

### Min Luo

Department of Statistics and Data Science University of Central Florida

## Introduction

#### According to statistics in 2018

- Over 40 billions credit card transactions made in the US
  - \$3.8 trillion in dollar volume
- Credit card fraud increased by 18.4 % in 2018
- Payment card fraud resulted in lost of \$24.26 Billion worldwide
- Credit card companies need to identify fraudulent transactions quickly to mitigate the loss of credit card holders



## **Data**

- Kaggle Credit Card Fraud Detection Dataset
- 2 days of credit cards transactions in September 2013 in Europe
- 284,807 observations, 31 variables
  - Target variable: Class 1 = Fraud, 0 = Normal
  - o 30 predictor variables
    - V1 to V28: 28 variables masked via PCA due to privacy protection
    - **Time**: Number of seconds elapsed between this transaction and the first transaction in the dataset
    - Amount: transaction amount

### Data Exploratory Analysis

# Challenges

- Dataset is highly unbalanced
  - Only 0.1727% (n = 492) of the transactions are fraudulent
- Lots of outliers
- V1 to V28 masked
  - Limited ability to do feature engineering using domain knowledge

### Data Exploratory Analysis

## Class (1=fraud, 0=normal)

### Highly imbalance data

|                | Count           |
|----------------|-----------------|
| 1 = Fraudulent | 284,315 (99.8%) |
| 0 = Normal     | 492 (0.17%)     |

### Data Exploratory Analysis

## **Amount, Time**

### **Amount by Class**

|      | Fraud   | Normal   |
|------|---------|----------|
| mean | 122.211 | 82.291   |
| std  | 256.683 | 250.105  |
| min  | 0       | 0        |
| max  | 2125.87 | 25691.16 |



## Boxplot of masked variables V1 - V28 by class







## **Models Selection**

- XGBoost (eXtreme Gradient Boosting)
  - Advanced implementation of gradient boosting machine (GBM)
  - Flexible model not bounded by structure of data
- Imbalance data
  - Rebalancing data via under- or over-sampling
  - Cost sensitive learning by assigning different cost/weight to each class

## **Models Selection**

- Model "pipeline" using scikit-learn in python
  - Round 1: proof of concept/prototyping via 5-fold cross validation
  - Round 2: hyperparameter tuning via grid search 5-fold cross validation
- Metrics
  - Precision, recall, and, AUC

### Model Selection Pipelines Round 1: Prototyping (5-fold CV)



### Model Selection Pipelines Round 2: Hyperparameter Tuning (Grid Search 5-fold CV)





#### Result

| AUC       | Train |
|-----------|-------|
|           | Test  |
| Precision | Train |
|           | Test  |
| Recall    | Train |
| Recall    | Test  |



| <b>Model 2</b><br>SMOTE |
|-------------------------|
| 0.9988                  |
| 0.9726                  |
| 0.9785                  |
| 0.8730                  |
| 0.3058                  |
| 0.1967                  |



## Summary

- An xgboost model with carefully tuned hyperparameters out performed other xgboost models with re-balancing
- scikit-learn does not support GPU
  - To fully take advantage of xgboost, there are other libraries that support that
- In terms of application, a fraud detection model should focus on minimizing the false negative rate rather than increasing the accuracy

## **Questions?**

## **Sources Cited**

- 1. Altini, Marco. Dealing with Imbalanced Data: Undersampling, Oversampling and Proper Cross-Validation. 17 Aug. 2015, https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation.
- 2. Analytics Vidhya. (2019). How to handle Imbalanced Classification Problems in machine learning?. [online] Available at: https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/ [Accessed 24 Nov. 2019].
- 3. Brownlee, Jason. "A Gentle Introduction to XGBoost for Applied Machine Learning." Machine Learning Mastery, 21 Aug. 2019, https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/.
- 4. Credit Card Fraud Statistics. (2019, October). Retrieved November 2019, from https://shiftprocessing.com/credit-card-fraud-statistics/.
- 5. Holmes, Tamara E. "Credit Card Market Share Statistics." CreditCards.com, 12 Sept. 2019, www.creditcards.com/credit-card-news/market-share-statistics.php.
- 6. "Introduction to Boosted Trees." Introduction to Boosted Trees Xgboost 1.0.0-SNAPSHOT Documentation, https://xgboost.readthedocs.io/en/latest/tutorials/model.html.
- 7. Machine Learning Group. "Credit Card Fraud Detection." Kaggle, 23 Mar. 2018, www.kaggle.com/mlg-ulb/creditcardfraud
- 8. Mishra, Satwik. Handling Imbalanced Data: SMOTE vs. Random Undersampling. International Research Journal of Engineering and Technology, Aug. 2017, https://www.irjet.net/archives/V4/i8/IRJET-V4I857.pdf.

#### **Image**

"thief" by By Adrien Coquet/ CC BY