

Fig. 1

2/18

۲.ig

Serum Uricase Activity, relative to initial activity

SUBSTITUTE SHEET (RULE 26)

4/18

Fig. 5

Deduced Amino Acid Sequences of Pig-Baboon Chimeric Uricase (PBC Uricase)

and Porcine Uricase Containing the Mutations R291K and T301S (PKS Uricase), Compared with the Porcine and Baboon Sequences

			7000000000	
Porcine	MAHYRNDYKK NDEVEFVRTG	YGKDMIKVLH	IQRDGKYHSI	40
PBC	1-225 porcine sequence	→		
PKS	1-288 porcine sequence	\rightarrow		
Baboon	MADYHNNYKK NDELEFVRTG	YGKDMVKVLH	IQRDGKYHSI	40
Porcine	KEVATSVQLT LSSKKDYLHG	DNSDVIPTDT	IKNTVNVLAK	80
PBC	porcine sequence $ ightarrow$			۲
PKS	porcine sequence $ ightarrow$			
Baboon	KEVATSVQLT LSSKKDYLHG	DNSDIIPTDT	IKNTVHVLAK	80
Porcine	FKGIKSIETF AVTICEHFLS	SFKHVIRAQV	YVEEVPWKRF	120
PBC	porcine sequence →	_		
	•			
PKS	porcine sequence →			
Baboon	FKGIKSIEAF GVNICEYFLS	SFNHVIRAQV	YVEEIPWKRL	120
Porcine	EKNGVKHVHA FIYTPTGTHF	CEVEQIRNGP	PVIHSGIKDL	160
PBC	porcine sequence →	CHAPALIGICI	1 1111011100	100
	·			
PKS	porcine sequence →			
Baboon	EKNGVKHVHA FIHTPTGTHF	CEVEQLRSGP	PVIHSGIKDL	160
Porcine	KVLKTTQSGF EGFIKDQFTT	LPEVKDRCFA	TOVYCKWRYH	200
PBC	porcine sequence →	Drevidicia	1QV1CKWK111	200
	porturno boquemos			
PKS	porcine sequence →			
Baboon	KVLKTTQSGF EGFIKDQFTT	LPEVKDRCFA	TQVYCKWRYH	200
Porcine	OGRDVDFEAT WDTVRSIVLQ	KFAGPYDKGE		240
PBC	porcine sequence		boon sequence	
	policies boquese	1	•	-
PKS	porcine sequence →			
Baboon	QCRDVDFEAT WGTIRDLVLE	KFAGPYDKGE	YSPSVQKTLY	240
Porcine	DIQVLTLGQV PEIEDMEISL	PNIHYLNIDM	SKMGLINKEE	280
PBC	baboon sequence →			
	-			
PKS	porcine sequence $ ightarrow$			
Baboon	DIQVLSLSRV PEIEDMEISL	PNIHYFNIDM	SKMGLINKEE	280
Porcine	VLLPLDNPYG RITGTVKRKL	TSRL		
PBC	baboon sequence →	304		
PKS	porcine ← baboon 28	9-304		
Baboon	VLLPLDNPYG KITGTVKRKL			
	· · · · · · · · · · · · · · · · · · ·			

6/18

Fig. 6

Comparison of amino acid sequences "stripped-down" version of chimera, known as "PigKS" (also called "Pig-Lys") vs. Pig uricase

```
"Pig KS" uricase:
Pig cDNA from 1 to 864 (NdeI site) and then Baboon 865 to 915 (end)
Pig uricase:
Pig cDNA from 1 to 915 (end)
[GCG GAP program]
Gap Weight:
                   Average Match: 2.912
             12
                        Average Mismatch: -2.003
    Length Weight:
                  1601
                                          319
          Quality:
                                Length:
           Ratio: 5.249
                                  Gaps:
                                           O
Percent Similarity: 99.672 Percent Identity: 99.344
      Match display thresholds for the alignment(s):
                 = IDENTITY
                     2
                     1
                     June 25, 1998 17:11
pigKS.pep x Pig.pep
piqKS
     1 MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLT 50
       Pig
     1 MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLT 50
    51 LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
       51 LSSKKÖYLHGDNSDVIPTÖTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
    101 SFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP 150
       101 SFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP 150
    151 PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200
       151 PVIHSGIKÓLKÝLKTTOSGFÉGFIKDOFTTLPÉVKDRCFATOVYCKWŔÝH 200
```

- 251 PEIEDMEISLPNIHYLNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKL 300
- 301 **B**SRL* 305
- .|||| 301 **T**SRL*. 305

7/18

Fig. 7

Comparison of amino acid sequences of the "original" Pig-baboon chimeric uricase ("chimera") with that of the "stripped-down" version of chimera, known as "PigKS" (also called "Pig-Lys")

```
"Chimera" uricase:
```

Pig cDNA from 1 to 674 (Apa site) and then Baboon cDNA from 675 to 915 (end)

"Pig KS" uricase:

Pig cDNA from 1 to 864 (NdeI site) and then Baboon 865 to 915 (end)

[GCG GAP program]

Gap Weight: 12 Average Match: 2.912 Length Weight: 4 Average Mismatch: -2.003

Quality: 1589 Length: 319
Ratio: 5.210 Gaps: 0
Percent Similarity: 98.689 Percent Identity: 98.689

Match display thresholds for the alignment(s):

| = IDENTITY : = 2

= 1

chimera.pep x pigKS.pep June 25, 1998 16:15 ...

chim.	1	MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLT 50
PigKS	1	
	51	LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
	51	LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
1	01	SFKHVIRAOVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEOIRNGP 150
1	01	SFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP 150
1!	51	PVIHSGIKDLKVLKTTOSGFEGFIKDOFTTLPEVKDRCFATOVYCKWRYH 200
1	51	PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200
20	01	OGRDVDFEATWDTVRSIVLOKFAGPYDKGEYSPSVOKTLYDIOVLSLSRV 250
20)1	QGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLTLGQV 250
25	51	PEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKL 300
25	51	PEIEDMEISLPNIHYLNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKL 300
30	1	SSRL*. 305
30	1	ŚŚŔĹ* 305

8/18

Fig. 8

Comparison of amino acid sequences of the "original" Pig-baboon chimeric uricase ("chimera") with that of Pig uricase

```
<u>"Chimera" uricase</u>:
Pig cDNA from 1 to 674 (Apa site) and then Baboon cDNA from 675 to
915 (end)
Pig uricase:
Pig cDNA from 1 to 915 (end)
[GCG GAP program]
Gap Weight:
            12
                   Average Match:
                                2.912
     Length Weight:
                        Average Mismatch: -2.003
          Quality:
                  1583
                                Length:
                                          305
           Ratio: 5.190
                                  Gaps:
 Percent Similarity: 98.361
                        Percent Identity: 98.033
      Match display thresholds for the alignment(s):
                 = IDENTITY
                     2
chimera.pep x Pig.pep
                     June 25, 1998 16:54
chim
     1 MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLT 50
       Pig
     1 MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLT 50
    51 LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
       51 LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
   101 SFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP 150
       101 SFKHVÍRAQVÝVEEVPWKRFEKNGVKHVHAFÍÝTÞTGTHFCEVEQÍRNGÞ 150
   151 PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200
       151 PVÍHSGÍKDLKVLKTTQSGFEGFÍKDQFTTLPEVKDRCFATQVÝCKWRÝH 200
   201 QGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLSLSRV 250
       201 QGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLTLGQV 250
```

301 SSRL* 305

.|||| 301 **T**SRL* 305

9/18

Fig. 9

Pig uricase:

Pig cDNA from 1 to 915 (end)

Comparison of amino acid sequence of the "original" Pig-baboon chimeric uricase ("chimera") with that of "Baboon D3H" uricase (Baboon except for His replacing Asp at amino acid 3)

```
"Baboon D3H" uricase:
"Baboon D3H" cDNA from 1 to 915 (end)
[GCG GAP program]
       Gap Weight:
                   12
                          Average Match: 2.912
    Length Weight:
                   4
                        Average Mismatch: -2.003
         Quality:
                 1493
                                Length:
                                        305
           Ratio: 4.895
                                 Gaps:
Percent Similarity: 94.098
                      Percent Identity: 90.820
      Match display thresholds for the alignment(s):
                 = IDENTITY
                    2
                    1
Pig.pep x baboon D3H.pep
                          June 25, 1998 17:44
Pig
     1 MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVOLT 50
       Bab
     1 MAHYHNNYKKNDELEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLT 50
    51 LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100
       51 LSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIEAFGVNICEYFLS 100
    101 SFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP 150
       101 SFNHVIRAQVYVEEIPWKRLEKNGVKHVHAFIHTPTGTHFCEVEQLRSGP 150
   151 PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200
       151 PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200
   201 QGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLTLGQV 250
        201 QCRDVDFEATWGTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRV 250
   251 PEIEDMEISLPNIHYLNIDMSKMGLINKEEVLLPLDNPYGRITGTVKRKL 300
       251 PEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKL 300
   301 TSRL* 305
       - | | | |
   301 SSRL* 305
```

