Сегодня поговорим про сложность алгоритмов.

Для того, чтобы выбрать подходящий для решения задачи алгоритм, нужно уметь оценивать скорость его работы, объём требуемой памяти и т.д. Следует помнить, что не всегда самый быстрый алгоритм является самым лучшим — обычно машинное время сейчас стоит дешевле времени программиста, поэтому часто имеет смысл выбрать не самый быстрый/потребляющий мало памяти алгоритм, а тот, который быстрее и проще написать. Зато если предполагается, что программа будет выполняться часто, стоит использовать эффективный алгоритм, даже если он более сложный. В некоторых случаях эффективные, но сложные алгоритмы могут быть нежелательными, если готовые программы будут поддерживать лица, не участвующие в написании этих программ.

Сложность бывает не только вычислительная, но и емкостная — сколько дополнительной памяти требует программа. Причем часто бывает так, что одна переводится в другую. Например, если предварительно нафигачить в памяти здоровенную таблицу со значениями некоторой сложно вычислимой функции, то эти значения вообще можно будет получать за константное время. Но с емкостной сложностью более-менее понятно, что считать, так что поговорим про вычислительную.

Само измерение времени выполнения алгоритма — не такая простая задача. Во-первых, его нельзя мерять в секундах, минутах и т.д. — время зависит от конкретной машины, на которой выполняется программа, реализующая алгоритм, от компилятора и т.д. Во-вторых, время зависит от входных данных (от них самих или их количества). Поэтому время выполнения обычно считают в неких условных единицах — в элементарных шагах алгоритма, или в количестве операций некой абстрактной машины, например, машины Тьюринга (ну или у Кнута была некая идеальная машина, которую он использовал для оценки времени работы). При этом время выполнения обычно считают как функцию объёма входных данных (например, для алгоритмов сортировки это число элементов в сортируемом массиве, для численных алгоритмов — длина двоичного представления числа и т.п.). Поскольку работа алгоритма зависит и от самих входных данных, можно говорить о времени выполнения в наилучшем, среднем и наихудшем случае. Например, некоторые алгоритмы сортировки работают на уже отсортированном массиве за число операций, линейно зависящее от размера массива.

Собственно, точная оценка времени выполнения алгоритма обычно является сложной математической задачей и никому в реальной жизни нафиг не нужна. Обычно используются асимптотическая сложность — приблизительная оценка скорости роста функции времени выполнения в зависимости от размера входных данных, для этого используется О-символика (собственно, с символами О вы ещё не раз встретитесь на матане).

$$f(n) \in O(g(n)) < => \exists (C > 0), n_0 : \forall (n > n_0) \ f(n) \le Cg(n)$$

T.e. f ограничена сверху функцией g с точностью до постоянного множителя.

Например, $f(n) = O(n^2) - f(n)$ растёт не быстрее, чем n^2 с любой константой. Это имеет самое прямое отношение к алгоритмам, поскольку степень роста функции времени выполнения показывает, какого размера задачи этим алгоритмом имеет смысл решать. Например, алгоритм, имеющий степень роста $O(n^2)$ лучше алгоритма, имеющего степень роста $O(n^3)$, но не всегда. Алгоритмы с экспоненциальной трудоёмкостью лучше на компах не реализовывать вовсе. Ещё бывают полезны

символы омега (то же самое, только Cg <= f) и тета (когда и O, и омега). Также бывают о-малое и омега-малое, но это уже к матанщикам, нам такие детали ни к чему.

Обозначение	Граница	Рост	
(Тета) Ө	Нижняя и верхняя границы, точная оценка	Равно	
(О - большое) О	Верхняя граница, точная оценка неизвестна	Меньше или равно	
(о - малое) о	Верхняя граница, не точная оценка	Меньше	
(Омега - большое) Ω	Нижняя граница, точная оценка неизвестна	Больше или равно	
(Омега - малое) ω	Нижняя граница, не точная оценка	Больше	

Алгоритм	Эффективность
o(n)	< n
O(n)	≤n
Θ(n)	= n
Ω(n)	≥n
ω(n)	> n

Феерический пример из википедии: «пропылесосить ковер» требует время, линейно зависящее от его площади ($\Theta(A)$), то есть на ковер, площадь которого больше в два раза, уйдет в два раза больше времени. Соответственно, при увеличении площади ковра в сто тысяч раз, объем работы увеличивается строго пропорционально в сто тысяч раз, и т. п.

Собственно, вычисление трудоёмкости задачи использует следующие правила: если P1 и P2 выполняются за времена T1(n) и T2(n), имеющие порядок O(f(n)) и O(g(n)), то последовательно выполненные эти фрагменты выполняются за время порядка O(max(f(n), g(n))). В частности, из этого следует, что O($n^2 + n$) = O(n^2). Произведение двух функций имеет порядок произведения - если T1(n) и T2(n) имеют порядок роста O(f(n)) и O(g(n)), то T1(n)T2(n) имеет порядок O(f(n)g(n)) - это полезно при анализе циклов.

Например, рассмотрим пузырёк:

```
for (int i=0; i < n; i++)

for (int j=n; j > i; j--)

if (a[j-1] > a[j])

swap(a[j-1], a[j]);
```

swap() не зависит от размера входного массива и выполняется за O(1). if выполняется за O(1), if и его содержимое - за O(1+1) = O(1), хотя мы и не знаем,

выполнится содержимое или нет (мы ищем время выполнения в худшем случае). Время выполнения внутреннего цикла - сумма времён выполнения его содержимого, n - i раз, так что O((n-i)*1) = O(n-i).

