MINISTRY OF EDUCATION

අධාාපන අමාතාාංශය

G.C.E. ORDINARY LEVEL - Rehearsal Paper

අ.පො.ස. (සා/ පෙළ) - පෙරහුරු පුශ්න පතු

SCIENCE

විදහාව

QUESTION PAPER - I

පුශ්ත පතුය - I

අධාාපන අමාතාහාංශය

විදාහාව - I

අ. පො.ස. (සා/ පෙළ) - පෙරහුරු පුශ්න පතුය

11 ලේණිය කාලය - පැය 1 යි

- සියලුම පුශ්න වලට පිළිතුරු සපයන්න.
- අංක 1 සිට 40 දක්වා පුශ්නවල දී ඇති 1,2,3,4 යන පිළිතුරු වලින් වඩාත් ගැළපෙන පිළිතුර තෝරන්න.
- 1) සිලින්ඩරාකාර මෘදු දේහයක් දරන,ජලයේ ඔත් ජීවිතයක් ගතකරන ජීවියා හා එම ජීවියා අයත් ජීවී කාණ්ඩය පිළිවෙළින් දැක්වෙන පිළිතුර තෝරන්න.
 - 1. දැල්ලා ,මොලුස්කා
 - 2. මුහුදු මල ,සිලින්ටරේටා
 - 3. ගොලුබෙල්ලා, මොලුස්කා
 - 4. ඉස්සා,සිලින්ටරේටා
- 2) ස්වවන්ධානාව දක්වන පුෂ්පයකට නිදසුනක් වන්නේ කුමක්ද?
 - 1. වැල් දොඩම්
 - 2. ගස්ලබු
 - 3. ටුයිඩැක්ස්
 - 4. පින්න
- 3) මිනිරන් හා දියමන්තිවල පවතින දැලිස් ආකාරයක් වන්නේ,
 - 1. අණුක ඇලිසය.
 - 2. අයනික ඇලිසය.
 - 3. ලෝහක දැලිසය.
 - 4. පරමාණුක ඇලිසය.
- 4) පුතාවර්ථ ධාරාවක් සරල ධාරාවක් බවට පත්කළ හැකි උපාංගයකි.
 - 1. ධාරිතුකය.
 - 2. ටුාන්සිස්ටරය.
 - 3. ඩයෝඩය.
 - 4. පුතිරෝධකය.
- 5) හිමටයිට් (Fe_2O_3) යකඩ බවට ඔක්සිහරණය කිරීමට නොහැකි දවා කුමක්ද?
 - 1. කාබන්
 - 2. කාබන් මොනොක්සයිඩ්
 - 3. හුණුගල්
 - 4. ඇලුමිනියම්

- 6) මානව ජීරණ පද්ධතියේ පිෂ්ටය හා ලිපිඩ ජීර්ණය ආරම්භ වන්නේ පිළිවෙලින්,
 - 1. මුඛ කුහරය, ගුහණිය
 - 2. අන්නසුෝතය, ආමාශය
 - 3. මුඛ කුහරය, අන්නසුෝතය
 - 4. අන්නසුෝතය, ගුහණිය
- 7) X නම් මුලදුවා අාවර්තිතා වගුවේ ii කාණ්ඩයටත් Y මුලදුවා vii කාණ්ඩයටත් අයත්ය. x හා y සංයෝගයෙන් සැදෙන සංයෝගයේ සුතුය විය හැක්කේ ,
 - 1. XY
 - 2. X₂Y
 - 3. XY₂
 - 4. X_7Y_2
- 8) සමාන පුතිරෝධක තුනක් සමාන්තරගත ව සම්බන්ධ කළ විට සමක පුතිරෝධය $1~\Omega$ කි.මෙම පුතිරෝධක තුන ශේණිගත ව සම්බන්ධ කළ විට සමක පුතිරෝධය වන්නේ,
 - $1. 1 \Omega \omega$.
 - 2. $3\Omega \omega$.
 - 3. 6Ω ය.
 - 4. 9 Ω ຜ.
- 9) යම් පුදේශයක,යම් නිශ්චිත කාලයකදී ජීවත් වන එකම විශේෂයකට අයත් වන ජීවීන් සමුහයක් හඳුන්වනු ලබන්නේ,
 - 1. පුජාව ලෙසිනි.
 - 2. පරිසර පද්ධතිය ලෙසිනි.
 - 3. ජෙවගෝලය ලෙසිනි.
 - 4. ගහනය ලෙසිනි.
- 10) ²³X මෙම මූලදුවයේ පුෝටෝන ගණන හා නියුටුෝන ගණන පිළිවෙලින් දැක්වෙන පිළිතුර කුමක්ද?
 - 1. 11, 23
 - 2. 23, 11
 - 3. 11, 12
 - 4. 12, 11
- 11) එක්තරා දුව-දුව දුාවණයක සංයුතිය 8% V/V ලෙස සඳහන් කර ඇත. එහි 200 cm³ ක අඩංගු දුාවක පරිමාව වන්නේ,
 - 1. 184 cm³ කි.
 - 2. 192 cm³ කි.
 - 3. 200 cm³ කි.
 - 4. 208 cm³ කි.

- 12) කැල්සියම් ඛනිජය මිනිස් ශරීරයට ඌන වීම හඳුනාගත හැකි ලක්ෂණයක් වන්නේ,
 - 1. පේශි දූර්වල වීම.
 - 2. දත් හා අස්ථි දූර්වල වීම.
 - 3. ස්නායු දුබලතා ඇති වීම.
 - 4. රක්ත හීතතාවය.
- 13) ජලීය දුවනයකදී භාගිකව H^{+} දෙමින් අයන මුදාහරින සංයෝගය,
 - 1. HNO₃ ຜ.
 - 2. H₂CO₃ ය.
 - 3. H₂SO₄ ຜ.
 - 4. NaOH ය.
- 14) රූපයේ දැක්වෙන්නේ පාපැදියක චලිතය නිරූපනය කරන විස්ථාපන කාල පුස්ථාරයකි. ඒ අනුව පාපැදියේ පුවේගය කොපමණද?

- 2. 5 m s⁻¹
- 3. 10 m s⁻¹
- 4. 20 m s ⁻¹

- 15) හෘද ස්පන්දනයේදී ඇතිවන 'ලබ් ඩප් ' ශබ්දය පිලිබඳ පුකාශ හතරක් දී ඇත.
 - a. ලබ් ශබ්දය ඇතිවන්නේ ද්විතුන්ඩ හා තුීතුන්ඩ කපාට වැසීමේදී ය.
 - b. ලබ් ශබ්දය ඇතිවන්නේ අඩසද කපාට වැසීමේ දී ය.
 - c. ඩප් ශබ්දය ඇතිවන්නේ ද්විතුන්ඩ හා තුීතුන්ඩ හා කපාට වැසීමේදීය.
 - d. ඩප් ශබ්දය ඇතිවන්නේ අඩසඳ කපාට වැසීමේදීය.
 - මේවායින් නිවැරදි පුකාශ ඇතුලත් පිළිතුර කුමක්ද?
 - 1. a හා b
 - 2. a හා c
 - 3. b හා c
 - 4. a හා d
- 16) ස්කන්ධය $500~{\rm g}$ වන වස්තුවක් $20{\rm m~s}^{\text{-1}}$ ක පුවේගයකින් චලිත වේ.වස්තුවේ ගමානාව,
 - 1. 5 kg m s⁻¹ කි.
 - 2. 7.5 kg m s⁻¹ කි.
 - 3. 10 kg m s⁻¹ කි.
 - 4. 4.20 kg m s⁻¹ කි.

