

Apr 06, 2022

Amplify iTracer Barcode and Scars from 10x cDNA

Ashley Maynard¹, Sophie Jansen¹, Giovanna Brancati¹

¹ETHZ - ETH Zurich

1 %

protocol

QuadBio

Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enable highly resolved descriptions of cell states within these systems; however, approaches are needed to directly measure lineage relationships. Here we establish iTracer, a lineage recorder that combines reporter barcodes with inducible CRISPR-Cas9 scarring and is compatible with single-cell and spatial transcriptomics. We apply iTracer to explore clonality and lineage dynamics during cerebral organoid development and identify a time window of fate restriction as well as variation in neurogenic dynamics between progenitor neuron families. We incorporate gene perturbation (iTracer-perturb) and assess the effect of mosaic *TSC2* mutations on cerebral organoid development. Our data shed light on how lineages and fates are established during cerebral organoid formation. More broadly, our techniques can be adapted in any iPSC-derived culture system to dissect lineage alterations during normal or perturbed development.

This protocol describes barcode and scar detection from single-cell cDNA:

Barcode and scar regions were amplified from 60-70ng of cDNA remaining from the single-cell RNAseq preparation with three separate PCR reactions. First cDNA was amplified via PCR broadly targeting a region containing both the scar and barcode. Subsequently, the reaction was split equally and we performed a nested PCR separately targeting the barcode and scar regions. Lastly, we added Illumina sequencing adapters (10x Genomics). Following every PCR reaction the samples were cleaned-up using magnetic beads (Beckman Coulter). Libraries are then ready to be sequenced on Illumina sequencer.

Ashley Maynard, Sophie Jansen,	Giovanna Brancati 2022.	Amplify iTracer	Barcode and Scar	s from
10x cDNA. protocols.io				

https://protocols.io/view/amplify-itracer-barcode-and-scars-from-10x-cdna-b63qrgjw

protocol

He, Z., Maynard, A., Jain, A. et al. Lineage recording in human cerebral organoids. Nat Methods 19, 90-99 (2022). https://doi.org/10.1038/s41592-021-01344-8

lineage tracing, genomic lineage tracer, iTracer, barcodes

_____ protocol,

Apr 02, 2022

Apr 06, 2022

60232

Olgios needed:

Primer Name	Assay	Sequence
10x_Root_RFP_F	scRNAseq	cggcacgctgatctacaagg
	amplified	
	libraries	
10x_Nest_RFP_F	scRNAseq	${\tt GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgagttcaagaccatctacatggcc}$
	amplified	
	libraries	
10x_Root_GFP_F	scRNAseq	gacgacggcaactacaagacc
	amplified	
	libraries	
10x_Nest_GFP_F	scRNAseq	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaggtgaacttcaagatccgcc
	amplified	
	libraries	
10x_Universal_R	scRNAseq	CTACACGACGCTCTTCCGATCT
	amplified	
	libraries	
10x_Nest_Barcode_GFP_F	scRNAseq	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTggatcactctcggcatgga
	amplified	
	libraries	
10x_Nest_Barcode_RFP_F	scRNAseq	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtggaacagtacgagcgctc
	amplified	
	libraries	

^{**}if using the GFP iTracer please use oligos with _G or _GFP

Set up Reaction 1 (Root PCR)

1 Make reaction master mix:

Α	В
Component	1x rxn
100% DMSO	1.5uL
10uM 10x Root PCR GFP F Primer	2.5uL
10uM 10x Universal R Primer	2.5uL
2x Phusion Ready Mix	25uL
EvaGreen	0.75uL
cDNA product (50ng)	17.75uL total
H20	

- 2 Add $\Box 30.75 \, \mu L$ per well of reaction master mix to qPCR plates, then add a total of $\Box 17.75 \, \mu L$ of sample.
- 3 Run PCR according to the following program:

^{**} if using the RFP iTracer, please use the oligos with _R or _RFP

Α	В	С	D
Step	Temperature	Duration	Cycles
Initial	98 °C	30 sec	1
denaturation			
Denaturation	98 °C	15 sec	45 cycles & stop when saturated
Annealing	66 °C	15 sec	
Extension	72 °C	20 sec	
Final extension	72 °C	2 min	1

Volume $\blacksquare 50 \ \mu L + \ 105 \ ^{\circ}C$ lid temperature.

