2010-2011 学年第二学期工科 高等数学 (2-2) 期中试题

一、填空题 $(5 \times 5 \% = 25 \%)$

1.
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2) e^{-(x+y)} = \underline{0}$$
.

2. 如果直线
$$L_1$$
:
$$\begin{cases} x+2y-z-7=0 \\ 2x-y-z+7=0 \end{cases}$$
 与直线 L_2 :
$$\begin{cases} x=3t-1 \\ y=-kt & \text{垂直,则} \ k=\underline{34} \\ z=5t+2 \end{cases}$$

- 3. 函数 $u = xy^2z$ 在点 P(1, -1, 2) 处沿 $2\overrightarrow{i} 4\overrightarrow{j} + \overrightarrow{k}$ 方向的方向导数值最大,最大的方 向导数值为 $\sqrt{21}$
 - 4. f(x, y) 为连续函数,且 $f(x, y) = xy + \iint_{\Sigma} f(u, v) du dv$,其中 $D \oplus y = 0$, $y = x^2$,

$$x = 1$$
 围成,则 $f(x, y) = xy + \frac{1}{8}$.

5.
$$\int_0^1 dx \int_x^1 e^{-y^2} dy = \frac{1}{2} (1 - \frac{1}{e})$$

二、选择题 $(5 \times 5 \text{分} = 25 \text{分})$

2. 函数 f(u,v)有连续的偏导数, $f(x,x^2) = x^4 + 2x^3 + x$, $f_1'(x,x^2) = 2x^2 - 2x + 1$, 则

$$f_2'(x, x^2) = (A)$$

- (A) $2x^2 + 2x + 1$; (B) $x^2 + 2x + 1$; (C) $2x^2 + 2x + 2$; (D) $2x^2 + x + 1$.

- 3. 下列关于函数 z = f(x, y) 在 $P_0(x_0, y_0)$ 处的性质描述正确的是(D)
- (A) $f \in P_0$ 处连续是函数 f 在该点偏导数存在的必要条件;
- (B) $f \in P_0$ 处可微分是函数 f 在该点偏导数存在的必要条件;
- (C) 如果 f 在 P_0 处的两个偏导数为零,则函数 f 在该点可以取得极值;
- (D) 如果 f 在 P_0 处两个偏导数连续,则函数 f 在该点沿任何方向的方向导数都存在.

4. 曲线
$$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \ \text{在对应} t = 0$$
处的切线与z轴
$$z = 2e^t$$

正向夹角的正弦是(C

(A)
$$\frac{\sqrt{3}}{2}$$
; (B) $\frac{2\sqrt{3}}{3}$; (C) $\frac{\sqrt{3}}{3}$; (D) $\frac{\sqrt{3}}{6}$.

5. 设函数
$$f(x,y) = 3xy - x^3 - y^3$$
 , 则 $f(x,y)$ (B)

- (A) 在(0,0)点有极小值; (B) 在(1,1)点有极大值;
- (C) 在(1,2)点有极小值; (D) 没有极值.

三、计算题 (6+7+7+8+7+7+8=50 分)

1. 直线
$$L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$
 , $L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 求过 L_1 且与 L_2 平行的平面

 Π 的方程,并求 L, 到平面 Π 的距离. (6 分)

解1:
$$L_1: \begin{cases} y-2=0 \\ x+z-4=0 \end{cases}$$
, 过 L_1 的平面東方程为

$$y-2+\lambda(x+z-4)=0$$
, $\mathbb{P} \lambda x+y+\lambda z-4\lambda-2=0$,

其法向量为 $\vec{n} = \{\lambda, 1, \lambda\}$, $\vec{s}_2 = \{2, 1, 1\}$

$$\therefore \vec{n} \perp \vec{s}_2 \quad \therefore 2\lambda + 1 + \lambda = 3\lambda + 1 = 0, \quad \lambda = -\frac{1}{3}.$$

所求平面 Π 的方程为: x-3y+z+2=0 取 L_2 上一点(-2,1,0),

取
$$L_2$$
 上一点 $(-2,1,0)$

$$d = \frac{\left| -2 - 3 + 0 + 2 \right|}{\sqrt{1 + 9 + 1}} = \frac{3}{\sqrt{11}} = \frac{3}{11}\sqrt{11}$$

解 2:
$$\vec{s_1} = \{1, 0, -1\}, \vec{s_1} = \{2, 1, 1\}, 则平面 \Pi$$
的法向量为

$$\vec{n} = \vec{s_1} \times \vec{s_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -1 \\ 2 & 1 & 1 \end{vmatrix} = \{1, -3, 1\}. 取 L_1 上一点 (1, 2, 3), 所求平面 Π 的方程为:$$

$$(x-1)-3(y-2)+(z-3)=0$$
, $y-3y+z+2=0$. $y-3y=0$.

