ESISAR 1A P2027 - MA121 2022-2023 - HA PREUVE

Le 12/01/2023 - Salle B141

DUREE: 1h15

L'épreuve se déroule sans calculatrice ni documents. Tout échange de matériel est interdit. Le sujet est recto/verso.

Instructions générales

Après avoir démarré votre poste de travail (Linux), vous vous connecterez avec comme identifiant : userir et comme mot de passe : userir.

Les exercices ci-après seront réalisés dans le langage L∃∀N , à l'aide de l'outil Web en ligne "Lean Live Web Editor".

- Démarrez le navigateur Firefox (En haut à gauche de l'écran : clic sur "Applications" puis "Web Browser").
- Dans la barre d'adresse, accédez à l'URL: http://192.168.130.150:8080
- Effacez l'exemple affiché dans la fenetre d'édition et commencez à travailler
- Sauvegardez régulièrement votre travail
- Le bouton "Save" sauvegarde votre code source dans le fichier /home/userir/Downloads/_test.lean

Cinq minutes avant la fin de l'épreuve :

- Renommez ce fichier _test.lean en votre_login.lean (par ex. pour Jacques Durand: durandj.lean). Pour cela, cliquez en haut à gauche de l'écran sur "Applications" puis "File Manager" puis sur le dossier "Downloads" puis clic droit sur _test.lean puis clic sur "Rename...".
- Dans le navigateur, accédez à l'outil http://192.168.130.150 puis cliquez sur "Sélection du fichier", naviguez dans /home/userir/Downloads, choisissez votre fichier votre_login.lean (ex:durandj.lean) et n'oubliez pas de cliquer sur "Envoie".

Attention : comme indiqué ci-dessus, le rendu de l'examen est consitué d'UN SEUL fichier. Pour éviter les conflits de nommage, vous structurerez ce fichier à l'aide de "namespaces", comme ci-contre :

Afin de rendre un code source sans erreur, il est fortement recommandé de

- Utiliser le mot clé sorry pour remplacer les termes de preuve que vous ne parvenez pas à former;
- Commenter toutes les lignes qui ne sont pas acceptées par L∃∀N (sont considérées comme des commentaires toutes les lignes débutant par --).

```
import data.nat.basic
import data.set.basic
import data.real.basic
-- EXERCICE 1
namespace ex1
  --votre reponse a l'exercice 1
  theorem ex_1_1
                    -- a completer ...
end ex1
-- ----- EXERCICE 2 -----
namespace ex2
  variables {E F G:Type}
  definition injective
                       (f: E \rightarrow F) : Prop := \forall (u:E), \forall (v:E), f u=f v \rightarrow u=v
    votre reponse a l'exercice 2 ...
namespace ex3
    votre reponse a l'exercice 3 ...
end ex3
   ----- EXERCICE 4 -----
namespace ex4
    votre reponse a l'exercice 4...
```

Rappel : si besoin : les commandes #check nom_theo et #check @nom_theo permettent d'afficher l'énoncé d'un théorème de la librairie portant le nom nom_theo.

Exercice 1

- 1. Enoncez puis démontrez dans L $\exists \forall N$ le théorème suivant, que vous nommerez ex_1_1 : "Pour toute proposition P on a : P implique P".
- 2. Enoncez puis démontrez dans L $\exists \forall N$ le théorème suivant, que vous nommerez ex_1_2 : "Pour toutes propositions P et Q, si (P et Q) alors (P ou Q)".

Exercice 2

On donne les déclarations suivantes permettant de définir trois types E, F et G et la notion d'injectivité d'une application de type $E \rightarrow F$.

```
variables {E F G:Type} definition injective (f: E \rightarrow F) : Prop := \forall (u:E), \forall (v:E), f u =f v \rightarrow u=v
```

- 1. Enoncez puis démontrez dans L∃∀N un théorème, nommé ex_2_1, affirmant que la composée de deux applications injectives est une application injective.
- 2. Enoncez puis démontrez dans L $\exists \forall N$ un théorème, nommé ex_2 , affirmant que pour toutes applications $f: E \to F$ et $g: F \to G$, si $g \circ f$ est injective alors f est injective.

Exercice 3

Pour cet exercice vous importerez la librairie définissant les entiers naturels, en insérant la ligne ci-dessous au début de votre document :

```
import data.nat.basic
```

- 1. Donnez, dans L $\exists \forall N$, la définition d'un entier naturel n divisible par un entier p. Précisément, si n et p sont de type \mathbb{N} , le terme divisible n p doit être de type \mathbb{P} rop et traduire le fait que n est divisible par p.
- 2. Enoncez, puis démontrez, dans L $\exists \forall N$, un théorème nommé ex $_3$ 2 affirmant que la somme de deux nombres entiers naturels divisibles par un entier naturel p est divisible par p.

Exercice 4

Pour cet exercice vous importerez les librairies définissant les ensembles, et les nombres réels, en insérant les lignes ci-dessous au début de votre document :

```
import data.set.basic
import data.real.basic
```

1. Donnez, dans L $\exists \forall N$, la définition d'un majorant d'une partie de \mathbb{R} :

```
definition est_majorant (A:set \mathbb{R}) (m:\mathbb{R}) : Prop := -- a compléter
```

2. Donnez, dans L $\exists \forall N$, la définition du plus grand élément d'une partie de \mathbb{R} :

```
definition est_pge (A:set \mathbb{R}) (m:\mathbb{R}) : Prop := -- a compléter
```

3. Enoncez, puis démontrez, dans L $\exists \forall N$, un théorème nommé ex $_4$ 3 affirmant que (s'il existe) le plus grand élément d'une partie de $\mathbb R$ est unique.

Vous pourrez utiliser le théorème le_antisymm disponible dans la librairie.

Annexe : saisie des symboles

Symbole	Raccourci
A	\all
3	\ex
\rightarrow	\r
\leftrightarrow	\lr
_ ¬	\not

Symbole	Raccourci
٨	\and
V	\or
\geqslant	\ge
0	\0
λ	\la

Symbole	Raccourci
N	\N
\mathbb{R}	\R
<	\<
>	\>
≤	\le

Symbole	Raccourci
€	\in
α	\alp
>	\t
${\cal E}$	\eps
ℓ	\ell