Past Roots of Polynomials Questions (2012-2023)

WANG Likang, Ivan

Revised: May 2025

$\mathbf{Q}\mathbf{1}$

The equation $x^4 - 2x^3 - 1 = 0$ has roots $\alpha, \beta, \gamma, \delta$.

- (a) Find a quartic equation whose roots are $\alpha^3, \beta^3, \gamma^3, \delta^3$ and state the value of $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$. [4]
- (b) Find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3}$. [3]
- (c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$. [2]

$\mathbf{Q2}$

The cubic equation $2x^3 - 4x^2 + 3 = 0$ has roots α, β, γ . Let $S_n = \alpha^n + \beta^n + \gamma^n$.

- (a) State the value of S_1 and find the value of S_2 . [3]
- (b) (i) Express S_{n+3} in terms of S_{n+2} and S_n . [1]
 - (ii) Hence, or otherwise, find the value of S_4 . [2]
- (c) Use the substitution $y = S_1 x$, where S_1 is the numerical value found in part (a), to find and simplify an equation whose roots are $\alpha + \beta, \beta + \gamma, \gamma + \alpha$. [3]
- (d) Find the value of $\frac{1}{\alpha+\beta} + \frac{1}{\beta+\gamma} + \frac{1}{\gamma+\alpha}$. [2]

Q3

It is given that

$$\alpha + \beta + \gamma = 3$$
, $\alpha^2 + \beta^2 + \gamma^2 = 5$, $\alpha^3 + \beta^3 + \gamma^3 = 6$.

[6]

[6]

The cubic equation $x^3 + bx^2 + cx + d = 0$ has roots α, β, γ .

Find the values of b, c and d.

$\mathbf{Q4}$

The cubic equation $x^3 + 2x^2 + 3x + 3 = 0$ has roots α, β, γ .

- (a) Find the value of $\alpha^2 + \beta^2 + \gamma^2$. [2]
- (b) Show that $\alpha^3 + \beta^3 + \gamma^3 = 1$. [2]
- (c) Use standard results from the list of formulae (MF19) to show that

$$\sum_{r=1}^{n} ((\alpha + r)^3 + (\beta + r)^3 + (\gamma + r)^3) = n + \frac{1}{4}n(n+1)(an^2 + bn + c),$$

where a, b and c are constants to be determined.

Q_5

The cubic equation $x^3 + cx + 1 = 0$, where c is a constant, has roots α , β , γ .

- (a) Find a cubic equation whose roots are α^3 , β^3 , γ^3 .
- (b) Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 2c^3$. [3]
- (c) Find the real value of c for which the matrix

$$\begin{pmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{pmatrix}$$

[5]

is singular.

Q6

The cubic equation $x^3 + bx^2 + cx + d = 0$, where b, c and d are constants, has roots α, β, γ . It is given that $\alpha\beta\gamma = -1$.

- (a) State the value of d.
- (b) Find a cubic equation, with coefficients in terms of b and c, whose roots are $\alpha + 1, \beta + 1, \gamma + 1$. [3]
- (c) Given also that $\gamma + 1 = -\alpha 1$, deduce that (c 2b + 3)(b 3) = b c. [4]

Q7

The cubic equation $\alpha^3 + px^2 - 3x - 5 = 0$, where p is a constant, has roots α, β, γ .

- (a) Find a cubic equation whose roots are $\alpha^2, \beta^2, \gamma^2$. [3]
- (b) It is given that $\alpha^2 + \beta^2 + \gamma^2 = 2(\alpha + \beta + \gamma)$.
 - (i) Find the value of p. [3]
 - (ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$. [2]

$\mathbf{Q8}$

The cubic equation $7x^3 + 3x^2 + 5x + 1 = 0$ has roots α, β, γ .

- (a) Find a cubic equation whose roots are $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$. [3]
- (b) Find the value of $\alpha^{-2} + \beta^{-2} + \gamma^{-2}$. [2]
- (c) Find the value of $\alpha^{-3} + \beta^{-3} + \gamma^{-3}$. [2]

$\mathbf{Q}9$

The equation $x^3 + 2x^2 + x + 7 = 0$ has roots α, β, γ .

(i) Use the relation $x^2 = -7y$ to show that the equation

$$49u^3 + 14u^2 - 27u + 7 = 0$$

has roots $\frac{\alpha}{\beta\gamma}$, $\frac{\beta}{\gamma\alpha}$, $\frac{\gamma}{\alpha\beta}$. [4]

(ii) Show that

$$\frac{\alpha^2}{\beta^2\gamma^2} + \frac{\beta^2}{\gamma^2\alpha^2} + \frac{\gamma^2}{\alpha^2\beta^2} = \frac{58}{49}.$$

[3]

(iii) Find the exact value of

$$\frac{\alpha^3}{\beta^3\gamma^3} + \frac{\beta^3}{\gamma^3\alpha^3} + \frac{\gamma^3}{\alpha^3\beta^3}.$$

[2]

Q10

The equation

$$x^3 - x + 1 = 0$$

has roots α, β, γ .

