#### CS447: Natural Language Processing

http://courses.engr.illinois.edu/cs447

# Lecture 15: The CKY parsing algorithm

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

#### Last lecture's key concepts

#### Natural language syntax

Constituents

Dependencies

Context-free grammar

Arguments and modifiers

Recursion in natural language

#### Today's class

Parsing with CFGs: The CKY (Cocke Kasami Younger) algorithm

#### An example CFG

```
DT → {the, a}
N → {ball, garden, house, sushi }
P → {in, behind, with}
NP → DT N
NP → NP PP
PP → P NP
```

N: noun

P: preposition

NP: "noun phrase"

PP: "prepositional phrase"

#### Reminder: Context-free grammars

```
A CFG is a 4-tuple \langle N, \Sigma, R, S \rangle consisting of:
  A set of nonterminals N
  (e.g. N = \{S, NP, VP, PP, Noun, Verb, ....\})
 A set of terminals \Sigma
 (e.g. \Sigma = \{I, you, he, eat, drink, sushi, ball, \})
 A set of rules R
 \mathbf{R} \subseteq \{A \rightarrow \beta \text{ with left-hand-side (LHS)} A \in \mathbf{N}
                  and right-hand-side (RHS) \beta \in (\mathbb{N} \cup \Sigma)^* }
```

A start symbol  $S \in \mathbb{N}$ 

#### **Chomsky Normal Form**

The right-hand side of a standard CFG can have an **arbitrary number of symbols** (terminals and nonterminals):



A CFG in **Chomsky Normal Form** (CNF) allows only two kinds of right-hand sides:

- Two nonterminals: VP → ADV VP
- One terminal: VP → eat

Any CFG can be transformed into an equivalent CNF:

VP 
$$\rightarrow$$
 ADVP VP<sub>1</sub>  
VP<sub>1</sub>  $\rightarrow$  VP<sub>2</sub> NP  
VP<sub>2</sub>  $\rightarrow$  eat



#### A note about ε-productions

Formally, context-free grammars are allowed to have **empty productions** ( $\epsilon$  = the empty string):

```
VP \rightarrow V NP \qquad NP \rightarrow DT Noun \qquad NP \rightarrow \epsilon
```

These can always be **eliminated** without changing the language generated by the grammar:

```
VP \rightarrow V NP NP \rightarrow DT Noun NP \rightarrow \epsilon becomes VP \rightarrow V NP VP \rightarrow V \epsilon NP \rightarrow DT Noun which in turn becomes VP \rightarrow V NP VP \rightarrow V NP \rightarrow DT Noun
```

We will assume that our grammars don't have ε-productions

#### CKY chart parsing algorithm

#### Bottom-up parsing:

start with the words

#### Dynamic programming:

save the results in a table/chart re-use these results in finding larger constituents

Complexity:  $O(n^3|G|)$ 

*n*: length of string, |G|: size of grammar)

#### Presumes a CFG in Chomsky Normal Form:

Rules are all either  $A \rightarrow B C$  or  $A \rightarrow a$  (with A,B,C nonterminals and a a terminal)

#### The CKY parsing algorithm



To recover the parse tree, each entry needs pairs of backpointers.

We eat sushi

#### **CKY** algorithm

#### 1. Create the chart

(an  $n \times n$  upper triangular matrix for an sentence with n words)

- Each cell chart[i][j] corresponds to the substring w(i)...w(j)
- 2. Initialize the chart (fill the diagonal cells chart[i][i]):

For all rules  $X \to w^{(i)}$ , add an entry X to chart[i][i]

#### 3. Fill in the chart:

Fill in all cells chart[i][i+1], then chart[i][i+2], ..., until you reach chart[1][n] (the top right corner of the chart)

- To fill chart[i][j], consider all binary splits w(i)...w(k)|w(k+1)...w(j)
- If the grammar has a rule X → YZ, chart[i][k] contains a Y and chart[k+1][j] contains a Z, add an X to chart[i][j] with two backpointers to the Y in chart[i][k] and the Z in chart[k+1][j]
- **4. Extract the parse trees** from the S in chart[1][n].

#### CKY: filling the chart















#### CKY: filling one cell



chart[2][6]:

W1 W2 W3 W4 W5 W6 W7

 chart[2][6]:
 chart[2][6]:<

#### The CKY parsing algorithm



#### The CKY parsing algorithm

|                                                                                               | •                                                                                       | 0               |                   |                 |                           |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|-------------------|-----------------|---------------------------|
| we                                                                                            | we eat                                                                                  | we eat sushi    | we eat su<br>with | ıshi            | we eat sushi<br>with tuna |
| $S \rightarrow NP VP$ $VP \rightarrow V NP$                                                   | V<br>eat                                                                                | VP<br>eat sushi | eat sushi with    |                 | VP eat sushi with tuna    |
| $\begin{array}{c} VI \rightarrow VI \\ VP \rightarrow VP PP \\ V \rightarrow eat \end{array}$ | VP PP                                                                                   |                 |                   |                 | NP<br>sushi with tuna     |
| $NP \rightarrow NP PP$ $NP \rightarrow we$                                                    | single entry for each nonterminal. Each entry may have a list of pairs of backpointers. |                 |                   | PP<br>with tuna |                           |
| NP → sushi<br>NP → tuna                                                                       |                                                                                         |                 |                   | tuna            |                           |
| $\begin{array}{c} PP \rightarrow P & NP \\ P \rightarrow \text{ with} \end{array}$            | We eat s                                                                                | sushi wit       | h tun             | a               |                           |

#### What are the terminals in NLP?

Are the "terminals": words or POS tags?

