Machine Learning and Artificial Intelligence

"Programming agents by hand can be very tedious; some more expeditious method seems desirable."

—Alan Turing, 1950

Google Books Ngram Viewer

ML and Al

- Artificial Intelligence
 - Computational rationality
 - Decision making under uncertainty
- Machine Learning (ML)
 - Finding patterns in data

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Object identification

Object detection

Object tracking/prediction

Route planning

Fully autonomous driving

Artificial Intelligence

Object identification

Object detection

Object tracking/prediction

Route planning

Fully autonomous driving

Object identification	Image → Label
Object detection	Image → Object bounding boxes
Object tracking/prediction	Video → Moving bounding boxes
Route planning	Video, Map, Coordinates → Actions
Fully autonomous driving	Video, Map, Coordinates, Ethics, → Actions

Classical Machine Learning

Object identification	Image → Label
Object detection	Image → Object bounding boxes
Object tracking/prediction	Video → Moving bounding boxes
Route planning	Video, Map, Coordinates → Actions
Fully autonomous driving	Video, Map, Coordinates, Ethics, → Actions

Supervision

- Supervised learning (inputs, labels)
- Unsupervised learning (inputs)
- Reinforcement learning (inputs, eventual rewards)

Machine Learning and Artificial Intelligence

The End

Course Overview

Machine Learning Is Going Mainstream

- "Data is the new oil."
- "Al is the new electricity."
- "Privacy is the new luxury."
- "Machine learning is the future."

Course Goals

- Practical introduction to the machine learning field
- Building blocks and theory of neural networks
- Useful programming tools (including Tensorflow)
- Learn how to stay current as the field changes

Python Notebooks

- Weekly notebooks are the interactive textbook of this course
- Options for running the code
 - Run locally using Jupyter (need to install libraries)
 - Run using Google's Colab (everything is installed)

Course Work

- Weekly notebook exercises
- Final project
 - Small groups
 - Choose from approximately three Kaggle competitions
 - Run experiments
 - Write a summary report and present to class

Course Overview

The End

Mapping between sets: for each input item, there is one corresponding output item.

Function Examples

Function Examples

- add_six(number)
- get_prime_factors(number)
- upper_case(string)
- convert_time(loc1, time, loc2)
- is_it_raining(weather_report)

Function Examples

- add_six(number)
- get_prime_factors(number)
- upper_case(string)
- convert_time(loc1, time, loc2)
- is_it_raining(weather_report)

- height_from_shoe_size(shoe_size)
- is_cat(image)
- is_positive_movie_review(text)
- text_from_audio(audio)
- will_it_rain_tomorrow(weather_report)

Learned Functions (Models)

How would you write this function: height_from_shoe_size(shoe_size)

Learned Functions (Models)

How would you write this function: height_from_shoe_size(shoe_size)

Does this help?

Learned Functions (Models)

How would you write this function: height_from_shoe_size(shoe_size)

Does this help?

Scatterplot 1: Correlation of Shoe Size and Height

The End

```
def add_six_test():
    ???
```

```
def add_six_test():
        assertEqual(add_six(-3),
3)
        assertEqual(add_six(3), 9)
```

- Testing logic
- Check edge cases

```
def add_six_test():
    assertEqual(add_six(-3),
    assertEqual(add_six(3), 9)
def height_from_shoe_size_test():
    ???
```

- Testing logic
- Check edge cases

```
def add_six_test():
    assertEqual(add_six(-3),
    assertEqual(add_six(3), 9)
def height_from_shoe_size_test():
    ???
```

- Testing logic
- Check edge cases

- Statistical testing
- Check average performance

Evaluating Performance

Evaluating Performance

- Need labeled examples
 - Size: 9, Height: 61
 - Size: 12, Height: 66
 - Etc.

