Redes Neurais Artificiais Pedro H A Konzen 23 de Janeiro de 2024

Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre redes neurais artificiais Como ferramenta computacional de apoio, vários exemplos de aplicação de códigos Python+PyTorch são apresentados.

Agradeço a todas e todos que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

50

Conteúdo

Capa	i
Licença	ii
Prefácio	iii
Sumário	v
1 Introdução	1
2 Perceptron	3
2.1 Unidade de Processamento	3
2.1.1 Um problema de classificação	4
	10
	14
	15
	16
	19
	22
3 Perceptron Multicamadas	23
3.1 Modelo MLP	23
3.1.1 Treinamento	24
3.1.2 Aplicação: Problema de Classificação XOR	25
3.1.3 Exercícios	28
3.2 Aplicação: Problema de Classificação Binária	29
	29
3.2.2 Modelo	30

iv

CONT.	EÚDO
	3.2.3 Treinamento e Teste
	3.2.4 Verificação
	3.2.5 Exercícios
3.3	Aplicação: Aproximação de Funções
	3.3.1 Função unidimensional
	3.3.2 Função bidimensional
2.4	3.3.3 Exercícios
3.4	Diferenciação Automática
	3.4.1 Autograd MLP
	5.4.2 Exercicios
4 Rec	des Informadas pela Física
4.1	Aplicação: Equação de Poisson
	4.1.1 Exercícios
4.2	Aplicação: Equação do Calor
4.3	PINN com Parâmetro a Determinar
	4.3.1 Exercícios
Respo	stas dos Exercícios
Biblio	grafia

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt 100 150 200 250 300 350 400 450 500 550 600

Capítulo 1

Introdução

Uma rede neural artificial é um modelo de aprendizagem profunda (deep learning), uma área da aprendizagem de máquina (machine learning). O termo tem origem no início dos desenvolvimentos de inteligência artificial, em que modelos matemáticos e computacionais foram inspirados no cérebro biológico (tanto de humanos como de outros animais). Muitas vezes desenvolvidos com o objetivo de compreender o funcionamento do cérebro, também tinham a intensão de emular a inteligência.

Nestas notas de aula, estudamos um dos modelos de redes neurais usualmente aplicados. A unidade básica de processamento data do modelo de neurônio de McCulloch-Pitts (McCulloch and Pitts, 1943), conhecido como perceptron (Rosenblatt, 1958, 1962), o primeiro com um algoritmo de treinamento para problemas de classificação linearmente separável. Um modelo similiar é o ADALINE (do inglês, adaptive linear element, Widrow and Hoff, 1960), desenvolvido para a predição de números reais. Pela questão histórica, vamos usar o termo perceptron para designar a unidade básica (o neurônio), mesmo que o modelo de neurônio a ser estudado não seja restrito ao original.

Métodos de aprendizagem profunda são técnicas de treinamento (calibração) de composições em múltiplos níveis, aplicáveis a problemas de aprendizagem de máquina que, muitas vezes, não têm relação com o cérebro ou neurônios biológicos. Um exemplo, é a rede neural que mais vamos explorar nas notas, o perceptron multicamada (MLP, em inglês multilayer percep-

tron), um modelo de progressão (em inglês, feedfoward) de rede profunda em que a informação é processada pela composição de camadas de perceptrons. Embora a ideia de fazer com que a informação seja processada através da conexão de múltiplos neurônios tenha inspiração biológica, usualmente a escolha da disposição dos neurônios em uma MLP é feita por questões algorítmicas e computacionais. I.e., baseada na eficiente utilização da arquitetura dos computadores atuais.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

рı

LŲU 🕇

_1

350 —

-600

Capítulo 2

Perceptron

2.1 Unidade de Processamento

A unidade básica de processamento (neurônio artificial) que exploramos nestas notas é baseada no perceptron (Fig. 2.1). Consiste na composição de uma função de ativação $f: \mathbb{R} \to \mathbb{R}$ com a pré-ativação

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.1}$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{2.2}$$

onde, $\boldsymbol{x} \in \mathbb{R}^n$ é o vetor de entrada, $\boldsymbol{w} \in \mathbb{R}^n$ é o vetor de pesos e $b \in \mathbb{R}$ é o **bias**. Escolhida uma função de ativação, a **saída do neurônio** é dada por

$$y = \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right) \tag{2.3}$$

$$:= f(z) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b) \tag{2.4}$$

Figura 2.1: Esquema de um perceptron: unidade de processamento.

O treinamento (calibração) consiste em determinar os parâmetros (\boldsymbol{w}, b) de forma que o neurônio forneça as saídas y esperadas com base em um critério predeterminado.

Uma das vantagens deste modelo de neurônio é sua generalidade, i.e. pode ser aplicado a diferentes problemas. Na sequência, vamos aplicá-lo na resolução de um problema de classificação e noutro de regressão.

2.1.1 Um problema de classificação

Vamos desenvolver um perceptron que emule a operação \land (e-lógico). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1 \land A_2$. Segue a tabela verdade do \land :

$$\begin{array}{c|cccc} A_1 & A_2 & R \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Modelo

Nosso modelo de neurônio será um perceptron com duas entradas $x \in \{-1, 1\}^2$ e a função sinal

$$f(z) = \operatorname{sign}(z) = \begin{cases} 1 & , z > 0 \\ 0 & , z = 0 \\ -1 & , z < 0 \end{cases}$$
 (2.5)

como função de ativação, i.e.

$$y = \mathcal{N}(\mathbf{x}; (\mathbf{w}, b)),$$

$$= \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + b),$$
(2.6)

onde $\boldsymbol{w} \in \mathbb{R}^2$ e $b \in \mathbb{R}$ são parâmetros a determinar.

Pré-processamento

Uma vez que nosso modelo recebe valores $\boldsymbol{x} \in \{-1,1\}^2$ e retorna $y \in \{-1,1\}$, precisamos (pre)processar os dados do problema de forma a utilizá-los. Uma forma, é assumir que todo valor negativo está associado ao valor lógico F (falso) e positivo ao valor lógico V (verdadeiro). Desta forma, os dados podem ser interpretados como na tabela abaixo.

Treinamento

Agora, nos falta treinar nosso neurônio para fornecer o valor de y esperado para cada dada entrada \boldsymbol{x} . Isso consiste em um método para escolhermos os parâmetros (\boldsymbol{w},b) que sejam adequados para esta tarefa. Vamos explorar mais sobre isso na sequência do texto e, aqui, apenas escolhemos

$$\boldsymbol{w} = (1,1), \tag{2.8}$$

$$b = -1. (2.9)$$

Com isso, nosso perceptron é

$$\mathcal{N}(\mathbf{x}) = \operatorname{sign}(x_1 + x_2 - 1) \tag{2.10}$$

Verifique que ele satisfaz a tabela verdade acima!

Implementação

050

```
Código 2.1: perceptron.py
```

```
1
   import torch
2
   # modelo
  class Perceptron(torch.nn.Module):
       def __init__(self):
            super().__init__()
6
7
            self.linear = torch.nn.Linear(2,1)
8
9
       def forward(self, x):
           z = self.linear(x)
10
11
           y = torch.sign(z)
12
           return y
13
14
  model = Perceptron()
   W = torch.Tensor([[1., 1.]])
  b = torch.Tensor([-1.])
   with torch.no_grad():
18
       model.linear.weight = torch.nn.Parameter(W)
19
       model.linear.bias = torch.nn.Parameter(b)
20
  # dados de entrada
21
22
   X = torch.tensor([[1., 1.],
23
                      [1., -1.],
24
                      [-1., 1.],
                      [-1., -1.]])
25
26
  print(f"\nDados de entrada\n{X}")
27
28
29
  # forward (aplicação do modelo)
30
31 y = model(X)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

) 6

32

33 print(f"Valores estimados\n{y}")

600

Interpretação geométrica

Empregamos o seguinte modelo de neurônio

 $\tau^{-} = \{ \boldsymbol{x} \in \mathbb{R}^2 : w_1 x_1 + w_2 x_2 + b < 0 \}$

problema de classificação consiste em encontrar a reta

160

$$\mathcal{N}\left(\boldsymbol{x}; \left(\boldsymbol{w}, b\right)\right) = \operatorname{sign}(w_1 x_1 + w_2 x_2 + b) \tag{2.11}$$

5Ò(

Observamos que

50

$$w_1 x_1 + w_2 x_2 + b = 0 (2.12)$$

+

corresponde à equação geral de uma reta no plano $\tau: x_1 \times x_2$. Esta reta divide o plano em dois semiplanos

50

$$\tau^{+} = \{ \boldsymbol{x} \in \mathbb{R}^{2} : w_{1}x_{1} + w_{2}x_{2} + b > 0 \}$$
(2.13)

300

O primeiro está na direção do vetor normal à reta
$$\mathbf{n} = (w_1, w_2)$$
 e o segundo no sentido oposto. Com isso, o problema de treinar nosso neurônio para o

20

$$w_1 x_1 + w_2 x_2 + b = 0 (2.15)$$

.5(

de forma que o ponto (1,1) esteja no semiplano positivo τ^+ e os demais pontos no semiplano negativo τ^- . Consultamos a Figura 2.2.

100

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

1

20

-250 -

-300 -

-350

00

450 -

(2.14)

00

550

-600

Figura 2.2: Interpretação geométrica do perceptron aplicado ao problema de classificação relacionado à operação lógica \wedge (e-lógico).

Algoritmo de treinamento: perceptron

O algoritmo de treinamento perceptron permite calibrar os pesos de um neurônio para fazer a classificação de dados linearmente separáveis. Trata-se de um algoritmo para o **treinamento supervisionado** de um neurônio, i.e. a calibração dos pesos é feita com base em um dado **conjunto de amostras de treinamento**.

Seja dado um **conjunto de treinamento** $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$, onde n_s é o número de amostras. O algoritmo consiste no seguinte:

1.
$$\boldsymbol{w} \leftarrow \boldsymbol{0}, b \leftarrow 0$$
.

2. Para $e \leftarrow 1, \ldots, n_e$:

(a) Para
$$s \leftarrow 1, \ldots, n_s$$
:

i. Se
$$y^{(s)} \mathcal{N}\left(\boldsymbol{x}^{(s)}\right) \leq 0$$
:

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

pt

+-150

00

50

300 -

-350

400 —

450 —

500

550

+-60

```
A. \boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(s)} \boldsymbol{x}^{(s)}
B. b \leftarrow b + y^{(s)}
```

onde, n_e é um dado número de épocas¹.

00

