

Linear Algebra and Matrices

G V V Sharma*

	Contents		15 QR Decomposition 1		
1	Line	1	Appendix A: Proofs for the Conic Sections 1		
2	Plane	6	Abstract—This book provides a simple introduc		
3	Pseudo Inverse	6	to linear algebra and matrix analysis. The content an exercises are based on NCERT textbooks from Class 6-12		
4	Quadratic Forms	8			
5	Pair of Straight Lines	8	1 Line		
6	Conic Sections	8	1.1. Any point P in the 2-D plane can be expresse		
7	Tangents and Normals	9	in terms of its coordinates (p_1, p_2) as the co- umn vector		
8	Example: Pair of Straight Lines	10	$\mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \tag{1.1.1}$		
9	Circle	11	1.2. The <i>direction vector</i> of the line joining \mathbf{P} , \mathbf{Q}		
10	Ellipse	13	defined as		
11	Hyperbola	14	$\mathbf{m} = \mathbf{P} - \mathbf{Q} = \begin{pmatrix} p_1 - q_1 \\ p_2 - q_2 \end{pmatrix} \tag{1.2.1}$		
12	Parabola	15	$\mathbf{m} = \mathbf{P} - \mathbf{Q} = \begin{pmatrix} p_1 - q_1 \\ p_2 - q_2 \end{pmatrix} $ (1.2.1) = $(p_1 - q_1) \begin{pmatrix} 1 \\ \frac{p_2 - q_2}{p_1 - q_1} \end{pmatrix} = (p_1 - q_1) \begin{pmatrix} 1 \\ m \end{pmatrix}$ (1.2.2)		
13	Vector Calculus	17	where		
14	Vector Inequalities	17	$m = \frac{p_2 - q_2}{p_1 - q_1}. (1.2.3)$		

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Without loss of generality, km, for any real

scalar k is also a direction vector. In the rest of the paper, m and km are interchanged for computational simplicity. Thus, if m be the slope of the line PQ,

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.2.4}$$

1.3. Let **P**, **Q** be two points on a line. The vector equation of the line is given by

$$\mathbf{x} = \mathbf{P} + \lambda \mathbf{m}, \quad \lambda \in \mathbb{R}$$
 (1.3.1)

$$\mathbf{m} = \mathbf{P} - \mathbf{Q} \tag{1.3.2}$$

(1.3.1) can be used in 3D as well.

1.4. The *normal vector* **n** to a line is orthogonal to the direction vector **m** so that

$$\mathbf{m}^T \mathbf{n} = 0 \tag{1.4.1}$$

If **P** be a point on the line, the equation of the line can be expressed as

$$\mathbf{n}^T \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{1.4.2}$$

or,
$$\mathbf{n}^T \mathbf{x} = c$$
, (1.4.3)

where

$$c = \mathbf{n}^T \mathbf{P} \tag{1.4.4}$$

which is the desired equation of the straight line. By subsuming the c in (1.4.3) within \mathbf{n} , the equation of a line can also be expressed as

$$\mathbf{n}^T \mathbf{x} = 1 \tag{1.4.5}$$

Note that in 3D, (1.4.2) and (1.4.3) are used to represent the equation of a plane.

1.5. Orthogonality: Show that the points

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix}$$
 (1.5.1)

are the vertices of a right angled triangle.

Solution: Let

$$\mathbf{v}_1 = \mathbf{A} - \mathbf{C} = \begin{pmatrix} -1\\3\\5 \end{pmatrix} \tag{1.5.2}$$

$$\mathbf{v}_2 = \mathbf{B} - \mathbf{C} = \begin{pmatrix} -2\\1\\-1 \end{pmatrix} \tag{1.5.3}$$

Fig. 1.6: Line obtained in Problem 1.6.

Then

$$\mathbf{v}_1^T \mathbf{v}_2 = \begin{pmatrix} -1 & 3 & 5 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} = 0 \qquad (1.5.4)$$

$$\implies AC \perp BC$$
 (1.5.5)

and \mathbf{v}_1 and \mathbf{v}_2 are said to be orthogonal.

1.6. Find the equation of the line through $\binom{-2}{3}$ with slope - 4

Solution: From (1.2.4), the direction vector is

$$\mathbf{m} = \begin{pmatrix} 1 \\ -4 \end{pmatrix} \tag{1.6.1}$$

and from (1.4.1), the normal vector is

$$\mathbf{n} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \tag{1.6.2}$$

Using (1.4.2), the equation of the line is

$$\begin{pmatrix} 4 & 1 \end{pmatrix} \left\{ \mathbf{x} - \begin{pmatrix} -2 \\ 3 \end{pmatrix} \right\} = 0 \tag{1.6.3}$$

$$\implies (4 \quad 1)\mathbf{x} = -5 \tag{1.6.4}$$

Fig. 1.6 shows the line passing through the given point.

1.7. Write the equation of the line through the points $\mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{x}_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

Fig. 1.7: Line obtained in Problem 1.7.

Solution: From (1.4.5),

$$\mathbf{n}^T \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1 \tag{1.7.1}$$

$$\mathbf{n}^T \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 1 \tag{1.7.2}$$

resulting in the the matrix equation

$$\begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.7.3}$$

yielding the augmented matrix

$$\begin{pmatrix} 1 & -1 & 1 \\ 3 & 5 & 1 \end{pmatrix} \tag{1.7.4}$$

Performing row reduction,

$$\begin{pmatrix} 1 & -1 & 1 \\ 3 & 5 & 1 \end{pmatrix} \tag{1.7.5}$$

$$\stackrel{R_2 \leftarrow R_2 - 3R_1}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 8 & -2 \end{pmatrix} \tag{1.7.6}$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 4 & -1 \end{pmatrix} \tag{1.7.7}$$

$$\stackrel{R_1 \leftarrow 4R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} 4 & 0 & 3 \\ 0 & 4 & -1 \end{pmatrix} \tag{1.7.8}$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{4}}{\underset{R_1 \leftarrow \frac{R_1}{4}}{\longleftarrow}} \begin{pmatrix} 1 & 0 & \frac{3}{4} \\ 0 & 1 & -\frac{1}{4} \end{pmatrix}$$
(1.7.9)

From (1.7.9),

$$\mathbf{n} = \frac{1}{4} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \tag{1.7.10}$$

Fig. 1.8: Points on a line and points forming a triangle in Example 1.8.

Thus the equation of the desired line is

$$\frac{1}{4} \begin{pmatrix} 3 & -1 \end{pmatrix} \mathbf{x} = 1 \tag{1.7.11}$$

or,
$$(3 -1)x = 4$$
 (1.7.12)

Fig. 1.7 shows the line passing through the given points.

1.8. (*Linear Dependence*) Prove that the three points $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 8 \\ 2 \end{pmatrix}$ are collinear

Solution: Let

$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

$$\mathbf{v}_2 = \begin{pmatrix} -2 \\ -2 \end{pmatrix} - \begin{pmatrix} 8 \\ 2 \end{pmatrix} = \begin{pmatrix} -10 \\ -4 \end{pmatrix}$$

$$(1.8.1)$$

Then, the given points are collinear if

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 = 0 \tag{1.8.2}$$

has a nontrivial solution as well, i.e.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq \mathbf{0} \tag{1.8.3}$$

Substituting (1.8.1) in (1.8.2) results in the matrix equation

$$\begin{pmatrix} 5 & -10 \\ 2 & -4 \end{pmatrix} \mathbf{x} = 0 \tag{1.8.4}$$

Performing row operations on the matrix,

$$\begin{pmatrix} 5 & -10 \\ 2 & -4 \end{pmatrix} \stackrel{R_2 \leftarrow 2R_1 - 5R_2}{\longleftrightarrow} \begin{pmatrix} 5 & -10 \\ 0 & 0 \end{pmatrix} \tag{1.8.5}$$

which can be expressed as

or,
$$\mathbf{x} = x_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 (1.8.7)

Thus, there are infinite solutions. The vectors \mathbf{v}_1 , \mathbf{v}_2 are are linearly dependent and the given

Fig. 1.10: Points on a triangle in Problem 1.10.

points lie on a straight line.

