1602A QAPSS 3.3V 液晶屏使用说明书

<<1602A字符型液晶显示模块>>>

目 录

_,	概述	3
_,	主要参数	3
三、	接口引脚说明	4
四、		
	1、写操作时序与时序图: (MCUàLCM)	
	2、读操作时序与时序图: (LCMàMCU)	5
五、	LCM内部结构	
	1、指令寄存器(IR)和数据寄存器(DR)	
	2、忙标志位BF	
	3、地址计数器(AC)	6
	4、显示数据寄存器(DDRAM)	7
	5、字符发生器ROM	7
	6、字符发生器RAM	8
六、	指令说明	11
	1、Clear display (清显示)	11
	2、Return home (归位)	11
	3、Entry mode set (设置输入模式)	
	4、Display on/off control (显示开/关控制)	12
	5、Cursor or display shift (游标或显示移位元)	
	6、Function set (功能设置)	13
	7、Set CGRAM address (CGRAM地址设置)	
	8、Set DDRAM address (DDRAM地址设置)	
	9、Read busy flag and address (读忙标志BF和AC)	14
	10. Write data to CGRAM or DDRAM	
	(写数据到CGRAM或DDRAM)	14
	11、Read data from CGRAM or DDRAM	
	(从CGRAM或DDRAM中读数据)	14
七、	应用举例	
	1、硬件方面电路	15
	2、软件举例	15
八、	注意事项	19

一、概述:

1602A QAPASS字符型液晶显示模块是专门用于显示字母、数字元、符号等的点阵型液晶显示模块。分4位和8位数据传输方式。提供5×7点阵+游标的显示模式。提供显示数据缓冲区DDRAM、字符发生器CGROM和字符发生器CGRAM,可以使用CGRAM来存储自己定义的最多8个5×8点阵的图形字符的字模数据。提供了丰富的指令设置:清显示;游标回原点;显示开/关;游标开/关;显示字符闪烁;游标移位;显示移位元等。提供内部上电自动复位电路,当外加电源电压超过+4.5V时,自动对模块进行初始化操作,将模块设置为默认的显示工作状态。

1602A QAPASS为环保型液晶显示模块。

二、主要参数:

项 目参 考 值

逻辑工作电压(Vdd) +3.0V~+3.5V

LCD驱动电压(Vdd-Vo) +3.0 ~ +3.5V

工作温度(Ta) -20~+70℃(宽温)

储存温度(Tsto) -30 ~ + 80℃ (宽温)

工作电流(背光除外) 1.7mA(max)

工作电流(背光) 24.0mA(max)

液晶显示模块使用说明书

三、接口引脚说明:

编号	符号	引脚说明	编号	符号	引脚说明
1	VSS	电源地	9	D2	数据
2	VDD	电源正极	10	D3	数据
3	VL	液晶显示偏压	11	D4	数据
4	RS	数据/命令选择	12	D5	数据
5	R/W	读/写选择	13	D6	数据
6	E	使能信号	14	D7	数据
7	D0	数据	15	BLA	背光源正极
8	D1	数据	16	BLK	背光源负极

第一脚: VSS为地电源 第二脚: VDD接3.3V正电源

第3脚: VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生"鬼影",使用时可以通过一个10K的电位器调整对比度。

第4脚: RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚: R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚: E端为使能端, 当E端由高电平跳变成低电平时, 液晶模块执行命令。

第7~14脚: D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚: 背光源负极

四、时序说明:

项	Ħ	符号	条 件	最小值	最大值	单位
E周期		tcycE		1000		
E脉宽		Pweh	<i>VDD</i> -5V ±	450		
E 上升/下降	译时间	Ter,Tef	VDD=5V±		25	
地址设置时	`间	Tas	VSS=0V	140	-	nS
地址保持时	`间	Tah	V 55-0 V Ta=25 °C	10	-	
数据设置时	`闰	Tdsw	1a-23 C	195	1	
数据保持时	`间	Th		10	-	

