Cyrus Beck Line Clipping (Liang and Barsky)

Any convex region as window

Parametric line (input line AB):

$$L(t) = A + (B - A)t; t \in (0,1)$$

Cyrus Beck Line Clipping (Liang and Barsky)

Implicit line (window edge):

$$I(Q) = (Q - P).n$$

Tells us on which side of the line the point Q is.

Cyrus Beck Line Clipping (Liang and Barsky)

Evaluate

$$I(Q) = (Q - P).n$$

If > 0 inside halfspace of line (plane)

If < 0 outside halfspace of line (plane)

If = 0 on the line

Should give indications for trivial accept and reject cases.

Cyrus Beck Line Clipping (Liang and Barsky)

Window edge

$$I(Q) = (Q - P).n$$

Line segment

$$L(t) = A + t(B - A)$$

Trivial Reject

$$I(A) < 0 \text{ AND } I(B) < 0$$

Trivial Accept

$$I(A) > 0 \text{ AND } I(B) > 0$$

Cyrus Beck Line Clipping (Liang and Barsky)

Which 't' to select?

Cyrus Beck Line Clipping (Liang and Barsky)

If
$$t_E^{\max} > t_L^{\min}$$

Reject

Cyrus Beck Line Clipping (Liang and Barsky)

Arbitrary Convex Window

Cyrus Beck Line Clipping (Liang and Barsky)

Arbitrary Convex Window

 $\overline{E_1} \times \overline{E_2}$: positive

 $E_2 x E_3$: positive

•

•

•

Polygon is convex if for all adjacent edges the sign of cross product is same.

Cyrus Beck Line Clipping (Liang and Barsky)

Arbitrary Window

 $E_1 x E_2$: positive

 $E_2 x E_3$: positive

 $E_3 x E_4$: negative

•

•

Polygon is non-convex

Cyrus Beck Line Clipping (Liang and Barsky)

Arbitrary Window

Make the polygon convex by adding the edge V_3V_5

Clip against the convex polygon $=> P_3P_4$

Cyrus Beck Line Clipping (Liang and Barsky)

Arbitrary Window

Clip against the triangle

$$=> P_5 P_4$$

Subtract P₅P₄ from P₃P₄

$$=> P_3P_5$$