

(12) PATENT

(11) 308027

(13)B1

(51) Int Cl7

(19) NO

B 63 B 22/02

Patentstyret

Seknadsor

(21) Sachadan (22) hung. dag (24) Lapedag (41) Alm. tilgj. (45) Meddelt dato

19923365 1992.08.27 1991.12.19 (86) Int. inng. dag og

(85) Vidercus (30) Prioritet

1991.12.19, PCT/FR91/01034 1992.08.27 1990.12.28, FR, 9016440

(71) Patenthaver

(72) Oppfinner (74) Fullmektig

Institut Français du Pétrole, 4, avenue de Bois Préau, F-92506 Rueil-Malmaison Cédex, FR Jean-François Giannesini, Saint-Cloud, FR

Bryn & Aarflot AS, 0104 Oslo

(54) Benevnelse

System for lasting til sies

(56) Anførte publikasjoner

US 3664388, DE 3117203, US 3677310, US 3455114

(57) Sammendrag

Det er beskrevet et system for lasting til sjøs, hvilket system består av en nedsenkbar overføringsstruktur (1) og forankringsinnretning (2) for nevnte overføringsstruktur. Lastesystemet innbefatter også en bunn eller basisstruktur (3) på sjøbunnen og manøvreringsinnretning for å bringe nevnte overferingsstruktur inn i et mottaksrom (4) anordnet i nevnte bunnstruktur.

Oppfinnelsen angår et system for å laste til sjøs, og spesielt i arktiske og subarktiske områder.

Slike systemer omfatter en overføringskonstruksjon for undersjøisk produksjon og gjør det mulig å føre innholdet fra et reservoar eller en undersjøisk rørledsning til et transportskip, slik som en tankbåt. Alle elementene i systemet må oppvise konstruksjoner som er motstandsdyktige overfor isfjell og isblokker, eller isdannelser som opptrer periodisk i disse områder, eller være anordnet fjernt fra overflaten, siden de osean-metereologiske forhold kan være svært vanskelige.

Vanligvis skjer lasting av tankskip med utgangspunkt i en permanent fortøy10 ningsanordning som består av en bøye som er forankret ved hjelp av kjettinger eller en kombinasjon av kjettinger og kabler. Lastingen utføres ved hjelp av et fleksibelt rør eller en kanal som forbinder det undersjøiske reservoaret, eller rørledningen, med bøyen, eller direkte med skipet som skal lastes. Alle lastestedene karakteriseres ved den permanente tilstedeværelsen av et objekt som befinner seg på over15 flaten eller i sonen umiddelbart under overflaten (et titalis meter under havoverflaten).

I havområder som er utsatt for isdannelse eller isblokker, vil slike fortøyningsanordninger umiddelbart bli ødelagt i tilfellet med et støt med en isblokk, eller de vil
bli ødelagt av isdannelsen på overflaten. Selv om konstruksjonen til bøyen er ut20 formet for å motstå lokale ispåkjenninger, vil de totale samvirkende kreftene fra isen
på fortøyningsanordningen ha en slik styrke at forankringslinene ikke kan motstå
denne. I tilfellet med truende isdannelse eller fare for sammenstøt med isfjell, kan
det således være nødvendig å heve hele det undersjøiske fortøyningssystemet til
overflaten.

US-patent 4.650.431 beskriver et system som gjør det mulig å få til en hurtig frakopling mellom lasteskipet og overføringskonstruksjonen, idet rørledningene eller de fleksible rørene som gjør det mulig å få til overføringen av produksjonen til lasteskipet, er nedsenket på et nivå som befinner seg under den turbulente sonen eller isdannelsen i sjøen, og i en viss høyde i forhold til havbunnen på en slik måte at de so fleksible rørene ikke blir ødelagt siden de hviler på havbunnen. Dette system oppviser den ulempen at rørene kan bli liggende på isfjellene, og disse kan ha en viktig trekkraft (100 eller mer).