For toy examples (e.g. on slides), it's typically the words

With POS-tagged input, we may either treat the POS tags as the terminals, or we assume that the unary rules in our grammar are of the form

POS-tag → word

(so POS tags are the only nonterminals that can be rewritten as words; some people call POS tags "preterminals")

#### Additional unary rules

In practice, we may allow other unary rules, e.g. NP → Noun (where Noun is also a nonterminal)

In that case, we apply all unary rules to the entries in chart[i][j] after we've checked all binary splits (chart[i][k], chart[k+1][j])

Unary rules are fine as long as there are no "loops" that could lead to an infinite chain of unary productions, e.g.:

$$X \rightarrow Y$$
 and  $Y \rightarrow X$  or:  $X \rightarrow Y$  and  $Y \rightarrow Z$  and  $Z \rightarrow X$ 

#### CKY so far...

Each entry in a cell chart[i][j] is associated with a nonterminal X.

If there is a rule  $X \to YZ$  in the grammar, and there is a pair of cells chart[i][k], chart[k+1][j] with a Y in chart[i][k] and a Z in chart[k+1][j], we can add an entry X to cell chart[i][j], and associate one pair of backpointers with the X in cell chart[i][k]

Each entry might have multiple pairs of backpointers. When we extract the parse trees at the end, we can get all possible trees.

We will need probabilities to find the single best tree!

#### Exercise: CKY parser

#### I eat sushi with chopsticks with you

```
S \rightarrow NP VP
NP \rightarrow NP PP
NP \rightarrow sushi
NP \rightarrow I
NP \rightarrow chopsticks
NP \longrightarrow you
VP \rightarrow VP PP
VP \rightarrow Verb NP
Verb \rightarrow eat
PP \rightarrow Prep NP
Prep \rightarrow with
```

### How do you count the **number of parse trees** for a sentence?

1. For each pair of backpointers (e.g.VP  $\rightarrow$  V NP): multiply #trees of children trees(VP<sub>VP</sub>  $\rightarrow$  V NP) = trees(V)  $\times$  trees(NP)

2. For each **list of pairs of backpointers** (e.g.VP  $\rightarrow$  V NP and VP  $\rightarrow$  VP PP): **sum** #trees trees(VP) = trees(VP<sub>VP</sub> $\rightarrow$ V NP) + trees(VP<sub>VP</sub> $\rightarrow$ VP PP)

#### Cocke Kasami Younger (1)

## ckyParse(n): initChart(n) fillChart(n)

```
initChart(n):w_1...w_n...for i = 1...n:<br/>initCell(i,i)w_1...w_1initCell(i,i):......for c in lex(word[i]):<br/>addToCell(cell[i][i], c, null, null)...addToCell(Parent,cell,Left, Right)<br/>if (cell.hasEntry(Parent)):<br/>P = cell.getEntry(Parent)<br/>P.addBackpointers(Left, Right)w_n
```

## fillChart(n): for span = 1...n-1: for i = 1...n-span: fillCell(i,i+span)

#### fillCell(i,j): for k = i..j-1: combineCells(i, k, j)

#### combineCells(i,k,j):

for Y in cell[i][k]: for Z in cell[k+1][j]: for X in Nonterminals: if  $X \rightarrow Y Z$  in Rules: addToCell(cell[i][j],X, Y, Z)



# Dealing with ambiguity: Probabilistic Context-Free Grammars (PCFGs)

#### Grammars are ambiguous

A grammar might generate multiple trees for a sentence:



What's the most likely parse  $\tau$  for sentence S ?

We need a model of  $P(\tau \mid S)$ 

#### Computing $P(\tau \mid S)$

#### Using Bayes' Rule:

$$\arg \max_{\tau} P(\tau|S) = \arg \max_{\tau} \frac{P(\tau, S)}{P(S)} 
= \arg \max_{\tau} P(\tau, S) 
= \arg \max_{\tau} P(\tau, S) 
= \arg \max_{\tau} P(\tau) \text{ if } S = \text{yield}(\tau)$$

The **yield of a tree** is the string of terminal symbols that can be read off the leaf nodes