- 17) X නම් ලෝහය තනුක අම්ල සමහ පුතිකිුයා කර හයිඩුජන් වායුව පිට කරයි. X ලෝහය පිහිටිය හැක්කේ සකීයතා ශේණියේ කිනම් ස්ථානය ද?
 - 1. Ag හා Au අතර
 - 2. Pb හා Cu අතර
 - 3. Cu හා Hg අතර
 - 4. Al හා Fe අතර
- 18) පහත සඳහන් පුකාශ අතුරින් <u>අසතා</u> පුකාශය තෝරන්න.
 - 1. මල බැඳීම සඳහා ජලය හා අම්ල අතාාවශා සාධක වේ.
 - 2. අම්ල හා ලවණ මල බැඳීමේදී සීසුතාවය අඩු කරයි.
 - 3. හෂ්ම මල බැඳීමේදී සීඝුතාවය අඩු කරයි.
 - 4. කැතෝඩීය ආරක්ෂණයෙන් මල බැඳීම වැළකේ
- 19) ඉච්ඡානුග පේශි සංකෝචනය පාලනය කරනු ලබන්නේ,
 - 1. මස්තිෂ්කය මහිනි.
 - 2. අනුමස්තිෂ්කය මහිනි.
 - 3. සුෂුම්තා ශීර්ෂකය මහිනි.
 - 4. සුෂුම්නාව මහිනි.
- 20) මිශුණවල සංඝටක වෙන්කිරීමේ කුමවලින් යාන්තික කුමයක් වන්නේ,
 - 1. ගැරීම ය.
 - 2. හැලීම ය.
 - 3. ජලයේ පාකිරීම ය.
 - 4. ඉහත සඳහන් සියල්ලම ය.
- 21) පහත ඒවායින් පුසාරණයේ භාවිතයක්/ භාවිත වන්නේ?
 - A කරත්ත රෝදයකට යකඩ පට්ටමක් සවිකිරීම.
 - B රේල් පීලි දෙකක් අතර හිඩැසක් තැබීමය.
 - C ඉස්තිරික්කවල ද්විලෝහ පටියක් යෙදීම
 - D දූරකථන හා විදුලි රැහැන් බූරුල්ව සවිකිරීම.
 - 1. C පමණි.
 - 2. A හා B පමණි.
 - 3. A හා C පමණි.
 - 4. A,B,C හා D යන සියල්ලමය.
- 22) පහත දැක්වෙන A,B,C වස්තු තුනක් සමතුලිත අවස්තා දෙකකි.

A හි බර 4N හා C හි බර 12N නම් B හි බර කොපමණද?

- 1. 6N
- 2. 8N
- 3. 10N
- 4. 12N

23) රූපයේ දැක්වෙන පරිණාමකයේ A දහරයේ පොට ගණන 1000ක් වන අතර එහි පොට ගණන 10කි. A ට සැපයු විභවය 240 V කි. B මහින් පුතිදානය වන විභවය විභව අන්තරය කොපමණද?

- 1. 0.24 V
- 2. 2.4 V
- 3. 24 V
- 4. 240 V

24) හෝමෝනයක ලක්ෂණයකි,

- 1. අකාබනික සංයෝග වීම.
- 2. රුධිර සෛල ඔස්සේ පරිවහනය කිරීම.
- 3. ඉලක්ක අවයව පමණක් උත්තේජනය කිරීම.
- 4. ඉතා වැඩි සාන්දුණයක් යටතේ කිුයාත්මක වීම.
- 25) පහත දැක්වෙන්නේ මූලදුවා කිහිපයකි.

ඉහත මුලදුවා අතරින් ලෝහ ඔක්සයිඩ, අලෝහ ඔක්සයිඩ හා උභය ගුණ ඔක්සයිඩ සාදන මුලදුවා පිළිවෙලින් ඇතුලත් වන පිළිතුර තෝරන්න.

- 1. Mg, S හා Al
- 2. Na, Al හා S
- 3. Al, S හා p
- 4. Na, Mg හා s

26) ශාකවල සිදුවන බහිස්සුාවී කිුයාවලියක් ලෙස සැළකිය හැක්කේ,

- 1. උත්ස්වේදනය මගින් ජල වාෂ්ප පිට කිරීම.
- 2. බිංදුදය මගින් ඛනිජ ලවණ පිට කිරීම.
- 3. පුභාසංස්ලේෂණය මගින් ඔක්සිජන් වායුව පිට කිරීම.
- 4. බිංදුදය මගින් ජල බිංදු පිට කිරීම.

27) ශුෂිර භාණ්ඩයක් සහ සමාඝාත භාණ්ඩයක් පිළිවෙළින් දැක්වෙන පිළිතුර කුමක්ද?

- 1. බටනලාව හා බෙරය
- 2. හොරණෑව හා රබාන
- 3. වයලීනය හා බෙරය
- 4. හොරණෑව හා සිතාරය

- 29) එක්තරා දිනක කොළඹ නගරයේ රාතුී කාලයේ උෂ්ණත්වය 26° C ක් විය. එදිනම නුවරඑළිය නගරයේ රාතුී උෂ්ණත්වය 5° C ක් විය.නගර දෙක අතර උෂ්ණත්ව පරතරය කෙල්වින් වලින් කොපමණද?
 - 1. 21K
 - 2. 252K
 - 3. 294K
 - 4. 299K
- 30) අවතල දර්පණයක පුධාන අක්ෂය මත තබන ලද වස්තුවක පුතිබිම්බය විශාලිත යටිකුරු එකක් විය. වස්තුවක තබා ඇත්තේ,
 - 1. C මතය.
 - 2. F හා C අතරය.
 - 3. F මතය.
 - 4. C ට ඇතිනි.

X

පුභාසංස්ලේෂණය හා සම්බන්ධ වායු දෙකක් x හා y මගින් නිරූපනය කරයි.

x හා y මගින් පිළිවෙළින් දැක්වෙන්නේ,

У

- 1. ඔක්සිජන් හා කාබන්ඩයොක්සයිඩ් ය.
- 2. කාබන්ඩයොක්සයිඩ් හා කාබන්ඩයොක්සයිඩ් ය.
- 3. ඔක්සිජන් හා ඔක්සිජන් ය.
- 4. කාබන්ඩයොක්සයිඩ් හා ඔක්සිජන් ය.
- 31) ජීවී පටක තුනක් පහත දැක්වේ.

С

- a, b ,c පිළිවෙළින් දැක්වෙන පිළිතුර කුමක් ද?
- 1. අෘඩස්තර, සිනිඳු පේශී, ස්ථුලකෝණාස්තර
- 2. දෘඩස්තර, රුධිර, මෘදුස්තර
- 3. මෘදුස්තර, සිනිදු පේශී, දෘඩස්තර
- 4. ස්ථුලකෝණාස්තර, රුධිර, දෘඩස්තර

- 32) පහත දැක්වෙන්නේ කාලය සමග ධාරාව දක්වන පුස්තාර සටහනකි.එම සටහනට ගැළපෙන අවස්ථාව විය හැක්කේ,
 - 1. අකුණු පහරකි.
 - 2. ශබ්ද විකාශනයක කම්පනයකි.
 - 3. කන් යොමුවක් කියා විරහිත වීමකි.
 - 4. පරිණාමකයකි.

