This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Offenlegungsschrift

₀₎ DE 3718421 A1

(5) Int. Cl. 4: B 60 T 8/32

B 60 K 28/16

DEUTSCHLAND

DEUTSCHES PATENTAMT

21) Akt nzeichen:

P 37 18 421.0

② Anmeldetag:④ Offenlegungstag:

2. 6. 87 15. 12. 88

① Anmelder:

Alfred Teves GmbH, 6000 Frankfurt, DE

② Erfinder: ...

Giers, Bernhard, 6101 Roßdorf, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 34 13 738 A1 DE 32 34 282 A1 DE 31 40 959 A1 DE 31 27 302 A1

Schaltungsanordnung für Bremsanlagen mit Blockierschutz- und/oder Antriebsschlupf-Regelung

Eine Schaltungsanordnung für Bremsanlagen mit Blokkierschutz- und/oder Antriebsschlupf-Regelung ist mit Schaltkreisen zur Kurvenerkennung und zur Erzeugung von für die Kurvenfahrt charakteristischen Signalen ausgerüstet. Es wird die Differenzgeschwindigkeit (ΔV) zwischen den Rädern einer Achse gemessen. Das Differenzgeschwindigkeitssignal wird normiert. Mit Hilfe eines Tiefpasses (5) großer Zeitkonstante wird ein Fehlersignal (E_{sys}) erzeugt, das systembedingt ist und auch bei Geradeausfahrt auftritt. Die Differenz zwischen dem normierten Differenzgeschwindigkeitssignal (V_n) und dem Fehlersignal (E_{sys}) stellt das Kurvenfahrtsignal (CRV) dar.

Außerdem wird eine von der Geschwindigkeit eines Rades (V_{min}) abhängige Größe (CRV_{grenz}) mit dem Kurvenfahrtsignal (CRV) verglichen und auf Plausibilität überprüft.

Eine zweite Plausibilitätsprüfung beruht auf dem Vergleich und der Bewertung der Kurvenfahrtsignale, die von der Vorderachse (VA) und der Hinterachse (HA) unabhängig voneinander erzeugt wurde.

Assolumjany

Patentansprüche

1. Schaltungsanordnung für Kraftfahrzeug-Bremsanlagen mit Blockierschutz- und/oder Antriebsschlupf-Regelung, mit Radsensoren zur Erzeugung von elektrischen Signalen, die das Raddrehverhalten darstellen, mit elektronischen Schaltkreisen zur Aufbereitung, logischen Verknüpfung und Verarbeitung der Sensorsignale und zur Erzeugung von Bremsdruck- und/oder Antriebsmoment-Steuersi- 10 gnalen, mit Schaltkreisen zur Kurvenerkennung und zur Erzeugung von für die Kurvenfahrt charakteristischen Signalen und zum Vergleich dieser Signale mit der Fahrzeuggeschwindigkeit, dadurch gekennzeichnet, daß die Schaltkreise zur Erzeu- 15 gung der Kurvensahrtsignale (CRV) mit Schaltzweigen (1, 2) zur Ermittlung eines Differenzgeschwindigkeitssignals (\(\Delta \) V. Vn), das die Geschwindigkeitsdifferenz zwischen den Rädern einer Fahrzeugachse (Va, Ha) wiedergibt, und mit Schaltzwei- 20 gen (5) zur Bestimmung eines systembedingten, von der momentanen Kurvenfahrt unabhängigen Fehlersignals (Esys) bzw. Korrektursignals, das bei der Auswertung der Differenzgeschwindigkeitssignale ($\Delta V, V_n$) und bei der Ermittlung der Kurvenfahrtsi- 25 gnale (CRV) berücksichtigbar ist, ausgerüstet sind. 2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß zur Ermittlung des Differenzgeschwindigkeitssignals (V_n) die prozentuale Abweichung der Geschwindigkeit (VR, VL) eines Ra- 30 des von der Geschwindigkeit des zweiten Rades der gleichen Achse ermittelbar ist.

3. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß zur Ermittlung des Differenzgeschwindigkeitssignals (V_n) die Geschwindigkeitsdifferenz (ΔV) zwischen den Rädern einer Achsedurch Division durch eine Radgeschwindigkeit, z. B. durch die Geschwindigkeit des momentan langsameren Rades (v_{min}) , normierbar ist.

4. Schaltungsanordnung nach Anspruch 2 oder 3, 40 dadurch gekennzeichnet, daß zur Bestimmung des Fehlersignals (E_{SiS}) das Differenzgeschwindigkeitssignal (ΔV) bzw. die normierte Differenzgeschwindigkeit (V_n) einem Tiefpaß mit im Vergleich zur Dauer einer üblichen Kurvenfahrt großer Zeitkonstante, z. B. einem Tiefpaßfilter (5) erster Ordnung mit einer Zeitkonstanten von mindestens 40 Sekunden, zuführbar ist.

5. Schaltungsanordnung nach Anspruch 4, dadurch gekennzeichnet, daß ein Tiefpaßfilter (5) mit umschaltbarer Zeitkonstante (T_1, T_2) vorgesehen ist und daß beim Vorliegen eines Kurvenfahrtsignals (CRV) eine Umschaltung auf eine noch größere Zeitkonstante (T_2) erfolgt.

6. Schaltungsanordnung nach Anspruch 4, dadurch 55 gekennzeichnet, daß das Tiefpaßfilter (5) bei Geradeausfahrt auf eine Zeitkonstante (T₁) von etwa 30 bis 120 Sekunden ausgelegt und auf eine Zeitkonstante (T₂) von etwa 150 bis 300 Sekunden umschaltbar ist.

7. Schaltungsanordnung nach einem der Ansprüche 4-6, dadurch gekennzeichnet, daß ein Schaltzweig (4, 7) vorhanden ist, dem das normierte Differenzgeschwindigkeitssignal (V_n) und ein konstanter Vergleichswert (k_2) zuführbar sind und der beim 65 Überschreiten eines maximalen Differenzgeschwindigkeitssignals die Berücksichtigung dieses Signals bei der Bestimmung bzw. bei der fortlau-

fenden Korrektur des Fehlersignals (Esys) unterbindet

8. Schaltungsanordnung nach einem der Ansprüche 2-7, dadurch gekennzeichnet, daß die Differenz zwischen dem Differenzgeschwindigkeitssignal und dem Fehlersignal (Esys) als Kurvenfahrtsignal (CRV) auswertbar ist.

9. Schaltungsanordnung nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß Schaltzweige (8) vorhanden sind, die aus der momentanen Radgeschwindigkeit (V_R, V_L), insbesondere aus der Geschwindigkeit des langsameren Rades (V_{min}), einen Kurvenfahrt-Grenzwert (CRV_{grenz}) ermitteln und mit dem momentanen Kurvenfahrtsignal (CRV) vergleichen und die ein Störsignal abgeben, wenn das Kurvenfahrtsignal (CRV) den Kurvenfahrt-Grenzwert überschreitet.

10. Schaltungsanordnung nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß den Achsen (VA, HA) eines Fahrzeugs je eine von den anderen Achsen unabhängige Gesamtschaltung (1-12; Fig. 1) zur Erzeugung des Kurvenfahrtsignals (CRV) zugeordnet sind und daß die Ausgangssignale dieser Gesamtschaltungen (1-12) einer Bewertungsschaltung (13, 13') zuführbar und mit dieser auf Plausibilität überprüfbar sind.

11. Schaltungsanordnung nach Anspruch 10, dadurch gekennzeichnet, daß der Bewertungsschaltung (13) von den einzelnen Gesamtschaltungen (1-12) Informationen über die Erkennung der Kurvenfahrt, den Kurvenradius, die Geradeausfahrt, Linkskurve, Rechtskurve, Differenzgeschwindigkeit etc., und zwar alle oder einige dieser Informationen, zuführbar sind.

12. Schaltungsanordnung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß Schaltzweige (13', 18, 19) vorhanden sind, die bei einem charakteristischen Unterschied zwischen den Signalen verschiedener Fahrzeugachsen (VA, HA) bzw. Gesamtschaltungen (1-12), der z. B. auf das Anbringen eines Notrades (Mini-Spare-Rades) mit abweichendem Abrollradius zurückzuführen ist, eine Korrektur der Auswerteschaltung, z. B. bei der Erzeugung des Differenzgeschwindigkeitssignals, bewirken.

