8th ACM Conference on Recommender Systems

Foster City, Silicon Valley, California, USA, 6th-10th October 2014

Cross-Domain Recommender Systems

Iván Cantador¹, Paolo Cremonesi²

 ¹ Universidad Autónoma de Madrid, Madrid, Spain ivan.cantador@uam.es
 ² Politecnico di Milano, Milan, Italy paolo.cremonesi@polimi.it

2nd ed. of the RSs Handbook Cross-Domain Recommender Systems

Iván Cantador

Ignacio Fernández-Tobias

Shlomo Berkovsky

Paolo Cremonesi

Tutorial Cross-Domain Recommender Systems

Iván Cantador

Paolo Cremonesi

Today Cross-Domain Recommender Systems

Paolo Cremonesi

Recommendations for single domains

- Traditional recommender systems suggest items belonging to a single domain
 - movies in Netflix
 - songs in Last.fm
 - ...
- This is not perceived as a limitation, but as a focus on a certain market

User profiles in multiple systems

Nowadays, **users**...

- provide feedback for items of different types
 - e.g., in Amazon we can rate books, DVDs, ...
- express their opinions on different social media and different providers
 - e.g., Facebook, Twitter, Amazon, Netflix, TripAdvisor

Nowadays **providers** wish to ...

- cross-sell products and services
- provide recommendations to new users

Recommendations for multiple domains

Can we leverage all the available personal data provided in distinct **domains** to generate **better** recommendations?

definition of "domain" definition of "better recommendations"

Problems related to Cross-Domain RSs

- Machine Learning
 - Multi-Task Learning / Transfer Learning
- User Modeling
 - aggregation user preferences for cross system personalization, targeted adv., security
- Context Aware recommender
 - different domains as different context
- Hybrid recommender (Ensemble learning)
 - AdaBoost → Hybrid
 - Bootstrap / Blending → Cross Domain

History of Cross-Domain RSs

- 2002: the term "cross-domain recommenders" appear for the first time in a patent:
 - Triplehop Technologies (now Oracle)
- 2005: some papers suggest "cross-domain" as an interesting topic
 - Mark van Setten, Sean M. McNee, Joseph A. Konstan.
 2005
 - Shlomo Berkovsky, Tsvi Kuflik, Francesco Ricci. 2005
- 2007: first papers with contributions on "cross-domain"
 - Ronald Chung, David Sundaram, Ananth Srinivasan. 2007
 - Shlomo Berkovsky, Tsvi Kuflik, Francesco Ricci. 2007
 - Ronald Chung, David Sundaram, Ananth Srinivasan. 2007

History of Cross-Domain RSs

- First papers trying to classify problems and approaches
 - Antonis Loizou. 2009
 - Sinno Jialin Pan, and Qiang Yang. 2010
 - Bin Li. 2011
 - Paolo Cremonesi, Antonio Tripodi, and Roberto Turrin. 2011
 - Fernández-Tobías, Ignacio, Iván Cantador, Marius Kaminskas, and Francesco Ricci. 2012

Cross-domain recommendations

- Single-Domain: Treat each domain independently
- Collective-Domain: Merge domains an treat them as a single domain

 baseline

- Cross-Domain: Transfer knowledge from source to target
 - assumption: information overlap between users and/or items across different domains
 - overlaps of users, items, attributes, ...

Goal of this tutorial

- Taxonomy of problems and techniques
- Literature overview: who is doing what
- Guidelines, based on consolidated as well as state-of-the-art best practices from the research community

Contents

- 1. The cross-domain recommendation problem
- 2. Cross-domain recommendation techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Definition of the cross-domain problem

- Domains
 - which types of domains exist?
- Goals
 - why do we need cross-domain recommenders?
- Tasks
 - which parts of the datasets are used?
- Scenarios
 - which overlap of information exists between domains?

