IV. Interpolarea Lagrange

[a, b], i.e. $a = x_1 < x_2 < ... < x_{n+1} = b$.

IV. Interpolarea Lagrange.

CONTINUTUL CURSULUI #8:

- IV.3. Metoda Newton de determinare a polinomului Lagrange Pn.
- IV.4. Metoda Newton cu diferente divizate de determinare a polinomului
- Lagrange Pn.

Fie P_n multimea polinoamelor cel mult de grad n > 0: $\mathcal{P}_{n} = \left\{ P_{n}(x) = a_{1} + a_{2}x + \ldots + a_{n}x^{n-1} + a_{n+1}x^{n} \mid a_{j} \in \mathbb{R}, j = \overline{1, n+1} \right\}$

 $P_{-}(x_{i}) = f(x_{i}), i = \overline{1, n+1}$ Valorile x_i , $i = \overline{1, n+1}$ se numesc puncte sau noduri de interpolare.

determinarea unui polinom $P_n \in \mathcal{P}_n$, numit polinom de interpolare

$$P_n(x_i) = f(x_i), i = \overline{1, n+1}$$
 (1)

Interpolarea Lagrange a funcției f relativ la diviziunea $(x_i)_{i=1,n+1}$ constă în

Fie $f:[a,b] \to \mathbb{R}$ o funcție continuă și $(x_i)_{i=1,n+1}$ o diviziune a intervalului

Lagrange, care satisface relatiile:

IV.1. Metoda directă de determinare a polinomului Lagrange P_n . Fie $P_n(x) = a_1 + a_2 x + \ldots + a_n x^{n-1} + a_{n+1} x^n$ un polinom de interpolare

al funcției f relativ la diviziunea $(x_i)_{i=1}$. Din condițiile $P_n(x_i) = f(x_i)$. $v_i = f(x_i), i = \overline{1, n+1}$ rezultă următorul sistem de ecuatii liniare

$$\begin{cases} a_1 + a_2x_1 + a_3x_1^2 + \dots + a_{n+1}x_1^n = y_1 \\ a_1 + a_2x_2 + a_3x_2^2 + \dots + a_{n+1}x_2^n = y_2 \\ a_1 + a_2x_3 + a_3x_3^2 + \dots + a_{n+1}x_3^n = y_3 \\ \dots & \dots & \dots \end{cases}$$

$$(2)$$

sau scris la formă matriceală $\begin{pmatrix} 1 & x_1 & x_1^T & \dots & x_1^T \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n+1} & x_{n+1}^2 & \dots & x_{n+1}^n \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n+1} \end{pmatrix}$ Cum $x_i \neq x_i$, $1 \leq i \leq n + 1$, rezultă

$$\det(A) = \prod_{1 \le i < j \le n+1} (x_i - x_j) \ne 0,$$

deci sistemul de ecuații liniare (3) este un sistem compatibil determinat cu solutia $\mathbf{a} = [a_1, a_2, \dots, a_{n+1}]^T \in \mathbb{R}^{n+1}$

Din unicitatea solutiei rezultă că polinomul Lagrange se determină în mod unic.

Solutia sistemului de ecuatii liniare (3) se poate obtine, de exemplu, aplicând metoda Gauss cu pivotare totală. Exemplu 1: Să se afle, prin metoda directă, polinomul de interpolare

Lagrange $P_2(x)$ al funcției $f(x) = e^{2x}$ relativ la diviziunea (-1;0;1). **Rezolvare:** Fie $P_2(x) = a_1 + a_2x + a_3x^2$. Din conditiile $P_2(-1) = e^{-2}$, $P_2(0) = e^{0}$, $P_2(1) = e^{2}$ rezultă sistemul de ecuații liniare:

IV.2. Metoda Lagrange de determinare a polinomului Lagrange P_n .

Se consideră următoarea reprezentare a polinomului Lagrange:

$$P_n(x) = \sum_{k=1}^{m+1} L_{n,k}(x) y_k, \quad x \in \mathbb{R}$$
 (5)

