CSC 3210 Computer Organization and Programming

CHAPTER 7: INTEGER ARITHMETIC

Outline

- Shift and Rotate Instructions
- Multiplication and Division Instructions
- Extended Addition and Subtraction
- ASCII and Unpacked Decimal Arithmetic
- Packed Decimal Arithmetic

- Bit shifting means to move bits right and left inside an operand
- x86 processors provide a particularly set of instructions
- These instructions affect the Overflow and Carry flags

Table 7-1 Shift and Rotate Instructions.

SHL	Shift left
SHR	Shift right
SAL	Shift arithmetic left
SAR	Shift arithmetic right
ROL	Rotate left
ROR	Rotate right
RCL	Rotate carry left
RCR	Rotate carry right
SHLD	Double-precision shift left
SHRD	Double-precision shift right

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

Logical Shift

- There are two ways to shift an operand's bits
 - The first: logical shift, fills the newly created bit position with zero
- Example:
 - A byte is logically shifted one position to <u>the right</u>
 - Each bit is moved to the next lowest bit position
 - Note that bit 7 is assigned 0:

The **lowest bit** is shifted into the **Carry flag**

Arithmetic Shift

- The Second: arithmetic shift, the newly created bit position is filled with a copy of the original <u>number's sign bit</u>
- Example:
- o Binary **11001111** has a 1 in the sign bit
- When shifted arithmetically 1 bit to the right, it becomes **11100111**:

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

- The **SHL** (shift left) instruction
 - Performs a logical left shift on the destination operand, filling the lowest bit with 0.

Same for all shift and rotate instructions: SHR, SAL, SAR, ROR, ROL, RCR, and RCL

- **CL** register can contain a shift count.

M

Logica) Left Shift (SHL)

AL
$$00000101 = 5$$

CFD $00001010 = 10$

SHL AL, 1

CFD $0001010 = 20$

SHL AL, 1
 $5*2*2*2*2*2*2$
 $5*2*2*2$
 $5*2*2*2$

$$\begin{array}{ccc} 1 & 0 & 0 & = 9 \\ 1 & 0 & = 2 \end{array}$$

- The SHL (shift left) instruction
 - Example:
 - o **BL** is shifted once to the left.
 - The highest bit is copied into the Carry flag and the lowest bit position is assigned zero:

```
SHL reg, imm8
SHL mem, imm8
SHL reg, CL
SHL mem, CL
```

- When a value is shifted leftward multiple times,
 - The Carry flag contains the last bit to be shifted out of the most significant bit (MSB)
- Example:
 - o **bit 7** does not end up in the **Carry flag** because it is <u>replaced by bit 6</u> (a zero):

```
mov al,10000000b
shl al,2 ; CF = 0, AL = 00000000b
```

- Similarly, when a value is shifted rightward multiple times,
 - The Carry flag contains the last bit to be shifted out of the least significant bit (LSB)

- Fast Multiplication
 - Shifting left 1 bit multiplies a number by 2

- O Shifting left n bits multiplies the operand by 2^n
 - For example, $5 * 2^2 = 20$

mov dl,5
$$shl dl,2$$
 ; $DL = 20$

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

- The SHR (shift right) instruction performs a logical right shift on the destination operand
- The highest bit position is **filled with a zero**.

- Example,
 - The 0 from the lowest bit in AL is copied into the Carry flag,
 - And the highest bit in AL is filled with a zero:

```
mov al,0D0h ; AL = 11010000b 
 Shr al,1 ; AL = 01101000b, CF = 0
```

- In a <u>multiple shift</u> operation,
 - o the last bit to be shifted out of position 0 (the LSB) ends up in the Carry flag:

```
mov al,00000010b
shr al,2 ; AL = 00000000b, CF = 1
```

Fast Division

• Shifting right n bits divides the operand by 2^n

```
mov dl,80 

shr dl,1 ; DL = 40 ???? 

shr dl,2 ; DL = 10 ????
```

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

- SAL (shift arithmetic left) is identical to SHL
 - The lowest bit is assigned 0
 - The highest bit is moved to the Carry flag,
 - And the bit that was in the Carry flag is discarded:

- If you shift binary 11001111 to the left by one bit,
 - o it becomes 10011110:

SAR Instruction

- SAR is identical to SHR
- SAR (shift arithmetic right) performs a right arithmetic shift on the destination operand

- The following example shows how SAR <u>duplicates the sign bit</u>.
 - o AL is negative before and after it is shifted to the right:

```
mov al,0F0h ; AL = 11110000b (-16?)
sar al,1 ; AL = 11111000b (-8?) CF = 0
```


SAR Instruction

• SAR is identical to SHR

```
mov dl,-80
sar dl,1 ; DL = -40 CF=?
sar dl,2 ; DL = -10 CF=?
```

Application

Indicate the hexadecimal value of AL after each shift:

```
mov al,6Bh
shr al,1
a. 35h
shl al,3
b. A8h
mov al,8Ch
sar al,1
c. C6h
sar al,3
d. F8h
```

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

- ROL (rotate) shifts each bit to the left
- The <u>highest</u> bit is <u>copied into both</u> the <u>Carry flag</u> and into the <u>lowest</u> bit
- No bits are lost

Example1:

```
mov al,11110000b
rol al,1 ; AL = 11100001b, CF = ?
```


• ROL (rotate) shifts each bit to the left

Example2:

```
mov al,40h ; AL = 01000000b

rol al,1 ; AL = 10000000b, CF = 0

rol al,1 ; AL = 00000001b, CF = 1

rol al,1 ; AL =00000010b, CF = 0
```

- Multiple Rotations
 - When using a rotation count greater than 1,
 - Carry flag contains the last bit rotated out of the MSB position:

```
mov al,00100000b
rol al,3 ; CF = 1, AL = 00000001b
```

- Exchanging Groups of Bits (Application)
 - You can use ROL to exchange the upper (bits 4–7) and lower (bits 0–3) halves of a byte

```
mov al,26h rol al,4 ; AL = 62h
```

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

- ROR (rotate right) shifts each bit to the right
- The lowest bit is copied into both the Carry flag and into the highest bit
- No bits are lost

Example1:

```
mov al,01h ; AL = 00000001b

ror al,1 ; AL = 10000000b, CF = 1

ror al,1 ; AL = 01000000b, CF = 0
```

• ROR (rotate right) shifts each bit to the right

Example2:

```
mov dl,3Fh
ror dl,4 ; DL = F3h
```

- Multiple Rotations
 - When using a rotation count greater than 1,
 - Carry flag contains the last bit rotated out of the LSB position:

```
mov al,00000100b
ror al,3 ; AL = 10000000b, CF = 1
```

Application

Indicate the hexadecimal value of AL after each rotation:

```
mov al,6Bh
ror al,1
rol al,3
```

- a. **B5h**
- b. ADh

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions

RCR Instruction

- RCR (rotate carry right) shifts each bit to the right
 - Copies the Carry flag to the most significant bit
 - Copies the least significant bit to the Carry flag


```
stc ; CF = 1 , STC to set the Carry flag mov ah,10h ; CF = 1 , AH = 00010000b rcr ah,1 ; CF = 0 , AH = 10001000b
```

RCL = Rotation with carry Laft

AL 10101000 CF

(3) Update carry flag with out going

Application

Indicate the hexadecimal value of AL after each rotation:

```
stc
mov al,6Bh
rcr al,1 a. B5h
rcl al,3 b. AEh
```

- Logical vs Arithmetic Shifts
- SHL Instruction
- SHR Instruction
- SAL and SAR Instructions
- ROL Instruction
- ROR Instruction
- RCL and RCR Instructions
- SHLD/SHRD Instructions: See the book

Table 7-1 Shift and Rotate Instructions.

SHL	Shift left
SHR	Shift right
SAL	Shift arithmetic left
SAR	Shift arithmetic right
ROL	Rotate left
ROR	Rotate right
RCL	Rotate carry left
RCR	Rotate carry right
SHLD	Double-precision shift left
SHRD	Double-precision shift right
	SHR SAL SAR ROL ROR RCL RCR SHLD