Parallel Programming HW3

108032053 陳凱揚

Implementation

Which algorithm do you choose in hw3-1?

我使用了Blocked Floyd-Warshall Algorithm來實作hw3-1。

How do you divide your data in hw3-2, hw3-3?

hw3-2

首先我先將n*n的 <u>Dist</u> 做padding使得n為64的倍數 (64為我選擇的blocking factor),接著以 64*64 筆data 為單位送進一個GPU的blcok中執行。在每一個block中會有 32*32 個thread,每個thread會負責處理 4 筆data。

hw3-3

與hw3-2一樣,先做padding後,再以 64*64 筆data為單位送進一個GPU的block中執行,且每個thread 處理 4 筆data。而因為有兩個GPU,我將所有data分為兩半,在phase3時,上半部的data交給GPU0做執行,下半部的交給GPU1做執行,並在每一round開始前傳遞當前pivot row的data給另一個GPU。

What's your configuration in hw3-2, hw3-3? And why? (e.g. blocking factor, #blocks, #threads)

- hw3-2
 - blocking factor

我設定的blocking factor為 64,這是因為每個GPU的block最多有 1024 個thread和 48KB 的share memory,需要盡量用盡所有資源。

如果factor設為 32,每個thread會處理 1 筆資料,每筆資料需要 2 個int大小的share memory儲存 data (<code>Dist[i][j] = Dist[i][k]+Dist[k][j]</code>),也就是每個block會使用到 4*2*32*32/1024 = 8KB 的share memory,這樣會浪費掉很多空間。

如果factor設為64,每個thread會處理 1 筆資料,每個block會使用 закв 的share memory,比起 factor為32時用了更多的資源。

blocks & threads

這邊我的設定如下,每個GPU的block都對應到一個我們所切的block,而thread的數量固定為 32*32,每個thread處理 4 筆資料。

而block的數量在不同phase時會不同,在phase1時,只有 1 個pivot block需要計算,所以只需要 1 個block;在phase2時,有pivot row和pivot column需要計算,且可以扣除pivot block,所以需要 2* (round-1) 個block;在phase3時,一樣扣除掉前面的部分,共需要 (round-1)*(round-1) 個block。

```
int round = n/64;
for(int r = 0; r < round; r++){
    phase1 <<<1, dim3(32, 32)>>> (B, r, Dist_GPU, n);
    phase2 <<<dim3(2, round-1), dim3(32, 32)>>> (B, r, Dist_GPU, n);
    phase3 <<<dim3(round-1, round-1), dim3(32, 32)>>> (B, r, Dist_GPU, n);
}
```

hw3-3

blocking factor & blocks & threads

與hw3-2大致相同,只有在phase3時的block數量不同,需要切成上下兩半給 2 個GPU計算,若為奇數,會將多的那行row給下半部的GPU。

```
int id = omp_get_thread_num(), round = n/64;
int start = (round/2)*id, size = (round/2)+(round%2)*id;
for(int r = 0; r < round; r++){
   int copy = (r>=start && r<start+size);
   cudaMemcpyPeer(Dist_GPU[!id]+(r*64*n), !id, Dist_GPU[id]+(r*64*n), id, copy*64*n*sizeof(int));
#pragma omp barrier
   phase1 <<<1, dim3(32, 32)>>> (B, r, Dist_GPU[id], n);
   phase2 <<<dim3(2, round-1), dim3(32, 32)>>> (B, r, Dist_GPU[id], n);
   phase3 <<<dim3(size, round-1), dim3(32, 32)>>> (B, r, Dist_GPU[id], n, start);
}
```

How do you implement the communication in hw3-3?

