Backbone fragmentation

Side chain fragmentation / satellite ions

amino acid ₁ Isoleucine ₂	Leucine ₃	amino acid ₄
\u <u>.</u>	Δ29 Z ₂ 0	R C-terminus OH
/ H	W ₂	H O

	Formula (h = H ⁺ × z)	Mass (h = 1.008 × z)	
а	ⁿ ∑(AA) − CO + h	∑(AA) − 27.995 + h	
b	$\sum_{n=0}^{\infty} (AA) + h$	$\sum_{n=0}^{\infty} (AA) + h$	
С	∑(AA) + NH ₃ + h	$\sum_{n=0}^{\infty} (AA) + 17.027 + h$	

The "c-1" radical ion, which arises when the c ion loses a hydrogen to the z·+ ion, is also observed in ETD.

d	$\sum_{n=1}^{n-1} (AA) + C_2H_3N + h$	$\sum_{n=1}^{n-1} (AA) + 41.027 + h$
	$\Sigma^{\circ 1}$ (AA) + C ₂ H ₂ NO + h	∑(AA) + 56.014 + h
w	$\Sigma^{\circ 1}(AA) + C_3H_3O + h$	∑(AA) + 55.018 + h
	Σ (AA) + CO – H ₂ + h	^c Σ(AA) + 25.979 + h
у	^c Σ(AA) + H₂O + h	^ε Σ(AA) + 18.011 + h
Z	Σ(AA) + O − NH + h	^c Σ(AA) + 0.984 + h

The z·+ radical ion, which is heavier by one hydrogen than the "z ion" originally defined by Biemann, is also observed in ETD spectra. Likewise for the "z·+1" ion, which is one hydrogen heavier still.

The satellite ions are formed as secondary fragmentation, d from an a ion, w from a z ion. For Threonine and Isoleucine there are two possible d and w ions. These can be listed as 'd/wa_N' and 'd/wb_N' where a is the heaviest of the two options. For Threonine wa has an additional group of OH and wb a group of CH_3 . Isoleucine wa has an additional group of C_2H_5 , and wb a group of CH_3 . Valine is a special case; it has CH_3 as additional mass. Glycine, alanine, and proline have no satellite ions. The v ion is full loss of the sidechain from a y ion. For ETD, side chain loss as seen in v ions can be observed on any fragment with any sidechain loss. This is most often visible from the precursor.

