Quantum Computing

- Lecture 4 (May 7, 2025)
- Today:
 - Unitary operations on multi-qubit systems
 - Some examples (do it on the board)

Unitary Operations

- A quantum gate is a unitary operator (A unitary represents some quantum gate)
 - A unitary operator has linearity: $U(c_1v_1 + c_2v_2) = c_1Uv_1 + c_2Uv_2$
- Quantum gates operate on superposition: Linearity
 - View any quantum gate as a unitary linear operator (matrix)
 - Quantum gates act on superpositions according to linearity
- Make a classical computable function unitary $f o oldsymbol{U_f}$
 - Use input qubits and ancilla qubits to make it invertible
 - Any classical algorithm can be simulated by quantum computers

- Single-qubit unitary:
 - Examples: qNOT, Hadamard transform, ...

- Single-qubit unitary:
 - Examples: qNOT, Hadamard transform, ...

- Single-qubit unitary:
 - Examples: qNOT, Hadamard transform, ...

Misunderstand: The "wire" here **does not** represent a real wire!

Instead, it just visually **tracks the state of the system** through time.

- Single-qubit unitary:
 - Examples: qNOT, Hadamard transform, ...

- Multi-qubit unitary:
 - Examples: qXOR, CNOT, ...

- Multi-qubit unitary:
 - Examples: qXOR, CNOT, ...

- Multi-qubit unitary:
 - Examples: qXOR, CNOT, ...

- Multi-qubit unitary:
 - Examples: qXOR, CNOT, ...

- Multi-qubit unitary:
 - Examples: qXOR, CNOT, **Parallel action of Hadamard gates**...

- Multi-qubit unitary:
 - Examples: qXOR, CNOT, **Parallel action of Hadamard gates**...

- Multi-qubit unitary:
 - Parallel action of Hadamard gates...

- Let f be a bit function...
- (Do it on the board)

- Let f be a bit function...
- (Do it on the board)

- Let f be a bit function...
- (Do it on the board)

The composite
$$|\psi_0\rangle=|01\rangle=|0\rangle\otimes|1\rangle$$
 system

- Let f be a bit function...
- (Do it on the board)

The composite
$$|\psi_1\rangle = \mathbf{H}^{\otimes 2}|\psi_0\rangle = \left(\frac{|0\rangle + |1\rangle}{2}\right) \otimes \left(\frac{|0\rangle - |1\rangle}{2}\right)$$
 system

- Let f be a bit function...
- (Do it on the board)

The composite system
$$|\psi_2\rangle = \textbf{\textit{U}}_f|\psi_1\rangle = \left(\frac{|0\rangle + (-1)^{\textbf{\textit{f}}(\textbf{0}) \oplus \textbf{\textit{f}}(\textbf{1})}|1\rangle}{2}\right) \otimes \left((-1)^{\textbf{\textit{f}}(\textbf{0})} \left(\frac{|0\rangle - |1\rangle}{2}\right)\right)$$

- Let f be a bit function...
- (Do it on the board)

The composite system
$$|\psi_3\rangle = (\mathbf{H} \otimes \mathbf{I})|\psi_2\rangle = (|\mathbf{f}(\mathbf{0}) \oplus \mathbf{f}(\mathbf{1})\rangle) \otimes \left((-1)^{f(0)} \left(\frac{|0\rangle - |1\rangle}{2}\right)\right)$$

- Let f be a bit function...
- (Do it on the board)

$$|\psi_3\rangle = \pm |f(0) \oplus f(1)\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

 $|\psi_3\rangle = \pm |f(0) \oplus f(1)\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$ (We just let $(-1)^{f(0)} = \pm$, which does not change the measurement outcome)

- Let f be a bit function...
- (Do it on the board)

The composite
$$|\psi_3\rangle=\pm|f(0)\oplus f(1)\rangle\begin{bmatrix}|0\rangle-|1\rangle\\\hline\sqrt{2}\end{bmatrix}$$
 first system
$$b=f(0)\oplus f(1)$$
 system

- Let f be a bit function...
- (Do it on the board)

Parallel Hadamard Gates

 $|b_0\rangle \otimes |b_1\rangle \otimes |b_2\rangle \otimes \cdots \otimes |b_{n-1}\rangle$

Parallel Hadamard Gates

Parallel Hadamard Gates

Let $\mathbf{b} \coloneqq b_{n-1}b_{n-2} \dots b_0$ be the classical bit string

$$H^{\otimes n}|\mathbf{b}\rangle = \sum_{\mathbf{x}\in\{0,1\}^n} \frac{(-1)^{\mathbf{x}^T\mathbf{b}}}{\sqrt{2^n}}|\mathbf{x}\rangle$$

$$|b_0\rangle \otimes |b_1\rangle \otimes |b_2\rangle \otimes \cdots \otimes |b_{n-1}\rangle$$

- Let $f: \{0,1\}^n \to \{0,1\}$ be a bit function...
- (Do it on the board)

