How to use Machine Learning models to build training sets?

Piotr Rybak

allegro

. . .

[delivery status]

[account number]

> Difficult task

- > Time-consuming
- > Low recall
- > Low consistency (~50% for 100 classes)

- > Difficult task
 - > Time-consuming
 - > Low recall
 - > Low consistency (~50% for 100 classes)
- > Class imbalance

> Difficult task

- > Time-consuming
- > Low recall
- > Low consistency (~50% for 100 classes)
- > Class imbalance
- > Fixed set of classes

> Easy task

- > Very fast
- > High consistency (~95% for each class)

- > Easy task
 - > Very fast
 - > High consistency (~95% for each class)
- > As much examples as needed

- > Easy task
 - > Very fast
 - > High consistency (~95% for each class)
- > As much examples as needed
- > Can introduce new classes

- > Easy task
 - > Very fast
 - > High consistency (~95% for each class)
- > As much examples as needed
- > Can introduce new classes
- > Wastes a lot of time
 - > You mostly annotate negatives

- > Easy task
 - > Very fast
 - > High consistency (~95% for each class)
- > As much examples as needed
- > Can introduce new classes
- > Wastes a lot of time Biased sample

Spurious correlations

Spurious correlations

Intent features

Number of annotated messages

Active learning (?)

User query

Active learning (?)

Active learning (?)

Random pairs from the same item

Random pairs from the same item

Incorrect pairs

	S	M	L	XL
BIUST:	84 cm	86 cm	92 cm	98 cm
	_(max)	_(max)	(max)	(max)
TALIA:	68 cm	70 cm	76 cm	80 cm
	(max)	(max)	(max)	(max)
BIODRA:	86 cm	94 cm	100 cm	103 cm

Trivial pairs

Domain mismatch

User query

Product image

Desired image types

Product-shop

Model-shop

Product-street

Model-street

Redundant image types

Multiple

Detail

Trash

Other

Manually annotate image types

Accuracy@5 ImageNet ResNet 2%

Random Pairs

6%

Filtered Pairs

50%

Main takeaways

> Automate your work using ML

Main takeaways

- > Automate your work using ML
- > Avoid spurious correlations by balancing features

Main takeaways

- > Automate your work using ML
- > Avoid spurious correlations by balancing features
- > Be creative!

We are looking for

Research Engineer

- Interesting and challenging projects (NLP, RL, Vision, Ranking)
- 20% of time for pure research
- Weekly seminars

Learn more: **smrtr.io/63WHX**

Our site: ml.allegro.tech

allegro