2.3 Baz ve Boyut

Tanım 2.42 V bir vektör uzayı, $S = \{\alpha_1, \alpha_2, \dots, \alpha_k\} \subseteq V$ olsun. Eğer S lineer bağımsız ise ve $\mathrm{Span}(S) = V$ ise S ye V nin bir bazı (tabanı) denir.

Örnek 2.43 $V=\mathbb{R}^3$ olsun. $S=\left\{\left[\begin{array}{c}1\\0\\0\end{array}\right],\left[\begin{array}{c}0\\1\\0\end{array}\right],\left[\begin{array}{c}0\\0\\1\end{array}\right]\right\}$ olsun. S,\mathbb{R}^3 ün bir bazıdır. Bu baza \mathbb{R}^3 ün doğal bazı denir. Benzer şekilde \mathbb{R}_3 ün doğal bazı $S=\left\{[1\ 0\ 0],[0\ 1\ 0],[0\ 0\ 1]\right\}$ kümesidir. \mathbb{R}^n

uzayının doğal bazının elemanları $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ ile gösterilir.

Örnek 2.44 $S=\{t^2+1,t-1,2t+2\}$ kümesinin P_2 nin bir bazı olduğunu gösteriniz.

Çözüm: $\mathrm{Span}(S)=P_2$ ve S nin lineer bağımsız olduğunu göstermeliyiz. $at^2+bt+c\in P_2$ alalım. $at^2+bt+c=a_1(t^2)+a_2(t-1)+a_3(2t+2)$ olacak şekilde $a_1,a_2,a_3\in\mathbb{R}$ bulmalıyız. Buradan: +1

$$\begin{vmatrix} a_1 = a \\ a_2 + 2a_3 = b \\ a_1 - a_2 + 2a_3 = c \end{vmatrix} \Longrightarrow a_1 = a, a_2 = \frac{a + b - c}{2}, a_3 = \frac{c + b - a}{4}$$

bulunur. Her a, b, c için a_1, a_2, a_3 bulunabildiğinden $\operatorname{Span}(S) = P_2$ dir.

Şimdi de S nin lineer bağımsız olduğunu gösterelim. $a_1(t^2+1)+a_2(t-1)+a_3(2t+2)=0$ dersek buradan $a_1=a_2=a_3=0$ olması gerektiği görülür. (Ödev). Sonuç: S,P_2 için bir bazdır.

Örnek 2.45 $\alpha_1 = [1 \ 0 \ 1 \ 0], \alpha_2 = [0 \ 1 \ -1 \ 2], \alpha_3 = [0 \ 2 \ 2 \ 1]$ ve $\alpha_4 = [1 \ 0 \ 0 \ 1]$ olsun. $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ kümesinin \mathbb{R}_4 için bir baz olduğunu gösterin. (Ödev)

Teorem 2.46 Eğer $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ kümesi bir V vektör uzayının bir bazı ise V deki her vektör S deki vektörlerin bir lineer kombinasyonu olarak tek türlü yazılabilir.

Teorem 2.47 Eğer $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ kümesi sıfır olmayan vektörlerin bir kümesi ve $\operatorname{Span}(S) = V$ ise S kümesi V için bir T bazı içerir.

V yi geren bir S kümesinden T bazı şöyle elde edilir:

<u>Adım.1.</u> $a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n = \theta$ eşitliği oluşturulur.

<u>Adım.2.</u> Buradan ek matris oluşturulur ve bu matris indirgenmiş satır eşelon forma getirilir. (**Not**: Satır eşelon forma getirmek de yeterlidir.)

 $\underline{\text{Adım.3.}}$ Baş eleman olan 1 sayısını bulunduran kolona ait vektörler $V = \operatorname{Span}(S)$ uzayı için bir baz oluşturur.

Örnek 2.48 $V=\mathbb{R}_3$ olsun. $\alpha_1=[1\ 0\ 1], \alpha_2=[0\ 1\ 1], \alpha_3=[1\ 1\ 2], \alpha_4=[1\ 2\ 1], \alpha_5=[-1\ 1\ -2]$ olsun. $S=\{\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5\}$ kümesi V yi gerer. (Kontrol ediniz.) Şimdi S nin alt kümesi olan ve V nin bazı olan T kümesini bulalım.