4 Stop reaction in the exponential phase before the curve levels off (see example)

Example of when to stop PCR reactions.

- 5 Clean up reaction with 1:1 SPRI beads (**□50 μL** beads added). Elute in **□30 μL** EB buffer
- 6 Check concentrations of reactions on Nanodrop.

Set up Reaction 2a (Nested PCR for Barcodes)

7 Make reaction master mix:

A	В
Component	1x rxn
2x Phusion Ready Mix	25uL
10uM Nest Barcode GFP Primer	2.5uL
10uM 10x Universal R Primer	2.5uL
EvaGreen	0.75uL
H20	14.25uL
Root PCR Product	5uL

- 8 Add **45 μL** per well of reaction master mix to qPCR plates
- 9 Run PCR according to the following program:

Α	В	С	D
Step	Temperature	Duration	Cycles
Initial	98 °C	30 sec	1
denaturation			
Denaturation	98 °C	15 sec	30 cycles & stop when saturated
Annealing	65 °C	15 sec	
Extension	72 °C	20 sec	
Final extension	72 °C	60 sec	1

Volume **□50 µL** + § 105 °C lid temperature

- 10 Stop reaction in the exponential phase before the curve levels off.
- 11 Clean up reaction with 1:1 SPRI beads:
 - 11.1 Vortex to resuspend the SPRIselect reagent. Add $\Box 50~\mu L$ SPRIselect Reagent (1X) to each sample. Pipette mix 15x (pipette set to $\Box 150~\mu L$). Incubate $\odot 00:05:00$ at & Room temperature.
 - 11.2 Place the magnet on High until the solution clears. Remove **□165** μL supernatant. **DO NOT** discard any beads.
 - 11.3 With the tube still in the magnet, add $\square 200 \ \mu L$ 80% ethanol to the pellet. Wait @ 00:00:30. Remove the ethanol. Repeat steps i and j for a total of 2 washes.

- 11.4 Centrifuge briefly. Place on the magnet on Low. Remove remaining ethanol.
- 11.5 Remove from the magnet. Add $\square 30~\mu L$ Buffer EB. Pipette mix 15x. Incubate 2 min at 8 Room temperature .
- 11.6 Place on the magnet on Low until the solution clears. Transfer $\Box 30 \, \mu L$ to a new tube strip.
- 12 Check concentrations of reactions on Nanodrop.

Set up Reaction 2b (Nested PCR for Scars)

13 Make reaction master mix:

Α	В
Component	1x rxn
2x Phusion Ready Mix	25uL
10uM Nest GFP Primer	2.5uL
10uM 10x Universal R Primer	2.5uL
EvaGreen	0.75uL
H20	14.25uL
Root PCR Product	5uL

- 14 Add **45 μL** per well of reaction master mix to qPCR plates.
- 15 Run PCR according to the following program:

Α	В	С	D
Step	Temperature	Duration	Cycles
Initial	98 °C	30 sec	1
denaturation			
Denaturation	98 °C	15 sec	30 cycles & stop when saturated
Annealing	66 °C	15 sec	
Extension	72 °C	20 sec	
Final extension	72 °C	60 sec	1

