

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Теоретическая информатика и компьютерные технологии»

ОТЧЕТ

по лабораторной работе № 3 по курсу «Численные методы»

на тему: «Аппроксимация методом наименьших квадратов.

Двупараметрические модели» Вариант № 4

Студент _	ИУ9-61Б (Группа)	(Подпись, дата)	Афанасьев И (И. О. Фамилия)
Преподаватель		(Подпись, дата)	<u>Домрачева А. Б.</u> (И. О. Фамилия)

1 Постановка задачи

- Построить графики таблично заданной функции и функции z(x).
- Найти зачения $x_a, x_g, x_h, y_a, y_g, y_h, z(x_a), z(x_g), z(x_h), \delta_1, \ldots, \delta_0, \delta_k = \min \delta_i, i = 1, \ldots, 9.$
- \bullet Составить систему уравнений для определения a и b; решить систему.
- ullet Найти среднеквадратичное отклонение $\Delta.$

2 Основные теоретические сведения

Пусть значения приближаемой функции y = f(x) заданы лишь в узлах $(x_i, y_i), i = 1, \ldots, n$. Рассмотрим задачу annpoκcumauu: найдём гладкую аналитически заданную функцию z(x), придающую наименьшее значение величине

$$CKY = \sqrt{\sum_{k=1}^{n} (z(x_k) - y_k)^2}.$$

Эту величину называют среднеквадратичным уклонением (СКУ) функции z(x) от системы узлов (x_i, y_i) , i = 0, ..., n, а описанный подход к решению задачи приближения функции — методом наименьших квадратов (МНК). Абсолютной погрешностью аппроксимации служит среднеквадратичное отклонение (СКО):

$$\Delta = \frac{\text{CKY}}{\sqrt{n}}$$

Существует формальный подход для выбора вида аппроксимирующей функции z(x), зависящей от небольшого числа параметров (в данном случае двух — a и b). Пусть $x_a = \frac{x_0 + x_n}{2}$ — среднее арифметическое, $x_g = \sqrt{x_0 x_n}$ — среднее геометрическое и $x_h = \frac{2}{\frac{1}{x_0} + \frac{1}{x_n}}$ — среднее гармоническое чисел x_0 и x_n . Тогда

$$z_{1}(x) = ax + b \iff z(x_{a}) = z_{a},$$

$$z_{2}(x) = a + x^{b} \iff z(x_{g}) = z_{g},$$

$$z_{3}(x) = ae^{bx} \iff z(x_{a}) = z_{g},$$

$$z_{4}(x) = a \ln x + b \iff z(x_{g}) = z_{a},$$

$$z_{5}(x) = \frac{a}{x} + b \iff z(x_{h}) = z_{a},$$

$$z_{6}(x) = \frac{1}{ax + b} \iff z(x_{a}) = z_{h},$$

$$z_{7}(x) = \frac{x}{ax + b} \iff z(x_{h}) = z_{h},$$

$$z_{8}(x) = ae^{\frac{b}{x}} \iff z(x_{h}) = z_{g},$$

$$z_{9}(x) = \frac{1}{a \ln x + b} \iff z(x_{g}) = z_{h},$$

где z_a, z_g, z_h — среднее арифметическое, среднее геометрическое и среднее

гармоническое значения функции z(x) в точках x_0 и x_n . Для выбора функции из рассмотренного семейства необходимо

- 1. Нанести на график заданные точки (x_i, y_i) , $i = 0, \ldots, n$, и провести гладкую монотонную кривую, аппроксимирующую эту зависимость.
- 2. Вычислить значения величин x_a , x_g , x_h и y_a , y_g , y_h относительно значений x_0 , x_n и y_0 , y_n , а также определить по графику функции z(x) значения $z(x_a)$, $z(x_g)$ и $z(x_h)$.
- 3. Вычислить значения следующих величин:

$$\delta_1 = |z(x_a) - y_a|, \quad \delta_2 = |z(x_g) - y_g|, \quad \delta_3 = |z(x_a) - y_g|,$$

$$\delta_4 = |z(x_g) - y_a|, \quad \delta_5 = |z(x_h) - y_a|, \quad \delta_6 = |z(x_a) - y_h|,$$

$$\delta_7 = |z(x_h) - y_h|, \quad \delta_8 = |z(x_h) - y_g|, \quad \delta_9 = |z(x_g) - y_h|.$$

Номер k наименьшей величины $\delta_k, i=1,\ldots,9,$ определяет выбираемую функцию.

