Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3211_	_К работе допущен	05 октября 2023
Студент	Болорболд Аригуун	_Работа выполнена	_31 октября 2023
Преподаватель	Коробков М.П.	_Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.04

Исследование равноускоренного

вращательного движения (Маятник Обербека).

- 1. Цель работы.
 - Проверка основного закона динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.
 - Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Рабочие формулы и исходные данные

1)Основной закон динамики вращения: $I_{\rm E} = M - M_{
m TP}$

I - момент инерции крестовины с утяжелителем;

Е – угловое ускорение крестовины;

М - момент силы натяжения нити;

 M_{TP} – момент силы трения в оси крестовины)

2)Второй закон Ньютона: ma = mg - T

т - масса груза, создающего натяжение нити

а - ускорение груза, создающего натяжение нити

g - ускорение свободного падения

Т - сила натяжения нити

3)Зависимость пройденного пути h от времени t при постоянном ускорении: $h = \frac{at^2}{2}$

$$(a = \frac{2h}{t^2})$$

h – путь, пройденный телом, которое создает натяжение нити

t – время, за которое был пройден h

4)Связь между угловым ускорением крестовины и линейным ускорением груза:

$$\varepsilon = \frac{2a}{d}$$

d – диаметр ступицы

5) Осевой момент силы для силы натяжения нити: M = $\frac{Td}{2}$

6)Из определения момента инерции и т. Штейнера: $I = I_0 + 4m_{yT}R^2$

 I_0 – сумма моментов инерции стержней крестовины с утяжелителями, момента инерции ступицы и собственных центральных моментов инерции утяжелителей

R – расстояние между осью вращения и центром утяжелителя

тут – масса утяжелителя

I – коэффициент наклонной зависимости М(E)

3. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Линейка	Измерительный	[0,700] мм	0,5мм	
2	Секундомер	Электронный измерительный	[0,01; 60] c	0,005c	

4. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1. Результаты прямых измерений (Приложение 1)

Примеры расчетов:

$$\langle t \rangle = \frac{1}{3} (t_1 + t_2 + t_3) = \frac{1}{3} (4,72 + 4,68 + 4,66) = 4,6867 c$$

 $t_1 - \langle t \rangle = (4,72 - 4,6867) = 0,0333 c$
 $(t_1 - \langle t \rangle_N)^2 = (4,72 - 4,69)^2 = 0,0011 c^2$

5. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2. Результаты вычисления а, М, Е (Приложение 2)

Таблица 3. Результаты вычисления I и М_{тр} (Приложение 3)

Таблица 4. Результаты вычисления R² и I (Приложение 4)

По данным таблицы из формулы (6) по МНК получаем:

$$m_{
m yr} = 7,18 \pm 0,76 \
m Kr$$
 $I_0 = 0,08635 \pm 0,03 \
m Kr^* m^2$

- 6. Расчет погрешностей измерений (для прямых и косвенных измерений).
- 1) Времени t:

$$S_{\langle t \rangle} = \sqrt{\frac{1}{3(3-1)} \sum_{i=1}^{3} (t_i - \langle t \rangle)^2} = 0.17638 \text{ c}$$

Доверительная вероятность: α=0,95, N=3

Коэффициент Стьюдента: 4,3

Доверительный интервал: $\Delta t' = t_{\alpha,N} \cdot \sigma_{(t)}$ = 0,01675 с

Абсолютная погрешность:

 $t_1 = (4,687 \pm 0,018)$ (c) $\varepsilon_t = 0,38\%$

2) Ускорения а (для положения утяжелителей на 1 риске и массы т₁):

$$\Delta a = \sqrt{(\frac{\delta a}{\delta h} * \frac{2}{3} * \Delta h)^2 + (\frac{\delta a}{\delta t} * \Delta t)^2} = \sqrt{(\frac{4}{3t^2} * \Delta h)^2 + (-\frac{4h}{t^3} * \Delta t)^2} = 0,0005 \text{ (M/c}^2)$$

$$a_1 = (0,064 \pm 0,0005) \text{ (M/c}^2) \quad \varepsilon_a = 1\%$$

3) Момента силы натяжения нити М (для положения утяжелителей на 1 риске и массы m₁):

$$M = \frac{1}{2}m_1d(g - a) = 0,4937 \text{ (H*m)};$$

 $m_1 = m_K + m; m_K = (47 \pm 0.5) \text{ (r)}; m = (220 \pm 0.5) \text{ (r)};$

$$\Delta_{m1} = \sqrt{\left(\frac{\delta M}{\delta m_K} * \Delta m_K\right)^2 + \left(\frac{\delta M}{\delta m} * \Delta m\right)^2} = \sqrt{(\Delta m_K)^2 + (\Delta m)^2} = 0.07 (r)$$

$$m_1 = (267 \pm 0.07) (r); d = (0.046 \pm 0.0005) (M)$$

$$g = const = 9.8 (M/c^2)$$

$$a = (0.064 \pm 0.0005) (M/c^2)$$

$$\begin{split} \Delta M &= \sqrt{\left(\frac{\delta M}{\delta m_1} * \frac{2}{3} * \Delta m_1\right)^2 + \left(\frac{\delta M}{\delta d} * \frac{2}{3} \Delta d\right)^2 + \left(\frac{\delta M}{\delta a} * \Delta a\right)^2} = \\ \sqrt{\left(\frac{2}{3} * \Delta m_1\right)^2 + \left(\frac{2}{3} * \Delta d\right)^2 + (\Delta a)^2} &= 0,000002 \text{ (H*m)} \\ M &= (0,049 \ \pm \ 0,000002) \text{ (H*m)}; \ \mathcal{E}_M = 0,000053\% \end{split}$$

