OMR Answer Sheet No.						

6062

B.Sc. (VI Sem.) Special Examination, 2024

Booklet Series

(Session-2023-24)

MATHEMATICS

(Metric Space & Complex Analysis)

(To be filled by the Candidate / निम्न पूर्तियाँ परीक्षार्थी स्वयं भरें)

Roll No. (in figures)	[Time : 2 : 00 Hours
अनुक्रमांक (अंकों में)	[समय : 2 : 00 घण्टे
Roll No. (in words)	[Maximum Marks : 75
अनुक्रमांक (शब्दों में)	[अधिकतम अंक : 75
Name of Examination Centre	
परीक्षा केन्द्र का नाम	Signature of Invigilator कक्ष निरीक्षक के हस्ताक्षर

Instructions to the Examinee:

- Do not open the booklet unless you are asked to do so.
- 2. The booklet contains 75 questions. Examinee is required to answer any 65 questions in the OMR Answer-Sheet provided and not in the question booklet. In case Examinee attempts more than 65 Questions, first 65 attempted questions will be evaluated. All questions carry equal marks.
- Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be immediately replaced.

(Remaining Instructions on last page)

परीक्षार्थियों के लिए निर्देश:

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 75 प्रश्न हैं। परीक्षार्थी को किन्हीं 65 प्रश्नों को दी गई ओ०एम०आर० आन्सर-शीट पर ही हल करना है। परीक्षार्थी द्वारा 65 से अधिक प्रश्नों को हल करने की स्थिति में, प्रथम 65 उत्तरों को ही मूल्यांकित किया जायेगा। सभी प्रश्नों के अंक समान हैं।
- उ. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा OMR उत्तर-पत्रक को सावधानीपूर्वक देख लें। दोषपूर्ण प्रश्न-पुस्तिका, जिसमें कुछ भाग छपने से छूट गये हों या प्रश्न एक से अधिक बार छप गये हों या किसी भी प्रकार की कमी हो, उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

Rough Work रफ कार्य

The polar form of Cauchy Riemann equation are.

(A)
$$\frac{\partial y}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = -r \frac{\partial v}{\partial r}$$

(B)
$$\frac{\partial y}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = r \frac{\partial v}{\partial r}$$

(C)
$$\frac{\partial y}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = r \frac{\partial v}{\partial r}$$

(D)
$$\frac{\partial y}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = -r \frac{\partial v}{\partial r}$$

2. The Cauchy-Riemann equation are:

(A)
$$u_x = v_y, u_y = v_x$$

(B)
$$u_x = -v_y, u_y = v_x$$

(C)
$$u_x = v_y, u_y = -v_x$$

(D)
$$u_x = -V_y, u_y = -V_x$$

- 3. The equation $z(\bar{z}+2)=3$ represents.
 - (A) Line
 - (B) Circle
 - (C) ellipse
 - (D) Hyperbola
- 4. The module of $\frac{3-i}{2+i} + \frac{3+i}{2-i}$ is
 - (A) i
 - (B) 1
 - (C) 2
 - (D) -i

1. ध्रुवीय रूप से कौसी-रीमान का समीकरण होता है:

$$(A) \quad \frac{\partial y}{\partial r} = \frac{1}{r} \frac{\partial \nu}{\partial Q}, \frac{\partial y}{\partial Q} = -r \frac{\partial \nu}{\partial r}$$

(B)
$$\frac{\partial y}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = r \frac{\partial v}{\partial r}$$

(C)
$$\frac{\partial y}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = r \frac{\partial v}{\partial r}$$

(D)
$$\frac{\partial y}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial Q}, \frac{\partial y}{\partial Q} = -r \frac{\partial v}{\partial r}$$

2. कौसी-रीमान समीकरण होता है:

(A)
$$u_x = v_y, u_y = v_x$$

(B)
$$u_x = -v_y, u_y = v_x$$

(C)
$$u_x = v_y, u_y = -v_x$$

(D)
$$u_x = -v_y, u_y = -v_x$$

- 3. समीकरण $z(\bar{z}+2)=3$ प्रदर्शित करता है:
 - (A) Line
 - (B) Circle
 - (C) ellipse
 - (D) Hyperbola
- 4. $\frac{3-i}{2+i} + \frac{3+i}{2-i}$ का मापांक है:
 - (A) i
 - (B) 1
 - (C) 2
 - (D) -i

- (A) $-\pi/2$
- (B) $\pi/2$
- (C) $-\pi$
- (D) π
- The equation of circle, whose centre a and radius r is:
 - (A) |z-a|=r
 - (B) \bar{z} -a=r
 - (C) $z-\bar{a}=r$
 - (D) None of these
- 7. metric if
 - (A) $d(x,y)=d(y,x) \forall x,y \in x$
 - (B) $d(x,y)=0 \Leftrightarrow x=y$
 - (C) $d(x,y)=0 \Rightarrow x=y$
 - (D) $d(x,y)=0 \Rightarrow x=y$
- 8. The metric space (Rh,d) is known as:
 - (A) Unitary space
 - (B) Postman space
 - (C) Euclidean space
 - (D) None of these

5.
$$\frac{1-i}{1+i}$$
 का आयाम है:

