Zadaci druge domaće zadaće iz Fizike 2

- 1 Zadatak: Profesor fizike pokazuje Dopplerov efekt tako da sitni izvor zvuka frekvencije 600 Hz zaveže užetom dugim 1 m te ga počne vrtjeti iznad svoje glave brzinom od 100 okretaja u minuti. Odredi najveću i najmanju frekvenciju zvuka koju mogu čuti studenti u predavaoni. (Brzina zvuka u zraku $v_z = 343 \, \mathrm{m \, s^{-1}}$.)
- **2 Zadatak:** Avion leti duž vodoravnog pravca brzinom $v_i = v_z/2$, gdje je v_z brzina širenja zvuka, i odašilje zvuk frekvencije $f_i = 100 \,\text{Hz}$. Izračunaj frekvenciju koju čuje mirni prijamnik na tlu u trenutku kada se avion nalazi točno iznad njega. (Uzeti u obzir 'kašnjenje zvuka'.)
- 3 Zadatak: Jednostavan elektroskop napravljen je s pomoću dvije metalne kuglice jednakih masa $m=10\,\mathrm{g}$ koje su obješene jedna tik do druge o niti jednakih duljina $\ell=1\,\mathrm{m}$. Dovedemo li na kuglice ukupan naboj 2q koji se među njima ravnomjerno rasporedi, zbog elektrostatskog odbijanja kuglice će se razmaknuti. Odredi naboj q ako razmak među kuglicama iznosi $2a=20\,\mathrm{cm}$ i izrazi ga u jedinicama elementarnog naboja $q_{\rm e}$. (Pretpostavljamo da su niti bezmasene, nerastezljive i nevodljive. Permitivnost vakuuma $\epsilon_0=8.854\times10^{-12}\,\mathrm{F}\,\mathrm{m}^{-1}$, ubrzanje gravitacijske sile $g=9.81\,\mathrm{m}\,\mathrm{s}^{-2}$, elementarni naboj $q_{\rm e}=1.602\times10^{-19}\,\mathrm{C}$.)
- 4 Zadatak: Čestica mase m i naboja q ulijeće brzinom iznosa v_0 među paralelne ploče nabijenog kondenzatora. Prvobitan smjer gibanja čestice paralelan je pločama, a duljina ploča u tom smjeru je ℓ . Odredi kut otklona smjera gibanja čestice nakon što ona izađe iz kondenzatora ako je jakost homogenog električnog polja među pločama E. (Pretpostavljamo da čestica nije udarila u ploču kondenzatora.)
- **5 Zadatak:** Unutar sfere polumjera R raspoređen je naboj Q. Gustoća naboja opisana je izrazom $\rho(r) = \rho_0(1 r/R)$, gdje je r udaljenost od središta sfere, a ρ_0 je konstanta. Odredi jakost električnog polja E(r) unutar sfere i izrazi ju preko parametara R i Q.
- 6 Zadatak: Naboj Q raspoređen je unutar sfere polumjera R tako da je jakost električnog polja opisana izrazom $E(r) = E_{\text{max}}(r/R)^n$, gdje je r udaljenost od središta i n > -2. Izrazi konstantu E_{max} (jakost električnog polja na površini) i gustoću naboja $\rho(r)$ preko parametara Q i R.
- 7 Zadatak: Električni naboj jednoliko je raspoređen duž tankog obruča polumjera R. Odredi udaljenost od središta obruča onih točaka na njegovoj osi u kojima je jakost električnog polja najveća.
- 8 Zadatak: Dva beskonačna paralelna ravna linijska vodiča vode u istom smjeru struje čije se jakosti odnose kao 1:2. U ravnini okomitoj na vodiče, osim na beskonačnoj udaljenosti od vodiča, nalazi se jedna točka u kojoj magnetsko polje iščezava. Pronađi tu točku i odredi njenu udaljenost od vodiča kojim teče slabija struja ako je udaljenost među vodičima d.
- **9 Zadatak:** Magnetsko polje u ravnini z = 0 pravokutnog koordinatnog sustava dano je izrazom $\mathbf{B}(x,y,z=0) = B_0(3\mathbf{i} + (x/a)^2\mathbf{j})$, gdje su B_0 i a konstante. Izračunaj linijski integral $\oint \mathbf{B} \cdot d\boldsymbol{\ell}$ duž stranica kvadrata duljine a koji leži u ravnini z = 0 ako se jedan njegov vrh nalazi u ishodištu koordinatnog sustava, a dvije stranice leže na pozitivnim dijelovima x i y-osi.

- 10 Zadatak: Kružnom petljom polumjera R teče električna struja jakosti I. S pomoću Biot–Savartova pravila odredi jakost magnetskog polja na osi simetrije petlje na udaljenosti z od njezina središta.
