

Lecture 6

- A data collection can be represented in a relational model (by using tables) in multiple ways
- The database design should be carried out smoothly taking into account the subsequent queries and operations that will be performed, i.e.
 - no additional tests should be required when the data is changed
 - the operations should be performed through SQL statements alone
- If the relations from the database satisfy some conditions, the database will be managed properly (i.e. the relations should be in a certain normal form)
- Redundancy is the main cause of the problems that may arise and have a negative impact in the structure of the relational databases: wasting space, insert anomalies, update anomalies, deletion anomalies

- A possible solution for redundancy can be the replacement of a relation with a collection of smaller relations (these ones will contain a strict subset of attributes from the original relation)
- Ideally, only redundancy-free schemas should be allowed
- Should be, at least identified the schemas with redundancy, even if such schemas are allowed (e.g. for performance reasons)
- The functional dependencies can be used to identify the projection problems and also to suggest improvements
- For example, let R be a relation with 3 attributes A, B and C.
 - No functional dependencies: no redundance
 - \circ For the dependency $A \to B$: more records can have the same value for A, case in which there are unique values for B
- The decompose should be used only when it is necessarily (e.g. of a problem: a part of the data can be lost)

- If a relation is in a particular *normal form* then some of the problems are eliminated / minimized, and helps in deciding if the decomposing of a relation is necessarily or not
- o The *normal forms* (based on the functional dependencies) are
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)
 - Boyce-Codd normal form (BCNF)
 - Forth normal form (4NF)
 - Fifth normal form (5NF)

{ BCNF \subseteq 3NF, 3NF \subseteq 2NF, 2NF \subseteq 1NF }

- 1NF, 2NF, 3NF were defined by Codd
- BCNF was defined by Boyce and Codd
- 4NF, 5NF were defined by Fagin

- o If a relation is not in normal form X, it can be decomposed into multiple relations that are in formal form X
- There are: simple attributes and composite attributes = a set of attributes in a relation (at least 2 attributes included)

Definition:

Repeating attributes = the attributes (simple or composite) that can take multiple values for a record in the relation

When a relation is defined in the relational model, the attribute values must be scalar, atomic (one value);
 otherwise, they cannot be further decomposed

Example 6: Consider the relation **Student[StudentName, Age, Course, Grade]**

StudentName	Age	Course	Grade
Rus	19	Algebra Databases Geometry	8.90 10 7.50
Hora	20	Functional Programming Databases Functional Analysis	8.75 9.75 8

Key: StudentName

Composite repeating attribute: pair (Course, Grade)

Decompose this relation *Student[StudentName, Age, Course, Grade]*:

- StudentDetail[StudentName, Age]
- Exam[StudentName, Course, Grade]

StudentDetail

StudentName	Age
Rus	19
Hora	20

Exam

StudentName	Course	Grade
Rus	Algebra	8.90
Rus	Databases	10
Rus	Geometry	7.50
Hora	Functional Programming	8.75
Hora	Databases	9.75
Hora	Functional Analysis	8

 The repeating attributes cannot be used in the relational model; they should be avoided but without lossing the data

Let *R*[*A*] a relation and *A* a set of attributes

 \circ α is a repeating attribute in R (simple or composite)

R can be **decomposed** into 2 relations, so that α not be any longer a repeating attribute

If C is a key in R then the relation R ca be decomposed in the following two relations:

$$\circ R'[C \cup \alpha] = \prod_{C \cup \alpha}(R)$$

$$\circ R''[A-\alpha] = \prod_{A-\alpha}(R)$$

First Normal Form (1NF)

- A relation is in the *first normal form* (1NF) if it does not have repeating attributes
- A relation is in the first normal form (1NF) if each attribute of the relation can have only atomic values (the lists and the sets are excluded)
- Due to the definition of the relational model, this condition of 1NF is by default.

Second Normal Form (2NF)

- A relation is in the second normal form (2NF) if
 - o it is in the first normal form (1NF)

and

 every (simple or composite) non-prime attribute is fully functionally dependent on every key in the relation

or

 A relation is in the second normal form (2NF) if it is in the first normal form (1NF) and does not have partial functional dependencies

Definition:

A relation has a *partial functional dependency* when a non-prime attribute is functional dependent with a part of the primary key of the relation (but not with the entire key).

