Curso	Engenharia de Produção		
Disciplina	Pesquisa Operacional para a Engenharia de Produção 1		
Tópico	O método branch-and-bound para o problema da mochila binária		
Professor	Alex Paranahyba de Abreu (abreualexp@gmail.com)		

Exercício 1. Uma companhia de extração de petróleo tem disponível 5 bombas de submersão e deseja usá-las para aumentar a quantidade extraída de petróleo. A energia para o funcionamento das bombas é fornecida por um único gerador, cuja potência máxima é 8 kVA. A potência consumida e a eficiência de extração de cada bomba são apresentadas na tabela a seguir. Desejase determinar quais bombas devem ser usadas, de modo a maximizar a eficiência total da extração.

Bomba	1	2	3	4	5
Eficiência	4	15	12	16	18
Consumo (kVA)	2	3	2	4	6

Elabore um modelo de programação inteira para o problema e o resolva pelo método branch-and-bound com busca em largura e ramificação na variável mais fracionária, resolvendo as relaxações lineares por inspeção. Apresente os cálculos e justifique os passos detalhadamente.

Exercício 2. Um alpinista deseja escolher quais objetos carregar na mochila a fim de maximizar a sua utilidade. Para cada possível objeto, o alpinista atribuiu uma utilidade (quanto maior, mais útil), mostrada na tabela abaixo juntamente com o peso de cada objeto. Cada objeto é único, podendo ser levado ou não. O peso máximo que o alpinista pode carregar na mochila é 5 kg.

Objeto	Utilidade	Peso (g)
Barra de cereal	8	200
$ m \acute{A}gua$	9	1000
Jaqueta	7	400
Tênis	3	400
Protetor solar	5	200
Garrafas de oxigênio	10	3000
Bússola	2	100
Máquina fotográfica	6	500

Elabore um modelo de programação inteira para o problema e o resolva pelo método branchand-bound com busca em profundidade e ramificação na variável mais fracionária. Resolva a relaxação linear de cada um dos nós por inspeção.