(i) Use the relation $x = y^{\frac{1}{3}}$ to show that the equation

$$y^3 + 3y^2 + 2y + 1 = 0$$

has roots $\alpha^3, \beta^3, \gamma^3$. Hence write down the value of $\alpha^3 + \beta^3 + \gamma^3$. [3] Let $S_n = \alpha^n + \beta^n + \gamma^n$.

- (ii) Find the value of S_{-3} . [2]
- (iii) Show that $S_6 = 5$ and find the value of S_9 . [4]

Q11

A cubic equation $x^3 + bx^2 + cx + d = 0$ has real roots α , β and γ such that

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -\frac{5}{12},$$
$$\alpha\beta\gamma = -12,$$
$$\alpha^3 + \beta^3 + \gamma^3 = 90.$$

- (i) Find the values of c and d.
- (ii) Express $\alpha^2 + \beta^2 + \gamma^2$ in terms of b. [2]
- (iii) Show that $b^3 15b + 126 = 0$. [4]
- (iv) Given that $3 + i\sqrt{(12)}$ is a root of $y^3 15y + 126 = 0$, deduce the value of b. [2]

Q12

It is given that the equation

$$x^3 - 21x^2 + kx - 216 = 0.$$

where k is a constant, has real roots α , ar and ar^{-1} .

- (i) Find the numerical values of the roots. [6]
- (ii) Deduce the value of k. [2]

The equation

$$9x^3 - 9x^2 + x - 2 = 0$$

has roots α , β , γ .

(i) Use the substitution y = 3x - 1 to show that $3\alpha - 1$, $3\beta - 1$, $3\gamma - 1$ are the roots of the equation

$$y^3 - 2y - 7 = 0.$$

[2]

The sum $(3\alpha - 1)^n + (3\beta - 1)^n + (3\gamma - 1)^n$ is denoted by S_n .

- (ii) Find the value of S_3 . [2]
- (iii) Find the value of S_{-2} . [4]

Q14

The roots of the equation $x^3 + px^2 + qx + r = 0$ are $\alpha, 2\alpha, 4\alpha$, where p, q, r and α are non-zero real constants.

(i) Show that
$$2p\alpha + q = 0$$
. [4]

(ii) Show that
$$p^3r - q^3 = 0$$
. [2]

Q15

The roots of the cubic equation

$$x^3 - 5x^2 + 13x - 4 = 0$$

are α, β, γ .

(i) Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
. [3]

(ii) Find the value of
$$\alpha^3 + \beta^3 + \gamma^3$$
. [2]

Q16

By finding a cubic equation whose roots are α , β and γ , solve the set of simultaneous equations

$$\begin{aligned} \alpha+\beta+\gamma&=-1,\\ \alpha^2+\beta^2+\gamma^2&=29,\\ \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}&=-1. \end{aligned}$$

[8]

Q17

The roots of the cubic equation $x^3 + 2x^2 - 3 = 0$ are α, β and γ .

- (i) By using the substitution $y = \frac{1}{x^2}$, find the cubic equation with roots $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\gamma^2}$. [3]
- (ii) Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$. [1]
- (iii) Find also the value of $\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2}$. [1]

The cubic equation $2x^3 - 3x^2 + 4x - 10 = 0$ has roots α , β and γ .

(i) Find the value of
$$(\alpha + 1)(\beta + 1)(\gamma + 1)$$
. [4]

(ii) Find the value of
$$(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$$
. [4]

Q19

The roots of the cubic equation $2x^3 + x^2 - 7 = 0$ are α, β and γ . Using the substitution $y = 1 + \frac{1}{x}$, or otherwise, find the cubic equation whose roots are $1 + \frac{1}{\alpha}$, $1 + \frac{1}{\beta}$ and $1 + \frac{1}{\gamma}$, giving your answer in the form $ay^3 + by^2 + cy + d = 0$, where a, b, c and d are constants to be found.

Q20

The cubic equation

$$z^3 - z^2 - z - 5 = 0$$

has roots α , β and γ . Show that the value of $\alpha^3 + \beta^3 + \gamma^3$ is 19.

