Introduction to Real Analysis: Review

Asher Hancock

May 23, 2022

These notes were compiled and summarized in the context of the real numbers (\mathbb{R}). Therefore, certain theorems, e.g. Cauchy criterion for convergence, should be interpreted for \mathbb{R}^n . Additionally, these notes are not complete and cover only a subset of what is taught in a sequence of real analysis courses; for further reading, please see Dr. Jiří Lebl's website on real analysis.

Definitions

Element

If A is a set and x is an object that belongs to A, we say that x is an element of A and we write that $x \in A$. If x does not belong to A, we write $x \notin A$

Subsets

If A and B are sets such that each element of A is also an element of B (i.e. $x \in A \Rightarrow x \in B$), we say that A is a subset of B (or A is contained in B), written as $A \subset B$ (also $B \supset A$).

Clearly, $A \subset A$ and $\emptyset \subset A$

Equality of Sets

We use A = B to mean " $A \subset B$ and $B \subset A$ "

To show equality of sets, one must show both sides imply the other, i.e., $A \iff B$

Conditionals

Implication: $p \to q$

Converse: $q \to p$

Inverse: $\neg p \rightarrow \neg q$

Contrapositive $\neg q \rightarrow \neg p$

Complement

For a set A, we use A^C to denote its complement, i.e., $A^C = \{x : x \notin A\}$

The complement of B relative to A is defined as

$$A \setminus B := \{x : x \in A \text{ and } x \notin B\}$$

Thus, $A \setminus B = A \cap B^C$

Union

If A and B are sets, the union of A and B, written $A \cup B$, is the set of all objects which belong to at least one of the two sets A and B, i.e.

$$x \in A \cup B \iff x \in A \text{ or } x \in B$$

Intersection

If A and B are sets, the intersection of A and B, written $A \cap B$, is the set of all objects which belong to both A and B, i.e.

$$x \in A \cap B \iff x \in A \text{ and } x \in B$$

Infinite Unions

Let
$$A_1, A_2, A_3, \ldots$$
 be sets. We define their union by
$$\bigcup_{n=1}^{\infty} A_n = \{x : x \in A_n \text{ holds for at least one } n \in \mathbb{N} \}$$

Infinite Intersections

Let
$$A_1, A_2, A_3, \ldots$$
 be sets. We define their intersection by
$$\bigcap_{n=1}^{\infty} A_n = \{x : x \in A_n \text{ holds for all } n \in \mathbb{N}\}$$

Cartesian Product

The Cartesian Product of sets A and B, written $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$, i.e.,

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

In general, $A \times B \neq B \times A$

Functions

Let A and B be two sets. A function f from A to B (written as $f: A \to B$) is a rule that assigns to each a in A exactly one element b in B (this b will be denoted by f(a)).

Graph

Denote the graph of f as $G(f) = \{(a, f(a)) : a \in A\}$, which is a subset of $A \times B$. The two properties of G(f) are

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in G(f)$
- (ii) If $(a,b) \in G(f)$ and $(a,\tilde{b}) \in G(f)$, then $b = \tilde{b}$

Thus, G(f) describes all of the function's (input, output) pairs

Composition

Let $f:A\to B$ and $g:B\to C$ be two functions. We define $g\circ f:A\to C$ by $g\circ f(a)=g(f(a))$

Domain, Image, and Range

```
Let f:A\to B be a function. The set A is called the domain (of definition) of f. If E\subset A, we define the (direct) image of E under f by f(E)=\{f(x):x\in E\} By definition, we also see that f(E)\subset f(A)\subset B We call f(A) the range of f (written as R(f))
```

Inverse

Let
$$f:A\to B$$
 be a function and $H\subset B$. We define the inverse image of H under f by $f^{-1}(H)=\{x:x\in A \text{ and } f(x)\in H\}$
In general, $f^{-1}(f(E))\neq E$
This is only true if f is a bijection