1.9. Alternatively, if the given points are collinear, from (1.4.5),

$$\begin{pmatrix} 3 & 0 \\ -2 & -2 \\ 8 & 2 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{1.9.1}$$

Row reducing the augmented matrix,

$$\begin{pmatrix} 3 & 0 & 1 \\ -2 & -2 & 1 \\ 8 & 2 & 1 \end{pmatrix} \tag{1.9.2}$$

$$\stackrel{R_3 \leftarrow 3R_3 - 8R_1}{\longleftrightarrow} \stackrel{\begin{pmatrix} 3 & 0 & 1 \\ 0 & -6 & 5 \\ 0 & 6 & -5 \end{pmatrix}}{(1.9.3)}$$

$$\stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 6 & -5 \\ 0 & 0 & 0 \end{pmatrix} \tag{1.9.4}$$

The above matrix has a zero row in echelon form, hence (1.9.1) is consistent and the given points are on a straight line. Also,

$$\mathbf{n} = \frac{1}{6} \begin{pmatrix} 2 \\ -5 \end{pmatrix} \tag{1.9.5}$$

1.10. (*Linear Independence*) Do the points $\binom{3}{2}$, $\binom{-2}{-3}$, $\binom{2}{3}$ form a triangle?

Solution: In this case

$$\mathbf{v}_1 = \begin{pmatrix} 3\\2 \end{pmatrix} - \begin{pmatrix} -2\\-3 \end{pmatrix} = \begin{pmatrix} 5\\5 \end{pmatrix} \tag{1.10.1}$$

$$\mathbf{v}_2 = \begin{pmatrix} -2 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -4 \\ -6 \end{pmatrix}$$
 (1.10.2)

Thus,

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 = 0 \tag{1.10.3}$$

$$\implies \begin{pmatrix} 5 & -4 \\ 5 & -6 \end{pmatrix} \mathbf{x} = 0 \tag{1.10.4}$$

Using row operations,

$$\begin{pmatrix} 5 & -4 \\ 5 & -6 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_1 - R_2} \begin{pmatrix} 5 & -4 \\ 0 & 2 \end{pmatrix} \tag{1.10.5}$$

$$\stackrel{R_1 \leftarrow R_1 + 2R_2}{\longleftrightarrow} \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \tag{1.10.6}$$

resulting in a full rank matrix. Hence,

$$\mathbf{x} = 0 \tag{1.10.7}$$

and \mathbf{v}_1 and \mathbf{v}_2 are *linearly independent*. The points lie on a triangle.

1.11. Alternatively, from (1.4.5), row reducing the augmented matrix

$$\begin{pmatrix} 3 & 2 & 1 \\ -2 & -3 & 1 \\ 2 & 3 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 3 & 2 & 1 \\ -2 & -3 & 1 \\ 0 & 0 & 2 \end{pmatrix} (1.11.1)$$

The above matrix has a nonzero row in echelon form, hence the given points do not lie on a straight line. So they lie on a triangle.

(1.9.2) 1.12. Find the angle between the lines

$$(1 - \sqrt{3}) \mathbf{x} = 5$$

$$(\sqrt{3} - 1) \mathbf{x} = -6.$$

$$(1.12.1)$$

Solution: The angle between the lines can be expressed in terms of the normal vectors

$$\mathbf{n}_1 = \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix}, \mathbf{n}_2 = \begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix} \tag{1.12.2}$$

as

$$\cos \theta = \frac{\mathbf{n}_1^T \mathbf{n}_2}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|} \tag{1.12.3}$$

$$=\frac{\sqrt{3}}{2} \implies \theta = 30^{\circ} \tag{1.12.4}$$

1.13. Find the projection of the vector

$$\mathbf{a} = \begin{pmatrix} 2\\3\\2 \end{pmatrix} \tag{1.13.1}$$

on the vector

$$\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}. \tag{1.13.2}$$

Solution: If the angle between the vectors be θ , the projection is defined as

$$\mathbf{proj_ba} = (\|\mathbf{a}\|\cos\theta) \frac{\mathbf{b}}{\|\mathbf{b}\|} = \frac{(\mathbf{a}^T\mathbf{b})}{\|\mathbf{b}\|^2} \mathbf{b} \quad (1.13.3)$$

Substituting the values from (1.13.1) and (1.13.2),

$$\mathbf{proj_ba} = \frac{5}{3} \begin{pmatrix} 1\\2\\1 \end{pmatrix} \tag{1.13.4}$$

1.14. (*Reflection*) Assuming that straight lines work as a plane mirror for a point, find the image of the point $\mathbf{P} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in the line

$$L: \quad (1 \quad -3)\mathbf{x} = -4. \tag{1.14.1}$$

Solution: From the given equation, the line parameters are

$$\mathbf{n} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}, c = -4, \mathbf{m} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 (1.14.2)

Let \mathbf{R} be the reflection of \mathbf{P} such that PR bisects the line L at \mathbf{Q} . Then \mathbf{Q} bisects PR. This leads to the following equations

$$2\mathbf{O} = \mathbf{P} + \mathbf{R} \tag{1.14.3}$$

 $\mathbf{n}^T \mathbf{Q} = c$: \mathbf{Q} lies on the given line (1.14.4)

$$\mathbf{m}^T \mathbf{R} = \mathbf{m}^T \mathbf{P} \quad :: \mathbf{m} \perp \mathbf{P} - \mathbf{R} \quad (1.14.5)$$

From (1.14.3) and (1.14.4),

$$\mathbf{n}^T \mathbf{R} = 2c - \mathbf{n}^T \mathbf{P} \tag{1.14.6}$$

From (1.14.6) and (1.14.5),

$$(\mathbf{m} \ \mathbf{n})^T \mathbf{R} = (\mathbf{m} \ -\mathbf{n})^T \mathbf{P} + \begin{pmatrix} 0 \\ 2c \end{pmatrix}$$
 (1.14.7)

Letting

$$\mathbf{V} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \tag{1.14.8}$$

with the condition that \mathbf{m} , \mathbf{n} are orthonormal, i.e.

$$\mathbf{V}^T \mathbf{V} = \mathbf{I} \tag{1.14.9}$$

Noting that

$$\begin{pmatrix} \mathbf{m} & -\mathbf{n} \end{pmatrix} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1.14.10)$$

(1.14.7) can be expressed as

$$\mathbf{V}^{T}\mathbf{R} = \begin{bmatrix} \mathbf{V} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}^{T} \mathbf{P} + \begin{pmatrix} 0 \\ 2c \end{pmatrix} \quad (1.14.11)$$

$$\implies \mathbf{R} = \begin{bmatrix} \mathbf{V} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{V}^{-1} \end{bmatrix}^{T} \mathbf{P} + \mathbf{V} \begin{pmatrix} 0 \\ 2c \end{pmatrix} \quad (1.14.12)$$

$$= \mathbf{V} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{V}^{T} \mathbf{P} + 2c\mathbf{n} \quad (1.14.13)$$

upon substituting from (1.14.8) in (1.14.13). It can be verified that the reflection is also given by

$$\mathbf{R} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix}^T \mathbf{P} + 2c\mathbf{n}$$
(1.14.14)

$$= (\mathbf{m} - \mathbf{n}) \begin{pmatrix} \mathbf{m}^T \\ \mathbf{n}^T \end{pmatrix} \mathbf{P} + 2c\mathbf{n} \quad (1.14.15)$$

$$\implies$$
 R = $(\mathbf{m}\mathbf{m}^T - \mathbf{n}\mathbf{n}^T)\mathbf{P} + 2c\mathbf{n}$ (1.14.16)

If \mathbf{m} , \mathbf{n} are not orthonormal, (1.14.16) can be expressed as

$$\frac{\mathbf{R}}{2} = \frac{\mathbf{m}\mathbf{m}^T - \mathbf{n}\mathbf{n}^T}{\mathbf{m}^T \mathbf{m} + \mathbf{n}^T \mathbf{n}} \mathbf{P} + c \frac{\mathbf{n}}{\|\mathbf{n}\|^2}$$
(1.14.17)

1.15. (Gram-schmidt orthogonalization) Let

$$\alpha = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} \tag{1.15.1}$$

$$\beta = \begin{pmatrix} 2\\1\\-3 \end{pmatrix} \tag{1.15.2}$$

Find β_1, β_2 such that

$$\beta = \beta_1 + \beta_2, \quad \beta_1 \parallel \alpha, \beta_2 \perp \alpha$$
 (1.15.3)

Solution: Let $\beta_1 = k\alpha$. Then, $\beta_1 \parallel \alpha$ and

$$\beta = k\alpha + \beta_2 \tag{1.15.4}$$

$$\implies \alpha^T \beta = k \|\alpha\|^2 + k \beta_1^T \beta_2 \qquad (1.15.5)$$

or,
$$k = \frac{\alpha^T \beta}{\|\alpha\|^2}$$
, $\therefore \beta_1 \perp \beta_2$ (1.15.6)

Thus.

$$\beta_1 = \frac{\alpha^T \beta}{\|\alpha\|^2} \alpha = \frac{1}{2} \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$$
 (1.15.7)

$$\beta_2 = \beta - \beta_1 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 3 \\ -6 \end{pmatrix}$$
(1.15.8)

Thus, any given set of vectors can be expressed as a linear combination of another set of orthogonal vectors.