Аппроксимирующая функция индивидуального варианта есть $z_2 = ax^b$. Прологарифмировав функцию получим $\ln z_2(x) = a^* + b \ln x$, где $a^* = \ln a$. СКУ есть функция $F(a^*, b)$ двух переменных:

$$F(a^*, b) = \sum_{i=1}^{n} (a^* + b \ln x_i - \ln y_i)^2.$$

Задача сводится к нахождению минимума функции $F(a^*,b)$ решением системы уравнений

$$\begin{cases} \frac{\partial F}{\partial a^*} = 0, \\ \frac{\partial F}{\partial b} = 0. \end{cases} \tag{2.1}$$

Вычислим частные производные $\frac{\partial F}{\partial a^*}$ и $\frac{\partial F}{\partial b}$ функции:

$$\frac{\partial F}{\partial a^*} = 2\sum_{i=1}^n (a^* + b \ln x_i - \ln y_i),$$

$$\frac{\partial F}{\partial b} = 2\sum_{i=1}^{n} (a^* \ln x_i + b \ln^2 x_i - \ln y_i \ln x_i).$$

Запишем систему 2.1 в матричной форме:

$$\begin{pmatrix} \sum_{i=1}^{n} \ln^2 x_i & \sum_{i=1}^{n} \ln x_i \\ \sum_{i=1}^{n} \ln x_i & n+1 \end{pmatrix} \begin{pmatrix} b \\ a^* \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} \ln y_i \ln x_i \\ \sum_{i=1}^{n} \ln y_i \end{pmatrix}$$

Найдём решение путём вычисления обратной матрицы системы методом алгебраических дополнений:

$$\binom{b}{a^*} = \frac{1}{n \sum_{i=1}^n \ln^2 x_i - (\sum_{i=1}^n \ln x_i)^2} \begin{pmatrix} n \sum_{i=1}^n \ln y_i \ln x_i - \sum_{i=1}^n \ln x_i \sum_{i=1}^n \ln y_i \\ - \sum_{i=1}^n \ln x_i \sum_{i=1}^n \ln y_i \ln x_i + \sum_{i=1}^n \ln^2 x_i \sum_{i=1}^n \ln y_i \end{pmatrix}.$$

3 Реализация

В листинге 3.1 представлен исходный код программы на языке C++.