Внешний цикл - сумма по і от 1 до (n-1) $n-i=n(n-1)/2=n^2/2+n/2$, итого $O(n^2)$. Бывают сортировки с временем выполнения $O(n \log n)$, это qsort, который вам надо было реализовать дома в прошлой работе, или heapsort, который в текущей. Быстрее сортировок, не использующих информацию о числах в массиве, не бывает. Бывает сортировка за O(n) - поразрядная, но она использует знания о числах. Для сравнения, натуральный логарифм от миллиона — чуть меньше 14, двоичный от ста тысяч — примерно 17.

Программы с рекурсивными процедурами оценивать несколько интереснее: нужно получить рекуррентное соотношение времён выполнения процедуры. Например, факториал:

```
int recFactorial(int a)
     {
          if (a <= 1)
               return 1;
          else
               return a * recFactorial(a - 1);
     }
     T(n) = c + T(n-1) при n > 1, и d, при n <= 1.
     T(n) = c + T(n-1) = 2c + T(n-2) = ... = i*c + T(n-i) = ... = (n-1)*c + T(1) =
(n-1)*c+d.
     Следовательно, T(n) имеет порядок O(n).
     Ещё интересным примером является задача вычисления n-го числа Фибоначчи:
     F_n = F_{-n-2} + F_{-n-1}, F_0 = 1, F_1 = 1
     F = 1, 1, 2, 3, 5, 8, 13, 21, ...
     Рекурсивное решение имеет трудоёмкость 2<sup>n</sup>:
     long fibonacci(int n)
     {
        if(n == 0 || n == 1)
                     return 1;
        else
                     return fib(n-2) + fib(n-1);
     }
     Итеративное - O(n):
     long fibonacciIterative(int n)
     {
        int prev = 1;
        int curr = 1;
        for (int i = 2; i <= n; ++i)
                     int temp = prev + curr;
                      prev = curr;
```

```
curr = temp;
}
return curr;
}

А ещё можно считать Фибоначчи так:
F_n+1 F_n = |1 1| ^n
F_n F_n-1 |1 0|
```

Доказательство по индукции, оставим его в качестве упражнения желающим. Еще можно применить яростный матан прямиком из ада и получить формулу для выражения чисел Фибоначчи через золотое сечение (формула Бине):

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

Хоть тут будет и логарифмическая сложность, однако, тут видимо будет более 9000 ошибок округления, так что применение этой формулы для программистов довольно сомнительно.

Рассмотрим четыре алгоритма решения одной и той же задачи, имеющие логарифмическую, линейную, квадратичную и экспоненциальную сложности соответственно. Предположим, что второй из этих алгоритмов требует для своего выполнения на некотором компьютере при значении параметра $n=10^3$ ровно одну минуту времени. Тогда времена выполнения всех этих четырех алгоритмов на том же компьютере при различных значениях параметра будут примерно такими:

Сложность алгоритма	n = 10	$n = 10^{3}$	$n = 10^6$
$\log n$	0.2 сек.	0.6 сек.	1.2 сек.
n	0.6 сек.	1 мин.	16.6 час.
n^2	6 сек.	16.6 час.	1902 года
2^n	1 мин.	10^{295} лет	10 ³⁰⁰⁰⁰⁰ лет

Еще одна показательная картинка:

В следующей таблице приведено сравнение алгоритмов сортировки.

Алгоритм	Структура данных	Временная сложность			Вспомогательные данные
		Лучшее	В среднем	В худшем	В худшем
Быстрая сортировка	Массив	O(n log(n))	O(n log(n))	O(n^2)	O(n)
Сортировка слиянием	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(n)
Пирамидальная сортировка	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(1)
Пузырьковая сортировка	Массив	O(n)	O(n^2)	O(n^2)	O(1)
Сортировка вставками	Массив	O(n)	O(n^2)	O(n^2)	O(1)
Сортировка выбором	Массив	O(n^2)	O(n^2)	O(n^2)	O(1)
Блочная сортировка	Массив	O(n+k)	O(n+k)	O(n^2)	O(nk)
Поразрядная сортировка	Массив	O(nk)	O(nk)	O(nk)	O(n+k)

Более интересные примеры (ответы приводятся, доказательство оставляю в качестве упражнения).

for (int
$$i = 1$$
; $i*i <= N$; $i = i*4$)
sum++;

Тело цикла будет выполнено $\log_4(\mathsf{N}^{1/2})$ раз. Таким образом, сложность $\mathsf{O}(\mathsf{log}\;\mathsf{n})$.

```
int sum = 0;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= N; j += i)
sum++;
```

Внутренняя часть циклов выполнится N + N/2 + N/3 + N/4 + ... + 1 \sim N In N раз. (Используется разложение 1 + 1/2 + 1/3 + ... + 1/N \sim In N). Собственно, сложность получается O(n*log(n)).

```
int sum = 0;
for (int i = 1; i*i \le N; i = i*4)
for (int j = 0; j < i; j++)
sum++;
```

Тело внутреннего цикла выполнится $1+4+16+64+...+sqrt(N)\sim 4/3 sqrt(N)$ раз. Сложность — O(sqrt(n)).