项 目	符 号	条 件	最小值	最大值	单位
E周期	tcycE		1000		
E脉宽	Pweh	VDD=5V±	450	1	
E 上升/下降时间	Ter,Tef	√DD=3 V ± 5%		25	
地址设置时间	Tas	VSS=0V	140	-	nS
地址保持时间	Tah	V 33-0 V Ta=25 °C	20	1	
数据设置时间	Tdsw	1a-25 C	-	320	
数据保持时间	Th		10		

五、LCM内部结构:

字符型液晶显示模块组件内部主要由LCD 显示屏(LCD PANEL)、控制器(controller)、驱动器(driver)和偏压产生电路构成。

控制器主要由指令寄存器IR、数据寄存器DR、忙标志BF、地址计数器AC、DDRAM、CGROM、CGRAM以及时序发生电路组成:

1、指令寄存器(IR)和数据寄存器(DR)

本系列模块内部具有两个8位寄存器:指令寄存器(IR)和数据寄存器(DR)。用户可以通过RS和R/W输入信号的组合选择指定的寄存器,进行相应的操作。下表中列出了组合选择方式:

E	RS	\mathbf{R}/\mathbf{W}	说明
1		0	将 DB0~DB7 的指令代码写入指令寄存器中。
1± 0	0	1	分别将状态标志 BF 和地址计数器(AC)内容读到 DB7
1+ 0		1	和 DB6~DB0。
1		0	将 DB0~DB7 的数据写入数据寄存器中,模块的内部
1		U	操作自动将数据写到 DDRAM 或者 CGRAM 中。
	0		将数据寄存器内的数据读到 DB0~DB7,模块的内部
1‡ 0		1	操作自动将 DDRAM 或者 CGRAM 中的数据送入数据
			寄存器中。

2、忙标志位BF

忙标志BF=1时,表明模块正在进行内部操作,此时不接受任何外部指令和数据。当RS=0、R/W=1以及E为高电平时,BF输出到DB7。每次操作之前最好先进行状态字检测,只有在确认BF=0之后,MPU才能访问模块;

3、地址计数器(AC)

AC地址计数器是DDRAM或者CGRAM的地址指针。随着IR中指令码的写入,指令码中携带的地址信息自动送入AC中,并做出AC作为DDRAM

的地址指针还是CGRAM的地址指针的选择。

AC具有自动加1或者减1的功能。当DR与DDRAM或者CGRAM之间完成一次数据传送后,AC自动会加1或减1。在RS=0、R/W=1且E为高电平时,AC的内容送到DB6~DB0。

	Hi	ght order b	its		Low order bits										
	AC6	AC5	AC4	AC3	AC2	AC1	AC0								
•								•							

4、显示数据寄存器(DDRAM)

DDRAM存储显示字符的字符码,其容量的大小决定着模块最多可显示的字符数目。DDRAM地址与LCD显示屏上的显示位置的对应关系如下:

执行显示移位操作时,对应的DDRAM地址也发生移位,每行16个字符的显示,共有2行。移位前的地址对应关系如下:

	字符列	地址	1	2	3		14	15	16					
ſ	DDRAM	第1行	00H	01H	02H		0DH	0EH	0FH					
	地址	第2行	40H	41H	42H		4DH	4EH	4FH					
_				•			•							
左移一位:														
	字符列:	地址	1	2	3		14	15	16					
	DDRAM	01H	02H	03H		0EH	0FH	10H						
	地址	第2行	41H	42H	43H		4EH	4FH	50H					
-														
占移	多一位:													
	字符列	地址	1	2	3		14	15	16					
	DDRAM	第1行	27H	00H	01H		0CH	0DH	0EH					
	地址	第2行	67H	40H	41H		4CH	4DH	4EH					

5、字符发生器ROM

在CGROM中,模块已经以8位二进制数的形式,生成了5×8点阵的字符字模块字符字模(一个字符对应一组字模)。字符字模是与显示字符点阵相对应的8×8矩阵位图数据(与点阵行相对应的矩阵行的高三位为"0"),同时每一组字符字模都有一个由其在CGROM中存放地址的高八位数据组成的字符码对应。

