CMIP6 Model Documentation

Institute: NOAA-GFDL Model: GFDL-AM4 Topic: Atmosphere

Doc. Generated: 2018-04-12

Doc. Seeded From: cmip5:gfdl-cm3

Specialization Version: 1.0.2

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key	Properties 1
	1.1	Key Properties
	1.2	Resolution
	1.3	Timestepping
	1.4	Orography
2	Grio	1
4	2.1	Grid
	$\frac{2.1}{2.2}$	Discretisation
	2.3	Horizontal
	$\frac{2.3}{2.4}$	Vertical
3	-	amical Core 7
	3.1	Dynamical Core
	3.2	Top Boundary
	3.3	Lateral Boundary
	3.4	Diffusion Horizontal
	3.5	Advection
	3.6	Tracers
	3.7	Momentum
4	Rad	iation 13
-	4.1	Radiation
	4.2	Shortwave Radiation
	4.3	Shortwave GHG
	4.4	Shortwave Cloud Ice
	4.5	Shortwave Cloud Liquid
	4.6	Shortwave Cloud Inhomogeneity
	4.7	Shortwave Cloud Inhomogeneity
	4.7	Shortwave Gases
	4.9	Longwave Radiation
	-	8
		8
		0
		Longwave Cloud Liquid
		Longwave Cloud Inhomogeneity
		Longwave Aerosols
	4.15	Longwave Gases
5	Turl	pulence Convection 29
	5.1	Turbulence Convection
	5.2	Boundary Layer Turbulence
	5.3	Deep Convection
	5.4	Shallow Convection
6	Mic	rophysics Precipitation 34
	6.1	Microphysics Precipitation
	6.2	Large Scale Precipitation
	6.3	Large Scale Cloud Microphysics
	0.0	Large bear Civila Microphysics

7	Clo	ud Scheme	36
	7.1	Cloud Scheme	36
	7.2	Optical Cloud Properties	37
	7.3	Sub Grid Scale Water Distribution	38
	7.4	Sub Grid Scale Ice Distribution	38
8	Obs	ervation Simulation	40
	8.1	Observation Simulation	40
	8.2	Isscp Attributes	40
	8.3	Cosp Attributes	41
	8.4	Radar Inputs	41
	8.5	Lidar Inputs	42
9	Gra	vity Waves	44
	9.1	Gravity Waves	44
	9.2	Orographic Gravity Waves	45
	9.3	Non Orographic Gravity Waves	46
10	Nat	ural Forcing	48
		Natural Forcing	48
		Solar Pathways	48
		Solar Constant	48
		Orbital Parameters	49
		Insolation Ozone	50
		Volcanoes Treatment	50

1 Key Properties

Atmosphere key properties

1.1	\mathbf{Kev}	Pro	\mathbf{c}

Atmosphere key properties

1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPERATED list:

1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

\boxtimes	AGCM - Atmospheric General Circulation Model
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

\triangle	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
\boxtimes	Hydrostatic
	Quasi-hydrostatic
	Other - please specify:

1.2 Resolution

 $Characteristics\ of\ the\ model\ resolution$

1.2.1 Overview

Overview of characteristics of the model resolution in atmos model.

Enter TEXT:

1.2.2 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.3 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.4 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.5 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.6 High Top *

Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause.

Select	either	TRUE	\mathbf{or}	FALSE

1.3 Timestepping

Characteristics of the atmosphere model time stepping

☐ False

1.3.1 Overview

True

Overview of characteristics of the atmosphere model time stepping in atmos model.

Enter TEXT:

1.3.2 Timestep Dynamics *

Timestep for the dynamics in seconds

30

1.3.3 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.4 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

Orography 1.4

Characteristics of the model orography

1.4.1 Overview

 $Overview\ of\ characteristics\ of\ the\ model\ orography\ in\ atmos\ model.$

Enter TEXT:

Line	I IEXI.	
1.4.2	Type *	
Type of o	prographic representation.	
	Fixed: present day	
	Fixed: modified - Provide details of modification below	
	Other - please specify:	
1.4.3 Modified If the orography type is modified describe the adaptation.		
Selec	et MULTIPLE options:	
	Related to ice sheets	
	Related to tectonics	
	Modified mean	

Modified variance if taken into account in model (cf gravity waves)

1.4.4 Time-varying

Describe any time varying orographic change

Other - please specify:

Enter TEXT:

2 Grid

 $Atmosphere\ grid$

2.1 Grid

 $Atmosphere\ grid$

2.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Overview

Overview of grid in atmos model.

Enter TEXT:

2.2 Discretisation

 $Atmosphere\ grid\ discretisation$

2.2.1 Overview

Overview of atmosphere grid discretisation in atmos model.