Adım.1.

$$a_1[1 \ 0 \ 1] + a_2[0 \ 1 \ 1] + a_3[1 \ 1 \ 2] + a_4[1 \ 2 \ 1] + a_5[-1 \ 1 \ -2] = [0 \ 0 \ 0]$$

Adım.2.

$$\begin{vmatrix} a_1 + a_3 + a_4 - a_5 = 0 \\ a_2 + a_3 + 2a_4 + a_5 = 0 \\ a_1 + a_2 + 2a_3 + a_4 - 2a_5 = 0 \end{vmatrix} \Longrightarrow \begin{cases} \text{Ek matris:} \\ \text{(ind. satir eşelon formu)} \end{aligned} \begin{bmatrix} \textcircled{1} & 0 & 1 & 0 & -2 & \vdots & 0 \\ 0 & \textcircled{1} & 1 & 0 & -1 & \vdots & 0 \\ 0 & 0 & 0 & \textcircled{1} & 1 & \vdots & 0 \end{bmatrix}$$

<u>Adım.3.</u> Baş elemanlar 1., 2. ve 4. kolonlardadır. Yani $T = \{\alpha_1, \alpha_2, \alpha_4\}$ kümesi \mathbb{R}_3 için bir bazdır.

Not: S nin yazılışında vektörlerin sırası değiştirilirse V nin başka bir bazı elde edilebilir. Örneğin $\beta_1=\alpha_5, \beta_2=\alpha_4, \beta_3=\alpha_3, \beta_4=\alpha_2, \beta_5=\alpha_1$ yazılırsa $S=\{\beta_1,\beta_2,\beta_3,\beta_4,\beta_5\}$ kümesinden $\{\beta_1,\beta_2,\beta_3\}=\{\alpha_5,\alpha_4,\alpha_3\}$ bazı elde edilir.

Teorem 2.49 Eğer $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ kümesi bir V vektör uzayının bazı ve $T = \{\beta_1, \beta_2, \dots, \beta_r\}$ lineer bağımsız vektörlerin bir kümesi ise $r \leq n$ dir.

Sonuç 2.50 Eğer $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ ve $T = \{\beta_1, \beta_2, \dots, \beta_m\}$ bir V vektör uzayının bazları ise n = m dir.

İspat: S bir baz ve T lineer bağımsız olduğundan $m\leqslant n$ dir. Ayrıca T bir baz ve S lineer bağımsız olduğundan $n\leqslant m$ dir. Yani n=m dir. Sonuç olarak "bir vektör uzayının her bazında aynı sayıda eleman vardır" deriz.

Tanım 2.51 Bir V vektör uzayının bir bazındaki eleman sayısına (sonlu ise) V nin boyutu denir ve boy(V) ile gösterilir. $V = \{\theta\}$ ise boy(V) = 0 olarak tanımlanır.

Örnek 2.52 $S = \{t^2, t, 1\}$ kümesi P_2 için bir baz olup $boy(P_2) = 3$ dür.

Örnek 2.53 $\alpha_1=[0\ 1\ 1], \alpha_2=[1\ 0\ 1], \alpha_3=[1\ 1\ 2]$ ve $S=\{\alpha_1,\alpha_2,\alpha_3\}$ olsun. $V=\mathrm{Span}(S), \mathbb{R}_3$ ün alt uzayı olsun. V deki her vektör $a_1\alpha_1+a_2\alpha_2+a_3\alpha_3$ şeklindedir. $\alpha_3=\alpha_1+\alpha_2$ olduğundan S lineer bağımlıdır. $S_1=\{\alpha_1,\alpha_2\}$ dersek $\mathrm{Span}(S_1)=V$ olur. S_1 lineer bağımsız olduğundan (kontrol edin) S_1,V nin bir bazıdır. Yani $\mathrm{boy}(V)=2$ dir.

 ${f Sonuç~2.54~~V~}$ nin boyutu n ise, V deki lineer bağımsız en büyük küme (en fazla elemanlı küme) n elemanlıdır ve V nin bir bazıdır.

Sonuç 2.55 Eğer boy(V) = n ise V'yi geren en küçük kümede n vektör vardır ve bu küme V nin bir bazıdır. Yani boy(V) = n ise n+1 elemanlı küme lineer bağımlıdır. Ayrıca n-1 elemanlı bir küme V'yi doğuramaz.

