课程 □ <u>Midterm Exam 1</u> □ <u>Midterm Exam 1</u> □ Problem 4

Problem 4

Let X_1,\ldots,X_n be i.i.d. normal variable following the distribution $\mathcal{N}\left(\mu, au
ight)$, where μ is the mean and au is the variance.

Denote by $\widehat{\mu}$ and $\hat{ au}$ the maximum likelihood estimators of μ and au respectively based on the i.i.d. observations $X_1,\,\ldots,\,X_n$.

(In our usual notation, $au=\sigma^2$. We use au in this problem to make clear that the parameter being estimated is σ^2 not σ .)

(a)

1/1 point (graded)

Is the estimator $2(\widehat{\mu})^2 + \widehat{\tau}$ of $2\mu^2 + au$ asymptotically normal?

● yes □

no

not enough information to determine

Solution:

Let

只要这个g处处可导,就可以用delta method $g\left(\widehat{\mu},\widehat{ au}
ight)=2{\left(\widehat{\mu}
ight)}^2+\widehat{ au}$

Since g is continuously differentiable, the delta method gives

$$\sqrt{n}\left(g\left(\widehat{\mu},\widehat{ au}
ight)-g\left(\mu, au
ight)
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}(0,
abla g(\mu, au)^T (\mathbf{I}\left(\mu, au)
ight)^{-1}
abla g(\mu, au)^T.$$

where $\mathbf{I}\left(\mu, au
ight)$ is the Fisher Information matrix of any of the Gaussian variables X_i .

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

(b)

1/1 point (graded) Let

$$g\left(\mu, au
ight) =2\mu^{2}+ au.$$

and let ${f I}$ be the Fisher information matrix of $\,X_i \sim \mathcal{N}\,(\mu, au)$.

The asymptotic variance of $2(\widehat{\mu})^2 + \hat{ au}$ is...

 $\bigcirc \ \,
abla g(\mu, au)^T \mathbf{I}\left(\mu, au
ight)
abla g\left(\mu, au
ight)$

 $lacksquare \nabla g(\mu, au)^T (\mathbf{I}\left(\mu, au
ight))^{-1}
abla g\left(\mu, au
ight) \ \Box$

$igcup abla g(\mu, au)^T \mathbf{I} (\mu, au)$	au
---	----

$$igcup
abla g(\mu, au)^T (\mathbf{I}(\mu, au))^{-1}$$

Solution:

Refer to the solution to the previous problem.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(c)

1/1 point (graded)

Using the results from above and referring back to homeowork solutions if necessary, compute the asymptotic variance $V(2(\widehat{\mu})^2 + \widehat{\tau})$ of the estimator $2(\widehat{\mu})^2 + \widehat{\tau}$.

Hint: The inverse of a diagonal matrix $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ where $a,b \neq 0$ is the diagonal matrix $\begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix}$.

$$V\left(2(\widehat{\mu})^2+\widehat{ au}
ight)=egin{array}{c} 16*$$
mu^2*tau+2*tau^2 \\ $16\cdot\mu^2\cdot au+2\cdot au^2 \end{array}$

STANDARD NOTATION

Solution:

Recall from homework 6 problem 2 that the Fisher Information of a Gaussian distribution $\mathcal{N}(\mu,\tau)$ where the μ and $\tau=\sigma^2$ are the parameters to be estimated is

$$I\left(\mu, au
ight) \;=\; \left(egin{array}{cc} rac{1}{ au} & 0 \ 0 & rac{1}{2 au^2} \end{array}
ight).$$

Using this and the results from the previous parts, we obtain the asymptotic variance $V(2(\widehat{\mu})^2+\hat{ au})$ as

$$egin{array}{lll} V\left(2(\widehat{\mu})^2+\hat{ au}
ight) &=&
abla g(\mu, au)^T(\mathbf{I}\left(\mu, au
ight))^{-1}
abla g\left(\mu, au
ight) \ &=& (4\mu-1)inom{ au}{0-2 au^2}inom{4\mu}{1} \ &=& 16\mu^2 au+2 au^2. \end{array}$$

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

Error and Bug Reports/Technical Issues

主题: Midterm Exam 1:Midterm Exam 1 / Problem 4

显示讨论