Managerial Labor Market Competition and Incentive Contracts

Lunch Seminar, Department of Economics, VU

Bo Hu

October 31, 2018

Department of Economics, Vrije Universiteit Amsterdam Tinbergen Institute

Introduction

Stylized Facts

Stylized Facts

• A typical executive compensation package:

Performance-based incentives.

$$\mathtt{delta} = \frac{\Delta \mathtt{Wealth(in\ dollars)}}{\Delta \mathtt{Firm\ Value(in\ percentage)}}$$

Stylized Facts

1. Firm-size premium in total compensation

- Compensation is higher in larger firms.
- A 1% increase in firm size leads to 0.45% increase in total compensation.

2. Firm-size premium in compensation growth

- Starting with the same total compensation, compensation growth is higher in larger firms.
- A 1% increase in firm size leads to 10% increase in compensation growth rate.

3. Firm-size premium in performance-based incentives

- Controlling for total compensation, performance-based incentives are higher in larger firms.
- A 1% increase in firm size leads to a 0.35% increase in performance-based incentives.

Managerial Labor Market Competition

- IBM proxy statement 2018:
 - "battle for talent"
 - targets to the 50th percentile among a large group of benchmark companies inside and outside the industry.
 - further adjust the individual compensation according to "the skills and experience of senior executives that are highly sought after by other companies and, in particular, by IBMs competitors."

Managerial Labor Market Competition

- IBM proxy statement 2018:
 - "battle for talent"
 - targets to the 50th percentile among a large group of benchmark companies inside and outside the industry.
 - further adjust the individual compensation according to "the skills and experience of senior executives that are highly sought after by other companies and, in particular, by IBMs competitors."
- Johnson & Johnson proxy statement 2018:
 - "competitiveness" as the first guiding principle
 - compare executive compensation against "appropriate peer companies that are of similar size and complexity, ... to attract, retain, and motivate high-performing executives"

Research Questions

- How does the managerial labor market competition impact the incentive contracts?
- Explain empirical puzzles:
 - Firm-size premium in total compensation
 - Firm-size premium in compensation growth
 - Firm-size premium in performance-based incentives

Research Questions

- How does the managerial labor market competition impact the incentive contracts?
- Explain empirical puzzles:
 - Firm-size premium in total compensation
 - Firm-size premium in compensation growth
 - Firm-size premium in performance-based incentives

Road Map

- 1. Model
 - embed dynamic moral hazard into an equilibrium search framework
 - poaching offers impact compensation level and incentives
- 2. Data & Reduced-form Evidence
 - examine model assumptions and implications
- 3. Structural Estimation
 - predict firm-size premiums without targeting on them
- 4. Policy Implications

Related Literature

- Assignment models
 - on compensation level: Tervio (2008), Gabaix and Landier (2008)
 - on incentives: Edmans et al. (2009), Edmans and Gabaix (2011)
- Moral hazard models
 - Gayle and Miller (2009), Gayle et al. (2015): moral hazard is more severe / the quality of signal (about effort) is poorer in larger firms
- Dynamic contract literature
 - moral hazard: Spear and Srivastava (1987), etc.
 - limited commitment: Thomas Worrall (1988, 1990), etc.
- Labour search literature
 - sequential auction: Postel-Vinay and Robin (2002), etc.

The Model

Set Up: Moral Hazard

Discrete time and infinite periods

Executives:

• risk averse, u(w) - c(e), $e \in \{0, 1\}$, c(1) = c, c(0) = 0,

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

- effort e stochastically increases executive productivity $z \in \mathcal{Z}$
- z is persistent, follows a discerete Markov Chain process
 - ullet $\Gamma(z'|z)$ when take the effort, $\Gamma^s(z'|z)$ when shirk
- ullet die with $\delta \in (0,1)$, the match breaks up, the job disappears

Set Up: Moral Hazard

Discrete time and infinite periods

Executives:

• risk averse, u(w) - c(e), $e \in \{0, 1\}$, c(1) = c, c(0) = 0,

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

- effort e stochastically increases executive productivity $z \in \mathcal{Z}$
- ullet z is persistent, follows a discerete Markov Chain process
 - $\Gamma(z'|z)$ when take the effort, $\Gamma^s(z'|z)$ when shirk
- die with $\delta \in (0,1)$, the match breaks up, the job disappears

Firms:

- firm size $s \in \mathcal{S}$, exogenous and permanent
- production (cash flow) $y(s,z) = \alpha_0 s^{\alpha_1} z$, $\alpha_0, \alpha_1 \in (0,1]$.

