$ и $\vec{b}(-8,5)$ являются взаимно перпендикулярными?

- **122.** Найти орт вектора $\vec{a}(6, -8)$.
- **123.** Из одной точки отложены векторы $\vec{a}(-12,16)$ и $\vec{b}(12,5)$. Найти координаты какого-нибудь вектора, который, будучи отложен из той точки, делил бы угол между \vec{a} и \vec{b} пополам.
- $\overrightarrow{AB}(2,-6)$ и $\overrightarrow{BC}(1,7)$.
- **125.** Найти численное значение ортогональной проекции вектора $\vec{a}(10,2)$ на вектор $\vec{b}(5,-12)$.
- **126.** Известны длины базисных векторов $|\vec{e_1}|=4, \ |\vec{e_2}|=2$ и угол между ними $\widehat{\vec{e_1}\vec{e_2}}=\frac{\pi}{3}$. Вычислить угол между векторами $\vec{a}(0,-3)$ и $\vec{b}(1,-2)$.
- **127.** Вычислить косинус угла между векторами в каждом из следующих случаев:
 - 1) $\vec{a}(2,4,6)$, $\vec{b}(-3,7,1)$;
 - 2) $\vec{a}(-1,0,2)$, $\vec{b}(10,2,5)$;
 - 3) $\vec{a}(3,3,1)$, $\vec{b}(-2,1,1)$;
 - **128.** Даны три вектора: $\vec{a}(5,-6,1), \vec{b}(-4,3,0)$ и $\vec{c}(5,-8,10).$
 - 1) Вычислить выражение $\vec{a}^{\,2} 2\vec{a}\,\vec{b} + 3\vec{c}^{\,2}$;
 - 2) Найти координаты вектора $\vec{a}^{\,2}\,\vec{b} + \vec{b}^{\,2}\,\vec{c} + \vec{c}^{\,2}\,\vec{a}$.
- **129.** Даны три вектора: $\vec{a}(2,-1,3),\ \vec{b}(4,3,1)$ и $\vec{c}(-1,1,1).$ Показать, что $\vec{a}^{\,2}\,\vec{b}+\vec{b}^{\,2}\,\vec{a}$ перпендикулярен вектору $\vec{c}.$
- **130.** Из одной точки отложены векторы $\vec{a}(-3,0,4)$ и $\vec{b}(5,-2,-14)$. Найти единичный вектор, который, будучи отложен из той же точки, делил бы угол между векторами \vec{a} и \vec{b} пополам.
- $\overrightarrow{AB}(2,1,-2)$ и $\overrightarrow{BC}(3,2,6)$.
- **132.** Найти численное значение ортогональной проекции вектора $\vec{a}(8,4,1)$ на вектор $\vec{b}(2,-2,1).$
- **133.** К вершине куба приложены три силы, равные по величине 1, 2, 3 и направленные по диагоналям граней куба, проходящим через эту вершину. Найти величину равнодействующей.
- **134.** Дан куб. Найти углы, которые образуют: 1) диагональ куба с его ребром; 2) диагонали двух граней, исходящие из одной точки.
- **135.** Дан прямоугольный параллелелпипед с ребрами a, b, c. Найти углы, которые образуют: 1) диагональ параллелепипеда с его ребром; 2) диагонали двух граней,исходящие из одной точки.

136. Даны длины базисных векторов $|\vec{e_1}|=4, \ |\vec{e_2}|=5, \ |\vec{e_3}|=3$ и углы между ними $\widehat{\vec{e_1}\vec{e_2}}=\frac{\pi}{3}, \ \widehat{\vec{e_1}\vec{e_3}}=\frac{\pi}{2}, \ \widehat{\vec{e_2}\vec{e_3}}=\frac{\pi}{2}.$ Найти угол между векторами $\vec{a}(1,-2,1)$ и $\vec{b}(3,7,0)$.

5. ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ

ЗАДАЧИ

163. Векторы \vec{a} , \vec{b} , \vec{c} образуют положительный базис. Определить ориентацию базиса в каждом из следующих случаев:

1)
$$(\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}),$$

2)
$$(2\vec{a} + 3\vec{b} - \vec{c}, -\vec{a} + \vec{b}, -\vec{a} - 5\vec{b} + \vec{c}).$$

164. Будут ли базисы $(\vec{a}, \vec{b}, \vec{c})$ и $(\vec{u}, \vec{v}, \vec{w})$ одинаково или противоположно ориентированы, если:

$$\vec{a}(3,-1,4), \ \vec{b}(-2,3,-3), \ \vec{c}(-9,1,7);$$

 $\vec{u}(2,-1,1), \ \vec{v}(-3,0,2), \ \vec{w}(5,1,-2).$

- **165.** Показать, что два базиса, один из которых получается из другого с помощью отражения от плоскости π , имеют противоположную ориентацию.
- **166.** Вычислить длину векторного произведения векторов \vec{a} и \vec{b} , если $a=10,\,b=2$ и $\vec{a}\vec{b}=12.$
 - **167.** Показать, что $|[\vec{a}\vec{b}]| \leq ab$. Когда $|[\vec{a}\vec{b}]| = ab$?
 - **168.** Вычислить:

1)
$$[(2\vec{i} + 3\vec{j})(\vec{k} - 3\vec{i} - 2\vec{j})];$$

2)
$$[(\vec{i} + 3\vec{j})(2\vec{i} + \vec{j} - \vec{k})]^2$$
.

- **169.** Найти синус угла между диагоналями параллелограмма ABCD, если $AB=1,\ AD=2$ и $\angle A=\frac{\pi}{3}.$
- **170.** Доказать: векторное произведение двух неколлинеарных векторов равно произведению длины первого сомножителя и повернутой проекции второго сомножителя, построенной на плоскости π , перпендикулярной к первому сомножителю:

$$[\vec{a}\vec{b}] = a(\Pi p_{\pi}\vec{b}), \quad (\pi \perp \vec{a}).$$

171. Выразить векторное произведение двух неколлинеарных векторов, лежащих в ориентированной плоскости π , через псевдоскалярное произведение и орт, ортогональный к этой плоскости.

- **172.** Доказать тождество: $[\vec{a}\vec{b}]^2 + (\vec{a}\vec{b})^2 = \vec{a}^{\,2}\vec{b}^{\,2}$.
- **173.** Проверить справедливость равенств: $[(\vec{a} + \lambda \vec{b})\vec{b}] = [\vec{a}(\vec{b} + \beta \vec{a})] = [\vec{a}\vec{b}]$ и дать им геометрическое истолкование.
 - **174.** В каком случае равенства $[\vec{a}\vec{x}] = [\vec{b}\vec{x}]$ и $\vec{a} = \vec{b}$ эквивалентны?
- **175.** Доказать, что если ненулевые векторы $[\vec{a}\vec{b}\,]$ и коллинеарны $[\vec{c}\vec{d}\,]$, то векторы \vec{a} , \vec{b} , \vec{c} и \vec{d} компланарны.
- **176.** Доказать, что из равенств $[\vec{a}\vec{b}\,]=[\vec{c}\vec{d}\,]$ и $[\vec{a}\vec{c}\,]=[\vec{b}\vec{d}\,]$ следует коллинеарность векторов $\vec{a} - \vec{d}$ и $\vec{b} - \vec{c}$.
- **177.** Доказать, что если три вектора $\vec{a},\,\vec{b}$ и \vec{c} не коллинеарны, то равенства $[\vec{a}\vec{b}\,]=[\vec{b}\vec{c}\,]=[\vec{c}\vec{a}]$ и $\vec{a}+\vec{b}+\vec{c}=\vec{0}$ эквивалентны.
- 178. Доказать: площадь выпуклого плоского четырехугольника равна половине произведения длин диагоналей и синуса угла между ними.
 - 179. В каком случае момент силы относительно точки равен нулю?
- 180. Доказать, что момент силы относительно точки сохранится, если силу переместить по прямой, вдоль которой она действует.
- 181. Парой сил называется совокупность двух противолоположных сил \vec{F} и $-\vec{F}$. Моментом пары относительно некоторой точки называется сумма моментов сил \vec{F} и $-\vec{F}$ относительно этой точки. Доказать, что момент пары не зависит от точки, относительно которой он взят.
- **182.** Доказать коллинеарность векторов $[\vec{a}[\vec{b}\vec{c}]]$ и $\vec{b}-\vec{c}$ при условии, что вектор \vec{a} перпендикулярен разности $\vec{b} - \vec{c}$.
- **183.** При каких условиях для ненулевых векторов $\vec{a}, \; \vec{b}$ и \vec{c} справедливо равенство $[\vec{a}[\vec{b}\vec{c}]] = [[\vec{a}\vec{b}]\vec{c}]$?
 - 184. Доказать тождества:
 - $1)\; [\; \vec{a} \; [\; \vec{b} \; \vec{c} \;]] + [\; \vec{b} \; [\; \vec{c} \; \vec{a} \;]] + [\; \vec{c} \; [\; \vec{a} \; \vec{b} \;]] = \vec{0} \quad (\textit{mosedecmeo Akobu}),$

