ESP8266 2nd Boot (V1.6+) 跳转测试方案介绍

版本 1.0 版权 © 2016

关于本手册

本手册结构如下:

章	标题	内容
第1章	概述	介绍 ESP8266 的二级 boot V1.6+(<i>SDK Non-OS 2.0.0</i> 及后续版本)。
第2章	使能配置方法	介绍使能配置方法的步骤。

发布说明

日期	版本	发布说明
2016.09	V1.0	首次发布。

目录

1.	概述.		1
2.	使能	配置方法	2
	2.1.	编译固件配置跳转判断的 GPIO	2
	2.2.	烧录固件测试 BIN 文件地址配置	2
	2.3.	烧写应用固件	3

1. 概述

ESP8266 的二级 boot V1.6+(**SDK Non-OS 2.0.0** 及后续版本)支持跳转测试功能,即系统上电瞬间,boot 通过判断某个被配置并使能的 GPIO 的状态来触发跳转测试。当被配置的 GPIO 被拉低时,则系统会跳转到指定的测试 BIN 文件运行,这个测试 BIN 文件可以提前和烧写应用固件一起离线烧写至 Flash 中,减少生产测试时在线 download 测试 BIN的时间,有利于提高生产效率。

1 注意:

- 适用版本, boot V1.6+ (SDK Non-OS SDK 与 RTOS SDK 均适用,与 SDK 版本无关)。
- 跳转测试 BIN 文件需为乐鑫特定的测试文件,并不能放置客户二次开发的 BIN。

2.

使能配置方法

2.1. 编译固件配置跳转判断的 GPIO

跳转测试方案中,用于使能该功能的 GPIO 配置放在 *esp_init_data_default.bin* 中, *esp_init_data_default.bin* 总共有 128 bytes,其中 *byte[119]* 用于定义哪个 GPIO 口来控制跳转,默认 *byte[119]* 为 0x00,则不使能跳转测试判断,若配置如下对应规则的数据,则使能通过判断指定 GPIO 状态来触发跳转测试。

对应关系为:

0xA5 - - - > GPIO5

0xAC ---> GPIO12

0xAD ---> GPIO13

0xAE ---> GPIO14

1 注意:

对 GPIO 的判断仅在系统初始化瞬间进行,系统 boot 完成后,则不会对这个 GPIO 进行判断,所以客户应用程序依然可以使用该 GPIO。

示例:

如图,修改 byte[119] 为 0xAC,表示拉低 GPIO12 将进入测试模式。

2.2. 烧录固件测试 BIN 文件地址配置

测试 BIN 的地址放置在 blank.bin 区域,客户需使用 gen_test_blank.py 脚本,输入跳转运行 BIN 文件在 Flash 中的位置,脚本会生成特定的 test_blank.bin,在烧写 Flash 固件时,需要按照 Flash map 把 test_blank.bin 烧写在原 blank 区域,见文档 ESP8266 SDK入门指南。

示例:

生成 test blank.bin,

运行 python gen_test_blank.py,系统会让用户输入测试 BIN 文件的放置地址。

[genmisc@Ubuntu bin]\$python gen_test_blank.py Enter you test bin addr(eg. 0x101000): [

用户根据所用的 Flash 大小输入实际放置测试 BIN 文件的地址(请参考相应的 flash memory map, 避免与 SDK Flash map 冲突)。

运行后,会生成所需使用的 test_blank.bin。

2.3. 烧写应用固件

烧录示例如下图,若 *ESP_MODULE_26M_20160520.bin* 为测试 BIN 文件,该文件放置在 0x101000 位置,则如下示例 Flash map 进行烧写。

烧录完成后,系统正常运行时,若上电时刻 GPIO12 被拉低,则会跳转至 0x101000 位置运行测试 BIN 文件,客户通过这个方式可以完成测试。

若上电时刻 GPIO12 未被拉低,系统则会跳转到 0x1000 位置运行客户正常的应用固件。

乐鑫 IOT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2016 乐鑫所有。保留所有权利。