Introdução ao Processamento Digital de Sinais

Processamento Digital de Sinais:

Refere-se a um grande número de técnicas, com aplicação em praticamente todas as áreas da Engenharia.

Objetivo:

Realçar alguma característica, ou extrair alguma informação contida em um sinal.

Os sinais podem ser de áudio, voz, imagem, vídeo, de sistemas de comunicação, médicos, etc, e podem ser de tempo contínuo ou de tempo discreto.

Por que trabalhar em tempo discreto se um dado sinal ou um dado sistema é de tempo contínuo?

Possibilidade da implementação ou do processamento ser feito por computadores digitais, microcontroladores e/ou processadores digitais de sinais (*DSP- Digital Signal Processor*).

Implementação ou processamento analógico

Possíveis problemas:

- projeto: pequena flexibilidade, componentes de precisão elevada.
- produção: necessidade de ajustes
- envelhecimento e interferências.

Implementação equivalente em tempo discreto

- FPBs: anti-aliasing; reconstrução
- flexibilidade (alteração do algoritmo)
- não exige ajustes
- sem problemas de envelhecimento
- robustez contra interferências

Sinais de tempo discreto

Alguns sinais são <u>naturalmente definidos para tempo</u> <u>discreto</u>, como por exemplo, os indicadores econômicos (cotação do dólar, índice IGP-M, etc) e o tacograma que indica a variabilidade da frequência cardíaca.

n	Dia últil	Compra
1	3	1.8632
2	4	1.8531
3	5	1.8392
4	6	1.8536
5	10	1.8641
6	11	1.8540
7	12	1.8450
8	13	1.8485
9	14	1.8357
10	17	1.8378

n	Dia últil	Compra
11	18	1.8366
12	19	1.8404
13	20	1.8512
14	21	1.8646
15	24	1.8880
16	25	1.8579
17	26	1.8558
18	27	1.8412
19	28	1.8350

Cotação de uma dada moeda

Sinais de tempo discreto

Muitas sequências de tempo discreto são obtidas a partir da amostragem de sinais de tempo contínuo.

1. Introdução

Implementação digital:

O processamento pode ser feito por meio de circuitos dedicados ou semidedicados: resume a registradores, somadores e multiplicadores.

Sistemas de tempo discreto

São descritos por equações de diferenças.

P.ex.:
$$y(n) = (1/3).[x(n)+x(n-1)+x(n-2)]$$
 para $n = ... -1,0,1,...$

Sua implementação (ou seus diagramas de simulação) contém atrasadores ao invés de integradores, além de somadores, multiplicadores por constante e etc. Para o exemplo acima, os valores

de b_i seriam 1/3 no diagrama ao lado.

Exemplos de aplicação

- Processamento de voz
- Processamento de imagem
- Telecomunicações
- Mercado financeiro
- Controle e automação industrial
- Sistemas de entretenimento (p.ex., Wii)
- Robótica
- Medicina
- etc, etc

Diagramas (fonte: D.G. Manolakis; V.K. Ingle. <u>Applied Digital Signal Processing: Theory and Practice</u>; Cambridge University Press; 1 ed 2011)

Figure 1.13 Simplified block diagram of idealized system for (a) continuous-time processing of discrete-time signals, and (b) its practical counterpart for digital processing of analog signals.

Processamento de voz

Análise

Síntese:

Codificação a baixas taxas Reconhecimento: palavras e locutor Síntese de voz a partir de texto

Processamento de Imagens

- Pode ser vista como um sinal discreto a duas dimensões: n e m são índices espaciais
- codificação a baixas taxas
- imagens lentas vídeofone
- imagens rápidas televisão
- Compressão de imagens: armazenamento
- TV de alta definição: HDTV

Diagrama Telefone celular (D.G. Manolakis; V.K. Ingle.

Applied Digital Signal Processing: Theory and Practice; Cambridge University Press; 1 ed 2011)

Figure 1.14 Simplified block diagram of a digital cellular phone.

Filtragem adaptativa

Aplicações: telecomunicações, controle, processamento de voz e imagem, engenahria biomédica, etc

Telecomunicações

Interferência intersimbólica (ISI)

Filtragem adaptativa

Equalizador de canal

Engenharia Biomédica

- Técnicas de processamento de imagens para diagnósticos:
 - tomografia por ultra som
 - imagem por ressonância magnética
 - reconstituição 3D a partir de um conjunto de radiografias
- Técnicas adaptativas para modelagem tempo real de sinais biomédicos
- Técnicas de análise temporal-espectral: ECG e EEG

Engenharia Biomédica

Sinal de ECG

- Processamento digital de sinais : Representação e manipulação de sinais usando técnicas numéricas em circuitos digitais
- Base necessária: sistemas lineares, álgebra linear, análise de Fourier. Além disso, teoria da probabilidade e processos estocásticos.
- As técnicas de processamento digital de sinais podem ser estendidas a qualquer que permita um modelo discreto.
- Por exemplo:
- meteorologia e astrofísica;
- Aplicações em empresas de telecomunicações (multiplexação e modulação), instrumentação eletrônica e biomédica (filtragem para eliminar ruído e interferências), informática (controle e gerenciamento).
- Multidisciplinar.

Dispositivos usados para processar sinais

- PC: General purpose personal computer.
- FPGA: Field programmable gate array; dispositivo lógico programável. Intermediário entre hardware discreto e CI totalmente dedicado. Exemplo: http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
- CI: circuitos integrados; hardware dedicado. Operações de multiplicação e soma de forma eficiente. (i) MC: microcontrolador; memória e recursos limitados. Usados em máquina de lavar e brinquedos. (ii) DSP: Digital Signal Processing processador digital de sinais. Desenvolvidos para processar aplicações "sofisticadas" de sinais. Exemplo: http://www.commagility.com/products/hardware/dsp