Joint Simulation

Matthias Müller, Ten Minute Physics matthiasmueller.info/tenMinutePhysics

Simulation Model

- XPBD: Extended Position Based Dynamics, (tutorial 9)
- Simple to Implement
- Unconditionally stable!
- Physically derived (unlike PBD)

Traditional Methods:
 Solve complicated large systems of complementarity problems

$$0 \leq \begin{bmatrix} {}^{\boldsymbol{u}}\mathbf{J}_{n}^{(\ell)}\mathbf{u}^{(\ell+1)} + \frac{{}^{\boldsymbol{u}}\mathbf{C}_{n}^{(\ell)}}{\Delta t} + \frac{\partial^{\boldsymbol{u}}\mathbf{C}_{n}^{(\ell)}}{\partial t} \\ {}^{\boldsymbol{u}}\mathbf{D}^{T}{}^{\boldsymbol{u}}\mathbf{J}_{f}\mathbf{u}^{(\ell+1)} + {}^{\boldsymbol{u}}\mathbf{E}^{\boldsymbol{u}}\boldsymbol{\beta} \\ {}^{\boldsymbol{b}}\mathbf{D}^{T}{}^{\boldsymbol{b}}\mathbf{J}_{f}\mathbf{u}^{(\ell+1)} + {}^{\boldsymbol{b}}\mathbf{E}^{\boldsymbol{b}}\boldsymbol{\beta} \\ \mathbf{U}^{\boldsymbol{u}}\mathbf{p}_{n}^{(\ell+1)} - {}^{\boldsymbol{u}}\mathbf{E}^{T\boldsymbol{u}}\boldsymbol{\alpha} \\ {}^{\boldsymbol{b}}\mathbf{p}_{f}\max - {}^{\boldsymbol{b}}\mathbf{E}^{T\boldsymbol{b}}\boldsymbol{\alpha} \end{bmatrix} \perp \begin{bmatrix} {}^{\boldsymbol{u}}\mathbf{p}^{(\ell+1)} \\ {}^{\boldsymbol{u}}\boldsymbol{\alpha} \\ {}^{\boldsymbol{b}}\boldsymbol{\alpha} \\ {}^{\boldsymbol{u}}\boldsymbol{\beta} \\ {}^{\boldsymbol{b}}\boldsymbol{\beta} \end{bmatrix} \geq 0.$$

$$+ \frac{1}{2} \left((\Delta \mathbf{q})^{T} \frac{\partial^{2} \kappa_{C_{i\sigma}}}{\partial \mathbf{q}^{2}} \Delta \mathbf{q} + \frac{\partial^{2} \kappa_{C_{i\sigma}}}{\partial \mathbf{q}^{2}$$

$$\widehat{{}^{\kappa}C_{i\sigma}}(\tilde{\mathbf{q}}, \tilde{t}) = {}^{\kappa}C_{i\sigma}(\mathbf{q}, t)$$

$$+ \frac{\partial^{\kappa}C_{i\sigma}}{\partial \mathbf{q}} \Delta \mathbf{q} + \frac{\partial^{\kappa}C_{i\sigma}}{\partial t} \Delta t$$

$$+ \frac{1}{2} \left((\Delta \mathbf{q})^{T} \frac{\partial^{2\kappa}C_{i\sigma}}{\partial \mathbf{q}^{2}} \Delta \mathbf{q} + 2 \frac{\partial^{2\kappa}C_{i\sigma}}{\partial \mathbf{q}\partial t} \Delta \mathbf{q} \Delta t + \frac{\partial^{2\kappa}C_{i\sigma}}{\partial t^{2}} \Delta t^{2} \right)$$

$${}^{\kappa}\mathbf{J}_{i\sigma} = \frac{\partial ({}^{\kappa}\mathbf{C}_{i\sigma})}{\partial \mathbf{q}} \mathbf{H}$$

$${}^{\kappa}\mathbf{k}_{i\sigma}(\mathbf{q}, \mathbf{u}, t) = \frac{\partial ({}^{\kappa}\mathbf{C}_{i\sigma})}{\partial \mathbf{q}} \frac{\partial \mathbf{H}}{\partial t} \mathbf{u} + \frac{\partial^{2}({}^{\kappa}\mathbf{C}_{i\sigma})}{\partial \mathbf{q}\partial t} \mathbf{H} \mathbf{u} + \frac{\partial^{2}({}^{\kappa}\mathbf{C}_{i\sigma})}{\partial t^{2}},$$

