

F-SIGNATURE OF GRADED GORENSTEIN RINGS

AKIYOSHI SANNAI AND KEI-ICHI WATANABE

ABSTRACT. For a commutative ring R , the F -signature was defined by Huneke and Leuschke [H-L]. It is an invariant that measures the order of the rank of the free direct summand of $R^{(e)}$. Here, $R^{(e)}$ is R itself, regarded as an R -module through e -times Frobenius action F^e .

In this paper, we show a connection of the F -signature of a graded ring with other invariants. More precisely, for a graded F -finite Gorenstein ring R of dimension d , we give an inequality among the F -signature $s(R)$, a -invariant $a(R)$ and Poincaré polynomial $P(R, t)$.

$$s(R) \leq \frac{(-a(R))^d}{2^{d-1} d!} \lim_{t \rightarrow 1} (1-t)^d P(R, t)$$

Moreover, we show that $R^{(e)}$ has only one free direct summand for any e , if and only if R is F -pure and $a(R) = 0$. This gives a characterization of such rings.

1. INTRODUCTION

Let R be a reduced local ring of dimension d containing a field of characteristic $p > 0$ with a perfect residue field. Let $R^{(e)}$ be R itself, regarded as an R -module through the e -times composition of Frobenius maps F^e . In the following, we often assume that $R^{(e)}$ is F -finite. This is equivalent to $R^{(1)}$ being a finite R -module. The structure of $R^{(e)}$ has a close relationship with the singularity, multiplicity and Hilbert-Kunz multiplicity of R . For example, if R is a regular local ring of dimension d , then by a theorem of Kunz, $R^{(e)}$ becomes a free module of rank p^{ed} . The converse also holds, and thus, this property characterizes regular local rings.

In [H-L], Huneke and Leuschke investigated how many free direct summands are contained in $R^{(e)}$. Namely, they decomposed $R^{(e)}$ as $R^{(e)} = R^{a_q} \oplus M_q$ and examined a_q , where M_q is an R -module that does not contain any free direct summand. The number a_q is known to be independent of the decomposition. In this article, first we consider the case where $a_q = 1$ for any $q = p^e$.

We obtained the following result.

Theorem 1.1. *For any reduced graded F -finite Gorenstein ring R such that R has an isolated singularity and R_0 is a perfect field, the following are equivalent.*

- (1) $R^{(e)}$ has only one free direct summand, for each positive integer e .
- (2) R is F -pure and $a(R) = 0$.

Definition 1.2. Decompose $R^{(e)}$ as $R^{(e)} = R^{a_q} \oplus M_q$, where M_q is an R -module that does not contain R as a direct summand. If the limit exists, we set

$$s(R) = \lim_{q \rightarrow \infty} \frac{a_q}{q^d},$$

and call it F -signature.

This invariant was introduced by Huneke and Leuschke, and has been investigated by several researchers. In their paper [H-L], the following theorems were shown.

Theorem 1.3. *Let R be an F -finite reduced Cohen-Macaulay local ring with a perfect residue field and whose F -signature $s(R)$ exists. Then the following are equivalent.*

- (1) $s(R) = 1$.
- (2) R is a regular local ring.

Theorem 1.4. *Let R be an F -finite reduced complete Gorenstein local ring with a perfect residue field. Then the following are equivalent.*

- (1) $s(R) > 0$.
- (2) R is F -rational.

From these results, we can say that the F -signature contains enough information to characterize some kind of classes of commutative rings. Theorem 1.3 was generalized by Y. Yao to that $s(R) \geq 1 - \frac{1}{d!p^d}$ implies R is regular (see [Y]). Besides, as in the assumption of Theorem 1.3, it is also a nontrivial question whether the F -signature exists or not. Several papers have dealt with this problem; for example, Gorenstein local rings are known to admit F -signatures.

In this article, we obtained the following result.

Theorem 1.5. *For any reduced graded F -finite Gorenstein ring R and if R_0 is assumed to be a perfect field, we have the following inequality.*

$$(1.1) \quad s(R) \leq \frac{(-a)^d e'}{2^{d-1} d!}.$$

Here, d is the dimension of R , $a = a(R)$ is the a -invariant of R , and $e' = \lim_{t \rightarrow 1} (1-t^d)P(R, t)$, where $P(R, t)$ is the Poincaré series of R .

In dimension 2, the equality holds in (4.1) if R is regular or a rational double point. This equality never holds for regular rings of dimension greater than or equal to 3.

2. PRELIMINARIES

In the following, we write $q = p^e$ for any positive integer e .