 \circ R is a relation in the 1NF, but not in 2NF. Then R has a composite key (and also a functional dependency $\alpha \to \beta$, where α (simple or composite) is a proper subset of a key and β is a non-prime attribute

Partial dependencies (A is not in a key)

Decomposition: Let R[A] a relation, A a set of attributes and C a key

- \circ β non-prime, β functionally dependent on α , $\alpha \subset C$ (β is functionally dependent on a proper subset of attributes from a key)
- \circ The dependency $\alpha \to \beta$ ca be eliminated if R is **decomposed** into 2 relations,

$$\circ R'[\alpha \cup \beta] = \prod_{\alpha \cup \beta} (R)$$

$$\circ R''[A-\beta] = \prod_{A-\beta} (R)$$

Example 2: Meeting [StudentName, Course, MeetingDate, Professor]

- o key: {StudentName, Course}
- the functional dependency {Course} \rightarrow {Professor} holds \Rightarrow the attribute *Professor* is not fully functionally dependent on a key, and so, relation *Meeting* is **not in 2NF**

Meeting	StudentName	Course	MeetingDate	Professor
1	Rus Maria	Databases	01/10/2021	Mihai Horatiu
2	Irimie Dan	Fundamental Algorithms	11/10/2021	Cristea Paul
3	Dan Mihai	Fundamental Algorithms	10/11/2021	Cristea Paul
4	Pavel Traian	Databases	08/10/2021	Mihai Horatiu
5	Irimie Dan	Databases	12/10/2021	Mihai Horatiu

- The dependency is eliminated if *Meeting* relation is decomposed into the following two relations
 - Interaction[<u>StudentName</u>, <u>Course</u>, <u>MeetingDate</u>]
 - Course[Course, Professor]

Example 7: Teaching[ProfessorId, CourseId, ProfessorName, Title, CourseName]

- key: {ProfessorId, CourseId}
- o functional dependencies {ProfessorId} → {ProfessorName, Title}, {CourseId} → {CourseName}
- By eliminating these two dependencies, the relation is decomposed into the following three relations
 - OProfessor[ProfessorId, ProfessorName, Title]
 - Ocourse[CourseId, CourseName]
 - ProfessorCourses[<u>ProfessorId</u>, <u>CourseId</u>]

The transitive dependency is need for the 3NF

Definition:

An attribute Z is *transitively dependent* on an attribute X if $\exists Y$ such that $X \to Y$, $Y \to Z$, $Y \to X$ does not hold (and Z is not in X or Y).

Third Normal Form (3NF)

- A relation is in the third normal form (3NF) if it is in the second normal form (2NF) and none non-prime attribute is transitively dependent on any key in the relation or
- A relation is in the *third normal form* (*3NF*) if for every non-trivial functional dependency
 - $X \rightarrow A$ that holds over R
 - X is a super-key

or

○ *A is a prime attribute*

or

- A relation R that satisfies the functional dependencies F is in the **third normal form** (**3NF**) if for all $\alpha \to A$ from F^+
 - $\circ A \in \alpha$ (trivial functional dependency)

or

 $\circ \alpha$ contains a key of *R*

or

○ *A* is a prime attribute

Boyce-Codd Normal Form (BCNF)

 A relation is in the *Boyce-Codd normal form* (*BCNF*) if every determinant (for a functional dependency) is a key (informal definition - simplifying assumption: determinants are not too big, only the non-trivial functional dependencies are considered).

or

- A relation that satisfies the functional dependencies F is in the **Boyce-Codd normal form** (**BCNF**) if for all $\alpha \to A$ from F⁺
 - $\circ A \in \alpha$ (the trivial functional dependency)
 - $\circ \alpha$ contains a key of the relation R

A is not a key

BCNF and **3NF**

- If relation R is in *BCNF* obviously it is also in **3NF**
- If relation R is in 3NF it is possible to appear some redundancies (it is a compromise, and it is used when BCNF cannot be fulfilled)

Example 3NF, no BCNF: Let the relation Meeting[Course, Professor, MeetTime] with the functional dependencies {Course→Professor; Professor, MeetTime→Course}

- Key: {Course, MeetTime} and {Professor, MeetTime}
- Meeting is in 3NF, but not BCNF

Example 7: Consider the relation *Communication*[<u>StudentName</u>, <u>MeetingDate</u>, <u>Professor</u>, <u>Department</u>], in which is stored the professor with the department in which he / she works

