

Impulsverzerrungen

schlechte Lösung

1. Idee Mittelung

gute Lösung, aber wie?

gute Lösung, aber wie?

1. Idee keine Rechteckpulse

Aufsplitten der Problematik

S(f): Pulsspektrum Sendesignal

C(f): Frequenzgang Kanal

H(f): Frequenzgang Empfangsfilter

2 Challenges beim Design;

- Empfangsfilter zur Beschränkung Rauschbandbreite
- Pulsformung für Abtasten ohne Interferenz

Optimales Filter = Matched Filter

1. Problem: Noise minimieren

Optimale Filterung intuitiv betrachtet:

Man gewichtet im Frequenzgang des optimalen Filters genau jene spektralen Anteile, die vom Sendepuls belegt sind und zwar proportional der Belegungsstärke!

- → Amplitudengang des Empfangsfilters H(f) = Betrag des Pulsspektrum S(f)
- → Die Fläche unter dem Ausgangsspektrum entspricht der Energie* des Sendepulses

$$\mathsf{E}_\mathsf{S} = \int_{-\infty}^{\infty} \big| \mathsf{S}(\mathsf{f}) \big|^2 \mathsf{d}\mathsf{f}$$

 $[\]int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$

Matched Filter (MF)

p(t) habe das Spektrum:

$$P(f) = S(f) \cdot C(f) \cdot H(f)$$

$$S_{e}(f)$$

S(f): Pulsspektrum Sendesignal

C(f): Frequenzgang Kanal

H(f): Frequenzgang Empfangsfilter

T: Symboldauer

H(f) ist ein so genanntes Matched Filter wenn:

Zum Zeitpunkt T vor dem Abtaster das Verhältnis Pulse p(t) zu Varianz des Rauschsignal n(t) maximal wird

Anders formuliert: Signal/Geräuschverhältnis S/N von p(t)+n(t) zur Abtastzeit T soll maximal werden durch die geeignete Wahl von H(f)

Matched Filter (MF)

Matched Filter mathematisch betrachtet (ohne Beweis):

$$\frac{S}{N} = \frac{|p(T)|}{\sigma_n^2}$$

wird maximal bei weissem Rauschen wenn gilt:

$$H(f) = S_e^*(f)e^{-j2\pi Tf} = S(f)^*C(f)^*e^{-j2\pi Tf}$$

* konj.komplex

$$h(t) = \begin{cases} s_e(T-t), & 0 \le t \le T \\ 0, & sonst \end{cases}$$

Mit Vereinfachung* C(f) = 1wird $s_e(t) = s(t)$ und:

$$h_{opt}(t) = \begin{cases} s(T-t), & 0 \le t \le T \\ 0, & sonst \end{cases}$$

$$\left| \mathsf{H}(\mathsf{f}) \right| = \left| \mathsf{S}(\mathsf{f}) \right|$$

$$p(T) = \int_{-\infty}^{\infty} s(\tau)^2 d\tau = E_s$$

Bsp.:

Mirror image of signal waveform

^{*}Note: allfällige Kanaldämpfung wird in s(t) berücksichtigt

Beispiel Matched Filter

Betrachtung mit Faltung:

$$p(t) = s_i(t) * h_{opt}(t) = \int s_i(\tau) \cdot h_{opt}(t - \tau) d\tau$$

$$p(T) = s_i(T) * h_{opt}(T) = \int s_i(\tau) \cdot h_{opt}(T - \tau) d\tau = \int s_i^2(\tau) d\tau$$

$$p(T) = \int s_i^2(\tau) d\tau = E_S$$

p(T) entspricht der Energie des Sendepuls

S/N am Ausgang des MF

Man kann zeigen, dass für das Signal/Geräuschverhältnis S/N nach dem MF gilt:

$$\left(\frac{S}{N}\right)_{out} = \int_{-\infty}^{\infty} \frac{\left|S(f)\right|^2}{N_0/2} df = \frac{2}{N_0} \int_{-\infty}^{\infty} s^2(t) \cdot dt = \frac{2E_s}{N_0}$$

 N_0 = einseitige Rauschleistungsdichte

 E_s = Impulsenergie von s(t), Symbolenergie am Empfängereingang

 Eine Erhöhung ist nur durch Erhöhung der Symbolenergie möglich, also durch mehr mittlere Signalleistung oder längere Symboldauer.

