Московский физико-технический институт

Лабораторная работа 5.4.1

Определение энергии α-частиц по велечине их пробега в воздухе

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы:** Измерить пробег альфа-частиц в воздухе с помощью ионизационной камеры.

Описание установки

Ионизационная камера Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами (схема камеры приведена на рис. 1).

Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения (в нашем случае это источник альфа-частиц $^{239}_{94}$ Pu), заполним объем камеры воздухом и начнем постепенно увеличивать разность потенциалов между электродами. Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 , станет постоянным, т. е. «выйдет на плато». Предельный ток I_0 будет равен $I_0 = n_0 e$, где n_0 — число пар ионов, образуемых в секунду в объеме камеры, а e — заряд электрона.

Рис. 1: Схема устройства ионизационной камера

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. Так как средняя энергия ионизации атомов воздуха составляет около 30 эВ, то альфачастица с энергией 3 МэВ образует на своем пути около 10^5 электронов, им соответствует заряд $1,6\cdot 10^{-14}$ Кл. Чтобы столь малое количество заряда, создаваемое проходящей через камеру одной альфа-частицей, вызывало измеряемое напряжение, емкость C должна быть мала.

При изменении давления в камере ионизационный ток меняется сначала линейно, а потом выходит на насыщение. При небольших давлениях газа альфа-частицы передают

часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается.

В данной работе измерение пробега альфа-частицы проводится по величине тока ионизации в сферической камере. Вакуумная установка содержит кран и манометр. Она позволяет изменять давление в камере от атмосферного до 10 мм рт. ст. Величина тока ионизации измеряется электрометром, состоящим из нескольких стандартных микросхем, по величине падения напряжения на сопротивлении $R=100~{\rm MOm}~(C=10^{-8}~{\rm Фарад},{\rm так}~{\rm что}~RC=1~{\rm c}).$ Значение измеряемого ионизационного тока (в пикоамперах) высвечивается на цифровом табло.

Выполнение работы

1. Включив питание установки, измерим при атмосферном давлении $P_a=102,6$ к $\Pi a=769,9$ Торр (измеренном барометром) ток $I_a=820$ пА. Температура T=298 К.

 Таблица 1: Зависимость тока в камере от давления

После этого откачаем воздух из камеры до давления порядка ≈ 10 Торр и снимем зависимость тока от давления, запуская воздух в камеру.

(Погрешность давления оценим как цену деления — $\sigma_P = 5$ Торр, погрешность $\sigma_I = 3$ пФ. Результаты измерения занесем в Таблицу 1. Построим График 1 полученной зависимости)

Зависимость тока в камере от давления

P, mmHg	I, pA	P, mmHg	$\mid I, \mathrm{pA} \mid$
700	945	150	302
675	952	125	253
625	969	100	218
575	982	75	172
550	990	50	135
530	990	25	93
525	982		
500	975		
475	925		
450	895		
425	835		
400	785		
375	721		
350	680		
325	615		
300	582		
275	520		
250	484		
225	420		
200	393		
175	337		

2. На график нанесем прямые соответствующие линейным участкам зависимости. По их пересечению оценим точку перелома:

$$P_0 = 580 \pm 10$$
 mm pt. ct.

Приведем данные к нормальным температуре и давлению для нахождения пробега частицы в нормальных условиях:

$$R_l = 5 \text{cm}, \implies R_{norm} = R_l \frac{P_0 T_{norm}}{P_{norm} T_0} = 3.75 \pm 0.05 \text{cm},$$

Из пробега по имперической формуле найдем энергию частиц:

$$R = 0.32E^{3/2} \implies E = 5.2 \pm 0.1$$
МэВ

Вывод

В работе был измерен пробег альфа-частиц от 239 Pu с помощью ионизационной камеры. По полученным данным была определена энергия α -частиц.

При работе с ионизационной камерой пробег и энергия получились близкими к ожи-

даемым: 5.2 ± 0.1 МэВ против табличных 5.244МэВ. Если плотность бумаги равна 1,2 г/см 3 , следовательно, лист бумаги толщины $l \geq R'/\rho = 36,6$ мкм не пропустит альфа-частицы от 239 Ри.