2014-2015, LICENCE 3^{ème} ANNÉE PARCOURS MATHÉMATIQUES

M66, Modélisation et analyse numérique

TD4: EDO – DIFFÉRENCES FINIES

Exercice 1

Soit le problème de Cauchy

$$y''(x) + xy'(x) + (1+x)y(x) = x^2$$
, $y(0) = 0$, $y'(0) = 1$.

- a) Transformer cette EDO en un système différentiel du premier ordre équivalent.
- b) Effectuer deux étapes du schéma d'Euler explicite avec un pas h=1/2. Déterminer les approximations de y, y' et y'' aux points $x_1=1/2$ et $x_2=1$.

Exercice 2

Soit l'EDO

$$y'(x) = \sqrt{y(x)}, \quad y(0) = 0.$$

- a) Trouver une solution à cette EDO autre que la solution triviale $y \equiv 0$.
- b) Le théorème de Cauchy-Lipschitz assure l'unicité d'une solution. Quelle hypothèse du théorème n'est pas satisfaite ici?
- c) Que donne le schéma d'Euler explicite?
- d) Que donne le schéma d'Euler implicite?
- e) Montrer que pour une condition initiale y(0) > 0 la solution est unique. Décrire les solutions maximales dans ce cas.
- f) Comment peut-on essayer d'approcher ces solutions maximales avec un schéma d'Euler? Que risque de se passer pour $t_n \to -\infty$?

Exercice 3

On considère le problème de Cauchy suivant :

$$u' = \sin^3 u, \quad u(0) = u_0 \tag{*}$$

- a) Déterminer les solutions constantes du problème.
- b) Montrer que la fonction $f: u \mapsto \sin^3 u$ est globalement lipschitzienne.
- c) Montrer que pour toute condition initiale le problèmes de Cauchy admet une unique solution. Décrire le comportement des solutions en fonction de u_0 .
- d) Montrer que les solutions maximales sont globales (définies sur \mathbb{R} tout entier).

- e) Soit v et w deux solutions de (*) pour deux conditions initiales différentes v_0 et w_0 . Majorer la différence |v(t) - w(t)| pour $t \ge 0$ par le lemme de Grönwall en fonction de t et $|v_0 - w_0|$. Est-ce une bonne estimation dans notre cas?
- f) Écrire le schéma d'Euler explicite associé à une discrétisation uniforme de pas h > 0.
- g) Soit u la solution exacte de (*) avec $u_0 = \frac{\pi}{2}$. Soient $h \leq \frac{2}{3}$ et u_n la n-ème valeur obtenue par le schéma d'Euler explicite. Montrer que $\lim_{n\to\infty} |u(nh) u_n| = 0$.

Exercice 4

On s'intéresse à la résolution numérique de l'équation différentielle ordinaire

$$\begin{cases} x'(t) = f(t, x(t)), & t \in I_0 = [t_0, t_0 + T], \\ x(t_0) = x_0. \end{cases}$$

On suppose f régulière. On introduit une subdivision uniforme $t_0 < t_1 < \cdots < t_N = t_0 + T$ et on pose $h = t_{n+1} - t_n = T/N$, de telle sorte que $t_n = nh + t_0$ pour $0 \le n \le N$.

a) Trouver a, b et c pour que la formule de quadrature suivante soit d'ordre maximal :

$$\int_{t_n}^{t_{n+2}} \psi(t)dt + 4 \int_{t_n}^{t_{n+1}} \psi(t)dt \approx h \Big(a\psi(t_{n+2}) + b\psi(t_{n+1}) + c\psi(t_n) \Big).$$

b) Montrer que l'on peut approcher l'équation différentielle par le schéma numérique

$$\begin{cases} X_0 \text{ et } X_1 \text{ donnés,} \\ X_{n+2} + 4X_{n+1} - 5X_n = 6h\left(\frac{2}{3}f(t_{n+1}, X_{n+1}) + \frac{1}{3}f(t_n, X_n)\right). \end{cases}$$

- c) On suppose désormais $f \equiv 0$. Calculer X_n en fonction de X_0 et X_1 .
- d) On suppose, dans cette question uniquement, que $X_1 = X_0 = x_0$. Montrer que, pour tout $0 \le n \le N$, $e_n = |x(t_n) X_n| = 0$.
- e) Que se passe-t-il lorsque $X_0 = x_0$ et $X_1 = X_0 + Ch^p$?

