"I pledge my honor that I have abided by one stovens Honor System." Judion

CS 385, Homework 1b: Analysis of Algorithms

Name: Julia Welson

Date: 02/11/2020

Point values are assigned for each question.

Points earned: ____ / 100, = ____ %

1. Find an upper bound for $f(n) = n^4 + 10n^2 + 5$. Write your answer here: $O(n^4)$ (4 points)

Prove your answer by giving values for the constants c and n_0 . Choose the smallest integral value

possible for c. (4 points)
$$n^4 + 10n^2 + 5 \le C \cdot n^4$$

 $n^4 + 10n^2 + 5 \le 2n^4$ $n^4 + 10n^2 + 5 \le 2n^4$

 $n^{4}+10n^{2}+5 \leftarrow 2n^{4}$ $n^{4}+10n^{2}+5 \leftarrow 2n^{4}$ =2 $45 \leftarrow 16X$ =3 $95 \leftarrow 8+X$ =4 $165 \leftarrow 256$

2. Find an asymptotically tight bound for $f(n) = 3n^3 - 2n$. Write your answer here: $\Theta(n^3)$ (4) C: (n3) & 3n3-2n & Cz. (n3)

Prove your answer by giving values for the constants c_1 , c_2 , and n_0 . Choose the tightest integral

values possible for
$$c_1$$
 and c_2 . (6 points) let $3n^3 - 2n \le c_2 \cdot n^3$

$$c_1 = 2$$

$$2n^3 \le 3n^3 - 2n$$

$$n = 1 2 \le 1 \times 1$$

$$n = 2 1 \le 20$$

$$3 \cdot 183n = 460(n^2)?$$
 Circle your answer, yes (n^3) ? points)

3. Is $3n-4 \in \Omega(n^2)$? Circle your answer: yes (no.) 2 points) $n_0=2$

If yes, prove your answer by giving values for the constants c and n_0 . Choose the smallest integral

value possible for c. If no, derive a contradiction. (4 points)

n2 to be lower bound 12 4 3 n - 4 i = n= Z = 4 = 2 x n= 14 = 16 = 1 = 14 = 16 = 1

4. Write the following asymptotic efficiency classes in increasing order of magnitude. $O(n^2)$, $O(2^n)$, O(1), $O(n \lg n)$, O(n), O(n), $O(n^3)$, $O(\lg n)$, $O(n^n)$, $O(n^2 \lg n)$ (2 points each)

O(1) O(1gn) O(n) O(n1gn) O(n2) O(n2lgn) O(n3) O(2n), O(n1)

- 5. Determine the largest size n of a problem that can be solved in time t, assuming that the algorithm 15 = 1000 ms takes f(n) milliseconds. n must be an integer. (2 points each)
 - a. f(n) = n, t = 1 second

1000

n millise conds

b. $f(n) = n \lg n, t = 1 \text{ hour } 204094$

c. $f(n) = n^2$, t = 1 hour $\frac{1897}{4}$ $n^2 = 3600000$

e. f(n)=n!, t=1 minute | 1 min = 60000 ms

N: = n = (n-1)! 120 = 3 = 304018V

6. Suppose we are comparing two sorting algorithms and that for all inputs of size n the first algorithm runs in $4n^3$ seconds, while the second algorithm runs in $64n \log n$ seconds. For which integral values of n does the first algorithm beat the second algorithm? 24n 24n 26 (4 points) Explain how you got your answer or paste code that solves the problem (2 point):

7. Give the complexity of the following methods. Choose the most appropriate notation from among O, Θ , and Ω . (8 points each)

int function1(int n) { int count = θ ; for (int i = n / 2; i <= n; i++) { for (int j = 1; j <= n; j *= 2) { count++; return count; Answer: O(n 1gn) int function2(int n) { int count = θ ; for (int i = 1; i * i * i <= n; i++) { count++; return count; (cuberoot) Answer: Θ (\sqrt{n}) int function3(int n) { int count = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { for (int k = 1; k <= n; k++) { count++;

```
return count;
Answer: 0(n3)
int function4(int n) {
     int count = 0;
     for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
             count++;
             break;
     return count;
Answer: 6(n)
int function5(int n) {
     int count = 0;
     for (int i = 1; i <= n; i++) {
         count++;
    for (int j = 1; j <= n; j++) {
        count++;
    return count;
Answer: \Theta(n)
```