第2章 (之6)

第7次作业

教学内容: § 2.2.5 极限的运算法则 E § 2.2.6 无穷小的比较

1. 选择题

** (1) 设
$$\alpha(x) = \frac{1-x}{1+x}$$
, $\beta(x) = 3-3\sqrt[3]{x}$, 则当 $x \to 1$ 时 ()

- $(A)\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小,但不是 等价无穷小;
- $(B)\alpha(x)$ 与 $\beta(x)$ 是等价无穷小;
- $(C)\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小;
- $(D)\beta(x)$ 是比 $\alpha(x)$ 高阶的无穷小.

**(2) 设
$$f(x)$$
为可导函数且满足 $\lim_{x\to 0} \frac{f(a)-f(a-x)}{2x} = -1$,则曲线 $y = f(x)$ 在点

(a, f(a))处的切线斜率为 (

$$(A)$$
2 (B) -1 (C) 1 (D) -2

分析:
$$\lim_{x\to 0} \frac{f(a)-f(a-x)}{2x} = \frac{1}{2}\lim_{x\to 0} \frac{f(a-x)-f(a)}{-x} = \frac{1}{2}f'(a) = -1$$
,

答(D)

**(3)
$$\centcolor{black}{\centcolor{black}{\chi}} f(x) = (2 + |x|) \sin x \,, \; \cup f(x) \chi x = 0 \chi \chi \chi \chi \chi x = 0 \chi \chi \chi \chi \chi x = 0 \chi \chi \chi \chi x = 0 \$$

(A) f'(0) = 2 (B) f'(0) = 0

(B)
$$f'(0) = 0$$

(C)
$$f'(0) = 1$$

$$\left(\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\sin x(2 + |x|)}{x} = 2\right)$$

答(A)

**2. 试求下列极限:

(1)
$$\lim_{x\to 0} \left(\frac{1}{1+2x}\right)^{\frac{1}{x}}$$
; (2) $\lim_{x\to 0} \frac{\sin(5x^2\sin x)}{\left(\arctan x\right)^3}$; (3) $\lim_{x\to 1} \frac{\sqrt[5]{x}-1}{x-1}$;

(4)
$$\lim_{n\to\infty} 2^n \sin\frac{x}{2^n}$$
 (x 为不等于零的常数); (5) $\lim_{x\to\infty} x^2 (1-\cos\frac{1}{x})$;

(6)
$$\lim_{x\to 0} \frac{3^x - 1}{\ln(1+x)}$$
.

解: (1)
$$\lim_{x\to 0} \left(\frac{1}{1+2x}\right)^{\frac{1}{x}} = \frac{1}{\lim\left[(1+2x)^{\frac{1}{2x}}\right]^2} = \frac{1}{e^2}$$
.

(2)
$$\lim_{x \to 0} \frac{\sin(5x^2 \sin x)}{(\arctan x)^3} = \lim_{x \to 0} \frac{5x^2 \sin x}{x^3} = \lim_{x \to 0} \frac{5x^2 \cdot x}{x^3} = 5.$$

1

(3)
$$\lim_{x \to 1} \frac{\sqrt[5]{x} - 1}{x - 1} = \lim_{x \to 1} \frac{\sqrt[5]{1 + (x - 1)} - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{x - 1}{5}}{x - 1} = \frac{1}{5}$$

(4)
$$\lim_{n\to\infty} 2^n \sin\frac{x}{2^n} = \lim_{n\to\infty} 2^n \cdot \frac{x}{2^n} = x.$$

(5)
$$\lim_{x \to \infty} x^2 (1 - \cos \frac{1}{x}) = \lim_{x \to \infty} x^2 \cdot \frac{1}{2} (\frac{1}{x})^2 = \frac{1}{2}$$

(6)
$$\lim_{x\to 0} \frac{3^x - 1}{\ln(1+x)} = \lim_{x\to 0} \frac{e^{x\ln 3} - 1}{x} = \lim_{x\to 0} \frac{x\ln 3}{x} = \ln 3$$

