Universidade do Minho Álgebra Linear e Geometria Analítica EC

Exercícios 6 - Aplicações Lineares

- 1. Verifique se as seguintes aplicações são lineares:
 - a) $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por f(x, y, z) = (2x, y + z)
 - b) $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 + y^2$
 - c) $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x, y, z) = (x, y + 3z, x + z)
 - d) $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por f(x, y) = (x, y, 1)
- 2. Considere a aplicação linear $f: \mathbb{R}^4 \to \mathbb{R}^3$ definida por:

$$f(x, y, z, t) = (x + y + z, 2x - y + t, -3y - 2z + t)$$

- a) Calcule uma base e a dimensão de Nuc(f).
- b) Calcule uma base e a dimensão de Im(f).
- 3. Considere as aplicações lineares $f:\mathbbm{R}^3 \to \mathbbm{R}^2$ e $g:\mathbbm{R}^2 \to \mathbbm{R}^4$ definidas por:

$$f(x, y, z) = (x + 2y, -2x + 3y - z)$$
 $g(x, y) = (x + y, 2x - y, 0, x)$

- a) Calcule uma base e a dimensão de Nuc(f) e de Nuc(g).
- b) Calcule uma base e a dimensão de Im(f) e de Im(g).
- 4. Considere o subespaço vectorial $U = \{(x, y, z) \in \mathbb{R}^3 : x + 2y z = 0\}.$
 - a) Dê exemplo de uma aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^2$ tal que Nuc(f)=U.
 - b) Dê exemplo de uma aplicação linear $g: \mathbb{R}^4 \to \mathbb{R}^3$ tal que $\operatorname{Im}(g) = U$.
- 5. Considere o subespaço vectorial $U = \{(x, y, z, t) \in \mathbb{R}^4 : y + t = 0\}.$
 - a) Dê exemplo de uma aplicação linear $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que Nuc(f) = U.
 - b) Dê exemplo de uma aplicação linear $g: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $\operatorname{Im}(g) = U$.
- 6. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear tal que:

$$f(0,0,1) = (0,0,1)$$
 $f(1,0,1) = (1,-2,0)$ $f(1,-1,3) = (1,-1,1)$

- a) Determine f(x, y, z).
- b) Indique a matriz da aplicação linear f relativamente à base canónica de \mathbb{R}^3 .

7. Considere as aplicações lineares $f:\mathbbm{R}^3 \to \mathbbm{R}^2$ e $g:\mathbbm{R}^2 \to \mathbbm{R}^4$ definidas por:

$$f(x, y, z) = (x + 2y, -2x + 3y - z)$$
 $g(x, y) = (x + y, 2x - y, 0, x)$

- a) Calcule M_f e M_g .
- b) Calcule $g \circ f$ e $M_{g \circ f}$.
- c) Calcule o produto das matrizes $M_g M_f$ e compare o resultado com a alínea anterior.
- 8. Considere a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$f(x, y, z) = (x - y + z, x + z, y - 3z)$$

- a) Calcule a inversa da aplicação linear f.
- b) Indique M_f e $M_{f^{-1}}$ e verifique que $M_{f^{-1}} = (M_f)^{-1}$.
- 9. Considere as bases ordenadas de \mathbb{R}^3 , B = ((1,0,0),(0,1,0),(0,0,1)) e B' = ((1,0,2),(-1,1,0),(0,1,3)) e a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$f(x, y, z) = (x + y + z, x - 2z, x - y + z)$$

- a) Calcule M_f .
- b) Calcule $M_f^{B'B}$.
- c) Calcule $M_f^{BB'}$.