Glycan

Collectively B and Internal ions are known as Oxonium ions

Formula	Mass	ion	Formula	Mass
C ₄ H ₅ O ₂	85.0284	S-H ₂ O	C ₁₁ H ₁₆ NO ₇	274.0921
C ₅ H ₅ O ₂	97.0284	S	C ₁₁ H ₁₈ NO ₈	292.1027
C ₆ H ₇ O ₃	127.0390	G-H ₂ O	C ₁₁ H ₁₆ NO ₈	290.0870
C ₆ H ₉ O ₄	145.0495	G	C ₁₁ H ₁₈ NO ₉	308.0976
C ₆ H ₁₁ O ₅	163.0601	H+N	C ₁₄ H ₂₄ NO ₁₀	366.1395
C ₄ H ₆ NO	84.0444	2N	C ₁₆ H ₂₇ N ₂ O ₁₀	407.1660
C ₆ H ₈ NO ₂	126.0550	H+2N	C ₂₂ H ₃₇ N ₂ O ₁₅	569.2188
C ₇ H ₈ NO ₂	138.0550	H+N+S	$C_{25}H_{41}N_2O_{18}$	657.2349
C ₆ H ₁₀ NO ₃	144.0655	H=He	x Formu	ıla & Mass
C ₈ H ₁₀ NO ₃	168.0655			are MH+
C ₈ H ₁₂ NO ₄	186.0761	-,,,,,		
C ₈ H ₁₄ NO ₅	204.0867			.2018.09.00
	$\begin{array}{l} C_4 H_5 O_2 \\ C_5 H_5 O_2 \\ C_6 H_7 O_3 \\ C_6 H_9 O_4 \\ C_6 H_{11} O_5 \\ C_4 H_6 NO \\ C_6 H_8 NO_2 \\ C_7 H_8 NO_2 \\ C_6 H_{10} NO_3 \\ C_8 H_{10} NO_3 \\ C_8 H_{10} NO_3 \\ C_8 H_{12} NO_4 \end{array}$	$\begin{array}{cccc} C_4 H_3 O_2 & 85.0284 \\ C_5 H_3 O_2 & 97.0284 \\ C_6 H_7 O_3 & 127.0390 \\ C_6 H_9 O_4 & 145.0495 \\ C_6 H_1 O_5 & 163.0601 \\ C_4 H_6 NO & 84.0444 \\ C_6 H_8 NO_2 & 126.0550 \\ C_7 H_8 NO_2 & 138.0550 \\ C_6 H_{10} NO_3 & 144.0655 \\ C_8 H_{10} NO_3 & 168.0655 \\ C_8 H_{12} NO_4 & 186.0761 \\ \end{array}$	$\begin{array}{cccc} C_{d}H_{5}O_{2} & 85.0284 & S-H_{2}O \\ C_{5}H_{5}O_{2} & 97.0284 & S \\ C_{6}H_{7}O_{3} & 127.0390 & S-H_{2}O \\ C_{6}H_{9}O_{4} & 145.0495 & S \\ C_{6}H_{11}O_{5} & 163.0601 & S-H_{2}O \\ C_{4}H_{6}NO & 84.0444 & 2N \\ C_{6}H_{8}NO_{2} & 126.0550 & S-H_{2}O \\ C_{7}H_{8}NO_{2} & 138.0550 & S-H_{2}O \\ C_{6}H_{10}NO_{3} & 144.0655 & S-H_{2}O \\ C_{8}H_{10}NO_{3} & 168.0655 & S-H_{2}O \\ C_{8}H_{12}NO_{4} & 186.0761 & S-H_{2}O \\ S-H_{2}ON_{4} & S-H_{2}ON_{4} & S-H_{2}O \\ S-H_{2}ON_{4} & S-H_{2}ON_{4} & S-H_{2}O \\ S-H_{2}ON_{4} & S-H_{2}ON_{4} & S-H_{2}ON_{4} \\ S-H_{2}ON_{$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Immonium

Formed by double backbone cleavage. Commonly fragments further by neutral loss. These fragments indicate existence of certain amino acids, but not all amino acids form immonium ions. The immonium ions have a mass between 0 and 160 Da. Formula: amino acid - CO + H

Amino Acid	Formula	Mass	Amino Acid	Formula	Mass
A	C ₂ H ₆ N	44.050	К	$C_5H_{13}N_2$	101.108
R	C ₅ H ₁₃ N ₄	129.114	М	C ₄ H ₁₀ NS	104.053
N	$C_3H_7N_2O$	87.056	F	C ₈ H ₁₀ N	120.081
D	C ₃ H ₆ NO ₂	88.040	Р	C ₄ H ₈ N	70.066
С	C ₂ H ₆ NS	76.022	S	C ₂ H ₆ NO	60.045
E	C ₄ H ₈ NO ₂	102.056	Т	C ₃ H ₈ NO	74.061
Q	C ₄ H ₉ N ₂ O	101.071	W	C ₁₀ H ₁₁ N ₂	159.092
G	CH₄N	30.034	Υ	C ₈ H ₁₀ NO	136.076
Н	C ₅ H ₈ N ₃	110.072	٧	C ₄ H ₁₀ N	72.081
I/L/J	C ₅ H ₁₂ N	86.097	Formula & Mass are MF		are MH+

Cross-links

Two possible masses for y_{3p1}

One possible mass for b_{9p1}

b_{9p1} EVCQLVCGG + H - 2H_(disulfide)

This disulfide is a loop link, so it could break either in the linker or in any of the contained amino acids without changing the final mass of the fragment.

Note that if you want to see breaking cross-linkers you will need to define your own custom linkers in the Annotator as the breaking is not defined in any of the used modification databases.

To annote these and more on your own data see: github.com/snijderlab/annotator

"An easy tool empowering everyone to annotate complex spectra"

