Technical Report CERC-96-4 February 1996

Redondo Beach, California, 1992-1994 Wave Data

by Margaret A. Sabol

Approved For Public Release; Distribution Is Unlimited

19960314 082

DTIC QUALITY INSPECTED 1

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Redondo Beach, California, 1992-1994 Wave Data

by Margaret A. Sabol

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Waterways Experiment Station Cataloging-in-Publication Data

Sabol, Margaret A.

Redondo Beach, California, 1992-1994 wave data / by Margaret A. Sabol; prepared for U.S. Army Corps of Engineers.

140 p.: ill.; 28 cm. — (Technical report; CERC-96-4)

1. Ocean waves — Measurements. 2. RCPWAVE (Computer program) 3. Breakwaters — California — Redondo Beach. 4. Redondo Beach (Calif.) I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Coastal Engineering Research Center (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); CERC-96-4. TA7 W34 no.CERC-96-4

Contents

Preface	. v
1—Introduction	1
Background	1
2—Nearshore Wave Conditions	. 5
Nearshore Gage Description	
3—Data Summary Products	7
Description of Parameters Description of Products Time Series Plots Mean/Max Tables Percent Occurrence Tables Wave Rose Diagrams Spectral Density Plots	7 8 8 9
Appendix A: North Site, First Deployment	A1
Appendix B: North Breakwater Site, First Deployment	B1
Appendix C: Near Breakwater Site, First Deployment	. C1
Appendix D: South Breakwater Site, First Deployment	. D1
Appendix E: Canyon Site, First Deployment	. E1
Appendix F: Redondo Site, First Deployment	. F1
Appendix G: Catalina Ridge Site, First Deployment	. G1
Appendix H: North Breakwater Site, Second Deployment	. H1
Appendix I: South Breakwater Site, Second Deployment	. I1
Appendix J: Redondo Site, Second Deployment	. J1
Appendix K: Catalina Ridge Site, Second Deployment	. K1

Appendix L:	Additional NDBC Time Series Plots		 • .•		 		L1
SF 298							

Preface

This report is a product of the Redondo Beach, CA, Work Unit of the Monitoring Completed Coastal Projects (MCCP) Program, prepared by the Coastal Engineering Research Center (CERC), U.S. Army Engineer Waterways Experiment Station (WES). The MCCP Program Manager is Ms. Carolyn M. Holmes. Technical monitors of the MCCP Program at Headquarters, U.S. Army Corps of Engineers, are Mr. John H. Lockhart, Jr., Mr. Charles Chesnutt, and Mr. Barry W. Holliday. Dr. Thomas E. White, Prototype Measurement and Analysis Branch (PMAB), Engineering Development Division (EDD), CERC, was the former Principal Investigator and Dr. Joon P. Rhee, PMAB, EDD, CERC is the current Principal Investigator.

This report was prepared by Ms. Margaret A. Sabol, PMAB, under the general supervision of Mr. William L. Preslan, Chief, PMAB, and Mr. Thomas W. Richardson, Chief, EDD. Mr. Charles C. Calhoun, Jr. and Dr. James R. Houston are Assistant Director and Director, respectively, of CERC. Director of WES is Dr. Robert W. Whalin, and Commander is COL Bruce K. Howard, EN.

1 Introduction

Background

Field wave data were acquired at Redondo Beach Breakwater, CA, by the Prototype Measurement and Analysis Branch of the U.S. Army Engineer Waterways Experiment Station Coastal Engineering Research Center as part of the Monitoring Completed Coastal Projects Program. This report summarizes data collected throughout the experiment. The purpose of this study was to provide actual field data to evaluate output from a numerical model, Regional Coastal Processes Wave Transformation Model, which predicts waves propagating through a coastal region of irregular bathymetry. This report contains brief descriptions of the monitoring effort and equipment and provides collected wave information in graphic and tabular form. Statistical analysis of wave data will be provided in a future report.

Nearshore Wave Conditions

Nearshore and offshore wave conditions at Redondo Beach, CA, were monitored during a 2-year period beginning October 1992 and ending in June 1994. Nearshore gages were deployed at two separate times during the monitoring period in depths of 14 m - 18 m. The first gages were deployed October 1992 through April 1993 and the second deployment was from October 1993 through June 1994.

Offshore Wave Conditions

Offshore wave conditions were collected from two National Data Buoy Center (NDBC) directional wave buoys. Conditions of waves in intermediate-depth water were provided by NDBC buoy 46045 (Redondo) located in approximately 80 m of water. Deepwater wave data were obtained from NDBC buoy 46025 (Catalina Ridge) at a nominal water depth of 840 m. Locations of the shallow-water gages and NDBC buoys are shown in Table 1 and in Figures 1 and 2.

Table 1 Gage Int	ormation	
Gage Number	Site Designation	Location
RB6	North	33.860 N 118.412 W
020	North Breakwater	33.848 N 118.406 W
153	South Breakwater (PUV)	33.843 N 118.404 W
RB4A	South Breakwater (DWG-1)	33.842 N 118.404 W
RB5	Canyon	33.830 N 118.399 W
030	Near Breakwater	33.846 N 118.401 W
46045	Redondo	33.839 N 118.447 W
46025	Catalina Ridge	33.747 N 119.068 W

Figure 1. Location of shallow and intermediate-depth gages (soundings in fathoms)

Figure 2. Location of deepwater gage (soundings in fathoms)

2 Nearshore Wave Conditions

Nearshore Gage Description

Nearshore wave conditions were monitored using two different self-recording instruments: directional wave gages (DWG-1) and pressure/ U-velocity/V-velocity (PUV) gages. Briefly, a DWG-1 simultaneously measures sea-bottom pressure at three locations, internally processes the data, and records cross-power spectra. The array used is a 1.6-m equilateral triangle with a pressure transducer at each corner. Detailed descriptions of the DWG-1 and comparisons of its performance with other directional wave gages can be found in Howell (1992). A PUV stores simultaneous measurements of three time series, the sea bottom hydrodynamic pressure and the two horizontal cross-axis water-particle velocities. Both DWG-1 and PUV used Paroscientific pressure transducers and the PUVs also used Marsh-McBirney electromagnetic current meters.

Gage Deployment

The first shallow-water gages were deployed in late October 1992 and recovered in mid-April 1993. A total of nine gages were deployed. Gage locations were selected to document variations in wave transformation throughout the area of interest. Site selection was guided by Hales $(1987)^2$ and U.S. Army Engineer District, Los Angeles $(1988)^3$. Gage sites were designated as North (Appendix A), North Breakwater (Appendix B), Near Breakwater (Appendix C), South Breakwater (Appendix D), and Canyon (Appendix E), (see Table 1 for locations). The highest waves due to refraction

¹ Howell, G. L. (1992). "A new nearshore directional wave gage." *Proceedings*, 23rd International Conference on Coastal Engineering, Venice, Italy. Vol 1, 297-307.

