多元函数微分学

Didnelpsun

目录

1	多元函数微分应用			1
	1.1	空间曲线的切线与法平面		1
		1.1.1	参数方程	1
		1.1.2	交面式方程	1
	1.2	空间曲面的切平面与法线		1
		1.2.1	隐式	1
		1 2 2	显式	2

多元函数微分应用 1

空间曲线的切线与法平面 1.1

1.1.1

 $P_0(x_0,y_0,z_0)$ 为 Ω 上的点,且当 $t=t_0$ 时, $\phi'(t_0)$, ψ'

- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的切向量为 $\vec{\tau} = (\phi'(t_0), \psi'(t_0), \omega'(t_0))$ 。
- 曲线 Γ 在点 $P_0(x_0,y_0,z_0)$ 处的切线方程为 $\frac{x-x_0}{\phi'(t_0)} = \frac{y-y_0}{\psi'(t_0)} = \frac{z-z_0}{\omega'(t_0)}$ 。
- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的法平面 (过 P_0 且与切线垂直的平面) 方程 为 $\phi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$ 。

1.1.2 交面式方程

设空间曲线 Γ 由交面方程 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 给出,则:

曲线 Γ 在点 $P_0(x_0,y_0,z_0)$ 处的切向量为 $ec{ au} = \left(\left| egin{array}{ccc} F_y' & F_z' \ G_z' & G_z' \end{array} \right| , \left| egin{array}{ccc} F_z' & F_x' \ G_z' & G_z' \end{array} \right| , \left| egin{array}{ccc} F_x' & F_y' \ G_z' & G_z' \end{array} \right|
ight)
angle
ight.$

• 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的切线

$$\frac{x - x_0}{\left|\begin{array}{c|c} F'_y & F'_z \\ G'_y & G'_z \end{array}\right|_{P_0}}, \frac{y - y_0}{\left|\begin{array}{c|c} F'_z & F'_x \\ G'_z & G'_x \end{array}\right|_{P_0}}, \frac{z - z_0}{\left|\begin{array}{c|c} F'_x & F'_y \\ G'_x & G'_y \end{array}\right|_{P_0}}.$$

• 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的法平面方程为 $\begin{vmatrix} F'_{y} & F'_{z} \\ G'_{y} & G'_{z} \end{vmatrix} (x - x_{0}) + \begin{vmatrix} F'_{z} & F'_{x} \\ G'_{z} & G'_{x} \end{vmatrix} (y - y_{0}) + \begin{vmatrix} F'_{x} & F'_{y} \\ G'_{x} & G'_{y} \end{vmatrix} (z - z_{0}) = 0.$

1.2 空间曲面的切平面与法线

隐式 1.2.1

设空间曲面 Σ 由方程 F(x,y,z)=0 给出, $P_0(x_0,y_0,z_0)$ 是 Σ 上的点,则:

1

- 曲面 Σ 在点 $P_0(x_0,y_0,z_0)$ 处的法向量为 $\vec{n}=(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),F_z'(x_0,y_0,z_0))$ 且法线方程为 $\frac{x-x_0}{F_x'(x_0,y_0,z_0)}=\frac{y-y_0}{F_y'(x_0,y_0,z_0)}=\frac{z-z_0}{F_z'(x_0,y_0,z_0)}$ 。
- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的切平面方程为 $F'_x(x_0, y_0, z_0)(x x_0) + F'_y(x_0, y_0, z_0)(y y_0) + F'_z(x_0, y_0, z_0)(z z_0) = 0$ 。

1.2.2 显式

设空间曲面 Σ 由方程 z = f(x,y) 给出,令 F(x,y,z) = f(x,y) - z,假定法向量的方向向下,即其余 z 轴正向所成的角为钝角,即 z 为-1,则:

- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的法向量为 $\vec{n} = (f'_x(x_0, y_0), f'_y(x_0, y_0), -1)$,且 法线方程为 $\frac{x x_0}{f'_x(x_0, y_0)} = \frac{y y_0}{f'_y(x_0, y_0)} = \frac{z z_0}{-1}$ 。
- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的切平面方程为 $f'_x(x_0, y_0)(x x_0) + f'_y(x_0, y_0)$ $(y y_0) (z z_0) = 0$ 。

若是反之成锐角,则将里面所有的-1都换成1。

若用 α , β , γ 表示曲面 z = f(x,y) 在点 (x_0,y_0,z_0) 处的法向量的方向角,并这里假定法向量的方向是向上的,即其余 z 轴正向所成的角 γ 为锐角,则法向量方向余弦为 $\cos\alpha = \frac{-f_x}{\sqrt{1+f_x^2+f_y^2}}$, $\cos\beta = \frac{-f_y}{\sqrt{1+f_x^2+f_y^2}}$, $\cos\gamma = \frac{1}{\sqrt{1+f_x^2+f_y^2}}$, 其中 $f_x = f_x'(x_0,y_0)$, $f_y = f_y'(x_0,y_0)$ 。

其中 $f_x = f_x'(x_0, y_0)$, $f_y = f_y'(x_0, y_0)$ 。 **例题:** 设直线 $L \begin{cases} x + y + b = 0 \\ x + ay - z - 3 = 0 \end{cases}$ 在平面 π 上,而平面 π 与曲面 $z = x^2 + y^2$ 相切于 (1, -2, 5),求 ab 的值。

解: L 在 π 上且与曲面相切,则 π 为 L 的切平面。设曲面方程 $F(x,y,z)=x^2+y^2-z$ 。

曲面法向量为 $\vec{n} = \{F_x', F_y', F_z'\} = \{2x, 2y, -1\}$,代入 (1, -2, 5),则法向量为 $\{2, -4, -1\}$ 。

又点法式: $\pi: 2(x-1)-4(y+2)-(z-5)=0$,即 2x-4y-z-5=0。 联立直线方程,得到: (5+a)x+4b+ab-2=0,又 x 是任意的。 解得 a=-5,b=-2。