Equilibrio químico en fase gas

Con datos del equilibrio

- En un recipiente de 2,0 dm³ se introducen 0,043 moles de NOCl(g) y 0,010 moles de Cl₂(g). Se cierra, se calienta hasta una temperatura de 30 °C y se deja que alcance el equilibrio, en el que hay 0,031 moles de NOCl(g). Para el equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl₂(g) + NO(g), calcula:
 - a) El grado de disociación.
 - b) La concentración de cada gas.
 - c) El valor de la constante K_c .
 - d) La presion parcial de cada gas.
 - e) La presión total.
 - f) El valor de la constante $K\square$

Dato: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Problema modelo basado na P.A.U. jun. 15

Rta.: a) $\alpha = 27.9 \%$; b) ([NOCl]_e = 0.0155; [Cl₂]_e = 0.00800; [NO]_e = 0.00600) mol/dm³;

c) $K_c = 0.035$; d) (p(NOCl) = 39; $p(Cl_2) = 20$; p(NO) = 15) kPa; y) p = 74 kPa; f) $K_p = 0.173$

Datos Cifras significativas: 3

 $V = 2.00 \text{ dm}^3$ Gas: volumen

> $T = 30 \, ^{\circ}\text{C} = 303 \, \text{K}$ temperatura

Cantidad inicial de NOCl $n_0(NOCl) = 0.0430 \text{ mol NOCl}$

Cantidad inicial de Cl₂ $n_0(Cl_2) = 0.0100 \text{ mol } Cl_2$

Cantidad de NOCl en el equilibrio $n_{\rm e}({\rm NOCl}) = 0.0310 \; {\rm mol} \; {\rm NOCl}$

 $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante de los gases ideales

Incógnitas

Concentración de cada gas en el equilibrio $[NOCl]_e$, $[Cl_2]_e$, $[NO]_e$

Constante de equilibrio en función de las concentraciones K_c

Presiones parciales de cada gas en el equilibrio $p(NOCl), p(Cl_2), p(NO)$

Presión total en el equilibrio p

Constante de equilibrio en función de las presiones K_p

 $Otros\ s\'imbolos$

Cantidad de gas que reaccionó $n_{\rm r}$

Ecuaciones

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Ley de Dalton de las presiones parciales $p_t = \sum p_i$

[X] = n(X) / VConcentración de la substancia X

 $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$ Grado de disociación

 $K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c}\left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{d}\left[\mathbf{B}\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{d}(\mathbf{A}) \cdot p_{e}^{b}(\mathbf{B})}$ Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

Solución:

a) Calcular la cantidad de NOCl que reaccionó:

$$n_{\rm r} = n_{\rm e} - n_{\rm o} = 0.0310 - 0.0430 = -0.0120 \text{ mol NOCl}$$

Calcular el grado de disociación:

$$\alpha = \frac{n_{\rm d}}{n_{\rm o}} = \frac{0.012 \text{ 0mol reacc.}}{0.043 \text{ 0mol inic.}} = 0.279 = 27.9 \%$$

b) Construir una tabla para calcular las cantidades de productos y reactivos en el equilibrio a partir de la estequiometría de la reacción

$$NOCl(g) \rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$$

		NOCl	\rightleftharpoons	½ Cl ₂	NO	
Cantidad inicial	n_0	0,0430		0,0100	0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	0,0120	\rightarrow	$\frac{0.012}{2} = 0.00600$	0,0120	mol
Cantidad no equilibrio	n_{e}	0,0310		0,0160	0,0120	mol

Calcular las concentraciones en el equilibrio dividiendo las cantidades entre el volumen:

$$\begin{split} [NOCl]_e &= 0.0310 \ / \ 2 = 0.0155 \ mol/dm^3 \\ [Cl_2]_e &= 0.0160 \ / \ 2 = 0.00800 \ mol/dm^3 \\ [NO]_e &= 0.0120 \ / \ 2 = 0.00600 \ mol/dm^3 \end{split}$$

c) Calcular la constante de equilibrio en función de las concentraciones:
$$K_c = \frac{[\text{NO}]_{\text{e}} \cdot [\text{Cl}_2]_{\text{e}}^{1/2}}{[\text{NOCl}]_{\text{e}}} = \frac{0.00600 \cdot \sqrt{0.00800}}{0.015 \text{ 5}} = 0.034 \text{ 6 (concentraciones en mol/dm}^3)$$

d) Calcular la presión parcial de cada gas a partir de la cantidad en el equilibrio. Suponiendo comportamiento ideal para los gases, se usa la ecuación de estado de los gases ideales: $p \cdot V = n \cdot R \cdot T$.

