آسیب پذیری های شبکه (Network Vulnerabilities)

رئوس مطالب

- اساس شبکه
- نحوه كار اينترنت
 - مشكلات
 - حملات شبکه
- حملات مربوط به هاست
 - TCP Spoofing •
- حملات مربوط به زیرساخت شبکه
 - مسیریابی
- Domain Name System (DNS) •

زيرساخت اينترنت

- مسیریابی داخل ISP
- بين ISPها
 - DNS •
- ece.sbu.ac.ir) یک اسم IP یک اسم پیدا کردن

TCP/IP Protocol Stack

فرمت داده

Internet Protocol (IP)

Version	Header Length
Type of Service	
Total Length	
Identification	
Flags	Fragment Offset
Time to Live	
Protocol	
Header Checksum	
Source Address of Originating Host	
Destination Address of Target Host	
Options	
Padding	
IP Data	

- Connection-less •
- غير قابل اطمينان (Unreliable)
 - عدم تضمین در رساندن بسته به مقصد
- حداکثر تلاش برای رساندن بسته به مقصد (Best Effort)
 - پورت های مبدأ و مقصد در سربار IP وجود ندارند.

مسیریابی (Routing)

- مسیریابی از آدرس IP عددی استفاده می کند.
- معمولاً یک مسیر از چندین hop استفاده می کند.

کارکردهای پروتکل IP

- مسیریابی
- هاست ها آدرس درگاه (Gateway) را می دانند.
- درگاه نحوه ارسال بسته ها به شبکه های دیگر را می داند.
 - Reassembly 9 Fragmentation •
 - داده کاربر از حداکثر اندازه مجاز بسته IP بزرگتر باشد.
 - گزارش خطا
- ارسال بسته ICMP در صورت دور انداخته شدن بسته در مقصد
 - فىلد TTL
- هر hop قبل از ارسال بسته، مقدار فیلد را یک واحد کاهش می دهد.
 - اگر مقدار فیلد صفر شود، بسته دور انداخته می شود.
 - جلوگیری از افتادن بسته در یک حلقه بی نهایت

مشكل: عدم تأييد هويت مبدأ

- فرض می شود که کلاینت IP مبدأ درست را قرار می دهد.
 - با از استفاده از raw socket می توان هر IP ای گذاشت.
 - Libnet: یک کتابخانه برای تولید بسته های دلخواه
- هر کسی می تواند بسته هایی با IP مبدأ دلخواه ارسال کند.
 - پاسخ به ماشینی که IP جعلی را در اختیار دارد، بر می گردد.
 - کاربرد:
 - DoS حملات
 - عدم شناسایی هاست حمله کننده درست

User Datagram Protocol (UDP)

- انتقال داده غير قابل اطمينان
 - از IP استفاده می کند.
- Acknowledgement عدم ارسال
 - عدم كنترل Congestion

Transmission Control Protocol (TCP)

- Connection-oriented: ترتیب بسته ها رعایت می شود.
 - فرستنده:
- داده را به بسته هایی می شکند و به هر بسته یک عدد اختصاص می دهد.
 - گيرنده:
- ack بسته ها را می فرستد. (بسته های گم شده دوباره ارسال می شوند)
 - ترتیب بسته ها درست می کند و داده را به کاربر می فرستد.

TCP Header

TCP Handshake

مشكلات امنيتي

- بسته ها از درون هاست های غیر قابل اعتماد عبور می کنند.
 - (Eavesdropping) استراق سمع
 - Packet Sniffing -
 - جعل هویت
 - Arp Spoofing –
 - حالت TCP به راحتی قابل حدس زدن است.
 - Spoofing –
 - Session Hijacking –
 - Penial of Server (DoS) حملات

Packet Sniffing

- کارت شبکه در مد Promiscuous تمام بسته ها را می خواند - تمام اطلاعات رمز نشده قابل خواندن هستند (wireshark)
 - پروتکل های ftp و telnet پسوردها را رمز نشده می فرستند.
 - رمزنگاری یکی از راه های مؤثر برای جلوگیری از sniffing

ARP Spoofing

- پروتکل ARP برای پیدا کردن آدرس Ethernet یک آدرس IP استفاده می شود.
- ماشین حمله کننده می تواند به درخواست های ARP پاسخ دهد و بسته های ماشین قربانی را به سمت خود منحرف کند.
 - پیشگیری
 - مطابقت دادن درخواست ها و پاسخ های ARP

TCP Connection Spoofing

• اگر شمارنده توالی اولیه قابل پیشبینی باشد:

- مهاجم می تواند IP مبدأ جعل كرده و به سرور دستور بفرستد.

• دور زدن تأیید هویت مبتنی بر IP

حدس زدن ISN

برای یاد گرفتن ISN_S یک اتصال برقرار می کند: X

 $X \to S$: $SYN(ISN_X)$

 $S \to X$: $SYN(ISN_S)$, $ACK(ISN_X)$

• سپس X هويت T را جعل مي کند:

 $X \to S$: $SYN(ISN_X), SRC = T$

 $S \to T$: $SYN(ISN_S + k), ACK(ISN_X)$

 $X \to S$: $ACK(ISN_S + k), SRC = T$

 $X \rightarrow S$: $ACK(ISN_S + k), SRC = T, nasty data$

پیشگیری

- N بار افزایش ISN به اندازه یک واحد در هر ثانیه
 - افزایش تصادفی ISN بعد از هر اتصال
 - ایجاد ISN تصادفی بعد از هر اتصال
- استفاده از تابع در همسازی (Hash) برای تولید ISN برای هر اتصال به صورت جداگانه
 - IP> مبدأ، پورت مبدأ، IP مقصد، پورت مقصد>
 - استفاده از تابع رمزنگاری برای رمز کردن شمارنده ISN و ارسال خروجی رمز شده به عنوان ISN

حملات (RIP) Routing Information Protocol

- اطلاعات مسيريابي بدون تأييد هويت استفاده مي شوند.
- مهاجم (Z) با ارسال اطلاعات مسیریابی نادرست، ترافیک هاست B را به سمت خود تغییر جهت می دهد.
 - هاست B موجود باشد: استراق سمع اطلاعات
 - B موجود نباشد: ارسال اسیم با B هاست B

حملات (ICMP) اnternet Control Message Protocol

- قطع اتصالات TCP
- ICMP Destination Unreachable
 - ICMP Time to Live Exceeded
 - حمله DOS با استفاده از DOS
 - حملات از کار انداختن سرویس
- تغییر جدول مسیریابی با ICMP Redirect

پیشگیری

- قطع اتصالات TCP
- چک کردن sequence number موجود در بسته ICMP موجود در بسته TCP مطابقت آن با sequence number بسته TCP مورد نظر
 - تغییر جدول مسیریابی با ICMP Redirect
- نادیده گرفتن بسته های ICMP Redirect و عدم تغییر جدول مسیریابی

Domain Name System (DNS)

- ساختار سلسله مراتبی
 - Zone •
 - Nameserver •
- Authoritative Nameserver
 - Resolver •

DNS Lookup

• استفاده از Caching برای افزایش کارایی

DNS مسته

- شناسه پرس و جو
 عدد ۱۶ بیتی
 مطابقت پاسخ با پرس و جو

DNS Query

DNS Response

حدس زدن شناسه پرس و جو

DNS Cache poisoning (Hostname)

DNS Cache Poisoning (Nameserver)

منابع

- A look back at Security Problems in the TCP/IP Protocol Suite
- A survey of BGP security
- DNS Cache Poisoning
- DNS Cache Poisoning (BIND Birthday Attack)