Contents

- 1. The cross-domain recommendation problem
 - Definition of domain
 - Cross-domain recommendation goals and tasks
 - Cross-domain recommendation scenarios
- 2. Cross-domain recommendation techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Definition of domain

- A domain is a particular field of thought, activity, or interest
- In the literature researchers have considered distinct notions of domain:
 - movies vs. books
 - action movies vs. comedy movies
 - ...

Definition of domain

- Domains differ because of
 - different types of items
 - Movies vs. Books
 - different types of users
 - pay-per-view users vs. users with yearly subscription
 - "partition" of users with respect to items
 - e.g., users with ratings on
 - Books only
 - Movies only
 - Books and Movies

Definition of domain

We focus on two domains

source
$$D_s \leftrightarrow target D_T$$

(auxiliary)

Domain levels

- Attribute level (Comedy ← Thriller)
 - same type of items, different values of certain attribute
- Type level (Movies ↔ Books)
 - similar types, sharing some attributes
- **Item level** (*Movies* ↔ *Restaurants*)
 - distint types, differing in most, if not all attributes
- System level (Netflix ←> Movielens)
 - almost the same items, collected in different ways and/or from different operators

Domain levels in the literature...

- Attribute level (Comedy ← Thriller): 12%
 - Movie genres (Movielens, Eachmovie)
- Type level ($Movies \leftrightarrow Books$): **9%**
 - Amazon
- Item level (Movies ↔ Music): **55%**
 - Movielens, Last.fm, Delicious, BookCrossing, Facebook
- **System level** (*Netflix* ←> *Movielens*): **24%**
 - Last.fm, Delicious

Contents

- 1. The cross-domain recommendation problem
 - Definition of domain
 - Cross-domain recommendation goals and tasks
 - Cross-domain recommendation scenarios
- 2. Cross-domain recommendation techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Cross-domain recommendation goals

- Addressing the cold-start problem
 - recommending to new users
 - cross-selling of products
- Improving accuracy
 - e.g., by reducing sparsity
- Offering added value to recommendations
 - diversity, novelty, serendipity
- Enhancing user models
 - discovering new user preferences
 - vulnerability in social networks

Goals in the literature ...

Goal	Percentage
Cold start	5%
New user	15%
New item	5%
Accuracy	55%
Diversity	5%
Privacy	5%
User model	10%

Cross-domain recommendation tasks

- = data from source domain
- = data from target domain
- = target of recommendations

Multi-domain recommendation task

- Recommend items in both source and target domains
- Goal: cross-selling, improve diversity, novelty, serendipity
- Approach: sharing knowledge and linking domains

Linked-domain recommendation task

- Recommend target items to users in the target domains
- Goal: improve accuracy of recommendations in the target domain (e.g., reduce sparsity)
- Approach: all

Cross-domain recommendation task

- Recommend items in the target domain to users in the source domain
- Goal: solve cold-start, new users and new item probl.
- Approach: aggregating knowledge

Tasks in the literature ...

Task	Multi-domain
Multi-domain	20%
Linked-domain	55%
Cross-domain	25%

Contents

- 1. The cross-domain recommendation problem
 - Definition of domain
 - Cross-domain recommendation goals and tasks
 - Cross-domain recommendation scenarios
- 2. Cross-domain recommendation techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Notation

- X_U → set of characteristics used to represent users
 = F_U → side information (features) about users
 (e.g., demographics, tags, friends, ...)
 = I → items rated by users
- \mathbf{X}_{l} \rightarrow set of characteristics used to represent items = \mathbf{F}_{l} \rightarrow side information (features) about items
 - (e.g., genres, keywords, ...)
 - $= \mathbf{U} \rightarrow \text{users rating items}$

Linking domains

Overlapping attributes of ...

... users:

- $\mathbf{F}_{U}(S) \cap \mathbf{F}_{U}(T) \neq \emptyset$
 - e.g., we have demographics of users in both domains

... items:

- $\mathbf{F}_{l}(S) \cap \mathbf{F}_{l}(T) \neq \emptyset$
 - e.g., items share the same set of attributes in both domains

Linking domains

Mapping attributes of ...