Beschreibung

Die Erfindung bezieht sich auf eine für Kraftfahrzeug-Bremsanlagen mit Blockierschutz- und/oder Antriebsschlupf-Regelung vorgesehene Schaltungsanordnung, die mit Radsensoren zur Erzeugung von elektrischen Signalen, die das Raddrehverhalten darstellen, mit elektronischen Schaltkreisen zur Aufbereitung, logischen Verknüpfung und Verarbeitung der Sensorsignaben der Zur Erzeugung von Bremsdruck- und/oder Antriebsmoment-Steuersignalen, sowie mit Schaltkreisen zur Kurvenerkennung und zur Erzeugung von für die Kurvenfahrt charakteristischen Signalen und zum Vergleich dieser Signale mit der Fahrzeuggeschwindigkeit ausgerüstet ist.

Eine derartige Schaltungsanordnung für Kraftfahrzeuge mit Vortriebsregelung ist bereits aus der DE-Patentschrift 31 27 302 bekannt. Mit Hilfe der in dieser Patentschrift beschriebenen Kurvenfahrt-Erkennungseinrichtung wird ein für die Kurvenfahrt charakteristisches Signal allein durch Auswertung der von Sensoren, die an den beiden Rädern der nichtangetriebenen Achse angeordnet sind, gelieferten Signale gewonnen. Zur Er-

höhung der Fahrstabilität wird mit Hilfe dieses Kurvenfahrt-Signals das Antriebsmoment des Kraftfahrzeugmotors bei einer Kurvenfahrt schon dann reduziert, wenn nur eines der Antriebsräder zum Durchdrehen neigt und gleichzeitig ein Schwellenwert der Fahrzeuggeschwindigkeit überschritten ist. Die Kurvenerkennung beruht allein auf der Messung der Drehzahldifferenz zwischen den beiden Vorderrädern. Eine Drehzahldifferenz, die auf unterschiedliche Abrollradien der beiden Räder, z. B. durch unterschiedliches Profil oder 10 Reifenabnutzung, zurückgeht, wird daher zu einem fehlerhaften Signal führen, oder die Ansprechschwelle der Kurvenerkennung wird so hoch gelegt, daß nur relativ enge Kurven, die aus physikalischen Gründen nur mit geringer Geschwindigkeit zu durchfahren sind, erkannt 15 werden können.

Ferner ist bereits eine Schaltungsanordnung für eine schlupfgeregelte Bremsanlage mit einer Kurvenfahrterkennungsschaltung bekannt, die jeweils den Schlupf der beiden Räder einer Fahrzeugseite addiert und mit der 20 Schlupfsumme der Räder auf der anderen Fahrzeugseite vergleicht (DE-Offenlegungsschrift 34 13 738). Sobald die Differenz der Schlupfsummen beider Fahrzeugseiten einen Grenzwert überschreitet, werden zeitweise die Auswahlkriterien, z. B. von select-low auf se- 25 lect-high, und damit der Bremsdruckverlauf geändert. Auf diese Weise wird der Bremsdruckverlauf den unterschiedlichen Verhältnissen bei Geradeausfahrt und Kurvenfahrt angepaßt, damit in jeder Situation der Fahrstabilität und Lenkbarkeit des Fahrzeugs so weit wie möglich erhalten bleibt. Durch unterschiedliche Abrollradien bedingte Differenzen der Drehgeschwindigkeiten, die Schlupfdifferenzen oder Kurvenfahrt vortäuschen, beeinträchtigen auch bei dieser bekannten Schaltung die Genauigkeit der Kurvenerkennung und der Auswer- 35 tung dieser Signale.