- o key: {StudentName} (because the relation contains data about the students (i.e. one row per student))
- the functional dependency {Professor} → {Department} holds ⇒ the relation is not in 3NF
- The dependency is eliminated if *Communication* relation is decomposed into the following two relations
 - Talk[<u>StudentName</u>, MeetingDate, Professor]
 - ProfessorAsigned[Professor, Department]

Example 8: Consider the relation *Apartment[StudentId, Name, ZipCode, City, Street, Number]*, in which is stored the address for a group of students

- o key: {StudentId}
- \circ the functional dependency {ZipCode} \rightarrow {City, Street} holds \Rightarrow the relation is **not in 3NF**. Any other functional dependencies?
- The dependency is eliminated if *Appartment* relation is decomposed into the following two relations
 - Address[<u>StudentId</u>, Name, ZipCode, Number]
 - CityZipCode[<u>ZipCode</u>, City, Street]

Example 9: Consider the relation *Consultancy[CDate, CHour, Professor, Class, Group]*, in which are stored the meetings between professors and students

- The restrictions given will provide the key and the functional dependencies:
 - \circ a consultancy between a professor and a group of students is at most one per day \Rightarrow {CDate, Group} key
 - \circ on a certain date and hour, a professor has at most one consultancy \Rightarrow {Professor, CDate, CHour} key
 - on a certain date and hour, there is at most one consultancy in the class ⇒ {Class, CDate, CHour} key
 - \circ a professor does not change a class in a day \Rightarrow {Professor, CDate} \rightarrow {Class} functional dependency
- All the attributes appear in at least one key, and so, there are no non-prime attributes
- So, the relation is in 3NF (from the previous given definitions)
- Objective: to eliminate the functional dependency {Professor, CDate} → {Class}
- \circ By eliminating the functional dependency {Professor, CDate} \rightarrow {Class}, the initial relation is decomposed in
 - Meeting[CDate, CHour, Professor, Group]
 - ProfessorClass[Professor, CDate, Class]
- These 2 relations does not contain other functional dependencies, so, they are in BCNF
- On the other hand, the key {Class, CDate, CHour} does not appear anywhere, so it has to be checked in other manners (e.g. through program / code)

Normal forms based on functional dependencies

- 1NF all the values of the attributes are atomic (have one value)
- 2NF all the non-key attributes depend on the entire key (no partial dependencies)
- 3NF the tables in 2NF and all the non-prime attributes depend only on the key (no transitive dependencies)
- BCNF all dependencies are data keys
- Each attribute depends
 - \circ on the **key** (\rightarrow key definition)
 - on the *entire key* (\rightarrow 2NF)
 - \circ and nothing else, except the key (\rightarrow BCNF)
- Each *non-prime* attribute depends
 - \circ on the **key** (\rightarrow key definition)
 - on the *entire key* (\rightarrow 2NF)
 - \circ and nothing else, except the key (\rightarrow 3NF)

Examples in which the normal forms are **not** respected:

- 2NF all the non-prime attributes must depend on the entire key
 - Meeting[StudentName, Course, Professor, Grade]
- 3NF all the non-prime attributes must depend only on the key
 - Consultancy[StudentName, Title, Professor, Department]
- o **BCNF** all the functional dependencies are implied by the candidate key
 - Discussion[Professor, Day, StartHour, EndHour, StudentName]

Decomposition in BCNF

Let R be a relation with the functional dependencies F

 \circ If $\alpha \to \beta$ does not respect BCNF then R can be decomposed in R – β and $\alpha\beta$

Decomposition in BCNF Example:

Let R[\underline{C} , B, A, D, P, F, M] be a relation with key C and $\{AP \rightarrow C; BD \rightarrow P; A \rightarrow B\}$

- For BD→P can be performed the decomposition
 - [<u>B, D, </u>P]
 - o [C, B, A, D, F, M]
- \circ Then, for A \rightarrow B can be performed the decomposition for [C, B, A, D, F, M], obtaining
 - [<u>A</u>, B]
 - [<u>C</u>, A, D, F, M]
- In general, multiple dependencies may cause that BCNF will not be fulfilled
- The order in which it is treat it may arise different relations in the decomposition
- In general, the decomposition in BCNF does not keep the dependencies Example: R[\underline{C} , B, A, D, P, F, M] in [B, D, P], [A, B] and [\underline{C} , B, A, D, F, M] does not keep the initial dependencies $\{AP \rightarrow C; BD \rightarrow P; A \rightarrow B\}$
- On BCNF can appear also redundancy