 $P_n(x) = \sum_{k=0}^{n+1} L_{n,k}(x) y_k, \quad x \in \mathbb{R}$ (5)

unde $L_{n,k}$ sunt polinoame de gradul n ce urmează să fie determinate. Deoarece P_n interpolează funcția f în nodurile $\{x_i\}_{i=1,n+1}$ atunci au loc relațiile, $P_n(x_i) = y_i$, de unde rezultă $L_{n,k}(x_i) = \delta_{ik}$. Deoarece $L_{n,k}$ sunt polinoame de gradul n și $L_{n,k}(x_i) = 0$, $i \neq k$ rezultă că $x_1, x_2, ..., x_{k-1}$, $x_{k+1}, ..., x_{n+1}$ sunt n rădăcini, deci $L_{n,k}$ se reprezintă:

$$L_{n,k}(x) = C_k(x-x_1)(x-x_2)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_{n+1}), (6)$$

iar din conditia $L_{n,k}(x_k) = 1$, rezultă relatia pentru C_k :

$$C_k = \frac{1}{(x_k - x_1)(x_k - x_2)\dots(x_k - x_{k-1})(x_k - x_{k+1})\dots(x - x_{n+1})}$$
(7)

 $\begin{cases} a_1 + a_2 \cdot (-1) + a_3(-1)^2 = e^{-2} \\ a_1 + a_2 \cdot 0 + a_3 \cdot 0 = 1 \\ a_1 + a_2 \cdot 1 + a_3 \cdot 1 = e^2 \end{cases} \Rightarrow \begin{cases} -1 & e^2 - e^{-2} \\ a_2 = \frac{e^2 - e^{-2}}{2} \\ a_3 = \frac{e^2 + e^{-2} - 2}{2} \end{cases}$ Astfel, $P_2(x) = 1 + \frac{e^2 - e^{-2}}{2}x + \frac{e^2 + e^{-2} - 2}{2}x^2$.

Se înlocuiesc C_{ν} în (6) si se obtin expresiile

$$L_{n,k}(x) = \frac{(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_{n+1})}{(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_{n+1})},$$

$$x \in \mathbb{R}, \quad k = \overline{1, n+1}$$

Funcțiile $L_{n,k}$ se numesc funcții de bază pentru interpolarea Lagrange și se vor rescrie sub o formă compactă

$$L_{n,k}(x) = \prod_{\substack{j=1\\j\neq k}}^{n+1} \frac{x - x_j}{x_k - x_j}$$
 (9)

Vom nota în continuare $e_t(x) = f(x) - P_n(x)$ eroarea interpolării în fiecare punct.

Teorema (IV.1. Estimarea erorii de interpolare)

Fig $n \ge 1$, functia $f: [a, b] \longrightarrow \mathbb{R}$ a.i. $f \in C^{n+1}[a, b]$ si diviziunea $(x_i)_{i-1}$ a intervalului [a,b]. Atunci: $\forall x \in [a,b], \exists \xi \in (a,b)$ astfel încât

$$e_t(x) := f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \pi_{n+1}(x)$$

unde

$$\pi_{n+1}(x) := (x - x_1)(x - x_2) \dots (x - x_{n+1}), \quad x \in [a, b]$$

Mai mult, are loc următoarea estimare a erorii de interpolare:

$$|f(x) - P_n(x)| \le \frac{\max_{\zeta \in [a,b]} |f^{(n+1)}(\zeta)|}{(n+1)!} |\pi_{n+1}(x)|, \quad \forall \ x \in [a,b]$$

Curs #8

Rezolvare: Polinomul $P_2(x)$ conform metodei Lagrange este $P_2(x) = L_{2,1}(x)y_1 + L_{2,2}(x)y_2 + L_{2,3}(x)y_3$, unde $L_{2,1}(x) = \frac{(x-x_2)(x-x_3)}{(x_2-x_2)(x_2-x_3)} = \frac{x(x-1)}{2} = \frac{x^2-x}{2}$ $L_{2,2}(x) = \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} = \frac{(x+1)(x-1)}{-1} = 1 - x^2$

Exemplu 2: Să se afle, prin metoda Lagrange, polinomul de interpolare

Lagrange $P_2(x)$ a functiei $f(x) = e^{2x}$ relativ la diviziunea (-1:0:1).

$$L_{2,3}(x) = \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} = \frac{x(x+1)}{2} = \frac{x^2+x}{2}$$
Astfel,
$$P_2(x) = \frac{x^2-x}{2} \cdot e^{-2} + (1-x^2) + \frac{x^2+x}{2} \cdot e^2$$

$$= 1 + \frac{e^2 - e^{-2}}{2}x + \frac{e^2 + e^{-2} - 2}{2}x^2$$
Com #8

sistemului sunt determinate conform relațiilor:

$$a_{i1} = 1, \quad i = \overline{1, n+1}$$
 $a_{ij} = \prod_{j=1}^{j-1} (x_i - x_k), \quad i = \overline{2, n+1}, \ j = \overline{2, i}$