我使用 cudaMemcpyPeer 在 2 個GPU間傳遞資料,而不是透過很慢的Host來傳遞資料。在每個round,都會將 負責此部分的GPU將pivot row傳遞給另一個GPU,詳細原因在下面implement的部分會再說明。

```
void block_FW(int B){
 #pragma omp parallel num_threads(2)
                        int id = omp_get_thread_num(), round = n/64;
                        int start = (round/2)*id, size = (round/2)+(round%2)*id;
                        cudaSetDevice(id);
                        cudaMalloc(&Dist_GPU[id], n*n*sizeof(int));
 #pragma omp barrier
                         \verb|cuda|| \texttt{Memcpy}(\texttt{Dist\_GPU}[id] + (\texttt{start}*64*n), \ \texttt{Dist} + (\texttt{start}*64*n), \ \texttt{size}*64*n*\texttt{size} \\ \texttt{of}(\texttt{int}), \ \texttt{cuda} \\ \texttt{MemcpyHostToDevice}); \\ \texttt{of}(\texttt{int}), \ \texttt{outaMemcpyHostToDevice}); \\ \texttt{outaMemcpyHostToDevice
                         for(int r = 0; r < round; r++){
                                                 int copy = (r>=start && r<start+size);</pre>
                                                 \verb|cudaMemcpyPeer(Dist_GPU[!id]+(r*64*n), !id, Dist_GPU[id]+(r*64*n), id, copy*64*n*sizeof(int))|;|| copy*64*n*sizeof(int)|| 
 #pragma omp barrier
                                                 phase1 <<<1, dim3(32, 32)>>> (B, r, Dist_GPU[id], n);
                                                 phase2 <<<dim3(2, round-1), dim3(32, 32)>>> (B, r, Dist_GPU[id], n);
                                                 phase3 <<< dim3(size, round-1), \ dim3(32, 32)>>> (B, r, Dist\_GPU[id], n, start);\\
                        cudaMemcpy(Dist+(start*64*n), Dist_GPU[id]+(start*64*n), size*64*n*sizeof(int), cudaMemcpyDeviceToHost);
                         cudaFree(Dist_GPU[id]);
}
}
```

Briefly describe your implementations in diagrams, figures or sentences.

- hw3-1
 - OpenMP

在hw3-1裡,我採取與seq.cc差不多的架構,只是在cal function裡將block以OpenMP做平行化,並將schedule的方式設為dynamic。此外,我將block factor設為64,這是實驗過不同數字後得到最佳的設定。

SIMD

我在迴圈最內層做計算時,採用SIMD的方式,一次可以做 4 個計算。

```
void cal(
          int B, int Round, int block_start_x, int block_start_y, int block_width, int block_height) {
          int block_end_x = block_start_x + block_height;
          int block_end_y = block_start_y + block_width;
          int k_start = Round*B, k_end = min((Round+1)*B, n);
          #pragma omp parallel for num_threads(cpu_num) schedule(dynamic)
          for (int b i = block start x; b i < block end x; ++b i) {
                     int block_internal_start_x = b_i*B, block_internal_end_x = min((b_i+1)*B, n);
                     for (int b_j = block_start_y; b_j < block_end_y; ++b_j) {
                               int block_internal_start_y = b_j*B, block_internal_end_y = min((b_j+1)*B, n);
                                for (int k = k_start; k < k_end; ++k) {
                                           for (int i = block_internal_start_x; i < block_internal_end_x; ++i) {
                                                      __m128i SIMD_ik = _mm_set1_epi32(Dist[i][k]);
                                                     for (int j = block_internal_start_y; j+3 < block_internal_end_y; j += 4) {</pre>
                                                               __m128i SIMD_l = _mm_loadu_si128((__m128i*)&Dist[i][j]);;
                                                               \label{eq:m128i} $$ \underline{\mbox{ SIMD}_r = \mbox{ } -\mbox{ } -\mbox
                                                               \verb|_mm_storeu_si128((\_m128i^*)\&Dist[i][j], \_mm\_min\_epi32(SIMD\_l, SIMD\_r));
                                                     int j = block_internal_start_y+(block_internal_end_y-block_internal_start_y)/4*4;
                                                     while(j < block_internal_end_y){</pre>
                                                               Dist[i][j] = min(Dist[i][j], Dist[i][k]+Dist[k][j]);
                                                    }
                                        }
                          }
                 }
         }
}
```