Example:

- \circ Let $\alpha \to A$ a functional dependency from F that not respect BCNF
- \circ The decomposition of R in $R_1=\alpha A$ and $R_2=R-A$
- \circ If R_1 or R_2 are not in BCNF, the decomposition is going to be continued

[StudentName, SAge, ProfessorName, PEmail, Day, StartHour, EndHour]

[ProfessorName, PEmail, StudentName, Day, StartHour, EndHour]

[StudentName, SAge]

[<u>ProfessorName</u>, PEmail]

[ProfessorName, StudentName, Day, StartHour, EndHour]

StudentName → Age
ProfessorName → PEmail
ProfessorName, Day, StartHour, EndHour → StudentName

Decomposition in 3NF

- The same strategy as for BCNF
- Ocan be kept the dependencies?
 - \circ If $X \to Y$ cannot be kept then XY is added
 - The problem with XY is the fact that not all the time respect 3NF
 - \circ e.g. Let CAP be added to keep $AP \rightarrow C$, but if also $A \rightarrow C$ is fulfilled, then is not correct
- Solution: instead of using the initial set F, can be used a minimal cover of F

Definition:

 \circ An attribute $A \in \alpha$ is redundant in the functional dependency $\alpha \to oldsymbol{eta}$ if

$$(F - \{\alpha \to \beta\}) \cup \{\alpha - \{A \to \beta\}\} \equiv F$$

- To check if $A \in \alpha$ is redundant in $\alpha \to \beta$ calculate $(\alpha A)^+$
- Then $A \in \alpha$ is redundant in $\alpha \to \beta$ if $B \in (\alpha A)^+$

Definition:

- \circ A functional dependency $f \in F$ is redundant if $F \{f\}$ is equivalent with F
 - To check if $\alpha \to A$ is redundant in F calculate α^+ with respect to $F \{\alpha \to A\}$
 - Then $\alpha \to A$ is redundant in F if $A \in \alpha^+$

Minimal cover

Definition:

- A minimal cover for the set F of functional dependencies is a set G of functional dependencies for which
 - \circ 1. Each functional dependency from G has the form $\alpha \rightarrow A$
 - \circ 2. For each functional dependency $\alpha \to A$ from G, α does not have redundant attributes
 - o 3. There are no redundancy functional dependencies in G
 - 4. G and F are equivalent

or

- 1. The right side of every dependency in G has a single attribute
- o 2. The left side of every dependency in G is irreducible (i.e. no attributes can be removed from the determinant of a dependency in G without changing G's closure)
- 3. No dependency f in G is redundant (no dependency can be discarded without changing G's closure)
- 4. F≡G
- Each set of functional dependencies has at least one minimal cover.
- The minimal covers are not unique (depend on the order in which the functional dependencies / redundant attributes are chosen)

Decomposition in 3NF example:

Let R[A, B, C, D, E] with the set of functional dependencies $F=\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$

- The attributes BD from ABCD \rightarrow E are redundant \Rightarrow F={AC \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D}
- AC \rightarrow D is redundant \Rightarrow F={AC \rightarrow E, E \rightarrow D, A \rightarrow B} and this is a minimal cover

Let R[A, B, C, D, E] with the functional dependencies $F=\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$

- The minimal cover: $F=\{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$
- o Key: AC
- \circ R is not in 3NF because A \rightarrow B does not respect 3NF
- Decomposition 3NF of R
 - \circ Relations for each functional dependencies: $R_1(A, C, E)$, $R_2(E, D)$, $R_3(A, B)$
 - \circ Relation for the key of R: $R_4(A, C)$
 - \circ Remove the redundant relation: R_4 ($R_4 \subset R_1$)
 - $\circ \Rightarrow 3NF$ decomposition is $\{R_1(A, C, E), R_2(E, D), R_3(A, B)\}$
- The decomposition in 3NF is not unique. It depends on
 - The minimal cover chosen
 - The redundant relation chosen to be removed
- Decomposition is the last solution of the problems generated by redundances and anomalies

Multi-valued dependencies

Example: Consider the relation R[Specialization, Student, MeetingDate] with the repeating attributes Students and

