

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 564 924 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
09.09.1998 Bulletin 1998/37

(51) Int Cl. 6: C07K 5/06, C07D 207/16,
C07D 401/12, C07D 405/12,
C07D 401/06, C07D 211/60,
A61K 38/04, A61K 31/40,
A61K 31/44, A61K 31/445

(21) Application number: 93105035.5

(22) Date of filing: 26.03.1993

(54) 2-Oxoethyl derivatives as immunosuppressants

2-Oxoethyl derivative als Immunosuppressiva

Dérivés de 2-oxoéthyle comme agents immuno-supresseurs

R²R³

incorrect

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
PT SE

(30) Priority: 08.04.1992 US 864998
25.11.1992 US 981565

(43) Date of publication of application:
13.10.1993 Bulletin 1993/41

(73) Proprietor: Bayer Corporation
Pittsburgh, PA 15205-9741 (US)

(72) Inventors:

- Connell, Richard D.
New Haven, CT 06512 (US)
- Osterman, David D.
Glastonbury, CT 06033 (US)
- Katz, Michael E.
Wallingford, CT 06492 (US)

(74) Representative: Danner, Klaus, Dr. et al
Bayer AG

Konzernbereich RP
Rechtspolitik Gewerblicher Rechtsschutz
51368 Leverkusen (DE)

(56) References cited:
EP-A- 0 038 758 WO-A-92/00278

- J.MED.CHEM.: vol. 35, no. 23, 13 November 1992,
USA pages 4284 - 4296 J.R.HAUSKE ET AL.
'DESIGN AND SYNTHESIS OF NOVEL FKBP
INHIBITORS'
- IL FARMACO ED.SC. vol. 43, no. 12, 1988, pages
989 - 1003 R.CIABATTI ET AL. 'PROLYL
DERIVATIVES OF ENALAPRIL AS POTENTIAL
ANGIOTENSIN CONVERTING ENZYME
INHIBITORS'

Remarks:

The file contains technical information submitted
after the application was filed and not included in this
specification

EP 0 564 924 B1

Note: Within nine months from the publication or the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

DescriptionBackground

5 The invention relates to compounds for controlling inflammatory processes in humans through mediation of inflammatory cell proliferation. More particularly, the present invention relates to a class of novel compounds which bind to the FKBP-type family of immunophilins and which are useful for suppressing T-lymphocytes.

EP - 0 038 758 discloses amino acid derivatives which inhibit enkephalinase and have analgesic and hypotensive activity.

10 In IL Farmaco, Ed. Sc., Vol. 43 (12), pp. 989-1003, R. Ciabatti and coworkers describe the synthesis of prolyl derivatives of enalapril as potential angiotensin converting enzyme inhibitors. However, the tested compounds showed no in vivo activity and only a weak in vitro inhibitory activity.

15 Compounds which retard the production of cytokines such as interleukin-2 (IL-2) are known. For instance, U.S. Patent No. 4,764,503 assigned to Sandoz Ltd., Basel, Switzerland, describes a compound generically referred to as Cyclosporin A (hereinafter referred to as "CsA"), and U.S. Patent No. 4,894,366 assigned to Fujisawa Pharmaceuticals, Osaka, Japan, describes a compound they designate as "FK506". Both CsA and FK 506 are claimed to inhibit IL-2 production and bind to cellular receptor proteins that possess Peptidyl Prolyl Isomerase (PPIase) activity (Johansson et al., 1990, Transplantation 50:10017).

20 It was initially postulated by those skilled in the art that the specific binding by such compounds to PPIase type proteins led to inhibition of the protein's isomerase activity which, in turn, led to inhibition of T-cell proliferation. Thus, these PPIase type proteins were referred to as "immunophilins", with the cellular receptor proteins that bound to CsA and FK506 being referred to as "cyclophilin" and "FK506 binding protein", respectively. FK506 binding protein is also simply referred to as "FKBP" (Harding et al., 1989, Nature 341:758).

25 Recent publications report that the inhibition of PPIase activity, in and of itself, is not sufficient for immunosuppressive activity. However, there is support in the literature that inhibitory binding to PPIase-type enzymes probably contributes to ultimate T-cell suppression (Sigal et al. 1991, J. Exp. Med. 173:619).

This disclosure presents a new class of synthetic compounds that both suppress the proliferation of T-cells and inhibit the isomerase activity of the FKBP-type of PPIases.

30 CsA, a cyclic undecapeptide, has received FDA approval for use as an adjunct to organ transplant procedures. However, CsA is administered with caution due to its known toxicity. Currently, CsA is prescribed in situations where the risks of non treatment outweigh the risks of its therapeutic complications.

35 As a result, efforts to expand the application of CsA into non life threatening indications such as chronic maintenance of autoimmune disorders have been limited by the well-known side effects of this drug. The use of CsA leads to a variety of disorders including: nephrotoxicity, such as impairment of glomerular filtration and irreversible interstitial fibrosis (Kopp et al., 1991, J. Am. Soc. Nephrol. 1:162); neurological deficits, such as involuntary tremors, or non-specific cerebral angina such as non-localized headaches (De Groen et al., 1987, N. Engl. J. Med. 317:861); and vascular hypertension with complications resulting therefrom (Kahan et al., 1989, N. Engl. J. Med. 321:1725).

40 Recent efforts to investigate the cause of the adverse effects of CsA administration have centered on the role of CsA breakdown into toxic metabolites (Bowers et al., 1990, Clin. Chem. 36:1875; Burke et al., 1990, Transplantation 50:901). The prevailing thought is that CsA toxicity is due to such metabolites and not due to the nature of the CsA binding to the PPIase, cyclophilin (Akagi et al., 1991, J. Int. Med. Res. 19:1; Ryffel et al., 1988, Transplantation 46:905).

Thus, inhibitor compounds that do not resemble CsA structurally, yet bind to PPIases, should be more amenable to therapeutic applications. Such non-toxic immunosuppressors would benefit the art, especially for chronic administration such as required in the treatment of autoimmune disorders.

45 The compound FK506 is structurally different from CsA and does not produce the same type of toxic metabolites. FK506 has been shown to be effective in some transplant patients who do not respond to CsA (Tucci et al., 1989, J. Immunol. 143:718).

However, testing of FK506 in humans was delayed due to severe vasculitis observed in treatment regimens in dogs and baboons (Collier et al., 1988, Transplant Proc. 20:226). Furthermore, other clinical side effects and complications of FK506 administration are being reported (Frayha et al., 1991, Lancet 337:296; Kitahara et al., 1991, Lancet 337:1234). It has also been reported that "overall, the absolute rate of clinical rejection in FK506 [post-organ transplantation] patients is only slightly lower than with current standard therapies" (Holechek, 1991, Anna. J. 18:199).

50 In an attempt to alleviate the FK506 side effects, many minor modifications to the base structure have been reported. For example, U.S. Patent No. 5,057,608 assigned to Merck & Co. and WIPO Publication No. WO89/05304 assigned to FISONS PLC Inc. both disclose chemical variations of the FK506 compound.

To date only a few studies on the metabolism of FK506 have been published, and little information has been reported on the toxicity of its metabolites (Johansson et al., 1990, Transplantation 50:1001; Christians et al., 1991, Clinical Biochemistry 24:271; Lhoest et al., 1991, Pharmaceutica Acta Helvetica 66:302). Since it is likely that the

pattern of metabolism of the FK506 analogs and derivatives are similar to the parent compound, it is also likely that many of the side effects of FK506 will be shared by the derivatives.

As is true for CsA, the toxicity of FK506 is postulated to be based on its structure and not due to its binding activity with the immunophilin FKBP. It is further postulated that the toxicity of compounds such as CsA and FK506 are due to various chemical groups found in these structures which do not participate in the immunosuppressive activity, such as those groups which result in the toxic metabolites of CsA bio-processing. Thus, relatively compact molecules which do not resemble either CsA or FK506, and which have both immuno-suppressive and PPIase binding activity should be free of side effects associated with CsA and FK506.

Furthermore, the compound FK506 and its derivatives (for example such as disclosed in WIPO Publication No. WO92/00278 assigned to VERTEX Pharmaceuticals Inc.) all share the following homo-proline (6-membered, proline-like) dicarbonyl backbone structure:

FK506 and its derivatives all preferably rely on the two carbonyl groups at positions 8 and 9, with the presence of the carbonyl at the number 8 carbon being essential. The presence of the double bond oxygen in proximity to number 7 nitrogen creates an amide type linkage between the nitrogen at position 7 and carbon at position 8.

Recent reports have suggested that the nitrogen at position 7, along with the number 8 and 9 carbonyl groups of FK506 represent "a twist-bond amide" (Michnick et al., 1991, Science 252:836). Based on the data presented in the Michnick et al. article, it was assumed and accepted by those skilled in this art that the carbonyl at position 8 was the functional species. Jorgensen, 1991, Science 254:954, teaches that this keto-amide moiety is critical to activity because the moiety allegedly serves as a transition state analog.

The present description proposes that the carbonyl group at the number 8 position is non-essential for T-cell suppression, and the compounds of the present invention do not rely on this carbonyl group.

The present invention presents a novel class of synthetic inhibitor compounds. The novel class includes synthetic 2-oxoethylene derivatives that bind to human FKBP-type PPIases and demonstrate human peripheral T-lymphocyte inhibitory activity. Moreover, the absence of a carbonyl attached directly to the nitrogen in the proline ring (see formula II, below) provides compounds that possess stability to hydrolysis by proteases at the N-terminus of proline.

It is therefore an object of the present invention to provide for compounds and compositions containing such 2-oxoethylene derivatives for suppression of pathological and abnormal human peripheral T-lymphocyte proliferation.

It is also an object of the present invention to provide a novel class of compounds suitable for therapeutic compositions designed to suppress pathological immune responses, such as the hyperimmune response in organ transplantation rejection, the self-destructive autoimmune diseases, and the overproduction and excessive proliferation of immune cells such as in infectious disease states.

More specific objects include provisions for compounds, compositions and methods for treatment and prevention of rejection of transplanted organs or tissues such as kidney, heart, lung, liver, bone marrow, skin grafts, and corneal replacement.

It is a further object to provide compounds, compositions and methods for use in the treatment of autoimmune, degenerative, inflammatory, proliferative and hyperproliferative diseases, such as rheumatoid arthritis, osteoarthritis, other degenerative joint diseases, joint inflammation such as associated with infectious diseases such as suppurative arthritis, and secondary arthritis such as those associated with gout, hemochromatosis, rheumatic fever, Sjögren's syndrome and tuberculosis.

Another object is to provide compounds, compositions and methods for use in the treatment of lupus erythematosus, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type 1 diabetes, uveitis, nephrotic syndrome, and of cutaneous manifestations of immunologically-mediated diseases such as psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitides, seborrheic dermatitis, lichen planus, pemphigus, bullous pemphigoid, epidermolysis bullosa, urticaria, angioedemas, vasculitides, erythemas, cutaneous eosinophilias, and alopecia areata.

Yet another object is to provide compounds, compositions and methods for use in the treatment of abnormal T-cell proliferation such as lymphocytic leukemia; Hodgkin's disease, especially those subtypes involving abnormal T-cell subpopulations; non-Hodgkin's lymphomas, such as mycosis fungoides, convoluted lymphocytic lymphoma, and

immunoblastic sarcoma; and chronic lymphadenitis.

The above lists are non-limiting, and one skilled in the art could easily adapt the compounds, compositions and methods of the present invention to other indications, such adaptations being within the spirit and scope of the invention which will be described hereinbelow.

5

SUMMARY OF THE INVENTION

The presently claimed invention relates to compounds comprising at least one of the following structures:

10

15

20

wherein

R¹ is

25

- a) hydrogen,
- b) linear or branched alkyl (C₁-C₈) which may be substituted independently or simultaneously up to two times by

30

- i) hydroxy,
- ii) phenyl which may be substituted by straight or branched alkyl (C₁-C₈), or straight or branched alkoxy (C₁-C₆),
- iii) cycloalkyl (C₃-C₁₀) which may be substituted by straight or branched alkyl (C₁-C₈), or straight or branched alkoxy (C₁-C₆),
- iv) bicycloalkyl (C₆-C₁₂) which may be substituted by straight or branched alkyl (C₁-C₁₀), or straight or branched alkoxy (C₁-C₆),
- v) tricycloalkyl (C₇-C₁₄) which may be substituted by straight or branched alkyl (C₁-C₈), or straight or branched alkoxy (C₁-C₆),
- vi) tetracycloalkyl (C₁₀-C₁₄), which may be substituted by straight or branched alkyl (C₁-C₈), or straight or branched alkoxy (C₁-C₆), or
- vii) morpholinyl,

40

- c) alkene (C₃-C₁₀), diene (C₄-C₁₀), or triene (C₈-C₁₈), which may be substituted independently or simultaneously, up to three times by

45

- i) phenyl,
- ii) straight or branched alkyl (C₁-C₆), or
- iii) straight or branched alkoxy (C₁-C₆).

50

- d) cycloalkyl (C₅-C₁₀), or the cycloalkyl fragment

55

where

m is an integer of 0, 1, or 2,
J, K, and L are independently or simultaneously

- 5 i) hydrogen,
 ii) straight or branched alkyl (C1-C5), which may be substituted by phenyl, or straight or branched alkoxy (C1-C6),
 iii) straight or branched alkoxy (C1-C5),
 10 iii) phenyl, or
 iv) phenyl substituted by straight or branched alkyl (C1-C6), or chlorine, or straight or branched alkoxy (C1-C6).

15 e) bicycloalkyl (C7-10), tricycloalkyl (C7-14), tetracycloalkyl (C10-C16), or pentacycloalkyl (C11-C20), which may be independently or simultaneously substituted up to 3 times with straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C6), or phenyl,
 f) the aryl derivatives tetrahydronaphthyl, benzothienyl, benzofuryl, benzopyranyl, furyl, pyridyl, pyranyl, 1,3-oxazolyl, or naphthyl, said aryl derivatives may be independently or simultaneously substituted up to two times by

- 20 i) straight or branched alkyl (C1-C6),
 ii) straight or branched alkoxy (C1-C6),
 iii) halogen, where halogen is fluoro, chloro, bromo, or iodo,

25 g) the piperonyl fragment

35 where

z is an integer of 1, or 2,
 40 and E¹, E², and E³ can independently or simultaneously be hydrogen, straight or branched alkyl (C1-C6), straight or branched alkoxy (C1-C6), or chlorine, or

45 h) the aryl derivative

50

where
 U, V, and W can be independently or simultaneously

- 55 i) hydrogen,
 ii) straight or branched alkyl (C1-C6), straight or branched alkoxy (C1-C6), phenyl, or phenoxy, these groups may be substituted by phenyl, straight or branched alkoxy (C1-C6), or phenoxy,
 iii) hydroxy,

- iv) halogen,
- v) nitro, or
- vi) benzoyl;

5 Y is a covalent bond, oxygen, NR⁷, where R⁷ is hydrogen, in addition,
R¹-Y- may also be

where

15 k is an integer of 1 or 2,

R⁸ is

- 20 a) hydrogen,
b) carboalkoxy with a straight or branched alkoxy (C1-C6),
c) straight or branched alkyl (C1-C6) which may be substituted by phenyl, or straight or branched alkoxy (C1-C6),
d) phenyl, or phenyl substituted by halogen,

25 R⁹ is phenyl which may be substituted by straight or branched alkyl (C1-C6);

R² and R³ are defined as follows: one of R² and R³ are hydrogen, and the other is hydrogen or straight or branched alkyl (C1-C6);

n is an integer of 2 or 3;

30 A is NR¹⁰, where R¹⁰ is hydrogen or straight or branched alkyl (C1-C6);
R⁴ and R⁵ may independently or simultaneously be

- a) hydrogen,
b) straight or branched alkyl (C1-C8) which may be substituted by

35 i) phenyl, or phenyl substituted by hydroxy or alkoxy (C1-C2),
ii) cycloalkyl (C5-C6),
iii) alkylthio (C1-C6),
iv) carboxamido,

40 v) straight or branched alkoxy (C1-C6) which may be substituted by phenyl,

- c) phenyl, or
d) cycloalkyl (C3-C7), which may be substituted by straight or branched alkyl (C1-C6),

45 in addition, R⁴ and R⁵, taken together can be

50 where

r is an integer of 4 or 5;

G is one of the following fragments

55 $-HC=CH-$, $-CH_2-CH_2-$, or $-CH_2-$

or the following fragment

where R^{12} is hydrogen or methyl, such that the carbonyl group is attached to the carbon bearing R^4 and R^5 and that NR^{12} is connected to R^6 ;

10

ρ is an integer of 0 or 1;

R^6 is

15

- a) hydrogen,
- b) straight or branched alkyl (C1-C6) which may be substituted by

20

- i) phenyl,
- ii) phenyl substituted with straight or branched alkyl (C1-C6), straight or branched alkoxy (C1-C6), or
- iii) pyridyl, or

25

- c) phenyl, naphthyl, furyl, thifuryl, cycloalkyl (C5-C8), bicycloalkyl (C6-C10), tricycloalkyl (C7-C12), tetracycloalkyl (C10-C16), pentacycloalkyl (C11-C20) or benzoyl, such groups may be substituted by

30

- i) an amine,
- ii) amino substituted by a straight or branched alkoxy carbonyl (C1-C6) that may be substituted by phenyl or an alkene (C2-C6),
- iii) amino substituted by alkanoyl (C1-C6), or benzoyl,
- iv) sulfonamide ($-\text{SO}_2\text{NH}_2$), or
- v) hydroxy, or a straight or branched alkoxy (C1-C6), that may be substituted by phenyl;

and pharmaceutically acceptable salts thereof.

Included within the scope of the present invention are pharmaceutically acceptable salts of the above mentioned compounds. Pharmaceutically acceptable salts can be derived from mineral acids, carboxylic acids or sulfuric acids preferred from hydrochloric acid, hydrobromic acid, sulfuric acid, methane sulfonic acid, ethane sulfonic acid, toluene sulfonic acid, benzene sulfonic acid, naphthalene disulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid or benzoic acid. Most preferred are the hydrochlorides.

In the case of the present compounds being carboxylic acids or containing acidic functional groups, the invention includes metal salts and ammonium salts. Preferred are sodium, potassium or ammonium salts. The compounds of this invention exist as stereoisomeric forms, which either behave like image and mirror image (enantiomers) or not (diastereomers). Included within the scope of the invention are the enantiomers, the racemic form as well as diastereomeric mixtures. Enantiomers as well as diastereomers can be separated by methods known to those skilled in the art (compare E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill, 1962).

45

Preferred are compounds of formula (I)

wherein

R¹ is

- 5 a) hydrogen,
 b) linear or branched alkyl (C1-C6) which may be substituted
 - i) once by hydroxy,
 - 10 ii) once by phenyl which may be substituted by straight or branched alkyl (C1-C4), or straight or branched alkoxy (C1-C6),
 - 15 iii) once by cycloalkyl (C3-C8) which may be substituted by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
 - 20 iv) once by bicycloalkyl (C6-C10) which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C4),
 - 25 v) once by tricycloalkyl (C7-C12) which may be substituted by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
 - 30 vi) once by tetracycloalkyl (C10-C12), which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C4),
 - 35 vii) up to two times by phenyl and cycloalkyl (C5-C7), or
 - 40 viii) up to two times by phenyl and morpholinyl,
- c) alkene (C3-C8), which may be substituted by phenyl, straight or branched alkyl (C1-C4), or straight or branched alkoxy (C1-C4),
- d) diene (C4-C7) substituted by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
- e) triene (C10-C16) substituted up to three times by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4), or
- f) cycloalkyl (C5-C10), or the cycloalkyl fragment

35

where

- 40 m is an integer of 0, 1, or 2,
 J, K, and L are independently or simultaneously
 - i) hydrogen,
 - 45 ii) straight or branched alkyl (C1-C5), which may be substituted by phenyl, or straight or branched alkoxy (C1-C4),
 - iii) phenyl, or
 - iv) phenyl substituted by straight or branched alkyl (C1-C4), or chlorine, or straight or branched alkoxy (C1-C4),
- 50 g) bicycloalkyl (C7-10) which may be substituted up to 3 times with straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
- h) tricycloalkyl (C7-14) which may be substituted up to 3 times with straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
- i) tetracycloalkyl (C10-C15) which may be substituted up to 3 times by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
- 55 j) naphthyl derivatives, or the heteroaryl derivatives benzothienyl, benzofuryl, benzopyranyl, furyl, pyridyl, pyrazinyl, or 1,3-oxazolyl, said derivatives may be substituted up to two times by
 - i) straight or branched alkyl (C1-C6),

ii) halogen,
iii) or both,

5 k) 1,2,3,4-tetrahydronaphthyl,
l) the piperonyl fragment

10

15

where

20 z is an integer of 1, or 2,
and E¹, E², and E³ can be independently or simultaneously hydrogen, straight or branched alkyl (C1-C4),
straight or branched alkoxy (C1-C4), or chlorine,

m) the aryl derivative

25

30

where

35 U, V, and W can be independently or simultaneously

- 40 i) hydrogen,
ii) straight or branched alkyl (C1-C4), which may be substituted by phenyl,
iii) straight or branched alkoxy (C1-C6) which may be substituted by phenyl, straight or branched alkoxy
(C1-C4), or phenoxy,
iv) hydroxy,
v) phenyl,
vi) halogen,
vii) nitro,
viii) benzoyl, or
45 ix) phenoxy;

Y is a covalent bond, oxygen, NR⁷, where R⁷ is hydrogen,
in addition,
R¹-Y- may also be

50

wher

5 k is an integer of 1, or 2,

R⁸ is

- a) hydrogen,
- b) carboalkoxy with a straight or branched alkoxy (C1-C4),
- c) straight or branched alkyl (C1-C4) which may be substituted by phenyl, or straight or branched alkoxy (C1-C4), or
- d) phenyl, or phenyl substituted by halogen,

10 R⁹ is phenyl which may be substituted by alkyl (C1-C4);

R² and R³ are defined as follows: one of R² and R³ are hydrogen, and the other is hydrogen or straight or branched alkyl (C1-C6);

n is an integer of 2 or 3;

15 A is NR¹⁰, where R¹⁰ is hydrogen or straight or branched alkyl (C1-C4);

R⁴ is

- a) hydrogen,
- b) straight or branched alkyl (C1-C6) which may be substituted by

20 i) phenyl, or phenyl substituted by hydroxy or methoxy,
 ii) cycloalkyl (C5-C6),
 iii) alkylthio (C1-C6),
 iv) carboxamido, or

25 v) straight or branched alkoxy (C1-C6) which may be substituted by phenyl,

- c) phenyl, or
 d) cycloalkyl (C3-C7), which may be substituted by straight or branched alkyl (C1-C6);

30 R⁵ is hydrogen or straight or branched alkyl (C1-C4), and R⁴ and R⁵, taken together can be

35 where r is an integer of 4 or 5;

G is one of the following fragments

40 or the following fragment

50 where the carbonyl group is attached to the carbon bearing R⁴ and R⁵ and NR¹² is connected to R⁶,

R¹² is hydrogen or methyl;

p is an integer of 0 or 1;

R⁶ is

- a) hydrogen,
- b) straight or branched alkyl (C1-C4) which may be substituted by

- i) phenyl,
- ii) phenyl substituted with straight or branched alkyl (C1-C4), straight or branched alkoxy (C1-C4), or

iii) 2- or 4-pyridyl,

c) phenyl or naphthyl, which may be substituted by

- 5 i) amine,
- ii) amino substituted by a straight or branched alkoxy carbonyl (C1-C6) that may be substituted by phenyl or an alkene (C2-C6),
- iii) amino substituted by alkanoyl (C1-C6), or benzoyl,
- iv) sulfonamide (-SO₂NH₂), or
- 10 v) straight or branched alkoxy (C1-C6), that may be substituted by phenyl,
- d) benzoyl,
- e) furyl, or thiofuryl, or
- 15 f) cycloalkyl (C5-C8), bicycloalkyl (C6-C10), tricycloalkyl (C7-C12), or tetracycloalkyl (C10-C14);

and pharmaceutically acceptable salts thereof.

Included within the scope of the present invention are pharmaceutically acceptable salts of the above mentioned compounds. Pharmaceutically acceptable salts can be derived from mineral acids, carboxylic acids or sulfuric acids preferred from hydrochloric acid, hydrobromic acid, sulfuric acid, methane sulfonic acid, ethane sulfonic acid, toluene sulfonic acid, benzene sulfonic acid, naphthalene disulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid or benzoic acid. Most preferred are the hydrochlorides:

Most preferred are compounds of formula (I)

25

30

wherein

R¹ is

- 40 a) hydrogen,
- b) linear or branched alkyl (C1-C6) which may be substituted by
 - i) hydroxy,
 - ii) phenyl, or phenyl substituted by straight or branched alkyl (C1-C4),
 - iii) cycloalkyl (C3-C8) which may be substituted by straight or branched alkyl (C1-C4),
 - iv) bicycloalkyl (C6-C9) which may be substituted by straight or branched alkyl (C1-C6),
 - v) tricycloalkyl (C7-C12) which may be substituted by straight or branched alkyl (C1-C4),
 - vi) tetracycloalkyl (C10-C12), which may be substituted by straight or branched alkyl (C1-C6),
 - vii) both phenyl and cycloalkyl (C5-C6), or
 - viii) both phenyl and morpholinyl,
- 45 c) alkene (C3-C6), which may be substituted by phenyl,
- d) diene (C5-C6) substituted by straight or branched alkyl (C1-C4),
- e) triene (C13-C16) substituted up to three times by straight or branched alkyl (C1-C4),
- 50 f) cycloalkyl (C5-C6), or the cycloalkyl fragment

5

10

where
m is an integer of 0, 1, or 2,
J, K, and L are independently or simultaneously

15

- i) hydrogen,
- ii) straight or branched alkyl (C1-C5),
- iii) phenyl, or
- iv) phenyl substituted by straight or branched alkyl (C1-C4), or chlorine, or straight or branched alkoxy (C1-C4),

20

- g) bicycloalkyl (C7-8) which may be substituted up to 3 times with straight or branched alkyl (C1-C4),
- h) tricycloalkyl (C7-12) which may be substituted up to 2 times with straight or branched alkyl (C1-C6),
- i) tetracycloalkyl (C10-C12) which may be substituted up to 3 times by straight or branched alkyl (C1-C4),
- j) 2-benzothienyl substituted independently or simultaneously at least twice by either

25

- i) straight or branched alkyl (C1-C3),
- ii) chlorine,
- iii) or both,

30

- k) 2-furyl,
- l) 2-pyridyl,
- m) 2-naphthyl,
- n) 1,2,3,4-tetrahydronaphthyl,
- o) 2-benzopyranyl,
- p) 2-benzofuryl,
- q) the piperonyl fragment

35

40

where

z is an integer of 1, or 2,
and E^1 , E^2 , and E^3 are hydrogen, or

50

- r) the aryl derivative

55

5

10

where

U, V, and W can be independently or simultaneously

15

- i) hydrogen,
- ii) straight or branched alkyl (C1-C4),
- iii) straight or branched alkoxy (C1-C4),
- iv) alkoxy (C2) substituted by alkoxy (C2), or phenoxy,
- v) hydroxy,
- vi) phenyl,
- vii) fluorine,
- viii) chlorine,
- ix) bromine,
- x) nitro,
- xi) benzoyl,
- xii) phenoxy;

20

25

Y is a covalent bond, oxygen, NR⁷, where R⁷ is hydrogen; in addition,
R¹-Y- may also be

30

35

where

40

- k is an integer of 1, or 2,
R⁸ is

45

- a) hydrogen,
- b) carboalkoxy with alkoxy (C1-C2),
- c) straight or branched alkyl (C1-C4) which may be substituted by phenyl,
- d) phenyl,

50

R⁹ is phenyl;
R² and R³ are defined as follows: one of R² and R³ is hydrogen, and the other is hydrogen or straight or branched alkyl (C1-C4);

n is an integer of 2 or 3:

A is NR¹⁰, where R¹⁰ is hydrogen or methyl;

R⁴ is

55

- a) hydrogen,
- b) straight or branched alkyl (C1-C4) which may be substituted by
- i) phenyl,

- 5
 ii) cycloalkyl (C5-C6),
 iii) alkylthio (C1-C4),
 iv) carboxamido, or
 v) benzyloxy, or

5
 c) phenyl;

R⁵ is hydrogen or straight or branched alkyl (C1-C4), and R⁴ and R⁵, taken together can be

10 -(CH₂)_r-

where r is integer 5;

15 G is one of the following fragments

20 or the following fragment

where the carbonyl group is attached to the carbon bearing R⁴ and R⁵ and NR¹² is connected to R⁶,
 R¹² is hydrogen or methyl;
 30 p is an integer of 0 or 1;
 R⁶ is

- a) hydrogen,
 b) straight or branched alkyl (C1-C4) which may be substituted by

35 i) phenyl,
 ii) phenyl substituted with alkoxy (C1-C2),
 iii) 2- or 4-pyridyl,

40 c) phenyl which may be substituted by

- i) amino,
 ii) amino substituted by allyloxycarbonyl,
 iii) amino substituted by acetyl,
 45 iv) amino substituted by benzoyl,
 v) amino substituted by benzyloxycarbonyl,
 iii) sulfonamide (-SO₂NH₂), or
 iv) straight or branched alkoxy (C1-C4),

50 d) benzoyl,
 e) furyl,
 f) naphthyl,
 g) cycloalkyl (C5-C8), or
 h) tetracycloalkyl (C10-C12);

55 and pharmaceutically acceptable salts thereof.
 Included within the scope of the present invention are pharmaceutically acceptable salts of the above mentioned compounds. Most preferred are the hydrochlorides.