Enter TEXT:

2.2.2 Overview *

Overview description of grid discretisation in the atmosphere

Enter TEXT:

2.3 Horizontal

Atmosphere discretisation in the horizontal

2.3.1 Scheme Type *

 $Horizontal\ discretisation\ type$

	Spectral
\boxtimes	Fixed grid
П	Other - please specify

2.3.2	Scheme Method *
Horizon	tal discretisation method
	Finite elements
\boxtimes	Finite volumes
	Finite difference
	Centered finite difference
2.3.3	Scheme Order *
Horizon	tal discretisation function order
Sele	ect SINGLE option:
	Second
	Third
	Fourth
	Other - please specify:
2.3.4	Horizontal Pole
Horizon	tal discretisation pole singularity treatment
Sele	ect SINGLE option:
	Filter
	Pole rotation
	Artificial island
	Other - please specify:
2.3.5	Grid Type *
Horizon	tal grid type
Sele	ect SINGLE option:
	Gaussian
	Latitude-Longitude
	Cubed-Sphere
	Icosahedral
	Other - please specify:

2.4 Vertical

 $Atmosphere\ discretisation\ in\ the\ vertical$

2.4.1 Coordinate Type *

 $Type\ of\ vertical\ coordinate\ system$

Select MULTIPLE options:		
	Isobaric - Vertical coordinate on pressure levels	
	Sigma - Allows vertical coordinate to follow model terrain	
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above	
	Hybrid pressure	
	Vertically lagrangian	
	Other - please specify:	

3 Dynamical Core

Characteristics of the dynamical core

3.1	Dynamical	Core

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

Enter TEXT:

3.1.3	Timestepping Type *
Timeste	pping framework type
	Adams-Bashforth
\boxtimes	Explicit
	Implicit
	Semi-implicit
	Leap frog
	Multi-step
	Runge Kutta fifth order
	Runge Kutta second order
	Runge Kutta third order
	Other - please specify:

3.1.4 Prognostic Variables *

 $List\ of\ the\ model\ prognostic\ variables$

Ш	Surface pressure
\boxtimes	Wind components
	Divergence/curl
	Temperature
\boxtimes	Potential temperature

	Total water
	Water vapour
	Water liquid
	Water ice
	Total water moments
\boxtimes	Clouds
	Radiation
	Other - please specify:
	Fop Boundary boundary layer at the top of the model
3.2.1	Overview
Overview	of type of boundary layer at the top of the model in atmos model.
Enter	TEXT:
3.2.2	Top Boundary Condition *
Top bound	lary condition
\boxtimes	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.3	Гор Heat *
Top bound	lary heat treatment
3.2.4	Γορ Wind *
Top bound	lary wind treatment
Enter	TEXT:
3.3 L	ateral Boundary
	lateral boundary condition (if the model is a regional model)
	Overview of type of lateral boundary condition (if the model is a regional model) in atmos model.
	of type of tateral boundary condition (if the model is a regional model) in almos model. TEXT:
Emer	IEAI.

3.3.2 Condition	
Type of lateral boundary condition	
Select SINGLE option:	
Sponge layer	
Radiation boundary condition	
Other - please specify:	
3.4 Diffusion Horizontal	
$Horizontal\ diffusion\ scheme$	
3.4.1 Overview	
Overview of horizontal diffusion scheme in atmos model.	
Enter TEXT:	
3.4.2 Scheme Name	
Horizontal diffusion scheme name	
3.4.3 Scheme Method * Horizontal diffusion scheme method	
Select SINGLE option:	
Iterated Laplacian	
Bi-harmonic	
Other - please specify:	
3.5 Advection	
Dynamical core advection	
3.5.1 Overview	
Overview of dynamical core advection in atmos model.	
Enter TEXT:	
3.6 Tracers	
Tracer advection scheme	

3.6.1 Scheme Name $Tracer\ advection\ scheme\ name$ Select SINGLE option: Heun Roe and VanLeer Roe and Superbee Prather UTOPIA Other - please specify: 3.6.2Scheme Characteristics * Tracer advection scheme characteristics Eulerian Modified Euler ${\bf Lagrangian}$ Semi-Lagrangian ${\bf Cubic\ semi-Lagrangian}$ ${\bf Quintic\ semi-Lagrangian}$ Mass-conserving \boxtimes Finite volume Flux-corrected ${\bf Linear}$ Quadratic Quartic Other - please specify: 3.6.3Conserved Quantities *

Tracer advection scheme conserved quantities

Other - please specify:

Dry mass
Tracer mass

3.6.4	Conservation Method *	
Tracer a	dvection scheme conservation method	
Sele	ect SINGLE option:	
	Conservation fixer	
	Priestley algorithm	
	Other - please specify:	
3.7	Momentum	
Momen	ntum advection scheme	
3.7.1	Scheme Name	
Moment	um advection schemes name	
Sele	ect SINGLE option:	
	VanLeer	
	Janjic	
	SUPG (Streamline Upwind Petrov-Galerkin)	
	Other - please specify:	
3.7.2	Scheme Characteristics *	
Moment	rum advection scheme characteristics	
Sele	ect MULTIPLE options:	
	2nd order	
	4th order	
	Cell-centred	
	Staggered grid	
	Semi-staggered grid	
	Other - please specify:	
3.7.3 Scheme Staggering Type *		
Momentum advection scheme staggering type		
Sele	ect SINGLE option:	
	Arakawa B-grid	
	Arakawa C-grid	

