Think Exclusive Think ibex.	Date:
Solution Of Final Exam Fall 2	016
Q1(a)	
(i) Periodic Updates in Beuchmarks:	
	iking allows to
drill down in performance gaps to iden	
improvement. All Standard beuchmarks re	
veisions periodically because it must b	e deligned
to survive rapid changes in computer te	chnology.
Therefore, when examining benchmark re	sults, pay
attention to the version used as, every	latest version
have some new features added -	
(ii) Global Compiler Optimization Technique 1-Global common subexpression elimination 2- Copy propagation. 3- Code motion - remove code that calculate each iteration.	same value in
4- Induction variable elimination. calculation	reliminate away addressing
Q1 (b)	
Speedup overall = 1.75	
Speedup overall = 1.75 Speedup whomas = 10	
Fraction enhanced = ?	
	ibex.

Date:
Think Exclusive Think ibex.
1
Soveral = I
(1-Fenh) + Fenh Senh.
1-75 = 1 = 10
(1-Fenh) + Fenh 10+Fenh - 10Fenh
10
\Rightarrow 104-9Fenh = 10 \Rightarrow 10-5.714 = 9Fenh \Rightarrow Fenh = 0.4762 Fenh = 47.62%
1.75 Fenh = 47.62%
Methods of Encoding Branch Conditions in
Processor
1100000
① Condition Code → Special bit are set by AW
operations, possibly under program
control.
2 Condition Registers -> Tests arbitrary registers
with the result of a
compaison.
3 Compare & branch -> Compare is part of the
branch, often comparé is
limited to subset.

Exclusive has ibex.

Qa(b) Average CPI =?

Instruction CPI Frequency

A 1.7 22%

B 2.1 29%

C 2.7 17%

D 2.4 Remaining
$$\rightarrow$$
 32%

Average CPI =
$$(1.7 \times .22) + (a.1 \times 0.29) + (a.7 \times 0.17) + (2.4 \times 0.32)$$

= $\frac{Am}{2}$.

There are mainly 3 types of data hazards 1) RAW Hazard: (Read after write) (flow/true data dependency)

-> It occurs when I; tries to read data before In writes it

e.g: I: R2 - R1 + R3

T: RY = R2 + R3

3) WAR Hazard: (Write after Read) (false/Antidata dependence)

-> It occurs when I; tries to write data

Think Exclusive Think ibex. (5)
Date:
before Ii reads it -
e-g:
I: R2 ← R, +R3
J: R3 — Ry +R5
2) 141000 11 - 1 (1001
3) WAW Hazard: (Write after write) (output data
dependency)
-> When I; tries to write output before Ii writes.
$\underline{\text{I}: R2 \leftarrow R_1 + R_3}$
$J: R2 \leftarrow R_1 + R_3$ $J: R2 \leftarrow R_4 + R_5$
Note:
WAR and WAW Hazards occur during the out-of-order
execution of instructions.
Measures to alleviate these hazards:
Insert pipeline bubble.
Operand forwarding.
Operand forwarding. Use algorithms for out-of-order execution
<u>i.e.</u> : Tomasulo
Register renaming Scoreboarda
Scoreboarda

Think Exclusive Think ibex. 6 Date:
(i) Precise Exceptions Ability to restart an instruction Ability to restart an instruction is called as "precise exception". It refers to, all instructions before fault are committed, as those after it can be reducted from scratch.
(ii) Correlating Branch Predictors: Branch predictors that use the behaviour of other branches to make a prediction are called correlating branch predictors or two-level predictors. Existing correlating predictors add information about
the behaviour of most recent branches to decide how to predict a given branch.
(iii) How does Tomasulo's approach of dynamic scheduling perform internal forwarding to resolve RAW hazards?
RAW Hazard is eliminated using internal forwarding as, source operand values that are computed after the registers are read are known by the functional unit or load buffer that will produce them. Results are immediately forwarded to functional unit on the common data bus.