2)
$$[\vec{a} \ [\vec{b} \ [\vec{c} \ \vec{d}]]] = [\vec{a} \ \vec{c}] (\vec{b} \vec{d}) + [\vec{a} \ \vec{d}] (\vec{b} \vec{c}),$$
3) $[\vec{a} \ \vec{b}] [\vec{c} \ \vec{d}] = \begin{vmatrix} \vec{a} \vec{c} \ \vec{d} \ \vec{b} \ \vec{c} \end{vmatrix}$.

185. Доказать тождества:

1)
$$[[\vec{a}\vec{b}]\vec{a}]\vec{b}] = -(\vec{a}\vec{b})[\vec{a}\vec{b}],$$
2)
$$[[\vec{b}\vec{b}]\vec{a}]\vec{b}\vec{b}] = -(\vec{a}\vec{b})[\vec{a}\vec{b}],$$

2)
$$[[[\vec{a}\vec{b}]\vec{a}]\vec{b}]\vec{a}] = (\vec{a}\vec{b}) \begin{vmatrix} \vec{a} & \vec{b} \\ a^2 & \vec{a}\vec{b} \end{vmatrix}.$$

и обобщить их (по числу скобок) на все натуральные n:

$$\underbrace{[[...[[[\vec{a}\vec{b}]\vec{a}]\vec{b}]...\vec{a}]\vec{b}]}_{n} = (-1)^{\frac{n-1}{2}} (\vec{a}\vec{b})^{\frac{n-1}{2}} [\vec{a}\vec{b}], \quad n \ge 3$$

нечетное число,

$$[\underbrace{[\ldots][\vec{a}\vec{b}]\vec{a}]\ldots\vec{b}]\vec{a}] = (-1)^{\frac{n}{2}}(\vec{a}\vec{b})^{\frac{n}{2}-1} \begin{vmatrix} \vec{a} & \vec{b} \\ a^2 & \vec{a}\vec{b} \end{vmatrix}, \quad n \ge 2$$

— четное число.

186. Доказать, что если $\vec{a} \perp \vec{b}$, то $[\vec{a}[\vec{a}[\vec{a}[\vec{a}\vec{b}]]]] = a^4 \vec{b}$ и выяснить геометрический смысл этого утверждения.

187. В треугольнике ABC проведена высота AD. Полагая $\overrightarrow{AC}=\vec{b}, \overrightarrow{CB}=\vec{a}$ и $\overrightarrow{AD}=\vec{h}$, выразить \vec{h} через \vec{a} и \vec{b} .

188. Доказать, что $|\vec{a}\vec{b}\vec{c}| \leq abc$.

189. Показать, что $\left(\frac{\vec{a}+\vec{b}}{2}\right)\left(\frac{\vec{b}+\vec{c}}{2}\right)\left(\frac{\vec{c}+\vec{a}}{2}\right) = \frac{1}{4}\vec{a}\vec{b}\vec{c}$ и выяснить геометрический смысл этого равенства при условии, что векторы \vec{a} , \vec{b} и \vec{c} некомпланарны.

190. Доказать, что смешанное произведение не изменится, если к одному из сомножителей прибавить линейную комбинацию двух других.

191. Доказать, что векторы $\alpha \vec{a} - \beta \vec{b}$, $\gamma \vec{b} - \alpha \vec{c}$ и $\beta \vec{c} - \gamma \vec{a}$ компланарны.

192. От одной точки отложены три некомпланарных вектора \vec{a} , \vec{b} и \vec{c} . Доказать, что плоскость, проходящая через концы представителей векторов \vec{a} , \vec{b} , \vec{c} , перпендикулярна вектору $[\vec{a}\vec{b}] + [\vec{b}\vec{c}] + [\vec{c}\vec{a}]$.

193. Доказать тождество

$$[\vec{a}[\vec{b}\vec{c}\,]]\,[\vec{b}[\vec{c}\vec{a}\,]]\,[\vec{c}[\vec{a}\vec{b}\,]] = \vec{0}$$

и вывести из него следствие: если через боковые ребра треугольной пирамиды провести плоскости, перпендикулярные противоположным боковым граням, то они пересекутся по одной прямой.