- (A) $-\pi/2$
- (B) $\pi/2$
- (C) $-\pi$
- (D) π
- वृत्त का समीकरण होता है, जिसका केन्द्र a एवं त्रिज्या r है:
 - (A) |z-a|=r
 - (B) \bar{z} -a=r
 - (C) $z-\bar{a}=r$
 - (D) इनमें से कोई नहीं
- A function $d: X \times X \rightarrow R$ is a Pseudo 7. एक फलन $d: X \times X \rightarrow R$ एक सियूडो मीट्रिक होता है यदि
 - (A) $d(x,y)=d(y,x) \forall x,y \in x$
 - (B) $d(x,y)=0 \Leftrightarrow x=y$
 - (C) $d(x,y)=0 \Rightarrow x=y$
 - (D) $d(x,y)=0 \Rightarrow x=y$
 - मीट्रिक स्पेस (Rh,d) जाना जाता है: 8.
 - (A) Unitary space
 - (B) Postman spaces
 - (C) Euclidean space
 - (D) इनमें से कोई नहीं

9.	If (x,d	l) is a metric space, then :	9.	यदि (१	x,d) एक मीट्रिक स्पेस है तबः
	(A) φ	is open		(A)	φ खुला है
	(B) X	(is open		(B)	X खुला है
	(C) X	is closed		(C)	X बंद है
	(D) A	all of these		(D)	उपरोक्त सभी
10.	Which	one is not an open set?	10.	निम्न म	नें कौन सा एक खुला समुच्चय नहीं है?
	(A) (a	a,b)		(A)	(a,b)
	(B) (a	a,b]		(B)	(a,b]
	(C) ¢			(C)	ф
	(D) (a	a,b)∪(c,d)		(D)	(a,b)∪(c,d)
11.	The n	natrix of the quadratic form	11.	द्विघात	रूप x²-2xy+2y² आव्यूह है:
	x ² –2xy	y+2y² is.		(A)	[1 1] 1 2
	(A) [1 1 1 2		(B)	$\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$
	(B) [1 -1			
		-1 1 2 -1		(C)	$\begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$
	_	1 -1 -1 2		(D)	$\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$
12.	The	set $B(x_0,r) = \{x \in x d(x,x_0) < r\}$	12.	त्रिज्या	r एवं केन्द्र x _o के साथ समुच्चय B(x _o ,r)
	with c	entre x_0 and radius r is called.		={ x ∈	=x d(x,x _o) <r} td="" कहलाता="" हैः<=""></r}>
	(A) C	Closed Ball		(A)	Closed Ball
	(B) C)pen Ball		(B)	Open Ball
	(C) C	Closed Circle		(C)	Closed Circle
6062	(D) C	Open Circle	5]	(D)	Open Circle P.T.O.

13.	Let A,B be subsets of a metric space
	(x,d) and \overline{A} denote closure of, A then

- (A) $\overline{A} \cap \overline{B} \subset \overline{(A \cap B)}$
- (B) $\overline{A} \cup \overline{B} \subset \overline{(A \cup B)}$
- (C) $\overline{(A \cup B)} \subset \overline{A} \cup \overline{B}$
- (D) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$
- 14. In a metric space every derived set of a set is:
 - (A) Closed set
 - (B) Open set
 - (C) ¢
 - (D) Power set
- 15. Open sphere on the real line in usual metric are:
 - (A) Closed Interval
 - (B) Open Interval
 - (C) Infinite Interval
 - (D) None
- Let d: X×X→R be a metric on X, then symmetric property of d is.
 - (A) $d(x,y)=d(y,x) \forall x,y \in x$
 - (B) $d(x,y)=0 \forall x,y \in x$
 - (C) $d(x,y) \ge 0 \forall x,y \in x$
 - (D) None of these

- 13. माना A,B एक मीट्रिक स्पेस (x,d) के उपसमुच्चय है और Ā A के क्लोजर को निरूपित करता है तबः
 - (A) $\overline{A} \cap \overline{B} \subset \overline{(A \cap B)}$
 - (B) $\overline{A} \cup \overline{B} \subset \overline{(A \cup B)}$
 - (C) $\overline{(A \cup B)} \subset \overline{A} \cup \overline{B}$
 - (D) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$
- 14. एक मीट्रिक स्पेस में, समुच्चय का डेराइब्ड समुच्चय होता है:
 - (A) बंद समुच्चय
 - (B) खुला समुच्चय
 - (C) ¢
 - (D) घात समुच्चय
- वास्तविक रेखा पर सामान्य मीट्रिक में खुला गोला
 है:
 - (A) बंद अंतराल
 - (B) खुला अंतराल
 - (C) असीमित अंतराल
 - (D) कोई नहीं
- 16. माना d: X×X→R समुच्चय X पर मीट्रिक है तबd की समिमित गुण है:
 - (A) $d(x,y)=d(y,x) \forall x,y \in x$
 - (B) $d(x,y)=0 \forall x,y \in x$
 - (C) $d(x,y) \ge 0 \forall x,y \in x$
 - (D) इनमें से कोई नहीं

- 17. The property $d(x,y) \le d(x,z) + d(z,y)$ is named as:
 - (A) Non Negativity
 - (B) Tringle inequality
 - (C) Reflexive
 - (D) None
- 18. The usual metric on the set of real number is defined as:
 - (A) d(x,y) = |x| + |y|
 - (B) d(x,y) = |x| |y|
 - (C) d(x,y) = |x+y|
 - (D) d(x,y) = |x-y|
- 19. The discrete metric on a non empty set x is defined as:
 - (A) $d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$
 - (B) d(x,y)=1
 - (C) d(x,y) = 0
 - (D) $d(x,y) = \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$
- 20. The number of zeros of the function $f(z) = \sin 1/2 \text{ is.}$
 - (A) 0
 - (B) 2
 - (C) Infinite
 - (D) 01

