Ingredients of a logic

Syntox

Syntax: defines a set of valid formulas (Formulas)

Example: $Rain \wedge Wet$

Semantico K

Inference K

Propositional logic

Model

Definition: model-

A **model** w in propositional logic is an **assignment** of truth values to propositional symbols.

Interpretation function: definition

Base case:

Knowledge base

Definition: Knowledge base-

A **knowledge base** KB is a set of formulas representing their conjunction / intersection:

Let
$$KB = \{Rain \lor Snow, Traffic\}$$
. $= (Rain \lor Snow) \land (Traffic)$

Adding to the knowledge base

Adding more formulas to the knowledge base:

KB
$$\longrightarrow$$
 KB \cup { f }

Shrinks the set of models:

$$\mathcal{M}(\mathrm{KB}) \longrightarrow \mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f)$$

Adding to the knowledge base

Adding more formulas to the knowledge base:

KB
$$\longrightarrow$$
 KB \cup { f }

Shrinks the set of models:

$$\mathcal{M}(\mathrm{KB}) \longrightarrow \mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) = \mathcal{M}(\mathrm{KB})$$

How much does $\mathcal{M}(KB)$ shrink?

Model checking

Checking satisfiability (SAT) in propositional logic is special case of solving CSPs!

Mapping:

propositional symbol \Rightarrow variable

A Johnson A Zoon

Inference example

Example: Modus ponens inference-

Starting point:

```
KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery\} \qquad \text{LB-Wet} Apply modus ponens to Rain and Rain \rightarrow Wet:
```

$$KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery, Wet\}$$

Apply modus ponens to Wet and Wet \rightarrow Slippery:

$$KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery, Wet, Slippery\}$$

Definite clauses

Definition: Definite clause-

A definite clause has the following form:

$$(p_1 \wedge \cdots \wedge p_k) o q$$

where p_1, \ldots, p_k, q are propositional symbols.

7A > 6

Intuition: if p_1, \ldots, p_k hold, then q holds.

Definite clauses

Definition: Definite clause-

A definite clause has the following form:

$$(p_1 \wedge \cdots \wedge p_k) o q$$

where p_1, \ldots, p_k, q are propositional symbols.

Intuition: if p_1, \ldots, p_k hold, then q holds.

Example: $(Rain \land Snow) \rightarrow Traffic$ () $\Rightarrow Toshic$

Example: Traffic

Non-example: ¬Traffic

Non-example: $(Rain \land Snow) \rightarrow (Traffic \lor Peaceful)$

Completeness of modus ponens

Theorem: Modus ponens on Horn clauses-

Modus ponens is **complete** with respect to Horn clauses:

- Suppose KB contains only Horn clauses and p is an entailed propositional symbol.
- Then applying modus ponens will derive p.

Upshot:

 $\mathrm{KB} \models p$ (entailment) is the same as $\mathrm{KB} \vdash p$ (derivation)!

58

Summary

Syntax Semantics formula 1 models Inference rules

Sound-ness: Whatever we produce using inference rules is entailed.

Completeness:
Whatever
formula f
is toue given
KB, we can
derive it.