Set Up: Managerial Labor Market

Managerial Labor Market:

- search frictional and allows on-the-job search
- with $\lambda_1 \in (0,1)$ sample an outside firm s' from F(s')

Sequential Auction:

- ullet Bertrand competition between current firm s and outside firm s'
- Each firm has a **bidding frontier**, $\overline{W}(z,s)$, defined by

$$\Pi(z,s,\overline{W}(z,s))=0$$

- $\overline{W}(z,s)$ increases in z and s
- ullet if s' < s, renegotiate with the current firm
- if s' > s, transit to the poaching firm

Contracting Problem

Firms maximize profits

$$\Pi(z,s,V) = \max_{w,W(z',s')} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} \left[y(s,z') - w + \tilde{\beta} \Pi(z',s,W(z',s')) \right] \tilde{F}(s') \Gamma(z'|z)$$

subject to

$$V = u(w) - c + \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Gamma(z'|z), \qquad (PKC)$$

$$\tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Big(\Gamma(z'|z) - \Gamma^s(z'|z) \Big) \ge c, \qquad (IC)$$

$$W(z', s') \ge \min\{ \overline{W}(z', s'), \overline{W}(z', s) \}, \qquad (PC\text{-Executive})$$

$$W(z', s') < \overline{W}(z', s). \qquad (PC\text{-Firm})$$

The Equilibrium

An stationary equilibrium is defined by

- value functions $\{W^0, W, \Pi\}$;
- optimal contracts $\sigma = \{w, W(z', s')\}$ for $z' \in \mathbb{Z}$ and $s' \in \mathbb{S}$;
- $\Gamma(z'|z)$ follows the optimal effort choice;
- a distribution of executives across employment states evolving according to flow equations.

The Optimal Contract

The Optimal Contract

faster in larger firms?

Why does compensation grow

Three sets of poaching offers

Three sets of outside firms s':

 $\mathcal{M}_1: s' \geq s$, lead to job turnovers

 $\mathcal{M}_2: s' < s$, improve compensation, no job turnovers

 \mathcal{M}_3 : other or no outside firms

The continuation value of an executive is

$$\sum_{s' \in \mathcal{M}_1} F(s') \mathbb{E}[\overline{W}(z', s)] + \sum_{s' \in \mathcal{M}_2} \mathbb{E}[\overline{W}(z', s')] F(s') + \sum_{s' \in \mathcal{M}_3} F(s') \mathbb{E}[W(z')]$$
labor market driven

promise driven

Why do performance-based

incentives increase in firm size?

Incentive Compatibility Constraint

What is the incentive out of W(z')?

$$\mathcal{I}[W(z')] \equiv \tilde{\beta} \left\{ \sum_{z'} W(z') \Gamma(z'|z) - \sum_{z'} W(z') \Gamma^{s}(z'|z) \right\}.$$

Incentive Compatibility Constraint

What is the incentive out of W(z')?

$$\mathcal{I}[W(z')] \equiv \tilde{\beta} \left\{ \sum_{z'} W(z') \Gamma(z'|z) - \sum_{z'} W(z') \Gamma^{s}(z'|z) \right\}.$$

Sets of outside firms s':

 $\mathcal{M}_1: s' \geq s$, lead to job turnovers

 $\mathcal{M}_2: s' < s$, improve compensation, no job turnovers

 \mathcal{M}_3 : other or no outside firms

The incentive compatibility constraint is

$$\underbrace{\sum_{s'\in\mathcal{M}_1} F(s')\mathcal{I}[\overline{W}(z',s)] + \sum_{s'\in\mathcal{M}_2} \mathcal{I}[\overline{W}(z',s')]F(s')}_{s'\in\mathcal{M}_1} + \underbrace{\sum_{s'\in\mathcal{M}_3} F(s')\mathcal{I}[W(z')]}_{s'\in\mathcal{M}_3} \geq c.$$

Labor Market Incentives

Performance-based Incentives

Incentives from $\overline{W}(z',s)$ decrease in s

Incentives from $\overline{W}(z',s)$ decrease in s

Proposition

Suppose the executives' utility is of the CRRA form and the cost of effort $c=\overline{c}(s)$, then $\mathcal{I}\Big(\overline{W}(z',s)\Big)$ decreases in s if

$$\sigma > 1 + \frac{s^{1-\alpha_1}}{\alpha_1} \psi'(s), \tag{1}$$

where $\psi(s)$ is a function of s that is positive and increasing in s.