... users:

- $f: \mathbf{X}_{\cup}(S) \rightarrow \mathbf{X}_{\cup}(T)$
 - e.g., friends of ...

... items:

- $f: \mathbf{X}_{l}(S) \rightarrow \mathbf{X}_{l}(T)$
 - e.g., "vampire" in source and "zombie" in target are both "horror"

Linking domains

Overlap of ...

... items:

- I(S) ∩ I(T) ≠ ∅
 - e.g., we have same common items between domains

... users:

- U(S) ∩ U(T) ≠ Ø
 - e.g., we have same common users between domains

Cross-domain recommendation scenarios (I)

Contents

- 1. The cross-domain recommendation problem
- 2. Cross-domain recommendation techniques
 - Categorizations of techniques
 - Linking/aggregating knowledge techniques
 - Sharing/transferring knowledge techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Cross-Domain: opportunity or problem?

- The source domain is a potential source of bias
 - If the source domain is richer than the target domain, algorithms learn how to recommend items in the source domain and consider the target domain as noise
- The source domain is a potential source of noise
 - If the user models in the two domains differ, the source domain introduce noise in the learning of the target domain

Cross-Domain: opportunity or problem?

is a matter of weights

which is the relative "weight" of the two domains?

how much do we "weight" the information coming from the source domain?

Different approaches (I)

 Two types of cross-domain approaches, based on how knowledge from the source domain is exploited

Source domain

target domain

target domain

recommendations

Linking/Aggregating knowledge

Sharing/Transferring knowledge

Different approaches (I)

 Two types of cross-domain approaches, based on how knowledge from the source domain is exploited

Linking/Aggregating knowledge

Sharing/Transferring knowledge

Different approaches (II)

Linking/Aggregating knowledge

- Merging user preferences
- Mediating user modeling data
- Combining recommendations
- Linking domains

Sharing/Transferring knowledge

- Sharing latent features
- Transferring rating patterns

Contents

- 1. The cross-domain recommendation problem
- 2. Cross-domain recommendation techniques
 - Categorizations of techniques
 - Linking/aggregating knowledge techniques
 - Sharing/transferring knowledge techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Proposed categorization

- Linking/aggregating knowledge
 - Merging user preferences
 - Mediating user modeling data
 - Combining recommendations
 - Linking domains
- Sharing/transferring knowledge
 - Sharing latent features
 - Transferring rating patterns

Merging user preferences (I)

- Aggregate user preferences
 - ratings, tags, transaction logs, click-through data

Merging user preferences (II)

Pros:

- work well for the new-user problem
- robust (evolution of standard SD techniques)
- facilitate explanation

Cons:

need user-overlap between the source and target domains

Merging user preferences: approaches

- On the aggregated matrix we can apply "weighted" single-domain techniques
 - User-based kNN
 - Berkovsky et al. 2007; Shapira et al. 2013; Winoto & Tang 2008;
 - Graph-based
 - Nakatsuji et al. 2010; Cremonesi et al. 2011; Tiroshi et al. 2013
 - Matrix Factorization / Factorization Machine
 - Loni et al. 2014

Proposed categorization

- Linking/aggregating knowledge
 - Merging user preferences
 - Mediating user modeling data
 - Combining recommendations
 - Linking domains
- Sharing/transferring knowledge
 - Sharing latent features
 - Transferring rating patterns

Mediating user modeling data (I)

- Aggregate models (CF, CBF, Hybrid) from different domains
 - user similarities, user neighborhoods

Mediating user modeling data (II)

• Pros:

- suited to the new-user problem and accuracy goals
- robust (evolution of standard SD techniques)

Cons:

 need of either user- or item-overlap between the source and target domains

Mediating modeling data: approaches

- Aggregating collaborative or content similarities
 - Berkovsky et al. 2007; Shapira et al. 2013; Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. 2008.
- Aggregating user neighborhoods
 - Berkovsky et al. 2007; Tiroshi & Kuflik 2012; Shapira et al. 2013
- Aggregating latent features
 - Low et al. 2011