194. Решить уравнения:

$$1)\,\vec{x} - [\vec{a}\vec{x}] = [\vec{a}\vec{b}];$$

$$2)\,\vec{x} - [\vec{a}\vec{x}] = \vec{b},$$

где \vec{a} , \vec{b} — данные, а \vec{x} — неизвестный вектор.

195. Найти вектор \vec{x} и число α из системы уравнений:

$$\vec{a}\vec{x} = 0$$
, $\alpha \vec{a} - [\vec{a}\vec{x}] = \vec{b}$, $\vec{a} \neq \vec{0}$.

196. Доказать тождества:

1)
$$[[\vec{a}\vec{b}][\vec{c}\vec{d}]] = (\vec{a}\vec{b}\vec{d})\vec{c} - (\vec{a}\vec{b}\vec{c})\vec{d} = (\vec{a}\vec{c}\vec{d})\vec{b} - (\vec{b}\vec{c}\vec{d})\vec{a};$$

- $2) [\vec{a}\vec{b}][\vec{b}\vec{c}][\vec{c}\vec{a}] = (\vec{a}\vec{b}\vec{c})^2;$
- 3) $[\vec{a}\vec{b}]^2 = \vec{a}[\vec{b}\vec{a}]\vec{b} = \vec{b}[\vec{a}\vec{b}]\vec{a}$.
- **197.** Показать, что из компланарности векторов $[\vec{a}\vec{b}],\ [\vec{b}\vec{c}]$ и $[\vec{c}\vec{a}]$ следует их коллинеарность.
- **198.** Для базиса $(\vec{a}, \vec{b}, \vec{c})$ базис $(\vec{a}^*, \vec{b}^* \vec{c}^*)$ называется взаимным, если имеют место равенства:

$$\vec{a}\vec{a}^* = 1, \quad \vec{a}\vec{b}^* = 0, \quad \vec{a}\vec{c}^* = 0,$$

$$\vec{b}\vec{a}^* = 0, \quad \vec{b}\vec{b}^* = 1, \quad \vec{b}\vec{c}^* = 0,$$

$$\vec{c}\vec{a}^* = 0, \quad \vec{c}\vec{b}^* = 0, \quad \vec{c}\vec{c}^* = 1,$$

Доказать, что

$$\vec{a}^* = \frac{[\vec{b}\vec{c}]}{\vec{a}\vec{b}\vec{c}}, \quad \vec{b}^* = \frac{[\vec{c}\vec{a}]}{\vec{a}\vec{b}\vec{c}}, \quad \vec{c}^* = \frac{[\vec{a}\vec{b}]}{\vec{a}\vec{b}\vec{c}}.$$

- **199.** Доказать, что базис совпадает с ему взаимным тогда и только тогда, когда он образован из единичных попарно взаимно перпендикулярных векторов.
 - 200. Найти взаимный базис для базиса:

1)
$$(\vec{i} + \vec{j}, \vec{j} + \vec{k}, \vec{k} + \vec{i}),$$

2)
$$(\vec{a}, [\vec{a}\vec{b}], [\vec{a}[\vec{a}\vec{b}]]), (\vec{a} \not \mid \vec{b}).$$

201. Доказать, что разложение произвольного вектора \vec{x} пространства по базису $(\vec{a}, \, \vec{b}, \, \vec{c})$ может быть представлено в виде $(\phi opmyna \, \Gamma u \delta b ca)$:

$$\vec{x} = (\vec{x}\vec{a}^*)\vec{a} + (\vec{x}\vec{b}^*)\vec{b} + (\vec{x}\vec{c}^*)\vec{c},$$

где $(\vec{a}^*, \, \vec{b}^* \, \vec{c}^*)$ — взаимный базис для базиса $(\vec{a}, \, \vec{b}, \, \vec{c})$.

202. Векторы \vec{a} , \vec{b} , \vec{c} некомпланарны. Найти вектор \vec{x} , удовлетворяющий системе уравнений:

$$\vec{a}\vec{x} = \alpha, \quad \vec{b}\vec{x} = \beta, \quad \vec{c}\vec{x} = \gamma.$$

203. Решить систему:

$$\vec{a}\vec{b}\vec{x} = \alpha$$
, $\vec{b}\vec{c}\vec{x} = \beta$, $\vec{c}\vec{a}\vec{x} = \gamma$, $\vec{a}\vec{b}\vec{c} \neq 0$,

где α , β , γ — действительные числа.