Der Erfindung liegt daher die Aufgabe zugrunde, die beschriebenen Nachteile bekannter Schaltungsanordnungen zu überwinden und das Entstehen von Fehlsignalen sowie Fehlreaktionen, die insbesondere auf unterschiedlichen Abrollumfang der einzelnen Räder zurückzuführen sind, bei der Kurvenerkennung zu vermeinen

Es hat sich nun gezeigt, daß diese Aufgabe ein überraschend einfacher und technisch fortschrittlicher Weise durch eine Schaltungsanordnung der eingangs genannten Art gelöst werden kann, deren Besonderheit darin besteht, daß die Schaltkreise zur Erzeugung der Kurvenfahrtsignale (CRV) mit Schaltzweigen zur Ermittlung eines Differenzgeschwindigkeitssignals, das die Geschwindigkeitsdifferenz zwischen den Rädern einer Fahrzeugachse wiedergibt, und mit Schaltzweigen zur Bestimmung eines systembedingten, von der momentanen Kurvenfahrt unabhängigen Fehlersignals (Esys) bzw. Korrektursignals, das bei der Auswertung der Differenzgeschwindigkeitssignale und bei der Ermittlung der Kurvenfahrtsignale (CRV) berücksichtigbar ist, ausgerüstet sind.

Die Erfindung beruht also auf der Überlegung, daß ein sicheres Erkennen der Kurvenfahrt eines Fahrzeu- 60 ges unter kritischen Bedingungen, insbesondere bei hoher Geschwindigkeit, die nur einen großen Kurvenradius zuläßt, möglich wird, wenn gewissermaßen durch "Langzeitbeobachtung" der systembedingte Fehler ermittelt und dessen Einfluß auf die Kurvenerkennung 65 ausgeschaltet wird. Solche systembedingten Fehler, die z. B. auf Unterschiede des Abrollumfanges zurückgehen und beim Vergleich der Drehgeschwindigkeiten der bei

den Räder einer Achse zu einer Differenz führen und Kurvenfahrt vortäuschen, liegen nämlich durchaus in der Größenordnung der Nutzsignale. Unterschiede im Abrollumfang von 5% können durch unterschiedliche Reifenabnutzung leicht entstehen; eine Geschwindigkeitsdifferenz von 5% bei gleichen Abrollumfang ist andererseits ein deutliches Signal für eine Kurvenfahrt.

Andere Ursachen für Differenzen zwischen den vom linken und rechten Rad einer Achse bei Geradeausfahrt abgeleiteten Signalen sind Toleranzen der mechanischen und elektronischen Bauteile etc. Bei einem Reifenwechsel, durch Verstellung oder durch Alterung der Bauteile ändern sich die systembedingten Fehler, weshalb Eichvorgänge zur Beseitigung dieser Fehler häufig wiederholt werden müßten. Mit der erfindungsgemäßen Schaltung wird dagegen diese "Eichung" ständig durchgeführt. Wie im folgenden noch erläutert wird, würde sich die erfindungsgemäße Schaltungsanordnung nach einem Reifenwechsel bereits nach sehr kurzer Zeit auf einen neuen systembedingten Fehler einstellen; die Schaltungsanordnung nach der Erfindung benötigt nur einige Sekunden bis wenige Minuten zum "Erlernen" des neuen Fehlers bzw. der neuen Situation,

Eine präzise Kurvenerkennung ist sowohl für die Blockierschutz- als auch für die Antriebsschlupf-Regelung von großem Vorteil. Dies gilt beispielsweise für Maßnahmen zur Giermomenten-Abschwächung oder für den Druckaufbau bzw. die Drucksteuerung bei schleuderndem Fahrzeug. Zur Steuerung des Antriebsschlupfes beim Anfahren bzw. Beschleunigen in einer Kurve ist ebenfalls eine genaue Kurvenerkennung, möglicherweise sogar eine Kurvenradiuserkennung, notwendig.

Eine vorteilhafte Ausführungsart der erfindungsgemäßen Schaltungsanordnung besteht darin, daß zur Erzeugung des Differenzgeschwindigkeitssignals die prozentuale Abweichung der Geschwindigkeit eines Rades von der Geschwindigkeit des zweiten Rades der gleichen Achse ermittelbar ist. Die Geschwindigtkeitsdifferenz zwischen den Rädern einer Achse wird zweckmäßigerweise durch Division durch die Geschwindigkeit des momentan langsameren Rades, ggf. auch durch die Geschwindigkeit des schnelleren Rades oder durch eine gemittelte Geschwindigkeit, normiert. Für die weitere Signalverarbeitung ist dies von Nutzen.