```
Código 2.2: perceptron_train.py
```

```
1 import torch
2
  # modelo
3
   class Perceptron(torch.nn.Module):
6
       def __init__(self):
           super().__init__()
            self.linear = torch.nn.Linear(2,1)
9
       def forward(self, x):
10
11
           z = self.linear(x)
12
           y = torch.sign(z)
13
           return y
14
15 model = Perceptron()
16 with torch.no_grad():
       W = model.linear.weight
17
       b = model.linear.bias
18
19
20 # dados de treinamento
21 X_train = torch.tensor([[1., 1.],
22
                      [1., -1.],
23
                      [-1., 1.],
24
                      [-1., -1.]
25 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
26
27 ## número de amostras
28 \text{ ns} = y_{train.size}(0)
29
30 print("\nDados de treinamento")
31 print("X_train =")
32 print(X_train)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

 pt

LŲU

-150

00

50

---450

-500

-550-

-600

 $^{^1\}mathrm{Número}$ de vezes que as amostrar serão per corridas para realizar a correção dos pesos.

```
print("y_train = ")
  print(y_train)
34
35
36
  # treinamento
37
38
  ## num max épocas
39
   nepochs = 100
40
41
   for epoch in range(nepochs):
42
43
       # update
44
       not_updated = True
45
       for s in range(ns):
            y_est = model(X_train[s:s+1,:])
46
            if (y_est*y_train[s] <= 0.):</pre>
47
                with torch.no_grad():
48
49
                    W += y_train[s]*X_train[s,:]
                    b += y_train[s]
50
                    not_updated = False
51
52
       if (not_updated):
53
54
            print('Training ended.')
55
            break
56
57
58 # verificação
59 print(f'W =\n{W}')
60 print(f'b =\n{b}')
61 y = model(X_train)
62 print(f'y =\n{y}')
```

2.1.2 Problema de regressão

Vamos treinar um perceptron para resolver o problema de regressão linear para os seguintes dados

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

Modelo

Vamos determinar o perceptron²

$$\tilde{y} = \mathcal{N}(x; (w, b)) = wx + b \tag{2.16}$$

que melhor se ajusta a este conjunto de dados $\{(x^{(s)}, y^{(s)})\}_{s=1}^{n_s}, n_s = 4.$

Treinamento

A ideia é que o perceptron seja tal que minimize o erro quadrático médio (MSE, do inglês, *Mean Squared Error*), i.e.

$$\min_{w,b} \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.17}$$

Vamos denotar a <mark>função erro</mark> (em inglês, loss function) por

$$\varepsilon(w,b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.18}$$

$$= \frac{1}{n_s} \sum_{s=1}^{n_s} \left(wx^{(s)} + b - y^{(s)} \right)^2$$
 (2.19)

Observamos que o problema (2.17) é equivalente a um problema linear de mínimos quadrados. A solução é obtida resolvendo-se a equação normal³

$$M^T M \boldsymbol{c} = M^T \boldsymbol{y}, \tag{2.20}$$

onde $\boldsymbol{c}=(w,p)$ é o vetor dos parâmetros a determinar e M é a matriz $n_s\times 2$ dada por

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \tag{2.21}$$

²Escolhendo f(z) = z como função de ativação.

³Consulte o Exercício 2.1.4.

Implementação

```
Código 2.3: perceptron_mq.py
  import torch
3
   # modelo
  class Perceptron(torch.nn.Module):
       def __init__(self):
6
            super().__init__()
7
            self.linear = torch.nn.Linear(1,1)
8
9
       def forward(self, x):
10
           z = self.linear(x)
11
           return z
12
13
  model = Perceptron()
  with torch.no_grad():
       W = model.linear.weight
       b = model.linear.bias
16
17
18
  # dados de treinamento
19 X_train = torch.tensor([0.5,
20
                             1.0,
21
                             1.5,
22
                             [2.0]).reshape(-1,1)
23 y_train = torch.tensor([1.2,
24
25
                             2.6,
26
                             3.6]).reshape(-1,1)
27
28 ## número de amostras
29 ns = y_train.size(0)
30
31 print("\nDados de treinamento")
32 print("X_train =")
33 print(X_train)
34 print("y_train = ")
35 print(y_train)
36
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

96

100

50 -

37 # treinamento

00

-35

400

-450

500

0

```
38
   ## matriz
39
40 M = torch.hstack((X_train,
41
                       torch.ones((ns,1))))
42 ## solucão M.Q.
43 c = torch.linalg.lstsq(M, y_train)[0]
44 with torch.no_grad():
       W = c[0]
45
46
       b = c[1]
47
48 # verificação
49 print(f'W =\n{W}')
50 print(f'b =\n{b}')
51 y = model(X_train)
52 \text{ print}(f'y = n\{y\}')
```

Resultado

Nosso perceptron corresponde ao modelo

$$\mathcal{N}(x;(w,b)) = wx + b \tag{2.22}$$

com pesos treinados w=1.54 e b=0.45. Ele corresponde à reta que melhor se ajusta ao conjunto de dados de $\left\{x^{(s)},y^{(s)}\right\}_{s=1}^4$ dado na tabela acima. Consultamos a Figura 2.3.

Figura 2.3: Interpretação geométrica do perceptron aplicado ao problema de regressão linear.

2.1.3 Exercícios

Exercício 2.1.1. Crie um perceptron que emule a operação lógica do \lor (ou-lógico).

A_1	A_2	$A_1 \vee A_2$
V	V	V
V	F	V
F	V	V
F	F	F

Exercício 2.1.2. Busque criar um perceptron que emule a operação lógica do xor.

A_1	A_2	A_1 xor A_2
V	V	F
V	F	V
F	V	V
F	F	F

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

ot |

+ + + 1

200

50

300 -

350-

400 —

450 —

500

550

É possível? Justifique sua resposta.

Exercício 2.1.3. Assumindo o modelo de neurônio (2.16), mostre que (2.18) é função convexa.

Exercício 2.1.4. Mostre que a solução do problema (2.17) é dada por (2.20).

Exercício 2.1.5. Crie um perceptron com função de ativação $f(x) = \tanh(x)$ que melhor se ajuste ao seguinte conjunto de dados:

S	$x^{(s)}$	$y^{(s)}$
1	-1,0	-0,8
2	-0,7	-0,7
3	-0,3	-0,5
4	0,0	-0,4
5	0,2	-0,2
6	0,5	0,0
7	1,0	0,3

2.2 Algoritmo de Treinamento

Na seção anterior, desenvolvemos dois modelos de neurônios para problemas diferentes, um de classificação e outro de regressão. Em cada caso, utilizamos algoritmos de treinamento diferentes. Agora, vamos estudar algoritmos de treinamentos mais gerais⁴, que podem ser aplicados a ambos os problemas.

Ao longo da seção, vamos considerar o **modelo** de neurônio

$$\tilde{y} = \mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = f(\underline{\boldsymbol{w} \cdot \boldsymbol{x} + b}),$$
(2.23)

com dada função de ativação $f: \mathbb{R} \to \mathbb{R}$, sendo os vetores de entrada \boldsymbol{x} e dos pesos \boldsymbol{w} de tamanho n_{in} . A pré-ativação do neurônio é denotada por

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.24}$$

 $^{^4\}mathrm{Aqui},$ vamos explorar apenas algoritmos de treinamento supervisionado.

Fornecido um **conjunto de treinamento** $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_1^{n_s}$, com n_s amostras, o objetivo é calcular os parâmetros (\boldsymbol{w}, b) que minimizam a **função erro quadrático médio**

$$\varepsilon(\boldsymbol{w},b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.25}$$

$$=\frac{1}{n_s}\sum_{s=1}^{n_s}\varepsilon^{(s)} \tag{2.26}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}; (\boldsymbol{w}, b)\right)$ é o valor estimado pelo modelo e $y^{(s)}$ é o valor esperado para a s-ésima amostra. A função erro para a s-ésima amostra é

$$\varepsilon^{(s)} := \left(\tilde{y}^{(s)} - y^{(s)}\right)^2. \tag{2.27}$$

Ou seja, o treinamento consiste em resolver o seguinte **problema de oti- mização**

$$\min_{(\boldsymbol{w},b)} \varepsilon(\boldsymbol{w},b) \tag{2.28}$$

Para resolver este problema de otimização, vamos empregar o Método do Gradiente Descendente.

2.2.1 Método do Gradiente Descendente

O Método do Gradiente Descendente (GD, em inglês, Gradiente Descent Method) é um método de declive. Aplicado ao nosso modelo de Perceptron consiste no seguinte algoritmo:

- 1. (\boldsymbol{w}, b) aproximação inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** $(l_r, do inglês, learning rate)$ e o **gradiente** é

$$\frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)} := \left(\frac{\partial \varepsilon}{\partial w_1}, \dots, \frac{\partial \varepsilon}{\partial w_{n_{in}}}, \frac{\partial \varepsilon}{\partial b}\right)$$
(2.29)

O cálculo do gradiente para os pesos \boldsymbol{w} pode ser feito como segue⁵

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left[\frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \right]$$
 (2.30)

$$= \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial \boldsymbol{w}}$$
(2.31)

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial \boldsymbol{w}}$$
(2.32)

Observando que

$$\frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} = 2\left(\tilde{y}^{(s)} - y^{(s)}\right) \tag{2.33}$$

$$\frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} = f'\left(z^{(s)}\right) \tag{2.34}$$

$$\frac{\partial z^{(s)}}{\partial \boldsymbol{w}} = \boldsymbol{x}^{(s)} \tag{2.35}$$

obtemos

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \boldsymbol{x}^{(s)}$$
(2.36)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial b}$$
(2.37)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \cdot 1 \tag{2.38}$$

Aplicação: Problema de Classificação

Na Subseção 2.1.1, treinamos um perceptron para o problema de classificação do e-lógico. A função de ativação f(x) = sign(x) não é adequada para a aplicação do Método GD, pois $f'(x) \equiv 0$ para $x \neq 0$. Aqui, vamos usar

$$f(x) = \tanh(x). \tag{2.39}$$

⁵Aqui, há um abuso de linguagem ao não se observar as dimensões dos operandos matriciais.

Código 2.4: perceptron_gd.py

```
1 import torch
2
3 # modelo
4
5
   class Perceptron(torch.nn.Module):
6
       def __init__(self):
7
           super().__init__()
8
           self.linear = torch.nn.Linear(2,1)
9
10
       def forward(self, x):
11
           z = self.linear(x)
12
           y = torch.tanh(z)
13
           return y
14
15 model = Perceptron()
16
17
  # treinamento
18
19 ## optimizador
20 optim = torch.optim.SGD(model.parameters(), lr=5e-1)
21
22 ## função erro
23 loss_fun = torch.nn.MSELoss()
24
25 ## dados de treinamento
26 X_train = torch.tensor([[1., 1.],
27
                      [1., -1.],
28
                      [-1., 1.],
29
                      [-1., -1.]
30 \ y_{train} = torch.tensor([1., -1., -1.]).reshape(-1,1)
31
32 print("\nDados de treinamento")
33 print("X_train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 ## num max épocas
39 nepochs = 1000
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

it 100 150 200 250 300 350 400 450 500 550 600

```
tol = 1e-3
40
41
   for epoch in range(nepochs):
42
43
        # forward
44
45
        y_est = model(X_train)
46
        # erro
47
        loss = loss_fun(y_est, y_train)
48
49
        print(f'{epoch}: {loss.item():.4e}')
50
51
52
        # critério de parada
        if (loss.item() < tol):</pre>
53
54
            break
55
56
        # backward
        optim.zero_grad()
57
        loss.backward()
58
59
        optim.step()
60
61
62
   # verificação
63 y = model(X_train)
64 \text{ print}(f'y_est = \{y\}')
```

2.2.2 Método do Gradiente Estocástico

O Método do Gradiente Estocástico (SGD, do inglês, Stochastic Gradient Descent Method) é um variação do Método GD. A ideia é atualizar os parâmetros do modelo com base no gradiente do erro de cada amostra (ou um subconjunto de amostras⁶). A estocasticidade é obtida da randomização com que as amostras são escolhidas a cada época. O algoritmos consiste no seguinte:

- 1. w, b aproximações inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

⁶Nest caso, é conhecido como Batch SGD.

