ALG2 - 8. cvičení

- Nalezněte příklad konečné množiny, která je V-polosvazem, ale není ∧polosvazem.
- 2) Nechť (A, \leq) je uspořádaná množina, $C\subseteq B\subseteq A$. Dokažte, že jestli inf $B\in C$, pak infC= infB (analogicky pro supremum).
- 3) Dokažte, že existuje-li na uspořádané množině (A, \leq) pro a, $b \in A$ inf(a, b), pak existuje i sup $(a, \inf(a, b))$ a platí sup $(a, \inf(a, b)) = a$.
- **4)** Načrtněte diagramy všech dvouprvkových, tříprvkových, čtyřprvkových a pětiprvkových svazů.
- **5)** Rozhodněte, zda uspořádaná množina znázorněná obrázkem je svaz. Svoji odpověď zdůvodněte.

6) Rozhodněte, zda následující dvojice svazů jsou izomorfní:

- 7) Existuje takový svaz, že každá jeho podmnožina je zároveň jeho podsvazem?
- **8)** Ověřte, zda množina všech binárních relací na neprázdné množině A tvoří svaz vzhledem k operaci ⊆. Kolik prvků bude mít tento svaz pro dvouprvkovou množinu A = {a, b}?
- **9)** Na svazu D(12) přirozených dělitelů čísla 12 nalezněte takovou podmnožinu, která je svazem, ale zároveň není podsvazem D(12).
- **10)** Jsou dány svazy (L₁, Λ , V), (L₂, Λ , V) a zobrazení f: L₁ \rightarrow L₂. Ukažte, že f je bijekce právě tehdy, když jsou f i inverzní zobrazení f⁻¹ izotonní (tedy nestačí splnit pouze jednu z těchto podmínek).
- 11) Nechť h je surjektivní homomorfismus svazu L_1 na L_2 . Dokažte, že má-li L_1 nulu 0 (jedničku 1), pak h(0) = 0 (h(1) = 1).
- **12)** Dokažte, že je-li svaz L řetězec, pak každé izotonní zobrazení z L do nějakého svazu L' je homomorfismus.
- **13)** Dokažte, že pro každé dva prvky x, y svazu L platí:
 - a) Jestliže x || y, pak x \land y < x, x \land y < y
 - b) Jestliže $x \wedge y < y$, pak $y < x \vee y$
- **14)** Dokažte, že v každém svazu je ekvivalentní:

$$a \lor b = a$$
 $a \land b = b$