Injectivity and Surjectivity

Let
$$f: A \to B$$
 be a function. Then f is Injective if for any $x_1, x_2 \in A$, $f(x_1) = f(x_2) \Rightarrow (x_1 = x_2)$
If f is Injective, then $|A| \leq |B|$
If $f(A) = B$ holds, we say that f is Surjective

Bijection

If f is both Injective and Surjective, we call f a Bijection from A to B. In general, if $f:A\to B$ is a Bijection from A to B, then $\forall y\in B,\,\exists$ a unique $x\in A$ such that f(x)=y \forall Bijection $f:A\to B,\,x\in A,\,y\in B,$ $f(x)=y\iff x=f^{-1}(y)$

Cardinality

If there exists a Bijection from A to B, we say that A and B have the same Cardinality, written as |A| = |B|Generally, for any two finite sets A and B,

 \exists a Bijection from A to $B \iff A$ and B have the same number of elements

Principle of Mathematical Induction

For each $n \in \mathbb{N}$, let P(n) be a statement about n. Suppose that

- (i) P(1) is true;
- (ii) For every $k \in \mathbb{N}$, P(k) implies P(k+1). Then P(n) is true for every $n \in \mathbb{N}$

If $n_0 \in \mathbb{N}$, and

- (i) $P(n_0)$ is true;
- (ii) For every $k \in \mathbb{N}$ satisfying $k \ge n_0$, P(k) implies P(k+1).

Then P(n) is true for every $n \in \mathbb{N}$ satisfying $n \geq n_0$

Divides

If a and $b \in \mathbb{Z}$ and $a \neq 0$, we say that a divides b if there exists a $c \in \mathbb{Z}$ such that b = ac. We write $a \mid b$ to say that a divides b.

$$a \mid b \iff c \in \mathbb{Z} : (b = ac)$$

Power Set

Let S be a set. The power set, P(S) of S, is given by $P(S) = \{A : A \subset S\}$ Generally, if S is finite and |S| = n, then $|P(S)| = 2^n$

Less Than or Equal To (\leq)

Let A and B be two sets. If there exists an Injective function from A to B, we write $|A| \leq |B|$ For elements, we use $x \leq y$ to mean that "x < y" or "x = y" "x < y" may also be written as "y > x" " $x \leq y$ " may also be written as " $y \geq x$ "

Finite and Infinite

Suppose that a set A has the same Cardinality as $\{1, 2, 3, ..., n\}$ for some $n \in \mathbb{N}$. We then write |A| := n and that A is Finite. While the Cardinality of \emptyset is 0, if $A = \emptyset$, we also say that A is Finite.

If A is not Finite, then we say A is Infinite or "of Infinite Cardinality"

Countably Infinite

If $|A| = |\mathbb{N}|$, then A is Countably Infinite Examples) $\mathbb{N}, 2\mathbb{N}, \mathbb{Z}, \mathbb{Q}$

Countable and Uncountable

If |A| is Finite or Countably Infinite, we say that A is Countable. If A is not Countable, then A is said to be Uncountable.

Binary Relations

Let S be a set. If W is a subset of $S \times S$, we call W a Binary Relation on the set S

Ordered Sets

A set S is called an Ordered Set if there exists a Relation < on S such that

(i - Trichotomy) $\forall x, y \in S$. exactly one of the following holds:

$$x < y, x = y, y < x$$

- (ii Transitivity) $\forall \ x, \ y, \ z \in S, \ \text{if} \ x < y \ \text{and} \ y < z,$ then x < z
- (iii Def. of \leq) if $x \leq y$ and $y \leq x$, then x = y where $x \leq y \iff x < y$ or x = y

Equivalence Relations

Let \sim be a binary relation on A

- (i) We say that \sim is reflective if $a \sim a$ for every $a \in A$
- (ii) We say that \sim is symmetric if for every $a, b \in A$ with $a \sim b$ we also have $b \sim a$
- (iii) We say that \sim is transitive if for every $a, b, c \in A$ satisfying $a \sim b$ and $b \sim c$ we also have $a \sim c$

A binary relation on the set A which is reflexive, symmetric, and transitive is an equivalence relation

Equivalence Class

Let \sim be an equivalence relation on A. For any $a \in A$, the equivalence class of a is $[a] = \{b \in A : a \sim b\}$

In other words, the equivalence class of a is all elements $b \in A$ such that $a \sim b$

Note: Let \sim be an equivalence relation on A. Then every member of A is in one and only one equivalence class.

