

Steering system operating method for motor vehicle

Patent number: DE19751125
Publication date: 1998-09-24
Inventor: KRAEMER WOLFGANG DR (DE); HACKL MATTHIAS (DE)
Applicant: BOSCH GMBH ROBERT (DE)
Classification:
 - **international:** B62D6/00; B62D5/04
 - **european:** B60T8/00B10H; B62D6/00
Application number: DE19971051125 19971119
Priority number(s): DE19971051125 19971119; DE19971012164 19970322

Also published as:

US6226579 (B1)
 JP10315997 (A)

Abstract of DE19751125

The method involves operating a steering system with at least one controllable steering wheel, a positioning drive, and a superimposition gearing, whereby steering movements initiated through the driver of the vehicle and through the positioning drive are combined through the superimposition gearing to produce the movement of the steering wheel. At least two steering ratios are formed, a control signal is produced through a superimposition of the formed steering ratios, and the positioning drive is controlled through the produced control signal. The steering ratios are formed parallel and independently of each other.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 197 51 125 A 1

(51) Int. Cl. 6:
B 62 D 6/00
B 62 D 5/04

(66) Innere Priorität:
197 12 164. 0 22. 03. 97

(71) Anmelder:
Robert Bosch GmbH, 70469 Stuttgart, DE

(72) Erfinder:
Hackl, Matthias, 71665 Vaihingen, DE; Kraemer, Wolfgang, Dr., 70191 Stuttgart, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Verfahren und Vorrichtung zum Betrieb eines Lenksystems für ein Kraftfahrzeug

(57) Die Erfindung geht aus von einem Lenksystem für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad, einem Stellantrieb und einem Überlagerungsgetriebe. Durch das Überlagerungsgetriebe werden die durch den Fahrer des Fahrzeugs initiierte Lenkbewegung und die durch den Stellantrieb initiierte Bewegung zur Erzeugung der Lenkbewegung des lenkbaren Rades überlagert. Dabei werden wenigstens zwei Lenkanteile gebildet und ein Steuersignal zur Ansteuerung des Stellantriebs durch eine Überlagerung der gebildeten Lenkanteile erzeugt. Der Kern der Erfindung besteht darin, daß die Lenkanteile parallel und unabhängig voneinander gebildet werden. Die Erfindung ermöglicht, mehrere Funktionen zur Beeinflussung des Fahrverhaltens vorteilhafterweise zu kombinieren. Hierdurch wird eine Verbesserung der Fahrdynamik mittels Lenkeingriffe erzielt.

Beschreibung

Stand der Technik

Die Erfindung geht aus von einem Verfahren bzw. einer Vorrichtung zum Betrieb eines Lenksystems für ein Kraftfahrzeug mit den Merkmalen der Oberbegriffe der unabhängigen Ansprüche.

Ein solches Lenksystem ist aus der DE-OS 40 31 316 (entspricht der US 5, 205,371) bekannt und soll, soweit es zum Verständnis der vorliegenden Erfindung relevant ist, anhand der Fig. 1 und 2 erläutert werden. Bei einem solchen Lenksystem werden die vom Fahrer durch das Lenkrad 11 bzw. 21 aufgebrachten Lenkbewegungen, der durch den Sensor 28 erfaßte Lenkradwinkel δ_L , in dem Überlagerungsgetriebe 12 bzw. 22 mit den Bewegungen, dem Motorwinkel δ_M , des Stellantriebes 13 bzw. 23 überlagert. Die so entstandene Gesamtbewegung δ_L' wird über das Lenkgetriebe 14 bzw. das Lenkgestänge 16 an die lenkbar ausgelegten Räder 15a und 15b zur Einstellung des Lenkwinkels δ_V weitergeleitet. Hierbei kann der Stellantrieb 13 bzw. 23 als Elektromotor ausgelegt sein. Das Funktionsprinzip eines solchen Lenksystems besteht darin, daß der Motorwinkel δ_M zur Beeinflussung des dynamischen Verhaltens des Fahrzeugs abhängig von dem Lenkradwinkel δ_L und abhängig von Signalen S_m bestimmt wird, wobei der Lenkradwinkel δ_L über den Sensor 28 ermittelt wird und die Signale S_m die durch die Sensoren 26 erfaßten Fahrzeugbewegungen repräsentieren. Der Gesamtenkwinkel ergibt sich entsprechend dem Zusammenhang

$$\delta_L' = \delta_L / i_u + \delta_M$$

wobei das Übersetzungsverhältnis $i_u = 1$ oder $i_u \approx 1$ sein kann.