Proposition 2.1. *Let R be a d -dimensional Cohen-Macaulay local ring of characteristic p . The following are equivalent.*

- (1) R is F -rational.
- (2) 0 is tightly closed in $H_m^d(R)$.

Proof. See [Sm], [H, Theorem 4.4]. □

Proposition 2.2. *For any F -pure Cohen-Macaulay positively graded ring R of dimension d and characteristic p , we have $a(R) \leq 0$.*

Proof. See [F-W], Remark 1.6. □

Proposition 2.3. *Let R be an F -injective Cohen-Macaulay graded ring of dimension d and characteristic p , which is an isolated singularity. If $a(R) < 0$, then R is F -rational.*

Proof. Let $\tau(R)$ be the test ideal of R . Because R has an isolated singularity, $\tau(R)$ is $\mathfrak{m} = \bigoplus_{n>0} R_n$ -primary. Hence the annihilator of $\tau(R)$ in $H_{\mathfrak{m}}^d(R)$ is finitely generated.

If R is not F -rational, then there exists a non-zero element x in $H_{\mathfrak{m}}^d(R)$ that satisfies $cx^q = 0$ for all $c \in \tau(R)$ and q . Since $a(R) < 0$ and R is F -injective, $x^q \neq 0$ and $\deg x^q$ gets arbitrary small. Hence $\tau(R)x^q$ cannot be 0. A contradiction! \square

3. F-SIGNATURE

Let R be a reduced commutative ring of positive characteristic with a perfect residue field. As before, let p be $\text{char}R$ and let $q = p^e$ for any positive integer e .

In the following, we assume R is F -finite, i.e., $R^{(1)}$ is finite as an R -module.

Definition 3.1. Decompose $R^{(e)}$ as $R^{(e)} = R^{a_q} \oplus M_q$, where M_q is an R -module which does not contain R as a direct summand. If the limit exists, we set

$$s(R) = \lim_{q \rightarrow \infty} \frac{a_q}{q^d},$$

and call it *F-signature*.

Remark 3.2. For each e , we have $a_q \leq \text{rank}R^{(e)} \leq q^d$. Thus $s(R)$ satisfies $s(R) \leq 1$.

Example 3.3. Let R be a regular local ring of dimension d with a perfect residue field. By the theorem of Kunz [Ku], we have $R^{(e)} = R^{q^d}$. Thus we have $a_q = q^d$, and $s(R) = 1$.

The converse also holds. See [H-L, Corollary 16].

Proposition 3.4. Let \hat{R} be the \mathfrak{m} -adic completion of R . Then we have $s(R) = s(\hat{R})$.

Proof. This is trivial, because the completion is fully faithful. \square

Theorem 3.5. Let R be a Gorenstein ring. The following are equivalent.

- (1) $s(R) > 0$.
- (2) R is F -rational.
- (3) R is F -regular.

Proof. See [H-L, Theorem 11]. \square

Example 3.6. For a 2-dimensional rational double point, we can calculate its F -signature several ways. See, for example, [W-Y]. The results are listed below.

type	equation	$\text{char}R$	$s(R)$
(A_n)	$f = x^2 + y^2 + z^{n+1}$	$p \geq 2$	$\frac{1}{n+1}$
(D_n)	$f = x^2 + yz^2 + y^{n-1}$	$p \geq 3$	$\frac{1}{4(n-2)}$
(E_6)	$f = x^2 + y^3 + z^4$	$p \geq 5$	$\frac{1}{24}$
(E_7)	$f = x^2 + y^3 + yz^3$	$p \geq 5$	$\frac{1}{48}$
(E_8)	$f = x^2 + y^3 + z^5$	$p \geq 7$	$\frac{1}{120}$

4. PROOF OF THE THEOREM

In this section, we give a proof of the main theorem and calculate some examples. We use the notation of the previous section. Throughout this section, let $R = \bigoplus_{n \geq 0} R_n$ be an F -finite graded ring of positive characteristic. We denote $\mathfrak{m} = R_+ = \bigoplus_{n>0} R_n$.

Lemma 4.1. *Let R be a graded Gorenstein ring, and let $a = a(R)$. Then, for any homogeneous element α in R such that αF^e is split mono, we have*

$$\deg \alpha \leq -a(q-1).$$

Proof. Let f_1, f_2, \dots, f_d be a homogeneous system of parameter R , and let $b_i = \deg f_i$. Because αF^e is split mono, by tensoring $R^q/(f_1^q, f_2^q, \dots, f_d^q)$ over R^q , we see that $\alpha R^q/(f_1^q, f_2^q, \dots, f_d^q)$ is a free direct summand of $R/(f_1^q, f_2^q, \dots, f_d^q)$.

