AMAL JYOTHI COLLEGE OF ENGINEERING KANJIRAPPALLY

MCA-INTEGRATED

MCAINT2022-27-S6: 20INMCA308-Design & Analysis of Algorithms-Assignment 1

QP Code: 20INMCA308/2020/A/5 Max.Marks :6

Q.No		Questions	Marks	со	BL	PI
1	III.	Solve the recurrence relation using Iteration Method a. $T(n)=2T(n/2)+n$ b. $T(n)=c+(n-1)$ c. $T(n)=T(n/2)+1$ d. $T(n)=8T(n/2)+n^2$ ($T(1)=1$) e. $T(n)=T(n-1)+n$ Solve the recurrence relation using Recurrence Tree Method a. $T(n)=\begin{bmatrix} 1 & n=1 \\ 1 & T(n/2)+n \end{bmatrix}$ $n>1$ b. $T(n)=\begin{bmatrix} 1 & n=1 \\ 1 & T(n/2)+n \end{bmatrix}$ $n>1$ c. $T(n)=T(n-1)+n$ d. $T(n)=T(n/10)+T(9n/10)+n$ e. $T(n)=T(n/5)+T(4n/5)+n$ Apply the Master's Theorem to determine the time complexity of the recurrence a. $T(n)=3T(n/2)+n^2$ b. $T(n)=4T(n/2)+n^2$ c. $T(n)=9T(n/3)+n$ d. $T(n)=2T(n/2)+cn$ e. $T(n)=16T(n/4)+n$	3	CO1	L6	1.1.1,1.1.2,1.3.1, 2.1.3,2.2.1,2.2.5, 2.3.1
2	II. III.	Given a sorted array arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91} and a target value 23, implement a Binary Search algorithm to determine whether the target exists in the array. Given a sorted array a[] = {2, 3, 7, 7, 11, 15, 25}, implement a Binary Search algorithm to find the target element 11. Given an unsorted array a[] = {38, 27, 43, 3, 9, 82, 10}, implement the Merge Sort algorithm to sort the array in ascending order. Perform a step-by-step dry run, explaining	3	CO2	L6	1.1.1,1.1.2, 1.3.1,1.4.1,2.1.1, 2.1.2,2.2.1,2.2.3, 2.2.5

).No				Questio	ons			Marks	СО	BL	PI
		and visual	izing how t	the array	is recursiv	ely divi	ded and				
		merged at	each stage	of the N	lerge Sort	algorithn	n.				
	IV.	Formulate	the Merge	Sort alg	orithm for	the give	n array a [] =				
		{12, 11, 13	3, 5, 6, 7} a	nd sort i	t in ascend	ing orde	r. Count and				
		{12, 11, 13, 5, 6, 7} and sort it in ascending order. Count and display the number of comparisons made during the sorting									
		process.									
	V.	Given an u	insorted ar	ray a[] =	{29, 10, 1	4, 37, 13	3, 20},				
		implement	the Quick	Sort alg	orithm to s	ort the a	rray in				
		ascending	order, and	demons	trate a step	-by-step	dry run of				
		the algorit	hm, showii	ng the pa	artitioning p	process a	it each step.				
	VI.	Given the	unsorted ar	rray a[] =	= {44, 33, 5	55, 22, 8	8, 77, 11,				
		99}, imple	ment the Q	uick So	rt algorithn	n. Demo	nstrate the				
							partitioning				
		at each rec		_	•						
	VII.				ide and cor	nquer alg	gorithm to				
		•	-				ray [3, 1, 4,				
		1, 5, 9, 2].					3 L // //				
	VIII.			vide and	l conquer a	pproach	to find the				
		_			nents in a g						
		integers [1				,					
	IX.	_			napsack th	at can ca	ırry a				
					-		s available,				
			_		nd value. T						
			-	-	ind the max						
			-		edy Algori						
		X.	Item	XI.	Weight	XII.	Value				
		XIII.	1	XIV.	10	XV.	60				
		XVI.	2	VII.	20	VIII.	100				
		XIX.	3	XX.	30	XXI.	120				
	XII. A hiker has a backpack with a capacity of 60 kg and wants										
	to carry the most valuable items. There are four items , each with a given weight and value. The hiker can take fractional parts of any item. Find the maximum value that can be carried using the Greedy Algorithm .										
			ng the Gre			X7-1	_				
		Item		Weig	nt	Value	e				
		1		20		100					
		2		10		60					
				10		60					

CO1: Implement design principles and analyze the asymptotic performance of algorithms.

CO2: Derive and solve recurrences describing the performance of divide-and-conquer algorithms and greedy algorithms

CO(s) contribution for PO/PSO Attainment from Assignment 1

Question	COs Mark & Mapped PO(s)/PSO(s)[Strength] 3.Substantial, 2.Moderate, 1.Slight	Total Marks per CO	40% per CO(s)	CO contribution to calculate PO/PSO attainment(%)
1 a)	CO1[3]=>PO1 (3), PO2 (2), PO3 (3), PO4 (2), PO5 (1), PO7 (1), PO8 (1), PSO1 (2), PSO2 (3)	CO1=>3	CO1=>1.2	
2 a)	CO2[3]=>PO1 (2), PO2 (3), PO3 (3), PO4 (2), PO5 (1), PO8 (1), PSO1 (3), PSO2 (2), PSO3 (1)	CO2=>3	CO2=>1.2	

Rubrics used for the assessment- MCAINT2022-27-S6: 20INMCA308-Design & Analysis of **Algorithms-Assignment 1**

Bloo	m's Level wise Marks D	Distribution	Course Outcome wise Marks Distribution			
Blooms Taxonomy Level		Percentage	COs	Percentage		
L6	Creating	100	CO1	50		
			CO2	50		