The following examples of compounds according to the invention are particularly preferred:

- L-Isoleucine, N-[1-(2-Benzyl-2-Oxoethyl)-L-Prolyl]Benzylamide;
- L-Isoleucine, N-[1-(2-Methoxy-2-Oxoethyl)-L-Prolyl]Benzylamide;
- 5 L-Isoleucine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Prolyl]Benzylamide;
- L-Isoleucine, N-[1-(2-Naphth-2-yl-2-Oxoethyl)-L-Prolyl]Benzylamide;
- L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl]Benzylamide;
- L-Isoleucine, N-[1-(2-(2-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(5-Chloro-3-Methyl-benzo[B]thiophene-2-yl)-2-Oxoethyl)-L-Prolyl]Benzylamide;
- 10 L-Isoleucine, N-[1-(2-(trans,trans-Hexa-2,4-dienyl-1-oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Chlorophenyl)-2-Oxoethyl)-L-Prolyl]Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Methylphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- 15 L-Isoleucine, N-Methyl-N-[1-(2-Phenyl-2-Oxoethyl)-L-Homoproline] Benzylamide;
- L-Isoleucine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Homoproline] Benzylamide;
- L-Phenylglycine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Proline Benzylamide;
- L-Isoleucine, N-[1-(1-Methyl-2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(3-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- 20 L-Isoleucine, N-[1-(2-(3,4-Dihydroxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-Methyl-N-[1-(2-Benzyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(Carbobenzyloxymethylene)-L-Homoproline Benzylamide;
- L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(Carbo-tert-Butoxymethylene)-L-Proline] Benzylamide;
- 25 L-Isoleucine, N-[1-(2-tert-Butyl-2-Oxoethyl)-L-Proline] Benzylamide;
- L-Isoleucine, N-[1-(2-(2,5-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(2,4-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(2-Nitrophenyl)-2-Oxoethyl)-L-Propyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Nitrophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- 30 L-Isoleucine, N-[1-(2-(3-Benzyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(2,4-Dimethylphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Fluorophenyl)-2-Oxoethyl)-L-Propyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Bromophenyl)-2-Oxoethyl)-L-Propyl] Benzylamide;
- L-Isoleucine, N-[1-(2,4-Dichlorophenylcarbamoylmethyl)-L-Proline] Benzylamide;
- 35 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Homoproline] Benzylamide;
- L-Isoleucine, N-[1-(2-Furan-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-Pyrid-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(Adamant-1-ylcarbamoylmethyl)-L-Prolyl] Benzylamide;
- 40 L-Isoleucine, N-[1-(2-(cis-Octahydro-pentalen-1-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(2,6,6-Trimethyl-Bicyclo[3.1.1]hept-3-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(4-Pentylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(1,2,3,4-tetrahydro-Naphthalen-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-(1-Methyl-Cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- 45 L-Isoleucine, N-[1-(2-Oxo-2-Tricyclo[3.3.1.0^{3,7}]Non-3-yl-Ethyl)-L-Prolyl] Benzylamide;
- L-Isoleucine, N-[1-(2-Oxo-3-(3-Methyl-Adamantan-1-yl)-Prolyl)-L-Prolyl] Benzylamide;
- L-Proline, 1-(2-Adamantan-1-yl-2-Oxoethyl) Benzyl Ester;
- L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] 1,2,3,4-Tetrahydroisoquinolinamide;
- 50 L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzyl Ester;
- L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] tert-Butylamide;
- L-Phenylalanine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Methionine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
- Glycine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Valine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Leucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Phenylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- 55 L-Norvaline, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Norleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Asparagine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
- L-Serine-(O-Benzyl Ether), N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;

- L- β -Phenylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Cyclohexylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] alpha-(S)-methylbenzylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] alpha-(R)-methylbenzylamide;
 5 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Pyridin-4-ylmethyleamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Pyridin-2-ylmethyleamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] 4-methoxybenzylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] 2-methoxybenzylamide;
 L-Isoleucine, N-[1-(Carboxymethyl)-L-Prolyl] Benzylamide;
 10 L-Isoleucine, N-[1-[2-(N-Piperidine-3-Carboxylic Acid Ethyl Ester)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-(4-Benzyl)piperidy)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(2-Methylpiperidine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Hydroxyethylamine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 15 L-Isoleucine, N-[1-[2-(4-Phenylpiperazine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(1-Pyrrolidine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-Cyclopentylamino)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-(Phenylmethylamino)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-(Cyclohexylmethylamino))-2-Oxoethyl]-L-Prolyl] Benzylamide;
 20 L-Isoleucine, N-[1-(2-(4-Phenylpiperidy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-[1-(3,7,11-Trimethyl)dodeca-2,6,10-Irien-1-ol])-2-Oxoethyl]-L-Proline] Benzylamide;
 L-Isoleucine, N-[1-(2-(3-Phenyl-2-Propen-1-Oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3-Phenyl-3-Methyl-2-Propen-1-Oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-Phenylpropoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 25 L-Isoleucine, N-[1-(2-(1-Phenyl-1-Cyclohexylmethoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-Phenyl-2-(4-Morpholino)Ethoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Oxy-2-Methyladamant-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(Adamantan-2-ylcarbamoylmethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(Adamant-1-ylmethylcarbamoylmethyl)-L-Prolyl] Benzylamide;
 30 L-Isoleucine, N-[1-(2-(2-Methyl-1-(S)-Phenyl-1-Propoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Methyl-1-(R)-Phenyl-1-Propoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(4-tert-Butylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Bicyclo[2.2.1]hept-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 35 L-Isoleucine, N-[1-(2-(Chroman-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide Hydrochloride Salt;
 L-Isoleucine, N-[1-(2-(Benzofuran-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide Hydrochloride Salt;
 L-Isoleucine, N-[1-(2-(3-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(4-Benzoyloxaphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 40 L-Isoleucine, N-[1-(2-(3-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3,4,5-Triethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(Benzo[1,3]dioxol-5-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Oxo-2-[4-(2-Phenoxyethoxy)-Phenyl]-Ethyl)-L-Prolyl] Benzylamide;
 45 L-Isoleucine, N-[1-(2-(4-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,4,6-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,3-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,6-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-(4-Methylphenyl)cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 50 L-Isoleucine, N-[1-(2-(1-(4-Chlorophenyl)cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,3,4-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-Phenylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 55 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Proline Benzyl Ester Hydrochloride;
 L-Prolin , 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride;
 L-Prolin , 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Phenethylamide Hydrochloride;
 L-Prolin , 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-Phenylpropylamid Hydrochlorid ;
 L-Prolin , 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Phenylbutylamide Hydrochloride;

- L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(Pyrid-2-yl)ethylamide Dihydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-3-Oxoethyl] 2-(4-aminophenyl)ethylamide Dihydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-[N-Carballyloxy]aminophenyl)propyl Ester Hydrochloride;
- 5 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Phenyl-2-oxoethylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Tetrahydrofurfurylamine;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Naphthalen-1-ylmethylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-Sulfamoylphenyl)ethylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Phenylpiperidinylamide;
- 10 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Methoxybenzamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-Methoxybenzamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Methoxybenzamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] N-Methylphenethylamide Hydrochloride;
- 15 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (S)- α -methylbenzylamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (R)- α -methylbenzylamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1-methyl-3-phenylpropylamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Adamant-1-ylmethylamide Hydrochloride;
- 20 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1-(R)-(1-naphthyl)ethylamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Cyclohexylmethylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Diphenylmethylamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] tert-Butylamide Hydrochloride;
- 25 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1,2-Diphenylethylamide Hydrochloride;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Cyclohexyl amide Hydrochloride;
1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Homoproline Benzyl Ester Hydrochloride;
- 30 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride;
L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Adamant-1-ylmethylamide Hydrochloride;
L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] tetrahydrofurfurylamine;
L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-Sulfamoylphenyl)ethylamide;
- 35 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (S)- α -methylbenzylamide Hydrochloride;
L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (1-(S)-{2'-(S)-methylpropyl}-3-phenylprop-2-E-enyl)-amide;
L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (1-(S)-{2'-(S)-methylpropyl}-3-phenylpropyl)-amide;
- 40 L-Isoleucine, N-[1-(2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Homopropyl] Benzylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Acetyl)aminophenyl)ethylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Benzoyl)aminophenyl)ethylamide;
L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-carboalkoxy)aminophenyl)ethylamide;
L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Hydrochloride;
- 45 L-Proline, 1-[2-Adamantan-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy) aminophenyl)propyl Ester Hydrochloride; and
L-Homoproline, 1-[2-Adamant-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Hydrochloride.

According to another aspect the invention also concerns a method for making the compounds of formula (I), comprising the following steps:

55 which are

(a) coupling an N-protected imino acid to an amine or an alcohol to form a C-substituted, N-protected imino acid;

- (b) removing the protecting group from said C-substituted, N-projected imino acid; and
 (c) alkylating the resulting imino acid from step (b) at the nitrogen position with an α -halo ester, α -halo ketone, or an ω -halo amide.

5 According to another aspect of the invention there is provided another method for making the compounds of formula (I), comprising the following steps:

which are

- 20 a) deprotecting the 2-position of a first 2-oxoethyl derivative; and
 b) coupling the resulting acid derivative from step (a) to form a second 2-oxoethyl derivative.

25 According to still another aspect of the invention there is provided another method for making the compounds of formula (I) comprising the following steps:

35 which are

- a) deprotecting the imino acid C-termini of a 2-oxoethyl derivative to form a 2-oxoethyl imino acid; and
 b) coupling said 2-oxoethyl imino acid resulting from step (a) with an amine or an alcohol to form a C-substituted, 2-oxoethyl imino acid derivative.

Preferred Method of Synthesis

A convenient route to prepare the present compounds was to alkylate selected cyclic imino acids with α -substituted methyl carbonyl compounds (Eq. 1.0). The α -substitution could be in the form of halides such as chloride, bromide and iodide, but can be extended to other groups that are amenable for displacement. Solvents useful for effecting this transform include ethyl ether, tetrahydrofuran, alcohol solvents, or nitrile solvents such as acetonitrile. In certain cases, it may be advantageous not to use solvents. There are a number of possible conditions and variations that could be used for this type of synthesis route, such possibilities being well known to those skilled in the art. (For example, see Miyazawa, 1980, T. Bull. Chem. Soc. Japan 53:2555).

When properly substituted, the products from the reaction depicted in Eq. 1.0 can themselves serve as intermediates for the synthesis of other analogs. Hence 2-alkoxy derivatives of these 2-oxoethyl analogs can be converted to the corresponding acid derivatives using methods known in the art (T. W. Greene et al, Protective Groups in Organic Synthesis, 2nd Edition; John Wiley & Sons, 1991). The acid functionality that results may be converted to an activated acyl derivative and coupled to an appropriate Y-R₁ derivative using methods described earlier (Bodanszky The Practice of Peptide Synthesis: Springer-Verlag, Vol 21, 1984).

15 In another embodiment, substituted 2-oxoethyl derivatives may be converted to active embodiments of this invention by coupling to an appropriate A-R derivative using methods described in the literature (Bodanszky The Practice of Peptide Synthesis: Springer-Verlag, Vol 21, 1984).

30 The alpha-halo ketones and esters used are either commercially available or can be prepared from steps available in current literature. For example, the alpha-halo esters can be prepared from the corresponding alcohols by treatment with alpha-halo acetylhalides such as alpha-chloro acetylchloride, and the alpha-halo ketones can be prepared from the corresponding carboxylic acids. Thus, the carboxy groups are transformed into either an acid chloride or an anhydride and treated with diazomethane to provide the corresponding alpha-diazo ketone. The diazo ketones are converted to alpha-halo ketones upon treatment with hydrogen halides such as HCl.

35 The presently claimed compounds were found to be effective at low micromolar doses in both in vitro PPIase enzyme inhibition assays and in vivo assays for inhibition of mitogen-induced human T-cell proliferation. Moreover, the results from the graft vs. host assay (described in detail further below) indicate that the present class of compounds exhibit desirable biological properties (prophylactic prevention of lymph node swelling), with no obvious toxicity at 100 mg/kg concentrations.

40 The present invention encompasses pharmaceutical formulations which, in addition to non-toxic, inert pharmaceutically suitable excipients, contain the compounds of the invention.

45 The present invention also includes pharmaceutical formulations in dosage units. This means that the formulations are present in the form of individual part, for example, tablets, dragees, capsules, caplets, pills, suppositories and ampules, the active compound content of which corresponds to a fraction or a multiple of an individual dose. The dosage units can contain, for example, 1, 2, 3 or 4 individual doses; or 1/2, 1/3 or 1/4 of an individual dose. An individual dose preferably contains the amount of active compound which is given in one administration and which usually corresponds to a whole, one half, one third or one quarter of a daily dose.

By non-toxic inert pharmaceutically suitable excipients there are to be understood solid, semi-solid or liquid diluents, fillers and formulation auxiliaries of all types.

50 Preferred pharmaceutical formulations which may be mentioned are tablets, dragees, capsules, caplets, pills, granules, suppositories, solutions, suspensions and emulsions, paste, ointments, glues, creams, lotions, dusting powders and sprays. Tablets, dragees, capsules, caplets, pills and granules can contain the active compounds in addition to the customary excipients, such as (a) fillers and extenders, for example, starches, lactose, sucrose, glucose, mannitol and silicic acid, (b) binders, for example, carboxymethylcellulose, alginates, gelatin and polyvinylpyrrolidone, (c) humectants, for example, glycerol, (d) disintegrating agents, for example, agar-agar, calcium carbonate and sodium carbonate, (e) solution retarders, for example, paraffin and (f) absorption accelerators, for example, quaternary ammonium compounds, (g) wetting agents, for example, cetyl alcohol and glycerol monostearate, (h) absorbents, for example, kaolin and bentonite and (i) lubricants, for example, talc, calcium stearate, magnesium stearate and solid polyethylene glycols, or mixtures of the substances listed under (a) to (i) directly hereinabove.

The tablets, dragees, capsules, caplets, pills and granules can be provided with the customary coatings and shells, optionally containing opacifying agents and can also be of such composition that they release the active compounds only or preferentially in a certain part of the intestinal tract, optionally in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes.

5 The active compounds can also be present in microencapsulated form, if appropriate with one or more of the abovementioned excipients.

Suppositories can contain, in addition to the active compounds, the customary water-soluble or water-insoluble excipients, for example, polyethylene glycols, fats, for example, cacao fat and higher esters (for example, C₁₄-alcohol with C₁₆-fatty acid), or mixtures of these substances.

10 Ointments, pastes, creams and gels can contain, in addition to the active compounds, the customary excipients, for example, animal and vegetable fats, waxes, paraffins, starch tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures of these substances.

15 Dusting powders and sprays can contain, in addition to the active compounds, the customary excipients, for example, lactose, talc, silicic acid, aluminum hydroxide, calcium silicate and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, for example, chlorofluorohydrocarbons.

20 Solutions and emulsions can contain, in addition to the active compounds, customary excipients, such as solvents, solubilizing agents and emulsifiers, for example, water, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cotton-seed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, glycerol formal, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, or mixtures of these substances.

25 For parenteral administration, the solutions and emulsions can also be in a sterile form which is isotonic with blood.

Suspensions can contain, in addition to the active compounds, customary excipients, such as liquid diluents, for example, water, ethyl alcohol or propylene glycol and suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methydroxide, bentonite, agar-agar, and tragacanth, or mixtures of these substances.

The abovementioned pharmaceutical formulations can also contain other pharmaceutical active compounds in addition to the claimed compounds of the present invention.

30 The aforementioned pharmaceutical formulations are prepared in the customary manner by known methods, for example, by mixing the active compound or compounds with the excipient or excipients.

35 The formulations mentioned can be used either with humans and animals, orally, rectally, buccally, parenterally (intra-venously, intramuscularly or subcutaneously), intracisternally, intravaginally, intraperitoneally or locally (dusting powder, ointment or drops) and for the therapy of infection in hollow spaces or body cavities. Suitable formulations are injection solutions, solutions and suspensions for oral therapy, gels, pour-on formulations, emulsions, ointments or drops. Ophthalmological and dermatological formulations, silver salts and other salts, ear drops, eye ointments, powders or solutions can be used for local therapy.

40 It is furthermore possible to use gels, powders, dusting powders, tablets, sustained release tablets, premixes, concentrates, granules, pellets, capsules, caplets, aerosols, sprays and inhalates on humans and animals. The compounds according to the invention can furthermore be incorporated into other carrier materials, such as, for example, plastics (e.g., chains of plastic for local therapy), collagen or bone cement.

DETAILED DESCRIPTION

The following describes a preferred way to prepare the compounds of the present invention.

45 REAGENTS AND INSTRUMENTS:

Anhydrous tetrahydrofuran (THF), ethyl ether (Et₂O), and acetonitrile were distilled from calcium hydride prior to use. Unless otherwise stated, all reagents discussed in the following examples were commercially available from Aldrich Chemical Co, Milwaukee, WI, or Janssen Chimica through the U.S. vendor Spectrum Chemicals Mfg. Corp.,

50 New Brunswick, NJ. The general procedure for converting methyl-ketones to α-bromoketones (unless otherwise specified) was according to steps described in Jaques et al., 1988, Org. Synth. Coll. 6:175-178.

All reactions were carried out in oven-dried glassware (140 °C) which were cooled under argon prior to use. Crude products were purified by flash column chromatography using 230-400 mesh silica gel (35-70 μm) or medium/high pressure liquid chromatography using Shimadzu LC-8A Preparative liquid chromatography system equipped with columns packed with either 20 μm or 10 μm silica. Thin layer chromatography (TLC) was performed on aluminum-backed silica gel plates, and visualization was accomplished with a UV light or an iodine vapor chamber.

Proton (¹H) nuclear magnetic resonance (NMR) spectra were obtained on GE-OMEGA-300 spectrometers at 300 MHz. Carbon (¹³C) NMR were obtained on these same spectrometers at 75 MHz. Mass spectral data were obtained

on a Kratos-MS 80RFA spectrometer using electron impact ionization (EI), chemical ionization (CI), or fast atom bombardment (FAB). Mass Spectral (MS) data were obtained on a Kratos CONCEPT I+H spectrometer, using liquid-cesium secondary ion (LSI) technique, a more modern version of fast atom bombardment (FAB).

5. Melting points were obtained on a Thomas Hoover capillary melting point apparatus in open-ended capillaries and are not corrected.

General Process for Preparing alpha-halo Ketones from Carboxylic Acids.

- 10 **2-Chloro-4'-(n-Pentyl) Acetophenone.** A solution of 4-pentyl-benzoic acid (1.178 g, 6.13 mmol) and oxalyl chloride (630 μ L, 855 mg, 6.74 mmol, 1.1 eq) in dichloromethane (15 mL) was stirred at 22 °C for 10 min, then treated with one drop of N,N-dimethylformamide at 22 °C [Caution, gas evolution may become brisk]. After gas evolution was no longer observed, the flask was fitted with a condenser and warmed to reflux for 30 min. The solution was cooled to -5 °C, and cannulated into a cold (-5 °C), ethereal solution of diazomethane (40 mL). After the solution was stirred at -5 °C for 30 min, the flask was removed from the cold bath and the yellow solution was allowed to stir at 22 °C for 2 hrs (preferably in the dark). The solution was concentrated in vacuo, and purified by flash chromatography (5% ethyl acetate in hexane) to provide 33 mg (1.3%) of 2-chloro-4'-(n-pentyl) acetophenone and 586 mg (44%) of 4'-(n-pentyl) diazoacetophenone as a bright yellow oil.

R_f (10% ethyl acetate in hexane) = 0.37

20 ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2 H), 7.20 (d, J = 7.9 Hz, 2 H), 5.93 (s, 1 H, CHN₂), 2.60 (m, 2 H), 1.58 (m, 2 H), 1.27 (m, 4 H), 0.86 (t, J = 6.9 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 186.78 (C=O), 149.05, 134.92, 129.31, 127.43, 54.47 (C=N₂), 36.53, 32.06, 31.46, 23.14, 14.64.

The diazo compound was quickly taken up in ethyl acetate (120 mL), and the solution was cooled to -5 °C. To this was added a 1.0 M solution of HCl in ether (Aldrich, 6.0 mL). Gas evolution was observed, and the yellow solution became colorless. The flask was removed from the cold bath and the solution was allowed to stir at 22 °C for 2 hrs. The solution was poured into a separatory funnel, washed with satd aq NaHCO₃, dried (MgSO₄) and concentrated in vacuo to provide 0.595 g (98% based on starting diazo compd.) of 2-chloro-4'-(n-pentyl) acetophenone as a colorless oil.

25 ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 6.5 Hz, 2 H), 7.23 (d, J = 6.5 Hz, 2 H), 4.64 (s, 2 H, CH₂Cl), 2.60 (m, 2 H), 1.58 (m, 2 H), 1.28 (m, 4 H), 0.86 (t, J = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 191.25 (C=O), 150.55, 132.55, 129.55, 129.27, 46.85 (CH₂Cl), 36.63, 32.06, 31.34, 23.14, 14.65.

30

Example 1

35

40

L-Isoleucine, N-[1-(2-BenzylOxy-2-Oxoethyl)-L-Prolyl] Benzylamide.

- 45 a) N-(tert-Butoxycarbonyl)-L-Isoleucine Benzylamide. Into a 500 mL round bottomed flask equipped with a magnetic stirrer was added N-(tert-butoxycarbonyl)-L-isoleucine (22.53 g, 97.39 mmol, 1.0 eq) and THF (300 mL). The solution was stirred until homogeneous, cooled to -5 °C, and treated with N-ethylmorpholine (14.23 mL, 12.88 g, 112.0 mmol, 1.15 eq). The solution was stirred at -5 °C for 20 min and isobutyl chloroformate (13.24 mL, 13.90 g, 102 mmol, 1.05 eq) was added dropwise over 10 min. After stirring at -5 °C for 30 min, benzylamine (12.24 mL, 12.0 g, 112.0 mmol, 1.15 eq) was added dropwise over 10 min. After the addition was complete, the flask was removed from the cold bath and the solution was stirred at 22 °C for 2.5 hrs. The solution was concentrated to a residue, and partitioned between ethyl acetate (200 mL) and water (100 mL). The aqueous layer was extracted with ethyl ether (2 X 100 mL) and discarded. The organic extracts were combined, washed with 1N HCl (5 X 50 mL), 1 N NaOH (3 X 50 mL), satd. aq NaCl (50 mL), and dried (MgSO₄). The solution was concentrated in vacuo to provide 29.93 g (96 %) of N-(tert-butoxycarbonyl)-L-isoleucine benzylamide as a white solid.

mp = 125-126 °C

R_f(100% ethyl acetate) = 0.74

R_f(50 % ethyl acetate in hexane) = 0.60

5 b) L-Isoleucine Benzylamide. Into a 500 mL round bottomed flask equipped with a magnetic stirrer was added N-(tert-butoxycarbonyl)-L-isoleucine benzylamide (29.93 g, 93.53 mmol, 1.0 eq) and dichloromethane (300 mL). The solution was stirred at 22 °C for 10 min until homogeneous, and trifluoroacetic acid (43.22 mL, 63.97 g, 0.57 mol, 6.0 eq) was added (Caution: gas evolution may be brisk!). After TLC analysis indicated that the reaction was complete, the solution was concentrated to an oil, and used directly in the next experiment.

10 c) N-Carbobenzyloxy-L-Proline-L-Isoleucine Benzylamide. Into a 1-L round bottomed flask equipped with a magnetic stirrer was added N-carbobenzyloxy-L-proline (25.618 g, 102 mmol, 1.0 eq), and dichloromethane (300 mL). The solution was cooled to 0 °C, and oxalyl chloride (10.15 mL, 15.02 g, 118.31 mmol, 1.15 eq) was added. After stirring at 0 °C for 5 min, five drops of N,N-dimethylformamide were added (Caution: gas evolution may be brisk!). The solution was stirred at 0 °C for 5 min, the flask was removed from the cold bath, and the solution was stirred at 22 °C for 9 hrs. The solution was concentrated in vacuo to remove all volatiles, dissolved in fresh dichloromethane (300 mL), and cooled to -5 °C. This solution was cannulated into a cooled (0 °C) solution containing L-isoleucine N-benzylamide and triethylamine (75.71 g, 748 mmol) dissolved in dichloromethane (100 mL). After the addition was complete, the flask was removed from the cold bath, and the solution was stirred at 22 °C for 3 hrs. The solution was poured into a separatory funnel and washed with water (3 X 75 mL), 1 N HCl (7 X 100 mL), 1 N NaOH (4 X 100 mL), satd. aq NaCl (100 mL), and dried (MgSO_4). The solution was concentrated in vacuo to provide a crude residue. The residue was recrystallized (ethyl acetate/hexane) to provide 28.72 g (68%) of the product as a white solid. The mother liquor was concentrated to an oil and purified by flash chromatography (20 % ethyl acetate) to provide 7.88 g (18.6%) of additional product, or 36.60 g (86%) of the title compound as a white solid.

20 mp = 151-153 °C

R_f (50 % ethyl acetate in hexane) = 0.18

Mass Spectrum (+EI) m/e (rel intensity) 451 (20,M+), 395 (18), 345 (8), 317 (100) 232 (42), 204 (63).

25 d) L-Proline-L-Isoleucine Benzylamide. A solution of N-carbobenzyloxy-L-proline-L-isoleucine benzylamide (36.60 g, 80.95 mmol), 10% palladium on carbon (0.957 g), and methanol (700 mL) was degassed and purged repeatedly (15 times) with hydrogen, and stirred under an atmosphere of hydrogen at 22 °C. When TLC analysis indicated the reaction was complete, the solution was purged with argon, filtered through a plug of celite, and concentrated in vacuo to provide 23.71 g, (92%) of the title compound as a white solid.

30 mp = 135-136 °C

R_f(100% ethyl acetate) = 0.08

35 e) L-Isoleucine N-[1-(2-Benzyl-2-Oxoethyl)-L-Prolyl] Benzylamide. A solution of L-proline-L-isoleucine benzylamide (10.22 g, 32.20 mmol), and sodium carbonate (6.824 g, 64.39 mmol, 2.0 eq), in acetonitrile (150 mL) was warmed to reflux until homogeneous, cooled to 22 °C, and treated with benzyl 2-bromoacetate (14.75 g, 64.39 mmol, 2.0 eq). The flask was returned to the oil bath and warmed to reflux until TLC indicated the reaction was complete. The heterogeneous solution was filtered, concentrated to a residue, taken up in ethyl acetate (400 mL), and washed with satd aq NaHCO_3 (2 X 50 mL). The solution was dried (MgSO_4), concentrated to a residue, and purified by flash chromatography (20% ethyl acetate in hexane) to provide 14.80 g (99%) of the title compound as a colorless oil. The ¹H NMR analysis of this compound was consistent with the structure.

40 R_f (100% ethyl acetate) = 0.63

Example 2

55 L-Isoleucine, N-[1-(2-Methoxy-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (47 mg, 0.15 mmol), with sodium carbonate (31 mg, 0.29 mmol, 2.0 eq), and methyl alpha-bromoacetate (113 mg, 0.74 mmol, 5.0 eq) in acetonitrile (5 mL), provided 50 mg (87%) of the title compound as a white foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
R_f (50% dichloromethane in ethyl acetate) = 0.50

Example 3

5

10

20

L-Isoleucine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (361 mg, 1.14 mmol), with cesium carbonate (0.74 g, 2.28 mmol), and 2-bromoacetophenone (1.134 g, 5.69 mmol, 5.0 eq) in acetonitrile (12 mL), provided 466 mg (94%) of the title compound as a pale yellow oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in hexane) = 0.14
 R_f (100% ethyl acetate) = 0.54

Example 4

25

25

30

35

L-Isoleucine, N-[1-(2-Naphth-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (296 mg, 0.93 mmol), with cesium carbonate (0.61 g, 1.87 mmol), and 2-bromo-2'-acetonaphthone (697 mg, 2.80 mmol, 3.0 eq) in acetonitrile (12 mL), provided 364 mg (80%) of the title compound as a pale yellow oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in hexane) = 0.25
 R_f (100% ethyl acetate) = 0.65

Example 5

40

45

50

55

L-Isoleucine, N-[1-(2-Biphenyl-4-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (300 mg, 0.95 mmol), with sodium carbonate (200 mg, 1.89 mmol), and 2-bromo-4'-phenylacetophenone (520 mg, 1.89 mmol, 2.0 eq) in acetonitrile (10 mL), provided 484 mg (87%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (100% ethyl acetate) = 0.62

Example 6

5

10

20

Example 7

25

30

35

40

L-Isoleucine, N-[1-(2-(5-Chloro-3-Methyl-benzo[B]thiophene-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol), with sodium carbonate (100 mg, 0.94 mmol), and 2-chloroacetyl-5-chloro-3-methylbenzo[B]thiophene (Ryan Scientific; Columbia, SC: 244 mg, 0.941 mmol, 1.5 eq) in acetonitrile (10 mL), provided 170 mg (50%) of the title compound as a pale yellow oil that formed a waxy solid on standing. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in hexane) = 0.17

R_f (100% ethyl acetate) = 0.66

Mass Spectrum (+El) m/e (rel intensity) 540 (5, M+), 539 (10), 330 (100).

Example 8

45

50

55

L-Isoleucine, N-[1-(2-(trans,trans-Hexa-2,4-dienyl-1-oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (201 mg, 0.63 mmol), with cesium carbonate (412 mg, 1.26 mmol), and 1-(2-chloroacetoxy)-2E,4E-hexadiene (prepared from 2E,4E-hexadien-1-ol and 2-chloro acetylchloride: 221 mg, 1.26 mmol, 2.0 eq) in acetonitrile (8 mL), provided 132 mg (46%) of the title compound as a colorless oil that formed a waxy solid on standing. The 300 MHz, ¹H NMR analysis of this compound was consistent

with the structure.

R_f (50% ethyl acetate in hexane) = 0.29

R_f (70% ethyl acetate in hexane) = 0.43

Mass Spectrum (+El) m/e (rel intensity) 456 (5, M+), 374 (100), 330 (58).

5

Example 9

10

15

L-Isoleucine, N-[1-(2-(4-Chlorophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (182 mg, 0.57 mmol), with sodium carbonate (60 mg, 0.57 mmol), and 2-bromo-4'-chloroacetophenone (147 mg, 0.63 mmol, 1.0 eq), in methanol (10 mL), provided 237 mg (88%) of the title compound as a pale yellow oil. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

R_f (100% ethyl acetate) = 0.46

Example 10

25

30

L-Isoleucine, N-[1-(2-(4-Methylphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (191 mg, 0.60 mmol), with sodium carbonate (70 mg, 0.66 mmol), and 2-bromo-4'-methylacetophenone (141 mg, 0.66 mmol, 1.1 eq), in methanol (5 mL), provided 210 mg (78%) of the title compound as a pale yellow oil. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

R_f (70% ethyl acetate in hexane) = 0.30

R_f (100% ethylacetate) = 0.52

Example 11

45

50

L-Isoleucine, N-[1-(2-(4-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (208 mg, 0.65 mmol), with sodium carbonate (104 mg, 0.98 mmol), and 2-bromo-4'-methoxyacetophenone (195 mg, 0.85 mmol, 1.3 eq) in MeOH (10 mL), provided 248 mg (81%) of the title compound as a pale yellow oil. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

R_f (100% ethyl acetate) = 0.40

Example 12

5

10

L-Isoleucine, N-Methyl-N-[1-(2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, 56 mg (0.17 mmol) of L-proline-L-(N-methyl)-isoleucine benzylamide (prepared from N-alpha-t-Boc-N-methyl-L-isoleucine (Schweizerhall, Piscataway, NJ.) was treated with sodium carbonate (41 mg, 0.40 mmol), and 2-bromoacetophenone (52 mg, 0.26 mmol, 1.5 eq) in methanol (5 mL). A sample of the crude mixture was purified by preparative TLC to provide 2.2 mg of the title compound. The 300 MHz, 1H NMR analysis of this compound was consistent with the structure.

R_f (20% ethyl acetate in dichloromethane) = 0.24

HRMS calcd for $(M+H)^+$ [$(C_{27}H_{36}N_3O_3 + H)^+$] ion 450.6057; found 450.2760

Example 13

25

30

L-Isoleucine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Homoproline] Benzylamide. Using the procedure described in example 1e, 55 mg (0.17 mmol) of L-homoproline-L-isoleucine benzylamide (prepared from L-homoproline (Bachem Bioscience, Philadelphia, PA.)), was treated with sodium carbonate (39 mg, 0.37 mmol), and 2-bromoacetophenone (59 mg, 0.29 mmol, 1.7 eq) in methanol (5 mL). A sample of the crude mixture was purified by preparative TLC to provide 34 mg (45%) of the title compound. The 300 MHz, 1H NMR analysis of this compound was consistent with the structure.

R_f (20% ethyl acetate in dichloromethane) = 0.31

HRMS calcd for $(M+H)^+$ [$(C_{27}H_{36}N_3O_3 + H)^+$] ion 450.6057; found 450.2760

Example 14

45

50

L-Phenylglycine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Proline Benzylamide. Using the procedure described in example 1e, 285 mg (0.84 mmol) of L-proline-L-phenylglycine benzylamide (prepared from L-phenylglycine. (Bachem Bioscience, Philadelphia, PA.)), was treated with triethylamine (0.59 mL 4.23 mmol, 5 eq), and 2-bromoacetophenone (185 mg, 0.93 mmol, 1.1 eq) in THF (20 mL). A sample of the crude mixture was purified by preparative TLC to provide 50

mg of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in hexane) = 0.09
 HRMS calcd for (M+H)⁺ [(C₂₆H₃₀N₃O₃ + H)⁺] ion 456.5688; found 456.2289

5 Example 15

10

15

L-Isoleucine, N-[1-(1-Methyl-2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (196 mg, 0.62 mmol), with sodium carbonate (85 mg, 0.80 mmol), and 2-bromopropiophenone (210 mg, 0.98 mmol, 1.6 eq) in MeOH (12 mL), provided 72 mg (26%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

20 R_f (100% ethyl acetate) = 0.54

Example 16

25

30

35

L-Isoleucine, N-[1-(2-(3-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (125 mg, 0.39 mmol), with triethylamine (275 μ L, 1.97 mmol, 5 eq), and 2-bromo-3'-methoxyacetophenone (107 mg, 0.47 mmol, 1.2 eq) in THF (20 mL), provided 149.2 mg (81%) of the title compound as a pale yellow oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.32

40

Example 17

45

50

L-Isoleucine, N-[1-(2-(3,4-Dihydroxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (100 mg, 0.31 mmol), with triethylamine (220 μ L, 1.58 mmol, 5 eq), and 2-chloro-3'-4'-dihydroxyacetophenone (73 mg, 0.39 mmol, 1.2 eq) in THF (10 mL), provided 54 mg (81%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (10% MeOH in dichloromethane) = 0.51

Example 18

5

10

20

Example 19

25

30

35

L-Isoleucine, N-[1-(Carbobenzylloxymethylene)-L-Homoproline Benzylamide. Using the procedure described in example 1e, L-homoproline-L-isoleucine benzylamide (43 mg, 0.13 mmol), was treated with triethylamine (91 μ L, 0.65 mmol, 1.5 eq), and benzyl 2-bromoacetate (41 μ L, 0.26 mmol, 2.0 eq) in THF (2.5 mL). Purification by HPLC provided 54.3 mg of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.52

HRMS calcd for $(M+H)^+$ [$(C_{28}H_{38}N_3O_4 + H)^+$] ion 480.6328; found 480.2864.

