캡스톤 디자인 **'딥페이크 탐지**'

중간발표

김지수, 김민지, 민지민

지난 캡스톤 회의 내용

<코드 수정 및 실험>

- 전처리 단계에서 왜곡이 반영되도록 코드 수정 → 하나의 이미지에 여러 개의 공격을 가하도록(공격의 세기 및 공격의 순서가 random 하게 적용될 수 있도록)
- 학습할 때는 PSNR 30 이상인 공격 파라미터를 랜덤으로 선택하도록 하고, test 시에는 공격 파라미터 weak ~ strong까지 10개 레벨로 구성해서 실험 진행

공격 함수・클래스

```
def get_attack_params(attack_name):
    attack_dict = {
        'gaussian_noise': {'noise_std': (0, 300)},
        'sharpening' : {'center' : (1, 5)},
        'jpeg' : {'quality' : (5, 95)}
        # 'sp_noise': {'noise_amount': (0.0, 0.01)},
    }
    return attack_dict[attack_name.lower()]
```

PSNR 30 이상이 되도록 공격범위 설정

```
def fetch_attack():
    attacks = [GaussianNoise.apply, Sharpening.apply]
    random.shuffle(attacks)
    return attacks
```

공격 순서가 랜덤하게 적용되도록 설정

공격 함수・클래스

sharpening class 정의

```
class GaussianNoise(Function):

    def forward(ctx,image):
        (start, end) = get_attack_params('gaussian_noise')['noise_std']
        noise_std = np.random.uniform(start, end)
        mean = 0
        sigma = noise_std ** 0.5
        gauss = np.random.normal(mean, sigma,image.shape)
        res = image + gauss
        noisy = np.clip(res, 0, 255).astype(np.uint8)
        return noisy
```

gaussian noise class 정의

공격 함수 · 클래스

```
for attack in attacks:
    train_fakenoise = attack(train_fakenoise)
# JPEG 적용
(start, end) = get_attack_params('jpeg')['quality']
noise_amount = np.random.uniform(start, end)
save_path = save_fakenoise_train_path + fake_img
cv2.imwrite(save_path, train_fakenoise, [cv2.IMWRITE_JPEG_QUALITY, noise_amount])
```

sharpening과 gaussian noise가 랜덤하게 적용된 이미지에 마지막으로 jpeg 적용

noise 이미지 test

```
1 print('-' * 50)
2 acc = validate(valid_loader, model, criterion)
------
Valid: 100%| 1800/1800 [08:14<00:00, 3.64it/s, loss - 5.3672, acc - 0.502]</pre>
```

valid list : realnoise valid(900), fakenoise valid(900)에 대해서 test

adversarial train

```
Epoch 1/3
                      | 0/313 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/
Train:
        0%|
  cpuset checked))
Train: 100%|
                        313/313 [11:07<00:00, 2.13s/it, loss - 0.1489, acc - 0.939]
Valid: 100%|
                        113/113 [01:36<00:00, 1.17it/s, loss - 0.6761, acc - 0.804]
Epoch 2/3
Train: 100%|
                        313/313 [10:34<00:00, 2.03s/it, loss - 0.0437, acc - 0.985]
Valid: 100%||
                        113/113 [01:22<00:00, 1.37it/s, loss - 0.1739, acc - 0.941]
Epoch 3/3
Train: 100%|
                        313/313 [10:33<00:00, 2.02s/it, loss - 0.0319, acc - 0.989]
                        113/113 [01:22<00:00, 1.36it/s, loss - 0.3671, acc - 0.907]
Valid: 100%|
```

train list: 원본 real train(2500), 원본 fake train(2500), realnoise train(2500), fakenoise train(2500)

valid list: 원본 real valid(900), 원본 fake valid(900), realnoise valid(900), fakenoise valid(900)

<실험 세팅>	gaussian noise	sharpening	jpeg
LV1(weak)	30	3	90
LV2	60	5	85
LV3	90	7	75
LV4	120	9	65
LV5	150	11	55
LV6	180	13	45
LV7	210	15	35
LV8	240	17	25
LV9	270	19	15
LV10(strong)	300	21	5

Lv1 Lv2

Lv3 Lv4

Lv5 Lv6

Lv7 Lv8

Lv8 Lv8

Lv9 Lv10

noise test : real noise test + fake noise test

	loss	acc
원본 test 이미지	0.0243	0.988
LV1(weak)	0.3342	0.926
LV2	0.2384	0.938
LV3	0.1938	0.945
LV4	0.2510	0.923
LV5	0.3331	0.901
LV6	0.5952	0.866
LV7	0.5447	0.866
LV8	0.5269/0.3436	0.863/0.890
LV9	0.3219	0.897
LV10(strong)	0.2820	0.922