INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Hardware

SUMÁRIO

- Arquitetura de von Neumann
 - > Memória
 - Unidade Lógica Aritmética
 - > Unidade de Controle
 - ➤ Ciclo Busca-Execução
- **♦** Sistemas Embarcados
- Arquiteturas Paralelas

Arquitetura de von Neumann

Memória

Coleção de células, cada uma com um único endereço físico.

RAM (Random Access Memory): célula pode ser acessada diretamente.

ROM (Read Only Memory): memória apenas de leitura

RAM é volátil e ROM não é.

Memória

Coleção de células, cada uma com um único endereço físico.

Endereçabilidade: número de bits armazenados em cada localização endereçável de memória

Unidade Lógica Aritmética

Realiza operações aritméticas e operações lógicas.

ALU: Arithmetic/Logic Unit

Registrador: Pequena área de armazenamento na CPU usada para guardar valores intermediários ou dados especiais

Unidade de Entrada

Dispositivos que aceitam dados a serem armazenados em memória

Unidade de Saída

Dispositivo que imprime ou exibe dados armazenados em memória, ou faz uma cópia permanente de informação armazenada em memória ou em outro dispositivo.

Unidade de Controle

Encarregada do ciclo de busca-execução, ou seja, executa operações de busca, decodificação e execução das tarefas.

Registrador de instrução (RI): contém a instrução que está sendo correntemente executada

Unidade de Controle

Encarregada do ciclo de busca-execução, ou seja, executa operações de busca, decodificação e execução das tarefas.

Contador de programa (CP): registrador que contém o endereço da próxima instrução a ser executada

Fluxo de Informação

Barramento: coleção de fios pelos quais os dados trafegam Transporta três tipos de informação: endereço, dados e controle Largura de barramento: número de bits que podem ser transferidos em paralelo sobre o barramento

Fluxo de Informação

Memória cache: tipo de memória pequena e de alta velocidade, destinada a guardar dados frequentemente usados. Encadeamento: técnica que desmembra uma instrução em

passos menores que podem ser sobrepostos

Fluxo de Informação

Placa-mãe: principal placa de circuito de um computador pessoal

Os componentes da arquitetura de von Neumann residem na placa-mãe

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10101011
4	10000101
5	01101010
6	00110101
7	01000101

00000000

0000000

0000000

00000000

Busca

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10101011
4	10000101
5	01101010
6	00110101
7	01000101

Decodificação

RI 10110111

Código da Operação Endereço

Carregar no Registrado A

Conteúdo do endereço 7

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10101011
4	10000101
5	01101010
6	00110101
7	01000101

01000101 00000000 00000000 00000000

RI 00100110

01000101

00000000

00000000

00000000

RAM

Carregar no Registrado B

Unidade Central de Processamento

Unidade de
Controle

RI
00100110

CP
00000001

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10101011
4	10000101
5	01101010
6	00110101
7	01000101

Conteúdo do endereço 6

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10101011
4	10000101
5	01101010
6	00110101
7	01000101

RI 10000100

Somar e armazenar

RAM

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10101011
4	10000101
5	01101010
6	00110101
7	01000101

Conteúdo endereço 01 (B) endereço 00 (A)

Unidade Central de	Processamento
Unidade de Controle	
RI CP 00000010	

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10100100
4	10000101
5	01101010
6	00110101
7	01000101

RI 10100100

 00
 01
 10
 11

 01000101
 00110101
 00000000
 00000000

Escrever conteúdo A

RAM

Endereço 4

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10100100
4	10000101
5	01101010
6	00110101
7	01000101

Unidade de Controle

RI 10100100

CP 00000011 Unidade Lógica e Aritmética

Endereço	Conteúdo
0	10110111
1	00100110
2	10000100
3	10100100
4	01000101
5	01101010
6	00110101
7	01000101

Sistemas Embarcados

- Computadores projetados para realizar uma faixa estreita de funções como parte de um sistema maior.
- O sistema embarcado fica usualmente em uma única pastilha de microprocessador com os programas armazenados em ROM.

- Computação paralela em nível de bit: aumentar o tamanho da palavra de um computador.
- Computação paralela em nível de instrução: algumas instruções em um programa são executadas independentemente em paralelo.
- Computação paralela em nível de dados: um único conjunto de instruções pode ser executado em diferentes conjuntos de dados ao mesmo tempo.

 Processamento síncrono: Múltiplos processadores aplicam o mesmo programa, de modo totalmente coordenado, a múltiplos conjuntos de dados

- Computação paralela em nível de tarefa: diferentes processadores podem executar diferentes tarefas sobre os mesmos ou em diferentes conjuntos de dados.
- Se os diferentes processadores operam no mesmo conjunto de dados, temos um encadeamento em máquina de von Neumann.

 Processador paralelo de memória compartilhada: A situação na qual múltiplos processadores compartilham uma memória global

INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Hardware