สถิติเบื้องต้นในแบบของ วิทยาการข้อมูล

โดย อ.ดร.เสฎฐวิทย์ เกิดผล

Outline

- * Pescriptive Statistics
 - * Central Tendency
 - * Dispersion
 - * Correlation
- * Inferential Statistics and Tony

- * Population and Sample
- * Estimation
- * Hypothesis testing

Pescriptive vs. Inferential Statistics

- * Pescriptive Statistics (สถิติเชิงพรรณา) คือ กระบวนการอธิบายหรือสรุปข้อมูลเชิงปริ มาณและนำไปใช้งาน
- * Inferential Statistics (สถิติเชิงอนุมาน) คือ กระบวนการคาดการณ์คุณสมบัติของสิ่งที่เรา ไม่รู้จากสิ่งที่เราวัดได้หรือเก็บข้อมูลมาแล้ว
- * สถิติเชิงอนุมานจึงมีความไม่แน่นอนและความ น่าจะเป็นมาเกี่ยวข้องด้วย

Vescriptive Statistics

- * การสรุปข้อมูลมีหลัก ๆ 3 แบบ
 - * ค่ากลางของข้อมูลชุดเดียว
 - * การกระจายตัวของข้อมูลชุดเดียว
 - * ความสัมพันธ์ระหว่างสองชุดข้อมูล

คากลางของชุดข้อมูล

- * ค่ากลางเปรียบเสมือนเป็นค่าปกติหรือ ตัวแทนของกลุ่มข้อมูลทั้งหมด
- * มาตรวัดที่ใช้เป็นค่ากลางได้
 - * ค่าเฉลี่ย (mean / average)
 - * มัธยฐาน (median)
 - * ฐานนิยม (mode)

ค่ากลาง

- * ค่าเฉลี่ย: บวกค่าทุกค่าเข้าด้วยกันแล้วหารด้วย จำนวนข้อมูล
 - * ใช้กับค่าที่เป็นตัวเลข
 - * อ่อนไหวต่อค่าที่สูงมากหรือต่ำมาก (outliers)
- * มัธยฐาน: ค่าตรงกลางที่มีจำนวนข้อมูลที่มากกว่า และน้อยกว่าค่านี้เท่ากัน
 - * ใช้กับค่าที่เป็นตัวเลขหรือลำดับก็ได้
 - * ทนทานต่อค่าที่สูงมากหรือต่ำมาก

ค่ากลาง

- * ฐานนิยม: ค่าที่เกิดขึ้นบ่อยที่สุด
 - * ใช้ได้กับทั้งค่าตัวเลข ลำดับ และประเภท (category)
- * ใน pandas มีคำสั่ง mean(), median(), mode() ในการหาค่าเฉลี่ย มัธยฐาน และฐานนิยม
- * ใน Excel/Sheets จะใช้ average(), median() และ mode()

การกระจายตัว

- * หรือ dispersion เป็นการวัดว่าข้อมูลกระ จายตัวรอบค่ากลางอย่างไร
- * มาตรวัด
 - * ความแปรปรวน (variance)
 - * ส่วนเบี่ยงเบนมาตรฐาน (standard deviation)
 - * พิสัย (range)
 - * Inter-quartile range (IQR)

ความแปรปรวนกับ ส่วนเบี่ยงเบนมาตรฐาน

- * deviation หรือ error คือผลต่างระหว่างค่าจริงกับค่า เฉลี่ย
- * variance คำนวณจาก deviation ของทุกข้อมูลมายก กำลังสองแล้วหาค่าเฉลี่ย
 - * การยกกำลังสองทำให้ deviation กลายเป็นค่าบวก
 - * ยังเป็นการให้น้ำหนักกับค่า deviation ที่สูงกว่ามากขึ้น
- * standard deviation คือรากที่สองของ variance
 - * ถอดรากที่สองทำให้หน่วยของ standard deviation นั้นเป็น หน่วยเดียวกันกับข้อมูล เข้าใจง่ายกว่า variance

var() และ std()