- 11 Zadatak: Koaksijalni kabel sastoji se od dva tanka cilindrična (šuplja) vodiča kojima su polumjeri a i b (vodič polumjera a smješten je unutar vodiča polumjera b > a.) Kroz vodiče u suprotnim smjerovima teku struje jednake jakosti I. Odredi energiju magnetskog polja po jedinici duljine sadržanu u takvom kablu.
- 12 Zadatak: Duž pravca je raspoređen naboj linijske gustoće λ . Odredi jakost struje I koja bi morala teći istim pravcem pa da iščezne elektromagnetska (Lorentzova) sila na nabijenu česticu koja se usporedno s pravcem giba brzinom v.
- 13 Zadatak: Vodljivi štap duljine ℓ okreće se oko svog kraja kutnom brzinom ω u ravnini okomitoj na homogeno magnetsko polje jakosti B. Odredi iznos (napon) inducirane elektromotorne sile na krajevima štapa.
- 14 Zadatak: Elektromagnetski monokromatski val prelazi iz vakuuma u sredstvo relativne permitivnosti $\epsilon_{\rm r}=1.15$ i relativne permeabilnosti $\mu_{\rm r}=1.05$. Odredi relativnu promjenu valne duljine tog vala.
- 15 Zadatak: Projektor zrači u prostor oblikujući svjetlosni stožac s kutom otvora 2θ. Odredi kut θ ako je svjetlosni tok unutar stošca $\Phi = 5 \times 10^4 \,\mathrm{lm}$, a svjetlosna jakost izvora je $I = 2 \times 10^5 \,\mathrm{cd}$.
- 16 Zadatak: Točkasti izotropni izvor svjetlosti nalazi se na visini h nad središtem okruglog stola polumjera R. Na kojoj visini nad stolom mora biti izvor želimo li da osvjetljenje ruba stola bude što je moguće jače?
- 17 Zadatak: Snaga zračenja točkastog izotropnog izvora monokromatske svjetlosti valne duljine $\lambda = 500\,\mathrm{nm}$ je $P = 10\,\mathrm{W}$. Odredi najveću udaljenost na kojoj čovjek može primijetiti taj izvor ako njegovo oko reagira na svjetlosni tok od najmanje 60 fotona u sekundi, a promjer širom otvorene zjenice oka je $2r = 5\,\mathrm{mm}$. (Pretpostavljamo da u prostoru nema drugih izvora vidljive svjetlosti. Energija jednog fotona elektromagnetskog zračenja valne duljine λ je $E_{\gamma} = hc/\lambda$, gdje je $h = 6.626 \times 10^{-34}\,\mathrm{J}\,\mathrm{s}$ Planckova konstanta, a $c = 2.998 \times 10^8\,\mathrm{m}\,\mathrm{s}^{-1}$ je brzina svjetlosti.)
- 18 Zadatak: Točkasti izvor svjetlosti se giba brzinom iznosa v prema tjemenu sfernog konkavnog zrcala polumjera zakrivljenosti R. Odredi smjer i iznos brzine kojom se 'giba' slika tog izvora u trenutku u kojem se izvor nalazi na udaljenosti $a = {}^{2R}/{}_{3}$ od tjemena zrcala.
- 19 Zadatak: Snop paralelnih zraka svjetlosti pada na prozirnu kuglicu. Odredi indeks loma kuglice ako se svjetlost fokusira u točki na suprotnoj površini kuglice. Razmotri također je li moguće fokusirati snop paralelnih zraka u samom središtu kuglice (razmotri indeks loma koji bi odgovarao takvoj situaciji.)
- **20 Zadatak:** Tanka simetrična leća načinjena od stakla indeksa loma $n_s = 3/2$ ima u zraku (indeks loma jednak jedinici) žarišnu duljinu f > 0. Kada bi ta leća plutala na vodi indeksa loma $n_v = 4/3$, na kojoj bi dubini nastala slika predmeta koji se nalazi 'beskonačno visoko' nad vodom?
- **21 Zadatak:** Slika i predmet međusobno su udaljeni za d, a povećanje je m = -1/2. Odredi žarišnu duljinu tanke leće koja se nalazi između slike i predmeta.
- **22 Zadatak:** Predmet se nalazi na udaljenosti $a_1 = 20 \,\mathrm{cm}$ lijevo od konvergentne tanke leće žarišne duljine $f_1 = 10 \,\mathrm{cm}$. Druga konvergentna tanka leća žarišne duljine $f_2 = 12.5 \,\mathrm{cm}$ nalazi se na udaljenosti $d = 30 \,\mathrm{cm}$ desno od prve leće. Odredi položaj slike u odnosu na predmet te lateralno povećanje slike. (Uz računsko rješenje napravi i grafički prikaz.)