Cyclic Groups

Exercise 16. Assume |x| = n and |y| = m. Suppose that x and y commute. Show that |xy| divides lcm(n, m). Need this be true if x and y don't commute? Give an example of commuting elements x and y such that |xy| is a proper divisor of lcm(n, m).

Solution. Letting ℓ be the least common multiple of |x| and |y|, we have $(xy)^{\ell} = x^{\ell}y^{\ell} = 1$, therefore |xy| divides ℓ .

In D_8 , the elements s and sr have order 2, but $s \cdot sr = r$ has order 4, which doesn't divide 2.

If $y = x^{-1}$, then xy has order 1, which is a proper divisor of |x| as long as $x \neq 1$.

Exercise 18. If $h \in H$ with $h^n = 1$, then there is a unique homomorphism $Z_n = \langle x \rangle \to H$ such that $x \mapsto h$,

Solution. Uniqueness follows by induction, showing that $x^k \mapsto h^k$ for all integers k. Now we need to show that this is well defined. Suppose that $x^j = x^k$. Then we have $x^{j-k} = 1$, so $n \mid j-k$. But this means that $h^{j-k} = 1$, and so $h^j = h^k$. Exercise 19 is even simpler.

Exercise 20. Let p be prime and n a positive integer. If $x \in G$ such that $x^{p^n} = 1$, show that the order of x is p^m for some integer $m \le n$.

Solution. The order of x divides p^n , and every divisor of p^n is of the form p^m for some $m \leq n$.

Exercise 21. Let p be an odd prime and let n be a positive integer. Show that 1 + p has order p^{n-1} in the multiplicative group $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$.

Solution. By the binomial theorem, we have

$$(1+p)^{p^{n-1}} = \sum_{j=0}^{p^{n-1}} {p^{n-1} \choose j} p^j.$$

We will now look more closely at the factors of p in each summand. We have

$$\nu_{p}\left(\binom{p^{n}}{j}p^{j}\right) = \nu_{p}(p^{n}!) - \nu_{p}(j!) - \nu_{p}((p^{n} - j)!) + j$$

$$= \frac{p^{n} - 1}{p - 1} - \sum_{i=1}^{n} \lfloor j/p^{i} \rfloor - \sum_{i=1}^{n} \lfloor (p^{n} - j)/p^{i} \rfloor + j$$

$$= -\sum_{i=1}^{n} \lfloor j/p^{i} \rfloor - \sum_{i=1}^{n} \lfloor -j/p^{i} \rfloor + j$$

$$= \sum_{i=1}^{n} (\lceil j/p^{i} \rceil - \lfloor j/p^{i} \rfloor) + j$$

$$= n + j - \nu_{p}(j) \qquad j > 0.$$

Since $n+j-\nu_p(j) \ge n+1$, we can conclude that $p^{n+1} \mid {p^n \choose j} p^j$ for all j>0. In particular, every term j>0 in the binomial sum is reduced to 0 modulo p^n , so we get

$$(1+p)^{p^{n-1}} \equiv 1 \pmod{p^n}.$$

Also, we have

$$(1+p)^{p^{n-2}} = \sum_{j=0}^{p^{n-2}} {p^{n-2} \choose j} p^j,$$

and since $n + j - \nu_p(j) \ge n + 2$ for all $j \ge 2$ and p > 2, we reduce the terms with $j \ge 2$ to 0 modulo p^n , leaving us with

$$(1+p)^{p^{n-2}} \equiv 1+p^{n-1} \not\equiv 1 \pmod{p^n}$$

For problem 22 where p=2, this second part doesn't work, but we have $n+j-\nu_2(j)\geq n+2$ for all $j\geq 3$. In fact, the expression reduces to 1 modulo 2^n whenever $n\geq 3$.

Exercise 22. Let $n \geq 3$. Show that 5 has order 2^{n-2} in the group $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$.