- * ใน pandas จะใช้คำสั่ง var() และ std() ในการคำ นวณหาความแปรปรวนและส่วนเบี่ยงเบนมาตรฐาน
 - * ทั้งสองคำสั่งใช้ option ddof (degree-of-freedom) ได้
 - * ddof=0 เมื่อคำนวณค่าของ population และ 1 เมื่อ คำนวณค่าของ sample
- * ใน Excel / Sheets จะใช้ var.p() และ std.p()
 - * p ในฟังก์ชัน var และ std หมายถึง population
 - * s ในฟังก์ชัน var และ std หมายถึง sample

มาตรวัดเกี่ยวกับลำดับ

- * ถ้าเราเรียงลำดับข้อมูลจากน้อยไปมาก ข้อมูลลำดับแรก แน่นอนว่าคือค่าน้อยสุด ข้อมูลลำดับสุดท้ายคือค่ามากสุด
- * พิสัย (range) คือค่ามากสุดลบค่าน้อยสุด
- * rank ของข้อมูลคือลำดับของข้อมูลนั้นเมื่อเรียงข้อมูลทั้ง หมดจากน้อยไปมาก
- * percentile คือค่าที่จะทำ ให้ข้อมูลนั้นไปอยู่ ใน rank ที่ระบุ (เป็นเปอร์เซ็น)
 - * ดังนั้นค่าที่ percentile ที่ 35 จึงหมายความว่าจะมีข้อมูล 35% ที่มีค่าน้อยกว่าหรือเท่ากับค่านี้

Inter-quartile range

Percentile	ความหมาย	quartile
0th	ค่าต่ำสุด	
25th		1th
50th	มัธยฐาน	2th
75th		3th
100th	ค่าสูงสุด	

- * Quartile ที่ 1, 2, 3
 คือค่าที่แบ่งข้อมูล
 เป็น 4 ส่วนเท่า ๆ กัน
 ตรงกับ percentile ที่
 25, 50, 75 ตามลำดับ
- * inter-quartile range คือค่าของ quartile ที่ 3 ลบด้วยค่าของ quartile ที่ 1
 - * ใช้วัดการกระจายตัวของข้อมูล 50% ช่วงตรงกลาง

quantile() and percentile()

- * ใน pandas จะใช้คำสั่ง quantile() ในการคำ นวณค่าของ percentile โดยใส่เป็นเลขจุด ทศนิยม
 - * ระวังตัวสะกดของ quantile()
 - * ไม่มีคำสั่งคำนวณ quartile โดยตรง ให้คำนวณ quantile ที่ตำแหน่ง 0.25, 0.5, 0.75 แทน
- * ใน Excel / Sheets จะมีคำสั่ง percentile() และ quartile() แยกกัน

Box plot

- * แสดงการกระจายตัวของข้อมูล ในภาพเดียว
- * Upper/Lower Quartile คือ Q3/Q1
- * เส้น Upper/Lower Extreme จะอยู่ ห่างจาก Q3/Q1 เท่ากับ 1.5*IQR
 - * ยกเว้นถึงค่า max/min ก่อนจะอยู่ที่ ค่า max/min
- * ถ้ามี outliers จะ plot เป็นจุด ในแผนภาพเลยเส้นไป

https://datavizcatalogue.com/methods/box_plot.html

การวาด box plot

- * ใน seaborn ใช้คำสั่ง boxplot()
 - * สามารถแยกวาด box plot ตาม category ได้ด้วย โดยกำหนดแกน x และ y ว่าจะวาดตามค่าใด
- * ใน Excel เวอร์ชันใหม่ 2013+ มี box plot chart ให้ได้ใช้เลย
- * ใน Google Sheets ยังไม่มี ต้องใช้เว็บอื่น เช่น http://shiny.chemgrid.org/boxplotr/

Histogram

- * แสดงจำนวนข้อมูลของแต่ละประเภทหรือที่อยู่ ในแต่ละช่วง
- * ใช้แสดงการกระจายตัวของข้อมูลแบบตัวเลขได้ เช่นกัน
- * จำเป็นต้องคำนวณจำนวนและขอบเขตของแต่ ละช่วง (bin) ที่จะจัดกลุ่มข้อมูล
- * seaborn จะคำนวณขอบเขต bin ให้ตอนสร้าง แผนภาพ หรือจะระบุเองก็ได้