Örnek 2.58 $\text{boy}(\mathbb{R}^3)=3$, $\text{boy}(\mathbb{R}_2)=2$, $\text{boy}(\mathbb{R}^n)=n$, $\text{boy}(\mathbb{R}_n)=n$ dir. $\text{boy}(P_3)=4$ dür; çünkü $\{t^3,t^2,t,1\}$ bir bazdır. Genelde $\text{boy}(P_n)=n+1$ dir.

Tanım 2.59 Sonlu elemanlı bir bazı olan vektör uzayına sonlu-boyutlu vektör uzayı denir. Sonsuz sayıda elemanlı bazı olan vektör uzayında sonsuz-boyutlu vektör uzayı denir. Örneğin; bütün polinomların vektör uzayı P sonsuz boyutludur.

2.4 Koordinatlar ve İzomorfizmler

V bir vektör uzayı ve $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, V'nin sıralı bir bazı olsun. (Yani S'deki vektörlerin bir yazılış sırası olsun). $\alpha \in V$ vektörü $a_1, a_2, \dots, a_n \in \mathbb{R}$ olmak üzere $\alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n$

$$a_n \alpha_n$$
 şeklinde (tek türlü) yazılır. Bu durumda $[\alpha]_S = \left[egin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array}
ight]$ vektörüne α nın S sıralı bazına göre

 $\underline{\text{koordinat vekt\"{o}r\"{u}}} \text{ denir. } [\alpha]_S' \text{nin elemanlarına da } \alpha \text{ nin } S' \text{ye g\"{o}re } \underline{\text{koordinatları}} \text{ denir. }$

Örnek 2.65 :
$$P_1$$
 de $S = \{t, 1\}$ bir bazdır. $\alpha = p(t) = 5t - 2$ olsun. $[\alpha]_S = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$ dir. $T = \{t+1, t-1\}$ de P_1 in bir bazıdır. $\alpha = 5t - 2 = \frac{3}{2}(t+1) + \frac{7}{2}(t-1)$ olup $[\alpha]_T = \begin{bmatrix} \frac{3}{2} \\ \frac{7}{2} \end{bmatrix}$ dir.

Bazdaki yazılış sırası değişirse koordinatlar da değişir.

Örnek 2.66
$$\mathbb{R}^3$$
 de $\alpha_1=\begin{bmatrix}1\\1\\0\end{bmatrix}$, $\alpha_2=\begin{bmatrix}2\\0\\1\end{bmatrix}$, $\alpha_3=\begin{bmatrix}0\\1\\2\end{bmatrix}$ olmak üzere $S=\{\alpha_1,\alpha_2,\alpha_3\}$ kümesi bir bazdır. $\alpha=\begin{bmatrix}1\\1\\-5\end{bmatrix}$ olsun. $\alpha=3\alpha_1-\alpha_2-2\alpha_3$ olup $[\alpha]_S=\begin{bmatrix}3\\-1\\-2\end{bmatrix}$ dir.

İzomorfizmler

Tanım 2.68 V, \oplus ve \odot işlemiyle bir vektör uzayı ve W da \boxplus ve \boxdot işlemleriyle bir vektör uzayı olsun. Eğer V den W ya 1–1 ve örten L fonksiyonu aşağıdaki şartları sağlıyorsa L ye V den W üzerine bir izomorfizm denir.

(a)
$$L(\alpha \oplus \beta) = L(\alpha) \boxplus L(\beta)$$
, (her $\alpha, \beta \in V$ için)

(b)
$$L(c \odot \alpha) = c \Box L(\alpha)$$
, (her $\alpha \in V, c \in \mathbb{R}$ için)

Bu durumda V, W ya <u>izomorfiktir</u> denir.

Not: V, W ya izomorfik ise W da V ye izomorfiktir. Bu durumda V ile W izomorfiktirler diyebiliriz.