- 17. गुण d(x,y)≤d(x,z)+d(z,y) नाम से जाना जाता हैः
 - (A) गैर ऋणात्मक
 - (B) त्रिभुजीय गुण
 - (C) स्वतुल्य
 - (D) कोई नहीं
- वास्तविक संख्याओं के समुच्चय पर सामान्य मीट्रिक निर्धारित होता है:
 - (A) d(x,y) = |x| + |y|
 - (B) d(x,y) = |x| |y|
 - (C) d(x,y) = |x+y|
 - (D) d(x,y) = |x-y|
- डिसक्रीट मीट्रिक, एक अरिक्त समुच्चय x पर के
 रूप में निर्धारित किया जाता है:
 - (A) $d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$
 - (B) d(x,y)=1
 - (C) d(x,y) = 0
 - (D) $d(x,y) = \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$
 - 20. फ़ंक्शन $f(z) = \sin 1/2$ के शून्यों की संख्या है।
 - (A) 0
 - (B) 2
 - (C) अनगिनित
 - (D) 01

- 21. The analytic function $f(z) = \frac{z-1}{z^2+1}$ 21. विश्लेषणात्मक फ़ंक्शन $f(z) = \frac{z-1}{z^2+1}$ में has singularity at.
 - (A) 1 & -1
 - (B) 1 & i
 - (C) 1 & -i
 - (D) i & -i
- 22. Residue of $\frac{1}{\sin z \cos z}$ at $z = \pi/4$ is. 22. $\frac{1}{\sin z \cos z}$ का अवशेष, $z = \pi/4$ पर
 - (A) 2
 - (B) $\frac{1}{2}$
 - (C) $\frac{1}{\sqrt{2}}$
 - (D) $\sqrt{2}$
- 23. The value of integral $\int_{c} \frac{dz}{z^2-2z}$, where 23. अभिन्न $\int_{c} \frac{dz}{z^2-2z}$ का मूल्य होगा, जहाँ c चक्र c is the circle |z|=1 is.
 - (A) $-2\pi i$
 - (B) $-\pi i$
 - (C) 0
 - (D) πi
- 24. Fixed points of $\omega = \frac{z}{z-2}$ are.
 - (A) 0 and 2
 - (B) 0 and 3
 - (C) 1 and 2

6062\A\2024

(D) None of the above

- समानता होगी।
 - (A) 1 और -1
 - (B) 1 और i
 - (C) 1 और –i
 - (D) i और –i
- - (A) 2
 - (B) $\frac{1}{2}$
 - (C) $\frac{1}{\sqrt{2}}$
 - (D) $\sqrt{2}$
- है |z|=1
 - (A) $-2\pi i$
 - (B) $-\pi i$
 - (C) 0
 - (D) πi
- 24. $ω = \frac{z}{z-2}$ के निश्चित बिंदु होंगे।
 - (A) 0 और 2
 - (B) 0 और 3
 - (C) 1 और 2
 - (D) कोई नहीं

(A)
$$-3xy^2-y^3$$

(B)
$$-3xy^2 + x^3$$

(C)
$$xy^2 + x^3$$

26. If
$$(a+ib)^5=\alpha+i\beta$$
, then $(b+ia)^5$ is equal to.

(A)
$$\beta + i\alpha$$

(B)
$$\alpha - i\beta$$

(C)
$$\beta$$
-i α

(D)
$$-\alpha - i\beta$$

27. Which of the following metric space with usual metric is not complete.

(A)
$$(R^2, d)$$

(B)
$$(R^3,d)$$

(C)
$$\{x=(0,1),d\}$$

(D)
$$(I_{\infty},d)$$

25. यदि
$$u=y^3-3x^2y$$
 तो u का हार्मीनिक संयुग्म

होगा।

(A)
$$-3xy^2-y^3$$

(B)
$$-3xy^2 + x^3$$

(C)
$$xy^2 + x^3$$

26. यदि
$$(a+ib)^5 = \alpha + i\beta$$
, है तब $(b+ia)^5$ बराबर होगा।

(A)
$$\beta + i\alpha$$

(D)
$$-\alpha - i\beta$$

 निम्नलिखित में से कौन सा मीट्रिक स्पेस सामान्य मीट्रिक के साथ पूर्ण नहीं है।

(A)
$$(R^2, d)$$

(B)
$$(R^3,d)$$

(C)
$$\{x=(0,1),d\}$$

(D)
$$(I_{\infty},d)$$

- 28. Let (x,d) be a metric space. Then for x, the function d*: X × X → R are defined as follows. Which of the following functions d* is not a metric for x?
 - (A) $d^*(x,y) = 2d(x,y)$
 - (B) $d^*(x,y) = \frac{d(x,y)}{1+d(x,y)}$
 - (C) $d^*(x,y) = \min \{1,d(x,y)\}$
 - (D) $d^*(x,y)=\max \{1,d(x,y)\}$
- 29. Let x be a non empty set then for x, metric is a function d: X×X→R which for each x,y,z∈x, does not possess one of the following properties?
 - (A) $d(x,y) \ge 0$
 - (B) $d(x,y)=0(\Rightarrow x=y)$
 - (C) d(x,y)=d(y,x)
 - (D) $d(x,y)+d(y,z) \le d(x,z)$
- 30. Let (x,d) is a metric space, then (x,2d):
 - (A) is a metric space
 - (B) Cannot be a metric space
 - (C) Will be a pseudo metric space
 - (D) None of these

