Chapitre 22

Espaces de dimension finie

22	Espaces de dimension finie	
	22.3 Nombre maximal de vecteurs linéairement indépendants	
	22.5 Algroithme de la base incomplète	
	22.8 Théorème de la base incomplète	
	22.11 Caractérisation de la dimension finie par le cardinal des familles libres	
	22.12Théorème de la dimension	
	22.18 Caractérisation des bases en dimension finie	
	22.20Majoration du rang et cas d'égalité	
	22.22 Dimension d'un sous-espace vectoriel	

22.3 Nombre maximal de vecteurs linéairement indépendants

Propostion 22.3

Soit E un \mathbb{K} -ev de dimension finie engendré par n éléments. Alors toute partie libre de E possède au plus n éléments.

Soit G une famille génératrice de E avec $G = (g_1, \ldots, g_n)$. Soit \mathcal{L} une famille libre de E. Supposons par l'absurde que $|\mathcal{L}| > n$. Pour $k \in [1, n]$, on note :

P(k): "E est engendré par n-k vecteurs de G et k vecteurs de \mathcal{L} "

Pour k = 0, la famille convient.

On suppose que pour $k \in [0, n-1]$, $E = Vect(\underbrace{g_1, \dots, g_{n-k}}_{\in G}, \underbrace{l_1, \dots, l_k}_{\in L})$

Comme $l_{k+1} \in E$, on écrit $l_{k+1} = \sum_{i=1}^{n-k} \alpha_i g_i + \sum_{i=1}^k \beta_i l_j$.

Comme \mathcal{L} est libre, $l_{k+1} \notin Vect(l_1, \ldots, l_k)$.

Donc il existe $i \in [1, n-k], \alpha_i \neq 0$ et quitte à renommer les g_i , on peut supposer $\alpha_{n-k} \neq 0$ et ainsi :

$$g_{n-k} \in Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_n + 1)$$

Ainsi:

$$E = Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_{k+1})$$

Par récurrence, P(k) est vraie pour $k \in [0, n]$, en particulier, P(n) est vraie. $(l1, \ldots, l_n)$ est une base de E. Or $l_{n+1} \in E$ et (l_1, \ldots, l_{n+1}) libre. Absurde.

22.5 Algroithme de la base incomplète

Théorème 22.5

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie et $\{x_i\}_{1 \leq i \leq n}$ une partie génératrice de E dont les p premiers vecteurs sont linéairement indépendants. Dans ces conditions, E possède une base constituée des vecteurs x_1, \ldots, x_p et de certains vecteurs x_{p+1}, \ldots, x_n .

On utilise l'algorithme suivant :

On initialise $\mathcal{F} = (x_1, \dots, x_p)$. Pour tout $k \in [p+1, n]$:

- Si $x_k \in Vect(\mathcal{F})$, on laisse \mathcal{F} invariant.
- Si $x_k \notin Vect(\mathcal{F})$, on remplace \mathcal{F} par $\mathcal{F} \cup \{x_k\}$.

L'algorithme s'arrête en temps fini.

La famille \mathcal{F} obtenue est libre, elle est également génératrice car :

$$\forall i \in [1, n], x_i \in \mathcal{F} \text{ ou } x_i \in Vect(\mathcal{F})$$

Donc $E = Vect(x_i)_{i \in [\![1,n]\!]} \subset Vect(\mathcal{F}) \subset E$. Donc \mathcal{F} est une base.

22.8 Théorème de la base incomplète

Théorème 22.8

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie.

- 1. Toute famille libre de E peut être complétée en une base finie de E.
- 2. De toute famille génératrice de E on peut extraire une base finie de E.

En particulier, E possède une base finie.

Soit \mathcal{G} une famille génératrice finie.

1. Soit \mathcal{L} une famille libre. On applique l'algorithme de la base incomplète à $\mathcal{L} \cup \mathcal{G}$ qui fournit une base B de E contenant \mathcal{L} .

2. Comme \mathcal{G} est génératrice, on fixe $x \neq 0 \in \mathcal{G}$ comme premier vecteur de \mathcal{G} et on lui applique l'algorithme de la base incomplète.

La base obtenue est bien constituée de vecteurs de \mathcal{G} .

Remarque

Remarque

Si \mathcal{G} est une famille génératrice, elle contient nécessairement une famille génératrice finie.

22.11 Caractérisation de la dimension finie par le cardinal des familles libres

Corollaire 22.11

Soit E un espace vectoriel. Alors E est de dimension finie si et seulement si toute famille libre de E est de cardinal fini.

On suppose E de dimension finie. Donc E possède une famille génératrice à n vecteurs.

Donc les familles libres de E ont un cardinal inférieur à n.

Elles sont finies.

Par $\overline{\text{contraposée}}$, on suppose E de dimension infinie.

Soit $x \in E$ avec $x \neq 0$.

On pose $x_1 = x$. Comme E est de dimension infinie, on choisit $x_2 \in E \setminus Vect(x_1)$.

On poursuit les raisonnement par récurrence pour obtenir une famille libre $(x_n)_{n\in\mathbb{N}^*}$.

22.12 Théorème de la dimension

Théorème 22.12

Soit $E \neq \{0\}$ un espace vectoriel de dimension finie. Toutes les bases de E sont finies et sont de même cardinal.

Soit B et B' deux bases. On a :

$$|B| \le |B'| \text{ et } |B'| \le |B|$$

Donc:

$$|B| = |B'|$$

22.18 Caractérisation des bases en dimension finie

Théorème 22.18

Soit E un \mathbb{K} -ev de dimension finie $n \neq 0$. Une famille de n vecteurs est une base si, et seulement si, elle est libre, si, et seulement si, elle est génératrice.

Soit \mathcal{F} une famille avec $|\mathcal{F}| = \dim E = n$.

— On suppose que \mathcal{F} est libre.

On applique sur \mathcal{F} le théorème de la base incomplète.

On obtient alors une base B de E avec :

$$\mathcal{F} \subset E$$

Or $|B| = \dim E = |\mathcal{F}|$.

Donc $\mathcal{F} = B$.

— On suppose \mathcal{F} génératrice. On procède de la même manière en utilisant le théorème de la base extraite.

22.20 Majoration du rang et cas d'égalité

Propostion 22.20

On a

$$rg(x_1,\ldots,x_k) \leq k$$

avec égalité si et seulement si la famille est libre.

Soit $Vect((x_i)_{i\leq k})$ possède un système fini de k vecteurs générateurs.

$$\dim(Vect(x_1,\ldots,x_k)) \leq k$$

- Si $\dim(Vect(x_1,\ldots,x_k))=k$, alors (22.18), (x_1,\ldots,x_k) est une base, donc est libre.
- Si la famille est libre, c'est une base de $Vect(x_1, \ldots, x_k)$, donc $\dim(Vect(x_1, \ldots, x_k)) = k$.

22.22 Dimension d'un sous-espace vectoriel

Propostion 22.22

Soit E un \mathbb{K} -ev de dimension finie et F un sous-espace vectoriel de E. Alors F est de dimension finie et $\dim F \leq \dim E$, avec égalité si et seulement si F = E.

Soit F un sous-espace vectoriel de E, avec E de dimension finie.

Ainsi, F est lui-même de dimension finie (22.11).

Si \mathcal{L} est une famille libre de F:

$$|\mathcal{L}| \leq \dim E$$

Donc (il suffit de prendre pour \mathcal{L} une base de F):

$$\dim F \leq \dim E$$

Si $\dim F = \dim E$, alors une base de F est aussi une base de E (22.18). Ainsi :

$$F = Vect(B) = E$$