- 33) හයිඩොකාබන පිළිබඳව පහත දී ඇති පුකාශවලින් සතා පුකාශය තෝරන්න.
 - 1. ඇල්කේනවල C පරමාණු අතර ද්විත්ව බන්ධන පවතී.
 - 2. ඇල්කීනවල C පරමාණු අතර ඒක බන්ධන පවතී.
 - 3. ඇල්කීනවලට වඩා ඇල්කේන පුතිකිුයාශීලීය.
 - 4. බොරතෙල් යනු ඇල්කේන මිශුණයකි.
- 34) ඕම් නියමයේ සතාහතාව පරීක්ෂා කිරීම සඳහා සකසන ලද පරිපථයක රූප සටහනක් මෙහි දැක්වේ. වෝල්ට් හා ඇම්පියර් අගයන් සටහන් කිරීමෙන් පසුව පෙනී ගියේ ඕම් නියමයට අනුකූල නොවන දත්ත ලැබී ඇති බවයි. එසේ වීමට හේතු විය හැකි කරුණක් වන්නේ,

- 2. සූතුකා පහන රත්වීමයි.
- 3. කෝෂය ක්ෂය වීමයි.
- 4. දූර්වල සම්බන්ධ කිරීමයි.

- 35) පෙකෙණිවැල සම්බන්ධ ව පහත දී ඇති පුකාශවලින් නොගැලපෙන පුකාශය තෝරන්න.
 - 1. ජර්මන් සරම්ප වැනි වෛරස්වලට මෙය හරහා ඇතුළු විය නොහැක.
 - 2. මෙය හරහා භුැණයේ බහිස්සුාවී දවා ඉවත් වේ.
 - 3. හුැණයට මවගෙන් පෝෂක හා ඔක්සිජන් විසරණය වේ.
 - 4. මෙය හරහා මවත් හුැණයත් අතර රුධිර හුවමාරුවක් සිදු නොවේ.
- 36) ආලෝක සංවේදී පුතිරෝධකයක් යෙදු පරිපථ සටහන් හතරක් පහත දැක්වේ. ඒවායින් බල්බය දැල්වෙන අවස්ථාව කුමක්ද ?

- 37) පහත පුකාශ සලකා බලන්න.
 - A හයිඩුජන් පෙරොක්සයිඩ් සමහ සල්ෆියුරික් අම්ල බිංදූ කිහිපයක් එක් කිරීම.
 - B මැංගනීස් ඩමයාක්සයිඩ් හයිඩුජන් පෙරොක්සයිඩ් සමහ එක් කිරීම.
 - C පොටෑසියම් ප' මැන්ගතේට් රත් කරන විට මැංගනීස් ඩයොක්සයිඩ් එක් කිරීම.

මේවායින් ධන උත්ජේරකයක් හා ඍණ උත්ජේරකයක් යෙදෙන අවස්ථාව පිළිවෙලින් දැක්වෙන පිළිතුර කුමක්ද?

1. A, B

2. B, C

3. C, A

4. A, C

38) විලීන NaCl විදායුත් විච්ඡේදන කිුයාවේ අර්ධ රසායනික සමීකරණය පහත දැක්වේ.

$$2CI_{(I)} \longrightarrow CI_{2(g)} + 2e$$

එම පුතිකියාව අනුව නිවැරදි පුකාශය කුමක්ද?

- 1. ඔක්සිහරණයකි, ඇතෝඩය මත සිදු වේ.
- 2. ඔක්සිකරණයකි, කැතෝඩය මත සිදු වේ.
- 3. ඔක්සිහරණයකි, කැතෝඩය මත සිදු වේ.
- 4. ඔක්සිකරණයකි, ඇතෝඩය මත සිදු වේ.
- 39) අභියෝගාත්මක රසායන දුවා සමූහයක ලක්ෂණ කිහිපයක් පහත දැක්වේ.
 - •ඉතා දිගු කාලයක් පරිසරයේ නොනැසී පැවතීම.
 - •ආහාර දාම ඔස්සේ ජීවී දේහ තුළ එක් රැස් වීම.
 - •අධික මිල සහිත වීම.

එම ලක්ෂණ සහිත දුවා හැඳින්වීමට වඩා සුදුසු වන්නේ,

- 1. වාෂ්පශීලී හයිඩොකාබන ය.
- 2. දිගුකල් පවත්තා කාබනික දූෂක ය
- 3. කසළ දූෂක ය.
- 4. වායු දූෂක ය.
- 40) පරිසර දූෂණයේ අහිතකර බලපෑම් කිහිපයක් මෙහි දැක්වේ.
 - a. ගෝලීය උණුසුම ඉහළ යාම.
 - b. ශාකවල ඵලදායීතාව අඩුවීම.
 - c. අම්ල වැසි ඇතිවීම.
 - d. ආකුමණික ජීවී විශේෂ ඇති වීම.

මේවායින් පරිසර දුෂණයේ සෘජු බලපෑම් හා වකු බලපෑම් ලෙස වෙන් කළ හැකි කරුණු අඩංගු පිළිතුර තෝරන්න.

	සෘජු බලපෑම්	වකු බලපෑම්
1	a, b	c, d
2	a, c	b, d
3	b, c	a, d
4	a, d	b, c

MINISTRY OF EDUCATION

අධාාපන අමාතාාංශය

G.C.E. ORDINARY LEVEL - Rehearsal Paper

අ.පො.ස. (සා/ පෙළ) - පෙරහුරු පුශ්න පතු

SCIENCE

විදහාව

QUESTION PAPER - II

පුශ්ත පතුය - II

අධාාපන අමාතාහාංශය

විදාහාව - II

අ. පො.ස. (සා/ පෙළ) - පෙරහුරු පුශ්න පතුය

11 ඉශ්ණිය කාලය - පැය 2 යි

- සියලුම පුශ්න වලට පිළිතුරු සපයන්න.
- 1. (A) ශුී ලංකාවේ මෑත කාලීනව සිදු කළ සමීක්ෂණයක් මත ලබාගත් දත්ත පහත වගුවේ දැක්වේ. ගැහැනු හා පිරිමින්ට එක් එක් රෝගය වැළදීමේ අවදානම සහිත පුතිශත එහි ඇතුලත් කර ඇත.

රෝගය	හෘදයාබාධ	අධි රුධිර පීඩනය	ඇදුම	පිළිකා	දියවැඩියාව	නිදන්ගත වකුගඩු රෝගය
පිරිමි පුතිශතය	3	5	4	1	2	2
ගැහැණු පුතිශතය	1	15	6	2	3	1

I.වගුවේ ඇතුලත් රෝග සියල්ලම පොදුවේ හඳුන්වන්නේ කිනම් රෝග ලෙස ද?
II.පිරිමින්ට සාපේක්ෂව ගැහැණුන් තුළ වැඩි පුතිශතයක් පෙන්නුම් කරන්නේ කිනම් රෝගය ද?
III.නිදන්ගත වකුගඩු රෝගය ගැහැණුන්ට සාපේක්ෂව වැඩි පුතිශතයක් පිරිමින් තුළ පෙන්වීමට හේතුවිය හැකි කරුණක් සඳහන් කරන්න.
IV.ඉහත සදහන් රෝග සියල්ල පිරිමින්ට සාපේක්ෂව ගැහැණුන්ට වැළදීමට ඇති අවදානම ආරෝහණ පිළිවෙලට සකස් කර ලියන්න.
V.ඇදුම සහ පිළිකා රෝගය සඳහා හේතුවිය හැකි වායුගෝලීය දුෂක දෙකක් සඳහන් කරන්න.

