SVM

1 Brief introduction

Assume the the data is linearly separable. We can convert our question into math equation.

$$\max_{w} \quad margin(w)$$
subject to $every \quad y_n w^T x_n$ (1)
$$margin(w) = \min_{n=1...N} distance(x_n, w)$$

Next, we would roughly mention some important techniques used in this algorithm.

The process would be like that :

method to compute (quadratic programming, lagrange multipliers) \Rightarrow

selection of kernel \Rightarrow

trade-off between large margin and margin violation (soft SVM) \Rightarrow

method to select the C (the trade-off) and the γ (the parameter when using gaussian kernel) \Rightarrow

Empirical results (of the expenditure analysis)

2 method to compute

1. quadratic programming:

$$\min_{u} \frac{1}{2}u^{T}Qu + p^{T}u$$
subject to $a_{m}^{T}u \ge c_{m}$

$$for \quad m = 1, 2, ..., M$$

$$(2)$$

where
$$u = [b, w]^T$$
; $Q = \begin{bmatrix} 0 & 0_d^T \\ 0_d & I_d \end{bmatrix}$; $p = 0_{d+1}$; $a_n^T = y_n[1, x_n^T]$; $c_n = 1$; $M = N$

2. lagrange multiplier:

original question:

$$\min_{b,w} \frac{1}{2} w^T w$$
subject to $y_n(w^T z_n + b) \ge 1$

$$for \quad n = 1, 2, ..., N$$
(3)

transfer it to lagrange function:

$$\mathbf{L}(b, w, \alpha) = \frac{1}{2}w^{T}w + \sum_{n=1}^{N} \alpha_{n}(1 - y_{n}(w^{T}z_{n} + b))$$

3. dual problem : (goal : transfer question from d + 1 variables to N variables) (strong duality) :

$$\min_{b,w} (\max_{\alpha_n > 0} \mathbf{L}(b, w, \alpha)) = \max_{\alpha_n > 0} (\min_{b,w} \mathbf{L}(b, w, \alpha))$$

4. KKT:

- $y_n(w^Tz_n+b) \ge 1$
- $\alpha_n > 0$
- $\sum y_n \alpha_n = 0; w = \sum \alpha_n y_n z_n$
- $\alpha_n(1 y_n(w^T z_n + b)) = 0$ (complimentary slackness)

Note: the "support vectors(z_n, y_n) satisfies $\alpha_n > 0$ "

3 selection of kernel

Note: the goal of using kernel SVM is to avoid the dependence of dimension(convert it to dependence on N) and predict with SV only

1. linear kernel:

- $K(x, x') = x^T x'$
- very explainable(w, and SV)
- cons : data not always separable
- we should always begin with it first
- 2. Gaussian kernel:
 - $K(x, x') = exp(-\gamma ||x x'||^2)$
 - achieve large margin in infinite dimension
 - more powerful than linear and polynomial, but sometimes too powerful
 - need to carefully choose the γ

4 trade-off between large margin and margin violation(soft SVM)

- 1. margin violation η_n
- 2. penelized with violation C

$$\min_{b,w,\eta} \frac{1}{2} w^T w + C \sum_{n=1}^N \eta_n$$
 subject to $y_n(w^T z_n + b) \ge 1 - \eta_n$, where $\eta_n \ge 0$

- 3. physical meaning of α_n
 - complimentary salckness

$$\alpha_n(1 - \eta_n - y_n(w^T z_n + b)) = 0$$

$$(C - \alpha_n)\eta = 0$$
(5)

• $\alpha = 0$:

no SV

 $\eta = 0$

• $0 < \alpha < C$:

free SV

 $\eta = 0$

• $\alpha = C$:

bounded SV

 $\eta = \text{violation amounts}$

5 method to select the C (the trade-off) and the γ (the parameter when using gaussian kernel)

Note: using cross validation to choose the proper parameters

- 1. C: the penalized parameter
 - C large : less tolerance of noice \Rightarrow overfits
 - \bullet C small : want large margin
- 2. γ (Gaussian):
 - γ large : sharp Gaussian \Rightarrow overfits

6 Empirical results (of the expenditure analysis)

the code for expenditure analysis:(since I didn't do proper normalization, the results isn't as good as the one provided by our team member 張雅晴)

https://github.com/Raymonna/numerical-computation-p/blob/master/Untitled8.ipynb