

Měření impedance třemi Voltmetry

Martin Zlámal

© Datum poslední revize 27. října 2013 \LaTeX

Obsah

1	Zadání	2			
2	Teoretický úvod	2			
3	Schéma zapojení	3			
4	Postup měření	3			
5	Naměřené a dopočítané hodnoty	3			
6	Grafy				
7	Závěr				
8	Přístroje	5			
Se	eznam obrázků				
	1 Schéma zapojení	3 5			
Se	eznam tabulek				
	Naměřené a dopočítané hodnoty pro induktor	3 4			

1 Zadání

- 1. Metodou třech voltmetrů změřte impedanci předložené cívky. Určete činný odpor, reaktanci při kmitočtu 50Hz a indukčnost cívky.
- 2. Měření opakujte pro tři různé odpory pomocného normálu odporu R_N .
- 3. Změřená napětí a dopočítaný proud zakreslete do fázorových diagramů.
- 4. Stanovte pro jakou hodnotu normálu R_N je měření nejpřesnější.

2 Teoretický úvod

Metody měření impedancí

Impedanci měříme při střídavém proudu, aby nedošlo pouze ke změření činné složky impedance. Měřiti můžeme například voltmetrem, ampérmetrem a wattmetrem, nebo pomocí tří ampérmetrů, popř. voltmetrů, což je způsob řešení v této práci. Impedance se dají také měřit číslicově případně můstkem.

Metoda tří voltmetrů

Meřená impedance je zapojena v sérii s odporovým normálem. Pomocí tří voltmetrů měříme efektivní hodnoty úbytků napětí na normálu, měřené impedanci a napětí celkové.

Náhradní zapojení cívky

Náhradním zapojením cívky myslíme zapojení ideální cívky do série s s odporem vlastního vinutí. V takovém případě je $Z=R+j\omega L$. Velikost impedance je v tomto případě $|Z|=\sqrt{R^2+\omega^2L^2}$. Pro případ zapojení ideální cívky paralelně k odporu vlastního vinutí by platilo, že $Z=\frac{j\omega RL}{R+j\omega L}$. V takovém případě je velikost impedance $|Z|=\frac{|\omega RL|}{\sqrt{R^2+\omega^2L^2}}$.

3 Schéma zapojení

Obrázek 1: Schéma zapojení

4 Postup měření

Při měření byl k dispozici pouze jeden voltmetr, takže obvod zapojíme podle schématu, ale vždy budeme měnit pozici voltmetru. Do tabulky si zaznamenáváme jednotlivé hodnoty napětí na normálovém odporu U_N , napětí na imepdanci U_Z a celkové napetí U vždy k příslušné hodnotě normálového odporu. Celé měření provádíme celkem dvakrát. Jednou pro předložený induktor a podruhé pro předložený kapacitor.

5 Naměřené a dopočítané hodnoty

Tabulka 1: Naměřené a dopočítané hodnoty pro induktor

$R_N[\Omega]$	10	100	1000
U[V]	12,740	12,799	12,160
$U_N[V]$	1,752	8,015	12,140
$U_Z[V]$	11,080	5,053	0,770
I[A]	0,172	0,080	0,012
$Z[\Omega]$	64,419	63,163	64,167
$\cos \varphi[-]$	0,939	0,914	-0,006
$\varphi[^{\circ}]$	20,116	23,936	90,327
$R[\Omega]$	60,489	57,731	-0,366
$X[\Omega]$	22,155	25,626	64,166
L[H]	0,071	0,082	0,204

Velikost proudu impedancí:

$$I = \frac{U_N}{R_N} = \frac{1,752}{10} = 0,175\Omega \tag{1}$$

Velikost impedance:

$$U = \frac{U_Z}{I} = \frac{11,080}{0,172} = 64,419\Omega \tag{2}$$

Účiník:

$$\cos \varphi = \frac{U^2 - U_N^2 - U_Z^2}{2U_Z U_N} = \frac{12,740^2 - 1,752^2 - 11,080^2}{2 \cdot 11,080 \cdot 1,752} = 0,939$$
 (3)

Fázový posuv U_Z vůči I:

$$\varphi = \arccos(\cos \varphi) = \arccos(0, 939) = 20,116^{\circ} \tag{4}$$

Činný odpor cívky:

$$R = Z\cos\varphi = 64,419 \cdot 0,939 = 60,489\Omega \tag{5}$$

Reaktance cívky:

$$X = Z\sin\varphi = 64,419 \cdot \sin(20,116) = 22,155\Omega \tag{6}$$

Indukčnost cívky:

$$L = \frac{X}{2\pi f} = \frac{22,155}{2\pi \cdot 50} = 0,071H \tag{7}$$

Tabulka 2: Naměřené a dopočítané hodnoty pro kapacitor

$R_N[\Omega]$	10	100	1000
U[V]	12,885	12,862	12,880
$U_N[V]$	0,692	6,010	12,620
$U_Z[V]$	12,868	11,278	2,368
I[A]	0,172	0,080	0,012
$Z[\Omega]$	64,419	63,163	64,167
$\cos \varphi[-]$	0,939	0,914	-0,006
$\varphi[^{\circ}]$	20,116	23,936	90,327
$R[\Omega]$	60,489	57,731	-0,366
$X[\Omega]$	22,155	25,626	64,166
L[H]	0,071	0,082	0,204

6 Grafy

Obrázek 2: Závislost L = f(I)

7 Závěr

8 Přístroje

- Multimetr Escort 1136A, evid. 177208
- \bullet Zdroj AC/DC 3-24/1,5A, evid. 117254

• Odporové normály $10,100,1000\Omega-10W$