10/18

Fig. 10

Comparison of amino acid sequence of the "original" Pig-baboon chimeric uricase ("chimera") with that of "Baboon D3H" uricase (Baboon except for His replacing Asp at amino acid 3)

"Chimera" uricase:

Pig cDNA from 1 to 674 (Apa site) and then Baboon cDNA from 675 to 915 (end)

<u>"Baboon D3H" uricase:</u>

"Baboon D3H" cDNA from 1 to 915 (end)

[GCG GAP program]

301 ŚŚŔĹ* 305

Gap Weight: 12 Average Match: 2.912 Length Weight: 4 Average Mismatch: -2.003

Quality: 1516 Length: 305
Ratio: 4.970 Gaps: 0
Percent Similarity: 95.738 Percent Identity: 92.787

Match display thresholds for the alignment(s):

= IDENTITY

= 2

chimera.pep x baboon D3H.pep June 25, 1998 17:18

1 MAHYRNDYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATSVQLT 50 chim Bab 1 MAHYHNNYKKNDELEFVRTGYGKDMVKVLHIQRDGKYHSIKEVATSVQLT 50 51 LSSKKDYLHGDNSDVIPTDTIKNTVNVLAKFKGIKSIETFAVTICEHFLS 100 51 LSSKKDYLHGDNSDIIPTDTIKNTVHVLAKFKGIKSIEAFGVNICEYFLS 100 101 SFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP 150 101 SFNHVIRAQVYVEEIPWKRLEKNGVKHVHAFIHTPTGTHFCEVEQLRSGP 150 151 PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200 151 PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYH 200 201 QGRDVDFEATWDTVRSIVLQKFAGPYDKGEYSPSVQKTLYDIQVLSLSRV 250 201 QCRDVDFEATWGTIRDLVLEKFAGPYDKGEYSPSVQKTLYDIQVLSLSRV 250 251 PEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKTTGTVKRKL 300 251 PEIEDMEISLPNIHYFNIDMSKMGLINKEEVLLPLDNPYGKITGTVKRKL 300 301 SSRL* 305 1111

Fig. 11-1

Bestfit (GCG software) comparison of coding sequences of the cDNAs of Pig KS uricase ("PKS") vs. pig uricase

"Pig KS" uricase:

Pig cDNA from 1 to 864 (NdeI site) and then Baboon 865 to 915 (end)

Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: -9.000

Quality: 9036 Length: 915
Ratio: 9.875 Gaps: 0
Percent Similarity: 99.344 Percent Identity: 99.344

Match display thresholds for the alignment(s):

= IDENTITY

: = 5 . = 1

pigKS.seq x pig.seq July 25, 1998 10:14 ...

PKS	1	ATGGCTCATTACCGTAATGACTACAAAAGAATGATGAGGTAGAGTTTGT 50
pig	1	ATGGCTCATTACCGTAATGACTACAAAAGAATGATGAGGTAGAGTTTGT 50
	51	CCGAACTGGCTATGGGAAGGATATGATAAAAGTTCTCCATATTCAGCGAG 100
	51	CCGAACTGGCTATGGGAAGGATATGATAAAAGTTCTCCATATTCAGCGAG 100
	101	ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTGACT 150
	101	ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTGACT 150
	151	TTGAGCTCCAAAAAAGATTACCTGCATGGAGACAATTCAGATGTCATCCC 200
	151	TTGAGCTCCAAAAAAGATTACCTGCATGGAGACAATTCAGATGTCATCCC 200
	201	TACAGACACCATCAAGAACACAGTTAATGTCCTGGCGAAGTTCAAAGGCA 250
	201	
	251	TCAAAAGCATAGAAACTTTTGCTGTGACTATCTGTGAGCATTTCCTTTCT 300
		TCAAAAGCATAGAAACTTTTGCTGTGACTATCTGTGAGCATTTCCTTTCT 300
		TCCTTCAAGCATGTCATCAGAGCTCAAGTCTATGTGGAAGAAGTTCCTTG 350
		TCCTTCAAGCATCTCATCACACCTCATA A CONCATA
		GAAGCGTTTTGAAAACAATCCACTTAAAACAATCCACTTAAAAACAATCCACTTAAAAAA