Dokumentet "Sols for floating production system" som ble fremlagt på konferansen "Floating production systems" i London 11. og 12. desember 1989, beskriver et system hvor det ikke er nødvendig med et objekt på overflaten for å overføre en produksjon til et lasteskip, men systemet oppviser to hovedulemper: tankskipet må sposisjoneres dynamisk og med spesial-utstyr, og skipene må dessuten ha spesifikke systemer for lastingen, og dette gjør det vanskelig å utføre operasjonen. Multipliseringen av lastesystemene for hvert fartøy øker kostnadene, og dermed blir økonomien til systemet dårligere.

Formålet med oppfinnelsen er å gradere ulempene som eksisterer i det kjente 10 systemet, og å tilby et system som er mindre kostbart og som ikke medfører at noen objekter blir utsatt for de forstyrrende elementer slik som isfjellene, kraftige stormer eller andre osean-metereologiske fenomener som kan ødelegge elementene som utgjør et lastesystem.

Dette mål oppnås ved et system for lasting til sjøs for å overføre et fluid fra en 15 bunnkonstruksjon plassert på havbunnen til en nedsenkbar flytende overføringskonstruksjon innbefattende innretning for forankring av overføringskonstruksjonen, samt innretning for manøvrering av overføringskonstruksjonen til bunnkonstruksjonen, og hvorved bunnkonstruksjonen innbefatter et mottaksrom, kjennetegnet ved at manøvreringsinnretningen innbefatter forankringsinnretning tilsluttet til den flytende over-20 føringskonstruksjonen og ballasteringsinnretning beliggende mellom overføringskon-

- struksjonen og bunnkonstruksjonen, hvilken forankringsinnretning og ballasteringsinnretning er konstruert for å muliggjøre en forflytning av overføringskonstruksjonen
 inn i mottaksrommet i bunnkonstruksjonen. Nevnte bunnkonstruksjon kan i det
 minste omfatte et undersjølske reservoar.
- Systemet kan omfatte overføringsinnretning for flytende last inneholdt i nevnte reservoar til en flytende lasteanordning, slik som et skip.

Overføringsinnretningen kan omfatte en overføringskonstruksjon og innretninger for sammenkopling og/eller frakopling mellom den flytende anordningen og overføringskonstruksjonen.

Bunnkonstruksjonen eller anordningen kan være plassert i et hull som er utgravd i havbunnen, eller anordnet på havbunnen og være omgitt av en kunstig beskyttelsesskråning. I disse to tilfeller er nevnte mottaksrom tilformet ved hjelp av en uthulning i taket på nevnte fundamentkonstruksjon.

Nevnte bunnkonstruksjon kan være tildannet ved sammenstillingen av i det minste to senkede reservoarer som danner et tomt rom som befinner seg i midten av montasjen tilformet på denne måten.

Nevnte manøvreringsinnretning kan omfatte ballastinnretninger. Nevnte manøvreringsinnretning kan omfatte en mekanisk anordning slik som en vinsj.

Nevnte overføringsinnretning for den flytende lasten kan være tilformet av fleksible rørledninger som forbinder nevnte overføringskonstruksjon via et dreibart mellomledd.

Nevnte forankringsinnretning kan være liner, slik som kjettinger, som er gjort tyngre i den høyere enden på en måte for å forenkle styringen av bøyen inn i mottaksrommet.

Fordelen som den foreliggende oppfinnelse oppviser, som beskrevet i dette dokumentet, er at den gir et system som er mindre kostbart, og som gjør det mulig å 15 beskytte alle elementene som utgjør alle de vanlige lasteanordningene.

Oppfinnelsen er kjennetegnet ved de i patentkravene angitte trekk.

