

Formal Methods Analysis of **5G-AKA Protocol with** Comparison to 4G EPS-AKA Protocol

CSEE Department, University of Maryland, Baltimore County Baltimore, MD 21250, USA

December 10,2020

Prajna Bhandary, Ryan Jahnige, **Jason Schneck**

5G AKA

SEAF

Authentication

Request

User Equipment (UE)

7. Calculate RES*

Serving Network (SN)

Network Core

-> sends message

-> state message

received are the same

received are not he same

-> unrealized node

-> messages sent and

-> messages sent and

Network Core

HN stores

XRES* and

response

calculates the

HXRES* for

verification later.

KO)

1. Generate AV

Home Network (HN)

5G HE AV, [SUPI],

[AKMA indication]

Additional key

on the SN.

confirmation round

verifies whether the

K_{SEAF} is sufficient to

establish agreement

implicit agreement on

AUSF

3. Store XRES* 4. Calculate HXRES*

5G SE AV

-> receives message

- Questions What visualizations are produced in modeling the 5G AKA protocol using CPSA?
- What is found from analyzing the visualizations produced by the tool?
- Are the security properties of 5G better than 4G?
- Do the changes made to 4G to solve the identified security flaw?
- Could the solutions be simplified? Did any additional problems arise when the solution was introduced

for a security flaw of 4G?

Response 9. Calculate HRES* and compare to HXRES* RES* 11. RES* Verification Result, [SUPI], SN sends a confirmation message when the authentication is successful to the HN. HN verifies the response. These steps are not included in the AKA5G 46 (realized) 4G-AKA authentication ServingNetwork HomeNetwork procedure. (HN) Increased HN control allows the HN to verify that the authentication was successful.

ACKNOWLEDGEMENT VS. ACKNOWLEDGMENT

HN does not know

with which SN or UE

with. Once it receives

generates the AV and

it is communicating

the SUPI it simply

passes it along the

network.

Thank you

- Edward Ziegler-**Technical Director**
- Alan Sherman-Faculty Advisor

4G EPS-AKA Analysis

the SN or UE.

Adversary has no

information about

the identity of the

way of authenticating

participants.

- HN cannot authenticate the UE. Channel between the SN and HN is supposed to be confidential because it is a wired connection. If we remove that assumption then the HN cannot verify
- User sends its Identity (IMSI) in plaintext over the network. Adversary can track IMSI by identifying eNodeB its connected to.
- Insecure IMSI could lead to a MITM attack among others.
- Adversary can impersonate an eNodeB and replay messages.

authentication.

5G AKA Analysis

- Initialization message can still be replayed.
- Underspecified channel between HN and SN. Adding a long-term shared key between HN and SN will provide confidentiality. Removing confidentiality assumption could lead to a

malicious server.

possible replay attack by a

Results

- Different entities have different security properties.
- Lack of explanation in the documentation about confidentiality and authenticity between SH and
- Solution: Introduce long-term key between SN and HN.
- SUPI seems secure in 5G. Additional verification of the
- response by SN improves authentication of HN. Key hierarchy plays a major
- role in the authentication procedure.