Problema 13. Demostreu que, per a $n \geq 2$, S_n té el mateix nombre de permutacions parelles que de permutacions senars.

Solució:

Podem expressar S_n com la reunió disjunta $S_n = A_n \cup I_n$, on A_n és el conjunt de permutacions que es descomponen en un nombre parell de transposicions, és a dir, el conjunt de permutacions parelles, i I_n és el conjunt de permutacions senars.

Sigui σ una transposició de S_n ; definim l'aplicació següent

$$\varphi: A_n \longrightarrow I_n : a \longmapsto \sigma a$$

Nota: El producte de permutacions parelles i senars segueix la regla dels signes: el producte de dues permutacions parelles o de dues senars és parell; el producte d'una permutació parella i d'una senar, és senar.

Per veure que els dos conjunts de permutacions posseeixen el mateix cardinal, hem de demostrar que l'aplicació és bijectiva.

Mirem la injectivitat:

Si
$$\varphi(a) = \varphi(b)$$
, aleshores $\sigma a = \sigma b \Rightarrow a = b$.

Si multipliquem per l'esquerra per σ^{-1} , obtenim a = b.

Per acabar, l'exhaustivitat:

Si τ és un element de I_n , aleshores $\varphi(\sigma\tau) = \sigma\sigma\tau = \tau$, on $\sigma\tau \in A_n$ ja que ambdues són senars.