UNIT 4 Analog and Digital Electronics

Sequential Circuit Asynchronous Counter

Rajeev Pandey

ECE Department

Asynchronous counter

- Output of the first clock act as the clock for the next one.
- T flip-flop or the toggling behaviour of JK Flip is used. At J=K=1
- Counter can be Positive edge trigger or negative edge Trigger means it can change its state only at the edge of the clock.

Contd.

- An *n*-bit counter
- – has *n* Flip-Flops
- – can cycle through at most 2n
- Suppose a counter counts

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0$$
 (00 $\rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00$) (Two bit & MOD 4 Counter and UP counter)

Contd.

Down Counter

UP and Down Counter

If control input X=0 counter act as UP Counter

If the control input X=1 counter act as Down counter

Two bit Asynchronous Counter

Contd. 3 bit counter mod 8 counter Number of Flip flop require ??

3-bit Counter

Three-bit asynchronous counter

UP Counter Output Wave Form

Three-bit asynchronous UP counter

THREE BIT Asynchronous Down COUNTER

Up And Down Counter

Flip-Flop Pins

- Input Pin (like JK or T or D or SR)
- Clock Pin (+ve or -ve edge trigger)
- Reset pin /Clear Pin (Can Reset Low or High)
- Pre-set Pin

With the help of Pre-set Pin we can force FF to set 1 With the help of Reset function to clear FF to 0

Pre-set and Reset Function

A Decade Counter (asynchronous counter)

Design a 4 bit Up Down & Up/Down counter

ENDNEXT Synchronous Counter