Den foreliggende oppfinnelse omfatter også andre formål, egenskaper, detaljer og fordeler som vil fremkomme tydelig av den påfølgende beskrivelse sett sammen med de medfølgende skjematiske tegninger som bare er gitt som et 20 eksempel, og hvor:

- Fig. 1 er et totalriss av et lastesystem utformet i samsvar med en av mulighetene for realisering av oppfinnelsen, og hvor de heltrukne linjene viser systemet i drift, og de punkterte linjene viser når overføringskonstruksjonen er anordnet under alle forstyrrende elementer,
- fig. 2 viser skjematisk anordningen av ventilene i utstyret til den fleksible rørledningen når denne også anvendes som et ballastrør.
 - fig. 3A og 3B viser to alternative anordninger av fundamentkonstruksjonen og utgravningen i forhold til konstruksjonens tak,
- fig. 4A og 4B viser en fundamentkonstruksjon utført med sammenstilte reser-30 voarer,
 - fig. 5 er en variant av systemet beskrevet tidligere hvor manøvreringsinnretningen består av en vinsj, og

fig. 6 viser et spesielt tilfelle med innføring av bøyen i mottaksrommet.

Fig. 1 illustrerer et lastesystem i henhold til den foreliggende oppfinnelse, hvilket system omfatter en overføringskonstruksjon 1 som er nedsenkbar, en nedsenkbar bøye som normalt flyter på havoverflaten. Overføringskonstruksjonen ser forankret i havbunnen ved hjelp av en gruppe forankringsliner (-innretning) 2 (i det minste tre liner) som kabler eller kjettinger, eller en kombinasjon av kjettinger og kabler med elementer slik som flottører eller opphengere. I tilfellet med trussel i form av isfjell eller islag på overflaten, blir bøyen trukket ned og inn i et mottaksrom (mottaksinnretning) 4 i det undersjølske reservoaret (bunnkonstruksjonen) 3.

- Bøyen kan være montert på en arm og det kan være et ytterligere flytende element for å fortøye fartøyet. Vanligvis kan armen dreies om den vertikale aksen til bøyen, og dette gjør det mulig for fartøyet og orientere seg i retningen som gir minst motstand mot virkningen av de marine elementer (dønning, vind, strøm), slik at fartøyet innretter seg i den mest hensiktsmessige retning.
- Mottaksrommet (-huset) kan være utformet som en uthulning lokalt i taket til det undersjøiske reservoaret. Dybden på denne uthulingen er slik at bøyen med utstyr ikke strekker over takkanten til reservoaret når sammenstillingen er anordnet i mottakshuset. Dybden bestemmes fortrinnsvis ved at en går ut i fra høyden på bøyen og dens utstyr, og så sørger for en beskyttelse i størrelsesorden 1-2 meter for 20 å gi en sikkerhetsmargin. På denne måten risikeres ikke at isfjell som passerer over reservoaret vil ødelegge bøyen og utstyret, siden det befinner seg i mottakshuset.

De horisontale dimensjonene til mottakshuset som danner beskyttelsen til bøyen, beregnes på bakgrunn av bøyens horisontale dimensjoner og den horisontale forskyvning bøyen blir utsatt for under ballastoperasjon når den er utsatt for virk
25 ningen av strøm. Denne horisontale forskyvning blir begrenset av virkningen til forankringslinene. Når det tas hensyn til virkningen av stivheten som utøves av linene
på den forankrede bøye, observeres at det maksimale avvik i planet gitt av bøyen i
forhold til dens startposisjon, er det kompatibelt med dimensjonene til reservoarene i
dybder av størrelsesorden 120-150 meter. Ved 100 meters dybde kan f.eks. be
30 regnes et avvik i størrelsesorden 15-20 meter som maksimalt med de vanlige
forankringssystemer. Dette gir at det er tilstrekkelig at diameteren til mottaksrommet
er litt større enn det dobbelte av dette avviket, hvilket øker diameteren til bøyen og

dens utstyr til størrelsesorden 10-20 meter (bøyene som anvendes her har diameter i størrelsesorden 5 meter), hvilket vil tilsi at bøyen kan inngå naturlig i dens beskyttelse under nedsenkningen.

