Análisis del Movimiento del Gömböc

David García Paula Andrea Uribe

¿Qué es el Gömböc?

Sólido monomonostático con un solo punto de equilibrio estable y uno inestable, sin importar su orientación.

Objetivo general

Analizar cómo la geometría y la distribución de masa influyen en la estabilidad del Gömböc, combinando modelos matemáticos y experimentos con réplicas impresas en 3D.

Estado del arte

¿Cómo influyen las propiedades geométricas y la distribución de masa en la estabilidad del Gömböc, y cómo pueden modelarse y validarse mediante simulaciones computacionales y experimentos físicos?

Domokos & Várkony (2007). Demostración de cuerpos monostáticos

Aplicaciones en estabilidad de estructuras y robótica.

Avances en simulación computacional y fabricación 3D para validar predicciones teóricas

Metodología

- •Se descompone la malla STL en pequeños tetraedros para hallar el centro de masa y el tensor de inercia total
- •. Se traslada el tensor al centro de masa y se diagonaliza para obtener los ejes propios de rotación.
- •Para cada cara triangular, se calcula su centro y su normal unitario.
- •La "altura" de cada cara (proporcional al potencial) se obtiene proyectando el centro de la cara sobre la normal.
- •Se reúne esa información en un conjunto de puntos (h,θ,ϕ) que describe el potencial en coordenadas esféricas.

Malla rotada en punto de equilibrio 48.4 30.2 Z Axis 12.0 -6.2 -24.3 -6.7 11.7 30.0

(a) Vectores principales de rotación asociados al sistema de estudio.

(b) Representación de los **puntos discretos** de la altura h (proporcional al potencial) en coordenadas esféricas. Cada punto corresponde a una cara de la malla STL. La apariencia continua se debe a la alta densidad de puntos.

Experimentación

- •Réplicas impresas en 3D del STL.
- •Cámara iPhone 11 Pro Max (4 K, 60 FPS).
- •Cinta con marcadores (rojo a 3 cm, azul a 2 cm) y transportador graduado
- •Dejar caer desde ángulos iniciales (5°, 8°, 10°, 14°), 5 repeticiones cada uno.
- •Análisis de vídeo con Tracker para extraer $\theta(t)$ y tiempo de estabilización (criterio $\pm 0.57^{\circ}$).

Figura 3: Montaje experimental

Resultados y análisis

Ángulo	Error respecto a 90°
5°	0.022°
8°	2.925°
10°	0.748°
14°	2.385°

Conclusiones y recomendaciones

- Las réplicas no cumplen la mono-monostaticidad ideal; aparecen múltiples pozos gravitacionales por imperfecciones de impresión y densidad.
- Energía potencial inicial mayor
 → más oscilaciones → mayor
 tiempo de estabilización.
- Imperfecciones geométricas y variaciones de fricción explican sesgos de hasta ~2— 3°.

- •Control geométrico postimpresión (escaneo 3D).
- •Uniformidad de densidad (resina/relleno).
- •Mayor resolución temporal y tracking automático.
- •Desarrollo de simulaciones dinámicas con ecuaciones de Euler-Lagrange.