Hales, L. Z. (1987). "Water wave effects at Redondo Beach King Harbor, California," Miscellaneous Paper CERC-87-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

³ U.S. Army Engineer District, Los Angeles. (1988). "Feasibility report storm damage reduction, Redondo Beach -- King Harbor Area, Los Angeles County, CA." Los Angeles, CA.

would be expected between the North breakwater site (west of the curved portion of the north breakwater) and the South Breakwater site (west of the south end of the north breakwater). The North Breakwater and South Breakwater sites were chosen to monitor this concentrated wave energy. The Canyon site (located near the tip of the Redondo Canyon) was selected to measure wave energy affected by divergence over the submarine canyon. The North site (north of the harbor) was chosen to measure waves at a great distance from the Redondo canyon.

Gages were set out in pairs, with one PUV and one DWG-1 gage at each site except at the Near Breakwater site, where only a PUV gage was deployed. Data were collected from both gage types and the gage type that produced the most data was chosen as the representative data set for that site. All sites with both DWG-1s and PUVs had at least one complete data set. Both NDBC buoys provided a complete data set for the first monitoring period. First deployment data can be found in Tables A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, and G2 and Figures A1-A6, B1-B7, C1-C4, D1-D6, E1-E6, F1-F7, and G1-G7.

The second gage deployment period was from mid-October 1993 through early June 1994. A pair of gages was installed at the South Breakwater site and single gages were installed at the North, North Breakwater, and Canyon sites. NDBC buoys 46045 and 46025 also provided data for most of the deployment period. Data from both NDBC buoys as well as from the South Breakwater and North Breakwater sites are provided to illustrate wave conditions during the second deployment period. Second deployment data are displayed in Tables H1, H2, I1, I2, J1, J2, K1, and K2 and Figures H1, H2, I1-I9, J1-J10, and K1-K6.

Data were obtained from both NDBC buoys during the entire 2-year period (October 1992 - September 1994). Time series plots of data not coincident with deployment of shallow-water gages may be found in Appendix L.

3 Data Summary Products

Description of Parameters

The standard parameters reported in this document are wave height, period, and direction. These parameters are derived from a two-dimensional power density spectrum of the sea surface using spectral analysis of the sensors' output and linear wave theory. The parameters are defined as follows (see the Shore Protection Manual¹ for additional information):

- a. Wave Height, H_{m0} : Spectrally derived wave height, in meters; equivalent to time-domain-derived significant wave height in deep water.
- b. Wave period T_p : Peak spectral period, in seconds; inverse of the frequency of the peak (highest energy) of the one-dimensional power spectrum.
- c. Wave Direction, D_p : Peak spectral direction, in degrees clockwise from true North; mean direction *from which* energy is coming at the peak of the one-dimensional power spectrum.

Missing data and data that failed to pass quality control tests are excluded from the summaries.

Description of Products

The following five types of data summary products are provided in this report:

- a. Time series plots.
- b. Mean/max tables.

¹ Shore Protection Manual. (1984). 4th Ed., 2 Vols., U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, U.S. Government Printing Office, Washington, DC.

- c. Percent occurrence tables.
- d. Wave rose plots.
- e. Sample spectral density plots.

Descriptions and examples of products are presented in the following sections of the report.

Time Series Plots

Time series plots included in this report indicate wave information collected for each gage and buoy. The plots consist of three separate sets of axes showing H_{m0} , T_p , and D_p for a calendar month. Different gage types collected wave data on different time schedules. The DWG-1s and NDBC buoys collected data hourly. The PUV gages collected data every 3 hr. The plots of H_{m0} and T_p show these individual readings connected by a continuous line. The lines are continuous as long as the data were received at the expected time intervals. The line appears broken if there is one or more missed data point. For H_{m0} and T_p , isolated points of data appear as individual symbols. The plot of D_p shows individual readings designated with a plus (+) symbol instead of a continuous line.

Time series plots of NDBC data show an H_{m0} cutoff of 0.15 m and a T_p cutoff of 2.78 sec. This means that if the H_{m0} is less than 0.15 m, no T_p or D_p will be reported. When the T_p is less than 2.78 sec, no D_p will be reported. These limitations are imposed by NDBC.

Mean/Max Tables

The mean/max tables indicate mean and maximum H_{m0} by month for the monitoring period. A mean H_{m0} is included. Other statistics listed in this table are mean T_p (in seconds); center of most frequent 22.5-deg direction band for directional gages (in degrees azimuth); standard deviation of H_{m0} and T_p ; and largest H_{m0} along with its associated T_p , D_p , and the date of the occurrence.

The mean/max table for Gage RB6, North Site (Table A1) indicates that while the largest mean H_{m0} , 1.2 m, occurred in February 1993, the largest H_{m0} , 2.7 m, occurred on March 1993 at 600 hr Universal Coordinated Time (UTC), with an associated T_p of 8.0 sec and D_p of 260 deg.

Percent Occurrence Tables

Percent occurrence tables indicate the percent (times 100) of the total number of wave records for a given site that have a specified H_{m0} and T_p . Tables that depict the heights and period occurrences irrespective of direction are provided for all wave gage stations. Each listed percent value reflects the percent occurrence of waves at a particular H_{m0} and T_p compared to all waves for which H_{m0} was computed. For nearshore gages, height bands are 0.5-m increments; period bands are ten uneven increments from below 4.5 sec to above 18.4 sec (Table 2). Offshore gages have height bands in 1-m increments (to account for larger waves found offshore) with ten period bands at

Table 2 Frequency F	Ranges Used	In Nearshore D	ata Analysis
Midb	and		
Frequency, Hz	Period, sec	Band Range for Period, sec	Grouping for Percent Occurrence Tables, sec
0.320	3.1 4.5	3.0 ≤ Tp < 3.1 4.4 ≤ Tp < 4.6	3.0 - 4.5
0.213 0.203 0.200 0.187 0.182	4.7 4.9 5.0 5.3 5.5	$4.6 \le \text{Tp} < 4.8$ $4.8 \le \text{Tp} < 4.9$ $4.9 \le \text{Tp} < 5.1$ $5.1 \le \text{Tp} < 5.4$ $5.4 \le \text{Tp} < 5.6$	4.6 - 5.6
0.175 0.167 0.161 0.152 0.143 0.137 0.128	5.7 6.0 6.2 6.6 7.0 7.3 7.8	$5.6 \le \text{Tp} < 5.8$ $5.8 \le \text{Tp} < 6.1$ $6.1 \le \text{Tp} < 6.4$ $6.4 \le \text{Tp} < 6.8$ $6.8 \le \text{Tp} < 7.1$ $7.1 \le \text{Tp} < 7.5$ $7.5 \le \text{Tp} < 8.0$	5.6 - 8.0
0.120 0.111 0.105 0.097	8.3 9.0 9.5 10.3	$8.0 \le Tp < 8.6$ $8.6 \le Tp < 9.2$ $9.2 \le Tp < 9.8$ $9.8 \le Tp < 10.6$	8.0 - 10.6
0.091 0.082 0.074 0.066 0.058	11.0 12.2 13.6 15.1 17.1	$10.6 \le Tp < 11.6$ $11.6 \le Tp < 12.7$ $12.7 \le Tp < 14.1$ $14.1 \le Tp < 15.9$ $16.0 \le Tp < 18.3$	10.6 - 11.6 11.6 - 12.7 12.8 - 14.1 14.2 - 15.9 16.0 - 18.3
0.050	19.8	18.4 ≤ Tp < 21.3 32.0 ≤ Tp < 40.9	18.4 - longer

uneven increments from below 6.9 sec to above 18.2 sec (Table 3). Totals of the height category are provided at the right of each height row. Totals for each period range are at the bottom of each period column. Results are in summary form at the bottom of the tables showing the mean H_{m0} and T_p , the largest H_{m0} , and the total number of cases represented by the table.