12/18

Fig. 11-2

401	CTCCTACTGGAACGCACTTCTGTGAGGTTGAACAGATAAGGAATGGACCT	450
401	CTCCTACTGGAACGCACTTCTGTGAGGTTGAACAGATAAGGAATGGACCT	450
451	CCAGTCATTCTGGAATCAAAGACCTAAAAGTCTTGAAAACAACCA	500
451	CCAGTCATTCTGGAATCAAAGACCTAAAAGTCTTGAAAACAACCCA	500
501	GTCTGGCTTTGAAGGATTCATCAAGGACCAGTTCACCACCCTCCCT	550
501	GTCTGGCTTTGAAGGATTCATCAAGGACCAGTTCACCACCCTCCCT	550
551	TGAAGGACCGGTGCTTTGCCACCCAAGTGTACTGCAAATGGCGCTACCAC	600
551	TGAAGGACCGGTGCTTTGCCACCCAAGTGTACTGCAAATGGCGCTACCAC	600
601	CAGGGCAGAGATGTGGACTTTGAGGCCACCTGGGACACTGTTAGGAGCAT	650
601	CAGGGCAGAGATGTGGACTTTGAGGCCACCTGGGACACTGTTAGGAGCAT	650
651	TGTCCTGCAGAAATTTGCTGGGCCCTATGACAAAGGCGAGTACTCGCCCT	700
651	ŤĠŤĊĊŤĠĊÁĠĂĂĂŤŤŤĠĊŤĠĠĠĊĊĊŤĂŤĠĂĊĂĂĠĠĊĠĂĠŤĂĊŤĊĠĊĊĊŤ	700
	CTGTCCAGAAGACACTCTATGACATCCAGGTGCTCACCCTGGGCCAGGTT	750
701	•	750
	CCTGAGATAGAAGATATGGAAATCAGCCTGCCAAATATTCACTACTTAAA	800
751	CCTGAGATAGAAGATATGGAAATATCACTACTAAA	800
	CATAGACATGTCCAAAATGGGACTGATCAACAAGGAAGAGGTCTTGCTAC	850
	ĊĂŦĀĠĂĊĂŦĠŦĊĊĀĀĀĀŦĠĠĠĂĊŦĠĀŦĊĀĀĊĀĀĠĠĀĀĠĠŦĊŦŦĠĊŦĀĊ	850
851	CTTTAGACAATCCATATGGAAAAATTACTGGTACAGTCAAGAGGAAGTTG	900
851	CTTTAGACAATCCATATGGCÁGGÁTTÁCTGGTÁCÁGTCÁÁGÁGGÁÁGCTG	900
	TCTTCAAGACTGTGA 915	
2 O T	ACTTCAAGGCTGTGA 915	

Fig. 12-1

Bestfit (GCG software) comparison of coding sequences of the cDNAs of Pig KS uricase ("PKS") vs. baboon uricase

"Pig KS" uricase:

Pig cDNA from 1 to 864 (NdeI site) and then Baboon 865 to 915 (end)

Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: -9.000

Quality: 7573 Length: 915
Ratio: 8.277 Gaps: 0
Percent Similarity: 90.929 Percent Identity: 90.929

Match display thresholds for the alignment(s):

= IDENTITY

: = 5 . = 1

pigKS.seq x baboon.seq July 25, 1998 10:21 ...