	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
3.7.4	Conserved Quantities *
Moment	um advection scheme conserved quantities
	Angular momentum
	Horizontal momentum
	Enstrophy
	Mass
	Total energy
\boxtimes	Vorticity
	Other - please specify:
3.7.5	Conservation Method *
Moment	um advection scheme conservation method
Sele	ect SINGLE option:
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Name

Commonly used name for the radiation in atmos model.

Enter TEXT:

4.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

4.1.3 Aerosols *

Aerosols whose radiative effect is taken into account in the atmosphere model \boxtimes Sulphate Nitrate \boxtimes Sea salt \boxtimes Dust ${\rm Ice}$ \boxtimes Organic \boxtimes BC (black carbon / soot) SOA (secondary organic aerosols) POM (particulate organic matter) Polar stratospheric ice NAT (nitric acid trihydrate) NAD (nitric acid dihydrate) STS (supercooled ternary solution aerosol particle) Other - please specify:

4.2 Shortwave Radiation

Properties of the shortwave radiation scheme

4.2.1 Overview
Overview of properties of the shortwave radiation scheme in atmos model.
Enter TEXT:
4.2.2 Overview *
Overview description of shortwave radiation in the atmosphere
Enter TEXT:
4.2.3 Name
Commonly used name for the shortwave radiation scheme
Enter TEXT:
4.2.4 Spectral Integration *
Shortwave radiation scheme spectral integration
₩ide-band model
Correlated-k
Exponential sum fitting
Other - please specify:
4.2.5 Transport Calculation *
Shortwave radiation transport calculation methods
Select MULTIPLE options:
☐ Two-stream
Layer interaction
Bulk - Highly parameterised methods that use bulk expressions
\square Adaptive - Exploits spatial and temporal correlations in optical characteristics
Multi-stream
Other - please specify:
4.2.6 Spectral Intervals *

4.3 Shortwave GHG

18

 $Shortwave\ radiation\ scheme\ number\ of\ spectral\ intervals$

Representation of greenhouse gases in the shortwave radiation scheme

4.3.1 Overview

 $Overview\ of\ representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

4.3.2 Greenhouse Gas Complexity *

Complexity of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model

Select MULTIPLE options:		
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalen	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration	
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ ation	
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons	
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs	
	O3	
	H2O	
	Other - please specify:	
4.3.3 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Selec	et MULTIPLE options:	
	CFC-12 - CFC	
	CFC-11 - CFC	
	CFC-113 - CFC	
	CFC-114 - CFC	
	CFC-115 - CFC	
	HCFC-22 - HCFC	
	HCFC-141b - HCFC	
	HCFC-142b - HCFC	

	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
4.0.4	
	Other Flourinated Gases
	a a b a b
Selec	et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC

	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4	Shortwave Cloud Ice
Shortwa	ve radiative properties of ice crystals in clouds
4.4.1	Overview
Overview	of shortwave radiative properties of ice crystals in clouds in atmos model.
Ente	r TEXT:
4.4.2	General Interactions *
General s	shortwave radiative interactions with cloud ice crystals
Selec	et MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
	Physical Representation * representation of cloud ice crystals in the shortwave radiation scheme
	et MULTIPLE options:
Selec	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters
typically	hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area eres
	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
	Effective exected radius

Ш	Other - please specify:
	Optical Methods * ethods applicable to cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.5 S	hortwave Cloud Liquid
Shortwa	ve radiative properties of liquid droplets in clouds
4.5.1	Overview
Overview	of shortwave radiative properties of liquid droplets in clouds in atmos model.
Enter	TEXT:
4.5.2	General Interactions *
General shortwave radiative interactions with cloud liquid droplets	
General s	hortwave radiative interactions with cloud liquid droplets
	hortwave radiative interactions with cloud liquid droplets t MULTIPLE options:
	t MULTIPLE options:
	t MULTIPLE options: Scattering
Selec	t MULTIPLE options: Scattering Emission/absorption Other - please specify:
Select	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation *
Selection A.5.3 Physical r	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme
Selection A.5.3 Physical r	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme t MULTIPLE options:
Selection A.5.3 Physical r	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme t MULTIPLE options: Cloud droplet number concentration - CDNC
Selection A.5.3 Physical r	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme t MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii
Selection A.5.3 Physical r	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme t MULTIPLE options: Cloud droplet number concentration - CDNC

