Аналитическая геометрия.

Векторы и операции с ними

Определение. *Направленным отрезком* называется отрезок с заданным на нём направлением, то есть один из его концов является началом, а другой — концом.

Определение. Два направленных отрезка называются *равными*, если у них совпадают длина и направление, то есть они совпадают при наложении.

Определение. Пусть дан направленный отрезок. Множество всех направленных отрезков, совпадающих с данным, называется *вектором*.

3амечание. Длину вектора \overrightarrow{v} будем обозначать $|\overrightarrow{v}|$.

Замечание. Любой вектор задаётся направлением и длиной. Введя систему координат начала всех векторов можно перенести в точку начала координат. Тогда каждый вектор будет задаваться координатами конца.

Определение. Суммой векторов \overrightarrow{AB} и \overrightarrow{BC} называется вектор \overrightarrow{AC} .

Определение. Произведением вектора \overrightarrow{v} на некоторое число α называется вектор \overrightarrow{u} такой, что $|\overrightarrow{v}| = |\alpha| \cdot |\overrightarrow{u}|$ и если $\alpha > 0$, то \overrightarrow{u} сонаправлен вектору \overrightarrow{v} , а если $\alpha < 0$, то \overrightarrow{u} противоположно направлен вектору \overrightarrow{v} .

Задача 1

Даны векторы $\overrightarrow{v}=(-3,0,2)$ и $\overrightarrow{u}=(1,2,-5)$. Найдите координаты векторов (a) $4\overrightarrow{u}$; (b) $3\overrightarrow{v}-2\overrightarrow{u}$.

Способы задать прямую

Определение. Общим уравнением прямой называется уравнение вида Ax + By + C = 0, где $A^2 + B^2 \neq 0$.

Наблюдение. Векторы, начинающиеся и заканчивающиеся в точках, лежащих на одной прямой, сонаправлены или противоположно направлены.

Определение. Параметрическим уравнением прямой называется уравнение вида $\overrightarrow{r}-\overrightarrow{r_0}=t\cdot\overrightarrow{v}$, где $\overrightarrow{r_0}$ — вектор из начала координат в некоторую точку M_0 на прямой, \overrightarrow{v} — фиксированный вектор длины 1, начинающийся в точке M_0 и направленный вдоль прямой.

Задача 2

Запишите уравнение прямой x = 2+3t, y = 3+2t в виде Ax+By+C = 0.

Задача 3

Запишите параметрическое уравнение прямой, заданной общим уравнением 3x - 4y + 4 = 0.

Задача 4

Составьте уравнение прямой, проходящей через точки A(-3,1) и B(1,2).

Коллинеарность векторов

Определение. *Коллинеарными* векторами называется пара сонаправленных или противоположно направленных векторов.

Утверждение 1. Если точки $(x_0, y_0), (x_1, y_1)$ и (x_2, y_2) лежат на одной прямой, то $\frac{x_2 - x_0}{y_2 - y_0} = \frac{x_1 - x_0}{y_1 - y_0}$.

Задача 5

Составить уравнение прямой, проходящей через точку A(-3,4) и параллельной прямой x-2y+5=0.

Скалярное произведение векторов

Определение. Скалярным произведением векторов \overrightarrow{v} и \overrightarrow{u} называется число $|\overrightarrow{v}| \cdot |\overrightarrow{u}| \cdot \cos \alpha$, где α — угол между векторами. Скалярное произведение векторов \overrightarrow{v} и \overrightarrow{u} обозначается $(\overrightarrow{v}, \overrightarrow{u})$.

Утверждение 2. Для любых векторов $\overrightarrow{v} = (v_1, v_2) \ u \ \overrightarrow{u} = (u_1, u_2)$ верно следующее $(\overrightarrow{v}, \overrightarrow{u}) = v_1 \cdot u_1 + v_2 \cdot u_2$.