(B) ගලායන දිය පහරක ශක්තිය යොදාගෙන ජල විදුලිය නිපදවන අතර ශුී ලංකාවේ අලුතින් ජල විදුලි බලාගාර ඉදිකිරීම අපහසු විය හැකිය. තාප විදුලි බලාගාර මහින් ද, විදුලිය නිපදවන අතර පුනර්ජනනීය ශක්ති කෙරෙහි අවධානය යොමුකර ඇත.

I.ශී ලංකාවේ තව දුරටත් ජල විදුලි බලාගාර ඉදිකිරීමට නොහැකි විය හැක්කේ ඇයි ?
II.තාප විදුලි බලාගාර මහින් පාරිසරිකව සිදුවන බලපෑමක් සඳහන් කරන්න.
III. ශී ලංකාවට උචිත පුනර්ජනනීය ශක්ති පුභව දෙකක් සදහන් කරන්න.
IV.ඔබ සදහන් කළ එක් ශක්ති පුභේදයක් කෙරෙහි බලපාන ගැටලුවක් සදහන් කරන්න.
V.බලශක්ති සංරක්ෂණය සඳහා යෝජනා දෙකක් ඉදිරිපත් කරන්න.

2. (A) ජලය සජීව පදාර්ථයේ පැවැත්ම සඳහා අතාවශා මාධායයක් වේ. ජලයේ ගුණ හා ජලයේ දායකත්වය දැක්වෙන සංකල්ප සිතියමක් පහත දැක්වේ.

l. ඉහත සටහනේ (a) මහින් දැක්වෙන ගුණය හා (b) මහින් දැක්වෙන දායකත්වයට අදාල කිුයාව හිස්තැන මත ලියන්න.	\$
II.ජලයේ අධික සංසක්ති හා ආසක්ති බල ලෙස හැඳින්වෙන්නේ කුමක්ද ?	
III.ජලජ ජිවිත්ට ජීවත්වීමට අවශා පරිසරය සැපයීමට ජලය වැදගත්වත ආකාරයක් සඳහන් කරන්න.	
B) මානව දේහ සෛලයක සෛල විභාජනය සිදුවන ආකාරය පහත රූප සටහනේ දැක්වේ.	
I.රූපය අනුව a හා b මහින් දැක්වෙන විභාජන කුම හිස්තැන් මත ලියන්න.	
II. මිනිසාගේ ඌනන විභාජනය සිදුවන්නේ කිනම් සෛලවලද?	
III. අනුනන විභාජනය ජීවියකුට වැදගත් වන අවස්ථාවක් සඳහන් b)	
IV.ඌනන විභාජනය, අනුනන විභාජනයෙන් වෙනස්වන ආකාර දෙකක් ලියන්න.	
C) ඔක්සිජන් රුධිරයට විසරණය වී සරල කාබනික සංයෝග සමහ පුතිකියාකර ශක්තිය නිදහස් වීමේ කිුයාවලිය මෛලීය ශ්වසනයයි.	
l.මෛලීය ශ්වසන පුතිකිුයාව සඳහා අදාළ තුළිත රසායනික සමීකරණය ලියන්න.	·•
II.දිගු වේලාවක් ඇවිදීමේ නිරත වූ පුද්ගලයකුගේ පාදවල මාංශ පේශි වේදනාව හා කෙණ්ඩා පෙරලීමට හෙ කුමක්ද?	න්තුව
III.ශ්වසනයේදී පිටවන අධිශක්ති සංයෝගයක් වන ATPවල කෘතාෳයක් ලියන්න.	

3. (A) රූපයේ දැක්වෙන්නේ අල්පාම්ලික ජලය විදාුුත් විච්ඡේදනය කිරීමට යොදා ගත් ඇටවුමකි.

I.විදුලි	යතුර (s) කුියාත්මක කළ විට ඔබ දකින නිරීක්ෂණය ලියන්න.
වදා 	භාගාරයේදී ඉලෙක්ටුෝඩ වශයෙන් භාවිත කර ඇති x හා y සඳහා යොදාගන්නා දුවාඃයක් හඳුන්වන්න.
III.X ඉ	ඉලෙක්ටුෝඩය නම් කර එය මත සිදුවන අර්ධ රසායනික සමීකරණය ලියන්න.
IV.Y ඉ	ඉලෙක්ටුෝඩය නම් කර එය මත සිදුවන අර්ධ රසායනික සමීකරණය ලියන්න.
V.පරීෘ	æණ නළ තුල රැස්වන වායු අඩු කාලයක දී රැස්කර ගැනීමට සුදුසු ම කියාමාර්ගය ස ද හන් කරන්න.
	ිඤණ නළ දුාවාෳය තුලදීම තරමක් එසවූ විට පුතිකිුයාව වේගවත් වන බව නිරීක්ෂණය වන බව පෙනේ. ් වීමට හේතුව දක්වන්න.
	හය කීපයක ශක්ති මට්ටම් වල ඉලෙක්ටුෝන පිහිටි ආකාරය පහත දැක්වේ. ඒවා x,y,z ලෙස නම් කර ැසුරින් අසා ඇති පුශ්න සඳහා එම සංකේත යොදාගනිමින් පිළිතුරු සපයන්න. -
	X Y Z
l.ඉහත	බ දැක්වෙන මුලදුවාෳය අතරින් සංයුජතාව දෙකක් වන මුලදුවාෳය නම් කරන්න.
ලෝ	ැති මුලදුවාඃය ලෝහ හා අලෝහ ලෙස වෙත් කරත්ත. හ
' -	ත දක්වා ඇති මුලදුවාෳය අතුරින් පහසුවෙන් ම සංයෝග සාදන මුලදුවාෳ යුගලය නම් කරන්න.

(C) හරිතාගාර වායුවක් වන මෙතේන් තාපය උත්පාදනයට ද යොදා ගත හැකි ඉන්ධනයකි. L.P වායුව තාප උත්පාදනයට අද වන විට සීසු ලෙස භාවිතයට එක්වී ඇත.

I.මෙතේන් හයිඩුොකාබනයේ වයුහ සුතුය දක්වන්න.
II.මෙතේන් දහනය සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
I.L. P ඉන්ධන වායුවේ අඩංගු පුධාන හයිඩුොකාබන නම් කරන්න.

4. (A) 1500 kg ස්කන්ධයක් සහිත මෝටර් රථයක් තිරස් ඍජු මාර්ගයක දී දැක්වූ චලිතය සඳහා පුවේග/කාල පුස්තාරයක් පහත දැක්වේ.

| I.මෝටර් රථයේ ත්වරණය දැක්වීමට පුවේග / කාල පුස්තාරයෙන් පුකාශනයක් ලියන්න.
| III.ත්වරණය යටතේ සිදුකල විස්ථාපනය ගණනය කරන්න.
| IIII.එම ත්වරණය ලබා දීමට දායක වූ බලය කොපමණ ද ?
| IV.මෝටර් රථ එන්ජිමේ බලයෙන් ත්වරණය ලබා දීමට පමණක් දායක වූ ජවය (ක්ෂමතාව) කොපමණ ද ?
| V.රථයේ ගමාසතාව නොවෙනස් ව පැවැති කාල පුාන්තරය කුමක් ද ?

