

UNIVERSITY OF ASIA PACIFIC

Department of Computer Science & Engineering

Course Title - Digital Logic & System Design Lab

Course Code - CSE 210

Experiment No. – 04 (part - ii)

Experiment name – Adder & Sub-tractor with #IC-7483 & Full Adder.

SUBMITTED BY

SUBMITTED TO

Shawan Das. Shammi Akhtar

ID – 19101020 Assistant Professor,

Section – A₁ University of Asia Pacific

Date of Performance - 09-01-2021

Date of Submission - 16-02-2021

PROBLEM STATEMENT:

- d. Design 4-bit Adder- Subtractor using #IC-7483
- e. Design a 4-bit Full Adder with Logic gate.

OBJECTIVE: The objective of the experiment is to design Adder & Subtractor at a time using #IC-7483 and design Adder & Subtractor with Full Adder.

APPARATUS:

- IC-7408(AND Gate)
- IC-7432(OR Gate)
- IC-7404(NOT Gate)
- IC-7486(X-OR)
- IC-7483(4-bit Parallel Adder)
- Logic Display
- Logic Switch

INTRODUCTION:

An adder is a digital circuit that performs addition of numbers. In many computers and other kinds of processors adders are used in the arithmetic logic units or ALU.

To use IC-7483 as an Adder & Subtractor at a time, we have to use XOR gate. We just have to connect the inputs of B with XOR gate as $1^{\rm st}$ input of XOR gate, and the $2^{\rm nd}$ input of those XOR gate will be 1 and Carry-in will be 1. In subtractor the S_4 or the Carry-out will count as Carry Bit. IC 7483 is a 4 bit parallel adder which consists of four interconnected full adders along with the look ahead carry circuit.

We will design adder-subtractor with full adders.

PIN CONFIGURATION:

IC 7483 Pin Diagram

BLOCK DIAGRAM:

OPERATION:

C_5 C_4 C_3 C_2 C_1 A_3 A_2 A_1 A_4 B_4 B_3 B_2 B_1 S_5 S_4 S_3 S_2 S_1

ADDER

C_5 C_3 C_1 C_4 C_2 A_4 A_3 A_2 A_1 $\overline{\mathrm{B}_{4}}$ $\overline{\mathrm{B}_3}$ \overline{B}_1 \overline{B}_2 1 S_4 $\overline{S_1}$ S_5 S_3 S_2

SUBTRACTOR

❖ ADDER + SUBTRACTOR

Addition Operation: Cin =0.

Subtraction Operation: Cin =1.

In subtraction the carry bit will not be counted. So the output will be

$$(0\ 1\ 0\ 1)_2 = (5)_{10}$$

$$A - B = 15 - 10 = 5$$

CIRCUIT DIAGRAM:

* DESIGNING 4-BITS FULL ADDER WITH LOGIC GATES

CIRCUIT DIAGRAM:

DISCUSSION: In this experiment discussed about 4 bit parallel adder. We have used 4-bit parallel adder IC#7483 for Addition and Subtraction at a time. We also designed 4-bit parallel adder-subtractor with full adder.