

"Maschinelles Lernen" bis jetzt

- Supervised Learning
 - erfordert gelabelte Trainingsdaten
- Unsupervised Learning
 - erfordert Interpretation der Ausgabe

"Maschinelles Lernen" bis jetzt

- Supervised Learning
 - erfordert gelabelte Trainingsdaten

beide Verfahren erfordern manuelle Arbeit

- Unsupervised Learning
 - erfordert Interpretation der Ausgabe

Reinforcement Learning

am Lernverhalten des Menschen orientiert

- Lernen erfolgt durch Interaktion in einer Umgebung
 - dem Agent ist unbekannt welche Aktion er ausführen soll
 - Lernen durch "trial and error"
 - Neues ausprobieren und Bekanntes verbessern

- Ziel ist es die Gesamtbelohnung zu maximieren
 - Bei Auswahl von Aktion müssen zukünftige Konsequenzen in Betracht gezogen werden

Konzept

Unterschiede

Supervised Learning

- lernt von gelabelten Trainingsdaten
- kann maximal so gut sein wie die Trainingsdaten
- Wissen ist statisch
- bildet unbekanntes Input in bekannte Outputs ab

Reinforcement Learning

- lernt eigenständig durch Entscheidungen
- kann übermenschliche Leistungen erbringen
- Wissen ist dynamisch
- bildet Zustände auf Aktionen ab (Strategie)

Unterschiede

Supervised Learning

- lernt von gelabelten Trainingsdaten
- kann maximal so gut sein wie die Trainingsdaten
- Wissen ist statisch
- bildet unbekanntes Input in bekannte Outputs ab

Unsupervised Learning

- versucht in einer Datenmenge unbekannte Strukturen zu finden
- Ausgabe muss interpretiert werden

Reinforcement Learning

- lernt eigenständig durch Entscheidungen
- kann übermenschliche Leistungen erbringen
- Wissen ist dynamisch
- bildet Zustände auf Aktionen ab (Strategie)

- versucht die Belohnung zu maximieren
- Ausgabe wird von der Umgebung konsumiert

Unterschiede

Supervised Learning

- lernt von gelabelten Trainingsdaten
- kann maximal so gut sein wie die Trainingsdaten
- Wissen ist statisch
- bildet unbekanntes Input in bekannte Outputs ab

Unsupervised Learning

- versucht in einer Datenmenge unbekannte Strukturen zu finden
- Ausgabe muss interpretiert werden

Reinforcement Learning

- lernt eigenständig durch Entscheidungen
- kann **übermenschliche Leistungen** erbringen
- Wissen ist dynamisch
- bildet Zustände auf Aktionen ab (Strategie)

- versucht die Belohnung zu maximieren
- Ausgabe wird von der Umgebung konsumiert

Ausgezeichnete Leistungen

IBM's Watson

Watson

- Supercomputer kombiniert mit künstlicher Intelligenz
- Entwickelt um Antworten auf Fragen (Suchmaschine)
- Kommuniziert in natürlicher Sprache

IBM's Watson

Watson

- Supercomputer kombiniert mit künstlicher Intelligenz
- Entwickelt um Antworten auf Fragen (Suchmaschine)
- Kommuniziert in natürlicher Sprache

Februar 2011: gewann gegen zwei Champions

IBM's Watson

Watson

- Supercomputer kombiniert mit künstlicher Intelligenz
- Entwickelt um Antworten auf Fragen (Suchmaschine)
- Kommuniziert in natürlicher Sprache

Jeopardy!

- Ein Fernseh-Quizshow aus den USA
- erfordert Schnelligkeit und Fachwissen

Februar 2011: gewann gegen zwei Champions

AlphaGo

AlphaGo

- entwickelt von Google's Tochterunternehmen **DeepMind**
- soll ausschließlich Go spielen

AlphaGo

AlphaGo

- entwickelt von Google's Tochterunternehmen DeepMind
- soll ausschließlich Go spielen

Go

- Ein strategisches Brettspiel
- Bei 19x19 Brettgröße ca. 10¹⁷¹ gültige Spielpositionen

AlphaGo

AlphaGo

- entwickelt von Google's Tochterunternehmen DeepMind
- soll ausschließlich Go spielen

Go

- Ein strategisches Brettspiel
- Bei 19x19 Brettgröße ca. 10¹⁷¹ gültige Spielpositionen

Mai 2017: 3:0 gegen Weltranglistenerste (Ke Jie)

AlphaZero

- AlphaZero kann Schach, Shogi und Go auf übermenschlichem Niveau spielen
- nach nur 24 Stunden trainieren / lernen mit sich selbst
- verwendet die gleichen Hyperparameter für alle Spiele

Spiel	Brettgröße	Zustandsraum-Komplexität	Spielbaum-
	Felderanzahl	(als dekadischer Logarithmus log ₁₀)	Komplexität (log ₁₀)
Schach	8×8=64	50[6]	123 ^[6]
Shōgi	9×9=81	71 ^[8]	226 ^[8]
Go	19×19=361	171[10]	360 ^[11]

Markov Decision Process

Basiskomponente

- Strategie π
 - Verhalten des Agenten
- Belohnungssignal
 - Wie gut hat er sich verhalten

Basiskomponente

- Strategie π
 - Verhalten des Agenten
- Belohnungssignal
 - Wie gut hat er sich verhalten
- Nutzenfunktion
 - V(s): erwartete Belohnung bei Startzustand s
 - q(s,a): erwartete Belohnung bei Aktion a in s
- Return G_t
 - G_t: Gesamtbelohnung zur Zeit t
- Modell (optional)
 - **P**: Transaktionsmatrix
 - R: Belohnungsfunktion

Lernmethoden

RL Algorithmen unvollständig

Q-Learning

Einfaches Lernalgorithmus

- lernt langfristig ein optimales Verhalten
- Ungeeignet f
 ür große Zustand-Aktion-R
 äume

Modell frei

erfordert keine Kenntnisse über die Dynamik der Umgebung

Q-Learning

Einfaches Lernalgorithmus

- lernt langfristig ein optimales Verhalten
- Ungeeignet für große Zustand-Aktion-Räume

Modell frei

erfordert keine Kenntnisse über die Dynamik der Umgebung

learned value

$$Q^{new}(s_t, a_t) \leftarrow (1 - lpha) \cdot \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_a Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}}
ight)}$$

Anwendungen

Hyperparameterwahl bei KNN

- Anzahl der Hidden-Layer
- Initialwerte der Gewichte

- Aktivierungsfunktionen
- Lernrate

Anzahl der Epochen

Intelligent Transportation Systems

E-Commerce

Dialog Systems, chatbots

NLU: natural language understanding NLG: natural language generation

hat Zustände

- hat Zustände
- hat Aktionen
- erhält Belohnung von der Umgebung

Fragen?