pandasプログラムを どうやって高速化するか?

2025/01/25 石坂一久

SciPyData 2025

自己紹介

石坂 一久

(NEC セキュアシステムプラットフォーム研究所所属)

<これまでの関わってきた主な領域>

コンパイラ

並列処理

ハイパフォーマンスコンピューティング

現在はFireDucksを開発

(FireDucks: pandasの高速版ライブラリ)

Intel Xeon Phi (メニコア)

NEC SX-Aurora TSUBASA (スパコン)

https://pc.watch.impress.co.jp/docs/news/yajiuma/1238340.html https://jpn.nec.com/hpc/sxauroratsubasa/specification/index.html

pandas: データサイエンスの必須ツール

月間2億回以上ダウンロードされるデータ分析の標準的なpythonライブラリ

pypiの月間ダウンロード数 (データ分析関係のライブラリ 2024年10月)

pandasへの不満

pandasは便利だけど...

データがメモリに入りきらない

遅い(実行時間が長い)

pandasの著者も言っています

Apache Arrow and the "10 Things I Hate About pandas"

AUTHOR
Wes McKinney

Sep. 21, 2017

- 1.Internals too far from "the metal"
- 2.No support for memory-mapped datasets
- 3. Poor performance in database and file ingest / export
- 4. Warty missing data support
- 5.Lack of transparency into memory use, RAM management
- 6. Weak support for categorical data
- 7. Complex groupby operations awkward and slow
- 8. Appending data to a DataFrame tedious and very costly
- 9.Limited, non-extensible type metadata
- 10. Eager evaluation model, no query planning
- 11. "Slow", limited multicore algorithms for large datasets

pandasが遅くて困ったとき

プログラムを 最適化する 良いマシンを 使う ライブラリを 変える

プログラム最適化する

Quiz: Which one is a better code?

```
def foo(filename):
    df = pd.read_csv(filename)
    t1 = df.drop_duplicates()
    t2 = t1.sort_values("B")
    t3 = t2.head(2)
    return t3
```

OR

```
def foo(filename):
    return (
    pd.read_csv(filename)
        .drop_duplicates()
        .sort_values("B")
        .head(2)
    )
```

Importance of chained expression

```
def foo(filename):
    df = pd.read_csv(filename)
    t1 = df.drop_duplicates()
    t2 = t1.sort_values("B")
    t3 = t2.head(2)
    return t3
```


re-write using chained expression

Quiz: Which one is a better code?

```
res = df.sort_values(by="B")["A"]
```

OR

```
tmp = df[["A", "B"]]
res = tmp.sort_values(by="B")["A"]
```

Pushdown最適化

SAMPLE QUERY

```
df.sort_values("A")
.query("B > 1")["E"]
.head(2)
```


OPTIMIZED QUERY

```
df.loc[:, ["A", "B", "E"]]
.query("B > 1")
.sort_values("A")["E"]
.head(2)
```


Pushdown最適化の効果

例: TPC-H Q3

SQLの参照実装をそのままpandasにしたプログラム

```
pd.read_parquet(os.path.join(datapath, "customer.parquet"))
  .merge(pd.read_parquet(os.path.join(datapath, "orders.parquet")),
        left_on="c_custkey", right_on="o_custkey")
                                                                          ファイル読み込み
  .merge(pd.read_parquet(os.path.join(datapath, "lineitem.parquet")),
        left_on="o_orderkey", right_on="l_orderkey")
  .pipe(lambda df: df[df["c_mktsegment"] == "BUILDING"])
                                                                           対象行の抽出
  .pipe(lambda df: df[df["o_orderdate"] < datetime.date(1995, 3, 15)])</pre>
  .pipe(lambda df: df[df["l_shipdate"] > datetime.date(1995, 3, 15)])
  .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
  .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
  .agg({"revenue": "sum"})[["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]]
  .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
  .reset_index(drop=True)
                                                                        グループ毎の売上の
  .head(10)
                                                                        合計を掲載
  .to_parquet(os.path.join("q3_result.parquet"))
```