2 Plane

2.1. Find the equation of a plane passing through the points $\mathbf{a} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -2 \\ -3 \\ 5 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 5 \\ 3 \\ -3 \end{pmatrix}$

Solution: The equation of plane is also given by (1.4.5) in 3D. Following the approach in the previous example results in the matrix equation,

$$\begin{pmatrix} 2 & 5 & -3 \\ -2 & -3 & 5 \\ 5 & 3 & -3 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (2.1.1)

Row reducing the augmented matrix,

$$\begin{pmatrix} 2 & 5 & -3 & 1 \\ -2 & -3 & 5 & 1 \\ 5 & 3 & -3 & 1 \end{pmatrix}$$
 (2.1.2)

$$\stackrel{R_2 \leftarrow \frac{R_2 + R_1}{2}}{\underset{R_3 \leftarrow 2R_3 - 5R_1}{\longleftrightarrow}} \begin{pmatrix} 2 & 5 & -3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -19 & 9 & -3 \end{pmatrix}$$
(2.1.3)

$$\stackrel{R_1 \leftarrow R_1 - 5R_2}{\underset{R_3 \leftarrow \frac{R_3 + 19R_2}{4}}{\longleftrightarrow}} \begin{pmatrix} 2 & 0 & -8 & -4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 7 & 4 \end{pmatrix}$$
(2.1.4)

$$\stackrel{R_1 \leftarrow \frac{7R_1 + 8R_3}{2}}{\underset{R_3 \leftarrow 7R2 - R_3}{\longleftarrow}} \begin{pmatrix} 7 & 0 & 0 & 2 \\ 0 & 7 & 0 & 3 \\ 0 & 0 & 7 & 4 \end{pmatrix}$$
(2.1.5)

$$\implies \mathbf{n} = \frac{1}{7} \begin{pmatrix} 2\\3\\4 \end{pmatrix} \qquad (2.1.6)$$

Thus, the equation of the plane passing through the given points is

$$(2 \ 3 \ 4) \mathbf{x} = 7 \tag{2.1.7}$$

2.2. Find the angle between the two planes

$$(2 \ 1 \ -2)\mathbf{x} = 5 \tag{2.2.1}$$

$$(3 -6 -2)\mathbf{x} = 7 \tag{2.2.2}$$

Solution: The angle between two planes is the same as the angle between their normal vectors. For

$$\mathbf{n}_1 = \begin{pmatrix} 2\\1\\-2 \end{pmatrix} \mathbf{n}_2 = \begin{pmatrix} 3\\-6\\-2 \end{pmatrix} \tag{2.2.3}$$

using (1.12.3),

$$\cos \theta = \frac{6 - 6 + 4}{\sqrt{9}\sqrt{49}} = \frac{4}{21} \tag{2.2.4}$$

3 Pseudo Inverse

3.1. To find the shortest distance between the lines

$$L_1: \mathbf{x} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \tag{3.1.1}$$

$$L_2 \colon \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \tag{3.1.2}$$

3.2. If the two lines intersect,

$$\mathbf{x}_1 + \lambda_1 \mathbf{m}_1 = \mathbf{x}_2 + \lambda_2 \mathbf{m}_2 \qquad (3.2.1)$$

$$\implies (\mathbf{m}_1 \quad \mathbf{m}_2) \begin{pmatrix} \lambda_1 \\ -\lambda_2 \end{pmatrix} = \mathbf{x}_2 - \mathbf{x}_1 \qquad (3.2.2)$$

or,
$$\mathbf{M} \begin{pmatrix} \lambda_1 \\ -\lambda_2 \end{pmatrix} = \mathbf{x}_2 - \mathbf{x}_1$$
 (3.2.3)

where

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \mathbf{x}_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \mathbf{m}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}.$$
(3.2.4)

$$\mathbf{M} = \begin{pmatrix} \mathbf{m}_1 & \mathbf{m}_2 \end{pmatrix} \tag{3.2.5}$$

From the augmented matrix in (3.2.3),

$$\begin{pmatrix} 1 & -2 & 1 \\ -1 & -1 & -3 \\ 1 & -2 & -2 \end{pmatrix}$$

$$(3.2.6)$$

$$\begin{pmatrix} 1 & -2 & 1 \\ -1 & -1 & -3 \\ 1 & -2 & -2 \end{pmatrix} \xrightarrow{R_1 = R_1 - R_2} \begin{pmatrix} 0 & 0 & 3 \\ -1 & -1 & -3 \\ 1 & -2 & -2 \end{pmatrix}$$

$$\begin{pmatrix}
-1 & -1 & -3 \\
1 & -2 & -2
\end{pmatrix}
\xrightarrow{R_1 = R_1 - R_2}
\begin{pmatrix}
-1 & -1 & -3 \\
1 & -2 & -2
\end{pmatrix}$$
(3.2.7)

The above matrix has a rank = 3. Hence the lines do not intersect.

3.3. Let

$$\mathbf{A} = \mathbf{x}_1 + \lambda_1 \mathbf{m}_1 \tag{3.3.1}$$

$$\mathbf{B} = \mathbf{x}_2 + \lambda_2 \mathbf{m}_2 \tag{3.3.2}$$

be the closest points on L_1 and L_2 respectively. Then the shortest distance between two skew lines will be the length of line perpendicular to both the lines L_1, L_2 and passing through A and B. Thus,

$$\mathbf{m_1}^T (\mathbf{A} - \mathbf{B}) = 0 \tag{3.3.3}$$

$$\mathbf{m_2}^T (\mathbf{A} - \mathbf{B}) = 0 \tag{3.3.4}$$

$$\implies \mathbf{M}^T (\mathbf{A} - \mathbf{B}) = 0 \tag{3.3.5}$$

From (3.3.2) and (3.2.5)

$$\mathbf{A} - \mathbf{B} = \mathbf{x}_1 - \mathbf{x}_2 + \mathbf{M} \begin{pmatrix} \lambda_1 \\ -\lambda_2 \end{pmatrix}$$
 (3.3.6)

and using (3.3.5), in the above,

$$\mathbf{M}^{T}\mathbf{M} \begin{pmatrix} \lambda_{1} \\ -\lambda_{2} \end{pmatrix} = \mathbf{M}^{T} (\mathbf{x}_{2} - \mathbf{x}_{1})$$
 (3.3.7)

3.4. Substituting the values from (3.2.4) in (3.3.7) and forming the augmented matrix,

$$\begin{pmatrix} 3 & 3 & 2 \\ 3 & 9 & -5 \end{pmatrix} \quad (3.4.1)$$

$$\begin{pmatrix} 3 & 3 & 2 \\ 3 & 9 & -5 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 3 & 3 & 2 \\ 0 & 6 & -7 \end{pmatrix} \quad (3.4.2)$$

$$\begin{pmatrix} 3 & 3 & 2 \\ 0 & 6 & -7 \end{pmatrix} \xrightarrow{R_1 = 2R_1 - R_2} \begin{pmatrix} 6 & 0 & 11 \\ 0 & 6 & -7 \end{pmatrix} \quad (3.4.3)$$

$$\begin{pmatrix} 6 & 0 & 11 \\ 0 & 6 & -7 \end{pmatrix} \xrightarrow{R_1 = \frac{R_1}{6}, R_2 = \frac{R_2}{6}} \begin{pmatrix} 1 & 0 & \frac{11}{6} \\ 0 & 1 & \frac{-7}{6} \end{pmatrix} \quad (3.4.4)$$

$$\lambda_1 = \frac{11}{6}, \lambda_2 = \frac{7}{6}$$
 (3.4.5)

yielding

$$A = \frac{1}{6} \begin{pmatrix} 17\\1\\17 \end{pmatrix}, B = \frac{1}{6} \begin{pmatrix} 26\\1\\8 \end{pmatrix}. \tag{3.4.6}$$

3.5. The distance is then obtained as

$$\|\mathbf{B} - \mathbf{A}\| = \frac{3}{\sqrt{2}}$$
 (3.5.1)

Fig. 3.5 shows the various points and distances between the lines.