The composite system
$$|\psi_3\rangle = \sum_{\mathbf{z} \in \{0,1\}^n} \sum_{\mathbf{x} \in \{0,1\}^n} \frac{(-1)^{\mathbf{x}^T\mathbf{z} + f(\mathbf{x})} |\mathbf{z}\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]$$

- Let $f: \{0,1\}^n \to \{0,1\}$ be a bit function...
- (Do it on the board)

The composite system
$$|\psi_3\rangle = \sum_{\mathbf{z} \in \{0,1\}^n} \sum_{\mathbf{x} \in \{0,1\}^n} \frac{(-1)^{\mathbf{x}^T\mathbf{z} + f(\mathbf{x})} |\mathbf{z}\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \xrightarrow{\text{first } n \text{ system}} \boxed{ }$$

$$|\psi_3\rangle = \sum_{\mathbf{z} \in \{0,1\}^n} \sum_{\mathbf{x} \in \{0,1\}^n} \frac{(-1)^{\mathbf{x}^T \mathbf{z} + f(\mathbf{x})} |\mathbf{z}\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \stackrel{n\text{-qubit system}}{====} \mathbf{z}$$

• What's the probability of $z = 00 \dots 0$? What about $z \neq 00 \dots 0$?

$$|\psi_3\rangle = \sum_{\mathbf{z} \in \{0,1\}^n} \sum_{\mathbf{r} \in \{0,1\}^n} \frac{(-1)^{\mathbf{z}^T \mathbf{z} + f(\mathbf{z})} |\mathbf{z}\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \frac{n\text{-qubit system}}{\mathbf{z}}$$

• What's the probability of $\mathbf{z} = 00 \dots 0$? What about $\mathbf{z} \neq 00 \dots 0$?

$$\sum_{x \in \{0,1\}^n} \frac{(-1)^{x^T z + f(x)}}{\sqrt{2^n}}$$

$$|\psi_3\rangle = \sum_{\mathbf{z} \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} \frac{(-1)^{x^T \mathbf{z} + f(x)} |\mathbf{z}\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \frac{n\text{-qubit system}}{\mathbf{z}}$$

• What's the probability of $z = 00 \dots 0$? What about $z \neq 00 \dots 0$?

$$\sum_{x \in \{0,1\}^n} \frac{(-1)^{x^I} z + f(x)}{\sqrt{2^n}}$$

- What if f is a zero function: $\forall x \in \{0,1\}^n$, f(x) = 0? Or f(x) = 1?
- What if f is a non-zero balanced function: $\sum_{x \in \{0,1\}^n} f(x) = 0$

Deutsch-Jozsa Problem

- Constant-vs-balanced problem
- Let $f: \{0,1\}^n \to \{0,1\}$ be a bit function such that it is in either two cases:
 - f is a constant function: $\forall x \in \{0,1\}^n$, f(x) is always a constant (0 or 1)
 - f is a balanced function: $\sum_{x \in \{0,1\}^n} f(x) = 0$ (i.e., outputs 0 for half the inputs, and 1 for the other half)
- To decide whether f is constant or balanced, **how many times** must we evaluate f?

Deutsch-Jozsa Problem

- Constant-vs-balanced problem
- Let $f: \{0,1\}^n \to \{0,1\}$ be a bit function such that it is in either two cases:
 - f is a constant function: $\forall x \in \{0,1\}^n$, f(x) is always a constant (0 or 1)
 - f is a balanced function: $\sum_{x \in \{0,1\}^n} f(x) = 0$ (i.e., outputs 0 for half the inputs, and 1 for the other half)
- To decide whether f is constant or balanced, **how many times** must we evaluate f?

Classical Computer

```
Worst-case: 2^n

Probabilistic algorithm: l \ll 2^n times,

with a failure rate of \frac{1}{2^l}
```

Deutsch-Jozsa Problem

- Constant-vs-balanced problem
- Let $f: \{0,1\}^n \to \{0,1\}$ be a bit function such that it is in either two cases:
 - f is a constant function: $\forall x \in \{0,1\}^n$, f(x) is always a constant (0 or 1)
 - f is a balanced function: $\sum_{x \in \{0,1\}^n} f(x) = 0$ (i.e., outputs 0 for half the inputs, and 1 for the other half)
- To decide whether f is constant or balanced, **how many times** must we evaluate f?

Classical Computer

Worst-case: 2^n Probabilistic algorithm: $l \ll 2^n$ times, with a failure rate of $\frac{1}{2^l}$

Quantum Computers:

Evaluate **once**, with failure rate 0

References

- [NC00] Quantum Computation and Quantum Information.
 - Sections 1.4.3
- [KLM07] An Introduction to Quantum Computing.
 - Sections 6.2, 6.3, and 6.4
- [RP11] Quantum Computing: A Gentle Introduction.
 - Section 7.3.1

Some Important Information

- No lectures in the next week!
- First Homework Assignment (to be announced soon on Moodle)
 - Deadline: May 21th, 2025 (next lecture)

- Final Exam:
 - The final exam will be a **written exam** (you can bring any paper-based materials)
 - Your final grade will be based solely on the written exam
 - There will be three to four homework assignments during the course.
 - You must complete all of them in order to be eligible to take the final exam.