Better Chess Matchmaking with Artificial Intelligence

Simon Lazarus

Background

Background

- Lichess.org: Large chess platform with over 100M games played in Jan 2023
 - Maintains open database of over 4B games played
- Matchups are made based on players' ratings
 - Ratings based on who beats whom
 - Similar-rated players are generally matched up

ratings distribution, Feb 28 2023

Weekly "Rapid"

Data Science Problem: Better Matchmaking for New Players

• Ratings are fairly unreliable measures of skill when players are new to Lichess

Problem: Come up with a better way to find good matches for new players.

 Equivalently: Find a model that makes "better" predictions of new players' early game outcomes than Lichess.org's model does.

 Specifically: Try to better predict the outcome of a new player's 2nd-ever game on Lichess

"Better Predictions": Metrics for Evaluation

- Good matchmaking requires good probabilistic predictions.
 - \circ Search for matches where the *probability* that P1 beats P2 is $\approx 50\%$

- Probabilistic predictions evaluated using Binary Cross Entropy (BCE)
 - Penalizes farther-off predictions at increasing rates
 - Equivalent to main metric used in <u>Deloitte/FIDE Chess Rating Challenge</u> Kaggle competition

- Also will measure:
 - Accuracy (among non-draw games)
 - Mean Absolute Error (MAE) of prob. predictions from the truth (win=1, lose=0, draw=.5)
 - MAE does not penalize farther-off predictions at increasing rates

Data

Data

 Start with all 6.25M games played on Lichess in July 2016

- Find "new" players: 1500 rating during their 1st game of the month
 - (Starting rating for a new player)

- For each new player, get 3 games:
 - New player's 1st-ever game
 - New player's 2nd-ever game
 - New player's 2nd-game opponent's most recent previous game (if it exists)

Distribution of ratings of White player, in games from July 2016

Data (continued)

- We look only at new players who played ≥ 2 games in July 2016.
- We drop games with < 10 moves in total.
- Train / Test / Validate Split:

Data Set	Number of New Players (3 games of data per player)					
Train	20,420					
Test	1500					
Val	1500					

The Data We'll Use

- Problem: Predict outcome of new player's 2nd-ever game
- Use move data from new player's 1st game
- Use "metadata" about upcoming 2nd game:
 - Players' ratings
 - Time limits on the game
 - Are both players new?
- Use above metadata & other metadata from both players' previous game:
 - Game outcome
 - Game length
 - Color played

- Rating points gained/lost by each player
- Did game end due to running out of time?
- Did the loser concede before the end?

Game Lengths

Existing Models

Existing Models: Elo and Glicko

• The International Chess Federation (FIDE) uses "Elo"

Many online chess platforms (including Lichess) use "Glicko"

- Both models give players a **rating score** and predict the outcome of a game using a **logistic function of the ratings difference** (P1's rating) (P2's rating)
 - o For Elo, P[P1 beats P2] is modeled as

$$\frac{1}{1+10^{-(r_1-r_2)/400}}$$

Glicko System

- Has several variants
- Each player has a rating r and a "rating deviation" RD measuring our uncertainty about her true skill level
 - Ratings reported as a 95% CI: $r \pm RD$
 - New-player rating on Lichess:
 1500 ± 1000
- RD goes down as you play more games
 - Minimum possible RD on Lichess:45
 - RD needed to have a "certain" rating on Lichess:
- Predicts P[P1 beats P2] = $\frac{1}{1 + 10^{-g(\sqrt{RD_1^2 + RD_2^2}) \cdot (r_1 r_2)/400}}$

Glicko and Elo's Probabilistic Predictions

Our Baseline Models

Our Version of "Glicko"

- We *can't* replicate Glicko's *probabilistic* predictions for each match without data on *individual players' RDs before each game* (not provided by Lichess)
 - Would need other data too, to replicate Lichess's "Glicko-2 Boost" prob. predictions

- Instead, we assume all players have the same RD and hyperparameter search for what this RD value should be (to minimize BCE of predictions)
 - Best RD to use is 408

- We can replicate Glicko's binary predictions!
 - These are the same as Elo: "The higher-rated player wins"

Our Baseline Models

- Null Model: Always predicts "New player loses with 100% probability"
 - Among non-draw games, the new player loses her 2nd game **53.7%** of the times

Uninformed Model: Always predicts "New player wins with 50% probability"

Elo Model

"Glicko" Model (assuming everyone's RD=408)

Baseline Results

	bce_train	bce_test	bce_val	mae_train	mae_test	mae_val	acc_train	acc_test	acc_val
Null Model	Infinite	Infinite	Infinite	0.46403	0.464	0.456667	0.537332	0.537396	0.545014
Uninformed Model	0.693147	0.693147	0.693147	0.481758	0.481333	0.481333	0.5	0.5	0.5
Elo Model	0.687638	0.673591	0.686807	0.419215	0.411154	0.421461	0.621499	0.635734	0.628116
"Glicko" Model	0.65095	0.643291	0.652622	0.445177	0.440259	0.446432	0.621499	0.635734	0.628116

Our Modeling Techniques

Our Main Innovation: Processing Move Data with Stockfish

- Use the move data from new player's 1st game
 - Elo, Glicko only look at "metadata" of games

- Use chess engine Stockfish to evaluate positions and potential moves
 - Powerful and open-source
 - Uses intelligent tree search based on "Efficiently Updateable Neural Network" model
 - We use **search depth = 15**; this equates to **Rating = 2563** (not exactly human, though)

