A conversão interna é um processo concorrente à emissão de partículas γ no processo de desexcitação do Bi-207 e que consiste na atribuição de energia de excitação por parte do núcleo a electrões que se encontrem a orbitar próximo do mesmo. Os electrões com maior probabilidade de serem envolvidos neste processo são os pertencentes às camadas K, L e M devido à sua proximidade relativamente ao núcleo. A energia dos electrões de conversão é obtida através da expressão:

$$E_e = E_x - E_B \tag{1}$$

Com E_x a energia de excitação disponível do decaimento e E_B a energia de ligação (dependente da camada).

Através do esquema de decaimento apresentado na ?? verificam-se duas transições que correspondem às duas energias de excitação: 1,064 MeV e 0,570 MeV. Utilizando as energias de ligação de 0,090 MeV e 0,016 MeV das camadas K e L, respectivamente, foi possível obter as energias dos electrões de conversão resultantes, E_e .

Com o objectivo de identificar os picos relativos a cada um dos processos de conversão interna foi realizada a análise do espectro do Bi-207, focada nos centróides de cada um dos picos, da qual resultaram os valores apresentados abaixo:

E_x (MeV)	$E_b \text{ (MeV)}$	$E_e \text{ (MeV)}$	FWHM (Ch)	Roi Net (Ct-Ch)	Centróide (Ch)	Centróide (MeV)
0,570	0,090	0,480	1,91	4379 ± 150	$102,160 \pm 0,012$	$0,4746 \pm 0,0028$
	0,016	0,554	1,67	4968 ± 70	$117,940 \pm 0,010$	0.5489 ± 0.0031
1,604	0,090	0,974	1,93	1107 ± 50	$207,820 \pm 0,025$	0.9726 ± 0.0048
	0,016	1,048	2,27	201 ± 25	$223,210 \pm 0,068$	$1,0451 \pm 0,0052$

Tabela 1: Centróides;

 $t_{aq} =$

Os valores apresentados para os centróides em unidades de energia foram obtidos através da conversão Ch-MeV disponibilizada pela calibração.

Foram assim identificados os picos 1 e 2 como os relativos à energia do electrão de conversão das Camadas K e L, respectivamente, com uma energia de excitação cedida pelo decaimento de 0,570 MeV. Sendo um processo que disponibiliza uma menor energia de

excitação, os picos que o caracterizam encontram-se numa região mais à esquerda do espectro.

Por sua vez, os picos 3 e 4 foram identificados como os relativos à energia do electrão de conversão proveniente das Camadas K e L, respectivamente, com uma energia de excitação cedida pelo decaimento de 1,604 MeV. Sendo um processo que disponibiliza uma maior energia de excitação, os picos que o caracterizam encontram-se mais à direita no espectro. E ainda possível observar que, em ambos os casos, o pico relativo a um electrão proveniente da camada K é mais acentuado que o pico relativo a um electrão proveniente das camadas L e M. Este fenómeno devese ao facto da camada K se encontrar mais próxima do núcleo, tornando mais provável que lhe seja cedida a energia de excitação e resultando assim num maior número de contagens.

De seguida foi feito um rácio com base nas áreas dos picos d

Energia (MeV)	∑ K (Ch·Ct)	\sum (L+M) (Ch·Ct)	Rácio	η	# σ
0,570	3502 ± 98	539 ± 76	$6,50 \pm 0,93$	$1,515 \pm 0,265$	-1.94
1,064	918 ± 42	214 ± 19	$4,29 \pm 0,43$	1,515 ± 0,205	-1,94

Tabela 2: Rácio $\sum K/\sum (L+M)$ das energias de desexcitação de 1,604 MeV e 0,570 MeV

$$\sigma_{\bar{c}(MeV)} = \sqrt{(\bar{c} \cdot \sigma_{c_1})^2 + (c_1 \cdot \sigma_{\bar{c}})^2 + \sigma_{c_2}^2}$$

$$\sigma_{\eta} = \eta \sqrt{\left(rac{\sigma_{R_1}}{R_1}
ight)^2 + \left(rac{\sigma_{R_2}}{R_2}
ight)^2}$$

Com
$$\eta = \frac{R_1}{R_2}$$
, $R_1 = \left(\frac{\sum K}{\sum (L+M)}\right)_{E_x = 0,507MeV}$ e $R_2 = \left(\frac{\sum K}{\sum (L+M)}\right)_{E_x = 1,604MeV}$.