දී ඇති A, B, C, D, E අනුයාත ලක්ෂා දෙකක් අතර දුර $20 {
m cm}$ වේ. $20 {
m cm}$ බැගින් නාභිය දුර උත්තල කාචයක් ද, අවතල දර්පණයක් ද, සපයා ඇත.

I. A ලක්ෂයෙන් වම අත පැත්තේ ඇත ඇති වස්තුවක පුතිහිම්බයක් C ලක්ෂය මත ඇතිවීමට නම්,

a.උත්තල කාචය තැබිය යුතු ස්ථානය නම් කරන්න.

b.අවතල දර්පණය තැබිය යුතු ස්ථානය නම් කරන්න.

II.උත්තල කාචය, උත්තල දර්පණය, තල දර්පණය යන මේවා මහින් වස්තුවල අතාත්වික පුතිබිම්භ ලබා ගත හැකිවේ. එම අතාත්වික පුතිබිම්භ සම්බන්ධයෙන් පහත වගුව සම්පූර්ණ කරන්න.

	උත්තල කාවය	තල දර්පණය	උත්තල දර්පණය
පුතිබිම්හයේ පුමාණය (උස)	විශාලිත	වස්තුවට සමාන	ඌනත
පුතිබිම්හයේ දුර	a	b	С

රචනා පුශ්න

05. A) මිනිසාගේ නයිටුජනීය බහිස්සුාවී කිුයාවලිය හා සම්බන්ධ පද්ධතියේ රූප සටහනක් මෙහි දැක්වේ.

- i) රූපයේ B හා C මගින් සිදුකරන කිුයාවන් වෙන වෙනම ලියන්න.
- ii) Aහි අන්තර්ගත මුතුා නිපදවීම කෙරෙහි වැදගත්වන වාූහ කිනම් නමකින් හැඳින්වේ ද?
- iii) C ආශිතව ඇතිවිය හැකි රෝගී තත්ත්වයක් සඳහන් කරන්න.
- iv) බහිස්සුාවී පද්ධතිය වෙත මෙන් ම ශරීරයේ අනෙකුත් ස්ථාන කරා දුවා පරිවහනය කරන්නේ රුධිරය මගිනි. පරිවහන කාර්ය හැරුණු විට රුධිරය මගින් ඉටු කරන වෙනත් කාර්යයක් සදහන් කරන්න.
- B) විදාහගාර පරීක්ෂණයක යෙදී සිටි සිසුවෙකුගේ අත බන්සන් දැල්ලේ ගැටීම නිසා ඔහු ඎණිකව අත ඉවතට ගන්නා ලදී. එහිදී පුතික කිුයාවක් සිදු වූ බව ගුරුවරයා විසින් පවසන ලදී.
 - i) පුතීක කුියාවක් යන්න හඳුන්වන්න.
 - ii) ඉහත සිදු වීමට අදාළ පුතීක චාපය ලියා දක්වන්න.
 - iii) කපාල පුතික කිුයා සඳහා උදාහරණයක් ලියන්න.
- C) 'ආර්තවය' යනු ස්තී පුජනක පද්ධතිය ආශිතව සිදුවන සුවිශේෂී කිුයාවලියකි. ආර්තව චකුයේ දී ගර්භාෂය තුළ පුධාන වෙනස්වීම් අවධි තුනක් යටතේ සිදු වේ.
 - i) පහත එක් එක් අවධියේ දී බලපාන හෝමෝනය බැගින් ලියන්න.
 - a) ආර්තව අවධිය
 - b) පුගුණන අවධිය
 - c) සුාවී අවධිය
 - ii) ලිංගිකව සම්පේෂණය වන මාරාන්තික නොවන රෝගයක් සඳහන් කරන්න.
 - iii) ලිංගිකව සම්පේෂණය වන රෝග වළක්වා ගැනීමට ගත හැකි කිුයා මාර්ගයක් සඳහන් කරන්න.
 - D) ජීවිත් වර්ගීකරණය කිරීමේ දී පුධාන කුම දෙකක් භාවිත වේ.
 - i) ස්වභාවික වර්ගීකරණයක දක්නට ලැබෙන පුධාන ලක්ෂණයක් සදහන් කරන්න.
 - ii) එදිනෙදා ජීවිතයේ දී දිලීර පුයෝජනයට ගන්නා අවස්ථා දෙකක් සදහා උදාහරණ දෙන්න.
 - iii) රූපයේ දැක්වෙන අපෘෂ්ඨවංශි සත්ත්වයා
 - a) අයත් වන වංශය කුමක් ද?
 - b) එම වංශයේ සුවිශේෂී ලක්ෂණයක් සදහන් කරන්න

06)

A) X,Y,Z,A,G,L,J,E ආවර්තිතා වගුවේ පිළිවෙලින් එක ළඟ ඇති මූලදුවා ගොනුවකි. මැදින් එක මූලදුවායෙක් ඉවත් කර ඇත. X යනු දෙවන ආවර්තයේ හතරවන කාණ්ඩයේ මූලදුවායෙකි.

- i) විදාූත් ඍණතාව යන්න පැහැදිලි කරන්න.
- ii) විදායුත් ඍණතාව පිළිබඳව මෙහි සඳහන් නොවන මූලදුවාය කුමන කාණ්ඩයට අයත් වේ ද?
- iii) මෙම මූලදුවා අතුරින් අයනීකරණ ශක්තිය අවම අගයක් ගන්නා මූලදුවා කුමක් ද?
- iv) ඉහත දැක්වෙන මූලදුවාවලින් සෑදෙන ඔක්සයිඩ අතුරින් පුබල භාෂ්මික ඔක්සයිඩය හා උභයගුණි ඔක්සයිඩය සූතු ඉහත සංකේත ඇසුරෙන් දක්වන්න.
- v) Z හා L අතර ඇතිවන බන්ධන ස්වරුපය තිත් කතිර සටහනක් මහින් දක්වන්න.
- vi) ටුාන්සිස්ටරය, ඩයෝඩ ආදිය තැනීමට ගන්නා මූලදුවා ඉහත ගොනුවෙන් තෝරා ලියන්න.

B)

- i) රූපයේ දැක්වෙන ඇටවුම මහින් නිපදවා ගන්නා වායුව කුමක් ද?
- ii) එම වායුව නිපදවා ගැනීමට එක් කළ යුතු රසායනික දුවාාය නම් කරන්න.
- iii) ඉහත පුතිකුියාවට අදාළ තුලිත රසායන සමීකරණය ලියන්න.
- iv) නිපදවන වායුවෙන් ලබා ගන්නා පුයෝජන දෙකක් සටහන් කරන්න.

- C) වෙළඳපොළේ ඇති සුළු වශයෙන් අපදුවා අඩංගු දියලුණු, නැටීමට අසන්න තරම් වන උණු ජලයේ දිය කර සංතෘප්ත ලුණු දුාවණයක් සාදා ගනු ලැබේ. ඉන්පසු දුාවණය පෙරා සිසිල් වීමට තබන ලදී.
 - i) දාවණය සිසිල් වන විට බඳුනෙහි NaCl ස්ඵටික ඇති වේ. එසේ ස්ඵටික ඇති වීමට හේතුව කුමක් ද?
 - ii) දාවණය කෙතරම් සිසිල් කළ ද අපදුවාය ස්ඵටිකීකරණය තොවේ. එසේ වීමට හේතුව ලියන්න.
 - iii) මිශුණයක සංඝටක වෙන් කර ගැනීමේ ඉහත සදහන් කුමය කුමන නමකින් හැදින්වේ ද?
 - iv) වායුව ජලයේ දාවානාව කෙරෙහි බලපාන එක් සාධකයක් නම් කරන්න.
 - v) ඔබ සඳහන් කළ එම සාධකය දුාවානාව කෙරෙහි බලපාන්නේ කුමන ආකාරයෙන් ද?