$$p(\text{NOCl}) = \frac{n(\text{NOCl}) \cdot R \cdot T}{V} = \frac{0,031 \cdot 0 \text{mol} \cdot 8,31 \cdot J \cdot \text{mol}^{-1} \cdot K^{-1} \cdot 303 \cdot K}{2,00 \cdot 10^{-3} \cdot \text{m}^3} = 3,91 \cdot 10^4 \cdot Pa = 39,1 \cdot kPa = 0,386 \cdot atm$$

$$p(\text{Cl}_2) = \frac{n(\text{Cl}_2) \cdot R \cdot T}{V} = \frac{0.016 \text{ 0mol} \cdot 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2.00 \cdot 10^{-3} \text{ m}^3} = 2.02 \cdot 10^4 \text{ Pa} = 20.2 \text{ kPa} = 0.199 \text{ atm}$$

$$p(\text{NO}) = \frac{n(\text{NO}) \cdot R \cdot T}{V} = \frac{0,012 \text{ 0mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2,00 \cdot 10^{-3} \text{ m}^3} = 1,51 \cdot 10^4 \text{ Pa} = 15,1 \text{ kPa} = 0,149 \text{ atm}$$

e) Se calcula la presión total por la ley de Dalton, $p_t = \sum p_i$:

$$p = p(NOCl) + p(Cl_2) + p(NO) = 39.1 [kPa] + 20.2 [kPa] + 15.1 [kPa] = 74.4 kPa = 0.734 atm$$

f) Calcular la constante de equilibrio de las presiones K_p a partir de las presiones parciales:

$$K_p = \frac{p_e(\text{NO}) \cdot p_e^{1/2}(\text{Cl}_2)}{p_e(\text{NOCl})} = \frac{0.149 \cdot \sqrt{0.199}}{0.386} = 0.173 \text{ (presiones en atm)}$$

También se puede calcular a partir de la relación con la constante K_c :

$$K_{p} = \frac{p_{e}(\text{NO}) \cdot p_{e}^{1/2}(\text{Cl}_{2})}{p_{e}(\text{NOCl})} = \frac{[\text{NO}]_{e} \cdot R \cdot T \cdot ([\text{Cl}_{2}] \cdot R \cdot T)_{e}^{1/2}}{[\text{NOCl}]_{e} \cdot R \cdot T} = \frac{[\text{NO}]_{e} \cdot [\text{Cl}_{2}]_{e}^{1/2}}{[\text{NOCl}]_{e}} \cdot (R \cdot T)^{1/2} = K_{c} \cdot \sqrt{R \cdot T}$$

$$K_{p} = K_{c} \cdot \sqrt{R \cdot T} = 0,034 \cdot 6\sqrt{0,082 \cdot 303} = 0,173 \text{ (presiones en atm)}$$

Las respuestas pueden obtenerse en la pestaña «Equilibrio» de la hoja de cálculo Quimica (es). Instruccio-

En DATOS, escriba:

LII DITTOS, CSCIIDA								
	Reactivo A + Reactivo B → Producto C + Producto D							
Reacción ajustada		NOCl			0,5	Cl_2	NO	
Cantid	ad inicial	0,043				0,01		
Cantidad en equilibrio		0,031						

