Θεωρήστε μιά χάντρα η οποία κινείται σε μια κυκλική περιφέρεια.

Διαγράφει μια γωνιακή μετατόπιση θ σε χρόνο t. Η χάντρα διαγράφει την απόσταση S

$$\frac{S}{t} = \frac{r\Delta\theta}{\Delta t} = \omega r$$
 Μέση γωνιακή ταχύτητα

Μέση εφαπτομενική ταχύτητα $\overline{\omega} \equiv \frac{\Delta \theta}{\Delta t} \Rightarrow \overline{v} = \overline{\omega} r$

$$\overline{\omega} \equiv \frac{\Delta \theta}{\Delta t} \Rightarrow \overline{\mathbf{v}} = \overline{\omega} r$$

Μπορούμε ακόμα να πούμε ότι $\overline{\omega} = \frac{\Delta \theta}{\Delta t} \Rightarrow \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$

Επομένως ορίζουμε την στιγμιαία γωνιακή ταχύτητα $\omega = \frac{d\theta}{dt}$

Και επομένως στιγμιαία εφαπτομενική ταχύτητα $v = \omega r$ για $r = \sigma \tau \alpha \theta$

 \square Παίρνοντας την προηγούμενη σχέση, $\mathbf{v} = \omega r$ γράφουμε:

Ξέρουμε ότι σε σώμα που κινείται σε κυκλική τροχιά ενεργεί η κεντρομόλος επιτάχυνση η οποία έχει φορά ΠΑΝΤΑ προς το κέντρο της κυκλικής τροχιάς και ευθύνεται για την αλλαγή της διεύθυνσης της ταχύτητας:

$$a_r = \frac{\mathbf{v}^2}{r} = \frac{\left(\omega r\right)^2}{r} \Longrightarrow \mathbf{a}_r = \omega^2 r$$

□ Η ολική γραμμική επιτάχυνση ενός σώματος που εκτελεί περιστροφική κίνηση είναι:

$$\vec{a} = \vec{a}_{\varepsilon\phi} + \vec{a}_r \Longrightarrow \left| \vec{a} \right| = \sqrt{a_{\varepsilon\phi}^2 + a_r^2} = \sqrt{r^2 \alpha^2 + \omega^4 r^2} \Longrightarrow \left| \vec{a} \right| = r \sqrt{\alpha^2 + \omega^4}$$

□ Συνοψίζοντας, στη περιστροφική κίνηση έχουμε εξισώσεις κίνησης για σταθερή γωνιακή επιτάχυνση και σταθερή εφαπτομενική επιτάχυνση:

$$\mathbf{v} = \mathbf{v}_0 + a_{\varepsilon\phi}t \qquad \qquad \omega r = \omega_0 r + r\alpha t \Rightarrow \omega = \omega_0 + \alpha t$$

$$\mathbf{v}^2 = \mathbf{v}_0^2 + 2a_{\varepsilon\phi}l \qquad \qquad \theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

Υπάρχει επομένως μια πλήρης αντιστοιχία μεταξύ των εξισώσεων της ευθύγραμμης κίνησης με σταθερή γραμμική επιτάχυνση και της περιστροφικής με σταθερή γωνιακή επιτάχυνση

Ευθύγραμμη κίνηση με σταθερή γραμμική επιτάχυνση	Περιστροφική κίνηση γύρω από σταθερό άξονα με σταθερή γωνιακή επιτάχυνση
$\alpha = \sigma \tau \alpha \theta$.	$\alpha = \sigma \tau \alpha \theta$
$v = v_0 + \alpha t$	$\omega = \omega_0 + \alpha t$
$x = x_0 + v_0 t + \frac{1}{2} \alpha t^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
$v^2 = v_0^2 + 2\alpha(x - x_0)$	$\omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0)$
$x - x_0 = \frac{1}{2} (v + v_0)t$	$\theta - \theta_0 = \frac{1}{2} (\omega + \omega_0)t$