1.1. Para $s \leftarrow \mathtt{random}(1, \ldots, n_s)$:

```
50
```

 $(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon^{(s)}}{\partial (\boldsymbol{w}, b)}$ (2.40)

Aplicação: Problema de Classificação

Código 2.5: perceptron_sgd.py

```
1 import torch
2 import numpy as np
3
4
   # modelo
5
   class Perceptron(torch.nn.Module):
7
       def __init__(self):
8
           super().__init__()
9
           self.linear = torch.nn.Linear(2,1)
10
11
       def forward(self, x):
12
           z = self.linear(x)
13
           y = torch.tanh(z)
14
           return y
15
16
  model = Perceptron()
17
18
   # treinamento
19
20 ## optimizador
21
  optim = torch.optim.SGD(model.parameters(), lr=5e-1)
22
  ## função erro
24
  loss_fun = torch.nn.MSELoss()
25
26 ## dados de treinamento
27 X_train = torch.tensor([[1., 1.],
28
                      [1., -1.],
29
                      [-1., 1.],
                      [-1., -1.]])
30
31 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
32
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Ьr

```
33 ## num de amostras
34 \text{ ns} = \text{y_train.size}(0)
35
36 print("\nDados de treinamento")
37 print("X_train =")
38 print(X_train)
39 print("y_train = ")
40 print(y_train)
41
42 ## num max épocas
43 nepochs = 5000
44 \text{ tol} = 1e-3
45
46 for epoch in range (nepochs):
47
48
        # forward
49
        y_est = model(X_train)
50
51
        # erro
52
        loss = loss_fun(y_est, y_train)
54
       print(f'{epoch}: {loss.item():.4e}')
55
56
        # critério de parada
57
       if (loss.item() < tol):</pre>
            break
58
59
60
        # backward
61
        for s in torch.randperm(ns):
62
            loss_s = (y_est[s,:] - y_train[s,:])**2
63
            optim.zero_grad()
            loss_s.backward()
64
65
            optim.step()
66
            y_est = model(X_train)
67
68
69 # verificação
70 y = model(X_train)
71 print(f'y_est = {y}')
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

LŲU

150

00

6

-45

450 -

500

-550-

-600

2.2.3 Exercícios

Exercício 2.2.1. Calcule a derivada da função de ativação

$$f(x) = \tanh(x). \tag{2.41}$$

Exercício 2.2.2. Crie um perceptron para emular a operação lógica \land (e-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.3. Crie um perceptron para emular a operação lógica \vee (ou-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.4. Crie um perceptron que se ajuste ao seguinte conjunto de dados:

No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

рь

Ψ

50 -

00

50

 $\frac{1}{50}$

400 -

450 -

500 -

-550 --

Capítulo 3

Perceptron Multicamadas

3.1 Modelo MLP

Uma perceptron multicamadas (MLP, do inglês, multilayer perceptron) é um tipo de rede neural artificial formada por composições de camadas de perceptrons. Consultamos a Figura 3.1.

Figura 3.1: Arquitetura de uma rede do tipo perceptron multicamadas (MLP).

Denotamos uma MLP de n_l camadas por

$$\boldsymbol{y} = \mathcal{N}\left(\boldsymbol{x}; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n_h+1}\right), \tag{3.1}$$

onde $(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)})$ é a tripa de **pesos**, **biases** e **função de ativação** da l-ésima camada da rede, $l=1,2,\ldots,n_h+1$. Uma rede com essa arquitetura é dita ter uma **camada de entrada**, n_h **camadas escondidas** e uma **camada de saída**.

A saída da rede é calculada por iteradas composições das camadas, i.e.

$$\boldsymbol{a}^{(l)} = f^{(l)} \underbrace{\left(W^{(l)}\boldsymbol{a}^{(l-1)} + \boldsymbol{b}^{(l)}\right)}_{\boldsymbol{z}^{(l)}},\tag{3.2}$$

para $l = 1, 2, ..., n_h + 1$, denotando a **entrada** por $\boldsymbol{x} =: \boldsymbol{a}^{(0)}$ e a **saída** por $\boldsymbol{y} =: \boldsymbol{a}^{(n_h+1)}$.

3.1.1 Treinamento

Em um treinamento supervisionado, tem-se um dado **conjunto de treinamento** $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$, com n_s amostras. O treinamento da rede consiste em resolver o problema de minimização

$$\min_{(\boldsymbol{W},\boldsymbol{b})} \left\{ \varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \left(\tilde{\boldsymbol{y}}^{(s)}, \boldsymbol{y}^{(s)} \right) \right\}$$
(3.3)

onde ε é uma dada **função erro** (em inglês, *loss function*) e $\varepsilon^{(s)}$ é uma medida do erro da **saída estimada** $\tilde{y}^{(s)}$ da **saída esperada** $y^{(s)}$.

O problema de minimização pode ser resolvido por um método de declive e, de forma geral, consiste em:

- 1. W, \boldsymbol{b} aproximações iniciais.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(W, \boldsymbol{b}) \leftarrow (W, \boldsymbol{b}) - l_r \boldsymbol{d} (\nabla_{W, \boldsymbol{b}} \varepsilon)$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** (em inglês, $learning\ rate$)) e $\mathbf{d} = \mathbf{d}\left(\nabla_{W,\mathbf{b}}\varepsilon\right)$ é o vetor direção, onde

$$\nabla_{W,\mathbf{b}}\varepsilon := \left(\frac{\partial \varepsilon}{\partial W}, \frac{\partial \varepsilon}{\partial \mathbf{b}}\right) \tag{3.4}$$

$$= \frac{1}{ns} \sum_{s=1}^{n_s} \left(\frac{\partial \varepsilon^{(s)}}{\partial W}, \frac{\partial \varepsilon^{(s)}}{\partial \mathbf{b}} \right) \tag{3.5}$$

O cálculo dos gradientes pode ser feito por **retropropagação** (em inglês, backward). Para os pesos da última camada, temos¹

$$\frac{\partial \varepsilon^{(s)}}{\partial W^{(n_h+1)}} = \frac{\partial \varepsilon^{(s)}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}^{(n_h+1)}} \frac{\partial \mathbf{z}^{(n_h+1)}}{\partial W^{(n_h+1)}}$$
(3.6)

$$= \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{y}} f' \left(W^{(n_h+1)} \boldsymbol{a}^{(n_h)} + \boldsymbol{b}^{(n_h+1)} \right) \boldsymbol{a}^{(n_h)}. \tag{3.7}$$

Para os pesos da penúltima camada, temos

$$\frac{\partial \varepsilon^{(s)}}{\partial W^{(n_h)}} = \frac{\partial \varepsilon}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{z}^{(n_h+1)}} \frac{\partial \boldsymbol{z}^{(n_h+1)}}{\partial W^{(n_h)}}, \tag{3.8}$$

$$= \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n_h+1)}\right) \frac{\partial \boldsymbol{z}^{(n_h+1)}}{\partial \boldsymbol{a}^{(n_h)}} \frac{\partial \boldsymbol{a}^{(n_h)}}{\partial \boldsymbol{z}^{(n_h)}} \frac{\partial \boldsymbol{z}^{(n_h)}}{\partial W^{(n_h)}}$$
(3.9)

$$= \frac{\partial \varepsilon^{(s)}}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n_h+1)}\right) W^{(n_h+1)} f'\left(\boldsymbol{z}^{(n_h)}\right) \boldsymbol{a}^{(n_h-1)}$$
(3.10)

e assim, sucessivamente para as demais camadas da rede. Os gradientes em relação aos biases podem ser calculados de forma análoga.

3.1.2 Aplicação: Problema de Classificação XOR

Vamos desenvolver uma MLP que faça a operação **xor** (ou exclusivo). A rede recebe como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e fornece como saída o valor lógico $R = A_1 \mathbf{xor} A_2$. Consultamos a tabela verdade:

$$\begin{array}{c|cccc} A_1 & A_2 & R \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \\ \end{array}$$

Assumindo V = 1 e F = -1, podemos modelar o problema tendo entradas $\mathbf{x} = (x_1, x_2)$ e saída y como na seguinte tabela:

¹Com um cero abuso de linguagem devido à álgebra matricial envolvida.

x_1	x_2	y
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Modelo

Vamos usar uma MLP de estrutura 2-2-1 e com funções de ativação $f^{(1)}(\boldsymbol{x}) = \tanh(\boldsymbol{x})$ e $f^{(2)}(\boldsymbol{x}) = id(\boldsymbol{x})$. Ou seja, nossa rede tem duas entradas, uma **camada escondida** com 2 unidades (função de ativação tangente hiperbólica) e uma camada de saída com uma unidade (função de ativação identidade).

Treinamento

Para o treinamento, vamos usar a função **erro quadrático médio** (em inglês, mean squared error)

$$\varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \left| \tilde{y}^{(s)} - y^{(s)} \right|^2, \tag{3.11}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}\right)$ são os valores estimados e $\left\{\boldsymbol{x}^{(s)}, y^{(s)}\right\}_{s=1}^{n_s}$, $n_s = 4$, o conjunto de treinamento conforme na tabela acima.

Implementação

O seguinte código implementa a MLP com Método do Gradiente Descendente (DG) como otimizador do algoritmo de treinamento.

