(A Constituent college of Somaiya Vidyavihar University)

F.Y. Btech SEM-I APPLIED MATHEMATICS-I Practice Problems

Type-1: Hyperbolic Functions

- **1.** If $\tanh x = 2/3$, find the value of x and then $\cosh 2x$.
- **2.** Solve the equation for real values of x, $17 \cosh x + 18 \sinh x = 1$.
- **3.** If $6 \sinh x + 2 \cosh x + 7 = 0$, find $\tanh x$.
- **4.** If $cosh^{-1}a + cosh^{-1}b = cosh^{-1}x$, then prove that $a\sqrt{b^2 1} + b\sqrt{a^2 1} = \sqrt{x^2 1}$.
- **5.** If $\cosh^6 x = a \cosh 6x + b \cosh 4x + c \cosh 2x + d$, Prove that 25a 5b + 3c 4d = 0
- **6.** Prove that $\cosh^7 x = \frac{1}{64} [\cosh 7x + 7 \cosh 5x + 21 \cosh 3x + 35 \cosh x]$
- 7. If $\cos \alpha \cosh \beta = x/2$, $\sin \alpha \sinh \beta = y/2$, show that

(i)
$$\sec(\alpha - i\beta) + \sec(\alpha + i\beta) = \frac{4x}{x^2 + y^2}$$
 (ii) $\sec(\alpha - i\beta) - \sec(\alpha + i\beta) = \frac{-4iy}{x^2 + y^2}$

- **8.** Prove that $\operatorname{cosech} x + \operatorname{coth} x = \operatorname{coth} \frac{x}{2}$
- **9.** Prove that $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$
- **10.** Prove that $\left(\frac{\cosh x + \sinh x}{\cosh x \sinh x}\right)^n = \cosh 2nx + \sinh 2nx$
- **11.** If $\log \tan x = y$, prove that $\cosh ny = \frac{1}{2} [tan^n x + cot^n x]$ and $\sinh(n+1)y + \sinh(n-1)y = 2 \sinh ny \ cosec \ 2x$
- **12.** Prove that $\frac{1}{1 \frac{1}{1 \frac{1}{1 + sinh^2 x}}} = -sinh^2 x$
- **13**. If $\cosh u = \sec \theta$, *prove that*

(i)
$$\sinh u = \tan \theta$$

(ii)
$$\tanh u = \sin \theta$$

(iii)
$$u = \log \left[\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right]$$

Type -2: Separation into real and Imaginary parts

- **1.** Separate into real and imaginary parts.
 - (i) $\cosh(x+iy)$
- (ii) cos(x + iy)

(iii) coth(x + iy)

- (iv) $\operatorname{sech}(x+iy)$
- (v) $\coth i(x+iy)$
- (vi) tan(x + iy)

- (vii) $\cot(x+iy)$
- **2.** Separate into real and imaginary parts $tan^{-1}(\alpha + i\beta)$
- **3.** Separate into real and imaginary parts $sin^{-1}(e^{i\theta})$
- **4.** If A + i B = C tan(x + iy), prove that $tan2x = \frac{2CA}{C^2 A^2 B^2}$
- 5. If $\cos (\theta + i \Phi) = r(\cos \alpha + i \sin \alpha)$, prove that $r^2 = \frac{1}{2} [\cosh 2 \Phi + \cos 2 \theta] \& \tan \alpha = -\tan \theta \tanh \Phi$

(A Constituent college of Somaiya Vidyavihar University)

6. If
$$\cos(\alpha + i\beta) = x + iy$$
, Prove that $\frac{x^2}{\cosh^2\beta} + \frac{y^2}{\sinh^2\beta} = 1$, $\frac{x^2}{\cos^2\alpha} - \frac{y^2}{\sin^2\alpha} = 1$