Scatterplot 1: Correlation of Shoe Size and Height

Evaluating Performance

- Need labeled examples
 - Size: 9, Height: 61
 - Size: 12, Height: 66
 - Etc.
- Compare function output (predictions) to labels
 - "Error" or "Loss" or "Cost"

Evaluating Performance

- Need labeled examples
 - Size: 9, Height: 61
 - Size: 12, Height: 66
 - Etc.
- Compare function output (predictions) to labels
 - "Error" or "Loss" or "Cost"

$$MSE = \frac{1}{|Y|} \sum_{y_i \in Y} (y_i - \hat{y}_i)^2$$

Scatterplot 1: Correlation of Shoe Size and Height

Function Testing

The End

Generalization

Suppose the points are the labeled examples

- Suppose the points are the labeled examples
 - Are both black and blue lines possible models?

- Suppose the points are the labeled examples
 - Are both black and blue lines possible models?
 - Which is better?

- Suppose the points are the labeled examples
 - Are both black and blue lines possible models?
 - Which is better?
 - How do they perform with some new data?

The Train/Test Split

- Models are useful for making new predictions
 - This is called generalization

The Train/Test Split

- Models are useful for making new predictions
 - This is called generalization
- Simulate this by splitting data into train and test
 - Could be a random split
 - Could depend on other properties of the data

The Train/Test Split

- Models are useful for making new predictions
 - This is called generalization
- Simulate this by splitting data into train and test
 - Could be a random split
 - Could depend on other properties of the data
- Blue model is an example of overfitting

Generalization

The End

Machine Learning Framing

Summary So Far

- You're already familiar with logical functions
 - Outputs are typically deterministic
 - Testing is logical and typically checks extreme cases
- ML is about learning statistical functions from data
 - Outputs are predictions
 - Testing is statistical and typically checks average case
- ML depends on labeled data
 - Behavior of the model reflects the data
 - Need separate test data to evaluate generalization

Machine Learning Framing

Machine Learning Framing

Framing: Defining a Task

- What are the inputs and outputs?
- What is the labeled data?
- Considerations for train/test split?
- How will your function be used?
- How will you evaluate predictions?
- What is a baseline predictor?

Machine Learning Framing

The End

Lung Cancer Screening

Example One

Lung Cancer Screening

- What are the inputs and outputs?
- What is the labeled data?
- Considerations for train/test split?
- How will your function be used?
- How will you evaluate predictions?
- What is a baseline predictor?

Google

What are the inputs and outputs?

- Input: CT images
- Output: cancer probability
- Output: image regions and probabilities

Google

What is the labeled data?

Scans annotated by human experts

Google

Considerations for train/test split?

 No patient with scans in both train and test

Google

How will your function be used?

- By doctors
- By patients
- By insurance companies
- Does training population match usage population?

Google

How will you evaluate predictions?

Classification accuracy

Google

What is a baseline predictor?

Always predict 'no cancer'

Google

Lung Cancer Screening

The End

Sports Outcomes

Example Two

Basketball Predictions

- What are the inputs and outputs?
- What is the labeled data?
- Considerations for train/test split?
- How will your function be used?
- How will you evaluate predictions?
- What is a baseline predictor?

What are the inputs and outputs?

- Inputs: team1 and team2
- Outputs: win/loss
- Outputs: point difference

What is the labeled data?

 Previous games and results (from the current season)

Considerations for train/test split?

 Use past games to predict future results (rolling predictions)

How will your function be used?

Gambling: setting lines

How will you evaluate predictions?

Accuracy, MSE

What is a baseline predictor?

Team win/loss records

Sports Outcomes

The End

Energy Usage

Example Three

Energy Usage

- What are the inputs and outputs?
- What is the labeled data?
- Considerations for train/test split?
- How will your function be used?
- How will you evaluate predictions?
- What is a baseline predictor?

What are the inputs and outputs?

- Inputs: date, time, weather (15-minute intervals)
- Outputs: energy usage

What is the labeled data?

Previous observations

Considerations for train/test split?

Rolling predictions

How will your function be used?

Coordinating mixture of power sources

How will you evaluate predictions?

• MSE

What is a baseline predictor?

Average usage

Review

- What is a function?
- What is a model?
- What is meant by generalization?
- What is overfitting?
- Why do we need a train/test split?
- Why do we want a baseline?

Energy Usage

The End