Código 3.1: mlp_xor.py

```
1 import torch
2
3 # modelo
4
5 model = torch.nn.Sequential()
6 model.add_module('layer_1', torch.nn.Linear(2,2))
7 model.add_module('fun_1', torch.nn.Tanh())
8 model.add_module('layer_2', torch.nn.Linear(2,1))
9
```

```
10
11 # treinamento
12
13 ## optimizador
14 optim = torch.optim.SGD(model.parameters(),
                             1r=5e-1)
16
17 ## dados de treinamento
18 X_train = torch.tensor([[1., 1.],
19
                             [1., -1.],
20
                             [-1., 1.],
                             [-1., -1.]]
21
22 y_train = torch.tensor([-1., 1., 1., -1.]).reshape(-1,1)
24 print("\nDados de treinamento")
25 print("X_train =")
26 print(X train)
27 print("y_train = ")
28 print(y_train)
29
30 ## num max épocas
31 nepochs = 5000
32 \text{ tol} = 1e-3
33
34 for epoch in range (nepochs):
35
36
       # forward
37
       y_est = model(X_train)
38
39
       # função erro
       loss = torch.mean((y_est - y_train)**2)
40
41
42
       print(f'{epoch}: {loss.item():.4e}')
43
       # critério de parada
44
       if (loss.item() < tol):</pre>
45
46
            break
47
48
       # backward
       optim.zero_grad()
49
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400

600

3.1. MODELO MLP

3.1.3 Exercícios

Exercício 3.1.1. Faça uma nova versão do Código , de forma que a MLP tenha tangente hiperbólica como função de ativação na sua saída.

Exercício 3.1.2. Faça uma nova versão do Código usando o método do gradiente estocástico (SGD) como otimizador no algoritmo de treinamento.

Exercício 3.1.3. Crie uma MLP para emular a operação lógica \land (e-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 3.1.4. Crie uma MLP para emular a operação lógica \vee (ou-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 3.1.5. Considere uma MLP com $n_l=3$ camadas escondidas. Sendo ε uma dada função erro, calcule:

1.
$$\frac{\partial \varepsilon}{\partial W^{n_l-2}}$$
.

$$2. \ \frac{\partial \varepsilon}{\partial \boldsymbol{b}^{n_l-2}}.$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

+15

2000

250

n L

350 -

-400

450

600

-550 —

-600

3.2 Aplicação: Problema de Classificação Binária

Em construção

Vamos estudar uma aplicação de redes neurais artificiais em um problema de classificação binária não linear.

3.2.1 Dados

Em construção

Vamos desenvolver uma rede do tipo Perceptron Multicamadas (MLP) para a classificação binária de pontos, com base nos seguintes dados.

```
from sklearn.datasets import make_circles
  import matplotlib.pyplot as plt
4 plt.rcParams.update({
5
        "text.usetex": True,
6
        "font.family": "serif",
        "font.size": 14
7
8
        })
9
10
  # data
11 print('data')
12 \text{ n\_samples} = 1000
13 print(f'n_samples = {n_samples}')
14 \# X = points, y = labels
15 X, y = make_circles(n_samples,
16
                        noise=0.03, # add noise
                        random_state=42) # random seed
17
18
19 fig = plt.figure()
20 ax = fig.add_subplot()
21 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.coolwarm)
22 ax.grid()
23 ax.set_xlabel('$x_1$')
24 ax.set_ylabel('$x_2$')
25 plt.show()
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Figura 3.2: Dados para a o problema de classificação binária não linear.

3.2.2 Modelo

Em construção

Vamos usar uma MLP de estrutura 2-10-1, com função de ativação

$$elu(x) = \begin{cases} x & , x > 0 \\ \alpha (e^x - 1) & , x \le 0 \end{cases}$$
 (3.12)

na camada escondida e

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^x} \tag{3.13}$$

na saída da rede.

Para o treinamento e teste, vamos randomicamente separar os dados em um conjunto de treinamento $\{\boldsymbol{x}_{\text{train}}^{(k)}, y_{\text{train}}^{(k)}\}_{k=1}^{n_{\text{train}}}$ e um conjunto de teste $\{\boldsymbol{x}_{\text{test}}^{(k)}, y_{\text{test}}^{(k)}\}_{k=1}^{n_{\text{test}}}$, com y=0 para os pontos azuis e y=1 para os pontos vermelhos.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Þг

3.2.3 Treinamento e Teste

Em construção

```
Código 3.2: mlp_classbin.py
```

```
1 import torch
2 from sklearn.datasets import make_circles
3 from sklearn.model_selection import train_test_split
4 import matplotlib.pyplot as plt
6 # data
7 print('data')
8 \text{ n\_samples} = 1000
9 print(f'n_samples = {n_samples}')
10 \# X = points, y = labels
11 X, y = make_circles(n_samples,
12
                        noise=0.03, # add noise
                        random_state=42) # random seed
13
14
15 ## numpy -> torch
16 X = torch.from_numpy(X).type(torch.float)
17 y = torch.from_numpy(y).type(torch.float).reshape(-1,1)
18
19 ## split into train and test datasets
20 print('Data: train and test sets')
21 X_train, X_test, y_train, y_test = train_test_split(X,
22
23
                                                         test_size=0.2,
24
                                                         random_state=42)
25 print(f'n_train = {len(X_train)}')
26 print(f'n_test = {len(X_test)}')
27 plt.close()
28 plt.scatter(X_train[:,0], X_train[:,1], c=y_train,
               marker='o', cmap=plt.cm.coolwarm, alpha=0.3)
30 plt.scatter(X_test[:,0], X_test[:,1], c=y_test,
               marker='*', cmap=plt.cm.coolwarm)
31
32 plt.show()
33
34 # model
35 model = torch.nn.Sequential(
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

```
36
       torch.nn.Linear(2, 10),
37
       torch.nn.ELU(),
38
       torch.nn.Linear(10, 1),
39
       torch.nn.Sigmoid()
40
41
42
  # loss fun
43
  loss_fun = torch.nn.BCELoss()
44
45 # optimizer
46
  optimizer = torch.optim.SGD(model.parameters(),
                                  lr = 1e-1)
47
48
49 # evaluation metric
50 def accuracy_fun(y_pred, y_exp):
51
       correct = torch.eq(y_pred, y_exp).sum().item()
52
       acc = correct/len(y_exp) * 100
53
       return acc
54
55 # train
56 \text{ n_epochs} = 10000
57 \text{ n_out} = 100
58
59
   for epoch in range(n_epochs):
60
       model.train()
61
62
       y_pred = model(X_train)
63
64
       loss = loss_fun(y_pred, y_train)
65
       acc = accuracy_fun(torch.round(y_pred),
66
67
                            y_train)
68
69
       optimizer.zero_grad()
70
       loss.backward()
       optimizer.step()
71
72
       model.eval()
73
74
75
       #testing
```

Pь

```
if ((epoch+1) % n_out == 0):
76
77
           with torch.inference_mode():
               y_pred_test = model(X_test)
78
               loss_test = loss_fun(y_pred_test,
79
                                      y_test)
80
               acc_test = accuracy_fun(torch.round(y_pred_test),
81
82
                                         y_test)
83
84
           print(f'{epoch+1}: loss = {loss:.5e}, accuracy = {acc:.2f}%')
           print(f'\ttest: loss = {loss:.5e}, accuracy = {acc:.2f}%\n')
85
```

3.2.4 Verificação

Em construção

Para a verificação, testamos o modelo em uma malha uniforme de 100×100 pontos no domínio $[-1, 1]^2$. Consulte a Figure 3.3.

Figura 3.3: Verificação do modelo de classificação binária.

1 # malha de pontos

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

```
2 \text{ xx} = \text{torch.linspace}(-1.1, 1.1, 100)
  Xg, Yg = torch.meshgrid(xx, xx)
5 # valores estimados
   Zg = torch.empty_like(Xg)
  for i,xg in enumerate(xx):
       for j,yg in enumerate(xx):
9
           z = model(torch.tensor([[xg, yg]])).detach()
10
           Zg[i, j] = torch.round(z)
11
12 # visualização
13 fig = plt.figure()
14 ax = fig.add_subplot()
15 ax.contourf(Xg, Yg, Zg, levels=2, cmap=plt.cm.coolwarm, alpha=0.5)
16 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.coolwarm)
17 plt.show()
```

3.2.5 Exercícios

Em construção

3.3 Aplicação: Aproximação de Funções

Redes Perceptron Multicamadas (MLPs) são aproximadoras universais. Nesta seção, vamos aplicá-las na aproximação de funções uni- e bidimensionais.

3.3.1 Função unidimensional

Vamos criar uma MLP para aproximar a função

$$y = \operatorname{sen}(\pi x), \tag{3.14}$$

para $x \in [-1, 1]$.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

Figura 3.4: Aproximação da MLP da função $y = \text{sen}(\pi x)$.

```
Código 3.3: mlp_apfun_1d
1 import torch
   import matplotlib.pyplot as plt
3
4
   # modelo
5
6 model = torch.nn.Sequential()
7 model.add_module('layer_1', torch.nn.Linear(1,25))
8 model.add_module('fun_1', torch.nn.Tanh())
9 model.add_module('layer_2', torch.nn.Linear(25,25))
10 model.add_module('fun_2', torch.nn.Tanh())
11 model.add_module('layer_3', torch.nn.Linear(25,1))
12
13 # treinamento
14
15 ## fun obj
16 fun = lambda x: torch.sin(torch.pi*x)
17 \ a = -1.
18 \ b = 1.
19
20 ## optimizador
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600

```
21 optim = torch.optim.SGD(model.parameters(),
22
                              lr=1e-1, momentum=0.9)
23
24 ## num de amostras por época
25 ns = 100
26 ## num max épocas
27 nepochs = 5000
28 ## tolerância
29 \text{ tol} = 1e-5
30
31 ## amostras de validação
32 X_val = torch.linspace(a, b, steps=100).reshape(-1,1)
33 \text{ y_vest} = \text{fun}(X_val)
34
35 for epoch in range (nepochs):
36
37
       # amostras
38
       X_{train} = (a - b) * torch.rand((ns,1)) + b
39
       y_train = fun(X_train)
40
41
       # forward
42
       y_est = model(X_train)
43
44
       # erro
45
       loss = torch.mean((y_est - y_train)**2)
46
47
       print(f'{epoch}: {loss.item():.4e}')
48
       # backward
49
50
       optim.zero_grad()
51
       loss.backward()
52
       optim.step()
53
54
       # validação
55
       y_val = model(X_val)
       loss_val = torch.mean((y_val - y_vest)**2)
56
57
       print(f"\tloss_val = {loss_val.item():.4e}")
58
59
       # critério de parada
60
       if (loss_val.item() < tol):</pre>
```

```
61
            break
62
63
64 # verificação
65 \text{ fig} = plt.figure()
66 ax = fig.add_subplot()
67
68
   x = torch.linspace(a, b,
69
                         steps=100).reshape(-1,1)
70
71 	 y_{esp} = fun(x)
72 ax.plot(x, y_esp, label='fun')
73
74 \text{ y_est} = \text{model(x)}
75 ax.plot(x, y_est.detach(), label='model')
76
77 ax.legend()
78 ax.grid()
79 ax.set_xlabel('x')
80 ax.set_ylabel('y')
81 plt.show()
```

3.3.2 Função bidimensional

Vamos criar uma MLP para aproximar a função bidimensional

$$y = \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2), \tag{3.15}$$

para $(x_1, x_2) \in \mathcal{D} := [-1, 1]^2$.

Vamos usar uma arquitetura de rede $2 - n_n \times 3 - 1$ (duas entradas, 3 camadas escondidas com n_n neurônios e uma saída). Nas $n_h = 3$ camadas escondidas, vamos usar a tangente hiperbólica como função de ativação.