- 28. मान लीजिए (x,d) एक मैट्रिक स्पेस है। तो x के लिए फंक्शन d*:X×X→R निम्नानुसार परिभाषित किया गया है। निम्नलिखित में से कौन सा फंक्शन x के लिए मैट्रिक नहीं है।
 - (A) $d^*(x,y) = 2d(x,y)$
 - (B) $d^*(x,y) = \frac{d(x,y)}{1+d(x,y)}$
 - (C) $d^*(x,y) = min \{1,d(x,y)\}$
 - (D) $d^*(x,y) = \max \{1,d(x,y)\}$
- 29. मान लीजिए एक गैर रिक्त सेट है, तो x के लिए मीटरीक एक फंक्शन है जो प्रत्येक अभ्यास के लिए निम्नलिखित गुणों में से एक नहीं रखता है-
 - (A) $d(x,y) \ge 0$
 - (B) $d(x,y)=0(\Rightarrow x=y)$
 - (C) d(x,y)=d(y,x)
 - (D) $d(x,y)+d(y,z) \le d(x,z)$
- 30. मान लें कि (x,d) एक मैट्रिक स्पेस है, तो (x,2d) है-
 - (A) एक मैट्रिक स्पेस
 - (B) मैट्रिक स्पेस नहीं है
 - (C) एक सुडू मैट्रिक्स स्पेस होगा
 - (D) कोई नहीं

- 31. Let (x,d) be a metric space. If 31. माना (x,d) एक मीट्रिक स्पेस है। यदि d d(x,y)=4 and d(y,z)=5, then the maximum value of d(x,z) is.
 - (A) 7
 - (B) 8
 - (C) 9
 - (D) 10
- 32. In the metric space (R,d) where d(x,y)=|x-y|, the value of d(3,7) is.
 - (A) 2
 - (B) 4
 - (C) 5
 - (D) 6
- 33. Which of the following function has a simple pole at z=1?
 - (A) $f(z) = \frac{e^z}{7}$
 - (B) $f(z) = \frac{1}{z-1}$
 - (C) $f(z) = \frac{1}{(z-1)^2}$
 - (D) $f(z) = \left(\frac{1}{z^2 1}\right)^2$
- 34. What is the value of m for which 2x-x²+my² is harmonic?
 - (A) -1
 - (B) 1
 - (C) -2
 - (D) 2

- (x,y)=4 और d(y,z)=5, तो d(x,z) का अधिकतम मान है-
 - (A) 7
 - (B) 8
 - (C) 9
 - (D) 10
- 32. मीट्रिक स्पेस (R,d) में जहाँ d(x,y)=|x-y|, d(3,7) का मान है-
 - (A) 2
 - (B) 4
 - (C) 5
 - (D) 6
- 33. निम्न में से किस फलन का सामान्य पोल z=1पर है?
 - (A) $f(z) = \frac{e^z}{7}$
 - (B) $f(z) = \frac{1}{z-1}$
 - (C) $f(z) = \frac{1}{(z-1)^2}$
 - (D) $f(z) = \left(\frac{1}{z^2 1}\right)^2$
- 34. m के किस मान के लिये 2x-x²+my² हार्मीनिक 충-
 - (A) -1
 - (B) 1
 - (C) -2
 - (D) 2

6062	(D) 2πi (\A\2024 [12]]	(D) 2πi
			(C) πi
	(C) πi		(B) 0
	(B) 0		(A) -2πi
	(A) -2πi		है-
38.	If c is a circle $ z =1$ then $\int_{c} \overline{z} dz$ is.	38.	यदि c एक वृत्त $ z =1$ है। तो $\int_{c} \overline{z} dz$ का मान
	(D) 8πi		(D) 8πi
	(C) 4πi		(C) 4πi
	(B) 2πi		(B) 2πi
	(A) Zero		(A) शून्य
	circle $ z =2$		समी. z =2 है।
37.	The value of $\int_{c} z dz$ where c is the	37.	्रz dz का मान, जहाँ c एक वृत्त है जिसका
	(D) $y^2 - x^2$		(D) y^2-x^2
	(C) $x^2 + y^2$		(C) $x^2 + y^2$
	(B) 2xy		(B) 2xy
	(A) $x^2 - y^2$		(A) x^2-y^2
36.	The real part of the function $ z ^2$ is.	36.	फलन z ² का वास्तविक भाग है-
	(D) π		(D) π
	(C) 1		(C) 1
	(B) -1		(B) -1
	(A) 0		(A) O

 $35. |e^{i\theta}|$ का मान है

35. The value of $|e^{i\theta}|$ is

- 39. Under the transformation w=z+1-i, the image of the line x=0 in z-place is.
 - (A) u = 1
 - (B) u=0
 - (C) V = 1
 - (D) V = 0
- 40. The function $f(z) = \tan z$ is.
 - (A) Continuous every where
 - (B) Analytic in finite complex plane
 - (C) Analytic every where except the points where $\cos z=0$
 - (D) None of these
- 41. Which of the following statement is true for the integral $\int_c \mathbf{z}^n d\mathbf{z}$ around a closed contour c where n is an integer.
 - (A) The integral is zero if n≠-1
 - (B) The integral is $2\pi i$ if n=-1
 - (C) The integral is zero for all n
 - (D) Both (A) and (B)