40

Example 20

45

50

55

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (160.7 mg, 0.50 mmol), with triethylamine (3.53 mL, 2.53 mmol, 5.0 eq), and 1-adamantyl bromomethyl ketone (156 mg, 0.61 mmol, 1.2 eq) in THF (20 mL), provided 180 mg (99%) of the title compound as a white foam. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.45

HRMS calcd for $(M+H)^+$ [$(C_{30}H_{44}N_3O_3 + H)^+$] ion 494.7030; found 494.3385.

Example 21

5

10

L-Isoleucine, N-[1-(Carbo-tert-Butoxymethylene)-L-Proline] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (66 mg, 0.21 mmol), with triethylamine (147 uL, 1.05 mmol, 5.0 eq), and alpha-bromo-tert-butylacetate (68 uL, 0.42 mmol, 2 eq) in THF (5 mL), provided 70 mg (77%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.51

HRMS calcd for (M+H)⁺ [(C₂₄H₃₈N₃O₄ + H)⁺] ion 432.5884; found 432.2864

Example 22

20

25

L-Isoleucine, N-[1-(2-tert-Butyl-2-Oxoethyl)-L-Proline] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (69 mg, 0.21 mmol), with triethylamine (151 uL, 1.08 mmol, 5.0 eq), and 1-bromopinacolone (58 uL, 0.43 mmol, 2 eq) in THF (5 mL), provided 35 mg (39%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.42

HRMS calcd for (M+H)⁺ [(C₂₄H₃₈N₃O₄ + H)⁺] ion 416.5863; found 416.2915

Example 23

40

45

L-Isoleucine, N-[1-(2-(2,5-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (51 mg, 0.16 mmol), with triethylamine (113 uL, 0.81 mmol, 5.0 eq), and 2-bromo-2'-5'-dimethoxyacetophenone (50 mg, 0.19 mmol, 1.2 eq) in THF (5 mL), provided 60 mg (75%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.36

HRMS calcd for (M+H)⁺ [(C₂₈H₃₈N₃O₅ + H)⁺] ion 496.6307; found 496.2813

Example 24

5

10

L-Isoleucine, N-[1-(2-(2,4-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (51 mg, 0.16 mmol), with triethylamine (112 μ L, 0.81 mmol, 5.0 eq), and 2-bromo-2'-4'-dimethoxyacetophenone (50 mg, 0.19 mmol, 1.2 eq) in THF (5 mL), provided 55 mg (70%) of the title compound as a colorless oil. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.34

Example 25

25

30

L-Isoleucine, N-[1-(2-(2-Nitrophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (54 mg, 0.17 mmol), with triethylamine (118 μ L, 0.84 mmol, 5.0 eq), and 2-bromo-2'-nitroacetophenone (50 mg, 0.20 mmol, 1.2 eq) in THF (5 mL), provided 46 mg (57%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.29

Example 26

40

45

L-Isoleucine, N-[1-(2-(4-Nitrophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (50 mg, 0.16 mmol), with triethylamine (110 μ L, 0.79 mmol, 5.0 eq), and 2-bromo-4'-nitroacetophenone (48 mg, 0.20 mmol, 1.2 eq) in THF (5 mL), provided crude material that was additionally purified by preparative TLC to provide 8.8 mg (12%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.30

HRMS calcd for $(M+H)^+$ [$(C_{26}H_{33}N_4O_5 + H)^+$] ion 481.5754; found 481.2453

Example 27

5

10

L-Isoleucine, N-[1-(2-(3-BenzylOxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (111 mg, 0.35 mmol), with triethylamine (245 uL, 1.75 mmol, 5.0 eq), and 2-bromo-3'-benzylOxyacetophenone (129 mg, 0.42 mmol, 1.2 eq) in THF (10 mL), provided 147 mg (76%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure:

R_f (50% dichloromethane in ethyl acetate) = 0.38

HRMS calcd for (M+H)⁺ [(C₃₃H₄₀N₃O₄ + H)⁺] ion 542.7028; found 542.3021

20

Example 28

25

30

L-Isoleucine, N-[1-(2-(2,4-Dimethylphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (60 mg, 0.19 mmol), with triethylamine (130 uL, 0.94 mmol, 5.0 eq), and 2-bromo-2',4'-dimethylacetophenone (52 mg, 0.23 mmol, 1.2 eq) in THF (7 mL), provided a crude product. A portion of the product was purified by preparative TLC to provide 19 mg (21%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.38

HRMS calcd for (M+H)⁺ [(C₂₈H₃₈N₃O₃ + H)⁺] ion 464.6319; found 464.2915

40

Example 29

45

50

L-Isoleucine, N-[1-(2-(4-Fluorophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (56 mg, 0.18 mmol), with triethylamine (123 uL, 0.88 mmol, 5.0 eq), and 2-bromo-4'-fluoroacetophenone (37 mg, 0.21 mmol, 1.2 eq) in THF (7 mL), provided a crude product. A portion of the product was purified by preparative TLC to provide 28 mg (35%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% dichloromethane in ethyl acetate) = 0.35

Example 30

5

10

L-Isoleucine, N-[1-(2-(4-Bromophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (57 mg, 0.18 mmol), with triethylamine (130 μ L, 0.93 mmol, 5.0 eq), and 2,4'-dibromoacetophenone (63 mg, 0.22 mmol, 1.2 eq) in THF (7 mL), provided a crude product. A portion of the product was purified by preparative TLC to provide 62 mg (67%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.
 R_f (10% MeOH in dichloromethane) = 0.70

20 Example 31

25

30

L-Isoleucine, N-[1-(2,4-Dichlorophenylcarbamoylmethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of a solution of L-proline-L-isoleucine benzylamide (58 mg, 0.18 mmol), with triethylamine (130 μ L, 0.93 mmol, 5.0 eq), and N-chloroacetyl-2,4-dichloroaniline (53 mg, 0.22 mmol, 1.2 eq) in THF (7 mL), provided a crude product. A portion of the product was purified by preparative TLC to provide 30 mg (32%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.
 R_f (10% MeOH in dichloromethane) = 0.70

40 Example 32

45

50

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Homoproline] Benzylamide. Using the procedure described in example 1e, L-homoproline-L-isoleucine benzylamide (75 mg, 0.22 mmol), was treated with triethylamine (0.15 mL, 1.12 mmol, 5 eq), 1-adamantyl bromomethyl ketone (92 mg, 0.36 mmol, 1.6 eq), and THF (10 mL), to provide 64 mg (56%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

55 R_f (50% ethyl acetate in dichloromethane) = 0.56
HRMS calcd for $(M+H)^+$ [$(C_{31}H_{46}N_3O_3 + H)^+$] ion 508.7290; found 508.3532

Example 33

L-isoleucine, N-[1-(2-Furan-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (114 mg, 0.36 mmol), and triethylamine (0.10 mL, 0.78 mmol, 2.0 eq), in THF (10 mL), was treated with 255 mg (1.76 mmol, 5.0 eq) of 2-(alpha-chloroacyl)furan (prepared from 2-furoic acid) to provide 130 mg, (85%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

15 R_f (100% ethyl acetate) = 0.25

Example 34

20

30 L-isoleucine, N-[1-(2-Pyrid-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (148 mg, 0.47 mmol), and triethylamine (0.13 mL, 0.93 mmol, 2.0 eq) in THF (10 mL), was treated with 234 mg (1.50 mmol) of 2-(alpha-chloroacyl)pyridine (prepared from picolinic acid) to provide 20 mg, (10%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

35 R_f (50% ethyl acetate in hexane) 0.47

Example 35

40

45

50 L-isoleucine, N-[1-(Adamant-1-ylcarbamoylmethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (115 mg, 0.36 mmol), and triethylamine (253 μ L, 1.8 mmol, 5.0 eq) in THF (5 mL) was treated with 93 mg (0.43 mmol) of N-(alpha-chloroacyl)1-aminoadamantane (prepared from 1-adamantanamine and 2-chloroacetyl chloride) to provide 135 mg, (73%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (100% ethyl acetate) = 0.12

55 HRMS calcd for (M+H)⁺ [(C₃₀H₄₅N₄O₃ + H)⁺] ion 509.7166; found 509.3494

Example 36

5

10

L-Isoleucine, N-[1-(2-(cis-Octahydro-pentalen-1-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (115 mg, 0.36 mmol), and triethylamine (346 uL, 2.5 mmol, 5.0 eq), in THF (2 mL), was treated with 181 mg (0.97 mmol) of 1-chloro-2-(octahydro-pentalen-1-yl)-2-oxoethane (prepared from cis-bicyclo[3.3.0]octane-2-carboxylic acid) to provide 52 mg, (23%) of the title compound.

The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

Rf (50% ethyl acetate in dichloromethane) = 0.36

Example 37

25

30

L-Isoleucine, N-[1-[2-(2,6,6-Trimethyl-Bicyclo[3.1.1]hept-3-yl)-2-Oxoethyl]-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (153 mg, 0.48 mmol) and triethylamine (337 uL, 5.0 eq), in THF (2 mL), was treated with 205 mg (0.95 mmol) of 1-chloro-2-(2,6,6-trimethylbicyclo[3.1.1]hept-3-yl)-2-oxoethane (prepared from (-)-3-pinancarboxylic acid) to provide 164 mg, (68%) of the title compound.

The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

Rf (50% ethyl acetate in dichloromethane) = 0.42

Example 38

40

45

50

L-Isoleucine, N-[1-(2-(4-Pentylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (160 mg, 0.50 mmol), and triethylamine (352 uL, 2.53 mmol, 5.0 eq), in THF (2 mL), was treated with 232 mg (1.0 mmol) of 1-chloro-2-(4-pentylcyclohexyl)-2-oxoethane (prepared from trans-4-pentylcyclohexanecarboxylic acid) to provide 154 mg (25%) of the title compound.

The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

Rf (50% ethyl acetate in dichloromethane) = 0.45

Example 39

5

10

L-Isoleucine, N-[1-(2-(1,2,3,4-tetrahydro-Naphthalen-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (162 mg, 0.51 mmol), and triethylamine (355 uL, 5.0 eq), THF (2 mL), was treated with 212 mg (2.0 eq) of 1-chloro-2-(1,2,3,4-tetrahydro-naphthalen-2-yl)-2-oxoethane (prepared from 1,2,3,4-tetrahydro-2-naphthoic acid) to provide 191 mg (77%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
Rf (50% ethyl acetate in dichloromethane) = 0.42

15

Example 40

20

25

Example 41

40

45

L-Isoleucine, N-[1-(2-Oxo-2-Tricyclo[3.3.1.0^3.7]Non-3-yl-Ethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (167 mg, 0.52 mmol), and triethylamine (367 uL, 5.0 eq) in THF (2 mL), was treated with 209 mg (1.2 eq) of 1-chloro-2-oxo-2-tricyclo[3.3.1.0^3.7]non-3-yl-ethane (prepared from 3-noradamantanecarboxylic acid) to provide 181 mg of the title compound as a colorless residue. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

50

Rf (9% methanol in dichloromethane) = 0.70

55

Example 42

5

10

L-Isoleucine, N-[1-(2-Oxo-3-(3-Methyl-Adamantan-1-yl)-Propyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, a solution of L-proline-L-isoleucine benzylamide (162 mg, 0.51 mmol), and triethylamine (358 μ L, 5.0 eq), in THF (2 mL), was treated with 246 mg (1.0 eq) of 1-chloro-2-oxo-3-(3-methyl-adamantan-1-yl)-propan (prepared from 3-methyl-1-adamantanecarboxylic acid) to provide 210 mg (78%) of the title compound as a colorless residue. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in hexane) = 0.43

15

Example 43 (Not within the scope of the claims)

20

25

30

L-Proline, 1-(2-Adamantan-1-yl-2-Oxoethyl) Benzyl Ester. Using the procedure described in example 1e, a solution containing the hydrochloride salt of L-proline benzyl ester (25.46 g, 105.3 mmol), triethylamine (58.0 mL, 414 mmol, 4.0 eq), 1-adamantyl bromomethyl ketone (26.6 g, 103.4 mmol, 1.0 eq) and THF (500 mL), was warmed to reflux, cooled, and purified by flash chromatography to provide 30.0 g (76%) of the title compound as a white foam.

35

The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.
 R_f (50% dichloromethane in ethyl acetate) = 0.42

Example 44

40

L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] 1,2,3,4-Tetrahydroisoquinolinamide.

45

50

a) **N-[2-(Biphenyl-4-yl)-2-Oxoethyl] L-Proline Benzyl Ester.** Using the procedure described in Example 1e, a solution of the hydrochloride salt of L-proline benzyl ester (20.75 g, 98.0 mmol), was treated with cesium carbonate (87.1 g, 267 mmol, 3.0 eq), 2-bromo-4'-phenylacetophenone (24.5 g, 89.0 mmol, 1.0 eq) in acetonitrile (500 mL), to provide 10.07 g (28%) of L-proline, N-[2-(biphenyl-4-yl)-2-oxoethyl] benzyl ester.

55

b) **N-[2-(Biphenyl-4-yl)-2-Oxoethyl] L-Proline.** A solution of N-[2-(biphenyl-4-yl)-2-oxoethyl] L-proline benzyl ester in methanol (300 mL) and treated with 10% palladium on carbon (908 mg). Hydrogenation as described in example 1d, followed by recrystallization from ethyl ether provided 1.72 g (6.2 % overall) of the title compound as a white

solid. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.
 mp = 182-184 °C
 R_f (17% MeOH in dichloromethane) = 0.38

5 c) L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] 1,2,3,4-Tetrahydroisoquinolinamide. A solution of N-[2-(biphenyl-4-yl)-2-oxoethyl] L-proline (50 mg, 0.16 mmol, 1.0 eq), N-ethylmorpholine (125 μL , 0.97 mmol, 6 eq) in acetonitrile (0.5 mL) was cooled to 0 °C and treated with a 50% solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (170 μL , 0.26 mmol, 1.6 eq) followed by the L-isoleucine 1,2,3,4-tetrahydroisoquinolinamide (prepared as described in example 1a; 47.9 mg, 0.19 mmol, 1.2 eq). Purification by HPLC provided 5.53 mg (6.3 %) of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.
 Rf (50 % ethyl acetate in hexane)= 0.51
 HRMS calcd for $(\text{M}+\text{H})^+$ [$(\text{C}_{34}\text{H}_{40}\text{N}_3\text{O}_3 + \text{H})^+$] ion 538.7154; found 538.3072

15 Example 45 (Not within the scope of the claims)

25 L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzyl Ester. A solution of N-[2-(biphenyl-4-yl)-2-oxoethyl] L-proline (102 mg, 0.33 mmol, 1.0 eq), N-ethylmorpholine (270 μL , 2.12 mmol, 6.4 eq) in acetonitrile (1.0 mL) was cooled to 0 °C and treated with a 50% solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (340 μL , 0.53 mmol, 1.6 eq) followed by the tosylate salt of L-isoleucine benzyl ester (143 mg, 0.36 mmol, 1.1 eq). Purification by HPLC provided 45 mg (26%) of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.
 Rf 50 % ethyl acetate in hexane)= 0.29

35 Example 46

45 L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] tert-Butylamide. A solution of N-[2-(biphenyl-4-yl)-2-oxoethyl] L-proline (50 mg, 0.16 mmol, 1.0 eq), N-ethylmorpholine (125 μL , 0.98 mmol, 6 eq) in acetonitrile (0.5 mL) was cooled to 0 °C and treated with a 50% solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (170 μL , 0.27 mmol, 1.6 eq) followed by L-isoleucine tert-butylamide (49 mg, 0.19 mmol, 1.1 eq). Purification by HPLC provided 12 mg (16%) of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.
 Rf 50 % ethyl acetate in hexane)= 0.38
 HRMS calcd for $(\text{M}+\text{H})^+$ [$(\text{C}_{29}\text{H}_{40}\text{N}_3\text{O}_3 + \text{H})^+$] ion 478.6604; found 478.3072

Example 47

5

10

- 15 **L-Phenylalanine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide.** A solution of N-[2-(biphenyl-4-yl)-2-oxoethyl] L-proline (51 mg, 0.16 mmol, 1.0 eq), N-ethylmorpholine (125 uL, 0.98 mmol, 6 eq) in acetonitrile (0.5 mL) was cooled to 0 °C and treated with a 50% solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (170 uL, 0.27 mmol, 1.6 eq) followed by phenylalanine benzylamide (49 mg, 0.19 mmol, 1.1 eq). Purification by HPLC provided 12 mg (14%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
- 20 Rf 50 % ethyl acetate in hexane)= 0.38

Example 48

25

30

- 35 **L-Methionine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide.** A solution of N-[2-(biphenyl-4-yl)-2-oxoethyl] L-proline (54 mg, 0.17 mmol, 1.0 eq), N-ethylmorpholine (133 uL, 1.04 mmol, 6 eq) in acetonitrile (0.5 mL) was cooled to 0 °C and treated with a 50% solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (180 uL, 0.27 mmol, 1.6 eq) followed by the L-methionine benzylamide (71.36 mg, 0.30 mmol, 1.7 eq). Purification by HPLC provided 35 mg (38%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
- 40 Rf 50 % ethyl acetate in hexane) = 0.40
HRMS calcd for (M+H)⁺ [(C₃₁H₃₅N₃O₃S + H)⁺] ion 530.711; found 530.2480

Example 49

45

50

- 55 **Glycine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide.**

a) **1-(2-Adamantan-1-yl-2-Oxoethyl) L-Proline.** Using the procedure described in example 1d, a solution of L-proline, 1-(2-adamantan-1-yl-2-oxoethyl) benzyl ester (30.0 g, 76.63 mmol), 10% palladium on carbon (4.2 g), and

methanol (100 mL) was purged with hydrogen, and stirred under an atmosphere of hydrogen until no more benzyl ester was observed by TLC. The solution was purged with argon, filtered through a plug of celite, and concentrated in vacuo, and recrystallized from ethyl ether to provide 19.45 g. (85%) of the title compound as a white solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

5 mp 130-142 (sweat), 143-145 (melt)

R_f (20% MeOH in dichloromethane) = 0.32

b) Glycine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1a, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (104.6 mg, 0.36 mmol, 1.0 eq), triethylamine (150 uL, 1.07 mmol, 3.0 eq), and THF (1.5 mL), was treated with isobutyl chloroformate (51 uL, 0.39 mL, 1.1 eq), then with glycine N-benzylamide (88.2 mg, 537 umol, 1.5 eq). Workup as before provided 53.9 mg (34%) of the title compound as a white foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

10 R_f (50 % ethyl acetate in dichloromethane) = 0.22

15 Example 50

L-Valine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1a, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (109.1 mg, 0.37 mmol, 1.0 eq), triethylamine (156 uL, 1.12 mmol, 3.0 eq), and THF (1.5 mL), was treated with isobutyl chloroformate (53 uL, 0.41 mL, 1.1 eq), then with L-valine benzylamide (117.5 mg, 570 umol, 1.5 eq). Workup as before provided 127 mg (71%) of the title compound as a white foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

30 R_f (50 % ethyl acetate in dichloromethane) = 0.40

35 Example 51

45 L-Leucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (108 mg, 0.37 mmol, 1.0 eq), triethylamine (156 uL, 1.11 mmol, 3.0 eq), and THF (1.5 mL), was treated with isobutyl chloroformate (53 uL, 0.41 mL, 1.1 eq), then with L-leucine N-benzylamide (123 mg, 570 umol, 1.5 eq). Workup as before provided 124 mg (68%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

50 R_f (50 % ethyl acetate in dichloromethane) = 0.48

Example 52

5

10

L-Phenylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (100 mg, 0.34 mmol, 1.0 eq), L-phenylalanine N-benzylamide (175 mg, 686 umol, 2.0 eq) and dichloromethane (1.0 mL), was cooled to 0 °C, and treated with triethylamine (286 uL, 2.0 mmol, 6.0 eq). To this chilled solution was added a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (436 uL, 0.68 mL, 2.0 eq). When TLC indicated the reaction was complete, the solution was allowed to warm to 22 °C, washed with satd aq NaHCO₃, concentrated in vacuo, and purified by flash chromatography to provide 144 mg (80%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50 % ethyl acetate in dichloromethane) = 0.36

25

Example 53

30

35

40

L-Norvaline, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl)L-proline (155 mg, 0.53 mmol, 1.0 eq), L-norvaline N-benzylamide (220 mg, 1.07 mmol, 2.0 eq) and dichloromethane (1.0 mL), was treated with triethylamine (446 uL, 3.2 mmol, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (680 uL, 1.07 mL, 2.0 eq), to provide 372 mg (70%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50 % ethyl acetate in dichloromethane) = 0.37

45

Example 54

50

55

L-Norleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (154 mg, 0.53 mmol, 1.0 eq), L-norleucine N-benzylamide (234 mg, 1.07 mmol, 2.0 eq) and dichloromethane (1.0 mL), was treated with triethylamine (446 uL, 3.2 mmol,

6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (680 μ L, 1.07 mL, 2.0 eq), to provide 210 mg (80%) of the title compound as a white foam. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50 % ethyl acetate in dichloromethane) = 0.44

5

Example 55

10

15

L-Asparagine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, heterogeneous solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (152 mg, 0.52 mmol, 1.0 eq), L-asparagine,N-benzylamide (231 mg, 1.04 mmol, 2.0 eq) and dichloromethane (1.5 mL), was treated with triethylamine (436 μ L, 3.1 mmol, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (663 μ L, 1.04 mL, 2.0 eq), to provide 130.7 mg (51%) of the title compound as a white foam. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (10% MeOH in dichloromethane) = 0.41

25

Example 56

30

35

40

45

L-Serine-(O-Benzyl Ether), N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (151 mg, 0.52 mmol, 1.0 eq), L-serine-(O-benzyl ether)-N-benzylamide (294 mg, 1.03 mmol, 2.0 eq) and dichloromethane (1.5 mL), was treated with triethylamine (432 μ L, 3.1 mmol, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (658 μ L, 2.0 eq), to provide 220 mg (76%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50 % ethyl acetate in dichloromethane) = 0.30

50

55

Example 57

5

10

15

L- β -Phenylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (154 mg, 0.53 mmol, 1.0 eq), L- β -phenylalanine N-benzylamide (286 mg, 1.06 mmol, 2.0 eq) and dichloromethane (1.5 mL), was treated with triethylamine (442 μ L, 3.2 mmol, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (673 μ L, 2.0 eq), to provide 229 mg (81%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

20

R_f (50% ethyl acetate in dichloromethane) = 0.40

Example 58

25

30

35

40

L-Cyclohexylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (155 mg, 0.53 mmol, 1.0 eq), L-cyclohexylalanine N-benzylamide (248 mg) and dichloromethane (1.5 mL), was treated with triethylamine (444 μ L, 3.2 mmol, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (676 μ L, 2.0 eq), to provide 148 mg (52%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.42

Example 59

45

50

55

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] alpha-(S)-methylbenzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (154 mg, 0.53 mmol, 1.0 eq), L-isoleucine alpha-(S)-methylbenzylamide (247 mg, 1.05 mmol) and dichloromethane (1.5 mL), was treated with triethyl-

amine (441 μ L, 3.2 mmol, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (671 μ L, 2.0 eq), to provide 192 mg (72%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50 % ethyl acetate in dichloromethane) = 0.44

5

Example 60

10

15

20

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] alpha-(R)-methylbenzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (146 mg, 0.53 mmol, 1.0 eq), L-isoleucine alpha-(R)-methylbenzylamide (234 mg, 1.05 mmol) and dichloromethane (1.5 mL), was treated with triethylamine (420 μ L, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (638 μ L, 2.0 eq), to provide 108 mg (43%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (15% methanol in dichloromethane) = 0.47

25

Example 61

30

35

40

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Pyridin-4-ylmethylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (230 mg, 0.78 mmol, 1.0 eq), L-isoleucine pyridin-4-ylmethylamide (266 mg, 1.5 mmol) and dichloromethane (2 mL), was treated with triethylamine (660 μ L, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (1.0 mL, 2.0 eq), to provide 180 mg (46%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (4% methanol in dichloromethane) = 0.23

45

Example 62

50

55

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Pyridin-2-ylmethylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (165 mg, 0.56 mmol, 1.0 eq), L-isoleucine pyridin-2-ylmethylamide (246 mg, 1.11 mmol) and dichloromethane (2 mL), was treated with triethylamine (475 μ L, 6.0

eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (721 uL, 2.0 eq), to provide 214 mg (77%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. R_f (5% methanol in dichloromethane) = 0.21

5 Example 63

10

15

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] 4-methoxybenzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (140 mg, 0.48 mmol, 1.0 eq), L-isoleucine 4-methoxybenzylamide (238 mg, 0.95 mmol) and dichloromethane (2 mL), was treated with triethylamine (400 uL, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (610 uL, 2.0 eq), to provide 207 mg (82%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. R_f (50% ethyl acetate in dichloromethane) = 0.31

25 Example 64

25

30

L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] 2-methoxybenzylamide. Using the procedure described previously, a solution of 1-(2-adamantan-1-yl-2-oxoethyl) L-proline (179 mg, 0.61 mmol, 1.0 eq), L-isoleucine 2-methoxybenzylamide (308 mg, 1.23 mmol) and dichloromethane (2 mL), was treated with triethylamine (515 uL, 6.0 eq), and a 50 % solution of 1-n-propylphosphonic acid cyclic anhydride in dichloromethane (783 uL, 2.0 eq), to provide 254 mg (79%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. R_f (50% ethyl acetate in dichloromethane) = 0.31

40

40 Example 65

45

50

L-Isoleucine, N-[1-(Carboxymethyl)-L-Prolyl] Benzylamide. Using the hydrogenation conditions described in example 1d, a solution of L-isoleucine, N-[1-(2-benzyloxy-2-oxoethyl)-L-prolyl] benzylamide (14.80 g, 31.76 mmol), 10% palladium on carbon (0.80 g), and methanol (950 mL), was purged with hydrogen, and stirred under an atmosphere of hydrogen at 22 °C. After 8 hrs, the solution was purged with argon, filtered through a plug of celite, and concentrated in vacuo to provide 11.47 g (96%) of the title compound as a white solid. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

mp = 76-80 °C

 R_f (100% ethyl acetate) = 0.04

Mass Spectrum (EI) m/e (rel intensity) 376 (20, M+H), 307 (38), 154 (100), 136 (82).

5. Example 66

10

15

25

L-Isoleucine, N-[1-[2-[N-(Piperidine-3-Carboxylic Acid Ethyl Ester)]-2-Oxoethyl]-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (266 mg, 0.71 mmol, 1.0 eq), N-ethylmorpholine (135 uL, 1.06 mmol, 1.5 eq) in acetonitrile (5.0 mL) was treated with isobutyl chloroformate (101 uL, 0.78 mmol, 1.1 eq) followed by ethyl nipecolate (220 uL, 1.40 mmol, 2.0 eq). Purification by flash chromatography provided 150 mg (41%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

 R_f (100% ethyl acetate) = 0.22

25

Example 67

30

35

40

L-Isoleucine, N-[1-(2-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (254 mg, 0.67 mmol, 1.0 eq), N-methylmorpholine (96 uL, 0.88 mmol, 1.30 eq) in acetonitrile (7 mL) was treated with isobutyl chloroformate (96 uL, 0.74 mmol, 1.1 eq) followed by 1,4-dioxa-8-aza-spiro[4.5]decane (0.193 g, 1.35 mmol, 2.0 eq). Purification by flash chromatography provided 280 mg (83%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

 R_f (100% ethyl acetate) = 0.13 R_f (20% MeOH in ethyl acetate) = 0.68

45

Mass Spectrum (+EI) m/e (rel intensity) 500 (10, M+), 330 (12), 253 (100), 142 (18).

Example 68

50

55

L-Isoleucine, N-[1-[2-(N-(4-Benzylpiperidyl))-2-Oxoethyl]-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleu-

5 cine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (321 mg, 0.85 mmol, 1.0 eq), N-methylmorpholine (122 uL, 1.11 mmol, 1.30 eq) in acetonitrile (8 mL) was treated with isobutyl chloroformate (127 uL, 0.98 mmol, 1.15 eq) followed by 4-benzyloxyproline (0.299 g, 1.71 mmol, 2.0 eq). Purification by flash chromatography provided 401 mg (88%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

10 R_f (100% ethyl acetate) = 0.29; R_f (20% MeOH in ethyl acetate) = 0.69
Mass Spectrum (+Cl) m/e (rel intensity) 532 (70,M+), 425 (30), 357 (22), 330 (100).

15 Example 69

10

20 L-Isoleucine, N-[1-(2-(2-Methylpiperidin-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (202 mg, 0.53 mmol, 1.0 eq), N-ethylmorpholine (82 uL, 0.64 mmol, 1.20 eq) in acetonitrile (8 mL) was treated with isobutyl chloroformate (80 uL, 0.62 mmol, 1.15 eq) followed by 2-methylpiperidine (0.106 g, 1.07 mmol, 2.0 eq). The solution was warmed to 22 °C, concentrated to a residue, and purified by flash chromatography to provide 80 mg (32%) of the title compound as a colorless oil. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

25 R_f (100% ethyl acetate) = 0.26
R_f (20% MeOH in ethyl acetate) = 0.61
Mass Spectrum (+El) m/e (rel intensity) 456 (10,M+), 330 (14), 209 (100), 82 (82)

30 Example 70

35

40 L-Isoleucine, N-[1-(2-(2-Hydroxyethylamino)-2-Oxoethyl)-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.215 g, 0.58 mmol, 1.0 eq), and triethylamine (96 uL, 70 mg, 0.64 mmol, 1.20 eq), in acetonitrile (10 mL) was treated with isobutyl chloroformate (83 uL, 86 mg, 0.63 mmol, 1.1 eq) followed by 2-aminoethanol (69 uL, 70 mg, 1.15 mmol, 2.0 eq). Workup as above provided 127 mg (53 %) of the title compound. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.
R_f (100% ethyl acetate) = 0.05
Mass Spectrum (+El) m/e (rel intensity) 418 (10, M+), 330 (10), 171 (100), 153 (30).

50

55

Example 71

5

10

L-Isoleucine, N-[1-[2-(4 Phenylpiperazine)-2-Oxoethyl]-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.214 g, 0.58 mmol, 1.0 eq), and triethylamine (96 uL, 70 mg, 0.64 mmol, 1.20 eq), in acetonitrile (6 mL) was treated with isobutyl chloroformate (83 uL, 86 mg, 0.63 mmol, 1.1 eq) followed by 4-phenylpiperazine (170 uL, 186 mg, 1.15 mmol, 2.0 eq). Workup as above provided 170 mg (57 %) of the title compound. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

R_f(100% ethyl acetate) = 0.18

Mass Spectrum (+El) m/e (rel intensity) 519 (30, M+), 330 (22), 272 (100), 161 (20), 136 (25).

20

Example 72

25

30

L-Isoleucine, N-[1-[2-(1-Pyrrolidine)-2-Oxoethyl]-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.212 g, 0.56 mmol, 1.0 eq), and triethylamine (96 uL, 65 mg, 0.65 mmol, 1.15 eq), in acetonitrile (10 mL) was treated with isobutyl chloroformate (77 uL, 80 mg, 0.59 mmol, 1.05 eq) followed by pyrrolidine (94 uL, 80 mg, 1.13 mmol, 2.0 eq). Workup as above provided 205 mg (85 %) of the title compound. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

R_f(100% ethyl acetate) = 0.14

Mass Spectrum (+El) m/e (rel intensity) 428 (13, M+), 330 (10), 208 (10), 181 (100), 82 (85).

40

Example 73

45

50

L-Isoleucine, N-[1-[2-(N-Cyclopentylamino)-2-Oxoethyl]-L-Prolyl] Benzylamide. A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.212 g, 0.56 mmol, 1.0 eq), and triethylamine (96 uL, 65 mg, 0.65 mmol, 1.15 eq), in acetonitrile (10 mL) was treated with isobutyl chloroformate (77 uL, 86 mg, 0.59 mmol, 1.05 eq) followed by cyclopentylamine (111 uL, 96 mg, 1.13 mmol, 2.0 eq). Workup as above provided 198 mg (79 %) of the title compound. The 300 MHz, ¹H NMR and mass spectrum analysis of this compound was consistent with the structure.

R_f(100% ethyl acetate) = 0.22

R_f(20% MeOH in ethyl acetate) = 0.55

Mass Spectrum (+EI) m/e (rel intensity) 442 (28, M+), 375 (11), 330 (35), 297 (28), 212 (100).

Example 74

5

10

15 **L-Isoleucine, N-[1-[2-(N-(Phenylmethylamino))-2-Oxoethyl]-L-Prolyl] Benzylamide.** A -5 °C solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.218 g, 0.58 mmol, 1.0 eq), and triethylamine (89 uL, 64 mg, 0.64 mmol, 1.10 eq), in acetonitrile (10 mL) was treated with isobutyl chloroformate (79 uL, 83 mg, 0.61 mmol, 1.05 eq) followed by benzylamine (82 uL, 80 mg, 0.75 mmol, 1.3 eq). After the addition was complete, the flask was removed from the cold bath and the solution was stirred at 22 °C for 3 hrs. Workup as above provide 227 mg (84%) of the title compound as a white solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

20 mp = 76-80 °C

R_f(100% ethyl acetate) = 0.25

25

30

35 **L-Isoleucine, N-[1-[2-(N-(Cyclohexylmethylamino))-2-Oxoethyl]-L-Prolyl] Benzylamide.** Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.220 g, 0.58 mmol, 1.0 eq), and triethylamine (89 uL, 64 mg, 0.64 mmol, 1.10 eq), in acetonitrile (10 mL) was treated with isobutyl chloroformate (79 uL, 83 mg, 0.61 mmol, 1.05 eq) followed by cyclohexylmethylamine (99 uL, 86 mg, 0.75 mmol, 1.30 eq). Workup as above provided 201 mg (73 %) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

40 R_f(100% ethyl acetate) = 0.23R_f(20% MeOH in ethyl acetate) = 0.64

45

50

55 **L-Isoleucine, N-[1-(2-(4-Phenylpiperidyl)-2-Oxoethyl)-L-Prolyl] Benzylamide.** Using the procedure described above, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (0.124 g, 0.33 mmol, 1.0 eq), and N-methylmorpholine (43 uL, 40 mg, 0.40 mmol, 1.20 eq), in acetonitrile (3 mL) was treated with isobutyl chloroformate (45 uL, 47 mg, 0.35 mmol, 1.05 eq) followed by 4-phenylpiperidine (69 mg, 0.43 mmol, 1.3 eq). Workup as above

provided 101 mg (59 %) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f(100% ethyl acetate) = 0.18

5 Example 77

10

15

L-Isoleucine, N-[1-(2-[1-(3,7,11-Trimethyl)dodeca-2,6,10-trien-1-ol]-2-Oxoethyl)-L-Proline] Benzylamide. A solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (67 mg, 0.18 mmol), 4-N,N-dimethylaminopyridine (6.1 mg, 0.05 mmol, 0.3 eq), 1,3-dicyclohexylcarbodiimide (64 mg, 0.31 mmol, 1.8 eq) in dichloromethane (2.0 mL) was treated with trans,trans farnesol (55 μ L, 0.22 mmol, 1.2 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 27 mg (26%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.50

HRMS calcd for (M+H)⁺ [(C₃₅H₅₃N₃O₄ + H)⁺] ion 580.8365; found 550.4117

25

Example 78

30

35

L-Isoleucine, N-[1-(2-(3-Phenyl-2-Propen-1-Oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (65 mg, 0.17 mmol), 4-N,N-dimethylaminopyridine (12.5 mg, 0.10 mmol, 0.6 eq), 1,3-dicyclohexylcarbodiimide (64 mg, 0.31 mmol, 1.8 eq) in dichloromethane (5.0 mL) was treated with trans cinnamyl alcohol (29 μ L, 0.22 mmol, 1.3 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 32 mg (38%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.47

HRMS calcd for (M+H)⁺ [(C₂₉H₃₈N₃O₄ + H)⁺] ion 492.6424; found 492.2864

45

Example 79

50

55

L-Isoleucine, N-[1-(2-(3-Phenyl-3-Methyl-2-Propen-1-Oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the

procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (56 mg, 0.15 mmol), 4-N,N-dimethylaminopyridine (3.6 mg, 0.03 mmol, 0.2 eq), 1,3-dicyclohexylcarbodiimide (54 mg, 0.26 mmol, 1.7 eq) in dichloromethane (5.0 mL) was treated with trans 2-methyl-3-phenyl-2-propen-1-ol (28 μ L, 0.19 mmol, 1.3 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 32 mg (42%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.52
 HRMS calcd for (M+H)⁺ [(C₃₀H₄₀N₃O₄ + H)⁺] ion 506.6695; found 506.3021

10 Example 80

15

20

L-isoleucine, N-[1-(2-(1-Phenylpropoxy)-2-Oxoethyl)-L-Prolyl], Benzylamide. A solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (59 mg, 0.16 mmol), 4-N,N-dimethylaminopyridine (7.9 mg, 0.06 mmol, 0.4 eq), 1,3-dicyclohexylcarbodiimide (49 mg, 0.23 mmol, 1.5 eq) in dichloromethane (5.0 mL) was treated with (+/-) 1-phenyl-1-propanol (28 μ L, 0.20 mmol, 1.3 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 32 mg (41%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.51
 HRMS calcd for (M+H)⁺ [(C₂₉H₄₀N₃O₄ + H)⁺] ion 494.6584; found 494.3021

30 Example 81

35

40

45

L-isoleucine, N-[1-(2-(1-Phenyl-1-Cyclohexylmethoxy)-2-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (71 mg, 0.19 mmol), 4-N,N-dimethylaminopyridine (7.5 mg, 0.06 mmol, 0.3 eq), 1,3-dicyclohexylcarbodiimide (64 mg, 0.31 mmol, 1.6 eq) in dichloromethane (5.0 mL) was treated with (+/-) cyclohexylphenylcarbinol (45 mg, 0.24 mmol, 1.3 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 27 mg (26%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

R_f (50% ethyl acetate in dichloromethane) = 0.51

HRMS calcd for (M+H)⁺ [(C₃₃H₄₆N₃O₃ + H)⁺] ion 548.7506; found 548.3491

55

Example 82

5

10

- 15 **L-Isoleucine, N-[1-(2-(1-Phenyl-2-(4-Morpholino)Ethoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide.** Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (58 mg, 0.15 mmol), 4-N,N-dimethylaminopyridine (13.2 mg, 0.10 mmol, 0.7 eq), 1,3-dicyclohexylcarbodiimide (57 mg, 0.27 mmol, 1.8 eq) in dichloromethane (5.0 mL) was treated with (+/-) alpha-phenyl-4-morpholinoethanol (60 mg, 0.29 mmol, 1.9 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 20 mg (22%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in dichloromethane) = 0.32

Example 83

25

30

35

- 35 **L-Isoleucine, N-[1-(2-(2-Oxy-2-Methyladamant-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide.** Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (61 mg, 0.16 mmol), 4-N,N-dimethylaminopyridine (26 mg, 0.21 mmol, 1.3 eq), 1,3-dicyclohexylcarbodiimide (51 mg, 0.25 mmol, 1.5 eq) in dichloromethane (3.0 mL) was treated with 2-methyl-2-adamantanone (33 mg, 0.21 mmol, 1.3 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 20 mg (23%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in dichloromethane) = 0.45
 HRMS calcd for (M+H)⁺ [(C₃₁H₄₆N₃O₃ + H)⁺] ion 524.7284; found 524.3491

Example 84

50

55

- 55 **L-Isoleucine, N-[1-(Adamantan-2-ylcarbamoylmethyl)-L-Prolyl] Benzylamide.** Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (113 mg, 0.30 mmol), triethylamine

(168 μ L, 1.20 mmol, 4 eq) in acetonitrile (1.5 mL), was cooled to 0 °C and treated with isobutyl chloroformate (43 μ L, 0.33 mmol, 1.1 eq) followed by the hydrochloride salt of 2-adamantylamine (113.2 mg, 0.60 mmol, 2 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 10 mg (6.5%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

5 R_f (100% ethyl acetate) = 0.26

Example 85

10

15

L-Isoleucine, N-[1-(Adamant-1-ylmethylcarbamoylmethyl)-L-prolyl] Benzylamide. Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (106 mg, 0.28 mmol), triethylamine (158 μ L, 1.13 mmol, 4 eq) in acetonitrile (1.5 mL, was cooled to 0 °C and treated with isobutyl chloroformate (40.5 μ L, 0.31 mmol, 1.1 eq) followed by 1-adamantanemethylamine (100 μ L, 0.57 mmol, 2 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 15 mg (10%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

20 R_f (100% ethyl acetate) = 0.25

25 HRMS calcd for (M+H)⁺ [(C₃₁H₄₇N₄O₃ + H)⁺] ion 523.7436; found 523.3651

Example 86

30

35

40 L-Isoleucine, N-[1-(2-(2-Methyl-1-(S)-Phenyl-1-Propanoyloxy)-2-Oxoethyl)-L-prolyl] Benzylamide. Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (298 mg, 0.73 mmol), 4-N,N-dimethylaminopyridine (95 mg, 0.77 mmol, 1.2 eq), 1,3-dicyclohexylcarbodiimide (243 mg, 1.18 mmol, 1.8 eq) in dichloromethane (10 mL) was treated with (S)-2-methyl-1-phenyl-1-propanol (100 mg, 0.64 mmol, 1.3 eq). After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 104 mg (32%) of the title compound. The 300 MHz, 1 H NMR analysis of this compound was consistent with the structure.

45 R_f (50% ethyl acetate in dichloromethane) = 0.57

Example 87

50

55

L-Isoleucine, N-[1-(2-(2-Methyl-1-(R)-Phenyl-1-Propoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described previously, a solution of L-isoleucine, N-[1-(carboxymethyl)-L-prolyl] benzylamide (298 mg, 0.73 mmol), 4-N,N-dimethylaminopyridine (100 mg, 0.82 mmol, 1.3 eq), 1,3-dicyclohexylcarbodiimide (242 mg, 1.17 mmol, 1.8 eq) in dichloromethane (10 mL) was treated with (R)-2-methyl-1-phenyl-1-propanol (100 mg, 0.64 mmol, 1.3 eq).
 5 After TLC indicated the reaction was complete, the mixture was purified by HPLC to provide 96.2 mg (30%) of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f (50% ethyl acetate in dichloromethane) = 0.57

Example 88
 10

15

L-Isoleucine, N-[1-(2-(4-tert-Butylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 4-(t-butyl)cyclohexyl α -chloromethyl ketone (164 mg, 0.76 mmol, 1.2 eq; prepared from 4-tert-butylcyclohexane-carboxylic acid), provided 160 mg of the title compound as a white foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 20
 25 R_f = 0.45 (50% EtOAc in CH_2Cl_2).
 LSIMS = 498 (mass calculated for $C_{30}H_{47}N_3O_3$ = 497.73).

Example 89
 30

35

L-Isoleucine, N-[1-(2-Bicyclo[2.2.1]hept-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (100 mg, 0.32 mmol) with 2-norbornyl α -chloromethyl ketone (82 mg, 0.48 mmol, 1.5 eq; prepared from 2-norbornanecarboxylic acid) provided 69 mg of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f = 0.28 (70% EtOAc in hexane).
 40
 45 LSIMS = 454 (mass calculated for $C_{27}H_{39}N_3O_3$ = 453.63).

Example 90

50

55

L-Isoleucine, N-[1-(2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (100 mg, 0.32 mmol) with 3,4,5-trimethoxyphenyl α -chloromethyl ketone (116 mg, 0.47 mmol, 1.5 eq; prepared from 3,4,5-trimethoxybenzoic acid) provided 190 mg of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

5 $R_f = 0.33$ (50% EtOAc in CH_2Cl_2).

Example 91

10

15

L-Isoleucine, N-[1-(2-(Chroman-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide Hydrochloride Salt. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with benzopyranyl α -chloromethyl ketone (266 mg, 1.26 mmol, 2 eq; prepared from 3,4-dihydro-2H-1-benzopyran-2-carboxylic acid) provided the amine which was treated with HCl in ether to provide 200 mg of the hydrochloride salt of the title compound as a mixture of diastereomers. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

20 $R_f = 0.38$ (for free base: 80% EtOAc in hexane).

25 LSIMS [M-HCl] = 491 (mass calculated for $\text{C}_{29}\text{H}_{37}\text{N}_3\text{O}_4 + \text{HCl} = 528.09$).

Example 92

30

35

L-Isoleucine, N-[1-(2-(Benzofuran-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide Hydrochloride Salt. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with benzofuranyl α -chloromethyl ketone (246 mg, 1.26 mmol, 2 eq; prepared from 2-benzofurancarboxylic acid) provided the amine which was treated with HCl in ether to provide 200 mg of the hydrochloride salt of the title compound as a solid. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

40 $R_f = 0.13$ (for free base: 50% EtOAc in hexane).

45 LSIMS [M-HCl] = 476 (mass calculated for $\text{C}_{28}\text{H}_{33}\text{N}_3\text{O}_4 + \text{HCl} = 512.05$).

Example 93

50

55

L-Isoleucine, N-[1-(2-(3-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 3'-benzoyloxy-2-bromoacetophenone (302 mg, 0.95 mmol, 1.5 eq) provided 57 mg of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

5 LSIMS = 556 (mass calculated for C₃₃H₃₇N₃O₅ = 555.68).

Example 94

10

15

20

L-Isoleucine, N-[1-(2-(4-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 4'-benzoyloxy-2-bromoacetophenone (302 mg, 0.95 mmol, 1.5 eq) provided 171 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

25 LSIMS = 556 (mass calculated for C₃₃H₃₇N₃O₅ = 555.68).

Example 95

30

35

40

50

55

L-Isoleucine, N-[1-(2-(2-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 2'-benzoyloxy-2-bromoacetophenone (302 mg, 0.95 mmol, 1.5 eq) provided 120 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

45 LSIMS = 556 (mass calculated for C₃₃H₃₇N₃O₅ = 555.68).

Example 96

5

15

L-Isoleucine, N-[1-(2-(3-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 3'-phenoxy-2-chloroacetophenone (233 mg, 0.95 mmol, 1.5 eq; prepared from 3-phenoxybenzoic acid) provided 80 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

20

$R_f = 0.26$ (70% EtOAc in hexane).

LSIMS = 528 (mass calculated for $C_{32}H_{37}N_3O_4 = 527.67$).

Example 97

25

35

L-Isoleucine, N-[1-(2-(2-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 2'-phenoxy-2-chloroacetophenone (233 mg, 0.95 mmol, 1.5 eq; prepared from 2-phenoxybenzoic acid) provided 40 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

40

$R_f = 0.31$ (70% EtOAc in hexane).

LSIMS = 528 (mass calculated for $C_{32}H_{37}N_3O_4 = 527.67$).

Example 98

45

50

L-Isoleucine, N-[1-(2-(3,4,5-Triethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 3,4,5-triethoxyphenyl α -chloromethyl ketone (271 mg, 0.95 mmol, 1.5 eq; prepared from 3,4,5-triethoxybenzoic acid), provided 45 mg of the title compound as a foam. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

5 $R_f = 0.19$ (70% EtOAc in hexane).

LSIMS = 568 (mass calculated for $C_{32}\text{H}_{45}\text{N}_3\text{O}_6 = 567.73$).

Example 99

10

15

L-Isoleucine, N-[1-(2-(Benzo[1,3]dioxol-5-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with piperonyl α -chloromethyl ketone (188 mg, 0.95 mmol, 1.5 eq; prepared from piperonic acid), provided 84 mg of the title compound as a foam. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

20 $R_f = 0.24$ (70% EtOAc in hexane).

LSIMS = 480 (mass calculated for $C_{27}\text{H}_{33}\text{N}_3\text{O}_5 = 479.58$).

25

Example 100

30

35

L-Isoleucine, N-[1-{2-Oxo-2-[4-(2-Phenoxyethoxy)-Phenyl]-Ethyl}-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 4'-phenoxyethoxy-2-chloroacetophenone, (275 mg, 0.95 mmol, 1.5 eq; prepared from 4-(2-phenoxyethoxy)benzoic acid), provided 80 mg of the title compound as a crystalline solid. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

40 LSIMS = 572 (mass calculated for $C_{34}\text{H}_{41}\text{N}_3\text{O}_6 = 571.72$).

45

Example 101

50

55

L-Isoleucine, N-[1-(2-(4-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 4'-phenoxy-2-bromoacetophenone (275 mg, 0.95 mmol, 1.5 eq) provided 142 mg of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

5 LSIMS = 528 (mass calculated for C₃₂H₃₇N₃O₄ = 527.67).

Example 102

10

15

20

L-Isoleucine, N-[1-(2-(4,6-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 2',4',6'-trimethoxyphenyl α-bromomethyl ketone (273 mg, 0.95 mmol, 1.5 eq) provided 88 mg of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

25 LSIMS = 526 (mass calculated for C₂₉H₃₉N₃O₆ = 525.65).

Example 103

30

35

40

L-Isoleucine, N-[1-(2-(2,3-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 2',3'-dimethoxyphenyl α-chloromethyl ketone (190 mg, 0.88 mmol, 1.4 eq; prepared from 2,3-dimethoxybenzoic acid) provided 34 mg of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

45 LSIMS = 496 (mass calculated for C₂₈H₃₇N₃O₅ = 495.62).

50

55

Example 104

5

10

L-Isoleucine, N-[1-(2-(2,6-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 2',6'-dimethoxyphenyl α -bromomethyl ketone (326 mg, 1.26 mmol, 2.0 eq) provided 80 mg of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.
LSIMS = 496 (mass calculated for $\text{C}_{28}\text{H}_{37}\text{N}_3\text{O}_5$ = 495.62).

20

Example 105

25

30

L-Isoleucine, N-[1-(2-(1-(4-Methylphenyl)cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 1-(4-methylphenyl)cyclohexyl α -chloromethyl ketone (237 mg, 1.26 mmol, 2.0 eq; prepared from 1-(4-methylphenyl)-1-cyclohexanecarboxylic acid) provided 30 mg of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.
LSIMS = 532 (mass calculated for $\text{C}_{33}\text{H}_{45}\text{N}_3\text{O}_3$ = 531.74).

40

Example 106

45

50

L-Isoleucine, N-[1-(2-(1-(4-Chlorophenyl)cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 1-(4-chlorophenyl)cyclohexyl α -chloromethyl ketone (342 mg, 1.26 mmol, 2.0 eq; prepared from 1-(4-chlorophenyl)-1-cyclohexanecarboxylic acid) provided 30 mg of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

LSIMS = 552 (mass calculated for $C_{32}H_{42}ClN_3O_3$ = 552.16).

Example 107

5

10

15

20

Example 108

25

30

35

40

Example 109

45

50

55

L-isoleucine, N-[1-(2-(2,4,5-trimethoxyphenyl)-2-oxoethyl)-L-prolyl] benzylamide. Using the procedure described in example 1e, treatment of L-proline-L-isoleucine benzylamide (200 mg, 0.63 mmol) with 2',4',5'-trimethoxyphenyl α -bromomethyl ketone (274 mg, 0.95 mmol, 1.5 eq) provided 40 mg of the title compound. The 300 MHz, 1H NMR analysis of this compound was consistent with the structure.

LSIMS = 526 (mass calculated for C₂₉H₃₉N₃O₆ = 525.65).

Example 110 (Not within the scope of the claims)

5

10

15 **1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Proline Benzyl Ester Hydrochloride.** Using the procedure described in example 1e, treatment of L-proline benzyl ester hydrochloride (1.00 g, 4.14 mmol) and 3,4,5-trimethoxyphenyl α-bromomethyl ketone (2.4 g, 8.27 mmol) provided the amine (R_f = 0.37: 50% EtOAc in hexane). The amine intermediate was treated with HCl in ether and dried in vacuo to provided 1.58 g of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

20

Example 111

25

30

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride.

35 a) 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Proline Hydrochloride. The hydrochloride salt of 1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl] L-proline benzyl ester (1.53 g), was dissolved in ethanol (100 mL) and treated with 10% palladium on carbon (150 mg). The flask was purged with argon, purged with hydrogen and left to stir under hydrogen atmosphere (1 atm) until the reaction appeared complete by TLC. The catalyst was removed by filtration through Celite and solvent removed in vacuo to provide 1.15 g of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

40 b) L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride. To an oven-dried round bottomed flask was added N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride, (300 mg, 0.83 mmol, 1.0 eq), benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (369 mg, 0.83 mmol, 1.0 eq.) and anhydrous tetrahydrofuran (10 mL). The slurry was cooled to 0 °C and treated with triethylamine (3.0 eq).

45 After stirring 10 minutes at 0 °C, benzylamine (0.27 mL, 2.5 mmol, 3.0 eq) was added and the reaction mixture was allowed to warm to 22 °C over a one hour period. The solvent was removed in vacuo and the resulting residue was taken up in EtOAc (100 mL). The organic layer was washed with 5% citric acid (100 mL), sat. NaHCO₃ (100 mL), sat. aq. NaCl (100 mL), dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash chromatography, and treated with HCl in ether to provide 128 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

50 LSIMS [M-HCl] = 413 (mass calculated for C₂₃H₂₈N₂O₆ + HCl = 448.93).

55

Example 112

5

10

15

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Phenethylamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.53 mmol) and phenethylamine (0.31 mL, 2.5 mmol) provided, after treatment with HCl in Et₂O, 199 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. LSIMS [M-HCl]= 427 (mass calculated for C₂₄H₃₀N₂O₅ + HCl = 462.98).

20

Example 113

25

30

35

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-Phenylpropylamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.83 mmol) and 3-phenylpropylamine (0.36 mL, 2.5 mmol) provided, after treatment with HCl in Et₂O, 120 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

40

LSIMS [M-HCl]= 441 (mass calculated for C₂₅H₃₂N₂O₅ + HCl = 477.00).

Example 114

45

50

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Phenylbutylamide Hydrochloride. Following the pro-

cedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.83 mmol) and 4-phenylbutylamine (0.39 mL, 2.5 mmol) provided, after treatment with HCl in Et₂O, 170 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. LSIMS [M-HCl]= 455 (mass calculated for C₂₆H₃₄N₂O₅ + HCl = 491.03).

5

Example 115

10

15

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(Pyrid-2-yl)ethylamide Dihydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.83 mmol) and 2(2-aminoethyl)pyridine (0.4 mL, 2.5 mmol) provided, after treatment with HCl in Et₂O, 193 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. LSIMS [M-2HCl]= 429 (mass calculated for C₂₃H₂₉N₃O₅ x 2HCl = 500.43).

25

Example 116

30

35

45

Example 117 (Not within the scope of the claims)

46

50

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-[N-Carboallyloxy]aminophenyl)propyl Ester Hydrochloride.

- a) 3-(4-Aminophenyl)propanol. To a round bottomed flask equipped with a magnetic stirrer was added 4-nitrocinnamyl alcohol (2.0 g, 11.16 mmol), 10% Pd on carbon (200 mg) and absolute ethanol (150 mL). The solution was purged with hydrogen and stirred at 22 °C under a hydrogen atmosphere. When TLC indicated the reaction was complete (4 h), the solution was purged with argon and filtered through Celite. The filtrate was concentrated *in vacuo* to provide 3-(4-aminophenyl)propanol, 1.72 g (>100%), as a viscous oil which solidified on standing. $R_f = 0.17$ (50% EtOAc in hexane).
- b) 3-(4-(N-Carboallyloxy)-aminophenyl)propanol. To a round bottomed flask was added the 3-(4-aminophenyl)propanol (1.3 g, 8.6 mmol), pyridine (1.0 mL, 12 mmol) and dichloromethane (25 mL). The solution was cooled to 0 °C and treated with allyl chloroformate (1.0 mL, 9.4 mmol). After allowing to warm to 22 °C over 1 hour, the reaction mixture was diluted with dichloromethane and washed twice with 1 N HCl, followed by sat. NaHCO₃, water and sat. aq. NaCl. The organic extract was dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (50% EtOAc in hexane), provided 1.77 g (88%) of the title compound as a clear oil which solidified on standing. The ¹H NMR analysis of this compound was consistent with the structure. $R_f = 0.37$ (60% EtOAc in hexane).
- c) L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl]-3-(4-N-Carboallyloxyaminophenyl)propyl Ester Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.83 mmol) and 3-(4-(N-carboallyloxy)aminophenyl)propanol (218 mg, 0.83 mmol) provided, after treatment with HCl in Et₂O, 65 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
- LSIMS [M-HCl]= 542 (mass calculated for C₂₉H₃₆N₂O₈ + HCl = 577.08).

Example 118

35 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl]-2-Phenyl-2-oxoethylamide.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (200 mg, 0.56 mmol) and 2-aminoacetophenone hydrochloride (286 mg, 1.67 mmol) provided 54 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

40 $R_f = 0.46$ (EtOAc)
LSIMS = 442 (mass calculated for C₂₄H₂₈N₂O₆ = 440.50).

Example 119

55 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Tetrahydrofurylamide.** Following the procedure d -

EP 0 564 924 B1

scribed in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (200 mg, 0.56 mmol) and tetrahydrofurylamine (0.17 mL, 1.67 mmol) provided 104 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

5 R_f = 0.20 (EtOAc)
LSIMS = 407 (mass calculated for C₂₁H₃₀N₂O₆ = 406.48).

Example 120

10

15

20 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Naphthalen-1-ylimethylamide.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.83 mmol) and 1-naphthyl methylamine (0.37 mL, 2.5 mmol) provided 150 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
LSIMS = 463 (mass calculated for C₂₇H₃₀N₂O₅ = 462.55).

25

Example 121

30

35

40 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-Sulfamoylphenyl)ethylamide.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (300 mg, 0.83 mmol) and 4-(2-aminoethyl)benzenesulfonamide (334 mg, 1.67 mmol) provided 300 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
LSIMS = 506 (mass calculated for C₂₄H₃₁N₃SO₇ = 505.60).

45

Example 122

50

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Phenylpiperidinylamide. Following the procedure

described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and 4-phenylpiperidine (336 mg, 2.1 mmol) provided 67 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

- 5 $R_f = 0.22$ (EtOAc)
 LSIMS = 467 (mass calculated for $C_{27}H_{34}N_2O_5$ = 466.58).

Example 123

10

15

20

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4Methoxybenzamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and 4-methoxybenzylamine (0.27 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 90 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. $R_f = 0.38$ (free base in EtOAc)
 LSIMS [M-HCl] = 443 (mass calculated for $C_{24}H_{30}N_2O_6 + HCl$ = 478.98).

25

Example 124

30

35

40

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-Methoxybenzamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and 3-methoxybenzylamine (0.27 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 90 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

$R_f = 0.38$ (free base in EtOAc)

LSIMS [M-HCl] = 443 (mass calculated for $C_{24}H_{30}N_2O_6 + HCl$ = 478.98).

45

Example 125

50

55

5 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Methoxybenzamide Hydrochloride.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and 2-methoxybenzylamine (0.27 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 120 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

R_f = 0.38 (free base in EtOAc)

LSIMS [M-HCl] = 443 (mass calculated for C₂₄H₃₀N₂O₆ + HCl = 478.98).

10 Example 126

15

20

25 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] N-Methylphenethylamide Hydrochloride.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and N-methyl phenethylamine (0.30 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 20 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. LSIMS [M-HCl] = 441 (mass calculated for C₂₅H₃₂N₂O₅ + HCl = 477.00).

30 Example 127

35

40

45

40 **L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (S)-α-methylbenzylamide Hydrochloride.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and (S)-(-)-α-methylbenzylamine (0.27 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 160 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

45 LSIMS [M-HCl] = 427 (mass calculated for C₂₄H₃₀N₂O₅ + HCl = 462.98).

50 Example 128

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (R)- α -methylbenzylamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and (R)-(+)- α -methylbenzylamine (0.27 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 190 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

LSIMS [M-HCl] = 427 (mass calculated for C₂₄H₃₀N₂O₅ + HCl = 462.98).

Example 129

10

15

20

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1-methyl-3-phenylpropylamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and 1-methyl-3-phenylpropylamine (0.34 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 40 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

25

LSIMS [M-HCl] = 455 (mass calculated for C₂₆H₃₄N₂O₅ + HCl = 491.03).

Example 130

30

35

40

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Adamantylmethyleamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and 1-adamantylmethyleamine (0.37 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 100 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

45

LSIMS [M-HCl] = 471 (mass calculated for C₂₇H₃₆N₂O₅ + HCl = 507.07).

Example 131

50

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1-(R)-(1-naphthyl)ethylamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and (R)-1-(1-naphthyl)ethylamine (0.34 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 137 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 LSIMS [M-HCl] = 477 (mass calculated for C₂₈H₃₂N₂O₅ + HCl = 513.04).

Example 132

10

15

20

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Cyclohexylmethylamide. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and cyclohexylmethylamine (0.27 mL, 2.1 mmol), provided 138 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 LSIMS = 419 (mass calculated for C₂₄H₃₄N₂O₅ = 418.54).

25

Example 133

30

35

40

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Diphenylmethylamide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and aminodiphenylmethane (0.12 mL, 0.69 mmol) provided, after treatment with HCl in Et₂O, 132 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

45

LSIMS [M-HCl] = 489 (mass calculated for C₂₉H₃₂N₂O₅ + HCl = 525.05).

Example 134

50

55

L-Prolin, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] tert-Butylamide Hydrochlorid. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and t-butylamine (0.22 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 146 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

5 Rf = 0.42 (for free base: EtOAc)
LSIMS [M-HCl] = 379 (mass calculated for C₂₀H₃₀N₂O₅ + HCl = 414.93).

Example 135

10

15

20

30

Example 136

35

40

50

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Cyclohexyl amide Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-proline hydrochloride (250 mg, 0.69 mmol) and cyclohexylamine (0.24 mL, 2.1 mmol) provided, after treatment with HCl in Et₂O, 147 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
Rf = 0.34 (free base in EtOAc)
LSIMS [M-HCl] = 405 (mass calculated for C₂₂H₃₂N₂O₅ + HCl = 440.97).

Example 137 (Not within the scope of the claims)

5

10

15

20

1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Homoproline Benzyl Ester Hydrochloride. Using the procedure described in example 1e, L-homoproline benzyl ester tosylate salt (5.0 g, 12.77 mmol) and 3,4,5-trimethoxyphenyl α -bromomethyl ketone (7.4 g, 25.6 mmol) provided 5.4 g of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

25

Example 138

25

30

35

45

L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride.

a) **1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Homoproline Benzyl Ester Hydrochloride.** 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Homoproline Benzyl Ester Hydrochloride was reductively cleaved using the procedure described in Example 118 to provide 4.46 g of the title compound. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

b) **L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride.** Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-homoproline hydrochloride (200 mg, 0.53 mmol) and benzylamine (0.09 mL, 0.80 mmol) provided, after treatment with HCl in Et_2O , 112 mg of the title compound as a powder. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

LSIMS [M-HCl] = 427 (mass calculated for $\text{C}_{24}\text{H}_{30}\text{N}_2\text{O}_5 + \text{HCl} = 462.98$).