2. 计算二重积分
$$\iint_D (x+y+1)^2 dxdy$$
, 其中 D 为 $x^2 + y^2 \le 1$. (7 分)

$$\Re \iint_{D} (x+y+1)^{2} dxdy = \iint_{D} [(x^{2}+y^{2})+1+2x+2y+2xy] dxdy
= \iint_{D} (x^{2}+y^{2}) dxdy + \iint_{D} dxdy + 2\iint_{D} x dxdy + 2\iint_{D} y(1+x) dxdy$$

$$(:D)$$
 关于 y 轴对称, $f(x,y) = x$ 关于 x 为奇函数, $\iint_D x dx dy = 0$,

$$\therefore D$$
 关于 x 轴对称, $f(x,y) = y(1+x)$ 关于 y 为奇函数, $\therefore \iint_D y(1+x) dx dy = 0$)

$$= \iint_{D} (x^{2} + y^{2}) dx dy + \pi + 0 + 0 \qquad (\Leftrightarrow x = r \cos \theta, y = r \sin \theta,$$

 $D:0 \le \theta \le 2\pi, 0 \le r \le 1$

$$= \int_0^{2\pi} d\theta \int_0^1 r^2 \cdot r dr + \pi = \frac{3}{2} \pi$$

3. 求空间区域 Ω : $0 \le x \le 1$, $0 \le y \le x$, $x + y \le z \le e^{x+y}$ 的体积 V. (7 分)

$$\mathbf{\mathcal{H}} \quad V = \iiint_{\Omega} dx dy dz = \int_{0}^{1} dx \int_{0}^{x} dy \int_{x+y}^{e^{x+y}} dz = \int_{0}^{1} dx \int_{0}^{x} [e^{x+y} - (x+y)] dy$$

$$= \int_{0}^{1} \left[e^{x+y} - (xy + \frac{y^{2}}{2}) \right]_{y=0}^{y=x} dx = \int_{0}^{1} (e^{2x} - \frac{3x^{2}}{2} - e^{x}) dx = \frac{e^{2}}{2} - e^{x}.$$

4. 设z = z(x, y) 是由f(x-z, y-z) = 0确定的隐函数,其中f有二阶连续偏导数,且

$$f_1' + f_2' \neq 0$$
, $\stackrel{?}{x} \frac{\partial^2 z}{\partial x^2}$. (8 $\stackrel{?}{x}$)

 \mathbf{M} 对方程 f(x-z,y-z)=0 两边关于x求偏导数,得

$$f_{1}' \cdot (1 - \frac{\partial z}{\partial x}) + f_{2}' \cdot (-\frac{\partial z}{\partial x}) = 0, \quad \text{II} \quad f_{1}' - (f_{1}' + f_{2}') \frac{\partial z}{\partial x} = 0 \quad \text{II}$$

$$\therefore \frac{\partial z}{\partial x} = \frac{f_{1}'}{f_{1}' + f_{2}'} \quad \text{(2)} \quad ,$$

对(1)式两边再关于x求偏导数,得

$$f_{11}'' \cdot (1 - \frac{\partial z}{\partial x}) + f_{12}'' \cdot (-\frac{\partial z}{\partial x}) - [f_{11}'' \cdot (1 - \frac{\partial z}{\partial x}) + f_{12}'' \cdot (-\frac{\partial z}{\partial x}) + f_{12}'' \cdot (-\frac{\partial z}{\partial x}) + f_{12}'' \cdot (1 - \frac{\partial z}{\partial x}) + f_{22}'' \cdot (-\frac{\partial z}{\partial x})] \frac{\partial z}{\partial x} - (f_1' + f_2') \frac{\partial^2 z}{\partial x^2} = 0$$

