Séquençage

Bérénice Batut,

berenice.batut@udamail.fr

DUT Génie Biologique Option Bioinformatique Année 2014-2015

Séquençage

Séquençage ADN

Détermination de l'ordre d'enchainement des nucléotides d'un fragment d'ADN donné

Utilité

Comprendre et appréhender le fonctionnement des êtres vivants

Applications standards

Assemblage de génome

Identification de variants de structure (réarrangements) ou de séquence (SNP)

Catalogue du transcriptome (RNA-seq)

Mapping transcription factor binding sites (Chip-seq) or sites bound by RNA-binding proteins (CLIP-seq)

Profilage à l'échelle du génome de marqueurs épigénétiques et structure chromatinienne (exemples, ChIP-seq, methyl-seq and Dnase-seq)

Bibliographie sur le séquençage

Hutchinson, Nucleic Acid Res, 2007

Revue sur l'histoire du début du séquençage et de la bioinformatique

Metzker, Genome Res, 2005; Metzker, Nature Rev Genet, 2010; Schadt et al, Hum Mol Genet, 2010 Revues sur les différentes méthodes de séquençage

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3^e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Méthode de séquençage de Sanger

(Sanger & Coulson, J Mol Biol, 1975; Sanger et al, Proc Natl Acad Sci USA, 1977)

Image adaptée d'une image issue de Wikipédia

Avantages

Bonne qualité de séquences jusqu'à 1kb

 $1 \text{ run} = \pm 2 \text{h}$

Nombreux outils de traitements bioinformatique

Inconvénients

Coût de séquençage élevé (3€ par séquence)

Pas une méthode haut-débit (384 séquences par run)

Environ 10 ans et 3 milliards de dollars pour séquencer le premier génome humain

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Principe

Préparation de l'échantillon

Immobilisation des templates

Séquençage et visualisation

Cyclic reversible termination (CRT)

Sequencing by ligation (SBL)

Single-nucleotide addition (SNA)

Real-time sequencing

Principe

Préparation de l'échantillon Immobilisation des templates

Séquençage et visualisation

Cyclic reversible termination (CRT)

Sequencing by ligation (SBL)

Single-nucleotide addition (SNA)

Real-time sequencing

Amplification clonale

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

Émulsion PCR

Solid-phase amplification

Images issues de Metzker, Nature Rev Genet, 2010

Immobilisation des templates

Immobilisation des primers

Billions of primed, single-molecule templates

Billions of primed, single-molecule templates

Thousands of primed, single-molecule templates

Principe

Préparation de l'échantillon Immobilisation des templates

Séquençage et visualisation

Cyclic reversible termination (CRT)

Sequencing by ligation (SBL)

Single-nucleotide addition (SNA)

Real-time sequencing

Cyclic reversible termination (CRT)

Cyclic reversible termination (CRT)

Principe

Préparation de l'échantillon Immobilisation des templates

Séquençage et visualisation

Cyclic reversible termination (CRT)

Sequencing by ligation (SBL)

Single-nucleotide addition (SNA)

Real-time sequencing

Sequencing by ligation (SBL)

17

Principe

Préparation de l'échantillon Immobilisation des templates

Séquençage et visualisation

Cyclic reversible termination (CRT)

Sequencing by ligation (SBL)

Single-nucleotide addition (SNA)

Real-time sequencing

Single-nucleotide addition (SNA) ou pyroséquençage

Principe

Préparation de l'échantillon Immobilisation des templates

Séquençage et visualisation

Cyclic reversible termination (CRT)

Sequencing by ligation (SBL)

Single-nucleotide addition (SNA)

Real-time sequencing

Real-time sequencing

Les différentes plateformes 2e génération

Plateforme	Préparation de l'échantillon	Séquençage
Roche/454	Amplification/PCR par émulsion	Pyroséquençage
Illumina	Amplification/Solid-phase amplification	CRT
Life/APG	Amplification/PCR par émulsion	SBL
Polonator	Amplification/PCR par émulsion	SBL
Helicos BioSciences	Immobilisation des templates ou primers	CRT
Pacific Biosciences	Immobilisation des polymérases	Reat-time sequencing