**3. 试求 $f(x) = \cos x$ 的导数。

$$\Re \colon f'(x) = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\left(x + \frac{\Delta x}{2}\right)\sin\frac{\Delta x}{2}}{\Delta x} \\
= \lim_{\Delta x \to 0} -\sin\left(x + \frac{\Delta x}{2}\right) \cdot \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \lim_{\Delta x \to 0} \left[-\sin\left(x + \frac{\Delta x}{2}\right)\right] \cdot \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = -\sin x,$$

$$\therefore f'(x) = (\cos x)' = -\sin x.$$

**4. 研究极限 $\lim_{x\to 0} \frac{\sqrt{2-2\cos ax}}{x} (a > 0)$ 的存在性.

解: 原式 =
$$\lim_{x \to 0} \frac{2 \left| \sin \frac{ax}{2} \right|}{x}$$

$$\lim_{x \to 0^{+}} \frac{2 \left| \sin \frac{ax}{2} \right|}{x} = \lim_{x \to 0^{+}} \frac{2 \sin \frac{ax}{2}}{x} = a, \lim_{x \to 0^{-}} \frac{2 \left| \sin \frac{ax}{2} \right|}{x} = \lim_{x \to 0^{-}} \frac{-2 \sin \frac{ax}{2}}{x} = -a$$
由于左、右极限不相等,所以原极限不存在.

***5. 适当选取 A 、 k 的值,使下式成立: $\sqrt{1+\tan x} - \sqrt{1+\sin x} \sim Ax^k$ (当 $x \to 0$).

$$\Re : \sqrt{1 + \tan x} - \sqrt{1 + \sin x} = \frac{\tan x - \sin x}{\sqrt{1 + \tan x} + \sqrt{1 + \sin x}} = \frac{\sin x(\frac{1 - \cos x}{\cos x})}{\sqrt{1 + \tan x} + \sqrt{1 + \sin x}}$$
$$= \frac{\sin x \cdot 2\sin^2 \frac{x}{2}}{(\sqrt{1 + \tan x} + \sqrt{1 + \sin x}) \cdot \cos x},$$

$$\therefore x \to 0 \quad \forall \text{ in } x \sim x, \quad \therefore \text{ L式等价于 } \frac{2 \cdot x \cdot (\frac{x}{2})^2}{1+1} = \frac{x^3}{4},$$

$$\therefore A = \frac{1}{4}, \quad k = 3.$$

6. 当 $x \rightarrow 0$ 时, 试确定下列各无穷小对 x 的阶数.

解: (1)
$$\because \lim_{x\to 0} \frac{x^3 + 10000 x^2}{x^2} = 10000$$
 , ... 阶数为 2。

**7.
$$\partial f(x) =
 \begin{cases}
 \alpha(x)\cos\frac{1}{x}, & x \neq 0, \\
 0, & x \neq 0,
 \end{cases}$$
其中 $\alpha(x)$ 为 x 的高阶无穷小. $(x \to 0)$,

试证明函数 f(x) 在 x = 0 点处可导

证明:由于
$$x \to 0$$
时, $\frac{\alpha(x)}{x}$ 是无穷小量, $\cos \frac{1}{x}$ 是有界量,所以
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\alpha(x)}{x} \cos \frac{1}{x} = 0$$
, $\therefore f(x)$ 在 $x = 0$ 外可导。

***8. 设
$$f(x) = \frac{\varphi(x) \cdot \tan 5x}{x}$$
, 其中 $\varphi(x)$ 在 $x = 0$ 处可导,且 $\varphi(0) = 0$, $\varphi'(0) = 1$, 试证明: $f(x) \sim 5x$, $(x \to 0)$.

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{\varphi(x) \cdot \tan 5x}{x^2} = \lim_{x \to 0} \frac{\tan 5x}{x} \cdot \frac{\varphi(x) - \varphi(0)}{x} = 5\varphi'(0) = 5,$$

$$\therefore f(x) = 5x \Rightarrow \text{ for } x \Rightarrow \text{ for$$

***9. 设
$$f(x) = \frac{\varphi(x)\sin x}{(1 - e^{2x})x}$$
, 其中 $\varphi(x)$ 在 $x = 0$ 处可导,且 $\varphi(0) = 0$,求 $\lim_{x \to 0} f(x)$.