Volume **□50 µL** + § 105 °C lid temperature

- 16 Stop reaction in the exponential phase before the curve levels off.
- 17 Clean up reaction with 1:1 SPRI beads:
 - 17.1 Vortex to resuspend the SPRIselect reagent. Add $\Box 50~\mu L$ SPRIselect Reagent (1X) to each sample. Pipette mix 15x (pipette set to $\Box 150~\mu L$). Incubate $\odot 00:05:00$ at & Room temperature.
 - 17.2 Place the magnet on High until the solution clears. Remove **□165** μL supernatant. **DO NOT** discard any beads.
 - 17.3 With the tube still in the magnet, add $\mathbf{200} \, \mu \mathbf{L}$ 80% ethanol to the pellet. Wait $\mathbf{000:00:30}$. Remove the ethanol. Repeat steps i and j for a total of 2 washes.
 - 17.4 Centrifuge briefly. Place on the magnet on Low. Remove remaining ethanol.
 - 17.5 Remove from the magnet. Add $\square 30~\mu L$ Buffer EB. Pipette mix 15x. Incubate 2 min at 8 Room temperature.
 - 17.6 Place on the magnet on Low until the solution clears. Transfer $\square 30 \, \mu L$ to a new tube strip.
- 18 Check concentrations of reactions on Nanodrop.

Reaction 3 (Indexing PCR with 10x indexes) 3d 0h 10m 30s

19 Prepare reaction mix:

Α	В
Component	1x rxn
2x Phusion Ready Mix	25ul
10x SI Primer	1ul

- 20 Prepare the DNA+H20, normalize PCR products to $\Box 60 \text{ ng}$, and fill to $\Box 19 \mu L$ with water
- 21 Add $\mathbf{26} \, \mu \mathbf{L}$ of reaction mix to each sample.
- 22 Add 10x Index primers $\mathbf{\Box 5} \, \mu \mathbf{L}$.
- 23 Run PCR according to the following program:

Α	В	С	D
Step	Temperature	Duration	Cycles
Initial	98 °C	30 sec	1
denaturation			
Denaturation	98 °C	15 sec	30 cycles & stop when saturated
Annealing	55 °C	15 sec	
Extension	72 °C	20 sec	
Final extension	72 °C	2 min	1

Volume **□50 µL** + § **105 °C** lid temperature

- 24 SPRI Select bead clean-up (double sided clean-up as performed at 10x final clean up, v3.1 revD step 3.6)
 - 24.1 Add $\blacksquare 50~\mu L$ of EB to the PCR reactions to have $\blacksquare 100~\mu L$ total volume.
 - Vortex to resuspend the SPRIselect reagent. Add $\Box 60~\mu L$ SPRIselect Reagent (0.6X) to each sample. Pipette mix 15x (pipette set to $\Box 150~\mu L$). Incubate $\odot 00:05:00$ at & Room temperature.

24.3

Place the magnet on High until the solution clears. **DO NOT discard supernatant.** Transfer $\blacksquare 150 \ \mu L$ supernatant to a new tube strip.

- Vortex to resuspend the SPRIselect reagent. Add $\square 20~\mu L$ SPRIselect Reagent (0.8X) to each sample. Pipette mix 15x (pipette set to $\square 150~\mu L$). Incubate $\odot 00:05:00$ at 8 Room temperature.
- 24.5

Place the magnet on High until the solution clears. Remove $\ \Box 165\ \mu L$ supernatant. DO NOT discard any beads.

- 24.6 With the tube still in the magnet, add \blacksquare 200 μ L 80% ethanol to the pellet. Wait \bigcirc 00:00:30 . Remove the ethanol. Repeat steps i and j for a total of 2 washes.
- 24.7 Centrifuge briefly. Place on the magnet on Low. Remove remaining ethanol.
- 24.8 Remove from the magnet. Add $\square 35.5 \, \mu L$ Buffer EB. Pipette mix 15x. Incubate 2 min at 8 Room temperature .
- 24.9 Place on the magnet on Low until the solution clears. Transfer \blacksquare 35 μ L to a new tube strip.
- 24.10 Run Bioanalyzer (1:10 diluted).
- 24.11 Store at & 4 °C for up to © 72:00:00 or at & -20 °C for long-term storage. Libraries are ready for sequencing!