MeetingDate

Specialization	Student	MeetingDate
Computer	SCS1	MCS1
Science	SCS2	MCS1
	•••	•••
	SCSm	MCSn
Mathematics	SM1	MM1
	SM2	MM2
	•••	•••
	SMp	MMq

The repeating attributes should be eliminatted (obtain 1NF)

- Relation R becomes R'
- Student and MeetingDate become scalar attribute →
- Here, each student has the same meeting date
- When add / change / remove rocords, additional checks should be handle

Specialization	Student	MeetingDate
Computer Science	SCS1	MCS1
Computer Science	SCS1	MCS2
Computer Science	•••	
Computer Science	SCS1	MCSn
Computer Science	SCS2	MCS1
Computer Science		
Computer Science	SCSm	MCSn
Mathematics	SM1	MM1
Mathematics	SM1	MM2
Mathematics	•••	
Mathematics	SM1	MMq
Mathematics	SM2	MM1
Mathematics		
Mathematics	SMp	MMq

Multi-valued dependencies

The functional dependency $\alpha \to \beta$ means that every value x of α is associated with a unique value y from β Definition:

Let R[A] be a relation, with $A = \alpha \cup \beta \cup \gamma$ a set of attributes. The **multi-valued dependency** $\alpha \rightrightarrows \beta$ (should be read α **multi-determines** β) holds over R if each value x of α is associated with a set of values y for β : $\beta(x) = \{y_1, y_2, \dots, y_n\}$ and this association holds regardless of the values of γ

Let R[A] be a relation, $\alpha \rightrightarrows \beta$ a multi-valued dependency, $A = \alpha \cup \beta \cup \gamma$ a set of attributes with γ a non-empty set \circ The association among the values in $\beta(x)$ for β and the value x of α holds regardless of the values of γ (i.e. these associations (between x and an element in $\beta(x)$) exist for any value z in γ) Example: if $\alpha \rightrightarrows \beta$ and there are the rows, there also are the next ones

α	β	γ
<i>X</i> ₁	y ₁	Z_1
<i>X</i> ₂	y ₂	\mathbf{Z}_2

α	β	γ
<i>X</i> ₁	y ₁	Z ₂
<i>X</i> ₂	y ₂	z_1

Property 1: Let R[A] be a relation and $A = \alpha \cup \beta \cup \gamma$ a set of attributes. If $\alpha \rightrightarrows \beta$ then $\alpha \rightrightarrows \gamma$ Example: {Specialization} \rightrightarrows {Student}, {Specialization} \rightrightarrows {MeetingDate}

Multi-valued dependencies

Consider the following relation (it is in BCNF)

Course	Professor	Book
Fundamental Algorithms	Hora	AlgolrithmF I
Fundamental Algorithms	Hora	AlgortihmF II
Fundamental Algorithms	Kyle	AlgolrithmF I
Fundamental Algorithms	Kyle	AlgortihmF II
Databases	Hora	DB I
Databases	Hora	DBMS II
Databases	Hora	DB II

α	β	γ	
a	b ₁	c_{1}	\leftarrow t ₁
а	b_2	c_2	← t ₂
а	b ₁	c_2	\leftarrow t ₃
а	b_2	c_{1}	← t ₄

$$\forall t_1, t_2 \in r \text{ and } \prod_{\alpha}(t_1) = \prod_{\alpha}(t_2) \Rightarrow \exists t_3 \in r \text{ such that}$$

$$\prod_{\alpha\beta}(t_1) = \prod_{\alpha\beta}(t_3) \text{ and}$$

$$\prod_{\gamma}(t_2) = \prod_{\gamma}(t_3)$$

Aditional rules:

- \circ Complementary: $\alpha \rightrightarrows \beta \Rightarrow \alpha \rightrightarrows R-\alpha\beta$
- Augmentation: $\alpha \Rightarrow \beta$, $\gamma \subseteq \delta \Rightarrow \delta \alpha \Rightarrow \beta \gamma$
- \circ Transitivity: $\alpha \rightrightarrows \beta$, $\beta \rightrightarrows \gamma \Rightarrow \alpha \rightrightarrows \gamma \beta$
- \circ Replication: $\alpha \rightarrow \beta \Rightarrow \alpha \Rightarrow \beta$
- o Fusion: $\alpha \rightrightarrows \beta$, $\delta \cap \beta = \emptyset$, $\delta \rightarrow \gamma$, $\gamma \subseteq \beta \Rightarrow \alpha \rightarrow \beta$