Proposed categorization

- Linking/Aggregating knowledge
 - Merging user preferences
 - Mediating user modeling data
 - Combining recommendations
 - Linking domains
- Sharing/transferring knowledge
 - Sharing latent features
 - Transferring rating patterns

Combining recommendations (I)

- Aggregate single-domain recommendations
 - ratings, ranking, probability distributions

Combining recommendations (II)

Pros:

- easy to implement
- independent of the stand alone recommenders
- increase diversity
- independent of context

Cons:

- need overlap of users
- difficult to tune weights assigned to recommendations coming from different domains

Combining recommendations: approaches

- Aggregating estimated values of ratings (blanding)
 - Berkovsky et al. 2007; Givon & Lavrenko 2009
- Combining estimations of rating distribution
 - Zhuang et al. 2010

Proposed categorization

- Linking/aggregating knowledge
 - Merging user preferences
 - Mediating user modeling data
 - Combining recommendations
 - Linking domains
- Sharing/transferring knowledge
 - Sharing latent features
 - Transferring rating patterns

Linking domains (I)

- Linking domains by a common knowledge
 - item attributes, user attributes, association rules, semantic networks,

Linking domains (II)

Pros:

- no need of user or item overlap
- bland with other technique

• Cons:

- difficult to generalize
- designed for particular cross-domain scenarios

Linking domains: approaches

- Overlap of user/item attributes
 - Chung et al. 2007
- Overlap of social tags
 - Szomszor et al. 2008; Abel et al. 2011; Abel et al. 2013;
 Fernández-Tobias et al. 2013
- Overlap of text (BoW)
 - Berkovsky et al. 2006
- Semantic networks
 - Loizou 2009; Fernández-Tobias et al. 2011; Kaminskas et al. 2013
- Knowledge-based rules
 - Azak et al. 2010; Cantador et al. 2013

Contents

- 1. The cross-domain recommendation problem
- 2. Cross-domain recommendation techniques
 - Categorizations of techniques
 - Linking/aggregating knowledge techniques
 - Sharing/transferring knowledge techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Proposed categorization

- Linking/aggregating knowledge
 - Merging user preferences
 - Mediating user modeling data
 - Combining recommendations
 - Linking domains
- Sharing/transferring knowledge
 - Sharing latent features
 - Transferring rating patterns

Sharing latent features (I)

 source and target domains are related by means of shared latent features

Sharing latent features (II)

• Pros:

 work well to reduce sparsity and increase accuracy for both source and target domains

• Cons:

- computationally expensive
- need overlap of users and/or items

Sharing latent features: approaches (I)

- Tri-matrix co-factorization: user and item factors (U and V) are shared between domains; rating patterns (B) are different
 - Pan et al. 2010 and 2011

$$\mathbf{R}_{S} = \mathbf{U} \times \mathbf{B}_{S} \times \mathbf{V}'$$

$$R_T = U \times B_T \times V'$$

Sharing latent features: approaches (II)

- Tensor-based factorization (domain as a context)
 - Hu et al. 2013

Proposed categorization

- Linking/aggregating knowledge
 - Merging user preferences
 - Mediating user modeling data
 - Combining recommendations
 - Linking domains
- Sharing/transferring knowledge
 - Sharing latent features
 - Transferring rating patterns

Transferring rating patterns (I)

rating patterns are transferred between domains

Transferring rating patterns (II)

- Pros:
 - apparently, no need of user or item overlap
- Cons:
 - computationally expensive

Transferring rating patterns: approaches

- Code-Book-Transfer (CBT): Transferring clusterlevel rating patterns
 - Li et al. 2009; Moreno et al. 2012; Gao et al. 2013

$$\mathbf{R}_{S} = \mathbf{U}_{S} \times \mathbf{B} \times \mathbf{V}_{S}'$$

 $\mathbf{R}_{T} = \mathbf{U}_{T} \times \mathbf{B} \times \mathbf{V}_{T}'$

- 1. Extraction of knowledge (codebook **B**) from auxiliary domain
- 2. Injection of knowledge in target domain to reduce sparsity
- 3. Recommendation in target domain with user-based kNN