Exemplu 3: Să se afle, prin metoda Newton, polinomul de interpolare Newton $P_2(x)$ a functiei $f(x) = e^{2x}$ relativ la diviziunea (-1; 0; 1). Rezolvare: Polinomul $P_2(x)$ conform metodei Newton se reprezintă sub

forma:
$$P_2(x) = c_1 + c_2(x - x_1) + c_3(x - x_1)(x - x_2)$$
. Din condițiile $P_2(-1) = e^{-2}$, $P_2(0) = 1$, $P_2(1) = e^{2}$ rezultă sistemul
$$\begin{cases} c_1 = e^{-2} \\ c_1 = e^{-2} \end{cases}$$

 $\left\{ \begin{array}{ll} c_1 & = e^{-2} \\ c_1 + c_2 & = 1 \\ c_1 + 2c_2 + 2c_3 & = e^2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} c_1 & = e^{-2} \\ c_2 & = 1 - e^{-2} \\ c_3 & = \frac{e^{-2} + e^2 - 2}{2} \end{array} \right.$

$$\begin{cases} c_1 + 2c_2 + 2c_3 &= e^2 \\ c_3 &= \frac{e^{-2} + e^2 - 2}{2} \end{cases}$$

$$P_2(x) = e^{-2} + (1 - e^{-2})(x+1) + \frac{e^{-2} + e^2 - 2}{2}x(x+1)$$

$$= 1 + \frac{e^2 - e^{-2}}{2}x + \frac{e^2 + e^{-2} - 2}{2}x^2.$$

 $P_n(x) = c_1 + c_2(x - x_1) + c_3(x - x_1)(x - x_2) + \dots + c_{n+1}(x - x_1)(x - x_2) \dots (x - x_n)$ sau $P_n(x) = c_1 + \sum_{i=1}^{n+1} c_i \prod_{j=1}^{i-1} (x - x_j)$ (10)

Se consideră următoarea reprezentare a polinomului Lagrange

IV.3. Metoda Newton de determinare a polinomului Lagrange P_n .

Conditiile $P_n(x_i) = y_i$, $i = \overline{1, n+1}$ ne furnizează sistemul de ecuații liniare necesar pentru determinarea coeficientilor c_i , $i = \overline{1, n+1}$ $= v_1$

(11)

 $c_1 + c_2(x_2 - x_1)$ $c_1 + c_2(x_3 - x_1) + c_3(x_3 - x_1)(x_3 - x_2)$ \cdots $c_1 + c_2(x_{n+1} - x_1) + c_3(x_{n+1} - x_1)(x_{n+1} - x_2) + \cdots +$ $+ \cdots + c_{n+1}(x_{n+1} - x_1) \cdots (x_{n+1} - x_n)$ $= v_1$ $= y_3$ $= y_{n+1}$ Sistemul (11) este un sistem inferior triunghiular și se rezolva conform metodei substitutii ascendente. Componentele matricei A asociată

IV.4. Metoda Newton cu diferențe divizate de determinare a polinomului Lagrange P_n .

Fie functia $f:[a,b] \longrightarrow \mathbb{R}$ si o diviziune $(x_i)_{i=1,i+1}$ (i) S.n. diferența divizată (DD) de ordin 0 a lui f în raport cu nodul x1: $f[x_1] := f(x_1)$

(12)

Definitia (IV.1.)

(ii) S.n. DD de ordin 1 a lui f în raport cu nodurile x1. x2:

 $f[x_1, x_2] := \frac{f[x_2] - f[x_1]}{x_2 - x_1}$

(iii) S.n. DD de ordin 2 a lui f în raport cu nodurile x₁, x₂, x₃:

 $f[x_1, x_2, x_3] := \frac{f[x_2, x_3] - f[x_1, x_2]}{x_2}$

(iv) S.n. DD de ordin n a lui f în raport cu nodurile $x_1, x_2, \ldots, x_{n+1}$:

$$f[x_1, x_2, \dots, x_{n+1}] := \frac{f[x_2, x_3, \dots, x_{n+1}] - f[x_1, x_2, \dots, x_n]}{x_{n+1} - x_1}$$

Teorema (IV.2, formula de interpolare a lui Newton cu DD)

Polinomul de interpolare Lagrange de gradul n asociat functiei $f: [a, b] \longrightarrow \mathbb{R}$ si nodurilor de interpolare $\{x_1, x_2, \dots, x_{n+1}\}$ este dat de formula

$$P_n(x) = f[x_1] + f[x_1, x_2](x - x_1) + \dots$$

$$[x_1, x_2, \dots, x_{n+1}](x - x_1)(x - x_2) \dots (x - x_n)$$
(13)

$$+f[x_1, x_2, \dots, x_{n+1}](x - x_1)(x - x_2) \dots (x - x_n)$$

$$= f[x_1] + \sum_{i=1}^{n+1} f[x_1, \dots, x_i] \prod_{i=1}^{i-1} (x - x_i), \quad x \in [a, b]$$
(15)