Mit Rausch- und Signalleistung am Eingang $N_{eq} = N_0 B_{eq}$, $S = E_S/T$: $\left(\frac{S}{N} \right)_{out} = \left(\frac{S}{N_{eq}} \right)_{out} = \frac{E_S}{N_0 B_{eq}} = \frac{2E_S}{N_0}$

$$\left(\frac{S}{N}\right)_{\text{out}} = \left(\frac{S}{N_{\text{eq}}}\right)_{\text{in}} = \frac{E_{S}}{N_{0}B_{\text{eq}}T} = \frac{2E_{S}}{N_{0}}$$

d.h. äquivalente Rauschbandbreite B_{eq} des MF ist somit: $B_{eq} = \frac{1}{2T}$

$$B_{eq} = \frac{1}{2T}$$

-174 dBm/Hz

Note: diese Bandbreite ist i.A. nicht mit der Signalbandbreite identisch

Matched Filter ... Korrelator

Die zur Zeit t=nT mathematisch äquivalente Grösse liefert der Korrelator

vgl. math. Verwandtschaft Faltung und Korrelation $p(t) = s_i(t) * h(t) = \int_T s_i(\tau) \cdot s_i(t - (T - \tau)) d\tau$

$$r(t) = s_i(t) + n(t) \longrightarrow h_{opt}(t) \longrightarrow z(T)$$

$$\text{Matched to}$$

$$s_1(t) - s_2(t)$$

$$\text{(a)}$$

$$z(t) = p(t) + n(t)$$

$$r(t) = s_i(t) + n(t) \xrightarrow{s_1(t) - s_2(t)} \xrightarrow{s_1(t) - s_2(t)} z(T)$$

$$p(t) = \int_{0}^{t} s_{i}(\tau) \cdot s_{i}(\tau) d\tau$$

Allg. Def: Sender liefert entweder Impuls s₁(t) oder Impuls s₂(t)

- MF wird auf das Differenzsignal $s_1(t) s_2(t)$ entworfen
- Korrelator multipliziert mit Referenz s₁(t) s₂(t), Sync needed!

Korrelator

Korrelatoren sind meist einfacher umzusetzen als Matched Filter

Wie soll man die Entscheiderschwelle setzen?

Die Schwelle γ_0 des Entscheiders liegt in der Mitte der Energiedifferenz der Signale s_1 und s_2

MF – Korrelator: Handhabung

MF für Rechteckimpuls

Für Rechteck-Impulse s(t):

- MF Stossantwort: Rechteckimpuls Spektrum Amplitudengang: sinx/x
- Korrelator identisch mit MF
- äquivalente Realisation:

Integrate & Dump

•Alternative Näherung:

MF: Intersymbol Interferenz

Häufige Forderung: Sendepuls soll möglichst wenig Bandbreite benötigen

d.h.

Realisation mit TP sehr hoher Steilheit

Leider: Dauer Impulsantwort >> Bitdauer

→ Problem Nr. 2:

Pulsübersprechen auf Nachbar Bit zu den Abtastzeitpunkten

d.h. Intersymbolinterferenz ISI

Reduziertes S/N

Tritt auch bei andern Pulsformen auf z.B. Rechteckpuls nach einer ungeeigneten RC-Tiefpass Filterung

Rechteck: Intersymbol Interferenz

Optimierung Bsp. Tiefpass 1. Ordnung

trapezoidal

Source: Mindspeed White Paper NRZ Bandwidth

ISI vertical eye closure S/N ratio vs nominal -3dB bandwidth

→ Erlaubte Filterung Rechteckimpuls: Weniger als 0.75*Rate ergibt ISI Mehr als 0.3*Rate verschlechtert S/N