If we take a generator z of $\text{soc}(R/(f_1, f_2, \dots, f_d))$, then it satisfies

$$\deg z = a + b_1 + b_2 + \dots + b_d.$$

Because $\alpha R^q/(f_1^q, f_2^q, \dots, f_d^q)$ is a free direct summand of $R/(f_1^q, f_2^q, \dots, f_d^q)$, we have $\alpha z^q \neq 0$ in $R/(f_1^q, f_2^q, \dots, f_d^q)$, and thus

$$\deg \alpha z^q \leq a(R/(f_1^q, f_2^q, \dots, f_d^q)).$$

Because $a(R/(f_1^q, f_2^q, \dots, f_d^q)) = a + q(b_1 + b_2 + \dots + b_d)$, we obtain

$$\deg \alpha + q(a + b_1 + b_2 + \dots + b_d) \leq a + q(b_1 + b_2 + \dots + b_d).$$

Thus Lemma 4.1 follows. \square

Theorem 4.2. *Let R be a reduced graded F -finite Gorenstein ring with an isolated singularity, and let us assume that $R_0 = k$ is a perfect field. The following are equivalent.*

- (1) $R^{(e)}$ has only one free direct summand for each positive integer e .
- (2) R is F -pure and $a(R) = 0$.

Proof. Because the implication from (2) to (1) is obvious by Lemma 4.1, it suffices to show the converse.

Suppose we have $a_q = 1$ for some $e \gg 1$. This means there exists an α such that αR is a free direct summand of $R^{(e)}$. α is not contained in R^0 . Therefore, R is F -pure (see [HH, page 128, remark(c)]), which implies that $a(R) \leq 0$. If we suppose that $a(R) < 0$, then R becomes F -rational and $s(R) > 0$, contradicting $a_q = 1$. \square

Theorem 4.3. *For any reduced graded F -finite Gorenstein ring R and if we assume that $R_0 = k$ is a perfect field, we have the following inequality.*

$$(4.1) \quad s(R) \leq \frac{(-a)^d e'}{2^{d-1} d!}.$$

Here, d is the dimension of R , a is the a -invariant, and $e' = \lim_{t \rightarrow 1} (1-t)^d P(R, t)$, where $P(R, t)$ is the Poincaré series of R .

Proof. Let $\alpha_1, \alpha_2, \dots, \alpha_{a_q}$ be a basis of the free direct summand of $R^{(e)}$. We assume that each α_i is a homogeneous element. Let f_1, f_2, \dots, f_d be homogeneous parameter systems of R , and let $b_i = \deg f_i$. We may assume that each b_i is large enough with respect to a_q and q . Take a generator z of $\text{soc}(R/(f_1, f_2, \dots, f_d))$. By Lemma 4.1, we have $\deg \alpha_i \leq -a(q-1)$. Because $\alpha_1 R^q \oplus \alpha_2 R^q \oplus \dots \oplus \alpha_{a_q} R^q$ is a free direct summand of $R^{(e)}$,

$$\alpha_1 R^q/(f_1, f_2, \dots, f_d) \oplus \alpha_2 R^q/(f_1, f_2, \dots, f_d) \oplus \dots \oplus \alpha_{a_q} R^q/(f_1, f_2, \dots, f_d)$$

becomes a free direct summand of $R^{(e)}/(f_1, f_2, \dots, f_d) R^{(e)} = R/(f_1^q, \dots, f_d^q) R$.

Define a_q^- and a_q^+ by

$$\begin{aligned} a_q^- &= \{i \mid \deg \alpha_i < \frac{-a(q-1)}{2}\}, \\ a_q^+ &= \{i \mid \deg \alpha_i \geq \frac{-a(q-1)}{2}\}. \end{aligned}$$

And let $r_n = \dim_k(R/(f_1^q, \dots, f_d^q)R)_n$. Because α_i 's are linearly independent over k , we have

$$a_q^- \leq \sum_{n=0}^{\frac{-a(q-1)}{2}-1} r_n.$$

Similarly, because $\alpha_i z^q$'s are linearly independent over k , we have

$$a_q^+ \leq \sum_{n=\frac{-a(q-1)}{2}+q(a+b_1+\dots+b_d)}^{-a(q-1)+q(a+b_1+\dots+b_d)} r_n.$$