Find the value of $\alpha^4 + \beta^4 + \gamma^4$. [2] Show that the cubic equation with roots $\frac{\alpha-1}{\alpha}$, $\frac{\beta-1}{\beta}$ and $\frac{\gamma-1}{\gamma}$ may be found using the substitution $z=\frac{1}{1-x}$, and find this equation, giving your answer in the form $px^3 + qx^2 + rx + s = 0$, where p, q, r and s are constants to be determined

Q21

Find the cubic equation with roots α , β and γ such that

$$\alpha + \beta + \gamma = 3,$$

$$\alpha^2 + \beta^2 + \gamma^2 = 1,$$

$$\alpha^3 + \beta^3 + \gamma^3 = -30,$$

giving your answer in the form $x^3 + px^2 + qx + r = 0$, where p, q and r are integers to be found. [6]

$\mathbf{Q22}$

The roots of the cubic equation $x^3 - 7x^2 + 2x - 3 = 0$ are α , β and γ . Find the values of

(i)
$$\frac{1}{(\alpha\beta)(\beta\gamma)(\gamma\alpha)}$$

(ii)
$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$$

(iii)
$$\frac{1}{\alpha^2 \beta \gamma} + \frac{1}{\alpha \beta^2 \gamma} + \frac{1}{\alpha \beta \gamma^2}$$

[6]

Deduce a cubic equation, with integer coefficients, having roots $\frac{1}{\alpha\beta}$, $\frac{1}{\beta\gamma}$, and $\frac{1}{\gamma\alpha}$. [2]

The quartic equation $x^4 - px^2 + qx - r = 0$, where p, q and r are real constants, has two pairs of equal roots. Show that $p^2 + 4r = 0$ and state the value of q.

$\mathbf{Q24}$

The cubic equation $x^3 + px^2 + qx + r = 0$, where p, q and r are integers, has roots α, β and γ , such that

$$\alpha + \beta + \gamma = 15,$$

$$\alpha^2 + \beta^2 + \gamma^2 = 83.$$

Write down the value of p and find the value of q.

Given that α, β and γ are all real and that $\alpha\beta + \alpha\gamma = 36$, find α and hence find the value of r. [5]

Q25

The equation $x^3 + px + q = 0$, where p and q are constants, with $q \neq 0$, has one root which is the reciprocal of another root. Prove that $p + q^2 = 1$.

Q26

The roots of the quartic equation $x^4 + 4x^3 + 2x^2 - 4x + 1 = 0$ are α, β, γ and δ . Find the values of

(i)
$$\alpha + \beta + \gamma + \delta$$
,

(ii)
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2$$
, [2]

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$$
, [2]

(iv)
$$\frac{\alpha}{\beta\gamma\delta} + \frac{\beta}{\alpha\gamma\delta} + \frac{\gamma}{\alpha\beta\delta} + \frac{\delta}{\alpha\beta\gamma}$$
. [2]

Using the substitution y = x + 1, find a quartic equation in y. Solve this quartic equation and hence find the roots of the equation $x^4 + 4x^3 + 2x^2 - 4x + 1 = 0$. [7]

Q27

The cubic equation $x^3 - 2x^2 - 3x + 4 = 0$ has roots α , β , γ .

Given that $c = \alpha + \beta + \gamma$, state the value of c.

Use the substitution y = c - x to find a cubic equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$. [3]

Find a cubic equation whose roots are
$$\frac{1}{\alpha + \beta}$$
, $\frac{1}{\beta + \gamma}$, $\frac{1}{\gamma + \alpha}$. [2]

Hence evaluate
$$\frac{1}{(\alpha+\beta)^2} + \frac{1}{(\beta+\gamma)^2} + \frac{1}{(\gamma+\alpha)^2}$$
. [2]

Q28

The roots of the equation $x^4 - 4x^2 + 3x - 2 = 0$ are α, β, γ and δ ; the sum $\alpha'' + \beta'' + \gamma'' + \delta''$ is denoted by S_n . By using the relation $y = x^2$, or otherwise, show that $\alpha^2, \beta^2, \gamma^2$ and δ^2 are the roots of the equation

$$y^4 - 8y^3 + 12y^2 + 7y + 4 = 0.$$

[3]

[1]

State the value of S_2 and hence show that

$$S_8 = 8S_6 - 12S_4 - 72.$$

[3]

Q29

The cubic equation $x^3 - px - q = 0$, where p and q are constants, has roots α , β , γ . Show that

(i)
$$\alpha^2 + \beta^2 + \gamma^2 = 2p$$
, [1]

(ii)
$$\alpha^3 + \beta^3 + \gamma^3 = 3q$$
, [2]

(iii)
$$6(\alpha^5 + \beta^5 + \gamma^5) = 5(\alpha^3 + \beta^3 + \gamma^3)(\alpha^2 + \beta^2 + \gamma^2).$$
 [3]

Q30

The equation

$$8x^3 + 36x^2 + kx - 21 = 0,$$

where k is a constant, has roots a - d, a, a + d. Find the numerical values of the roots and determine the value of k.