- hw3-2
 - Padding & Pin memory

如同前面所說,將 pist 的大小padding成 64 的倍數,並使用 cudaMallocHost 來allocate memory,用以pin住這整塊記憶體。

```
FILE *file = fopen(inFileName, "rb");
fread(&n, sizeof(int), 1, file);
fread(&m, sizeof(int), 1, file);

n_origin = n;
n += 64-((n%64+64-1)%64+1);
cudaMallocHost(&Dist, n*n*sizeof(int));
for(int i = 0; i < n; i++){
    for(int j = 0; j < n; j++){
        Dist[i*n+j] = (i==j&&i<n_origin)?0:INF;
    }
}</pre>
```

Kernel & Share Memory

我將有dependency的 3 個phase寫成 3 個kernel來執行,每個kernel的block數就是要計算的block數量,每個block有 32*32 個thread,每個thread負責 4 筆資料。

以下以phase3為例,每個thread負責的data會是此block中的(i, j), (i, j+32), (i+32, j), (i+32, j)

phase1和phase2也與phase3大同小異,只是在陣列編碼的部分有些微不同,另外在phase1時,因為 <code>Dist[i][j]</code>, <code>Dist[k][j]</code> 皆屬於同一塊block,所以在每次迴圈中必須將答案寫回share memory,並且做 __syncthreads()。

```
int round = n/64;
for(int r = 0; r < round; r++){
    phase1 <<<1, dim3(32, 32)>>> (B, r, Dist_GPU, n);
    phase2 <<<dim3(2, round-1), dim3(32, 32)>>> (B, r, Dist_GPU, n);
    phase3 <<<dim3(round-1, round-1), dim3(32, 32)>>> (B, r, Dist_GPU, n);
}
```

```
\_global\_ void phase3(int B, int r, int *Dist_GPU, int n){
    __shared__ int s[2*64*64];
    int b_i = (blockIdx.x+(blockIdx.x>=r))<<6, b_j = (blockIdx.y+(blockIdx.y>=r))<<6, b_k = r<<6;
    int i = threadIdx.y, j = threadIdx.x;
   int val0 = Dist_GPU[(b_i+i)*n+(b_j+j)];
    int val1 = Dist_GPU[(b_i+i)*n+(b_j+(j+32))];
    int val2 = Dist_GPU[(b_i+(i+32))*n+(b_j+j)];
    int val3 = Dist_GPU[(b_i+(i+32))*n+(b_j+(j+32))];
    s[i*64+j] = Dist_GPU[(b_i+i)*n+(b_k+j)];
    s[i*64+(j+32)] = Dist_GPU[(b_i+i)*n+(b_k+(j+32))];
    s[(i+32)*64+j] = Dist_GPU[(b_i+(i+32))*n+(b_k+j)];
    s[(i+32)*64+(j+32)] = Dist_GPU[(b_i+(i+32))*n+(b_k+(j+32))];
    s[4096+i*64+j] = Dist_GPU[(b_k+i)*n+(b_j+j)];
    s[4096+i*64+(j+32)] = Dist_GPU[(b_k+i)*n+(b_j+(j+32))];
    s[4096+(i+32)*64+j] = Dist_GPU[(b_k+(i+32))*n+(b_j+j)];
    s[4096+(i+32)*64+(j+32)] = Dist_GPU[(b_k+(i+32))*n+(b_j+(j+32))];
     _syncthreads();
    #pragma unroll
    for(int k = 0; k < 64; k++){
        val0 = min(val0, s[i*64+k]+s[4096+k*64+j]);
       val1 = min(val1, s[i*64+k]+s[4096+k*64+(j+32)]);
       val2 = min(val2, s[(i+32)*64+k]+s[4096+k*64+j]);
        val3 = min(val3, s[(i+32)*64+k]+s[4096+k*64+(j+32)]);
    Dist_GPU[(b_i+i)*n+(b_j+j)] = val0;
    Dist_GPU[(b_i+i)*n+(b_j+(j+32))] = val1;
    Dist_GPU[(b_i+(i+32))*n+(b_j+j)] = val2;
    Dist_GPU[(b_i+(i+32))*n+(b_j+(j+32))] = val3;
}
```