07)

- A) විදුලි ශක්තිය ජනනය සඳහා සුළං බලාගාර, සූර්ය කෝෂ, ගල් අභුරු බලාගාර, ජල විදුලි බලාගාර ශී ලංකාවේ යොදා ගනී.
 - i)ඉහත සඳහන් විදුලි ජනනය කිරීමට 'ඩයිනමෝවක්' යොදා ගන්නා අවස්ථා නම් කරන්න.
 - ii)විදුලි ශක්තිය ජනනය සඳහා ශක්ති පරිවර්තනය දැක්වෙන පරිදි ගැලීම් සටහනකින් පෙන්වන්න.
 - a) සුළං ජනකය
 - b) සූර්ය කෝෂය
 - c) ගල් අහුරු බලාගාර
- B) i) 230V 1500W ලෙස පිරිවිතර සඳහන් පෘෂ්ඨය ඔපවත් කළ විදුලි කේතලයක 30° C පවතින ජලය 500g ඇත.එම ජලය නැටීමට රත් කළ කාලය මිනිත්තු 2කි (ජලයේ වි.තා.ධා $4200~{\rm Kg~J~K}^{-1}$)
 - ii) ජලය නැටීමට වැය වූ විදායුත් ශක්තිය කොපමණ ද?
 - iii) කියාත්මක වන විදුලි කේතලය ලබා ගත් ධාරාව කොපමණ ද? ජලය නැටීම සිදුවන විට ජලය සතුවන තාපශක්තිය කොපමණ ද?
 - iv) විදුලි කේතලයට හා පරිසරයට හානි වූ තාප පුමාණය කොපමණ ද?
- C) රූපයේ දැක්වෙන්නේ සයිපන කුමයට දුවයක් A භාජනයෙන් පිටතට ලබා ගන්නා අවස්ථාවකි. දුාවණයේ සනත්වය $1200~{
 m kg}~{
 m m}^3$ වේ.

- i)දාවණයේ ඝනත්වය $1200~{
 m kg}~{
 m m}^3$ යන්න පැහැදිලි කරන්න.
- ii)දුවය නළය දිගේ ගලා ඒමට අවශා බලය ලැබෙන්නේ කවර ආකාරයට ද?
- iii)A භාජනය වායු රෝධක වන සේ වසා ඇති විට B වෙතට ජලය ටිකක් ගලා විත් ජලය ගලා ඒම නතර විය. එසේ වන්නට හේතුව පැහැදිලි කරන්න.
- iv)A වායුරෝධක අවස්ථාවේ ම තබමින් C නළයේ දුාවණ ඉවතට ගැනීමට නළය සිරස් උස කොපමණ වැඩි කළ යුතු ද?

08)

- A) අහාර ජීරණ පද්ධතියේ කොටසක රූප සටහනක් පහත දක්වා ඇත.
 - i) Xහි අඩංගු යුෂයේ ඇති අම්ලය කුමක් ද?
 - ii) Yහි කෘතායන් දෙකක් ලියන්න.
 - iii) ආහාර ජීර්ණය කාර්යක්ෂම කිරීම සඳහා පද්ධතියේ ඇති අනුවර්තන දෙකක් ලියන්න.

- B) ස්වාභාවික වර්ධන පුචාරණයේ දී ශාකයක භූගත හෝ වායව කොටස් මහින් නව ශාක ඇති වේ.
 - i. පහත සඳහන් ශාකවල කිනම් කොටස් මහින් ස්වාභාවික වර්ධක පුචාරණය සිදුවේ ද?
 - a)කෝටන්
- b)කෙසෙල්
- c)ඉහුරු
- ii. කෘතීම වර්ධක පුචාරණ කුමයක් වන පටක රෝපණයේ වාසි දෙකක් සඳහන් කරන්න.
- C) 10~kg ක ස්කන්ධයෙන් යුත් A නම් වස්තුවක් 5m ක් ඔසවා රූපයේ ආකාරයට ඉහළ ස්ථානයක තබා ඇත.

- i) A වස්තුවේ බර කොපමණ ද?
- ii) A වස්තුවේ ගුරුත්වාකර්ෂණ විභව ශක්තිය සොයන්න.
- iii) A වස්තුව AYX මාර්ගය ඔස්සේ පෙරළී X ස්ථානයේ නතර වූයේ නම් සිදු වූ ශක්ති පරිණාමනය සඳහන් කරන්න.
- D) කණුවක් මත ඇති 2m ක් උස ජාල ටැංකියක් රූපයේ දැක් වේ. ටැංකිය ජලයෙන් පිරි ඇත.

- i) ටැංකියේ X හා Y ස්ථානවලින් සිදුරු ඇති කළහොත් වඩා වේගයෙන් ජලය පිටවන්නේ,
 - a) X වලින් ද? Y වලින් ද?
 - b) ඔබේ පිළිතූරට හේතු දක්වන්න.
- ii) ජාල ටැංකියේ පතුලේ පිහිටි M ලක්ෂාා මත කුියාකරන පීඩනය ගණනය කරන්න.

09.

- A) 1 රූපය මහින් දැක්වෙන්නේ විදායුත් රසායන කෝෂයකි.
 - i) P හා Q ලෝහ දෙවර්ගයකි. මේ සඳහා වඩාත් සුදුසු ලෝහ වර්ග දෙක නම් කරන්න.
 - ii) කෝෂ කිුයාව සිදු වන බව හඳුනා ගැනීමට අදාළ Y උපකරණය නම් කරන්න.
 - iii) X දාවණය සතු අයන වෙන් කර ලියන්න.
 - iv) a) ඇනෝඩය මත සිදුවන රසායන පුතිකියා සමීකරණය ලියා දක්වන්න.
 - b) කැතෝඩ මත සිදුවන රසායන පුතිකිුයාව සඳහා සමීකරණය ලියා දක්වන්න.
- B) i) 2 රූපයෙන් දැක්වෙන ඇටවුම මහින් ඉටු කරන කාර්යය කුමක් ද?
 - ii) කෝෂය කිුයාත්මක වී ටික වෙලාවකින් දකින්නට ලැබෙන නිරීක්ෂණ කවරක් ද?
 - iii) මෙම ඇටවුමේ විදාූත් විච්ඡේදායේ ඇති අයන දෙවර්ගය පැහැදිලිව දක්වන්න.
- C) මානව කටයුතු සඳහා ඉලෙක්ටොනික උපාංග බහුලව යොදා ගනී. ඒවායින් කිහිපයක් නම්, පුතිරෝධ, ආලෝක සංවේදී, පුතිරෝධ ටුාන්සිස්ටරය, ඩයෝඩය, ධාරිතුක, ආලෝක විමෝචක පහන් ආදිය වේ.
 - i) ඉහත දක්වා ඇති උපාංග ඉලෙක්ටොනික හා නොවන ලෙස වෙන් කරන්න.
 - ii) ඉහත ඇති උපාංග සදහා සංකේත අදින්න.
 - iii) ආලෝක සංවේදී පහන් පරිපථයක් සඳහා උපාංග සංකේත මඟින් පරිපථ සටහනක් අදින්න.
 - iv) ඩයෝඩ භාවිතයට ගන්නා අවස්ථා දෙකක් ලියන්න.
- D) සරල ධාරා මෝටරය ද, ඩයිනමෝවක් ලෙස කිුයා කරයි.
 - m i) සරල ධාරා මෝටරයක විදාෘුත් චුම්බකය සදා ඇත්තේ කෙසේ දm ?
 - ii) සරල ධාරා මෝටරය 1.5V බැටරියකින් කුියා කරයි.එහි ක්ෂමතාවය වැඩි දියුණු කර ගැනීමට වෙනත් උපකුමයක් යෝජනා කරන්න.
 - iii)'පැලිවළලු ' හා 'ඇතිල්ල' මහින් ඉටු කරන කාර්යය කුමක් ද?
 - iv) මෝටරයක් භුමණය කිරීමෙන් විදුලි ධාරාවක් උත්පාදනය කළහැකි වන්නේ කෙසේ ද?
 - v) සැදෙන විදුලි ධාරාව පුස්තාරිකව ඇඳ පෙන්වන්න.