解:
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\varphi(x) - \varphi(0)}{x} \cdot \frac{\sin x}{1 - e^{2x}} = \varphi'(0) \cdot (-\frac{1}{2}) = -\frac{1}{2}\varphi'(0)$$
.

***10. 设
$$a_n = \frac{10}{1} \cdot \frac{11}{3} \cdot \dots \cdot \frac{n+9}{2n-1}$$
, 试证明数列 $\{a_n\}$ 有极限, 并求出 $\lim_{n \to \infty} a_n$ 。

解:由于数列的极限存在与否与该数列的有限项无关,故我们从第10项开始考虑,当

$$n \ge 10 \quad \text{Iff}, \quad \frac{a_{n+1}}{a_n} = \frac{n+10}{2n+1} \le \frac{20}{21}, \qquad \qquad \frac{a_n}{a_{10}} \le \left(\frac{20}{21}\right)^{n-10},$$

$$0 \le a_n \le \left(\frac{20}{21}\right)^{n-10} a_{10},$$

 \therefore 由夹逼定理知,数列 $\{a_n\}$ 存在极限,且 $\lim_{n\to\infty}a_n=0$.

注:本题也可利用"单调有界数列收敛定理"证明该数列收敛,再计算其极限.

***11.
$$\forall x_0 = 2, x_n = \frac{1}{2} \left(x_{n-1} + \frac{1}{x_{n-1}} \right) (n = 1, 2, \cdots)$$
, 试证明数列 $\{x_n\}$ 收敛, 并求其极限.

证明: 显见
$$x_n > 0$$
,且 $x_n = \frac{1}{2}(x_{n-1} + \frac{1}{x_{n-1}}) \ge \sqrt{x_{n-1} \cdot \frac{1}{x_{n-1}}} = 1$,

$$x_n - x_{n-1} = \frac{1 - x_{n-1}^2}{2x_{n-1}} \le 0$$
,

 $\therefore \{x_n\}$ 单调下降,且有下界, $\therefore \lim_{n \to \infty} x_n$ 存在。设此极限为 A,

对 $x_n = \frac{1}{2}(x_{n-1} + \frac{1}{x})$ 两边取极限得: $A = \frac{1}{2}(A + \frac{1}{A})$, 解得 A = 1 (舍负根).

$$\lim_{n \to \infty} x_n = 1$$

***12. 证明数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, …收敛, 并求其极限.

解:
$$x_1 = \sqrt{2}$$
, $x_{n+1} = \sqrt{2+x}_n$ (n =1, 2, …)

利用数学归纳法证明数列 $\{x_n\}$ 有界

$$\stackrel{\text{u}}{=}$$
 n=1 时, $x_1 = \sqrt{2} < 2$,

假定当 n=k 时, x_k <2, 则当 n=k+1 时, $x_{k+1} = \sqrt{2+x_k} < \sqrt{2+2} = 2$,

 $x_n < 2$, (n =1, 2, ...)

$$x_{n+1} - x_n = \sqrt{2 + x_n} - x_n = \frac{2 + x_n - x_n^2}{\sqrt{2 + x_n} + x_n} = -\frac{(x_n - 2)(x_n + 1)}{\sqrt{2 + x_n} + x_n} > 0$$

于是数列 $\{x_n\}$ 递增.

由数列的单调有界收敛准则, 得 $\{x_n\}$ 收敛.

设 $a = \lim x_n$,

则由 $x_{n+1} = \sqrt{2 + x_n}$,取 $n \to \infty$,得 $a = \sqrt{2 + a}$,解得 a = 2 , (a = -1 舍去). $\therefore \lim_{n\to\infty} x_n = 2.$

第2章 (之7)

第8次作业

教学内容: § 2.3.1 函数连续的概念 § 2.3.2 连续函数的运算性质 § 2.3.3 初等函数的连续

**1. 设
$$f(x) = \begin{cases} \frac{\sin x + e^{2ax} - 1}{x}, & \text{if } x \neq 0 \\ a, & \text{if } x = 0 \end{cases}$$
, 在 $x = 0$ 处连续,则 $a =$ ______.

