Access answers to Maths NCERT Solutions for Class 7 Chapter 4 – Simple Equations Exercise 4.1

1. Complete the last column of the table.

S. No.	Equation	Value	Say, whether the equation is satisfied. (Yes/No)
(i)	x + 3 = 0	x = 3	
(ii)	x + 3 = 0	x = 0	
(iii)	x + 3 = 0	x = -3	
(iv)	x - 7 = 1	x = 7	
(v)	x - 7 = 1	x = 8	
(vi)	5x = 25	x = 0	
(vii)	5x = 25	x = 5	
(viii)	5x = 25	x = -5	
(ix)	(m/3) = 2	m = - 6	
(x)	(m/3) = 2	m = 0	
(xi)	(m/3) = 2	m = 6	

Solution:-

(i)
$$x + 3 = 0$$

$$LHS = x + 3$$

By substituting the value of x = 3

Then,

$$LHS = 3 + 3 = 6$$

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(ii)
$$x + 3 = 0$$

$$LHS = x + 3$$

By substituting the value of x = 0

Then,

$$LHS = 0 + 3 = 3$$

LHS ≠ RHS

∴No, the equation is not satisfied.

(iii)
$$x + 3 = 0$$

$$LHS = x + 3$$

By substituting the value of x = -3

Then,

$$LHS = -3 + 3 = 0$$

By comparing LHS and RHS

∴Yes, the equation is satisfied

(iv)
$$x - 7 = 1$$

$$LHS = x - 7$$

By substituting the value of x = 7

Then,

LHS =
$$7 - 7 = 0$$

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied

$$(v) x - 7 = 1$$

$$LHS = x - 7$$

By substituting the value of x = 8

Then,

$$LHS = 8 - 7 = 1$$

By comparing LHS and RHS

LHS = RHS

∴Yes, the equation is satisfied.

(vi)
$$5x = 25$$

$$LHS = 5x$$

By substituting the value of x = 0

Then,

$$LHS = 5 \times 0 = 0$$

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(vii)
$$5x = 25$$

$$LHS = 5x$$

By substituting the value of x = 5

Then,

LHS =
$$5 \times 5 = 25$$

By comparing LHS and RHS

∴Yes, the equation is satisfied.

(viii)
$$5x = 25$$

$$LHS = 5x$$

By substituting the value of x = -5

Then,

LHS =
$$5 \times (-5) = -25$$

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(ix)
$$m/3 = 2$$

$$LHS = m/3$$

By substituting the value of m = -6

Then,

LHS =
$$-6/3 = -2$$

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

$$(x) m/3 = 2$$

$$LHS = m/3$$

By substituting the value of m = 0

Then,

$$LHS = 0/3 = 0$$

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(xi)
$$m/3 = 2$$

$$LHS = m/3$$

By substituting the value of m = 6

Then,

$$LHS = 6/3 = 2$$

By comparing LHS and RHS

∴Yes, the equation is satisfied.

S. No.	Equation	Value	Say, whether the equation is satisfied. (Yes/No)
(i)	x + 3 = 0	x = 3	No
(ii)	x + 3 = 0	x = 0	No
(iii)	x + 3 = 0	x = -3	Yes
(iv)	x - 7 = 1	x = 7	No
(v)	x - 7 = 1	x = 8	Yes
(vi)	5x = 25	x = 0	No
(vii)	5x = 25	x = 5	Yes
(viii)	5x = 25	x = -5	No
(ix)	(m/3) =	m = -	No

	2	6	
(x)	(m/3) = 2	m = 0	No
(xi)	(m/3) = 2	m = 6	Yes

2. Check whether the value given in the brackets is a solution to the given equation or not:

(a)
$$n + 5 = 19 (n = 1)$$

Solution:-

LHS = n + 5

By substituting the value of n = 1

Then,

LHS = n + 5

= 1 + 5

= 6

By comparing LHS and RHS

6 ≠ 19

LHS ≠ RHS

Hence, the value of n = 1 is not a solution to the given equation n + 5 = 19.