PKS	1	ATGGCTCATTACCGTAATGACTACAAAAAGAATGATGAGGTAGAGTTTGT 50
bab		ATGGCCGACTACCATAACAACTATAAAAAGAATGATGAATTGGAGTTTGT 50
		CCGAACTGGCTATGGGAAGGATATGATAAAAGTTCTCCATATTCAGCGAG 100
		ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTGACT 150
		ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTTACT 150
		TTGAGCTCCAAAAAAGATTACCTGCATGGAGACAATTCAGATGTCATCCC 200
		TACAGACACCATCA AGA ACACACTTA ATTCTCCTCCCCA ACTTCA ACTCCCTCC
		TCAAAAGCATAGAAACTTTTGCTGTGACTATCTGTGAGCATTTCCTTTCT 300
		TCAAAAGCATAGAAGCCTTTGGTGTGAATATTTGTGAGTATTTTCTTTC
		TCCTTCAAGCATGTCATCAGAGCTCAAGTCTATGTGGAAGAAGTTCCTTG 350
	301	TCTTTTAACCATGTAATCCGAGCTCAAGTCTACGTGGAAGAAATCCCTTG 350
		GAAGCGTTTTGAAAAGAATGGAGTTAAGCATGTCCATGCATTTATTT
		400

Fig. 12-2

401	CTCCTACTGGAACGCACTTCTGTGAGGTTGAACAGATAAGGAATGGACCT	450
401	CTCCCACTGGAACACACTTCTGTGAAGTTGAACAACTGAGAAGTGGACCC	450
451	CCAGTCATTCTGGAATCAAAGACCTAAAAGTCTTGAAAACAACCCA	500
451	CCCGTCATTCATTCTGGAATCAAAGACCTCAAGGTCTTGAAAACAACACA	500
501	GTCTGGCTTTGAAGGATTCATCAAGGACCAGTTCACCACCCTCCCT	550
501	GTCTGGATTTGAAGGTTTCATCAAGGACCAGTTCACCACCCTCCCT	550
551	TGAAGGACCGGTGCTTTGCCACCCAAGTGTACTGCAAATGGCGCTACCAC	600
551	TGAAGGACCGATGCTTTGCCACCCAAGTGTACTGCAAGTGGCGCTACCAC	600
601	CAGGGCAGAGATGTGGACTTTGAGGCCACCTGGGACACTGTTAGGAGCAT	650
601	CAGTGCAGGGATGTGGACTTCGAGGCTACCTGGGGCACCATTCGGGACCT	650
651	TGTCCTGCAGAAATTTGCTGGGCCCTATGACAAAGGCGAGTACTCGCCCT	700
651		700
701	CTGTCCAGAAGACACTCTATGACATCCAGGTGCTCACCCTGGGCCAGGTT	750
701	CTGTGCAGAAGACCCTCTATGATATCCAGGTGCTCTCCCTGAGCCGAGTT	750
751	CCTGAGATAGAAGATATGGAAATCAGCCTGCCAAATATTCACTACTTAAA	800
751		800
801	CATAGACATGTCCAAAATGGGACTGATCAACAAGGAAGAGGTCTTGCTAC	850
801	TATAGACATGTCCAAAATGGGTCTGATCAACAAGGAAGAGGTCTTGCTGC	850
851	CTTTAGACAATCCATATGGAAAAATTACTGGTACAGTCAAGAGGAAGTTG	900
851	CATTAGACAATCCATATGGAAAAATTACTGGTACAGTCAAGAGGAAGTTG	900
901	TCTTCAAGACTGTGA 915	
901	TCTTCAAGACTGTGA 915	

15/18

Fig. 13-1

Bestfit (GCG software) comparison of coding sequences of the cDNAs of "original" pig-baboon chimeric uricase ("PBC") vs. pig uricase

"PBC" uricase:

Pig cDNA from 1 to 674 (Apa site) then Baboon cDNA from 675 to 915 (end). PBC chimeric cDNA can be cut out with NcoI plus BamHI

Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: -9.000

Quality: 8770 Length: 915
Ratio: 9.585 Gaps: 0
Percent Similarity: 97.814 Percent Identity: 97.814

Match display thresholds for the alignment(s):

