■ PC 환경구성

- 1) PuTTY
- 원격접속 프로그램(virtual box에 설치될 리눅스에 접근하기 위해서)
- PuTTY 다운로드

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

- 설치는 필요없음
- jbm -> applications 폴더에 복사

■ PuTTY의 색상 및 폰트 변경

- 변경할 Server를 로딩

- 폰트 변경

- 스크롤 길이를 충분히(20000) / 풀스크린에서도 스크롤바를 보이게 처리

-뒷배경색상을 흰색으로

글자색을 #424242의 색상인 rgb(66,66,66)으로

- 반드시 저장

2) FileZilla

- FTP 프로그램(리눅스에 파일을 보내고 저장하기 위해서)
- FileZilla 설치 https://filezilla-project.org/download.php

설치

- 설치하지 않음(체크 해제)

설치하지 않음(체크 해제)

- 설치완료후 실행모습

3) Virtual Box

- VmWare나 페럴렐즈같은 가상화 소프트웨어
- 가상화 소프트웨어 : 컴퓨팅 환경을 소프트웨어로 구현해 한 대의 PC 또는 임베디드 컨트롤러에서 두 개 또는 그 이상의 운영체제를 실행 할 수 있게 함
- (해킨토시도 가능)
- VmWare / 페럴렐즈는 유료소프트웨어 / Virtual Box는 오픈소스 소프트웨어
- 오라클 버추얼 박스 다운 https://www.virtualbox.org/

- 오라클 버추얼 박스 설치하기

- 설치완료

- 리눅스 가상 머신 환경 구성
- 1) 상단에 있는 <파일> 클릭 후 <환경설정> 클릭

2. 환경설정 창에 <네트워크> 클릭 후 <새 NAT 네트워크 추가> 클릭

- 확인을 눌러 NAT 네트워크 설정 완료

* DHCP(Dynamic Host Configuration Protocol) : 동적 호스트 구성 프로토콜 표준에서는 DHCP 서버를 사용하여 IP 주소 및 관련된 기타 구성 세부 정보를 네트워크의 DHCP 사용 클라이언트에 게 동적으로 할당하는 방법을 제공한다

3. 상단에 있는 〈파일〉 클릭 후 〈호스트 네트워크 관리자〉 클릭

4.(생성된 Host-Only Ethernet Adapter가 없을 경우)

[만들기] -> [속성] -> [어댑터(A)] 클릭 후 아래 사진처럼 정보를 입력

5. [DHCP 서버(D)] 클릭 -> [서버 사용함(E)] 클릭 후 아래 사진처럼 DHCP정보를 아래 사진과 같이 입력한 뒤 적용을 클릭

(DHCP 서버에서 설정한 정보는 나중에 만들 서버들이 사용할 IP 대역)

■ 리눅스

1) 리누스 토발즈가 오픈소스로 개발한 컴퓨터 운영체제

https://namu.wiki/w/리눅스

- 2) 서버용 / 모바일용(안드로이드도 linux기반에 자바가상머신으로 작동)으로 많이 사용됨
- 3) CentOS

https://www.centos.org/

https://namu.wiki/w/센트OS?from=CentOS

4) CentOS 7.x 설치

http://ftp.daumkakao.com/centos/7/isos/x86_64/

- CentOs7.x 설치 파일을 아래의 URL에서 다운받음 / 파일크기가 4.2G로, 시간이 걸릴 수 있음

- 설치된 파일을 찾기 쉽게 폴더 [tmp]를 만들어 설치파일의 경로를 이동

- 5) 버추얼 박스에서 리눅스 가상머신의 이름과 운영체제 정보를 설정
- 1. 새로 만들기 클릭
- 2-1. 이름: Server01
- 2-2. 종류: Linux
- 2-3. 버전: Other Linux (64-bit)

3. 가상 머신의 메모리 크기를 임시로 2048을 입력(하둡 및 스파크시 변동될 수 있음)

4. 가상 머신의 하드 드라이브를 아래 내용으로 설정

- 6) Server01의 네트워크 설정
- 1. Server01 클릭후 상단(또는 오른쪽 마우스 클릭) 설정을 클릭
- 2. 네트워크 클릭
- 3. 네트워크 어댑터 1을 NAT으로 선택하고 고급 설정을 클릭해 사진처럼 설정