Table 3 Frequency I	Ranges Use	d in Offshore D	ata Analysis
Midb	and		
Frequency, Hz	Period, sec	Band Range for Period, sec	Grouping for Percent Occurrence Tables, sec
0.400	2.5	2.22 ≤ Tp < 2.86	
•			<6.9
0.160	4.5	6.06 ≤ Tp < 6.45	
0.150 0.140 0.130	6.7 7.1 7.7	6.45 ≤ Tp < 6.90 6.90 ≤ Tp < 7.41 7.41 ≤ Tp < 8.00	6.9 - 8.0
0.120	8.3	8.00 ≤ Tp < 8.70	8.1 - 8.7
0.110	9.1	8.70 ≤ Tp < 9.52	8.8 - 9.5
0.100	10.0	9.52 ≤ Tp < 10.53	9.6 - 10.5
0.090	11.1	10.53 ≤ Tp < 11.76	10.6 - 11.7
0.080	12.5	11.76 ≤ Tp < 13.33	11.8 - 13.3
0.070	14.3	13.33 ≤ Tp < 15.38	13.4 - 15.3
0.060	16.7	15.38 ≤ Tp < 18.18	15.4 - 18.1
0.050 0.040 0.030	20.0 25.0 33.3	18.18 ≤ Tp < 22.22 22.22 ≤ Tp < 28.57 28.57 ≤ Tp < 40.00	18.2 - longer

In order to determine what percent of the wave records from Gage 030, Near Breakwater, have an H_{m0} of 2.0 - 2.4 m with a T_p of 5.6 - 8.0 sec, the percent occurrence table for that station (Table C2) is consulted. The value 34 is found where the 2.0- to 2.4-m height row intersects with the 5.6- to 8.0-sec period column. Divide this number by 100 to get the percent. Thus, 5.6- to 8-sec waves from 2 to 2.4 m would be expected only about 0.34 percent of the time.

Wave Rose Diagrams

The wave rose diagrams indicate mean H_{m0} and the compass direction from which the waves are coming. The scale of the rose is set so the outer edge

will be slightly larger than the largest mean wave height for the given wave gage station. Three evenly spaced concentric circles within the rose delineate lesser mean wave heights. The value indicated by each circle is differentiated through the use of a distinct line type. Wave directions are grouped in 22.5-deg bands centered on 0, 22.5, 45 deg, etc. Mean H_{m0} and percent of samples for each direction band are represented in the wedge-shaped portions of the rose plots. The length (or radius) of the wedge describes the mean H_{m0} , while the shading of the wedge tells what percent of the samples come from that direction. Only data records that have both D_p and H_{m0} are used in developing the wave roses.

The wave rose diagram for Gage RB5, Canyon (Figure E6), indicates a mean H_{m0} of 0.92 m for the azimuth band centered on 270 deg; and for this time interval, more than 15 percent of the D_p values are within the 270-deg azimuth band. This wave rose diagram also tells at a glance that no waves of any size occurred from the south through the southeast.

Spectral Density Plots

Because of their bulk, all of the spectral data cannot be included in this report. Characteristic spectra are shown in Figure 3. The example provided illustrates characteristic long-period swell propagation from deep to shallow water. The three-dimensional axes show frequency (Hertz) on the x axis, elapsed time (hours) on the y axis and energy density (m²/Hz) on the z axis. Plots show spectral density for the deepwater NDBC buoy (46025) (North Breakwater site and Canyon site) for the period 1-10 February 1993.

Figure 3. Example swell spectra, 1-10 February 1993

Appendix A North Site, First Deployment

Figure A1. Time series plot for North (gage RB6), November 1992, first deployment

Figure A2. Time series plot for North (RB6) gage, December 1992, first deployment

Figure A3. Time series plot for North (RB6) gage, January 1993, first deployment

Figure A4. Time series plot for North (RB6) gage, February 1993, first deployment

Figure A5. Time series plot for North (RB6) gage, March 1993, first deployment

A6

Figure A6. Wave rose for North (RB6) gage, first deployment

Table A1
Mean/Max Values for North (RB6)
First Deployment

		NOR!	TH I	MEAN H	-im0 (m∈	eters)	BY N	ONTH		EAR 86N 1	18.4	W)	
						MONT	TH .						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	0.9	1.2	1.0							•	0.7	0.9	ME'AN 0.8 1.0
MEAN	0.9	1.2	1.0	٠			٠	•	٠		0.7	0.9	
		NORT	TH			METER MONT		*****	(33.	86N 1	18.41	W)	
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	2.3	2.3	2.7	:			•	•			1.6	2.3	
ST	ATISTI	CS FO	R NOR	T H						(33	.86N	118.4	1W)
THE ME	AN SIG	NIFIC	ANT W	AVE H	EIGHT	(METE	RS) =						0.9
THE ME	AN PEA	k wav	E PER	IOD (SECON	DS)=							12.2
THE MO								AND (DEGRE	ES)=			247.5
THE ST													0.4
THE ST					P (SEC	ONDS)	=						3.1
THE LA													2.7
THE TP													8.0
THE PE							ITH T	HE LA	RGEST	Hm0 =			260.0
			do tito.		1100	CE IS						0.7	3032706

Table A2
Percent Occurrence for North (RB6)
First Deployment

NOR'	33.86N 118.41W IRRESPECTIVE OF DIF									(ECTI	
		PER	NOV			- MARCI		T AND	PERIOD		
HEIGHT (ME	TERS)			P	EAK PE	RIOD(S	ECONDS)			TOTAL
	SHORTER- 4.5	4.6- 5.6	5.6- 8.0	8.0- 10.6	10.7-	11.6- 12.7	12.8-	14.2- 15.9	16.0- 18.3	18.4- LONGER	
0.0-0.4		9	38	142	87	161	417	171	97		112
0.5-0.9	19	71	372	575	300	491	1132	1643	436	35	507
1.0-1.4	6	38	427	494	287	213	452	744	333	48	304
1.5-1.9		6	139	161	42	109	100	58	9		62
2.0-2.4			67	16	6		19				10
2.5-2.9			6	3							
3.0-3.4											
3.5-3.9											
4.0-4.4											
4.5-4.9											
5.0+											
TOTAL	25	124	1049	1391	722	974	2120	2616	875	83	

Appendix B North Breakwater Site, First Deployment

Figure B1. Time series plot for North Breakwater gage (020), November 1992, first deployment

Figure B2. Time series plot for North Breakwater gage (020), December 1992, first deployment

Figure B3. Time series plot for North Breakwater gage (020), January 1993, first deployment B4

Figure B4. Time series plot for North Breakwater gage (020), February 1993, first deployment

Figure B5. Time series plot for North Breakwater gage (020), March 1993, first deployment

Figure B6. Time series plot for North Breakwater gage (020), April 1993, first deployment