Partition

A partition of a set A is a collection P of subsets of A such that every element in A is in exactly one of these subsets Let \sim be an equivalence relation on a set A. The equivalence classes of \sim form a partition of A. In fact, if P is a partition of A, then we can use it to define an equivalence relation on A with equivalence classes given by P.

Upper and Lower Bounds

Let S be an Ordered Set and $E \subset S$.

If for a certain $u \in S$, $x \le u$ holds $\forall x \in E$, we call u an Upper Bound of E (and we say that E is bounded above and write $E \le u$).

If for a certain $v \in S$, $x \ge v$ holds $\forall x \in E$, we call v a Lower Bound of E (and we say that E is bounded below and write E > v).

If for a subset S is bounded above and below, we say that S is Bounded

Least Upper Bound (Supremum)

Let S be an Ordered set and $E \subset S$. An element b is called the Least Upper Bound of E (written as b = sup(E) or b = supE if (i) and (ii) are true:

- (i) $E \leq b$ (i.e., b is an Upper Bound of E)
- (ii) if $\tilde{b} \in S$ and $E \leq \tilde{b}$, then $b \leq \tilde{b}$ (i.e., b is the Least Upper Bound)
 - (ii') if $\tilde{b} \in S$ and $\tilde{b} < b$, then \tilde{b} is not an Upper Bound of E
 - (ii") if $\tilde{b} \in S$ and $\tilde{b} < b$, then $\exists t \in E$ such that $t > \tilde{b}$
 - Thus, (ii) \iff (ii') \iff (ii")

Greatest Lower Bound (Infimum)

Let S be an Ordered Set and $E \subset S$. An element d is called the Greatest Lower Bound of E (written as $d = \inf(E)$ or $d = \inf E$ if the following are true:

- (i) $E \ge d$ (i.e., d is a Lower Bound of E)
- (ii) if $d \in S$ and $E \geq \tilde{d}$, then $d \geq \tilde{d}$ (i.e., d is the Greatest Lower Bound)

Binary Operations

A Binary Operation on a set S is a function from $S \times S$ to S.

Thus, it takes a pair of elements in S and maps it to an element also in S

Let $a, b, c \in S$ and let * be a Binary Operator. Then $(a = b) \rightarrow (a * c = b * c)$

Symmetric Difference

Given sets X, Y, the Symmetric Difference is $(X \setminus Y) \cup (Y \setminus X)$

Least Upper Bound Property

If every non-empty subset $E \in A$ is bounded above and has a least upper bound $(sup(E) \in A)$, then A has the least upper bound property

Fields

A set F is called a field if it has two operations defined on it, addition and multiplication, and if $\forall x, y, z \in F$, the following axioms are satisfied:

A1, A2, A3, A4, A5, M1, M2, M3, M4, M5, D

Ordered Field

A set F is called an ordered field if it has two operations defined on it, addition and multiplication, and if $\forall x, y, z \in F$, the following axioms are satisfied:

- (i) For $x, y, z \in F$, x < y implies x + z < y + z
- (ii) For $x, y \in F$, x > 0 and y > 0 implies xy > 0
- (iii) $x \leq x$

Real Numbers

The set of Real Numbers, \mathbb{R} , is a nonempty set equipped with the three following properties:

 \mathbb{R} is an ordered set.

 \mathbb{R} is has the least upper bound property.

 \mathbb{R} is a ordered field.

