Killer Yeast Vs. Sensitive Yeast

Evan Cummings Intizor Aliyorov Malachi J. Cryder

MATH 445 - Statistical, Dynamical, and Computational Modeling

December 2, 2013

Proposal

The differential equation we may use for modeling the growth of yeast is the same as that used for bacterial growth in a chemostat:

$$\begin{split} \frac{dN}{dt} &= k(C)N - \frac{FN}{V}, \\ \frac{dC}{dt} &= -\alpha k(C)N - \frac{FC}{V} + \frac{FC_0}{V}, \end{split}$$

with initial conditions $C(0) = C_i$ and $N(0) = N_i$, N is the number of yeast in the chamber in units number/volume, C is the concentration of nutrient in the chamber with units mass/volume, C_0 is the concentration of nutrient in the reservoir, F is the in/out flow rate with units volume/time, V is the volume of the chamber, α is a unitless inverse of the yield constant, and k(C) is the reproduction rate for yeast in units 1/time with possible formula chosen such that $\lim_{C\to\infty} = k_{max}$, and k_{max} represents the maximum possible reproduction rate:

$$k(C) = \frac{k_{max}C}{k_n + C}.$$

where k_n is chosen such that $k(k_n) = k_{max}/2$. The quantitative measurement for fitness is a measurement of optical density at steady state (equilibrium) at a given flow rate (F) in volumes/hr.

Because the data is collected in density form, we propose solving for density $\rho = N/V$:

$$\begin{split} \frac{d\rho}{dt} &= k(C)\rho - \frac{F\rho}{V}, \\ \frac{dC}{dt} &= -\alpha k(C)\rho - \frac{FC}{V} + \frac{FC_0}{V}, \end{split}$$

with initial conditions $\rho(0) = \rho_i$ and $C(0) = C_i$, and all other constants are identical as before.

In order to find the steady states, we have to find the intersections of the null-clines at equilibrium points $(\bar{\rho}, \bar{C})$, i.e. $d\bar{\rho}/dt = 0$ and $d\bar{C}/dt = 0$:

$$\begin{split} \frac{d\rho(\bar{\rho},\bar{C})}{dt} &= k(\bar{C})\bar{\rho} - \frac{F\bar{\rho}}{V}, \\ &= \bar{\rho}\left(k(\bar{C}) - \frac{F}{V}\right) = 0, \end{split}$$

which is zero for $\bar{\rho} = 0$ or $k(\bar{C}) = F/V$. Solving the other equation gives us the other steady-states:

$$\frac{dC(\bar{\rho},\bar{C})}{dt} = -\alpha k(\bar{C})\bar{\rho} - \frac{F\bar{C}}{V} + \frac{FC_0}{V} = 0,$$

which is zero for $\alpha k(\bar{C})\bar{\rho} + \frac{F\bar{C}}{V} = \frac{FC_0}{V}$.

In order to evaluate these null-clines, we need to evaluate the non-trivial cases, here for $\dot{\rho} = 0$,

$$k(\bar{C}) = \frac{k_{max}C}{k_n + \bar{C}} = \frac{F}{V}$$

$$k_{max}\bar{C} = \frac{F}{V}(k_n + \bar{C})$$

$$k_{max}\bar{C} - \frac{F}{V}\bar{C} = \frac{F}{V}k_n$$

$$\bar{C}\left(k_{max} - \frac{F}{V}\right) = \frac{F}{V}k_n$$

$$\bar{C} = \frac{Fk_n}{V\left(k_{max} - \frac{F}{V}\right)}$$

$$\bar{C} = \frac{Fk_n}{Vk_{max} - F}.$$
(1)