2. 试利用极限四则运算的性质,重要极限,等价无穷小,基本初等函数连续性等各种已知结果, 求下列极限:

** (1)
$$\lim_{x \to 1} \frac{\tan(x^2 - 1)}{x - \frac{1}{x}};$$

$$\Re: \quad \lim_{x \to 1} \frac{\tan(x^2 - 1)}{x - \frac{1}{x}} = \lim_{x \to 1} \frac{x \cdot \sin(x^2 - 1)}{(x^2 - 1) \cdot \cos(x^2 - 1)} = 1.$$

** (2)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{\left(\arcsin x\right)^3};$$

$$\Re \colon \lim_{x \to 0} \frac{\tan x - \sin x}{\left(\arcsin x\right)^3} = \lim_{x \to 0} \frac{\tan x \cdot (1 - \cos x)}{\left(\arcsin x\right)^3} \,,$$

$$x \to 0$$
 时,有1-cos $x \sim \frac{x^2}{2}$, tan $x \sim x$, arcsin $x \sim x$,

所以 原式=
$$\lim_{x\to 0} \frac{x \cdot \frac{x^2}{2}}{x^3} = \frac{1}{2}$$
.

** (3) 计算极限
$$\lim_{x\to 0} \frac{e^{\cos x} - e}{r^2}$$
;

解: 因当
$$x \to 0$$
 $e^{\cos x} - e = e(e^{\cos x - 1} - 1)$

$$\sim e(\cos x - 1) \sim -\frac{e}{2}x^2$$

故原式 =
$$\lim_{x\to 0} \frac{-\frac{e}{2}x^2}{x^2} = -\frac{e}{2}$$
.

** (4) 计算极限
$$\lim_{x\to 0} \frac{(e^{\sin x} - 1)^4 \cdot \sqrt{1 + x^2}}{(1 - \cos x) \ln(1 + x^2)}$$

解: 因当
$$x \to 0$$
时

$$1 - \cos x \sim \frac{1}{2}x^2$$
, $\ln(1+x^2) \sim x^2$, $e^{\sin x} - 1 \sim \sin x \sim x$,

原式 =
$$\lim_{x\to 0} \frac{x^4 \sqrt{1+x^2}}{\frac{1}{2}x^2 \cdot x^2} = 2$$
.

** (5)
$$\lim_{x\to 1} \left(\frac{3x+1}{3+x}\right)^{\frac{1}{x-1}}$$
;

解:
$$\lim_{x\to 1} \left(\frac{3x+1}{3+x}\right)^{\frac{1}{x-1}} = \lim_{x\to 1} \left(1 + \frac{2x-2}{3+x}\right)^{\frac{3+x}{2(x-1)}\cdot\frac{2}{3+x}} = \lim_{x\to 1} e^{\frac{2}{3+x}} = e^{\frac{1}{2}}$$
。

** (6)
$$\lim_{x\to 0} (1+3x)^{\frac{2}{\sin x}}$$

解:
$$\lim_{x\to 0} (1+3x)^{\frac{2}{\sin x}} = e^6$$
.

**(7)
$$\lim_{n \to \infty} \left(\frac{n-2}{n+1} \right)^n$$

解: $\lim_{n \to \infty} \left(\frac{n-2}{n+1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{-3}{n+1} \right)^{\frac{n+1}{-3} \cdot \frac{-3n}{n+1}} = e^{-3}$

**3. 讨论函数 $f(x) = \begin{cases} |x| \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

解: $\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| \sin \frac{1}{x} = 0 = f(0),$

∴ 函数 $f(x)$ 在点 $x = 0$ 连续.