- **204.** Дан правильный тетраэдр SABC. Зная, что $\overrightarrow{SA} = \vec{a}$ и $\overrightarrow{SB} = \vec{b}$, найти вектор $\vec{x} = \overrightarrow{SC}$ при условии $\vec{a}\vec{b}\vec{x} > 0$.
- **205.** Дана правильная четырехугольная пирамида SABCD с вершиной S. Зная, что $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$ и $\overrightarrow{ABAS} = \alpha$, найти вектор $\vec{x} = \overrightarrow{AS}$ ($\vec{a}\vec{b}\vec{x} > 0$).
- **206.** Дан прямой круглый конус. Орты \vec{n}_1 и \vec{n}_2 параллельны образующим одного из осевых сечений конуса. Найти орты, параллельные образующим осевого сечения конуса, перпендикулярного первому.
 - 207. Найти ненулевое решение системы:

$$\vec{x}^2 + \vec{a}\vec{x}\vec{b} = 0, \quad \vec{a}\vec{x} = 0, \quad \vec{b}\vec{x} = 0 \quad (\vec{a} \not\parallel \vec{b}).$$

208. Решить систему:

$$\vec{a}\vec{x} = 0, \quad \vec{b}\vec{x} = 0, \quad \vec{x}[\vec{a}\vec{x}]\vec{b} + \vec{c}\vec{x} + [\vec{b}\vec{x}]^2 = 0 \quad ([\vec{a}\vec{b}] \neq \vec{0}).$$

209. Решить систему:

$$\vec{a}\vec{x} = \alpha$$
, $[\vec{a}\vec{x}] = \vec{b}$, $(\vec{a} \neq \vec{0}, \vec{a} \perp \vec{b})$.

210. Решить систему:

$$[\vec{a}[\vec{x}\vec{b}]] = \vec{c}, \quad \vec{x}\vec{b}\vec{c} = 0$$
 при условии $\vec{a}\vec{c} = 0, \quad \vec{a}\vec{b}\vec{c} \neq 0, \quad \vec{a}\vec{b} \neq 0.$

211. Доказать тождество:

$$[\vec{a}[\vec{b}\vec{c}]][\vec{c}[\vec{b}\vec{a}]] = \begin{vmatrix} [\vec{a}\vec{b}] & [\vec{c}\vec{b}] & [\vec{c}\vec{a}] \\ \vec{a}\vec{b} & \vec{c}\vec{b} & 0 \\ 0 & \vec{c}\vec{b} & \vec{c}\vec{a} \end{vmatrix}.$$

212. Решить уравнение:

$$[[\vec{a}\vec{x}\,][\vec{b}\vec{x}\,]] = \vec{c}, \quad \vec{a}\vec{b}\vec{c} > 0.$$

213. Показать, что уравнение:

$$\vec{x} = [\vec{a}\vec{x}] + [\vec{a}[\vec{b}\vec{x}]]$$

имеет только нулевое решение.

214. Показать, что система

$$[\vec{a}[\vec{x}\vec{b}]] = \vec{c}, \quad [\vec{c}[\vec{x}\vec{b}]] = \vec{b}, \quad \vec{a}\vec{b}\vec{c} \neq 0$$

не имеет решений.

215. Найти векторы \vec{x} и \vec{y} из системы

$$[[\vec{a}\vec{x}][\vec{b}\vec{x}]] = \vec{y}, \quad \vec{a}\vec{b}\vec{y} = 0, \quad [\vec{a}\vec{b}] \neq 0.$$

216. Доказать, что уравнение

$$[[\vec{i}\vec{x}][\vec{j}\vec{x}]] = [\vec{k}[\vec{k}\vec{x}]],$$

где $\vec{i},\,\vec{j},\,\vec{k}$ — векторы ортонормированного базиса, имеет только нулевое решение.

217. Решить уравнение:

$$[\vec{x}[\vec{a}\vec{x}]] = \vec{b}, \quad \vec{a}\vec{b}] \neq 0, \quad \vec{a}\vec{b} > 0.$$

218. Решить уравнение:

$$\vec{x} - [\vec{a}\vec{x}] - [\vec{a}[\vec{b}\vec{x}]] = \vec{b}, \quad \vec{a}\vec{b}] \neq 0.$$

219. Показать, что система

$$[\vec{a}[\vec{a}\vec{x}]] = \vec{y}, \quad [\vec{b}[\vec{b}\vec{y}]] = \vec{z}, \quad [\vec{c}[\vec{c}\vec{z}]] = \vec{x}, \quad \vec{a} \circ \vec{b} \circ \vec{c} \circ = 1$$

имеет только нулевое решение.

