_		
UTN - 2° Parcial	Sistemas Operativos	01/07/2017

Nombre y Apellido: Curso:

		TEORÍA		PRÁCTICA			NOTA	
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- 1. Compare el particionamiento fijo con particiones de igual tamaño contra el particionamiento dinámico,
- 2. Indique qué problema presenta la utilización del esquema de Tabla de Páginas invertidas, con memoria virtual
- 3. Explique las configuraciones de RAID 0+1 y RAID 5. Indique en cada caso cuántos discos podrían fallar sin perder datos.
- 4. Describa brevemente el área de intercambio (swap). Indique qué tipo de asignación de bloques sería el ideal para esa partición y por qué,
- 5. Explique el funcionamiento de los archivos mapeados a memoria. Indique cuándo sería conveniente usarlos.

PRÁCTICA: Resuelva los siguientes ejercicios justificando las conclusiones obtenidas.

Ejercicio 1

Una consola de videojuegos utiliza un SIstema Operativo, en su versión de 32 bits, y corre diferentes procesos que controlan los juegos, la interacción con los dispositivos y la red. Cada frame tiene un tamaño de 4KB, y en un instante determinado, su tabla de páginas invertida tiene el siguiente contenido:

	Frame	0	1	2	3	4	5	6	7	8	9
	Página	0	0	1	-	-	-	4	-	8	1
-	PID	0	1	0	-	-	-	10	-	0	-

Sabiendo que su función de hash es f(Página, PID) = MOD(Página + (PID x PID), 10), indique:

- a) Qué colisiones ocurrieron, y cómo se solucionaron
- b) Qué dirección física genera la dirección lógica 20B00h, del proceso 5
- c) Qué dirección lógica se corresponde con la dirección física 2CCAh

Nota: la función MOD(dividendo, divisor) devuelve el resto de la operación "dividendo/divisor"

Ejercicio 2

Si se tiene un disco rígido de 4 GiB, y se desea formatear con FAT16:

- a- ¿Cuál sería el tamaño mínimo de cluster para poder direccionar el disco? (descartando el espacio ocupado por la información administrativa del filesystem)
- b- Si se deseara leer 70KB de un archivo, ¿Cuántos accesos a la FAT y cuantos accesos a clusters serían necesarios?
- c- ¿Cuál sería el tamaño máximo teórico y real de un archivo?
- d- Proponga una configuración de UFS que permita tener archivos de igual tamaño del disco y que presente menos fragmentación interna que la configuración anterior de FAT. ¿Qué desventaja podría tener este FS comparado con el anterior?

Ejercicio 3

Un disco rígido tiene 100 cilindros, 10 sectores por pistas y 2 platos. El brazo del disco acaba de leer el cilindro 35 y anteriormente el 15, el tiempo búsqueda (Seek Time) de pasar del cilindro 15 al 35 es de 40 ms. Dada la siguiente tabla que contiene los pedidos:

Pedido	40	89	37	56	43	9	2	15
Instante	0 ms	9 ms	0 ms	1 ms	3 ms	25 ms	14ms	15 ms

Indique el orden de atención de los pedidos y el tiempo búsqueda para los siguientes algoritmos:

- a) FScan
- b) N-Step-Scan con colas de 2 pedidos

Condiciones de aprobación: 3 preguntas correctamente respondidas y 2 ejercicios correctamente resueltos.