**4. 设函数
$$f(x) = \begin{cases} ae^x, & x < 0 \\ b - 1, & x = 0 \\ bx + 1, & x > 0 \end{cases}$$

解: 容易看出 f(x)在($-\infty$, -1), (-1, 1)及(1, $+\infty$)内 均连续 在x = -1处,

$$\lim_{x \to -1-0} f(x) = \lim_{x \to -1-0} (1-x) = 2,$$

$$\lim_{x \to -1+0} f(x) = \lim_{x \to -1+0} \cos \frac{\pi x}{2} = 0,$$

 $f(-1-0) \neq f(-1+0)$ 故f(x)在x = -1处不连续

在
$$x = 1$$
处, $f(1+0) = \lim_{x \to 1+0} (x-1) = 0$,

$$f(1-0) = \lim_{x \to 1-0} \cos \frac{\pi x}{2} = 0,$$

$$f(1) = \cos\frac{\pi}{2} = 0,$$

f(1-0) = f(1) = f(1+0), able to f(x) = 1 be ball to f(x) = 1.

第2章 (之8)

第9次作业

**1. 函数
$$y = \frac{x^2 - 1}{x^2 - 3x + 2}$$
 的间断点为 $x = 1.2$,则此函数间断点的类 型为(

A. x = 1, 2 都是第一类; B. x = 1, 2 都是第二类;

C. x = 1是第一类, x = 2是第二类;

D. x = 1是第二类,x = 2是第一类.

解答: C

***2. 设
$$f(x) = \frac{x^2 - x}{\left|x^2 - 1\right|} \sin \frac{1}{x}$$
, 则 $x = -1$ 是 $f(x)$ 的_____间断点; $x = 0$ 是 $f(x)$ 的_____间断点; $x = 1$ 是 $f(x)$ 的_____间断点. 解答:1、无穷; 2、可去; 3、跳跃.

**3. 指出 $f(x) = \frac{x^2 - x}{|x - 1| \sin x}$ 的间断点,并判定其类型.

解:
$$x = 0$$
, $x = 1$, $x = \pm \pi$, $\pm 2\pi$, ..., $\pm n\pi$, ..., 都是 $f(x)$ 的间断点,在 $x = n\pi$ ($n \neq 0$, $n \in z$)处, $\sin n\pi = 0$, $\lim_{x \to n\pi} f(x) = \infty$,

故 $x = \pm \pi$, $\pm 2\pi$, $\pm 3\pi$, ...是f(x)的第二类间断点;

在
$$x = 0$$
处, $f(0)$ 无意义, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x(x-1)}{|x-1|\sin x} = -1$,

 $\therefore x = 0$ 是f(x)的可去间断点;

在
$$x = 1$$
处 $f(1-0) = \frac{-1}{\sin 1}$, $f(1+0) = \frac{1}{\sin 1}$, $f(1-0) \neq f(1+0)$

 $\therefore x = 1$ 是f(x)的跳跃间断点.

***4 、指出下面函数的无穷间断点: $f(x) = \frac{1-\cos x}{x\sin x}$.

解: 依题意, x=0 及 $x=k\pi$ $(k=\pm 1,\pm 2,\cdots)$ 是 f(x) 的间断点.

而
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1-\cos x}{x\sin x} = \lim_{x\to 0} \frac{\frac{x^2}{2}}{x\cdot x} = \frac{1}{2}$$
. 故 $x = 0$ 不是无穷间断点.

$$\overline{\lim} \lim_{x \to 2k\pi + \pi} \frac{1 - \cos x}{x \sin x} = \infty (k = 0, \pm 1, \pm 2 \cdots),$$

∴ 函数 f(x) 的无穷间断点为 $x = \pm \pi, \pm 3\pi, \pm 5\pi, \cdots$.

**5. 设 y = f(x)在 [0,1]上连续,且 $0 \le f(x) \le 1$ 。试证:存在 $\xi \in [0,1]$ 使 $f(\xi) = \xi$ 成立.

证:构造函数 F(x) = f(x) - x,则 F(x)在[0,1]上连续。且 $F(0) = f(0) - 0 \ge 0$,

 $F(1) = f(1) - 1 \le 0$ 。则由闭区间上连续函数的零值定理知,必存在一个 $\xi \in [0,1]$ 使 $F(\xi) = 0$,即 $f(\xi) = \xi$ 成立. 证毕.

