1 Задатак:Лука Стевановић 1326/19

Објект аутоматског аутоматског управљања је синхрони електромотор са сталним магнетомза који су дати следећи подаци:

Максимални момент $M_{max} = 0.8 \ Nm$

Номинални напон $U = 300 \ V$

Номинални број обртаја $n=3000~\frac{o}{min}$

Коефицијент самоиндукције $L_d = 0,03682~H$

Коефицијент самоиндукције $L_q = 0,03682~H$

Омски отпор статора $R_S=16,7~\Omega$

Сопствени момент инерције ротора $J_o = 3,26 \cdot 10^{-3} \ Kqm^2$

Момент инерције оптерећења $J=0.01\ Kgm^2$

Број полова $\overline{np} = 2$

Флукс сталног магнета $\Phi_o = 0,1717 \ Wb$

Фактор вискозног трења $B = 1,349 \cdot 10^{-5} \frac{Ns}{m}$

Број фаза m=3.

- 1. Написати нелинеарне диференцијалне једначине понашања за податке који су дати испред.
- 2. Одредити номиналне вредности свих величина електромотора за номинални број обртаја $n_N=2500\frac{o}{min}$ и номинални момент оптерећења $M_{LN}=0,3~Nm.$
- 3. Израдити линеаризовани математички модел синхроног електромотора за претходно дат номинални режим.
- 4. Одредити управљачки систем по флуксу струји и броју обртаја (предавања).
- 5. Синтетизовати управљачки систем на основу линеаризованог математичког модела.
- 6. Дати симулационе шеме: неуправљаног мотора, мотора управљаним векторским управљањем и мотора управљаног линеарним алгоритмом управљања.

Предметни наставник 3.Рибар