4.5.4	Optical Methods *
Optical me	ethods applicable to cloud liquid droplets in the shortwave radiation scheme
Select	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6 S	hortwave Cloud Inhomogeneity
Cloud in	homogeneity in the shortwave radiation scheme
4.6.1	Overview
Overview	of cloud inhomogeneity in the shortwave radiation scheme in atmos model.
Enter	TEXT:
4.6.2	Cloud Inhomogeneity *
Method for	r taking into account horizontal cloud inhomogeneity
Select	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.7 S	hortwave Aerosols
Shortwan	ve radiative properties of aerosols
4.7.1	Overview
Overview	of shortwave radiative properties of aerosols in atmos model.
Enter	TEXT:
4.7.2	General Interactions *
General sh	nortwave radiative interactions with aerosols
Select	t MULTIPLE options:
	Scattering
	Emission/absorption

Other - please specify:

Physical representation of aerosols in the shortwave radiation scheme		
Select MULTIPLE options:		
	Number concentration	
	Effective radii	
	Size distribution	
	Asymmetry	
	Aspect ratio	
	Mixing state - For shortwave radiative interaction	
	Other - please specify:	
4.7.4	Optical Methods *	
Optical n	nethods applicable to aerosols in the shortwave radiation scheme	
Selec	et MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.8	Shortwave Gases	
Shortwa	we radiative properties of gases	
4.8.1	Overview	
Overview	$of\ shortwave\ radiative\ properties\ of\ gases\ in\ atmos\ model.$	
Ente	r TEXT:	
4.8.2	General Interactions *	
General shortwave radiative interactions with gases		
Select MULTIPLE options:		
	Scattering	
	Emission/absorption	
	Other - please specify:	

4.7.3 Physical Representation *

4.9 Longwave Radiation

 $Properties \ of \ the \ longwave \ radiation \ scheme$

4 0	-1	\sim .
4.9	. I	Overview

 $Overview\ of\ properties\ of\ the\ longwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

4.9.2 Overview *

Overview description of longwave radiation in the atmosphere

Enter TEXT:

4.9.3 Name

Commonly used name for the longwave radiation scheme.

Enter TEXT:

4.9.4 Spectral Integration *

 $Longwave\ radiation\ scheme\ spectral\ integration$

Selec	t SINGLE option:
	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:

4.9.5 Transport Calculation *

 $Longwave\ radiation\ transport\ calculation\ methods$

	Two-stream
\boxtimes	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
П	Other - please specify

4.9.6 Spectral Intervals *

 $Longwave\ radiation\ scheme\ number\ of\ spectral\ intervals$

10

4.10 Longwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ longwave\ radiation\ scheme$

4.10.1 Overview

 $Overview\ of\ representation\ of\ greenhouse\ gases\ in\ the\ longwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

4.10.2 Greenhouse Gas Complexity *

Complexity of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model

Selec	et MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
 equivalen	${ m CFC-12\ eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ equivalence ation
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4.10.3	ODS
Ozone de model	pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	et MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC

	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
4.10.4	Other Flourinated Gases
Other flor	urinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model
a 1	
Selec	t MULTIPLE options:
Selec	t MULTIPLE options: HFC-134a - HFC
	HFC-134a - HFC
	HFC-134a - HFC HFC-23 - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC HFC-245fa - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC HFC-236fa - HFC HFC-365mfc - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC HFC-365mfc - HFC HFC-365mfc - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-236fa - HFC HFC-236fa - HFC HFC-245fa - HFC HFC-365mfc - HFC HFC-43-10mee - HFC

	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.11	Longwave Cloud Ice
Longwar	ve radiative properties of ice crystals in clouds
4.11.1	Overview
Overview	of longwave radiative properties of ice crystals in clouds in atmos model.
Ente	r TEXT:
4.11.2	General Interactions *
$General\ l$	ongwave radiative interactions with cloud ice crystals
Selec	t MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
4 1 1 0	
4.11.3 Physical 3	Physical Reprenstation * representation of cloud ice crystals in the longwave radiation scheme
	t MULTIPLE options:
typically	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters:
typically	
typically than sphe	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area
	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area

	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.11.4	Optical Methods *
$Optical\ m$	aethods applicable to cloud ice crystals in the longwave radiation scheme
Selec	et MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.12	Longwave Cloud Liquid
Longwa	ve radiative properties of liquid droplets in clouds
4.12.1	Overview
	Overview of longwave radiative properties of liquid droplets in clouds in atmos model.
Overview	
Overview Ente	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT:
Overview Ente 4.12.2	of longwave radiative properties of liquid droplets in clouds in atmos model.
Overview Ente 4.12.2 General l	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions *
Overview Ente 4.12.2 General l	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets
Overview Ente 4.12.2 General l	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets et MULTIPLE options:
Overview Ente 4.12.2 General l	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering Emission/absorption
Overview Ente 4.12.2 General l	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering
Overview Ente 4.12.2 General l	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering Emission/absorption
Overview Ente 4.12.2 General l Select 1 1 1 4.12.3	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering Emission/absorption Other - please specify:
Coverview Ente 4.12.2 General l Select 4.12.3 Physical	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation *
Coverview Ente 4.12.2 General l Select 4.12.3 Physical	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme
Coverview Ente 4.12.2 General l Select 4.12.3 Physical	of longwave radiative properties of liquid droplets in clouds in atmos model. r TEXT: General Interactions * ongwave radiative interactions with cloud liquid droplets rt MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme ret MULTIPLE options:

	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:
4.12.4	Optical Methods *
Optical n	nethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	et MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.13	Longwave Cloud Inhomogeneity
Cloud in	nhomogeneity in the longwave radiation scheme
4.13.1	Overview
Overview	of cloud inhomogeneity in the longwave radiation scheme in atmos model.
Ente	r TEXT:
4.13.2	Cloud Inhomogeneity *
	or taking into account horizontal cloud inhomogeneity
	et SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
П	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
	Other - picase specify.
4.14	Longwave Aerosols
Longwa	ve radiative properties of aerosols
4.14.1	Overview
	of longwave radiative properties of aerosols in atmos model.
	r TEXT:
4.14.2	General Interactions *
reneral l	on awave radiative interactions with aerosols

Select MULTIPLE options:

	Scattering
	Emission/absorption
	Other - please specify:
4.14.3	Physical Representation *
Physical r	representation of aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4.14.4	Optical Methods *
Optical m	ethods applicable to aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.15	Longwave Gases
	ve radiative properties of gases
Бопушис	to radioactive properties of gases
4.15.1	Overview
Overview	$of\ longwave\ radiative\ properties\ of\ gases\ in\ atmos\ model.$
Enter	r TEXT:

4.15.2	General Interactions *
$General\ l$	$ongwave\ radiative\ interactions\ with\ gases$
Selec	t MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

Enter TEXT:

5.2 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1 Overview

Overview of properties of the boundary layer turbulence scheme in atmos model.

Enter TEXT:

5.2.2 Scheme Name

Boundary layer turbulence scheme name

Sele	ct SINGLE option:
	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
5.2.3	Scheme Type *
Boundar	y layer turbulence scheme type
	TKE prognostic
	TKE diagnostic
	TKE coupled with water
\boxtimes	Vertical profile of Kz
	Non-local diffusion

	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.4	Closure Order *
Boundar	y layer turbulence scheme closure order
Ent	er INTEGER value:
5.2.5	Counter Gradient *
Uses bou	andary layer turbulence scheme counter gradient
\boxtimes	True
5.3	Deep Convection
	Deep Convection ties of the deep convection scheme
	-
Proper 5.3.1	ties of the deep convection scheme
Propert 5.3.1 Overview	Overview
Propert 5.3.1 Overview	Overview of properties of the deep convection scheme in atmos model.
Propers 5.3.1 Overvies Ent 5.3.2	Overview of properties of the deep convection scheme in atmos model. er TEXT:
Propers 5.3.1 Overvies Ent 5.3.2	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name
Propers 5.3.1 Overview Ent 5.3.2 Deep cos	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name nvection scheme name
Propers 5.3.1 Overview Ent 5.3.2 Deep cos	Overview of properties of the deep convection scheme in atmos model. TEXT: Scheme Name nvection scheme name Scheme Type *
Propers 5.3.1 Overview Ent 5.3.2 Deep com 5.3.3 Deep com	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name nvection scheme name Scheme Type * nvection scheme type
Propers 5.3.1 Overview Ent 5.3.2 Deep com 5.3.3 Deep com	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name nvection scheme name Scheme Type * nvection scheme type Mass-flux

5.3.4	Scheme Method	
Deep con	vection scheme method	
\boxtimes	CAPE - Mass flux determined by CAPE, convectively available potential energy.	
	Bulk - A bulk mass flux scheme is used	
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics	
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-	
	$\label{thm:thm:thm:mass} {\it TKE/CIN}\ \ {\it based}\ \ -\ \ {\it TKE-Convective}\ \ {\it Inhibition:}\ \ {\it Based}\ \ {\it on}\ \ {\it the}\ \ {\it quasi-equilibrium}\ \ {\it of}\ \ {\it the}\ \ {\it boundary}\ \ {\it layer}$	
	Other - please specify:	
5.3.5	Processes *	
Physical	processes taken into account in the parameterisation of deep convection	
\boxtimes	Vertical momentum transport	
\boxtimes	Convective momentum transport	
\boxtimes	Entrainment	
\boxtimes	Detrainment	
\boxtimes	Penetrative convection	
\boxtimes	Updrafts	
	Downdrafts	
\boxtimes	Radiative effect of anvils	
	Re-evaporation of convective precipitation	
	Other - please specify:	
5.3.6	Microphysics	
$\label{lem:microphysics} Microphysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts$		
Select MULTIPLE options:		
	Tuning parameter based	
	Single moment	
	Two moment	
	Other - please specify:	

