

USSN: 10/813,467

In the claims:

1-27 (Cancelled)

Please add the following new claims:

28. (New) A method for synthesizing an oligonucleotide on a substrate, comprising:

contacting a substrate comprising an attached blocked nucleoside monomer or polymer with a deblocking fluid to remove the blocking group, thereby generating an unblocked attached nucleoside monomer or polymer;

displacing the deblocking fluid from the substrate surface comprising the attached unblocked nucleoside monomer or polymer with a purging fluid; and reacting the attached unblocked nucleoside monomer or polymer with another

blocked nucleoside monomer.

- 29. (New) The method of claim 28, wherein a blocked nucleoside monomer is attached to the substrate by contacting the substrate with a fluid comprising a blocked nucleoside monomer at a location on the substrate that comprises hydroxyl functional groups.
- 30. (New) The method of claim 28, wherein steps of the method are repeated a plurality of times.
- 31. (New) The method of claim 28, wherein the substrate comprises a surface of a planar support.
- 32. (New) The method of claim 28, wherein the displacing step causes minimal mixing of deblocking and purging fluids.
- 33. (New) The method of claim 28, wherein the substrate comprises a surface of

USSN: 10/813,467

a support containable within a flow cell.

34. (New) The method of claim 28, wherein the substrate comprises a surface of a planar support.

- 35. (New) The method of claim 28, wherein the purging fluid has a density that is different from the blocking fluid.
- 36. (New) The method of claim 28, wherein the purging fluid and the deblocking fluid have a density difference of at least about 0.01.
- 37. (New) The method according to claim 28, wherein the purging fluid has a density that is higher than the density of the deblocking fluid.
- 38. (New) The method according to claim 28, wherein the purging fluid has a density that is lower than the density of the deblocking fluid.
- 39. (New) The method according to claim 28, wherein the purging fluid is an organic fluid.
- 40. (New) The method according to claim 28, wherein the purging fluid comprises an oxidizing agent.
- 41. (New) The method according to claim 28, wherein the purging fluid comprises a wash fluid.
- 42. (New) The method according to claim 41, wherein the wash fluid is an organic fluid.
- 43. (New) The method according to claim 41, wherein the wash fluid is acetonitrile.
- 44. (New) The method according to claim 28, wherein deblocking fluid is

USSN: 10/813,467

displaced from the surface with a purging fluid by flowing the purging fluid across the surface in a manner sufficient to produce a stratified fluid interface that moves across the surface.

- 45. (New) The method according to claim 44, wherein the purging fluid is flowed across the surface at a rate ranging from about 1 cm/s to about 20 cm/s.
- 46. (New) The method of claim 28, wherein the purging fluid limits the efficiency of deblocking by the deblocking fluid.
- 47. (New) The method of claim 29, wherein the hydroxyl functional groups are provided by 5'-OH groups of nucleoside monomers or polymers attached to the substrate.
- 48. (New) The method of claim 28, wherein the step of displacing occurs in a flow cell.
- 49. (New) The method of claim 29, wherein the blocked nucleoside monomer is deposited at the location by pulse jetting.
- 50. (New) The method of claim 28, wherein the blocking group comprises an acid labile blocking group and wherein the deblocking fluid comprises an acid.
- 51. (New) The method of claim 33, wherein the substrate is contained within a chamber of a flow cell when contacted with deblocking fluid and wherein the chamber comprises at least one fluid inlet and at least one fluid outlet.
- 52. (New) The method of claim 51, wherein the flow cell is oriented in an at least partially vertical position.
- 53. (New) The method of claim 44, wherein a pressure gradient is used to produce the stratified interface.
- 54. (New) The method of claim 28, wherein the deblocking fluid comprises an

USSN: 10/813,467

organic solvent that has a vapor pressure that is less than about 13 Kpa at 0°C and 1 ATM.

55. (New) The method of claim 28, further comprising contacting the substrate comprising the attached blocked nucleoside monomer or polymer with an oxidation fluid prior to contacting with the deblocking fluid.

56. (New) A method of producing a substrate of at least two oligonucleotides bonded to different locations on a surface of the substrate, comprising:

contacting blocked nucleoside monomers to at least a first location and a second different location of a substrate surface displaying functional groups under conditions sufficient for the blocked nucleoside monomers to bond to the surface in first and second locations to produce a substrate surface displaying bound blocked monomers;

contacting the surface displaying bound blocked monomers with a deblocking fluid to remove the blocking group, thereby generating unblocked nucleoside monomers at the first and second locations;

displacing the deblocking fluid from the surface comprising the bound unblocked monomers at the first and second locations with a purging fluid;

reacting the attached unblocked nucleoside monomers at the first and second locations with another blocked nucleoside monomer.

- 57. (New) The method of claim 56, wherein the at least two oligonucleotides comprise the same sequence composition.
- 58. (New) The method of claim 56, wherein the at least two oligonucleotides comprise different sequence compositions.
- 59. (New) The method of claim 56, further comprising contacting the bonded blocked monomers with an oxidation fluid prior to contacting the surface with the deblocking solution.
- 60. (New) A substrate comprising an oligonucleotide made by the method of claim 28.