ECG-Based Biometric System using TinyML: Implementation and Performance Evaluation on ESP32

ICAECCT'23

Hatem Zehir Toufik Hafs Sara Daas

October 25th - 26th, 2023

Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA)

Outline

- 1. Introduction
- 2. Motivation
- 3. State of the Art
- 4. Proposed Method
- 5. Experiments and Results
- 6. Conclusion

Introduction

Introduction

What is biometrics?

Biometrics are unique physical or behavioral characteristics that can be used to identify an individual. The term "biometrics" comes from the Greek words "bios," meaning life, and "metron," meaning measure.

- · Heart is the most important part of the human body.
- It is also an uninterrupted data source.

Introduction

Schematic diagram of normal sinus rhythm for a human heart as seen on ECG

- P-Wave: Its frequency spans from 10 to 15 Hz, while its duration varies between 0.06 and 0.12 seconds.
- QRS-Complex: Its amplitude varies between 0.5 and 1 mV, and its duration spans from 80 to 120 ms.
- ST-Segment: Can be anywhere from 0.1 to 0.5 millivolts in amplitude, and it can last anywhere from 120 to 180 ms.

Motivation

Motivation

- To explore the use of **electrocardiogram (ECG)** signals as a biometric modality for personal identification.
- To exploit the recent advances in tiny machine learning (TinyML) techniques to deploy and evaluate an ECG biometric system on a low-power device such as the ESP32 microcontroller.
- To demonstrate the feasibility and performance of real-time biometric authentication using deep learning and Tensor-Flow Lite on an embedded system.

State of the Art

State of the Art

Authors	Databases	Approach	Results
Azam et al.	Private	Extraction of features using DWT + MLP	96.40%
Yuniarti et al.	MIT-BIH Arrhythmia	Extraction of QRS waveform features + 1D-CNN	92.00% (F1-Score)
Li et al.	Five public datasets	Two CNN models	94.30% (Average)
Zehir et al.	MIT-BIH Arrhythmia	Frequency domain features + SVM	97.00%

Proposed System Architecture

Database

MIT-BIH Arrhythmia Database

- It is a publicly available ECG database from the PhysioNet repository.
- The database contains ECG recordings from a total of 47 subjects.
- Each subject has one recording lasting for 30 minutes.
- Each signal is digitized at 360 samples per second.
- We only used data from 10 subjects.

Pre-processing

The Pre-processing steps of the proposed system

- · More than 26000 ORS complexes were obtained from 10 subjects.
- Those samples are more than enough to train the deep learning model.

QRS complex is the main spike seen in the ECG.

Deep Learning Model

Proposed Architecture of Our Deep Learning Model

Deployment On The Esp32 Board

- The trained deep learning model is converted to Tensor-Flow Lite (TFLite) format, which is a lighter version of the TensorFlow library designed for devices with low computational power.
- The TFI ite model is further transformed into an Arduino library compatible with the ESP32 microcontroller using the Edge Impulse Framework, which supports the development of TinyML models for embedded systems.

Experiments and Results

Experiments

- 10 subjects from the MIT-BIH Arrhythmia Database
- Single Lead Only
- Classification of ORS Complexes

Accuracy as a Metric:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
(1)

ICAECCT'23

Training progress of our system, showing training accuracy alongside validation accuracy

- 70% training, 10% validation, and 20% test.
- Epochs: 100
 - Mini-hatch size: 150
- Learning rate: 0.001
- Optimizer: ADAM

ICAECCT'23

- The model was successfully deployed on the ESP32 board.
- The on-device performance of the model is evaluated in terms of inference time, RAM usage, and flash usage.

Processing Time	RAM Usage	Flash Usage
3 ms	1.3 k	12 k

Results

Our System versus State-of-the-Art ECG Biometric Systems

Authors	Database used	Accuracy achieved
Zhang et al.	MIT-BIH Arrhythmia	91.31%
Zihlmann	MIT-BIH Arrhythmia	91.15%
Zehir et al.	MIT-BIH Arrhythmia	95.31%
Our method	MIT-BIH Arrhythmia	96.71%

- Superior accuracy compared to state-of-the-art models.
- Significant implications for decision-making processes in healthcare.
- Enhance the efficiency and accuracy of medical processes.
- Critical in time-sensitive medical scenarios.

Conclusion

Conclusion

- · We proposed an approach based on ECG biometrics.
- Our approach obtains better results on the MIT-BIH Arrhythmia Database.
- · Only use QRS complexes.
- · For future works, model quantization.

THANK YOU

QUESTIONS?