Q31

The roots of the cubic equation $x^3 - 7x^2 + 2x - 3 = 0$ are α, β, γ . Find the values of

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
, [2]

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$
. [3]

Q32

The roots of the equation $x^4 - 3x^2 + 5x - 2 = 0$ are $\alpha, \beta, \gamma, \delta$, and $\alpha^n + \beta^n + \gamma^n + \delta^n$ is denoted by S_n . Show that

$$S_{n+4} - 3S_{n+2} + 5S_{n+1} - 2S_n = 0.$$

[2]

Find the values of

(i) S_2 and S_4 .

(ii)
$$S_3$$
 and S_5 .

Hence find the value of

$$\alpha^2(\beta^3+\gamma^3+\delta^3)+\beta^2(\gamma^3+\delta^3+\alpha^3)+\gamma^2(\delta^3+\alpha^3+\beta^3)+\delta^2(\alpha^3+\beta^3+\gamma^3).$$

[3]

A cubic equation has roots α, β and γ such that

$$\alpha + \beta + \gamma = 4,$$

$$\alpha^2 + \beta^2 + \gamma^2 = 14,$$

$$\alpha^3 + \beta^3 + \gamma^3 = 34.$$

Find the value of $\alpha\beta + \beta\gamma + \gamma\alpha$. Show that the cubic equation is [2]

$$x^3 - 4x^2 + x + 6 = 0,$$

and solve this equation.

[6]

Q34

The cubic equation $x^3 - x^2 - 3x - 10 = 0$ has roots α, β, γ .

- (i) Let $u=-\alpha+\beta+\gamma$. Show that $u+2\alpha=1$, and hence find a cubic equation having roots $-\alpha+\beta+\gamma$, $\alpha-\beta+\gamma, \alpha+\beta-\gamma$.
- (ii) State the value of $\alpha\beta\gamma$ and hence find a cubic equation having roots $\frac{1}{\beta\gamma}, \frac{1}{\gamma\alpha}, \frac{1}{\alpha\beta}$. [5]

Q35

The cubic equation $2x^3 + 5x^2 - 6 = 0$ has roots α, β, γ .

- (a) Find a cubic equation whose roots are $\frac{1}{\alpha^3}$, $\frac{1}{\beta^3}$, $\frac{1}{\gamma^3}$. [3]
- (b) Find the value of $\frac{1}{\alpha^6} + \frac{1}{\beta^6} + \frac{1}{\gamma^6}$. [3]
- (c) Find also the value of $\frac{1}{\alpha^9} + \frac{1}{\beta^9} + \frac{1}{\gamma^9}$. [2]

Q36

The equation $x^4 + 3x^2 + 2x + 6 = 0$ has roots $\alpha, \beta, \gamma, \delta$.

- (a) Find a quartic equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$, $\frac{1}{\delta^2}$ and state the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$. [4]
- (b) Find the value of $\beta^2 \gamma^2 \delta^2 + \alpha^2 \gamma^2 \delta^2 + \alpha^2 \beta^2 \delta^2 + \alpha^2 \beta^2 \gamma^2$. [2]
- (c) Find the value of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$. [2]

Q37

The cubic equation $x^3 + bx^2 + d = 0$ has roots α, β, γ , where $\alpha = \beta$ and $d \neq 0$.

- (a) Show that $4b^3 + 27d = 0$. [5]
- (b) Given that $2\alpha^2 + \gamma^2 = 3b$, find the values of b and d. [3]

The cubic equation $x^3 + 4x^2 + 6x + 1 = 0$ has roots α, β, γ .

- (a) Find the value of $\alpha^2 + \beta^2 + \gamma^2$. [2]
- (b) Use standard results from the list of formulae (MF19) to show that

$$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + b),$$

[6]

where a and b are constants to be determined.

Q39

The cubic equation $27x^3 + 18x^2 + 6x - 1 = 0$ has roots α, β, γ .

(a) Show that a cubic equation with roots $3\alpha + 1, 3\beta + 1, 3\gamma + 1$ is

$$y^3 - y^2 + y - 2 = 0.$$

[3]

The sum $(3\alpha + 1)^n + (3\beta + 1)^n + (3\gamma + 1)^n$ is denoted by S_n .

- (b) Find the values of S_2 and S_3 . [4]
- (c) Find the values of S_{-1} and S_{-2} . [3]

Q40

The quartic equation $x^4 + bx^3 + cx^2 + dx - 2 = 0$ has roots $\alpha, \beta, \gamma, \delta$. It is given that

$$\alpha + \beta + \gamma + \delta = 3$$
, $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 5$, $\alpha^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1} = 6$.

- (a) Find the values of b, c and d. [6]
- (b) Given also that $\alpha^3 + \beta^3 + \gamma^3 + \delta^3 = -27$, find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$. [2]