Golden Section Search Method

by

Dr. Md. Rajibul Islam CSE, UAP

Equal Interval Search Method

- •Choose an interval [a, b] over which the optima occurs
- •Compute $f\left(\frac{a+b}{2} + \frac{\varepsilon}{2}\right)$ and $f\left(\frac{a+b}{2} \frac{\varepsilon}{2}\right)$
- •If $f\left(\frac{a+b}{2} + \frac{\varepsilon}{2}\right) > f\left(\frac{a+b}{2} \frac{\varepsilon}{2}\right)$ then the interval in which the maximum occurs is $\left[\frac{a+b}{2} \frac{\varepsilon}{2}, b\right]$ otherwise it occurs in

$$\left[a, \frac{a+b}{2} + \frac{\varepsilon}{2}\right]$$

Figure 1 Equal interval search method.

Golden Section Search Method

- The Equal Interval method is inefficient when ε is small.
- The Golden Section Search method divides the search more efficiently closing in on the optima in fewer iterations.
 f

 X_1 X_2 X_1 X_u

Figure 2. Golden Section Search method

Golden Section Search Method-Selecting the Intermediate Points

Determining the first intermediate point

$$\frac{a}{a+b} = \frac{b}{a}$$

Determining the second intermediate point

$$\frac{b}{a} = \frac{a-b}{b}$$

Golden Ratio=>
$$\frac{b}{a}$$
 = 0.618...

Golden Section Search-Determining the new search region

- If $f(x_2) > f(x_1)$ then the new interval is $[x_1, x_2, x_1]$
- If $f(x_2) < f(x_1)$ then the new interval is $[x_2, x_1, x_u]$
- All that is left to do is to determine the location of the second intermediate point.

Example

The cross-sectional area A of a gutter with equal base and edge length of 2 is given by

$$A = 4\sin\theta(1+\cos\theta)$$

Find the angle θ which maximizes the cross-sectional area of the gutter. Using an initial interval of $[0, \pi/2]$ find the solution after 2 iterations. Use an initial $\varepsilon = 0.05$.

Solution

The function to be maximized is $f(\theta) = 4\sin\theta(1+\cos\theta)$

Iteration 1: Given the values for the boundaries of $x_l = 0$ and $x_u = \pi/2$ we can calculate the initial intermediate points as follows:

$$x_1 = x_l + \frac{\sqrt{5} - 1}{2}(x_u - x_l) = 0 + \frac{\sqrt{5} - 1}{2}(1.5708) = 0.97080$$
 $f(0.97080) = 5.1654$

 $x_2 = x_u - \frac{\sqrt{5} - 1}{2}(x_u - x_l) = 1.5708 - \frac{\sqrt{5} - 1}{2}(1.5708) = 0.60000$ f(0.60000) = 4.1227

Solution Cont

$$x_1 = x_l + \frac{\sqrt{5} - 1}{2}(x_u - x_l) = 0.60000 + \frac{\sqrt{5} - 1}{2}(1.5708 - 0.60000) = 1.2000$$

To check the stopping criteria the difference between x_u and x_l is calculated to be

$$x_u - x_t = 1.5708 - 0.60000 = 0.97080$$

Solution Cont

Iteration 2

$$x_l = 0.60000$$

 $x_u = 1.5708$
 $x_1 = 1.2000$ $f(1.2000) = 5.0791$
 $x_2 = 0.97080$ $f(0.97080) = 5.1654$

$$x_{l} = 0.60000$$

$$x_{u} = 1.2000$$

$$x_{1} = 0.97080$$

$$x_{2} = x_{u} - \frac{\sqrt{5} - 1}{2}(x_{u} - x_{l}) = 1.2000 - \frac{\sqrt{5} - 1}{2}(1.2000 - 0.6000) = 0.82918$$

$$\frac{x_{u} + x_{l}}{2} = 1.2000 + 0.6000 = 0.9000$$

Theoretical Solution and Convergence

Iteration	$\mathbf{x}_{\mathbf{l}}$	$\mathbf{x}_{\mathbf{u}}$	\mathbf{x}_1	\mathbf{x}_2	$f(x_1)$	$f(x_2)$	$\varepsilon = x_u - x_1$
1	0.0000	1.5714	0.9712	0.6002	5.1657	4.1238	1.5714
2	0.6002	1.5714	1.2005	0.9712	5.0784	5.1657	0.9712
3	0.6002	1.2005	0.9712	0.8295	5.1657	4.9426	0.6002
4	0.8295	1.2005	1.0588	0.9712	5.1955	5.1657	0.3710
5	0.9712	1.2005	1.1129	1.0588	5.1740	5.1955	0.2293
6	0.9712	1.1129	1.0588	1.0253	5.1955	5.1937	0.1417
7	1.0253	1.1129	1.0794	1.0588	5.1908	5.1955	0.0876
8	1.0253	1.0794	1.0588	1.0460	5.1955	5.1961	0.0541
9	1.0253	1.0588	1.0460	1.0381	5.1961	5.1957	0.0334

$$\frac{x_u + x_l}{2} = \frac{1.0253 + 1.0588}{2} = 1.0420 \qquad f(1.0420) = 5.1960$$

The theoretically optimal solution to the problem happens at exactly 60 degrees which is 1.0472 radians and gives a maximum cross-sectional area of 5.1962.

THE END