

1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \leq 2$. Proof.

Exercise 1.3.5: Let A be bounded above and let $c \in \mathbb{R}$. Define $cA = \{ca : a \in A\}$.

- (a) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$.
- (b) Postulate a similar statuent for $\sup(cA)$ when c < 0.

Proof(a).

Statement for part (b):

Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A, then $a = \sup A$.

Proof.

Exercise 1.3.8: Compute, without proof, the suprema and infima of the following sets.

- (a) $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$.
- (b) $\{(-1)^m/n : n, m \in \mathbb{N}\}.$
- (c) $\{n/(3n+1) : n \in \mathbb{N}\}.$
- (d) $\{m/(m+n) : m, n \in \mathbb{N}\}.$

Solution:

- (a)
- (b)
- (c)
- (d)