~							
Tr	T	20 20					
Temperatura	T =	30 °C					
Volumen	V =	2 dm	1 ³				
Presión total	<i>p</i> =						
	•			(Calcular: Presi	ón total	
RESULTADOS:					arcular: Tresi	on total	
Cantidad		NOCl(g)		⇒ 0,5	$Cl_2(g)$ +	NO(g)	
	icial	0,0430		. 0,0	0,0100	0	mol
reacci		0,0120		\rightarrow	0,00600	0,0120	mol
equili	brio	0,0310			0,0160	0,0120	mol
Constan	ntes K_c =	0,0346	(Conc. en mol/L)			
	$K_p =$	0,173	(p en atm.)				
Pres	sión (tota	1) = 0,734 a	atm en equilibri	0	Grado de di	isociación α =	= 27,9 %
Para calcular las presio	nes parc	iales, sustituya	a «Cantidad» po	r «Presi	ón»		
Presión		NOCl(g)		⇌ 0,5	$Cl_2(g)$ +	NO(g)	
ini	icial	0,535			0,124	0	atm
reacci	ona	0,149		\rightarrow	0,0749	0,149	atm
equili	brio	0,386			0,199	0,149	atm

2. En un matraz de 1,5 dm³, en el que se hizo el vacío, se introducen 0,08 moles de N_2O_4 y se calienta a 35 °C. Parte del N_2O_4 se disocian según la reacción: $N_2O_4(g) \rightleftharpoons 2 \ NO_2(g)$ y cuando se alcanza el equilibrio la presión total es de 2,27 atm. Calcula el porcentaje de N_2O_4 disociado.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa

(A.B.A.U. extr. 19)

Rta.: $\alpha = 69 \%$

b)

Datos	Cifras significativas: 3
	3 3 3

Volumen $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$

Temperatura $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$

Cantidad inicial de tetraóxido de dinitrógeno $n_0(N_2O_4) = 0,0800$ mol

Presión en el equilibrio $p = 2,27 \text{ atm} = 2,30 \cdot 10^5 \text{ Pa}$

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Porcentaje de N_2O_4 disociado α

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_a^b \cdot \left[B\right]_a^b}$

Solución:

b) Se construye una tabla, bajo la ecuación de disociación, en la que se llama x a la cantidad de N_2O_4 que se disocia, y se completa atendiendo a la estequiometría de la reacción. Se escriben las cantidades en el equilibrio en función de x, restando las cantidades que han reaccionado de las cantidades iniciales de los reactivos, y sumándolas a las de los productos:

		N ₂ O ₄	\rightleftharpoons	2 NO ₂	
Cantidad inicial	n_0	0,0800		0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	x	\rightarrow	2 x	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

Se escribe la cantidad total de gas en el equilibrio en función de x:

$$n_t = 0.0800 - x + 2 x = 0.0800 + x$$

Por otra parte, se puede calcular la cantidad de gas a partir de la presión total, suponiendo comportamiento ideal:

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Comparando con la ecuación anterior, se calcula la cantidad de $\mathrm{N}_2\mathrm{O}_4$ que se disoció:

$$x = 0.135 - 0.080 = 0.055$$
 mol de N₂O₄

Se calcula el porcentaje de N₂O₄ disociado:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

Las respuestas pueden obtenerse en la pestaña «Equilibrio» de la hoja de cálculo <u>Quimica (es)</u>. <u>Instrucciones</u>.

En DATOS, escriba:

		Reactivo A +		Reactivo B	\rightleftharpoons	Producto C	+	Producto D	
Reacción ajustada		N_2O_4			2	NO_2			
Cantid	ad inicial	0,08							mol
Cantidad en	equilibrio								
Temperatura	T =	35	$^{\circ}\! \mathbb{C}$						
Volumen	V =	1,5	dm³						

RESULTADOS:

Cantidad	$N_2O_4(g)$		⇒ 2	$NO_2(g)$	
inicial	0,0800			0	mol
reacciona	0,0547		\rightarrow	0,109	mol
equilibrio	0,0253			0,109	mol
Constantes	$K_c = 0.314$	(Conc. en mol/I	۲)		
	$K_p = 7,95$	(p en atm.)			
				Grado de disociación α	= 68,3 %

- 3. A La temperatura de 35 °C disponemos, en un recipiente de 310 cm³ de capacidad, de una mezcla gaseosa que contiene 1,660 g de N₂O₄ en equilibrio con 0,385 g de NO₂.
 - a) Calcula la K_c de la reacción de disociación del tetraóxido de dinitrógeno a la temperatura de 35 °C.
 - b) A 150 °C, el valor numérico de K_c es de 3,20. ¿Cuál debe ser el volumen del recipiente para que estén en equilibrio 1 mol de tetraóxido y dos moles de dióxido de nitrógeno?