Fourth Normal Form (4NF)

Let R a relational schema and F a set of functional dependencies and multi-valued on R

- The relation R is in the *fourth normal form* (*4NF*) if for every multi-valued dependency $\alpha \Rightarrow \beta$ that holds over R, there is
 - $\circ \beta \subseteq \alpha$

or

 $\circ \alpha \cup \beta = R$

or

 $\circ \alpha$ is super-key

Trivial multi-valued dependency $\alpha \rightrightarrows \beta$ in relation R: $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$

- \circ If R[α , β , γ] and $\alpha \rightrightarrows \beta$ non-trivial and α not a super-key then R can be decomposed in
 - $0 R_1[\alpha, \beta] = \prod_{\alpha \cup \beta} (R)$
 - $0 R_2[\alpha, \gamma] = \prod_{\alpha \cup \gamma} (R)$

Example: Relation R[Specialization, Student, MeetingDate] becomes

- R1[Specialization, Student]
- R2[Specialization, MeetingDate]

Fourth Normal Form (4NF)

Example: Consider the following relation

Course	Professor	Book
Fundamental Algorithms	Hora	AlgolrithmF I
Fundamental Algorithms	Hora	AlgortihmF II
Fundamental Algorithms	Kyle	AlgolrithmF I
Fundamental Algorithms	Kyle	AlgortihmF II
Databases	Hora	DB I
Databases	Hora	DBMS II
Databases	Hora	DB II

Course

⇒ Professor

The relation can be decomposed in [Course, Professor] and [Course, Book]

Course	Professor
Fundamental Algorithms	Hora
Fundamental Algorithms	Kyle
Databases	Hora

- A dependency (simple, multi-valued) in a relation can be eliminated via decompositions (the original relation is decomposed into a collection of new relations)
- There are relations without such dependencies that can still contain redundant information, which can be a source of errors in the database

Example: Consider the relation R[Specialization, Course, Schedule] that store the schedules of the courses per specialization; the relation has no functional dependencies and the key is {Specialization, Course, Schedule}

Specialization	Course	Schedule
Mathematics	Analysis	8:00 - 10:00
Mathematics	Geometry	10:00 - 12:00
Computer Science	Analysis	10:00 - 12:00
Mathematics	Analysis	10:00 - 12:00

- there are redundant data
 - Specialization Mathematics has the course Analysis
 - Specialization Mathematics has the schedule 10:00 12:00
 - Schedule 10:00 12:00 is in course Analysis

Specialization	Course	Schedule
Mathematics	<mark>Analysis</mark>	8:00 - 10:00
Mathematics	Geometry	10:00 – 12:00
Computer Science	Analysis	10:00 - 12:00
Mathe matics	<mark>Ana</mark> lysis	10:00 - <mark>12:00</mark>

Specialization	Course	Schedule
Mathematics	Analysis	8:00 - 10:00
Mathematics	Geometry	10:00 - 12:00
Computer Science	Analysis	10:00 - 12:00
Mathematics	Analysis	10:00 - 12:00

- If some values are changed (e.g. *Mathematics* will have the schedule 12:00 14:00 instead of 10:00 12:00, several updates should be performed; rows 2 and 4 will be affected)
- This relation cannot be decomposed into 2 relations, via projection, because new data would be introduced through join; only 3 possible projections on two attributes can be considered

R1	Specialization	Course
	Mathematics	Analysis
	Mathematics	Geometry
	Computer Science	Analysis

R2	Course	Schedule
	Analysis	8:00 – 10:00
	Geometry	10:00 – 12:00
	Analysis	10:00 – 12:00

R3	Specialization	Schedule
	Mathematics	8:00 – 10:00
	Mathematics	10:00 – 12:00
	Computer Science	10:00 – 12:00

R1*R2	Specialization	Course	Schedule
	Mathematics	Analysis	8:00 - 10:00
	Mathematics	Geometry	10:00 - 12:00
	Computer Science	Analysis	8:00 – 10:00
	Mathematics	Analysis	10:00 - 12:00
	Computer Science	Analysis	10:00 - 12:00