XPBD: Forward execution of simple formulas that are easy to understand

Rigid Body Simulation Recap

Tutorial 22

XPBD Algorithm for Particles

while simulating

for all particles i $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \mathbf{g}$ $\mathbf{p}_i \leftarrow \mathbf{x}_i$ $\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$

for n iterations for all constraints Csolve $(C, \Delta t)$

for all particles i $\mathbf{v}_i \leftarrow (\mathbf{x}_i - \mathbf{p}_i)/\Delta t$

solve(C, Δt):

for all particles i in Ccompute $\Delta \mathbf{x}_i$ $\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta \mathbf{x}_i$

Sub-Stepping

Magic trick: Much faster convergence (like a global solver):

while simulating

for all particles i $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \mathbf{g}$ $\mathbf{p}_i \leftarrow \mathbf{x}_i$ $\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$

for *n* iterations

for all constraints C solve(C, Δt)

for all particles i $\mathbf{v}_i \leftarrow (\mathbf{x}_i - \mathbf{p}_i)/\Delta t$

while simulating

for *n* sub-steps

for all particles i $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \mathbf{g}$ $\mathbf{p}_i \leftarrow \mathbf{x}_i$

 $\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta t \, \mathbf{v}_i$

for all constraints C solve(C, Δt)

for all particles i $\mathbf{v}_i \leftarrow (\mathbf{x}_i - \mathbf{p}_i)/\Delta t$

Orientational Quantities

A rigid body also has

- an orientation q
- an angular velocity ω
- and the moment of inertia I

XPBD Algorithm for Rigid Bodies

```
while simulating
         for n sub-steps
                  for all bodies i
                          integrate \mathbf{v}_i, \mathbf{x}_i, \boldsymbol{\omega}_i, \mathbf{q}_i
                  for all constraints C
                          solve(C, \Delta t)
                  for all bodies i
                          update \mathbf{v}_i, \boldsymbol{\omega}_i
```

```
solve(C, \Delta t):

for all bodies i in C

compute \Delta \mathbf{x}_i, \Delta \mathbf{q}_i

\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta \mathbf{x}_i

\mathbf{q}_i \leftarrow \mathbf{q}_i + \Delta \mathbf{q}_i
```

Constraints

Distance Constraint

Linear Correction

ApplyLinearCorrection($p_1, p_2, \Delta p, \alpha$)

$$C \leftarrow |\Delta \mathbf{p}|$$
$$\mathbf{n} \leftarrow \Delta \mathbf{p} / |\Delta \mathbf{p}|$$

$$w_i \leftarrow m_i^{-1} + ((\mathbf{p}_i - \mathbf{x}_i) \times \mathbf{n})^{\mathrm{T}} \mathbf{I}_i^{-1} ((\mathbf{p}_i - \mathbf{x}_i) \times \mathbf{n})$$
$$\lambda \leftarrow -C \cdot (w_1 + w_2 + \frac{\alpha}{\Delta t^2})^{-1}$$

$$\mathbf{x}_i \leftarrow \mathbf{x}_i \pm \lambda \mathbf{n} \ m_i^{-1}$$

$$\mathbf{q}_i \leftarrow \mathbf{q}_i \pm \frac{1}{2} \lambda \left[\mathbf{I}_i^{-1} \left((\mathbf{p}_i - \mathbf{x}_i) \times \mathbf{n} \right), 0 \right] \mathbf{q}_i$$

- Compliance α is the inverse of stiffness
- w is the inverse of mass
- Stable handling of infinite stiffness: $\alpha = 0$
- Stable handling of infinite mass: $w_i = 0$
- $\lambda \mathbf{n}/\Delta t^2$ yields the constraint force

Orientation Constraint

Angular Correction

ApplyAngularCorrection($\Delta \varphi$, α)

$$C \leftarrow |\Delta \boldsymbol{\varphi}|$$

$$\mathbf{n} \leftarrow \Delta \boldsymbol{\varphi} / |\Delta \boldsymbol{\varphi}|$$

$$w_i \leftarrow \mathbf{n}^T \mathbf{I}_i^{-1} \mathbf{n}$$

$$\lambda \leftarrow -C \cdot (w_1 + w_2 + \frac{\alpha}{\Delta t^2})^{-1}$$

 $\mathbf{q}_i \leftarrow \mathbf{q}_i \pm \frac{1}{2} \lambda \left[\mathbf{I}_i^{-1} \mathbf{n}, 0 \right] \mathbf{q}_i$

