Bases de Dados

Pedro Furtado

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia da Universidade de Coimbra 2018/2019

Introdução

SET THEORY AND RELATIONAL ALGEBRA

g

How SLQ relates to maths...

Select emp.nome, sal, funcao, dep.nome From emp join dep on (emp.ndep=dep.ndep)

Where emp.sal>200 and dep.ndep=10;

 $\pi_{\text{emp.nome, sal,funcao,dep.nome}} [\sigma_{\text{emp.sal} \geq 200} (\sigma_{\text{dep.ndep} = 10} (\text{emp} \bowtie_{\text{ndep} = \text{ndep}} \text{dep}))]$

© Pedro Furtado Universidade de Coimbra Bases de Dados

Os conjuntos não têm ordem definida

$$\{2,3,4\} = \{4,3,2\}$$

 \mathbb{R}^{2}

bc.

The concept of relation=table ...

- It is a set of rows
- Sets are unordered, sequences are ordered

© Pedro Furtado Universidade de Coimbra Bases de Dados

The relation=table is a set of tuples... A tuple is a set of attributes

Cliente

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
		•••		

Data nascimento

date

- Why is it there no order in tables? Wouldn't it be better to have an order?
- And if it's big, how do I get speed?

Universidade de Coimbra

So how do we guarantee speed of access to specific data?

Bases de Dados

SQL is an interface language for humans to write set operations

bd

Set Theory (relational algebra)

Bases de Dados

- Set = collection of objects (members or elements).
- All mathematical objects can be put into sets.

 \subseteq

bc.

Notação

- Pertença (belongs): 1 ∈N, 0 ∉ N
- Diagrama de Venn-Euler: (lê-se: "Ven-óiler") Os conjuntos são mostrados graficamente.

C

Set Theory (relational algebra)

Set = collection of objects (members or elements).

Given object O (the object can be a set it itself) and an S set, the object is a set element if the following child relationship occurs:

 $o \in S$

1 e 3 são elementos de A

(1,2) é elemento de C

1 e 2 são elementos de (1,2)

$$B \left(3 \right)$$

Given sets B and A, the inclusion relationship is $B \subseteq A$

bd

Pedro Furtado

Alguns conjuntos especiais

Conjunto vazio:

É um conjunto que não possui elementos { } ou por Ø.

Exemplo com intersecção:

Se $A = \{a,e,i,o,u\} \in B = \{1,2,3,4\} \text{ então } A \cap B = \emptyset$

Conjunto universo:

É um conjunto que contém todos os elementos = U

Some operations on sets...

Operações sobre conjuntos

Reunião de conjuntos (UNION)

A reunião dos conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A ou ao conjunto B.

$$A \cup B = \{ x: x \in A \lor x \in B \}$$

Interseção de conjuntos (intersection)

$$A \cap B = \{ x : x \in A \land x \in B \}$$

• Diferença de conjuntos (diference)

A diferença entre os conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e *não* pertencem ao conjunto B.

Ď

Operations on sets

Set = collection of objects (members or elements).

Binary operations on sets:

Intersection, Union,

Difference of sets, Cartesian product.

UNION:

The Cartesian product is a set whose members are all possible ordered pairs of members of the two sets participating in the operation.

PRODUCT:

© Pedro Furtado

Universidade

SELECTION= operation that selects sub-set of B based on a condition

$$A = \sigma (B)_{B < 10}$$

 $\sum_{i=1}^{n}$

ξ.

$$\pi_{\text{C.2}} \left(\begin{array}{c} C \\ (1,2) & (3,5) \\ (1,4) & (3,4) \\ (1,7) & (3,7) \end{array} \right) = \begin{array}{c} C \\ (2) & (5) \\ (4) & (4) \\ (7) & (7) \end{array} \right)$$

$$\pi = PROJECTION$$

 \sum_{i}

bd

$$\begin{array}{c}
C \\
(1,2) & (3,5) \\
(1,4) & (3,4) \\
(1,7) & (3,7)
\end{array}$$

$$= \bigcup_{\substack{(1,a) (3,e) \\ (1,e) (3,f) \\ (1,f)}} C \bigvee_{\substack{(1,a) (3,e) \\ (1,f)}} C \bigvee_{\substack{(1,a) (1,f) (1,f)}} C$$

UC

And some operations on relations...