AUX: MovieLens
TGT: BookCrossing

kNN CBT

MAE 0,5216 0,5064

RMSE 0,4736 0,4492

AUX: MovieLens			
TGT: BookCrossing			
	kNN	CBT	RND
MAE	0,5216	0,5064	0,4963
RMSE	0,4736	0,4492	0,4380

Contents

- 1. The cross-domain recommendation problem
- 2. Cross-domain recommendation techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Data partitioning

Source and target domains	Source and target domains	
training_profiles	training_profiles	
test_profiles test_ratings		
Hold-out	test_profiles test_ratings	
	Leave-some-users-out	

Goal vs. partitioning technique

	Hold-out	Leave-some- users-out	Leave-all-users- out
Cold start			X
New user		X	
New item			X
Accuracy	X		
Diversity	X		

Contents

- 1. The cross-domain recommendation problem
- 2. Cross-domain recommendation techniques
- 3. Evaluation of cross-domain recommenders
- 4. Open issues in cross-domain recommendation

Research issues (I)

- Synergy between cross-domain and contextual recommendations
 - different contexts (e.g., location, time, and mood) can be treated as different domains
 - ... and vice versa

Research issues (II)

- Cross-domain recommenders to reduce the user model elicitation effort
 - able to build detailed user profiles without the need to collect explicit user preferences

- New, real life cross-domain datasets
 - quite scarce and hard to reach in practice;
 - gathered by big industry players, like Amazon, eBay, and Yelp, but rarely available to the broader research community

8th ACM Conference on Recommender Systems

Foster City, Silicon Valley, California, USA, 6th-10th October 2014

Cross-domain Recommender Systems

Iván Cantador¹, Paolo Cremonesi²

 ¹ Universidad Autónoma de Madrid, Madrid, Spain ivan.cantador@uam.es
 ² Politecnico di Milano, Milan, Italy paolo.cremonesi@polimi.it

References (I)

Surveys

- Dong, G.: Cross Domain Similarity Mining: Research Issues and Potential Applications Including Supporting Research by Analogy. ACM SIGKDD Explorations Newsletter 14(1), pp. 43-47 (2012)
- Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: **Cross-domain Recommender Systems: A Survey of the State of the Art**. In: Proc. of the 2nd Spanish Conference on Information Retrieval, pp. 187-198 (2012)
- Li, B.: Cross-Domain Collaborative Filtering: A Brief Survey. In: Proc. of the 23rd IEEE International Conference on Tools with Artificial Intelligence, pp. 1085-1086 (2011)
- Pan, S. J., Yang, Q.: A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22(10), pp. 1345-1359 (2010)

References (II)

Aggregating knowledge: merging user preferences

- Abel, F., Araújo, S., Gao, Q., Houben, G.-J.: Analyzing Cross-system User Modeling on the Social Web. In: Proc. of the 11th International Conference on Web Engineering, pp. 28-43 (2011)
- Cantador, I., Fernández-Tobías, I., Bellogín, A.: Relating Personality Types with User Preferences in Multiple Entertainment Domains. In: Proc. of the 1st Workshop on Emotions and Personality in Personalized Services, CEUR workshop Proceedings, vol. 997 (2013)
- Cremonesi, P., Tripodi, A., Turrin, R.: Cross-domain Recommender Systems. In: Proc. of the 11th IEEE International Conference on Data Mining Workshops, pp. 496-503 (2011)
- Fernández-Tobías, I., Cantador, I., Plaza, L.: An Emotion Dimensional Model Based on Social Tags: Crossing Folksonomies and Enhancing Recommendations. In: Proc. of the 14th International Conference on E-Commerce and Web Technologies, pp. 88-100 (2013)
- González, G., López, B., de la Rosa, J. LL.: A Multi-agent Smart User Model for Cross-domain Recommender Systems. In: Proc. of Beyond Personalization 2005 - The Next Stage of Recommender Systems Research, pp. 93-94 (2005)