- Evaluation R1*R2 contains an extra tuple, which did not exist in the initial relation
- Evaluation R2*R3 and R1*R3 will also have extra records that are not in the initial relation
- There can be found a relation such that the composition R'*R3 to give the initial relation
- So, R cannot be decomposed in 2 projections, but it can be decomposed in 3 projections
 - e.g. R1R2R3=R1*R2*R3, or R1R2R3=*(R1, R2, R3)

Join dependency

Definition:

The relation R satisfies the **join** dependency $*\{R_1, ..., R_n\}$ if $R_1, ..., R_n$ is a lossless - join decomposition of R. or

Let R[A] be a relation and $R_i[\alpha_i]$, i=1,...n the projections of R on α_i . R satisfies the **join** dependency $\{\alpha_1,\alpha_2,...,\alpha_n\}$ if $R=R_1*...*R_n$

A multi-values dependency $\alpha \Rightarrow \beta$ can be expressed through a join dependency $*\{\alpha\beta, \alpha(R-\beta)\}$ \circ The previous example has a join dependency (R1R2R3)

Fifth Normal Form (5NF)

The relation R is in the *fifth normal form* (*5NF*) if and only if for every join dependency of R

○R_i=R for any i

or

 the dependency is involved by a set of functional dependencies from R in which the left side is a key for R

or

The relation R is in the *fifth normal form* (*5NF*) if every non-trivial join dependency is implied by the candidate keys in R

- \circ join dependendy *{ α_1 , α_2 , ..., α_n } on R is trivial if at least one α_i is the set of all attributes of R
- \circ join dependency *{ $\alpha_1, \alpha_2, \dots, \alpha_n$ } on R is implied by the candidate key of R if each α_i is a superkey in R

Example: R1R2R3 is not in 5NF

Decomposition: projections on R1, R2, R3

Normal forms examples (homework) ©

e.g. 1: Consider the relational schema R[Rid, A, B, C, D, E, F, G] with none repeatable attributes. {Rid} is the key and {E, F} is the only candidate key. The set of the functional dependencies is $\{A \rightarrow C, B \rightarrow D, E \rightarrow G\}$

Is R in 1NF? What about 2NF, 3NF and BCNF?

Solution: 1NF: yes

2NF: no, because the non-prime attribute G is not completely functional dependent on the key {E, F}

3NF,: no, because it is not in 2NF

BCNF: no, because it is not in 2NF and also 3NF

e.g. 2: Consider the relational schema R[X, Y, Z, V, W] with none repeatable attributes and none candidate keys. {X} is the key. The set of the functional dependencies is $\{X \rightarrow V, Z \rightarrow X, V \rightarrow W\}$ Is R in 1NF? What about 2NF and 3NF?

Solution: 1NF: yes; 2NF and 3NF: no

Normal forms examples (homework) ©

e.g. 3: Consider the relational schema R[A, B, C, D, E, F] with none repeatable attributes and none candidate keys. {A, B} is the key. The set of the functional dependencies is {C \rightarrow D, DE \rightarrow F}

Is R in 3NF?

Solution: 3NF: no

e.g. 4: Consider the relational schema R[\underline{A} , B, C, D] with none repeatable attributes and none candidate keys. {A, B} is the key. The set of the functional dependencies is {A \rightarrow D, B \rightarrow C, D \rightarrow B} Is R in 3NF / BCNF?

Solution:

○ 1NF: yes

- 2NF: no, because the primary key contains only one attribute and there are no partial dependencies on the key
- \circ 3NF: no. From A \rightarrow D and D \rightarrow B follows that exist transitive dependencies on the key (or, from B \rightarrow C, where D is not super-key and B is a non-prime attribute)
- BCNF: No. It is not in 3NF

References:

- C.J. Date, An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003.
- H. Garcia-Molina, J. Ullman, J. Widom, *Database Systems: The Complete Book, Prentice Hall Press*, 2008.
- G. Hansen, J. Hansen, Database Management And Design (2nd Edition), Prentice Hall, 1996.
- R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw-Hill, 2007. http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- R. Ramakrishnan, J. Gehrke, Database Management Systems (2nd Edition), McGraw-Hill, 2000.
- A. Silberschatz, H. Korth, S. Sudarshan, *Database System Concepts*, McGraw-Hill, 2010. http://codex.cs.yale.edu/avi/db-book/
- L. Țâmbulea, Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014.
- J. Ullman, J. Widom, A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html