$$\therefore \frac{\partial^2 z}{\partial x^2} = \frac{f_{11}'' \cdot (f_2')^2 - 2f_{12}'' \cdot f_1' \cdot f_2' + f_{22}'' \cdot (f_1')^2}{(f_1' + f_2')^3}.$$

$$I = \iiint_{\Omega} (x^2 + y^2) dx dy dz . \quad (7 \%)$$

解 旋转曲面的方程为: $x^2 + y^2 = 2z$,

利用柱面坐标变换: $x = r\cos\theta$, $y = r\sin\theta$, z = z, 则

$$\Omega: 0 \le \theta \le 2\pi$$
, $0 \le r \le 4$, $\frac{r^2}{2} \le z \le 8$

$$I = \iiint_{\Omega} (x^2 + y^2) dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{4} dr \int_{\frac{r^2}{2}}^{8} r^2 \cdot r dz = 2\pi \int_{0}^{4} r^3 (8 - \frac{r^2}{2}) dr = \frac{1024}{3}\pi$$

6. 求极限
$$\lim_{t\to 0^+} \frac{1}{t^6} \iiint_{x^2+y^2+z^2 \le t^2} \sin(x^2+y^2+z^2)^{\frac{3}{2}} dx dy dz$$
 (7分)

解 利用球面坐标变换: $x = r \sin \varphi \cos \theta$, $y = r \sin \varphi \sin \theta$, $z = r \cos \varphi$,

$$\iiint_{x^2+y^2+z^2 \le t^2} \sin(x^2 + y^2 + z^2)^{\frac{3}{2}} dx dy dz = \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^t \sin r^3 \cdot r^2 \sin \phi \, dr$$
$$= 4\pi \int_0^t r^2 \sin r^3 \, dr$$

$$\therefore \lim_{t \to 0^{+}} \frac{1}{t^{-6}} \iiint_{x^{2} + y^{2} + z^{2} \le t^{2}} \sin(x^{2} + y^{2} + z^{2})^{\frac{3}{2}} dx dy dz = \lim_{t \to 0^{+}} \frac{4\pi \int_{0}^{t} r^{2} \sin r^{3} dr}{t^{-6}}$$

(利用罗比达法则) =
$$\lim_{t\to 0^+} \frac{4\pi t^2 \sin t^3}{6t^5} = \frac{2\pi}{3} \lim_{t\to 0^+} \frac{\sin t^3}{t^3} = \frac{2\pi}{3}$$
.

7. 在曲面 Σ : $(x^2y + y^2z + z^2x)^2 + (x - y + z) = 0$ 上的点(0,0,0)处的切平面 Π 内求一点

P,使P到(2,1,2)和(-3,1,-2)的距离的平方和最小. (8分)

解 曲面 Σ 在(0.0.0)处的法向量为

$$\vec{n} = \{2(x^2y + y^2z + z^2x)(2xy + z^2) + 1, 2(x^2y + y^2z + z^2x)(x^2 + 2yz) - 1,$$

$$2(x^2y + y^2z + z^2x)(y^2 + 2zx) + 1\}\Big|_{(0,0,0)} = \{1, -1, 1\}$$

切平面方程为 $1\cdot(x-0)-(y-0)+1\cdot(z-0)=0$, 即 x-y+z=0.

假设所求点的坐标 P(x, y, z), $d^2 = (x-2)^2 + (y-1)^2 + (z-2)^2 + (x+3)^2 + (y-1)^2 + (z+2)^2$

$$\begin{cases} \frac{\partial L}{\partial x} = 2(x-2) + 2(x+3) + \lambda = 0, \end{cases}$$

$$\frac{\partial L}{\partial y} = 2(y-1) + 2(y-1) - \lambda = 0,$$

$$\frac{\partial L}{\partial z} = 2(z-2) + 2(z+2) + \lambda = 0,$$

$$\frac{\partial L}{\partial \lambda} = x - y + z = 0,$$

$$(0,\frac{1}{2},\frac{1}{2}).$$

解得
$$x = 0$$
, $y = \frac{1}{2}$, $z = \frac{1}{2}$ 是唯一驻点, 所求点即为