Diameteren til mottakshuset bør således være i størrelsesorden 40-45 meter, shvilket er perfekt kompatibelt med dimensjonen til de undersjøiske reservoarer som har horisontale dimensjoner på 100 meter og en vertikal høyde på minimum 10-20 meter. Et nøyaktig eksempel er gitt litt sønere i beskrivelsen.

En forlater ikke den foreliggende oppfinnelse dersom bunnkonstruksjonen som danner beskyttelse ikke har funksjon som et reservoar, men en helt annen 10 funksjon, eksempelvis en enkel funksjon og tjener som mottaksrom for bøyen.

Lastingen kan utføres med utgangspunkt i en rørledning. Lastingen utføres ved et fleksibelt rør eller kanalsystem 5 som forbinder reservoaret 3 med bøyen 1. Et andre fleksibelt rør 6 som vanligvis er anordnet på utsiden, eller parallelt forbinder bøyen 1 med fartøyet 7. Passasjen gjennom de dreibare armene utføres ved en 1s dreieskjøt som er kjent innen teknikken på området.

En forlater ikke den foreliggende oppfinnelse dersom en anvender et fleksibelt rør som gjør det mulig å føre produksjonen direkte fra reservoaret til fartøyet. I dette tilfellet anvendes en line for ballastoperasjon og denne forbinder bunnkonstruksjonen med bøyen. I dette tilfellet er det ikke nødvendig å anvende en 20 dreibar arm. Denne anvendelsen kan eventuelt tilrådes på et sted som er beskyttet nær en kystlinje.

Den fleksible rørledningen fungerer normalt uten å bli utsatt for spesielt strekk eller andre viktige påkjenninger på nivået hvor den er tilkoplet overføringskonstruksjonen. De fleksible rørledningene som anvendes i den foreliggende oppfinnelse, 25 oppviser den spesielle egenskap at de er enkle å ta i bruk igjen når de er anordnet på havbunnen etter nedtrekkingen av bøyen i mottakshuset, hvor de plasseres på naturlig måte uten at det dannes sløyfer. De vil således anordne seg i mottaksrommet etter hvert som bøyen inntar sin plass i dette. Sammenkoplingspunktet mellom et fleksibelt rør og overførings-konstruksjonen er utført ved hjelp av en dreie-30 skjøt som vanligvis anvendes for overføring av fluider under høyt trykk og som tillater det fleksible røret å posisjonere seg på naturlig måte, slik at det ikke blir utsatt for påkjenninger som kunne ødelegge dette når bøyen inntar sin sluttposisjon i

mottaksrommet.

Manøvreringsinnretningen som gjør det mulig å posisjonere bøyen i bunnkonstruksjonen, omfatter en fleksibel line og i det minste ett ballastrom for bøyen.

Når de osean-metereologiske forhold er slik at det er nødvendig å nedsenke sbøyen, bli ballastrommene fylt med sjøvann. Bøyen kan være tildannet med to typer rom. I den første kategorien er rommene av samme natur som ved tradisjonelle bøyer, som alltid er tomme, eller av sikkerhetsgrunner fylt med et lett materiale. I den andre kategorien kan ballastrommene være tomme eller fylt med sjøvann eller et annet fluid som gjør det mulig å ballastere bøyen. Det respektive volum til de to rommene er beregnet slik at bøyen normalt flyter på overflaten og opplagrer sin forankring når ballastrommene er tomme, og de oppviser en positiv oppdrift uten vektene av forankringen når bøyen er plassert i mottaksrommet.

Med utgangspunkt i den normale flytesituasjon, oppnås nedsenkningen f.eks. ved at eventuelt sjøvann pumpes inn i ballastrommene. Således kan manøvrerings15 innretningen til bøyen omfatte en pumpe og en rørledning for å mate sjøvann inn i ballastrommene.