- 39. ट्रांसफॉर्मेशन w=z+1-i के तहत, रेखा x=0 का z-तल में प्रतिबिंब है-
 - (A) u = 1
 - (B) u=0
 - (C) v=1
 - (D) V = 0
- 40. फलन f(z)=tan z है।
 - (A) सब जगह सतत्
 - (B) सीमित कॉम्प्लेक्स तल में एनालिटिक
 - (C) सभी जगह एनालिटिक सिवाय उन बिन्दुओं के जहाँ cos z=0
 - (D) इनमें से कोई नहीं
- 41. समाकलन $\int_{z} z^n dz$ के लिए निम्न में से कौन सा कथन सत्य है जहाँ n एक पूर्णांक है और c एक बन्द कन्टूर है।
 - (A) यदि n≠-1, समाकलन शून्य है
 - (B) यदि n=-1, समाकलन का मान $2\pi i$ है
 - (C) n के सभी मान के लिये समाकलन शून्य है
 - (D) दोनों (A) और (B)

6062\A\2024 [13] P.T.O.

42.	The series $\sum_{n=1}^{\infty} \frac{1}{n^2} z^n$ converges for.	42.	श्रेणी $\sum_{n=1}^{\infty} \frac{1}{n^2} z^n$ अभिसारी है-
	(A) $ z > 1$		(A) $ z > 1$
	(B) z ≥1		(B) z ≥1
	(C) $ z < 1$		(C) z <1
	(D) All z		(D) सभी z के लिये
43.	The function $f(z) = z ^2$ has	43.	फलन $f(z) = z ^2$ के है
	(A) One singular point		(A) एक सिंगुलर बिन्दु
	(B) Two singular points		(B) दो सिंगुलर बिन्दु
	(C) Three singular points		(C) तीन सिंगुलर बिन्दु
	(D) No singular points		(D) एक भी सिंगुलर बिन्दु नहीं
44.	The image of the line $y=2$ in the	44.	चित्रण $w=z+1-i$ के लिये z -प्लेन में रेखा $y=2$
	z-plane by the mapping w=z+1-i is.		की प्रतिबिम्ब है-
	(A) $V = 1$		(A) v=1
	(B) $u=1$		(B) $u=1$
	(C) v=-1		(C) v=-1
	(D) $u=-1$		(D) u=-1
45.	An analytic function with constant	45.	एक एनालिटिक फलन, स्थिर मापांक के साथ
	modules is.		होता है-
	(A) Variable		(A) चर
	(B) May be variable or constant		(B) या तो चर या स्थिर
	(C) Constant		(C) स्थिर
	(D) None of these		(D) इनमें से कोई नहीं
6062	\A\2024 [14]		

46.	Which of the following function is not
	analytic.

- (A) sin z
- (B) cos z
- (C) az^2+bz+c
- (D) $\frac{1}{z-1}$

47. Which of the following is correct for
$$47$$
. $w=f(z)$ के लिये निम्न में से कौन सा कथन $w=f(z)$?

- (A) $\frac{dw}{dz} = \frac{\partial w}{\partial x}$
- (B) $\frac{dw}{dz} = -\frac{\partial w}{\partial x}$
- (C) $\frac{dw}{dz} = \frac{\partial w}{\partial y}$
- (D) $\frac{dw}{dz} = -\frac{\partial w}{\partial y}$

48. The transformation
$$w=1/z$$
 maps $|z| < 1$ on to _____.

- (A) |w| = 1
- (B) |w| > 1
- (C) |w| < 1
- (D) None of these
- 49. Which of the following is true for 49. एनालिटिक फलन f(z)=u(x,y)+iv(x,y) के analytic function.

$$f(z)=u(x,y)+iv(x,y)$$

- (A) u is harmonic function
- (B) v is harmonic function
- (C) v is conjugate harmonic
- (D) All of above

- (A) sin z
- (B) cos z
- (C) az^2+bz+c
- (D) $\frac{1}{z-1}$

- (A) $\frac{dw}{dz} = \frac{\partial w}{\partial x}$
- (B) $\frac{dw}{dz} = -\frac{\partial w}{\partial x}$
- (C) $\frac{dw}{dz} = \frac{\partial w}{\partial v}$
- (D) $\frac{dw}{dz} = -\frac{\partial w}{\partial y}$

- (A) |w| = 1
- (B) |w| > 1
- (C) |w| < 1
- (D) इनमें से कोई नहीं

- (A) u हार्मोनिक फलन है
- (B) v हार्मोनिक फलन है
- (C) v कॉन्ज्गोट हार्मोनिक फलन है
- (D) उपर के सभी

50.	The value of limit $\lim_{z\to 1} \frac{z^2+z-2}{z-1}$ is.	0.	$\lim_{z \to 1} \frac{z^2 + z - 2}{z - 1}$ का मान है
	(A) 1		(A) 1
	(B) 2		(B) 2
	(C) 3		(C) 3
	(D) 0		(D) 0
51.	If $f: A \rightarrow B$ is one-one function and 5	1.	यदि f:A→B एक वन टु वन फलन है और
	f(a)=f(b) then		f(a)=f(b) है तो
	(A) a>b		(A) a>b
	(B) a <b< td=""><td></td><td>(B) a<b< td=""></b<></td></b<>		(B) a <b< td=""></b<>
	(C) a=b		(C) a=b
	(D) a≠b		(D) a≠b
52.	At what points $w = z + \frac{1}{z}$ is not 5.	2.	किस बिन्दु पर $w = z + \frac{1}{z}$, कन्फर्मल नहीं है-
	conformal.		(A) (-1, 1)
	(A) (-1, 1)		(D) (i i)
	(B) (-i, i)		(B) (-i, i)
	(C) (-2, 2)		(C) (-2, 2)
	(D) (-3, 3)		(D) (-3, 3)
53.	Every subset of a discrete metric 5.	3.	असतत मीट्रिक स्पेस का प्रत्येक उपसमुच्चय है।
	space is.		(A) खुला
	(A) Open		
	(B) Closed		(B) ৰব
	(C) Open & closed both		(C) खुला और बंद दोनों
6062	(D) None of these [16]		(D) कोई नहीं