Para o treinamento, vamos usar o <mark>erro médio quadrático</mark> como função erro

$$\varepsilon = \frac{1}{n_s} \sum_{s=1}^{n_s} |\tilde{y}^{(s)} - y^{(s)}|^2, \tag{3.16}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

onde, a cada época, n_s pontos randômicos² $\{\boldsymbol{x}^{(s)}\} \subset \mathcal{D}$ são usados para gerar o conjunto de treinamento $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_{s=1}^{n_s}$.

Figura 3.5: Aproximação MLP da função $y = \text{sen}(\pi x_1) \text{sen}(\pi x_2)$. Linhas: isolinhas da função. Mapa de cores: MLP. Estrelas: pontos de treinamentos na última época.

Código 3.4: mlp_apfun_2d

```
1
     import torch
2
3
     # modelo
4
     nn = 50
5
     model = torch.nn.Sequential()
6
     model.add_module('layer_1', torch.nn.Linear(2,nn))
7
     model.add_module('fun_1', torch.nn.Tanh())
     model.add_module('layer_2', torch.nn.Linear(nn,nn))
8
9
     model.add_module('fun_2', torch.nn.Tanh())
     model.add_module('layer_3', torch.nn.Linear(nn,nn))
10
     model.add_module('fun_3', torch.nn.Tanh())
11
```

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

pt

0

50

0

-350

400-

450

00

550 —

-600

²Em uma distribuição uniforme.

```
model.add_module(f'layer_4', torch.nn.Linear(nn,1))
12
13
14
     # treinamento
15
16
     ## fun obj
     def fun(x1, x2):
17
         return torch.sin(torch.pi*x1) * \
18
                 torch.sin(torch.pi*x2)
19
20
21
     x1_a = -1.
     x1_b = 1
22
23
24
     x2 a = -1.
25
     x2_b = 1.
26
27
28
     ## optimizador
29
     optim = torch.optim.SGD(model.parameters(),
30
                               lr=1e-1, momentum=0.9)
31
32
     ## num de amostras por época
33
     ns = 20
     ## num max épocas
34
35
     nepochs = 50000
36
     ## tolerância
     tol = 1e-4
37
38
39
     ## amostras de validação
     n val = 50
40
41
     x1 = torch.linspace(x1_a, x1_b, steps=n_val)
     x2 = torch.linspace(x2_a, x2_b, steps=n_val)
42
     X1_val, X2_val = torch.meshgrid(x1, x2, indexing='ij')
43
     X_val = torch.hstack((X1_val.reshape(n_val**2,1),
44
                             X2_val.reshape(n_val**2,1)))
45
46
     Y_vest = fun(X1_val, X2_val).reshape(-1,1)
47
48
     for epoch in range(nepochs):
49
50
         # amostras
         X1 = (x1_b - x1_a) * torch.rand(ns**2, 1) + x1_a
51
```

 pt

```
52
          X2 = (x2_b - x2_a) * torch.rand(ns**2, 1) + x2_a
53
          # X1, X2 = torch.meshgrid(x1, x2, indexing='ij')
          X_train = torch.hstack((X1, X2))
54
55
          Y_{train} = fun(X1, X2).reshape(-1,1)
56
57
58
          # forward
59
          Y_est = model(X_train)
60
61
          # erro
62
          loss = torch.mean((Y_est - Y_train)**2)
63
          if (epoch % 100 == 0):
64
65
              print(f'{epoch}: {loss.item():.4e}')
66
67
          # backward
68
          optim.zero_grad()
69
          loss.backward()
70
          optim.step()
71
72
          # validação
73
          if (epoch % 100 == 0):
74
              Y_val = model(X_val)
75
              loss_val = torch.mean((Y_val - Y_vest)**2)
76
77
              print(f"\tloss_val = {loss_val.item():.4e}")
78
79
              # critério de parada
80
              if (loss_val.item() < tol):</pre>
81
                  break
```

3.3.3 Exercícios

Exercício 3.3.1. Crie uma MLP para aproximar a função gaussiana

$$y = e^{-x^2}$$
 (3.17)
para $x \in [-1, 1]$.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

Exercício 3.3.2. Crie uma MLP para aproximar a função $y = \sin(x)$ para $x \in [-\pi, \pi]$.

Exercício 3.3.3. Crie uma MLP para aproximar a função $y = \sin(x) + \cos(x)$ para $x \in [0, 2\pi]$.

Exercício 3.3.4. Crie uma MLP para aproximar a função gaussiana

$$z = e^{-(x^2 + y^2)} (3.18)$$

para $(x, y) \in [-1, 1]^2$.

Exercício 3.3.5. Crie uma MLP para aproximar a função $y = \sin(x_1)\cos(x_2)$ para $(x_1, x_2) \in [0, \pi] \times [-\pi, 0]$.

Exercício 3.3.6. Crie uma MLP para aproximar a função $y = \sin(x_1) + \cos(x_2)$ para $(x_1, x_2) \in [-2\pi, 2\pi]$.

3.4 Diferenciação Automática

Diferenciação automática é um conjunto de técnicas para a computação de derivadas numéricas em um programa de computador. Explorase o fato de que um programa computacional executa uma sequência de operações aritméticas e funções elementares, podendo-se computar a derivada por aplicações da regra da cadeia.

PyTorch computa o **gradiente** (derivada) de uma função $f: \mathbb{R}^n \to \mathbb{R}$ a partir de seu **grafo computacional**. Os gradientes são computados por retropropagação. Por exemplo, para a computação do gradiente

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x_0}) = \left. \frac{df}{d\boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{x_0}},\tag{3.19}$$

primeiramente, propaga-se a entrada x_0 pela função computacional f, obtendo-se $y = f(x_0)$. Então, o gradiente é computado por retropropagação.

Exemplo 3.4.1. Consideramos a função $f(x) = \text{sen}(\pi x)$ e vamos computar

 $f'(x_0) = \frac{df}{dx} \bigg|_{x=0} \tag{3.20}$

por diferenciação automática.

Antes, observamos que, pela regra da cadeia, denotamos $u=\pi x$ e calculamos

$$\frac{df}{dx} = \frac{d}{du}\operatorname{sen}(u) \cdot \frac{du}{dx} \tag{3.21}$$

$$=\cos(u)\cdot\pi\tag{3.22}$$

$$=\pi\cos(\pi x)\tag{3.23}$$

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

Pь

00

50 -

00

 $50 \longrightarrow$

300

350-

0

50

500 -

-550-

-600

Figura 3.6: Grafo computacional da diferenciação automática de $f(x) = \sin(\pi x)$.

Agora, observamos que a computação de f(x) pode ser representada pelo grafo de propagação mostrado na Figura 3.6. Para a computação do gradiente, adicionamos uma variável fictícia z=y. Na retropropagação, computamos

$$\mathbf{a.} \frac{dz}{dy} = 1 \tag{3.24a}$$

$$\mathbf{b.} \frac{dz}{du} = \frac{dy}{du} \frac{dz}{dy}$$

$$= \frac{d}{du} [\operatorname{sen}(u)] \cdot 1$$

$$= \cos(u) \tag{3.24b}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

000

550

 450^{-1}

400

350

300

+ 250

 150^{-1}

100

$$= \frac{d}{dx} [\pi x] \cos(u) \tag{3.24d}$$

$$=\pi\cos(\pi x) = \frac{dy}{dx}. (3.24e)$$

Figura 3.7: Comparação entre as diferenciações analítica (f') e automática (autograd).

Código 3.5: mlp_autograd_df1d

```
1 import torch
2
3 # input
4 x = torch.linspace(-1., 1., steps=50).reshape(-1,1)
5 # requires grad
6 x.requires_grad = True
7
8 # output
9 y = torch.sin(torch.pi*x)
10
11 # compute gradients
```

A computação do gradiente também acaba por construir um novo grafo (consulte Figura 3.6). Este, por sua vez, pode ser usado para a computação da diferenciação automática de segunda ordem, i.e. para a derivação de segunda ordem.

Exemplo 3.4.2. Consideramos a função $y = \text{sen}(\pi x)$. No exemplo anterior, computamos $dy/dx = \pi \cos(\pi x)$ por diferenciação automática. No Código 3.5, os gradientes foram computados com o comando

```
1 y.backward(gradient=torch.ones_like(y))
2 dudx = x.grad
```

Alternativamente, podemos usar

```
1 dydx = torch.autograd.grad(
2          y, x,
3          grad_outputs=torch.ones_like(y),
4          retain_graph=True,
5          create_graph=True)[0]
```

Este comando computa dy/dx, mas avisa o PyTorch que os grafos computacionais sejam mantidos e que um novo grafo seja gerado da retropropagação. Com isso, podemos computar o gradiente do gradiente, como no código abaixo.

```
Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0
```

+

600

550

500

450

100

300

250

150

1.00

Figura 3.8: Comparação entre as diferenciações analítica (f', f'') e automática (dydx, d2ydx2).

```
Código 3.6: mlp_autograd_d2f1d
import torch
# input
```

```
2
3
   # input
   x = torch.linspace(-1., 1., steps=50).reshape(-1,1)
   # requires grad
   x.requires_grad = True
7
8
   # output
9
   y = torch.sin(torch.pi*x)
10
11
   # compute gradients
   dydx = torch.autograd.grad(
12
13
       у, х,
14
       grad_outputs=torch.ones_like(y),
15
       retain_graph=True,
16
       create_graph=True)[0]
17
18
   d2ydx2 = torch.autograd.grad(
19
       dydx, x,
20
       grad_outputs=torch.ones_like(dydx))[0]
```

ero.

600 -

550

500

450 -

400

1

 $\frac{1}{350}$

4

250

200

150

3.4.1 Autograd MLP

Os conceitos de diferenciação automática (**autograd**) são diretamente estendidos para redes do tipo Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*). Uma MLP é uma composição de funções definidas por parâmetros (pesos e *biases*). Seu treinamento ocorre em duas etapas³:

- 1. Propagação (forward): os dados de entrada são propagados para todas as funções da rede, produzindo a saída estimada.
- 2. Retropropagação (backward): a computação do gradiente do erro⁴ em relação aos parâmetros da rede é realizado coletando as derivadas (gradientes) das funções da rede. Pela regra da cadeia, essa coleta é feita a partir da camada de saída em direção a camada de entrada da rede.

No seguinte exemplo, exploramos o fato de MLPs serem aproximadoras universais e avaliamos a derivada de uma MLP na aproximação de uma função.

Exemplo 3.4.3. Vamos criar uma MLP

$$\tilde{y} = \mathcal{N}\left(x; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.25}$$

que aproxima a função

$$y = \text{sen}(\pi x), \ x \in [-1, 1].$$
 (3.26)

Em seguida, computamos, por diferenciação automática, o gradiente

$$\frac{d\tilde{y}}{dx} = \nabla_x \mathcal{N}(x) \tag{3.27}$$

e comparamos com o resultado esperado

$$\frac{dy}{dx} = \pi \cos(\pi x). \tag{3.28}$$

³Para mais detalhes, consulte a Subseção 3.1.1.

