Derivations

Garbage

March 1, 2018

Drift Force without interaction

Drift force is given by:

$$F = \frac{2\Delta\Psi_T}{\Psi_T}$$

With non-interacting particles, we have

$$\Psi_T = \prod_i g(\alpha, \beta, \vec{r_i})$$

so

$$\Delta g(\alpha, \beta, \vec{r_i}) = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) \exp\left(-\alpha(x_i^2 + y_i^2 + \beta z_i^2)\right)$$

The partial derivatives are:

$$\frac{\partial}{\partial x}g = -2\alpha x_i \exp\left(-\alpha(x_i^2 + y_i^2 + \beta z_i^2)\right)$$
$$\frac{\partial}{\partial y}g = -2\alpha y_i \exp\left(-\alpha(x_i^2 + y_i^2 + \beta z_i^2)\right)$$
$$\frac{\partial}{\partial z}g = -2\alpha \beta z_i \exp\left(-\alpha(x_i^2 + y_i^2) + \beta z_i^2\right)$$

Using this we find:

$$\Delta g(\alpha, \beta, \vec{r_i}) = -2\alpha(x_i + y_i + \beta z_i) \exp\left(-\alpha(x_i^2 + y_i^2) + \beta z_i^2\right)$$

Which finally gives:

$$F = \frac{2\Delta g}{g} = -4\alpha \sum_{i} (x_i + y_i + \beta z_i)$$

1 Local energy without interaction

1.1 Single particle

1.2 N particles

1.2.1 1D

For N particles in one dimension, we have:

$$\Psi_T = \prod_i g(\alpha, \vec{r}_i) = \exp\left(-\alpha(x_i^2)\right)$$

$$E_L = \frac{\widehat{H}\Psi_T}{\Psi_T}$$

$$\widehat{H}\Psi_T = \left(\sum_i \frac{\hbar^2}{2m} \Delta_j^2 + \frac{1}{2} m \omega_{ho}^2 x_i^2\right) \prod_i g_i$$

$$= \frac{\hbar^2}{2m} \sum_i \Delta_j^2 \prod_i g_i + \frac{1}{2} m \omega_{ho}^2 x_i^2 \prod_i g_i$$

$$\Delta_i^2 = \frac{\partial^2}{\partial x_i^2}$$

Computing the second-derivative of the wave-function:

$$\Delta_{j} \prod_{i} g_{i} = \frac{\partial}{\partial x_{j}} \prod_{i \neq j} g_{i} = -2\alpha x_{i} \prod_{i} g_{i}$$

$$\Delta_{j}^{2} \prod_{i} g_{i} = \Delta_{j} (\Delta_{j} \prod_{i} g_{i})$$

$$= -2\alpha \Delta_{j} (x_{i} \prod_{i} g_{i})$$

$$= -2\alpha (\prod_{i} g_{i} + x_{i} \Delta_{j} \prod_{i} g_{i})$$

$$= -2\alpha (\prod_{i} g_{i} + x_{i} (-2\alpha x_{i} \prod_{i} g_{i}))$$

$$= 2\alpha \prod_{i} g_{i} (2\alpha x_{i}^{2} - 1)$$

With this we find the local energy E_L :

$$E_{L} = \frac{1}{\prod_{i} g_{i}} \left(-\frac{\hbar^{2}}{2m} \sum_{j} 2\alpha \prod_{i} g_{i} (2\alpha x_{i}^{2} - 1) + \frac{1}{2} m \omega_{ho}^{2} \prod_{i} g_{i} \right)$$
$$= -\frac{\hbar^{2}}{m} \alpha N(2\alpha x_{i}^{2} - 2) + \frac{1}{2} m \omega_{ho}^{2}$$

where $\alpha = \frac{1}{2a_{H_0}^2}$ and $a_{H_0} = \frac{\hbar}{m\omega}$

- 1.2.2 2D
- 1.2.3 3D

2 Local energy with interaction

2.1 Note on indices in project file.

The project file has screwed up indices for sums etc in the problem text, and lacks some clarity regarding f(i,j). This is a brief summary of notes made in group session:

$$\phi \vec{r}_i = \exp(-\alpha(x_i^2 + y_i^2 + \beta z_i^2))$$

$$f(r_{ij}) = \exp(\sum_{i < j} u(r_{ij}))$$

$$u(r_{ij}) = \ln(f(r_{ij})) = \ln(\exp(\sum_{i < j} u(r_{ij})))$$

$$f(r_{ij}) = \exp(u(r_{ij}))$$

$$\Delta_k \exp(\sum_{i < j} u(r_{ij}) = \exp(\sum_{i < j} u(r_{ij})) \cdot \Delta_k \sum_{l \neq k} u(r_{lk})$$

$$\sum_{j \neq k} \Delta_k u(r_{kj})$$