字符码地址范围为00H~FFH,其中00H~07H字符码与用户在CGRAM

中生成的自定义图形字符的字模块相对应。

6、字符发生器RAM

在CGRAM中,用户可以生成自定义图形字符的字模块。可以生成5×8 点阵的字符字模8组,相对应的字符码从CGROM的00H~0FFH范围内选择。 CGROM中,字符码与字符字模之间的对应关系表

Upper 4 bit Lower 4 bit	LLLL	LLLH	LL.HL.	LLHH	LHLL	LHLH	LHHL	∟ННН	HLLL.	HLLH	HLHI.	ні.нн	HHLL.	ннін	ннн∟	нннн
LLLL																
LLLH																
LLHL																
LLHH			H													
LHLL																
ГНГН																
LHHL																
гннн																
HLLL																
HLLH																
HLHL																
нгнн																
HHLL																
ннгн																
HHHL																
нннн																

5×8点阵字符的CGROM地址、字符字模和字符码三者之间的关系如下图:

CGROM Add	res	s		Γ	ata	a				
A11 A10 A9 A8 A7 A6 A5 A4	4 A3	A2	A1	ΑO	Π4	П3	02	Π1	0	
	0	0	0	0	11	0	0	0	0	
	0	0	0	1	/12	0	0	0	0	
	0	0	1	0	(1)	0	17	1	0	
	0	0	1	1	1	17	0	0	1	
	0	1	0	0	/1/	0	0	0	1	
	0	1	0	1	/1/	0	0	0		
	0	1	1	0	(1)	17	/1/	/17	6	
0 1 1 0 0 0 1 0	0	1	1	1	0	0	0	0	0-	_Cursor position
	1	0	0	0	0	0	0	0	Ö	光标位置
	1	0	0	1	0	0	0	0	0	
	1	0	1	0	0	0	0	0	0	
	1	0	1	1	0	0	0	0	0	
	1	1	0	0	0	0	0	0	0	
	1	1	0	1	0	0	0	0	0	
	1	1	1	0	0	0	0	0	0	
	1	1	1	1	0	0	0	0	0	
Character code	Liı	ie į	005	iti	on					
字符码		行:								

注释: ● 高八位CGROM地址A11~A4组合形成字符码;

- 低四位CGROM地址A3~A0定义字模数据存储行地址;
- 数据D4~D0为字符字模数据;
- 必须将高三位数据D5~D7赋值为0;
- 对应数据1的位置为显示位(黑);
- 对于5×8点阵字体,第九行以下(包括第九行)数据值为0。

用户自定义5×8点阵字符的CGRAM地址、字符码和字符字模间关系如下图:

			ract		ode ata))			CG RAM Address							_	hara (CG				_		
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	1	b7	b6	b5	b4	b3	b2	b1	b0	
											0	0	0		Ξ	ΞΞ	ΞΞ	1	1	1	1	1	
											0	0	1		ΕĒ		ΕĒ	0	0	1	0	0	Character
									}//		0	1	0		ΕĒ			0	0	1	0	0	Pattern
0	0	0	0	Х	6	6		6	/ /	6	0	1	1		×	X	×	0	0	1	0	0	Example (1)
		ľ		^	//	//		1//		//	1	0	0		Ê		==	0	0	1	0	0	
											1	0	1		ΕΞ			0	0	1	0	0	
											1	1	0					0	0	1	0	0	Cursor Position
<u>_</u>	L.	_	_	_		//					1	1	1	_			==	0	0	0	0	0	<u> </u>
											0	0	0		ΕΞ		ΕΞ	0	1	1	1	0	
											0	0	1		ΕΞ			0	0	1	0	0	Character
											0	1	0		ΕĒ			0	0	1	0	0	Pattern Example (2)
0	0	0	0	Х	6	6		6	16	//	0	1	1		Σ		×	0	0	1	0	0	Example (2)
-			-								1	0	0		ΕĒ	ᆫ =	$\vdash =$	0	0	1	0	0	
											1	0	1		ΕΞ			0	0	1	0	0	
											1	1	0		ΕΞ			0	1	1	1	0	
											1	1	1		==	==		0	0	0	0	0	
	_	_																					