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3/(\text{K·mol})$

(P.A.U. jun. 07)

Datos

Rta.: a) $K_c = 0.0125$; b) $V = 1.25 \text{ dm}^3$

Cifras significativas: 3

 $V = 310 \text{ cm}^3 = 0.310 \text{ dm}^3$

 $T = 35 \,^{\circ}\text{C} = 308 \,^{\circ}\text{K}$

volumen

Temperatura del apartado a)

Datos	Cifras significativas: 3
Datos	Cifras significativas: 3

Masa en el equilibrio N_2O_4 a 35 °C $m_e(N_2O_4) = 1,660 \text{ g } N_2O_4$ Masa en el equilibrio NO_2 a 35 °C $m_e(NO_2) = 0,385 \text{ g } NO_2$

Constante del equilibrio K_c a 150 °C K_c = 3,20

Cantidad en el equilibrio N_2O_4 a 150 °C $n_e(N_2O_4) = 1,00 \text{ mol } N_2O_4$

Cantidad en el equilibrio NO_2 a 150 °C $n_e(NO_2) = 2{,}00 \text{ mol } NO_2$

Masa molar: dióxido de nitrógeno $M(NO_2) = 46.0 \text{ g/mol}$ tetraóxido de dinitrógeno $M(N_2O_4) = 92.0 \text{ g/mol}$

Incógnitas

Constante del equilibrio K_c a 35 $^{\circ}$ C K_c Volumen del recipiente V

Ecuaciones

Cantidad (número de moles) n = m / M Concentración de la sustancia X [X] = n(X) / V

Constante del equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^s \cdot \left[B\right]_e^b}$

Solución:

La ecuación química es:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

La expresión de la constante de equilibrio:

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e}$$

Las concentraciones de las especies en el equilibrio son:

$$[NO_2]_e = \frac{0.385 \text{ g NO}_2}{0.310 \text{ dm}^3} \frac{1 \text{ mol NO}_2}{46.0 \text{ g NO}_2} = 0.027 \text{ 0mol/dm}^3$$

$$[N_2O_4]_e = \frac{1,660 \text{ g } N_2O_4}{0,310 \text{ dm}^3} \frac{1 \text{ mol } N_2O_4}{92,0 \text{ g } N_2O_4} = 0,058 \text{ 2mol/dm}^3$$

y el valor de la constante de equilibrio a 35 °C es:

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{(0.027)^2}{0.058} = 0.012$$
 5

b) Al variar la temperatura, varía la constante de equilibrio. Volviendo a escribir la expresión de la constante a la temperatura de 150 ℃:

$$K_{c}^{'}=3,20=\frac{[NO_{2}]_{e}^{2}}{[N_{2}O_{4}]_{e}}=\frac{\left(\frac{2,00}{V}\right)^{2}}{\left(\frac{1,00}{V}\right)}=\frac{4,00}{V}$$

de donde:

$$V = 4,00 / 3,20 = 1,25 \text{ dm}^3$$

Las respuestas pueden obtenerse en la pestaña «Equilibrio» de la hoja de cálculo <u>Quimica (es)</u>. <u>Instrucciones</u>.

En DATOS, escriba:

		Reactivo A	+	Reactivo B	⇌ Producto C + Pro			Producto D	
Reacción ajustada		N_2O_4			2	NO_2			
Cant	idad inicial								
Masa er	Masa en equilibrio					0,39			g
Temperatura	T =	35	$^{\circ}$						
Volumen	V =	310	cm³						

RESULTADOS:

Constantes $K_c = 0.0125$ (Conc. en mol/L) $K_p = 0.317$ (p en atm.)