Lemma 2.70 $L:V\longrightarrow W$ bir izomorfizm olsun. O zaman

(a)
$$L(\theta_V) = \theta_W$$

(b)
$$L(\alpha - \beta) = L(\alpha) - L(\beta)$$
 (her $\alpha, \beta \in V$ için)

İspat (a): L bir izomorfizm olduğundan:

$$\begin{split} \theta_V + \theta_V &= \theta_V \Longrightarrow L(\theta_V + \theta_V) = L(\theta_V) \\ &\Longrightarrow \underbrace{L(\theta_V)}_{\in W} + \underbrace{L(\theta_V)}_{\in W} = \underbrace{L(\theta_V)}_{\in W} \\ &\Longrightarrow L(\theta_V) = \theta_W. \quad (L(\theta_V) \text{ sadeleşirse}) \end{split}$$

(b):

$$L(-\beta) = L((-1)\beta) = (-1)L(\beta) = -L(\beta)$$

elde edilir. Daha sonra da ispat şöyle tamamlanır:

$$L(\alpha - \beta) = L(\alpha + (-1)\beta) = L(\alpha) + L((-1)\beta) = L(\alpha) + (-L(\beta)) = L(\alpha) - L(\beta).$$

Teorem 2.71 İzomorfik olma bağıntısı aşağıdaki özellikleri sağlar:

- (a) Her *V* vektör uzayı kendine izomorfiktir.
- (b) V, W ya izomorfik ise W da V ye izomorfiktir.
- (c) U, V ye; V de W ya izomorfik ise U, W ya izomorfiktir.

Teorem 2.72 Sonlu boyutlu iki vektör uzayının izomorfik olmaları için gerek ve yeter şart boyutlarının eşit olmalarıdır.

Dönüşüm Matrisleri

Örnek 2.74
$$V = \mathbb{R}^3$$
 olsun. $S = \left\{ \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix} \right\}$ ve $T = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$

kümeleri V nin sıralı bazları olsun. S bazından T bazına dönüşüm matrisini bulalım:

$$\alpha_{1} = \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Longrightarrow [\alpha_{1}]_{T} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\alpha_{2} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} (-1) \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Longrightarrow [\alpha_{2}]_{T} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

$$\alpha_{3} = \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Longrightarrow [\alpha_{3}]_{T} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \text{ istenen dönüşüm matrisidir. Şimdi } \alpha = \begin{bmatrix} 4 \\ -9 \\ 5 \end{bmatrix} \text{ verilsin. } [\alpha]_T \text{ yi bulmak için } \alpha \text{ yı } S \text{ deki vektörler cinsinden yazalım.}$$

$$\alpha = \begin{bmatrix} 4 \\ -9 \\ 5 \end{bmatrix} = 1 \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix} \text{ olup } [\alpha]_S = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} \text{ dir.}$$

Bu durumda
$$[\alpha]_T=P\cdot [\alpha]_S=$$
 $\begin{vmatrix} 2&2&1\\1&-1&2\\1&1&1\end{vmatrix} \begin{vmatrix} 1\\2\\-2\end{vmatrix} = \begin{vmatrix} 4\\-5\\1\end{vmatrix}$ olmalıdır. Gerçekten de:

$$4\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - 5\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + 1\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \alpha \text{ elde edilir. Yani } [\alpha]_T = \begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix}$$

T bazından S bazına dönüşüm matrisi

$$P^{-1} = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} & -\frac{5}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ -1 & 0 & 2 \end{bmatrix}$$

Örnek 2.75 $V=P_1$ uzayının iki sıralı bazı $S=\{t-1,t+1\}$ ve $T=\{t,t-2\}$ olsun.

$$\alpha_1 = t - 1 = \frac{1}{2}t + \frac{1}{2}(t - 2) \Longrightarrow [\alpha_1]_T = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
$$\alpha_2 = t + 1 = \frac{3}{2}t - \frac{1}{2}(t - 2) \Longrightarrow [\alpha_2]_T = \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{2} \end{bmatrix}$$

olur. S den T ye dönüşüm matrisi $P=\begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$ bulunur.