Figure B7. Wave rose for North Breakwater gage (020), first deployment

Table B1 Mean/Max Values for North Breakwater (020) First Deployment

		NORT	M H BRE			TERS)	BY M	нтио	AND Y (33.	EAR 85N 1	18.41	W)	
						MONT	Н						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	0.9	1.3	0.9	0.9		•			•		0.7	0.8	MEA 0. 1.
MEAN	0.9	1.3	0.9	0.9							0.7	0.8	
		NORT	TH BRE			MONT			IMA HT . 33.	85N 1	118.41	(W)	
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	3.1	2.9	2.7	1.7			:	:		•	1.4	2.4	
SI	'ATIST	ICS F	OR NO	RTH B	REAKW	ATER				(3)	3.85N	118.4	1W)
THE ME	AN SI	GNIFI	CANT	WAVE	HEIGH	T(MET	ERS)=						0
THE ME	AN PE	AK WA	VE PE	RIOD	(SECO	NDS) =							12
THE MO	ST FR	EQUEN	т 22.	5 (CEN	TER)	DIREC	TION	BAND	(DEGR	EES)=			247
THE ST	ANDAR	D DEV	IATIO	N OF	Hm0 (M	ETERS) =						0
THE ST	randar	D DEV	IATIO	N OF	TP (SE	CONDS) =						3
THE L	ARGEST	Hm0 (METER	(S) =									3
THE T													11
mur pi	EAK DI	RECTI	ON (E	EGREE	S) AS	SSOC.	WITH	THE I	LARGES	T HmC	=		257

Table B2
Percent Occurrence for North Breakwater(020)
First Deployment

NORTH BREAKWATER, REDONDO BEACH 33.85N 118.41W FOR ALL DIRECTIONS NOVEMBER 1992 - APRIL 1993
PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD

HEIGHT (ME	TERS)		PEAK PERIOD(SECONDS)											
	SHORTER- 4.5	4.6- 5.5	5.6- 7.9	8.0- 10.6	10.7- 11.5	11.6- 12.7		14.2- 15.9		18.4- LONGER				
0.0-0.4 0.5-0.9 1.0-1.4 1.5-1.9 2.0-2.4 2.5-2.9 3.0-3.4 3.5-3.9 4.0-4.4 4.5-4.9 5.0+ TOTAL	31 42 10	15 131 47 5	58 385 453 137 42 5	210 527 416 121 10 5	137 321 179 36	174 474 179 89 10 5 5	295 785 321 68 63 26	226 975 327 47 52 10	179 1060 675 116 94 31	36 247 84 	1361 4947 2691 619 271 82 5 0 0			

MEAN Hm0(M) = 0.9 LARGEST Hm0(M) = 3.1 MEAN TP(SEC) = 12.3 TOTAL CASES = 1896.

Appendix C Near Breakwater Site, First Deployment

Figure C1. Time series plot for Near Breakwater gage (030), November 1992, first deployment

Figure C2. Time series plot for Near Breakwater gage (030), December 1992, first deployment

Figure C3. Time series plot for Near Breakwater gage (030), January 1993, first deployment

Figure C4. Wave rose for Near Breakwater gage (030), first deployment

Table C1 Mean/Max Values for Near Breakwater (030) First Deployment

MONTH JAN FEB MAR APR MAY JUN JUL AUG	SEP	1.0 1.0 YEAR 85N 1	NOV 0.8 0.8	DEC 1.0	MEAN 0.9 0.7
JAN FEB MAR APR MAY JUN JUL AUG YEAR 1992 1993 0.7	H AND (33.	1.0 1.0 YEAR 85N 1	0.8 0.8 18.40	1.0 1.0	0.9
YEAR 1992 1993 0.7	H AND (33.	1.0 1.0 YEAR 85N 1	0.8 0.8 18.40	1.0 1.0	0.9
1992 1993 0.7 MEAN 0.7 LARGEST Hm0 (METERS) BY MONT NEAR BREAKWATER MONTH JAN FEB MAR APR MAY JUN JUL AUG YEAR 1992 1.5	H AND (33.	1.0 YEAR 85N 1	0.8 18.40	1.0 0W)	0.9
LARGEST Hm0 (METERS) BY MONT NEAR BREAKWATER MONTH JAN FEB MAR APR MAY JUN JUL AUG YEAR 1992	H AND (33.	YEAR 85N 1	18.40 NOV	DW)	
NEAR BREAKWATER MONTH JAN FEB MAR APR MAY JUN JUL AUG YEAR 1992	(33.	85N 1	18.40 Nov	,	
YEAR 1992	SEP			DEC	
STATISTICS FOR NEAR BREAKWATER		•	1.6	3.1	
		(33	.85N	118.40	₩)
THE MEAN SIGNIFICANT WAVE HEIGHT (METERS) =					0.9
THE MEAN PEAK WAVE PERIOD (SECONDS)=					12.3
THE MOST FREQUENT 22.5 (CENTER) DIRECTION BAND (DEGRE	ES)=			247.5
THE STANDARD DEVIATION OF Hm0 (METERS) =					0.4
THE STANDARD DEVIATION OF TP(SECONDS)=					2.5
THE LARGEST Hm0 (METERS) =					3.1
HE TP(SECONDS)ASSOC. WITH THE LARGEST Hm0=					14.2
HE PEAK DIRECTION (DEGREES) ASSOC. WITH THE LAF HE DATE OF LARGEST Hm0 OCCURRENCE IS	RGEST	Hm0=			243.0

Table C2
Percent Occurrence for Near Breakwater(030)
First Deployment

NEAR	BREAKWATI	ER			33.	85N 11	B.40W	I RR	ESPECT	IVE OF DI	RECTION
		PFRO				JANUA			PERIOD		
HEIGHT (MET	ERS)	2 2000	LITT OC		•	RIOD(S					TOTA
	SHORTER-4.5	4.6- 5.6	5.6- 8.0	8.0- 10.6		11.6-			-	18.4- LONGER	
0.0-0.4			11	69	127	254	694	335	57	,	1547
0.5-0.9		115	289	150	69	775	1759	1666	138		4961
1.0-1.4	11	57	590	69	104	381	625	972	34		2843
1.5-1.9		11	57	11		11	92	231			413
2.0-2.4			34			13	1.1	92	1.1		171
2.5-2.9								34			34
3.0-3.4						٠.		11			1:
3.5-3.9											Û
4.0-4.4											Ú
4.5-4.9											Ů Ü O
5.0+											0
TOTAL	11	183	981	299	300	1444	3181	3341	240	ó	_

Appendix D South Breakwater Site, First Deployment

Figure D1. Time series plot for South Breakwater gage (153), November 1992, first deployment

Figure D2. Time series for South Breakwater gage (153), December 1992, first deployment

Figure D3. Time series plot for South Breakwater gage (153), January 1993, first deployment

Figure D4. Time series for South Breakwater gage (153), February 1993, first deployment

Figure D5. Time series for South Breakwater gage (153), March 1993, first deployment