4. [어댑터 2] 클릭 -> [네트워크 어댑터 사용하기] 체크 -> [호스트 전용 어댑터]로 설정 -> [무작위 모드]를 [모두 허용으로 선택]

7) CentOs 설치

1. [Server01] 클릭 -> [시작] 클릭을 해서 Server01 가상 머신 이미지를 시작

2. Server01 가상머신에 설치할 운영체제를 선택하는 창 파일을 선택하는 이모티콘 클릭후 앞서 설치해둔 Cent0s-7-x86_64-DVD-1708.iso 파일을 선택한 뒤 [시작] 버튼을 클릭

3. 창 크기를 원하는 데로 늘리기 위해 상단의 [보기] 클릭 -> [크기 조정 모드] 클릭

4. 키보드의 방향키를 이용해 [Install CentOS 7]를 선택 후 엔터를 쳐서 설치를 시작

5. 언어 설정에서 [한국어]를 선택하고 [계속 진행]을 클릭

6. [네트워크 및 호스트명(N)]을 선택

7. [이더넷(enp0s3)] 클릭 -> [끔] 클릭후 [켬]으로 바꾸기 ->

호스트 이름: server01.hadoop.com(모두 소문자) -> 적용 클릭 -> 완료를 누름

8. [설치 대상 (D)]를 클릭

9. [ATA VBOX HARDDISK 30GB]를 선택하고 [완료]를 누름

10. 하단부의 오른쪽 [설치 시작] 클릭

11. [ROOT암호(R)] 클릭

12. 앞으로 Root 계정을 통해 서버에 접속할 예정. Root 암호는 기억하기 쉽게 '1111'로 입력한 뒤, [완료] 버튼을 누름. 암호가 짧아서 두 번 클릭해야 완료가 됨

13. [사용자 생성 (U)]을 클릭

14. 사용자를 아래의 내용으로 생성한 뒤 [완료]를 더블 클릭

성명 : bigdata

사용자 이름: bigdata

암호 : 1111

- 재부팅을 누르고 CentOs 설치를 완료

■ 리눅스 기초

1) 리눅스 디렉토리 구조

디렉토리	설명
/	최상위 디렉터리, root 디렉토리 라고함.
/bin	Binary 의 약자로, 기본 실행 파일들 즉 사용자 명령어들이 위치해 있다.
/boot	시스템 부팅에 필요한 파일이 위치해 있다.
/dev	Device의 약자로 하드디스크, CD롬 등의 장치 파일을 모아놓은 디렉토리
/etc	시스템 설정파일이 들어있다.
/home	사용자 계정의 홈 디렉토리가 위치하는 디렉토리. 예를 들어 accountname이라는 사용자의 홈 디렉토리 위치는 /home/accountname. 루트 사용자의 홈 디렉터리는 이곳에 위치해있지 않고 /root에 위치한다.
/lib	Library의 약자로, 각종 라이브러리가 저장되어있다. 라이브러리는 프로그래밍에서 함수같은 것이며, 커널 모듈도 이 곳에 위치한다.
/lost+found	파일 시스템 복구를 위한 디렉토리
/mnt	마운트 될 파일 시스템의 마운트 포인터(마운트 될 위치)가 되는 디렉토리들이 이 디렉토리 안에 있음. 따라서 장치가 연결되면 /mnt 안에 있는 해당 디렉토리에 위치한다. 예를 들어 /mnt/cdrom
/opt	추가된 응용 프로그램 패키지가 설치되는 디렉토리. 사용자가 추가로 패키지를 설치하면 여기에 설치됨.
/proc	시스템 관리를 목적으로 메모리상에 만들어놓은 가상 디렉터리. 기본적으로 /proc는 커널이 가지고 있는 여러가지 데이터 구조를 시스템 관리자에게 쉽게 전달하기 위해서 사용하는 목적으로 만들어져 있다. /proc 를 통해서 좀더 쉽게 각종 시스템 정보를 얻어올 수 있고, 여러 가지 커널 관련 옵션을 특별한 프로그래밍 괴 정없이 단지 /proc 내부 파일의 수정을 통해서 쉽게 변경할수 있다.
/root	루트 사용자의 홈 디렉터리, 다른 일반 사용자들은 이 디렉터리에 접근할 수 없음.
/sbin	시스템 점검 및 복구 명령, 네트워크 인터페이스 설정 명령, 시스템 시작 및 종료 명령, 커널 모듈 등 시스템 관리에 관련된 실행 파일들이 들어있다.
/tmp	시스템에 필요한 임시 파일들을 만들고 삭제하는 디렉터리.
/usr	시스템이 정상적으로 가동되는데 필요한 모든 명령과 라이브러리, 메뉴얼 페이지가 저장된 디렉토리
/var	자료 데이터가 변경될 때 저장되는 디렉토리, 시스템의 작동 로그들과 네트워크,보안 관련 로그 등 각종로그 파일이 저장되는 디렉토리.