Tableau inspiré du Tableau 1 de Metzker, Nature Rev Genet, 2010

Avantages Haut débit Coûts faibles

Limites

Amplification

Risque d'erreurs d'amplification

Augmentation de la complexité et du temps associé à la préparation

Génération importante de données

Traitement

Stockage

Séquences courtes

Entre 2^e et 3^e génération des méthodes de séquençage

Ion Torrent

Mesure du largage d'un hydrogène lors de l'incorporation d'une base

Avantages

Pas de besoin de lumière, scanning et caméras pour diriger le processus

Inconvénients

Toujours un système « wash and scan » avec une amplification PCR

Entre 2^e et 3^e génération des méthodes de séquençage

Helicos Genetic Analysis Platform

Imagerie d'ADN individuels fixés sur une surface plane alors qu'ils sont alongés en utilisant un primer défini et une polymérase modifiée ainsi que des analogues nucléotides fluorescents

Avantages

Pas de PCR

Inconvénients

Arrêt de l'élongation

Taux d'erreur > 5%

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3^e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

3 principales méthodes

SBS

Nanopores

Imagerie directe

3 méthodes

SBS

Nanopores Imagerie directe

SBS

Observation de molécules d'ADN polymérases simple lors de la synthèse de l'ADN

2 techniques

Séquençage en temps réel de molécules simples

Pacific Biosciences

Séquençage en temps réel avec observation du transfert d'énergie entre molécule fluorescentes

Image issue de Schadt et al, Hum Mol Genet, 2010

3 méthodes

SBS

Nanopores

Imagerie directe

Nanopores

Principe

Enfilage ou positionnement de molécules d'ADN simples à travers ou à proximité d'un nanopore

Détection des bases individuelles quand elles passent à travers le nanopore

Nanopores

4 méthodes

Détection électrique directe des molécules d'ADN simples Oxford Nanopore

Utilisation d'un nanopore biologique comme MspA (*Mycobacterium smegmatis* Porin A)

Mesure optique

Séquençage médié par un transistor

Images issues de Schadt et al, Hum Mol Genet, 2010

3 méthodes

SBS

Nanopores

Imagerie directe

Imagerie directe des molécules d'ADN individuelles par microscopie

2 techniques de microscopie pour l'imagerie directe

Microscopie par émission d'électrons

Halcyon Molecular

ZS Genetics

Microscopie à effet tunnel

Reveo

Avantages

Molécule simple

Haut débit

Délai de production plus courts

Reads plus longs

Facilitation de l'assemblage de novo

Plus forte précision

Quantité d'ADN nécessaire plus faible

Coûts plus faibles

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Comparaison des différentes générations

	1 ^e génération	2 ^e génération	3 ^e génération
Technologie fondamentale	Discrimination par taille de brin, fragment ADN labellisé, produit par SPS ou dégradation	"Wash-and-scan" SPS	SPS, par dégradation, par inspection directe de molécule d'ADN
Résolution	Moyenne en fonction du nombre de copies de l'ADN séquencé	Moyenne en fonction du nombre de copies de l'ADN séquencé	Élevé (une molécule)
Précision	Haute	Haute	Modérée
Taille des séquences lues	800/1000 pb	10/50 pb	1000+ pb
Volume de données en sortie	Bas	Haut	Modéré
Coût	Elevé par base Bas par séquençage	Bas par base Élevé par séquençage	Bas/Modéré par base Bas par séquençage
Temps de séquençage	~ Heures	~ Jours	~ Heures
Préparation des échantillons	Modérement complexe, PCR non requise	Complexe, PCR requise	Simple/Complexe suivant la technologie employée
Analyse des données	Facile	Complexe à cause du nombre important des données et de la petite taille des reads qui compliquent l'assemblage des génomes et des algorithmes d'alignement	d'informations et donc de nouvelles doivent être implémentées
Résultats primaires	Identification des bases avec des scores de qualité	Identification des bases avec des scores de qualité	Identification des bases avec des scores de qualité, et d'autres informations comme la cinétique, la modification des bases

Quelle plateforme choisir?

