This listing of claims will replace all prior versions and listings of claims in the application:

Listing of claims:

1. (Currently amended) A compound according to Formula (1) or a salt thereof:

$$A-[(XBX')_0B'-Y]_0$$
 (I)

wherein

A comprises at least one substantially cell-membrane importmeable pendant group selected from natural, unnatural and synthetic amino acids, hydrophilic aminos, peptides, polypeptides, thiol containing proteins and oligosaccharides, or a combination theroof is selected from the group consisting of glutathione, glucosamine, cysteinylglycine, cysteic acid, aspartic acid, glutamic acid, lysine, and arginine, and wherein the sulfur atom of each sulfur containing compound is optionally a sulfoxide or sulfone;

X is selected from NR-, S(O)-, -S(O)O-, $-S(O)_2$ -, $-S(O)_2O$ -, -C(O)-, -C(S)-, -C(O)O-, -C(S)O-, -C(S)S-, $-P(O)(R_1)$ -, $-P(O)(R_1)O$ -, or is absent;

B is selected from C₁-C₁₀ alkylene, C₂-C₁₀ alkenylene, C₂-C₁₀ alkynylene, C₃-C₁₀ cycloalkylene, C₅-C₁₀ cycloalkenylene, C₃-C₁₀ heterocycloalkylene, C₅-C₁₀ heterocycloalkenylene, C₆-C₁₂ arylene, heteroarylene or C₂-C₁₀ acyl;

X' is selected from NR-, -O-, -S-, -Se-, -S-S-, S(O)-, -OS(O)-, OS(O)O-, -OS(O)₂, -OS(O)₂O-, -S(O)O-, -S(O)₂-, -S(O)₂O-, -OP(O)(R₁)-, -OP(O)(R₁)O-, -OP(O)(R₁)O-, -C(O)-, -C(O)O-, C(S)O-, -C(S)S-, -P(O)(R₁)-, -P(O)(R₁)O-,

or is absent; wherein E is O, S, Se, NR or N(R)₂⁺;

and

B' is selected from C₁-C₁₀ alkylene, C₂-C₁₀ alkenylene, C₂-C₁₀ alkynylene, C₃-C₁₀ cycloalkylene, C₅-C₁₀ cycloalkenylene, C₃-C₁₀ heterocycloalkylene, C₅-C₁₀ heterocycloalkenylene, C₆-C₁₂ arylene, and heteroarylene, or is absent;

wherein

- each R is independently selected from hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} cycloalkenyl, C_3 - C_{10} heterocycloalkenyl, C_6 - C_{12} aryl, heteroaryl, OR_2 or C_2 - C_{10} acyl;
- R' is the same as R or two R' are taken together with the nitrogen atoms to which they are attached to form a 5 or 6-membered saturated or unsaturated heterocyclic ring;
- each R₁ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl, halo, OR₂ or N(R)₂,
- each R₂ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl or -C(O)R₅;
- each R₅ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkyl, C₅-C₁₀ alkenyloxy, C₃-C₁₀ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₃-C₁₀ heterocycloalkyloxy, C₅-C₁₀ heterocycloalkenyloxy, C₆-C₁₂ aryloxy, heteroaryloxy, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkylthio, C₅-C₁₀
- wherein for each instance that B and/or B' is arylene, the substituents directly attached to the respective arylene rings are in a para, meta or ortho relationship, and
- wherein each alkylene, alkenylene, alkynylene, cycloalkylene, cycloalkenylene, heterocycloalkylene, heterocycloalkenylene, arylene, heteroarylene and acyl are optionally independently substituted with hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl, halo, cyano, cyanate, isocyanate, OR_{2a}, SR₆, nitro, arsenoxide, -S(O)R₃, -OS(O)R₃, -S(O)₂R₃, -OS(O)₂R₃, -P(O)R₄R₄, -OP(O)R₄R₄, -N(R")₂, -NRC(O)(CH₂)₆, Q, -C(O)R₅,

