

Comparison of Tornado Damage Prediction Accuracy between Classical and Quantum Neural Networks

Jorge O. Cedeño, Omar Alsaid Sulaiman, Sirikarn Phuangthong, Suhani Sundar

Problem Statement: Tornado Damage Prediction

- Tornadoes are among the deadliest natural disaster worldwide
 - Approximately 1,000 tornadoes occur annually in the United States, with an average of 80 deaths, 1,500 injuries, and significant architectural damages
- Advancements in tornado prediction using machine learning is one of the most effective methods
 - CSU-MLP by Colorado State University [1]
 - Deep CNN by McGuire and Moore [2]
- To enhance model accuracy, we want to implement quantum computing into ML model
 - Reduce computational cost for analyzing large dataset
 - Investigate how quantum properties (such as superposition and entanglements) benefit complex data analysis

https://www.electronic-sirens.com/the-most-twisted-tornadoesn-united-states/

Methodology & Project Solution

- Data Management
 - Obtain data from Storm Prediction Centre (SPC) [1]
 - Analysing and cleaning the data
 - Data pre-processing and encoding
- Creating multi-output classical and quantum neural networks
 - Create neural network model using TensorFlow and Keras
 - Implement Quantum Computing properties to the NN model using TensorFlow-Quantum
- Evaluating the models and updating to enhance performance
- Comparing the two models and identifying the better option based on its accuracy

https://www.spc.noaa.gov/gis/svrgis

< WOMANIUM | QUANTUM >

Results: Classical Neural Network

fat_mae: 0.1802 - inj_mae: 1.2820 - loss: 6.6499 - loss_accuracy: 0.6360 - ns_mae: 0.0187

Layer (type)	Output Shape	Param #	Connected to
input_layer_21 (InputLayer)	(None, 6)	0	-
dense_66 (Dense)	(None, 512)	3,584	input_layer_21[0][0]
batch_normalization_66 (BatchNormalization)	(None, 512)	2,048	dense_66[0][0]
dropout_45 (Dropout)	(None, 512)	Ø	batch_normalization_6
dense_67 (Dense)	(None, 256)	131,328	dropout_45[0][0]
batch_normalization_67 (BatchNormalization)	(None, 256)	1,024	dense_67[0][0]
dropout_46 (Dropout)	(None, 256)	0	batch_normalization_6
dense_68 (Dense)	(None, 64)	16,448	dropout_46[0][0]
batch_normalization_68 (BatchNormalization)	(None, 64)	256	dense_68[0][0]
ns (Dense)	(None, 1)	65	batch_normalization_6
fat (Dense)	(None, 1)	65	batch_normalization_6
inj (Dense)	(None, 1)	65	batch_normalization_6
loss (Dense)	(None, 8)	520	batch_normalization_6

Total params: 155,403 (607.04 KB)
Trainable params: 153,739 (600.54 KB)
Non-trainable params: 1,664 (6.50 KB)

Results: Hybrid Neural Network

- The hybrid (quantum+classical) neural network has performed better than its classical counterpart
- The loss accuracy reached was .67 during the 4th epoch
- Unfortunately we were unable to capture the performance due to frequent runtime session issues (running out of computation units, etc...)

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 59)]	0	[]
dense (Dense)	(None, 512)	30720	['input_1[0][0]']
dense_1 (Dense)	(None, 2)	1026	['dense[0][0]']
keras_layer (KerasLayer)	(None, 2)	4	['dense_1[0][0]']
batch_normalization (BatchNorm alization)	(None, 2)	8	['keras_layer[0][0]']
dropout (Dropout)	(None, 2)	0	['batch_normalization[0][0]']
dense_2 (Dense)	(None, 512)	1536	['dropout[0][0]']
batch_normalization_1 (BatchNo rmalization)	(None, 512)	2048	['dense_2[0][0]']
dropout_1 (Dropout)	(None, 512)	0	['batch_normalization_1[0][0]']
dense_3 (Dense)	(None, 64)	32832	['dropout_1[0][0]']
batch_normalization_2 (BatchNormalization)	(None, 64)	256	['dense_3[0][0]']
ns (Dense)	(None, 1)	65	['batch_normalization_2[0][0]']
fat (Dense)	(None, 1)	65	['batch_normalization_2[0][0]']
inj (Dense)	(None, 1)	65	['batch_normalization_2[0][0]']
loss (Dense)	(None, 4)	260	['batch_normalization_2[0][0]']

Non-trainable params: 1,156

Conclusion

- While we successfully created both classical and quantum-classical neural network models, we were unable to make a fair comparisons between the models to investigate if the quantum-hybrid alternative does better than the classical neural network due lack of time and computational costs
- In the future, if the computational cost issue has been addressed, we plan to run the quantum-classical neural network models with 20 epochs and 8 qubits in order to compare both neural network models more fairly

