Análisis Matemático. Curso 2020-21.

Resumen de las semanas 7, 8, 9 y 10

Difeomorfismo. Una biyección entre dos abiertos de \mathbb{R}^n tal que tanto ella como su inversa son al menos de clase \mathcal{C}^1 .

Esto no es lo mismo que biyección suave. Por ejemplo $f(x) \equiv x^3$ es una biyección suave de la recta en sí misma pero no es un difeomorfismo.

Subvariedad k-dimensional de \mathbb{R}^n . Un subconjunto no vacío $X \subseteq \mathbb{R}^n$ tal que para cada punto $p \in X$ existen una abierto $U \subseteq \mathbb{R}^n$, con $p \in U$, y un difeomorfismo $\sigma : U \to \sigma(U)$ tales que la imagen $\sigma(X \cap U)$ es un abierto relativo de un subespacio afín k-dimensional de \mathbb{R}^n . Decimos que σ plancha la parte $X \cap U$ del conjunto X.

No consideramos al vacío \varnothing como una subvariedad.

El entero k se llama **dimensión geométrica de X** y está totalmente determinado por X. La misma definición de subvariedad exige que este entero sea el mismo para todo punto de X. Por ejemplo, el siguiente subconjunto del plano

$$\{(0,0)\} \cup \{(x,y) : x^2 + y^2 = 1\},$$

unión disjunta de un punto y una circunferencia, es una unión de subvariedades pero no es una subvariedad, porque el entero k es 0 en el origen y 1 en los demás puntos.

Grafo de tipo I, J. Es un tipo particular de subvariedad. Consideramos una partición $\{1,\ldots,n\}=I\sqcup J,$ con |I|=h y |J|=n-h. Entonces un grafo de tipo I,J es el conjunto de puntos $x=(x_1,\ldots,x_n)$ donde el vector $(x_i)_{i\in I}$ recorre un abierto $A\subseteq\mathbb{R}^h$ y se tiene $(x_j)_{j\in J}=\varphi(x_i)_{i\in I}$ para una función $\varphi:A\to\mathbb{R}^{n-h}$ que es al menos de clase \mathcal{C}^1 .

Por ejemplo, el siguiente conjunto es un grafo de tipo $\{1,3\}, \{2,4\}$

$$X = \left\{ \left(x_1, \varphi_1(x_1, x_3), x_3, \varphi_2(x_1, x_3) \right) : (x_1, x_3) \in A \right\},\,$$

supuesto que A sea un abierto de \mathbb{R}^2 y $\varphi \equiv (\varphi_1, \varphi_2) : A \to \mathbb{R}^2$ sea una función de clase al menos \mathcal{C}^1 .

Toda subvariedad tiene **descripciones locales mediante grafos.** Esto quiere decir que si $X \subseteq \mathbb{R}^n$ es una subvariedad de dimensión h entonces para cada punto $p \in X$ existen un abierto $U \subseteq \mathbb{R}^n$ y una partición $\{1, \ldots, n\} = I \sqcup J$ tales que la parte $X \cap U$ es el grafo de tipo I, J de alguna función φ de clase al menos \mathcal{C}^1 en un abierto de \mathbb{R}^h y con valores en \mathbb{R}^{n-h} .

Subvariedad implícita. Es la que se define de la siguiente manera.

Tenemos un abierto $U \subseteq \mathbb{R}^n$, una función $G \equiv (G_1, \dots, G_k) : U \to \mathbb{R}^k$, de clase al menos \mathcal{C}^1 , y un vector fijo $b \in \mathbb{R}^k$. Entonces definimos el conjunto $X = \{x \in U : G(x) = b\}$, es decir

$$x \in X \iff x \in U \quad y \quad \begin{cases} G_1(x) = b_1 \\ \vdots \\ G_k(x) = b_k \end{cases}$$

y se cumple la condición rango $(DG)_p = k$ para todo $p \in X$. Entonces X es o bien el conjunto vacío o bien una subvariedad con dim X = n - k.

La condición rango $(DG)_p = k$ equivale a que los gradientes $\nabla G_1(p), \dots, \nabla G_k(p)$ sean linealmente independientes para cada punto $p \in X$.

Parametrización regular para X. Si $X \subseteq \mathbb{R}^n$ es una subvariedad de dimensión h, una parametrización regular para ella es cualquier función $\Phi(u) = \Phi(u_1, \dots, u_h) : A \to \mathbb{R}^n$, de clase al menos C^1 en un abierto $A \subseteq \mathbb{R}^h$, tal que $\Phi(A) \subseteq X$ y para todo $u \in A$ la diferencial $(d\Phi)_u$ es inyectiva (o sea de rango h).