■ 리눅스 명령어

2) 명령어 사용법

- 명령어 [-옵션] [파일] 또는 명령어 [파일] [-옵션]

```
| Cooling | Cool
```

- 기본 명령어

pwd : 현재 작업 디렉토리 출력 명령어

[bigdata@server01 ~]\$ pwd /home/bigdata

cd : 디렉토리 변경 명령어

root 디렉토리로 이동

[bigdata@server01 ~]\$ cd / [bigdata@server01 /]\$ pwd

로그인한 계정의 경로로 이동

[bigdata@server01 /]\$ cd ~ [bigdata@server01 ~]\$ pwd /home/bigdata

현재 자신의 경로로 이동

[bigdata@server01 ~]\$ cd . [bigdata@server01 ~]\$ pwd /home/bigdata

이전 경로로 이동

[bigdata@server01 ~]\$ cd .. [bigdata@server01 home]\$ pwd /home

home 디렉토리 안의 bigdata 디렉토리로 이동

[bigdata@server01 home]\$ cd bigdata/ [bigdata@server01 ~]\$ pwd /home/bigdata

예제: root 디렉토리의 usr로 이동하세요.

ls : 현재 위치한 디렉토리 아래에 있는 파일 및 서브 디렉토리 정보 나열

[bigdata@server01 usr]\$ ls
bin etc games include lib lib64 libexec local sbin share src tmp

-a: 숨김 파일까지 모두 보임

[bigdata@server01 usr]\$ ls -a
. bin games lib libexec sbin src
.. etc include lib64 local share tmp

-l : 파일 형태, 사용권한, 링크번호, 소유자, 그룹 등 파일의 자세한 내용을 보여줌

```
bigdata@server01 usr]$ ls -1
합계 120
             2 root root 24576 12월
dr-xr-xr-x.
                                      22 06:30 bin
             2 root root
                              6 11월
drwxr-xr-x.
                                          2016 etc
drwxr-xr-x.
                               6 11월
                                          2016 games
drwxr-xr-x. 34 root root
dr-xr-xr-x. 38 root root
                           4096 12월
                           4096 12월
                                         06:30 lib
dr-xr-xr-x. 43 root root 28672 12월
                                      22 06:30 lib64
                                      22 06:30 libexec
                           4096 12월
drwxr-xr-x. 20 root root
                            131 12월
2288 12월
drwxr-xr-x. 12 root root
                          12288
                                         06:30 sbin
drwxr-xr-x. 98 root root
                           4096 12월
                                      22 06:30 share
drwxr-xr-x.
                              34 12월
                                      20 11:41 src
             4 root root
                                      20 11:41 tmp ->
                              10 12월
lrwxrwxrwx. 1 root root
```

-al: 옵션 a와 옵션 l를 합쳐서, 숨김 파일들까지 정보들을 보여줌

```
[biqdata@server01 usr]$ ls -al
합계 120
drwxr-xr-x. 13 root root
                              155 12월
                                         20 11:41
                root root 244 12월
root root 24576 12월
                                         22 06:30 bin
dr-xr-xr-x.
                                 6 11월
                                            2016 etc
drwxr-xr-x.
drwxr-xr-x.
                                 6 11월
                             4096 12월
4096 12월
drwxr-xr-x. 34 root root
dr-xr-xr-x. 38 root
                                           06:30 lib
dr-xr-xr-x. 43 root root 28672 12월
                                         22 06:30 lib64
                             4096 12월
                              131 12월
2288 12월
drwxr-xr-x. 12 root root
dr-xr-xr-x. 2 root root
                                        20 11:41 local
                            12288
                                           06:30 sbin
dr-xr-xr-x.
                      root
drwxr-xr-x. 98 root root
                             4096 12월
drwxr-xr-x. 4 root root
                               34 12월
                                         20 11:41 src
lrwxrwxrwx.
              1 root root
                                   12월
                                         20 11:41 tmp ->
```