I en første utførelsesform befinner pumpen seg på havbunnen eller på det undersjølske reservoaret. En fleksibel rørledning gjør det mulig å forbinde reservoaret med bøyen. Denne fleksible rørledningen kan være den fleksible lasterør
20 ledningen 5 til fartøyet. I dette tilfellet er det innmontert fjernstyrte ventiler på hver ende som vist skjematisk på fig. 2, og som tillater alternativt å anvende nevnte rørledning 5 til å føre ballast til bøyen eller å fylle fartøyet. Når rørledningen tjener som lasteledning, er ventilene 11 og 12 åpne på en måte slik at det tillates væskesirkulasjon fra reservoaret til fartøyet som skal lastes. Under ballast-operasjon er ventilene

25 11 og 12 lukket, og ventilen 10 er åpnet på en slik måte at havvann kan passere gjennom den fleksible rørledningen 5 og så gjennom åpningen i ventilen 13, slik at det trenger inn i et ballastrom. En utfører den motsatte operasjon ved åpning av de lukkede ventiler når fartøyet skal lastes. Fjernstyrings- eller telekommando-ledningene for ballastoperasjonen eller lasteoperasjonen, er tilknyttet den fleksible

Denne anordning oppviser alltid en ulempe som består i at det er nødvendig å tømme og rengjøre rørledningen etter hver fylling av fartøyet, slik at ballastvannet ř

ikke skal forurense når det tømmes i sjøen. En anvender således to fleksible rørledninger ved ballastoperasjonen. I den sistnevnte oppviser identiske egenskaper med lasteledningen 5 som er beskrevet foran. Denne andre rørledning kan være fast til den første, i det minste i et parti langs lengden.

- Under innføringen av vann i ballasttankene eller rommene, blir bøyen tyngre og synker. Styringen av innføringen i bøyen er muliggjort ved hjelp av vektene til forankringsledningene. Ettersom bøyen synker, vil en lengde, som er vesentlig viktig, av hver forankringsledning, ligge an på havbunnen. Den oppløftede lengden minsker således som følge av sin vekt. En kan således alltid finne en stabil dybde 10 for hver mengde væske som innføres i samsvar med prinsippet kjent som styreliner som anvendes ved ballonger. På denne måten blir bøyen utsatt for en myk kraft og uten hurtige og overdrevne støt, og dreieskjøten eller koplingen gjør det mulig å hindre de fleksible rørene å danne sløyfer eller sammenvikles når bøyen er i sluttposisjonen i mottaksrommet.
- I en første utførelsesform holdes luften under trykk i reservoarene under ballastoperasjonen. I dette tilfellet vil evakueringen av ballastvann via åpningen til en ventil til sjøen tillate å tømme ut vann og la montasjen stige igjen til overflaten når de osean-metereologiske forhold er tilfredsstillende.

En annen fremgangsmåte innbefatter å opprettholde et trykk som er nært 20 konstant ved evakuering av luft og fylling av vanntankene til ballastrommet.

Tømmingen utføres ved innføring av denne luft under trykk. Systemet er også utstyrt med en rørledning som tillater innføring eller evakuering av luften, og denne rørledningen kan være fast med den fleksible laste- eller ballast-rørledningen.

En annen variant består i å anvende paret vann-olje for å realisere vekt25 økningen og den suksessive vektreduksjonen til bøyen. Denne måten gjør det mulig
å minimalisere forskjellene i trykk som virker på veggene til bøyen, og å redusere
stabilitetstapet som skyldes væsken under vannlinjen. I dette tilfellet sammenholdes
konstruksjonen til bøyen med ballasttankene eller rommene, når volumene er svært
viktige for paret vann-luft.

Fig. 3A og 3B viser to mulige posisjoner for fundamentkonstruksjonen. På fig. 3A er det undersjøiske reservoaret 3 plassert i et hull 31 som er utgravd i havbunnen 32 på en slik måte at det undersjøiske reservoaret er skjermet for mulige

støt fra isfjell 30. Fig. 3B viser det undersjølske reservoaret 3 anordnet på havbunnen 32 hvor det er omgitt av en skråning 33 som danner en kunstig beskyttelse som stopper store drivende isfjell i sjøen. Denne skråningen kan være tildannet ved nedsenkingen av granulært materiale slik som sand, betongstykker, eller et hett sannet materiale som fyller den andre funksjonen. Nedsenkningen kan utføres ved at materialet tømmes fra et fartøy eller like gjerne ved samling av materialet på havbunnen i umiddelbar nærhet av reservoaret.