Fig. 3.5: This is the plot of the given skew lines and the blue line indicates the normal to the given lines

4 QUADRATIC FORMS

4.1. The general equation of second degree is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
 (4.1.1)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{4.1.2}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{4.1.3}$$

$$\mathbf{u} = \begin{pmatrix} d & e \end{pmatrix} \tag{4.1.4}$$

4.2. Pair of straight lines: (4.1.2) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{4.2.1}$$

otherwise, (4.1.2) represents a conic section.

5 Pair of Straight Lines

5.1. Two intersecting lines are obtained if

$$|\mathbf{V}| < 0 \tag{5.1.1}$$

5.2. Let the pair of straight lines be given by

$$\mathbf{n}_1^T \mathbf{x} = c_1 \tag{5.2.1}$$

$$\mathbf{n}_2^T \mathbf{x} = c_2 \tag{5.2.2}$$

Equating their product with (4.1.2),

$$(\mathbf{n}_1^T \mathbf{x} - c_1) (\mathbf{n}_2^T \mathbf{x} - c_2)$$
$$= \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \quad (5.2.3)$$

$$\implies \mathbf{n}_1 * \mathbf{n}_2 = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \tag{5.2.4}$$

$$c_2 \mathbf{n}_1 + c_1 \mathbf{n}_2 = -2\mathbf{u} \tag{5.2.5}$$

$$c_1 c_2 = f (5.2.6)$$

where * represents convolution.

5.3. The slopes of the lines are given by the roots of the polynomial

$$cm^2 + 2bm + a = 0 (5.3.1)$$

$$\implies m_i = \frac{-b \pm \sqrt{-|V|}}{c} \tag{5.3.2}$$

and

$$\mathbf{n}_i = k_i \begin{pmatrix} -m_i \\ 1 \end{pmatrix}, \quad i = 1, 2.$$
 (5.3.3)

5.4. From (5.2.5),

$$\begin{pmatrix} \mathbf{n}_1 & \mathbf{n}_2 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2\mathbf{u}$$
 (5.4.1)

 c_1, c_2 can be obtained such that they satisfy (5.2.6).

6 Conic Sections

6.1. (Affine Transformation and Eigenvalue Decomposition) Using

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c}$$
 (Affine Transformation) (6.1.1)

such that

 $\mathbf{P}^T \mathbf{V} \mathbf{P} = \mathbf{D}$. (Eigenvalue Decomposition)

(6.1.2)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},\tag{6.1.3}$$

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \quad \mathbf{P}^T = \mathbf{P}^{-1} \tag{6.1.4}$$

(4.1.2) can be expressed as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \qquad |V| \neq 0 \qquad (6.1.5)$$

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \qquad |V| = 0 \qquad (6.1.6)$$

with

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |V| \neq 0 \quad (6.1.7)$$

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p}_1^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_1 - \mathbf{u} \end{pmatrix} \quad |V| = 0 \quad (6.1.8)$$

where
$$\eta = \mathbf{n}^T \mathbf{p}_1$$
 (6.1.9)

Solution: Proofs for (6.1.5), (6.1.6), (6.1.7) and (6.1.8) are available in Appendix A.

6.2. (Centre/Vertex) The centre/vertex of the conic section in (4.1.2) is given by **c** in (6.1.7) or (6.1.8). This is because from (6.1.1),

$$\mathbf{y} = \mathbf{P}^T \left(\mathbf{x} - \mathbf{c} \right) \tag{6.2.1}$$

and

$$y = 0 \implies x = c$$
 (6.2.2)

6.3. (Circle) For a circle,

$$\mathbf{V} = \mathbf{D} = \mathbf{P} = \mathbf{I} \tag{6.3.1}$$

and the centre is obtained from (6.1.7), (6.2.2) as

$$\mathbf{c} = -\mathbf{u} \tag{6.3.2}$$

(6.1.5) becomes

$$\mathbf{y}^T \mathbf{y} = ||\mathbf{y}||^2 = \left(\sqrt{\mathbf{u}^T \mathbf{u} - f}\right)^2 \tag{6.3.3}$$

and the radius is

$$\sqrt{\mathbf{u}^T \mathbf{u} - f} \tag{6.3.4}$$

6.4. (Ellipse) For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0, \lambda_2 > 0$ (6.4.1)

and (6.1.5) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_1^2 = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{6.4.2}$$

which is the equation of an ellipse with major and minor axes parameters

$$\sqrt{\frac{\lambda_1}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}, \sqrt{\frac{\lambda_2}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}.$$
 (6.4.3)

The centre is obtained from (6.2.2) as (6.1.7). 6.5. (*Hyperbola*) For

$$|\mathbf{V}| < 0$$
, or, $\lambda_1 > 0, \lambda_2 < 0$ (6.5.1)

and (6.1.5) becomes

$$\lambda_1 y_1^2 - (-\lambda_2) y_1^2 = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f$$
 (6.5.2)

with major and minor axes parameters

$$\sqrt{\frac{\lambda_1}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}, \sqrt{\frac{\lambda_2}{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}}, \qquad (6.5.3)$$

The centre is obtained from (6.2.2) as (6.1.7). 6.6. (*Parabola*) For

$$|\mathbf{V}| = 0$$
, or, $\lambda_1 = 0$. (6.6.1)

The vertex of the parabola is obtained using (6.1.8) and the focal length is

$$\left| \frac{2\mathbf{p}_1^T \mathbf{u}}{\lambda_2} \right| \tag{6.6.2}$$

7 Tangents and Normals

7.1. Secant: The points of intersection of the line

$$L: \quad \mathbf{x} = \mathbf{q} + \mu \mathbf{m} \quad \mu \in \mathbb{R} \tag{7.1.1}$$

with the conic section in (4.1.2) are given by

$$\mathbf{x}_i = \mathbf{q} + \mu_i \mathbf{m} \tag{7.1.2}$$

where

$$\mu_{i} = \frac{1}{\mathbf{m}^{T} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right)$$

$$\pm \sqrt{\left[\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right]^{2} - \left(\mathbf{q}^{T} \mathbf{V} \mathbf{q} + 2 \mathbf{u}^{T} \mathbf{q} + f \right) \left(\mathbf{m}^{T} \mathbf{V} \mathbf{m} \right)}$$
(7.1.3)

Solution: Substituting (7.1.1) in (4.1.2),

$$(\mathbf{q} + \mu \mathbf{m})^T \mathbf{V} (\mathbf{q} + \mu \mathbf{m}) + 2\mathbf{u}^T (\mathbf{q} + \mu \mathbf{m}) + f = 0$$

$$\implies \mu^2 \mathbf{m}^T \mathbf{V} \mathbf{m} + 2\mu \mathbf{m}^T (\mathbf{V} \mathbf{q} + \mathbf{u})$$

$$+ \mathbf{q}^T \mathbf{V} \mathbf{q} + 2\mathbf{u}^T \mathbf{q} + f = 0 \quad (7.1.4)$$

Solving the above quadratic in (7.1.4) yields (7.1.3).

7.2. Tangent: If L in (7.1.1) touches (4.1.2) at exactly one point \mathbf{q} ,

$$\mathbf{m}^T \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) = 0 \tag{7.2.1}$$

Solution: In this case, (7.1.4) has exactly one root. Hence, in (7.1.3)

$$\left[\mathbf{m}^{T} \left(\mathbf{V}\mathbf{q} + \mathbf{u}\right)\right]^{2} - \left(\mathbf{m}^{T}\mathbf{V}\mathbf{m}\right)\left(\mathbf{q}^{T}\mathbf{V}\mathbf{q} + 2\mathbf{u}^{T}\mathbf{q} + f\right) = 0 \quad (7.2.2)$$

 \because **q** is the point of contact, **q** satisfies (4.1.2) and

$$\mathbf{q}^T \mathbf{V} \mathbf{q} + 2\mathbf{u}^T \mathbf{q} + f = 0 \tag{7.2.3}$$

Substituting (7.2.3) in (7.2.2) and simplifying, we obtain (7.2.1).