Weiterhin ist es nach einer Ausführungsart der Erfindung vorgesehen, zur Bestimmung des systembedingten Fehler- bzw. Korrektursignals das Differenzgeschwindigkeitssignal bzw. die normierte Differenzgeschwindigkeit einem Tiefpaß mit im Vergleich zur Dauer einer üblichen Kurvenfahrt großen Zeitkonstanten, z. B. einem Tiefpaßfilter erster. Ordnung mit einer Zeitkonstanten von mindestens 40 Sekunden. zuzuführen. Die Zeitkonstante dieses Filters bestimmt dann gewissermaßen die Zeitspanne, die nach einem Reifenwechsel-bzw. nach dem Einschalten der Zündung bis zum "Erlernen" des systembedingten Fehlers notwendig ist.

Es können auch Tiefpaßfilter mit umschaltbarer Zeitkonstanten Verwendung finden, die bei einer Geradeausfahrt beispielsweise auf eine Zeitkonstante von etwa 30 bis 120 Sekunden ausgelegt sind und die beim Erkennen einer Kurvenfahrt auf eine Zeitkonstante von etwa 150 bis 300 Sekunden umschaltbar sind.

Unter bestimmten Bedingungen ist ein "Einfrieren" eines gelernten systembedingten Fehlers für eine bestimmte Zeitspanne sinnvoll. Hierzu ist die erfindungsgemäße Schaltungsanordnung mit einem Schaltzweig verschen, dem das normierte Differenzgeschwindig-

keitssignal und ein konstanter Vergleichswert zuführbar sind und der beim Überschreiten eines Maximalwertes des Differenzgeschwindigkeitssignales die Berücksichtigung dieses Wertes bei der Bestimmung oder Fortschreibung des Fehlersignales unterbindet. Hierdurch wird verhindert, daß sich eine kurzzeitige Störung, die sich in einem zu hohen Differenzgeschwindigkeitssignal äußert, oder ein hohes Nutzsignal (Differenzgeschwindigkeitssignal), das nicht auf einen systembedingten Fehler der beschriebenen Art zurückgehen kann und daher nicht "gelernt" werden darf, auf das Fehlersignal

Die Differenz zwischen dem Differenzgeschwindigkeitssignal und dem systembedingten Fehlersignal ist erfindungsgemäß als Kurvenfahrtsignal auswertbar.

Weiterhin sind nach einem Ausführungsbeispiel der Erfindung Schaltkreise vorhanden, die aus der momentanen Radgeschwindigkeit, insbesondere aus der Geschwindigkeit des langsameren Rades, einen Kurvenfahrt-Grenzwert ermitteln und mit dem momentanen 20 Kurvenfahrtsignal vergleichen und die ein Störungssignal abgeben, wenn das Kurvenfahrtsignal den Kurvenfahrt-Grenzwert überschreitet.

Durch Vergleich und Auswertung der von zwei (oder von mehreren) Achsen eines Fahrzeugs abgeleiteten Signale der vorgenannten Art läßt sich die Kurvenerkennung noch verbessern. Hierzu werden nach einer weiteren Ausführungsart der Erfindung die Ausgangssignale der den einzelnen Achsen zugeordneten Gesamtschaltungen einer Bewertungsschaltung zugeführt und mit dieser auf Plausibilität überprüft. Dabei erhalten die Bewertungsschaltungen von den einzelnen Gesamtschaltungen Informationen, die die Erkennung der Kurvenfahrt, den Kurvenradius, die Geradeausfahrt, Linkskurve oder Rechtskurve, Differenzgeschwindigkeit usw., 35 und zwar alle oder einige dieser Informationen, beinhal-

Schließlich besteht eine Ausführungsart der Erfindung noch darin, daß bei einem charakteristischen Unterschied zwischen den Signalen verschiedener Fahr- 40 zeugachsen, die z. B. auf die Anbringung eines Notrades mit stark abweichendem (z. B. 20%) Abrollradius zurückführbar sind, eine Umschaltung der Logik und Kompensation dieser Abweichung erfolgt.