- hw3-3
 - o Dependency in phase3

hw3-3與hw3-2幾乎相同,只是在phase3時,1個GPU只需負責一半的data,因為和phase3有 dependency的資料只有pivot row和pivot column,以pivot row為界線,可以發現下半部的pivot column並不會被計算到,所以其實只需要在每次計算前,負責計算此pivot row的GPU將此pivot row 傳送給另一個GPU,這樣會被使用到的整個pivot row就會是正確,而上半部的pivot column則在之前就傳送過,所以也會是正確。這樣子在計算phase3時,所需的dependency皆為正確的,也因此可以計算出正確的答案。

```
void block_FW(int B){
#pragma omp parallel num threads(2)
    int id = omp_get_thread_num(), round = n/64;
    int start = (round/2)*id, size = (round/2)+(round%2)*id;
    cudaSetDevice(id);
   cudaMalloc(&Dist GPU[id], n*n*sizeof(int));
#pragma omp barrier
    cudaMemcpy(Dist_GPU[id]+(start*64*n), Dist+(start*64*n), size*64*n*sizeof(int), cudaMemcpyHostToDevice);
    for(int r = 0; r < round; r++){
        int copy = (r>=start && r<start+size);</pre>
        {\tt cudaMemcpyPeer(Dist\_GPU[!id]+(r^*64^*n), !id, Dist\_GPU[id]+(r^*64^*n), id, copy^*64^*n^*sizeof(int));}
#pragma omp barrier
        phase1 <<<1, dim3(32, 32)>>> (B, r, Dist_GPU[id], n);
        phase2 <<< dim3(2, round-1), dim3(32, 32)>>> (B, r, Dist_GPU[id], n);
        phase3 <<<dim3(size, round-1), dim3(32, 32)>>> (B, r, Dist_GPU[id], n, start);
    cudaMemcpy(Dist+(start*64*n), Dist_GPU[id]+(start*64*n), size*64*n*sizeof(int), cudaMemcpyDeviceToHost);
    cudaFree(Dist_GPU[id]);
}
}
```

Profiling Results

• Occupancy, Sm efficiency, Shared memory load/store throughput, Global load/store throughput 以下為使用 ocl.1 為測資做profiling的結果,可以看到在phase2和phase3處理的資料比較龐大,不管在 occupancy、sm efficiency、各種throughput上都比只處理 1 個block的phase1來的大上許多,將資源更加充分利用。

```
Metric Name
                                                                                                  Metric Description
                                                                                                                                                    Max
                                                                                                                                                                    Avg
Device "GeForce GTX 1080 (0)
    Kernel: phase3(int, int, int*, int)
                                            achieved occupancy
                                                                                                  Achieved Occupancy
                                                                                                                              0.924328
                                                                                                                                                             0.926039
                                                                                                                                             0.927549
                                                                                           Multiprocessor Activity
           79
                                       shared_load_throughput
                                                                                  Shared Memory Load Throughput 3213.5GB/s
Shared Memory Store Throughput 133.90GB/s
Global Load Throughput 200.84GB/s
          79
                                                                                                                                                           3249.2GB/s
                                     shared_store_throughput
gld_throughput
          79
                                                                                                                                           136.55GB/s
                                                                                                                                                          135.39GB/s
                                                 gst_throughput
                                                                                           Global Store Throughput 66.948GB/s 68.275GB/s 67.693GB/s
    Kernel: phase1(int, int, int*, int)
                                                                                                  Achieved Occupancy
                                       sm_efficiency
shared_load_throughput
                                                                                  Multiprocessor Activity
Shared Memory Load Throughput
Shared Memory Store Throughput
Global Load Throughput
593,54MB/s
                                                                                                                                                 4.63%
                                                                                                                                                                 4.59%
                                                                                                                                           129.07GB/s 127.39GB/s
           79
                                     shared_store_throughput
                                                                                                                                           43.696GB/s
                                                                                                                                                          43.126GB/s
                                                 gld_throughput
                                                                                                                                           688.39MB/s
                                                                                                                                                          679.40MB/s
    gst_throughput

gst_throughput

79

79
                                                                                           Global Store Throughput 593.54MB/s 688.39MB/s 679.40MB/s
                                           achieved_occupancy
                                                                                                  Achieved Occupancy
                                                                                                                                             0.921808
                                                                                  Multiprocessor Activity
Shared Memory Load Throughput
Shared Memory Store Throughput
                                      sm_efficiency
shared_load_throughput
           79
                                                                                                                                85.93%
                                                                                                                                               91.81%
                                                                                                                                                               89.55%
                                                                                                                           2705.0GB/s 2938.0GB/s 2800.3GB/s
           79
                                     shared_store_throughput
                                                                                                                                           122.42GB/s
                                                gld_throughput
gst_throughput
                                                                                            Global Load Throughput 169.06GB/s 183.62GB/s
Global Store Throughput 56.353GB/s 61.208GB/s
           79
                                                                                                                                                          175.02GB/s
```