Die DE-OS 40 38 079 (entspricht der US 5,316,379) zeigt eine Überlagerung eines Lenkanteils (Kompensationslenkwinkel) am Vorderrad und/oder Hinterrad. Der Kompensationslenkwinkel, der abhängig von den Bremsdruckdifferenzen ist, kompensiert dabei die Gierbewegung bei sogenannten μ -Split-Bremsungen, das heißt bei Bremsungen, bei denen die Fahrbahnreibwerte auf der rechten und linken Fahrzeugseite signifikant verschieden sind.

Die nicht vorveröffentlichte DE 196 01 825.0 zeigt ein Lenksystem, das ähnlich zu der obenbeschriebenen DE-OS 40 31 316 (entspricht der US 5,205,371) ist. Hier werden zwei Lenkanteile zu einer Soll-Ausgangsdrehbewegung des Stellmotors überlagert, wobei ein erster Lenkanteil zur Lenkunterstützung dient, während ein zweiter Lenkanteil abhängig ist von der Gierwinkelgeschwindigkeit, der Querbeschleunigung und/oder der Fahrbaugangsgeschwindigkeit.

Die DE-A1-36 25 392 zeigt die Abgabe eines Korrektursignals an einen Stellmotor, der den Vorderradlenkwinkel beeinflußt.

Das Korrektursignal ist dabei abhängig von einer Soll-Ist-Giergeschwindigkeitsabweichung.

Die Kompensation von Seitenwindeinflüssen durch einen überlagerten Lenkwinkeleingriff zeigt die GB-PS 1,414,206.

Die Aufgabe der vorliegenden Erfindung besteht darin, verschiedene, ein Lenksystem betreffende Steuerungs- und Regelungsfunktionen in geeigneter Weise zu kombinieren.

Diese Aufgabe wird durch die Merkmalskombinationen der unabhängigen Ansprüche gelöst.

Vorteile der Erfindung

Wie schon erwähnt geht die Erfindung aus von einem Lenksystem für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad, einem Stellantrieb und einem Überlagerungsgetriebe. Durch das Überlagerungsgetriebe werden die durch den Fahrer des Fahrzeugs initiierte Lenkbewegung und die durch den Stellantrieb initiierte Bewegung zur Erzeugung der Lenkbewegung des lenkbaren Rades überlagert. Dabei werden wenigstens zwei Lenkanteile gebildet und ein Steuersignal zur Ansteuerung des Stellantriebs durch eine Überlagerung der gebildeten Lenkanteile erzeugt. Der Kern der Erfindung besteht darin, daß die Lenkanteile parallel und unabhängig voneinander gebildet werden.

Die Erfindung ermöglicht, mehrere Funktionen zur Beeinflussung des Fahrverhaltens vorteilhafterweise zu kombinieren. Hierdurch wird eine Verbesserung der Fahrdynamik mittels Lenkeingriffe erzielt.

Vorteilhafterweise werden die einzelnen Lenkanteile derart gebildet, daß jeder der Lenkanteile zur Erzielung eines vorgegebenen Steuerungs- oder Regelungsziels gebildet wird. Insbesondere ist vorgesehen, daß die Steuerungs- oder Regelungsziele für die einzelnen Lenkanteile unterschiedlich vorgegeben sind. Die Lenkanteile können dabei gleichzeitig oder bei Realisierung in einem Digitalprozessor in jedem Abtastschritt gebildet.

Es werden somit unterschiedliche Einzelfunktionen eines Lenkeingriffs miteinander kombiniert.

Durch die erfundsgemäßige Kombination der einzelnen Lenkanteile erzielt man alle Vorteile, die das Lenksystem ermöglicht und schöpft somit das gesamte durch Lenkeingriffe mögliche Potential aus. Die unterschiedlichen Einzelfunktionen ergänzen und unterstützen sich gegenseitig. Darüber hinaus ist durch die Erfindung eine leichte Applizierbarkeit gewährleistet, da die Einzelfunktionen nur einige fahrdynamische Fahrzeugeigenschaften beeinflussen und einzeln abgestimmt werden können. Es gibt daher wenig Zielkonflikte bei der Applikation, da die verschiedenen

Funktionen genügend Freiheitsgrade zur gezielten Beeinflussung einzelner Eigenschaften bzw. Erzielung bestimmter Vorteile bieten. Die Einzelfunktionen können nach Erfordernis oder Wunsch frei kombiniert werden.