50

55

Example 139

5

10

15

20

30

Example 140

25

L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] tetrahydrofurylamide. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-homoproline hydrochloride (200 mg, 0.53 mmol) and 1-tetrahydrofurylmethylamine (0.19 mL, 1.07 mmol) provided, after treatment with HCl in Et₂O, 59 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

LSIMS [M-HCl] = 485 (mass calculated for C₂₈H₄₀N₂O₅ + HCl = 521.10).

Example 141

35

40

45

50

55

L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-Sulfamoylphenyl)ethylamide. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-homoproline hydrochloride (200 mg, 0.53 mmol) and 4-(2-aminoethyl)benzenesulfonamide (214 mg, 1.06 mmol) provided 25 mg of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

LSIMS = 520 (mass calculated for C₂₅H₃₃N₃O₇S = 519.62).

Example 142

5

10

15

L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl]-2-Oxoethyl-L-homoproline Hydrochloride. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-homoproline hydrochloride (200 mg, 0.53 mmol) and (S)-(-)- α -methylbenzylamine (0.21 mL, 1.6 mmol) provided, after treatment with HCl in Et₂O, 107 mg of the title compound as a powder. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 LSIMS [M-HCl] = 441 (mass calculated for C₂₅H₃₂N₂O₅ + HCl = 477.00).

20

Example 143

25

30

L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl]-2-Oxoethyl-L-homoproline (1-S)-[2'-(S)-methylpropyl]-3-phenylprop-2-enyl-amide.

a) *trans* 1-Phenyl-3-(S)-[(1,1-dimethylethoxy)carbonyl]-amino-4-(S)-methylhexa-1-ene. Into a 1-L round bottomed flask equipped with a magnetic stirrer was added diethyl benzylphosphonate (14.3 mL, 15.8 g, 69.37 mmol, 1.2 eq.) and THF (500 mL). The flask was purged with argon and cooled to -78 °C. A 1 M solution of NaN(SiMe₃)₂ in THF (74.1 mL, 74.1 mmol, 1.2 eq.) was added dropwise to the phosphonate, and the color changed from colorless to pale yellow. After stirring 30 min at -78 °C, a solution of Boc-L-isoleucinal (13.6 g, 63.1 mmol, prepared as described earlier: Saari, W.S.; Fisher, T. E. *Synthesis* 1990, 453-454.) in THF (50 mL) was added dropwise. The reaction mixture was stirred at -78 °C for 30 min, then allowed to warm up to 0 °C over a 2 hour period. The solution was evaporated to dryness and the resulting colorless oil was dissolved in Et₂O (250 mL). The ether solution was washed with sat. aq. NH₄Cl (50 mL), sat. aq. NaCl (25 mL), dried (MgSO₄) and evaporated to a residue. The residue was purified by flash chromatography (5% EtOAc in hexane) to provide 8.7 g (48%) of the title compound as a colorless oil.

Rf = 0.63 (30% EtOAc in hexane).
 b) *trans* 1-Phenyl-3-(S)-amino-4-(S)-methylhexa-1-ene. A solution of *trans* 1-phenyl-3-(S)-[(1,1-dimethylethoxy)carbonyl]-amino-4-(S)-methylhexa-1-ene (8.7 g, 30.27 mmol) was dissolved in CH₂Cl₂ (50 mL) and treated with trifluoroacetic acid (20 mL). After 20 min stirring at 22 °C, the reaction appeared complete (TLC). The reaction mixture was neutralized with excess sat. aq. NaHCO₃, washed with sat. aq. NaCl (20 mL), dried (MgSO₄) and evaporated to a residue. The resulting colorless oil was dissolved in Et₂O (100 mL) and extracted with 1 N HCl (3 x 50 mL). The aqueous layer was neutralized with 1 N NaOH and extracted with Et₂O (3 x 50 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo to provide 2.8 g (50%) of the title compound as a colorless oil that solidified on standing. The ¹H NMR and Mass spectrum analysis of this compound was consistent with the structure. Rf = 0.04 (30% EtOAc in hexane).

5 c) L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (1-(S)-[2'-(S)-methylpropyl]-3-phenylprop-2-E-enyl)-amide. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-homoproline hydrochloride (300 mg, 0.80 mmol) and trans 1-phenyl-3-(S)-amino-4-(S)-methylhexa-1-ene (228 mg, 1.2 mmol) provided 280 mg of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. LSIMS = 509 (mass calculated for C₃₀H₄₀N₂O₅ = 508.66).

Example 144

10

15

20

L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (1-(S)-[2'-(S)-methylpropyl]-3-phenylprop-2-enyl)-amide. In a round bottomed flask equipped with a magnetic stirrer was added L-homoproline, 1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl] (1-(S)-[2'-(S)-methylpropyl]-3-phenylprop-2-enyl)-amide (220 mg, 0.43 mmol), 10% palladium on carbon (22 mg), and methanol (50 mL). The flask was purged with hydrogen and the slurry stirred under an atmosphere of H₂ for 2 hours. The catalyst was removed by filtration through celite and the solvent removed in vacuo to provide 220 mg of the title compound. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

25 LSIMS = 511 (mass calculated for C₃₀H₄₂N₂O₅ = 510.68).Example 145

30

35

40

L-Isoleucine, N-[1-(2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Homoprolyl] Benzylamide. Following the procedure described in Example 111b, the coupling of N-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-L-homoproline hydrochloride (200 mg, 0.53 mmol) and L-isoleucine benzylamide (118 mg, 0.53 mmol) provided 190 mg of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure. LSIMS = 540 (mass calculated for C₃₀H₄₁N₃O₆ = 539.68).

Example 146

45

50

55

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Acetyl)aminophenyl)ethylamide. In an oven-dried round bottomed flask was added L-proline, 1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl] 2-(4-aminophenyl) thialdr

mide (100 mg, 0.23 mmol), and tetrahydrofuran (5 mL). The solution was stirred at 22 °C, and treated with pyridine (0.037 mL, 0.45 mmol, 2.0 eq) followed by acetyl chloride (0.024 mL, 0.34 mmol, 1.5 eq). The reaction mixture was allowed to stir for one hour. The solvent was removed in vacuo and the residue partitioned between EtOAc (50 mL) and sat. NaHCO₃ (50 mL). The organic layer was washed with sat. aq. NaCl, dried (MgSO₄) and concentrated to an oil. The oil was purified by flash chromatography to provide 70 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 LSIMS = 484 (mass calculated for C₂₆H₃₃N₃O₆ = 483.57).

Example 147

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Benzoyl)aminophenyl)ethylamide. Following the procedure described in Example 146, treatment of L-proline, 1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl] 2-(4-aminophenyl)ethylamide (100 mg, 0.23 mmol) with benzoyl chloride (0.039 mL, 0.34 mmol) provided 67 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f = 0.35 (EtOAc)
 LSIMS = 546 (mass calculated for C₃₁H₃₅N₃O₆ = 545.64).

Example 148

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-carboallyloxy)aminophenyl)ethylamide. Following the procedure described in example 146, treatment of L-proline, 1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl] 2-(4-aminophenyl)ethylamide (100 mg, 0.23 mmol) with allyl chloroformate (0.036 mL, 0.34 mmol) provided 90 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f = 0.42 (EtOAc)
 LSIMS = 526 (mass calculated for C₂₈H₃₅N₃O₇ = 525.61).

Example 149

L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Carbobenzyl oxy)aminophenyl)ethylamide. Following the procedure described in Example 146, treatment of L-proline, 1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl] 2-(4-aminophenyl)ethylamide (80 mg, 0.18 mmol) with benzyl chloroformate (0.039 mL, 0.27 mmol) provided 72 mg of the title compound as a foam. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.
 R_f = 0.42 (EtOAc)
 LSIMS = 577 (mass calculated for C₃₂H₃₇N₃O₇ = 575.67).

Example 150 (Not within the scope of the claims)

50 **L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Hydrochloride.**

a) **N-Carbo-*tert*-butoxy-L-homoproline 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester.** To an oven-dried round bottomed flask was added N-carboterbutoxy-L-pipecolic acid (500 mg, 2.2 mmol), 1.0 eq benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (966 mg, 2.2 mmol), 3-(4-(N-carboallyloxy)aminophenyl)-propanol (514 mg, 2.2 mmol) and anhydrous dichloromethane (20 mL). The solution was cooled to 0 °C and treated with triethylamin (0.92 mL, 6.6 mmol, 3.0 q). After stirring for 3 hours at 0 °C, the reaction mixture was diluted with dichloromethane (100 mL), washed with 5% citric acid (100 mL), sat. NaHCO₃ (100 mL), sat. aq. NaCl (100 mL), and dried (MgSO₄). The solution was concentrated in vacuo, and purified by flash chromatography to provide

740 mg of the title compound. This material was used directly for the next reaction.

5 b) L-Homoproline 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Trifluoroacetate Salt. This material from example 150a was dissolved in ether (20 mL) and treated with trifluoroacetic acid (2 mL) and allowed to stir at 22 °C for 17 hours. The solvent was removed in vacuo and the residue triturated three times with ether and dried to provide 220 mg of L-homoproline 3-(4-(N-carboallyloxy)aminophenyl)propyl ester as the trifluoroacetic acid salt. This compound was used directly for the next reaction.

10 c) L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Hydrochloride. In an oven-dried flask, was added L-homoproline 3-(4-(N-carboallyloxy)aminophenyl)-propyl ester as the trifluoroacetic acid salt (200 mg), 3,4,5-trimethoxyphenyl-2-bromoacetophenone, and THF (20 mL). The slurry was treated with triethylamine (0.3 mL, 2.2 mmol, 5 eq) and heated to reflux for 4 hours. The solvent was removed in vacuo and the residue was taken up in EtOAc (100 mL) and washed with sat. NaHCO₃ (100 mL), sat. aq. NaCl (100 mL), dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash chromatography to provide the free amine (*R*_f = 0.44; 30% EtOAc in hexane) which was treated with HCl in ether and dried in vacuo to provide 60 mg of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

15 LSIMS [M-HCl] = 555 (mass calculated for C₃₀H₃₈N₂O₈ + HCl = 591.10).

20 Example 151 (Not within the scope of the claims)

25

30

L-Proline, 1-[2-Adamantan-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy) aminophenyl)propyl Ester Hydrochloride.

35 a) N-Carbo-tert-butoxy-L-proline 3-(4-(N-Carboallyloxy)aminophenyl)-propyl ester. Following the procedure described in Example 150a, the coupling of N-Carbo-tert-butoxy-L-proline (457 mg, 2.1 mmol) and 3-(4-(N-carboallyloxy)aminophenyl)propanol (500 mg, 2.1 mmol) provided 580 mg of the Boc-protected intermediate.

40 b) This intermediate from Example 151a was deprotected with 1 N HCl in ether (20 mL) and the mixture was allowed to stir for 17 hours at 22 °C. The solution was concentrated in vacuo to provide 490 mg of the corresponding hydrochloride salt.

45 c) L-Proline, 1-[2-Adamantan-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy) aminophenyl)propyl Ester Hydrochloride. A portion of the hydrochloride salt (195 mg, 0.53 mmol) was treated with 1-adamantyl α-bromomethyl ketone (272 mg, 1.06 mmol), using the procedure described in Example 150c. This provided the free amine which was treated with HCl in ether and dried in vacuo to provide 90 mg of the title compound as a solid. The 300 MHz, ¹H NMR analysis of this compound was consistent with the structure.

*R*_f = 0.38 (for free base: 50% EtOAc in hexane).

LSIMS [M-HCl] = 509 (mass calculated for C₃₀H₄₀N₂O₅ + HCl = 545.12).

50

55

Example 152 (Not within the scope of the claims)

5

10

15 **L-Homoproline, 1-[2-Adamant-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Hydrochloride.** Following the procedure described in Example 150c, 3-(4-(N-carboallyloxy) aminophenyl)propyl piperolate, trifluoroacetic acid salt (220 mg, 0.48 mmol) and 1-adamantyl α -bromomethyl ketone (250 mg, 0.97 mmol) provided the amine which was treated with HCl in ether to provide 40 mg of the title compound as a powder. The 300 MHz, ^1H NMR analysis of this compound was consistent with the structure.

20 LSIMS [M-Cl] = 523 (mass calculated for $\text{C}_{31}\text{H}_{42}\text{N}_2\text{O}_5 + \text{HCl} = 559.15$).

The immunosuppressive properties of the present compounds were evaluated in the following assays:

1) Inhibition of PPIase Activity

25 This assay follows in principle the procedure described in Kofron et al., 1991, Biochemistry 30:6127. The three main reagents used are PPIase, a substrate for PPIase, and a selected inhibitor compound of the present invention. The basic principle behind this assay is the conversion of the cis isomer of the substrate to the trans form, which conversion is catalyzed by PPIase. Essentially, inhibition of this PPIase activity is measured for the selected compounds. A peptide chymotrypsin substrate containing a proline in the P2 position is only cleaved by chymotrypsin when the Phe-Pro bond is in the trans isomeric configuration. In the presence of excess chymotrypsin, all of the trans peptide isomers are cleaved within approximately five seconds, leaving only cis forms.

30 The cis peptide will spontaneously convert to the trans isomer at a slow rate. The cis to trans conversion is catalyzed by isomerase at a much faster rate than this spontaneous conversion. Proteins with PPIase activity are examples of such isomerase. After isomerization, the peptide is cleaved by chymotrypsin releasing p-nitroaniline which can be monitored at 390 nm. The rate of release is then calculated using a first order rate plus offset equation utilizing the ENZFITTER program (Leatherbarrow, BIOSOFT, Cambridge, United Kingdom).

Example 153

PPIase Inhibition Assay

40 In a plastic cuvette are added 950 μl of ice cold assay buffer (25 mM HEPES, pH 7.8, 100 mM NaCl), 10 μl of FKBP (2.5 μM in 10 mM Tris-Cl pH 7.5, 100 mM NaCl, 1 mM dithiothreitol), 25 μl of chymotrypsin (50 mg/ml in 1 mM HCl) and 10 μl of the test compound at various concentrations in dimethyl sulphoxide. The reaction is initiated by addition of 5 μl of substrate (Succinyl-Ala-Phe-Pro-Phe-para-nitroanilide, 5 mg/ml in 235 mM LiCl in trifluoroethanol).

45 The absorbance at 390 nm versus time is monitored for 90 sec using a Beckman DU70 spectrophotometer. The absorbance versus time data files are transferred to an IBM XT computer and the rate constants determined using the commercial Enzfitter program. For each set of data, the uncatalyzed rate of conversion is measured and the uninhibited enzymatic rate determined. The data are expressed as % Inhibition and are calculated as follows:

50

55

$$\% \text{ Inhibition} = \left[1 - \frac{(k_{\text{obs}} - k_{\text{uncat}})}{(k_{\text{uninh}} - k_{\text{uncat}})} \right] \times 100$$

where k_{obs} is the rate in the presence of a selected test compound, k_{uncat} is the rate in the absence of enzyme, and k_{uninh} is the rate in the presence of enzyme and absence of inhibitor. Data are plotted as percent inhibition versus

concentration of inhibitor. The values of the concentration of inhibitor required for 50% inhibition of enzyme activity (IC_{50}) were determined by nonlinear least squares regression analysis.

TABLE I

Example No.	$(IC_{50}) \mu M$	Example No.	$(IC_{50}) \mu M$
Example 1	2.2	Example 41	<5
Example 2	<50	Example 42	<5
Example 3	2.7	Example 43	ND
Example 4	3.4	Example 44	50
Example 5	<50	Example 45	>50
Example 6	<50	Example 46	<50
Example 7	50	Example 47	>50
Example 8	5.8	Example 48	>50
Example 9	<50	Example 49	5.1
Example 10	<50	Example 50	1.2
Example 11	<50	Example 51	0.22
Example 12	>50	Example 52	2.3
Example 13	<50	Example 53	0.71
Example 14	<50	Example 54	0.4
Example 15	<50	Example 55	<5
Example 16	<50	Example 56	1.3
Example 17	<50	Example 57	0.3
Example 18	>50	Example 58	<5
Example 19	<50	Example 59	0.1
Example 20	0.06	Example 60	0.1
Example 21	0.99	Example 61	0.71
Example 22	<50	Example 62	0.4
Example 23	12	Example 63	0.2
Example 24	<50	Example 64	0.64
Example 25	<50	Example 65	>5
Example 26	<50	Example 66	<5
Example 27	<5	Example 67	<5
Example 28	<5	Example 68	<5
Example 29	5	Example 69	<5
Example 30	<5	Example 70	>5
Example 31	>5	Example 71	<5
Example 32	2.2	Example 72	>5
Example 33	>50	Example 73	>5
Example 34	n.d.	Example 74	>5
Example 35	15	Example 75	>5
Example 36	<5	Example 76	<5
Example 37	<5	Example 77	>5
Example 38	>5	Example 78	3.2
Example 39	<5	Example 79	<5
Example 40	<5	Example 80	0.88

where ND means "not determined"

TABLE I (Contd.)

Example No.	(IC ₅₀) μM	Example No.	(IC ₅₀) μM
Example 81	>5	Example 117	>5
Example 82	<5	Example 118	>5
Example 83	0.12	Example 119	>5
Example 84	<5	Example 120	>5
Example 85	<5	Example 121	>5
Example 86	0.6	Example 122	>5
Example 87	1.2	Example 123	>5
Example 88	<5	Example 124	>5
Example 89	<5	Example 125	>5
Example 90	<5	Example 126	>5
Example 91	5	Example 127	>5
Example 92	>5	Example 128	>5
Example 93	<5	Example 129	>5
Example 94	5	Example 130	>5
Example 95	<5	Example 131	>5
Example 96	<5	Example 132	>5
Example 97	<5	Example 133	>5
Example 98	<5	Example 134	>5
Example 99	<5	Example 135	>5
Example 100	<5	Example 136	>5
Example 101	<5	Example 137	ND
Example 102	<5	Example 138	>5
Example 103	<5	Example 139	>5
Example 104	<5	Example 140	>5
Example 105	<5	Example 141	>5
Example 106	<5	Example 142	>5
Example 107	>5	Example 143	>5
Example 108	<5	Example 144	>5
Example 109	<5	Example 145	ND
Example 110	ND	Example 146	>5
Example 111	>5	Example 147	>5
Example 112	>5	Example 148	>5
Example 113	>5	Example 149	>5
Example 114	>5	Example 150	>5
Example 115	>5	Example 151	>5
Example 116	>5	Example 152	>5

where ND means "not determined"

50

Results: The results of the compound testing are presented in TABLE 1, above. As stated previously, it was not initially apparent whether or not inhibition of PPIase activity was necessary and sufficient for immunosuppression. Presently, the prevailing thought is that binding to the PPIase enzyme may be necessary but is not sufficient. Therefore, the data on PPIase inhibition may be viewed as an assay to detect whether or not a given compound is capable of interacting productively with FKBP.

55

2) Human T Lymphocyte Inhibition

Inhibition of mitogen-induced T-cell proliferation can be used to profile immunosuppressive activity of test compounds. In the description of the assay which follows, mitogen-induced T-cell proliferation was used to test the inhibitory potencies of select compounds of the present invention.

In an assay similar to that described by Bradley in Mishell et al. (Eds.), 1980, Selected Methods in Cellular Immunology, pp 156-161, W.H. Freeman & Co., San Francisco, CA., T-cells were stimulated by incubation with phytohemagglutinin (PHA) which binds to cell surface molecules, including the T-cell receptor. This stimulation results in proliferation which can be measured by incorporation of [³H]-thymidine into cellular DNA.

The immunosuppressive properties of the compounds of the present invention can be determined by adding various concentrations of the compounds to these cultures and measuring the effect on T-cell proliferation.

Example 15415 **Suppression of Human T-Cell Proliferation Assay**

Fresh LeukoPaks were obtained from the New York Blood Center, New York, NY. The cells, including erythrocytes and leukocytes, were diluted with Hank's Balanced Salt Solution (HBSS) (GIBCO, Grand Island, NY) and layered over Lymphoprep (Nycomed Pharma AS, Oslo, Norway) in sterile 50 ml conical centrifuge tubes. Lymphocytes were isolated at the Hank's/Nycomed interface after centrifugation at 2000 X g, 4 oC for 15 min. The lymphocytes were washed with Minimal Essential Medium (GIBCO) containing 2% fetal bovine serum (FBS) (Sigma Chemical Co., St. Louis, MO), 1% HEPES buffer (GIBCO) and 1% Penicillin-Streptomycin solution (GIBCO).

T-cells were further purified essentially by sheep erythrocyte (SRBC) rosetting as described by Morimoto et al., 1983, J. Immunol. 130:157. The isolated lymphocytes were adjusted to 2×10^7 cells/ml and 5 ml aliquots of the cell suspension were incubated for 10 minutes at room temperature with 5 ml of a 5% SRBC (Cappel, Organon Technika Corp., West Chester, PA) suspension. The cells were gently pelleted by centrifugation at 300 rpm for 10 minutes, followed by a 1 hour incubation at room temperature to allow rosette formation. The cells were gently resuspended, layered over Lymphoprep and centrifuged for 30 minutes at 500 X g. The pellet, containing rosetted T-cells and SRBC was treated with ice cold buffered ammonium chloride (GIBCO) to lyse the erythrocytes. T-cells were washed twice with HBSS.

Purified T-cells were resuspended at 2×10^6 cells /ml in complete culture medium composed of RPMI-1640 (Whittaker Bioproducts, Walkerville, MD) with 10% FBS (Sigma), 2 mM L-glutamine (GIBCO), 1% Penicillin-Streptomycin (GIBCO) and 15 mM HEPES (GIBCO). In 96-well plates (Becton Dickinson, Lincoln Park, NJ), 0.1 ml aliquots of T-cell suspension were mixed with 0.05 ml of 40 µg/ml PHA-M (Sigma). The compounds of this invention were dissolved in dimethylsulfoxide at 10 mM and various dilutions in complete medium were added in duplicate wells (0.05 ml/well). The plates were incubated at 37 °C in a humidified atmosphere of 5% carbon dioxide and 95% air for 72 hours.

Proliferation was assessed by measurement of [³H]-thymidine incorporation. During the last 6 hours of incubation, the cells were pulse labelled with 1µCi/well of [³H]-thymidine (New England Nuclear, Boston, MA). The cells were harvested onto glass fiber paper using a plate harvester and the radioactivity incorporated into cellular DNA corresponding to individual wells was measured by standard liquid scintillation counting methods. The mean counts per minute (CPM) of replicate wells was calculated and linear regression analysis of mean CPM versus compound concentration was used to determine the concentration of compound which would inhibit [³H]-thymidine incorporation of T-cells by 50% (IC₅₀).

The results of this assay, presented in Table 2, are representative of the intrinsic immunosuppressive activity of the compounds of the present invention. Thus, concentrations less than 10 µM of some of the preferred compounds suppress the T-cell proliferative response by 50%.

TABLE 2

Example No.	(IC ₅₀) μM
Example 1	ND
Example 2	ND
Example 3	<50
Example 4	50
Example 5	50
Example 6	<50
Example 7	34
Example 8	35
Example 9	>50
Example 10	>50
Example 11	17
Example 12	>50
Example 13	>50
Example 14	6
Example 15	18
Example 16	<11
Example 17	34
Example 18	42
Example 19	62
Example 20	12
Example 21	63
Example 22	58
Example 23	20
Example 24	ND
Example 25	ND
Example 26	ND
Example 27	32
Example 28	41
Example 29	42
Example 30	40
Example 31	43
Example 32	20
Example 33	>100
Example 34	ND
Example 35	6
Example 36	17
Example 37	6
Example 38	7
Example 39	16
Example 40	12

Example No.	(IC ₅₀) μM
Example 41	20
Example 42	13
Example 43	ND
Example 44	ND
Example 45	ND
Example 46	>50
Example 47	16
Example 48	ND
Example 49	13
Example 50	8
Example 51	8
Example 52	7
Example 53	10
Example 54	16
Example 55	17
Example 56	4
Example 57	6
Example 58	7
Example 59	8
Example 60	3
Example 61	19
Example 62	16
Example 63	8
Example 64	7
Example 65	>50
Example 66	ND
Example 67	>50
Example 68	<50
Example 69	37
Example 70	>50
Example 71	28
Example 72	100
Example 73	ND
Example 74	ND
Example 75	ND
Example 76	20
Example 77	7
Example 78	>100
Example 79	-- 22
Example 80	22

where ND means "not determined"

TABLE 2 (Contd.)

Example No.	(IC ₅₀) μM
Example 81	8
Example 82	16
Example 83	8
Example 84	6
Example 85	4
Example 86	6
Example 87	6
Example 88	8
Example 89	12
Example 90	7
Example 91	>15
Example 92	>15
Example 93	>15
Example 94	>15
Example 95	>15
Example 96	>15
Example 97	>15
Example 98	>15
Example 99	1
Example 100	>15
Example 101	5
Example 102	6
Example 103	7
Example 104	7
Example 105	8
Example 106	7
Example 107	7
Example 108	6
Example 109	>15
Example 110	ND
Example 111	7
Example 112	7
Example 113	8
Example 114	10
Example 115	>15
Example 116	>15

Example No.	(IC ₅₀) μM
Example 117	10
Example 118	>15
Example 119	4
Example 120	10
Example 121	4
Example 122	22
Example 123	24
Example 124	22
Example 125	19
Example 126	14
Example 127	7
Example 128	16
Example 129	18
Example 130	4
Example 131	10
Example 132	7
Example 133	12
Example 134	3
Example 135	19
Example 136	4
Example 137	ND
Example 138	>15
Example 139	8
Example 140	>15
Example 141	>15
Example 142	>15
Example 143	4
Example 144	8
Example 145	>15
Example 146	13
Example 147	9
Example 148	6
Example 149	5
Example 150	10
Example 151	>15
Example 152	9

where ND means "not determined"

50

3) NF-AT Assay

Stimulation of T-cells leads to the appearance of several transcription factors, including one designated "NF-AT". These factors are involved in regulation of gene expression required for immunologic activation. Some of these transcription factors appear to have functions in a wide variety of cell types. By contrast, NF-AT is found primarily in T-cells and its role is restricted to early gene activation. In addition, NF-AT activity is inhibited by the immunosuppressant drugs, Cyclosporin A and FK506 (Schreiber and Crabtree, 1992, Immunology Today 13:136).

Inhibition of NF-AT activity is measured using FGL-5 cells. FGL-5 is a cloned line of stably transfected Jurkat T-

5 cells that contain a construct in which three tandem copies of the NF-AT DNA binding site direct transcription of the lacZ gene, encoding β -galactosidase (Fiering et al., 1990, Genes & Development 4:1823). When these cells are stimulated with phorbol esters which activate protein kinase C and calcium ionophore to raise the intracellular calcium concentration, transcriptionally active NF-AT is produced. In T-cells, this normally leads to the expression of IL-2, T-cell growth factor. However, in FGL-S cells NF-AT activation leads to the production of β -galactosidase which can be detected using an appropriate substrate.

10 FGL-5 cells were cultured with phorbol ester, calcium ionophore and the compounds of the present invention to measure inhibition of β -galactosidase activity, as shown below.

15 **Example 155**

NF-AT Inhibition Assay Directed β -Galactosidase Expression

This assay was performed essentially as described (Bierer et al., 1990, Proc. Natl. Acad. Sci. 87:9231). FGL-5 15 cells were maintained in medium consisting of RPMI-1640 with 10% FBS, 2 mM L-glutamine, 1% Penicillin-Streptomycin and 15 mM HEPES buffer. The assays were done with exponentially growing cells whose density was not greater than 0.5 million cells/ml. The cells were resuspended to 3 million cells/ml in medium and 0.1 ml was added to wells of a 96-well plate.

The compounds of the present invention were dissolved in either ethanol or dimethylsulfoxide at 10 mM and 0.05 20 ml/well of various dilutions in medium were added to cells in duplicate wells. Treatment controls consisted of duplicate wells to which 0.05 ml/well of either medium, ethanol or dimethylsulfoxide was added. The ethanol and dimethyl sulfoxide were at the same concentration as was used for the compounds. Cells were incubated with compounds at room temperature for 10 - 15 minutes. Phorbol dibutyrate (Sigma) and Ionomycin (Calbiochem) were dissolved at 50 μ g/ml and 2 mM, respectively and stored at -70 °C.

25 FGL-5 cells were stimulated by diluting these reagents with medium to 200 ng/ml and 8 μ M, respectively and adding of 0.05 ml/well. For unstimulated cell controls, 0.05 ml/well of medium was added to duplicate wells. The plates were incubated overnight (16-18 hours) at 37 °C in a humidified atmosphere of 5% CO₂ and air.

30 β -galactosidase activity was measured as the fluorescence generated by the cleavage of 4-methyl umbelliferyl- β -D-galactoside (Sigma) at the β -galactoside bond. After overnight incubation, the cells were centrifuged at 500 x g for 3 minutes in the 96-well plates and washed 3 times with PBS. The cells were then resuspended in 0.18 ml/well of reaction medium containing 100 mM sodium phosphate buffer, pH 7.0, 10 mM potassium chloride, 1 mM magnesium sulfate, 0.1% Triton X-100 (Pierce, Rockford, IL), and 0.5 mM 4-methylumbelliferyl- β -D- galactoside.

35 The fluorescence at 460 nm using 355 nm excitation was measured at intervals over 1-2 hours (during which fluorescence increased linearly with time) with a LS50 Luminescence Spectrometer (Perkin Elmer).

The percent inhibition by each concentration of the compounds was calculated as:

$$\% \text{ Inhibition} = \frac{1 - (\text{fluorescence with compound} - \text{unstimulated control})}{(\text{fluorescence with solvent alone} - \text{unstimulated control})} \times 100$$

40 The values of the concentration of compounds required for 50% inhibition (IC₅₀) were determined by linear regression analysis of the percent inhibition at various compound concentrations.

45 The results of this assay presented in TABLE 3 are representative of the intrinsic immunosuppressive activity of the compounds of the present invention. Compounds that inhibited NF-AT directed β -galactosidase expression by stimulated FGL-5 cells with IC₅₀ of 10 μ M or less also inhibited mitogen induced T-cell proliferation.

TABLE 3

Example No.	(IC ₅₀) μM
Example 1	ND
Example 2	ND
Example 3	ND
Example 4	ND
Example 5	ND
Example 6	ND
Example 7	ND
Example 8	ND
Example 9	ND
Example 10	ND
Example 11	ND
Example 12	ND
Example 13	ND
Example 14	ND
Example 15	ND
Example 16	ND
Example 17	ND
Example 18	ND
Example 19	ND
Example 20	ND
Example 21	ND
Example 22	ND
Example 23	ND
Example 24	ND
Example 25	ND
Example 26	ND
Example 27	ND
Example 28	ND
Example 29	ND
Example 30	ND
Example 31	ND
Example 32	13
Example 33	>100
Example 34	ND
Example 35	41
Example 36	19
Example 37	13
Example 38	22
Example 39	14
Example 40	24

Example No.	(IC ₅₀) μM
Example 41	>33
Example 42	15
Example 43	ND
Example 44	ND
Example 45	ND
Example 46	ND
Example 47	ND
Example 48	ND
Example 49	44
Example 50	73
Example 51	>100
Example 52	20
Example 53	>100
Example 54	18
Example 55	>100
Example 56	13
Example 57	20
Example 58	16
Example 59	17
Example 60	57
Example 61	>100
Example 62	60
Example 63	16
Example 64	16
Example 65	ND
Example 66	ND
Example 67	ND
Example 68	ND
Example 69	ND
Example 70	ND
Example 71	ND
Example 72	ND
Example 73	ND
Example 74	ND
Example 75	ND
Example 76	ND
Example 77	12
Example 78	>100
Example 79	13
Example 80	13

where ND means "not determined"

TABLE 3 (Contd.)

