Chapter II

Devices in CMOS Technology

- MOS analytical models
- Capacitors
- Bipolar PNP
- Resistors

Triode:
$$i_{DS} = \mu \cdot C_{OX} \cdot \frac{W}{L} \cdot \left[(v_{GS} - V_{TH}) \cdot v_{DS} - \frac{v_{DS}^2}{2} \right] \cdot (1 + \lambda \cdot v_{DS}) \quad \text{para} \quad 0 < v_{DS} < v_{GS} - V_{TH}$$

Voltage controlled resistor:

$$r_{DS} = v_{DS}/i_{DS} = [2K(v_{GS}-V_{TH})]^{-1}$$

Saturation:
$$i_{DS} = \frac{\mu \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(v_{GS} - V_{TH}\right)^2 \cdot \left(1 + \lambda \cdot v_{DS}\right)$$
 para $v_{DS} > v_{GS} - V_{TH}$

Voltage controlled current source:

λ- channel length modulation parameter typical values NMOS: $\lambda = 0.01 \text{ V}^{-1}$ *PMOS:* $\lambda = 0.02 V^{-1}$

OFF vs Subthreshold (weak inversion): $v_{GS} < V_{TH}$

$$V_{DS} > 200mV$$

$$I_D = I_0 \exp \frac{V_{GS}}{\zeta V_T}$$

$$V_T = kT/q$$

Subthreshold (weak inversion):

Bad news:

- leakage

Good news:

- ultra low power design
- high gm

Body effect - $V_{TH}(V_{SB})$

$$V_{TH} = V_{T0} + \gamma \left[\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right]$$

 V_{T0} represents V_{TH} with $V_{SB} = 0$

Technology parameters:

 ϕ - strong inversion surface potential (typical value: ϕ = 0,6 V)

 γ - bulk threshold parameter (typical NMOS: γ = 0,8 V^{1/2}, PMOS: γ = 0,4 V^{1/2})

Temperature influence

Mobility:

$$K' = K' \times \left(\frac{T}{T_0}\right)^{-\frac{3}{2}}$$

For digital circuits the mobility reduction is dominant

 V_T :

$$V_T = V_{T0} - \alpha (T - T_0)$$

$$\alpha \approx 2.3 \ mV/^{\circ} C$$

With v_{GS} near V_T , the V_T change is dominant

$$i_{DS} = \frac{\mu \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(v_{GS} - V_{TH}\right)^2$$

Drain and source resistence

$$R_{S,D} = \frac{L_{s,d}}{W} \cdot R_{sq} + R_c$$

High frequency model

Sources of MOS parasitic capacitances:

- Lateral diffusion
- Channel charge
- PN junctions

Contributions to GS, GD:

- Lateral diffusion :
- Channel charge:
 - Off
- PN junctions

Contributions to GB:

- Lateral diffusion:
- Channel charge:
 - off $C_{GB} = C_{OX} \times W \times L_{eff}$
 - triede
 - saturation
- PN junctions

Contributions to SB, DB:

- Lateral diffusion
- Channel charge(C_{BC} : subs. canal):

• triode -
$$C_{SB} = \frac{C_{BC}}{2}$$

$$C_{DB} = \frac{C_{BC}}{2}$$

• off
• triode -
$$C_{SB} = \frac{C_{BC}}{2}$$
 $C_{DB} = \frac{C_{BC}}{2}$
• saturation - $C_{SB} = \frac{2}{3}C_{BC}$ $C_{DB} = 0$

$$C_{DB} = 0$$

$$C = \frac{C_{j0}A}{\left(1 - \frac{V_F}{\phi_B}\right)^n}$$

 $\phi_{\rm B}$ – barrier potential (0,7 V)

V_F – forward bias voltage

 C_{i0} – capacitance density at 0 V

A – Junction area

$$C_{S,DB} = \frac{C_J A}{\left(1 - \frac{V_F}{\phi_B}\right)^{MJ}} + \frac{C_{JSW} P}{\left(1 - \frac{V_F}{\phi_B}\right)^{MJSW}}$$

	corte	tríodo	saturação	_
C_GD	$C_{ox}WL_{D}$	$C_{ox}WL_D+\frac{1}{2}C_{ox}WL$	$C_{ox}WL_{D}$	
C_{GS}	$C_{ox}WL_{D}$	$C_{ox}WL_D + \frac{1}{2} C_{ox}WL$	$C_{ox}WL_D + \frac{2}{3} C_{ox}WL$	
C_{BG}	C _{ox} WL	0	0	
C _{BD}	C _{BD1}	C _{BD1} +½ C _{BC1}	C _{BD1}	
C _{BS}	C _{BS1}	C _{BS1} +½ C _{BC1}	C _{BS1} + ² / ₃ C _{BC1}	V_{DS} $\downarrow V_{DS}$ $\downarrow V_{DS}$ $\downarrow V_{DS}$
Cap. subs source Cap. subs channel				
ICROELECTRÓNICA			$L_{D} \stackrel{L_{EFF}}{\smile} \Delta L$	Si W