MINISTRY OF EDUCATION

අධාාපන අමාතාාංශය

G.C.E. ORDINARY LEVEL - Rehearsal Paper

අ.මෙපා.ස. (සා/ පෙළ) - පෙරහුරු පුශ්න පතු (පිළිතුරු)

SCIENCE

විදහාව

QUESTION PAPER - (ANSWERS)

පුශ්න පනුය - (පිළිතුරු)

අධාාපන අමාතාහාංශය

විදාහාව - II

අ.පො.ස. (සා/ පෙළ) - පිළිතුරු පතුය

1.	2
2.	1
3.	2
4.	3
5.	4
6.	1
7.	3
8.	2
9.	4
10.	3

11.	1
12.	2
13.	2
14.	1
15.	4
16.	3
17.	4
18.	1
19.	1
20.	4

21.	3
22.	2
23.	2
24.	3
25.	1
26.	3
27.	2
28.	3
29.	2
30.	4

31.	1
32.	2
33.	4
34.	2
35.	1
36.	2
37.	3
38.	1
39.	2
40.	2

1) A)

i.බෝ නොවන රෝග

ii.අධි රුධිර පීඩනය

- වැඩි වශයෙන් ලවණ මිශුිත ජලය පානය කිරීම.
- මත් දුවා භාවිතය

iii.හෘදයාබාද, නිදන්ගත වකුගඩු රෝගය, ඇදුම, දියවැඩියාව, පිළිකා, අධි රුධිර පීඩනය

- ඇස්බැස්ටෝස් කෙදි
- ඩයොක්සීන් වායු
- දුම්
- දූවිලි
- සමහර පරාග
- B) i. ගලායන දියපහරවල් අඩුවීම (හිහ වීම) / උපරිම ලෙස ජලාශ හා දිය පහර පුයෝජනයට ගෙන තිබීම.
 - ii. පරිසරය උණුසුම් වීම / ගෝලීය උණුසුම ඉහළයාම.
 - විෂ වායු එකතු වීම.
 - ගල් අභුරු අලු පරිසරයට එකතු වීම.
 - iii. සූර්ය ශක්තිය ජෛව ඉන්ධන
 - iv. සූර්ය ශක්තිය වළාකුළු අධික කාලයන්හි භාවිතය අපහසු වීම.ඉජව ඉන්ධන වන විනාශය
 - iv. අනවශා ලෙස බලශක්තිය භාවිත නොකිරීම.
 - විකල්ප බලශක්තිය භාවිතය.
 - අඩු ක්ෂමතාව සහ වැඩි එළිය ලබාදෙන බල්බ (LED) භාවිත කිරීම.
- 2) A) I. a) සිසිලන කාරක ගුණය
 - b) ජලය මත අයිස් පාවීම
 - II. සංසක්ති බල ජල අණු ජල අණු අතර ආකර්ශණ බල ආසක්ති බල - ජල අණු හා වෙනත් අනු අතර ආකර්ශණ බල
 - III. ජලයේ O2 දියවී තිබීම.
 - සංචරණය පහසු වීම.
 - බහිස්සුාවී දුවා පිටකිරීම පහසු වීම.
 - ආහාර පැවතීම.
 - B) I. a) අනූනනය
- b) ඌනනය
- II. ජන්මාණු සෛලවල
- III. මැරුණු සෛල වෙනුවට නව සෛල ලබාදීම / තුවාල සුවවීම
- IV. ඌනනයේ අවස්ථා දෙකකි. අනුනනයේ එක් අවස්ථාවකි.
 - ඌනනය ද්විගුණ සෛලවල පමණක් සිදුවේ. අනූනය ඒකගුණ සෛලවල සිදුවේ.
 - ඌනනයේ ඇතිවන සෛල මාතෘ සෛලවලට සමාන නොවේ. අනූනනයේ දී ඇතිවන සෛල මාතෘ සෛලවල සඊවසම වේ.
 - •ඌනනයේ දී මානව සෛලයේ වර්ණ දේහ වලින් අඩක් දුහිතෘ සෛලවලට ලැබේ. අනූනනයේදී එසේ නොවේ.

3) A) l. x හා y අසලින් වායු බුබුළු ඇතිවීම. (01)

II. x හා y කාබන් ඉලෙක්ටුෝඩ (01)

III. x - ඇතෝඩය (+)

 $4OH^{-}+4e \rightarrow 2H_{2}O+O_{2}$ (02)

IV. y - කැතෝඩය (-)

$$2H^{+} \rightarrow +2e + H_{2} \tag{02}$$

V. විදුලි ධාරාව වැඩි කිරීම. (01)

Vi. වීදුරු ආවරණය ඉවත් වීම නිසා (01)

අයන පහසුවෙන් ගමන් කිරීම.

B) I. x හා y (01)

II. ලෝහ x

අලෝහ - y හා z (01)

III. x හා y (01)

C) I.
$$H = \begin{array}{c} H & H \\ C & C \\ \vdots & \vdots \end{array}$$
 (01)

II.
$$2C_2H_6+7O_2$$
 " $4CO_2+6H_{2O}$ (02)

III. පොපේන් (C_3H_8) බියුටේන් (C_4H_{10}) (01)

4) A) I. පුස්ථාරයේ තත් 8 කොටසට අයත් අනුකුමණය වේ. (01)

II.
$$\frac{1}{2} \times 8 \times 24 = 96m$$
 (01)

$$F = 150 \text{kg} \times 3 \text{ms}^{-2}$$
 (01)

= 4500N

IV. ජටය =
$$\frac{mාර්ය}{mාලය}$$
 (01)
$$= \frac{\frac{\log x}{m \log a}}{\frac{\log x}{m \log a}}$$

$$= \frac{4500N \times 96m}{85}$$
 (01)

= 54000w

v.
$$16s - 8s = 8s$$
 (01)

B) I. x – ඇමීටරය

Y – වෝල්මීටරය (01)

II. x = 2A

 $Y = 6V \tag{01}$

III. පරිපථයෙන් ගලා යන ධාරාව පාලනය කිරීම. (01)

IV. පුතිරෝධයේ උණුසුම පාලනය කිරීම. (01)

C) I. (a) B

(b) D (01)

II. (a) වස්තු දූරට වඩා ඇත.

(b) වස්තු දුරට සමාන (03)

(c)වස්තු දුරට වඩා ඇත.