En annen mulighet er å anvende en konstruksjon som er tilstrekkelig motstandsdyktig til å utholde støtet fra et isfjell uten å bli ødelagt, som en 10 beskyttelsesskråning.

Fig. 4A og 4B viser i plan og snitt et mulig arrangement av fire reservoarelementer som danner et tomt rom i sin midte. Reservoaret er tildannet av
sammenstillingen av elementene, 41, 42, 43 og 44, som er anordnet slik at de
danner et tomt rom eller et mottaksrom 4 for bøyen i midten av montasjen. I tilfellet
15 som vist på fig. 4A og 4B er elementene av rektangulær form, men en kan også
anvende andre former. Antallet elementer som utgjør konstruksjonen, avhenger av
formen til disse. Sammenstillingen eller montasjen blir nedsenket side-mot-side fra
havoverflaten og elementene er forbundet med hverandre via kanaler.

Denne konstruksjonsform gjør det mulig å begrense størrelsen på enhetene 20 som skal forflyttes, og dette gjør det enklere å realisere operasjonene. Denne anordning gjør det dessuten mulig å beskytte alt det andre undersjøiske utstyret som er følsomt for støt, liksom kanalene eller rørene, ventiler, etc.

Elementene som danner beskyttelsen, kan ha andre funksjoner enn som reservoar, eksempelvis som eneste funksjon å tjene som mottaksrom for bøyen.

- En annen variant består i å feste pumpen på bøyen. I dette tilfellet blir det fleksible røret for ballasthåndteringen erstattet av en elektrisk kabel som tjener til å mate energi til en motor som driver pumpen. Motoren og pumpen er da anordnet i et rom i bøyen på en måte slik at den unngår alle problemer under nedsenking av bøyen.
- Fig. 5 viser en annen variant for utførelse av systemet, hvor manøvreringsinnretningen omfatter en vinsj 50. Elementene som er felles for systemet beskrevet på fig. 1, bærer de samme henvisningstall.

Det er å merke seg at i tilfellet hvor forankringsinnretningen er utilstrekkelig til å styre bøyen fra havoverflaten og til sluttposisjonen i mottaksrommet 4, f.eks. på grunn av vanskelige osean-metereologiske forhold, omfatter systemet en vinsj som tillater nedtrekking av bøyen i mottaksrommet. Vinsjen 50 befinner seg fortrinnsvis, s for å forenkle montering og vedlikehold, i et rom i bøyen 1. Dette eksempel er på ingen måte begrensende, og vinsjen 50 kan befinne seg på bøyen, eller på reservoaret.

Med konstant spenning strammer vinsjen en kabel 51, som befinner seg mellom bøyen 1 og reservoaret 3. Spenningen i kabelen 50 er bestemt som en 10 funksjon av de forventede horisontale påkjenningene på bøyen.

Rammen for den foreliggende oppfinnelse forlates ikke om manøvreringssystemet omfatter flere vinsjer.

Som et talleksempel på konkretiseringen av det foran beskrevne system, som gir muligheten til å anbringe den nedsenkbare bøyen i mottaksrommet i fundament15 konstruksjonen bare ved styring ved hjelp av forankringslinene, under vanskelige osean-metereologiske forhold, har forflytningshastigheten nær bunnen en verdi av størrelsesorden 0,5 m/sek., og dette er en verdi som ligger langt høyere enn de vanlige hastigheter.

I det etterfølgende er det gitt konkrete verdier som er representative for en 20 forankring av et lastesystem:

- vanndybde : 100 m

- bøye: diameter : 10 m

- høyde : 5 m

25- antall forakringsliner : 6 som er jevnt spredd

- type : 4 poster av grad U3

- bruddspenning : 7320 kN

vekten av linene i vannet: : 1,97 kN pr. m

- forspenning i linene : 700 kN
30- forskyvningshastighet nær bunnen : 0,5 m/sek.