- Get evaluation of every board position in new player's 1st game
- Get "top 10 moves" on each of the new player's turns

Example Stockfish Evaluation

Evaluation:

```
{'type': 'mate', 'value': 1}
```

Top 10 Moves:

```
[{'Move': 'd4g7', 'Centipawn': None, 'Mate': 1}, {'Move': 'e1e7', 'Centipawn': 488, 'Mate': None}, {'Move': 'b1c1', 'Centipawn': 97, 'Mate': None}, {'Move': 'h2h3', 'Centipawn': 83, 'Mate': None}, {'Move': 'b1d1', 'Centipawn': 65, 'Mate': None}, {'Move': 'e1e3', 'Centipawn': 48, 'Mate': None}, {'Move': 'h2h4', 'Centipawn': 35, 'Mate': None}, {'Move': 'b2a1', 'Centipawn': 24, 'Mate': None}, {'Move': 'b1a1', 'Centipawn': 19, 'Mate': None}, {'Move': 'f2f3', 'Centipawn': 13, 'Mate': None}]
```

Our Production Model: Diagram

Learn an "Embedding" of Mate Scores into Centipawns

```
"= 1500 Centipawns" (say)

[{'Move': 'd4g7', 'Centipawn': None, 'Mate': 1},
    {'Move': 'e1e7', 'Centipawn': 488, 'Mate': None},
    {'Move': 'b1c1', 'Centipawn': 97, 'Mate': None},
    {'Move': 'h2h3', 'Centipawn': 83, 'Mate': None},
    {'Move': 'b1d1', 'Centipawn': 65, 'Mate': None},
    {'Move': 'e1e3', 'Centipawn': 48, 'Mate': None},
    {'Move': 'h2h4', 'Centipawn': 35, 'Mate': None},
    {'Move': 'b2a1', 'Centipawn': 24, 'Mate': None},
    {'Move': 'b1a1', 'Centipawn': 19, 'Mate': None},
    {'Move': 'f2f3', 'Centipawn': 13, 'Mate': None}]
```

Absolute Goodness vs. Relative Goodness Scores

- AG scores capture how strong the new players' positions are over the course of the game
 - For each board position, AG score is just the Stockfish evaluation of that position
 - AG is sensitive to strength of opponent (RG is less so)

- RG scores capture how well the new player selected moves out of those available to her on each of her turns
 - o If Stockfish centipawn scores of "top 10 moves" are S_1 , ..., S_{10} and the score of the actual move the new player made is S_{actual} then the RG score for this move is

$$\frac{S_{actual}}{w_{i,1}S_1 + w_{i,2}S_2 + \ldots + w_{i,10}S_{10}} - 1$$

where $w_{i,1}$, ..., $w_{i,10}$ are how the model learns to "weight" each of the top 10 moves during the i-th tenth of the game

Additional Baseline: NN without Move Data

Results

Table of Results

	bce_train	bce_test	bce_val	mae_train	mae_test	mae_val	acc_train	acc_test	acc_val
Null Model	Infinite	Infinite	Infinite	0.464030	0.464000	0.456667	0.537332	0.537396	0.545014
Uninformed Model	0.693147	0.693147	0.693147	0.481758	0.481333	0.481333	0.500000	0.500000	0.500000
Elo Model	0.687638	0.673591	0.686807	0.419215	0.411154	0.421461	0.621499	0.635734	0.628116
"Glicko" Model	0.65095	0.643291	0.652622	0.445177	0.440259	0.446432	0.621499	0.635734	0.628116
Baseline NN Model	0.638268	0.631029	0.638584	0.433393	0.429935	0.433968	0.646404	0.643352	0.649584
Production Model	0.624087	0.617946	0.634561	0.419645	0.418611	0.425845	0.665769	0.659972	0.653740

BCE Loss

Production Model Improvement over "Glicko" Model

(measured as a percentage of "Glicko's" improvement over Uninformed, on val data)

44.6%

Baseline NN Model Improvement over "Glicko" Model

(measured as a percentage of "Glicko's" improvement over Uninformed, on val data)

34.6%

MAE Loss

Production Model Improvement over "Glicko" Model

(measured as a percentage of "Glicko's" improvement over Uninformed, on val data)

59.0%

Baseline NN Model Improvement over "Glicko" Model

(measured as a percentage of "Glicko's" improvement over Uninformed, on val data)

35.7%

Accuracy (this time compared to actual Glicko!)

Production Model Improvement over Glicko Model

(measured as a percentage of Glicko's improvement over Uninformed, on val data)

20.0%

Baseline NN Model Improvement over Glicko Model

(measured as a percentage of Glicko's improvement over Uninformed, on val data)

16.8%

Predictions Among Games where New Player Wins

Predictions Among Games where New Player Loses

Predictions Among Games where New Player Draws

Elo vs. Glicko 2nd-game predictions (training data), among cases where the new player draws

Conclusions

Conclusions

 Al techniques can significantly improve our ability to predict the outcomes of chess games among new players, leading to better matchmaking

- Most of the improvement of our model over existing models comes from using a neural network, not from looking at move data
 - This may change if we use more games' move data

- Using move data primarily improves model's ability to detect high skill of new player
 - o Predictions were about as good as baseline NN among games where new player didn't win

Plenty of room for tinkering and improvement!