Probabilidade

Variáveis aleatórias

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada

Teorema de Bayes

$$P(A|B) = \frac{P(B|A).P(A)}{P(B)}$$

Até agora...

P(Cara) ou P(Coroa)

P(A K Q J 10)

P([...])

Variáveis aleatórias

Formal:

• Função que mapeia o espaço amostral em números reais $f \colon \Omega \to R$

Resultado de um processo aleatório é expresso na forma de um número.

Exemplo: jogada de 10 moedas

 $\Omega = \{HHHHHHHHHHH, HHHHHHHHHT, ...\}$

 $|\Omega| = 2^{10}$

X = variável aleatória que denota o número de caras;

s = HHTHHTHHHT

X(s) = 7

Números em alguns experimentos passado...

- Resultado de um dado ($\Omega = \{1, 2, ..., 6\}$)
- Número de caras depois de três jogadas de moeda (Ω = {0, 1, 2, 3, 4})
- Valor da peça de dominó ($\Omega = \{0, 1, 2, ..., 6\}$)

Não utilizamos as características numéricas → extensivamente

Trabalhando com números

Distribuição P(x)Verificar no eixo $Expressar na forma de P(x) = 1/x^{2}$ uma função Verificar propriedadesConcentrac

Decrescente, crescente, concentrado

Variáveis aleatórios

X

Realizar operações

Combinar variáveis

Verificar propriedades

X+1 X^2

X+Y

Média do valor de X

Tipos de variáveis aleatórias

Depende dos valores que uma variável aleatória pode assumir:

- Se X pode assumir um número finito de valores
 {1,2,3} → Discreta;
- Se X pode assumir infinitos valores, mas contável {N}, {Z} → Discreta
- Se X pode assumir infinitos valores não contáveis [0,2], {R} → Contínuas;

Exemplos

$$X = \{cara = 0, coroa = 1\}$$
 Discreto

Y = {peso de um animal no zoo de SP} Contínuo

Z = {# de formigas que nascerá amanhã} Discreto

W = {ano de nascimento de um eleitor} Discreto

A = {tempo total para completar uma corrida de 100m} Contínuo

B = {tempo total para completar uma corrida de 100m em segundos}

Discreto

Exemplo: jogada de três moedas

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

X = {# de caras (H) depois de jogar 3 moedas}

$$P(X = 0) = \frac{1}{8}$$

$$P(X = 1) = \frac{3}{8}$$

$$P(X = 2) = \frac{3}{8}$$

$$P(X = 3) = \frac{1}{8}$$

Podemos especificar as probabilidades de várias formas:

- Explícita: P(1) = 0.1, P(2)=0.2, P(3)=0.3, P(4)=0.4
- Tabela:

x	1	2	3	4
P(X=x)	0.1	0.2	0.3	0.4

Mas com números, podemos especificar as probabilidades de outras formas:

- Função \rightarrow P(X=x) = x/10, x \in {1,2,3,4}
- Gráficos

Função Massa de Probabilidade

$$P(X=x) = x/10, x \in \{1,2,3,4\} \rightarrow$$
 Função Massa de Probabilidade

 $FMP \rightarrow função$ que mapeia os elementos de uma variável aleatória a um valor de probabilidade;

Quando você acessa as probabilidades de todos os valores de uma variável aleatória ightarrow

Distribuição de probabilidade;

Axiomas da teoria da probabilidade:

$$P(x) \geq 0, orall x \in \Omega$$

$$\sum_{x \in \Omega} P(x) = 1$$

Tipos de distribuição de probabilidade discreto

Finito
$$\rightarrow |\Omega| = n \in P$$

Infinito
$$\rightarrow |\Omega| = \infty = \Re_{\Omega}$$

Distribuição de probabilidade discreta finita

$$|\Omega|$$
 = n $P(x) \geq 0, orall x \in \Omega$ $\sum_{x \in \Omega} P(x) = 1$

Uniforme: $p_1 = p_2 = ... = p_n = 1/n$

Crescente: $p_1 \le p_2 \le ... \le p_n$

Decrescente: $p_1 \ge p_2 \ge ... \ge p_n$

Distribuição de probabilidade discreta infinita

$$|\Omega| = \infty$$

Infinito em uma direção: p1, p2, p3 ...

Não pode ser uniforme p=0 $\rightarrow \Sigma = 0$, p > 0 $\rightarrow \Sigma = \infty$

Não pode ser crescente: pi > 0 \rightarrow pi+1, pi+2, ... > 0 $\rightarrow \sum = \infty$

Infinito nas duas direções: ..., p-2, p-1, p0, p1, p2, ...

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	
P(X)	0,2	0,16	0,128	•••

Escreva a Função Massa de Probabilidade para este problema.

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	
P(X)	0,2	0,16	0,128	•••

Represente a distribuição de probabilidades na forma de um gráfico.

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	
P(X=x)	0,2	0,16	0,128	

Calcule $P(X \le 1)$, $P(X \le 2)$ e $P(X \le 3)$;

Distribuição acumulada de probabilidade

$$F(x) = P(X \le x)$$
$$= \sum_{u \le x} p(u)$$

X = {# de pacotes}	1	2	3	
P(X=x)	0,2	0,16	0,128	
P(X≤×)	0,2	0,36	0,488	

Distribuição de probabilidades

Distribuição acumulada de probabilidades

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	
P(X=x)	0,2	0,16	0,128	

Escreva a Função Distribuição Acumulada de Probabilidade para este problema.

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	•••
P(X=x)	0,2	0,16	0,128	•••

Represente a Distribuição Acumulada de Probabilidade na forma de um gráfico.

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	•••
P(X=x)	0,2	0,16	0,128	•••

João quer comprar um número de pacotes de forma que ele teria mais de 90% de chance dele conseguir a figurinha que quer. Quantos pacotes ele deve comprar?

Revisão

- Variáveis aleatórias
 - Discretas;
 - Finita;
 - Infinita;
 - Contínuas;
- Distribuição de probabilidade;
- Função acumulada de probabilidade.