Análise de Sentimento das Reviews do SFU Review Corpus

Mariana Silvestre e Weidmam Leles

Iscte-iul, Lisboa, Portugal
{mcseo, wmlss}@iscte-iul.pt

Resumo. Este relatório apresenta a aplicação de análise de sentimento ao *dataset* SFU_Review_Corpus que contém no total 400 *reviews*. A análise de sentimento foi realizada utilizando diferentes modelos de classificação: um modelo simples ao comparar com um léxico de sentimentos e modelos de aprendizagem automática. No modelo simples, criaram-se experiências onde se utilizou o tratamento da negação e algum pré-processamento. Enquanto que com a aprendizagem automática, testou-se vários cenários conjugando dois tipos de vectorização e várias formas de pré-processamentos, como a remoção da pontuação, *lowerization, tokenization, lemmatization* e *stemming*. Com isto, foi possível concluir que os modelos de aprendizagem automática com vectorização por contagem de palavras e com a combinação de diversos pré-processamentos apresentaram os melhores resultados.

Palavras-chave: Análise de Sentimento, Modelos de Classificação, Pré-processamento, Text Mining

1 Introdução

Perceber a opinião de uma pessoa pode parecer uma tarefa simples quando se trata de dois humanos a falar. No entanto, a análise de sentimentos realizada por um computador requer o tratamento computacional de opinião, sentimento e subjetividade num dado documento. Nesse sentido, ao combinar técnicas de Processamento de Linguagem Natural com técnicas de *Text Mining*, a perceção de opiniões e sentimentos requer a implementação de várias etapas complementares (Pange Lee, 2008 *apud* Martínez-Cámara, Martín-Valdivia, Molina-Gonzalez e Ureña-López ,2013).

É importante ter em conta que não basta criar classificadores ou usar classificadores já existentes, pois é necessário perceber todo o funcionamento dos modelos de classificação, assim como entender se será preciso realizar préprocessamento aos dados. No entanto, este pré-processamento poderá não dar origem a uma otimização do modelo, sendo que esta é vista através de métricas como a *accuracy, precision, recall* e *f-measure*. Sendo o SFU_Review_Corpus composto por um conjunto de dados balanceados, utiliza-se a *accuracy* como métrica de avaliação e comparação entre os modelos desenvolvidos.

Este relatório foi dividido em secções da seguinte forma: na secção 2 encontra-se uma breve revisão de literatura de forma a investigar o que já tinha sido realizado com o SFU_Review_Corpus; na secção 3 descreve-se os dados utilizados para a análise de sentimentos; na secção 4 pormenoriza-se todos os procedimentos que foram realizados aos dados para a análise; na secção 5 encontram-se os resultados obtidos nas diversas experiências e cenários realizados e por fim, na secção 6, exprimem-se as conclusões deste estudo e alguns aspetos que podem ser melhorados num próximo projeto.

2 Análise do Trabalho Relacionado

Indhuja e Reghu (2014) realizaram a análise de sentimentos utilizando a lógica *fuzzy*, passando pelas fases de préprocessamento, extração de *features* e classificação. Ao longo de toda a análise utilizaram técnicas NLP (*Natural Language Processing*), tal como *Named Entity Recognition*, *POS tagging* e análise sintática. Para além disso, os autores recorreram ao cálculo do *tf-idf* para identificar as palavras de maior importância. Com esta análise e através de indicadores como *recall*, *precision* e *f-measure* concluíram que o sistema teve um bom desempenho com uma precisão de aproximadamente 85%, sendo a lógica *fuzzy* um bom modelo para a análise de sentimento.

No caso do estudo desenvolvido por Natalia, Sheila, Noa, Manuel, Maite e Ruslan (2012) para além de técnicas como a tokenização e análise sintática, também utilizaram o tratamento da negação. Com o uso deste tratamento, verificaram algumas melhorias na classificação. À semelhança de Indhuja e Reghu (2014), utilizaram métricas como *f-measure* e *kappa* de forma a verificar se a concordância entre os anotadores era elevada. Através deste estudo, os

autores concluíram que "as diretrizes são sólidas e que o corpus será útil para a análise de sentimento e reconhecimento de negação".