= IDENTITY

: = 5 . = 1

PBC.seq x pig.seq July 25, 1998 08:10

PBC 1 ATGGCTCATTACCGTAATGACTACAAAAAGAATGATGAGGTAGAGTTTGT 50 PIG 1 ATGGCTCATTACCGTAATGACTACAAAAAGAATGATGAGGTAGAGTTTGT 50 51 CCGAACTGGCTATGGGAAGGATATGATAAAAGTTCTCCATATTCAGCGAG 100 51 CCGAACTGGCTATGGGAAGGATATGATAAAAGTTCTCCATATTCAGCGAG 100 101 ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTGACT 150 101 ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTGACT 151 TTGAGCTCCAAAAAAGATTACCTGCATGGAGACAATTCAGATGTCATCCC 200 151 TTGAGCTCCAAAAAAGATTACCTGCATGGAGACAATTCAGATGTCATCCC 200 201 TACAGACACCATCAAGAACACAGTTAATGTCCTGGCGAAGTTCAAAGGCA 250 201 TACAGACACCATCAAGAACACAGTTAATGTCCTGGCGAAGTTCAAAGGCA 250 251 TCAAAAGCATAGAAACTTTTGCTGTGACTATCTGTGAGCATTTCCTTTCT 300 301 TCCTTCAAGCATGTCATCAGAGCTCAAGTCTATGTGGAAGAAGTTCCTTG 350 351 GAAGCGTTTTGAAAAGAATGGAGTTAAGCATGTCCATGCATTTATTATA 400 351 GAAGCGTTTTGAAAAGAATGGAGTTAAGCATGTCCATGCATTTATTATA 400

16/18

Fig. 13-2

401	CTCCTACTGGAACGCACTTCTGTGAGGTTGAACAGATAAGGAATGGACCT	450
401	CTCCTACTGGAACGCACTTCTGTGAGGTTGAACAGATAAGGAATGGACCT	450
451	CCAGTCATTCATTCTGGAATCAAAGACCTAAAAGTCTTGAAAACAACCCA	500
451	CCAGTCATTCTGGAATCAAAGACCTAAAAGTCTTGAAAACAACCCA	500
501	GTCTGGCTTTGAAGGATTCATCAAGGACCAGTTCACCACCCTCCCT	550
501	GTCTGGCTTTGAAGGATTCATCAAGGACCAGTTCACCACCCTCCCT	550
551	TGAAGGACCGGTGCTTTGCCACCCAAGTGTACTGCAAATGGCGCTACCAC	600
551	TGAAGGACCGGTGCTTTGCCACCCAAGTGTACTGCAAATGGCGCTACCAC	600
601	CAGGCAGAGATGTGGACTTTGAGGCCACCTGGGACACTGTTAGGAGCAT	650
601	CAGGGCAGAGATGTGGACTTTGAGGCCACCTGGGACACTGTTAGGAGCAT	650
651	TGTCCTGCAGAAATTTGCTGGGCCCTATGACAAAGGCGAGTACTCACCCT	700
651	TGTCCTGCAGAAATTTGCTGGGCCCTATGACAAAGGCGAGTACTCGCCCT	700
701	CTGTGCAGAAGACCCTCTATGATATCCAGGTGCTCTCCCTGAGCCGAGTT	750
701	CTGTCCAGAAGACACTCTATGACATCCAGGTGCTCACCCTGGGCCAGGTT	750
751	CCTGAGATAGAAGATATGGAAATCAGCCTGCCAAACATTCACTACTTCAA	800
751	CCTGAGATAGAAGATATGGAAATCAGCCTGCCAAATATTCACTACTTAAA	800
801	TATAGACATGTCCAAAATGGGTCTGATCAACAAGGAAGAGGTCTTGCTGC	850
801	CATAGACATGTCCAAAATGGGACTGATCAACAAGGAAGAGGTCTTGCTAC	850
851	CATTAGACAATCCATATGGAAAAATTACTGGTACAGTCAAGAGGAAGTTG	900
851	CTTTAGACAATCCATATGGCAGGATTACTGGTACAGTCAAGAGGAAGCTG	900
901	TCTTCAAGACTGTGA 915	
901	ACTTCAAGGCTGTGA 915	

PBC

Bab

WO 00/08196 PCT/US99/17678

17/18

Fig. 14-1

Bestfit (GCG software) comparison of coding sequences of the cDNAs of "original" pig-baboon chimeric uricase ("PBC") vs. baboon uricase

"PBC" uricase:

Pig cDNA from 1 to 674 (Apa site) then Baboon cDNA from 675 to 915 (end). PBC chimeric cDNA can be cut out with NcoI plus BamHI

Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: -9.000

Quality: 7839 Length: 915
Ratio: 8.567 Gaps: 0
Percent Similarity: 92.459 Percent Identity: 92.459

Match display thresholds for the alignment(s):

= IDENTITY

: = 5 . = 1

PBC.seq x Wubaboon.seq July 25, 1998 09:36 .

