Week 7: PROCESS MANAGEMENT PT1

Processes, threads, piping and redirection:

What are programs vs processes?

 Processes are programs in execution. Every time a program is run, a new process is created.

What are system processes, services and background tasks?

- Processes are all the related activities inside the system that work together to
 make it function
- Services are different kinds of services to both the user and to the programs as well. Examples include user interface, program execution, file system manipulation, etc.
- Background tasks is a computer process that runs behind the scenes and without user intervention. Examples include logging, system monitoring, scheduling and user notification

• What is process management?

- The role of the computer is to run the program, in which process management is how the OS handles this step by
 - Starting processes
 - Managing running processes
 - Performing interprocess communication
 - Terminating processes

- What are ways that operating systems make it look like programs can run concurrently?
 - Run one program at a time
 - Single tasking eg. traditional embedded systems
 - Batch processing eg. ancient mainframe
 - Concurrent processing
 - Multiprogramming eg. windows 3
 - Multitasking all modern operating systems
 - Multithreading most modern operating systems pentium 4+
 - Multiprocessing multi core CPUs, dual/quad CPU
- What's single tasking vs batch processing?
 - Single Tasking allows the user to perform only one task at a time. Functions
 like printing a document, downloading images etc
 - Batch Processing is the process by which a computer completes batches of jobs, often simultaneously, in non-stop, sequential order
- What's concurrent processing?
 - A computing model in which multiple processors execute instructions simultaneously for better performance
- What is multi-programming, multi-tasking, multi-threading, and multi-processing?
 - Multi-programming one or multiple programs can be loaded into its main memory for getting to execute.
 - Multi-tasking the running of two or more programs in one computer at the same time. Used to keep all of a computer's resources at work as much of the time as possible

- Multi-threading The ability of a CPU to provide multiple threads of execution concurrently.
- Multi-processing the running of two or more programs or sequences of instructions simultaneously by a computer with more than one central processor
- What are the various process states? Can you explain them and how they interact?
 - 1. Created (ie. loaded into memory)
 - **2. Waiting** to be run by CPU
 - 3. O/S runs the process
 - 4. If process needs a resources, "blocked" (ie: waiting) until it gets the resources
 - o 5. It then waits again until the OS re-starts the process
 - o **6.** When finished, O/S **stops** the process
- What are 'interruptions'?
 - The O/S runs processes continuously until interrupted
 - Interruptions come from
 - **Hardware** eg. Ctrl-Alt-Delete keystroke, move mouse, network
 - **Programs** eg. runtime error, pause for input, wait for block of data to load from disk
 - O/S will force current running processes into "blocked" state, and runs a special "interrupt handler"
- What is process scheduling?
 - Scheduling is how the O/S decides when to run each process on which CPU
 - Various types of scheduling exist but most use a "queue"

- What is 'inter-process communication?' What are some things that allow IPC?

 How do 1-way and 2-way IPC work?
 - **IPC** how processes communicate with each other
 - O/S allow communication between processes via file sharing, shared memory, signals, sockets, messages, pipes, semaphores, locks
 - IPC one way example: Pipes
 - Process A sends data to process Process B, in which Process B accepts
 the data
 - Example: Bash "pipe" operator → output of one command becomes the input of another command
 - o IPC two way
 - Process can communicate in both directions
 - Shared memory bit of memory which acts as like a file
 - Named pipe special 2 way pipe, acts like a file
 - **Socket** either a network or internal interface
 - Message queue/Message passing special programming interface, passes data like internal messages/SMS
 - Semaphore Special flag/file which controls access to resources