7.3. The normal vector is obtained from (7.2.1) and (1.4.1) as

$$\mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u} \tag{7.3.1}$$

7.4. Given the point of contact \mathbf{q} , the equation of a tangent is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^T \mathbf{x} + \mathbf{u}^T \mathbf{q} + f = 0$$
 (7.4.1)

Solution: From (7.3.1) and (1.4.2), the equation of the tangent is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^T (\mathbf{x} - \mathbf{q}) = 0 \quad (7.4.2)$$

$$\implies (\mathbf{V}\mathbf{q} + \mathbf{u})^T \mathbf{x} - \mathbf{q}^T \mathbf{V}\mathbf{q} - \mathbf{u}^T \mathbf{q} = 0 \quad (7.4.3)$$

which, upon substituting from (7.2.3) and simplifying yields (7.1.1).

7.5. If V^{-1} exists, given the normal vector \mathbf{n} , the tangent points of contact to (4.1.2) are given by

$$\mathbf{q}_i = \mathbf{V}^{-1} \left(\kappa_i \mathbf{n} - \mathbf{u} \right), i = 1, 2 \qquad (7.5.1)$$

where
$$\kappa_i = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (7.5.2)

Solution: From (7.3.1),

$$\mathbf{q} = \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}), \quad \kappa \in \mathbb{R}$$
 (7.5.3)

Substituting (7.5.3) in (7.2.3),

$$(\kappa \mathbf{n} - \mathbf{u})^{T} \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u})$$

$$+ 2\mathbf{u}^{T} \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}) + f = 0$$

$$\implies \kappa^{2} \mathbf{n}^{T} \mathbf{V}^{-1} \mathbf{n} - \mathbf{u}^{T} \mathbf{V}^{-1} \mathbf{u} + f = 0$$
or, $\kappa = \pm \sqrt{\frac{\mathbf{u}^{T} \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^{T} \mathbf{V}^{-1} \mathbf{n}}}$ (7.5.4)

Substituting (7.5.4) in (7.5.3) yields (7.5.2).

7.6. If **V** is not invertible, given the normal vector **n**, the point of contact to (4.1.2) is given by the matrix equation

$$\begin{pmatrix} \mathbf{u} + \kappa \mathbf{n}^T \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
 (7.6.1)

where
$$\kappa = \frac{\mathbf{p}_1^T \mathbf{u}}{\mathbf{p}_1^T \mathbf{n}}, \quad \mathbf{V} \mathbf{p}_1 = 0$$
 (7.6.2)

Solution: If **V** is non-invertible, it has a zero eigenvalue. If the corresponding eigenvector is \mathbf{p}_1 , then,

$$\mathbf{V}\mathbf{p}_1 = 0 \tag{7.6.3}$$

From (7.3.1),

$$\kappa \mathbf{n} = \mathbf{V} \mathbf{q} + \mathbf{u}, \quad \kappa \in \mathbb{R}$$
 (7.6.4)

$$\implies \kappa \mathbf{p}_1^T \mathbf{n} = \mathbf{p}_1^T \mathbf{V} \mathbf{q} + \mathbf{p}_1^T \mathbf{u} \tag{7.6.5}$$

or,
$$\kappa \mathbf{p}_1^T \mathbf{n} = \mathbf{p}_1^T \mathbf{u}$$
, $\mathbf{p}_1^T \mathbf{V} = 0$, (7.6.6)

from
$$(7.6.3)$$
 $(7.6.7)$

yielding κ in (7.6.2). From (7.6.4),

$$\kappa \mathbf{q}^{T} \mathbf{n} = \mathbf{q}^{T} \mathbf{V} \mathbf{q} + \mathbf{q}^{T} \mathbf{u}$$
 (7.6.8)

$$\implies \kappa \mathbf{q}^{T} \mathbf{n} = -f - \mathbf{q}^{T} \mathbf{u}$$
 from (7.2.3),

or,
$$(\kappa \mathbf{n} + \mathbf{u}) \mathbf{q} = -f$$
 (7.6.10)

(7.6.4) can be expressed as

$$\mathbf{V}\mathbf{q} = \kappa \mathbf{n} - \mathbf{u}.\tag{7.6.11}$$

(7.6.10) and (7.6.11) clubbed together result in (7.6.1).

7.7. All the results related to conics are summarized in Table 7.7.

8 Example: Pair of Straight Lines

8.1. Given,

$$12x^{2} + 7xy - 10y^{2} + 13x + 45y - 35 = 0$$
(8.1.1)

it is easy to verify that

$$\begin{vmatrix} 12 & \frac{7}{2} & \frac{13}{2} \\ \frac{7}{2} & -10 & \frac{45}{2} \\ \frac{13}{2} & \frac{45}{2} & -35 \end{vmatrix} = 0 \tag{8.1.2}$$

Hence, (8.1.1) represents a pair of straight lines.

8.2. (8.1.1) can be expressed as (4.1.2) with

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 12 & \frac{7}{2} \\ \frac{7}{2} & -10 \end{pmatrix} \tag{8.2.1}$$

$$\mathbf{u} = \begin{pmatrix} \frac{13}{25} \\ \frac{45}{2} \end{pmatrix} \tag{8.2.2}$$

$$f = -35 (8.2.3)$$

From (8.1.1) and (5.3.1),

$$\implies m_i = \frac{-7 \pm \sqrt{49 + 480}}{-20} \tag{8.2.4}$$

$$\implies m_1 = \frac{3}{2}, m_2 = -\frac{4}{5} \tag{8.2.5}$$

Thus,

$$\mathbf{m}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 5 \\ -4 \end{pmatrix} \tag{8.2.6}$$

$$\implies \mathbf{n}_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \mathbf{n}_2 = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{8.2.7}$$

8.3. Using the Toeplitz matrix,

$$\mathbf{n}_1 * \mathbf{n}_2 = \begin{pmatrix} 3 & 0 \\ -2 & 3 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 12 \\ 7 \\ -10 \end{pmatrix}$$
 (8.3.1)

which matches the corresponding coefficients in (8.1.1)

Conic	Property	Standard Form	Standard Parameters	Point(s) of Contact
Circle	V = I	$\frac{\mathbf{y}^T \mathbf{D} \mathbf{y}}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f} = 1$	$\mathbf{c} = -\mathbf{u},$ $r = \sqrt{\mathbf{u}^T \mathbf{u} - f}$	$\mathbf{q} = \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u})$
Ellipse	$ \mathbf{V} > 0$ $\lambda_1 > 0, \lambda_2 < 0$	$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ $\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T$ $\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}$	$axes = \begin{cases} \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} \\ \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}} \end{cases}$	$\kappa = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$
Hyperbola	$ \mathbf{V} < 0$ $\lambda_1 > 0, \lambda_2 < 0$		$axes = \begin{cases} \mathbf{v}^{-1}\mathbf{u}, \\ \sqrt{\frac{\mathbf{u}^{T}\mathbf{v}^{-1}\mathbf{u} - f}{\lambda_{1}}} \\ \sqrt{\frac{f - \mathbf{u}^{T}\mathbf{v}^{-1}\mathbf{u}}{\lambda_{2}}} \end{cases}$	
Parabola	$ \mathbf{V} = 0$ $\lambda_1 = 0$	$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y}$	focal length = $\left \frac{\eta}{\lambda_2}\right $ $\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p}_1^T \\ \mathbf{v} \end{pmatrix} \mathbf{c}$ $= \begin{pmatrix} -f \\ \eta \mathbf{p}_1 - \mathbf{u} \end{pmatrix}$ $\eta = 2\mathbf{p}_1^T \mathbf{u}$	$ \begin{pmatrix} \mathbf{u} + \kappa \mathbf{n}^T \\ \mathbf{v} \end{pmatrix} \mathbf{q} $ $ = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix} $ $ \kappa = \frac{\mathbf{p_1}^T \mathbf{u}}{\mathbf{p_1}^T \mathbf{n}} $

TABLE 7.7: $\mathbf{x}^T \mathbf{V} \mathbf{x} + 2 \mathbf{u}^T \mathbf{x} + f = 0$ can be expressed in the above standard form for various conics. \mathbf{c} represents the centre/vertex of the conic. \mathbf{q} is/are the point(s) of contact for the tangent(s).