Chapter II

Devices in CMOS Technology

- MOS analytical models
- Capacitors
- Bipolar PNP
- Resistors

MOS transitor as capacitor

Non-linear but very good density – lower area required

MOS transitor as capacitor

Example from a tech process parameters:

PASS/FAIL PARAMETERS					
Parameter	Symbol	Min	Тур	Max	Unit
POLY1 - DIFF (gate oxide)					
POLY1 - DIFF area	CGOX	4.26	4.54	4.86	fF/µm²
			\\		

MIM (Metal-Isolator-Metal) capacitors

Linear but only available in some processes – additional processing steps required

Normally used if process allows and if linearity is important

Parameter	Symbol	Min	Тур	Max	Unit
CMIM area capacitance	СМІМ	1.00	1.25	1.50	fF/µm²

MOM (Metal-Oxide-Metal) capacitors

Linear but require higher area – no additional processing steps required

Used if process does not allows MIM and if linearity is important

(functionality does not allow capacitance to vary with voltage)

- MOM capacitors as a stack of *fringe capacitors* (based on side capacitance)

 MET2 - MET1

 MET2 - MET1 area
 CM2M
 0.026
 0.036
 0.059
 fF/µm²

Chapter II

Devices in CMOS Technology

- MOS analytical models
- Capacitors
- Bipolar PNP
- Resistors

Bipolar PNP - Vertical

....

Bipolar PNP - Lateral

Bipolar parasitics and latchup

Chapter II

Devices in CMOS Technology

- MOS analytical models
- Capacitors
- Bipolar PNP
- Resistors

Resistivity - if a trace of metal or semiconductor with length L, cross-section with area A, and presents a resistance of value R, the corresponding material has a resistivity defined as: $\rho = (A R) / L$

Sheet resistance – if the thickness of the conducting material is constant, Z = cte, a square (L = W) has a resistance only dependent of Z and ρ : $R_{\Box} = \rho L / A = \rho L / (W Z) = \rho / Z$

Any rectangle has a resistance that can be estimated multiplying the sheet resistance by the number of squares (L/W): $R = \rho L / (W Z) = R_{\Box} L / W$

Ex:

$$R_{AB} = (3 + 0.5 + 0.55) R \Box$$

Small sheet resistance and very large variance

MET1 sheet resistance	RMET		80	150	mΩ/□
POLY1 gate sheet resistance	RGATE		8		Ω/□
NDIFF sheet resistance	RDIFFN	55	70	85	Ω/□
PDIFF sheet resistance	RDIFFP	100	130	160	Ω/□

CMOS processes are optimized by adding a metal layer (silicide) to reduce the sheet resistance of diffusions and poly

Resistors – silicide reduces resistance

Resistors- silicide blocking to save area

higher sheet resistance due to silicide blocking

Parameter	Symbol	Min	Тур	Max	Unit
RPOLYH sheet resistance	RPOLYH	0.9	1.2	1.5	kΩ/□
RPOLYH effective width 0.8 µm	WPOLYH	0.45	0.60	0.75	μm
MET1-RPOLYH contact resistance 0.4x0.4µm²	RCNTMPH		70	150	Ω/cnt
RPOLYH temperature coefficient	TCPOLYH		-0.4		10 ⁻³ /K
RPOLYH voltage coefficient	VCRPOLYH		-0.8		10 ⁻³ /V

all resistances have temperature dependence (+/-) and nonlinearity (dependence on voltage)

Pin required to identify the node that is the substrate of the resistor, allowing to model the parasitic capacitance to that node

cap=1.976f =20000.0 =.1Øu w=0.8u mult=1 cap=1.976f gngkla! r=20000,0 =1Øu w=∅.8u a</**∤>**> a< 🏞 cap=1.976f =20000.0 =100 w=0.8u o<Ø⊳ mult=1a<Ø>> cap=1.976f gngHai =20000,0=1Øu w=0.8u mult=1 . .gndg

Resistors

- Limited max length and
- Matching

force the division of one resistance in the sum of several units

compact representation