WEEK 7: PROCESS MANAGEMENT PT2

- What is resource management? What are some examples of 'resources
 - Resources are things that processes might need to run eg. files, network, human interface devices
 - The kernel manages all other system resources eg. interrupts, I/O, system devices
 - Many resources requires mutually exclusive access
 - If one process is using the resource, no other process can use it until the first process is done
- What is resource contention? What are some solutions to it?
 - **Resource Contention -** 2 processes want to alter the same resource at the same time
 - Types of resources: Memory, files, hardware
 - Solutions to this:
 - **Semaphores -** a flag held by the process changing the memory
 - Lock files a file is not readable/writeable while data is being written to it
- What is a deadlock? What are the conditions of a deadlock? How can deadlocks be dealt with?
 - o Deadlock occurs if the resource will never get released for one or another person eg. 2 users try to edit the same file at the same time
 - Deadlock occurs if all of the following conditions hold simultaneously
 - Mutual exclusion there exists a resource, that can be accessed by only one process at a time

■ Hold and wait - there exists a process, that hold at least one resource and is waiting for another resource

• Dealing with deadlocks

- Avoidance/Prevention O/S decides which processes may use resources, and when
- **Detection/Management** allows deadlocks to form; then finds and breaks them

WEEK 7: PROCESS MANAGEMENT PT3

- What is memory management?
 - Allows the O/S to:
 - Run more processes than we can fit into physical memory
 - Optimise use of expensive RAM
 - Keep track of processes 'owning' blocks of memory
 - Provide access control to memory
 - Decide where processes is loaded into memory
 - Handle allocation/deallocation of memory
- What are physical and logical addresses?
 - Physical addresses access a particular storage cell of main memory, or a register of memory mapped I/O device
 - Logical addresses the address at which an item appears to reside from the perspective of an executing application program

How do os translate logical addresses to physical addresses?

- During execution of an process, the same logical address may be mapped to many different physical addresses as data and programs are paged out and paged in to other locations
- The **logical address space** is larger than the physical address space (RAM) if we have virtual memory available

• What is virtual memory? How is it different to RAM?

- Is a concept which is related to, but distinct from the memory hierarchy
- Virtual memory makes part of the hard disk like main memory to the process
- Virtual memory is **much** slower than RAM

• What is vm, swap files, pages, page table, paging, page faults and thrashing?

- VM the logical address space. Physically: RAM + Disk
- Swap file part of disk used for VM
- A page the amount of data that can swap between RAM and Disk at a given time
- Page table maps "logical addresses" to either to physical or virtual memory
- Paging the action of swapping a page between RAM and DISK
- Page fault When data to be access is not in RAM and needs to be swapped back from Disk
- Thrashing When OS spends more time paging, than running applications

WEEK 8: COMPUTER ARCHITECTURE PT1

• Can you give a brief history of computers?

History of computing

Charles Babbage (1791-1871)

- English mathematician, inventor and reformer
- Designed the analytic engine the first modern computer

Luigi Menabrea (1809-1896)

- Italian mathematician and politician
- Extended and published Babbage's design

Lady Ada Lovelace (1815-1852)

- Daughter of English poet Lord Byron
- Translated and extended Menabrea's paper
- Helped secure funding toward the construction of analytic engine

• What is a computer?

Definition of Computer from Shelly/Cashman

"An electronic machine operating under the control of **instructions** stored in its own **memory**, that can accept **data**, manipulate the data according to specified rules, produce **results** and **store** the results for future use"

What is memory? What's the difference between RAM and ROM? Computer
memory or random access memory (RAM) is your system's short-term data storage; it
stores the information your computer is actively using so that it can be accessed
quickly.

ROM: Read Only Memory

Permanent information

RAM: Random access memory

Computer forgets it when its off

Programs change the contents

• What are examples of input/output/network/storage devices?

Input: Keyboard, Computer mouse, Graphic/drawing tablet.

Output: Computer display, Printer, Projector, Speaker.

Storage devices: Floppy disk drive, Flash drive, Disk drive, or CD/DVD drive.

Input/Output: Modem, Network interface controller (NIC)

• What are the components of a cpu? What does ALU, CU and registers do?

CPU: Central processing unit

The central processing unit (CPU) consists of three main parts:

- → Arithmetic Logic Unit (ALU)
 - ◆ Performs arithmetic and logical operations
- → Control Unit
 - ◆ Sets up ALU with instructions and data from memory
 - ◆ Often use cache for faster memory access

→ Registers

- ◆ Small, fast memory in the CPU
- ◆ Loaded by the control unit
- ◆ Accessible by the ALU

• How processors execute instructions?