Para el apartado b) borre los datos numéricos y sus unidades (seleccione con el ratón desde la celda bajo «Ecuación ajustada» hasta la celda donde se cruzan «Calcular» y «g» y haga clic en el botón

Borrar datos,) y escriba los nuevos datos:

portar datob,) y escriba i	ob mac voi	datos.					
Cantidad en equilibrio		1		2		mol	
Temperatura	T =	150	$^{\circ}\!$	Constante de co	ncentracións		
Volumen	V =			3,2			
Presión total	<i>p</i> =						
				Calcular:	Volumen	total	

RESULTADOS:

Volumen(total) = 1,25 dm³ en equilibrio

- 4. En un recipiente cerrado se introducen 2,0 moles de CH_4 y 1,0 mol de H_2S a la temperatura de 727 °C, estableciéndose el siguiente equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado el equilibrio, la presión parcial del H_2 es 0,20 atm y la presión total es de 0,85 atm. Calcula:
 - a) Los moles de cada substancia en el equilibrio y el volumen del recipiente.
 - b) El valor de K_c y K_p .

Constante de los gases ideales: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1,80 \text{ mol}$; $n_e(H_2S) = 0,60 \text{ mol}$; $n_e(CS_2) = 0,200 \text{ mol}$; $n_e(H_2) = 0,800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0,0079$; $K_c = 1,2 \cdot 10^{-6}$

Datos

Cifras significativas: 3

Temperatura $T = 727 \,^{\circ}\text{C} = 1000 \,^{\circ}\text{K}$

Cantidad inicial de metano $n_0(\text{CH}_4) = 2,00 \text{ mol CH}_4$ Cantidad inicial de sulfuro de hidrógeno $n_0(\text{H}_2\text{S}) = 1,00 \text{ mol H}_2\text{S}$

Presión parcial del hidrógeno en el equilibrio $p_{\rm e}({\rm H_2})=0{,}200~{\rm atm}$

Presión total en el equilibrio $p_e = 0.850$ atm

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Cantidad en el equilibrio de cada sustancia $n_e(CH_4)$, $n_e(H_2S)$, $n_e(CS_2)$, $n_e(H_2)$

Volumen del recipiente VConstante del equilibrio K_c K_c

Constante del equilibrio K_p K_p

Ecuaciones

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Ecuaciones

Concentración de la sustancia X

$$[X] = n(X) / V$$

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{d} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$$

Solución:

a) Se construye una tabla bajo la ecuación de reacción, en la que se llama x a la cantidad de CH_4 que reacciona,, y se completa atendiendo a la estequiometría de la reacción. Se escriben las cantidades en el equilibrio en función de x, restando las cantidades que han reaccionado de las cantidades iniciales en el caso de los reactivos, y sumándolas en el caso de los productos:

		CH ₄	2 H ₂ S	\rightleftharpoons	CS ₂	4 H ₂	
Cantidad inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidad que reacciona o se forma	n_{r}	х	2 x		x	4 x	mol
Cantidad en el equilibrio	n_{e}	2,00 - x	1,00 - 2 x		x	4 x	mol

Se escribe la cantidad total de gas en el equilibrio en función de x:

$$n_e = (2.00 - x) + (1.00 - 2x) + x + 4x = 3.00 + 2x$$

La presión parcial de un gas en una mezcla es la que ejercería el gas si se encontrara solo en el recipiente. Se escribe una ecuación de la cantidad en equilibrio de gas H_2 en función del volumen, a partir de la presión parcial del hidrógeno, suponiendo comportamiento ideal:

$$p \cdot V = n \cdot R \cdot T \Rightarrow n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 x = 0.0244 \cdot V$$

Análogamente con la presión total:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.010 \text{ 4V mol}$$

$$3,00 + 2 x = 0,104 \cdot V$$

Se resuelve el sistema de dos ecuaciones con dos incógnitas:

$$\left. \begin{array}{l}
 4 x = 0.00244 \cdot V \\
 3.00 + 2 x = 0.010 \quad 4 V
 \end{array} \right\}$$