In einer besonders vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß die Lenkanteile derart gebildet werden, daß

die Gierbewegung des Kraftfahrzeugs, insbesondere die Gierwinkelgeschwindigkeit, auf einen bestimmten Sollwert geregelt wird (Giergeschwindigkeitsregelung), und/oder

einer durch einen Bremsvorgang des Kraftfahrzeugs hervorgerufenen Gierbewegung entgegengewirkt wird (Giermomentkompensation), und/oder

Seitenwindeinflüssen entgegengewirkt wird (Seitenwindkompensation), und/oder

ein Lenkanteil abhängig von der Drehgeschwindigkeit des Lenkrades ist (Vorhaltenlenkung).

Dabei kann insbesondere vorgesehen sein, daß

bei der Giergeschwindigkeitsregelung die aktuelle Gierwinkelgeschwindigkeit erfaßt wird, der Sollwert wenigstens abhängig von der erfaßten Drehung des Lenkrades und der erfaßten Fahrgeschwindigkeit bestimmt wird und ein Lenkanteil abhängig von der Abweichung zwischen der aktuellen Gierwinkelgeschwindigkeit und dem Sollwert gebildet wird, und/

oder

bei der Giermomentkompensation ein Lenkanteil abhängig von den erfaßten Bremsdrücken, die an den Fahrzeughälfte auf unterschiedlichen Fahrzeugseiten anliegen, gebildet wird, und/oder

bei der Seitenwindkompensation ein Lenkanteil abhängig von an verschiedenen Stellen der Fahrzeugkarosserie erfaßten Luftdrücken gebildet wird.

Erfundengenäß kann auch vorgesehen sein, daß die gebildeten Lenkanteile unterschiedlich, insbesondere abhängig von dem momentan vorliegenden Fahrzustand, koordiniert, insbesondere gewichtet, werden. Dieser Ausgestaltung liegt die Idee zugrunde, einige oder alle vorhandenen Einzelfunktionen der Lenkung durch einen übergeordneten Koordinator zu beeinflussen.

Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.

Zeichnungen

10

15

20

30

35

40

45

50

55

60

65

erfaßten Fahrzeuggeschwindigkeiten (Fahrzeuggeschwindigkeit V_x , Gierrate ω , Querbeschleunigung usw.) einen weiteren, dynamischen Lenkanteil δ_{dyn} . Der Lenkanteil δ_{Komf} , der die Lenkhilfefunktion berücksichtigt, und der Lenkanteil δ_{dyn} , durch den die Fahrzeuggeschwindigkeit des Fahrzeugs optimiert wird, werden im Punkt 35 überlagert zu einem Soll-Motorwinkel δ_M , soll der dem Lageregler 32 eingangsseitig zugeführt wird. Weiterhin wird dem Lageregler 32 der aktuelle Motorwinkel δ_M , ist des Motors 13 bzw. 23 zugeführt. Abhängig von einem Soll-Ist Vergleich ermittelt der unterlagerte Lageregler 32 in bekannter Weise den Soll-Motorstrom I_{soll} . Aufgrund der Abweichung des Soll-Motorstroms I_{soll} und des am Fahrzeugmotor 13 bzw. 23 erfaßten Motor Ist-Strom I_{ist} (Subtraktion 36) ermittelt der Stromregler 33 ein entsprechendes Ansteuersignal u für den Stellmotor 13 bzw. 23, um den gewünschten Motorwinkel $\delta_{M,soll}$ zu realisieren.

Bevor anhand der Fig. 6 die Überlagerung der einzelnen Lenkanteile $\delta_{M,soll}^{(i)}$ geschildert wird, sollen im folgenden zunächst einige fahrdynamische Einzelfunktionen im Zusammenhang mit Lenkeingriffen dargestellt werden.

- Vorhaltenlenkung:

Bei dem als Vorhaltenlenkung bekannten Lenkeingriff handelt es sich um eine Steuerung, bei der der Zusatzwinkel $\delta_{M,soll}^{(i)}$ proportional zur Lenkraddrehgeschwindigkeit $\dot{\delta}_L$, also dem differenzierten Lenkradwinkel $\ddot{\delta}_L$, ist. Die Vorhaltenlenkung verbessert das Ansprechverhalten des Fahrzeugs auf die Fahrerbetätigungen des Lenkrades.

- Giergeschwindigkeitsregelung:

In der Fig. 4 ist eine Giergeschwindigkeitsregelung dargestellt. Unter der Giergeschwindigkeit versteht man die Drehbewegung eines Fahrzeugs um seine Hochachse. Hierbei wird aus der Fahrzeuggeschwindigkeit V_x , dem Lenkradwinkel δ_L und eventuell weiteren Größen im Block 41 eine Sollgiergeschwindigkeit ω_{soll} berechnet. Wenn die am Fahrzeug 45 gemessene Fahrzeuggiergeschwindigkeit ω davon abweicht, bestimmt der Giergeschwindigkeitsregler 42 einen Sollzusatzwinkel $\delta_{M,soll}^{(i)}$, so daß die Giergeschwindigkeitsabweichung verringert wird. Durch einen Vergleich mit dem momentan eingestellten Motorwinkel δ_M wird über den unterlagerten Lageregler 43 der Motor 44 derart beaufschlagt, daß der entsprechende Zusatzwinkel δ_M eingestellt und der Lenkbewegung δ_L des Fahrers überlagert wird. Die Giergeschwindigkeitsregelung erhöht die Dämpfung der Gierbewegung, verbessert die Fahrstabilität und reduziert den Einfluß von Fahrzeugparametern.

- Giermomentkompensation:

Findet ein starker Bremsvorgang, insbesondere eine Antiblockierbremse (ABS-Bremse), auf einer Fahrbahn statt, die auf der rechten und der linken Fahrzeugeite sehr unterschiedliche Reibwerte aufweist, so kommt es in bekannter Weise zu einem Giermoment. Bei der in der Fig. 5 dargestellten Giermomentkompensation wird bei einer ABS-Bremse auf einer solchen asymmetrischen Fahrbahn automatisch gegelenkt, wodurch ein unerwünschtes Gieren (Drehung um die Fahrzeughochachse) des Fahrzeugs verhindert wird.

Zur Giermomentkompensation werden zunächst die Bremsdrücke P_{vl} und P_{vr} am linken und rechten Vorderrad entweder direkt sensiert oder aus vorliegenden Meßdaten (z. B. Ventilöffnungszeiten, Vordruck) berechnet. Diese Radbremsdrücke werden dann in den Filtern 51 und 52 zur

Ausblendung von Störeinflüssen gefiltert. Die Differenz der so gefilterten Bremsdrücke wird dann im Block 53 (Proportionalverstärker mit Totband) bearbeitet. Die Größe des Lenkeingriffs $\delta_{M,soll}^{(3)}$ wird dann aus der so bearbeiteten Differenz mittels eines konstanten und eines zeitvariablen Verstärkungsfaktors (Blöcke 54 und 55) bestimmt. Bei ABS-Individualregelung an der Hinterachse können zusätzlich die Bremsdrücke an den Hinterrädern berücksichtigt werden.

Kompensation von Seitenwindeinflüssen:

Eine Kompensation von Seitenwindeinflüssen ist z. B. nach Tran, V. T.: Crosswind Feedforward Control - A Measure to Improve Vehicle Crosswind Behaviour, Vehicle Systems Dynamics 23 (1993), S. 165-205 bekannt. Der Zusatzwinkel $\delta_{M,soll}^{(4)}$ wird dabei aus an verschiedenen Stellen der Karosserie gemessenen Luftdrücken p_i , $i = 1, \dots, n$, berechnet. Diese Funktion lenkt bei Seitenwind automatisch gegen und verhindert somit ein ungewolltes Gieren des Fahrzeugs.

Die obenbeschriebenen Einzelfunktionen erzielen jeweils nur einige der gewünschten Vorteile. Um alle Vorteile zu erhalten, werden die Funktionen erfindungsgemäß wie in der Fig. 6 zu sehen ist kombiniert.

Die Einzelfunktionen 3401 bis 3404 werden gleichzeitig parallel ausgeführt. Bei einer Realisierung in einem Digitalprozessor werden die Algorithmen der Einzelfunktionen 3401 bis 3404 in jedem Abtastschritt abgearbeitet. Jede Einzelfunktion 3401 bis 3404 liefert einen Beitrag $\delta_{M,soll}^{(i)}$ zum Sollwert $\delta_{M,soll}$ des Zusatzlenkwinkels. Diese Beiträge werden im Punkt 3405 überlagert.

Die Fig. 6 zeigt ein Beispiel für ein Blockschaltbild eines Fahrzeugreglers 34, der aus einer Kombination der oben beschriebenen Einzelfunktionen 3401 bis 3404 besteht. Die Beiträge der Einzelfunktionen zum Zusatzwinkel sind mit $\delta_{M,soll}^{(i)}$, $i = 1, \dots, m$, bezeichnet. Welche Einzelfunktionen der Fahrzeugregler 34 enthält, kann nach den jeweiligen Erfordernissen bzw. Wünschen fahrzeugindividuell festgelegt werden. In diesem Sinn muß der Fahrzeugregler nicht alle erwähnten Einzelfunktionen enthalten, es können aber auch noch weitere hinzukommen.

Es ist auch möglich, daß einige oder alle vorhandenen Einzelfunktionen zusätzlich durch einen übergeordneten Koordinator beeinflußt werden. Hierbei kann dann vorgesehen sein, daß im Punkt 3405 keine einfache Überlagerung der einzelnen Lenkanteile $\delta_{M,soll}^{(i)}$ stattfindet, sondern daß die gebildeten Lenkanteile $\delta_{M,soll}^{(i)}$ unterschiedlich, insbesondere abhängig von dem momentan vorliegenden Fahrzustand, koordiniert, insbesondere gewichtet, werden.

Zusammenfassend sind als Vorteile der Erfindung zu nennen:

Kombination mehrerer Funktionen zur Beeinflussung des Fahrverhaltens und Verbesserung der Fahrdynamik mittels Lenkeingriff an der Vorderachse.

Einfache Überlagerung der Lenkeingriffe der einzelnen Funktionen, d. h. Addition der entsprechenden Sollwerte für den Zusatzlenkwinkel.

Erzielung aller Vorteile, die das Lenksystem ermöglicht; volle Ausschöpfung des Potentials.

Einzelfunktionen ergänzen und unterstützen sich gegenseitig.

Leichte Applizierbarkeit, da die Einzelfunktionen nur einige fahrdynamische Fahrzeugeigenschaften beeinflussen und einzeln abgestimmt werden können.

- Wenig Zielkonflikte bei der Applikation, da die verschiedenen Funktionen genügend Freiheitsgrade zur gezielten Beeinflussung einzelner Eigenschaften bzw.

Erzielung bestimmter Vorteile bieten.

Einzelfunktionen können nach Erfordernis oder Wunsch frei kombiniert werden.

Zusätzliche Koordination einiger oder aller Einzelfunktionen ist möglich.

Patentansprüche

1. Verfahren zum Betrieb eines Lenksystems für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad (15), einem Stellantrieb (13; 23) und einem Überlagerungsgetriebe (12; 22), wobei durch das Überlagerungsgetriebe die durch den Fahrer des Fahrzeugs initiierte Lenkbewegung (δ_L) und die durch den Stellantrieb (13; 23) initiierte Bewegung (δ_M) zur Erzeugung der Lenkbewegung des lenkbaren Rades überlagert werden, wobei

- wenigstens zwei Lenkanteile ($\delta_{M,soll}^{(i)}$) gebildet werden,

- ein Steuersignal ($\delta_{M,soll}$) durch eine Überlagerung der gebildeten Lenkanteile ($\delta_{M,soll}^{(i)}$) erzeugt wird, und

- der Stellantrieb (13; 23) zur Initiierung der Bewegung (δ_M) durch das erzeugte Steuersignal ($\delta_{M,soll}$ angesteuert wird, dadurch gekennzeichnet, daß

- die Lenkanteile ($\delta_{M,soll}^{(i)}$) parallel und unabhängig voneinander gebildet werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lenkanteile ($\delta_{M,soll}^{(i)}$) derart gebildet werden, daß jeder der Lenkanteile zur Erzielung eines vorgegebenen Steuerungs- oder Regelungsziels gebildet wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Steuerungs- oder Regelungsziele für die einzelnen Lenkanteile unterschiedlich vorgegeben sind.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lenkanteile ($\delta_{M,soll}^{(i)}$) gleichzeitig oder bei Realisierung in einem Digitalprozessor in jedem Abtastschritt gebildet werden.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lenkanteile ($\delta_{M,soll}^{(i)}$) derart gebildet werden, daß

- die Gierbewegung des Kraftfahrzeugs, insbesondere die Gierwinkelgeschwindigkeit (ω), auf einen bestimmten Sollwert (ω_{soll}) geregelt wird (Giergeschwindigkeitsregelung), und/oder

- einer durch einen Bremsvorgang des Kraftfahrzeugs hervorgerufenen Gierbewegung entgegengewirkt wird (Giermomentenkompensation), und/oder

Seitenwindeinflüssen entgegengewirkt wird (Seitenwindkompenstation), und/oder

- ein Lenkanteil ($\delta_{M,soll}^{(i)}$) abhängig von der Drehgeschwindigkeit ($\frac{d}{dt} \delta_L$) des Lenkrades (11) ist (Vorhaltemerkung).

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß

- bei der Giergeschwindigkeitsregelung die aktuelle Gierwinkelgeschwindigkeit (ω) erfaßt wird, der Sollwert (ω_{soll}) wenigstens abhängig von der erfaßten Drehung (δ_L) des Lenkrades und der erfaßten Fahrzeuggeschwindigkeit (V_x) bestimmt wird und ein Lenkanteil ($\delta_{M,soll}^{(i)}$) abhängig von der Abweichung zwischen der aktuellen Gierwinkelgeschwindigkeit (ω) und dem Sollwert (ω_{soll}) ge-

BEST AVAILABLE COPY

bildet wird, und/oder

bei der Giermomentenkompensation ein Lenkanteil ($\delta_{M,soll}^0$) abhängig von den erfaßten Bremsdrücken (P_{vL} , P_{vR}), die an den Fahrzeughämen auf unterschiedlichen Fahrzeugseiten anliegen, 5
gebildet wird, und/oder

bei der Seitenwindkompensation ein Lenkanteil ($\delta_{M,soll}^0$) abhängig von an verschiedenen Stellen (j) der Fahrzeugkarosserie erfaßten Luftdrücken (p_j) gebildet wird, 10

7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die gebildeten Lenkanteile ($\delta_{M,soll}^0$) unterschiedlich, insbesondere abhängig von dem momentan vorliegenden Fahrzustand, koordiniert, insbesondere gewichtet, werden. 15

8. Vorrichtung zum Betrieb eines Lenksystems für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad (15), einem Stellantrieb (13; 23) und einem Überlagerungsgetriebe (12; 22), wobei durch das Überlagerungsgetriebe die durch den Fahrer des Fahrzeugs initiierte Lenkbewegung (δ_L) und die durch den Stellantrieb initiierte Bewegung (δ_M) zur Erzeugung der Lenkbewegung des lenkbaren Rades überlagert werden, wobei Mittel (41, 34, 35; 3401–3405) derart vorgesehen sind, daß 20

wenigstens zwei Lenkanteile ($\delta_{M,soll}^0$) gebildet werden,

ein Steuersignal ($\delta_{M,soll}^0$) durch eine Überlagerung der gebildeten Lenkanteile ($\delta_{M,soll}^0$) erzeugt wird, und 30

der Stellantrieb (13, 23) zur Initiierung der Bewegung (δ_M) durch das erzeugte Steuersignal ($\delta_{M,soll}^0$) angesteuert wird, dadurch gekennzeichnet, daß

in den Mitteln weiterhin die Lenkanteile 35 ($\delta_{M,soll}^0$) parallel und unabhängig voneinander gebildet werden.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß in den Mitteln (34; 3401–3404) die Lenkanteile ($\delta_{M,soll}^0$) derart gebildet werden, daß jeder der 40 Lenkanteile zur Erzielung eines vorgegebenen Steuerungs- oder Regelungsziels gebildet wird.

10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Steuerungs- oder Regelungsziele für die einzelnen Lenkanteile ($\delta_{M,soll}^0$) unterschiedlich vorgegeben sind. 45

Hierzu 6 Seite(n) Zeichnungen

- Leerseite -

Fig. 1
Stand der Technik

Fig. 2

Stand der Technik

Fig. 3

Fig. 4

੫

Fig. 6