Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Cálculo Numérico

	Prof.: Luiz C. M. de Aquino			
Aluno(a):		Data:	/	/

Avaliação Final

Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Cada questão vale 20 pontos, totalizando-se assim 100 pontos.
- 1. Dado $a \in \mathbb{R}_+^*$ proponha uma maneira de usar o Método da Bisseção para calcular um valor aproximado de \sqrt{a} com tolerância de 10^{-5} .
- 2. Seja x um número natural qualquer. Considere que n seja um quadrado perfeito mais próximo de x. Prove que $\sqrt{x} \approx \frac{x+n}{2\sqrt{n}}$. (Observação: dizemos que n é um quadrado perfeito se existe um natural m tal que $n=m^2$.)
- 3. A cada passo no Método da Falsa Posição, escolhemos $x_k = \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(a_k)| + |f(b_k)|}$, sendo que no intervalo $[a_k; b_k]$ temos $f(a_k)f(b_k) < 0$. Prove que esta escolha de x_k coincide com a abscissa do ponto de interseção entre o eixo x e a reta passando por $(a_k, f(a_k))$ e $(b_k, f(b_k))$.
- 4. Sobre certa função f são conhecidos os pontos $(x_k, f(x_k))$, com k = 0, 1, 2, ..., n. Suponha que seja aplicado o Método dos Mínimos Quadrados para determinar a função $\phi(x) = ag_1(x) + bg_2(x)$ que melhor se ajusta a f. Deduza que os coeficientes a e b são a solução do sistema de equações:

$$\begin{cases} c_{11}a + c_{12}b = d_1 \\ c_{21}a + c_{22}b = d_2 \end{cases},$$

onde
$$c_{ij} = \sum_{k=0}^{n} g_i(x_k)g_j(x_k)$$
 e $d_i = \sum_{k=0}^{n} g_i(x_k)f(x_k)$.

5. Seja uma função f da qual são conhecidos os pontos $(x_0, f(x_0))$ e $(x_1, f(x_1))$. Considere que L(x) seja o polinômio na Forma de Lagrange que interpola f. Além disso, considere que N(x) seja o polinômio na Forma de Newton que interpola f. Prove que L(x) e N(x) representam um mesmo polinômio.