Construim în continuare următorul tabel cu diferente divizate:

X;	DD ordin 0	DD ordin 1	DD ordin 2	DD ordin 3	
\times_1	$f[x_1] = f(x_1)$				
х2	$f[x_2] = f(x_2) \longrightarrow$	f[x1, x2]			
х3	$f[x_3] = f(x_3) \longrightarrow$	$f[x_2, x_3] \longrightarrow$	$f[x_1, x_2, x_3]$		
Х4	$f[x_4] = f(x_3) \longrightarrow$	f[x3, x4] →	f[x2, x3, x4] →	f[x1, x2, x3, x4]	

Fie matricea Q, matricea inferior triunghiulară definită astfel:

$$Q_{ij} = f[x_{i-j+1}, ..., x_i]$$
 (16)

Se observă că elementele matricei coincid cu diferentele divizate din tabel.

X _j	DD ordin 0	DD ordin 1	DD ordin 2	DD ordin 3	
x_1	$f[x_1] = Q_{11}$				
x_2	$f[x_2] = Q_{21}$	$f[x_1, x_2] = Q_{22}$			
жз	$f[x_3] = Q_{31}$	$f[x_2, x_3] = Q_{32}$	$f[x_1, x_2, x_3] = Q_{33}$		
x_4	$f[x_4] = Q_{41}$	$f[x_3, x_4] = Q_{42}$	$f[x_2, x_3, x_4] = Q_{43}$	$f[x_1, x_2, x_3, x_4] = Q_{44}$	

Au loc următoarele relatii:

$$\begin{split} f[x_{i-j+1},...,x_i] &= \frac{f[x_{i-j+2},...,x_i] - f[x_{i-j+1},...,x_{i-1}]}{x_i - x_{i-j+1}} \\ &= \frac{f[x_{i-(j-1)+1},...,x_j] - f[x_{(i-1)-(j-1)+1},...,x_{i-1}]}{x_i - x_{i-j+1}} \end{split}$$

Obtinem astfel o relatie de recurentă pentru componentele matricei Q:

$$Q_{ij} = \frac{Q_{i,j-1} - Q_{i-1,j-1}}{x_i - x_{i-j+1}}, \quad j = \overline{2, n+1}, i = \overline{j, n+1}$$
 (17)

Prima coloană a matricei Q se calculează conform formulei:

$$Q_{i1}=f(x_i), i=\overline{1,n+1}.$$

Curs #8

Exemplu 2: Să se afle, prin metoda Newton cu DD, polinomul de interpolare Lagrange $P_2(x)$ al funcției $f(x) = e^{2x}$ relativ la diviziunea (-1;0;1).

Rezolvare: Construim tabelul diferențelor divizate:

X _i	DD ordin 0	DD ordin 1	DD ordin 2
-1	e-2		
0	1	$1 - e^{-2}$	
1	e ²	e^2-1	$\frac{e^{-2} + e^2 - 2}{2}$

Pentru reprezentarea polinomului $P_2(x)$ păstrăm din tabel doar elementele de pe diagonala principală, i.e., $e^{-2}, 1-e^{-2}$ și $\frac{e^{-2}+e^2-2}{2}$. Se obține

$$P_2(x) = e^{-2} + (1 - e^{-2})(x+1) + \frac{e^{-2} + e^2 - 2}{2}(x+1)x.$$

ALGORITM (Metoda Newton cu diferențe divizate)

Date de intrare: $(x_i)_{i-1}, (y_i)_{1,n+1}; x_i$

Date de ieșire:
$$y$$
;

STEP 1: Se determină matricea Q

$$Q_{i1} = f(x_i), i = \overline{1, n+1}$$

 $Q_{ii} = Q_{i,j-1} - Q_{i-1,j-1}, i = \overline{1, n+1}$

$$Q_{ij} = \frac{Q_{i,j-1} - Q_{i-1,j-1}}{x_i - x_{i-j+1}}, i = \overline{2, n+1}, j = \overline{2, i}$$

$$Q_{ij} = \frac{Q_{i,j-1} - Q_{i-1,j-1}}{X_{i} - X_{i} - X_{i-j+1}}, i = \overline{2, n+1}, j = \overline{2, i};$$
 STEP 2: Determină $P_n = Q_{11} + \sum_{k=2}^{n+1} Q_{kk}(x - x_1)...(x - x_{k-1})$

STEP 3:
$$y = P_n$$
.

December 3, 2020 17 / 17