1. (3 punts) Sigui $\{a_n\}$ la successió tal que:

$$a_1 = 256$$
 i $a_{n+1} = \sqrt{a_n}$ per a tot $n > 1$.

- a) Proveu que $1 \le a_n \le 256$, per a tot $n \ge 1$.
- b) Proveu que $\{a_n\}$ és decreixent.
- c) Proveu que $\{a_n\}$ és convergent i calculeu el seu límit.
- **2.** (3 punts) Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció que pren els valors:

$$f(0) = 1.1, f(0.1) = 1.2, f(0.2) = 1.3, f(0.3) = 1.4, f(0.4) = 1.5, f(0.5) = 1.4,$$

f(0.6) = 1.3, f(0.7) = 1.4, f(0.8) = 1.5, f(0.9) = 1.6, f(1) = 1.7, i tal que totes les derivades de f són fitades per 180 en l'interval [0, 1].

Es pot calcular $I = \int_0^1 f(x) dx$ amb un error menor que 10^{-3} fent ús de la Fórmula de Simpson? En cas afirmatiu, calculeu una aproximació de la integral I amb un error menor que 10^{-3} .

3. (4 punts) Considereu la funció $f: \mathbb{R}^2 \to \mathbb{R}$ definida per:

$$f(x,y) = (x^2 + 2y^2) \cdot e^{1-x^2 - y^2}$$

- a) Calculeu la derivada direccional de f en el punt P=(1,1) en la direcció del vector $\overrightarrow{v}=(4,3)$.
- b) Quina és la direcció en la qual la derivada direccional de f en el punt (1,1) és màxima? Calculeu el valor de la derivada direccional màxima de f en el punt (1,1).
- c) Dibuixeu el conjunt $D=\{(x,y)\in\mathbb{R}^2|\ y\leq 1,\ y\geq x,\ y\geq -x\}$ i justifiqueu que és compacte.
- d) Justifiqueu l'existència d'extrems absoluts de f en D y trobeu-los.

CAL JUSTIFICAR TOTES LES RESPOSTES.

1. (3 punts) Sigui $\{a_n\}$ una successió tal que:

$$a_1 = 256$$
 i $a_{n+1} = \sqrt{a_n}$ per a tot $n > 1$.

- a) Proveu que $1 \le a_n \le 256$, per a tot $n \ge 1$.
- b) Proveu que $\{a_n\}$ és decreixent.
- c) Proveu que $\{a_n\}$ és convergent i calculeu el seu límit.

SOLUCIÓ:

- a) Demostrem per inducció sobre n que $1 \le a_n \le 256 \ \forall n \ge 1$:
 - (i) És cert per a n = 1: $1 \le a_1 \le 256$, ja que $a_1 = 256$.
 - (ii) Suposem que per a cert $n \geq 1$ se satisfà: $1 \leq a_n \leq 256$ (Hipòtesi d'inducció), i demostrarem que aleshores se satisfà $1 \leq a_{n+1} \leq 256$:

A partir de la hipòtesi d'inducció, $1 \le a_n \le 256$: fent l'arrel quadrada, donat que la funció arrel quadrada és una funció creixent, s'obté: $1 \le \sqrt{a_n} \le 16$, i, per ser $16 \le 256$, tenim que: $1 \le a_{n+1} \le 256$, com volíem demostrar.

- b) Demostrem per inducció sobre n que $a_n \ge a_{n+1} \ \forall n \ge 1$:
 - (i) Per a n=1 se satisfà: $a_1 \ge a_2$, ja que $a_1=256$ i $a_2=16$.
 - (ii) Suposem que per a cert $n \ge 1$ se satisfà $a_n \ge a_{n+1}$ (Hipòtesi d'inducció) i demostrarem que aleshores se satisfà: $a_{n+1} \ge a_{n+2}$:

A partir de la hipòtesi d'inducció, $a_n \ge a_{n+1}$, fent l'arrel quadrada (donat que $a_n > 0$ i la funció arrel quadrada és una funció creixent), s'obté: $\sqrt{a_n} \ge \sqrt{a_{n+1}}$, és a dir $a_{n+1} \ge a_{n+2}$, com volíem demostrar.

c) La successió $\{a_n\}$ és fitada per l'apartat a) i monòtona per l'apartat b), llavors verifica les hipòtesis de teorema de la convergència monòtona. Per tant la successió $\{a_n\}$ és convergent.

Sigui $l=\lim_{n\to\infty}a_n$; aleshores $l=\lim_{n\to\infty}a_{n+1}$. A partir de la fórmula de recurrència $a_{n+1}=\sqrt{a_n},$ s'obté:

$$l = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{a_n} = \sqrt{l} \implies l = \sqrt{l} \implies l^2 = l \implies l(l-1) = 0$$

$$\implies (l = 0 \lor l = 1).$$

Per ser $1 \le a_n \ \forall n \ge 1$, concloem $l = \lim_{n \to \infty} a_n = 1$.