 $^{^4\}mathrm{Medida}$ da diferença entre o valor estimado e o valor esperado.

Figura 3.9: Comparação da diferenciação automática da MLP com a derivada analítica $f'(x) = \pi \cos(\pi x)$.

Código 3.7: mlp_autograd_apfun1d.py

```
import torch
  from torch import nn
  from torch import autograd
4
5
   # modelo
6
7 model = torch.nn.Sequential()
  model.add_module('layer_1', torch.nn.Linear(1,25))
  model.add_module('fun_1', torch.nn.Tanh())
10 model.add_module('layer_2', torch.nn.Linear(25,25))
11 model.add_module('fun_2', torch.nn.Tanh())
12
   model.add_module('layer_3', torch.nn.Linear(25,1))
13
14
   # treinamento
15
16
   ## fun obj
17 fun = lambda x: torch.sin(torch.pi*x)
```

```
18 \ a = -1.
19 \ b = 1.
20
21 ## optimizador
22 optim = torch.optim.SGD(model.parameters(),
                              lr=1e-1, momentum=0.9)
23
24
25 ## num de amostras por época
26 \text{ ns} = 100
27 ## num max épocas
28 nepochs = 5000
29 ## tolerância
30 \text{ tol} = 1e-5
31
32 ## amostras de validação
33 X_val = torch.linspace(a, b, steps=100).reshape(-1,1)
34 \text{ y_vest} = \text{fun}(X_val)
35
36 for epoch in range (nepochs):
37
        # amostras
38
39
        X_{train} = (a - b) * torch.rand((ns,1)) + b
40
        y_train = fun(X_train)
41
42
        # forward
        y_est = model(X_train)
43
44
45
46
        loss = torch.mean((y_est - y_train)**2)
47
48
       print(f'{epoch}: {loss.item():.4e}')
49
50
        # backward
        optim.zero_grad()
51
52
        loss.backward()
53
        optim.step()
54
55
        # validação
        y_val = model(X_val)
56
57
        loss_val = torch.mean((y_val - y_vest)**2)
```

```
print(f"\tloss_val = {loss_val.item():.4e}")
58
59
       # critério de parada
60
61
       if (loss val.item() < tol):</pre>
62
            break
63
   # autograd MLP
64
   X_val.requires_grad = True
65
   # forward
66
   y_val = model(X_val)
67
   # gradient
68
69
   dydx = autograd.grad(
70
       y_val, X_val,
       grad_outputs=torch.ones_like(y_val))[0]
71
```

3.4.2 Exercícios

Exercício 3.4.1. Por diferenciação automática, compute o gradiente (a derivada) das seguintes funções

```
a) f(x) = x^2 - 2x + 1 para valores x \in [-2, 2].
```

b) $g(x) = \cos^2(x)$ para valores $x \in [0, 2\pi]$.

c) $h(x) = \ln(x-1)$ para valores $x \in (-1,2]$.

d) $u(t) = e^{-t^2} \operatorname{sen}(t)$ para valores $t \in [-\pi, \pi]$.

Em cada caso, compare os valores computados com os valores esperados.

Exercício 3.4.2. Em cada item do Exercício 3.4.1, faça um fluxograma dos grafos computacionais da propagação e da retropropagação na computação dos gradientes.

Exercício 3.4.3. Em cada item do Exercício 3.4.1, compute a derivada de segunda ordem da função indicada. Compare os valores computados com os valores esperados.

Exercício 3.4.4. Por diferenciação automática, compute os gradientes das

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Pг

-200

+ 25

300

350-

-400-

450

-500

-550-

----60

seguintes funções:

- a) $f(x,y) = x^2 + y^2$ para valores $(x,y) \in [-1,1]^2$.
- b) $g(x,y) = e^x \operatorname{sen}(xy)$ para valores $(x,y) \in (-1,2) \times (0,\pi)$.

Em cada caso, compare os valores computados com os valores esperados.

Exercício 3.4.5. Para as funções de cada item do Exercício 3.4.6, compute:

- a) $\frac{\partial^2}{\partial x^2}$.
- b) $\frac{\partial^2}{\partial x \partial y}$.
- c) $\frac{\partial^2}{\partial y^2}$.

Compare os valores computados com os valores esperados.

Exercício 3.4.6. Em cada item do Exercício 3.4.6, compute o laplacino $\Delta = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ da função indicada. Compare os valores computados com os valores esperados.

Exercício 3.4.7. Seja a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$\mathbf{f}(x,y) = \begin{bmatrix} xy^2 - x^2y + 6\\ x + x^2y^3 - 7 \end{bmatrix}$$
 (3.29)

no domínio $\mathcal{D} = [-1, 2] \times [1, 3]$. Por diferenciação automática e para valores no domínio da função, compute:

- a) $\nabla f_1(x,y)$.
- b) $\nabla f_2(x,y)$.
- c) $\frac{\partial^2 f_1}{\partial x^2}$.
- $\mathrm{d}) \ \frac{\partial^2 f_1}{\partial x \partial y}.$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

e) $\frac{\partial^2 f_1}{\partial y^2}$. f) $\frac{\partial^2 f_2}{\partial x^2}$.

g) $\frac{\partial^2 f_2}{\partial x \partial y}$. h) $\frac{\partial^2 f_2}{\partial y^2}$.

Capítulo 4

Redes Informadas pela Física

[[tag:construcao]]

Redes neurais informadas pela física (PINNs, do inglês, physics-informed neural networks) são métodos de deep learning para a solução de equações diferenciais.

4.1 Aplicação: Equação de Poisson

Vamos criar uma MLP para resolver o problema de Poisson¹

$$-\Delta u = f, \ \boldsymbol{x} \in \mathcal{D} = (-1, 1)^2,$$

$$u = 0, \ \boldsymbol{x} \in \partial D,$$

$$(4.1a)$$

$$(4.1b)$$

com fonte dada

$$f(x_1, x_2) = \pi^2 \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2). \tag{4.2}$$

No treinamento, vamos usar a função erro baseada no resíduo da equação de Poisson (4.1a) e nas condições de contorno (4.1b). Mais especificamente, assumimos a função erro

$$\varepsilon := \underbrace{\frac{1}{n_{s,in}} \sum_{s=1}^{n_{s,in}} \left| \mathcal{R}\left(\tilde{u}^{(s)}\right) \right|^2}_{\text{residuo}} + \underbrace{\frac{1}{n_{s,cc}} \sum_{s=1}^{n_{s,cc}} \left| \tilde{u}^s \right|^2}_{\text{c.c.}}, \tag{4.3}$$

¹Siméon Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikipédia.

onde o resíduo é definido por

$$\mathcal{R}\left(\tilde{u}^{(s)}\right) := f + \Delta \tilde{u}^{(s)}. \tag{4.4}$$

A cada época, conjuntos de pontos $\left\{\boldsymbol{x}^{(s)}\right\}_{s=1}^{n_{s,in}} \subset \mathcal{D}$ e $\left\{\boldsymbol{x}^{(s)}\right\}_{s=1}^{n_{s,cc}} \subset \partial \mathcal{D}$ são randomicamente gerados com distribuição uniforme.

Observação 4.1.1. O problema de Poisson (4.1) tem solução analítica

$$u(x_1, x_2) = \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2).$$
 (4.5)

É importante observar que o treinamento da MLP não depende de conhecermos a solução. Aqui, vamos usá-la apenas para compararmos a solução MLP com a analítica.

Figura 4.1: Aproximação MLP da função solução do problema de Poisson (4.1). Linhas: isolinhas da solução analítica. Mapa de cores: solução MLP. Estrelas: pontos de treinamentos na última época.

Código 4.1: py_pinn_poisson

- 1 import torch
- 2 from torch import pi, sin

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рь

```
3
4
     # modelo
     nn = 50
5
6
     model = torch.nn.Sequential()
     model.add_module('layer_1', torch.nn.Linear(2,nn))
     model.add_module('fun_1', torch.nn.Tanh())
8
     model.add_module('layer_2', torch.nn.Linear(nn,nn))
9
     model.add_module('fun_2', torch.nn.Tanh())
10
11
     model.add_module('layer_3', torch.nn.Linear(nn,nn))
12
     model.add_module('fun_3', torch.nn.Tanh())
     model.add_module('layer_4', torch.nn.Linear(nn,1))
13
14
15
     # otimizador
16
     optim = torch.optim.SGD(model.parameters(),
                              lr = 1e-3, momentum = 0.9
17
18
19
     # fonte
20
     def f(x1, x2):
21
         return 2.*pi**2*sin(pi*x1)*sin(pi*x2)
22
23
     # treinamento
24
     ns in = 400
25
     ns_cc = 20
26
     nepochs = 50000
27
     tol = 1e-3
28
29
     ## pontos de validação
     ns val = 50
30
     x1_val = torch.linspace(-1., 1., steps=ns_val)
31
32
     x2_val = torch.linspace(-1., 1., steps=ns_val)
33
     X1_val, X2_val = torch.meshgrid(x1_val, x2_val, indexing='ij')
     X_val = torch.hstack((X1_val.reshape(ns_val**2,1),
34
35
                            X2_val.reshape(ns_val**2,1)))
36
37
     for epoch in range (nepochs):
38
39
         # forward
40
         X1 = 2.*torch.rand(ns_in, 1) - 1.
         X2 = 2.*torch.rand(ns_in, 1) - 1.
41
         X = torch.hstack((X1, X2))
42
```

```
43
         X.requires_grad = True
44
         U = model(X)
45
46
47
          # gradientes
          D1U = torch.autograd.grad(
48
49
              U, X,
50
              grad_outputs=torch.ones_like(U),
51
              retain_graph=True,
52
              create_graph=True)[0]
53
         D2UX1 = torch.autograd.grad(
54
              D1U[:,0:1], X,
              grad_outputs=torch.ones_like(D1U[:,0:1]),
55
56
              retain_graph=True,
57
              create_graph=True)[0]
58
          D2UX2 = torch.autograd.grad(
59
              D1U[:,1:2], X,
60
              grad_outputs=torch.ones_like(D1U[:,1:2]),
61
              retain_graph=True,
62
              create_graph=True)[0]
63
64
          # fonte
         F = f(X1, X2)
65
66
67
          # loss pts internos
          lin = torch.mean((F + D2UX1[:,0:1] + D2UX2[:,1:2])**2)
68
69
70
          # contornos
71
          ## c.c. 1
72
         X1 = 2.*torch.rand(ns_cc, 1) - 1.
73
          Xcc1 = torch.hstack((X1, -torch.ones((ns_cc,1))))
74
         Ucc1 = model(Xcc1)
75
76
          ## c.c. 3
77
          Xcc3 = torch.hstack((X1, torch.ones((ns_cc,1))))
78
         Ucc3 = model(Xcc3)
79
80
          ## c.c. 4
         X2 = 2.*torch.rand(ns_cc, 1) - 1.
81
82
          Xcc4 = torch.hstack((-torch.ones((ns_cc,1)), X2))
```

t 100 150 200 250 300 350 400 450 500 550 600

```
83
          Ucc4 = model(Xcc4)
84
           ## c.c. 2
85
86
          Xcc2 = torch.hstack((torch.ones((ns_cc,1)), X2))
           Ucc2 = model(Xcc2)
87
88
89
           # loss cc
           lcc = 1./(4.*ns_cc) * torch.sum(Ucc1**2 + Ucc2**2 + Ucc3**2 + Ucc4**2)
90
91
92
           # loss
          loss = lin + lcc
93
94
95
           if ((epoch % 500 == 0) or (loss.item() < tol)):</pre>
               print(f'{epoch}: loss = {loss.item():.4e}')
96
97
98
               if (loss.item() < tol):</pre>
99
                    break
100
101
           optim.zero_grad()
102
           loss.backward()
103
           optim.step()
```