1	ATGGCTCATTACCGTAATGACTACAAAAAGAATGATGAGGTAGAGTTTGT	50
1	ATGGCCGACTACCATAACAACTATAAAAAGAATGATGAATTGGAGTTTGT	50
51	CCGAACTGGCTATGGGAAGGATATGATAAAAGTTCTCCATATTCAGCGAG	100
51	CCGAACTGGCTATGGGAAGGATATGGTAAAAGTTCTCCATATTCAGCGAG	100
101		150
101	ATGGAAAATATCACAGCATTAAAGAGGTGGCAACTTCAGTGCAACTTACT	150
151	TTGAGCTCCAAAAAAGATTACCTGCATGGAGACAATTCAGATGTCATCCC	200
151		200
201	TACAGACACCATCAAGAACACAGTTAATGTCCTGGCGAAGTTCAAAGGCA	250
201	TACAGACACCATCAAGAACACAGTTCATGTCTTGGCAAAGTTTAAGGGAA	250
251	TCAAAAGCATAGAAACTTTTGCTGTGACTATCTGTGAGCATTTCCTTTCT	300
251	TCAAAAGCATAGAAGCCTTTGGTGTGAATATTTGTGAGTATTTTCTTTC	300
301		350
301	TCTTTTAACCATGTAATCCGAGCTCAAGTCTACGTGGAAGAAATCCCTTG	350
351	GAAGCGTTTTGAAAAGAATGGAGTTAAGCATGTCCATGCATTTATTT	400
351	GAAGCGTCTTGAAAAGAATGGAGTTAAGCATGTCCATGCATTTATTCACA	400

18/18

Fig. 14-2

401		450
401	CTCCCACTGGAACACACTTCTGTGAAGTTGAACAACTGAGAAGTGGACCC	450
451	CCAGTCATTCTGGAATCAAAGACCTAAAAGTCTTGAAAACAACCCA	500
451	CCCGTCATTCTGGAATCAAAGACCTCAAGGTCTTGAAAACAACACA	500
501	GTCTGGCTTTGAAGGATTCATCAAGGACCAGTTCACCACCCTCCCT	550
501	GTCTGGATTTGAAGGTTTCATCAAGGACCAGTTCACCACCCTCCCT	550
551	TGAAGGACCGGTGCTTTGCCACCCAAGTGTACTGCAAATGGCGCTACCAC	600
551	TGAAGGACCGATGCTTTGCCACCCAAGTGTACTGCAAGTGGCGCTACCAC	600
601	CAGGGCAGAGATGTGGACTTTGAGGCCACCTGGGACACTGTTAGGAGCAT	650
601	CAGTGCAGGGATGTGGACTTCGAGGCTACCTGGGGCACCATTCGGGACCT	650
651	TGTCCTGCAGAAATTTGCTGGGCCCTATGACAAAGGCGAGTACTCACCCT	700
651		700
701	CTGTGCAGAAGACCCTCTATGATATCCAGGTGCTCTCCCTGAGCCGAGTT	750
701	CTGTGCAGAAGACCCTCTATGATATCCAGGTGCTCTCCCTGAGCCGAGTT	750
751	CCTGAGATAGAAGATATGGAAATCAGCCTGCCAAACATTCACTACTTCAA	800
751	CCTGAGATAGAAGATATGGAAATCAGCCTGCCAAACATTCACTACTTCAA	800
801	TATAGACATGTCCAAAATGGGTCTGATCAACAAGGAAGAGGTCTTGCTGC	850
801	TATAGACATGTCCAAAATGGGTCTGATCAACAAGGAAGAGGTCTTGCTGC	850
851	CATTAGACAATCCATATGGAAAAATTACTGGTACAGTCAAGAGGAAGTTG	900
851	CATTAGACAATCCATATGGAAAAATTACTGGTACAGTCAAGAGGAAGTTG	900
901	TCTTCAAGACTGTGA 915	
901	TĊŤŤĊÁÁĠÁĊŤĠŤĠÁ 915	