POKHARA UNIVERSITY

Level: Bachelor Semester – Spring Year: 2020

Program: BE Full Marks: 70

Course: Engineering Mathematics-II Pass Marks: 31.5

Time: 2 hrs.

Candidates are required to answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all the questions.

Group - A: (5×10=50)		
Q. N. 1	 a) What is an exact ODE? Is f(x)dx+g(y)dy = 0 always exact? Under what conditions for the constant a, b, k, l is (ax+by)dx+(kx+ly)dy = 0 exact? b) Does the initial value problem (x-2) y'=y, y(2)= 1 have a solution? What 	1+3+2+4
	happens if you replace $y(2) = 1$ with $y(2) = k$?	
	c) Verify and explain why $y = e^{-2x}$ is a solution of $y'' - y' - 6y = 0$ but xe^{-2x} is not.	
	OR	
	 a) Differentiate between homogeneous linear equation and non-homogeneous linear equation with examples. b) What does an initial value problem of a second-order ODE look like? Why must you have a general solution to solve it? c) Solve y"+16y = 17ex, y(0) = 6, y'(0) = -2. 	3+3+4
Q. N. 2	a) Which order of differentiation will calculate f_{xy} faster; x first, or y first?	2+4+4
	Discuss with function $f(x, y) = x^2 + 5xy + \sin x + 7e^x$.	
	b) Suppose that the partial derivatives of a function $f(x,y,z)$ at point on the helix	
	x=cost, y=sint, z=t are $f_x = \cos t$, $f_y = \sin t$, $f_z = t^2 + t - 2$, At what points on	
	the curve ,if any can f take on extreme values?	
	c) Find the maximum value of $w = xyz$ on the line of intersection of the two planes $x+y+z=40$ and $x+y-z=0$.	
Q. N. 3	a) Define the double integral of a function of two variables over a bounded region in the coordinate plane. Does the order of integration matter? How are the limits of integration determined? Give examples.	3+3+4
	b) Why we change Cartesian integral changes to polar integral? How would you evaluate the double integral of a continuous function $f(x,y)$ over the region R in the xy-plane enclosed by the triangle with vertices $(0,1)$, $(2,0)$ and $(1,2)$? Give reasons for your answer.	
	c) Find the volume of solid in the first octant bounded by the co-	
_	ordinate planes, the planes $x=3$, and the parabolic cylinder $z=4-y^2$	
Q. N. 4	a) What are the process of solving the differential equation by power series method?	2+8

	b) Find solution of following equation by using power series method: $(1+x) y' = y$	
Q. N. 5	a) How can you find angle between line and plane?	2+8
	b) Find the equation to the plane through the line $\frac{x-\alpha}{1} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$	
	parallel to the line $\frac{x}{1'} = \frac{y}{m'} = \frac{z}{n'}$.	
Group - B: (1×20=20)		
Q. N. 6	a) Define Laplace transform. Give simple example of functions that have no Laplace transform.	2+3+5+4+6
	b) When and how do you use the unit step function? Explain the use of the two shifting theorems from memory.	
	c) Solve the initial value problem using $y''+3y'+2y=2u(t-2),y(0)=0,y'(0)=0$	
	$d) L^{-1} \left\{ log \left(\frac{s(s+1)}{s^2+4} \right) \right\}$	
	e) Estimate how much wood it takes to make a hollow rectangular box who's inside measurements are 5ft long by 3ft wide by 2ft deep if the box is made of lumber ½ - inch thick and the box has no top.	