Martínez-Cámara, Martín-Valdivia, Molina-Gonzalez e Ureña-López (2013) em *Bilingual Experiments on an Opinion Comparable Corpus* enfatizam que os sistemas baseados numa abordagem supervisionada são os mais bem sucedidos para a extração de opinião, pelo que se torna importante a aplicação de algoritmos de aprendizagem automática aquando da construção destes modelos de classificação. Além disso, destacam a importância da aplicação de pré-processamentos, como por exemplo, o *stemming*, o qual demonstrou ser capaz de melhorar a classificação nos comentários. Os autores também frisam que por se tratar de uma tarefa de extração de opinião, o tratamento da negação é uma atividade imprescindível.

Em suma, verifica-se que os autores dos diferentes artigos estão em concordância, embora sejam utilizadas diferentes técnicas, todos aferem que este corpus é útil e pode ser utilizado para a análise de sentimento.

3 Descrição dos Dados

O SFU_Review_Corpus é um dataset com dados balanceados, este conjunto é composto por duas colunas: a coluna text e a coluna recommended. Na coluna text encontram-se as reviews, as quais são classificadas como "yes" ou "no", na coluna recommended.

Este conjunto contém 400 reviews que estão divididas nas seguintes categorias: Books, Cars, Computers, Cookware, Hotels, Movies, Music, Phones. Por sua vez, cada categoria é composta por 25 reviews classificadas como recommended e 25 reviews classificadas como not recommended. Estas reviews já se encontram divididas em dois conjuntos: num conjunto de treino que contém 320 reviews e num conjunto de teste que contém as restantes 80 reviews.

As reviews foram obtidas do site Epinions em 2004, pelo que foram escritas por pessoas diferentes e os seus tamanhos são também diferentes.

4 Descrição das Tarefas e Procedimentos

4.1 Preparação dos dados e criação de uma baseline

Inicialmente, começou-se por fazer uma breve preparação dos dados. Para tal, realizou-se uma análise de sentimentos através de um classificador já existente, para isso utilizou-se a função *sentiment.polarity* da biblioteca *TextBlob*. A *accuracy* foi de 0,6375 pelo que se considera um risco moderado, ou seja, existem dados resultantes que poderão não corresponder à realidade.

4.2 Aplicação de um léxico de sentimentos

Nesta etapa, o objetivo principal era criar um classificador através da utilização de um léxico de sentimentos. Para isso, realizou-se duas experiências principais: Experiência 1 em que se utilizou os dados na sua forma original e uma Experiência 2 onde se aplicou o tratamento da negação, ou seja, foi adicionado às palavras o "NOT_" desde a palavra a seguir a uma negativa até se encontrar um sinal de pontuação.

Posto isto, realizou-se mais duas experiências onde se aplicaram duas técnicas de pré-processamento com a finalidade de melhorar os resultados obtidos. Na Experiência 3 mantiveram-se os dados originais onde se aplicou a *lemmatization* e o *stemming* e na Experiência 4, após se aplicar o tratamento da negação, aplicou-se também a *lemmatization* e o *stemming*.

Assim, para se classificar as *reviews* com um classificador simples, procedeu-se à separação das *reviews* por palavras para que se conseguisse verificar se cada palavra constava no léxico e qual a sua classificação. De seguida, somou-se as classificações por *review* e atribuiu-se a nova classificação, "*yes*" se a classificação total da *review* fosse igual ou superior a zero e "*no*" se fosse inferior. Nas experiências com tratamento da negação, utilizou-se o inverso, ou seja, se a palavra tivesse o "NOT_" e a palavra original (sem o "NOT_") estivesse no léxico a classificação era o valor inverso.

De forma a verificar qual a melhor experiência calculou-se a *accuracy* de cada uma, onde se comparou as classificações reais com as classificações previstas. Os resultados serão demonstrados mais à frente na secção dos resultados obtidos deste trabalho.