Figure D6. Wave rose for South Breakwater gage (153), first deployment

Table D1	
Mean/Max Values for South	Breakwater (153)
First Deployment	

		sou	N TH BRE			e te rs)	BY M	ONTH		EAR 84N 1	18.40)W)	
						MONT	TH .						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	1.0	1.3	0.8		:		:		:		0.7	0.9	MEAN 0.8 1.0
MEAN	1.0	1.3	0.8				•				0.7	0.9	
		3001	H BRE	ALLWA !	LEK	MONT	'H		(33.	84N 1	10.40	(W)	
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	3.0	2.4	1.6	•				:	:	· ·	1.6	2.6	
ST	ATISTI	CS FC	R SOU	TH BF	Œ a kwa	TER				(33	.84N	118.4	OW)
THE ME	AN SIG	NIFIC	ANT W	AVE H	EIGHT	(METE	RS) =						0.9
THE ME	AN PEA	K WAV	E PER	IOD (SECON	IDS)=							11.7
THE MO								AND (DEGRE	ES)=			247.5
THE ST													0.4
THE ST					TP (SEC	ONDS)	=						2.8
THE LA					mur r	ADODO	m 11-0						3.0
	AK DIR								PCECT	. H∞0~			12.8 248.0
THE PE			20 (52	01(1111)	, PPP	OC. 11	A 111 A	IIIC DA	1 6207	rino =			240.0

Table D2
Percent Occurrence for South Breakwater (153)
First Deployment

37.84N 118.40W IRRESPECTIVE OF DIRECTION SOUTH BREAKWATER NOVEMBER 1992 - MARCH 1993 PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD TOTAL PEAK PERIOD (SECONDS) HEIGHT (METERS) SHORTER- 4.6- 5.6- 8.0- 10.7- 11.6- 12.8- 14.2- 16.0- 18.4-4.5 5.6 8.0 10.6 11.6 12.7 14.1 15.9 18.3 LONGER 1245 5209 46 324 398 148 138 0.0-0.4 824 509 564 222 83 1342 500 222 1564 685 231 0.5-0.9 1.0-1.4 1.5-1.9 55 46 46 2451 729 64 18 120 129 18 2.5-2.9 3.0-3.4 3.5-3.9 4.0-4.4 4.5-4.9 5.0+ Ö 147 82 989 1601 470 1146 2599 2644 304 TOTAL MEAN Hm0(M) = 0.9 LARGEST Hm0(M) = 3.0 MEAN TP(SEC) = 11.7 TOTAL CASES = 1080.

Appendix E Canyon Site, First Deployment

Figure E1. Time series plot for Canyon gage (RB5), November 1992, first deployment

Figure E2. Time series plot for Canyon gage (RB5), December 1992, first deployment

Figure E3. Time series plot for Canyon gage (RB5), January 1993, first deployment

Figure E4. Time series plot for Canyon gage (RB5), February 1993, first deployment

Figure E5. Time series plot for Canyon gage (RB5), March 1993, first deployment

Figure E6. Wave rose for Canyon gage (RB5), first deployment

Table E1 Mean/Max Values for Canyon (RB5) First Deployment

		CANY		IEAN H	imO (ME	ETERS)	BY M	IONTH		/EAR .84N 1	18.40)W)	
						MONT	(H						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	0.8	0.9	0.8	:	•		•	•			0.6	0.7	MEAN 0.7 0.8
MEAN	0.8	0.9	0.8	٠							0.6	0.7	
		CANY	LA ON	RGEST	' Hm0 (METER	RS) BY	MONT		YEAR 84N 1		W)	
						MONT	H						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	2.3	2.0	2.6	:	•			•	:	:	1.5	2.4	
STA	ATISTI	CS FO	R CAN	YON						(33	.84N	118.40	DW)
THE ME	N SIG	NIFIC	ANT W	AVE H	EIGHT	(METE	RS) =						0.7
THE MEA	N PEA	k wav	E PER	IOD (SECON	IDS) =							9.6
THE MOS	T FRE	QUENT	22.5	(CENT	ER) D	IRECT	ION B	AND (DEGRE	ES)=			292.5
THE STA	NDARD	DEVI	ATI ON	OF H	m0 (ME	TERS)	=						0.4
THE STA	NDARD	DEVI	ation	OF T	P (SEC	ONDS)	=						2.5
THE LAF	RGEST	Hm0 (M	ETERS) =									2.6
THE TP	SECON	DS)AS	soc.	WITH	THE L	ARGES	T Hm0	=					7.1
THE PEA	K DIR	ECTIO	N (DE	GREES) ASS	OC. W	TH T	HE LA	rgest	' Hm0 =			268.0
THE DAT	E OF	LARGE	ST Hm	o occ	URREN	CE IS						93	032704

Table E2 Percent Occurrence for Canyon (RB5) First Deployment

CANYO	N				33.	84N 118	8.40W	IRRE	ESPECT:	IVE OF DIR	ECTION
		PER				- MARCH	HEIGHT	AND E	PERIOD		
HEIGHT (METE	RS)			P	EAK PE	RIOD(SI	ECONDS				TOTA
	SHORTER- 4.5	4.6- 5.6					12.8-	14.2- 15.9			
0.0-0.4	28	52	347	668	298	463	683	109	17		2665
0.5-0.9	54	283	1143	1392	564	911	761	66	. 8		5182
1.0-1.4	2	57	552	515	188	228	147	26			1715
1.5-1.9		11	188	75	23	37	26				360
2.0-2.4			54	2							56
2.5-2.9			5								5
3.0-3.4											0
3.5-3.9											0
4.0-4.4											0
4.5-4.9										•	0
5.0+											0
TOTAL	84	403	2289	2652	1073	1639	1617	201	25	0	

Appendix F Redondo Site, First Deployment

Figure F1. Time series plot for Redondo gage (NDBC 46045), November 1992, first deployment

Figure F2. Time series plot for Redondo gage (NDBC 46045), December 1992, first deployment

Figure F3. Time series plot for Redondo gage (NDBC 46045), January 1993, first deployment F4

Figure F4. Time series plot for Redondo gage (NDBC 46045), February 1993, first deployment

Figure F5. Time series plot for Redondo gage (NDBC 46045), March 1993, first deployment

Figure F6. Time series plot for Redondo gage (NDBC 46045), April 1993, first deployment

Figure F7. Wave rose plot for Redondo gage (NDBC 46045), first deployment

Table F1 Mean/Max Values for Redondo (NDBC 46045) First Deployment

MEAN	Hm0 (M	ETERS)	ΒY	MONTH	AND	YEAR
NDBC	BUOY	46045		(33.84)	N 118	3.45W)

MONTH

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	1.1	1.4	1.0	1.3		•	•		:		0.6	1.0	MEAN 0.8 1.2
MEAN	1.1	1.4	1.0	1.3							0.6	1.0	
								MONT			1		
						TOOM	TH.						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	2.9	2.6	3.0	2.6	•	:	•	•		:		2.6	
		5	STATIS	TICS	FOR 1	NDBC E	BUOY	46045	(33	3.84N	118.4	(5W)	
THE ME	AN SIG	SNIFI	CANT V	NAVE I	HEIGH"	r(Mete	ERS) =						1.1
THE ME	AN PE	AK WA	VE PEI	RIOD	(SECO)	NDS)=							11.2
THE MO	ST FRI	EOUEN'	r 22.	CEN'	TER)	DIRECT	rion i	BAND (DEGRI	EES)=			270.0
THE ST		_											0.5
THE ST													3.4
					(02		, –						3.0
	THE DISTORD I SHIP (TELLETIC) -											7.7	
	THE IT (BECCHES) ABSECT WITH THE BELLEVILLE												
								THE LA	KGES'	T. HWO:	=		279.0
THE DA	TE OF	LARG	EST H	no oc	CURRE	NCE I	S						93032707

