Verificação da Autenticidade de Assinaturas Manuscritas Utilizando Redes Neurais Convolucionais

Defesa do Trabalho de Conclusão de Curso II

por

Marcos Wenneton V. de Araujo

Orientadora: Elloá B. Guedes

{mwvda.eng, ebgcosta}@uea.edu.br

do

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Manaus - Amazonas - Brasil

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referências

1. Introdução

- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referência:

Introdução

Verificação de autenticidade

- Segurança em sistemas computacionais
- Biometria
 - Características fisiológicas
 - Traços comportamentais
- Assinaturas manuscritas como forma de biometria
 - Utilização desde os tempos primórdios
 - Método não-invasivo
 - Baixo custo de aquisição
 - Difícil verificação de autenticidade devido a grande variabilidade dos padrões encontrados nas assinaturas

Introdução 4/5

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finai
- 10. Referência:

Obietivos

Objetivos

Objetivo Geral

Verificar a autenticidade de assinaturas manuscritas utilizando Redes Neurais Convolucionais

Objetivos 6/58

Objetivos

Objetivo Geral

Verificar a autenticidade de assinaturas manuscritas utilizando Redes Neurais Convolucionais

Objetivos Específicos

- Realizar a fundamentação teórica acerca dos conceitos das redes neurais convolucionais;
- Consolidar uma base de dados representativa de assinaturas manuscritas;
- Descrever o problema considerado segundo uma tarefa de Aprendizado de Máquina;
- Propor, treinar e testar diferentes redes neurais convolucionais para a tarefa considerada;
- Analisar os resultados obtidos.

Objetivos 6/5

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referência:

Justificativa 7/55

Justificativa

- Autenticação de assinaturas manuscritas
 - Ampla utilização em documentos oficiais e transações financeiras atualmente
 - Pode ser utilizada em documentos e obras de arte históricas
- Redes Neurais Convolucionais
 - Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
 - Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

ustificativa 8/5.

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referências

Metodologia 9/55

Metodologia

A condução das atividades obedece à metodologia apresentada a seguir, composta dos seguintes passos:

- Estudo dos conceitos relacionados à Aprendizado de Máquina, Redes Neurais Convolucionais e Deep Learning;
- 2. Descrição do problema considerado como uma tarefa de Aprendizado de Máquina;
- 3. Consolidação de uma base de dados representativa de assinaturas originais e forjadas;
- Levantamento do ferramental tecnológico para implementação das redes neurais convolucionais;
- Proposição de modelos de redes neurais convolucionais para o problema considerado, contemplando arquitetura, parâmetros e hiperparâmetros;

Metodologia 10/55

Metodologia

- 6. Treino das redes propostas para a tarefa de aprendizado considerada;
- 7. Teste das redes previamente treinadas com vistas a coleta de métricas de desempenho;
- Análise dos resultados e identificação dos modelos mais adequados para o problema considerado;
- 9. Escrita da proposta de Trabalho de Conclusão de Curso;
- 10. Defesa da proposta de Trabalho de Conclusão de Curso;
- 11. Escrita do Trabalho de Conclusão de Curso; e
- 12. Defesa do Trabalho de Conclusão de Curso.

Metodologia 11/55

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referências

Cronograma 12/55

Cronograma

Tabela 1: Cronograma de atividades

						2019					
	02	03	04	05	06	07	08	09	10	11	12
Atividade 1	Х	Х	Х								
Atividade 2		Χ									
Atividade 3		Χ	Χ								
Atividade 4			Χ								
Atividade 5				Χ	Χ	Χ	Χ				
Atividade 6				Χ	Χ	Χ	Χ				
Atividade 7							Χ	Χ			
Atividade 8									Χ	Χ	
Atividade 9	X	Χ	Χ	Χ	Χ						
Atividade 10					Χ						
Atividade 11						Χ	Χ	Χ	Χ	Χ	Χ
Atividade 12											Χ

Cronograma 13/55

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referências

Fundamentação Teórica 14/55

Aprendizado de Máquina

- Algoritmos capazes de aprender padrões por meio de exemplos, baseando-se em dados previamente disponíveis
- As técnicas de **Aprendizado de Máquina** têm sido aplicadas com sucesso em um grande número de problemas reais em diversos domínios
- Características: natureza inferencial e a boa capacidade de generalização
- Paradigmas de aprendizado supervisionado e não-supervisionado