À prendre en considération

Application souhaitée

Coût d'un run et de son traitement

Longueur des reads

Nombre de reads par run

Taux d'erreur

Disponibilité

Longueur des reads

Longueur des reads (bp)	Éléments du génome
25 - 75	SNP, short frameshift mutations
100 - 400	Short functional signatures
500 - 1 000	Whole domain, single domain genes
1 000 - 5 000	Short operons, multidomain genes
5 000 - 10 000	Longer operons, some cis-control elements
> 100 000	Prophages, pathogenicity islands, various mobile insertion elements
> 1 000 000	Whole prokaryotic chromosome organization

Tableau inspiré du Tableau 2 de Wooley et al, Plos Comp Biol, 2010

Reads longs

Facilité d'assemblage

Optimal pour des génomes jamais séquencés et la caractérisation du transcriptome

Reads courts

Faibles coûts

Plus forte couverture

Re-séquençage pour applications basées sur le fréquence (comptage)

		Millions of				
Instrument	Run time	Reads/run		Reagent Cost/run	Reagent Cost/Gb	Reagent Cost/Mread
Applied Biosystems 3730 (capillary)	2 hrs,	0,000096	650	\$144	\$2307692,31	\$1500000,00
454 GS Jr, Titanium	10 hrs,	0,1	400	\$977	\$19540,00	\$9770,00
454 FLX Titanium	10 hrs,	1	400	\$6200	\$15500,00	\$6200,00
454 FLX+	20 hrs,	1	650	\$6200	\$9538,46	\$6200,00
Illumina GA IIx - v5 SE	2 days	640	36	\$4842	\$210,16	\$7,57
Illumina GA IIx - v5 PE	14 days	640	288	\$17978	\$97,54	\$28,09
Illumina MiSeq v2 Nano	17 hrs,	1	300	\$530	\$1766,67	\$530,00
Illumina MiSeq v2 Nano	28 hrs,	1	500	\$639	\$1278,00	\$639,00
Illumina MiSeq v2 Micro	19 hrs,	4	300	\$798	\$665,00	\$199,50
Illumina MiSeq v2	5 hrs,	15	50	\$747	\$996,00	\$49,80
Illumina MiSeq v2	24 hrs,	15	300	\$958	\$212,89	\$63,87
Illumina MiSeq v2	39 hrs,	15	500	\$1066	\$142,13	\$71,07
Illumina MiSeq v3	20 hrs,	22	150	\$824	\$249,70	\$37,45
Illumina MiSeq v3	55 hrs,	22	600	\$1442	\$109,24	\$65,55
Illumina NextSeq 500	15 hrs,	130	150	\$975	\$50,00	\$7,50
Illumina NextSeq 500	26 hrs,	130	300	\$1560	\$40,00	\$12,00
Illumina NextSeq 500	11 hrs,	400	75	\$1300	\$43,33	\$3,25
Illumina NextSeq 500	18 hrs,	400	150	\$2500	\$41,67	\$6,25
Illumina NextSeq 500	30 hrs,	400	300	\$4000	\$33,33	\$10,00
Illumina HiSeq 2500 - rapid run	10 hrs,	300	50	\$1350	\$90,00	\$4,50
Illumina HiSeq 2500 - rapid run	27 hrs,	300	200	\$3126	\$52,10	\$10,42
Illumina HiSeq 2500 - rapid run	40 hrs,	300	300	\$4126	\$45,84	\$13,75
Illumina HiSeq 2500 - high output v3	2 days	1500	50	\$5866	\$78,21	\$3,91
Illumina HiSeq 2500 - high output v3	11 days	1500	200	\$13580	\$45,27	\$9,05
Illumina HiSeq 2500 - high output v4	40 hrs,	2000	50	\$5866	\$58,66	\$2,93
Illumina HiSeq 2500 - high output v4	6 days	2000	250	\$14950	\$29,90	\$7,48
Illumina HiSeq X (2 flow cells)	3 days	6000	300	\$12750	\$7,08	\$2,13
Ion Torrent – PGM 314 chip	2,3 hrs,	0,475	200	\$349	\$3673,68	\$734,74
Ion Torrent – PGM 314 chip	3,7 hrs,	0,475	400	\$474	\$2494,74	\$997,89
Ion Torrent – PGM 316 chip	3 hrs,	2,5	200	\$549	\$1098,00	\$219,60
Ion Torrent – PGM 316 chip	4,9 hrs,	2,5	400	\$674	\$674,00	\$269,60
Ion Torrent – PGM 318 chip	4,4 hrs,	4,75	200	\$749	\$788,42	\$157,68
Ion Torrent – PGM 318 chip	7,3 hrs,	4,75	400	\$874	\$460,00	\$184,00
Ion Torrent - Proton I	4 hrs,	70	175	\$1000	\$81,63	\$14,29
Ion Torrent - Proton II (forecast)	5 hrs,	280	175	\$1000	\$20,41	\$3,57
Ion Torrent - Proton III (forecast)	6 hrs,	500	175	\$1000	\$11,43	\$2,00
Life Technologies SOLiD – 5500xl	8 days	1410	110	\$10503	\$67,72	\$7,45
Pacific Biosciences RS II	2 hrs,	0,03	3000	\$100	\$1111,11	\$3333,33
Oxford Nanopore MinION (forecast)	≤6 hrs,	0,1	9000	\$900	\$1000,00	\$9000,00
Oxford Nanopore GridION 2000 (forecast)	varies	4	10000	\$1500	\$37,50	\$375,00
Oxford Nanopore GridION 8000 (forecast)	varies	10	10000	\$1000	\$10,00	\$100,00

