

Maestría en Sistemas Embebidos

Sistemas Digitales para las Comunicaciones

Cronograma

Parte 0

Parte 1

Parte 2

Parte 3

Parte 4

Parte 5

Parte 6

Parte 2: Transceiver - Sistema, diagramas y simulación.

- Presentación del transceiver:
 - Arquitectura del sistema de comunicación.
 - Características.
- Modulador:
 - Diagrama en bloques.
 - o TP: Armado y simulación.
- + Canal:
 - o Modelo y diagrama en bloques.
 - o TP: Armado y simulación.
- + Demodulador:
 - Diagrama en bloques.
 - TP: Armado y simulación.

- Comparación:
 - PAM (BB), ASK, PSK y APSK
- Sistema de comunicación
 - Diagrama en bloques completo
 - Diagrama en bloques del sistema simplificado para TPI

Configuraciones típicas de modulador y demodulador

Configuraciones típicas de modulador y demodulador

Arquitectura de alto nivel

Características del TPI:

- Modem:
 - PAM (banda base)
 - Pulso
 - Tasa de símbolos y bits
 - Tipo de transmisión
- GPIOs
- UART y PC
- Emulador de Canal
- Ejemplo de sistema real

Especificaciones de Modem

- Modulación: 2-PAM (banda base)
- Codificación de línea: No.
- Frecuencia de símbolo: 1 MHz
- Frecuencia de sampleo: 16 MHz
- Pulso:
 - Tipo: Root-raised-cosine.
 - Energía constate = 1.
- Tipo de transmisión: Asincrónica
 - Formato del preámbulo: Preámbulo de sincronización + SFD. Ambos de largo configurable.
 - Formato del payload: Largo configurable en múltiplos de 8 bits (1 byte)

Especificaciones del sistema

- GPIO:
 - Botón de reset
 - Led TX ready
 - Led RX overflow
- Conectividad:
 - UART: 115200 baudios para transmitir y recibir datos (Bytes).
- Interfaz con los módulos anlógicos:
 - Interfaz de stream (data, valid, ready for data) con módulo IF DAC
 - Interfaz de stream (data, valid, ready for data) con módulo IF ADC

Especificaciones del la emulación del ADC, DAC, Front-End analógico y canal

- IF DAC:
 - Interfaz de stream con 10 bits de datos formato Q10.8
- IF ADC:
 - Interfaz de stream con 10 bits de datos formato Q10.8
- Salidas de estado
 - Indicación de underflow
 - Indicación de overflow
- Canal:
 - Interfaces de DAC y ADC con clock común.
 - Respuesta en frecuencia: Implementada mediante FIR de largo configurable.
 - Ruido blanco aproximadamente Gausiano con varianza configurable.

Ejemplo de sistema de comunicación en banda base asincrónico (Ethernet)

Paquete Ethernet:

Ejemplo de sistema de comunicación en banda base asincrónico (Ethernet)

Ejemplo de sistema de comunicación en banda base asincrónico (Ethernet)

Ejemplo de sistema de comunicación en banda base asincrónico (Ethernet)

Repaso y simulación:

- Repaso
 - Componentes del sistema en banda base
- Simulación
 - Modelo
 - Arquitectura de bajo nivel

Sincronización de símbolo

Sincronización de símbolo

El objetivo del filtro es detectar **el comienzo y el fin del pulso** recibido, para poder **muestrear** la señal **momento exacto** donde t=kT.

Señal antes del

filtro adaptado

También se conoce como:

Clock recovery

Symbol timing recovery

Existen diversas técnicas para sincronizar el pulso.

La entrada es generalmente la señal recibida, la salida es una señal periódica alineada con el símbolo.

Inicio del pulso

Sincronización

de símbolo

Sincronización de símbolo

Sincronización de símbolo

Sincronización de símbolo

Versión digital Versión analógica

27

Sincronización de símbolo

Ejemplo de sincronizador con PLL: Open-loop

$$y^{2}(t) = \left[\sum_{m} x_{m} p(t - mT) + n(t)\right]^{2}$$

$$\begin{split} E\left\{y^2(t)\right\} &= \sum_{m} \sum_{n} \mathcal{E}_{\boldsymbol{x}} \cdot \delta_{mn} \cdot p(t-mT) \cdot p(t-nT) + \sigma_n^2 \\ &= \mathcal{E}_{\boldsymbol{x}} \cdot \sum_{m} p^2(t-mT) + \sigma_n^2 \quad , \quad \text{Señal periódica (T)} \end{split}$$

Figure 6.10: Square-law timing recovery.

Ejercicio 06 - Simulación del modulador en octave

Ejemplo demostrativo:

Ejercicio 06 - Simulación del modulador en octave

Ejemplo demostrativo:

Figure 6.10: Square-law timing recovery.

Diagramas en bloque:

- Modulador
 - Arquitectura de bajo nivel
- Canal
 - Modelo
 - Arquitectura de bajo nivel

Arquitectura detallada del modulador

Arquitectura detallada del modulador

Ejercicio 07 - Simulación del modulador

Simulación HDL:

Modelo de canal

Modelo de canal

Modelo de canal

Arquitectura detallada del canal

Ejercicio 08 - Simulación del modulador + canal

Simulación HDL:

Bibliografía y fuentes

Bibliografía:

- "Digital Communication", John G. Proakis, Masoud Salehi, 5th edition.
- B. P. Lathi. 1998. "Modern Digital and Analog Communication Systems 3e Osece" (3rd. ed.). Oxford University Press,
 Inc., USA.
- Bernard Sklar. 1988. "Digital communications: fundamentals and applications". Prentice-Hall, Inc., USA.
- John M. Cioffi. Libro Online: https://cioffi-group.stanford.edu/doc/book/