Fundamentação Teórica 15/58

Redes Neurais Artificiais

- Inspiradas na capacidade de processamento de informações do cérebro humano
- Neurônios artificiais são as unidades fundamentais de uma RNA
- Função de ativação fornece a resposta de um neurônio para uma dada entrada
- Neurônios artificiais são conectados entre si na forma de uma rede e distribuídos em uma ou mais camadas ocultas
- Algoritmo Backpropagation
 - Fase forward produz uma saída para uma dada entrada
 - Fase backwards calcula a diferença entre as saídas para minimizar o erro

Fundamentação Teórica 16/5

Deep Learning e Redes Neurais Convolucionais

- ▶ Deep Learning é uma subárea específica do Aprendizado de Máquina
- Redes Neurais Convolucionais (CNNs):
 - ▶ Possuem camadas hierárquicas e profundas
 - ♣ Aproveitam-se da operação matemática denominada convolução
 - Destacam-se pelo reconhecimento de padrões em dados de alta dimensionalidade

Figura 1: Papel das camadas convolucionais e feature maps das CNNs

Fundamentação Teórica 17/5.

Arquiteturas Canônicas de Redes Neurais Convolucionais

- Arquiteturas com bom desempenho em competições de Visão Computacional
- ➡ Comuns ainda hoje no cenário de Deep Learning
- LeNet (1998)
- ♣ AlexNet (2012)
- **VGG** (2014)
- Inception (2014)
- ResNet (2015)

Fundamentação Teórica 18/5

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referências

Solução Proposta 19/55

Tarefa de Aprendizado

- ▶ Problema abordado como uma tarefa de classificação binária
- > Entrada:
 - ► Imagem em escala de cinza com dimensões de 256 × 256 *pixels* contendo duas assinaturas manuscritas (uma de referência e outra para a inferência)
- **→** Saída:
 - Classificação da assinatura quanto à sua autenticidade (autêntica ou forjada)

Figura 2: Visão geral da tarefa de aprendizado considerada

Solução Proposta 20/55

Tarefa de Aprendizado

- Partição dos exemplos utilizando o método holdout
 - ► 70% para treinamento;
 - ▶ 10% para validação;
 - ▶ 20% para teste.
- Utilização das métricas Acurácia, F-score e EER (equal error rate) para análise de desempenho dos modelos

Solução Proposta 21/5:

Coleta do conjunto de Dados

- ➡ Signature Verification Competition 2009 (SigComp2009)
- Dois conjuntos de dados foram utilizados na competição:
 - Norwegian Information Security Donders Centre for Cognition (NISDCC)
 - Netherlands Forensic Institute (NFI)
- ▶ Informações *online* e *offline* das assinaturas

Tabela 2: Quantitativo de indivíduos e assinaturas offline por conjunto de dados.

Conjunto	Autores originais	Autores forjadores	Autores originais com assinaturas forjadas	Assinaturas genuínas	Assinaturas forjadas	Total de assinaturas
NISDCC	12	31	12	60	1.838	1.898
NFI	79	33	19	940	624	1.564

olução Proposta 22/5

Preparação dos Dados

- Combinação e redimensionamento das imagens
- Abordagem A
 - Separação dos exemplos autênticos conforme o método holdout
 - Exemplos **forjados** necessitaram de um diferente tipo de separação
 - Boa para a identificação da falsificação de assinaturas de autores já visto pelos modelos
- Abordagem B
 - Separação do quantitativo de autores para cada etapa conforme método holdout
 - ▶ Boa para a identificação de autores inéditos para o modelo

Solução Proposta 23/5

Preparação dos Dados

Tabela 3: Quantitativo de exemplos por finalidade na tarefa de aprendizado considerada e classe para cada abordagem.

Conjunto	Tino do Evemple	Abordage	em A	Abordagem B		
	Tipo de Exemplo	Nº de Exemplos	Proporção	Nº de Exemplos	Proporção	
Treinamento	Autêntico	9.374	54%	8.072	43%	
	Forjado	8.131	46%	10.887	57%	
Validação	Autêntico	947	46%	1.179	37%	
	Forjado	1.134	54%	1.976	63%	
Teste	Autêntico	2.257	27%	2.271	39%	
	Forjado	6.119	73%	3.577	61%	

Solução Proposta 24/5

Preparação dos Dados

Figura 3: Representação gráfica da proporção dos exemplos por classe e finalidade para as abordagens na tarefa de aprendizado considerada.

(a) Abordagem A

(b) Abordagem B

Normalização dos *pixels* das imagens ao serem fornecidas às CNNs

Solução Proposta 25/55

Modelos, Parâmetros e Hiperparâmetros Utilizados

Arquiteturas de CNNs escolhidas: LeNet, AlexNet, MobileNet, ShuffleNet, SqueezeNet, VGG-16 e InceptionV3

Tabela 4: Valores dos hiperparâmetros selecionados para a elaboração dos modelos.