Листинг 3.1 – Исходный код программы на языке С++

```
1 // clang-format off
  #include <sprout/math/exp.hpp>
  #include <sprout/math/log.hpp>
  #include <sprout/math/pow.hpp>
  #include <sprout/math/sqrt.hpp>
  // clang-format on
6
7
  #include <array>
  #include <cmath>
  #include <iomanip>
  #include <limits>
11
12
  namespace {
13
14
15
   using Deltas = std::array<double, 9>;
16
  struct Parameters {
17
18
     double x_a, x_g, x_h;
     double y_a, y_g, y_h;
19
     double z_x_a, z_x_g, z_x_h;
20
     Deltas deltas;
21
  };
22
23
  struct Matrix {
24
     double a11, a12, a21, a22;
25
  };
26
27
  struct Vector {
    double b1, b2;
  };
30
31
  struct AugmentedMatrix {
32
     Matrix m;
33
     Vector v;
34
35
  };
36
37 | constexpr double ArithmeticMean(const double a, const double b) {
```

```
return (a + b) / 2;
38
  }
39
40
   constexpr double GeometricMean(const double a, const double b) {
41
     return sprout::sqrt(a * b);
42
   }
43
44
   constexpr double HarmonicMean(const double a, const double b) {
45
     return 2 / (1 / a + 1 / b);
46
  }
47
48
49
   template <std::size_t N>
   constexpr AugmentedMatrix BuildAugmentedMatrix(
50
       const std::array<double, N>& xs, const std::array<double,</pre>
51
          N>& ys) {
     Matrix m{};
52
     Vector v{}:
53
54
     double ln_x = 0, ln_y = 0;
55
     for (std::size_t i = 0; i < N; ++i) {
56
       ln_x = sprout::log(xs[i]);
57
       ln_y = sprout::log(ys[i]);
58
59
60
       m.a11 += ln_x * ln_x;
       m.a12 += ln_x;
61
       m.a21 += ln_x;
62
63
       v.b1 += ln_y * ln_x;
64
       v.b2 += ln_y;
     }
66
67
     m.a22 = N;
68
69
     return {m, v};
70
  }
71
72
   constexpr Vector CalculateSolution(const AugmentedMatrix& am) {
73
74
     const auto det = am.m.a11 * am.m.a22 - am.m.a21 * am.m.a12;
75
     // Transposed matrix of algebraic complements
76
     const Matrix com{am.m.a22, -am.m.a12, -am.m.a21, am.m.a11};
77
```

```
78
      return {
79
          (com.a11 * am.v.b1 + com.a12 * am.v.b2) / det,
80
          (com.a21 * am.v.b1 + com.a22 * am.v.b2) / det,
81
     };
82
   }
83
84
   template <std::size_t N>
85
   constexpr double CalculateStandartDeviation(const double b,
86
      const double ln_a,
87
                                                     const
                                                       std::array<double,</pre>
                                                       N > \& xs,
                                                     const
88
                                                       std::array<double,</pre>
                                                       N>& ys) {
      double sum = 0;
89
      for (std::size_t i = 0; i < N; ++i) {</pre>
90
        sum += sprout::pow(ln_a + b * sprout::log(xs[i]) -
91
           sprout::log(ys[i]), 2);
92
     }
93
      return sprout::sqrt(sum / N);
94
   }
95
96
   template <std::size_t N>
97
   constexpr Parameters CalculateParameters(const
98
      std::array < double, N > & xs,
99
                                                 const
                                                    std::array<double,</pre>
                                                    N>\& ys) {
100
      const auto x_a = ArithmeticMean(xs.front(), xs.back());
      const auto x_g = GeometricMean(xs.front(), xs.back());
101
      const auto x_h = HarmonicMean(xs.front(), xs.back());
102
103
      const auto y_a = ArithmeticMean(ys.front(), ys.back());
104
      const auto y_g = GeometricMean(ys.front(), ys.back());
105
      const auto y_h = HarmonicMean(ys.front(), ys.back());
106
107
      // Set according to the graph
108
109
      const auto kZXA = 4.2;
```

```
110
      const auto kZXG = 1.9;
      const auto kZXH = 0.9;
111
112
      const Deltas deltas{
113
          std::abs(kZXA - y_a), std::abs(kZXG - y_g), std::abs(kZXA
114
             - y_g),
          std::abs(kZXG - y_a), std::abs(kZXH - y_a), std::abs(kZXA
115
             - y_h),
          std::abs(kZXH - y_h), std::abs(kZXH - y_g), std::abs(kZXG
116
             - y_h),
      };
117
118
119
      return {x_a, x_g, x_h, y_a, y_g, y_h, kZXA, kZXG, kZXH,
         deltas};
120
   }
121
122
   template <std::size_t N>
123
    void PrintCoordinates(const std::array<double, N>& xs,
                             const std::array<double, N>& ys) {
124
125
      static constexpr std::size_t kWidth = 6;