Περιστροφική κίνηση στερεών - Εισαγωγικά

Η απόδειξη των εξισώσεων κίνησης για την στροφική κίνηση είναι απλή:

$$\alpha = \frac{d\omega}{dt} \Rightarrow \alpha dt = d\omega \Rightarrow \alpha \int dt = \int d\omega \Rightarrow \alpha t = \omega - \omega_0$$

Αν ολοκληρώσουμε και πάλι την τελευταία σχέση

$$\omega = \frac{d\theta}{dt} \Rightarrow d\theta = \omega dt \Rightarrow \int d\theta = \int \omega dt = \int (\omega_0 + \alpha t) dt \Rightarrow \theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$$

Περιστροφική κίνηση στερεών - Εισαγωγικά

Το μέγεθος ω είναι διανυσματικό όταν η γωνία θ μετριέται σε ακτίνια.

Η διεύθυνσή του είναι παράλληλη προς τον άξονα περιστροφής και η φορά του ορίζεται σύμφωνα με τον κανόνα του δεξιόστροφου κοχλία ή χεριού:

Ο δείκτης του χεριού ακολουθεί την φορά του θ ο αντίχειρας δείχνει τη φορά του ω

 Όταν εξετάσαμε τη κυκλική κίνηση είδαμε ότι η διεύθυνση του ω ορίζεται από την διανυσματική εξίσωση

$$\vec{\mathbf{v}} = \vec{\boldsymbol{\omega}} \times \vec{r}$$

□ Η γωνιακή επιτάχυνση α έχει την ίδια διεύθυνση με αυτή του ω Αν η φορά της είναι ίδια με της ω, η περιστροφή αυξάνει ενώ στην αντίθετη περίπτωση επιβραδύνεται.

Περιστροφική κίνηση στερεού - Εισαγωγικά

- Στην περίπτωση περιστροφής γύρω από σταθερό άξονα επειδή η γωνία θ που σαρώνεται είναι ίδια για όλα τα σημεία, έπεται ότι:
 - Όλα τα σημεία του στερεού περιστρέφονται με την ίδια γωνιακή ταχύτητα και γωνιακή επιτάχυνση
 - > Η γραμμική τους ταχύτητα δεν είναι ίδια αφού βρίσκονται σε διαφορετικές αποστάσεις από τον άξονα περιστροφής.

Παράδειγμα – Γωνιακή ταχύτητα

CD player: Η μουσική είναι γραμμένη σε αύλακα κατά μήκος μιας σπειροειδούς διαδρομής 5.4km. Το laser παρακολουθεί την αύλακα με σταθερή γραμμική ταχύτητα v = 1.2m/s. Η τροχιά ξεκινά σε ακτίνα r = 2.3cm και τελειώνει σε ακτίνα r = 5.9cm.

Ποια είναι η αρχική και τελική γωνιακή ταχύτητα?

Για να κρατήσουμε την γραμμική ταχύτητα σταθερή σημαίνει ότι η γωνιακή ταχύτητα ω μεταβάλλεται

$$\omega_i = \frac{V}{r_i} = 52.2 rad/s$$

$$\omega_f = \frac{\mathbf{v}}{r_f} = 20.3 rad/s$$

Παράδειγμα – Γωνιακή επιτάχυνση

Αγωνιστικό αυτοκίνητο κάνει μια στροφή ακτίνας 50m με γωνιακή ταχύτητα ω = 0.6rad/s και γωνιακή επιτάχυνση α = 0.20rad/s².

Ποιες οι τιμές της γραμμικής ταχύτητα ν, α_r, α_{εφ}, και ολικής γραμμικής επιτάχυνσης α?

$$v = \omega r = 30m/s$$

$$a_r = \frac{v^2}{r} = 18 \, m/s^2$$

$$a_{\varepsilon\phi} = r\alpha = 10 \, m/s^2$$

$$a = \sqrt{a_r^2 + a_{\varepsilon\phi}^2} = 21 \, m/s^2$$

$$\tan \theta = \frac{a_r}{a_{\varepsilon\phi}} \Rightarrow \theta = \tan^{-1} \frac{a_r}{a_{\varepsilon\phi}} = 61^0$$

Παράδειγμα – Ρίψη δίσκου

Ένας δισκοβόλος στρέφεται με γωνιακή επιτάχυνση α =50rad/s², κινώντας το δίσκο σε κύκλο ακτίνας 0.80cm.

