Math 69: Logic Winter '23

Homework assigned January 25, 2023

Prof. Marcia Groszek

Student: Amittai Siavava

Problem 1.

(a) Show that Γ ; $\alpha \vDash \varphi$ iff $\Gamma \vDash (\alpha \to \varphi)$.

Let $\mathfrak A$ be a model for Γ and let $s:V\to |\mathfrak A|$ be a function such that $\mathfrak A$ satisfies Γ with s. Then $\models_{\mathfrak A} \gamma[s]$ for all $\gamma\in\Gamma$. Then:

 (\Rightarrow) We shall prove the right implication via the contrapositive, i.e. if $\Gamma \not\models (\alpha \rightarrow \varphi)$ then $\Gamma; \alpha \not\models \varphi$.

Suppose $\Gamma \not\models (\alpha \to \varphi)$. Since $\mathfrak A$ satisfies Γ with s and $\Gamma \not\models (\alpha \to \varphi)$, it must be the case that $\overline{s}(\alpha) = T$ and $\overline{s}(\varphi) = F$ so that $\overline{s}(\alpha \to \varphi) = F$. Therefore, $\mathfrak A$ satisfies Γ ; α with s, but since $\mathfrak A$ does not satisfy φ with s, it must be the case that Γ ; $\alpha \not\models \varphi$.

 (\Leftarrow) We shall prove this directly, i.e. by showing that if $\Gamma \vDash (\alpha \to \varphi)$ then $\Gamma; \alpha \vDash \varphi$.

Suppose $\Gamma \vDash (\alpha \to \varphi)$, we show that it is always the case that $\Gamma; \alpha \vDash \varphi$.

- (i) If $\mathfrak A$ does not satisfy α with s, then $\not\models_{\mathfrak A} \alpha[s]$. Therefore, $\overline{s}(\alpha) = F$, so $\overline{s}(\alpha \to \varphi) = T$ irrespective of the value of $\overline{s}(\varphi)$, so $\models_{\mathfrak A} (\alpha \to \varphi)[s]$. Since $\overline{s}(\alpha) = F$ and $a \to \varphi$, Γ ; $\alpha \models \varphi$.
- (ii) If $\mathfrak A$ satisfies α with s, then $\vDash_{\mathfrak A} \alpha[s]$, so $\overline{s}(\alpha) = T$. Therefore, $\overline{s}(\alpha \to \varphi) = \overline{s}(\varphi)$. Since $\Gamma \vDash (\alpha \to \varphi)$, and $\mathfrak A$ satisfies Γ with s, then $\mathfrak A$ satisfies φ with s. so $\vDash_{\mathfrak A} (\alpha \to \varphi)[s]$. Since $\overline{s}(\alpha) = T$ and $\overline{s}(\varphi) = T$, Γ ; $\alpha \vDash \varphi$.

Amittai, S Math 69: Logic

Problem 3.

Show that

$$\{\forall x(\alpha \to \beta), \forall x\alpha\} \vDash \forall x\beta$$

Let $\mathfrak A$ be a structure and s be a function from V to $|\mathfrak A|$ such that $\models_{\mathfrak A} (\forall x(\alpha \to \beta(x)))[s]$ and $\models_{\mathfrak A} (\forall x\alpha)[s]$.

For all $a \in \mathfrak{A}$, we can satisfy the conditions by sending a to x. That is:

$$\models_{\mathfrak{A}} (\forall x (\alpha \to \beta(x)))[s] \quad \text{gives us} \quad \models_{\mathfrak{A}} (\alpha \to \beta)[s(a \mid x)]$$

$$\models_{\mathfrak{A}} (\forall x \alpha)[s] \quad \text{gives us} \quad \models_{\mathfrak{A}} \alpha[s(a \mid x)]$$

$$\therefore \models_{\mathfrak{A}} \beta[s(a \mid x)] \quad \text{by modus ponens}$$

This condition holds for all $a \in |\mathfrak{A}|$, so $\models_{\mathfrak{A}} \forall x\beta$.