The processor executes instructions on data using a **Fetch-Execute** cycle:

FETCH → **DECODE** (raw data into executable data) → **READ** memory (not always

 $needed) \rightarrow EXECUTE \text{ (instruction)}$

WEEK 8: DATA REPRESENTATION PT2

• What is character encoding? What are some common examples?

O/S designers invented character encoding to represent alphabets, digits and symbols.

UNICODE which is an expanded **ASCII:** Was indeed originally a 7-bit code, 128 different characters

ISO-8856: Extension of ASCII to include Latin alphabet e.g German

• How much storage space is used for writing various strings?

Hello	o he	ro?								
н	e	1	1	0		h	e	r	0	?
48	65	6C	6C	6F	20	68	65	72	6F	3F

• How are images/movies/documents encoded?

Images: GIF, JPEG, TIFF etc

Movies: AVI, MOV

Documents: DOCX, PDF, DOC

WEEK 8: NUMBER SYSTEMS PT3

• What is a numeral/base number system?

A numeral system is a way of representing information, sometimes called a number system.

Important numeral systems implemented on computers include binary, decimal, and hexadecimal.

• Number conversions

Decimal	Binary	Hexadecimal
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

WEEK 9: INTRO TO LOGIC

• Boolean algebra

• A system that contains only 2 values, either TRUE or FALSE

• Operators

Three Basic Operations: AND, OR and NOT

We also look at the Boolean XOR operation, it is relevant to Binary Addition.

Every Boolean operation has inputs and outputs;

- **NOT** operations have 1 input and 1 output.
- AND and OR operations have 2 or more inputs and 1 output.

• Maths & java notations

Boolean Operators in Java

- The && operator is an AND Operator in Java
 - In Java, the statement (a && b) has value true only when a and b are both **true**
- The || operator is an **OR** Operator in Java
 - In Java the statement (a || b) has value **true** when either a or b (or both) are **true**
- The! Operator is a **NOT** Operator in Java
 - The statement (!a) has the value true only when a is false

• Truth tables

• A **truth table** shows all combinations of inputs and resulting outputs.

<u>Inputs:</u> A	В	Output: A and B
False	False	False
True	False	False
False	True	False
True	True	True

The output only becomes "TRUE" when BOTH inputs are "TRUE"

<u>Inputs:</u> A	В	Output: A or B
False	False	False
True	False	True
False	True	True
True	True	True

The **OR** operation outputs **TRUE** when **either or both** of its inputs is **TRUE**

Inputs:	В	Output: A xor B
False	False	False
True	False	True
False	True	True
True	True	False

eXclusive OR

Equal to the operation

• (A OR B) AND NOT(A AND B)

• Other representations

- o AND
 - x \(\times \) y
 - x.Y
- o OR
 - \blacksquare $x \lor y$
 - \blacksquare x + y
- \circ **NOT**
 - \blacksquare $\neg X$
 - ! x
- Laws

Associativity - AND and OR are both associative operation

$$(x \text{ AND } y) \text{ AND } z = x \text{ AND } (y \text{ AND } z)$$

$$(x OR y) OR z = x OR (y OR z)$$

Distributivity

AND distributes over **OR**: $(x \ \mathbf{OR} \ y) \ \mathbf{AND} \ z = (x \ \mathbf{AND} \ z) \ \mathbf{OR} \ (y \ \mathbf{AND} \ z)$

OR distributes over **AND**: (x AND y) OR z = (x OR z) AND (y OR z)

Complement/Identity

X OR TRUE = TRUE

X OR FALSE = X

X AND TRUE = X

X AND FALSE = FALSE this implies X AND not(X) = FALSE

De Morgan's Law

$$not(P) OR not(Q) = not(P AND Q)$$

$$not(P) AND not(Q) = not(P OR Q)$$

WEEK 10 PT 1: THE INTERNET

• What's a 'network'?