Θεωρούμε το χέρι του σα στερεό σώμα κι' έτσι η ακτίνα είναι σταθερή.

Ποια η εφαπτομενική και ακτινική επιτάχυνση του δίσκου και ποιο το μέγεθος της επιτάχυνσης τη στιγμή που η γωνιακή ταχύτητα είναι 10 rad/s.

Από τη στιγμή που ο δίσκος κινείται σε κυκλική τροχιά η εφαπτομενική επιτάχυνση θα είναι

$$a_{\varepsilon\phi} = r\alpha = \left(50 \, rad/s^2\right) \left(0.8 \, rad\right) = 40 \, m/s^2$$

$$a_{\rm r} = \omega^2 r = \left(10 \, rad/s\right)^2 \left(0.8 \, rad\right) = 80 \, m/s$$

$$\alpha = \sqrt{a_{\rm r}^2 + a_{\varepsilon\phi}^2} = 89 \, m/s^2$$

Παράδειγμα – Προπέλα αεροπλάνου

Σχεδιασμός της προπέλας ενός αεροπλάνου:

Θέλετε να κινείται με 2400rpm. Η ταχύτητα του αεροπλάνου προς τα εμπρός πρέπει να είναι 75m/s, ενώ η ταχύτητα των άκρων της προπέλας δεν πρέπει να ξεπερνούν τα 270m/s Ποια η μέγιστη ακτίνα που θα πρέπει να έχει η προπέλα? (β) με αυτή την ακτίνα ποια είναι η επιτάχυνση των άκρων της προπέλας?

Λύση

Μετατρέπουμε πρώτα τα rpm σε rad/s.

$$\omega = 2400rpm = 2400 \left(\frac{rev}{min}\right) \left(\frac{2\pi}{1 rev}\right) \left(\frac{1min}{60s}\right) = 251rad/s$$

Η εφαπτομενική ταχύτητα των άκρων της προπέλας, v_P , είναι κάθετη στην εμπρόσθια ταχύτητα του αεροπλάνου, v_A

$$\vec{v}_{o\lambda} = \vec{v}_{p} + \vec{v}_{A} \Rightarrow v_{o\lambda} = \sqrt{\omega^{2}r^{2} + v_{A}^{2}} \Rightarrow r = \sqrt{\frac{v_{o\lambda}^{2} - v_{A}^{2}}{\omega^{2}}} = \sqrt{\frac{270^{2} - 75^{2}}{251^{2}}} = 1.03m$$

Η γωνιακή ταχύτητα της προπέλας είναι σταθερή, επομένως υπάρχει μόνο κεντρομόλος επιτάχυνση: $a_r = \omega^2 r = 6.5 \times 10^4 \, m/s^2 \Rightarrow F = 6.5 \times 10^4 \, N$

Παράδειγμα – Δίσκοι ταχυτήτων ποδηλάτου

Πώς σχετίζονται τα «δόντια» των δίσκων των ταχυτήτων του ποδηλάτου με τις γωνιακές ταχύτητες των δίσκων

Η αλυσίδα δεν γλιστρά και δεν επιμηκύνεται πάνω στους δίσκους και επομένως έχει την ίδια εφαπτομενική ταχύτητα

Eπομένως:
$$v = \omega_{\varepsilon} r_{\varepsilon} = \omega_{\pi} r_{\pi} \Rightarrow \frac{\omega_{\pi}}{\omega_{\varepsilon}} = \frac{r_{\varepsilon}}{r}$$
 (1)

Τα δόντια είναι ισοκατανεμημένα στην περιφέρεια των δίσκων έτσι ώστε η αλυσίδα να κουμπώνει το ίδιο σε κάθε δίσκο:

$$\frac{2\pi r_{\pi}}{N_{\pi}} = \frac{2\pi r_{\varepsilon}}{N_{\varepsilon}} \implies \frac{r_{\pi}}{N_{\pi}} = \frac{r_{\varepsilon}}{N_{\varepsilon}} \implies \frac{r_{\varepsilon}}{r_{\pi}} = \frac{N_{\varepsilon}}{N_{\pi}} \tag{2}$$

