有限オートマトン

離散数学・オートマトン 2024 年後期 佐賀大学理工学部 只木進一

- ① 序論: Introduction
- ② 決定性有限オートマトン: Deterministic Finite State Automata
- ③ 受理言語: Accepted Languages
- 4 非決定性有限オートマトン: Non-deterministic FA
- ⑤ 疑問: Questions

オートマトンと形式言語:

Automata and Formal Languages

- オートマトン (Automaton)
 - 計算の抽象モデル: Abstract model of computation
 - テープからの入力による状態遷移: Transition based on input from tape
 - 「計算する」とは何かを考える: What does it mean to compute?
 - automata は複数形: automata is plural
- 形式言語 (Formal Language)
 - オートマトンが受理する言語: Language accepted by automaton
 - 文法を数学的に分析: Mathematical Analysis of grammars mathematically

決定性有限オートマトン

Deterministic Finite State Automata: DFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \tag{2.1}$$

- Q: 内部状態の有限集合: Finite set of internal states
- ∑: 入力アルファベット、つまり入力記号の有限集合: Finite set of input alphabets
- $\delta: Q \times \Sigma \to Q$: 状態遷移関数: Transition function
 - $\delta(q, \mathsf{a}) = p$: ある状態 q で文字 a を読むと、状態が p に遷移する: At a state q, transition to a state p by reading character a
- $q_0 \in Q$: 初期状態: Initial state
- $F \subseteq Q$: **受理状態の集合**: Set of accepting states
 - $q \in F$ に到達する入力を受理する: Accept inputs that reaches $q \in F$

例 2.1:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{\mathsf{a}, \mathsf{b}\}$$

$$F = \{q_2\}$$

遷移関数 (transition function) δ

	а	b
q_0	q_2	q_1
q_1	q_0	q_0
q_2	q_0	q_0

動作イメージ: Images of Operation

テープヘッドが移動して、テープ上の文字を読み取る。: Reading an alphabet on the tape and moving the tape head.

$$(q_0, \mathsf{ababbaa}) \vdash_M (q_2, \mathsf{babbaa}) \ dash_M (q_0, \mathsf{abbaa}) \ dash_M (q_0, \mathsf{abbaa}) \ dash_M (q_0, \mathsf{bbaa}) \ dash_M (q_0, \mathsf{baa}) \ dash_M (q_1, \mathsf{aa}) \ dash_M (q_0, \mathsf{a}) \ dash_M (q_2, \epsilon)$$

遷移関数 δ

	а	b
q_0	q_2	q_1
q_1	q_0	q_0
q_2	$ q_0 $	q_0

 ϵ represents a string of length 0

例:2.1への入力 bbaba

\vdash_M の推移的閉包と受理言語 Transitive Closure of \vdash_M and Accepted Languages

• 入力 $w \in \Sigma^*(\Sigma^*$ は Σ の要素の 0 個以上の列) によって、初期 状態 q_0 から状態 q へ遷移し、テープに残っている文字列が w' であるとき

When the input $w \in \Sigma^*$ (Σ^* is a sequence of 0 or more elements of Σ) causes a transition from the initial state q_0 to the state q, and the remaining string on the tape is w'

$$(q_0, w) \vdash_M^* (q, w') \tag{3.1}$$

ullet M が入力 w を受理: M accepts the input w

$$(q_0, w) \vdash_M^* (q_F, \epsilon), \quad q_F \in F$$
 (3.2)

● 受理言語: Accepted Language

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q_F, \epsilon), q_F \in F \}$$
 (3.3)

例:2.1 の場合

$$(q_0, \mathsf{aaaba}) \vdash (q_2, \mathsf{aaba}) \vdash (q_0, \mathsf{aba})$$
 $\vdash (q_2, \mathsf{ba}) \vdash (q_0, \mathsf{a}) \vdash (q_2, \epsilon)$
 $(q_0, \mathsf{babaa}) \vdash (q_1, \mathsf{abaa}) \vdash (q_0, \mathsf{baa})$
 $\vdash (q_1, \mathsf{aa}) \vdash (q_0, \mathsf{a}) \vdash (q_2, \epsilon)$

受理する入力の例 Example of Accepted Inputs

a, aaa, aba, baa, bba, aaaaa, aaaba, abaaa, babaa, babba, bbbaa, bbbba

例 3.1:

$$Q = \{q_0, q_1, q_2, q_3\}$$

 $\Sigma = \{a, b\}$
 $F = \{q_3\}$

遷移関数 δ

~ 12 12 32X °		
	а	b
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

例 3.1: 動作例: Example of Operation

$$\begin{split} (q_0,\mathsf{aaaaab}) \vdash (q_2,\mathsf{aaaab}) \vdash (q_0,\mathsf{aaab}) \vdash (q_2,\mathsf{aab}) \\ \vdash (q_0,\mathsf{ab}) \vdash (q_2,\mathsf{b}) \vdash (q_3,\epsilon) \\ (q_0,\mathsf{abbaba}) \vdash (q_2,\mathsf{bbaba}) \vdash (q_3,\mathsf{baba}) \vdash (q_2,\mathsf{aba}) \\ \vdash (q_0,\mathsf{ba}) \vdash (q_1,\mathsf{a}) \vdash (q_3,\epsilon) \end{split}$$