Exercice 5

On considère l'équation différentielle ordinaire

$$\begin{cases} x'(t) + \lambda(t)x(t) = b(t), & t \in I_0 = \mathbb{R}_+, \\ x(0) = x_0 > 0. \end{cases}$$

avec λ et b des fonctions régulières.

- a) Écrire la solution de l'EDO.
- b) Montrer que si b est une fonction positive, alors x est positive pour toute fonction λ .
- c) Écrire le schéma d'Euler explicite associé à une discrétisation uniforme de pas h > 0.
- d) On suppose désormais que λ et b sont des constantes, avec b > 0 et $\lambda > 0$. Sous quelle(s) condition(s) le schéma d'Euler conserve-t-il la positivité de la solution?
- e) Soient $\lambda = 1$ et b = 2. Représenter la solution. Faire de même avec la solution de l'approximation pour $x_0 = 1$ et h = 1/2, h = 3/2 et h = 5/2, puis $x_0 = 5$ et h = 3/2. Pouvait-on prévoir ces résultats?

Exercice 6

Soit f une fonction de classe \mathcal{C}^3 sur $[0,T]\times\mathbb{R}$ à valeurs dans \mathbb{R} . On considère l'équation différentielle :

$$\begin{cases} u'(t) = f(t, u(t)), & t \in]0, T] \\ u(0) = u_0. \end{cases}$$
 (*)

Étant donné $K \in \mathbb{N}^*$, on fixe le pas de temps $\Delta t = T/K > 0$ et on note $t_n = n \Delta t$, $n = 0, \ldots, K$ et U_n l'approximation de $u(t_n)$.

On considère le schéma de Heun¹ donné par la formule de récurrence pour $n=0,\ldots,K-1$:

$$\begin{cases} V_{n+1} = U_n + \Delta t f(t_n, U_n), \\ U_{n+1} = U_n + \frac{\Delta t}{2} \left(f(t_n, U_n) + f(t_{n+1}, V_{n+1}) \right). \end{cases}$$

- a) Interpréter graphiquement la méthode de Heun sur l'intervalle de temps $[t_n, t_{n+1}]$. Expliquer le dessin.
- b) Pour définir l'erreur de consistance de l'étape n du schéma de Heun, on suppose : $U_n = u(t_n)$. Écrire $e_{n+1} = \varepsilon_{n+1} + \varepsilon_{n+1}^*$, où $\varepsilon_{n+1} = u(t_n + \Delta t) u(t_n) \Delta t u'(t_n + \frac{\Delta t}{2})$. Donner l'expression de ε_{n+1}^* et montrer par un développement de Taylor que l'erreur ε_{n+1} est en Δt^3 , en précisant la constante.
- c) À l'aide de la formule de récurrence et d'un autre développement de Taylor, évaluer ε_{n+1}^* en fonction de Δt et montrer que le schéma de Heun est d'ordre 2.

Exercice 7

Soit l'équation différentielle ordinaire suivante :

$$\begin{cases} y'(t) = y^2(t), & t \in [0, T], \quad T < 1, \\ y(0) = 1. \end{cases}$$
 (*)

- a) Donner la solution de l'équation différentielle (dont on supposera l'unicité).
- b) On choisit, pour la résolution de (*), le schéma d'Euler implicite à pas variable :

$$y_{n+1} = y_n + h_n f(t_{n+1}, y_{n+1}). (\dagger)$$

- (1) Donner l'équation du second degré vérifiée par y_{n+1} correspondant à l'utilisation du schéma (†) pour la résolution de (*).
- (2) Donner la restriction sur le pas de temps h_n à vérifier afin que cette équation admette deux racines réelles.
- (3) Exprimer alors explicitement y_{n+1} en fonction de y_n et de h_n .
- (4) Quel phénomène peut-on craindre si T est trop proche de 1?
- c) Mêmes questions pour le schéma de Crank-Nicolson :

$$y_{n+1} = y_n + \frac{h_n}{2} [f(t_n, y_n) + f(t_{n+1}, y_{n+1})].$$

 $^{^{1}}$ Le schéma de Heun a un ordre de consistance supérieure au schéma d'Euler explicite.