Experiment & Analysis

System Spec

我的測試是在課程所提供的 hades 上做的。

Blocking Factor

以下為phase3的數據,以 c21.1 為測資。

Block factor	GOPS	shared load throughput (GB/s)	shared store throughput (GB/s)	global load throughput (GB/s)	global store throughput (GB/s)
32	1.311	2988.7	167.83	187.24	63.478
64	2.867	3132.5	130.52	195.78	65.260

Optimization

以下數據是以 621.1 為測資所測量出來的。

CPU (s)	GPU base (s)	GPU optimized (s)
5.53	2.77	0.72

Weak scalability

以下數據是以 p25k1 和 p35k1 為測資所測量出來的

1 GPU, n1=25000, n1*n1=6.25*10^8 srun -p prof -N1 -n1 --gres=gpu:1 ./hw3-3 /home/pp22/share/hw3-2/cases/p25k1 p25k1.out # 2 GPU, n2=34921, n2*n2=12.19*10^8≈2*n1*n1 srun -p prof -N1 -n2 --gres=gpu:2 ./hw3-3 /home/pp22/share/hw3-3/cases/p35k1 p35k1.out

1 GPU (s)	2 GPU (s)			
20.12	33.74			

Time Distribution

- · Method of measurement
 - CPU

```
struct timeval start, end;
gettimeofday(&start, NULL);
// ...
gettimeofday(&end, NULL);
double time = (double)(US_PER_SEC*(end.tv_sec-start.tv_sec)+(end.tv_usec-start.tv_usec))/US_PER_SEC;
printf("%lf\n", time);
```

• GPU

```
srun -p prof -N1 -n1 --gres=gpu:1 nvprof ./hw3-2 /home/pp22/share/hw3-2/cases/c21.1 c21.1.out
```

Result

Testcase	n	Total (s)	Compute (s)	H2D (s)	D2H (s)	Input (s)	Output (s)
c21.1	5000	0.943	0.127	0.016	0.015	0.634	0.149
p11k1	11000	2.421	1.172	0.075	0.074	0.443	0.656
p15k1	15000	5.225	2.991	0.141	0.137	0.698	0.897
p20k1	20000	11.858	7.442	0.247	0.243	0.917	0.992
p25k1	25000	22.167	15.157	0.387	0.382	1.581	1.127

Experience & conclusion

What have you learned from this homework?

我覺得這次的作業讓我對GPU更加熟悉,尤其是在對GPU的架構和他的計算模式,不然很難對cuda做優化,因為和平常寫程式只需注意時間、空間複雜度非常不一樣,cuda的重點都在memory access上,而且還有很多層memory需要一一去優化,有時也需要做trade off。此外,優化後的cuda程式常常都很難讀,也加深了繼續優化的難度,必須對整個架構很清楚,才有辦法找到效能瓶頸。