5.4 Shallow Convection

 $Properties \ of \ the \ shallow \ convection \ scheme$

5.4.1	Overview
Overview	of propertie

Enter TEXT:

Select MULTIPLE options:

Tuning parameter based

 $Overview\ of\ properties\ of\ the\ shallow\ convection\ scheme\ in\ atmos\ model.$

5.4.2Scheme Name Shallow convection scheme name 5.4.3 Scheme Type * Shallow convection scheme type \boxtimes Mass-flux Cumulus-capped boundary layer Other - please specify: 5.4.4Scheme Method * $Shallow\ convection\ scheme\ method$ Same as deep (unified) Included in boundary layer turbulence \boxtimes Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria Other - please specify: 5.4.5Processes * Physical processes taken into account in the parameterisation of shallow convection Select MULTIPLE options: Convective momentum transport Entrainment Detrainment Penetrative convection Re-evaporation of convective precipitation Other - please specify: 5.4.6 Microphysics Microphysics scheme for shallow convection

Single moment
Two moment
Other - please specify:

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.2 Overview

 $Overview\ of\ large\ scale\ cloud\ microphysics\ and\ precipitation\ in\ atmos\ model.$

Enter TEXT:

6.2 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1 Overview

Overview of properties of the large scale precipitation scheme in atmos model.

Enter TEXT:

6.2.2 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

6.2.3 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme

\bowtie	Liquid rain
\boxtimes	Snow
	Hail
	Graupel
	Other - please specify:

6.3 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1 Overview

Overview of properties of the large scale cloud microphysics scheme in atmos model.

6.3.2 Scheme Name

 $Commonly\ used\ name\ of\ the\ microphysics\ parameterisation\ scheme\ used\ for\ large\ scale\ clouds.$

6.3.3	Processes *
Large sc	ale cloud microphysics processes
\boxtimes	Mixed phase
\boxtimes	Cloud droplets
\boxtimes	Cloud ice
	Ice nucleation
\boxtimes	Water vapour deposition
	Effect of raindrops
	Effect of snow
	Effect of graupel
	Other - please specify:

7 Cloud Scheme

 $Characteristics\ of\ the\ cloud\ scheme$

7.1 Cloud Scheme
Characteristics of the cloud scheme
7.1.1 Name
Commonly used name for the cloud scheme in atmos model.
Enter TEXT:
7.1.2 Overview
Overview of characteristics of the cloud scheme in atmos model.
Enter TEXT:
7.1.3 Scheme Type *
Describes the $type(s)$ of cloud scheme: prognostic, diagnostic, other.
Select MULTIPLE options:
☐ Prognostic
☐ Diagnostic
Other - please specify:
7.1.4 Uses Separate Treatment *
Description for when different cloud schemes are used for different types of clouds e.g. convective, stratiform and boundary layer)
7.1.5 Processes *
Processes included in the cloud scheme
Entrainment
Detrainment
Bulk cloud
Other - please specify:
7.1.6 Prognostic Variables

 ${\it List the prognostic variables used by the cloud scheme, if applicable.}$

Select MULTIPLE options: $\begin{tabular}{ll} \hline & Cloud amount \\ \hline \end{tabular}$

	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.7	Atmos Coupling
Atmosph	nere components that are linked to the cloud scheme
Sele	ect MULTIPLE options:
	Atmosphere_radiation
	Atmosphere_microphysics_precipitation
	$Atmosphere_turbulence_convection$
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2	Optical Cloud Properties
	cloud properties
7.2.1	Overview
Overviev	w of optical cloud properties in atmos model.
Ente	er TEXT:
7.2.2	Cloud Overlap Method
Method	for taking into account overlapping of cloud layers
Sele	ect SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
	Other - please specify:

7.2.3 Cloud Inhomogeneity

Method for taking into account cloud inhomogeneity

Enter TEXT:

7.3 Sub Grid Scale Water Distribution

 $Sub\mbox{-}grid\ scale\ water\ distribution$

7.3.1 Overview

Overview of sub-grid scale water distribution in atmos model.