83

References (III)

Aggregating knowledge: merging user preferences

- Loni, B, Shi, Y, Larson, M. A., Hanjalic, A.: **Cross-Domain Collaborative Filtering with Factorization Machines**. In: Proc. of the 36th European Conf. on Information Retrieval (2014)
- Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Ishida, T.:
 Recommendations Over Domain Specific User Graphs. In: Proc. of the 19th European Conference on Artificial Intelligence, pp. 607-612 (2010)
- Szomszor, M. N., Alani, H., Cantador, I., O'Hara, K., Shadbolt, N.: Semantic Modelling of User Interests Based on Cross-Folksonomy Analysis. In: Proc. of the 7th Intl. Semantic Web Conference, pp. 632-648 (2008)
- Tiroshi, A., Berkovsky, S., Kaafar, M. A., Chen, T., Kuflik, T.: Cross Social Networks Interests Predictions Based on Graph Features. In: Proc. of the 7th ACM Conference on Recommender Systems, pp. 319-322 (2013)
- Winoto, P., Tang, T.: If You Like the Devil Wears Prada the Book, Will You also Enjoy the Devil Wears Prada the Movie? A Study of Cross-Domain Recommendations. New Generation Computing 26, pp. 209-225 (2008)

References (IV)

Aggregating knowledge: mediating user modeling data

- Berkovsky, S., Kuflik, T., Ricci, F.: **Cross-Domain Mediation in Collaborative Filtering**. In: Proc. of the 11th International Conference on User Modeling, pp. 355-359 (2007)
- Low, Y., Agarwal, D., Smola, A. J.: Multiple Domain User Personalization.
 In: Proc. of the 17th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 123-131 (2011)
- Pan, W., Xiang, E. W., Yang, Q.: Transfer Learning in Collaborative Filtering with Uncertain Ratings. In: Proc. of the 26th AAAI Conference on Artificial Intelligence, pp. 662-668 (2012)
- Shapira, B., Rokach, L., Freilikhman, S.: Facebook Single and Cross Domain
 Data for Recommendation Systems. UMUAI 23(2-3), pp. 211-247 (2013)
- Stewart, A., Diaz-Aviles, E., Nejdl, W., Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L.: Cross-tagging for Personalized Open Social Networking. In: Proc. of the 20th ACM Conference on Hypertext and Hypermedia, pp. 271-278 (2009)
- Tiroshi, A., Kuflik, T.: **Domain Ranking for Cross Domain Collaborative Filtering**. In: Proc. of the 20th International Conf. on User Modeling, Adaptation, and Personalization, pp. 328-333 (2012)

References (V)

Aggregating knowledge: combining recommendations

- Berkovsky, S., Kuflik, T., Ricci, F.: Distributed Collaborative Filtering with Domain Specialization. In: Proc. of the 1st ACM Conference on Recommender Systems, pp. 33-40 (2007)
- Givon, S., Lavrenko, V.: Predicting Social-tags for Cold Start Book
 Recommendations. In: Proc. of the 3rd ACM Conference on Recommender
 Systems, pp. 333-336 (2009)
- Zhuang, F., Luo, P., Xiong, H., Xiong, Y., He, Q., Shi, Z.: Cross-domain
 Learning from Multiple Sources: A Consensus Regularization Perspective.
 IEEE Transactions on Knowledge and Data Engineering 22(12), pp. 1664-1678 (2010)

References (VI)

Linking/transferring knowledge: linking domains

- Azak, M.: Crossing: A Framework to Develop Knowledge-based
 Recommenders in Cross Domains. MSc thesis, Middle East Technical
 University (2010)
- Berkovsky, S., Goldwasser, D., Kuflik, T., Ricci, F.: Identifying Inter-domain Similarities through Content-based Analysis of Hierarchical Web-Directories. In: Proc. of the 17th European Conference on Artificial Intelligence, pp. 789-790 (2006)
- Cao, B., Liu, N. N., Yang, Q.: Transfer Learning for Collective Link
 Prediction in Multiple Heterogeneous Domains. Proc. of 27th
 International Conf. on Machine Learning, pp. 159-166 (2010)
- Chung, R., Sundaram, D., Srinivasan, A.: 2007. **Integrated Personal Recommender Systems**. In: Proc. of the 9th International Conference on Electronic Commerce, pp. 65-74 (2007)

