GPCR signalling — a very simple, step-by-step guide

Quick picture in one line

A molecule outside the cell (the ligand) touches a protein on the cell surface (the GPCR). The GPCR changes shape, turns on helper proteins (G-proteins), and those helpers make small internal signals (second messengers) that change how the cell behaves. The cell then turns the signal off.

Step 1 — Ligand binds the receptor (the start)

A ligand is a small molecule that fits into the GPCR like a key into a lock. When the ligand sticks in the GPCR, the GPCR changes shape on the inside of the cell. That new shape lets the GPCR meet a G-protein just inside the membrane.

Analogy:

The GPCR is the door. The ligand is a key. Turn the key and the door opens a little for someone inside.

Simple drug example:

Albuterol (a drug for asthma) acts like a key on the β2 receptor. It tells airway cells to relax.

Quiz

Q1 — What is a ligand?

Answer: A molecule that binds (sticks to) the GPCR.

Q2 — What happens to the GPCR right after the ligand binds?

Answer: The GPCR changes shape inside the cell.

Step 2 — G-protein activation (switching on)

The G-protein sits on the inside of the membrane. It has three parts: α , β , γ . In the "off" state, the α part holds a small molecule called GDP. The activated GPCR helps the α part drop GDP and pick up GTP. When α has GTP, α separates from $\beta\gamma$. Both α -GTP and $\beta\gamma$ can now go and work on other proteins.

Simple names and effects of α types:

Gs \rightarrow turns on adenylyl cyclase \rightarrow makes cAMP (a second messenger).

 $Gi \rightarrow turns \ off \ adenylyl \ cyclase \rightarrow lowers \ cAMP.$

 $Gq \rightarrow turns on phospholipase C \rightarrow makes IP_3 and DAG \rightarrow raises calcium inside the cell.$

Drug example:

Morphine binds the μ -opioid GPCR. That receptor uses Gi, so the cell makes less cAMP and the nerve cell slows down pain signals.

Quiz

Q3 — Which G-protein type raises cAMP?

Answer: Gs.

Q4 — What changes on the α subunit when the G-protein turns on?

Answer: GDP is replaced by GTP.

Step 3 — Effectors and second messengers (making the internal message)

The activated α -GTP or $\beta\gamma$ parts touch effectors (other proteins). An important effector is adenylyl cyclase \rightarrow it makes cAMP. cAMP turns on PKA, which adds small tags (phosphates) to other proteins and changes what they do. Another path: PLC makes IP₃ and DAG. IP₃ tells the cell's internal calcium stores to release Ca²⁺. DAG helps turn on PKC, another tagger. $\beta\gamma$ can also open or close ion channels (for K⁺ or Ca²⁺), changing how excitable the cell is.

Drug example:

Isoproterenol activates β receptors \rightarrow Gs \rightarrow more cAMP \rightarrow heart beats stronger and faster.

Quiz

Q5 — Name two second messengers made after GPCR activation.

Answer: cAMP and IP₃.

Q6 — What does IP₃ do?

Answer: It makes calcium leave internal stores, raising Ca²⁺ inside the cell.

Step 4 — Signal amplification (small start, big effect) Plain explanation

One active GPCR can turn on many G-proteins. Each effector can make many second messenger molecules (many cAMP, many IP₃). Each activated kinase (like PKA) can change many proteins. This chain makes a small outside signal grow into a big inside effect.

Analogy:

One phone call that makes many memos and each memo tells many workers to act.

Ouiz

Q7 — Why can a tiny amount of a drug cause a big response?

Answer: Because of amplification: one receptor triggers many downstream molecules.

Step 5 — Turning the signal off (stop and reset) Plain explanation

The α part has a built-in timer: it slowly cuts GTP back to GDP. When that happens, α turns off and comes back with $\beta\gamma$. Helper proteins called RGS speed up that "turn-off" step. The active receptor can be tagged with phosphate by GRKs. Then arrestin binds to the tagged receptor. Arrestin blocks the receptor from turning on more G-proteins. The cell can pull the receptor inside (internalize it). The receptor can be cleaned and returned to the surface, or it can be destroyed.

Why this matters:

If receptors are removed or blocked for a long time, the drug works less well — this is tolerance.

Quiz

Q8 — Name two ways the cell stops GPCR signalling.

Answer: (1) α cuts GTP to GDP (turns off); (2) receptor is phosphorylated and bound by arrestin (blocked and taken inside).

Step 6 — How drugs can change GPCR signals

Agonist:

Binds the receptor and turns it on (like the natural ligand).

Antagonist:

Binds the receptor but does not turn it on. It blocks the real ligand.

Inverse agonist:

Binds and makes an already active receptor less active.

Allosteric modulator:

Binds a different spot on the receptor and increases or decreases the receptor's response.

Biased agonist:

Favors one internal path (for example, G-protein pathway) over another (for example, arrestin), which can change effects and side effects.

Examples:

- 1. Albuterol agonist at β 2 (helps breathing).
- 2. Propranolol antagonist at β receptors (lowers heart rate).
- 3. New opioid drugs try to be biased so they give pain relief with fewer side effects.

Quiz

Q9 — What does an antagonist do?

Answer: Blocks the receptor so the real ligand cannot activate it.

Short review — the core facts in very simple words

- 1. Outside message (ligand) \rightarrow fits GPCR (receptor) like a key.
- 2. GPCR changes shape and turns on G-protein (GDP \rightarrow GTP).
- 3. G-protein parts activate effectors \rightarrow make second messengers (cAMP, IP₃, DAG, Ca²⁺).
- 4. One signal becomes many signals (amplification).
- 5. Cell stops the signal by GTP \rightarrow GDP, by arrestin, and by pulling the receptor in.
- 6. Drugs can act as agonists, antagonists, inverse agonists, allosteric modulators, or biased agonists.

Final short quiz (test yourself)

- 1. Which subunit holds GDP/GTP in the G-protein?
- 2. Which second messenger rises when Gs is active?
- 3. What does arrestin do to the receptor?
- 4. Give one drug that is a β -blocker.
- 5. Why does tolerance to a drug sometimes happen?

Answers:
The α subunit.
cAMP.
It blocks the receptor from signalling and helps pull it into the cell (internalize it).
Propranolol (one example).
Because of receptor desensitization or internalization — the cell reduces the receptor response over time.