Table F2
Percent Occurrence for Redondo (NDBC 46045)
First Deployment

BUOY STATION 46045 33.84 N 118.45 W FOR ALL DIRECTIONS NOVEMBER 1992 - APRIL 1993
PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD

HEIGHT (METERS	;)	PEAK PERIOD(SECONDS)											
	<6.9	6.9- 8.0	8.1- 8.7	8.8- 9.5	9.6- 10.5	10.6- 11.7	11.8- 13.3	13.4- 15.3	15.4- 18.1	18.2- LONGER			
0.0-0.9 1.0-1.9 2.0-2.9 3.0-3.9 4.0-4.9	544 664 90	223 394 125 2	201 208 31	274 370 34	399 392 24	512 549 58	909 845 142	1331 826 102	291 306 7	36 98	4720 4652 613 2		
5.0-5.9 6.0-6.9 7.0-7.9 8.0-8.9 9.0-9.9 10.0+ TOTAL	1298	744	440	678	815	1119	1896	2259	604		0 0 0 0		
MEAN Hm0 (M) =	1.1	LARGES				MEAN T				AL CASES=	4079.		

Appendix G Catalina Ridge Site, First Deployment

Figure G1. Time series plot for Catalina Ridge gage (46025), November 1992, first deployment

Figure G2. Time series plot for Catalina Ridge gage (46025), December 1992, first deployment

Figure G3. Time series plot for Catalina Ridge gage (46025), January 1993, first deployment

Figure G4. Time series plot for Catalina Ridge gage (46025), February 1993, first deployment

Figure G5. Time series plot for Catalina Ridge gage (46025), March 1993, first deployment G6

Figure G6. Time series plot for Redondo gage (46045), April 1993, first deployment

Figure G7. Wave rose plot for Catalina Ridge gage (NDBC 46025), first deployment

Table G1						
Mean/Max \	Values	for	Catalina	Ridge	(NDBC	46025)
First Deploy	yment					

THE DATE OF LARGEST Hm0 OCCURRENCE IS

MEAN	Hm0 (MI	ETERS) BY	MONTH	AND	YEAR
NDBC	BUOY	46025	(33.75)	1119	0.07W)

MEAN Hm0 (METERS) BY MONTH AND YEAR NDBC BUOY 46025 (33.75N 119.07W)													
MONTH													
	JAN	PEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1992 1993	1.4	1.7	1.4	1.5		•	:	•	:	1.1	1.1	1.2	MEAN 1.1 1.5
MEAN	1.4	1.7	1.4	1.5	٠				•	1.1	1.1	1.2	
LARGEST Hm0 (METERS) BY MONTH AND YEAR NDBC BUOY 46025 (33.75N 119.07W)													
MONTH													
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC													
YEAR 1992 1993	4.2	3.5	3.1	2.7	•	•	:	:		2.2	2.3	3.2	
		g	TATIS	TICS	FOR N	IDBC B	YOUY	46025	(33	.75N	119.0	17W)	
THE ME	AN SIC	NIFIC	ANT W	AVE H	EIGHT	(METE	RS) =						1.3
THE ME	AN PEA	K WAV	E PER	IOD (SECON	IDS)=							11.9
THE MO	ST FRE	QUENT	22.5	(CENT	ER) D	IRECT	'ION B	AND (DEGRE	EES)=			270.0
THE ST	ANDARI	DEV1	ATION	OF H	imO (ME	ETERS)	=						0.5
THE ST	ANDARI	DEVI	ATION	OF T	P(SEC	CONDS)	=						3.2
THE LA		-		-									4.2
THE TP	•												12.5
THE PE	AK DIF	RECTIO	ON (DE	GREES) ASS	SOC. W	HTH T	'HE LA	RGEST	C Hm0=	:		263.0

93011418

Table G2
Percent Occurrence for Catalina Ridge (NDBC 46025)
First Deployment

BUOY STATION 46025 33.75 N 119.07 W FOR ALL DIRECTIONS NOVEMBER 1992 - APRIL 1993
PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD

HEIGHT (METRES	;)	PEAK PERIOD(SECONDS)											
	<6.9	6.9- 8.0	8.1- 8.7	8.8- 9.5	9.6~ 10.5			13.4- 15.3		18.2- LONGER			
0.0-0.9 1.0-1.9 2.0-2.9 3.0-3.9 4.0-4.9 5.0-5.9 6.0-6.9 7.0-7.9 8.0-8.9 9.0-9.9 10.0+	116 722 289 2	28 251 151 2	44 159 53	57 246 79	120 328 30	357 647 91 14	696 1457 240 34 4	834 1720 244 28	151 687 26 8	4 65	2407 6282 1203 88 4 0 0 0 0		
MEAN Hm0(M)=	1.3	LARGES	T Hm0(M) = 4	.2 1	MEAN T				AL CASES=	4899.		

Appendix H North Breakwater Site, Second Deployment

Figure H1. Time series plot for North Breakwater gage (020), October 1993, second deployment

Figure H2. Time series plot for North Breakwater gage (020), November 1993, second deployment

Table H1 Mean/Max Values for North Breakwater (020) Second Deployment

THE TP(SECONDS)ASSOC. WITH THE LARGEST Hm0=

THE DATE OF LARGEST Hm0 OCCURRENCE IS

		NORT		MEAN H EAKWA'I		ETERS	BY M	IONTH		EAR 85N 1	18.4	(W)	
						MON	ГH						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	
YEAR 1993	•			•						0.5	0.7		MEAN 0.6
MEAN	•		٠	•	٠		•			0.5	0.7		
		NORT		RGEST AKWAT		METER	KS) by	MONT		YEAR 85N 1		W)	
						MONT	TH.						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1993			٠							0.8	2.1		
ST	ATISTI	CS FO	R NOR	TH BR	EAKWA	TER				(33	.85N	118.41	₩)
THE ME	AN SIG	NIFIC	ANT W	AVE H	EIGHT	(METE	RS) =						0.6
THE ME	AN PEA	K WAV	E PER	IOD (SECON	DS)=							12.5
THE STA	ANDARD	DEVI	ATION	OF H	nO (ME	TERS)	=						0.3
THE STA	NDARD	DEVI	ati on	OF T	P(SEC	ONDS)	=						3.1
THE LAF	RGEST	Hm0 (M	ETERS) =									2.1

8.5

93111117

Table H2 Percent Occurrence for North Breakwater (020) **Second Deployment**

NORTH BREAKWATER

33.85N 118.41W IRRESPECTIVE OF DIRECTION

OCTOBER 1993 - NOVEMBER 1993 PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD

HEIGHT (METE	r(meters) Peak Period(seconds)												
	SHORTER- 4.5	4.6- 5.6	5.6- 8.0	8.0- 10.6				14.2- 15.9	16.0- 18.3	18.4- LONGER			
0.0-0.4 0.5-0.9 1.0-1.4 1.5-1.9 2.0-2.4 2.5-2.9 3.0-3.4 3.5-3.9 4.0-4.4 4.5-4.9 5.0+	128	42 85	470 256 256 42	42 384 85 42	256 42	897 299	1282 598	982 1837	1068		4697 4569 383 256 84 0 0 0		
TOTAL	170	127	1024	553	298	1196	1880	2819	1922	0			
MEAN Hm0 (M)	= 0.6	LARGE	ST Hm0	(M) =	2.1	MEAN T	P(SEC)	= 12.5	TOT	AL CASES=	234.		