การวาด Histogram

- * ใน seaborn ใช้คำสั่ง distplot() ซึ่งจะวาดทั้ง histogram และ probability density function (PDF) ด้วย
 - * กำหนดจำนวน bin หรือขอบเขตของ bin ได้ด้วย option bins
 - * วาดหลาย histogram ซ้อนกันได้โดยเรียกคำสั่ง distplot() ต่อกันไป
- * ใน Excel และ Google Sheets ก็มี histogram ให้ใช้ เช่นกัน

การตีความ box plot และ histogram

- * ทั้งสองแผนภาพใช้แสดงการกระจายตัวของข้อมูล
- "กล่อง"ของ boxplot แสดงข้อมูล 50% ตรงกลาง และเส้น median แบ่งข้อมูลนี้ออกเป็น 25% อีกสองส่วน
 - * ใช้สังเกตได้ว่าข้อมูลเอนเอียงไปทางไหน
- * เส้นหนวด (whisker) แสดงการยืดออกไปของ"หาง"ของข้อมูล ยิ่งยืดไปไกลหมายถึงข้อมูลของหางด้านนั้นยิ่งกระจาย (long tail)
 - * ถ้าหางสองข้างยาวไม่เท่ากัน จะเรียกว่าข้อมูลเบ้(ขวา/ซ้าย) ไปทางหาง ที่ยาวกว่านั้น
- * histogram/pdf แสดง"ความหนาแน่น"ของข้อมูลว่ากระจุกตัวอยู่ ในช่วงไหน จะเห็นได้ชัดเจนว่าข้อมูลเบ้ไปทางด้านไหนหรือไม่

Correlation

- * สหสัมพันธ์ คือ ความสัมพันธ์ทางสถิติระหว่างตัวแปรส องตัว
 - * เมื่อตัวแปรหนึ่งเปลี่ยนไป ตัวแปรอีกตัวจะเปลี่ยนไปอย่างไร
 - * คู่ตัวแปรที่มีค่าสหสัมพันธ์สูงสามารถใช้เป็นฟีเจอร์ในการสร้าง โมเดลอธิบายหรือทำนายกันได้
- * มาตรวัด
 - * Pearson's Product-Moment Correlation Coefficient (r)
 - * Spearman's Rank Correlation Coefficient (ρ : rho)
 - * ใน pandas ใช้ฟังก์ชัน corr() ซึ่งกำหนด option ว่าจะคำนวณ r หรือ ρ ได้

Pearson and Spearman

* Pearson's r

- * ความสัมพันธ์ระหว่างตัวแปรเป็นเส้นตรงหรือไม่
- * ค่าระหว่าง -1 (เส้นตรงความชั้นลบ) กับ 1 (เส้นตรงความชั้นบวก)
- * ค่า 0 คือตัวแปรสองตัวไม่สัมพันธ์กันเป็นเส้นตรง

* Spearman's rho

- * ความสัมพันธ์ระหว่างตัวแปรเป็นไปในทิศทางเดียวกันหรือไม่
- * ค่าระหว่าง -1 (ค่าของตัวแปรเปลี่ยนสวนทางกันเสมอ) กับ 1 (ค่าของตัวแปรเปลี่ยนไปในทางเดียวกันเสมอ)
- * ค่า 0 คือค่าของตัวแปรไม่เปลี่ยนตามกัน

Pearson's r

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:Correlation_examples2.svg

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

copyright Sethavidh Gertphol

สถิติเชิงอนุมาน

- * เป็นการประมาณค่าของสิ่งที่ไม่รู้จากข้อมูลส่วนย่อยที่รู้
- * ข้อมูลที่เรารู้ก็คือข้อมูลที่เราเก็บมาหรือสุ่มตัวอย่างมา เรียกว่า sample
 - * เช่นคะแนนสอบของนักเรียนป**.4** ที่สุ่มมาจำนวน **50** คน
- * คุณลักษณะที่เราไม่รู้คือข้อมูลภาพรวมของประชากรที่ เราสุ่มตัวอย่างมา เรียกว่า population
 - * ค่าเฉลี่ยคะแนนสอบของนักเรียนป. ทั่วประเทศ
 - * ค่าเฉลี่ยคะแนนสอบของนักเรียนป4 ในปีหน้า

sample vs. population statistic

- * การสุ่มตัวอย่างนั้นมีความไม่แน่นอนเข้ามาเกี่ยวข้องด้วย
 - * การสุ่มแต่ละรอบจะได้กลุ่มตัวอย่างที่ไม่เหมือนกัน
 - * ดังนั้นค่าสถิติของแต่ละรอบก็ไม่เท่ากันด้วย
- * เราจะประเมินความไม่แน่นอนที่ปนมากับค่าสถิติที่คำนวณจา กกลุ่มตัวอย่างได้อย่างไร
 - จะประมาณค่าของประชากรจากสถิติของกลุ่มตัวอย่างได้ใหม
 - * ค่าสถิติของกลุ่มตัวอย่างนี้คลาดเคลื่อนไปจากค่าของประชากรแค่ ไหน
- * การประมาณค่าด้วยสถิติ(เช่นค่าเฉลี่ย)แบบนี้เรียกว่าการประ มาณค่าแบบจุด (point estimate)

Law of large numbers

- * ความไม่แน่นอนมีผลต่อกลุ่มตัวอย่างจำนวนน้อย มากกว่ากลุ่มจำนวนมาก
- * กฏ law of large numbers กล่าวว่าถ้าเราสุ่มกลุ่มตัว อย่างมากขึ้นไปเรื่อย ๆ ค่าสถิติของกลุ่มตัวอย่าง จะเข้าใกล้ค่าของประชากรมากขึ้นเรื่อย ๆ
 - * แต่อาจไม่เป็นจริงในการกระจายตัวของประชากรบาง รูปแบบ เช่น การกระจายตัวที่หางยาวและหนา (เบ้มาก)
 - * หรือการสุ่มตัวอย่างที่มีการเอนเอียง (bias)

ตัวอย่างความผิดพลาด 1936 Presidential Election | New colored Map of Foldal In This issue | The literary Digest | Poll (prediction)

NEW COLORED MAP OF POLAND IN THIS ISSUE
Showing the Territorial Changes Wrought by the War

The literary Digest

(Tall Reg ESTR. 697)

O Uppus Pillards on

PUBLIC OFINION Vision of contained with 79th LITERANY DRZST

Vol. 68, No. 5. Whole No. 1609

FERRICARY 19, 1921

Price to Command

VS

GALLUP

https://en.wikipedia.org/wiki/
The_Literary_Digest#/media/
File:LiteraryDigest-19210219.jpg

- * 10 million surveys
- *24 million response
- *predict Landon wins by 57%

https://en.wikipedia.org/wiki/Gallup (company)#/media/ File:Logo_Gallup.svg

- *50,000 sample size
- * predict Roosevelt wins
- *also predict Literary Digest would mispredict

Result

- * Vigest ผิดไปเกือบ 20%
- * ส่งแบบสอบถามไปยังสมาชิก และรายชื่อผู้ใช้รถและโทร ศัพท์
 - * selection bias เลือกเฉพาะ คนฐานะปานกลางและรวย
 - * nonresponse bias คนตอบแค่ 25%
- * กลุ่มตัวอย่างไม่ใช่ตัวแทน ประชากร

Nominee	Franklin D. Roosevelt	Alf Landon
Party	Democratic	Republican
Home state	New York	Kansas
Running mate	John Nance Garner	Frank Knox
Electoral vote	523	8
States carried	46	2
States carried Popular vote	46 27,747,636	2 16,679,543
		_

https://en.wikipedia.org/wiki/1936 United States presidential election

การประมาณค่าที่เอนเอียง

- * biased estimator หมายถึงค่าสถิติที่คำนวณจากกลุ่ม ตัวอย่างแล้วจะเบี่ยงเบนไปจากค่าของประชากร แม้ว่าจะเพิ่มจำนวนตัวอย่างไปเรื่อย ๆ
- * สถิติที่ไม่เอนเอียง เช่น ค่าเฉลี่ย
- * สถิติที่เอนเอียง
 - * เช่น variance และส่วนเบี่ยงเบนมาตรฐานของกลุ่ม ตัวอย่างจะประมาณค่าของประชากรต่ำกว่าความเป็นจริง
 - * สามารถปรับค่า variance ให้ไม่เอนเอียงได้ด้วย degree of freedom (ddof ในคำสั่งของ pandas, var.s() ใน excel)

aşu point estimate

ค่า	กลุ่มตัวอย่าง	ประชากร	note
เฉลี่ย	\bar{x}	μ	unbiased estimator
variance	s^2	σ^2	bias ปรับแก้ได้
standard deviation	S	σ	bias ปรับแก้ยาก

การกระจายตัวของ สถิติของกลุ่มตัวอย่างหลายกลุ่ม

- * ถึงแม้จะสุ่มตัวอย่างโดยไม่มีการเอนเอียง เราก็ต้องการวิ เคราะห์ความคลาดเคลื่อนว่าสถิติของกลุ่มตัวอย่างใกล้เคียง กับค่าของประชากรแค่ไหน
 - * เพราะค่าของสถิติของกลุ่มตัวอย่างสุ่มมาแต่ละครั้งไม่เท่ากัน
- * ในเชิงทฤษฎี เราสามารถสุ่มตัวอย่างมาหลาย ๆ กลุ่ม แล้ว คำนวณค่าสถิติของแต่ละกลุ่ม
- * การกระจายตัวของค่าสถิติของแต่ละกลุ่มมักจะเป็นแบบ Normal distribution
 - * Central Limit Theorem สำคัญต่อทฤษฎีทางสถิติอย่างมาก
 - * ในทาง data science นั้นไม่สำคัญมากนัก

Standard error

- * เป็นมาตรวัดความน่าเชื่อถือของสถิติของกลุ่มตัวอย่างในการ สุ่มครั้งนั้น
 - * วัดว่าค่าสถิตินี้เบี่ยงเบนจากค่าจริงของประชากรแค่ไหน
- * คำนวณจาก standard deviation ของสถิติของกลุ่มตัวอย่าง หลายกลุ่ม
- * ถ้าสถิติคือค่าเฉลี่ย คำนวณ **SE** ได้จาก **standard deviation** ของประชากร หารด้วยรากที่สองของจำนวนตัวอย่าง $\frac{\sigma}{\sqrt{n}}$
 - * แต่หมายความว่าเราต้องรู้ sd ของประชากร
 - $_{\bigstar}$ ถ้าไม่รู้ก็ประมาณเอาได้จาก **sd** ของกลุ่มตัวอย่าง $\frac{S}{\sqrt{n}}$

Confidence Interval

- * ช่วงความเชื่อมั่น เป็นการประมาณค่าแบบช่วงเพื่อ ระบุความคลาดเคลื่อนของสถิติของกลุ่มตัวอย่าง
- * เมื่อเราสุ่มหลายกลุ่มตัวอย่างและคำนวณค่าสถิติ แล้ว ให้หา percentile ที่ 95 และ 5 ของค่าสถิติ
 - * จะระบุถึง confidence interval ที่ระดับความเชื่อมั่น 90%
 - * ความหมายคือค่าสถิติ 90% ตรงกลางของสถิติจาก หลายกลุ่มตัวอย่าง จะอยู่ในช่วงนี้
 - * ถ้าต้องการความเชื่อมั่น 95% ก็หาค่าที่ percentile 97.5 และ 2.5

จบประเดิน?

- * เนื้อหาที่อธิบายไปใช้วิธีสุ่มตัวอย่างหลาย ๆ กลุ่ม ซึ่งอาจ ทำไม่ได้จริงในทางปฏิบัติ
- * จะคำนวณ point estimate กับ confidence interval จากกลุ่ม ตัวอย่างเดียวได้อย่างไร
- * point estimate ก็คือคำนวณสถิติของกลุ่มตัวอย่างเดียวแล้ วนำมาใช้เลย
- * confidence interval (95% confidence level) ใช้สูตรได้
 - * ±1.96 × SE จากค่าเฉลี่ยของกลุ่มตัวอย่าง (บนสมมติฐานว่าประชากรกระจายตัวแบบ normal distribution)
 - * ถ้าการกระจายตัวเป็นแบบอื่น ก็เลือก distribution ที่เหมาะสมได้

Bootstraping

- * หนึ่งในเทคนิคที่เรียกว่า resample
- * สร้าง"ประชากรจำลอง"ขึ้นมาจากกลุ่มตัวอย่าง แล้วสุ่มกลุ่มตัว อย่างใหม่หลาย ๆ กลุ่มจากประชากรจำลองนี้
- * ในทางปฏิบัติ จะใช้การสุ่มข้อมูลจากกลุ่มตัวอย่างแบบมีการใส่ ข้อมูลคืน
- * ความถูกต้องของการทำ resample จะขึ้นกับกลุ่มตัวอย่างตั้งต้น ว่าเป็นตัวแทนของประชากรได้ดีแค่ไหน
- * ใช้พลังการคำนวณอย่างมาก ต้องทำด้วยคอมพิวเตอร์
- * ข้อดีคือไม่จำเป็นต้องตั้งสมมติฐานใดเกี่ยวกับการกระจายตัว ของประชากร

ความหมายของ Confidence Interval

- * ค่าเฉลี่ยอยู่ที่ 58.44-61.34 ที่ความเชื่อมั่น 90%?
- * การตีความที่ผิด: มีโอกาส 90% ที่ population mean จะอยู่ในช่วงนี้
 - * เพราะค่าเฉลี่ยประชากรนั้นคงที่
- * การตีความที่ถูก:
 - * ค่าเฉลี่ยของกลุ่มตัวอย่าง 90% จะอยู่ในช่วงนี้
 - * ถ้าสุ่มตัวอย่างและสร้าง confidence interval ไปเรื่อย ๆ 90% ของ Cl ที่สร้างขึ้นจะคร่อมค่าเฉลี่ยของประชากร

การทดสอบสมมติฐาน

- * สิ่งที่เห็นเป็นเพียงความบังเอิญหรือไม่ _ แล้วเหย่งสุดจันจ์เพียงความบังเอิญหรือไม่ _ สังเนย์และจังกับโดยเลือนไม่
 - * ความบังเอิญเกิดจากการสุ่มตัวอย่างทั้งจากการสังเกตหรือ การทดลอง
- * เทียบกับ confidence interval ที่ตอบคำถามว่า ความ บังเอิญในการสุ่มตัวอย่างทำให้เกิดความคลาด เคลื่อนในการประมาณค่าแค่ไหน
- * ทั้งสองวิธีเป็นการประเมินความไม่แน่นอนแต่มอง คนละมุม
 - * ใช้หลักการ resample หรือสูตรคำนวณได้เหมือนกัน

ตัวอย่าง

- * บริกรเก็บข้อมูลการให้ทิปของลูกค้า
- * ลูกค้าผู้ชาย 157 คน ผู้หญิง 87 คน
- * พบว่าค่าเฉลี่ยของทิปจากลูกค้าผู้ชายสูง กว่าจากลูกค้าผู้หญิงอยู่ \$0.256
 - * เป็นความบังเอิญจากลูกค้าที่บริกรคนนี้ให้บริ การพอดี
 - * หรือเป็นความแตกต่างระหว่างเพศจริง ๆ

กระบวนการทดสอบสมมติฐาน

- แ้วเกิดงั้น → กรั้วเป็นเชื่อง ฉัวเอินู! ***** ตั้งสมมติฐานก่อนว่าสิ่งที่เห็นเป็นความบังเอิญ (Ho: null hypothesis) าป นักบกล 7 ครั้ง มือการะกาศว่า ๔ กับน้ำมันจริง
 - * H₁ (alternate hypothesis) เป็นสมมติฐานแย้ง ว่าสิ่งที่เห็นเป็นจริง
 - * ถ้าเราโต้แย้ง Ho ได้เราจะยอมรับ H1
- * กำหนดระดับนัยสำคัญ (α) เป็นเปอร์เซ็น
 - * เป็นความเสี่ยงที่ยอมให้เกิดขึ้นจากการยอมรับสมมติฐานว่ามัน เป็นจริงทั้งที่เป็นเหตุบังเอิญ
 - * กำหนดไว้ก่อนที่จะทดสอบสมมติฐาน
 - * ค่าที่นิยมใช้เช่น 0.1, 0.05, 0.01

ไปพัฒนกค่า ๔ ไร้เวยในโดก่อน

10-1

ทดสอบสมมติฐาน

- * แนวคิดคือเราสมมติว่าสิ่งที่เห็นเป็นความบังเอิญ
- * แล้วทดสอบว่าสิ่งที่เห็นอย่างน้อยมีโอกาสเกิด ขึ้นบ่อยครั้งแค่ไหน ถ้ามันเป็นความบังเอิญ
 - * ค่านี้เรียกว่า p-value
 - * ทดสอบโดยใช้สูตรหรือ resample ก็ได้
- * ถ้าโอกาสนั้นต่ำกว่าระดับนัยสำคัญที่ตั้งไว้ เรา จะปฏิเสธ Ho และยอมรับ Hi

naalulu resample

- * คละคนทุกเพศเข้าด้วยกัน (เพราะเราสมมติว่าความ แตกต่างในการให้ทิประหว่างเพศเป็นความบังเอิญ)
- * จัดแบ่งกลุ่มใหม่โดยไม่สนเพศ เป็นกลุ่ม A 157 คนและ กลุ่ม B 87 คน ขั้นตอนนี้คือการ resample
- * คำนวณความแตกต่างระหว่างค่าเฉลี่ยการให้ทิปของ กลุ่ม A และ B แล้วบันทึกไว้
- * ทำซ้ำหลาย ๆ รอบ เช่น 1000 รอบ
- * วิเคราะห์ว่าค่าของ 1000 รอบนั้นมีสัดส่วนเท่าไหร่ที่ มากกว่าหรือเท่ากับ 0.256 สัดส่วนนี้คือ p-value

คำนาณ p-value จากสูตร

- * ทางสถิติมีการสร้างสูตรประมาณการกระจายตัวของ ค่าในรูปแบบต่าง ๆ ไว้แล้ว
 - * เช่น ความแตกต่างระหว่างค่าเฉลี่ยจากสองกลุ่มจะ กระจายตัวแบบ **โ**
- * เราสามารถคำนวณค่าของ t แล้วหา p-value ได้
 - * ใน pandas สามารถคำนวณได้จาก scipy.stats.ttest_ind() ซึ่งคำนวณแบบ two-tail
- * ถ้าเราทดสอบค่าแบบอื่น เช่น variance หรือสัดส่วน อาจต้องใช้การทดสอบแบบอื่น

การตีความ p-value

- * p-value บ่งบอกถึงความน่าจะเป็นที่เหตุ การณ์ที่มากขนาดที่เห็นหรือมากกว่า เกิด เพราะเหตุบังเอิญ
 - * เช่น ถ้าการให้ทิปที่แตกต่างกันระหว่างเพศ ชายกับเพศหญิงเป็นเหตุบังเอิญ โอกาสที่จะ เห็นความแตกต่างที่ผู้ชายให้ทิปมากกว่าผู้ หญิงอย่างน้อย \$0.256 คือ (ค่า p-value ที่ได้)

สรุปผล

- * ถ้า p-value ต่ำกว่าค่า α (ระดับนัยสำคัญที่ตั้งไว้) หมาย ความว่า
 - * โอกาสที่จะเกิดเหตุการณ์นั้นน้อยกว่าค่าที่ตั้งไว้ แสดงว่าเป็น เหตุการณ์ที่ค่อนข้างเกิดน้อย ดังนั้นไม่น่าจะเป็นความบังเอิญ
 - * เราจึงปฏิเสธสมมติฐานว่าสิ่งที่เห็นเป็นเหตุบังเอิญ และยอมรับ สมมติฐานว่าความแตกต่างนั้นเป็นจริง
- * ถ้า p-value ไม่ต่ำกว่าค่า α แสดงว่าเหตุการณ์นี้ไม่ได้เป็น เรื่องที่แปลกประหลายแต่อย่างใด อาจเกิดขึ้นเพราะความ บังเอิญได้
 - * เราจะไม่สามารถปฏิเสธสมมติฐานว่าสิ่งที่เกิดเป็นความบังเอิญ copyright Sethavidh Gertphol

เปรียบเทียบ resample กับ สูตร

- * การใช้สูตรนั้นทำได้อย่างรวดเร็ว แต่ผู้ใช้จำเป็น ต้องรู้ว่าจะใช้การทดสอบด้วยสูตรไหนในกรณีใด
- * สูตรมีความซับซ้อนและมีสมมติฐานเบื้องหลัง มากมาย อาจทำให้เกิดความผิดพลาดในการ ประมาณค่า
 - * เช่น ประชากรกระจายตัวอย่างไร ค่า variance ของสอง กลุ่มประชากรเท่ากันไหม จำนวนตัวอย่างมากน้อยแค่ไหน
- * การ resample ใช้เวลาและพลังการคำนวณเยอะ แต่ เข้า ใจง่าย และไม่มีสมมติฐานเกี่ยวกับประชากร

ประเดินเกี่ยวกับค่า α

- * α เป็นความเสี่ยงที่ยอมให้เกิดขึ้นจากการยืนยันสมมติฐาน ว่ามันเป็นจริงทั้งที่เป็นเหตุบังเอิญ
- * ค่า α ควรตั้งไว้ที่เท่าไหร่
- * ขึ้นกับความแน่นอนในแต่ละสายงาน
 - * เช่นสายงานด้านวิศวกรรมอาจตั้งค่า α ไว้ต่ำมาก เช่น 0.0001 เพราะทดสอบกับสิ่งที่สร้างเอง
 - * สายงานทางสังคมอาจตั้งค่า α ไว้ที่ 0.1 เพราะมืองค์ประกอบที่ ควบคุมไม่ได้มาเกี่ยวข้องเยอะ
 - * สายงานด้านสุขภาพต้องการความแน่นอนมากกว่าด้านสังคม อาจตั้งค่า α ที่ **0.05** หรือ **0.01**

ความผิดพลาดในการ ยอมรับสมมติฐาน

- * Type I error: ยอมรับว่ามีผลกระทบจริงทั้ง ๆ ที่จริง ๆ แล้วเป็นเหตุบังเอิญ
 - * False Positive
 - * โอกาสเกิด Type I error ระบุด้วยค่า α
- * Type II error: ยอมรับว่าผลเกิดจากความบังเอิญ ทั้ง ๆ ที่มีสาเหตุเบื้องหลังจริง
 - * False Negative
- * การปรับค่า α จะเป็นการแลกเปลี่ยน error สอง ประเภทนี้

การตีความผลการทดลอง

- * ค่า p-value ในปัจจุบันใช้เป็นแนวทางในการแสดงความไม่ แน่นอนของสมมติฐานและความเสี่ยงที่จะเกิด Type I error
 - * ไม่ควรใช้เป็นเกณฑ์ในการตัดสินนัยสำคัญทางสถิติแบบเด็ดขาด
- * นั่นคือไม่ควรตัดสินทันทีว่าถ้า p < 0.05 แล้วสมมติฐาน H1 จะ ถูกต้อง ควรมองค่า p เป็นระดับความเสี่ยงแทน
- * p-value ไม่ได้บ่งบอกถึงความรุนแรงของผลกระทบถ้า สมมติฐานเป็นจริง
 - * เช่นถ้าผู้ชายให้ทิปมากกว่าผู้หญิงจริง จะให้มากกว่าเท่าไหร่
- * ใช้ประกอบกับ Confidence Interval เพื่อวิเคราะห์อย่างละเอียด

Reference

- 1. Peter C. Bruce, "Introductory Statistics and Analytics: A Resampling Perspective", John Wiley & Sons, December 2014.
- 2."1936 United States presidential election", wikipedia.com, retrieved on Nov 26, 2019.