Operações mais básicas: SELECÇÃO σ

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900
Joana Antunes	Lisboa	1022634	23-07-1988	801
Luísa Saraiva	Lisboa	1342664	22-04-1989	647

Nome	Cidade	BI	Data_nascimento	N_de_conta
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Joana Antunes	Lisboa	1022634	23-07-1988	801

Bases de Dados

Operações mais básicas: PROJECÇÃO π

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900
Joana Antunes	Lisboa	1022634	23-07-1988	801
Luísa Saraiva	Lisboa	1342664	22-04-1989	647

Nome	BI
António Silva	1234343
Joaquim Alves Dias	1256673
Maria Teresa Horta	1275432
Joana Antunes	1022634
Luísa Saraiva	1342664

© Pedro Furtado

Universidade de Coimbra

Bases de Dados

Operações mais básicas: INTERSECÇÃO ∩

Clientes

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900
Joana Antunes	Lisboa	1022634	23-07-1988	801
Luísa Saraiva	Lisboa	1342664	22-04-1989	647

Clientes 1

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556

Clientes ∩ Clientes 1

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556

Universidade de Coimbra Bases de Dados

Operações mais básicas: UNIÃO U

Clientes

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900

Clientes 1

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556

Clientes U Clientes 1

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900

bd

Operações básicas: Diferença \

Clientes

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900

Clientes 1

Nome	Cidade	BI	Data_nascimento	N_de_conta
António Silva	Coimbra	1234343	12-03-1968	900
Joaquim Alves Dias	Guarda	1256673	18-01-1978	556

Nome	Cidade	BI	Data_nascimento	N_de_conta
Maria Teresa Horta	Lisboa	1275432	15-09-1978	900

ğ

Agregação – group by - having

```
Select função, ndep, avg(14*sal), sum(sal)
From emp
Group by função, ndep
```

```
\gamma_{\text{função, ndep}} (função, ndep, avg(14*sal), sum(sal)) (emp)
```

```
\pi_{\text{função, ndep, avg(14*sal), sum(sal)}}  \{\gamma_{\text{função, ndep}} \text{ (função, ndep, avg(14*sal), sum(sal)) (emp) )}
```

(1

ξ,

© Pedro Furtado Unive

Universidade de Coimbra

Bases de Dados

Agregação – group by - having

Select função, ndep, avg(14*sal), sum(sal) From emp Group by função, ndep Having sum(sal)<20000

```
\pi_{\text{função, ndep, avg(14*sal), sum(sal)}} \{
```

 $H_{\text{sum}(\text{sal})<20000}$ ($\gamma_{\text{função, ndep}}$ (função, ndep, avg(14*sal), sum(sal)) (emp))

}

bc

Equivalent in Relational Algebra

```
SELECT emp.nome, sal, funcao, dep.nome
FROM emp, dep
WHERE
emp.ndep=dep.ndep AND ndep = 10 AND sal > 200;
```

```
\pi_{emp.nome, \ sal, funcao, dep.nome} \left[ \sigma_{emp.sal > 200} \left( \sigma_{dep.ndep=10} \ \left( \ emp \bowtie_{\mathsf{ndep=ndep}} \ dep \ \right) \ \right) \ \right]
```

b

© Pedro Furtado

Write equivalent in Relational Algebra

```
SELECT emp.nome, sal, funcao, dep.nome
FROM emp, dep
WHERE
emp.ndep=dep.ndep AND ndep = 10 AND sal > 200;
```

 \overline{C}

bC.

FAZER: Equivalente em Algebra Relacional

```
SELECT emp.nome, escalao, dep.nome
FROM emp, dep, descontos
WHERE
emp.ndep=dep.ndep AND dep.nome='Contabilidade' AND sal <250
and sal between salinf and salsup;
```

```
SELECT emp.nome, funcao, sal
FROM emp INTERSECT (select * from emp where nemp<3000)
where sal < 250
and funcao='Contabilista';
```

E como simplificar = optimizar esta ultima pesquisa?

RESPOSTA: Equivalente em Algebra Relacion

```
SELECT emp.nome, escalao, dep.nome
FROM emp, dep, descontos
WHERE
emp.ndep=dep.ndep AND dep.nome='Contabilidade' AND sal <250
and sal between salinf and salsup;
\pi emp.nome, escalao, dep.nome (\sigma_{\text{dep.nome}}-'Contabilidade'
(\sigma_{sal} < 250)
( dep \bowtie emp.ndep=dep.ndep (emp \bowtie sal between salinf and salsup
                                                         descontos))))
  SELECT emp.nome, funcao, sal
 FROM emp INTERSECT (select * from emp where nemp<3000)
 where sal < 250
 and funcao='Contabilista';
```

E como simplificar = optimizar esta pesquisa?

bc

© Pedro Furtado

Universidade de Coimbra

Bases de Dados

```
SELECT emp.nome, dep.nome, avg(sal)
FROM emp JOIN dep ON
(emp.ndep=dep.ndep)
where sal < 250
Group by emp.nome, dep.nome
```


bd

Dúvidas?

bd