126
      std::cout << "Coordinates:\n\n";</pre>
127
128
      std::cout << std::setw(kWidth) << "i";</pre>
129
130
      for (std::size_t i = 0; i < N; ++i) {</pre>
        std::cout << std::setw(kWidth) << i;</pre>
131
      }
132
      std::cout << '\n';
133
134
      std::cout << std::setw(kWidth) << "x_i";</pre>
135
      for (std::size_t i = 0; i < N; ++i) {</pre>
136
137
        std::cout << std::setw(kWidth) << xs[i];</pre>
      }
138
      std::cout << '\n';
139
140
      std::cout << std::setw(kWidth) << "y_i";</pre>
141
      for (std::size_t i = 0; i < N; ++i) {</pre>
142
143
        std::cout << std::setw(kWidth) << ys[i];</pre>
      }
144
      std::cout << "\n\n";
145
146 }
```

```
147
148
   void PrintParameters(const Parameters& ps) {
      std::cout << "Parameters:\n\n";</pre>
149
150
      std::cout << "x_a = " << ps.x_a << '\n';
151
      std::cout << "x_g = " << ps.x_g << '\n';
152
      std::cout << "x_h = " << ps.x_h << "\n\n";
153
154
      std::cout << "y_a = " << ps.y_a << '\n';
155
      std::cout << "y_g = " << ps.y_g << '\n';
156
      std::cout << "y_h = " << ps.y_h << "\n\n";
157
158
      std::cout << "z(x_a) = " << ps.z_x_a << '\n';
159
      std::cout << "z(x_g) = " << ps.z_x_g << '\n';
160
161
      std::cout << "z(x_h) = " << ps.z_x_h << "\n\n";
162
      for (std::size_t i = 0, end = ps.deltas.size(); i < end; ++i) {</pre>
163
        std::cout << "delta_" << i + 1 << " = " << ps.deltas[i] <<
164
           '\n';
165
166
      std::cout << '\n';
   }
167
168
169
   void PrintAugmentedMatrix(const AugmentedMatrix& am) {
      std::cout << "Augmented matrix of the equations system:\n\n";</pre>
170
171
      std::cout << "a11 = " << am.m.a11 << '\n';
172
      std::cout << "a21 = " << am.m.a21 << '\n';
173
      std::cout << "a12 = " << am.m.a12 << '\n';
174
      std::cout << "a22 = " << am.m.a22 << "\n\n";
175
176
177
      std::cout << "b1 = " << am.v.b1 << '\n';
      std::cout << "b2 = " << am.v.b2 << "\n\n";
178
   }
179
180
   void PrintSolution(const Vector& v) {
181
      std::cout << "Solution:\n\n";</pre>
182
183
      std::cout << "ln(a) = " << v.b2 << ", a = " <<
184
         sprout::exp(v.b2) << '\n';
185
      std::cout << "b = " << v.b1 << "\n\n";
```

```
}
186
187
   void PrintDeviation(const double d) {
188
      std::cout << "Standart deviation:\n\n";</pre>
189
190
      std::cout << " = " << d << '\n';
191
   }
192
193
       // namespace
194
195
   int main() {
196
      constexpr std::size_t kN = 9;
197
      constexpr std::array<double, kN> kXs{
198
          1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
199
200
      };
      constexpr std::array<double, kN> kYs{
201
          0.16, 0.68, 1.96, 2.79, 3.80, 6.81, 9.50, 15.60, 24.86,
202
203
      };
     PrintCoordinates(kXs, kYs);
204
205
206
      constexpr auto parameters = CalculateParameters(kXs, kYs);
      PrintParameters(parameters);
207
208
209
      constexpr auto augmented_matrix = BuildAugmentedMatrix(kXs,
      PrintAugmentedMatrix(augmented_matrix);
210
211
      constexpr auto solution = CalculateSolution(augmented_matrix);
212
213
      PrintSolution(solution);
214
      constexpr auto deviation =
215
216
          CalculateStandartDeviation(solution.b1, solution.b2, kXs,
             kYs);
      PrintDeviation(deviation);
217
218 }
```

4 Результаты

В листинге 4.1 представлены результаты работы программы.

Листинг 4.1 – Результаты работы программы

```
Coordinates:
       0 1 2 3
                                   5
    i
                              4
                                          6
                                              7
                                                      8
  x_i 1 1.5 2 2.5 3 3.5 4 4.5
                                                      5
  y_i 0.16 0.68 1.96 2.79 3.8 6.81 9.5 15.6 24.86
Parameters:
x_a = 3
x_g = 2.23607
x_h = 1.66667
y_a = 12.51
y_g = 1.99439
y_h = 0.317954
z(x_a) = 4.2
z(x_g) = 1.9
z(x_h) = 0.9
delta_1 = 8.31
delta_2 = 0.0943921
delta_3 = 2.20561
delta_4 = 10.61
delta_5 = 11.61
delta_6 = 3.88205
delta_7 = 0.582046
delta_8 = 1.09439
delta_9 = 1.58205
Augmented matrix of the equations system:
a11 = 11.0352
a21 = 8.86609
a12 = 8.86609
a22 = 9
```

```
b1 = 17.5448

b2 = 10.946

Solution:

ln(a) = -1.67865, a = 0.186625

b = 2.9386

Standart deviation:

= 0.161075
```