 20250408 WIN2 Statistik
$m_2 : VAR(x) : \frac{\sum_{i=1}^{n}(x_i-x_i)^2}{\sum_{i=1}^{n}(x_i-x_i)^2}$
X Xi
Die geometrische Interpretation der buiouz ist die Summe der Abstackte (xi-x) in anadrat (immer positiv) geteilt durch ni.
Abstable (xi-x) in Chadrot (Immer positiv) getelt durch n.
Was madren wir, wenn mehr als eine Variable analysie
WIRD? 2. VARIABLEN YA
KOVARIANZ.
$ x_{0} = \sum_{i=1}^{\infty} (x_{i} - x_{i})(y_{i} - y_{i}) $ $ x_{i} = \sum_{i=1}^{\infty} (x_{i} - x_{i})(y_{i} - y_{i}) $
y
De geometrische Interpretation x xi
der Kovanianz ist die Summe der
Vieredlen zum Mittelwert. Kann positiv oder negativ
Die geometrische Interpretation der Kovanianz ist die Summe der Vierechen zum Mittelwert. Kann positiv oder negativ sein (ohne Quadrat), geteilt durch n-1.
Kov(xx) ~ a -> Die Meistern Prohite sind
tie kovanianz hat einen Symbol. KOV(X,Y) ~0 -> Die Meisten Puhte sind symmetrisch verteilt um den
Wiffelwert.
Kov(x, ĭ) >> 0 , Die Meisten Punkte sind « 0 asymmetrisch um den Mittelmei
(x,1) << 0 asymmetrisch um den Mittelmi
m, Leilt.

Beispiel. Gegeben wird ein kennzahlensystem mit zwei kennzahlen [key Performance halicators: kpi]: DURCHLAUFZEIT und &/Strick. Biffe ermiffeln Siedie tovarianz. DLZ (Tage) = /Strick kw, 613 230

To varian 2.

DLZ (Tage)
$$\frac{1}{3}$$
 (Tage) $\frac{1}{3}$ (Yinck)

KW2 $\frac{4^{1}}{7}$ 180 $\frac{1}{3}$ KW2 $\frac{17}{3}$ 170

KW3 $\frac{3^{1}}{2}$ 170

KW4 $\frac{3^{1}}{8}$ 175 $\frac{1}{3}$ $\frac{1}{3$

$$\overline{DLZ} = \frac{6^{1}3 + 4^{1}1 + 3^{1}2 + 3^{1}8}{4} = 4^{1}5 \cdot \frac{1}{5 + \pi ch} = \frac{230 + 180 + 170 + 175}{4} = 188^{1}75$$

$$| S = \frac{1}{5 + \pi ch} = \frac{230 + 180 + 170 + 175}{4} = 188^{1}75 + \frac{1}{5 + \pi ch} = \frac{1}{5$$

• Die
$$\left[\text{Kov} \left[x, Y \right] = \text{Kov} \left[Y, X \right] \right]$$

$$\left[\text{Kov} \left[x, Y \right] = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{n-1} = \frac{\sum_{i=1}^{n} (y_i - \overline{y}) (x_i - \overline{x})}{n-1} = \text{Kov} \left[Y, X \right]$$

Die Novamianz bigeltiv.

MEHR ALS 2 VARIABLEN — KOVARIANZMATRIX

† TO 3 VARIABLEN

* [VAR(X) KOV[X,Y] VOV[X,Z]

A = KOV. MATRIX[X,Y,Z] = Y KOV[Y,X] VAR(Y) KOV[Y,Z]

Z[KOV[Z,X] VOV[Z,Y] VAR(Z)

 $A = Kov \cdot MATRix[x_1, x_2] = Vov[x_1, x_2] =$

Beispiel. Jegeben wird ein Kennzahensystem mit 3 KPIs.

DURCHLAUFZEIT, & Qualitat. Bitte die Wovanianzmatinx

vom Jys	stan ermitteln.		
	DURCHLAUFZEIT	======================================	QUALITAT
KWI	613	320	3200
kw2	417	180	4700
KW3	3 ¹ 2	170	2100
Kwy	318	179	1500

Im Management Systems haben Kennzahlen idk unterschied liche 5kalas. In dem Beispiel die Werte der DLZ sind zw. [3,8 & 613] und die Weste des avalitat zw. [1500 & 3200].

Diese Nortreder KPIS macht die KovaRIANZRECHNUNG unbrauchbar weil die Abstande in der X-Dimension eine andere Bedeutung als die Abstande in der Y. Dimension haben.

Wirsind also gezwungen VOR der KOVARIANZ. Rechnung zu NORMIEREN.

$$X \left\{ \begin{array}{c} x_{1}, x_{2}, x_{3}, \dots, x_{n} \end{array} \right\} \longrightarrow X \left\{ \begin{array}{c} x_{1} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{2} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array} \right\} \left\{ \begin{array}{c} x_{n} - \overline{x} \\ \overline{\sigma_{x}} \end{array}$$

Durch die Normieung schaffen wir Homogeneität bzw. Vergleichbankeit.

אט אא טאַ	olom wimthern.	•	•	
	DURCHLAUFZEIT	<u></u> 1	QUALITAT	Schriff 1. NORMIE AUNC
Kwı	613	320	3200	JOHN TT 1. WORNIE FORD
kw2	417	180	4700	
KW3	3 ¹ 2	170	2100	
KWY	3 ¹ 8	179	1500	

Durchlarfzeit*
$$\frac{1}{5000}$$
 Quaritat*

 $kw_1 \times 1 = \frac{6^{1}3 - 4^{1}5}{4^{1}46} = 4^{1}5411$
 $y^* = \frac{320 - 188^{1}75}{66^{1}79} = 496$
 $z^* = \frac{3200 - 2875}{1217^{1}3} = 0^{1}267$
 $w^2 = 0^{1}171$
 $-0^{1}131$
 $1^{1}5$
 $w^3 = -1^{1}13$
 $-0^{1}281$
 $-0^{1}637$
 $w^4 = -0^{1}637$
 $w^4 = -0^$

$$\frac{320 + 180 + 170 + 179}{4} = 188'75$$

$$\frac{320 - 188'15}{4}(180 - 188'15) + (170 - 188'15) + (170 - 188'15)^{2}$$