5. A) I. B - මුතුාශය කරා මුතුා ගෙන ඒම

C - මුතුා ගබඩා කර තබා ගැනීම

II. වෘක්කාණු

III. මුතුාශයේ ගල් ඇතිවීම

IV. ආරක්ෂක කෘතා

රසායනික සමායෝජනය

B) I. උත්තේජයක් සඳහා ක්ෂණිකව හා අනිච්ඡානුගව පුතිචාර දැක්වීම

II.

- C) I. a) පොජෙස්ටරෝන්
 - b) ඊස්ටුජන්
 - c) පොජෙස්ටරෝන්

II. ගොතෝරියා (සුදු බිංදුම)/ සිපිලිස් (උපදංශය)/ හර්පීස්

III. අතාරක්ෂිත ලිංගික චර්යාවලින් වැළකීම

ලිංගික ඇසුර එක් සහකරුවකුට හෝ සහකාරියකට පමණක් සීමා කිරීම

- D) I. එකම විශේෂයේ ජීවින් අතර ස්වාභාවික බන්ධුතා හෙළිවීම වෙනස් ජීවින් අතර පරිණාමික බන්ධුතා හෙළිවීම
 - II. පුෝටීනමය ආහාරයක් ලෙස (හතු)

පුතිජීවක නිෂ්පාදනය

පාන් වැනි නිෂ්පාදනවල පිපීමේ කාර්යයට

මදාාසාර පැසීමේ කිුයාවලියට

- III. a) ආතුපෝඩා
 - b) සන්ධි සහිත පාදදේහය කයිටිනීමය උච්චර්මයක් තිබීමනිපුස්තර වීම
- 6. A) I. මූලදුවා පරමාණුවක් තවත් මූලදුවා පරමාණුවක් සමඟ සහසංයුජ බන්ධනයකින් බැදී ඇතිවිට බන්ධනයේ ඉලෙක්ටුෝන තමා වෙත ඇද ගැනීමේ හැකියාවයි. (01)

$$II. VIII/0 \tag{01}$$

IV. G₂ZO හා J₂O₃

$$G_2Z$$
, J_2Z_3 (01)

٧.

III.
$$2HCl_{(aq)} + Zn_{(s)}$$
 $ZnCl_{(aq)} + H_{2(aq)}$ (01)

C)	l. ස්ඵටි	ිකීකරණය				(01)
	II. ස∘ත	naප්ත නොවීම				(01)
	III. පුන	ාර්ස්ඵටිකීකරණය -	i			(01)
	IV. උෂ්	්ණත්වය/ පීඩනය				(01)
	V. උෂ්	්ණත්වය වැඩිවන	විට දුාවානතාව අ	ඩු වේ/ පීඩනය වැඩි?	වන විට දුාවානතාව වැඩි	වේ (01)
7. A)	l. සුළං බලාගාර, ගල්අභුරු බලාගර					
	II. a)	වාලක ශක්තිය	—→ යාත්තිුක ශ	ාක්තිය	විදුලි ශක්තිය	
	b) අ	ාලෝක ශක්තිය -	—— විදුලි	ශක්තිය		
	c) රූ ශක් ්	සායනික හිය	තාප → ශක්තිය	වාලක ශක්තිය	විදායුත් ශක්තිය	
B)	1.	W = VI				
		1500W = 230V	′ X I			
		I = 6.5A				
	II.	E = VIt				
		E = 230V X 6.5	A X 120s			
		= <u>179 400J</u>				
	III. තාප පුමාණය = mcq					
		= 1000	_ o kg X 4200kJ ^o C	X 70°C		
		<u>= 147</u>	<u> 000J</u>			
	IV. 179	9 400J – 147 000	ວາ			
	<u>= 32</u>	400J				
C)	l. දාව 《	ණ 1m³ ක ස්කන්ර	ධය 1200kg වන	බව		

II. ගුරුත්ව ආකර්ෂණය නිසා

8. A)	I. HCl						
	II. ආහාර සංචිත කිරීම (ග්ලූකෝස්, ග්ලයිකොජන් ලෙස තැන්පත් කිරීම)						
	පිත නිපදවීම යුරියා නිපදවීම						
	III. ක්ෂුදාන්තය දිගින් වැඩිවීම						
	අවශෝෂණ පෘෂ්ඨ වර්ගඵලය වැඩිවීම						
	අංගුලිකා පිහිටීම						
	අංගුලිකා ර	ආශිුත නොඳ රු	ධිර සැපයුම	මක් තිබීම			
B)	l. a) වායව	b) භූගත	c)	භූගත			
	II. ඉක්මනින්	ඵලදාව වැඩි අ	ස්වැන්න ෙ	රා්ගවලට ඔරොත්තු ශ	ඉ දන පුණේද		
	අහිතකර ත	ාත්ත්වයන් පා <i>ල</i>	ුනය කළ අ	ගැකිවීම (ඇඹුල්/ තිත්	ත)		
C)	I. 100N						
	II. ගුරුත්වාකර්ෂණ විභව ශක්තිය = mgh						
			= 10	X 10 X 5			
			= 500)J			
	III. විභව —	→ චාලක —					
D)	I. a) y						
	II. b) ගැඹුර වැඩිවන විට පීඩනය වැඩි වේ						
	III. P = hrg						
	= 2 X 10	000 X 10					
	= 20000	0 Nm ⁻² / Pa					
9) A)) I. Zn හා Cu					(01)	
	II. mA යක්					(01)	
	III. ජලීය H₂SO					(01)	
	IV. (a) 2H ⁺ +2e	- 1 1 2	²⁻ 4 (01) ඉතෝඩය මත) 01)				
	(b) Zn → Zı	J ^{2™} +2e (කැලත	ෝඩය මත) -			(01)	
В)	l. විදායුත් විච්ඡේදනය					(01)	
II. + අගුය සම්බන්ධ කාබන් අගුය මත වායු බුබුළු සෑදීම.						(01)	
	. •	සම්බන්ධ කාබෘ . <i>?</i> -	ත් කූර රතු	පාට වීම.		(01)	
	III. H ⁺ , OH ⁻ , SC) ⁻ ₄				(01)	
c)	l.ඉලෙක්ටොනික - ආලෝක සංවේදී පුතිරෝද, ටුාන්සිස්ටරය, ඩයෝඩය, ආලෝක විමෝචක						හන්
	o a a a a a a a a a a a a a a a a a a a	ක නොවන - පු	න ුදුව ව	_ග රිකුකු		(01)	
	ඉමල කාම පුාතා 2	ມາ <u>ອ</u> ວນບວາ - g	ມອ ບ າພ, ພ	၁ ဝည် ဃာ		(01)	

II.

III.

(01)

(01)

IV. • පුතාහාවර්තධාරා සෘජුකරණය

- D) I. මෘදු යකඩ හරයක් වටා පරිවරණය කළ තඹ කම්බි ඔතා ගැනීමෙන් (01)
 - II. මෝටරයට පිටතින් පුබල චුම්බකයක් මගින් ධුැව පුබල කිරීම. (01)
 - III. "පැලි වලලු" මගින් හුමණයේදී ධාරාවේ දිශාව වෙනස් කල හැක. (01)
 - "ඇතිල්ල" මගින් පැලිවලලු වෙතට විදුලි ධාරාව අඛණ්ඩව ලබා දීම. (01)
 - IV. මෝටරය හුමණය වන විට චුම්භක ක්ෂේතුය කම්බි දහරය හා සැබැදීම සිදු වේ. (01) V.

0 D.C

(01)