

Data Science Foundation Lesson #5 - Exploratory Data Analysis

Ivanovitch Silva September, 2017

Agenda

- Case study: unemployment rate
- Tabular vs Visual representation
- Matplotlib
- Line plots
- Case study: movie ratings
- Bar & Scatter plots

Update the repository

git clone https://github.com/ivanovitchm/EEC2006.git

Or

git pull

Motivation

Case study: unemployment rate (US)

Investigating the dataset

DATE Year-Month-Day	VALUE		
1948-01-01	3.4		
1948-02-01	3.8		
1948-03-01	4.0		
1948-04-01	3.9		
1948-05-01	3.5		

Conversion of types (Object to Datetime)

```
import pandas as pd
df['col'] = pd.to_datetime(df['col'])
```


DATE VALUE 1948-01-01 3.4 3.8 1948-02-01 1948-03-01 4.0 1948-04-01 3.9 1948-05-01 3.5 1948-06-01 3.6 1948-07-01 3.6 1948-08-01 3.9 1948-09-01 3.8 1948-10-01 3.7 3.8 1948-11-01 1948-12-01 4.0

Observation from the table representation

- What is the minimum value?
- What is the maximum value?
- Is there seasonality?
- What are the trend up periods?
- What are the trend down periods?
- Is the table representation really useful?

Visual representation

import matplotlib.pyplot as plt
plt.plot()
plt.show()

Adding data

plt.plot(x_values, y_values)

Fixing axis ticks

plt.xticks(rotation=90)

Additional information

plt.xlabel("Month")
plt.ylabel("Unemployment Rate")
plt.title("Monthly Unemployment Trends, 1948")

Grid positioning

import matplotlib.pyplot as plt

```
fig = plt.figure()
```

 $ax1 = fig.add_subplot(2,2,1)$

 $ax2 = fig.add_subplot(2,2,2)$

 $ax3 = fig.add_subplot(2,2,3)$

 $ax4 = fig.add_subplot(2,2,4)$

Grid positioning

fig.add_subplot(4, 1, x) fig.add_subplot(2, 2, x) fig.add_subplot(2, 3, x) 3 4 5 6 3

Grid positioning

import matplotlib.pyplot as plt
fig = plt.figure()

 $ax1 = fig.add_subplot(2,2,1)$

 $ax3 = fig.add_subplot(2,2,3)$

 $ax4 = fig.add_subplot(2,2,4)$

Formatting and spacing

fig = plt.figure(figsize=(width, height))

Overlaying line charts

Case study: movie ratings

IMDB

Rotten Tomatoes

Fandango

Bias in movie ratings

Introduction to the data

	FILM	RT_user_norm	Metacritic_user_nom	IMDB_norm	Fandango_Ratingvalue	Fandango_Stars
0	Avengers: Age of Ultron (2015)	4.3	3.55	3.90	4.5	5.0
1	Cinderella (2015)	4.0	3.75	3.55	4.5	5.0
2	Ant-Man (2015)	4.5	4.05	3.90	4.5	5.0
3	Do You Believe? (2015)	4.2	2.35	2.70	4.5	5.0
4	Hot Tub Time Machine 2 (2015)	1.4	1.70	2.55	3.0	3.5

https://github.com/fivethirtyeight/data/tree/master/fandango

Bar plot

Creating bars

Creating bars

fig, ax = plt.subplots()

```
# Positions of the left sides of the 5 bars. [0.75, 1.75, 2.75, 3.75, 4.75]
from numpy import arange
bar positions = arange(5) + 0.75
# Heights of the bars. In our case, the average rating for the first movie
 in the dataset.
num cols = ['RT user norm', 'Metacritic user nom', 'IMDB norm', 'Fandango Ra
tingvalue', 'Fandango Stars']
bar heights = norm reviews[num cols].iloc[0].values
ax.bar(bar positions, bar heights)
```

Aligning axis ticks and labels

```
tick positions = range(1,6)
ax.set xticks(tick positions)
num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ra
tingvalue', 'Fandango Stars']
                                                                Average User Rating For Avengers: Age of Ultron (2015)
ax.set xticklabels(num cols)
ax.set xticklabels(num cols, rotation=90)
```


Rating Source

Horizontal bar plots

Horizontal bar plots

```
bar_widths = norm_reviews[num_cols].iloc[0].values
bar_positions = arange(5) + 0.75
ax.barh(bar_positions, bar_widths, 0.5)
```

```
tick_positions = range(5) + 1
num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ra
tingvalue', 'Fandango_Stars']
ax.set_yticks(tick_positions)
ax.set_yticklabels(num_cols)
```


Scatter plot

Switching axes