Solution. In Exercise 21, we derived that $\nu_p\left(\binom{p^n}{j}\right)=n-\nu_p(j).$ We have

$$(1+2^2)^{2^{n-2}} = \sum_{j=0}^{2^{n-2}} {2^{n-2} \choose j} 2^{2j}.$$

The 2-adic valuation of the j^{th} term is $n+2j-\nu_2(j)-2$ for j>0, which means we can reduce every term except the first to 0, giving our result.

On the other hand,

$$(1+2^2)^{2^{n-3}} = \sum_{j=0}^{2^{n-3}} {2^{n-3} \choose j} 2^{2j}.$$

The 2-adic valuation of the j^{th} term is $n+2j-\nu(j)-3$, so we can reduce every term except the first two. The reduced form is $1+2^{n-1}$, which is not 1.

Solution. The elements 2^n-1 and $2^{n-1}+1$ are distinct and both have order 2, but there can be only one cyclic subgroup of each order in a finite cyclic group, so $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ is not cyclic.

Exercise 24. Let G be a finite group and $x \in G$.

- (a) Show that if $g \in N_G(\langle x \rangle)$, then $gxg^{-1} = x^a$ for some $a \in \mathbb{Z}$.
- (b) Prove the converse.

Solution. (a) If $g \in N_G(\langle x \rangle)$, then $g\langle x \rangle g^{-1} = \langle x \rangle$, so in particular $gxg^{-1} = x^a$ for some integer a.

(b) Suppose $gxg^{-1}=x^a$ for some a. Then we have $gx^kg^{-1}=(gxg^{-1})^k=x^{ak}$, therefore $g\langle x\rangle g^{-1}\subseteq \langle x\rangle$. The function $y\mapsto gyg^{-1}$ is injective, so since G is a finite group we have $|g\langle x\rangle g^{-1}|=|\langle x\rangle|$, so they are the same set. In other words, $g\in N_G(\langle x\rangle)$. \square

Exercise 25. Let G be a finite group of order n and let k be relatively prime with n. Show that $x \mapsto x^k$ is surjective.

Solution. Let $y \in G$. We will use the fact that $y^n = 1$. Since n and k are relatively prime, we can find integers a, b such that na + kb = 1. Then

$$(y^b)^k = y^{bk-1}y = y^{bk+na-1}y = y,$$

so y^b is a k^{th} root of y.

Exercise 26. Let Z_n be a cyclic group of order n and for each integer a let $\sigma_a(x) = x^a$.

- (a) Show that σ_a is an automorphism if and only if a and n are relatively prime.
- (b) Prove that $\sigma_a = \sigma_b$ if and only if $a \equiv b \pmod{m}$.
- (c) Prove that every automorphism of Z_n is equal to σ_a for some a.
- (d) Prove that $\sigma_a \circ \sigma_b = \sigma_{ab}$. Deduce that $\operatorname{Aut} Z_n \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Solution. Suppose y is a generator of Z_n .

(a) σ_a is an endomorphism since Z_n is abelian. By Exercise 25, if $\gcd(a,n) = 1$, then σ_a is surjective, and therefore bijective since Z_n is finite. And if $g = \gcd(a,n) > 1$ and the group is generated by some y, then

$$\sigma_a(y^{n/g}) = y^{an/g} = 1,$$

so σ_a is not injective.

- (b) Suppose $\sigma_a = \sigma_b$. In particular, this means $y^a = y^b$, so $y^{a-b} = 1$, thus $n \mid a b$. The other direction is easy.
 - (c) Let ϕ be an automorphism where $\phi(y) = y^a$. Then

$$\phi(y^b) = \phi(y)^b = (y^a)^b = (y^b)^a = \sigma_a(y^b).$$

(d) We have

$$(\sigma_a \circ \sigma_b)(y^c) = ((y^c)^b)^a = (y^c)^{ab} = \sigma_{ab}(y^c).$$

This means $\bar{a} \mapsto \sigma_a$ is a homomorphism from $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut} Z_n$, and it is an isomorphism by either one of parts (b) or (c).