In any metric space, every finite	54.	किसी भी मीट्रिक स्पेस में खुले सेटों का प्रत्येक
intersection of open sets will be.		परिमित प्रतिच्छेदन होगा।
(A) Closed set		(A) बंद सेट
(B) Null set		(B) शून्य सेट
(C) Open set		(C) खुला सेट
(D) None of these		(D) कोई नहीं
Every Cauchy sequence is.	55.	हर कॉची अनुक्रम है-
(A) Oscillatory		(A) दोलनशील
(B) Bounded		(B) सीमित
(C) Divergent		(C) अपसारी
(D) None of the these		(D) कोई नहीं
Let d be a usual metric on	56.	मान लीजिए d एक सामान्य मीट्रिक
R, $A = \{1, \frac{1}{3}, \frac{1}{5}, \dots \}$ and		है R पर A = $\left\{1, \frac{1}{3}, \frac{1}{5}, \dots\right\}$ और
B = $\left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots \right\}$ Then find the		B = $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots\right\}$ तब A और B के बीच
(= . 5		की दूरी ज्ञात कीजिए।
		(A) O
		(B) 1
		(C) -1
		(D) ∞
(D) ∞		
Which of the following intervals is	57.	निम्नलिखित में से कौन सा अंतराल परिबद्ध नहीं
not bounded?		है।
(A) [a,b]		(A) [a,b]
(B) [0,b)		(B) [0,b)
	intersection of open sets will be. (A) Closed set (B) Null set (C) Open set (D) None of these Every Cauchy sequence is. (A) Oscillatory (B) Bounded (C) Divergent (D) None of the these Let d be a usual metric on R, $A = \left\{1, \frac{1}{3}, \frac{1}{5}, \dots \right\}$ and $B = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots \right\}$ Then find the distance between A and B. (A) O (B) 1 (C) -1 (D) ∞ Which of the following intervals is not bounded? (A) $[a,b]$	intersection of open sets will be. (A) Closed set (B) Null set (C) Open set (D) None of these Every Cauchy sequence is. (A) Oscillatory (B) Bounded (C) Divergent (D) None of the these Let d be a usual metric on 56. R, $A = \left\{1, \frac{1}{3}, \frac{1}{5}, \dots \right\}$ and $B = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots \right\}$ Then find the distance between A and B. (A) 0 (B) 1 (C) -1 (D) ∞ Which of the following intervals is 57. not bounded? (A) $[a,b]$

(C) (a,b]

(C) (a,b]

(D) $(-\infty,a]$

- 58. A usual metric space on she set of real numbers is:
 - (A) Bounded
 - (B) Discrete
 - (C) Unbounded
 - (D) None of these
- 59. The metric space (X-d') with 59. किसी समुच्चय X पर मीट्रिक d के साथ, मीट्रिक $d'(x,y)=min \{d(x,y),2\}$ for any metric d on any set X is.
 - (A) Bounded
 - (B) Unbounded
 - (C) Discrete
 - (D) In-discrete
- along the straight line z=0 to z=1+i

is:

(A)
$$\frac{-1-i}{3}$$

- (B) $\frac{-1+i}{3}$
- (C) $\frac{1+i}{3}$
- (D) None of these

- 58. वास्तविक संख्याओं के समुच्चय पर सामान्य मीट्रिक स्पेस होता है:
 - (A) Bounded
 - (B) Discrete
 - (C) Unbounded
 - (D) None of these
- स्पेस (X-d') जिसके $d'(x,y) = \{d(x,y), 2\}$ होता हैः
 - (A) Bounded
 - (B) Unbounded
 - (C) Discrete
 - (D) In-discrete
- 60. The value of integral $\int_0^{1+i} (x-y+ix^2)dz$, 60. समाकलन $\int_0^{1+i} (x-y+ix^2)dz$ का सरल रेखा z=0 से z=1+i पर मान है:
 - (A) $\frac{-1-i}{3}$
 - (B) $\frac{-1+i}{3}$
 - (C) $\frac{1+i}{3}$
 - (D) इनमें से कोई नहीं