 $\lambda \mathbf{n}/\Delta t^2$ yields the constraint torque

Building Blocks

Attach Bodies

Attach $(\mathbf{p}_1, \mathbf{p}_2, d_{rest}, \alpha)$

$$d \leftarrow |\mathbf{p}_2 - \mathbf{p}_1|$$
$$\mathbf{n} \leftarrow (\mathbf{p}_2 - \mathbf{p}_1)/|\mathbf{p}_2 - \mathbf{p}_1|$$

ApplyLinearCorrection(\mathbf{p}_1 , \mathbf{p}_2 , $-(d-d_{rest})\mathbf{n}$, α)

Restrict to Axis

RestrictToAxis(a, \mathbf{p}_1 , \mathbf{p}_2 , p_{min} , p_{max} , α)

$$\begin{aligned} \mathbf{p} &\leftarrow \mathbf{p}_2 - \mathbf{p}_1 \\ p &\leftarrow \mathbf{a} \cdot \mathbf{p} \end{aligned}$$
 if $p < p_{min}$ then $p \leftarrow p_{min}$ else if $p > p_{max}$ then $p \leftarrow p_{max}$ $\mathbf{p} \leftarrow \mathbf{p} - p\mathbf{a}$

ApplyLinearCorrection(\mathbf{p}_1 , \mathbf{p}_2 , $-\mathbf{p}$, α)

Align two Axes

AlignAxes (a_1, a_2, α)

ApplyAngularCorrection $(-\mathbf{a}_1 \times \mathbf{a}_2, \alpha)$

Limit Angle


```
LimitAngle(\mathbf{n}, \mathbf{a}_1, \mathbf{a}_2, \varphi_{min}, \varphi_{max}, \alpha)

\varphi \leftarrow angle(\mathbf{n}, \mathbf{a}_1, \mathbf{a}_2)

if \varphi < \varphi_{min} or \varphi > \varphi_{max}
\varphi \leftarrow clamp(\varphi, \varphi_{min}, \varphi_{max})
\mathbf{q} \leftarrow rotation(\mathbf{n}, \varphi)
\mathbf{a}_2' \leftarrow \mathbf{q} \odot \mathbf{a}_1

ApplyAngularCorrection(-\mathbf{a}_2 \times \mathbf{a}_2', \alpha)
```

Joints

Attachment Frames (2d)

Rest state stored on the body

Current state

Hinge Joint

Attach(\mathbf{p}_1 , \mathbf{p}_2 , $d_{rest} = 0$, $\alpha = 0$)

AlignAxes(a_1 , a_2 , $\alpha = 0$)

LimitAngle(\mathbf{a}_1 , \mathbf{b}_1 , \mathbf{b}_2 , φ_{min} , φ_{max} , $\alpha=0$)

Servo

Attach(\mathbf{p}_1 , \mathbf{p}_2 , $d_{rest} = 0$, $\alpha = 0$)

AlignAxes(\mathbf{a}_1 , \mathbf{a}_2 , $\alpha = 0$)

LimitAngle(\mathbf{a}_1 , \mathbf{b}_1 , \mathbf{b}_2 , φ_{servo} , φ_{servo} , $\alpha = 0$)

Velocity Motor

Attach(\mathbf{p}_1 , \mathbf{p}_2 , $d_{rest} = 0$, $\alpha = 0$)

AlignAxes(a_1 , a_2 , $\alpha = 0$)

LimitAngle(\mathbf{a}_1 , \mathbf{b}_1 , \mathbf{b}_2 , φ_{motor} , φ_{motor} , $\alpha = 0$)

 $\varphi_{motor} \leftarrow \varphi_{motor} + \Delta t \ \omega_{motor}$

Ball Joint

Attach(
$$\mathbf{p}_1$$
, \mathbf{p}_2 , $d_{rest} = 0$, $\alpha = 0$)

$$\mathbf{n} \leftarrow (\mathbf{a}_1 \times \mathbf{a}_2)/|\mathbf{a}_1 \times \mathbf{a}_2|$$

LimitAngle(n, \mathbf{a}_1 , \mathbf{a}_2 , 0, φ_{swing_max} , $\alpha = 0$)

$$\mathbf{n} \leftarrow (\mathbf{a}_1 + \mathbf{a}_2)/|\mathbf{a}_1 + \mathbf{a}_2|$$

$$\mathbf{b_1}' \leftarrow \mathbf{b_1} - \mathbf{n}(\mathbf{n} \cdot \mathbf{b_1})$$

$$\mathbf{b_2}' \leftarrow \mathbf{b_2} - \mathbf{n}(\mathbf{n} \cdot \mathbf{b_2})$$

LimitAngle(n, \mathbf{b}_1' , \mathbf{b}_2' , φ_{twist_min} , φ_{twist_max} , $\alpha = 0$)