Утверждение 3. Для любых векторов \overrightarrow{v} , \overrightarrow{u} , \overrightarrow{w} u чисел α , β верно утверждение $(\alpha \overrightarrow{v} + \beta \overrightarrow{u}, \overrightarrow{w}) = \alpha(\overrightarrow{v}, \overrightarrow{w}) + \beta(\overrightarrow{u}, \overrightarrow{w})$.

Задача 6

Найдите скалярное произведение векторов (a) $\overrightarrow{v} = (3,7), \overrightarrow{u} = (8,-4);$ (b) $\overrightarrow{v} = (-2,4,5), \overrightarrow{u} = (1,-4,3).$

Задача 7

Найдите скалярное произведение векторов $\overrightarrow{v}, \overrightarrow{u},$ таких что $|\overrightarrow{v}|=6, |\overrightarrow{u}|=7$ и угол между векторами равен $120^\circ.$

Перпендикулярность векторов

Утверждение 4. Векторы \overrightarrow{v} и \overrightarrow{u} перпендикулярны тогда и только тогда, когда $(\overrightarrow{v}, \overrightarrow{u}) = 0$.

Задача 8

Докажите, что векторы \overrightarrow{v} и $\overrightarrow{u}(\overrightarrow{v}, \overrightarrow{w}) - \overrightarrow{w}(\overrightarrow{v}, \overrightarrow{u})$ перпендикулярны.

Вектор нормали

Определение. *Вектором номрали* к прямой называется вектор, перпендикулярный прямой.

Наблюдение. Прямая однозначно определяется своим вектором нормали.

Определение. *Нормальным векторным уравнением* прямой называется уравнение вида $(\overrightarrow{r}-\overrightarrow{r_0},\overrightarrow{n})=0$, где $\overrightarrow{r_0}$ — радиус-вектор до некоторой точки, лежащей на прямой, а \overrightarrow{n} — вектор нормали к прямой.

Задача 9

Укажите любой вектор нормали для прямой Ax + By + C = 0.

Расстояние от точки до прямой

Утверждение 5. Расстояние от точки с радиус-вектором $\overrightarrow{r_1}$ до прямой заданной нормальным веторным уравнением равно $\frac{|(\overrightarrow{r_1}-\overrightarrow{r_0},\overrightarrow{n})|}{|\overrightarrow{n}|}$.

Утверждение 6. Расстояние от точки (x_1, y_1) до прямой заданной общим уравнением равно $\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

Задача 10

Найдите расстояние от точки A(-1,2) до прямой 4x - 3y - 15 = 0.

Способы задать плоскость

Определение. Параметрическим уравнением плоскости называется уравнение вида $\overrightarrow{r} = \overrightarrow{r_0} + \alpha \overrightarrow{v} + \beta \overrightarrow{u}$, где $\overrightarrow{r_0}$ — радиус-вектор некоторой точки плоскости, а два других вектора — направляющие векторы плоскости.

Определение. Нормальным векторным уравнением плоскости называется уравнение вида $(\overrightarrow{r}-\overrightarrow{r_0},\overrightarrow{n})=0$, где $\overrightarrow{r_0}$ — радиус-вектор некоторой точки плоскости, а \overrightarrow{n} — вектор нормали к плоскости.

Определение. Общим уравнением плоскости называется уравнение вида Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 \neq 0$.

Задача 11

- (a) Зная параметрическое уравнение плоскости: x = 1 + u v, y = 2 + u + 2v, z = -1 u + 2v, составьте общее уравнение плоскости.
- (b) Зная общее уравнение плоскости 2x 3y + z + 1 = 0, составьте параметрическое уравнение плоскости.

Расстояние от точки до плоскости

Утверждение 7. Расстояние от точки с радиус-вектором $\overrightarrow{r_1}$ до прямой заданной нормальным веторным уравнением равно $\frac{|(\overrightarrow{r_1}-\overrightarrow{r_0},\overrightarrow{n})|}{|\overrightarrow{n}|}$.

Утверждение 8. Расстояние от точки (x_1, y_1, z_1) до плоскости заданной общим уравнением равно $\frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$

Задача 12

Найти расстояние от точки A(3,1,-1) до плоскости x-2y+2z-2=0.