Example No.	(IC ₅₀) μM
Example 81	6
Example 82	13
Example 83	5
Example 84	>100
Example 85	26
Example 86	6
Example 87	6
Example 88	8
Example 89	12
Example 90	7
Example 91	>15
Example 92	>15
Example 93	>15
Example 94	>15
Example 95	>15
Example 96	>15
Example 97	>15
Example 98	>15
Example 99	1
Example 100	>15
Example 101	5
Example 102	6
Example 103	7
Example 104	7
Example 105	8
Example 106	7
Example 107	7
Example 108	6
Example 109	>15
Example 110	ND
Example 111	7
Example 112	7
Example 113	8
Example 114	10
Example 115	>15
Example 116	>15
Example 117	10
Example 118	>15
Example 119	4
Example 120	>15
Example 121	>15
Example 122	>33
Example 123	>33
Example 124	>33
Example 125	>33
Example 126	>33
Example 127	>33
Example 128	>33
Example 129	>33
Example 130	>33
Example 131	>33
Example 132	>33
Example 133	>33
Example 134	>33
Example 135	>33
Example 136	>33
Example 137	ND
Example 138	>15
Example 139	>15
Example 140	>15
Example 141	>15
Example 142	>15
Example 143	>15
Example 144	>15
Example 145	>15
Example 146	>15
Example 147	>15
Example 148	>15
Example 149	>15
Example 150	3
Example 151	>15
Example 152	>15

where ND means "not determined"

4) Graft versus Host Assay

Inhibition of the graft versus host response (hereinafter "GVHR") by the compounds of the present invention is another means to demonstrate their immunosuppressive activity. Transfer of parental strain T-cells (the graft) into F1 hybrid animals (the host) different with respect to gene products of the major histocompatibility complex (MHC) causes a GVHR. This reaction results from recognition of host allogeneic MHC gene products by specific clones of graft T-cells.

When given systemically in sufficient numbers, the graft T-cells cause a progressive, generally fatal, wasting syndrome. A local, nonfatal GVHR, marked by enlargement of the draining popliteal lymph nodes, ensues when graft T-cells are administered via the footpad as described by Ford et al., 1970, Transplantation 10:258. The GVHR is regarded as a correlate of allograft rejections where specific T-cells of either host or allograft origin are activated after recognition of allogeneic MHC gene product, leading to an immune inflammatory response which ultimately results in the destruction (rejection) of the allograft.

Example 156

10 Mouse Lymph Node Assay for Modulation of Graft versus Host Response

Single cell suspensions in phosphate buffered saline (PBS) were prepared from the spleens of BDF1 and C57B1/6 mice (Jackson Labs, Bar Harbor, ME). The cells were pelleted by centrifugation at 500 X g for 5 minutes and the pellet resuspended in 0.9 ml distilled water to lyse erythrocytes. After 5 seconds, 0.1 ml 10X concentrated PBS was added, resulting in an isotonic solution. The cells were washed with PBS and resuspended at 2×10^8 cells/ml. 1×10^7 cells in 0.05 ml PBS were injected subcutaneously into the hind footpads (BDF1 cells in one footpad, C57B1/6 cells in the other). The test compounds were dissolved in ethanol, mixed with olive oil (1:7, ethanol:olive oil). Some mice received intraperitoneal injections (0.2 ml/injection) of either ethanol:olive oil alone (vehicle control group) or compound at 100 mg/kg per day, beginning on the same day as the spleen cell injections.

20 After 7 days, the draining popliteal lymph nodes from the hind limbs were dissected out and weighed. The magnitude of the GVHR was expressed as the ratio of the mean weight of lymph nodes from the limb injected with semi-allogeneic C57B1/6 cells divided by the mean weight of lymph nodes from the limb injected with syngeneic BDF1 cells.

The results presented in TABLE 4 show that a representative compound of this invention which is a potent inhibitor of both FKBP activity and mitogen-induced T-cell proliferation also inhibited the localized GVHR. Thus, for the untreated or vehicle control groups, the mean lymph node weights from BDF1-sensitized limbs were 2.2 - 3.1 times that of C57B1/6-sensitized limbs. By contrast, in mice treated with the test compound, virtually no GVHR was detected (ratio=1.2). For comparison, in this example a group of mice was treated with 100 mg/kg/day of cyclosporin A (Sandoz Ltd., Basel, Switzerland). Cyclosporin A also inhibited the GVHR (ratio=1.6).

30

TABLE 4

Treatment	Lymph Node Weight Ratio
None	3.1
Vehicle alone	2.2
Compound of Example 16	1.2
Cyclosporin A	1.6

35

Claims

40

1. A compound of the following structure

45

50

55 wherein

R1 is

a) hydrogen,
 b) linear or branched alkyl (C1-C8) which may be substituted independently or simultaneously up to two times by

- 5 i) hydroxy,
 - ii) phenyl which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C6),
 - iii) cycloalkyl (C3-C10) which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C6),
 - 10 iv) bicycloalkyl (C6-C12) which may be substituted by straight or branched alkyl (C1-C10), or straight or branched alkoxy (C1-C6),
 - v) tricycloalkyl (C7-C14) which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C6),
 - 15 vi) tetracycloalkyl (C10-C14), which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C6), or
 - vii) morpholinyl,
- c) alkene (C3-C10), diene (C4-C10), or triene (C8-C18), which may be substituted independently or simultaneously up to three times by
- 20 i) phenyl,
 - ii) straight or branched alkyl (C1-C6), or
 - iii) straight or branched alkoxy (C1-C6),
- 25 d) cycloalkyl (C5-C10), or the cycloalkyl fragment

35 where

m is an integer of 0, 1, or 2,
 J, K, and L are independently or simultaneously

- 40 i) hydrogen,
 - ii) straight or branched alkyl (C1-C5), which may be substituted by phenyl, or straight or branched alkoxy (C1-C6),
 - iii) straight or branched alkoxy (C1-C5),
 - iii) phenyl, or
 - 45 iv) phenyl substituted by straight or branched alkyl (C1-C6), or chlorine, or straight or branched alkoxy (C1-C6),
- e) bicycloalkyl (C7-10), tricycloalkyl (C7-14), tetracycloalkyl (C10-C16), or pentacycloalkyl (C11-C20), which may be independently or simultaneously substituted up to 3 times with straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C6), or phenyl,
- f) the aryl derivatives tetrahydronaphthyl, benzothienyl, benzofuryl, benzopyranyl, furyl, pyridyl, pyranyl, 1,3-oxazolyl, or naphthyl, said aryl derivatives may be independently or simultaneously substituted up to two times by
- 55 i) straight or branched alkyl (C1-C6),
 - ii) straight or branched alkoxy (C1-C6),
 - iii) halogen, where halogen is fluoro, chloro, bromo, or iodine,

g) the piperonyl fragment

5

10

where

15

z is an integer of 1, or 2,
and E^1 , E^2 , and E^3 can independently or simultaneously be hydrogen, straight or branched alkyl (C1-C6), straight or branched alkoxy (C1-C6), or chlorine, or

20

h) the aryl derivative

25

where

30

U, V, and W can be independently or simultaneously

35

- i) hydrogen,
- ii) straight or branched alkyl (C1-C6), straight or branched alkoxy (C1-C6), phenyl, or phenoxy, these groups may be substituted by phenyl, straight or branched alkoxy (C1-C6), or phenoxy,
- iii) hydroxy,
- iv) halogen,
- v) nitro, or
- vi) benzoyl;

40

Y is a covalent bond, oxygen, NR^7 , where R^7 is hydrogen,
in addition,
 R^1-Y may also be

45

50

where

55

k is an integer of 1 or 2,
 R^8 is

- a) hydrogen,
- b) carboalkoxy with a straight or branched alkoxy (C1-C6),
- c) straight or branched alkyl (C1-C6) which may be substituted by phenyl, or straight or branched

- alkoxy (C1-C6),
d) phenyl, or phenyl substituted by halogen,

5 R⁹ is phenyl which may be substituted by straight or branched alkyl (C1-C6);
R² and R³ are defined as follows: one of R² and R³ are hydrogen, and the other is hydrogen or straight
or branched alkyl (C1-C6);

n is an integer of 2 or 3;

A is NR¹⁰, where R¹⁰ is hydrogen or straight or branched alkyl (C1-C6);

R⁴ and R⁵ may independently or simultaneously, be

- 10 a) hydrogen,
b) straight or branched alkyl (C1-C8) which may be substituted by

15 i) phenyl, or phenyl substituted by hydroxy or alkoxy (C1-C2),
ii) cycloalkyl (C5-C6).

iii) alkylthio (C1-C6),

iv) carboxamido,

v) straight or branched alkoxy (C1-C6) which may be substituted by phenyl,

- 20 c) phenyl, or
d) cycloalkyl (C3-C7), which may be substituted by straight or branched alkyl (C1-C6),

in addition, R⁴ and R⁵, taken together can be

25 -(CH₂)_r-

where

30 r is an integer of 4 or 5;

G is one of the following fragments

35 -HC=CH-, -CH₂-CH₂-, or -CH₂-

or the following fragment

40

45 where R¹² is hydrogen or methyl, such that the carbonyl group is attached to the carbon bearing R⁴ and R⁵
and that NR¹² is connected to R⁶;

p is an integer of 0 or 1;

R⁶ is

- 50 a) hydrogen,
b) straight or branched alkyl (C1-C6) which may be substituted by

55 i) phenyl,

ii) phenyl substituted with straight or branched alkyl (C1-C6), straight or branched alkoxy (C1-C6), or
iii) pyridyl, or

c) phenyl, naphthyl, furyl, thifuryl, cycloalkyl (C5-C8), bicycloalkyl (C6-C10), tricycloalkyl (C7-C12), tetra-
acycloalkyl (C10-C16), pentacycloalkyl (C11-C20) or benzoyl, such groups may be substituted by

- 5 i) an amine,
 ii) amino substituted by a straight or branched alkoxy carbonyl (C1-C6) that may be substituted by phenyl or an alkene (C2-C6),
 iii) amino substituted by alkanoyl (C1-C6), or benzoyl,
 iv) sulfonamide (-SO₂NH₂), or
 v) hydroxy, or a straight or branched alkoxy (C1-C6), that may be substituted by phenyl;

and pharmaceutically acceptable salts thereof.

10 2. A compound of formula (I) according to claim 1

wherein

25 R¹ is

- a) hydrogen,
 b) linear or branched alkyl (C1-C6) which may be substituted

- 30 i) once by hydroxy,
 ii) once by phenyl which may be substituted by straight or branched alkyl (C1-C4), or straight or branched alkoxy (C1-C6),
 iii) once by cycloalkyl (C3-C8) which may be substituted by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
 iv) once by bicycloalkyl (C6-C10) which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C4),
 v) once by tricycloalkyl (C7-C12) which may be substituted by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
 vi) once by tetracycloalkyl (C10-C12), which may be substituted by straight or branched alkyl (C1-C8), or straight or branched alkoxy (C1-C4),
 vii) up to two times by phenyl and cycloalkyl (C5-C7), or
 viii) up to two times by phenyl and morpholinyl,
- 40 c) alkene (C3-C8), which may be substituted by phenyl, straight or branched alkyl (C1-C4), or straight or branched alkoxy (C1-C4),
 d) diene (C4-C7) substituted by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),
 e) triene (C10-C16) substituted up to three times by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4), or
 f) cycloalkyl (C5-C10), or the cycloalkyl fragment
- 45
- 50

55

where

m is an integer of 0, 1, or 2,

J, K, and L are independently or simultaneously

5

i) hydrogen,

ii) straight or branched alkyl (C1-C5), which may be substituted by phenyl, or straight or branched alkoxy (C1-C4),

iii) phenyl, or

10

iv) phenyl substituted by straight or branched alkyl (C1-C4), or chlorine, or straight or branched alkoxy (C1-C4),

15

g) bicycloalkyl (C7-10) which may be substituted up to 3 times with straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),

h) tricycloalkyl (C7-14) which may be substituted up to 3 times with straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),

i) tetracycloalkyl (C10-C15) which may be substituted up to 3 times by straight or branched alkyl (C1-C6), or straight or branched alkoxy (C1-C4),

20

j) naphthyl derivatives, or the heteroaryl derivatives benzothienyl, benzofuryl, benzopyranyl, furyl, pyridyl, pyranyl, or 1,3-oxazolyl, said derivatives may be substituted up to two times by

25

i) straight or branched alkyl (C1-C6),

ii) halogen,

iii) or both:

k) 1,2,3,4-tetrahydronaphthyl,

l) the piperonyl fragment

30

35

where

40

z is an integer of 1, or 2,

and E¹, E², and E³ can be independently or simultaneously hydrogen, straight or branched alkyl (C1-C4), straight or branched alkoxy (C1-C4), or chlorine,

45

m) the aryl derivative

50

where

55

U, V, and W can be independently or simultaneously

i) hydrogen,

ii) straight or branched alkyl (C1-C4), which may be substituted by phenyl,

iii) straight or branched alkoxy (C1-C6), which may be substituted by phenyl, straight or branched alkoxy (C1-C4), or phenoxy,

iv) hydroxy,

v) phenyl,

vi) halogen,

vii) nitro.

viii) benzoyl, or

ix) phenoxy;

5

Y is a covalent bond, oxygen, NR⁷, where R⁷ is hydrogen,
in addition,

R¹-Y- may also be

15

20

where

k is an integer of 1, or 2,

R⁸ is

25

- a) hydrogen,
- b) carboalkoxy with a straight or branched alkoxy (C1-C4),
- c) straight or branched alkyl (C1-C4) which may be substituted by phenyl, or straight or branched alkoxy (C1-C4), or
- d) phenyl, or phenyl substituted by halogen,

30

R⁹ is phenyl which may be substituted by alkyl (C1-C4);

R² and R³ are defined as follows: one of R² and R³ are hydrogen, and the other is hydrogen or straight or branched alkyl (C1-C6);

35

n is an integer of 2 or 3;

A is NR¹⁰, where R¹⁰ is hydrogen or straight or branched alkyl (C1-C4);

R⁴ is

40

- a) hydrogen,
- b) straight or branched alkyl (C1-C6) which may be substituted by

i) phenyl, or phenyl substituted by hydroxy or methoxy,

ii) cycloalkyl (C5-C6),

iii) alkylthio (C1-C6),

iv) carboxamido, or

v) straight or branched alkoxy (C1-C6) which may be substituted by phenyl,

c) phenyl, or

d) cycloalkyl (C3-C7), which may be substituted by straight or branched alkyl (C1-C6);

50

R⁵ is hydrogen or straight or branched alkyl (C1-C4), and R⁴ and R⁵, taken together can be

-(CH₂)_r-

55

where r is an integer of 4 or 5;

G is one of the following fragments

-HC=CH-, -CH₂-CH₂- or -CH₂-

or the following fragment

5.

10

where the carbonyl group is attached to the carbon bearing R⁴ and R⁵ and NR¹²- is connected to R⁶, R¹² is hydrogen or methyl;

15

p is an integer of 0 or 1;
R⁶ is

20

a) hydrogen,
b) straight or branched alkyl (C1-C4) which may be substituted by

25

- i) phenyl,
- ii) phenyl substituted with straight or branched alkyl (C1-C4), straight or branched alkoxy (C1-C4), or
- iii) 2- or 4-pyridyl,

30

c) phenyl or naphthyl, which may be substituted by

- i) amine,
- ii) amino substituted by a straight or branched alkoxy carbonyl (C1-C6) that may be substituted by phenyl or an alkene (C2-C6),
- iii) amino substituted by alkanoyl (C1-C6), or benzoyl,
- iv) sulfonamide (-SO₂NH₂), or
- v) straight or branched alkoxy (C1-C6), that may be substituted by phenyl,

35

d) benzoyl,

e) furyl, or thiofuryl, or

f) cycloalkyl (C5-C8), bicycloalkyl (C6-C10), tricycloalkyl (C7-C12), or tetracycloalkyl (C10-C14);

40

and pharmaceutically acceptable salts thereof.

3. A compound of formula (I) according to claim 1

45

50

55

wherein

R1 is

- a) hydrogen,
 b) linear or branched alkyl (C1-C6) which may be substituted by
 i) hydroxy,
 ii) phenyl, or phenyl substituted by straight or branched alkyl (C1-C4),
 iii) cycloalkyl (C3-C8) which may be substituted by straight or branched alkyl (C1-C4),
 iv) bicycloalkyl (C6-C9) which may be substituted by straight or branched alkyl (C1-C6),
 v) tricycloalkyl (C7-C12) which may be substituted by straight or branched alkyl (C1-C4),
 vi) tetracycloalkyl (C10-C12), which may be substituted by straight or branched alkyl (C1-C6),
 vii) both phenyl and cycloalkyl (C5-C6), or
 viii) both phenyl and morpholinyl,
- c) alkene (C3-C6), which may be substituted by phenyl,
 d) diene (C5-C6) substituted by straight or branched alkyl (C1-C4),
 e) triene (C13-C16) substituted up to three times by straight or branched alkyl (C1-C4),
 f) cycloalkyl (C5-C6), or the cycloalkyl fragment

where

m is an integer of 0, 1, or 2,
 J, K, and L are independently or simultaneously,

- i) hydrogen,
 ii) straight or branched alkyl (C1-C5),
 iii) phenyl, or
 iv) phenyl substituted by straight or branched alkyl (C1-C4), or chlorine, or straight or branched alkoxy (C1-C4),
- g) bicycloalkyl (C7-8) which may be substituted up to 3 times with straight or branched alkyl (C1-C4),
 h) tricycloalkyl (C7-C12) which may be substituted up to 2 times with straight or branched alkyl (C1-C6),
 i) tetracycloalkyl (C10-C12), which may be substituted up to 3 times by straight or branched alkyl (C1-C4),
 j) 2-benzothienyl substituted independently or simultaneously at least twice by either
 i) straight or branched alkyl (C1-C3),
 ii) chlorine,
 iii) or both,
 k) 2-furyl,
 l) 2-pyridyl,
 m) 2-naphthyl,
 n) 1,2,3,4-tetrahydronaphthyl,
 o) 2-benzopyranyl,
 p) 2-benzofuryl,
 q) the piperonyl fragment

5

10

where

z is an integer of 1, or 2,
and E^1 , E^2 , and E^3 are hydrogen, or

15

r) the aryl derivative

20

25

where

U, V, and W can be independently or simultaneously

30

- i) hydrogen,
- ii) straight or branched alkyl (C1-C4),
- iii) straight or branched alkoxy (C1-C4),
- iv) alkoxy (C2) substituted by alkoxy (C2), or phenoxy,
- v) hydroxy,
- vi) phenyl,
- vii) fluorine,
- viii) chlorine,
- ix) bromine,
- x) nitro,
- xi) benzyloxy,
- xii) benzoyl,
- xiii) phenoxy;

35

Y is a covalent bond, oxygen, NR^7 , where R^7 is hydrogen;
in addition,

40

R^1-Y may also be

50

55

where

k is an integer of 1, or 2,
 R^8 is

- 5 a) hydrogen,
 b) carboalkoxy with alkoxy (C1-C2),
 c) straight or branched alkyl (C1-C4) which may be substituted by phenyl,
 d) phenyl.

R⁹ is phenyl;
 R² and R³ are defined as follows: one of R² and R³ is hydrogen, and the other is hydrogen or straight or branched alkyl (C1-C4);

n is an integer of 2 or 3:
 A is NR¹⁰, where R¹⁰ is hydrogen or methyl;

R⁴ is
 a) hydrogen,

b) straight or branched alkyl (C1-C4) which may be substituted by

i) phenyl,
 ii) cycloalkyl (C5-C6),
 iii) alkylthio (C1-C4),
 iv) carboxamido, or
 20 v) benzyloxy, or

c) phenyl;

R⁵ is hydrogen or straight or branched alkyl (C1-C4), and R⁴ and R⁵, taken together can be

where r is integer 5;
 G is one of the following fragments

35 or the following fragment

where the carbonyl group is attached to the carbon bearing R⁴ and R⁵ and NR¹² is connected to R⁶.
 R¹² is hydrogen or methyl;
 p is an integer of 0 or 1;
 R⁶ is

- 50 a) hydrogen,
 b) straight or branched alkyl (C1-C4) which may be substituted by
 i) phenyl,
 ii) phenyl substituted with alkoxy (C1-C2),
 iii) 2- or 4-pyridyl,
 55 c) phenyl which may be substituted by
 i) amino,
 ii) amino substituted by allyloxycarbonyl,

and pharmaceutically acceptable salts thereof.

- 15 4. A compound according to claims 1-3 selected from the group consisting of:

L-Isoleucine, N-[1-(2-Benzyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-Methoxy-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-Naphth-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-isoleucine, N-[1-(2-Biphenyl-4-yl)-2-Oxoethyl]-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-Methoxyphenyl)-2-Oxoethyl]-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(5-Chloro-3-Methyl-benzo[B]thiophene-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(trans,trans-Hexa-2,4-dienyl-1-oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Chlorophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Methylphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-Methyl-N-[1-(2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Homoproline] Benzylamide;
L-Phenylglycine, N-[1-(2-Phenyl-2-Oxoethyl)-L-Proline] Benzylamide;
L-Isoleucine, N-[1-(1-Methyl-2-Phenyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(3-Methoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(3,4-Dihydroxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-Methyl-N-[1-(2-Benzyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(Carbobenzylloxymethylene)-L-Homoproline] Benzylamide;
L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(Carbo-tert-Butoxymethylene)-L-Proline] Benzylamide;
L-Isoleucine, N-[1-(2-tert-Butyl-2-Oxoethyl)-L-Proline] Benzylamide;
L-Isoleucine, N[1-(2-(2,5-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(2,4-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(2-Nitrophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Nitrophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(3-Benzyl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(2,4-Dimethylphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Fluorophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Bromophenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2,4-Dichlorophenylcarbamoylmethyl)-L-Proline] Benzylamide;
L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Homoproline] Benzylamide;
L-Isoleucine, N-[1-(2-Furan-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-Pyrid-2-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(Adamant-1-ylcarbamoylmethyl)-L-Prolyl] Benzylamide; --
L-Isoleucine, N-[1-(2-(cis-Octahydro-pentalen-1-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-[2-(2,6,6-Trimethyl-Bicyclo[3.1.1]hept-3-yl)-2-Oxoethyl]-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(4-Pentylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
L-Isoleucine, N-[1-(2-(1,2,3,4-tetrahydro-Naphthalen-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
Isolucin , N-[1-(2-(1-Methyl-Cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
Isolucin , N-[1-(2-Oxo-2-Tricyclo[3.3.1.0^{3,7}]Non-3-yl-Ethyl)-L-Prolyl] Benzylamide ;
Isolucin , N-[1-(2-Oxo-3-(3-Methyl-Adamantan-1-yl)-Propyl)-L-Prolyl] Benzylamide;

L-Proline, 1-(2-Adamantan-1-yl-2-Oxoethyl) Benzyl Ester;
 L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] 1,2,3,4-Tetrahydroisoquinolinamide;
 L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzyl Ester;
 L-Isoleucine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] tert-Butylamide;
 5 L-Phenylalanine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Methionine, N-[1-(2-(Biphenyl-4-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 Glycine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Valine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 10 L-Leucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Phenylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Norvaline, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Norleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Asparagine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 15 L-Serine-(O-Benzyl Ether), N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L- β -Phenylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Cyclohexylalanine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] alpha-(S)-methylbenzylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] alpha-(R)-methylbenzylamide;
 20 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Pyridin-4-ylmethylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] Pyridin-2-ylmethylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] 4-methoxybenzylamide;
 L-Isoleucine, N-[1-(2-Adamantan-1-yl-2-Oxoethyl)-L-Prolyl] 2-methoxybenzylamide;
 L-Isoleucine, N-[1-(Carboxymethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-[N-(Piperidine-3-Carboxylic Acid Ethyl Ester)]-2-Oxoethyl]-L-Prolyl] Benzylamide;
 25 L-Isoleucine, N-[1-(2-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-4-Benzylpiperidyl)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(2-Methylpiperidine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Hydroxyethylamino)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 30 L-Isoleucine, N-[1-[2-(4-Phenylpiperazine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(1-Pyrrolidine)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-Cyclopentylamino)-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-[2-(N-(Phenylmethylamino))-2-Oxoethyl]-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(N-(Cyclohexylmethyamino))-2-Oxoethyl)-L-Prolyl] Benzylamide;
 35 L-Isoleucine, N-[1-(2-(4-Phenylpiperazine)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-[1-(3,7,11-Trimethyldodeca-2,6,10-trien-1-ol)]-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3-Phenyl-2-Propen-1-Oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3-Phenyl-3-Methyl-2-Propen-1-Oxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 40 L-Isoleucine, N-[1-(2-(1-Phenylpropoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-Phenyl-1-Cyclohexylmethoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-Phenyl-2-(4-Morpholino)Ethoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Oxy-2-Methyladamant-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(Adamantan-2-ylcarbamoylmethyl)-L-Prolyl] Benzylamide;
 45 L-Isoleucine, N-[1-(Adamant-1-ylmethylcarbamoylmethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Methyl-1-(S)-Phenyl-1-Propoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Methyl-1-(R)-Phenyl-1-Propoxy)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-tert-Butylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-Bicyclo[2.2.1]hept-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 50 L-Isoleucine, N-[1-(2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(Chroman-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide Hydrochloride Salt;
 L-Isoleucine, N-[1-(2-(Benzofuran-2-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide Hydrochloride Salt;
 L-Isoleucine, N-[1-(2-(3-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(4-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2-Benzoyloxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 55 L-Isoleucine, N-[1-(2-(2-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(3,4,5-Triethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide ;
 L-Isoleucine, N-[1-(2-(Benzodioxol-5-yl)-2-Oxoethyl)-L-Prolyl] Benzylamide ;
 L-Isoleucine, N-[1-(2-Oxo-2-[4-(2-Phenoxyethoxy)-Phenyl]-Ethyl)-L-Prolyl] Benzylamide;

L-Isoleucine, N-[1-(2-(4-Phenoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,4,6-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,3-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,6-Dimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-(4-Methylphenyl)cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-(4-Chlorophenyl)cyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,3,4-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(1-Phenylcyclohexyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 L-Isoleucine, N-[1-(2-(2,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Prolyl] Benzylamide;
 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Proline Benzyl Ester Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Phenethylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-Phenylpropylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Phenylbutylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(Pyrid-2-yl)ethylamide Dihydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-aminophenyl)ethylamide Dihydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-[N-Carballyloxy]aminophenyl)propyl Ester Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Phenyl-2-oxoethylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Tetrahydrofurfurylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Naphthalen-1-ylmethylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-Sulfamoylphenyl)ethylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Phenylpiperidinylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 4-Methoxybenzamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-Methoxybenzamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-Methoxybenzamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] N-Methylphenethylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (S)- α -methylbenzylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (R)- α -methylbenzylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1-methyl-3-phenylpropylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Adamant-1-ylmethylamide Hydrochloride;
 L-Proline 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1-(R)-(1-naphthyl)ethylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Cyclohexylmethyleamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Diphenylmethyleamide Hydrochloride;
 35 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] tert-Butylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 1,2-Diphenylethylamide Hydrochloride;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Cyclohexyl amide Hydrochloride;
 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] L-Homoproline Benzyl Ester Hydrochloride;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Benzylamide Hydrochloride;
 40 L-Homoproline 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] Adamant-1-ylmethylamide Hydrochloride;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] tetrahydrofurfurylamide;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-Sulfamoylphenyl)ethylamide;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (S)- α -methylbenzylamide Hydrochloride;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (1-(S)-[2'-(S)-methylpropyl]-3-phenylprop-2-E-enyl)-amide;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] (1-(S)-[2'-(S)-methylpropyl]-3-phenylpropyl)-amide;
 L-Isoleucine, N-[1-(2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl)-L-Homoprolyl] Benzylamide;
 50 L-Proline 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Acetyl)aminophenyl)ethylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Benzoyl)aminophenyl)ethylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-carboalloxy)aminophenyl)ethylamide;
 L-Proline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 2-(4-(N-Carbobenzoyloxy)aminophenyl)ethylamide;
 L-Homoproline, 1-[2-(3,4,5-Trimethoxyphenyl)-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Ester Hydrochloride;
 55 L-Proline, 1-[2-Adamantan-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy) aminophenyl)propyl Ester Hydrochloride; and
 L-Homoproline, 1-[2-Adamant-1-yl-2-Oxoethyl] 3-(4-(N-Carboallyloxy)aminophenyl)propyl Est r Hydrochlorid .

5. A compound according to claims 1 to 4 for the treatment of inflammations.
6. A medicament containing at least one compound according to claims 1 to 4.
- 5 7. Use of the compounds according to claims 1 to 4 for the manufacturing of a composition for the treatment of inflammation.
8. A method for making the compounds of claims 1 to 4, comprising the following steps:

10

15 which are

- 20 (a) coupling an N-protected imino acid to an amine or an alcohol to form a C-substituted, N-protected imino acid;
- (b) removing the protecting group from said C-substituted, N-protected imino acid; and
- 25 (c) alkylating the resulting imino acid from step (b) at the nitrogen position with an α -halo ester, α -halo ketone, or an α -halo amide.

25 9. A method for making the compounds of claims 1 to 4, comprising the following steps:

30

35 which are

- 40 a) deprotecting the 2-position of a first 2-oxoethyl derivative; and
- b) coupling the resulting acid derivative from step (a) to form a second 2-oxoethyl derivative.

45 10. A method for making the compounds of claims 1 to 4 comprising the following steps:

50

55

which ar

- a) deprotecting the imino acid C-termini of a 2-oxoethyl derivative to form a 2-oxoethyl imino acid; and

b) coupling said 2-oxoethyl imino acid resulting from step (a) with an amine or an alcohol to form a C-substituted, 2-oxoethyl imino acid derivative.