4.3 Aprendizagem Automática

Com o objetivo de melhorar os resultados dos modelos de classificação desenvolvidos na etapa anterior, recorreu-se à metodologia de aprendizagem automática das ferramentas *scikit-learn* (SKLEARN) e *Natural Language Toolkit* (NLTK). Deste modo, percorreu-se as seguintes etapas: (I) construção de modelos inicias; (II) aplicação do classificador ao conjunto de teste; (III) avaliação e ajuste dos parâmetros; (IV) aplicação de pré-processamentos e construção de cenários.

Construção de modelos iniciais e aplicação do classificador ao conjunto de teste (I e II)

Durante a primeira etapa da aprendizagem automática, foram desenvolvidos dois modelos por meio da biblioteca NLTK: *Naive Bayes* (NBC) e *Maximum Entropy* (MEC). Para a construção destes modelos realizou-se a tokenização, já que este processo é importante para ajudar a perceber o significado dos comentários ao analisar as palavras presentes no texto. De seguida, selecionou-se as 1500 palavras mais importantes por meio do *tf-idf* (*term frequency-inverse document frequency*). Por fim, o processo de aprendizagem automática contou com 15 interações.

No que se refere a biblioteca *scikit-learn*, inicialmente foram desenvolvidos dez modelos: cinco por meio da vectorização baseada no *tf-idf* [3], qual considera o peso global de uma palavra num documento, e cinco por meio da vectorização baseada em contagem [4], que conta o número de vezes que uma palavra aparece num conjunto de dados. Deste modo, implementou-se algoritmos de Regressão logística, *Multinomial Naive Bayes*, *Gaussian Naive Bayes* e *Linear Support Vector Classification*. Ainda assim, é importante notar que para todos os modelos de classificação utilizando a biblioteca *scikit-learn* extraiu-se 1500 *features*, aplicou-se o *document frequency* mínimo de 3 e máximo de 70% e utilizou-se *stop-words*, que são palavras presumivelmente não informativas. A seleção destes parâmetros foi feita através de tentativa-erro, que se encontra descrita de forma mais pormenorizada na etapa seguinte.

Avaliação e ajuste dos parâmetros (III)

Uma vez construídos os modelos iniciais, perceber o quão bom são estes modelos é um processo determinante para o sucesso da aprendizagem automática. Portanto, o processo de avaliação dos modelos é uma tarefa importante tanto para a definição de quão boas são as previsões como para indicar a necessidade de melhorar o modelo ou até mesmo de construir novos modelos.

Conforme mencionado anteriormente, a avaliação ocorreu pela comparação da *accuracy* dos modelos iniciais, prevalecendo os modelos com os valores mais altos. No entanto, torna-se oportuno destacar que ao construir um modelo de aprendizagem automática é necessário ter em mente que diferentes problemas exigem diferentes abordagens e ferramentas, pelo que a seleção do melhor modelo somente com base na *accuracy*, que foi o método escolhido para este trabalho, pode ser uma abordagem limitada em algumas situações.

Ao comparar as *accuracies* dos modelos iniciais das ferramentas *NLTK* e *scikit-learn*, decidiu-se dar continuidade com a segunda ferramenta no sentido de refinar a sua utilização, proceder à validação cruzada aprimorando os parâmetros e realizando pré-processamentos para a criação dos dez cenários referidos anteriormente. Além disso, a ferramenta NLTK não oferece suporte direto à validação cruzada para algoritmos de aprendizagem automática, fator também decisivo para a escolha da biblioteca a ser utilizada nos passos seguintes.

Tal como o processo de avaliação, a parametrização é outra tarefa de grande importância para que se consiga elaborar bons modelos de classificação. Neste trabalho, o processo de escolha dos parâmetros foi feito através da metodologia de tentativa e erro. Isto é, definir inicialmente um valor arbitrário para um parâmetro, observar como o modelo se comporta e voltar a tentar outro valor para este parâmetro e assim sucessivamente até que se encontre os valores mais adequados.

Mediante as tentativas realizadas, os parâmetros para a comparação de todos os modelos de classificação utilizando a biblioteca *scikit-learn* são os seguintes: 1500 *features*, *document frequency* mínimo de 3 e máximo de 70%, utilizouse também a lista *built-in* de *stop-words*.

