Homework №14

Author: David Oniani Instructor: Tommy Occhipinti

December 1, 2018

5.3/5.4 - Cardinalities of Infinite Sets

Section 5.3

1. The bijection is $f: N \to A_k: x \mapsto x+k+1$

It is injection since if $f(x_1) = f(x_2)$, it means that $x_1 + k + 1 = x_2 + k + 1$ and thus, $x_1 = x_2$. It is surjection since if we have some $y \in A_k$, then we let x = y - k - 1 and we get that f(x) = y - k - 1 + k + 1 = y. Hence, the function is both injective and surjective and thus, it is a bijection.

- 2. (a) If A is finite, then $A \{a_0\}$ is automatically denumerable (since A is finite). If A is infinite, we can show that $f: A \to A \{a_0\}: x \mapsto x$ is a bijection and thus, since A is countable, $A \{a_0\}$ is countable as well.
 - (b) If A is finite, then $A \{a\}$ is automatically denumerable (since A is finite). If A is infinite, we can show that $f: A \to A \{a\}: x \mapsto x$ is a bijection and thus, since A is countable, $A \{a\}$ is countable as well.
- 8. Suppose, for the sake of contradiction, B-A is countable, A is also countable, and B is uncountable. Notice that $B=(B\cap A)\cup (B-A)$ is countable since it is the union of two countable sets. Hence, we have reached the contradiction since we assumed that B is uncountable and thus, B-A is countable. \square
- 15. Since $A \times A$ is countable, then its subset $B = \{(x, x) \mid x \in A\}$ is also countable. Then, $f: A \to B: x \mapsto (x, x)$ is a bijection and thus, |A| = |B| which means that A is countable as well (since B is countable).

Proof that $f: A \to B: x \mapsto (x, x)$ is a bijection.

If $f(x_1) = f(x_2)$, it means that $(x_1, x_1) = (x_2, x_2)$ and thus, $x_1 = x_2$. Hence, f is injective.

For every $(x_i, x_i) \in B$, we can let $x = x_i$ and we get $f(x_i) = (x_i, x_i)$ and thus f is surjective.

Since we have proven that f is both injective and surjective, it means that f is a bijection.

16. NOT DONE YET.

Section 5.4

6. Suppose, for the sake of contradiction, that the infinite set $I' = \{x \in (0,1) \mid x = a_1 a_2 ... a_n ...$ where each $a_i = 3$ or $8\}$ is countable. Being countable means having a bijection with \mathbb{Z}^+ . Hence, we have essentially assumed that there exists a function f such that $f: \mathbb{Z}^+ \to I'$ is a bijection. Let's visualize it.

$$1 \mapsto .a_{1,1}a_{1,2}a_{1,3}...$$
$$2 \mapsto .a_{2,1}a_{2,2}a_{2,3}...$$
$$3 \mapsto .a_{3,1}a_{3,2}a_{3,3}...$$

Now, let's define a function transform in the following way:

$$transform(x) = \begin{cases} 8 & \text{if } n \text{ is } 3\\ 3 & \text{if } n \text{ is } 8 \end{cases}$$

Simply put, this function is defined for only two inputs - 3 and 8 - and if the input is 3, it returns 8 while if the input is 8, it returns 3.

Now, consider the number $.transform(a_{1,1})transform(a_{2,2})transform(a_{3,3})...$ We know that it is not equal to the first number $(.a_{1,1}a_{1,2}a_{1,3}...)$ since $transform(a_{1,1}) \neq a_{1,1}$. We also know that it is not equal to the second number in the mapping as $transform(a_{2,2}) \neq a_{2,2}$. It does not equal to the third either because $transform(a_{3,3}) \neq a_{3,3}$. As a result, we've got that:

```
.transform(a_{1,1})transform(a_{2,2})transform(a_{3,3})... \neq .a_{1,1}a_{1,2}a_{1,3}...
.transform(a_{1,1})transform(a_{2,2})transform(a_{3,3})... \neq .a_{2,1}a_{2,2}a_{2,3}...
.transform(a_{1,1})transform(a_{2,2})transform(a_{3,3})... \neq .a_{3,1}a_{3,2}a_{3,3}...
```

Hence, we have constructed an element of the set I' such that there is no corresponding element in \mathbb{Z} that maps to it and the function $f: \mathbb{Z}^+ \to I'$ is not onto hence, is not a bijection. Finally, we have reached the contradiction and the set I' is not countable.