(b)
$$7n + 5 = 19 (n = -2)$$

Solution:-

LHS = 7n + 5

By substituting the value of n = -2

Then,

LHS = 7n + 5

 $= (7 \times (-2)) + 5$

= -14 + 5

= -9

By comparing LHS and RHS

-9 ≠ 19

LHS ≠ RHS

Hence, the value of n = -2 is not a solution to the given equation 7n + 5 = 19.

(c)
$$7n + 5 = 19 (n = 2)$$

Solution:-

LHS = 7n + 5

By substituting the value of n = 2

Then,

LHS = 7n + 5

 $= (7 \times (2)) + 5$

$$= 14 + 5$$

$$= 19$$

$$19 = 19$$

Hence, the value of n = 2 is a solution to the given equation 7n + 5 = 19.

(d)
$$4p - 3 = 13 (p = 1)$$

Solution:-

$$LHS = 4p - 3$$

By substituting the value of p = 1

Then,

$$LHS = 4p - 3$$

$$= (4 \times 1) - 3$$

$$= 4 - 3$$

By comparing LHS and RHS

1 ≠ 13

LHS ≠ RHS

Hence, the value of p = 1 is not a solution to the given equation 4p - 3 = 13.

(e)
$$4p - 3 = 13$$
 (p = -4)

Solution:-

$$LHS = 4p - 3$$

By substituting the value of p = -4

Then,

$$LHS = 4p - 3$$

$$= (4 \times (-4)) - 3$$

$$= -16 - 3$$

By comparing LHS and RHS

 $-19 \neq 13$

Hence, the value of p = -4 is not a solution to the given equation 4p - 3 = 13.

(f)
$$4p - 3 = 13$$
 (p = 0)

Solution:-

$$LHS = 4p - 3$$

By substituting the value of p = 0

Then,

$$LHS = 4p - 3$$

$$= (4 \times 0) - 3$$

$$= 0 - 3$$

$$= -3$$

$$-3 \neq 13$$

LHS ≠ RHS

Hence, the value of p = 0 is not a solution to the given equation 4p - 3 = 13.

3. Solve the following equations by trial and error method:

(i)
$$5p + 2 = 17$$

Solution:-

$$LHS = 5p + 2$$

By substituting the value of p = 0

Then,

$$LHS = 5p + 2$$

$$= (5 \times 0) + 2$$

$$= 0 + 2$$

By comparing LHS and RHS

LHS ≠ RHS

Hence, the value of p = 0 is not a solution to the given equation.

Let,
$$p = 1$$

$$LHS = 5p + 2$$

$$= (5 \times 1) + 2$$

$$= 5 + 2$$

By comparing LHS and RHS

7 ≠ 17

LHS ≠ RHS

Hence, the value of p = 1 is not a solution to the given equation.

Let,
$$p = 2$$

$$LHS = 5p + 2$$

$$= (5 \times 2) + 2$$

$$= 10 + 2$$

By comparing LHS and RHS

 $12 \neq 17$

LHS ≠ RHS

Hence, the value of p = 2 is not a solution to the given equation.

Let,
$$p = 3$$

$$LHS = 5p + 2$$

$$= (5 \times 3) + 2$$

$$= 15 + 2$$

$$17 = 17$$

Hence, the value of p = 3 is a solution to the given equation.

(ii)
$$3m - 14 = 4$$

Solution:-

$$LHS = 3m - 14$$

By substituting the value of m = 3

Then,

$$LHS = 3m - 14$$

$$= (3 \times 3) - 14$$

$$= 9 - 14$$

$$= -5$$

By comparing LHS and RHS

-5 ≠ 4

LHS ≠ RHS

Hence, the value of m = 3 is not a solution to the given equation.

Let,
$$m = 4$$

$$LHS = 3m - 14$$

$$= (3 \times 4) - 14$$

$$= 12 - 14$$

$$= -2$$

By comparing LHS and RHS

-2 ≠ 4

LHS ≠ RHS

Hence, the value of m = 4 is not a solution to the given equation.