Από (1) και (2) έχουμε:
$$\Rightarrow \frac{\omega_{\pi}}{\omega_{\varepsilon}} = \frac{N_{\varepsilon}}{N_{\pi}}$$

Επομένως για συγκεκριμένη γωνιακή ταχύτητα με την οποία κάνουμε pedal, $ω_ε$, ο πίσω δίσκος έχει τη μέγιστη γωνιακή ταχύτητα όταν ο λόγος $N_ε/N_π$ είναι μέγιστος, δηλαδή όταν χρησιμοποιούμε μπροστά το δίσκο με το μεγαλύτερο αριθμό «δοντιών» και πίσω το δίσκο με το μικρότερο αριθμό «δοντιών»

Ενέργεια στην περιστροφική κίνηση

Ένα περιστρεφόμενο στερεό αποτελεί μια μάζα σε κίνηση.

Επομένως υπάρχει κινητική ενέργεια.

Θεωρείστε ένα στερεό σώμα περιστρεφόμενο γύρω από σταθερό άξονα.

$$K_i = \frac{1}{2} m_i \mathbf{v}_i^2$$

Αθροίζοντας ως προς όλα τα σωμάτια που απαρτίζουν το στερεό θα έχουμε:

$$\sum_{i} K_{i} = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} = \sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2} \quad \longleftarrow \quad \text{όλα έχουν το ίδιο } \omega$$

Η παραπάνω σχέση γράφεται:

$$\sum_{i} K_{i} = \frac{1}{2} \left(\sum_{i} m_{i} r_{i}^{2} \right) \omega^{2} \Rightarrow K_{tot} = \frac{1}{2} I \omega^{2}$$

$$K = \frac{1}{2} m v^{2}$$

Ανάλογο του

$$K = \frac{1}{2}mv^2$$

Ορίζουμε σα ροπή αδράνειας: $I = \sum m_i r_i^2$

Η ροπή αδράνειας, Ι, είναι το περιστροφικό ανάλογο της μάζας m. Δηλαδή, είναι πολύ πιο δύσκολο να προκαλέσεις περιστροφή σ' ένα σώμα όταν η ροπή αδράνειας γίνεται μεγαλύτερη

Ροπή αδράνειας

Ας δούμε την ροπή αδράνειας ενός στερεού περιστροφέα:

- > Είναι δυσκολότερο να προκαλέσεις περιστροφή στην (β) περίπτωση
- Η ροπή αδράνειας εξαρτάται από τον άξονα περιστροφής.
- Η ροπή αδράνειας ορίζεται ως προς κάποιο σταθερό άξονα
- Η τιμή της εξαρτάται από την θέση και τον προσανατολισμό του άξονα περιστροφής

Ροπή αδράνειας για στερεά συνεχούς κατανομής

 Για στερεά σώματα συνεχούς κατανομής μάζας η ροπή αδράνειας υπολογίζεται αντικαθιστώντας το άθροισμα με ολοκλήρωμα:
 (αντικαθιστούμε όλες τις μάζες m_i με dm)

$$I = \sum_{i} m_i r_i^2 \rightarrow \lim_{\Delta m_i \rightarrow 0} \sum_{i} r_i^2 \Delta m_i \Rightarrow I = \int r^2 dm$$
 Ροπή αδράνειας

Θυμίζει τον υπολογισμό του κέντρου μάζας ενός σώματος $r_{CM} = \int r dm$

Για παράδειγμα: έστω ρ η πυκνότητα = m/V για ένα στερεό $\rho = dm / dV \rightarrow dm = \rho dV \rightarrow I = \int r^2 \rho dV$

Για ομοιογενή κατανομή μάζας, η πυκνότητα είναι σταθερή και έχουμε:

$$I = \rho \int r^2 dV$$

Περισσότερη μάζα πιο απομακρυσμένη από τον άξονα περιστροφής, μεγαλύτερη η ροπή αδράνειας Ι, και επομένως μεγαλύτερη η αντίσταση του σώματος στο να αλλάξει την περιστροφική του κίνηση