Absolute Value

```
\forall x \in \mathbb{R}, we define |x| by |x| = x if x > 0 |x| = 0 if x = 0 |x| = -x if x < 0 By definition, |x| > 0 if x > 0 or x < 0 |x| = 0 if x = 0
```

Be careful when proving statements involving || that you test for negative and non-negative values (need cases)

Intervals

```
Let a, b \in \mathbb{R} and a \le b
(a, b) = \{x \in \mathbb{R} : a < x < b\}
[a, b] = \{x \in \mathbb{R} : a \le x \le b\}
(a, b] = \{x \in \mathbb{R} : a < x \le b\}
[a, b) = \{x \in \mathbb{R} : a \le x < b\}
(a, \infty) = \{x \in \mathbb{R} : x > a\}
[a, \infty) = \{x \in \mathbb{R} : x \ge a\}
(-\infty, b) = \{x \in \mathbb{R} : x < b\}
(-\infty, b) = \{x \in \mathbb{R} : x \le b\}
(-\infty, b) = \mathbb{R}
```

We call [a, b] a Closed and Bounded Interval

Infinite Sequences (of Real Numbers)

```
An Infinite Sequence of Real Numbers is a Function from \mathbb{N} to \mathbb{R}, i.e., \alpha : \mathbb{N} \to \mathbb{R}
Notation: \{\alpha_n\}_{n=1}^{\infty} : \alpha_1, \alpha_2, \alpha_3, \dots
```

Infinite Sequences and Bounds

```
If \exists u \in \mathbb{R} such that \alpha_n \leq u \,\forall n \in \mathbb{N}, we say that the sequence \{\alpha_n\}_{n=1}^{\infty} is Bounded Above and we call u and Upper Bound of the sequence \{\alpha_n\}_{n=1}^{\infty} If \exists v \in \mathbb{R} such that \alpha_n \geq v \,\forall n \in \mathbb{N}, we say that the sequence \{\alpha_n\}_{n=1}^{\infty} is Bounded Below and we call v a Lower Bound of the sequence \{\alpha_n\}_{n=1}^{\infty} A Sequence is Bounded if it is Bounded Above and Bounded Below
```

Limit

Let $\{\alpha_n\}_{n=1}^{\infty}$ be a sequence and $L \in \mathbb{R}$. We say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to L if the following is true $\forall \ \epsilon > 0, \ \exists \ K = K(\epsilon) \in \mathbb{N}$ such that $|\alpha_n - L| < \epsilon \ \forall \ n \geq K$

In this case, we call L the limit of the sequence $\{\alpha_n\}_{n=1}^{\infty}$ and write $\lim_{x\to\infty}\alpha_n=L$

Convergence and Divergence

If a sequence has a Limit, it is said to be Convergent. Otherwise, it is said to be Divergent

Subsequences

If $\{n_k\}_{k=1}^{\infty}$ is an infinite sequence of natural numbers satisfying $n_1 < n_2 < n_3 < \cdots < n_k < n_{k+1} < \cdots$ we call $\{x_{n_k}\}_{k=1}^{\infty}$ a subsequence of $\{x_n\}_{n=1}^{\infty}$

Increasing Sequence

If
$$x_n \le x_{n+1} \ \forall \ n \in \mathbb{N}$$
, i.e.,
 $x_1 \le x_2 \le x_3 \le \cdots \le x_n \le x_{n+1} \le \cdots$,
then we call $\{x_n\}_{n=1}^{\infty}$ an increasing sequence

Decreasing Sequence

If
$$x_n \ge x_{n+1} \ \forall \ n \in \mathbb{N}$$
, i.e.,
 $x_1 \ge x_2 \ge x_3 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots$,
then we call $\{x_n\}_{n=1}^{\infty}$ a decreasing sequence

Monotone Sequence

If $\{x_n\}_{n=1}^{\infty}$ is an increasing or decreasing sequence, we call it a Monotone Sequence