By the duality of the Gorenstein ring $R^{(e)}/(f_1, \dots, f_d)R^{(e)} = R/(f_1^q, \dots, f_d^q)R$, we obtain

$$r_{\frac{-a(q-1)}{2}+q(a+b_1+\dots+b_d)+i} = r_{\frac{-a(q-1)}{2}-i}$$

and thus

$$a_q^+ \leq \sum_{n=0}^{\frac{-a(q-1)}{2}} r_n.$$

Thus we obtain

$$a_q = a_q^+ + a_q^- \leq 2 \sum_{n=0}^{\frac{-a(q-1)}{2}} r_n.$$

Dividing his by q^d and taking the limit, we obtain $s(R)$ from the left-hand side. For large q ,

$$2 \sum_{n=0}^{\frac{-a(q-1)}{2}} r_n = 2 \frac{e'}{d!} \left(\frac{-a(q-1)}{2}\right)^d + (\text{terms of flower degree}) = \frac{(-a)^d e'}{2^{d-1} d!} q^d + (\text{terms of flower degree}).$$

Hence the result follows. \square

Example 4.4. If $R = k[X_1, \dots, X_d]$ is a polynomial ring over perfect field k , because $a(R) = -d$ and $e' = 1$, we have

$$\frac{(-a)^d e'}{2^{(d-1)d!}} = \frac{d^d}{2^{(d-1)d!}}.$$

The right hand side is equal to 1 for $d = 1, 2$ and greater than 1 for $d \geq 3$. Thus we have equality in (4.1) if and only if $d = 1, 2$.

Example 4.5. (4.1) becomes an equality if R is a 2-dimensional rational double point.

To confirm this, we introduce the following lemma.

Lemma 4.6. Let R be a graded ring, and let x be a regular homogeneous element in degree b . Then

$$(4.2) \quad (1 - t^b)P(R, t) = P(R/(x), t)$$

Proof. Since x is a homogeneous regular element of degree b ,

$$(4.3) \quad 0 \rightarrow R(-b) \xrightarrow{x} R \rightarrow R/(x) \rightarrow 0$$

is exact. By the additivity of the dimension of k -vector spaces, we obtain

$$H(R/(x), n) = H(R, n) - H(R, n-b),$$

and thus

$$\begin{aligned} H(R/(x), n)t^n &= H(R, n)t^n - H(R, n-b)t^n, \\ H(R/(x), n)t^n &= H(R, n)t^n - t^b H(R, n-b)t^{n-b}. \end{aligned}$$

Here, $H(R, n)$ denotes the k -dimension of the degree n part of R . Taking the sum of these equations, we obtain (4.2). \square

Lemma 4.7. *Let R be a graded Cohen-Macaulay ring, and let x be a homogeneous regular element of degree b . Then we have*

$$a(R/(x)) = a(R) + b.$$

Proof. See [G-W1](2.2.10) or [B-H](3.6.14). \square

In the following, we demonstrate how to calculate the right-hand side of (4.1) in Theorem 4.3 for singularities of type A_n by using these lemmas. In this case, $R = k[x, y, z]/x^2 + y^2 + z^{n+1}$. We remark that because R is a hypersurface singularity, it is a complete intersection, in particular Cohen-Macaulay.

R can be regarded as a graded ring with $\deg x = \deg y = n+1, \deg z = 2$. With this grading, $x^2 + y^2 + z^{n+1}$ is a homogeneous element of degree $2(n+1)$, and thus we have

$$a(R) = -(n+1+n+1+2) + 2(n+1) = -2$$

by Lemma 4.7.

Next we calculate the Poincaré series. By Lemma 4.6, we have

$$(1 - t^{n+1})P(R, t) = P(R/(x), t).$$

Moreover, because y is a regular element in $R/(x)$ of degree $n+1$, we have

$$(1 - t^{n+1})P(R/(y), t) = P(R/(x, y), t)$$

again by Lemma 4.6. Since z is an element of degree 2 in $R/(x, y) = k[x, y, z]/z^{n+1}$, we have

$$P(R/(x, y), t) = 1 + t^2 + \cdots + t^{2n} = \frac{1 - t^{2(n+1)}}{1 - t^2}.$$

Combining with the above two equations, we obtain

$$P(R, t) = \frac{1 - t^{2(n+1)}}{(1 - t^{n+1})(1 - t^{n+1})(1 - t^2)},$$

and thus $e' = \frac{1}{n+1}$. The right-hand side of (4.1) can be calculated to be $\frac{1}{n+1}$, and thus is equal to e' in this case.

