НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

Лабораторная работа

«Качественный фазовый анализ при регистрации дифракционной картины поликристалла на пленку (дебаевский метод)»

Работу выполнил студент 3 курса Захаров Сергей Дмитриевич

Москва 2020

Содержание

Для выполнения работы была представлена дебаеграмма, приведенная на рисунке 1.

Рис. 1. Исходная дебаеграмма

Чтобы ее проанализировать, было измерено расстояние от линий, симметричных относительно отверстия (в правом верхнем углу), до центра отверстия, которое было принято началом отсчета. Результаты всех измерений, а также дальнейших промежуточных и финальных вычислений, приведены в сводной таблице.

С учетом используемой нами техники (камера РКУ-114), а также выбранного нами начала отсчета, измеренное нами расстояние до линии, выраженное в мм, соответствует величине угла 2θ , выраженному в градусах. Это позволяет нам заполнить колонки со значением угла θ , его синусам, а также квадратом его синуса.

Наличие линий с очень низкой интенсивностью наводят на мысль, что в дебаеграмме могут присутствовать β -линии. Согласно формуле (1.2) [1], «для интенсивной, предположительно, α -, линии с известным дифракционным углом θ_1 , можно определить ожидаемое расположение θ_2 более слабой соответствующей β -линии, если использовать соотношение»:

$$\sin \theta_1 = f \cdot \sin \theta_2 \tag{1}$$

Здесь f — соотношение длин волн $\lambda(\beta)/\lambda(\alpha)$ для анода, с помощью которого проводится измерение. Согласно поступившим нам для обработки данным, при проведении эксперимента использовался медный анод, т.е. $\lambda(\alpha) = \lambda(\alpha_{\rm cp}) \approx 1.54178$ Å, а $\lambda(\beta) \approx 1.39217$ Å, откуда получаем

 $f \approx 1.1075$. С учетом этого, заполним колонки $\sin \theta_{\beta}$ у α -линий, у которых предполагаем наличие β -линии, а также колонку с типом линии.

Таким образом, для предполагаемых α -линий, имеющих β -линии, проверим, совпадет ли теоретическое положение β -линии с тем, которое мы видим в реальности. Если да, то мы верно определили тип и принадлежность β -линии.

Отдельно отметим, что при достижении достаточно больших углов θ , на дебаеграмме появляются расщепления дублетов. Для линий, составляющих дублет, в таблице будем использовать соответственно обозначения α_1 и α_2 .

Для расчета межплоскостного расстояния d воспользуемся условием Вульфа-Брэгга (формула (1.1) [1]):

$$2d\sin\theta = \lambda \quad \Rightarrow \quad d = \frac{\lambda}{2\sin\theta}$$
 (2)

Здесь λ — значение длины волны, которое для α -линии, соответственно, берем равным $\lambda(\alpha_{\rm cp})\approx 1.54178$ Å, а для β -линии равным $\lambda(\beta)\approx 1.39217$ Å. Для линий, составляющих дублет, используем соответственно $\lambda(\alpha_1)\approx 1.54051$ Å и $\lambda(\alpha_2)\approx 1.54433$ Å.

На следующем этапе определим индексы линий, предполагая кубическую структуру образца. Для этого согласно методике, изложенной в [1], первой линии мы припишем индексы (111). В таком случае, для всех последующих линий, определение суммы квадратов индексов производится по формуле:

$$\frac{\sin^2 \theta_2}{\sin^2 \theta_1} = \frac{h_2^2 + k_2^2 + l_2^2}{h_1^2 + k_1^2 + l_1^2} \tag{3}$$

Которая в свою очередь получается из формулы, связывающей межплоскостное ра сстояние d и индексы линий h,k,l для кубической решетки:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \tag{4}$$

Таким образом, на основании формулы (3), заполним колонку таблицы с суммой квадратов индексов, на основании которой уже заполним колонку с самими индексами в предположении, что $h \ge k \ge l$.

N	$I_{\text{отн}}$	l, mm	θ	$\sin \theta$	$\sin \theta_{\beta}$	$\sin^2 \theta$	$\sin^2\theta(111)$	$\sum_{i} h_{i}^{2}$	d, Å	hkl	lpha/eta	a, Å
1	6	39	19.5	0.3338		0.1114	0.0371	3	2.3093	111	α	
2	10	43.5	21.75	0.3705		0.1373		4	2.0803	200	α	
3	2	45	22.5	0.3826		0.1464		4	1.8189	200	β	
4	9	50.3	25.15	0.4249	0.3837	0.1806		5	1.8139	210	α	
5	1	65.6	32.8	0.5417		0.2934		8	1.2849	220	β	
6	8	73.8	36.9	0.6004	0.5743	0.3605		10	1.2839	310	α	
7	1	79	39.5	0.6360		0.4045		11	1.0943	311	β	
8	0.5	83.2	41.6	0.6639		0.4407		12	1.0484	222	β	
9	8	89.5	44.75	0.7040	0.6356	0.4956		13	1.0949	320	α	
10	3	95	47.5	0.7372	0.6657	0.5435		14	1.0455	321	α	
11	0.5	113.7	56.85	0.8372		0.7009		19	0.8314	331	β	
12	1	116.7	58.35	0.8512		0.7246		20	0.8177	422	β	
13	0.5	118.5	59.25	0.8594		0.7385		20	0.8099	422	β	
14	6	136	68	0.9271	0.8371	0.8596		22	0.8307	332	α_1	15.1830
15	5	136.7	68.35	0.9294		0.8638		22	0.8307	332	α_2	15.1840
16	6	144	72	0.9510	0.8587	0.9045		24	0.8098	422	α_1	14.4304
17	5	145	72.5	0.9537	0.8611	0.9095		24	0.8096	422	α_2	14.4212

Список литературы

[1] Рентгендифракционные методы изучения структуры монокристаллов, поликристаллических и аморфных материалов