covid19-notebook

December 30, 2020

1 Visualisation of COVID-19 datas

The goal of this notebook is to display on a Choropleth map informations related to COVID-19 at different moment in time. We will use the open source dataset maintained by *Our World in Data*.

1.0.1 Table of content

- 1. Fetching the dataset
- 2. Understanding and preparation of the data
- 3. Building the Choropleth map

1.1 1. Fetching the dataset

First of all we need to import different libraries in order to get the datas, work with them and visualize them.

```
[1]: import numpy as np # Library to handle data in a vectorized manner
import pandas as pd # Library for data analsysis
import branca.colormap as cmp
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import json # Library to handle JSON files

!pip3 install folium # Install the folium library
import folium # Map rendering library
```

```
Requirement already satisfied: folium in /usr/local/lib/python3.7/site-packages (0.11.0)

Requirement already satisfied: jinja2>=2.9 in /usr/local/lib/python3.7/site-packages (from folium) (2.10.3)

Requirement already satisfied: requests in /usr/local/lib/python3.7/site-packages (from folium) (2.22.0)

Requirement already satisfied: branca>=0.3.0 in /usr/local/lib/python3.7/site-packages (from folium) (0.4.1)

Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from folium) (1.18.1)

Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/site-packages (from jinja2>=2.9->folium) (1.1.1)

Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.7/site-
```

```
packages (from requests->folium) (2.8)
Requirement already satisfied: certifi>=2017.4.17 in
/usr/local/lib/python3.7/site-packages (from requests->folium) (2019.11.28)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in
/usr/local/lib/python3.7/site-packages (from requests->folium) (1.25.8)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in
/usr/local/lib/python3.7/site-packages (from requests->folium) (3.0.4)
```

Now that all necessary libraries have been imported, we need to put the dataset into a pandas dataframe. To do so we will use the read_csv function offered by pandas to get datas directly from the link of the repository.

Dataset successfully downloaded !

0

1

2

3

Now that the dataset have been downloaded and transformed into a dataframe, we analyse the content of the dataframe.

```
[3]: covid_df.head()
[3]:
       iso_code continent
                                location
                                                  date
                                                        total cases
                                                                      new cases
     0
             AFG
                      Asia
                             Afghanistan
                                           2020-02-24
                                                                 1.0
                                                                             1.0
             AFG
                             Afghanistan
                                                                 1.0
                                                                             0.0
     1
                      Asia
                                           2020-02-25
     2
             AFG
                      Asia
                             Afghanistan
                                           2020-02-26
                                                                 1.0
                                                                             0.0
                                           2020-02-27
     3
            AFG
                             Afghanistan
                                                                 1.0
                                                                             0.0
                      Asia
            AFG
                             Afghanistan
                      Asia
                                           2020-02-28
                                                                 1.0
                                                                             0.0
        new_cases_smoothed
                              total_deaths
                                             new_deaths
                                                          new_deaths_smoothed
     0
                        NaN
                                        NaN
                                                     NaN
     1
                        NaN
                                        NaN
                                                     NaN
                                                                            NaN
     2
                        NaN
                                        NaN
                                                     NaN
                                                                            NaN
     3
                        NaN
                                        NaN
                                                     NaN
                                                                            NaN
     4
                        NaN
                                        NaN
                                                     NaN
                                                                            NaN
        total_cases_per_million
                                   new_cases_per_million
     0
                            0.026
                                                     0.026
     1
                            0.026
                                                     0.000
     2
                            0.026
                                                     0.000
     3
                            0.026
                                                     0.000
                            0.026
                                                     0.000
                                           total_deaths_per_million
        new_cases_smoothed_per_million
```

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

4		NaN		NaN			
•	_	new_deaths_smc	othed_per_m		reproductio		/
0	NaN			NaN N-N		NaN N-N	
1	NaN			NaN		NaN	
2	NaN			NaN N-N		NaN N-N	
3	NaN			NaN N-N		NaN N-N	
4	NaN			NaN		NaN	
	icu_patients icu_patie	nts_per_million	hosp_pati	onta \			
0	NaN	ncs_per_miiiion NaN		ents \ NaN			
1	NaN	NaN		NaN			
2	NaN	NaN		NaN			
3	NaN	NaN		NaN			
4	NaN	NaN		NaN			
-	IVAIV	Nan		IVAIV			
	hosp_patients_per_million	on weekly_icu_	admissions	\			
0		aN	NaN	`			
1		aN	NaN				
2		aN	NaN				
3		aN	NaN				
4		aN	NaN				
_							
	weekly_icu_admissions_p	er million wee	kly_hosp_ad	missions	\		
0	V = -	NaN	V = 1 =	NaN			
1		NaN		NaN			
2		NaN		NaN			
3		NaN		NaN			
4		NaN		NaN			
	weekly_hosp_admissions_	per_million ne	w_tests to	tal_test	s \		
0		NaN	NaN	Na	N		
1		NaN	NaN	Na	N		
2		NaN	NaN	Na	N		
3		NaN	NaN	Na	N		
4		NaN	NaN	Na	N		
	total_tests_per_thousand	_		new_tes	ts_smoothed		
0	Nal		NaN		NaN		
1	Nal		NaN		NaN		
2	NaN NaN		NaN				
3	Nal		NaN		NaN		
4	Nal	N	NaN		NaN	I	
							,
•	new_tests_smoothed_per_			ests_per	_case tests		\
0		NaN	NaN		NaN	NaN	
1		NaN	NaN		NaN	NaN	