8.4. Substituting from (8.2.7) in (5.4.1), the augmented matrix is

$$\begin{pmatrix} 3 & 4 & -13 \\ -2 & 5 & -45 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{2R_1 + 3R_2}{23}} \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & -7 \end{pmatrix}$$
 (8.4.1)
$$\implies c_1 = -7, c_2 = 5$$
 (8.4.2)

Fig. 8.4 plots the lines in (8.1.1)

Fig. 8.4: Pair of straight lines

8.5. From (8.2.7) the angle between the two straight

lines is given by

$$\theta = \cos^{-1} \left(\frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|} \right)$$
 (8.5.1)

$$\mathbf{n_1}^T \mathbf{n_2} = \begin{pmatrix} 3 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = 2$$
 (8.5.2)

$$\|\mathbf{n_1}\| = \sqrt{3^2 + (-2)^2} = \sqrt{13}$$
 (8.5.3)

$$\|\mathbf{n}_2\| = \sqrt{4^2 + 5^2} = \sqrt{41}$$
 (8.5.4)

Substituting equations (8.5.2), (8.5.3), (8.5.4) in equation (8.5.1), we get

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{13}\sqrt{41}}\right)$$
 (8.5.5)

$$\theta = 85^{\circ} \tag{8.5.6}$$

9 Circle

9.1. Find the centre and radius of the circle

$$x^2 + y^2 + 8x + 10y - 8 = 0$$
 (9.1.1)

Solution: (9.1.1) can be expressed as

$$\mathbf{x}^T \mathbf{x} + 2(4 \quad 5)\mathbf{x} - 8 = 0$$
 (9.1.2)

which is of the form (4.1.2) with

$$\mathbf{u} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, f = -8 \tag{9.1.3}$$

From Table 7.7, the center and radius are given by

$$\mathbf{c} = -\mathbf{u} = \begin{pmatrix} -4 \\ -5 \end{pmatrix}, r = \sqrt{\|u\|^2 - f} = 7 \quad (9.1.4)$$

9.2. Find the equation of a circle which passes through the points $\mathbf{P} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and whose centre lies on the line

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2 \tag{9.2.1}$$

Solution: From (4.1.2) and Table 7.7, the equation of a circle can be expressed as

$$\mathbf{x}^T \mathbf{x} - 2\mathbf{c}^T \mathbf{x} + f = 0 \tag{9.2.2}$$

where \mathbf{c} is the centre. Substituting the given points in (9.2.2) and using (9.2.1), the following equations are obtained

$$2\left(2 - 2\right)\mathbf{c} - f = 8 \tag{9.2.3}$$

$$2(3 \ 4)\mathbf{c} - f = 25$$
 (9.2.4)

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{c} = 2 \tag{9.2.5}$$

which can be expressed as the matrix equation

$$\begin{pmatrix} 1 & 1 & 0 \\ 4 & -4 & -1 \\ 6 & 8 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ f \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 25 \end{pmatrix}$$
 (9.2.6)

Row reducing the augmented matrix

$$\begin{pmatrix} 1 & 1 & 0 & 2 \\ 4 & -4 & -1 & 8 \\ 6 & 8 & -1 & 25 \end{pmatrix} \tag{9.2.7}$$

$$\stackrel{R_2 \leftarrow -R_2 + 4R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 8 & 1 & 0 \\ 0 & 2 & -1 & 13 \end{pmatrix}$$
(9.2.8)

$$\xrightarrow[R_3 \leftarrow -\frac{4R_3 - R_2}{2}]{R_3 \leftarrow -\frac{4R_3 - R_2}{2}} \begin{pmatrix} 8 & 0 & -1 & 16 \\ 0 & 8 & 1 & 0 \\ 0 & 0 & 5 & -52 \end{pmatrix}$$
(9.2.9)

$$\stackrel{R_1 \leftarrow \xrightarrow{5R_1 + R_3}}{\longleftrightarrow} \begin{pmatrix}
10 & 0 & 0 & 7 \\
0 & 10 & 0 & 13 \\
0 & 0 & 5 & -52
\end{pmatrix}$$
(9.2.10)

Thus,

$$\mathbf{c} = \frac{1}{10} \begin{pmatrix} 7\\13 \end{pmatrix} \tag{9.2.11}$$

$$f = -\frac{52}{5} \tag{9.2.12}$$

which give the desired equation of the circle. From Table 7.7,

$$r = \sqrt{\|\mathbf{c}\|^2 - f} = \frac{1}{10}\sqrt{1258}$$
 (9.2.13)

Fig. 9.2 verifies the above results.

Fig. 9.2: Circle passing through $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$. Center is on line $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{x} = 2$.

9.3. Find the points on the curve

$$x^2 + y^2 - 2x - 3 = 0 (9.3.1)$$

at which the tangents are parallel to the x-axis. **Solution:** (9.3.1) can be expressed as

$$\mathbf{x}^T \mathbf{x} + \begin{pmatrix} -2 & 0 \end{pmatrix} \mathbf{x} - 3 = 0 \quad (9.3.2)$$

$$\Longrightarrow \mathbf{V} = \mathbf{I}, \mathbf{u} = \begin{pmatrix} -1\\0 \end{pmatrix}, f = -3$$
 (9.3.3)

From Table 7.7, the centre and radius are

$$\mathbf{c} = -\mathbf{u} = \begin{pmatrix} -1\\0 \end{pmatrix}, r = \sqrt{\|\mathbf{u}\|^2 - f} = 2 \quad (9.3.4)$$

 \because the tangents are parallel to the *x*-axis, their direction and normal vectors are respectively,

$$\mathbf{m} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{9.3.5}$$

From Table 7.7,

$$\kappa = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{u} - f}{\mathbf{n}^T \mathbf{n}}} = \pm \sqrt{\frac{4}{1}} = \pm 2 \qquad (9.3.6)$$

and the desired points of contact are

$$\mathbf{q}_1, \mathbf{q}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \pm 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{9.3.7}$$

Fig. 9.2 verifies the above results.

Fig. 9.3: Tangents are parallel to the *x*-axis.

10 Ellipse

10.1. Find $\frac{dy}{dx}$ if

$$E_1: x^2 + xy + y^2 = 100$$
 (10.1.1)

Solution: Expressing (10.1.1) as (4.1.2),

$$\mathbf{V} = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}, \mathbf{u} = \mathbf{0}, f = -100.$$
 (10.1.2)

$$|V| = \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} > 0,$$
 (10.1.3)

(10.1.1) is the equation of an ellipse. To verify that this is indeed the case, we do the following exercise. The characteristic equation of V is obtained by evaluating the determinant

$$\begin{vmatrix} \lambda \mathbf{I} - \mathbf{V} \end{vmatrix} = \begin{vmatrix} \lambda - 1 & \frac{1}{2} \\ \frac{1}{2} & \lambda - 1 \end{vmatrix} = 0 \qquad (10.1.4)$$

$$\implies \lambda^2 - 2\lambda + \frac{3}{4} = 0 \qquad (10.1.5)$$

The eigenvalues are the roots of (10.1.5) given by

$$\lambda_1 = \frac{1}{2}, \lambda_2 = \frac{3}{2} \tag{10.1.6}$$

The eigenvector \mathbf{p} is defined as

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{10.1.7}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V}) \,\mathbf{p} = 0 \tag{10.1.8}$$

where λ is the eigenvalue. For $\lambda_1 = \frac{3}{2}$,

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} - R_{1}} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

$$(10.1.9)$$

$$\implies \mathbf{p}_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(10.1.10)$$

such that $\|\mathbf{p}_1\| = 1$. Similarly, the eigenvector corresponding to λ_2 can be obtained as

$$\mathbf{p}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1 \end{pmatrix} \tag{10.1.11}$$

It is easy to verify that

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} \quad \therefore \mathbf{P}^{-1} = \mathbf{P}^{T}$$
(10.1.12)

or,
$$\mathbf{D} = \mathbf{P}^T \mathbf{V} \mathbf{P}$$
 (10.1.13)

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \qquad (10.1.14)$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \tag{10.1.15}$$

From Table 7.7, ellipse parameters are given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = \mathbf{0} \tag{10.1.16}$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = 10\sqrt{\frac{2}{3}}$$
 (10.1.17)

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}} = 10\sqrt{2}$$
 (10.1.18)

In Fig. 10.1 the actual ellipse ellipse in (10.1.1) is obtained from (6.1.5) using (6.1.1). The anticlockwise 45° rotation is due to the fact that (10.1.14) can be expressed as

$$\mathbf{P} = \begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix} \tag{10.1.19}$$

Coming back to the original question of finding $\frac{dy}{dx}$, if the point of contact

$$\mathbf{q} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}, \tag{10.1.20}$$

from (10.1.2), (1.2.4) and (7.2.1),

or, $m = \frac{dy}{dx} = -\frac{2q_1 + q_2}{q_1 + 2q_2}$ (10.1.24)

 $\frac{dy}{dx}$ is the slope of the tangent. Note that no results from differential calculus were used to obtain (10.1.24).