$$R_4$$
 R $O^ P^+$ R_4 , P^+ R_4 , P^+ R_4 R_5 R_7 R_8 R_7 R_8

wherein R, R1 and R5 are as defined above; and

- R_{2a} is selected from hydrogen, C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} cycloalkenyl, C_6 - C_{12} aryl, -S(O) R_3 , -S(O) $_2R_3$, -P(O)(R_4) $_2$, $N(R)_2$ or $-C(O)R_5$;
- each R_3 is independently selected from hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₀-C₁₂ aryl, heteroaryl, C₁-C₁₀ alkoxy, C₃-C₁₀ alkenyloxy, C₃-C₁₀ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₃-C₁₀ heterocycloalkyloxy, C_5 - C_{10} heterocycloalkenyloxy, C_6 - C_{12} aryloxy, heteroaryloxy, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkenylthio, Co-C12 arylthio, heteroarylthio or N(R)2;
- each R4 is independently selected from hydrogen, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C6-C12 aryl, heteroaryl, C1-C10 alkoxy, C3-C10 alkenyloxy, C3-C₁₀ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₃-C₁₀ heterocycloalkyloxy, C₅-C₁₀ heterocycloalkenyloxy, C₆-C₁₂ aryloxy, heteroaryloxy, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkenylthio, C_0 - C_{12} arylthio, heteroarylthio, halo or $N(R)_2$;
- R₆ is selected from C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅- C_{10} cycloalkenyl, C_3 - C_{10} heterocycloalkyl, C_5 - C_{10} heterocycloalkenyl, C_6 - C_{12} aryl, heteroaryl, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkenylthio, C₆-C₁₂ arylthio, heteroarylthio, -S(O)R₃, -S(O)₂R₃ or - $C(O)R_{5}$

McDonnell Bochnen Hulbert & Berghotf LLP 300 South Wacker Drive Chicago, IL 60606 312-913-0001

Response to Office Action Mailed July 21, 2005 Application Serial No. 10/088,540 Attorney Docket No 02-213 Q is selected from halogen and $-OS(O)_2Q_1$; wherein Q_1 is selected from C_1 - C_4 alkyl, C_1 - C_4 perfluoroalkyl, phenyl, p-methylphenyl;

m is an integer selected from 1 to 5,

Y comprises at least one arsenoxide group;

p is an integer selected from 1 to 10;

n is an integer selected from 0 to 20, and

wherein the sum total of carbon atoms in A and (XBX')_nB' [[L]] together, is greater than 6; and with the previse that:

when Y is arsenexide, X is G O or NR where R is hydrogen, B is Coarylene optionally substituted with amine, X' is absent, n is I, and B' is
absent, then A is not a hydrophilic amine.

- 2-9. (Canceled)
- (Currently amended) The compound or salt thereof according to claim 1, wherein A is glutathione.
- 11. (Currently amended) The compound or salt thereof according to claim 1, wherein p is an integer from 1 to 5.
- 12. (Currently amended) The compound or salt thereof according to claim 1, wherein p is 1.
- 13. (Canceled)
- (Currently amended) The compound or salt thereof according to claim 1, wherein X is selected from NR-, -C(O)-, -C(S)-, -C(O)O-, -C(S)O-, -C(S)S-, or is absent;
 B is selected from C₁-C₅ alkylene, C₂-C₅ alkenylene, C₂-C₅ alkynylene, C₃-C₁₀ cycloalkylene, C₅-C₁₀ cycloalkenylene, C₆-C₁₂ arylene or C₂-C₅ acyl;

or is absent; wherein E is O, S or N(R)2*;