Tres propiedades de estas funciones:

- 1. Φ no es necesariamente inyectiva, pero es **localmente inyectiva.** Esto significa que para todo $a \in A$ existe un abierto $A' \subseteq U$ tal que $a \in A'$ y $\Phi|_{A'}$ es inyectiva.
- 2. Dado cualquier abierto $A' \subseteq A$, la imagen $\Phi(A')$ es un abierto relativo de X.
- 3. Si Φ es \mathcal{C}^s e inyectiva, si $V \subseteq \mathbb{R}^m$ es un abierto y $g: V \to \mathbb{R}^n$ es \mathcal{C}^s y tal que $g(V) \subseteq \Phi(A)$, entonces la única función $\beta: V \to A$ tal que $g \equiv \Phi \circ \beta$ verifica $\beta \in \mathcal{C}^s$.

Espacio tangente a X en p. Dada una subvariedad $X \subseteq \mathbb{R}^n$ y dado un punto $p \in X$, el espacio tangente a X en p es el conjunto de todas las velocidades $\alpha'(t)$, donde $\alpha: I \to \mathbb{R}^n$ es un camino diferenciable contenido en X y $t \in I$ es tal que $\alpha(t) = p$. Se lo denota T_pX .

El conjunto T_pX resulta ser un subespacio vectorial de \mathbb{R}^n y su dimensión coincide con la dimensión geométrica de X.

Si h es la dimensión geométrica de X y si $\Phi: A \to \mathbb{R}^n$ es cualquier parametrización regular para X tal que $\Phi(a) = p$ para un $a \in A$, entonces $(d\Phi)_a$ es un isomorfismo lineal de \mathbb{R}^h a T_pX . Por lo tanto

$$T_pX = \langle \Phi_{u_1}(a), \ldots, \Phi_{u_h}(a) \rangle,$$

y de hecho $\{\Phi_{u_1}(a), \ldots, \Phi_{u_h}(a)\}$ es una base para T_pX .

Espacio normal a X en p. Es el complemento ortogonal del espacio tangente:

$$(T_p X)^{\perp} = \{ w \in \mathbb{R}^n : w \cdot v = 0 \text{ para todo } v \in T_p X \}.$$

Si X es una subvariedad implícita: $X=\{p\in U: G(p)=b\}$, con $G\equiv (G_1,\ldots,G_k)$ y rango $(DG)_p=k$ para cada $p\in X$, entonces

$$T_pX = \ker(dG)_p = \{ v \in \mathbb{R}^n : v \cdot \nabla G_1(p) = \dots = v \cdot \nabla G_k(p) = 0 \},$$

luego:

$$(T_p X)^{\perp} = \langle \nabla G_1(p), \dots, \nabla G_k(p) \rangle,$$

y de hecho $\{\nabla G_1(p), \ldots, \nabla G_k(p)\}$ es una base de $(T_pX)^{\perp}$, porque estamos suponiendo que estos gradientes son linealmente independientes en cada punto de X.

Si k=1 entonces G es escalar y, si $\nabla G(p) \neq \mathbf{0}$ en cada punto p del nivel $\{G=b\}$, entonces los espacios normales a dicho nivel son las rectas vectoriales $\langle \nabla G(p) \rangle$, $p \in \{G=b\}$.

Punto crítico de $F|_{X}$. Dados un abierto $U \subseteq \mathbb{R}^n$, una función $F: U \to \mathbb{R}$, al menos de clase \mathcal{C}^1 , y una subvariedad $X \subseteq U$, un punto $p \in X$ es **crítico para** $F|_{X}$ si $(dF)_p|_{T_pX} \equiv 0$. Esto equivale a $\nabla F(p) \in (T_pX)^{\perp}$.

Que p sea crítico es necesario (no suficiente) para que $F|_X$ alcance su máximo o su mínimo en p.

En el caso en que X sea una subvariedad implícita, el punto $p \in X$ es crítico para $F|_X$ si y sólo si existen números $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ tales que

$$\nabla F(p) = \lambda_1 \nabla G_1(p) + \dots + \lambda_k \nabla G_k(p) ,$$

y de hecho esos números son únicos, por ser $\{\nabla G_1(p), \ldots, \nabla G_k(p)\}$ una base de $(T_pX)^{\perp}$, y se les llama **multiplicadores de Lagrange en el punto crítico p.**