Math 137 Problem Set 4

Lev Kruglyak

April 27, 2022

I collaborated with AJ LaMotta for this problem set.

Throughout, K is assumed to be an algebraically closed field.

Problem 1. Let $K = \mathbb{C}$ and for any integers $a, b \geq 1$, consider the algebraic subset $V_{a,b} = \mathcal{V}(X^b - Y^a)$ of \mathbb{C}^2 and the morphism $\varphi_{a,b} : \mathbb{C} \to V_{a,b}$ sending t to (t^a, t^b) .

- (a) For which pairs (a, b) is $\varphi_{a,b}$ injective?
- (b) For which pairs (a, b) is $\varphi_{a,b}$ surjective?
- (c) For which pairs (a, b) is $\varphi_{a,b}$ an isomorphism?
- (d) (bonus) For which pairs (a, b) is $V_{a,b}$ isomorphic to K?
- (a) Suppose $\varphi_{a,b}$ is a morphism. Then $\varphi_{a,b}$ is injective if and only if whenever $(t_1^a, t_1^b) = (t_2^a, t_2^b)$ we have $t_1 = t_2$. So letting $z = t_1/t_2$, this is equivalent to saying $z^a = 1$ and $z^b = 1$ implies z = 1. Finding a $z \neq 1$ with $z^a = 1$ and $z^b = 1$ can only happen if a and b have a common divisor d, then z is a d-th root of unity. So $\varphi_{a,b}$ is injective if and only if a and b are coprime.
- (b) This is only true if a and b are relatively prime. Note that if a and b are not relatively prime, say d|a, b, then $(1, e^{2\pi i/a})$ has no preimage. This is because for some $t^a = 1$ and $t^b = e^{2\pi i/a}$, so t is an a-th and b-th root of unity. This can't happen since d|a, b.
- (c) $\varphi_{a,b}$ is an isomorphism if and only if the pullback map $\widetilde{\varphi_{a,b}}:\Gamma(V_{a,b})\to\Gamma(\mathbb{C})$ is an isomorphism. Note that $\widetilde{\varphi_{a,b}}:\mathbb{C}[x,y]/(x^b-y^a)\to\mathbb{C}[t]$ maps $f(x,y)\mapsto f(t^a,t^b)$. So the image of $\widetilde{\varphi_{a,b}}$ is $\mathbb{C}[t^a,t^b]$. Thus for $\varphi_{a,b}$ to be an isomorphism, either a or b must be 1. Conversely, if a=1 (without loss of generality), we have an inverse morphism $\varphi_{a,b}^{-1}:(t,t^b)\mapsto t$. So $\varphi_{a,b}$ is an isomorphism if and only if a=1 or b=1.

Problem 2.

(a) Consider the algebraic set

$$V = \{(x, y, z) \in K^3 \mid x^2 + y^2 = z^2\}.$$

Find a non-constant morphism $\varphi: K \to V$.

(b) Consider the algebraic set

$$W = \{(x, y) \in K^2 \mid x^2 + y^2 = 1\}.$$

Assuming that the field K has characteristic zero, show that there is no nonconstant morphism $\psi: K \to W$.

(a) Note that for any $m, n \in K$, we have the relation

$$(m^2 - n^2)^2 + (2mn)^2 = (m^2 + n^2)^2.$$

1

Then for any $\alpha \in K$, we have the morphism $\varphi_{\alpha} : K \to V$ which takes x to $(x^2 - \alpha^2, 2x\alpha, x^2 + \alpha^2)$.

(b) We'll prove that any morphism $\psi: K \to W$ must be constant, so let ψ be some morphism. Now consider the pullback map $\widetilde{\psi}: \Gamma(W) \to \Gamma(K)$. However $\Gamma(W) = K[x,y]/(x^2+y^2-1)$ and $\Gamma(K) = K[t]$. Let i be a root of x^2-1 in K (guaranteed because K is algebraically closed field of characteristic zero), and consider the map $f: K[z,z^{-1}] \to K[x,y]/(x^2+y^2-1)$ where z maps to y-ix and z^{-1} maps to y+ix.

This is clearly an isomorphism because it has inverse given by x mapping to $(z-z^{-1})/2i$ and y mapping to $(z+z^{-1})/2$. So $\widetilde{\psi}:\Gamma(W)\to\Gamma(K)$ can be thought of as a k-algebra map $K[z,z^{-1}]\to K[t]$. Such a map is determined by where z goes. However z is a unit in $K[z,z^{-1}]$, so it must map to $K\subset K[t]$. Thus the pullback map is constant, and so every morphism $\psi:K\to W$ must also be constant.

Problem 3.

