TIE2140 Engineering Economy Solutions to Tutorial # 9

Question 1.

Year 2014: Index = 220, Cost = \$250,000

Year 2019: Index = 298, Cost = ?

Therefore Year 2019 Cost: $C_{2019} = C_{2014} \left(\frac{I_{2019}}{I_{2014}} \right) = \$250,000 \left(\frac{298}{220} \right) = \$338,636.36$

Question 2.

Let Cost of old loader 8 years ago = \$181,000

Capacity of old loader = XCost index 8 years ago = 162

Capacity of new loader = 1.42XCost index now = 221Cost capacity factor = 0.8

Therefore

Cost new loader with capacity $X = $181,000 \left(\frac{221}{162}\right) = $246,919.75$

Cost of new loader with capacity $1.42X = $246,919.75 \left(\frac{1.42X}{X}\right)^{0.8} = $326,878.62$

Total Cost with options = \$326,878.62 + \$28,000 = \$354,878.62

Question 3.

$$K = 126 \text{ hours}$$

 $s = 0.95$ // 95% learning curve
 $n = (log \ 0.95) / (log \ 2) = -0.074$

(a) Time to design the 8th tower = $Z_8 = 126 (8)^{-0.074} = 108.03$ hours

Time to design the 50^{th} tower = $Z_{50} = 126 (50)^{-0.074} = 94.33$ hours

(b) Total cumulative time for the first 5 towers =

$$T_5 = 126 \sum_{u=1}^{5} u^{-0.074}$$

= 126+119.7+116.16+113.72+111.85 = 587.43 hours

Cumulative average time for the first 5 towers = $C_5 = T_5/5 = 587.43/5 = 117.49$ hours

TIE2140 (2024) soln-9-1

Question 4.

(a) Let the regression model be y = a + bx

Item	х	У	x^2	y^2	хy
1	230	97	52,900	9,409	22,310
2	280	109	78,400	11,881	30,520
3	210	88	44,100	7,744	18,480
4	190	86	36,100	7,396	16,340
5	320	123	102,400	15,129	39,360
6	300	114	90,000	12,996	34,200
7	280	112	78,400	12,544	31,360
8	260	102	67,600	10,404	26,520
9	270	107	72,900	11,449	28,890
10	190	86	36,100	7,396	16,340
sum	2,530	1,024	658,900	106,348	264,320

$$n = 10$$

$$\sum x_i = 2,530$$
 $\overline{x} = \frac{2,530}{10} = 253$ $\sum x_i^2 = 658,900$

$$\sum x_i = 2,530 \qquad \overline{x} = \frac{2,530}{10} = 253 \qquad \sum x_i^2 = 658,900$$

$$\sum y_i = 1,024 \qquad \overline{y} = \frac{1,024}{10} = 102.4 \qquad \sum y_i^2 = 106,348$$

$$\sum x_i y_i = 264,320$$

$$b = \frac{\sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)}{\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2} = \frac{(264,320) - (2,530)(1,024)/10}{(658,900) - (2,530)^2/10} = 0.279001$$

$$a = \overline{y} - b\overline{x} = 102.4 - 0.2790(253) = 31.8129$$

Hence the linear regression model is

$$y = 31.8129 + 0.2790 x$$

TIE2140 (2024) soln-9-2

(b) Coefficient of Correlation Analysis

Item	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
1	124.200	529.000	29.1600
2	178.200	729.000	43.5600
3	619.200	1849.000	207.3600
4	1033.200	3969.000	268.9600
5	1380.200	4489.000	424.3600
6	545.200	2209.000	134.5600
7	259.200	729.000	92.1600
8	-2.800	49.000	0.1600
9	78.200	289.000	21.1600
10	1033.200	3969.000	268.9600
Total	5248.000	18810.00	1490.40

$$\sum (x_i - \overline{x})(y_i - \overline{y}) = 5,248$$

$$\sum (x_i - \overline{x})^2 = 18,810$$

$$\sum (y_i - \overline{y})^2 = 1,490.40$$

$$R = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left(\sum_{i=1}^{n} (x_i - \overline{x})^2\right)\left(\sum_{i=1}^{n} (y_i - \overline{y})^2\right)}} = \frac{5,248}{\sqrt{(18,810)(1,490.4)}} = 0.99117$$

(c) Prediction:

When x = 250 lbs.

$$y = 31.8129 + 0.2790 (250) = $101.56$$

Question 5.

```
K = 1.76 hours // time for 1st item s = 0.8 // 80% learning curve n = \log(0.80) / \log(2) = -0.32193
```

Time for the 50^{th} item = $Z_{50} = 1.76 (50)^{-0.32193} = 0.5$ hours

Manufacturing Cost Analysis:

Selling Price	= \$31.50
Total Manufacturing cost Desired profit= (0.20)(26.25)	=\$ 26.25 per item = \$ 5.25 per item
Packing cost = (0.75)(\$7.50 / item)	= \$ 5.625 per item
Direct material cost = $\$375 / 100$ items) Factory overhead cost = $(1.25)(\$7.50 / \text{item})$	= \$ 3.75 per item) = \$ 9.375 per item
Direct Labor cost = $(\$15 / hr)(0.5 hr / item)$	

501111g 1 1100 <u>\$671.50</u>

TIE2140 (2024) soln-9-4