- 61. If f(2) is analytic in D, then which of the following is correct?
 - (A) $f'(z_0) = \frac{1}{4\pi i} \int_{c} \frac{f(z)dz}{(z-z_0)^2}$
 - (B) $f'(z_0) = \frac{1}{2\pi i} \int_{c} \frac{f(z)dz}{(z-z_0)^2}$
 - (C) $f'(z_0) = \int_{0}^{1} \frac{f(z)dz}{(z-z_0)^2}$
 - (D) None of these
- 62. The value of $\int_{C} \frac{e^{2z}dz}{(z+1)^4}$, where c: |z| = 3, is.
 - (A) $\frac{4\pi i}{3e^2}$
 - (B) $\frac{2\pi i}{e^2}$
 - (C) $\frac{8\pi i}{3e^2}$
 - (D) $\frac{\pi i}{3e^2}$
- 63. The value of Integral $\int \frac{dz}{z}$, where L is a semi circle $z=2e^{iQ}$, $0\le Q\le 2\pi$.
 - (A) $-2 + 4\pi i$
 - (B) $4\pi i$
 - (C) $-4 + 2\pi i$
 - (D) $2\pi i$
- 64. Which of the following is correct?
 - (A) $\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) = \frac{\partial^2}{\partial \mathbf{z} \partial \overline{\mathbf{z}}}$
 - (B) $\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{v}^2}\right) = \frac{\partial^2}{\partial \overline{\mathbf{z}}}$
 - (C) $\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) \equiv 4 \frac{\partial^2}{\partial \mathbf{z} \partial \overline{\mathbf{z}}}$
 - (D) None of these

- 61. यदि D में f(2) विश्लेषिक है तो निम्नलिखित में कौन सा सत्य है
 - (A) $f'(z_0) = \frac{1}{4\pi i} \int_c \frac{f(z)dz}{(z-z_0)^2}$ (B) $f'(z_0) = \frac{1}{2\pi i} \int_c \frac{f(z)dz}{(z-z_0)^2}$

 - (C) $f'(z_0) = \int_0^1 \frac{f(z)dz}{(z-z_0)^2}$
 - (D) इनमें से कोई नहीं
- 62. $\int_{c} \frac{e^{2z}dz}{(z+1)^4}$ का मान है जहाँ c: |z|=3 है।
 - (A) $\frac{4\pi i}{3e^2}$
 - (B) $\frac{2\pi i}{e^2}$
 - (C) $\frac{8\pi i}{3e^2}$
 - (D) $\frac{\pi i}{3e^2}$
- 63. समाकलन $\int \frac{dz}{z}$ का मान है, जहाँ L एक अर्धवृत्त है $z=2e^{iQ}$, 0≤Q≤2 π
 - (A) $-2 + 4\pi i$
 - (B) $4\pi i$
 - (C) $-4 + 2\pi i$
 - (D) $2\pi i$
 - 64. निम्न में से कौन सा सही है:
 - (A) $\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) = \frac{\partial^2}{\partial \mathbf{z} \partial \overline{\mathbf{z}}}$
 - (B) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) = \frac{\partial^2}{\partial \overline{z}}$
 - (C) $\left(\frac{\partial^2}{\partial \mathbf{y}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) \equiv 4 \frac{\partial^2}{\partial \mathbf{z} \partial \overline{\mathbf{z}}}$
 - (D) इनमें से कोई नहीं

- 65. If f(z)=w=u+iv and $u=e^{-x}\{x^2-y^2\}$ $\cos y+2xy \sin y\}$ then f(z) is.
 - (A) $z^2e^{-z} + c$
 - (B) $ze^{-z}+c$
 - (C) $e^{-z} + c$
 - (D) z+c
- 66. If u=cos x cos hy, then its harmonic conjugate v is:
 - (A) Cos x sin hy+c
 - (B) $\sin x \sin hy + c$
 - (C) -sin x sin hy
 - (D) $-\sin x \sin hy + c$
- 67. The space C[a,b] for any functions f,g is a metric space unded metric defined by.
 - (A) $d(f,g) = \int_a^b |f(x)-g(x)| dx$
 - (B) $d(f,g) = \sup_{x \in [a-b]} |f(x)-g(x)|$
 - (C) $d(f,g) = \inf_{x \in [a-b]} |f(x)-g(x)|$
 - (D) Both (A) and (B)
- 68. The function $f(z) = |z|^2$ has.
 - (A) One singular point
 - (B) Two singular points
 - (C) Three singular points
 - (D) No singular points

- 65. यदि f(z)=w=u+iv and $u=e^{-x}\{x^2-y^2\}$ cos $y+2xy \sin y\}$ तब f(z) है:
 - (A) $z^2e^{-z} + c$
 - (B) $ze^{-z}+c$
 - (C) $e^{-z} + c$
 - (D) z+c
- 66. यदि u=cos x cos hy, तब इसका हारमोनिक संयुग्मी v है:
 - (A) Cos x sin hy+c
 - (B) sin x sin hy+c
 - (C) -sin x sin hy
 - (D) $-\sin x \sin hy + c$
- 67. स्पेस C[a,b] किन्हीं फलनों f,g के लिये मीट्रिक स्पेस होता है जब मीट्रिक निर्धारित किया जाता है:
 - (A) $d(f,g) = \int_a^b |f(x)-g(x)| dx$
 - (B) $d(f,g) = \sup_{x \in [a-b]} |f(x)-g(x)|$
 - (C) $d(f,g) = \inf_{x \in [a-b]} |f(x)-g(x)|$
 - (D) दोनों (A) और (B)
- 68. फलन $f(z) = |z|^2$ में होता है-
 - (A) एक सिंगुलर बिन्दु
 - (B) दो सिंगुलर बिन्दु
 - (C) तीन सिंगुलर बिन्दु
 - (D) एक भी सिंगुलर बिन्दु नहीं