En betraktet et reservoar liksom det som er vist på fig. 3A. Tilfellet på fig. 1 og fig. 3B er mer å foretrekke.

Det forutsettes dessuten at lengden på linene er 850 m, hvilket korresponderer svært nær til den nedsenkede lengden når en når bruddspenningen. Den projiserte horisontale avstand mellom forankringspunktet til bøyen og ankeret er da 822,35 meter for å oppnå en forspenning på 70 kN.

Denne avstand på 822,35 meter oppnås ved å anvende de kjente formler for kjettinger under korrigering for start-lengden for linen for å beregne dens forlengelse under start-forspenningen på 70 kN. En oppnår således en mengde i området 850,27 meter etter at den er satt under spenning.

Formlene for kjedeliner gir opphengningslengden for linen ved den følgende 10 formel:

$$s=\sqrt{d^2+2da},$$

der d er den vertikale avstanden mellom kontaktpunktet mot grunnen i en ekstremitet, som her er lik vanndybden og hvor parameteren til kjedelinen er gitt ved:

$$a = \frac{H}{\omega} = \frac{T - \omega d}{\omega}$$

hvor H = horisontalkomponenten av spenningen T i ekstremiteten, og — er den lineære vekt til linen. En oppnår således:

20
$$H = 503kN$$

$$a = 255,3m$$

$$s = \sqrt{100^2 + 2x100x255,3} = 247,11m$$

Linen ligger da med en lengde på grunnen som følgelig ikke er løftet på 25 850,27 - 247,11 = 603,16 m.

Den horisontale distansen x som korresponderer med det løftede partiet av linen oppnås med formelen:

$$s = a \ sh\left(\frac{x}{a}\right)$$

30 som gjør det mulig å beregne x = 219,19 m, og det fåes en total horisontalavstand på 603,16 + 219,19 = 822,35 m.

Avstanden til ankrene til aksen til bøyen i startposisjonen til dennes plassering, er da gitt ved:

$$do = 822,35 + \frac{10}{2} = 827,35m$$

for å holde radius til bøyen. Når linjen ligger fullstendig på grunnen, passerer den plasseringsstedets akse med 850 - 827,35 = 22,65 m.

Det betraktes nå en sirkulær plassering med en diameter på 42 meter (D) og en dybde på 10 meter i bøyen. Avstanden til ekstremiteten til denne linjen ved 10 punktet A på fig. 6, som befinner seg til høyre for punktet til mottakshuset som er nærmest ankeret, er derved 22,65 + 21 = 43,65 m.

Sidekreftene som tenderer til å forskyve bøyen i plasseringsaksen blir i hovedsak frembragt av trekkreftene:

F
$$\cong \frac{1}{2} \rho s c_d V^2 = \frac{1}{2} x 1,025 x 10 x 5 x 1,0 x 0,5^2 = 6,5 k N$$

For å forenkle, betraktes en enkelt kjetting som utøver kraften. Hengevekten til kjettingen gjør det mulig å holde bøyen i det indre av plasseringen. Formlene for kjedeliner gir som resultat:

. .

20

25

30

 $H = \omega a = 6.5 \text{ kN}$ ω : lineær vekt til kjettingen

a : parameter til kjedelinen

$$a = 6.5 = 3,30$$

$$d = a (ch \frac{x}{a} 1) som gir x = 6.83m$$

 $s = a sh \frac{x}{a} som gir s = 12,88m.$

23. JAN. 2006 11:26 -

Når bøyen når nivået til reservoarets tak, har en to symmetriske kjedeliner med en lengde på 12,88 m og som er adskilt et segment med lengde 43,65 - 2 x 512,88 = 17,89 m = L.

