Obesity Level Classification using Feedforward Neural Networks

STAT 479 Spring 2024

Brian Luu, Cory Suzuki, Meha Patel, Yiming Wang

Overview

- Introduction and Motivation
- About the Data
- Model Building and Tuning
- Results
- Conclusion
- Questions

About Obesity

- Excessive accumulation of body fat
- Obesity estimates in 2022 [1]:
 - 1 in 8 people worldwide live with obesity
 - 43% of adults are overweight, 16% are obese
- Detrimental effects on quality-of-life
 - Physical Health
 - Mental Health
- Goal: Can obesity level(s) be predicted and classified based on known and existing habits and factors?

Figure 1. How Obesity may affect the body. Retrieved from Cleveland Clinic.

https://my.clevelandclinic.org/health/diseases/11209-weight-control-and-obesity

[1] Retrieved from World Health Organization. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Variables

Target: Obesity levels

Predictions based on several variables relating to individual characteristics and habits

Category	Questions (Code)	Туре
Characteristics	 Gender Age Height Weight Obesity (Family history) 	CategoricalContinuousContinuousContinuousBinary
Dietary Habits	 High caloric foods (FAVC) Vegetables (FCVC) Main meals (NCP) Snacking (CAEC) Water (CH2O) Alcohol (CALC) 	 Binary Integer (Cate.) Continuous Categorical Continuous Categorical
Health Habits	 Smoking (SMOKE) Physical activity (FAF) Calorie Monitoring (SCC) Electronic device usage (TUE) Transportation usage (MTRANS) 	BinaryContinuousBinaryInteger (Cate.)Categorical
Response	Obesity Level	 Insufficient Weight Normal Weight Overweight Level I Overweight Level II Obesity Type I Obesity Type II Obesity Type III

Pre-processing

Туре	Variable	Transformation	Result
Continuous	Age, Height, Weight, NCP, CH2O, FAF	Standardization	$N(\mu = 0, \sigma^2 = 1)$
Integer	FCVC, TUE	One-hot encoding	Prevent ordinality
Categorical	Gender, CAEC, CALC, MTRANS	One-hot encoding	Binary values

After cleaning and standardization, we apply a 60-20-20 split to our data:

Training data: (1266 observations, 31 features) Validation data: (422 observations, 31 features)

Test data: (423 observations, 31 features)

Model (Prototype)

Input Layers:

Input shape: (1266 observations, 31 features)

Output Layers:

Output levels: 7

Activation = "softmax"

Hidden Layers:

Number of hidden layers: 3

Number of neurons: **128 -> 64 -> 32**

Activation function of hidden layers: "selu"

Kernel_regularizer = **I2(0.001)**

Dropout rate = **0.5**

Model (Prototype) Compile

Optimizer: Nadam

Learning Rate: 0.001

Loss: sparse_categorical_crossentropy

Model Fit Epochs: 120 & Batch Size: 32

Model (Prototype) Performance

Test loss: 0.2441

Test accuracy: 0.9456

Hyperparameter Tuning

Skeleton Model Structure:

- Hidden Layers:
 - Dynamically selects 2 or 3 hidden layers (n hidden).
 - Layer-specific neuron choices: [128, 64, 32, 16].
- **Learning Rate**: Choices: [0.001, 0.005, 0.01].
- **Regularization**: L2 regularization with choices: [0.001, 0.005, 0.01].
- **Dropout Rate**: [0.3, 0.4, 0.5] for each layer.
- Optimizer: Options: Adam, Nadam, Adamax.

Random Search:

- Use kt.RandomSearch for hyperparameter optimization.
- **Objective**: Maximize validation accuracy.
- Search Space: Randomly explores combinations of hyperparameters over 25 trials.
- Training Details:
 - o Epochs: 120
 - Batch Size: 32

Best Model with Highest Validation Accuracy

Best val_accuracy So Far: 0.9668246507644653

Hyperparameters:

n_hidden: 3

n_neurons_layer_1: 64

n_neurons_layer_2: 64

n_neurons_layer_3: 64

learning_rate: 0.005

optimizer: Adamax

12_regularization: 0.005

dropout_rate: 0.3

Score: 0.9668246507644653

Construct the BEST Model

Test loss: 0.2532

Test accuracy: 0.9669

Reduce Epochs

Test loss 0.2890

Test accuracy 0.9551

Conclusion/Discussion

Initial Model (120 epochs):

- Test Loss: 0.2441

- Test Accuracy: 0.9456

Tuned Model

- 120 epochs

- Test Loss: 0.2532

- Test Accuracy: 0.9669

- 80 epochs

Test Loss: 0.2890

- Test Accuracy: 0.9551

General Notes:

- Lower epochs -> Prevent overfitting
- Highest accuracy in tuned model with 120 epochs

Prototype

Thank you!

Q&A session to follow

- Why do we split training, validation, and test datasets before standardizing continuous features and encoding categorical features?
- Is a 60-20-20 split okay?
- Why do we change the feature type from float64 to int for feature FCVC and TUE?
- Why do we standardize continuous features and encode categorical features?
- Why do we use fit_transform for X_train and only transform for X_test and X_val?

- Why do we use SELU activation for input and hidden layers?
- What is kernel_regularizer=l2? Why do we need it?
- What is dropout rate? Why do we need it?
- Why do we use softmax for the output?
- What is learning rate? Why do we need it?
- What is sparse_categorical_crossentropy?
- What is batch size? Why do we set it to 32?

- What is skeleton_model for hyperparameter tuning?
- What is Keras Tuner for best hyperparameter?
- Why do we use 16, 32, 64, 128 for the number of neurons?
- What is the difference between Adam, Nadam, and Adamax?
- Why is the dropout range 0.3 to 0.5?

- Why is the learning rate range between 0.001 to 0.01?
- Why is the L2 regularization range from 0.001 to 0.01?
- Why choose the hyperparameters that provide the best val accuracy?
- Why is my validation loss curve always below the training loss curve, and why is my validation accuracy curve always above the training accuracy curve?
- Why don't we encode binary features as 0 and 1?