ISWZ3402 Inteligencia Artificial II

Ejercicio práctico

Elaborado por: Mario González

RESULTADO DE APRENDIZAJE DE LA CARRERA:

RC7. Adquiere y aplica nuevos conocimientos según sea necesario, utilizando estrategias de aprendizaje apropiadas.

Indicadores de desempeño:

- Indaga técnicas y herramientas necesarias acorde al problema planteado
- Argumenta las técnicas y herramientas disponibles
- Aplica las técnicas y herramientas pertinentes al problema planteado

OBJETIVO PROPUESTO DE LA CONSIGNA:

The objective of this homework is to develop and implement a quadratic regression model to better understand and predict the relationship between variables where linear models may fall short. Through this assignment, students will gain hands-on experience in data preprocessing, model building, and evaluation within the context of quadratic regression. This includes applying the theoretical concepts of polynomial regression, enhancing their proficiency in Python programming, and leveraging libraries such as NumPy and scikit-learn. By completing this task, students will be able to analyze complex datasets, interpret the results of quadratic regression, and compare its performance with linear regression models, thereby deepening their understanding of machine learning techniques and their applications.

INDICACIONES:

Implement a polynomial (quadratic) regression

Model 1: Analytical Solution (Quadratic Regression)

For this model, you'll use libraries like sklearn, scipy, or statsmodel to perform quadratic regression. You can replicate the approach from linear regression, but instead of fitting a linear function, you'll fit a quadratic function. Here's a general outline:

- 1. **Import necessary libraries**: Import sklearn, scipy, or statsmodel for quadratic regression.
- 2. **Load the dataset**: Use the provided dataset:

https://raw.githubusercontent.com/Machine1314/natural_computing/main/data_regression.csv

- 3. **Prepare the data**: Preprocess the data as needed (scaling, splitting into training and testing sets).
- 4. **Fit the quadratic regression model**: Use the chosen library to fit the quadratic regression model to the training data.
- 5. **Evaluate the model**: Assess the model's performance using appropriate metrics.
- 6. **Compare with other models**: Keep the results for comparison with Models 2 and 3.
- 7. **Check:** https://marsgr6.github.io/presentations/curve_fitting_and_inter-polation.slides.html#/4

Model 2: Numerical Solution (Gradient Descent)

This model involves finding the coefficients a0, a1, and a2 for the quadratic regression using gradient descent. Here's what you'll do:

- 1. **Define the cost function**: Define a cost function (e.g., mean squared error) for quadratic regression.
- 2. **Implement gradient descent**: Write functions to perform gradient descent to minimize the cost function.
- 3. **Scale the data**: Scale the input features if needed.
- 4. **Fit the model using gradient descent**: Use the implemented gradient descent algorithm to find the optimal coefficients.
- 5. **Evaluate the model**: Assess the model's performance using appropriate metrics.
- 6. **Compare with Model 1**: Compare the results obtained from gradient descent with those from the analytical solution.
- 7. Check: https://deepnote.com/workspace/mario-gonzalez-911d-e512259f-42a9-4514-8972-e208f19e4b48/project/ai2202210-cce3455d-da08-4c10-a6fe-39f2a30c6a51/notebook/06_gradient_descent_202420-4b60a63aaa874332a84a86908d9de75d

Model 3: MLP (Multi-layer Perceptron)

In this model, you'll use a multi-layer perceptron (MLP) for quadratic regression. Here's what you'll do:

 Import necessary libraries: Import libraries for building and training MLPs.

- 2. **Load and preprocess the data**: Use the provided dataset or the one from the dataset above. Scale the data if necessary.
- 3. **Build the MLP model**: Define a neural network architecture suitable for quadratic regression.
- 4. **Find best parameters**: Use techniques like grid search or random search to find the best hyperparameters for the MLP.
- 5. **Train the model**: Train the MLP model on the training data.
- 6. **Check for overfitting**: Monitor the training and validation loss to identify overfitting.
- 7. **Evaluate the model**: Assess the model's performance using appropriate metrics.
- 8. **Compare with other models**: Keep the results for comparison with Models 1 and 2.
- 9. **Check:** https://nbviewer.org/github/marsgr6/mlonline/blob/main/ann-dnn.ipynb

After implementing each model, you can compare their performance using metrics like mean squared error, R-squared, etc. To get back to the original scale for comparison, you'll need to reverse any scaling transformations applied to the predictions.