- (a) Find algebraic subsets V_1, V_2 of \mathbb{C}^2 and functions $f_1 \in \Gamma(V_1)$ and $f_2 \in \Gamma(V_2)$ such that $f_1|_{V_1 \cap V_2} = f_2|_{V_1 \cap V_2}$ but there is no function $f \in \Gamma(V_1 \cup V_2)$ with $f|_{V_1} = f_1$ and $f|_{V_2} = f_2$.
- (b) Corollary 6.2 from class can fail when K is not algebraically closed: Find disjoint algebraic subsets V_1, V_2 of \mathbb{R}^2 and functions $f_1 \in \Gamma(V_1)$ and $f_2 \in \Gamma(V_2)$ such that there is no function $f \in \Gamma(V_1 \cup V_2)$ such that $f|_{V_1} = f_1$ and $f|_{V_2} = f_2$.
- (c) Show that Corollary 6.3 from class still holds when K is not algebraically closed: If $V \subseteq K^n$ is a finite set and $f: V \to K$ any function, there is a polynomial $g \in K[X_1, \ldots, X_n]$ such that f(P) = g(P) for all $P \in V$.
- (a) Let $V_1 = \mathcal{V}(y)$ and $V_2 = \mathcal{V}(y x^2)$. Define functions $f_1(x,y) = y \in \Gamma(V_1)$ and $f_2(x,y) = x \in \Gamma(V_1)$. The only place where these algebraic sets intersect is (0,0), and $f_1(0,0) = f_2(0,0) = 0$ so these satisfy the conditions of the problem. Now suppose for the sake of contradiction that $f \in \Gamma(V_1 \cup V_2)$ with $f|_{V_1} = f_1$ and $f|_{V_2} = f_2$. This means that f(x,0) = 0 and $f(x,x^2) = x$. Since f(x,0) = 0, it follows that f(x,y) = yg(x,y) for some polynomial g(x,y). Yet $f(x,x^2) = x^2g(x,y) = x$. This is clearly impossible, just by looking at the degree of x in both sides. So no such function exists.
- (b) Let $V_1 = \mathcal{V}(x^2 y + 1)$, $V_2 = \mathcal{V}(y)$, with $f_1 = x^2 + x \in \Gamma(V_1)$ and $f_2 = x \in \Gamma(V_2)$. Suppose f agrees with f_1, f_2 on V_1, V_2 respectively. Then f(x, 0) = x so f(x, y) = x + yg(x, y). Thus $f(x, x^2 + 1) = x + (x^2 + 1)g(x, x^2 + 1) = x^2 + x$, however this implies that $x^2|x^2 + 1$, a contradiction.
- (c) Let $\{P_1\}, \{P_2\}, \ldots, \{P_n\}$ be the set of points in V. Note that they are all algebraic sets. Let $I_i = \mathcal{I}(\{P_i\})$. Note that $I_i + I_j = K[X_1, \ldots, X_n]$, and since all of I_i are radical ideals, the Chinese remainder theorem implies that $\Gamma(V) \cong \Gamma(\{P_1\}) \times \cdots \times \Gamma(\{P_n\})$ by the map sending f to $(f(P_1), \ldots, f(P_n))$. This completes the proof, since we can pick a $f_i \in \Gamma(\{P_i\})$ taking on any value at P_i and lift this to a polynomial $f \in \Gamma(V)$.

Problem 4. Identify the space $M_n(K)$ of $n \times n$ -matrices with entries in K with the vector space K^{n^2} (by sending a matrix A to a vector consisting of its entries). For any $r \leq n$, consider the subset $V_r \subseteq M_n(K) = K^{n^2}$ of matrices of rank at most r.

- (a) Show that V_r is an algebraic subset of K^{n^2} .
- (b) Show that V_r is an irreducible subset of K^{n^2} .
- (a) Note that $V_r = \{A \in M_n(K) \mid \det(U) = 0 \text{ where } U \text{ is a } (r+1) \times (r+1) \text{ submatrix of } A \}$. Since $\det(U)$ is a polynomial in the terms of A for each (r+1)-submatrix U. Thus V_r is the intersection of finitely many algebraic sets and so is an algebraic subset of K^{n^2} .
- (b) Let $W_r \subset M_n(K)$ be the algebraic set of matrices of rank exactly r. Consider the irreducible algebraic subset $GL_n(K) \times GL_n(K)$ of K^{2n^2} . There is a Zariski continuous map $f : GL_n(K) \times GL_n(K) \to W_r$ given by

 $f(g,h)\mapsto gAh^{-1}$ for any rank r matrix $A\in W_r$. Note that this map is surjective. Then by Problem 7 on Set 3, $\overline{f}(\operatorname{GL}_n(K)\times\operatorname{GL}_n(K))$ is irreducible. But $\overline{f}(\operatorname{GL}_n(K)\times\operatorname{GL}_n(K))=\overline{W_r}=W_r\sqcup W_{r-1}\sqcup\cdots\sqcup W_0=V_r$. So V_r is irreducible.