ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 3: Continuous Distributions

William Marsh

Outline

Aim: Understand how to look at the distribution of a continuous variable

- Continuous distribution
 - Problem: how it differs from the discrete case
 - Solutions: histograms and density plot
- Relationship to probability
- Mean, median and mode
- Quantiles
- Skew

Continuous Distributions

Recap: Categorical Distribution

- Randomly select a Londoner (in 2011):
 - 10% are in age range 25-29
 - Probability of 10% of this age range

 Distribution shows probability, proportion or frequency

Problem of Continuous Proportion

Problem

- Infinite number of values → infinitesimal proportions
- Age: 25 years, 4 months, 12 days, 8 hours, 3 minutes
- Not many same age
- Solution 1: Histogram
 - Proportion in a range
 - in the data, Age already represented as ranges
- Solution 2: Density plot

Histograms

Bar Chart: % of Borough Residents born in Ireland

- Percent is a continuous value
- What percentages are more common?
 - New variable: '% Percent of Borough Residents born in Ireland'

Bar chart order:

- Increasing
- Not significant

Histogram of 'Ireland %'

Histogram of 'Ireland %'

20 bins; shape varies with number of bins

Bar Chart versus Histogram

Histogram appears similar to a bar chart

	Bar Chart	Histogram
Horizontal axis	Categorical variable	Continuous variable
Gaps between columns	Yes	No
Order of (x-axis) significant	No	Yes
Vertical axis	Proportion (probability), count or frequency	

Quiz 1

Every lecture will have a 'learning reflection' slide

Learning Programming

How does learning programming compare with your previous study?

Learning Programming and Pandas

- Mental model
 - Misconceptions
 - Barrier concepts
- Working with example
 - Complex: 'top-down'
 - Read it what does it do?
 - Change it (a bit)
 - Apply it to a new problem
- Learn to read the error messages
 - Extract some information!

- Large libraries
 - Not expected to memorise
 - Too many alternatives
 - Learn to read documentation
- Two tasks
 - Data analysis: what are the steps? [Decomposition]
 - Writing and planning
 - Programming: how to achieve it?
- Perfect code problem

Density Plot

Histogram can be thought of as an approximation to a density plot

Start with a histogram

Add a curve

Just look at the curve

- Probability V in range V1 to V2
 - Given by shaded area
 - Total area is one (100%)

- Vertical axis is 'density'
- Curve is the 'Probability density function'

Estimating a Density

Quiz 2

Averages (Continuous Distributions)

We can summarise a distribution

Location (or Average)

- What do we mean by 'average'?
 - Where is the 'middle' located?

- Types of average
 - Mean: sum of value / number of values
 - Median: divides population in half
 - Mode: most common value
- First way to summarize a distribution

Median

Median: divides population in half

Median

- Median splits the area
 - Area (population) below = area above

Median

- Median splits the area
 - Area (population) below = area above

Median: No Change

- Median splits the area
 - Area (population) below = area above

Mean: Average Value

- Outliers do affect the mean
 - Sum values / number of values

mean increase

Mode

- Mode is 'most common value'
- Unimodal distribution

Multimodal Distribution

- Bimodal distribution
- Check for multimodality before reporting mean, median etc

Quantiles

Generalise median

Quantiles of a Distribution

- Quantiles split the area into equal parts
 - Area (population) equal in each part
 - Quartile: 4 parts; deciles: 10 parts

Box Plot

Irish Born Proportion in Each Borough Box plot summarises Max a distribution 2.50% whiskers 2 00% -Third quartile Median ቴ % 150% box First quartile 1.00% Min boroughProportion

Symmetry and Skew

Symmetric Distribution

- A symmetric distribution is the same when reflected in the mean
 - The mean, mode median and mode are all the same

Skew: Measures Asymmetry

- 0 for a symmetric distribution
 - However, 0 skew does not imply symmetry
- Can be positive or negative
 - Positive skew: tail to right
 - Negative skew: tail to left

Example: (Household Disposable) Income

- Right skew: mean exceeds median
- Lowest income zero: no highest
 - Expect skew
- Mean not only (or best) summary when skew

Skew and 'Location'

- Skew is also a summary (like location)
 - Different metrics: best to look at distribution
 - Can be defined on difference between mean and median

Skew	Tail	Mean v Median	Median v Mode
Positive	On the right (+ve) side	Mean bigger	Mode smaller
Zero	No tail	Same	Same
Negative	On the left (-ve) side	Mean smaller	Mode bigger

Rules of thumb for unimodal distributions: not always true

Summary

- Continuous probability distribution
 - Show probability of any range of values
 - Cannot give a probably to a single value
- Histogram
 - Similar to a bar chart (but no gaps; order)
 - Divides continuous variable into intervals
- Density
 - Imagine histogram with very narrow intervals
- Summary 'statistic' for 'location'
 - Where is distribution centred ('located')?
 - Mean, median or mode
- Many real distributions asymmetric
 - Mean and median different