Pushdown最適化の効果

最適化したプログラム

```
req_customer_cols = ["c_custkey", "c_mktsegment"] # (2/8)
req_lineitem_cols = ["l_orderkey", "l_shipdate", "l_extendedprice", "l_discount"] #(4/16)
req_orders_cols = ["o_custkey", "o_orderkey", "o_orderdate", "o_shippriority"] #(4/9)
customer = pd.read_parquet(os.path.join(datapath, "customer.parquet"), columns=req_customer_cols)
lineitem = pd.read_parquet(os.path.join(datapath, "lineitem.parquet"), columns=req_lineitem_cols
orders = pd.read_parquet(os.path.join(datapath, "orders.parquet"), columns=req_orders_cols)
                                                                                           必要な列だけを
f_cust = customer[customer["c_mktsegment"] == "BUILDING"]
f_ord = orders[orders["o_orderdate"] < datetime.date(1995, 3, 15)]</pre>
                                                                                           読み出し
f_litem = lineitem[lineitem["l_shipdate"] > datetime.date(1995, 3, 15)]
f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")
                                                                                  行フィルタを先に
      .merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")
                                                                                  実行
      .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
      .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
      .agg({"revenue": "sum"})[["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]]
      .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
      .reset_index(drop=True)
      .head(10)
      .to_parquet(os.path.join("opt_q3_result.parquet"))
```

Pushdown最適化の効果

最適化したプログラム

共通部分式の削除、デッドコード削除

共通部分式

```
# Find year and month-wise average sales
s = pd.Series(["2020-01-01", "2021-01-01", "2022-01-01"])

df = pd.DataFrame()
df["year"] = pd.to_datetime(s).dt.year
df["month"] = pd.to_datetime(s).dt.month
df["sales"] = [100, 200, 500]
r = df.groupby(["year", "month"])["sales"].mean()
print(r)
```

デッドコード

```
def demo_dce(df1, df2, is_eager_mode = False):
    merged_df = df1.merge(df2, on="a")
    sorted_df = merged_df.sort_values(by="a")
    # print(sorted_df)
    return merged_df.groupby("c")["d"].sum()
```

pandas固有のパターン最適化

特定のメソッドの組み合わせをより良い組み合わせに変換する

```
df["timestamp"].dt.strftime("%Y").astype(int) # timestamp列から年の取り出し df["timestamp"].dt.year
```

```
groupby("a").sum().sort_values("b") # groupby結果をb列でソート
```


sort=Falseを追加

ループやapplyを避ける

Close列がOpen列より大きい行は"up", それ例外は"down"という列を作りたい

ループ

Open	Close		result
100	110	,	up
108	107		down
112	103	7	down
103	120		up

vn vn apply

```
def by_loop(df)
    result = []
    for _, row in df.iterrows():
        if row["Close"] > row["Open"]:
            result += ["up"]
        else:
            result += ["down"]
        return pd.Series(result, index=df.index)
```

```
def by_apply(df):
    def func(row):
        if row["Close"] > row["Open"]:
            return "up"
        return "down"

return df.apply(func, axis=1)
```

API

```
def by_getitem(df)
    result = pd.Series("down", index=df.index)
    result[df["Close"] > df["Open"]] = "up"
    return result
```

ループやapplyを避ける

```
def by_loop(df)
    result = []
    for _, row in df.iterrows():
        if row["Close"] > row["Open"]:
            result += ["up"]
        else:
            result += ["down"]
        return pd.Series(result, index=df.index)
```

```
bitcoin価格データ
(485万行)
```

```
def by_apply(df):
    def func(row):
        if row["Close"] > row["Open"]:
            return "up"
        return "down"

return df.apply(func, axis=1)
```

18秒

65秒

```
def by_getitem(df)
    result = pd.Series("down", index=df.index)
    result[df["Close"] > df["Open"]] = "up"
    return result
```

35ミリ秒

1887x from loop 524x from apply

csvからparquetに変える

CSV: テキストフォーマット

Parquet: バイナリフォーマット

(ファイルサイズ)

pd.read_csv(data.csv)

6.7秒

725MB

pd.read_parquet(data.parquet)

2.5秒

2.7x

203MB

0.35秒

19x

TPC-Hのlineitemテーブルでの測定(sf=1)
*ファイルキャッシュに載った状態での測定

ハイエンドサーバー (Ex: 64コア, 1TB)