n is 0, 1 or 2; and

- B' is C_1 - C_5 alkylene, C_2 - C_5 alkenylene, C_3 - C_{10} cycloalkylene, C_5 - C_{10} cycloalkenylene, C_6 - C_{12} arylene or is absent; and wherein
- each R is independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, OR₂ or C₂-C₁₀ acyl; R' is the same as R:
- each R_1 is independently selected from hydrogen, C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} cycloalkenyl, C_6 - C_{12} aryl, halo, OR_2 or $N(R)_2$;
- each R₂ is independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl or -C(O)R₅;
- each R₅ is independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, C₁-C₅ alkoxy, C₃-C₅ alkenyloxy, C₃-C₅ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₆-C₁₂ aryloxy, C₁-C₅ alkylthio, C₃-C₅ alkenylthio, C₃-C₅ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₆-C₁₂ arylthio, OH, SH or N(R)₂;
- wherein each instance of arylene may have substituents A and X or X and Y in a para, meta or ortho relationship, and
- wherein each alkylene, alkenylene, alkynylene, cycloalkylene, cycloalkenylene, arylene, and acyl are optionally independently substituted with hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, halo, cyanate, isocyanate, OR₂₃, SR₆, nitro, arsenoxide, -S(O)R₃, -OS(O)R₃, -S(O)₂R₃, -OS(O)₂R₃, -P(O)R₄R₄, -OP(O)R₄R₄, -N(R")₂, NRC(O)(CH₂)_mQ, -C(O)R₅,

McDonnell Boehnen Hulbert & Berghoft LLP 300 South Wacker Drive Chicago, IL 60606 312-913-0001

Response to Office Action Mailed July 21, 2005
Application Serial No. 10/088,540
Attorney Docket No. 02-213

wherein R, R₁ and R₅ are as defined above; and

- R_{2a} selected from hydrogen, C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} cycloalkenyl, C_6 - C_{12} aryl, $-S(O)R_3$, $-S(O)_2R_3$, $-P(O)(R_4)_2$, $N(R)_2$ or $-C(O)R_5$:
- each R₃ is independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, C₁-C₅ alkoxy, C₃-C₅ alkenyloxy, C₃-C₅ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₆-C₁₂ aryloxy, C₁-C₅ alkylthio, C₃-C₅ alkenylthio, C₃-C₅ alkynylthio, C₃-C₁₀ cycloalkenylthio, C₆-C₁₂ arylthio or N(R)₂;
- each R₄ is independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, C₁-C₅ alkoxy, C₃-C₅ alkenyloxy, C₃-C₅ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₆-C₁₂ aryloxy, C₁-C₅ alkylthio, C₃-C₅ alkenylthio, C₃-C₅ alkynylthio, C₃-C₅ cycloalkylthio, C₅-C₅ cycloalkenylthio, C₆-C₁₂ arylthio, halo or N(R)₂;
- R_6 is independently selected from C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} cycloalkenyl, C_6 - C_{12} aryl, C_1 - C_5 alkylthio, C_3 - C_5 alkenylthio, C_3 - C_{10} cycloalkylthio, C_5 - C_{10} cycloalkenylthio, C_6 - C_{12} arylthio, -S(O) R_3 , -S(O) $_2R_3$ or -C(O) R_5 ,

R" is the same as R;

- Q is selected from halogen and $-OS(O)_2Q_1$; wherein Q_1 is selected from C_1 - C_4 alkyl, C_1 - C_4 perfluoroalkyl, phenyl, p-methylphenyl; and m is an integer from 1 to 5, and wherein the sum total of carbon atoms in A and (XBX')_nB' together, is greater than 6.
- (Currently amended) A compound or salt thereof according to claim 1, wherein X is absent;

B is selected from C_1 - C_5 alkylene, C_6 - C_{12} arylene or C_2 - C_5 acyl;

McDonnell Boennen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, IL 60606 312-913-6001 Response to Office Action Mailed July 21, 2005 Application Serial No. 10/088,540 Αποπιεγ Docket No. 02-213

or absent; wherein E is O, S or N(R), +;

n is 0, 1 or 2; and

B' is C_1 - C_5 alkylene, C_6 - C_{12} arylene or is absent; and wherein

each R is independently selected from hydrogen, C_1 - C_5 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{12} aryl, OR_2 or C_2 - C_5 acyl;

R' is the same as R;