#### Computing P(\tau)

T is the (infinite) set of all trees in the language:

$$L = \{ s \in \Sigma^* | \exists \tau \in T : \text{yield}(\tau) = s \}$$

We need to define  $P(\tau)$  such that:

$$\forall \tau \in T: \quad 0 \le P(\tau) \le 1$$

$$\sum_{\tau \in T} P(\tau) = 1$$

The set T is generated by a context-free grammar

#### Probabilistic Context-Free Grammars

For every nonterminal X, define a probability distribution  $P(X \rightarrow \alpha \mid X)$  over all rules with the same LHS symbol X:

| S  | $\rightarrow$ NP VP                         | 0.8 |
|----|---------------------------------------------|-----|
| S  | ightarrow S conj S                          | 0.2 |
| NP | ightarrow Noun                              | 0.2 |
| NP | ightarrow Det Noun                          | 0.4 |
| NP | ightarrow NP PP                             | 0.2 |
| NP | ightarrow NP conj NP                        | 0.2 |
| VP | ightarrow <code>Verb</code>                 | 0.4 |
| VP | ightarrow <code>Verb</code> <code>NP</code> | 0.3 |
| VP | ightarrow Verb NP NP                        | 0.1 |
| VP | ightarrow VP PP                             | 0.2 |
| PP | $\rightarrow$ P NP                          | 1.0 |

#### Computing $P(\tau)$ with a PCFG

The probability of a tree  $\tau$  is the product of the probabilities

of all its rules:



$$P(\tau) = \begin{array}{c|c} 0.8 & \times 0.3 & \times 0.2 & \times 1.0 & \times 0.2^3 \end{array}$$

$$= 0.00384$$

| S  | $\rightarrow$ NP VP     | 0.8 |
|----|-------------------------|-----|
| S  | ightarrow S conj S      | 0.2 |
| NP | ightarrow Noun          | 0.2 |
| NP | ightarrow Det Noun      | 0.4 |
| NP | $\longrightarrow$ NP PP | 0.2 |
| NP | ightarrow NP conj NP    | 0.2 |
| VP | ightarrow Verb          | 0.4 |
| VP | ightarrow Verb NP       | 0.3 |
| VP | ightarrow Verb NP NP    | 0.1 |
| VP | ightarrow VP PP         | 0.2 |
| PP | $\rightarrow$ P NP      | 1.0 |

# PCFG parsing (decoding): Probabilistic CKY

#### Probabilistic CKY: Viterbi

Like standard CKY, but with probabilities.

Finding the most likely tree  $\operatorname{argmax}_{\tau} P(\tau, \mathbf{s})$  is similar to Viterbi for HMMs:

**Initialization:** every chart entry that corresponds to a **terminal** (entries X in cell[i][i]) has a Viterbi probability  $P_{VIT}(X_{[i][i]}) = 1$ 

**Recurrence:** For every entry that corresponds to a **non-terminal** X in cell[i][j], keep only the highest-scoring pair of backpointers to any pair of children (Y in cell[i][k] and Z in cell[k+1][j]):  $P_{VIT}(X_{[i][j]}) = \operatorname{argmax}_{Y,Z,k} P_{VIT}(Y_{[i][k]}) \times P_{VIT}(Z_{[k+1][j]}) \times P(X \to YZ \mid X)$ 

**Final step:** Return the Viterbi parse for the start symbol S in the top cell[1][n].

#### Probabilistic CKY

#### **Input: POS-tagged sentence**

John\_N eats\_V pie\_N with\_P cream\_N

|       | cream                                        | with     | pie                           | eats                 | ohn       | Jo              |
|-------|----------------------------------------------|----------|-------------------------------|----------------------|-----------|-----------------|
| John  | S<br>0.2 · 0.0036 · 0.8                      |          | S<br>0.8 · 0.2 · 0.06         | S<br>0.8 · 0.2 · 0.3 | NP<br>0.2 | <b>N</b><br>1.0 |
| eats  | VP<br>((1.0 · 0.008 · 0<br>0.06 · 0.2 · 0.3) |          | VP<br>1 · 0.3 · 0.2<br>= 0.06 | V VP<br>1.0 0.3      |           |                 |
| pie   | NP<br>0.2 · 0.2 · 0.2<br>= 0.008             |          | N NP<br>1.0 0.2               |                      |           |                 |
| with  | PP<br>1 · 1 · 0.2                            | P<br>1.0 |                               |                      |           |                 |
| cream | N NP<br>1.0 0.2                              |          |                               |                      |           |                 |

| S  | $\longrightarrow$ NP VP | 0.8 |
|----|-------------------------|-----|
| S  | ightarrow S conj S      | 0.2 |
| NP | ightarrow Noun          | 0.2 |
| NP | ightarrow Det Noun      | 0.4 |
| NP | ightarrow NP PP         | 0.2 |
| NP | ightarrow NP conj NP    | 0.2 |
| VP | ightarrow Verb          | 0.3 |
| VP | ightarrow Verb NP       | 0.3 |
| VP | ightarrow Verb NP NP    | 0.1 |
| VP | $\rightarrow$ VP PP     | 0.3 |
| PP | ightarrow P NP          | 1.0 |
|    |                         |     |