Enter TEXT:

7.3.2 Type *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ type$

Selec	ct SINGLE option:
	Prognostic
	Diagnostic

7.3.3 Function Name *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ name$

7.3.4 Function Order *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ type$

Enter INTEGER value:

7.3.5 Convection Coupling *

Sub-grid scale water distribution coupling with convection

\boxtimes	Coupled with deep
\boxtimes	Coupled with shallow
	Not coupled with convection

7.4 Sub Grid Scale Ice Distribution

 $Sub\mbox{-}grid\ scale\ ice\ distribution$

7.4.1 Overview

 $Overview\ of\ sub-grid\ scale\ ice\ distribution\ in\ atmos\ model.$

7.4.2	Type *	
Sub- $grid$	scale ice distribution type	
Sele	ct SINGLE option:	
	Prognostic	
	Diagnostic	
7.4.3	Function Name *	
Sub- $grid$	$scale\ ice\ distribution\ function\ name$	
Ente	er TEXT:	
7.4.4	Function Order *	
Sub- $grid$	$scale\ ice\ distribution\ function\ type$	
Enter INTEGER value:		
7.4.5	Convection Coupling *	
Sub- $grid$	$scale\ ice\ distribution\ coupling\ with\ convection$	
Sele	ct MULTIPLE options:	
	Coupled with deep	
	Coupled with shallow	
	Not coupled with convection	

8 Observation Simulation

Characteristics of observation simulation

O 4	\sim 1	. •	~ :	1 , •
8.1	Observa	tion	Simii	lation
(7.	COUNCI VA	1 1, 1 , , , , ,	. , , , , , , , ,	1461011

Characteristics of observation simulation

8.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2 Isscp Attributes

ISSCP Characteristics

8.2.1 Overview

Overview of issep characteristics in atmos model.

Enter TEXT:

8.2.2 Top Height Estimation Method

 ${\it Cloud\ simulator\ ISSCP\ top\ height\ estimation\ methodUo}$

Select MULTIPLE options:		
	No adjustment	
	IR brightness	
	Visible optical depth	
	Other - please specify:	

8.2.3 Top Height Direction

 $Cloud\ simulator\ ISSCP\ top\ height\ direction$

Select SINGLE option:	
	Lowest altitude level
	Highest altitude level
	Other - please specify:

8.3 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1 Overview

 $Overview\ of\ cfmip\ observational\ simulator\ package\ attributes\ in\ atmos\ model.$

Enter TEXT:

8.3.2 Run Configuration

 $Cloud\ simulator\ COSP\ run\ configuration$

Select SINGLE option:	
	Inline
	Offline
	Other - please specify:

8.3.3 Number Of Grid Points

Cloud simulator COSP number of grid points

Enter INTEGER value:

8.3.4 Number Of Sub Columns

Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability

Enter INTEGER value:

8.3.5 Number Of Levels

Cloud simulator COSP number of levels

Enter INTEGER value:

8.4 Radar Inputs

 $Characteristics\ of\ the\ cloud\ radar\ simulator$

8.4.1 Overview

Overview of characteristics of the cloud radar simulator in atmos model.

Cloud simulator radar frequency (Hz)
Enter FLOAT value:
8.4.3 Type
Cloud simulator radar type
Select SINGLE option:
Surface
Space borne
☐ Other - please specify:
8.4.4 Gas Absorption
Cloud simulator radar uses gas absorption
Select either TRUE or FALSE:
☐ True ☐ False
8.4.5 Effective Radius
Cloud simulator radar uses effective radius
Select either TRUE or FALSE:
☐ True ☐ False
8.5 Lidar Inputs
Characteristics of the cloud lidar simulator
Characteristics of the cioua man simulator
8.5.1 Overview
$Overview\ of\ characteristics\ of\ the\ cloud\ lidar\ simulator\ in\ atmos\ model.$
Enter TEXT:
8.5.2 Ice Types
Cloud simulator lidar ice type
Select SINGLE option:
☐ Ice spheres
☐ Ice non-spherical
Other - please specify:

8.4.2 Frequency

8.5.3	Overlap
Cloud sir	nulator lidar overlap
Selec	et MULTIPLE options:
	Max
	Random
	Other - please specify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources in atmos model.

9.1.3 Sponge Layer *

Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.

Sele	ct SINGLE option:
	Rayleigh friction
	Diffusive sponge layer
	Other - please specify:
9.1.4	Background *
Backgro	und wave distribution
Sele	ct SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify:
9.1.5	Subgrid Scale Orography *
Subgrid	scale orography effects taken into account.
\boxtimes	Effect on drag
	Effect on lifting
	Enhanced topography - To enhance the generation of long waves in the atmosphere

	Other - please specify:
9.2	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1	Overview
Overview	of gravity waves generated due to the presence of orography in atmos model.
Ente	r TEXT:
9.2.2	Name
Common	ly used name for the orographic gravity wave scheme
Ente	r TEXT:
9.2.3	Source Mechanisms *
Orograph	ic gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
\boxtimes	Statistical sub-grid scale variance
	Other - please specify:
9.2.4	Calculation Method *
Orograph	ic gravity wave calculation method
\boxtimes	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.5	Propagation Scheme *
Orograph	ic gravity wave propogation scheme
\boxtimes	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.6	Dissipation Scheme *
Orograph	hic gravity wave dissipation scheme
	Total wave
\boxtimes	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
	Non Orographic Gravity Waves waves generated by non-orographic processes.
9.3.1	Overview
Overvieu	w of gravity waves generated by non-orographic processes. in atmos model.
Ente	er TEXT:
9.3.2	Name
Common	nly used name for the non-orographic gravity wave scheme
Ente	er TEXT:
9.3.3	Source Mechanisms *
Non-oro	graphic gravity wave source mechanisms
	Convection
	Precipitation
\boxtimes	Background spectrum
	Other - please specify:
9.3.4	Calculation Method *
Non-oro	graphic gravity wave calculation method
\boxtimes	Spatially dependent
	Temporally dependent
9.3.5	Propagation Scheme *
	graphic gravity wave propogation scheme
\boxtimes	Linear theory

