question (6)

Группа подстановок n-й степени. Четность подстановки. Транспозиции. Разложение подстановки в произведение транспозиций и четность перестановки.

Группа подстановок *n*-й степени

Группа подстановок S_n (или группа перестановок) — это множество всех возможных перестановок n-элементного множества $X = \{1, 2, \dots, n\}$, наделённое операцией композиции подстановок.

- 1. Элементы группы S_n это биекции $\sigma: X \to X$, то есть перестановки множества X.
- 2. Композиция подстановок σ и τ ($\sigma \circ \tau$) определяется как последовательное применение: $(\sigma \circ \tau)(x) = \sigma(\tau(x))$.
- 3. Нейтральным элементом в S_n является тождественная подстановка e(x)=x для всех $x\in X$.
- 4. Для каждой подстановки σ существует обратная подстановка σ^{-1} , такая, что $\sigma \circ \sigma^{-1} = e$.

Число элементов группы S_n равно n!.

Пример: Для n=3, множество $\{1,2,3\}$ имеет 3!=6 перестановок:

$$S_3 = \{ id, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2) \}.$$

Чётность подстановки

Чётность подстановки определяется через количество **инверсий**. Подстановка σ является:

- Чётной, если число инверсий в ней чётно.
- Нечётной, если число инверсий нечётно.

Инверсии

Инверсия — это пара (i,j), где i < j, но $\sigma(i) > \sigma(j)$.

Пример: Для подстановки $\sigma = [3, 1, 2],$

- Инверсии: (3 > 1), (3 > 2),
- Число инверсий $I(\sigma) = 2$, значит, подстановка чётная.

Связь с разложением в транспозиции

Чётность подстановки также определяется количеством транспозиций в её разложении:

- Если подстановка разложена в чётное число транспозиций, то она чётная.
- Если в нечётное число транспозиций нечётная.

Транспозиции

Транспозиция — это подстановка, меняющая местами два элемента, оставляя остальные элементы на своих местах. Обозначается $(i\ j)$, где $i,j\in\{1,2,\ldots,n\}$.

Пример: Транспозиция (1 3) при применении к X = [1, 2, 3] даст X' = [3, 2, 1].

Свойства транспозиций

- 1. Каждая транспозиция является **нечётной** подстановкой (одно инвертирование увеличивает число инверсий на 1).
- 2. Любая перестановка может быть разложена в произведение транспозиций.

Разложение подстановки в произведение транспозиций и чётность подстановки

Теорема. Любая подстановка $\sigma \in S_n$ может быть представлена в виде произведения транспозиций:

$$\sigma=(i_1\ j_1)(i_2\ j_2)\dots(i_k\ j_k).$$

Свойства

- 1. Чётность числа транспозиций в разложении определяет чётность подстановки:
 - Если k чётное, то подстановка чётная.
 - Если k нечётное, то подстановка нечётная.
- 2. Разложение в транспозиции **не уникально**, но чётность количества транспозиций всегда остаётся неизменной.

Пусть дана подстановка $\sigma=(1\ 3\ 2)$ для множества $\{1,2,3\}$ (циклическая перестановка). Разложим её в транспозиции:

$$\sigma = (1\ 2)(1\ 3).$$

Здесь 2 транспозиции (чётное число), значит, подстановка σ чётная.

Группа чётных подстановок (A_n)

Множество всех чётных подстановок из S_n образует подгруппу, называемую группой чётных подстановок A_n (или альтернирующей группой). Число элементов в A_n равно $\frac{n!}{2}$.