Cauchy Sequences

 $\{x_n\}_{n=1}^{\infty}$ is called a Cauchy Sequence if it satisfies the following: $\forall \ \epsilon > 0, \ \exists \ K = K(\epsilon) \in \mathbb{N} \ \text{such that}$ $|x_n - x_m| < \epsilon \ \forall \ n, m \geq K$

Contractive Sequences

A sequence $\{x_n\}_{n=1}^{\infty}$ is said to be contractive if $\exists \lambda$ such that

- (i) $0 < \lambda < 1$
- (ii) $|x_n x_{n-1}| \le \lambda |x_{n-1} x_{n-2}| \ \forall \ n \ge 3$

Note that in order to verify contractiveness, one needs a λ in (0,1), which is INDEPENDENT of n

Liminf and Limsup

For every bounded sequence $\{x_n\}_{n=1}^{\infty}$, we define $\liminf_{n\to\infty} x_n$ and $\limsup_{n\to\infty} x_n$ by $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} [\inf(T_n)]$ $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} [\sup(T_n)]$ where T_n is a subset of $\{x_n\}_{n=1}^{\infty} \ \forall \ n\in\mathbb{N}$

Infinite Series

Starting with an infinite sequence, $\{x_n\}_{n=1}^{\infty}$, $x_1, x_2, x_3, \cdots, x_n, x_{n+1}, x_{n+2} \cdots$, we simply change , to + $x_1 + x_2 + x_3 + \cdots + x_n + x_{n+1} + x_{n+2} + \cdots$, which is just a formal sum at the moment Thus, this formal sum is called an Infinite Series and can be expressed as $\sum_{n=1}^{\infty} x_n$

Partial Sums

$$\forall n \in \mathbb{N}, let$$

$$s_n = x_1 + x_2 + x_3 + \dots + x_n = \sum_{k=1}^n x_k$$

Then $s_n \in \mathbb{R}$ (A1) and we call s_n the n-th partial sum of the series $\sum_{n=1}^{\infty} x_n$

Convergent Series

If the partial sum sequence $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence, we call $\sum_{n=1}^{\infty} x_n$ a convergent series, and we also call $\lim_{n\to\infty} s_n$ the sum of the series $\sum_{n=1}^{\infty} x_n$. Thus,

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n$$

Divergent Series

If the partial sum sequence $\{s_n\}_{n=1}^{\infty}$ is a divergent sequence, we call $\sum_{n=1}^{\infty} x_n$ a divergent

Geometric Series

The general form of a geometric series is

$$\sum_{n=1}^{\infty} ar^n \text{ or }$$

$$\sum_{n=0}^{\infty} ar^n = \sum_{n=1}^{\infty} ar^{n-1}$$
where a and r are constants

Telescoping Series

A telescoping series is a series whose partial sums consists of only two terms after cancellation

Absolute Convergence

If
$$\sum_{n=1}^{\infty} |x_n|$$
 is a convergent series, the series $\sum_{n=1}^{\infty} x_n$ is called absolutely convergent

Conditional Convergence

If
$$\sum_{n=1}^{\infty} |x_n|$$
 is a divergent series, but the series $\sum_{n=1}^{\infty} x_n$ is convergent, the series $\sum_{n=1}^{\infty} x_n$ is called conditionally convergent

7

Theorems

Theorem 1 (Set Complements)

Let A and B be two sets. Then

(i)
$$A = (A^C)^C$$

(ii)
$$A \subset B \iff B^C \subset A^C$$

Theorem 2 (Set Identities)

Let A and B and C and D be sets. Then

(i)
$$A \cup A = A$$
, $A \cap A = A$, $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$, $A \setminus \emptyset = A$,

(ii)
$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

(iii)
$$A \cap B \subset A \subset A \cup B$$
, $A \cap B \subset B \subset A \cup B$