マルチノード

(分散メモリシステム)

マルチスレッド処理

(ライブラリ内部で対応しやすい)

メモリに入るなら速度は優位

分散処理

(ユーザーの関与が必要)

数十TB~のデータであれば 必須

ハイエンドサーバー (Ex: 64コア, 1TB)

マルチスレッド処理

(ライブラリ内部で対応しやすい)

メモリに入るなら速度は優位

マルチノード (分散メモリシステム)

分散処理

(ユーザーの関与が必要)

数十TB~のデータであれば 必須

ラップト

(Ex: 4コア,

本日はこちら 中心

マルチスレッド処理

(ライブラリ内部で対応しやすい)

メモリに入るなら速度は優位

•

残念ながらpandasは**速度での**恩恵はあまりない (シングルスレッドなので)

良いマシンを使うならライブラリも変えたい

ハイエンドサーバー

(Ex: 64コア, 1TB)

うれば

ライブラリを変える

データフレームライブラリ

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

basic questions				basic que	stions			
Input table: 1,0	00,000,00	0 rows x 9 c	olumns (50 GB)	In	put table: 100	0,000,000	rows x 7 colui	mns (5 GB)
FireDucks	1.0.4	2024-09-10	15 s		FireDucks	1.0.4	2024-09-10	7s
DuckDB	1.0.0	2024-07-04	25s		DuckDB	1.0.0	2024-07-04	9s
ClickHouse	24.5.1.1763	32024-06-07	28s		Polars	1.1.0	2024-07-08	9s
Polars	1.1.0	2024-07-09	47s		Datafusion	38.0.1	2024-06-07	15s
Datafusion	38.0.1	2024-06-07	56s		InMemoryDat	a\$ <i>e</i> 7ts1,138	2023-10-20	25s
data.table	1.15.99	2024-06-07	88s		ClickHouse	24.5.1.176	532024-06-07	43s
DataFrames.jl	1.6.1	2024-06-07	91s		data.table	1.15.99	2024-06-07	62s
InMemoryData	8(12:15a:0e	2023-10-17	218s		collapse	2.0.14	2024-06-07	69s
spark	3.5.1	2024-06-07	261s		DataFrames.jl	1.6.1	2024-06-07	77s
R-arrow	16.1.0	2024-06-07	378s		spark	3.5.1	2024-06-07	128s
collapse	2.0.14	2024-06-07	411s		dplyr	1.1.4	2024-06-07	214s
(py)datatable	1.2.0a0	2024-06-07	1022s		pandas	2.2.2	2024-06-07	244s
dplyr	1.1.4	2024-06-07	1104s		dask	2024.5.2	2024-06-07	635s
pandas	2.2.2	2024-06-07	1126s		(py)datatable	1.2.0a0	2024-06-07 und	defined exception
dask	2024.5.2	2024-06-07	out of memory		R-arrow	16.1.0	2024-06-07	out of memory
Modin		see README	pending		Modin		see README	pending

Groupby

Join

データフレームライブラリ

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

basic que	estions				このベンチマークでの利用言詞
In	put table: 1,0	00,000,00	0 rows x 9 d	columns (50 GB)	
	FireDucks DuckDB	1.0.4 1.0.0	2024-09-10 2024-07-04	15s 25s	python R (pythonインターフェースあり)
	ClickHouse Polars	24.5.1.1763 1.1.0	32024-06-07 2024-07-09	28s 47s	SQL python
	Datafusion data.table	38.0.1 1.15.99	2024-06-07 2024-06-07	56s 88s	python R
	DataFrames.jl InMemoryDat		2024-06-07 2023-10-17	91s 218s	Julia ?
	spark	3.5.1	2024-06-07	261s	python
	R-arrow collapse (py)datatable dplyr	16.1.0 2.0.14 1.2.0a0 1.1.4	2024-06-07 2024-06-07 2024-06-07 2024-06-07	378s 411s 1022s 1104s	R R python R
	pandas dask Modin	2.2.2 2024.5.2	2024-06-07 2024-06-07 see README	1126s out of memory pending	python python python

今回は7ライブラリを掘り下げる

ライブラリ概観

性能ベンチマーク

TPC-Hベンチマーク(22クエリ)