4.1.1 Exercícios

Exercício 4.1.1. Crie uma MLP para resolver

```
-\Delta u = 0, \ \mathbf{x} \in D = (0,1)^{2}, \tag{4.6}
u(x_{1},0) = x1(1-x_{1}), 0 \le x_{1} \le 1, \tag{4.7}
u(1,x_{2}) = x2(1-x_{2}), 0 < x_{2} \le 1, \tag{4.8}
u(x_{1},1) = x1(1-x_{1}), 0 \le x_{1} < 1, \tag{4.9}
u(0,x_{2}) = x2(1-x_{2}), 0 < x_{2} < 1. \tag{4.10}
```

4.2 Aplicação: Equação do Calor

Em construção

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600

 $\frac{1}{50}$

Consideramos o problema

$$u_t = u_{xx} + f, (t, x) \in (0, 1] \times (-1, 1),$$

$$(4.11a)$$

$$u(0,x) = \operatorname{sen}(\pi x), x \in [-1,1], \tag{4.11b}$$

$$u(t, -1) = u(t, 1) = 0, t \in (t_0, tf], \tag{4.11c}$$

onde $f(t,x)=(\pi^2-1)e^{-t}\operatorname{sen}(\pi x)$ é a fonte. Este problema foi manufaturado a partir da solução

$$u(t,x) = e^{-t}\operatorname{sen}(\pi x). \tag{4.12}$$

Código 4.2: mlp_calor_autograd.py

```
1 import torch
2 from torch import pi, sin, exp
3 from collections import OrderedDict
4 import matplotlib.pyplot as plt
6 # modelo
7 \text{ hidden} = [50] * 8
8 activation = torch.nn.Tanh()
   layerList = [('layer_0', torch.nn.Linear(2, hidden[0])),
                 ('activation_0', activation)]
10
11 for l in range(len(hidden)-1):
12
       layerList.append((f'layer_{1+1})',
                          torch.nn.Linear(hidden[1], hidden[1+1])))
13
14
       layerList.append((f'activation_{1+1}', activation))
   layerList.append((f'layer_{len(hidden)}', torch.nn.Linear(hidden[-1],
   \#layerList.append((f'activation_{len(hidden)})', torch.nn.Sigmoid()))
   layerDict = OrderedDict(layerList)
17
   model = torch.nn.Sequential(OrderedDict(layerDict))
18
19
20 # otimizador
21 # optim = torch.optim.SGD(model.parameters(),
22
                               lr = 1e-3, momentum=0.85)
23 optim = torch.optim.Adam(model.parameters(),
24
                             lr = 1e-2)
25
  scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
26
                                                             factor=0.1,
27
                                                             patience=100)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt |

```
28
29 # treinamento
30 \text{ nt} = 10
31 tt = torch.linspace(0., 1., nt+1)
32 \text{ nx} = 20
33 \text{ xx} = \text{torch.linspace}(-1., 1., nx+1)
34 T,X = torch.meshgrid(tt, xx, indexing='ij')
35 tt = tt.reshape(-1,1)
36 \text{ xx} = \text{xx.reshape}(-1,1)
37
38 Sic = torch.hstack((torch.zeros_like(xx), xx))
39 Uic = sin(pi*xx)
40
41 Sbc0 = torch.hstack((tt[1:,:], -1.*torch.ones_like(tt[1:,:])))
42 Ubc0 = torch.zeros_like(tt[1:,:])
43
44 Sbc1 = torch.hstack((tt[1:,:], 1.*torch.ones_like(tt[1:,:])))
45 Ubc1 = torch.zeros_like(tt[1:,:])
46
47 tin = tt[1:,:]
48 \text{ xin} = xx[1:-1,:]
49 Sin = torch.empty((nt*(nx-1), 2))
50 Fin = torch.empty((nt*(nx-1), 1))
51 s = 0
52 for i,t in enumerate(tin):
        for j,x in enumerate(xin):
53
54
            Sin[s,0] = t
            Sin[s,1] = x
55
56
            Fin[s,0] = (pi**2 - 1.)*exp(-t)*sin(pi*x)
57
            s += 1
58 tin = torch.tensor(Sin[:,0:1], requires_grad=True)
59 xin = torch.tensor(Sin[:,1:2], requires_grad=True)
60 Sin = torch.hstack((tin,xin))
61
62 \text{ nepochs} = 50001
63 \text{ tol} = 1e-4
64 \text{ nout} = 100
65
66 for epoch in range (nepochs):
67
```

 pt

```
68
        # loss
69
70
        ## c.i.
71
        Uest = model(Sic)
72
        lic = torch.mean((Uest - Uic)**2)
73
        ## residual
74
75
        U = model(Sin)
76
        U_t = torch.autograd.grad(
77
            U, tin,
78
             grad_outputs=torch.ones_like(U),
79
             retain_graph=True,
80
             create_graph=True)[0]
        U_x = torch.autograd.grad(
81
82
            U, xin,
83
             grad_outputs=torch.ones_like(U),
84
             retain_graph=True,
             create_graph=True)[0]
85
        U_xx = torch.autograd.grad(
86
87
            U x, xin,
             grad_outputs=torch.ones_like(U_x),
88
89
             retain_graph=True,
             create_graph=True)[0]
90
91
        res = U_t - U_xx - Fin
92
        lin = torch.mean(res**2)
93
94
        ## c.c. x = -1
95
        Uest = model(Sbc0)
        lbc0 = torch.mean(Uest**2)
96
97
        ## c.c. x = 1
98
99
        Uest = model(Sbc1)
        lbc1 = torch.mean(Uest**2)
100
101
102
        loss = lin + lic + lbc0 + lbc1
103
104
        lr = optim.param_groups[-1]['lr']
105
        print(f'\{epoch\}: loss = \{loss.item():.4e\}, lr = \{lr:.4e\}')
106
107
        # backward
```

```
108
        scheduler.step(loss)
109
        optim.zero_grad()
110
        loss.backward()
111
        optim.step()
112
113
114
        # output
115
        if ((epoch % nout == 0) or (loss.item() < tol)):</pre>
116
             plt.close()
             fig = plt.figure(dpi=300)
117
118
             nt = 10
119
             tt = torch.linspace(0., 1., nt+1)
120
             nx = 20
             xx = torch.linspace(-1., 1., nx+1)
121
122
             T,X = torch.meshgrid(tt, xx, indexing='ij')
             Uesp = torch.empty_like(T)
123
124
             M = torch.empty(((nt+1)*(nx+1),2))
125
126
             for i,t in enumerate(tt):
127
                 for j,x in enumerate(xx):
                     Uesp[i,j] = exp(-t)*sin(pi*x)
128
129
                     M[s,0] = t
                     M[s,1] = x
130
                     s += 1
131
132
             Uest = model(M)
133
             Uest = Uest.detach().reshape(nt+1,nx+1)
134
             12rel = torch.norm(Uest - Uesp)/torch.norm(Uesp)
135
136
             ax = fig.add_subplot()
137
             cb = ax.contourf(T, X, Uesp,
                               levels=10)
138
139
             fig.colorbar(cb)
             cl = ax.contour(T, X, Uest,
140
141
                              levels=10, colors='white')
142
             ax.clabel(cl, fmt='%.1f')
143
             ax.set_xlabel('$t$')
144
             ax.set_ylabel('$x$')
145
             plt.title(f'{epoch}: loss = {loss.item():.4e}, l2rel = {l2rel:.4e}')
             plt.savefig(f'./results/sol_{(epoch//nout):0>6}.png')
146
147
```

t 100 150 200 250 300 350 400 450 500 550 600

148 if ((loss.item() < tol) or (lr < 1e-6)): 149 break

4.3 PINN com Parâmetro a Determinar

Em construção

Vamos considerar uma equação diferencial

$$L(u;\lambda) = f, \ \boldsymbol{x} \in D \subset \mathbb{R}^n, \tag{4.13}$$

onde L é um operador em funções $u = u(\boldsymbol{x}), \ \lambda \in \mathbb{R}$ é um **parâmetro a determinar** e f uma dada função fonte. Assumimos conhecidas condições inicial e de contorno, bem como um **conjunto de amostras**

$$\mathcal{D} := \left\{ \left(\boldsymbol{x}^{(s)}, u^{(s)} \right) \right\}_{s=1}^{n_s}, \tag{4.14}$$

 $\operatorname{com} \mathbf{x}^{(s)} \in D e u^{(s)} = u\left(\mathbf{x}^{(s)}\right).$

Uma rede informada pela física (**PINN**, do inglês, *Physics-informed neural network*) com parâmetro a determinar é uma rede neural

$$\tilde{u} = \mathcal{N}(\boldsymbol{x}; \lambda),$$
 (4.15)

em que \tilde{u} é a solução estimada do modelo dado pela equação diferencial (4.13) com dadas condições inicial e de contorno, em que o parâmetro λ é estimado tal que

$$\tilde{u}^{(s)} \approx u^{(s)}, \ \left(\boldsymbol{x}^{(s)}, u^{(s)}\right) \in \mathcal{D}.$$
 (4.16)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

1

+ 2

-250

-300 -

-350

+4

-450-

-500

-600

Figura 4.2: Esquema de uma PINN $\tilde{u} = \mathcal{N}(\boldsymbol{x}; \lambda)$.

Considerando uma rede do tipo perceptron multicamadas (MLP, do inglês, multilayer perceptron, consulte Fig. 4.2), seus pesos e biases são treinados em conjunto com parâmetro λ de forma a minimizar a função de perda

$$\varepsilon_{\lambda} := \underbrace{\frac{1}{n_{\text{in}}} \sum_{s=1}^{n_{\text{in}}} \left| \mathcal{R}_{\lambda} \left(\boldsymbol{x}_{\text{in}}^{(s)} \right) \right|^{2}}_{\text{pts. internos}} + \underbrace{\frac{1}{n_{\text{cc}}} \sum_{s=1}^{n_{\text{cc}}} \left| \tilde{u}_{\text{cc}} - u_{\text{cc}} \right|^{2}}_{\text{c.i. \& c.c.}} + \underbrace{\frac{p}{n_{s}} \sum_{s=1}^{n_{s}} \left| \tilde{u}^{(s)} - u^{(s)} \right|^{2}}_{\text{amostras}}, \tag{4.17}$$

onde $p \ge 0$ é uma **penalidade** e

$$\mathcal{R}_{\lambda}(\boldsymbol{x}) := f - L(u; \lambda) \tag{4.18}$$

 \acute{e} o **resíduo** de (4.13).

Exemplo 4.3.1. Consideramos a equação de Fisher²

$$u_t = u_{xx} + \lambda u(1 - u), \ (t, x) \in (0, t_f) \times (0, 1), \tag{4.19}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

 $^{^2 \}mathrm{Ronald}$ Aylmer Fisher, 1890-1962, biólogo inglês. Fonte: Wikipédia.

com o parâmetro $\lambda>0$ a determinar. Assumimos dadas condição inicial

$$u(0,x) = \frac{1}{\left(1 + e^{\sqrt{\frac{\lambda}{6}}x}\right)^2}, \ x \in [0,1],\tag{4.20}$$

e condições de contorno

$$u_x(t,0) = \frac{1}{\left(1 + e^{-\frac{5}{6}\lambda t}\right)^2},\tag{4.21}$$

$$u_x(t,0) = \frac{1}{\left(1 + e^{\sqrt{\frac{\lambda}{6} - \frac{5}{6}\lambda t}}\right)^2}.$$
 (4.22)

Este problema tem solução analítica [1]

$$u_a(t,x) = \frac{1}{\left(1 + e^{\sqrt{\frac{\lambda}{6}}x - \frac{5}{6}\lambda t}\right)^2}.$$
 (4.23)

Como exemplo de aplicação de uma PINN com parâmetro a determinar, vamos assumir o seguinte conjunto de amostras

$$\mathcal{D} = \left\{ \left(\left(t^{(s)}, x^{(s)} \right), u^{(s)} \right) \right\}_{s=1}^{n_s}, \tag{4.24}$$

$$\operatorname{com} \left(t^{(s)}, x^{(s)} \right) \in \left\{ 0.1, 0.2, 0.3 \right\} \times \left\{ 0.25, 0.5, 0.75 \right\} \, \mathrm{e} \, \, u^{(s)} = u_a \left(t^{(s)}, x^{(s)} \right).$$

Figura 4.3: Solução PINN versus analítica para $\lambda=6$.