Optimum bei ca. B = 0.5...0.6*Bitrate

Rechteckpulse Tiefpass gefiltert mit B = 1/2T...1/T sind keine schlechte Wahl

15

Zürcher Hochschule für Angewandte Wissenschaften School of Engineering

Matched Filter versus RC Tiefpass

Optimaler Lösungsansatz Nyquist Kriterien

Kriterien für die Pulsform am Ausgang des MF

1. Kriterium für t=nT

$$p(nT) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Bsp.
$$p(t) = \frac{\sin(\pi t/T)}{\pi t/T}$$

Kriterium vertikal: okay

Volle Öffnung

Entscheider: Schwelle bei 0.5

Problem bei Signal Jitter (horizontal)
- Jitter z.B durch Taktregeneration

Nyquist Kriterien

Kriterien für die Pulsform am Ausgang des MF

2. Kriterium für t= nT/2

$$p(nT/2) = \begin{cases} 1 & n = 0 \\ 0.5 & n = \pm 1 \\ 0 & n = \pm 2, \dots \end{cases}$$

Bsp:
$$p(t) = \frac{\sin(\pi t/T)}{\pi t/T} \cdot \frac{\cos(\pi t/T)}{1 - 4(t/T)^2}$$

Spektrum wird breiter: Raised Cosine

$$P(f) = \begin{cases} 1 + \cos(\pi T f) & |f| \le 1/T \\ 0 & |f| > 1/T \end{cases}$$

Nyquist Kriterien

Kompromiss:

- 1. Nyquist Krit. ganz erfüllen
- 2. Nyquist Krit. so gut wie möglich

Bandbreite einstellen mit Roll-off Faktor β

$$p(t) = \frac{\sin(\pi t/T)}{\pi t/T} \cdot \frac{\cos(\pi \beta t/T)}{1 - 4(\beta t/T)^2}$$

Bsp. Fig. $\beta = 0.5$

Spektrum allg:

$$P(f) = \begin{cases} 1 & 0 \le |f| \le \frac{1-\beta}{2T} \\ 1 + \cos\left[\frac{\pi T}{\beta}\left(|f| - \frac{1-\beta}{2T}\right)\right] & \frac{1-\beta}{2T} \le |f| \le \frac{1+\beta}{2T} \end{cases}$$

$$0 \le |f| \le \frac{1-\beta}{2T}$$

$$0 \le \frac{1-\beta}{2$$

$$0 \le \left| f \right| \le \frac{1 - \beta}{2T}$$

$$\frac{1 - \beta}{2T} \le \left| f \right| \le \frac{1 + \beta}{2T}$$

$$\left| f \right| \ge \frac{1 + \beta}{2T}$$

Aufteilung Filter TX - RX

Rauschen macht das Auge zu! --Jitter im Abtaster macht das Auge zu! ---

Abhilfe:

- P(f) nach den Nyquist Kriterien wählen
- Jitter-arme Abtastregelung entwerfen

Problem:

P(f) enthält eigentlich 2 Filter in der Übertragungsstrecke:

Das den Sendepuls formende Filter S(f) und das passende MF H(f).

Lösung:

Verteilen der Nyquist Impulsform auf Sender und Empfänger in gleichem Mass:

$$|H(f)| \approx |S(f)| \approx \sqrt{P(f)}$$

z.B. Root Raised Cosine Filter

P.S. Übrige Filter im System tendenziell breitbandig halten → kaum ISI

Aufteilung Filter TX - RX

Einfachste Implementation für $|H(f)| \approx |S(f)| \approx \sqrt{P(f)}$

$$|H(f)| \approx |S(f)| \approx \sqrt{P(f)}$$

- Rechteckimpulse s(t)
- MF mit Rechteck h(t) (oder Integrate & Dump)
- Spektrum

$$P(f) = \left[\frac{\sin(\pi T f)}{\pi T f} \right]^{2}$$

MF-Ausgang erfüllt auch beide Nyquistbedingungen!

Nachteil: Kanal muss viel Bandbreite bereitstellen / erlauben

Mittels Simulation kann auch eine Lösung mit Rechteck und Tiefpassfilter gefunden werden (vgl. Slide 16 und Praktikum)