东北大学2017-2018学年第二学期大学物理期末试卷B

选择题

1、	拍现象是由怎样的两个简谐振动合成?()						
	A.	同方向、同频率的两个简谐振动			В.	同方向、频率很大	单频差甚小的两个简谐振动
	C.	振动方向互相垂直,同频率的两	个简	谐振动	D.	振动方向互相垂直。 振动合成	,频率成整倍数的两个简谐
2、	一质点作简谐振动,其速度随时间变化的规律为 $v=-\omega A cos \omega t$,那么质点的振动方程为()						
	A.	$x=A\sin\omega t$			В.	$x=A\cos\omega t$	
	C.	$x\!\!=\!\!A\sin(\omega t\!+\!\pi)$			D.	$x=A\cos(\omega t+\pi)$	
3、	一质点沿x轴作简谐振动,其振动方程用余弦函数表示。如果r=0时,该质点处于平衡位置且向x轴正方向运动,那么它的振动初位相为多少?()						
	A.	0			В.	$\frac{\pi}{2}$	
	C.	$-\frac{\pi}{2}$			D.	π	
4、	沿着与肥皂膜法线成45°角的方向观察,膜呈绿色。设入射光波长为500cm,肥皂膜的折射率为1.33,则肥皂膜的最薄厚度为() nm						
	Α.	111.0			В.	211.0	
	C.	87.0			D.	345.8	
5、	若将整个杨氏双缝装置置于水中,与在空气中的情况比较,干涉条纹将如何变化?()						
		条纹间距减小		明纹宽度增力			整个干涉条纹向上移动
	D.	整个干涉条纹向下移动	E.	条纹不变			
6、	波长为 $500~\mathrm{mm}$ 的单色光垂直晶射到宽为 $0.25~\mathrm{mm}$ 的单缝上,单缝右面置一凸透镜以观测衍射条纹,如果幕上中央条纹两旁第三个暗条纹之间的距离为 $3~\mathrm{mm}$,则其透镜的焦距是多少 mm ()						
	A.	300			В.	250	
	C.	123			D.	184	
7、	支长为 $500~\mathrm{nm}$ 和520nm的光。垂直照射到光栅常数为0.002cm的衍射光栅上,在光栅后面用焦距为2m的透镜把光纤会聚于屏幕上,求这两种光线的第一级光谱线之间的距离为()						
	Α.	$1\times10^{-3}\mathrm{m}$			В.	$2 \times 10^{-3}\mathrm{m}$	
	C.	$3 \times 10^{-3} \mathrm{m}$			D.	$4\times10^{-3}\mathrm{m}$	
8、	一方解石晶体的光轴平行于晶体表面。现将其分割成两块.但不改变它们的相对位置,现用一束自然光垂直入射在第一块晶体的表面上。若将第二块以入射光线为轴旋转90°后,问这束光在第一块晶体片中的情况如何?这束光通过第二块晶体片后的情况如何?以下选项中正确回答上述两个问题的是()						
	A.	仍为一束光 , 分为两束光			В.	分为两束光;分为[四束光
	C.	分为四束光;仍为自然光			D.	仍为白然光;仍为一	束光
9、	HBr的远红外光谱是一系列见各位16.90cm ⁻¹ 的谱线,则HBr的转动衡量约为()						
	A.	$3.30 \times 10^{-41} \text{gcm}^2$	B.	3.30×10^{-38}	gcm	C.	$6.60 \times 10^{-50} { m gcm}^2$
	D.	$6.60\times10^{-45}\mathrm{gcm}^2$	E.	3.30×10^{-4}	² gcm	?	
10、	下列哪项能激发特征光谱或X射线光谱()						
	A.	电子轰击	В.	x射线辐射		C.	荷电介子冲击
	D.	质子轰击	E.	中子吸收			

- 11、宇宙飞船相对于地面以速度v作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过△t(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为______(c表示真空中光速)
- 12、两个同方向同频率的简谐振动。其合振动的振幅为20 cm。与第一个简谐振动的位相差为φ-φ₁=x/6,若第一个简谐振动的振动幅为10 $\sqrt{3}$ cm,则第二个简谐振动的振幅为cm。第一,二两个简谐振动的位相差φ₁-φ₂=为______
- 13、图为沿x轴负方向传播的平面简谐波在t=0时刻的波形,若波动方程以余弦函数表示。则o点处质点振动的初位相为

- 14、一平面简谐波的波动方程为y=Acos2π(vt-x/ λ).在1/v时刻 , x_1 =3 λ /4与与 x_2 = λ /4二点处介质质点速度之比是____
- 16、一个余弦模波以速度v沿x轴正向传播,t时刻波形曲线如图所示,试分别在图中标出A,B, C各质点在该时刻的运动方向。

- 18、一单色平行光束垂直照射在宽度为1.0mm的单缝上,在缝后放一焦距为 2.0m的会聚透镜,已知位于透镜焦平面处的 屏幕上的中央明条改宽度为2.0mm,则入射光波长的为
- 19、如图所示,一束自然光入射到折射率分别为n₁和n₂的两种介质的交界面上。发生反射和折射。已知反射光是完全偏振 光。那么折射角y的值为______
- 20、原子中某电子的主量子数n=2.它可使具有的状态数最多为______个。

计算题

21、如图所示,A,B为在重直于OXY平面的方向上作振动的相干波源,振幅相同,相距 $\frac{\lambda}{2}$,在以下两种情况下: A. B波源的初相相同;A. B波源的初相差为x。试求在a.b.c.d.e各方向上,在距波源很远的地方合成波的强度l与单独一个波源所形成的强度l。之比l/l。

22、波长为 λ 的平行单色光,重直入射到缝宽为d的单缝上,在缝后凸透镜的焦平面处有一观察屏如图所示。若在缝前盖上两块偏振片 P_1 和 P_2 两块偏振片各遮盖一半缝宽,而且, P_1 的偏振化方向与缝平行,而 P_2 的偏振化方向与缝垂直。试问:屏上的衍射条纹有问变化? (透镜的焦距为f)

23、波长为 λ 的两束平行相干单色光束分别以入射角heta和 φ 入射到屏上。如图所示。试求屏上干涉条纹间的距离。