Se divide la segunda ecuación entre la primera y se calcula el volumen V del recipiente y la cantidad x de CH_4 que reaccionó hasta conseguir el equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,010 \ 4V}{0,00244 \cdot V} = 4,25 \Rightarrow 3,00+2x = 17,0x \Rightarrow x = 0,200$$

$$V = \frac{4x}{0,00244} = \frac{4 \cdot 0,200}{0,00244} = 328$$

Las cantidades de las sustancias en el equilibrio son:

$$n_e(CH_4) = 2,00 - x = 2,00 - 0,200 = 1,80 \text{ mol } CH_4$$

$$n_e(H_2S) = 1,00 - 2 \ x = 1,00 - 2 \cdot 0,200 = 0,60 \ \text{mol } H_2S$$

$$n_e(CS_2) = x = 0.200 \text{ mol } CS_2$$

$$n_e(H_2) = 4 \cdot x = 0.800 \text{ mol } H_2$$

Se calcula la constante de equilibrio en función de las concentraciones:

$$K_{c} = \frac{\left[\text{CS}_{2}\right]_{e} \cdot \left[\text{H}_{2}\right]_{e}^{4}}{\left[\text{CH}_{4}\right]_{e} \cdot \left[\text{H}_{2}\text{S}\right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2}) \cdot \left(\frac{n_{e}(\text{H}_{2})}{V}\right)^{4}}{V} \cdot \left(\frac{n_{e}(\text{H}_{2})}{V}\right)^{2}}{\left(\frac{n_{e}(\text{H}_{2}\text{S})}{V}\right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}\text{S})} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$
(concentraciones en mol/dm³)

Se deduce la relación entre K_p y K_c , suponiendo comportamiento ideal para los gases:

$$p \cdot V = n \cdot R \cdot T \Rightarrow p = \frac{n}{V} \cdot R \cdot T$$

$$K_{p} = \frac{p_{e}(CS_{2}) \cdot p_{e}^{4}(H_{2})}{p_{e}(CH_{4}) \cdot p_{e}^{2}(H_{2}S)} = \frac{[CS_{2}]_{e} \cdot R \cdot T \cdot ([H_{2}]_{e} \cdot R \cdot T)^{4}}{[CH_{4}]_{e} \cdot R \cdot T \cdot ([H_{2}S]_{e} \cdot R \cdot T)^{2}} = \frac{[CS_{2}]_{e} \cdot ([H_{2}]_{e})^{4}}{[CH_{4}]_{e} \cdot ([H_{2}S]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

Se calcula la constante de equilibrio en función de las presiones:

$$K_p = 1,2 \cdot 10^{-6} \cdot (0,082 \cdot 1000)^2 = 0,0079$$
 (presiones en atm)

Las respuestas pueden obtenerse en la pestaña «Equilibrio» de la hoja de cálculo <u>Quimica (es)</u>. <u>Instrucciones</u>.

En DATOS, escriba:

R	eacción ajustada		CH₄	2	H ₂ S	CS ₂	4	H_2	
	Cant	idad inicial	2		1				mol
	Presión er	n equilibrio						0,2	atm
	Temperatura	T =	727	°C					
	Volumen	V =							
	Presión total	<i>p</i> =	0,85	atm					
						(Calcular:	Volumen	total

En RESULTADOS, elija «Cantidad»:

Ell Resources, c	nja «cammaaa»	•				
Cantidad	SbCl ₅ (§	g)	\rightleftharpoons	$SbCl_3(g) +$	$Cl_2(g)$	mol
inicial	2,00	1,00		0	0	mol
reacciona	0,200	0,400	\rightarrow	0,200	0,800	mol
equilibrio	1,80	0,600		0,200	0,800	mol
Constantes	$K_c = 1,17 \cdot 10^{-6}$	(Conc. en mol/L)				
	$K_p = 0,00790$	(p en atm.)				
Volumen(to	otal) =	328 dm³ en equilibrio		Grado d	le disociación α =	30,0 %

Con la constante como dato

- 1. Considerla lo siguiente proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. Las concentraciones en equilibrio de las especies son:
 - $[CO_2] = 0.086 \text{ mol/dm}^3; [H_2] = 0.045 \text{ mol/dm}^3; [CO] = 0.050 \text{ mol/dm}^3 \text{ y} [H_2O] = 0.040 \text{ mol/dm}^3.$
 - a) Calcula K_c para la reacción a 686 °C.
 - b) Si se añadiese CO₂ para aumentar su concentración a 0,50 mol/dm³, ¿cuáles serían las concentraciones de todos los gases una vez restablecido el equilibrio?

