Package 'dipSFP'

May 5, 2010

Type Package

Title SFP detection based on dip statistic
Version 1.0
Date 2010-05-05
Author Na You
Maintainer Na You <nayou@ucr.edu></nayou@ucr.edu>
Description Given a matrix of microarray data, SFPs are detected based on the dip statistic. The null distribution of dip statistic is estimated by smooth bootstrap algorithm. P values are adjusted using false discovery rate criteria for FDR control.
Depends diptest
License
LazyLoad yes
R topics documented:
c.gamma
c.lognorm
c.norm
c.t
dipSFP
FMbw
minimax
modes
sign.plus
Index

2 c.lognorm

c.gamma

Factor 'c' for Gamma density

Description

Compute the value of factor 'c' for Gamma density.

Usage

```
c.gamma(k, theta)
```

Arguments

k shape parameter theta scale parameter

Value

The value of factor 'c'.

Author(s)

Na You

References

Cui et al. Single Feature Polymorhpism Detection using Recombinant Inbred Line microarray expression data.

c.lognorm

Factor 'c' for log-normal density

Description

Compute the value of factor 'c' for log-normal density.

Usage

```
c.lognorm(mu, sigma)
```

Arguments

mu, sigma parameters

Value

The value of factor 'c'.

Author(s)

Na You

c.norm 3

References

Cui et al. Single Feature Polymorhpism Detection using Recombinant Inbred Line microarray expression data.

c.norm

Factor 'c' for normal density

Description

Compute the value of factor 'c' for normal density.

Usage

```
c.norm(mu, sigma)
```

Arguments

mu mean

sigma standard deviation

Value

The value of factor 'c'.

Author(s)

Na You

References

Cui et al. Single Feature Polymorhpism Detection using Recombinant Inbred Line microarray expression data.

c.t

Factor 'c' for student's t density

Description

Compute the value of factor 'c' for student's t density.

Usage

c.t(v)

Arguments

V

degree freedom

4 dipSFP

Value

The value of factor 'c'.

Author(s)

Na You

References

Cui et al. Single Feature Polymorhpism Detection using Recombinant Inbred Line microarray expression data.

dipSFP

SFP detection procedure based on dip statistic

Description

SFP detection procedure based on dip statistic, where the null distribution of dip statistic is estimated by smooth bootstrap algorithm.

Usage

```
dipSFP(dat, nboot, lambda0 = NULL, outliers.ratio = NULL, m0 = NULL, pvalue = TRUE, tol = 1e-06)
```

Arguments

dat a matrix of microarray data to be analyzed, for example, the estimated binding

affynity values or SFPdev values, where each row corresponds to one probe and

each column corresponds to one chip.

nboot the number of bootstrap replications.

lambda0,outliers.ratio,m0

tuning parameters, see 'Details' in FMbw.

pvalue logical; will p values be computed?

the desired accuracy (convergence tolerance) in computing the modified critical

bandwidth by bisection method.

Details

Dip statistic is computed by dip in R package 'diptest'.

Value

A list with four components if pvalue is TRUE,

dip.statistics

dip statistic values for probes

null.distribution

estimated null distribution of dip statistic

p.values p values

FMbw 5

```
adjusted.pvalues
```

adjusted p values using the false discovery rate criterion

If pvalue is FALSE, only dip.statistics and null.distribution are returned.

Author(s)

Na You

References

Cui et al. Single Feature Polymorhpism Detection using Recombinant Inbred Line microarray expression data.

Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika, 88(2):499–517.

Hartigan, J. A. and Hartigan, P. M. (1985). The dip test of unimodality. The Annals of Statistics, 13(1):70âĂŞ84.

See Also

FMbw

Examples

FMbw

Modified critical bandwidth

Description

Modified critical bandwidth in Fisher and Marron (2001).

Usage

```
FMbw(vec, k, lambda0 = NULL, outliers.ratio = NULL, m0 = NULL, tol = 1e-06)
```

6 minimax

Arguments

vec a vector.

k the number of modes. lambda0, outliers.ratio, m0

tuning parameters, see 'Details' below.

the desired accuracy (convergence tolerance) in computing the modified critical

bandwidth by bisection method.

Details

Fisher and Marron (2001) proposed a modified critical bandwidth instead of Silverman critical bandwidth (1981) to estimate the underlying data distribution and generate bootstrap resamples in smooth bootstrap algorithm. Two tuning parameters 'lambda0' and 'm0' were used to deal with the outliers problems and distinguish minor or major modes. As suggested in Fisher and Marron (2001), 'lambda0' can be given directly by user or determined by the ratio of outliers 'outliers.ratio'. If both of them are given, then the maximum of 'lambda0' and 'outliers.ratio/h/(2*pi)^(1/2)' is used in computation, where 'h' is the bandwidth at which the statistic S_k is calculated. The defaults of 'lambda0' and 'outliers.ratio' are both zero. The default of 'm_0' is 0.003.

Value

The value of modified critical bandwidth.

Author(s)

Na You

References

Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika, 88(2):499–517.

Examples

```
x <- rnorm(100,0,1)
FMbw(x,1)
FMbw(x,1,m0=0)
```

minimax

Minimax function

Description

Determine if each point in a line is a local maximum or minimum.

Usage

```
minimax(func)
```

Arguments

func

A matrix. Each row indicates the (x,y)-coordinate of one point.

modes 7

Value

A vector with the same length as the first dimension of matrix func, composed of -1, 1, and 0, indicating respectively the corresponding point is a local minimum, maximum or none of them.

Author(s)

Na You

References

Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika, 88(2):499–517.

Examples

```
x <- rnorm(10,0,1)
minimax(cbind(seq(x),x))</pre>
```

modes

Modes of density function

Description

Given a vector of data, find the 'major' modes of its Gaussian kernal density estimate with specified bandwidth, exluding the modes caused by outliers and 'minor' modes with small masses.

Usage

```
modes(vec, bw, lambda0 = NULL, outliers.ratio = NULL, m0 = NULL)
```

Arguments

```
vec a vector.

bw bandwidth used in the Gaussion kernal density estimate.

lambda0, outliers.ratio, m0
tuning parameters. See 'Detailes' in FMbw.
```

Value

A vector, each element of which indicates the location of one mode.

Author(s)

Na You

References

Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika, 88(2):499–517.

8 sign.plus

See Also

FMbw

Examples

```
x <- rnorm(100,0,1)
h1 <- FMbw(x,k=1)
modes(x,bw=h1)

h2 <- FMbw(x,k=2)
modes(x,bw=h2)</pre>
```

sign.plus

Positive trucation function

Description

Given a vector, its negative elements are replaced by zero.

Usage

```
sign.plus(x)
```

Arguments

Х

A vector.

Value

A vector with the same length as x.

Author(s)

Na You

Index

```
c.gamma, 1
c.lognorm, 2
c.norm, 3
c.t, 3
dipSFP, 4
FMbw, 5, 5, 7
minimax, 6
modes, 7
sign.plus, 8
```