Some HW-2 problem solutions for ECE 432/532

This set of solutions is provided for your convenience and should under NO circumstances be shared with anyone outside of the class (ECE 432/532)

Prob. 3.21:

Prob. 3.22:

Prob. 3.25:

Prob. 3.26:

Prob. 4.3:

4.3) (a) The $G_A=14$ dB circle and the F=2 dB circle intersect at two points. The value of Γ_A atthese the points are: $\Gamma_A\approx 0.5$ [160° and $\Gamma_A\approx 0.25$ [-150° (b) Let $\Gamma_A=0.5$ [160° , then $\Gamma_{007}=0.657$ [-13.3° For (VSWR) $_{007}=1$: $\Gamma_{007}=0.657$ [13.3° Then, $\Gamma_{107}=0.657$ [16.1°] $\Gamma_{007}=0.657$ [15.2°] $\Gamma_{007}=0.657$ [15.2°]

Prob. 4.4:

4.4) (a) K=2.25 AND $\Delta=0.246 \frac{112.8^{\circ}}{15.21}$. LINCONDITIONALLY STABLE (b) $G_{A/m\Delta_x}=\frac{15_{x,1}}{15.21}\left(K-\sqrt{K^{x}-1}\right)=9.36$ or $9.71\,\mathrm{dB}$

(c) GA= 9.71-3 = 6.71 dB FOR THE GA=6.71 dB CIRCLE: 92=1.173, Ca = 0.42 174.5°, Ya = 0.515

(d) FOR THE 3dB NOISE CIRCLE:

C_{F,}=0,405[<u>145°</u>], Y_{F,}=0.388

FOR THE 4dB NOISE CIRCLES:

C_{F,}=0.279[<u>145°</u>], Y_{F,}=0.616

THE F,=4dB CIRCLE IS DRAWN ON THE SMITH CHART.

(e) For $G_{A,m,2\times}$: $\Gamma_{A} = \Gamma_{m_{A}} = 0.667 \frac{174.5^{\circ}}{174.5^{\circ}}$, $\Gamma_{E} = \Gamma_{m_{E}} = 0.587 \frac{102.2^{\circ}}{2}$. $F = 10^{0.25} + \frac{4(\frac{5}{50})|0.667|\frac{174.5^{\circ}}{2} - 0.5|\frac{145^{\circ}}{2}|^{2} = 1.97 \text{ or } 2.95 \text{ dB}}{(1-(0.667)^{2})|1+0.5|\frac{145^{\circ}}{2}|^{2}}$

Prob. 4.8:

4.8) K=0.96, \$\Delta=0.6\bigcup_{-73.10}\$ \top Potentially unstable

Input stability circle: \$\C_z=1.34\bigcup_{62.70}\$, \$\chi=0.345\$

OUTPUT STABILITY CIRCLE: \$\C_z=1.55\bigcup_{17.20}\$, \$\chi=0.56\$

Design with \$\Gamma_z=\bigcup_{t}=0.73\bigcup_{60}\$ AND \$\Gamma_z=\bigcup_{00}\$=0.787\bigcup_{42.20}\$

Both \$G_{t}\$ AND \$\Gamma_t\$ Are in the Stable Region (As expected Adesign for \$G_{t}\$ and \$\Gamma_t\$ is shown Below:

Pozar - part 1:

Power

Ph 17.9
$$T_S = T_{in}^* = 0.883 - 172^\circ$$
 $T_c = 10u_1^* = 0.889 - 172^\circ$
 $G_s = 4.53$ $G_s = 4.50$ $G_c = 0.623$
 $G_T = 11.29 \Rightarrow = 10.53$ dB

 0.02787
 0.20862
 0.20862
 0.2042

12-12 Gsmex = 1.59 Grmex = 2.08

construct circles for \$5 = 0.792 & g = 0.760

One choice: Ts = 0.215 11700, [=0.361[83]

0.1212

0.0672

10.3942

Pozar - part 2

12.16. Plot const. maise circles for

F= 2.05, 2.20, 3.00 × 2.0 dB

+ circles for G_S= G₁= 0.1B

- chose T₁= 0.66 LLO5° × T_S= 0.62 LLOF°

⇒ F=2.05 dB

0.0362