MAGIC 009 Exam

Category Theory

To be released on 13th January 2025

Instructions

- This paper contains four questions. You should submit answers to all questions.
- The maximum number of marks is 100.
- All questions carry equal weight (25 marks each).
- The pass mark is set at 50 marks.
- The deadline for submitting your answers is 11:00am Friday 24 January 2025
- You should submit your work by uploading clearly legible examination scripts to the course filespace.
- The filename of the submitted work should show your name and 'MAGIC-009'.
- Each student participating in MAGIC assessment is asked to declare that they understand that MAGIC assessment will be subject to the academic misconduct rules of their own institution.

Questions

- 1. Let \mathbb{A} , \mathbb{B} , \mathbb{C} be categories. Let F, G, $H: \mathbb{A} \to \mathbb{B}$ and P, $Q: \mathbb{B} \to \mathbb{C}$ be functors. Let $\phi: F \Rightarrow G$, $\psi: G \Rightarrow H$ and $\theta: P \to Q$ be natural transformations. You may assume the following facts from Lecture 2.
 - The composite of functors F and P is well-defined as a functor $PF : \mathbb{A} \to \mathbb{C}$, and similarly for all other pairs of composable functors.
 - The natural transformations ϕ and ψ has a well-defined composite natural transformation $\psi \circ \phi : F \to H$ whose component on $X \in \mathbb{A}$ is given by $\psi_X \circ \phi_X$.
 - (a) Prove that there is a natural transformation $\theta.F: PF \Rightarrow QF$ whose component on $X \in \mathbb{A}$ is given by $\theta_{FX}: PFX \to QFX$.
 - (b) Prove that there is a natural transformation $P.\phi: PF \Rightarrow PG$ whose component on $X \in \mathbb{A}$ is given by $P(\phi_X): PFX \to PGX$.
 - (c) Prove that the natural transformations $(\theta.G) \circ (\phi.P)$ and $(Q.\phi) \circ (\theta.F)$ from the functor $PF : \mathbb{A} \to \mathbb{C}$ to the functor $QG : \mathbb{A} \to \mathbb{C}$ are equal.
 - (d) Let $[\mathbb{A}, \mathbb{B}]$ and $[\mathbb{B}, \mathbb{C}]$ be the respective functor categories. You may assume that these are well-defined categories as described in Lecture 2. Consider the following assignments of data in the category $[\mathbb{B}, \mathbb{C}] \times [\mathbb{A}, \mathbb{B}]$ to data in the category $[\mathbb{A}, \mathbb{C}]$

- On objects, a pair of functors (P, F) is sent to their composite PF,
- On morphisms, a pair of natural transformations of the form $(\theta, \phi) : (P, F) \to (Q, G)$ is sent to $\theta * \phi$, where $\theta * \phi$ denotes either of the two natural transformations that were proved to be equal in part (c),

Prove that these assignments extend to a well-defined functor $[\mathbb{B}, \mathbb{C}] \times [\mathbb{A}, \mathbb{B}] \to [\mathbb{A}, \mathbb{C}]$.

- 2. (a) Give an example of an equivalence of categories $F: \mathbb{A} \to \mathbb{B}$ for which the function $\mathbf{ob}(F): \mathbf{ob}(\mathbb{A}) \to \mathbf{ob}(\mathbb{B})$ is injective but not surjective.
 - (b) A morphism $e:A\to A$ in a category $\mathbb C$ is called *idempotent* if $e\circ e=e$. A *splitting* of an idempotent e consists of a pair of morphisms (r,s) of the form $r:A\to B$ and $s:B\to A$ satisfying $rs=1_B$ and sr=e. Let $e:A\to A$ be an idempotent with splitting (r,s) and consider the parallel pair in $\mathbb C$ displayed below.

$$A \xrightarrow{1_A} A$$

- i. Prove that $s: B \to A$ is the equaliser of the parallel pair displayed above.
- ii. Hence prove that $r:A\to B$ is the coequaliser of the same parallel pair displayed above.
- iii. Prove that any functor $F: \mathbb{C} \to \mathbb{D}$ preserves the equaliser of part (i) and the coequaliser of part (ii).
- 3. Let $\mathbb A$ and $\mathbb B$ be categories and suppose $\mathbb B$ has binary products with projections denoted $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$.
 - (a) Let $F, G : \mathbb{A} \to \mathbb{B}$ be functors. Given a morphism $f : X \to Y$ in \mathbb{A} , let $Ff \times Gf$ denote the morphism induced by the universal property of $FY \times GY$ given the pair of morphisms $(Ff \circ \pi_{FX}, Gf \circ \pi_{GX})$. Prove that there is a functor $F \times G : \mathbb{A} \to \mathbb{B}$ defined on objects via $(F \times G)(X) = FX \times GX$ and on morphisms via $(F \times G)(f : X \to Y) = Ff \times Gf$.
 - (b) Prove that the functor category [A, B] has binary products.
 - (c) Suppose that \mathbb{A} has n objects for some $n \geq 2$, but that all the morphisms in \mathbb{A} are identities. What does it mean for the diagonal $\Delta : \mathbb{B} \to [\mathbb{A}, \mathbb{B}]$ to have a right adjoint?
 - (d) Suppose that \mathbb{B} has binary products and \mathbb{A} has $n \geq 2$ objects and only identity morphisms. Prove by induction on n that the diagonal $\Delta : \mathbb{B} \to [\mathbb{A}, \mathbb{B}]$ does indeed have a right adjoint.
- 4. (a) Let \mathbb{B} be a locally small category.
 - i. For an object $X \in \mathbb{B}$, prove that the representable $\mathbb{B}(X, -) : \mathbb{B} \to \mathbf{Set}$ preserves any binary products that exist in \mathbb{B} .
 - ii. Prove that the terminal object in $[\mathbb{B}^{op}, \mathbf{Set}]$ is the functor which sends every object to the singleton set and which sends every morphism to the identity function on that set.
 - (b) Let (G, ., e) be a group and let \overline{G} be the corresponding category with one object, with morphisms given by the elements of G, with identity e and with composition law given by $h \circ g = h.g$. You may assume that this is well-defined as a category. Denote the unique object in \overline{G} by *.
 - i. Define explicitly the behaviour of the representable presheaf $\overline{G}(-,*):\overline{G}^{\text{op}}\to \mathbf{Set}$, and of representable natural transformations $\overline{G}(-,g):\overline{G}(-,*)\to \overline{G}(-,*)$ for $g\in G$. You do not need to prove that these are well-defined as functors or as natural transformations.

- ii. Describe explicitly what it means for the Yoneda embedding $Y_{\overline{G}}: \overline{G} \to [\overline{G}^{op}, \mathbf{Set}]$ to be well-defined as a functor.
- iii. Describe explicitly what it means for the Yoneda embedding $Y_{\overline{G}}: \overline{G} \to [\overline{G}^{op}, \mathbf{Set}]$ to be fully faithful.