General instructions

 (-1 pts) Specify the group members in the first cell of the notebook.
☐ Give an itemized list: each member in a line.
• (-1 pts) Deliver two files into a zip folder with the following name format:
P2_Project_IA202410_II1II2II3.zip: with two files: html (or pdf) and
ipynb.
For exampel: Nikita Martínez, Nestor Lozada, Damián Briones, results in
a file name: P2_Project_IA202410_NM1NL2DB3.zip.
• (-1 pts) All group members should upload the same file
The report (notebook) will be evaluated as:
lacktriangle (-5 pts) Poor: only the code was delivered.
\square (-5 pts) Fair: commented code, with sections.
lacktriangle (-2 pts) Good: commented code, with sections and explanations of each
part of the process.
lacktriangle (-0 pts) Excellent: commented code, with sections and explanations of
each part of the process including formulas, research, and explanation
of your ML model, the dataset exploration, the problem you want to
solve, etc. Figures with labels, titles legends, etc.

FORMA DE TRABAJO:

La propuesta se la desarrollará en grupos de máximo de 5 integrantes.

ESPECIFICACIONES DE ENTREGA:

El estudiante debe entregar un informe completo y detallado en formato ipynb (jupyter notebook) donde se detalle cada una de las fases. Debe exportar el informe a html o pdf, y adjuntar junto con el notebook en ipynb.

Identifica necesidades de aprendizaje

- Define el problema de muestreo: random vs. Kmeans.
- Represente de forma gráfica los resultados comparando ambas formas de muestreo

Selecciona fuentes de información

 Investiga referencias que describen el uso de los modelos de ML seleccionados

Aplica las técnicas y herramientas pertinentes al problema planteado

- Realiza el preprocesamiento de los datos de entrada (si fuese necesario)
- Implementa el escalado adecuado de los datos (recuerde que algoritmo de ML tiene su particularidad de procesar el input)
- Implementa los modelos de ML para el problema y realiza los experimentos indicados
- Describe la solución (combinación de hiperparámetros) con su respectiva justificación
- Conclusiones

RÚBRICA:

CRITERIOS	EXCELENTE	MUY BUENO	BUENO	REGULAR	INSUFICIENTE
	Identifica necesidades de	Identifica necesidades	Identifica necesidades	Requiere apoyo para	Requiere apoyo para
IDENTIFICA	aprendizaje de manera	de aprendizaje de	de aprendizaje de	identificar necesidades	identificar
NECESIDADES DE	autónoma y aplica	manera autónoma y	manera autónoma y	de aprendizaje y aplica	necesidades de
APRENDIZAJE	estrategias apropiadas y	aplica estrategias	aplica estrategias	estrategias poco	aprendizaje y no
AFILINDIZAJE	relevantes que le	apropiadas que le	generales que le	apropiadas que le	aplica estrategias que
	permiten ampliar su	permiten ampliar su	permiten ampliar su	permiten ampliar su	le permiten ampliar su
	conocimiento.	conocimiento.	conocimiento.	conocimiento.	conocimiento.
	Selecciona de manera	Selecciona de manera	Selecciona de manera	Selecciona de manera	No selecciona
	proactiva fuentes de	activa fuentes de	básica, aunque	básica y poco	fuentes de información
	información adicional y	información adicional y	apropiada, fuentes de	apropiada fuentes de	adicional y no
SELECCIONA	persigue	persigue	información adicional y	información adicional y	persigue experiencias
FUENTES DE	permanentemente	permanentemente	persigue	persigue	educacionales más
INFORMACIÓN	experiencias	experiencias	regularmente	ocasionalmente	allá de los
INFORMACION	educacionales más allá	educacionales más allá	experiencias	experiencias	requerimientos de su
	de los requerimientos de	de los requerimientos de	educacionales más allá	educacionales más allá	entorno de
	su entorno de	su entorno de	de los requerimientos	de los requerimientos de	aprendizaje.
	aprendizaje.	aprendizaje.	de su entorno de	su entorno de	
			aprendizaje.	aprendizaje	
	Aplica de una manera	Aplica de una manera	Aplica de una manera	Aplica de una manera	Aplica de forma
APLICA DESTREZAS	innovadora (nueva y	adecuada las destrezas	básica las destrezas y	parcial las destrezas y	errónea las destrezas
Y CONOCIMIENTOS	creativa) las destrezas y	y conocimientos,	conocimientos, conocimientos,		y conocimientos,
	conocimientos,	demostrando	demostrando	demostrando poca	demostrando un
	demostrando	comprensión y un	comprensión y buen	comprensión y un	desempeño
	comprensión y excelente	óptimo desempeño	desempeño frente a	desempeño regular	deficiente frente a
			nuevas situaciones.		nuevas situaciones.

d	desempeño	frente	а	frente	а	nuevas	frente a nuevas	
n	nuevas situacio	ones.		situacion			situaciones.	