-i : 파일의 색인 번호를 보여줌

```
[bigdata@server01 usr]$ ls -i
50331721 bin 16777814 include 120 libexec 16777315 share
50332067 etc 16777313 lib 16777817 local 414 src
81 games 79 lib64 77 sbin 33582870 tmp
```

```
cat : 파일을 작성하거나 파일의 내용을 간단하게 출력
```

로그인한 bigdata 디렉토리로 이동

\$ cd ~

출력하고싶은 파일이 없다면 표준 입력을 처리(리눅스에서는 모든 장치를 파일로 처리, 키보드로 입력하는 것은 표준 입력 파일로 처리)

```
[bigdata@server01 ~]$ cat
cat test
cat test
^C
```

cat > [파일]: [파일 이름]의 내용을 새롭게 입력

```
[bigdata@server01 ~]$ cat > test
cat test
test is a file
^C
```

cat [파일]: [파일]의 내용 출력

```
[bigdata@server01 ~]$ cat test
hello
this is new file
this file name is test
```

cat -b [파일] : [파일]의 각 행에 번호를 입력해 출력

```
[bigdata@server01 ~]$ cat -b test
1 cat test
2 test is a file
```

cat >> [파일]: [파일]의 마지막 행부터 내용 입력(새롭게 입력되지 않음)

```
[bigdata@server01 ~]$ cat >> test
the last line
^C
[bigdata@server01 ~]$ cat test
cat test
test is a file
the last line
```

예제: 아래처럼 출력되도록 test 파일을 수정하고 내용을 출력

1 Hello Linux
2 This is new File
3 This file name is test

mkdir [옵션] [디렉토리] : 디렉토리 생성

■ 디렉토리

• pwd: 현재 자신이 위치한 디렉토리를 출력

• cd: 디렉토리를 변경하는 명령어

- cd[디렉토리]: 디렉토리를 이동할 때 사용

- 각 경로의 디렉토리와 파일은 /로 구분
- .는 현재 자신의 경로
- ..는 이전 경로를 의미
- ~는 자신의 홈 디렉토리
- ls : 파일의 목록을 간단히 출력

- ls -al : 숨겨진 파일을 포함해 자세히 출력
- ls -R : 하위 디렉토리까지 모두 출력
- mkdir [디렉토리]: 디렉토리 생성
- rmdir [디렉토리]: 디렉토리 삭제

■ 설치

- wget [URL] : URL에 있는 파일을 다운로드 받음
- yum(의존성이 있는 패키지 그룹 단위)
 - yum -y install [패키지] : 패키지를 설치함
 - yum -y erase [패키지] : 패키지를 삭제함
 - yum list : 설치 가능한 패키지 목록.
 - yum list updates : 업데이트가 가능한 패키지 목록.
 - yum list installed : 설치된 패키지 목록.
 - yum update [패키지] : 패키지명이 없으면 전체 업데이트 있으면 해당 패키지만 업데이트
- make : 소스코드를 컴파일 해서 binary 파일을 만듦
 - make install : 만들어진 binary 파일을 지정된 경로로 이동 시킴
 - make uninstall : 설치된 binary 파일을 삭제 함

■ 파일

- cp [원본] [사본] : 파일을 복사
- mv [원본] [목적지] : 파일을 이동. 이것을 응용해 파일명도 바꿀수 있음
- rm [파일] : 파일을 삭제
 - rm -rf [파일] : 삭제 동의를 묻지 않고, 파일은 그냥 지우고 디렉리면 하위경로 파일까지 모두 지움
- cat [파일] : 파일의 내용을 출력
- more [파일] : 특정 파일의 내용을 확인하는 그 페이지에서 바로 vi로 편집 가능, 파일의 내용을 한페이지씩 차례로 확인 가능
- tail : 파일의 마지막 부분을 출력
 - tail -f : 파일의 마지막 10라인을 실시간으로 계속해서 출력
- ¦ : 명령어의 출력결과를 다른 명령어의 입력으로 전환한다. 파이프라고 부름
- grep : 파일 또는 입력값내에서 특정 패턴을 검색한다. 파이프와 조합해서 출력에서 검색하고 싶을때 사용한다. ex) yum list | grep jdk, ps -ef | grep java
- chmod [퍼미션] [파일] : 소유자, 그룹, 다른 사용자가 가지는 퍼미션(읽기, 쓰기, 실행)을