Weitere Merkmale, Vorteile und Anwendungsmög- 45 lichkeiten der Erfindung gehen aus der folgenden Darstellung von Ausführungsbeispielen anhand der Abbildungen hervor.

Es zeigt

Fig. 1 vereinfacht und in symbolischer Blockdarstel- 50 lung eine Schaltungsanordnung nach der Erfindung zum Vergleich und Auswerten des Drehverhaltens der beiden Räder einer Achse,

Fig. 2 in gleicher Darstellungsweise wie Fig. 1 eine Schaltungsanordnung zur Bewertung und Verknüpfung 55 der von zwei Fahrzeugachsen abgeleiteten, mit jeweils einer Schaltung nach Fig. 1 erzeugten Signale und

Fig. 3 in gleicher Darstellungsweise wie Fig. 2 einen Schaltkreis zur Erkennung und Bewertung einer charakteristischen Differenz zwischen Signalen der Vor- 60 der- und Hinterachse.

Die beigefügten Figuren dienen zur Veranschaulichung der erfindungswesentlichen Schaltkreise, die die Kurvenfahrtsignale generieren und die zu einer bekannten elektronischen Schaltungsanordnung zur Steuerung 65 von Kraftfahrzeugbremsanlagen mit Blockierschutzund/oder Antriebsschlupfregelung gehören.

In den Fig. 1 bis 3 sind grundsätzlich die Signale an

den Eingängen der einzelnen Schaltblöcke bzw. Schaltzweige mit A und B, das Ausgangssignal mit Y bezeich-

Gemäß Fig. 1 werden den Schaltkreisen über die Eingänge E1 und E2 der Gesamtschaltung elektrische Signale (VR, VL) zugeführt, die im dargestellten Ausführungsbeispiel mit Hilfe von an den Vorderrädern angeordneten Sensoren gewonnen wurden und die jeweils das Drehverhalten eines der beiden Vorderräder wiedergeben. Die Radsensoren und die normalerweise erforderlichen Schaltungen zur Aufbereitung der Signale sind, da sie nicht zur Erfindung gehören, in Fig. 1 nicht wiedergegeben.

In einem Differenzbildner 1 wird ein Differenzge-15 schwindigkeitssignal ΔV gebildet, dessen Vorzeichen erkennen läßt, ob eine Rechtskurve oder Linkskurve vorliegt. Bei Geradeausfahrt und idealen Bedingungen, d. h. gleichen Abrollradien usw., wird das Signal am Aus-

gang Yder Stufe 1 zu Null.

In einer anschließenden Divisionsstufe 2 wird die Geschwindigkeitsdifferenz \(\Delta V \) normiert, indem das Differenzsignal ΔV durch die geringere der beiden Radgeschwindigkeiten V_{min} dividiert wird. Mit einer Auswahlstufe 3 wurde hierzu die geringere Geschwindigkeit V_{min} ermittelt und dem Eingang B der Stufe 2 zugeleitet.

Die normierte Differenzgeschwindigkeit $V_n = \Delta V/$ V_{min} am Ausgang der Divisionsstufe 2 wird über einen Umschalter 4 einem Tiefpaß 5, hier einem Tiefpaßfilter erster Ordnung mit umschaltbarer Zeitkonstanten, zugeleitet. Das Ausgangssignal dieses Tiefpasses 5 stellt das Fehlersignal bzw. Korrektursignal Esys dar, das ein Maß ist für die systembedingten Fehler, die auch bei der Geradeausfahrt des Fahrzeuges ein Differenzgeschwindigkeitssignal hervorrufen.

In einem weiteren Differenzbildner 6 wird schließlich die Differenz zwischen der normierten Differenzgeschwindigkeit Vn und dem Fehler- bzw. Korrektursignal E_{sys} gebildet. Dieses Signal $CRV = V_n - E_{sys}$ dient zur Kurvenerkennung und ist, wenn die Auflösung dieses Signales es zuläßt, sogar ein Maß für den Kurvenradius.