References (VII)

Linking/transferring knowledge: linking domains

- Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: 2011. A Generic Semantic-based Framework for Cross-domain Recommendation. In: Proc. of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 25-32 (2011)
- Loizou, A.: How to Recommend Music to Film Buffs: Enabling the Provision of Recommendations from Multiple Domains. PhD thesis, University of Southampton (2009)
- Shi, Y., Larson, M., Hanjalic, A.: Tags as Bridges between Domains:
 Improving Recommendation with Tag-induced Cross-domain
 Collaborative Filtering. In: Proc. of the 19th International Conference on User Modeling, Adaption, and Personalization, pp. 305-316 (2011)
- Zhang, Y., Cao, B., Yeung, D.-Y.: Multi-Domain Collaborative Filtering. In: Proc. of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 725-732 (2010)

References (VIII)

- Linking/transferring knowledge: sharing latent features
 - Enrich, M., Braunhofer, M., Ricci, F.: Cold-Start Management with Cross-Domain Collaborative Filtering and Tags. In: Proc. of the 14th Intl.
 Conference on E-Commerce and Web Technologies, pp. 101-112 (2013)
 - Fernández-Tobías, I., Cantador, I.: Exploiting Social Tags in Matrix
 Factorization Models for Cross-domain Collaborative Filtering. In: Proc. of the 1st Intl. Workshop on New Trends in Content-based Recommender Systems (2013)
 - Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., Zhu, C.: Personalized
 Recommendation via Cross-domain Triadic Factorization. In: Proc. of the
 22nd International Conference on World Wide Web, pp. 595-606 (2013)
 - Pan, W., Liu, N. N., Xiang, E. W., Yang, Q.: Transfer Learning to Predict
 Missing Ratings via Heterogeneous User Feedbacks. In: Proc. of the 22nd
 Intl. Joint Conference on Artificial Intelligence, pp. 2318-2323 (2011)
 - Pan, W., Xiang, E. W., Liu, N. N., Yang, Q.: Transfer Learning in
 Collaborative Filtering for Sparsity Reduction. Proc. of the 24th AAAI Conf.
 on Artificial Intelligence, pp. 210-235 (2010)

89

References (IX)

- Linking/transferring knowledge: transferring rating patterns
 - Cremonesi, P., Quadrana, M.: Cross-domain Recommendations without Overlapping Data: Myth or Reality? In: Proc. of the 8th ACM Conference on Recommender Systems (2014)
 - Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: **Cross-Domain Recommendation via Cluster-Level Latent Factor Model**. In: Proc. of the 17th and 24th European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 161-176 (2013)
 - Lee, C. H., Kim, Y. H., Rhee, P. K.: Web Personalization Expert with Combining Collaborative Filtering and Association Rule Mining Technique. Expert Systems with Applications 21(3), pp. 131-137 (2001)

References (X)

- Linking/transferring knowledge: transferring rating patterns
 - Li, B., Yang, Q., Xue, X.: Can Movies and Books Collaborate? Cross-domain Collaborative Filtering for Sparsity Reduction. In: Proc. of the 21st International Joint conference on Artificial Intelligence, pp. 2052-2057 (2009)
 - Li, B., Yang, Q., Xue, X.: **Transfer Learning for Collaborative Filtering via a Rating-matrix Generative Model**. In: Proc. of the 26th International Conf. on Machine Learning, pp. 617-624 (2009)
 - Moreno, O. Shapira, B. Rokach, L. Shani, G.: TALMUD: Transfer Learning for Multiple Domains. In: Proc. of the 21st ACM Conf. on Information and Knowledge Management, pp. 425-434 (2012)