설정한다. 퍼미션은 읽기4, 쓰기2, 실행1을 조합해서 표시

- chmod 750 [파일] : 소유자 읽고 쓰고 실행 가능, 그룹 읽고 실행 가능
- chmod 777 [파일] : 소유자 읽고 쓰고 실행 가능, 그룹 읽고 쓰고 실행 가능 chmod [퍼미션] -R [파일]: 서브 디렉토리의 파일까지 재귀적으로 실행

• tar

- tar -cvzf [파일] [경로] : tar로 파일을 압축
- tar -xvzf [파일] [경로] : tar로 파일을 압축 해제

■ 파일 시스템

- df -h : 디스크의 남은 용량을 봄
- du
 - du -sh [디렉토리] : 디렉토리의 전체 사용량을 보여준다.
 - du -h [디렉토리] : 모든 하위 디렉토리들의 사용량과 합계를 보여준다.

■ 프로세스

- ps -ef : 현재 실행중인 프로세스의 목록을 보여준다.
- kill [PID] : 프로세스를 종료 시킨다.
 - kill -9 [PID] : 프로세스를 강제로 종료 시킨다.
- 데몬(사용자가 직접적으로 제어하지 않고, 백그라운드에서 돌면서 여러 작업을 하는 프로그램)
- systemctl
 - systemctl status [데몬].service : 데몬 상태 보여줌
 - systemctl start [데몬].service : 데몬 시작
 - systemctl stop [데몬].service : 데몬 중지
 - systemctl restart [데몬].service : 데몬 재시작
 - systemctl enable [데몬].service : 부팅시 데몬 자동 실행하기
 - systemctl disable [데몬].service : 부팅시 데몬 자동 실행 막기

■ 시스템

• reboot : 재부팅

■ 네트워크

• ping [호스트] : 다른 시스템의 네트워크가 동작중인지 확인

• ip addr : ip 확인

• hostname : 현재의 호스트 네임을 보여줌

■ 심볼릭 링크

• ln -s [원본 파일의 디렉토리] [사용자 설정 디렉토리]: 단순히 원본파일을 가리키게 링크만 시켜준 것. 일종의 '바로가기'

- vi (Visual display editor) : 텍스트 에디터
- 1) 윈도우에서 vim 실행
- https://brunch.co.kr/@daejin/2 (설명)
- https://tuxproject.de/projects/vim/
- 압축 풀고 gvim.exe 파일 실행
- 폰트 변경

:e ~_vimrc (사용자 위치에 _vimrc 파일 생성)

:set guifont=D2Coding:h20 (폰트 변경)

i후 set guifont=D2Coding:h20를 입력

:wq로 저장후 종료

- 주요 기능키

모 드	내 용
명령	문자를 수정하기 위한 모드 "x" (한 문자씩 지움), "dd"(한 줄 지움)
입력	텍스트를 입력하는 모드 "i"를 누르면 입력모드로 들어감 "ESC" 키를 누르면 명령모드로 돌아옴
라인	명령모드에서 콜론을 누르면 라인모드로 들어감 :w (저장) :q(vi 종료) :q!(강제종료) :wq (저장 후 종료)

- 1. SSH로 Server01을 열고 bigdata 계정으로 로그인
- 2. testVi 디렉토리를 만듦

mkdir testVi

3. testVi로 이동

cd testVi/

- 4. \$ vi test를 입력
- 명령모드: ESC 키

5. "i" 키를 누르고 "Hello VI" 입력

입력 모드: i키, vi 화면 좌측 하단에 -- INSERT -- 표시 됨

6. ESC 키를 누르고 :wq을 입력해서 저장 및 종료

라인 모드: ESC누르고 -> :을 누름, 좌측 하단에 : 표시

7. test 파일 내용을 출력

cat test

[bigdata@server01 testVi]\$ cat test Hello VI

- CentOS 환경 구성
- 1) 아래의 내용으로 로그인 함
- Password를 입력할때는 CLI상에 아무것도 나타나지 않음
- 패스워드까지 입력하고 엔터를 누름

