2019 山东省队集训第一轮

Day 6

题目名称	数	凸	割
目录	and	but	can
可执行文件名	and	but	can
输入文件名	and.in	but.in	can.in
输出文件名	and.out	but.out	can.out
每个测试点时限	1秒	1秒	1秒
内存限制	512MB	512MB	512MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是

提交源程序须加后缀

对于 C++ 语言	and.cpp	but.cpp	can.cpp
对于 C 语言	and.c	but.c	can.c
对于 Pascal 语言	and.pas	but.pas	can.pas

编译开关

对于 C++ 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 C 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 Pascal 语言	-O2	-O2	-O2

数

【问题描述】

很久以前,小 Y 有两个长度为 n 的数组 a,b ,他发现了这两个数组间有趣的联系: $(a_1 \& b_1) \le (a_2 \& b_2) \le \cdots \le (a_n \& b_n)$, $(a_1|b_1) \ge (a_2|b_2) \ge \cdots \ge (a_n|b_n)$ 。小 Y 记得 a,b 中的元素都在 $[0,2^m)$ 范围内,并记起了 b 数组具体的值。现在他想知道,共有多少个可能的 a 数组。

【输入格式】

第一行包含 2 个正整数 n, m 。

第二行n个正整数描述数组b。

【输出格式】

输出一行一个数表示答案对 109+7 取模的结果。

【数据规模和约定】

各测试点满足以下约定:

测试点				
2 ≤ 5 3 ≤ 10 ± ±	测试点	n	m	约定
$\frac{2}{3}$ ≤ 10 \lesssim 无	1	≤ 2	. 00	
3 4 ≤ 10	2	≤ 5	≤ 30	
4	3			尤
5	4		≤ 10	
	5			
6 <u>\$ \$7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</u>	6	≤ 7		b 中元素全部相同
7	7		≤ 30	
8	8			T
9 无	9	. 10		尤
10 ≤ 10	10	≤ 10		

凸

【问题描述】

二维平面上有n个黑点,每个点都有点权。一个凸多边形的价值被定义为在其内部或边界上的黑点权值和。求出由k个黑点组成的凸多边形中最小的价值。你需要对每个[3,n]中的k求出答案。如果不存在由k个黑点组成的凸多边形,其对应的答案为-1。保证不存在三点共线,黑点坐标两两不同。

【输入格式】

第一行一个正整数n。

接下来n行每行三个整数 x_i, y_i, w_i 表示第i个点的坐标和权值。

【输出格式】

输出一行n-2个数,第i个数表示k=i+2时的答案。

【数据规模和约定】

对于所有的测试数据, $x_i, y_i \in [-10^5, 10^5], w_i \in [1,10^5]$ 。 各测试点满足以下约定:

测试点	n
1	≤ 5
2	≤ 10
3	
4	≤ 20
5	
6	≤ 30
7	
8	≤ 40
9	
10	≤ 50

割

【问题描述】

小 A 和小 B 共同拥有着一个 $n \times m$ 的矩阵。这天他们想把这个矩阵恰好分为两个四联通块,同时满足一些条件:

- 1. 矩阵的每个格子都有一个字符 A、B 或 C, A 只能被划分进小 A 的联通块, B 只能被划分进小 B 的联通块, C 则没有限制。
- 2. 小 A 获得的大小和小 B 获得的大小之差的绝对值不能超过 k。
- 3. 每个联通块都不能包含一个边长大于1的正方形。 现在他们想考考你,你需要求出共有多少种合法的划分方案。

【输入格式】

第一行包含3个正整数 n, m, k。

接下来n行,每行m个字符描述每个格子上的字符。

【输出格式】

输出一行一个数表示答案。

【数据规模和约定】

各测试点满足以下约定:

测试点	n, m	约定
1	≤ 2	
2	≤ 3	7
3		无
4	≤ 5	
5		
6	≤ 8	只有 C 字符
7		,
8		k = n * m
9		Τ.
10		无