Aus dem Vorzeichen des Kurvenfahrtsignals CRV ist erkennbar, ob es sich um eine Rechts- oder Linkskurve handelt.

Das Tiefpaßfilter 5 ist umschaltbar. In der Grundstellung, die es einnimmt, solange das Signal an dem Stelleingang I Null beträgt, ist die Zeitkonstante T_1 des Tiefpaßfilters 5 auf einen Wert zwischen 40 und 100 Sekunden eingestellt. Wurde jedoch in den vorangegangenen Rechenzyklus (100 p) "Kurvenfahrt" erkannt, wird dies über den Stelleingang I dem Tiefpaßfilter 5 gemeldet. Ein Signal am Eingang I führt zur Umschaltung der Stufe 5 bzw. zur Erhöhung der Zeitkonstante auf $T_2 = 200$ bis 300 Sekunden. Am einfachsten wird die Umschaltung der Zeitkonstanten durch Erhöhung des ohmschen Widerstandes eines RC-Gliedes realisiert.

Während einer Kurvenfahrt wird folglich die Änderung des Fehlersignals E_{sys} am Ausgang der Stufe 5 als Folge des durch die Kurvenfahrt erhöhten Wertes der normierten Differenzgeschwindigkeit Vn erheblich verzögert. Bei Geradeausfahrt werden dagegen systembedingte Fehler mit der Geschwindigkeit der Zeitkonstanten T_1 "gelernt".

Störungen, die eine zu hohe, über einem vorgegebenen Schwellwert liegende normierte Differenzgeschwindigkeit V_n hervorrufen und Nutzsignale, die grö-Ber sind als die Signale, die durch systembedingte Fehler verursacht werden können, werden durch einen zusätzlichen Schaltungszweig, der einen weiteren Differenzbildner 7 enthält, unterdrückt. Dieser Schwellwert ist durch die Konstante k_2 am Eingang B des Differenzbildners 7 symbolisiert. Überschreitet die normierte Differenzgeschwindigkeit V_n einen bestimmten Wert, entsteht am Ausgang der Stufe 7 ein Signal, das über den Stelleingang I zur Umschaltung des Schalters 4 führt. Das Fehlersignal E_{sys} wird dadurch über den Eingang Bdes Schalters 4 zum Eingang des Tiefpasses 5 zurückgeführt, was für die Zeitdauer der Störung zu einem "Einfrieren" des gelernten Fehlers bzw. zu einer Konstant- 10 relativ große Differenzgeschwindigkeit und damit ein haltung des Fehlersignals E_{sys} führt.

Eine Überprüfung des Kurvenfahrtsignals CRV nach Plausibilitätskriterien wird mit Hilfe eines zusätzlichen Schaltungszweiges (8, 9) erreicht. Hierzu wird zunächst die Geschwindigkeit Vmin des langsameren Rades der 15 betrachteten Achse in der Stufe 8 mit Tabellenwerten verglichen. Das Ausgangssignal CRV_{grenz} der Stufe 8 ist direkt oder indirekt ein Maß für den Kurvenradius, den das Fahrzeug bei der gemessenen Fahrzeuggeschwindigkeit Vmin ohne Gefährdung der Fahrstabilität nicht 20 unterschreiten kann, und damit für den Maximalwert oder Grenzwert des Kurvenfahrtsignals CRV. Eine enge Kurve kann bekanntlich ein Fahrzeug nur mit geringer Geschwindigkeit durchfahren. Aus einem Vergleich des aus der momentanen Geschwindigkeit Vmin abgelei- 25 teten Grenzwertes CRV grenz, der am Ausgang der Stufe 8 zur Verfügung steht, mit dem Kurvenfahrtsignal CRV läßt sich erkennen, ob bei der gemessenen Geschwindigkeit ein solcher Kurvenradius überhaupt möglich ist. Der Vergleich wird mit Hilfe des Differenzbildners 9 30 durchgeführt. Wird das Plausibilitätskriterium nicht erfüllt, signalisiert die Stufe 9 eine Störung.