Aplicação de pré-processamentos e construção de cenários (IV)

Nesta etapa procurou-se processar os dados não estruturados de forma a torná-los mais legíveis para que os algoritmos conseguissem interpretá-los de maneira mais eficaz. Ou seja, a estratégia utilizada para a escolha do préprocessamento a aplicar foi no sentido de se identificar o significado dos termos nos comentários, reduzir a

dimensionalidade dos nossos dados e eliminar ruídos. Deste modo, apostou-se na combinação das seguintes técnicas: Remoção da pontuação, *Lowerization, Tokenization, Lemmatization* e *Stemming*.

No entanto, sabe-se que a aplicação destes pré-processamentos não é uma garantia de que os modelos serão melhores, pelo que se torna pertinente a construção de cenários com combinação de diferentes métodos. Assim, a cada um dos algoritmos, o primeiro deles com a vectorização baseada no *tf-idf e* o segundo com a vectorização baseada em contagem de palavras, para além de um cenário sem nenhum pré-processamento, foram aplicados os mesmos quatro cenários:

Cenário 1 – aplicou-se a remoção da pontuação, lowerization, tokenization, lemmatization e stemming;

Cenário 2 – aplicou-se a remoção da pontuação, *lowerization*, *tokenization* e *lemmatization*;

Cenário 3 – aplicou-se a remoção da pontuação, *lowerization*, *tokenization* e *stemming*;

Cenário 4 – aplicou-se a *tokenization* e o *stemming*.

Além disso, é importante ressalvar que para cada cenário foram construídos modelos de classificação por meio da Regressão logística, *Multinomial Naive Bayes*, *Gaussian Naive Bayes* e *Linear Support Vector Classification*.

5 Resultados Obtidos

5.1 Aplicação de um léxico de sentimentos

Ao olhar para os resultados obtidos, foi possível verificar que quando se aplica o pré-processamento a classificação prevista é melhor tanto nas experiências sem negação como nas experiências com negação. Contudo, é visível que o salto maior ocorreu nas experiências sem o tratamento da negação, isto pode ocorrer visto que quando se aplica o tratamento da negação podemos ficar com frases inteiras com classificação negativa o que acaba por equilibrar o número de palavras positivas e negativas numa *review*.

Com a aplicação do pré-processamento é normal os valores da *accuracy* terem subido, visto que a *lemmatization* e o *stemming* acabam por uniformizar as palavras, ou seja, acabam por levar, em alguns casos, a uma diminuição o número de *features*. Assim, nota-se que fica mais fácil de encontrar as palavras no léxico.

Experiências	Tratamento Utilizado	Accuracy
Experiência 1	Sem Negação	0,525
Experiência 2	Com Negação	0,600
Experiência 3	Sem Negação + Lemmatization + Stemming	0,625
Experiência 4	Com Negação + Lemmatization + Stemming	0,613

Tabela 1. Resultados obtidos nas experiências com aplicação de um léxico de sentimentos.

5.2 Aprendizagem automática

No que se refere aos resultados obtidos por meio da aprendizagem automática, nota-se que o melhor modelo foi o Cenário 1 da vectorização baseada em contagem de palavras, ou seja, o modelo em que foi aplicado a maior quantidade de pré-processamentos. No entanto, os resultados assinalam também que o emprego de pré-processamentos por si só não é uma garantia de melhoria na *accuracy*, como ocorreu no Cenário 1 da vectorização baseado no *tf-idf*, que teve um resultado mais baixo do que os modelos sem pré-processamentos.

Assim, é possível perceber que encontrar a representação numérica do *SFU_Review_*Corpus por meio da vectorização baseada em contagem de palavras é a forma mais eficiente, já que todas as experiências que utilizaram esta forma tiveram um resultado mais promissor, conforme é possível observar na Tabela 2.