2. (3 punts) Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció que pren els valors:

$$f(0) = 1.1, f(0.1) = 1.2, f(0.2) = 1.3, f(0.3) = 1.4, f(0.4) = 1.5, f(0.5) = 1.4,$$

f(0.6) = 1.3, f(0.7) = 1.4, f(0.8) = 1.5, f(0.9) = 1.6, f(1) = 1.7, i tal que totes les derivades de f són fitades per 180 en l'interval [0, 1].

Es pot calcular $I=\int_0^1 f(x)dx$ amb un error menor que 10^{-3} fent ús de la Fórmula de Simpson? En cas afirmatiu, calculeu una aproximació de la integral I amb un error menor que 10^{-3} .

SOLUCIÓ: Una fita superior de l'error del mètode de Simpson amb n subintervals és:

$$\left| \int_a^b f(x)dx - S(n) \right| \le \frac{(b-a)^5}{180 \cdot n^4} \cdot M_4,$$

sent M_4 una fita superior del valor absolut de la derivada quarta de f en l'interval (a,b).

En aquest exercici, a = 0, b = 1, i atès que $f^{(4)}(x) < 180 \ \forall x \in [0, 1]$, podem prendre $M_4 = 180$. Si fem servir els valors donats, tenim una partició de l'interval [0, 1] en n = 10 subintervals. Per tant:

$$\left| \int_0^1 f(x)dx - S(10) \right| \le \frac{1}{180 \cdot 10^4} \cdot 180 = \frac{1}{10^4} < 10^{-3}.$$

És a dir, sí que es pot calcular la integral amb l'error demanat fent ús de la Fórmula de Simpson a partir dels valors donats.

Substituint $a=0,\ b=1,\ n=10$ a la fórmula de Simpson, s'obté:

$$\frac{1}{30} \left[f(0) + 4[f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)] + \frac{1}{30} \left[f(0) + 4[f(0.1) + f(0.3) + f(0.5)] + f(0.7) + f($$

$$+2[f(0.2) + f(0.4) + f(0.6) + f(0.8)] + f(1)$$
 $\simeq 1.400$

El valor de la integral amb la precisió demanada és $I=1.400\pm0.001.$

3. (4 punts) Considereu la funció $f: \mathbb{R}^2 \to \mathbb{R}$ definidea per:

$$f(x,y) = (x^2 + 2y^2) \cdot e^{1-x^2-y^2}$$

- a) Calculeu la derivada direccional de f en el punt P=(1,1) en la direcció del vector $\overrightarrow{v}=(4,3)$.
- b) Quina és la direcció en la qual la derivada direccional de f en el punt (1,1) és màxima? Calculeu el valor de la derivada direccional màxima de f en el punt (1,1).
- c) Dibuixeu el conjunt $D=\{(x,y)\in\mathbb{R}^2|\ y\leq 1,\ y\geq x,\ y\geq -x\}$ i justifiqueu que és compacte.
- d) Justifiqueu l'existència d'extrems absoluts de f en D y trobeu-los.

SOLUCIÓ:

a) La funció f és producte d'una funció polinòmica i una composició d'una funció polinòmica i una exponencial, per tant f és de classe C^1 en tot \mathbb{R}^2 . El vector $\overrightarrow{v} = (4,3)$ no és unitari, el normalitzem i tenim: $\overrightarrow{v}' = \left(\frac{4}{5}, \frac{3}{5}\right)$, aleshores la derivada direccional de f en el punt P = (1,1) en la direcció del vector $\overrightarrow{v} = (4,3)$ és:

$$D_{\overrightarrow{v}}f(P) = \overrightarrow{\nabla}f(P) \cdot \overrightarrow{v}'.$$

Les derivades parcials de f són:

$$\frac{\partial f}{\partial x} = 2x(1 - x^2 - 2y^2)e^{1 - x^2 - y^2} \qquad \frac{\partial f}{\partial y} = 2y(2 - x^2 - 2y^2)e^{1 - x^2 - y^2}$$

Per tant
$$\overrightarrow{\bigtriangledown} f(P) = \left(\frac{\partial f}{\partial x}(1,1), \frac{\partial f}{\partial y}(1,1)\right) = \left(-\frac{4}{e}, -\frac{2}{e}\right)$$
, i aleshores:

$$D_{\overrightarrow{v}}f(P) = \overrightarrow{\nabla}f(P) \cdot \overrightarrow{v}' = \left(-\frac{4}{e}, -\frac{2}{e}\right) \cdot \left(\frac{4}{5}, \frac{3}{5}\right) = -\frac{22}{5e}$$

b) Atès que f és de classe C^1 en el punt P, la direcció en la qual f creix més ràpidament en el punt P=(1,1) és la del vector gradient de f en P, es a dir la direcció del vector $\left(-\frac{4}{e},-\frac{2}{e}\right)$, que és la direcció del vector $\left(-2,-1\right)$, o la del vector $\left(-\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right)$.