Multiplexage

Moyen de diminuer les coûts de séquençage

- Ajout d'un tag d'identification pour chaque échantillon
- Mélange des échantillons
- Préparation et séquençage en parallèle
- Tri des séquences en fonction des échantillons, l'information de source étant contenue dans la séquence

Taux d'erreurs

Instrument	Erreurs principales	Taux d'erreur final (%)
3730xl (capillary)	Substitutions	0.1-1
454 (tous modèles)	Indels	1
Illumina (tous modèles)	Substitutions	0.1
Ion Torrent (tous modèles)	Indels	1
SOLiD - 5500 xl	Biais AT	<=0.1
Oxford Nanopore	Délétions	4
PacBio RS	Indels	<=1

Comparaison des plateformes

Instrument	Principaux avantages	Principaux désavantages
3730xl (capillary)	Faibles coûts pour des très petites études	Prix très élevés pour des grandes quantités de données
Illumina MiSeq	Coûts modérés d'instruments et runs; Faibles coûts par Mb pour une petite plateforme; Durée des runs les plus rapides et reads les longs des plateformes Illumina	Relativement peu de reads et coûts plus élevés par Mb par rapport à HiSeq
Illumina NextSeq 500	Facilité d'utilisation; Coûts modérés d'instruments et de run;	Nouvelle chimie et nouveau design d'instruments
Illumina HiSeq 2500	Faibles coûts par Mb;	Coûts élevés d'instruments et de runs; Besoin de personnels entrainés; Pas de possibilité d'avoir en même temps un run rapide et une sortie flow cell rapide
Illumina HiSeq X	Plus forte capacité et plus faible coût par base que HiSeq 2500	Pas disponible avec 2015
IIIumina HiSeq X Ten	Plus faibles coûts par Mb	Seulement 2 systèmes disponibles en 2014; Besoin de 10M\$ de stockage de données
Ion Torrent - PGM	Faible coût d'instruments; Machine très simple;	Plus fort taux d'erreur qu'Illumina; Plus de temps de manipulation et moins de reads à coûts plus élevés que MiSeq; Communauté d'utilisation plus petites;
Ion Torrent - Proton	Coûts modéremment faible d'instrument pour des applications haut débit;	Plus forts taux d'erreur, plus de temps de manipulation and plus petites bases de données globale qu'Illumina; Coûts plus élevés par Mb que la plupart des instruments Illumina
PacBio	Séquençage en temps réel simple molécule; Plus long reads disponibles; Capacité de détecter des modifications de bases;	Forts taux d'erreurs; Faible nombre de reads par run; Coûts élevés par Mb,
454 GS Jr.	Plus faible coûts par run que 454 FLX+	Coûts élevés par Mb; Peu de reads; Reads plus courts que FLX
454 FLX+	Reads contigus les plus longs pour du 2e génération	Coûts élevés par Mb; Problèmes de reagent;
SOLiD - 5500/5500xl/5500W	Forte précision; Capacité de sauver les cycles de séquençage ayant échoué	Longévité de la plateforme; Reads relativement courts; Plus de gaps dans l'assemblage que pour les données Illumina;
Oxford Nanopore (projet)	Instrument portable et low-cost; Reads extrement longs possibles;	Instruments par encore disponibles; Pas de données publiquement disponibles; Informations disponibles limitées;
Oxford Nanopore Gridlon (projet)	Reads extrement longs possibles; Instrument low-cost; Pas d'augmentation des taux d'erreur avec la longueur des reads;	Pas disponible; Pas de données publiquement disponibles; 4% de taux d'erreur;