Ш	Non-linear theory
	Other - please specify:
9.3.6	Dissipation Scheme *
Non-oro	graphic gravity wave dissipation scheme
	Total wave
\boxtimes	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:

10 Natural Forcing

Natural forcing: solar and volcanic.

10.1 Natural Forcing

Natural forcing: solar and volcanic.

10.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1 Overview

Overview of pathways for solar forcing of the atmosphere in atmos model.

SW radiation - Shortwave solar spectral irradiance.

Enter TEXT:

10.2.2 Pathways *

Pathways for the solar forcing of the atmosphere model domain

Select MULTIPLE options:

Precipitating energetic particles - Precipitating energetic particles from	om the sun (predominantly pro-
tons) and the magnetosphere (predominantly electrons) affect the ionization leve	els in the polar middle and upper
atmosphere, leading to significant changes of the chemical composition	

l	Cosmic rays -	- Cosmic rays a	e the main	n source o	f ionization i	in the	troposphere	and lower	stratosphere

Other - please specify:

10.3 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1 Overview

Overview of solar constant and top of atmosphere insolation characteristics in atmos model.

10.3.2	Type *
Time ada	ptation of the solar constant.
	Fixed
\boxtimes	Transient
10.3.3	Fixed Value
If the solo	ar constant is fixed, enter the value of the solar constant (W m-2).
Enter	r FLOAT value:
10.3.4	Transient Characteristics
Solar con	stant transient characteristics (W m-2)
10.4	0.1% 1.D
	Orbital Parameters
Orbital 1	parameters and top of atmosphere insolation characteristics
10.4.1	Overview
Overview	$of\ orbital\ parameters\ and\ top\ of\ atmosphere\ insolation\ characteristics\ in\ atmos\ model.$
Enter	TEXT:
10.4.2	Type *
Type of or	rbital parameter
\boxtimes	Fixed
	Transient
10.4.3	Fixed Reference Date
Reference	date for fixed orbital parameters (yyyy)
23	
10.4.4	Transient Method
Description	on of transient orbital parameters
Enter	TEXT:
10.4.5	Computation Method
Method~us	sed for computing orbital parameters.
Selec	t SINGLE option:
	Berger 1978

	Laskar 2004
	Other - please specify:
10.5	Insolation Ozone
Impact o	of solar insolation on stratospheric ozone
10.5.1	Overview
Overview	of impact of solar insolation on stratospheric ozone in atmos model.
Enter	TEXT:
10.5.2	Solar Ozone Impact *
Does top	of atmosphere insolation impact on stratospheric ozone?
\boxtimes	True
10.6	Volcanoes Treatment
Characte	eristics and treatment of volcanic forcing in the atmosphere
Characte 10.6.1	Overview
10.6.1	
10.6.1 Overview	Overview
10.6.1 Overview	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model.
10.6.1 Overview Enter 10.6.2	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT:
10.6.1 Overview Enter 10.6.2 Description	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT: Volcanoes Characteristics *
10.6.1 Overview Enter 10.6.2 Description	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT: Volcanoes Characteristics * on of how the volcanic forcing is taken into account in the atmosphere.
10.6.1 Overview Enter 10.6.2 Description Enter 10.6.3	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT: Volcanoes Characteristics * on of how the volcanic forcing is taken into account in the atmosphere. TEXT:
10.6.1 Overview Enter 10.6.2 Description Enter 10.6.3	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT: Volcanoes Characteristics * on of how the volcanic forcing is taken into account in the atmosphere. TEXT: Volcanoes Implementation *
10.6.1 Overview Enter 10.6.2 Description Enter 10.6.3	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT: Volcanoes Characteristics * on of how the volcanic forcing is taken into account in the atmosphere. TEXT: Volcanoes Implementation * anic effects are modeled in the atmosphere.
10.6.1 Overview Enter 10.6.2 Description Enter 10.6.3	Overview of characteristics and treatment of volcanic forcing in the atmosphere in atmos model. TEXT: Volcanoes Characteristics * on of how the volcanic forcing is taken into account in the atmosphere. TEXT: Volcanoes Implementation * anic effects are modeled in the atmosphere. High frequency solar constant anomaly