- 注释: 字符码0~2位与CGRAM地址3~5位对应;
 - CGRAM地址0~2位生成字模数据行位置。第八行是游标位置, 因此构成字符字模数据时,在设置游标显示的情况下,应赋值 为0;如果赋值为1,不论游标显示与否,第八行均处于显示 状态:
 - 字符字模数据0~4位的赋值状态构成了自定义字符的位图数据:
 - 从图中可以看出,字符码3位的赋值状态并不影响用户自定义字符在CGROM中的字符码,用户自定义字符码的范围为00H~07H或者08H~0FH,也就是说字符码00H与08H对应同一组用户自定义字符字模:
 - CGRAM数据为1时,处于显示状态。

六、指令说明:

由于MPU可以直接访问模块内部的IR和DR,作为缓冲区域,IR和DR 在模块进行内部操作之前,可以暂存来自MPU的控制信息。这样就给用户在 MPU和外围控制设备的选择上,增加了余地。模块的内部操作由来自MPU 的RS、R/W、E以及数据信号DB0~DB7决定,这些信号的组合形成了模块的指令。

本系列模块向用户提供了11条指令,大致可以分为四大类:

- 模块功能设置,诸如:显示格式、数据长度等;
- 设置内部RAM地址;
- 完成内部RAM数据传送:
- 完成其它功能。

一般情况下,内部RAM的数据传送的功能使用最为频繁,因此,RAM中的地址指针所具备的自动加一或减一功能,在一定程度上减轻了MPU编程负担。此外,由于数据移位元元指令与写显示数据可同时进行,这样用户就能以最少系统开发时间,达到最高的编程效率。

有一点需特别注意:在每次访问模块之前,MPU应首先检测忙标志BF,确认BF=0后,访问过程才能进行。

1、Clear display (清显示)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

 $0 \quad \ \ 0 \quad \ \ 1$

清显示指令将空位字符码20H送入全部DDRAM位址中,使DDRAM中的内容全部清除,显示消失;地址计数器AC=0,自动增1模式;显示归位,游标或者闪烁回到原点(显示屏左上角);但并不改变移位元元设置模式。

2、Return home (归位)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 0 0 1 *

归位元指令置位址计数器AC=0;将光标及游标所在位的字符回原点;但DDRAM中的内容并不改变。

3、Entry mode set (设置输入模式)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 1 I/D S

I/D: 字符码写入或读出DDRAM后DDRAM地址指针AC变化方向标志:

I/D=1,完成一个字符码传送后,游标右移,AC自动加1;

I/D=0,完成一个字符码传送后,光标左移,AC自动减1;

S: 显示移位元标志:

S=1,将全部显示向右(I/D=0)或者向左(I/D=1)移位;

S=0,显示不发生移位元;

S=1时,显示移位元时,游标似乎并不移位;此外,读DDRAM操作以及对CGRAM的访问,不发生显示移位元。

4、Display on/off control (显示开/关控制)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 1 D C B

- D:显示开/关控制标志: D=1,开显示; D=0,关显示; 关显示后,显示数据仍保持在DDRAM中,立即开显示可以再现;
- C:游标显示控制标志: C=1,游标显示; C=0,游标不显示; 不显示游标并不影响模块其它显示功能;显示5×8点阵字符时,游标在第八行显示,显示5×10点阵字符时,游标在第十一行显示;
- B: 闪烁显示控制标志: B=1,游标所指位置上,交替显示全黑点阵和显示字符,产生闪烁效果,Fosc=250kHz时,闪烁频率为0.4ms左右;通过设置,游标可以与其所指位置的字符一起闪烁。
- 5、 Cursor or display shift (游标或显示移位元) 指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 1 S/C R/L * *