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Prétraitements des données

Gestion des données

Formats

Types de données

Assignation des reads multiplexés aux échantillons et suppression des primers et adaptateurs Filtrage des reads en fonction de la qualité Réduction des biais de séquençage

Prétraitements des données

Gestion des données

Formats

Types de données

Assignation des reads multiplexés aux échantillons et suppression des primers et adaptateurs Filtrage des reads en fonction de la qualité Réduction des biais de séquençage

Différents formats de fichiers

FastA

Format répandu de stockage des séquences biologiques

FastQ

Illumina et d'autres séquenceurs

SFF

Roche 454

SRF

Helicos

HDF5

PacBio, Applied Biosystems, Oxford Nanopore

Les plus utilisés

Différents formats de fichiers

FastA

Format répandu de stockage des séquences biologiques

FastQ

Illumina et d'autres séquenceurs

SFF

Roche 454

SRF

Helicos

HDF5

PacBio, Applied Biosystems, Oxford Nanopore

FastA

Identifiant unique Pas de description définitive mais tentative

Base de données	Format de l'identification
GenBank	gi numéro gi gb numéro d'accession locus
EMBL	gi numéro gi emb numéro d'accession locus
DNA Data Bank of Japan	gi numéro gi dbj numéro d'accession locus
NBRF PIR	pir entrée
Protein Research Foundation	prf nom
Swiss-Prot	sp numéro d'accession nom
Brookhaven Protein Data Bank	pdb entrée chaine
Brevets	pat brevet numéro
GenInfo Backbone Id	bbs numéro
General database identifier	gnl base de données identifiant
NCBI Reference Sequence	ref numéro d'accession locus
Local Sequence identifier	

>Identifiant (Commentaire)

>Identifiant2 (Commentaire)

XXXXXX

Suite de lettres représentant les acides nucléiques ou les acides aminés Lignes de 120 résidus maximum

Code des acides nucléiques

Code des acides nucléiques	Signification	Moyen de mémorisation mnémotechnique
Α	A	A dénosine
С	С	Cytosine
G	G	Guanine
Т	T	T hymine
U	U	U racile
R	A ou G	pu R ine
Υ	C, T ou U	p Y rimidine
K	G, T ou U	bases contenant une cétone (K étones en anglais)
M	A ou C	bases contenant un groupe a M ine
S	C ou G	interaction forte (S trong en anglais)
W	A, T ou U	interaction faible (W eak en anglais)
В	différent de A (C, G, T ou U)	B vient après A
D	différent de C (A, G, T ou U)	D vient après C
Н	différent de G (A, C, T ou U)	H vient après G
V	différent de T et U (A, C ou G)	V vient après U
N	A, C, G, T ou U	N'importe ou Nucléotide
X	acide nucléique masqué	
-	gap	

Code des acides aminés Standard IUB/IUPAC

Code des acides aminés	Signification
Α	Alanine
В	Acide aspartique ou Asparagine
С	Cystéine
D	Acide aspartique
E	Acide glutamique
F	Phénylalanine
G	Glycine
Н	Histidine
I	Isoleucine
K	Lysine
L	Leucine
M	Méthionine
N	Asparagine

Code des acides aminés	Signification
О	Pyrrolisine
Р	Proline
Q	Glutamine
R	Arginine
S	Sérine
Т	Thréonine
U	Sélénocystéine
V	Valine
W	Tryptophane
Υ	Tyrosine
Z	Acide glutamique ou Glutamine
Χ	N'importe
*	Codon stop
-	gap