220. Истолковать геометрически тождество Лагранжа:

$$\begin{vmatrix} m_1 & n_1 \\ m_2 & n_2 \end{vmatrix}^2 + \begin{vmatrix} m_1 & p_1 \\ m_2 & p_2 \end{vmatrix}^2 + \begin{vmatrix} n_1 & p_1 \\ n_2 & p_2 \end{vmatrix}^2 = \begin{vmatrix} m_1^2 + n_1^2 + p_1^2 & m_1 m_2 + n_1 n_2 + p_1 p_2 \\ m_1 m_2 + n_1 n_2 + p_1 p_2 & m_2^2 + n_2^2 + p_2^2 \end{vmatrix}.$$

- **221.** Какие свойства определителей третьего порядка выражают формальные своства смешанного произведения?
 - **222.** Найти координаты смешанного произведения $[\vec{a}\vec{b}]$, если

1)
$$\vec{a}(3,-1,4)$$
 и $\vec{b}(-2,3,-3)$;

2)
$$\vec{a}(5, -2, 1)$$
 и $\vec{b}(4, 0, 6)$.

- **223.** Вычислить площадь треугольника \overrightarrow{ABC} , если $\overrightarrow{\overrightarrow{AB}}(-5,2,3)$, $\overrightarrow{AC}(2,1,-1)$.
- **224.** Найти какой-либо вектор, ортогональный плоскости треугольника \overrightarrow{ABC} , если $\overrightarrow{AB}(-4,-3,-1)$, $\overrightarrow{AC}(-3,3,-1)$.
- **225.** Найти длину высоты AD треугольника ABC, если $\overrightarrow{AB}(-5, -8, -7)$, $\overrightarrow{AC}(-1, -5, -5)$.

- **226.** Вектор \vec{x} , ортогональный к векторам $\vec{a}(4,-2,-3)$ и $\vec{b}(0,1,3)$, образует с вектором \vec{j} ортонормированного базиса тупой угол. Зная, что $|\vec{x}|=26,$ найти его координаты.
- **227.** Найти вектор \vec{x} , зная, что он перпендикулярен к векторам $\vec{a}(2, -3, 1)$ и $\vec{b}(1,-2,3)$ и удовлетворяет условию $\vec{x}(\vec{i}+2\vec{j}-7\vec{k})=10.$
- **228.** Даны векторы: $\vec{a}(2,-3,1),\ \vec{b}(-3,1,2),\ \vec{c}(1,2,3).$ Найти координаты векторов: 1. $[\vec{a}[\vec{b}\vec{c}]]; 2. [[\vec{a}\vec{b}]\vec{c}].$
- **229.** Вычислить смешанное произведение векторов $\vec{a}, \, \vec{b}$ и \vec{c} в каждом из случаев:
- **230.** Доказать, что векторы $\vec{a}(-1,3,3), \ \vec{b}(1,1,-1)$ и $\vec{c}(2,6,0)$ компланарны.
- **231.** Вычислить объем тетраэдра ABCD, если $\overrightarrow{AB}(3,0,3)$, $\overrightarrow{AC}(1,1,-2)$, $\overrightarrow{AD}(4,1,0)$.
- **232.** Дан тетраэдр ABCD. Известно: $\overrightarrow{AB}(-1,2,-3)$, $\overrightarrow{AC}(-3,1,-1)$, $\overrightarrow{AD}(3,9,-6)$. Найти длину высоту тетраэдра, опущенной из точки A.
- **233.** В четырехугольнике ABCD дано: $\overrightarrow{AB}(-1,3,4)$, $\overrightarrow{AC}(0,4,3)$, $\overrightarrow{AD}(3,3,-3)$. Доказать, что чытырехугольник плоский, и найти его площадь.
- **234.** Найти объем параллелепипеда ABCDA'B'C'D', если $\overrightarrow{AB}(2,-3,1)$, $\overrightarrow{AD}(1,-4,-3), \overrightarrow{AA}'(0,3,2).$
- **235.** Объем тетраэдра ABCD равен 5. Основание тетраэдра треугольник \overrightarrow{ABC} . Известны векторы $\overrightarrow{AB}(1,-1,2)$, $\overrightarrow{AC}(0,-2,4)$. Найти координаты вектора \overrightarrow{AD} , если его орт имеет координаты (2/7, 6/7, 3/7).
 - **236.** Для базиса $\vec{a}(2,1,-1)$, $\vec{b}(-3,0,2)$, $\vec{c}(5,1,-2)$ найти взаимный базис.