El valor de la derivada direccional màxima de f en el punt (1,1) és: $D_{\nabla f(P)} f(P) = |\nabla f(P)|| = \frac{2\sqrt{5}}{e}$.

c) El dibuix del conjunt D és:

D és un conjunt compacte per ser tancat (donat que conté tots els seus punts frontera, que són els punts dels segments $\{(x,y)|\ y=1,-1\leq x\leq 1\}$, $\{(x,y)|\ y=-x,-1\leq x\leq 0\}$ i $\{(x,y)|\ y=x,0\leq x\leq 1\}$) i D és fitat (donat que $D\subset B_2\big((0,0)\big)$).

d) Atès que f és contínua en tot \mathbb{R}^2 i el recinte D és un compacte, pel teorema de Weierstrass, f té extrems absoluts en D.

La funció f és de classe C^1 en tot \mathbb{R}^2 , per tant els els punts crítics de f són les solucions del sistema:

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \Leftrightarrow \begin{cases} 2x(1 - x^2 - 2y^2)e^{1 - x^2 - y^2} = 0 \\ 2y(2 - x^2 - 2y^2)e^{1 - x^2 - y^2} = 0 \end{cases}$$

De la primera equació s'obté que x=0 o bé $1-x^2-2y^2=0$.

Si x=0, de la segona equació s'obté que y=0 (d'on s'obté el punt crític (0,0)) o bé $2-2y^2=0$ (d'on s'obtenen els punts crítics (0,1) i (0,-1)).

Si $1 - x^2 - 2y^2 = 0$, de la segona equació s'obté que y = 0 (d'on s'obtenen els punts crítics (1,0) i (-1,0)) o bé $2 - x^2 - 2y^2 = 0$ (d'on s'obté un sistema incompatible i no s'obté cap punt crític).

Per tant la funció f té cinc punts crítics, que són els punts (0,0), (0,1), (0,-1), (1,0) i (-1,0). Cap d'aquest cinc punts crítics és a l'interior del compacte D.

Buscarem els punts crítics de f condicionats a ser en la frontera del compacte D:

- (i) Punts crítics de f condicionats a ser sobre el segment $\{(x,y)|\ y=1,-1\le x\le 1\}$: fent y=1 tenim $f(x,1)=(x^2+2)e^{-x^2}$, que és una funció d'una variable $\varphi_1(x)=(x^2+2)e^{-x^2}$. Per trobar els punts crítics igualem la seva derivada a 0 i resolem: $\varphi_1'(x)=-2x(x^2+1)e^{-x^2}=0 \Rightarrow (x=0 \lor x^2+1=0) \Rightarrow x=0$. Així s'obté el punt crític (0,1).
- (ii) Punts crítics de f condicionats a ser sobre el segment $\{(x,y)|\ y=-x,-1\le x\le 0\}$: fent y=-x tenim $f(x,-x)=3x^2e^{1-2x^2}$, que és una funció d'una variable $\varphi_2(x)=3x^2e^{1-2x^2}$. Per trobar els punts crítics igualem la seva derivada

a 0 i resolem:
$$\varphi_2'(x) = 6x(-2x^2 + 1)e^{-2x^2 + 1} = 0 \Rightarrow (x = 0 \lor x = \frac{\sqrt{2}}{2} \lor x = 0$$

 $x = -\frac{\sqrt{2}}{2}$). Imposant que $-1 \le x \le 0$, s'obtenen els punts crítics (0,0) i $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

(iii) Punts crítics de f condicionats a ser sobre el segment $\{(x,y)|\ y=x,0\le x\le 1\}$: fent y=x tenim $f(x,x)=3x^2e^{1-2x^2}$, que és una funció d'una variable $\varphi_3(x) = 3x^2e^{1-2x^2} = \varphi_2(x)$. Per tant, igualant la seva derivada a 0 i resolent:

$$\varphi_3'(x) = (-12x^3 + 6x)e^{-2x^2 + 1} = 0 \Rightarrow (x = 0 \lor x = \frac{\sqrt{2}}{2} \lor x = -\frac{\sqrt{2}}{2}).$$
 Imposant que $0 \le x \le 1$, s'obtenen els punts crítics $(0,0)$ i $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

que $0 \le x \le 1$, s'obtenen els punts crítics (0,0) i $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

(iv) Els vèrtexs del compacte D són els punts: (0,0), (-1,1) i (1,1). Les imatges per f dels punts crítics trobats són:

$$f(0,1) = 2, f(0,0) = 0, f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{3}{2}, f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{3}{2}, f(-1,1) = 3e^{-1}, f(1,1) = 3e^{-1}.$$

Per tant, el valor màxim absolut de f en D és 2 i l'assoleix al punt (0,1) i el valor mínim absolut de f en D és 0 i l'assoleix al punt (0,0).