Appendix I South Breakwater Site, Second Deployment

Figure I1. Time series plot for South Breakwater gage (RB4A), October 1993, second deployment

Figure 12. Time series plot for South Breakwater gage (RB4A), November 1993, second deployment

Figure I3. Time series plot for South Breakwater gage (RB4A), December 1993, second deployment

Figure 14. Time series plot for South Breakwater gage (RB4A), January 1994, second deployment

Figure I5. Time series plot for South Breakwater gage (RB4A), February 1994, second deployment

Figure 16. Time series plot for South Breakwater gage (RB4A), March 1994, second deployment

Figure I7. Time series plot for South Breakwater gage (RB4A), April 1994, second deployment

Figure I8. Time series plot for South Breakwater gage (RB4A), May 1994, second deployment

Figure I9. Time series plot for South Breakwater gage (RB4A), June 1994, second deployment

Figure 110. Wave rose for South Breakwater gage (RB4A), second deployment

Table I1
Mean/Max Values for South Breakwater (RB4A)
Second Deployment

			M	(EAN I	HmO (MI	eters	BY P	IONTH	AN D Y	YEAR					
	٤	STATI S	TICS	FOR S	SOUTH	BREAL	WATE	t.		(33.8	84 N 1	18.40	₩)		
						MON	TH.								
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC			
YEAR 1993 1994	1.0	1.1	1.0	1:1	0.9	1.0	:	•	•	0.5	0.7	1.2	MEAN 0.9 1.0		
MEAN	1.0	1.1	1.0	1.1	0.9	1.0		٠		0.5	0.7	1.2			
	S	TATIS								(33.8		18.40	₩)		
						MONT	H								
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC			
YEAR 1993 1994	2.4	3.0	4.0	3.3	2.1	1.6				0.9	3.0	3.0			
ST	ATISTI	.cs fo	R SOU	TH BE	REAKWA	TER		(3	3.84	N 118	.40 W)			
	AN SIG	NIFIC	ANT W	AVE H	EIGHT	r (METE	RS) =						1.0		
THE ME													10.2		
THE MEA							ION B	AND (DEGRE	ES)=					
THE ME	ST FRE									•			0.4		
THE ME			ATION				=						4.0		
THE MEA	andard	DEVI													
THE MEA	andard Andard	DEVI	ATION		TP (SEC	ONDS)							4.0		
THE MEA	andard Andard RGEST	DEVI DEVI	ation Eters) =				=					4.0		
THE MEATHE STATES THE STATES THE LAB	andard Andard RGEST (SECON	DEVI DEVI Hm0(M	ATION ETERS)= WITH	THE L	ARGES	T HmO		RGEST	' Hm0=					

Table I2
Percent Occurrence for South Breakwater (RB4A)
Second Deployment

SOUT	SOUTH BREAKWATER · 33.84 N 118.40 W FOR ALL DIRECTION OCTOBER 1993 - JUNE 1994 PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD													
HEIGHT (METERS) PEAK PERIOD (SECONDS)														
	SHORTER-4.5	4.6- 5.6	5.6- 8.0			11.6- 12.7				18.4- LONGER				
0.0-0.4 0.5-0.9 1.0-1.4 1.5-1.9 2.0-2.4 2.5-2.9 3.0-3.4 3.5-3.9 4.0-4.4 4.5-4.9 5.0+	1170- 9253 7187 1682 1207 420 91		36 4005 3712 1188 310 91 36	1133 4005 3035 749 146 128 18 18	1261 2231 987 292 54 109	128	2798 11667 7809 932 457 109	5230 914 219 73	402 1389 201 18	420 804 91 18	10803 49391 30025 5957 2521 1094 145 18 0			
MEAN Hm0(M) = 1.0	LARGE	ST Hm0	(M) =	4.0	MEAN T	P(SEC)	= 10.2	TOT	AL CASES=	5468.			

Appendix J Redondo Site, Second Deployment

Figure J1. Time series plot for Redondo gage (NDBC 46045), October 1993, second deployment

Figure J2. Time series plot for Redondo gage (NDBC 46045), November 1993, second deployment

Figure J3. Time series plot for Redondo gage (NDBC 46045), December 1993, second deployment

Figure J4. Time series plot for Redondo gage (NDBC 46045), January 1994, second deployment

Figure J5. Time series plot for Redondo gage (NDBC 46045), February 1994, second deployment

Figure J6. Time series plot for Redondo gage (NDBC 46045), March 1994, second deployment

Figure J7. Time series plot for Redondo gage (NDBC 46045), April 1994, second deployment

Figure J8. Time series plot for Redondo gage (NDBC 46045), May 1994, second deployment

Figure J9. Time series plot for Redondo gage (NDBC 46045), June 1994, second deployment

J10

Appendix J Redondo Site, Second Deployment

Figure J10. Wave rose for Redondo gage (NDBC 46045), second deployment

Table J1 Mean/Max Values for Redondo (NDBC 46045) **Second Deployment**

MEAN	Hm0 (M	ETERS) BY	MONTH	AND Y	EAR
NDBC	BUOY	46045	(33.84)	N 118.	45W)

MEAN Hm0(METERS) BY MONTH AND YEAR NDBC BUOY 46045 (33.84N 118.45W)													
						MONT	ч						
	JAN	FEB	MAR	APR	MAY			AUG	SEP	ост	NOV	DEC	
YEAR 1993 1994	1.0	1.1	1.0	1.1	1.0	1.0			•	0.6	0.7	1.1	MEAN 0.8 1.0
MEAN	1.0	1.1	1.0	1.1	1.0	1.0				0.6	0.7	1.1	
LARGEST Hm0 (METERS) BY MONTH AND YEAR NDBC BUOY 46045 (33.84N 118.45W) MONTH JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YEAR 1993 1994 2.4 2.8 3.5 2.5 2.2 1.5													
THE MEAN SIGNIFICANT WAVE HEIGHT (METERS) = 0.9								0.9					
THE MEA													11.6
THE MOST FREQUENT 22.5 (CENTER) DIRECTION BAND (DEGREES) = 270.0										270.0			
THE STA					•								0.4
THE STANDARD DEVIATION OF TP(SECONDS) =									3.7				

Table J2
Percent Occurrence for Redondo (NDBC 46045)
Second Deployment

BUOY STATION 46045 33.84 N 118.45 W FOR ALL DIRECTIONS OCTOBER 1993 - JUNE 1994 PERCENT OCCURRENCE(X100) OF HEIGHT AND PERIOD

HEIGHT (METERS))			PE	AK PE	RIOD(S	ECONDS)			TOTAL
	<6.9	6.9- 8.0	8.1- 8.7	8.8- 9.5	9.6- 10.5			13.4- 15.3	15.4- .18.1		
0.0-0.9 1.0-1.9 2.0-2.9	632 902 41	314 440 66	136 179 39	143 212 10	224 206 23	435 348 50	974 620 35	1861 742 7	728 399	158 55	5605 4103 271
3.0-3.9		5	•	٠	•				:		5 0
4.0-4.9 5.0-5.9				÷							0
6.0-6.9 7.0-7.9					•			:		:	e
8.0-8.9		·	·					. •		•	0
9.0-9.9 10.0+				:	•	:	:		:	:	Ö
TOTAL	1575	825	354	365	453	833	1629	2610	1127	213	
MEAN HEO (M) -	0.0	INDOE	err HmO	(M) = '	3.5	MEAN T	P(SEC)	= 11.6	TOT	AL CASES=	5561.