Mesela; $\alpha=5t+1$ in S bazına göre koordinatları: $[\alpha]_S=\left[\begin{array}{c}2\\3\end{array}\right]$ tür. α nın T bazına göre koordinatları:

$$[\alpha]_T = P \cdot [\alpha]_S = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{11}{2} \\ -\frac{1}{2} \end{bmatrix}$$

olmalıdır. Kontrol edelim. Gerçekten de $\alpha=5t+1=11t-\frac{1}{2}(t-2)$ olduğu görülür. Bu örnekte T bazından S bazına dönüşüm matrisi:

$$P^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \text{ dir.}$$

2.5 Bir Matrisin Rankı

Örnek 2.79 $\alpha_1 = [1 \ -2 \ 1], \alpha_2 = [-1 \ 1 \ 1], \alpha_3 = [1 \ -3 \ 3], \alpha_4 = [3 \ -5 \ 1]$ ve $\alpha_5 = [1 \ -4 \ 5]$ olsun. \mathbb{R}_3 'de $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ kümesi tarafından doğurulan V alt uzayı için bir baz bulalım.

Çözüm:
$$A=\begin{bmatrix} 1&-2&1\\ -1&1&1\\ 1&-3&3\\ 3&-5&1\\ 1&-4&5 \end{bmatrix}$$
 matrisi olsun. V uzayı A matrisinin satır uzayıdır. Elementer sa-

tır işlemleri uygulanırsa $B=\left[egin{array}{cccc} 1&0&-3\\0&1&-2\\0&0&0\\0&0&0\\0&0&0 \end{array}
ight]$ matrisi elde edilir. Bu matris indirgenmiş satır eşelon

formdadır. A nın satır uzayı ile B nin satır uzayı aynıdır. B nin satır uzayı için bir baz $\beta_1=[1\ 0\ -3]$ ve $\beta_2=[0\ 1\ -2]$ olmak üzere $\{\beta_1,\beta_2\}$ kümesidir. Dolayısıyla $\{\beta_1,\beta_2\}$, V için bir bazdır.

değerdir. Yani satır–rank(A) = satır–rank(B) = 2.

Teorem 2.86 Bir $A=[a_{ij}]\ m imes n$ matrisinin satır rankı sütun rankına eşittir.

Örnek 2.87 A matrisi Örnek 2.84'deki matris olsun. A'nın kolon uzayı A'nın kolonları tarafından doğurulan uzaydır. (\mathbb{R}^4 ün alt uzayıdır)

$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 3 \\ 2 \\ 5 \\ -1 \end{bmatrix}, \alpha_4 = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 2 \end{bmatrix} \text{ ve } \alpha_5 = \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix}. A \text{ nin kolonlarini}$$

elde edilir. Bu durumda $\{[1 \ 0 \ 1 \ -1], [0 \ 1 \ 1 \ 1]\}$ kümesi A' nün satır uzayı için bir bazdır ve

$$\left\{ egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}
ight\}$$
 kümesi de A nın sütun uzayı için bir bazdır. Yani s**ütun–rank** $(A)=2$ dir.

A ve B eşdeğerdir \iff rank(A) = rank(B)

 $A, n \times n$ matris olsun. $\operatorname{rank}(A) = n \iff A, I_{n'}$ in satır eşdeğeridir.

 $\iff A$ singüler değil

Rankın Uygulaması

AX = B sistemi tutarlıdır \iff rank[A:B] = rank(A).

Örnek 2.95
$$\begin{bmatrix} 2 & 1 & 3 \\ 1 & -2 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 sistemi verilsin. $\operatorname{rank}(A) = \operatorname{rank}[A:B] = 3$ olduğu için sistemin cözümü verdir.

Örnek 2.96
$$\begin{bmatrix}1&2&3\\1&-3&4\\2&-1&7\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}4\\5\\6\end{bmatrix}$$
sisteminin çözümü yoktur, çünkü $\mathrm{rank}(A)=2$ fakat $\mathrm{rank}[A\dot{:}B]=3$ dür.

Not: $A, n \times n$ matris olsun. Aşağıdakiler birbirine denktir.

- 1. A singüler değildir.
- 2. AX = 0'ın tek çözümü trivialdir.
- 3. A matrisi I_n 'ye satır (sütun) eşdeğerdir.
- 4. Her $B \in \mathbb{R}^n$ vektörü için AX = B nin tek çözümü vardır.
- 5. A, elementer matrislerin bir çarpımıdır.
- 6. rank(A) = n dir.
- 7. A nın satırları (sütunları), \mathbb{R}_n de (\mathbb{R}^n de) lineer bağımsızdır.