\$ Server01 login : root

\$ Password: 1111

```
CentOS Linux 7 (Core)
Kernel 3.10.0-693.e17.x86_64 on an x86_64
Server01 login: root
Password:
```

2) Server01 가상머신에 고정 IP와 네트워크 설정을 함 아래 명령줄을 통해 vi 에디터로 /etc/sysconfig/network-scripts/ifcfg-enp0s8 파일열기

vi /etc/sysconfig/network-scripts/ifcfg-enp0s8

ifcfg-enp0s8파일이 열렸으면 키보드에서i(insert 모드)를 입력하고 아래의 사진에 있는 내용 그대로 입력한다. 입력한 뒤 키보드 esc(명령모드)를 누르고 [:wq]를 입력해 저장하고 ifcfg-enp0s8에서 나옴

TYPE=Ethernet PROXY_METHOD=none BROWSER ONLY=no BOOTPROTO=static DEFROUTE=yes IPV4 FAILURE FATAL=no IPV6INIT=yes IPV6_AUTOCONF=yes IPV6_DEFROUTE=yes IPV6 FAILURE FATAL=no IPV6_ADDR_GEN_MODE=stable-privacy NAME=enp0s8 UUID=da732267-a26c-4791-bade-bf0129e68585 DEVICE=enp0s8 ONBOOT=yes IPADDR=192.168.56.101 NETMASK=255.255.25.0 GATEWAY=192.168.56.1 NETWORK=192.168.56.0 HWADDR=??:??:??:??

HWADDR는 Server01 가상 머신의 [가상MAC주소]

해당 주소는 버추얼 박스 Server01 -> [설정] -> [네트워크] -> [어댑터2] 로 이동해 MAC 주소값을 두 자리 숫자 단위로 잘라서 입력

3. 설정한 고정 IP인 192.168.56.101을 할당 받기 위해 가상머신을 재시작

4. Server01 가상머신을 다시 시작해서 root 계정으로 로그인하고 네트워크 서비스에 고정 IP가 인식되도록 다음 명령을 실행함

```
$ systemctl restart network
```

restart 명령을 실행한 뒤, 특별한 오류가 나지 않으면 설정이 성공적으로 된 것이다. 아래의 명령어를 통해서 Server01의 고정 IP가 정확히 할당됐는지 확인

\$ ip addr

```
[root@Server01 ~]# ip addr
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
      valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
      valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
glen 1000
    link/ether 08:00:27:c5:6b:05 brd ff:ff:ff:ff:ff
   inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
      valid_lft 86392sec preferred_lft 86392sec
    inet6 fe80::bb02:19ef:79ae:3b9b/64 scope link
      valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
glen 1000
    link/ether 08:00:27:4f:67:c1 brd ff:ff:ff:ff:ff
    inet 192.168.56.101/24 brd 192.168.56.255 scope global enp0s8
       valid_lft forever preferred_lft forever
    inet6 fe80::6a10:584:59e8:ea33/64 scope link
      valid_lft forever preferred_lft forever
[root@Server01 ~]#
```

5. SSH 접속을 위한 패키지를 설치하기 위해 아래의 명령어를 차례대로 실행한다. 설치 도중 나오는 질문은 모두 "y"를 입력하고 엔터 키를 누름

```
$ yum install openssh*
$ systemctl restart sshd.service
$ systemctl enable sshd.service
$ reboot
```

리부팅이 완료되면 다음 명령으로 네트워크 설정을 다시 한번 재시작

\$ systemctl restart network

앞서 설치한 원격 SSH 접속 프로그램인 PuTTY를 통해 Server01인 "192.168.56.101"에 연결해서 root 계정으로 로그 인이 되는지 확인. PuTTY Security Alert 창이 나타나면 "예" 버튼을 누름

[Save]버튼으로 저장해서 편하게 이용도 가능

6. Server01의 접속이 잘 되면 이제 Server01의 호스트 정보를 수정

vi /etc/hosts

기존 내용을 전부 지운 뒤 아래의 내용을 입력.

