CNF Encodings for the Car Sequencing Problem

Valentin Mayer-Eichberger and Toby Walsh NICTA and University of New South Wales, Australia

Introduction

- Cars require different options (air-conditioning, sun-roof, etc.)
- ► Is there a production sequence for cars on the assembly line satisfying the sliding capacity constraints?
- ► CSPLib Benchmark Nr. 1

Example

- ► Classes $C = \{1, 2, 3\}$ with demand $d_1 = 3, d_2 = 2, d_3 = 2$
- ▶ Options $O = \{a, b\}$ with capacity constraints 1/2 and 1/5
- ightharpoonup Class 1: \emptyset , Class 2: $\{a\}$, Class 3: $\{a,b\}$

Sequence of cars	3	1	2	1	2	1	3
Option a	1	-	1	-	1	-	1
Option b	1	-	-	-	-	-	1

PB Model

- ightharpoonup Boolean variable $\mathbf{c_i^k}$: car $\mathbf{k} \in \mathbf{C}$ is at position \mathbf{i}
- \triangleright Boolean variable o: option $I \in O$ is at position i
- ightharpoonup Demand constraints: $\forall \mathbf{k} \in \mathbf{C}$

$$\sum_{i=1}^{n} c_i^k = d_k$$

ightharpoonup Capacity constraints: $\forall I \in O$ with ratio u_I/q_I

$$\bigwedge_{i=0}^{n-q_l} \left(\sum_{j=1}^{q_l} o_{i+j}^l \le u_l \right)$$

And in all positions $i \in \{1 \dots n\}$ of the sequence it must hold:

ightharpoonup Link between classes and options: for each $k \in C$ and

$$\begin{aligned} \forall I \in O_k: \ c_i^k - o_i^l \leq 0 \\ \forall I \in O \setminus O_k: \ c_i^k + o_i^l \leq 1 \end{aligned}$$

Exactly one car:

$$\sum_{k \in C} c_i^k = 1$$

SAT Approach: The Ultimate Decomposition

- ightharpoonup ONE constraint: e.g. $\mathbf{a} \lor \mathbf{b} \lor \neg \mathbf{c}$.
- ightharpoonup ONE propagator: e.g. **a** and \neg **a** \lor **b** then propagate **b**.
- ► Use SAT solver as a blackbox and inherit all good properties!
- ► Central constraint: $\left(\sum_{i=1}^{n} x_i = d\right) \land \bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u\right)$
- ► Use cumulative sums:

$$s_{i,j} \iff (j \leq \sum_{l=1}^{i} x_l)$$

Counter based Clause Set

Example: 22 Cars, Capacity 4/8, Demand d = 12

Results on the harder CSPLib Instances

	E1	E2	E3	ASP	РВ
#solved UNSAT	17	15	17	10	8
#fastest UNSAT	5	4	4	0	4
#solved SAT	11	11	11	7	2
#fastest SAT	0	4	7	0	0

E1-E3=variants of SAT, PB=minisat+, ASP=Clasp

Conclusions and Future Work

- Conclusions
 - ▶ SAT can be very competitive on CP benchmarks
 - ▶ SAT is very strong on showing unsatisfiability
 - ▶ Global Constraints motivate for encodings
 - ▶ Choosing the right encoding of cardinality constraints is crucial
- ► Current and Future work:
 - ▶ Fair Comparison to CP, IP, ASP, LS . . .
 - ▶ Clean proof of GAC and lower bound on size
 - ▶ Idea useful in rostering, planning, scheduling?
 - ▶ Exponential encoding in the number of options?
 - ▶ New instances!

Discussion: Related Work

- ➤ Sinz: Sequential Counter CNF [5]
- ► Een and Soerensson: Translation through BDDs to CNF [3]
- ► Bacchus: Decomposition through DFAs to CNF [1]
- ▶ Brand et al: Decomposition to cumulative sums for CP [2]
- ► Siala et al: Linear time propagator for CP [4]

Bibliography

Fahiem Bacchus. In CP, pages 133-147, 2007. Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter J. Stuckey, and Toby Walsh. In CP, pages 210-224, 2007. Niklas Eén and Niklas Sörensson. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.

In CP, pages 55-69, 2012.

Carsten Sinz. In CP, pages 827-831, 2005.

Created with LATEX beamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php