游标或显示移位元元指令可使游标或显示在没有读写显示数据的情况下,向左或向右移动;运用此指令可以实现显示的查找或替换;在双行显示方式下,第一行和第二行会同时移位;当移位越过第一行第四十位时,游标会从第一行跳到第二行,但显示数据只在本行内水平移位元,第二行的显示决不会移进第一行;倘若仅执行移位操作,地址计数器AC的内容不会发生改变。

S/C R/L 说 明

- 0 0 游标向左移动,AC自动减1
- 0 1 游标向右移动,AC自动加1
- 1 0 游标与显示一起向左移动,AC值不变
- 1 1 游标与显示一起向右移动, AC值不变

6、 Function set (功能设置)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 1 DL N F * *

功能设置指令设置模块数据接口宽度和LCD显示屏显示方式,即MPU 与模块接口数据总线为4位或者是8位、LCD显示行数和显示字符点阵 规格;所以建议用户最好在执行其它指令设置(读忙标志指令除外)之前, 在程序的开始,进行功能设置指令的执行。

DL:数据接口宽度标志:

DL=1,8位数据总线DB7~DB0;

DL=0,4位数据总线DB7~DB4,DB3~DB0不用,使用此方式传送数据,需分两次进行;

N: 显示行数标志:

N=1,两行显示模式; N=0,单行显示模式;

F: 显示字符点阵字体标志:

 $F=1: 5\times10$ 点阵+游标显示模式: $F=0: 5\times7$ 点阵+游标显示模式。

7、Set CGRAM address (CGRAM地址设置)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 ACG5 ACG4 ACG3 ACG2 ACG1ACG0

CGRAM位址设置指令设置CGRAM位址指针,它将CGRAM存储用户自定义显示字符的字模数据的首地址ACG5~ACG0送入AC中,于是用户自定义字符字模就可以写入CGRAM中或者从CGRAM中读出。

8、Set DDRAM address (DDRAM地址设置)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

DDRAM位址设置指令设置DDRAM位址指针,它将DDRAM存储显示字符的字符码的首地址ADD6~ADD0送入AC中,于是显示字符的字符

码就可以写入DDRAM中或者从DDRAM中读出;

值得注意的是:在LCD显示屏一行显示方式下,DDRAM的位址范围为:00H~4FH;两行显示方式下,DDRAM的位址范围为:第一行00H~27H,第二行40H~67H。

9、Read busy flag and address (读忙标志BF和AC)

指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 1 BF AC6 AC5 AC4 AC3 AC2 AC1 AC0

当RS=0和R/W=1时,在E信号高电平的作用下,BF和AC6 \sim AC0被读到数据总线DB7 \sim DB0的相应位:

BF: 内部操作忙标志, BF=1, 表示模块正在进行内部操作, 此时模块不接收任何外部指令和数据, 直到BF=0为止;

AC6~AC0: 地址计数器AC内的当前内容,由于地址计数器AC为CGROM、CGRAM和DDRAM的公用指标,因此当前AC内容所指区域由前一条指令操作区域决定;故只有BF=0时,送到DB7~DB0的数据AC6~AC0才有效。

10、Write data to CGRAM or DDRAM (写数据到CGRAM或DDRAM) 指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1 0 D7 D6 D5 D4 D3 D2 D1 D0

写数据到CGRAM或DDRAM指令,是将用户自定义字符的字模数据写到已经设置好的CGRAM的地址中,或者是将欲显示字符的字符码写到DDRAM中; 欲写入的数据D7~D0首先暂存在DR中,再由模块的内部操作自动写入地址指针所指定的CGRAM单元或者DDRAM单元中。

11、Read data from CGRAM or DDRAM (从CGRAM或DDRAM中读数据) 指令码:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1 1 D7 D6 D5 D4 D3 D2 D1 D0

从CGRAM或DDRAM中读数据指令,是从位址计数器AC指定的 CGRAM或者DDRAM单元中,读出数据D7~D0;读出的数据D7~D0 暂存在DR中,再由模块的内部操作送到数据总线DB7~DB0上;需要注意的是,在读数据之前,应先通过地址计数器AC正确指定读取单元的地址。