Zur Auswertung des Vorzeichens des Kurvenfahrtsignals CRV und damit zum Feststellen, ob sich das Fahrzeug in einer Kurvenfahrt nach rechts oder links befin- 35 det, dienen zwei weitere Schaltungszweige 10 und 11. Schließlich wird über den Ausgang eines weiteren Zweiges 12 noch "Geradeausfahrt" signalisiert, wenn weder ein Rechtskurven- noch ein Linkskurvensignal ansteht.

Fig. 2 zeigt eine Bewertungsmatrix oder Bewertungs- 40 schaltung 13, der die mit der Gesamtschaltung nach Fig. 1 erzeugten Signale von der Vorderachse und Hinterachse zugeführt werden. Mit individuellen Gesamtschaltungen (1-12) der in Fig. 1 gezeigten Art werden die Vorderachs- und Hinterachssignale unabhängig 45 voneinander erzeugt.

Die Überprüfung der Vorderachs- und Hinterachssignale auf Plausibilität mit Hilfe der Bewertungsschaltung 13 läßt Fehler oder Störungen erkennen und verbessert die Signalauswertung. Abgesehen von Sonder- 50 fällen, müssen die entsprechenden von der Vorderachse und Hinterachse abgeleiteten Signale übereinstimmen. In einem der Bewertungsschaltung 13 nachgeschalteten Integrator 14 werden die Resultate der Bewertungen durch die Schaltung 13 zusammengefaßt. Das Signal W_{i} 55 am Ausgang des Integrators 14 ermöglicht nach einem Vergleich mit Grenzwerten, die durch die Konstanten k_7 und k₈ der nachfolgenden Stufen 15 und 16 in Fig. 2 symbolisiert sind, eine sichere Aussage über die Kurvenfahrt und über die Richtung der befahrenen Kurve, 60 d. h. "Rechtskurve" oder "Linkskurve". Über ein ODER Gatter 17 wird ein Kurvenerkennungssignal generiert.

Beim Vergleich der Eingangsinformationen an den Eingängen II bis Ib mit den entsprechenden Informationen an den Eingängen 17 bis 112 wird bei widersprüchli- 65 chen Eingangsgrößen das Ausgangssignal Wder Schaltung 13 minimal, bei schlüssigen Eingangsgrößen nimmt es dagegen ein Maximum an. Der nachgeschaltete Inte-

grator 14 liefert dann ein Signal Wi, welches die Resultate der zeitlich aufeinanderfolgenden Bewertungen zusammenfaßt.

Fig. 3 bezieht sich auf eine Zusatzschaltung, die zur Erkennung der Anbringung eines Notrades (Mini-Spare-Reserverads) dient. Solche Reserveräder haben einen bis zu ca. 20% geringeren Abrollumfang als die Standardräder. Die Montage eines solchen Reserverades zeigt sich dadurch, daß nur an einer Achse eine scheinbares Kurvenfahrtsignal CRV auftritt.

Der Vergleich der CRV-Signale von Vorderachse VA und Hinterachse HA mit Hilfe einer Bewertungsschaltung 13' ergibt also ein für das Anbringen eines Mini-Spare-Reserverades typischen Differenzsignales. Durch eine "Langzeitbeobachtung" wird auch dieser Fall erkannt und eine Korrektur der durch das Reserverad erzeugten fehlerhaften Radgeschwindigkeit ermöglicht. Hierzu ist das Tiefpaßfilter 18 mit einer Zeitkonstanten von beispielsweise 2 bis 30 Sekunden vorgesehen. Das Ausgangssignal dieses Tiefpaßfilters 18 wird in der nachfolgenden Vergleichsstufe 19 mit einem typischen Schwellwert, den die Konstante k9 symbolisiert, verglichen. Überschreitet langzeitig das Ausgangssignal der Stufe 18 den Schwellwert k9, läßt dies auf die Anbringung des Mini-Spare-Reserverades schließen. Durch eine Verringerung der am Ort des Reserverades gemessenen Drehgeschwindigkeit um einen aus dem geringeren Raddurchmesser errechneten Betrag läßt sich die Regelung der besonderen Situation anpassen.

- Leerseite -

Fig. : [18]:[4]

Nummer Int. Cl.4:

Anmeldetag:

37 18 421 B 60 T 8/32 2. Juni 1987