- each R_1 is independently selected from hydrogen, C_1 - C_5 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{12} aryl, halo, OR_2 or $N(R)_2$;
- each R₂ is independently selected from hydrogen, C₁-C₅ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl or -C(O)R₅;
- each R₅ is independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, C₁-C₅ alkoxy, C₃-C₅ alkenyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₆-C₁₂ aryloxy, C₁-C₅ alkylthio, C₃-C₅ alkenylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₆-C₁₂ arylthio, OH, SH or N(R)₂;
- wherein for each instance that B and/or B' is arylene, the substituents directly attached to the respective arylene rings are in a para, meta or ortho relationship, and
- wherein each alkylene, alkenylene, alkynylene, cycloalkylene, cycloalkenylene, arylene, and acyl are optionally independently substituted with hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₆-C₁₂ aryl, halo, cyano, cyanate, isocyanate, OR₂₃, SR₆, nitro, arsenoxide, -S(O)R₃, -OS(O)₂R₃, -OS(O)₂R₃, -P(O)R₄R₄, -OP(O)R₄R₄, -N(R")₂, -NRC(O)(CH₂)_mQ, -C(O)R₅,

$$R_4$$
 R $O^ P^+$ R_4 , N^+ R or N^+ R

wherein R, R₁ and R₅ are as defined above; and

R_{2a} is selected from hydrogen, C₁-C₅ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl,
S(O)R₃, -S(O)₂R₃, -P(O)(R₄)₂ and -C(O)R₅;

- each R_3 is independently selected from hydrogen, C_1 - C_5 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{12} aryl, C_1 - C_5 alkoxy, C_3 - C_{10} cycloalkyloxy, C_6 - C_{12} aryloxy, C_1 - C_5 alkylthio, C_3 - C_{10} cycloalkylthio, C_6 - C_{12} arylthio or $N(R)_2$;
- each R_4 is independently selected from hydrogen, C_1 - C_5 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{12} aryl, C_1 - C_5 alkoxy, C_3 - C_{10} cycloalkyloxy, C_6 - C_{12} aryloxy, halo or $N(R)_2$;
- R₆ is selected from C₁-C₅ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl, C₁-C₅ alkylthio, C₃-C₁₀ cycloalkylthio, C₆-C₁₂ arylthio, -S(O)R₃, -S(O)₂R₃ or -C(O)R₅.

 R" is the same as R:
- Q is selected from halogen and $-OS(O)_2Q_1$; wherein Q_1 is selected from C_1-C_4 alkyl, C_1-C_4 perfluoroalkyl, phenyl, ρ -methylphenyl; and m is 1 to 5.
- 16. (Currently amended) A-The compound or salt thereof according to claim 1, wherein X is absent;

B is selected from C₁-C₅ alkylene, C₆-C₁₂ arylene or C₂-C₅ acyl;

X' is selected from -O-, -S-, -NR-, -C(O)-, -C(O)O-, or is absent; n is 1; and

B' is C_1 - C_5 alkylene, C_6 - C_{12} arylene or is absent; and

R is selected from hydrogen, C_1 - C_5 alkyl, C_6 - C_{12} aryl or C_2 - C_5 acyl;

wherein for each instance that B and/or B' is arylene, the substituents directly attached to the respective arylene rings are in a para, meta or ortho relationship, and wherein each alkylene, arylene, and acyl are optionally independently substituted with hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀

McDonnell Bochnen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, IL 60606 312-913-0001 Response to Office Action Mailed July 21, 2005
Application Serial No. 10/088,540
Attorney Docket No. U2-213

cycloalkenyl, C_6 - C_{12} aryl, halo, cyano, cyanate, isocyanate, OR_{2n} , SR_6 , nitro, arsenoxide, $-S(O)R_3$, $-S(O)_2R_3$, $-P(O)R_4R_4$, $-N(R'')_2$, $-NRC(O)(CH_2)_nQ$, $-C(O)R_5$,

$$R_{4}$$
 R_{1+} R_{2} R_{3} R_{4} R_{4} R_{5} R_{6} R_{7} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} $R_{$

wherein each R is independently selected from hydrogen, C_1 - C_5 alkyl, C_6 - C_{12} aryl or C_2 - C_5 acyl;