液晶显示模块使用说明书

七、应用举例:

1、硬件方面电路:

```
2、软件举例: (汇编程序举例)
ORG 000H;
LJMP MAIN;
ORG 0100H;
RS EQU P3.1;
RW EQU P3.4;
E EQU P3.5;
DATA1 EQU 30H;
```

COMMAND EQU 31H;

,

;写指令子程序(检查忙标志位) WW_COMMAND:LCALL RR_BF;

CLR RS; CLR RW; SETB E;

MOV P1, COMMAND;

CLR E; RET;

;写指令子程序(不检查忙标志位)

WW_COMMAND1:CLR RS; CLR RW;

第 16 页, 共 21 页

```
SETB E;
           MOV P1, COMMAND;
           CLR E;
           RET;
;写数据子程序
WW_DATA:LCALL RR_BF;
       SETB RS;
       CLR RW;
       SETB E;
       MOV P1,DATA1;
       CLR E;
       RET;
;读忙标志指令子程序
RR_BF:MOV P1,#0FFH;
     CLR RS;
     SETB RW;
     SETB E;
RR_BF1:NOP;
     JB P1.7,RR_BF1;
     CLR E;
     RET;
;延时5mS
DELAY5MS:MOV R7,#10;
     L1:MOV R6,#250;
     L2:DJNZ R6,L2;
        DJNZ R7,L1;
        RET;
;延时300MS
DELAY300MS:MOV R7,#3;
    L3:MOV R6,#200;
    L4:MOV R5,#250;
    L5:DJNZ R5,L5;
       DJNZ R6,L4;
       DJNZ R7,L3;
       RET;
```

;清屏

CLEAR:MOV COMMAND,#01H;清屏

LCALL WW_COMMAND;

MOV COMMAND,#0CH;显示开、游标显示、游标闪烁

LCALL WW_COMMAND;

RET;

MAIN:MOV COMMAND,#30H;

LCALL WW_COMMAND1;

LCALL DELAY5MS;

LCALL DELAY5MS:

LCALL DELAY5MS;

MOV COMMAND,#30H;

LCALL WW_COMMAND1;

LCALL DELAY5MS:

MOV COMMAND,#30H;

LCALL WW_COMMAND1;

LCALL DELAY5MS;

MOV COMMAND,#38H;

LCALL WW_COMMAND;

MOV COMMAND,#01H;清屏

LCALL WW_COMMAND;

MOV COMMAND,#02H;游标复位

LCALL WW_COMMAND;

MOV COMMAND,#06H;游标右移1bit,显示不移

LCALL WW_COMMAND;

MOV COMMAND.#0CH:显示开、游标不显示、游标不闪烁

LCALL WW_COMMAND;

MOV COMMAND,#14H;游标右移,显示不移动

LCALL WW_COMMAND;

MOV COMMAND,#38H;8位数据线,两行,5×7点陈

LCALL WW_COMMAND;

;第1行显示

MOV R1.#10H:

MOV COMMAND,#80H;

MOV DATA1,#30H;

M1:LCALL WW COMMAND;

LCALL WW_DATA; LCALL DELAY300MS INC COMMAND; INC DATA1; DJNZ R1,M1 LCALL DELAY300MS LCALL DELAY300MS LCALL DELAY300MS

;第2行显示

MOV R1,#10H;

MOV COMMAND,#0C0H;

MOV DATA1,#40H;

M2:LCALL WW_COMMAND;

LCALL WW_DATA;

LCALL DELAY300MS

INC COMMAND;

INC DATA1;

DJNZ R1,M2

LCALL DELAY300MS

LCALL DELAY300MS

LCALL DELAY300MS

LJMP MAIN;

END;

八、注意事项:

- 1、模块的使用与保养:
 - ①液晶显示模块为易碎品,模块内有玻璃屏,不能由高处跌落或机械震动。
 - ②如果显示屏破裂,有液晶流出,应避免入口,因为液晶是有毒物质。如

