2023 SOC Lab3 Report

1.Overview:

本實驗要求利用 AXI-S 進行資料的傳輸,其他如 ap_start 等其他通訊協定則要求利用 Axilite 傳 輸,在FIR方面僅用一個加法器和一個乘法器來進行運算。

Design specification

- Data_Width 32
- Tape_Num 11
- Data_Num TBD Based on size of data file
- Interface
 - data_in stream (Xn)
 - data_out: stream (Yn)
 - coef[Tape_Num-1:0] axilite
 - len: axilite
 - ap_start: axilite
 - ap_done: axilite
- · Using one Multiplier and one Adder
- Shift register implemented with SRAM (Shift_RAM, size = 10 DW) size = 10 DW
- Tap coefficient implemented with SRAM (Tap_RAM = 11 DW) and initialized by axilite write
- - ap_start to initiate FIR engine (ap_start valid for one clock cycle)
 Stream-in Xn. The rate is depending on the FIR processing speed. Use axi-stream valid/ready for flow control
 Stream out Yn, the output rate depends on FIR processing speed.

2.Block Diagram:

3. Operation:

Function specification

- Same as course-lab_2(FIRN11stream)
- $y[t] = \Sigma (h[i] * x[t i])$

上圖之FIR運算規律如下:(h[1]*x[t-1])+(h[2]*x[t-2])...,每次讀入一筆新的 data,而此data與h[0]相乘,而上次讀入的 data 則是與 coef[1]相乘,以此類推,直到計算完[1]筆資料,故y[t]的累加最後一項為[h[11]*x[0])。假如data是依照 讀入順序存在各個 address,我們就只需要用一個 pointer 指向最新的 data address,從此 pointer 開始依序 access data BRAM,將讀出的 data 依序與coef[1]...,coef[11]相乘累加。

4.Resourace Usage:

1. Slice Logic

-	L								4.		_
	Site Type	U	sed	İ	Fixed	İ	Prohibited	Available	ļ	Util%	ļ
	Slice LUTs*	İ	199	ï	0	Ï	0	53200	ï	0.37	i
	LUT as Logic		199		0		0	53200		0.37	
	LUT as Memory		0		0		0	17400		0.00	
	Slice Registers		116		0		0	106400		0.11	
	Register as Flip Flop		113		0		0	106400		0.11	
	Register as Latch		3		0		0	106400		<0.01	I
	F7 Muxes		0		0		0	26600		0.00	
	F8 Muxes		0		0		0	13300		0.00	I

Site Type	Used	Fixed	Prohibited	++ Available Util% +
Block RAM Tile RAMB36/FIFO* RAMB18	0 0 0	0 0	0 0 0	140 0.00 140 0.00

5.Timing Report:

tup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.111 ns	Worst Hold Slack (WHS):	0.151 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	150	Total Number of Endpoints:	150	Total Number of Endpoints:	114
otal Number of Endpoints: Iser specified timing cons		'	150	lotal Number of Endpoints:	114

```
Slack (MET):
                            6.228ns (required time - arrival time)
  Source:
                            sm_tdata_reg_reg[1]/C
                               (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.000ns period=10.000ns})
  Destination:
                            sm_tdata_reg_reg[27]/D
                              (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.000ns period=10.000ns})
  Path Group:
                            axis_clk
  Path Type:
                            Setup (Max at Slow Process Corner)
                            10.000ns (axis_clk rise@10.000ns - axis_clk rise@0.000ns)
3.636ns (logic 2.521ns (69.334%) route 1.115ns (30.666%))
  Requirement:
  Data Path Delay:
                            9 (CARRY4=7 LUT2=2)
  Logic Levels:
  Clock Path Skew:
                             -0.145ns (DCD - SCD + CPR)
    Destination Clock Delay (DCD):
                                         2.128ns = ( 12.128 - 10.000 )
    Source Clock Delay
                              (SCD):
                                         2.456ns
    Clock Pessimism Removal (CPR):
                                         0.184ns
                            0.035ns ((TSJ<sup>2</sup> + TIJ<sup>2</sup>)<sup>1</sup>/2 + DJ) / 2 + PE
  Clock Uncertainty:
    Total System Jitter
                              (TSJ):
                                         0.071ns
    Total Input Jitter
                               (TIJ):
                                         0.000ns
    Discrete Jitter
                                         0.000ns
                               (DJ):
                                         0.000ns
    Phase Error
                               (PE):
    Location
                           Delay type
                                                       Incr(ns) Path(ns)
                                                                               Netlist Resource(s)
                           (clock axis_clk rise edge)
                                                                      0.000 г
                                                           0.000
                                                                      A AAA c axis clk (TN)
                                                           0.00
```

6.Simulation Waveform:

