ALA, Blatt 1

10. April 2013

1.

$$\frac{2}{x+5} \ge 3$$

Für x > -2:

$$\frac{2}{x+5} \ge 3 \leftrightarrow 2 \ge 3 \cdot (x+5)$$

$$\leftrightarrow 2 \ge 3x+15$$

$$\leftrightarrow -13 \ge 3x$$

$$\leftrightarrow \frac{-13}{3} \ge x$$

Intervallschreibweise: $\left[-\frac{13}{3},\infty\right)$ Für x<-2:

$$\frac{2}{x+5} \ge 3 \leftrightarrow 2 \ge 3 \cdot (x+5)$$

$$\leftrightarrow 2 \le 3x+15$$

$$\leftrightarrow -13 \le 3x$$

$$\leftrightarrow \frac{-13}{3} \le x$$

Intervallschreibweise: $\left[-\frac{13}{3}, -\infty\right)$

Insgesamt erfüllen also folgende $x \in \mathbb{R} \setminus \{-5\}$ die Ungleichung:

$$[-\frac{13}{3},-\infty)\cup[-\frac{13}{3},\infty)$$

3. a)

$$|a_n - a| = \left| \frac{2n - 1}{n + 3} - 2 \right| = \left| \frac{2n - 1}{n + 3} - \frac{2 \cdot (n + 3)}{n + 3} \right| = \left| \frac{2n - 1}{n + 3} - \frac{2n + 6}{n + 3} \right| = \left| -\frac{7}{n + 3} \right| = \frac{7}{n + 3}$$

b) Es sei $\mathcal{E} > 0$ folgilich ergibt sich aus a:

$$|a_n - a| < \mathcal{E} \leftrightarrow \frac{7}{n+3} < \mathcal{E}$$

Durch Umformen ergibt sich daraus:

$$n+3 > \frac{7}{\mathcal{E}} \leftrightarrow n > \frac{7}{\mathcal{E}} - 3$$

Entsprechend kann man ein N wählen sodass $|a_n - a| < \mathcal{E}$ für $n \geq N$ wie in der Definition von Konvergenz gefordert.

c) Hier muss die oben berechnete Gleichung benutzt werden. Zum Beispiel so: $n>\frac{7}{\frac{1}{10}}-3$ daraus folgt n>67 folglich muss das kleinstmögliche N=68 sein (da n größer als 67).

${\cal E}$	N
$\frac{1}{10}$	68
$\frac{1}{100}$	698
$\frac{1}{100000}$	699998