7. If
$$sinh(a+ib) = x+iy$$
, prove that $x^2 cosech^2 a + y^2 sech^2 a = 1$ and $y^2 cosec^2 b - x^2 sec^2 b = 1$

8. If
$$\sin(x + iy) = \cos \alpha + i \sin \alpha$$
, Prove that

(i)
$$\cosh 2y - \cos 2x = 2$$

(ii)
$$y = \frac{1}{2} log \frac{cos(x-\alpha)}{cos(x+\alpha)}$$

(iii)
$$\sin \alpha = \pm \cos^2 x = \pm \sinh^2 y$$

9. If
$$\cosh(\theta + i \Phi) = e^{i \alpha}$$
, prove that $\sin^2 \alpha = \sin^4 \Phi = \sinh^4 \theta$

10. If
$$\cos(u+iv) = x+iy$$
 Prove that, $(1+x)^2 + y^2 = (\cosh v + \cos u)^2$ and $(1-x)^2 + y^2 = (\cosh v - \cos u)^2$

11. If
$$tan(\alpha + i\beta) = x + iy$$
, prove that $x^2 + y^2 + 2x \cot 2\alpha = 1$, $x^2 + y^2 - 2y \coth 2\beta + 1 = 0$

12. If
$$\tan\left(\frac{\pi}{3} + i \alpha\right) = x + i y$$
, prove that, $x^2 + y^2 - \frac{2x}{\sqrt{3}} - 1 = 0$

13. If
$$cot(\alpha + i\beta) = x + iy$$
, prove that $x^2 + y^2 - 2x \cot 2\alpha = 1$, $x^2 + y^2 + 2y \coth 2\beta + 1 = 0$

14. If
$$tanh\left(\alpha + \frac{i\pi}{6}\right) = x + iy$$
, prove that, $x^2 + y^2 + \frac{2y}{\sqrt{3}} = 1$

15. If
$$coth(\alpha + i\pi/8) = x + iy$$
, prove that $x^2 + y^2 + 2y = 1$

16. If
$$sinh(x + i y) = e^{i \pi/3}$$
, prove that

(i)
$$3\cos^2 y - \sin^2 y = 4\sin^2 y \cos^2 y$$

(ii)
$$3sinh^2x + cosh^2x = 4sinh^2xcosh^2x$$

17. If
$$x + i y = 2 \cosh \left(\alpha + \frac{i \pi}{3}\right)$$
, prove that $3x^2 - y^2 = 3$

18. If
$$cot(u + i v) = cosec(x + i y)$$
, prove that $cothy sinh 2v = cot x sin 2u$

19. Show that
$$tan\left(\frac{u+iv}{2}\right) = \frac{\sin u + i \sinh v}{\cos u + \cosh v}$$

20. If
$$\sin^{-1}(\alpha + i \beta) = x + i y$$
, show that $\sin^2 x$ and $\cos h^2 y$ are the roots of the equation $\lambda^2 - (\alpha^2 + \beta^2 + 1)\lambda + \alpha^2 = 0$

Type – 3: Inverse hyperbolic functions

1. Prove that (i)
$$tanh(log\sqrt{3}) = 1/2$$

(ii)
$$\tanh(\log \sqrt{5}) = 2/3$$
.

2. Prove that (i)
$$cosech^{-1}x = log\left[\frac{1+\sqrt{1+x^2}}{x}\right]$$
 (ii) $tanh^{-1}x = cosh^{-1}\frac{1}{\sqrt{1-x^2}}$

(ii)
$$tanh^{-1}x = cosh^{-1}\frac{1}{\sqrt{1-x^2}}$$

(iii)
$$coth^{-1}x = \frac{1}{2}log\left(\frac{x+1}{x-1}\right)$$

3. Prove that (i)
$$tanh^{-1}\cos\theta = cosh^{-1}cosec\ \theta$$
 (ii) $sinh^{-1}tan\theta = log(\sec\theta + \tan\theta)$

(i)
$$sin^{-1}(3i/4)$$

(ii)
$$cosh^{-1}(i x)$$

(iii)
$$cos^{-1}\left(\frac{16i}{63}\right)$$

5. Prove that
$$cosh^{-1}(3i/4) = log 2 + i \pi/2$$

(A Constituent college of Somaiya Vidyavihar University)