2		NaN		NaN		NaN	NaN
3		NaN		NaN		NaN	NaN
4		NaN		NaN		NaN	NaN
_	total_vaccinations	total_vacci	nations_per_	=	string	ency_index	\
0	NaN			NaN		8.33	
1	NaN			NaN		8.33	
2	NaN			NaN		8.33	
3	NaN			NaN		8.33	
4	NaN			NaN		8.33	
	population popula	tion_density	median_age	aged_6	5 older	aged_70_o]	lder \
0	38928341.0	54.422	18.6	agoa_o	2.581	_	.337
1	38928341.0	54.422	18.6		2.581		.337
2	38928341.0	54.422	18.6		2.581		.337
3	38928341.0	54.422	18.6		2.581		. 337
4	38928341.0	54.422	18.6		2.581		. 337
4	30920341.0	34.422	10.0		2.561	Ι.	, 331
	gdp_per_capita ex	treme_poverty	cardiovaso	_death_1	rate \		
0	1803.987	NaN		597	.029		
1	1803.987	NaN		597	.029		
2	1803.987	NaN		597	.029		
3	1803.987	NaN		597	.029		
4	1803.987	NaN		597			
	diabetes_prevalenc		_	mokers	handwas	hing_facil	
0	9.5		NaN	NaN			7.746
1	9.5		NaN	NaN		37	7.746
2	9.5	9	NaN	NaN		37	7.746
3	9.5	9	NaN	NaN		37	7.746
4	9.5	9	NaN	NaN		37	7.746
^	hospital_beds_per_		e_expectancy		_aeveTob	ment_index	
0		0.5	64.83			0.498	
1		0.5	64.83			0.498	
2		0.5	64.83			0.498	
3		0.5	64.83			0.498	
4		0.5	64.83	3		0.498	

1.2 2. Understanding and preparation of the data

Now that we have correctly save the dataset we need to keep only few columns for this representation. We only want to display the total cases in each country over time. To do so we extract 5 columns: - iso code - continent - location - date - total cases

The others columns could be very useful in a more advanced context were the cause of contamination could be searched.

```
[4]: simp_covid_df = covid_df[['iso_code', 'continent', 'location', 'date',

→'total_cases']]
simp_covid_df['location'].unique()

# We don't want the general number of case so we remove the 'World' entry
simp_covid_df = simp_covid_df[simp_covid_df.location != 'World']
```

Since we only want to check a specific date we need to create a new DataFrame with only the values of the desired day. Here we choose the christmas day.

```
[5]: xmas_df = simp_covid_df[simp_covid_df['date'] == '2020-12-25'] xmas_df.head(50)
```

[5]:		iso_code	continent	location	date	\
	305	AFG	Asia	Afghanistan	2020-12-25	
	601	ALB	Europe	Albania	2020-12-25	
	910	DZA	Africa	Algeria	2020-12-25	
	1213	AND	Europe	Andorra	2020-12-25	
	1498	AGO	Africa	Angola	2020-12-25	
	1790	ATG	North America	Antigua and Barbuda	2020-12-25	
	2122	ARG	South America	Argentina	2020-12-25	
	2426	ARM	Asia	Armenia	2020-12-25	
	2765	AUS	Oceania	Australia	2020-12-25	
	3074	AUT	Europe	Austria	2020-12-25	
	3379	AZE	Asia	Azerbaijan	2020-12-25	
	3668	BHS	North America	Bahamas	2020-12-25	
	3978	BHR	Asia	Bahrain	2020-12-25	
	4280	BGD	Asia	Bangladesh	2020-12-25	
	4568	BRB	North America	Barbados	2020-12-25	
	4874	BLR	Europe	Belarus	2020-12-25	
	5204	BEL	Europe	Belgium	2020-12-25	
	5486	BLZ	North America	Belize	2020-12-25	
	5775	BEN	Africa	Benin	2020-12-25	
	6074	BTN	Asia	Bhutan	2020-12-25	
	6368	BOL	South America	Bolivia	2020-12-25	
	6668	BIH	Europe	Bosnia and Herzegovina	2020-12-25	
	6943	BWA	Africa	Botswana	2020-12-25	
	7251	BRA	South America	Brazil	2020-12-25	
	7547	BRN	Asia	Brunei	2020-12-25	
	7844	BGR	Europe	Bulgaria	2020-12-25	
	8139	BFA	Africa	Burkina Faso	2020-12-25	
	8413	BDI	Africa	Burundi	2020-12-25	
	8751	KHM	Asia	Cambodia	2020-12-25	
	9050	CMR	Africa	Cameroon	2020-12-25	
	9389	CAN	North America	Canada	2020-12-25	
	9674	CPV	Africa	Cape Verde	2020-12-25	
	9964	CAF	Africa	Central African Republic	2020-12-25	

