Louvain Algorithm

Network Communities

- Communities: sets of tightly connected nodes
- Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a **partitioning** of the network into groups disjoint $s \in S$

$$Q \propto \sum_{s \in S} [(\# \text{ edges within group } s) - (\exp \text{ expected } \# \text{ edges within group } s)]$$

Need a null model

Null Model: Configuration Model

- Given real G on n nodes and m edges, construct rewired network G'
 - Same degree distribution but uniformly random connections
 - Consider G' as a multigraph (multiple edges exist between nodes)
 - The expected number of edges between nodes i and j of degrees k_i and k_j equals: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$
 - There are 2m half edges in total.
 - For each of k_i half edges from node i, the chance of it landing to node j is $k_j/2m$, hence $k_ik_j/2m$.

Modularity

Modularity of partitioning S of graph G:

• $Q \propto \sum_{s \in S} [(\text{\#edges within group } s) - (\text{expected } \text{\# edges within group } s)]$

•
$$Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m}\right)$$
 $A_{ij} = 1 \text{ if } i \to j,$ 0 otherwise (if G is weighted then A_{ij} is the edge weight)

Modularity values take range [-1/2,1]

- It is positive if the number of edges within groups exceeds the expected number
- Q greater than 0.3-0.7 means significant community structure
- Notice Modularity applies to weighted and unweighted networks.

Louvain Algorithm: At High Level

- Louvain algorithm greedily maximizes modularity
- Each pass is made of 2 phases:
 - Phase 1: Modularity is optimized by allowing only local changes to nodecommunities memberships
 - Phase 2: The identified communities are aggregated into super-nodes to build a new network
 - Goto Phase 1

The passes are repeated iteratively until no increase of modularity is possible.

Louvain: 1st phase (Partitioning)

- Put each node in a graph into a distinct community
- For each node i, the algorithm performs two calculations:
 - Compute the modularity delta (ΔQ) when putting node i into the community of some neighbor j
 - Move i to a community of node j that yields the largest gain in ΔQ
- Phase 1 runs until no movement yields a gain

Louvain: Modularity Gain

• What is ΔQ if we move node i to community D to C?

$$\Delta Q(D \to i \to C) = \Delta Q(D \to i) + \Delta Q(i \to C)$$

• Before:

Removing i from D $\Delta Q(D \rightarrow i)$

Intermediate:

of node i $D - \{i\}$

• After:

 $C + \{i\}$ i $D - \{i\}$

Merging i into C $\Delta Q(i \rightarrow C)$

- Let's derive $\Delta Q(i \rightarrow C)$
- First, we derive modularity within C, i.e., Q(C).
- Define:
 - $\Sigma_{in} \equiv \sum_{i,j \in C} A_{ij}$ ··· sum of link weights between nodes in C (edge ij and ji count twice)
 - $\Sigma_{tot} \equiv \sum_{i \in C} k_i$ ··· sum of <u>all</u> link weights of nodes in C (edges inside twice, outside only once)

Define:

- $\Sigma_{in} \equiv \sum_{i,j \in C} A_{ij}$ ··· sum of link weights between nodes in C
- $\Sigma_{tot} \equiv \sum_{i \in C} k_i$ ··· sum of <u>all</u> link weights of nodes in C
- Then, we have

$$Q(C) \equiv \frac{1}{2m} \sum_{i,j \in C} \left[A_{ij} - \frac{k_i k_j}{2m} \right] = \frac{\sum_{i,j \in C} A_{ij}}{2m} - \frac{\left(\sum_{i \in C} k_i\right) \left(\sum_{j \in C} k_j\right)}{(2m)^2}$$
Links within the community
$$= \frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^2$$
Total links

• Q(C) is large when most of the total links are within-community links

• Further Define:

- $k_{i,in} \equiv \sum_{j \in C} A_{ij} + \sum_{j \in C} A_{ji}$ sum of link weights between node i and C
- k_i ··· sum of <u>all</u> link weights (i.e., degree) of node i

Before Merging

Isolated community of node *i*

We have
$$Q(C) = \frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^2$$

$$Q_{before} = Q(C) + Q(\{i\})$$

$$= \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m} \right)^2 \right] + \left[0 - \left(\frac{k_i}{2m} \right)^2 \right]$$

 $k_{i,in}=4$

Recall:

After Merging

$$Q_{\text{after}} = Q(C + \{i\})$$

$$"\sum_{in}" \text{ of } C + \{i\} \quad "\sum_{tot}" \text{ of } C + \{i\}$$

$$= \frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2$$

Louvain: Modularity Gain

•
$$\Delta Q(i \to C) = Q_{after} - Q_{before}$$

$$= \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m} \right)^2 \right] - \left[\frac{\sum_{in} - \left(\frac{\sum_{tot}}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right]$$

• $\Delta Q(D \rightarrow i)$ can be derived similarly.

• In summary, we can compute:

$$\Delta Q(D \to i \to C) = \Delta Q(D \to i) + \Delta Q(i \to C)$$

Louvain 1st Phase: Summary

- Iterate until no node moves to a new community:
 - For each node $i \in V$ currently in community C, compute the best community C':
 - $C' = \operatorname{argmax}_{C'} \Delta Q(C \to i \to C')$
 - If $\Delta Q(C \rightarrow i \rightarrow C') > 0$, then update the community:
 - $C \leftarrow C \{i\}$
 - $C' \leftarrow C' + \{i\}$

Louvain: 2nd phase (Restructuring)

- The communities obtained in the first phase are contracted into super-nodes, and the network is created accordingly:
 - Super-nodes are connected if there is at least one edge between the nodes of the corresponding communities
 - The weight of the edge between the two super nodes is the sum of the weights from all edges between their corresponding communities
- Phase 1 is then run on the super-node network

Louvain 2nd Phase: Summary

 Super nodes are constructed by merging nodes in the same community.

Louvain Algorithm

Belgian Mobile Phone Network

- 2M nodes
- Red nodes: French speakers
- Green nodes: Dutch speakers

Summary: Modularity

Modularity:

- Overall quality of the partitioning of a graph into communities
- Used to determine the number of communities

Louvain modularity maximization:

- Greedy strategy
- Great performance, scales to large networks