5 Patentansprüche

1. Verbindung der folgenden Struktur:

10

15

20

worin gilt:

R¹ ist:

a) Wasserstoff,

25

b) ein linearer oder verzweigter C1-8-Alkylrest, der unabhängig oder gleichzeitig substituiert sein kann, und zwar bis zu 2 Mal mit einem:

30

i) Hydroxyrest,

ii) Phenylrest, der mit einem geradkettigen oder verzweigten C1-8-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann,

iii) C3-10-Cycloalkylrest, der mit einem geradkettigen oder verzweigten C1-8-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann,

iv) C6-12-Bicycloalkylrest, der mit einem geradkettigen oder verzweigten C1-10-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann,

35

v) C7-14-Tricycloalkylrest, der mit einem geradkettigen oder verzweigten C1-8-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann,

vi) C10-14-Tetracycloalkylrest, der mit einem geradkettigen oder verzweigten C1-8-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann, oder mit einem

vii) Morpholinylrest,

40

c) ein C3-10-Alken-, C4-10-Dien- oder ein C8-1B-Triienrest, die unabhängig voneinander oder gleichzeitig substituiert sein können, und zwar bis zu 3 Mal mit einem:

45

i) Phenyl-,

ii) geradkettigen oder verzweigten C1-6-Alkyl- oder mit einem

iii) geradkettigen oder verzweigten C1-6-Alkoxyrest,

d) ein C5-10-Cycloalkylrest oder das Cycloalkyl-Fragment:

50

55

worin gilt:

m ist eine ganze Zahl von 0, 1 oder 2,
J, K und L sind unabhängig voneinander oder gleichzeitig:

5

- i) Wasserstoff,
- ii) ein geradkettiger oder verzweigter C1-5-Alkylrest, der mit einem Phenyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann,
- iii) ein geradkettiger oder verzweigter C1-5-Alkoxy-, iii) Phenyl- oder ein
- iv) Phenylrest, der mit einem geradkettigen oder verzweigten C1-6-Alkylrest oder mit Chlor oder mit einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert ist,

10

e) ein C7-10-Bicycloalkyl-, C7-14-Tricycloalkyl-, C10-16-Tetracycloalkyl- oder ein C11-20-Pentacycloalkylrest, welche, unabhängig voneinander oder gleichzeitig, bis zu Mal mit einem geradkettigen oder verzweigten C1-6-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxy- oder einem Phenylrest substituiert sein können,

f) die Aryl-Derivate Tetrahydronaphthyl, Benzothienyl, Benzofuryl, Benzopyranyl, Furyl, Pyridyl, Pyranyl, 1,3-Oxazolyl oder Naphthyl, wobei die genannten Aryl-Derivate, unabhängig voneinander oder gleichzeitig, bis zu 2 Mal substituiert sein können mit:

15

- i) einem geradkettigen oder verzweigten C1-6-Alkylrest,
- ii) einem geradkettigen oder verzweigten C1-6-Alkoxyrest,
- iii) Halogen, wobei Halogen Fluor, Chlor, Brom oder Jod ist,

20

g) das Piperonyl-Fragment:

25

30

worin gilt:

35

z ist eine ganze Zahl von 1 oder 2,
und E¹, E² und E³ sind, unabhängig voneinander oder gleichzeitig, Wasserstoff, ein geradkettiger oder verzweigter C1-6-Alkyl- oder ein geradkettiger oder verzweigter C1-6-Alkoxyrest oder Chlor, oder

40

h) das Aryl-Derivat:

45

50

55

worin gilt:

U, V und W sind, unabhängig von inander oder gleichzeitig:

- i) Wasserstoff,

- 5 ii) eine geradkettige oder verzweigte C1-6-Alkyl-, geradkettige oder verzweigte C1-6-Alkoxy-, Phenyl- oder eine Phenoxygruppe, wobei diese Gruppen mit einem Phenyl-, geradkettigen oder verzweigten C1-6-Alkoxy- oder einem Phenoxyrest substituiert sein können,
 iii) ein Hydroxyrest,
 iv) Halogen,
 v) eine Nitrogruppe oder
 vi) ein Benzoylrest;

10 Y ist eine kovalente Bindung, Sauerstoff oder NR⁷, worin R⁷ Wasserstoff ist, ausserdem kann R¹-Y auch sein:

20 worin gilt:
 k ist eine ganze Zahl von 1 oder 2,
 R⁸ ist:

- 25 a) Wasserstoff,
 b) ein Carboalkoxyrest mit einem geradkettigen oder verzweigten C1-6-Alkoxyrest,
 c) ein geradkettiger oder verzweigter C1-6-Alkylrest, der mit einem Phenyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert sein kann,
 d) ein Phenyl- oder ein Phenylrest, der mit Halogen substituiert ist,

30 R⁹ ist ein Phenylrest, der mit einem geradkettigen oder verzweigten C1-6-Alkylrest substituiert sein kann;

35 R² und R³ sind wie folgt definiert: einer der Reste R² und R³ ist Wasserstoff, und der andere Rest ist Wasserstoff oder ein geradkettiger oder verzweigter C1-6-Alkylrest;

n ist eine ganze Zahl von 2 oder 3;

A ist NR¹⁰, worin R¹⁰ Wasserstoff oder ein geradkettiger oder verzweigter C1-6-Alkylrest ist;
 R⁴ und R⁵ sind, unabhängig voneinander oder gleichzeitig:

- 40 a) Wasserstoff,
 b) ein geradkettiger oder verzweigter C1-8-Alkylrest, der substituiert sein kann mit einem:
 i) Phenyl- oder einem mit einem Hydroxy- oder C1-2-Alkoxyrest substituierten Phenylrest,
 ii) C5-6-Cycloalkyl-,
 iii) C1-6-Alkylothio-,
 iv) Carboxamido-,
 v) geradkettigen oder verzweigten C1-6-Alkoxyrest, der mit einem Phenylrest substituiert sein kann,
 c) ein Phenyl- oder
 d) ein C3-7-Cycloalkylrest, der mit einem geradkettigen oder verzweigten C1-6-Alkylrest substituiert sein kann,

50 ausserdem können R⁴ und R⁵, zusammengenommen, sein:

55

worin gilt:

r ist eine ganze Zahl von 4 oder 5;
G ist eines der folgenden Fragmente:

5

oder das folgende Fragment:

10

15

worin gilt:
R¹² ist Wasserstoff oder ein Methylrest, wobei die Carbonylgruppe an den Kohlenstoff, der die Reste R⁴ und R⁵ aufweist, und NR¹² an R⁶ gebunden sind;

20

p ist eine ganze Zahl von 0 oder 1;

R⁶ ist:

25

- a) Wasserstoff,
- b) ein geradkettiger oder verzweigter C1-6-Alkylrest, der substituiert sein kann mit einem:

30

- i) Phenylrest,
- ii) Phenylrest, der mit einem geradkettigen oder verzweigten C1-6-Alkyl- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest substituiert ist, oder mit einem Pyridylrest, oder
- c) eine Phenyl-, Naphthyl-, Furyl-, Thiofuryl-, C5-6-Cycloalkyl-, C6-10-Bicycloalkyl-, C7-12-Tricycloalkyl-, C10-16-Tetracycloalkyl-, C11-20-Pentacycloalkyl- oder eine Benzoylgruppe, wobei diese Gruppen substituiert sein können mit:

35

- i) einem Amin,
- ii) einer Aminogruppe, die mit einem geradkettigen oder verzweigten C1-6-Alkoxycarbonylrest substituiert ist, der mit einem Phenyl- oder einem C2-6-Alkenrest substituiert sein kann,
- iii) einer Aminogruppe, die mit einem C1-6-Alkanoyl- oder einem Benzoylrest substituiert ist,
- iv) Sulfonamid(-SO₂NH₂) oder mit einem
- v) Hydroxy- oder einem geradkettigen oder verzweigten C1-6-Alkoxyrest, der mit einem Phenylrest substituiert sein kann;

40

sowie pharmazeutisch geeignete Salze davon.

2. Verbindung der Formel (I) gemäß Anspruch 1,

45

worin gilt:

R¹ ist:

50

- a) Wasserstoff,
- b) lineares oder verzweigtes C1-6-Alkyl, das substituiert sein kann:

55

- i) 1 Mal mit einem Hydroxyrest,
- ii) 1 Mal mit Phenyl, das mit einem geradkettigen oder verzweigten C1-4-Alkyl oder einem geradkettigen oder verzweigten C1-6-Alkoxy substituiert sein kann,
- iii) 1 Mal mit C3-8-Cycloalkyl, das mit einem geradkettigen oder verzweigten C1-6-Alkyl oder einem geradkettigen oder verzweigten C1-4-Alkoxy substituiert sein kann,
- iv) 1 Mal mit C6-10-Bicycloalkyl, das mit einem geradkettigen oder verzweigten C1-8-Alkyl oder einem geradkettigen oder verzweigten C1-4-Alkoxy substituiert sein kann,

- 5 v) 1 Mal mit C7-12-Tricycloalkyl, das mit einem geradkettigen oder verzweigten C1-6-Alkyl oder einem geradkettigen oder verzweigten C1-4-Alkoxy substituiert sein kann,
 vi) 1 Mal mit C10-12-Tetracycloalkyl, das mit einem geradkettigen oder verzweigten C1-8-Alkyl oder einem geradkettigen oder verzweigten C1-4-Alkoxy substituiert sein kann,
 vii) bis zu 2 Mal mit Phenyl und C6-7-Cycloalkyl oder
 viii) bis zu 2 Mal mit einem Phenyl- und einem Morpholinylrest,

- 10 c) C3-8-Alken, das mit Phenyl, geradkettigem oder verzweigten C1-4-Alkyl- oder geradkettigem oder ver-
 zweigten C1-4-Alkoxy substituiert sein kann,
 d) C4-7-Dien, das mit geradkettigem oder verzweigten C1-6-Alkyl oder geradkettigem oder verzweigten
 C1-4-Alkoxy substituiert sein kann,
 e) C10-16-Triene, das bis zu 3 Mal mit geradkettigem oder verzweigten C1-6-Alkyl oder geradkettigem
 oder verzweigten C1-4-Alkoxy substituiert sein kann, oder
 f) C5-10-Cycloalkyl oder das Cycloalkyl-Fragment:

15

20

25

worin gilt:
 m ist eine ganze Zahl von 0, 1 oder 2,
 J, K und L sind, unabhängig voneinander oder gleichzeitig:

30

- i) Wasserstoff,
 ii) geradkettiges oder verzweigtes C1-5-Alkyl, das mit Phenyl oder geradkettigem oder verzweig-
 ten C1-4-Alkoxy substituiert sein kann,
 iii) Phenyl oder
 iv) Phenyl, substituiert mit geradkettigem oder verzweigten C1-4-Alkyl oder mit Chlor oder mit
 geradkettigem oder verzweigten C1-4-Alkoxy,

35

- g) C7-10-Bicycloalkyl, das bis zu 3 Mal mit geradkettigem oder verzweigten C1-6-Alkyl oder geradkettigem
 oder verzweigten C1-4-Alkoxy substituiert sein kann,
 h) C7-14-Tricycloalkyl, das bis zu 3 Mal mit geradkettigem oder verzweigten C1-6-Alkyl oder mit gerad-
 kettigem oder verzweigten C1-4-Alkoxy substituiert sein kann,
 i) C10-15-Tetracycloalkyl, das bis zu 3 Mal mit geradkettigem oder verzweigten C1-6-Alkyl oder mit ge-
 radkettigem oder verzweigten C1-4-Alkoxy substituiert sein kann,
 j) Naphthyl-Derivate oder die Heteroaryl-Derivate Benzothienyl, Benzofuryl, Benzopyranyl, Furyl, Pyridyl,
 Pyranyl oder 1,3-Oxazolyl, wobei die genannten Derivate bis zu 2 Mal substituiert sein können mit:

45

- i) geradkettigem oder verzweigten C1-6-Alkyl,
 ii) Halogen,
 iii) oder mit beiden,

50

- k) 1,2,3,4-Tetrahydronaphthyl,
 l) das Piperonyl-Fragment:

55

10

worin gilt:

z ist eine ganze Zahl von 1 oder 2,
und E¹, E² und E³ sind, unabhängig voneinander oder gleichzeitig, Wasserstoff, geradkettiges oder verzweigtes C1-4-Alkyl, geradkettiges oder verzweigtes C1-4-Alkoxy oder Chlor,

15

m) das Aryl-Derivat:

20

25

worin gilt:

U, V und W sind, unabhängig voneinander oder gleichzeitig:

30

- i) Wasserstoff,
- ii) geradkettiges oder verzweigtes C1-4-Alkyl, das mit Phenyl substituiert sein kann,
- iii) geradkettiges oder verzweigtes C1-6-Alkoxy, das mit Phenyl, geradkettigem oder verzweigtem C1-4-Alkoxy oder mit Phenoxy substituiert sein kann,
- iv) Hydroxy,
- v) Phenyl,
- vi) Halogen,
- vii) Nitro,
- viii) Benzoyl oder
- ix) Phenoxy;

35

Y ist eine kovalente Bindung, Sauerstoff oder NR⁷, worin R⁷ Wasserstoff ist,
ausserdem kann R¹-Y- auch sein:

40

45

50

worin gilt:

55

k ist eine ganze Zahl von 1 oder 2,

R⁸ ist:

- a) Wasserstoff,
- b) Carboalkoxy mit einem geradkettigen oder verzweigten C1-4-Alkoxyrest,

EP 0 564 924 B1

- c) geradkettiges oder verzweigtes C1-4-Alkyl, das mit Phenyl oder geradkettigem oder verzweigten C1-4-Alkoxy substituiert sein kann, oder
 d) Phenyl oder mit Halogen substituiertes Phenyl,

5 R⁹ ist Phenyl, das mit einem C1-4-Alkylrest substituiert sein kann;
 R² und R³ sind wie folgt definiert: einer der Reste R² und R³ ist Wasserstoff, und der andere Rest ist Wasserstoff oder ein geradkettiger oder verzweigter C1-6-Alkylrest;

n ist eine ganze Zahl von 2 oder 3;
 A ist NR¹⁰, worin R¹⁰ Wasserstoff oder ein geradkettiger oder verzweigter C1-4-Alkylrest ist;
 R⁴ ist:

- a) Wasserstoff,
 b) geradkettiges oder verzweigtes C1-6-Alkyl, das substituiert sein kann mit:

15 i) Phenyl oder Phenyl, das mit einem Hydroxy- oder Methoxyrest substituiert ist,
 ii) C5-6-Cycloalkyl,
 iii) C1-6-Alkylthio,
 iv) Carboxamido oder mit

20 v) geradkettigem oder verzweigten C1-6-Alkoxy, das mit einem Phenylrest substituiert sein kann,

- c) Phenyl oder
 d) C3-7-Cycloalkyl, das mit einem geradkettigen oder verzweigten C1-6-Alkylrest substituiert sein kann;

25 R⁵ ist Wasserstoff oder geradkettiges oder verzweigtes C1-4-Alkyl, und R⁴ und R⁵ können, zusammen- genommen, sein:

30

worin r eine ganze Zahl von 4 oder 5 ist;
 G ist eines der folgenden Fragmente:

35

oder das folgende Fragment:

40

45

worin die Carbonylgruppe an den die Reste R⁴ und R⁵ aufweisenden Kohlenstoff und NR¹² an R⁶ gebun- den sind, und worin R¹² Wasserstoff oder ein Methylrest ist;
 p ist eine ganze Zahl von 0 oder 1;
 R⁶ ist:

50

- a) Wasserstoff,
 b) geradkettiges oder verzweigtes C1-4-Alkyl, das substituiert sein kann mit:

55

- i) Phenyl,
 ii) Phenyl, substituiert mit geradkettigem oder verzweigten C1-4-Alkyl oder mit geradkettigem oder verzweigten C1-4-Alkoxy, oder mit
 iii) 2- od r 4-Pyridyl,

- c) Phenyl od r Naphthyl, die substituiert sein können mit:

- i) Amin,
- ii) Amino, substituiert mit einem geradkettigen oder verzweigten C1-6-Alkoxy carbonylrest, der mit einem Phenyl- oder einem C2-6-Alkenrest substituiert sein kann,
- iii) Amino, substituiert mit einem C1-6-Alkanoyl- oder einem Benzoylrest,
- iv) Sulfonamid (-SO₂NH₂) oder mit
- v) geradkettigem oder verzweigten C1-6-Alkoxy, das mit einem Phenylrest substituiert sein kann,

5

- d) Benzoyl,
- e) Furyl oder Thiofuryl oder
- f) C5-8-Cycloalkyl, C6-10-Bicycloalkyl, C7-12-Tricycloalkyl oder C10-14-Tetracycloalkyl;

10

sowie pharmazeutisch geeignete Salze davon.

- 15 3. Verbindung der Formel (I) gemäß Anspruch 1,
worin gilt:

R¹ ist:

20

- a) Wasserstoff,
- b) lineares oder verzweigtes C1-6-Alky, das substituiert sein kann mit:

25

- i) Hydroxy,
- ii) Phenyl oder Phenyl, substituiert mit geradkettigem oder verzweigten C1-4-Alky,
- iii) C3-8-Cycloalkyl, das mit geradkettigem oder verzweigten C1-4-Alky substituiert sein kann,
- iv) C6-9-Bicycloalkyl, das mit geradkettigem oder verzweigten C1-6-Alky substituiert sein kann,
- v) C7-12-Tricycloalkyl, das mit geradkettigem oder verzweigten C1-4-Alky substituiert sein kann,
- vi) C10-12-Tetracycloalkyl, das mit geradkettigem oder verzweigten C1-6-Alky substituiert sein kann,
- vii) sowohl mit Phenyl als auch mit C5-6-Cycloalkyl oder
- viii) sowohl mit Phenyl als auch mit Morpholinyl,

30

- c) C3-6-Alken, das mit einem Phenylrest substituiert sein kann,
- d) C5-6-Dien, das mit einem geradkettigen oder verzweigten C1-4-Alkyrest substituiert ist,
- e) C13-16-Triens, substituiert bis zu 3 Mal mit geradkettigem oder verzweigten C1-4-Alky,
- f) C5-6-Cycloalkyl oder das Cycloalkyl-Fragment:

35

40

45

worin gilt:

50

- m ist eine ganze Zahl von 0, 1 oder 2,
J, K und L sind, unabhängig voneinander oder gleichzeitig:

55

- i) Wasserstoff,
- ii) geradkettiges oder verzweigtes C1-5-Alky,
- iii) Phenyl oder
- iv) Phenyl, substituiert mit geradkettigem oder verzweigten C1-4-Alky oder mit Chlor oder mit geradkettigem oder verzweigten C1-4-Alkoxy,

55

- g) C7-8-Bicycloalkyl, das bis zu 3 Mal mit geradkettigem oder verzweigten C1-4-Alky substituiert sein kann,
- h) C7-12-Tricycloalkyl, das bis zu 2 Mal mit geradkettigem oder verzweigten C1-6-Alky substituiert sein kann,

- i) C10-12-Tetracycloalkyl, das bis zu 3 Mal mit geradkettigem oder verzweigten C1-4-Alkyl substituiert sein kann,
j) 2-Benzothienyl, substituiert, unabhängig voneinander oder gleichzeitig, mindestens 2 Mal mit entweder:
 i) geradkettigem oder verzweigten C1-3-Alkyl,
 ii) Chlor
 iii) oder mit beiden.

k) 2-Furyl,
l) 2-Pyridyl
m) 2-Naphthyl,
n) 1,2,3,4-Tetrahydronaphthyl,
o) 2-Benzopyranyl,
p) 2-Benzofuryl,
q) das Piperonyl-Fragment:

25

worin gilt:

z ist eine ganze Zahl von 1 oder 2, und E^1 , E^2 und E^3 sind Wasserstoff- oder

40

worin gilt:

U, V und W sind unabhängig voneinander oder gleichzeitig

- 45 i) Wasserstoff,
ii) geradkettiges oder verzweigtes C1-4-Alkyl,
iii) geradkettiges oder verzweigtes C1-4-Alkoxy,
iv) C2-Alkoxy, substituiert mit C2-Alkoxy oder Phenoxy,
v) Hydroxy,
vi) Phenyl,
vii) Fluor,
viii) Chlor,
ix) Brom,
x) Nitro,
xi) Benzyloxy,
xii) Benzoyl,
xiii) Phenoxy;

50

55

Y ist eine kovalente Bindung, Sauerstoff oder NR⁷, worin R⁷ Wasserstoff ist, ausserdem kann R¹-Y- auch sein:

5

10

oder

worin gilt:

15 K ist eine ganze Zahl von 1 oder 2,

R⁸ ist:

- a) Wasserstoff,
- b) Carboalkoxy mit einem C1-2-Alkoxyrest,
- c) geradkettiges oder verzweigtes C1-4-Alkyl, das mit einem Phenylrest substituiert sein kann,
- d) Phenyl,

20

R⁹ ist Phenyl;R² und R³ sind wie folgt definiert: einer der Reste R² und R³ ist Wasserstoff, und der andere Rest ist Wasserstoff oder ein geradkettiger oder verzweigter C1-4-Alkylrest;

25 n ist eine ganze Zahl von 2 oder 3;

A ist NR¹⁰, worin R¹⁰ Wasserstoff oder ein Methylrest ist; R⁴ ist:

30

- a) Wasserstoff,
- b) geradkettiges oder verzweigtes C1-4-Alkyl, das substituiert sein kann mit:

35

- i) Phenyl,
- ii) C5-6-Cycloalkyl,
- iii) C1-4-Alkylthio,
- iv) Carboxamido oder mit
- v) Benzyloxy, oder

c) Phenyl;

40

R⁵ ist Wasserstoff oder ein geradkettiger oder verzweigter C1-4-Alkylrest, und R⁴ und R⁵ können, zusammengenommen, sein:

45

worin r die Zahl 5 ist;

G ist eines der folgenden Fragmente:

50

oder das folgende Fragment:

55

worin die Carbonylgruppe an den die Reste R⁴ und R⁵ aufweisenden Kohlenstoff und NR¹² an R⁶ gebunden sind, und worin

10

R¹² Wasserstoff oder ein Methylrest ist;
 p ist eine ganze Zahl von 0 oder 1;
 R⁶ ist:

15

a) Wasserstoff,
 b) geradkettiges oder verzweigtes C1-4-Alkyl, das substituiert sein kann mit:

20

- i) Phenyl,
- ii) Phenyl, substituiert mit C1-2-Alkoxy,
- iii) 2- oder 4-Pyridyl,

25

c) Phenyl, das substituiert sein kann mit:

30

- i) Amino,
- ii) Amino, substituiert mit Allyloxycarbonyl,
- iii) Amino, substituiert mit Acetyl,
- iv) Amino, substituiert mit Benzoyl,
- v) Amino, substituiert mit Benzyloxycarbonyl
- vi) Sulfonamid (-SO₂NH₂) oder mit
- vii) geradkettigem oder verzweigten C1-4-Alkoxy,

35

- d) Benzoyl,
- e) Furyl,
- f) Naphthyl,
- g) C6-8-Cycloalkyl oder
- h) C10-12-Tetracycloalkyl;

sowie pharmazeutisch geeignete Salze davon.

40

4. Verbindung gemäß einem der Ansprüche 1 bis 3, ausgewählt aus der Gruppe, bestehend aus:

L-Isoleucin-N-[1-(2-benzyloxy-2-oxoethyl)-L-prolyl]benzylamid;

45

L-Isoleucin-N-[1-(2-methoxy-2-oxoethyl)-L-prolyl]benzylamid;

L-Isoleucin-N-[1-(2-phenyl-2-oxoethyl)-L-prolyl]benzylamid;

50

L-Isoleucin-N-[1-(2-naphth-2-yl-2-oxoethyl)-L-prolyl]benzylamid;

L-Isoleucin-N-[1-(2-(biphenyl-4-yl)-2-oxoethyl)-L-prolyl]benzylamid;

55

L-Isoleucin-N-[1-(2-(2-methoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid;

L-Isoleucin-N-[1-(2-(5-chlor-3-methylbenzo[B]thiophen-2-yl)-2-oxoethyl)-L-prolyl]benzylamid;

L-Isoleucin-N-[1-(2-(trans,trans-hxa-2,4-dienyl-1-oxy)-2-oxoethyl)-L-prolyl]benzylamid;

L-Isoleucin-N-[1-(2-(4-chlorphenyl)-2-oxoethyl)-L-prolyl]benzylamid;

- L-Isoleucin-N-[1-(2-(4-methylphenyl)-2-oxoethyl)-L-prolyl]benzylamid;
- 5 L-Isoleucin-N-[1-(2-(4-methoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid;
- L-Isoleucin-N-methyl-N-[1-(2-phenyl-2-oxoethyl)-L-prolyl]benzylamid;
- 10 L-Isoleucin-N-[1-(2-phenyl-2-oxoethyl)-L-homoprolin]benzylamid;
- L-Phenylglycin-N-[1-(2-phenyl-2-oxoethyl)-L-prolinbenzylamid
- 15 L-Isoleucin-N-[1-(1-methyl-2-phenyl-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(3-methoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 20 L-Isoleucin-N-[1-(2-(3,4-dihydroxyphenyl)-2-oxoethyl)-L-prolyl]benzyl-amid
- L-Isoleucin-N-methyl-N-[1-(2-benzyl-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(carbobenzylmethylen)-L-homoprolin]benzylamid
- 25 L-Isoleucin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(carbo-t-butoxymethylen)-L-prolin]benzylamid
- L-Isoleucin-N-[1-(2-t-butyl-2-oxoethyl)-L-prolin]benzylamid
- 30 L-Isoleucin-N-[1-(2,5-dimethoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2,4-dimethoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 35 L-Isoleucin-N-[1-(2-nitrophenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(4-nitrophenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-benzyl-2-oxoethyl)-L-prolyl]benzyl-amid
- 40 L-Isoleucin-N-[1-(2,4-dimethylphenyl)-2-oxoethyl)-L-prolyl]benzyl-amid
- L-Isoleucin-N-[1-(4-fluorophenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(4-bromophenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 45 L-Isoleucin-N-[1-(2,4-dichlorophenylcarbamoylmethyl)-L-prolyl]benzyl-amid
- L-Isoleucin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-homoprolin]benzylamid
- L-Isoleucin-N-[1-(2-furan-2-yl-2-oxoethyl)-L-prolyl]benzylamid
- 50 L-Isoleucin-N-[1-(2-pyrid-2-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Phenylalanin-N-[1-(2-(biphenyl-4-yl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Methionin-N-[1-(2-(biphenyl-4-yl)-2-oxoethyl)-L-Prolyl]benzylamid
- 55 Glycin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Valin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid

- L-Leucin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Phenylalanin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- 5 L-Norvalin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Norleucin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- 10 L-Asparagin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Serin-(O-benzylether)-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L- β -Phenylalanin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- 15 L-Cyclohexylalanin-N-[1-(2-adamantan-1-yl-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(4-benzoyloxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 20 L-Isoleucin-N-[1-(2-(2-benzoyloxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(3-phenoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(2-phenoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 25 L-Isoleucin-N-[1-(2-(3,4,5-trethoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(benzo[1,3]dioxol-5-yl)-2-oxoethyl)-L-prolyl]benzylamid
- 30 L-Isoleucin-N-[1-(2-oxo-2-[4-(2-phenoxyethoxy)phenyl]ethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(4-phenoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(2,4,6-trimethoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 35 L-Isoleucin-N-[1-(2-(2,3-dimethoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Isoleucin-N-[1-(2-(2,6-dimethoxyphenyl)-2-oxoethyl)-L-prolyl]benzylamid
- 40 L-Isoleucin-N-[1-(2-(1-(4-methylphenyl)cyclohexyl)-2-oxoethyl)-L-prolyl]benzylamid
- L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-1-methyl-phenylpropylamid-Hydrochlorid
- L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]adamant-1-ylmethylamid-Hydrochlorid
- 45 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-1-(R)-(1-naphthyl)ethylamid-Hydrochlorid
- L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]cyclohexylmethylamid
- 50 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]diphenylmethylamid-Hydrochlorid
- L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-t-butylamid-Hydrochlorid
- L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-1,2-diphenylethylamid-Hydrochlorid
- 55 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]cyclohexylamid-Hydrochlorid
- 1-[2-(3,4,5-Trimethoxyphenyl)-2-oxoethyl]-L-homoprolinbenzylest r-Hydrochlorid

- L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]benzylamid-Hydrochlorid
 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]adamant-1-ylmethylamid-Hydrochlorid
 5 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]tetrahydrofurylamid
 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-2-(4-sulfamoylphenyl)ethylamid
 10 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-*(S)*- α -methylbenzylamid-Hydrochlorid
 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-*(1-(S)-[2'-(S)-methylpropyl]3-phenylprop-2-E-enyl)*
 amid
 15 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-*(1-(S)-[2'-(S)-methylpropyl]3-phenylpropyl)amid*
 L-Isoleucin-N-[1-(2-(3,4,5-trimethoxyphenyl)-2-oxoethyl)-L-homoprolyl]benzylamid
 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-2-(4-(N-acetyl)aminophenyl)ethylamid
 20 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-2-(4-(N-benzoyl)aminophenyl)ethylamid
 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-2-(4-(N-carboalkoxy)aminophenyl)ethylamid
 25 L-Prolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-2-(4-(N-carbobenzyloxy)aminophenyl)ethylamid
 L-Homoprolin-1-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-3-(4-(N-carboallyloxy)aminophenyl)propylester-Hydrochlorid
 30 L-Prolin-1-[2-adamantan-1-yl-2-oxoethyl]-3-(4-(N-carboallyloxy)aminophenyl)propylester-Hydrochlorid sowie
 L-Homoprolin-1-[2-adamantan-1-yl-2-oxoethyl]-3-(4-(N-carboallyloxy)aminophenyl)propylester-Hydrochlorid.

5. Verbindung gemäß einem der Ansprüche 1 bis 4 zur Behandlung von Entzündungen.
 35 6. Medikament, enthaltend mindestens eine Verbindung gemäß einem der Ansprüche 1 bis 4.
 7. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 4, zur Herstellung einer Zusammensetzung zur Behandlung von Entzündungen.
 40 8. Verfahren zur Herstellung von Verbindungen von einem der Ansprüche 1 bis 4, welches die folgenden Stufen umfaßt:

- in denen man
 55 (a) eine N-geschützte Iminosäure an ein Amin oder einen Alkohol kuppelt, um eine C-substituierte, N-geschützte Iminosäure zu bilden,
 (b) die Schutzgruppe aus der genannten C-substituierten, N-geschützten Iminosäure abspaltet, und

(c) die aus Stufe (b) entstandene Iminosäure an der Stickstoff-Position mit einem α -Haloester, α -Haloketon oder einem α -Haloamid alkyliert.

9. Verfahren zur Herstellung von Verbindungen gemäß einem der Ansprüche 1 bis 4, welches die folgenden Stufen umfaßt:

in denen man

- 20
- (a) aus der 2-Position eines ersten 2-Oxoethyl-Derivats die Schutzgruppe abspaltet und
 20 (b) das aus Stufe (a) entstandene Säure-Derivat zur Bildung eines zweiten 2-Oxoethyl-Derivats einer Kuppelungsreaktion unterzieht.

25

10. Verfahren zur Herstellung von Verbindungen gemäß einem der Ansprüche 1 bis 4, welches die folgenden Stufen umfaßt:

in denen man

- 40
- (a) aus den C-Enden der Iminosäure eines 2-Oxoethyl-Derivats zur Bildung einer 2-Oxoethyliminosäure die Schutzgruppe abspaltet und
 40 (b) die genannte aus Stufe (a) entstandene 2-Oxoethyliminosäure mit einem Amin oder einem Alkohol kuppelt, um ein C-substituiertes 2-Oxoethyliminosäure-Derivat zu bilden.