- **6**. Prove that $cos^{-1}(\sec \theta) = i \log(\sec \theta + \tan \theta)$
- **7.** Prove that $\cos^{-1} i \ x = \frac{\pi}{2} i \ \log(x + \sqrt{x^2 + 1})$
- **8.** If $\tan z = \frac{i}{2}(1-i)$, prove that $z = \frac{1}{2}tan^{-1}2 + \frac{i}{4}\log 5$.
- 9. If $sinh^{-1}(x+i\ y)+sinh^{-1}(x-i\ y)=sinh^{-1}a$, prove that\ $2(x^2+y^2)\sqrt{a^2+1}=a^2-2x^2+2y^2$
- **10.** Find all the roots of the equation $\cos z = 2$.
- **11.** If $\cos\left(\frac{\pi}{4}+ia\right)$. $\cos h\left(b+\frac{i\pi}{4}\right)=1$ where a,b are real, prove that $2b=\log\left(2+\sqrt{3}\right)$
- **12.** If tan(x + i y) = i and x, y are real, prove that x is indeterminate and y is infinite.
- **13**. If $tan\left(\frac{\pi}{4} + i v\right) = re^{i \theta}$, show that,
 - (i) r = 1.

- (ii) $tan\theta = \sinh 2v$.
- (iii) $\tanh v = \tan \frac{\theta}{2}$

Type -4 Logarithmic functions

- **1.** Express the following in the form of a + ib.
 - (i) $\log(-i)$

- (ii) log(1+i)
- 2. Find the general value of $Log(1+i\sqrt{3}) + Log(1-i\sqrt{3})$
- **3.** Prove that $\log (1 + i \tan \alpha) = \log \sec \alpha + i\alpha$
- 4. Prove that $\log (1 + e^{i \theta}) = \log[2 \cos(\theta/2)] + i \theta/2$
- **5**. Prove that $\log\left(\frac{1}{1+e^{i\,\theta}}\right) = \log\left(\frac{1}{2}\sec\frac{\theta}{2}\right) i\frac{\theta}{2}$
- **6.** Prove that $\log(e^{i\alpha} + e^{i\beta}) = \log\left\{2\cos\left(\frac{\alpha-\beta}{2}\right)\right\} + i\frac{(\alpha+\beta)}{2}$
- 7. Prove that $\log \cos(x + i y) = \frac{1}{2} \log \left(\frac{\cosh 2y + \cos 2x}{2} \right) i \tan^{-1} (\tan x \tanh y)$
- 8. Prove that $\log \left\{ \frac{\cos(x-iy)}{\cos(x+iy)} \right\} = 2 i \tan^{-1}(\tan x \tanh y)$
- **9.** If $\log \sin(x + iy) = a + ib$, prove that
 - (i) $2e^{2a} = \cosh 2y \cos 2x$
- (ii) $\tan b = \cot x \tanh y$
- **10.** If $\log[\log(x+iy)] = p + iq$ prove that $y = x \tan[\tan(q) \cdot \log \sqrt{x^2 + y^2}]$.
- **11.** If $p \log(a + ib) = (x + iy) \log m$ prove that $\frac{y}{x} = \frac{2\tan^{-1}(b/a)}{\log(a^2 + b^2)}$
- **12.** Prove that $\log(x + iy) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\frac{y}{x}$ Hence, deduce that If $(a_1 + i b_1)(a_2 + ib_2) \dots (a_n + ib_n) = A + i B$ then
 - (i) $(a_1^2 + b_1^2)(a_2^2 + b_2^2)...(a_n^2 + b_n^2) = A^2 + B^2$

(A Constituent college of Somaiya Vidyavihar University)

(ii)
$$\tan^{-1}(b_1/a_1) + \tan^{-1}(b_2/a_2) + \dots + \tan^{-1}(b_n/a_n) = \tan^{-1}(B/A)$$
.

13. Show that
$$i \log \left(\frac{x-i}{x+i}\right) = \pi - 2 \tan^{-1} x$$

14. Prove that
$$Log\left[\frac{(a-b)+i(a+b)}{(a+b)+i(a-b)}\right] = i\left(2n \ \pi + tan^{-1} \frac{2 \ ab}{a^2-b^2}\right)$$

15. Prove that
$$sin log_e(i^{-i}) = 1$$

16. Prove that
$$\sin\left[i\log\left(\frac{a-ib}{a+ib}\right)\right] = \frac{2 ab}{a^2+b^2}$$

17. Separate into real and imaginary part
$$\log_{(1-i)}(1+i)$$

18. Show that
$$\log_i i = \frac{4n+1}{4m+1}$$
 when n, m are integers.