Matematica del discreto

M1 - Insiemi numerici

25 gennaio 2014 - Laurea on line

1. Elencare tutti gli elementi di \mathbb{Z}_9 che ammettono inverso (moltiplicativo) e per ognuno di essi calcolarlo.

Gli elementi invertibili di \mathbb{Z}_9 sono le classi di resto $[n]_9$ con $1 \leq n \leq 8$ e n primo con 9, ovvero

$$[1]_9$$
, $[2]_9$, $[4]_9$, $[5]_9$, $[7]_9$, $[8]_9$

si ha poi

$$[1]_9^{-1} = [1]_9,$$

$$[2]_9^{-1} = [5]_9 \ infatti \ [2]_9 \cdot [5]_9 = [1]_9,$$

$$[4]_9^{-1} = [7]_9 \text{ infatti } [4]_9 \cdot [7]_9 = [1]_9,$$

$$[5]_9^{-1} = [2]_9$$
 infatti dal calcolo precedente $[5]_9^{-1} = ([2]_9^{-1})^{-1} = [2]_9$, $[7]_9^{-1} = [4]_9$ infatti dal calcolo precedente $[7]_9^{-1} = ([4]_9^{-1})^{-1} = [4]_9$,

$$[7]_{q}^{-1} = [4]_{q}$$
 infatti dal calcolo precedente $[7]_{q}^{-1} = ([4]_{q}^{-1})^{-1} = [4]_{q}$,

$$[8]_9^{-1} = [8]_9 \text{ infatti } [8]_9^{-1} = ([-1]_9^{-1}) = -[1]_9 = [8]_9.$$

2. Si consideri il numero razionale $2310, 23_4$ scritto in base 4 e si dica a quale numero in base 16 corrisponde senza passare attraverso la sua espressione in base 10. Si dica infine a quale numero in base 10 corrisponde.

Osserviamo che $16 = 4^2$, abbiamo allora

$$\begin{aligned} 2310, 23_4 = & 3 \cdot 4^{-2} + 2 \cdot 4^{-1} + 0 \cdot 4^0 + 1 \cdot 4^1 + 3 \cdot 4^2 + 2 \cdot 4^3 = \\ & 3 \cdot 4^{-2} + 2 \cdot 4 \cdot 4^{-2} + 0 \cdot 4^0 + 1 \cdot 4^1 + 3 \cdot 4^2 + 2 \cdot 4 \cdot 4^2 = \\ & (3+8) \cdot 16^{-1} + (0+4) \cdot 16^0 + (3+8) \cdot 16^1 = \\ & \text{B4}, \text{B}_{16} \end{aligned}$$

In fatti

$$\begin{aligned} &2310, 23_4 = 3 \cdot 4^{-2} + 2 \cdot 4^{-1} + 0 \cdot 4^0 + 1 \cdot 4^1 + 3 \cdot 4^2 + 2 \cdot 4^3 = 180, 6875_{10}, \\ &B4, B_{16} = 11 \cdot 16^{-1} + 4 \cdot 16^0 + 11 \cdot 16^1 = 180, 6875_{10}. \end{aligned}$$

3. Determinare il più grande numero naturale $k \leq 100$ per cui l'equazione diofantea

$$15x + 27y = k$$

ammette soluzione e per tale valore risolverla.

Un'equazione diofantea del tipo ax + by = c è risolubile se e solo se MCD(a,b) divide c; nel nostro caso l'equazione è risolubile se e solo se MCD(15,27) = 3 divide k. Il valore richiesto di k è quindi il più grande multiplo di 3 più piccolo di 100, ovvero 99. Allora dobbiamo risolvere

$$15x + 27y = 99$$

che è equivalente a

$$5x + 9y = 33$$
.

Il massimo comun divisore tra 5 e 9 è 1 e, dall'identità di Bézout, si ha $1 = 5 \cdot 2 + (-1) \cdot 9$. Allora la coppia (2,-1) è una soluzione particolare dell'equazione diofantea 5x+9y=1, ma poiché dobbiamo risolvere l'equazione 5x+9y=33, dobbiamo moltiplicare il risultato per 33, ottenendo la soluzione particolare (66,-33). Tutte le altre soluzioni si ottengono da quella trovata nel seguente modo:

$$(66+kn,-33-hn), n \in \mathbb{Z}$$

dove k = 9/MCD(5, 9) e h = 5/MCD(5, 9), ovvero

$$(66 + 9n, -33 - 5n), n \in \mathbb{Z}.$$

Infatti

$$15 \cdot (66 + 9n) + 27 \cdot (-33 - 5n) = 15 \cdot 66 + 15 \cdot 9n - 27 \cdot 33 - 27 \cdot 5n = 990 - 891 = 99.$$

- 4. Sia $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x \geq 0\}$ l'insieme dei numeri reali positivi. Rispondere alle seguenti domande giustificando la risposta.
 - (a) La funzione $g: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ che ad ogni coppia (b,h) associa l'area di un rettangolo di base b e altezza h, è una biiezione?
 - (b) La relazione \sharp su \mathbb{R}^+ definita da $p\sharp a$ se e solo se esiste un rettangolo che ha perimetro p e area a, è una funzione?
 - (a) Iniziamo osservando che effettivamente g è una funzione in particolare $g(b,h) = b \cdot h$. È suriettiva, infatti ogni numero reale positivo x può essere l'area di un rettangolo, basta considerare il rettangolo di base x e altezza 1. Tuttavia non è iniettiva, infatti esistono rettangoli con diversa base e altezza che hanno la stessa area.
 - (b) La relazione data è ovunque definita ma non è funzionale. È ovunque definita, infatti per ogni p ∈ R⁺, posso costruire un rettangolo di perimetro p e area, ad esempio, 0: basta considerare una base lunga p/2 e altezza 0. Quindi per ogni p ∈ R⁺ si ha p#0. Non è funzionale perché esistono rettangoli con ugual perimetro ma area diversa (ad esempio quello di base 1 e altezza 1 e quello di base 2 e altezza 0); ne segue che # non è una funzione.