45

Revendications

1. Composé de structure suivante :

50

55

15 dans laquelle

R¹ représente

- 20 a) l'hydrogène,
b) un groupe alkyle linéaire ou ramifié en C₁ à C₆ qui peut être substitué indépendamment ou simultanément jusqu'à deux fois par
- 25 i) un groupe hydroxy,
ii) un groupe phényle qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₈ ou un radical alkoxy normal ou ramifié en C₁ à C₆.
iii) un groupe cycloalkyle en C₃ à C₁₀ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₈ ou un radical alkoxy normal ou ramifié en C₁ à C₆.
iv) un groupe bicycloalkyle en C₆ à C₁₂ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₁₀ ou un radical alkoxy normal ou ramifié en C₁ à C₆.
v) un groupe tricycloalkyle en C₇ à C₁₄ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₈ ou un radical alkoxy normal ou ramifié en C₁ à C₆.
30 vi) un groupe tétracycloalkyle en C₁₀ à C₁₄ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₈ ou un radical alkoxy normal ou ramifié en C₁ à C₆, ou
vii) un groupe morpholinyle,
- 35 c) un alcène en C₃ à C₁₀, un diène en C₄ à C₁₀ ou un triène en C₈ à C₁₈, qui peut être substitué indépendamment ou simultanément jusqu'à trois fois par
- 40 i) un groupe phényle,
ii) un groupe alkyle normal ou ramifié en C₁ à C₆ ou
iii) un groupe alkoxy normal ou ramifié en C₁ à C₆.
- d) un groupe cycloalkyle en C₅ à C₁₀, ou le fragment cycloalkyle

45

50

dans lequel

m est un nombre entier égal à 0, 1 ou 2,
55 J, K et L représentent indépendamment ou simultanément

- i) de l'hydrogène
ii) un groupe alkyle normal ou ramifié en C₁ à C₅ qui peut être substitué par un radical

5 phényle ou par un radical alkoxy normal ou ramifié en C₁ à C₆,
 iii) un groupe alkoxy normal ou ramifié en C₁ à C₅,
 iv) un groupe phényle ou
 v) un groupe phényle substitué par un radical alkyle normal ou ramifié en C₁ à C₆ ou
 par du chlore ou un radical alkoxy normal ou ramifié en C₁ à C₆,

10 e) un groupe bicycloalkyle en C₇ à C₁₀, tricycloalkyle en C₇ à C₁₄, tétracycloalkyle en C₁₀ à C₁₆ ou pentacycloalkyle en C₁₁ à C₂₀, qui peut être substitué indépendamment ou simultanément jusqu'à trois fois avec un radical alkyle normal ou ramifié en C₁ à C₆ ou un radical alkoxy normal ou ramifié en C₁ à C₆ ou phényle,

15 f) les dérivés aryliques tétrahydronaphthyle, benzothiényle, benzofuryl, benzopyrannyle, furyl, pyridyle, pyrannyle, 1,3-oxazolyle ou naphtyle, ces dérivés aryliques pouvant être substitués indépendamment ou simultanément jusqu'à deux fois par

15 i) un groupe alkyle normal ou ramifié en C₁ à C₆,
 ii) un groupe alkoxy normal ou ramifié en C₁ à C₆,
 iii) un halogène, cet halogène étant un radical fluoro, chloro, bromo ou iodo,

20 g) le fragment pipéronyle

20

30

dans lequel

z est le nombre entier 1 ou 2,

35 et E¹, E² et E³ peuvent représenter indépendamment ou simultanément de l'hydrogène, un groupe alkyle normal ou ramifié en C₁ à C₆, alkoxy normal ou ramifié en C₁ à C₆ ou du chlore, ou

h) le dérivé arylique

40

45

dans lequel

50 U, V et W peuvent représenter indépendamment ou simultanément

50

- i) l'hydrogène,
 ii) un groupe alkyle normal ou ramifié en C₁ à C₆, un groupe alkoxy normal ou ramifié en C₁ à C₆, un groupe phényle ou phenoxy, ces groupes pouvant être substitués par un radical phényle, alkoxy normal ou ramifié en C₁ à C₆ ou phenoxy,
 iii) un groupe hydroxy,
 iv) un halogène,
 v) un groupe nitro ou
 vi) un groupe benzoyle ;

Y est une liaison covalente, de l'oxygène, un groupe NR⁷ dans lequel R⁷ est de l'hydrogène,
en outre,

5. R¹-Y- peut aussi représenter un groupe

10

15

dans lequel

k est le nombre entier 1 ou 2,
R⁸ représente

20

- a) de l'hydrogène,
- b) un groupe carbaïkoxy avec un alkoxy normal ou ramifié en C₁ à C₆,
- c) un groupe alkyle normal ou ramifié en C₁ à C₆ qui peut être substitué par un radical phényle ou un radical alkoxy normal ou ramifié en C₁ à C₆,
- d) un groupe phényle, ou phényle substitué par un halogène,

25

R⁹ est un groupe phényle qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆ ;

R² et R³ sont définis comme suit : l'un de R² et R³ est de l'hydrogène et l'autre est de l'hydrogène ou un radical alkyle normal ou ramifié en C₁ à C₆ ;

30

n est le nombre entier 2 ou 3 ;

A est un groupe NR¹⁰ dans lequel R¹⁰ est de l'hydrogène ou un radical alkyle normal ou ramifié en C₁ à C₆ ;

R⁴ et R⁵ peuvent représenter indépendamment ou simultanément

35

a) de l'hydrogène,
b) un groupe alkyle normal ou ramifié en C₁ à C₈ qui peut être substitué par

- i) un groupe phényle ou phényle substitué par un radical hydroxy ou alkoxy en C₁ ou C₂,
- ii) un groupe cycloalkyle en C₅ ou C₆,
- iii) un groupe alkylthio en C₁ à C₆,

40

iv) un groupe carboxamido,
v) un groupe alkoxy normal ou ramifié en C₁ à C₆ qui peut être substitué par un radical phényle,

45

c) un groupe phényle ou
d) un groupe cycloalkyle en C₃ à C₇ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆, en outre, R⁴ et R⁵, pris conjointement, peuvent représenter un groupe

- (CH₂)_r -

50

dans lequel

r est le nombre entier 4 ou 5 ;

G est l'un des fragments suivants :

55

-HC=CH-, -CH₂-CH₂- ou -CH₂-

ou le fragment suivant

dans lequel R¹² est de l'hydrogène ou un groupe méthyle, de telle sorte que le groupe carbonyle soit attaché à l'atome de carbone portant R⁴ et R⁵ et que NR¹² soit lié à R⁶;

10 p est le nombre entier 0 ou 1 ;
R⁶ représente

- 15 a) de l'hydrogène,
b) un groupe alkyle normal ou ramifié en C₁ à C₆ qui peut être substitué par
i) un groupe phényle,
ii) un groupe phényle substitué par un radical alkyle normal ou ramifié en C₁ à C₆, un radical alkoxy normal ou ramifié en C₁ à C₆, ou
iii) un groupe pyridyle, ou
20 c) un groupe phényle, naphtyl, furyle, thifuryle, cycloalkyle en C₅ à C₆, bicycloalkyle en C₆ à C₁₀, tricycloalkyle en C₇ à C₁₂, tétracycloalkyle en C₁₀ à C₁₆, pentacycloalkyle en C₁₁ à C₂₀ ou benzoyle, ces groupes pouvant être substitués par
i) une amine,
ii) un groupe amino substitué par un radical alkoxy carbonyle normal ou ramifié à reste alkoxy en C₁ à C₆, qui peut être substitué par un radical phényle ou un alcène en C₂ à C₆,
iii) un groupe amino substitué par un radical alcanoyle en C₁ à C₆ ou benzoyle,
iv) un groupe sulfonamide (-SO₂NH₂) ou
v) un groupe hydroxy ou un groupe alkoxy normal ou ramifié en C₁ à C₆ qui peut être substitué par un radical phényle ;

et ses sels acceptables du point de vue pharmaceutique.

35 2. Composé de formule (I) suivant la revendication 1,
dans laquelle

R¹ représente

- 40 a) de l'hydrogène,
b) un groupe alkyle linéaire ou ramifié en C₁ à C₆ qui peut être substitué
i) une fois par un groupe hydroxy,
ii) une fois par un groupe phényle qui peut être substitué par un radical alkyle normal ou ramifié en
45 C₁ à C₄ ou par un radical alkoxy normal ou ramifié en C₁ à C₆,
iii) une fois par un groupe cycloalkyle en C₃ à C₈ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆ ou par un radical alkoxy normal ou ramifié en C₁ à C₄,
iv) une fois par un groupe bicycloalkyle en C₆ à C₁₀ qui peut être substitué par un radical alkyle
50 normal ou ramifié en C₁ à C₈ ou par un radical alkoxy normal ou ramifié en C₁ à C₄,
v) une fois par un groupe tricycloalkyle en C₇ à C₁₂ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆ ou par un radical alkoxy normal ou ramifié en C₁ à C₄,
vi) une fois par un groupe tétracycloalkyle en C₁₀ à C₁₂ qui peut être substitué par un radical alkyle
55 normal ou ramifié en C₁ à C₈ ou par un radical alkoxy normal ou ramifié en C₁ à C₄,
vii) jusqu'à deux fois par un groupe phényle ou cycloalkyle en C₅ à C₇, ou
viii) jusqu'à deux fois par un groupe phényle ou morpholinyle,
c) un alcène en C₃ à C₈ qui peut être substitué par un radical phényle, alkyle normal ou ramifié en C₁ à C₄ ou alkoxy normal ou ramifié en C₁ à C₄.

- d) un diène en C₄ à C₇ substitué par un radical alkyle normal ou ramifié en C₁ à C₆, ou par un radical alkoxy normal ou ramifié en C₁ à C₄,
e) un triène en C₁₀ à C₁₆ substitué jusqu'à trois fois par un radical alkyle normal ou ramifié en C₁ à C₆
ou par un radical alkoxy normal ou ramifié en C₁ à C₄, ou
f) un groupe cycloalkyle en C₅ à C₁₀ ou le fragment cycloalkyle

5

10

15

dans lequel

m est le nombre entier 0, 1 ou 2,
J, K et L représentent indépendamment ou simultanément

20

- i) de l'hydrogène,
ii) un groupe alkyle normal ou ramifié en C₁ à C₅ qui peut être substitué par un radical phényle ou un radical alkoxy normal ou ramifié en C₁ à C₄,
iii) un groupe phényle ou
iv) un groupe phényle substitué par un radical alkyle normal ou ramifié en C₁ à C₄ ou par du chlore ou un radical alkoxy normal ou ramifié en C₁ à C₄,

25

- g) un groupe bicycloalkyle en C₇ à C₁₀ qui peut être substitué jusqu'à trois fois avec un radical alkyle normal ou ramifié en C₁ à C₆ ou un radical alkoxy normal ou ramifié en C₁ à C₄,
h) un groupe tricycloalkyle en C₇ à C₁₄ qui peut être substitué jusqu'à trois fois avec un radical alkyle normal ou ramifié en C₁ à C₆ ou un radical alkoxy normal ou ramifié en C₁ à C₄,
i) un groupe tétracycloalkyle en C₁₀ à C₁₅ qui peut être substitué jusqu'à trois fois par un radical alkyle normal ou ramifié en C₁ à C₆ ou par un radical alkoxy normal ou ramifié en C₁ à C₄,
j) des dérivés naphtyle ou les dérivés hétéroaryliques benzothiényle, benzofuryle, benzopyrannyle, furyle, pyridyle, pyrannyle ou 1,3-oxazolyle, ces dérivés pouvant être substitués jusqu'à deux fois par

35

- i) un groupe alkyle normal ou ramifié en C₁ à C₆,
ii) un halogène,
iii) ou les deux,

40

- k) un groupe 1,2,3,4-tétrahydronaphthyle,
l) le fragment pipéronyle

45

50

dans lequel

55

z est le nombre entier 1 ou 2,
et E¹, E² et E³ peuvent représenter, indépendamment ou simultanément, l'hydrogène, un groupe alkyle normal ou ramifié en C₁ à C₄, un groupe alkoxy normal ou ramifié en C₁ à C₄ ou du chlore,

m) le dérivé arylique

5

10

où

15

U, V et W peuvent représenter indépendamment ou simultanément

20

- i) de l'hydrogène,
- ii) un groupe alkyle normal ou ramifié en C₁ à C₄ qui peut être substitué par un radical phényle,
- iii) un groupe alkoxy normal ou ramifié en C₁ à C₆ qui peut être substitué par un radical phényle, un radical alkoxy normal ou ramifié en C₁ à C₄ ou un radical phenoxy,
- iv) un groupe hydroxy,
- v) un groupe phényle,
- vi) un halogène,
- vii) un groupe nitro,
- viii) un groupe benzoyle ou
- ix) un groupe phenoxy ;

25

Y est une liaison covalente, de l'oxygène, un groupe NR⁷, dans lequel R⁷ est de l'hydrogène,

en outre

30

R¹ - Y - peut aussi représenter un groupe

35

40

dans lequel

k est le nombre entier 1 ou 2,
R⁸ représente

45

a) de l'hydrogène

b) un groupe carbalkoxy ayant une partie alkoxy normale ou ramifiée en C₁ à C₄,c) un groupe alkyle normal ou ramifié en C₁ à C₄ qui peut être substitué par un radical phényle ou par un radical alkoxy normal ou ramifié en C₁ à C₄,

50

ou bien d) est un groupe phényle ou un groupe phényle substitué par un halogène,

R⁹ est un groupe phényle qui peut être substitué par un radical alkyle en C₁ à C₄ ;

55

R² et R³ ont la définition suivante : l'un de R² et R³ est de l'hydrogène et l'autre est de l'hydrogène ou un groupe alkyle normal ou ramifié en C₁ à C₆ ;

n est un nombre entier de 2 ou 3 ;

A est un groupe NR¹⁰, dans lequel R¹⁰ est de l'hydrogène ou un radical alkyle normal ou ramifié en C₁ à C₄.

R⁴ est

- a) de l'hydrogène,
 b) un groupe alkyle normal ou ramifié en C₁ à C₆ qui peut être substitué par
- i) un radical phényle ou phényle substitué par un radical hydroxy ou méthoxy,
 ii) un groupe cycloalkyle en C₅ ou C₆,
 iii) un groupe alkylthio en C₁ à C₆,
 iv) un groupe carboxamido ou
 v) un groupe alkoxy normal ou ramifié en C₁ à C₆ qui peut être substitué par un radical phényle,
- c) un groupe phényle, ou
 d) un groupe cycloalkyle en C₃ à C₇ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆,

R⁵ est de l'hydrogène ou un groupe alkyle normal ou ramifié en C₁ à C₄, et R⁴ et R⁵, considérés ensemble, peuvent représenter un groupe

- (CH₂)_r -

dans lequel

r est le nombre entier 4 ou 5 ;
 G est l'un des fragments suivants :

ou le fragment suivant

dans lequel le groupe carbonyle est lié à l'atome de carbone portant R⁴ et R⁵ et NR¹²
 est lié à R⁶,

R¹² est de l'hydrogène ou un groupe méthyle ;
 P est le nombre entier 0 ou 1 ;
 R⁶ représente

- a) de l'hydrogène,
 b) un groupe alkyle normal ou ramifié en C₁ à C₄ qui peut être substitué par
- i) un groupe phényle,
 ii) un groupe phényle substitué par un radical alkyle normal ou ramifié en C₁ à C₄ ou alkoxy normal ou ramifié en C₁ à C₄, ou bien
 iii) un groupe 2- ou 4-pyridyle,
- c) un groupe phényle ou naphtyle qui peut être substitué par
- i) une amine,
 ii) un groupe amino substitué avec un radical alkoxy carbonyle normal ou ramifié à reste alkoxy en C₁ à C₆, qui peut être substitué par un radical phé-

nyle ou un alcène en C₂ à C₆,
 5 iii) un groupe amino substitué par un radical alcanoyle en C₁ à C₆ ou un radical benzoyle,
 iv) un groupe sulfonamide (-SO₂NH₂) ou
 v) un groupe alkoxy normal ou ramifié en C₁ à C₆ qui peut être substitué par un radical phényle,

10 d) un groupe benzoyle,
 e) un groupe furyle ou thiofuryle ou
 f) un groupe cycloalkyle en C₅ à C₈, bicycloalkyle en C₆ à C₁₀, tricycloalkyle en C₇ à C₁₂ ou tétracycloalkyle en C₁₀ à C₁₄;

et les sels pharmaceutiquement acceptables de ce composé.

15 3. Composé de formule (I) suivant la revendication 1,
 dans lequel

R¹ représente

- 20 a) l'hydrogène,
 b) un groupe alkyle linéaire ou ramifié en C₁ à C₆ qui peut être substitué par
 i) un groupe hydroxy,
 ii) un groupe phényle ou un groupe phényle substitué par un radical alkyle normal ou ramifié en C₁ à C₄,
 25 iii) un groupe cycloalkyle en C₃ à C₈ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₄,
 iv) un groupe bicycloalkyle en C₆ à C₉ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆,
 30 v) un groupe tricycloalkyle en C₇ à C₁₂ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₄,
 vi) un groupe tétracycloalkyle en C₁₀ à C₁₂ qui peut être substitué par un radical alkyle normal ou ramifié en C₁ à C₆,
 35 vii) un groupe phényle ainsi qu'un groupe cycloalkyle en C₅ ou C₆, ou
 viii) un groupe phényle ainsi qu'un groupe morpholinyle,
 c) un alcène en C₃ à C₆ qui peut être substitué par un radical phényle,
 d) un diène en C₅ ou C₆ substitué par un radical alkyle normal ou ramifié en C₁ à C₄,
 e) un triène en C₁₃ à C₁₆ substitué jusqu'à trois fois par un radical alkyle normal ou ramifié en C₁ à C₄,
 40 f) un groupe cycloalkyle en C₅ ou C₆, ou le fragment cycloalkyle

50 dans lequel

m est le nombre entier 0, 1 ou 2,
 55 J, K et L représentent indépendamment ou simultanément

- i) de l'hydrogène,
 ii) un groupe alkyle normal ou ramifié en C₁ à C₅,
 iii) un group phényle u
 iv) un groupe phényle substitué par un radical alkyle normal ou ramifié en C₁ à C₄, ou

EP 0 564 924 B1

du chlore ou un radical alkoxy normal ou ramifié en C₁ à C₄,

- 5 g) un groupe bicycloalkyle en C₇ ou C₈ qui peut être substitué jusqu'à trois fois avec un radical alkyle normal ou ramifié en C₁ à C₄,
 - h) un groupe tricycloalkyle en C₇ à C₁₂ qui peut être substitué jusqu'à deux fois avec un radical alkyle normal ou ramifié en C₁ à C₆,
 - i) un groupe tétracycloalkyle en C₁₀ à C₁₂ qui peut être substitué jusqu'à trois fois par un radical alkyle normal ou ramifié en C₁ à C₄,
 - j) un groupe 2-benzothiényle substitué indépendamment ou simultanément au moins deux fois par
- 10 i) un groupe alkyle normal ou ramifié en C₁ à C₃,
 ii) du chlore
 iii) ou les deux,
- 15 k) un groupe furyle,
 l) un groupe 2-pyridyle,
 m) un groupe 2-naphtyle,
 n) un groupe 1,2,3,4-tétrahydronaphtyle,
 o) un groupe 2-benzopyrannyle,
 p) un groupe 2-benzofuryle,
 q) le fragment pipéronyle

25

30

dans lequel

35

z est le nombre entier 1 ou 2,
 et E¹, E² et E³ représentent de l'hydrogène, ou bien

r) le dérivé arylque

40

45

50

dans lequel
 U, V et W peuvent représenter, indépendamment ou simultanément

55

- i) de l'hydrogène
- ii) un groupe alkyle normal ou ramifié en C₁ à C₄,
- iii) un groupe alkoxy normal ou ramifié en C₁ à C₄,
- iv) un groupe alkoxy en C₂ substitué par un radical alkoxy en C₂ ou phénoxy,
- v) un groupe hydroxy,
- vi) un groupe phényle,

- vii) du fluor,
 viii) du chlore,
 ix) du brome,
 x) un groupe nitro,
 xi) un groupe benzyloxy,
 xii) un groupe benzoyle,
 xiii) un groupe phénoxy ;

5

10

Y est une liaison covalente, de l'oxygène, un groupe NR⁷ dans lequel R⁷ est de l'hydrogène ;
 en outre,

15

R¹-Y- peut aussi représenter un groupe

20

dans lequel

25

k est le nombre entier 1 ou 2,
 R⁸ représente

30

- a) de l'hydrogène,
- b) un groupe carbalkoxy dont la partie alkoxy est en C₁ ou C₂,
- c) un groupe alkyle normal ou ramifié en C₁ à C₄ qui peut être substitué par un radical phényle,
- d) un groupe phényle,

35

R⁹ est un groupe phényle ;
 R² et R³ sont définis comme suit : l'un de R² et R³ est de l'hydrogène et l'autre est de l'hydrogène ou un groupe alkyle normal ou ramifié en C₁ à C₄,

n est le nombre entier 2 ou 3 ;

A est un groupe NR¹⁰, dans lequel R¹⁰ est de l'hydrogène ou un groupe méthyle ;
 R⁴ représente

40

- a) de l'hydrogène,
- b) un groupe alkyle normal ou ramifié en C₁ à C₄ qui peut être substitué par

45

- i) un groupe phényle,
- ii) un groupe cycloalkyle en C₅ ou C₆,
- iii) un groupe alkylthio en C₁ à C₄.

50

- iv) un groupe carboxamido, ou
- v) un groupe benzyloxy, ou bien

55

R⁵ est de l'hydrogène ou un groupe alkyle normal ou ramifié en C₁ à C₄, et R⁴ et R⁵, considérés ensemble, peuvent représenter un groupe

$-(\text{CH}_2)_r-$

dans lequel

5

r est le nombre entier 5 ;

G est l'un des fragments suivants :

10

 $-\text{HC}=\text{CH}-$, $-\text{CH}_2\cdot\text{CH}_2-$, ou $-\text{CH}_2-$

ou le fragment suivant :

15

20

dans lequel le groupe carbonyle est lié à l'atome de carbone portant R⁴ et R⁵ et NR¹² est lié à R⁶,

25

R¹² est de l'hydrogène ou un groupe méthyle ;

p est le nombre entier 0 ou 1 ;

R⁶ représente

30

a) de l'hydrogène,

b) un groupe alkyle normal ou ramifié en C₁ à C₄ qui peut être substitué par

35

i) un groupe phényle,

ii) un groupe phényle substitué par un radical alkoxy en C₁ ou C₂,

iii) un groupe 2- ou 4-pyridyle,

40

c) un groupe phényle qui peut être substitué par

i) un groupe amino,

ii) un groupe amino substitué par un radical allyloxycarbonyle,

iii) un groupe amino substitué par un radical acétyle,

iv) un groupe amino substitué par un radical benzoyle,

v) un groupe amino substitué par un radical benzylloxycarbonyle,

iii) un groupe sulfonamide (-SO₂NH₂), ouiv) un groupe alkoxy normal ou ramifié en C₁ à C₄,

45

d) un groupe benzoyle,

e) un groupe furyle,

f) un groupe naphtyle,

g) un groupe cycloalkyle en C₅ à C₈, ouh) un groupe tétrocycloalkyle en C₁₀ à C₁₂ ;

50

et les sels pharmaceutiquement acceptables de ce composé.

4. Composé suivant les revendications 1 à 3, choisi dans le groupe consistant en :

55

N-[1-(2-benzyl oxy-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;

N-[1-(2-méthoxy-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;

N-[1-(2-phényl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;

N-[1-(2-napht-2-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;

N-[1-(2-(biphényl-4-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2-méthoxyphényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(5-chloro-3-méthylbenzo[B]thiophène-2-yl)-2-oxo-éthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-trans,trans-hexa-2,4-diényl-1-oxy)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 5 N-[1-(2-(4-chlorophényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-méthylphényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-méthoxyphényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-méthyl-N-[1-(2-phényl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-phényl-2-oxoéthyl)-L-homoproline]benzylamide de L-isoleucine ;
 10 N-[1-(2-phényl-2-oxoéthyl)-L-proline-benzylamide de L-phénylglycine ;
 N-[1-(1-méthyl-2-phényl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3-méthoxyphényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3,4-dihydroxyphényl)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 15 N-méthyl-N-[1-(2-benzyloxy-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(carbobenzoyloxyméthylène)-L-homoproline-benzylamide de L-isoleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(carbo-tertio-butoxyméthylène)-L-proline]benzylamide de L-isoleucine ;
 N-[1-(2-tertio-butyl-2-oxoéthyl)-L-proline]benzylamide de L-isoleucine ;
 20 N-[1-(2-(2,5-diméthoxyphényl)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 N-[1-(2-(2,4-diméthoxyphényl)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 N-[1-(2-nitrophényl)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-nitrophényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3-benzyloxyphényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 25 N-[1-(2-(2,4-diméthylphényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-fluorophényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-bromophényl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2,4-dichlorophénylcarbamoylméthyl)-L-proline]benzyl-amide de L-isoleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-homoproline]benzylamide de L-isoleucine ;
 N-[1-(2-furanne-2-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 30 N-[1-(2-pyrid-2-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(adamant-1-ylcarbamoylméthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(cis-octahydro-pentalène-1-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2,6,6-triméthyl-bicyclo[3.1.1]hept-3-yl)-2-oxo-éthyl)-L-prolyl]benzylamide de L-isoleucine ;
 35 N-[1-(2-(4-pentylcyclohexyl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(1,2,3,4-tétrahydro-naphtalène-2-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(1-méthyl-cyclohexyl)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 N-[1-(2-oxo-2-tricyclo[3.3.1.0^{3,7}]non-3-yl-éthyl)-L-prolyl]benzylamide de L-isoleucine ;
 40 N-[1-(2-oxo-3-(3-méthyl-adamantan-1-yl)-propyl)-L-prolyl]benzylamide de L-isoleucine ;
 ester de 1-(2-adamantan-1-yl-2-oxoéthyl)benzyle de L-proline ;
 N-[1-(2-(biphényl-4-yl)-2-oxoéthyl)-L-prolyl]1,2,3,4-tétrahydroisoquinolinamide de L-isoleucine ;
 ester de N-[1-(2-(biphényl-4-yl)-2-oxoéthyl)-L-prolyl]benzyle de L-isoleucine ;
 N-[1-(2-(biphényl-4-yl)-2-oxoéthyl)-L-prolyl]tertio-butyl-amide de L-isoleucine ;
 N-[1-(2-(biphényl-4-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-phénylalanine ;
 45 N-[1-(2-(biphényl-4-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-méthionine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de glycine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-valine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-leucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de Lphénylalanine ;
 50 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-norvaline ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-norleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-asparagine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide d'éther O-benzyllique de L-sérine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-β-phénylalanine ;
 55 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]benzylamide de L-cyclohexylalanine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]alpha-(S)-méthyl-benzylamide de L-isoleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]alpha-(R)-méthyl-benzylamide de L-isoleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]pyridine-4-yl-méthylamide de L-isoleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]pyridine-2-yl-méthylamid de L-isoleucin ;

N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]-4-méthoxybenzyl-amide de L-isoleucine ;
 N-[1-(2-adamantan-1-yl-2-oxoéthyl)-L-prolyl]-2-méthoxybenzyl-amide de L-isoleucine ;
 N-[1-(carboxyméthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-[2-[N-(N-(2-oxoéthyl)-L-prolyl)benzylamide de L-isoleucine ;
 5 N-[1-(2-(1,4-dioxa-8-aza-spiro[4.5]déc-8-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-[2-(N-(4-benzylpipéridyl))-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-[2-(2-méthylpipéridine)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2-hydroxyéthylamine)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-[2-(4-phénylpipérazine)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 10 N-[1-[2-(1-pyrrolidine)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-[2-(N-cyclopentylamino)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-[2-N-(phénylméthylamino)-2-oxoéthyl]-L-prolyl]benzyl-amide de L-isoleucine ;
 N-[1-[2-(N-(cyclohexylméthylamino)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-phénylpipéridyl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 15 N-[1-(2-[1-(3,7,11-triméthylodéca-2,6,10-triène-1-ol)]-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3-phényl-2-propène-1-oxy)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 N-[1-(2-(3-phényl-3-méthyl-2-propène-1-oxy)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(1-phénylpropoxy)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 20 N-[1-(2-(1-phényl-1-cyclohexylméthoxy)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(1-phényl-2-(4-morpholino)éthoxy)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2-oxy-2-méthyladamant-2-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(adamantan-2-ylcarbamoylméthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(adamant-1-ylméthylcarbamoylméthyl)-L-prolyl]benzylamide de L-isoleucine ;
 25 N-[1-(2-(2-méthyl-1-(S)-phényl-1-propoxy)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2-méthyl-1-(R)-phényl-1-propoxy)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-tertio-butylcyclohexyl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-bicyclo[2.2.1]hept-2-yl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3,4,5-triméthoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 chlorhydrate de N-[1-(2-chroman-2-yl)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 30 chlorhydrate de N-[1-(2-benzofuranne-2-yl)-2-oxoéthyl]-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3-benzoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(4-benzoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2-benzoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 35 N-[1-(2-(3-phénoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2-phénoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(3,4,5-triéthoxyphényle)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 N-(1-(2-benzo[1.3]dioxole]-5-yl)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 N-[1-(2-oxo-2-[4-(2-phénoxyéthoxy)-phényle]-éthyl)-L-prolyl]benzylamide de L-isoleucine ;
 40 N-[1-(2-(4-phénoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2,4,6-triméthoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2,3-diméthoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2,6-diméthoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(1-(4-méthylphényle) cyclohexyl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 45 N-[1-(2-(1-(4-chlorophényle)cyclohexyl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2,3,4-triméthoxyphényle)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(1-phénylecyclohexyl)-2-oxoéthyl)-L-prolyl]benzylamide de L-isoleucine ;
 N-[1-(2-(2,4,5-triméthoxyphényle)-2-oxoéthyl)-L-prolyl]benzyl-amide de L-isoleucine ;
 chlorhydrate d'ester benzylique de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-benzylamide de L-proline ;
 50 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-2-phénethylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-3-phénylpropylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-4-phénylbutylamide de L-proline ;
 dichlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-2-(pyrid-2-yl)éthylamide de L-proline ;
 dichlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-2-(4-aminophényle)éthylamide de L-proline ;
 chlorhydrate d'ester 1-[2-(3,4,5-triméthoxyphényle)-2-oxo-éthyl]-3-(4-[N-carballyoxy]aminophényle)propylque
 de L-proline ;
 55 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]-2-phényl-2-oxoéthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)-2-oxoéthyl]tétrahydrofurfuryl-amide de L-prolin ;

1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]naphthalène-1-yl-méthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]2-(4-sulfamoylphényle)éthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-4-phénylpipéridényl-amide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-4-méthoxybenzamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-3-méthoxybenzamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-2-méthoxybenzamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-N-méthylphénéthylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-S- α -méthylbenzylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-R- α -méthylbenzylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-1-méthyl-3-phénylpropylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-adamant-1-ylméthylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-1(R)-(1-naphtyl)éthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]cyclohexylméthylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]di-phénylméthylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-tertio-butylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-1,2-diphényléthylamide de L-proline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-cyclohexylamide de L-proline ;
 chlorhydrate d'ester benzylique de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-L-homoproline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-benzylamide de L-homoproline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-adamant-1-ylméthylamide de L-homoproline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]tétrahydrofuranylamide de L-homoproline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-2-(4-sulfamoylphényle)éthylamide de L-homoproline ;
 chlorhydrate de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-S- α -méthylbenzylamide de L-homoproline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-1-(S)-[2'-(S)-méthylpropyl]-3-phényl(prop-2-E-ényl)-amide de L-homoproline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-1-(S)-[2'-(S)-méthylpropyl]-3-phényl(prop-2-E-ényl)-amide de L-homoproline ;
 N-[1-(2-(3,4,5-triméthoxyphényle)2-oxoéthyl)-L-homopropyl]-benzylamide de L-isoleucine ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-2-(4-(N-acétyl)-aminophényle)éthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-2-(4-(N-benzoyl)-aminophényle)éthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-2-(4-(N-carballoxy)aminophényle)éthylamide de L-proline ;
 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-2-(4-(N-carbobenzyl-oxy)aminophényle)éthylamide de L-proline ;
 chlorhydrate d'ester de 1-[2-(3,4,5-triméthoxyphényle)2-oxoéthyl]-3-(4-(N-carballyloxy)aminophényle)propylque de L-homoproline ;
 chlorhydrate d'ester 1-[2-adamantan-1-yl-2-oxoéthyl]-3-(4-(N-carballyloxy)aminophényle)propylque de L-proline ;
 et
 chlorhydrate d'ester 1-[2-adamantan-1-yl-2-oxoéthyl]-3-(4-(N-carballyloxy)aminophényle)propylque de L-homoproline.

5. Composé suivant les revendications 1 à 4, destiné au traitement d'inflammations.
 40 6. Médicament contenant au moins un composé suivant les revendications 1 à 4.
 7. Utilisation des composés suivant les revendications 1 à 4 pour la préparation d'une composition destinée au traitement d'une inflammation.
 45 8. Procédé de production de composés suivant les revendications 1 à 4, comprenant les étapes suivantes :

55

qui sont

- (a) le couplage d'un iminoacide protégé sur l'azote à une amine ou à un alcool pour former un iminoacide protégé sur l'azote substitué sur le carbone ;
 (b) l'élimination du groupe protecteur de cet iminoacide protégé sur l'azote et substitué sur le carbone ; et
 (c) l'alkylation de l'iminoacide résultant de l'étape (b) dans la position de l'azote avec un α -halogénester, une α -halogénocétone ou un α -halogénamide.

5

9. Procédé de production des composés suivant les revendications 1 à 4, comprenant les étapes suivantes :

10

15

qui sont :

20

- a) l'élimination de la protection en position 2 d'un premier dérivé 2-oxoéthylique ; et
 b) le couplage du dérivé acide résultant de l'étape (a) pour former un second dérivé 2-oxoéthylique.

25

30

qui sont :

35

- a) l'élimination de la protection des atomes C-terminaux de l'iminoacide d'un dérivé 2-oxoéthylique pour former un iminoacide 2-oxoéthylique ; et
 b) le couplage de cet iminoacide 2-oxoéthylique résultant de l'étape (a) à une amine ou un alcool pour former un dérivé d'iminoacide 2-oxoéthylique substitué sur le carbone.

40

45

50

55