- R_{2a} is selected from hydrogen, C_1 - C_5 alkyl, C_6 - C_{12} aryl, -S(O) R_3 , -S(O) R_3 , -P(O)(R_4) R_5 ;
- each R_3 is independently selected from hydrogen, C_1 - C_5 alkyl, C_6 - C_{12} aryl, C_1 - C_5 alkoxy, C_6 - C_{12} aryloxy, C_1 - C_5 alkylthio, or C_6 - C_{12} arylthio;
- each R_4 is independently selected from hydrogen, C_1 - C_5 alkyl, C_6 - C_{12} aryloxy, C_1 - C_5 alkylthio, C_6 - C_{12} arylthio, halo or $N(R)_2$;
- each R_5 is independently selected from hydrogen, C_1 - C_5 alkyl, C_6 - C_{12} aryl, C_1 - C_5 alkoxy, C_6 - C_{12} aryloxy, C_1 - C_5 alkylthio, C_6 - C_{12} arylthio, OH, SH or N(R)₂;
- R_0 is selected from C_1 - C_5 alkyl, C_0 - C_{12} aryl, C_1 - C_5 alkylthio, C_6 - C_{12} arylthio, -S(O) R_3 , -S(O) $_2R_3$ or -C(O) R_5

R" is the same as R above;

- Q is selected from halogen and $-OS(O)_2Q_1$; wherein Q_1 is selected from C_1-C_4 alkyl, C_1-C_4 perfluoroalkyl, phenyl, p-methylphenyl; and m is 1 to 5.
- 17. (Currently amended) A-The compound or salt thereof according to claim 1, wherein

X is absent:

B is C2-C5 acyl:

X' is NR:

n is 1;

B' is phenylene; and

R is H;

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Orive Chicago, IL 60606 312-913-0001 10

Response to Office Action Mailed July 21, 2005 Application Serial No. 10/088,540 Αποτπεγ Docket No. 02-213

wherein the substituents directly attached to the phenylene ring are in a para-, meta- or ortho-relationship.[[,]]

18. (Currently amended) The compound or salt thereof according to claim 1 represented by Formula III:

, and wherein

R₇ to R₁₀ are independently selected from the group consisting of: hydrogen, C₁-C₅ alkyl, C₀-C₁₂ aryl, halogen, hydroxy, amino, nitro, carboxy, C₁-C₅ alkoxy, -OS(O)₂R₃ or -NHC(O)CH₂Q wherein Q is halogen, -OS(O)₂CH₃, -OS(O)₂C₆H₅ or -OS(O)₂-p tolyl.

- 19. (Currently amended) The compound or salt thereof according to claim 18, wherein R7 to R₁₀ are independently selected from hydrogen, halogen, hydroxy, amino, nitro, carboxy, C1-C5 alkoxy, methyl, ethyl, iso-propyl, tert-butyl, phenyl, and -NHC(O)CH2Q wherein Q is halogen, $-OS(O)_2CH_3$, $-OS(O)_2C_6H_5$, or $-OS(O)_2-p$ -tolyl.
- 20, (Currently amended) The compound or salt thereof according to claim 18, wherein the arsenoxide (-As=O) group is at the 4-position of the phenylene ring.
- 21. (Currently amended) The compound or salt thereof according to claim 1, wherein the compound is 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO) and is represented by Formula V:

$$CO_2^ O \longrightarrow S \longrightarrow H$$
 $H - N \longrightarrow O$
 $A_5 = O$
 $CO_2^ CO_2^-$

22. (Currently amended) The compound or salt thereof according to claim 1, wherein the compound is represented by Formula VI:

wherein Q is any halogen.

23. (Currently amended) The compound or salt thereof according to claim 1, wherein the compound is represented by Formula VII:

- 24. (Currently amended) The compound or salt thereof according to claim 23, wherein G is selected from the group consisting of: hydrogen, halogen, hydroxy, amino, nitro, carboxy, C₁-C₅ alkoxy, methyl, ethyl, iso-propyl, tert-butyl, phenyl, and -NHC(O)CH₂Q wherein Q is halogen, -OS(O)₂CH₃, -OS(O)₂C₆H₅ or -OS(O)₂-p tolyl.
- 25. (Currently amended) The compound or salt thereof according to claim 23, wherein G is selected from the group consisting of hydroxy, fluorine, amino, and nitro.