Den horisontale projeksjonen av linen har en lengde lik:

$$6,83 \times 2 + 17,89 = 31,6 \text{ m}.$$

Det diametralt motstående punktet til bøyen befinner seg ved 31,6 + 10,0 = 10 41,6 m, hvilket er 0,4 m innenfor punktet nær fullstendig plassering.

I virkeligheten vil de to nabolinene til linen med størst trekk også bidra til å utøve en støtkraft. For å forenkle innføringen av bøyen i dens plassering, kan en gjøre forankringskjettingene tyngre i deres øvre ekstremitet over en del metere ved 15 f.eks. å anvende en kjetting på 5" eller 6".

PATENTKRAV

- System for lasting til sjøs for å overføre et fluid fra en bunnkonstruksjon (3) plassert på havbunnen til en nedsenkbar flytende overføringskonstruksjon (1)
 innbefattende innretning for forankring av overføringskonstruksjonen, samt innretning for manøvrering av overføringskonstruksjonen til bunnkonstruksjonen, og hvorved bunnkonstruksjonen innbefatter et mottaksrom (4), k a r a k t e r i s e r t v e d a t manøvreringsinnretningen innbefatter forankringsinnretning (2) tilsluttet til den flytende overføringskonstruksjonen og ballasteringsinnretning beliggende mellom overføringskonstruksjonen (1) og bunnkonstruksjonen (3), hvilken forankringsinnretning og ballasteringsinnretning er konstruert for å muliggjøre en forflytning av overføringskonstruksjonen inn i mottaksrommet (4) i bunnkonstruksjonen (3).
- Lastesystem i henhold til krav 1, k a r a k t e r i s e r t v e d at nevnte bunnkonstruksjon (3) er sammensatt av i det minste ett undersjøisk reservoar.
- Lastesystem i henhold til krav 2,
 k a r a k t e r i s e r t v e d at det er anordnet innretninger for å overføre en flytende last inneholdt i nevnte reservoar til en flytende lasteanordning.
- Lastesystem i henhold til krav 3,
 k a r a k t e r i s e r t v e d at overføringsinnretningen omfatter en
 25 overføringskonstruksjon og innretninger for å forbinde og/eller frakople nevnte flytende anordning og nevnte overføringskonstruksjon.
- 5. Lastesystem i henhold til krav 1, karakterisert ved at nevnte bunnkonstruksjon (3) er plassert i en hule som 30er utgravd i havbunnen.

- 6. Lastesystem i henhold til krav 1, k a r a k t e r i s e r t v e d at nevnte bunnkonstruksjon (3) er anordnet på havbunnen og omgitt av en kunstig beskyttelsesskråning.
- 57. Lastesystem i henhold til et av kravene 4 eller 5, karakterisert ved at nevnte mottaksrom er tilformet som en fordypning i taket til nevnte bunnkonstruksjon (3).
- 8. Lastesystem i henhold til et av kravene 1 eller 2,

 10 k a r a k t e r i s e r t v e d at nevnte bunnkonstruksjon (3) er tildannet ved

 sammenstilling av i det minste to nedsenkede reservoarer som danner et tomt rom i

 midten av montasjen formet på denne måten.
- Lastesystem i henhold til et av kravene 1 eller 2,
 k a r a k t e r i s e r t v e d at nevnte manøvreringsinnretning omfatter ballastinnretning.
- Lastesystem i henhold til et av kravene 1 eller 2,
 k a r a k t e r i s e r t v e d at nevnte manøvreringsinnretning omfatter en mekanisk
 anordning slik som en vinsj.
- 11. Lastesystem i henhold til krav 3, k a r a k t e r i s e r t v e d at nevnte overføringsInnretninger er tilformet av fleksible rørledninger som forbinder overføringskonstruksjonen ved hjelp av en 25 mellomliggende dreieskjøt eller et dreieledd.
 - 12. Lastesystem i henhold til krav 1, karakterisert ved at nevnte forankringsinnretning (2) er ankerliner som er gjort tyngre i deres øvre ekstremitet.

3/3

FIG.5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.