```
Código 4.3: ex_pinn_fisher.py
```

```
1
   import torch
2
3
   # modelo
   nh = 4
  nn = 50
6 fun = torch.nn.Tanh()
7 model = torch.nn.Sequential()
8 model.add_module('layer_1', torch.nn.Linear(2, nn))
9 model.add_module('fun_1', fun)
10 for 1 in range(2, nh+1):
       model.add_module(f'layer_{1}', torch.nn.Linear(nn, nn))
11
       model.add_module(f'fun_{1}', fun)
12
   model.add_module(f'layer_{nh+1}', torch.nn.Linear(nn, 1))
14
  # parâmetro
15
16 \text{ rgn} = [5., 7]
17
   model.lmbda = torch.nn.Parameter(
       data=(rgn[1]-rgn[0])*torch.rand(1)+rgn[0])
18
19
20
   # otimizador
```

```
optim = torch.optim.Adam(model.parameters(), lr=0.001)
22
23 # parâmetros do problema
24 \text{ tf} = 1.
25
26 # solução analítica
27 lmbda = torch.tensor([6.])
28 def ua(t,x, lmbda=lmbda):
29
        return 1./(1.+torch.exp(torch.sqrt(lmbda/6.)*x-5./6*lmbda*t))**2
30
31 # condição inicial
32 def u0(x, lmbda=lmbda):
33
        return 1./(1.+torch.exp(torch.sqrt(lmbda/6)*x))**2
34
35 # amostras
36 \text{ ts} = \text{torch.tensor}([0.1, 0.2, 0.3])
37 \text{ xs} = \text{torch.tensor}([0.25, 0.5, 0.75])
38 T, X = torch.meshgrid(ts, xs, indexing='ij')
39 Ss = torch.hstack((T.reshape(-1,1), X.reshape(-1,1)))
40 \text{ Us}_{exp} = ua(T, X).reshape(-1,1)
41
42 # treinamento
43 \text{ nepochs} = 50000
44 \text{ tol} = 1e-5
45
46 \text{ eout} = 100
47
48 \sin = 50
49 penalty = 1e1
50
51
  for epoch in range(nepochs):
52
53
        # forward
54
55
        ## pts internos
        tsin = tf*torch.rand(sin, 1)
56
57
        xsin = torch.rand(sin, 1)
58
        Sin = torch.hstack((tsin, xsin))
59
        Sin.requires_grad = True
60
```

```
61
        Uin = model(Sin)
62
        ## loss pts internos
63
64
        DUin = torch.autograd.grad(
            Uin, Sin,
65
            torch.ones_like(Uin),
66
            create_graph=True,
67
68
            retain_graph=True)[0]
69
        Uin_t = DUin[:,0:1]
70
        Uin_x = DUin[:,1:2]
71
72
        Uin_xx = torch.autograd.grad(
73
            Uin x, Sin,
            torch.ones_like(Uin_x),
74
75
            create_graph=True,
76
            retain_graph=True)[0][:,1:2]
77
78
79
        lin = torch.mean((Uin_t - Uin_xx \
                           - model.lmbda*Uin*(1-Uin))**2)
80
81
82
        ## cond. inicial
83
        S0 = torch.hstack((torch.zeros_like(xsin), xsin))
84
85
        U0 = model(S0)
86
87
        ## loss cond. inicial
        10 = torch.mean((U0 - u0(xsin))**2)
88
89
        ## cond. de contorno
90
        Sbc0 = torch.hstack((tsin, torch.zeros_like(xsin)))
91
92
        Sbc1 = torch.hstack((tsin, torch.ones_like(xsin)))
        Sbc = torch.vstack((Sbc0, Sbc1))
93
94
95
        Ubc_exp = ua(Sbc[:,0:1],Sbc[:,1:2])
        Ubc_est = model(Sbc)
96
97
98
        ## loss cond. de contorno
99
        lbc = torch.mean((Ubc_est - Ubc_exp)**2)
100
```

t 100 150 200 250 300 350 400 450 500 550 600

```
101
         ## amostras
102
         Us_est = model(Ss)
103
104
         ## loss amostras
105
         ls = torch.mean((Us_est - Us_exp)**2)
106
107
         ## loss total
108
         loss = lin + 10 + lbc + penalty*ls
109
110
         if ((epoch % eout == 0) or (loss.item() < tol)):</pre>
             print(f'epoch: {epoch}, '\
111
112
                    + f'loss={loss.item():.4e}, '\
                    + f'lmbda={model.lmbda.item():.3f}')
113
114
         if (loss.item() < tol):</pre>
115
116
             break
117
118
         optim.zero_grad()
119
         loss.backward()
120
         optim.step()
```

4.3.1 Exercícios

Em construção

Exemplo 4.3.2. Considere o seguinte problema de valor inicial

$$-u'' = \lambda \operatorname{sen}(\pi x), \ 0 < x < 1,$$

$$u(0) = u(1) = 0,$$
(4.25a)
(4.25b)

onde $\lambda > 0$ é um parâmetro a determinar. Dadas as amostras

$$\mathcal{D} = \left\{ \left(\frac{1}{6}, \frac{1}{2} \right), \left(\frac{1}{4}, \sqrt{22} \right), \left(\frac{1}{3}, \sqrt{33} \right) \right\}, \tag{4.26}$$

crie uma PINN

$$\tilde{u} = \mathcal{N}(x; \lambda) \tag{4.27}$$

para estimar o parâmetro λ e a solução em todo o domínio $0 \le x \le 1$.

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

650 -

600 -

550

450 ·

400

350

200

200

Exemplo 4.3.3. Considere o problema de Poisson³

$$-\nabla u = \lambda, \ (x, y) \in D = (-1, 1)^2, \tag{4.28a}$$

$$u = 0, (x, y) \in \partial D, \tag{4.28b}$$

onde $\lambda>0$ é um parâmetro a determinar. Dado que u(1/2,1/2)=1/8, crie uma PINN

$$\tilde{u} = \mathcal{N}(x, y; \lambda) \tag{4.29}$$

para estimar o parâmetro λ e a solução em todo o domínio D.

Exemplo 4.3.4. Considere o problema de calor

$$u_t = \lambda u_{xx} + (\pi^2 - 1)e^{-t}\operatorname{sen}(\pi x), \ (t, x) \in (0, 1)^2,$$
 (4.30a)

$$u(0,x) = \operatorname{sen}(\pi x), \ x \in [0,1],$$
 (4.30b)

$$u(t,0) = u(t,1) = 0, \ t \in [0,1],$$
 (4.30c)

onde o coeficiente de difusão $\lambda>0$ é um parâmetro a determinar. Sabendo que o problema tem solução analítica

$$u(t,x) = e^{-t}\operatorname{sen}(\pi x),\tag{4.31}$$

escolha um conjunto de amostras $\mathcal{D} = \left\{ \left(\left(t^{(s)}, x^{(s)} \right), u^{(s)} \right) \right\}_{s=1}^{n_s}$ tal que seja possível estimar λ com uma PINN

$$\tilde{u} = \mathcal{N}(t, x; \lambda). \tag{4.32}$$

³Siméon Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikipédia.

Resposta dos Exercícios

Exercício 2.1.3. Dica: verifique que sua matriz hessiana é positiva definida.

Exercício 2.1.4. Dica: consulte a ligação Notas de Aula: Matemática Numérica: 7.1 Problemas lineares.

Exercício 2.2.1. $(\tanh x)' = 1 - \tanh^2 x$

Exercício 4.1.1. Dica: solução analítica $u(x_1, x_2) = x_1(1-x_1) - x_2(1-x_2)$.

Exercício 4.3.0. $\lambda = \pi^2$

Exercício 4.3.0. $\lambda = 1$

Exercício 4.3.0. $\lambda = 1$

Bibliografia

- [1] Ağirseven, D., Öziş, T.. An analytical study for Fisher type equations by using homotopy perturbation method, Computers and Mathematics with Applications, vol. 60, p. 602-609, 2010. DOI: 10.1016/j.camwa.2010.05.006
- [2] Goodfellow, I., Bengio, Y., Courville, A.. Deep learning, MIT Press, Cambridge, MA, 2016.
- [3] Neural Networks: A Comprehensive Foundation, Haykin, S.. Pearson:Delhi, 2005. ISBN: 978-0020327615.
- [4] Raissi, M., Perdikaris, P., Karniadakis, G.E.. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378 (2019), pp. 686-707. DOI: 10.1016/j.jcp.2018.10.045.
- [5] Mata, F.F., Gijón, A., Molina-Solana, M., Gómez-Romero, J.. Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities. Physica A: Statistical Mechanics and its Applications 610 (2023), pp. 128415. DOI: 10.1016/j.physa.2022.128415.