"hosts" 파일에는 Server01 뿐 아니라 추후 생성할 Server02 / Server03 / Server04 의 IP 및 호스트 정보를 설정하는 것. 모두 소문자로 입력

localhost server01 192.168.56.101 server01 192.168.56.102 server02 192.168.56.103 server03 192.168.56.104 server04

localhost server01

192.168.56.101 server01

192.168.56.102 server02

192.168.56.103 server03

192.168.56.104 server04

7. 아래 명령어를 실행하면 hostname 확인 할 수 있음

hostname

아래의 파일에서 hostname이 기록되어있는 것을 확인 가능

vi /etc/hostname

8. 네트워크 설정을 재시작

systemctl restart network

9. Server01의 방화벽 및 기타 커널 매개변수 설정을 위해 아래의 명령을 하나씩 실행

vi /etc/selinux/config

SELINUX를 "SELINUX=disabled"로 수정

- 커널변수를 제어하여 시스템을 최적화 할 수 있는 명령
- 스왑메모리 활용 수준 조절

sysctl.conf 파일에서 "vm.swappiness=0" 설정을 추가(스왑 사용안함)

vi /etc/rc.local

- 부팅시 스크립트 자동 실행용

rc.local 파일에서 아래 명렁어를 추가

/bin/echo never > /sys/kernel/mm/transparent_hugepage/enabled

vi /etc/security/limits.conf

- 리소스 제한하여 서버다운을 예방

limits.conf 파일에 아래의 파일 디스크립터 설정을 추가

root soft nofile 65536

root hard nofile 65536

* soft nofile 65536

* hard nofile 65536

root soft nproc 32768

root hard nproc 32768

* soft nproc 32768

* hard nproc 32768

reboot

■ 가상머신 복제

- 1. Sever01 가상머신 전원 끄기
- 실행중인 가상머신 Server01 에 마우스 오른쪽 버튼을 클릭한 뒤 [닫기] -> [전원끄기]를 실행

2. 전원이 꺼진 Server01 가상머신에 오른쪽 버튼을 클릭한 뒤 [복제]를 클릭

3. 아래의 단계를 순차적으로 실행

4. Server02 가상머신을 실행한 뒤 아래의 계정(Server01에서 설정한 계정)을 실행

Server01 login : root

Password: 1111

- 5. Server02는 Server01을 복제했으므로 모든 정보가 Server01 값으로 설정되어 있음 / 먼저 Server02의 MAC 정보와 고정 IP로 수정
- \$ vi /etc/sysconfig/network-scripts/ifcfg-enp0s8

IPADDR= 192.168.56.102 로 수정

HWADDR은 Server02 가상머신의 MAC 주소로 버추얼박스에서 Server02->[설정]->[네트워크]->[어 댑터2]의 MAC 주소를 두 자리 단위로 잘라서 입력

- 6. 새로운 네트워크 정보를 버추얼 박스로부터 할당 받기 위해 Server02를 종료하고 다시 시작
 - 버추얼박스의 Server02 선택 -> [닫기] -> [전원 끄기]
 - Server02 선택 -> [시작]
- 7. Server02의 호스트 정보 수정

vi /etc/hosts

root@server02:/etc

localhost server02

192.168.56.101 server01

192.168.56.102 server02

192.168.56.103 server03

192.168.56.104 server04

hostname 변경

hostnamectl set-hostname server02

hostname 확인

hostname

파일에서 hostname이 기록되어있는 것을 확인 가능

vi /etc/hostname

8. 네트워크 설정 정보를 재시작하고 운영체제를 리부트

systemctl restart network

reboot

9. Server02의 IP를 확인한다. 192.168.56.102 가 확인되어야야 함

ip addr

- 10. Server03 / Server04 가상머신을 생성(위와 똑같이 실행)
- 11. 모든 가상 머신을 종료하고 각 서버(Server01 ~ Server04)의 [설정]->[시스템]->[마더보드] 에서 기본 메모리 설정을 변경

- Server01 : 4096MB

- Server02 : 1024MB

- Server03 : 1024MB

- Server04 : 1024MB

12. 4개의 가상 머신을 모두 시작하고 PuTTY를 이용해 4대의 리눅스 서버에 접속 테스트

- (root로 로그인 후 systemctl restart network로 재시작해야 함)