Épocas	Patience	Otimizador	Função de ativação		
200	5, 10 e 15	SGD, Adam e RMSprop	ReLU, ELU, SELU e Leaky ReLU		

- Busca em grid nos hiperparâmetros quando possível
- Demais casos, hiperparâmetros típicos

iolução Proposta 26/5.

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finai
- 10. Referências

Resultados e Discussões 27/55

Resultados Finais

- ▶ Utilização de um servidor para treinamento das CNNs:
 - Processador Intel Core i7
 - ▶ 16 GB de RAM
 - ♣ GPU Nvidia GeForce GTX 1080 com 11 GB de memória
- Modelos degenerados tiveram seus resultados descartados
 - Dying ReLU problem
 - > Permanência em mínimos locais no treinamento

Resultados e Discussões 28/5.

LeNet

Tabela 5: Detalhamento dos melhores resultados obtidos com a arquitetura LeNet.

Abordagem	Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
Abordagem A	RMSprop	5	ReLU	0.9865	0.9755	1.1679
Abordagem B	Adam	10	ELU	0.8361	0.8159	12.5245

Resultados e Discussões 29/5

LeNet

Figura 5: Histórico de *loss* e acurácia durante o treinamento dos melhores modelos obtidos com a arquitetura LeNet.

Resultados e Discussões 30/55

LeNet

Figura 7: Matrizes de confusão dos melhores modelos obtidos com a arquitetura LeNet.

Resultados e Discussões 31/55

AlexNet

Tabela 6: Detalhamento dos melhores modelos obtidos com a arquitetura AlexNet para cada uma das abordagens consideradas neste trabalho.

Abordagem	Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
Abordagem A	Adam	15	ELU	0.9654	0.9393	1.5401
Abordagem B	RMSprop	5	ELU	0.8593	0.7993	13.8265

Resultados e Discussões 32/5

AlexNet

Figura 9: Histórico de *loss* e acurácia durante o treinamento dos melhores modelos obtidos com a arquitetura AlexNet.

(d) Acurácia AlexNet B.

Resultados e Discussões 33/55

AlexNet

Figura 11: Matrizes de confusão dos melhores modelos obtidos com a arquitetura AlexNet.

(b) AlexNet B

Resultados e Discussões 34/55

MobileNet

Tabela 7: Detalhamento dos melhores modelos obtidos com a arquitetura MobileNet para cada uma das abordagens consideradas neste trabalho.

Abordagem	Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
Abordagem A	SGD	15	ReLU	0.9606	0.9318	0.9304
Abordagem B	Adam	15	ReLU	0.8856	0.8658	9.9475

Resultados e Discussões 35/5

MobileNet

Figura 13: Histórico de *loss* e acurácia durante o treinamento dos melhores modelos obtidos com a arquitetura MobileNet.

(a) Loss MobileNet A.

(c) Loss MobileNet B.

(b) Acurácia MobileNet A.

(d) Acurácia MobileNet B.

Resultados e Discussões 36/55

MobileNet

Figura 15: Matrizes de confusão dos melhores modelos obtidos com a arquitetura MobileNet.

Resultados e Discussões 37/55

ShuffleNet

Tabela 8: Detalhamento dos modelos obtidos com a arquitetura ShuffleNet para cada uma das abordagens consideradas.

Abordagem	Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
Abordagem A	RMSprop	15	ReLU	0.9404	0.9004	7.5400
Abordagem B	RMSprop	15	ReLU	0.8345	0.7705	23.8151

Resultados e Discussões 38/5

ShuffleNet

Figura 17: Histórico de *loss* e acurácia durante o treinamento dos modelos obtidos com a arquitetura ShuffleNet.

(a) Loss ShuffleNet A.

(c) Loss ShuffleNet B.

(b) Acurácia ShuffleNet A.

(d) Acurácia ShuffleNet B.

Resultados e Discussões 39/55

ShuffleNet

Figura 19: Matrizes de confusão dos modelos obtidos com a arquitetura ShuffleNet.

(b) ShuffleNet B

Resultados e Discussões 40/55

SqueezeNet

Tabela 9: Detalhamento dos modelos obtidos com a arquitetura SqueezeNet para cada uma das abordagens consideradas neste trabalho.

Abordagem	Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
Abordagem A	RMSprop	15	ReLU	0.9048	0.8948	11.5074
Abordagem B	RMSprop	15	ReLU	0.8210	0.7709	20.1673

Resultados e Discussões 41/59

SqueezeNet

Figura 21: Histórico de *loss* e acurácia durante o treinamento dos modelos obtidos com a arquitetura SqueezeNet.