Intuition

- ullet a higher s leads to higher certainty equivalent of $\overline{W}(z',s)$
- a higher certainty equivalent leads to lower marginal utility of extra wealth

Summary

- How does the managerial labor market competition impact the incentive contracts?
 Competition impacts both compensation level and incentives.
- Why does compensation grow faster in larger firms?
 Larger firms are more capable of countering outside offers.
- Why do performance-based incentives increase in firm size?
 Poaching offers generate labor market incentives that substitute for performance-based incentives.

Data & Reduced-form Evidence

Data

Assemble a new dataset

- merge ExecuComp and BoardEX + hand-collected data in LinkedIn
- ExecuComp: annual records on top executives' compensation
- BoardEX: detailed executive employment history
- Final sample: 35,088 executives, 218,168 executive-year obs., spanning the period 1992 to 2016.

Define job turnovers

- Job-to-job transition: leaves the current firm, and starts to work in another firm within 180 days.
- Exit: otherwise.

Reduced-form Evidence

- 1. Managerial labor market is active. Details
 - job-to-job transition rate 5%
 - stable over years and across industries
- 2. Executives climb job ladders towards larger firms. Details
 - about 60% of job-to-job transitions are towards larger firms
 - for the rest, 20% of them are promotions from non-CEO to CEO
- 3. Executives in larger firms have less job-to-job transitions. Details
 - Cox model, a 1% increase in firm size leads a 8.3% lower hazard of job-to-job transitions.

Reduced-form Evidence

- 4. Firm-size growth premium is higher in industries where managerial labor market is more active. Growth Premium
 - job-to-job transition rate (industry-year level)
 - genearl ability index (Custódio et al. 2013)
 - fraction of insider CEO (Martijn Cremers and Grinstein 2013)
- 5. Firm-size incentive premium is higher in industries where managerial labor market is more active. Incentive Premium

Estimation

Model Specifications

· utility function of CRRA form

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

production function (cash flows)

$$y(s,z)=e^{\alpha_0}s^{\alpha_1}z$$

• productivity process by AR(1), discretized by Tauchen (1989)

$$z_t = \rho_0(e) + \rho_z z_{t-1} + \epsilon_t$$

ullet poaching firm distribution by truncated log-normal F(s)

Parameters

Parameters	Description
δ	the death probability
λ_1	the offer arrival probability
$ ho_{z}$	the AR(1) coefficient of productivity shocks
μ_{z}	the mean of productivity shocks for $e=1$
σ_z	the standard deviation of productivity shocks
μ_{s}	the mean of F(s)
σ_{s}	the standard deviation of F(s)
С	cost of efforts
σ	relative risk aversion
α_0, α_1	production function parameters

Moments and Estimation

A. Targeted Moments

Moments	Data	Model	Estimates	Standard Error
Exit Rate	0.0691	0.0691	$\delta = 0.0695$	0.0127
J-J Transition Rate	0.0498	0.0473	$\lambda_1 = 0.3164$	0.0325
$\hat{ ho}_{profit}$	0.7683	0.6299	$\rho_z = 0.8004$	0.0366
Mean(profit)	0.1260	0.1144	$\mu_z = 0.0279$	0.0014
Var(profit)	0.0144	0.0160	$\sigma_z^2 = 0.1198$	0.0044
$Mean(\log(size))$	7.4515	7.4806	$\mu_s = 1.2356$	0.0365
$Var(\log(size))$	2.3060	2.1610	$\sigma_s = 2.5795$	0.1211
$Mean(\log(wage))$	7.2408	7.2665	$\alpha_0 = -1.5534$	0.0147
Var(log(wage))	1.1846	0.8960	$\alpha_1=0.5270$	0.0217
$\beta_{wage-size}$	0.3830	0.2822		
β _{delta-wage}	1.1063	1.1997	$\sigma = 1.1038$	0.0030
$Mean(\log(delta))$	8.4994	8.478	c = 0.0814	0.0259
$Var(\log(delta))$	3.4438	3.35872		