Tabela 2. Média das Accuracies das Validações Cruzadas (k = 10) para cada cenário

Cenários Realizados	Accuracy Média Das Validações cruzadas (k =10)
NLTK – NBC e MEC	0,568 – Sem validação cruzada
SKLEARN – CountVectorizer – sem pré-processamento	0,734
Cenário 1	0,756
Cenário 2	0,745
Cenário 3	0,748
Cenário 4	0,734
SKLEARN – TfidfVectorizer – sem pré-processamento	0,736
Cenário 1	0,727
Cenário 2	0,728
Cenário 3	0,726
Cenário 4	0,702

Para realizar esta comparação calculou-se os *scores* através da validação cruzada (K=10), para todos modelos em cada um dos cenários. Posteriormente, utilizou-se a média de cada validação cruzada para se calcular a média da accuracy de cada cenário.

Com o intuito de promover uma comparação mais visual e intuitiva, gerou-se o gráfico da Figura 1, através do qual podemos aferir que a combinação de elementos é fundamental, porém não a garantia de um melhor modelo.

Fig. 1. Comparação das Médias Globais das Accuracies das Validações Cruzadas para cada experiência

6 Conclusões e Aspetos a Melhorar

Com base nas reviews do *SFU_Review_Corpus*, no decorrer deste trabalho foram desenvolvidos diversos modelos de classificação de forma a ser possível categorizar se uma *review* está a recomendar ou não um produto ou serviço.

Para se atingir este objetivo, investiu-se em três metodologias distintas para obter um bom classificador, o qual foi avaliado com base na sua *accuracy*. Assim, usufruiu-se de um classificador já existente, o *TextBlob*, produziu-se

quatro experiências através da aplicação de um léxico de sentimentos e por fim, elaborou-se doze modelos por meio da aprendizagem automática.

A elaboração e implementação de cada uma destas abordagens levou em consideração procedimentos particulares com o intuito de se obter o maior índice de acertos possível, tendo em vista a especificidade de cada metodologia. Não obstante das forças e fraquezas de cada um dos modelos desenvolvidos, ao compararmos o melhor modelo de cada uma dessas três abordagens, o modelo de aprendizagem automática produz o melhor resultado de todos: 21% maior do que o modelo com a aplicação de um léxico de sentimentos e 18,5% mais assertivo do que o modelo do *TextBlob*.

Em síntese, constata-se que a análise de sentimento é, para além de toda ciência por trás do *text mining*, um exercício experimental. À vista disso, mesmo que existam algoritmos mais adequados para uma determinada situação, efetuar diferentes experiências pode gerar bons resultados, uma vez que tendo em conta a diversidade das caraterísticas de cada conjunto de dados, distintas metodologias produzem diferentes respostas para os vários *inputs*.

Neste sentido, um dos aspetos a serem melhorados é a utilização de múltiplas combinações de pré-processamentos e a aplicação de outras formas de aprendizagem de máquina, como por exemplo, as redes neuronais artificiais.

Este trabalho foi realizado por dois elementos, pelo que consideramos que a divisão, em percentagem, foi a seguinte: Mariana Silvestre (50%) e Weidmam Leles (50%).

7 Bibliografia

- Martínez-Cámara, Eugenio & Martín-Valdivia, Maria & González, M. Dolores & López, L. Bilingual Experiments on an Opinion Comparable Corpus. (2013).
- 2. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12 (2011).
- Sklearn.Feature_Extraction.Text.Tfidfvectorizer Scikit-Learn 0.24.1 Documentation". Scikit-Learn.Org. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html, last accessed 2021/04/17.
- 4. "Sklearn.Feature_Extraction.Text.Countvectorizer Scikit-Learn 0.24.1 Documentation". Scikit-Learn.Org. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorize r.html, last accessed 2021/04/17.
- Cruz Diaz, Noa & Konstantinova, Natalia & Castilho, Sheila & Maña, Manuel & Taboada, Maite & Mitkov, Ruslan. A review corpus annotated for negation, speculation and their scope. http://www.lrecconf.org/proceedings/lrec2012/pdf/533_Paper.pdf. (2012).
- 6. I K. Indhuja and R. P. C. Reghu, "Fuzzy logic based sentiment analysis of product review documents," 2014 First International Conference on Computational Systems and Communications (ICCSC), Trivandrum, India.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7032613. (2014).