26-29. (Canceled)

- 30. (Currently amended) The compound or salt thereof according to claim 1, which is linked to a detector group.
- 31. (Currently amended) The compound <u>or salt thereof</u> of claim 30, wherein said detector group is selected from the group consisting of fluorophore, biotin, a radionucleotide, fluorescein, and a group comprising a transition element.
- 32. (Currently amended) The compound or salt thereof according to claim 30, wherein the detector group is biotin.
- Currently amended) The compound or salt thereof according to claim 31, wherein the radionucleotide is selected from the group consisting of ³H, ¹⁴C, ³²P, ³³P, ³⁵S, ¹²⁵I, ¹³¹I, ¹²³I, ¹¹¹In, ¹⁰⁵Rh, ¹⁵³Sm, ⁶⁷Cu, ⁶⁷Ga, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁸⁶Re, ¹⁸⁸Re, and ^{99m}Tc.
- 34. (Currently amended) The compound or salt thereof according to claim 33, wherein the radionucleotide is selected from the group consisting of ³H or ¹⁴C.
- 35-37 (Canceled)

39-43. (Canceled)

- 44. (Currently amended) The compound or salt thereof according to claim 24, wherein G is selected from the group consisting of hydroxy, fluorine, amino, and nitro.
- 45. (previously presented) A compound according to Formula (I) or a salt thereof:

 A-[(XBX')₀B'-Y]₀ (I)

wherein

A comprises at least one substantially cell-membrane impermeable pendant group selected from natural, unnatural and synthetic amino acids, peptides, polypeptides, thiol containing proteins and oligosaccharides, or a combination thereof;

X is selected from NR-,
$$S(O)$$
-, $-S(O)O$ -, $-S(O)_2$ -, $-S(O)_2O$ -, $-C(O)$ -, $-C(S)$ -, $-C(O)O$ -, $-C(S)O$ -, $-C(S)S$ -, $-P(O)(R_1)$ -, $-P(O)(R_1)O$ -, or is absent;

- B is selected from C₁-C₁₀ alkylene, C₂-C₁₀ alkenylene, C₂-C₁₀ alkynylene, C₃-C₁₀ cycloalkylene, C₅-C₁₀ cycloalkenylene, C₃-C₁₀ heterocycloalkylene, C₅-C₁₀ heterocycloalkenylene, C₆-C₁₂ arylene, heteroarylene or C₂-C₁₀ acyl;
- X' is selected from NR-, -O-, -S-, -Se-, -S-S-, S(O)-, -OS(O)-, OS(O)O-, -OS(O)₂, -OS(O)₂O-, -S(O)O-, -S(O)₂-, -S(O)₂O-, -OP(O)(R₁)-, -OP(O)(R₁)O-, -OP(O)(R₁)O-, -OP(O)(R₁)O-, -C(O)-, -C(O)O-, C(S)O-, -C(S)S-, -P(O)(R₁)-, -P(O)(R₁)O-,

or is absent; wherein E is O, S, Se, NR or N(R)2+;

and

B' is selected from C₁-C₁₀ alkylene, C₂-C₁₀ alkenylene, C₂-C₁₀ alkynylene, C₃-C₁₀ cycloalkylene, C₅-C₁₀ cycloalkenylene, C₅-C₁₀ heterocycloalkylene, C₅-C₁₀ heterocycloalkenylene, C₆-C₁₂ arylene, and heteroarylene, or is absent;

McDonaell Boehnen Hulbert & Berghoff LLP 300 South Wacker Orive Chicago, 1L 60606 312-913-0001