Predictions on the empirical puzzles

B. Untargeted Moments

Moments	Data	Model	Description
$eta_{\Delta wage-size}$	0.112	0.1450	Firm-size growth premium
$eta_{delta-size}$	0.3473	0.3122	Firm-size incentive premium, tdc1 controlled
$eta_{delta-size-nowage}$	0.6044	0.6507	Firm-size incentive premium, tdc1 not controlled

- These moments are not targeted.
- They are predicted by the estimated model.
- The model quantitatively captures the two premiums. Details

Policy Implication

Policy: Spillover effect

- Spillover effect: more fierce bids from a group of firms
 - 1. boosts the executive pay in those firms
 - 2. increases the pay in all firms that are higher on the job ladder
- instead of focusing on large firms
- more effective: lower the willingness to bid in small and medium firms
- possible ways (has been proposed or implemented)
 - more independent compensation committee
 - greater mandatory pay (or pay ratio) disclosure
 - say-on-pay legislation, etc.

Spillover effect

Spillover effect

Conclusion

Conclusion

- Managerial labor market competition impacts the incentive contracts: level and incentives.
 - 1. Larger firms are more capable of countering outside offers.
 - Poaching offers generate labor market incentives which decrease in firm size.
- Structure estimates show the model captures the firm size premium in compensation growth and performance-based incentives.

Thanks you for your attention.

http://bohuecon.github.io

No Moral Hazard, Full Commitment

Only Moral Hazard

Only Limited Commitment

Optimal Contract

Job-to-job transition rate over age

Exit rate over age

Climb the Job Ladder

Table 3: Change of firm size upon job-to-job transitions

Panel A: All executives					
Firm size proxy	Total obs. Firm size decrease obs. (%)		Firm size increase obs. (%)		
Market Cap	2567	985 (39%)	1582 (61%)		
Sales	2617	1051 (40%)	1566 (60%)		
Book Assets	2616	1038 (40%)	1578 (60%)		

Panel B: Across age groups

Age groups	Total obs.	Firm size decrease obs. (%)	Firm size increase obs. (%)	
≤ 40	100	34 (34%)	66 (66%)	
[40, 45)	381	135 (35%)	246 (65%)	
[45, 50)	701	262 (37%)	439 (63%)	
[50, 55)	766	304 (40%)	462 (60%)	
[55, 60)	261	179 (43%)	82 (67%)	
[60, 65)	73	52 (39%)	21 (61%)	
[65, 70)	30	7 (25%)	23 (75%)	
≥ 70	6	1 (16%)	5 (84%)	

Table 4: Job-to-Job Transitions and Firm Size

Job-to-Job Transition				
,	(1)	(2)		
log(Firm Size)	0.917**** (0.0109)	0.972* (0.0139)		
Age	0.985**** (0.00273)	0.967*** (0.0112)		
log(tdc1)		0.830**** (0.0150)		
Market-Book Ratio	0.942**** (0.0150)	0.939**** (0.0157)		
Market Value Leverage	1.033** (0.0139)	1.035** (0.0142)		
Profitability	0.913**** (0.0197)	0.905**** (0.0199)		
Year FE	Yes	Yes		
Industry FE	Yes	Yes		
N chi2	154635 496.1	118119 491.4		

Table 1: Compensation growth increases with firm size

	$\Delta \log(tdc1)$					
	(1)	(2)	(3)	(4)	(5)	(6)
log(firm size)_1	0.112*** (0.00903)	0.154*** (0.0129)	0.108*** (0.00183)	0.107*** (0.00189)	0.141*** (0.00177)	0.127*** (0.00489)
$\begin{array}{l} log(firm\;size)_{-1} \\ \times \; \dot{E}E90 \end{array}$			0.0711* (0.0403)			
$\begin{array}{l} log(firm\ size)_{-1} \\ \times\ EE190 \end{array}$				0.0759** (0.0353)		
$\begin{array}{l} log(firm\ size)_{-1} \\ \times\ gai \end{array}$					0.0233*** (0.00546)	
$log(firm\ size)_{-1} \times inside\ CEO$						-0.000232*** (0.0000696)
$log(tdc1)_{-1}$	-0.290*** (0.0200)	-0.390*** (0.0262)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
Dummies	X	X	X	X	X	X
Other contorls		X	X	X	X	X
Observations adj. R ²	129068 0.157	106819 0.216	106820 0.260	106820 0.260	58188 0.233	106820 0.262