10250	TCD	Africa	Chad	2020-12-25
10561	CHL	South America	Chile	2020-12-25
10904	CHN	Asia	China	2020-12-25
11203	COL	South America	Colombia	2020-12-25
11447	COM	Africa	Comoros	2020-12-25
11737	COG	Africa	Congo	2020-12-25
12036	CRI	North America	Costa Rica	2020-12-25
12330	CIV	Africa	Cote d'Ivoire	2020-12-25
12639	HRV	Europe	Croatia	2020-12-25
12932	CUB	North America	Cuba	2020-12-25
13228	CYP	Europe	Cyprus	2020-12-25
13566	CZE	Europe	Czechia	2020-12-25
13860	COD	Africa	Democratic Republic of Congo	2020-12-25
14198	DNK	Europe	Denmark	2020-12-25
14485	DJI	Africa	Djibouti	2020-12-25
14768	DMA	North America	Dominica	2020-12-25
15072	DOM	North America	Dominican Republic	2020-12-25

total_cases 50810.0 55380.0

910 97441.0 1213 7756.0

305

601

1498 17099.0 1790 155.0

2122 1574554.0 2426 156763.0

2765 28297.0

3074 349055.0 3379 211764.0

3668 7788.0

3978 91304.0 4280 507265.0

4568 347.0

4874 183006.0

5204 637246.0

5486 10490.0

5775 3205.0 6074 576.0

6368 153590.0

6668 108891.0

6943 14025.0

7251 7448560.0 7547 152.0

7844 196915.0

8139 6134.0

8413 786.0

```
8751
              363.0
9050
            26277.0
9389
           540939.0
9674
            11696.0
9964
             4948.0
10250
             1971.0
10561
          595831.0
10904
            95460.0
11203
         1574707.0
11447
              715.0
11737
             6571.0
12036
           162990.0
12330
            22081.0
12639
           203962.0
12932
            10900.0
13228
            19366.0
13566
           664863.0
13860
            16472.0
14198
           149926.0
14485
             5804.0
14768
               88.0
15072
          165035.0
```

It seems to have large gaps between total cases. This will be an issue in the choropleth map because there will not be enough color shade and thus, the map will not have much interest. Let's check using a plot to make sure it's not only on the 50 first rows.

```
[6]: xmas_df.plot.bar(x='iso_code', y='total_cases')
```

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x126b9ea50>

The legend on the plot is not really understandable but what we can see is that the total number of cases have large gaps. In order to solve the problem for the representation we will create a new column with the natural logarithm value of the total_cases in order to normalise the data and see the variations on the map.

```
[7]: xmas_df['natural_log'] = np.log(xmas_df['total_cases'])
xmas_df.plot.bar(x='iso_code', y='natural_log')
```

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:1:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel.

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x127719d10>

Now that the data have been normalised and that the values seems more close to each other, let's create the choropleth map in order to visualise the evolution of COVID-19 across the world.

1.3 3. Building the Choropleth map

We isolated the wanted columns but now we need to display it on a Choropleth map. First we will do a fixed map with the datas on the day of christmas and then we will do an interactive map with all the available datas from February 24th 2020 to today.

To do so we need to get a GeoJSON file in order to link data to countries on the map. This open source file is perfect for what we are looking for. An other solution would have to generate the map using this website.

Geo JSON file downloaded !

Now that we have the GeoJSON file, let's create a world map centered on the coordinates [0,0].

```
[9]: world_geo = r'countries.geo.json'
```

And now to create the Choropleth map, we will use the *choropleth* method with the following main parameters:

- 1. world_geo, which is the GeoJSON file.
- 2. xmas_df, which is the dataframe containing the data.
- 3. columns, which represents the columns in the dataframe that will be used to create the Choropleth map.
- 4. key_on, which is the key or variable in the GeoJSON file that contains the name of the variable of interest.

```
[10]: static_map = folium.Map(location=[0, 0], zoom_start=2)

folium.Choropleth(
    geo_data=world_geo,
    data=xmas_df,
    columns=['iso_code', 'natural_log'],
    key_on='feature.id',
    fill_color='OrRd',
    fill_opacity=0.7,
    line_opacity=0.2,
    legend_name='Number of COVID Cases in the world on Christmas 2020'
).add_to(static_map)
```

[10]: <folium.features.Choropleth at 0x127f15a90>

```
[12]: static_map
```

[12]: <folium.folium.Map at 0x127f15050>

As we can see from the map, it's mostly the countries in the north of the emispherere that are affected by the virus. It can be explained by different factors. Either it's because of the temperature because she is lower in the north but we can see that in south america there is a large amount of case so it's not only this. Since the virus is more effective in the cold it's a tangible explanation. An other possibility is that the number of test performed and the population amount of the countries are inequal so the number are biased.

Either way we can see that the virus is more present in richer country where the health cares are better. It shows that the life lived by those richer population are not optimal to defeat the virus. It also demonstrate that poorer countries can't be tested enough.

[]: