Section 1.2: Row Reduction and Echelon Forms

Echelon form (or row echelon form):

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each *leading entry* (i.e. left most nonzero entry) of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero.

EXAMPLE: Echelon forms

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

EXAMPLE (continued):

Reduced echelon form:

Theorem 1 (Uniqueness of The Reduced Echelon Form):

Each matrix is row-equivalent to one and only one reduced echelon matrix.

Important Terms:

- **pivot position:** a position of a leading entry in an echelon form of the matrix.
- **pivot:** a nonzero number that either is used in a pivot position to create 0's or is changed into a leading 1, which in turn is used to create 0's.
- pivot column: a column that contains a pivot position.

(See the Glossary at the back of the textbook.)

EXAMPLE: Row reduce to echelon form and locate the pivot columns.

$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Solution

pivot

$$\begin{bmatrix}
1 & 4 & 5 & -9 & -7 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
0 & -3 & -6 & 4 & 9
\end{bmatrix}$$

pivot column

Possible Pivots:

$$\begin{bmatrix}
1 & 4 & 5 & -9 & -7 \\
0 & 2 & 4 & -6 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -5 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 4 & 5 & -9 & -7 \\
0 & 2 & 4 & -6 & -6 \\
0 & 0 & 0 & -5 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Original Matrix:
$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$
pivot columns:
$$1 \quad 2 \qquad 4$$

Note: There is no more than one pivot in any row. There is no more than one pivot in any column.

EXAMPLE: Row reduce to echelon form and then to reduced echelon form:

Solution:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

Cover the top row and look at the remaining two rows for the left-most nonzero column.

$$\begin{bmatrix}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 3 & -6 & 6 & 4 & -5
\end{bmatrix}
\sim
\begin{bmatrix}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 3 & -6 & 6 & 4 & -5
\end{bmatrix}$$

Final step to create the reduced echelon form:

Beginning with the rightmost leading entry, and working upwards to the left, create zeros above each leading entry and scale rows to transform each leading entry into 1.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

SOLUTIONS OF LINEAR SYSTEMS

- basic variable: any variable that corresponds to a pivot column in the augmented matrix of a system.
- free variable: all nonbasic variables.

EXAMPLE:

$$x_1 +6x_2 +3x_4 = 0$$
 $x_3 -8x_4 = 5$
 $x_5 = 7$

pivot columns:

basic variables:

free variables:

Final Step in Solving a Consistent Linear System: After the augmented matrix is in **reduced** echelon form and the system is written down as a set of equations:

Solve each equation for the basic variable in terms of the free variables (if any) in the equation.

EXAMPLE:

The **general solution** of the system provides a parametric description of the solution set. (The free variables act as parameters.) The above system has **infinitely many solutions**.

Why?

Warning: Use only the reduced echelon form to solve a system.

Existence and Uniqueness Questions

EXAMPLE:

$$\begin{bmatrix} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = -5 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = 9 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = 15 \end{bmatrix}$$

In an earlier example, we obtained the echelon form:

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
 $(x_5 = 4)$

No equation of the form 0 = c, where $c \neq 0$, so the system is consistent.

Free variables: x_3 and x_4

Consistent system with free variables

⇒ infinitely many solutions.

EXAMPLE:

$$3x_{1} +4x_{2} = -3$$

$$2x_{1} +5x_{2} = 5 \rightarrow \begin{bmatrix} 3 & 4 & -3 \\ 2 & 5 & 5 \\ -2x_{1} & -3x_{2} = 1 \end{bmatrix}$$

$$\begin{bmatrix}
3 & 4 & -3 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
3x_1 + 4x_2 = -3 \\
x_2 = 3
\end{bmatrix}$$

Consistent system, no free variables

⇒ unique solution.

Theorem 2 (Existence and Uniqueness Theorem)

- 1. A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column, i.e., if and only if an echelon form of the augmented matrix has no row of the form
 - $\begin{bmatrix} 0 & \dots & 0 & b \end{bmatrix}$ (where b is nonzero).
- 2. If a linear system is consistent, then the solution contains either
- (i) a unique solution (when there are no free variables) or (ii) infinitely many solutions (when there is at least one free
- (ii) infinitely many solutions (when there is at least one free variable).

Using Row Reduction to Solve Linear Systems

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If not, stop; otherwise go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtained in step 3.
- 5. State the solution by expressing each basic variable in terms of the free variables and declare the free variables.

EXAMPLE:

- a) What is the largest possible number of pivots a 4×6 matrix can have? Why?
- b) What is the largest possible number of pivots a 6×4 matrix can have? Why?

c) How many solutions does a consistent linear system of 3 equations and 4 unknowns have? Why?

d) Suppose the coefficient matrix corresponding to a linear system is 4×6 and has 3 pivot columns. How many pivot columns does the augmented matrix have if the linear system is inconsistent?