ISTANBUL TECHNICAL UNIVERSITY COMPUTER ENGINEERING DEPARTMENT

BLG 242E DIGITAL CIRCUITS LABORATORY HOMEWORK REPORT

HOMEWORK NO : 1

HOMEWORK DATE : 10.03.2023

LAB SESSION : FRIDAY - 10.30

GROUP NO : G3

GROUP MEMBERS:

150200000: Ahmet Emre Buz

150200001 : Mustafa Can Çalışkan

SPRING 2023

Contents

1	INTRODUCTION	1
2	PRELIMINARY	1
3	EXPERIMENT	8
	3.1 PART 1	8
	3.2 PART 2	14
	3.3 PART 3	15
	3.4 PART 4	16
	3.5 PART 5	17
	3.6 PART 6	19
	3.7 PART 7	20
	3.8 PART 8 [7 points]	21
	3.9 PART 9	21
	3.10 PART 10	22
	3.11 PART 11	23
4	CONCLUSION	24
	REFERENCES	25

1 INTRODUCTION

In this experiment, we implemented and simulated desired designs using Verilog.

2 PRELIMINARY

For the given function

$$F(a,b,c,d) = \cup_1(1,2,5,6,9,10,13,14) + \cup_d(4)$$

• Prime implicants using Karnaugh diagram:

Figure 1: Karnaugh Map (created using the tool provided by boolean-algebra.com)

• Prime implicants using Quine-McCluskey method:

Prime Implicants

```
(10, 8, 2, 0) -0-0
(6, 4, 2, 0) 0-0
(7, 6) 011-
(11, 10) 101-
(15, 7) -111
(15, 11) 1-11
```

Figure 2: Quine-McCluskey Tables (created using the tool provided by quinemc-cluskey.com)

• Prime implicant chart and expression with the minimum cost:

	-0-0	00	011-	101-	-111	1-11
0	×	X				
2	×	X				
6		X	Х			
7			Х		Χ	
8	•					
10	×			Χ		
11				X		X
15					Χ	X
COST	6	6	7	7	6	6

Figure 3: Prime implicant chart (created using the tool provided by quinemccluskey.com)

Figure 4: Prime implicant chart (created using the tool provided by quinemccluskey.com)

Expression with the minimum cost:

$$F(a, b, c, d) = acd + a'bc + b'd'$$

• Lowest cost expression using NOT, AND, and OR gates:

Figure 5: Design

a	b	С	d	bdAbcAcd
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Figure 6: Truth Table of Design

• Lowest cost expression using only NAND gates:

Figure 7: Design

a	b	c	d	bdAbcAcd
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Figure 8: Truth Table

 \bullet Lowest cost expression using a single 8:1 Multiplexer, AND, OR and NOT gates:

Figure 9: Design

b	d	a	c	$((\neg b \wedge \neg d) \vee ((\neg a \wedge b) \wedge c)) \vee ((a \wedge c) \wedge d)$
1	1	1	1	1
1	1	1	0	0
1	1	0	1	1 C
1	1	0	0	0
1	0	1	1	0
1	0	1	0	0
1	0	0	1	1
1	0	0	0	0
0	1	1	1	1
0	1	1	0	0
0	1	0	1	0
0	1	0	0	0
0	0	1	1	1 1
0	0	1	0	1
0	0	0	1	1
0	0	0	0	1

Figure 10: Truth Table (created using the tool provided by emathhelp.net)

For the given function

$$F(a, b, c) = a'bc + ab'c$$

• Expression using ONE single 3:8 decoder, 2-input OR gates:

Figure 11: Design

a	\boldsymbol{b}	c	$((\neg a \wedge b) \wedge c) \vee ((a \wedge \neg b) \wedge c)$
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

Figure 12: Truth Table (created using the tool provided by emathhelp.net)

For the given function

$$F(a,b,c) = abc' + ab$$

• Expression using ONE single 3:8 decoder, 2-input OR gates:

Figure 13: Design

a	\boldsymbol{b}	c	$((a \wedge b) \wedge \neg c) \vee (a \wedge b)$
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Figure 14: Truth Table (created using the tool provided by emathhelp.net)

3 EXPERIMENT

3.1 PART 1

Figure 15: AND Gate Simulation Output

Figure 16: AND Gate Circuit

Figure 17: OR Gate Simulation Output

Figure 18: OR Gate Circuit

Figure 19: NOT Gate Simulation Output

Figure 20: NOT Gate Circuit

Figure 21: XOR Gate Simulation Output

Figure 22: XOR Gate Circuit

Figure 23: NAND Gate Simulation Output

Figure 24: NAND Gate Circuit

Figure 25: 8:1 Multiplexer Simulation Output

Figure 26: 8:1 Multiplexer Circuit

Figure 27: 3:8 Decoder Simulation Output

Figure 28: 3:8 Decoder Circuit

3.2 PART 2

Figure 29: Part 2 Simulation Output

Figure 30: Circuit of Part 2

3.3 PART 3

Figure 31: Part 3 Simulation Output

Figure 32: Circuit of Part 3

3.4 PART 4

Figure 33: Part 4 Simulation Output

Figure 34: Circuit of Part 4

3.5 PART 5

• Equation 2

Figure 35: Simulation Output

Figure 36: Circuit

• Equation 3

Figure 37: Simulation Output

Figure 38: Circuit

3.6 PART 6

Figure 39: Simulation Output of Half Adder

Figure 40: Circuit of Half Adder

3.7 PART 7

Figure 41: Simulation Output of 1-bit Full Adder

Figure 42: Circuit of 1-bit Full Adder

3.8 PART 8 [7 points]

Figure 43: Simulation Output of 4-bit Full Adder

Figure 44: Circuit of 4-bit Full Adder

3.9 PART 9

Figure 45: Simulation Output of 8-bit Full Adder

Figure 46: Circuit of 8-bit Full Adder

3.10 PART 10

Figure 47: Simulation Output of 16-bit Adder-Subtractor

Figure 48: Circuit of 16-bit Adder-Subtractor

3.11 PART 11

Figure 49: Simulation Output of B - 2A Expression

Figure 50: Circuit of B - 2A Expression

4 CONCLUSION

In this experiment, we implemented and simulated desired designs using Verilog.

REFERENCES