Appendix K Catalina Ridge Site, Second Deployment

Figure K1. Time series plot for Catalina Ridge gage (NDBC 46025), February 1994, second deployment

Figure K2. Time series plot for Catalina Ridge gage (NDBC 46025), March 1994, second deployment

Figure K3. Time series plot for Catalina Ridge gage (NDBC 46025), April 1994, second deployment

Figure K4. Time series plot for Catalina Ridge gage (NDBC 46025), May 1994, second deployment

Figure K5. Time series plot for Catalina Ridge gage (NDBC 46025), June 1994, second deployment

Figure K6. Wave rose for Catalina Ridge gage (NDBC 46025), second deployment

Table K1 Mean/Max Values for Catalina Ridge (NDBC 46025) Second Deployment

MEAN Hm0 (METERS) BY MONTH AND YEAR NDBC BUOY 46025 (33.75N 119.07W)

MONTH

						MONT	Ή						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1994		1.2	1.2	1.3	1.0	1.0				٠			MEAN 1.1
MEAN		1.2	1.2	1.3	1.0	1.0	•	•	٠				
				RGEST	Hm0(BUOY	METER 4602		M ONT 3.75N					
						MONT	H						
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
YEAR 1994		3.2	3.1	2.7	2.3	1.8	٠		٠	٠			
STATISTICS FOR NDBC BUOY 46025 (33.75N 119.07W)													
THE ME	AN SIG	NIFIC	ANT W	AVE H	EIGHT	(METE	RS)=						1.1
THE ME	AN PEA	K WAV	E PER	IOD (SECON	IDS) =							11.4
THE MO	ST FRE	QUENT	22.5	(CENT	TER) D	IRECT	TON E	AND (DEGRE	ES)=			270.0
THE STANDARD DEVIATION OF Hm0 (METERS) = 0.4								0.4					
THE STANDARD DEVIATION OF TP(SECONDS)= 3.								3.7					
THE LARGEST Hm0 (METERS) = 3.2									3.2				
THE TP	THE TP(SECONDS)ASSOC. WITH THE LARGEST Hm0= 11.1									11.1			
THE PE	AK DIR	ECTIO	N (DE	GREES	S) ASS	SOC. W	ITH T	HE LA	RGEST	' Hm0=			261.0
THE DA	TE OF	LARGE	EST Hm	10 000	URREN	ICE IS	3					9	4021815

Table K2
Percent Occurrence for Catalina Ridge (NDBC 46025)
Second Deployment

BUOY STATION 46025 33.75 N 119.07 W FOR ALL DIRECTIONS FEBRUARY 1994 - JUNE 1994 PERCENT OCCURRENCE (X100) OF HEIGHT AND PERIOD

HEIGHT (METERS)	PEAK PERIOD(SECONDS)									
	<6.9	6.9- 8.0	8.1- 8.7	8.8- 9.5	9.6- 10.5	10.6- 11.7	11.8- 13.3		15.4- 18.1	18.2- LONGER	,
0.0-0.9 1.0-1.9 2.0-2.9	297 1211 174	293 529 96	74 314 43	144 323 13	166 415 8	209 472 13	389 791 39	1517 1106 13	363 839	30 87	3482 6087 399 16
3.0-3.9 4.0-4.9		8				4	4		:		0
5.0-5.9 6.0-6.9	•				:		:		:	•	0
7.0-7.9 8.0-8.9	:	•		•	•	•		:	•		0
9.0-9.9 10.0+ TOTAL	1682	926	431	480	589	698	1223	2636	1202	117	0
MEAN Hm0 (M) =	1.1	LARGE	ST Hm0	(M) =	3.2	MEAN T	P(SEC)	= 11.4	TOT	AL CASES=	2286.

Appendix L Additional NDBC Time Series Plots

Figure L1. Redondo (NDBC 46045), May 1993

Figure L2. Redondo (NDBC 46045), June 1993

Figure L3. Redondo (NDBC 46045), July 1993

Figure L4. Redondo (NDBC 46045), August 1993

Figure L5. Redondo (NDBC 46045), September 1993

Figure L6. Redondo (NDBC 46045), July 1994

Figure L7. Redondo (NDBC 46045), August 1994

Figure L8. Redondo (NDBC 46045), September 1994

Figure L9. Catalina Ridge (NDBC 46025), October 1992

Figure L10. Catalina Ridge (NDBC 46025), May 1993

Figure L11. Catalina Ridge (NDBC 46025), June 1993

Figure L12. Catalina Ridge (NDBC 46025), July 1993

Figure L13. Catalina Ridge (NDBC 46025), August 1993

Figure L14. Catalina Ridge (NDBC 46025), September 1993

Figure L15. Catalina Ridge (NDBC 46025), July 1994

L16

Figure L16. Catalina Ridge (NDBC 46025), August 1994

Figure L17. Catalina Ridge (NDBC 46025), September 1994

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Office of Management and Budget, Paperwork Reduct		A DEPORT TYPE AND DATES	COVERED							
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE February 1996	3. REPORT TYPE AND DATES C Final report								
4. TITLE AND SUBTITLE Redondo Beach, California, 1992	5. FUND	DING NUMBERS								
6. AUTHOR(S) Margaret A. Sabol										
7. PERFORMING ORGANIZATION NA U.S. Army Engineer Waterways 3909 Halls Ferry Road, Vicksbur	REP	FORMING ORGANIZATION ORT NUMBER unical Report CERC-96-4								
9. SPONSORING/MONITORING AGE U.S. Army Corps of Engineers Washington, DC 20314-1000	NCY NAME(S) AND ADDRESS(ES	10. SPC	ONSORING/MONITORING ENCY REPORT NUMBER							
11. SUPPLEMENTARY NOTES Available from National Techn	ical Information Service, 5285	Port Royal Road, Springfield, V	A 22161.							
12a. DISTRIBUTION/AVAILABILITY S Approved for public release;		12b. D	ISTRIBUTION CODE							
Ostabas 1002 and anding in Int	wave data acquired at Redondone 1994. The purpose of this studes wave propagating through a coeffort and equipment and provide	dy was to provide actual field di pastal region of irregular bathyn es collected wave information i	netry. This report contains brief							
14. SUBJECT TERMS RCPWAVE			15. NUMBER OF PAGES 140							
Redondo Beach breakwater Wave data Wave gages		·	16. PRICE CODE							
17. SECURITY CLASSIFICATION 1 OF REPORT	OF THIS PAGE	19. SECURITY CLASSIFICATIO OF ABSTRACT	N 20. LIMITATION OF ABSTRACT							
UNCLASSIFIED	UNCLASSIFIED									