Différents fichiers au format FastA

Extension	Signification	Commentaires
.fasta, .fas, .fa	fasta générique	Tout fichier fasta. Ces types de fichiers peuvent avoir aussi comme extension <i>.seq</i> (pour séquence) et <i>.fsa</i> (pour fasta sequence alignment)
.fna	fasta nucleic acid	Fichier fasta contenant une séquence d'acides nucléiques. Pour des séquences de régions codants spécifiques d'un génome, il sera préféré l'extension .ffn
.ffn	fasta functional nucleotide	Fichier fasta contenant une séquence nucléique d'une région codante d'un génome
.faa	fasta amino acid	Fichier fasta contenant une séquence d'acides aminés. Un fichier contenant de multiples séquences pourra avoir l'extension plus spécifique <i>mpfa</i>
.frn	fasta RNA non-coding	Fichier fasta contenant une séquence d'ARN non-codant d'un génome (comme ARNt et ARNr) mais écrite dans la nomenclature du code ADN

Qualité des séquences Fasta Fichier QUAL avec des scores PHRED

Codage du score de qualité dans un fichier à part

Suite de chiffres correspondant au score de qualité pour chacune des bases de la séquence

Différents formats de fichiers

FastA

Format répandu de stockage des séquences biologiques

FastQ

Illumina et d'autres séquenceurs

SFF

Roche 454

SRF

Helicos

HDF5

PacBio, Applied Biosystems, Oxford Nanopore

FastQ

Identifiant unique comme après le ">" en fasta

Scores de qualité associés à chacune des bases de la séquence : suite de caractères ASCII entre le 33^e et le 127^e

Score de qualité dans FastQ

Différents formats de fichiers

FastA

Format répandu de stockage des séquences biologiques

FastQ

Illumina et d'autres séquenceurs

SFF

Roche 454

SRF

Helicos

HDF5

PacBio, Applied Biosystems, Oxford Nanopore

Standard Flowgram Format

Format de sortie de 454 et lon Torrent Fichier binaire contenant

Section en-tête commune à tous les reads du fichier

Pour chaque read

Section en-tête du read

Section des données du read

En-têtes d'un fichier SFF

En-tête globale d'un fichier

magic_number	uint32_t	
version	char[4]	
index_offset	uint64_t —	Offset et longueur d'un index optionel des reads
index_length	uint32 t	Onset et longueur à un maex optioner des reads
number_of_reads	uint32_t <	Nombre de reads contenus dans le fichier
key_length	uint16_t	Longueur et bases nucléotides de la séquence clé
key_sequence	char[key_length]	utilisée pour ces reads
header_length	uint16 t ←	– Nombre d'octets requis pour l'ensemble des champs de l'en-tête
number of flows per read	uint16 t ←	– Nombre de flow pour chaque read
flowgram_format_code	uint8_t <	Format utilisé pour encoder chaque valeur du flowgram de chaque read
flow_chars	char[number_of_flows_per_read]	Tableau des bases nucléotides correspondant aux
eight byte padding	uint8 t[*]	nucléotides utilisés pour chaque flow de chaque read
index_magic_number Index_version	uint32_t char[4]	S'il y a un index des reads

En-tête d'un read

read_header_length	uint16_t	– Longueur de l'en-tête du read en octet
name_length	uint16_t —	- Longueur et nom de l'accession ou nom du read
name	char[name_length]	Longueur et nom de raccession ou nom du redu
number_of_bases	uint32_t	– Nombre de bases dans ce read
clip_qual_left	uint16_t —	Position et qualité de la première base après le point de coupure au
clip_adapter_left	uint16_t —	début du read
clip_qual_right	uint16_t —	Position et qualité de la dernière base avant le point de coupure à la fin
clip_adapter_right	uint16_t	_ du read
eight byte padding	uint8	

Données de séquence dans un fichier SFF

Enregistrement des données de séquence d'un read

flowgram_values flow_index_per_base bases quality_scores eight_byte_padding uint*_t[number_of_flows]
uint8_t[number_of_bases]
char[number_of_bases]
uint8_t[number_of_bases]
uint8_t[*]

Estimation de l'étirement de l'homopolymère pour chaque flow Position de flow de chaque base dans la séquence Séquence de nucléotides

Score de qualité pour chaque base (même calcul que pour les données fastq)

Prétraitements des données

Gestion des données

Formats

Types de données

Assignation des reads multiplexés aux échantillons et suppression des primers et adaptateurs Filtrage des reads en fonction de la qualité Réduction des biais de séquençage

Séquençage « single-end » ou « paired-end »