6062\A\2024

69.	Residue of $\cos\left(\frac{1}{z-2}\right)$ at $z=2$ is.	69.	$\cos\left(\frac{1}{z-2}\right)$ का अवशेष $z=2$ पर होगा-
	(A) -2		(A) -2
	(B) 1/2		(B) 1/2
	(C) 0		(C) 0
	(D) 1		(D) 1
70.	The transformation $\omega = \beta z$ (where β is	70.	परिवर्तन $\omega=\beta z$, जहाँ β एक सम्मिश्र संख्या है
	a complex no.) is a.		होगा।
	(A) Rotation		(A) घूर्णन
	(B) Magnification		(B) आवर्धन
	(C) Rotation & Magnification		(C) घूर्णन एवं आवर्धन
	(D) Translation		(D) अनुवाद
71.	If $z=x+iy$, then $ \overline{z} =$	71.	यदि z बराबर है $x+iy$, तो $ \bar{z} =$
	$(A) \sqrt{x^2 - y^2}$		$(A) \sqrt{x^2 - y^2}$
	(A) $\sqrt{x^2 - y^2}$ (B) $\sqrt{y^2 + x^2}$		(A) $\sqrt{x^2 - y^2}$ (B) $\sqrt{y^2 + x^2}$
	(C) $\sqrt{y^2-x^2}$		(C) $\sqrt{y^2-x^2}$
	(D) None of the above		(D) कोई नहीं
72.	Every contraction mapping is.	72.	हर संकुचन मानचित्रण है।
	(A) Bounded		(A) सीमित
	(B) Unbounded		(B) असीमित
	(C) Uniformly continuous		(C) समान रूप से निरंतर

(D) None of these

6062\A\2024

(D) कोई नहीं

P.T.O.

[21]

73.	In a metric space, each derived set	73.	मीट्रिक स्पेस में प्रत्येक व्युत्पन्न सेट है।
	is.		(A) खुला
	(A) Open		(D) ਰੱਤ
	(B) Closed		(B) <u>बं</u> द
	(C) Not open		(C) खुला नहीं
	(D) Not closed		(D) बंद नहीं
74.	Every convergent sequence in a	74.	मैट्रिक्स स्पेस में प्रत्येक अभिसारी अनुक्रम है।
	metric space is.		(A) सीमित
	(A) bounded		(B) असीमित
	(B) unbounded		
	(C) monotonically decreasing		(C) एकरसतापूर्वक घटते हुए
	(D) Monotonically increasing		(D) एकरसतापूर्वक बढ़ते हुए
75.	If a Cauchy sequence has a	75.	यदि एक कोई कॉशी अनुक्रम एक अभिसारी
	convergent subsequence then it is		अनुक्रम रखता है तो यह है
	·		(A) अपसारी
	(A) divergent		(B) अभिसारी
	(B) convergent		(ष्ठ) आमसारा
	(C) Both convergent and divergent		(C) अपसारी और अभिसारी दोनों
	(D) None of these		(D) इनमें से कोई नहीं
6062	2\A\2024 [22]]	

Rough Work

4. Four alternative answers are mentioned for each question as A, B, C & D in the booklet. The candidate has to choose the most appropriate answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 A B D

Q. 3 A C D

Illegible answers with cutting or over-writing or half filled circle will be cancelled.

- In case the candidate does not fill the appropriate circle in the OMR Answer-Sheet and leave blank, 'Zero' mark will be given.
- The candidate has to mark answers on the OMR Answer-Sheet with black or blue ball point pen only carefully as per directions.
- 7. There will be no negative marking.
- Examinee must handover the OMR answersheet to the invigilator before leaving the examination hall.
- Rough-work, if any, should be done on the blank page provided for the purpose at the end of booklet.
- 10. Write your Roll Number and other required details in the space provided on the title page of the booklet and on the OMR Answer-Sheet with ball point pen. Do not use lead pencil.
- 11.To bring and use log-book, calculator, pager & cellular phone in examination hall is prohibited.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर A, B, C तथा D हैं। परीक्षार्थी को उन चारों विकल्पों में से एक सबसे सही अथवा सबसे उपयुक्त उत्तर छाँटना है। उत्तर को OMR उत्तर-पत्रक में सम्बन्धित प्रश्न संख्या में निम्न प्रकार अंकित करना है:

उदाहरण :

प्रश्न :

प्रश्न 1 A B D D प्रश्न 3 A C D

अपठित उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उत्तर निरस्त कर दिया जाएगा।

- यदि परीक्षार्थी OMR उत्तर-पत्रक में उपयुक्त गोले को नहीं भरता है और उत्तर-पत्रक को खाली छोड़ देता है, तो उसे 'शून्य' अंक प्रदान किया जाएगा।
- 6. अभ्यर्थी को प्रश्नों के उत्तर OMR उत्तर-पत्रक पर केवल काले या नीले बाल प्वॉइंट पेन से सतर्कतापूर्वक निर्देशानुसार अंकित करने होंगे।
- 7. निगेटिव मार्किंग नहीं है।
- 8. परीक्षार्थी OMR उत्तर-पत्रक परीक्षा भवन छोड़ने से पहले कक्ष निरीक्षक को सींप दें।
- 9. कोई भी रफ-कार्य, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 10. प्रश्न-पुस्तिका के मुख्य पृष्ठ पर तथा OMR उत्तर-पत्रक पर निर्धारित स्थान में अनुक्रमांक तथा अन्य विवरण बॉल प्वॉइंट पेन से ही भरें। पेन्सिल का उपयोग न करें।
- 11. परीक्षा कक्ष में लॉग-बुक, कैल्कुलेटर, पेजर तथा सैल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।