2012-AE-27-39

AI24BTECH11011 - Himani Gourishetty

- 1) The Lebesgue measure of the set $A = \left\{0 \le x \le 1 : x \sin\left(\frac{\pi}{2x}\right) \ge 0\right\}$ is
 - a) 0
 - b) 1
 - c) ln 2
 - d) $1 \ln \sqrt{2}$
- 2) Which of the following statements are **TRUE**?

 - P:The set $\{x \in \mathbb{R} : |cox| \le \frac{1}{2}\}$ is a compact. Q: The set $\{x \in \mathbb{R} : \tan x \text{ is not differentiable}\}$ is complete. R:The set $\{x \in \mathbb{R} : \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \text{ is convergent}\}$ is bounded. S:The set $\{x \in \mathbb{R} : f(x) = \cos x \text{ has a local maxima}\}$ is closed.

 - a) P and Q
 - b) R and S
 - c) Q and S
 - d) P and S
- 3) If a random variable X assumes only positive integral values, with the probability

$$P(X = x) = \frac{2}{3} \left(\frac{1}{3}\right)^{x-1}, x = 1, 2, 3, 4, \dots,$$

then E(X) is

- a) $\frac{2}{9}$ b) $\frac{2}{3}$
- c) Ĭ
- d) $\frac{3}{2}$
- 4) The probability density function of the random variable X is

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{\frac{-x}{\lambda}}, x > 0\\ 0, x \le 0, \end{cases}$$

where $\lambda > 0$. For testing the hypothesis $H_0: \lambda = 3$, against $H_A: \lambda = 5$, a test is given as "Reject H_0 if $X \ge 4.5$ ". The probability of type I error and power of this text are, respectively,

- a) 0.1353 and 0.4966
- b) 0.1827 and 0.379
- c) 0.2021 and 0.4493
- d) 0.2231 and 0.4066
- 5) The order of the smallest possible non trivial group consisting elements x and y such that $x^7 = y^2 = e^{-x^2}$ and $yx = x^4y$ is
 - a) 1
 - b) 2
 - c) 7
 - d) 14
- 6) The number of 5-Sylow subgroup(s) in a group of order 45 is

- a) 1
- b) 2
- c) 3
- d) 4
- 7) The solution of the initial value problem

$$y'' + 2y' + 10y = 6\delta(t)$$
, $y(0) = 0$, $y'(0) = 0$,

where $\delta(t)$ denotes the Dirac-delta function, is

- a) $2e^t \sin 3t$
- b) $6e^t \sin 3t$
- c) $2e^{-t} \sin 3t$
- d) $6e^{-t} \sin 3t$
- 8) Let $\omega = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\mathbf{M} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $\mathbf{N} = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}$ and $G = \langle \mathbf{M}, \mathbf{N} \rangle$ be the group generated by the matrix M and N under matrix multiplication. Then

 - a) $\frac{G}{Z}(G) \cong C_6$ b) $\frac{G}{Z}(G) \cong S_3$ c) $\frac{G}{Z}(G) \cong C_2$

 - d) $\frac{G}{Z}(G) \cong C_4$
- 9) The flux of the vector field $\mathbf{u} = x\hat{i} + y\hat{j} + z\hat{k}$ flowing out through the surface of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, a > b > c > 0,$$

- is
- a) πabc
- b) $2\pi abc$
- c) $3\pi abc$
- d) $4\pi abc$
- 10) The integral surface satisfying the partial differential equation $\frac{\partial z}{\partial x} + z^2 \frac{\partial z}{\partial y} = 0$ and passing through the straight line x = 1, y = z is
 - a) $(x-1)z + z^2 = y^2$
 - b) $x^2 + y^2 z^2 = 1$
 - c) $(y-z)x + x^2 = 1$
 - d) $(x-1)z^2 + z = y$
- 11) The diffusion equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, u = u(x, t), \quad u(0, t) = 0 = u(\pi, t), \quad u(x, 0) = \cos x \sin 5x$$

admits the solution

- a) $\frac{e^{-36t}}{2} [\sin 6x + e^{20t} \sin 4x]$ b) $\frac{e^{-36t}}{2} [\sin 4x + e^{20t} \sin 6x]$ c) $\frac{e^{-20t}}{2} [\sin 3x + e^{15t} \sin 5x]$ d) $\frac{e^{-36t}}{2} [\sin 5x + e^{20t} \sin x]$

- 12) Let f(x) and xf(x) be a particular solutions of a differential equation

$$y'' + R(x)y' + S(x)y = 0.$$

Then the solution of the differential equation y'' + R(x)y' + S(x)y = f(x) is

a)
$$y = \left(\frac{-x^2}{2} + \alpha x + \beta\right) f(x)$$

- b) $y = \left(\frac{x^2}{2} + \alpha x + \beta\right) f(x)$ c) $y = \left(-x^2 + \alpha x + \beta\right) f(x)$ d) $y = \left(x^2 + \alpha x + \beta\right) f(x)$

- 13) Let the Legendre equation $(1-x^2)y'' 2xy' + n(n+1)y = 0$ have n^{th} degree polynomial solution $y_n(x)$ such that $y_n(1) = 3$. If $\int_{-1}^{1} (y_n^2(x) + y_{n-1}^2(x)) dx = \frac{144}{15}$, then n is
 - a) 1
 - b) 2
 - c) 3
 - d) 4