Introduction

You will write a program that computes the BCNF decomposition of a pair (relation, functional dependencies). You must first implement the classes and methods described below:

- 1. Relation class: A relation is a set of attributes and can be implemented easily using and array A of integers with values of 0 or 1, where A[i]=1 means that the attribute with ASCII (UNICODE) code i is in the relation.
 - Relation(String in_r)
 - String toString()
 - boolean equals(Relation r2)
 - boolean contains(char c)
 - boolean subset(Relation r2)
 - Relation powerSetFirst()
 - Relation powerSetNext()
 - Relation union(Relation r2)
 - Relation intersect(Relation r2)
- 2. Fd class: A functional dependency is an object containing two relations (sets). One on the left hand side and one on the right hand side.
 - Fd(Relation in_lhs, Relation in_rhs)
 - String toString()
 - boolean BCNFviolation(Relation s) check if this functional dependency is a BCNF violation with respect to the given set of attributes of relation s
 - Relation getLHS()
 - Relation getRHS()
- 3. FdList class: A list of functional dependencies.
 - FDList()
 - String toString()
 - void insert(Fd f)
 - Fd getFirst()
 - Fd getNext()
 - Relation closure(Relation r) computes the closure with respect to a list of functional dependencies

- 4. RelList class: A list of relations.
 - RelList()
 - String toString()
 - void insert(Relation r)
 - Relation getFirst()
 - Relation getNext()

Activities

1. Write a program, using an object oriented programming language, that takes as input a file with a relation (set of attributes R) and a set of functional dependencies and outputs all non-trivial functional dependencies that can be obtained from the ones in the file. Notice that you will need to compute the closure of all possible subsets, and all non-trivial functional dependencies must be such that $X \to X^+ - X$, $\forall X \subseteq R$.

The first line of the file must be the attribute list of the relation separated by spaces. Assume that the only possible attributes are the 26 letters from A through Z.

Sample file:

ABCDE

A B -> C

C -> D

D -> B E

- 2. In order to determine if a given functional dependency $X \to Y$ is a BCNF violation with respect to a set of attributes S, notice that:
 - ullet X must not be a superkey, i.e. XY must not contain all attributes in S which can be checked with the condition

$$S \not\subseteq XY$$

- $X \to Y$ must be a valid functional dependency with respect to S, which can be checked by making sure that the following conditions are true:
 - $-X \subseteq S$
 - $-Y \cap S \neq \emptyset$

Modify your program from question 1 so that it outputs those functional dependencies which are BCNF violations.

3. Implement the algorithm given in class to compute the BCNF decomposition of a given relation and a set of functional dependencies. Your program must output, in parenthesis, the attributes of each relation in BCNF. Even though the algorithm given in class is recursive, you can use a stack of relations instead.

What to turn in

- \bullet The source code of all your classes including your driver BCNF decomposition program.
- The output produced by your program on the (sample) file given above.
- The output produced by your program on another example of your choice.