Let, m = 5

$$LHS = 3m - 14$$

$$= (3 \times 5) - 14$$

$$= 15 - 14$$

= 1

By comparing LHS and RHS

1 ≠ 4

LHS ≠ RHS

Hence, the value of m = 5 is not a solution to the given equation.

Let,
$$m = 6$$

$$LHS = 3m - 14$$

$$= (3 \times 6) - 14$$

$$= 18 - 14$$

= 4

By comparing LHS and RHS

$$4 = 4$$

Hence, the value of m = 6 is a solution to the given equation.

4. Write equations for the following statements:

(i) The sum of numbers x and 4 is 9.

Solution:-

The above statement can be written in the equation form as,

$$= x + 4 = 9$$

(ii) 2 subtracted from y is 8.

Solution:-

The above statement can be written in the equation form as,

$$= y - 2 = 8$$

(iii) Ten times a is 70.

Solution:-

The above statement can be written in the equation form as,

$$= 10a = 70$$

(iv) The number b divided by 5 gives 6.

Solution:-

The above statement can be written in the equation form as,

$$= (b/5) = 6$$

(v) Three-fourth of t is 15.

Solution:-

The above statement can be written in the equation form as,

$$= \frac{3}{4}t = 15$$

(vi) Seven times m plus 7 gets you 77.

Solution:-

The above statement can be written in the equation form as,

Seven times m is 7m

$$=7m + 7 = 77$$

(vii) One-fourth of a number x minus 4 gives 4.

Solution:-

The above statement can be written in the equation form as,

One-fourth of a number x is x/4

$$= x/4 - 4 = 4$$

(viii) If you take away 6 from 6 times y, you get 60.

Solution:-

The above statement can be written in the equation form as,

6 times of y is 6y

$$= 6y - 6 = 60$$

(ix) If you add 3 to one-third of z, you get 30.

Solution:-

The above statement can be written in the equation form as,

One-third of z is z/3

$$= 3 + z/3 = 30$$

5. Write the following equations in statement forms:

(i)
$$p + 4 = 15$$

Solution:-

The sum of numbers p and 4 is 15.

(ii) m - 7 = 3

Solution:-

7 subtracted from m is 3.

(iii) 2m = 7

Solution:-

Twice of number m is 7.

(iv) m/5 = 3

Solution:-

The number m divided by 5 gives 3.

(v) (3m)/5 = 6

Solution:-

Three-fifth of m is 6.

(vi) 3p + 4 = 25

Solution:-

Three times p plus 4 gives you 25.

(vii) 4p - 2 = 18

Solution:-

Four times p minus 2 gives you 18.

(viii) p/2 + 2 = 8

Solution-

If you add half of a number p to 2, you get 8.

6. Set up an equation in the following cases:

(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. (Take m to be the number of Parmit's marbles.)

Solution:-

From the question it is given that,

Number of Parmit's marbles = m

Then.

Irfan has 7 marbles more than five times the marbles Parmit has

- = 5 × Number of Parmit's marbles + 7 = Total number of marbles Irfan having
- $= (5 \times m) + 7 = 37$
- = 5m + 7 = 37
- (ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age. (Take Laxmi's age to be y years.)

Solution:-

From the question it is given that,

Let Laxmi's age to be = y years old

Then,

Lakshmi's father is 4 years older than three times of her age

- = 3 × Laxmi's age + 4 = Age of Lakshmi's father
- $= (3 \times y) + 4 = 49$
- = 3y + 4 = 49
- (iii) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is 87. (Take the lowest score to be I.)

Solution:-

From the question it is given that,

Highest score in the class = 87

Let lowest score be I

- $= 2 \times \text{Lowest score} + 7 = \text{Highest score in the class}$
- $= (2 \times I) + 7 = 87$
- = 21 + 7 = 87
- (iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180 degrees).

Solution:-

From the question it is given that,

We know that, the sum of angles of a triangle is 180°

Let base angle be b

Then,

Vertex angle = $2 \times \text{base angle} = 2\text{b}$

$$= b + b + 2b = 180^{\circ}$$

$$= 4b = 180^{\circ}$$