果皮肤或衣服上粘上液晶,请立即用肥皂和水冲洗。

- ③不要用外力压迫显示屏表面,这样会引起颜色变化。不要扭曲液晶显示 模块,这样会引起缺划等缺陷。
- ④显示屏表面有一层较软的偏光片,易被硬物划伤,应注意保护。
- ⑤如果显示屏表面玷污,可以用软的干布或脱脂棉轻轻擦拭。如果还不干净,可蘸正乙烷溶剂擦拭。除此之外的溶剂可能会伤害到偏光片,尤其是下列溶剂不能使用:水、丙酮、甲苯、异丙醇。
- ⑥严禁拆解液晶显示模块,不能扭动模块的金属框脚。对于使用热压胶纸或带柔性电缆的模块,严禁反复扭曲或撕扯胶纸和电缆。
- ⑦NC脚为空脚,必须悬空,不能接地。在逻辑电路的电源关闭后,应马上 停止向模块输入信号。
- ⑧模块中的控制、驱动电路是低压、微功耗的CMOS电路,极易被静电击穿,而人体有时会产生高达几十伏或上百伏的高压静电,所以,在操作、装配、以及使用中都应极其小心,要严防静电。
 - a、当用手拿液晶显示模块时,注意身体必须接地。
 - b、焊接工具,如电烙铁,必须接地良好,没有漏电。
 - c、操作用的电动改锥等工具必须良好地接地,没有漏电。
 - d、不得使用真空吸尘器进行清洁处理。因为它会产生很强的静电。
 - e、为了减少总的静电,不要在过于干燥的环境中进行装配工作,推荐相对湿度50%~60%RH。
 - f、地面、工作台、椅子、架子、推车及工具之间都应形成电阻接触,以 保持其在相同电位上,否则也会产生静电。
 - g、液晶显示屏表面贴有一层保护膜, 撕下这层保护膜时可能会产生静电, 须小心。
- ⑨在液晶显示模块上焊接引线或电缆时,须注意:
- a、烙铁温度: 280℃±10℃。
 - b、焊接时间: 3~4秒。
 - c、焊接材料: 共晶型、低熔点。
 - d、不要使用酸性助焊剂。
 - e、重复焊接不要超过3次,且每次重复需间隔5分钟。
- ⑩通电使用前应注意:
 - a、模块使用接入电源及断开电源时,必须在正电源(5±0.25V或3.3±0.25V,具体电源电压根据具体模块来定)稳定接人后,才能输入信号电平。如在电源稳定接人前,或断开后就输人信号电平,将会损坏模块中的集成电路,使模块损坏。

- b、点阵模块是高路数液晶显示器件,显示时的对比度、视角与温度、驱动电压关系很大。所以应调整V0至最佳对比度、视角时为止。如果 V0调整过高,不仅会影响显示,还会缩短液晶示器件的寿命。
- c、在规定工作温度范围下限以下使用时,显示响应很慢,而在规定工作温度范围上限上使用时,整个显示面又会变黑,这不是损坏,只需恢复规定温度范围,一切又将恢夏正常。
- d、用力按压显示部位,会产生异常显示。这时切断电源,等待几分钟后, 重新接入,即可恢复正常。
- e、液晶显示器件或模块表面结雾时,不要通电工作,因为这将引起电极 化学反应,产生断线。
- f、长期用于阳光及强光下时,被遮部位会产生残留影像。
- 2、储存液晶显示模块应注意以下几个事项:
 - ①放置暗处,避免日光或其他光源直接照射处。
 - ②防止静电。
 - ③长期储存时,环境温度和相对湿度应控制在0℃~35℃和<80%RH。
 - ④防止与酸性、碱性物质或具有腐蚀性的物质相接触。
 - ⑤不能在液晶显示模块表面压放任何物品。
 - ⑥严格避免极限温 / 湿度条件下存放。特殊条件下必须存放时,也可在 40℃、85%RH时,或60℃,小于60%RH条件下存放,但不宜超过168 小时。

3、运输

液晶显示模块在运输途中不能剧烈震动或跌落,不能有外力压迫,并且无水、无尘也无日光直射。