The following is the list of a and e' calculated by the above method.

type	e'	$a(R)$	RHS of (4.1)
(A_n)	$\frac{1}{n+1}$	-2	$\frac{1}{n+1}$
(D_n)	$\frac{1}{n-1}$	-1	$\frac{1}{4(n-2)}$
(E_6)	$\frac{1}{6}$	-1	$\frac{1}{24}$
(E_7)	$\frac{1}{12}$	-1	$\frac{1}{48}$
(E_8)	$\frac{1}{30}$	-1	$\frac{1}{120}$

5. LOCAL CASE

Lastly, we give a local version of theorem 4.2 .

Theorem 5.1. *Let (R, \mathfrak{m}) be a F -finite Gorenstein local ring that is F -rational on a punctured spectrum and assume that the residue field is perfect. The following are equivalent.*

- (1) $R^{(e)}$ has only one free direct summand, for each positive integer e .
- (2) R is F -pure and not F -rational

Proof. The implication from (1) to (2) is the same as the graded case. To show the converse, we use the splitting prime. For the definition and the behavior, see [A-E2]. Let \mathfrak{p} be the splitting prime. Because R is F -pure, \mathfrak{p} is not unit ideal. Because \mathfrak{p} contains the test ideal, \mathfrak{p} equals to \mathfrak{m} . (See [A-E2, remark3.5].) But then $a_q = 1$ by the remark again, namely $R^{(e)}$ has only one free direct summand, for each positive integer e .

□

6. ACKNOWLEDGEMENT

We would like to thank Anurag K. Singh and the referee for their useful advice.

REFERENCES

- [A-E1] Aberbach, I.M.; Enescu, F.: *When does the F -signature exists?*. Ann. Fac. Sci. Toulouse Math. (6) **15** (2006), no. 2, 195–201.
- [A-E2] Aberbach, I.M.; Enescu, F.: *The structure of F -pure rings*. Math. Z. **250** (2005), no. 4, 791–806.
- [A-L] Aberbach, I.M.; Leuschke, G.J.: *The F -signature and strong F -regularity*. Math. Res. Lett. **10** (2003), no. 1, 51–56.
- [B-H] Bruns, W.; Herzog, J.: *Cohen-Macaulay rings*. Cambridge Studies in Advanced Mathematics, **39**. Cambridge University Press, Cambridge, 1993. xii+403 pp.
- [F-W] Fedder, R.; Watanabe, K.-i.: *A characterization of F -regularity in terms of F -purity*, “Commutative Algebra”, (Proc. Microprogram, Berkeley, 1987), 227–245 (1989) Springer.
- [G-W1] Goto, S.; Watanabe, K.: *On graded rings. I*. J. Math. Soc. Japan **30** (1978), no. 2, 179–213.
- [G-W2] Goto, S.; Watanabe, K.: *On graded rings. II. (Z^n -graded rings)*. Tokyo J. Math. **1** (1978), no. 2, 237–261.
- [H-H] Hochster, Melvin; Huneke, Craig: *Tight closure and strong F -regularity*. Mem. Soc. Math. France (N.S.) (1989), no. 38, 119–133.
- [H] Huneke, C.: *Tight closure and its applications*. With an appendix by Melvin Hochster. CBMS Regional Conference Series in Mathematics, **88**. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. x+137 pp.
- [H-L] Huneke, C.; Leuschke, G.J.: *Two theorems about maximal Cohen-Macaulay modules*. Math. Ann. **324** (2002), no. 2, 391–404.
- [Ku] Kunz, E.: *Characterizations of regular local rings of characteristic p* , Amer. J. Math. **41** (1969), , 772–784.
- [Si] Singh, A.K. *The F -signature of an affine semigroup ring*. J. Pure Appl. Algebra **196** (2005), no. 2-3, 313–321.
- [Sm] Smith, E. K., *F -rational rings have rational singularities*, Amer. J. Math. **119** (1997), 159–180.
- [W-Y] Watanabe, K.; Yoshida, K.: *Minimal relative Hilbert-Kunz multiplicity*. Illinois J. Math. **48** (2004), no. 1, 273–294.
- [Y] Yao, Y.: *Observations on the F -signature of local rings of characteristic p* . J. Algebra **299** (2006), no. 1, 198–218.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO 3-8-1 KOMABA,
MEGURO, TOKYO, 153-8914 JAPAN
E-mail address, Akiyoshi Sannai: `sannai@ms.u-tokyo.ac.jp`

DEPARTMENT OF MATHEMATICS, COLLEGE OF HUMANITIES AND SCIENCES, NIHON UNIVERSITY,
SETAGAYA-KU, TOKYO, 156-0045 JAPAN
E-mail address, Kei-ichi Watanabe: `watanabe@math.chs.nihon-u.ac.jp`