Prismatic Joint

RestrictToAxis(\mathbf{a}_1 , \mathbf{p}_1 , \mathbf{p}_2 , p_{min} , p_{max} , α)

AlignAxes(\mathbf{a}_1 , \mathbf{a}_2 , $\alpha = 0$)

LimitAngle(\mathbf{a}_1 , \mathbf{b}_1 , \mathbf{b}_2 , φ_{min} , φ_{max} , α)

Cylinder

RestrictToAxis(\mathbf{a}_1 , \mathbf{p}_1 , \mathbf{p}_2 , p_{target} , p_{target} , $\alpha = 0$)

AlignAxes(\mathbf{a}_1 , \mathbf{a}_2 , $\alpha = 0$)

LimitAngle $(a_1, b_1, b_2, \varphi_{cylinder}, \varphi_{cylinder}, \alpha)$

Velocity Level

Forces, Torques, Damping

Velocity Step

while simulating

for *n* sub-steps

for all bodies i integrate \mathbf{v}_i , \mathbf{x}_i , $\boldsymbol{\omega}_i$, \mathbf{q}_i

for all constraints C solve(C, Δt)

for all bodies i update \mathbf{v}_i , $\boldsymbol{\omega}_i$

for all constraints *C* apply velocity corrections

Linear Velocity Correction

ApplyLinearVelocityCorrection $(p_1, p_2, \Delta v)$

$$\Delta v \leftarrow |\Delta \mathbf{v}|$$

$$\mathbf{n} \leftarrow |\Delta \mathbf{v}| / |\Delta \mathbf{v}|$$

$$w_i \leftarrow m_i^{-1} + ((\mathbf{p}_i - \mathbf{x}_i) \times \mathbf{n})^{\mathrm{T}} \mathbf{I}_i^{-1} ((\mathbf{p}_i - \mathbf{x}_i) \times \mathbf{n})$$

$$\lambda \leftarrow -\Delta v \cdot (w_1 + w_2)^{-1}$$

$$\mathbf{v}_i \leftarrow \mathbf{v}_i \pm \lambda \mathbf{n} \ m_i^{-1}$$

$$\mathbf{\omega}_i \leftarrow \mathbf{\omega}_i \pm \lambda \mathbf{I}_i^{-1} \ (\mathbf{r}_i \times \mathbf{n})$$

Angular Velocity Correction

ApplyAngularVelocityCorrection(Δω)

$$\Delta\omega \leftarrow |\Delta\omega|$$

$$\mathbf{n} \leftarrow |\Delta\omega|/|\Delta\omega|$$

$$w_i \leftarrow \mathbf{n}^T \mathbf{I}_i^{-1} \mathbf{n}$$

$$\lambda \leftarrow \Delta\omega \cdot (w_1 + w_2)^{-1}$$

$$\boldsymbol{\omega}_i \leftarrow \boldsymbol{\omega}_i \pm \lambda \mathbf{I}_i^{-1} \mathbf{n}$$

Linear Damping

DampLinear(\mathbf{p}_1 , \mathbf{p}_2 , \mathbf{n} , c_{linear})

$$\Delta \mathbf{v} \leftarrow \mathbf{v}_2 + (\mathbf{p}_2 - \mathbf{x}_2) \times \boldsymbol{\omega}_2 - \mathbf{v}_1 - (\mathbf{p}_1 - \mathbf{x}_1) \times \boldsymbol{\omega}_1$$

$$\Delta v \leftarrow \mathbf{n} \cdot \Delta \mathbf{v}$$

$$\Delta v \leftarrow \Delta v \min(\Delta t \ c_{linear}, 1)$$

ApplyLinearVelocityCorrection(\mathbf{p}_1 , $\overline{\mathbf{p}_2}$, $-\Delta v \mathbf{n}$)

Angular Damping

DampAngular(n, c_{angular})

$$\Delta \omega \leftarrow \omega_2 - \omega_1$$

$$\Delta\omega \leftarrow \mathbf{n} \cdot \Delta\omega$$

$$\Delta\omega \leftarrow \Delta\omega \min(\Delta t c_{angular}, 1)$$

ApplyAngularVelocityCorrection $(-\Delta \omega \mathbf{n})$

Apply a Cylinder Force

ApplyForce(f)

ApplyLinearVelocityCorrection(\mathbf{p}_1 , \mathbf{p}_2 , $\frac{f}{\Delta t}$ \mathbf{a})

Apply a Motor Torque

ApplyTorque(τ)

ApplyAngularVelocityCorrection $(\frac{\tau}{\Delta t}a)$

See you in the next tutorial...