OPT midterm	17.	5.	2024	1
-------------	-----	----	------	---

Příjmení:

Jméno:

007

Příklady z první části vyřešte a odpovědi včetně postupu napište do připravených mezer.

- 1. Uvažujte úlohu $\max 3x_1+4x_2$ při omezení $x_1-2x_2\leq 4,\, -4x_1+2x_2\leq 8,\, x_1\geq 0,\, x_2\geq 0.$
 - a) Nalezněte optimální řešení, pokud existuje. (2 body)

- b) Napište duální úlohu. (2 body)
- c) Nalezněte optimální řešení duálu, pokud existuje. (1 bod)

- 2. Rozhodněte a vysvětlete, proč je/není uvedená funkce konvexní (každá úloha za 1 bod).

 (a) $f(x) = |x| 1 + x^4$, kde $x \in \mathbb{R}$ \Rightarrow konvexní \Rightarrow be součet konvexních funkcí (b) $f(\mathbf{x}) = |(x_1, x_2, x_3) (x_4, x_5, x_6)||_1$, kde $\mathbf{x} \in \mathbb{R}^6 \Rightarrow$ konvexní \Rightarrow každa norma je konvexní \Rightarrow c) $f(x) = \min\{x, 0\}$, kde $x \in \mathbb{R}$ \Rightarrow konvexní \Rightarrow konve

 - $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + b$, pro nějaké $b \in \mathbb{R}$ a symetrickou matici \mathbf{A} se zápornými vlastními čísly není konvektní probác $\mathbf{x}^T \mathbf{A} \mathbf{x}$ je kontán $\text{ (e) } f(c_1,c_2) = \max\{c_1x_1 - c_2x_2 \mid x_1 \geq 0, x_2 \geq 0, x_1 + x_2 \leq 2\}, \text{ kde } c_1,c_2 \in \mathbb{R} \text{ konvexus probably polarization} \}$ Pre negat.
 - g(x) = max (xi) → g((1-d)x +dy) = max ((1-d)xi+dyi) ≤ max((1-d)xi)+max(dyi)

Semi delini

Vase odpovedi na kvizove otazky: a, c, d, a, d

spatne: 5, 7 dobre: 3, 4, 6

chybi:

Celkem bodu za kviz: 3

Zadani vaseho kvizu naleznete na nasledujici strane.

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela vyplňte barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY.

(Za každou správnou odpověď je 1 bod.)

- 3. Co z uvedené platí pro optimalizační úlohu max $\sum_{i=1}^n x_i$ za podmínky $\|\mathbf{x}\|_1 \leq 1$, $\mathbf{x} \in \mathbb{R}^n$?
 - (a) Jde o úlohu lineárního programování
 - (b) Účelová funkce není konvexní
 - (c) Nic z uvedeného
 - (d) Množina přípustných řešení je prázdná
 - (e) Nemá optimální řešení
- 4. Rozhodněte, co je pravdivé tvrzení.
 - (a) Duálních proměnných nemůže být více než primárních proměnných.
 - (b) Primární i duální úloha mohou být současně neomezené. X
 - (c) Pokud je primární i duální úloha přípustná, optimální hodnoty obou úloh jsou stejné.
 - (d) Primární úloha může mít optimum a současně je její duál neomezený.
 - (e) Duální proměnné jsou vždy nezáporné. X
- 5. Lineární program $\min\{c_1x_1+c_2x_2|x_1\geq 0,x_2\geq 0,x_1+2x_2\geq 1\}$ má optimum v bodě $(\frac{1}{2},\frac{1}{4})$, pokud platí:
 - (a) $c_2 > 0$.
 - (b) Nic z uvedeného.
 - (c) $c_1 = 0$ a $c_2 = 1$.
 - (d) $c_1 = -1$ a $c_2 = -1$. (e) $c_1 = 1$ a $c_2 = 2$.
- 6. Pro funkci $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{\infty} + \sum_{i=1}^{k} \alpha_i e^{\beta_i x_i}$, kde $\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k \geq 0$, vždy platí:
 - (a) je konvexní
 - (b) je afinní
 - (c) je konkávní
 - (d) neplatí žádné uvedené tvrzení
 - (e) je lineární
- 7. Rozhodněte, co je pravdivé tvrzení.
 - (a) Každá lineární funkce 2 proměnných má minimum na množině dané podmínkami $x_1, x_2 \ge 0$ a $2x_1 x_2 \ge 1$.
 - (b) Neplatí žádné uvedené tvrzení.
 - (c) Konvexní obal 5 bodů v \mathbb{R}^n má extremální bod.
 - (d) Každý konvexní polyedr má alespoň jeden extremální bod.
 - (e) Množina všech $\mathbf{x} \in \mathbb{R}^n$ splňujících $\mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}$ je neprázdná pro libovolnou volbu matice \mathbf{A} a vektoru \mathbf{b} .