

DETAIL	ED LECTURE NOTES	3
Campus: Course:	Class/Section: Name of Subject:	Date:
3- Purpositional	logic in At	
the statements are	t form of logic	where all sitiens.
r A peoposition is	a declarative the	rtement which
o Technique of KR form:	in logical and	malhematical
tq: The Lun enses 3+3=6=(7	V	alse)
· Also called Bool	ean logic as it	works on Ode 1
· Connectives can en	, ratel as logic	al Officefor
which connects &	rentences unda which is ey if to also a	always terne alled a Valick
p purposition four called contendis	unda which is	always false
Hatement, which	4 (200.00)	univarials, Or
Opinions me not	pero poeitions.	, .

lasforstion Compound Abounc · combine l'impler or · simple puoposition alounc purpos; tron · Lingle puopes: Fonal Symbol. asing parlulues a · Surface which can logical connectives he liter been or false. a) is is Rouning today, b) Sonal in clockor and 2+2 = 4 (free) Inn is cold (false) eur Chinic in mjaifus togical Connectives · vuol es connect à simpler purpositions or representing a lenteure logically. 1) Negation = 7 P (Negation of P. Aliternal can can lu vitue tre or-re. 2) Conjuction = PNC: Loual is Intelligent af Hard

P = Loual is

Melligent Q = Sound is Hard Working = Plass

PNQ 69: Lonal is doctor des tongineer 3) Pirjundien : PVC P- Lonal is doctor u) hupercation: 1-) Q

level is wet.

I it is haiting then

POORNIMA FOUNDATION

20

Campus: Course:	Class/Section: Date:
0 0 0	am Breathing then I am
P = 1 am Breath Q = 1 am Alive	ing. P \(,
Jemen Talle -> For Bidinecks	oual
P CP T T F	P C V
FF	F
-> For Negation	P
F	

	ρ	Q	PAQ
~	T	T	T
	1	P	· F
	F	T	F
		F	F
	ρ	Q	PVQ
	T	T	T
	1	F	T
	F	T	T
	F	ŕ	F
	Ph	arenensis	of Connectives
	2) N 3) (o	legation. Muchon C	and)
	ý) D	isjunction	(or)
	5) In	uplication	
	6) Bie	anditional	
٨	late =	For lietter 1	and led formal

Note: For hetter understanding use paranthersis to make sure of the warrest interpretations. Inch as 7RVQ at can be interpreted as (7R)VQ

POORNIMA FOUNDATION

Campus: Course:	Class/Section: Name of Subject:	Date: Code:
Pasputies of oper 1) Commulativity oprop	relow	
1) Commutativity		
opnQ =	QNP	
Or		
· PVQ = C	2 VP.	
2) Associativity		
· (PVQ) VR =	PVCQVR)	
02	c congl	
or o(PNQ) nR	$= P \wedge (Q \wedge V)$	
3) I clent ity flemen		
· Pr Terre =	P	
· P' V Thue =	True	
4) Pistai butive		
	= (P nQ) V (P	
. PV(Q NR)) = (PVQ)n	(PVR).

5) le Morganis lans · T(PNQ) = (TP) V(TQ) · 7 (PVQ) = (7P) 1 (7Q) 6) Poulle - Negation Himmuation 7(7P) = P. livi fation of purpositional logic?

• We cannot represent helations like All,

Some er Noue with purpositional logic. · All the girls are Intelligent. " Lome Affiles are Sweet. · It has limited Expressive power. n herepestieral logic, we cannot clescrike

Statements in teams of their peroperties on logical Kelahienships.

POORNIMA FOUNDATION

ampus manness. Course: manness.	Class/Section:	W - M -
Unit - 3 Final	andre eog's	
Lepassedation in	there may of	an fxfelige
· u is sufficiently	y Creasive	to depresent the
Natural language	Laterments	an a concisi
o Also brown as	lucoli cate la	- 8
Order peredicare	I law was	und develops
information ocho easy way 4 can plus more Objects	Let The Vila Land	and belationship
Flast Order by	R LAD & MA	and laren .
> Syntax	ay -> Ly	infax.

Basic fluments of Fiest Okoler logic i) Constant: 192, A, John, Mumbrai, cat. x,y,2,9,6 2) Variables? Bustier, father, 3) Vredicales? 4) Function: Squt 5) Connectives: 1, V, 7, =>, (=)) Equality: == 7) Quantifier: &; E. Atomic Lentences Most Basic Lentences of FOC. I wese Lentences are found from pendicate typelol followed by a parenthesis with a lequence of terms of tems.

Ve can Repulsent Atomic lentences as Predicate (term), term2, ..., termn). Eg: Sonal and Rami are Sisters Sisters (lenal, Rami)

Pento is on alog. dog (Pluto).

ORNIMA

DETAILED LECTURE NOTES	
Campus: Course: Class/Section:	Date:
<u> </u>	Code:
Comprex lentences	
	me
Ituse and made by Combining about Leutences using Connectives.	
> For can lu dividud into & parts	
FOL com lu dividud into & parts o Julijent : main part of the Shake	meet.
· l'un lu défined as	Relation !
Predicate: It can lu defined as which binds & Atoms bogether in	a Statement.
lourider the Statement: " x is an Inte	
is om integer	
Surject Paedicate.	

Ynantitifier in First Ouder logic . It is a larguage thatement element which generales Quantification, and I nambification specific the quantity of Specimen in the universe of discourse. · I nese are tre symbols that permit to determine or identify the Range and leake of the Vaerable in the logical Expression There are 2 types of Grantifier: 1) Universal quantifier ? et is a Lymbol of logical Representation, Which Specifies that the Statement with im the Range is there for Every things or wery instance of Particular being. · Refuesunt ed by Symbol V, which hesenalles innerted A. -> For all, -> For each -> For every

POORNIMA FOUNDATION

Campus: Course:	Class/Section: Name of Subject:	Date:
Example: All	man drink loff	lee.
x2 drinks coffee	X11 X & X3, X4, Xn Man	Prouse
Shorthand Nobels	eu :	2
Yx man(x)	-> deink (2, C	offee)
It will be belad There are all x drinks loffie.	where x is a ma	n who
2) Existential Guar Juse are type	of quantifier,	which

· It is oberoted by logical operator 3, Which resembles as inverted E. · When it is used with Pereshicate Variable turn it is called as an Existential Quantifier. Note: In txistential (Puantifie ; we always use AND or Conjuction Lymbol (1). If x is a Variable, then Existential Quantifier will be mead as: -) there exists a x, , -> For some (x), -) For atleast one 'x'. Some hoys are intelligent Ex ample Shout - Hand Nobelion: Ix : boyex) 1 intelligent (x)