A network is a collection of computers and devices connected together to allow sharing of resources between users.

• What are some device types on a network? What do they do?

Example 1: Network File System

Part of a remote disk can be made to appear as another hard drive on the local PC. The physical location of disk storage is transparent to users.

Example 2: Printer Sharing

One printer used by several PCs

• What's the difference between a switch and a hub?

Switch	Hub		
A switch looks at the MAC addresses (burned-in	A hub can connect more than 2 hosts.		
physical address of the Network Interface Card) in	- Strengthens the signal.		
the messages.	- Not concerned with the meaning of data.		
- Provides a direct physical connection between hosts when they want to	- Broadcasts the message to all of its ports.		

communicate.

- More intelligent than a hub

• What's the difference between a physical and logical topologies?

Physical topology (how the data actually is transmitted)

Physical network topologies include: Bus, Ring, Star.

Logical topology (only concerned about where the data ends up – the "black box" analogy)

Logical network topologies include: Bus, Ring

• Draw the layouts of bus/ring/star physical topologies

Bus: all the computers or devices directly connect to a common communication medium.

Ring: all the computers or devices in the network form a closed ring or loop.

Star: all the computers or devices in a network connect to a central computer or hub.

• Describe/draw bus and ring logical topologies

Logical topology: Token Ring

- → To avoid collision, hosts take turns to transmit data.
- → Permission to transmit is called a token. The token is passed from one host to another according to a set of rules.
- → Often, connected physically in a bus or star topology
- → But computers see this logical topology as a "ring"

Logical topology: Bus (ethernet)

- → All hosts have permission to transmit all the time.
- → When a collision occurs, wait a random amount of time and try again.
- → If a collision occurs again, double the wait and try again.
- → As is typical of Ethernet the network often has a star physical topology.

• What's the difference between LAN, WAN and mans?

WAN: A wide area network (WAN) is a network that covers a large geographic area.

LAN: A local area network (LAN) is a network that connects computers and devices in a geographically limited area.

What does a router do, how do they work?

- → it looks at the IP address in the messages.
- → A Router decides on the next destination of a message (a packet)
- → A simple router could be your home ADSL router (which is technically a router + a modem)
- → Larger routers can be found in ISP's

What's a 'fat' client vs a 'thin' client?

Fat client: where most of the processing is done at the client side. Just the data is on the server. E.g. Microsoft Access, SQL server

Thin client: where just the presentation is done at the client and the processing is at the server side. E.g. Browser, Web Server

WEEK 10 PT 2: NETWORKING & INTERNET

- What is an internet protocol?
 - Every client/server application has a set of commands and responses eg. HTTP
- What is a url?
 - Uniform Resource Locator allows the identification of resources on the internet
 - o It is made up of Protocol/Scheme, Userinfo, Host, Port, Path, Query
- What port does http and telnet use? Can you list other ports-protocols?
 - HTML connects to 138.25.16.22 at the port specified by the protocol, 80/tcp
 - Telnet allows you to login remotely to other networks on the internet
 - Runs on port 23
- How do you converse with a mail server?
 - SMPT allows for transfer of email between mail servers
- 1.telnet marcie.it.uts.edu.au 25
- 2. HELO it.uts.edu.au
- 3. MAIL FROM: user@it.uts.edu.au
- 4. RCPT TO: user@hotmail.com
- 5. DATA Then write your message on a line by itself means "all done"
- 6. QUIT
 - What does pop3 and imap do?
 - o **POP3** allows you to retrieve mail remotely
 - IMAP leavers you mail on the server

• What is mime?

- Multi-Purpose Internet Mail Extensions allows for sending of binary data in emails
 - SMTP is a text only protocol

• What is xml?

 Extensible Markup Language - share data in a structured way so it can be easily parsed without ambiguity

PREV EXAM QUESTION:

If we were to connect the 7 billion people in the world, it appears that there is only 6 degrees of separation between everyone.

Which of the following is the best explanation for this six degrees of separation?