Q3 (b	Toma	sulo's	App	road	u Of	Dynam	nic Sc cule	her	Juling rite Result
LD	Fo	, O(R	(1.)		~				
LD		6,00		- 1					
MULD		y, Fo,			-				
ADD.D		8 , F4							
S.D		8,00							
LD		0, -8							
L-D	F	6, -8	3 (K2)				(To	be	solved)
<u> </u>	1		1	111	0.	0.	A		
	Busy	OP	Vj	VK	Qj	QK	В		
ADD1									
ADD2									
MOL1									
MUL2									
LOAD1									
LOAD1									
LOAD 2									
LOAD3									
23.103									
Registe	stal	lus Ta	ble						
LE JISTE	2,30								THE PARTY OF
F-11	Ro	F6	Fy	1F8					
Field	Ro	F6	19	1 8					
Qi				1				The same	

0	3 (c)				
	Loop: L.D ADD.D S.D DADDI BNE	Fy, Fy,	O(RI) Fo, F2 O(RI) RI, 8 R2, L)	
LOOP	LD F0,0(R1)	1	Loop	LD	Fy ,8(R1)
-	ADDD F_{4} , F_{0} , F_{2} = SD F_{4} , $O(R_{1})$	-/		LD	F8 , 16 (R1)
	DADDI RIPLIS			LD	F12 , 24 (R1)
	10 Fo, 8(RI)			ADD	D F3, F0, R2
	ADDD Fy, Fo, F2			ADI	DD F6, F4, R2
	SD F4, 8(R1)			AD	DD F7, F8, R2
-	-DADDE RI, RI, 16			AD	DD F9, F12, R2
	LD Fo, 16 (RI)			SC	
	ADDD Fy, Fo, F2			S	D Fy, 8(RI)
-	SD F4, 16 (R1)			5	SD F8, 16(R1)
	DADDE RISRIGAY				SD F12, 24 (RI)
-	LD Fo , 29 (R)				
-	A000 F4 , F0 , F2			I	DADDI Rightig 32
-	50 F4.24(RI)				BNE RI, RZ , LOOF
	DADDI RIPRIBA				
	BNE RIORZALO				
-		-			
-		-	-		

Think Exclusive Think ibex. Small and blocks are to be discarded. Measure: Large cache memory reduces the miss. (3) Conflict Miss -> Occur when several blocks are mapped to same set or block frame. Measure: Fully associative placement avoid all conflict misses.

Q5(a): Advantage of write-back over write-through

Write-through -> Write is done synchronously both for the cache and to backing store.

Write-back -> Write is done only to cache.

Modified cache block is written back
to the store, just before it's replaced.

* Advantage of write-back over write through is
that when data is updated it's only written to
the cache. So, this mode has a faster data write
speed as compared to write-through policy

(ii) 4C2ABC95

Cache Size = 128k bytes. = 27.20 bytes = 217 bytes.

Block Size = 32 bytes = 25 bytes. block offset.

No of blocks = Cache size = 217 = 20 Index

block size 25

Tag bits = 82-12-5 = 15 bits.

Physical address bits.

ibex.

A III
Think Exclusive Think ibex.
4C2ABC95: 0100 1 100 0 0 10 10 10 10 11 11 100 100 10 1
Tag Index Block
Reduct Perally Office
Q5 (b) Explain, (i) Multilevel Cache (ii) Non-blocking cache cache band (iii) Critical word first (iv) Haudwave prefetching, techniques width for cache optimization, identifying component of memory access time which is improved?
(iii) Critical word first (iv) Handware prefetching, techniques
for cache optimization, identifying component of memory
access time which is improved?
(In notes)
Q5(c): Fast Page Mode Operations In DRAM:
FPM DRAM allows faster access to
data in same row or page. Page mode memory
works by eliminating the need for a row address
if data is located in row previously accessed.
(ii) Write back with modified bit.
O6(a) in Flynn's Clarification Scheme
O SISD -> single instruction, single data
② SIMD → 4 , multiple 4
3 MISM → Multiple " 4 Single " (4) MIMD → " " , multiple "
(4) MIMD -> " " , multiple "
1:0) C. Chana mandale La malait TI De
(ii) Software models to exploit TLP:
1) Parallel processing -> execution of a tightly
coupled set of theads collaborating
On a single task. on single task. ibex

1	F	3	1	
4	M	v	4	۱
1	А	~	v	ı
	-		m	

Think Exclusive Think ibex.

Date:

Q6 (c)

2016.

RAID (Redundant Array of Independent Disks)

-> It's a way of storing data in different places one
multiple hard disks to increase performance or
provide fault tolerance or both-

(i) How dependability of RAID is improved?

It can be improved by putting multiple hardduives together. Because use of multiple disks increase (MTBF) Mean Time B/w Failure, and also increase fault tolerance.

(ii) RAIDY VS RAIDS

Raidy and Raids both uses block striping. The major difference is in parity data which is distributed across all drives in in RAID away rather than on disk. This makes RAIDS more protected against data loss. Raids is faster than Raidy because there is no single parity disk that will create a data input bottleneck. In Raidy away, away can only write as fast as parity dick.