Cálculo infinitesimal

Números, Sucesiones y Series Numéricas 19 de noviembre de 2018

Parcial 1

Nombre y apellidos:

Titulación:

- 1. (a) Escribir en la forma $\operatorname{Re} z + i \operatorname{Im} z$ el número $z = \left(\frac{i}{1+i}\right)^6$.
 - (b) Resolver la ecuación $z^3 + i = 0$.
- 2. Decir razonadamente si las afirmaciones siguientes son verdaderas o falsas:
 - (a) Sea $\{a_n\}_n$ una sucesión acotada superiormente por 2 y acotada inferiormente por 1, entonces la sucesión tiene límite L.
 - (b) Sea $\{a_n\}_n$ una sucesión tal que $\lim_{n\to\infty}a_n=0$, entonces $\sum_{n=1}^{\infty}(-1)^{n-1}a_n$ es convergente.
- 3. Calcular el límite siguiente: $\lim_{n\to\infty} \frac{1^2 \operatorname{sen} \frac{1}{1^3} + 2^2 \operatorname{sen} \frac{1}{2^3} + \dots + n^2 \operatorname{sen} \frac{1}{n^3}}{\log (n^2 + 1)}.$
- 4. Estudiar la convergencia de la serie:

$$\sum_{n=1}^{+\infty} \left(1 + \frac{1}{n} \right)^{n^2} 3^{-n}.$$