(a) Loss SqueezeNet A.

(c) Loss SqueezeNet B.

(b) Acurácia SqueezeNet A.

(d) Acurácia SqueezeNet B.

Resultados e Discussões 42/55

SqueezeNet

Figura 23: Matrizes de confusão dos modelos obtidos com a arquitetura SqueezeNet.

(b) SqueezeNet B

Resultados e Discussões 43/55

VGG-16

▶ Treinada apenas para abordagem B, com hiperparâmetros Ad Hoc

Tabela 10: Detalhamento do modelo obtido com a arquitetura VGG-16 para a abordagem B.

Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
RMSprop	10	ELU	0.8391	0.8019	16.1096

Resultados e Discussões 44/5

VGG-16

Figura 25: Histórico de *loss* e acurácia durante o treinamento do modelo obtido com a arquitetura VGG-16.

Resultados e Discussões 45/55

VGG-16

Figura 27: Matriz de confusão do modelo obtido com a arquitetura VGG-16.

Resultados e Discussões 46/55

InceptionV3

▶ Treinada apenas para abordagem B, com hiperparâmetros Ad Hoc

Tabela 11: Detalhamento do modelo obtido com a arquitetura Inception-V3 para a abordagem B.

Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
RMSprop	5	ELU	0.8394	0.8070	16.9493

Resultados e Discussões 47/5.

InceptionV3

Figura 28: Histórico de *loss* e acurácia durante o treinamento do modelo obtido com a arquitetura InceptionV3.

(b) Acurácia InceptionV3 B.

Resultados e Discussões 48/55

InceptionV3

Figura 30: Matriz de confusão do modelo obtido com a arquitetura InceptionV3.

Resultados e Discussões 49/55

Agenda

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais
- 10. Referência:

Considerações Finais 50/55

▶ 222 redes foram treinadas e testadas com um total de 27.962 exemplos

Considerações Finais 51/58

- Melhor desempenho Abordagem A: LeNet
 - ▶ Parâmetros e Hiperparâmetros: Otimizador RMSprop, patience 5 e função de ativação Leaky ReLU.

Acurácia: 0.9865

F-Score: 0.9755

EER: 1.17%

Considerações Finais 51/58

- Melhor desempenho Abordagem A: LeNet
 - ▶ Parâmetros e Hiperparâmetros: Otimizador RMSprop, patience 5 e função de ativação Leaky ReLU.
 - **Acurácia**: 0.9865
 - **F-Score**: 0.9755
 - **EER**: 1.17%
- Melhor desempenho Abordagem B: MobileNet
 - ▶ Parâmetros e Hiperparâmetros: Otimizador Adam, patience 15 e função de ativação ReLU.
 - **Acurácia**: 0.8856
 - **F-Score**: 0.8658
 - **EER**: 9.94%

Considerações Finais 51/

- Trabalhos futuros:
 - Encontrar modelos mais compactos
 - Remoção de mapas de calor afim de ajudar na checagem de assinaturas por revisores humanos

Considerações Finais 52/55

Agenda

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados e Discussões
- 9. Considerações Finais

10. Referências

Referências 53/55

Referências

- BRAGA, A. de P.; CARVALHO, A. P. de Leon F. de; LUDERMIR, T.B. Redes Neurais Artificiais: Teorias e Aplicações. Rio de Janeiro, RJ: Livros Técnicos e Científicos Editora S.A., 2000.
- BLANKERS, V. L. et al. The icdar 2009 signature verification competition. In: 10th International Conference on Document Analysis and Recognition. Barcelona, Catalonia, Spain: IEEE, 2009. p. 1403-1407.
- * KHAN, S. et. al. A Guide to Convolutional Neural Networks for Computer Vision. Austrália: Morgan & Claypool, 2018.
- LIWICKI, M. IAPR TC11 ICDAR 2009 Signature Verification Competition (SigComp2009). 2012. Disponível em: hhttp://www.iapr-tc11.org/mediawiki/index.php?title=IAPR-TC11:Reading Systemsi. Acesso em 5 de março de 2019.

Referências 54/5

Verificação da Autenticidade de Assinaturas Manuscritas Utilizando Redes Neurais Convolucionais

Defesa do Trabalho de Conclusão de Curso II

por

Marcos Wenneton V. de Araujo

Orientadora: Elloá B. Guedes

{mwvda.eng, ebgcosta}@uea.edu.br

do

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Manaus - Amazonas - Brasil