4) Углового ускорения крестовины ϵ (для положения утяжелителей на 1 риске и массы m_1):

$$\varepsilon = \frac{2a}{d} = 2,77 \text{ (рад*c-2)}$$

$$\Delta \varepsilon = \sqrt{\left(\frac{\delta \varepsilon}{\delta d} * \frac{2}{3} \Delta d\right)^2 + \left(\frac{\delta \varepsilon}{\delta a} * \Delta a\right)^2} = 0,021 \text{ (c-2)}$$

$$\varepsilon_1 = (2,77 \pm 0,021) \text{ (c-2)} \ \varepsilon_{\varepsilon} = 0,76\%$$

7. Графики (приложение 5)

График 1. Зависимость момента силы натяжения нити M от углового ускорения крестовины ϵ

График 2. Зависимость момента I инерции крестовины от квадрата расстояния между осью вращения и центра утяжелителя

8. Окончательные результаты

$$m_{
m yr} = 7,18 \pm 0,76 \; {
m Kr}$$
 $I_o = 0,08635 \pm 0,03 \; {
m Kr}^* {
m M}^2$

9. Выводы и анализ результатов работы.

В результате исследования был получен График 1 зависимости $M=I\varepsilon-M_{\rm Tp}$, который лежит в пределе погрешностей экспериментально полученных точек, а с увеличением расстояние между грузиками и осью вращения и, соответственно, увеличением момента инерции I крестовины увеличивается угол наклона графика. Следовательно, проверка основного закона динамики вращения была успешной.

Также мы убедились, что момент инерции крестовины зависит от положения масс относительно оси вращения. На Графике 2 можно увидеть, что зависимость похожа на $I(R^2) = I_0 + 4m_{vt}R^2$

Заявленная масса грузов на крестовине (г) схожа с вычисленной $m_{\rm yr}=1.8\,$ (кг), а относительная погрешность $\epsilon=0.2\%$, что говорит о достаточной точности эксперимента.

Приложение 1

Таблица 1. Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Macca	Положение утяжелителей					
груза, кг	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	4,72	5,56	6,41	7,45	8,52	9,34
220	4,68	5,48	6,50	7,38	8,44	9,51
	4,66	5,57	6,45	7,21	8,33	9,45
$\langle t \rangle$	4,69	5,54	6,45	7,35	8,43	9,43
	3,39	4,01	4,77	5,36	6,09	6,82
440	3,47	4,10	4,77	5,34	6,15	6,88
	3,44	4,01	4,71	5,47	6,17	6,85
⟨ <i>t</i> ⟩	3,43	4,04	4,75	5,39	6,14	6,85
	2,79	3,30	3,82	4,44	5,06	5,78
660	2,78	3,31	3,86	4,55	5,00	5,80
	2,85	3,31	3,83	4,46	4,96	5,65
$\langle t \rangle$	2,81	3,31	3,84	4,48	5,01	5,74
	2,41	2,88	3,41	3,83	4,43	4,96
880	2,39	2,87	3,36	4,01	4,37	4,92
	2,47	2,91	3,33	3,91	4,44	4,89
(t)	2,42	2,89	3,37	3,92	4,41	4,92

Приложение 2

Таблица 2. Значения ускорения каретки, углового ускорения крестовины и момента силы натяжения нити для средних значений времени

Масса груза, кг t _{ср} , с		а, м/c²	ε, c ⁻²	М, Н*м	
	4,69	0,06	2,77	0,05	
	5,54	0,05	1,99	0,05	
220	6,45	0,03	1,46	0,05	
220	7,35	0,03	1,13	0,05	
	8,43	0,02	0,86	0,05	
	9,43	0,02	0,68	0,05	
	3,43	0,12	5,16	0,10	
440	4,04	0,09	3,73	0,10	
440	4,75	0,06	2,70	0,10	
	5,39	0,05	2,10	0,10	

•	i i	i	į	ı
	6,14	0,04	1,62	0,10
	6,85	0,03	1,30	0,10
	2,81	0,18	7,73	0,15
	3,31	0,13	5,57	0,15
660	3,84	0,10	4,14	0,15
000	4,48	0,07	3,03	0,15
	5,01	0,06	2,43	0,15
	5,74	0,04	1,85	0,15
	2,42	0,24	10,37	0,19
	2,89	0,17	7,30	0,19
880	3,37	0,12	5,37	0,20
000	3,92	0,09	3,97	0,20
	4,41	0,07	3,13	0,20
	4,92	0,06	2,51	0,20

Приложение 3

Таблица.3

Значения I и Мтр из листов МНК рис. в экселевском файле

Приложение 4

Таблица 4. Значения момента инерции для утяжелителей в разных положениях

Номера рисок	1	2	3	4	5	6
R	0,077	0,102	0,127	0,152	0,177	0,202
R ²	0,005929	0,010404	0,016129	0,023104	0,031329	0,040804
I	0,02	0,03	0,04	0,05	0,06	0,08