***6. 证明方程 $x = a \sin x + b$ (a > 0, b > 0) 至少有一个不超过 a + b 的正数根.

证: 令 $F(x) = x - a \sin x - b$,则 F(x) 必在 [0,a+b] 上连续。且有 F(0) = -b < 0, $F(a+b) = a[1-\sin(a+b)] \ge 0$,故由闭区间上连续函数的零值定理知必存在一个 $\xi \in (0,a+b]$,使得 $F(\xi) = 0$,即 $\xi = a \sin \xi + b$. 证毕.

***7. 如果 f(x)在区间(a,b)内连续, $x_1 < x_2 < \cdots < x_n$ 是该区间内任意n个点,试证明在

$$(a,b)$$
內至少存在一点 ξ ,使得 $f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$.

证: 因为函数 f(x) 在 $[x_1,x_n]$ (\subset (a,b))上连续。由闭区间上连续函数最值定理有

$$m = \min_{x_1 \le x \le x_n} f(x), \quad M = \max_{x_1 \le x \le x_n} f(x).$$

$$m \le \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} \le M.$$

所以,

再由闭区间上连续函数的介值定理,知命题得证。证毕.

**8. 证明方程 $x^5 - 3x = 1$ 至少有一个根介于1和2之间.

解: 设
$$f(x) = x^5 - 3x - 1$$
,

$$f(x)$$
在[1, 2]上连续,且 $f(1) = -3 < 0$, $f(2) = 25 > 0$,由

零值定理知至少存在一点 $\xi \in (1,2)$, 使 $f(\xi) = 0$

即方程 $x^5 - 3x = 1$ 至少有一个根介于1和2之间.

****9. 若 f(x)在 $(-\infty,+\infty)$ 上连续,且 $\lim_{x\to\infty} f(x) = A$,试证明f(x)在 $(-\infty,+\infty)$ 上有界.

证明: 依题意,取 $\varepsilon=1$, $\exists X>0$, $\dot{\exists}|x|>X$ 时,有|f(x)-A|<1,于是

$$|f(x)| \le |f(x) - A| + |A| < 1 + |A|.$$

又当 $|x| \le X$ 时,利用闭区间上连续函数的有界性定理,

$$\exists M_1 > 0, \forall x \in [-X, X], \ \ \hat{\pi} |f(x)| \leq M_1,$$

取 $M = \max(M_1, 1 + |A|)$, 则在 $(-\infty, +\infty)$ 上有 $|f(x)| \le M$ 成立.

**10. 试问曲线 $y = \begin{cases} x^2, & x \ge 1 \\ 2-x, & x < 1 \end{cases}$ 在点(1,1) 处是否有切线,为什么?试简单说明之.

解:没有。

$$\lim_{x \to 1^{+}} \frac{x^{2} - 1}{x - 1} = 2, \qquad \lim_{x \to 1^{-}} = \frac{(2 - x) - 1}{x - 1} = -1,$$

$$\therefore \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} \neq \lim_{x \to 1^-} \frac{(2 - x) - 1}{x - 1},$$

即曲线在点 (1,1) 处没有切线.

***11. 试确定式中 a,b之值, 使 f(x)处处可导:

$$f(x) = \begin{cases} e^x, & x < 0, \\ ax + b, & x \ge 0. \end{cases}$$

解: :: f(x) 在 0 点处可微, 所以必连续。

$$f(0-0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x} = 1,$$

$$f(0+0) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (ax+b) = b, \qquad \therefore b = 1.$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{e^{x} - b}{x} = \lim_{x \to 0^{-}} \frac{e^{x} - 1}{x} = 1,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{ax+b-b}{x} = a, \qquad \therefore a = 1.$$

***12. 设 f(x) = |x - a|g(x), 其中 g(x) 在 x = a 处连续且 g(a) = 0, 讨论 f(x) 在 x = a 处的连续性与可导性.

$$\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = \lim_{x\to a} \frac{|x - a|}{x - a} g(x) = 0 \qquad \therefore f(x) \stackrel{\text{def}}{=} x = a \stackrel{\text{def}}{=} 9.$$