Fig. 10.1: Actual ellipse and transformed ellipse.

10.2. Find the equation of the ellipse, with major axis along the x-axis and passing through the points $\mathbf{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$

Solution: This is a standard ellipse given by

$$\mathbf{x}^{T}\mathbf{D}\mathbf{x} = 1, \quad \mathbf{D} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix}, \lambda_{1}, \lambda_{2} > 0$$

$$(10.2.1)$$

 \therefore **a**, **b** satisfy (10.2.1),

$$\mathbf{a}^T \mathbf{D} \mathbf{a} = 1, \tag{10.2.2}$$

$$\mathbf{b}^T \mathbf{D} \mathbf{b} = 1 \tag{10.2.3}$$

which can be expressed as

$$\mathbf{a}^T \mathbf{A} \mathbf{d} = 1,$$

$$\mathbf{b}^T \mathbf{B} \mathbf{d} = 1$$
 (10.2.4)

where

$$\mathbf{d} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}. \quad (10.2.5)$$

(10.2.4) can then be expressed as the matrix equation

$$\begin{pmatrix} \mathbf{a}^T \mathbf{A} \\ \mathbf{b}^T \mathbf{B} \end{pmatrix} \mathbf{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \tag{10.2.6}$$

which, after substituing the appropriate values can be expressed as

$$\begin{pmatrix} 16 & 9 \\ 1 & 16 \end{pmatrix} \mathbf{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \tag{10.2.7}$$

Forming the augmented matrix and performing row reduction,

$$\begin{pmatrix} 16 & 9 & 1 \\ 1 & 16 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_1} \begin{pmatrix} 1 & 16 & 1 \\ 0 & 247 & 15 \end{pmatrix}$$

$$(10.2.8)$$

$$\xrightarrow{R_1 \leftarrow 247R_1 - 16R_2} \begin{pmatrix} 247 & 0 & 7 \\ 0 & 247 & 15 \end{pmatrix}$$

$$(10.2.9)$$

$$\implies \mathbf{d} = \frac{1}{247} \begin{pmatrix} 7 \\ 15 \end{pmatrix}, \text{ or, } \mathbf{D} = \frac{1}{247} \begin{pmatrix} 7 & 0 \\ 0 & 15 \end{pmatrix}$$

$$(10.2.10)$$

The ellipse parameters are obtained from Table 7.7 as

$$\mathbf{c} = \mathbf{0}, \frac{1}{\sqrt{\lambda_1}} = \sqrt{\frac{247}{7}}, \frac{1}{\sqrt{\lambda_2}} = \sqrt{\frac{247}{15}}.$$
(10.2.11)

Fig. 10.2 verifies the above results.

11 Hyperbola

11.1. Find the equation of all lines having slope 2 and being tangent to the curve

$$y + \frac{2}{x - 3} = 0 \tag{11.1.1}$$

Solution: (11.1.1) can be expressed as

$$xy - 3y + 2 = 0 (11.1.2)$$

Fig. 10.2: Ellipse through the given points $\mathbf{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$.

which is of the same form as (4.1.2) with

$$\mathbf{V} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{u} = -\frac{3}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, f = 2$$
 (11.1.3)

Using the approach in Example 10.1,

$$\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}, \mathbf{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 (11.1.4)

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = -2 < 0, \tag{11.1.5}$$

the major and minor axis are swapped and from Table 7.7 the hyperbola parameters are given by

$$\mathbf{c} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}} = 2, \qquad (11.1.6)$$
$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_1}} = 2 \qquad (11.1.7)$$

with the standard hyperbola equation becoming

$$\frac{y_2^2}{4} - \frac{y_1^2}{4} = 1, (11.1.8)$$

Fig. 11.1 shows the actual hyperbola in (11.1.1) obtained from (11.1.8) using (6.1.1). The direction and normal vectors of the tangent with

slope 2 are given by (1.2.4) and (1.4.1) as

$$\mathbf{m} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \tag{11.1.9}$$

From (7.5.2) and (9.3.3), using (11.1.3),

$$\kappa = \frac{1}{2}, \mathbf{q}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \mathbf{q}_2 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}.$$
(11.1.10)

The desired tangents are

$$(2 -1) \left\{ \mathbf{x} - \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\} = 0 \implies (2 -1) \mathbf{x} = 2$$

$$(11.1.11)$$

$$(2 -1)\left\{\mathbf{x} - \begin{pmatrix} 4 \\ -2 \end{pmatrix}\right\} = 0 \implies (2 -1)\mathbf{x} = 10$$

$$(11.1.12)$$

All the above results are verified in Fig. 11.1. As we can see, the hyperbola in (11.1.1) is obtained by rotating the standard hyperbola by **P** and then translating it by **c**.

Fig. 11.1: Standard and actual hyperbola.

12 Parabola

12.1. Find the point at which the tangent to the curve

$$y = \sqrt{4x - 3} - 1 \tag{12.1.1}$$

has slope $\frac{2}{3}$.

Solution: (12.1.1) can be expressed as

$$(y+1)^2 = 4x - 3$$
 (12.1.2)

or,
$$y^2 - 4x + 2y + 4 = 0$$
 (12.1.3)

which has the form (4.1.2) with parameters

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, f = 4. \tag{12.1.4}$$

Thus, the given curve is a parabola. V is diagonal and in standard form,

$$\mathbf{P} = \mathbf{I} \implies \mathbf{p}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{12.1.5}$$

From Table 7.7, the focus is 4 and the vertex \mathbf{c} is

$$\begin{pmatrix} -4 & 1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -4 \\ 0 \\ -1 \end{pmatrix}$$
 (12.1.6)

$$\implies \begin{pmatrix} -4 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \tag{12.1.7}$$

or,
$$\mathbf{c} = \begin{pmatrix} \frac{3}{4} \\ -1 \end{pmatrix}$$
 (12.1.8)

The direction vector and normal vectors are

$$\mathbf{m} = \begin{pmatrix} 1 \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}. \tag{12.1.9}$$

Also,

$$\mathbf{Vp} = \mathbf{0} \tag{12.1.10}$$

$$\implies \mathbf{p} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{12.1.11}$$

From (7.6.2), (12.1.9) and (12.1.11),

$$\kappa = -1 \tag{12.1.12}$$

which, upon substitution in (7.6.1) and simplification yields the matrix equation

$$\begin{pmatrix} -4 & 4 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4 \\ 0 \\ 2 \end{pmatrix}$$
 (12.1.13)

$$\implies \begin{pmatrix} -4 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4 \\ 2 \end{pmatrix} \tag{12.1.14}$$

or,
$$\mathbf{q} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 (12.1.15)

Fig. 12.1 verifies the above results.

12.2. Find a point on the curve

$$y = (x - 2)^2 \tag{12.2.1}$$

at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).

Fig. 12.1: Tangent to parabola in (12.1.1) with slope $\frac{2}{3}$.

Solution: (12.2.1) can be expressed as

$$x^2 - 4x - y + 4 = 0 (12.2.2)$$

which has the form (4.1.2) with parameters

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = -\begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix}, f = 4. \tag{12.2.3}$$

Using eigenvalue decomposition,

$$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{12.2.4}$$

Hence, the eigenvector of **V** corresponding to the zero eigenvalue is

$$\mathbf{p}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{12.2.5}$$

Substituting the above parameters in the equation for the vertex of the parabola in Table 7.7,

$$\begin{pmatrix} -2 & -\frac{5}{2} \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} \tag{12.2.6}$$

$$\implies \begin{pmatrix} -1 & -\frac{5}{2} \\ 1 & 0 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -4 \\ 2 \end{pmatrix} \tag{12.2.7}$$

or,
$$\mathbf{c} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
 (12.2.8)

The direction vector is

$$\mathbf{m} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{12.2.9}$$

and normal vector is

$$\mathbf{n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \tag{12.2.10}$$

From the equation for the point of contact for the parabola in Table 7.7,

$$\kappa = \frac{1}{2}$$
 (12.2.11) 13.3. Show that

resulting in the matrix equation

$$\begin{pmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4 \\ 3 \\ 0 \end{pmatrix}$$
 (12.2.12)

$$\implies \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{q} = \begin{pmatrix} -4 \\ 3 \end{pmatrix} \tag{12.2.13}$$

or,
$$\mathbf{q} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 (12.2.14)

Fig. 12.2 verifies the above results. Note that **P** rotates the standard parabola by 90°.

Fig. 12.2: Tangent to parabola in (12.2.1) is parallel to the line joining the points $\binom{2}{0}$ and $\binom{4}{4}$.

