1

LINEAR SYSTEMS AND SIGNAL PROCESSING GATE ASSIGNMENT 3

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/ EE3900_GATE_ASSIGNMENTS/blob/main/ GATE_ASSIGNMENT3/ GATE_ASSIGNMENT3.tex

Download all python codes from

https://github.com/VARSHITHAGANJI/ EE3900_VECTORS_ASSIGNMENTS/blob/ main/GATE_ASSIGNMENT3/code.py

QUESTION

GATE EC-2005 Ouestion 31

In what range should Re(s) remain so that the Laplace transform of the function $e^{(a+2)t+5}$ exists?

- (a) Re(s) > a+2
- (b) Re(s) > a+7
- (c) Re(s) < 2
- (d) Re(s) > a+5

SOLUTION

Lemma 0.1 (Unilateral Laplace transform formula).

Time Function $f(t) = \mathcal{L}^{-1} \{ F(s) \}$	Laplace transform of $f(t)$ $F(s) = \mathcal{L}\{f(t)\}$	ROC
$e^{lpha t}$	$\frac{1}{s-\alpha}$	$Re(s) > \alpha$

Given function is given by

$$f(t) = e^{(a+2)t+5} (0.0.1)$$

$$= e^5 e^{(a+2)t} (0.0.2)$$

Let $g(t) = e^{((a+2)t)}$ which is in the form of $e^{\alpha t}$ where $\alpha = a + 2$.

Let the Unilateral Laplace transform of f (t) and g (t)

be F(s) and G(s) respectively. From Lemma 0.1 we have,

$$G(s) = \frac{1}{s - (a+2)}$$
 (0.0.3)

provided Re(s)>a+2.

We have

$$F(s) = e^5G(s)$$
 (0.0.4)

$$= e^5 \left(\frac{1}{s - (a+2)} \right) \tag{0.0.5}$$

provided Re(s)>a+2.

:. Unilateral Laplace transform of $e^{(a+2)t+5}$ exists for Re(s)>a+2.

Hence option (d) is correct.

Fig. 1: ROC PLOT for $e^{(a+2)t+5}$