Séquençage « paired-end »

Génération de deux fichiers de sortie (1 pour chaque bout)

Concaténation des fichiers en faisant attention au sens de lecture

Prétraitements des données

Gestion des données

Formats

Types de données

Assignation des reads multiplexés aux échantillons et suppression des primers et adaptateurs

Filtrage des reads en fonction de la qualité Réduction des biais de séquençage

Primers, adapters, barcode et démultiplexage

Adaptateur

Barcode Primer

Séquence cible

Primer

Adaptateur

Courte séquence nucléotidique capable de réaliser le pontage entre deux fragments d'ADN terminés par des séquences non complémentaires ► Identifiant unique de l'échantillon dans les cas de multiplexage MID ("Multiplex Identifier", 454) ou Index (Illumina)

Brin d'ADN qui sert de point de départ à la synthèse ADN

Métadonnées de description des échantillons

Exemple de "Mapping file"

Sample ID	Barcode	Primer	Reverse Primer	Туре	Experiment	
G1	CGTTTC	ACGGRAGGCAGGCAG	TACCAGGGTATCTAATCCT	DNA	Crohn	
G2	CCCGTT	ACGGRAGGCAGGCAG	TACCAGGGTATCTAATCCT	DNA	Healthy	
G3	GGTCAC	ACGGRAGGCAGGCAG	TACCAGGGTATCTAATCCT	RNA	Crohn	
G4	AGTGCT	ACGGRAGGCAGGCAG	TACCAGGGTATCTAATCCT	RNA	Healthy	

Prétraitements des données

Gestion des données

Formats

Types de données

Assignation des reads multiplexés aux échantillons et suppression des primers et adaptateurs

Filtrage des reads en fonction de la qualité

Réduction des biais de séquençage

Diminution du score de qualité avec la longueur des reads

Plusieurs solutions de filtrage des reads

Filtrage de longueur fixe Coupure à une longueur donnée

Filtrage adaptatif

Coupure en fonction du score de qualité

Longueur minimale de séquence

Filtrage sur une fenêtre glissante

Coupure en fonction du score de qualité

Utilisation de la valeur moyenne de la fenêtre

Prétraitements des données

Gestion des données

Formats

Types de données

Assignation des reads multiplexés aux échantillons et suppression des primers et adaptateurs Filtrage des reads en fonction de la qualité

Réduction des biais de séquençage et d'expériences

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Terminologie

Assemblage

Alignement et fusion de reads en séquence ADN plus longue pour reconstruire la séquence originale

Contig

Séquence génomique continue et ordonnée générée par l'assemblage de reads qui se chevauchent

Scaffold

Contigs chevauchant séparés par des gaps de longueur connue

Alignement sur des génomes de référence

Utile pour identifier des variants ou lors du reséquençage de génomes

Assemblage de novo

Reconstruction des séquences ADN d'un organismes à partir des seules séquences (pas d'utilisation de génome de référence)

Idéal

Longs reads sans erreurs

Problème de simple déduction

Réalité

Reads courts et sujets aux erreurs

Problème d'inférence compliqué

Statistiques de séquençage

Profondeur ou couverture

Nombre moyen de fois qu'un nucléotide particulier est représenté dans une collection de reads aléatoires

Profondeur de couverture

Nombre de reads x Longueur des reads / Taille de l'assemblage

Métriques d'assemblage

```
Nombre de contigs/scaffolds
Taille des contigs/scaffold
Taille totale
Nombre de « N »
N50
```

Longueur du plus petit contig dans l'ensemble qui contient le moins de contigs dont les longueurs combinées représente au moins 50% de l'assemblage

Exemple

Soit 7 contigs de longueur 1,1,3,5,8,12 et 20 Longueur totale des contigs = 50Longueur totale des contigs / 2 = 25N50 = 12 car 1+1+3+5+8+12=30 (>25)

Séquençage

Méthodes de séquençage

1e génération

2^e génération

3e génération

Comparaison des générations et plateformes

Traitement des données issus du séquençage

Prétraitements des données

Assemblage

Analyse des séquences compilées

Analyse des séquences compilés

Détection des SNP ou indels

Repérage des variants génétiques

Détection de nouveaux gènes ou d'éléments régulateurs

Détermination des niveaux d'expression

. . .