実装: https://github.com/pola-rs/polars-benchmark

INTEL(R) XEON(R) GOLD 6526Y 32 cores, 512GB Ubuntu 24.04

pandasに対する速度向上率(22クエリの平均値※)

read_parquet込みの場合

read_parquetを除いた場合

pandas互換性

FireDucks, Modin, cuDFの高いpandas互換性

Import文の変更のみで、プログラム本体の変更は不要

```
# import pandas as pd
import modin.pandas as pd
```

FireDucks, cuDFはimportの自動変更も可能

```
$ python3 -m fireducks.pandas program.py
```

```
%load_ext fireducks.pandas import pandas
```

Dask, PySpark

- 分散環境をメインターゲットとしたライブラリ
- pandasと似たAPIも提供しており、同じ様な書き方も可能
- 性能を出すには独自の書き方や最適化が必要

pandas

Dask

```
q final = (
    customer[customer["c mktseqment"] == var1]
    .merge(orders, left_on="c_custkey", right_on="o_custkey")
    .merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
    .pipe(lambda df: df[df["o_orderdate"] < var2])</pre>
    .pipe(lambda df: df[df["l shipdate"] > var2])
    .assign(revenue=lambda df: df["l extendedprice"] * (1 - df["l discount"
    .groupby(["l_orderkey", "o_orderdate", "o_shippriority"])
    .agg({"revenue": "sum"})
    .reset index()[
            "o_orderdate",
    .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
    .head(10)
return q final
```

Ex: TPC-H Q3

groubyにas_indexオプションがないので reset_indexが必要

Polars

- Rustで実装されたマルチスレッド化されたエンジン,最適化機能
- 独自の洗練されたPython API

pandas

Polars

```
q_final = (
    customer.filter(pl.col("c mktsegment") == var1)
    .join(orders, left_on="c_custkey", right_on="o_custkey")
    .join(lineitem, left_on="o_orderkey", right_on="l_orderkey")
    .filter(pl.col("o_orderdate") < var2)</pre>
    .filter(pl.col("l_shipdate") > var2)
    .with columns(
        (pl.col("l_extendedprice") * (1 - pl.col("l_discount"))).alias("revenue")
    .group_by("o_orderkey", "o_orderdate", "o_shippriority")
    .agg(pl.sum("revenue"))
    .select(
        pl.col("o_orderkey").alias("l_orderkey"),
        "o orderdate",
        "o shippriority",
    .sort(by=["revenue", "o orderdate"], descending=[True, False])
    .head(10)
```

Ex: TPC-H Q3

Duck DB

OLAP Database

Python Interfaceもあるが, SQLを書く

```
query_str = f"""
    c_mktsegment = 'BUILDING'
q_final = duckdb.sql(query_str)
```

Ex: TPC-H Q3

FireDucks

実行時コンパイラ技術を使った高速データフレームライブラリ

コンパイラ フレームワーク

FireDucksの最適化

最適化	FireDucks	備考
不要データの削除(メソッドチェーン)		自動でもできるがメソッド チェーンがお薦め
共通部分式の削除		
デッドコード削除		
Pushdown最適化		
パターン最適化		現在 15 パターン
Applyの自動変換	×	研究中
csv→parquet変換	×	

FireDucksの最適化

ライブラリの最適化機能により人手による負担が大幅削減

スケーラビリティ

マルチスレッドに対応したライブラリであれば、良いマシンの恩恵あり

統合ライブラリ(Ibis, Narwhals)

Ibis

Narwhals

共通のAPIを、様々なライブラリにつなぐ

まとめ: pandasプログラムが遅いとき

速度課題のあるpandasプログラムがあるなら, まずは互換性が高く、シングルノード対象のFireDucksを試す

pandas APIにこだわらないなら、PolarsやDuckDBもターゲット

FireDucks, Polars, DuckDBなどに乗り換えたら、良いマシンも!

データが巨大であれば、DaskやPySparkが選択肢

FireDucksとPolarsの比較

TPC-Hベンチマーク (22クエリ)

INTEL(R) XEON(R) GOLD 6526Y 32 cores, 512GB Ubuntu 24.04

