/home/nicole/Jupyter/JG3/Data/0.5/M/2

```
;ls
In [4]:
        Correlation.G5.M.C.txt
        Correlation.G5.M.JC.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.M.C.txt
        Regression.G5.M.JC.txt
        all.ID
        alphaEstimatesC
        alphaEstimatesJ
        alphaEstimatesJC
        epsiEstimatesC
        epsiEstimatesJ
        epsiEstimatesJC
        genotype.ID
        meanOfSNPMAll
        meanOfSNPMG0
        meanOfSNPMG1
        meanOfSNPMG2
        meanOfSNPMG3
        meanOfSNPMG4
        meanOfSNPMG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: ;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
        ;join -v1 all.ID genotype.ID > noGenotype.ID
In [7]:
        ;awk '{print $1,$2}' Phe.txt > sim.phenotype
In [8]:
```

```
In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [11]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [15]:
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
In [18]:
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [20]:
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
              200 1200 GO.Genotype.ID
               200 1200 G1.Genotype.ID
          200
               200 1200 G2.Genotype.ID
          200
          200
               200 1200 G3.Genotype.ID
               200 1200 G4.Genotype.ID
          200
               8000 48000 G5.Genotype.ID
```

```
;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
In [29]:
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                  # with
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(Z Mats, M Mats, numSSBayes)
                                                                                  # no
         nothing
In [31]: | vRes
                = 0.714
                = 0.714
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2358.803109 seconds (23.04 G allocations: 723.736 GB, 7.88% gc time)
In [32]: | betaHat
Out[32]: 1-element Array{Float64,1}:
          9.12408
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
           -0.0510206
          -0.115417
           0.201762
            0.0283951
          -0.0301955
            0.097335
          -0.0879866
           0.051962
           -0.068049
            0.0341018
          -0.0604732
          -0.0295417
           0.0386725
           -0.123675
            0.127205
          -0.109344
           -0.0555499
            0.165443
            0.028658
           -0.1474
            0.0354579
            0.0366572
            0.0680687
           -0.0519407
            0.0585019
```

```
In [35]: epsiHat
Out[35]: 45930-element Array{Float64,1}:
           0.483094
           0.203013
           0.297702
           0.258171
          -0.158953
           0.302974
          -0.21366
           0.198756
          -0.209652
          -0.047911
           0.407014
          -0.17014
          -0.364805
          -0.453815
          -0.00476807
          -0.781522
           0.102709
          -0.764281
          -0.600794
          -0.154033
           0.500191
           0.51551
          -0.124751
          -0.734397
           0.655568
In [36]: writedlm("epsiEstimatesN",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.898
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.997
Out[39]: 0.8980616144333294
```

```
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: 1.5325711767041557
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.802
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.968
Out[41]: 0.8023536217320003
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 2.640303163853699
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.870
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.966
Out[43]: 0.8704958734937895
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: 1.2769407181311843
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.709
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.860
Out[45]: 0.7093734904324042
```

```
In [46]: | GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: 0.1252234245122887
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.982
Out[47]: 0.7604808441227923
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: 0.8324547475468205
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.749
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.996
Out[49]: 0.7492940609675879
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 1.3862162833121123
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ei
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.733
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 0.973
Out[51]: 0.7332165471033039
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 1.8559995822427273
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.998
Out[53]: 0.7407984807226244
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 2.3194265277773543
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.778
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.923
Out[55]: 0.7781469447155649
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 2.676106494833631
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.8436517472868104
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          0.832455
          1.38622
          1.856
          2.31943
          2.67611
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          9.46582
          0.923496
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.3384695381931293
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.4767229049180523
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.3125751299657065
In [63]: b=Cov/VarGEBV
Out[63]: 0.9234956020986221
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.805
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.000
Out[64]: 0.8050079789739929
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 1.6162675036456449
```

```
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         \#GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.765
         SSBRJC from Gibbs - G1.Genotype.ID: regression of TBV on GEBV = 0.858
Out[66]: 0.7646394588330904
In [67]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[67]: 2.0302109601825244
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.766
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.865
Out[68]: 0.7657181990906813
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 2.366019714934804
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", corll
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.765
         SSBRJC from Gibbs - G3.Genotype.ID: regression of TBV on GEBV = 0.796
Out[70]: 0.7649892626161848
```

```
In [71]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 2.7767477215625234
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.752
         SSBRJC from Gibbs - G4.Genotype.ID: regression of TBV on GEBV = 0.783
Out[72]: 0.7518756786192328
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: 2.9801366797457045
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.778
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.923
Out[74]: 0.7781469447155649
In [75]: writedlm("Correlation.G5.M.N.txt",cor13)
In [76]: | writedlm("Regression.G5.M.N.txt",reg13)
In [77]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[77]: 11.93719025
In [78]: | GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[78]: 2.676106494833631
```

```
In [79]: | IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.693
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.874
Out[79]: 0.6925291748812565
In [80]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[80]: 0.08699152504733086
In [81]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.745
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.990
Out[81]: 0.745386717742103
In [82]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[82]: 0.8017430497869306
In [83]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.734
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 0.994
Out[83]: 0.7340469275501096
In [84]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[84]: 1.3610931183987103
```

```
In [85]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.716
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 0.965
Out[85]: 0.7161703629566084
In [86]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[86]: 1.8323906555935014
In [87]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.730
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.987
Out[87]: 0.7299133402015352
In [88]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[88]: 2.3024852418294484
In [89]: numSSBayes
Out[89]: SSBR.NumSSBayes(54930,45930,9000,40000,39000,1000,150)
```