Table 2: Performance-based incentives increases with firm size

	log(delta)					
	(1)	(2)	(3)	(4)	(5)	(6)
log(firm size)	0.604*** (0.0141)	0.347*** (0.0247)	0.525*** (0.00512)	0.529*** (0.00499)	0.561*** (0.00310)	0.571*** (0.0139)
log(firm size) × EE90			0.359* (0.118)			
log(firm size) × EE190				0.415** (0.101)		
log(firm size) × gai					0.0648*** (0.00156)	
log(firm size) × inside CEO						-0.000458* (0.000202)
log(tdc1)		0.609*** (0.0350)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
Dummies	X	X	X	X	X	X
Other contorls		X	X	X	X	X
Observations adj. \mathbb{R}^2	146747 0.442	128006 0.514	125858 0.521	125858 0.521	75747 0.531	125858 0.521

If labor market incentives are ignored ...


```
CEO's of "Small Firms" in S&P 500
```

PRICELINE GROUP INC

SKYWORKS SOLUTIONS INC

ALASKA AIR GROUP INC

ACUITTY BRANDS INC.

LKQ CORP

CENTENE CORP

ANSYS INC

REGENERON PHARMACEUTICALS 897.3801 3094.134

ENVISION HEALTHCARE CORP 678.6906 1777.991 217.729 |

886.0817

1113.547

1130.155

HOLOGIC INC 1276.448 2709.708

1328.171

1368.129

GARTNER INC 1474.909 8945.338

889.9763 2602.093

1194.977 950.098

1775.531

2638.243

4584.605

1102.528

3738.803

165.73476 I

473.70974 I

566.14187

128.10688 I

344.02299 I

99.525198 I

428.10996

133.42285 |

431.01562 |

158.65569

```
CEO's of "Large Firms" in S&P 500
```

COCA-COLA CO 95494.39 12781.61

126749.6

INTEL CORP 147738.2 6101.835

94944.89 17283.529

97836.48 15268.415

121238.6 16269.85

129381.2 21693.615

192048.2 16652.894

EXXON MOBIL CORP 344490.6 48922.808 3843.027 |

13125.882

1666.3201 I

425.62199 I

2919.7995 I

5981.3853 | 1106.8351 |

1298.8777 I

1874.5755 I

1465.7708 I

AT&T INC

PEPSICO INC

CHEVRON CORP

CISCO SYSTEMS INC

WAL-MART STORES INC

INTL BUSINESS MACHINES CORP

+-----

References i

References

- Custódio, Cláudia, Miguel A Ferreira, and Pedro Matos (2013), "Generalists versus specialists: Lifetime work experience and chief executive officer pay." Journal of Financial Economics, 108, 471–492.
- Edmans, Alex and Xavier Gabaix (2011), "The effect of risk on the ceo market." The Review of Financial Studies, 24, 2822–2863.
- Edmans, Alex, Xavier Gabaix, and Augustin Landier (2009), "A multiplicative model of optimal ceo incentives in market equilibrium. review of financial studies."
- Gabaix, Xavier and Augustin Landier (2008), "Why has ceo pay increased so much?" The Quarterly Journal of Economics, 123, 49–100.

References ii

- Gayle, George-Levi, Limor Golan, and Robert A Miller (2015), "Promotion, turnover, and compensation in the executive labor market." Econometrica, 83, 2293–2369.
- Gayle, George-Levi and Robert A Miller (2009), "Has moral hazard become a more important factor in managerial compensation?" American Economic Review, 99, 1740–69.
- Martijn Cremers, KJ and Yaniv Grinstein (2013), "Does the market for ceo talent explain controversial ceo pay practices?" Review of Finance, 18, 921–960.
- Tervio, Marko (2008), "The difference that ceos make: An assignment model approach." American Economic Review, 98, 642–68.