(P.A.U. Set. 14)

Rta.: a) $K_c = 0.517$; b) $[CO_2] = 0.47$; $[H_2] = 0.020$; [CO] = 0.075 y $[H_2O] = 0.065$ mol/dm³

Datos Cifras significativas: 2

Temperatura $T = 686 \,^{\circ}\text{C} = 959 \,^{\circ}\text{K}$

Concentración en el equilibrio de H_2 $[H_2]_e = 0,045 \text{ mol/dm}^3 H_2$

Concentración en el equilibrio de CO_2 [CO_2]_e = 0,086 mol/dm³ CO_2

Concentración en el equilibrio de H_2O [H_2O]_e = 0,040 mol/dm³ H_2O

Concentración en el equilibrio de CO $[CO]_e = 0,050 \text{ mol/dm}^3 CO$

Concentración inicial de CO_2 en el apartado b) $[CO_2]_0 = 0,50 \text{ mol/dm}^3 CO_2$

Incógnitas

Constante de equilibrio K_c

Concentraciones en el nuevo equilibrio [H₂]_{eb}, [CO₂]_{eb}, [H₂O]_{eb}, [CO]_{eb}

Ecuaciones

Concentración de la sustancia X [X] = n(X) / V

Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^c \cdot \left[B\right]_e^b}$

Solución:

a) La constante de equilibrio K_c vale

$$K_{c} = \frac{[H_{2}O]_{e} \cdot [CO]_{e}}{[H_{2}]_{e} \cdot [CO_{2}]_{e}} = \frac{0.040 \text{ mol/dm}^{3} \cdot 0.050 \text{ mol/dm}^{3}}{0.045 \text{ mol/dm}^{3} \cdot 0.086 \text{ mol/dm}^{3}} = 0.52 \text{ (concentraciones en mol/dm}^{3})$$

b) Llamando x a las concentraciones en mol/dm³ de CO₂ que reaccionan desde que la concentración de CO₂ es 0,50 mol/dm³ hasta alcanzar el equilibrio, se puede escribir:

· · · · · · · · · · · · · · · · · · ·	, 1						
		CO ₂	H ₂	=	СО	H ₂ O	
Concentración inicial	[X] ₀	0,50	0,045		0,050	0,040	mol/dm³
Concentración que reacciona o se forma	[X] _r	x	x	\rightarrow	x	x	mol/dm³
Concentración en el equilibrio	[X] _{eb}	0,50 - x	0,045 - x		0,050 + x	0.040 + x	mol/dm³

La expresión de la constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{[H_{2}O]_{eb} \cdot [CO]_{eb}}{[CO_{2}]_{eb} \cdot [H_{2}]_{eb}} = \frac{(0.040 + x) \cdot (0.050 + x)}{(0.50 - x) \cdot (0.045 - x)} = 0.52$$

Resolviendo la ecuación de segundo grado da dos soluciones. Una de ellas (-0.79) no es válida, ya que supondría la existencia de concentraciones negativas en el equilibrio. La otra solución es $x = 0.025 \text{ mol/dm}^3$. Las concentraciones en el equilibrio son:

$$[CO_2]_{eb} = 0.475 \text{ mol/dm}^3$$

$$[H_2]_{eb} = 0.020 \text{ mol/dm}^3$$

$$[CO]_{eb} = 0.075 \text{ mol/dm}^3$$

$$[H_2O]_{eb} = 0.065 \text{ mol/dm}^3$$

Las respuestas pueden obtenerse en la pestaña «Equilibrio» de la hoja de cálculo <u>Quimica (es)</u>. <u>Instrucciones</u>.

En DATOS, escriba:

Reacción ajustada		CO_2		H_2		CO		H_2O	
Cant	idad inicial								
Concentración er	n equilibrio	0,086		0,05		0,05		0,04	mol/dm³
Temperatura	T =	686	°C		•				
Volumen	V =								_
Presión total	<i>p</i> =	0,85	atm						
	_			J		(Calcular:		
En RESULTADOS e	scriba 6 en	«Cifras się	gnifica	ativas» para	a me	ejorar el res	sultado de	el apartado b	:
						significati			
Concentración	CO_2	(g) +		$H_2(g)$	\rightleftharpoons	CO(g) +	-	$H_2O(g)$	
inicial									mol/dm³
reacciona									mol/dm³
equilibrio	0,086),0450000		0,050000	0	0,0400000	mol/dm³
Constantes		`		mol/L)					
	$K_p = 0,516$	\ <u>*</u>	atm.			1 1			1
b) Borre, en DATOS			•				as concei		
	idad inicial	0,5		0,05		0,05		0,04	mol/dm³
Concentración er	ı equilibrio								
Temperatura	T =	686	°C			Constant	e de conc	entraciones	
Volumen	V =					0,516796			
Presión total	<i>p</i> =								
RESULTADOS:									
				S C	ifras	significati	vas: 3		
Concentración	CO ₂ ((g) +		$H_2(g)$	\rightleftharpoons	CO(g) +	-	$H_2O(g)$	
inicial	0,5	00		0,0450		0,0500		0,0400	mol/dm³
reacciona		251		0,0251	\rightarrow	0,0251		0,0251	mol/dm³
Teacciona	0,02	251		0,0201		0,0201		0,0231	moi/am
equilibrio	0.02 0.4			0,0199		0,0751		0,0651	mol/dm³
	0,4	75	ıc. en						

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, y del <u>traductor de la CIXUG</u>.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 04/10/24

Sumario

EOUII	IBRIO	QUÍMICO	EN FA	SE	GAS
LQUIL		QUIMILO		7OT	\mathbf{O}_{I}

Con	datos del equilibrio1
1.	En un recipiente de 2,0 dm³ se introducen 0,043 moles de $NOCl(g)$ y 0,010 moles de $Cl_2(g)$. Se cierra, se calienta hasta una temperatura de 30 °C y se deja que alcance el equilibrio, en el que hay 0,031
	moles de NOCl(g). Para el equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl ₂ (g) + NO(g), calcula:1
	a) El grado de disociación
	b) La concentración de cada gas
	c) El valor de la constante K _c
	d) La presion parcial de cada gas
	e) La presión total
	f) El valor de la constante K _p
2.	En un matraz de 1,5 d m^3 , en el que se hizo el vacío, se introducen 0,08 moles de N_2O_4 y se calienta a
	35 °C. Parte del N_2O_4 se disocian según la reacción: $N_2O_4(g)$ \rightleftharpoons 2 $NO_2(g)$ y cuando se alcanza el
	equilibrio la presión total es de 2,27 atm. Calcula el porcentaje de N ₂ O ₄ disociado3
3.	A La temperatura de 35 ℃ disponemos, en un recipiente de 310 cm³ de capacidad, de una mezcla
	gaseosa que contiene 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 4
	a) Calcula la K _c de la reacción de disociación del tetraóxido de dinitrógeno a la temperatura de
	35 ℃
	b) A 150 °C, el valor numérico de K_c es de 3,20. ¿Cuál debe ser el volumen del recipiente para que
	estén en equilibrio 1 mol de tetraóxido y dos moles de dióxido de nitrógeno?
4.	En un recipiente cerrado se introducen 2,0 moles de CH ₄ y 1,0 mol de H ₂ S a la temperatura de 727
	$^{\circ}$ C, estableciéndose el siguiente equilibrio: $CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$. Una vez alcanzado
	el equilibrio, la presión parcial del H ₂ es 0,20 atm y la presión total es de 0,85 atm. Calcula:6
	a) Los moles de cada substancia en el equilibrio y el volumen del recipiente
	b) El valor de K _c y K _p
	la constante como dato8
1.	Considerla lo siguiente proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. Las con-
	centraciones en equilibrio de las especies son: $[CO_2] = 0,086 \text{ mol/dm}^3$; $[H_2] = 0,045 \text{ mol/dm}^3$; $[CO] = 0,086 \text{ mol/dm}^3$; $[H_2] = 0,045 \text{ mol/dm}^3$; $[CO] = 0,086 mol/$
	$0,050 \text{ mol/dm}^3 \text{ y } [H_2O] = 0,040 \text{ mol/dm}^3$
	a) Calcula K _c para la reacción a 686 °C
	b) Si se añadiese CO ₂ para aumentar su concentración a 0,50 mol/dm³, ¿cuáles serían las concen-
	traciones de todos los gases una vez restablecido el equilibrio?