- each R is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl, OR₂ or C₂-C₁₀ acyl;
- R' is the same as R or two R' are taken together with the nitrogen atoms to which they are attached to form a 5 or 6-membered saturated or unsaturated heterocyclic ring:
- each R₁ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl, halo, OR₂ or N(R)₂;
- each R₂ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl or -C(O)R₅;
- each R₅ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkyl, C₅-C₁₀ alkenyloxy, C₃-C₁₀ alkenyloxy, C₃-C₁₀ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₃-C₁₀ heterocycloalkyloxy, C₅-C₁₀ heterocycloalkenyloxy, C₆-C₁₂ aryloxy, heteroaryloxy, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkylthio, C₅-C₁₀
- wherein for each instance that B and/or B' is arylene, the substituents directly attached to the respective arylene rings are in a para, meta or ortho relationship, and wherein each alkylene, alkenylene, alkynylene, cycloalkylene, cycloalkenylene,
 - heterocycloalkylene, heterocycloalkenylene, arylene, heteroarylene and acyl are optionally independently substituted with hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl, halo, cyano, cyanate, isocyanate, OR_{2a}, SR₆, nitro, arsenoxide, -S(O)R₃, -OS(O)R₃, -S(O)₂R₃, -OS(O)₂R₃, -P(O)R₄R₄, -OP(O)R₄R₄, -N(R")₂, -NRC(O)(CH₂)_mQ, -C(O)R₅,

wherein R, R₁ and R₅ are as defined above; and

- R₂₄ is selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₁₀ cycloalkyl, C_5 - C_{10} cycloalkenyl, C_6 - C_{12} aryl, -S(O) R_3 , -S(O) R_3 , -P(O)(R_4) R_2 $N(R)_2$ or $-C(Q)R_5$;
- each R₃ is independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C3-C10 heterocycloalkyl, C5-C10 heterocycloalkenyl, C₀-C₁₂ aryl, heteroaryl, C₁-C₁₀ alkoxy, C₃-C₁₀ alkenyloxy, C₃-C₁₀ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₃-C₁₀ heterocycloalkyloxy, C₅-C₁₀ heterocycloalkenyloxy, C₆-C₁₂ aryloxy, heteroaryloxy, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkenylthio, C₆-C₁₂ arylthio, heteroarylthio or N(R)₂;
- each R4 is independently selected from hydrogen, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C3-C10 heterocycloalkyl, C5-C10 heterocycloalkenyl, C₀-C₁₂ aryl, heteroaryl, C₁-C₁₀ alkoxy, C₃-C₁₀ alkenyloxy, C₃-C₁₀ alkynyloxy, C₃-C₁₀ cycloalkyloxy, C₅-C₁₀ cycloalkenyloxy, C₃-C₁₀ heterocycloalkyloxy, C₅-C₁₀ heterocycloalkenyloxy, C₆-C₁₂ aryloxy, heteroaryloxy, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkenylthio, C₆-C₁₂ arylthio, heteroarylthio, halo or N(R)₂;
- Ro is selected from C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C5-C₁₀ cycloalkenyl, C₃-C₁₀ heterocycloalkyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₁₂ aryl, heteroaryl, C₁-C₁₀ alkylthio, C₃-C₁₀ alkenylthio, C₃-C₁₀ alkynylthio, C₃-C₁₀ cycloalkylthio, C₅-C₁₀ cycloalkenylthio, C₃-C₁₀ heterocycloalkylthio, C₅-C₁₀ heterocycloalkenylthio, C6-C12 arylthio, heteroarylthio, -S(O)R3, -S(O)2R3 or -C(O)R_{5.}

McDonnell Bochnen Hulbert & Berghoff LLP 300 South Wacker Drive Chicago, IL 60606 312-913-0001

Response to Office Action Mailed July 21, 2005 Application Senal No 10/088,540 Attorney Ducket No. 02-213 R" is the same as R or two R" taken together with the N atom to which they are attached may form a saturated, unsaturated or aromatic heterocyclic ring system;

Q is selected from halogen and $-OS(O)_2Q_1$; wherein Q_1 is selected from C_1-C_4 alkyl, C_1-C_4 perfluoroalkyl, phenyl, p-methylphenyl;

m is an integer selected from 1 to 5,

Y comprises at least one arsenoxide group;

p is an integer selected from 1 to 10;

n is an integer selected from 0 to 20, and

wherein the sum total of carbon atoms in A and (XBX'), B' together, is greater than 6.

46.-68. (canceled)