例 3.1: 受理する文字列例(長さ5まで) Example of Accepted Strings (up to length 5)

ab ba aaab aaba abaa abbb baaa babb bbab bbba

例 3.2:

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_4\}$$

遷移関数 δ

	0	1
q_0	q_2	q_1
$ q_1 $		q_3
q_2		$ q_4 $
q_3	q_2	$ q_0 $
q_4	q_4	q_4

空欄に注意

例 3.2: 動作例: Example of Operation

$$\begin{aligned} (q_0,1110101) &\vdash (q_1,110101) \vdash (q_3,10101) \vdash (q_0,0101) \\ &\vdash (q_2,101) \vdash (q_4,01) \vdash (q_4,1) \vdash (q_4,\epsilon) \\ (q_0,1101010) &\vdash (q_1,101010) \vdash (q_3,01010) \vdash (q_2,1010) \\ &\vdash (q_4,010) \vdash (q_4,10) \vdash (q_4,0) \vdash (q_4,\epsilon) \end{aligned}$$

例 3.2: 受理する文字列例(長さ5まで) Example of Accepted Strings (up to length 5)

01, 010, 011, 0100, 0101, 0110, 0111, 1101, 01000, 01001, 01010, 01011, 01100, 01101, 01111, 11010, 11011, 11101

非決定性有限オートマトン

Non-deterministic Finite State Automata: NFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \tag{4.1}$$

- Q: 内部状態の集合: Finite set of internal states
- Σ: 入力アルファベット: Input alphabet
- $\delta: Q \times \Sigma \to 2^Q$: 状態遷移関数: Transition function
 - 2^Q は、Q のべき集合、つまり Q の部分集合の族。遷移先が複数であることを許容することに注意。: 2^Q is the power set of Q. Note that it allows multiple transition possibilities.
- $q_0 \in Q$: 初期状態: Initial state
- $F \subseteq Q$: **受理状態**: Accepting states

例 4.1:

$$Q = \{q_0, q_1, q_2\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_2\}$$

遷移関数 δ

	0	1
q_0	$\{q_0\}$	$\{q_0,q_1\}$
$ q_1 $	Ø	$\{q_2\}$
q_2	$\{q_2\}$	$\{q_2\}$

動作例: 入力 1010110

受理条件: Accept conditions

- 入力が引き起こす状態遷移のうちで、受理状態に至る場合が一つでもあれば、その入力を受理する。
 - If there is at least one state transition caused by the input that reaches an accepting state, the input is accepted.

長さ5以下の受理入力

11, 011, 110, 111, 0011, 0110, 0111, 1011, 1100, 1110, 1111, 00011, 00110, 00111, 01011, 01100, 01110, 01111, 10011, 10110, 10111, 11000, 11011, 11100, 111110, 11111

例 4.2:

$$Q = \{q_0, q_1, q_2, q_2\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_3\}$$

遷移関数 δ

	~ 12 12 22 0		
	δ	0	1
ĺ	q_0	$\{q_1,q_2\}$	$\{q_0\}$
	q_1	Ø	$\{q_1,q_3\}$
	q_2	$\{q_3\}$	$\{q_2\}$
	q_3	Ø	$ $ \emptyset

長さ5以下の受理入力

00, 01, 010, 011, 100, 101, 0110, 0111, 1010, 1011, 1100, 1101, 01110, 01111, 10110, 10111, 11010, 11011, 11100, 11101

動作例: 入力 11011

例 4.3:

$$Q = \left\{q_0, q_1, q_2, q_3, q_4\right\}, \Sigma = \left\{\mathsf{a}, \mathsf{b}\right\}, F = \left\{q_4\right\}$$

遷移関数 δ

		а	b
	q_0	$\{q_1,q_2\}$	$\{q_3\}$
δ	$ q_1 $	$\{q_3\}$	Ø
. 0	$ q_2 $	Ø	$\{q_4\}$
	q_3	Ø	$\{q_2,q_3\}$
	q_4	$\{q_4\}$	$\{q_4\}$

動作例:入力 aabba

疑問: Questions

- オートマトンが受理する文字列の集合を記述する方法: How to describe the set of strings accepted by an automaton
 - 文字列パターンを記述する方法: How to describe string patterns
- NFA と DFA は本質的に異なるのか: Are NFA and DFA fundamentally different?
 - 受理する文字列集合は異なるのか: Are the sets of accepted strings different?
 - 能力は異なるか: Are their capabilities different?