1、实验名称及目的

无人机飞行加速度控制实验:通过使用平台提供的接口函数,通过 SendAccPX4 接口给飞机发送加速度指令。

2、实验原理

进行无人机的加速度控制首先打开 MAVLink 以监控 CopterSim 数据并实时更新。然后 开启真值监听,可以通过 mav.trueAccB 获取真机加速度。然后发送指令让飞控中初始化为 Offboard 模式,并在 Python 中开始发送数据循环。然后调用 SendPosNED 接口位置控制无 人机,然后调用 SendAccPX4 接口进行无人机的加速度控制。最后,发送指令让飞控退出 Offboard 模式,并且停止监听 MAVLink 数据。

3、实验效果

运行 python 程序后,飞机只会在前零点几秒达到期望加速度(姿态倾斜角),后续随着阻力的作用,加速度会逐渐降为 0。也就是说本接口实际上会最终稳定在一个期望姿态角上,这个期望姿态角,会达到一个启动加速度。

4、文件目录

文件夹/文件名称	说明
PX4MavAccCtrlTest.bat	启动仿真配置文件
PX4MavAccCtrlTest.py	实现功能主文件
PX4MavCtrlV4.py	程序运行接口文件

5、运行环境

序号	软件要求	硬件要求	
11, 4	秋日安本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上		
3	Visual Studio Code		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

以管理员方式运行 PX4MavAccCtrlTest.bat,启动 SITL 软件在环仿真。将会启动 1 个QGC 地面站,1 个 CopterSim 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EKF init ialization finished 字样代表初始化完成,并且1个 RflySim3D 软件内有1架无人机。打开后效果如下图所示。

Step 2:

用 VScode 打开到本实验路径文件夹,运行 PX4MavAccCtrlTest.py 文件,并且点击 Rfl ySim3D 软件按 T 键开启或关闭飞机轨迹记录功能 , T+数字*开启/更改轨迹粗细为*号,并按 D 键可观察飞机的状态数据。飞机会收到加速指令,然后朝一个方向进行飞行,如下图所示。

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无