13 Vector Calculus

13.1. *Definition:* Let $\mathbf{x} \in \mathbb{R}^2$, $f(\mathbf{x}) \in \mathbb{R}$. Then,

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \end{pmatrix}$$
(13.1.1)

13.2.

$$\frac{d\mathbf{x}}{dx_1} = \begin{pmatrix} \frac{dx_1}{dx_1} \\ \frac{dx_1}{dx_1} \end{pmatrix}
= \begin{pmatrix} 1 \\ m \end{pmatrix} = \mathbf{m}$$
(13.2.1)

$$\frac{d\left(\mathbf{u}^{T}\mathbf{x}\right)}{d\mathbf{x}} = \mathbf{u}$$

$$\frac{d\left(\mathbf{x}^{T}\mathbf{V}\mathbf{x}\right)}{d\mathbf{x}} = 2\mathbf{V}^{T}\mathbf{x}$$
(13.3.1)

13.4. Differentiating (4.1.2) with respect to x_1 ,

$$\left[\frac{d\left(\mathbf{x}^{T}\mathbf{V}\mathbf{x}\right)}{d\mathbf{x}}\right]^{T}\frac{d\mathbf{x}}{dx_{1}} + 2\frac{d\left(\mathbf{u}^{T}\mathbf{x}\right)}{\mathbf{x}}\frac{d\mathbf{x}}{dx_{1}} = 0$$

$$(13.4.1)$$

$$\implies 2\left(\mathbf{V}^{T}\mathbf{x} + \mathbf{u}\right)\mathbf{m} = 0$$

$$(13.4.2)$$

from (13.2.1) and (13.3.1). Substituting the point of contact $\mathbf{x} = \mathbf{q}$ and simplifying results in

$$(\mathbf{Vq} + \mathbf{u}) \mathbf{m} = 0 \tag{13.4.3}$$

which, upon taking the transpose, yields (7.2.1).

14 Vector Inequalities

14.1. (Cauchy-Schwarz Inequality:) Show that

$$\left|\mathbf{a}^{T}\mathbf{b}\right| \leq \|\mathbf{a}\| \|\mathbf{b}\| \tag{14.1.1}$$

Proof. Using the definition of the inner product,

$$\cos \theta = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$
 (14.1.2)

(Triangle Inequality:) Show that

$$\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$$
 (14.1.4)

Proof. Let **O** be the origin. In the triangle formed by \mathbf{O} , \mathbf{a} and $-\mathbf{b}$, the lengths of the sides are

$$\|\mathbf{a}\|, \|\mathbf{b}\|, \|\mathbf{a} + \mathbf{b}\|$$
 (14.1.5)

: the sum of two sides of a triangle is always greater than the third side,

$$\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$$
 (14.1.6)

Thus, we obtain the ${\bf Q}{\bf R}$ decompositon

$$\begin{pmatrix} 3 & 2 \\ -1 & 1 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{46}} \\ \frac{-1}{\sqrt{10}} & \frac{3}{\sqrt{46}} \\ 0 & \frac{-6}{\sqrt{46}} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \frac{1}{2} \\ 0 & \sqrt{\frac{23}{2}} \end{pmatrix}$$
(15.2.4)

15 QR Decomposition

15.1. Revisiting Problem (1.15),

$$\alpha = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 (15.1.1)

we can express

$$\alpha = k_1 \mathbf{u}_1$$

$$\beta = r_1 \mathbf{u}_1 + k_2 \mathbf{u}_2$$
(15.1.2)

APPENDIX A PROOFS FOR THE CONIC SECTIONS

where

$$k_1 = \|\alpha\|, \mathbf{u}_1 = \frac{\alpha}{k_1}$$
 (15.1.3)

$$r_1 = \frac{\mathbf{u}_1^T \boldsymbol{\beta}}{\|\mathbf{u}_1\|^2}, \mathbf{u}_2 = \frac{\boldsymbol{\beta} - r_1 \mathbf{u}_1}{\|\boldsymbol{\beta} - r_1 \mathbf{u}_1\|}$$
 (15.1.4)

$$k_2 = \mathbf{u}_2^T \boldsymbol{\beta} \tag{15.1.5}$$

From (15.1.2),

$$\begin{pmatrix} \alpha & \beta \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix}$$
 (15.1.6)

This is known as **QR** decomposition, where

$$\mathbf{R} = \begin{pmatrix} k_1 & r_1 \\ 0 & k_2 \end{pmatrix} \tag{15.1.7}$$

$$\mathbf{Q} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \tag{15.1.8}$$

Note that **R** is an upper triangular matrix and

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I}. \tag{15.1.9}$$

15.2. From (15.1.1),

$$k_1 = \sqrt{10}, \mathbf{u}_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix},$$
 (15.2.1)

$$r_1 = \frac{1}{2}, \mathbf{u}_2 = \frac{1}{\sqrt{46}} \begin{pmatrix} 1\\3\\-6 \end{pmatrix}$$
 (15.2.2)

$$k_2 = \sqrt{\frac{23}{2}} \tag{15.2.3}$$

A.1. Substituting (6.1.1) in (4.1.2)

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^T \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^T (\mathbf{P}\mathbf{y} + \mathbf{c}) + f = 0,$$
(A.1.1)

which can be expressed as

$$\mathbf{y}^{T}\mathbf{P}^{T}\mathbf{V}\mathbf{P}\mathbf{y} + 2(\mathbf{V}\mathbf{c} + \mathbf{u})^{T}\mathbf{P}\mathbf{y}$$
$$+ \mathbf{c}^{T}\mathbf{V}\mathbf{c} + 2\mathbf{u}^{T}\mathbf{c} + f = 0 \quad (A.1.2)$$

From (A.1.2) and (6.1.2),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2(\mathbf{V}\mathbf{c} + \mathbf{u})^{T}\mathbf{P}\mathbf{y}$$
$$+ \mathbf{c}^{T}(\mathbf{V}\mathbf{c} + \mathbf{u}) + \mathbf{u}^{T}\mathbf{c} + f = 0 \quad (A.1.3)$$

When V^{-1} exists,

$$Vc + u = 0$$
, or, $c = -V^{-1}u$, (A.1.4)

and substituting (A.1.4) in (A.1.3) yields (6.1.5).

A.2. When $|\mathbf{V}| = 0$, $\lambda_1 = 0$ and

$$\mathbf{V}\mathbf{p}_1 = 0, \mathbf{V}\mathbf{p}_2 = \lambda_2\mathbf{p}_2. \tag{A.2.1}$$

where $\mathbf{p}_1, \mathbf{p}_2$ are the eigenvectors of Vsuch that (6.1.2)

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \tag{A.2.2}$$

Substituting (A.2.2) in (A.1.3),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\left(\mathbf{p}_{1} \quad \mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{1} \quad \left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\mathbf{u}^{T}\mathbf{p}_{1} \quad \left(\lambda_{2}\mathbf{c}^{T} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$
from (A.2.1)
$$\implies \lambda_{2}y_{2}^{2} + 2\left(\mathbf{u}^{T}\mathbf{p}_{1}\right)y_{1} + 2y_{2}\left(\lambda_{2}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{p}_{2}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \quad \text{(A.2.3)}$$

which is the equation of a parabola. From (A.2.3), by comparing the coefficients of y_2^2 and y_1 , the focal length of the parabola is obtained as

$$\left| \frac{2\mathbf{u}^T \mathbf{p}_1}{\lambda_2} \right|. \tag{A.2.4}$$

Thus, (A.2.3) can be expressed as (6.1.6) by choosing

$$\eta = 2\mathbf{u}^T \mathbf{p}_1 \tag{A.2.5}$$

and c in (A.1.3) such that

$$\mathbf{P}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) = \eta \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad (A.2.6)$$

$$\mathbf{c}^{T} (\mathbf{V}\mathbf{c} + \mathbf{u}) + \mathbf{u}^{T}\mathbf{c} + f = 0$$
 (A.2.7)

Multiplying (A.2.6) by **P** yields

$$(\mathbf{Vc} + \mathbf{u}) = \eta \mathbf{p}_1, \tag{A.2.8}$$

which, upon substituting in (A.2.7) results in

$$\eta \mathbf{c}^T \mathbf{p}_1 + \mathbf{u}^T \mathbf{c} + f = 0 \tag{A.2.9}$$

(A.2.8) and (A.2.9) can be clubbed together to obtain (6.1.8).