Likewise, for $\dot{C} = 0$,

$$\alpha k(\bar{C})\bar{\rho} + \frac{F\bar{C}}{V} = \frac{FC_0}{V}$$

$$\alpha \left[\frac{k_{max}\bar{C}}{k_n + \bar{C}} \right] \bar{\rho} + \frac{F\bar{C}}{V} = \frac{FC_0}{V}$$

$$\alpha k_{max}\bar{C}\bar{\rho} + \frac{F\bar{C}}{V}(k_n + \bar{C}) = \frac{FC_0}{V}(k_n + \bar{C})$$

$$\alpha k_{max}\bar{C}\bar{\rho} + \frac{F\bar{C}}{V}(k_n + \bar{C}) = \frac{FC_0}{V}(k_n + \bar{C})$$

$$\alpha k_{max}\bar{C}\bar{\rho} + \frac{F\bar{C}k_n}{V} + \frac{F\bar{C}^2}{V} = \frac{FC_0k_n}{V} + \frac{FC_0\bar{C}}{V}$$

$$\alpha k_{max}\bar{C}\bar{\rho} = \frac{FC_0k_n}{V} + \frac{FC_0\bar{C}}{V} - \frac{F\bar{C}k_n}{V} - \frac{F\bar{C}^2}{V}$$

$$\bar{\rho} = \frac{FC_0k_n}{V(\alpha k_{max}\bar{C})} + \frac{FC_0\bar{C}}{V(\alpha k_{max}\bar{C})} - \frac{F\bar{C}k_n}{V(\alpha k_{max}\bar{C})} - \frac{F\bar{C}^2}{V(\alpha k_{max}\bar{C})}$$

$$\bar{\rho} = \frac{FC_0k_n}{V\alpha k_{max}\bar{C}} + \frac{FC_0}{V\alpha k_{max}} - \frac{Fk_n}{V\alpha k_{max}} - \frac{F\bar{C}}{V\alpha k_{max}}$$

$$\bar{\rho} = \frac{F}{V\alpha k_{max}} \left(\frac{C_0k_n}{\bar{C}} + C_0 - k_n - \bar{C} \right). \tag{2}$$

Figure 1: The $\dot{C}=0$ nullcline (red) intersecting with the $\dot{\rho}=0$ nullcline (black). The trivial steady-state $(\bar{\rho},\bar{C})$ are shown as red dots.

By placing Eq. (1) inside Eq. (2), we can find the intersection of the null-clines:

$$\begin{split} \bar{\rho}(\bar{C}) &= \frac{F}{V\alpha k_{max}} \left(\frac{C_0 k_n}{\bar{C}} + C_0 - k_n - \bar{C} \right) \\ &= \frac{F}{V\alpha k_{max}} \left(\frac{C_0 k_n}{\frac{Fk_n}{Vk_{max} - F}} + C_0 - k_n - \frac{Fk_n}{Vk_{max} - F} \right) \\ &= \frac{F}{V\alpha k_{max}} \left(\frac{C_0 (Vk_{max} - F)}{F} + C_0 - k_n - \frac{Fk_n}{Vk_{max} - F} \right). \end{split}$$

The unknowns in this are α , k_{max} , and k_n . First, assume $\alpha=1$. With this assumption we can then minimize the difference between the equilibrium solution for ρ determined from the differential equations $\dot{\rho}$ and \dot{C} (determined numerically) and the observed optical density $\bar{\rho}$ for a given F to provide an estimate for \bar{C} , which we can then plug into equations (1) and (2) to get k_{max} and k_n .

The data we are provided with include two sets of two separate runs, along with the concentration of nutrient in the reservoir, $C_0 = 0.02$:

1 K1 Run

Vessel One:

Volumes/Hr	0.028	0.099	0.142	0.207	0.269	0.287	0.352	0.403
Optical Density at Steady State	0.144	0.151	0.099	0.069	0.045	0.02	0.003	0

Vessel Two:

Volumes/Hr	0.054	0.11	0.141	0.199	0.257	0.296	0.348	0.397	0.41
Optical Density at Steady State	0.164	0.151	0.11	0.092	0.072	0.023	0.006	0.002	0.004

2 Sensitive Run

Vessel One:

Volumes/Hr	0.041	0.099	0.167	0.223	0.266	0.328	0.356	0.401	0.462
Optical Density at Steady State	0.54	0.494	0.459	0.395	0.229	0.019	0.006	0.003	0

Vessel Two:

	,	0.0571					
а	Optical Density at Steady State	0.385	0.456	0.363	0.197	0.044	0.004