(iv) Suppose
$$A \subset B$$
 and $C \subset D$

$$A \cap C \subset B \cap D$$

$$A \cup C \subset B \cup D$$

Theorem 3 (Generalized DeMorgan's Law)

Let A and B and C be sets. Then

(i)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

(ii)
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Theorem 4 (Bijective Compositions)

Let $f:A\to B$ and $g:B\to C$ be two functions. Then

(i) If
$$f$$
 and g are both Injective, then $g \circ f$ is also Injective

(ii) If f and g are both Surjective, then
$$g \circ f$$
 is also Surjective

Theorem 5 (Cantor's Theorem)

Let S be an arbitrary set and $f: S \to P(S)$ be a function. Then f is not Surjective. $f(S) \neq P(S)$

It then follows that there exists no Bijections from S to P(S), i.e., $|S| \neq |P(S)|$

Theorem 6 (Cantor-Bernstein-Schroeder Theorem)

Let A and B be two sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|

Theorem 7 (Additive and Multiplicative Identities)

(i)
$$\forall x, y \in \mathbb{R}$$
, if $x + y = x$, then $y = 0$

(ii)
$$\forall x, y \in \mathbb{R}$$
, if $x + y = 0$, then $y = -x$

(iii)
$$\forall u \in \mathbb{R}, u0 = 0 = 0u$$

(iv)
$$\forall a, b \in \mathbb{R}, a(-b) = -(ab) = (-a)b$$

Theorem 8 (Inequality Identities)

Let $x, y, z \in \mathbb{R}$

(i) If
$$x < 0$$
 then $-x > 0$

(ii) If
$$x > 0$$
 and $y < z$, then $xy < xz$

(ii*) If
$$x \ge 0$$
 and $y \le z$, then $xy \le xz$

(iii) If
$$x < 0$$
 and $y < z$, then $xy > xz$

(iii*) If
$$x \le 0$$
 and $y \le z$, then $xy \ge xz$

(iv) If
$$x \neq 0$$
, then $xx = x^2 > 0$

It follows that
$$n \geq 1 \ \forall \ n \in \mathbb{N}$$
 by O2

(v) If
$$0 < x$$
, and $x < y$ (written as $0 < x < y$), then $\frac{1}{x}, \frac{1}{y}$ both exist in \mathbb{R} , and satisfy $\frac{1}{x} > 0$, $\frac{1}{y} > 0$, and $\frac{1}{x} > \frac{1}{y}$ i.e., $\frac{1}{x} > \frac{1}{y} > 0$,

Theorem 9 (Multiplication of Same Signs are Positive)

If x and $y \in \mathbb{R}$ and xy > 0, then either x and y are both positive or both negative

Theorem 10 (No Least Positive Number)

Suppose that $a_o \in \mathbb{R}$ and $a_o \geq 0$. If $a_o < \epsilon$ holds $\forall \epsilon \in \mathbb{R}^+$, then $a_o = 0$

Theorem 11a (Bounded Sup Subsets)

Let A and B be two sets such that $A \subset B \subset \mathbb{R}$ and $A \neq \emptyset$. Suppose that B is bounded above. Then both sup(A) and sup(B) exist in \mathbb{R} and satisfy $sup(A) \leq sup(B)$.

Theorem 11b (Bounded Inf Subsets)

Let A and B be two sets such that $A \subset B \subset \mathbb{R}$ and $A \neq \emptyset$. Suppose that B is bounded below. Then both inf(A) and inf(B) exist in \mathbb{R} and satisfy $inf(A) \geq inf(B)$.

Theorem 12a (Exact Sup)

Suppose that $\emptyset \neq S \subset \mathbb{R}$, $a_o \in S$ and $S \leq a_o$. Then sup(S) exists in \mathbb{R} and $sup(S) = a_o$

Theorem 12b (Exact Inf)

Suppose that $\emptyset \neq S \subset \mathbb{R}$, $a_o \in S$ and $S \geq a_o$. Then $\inf(S)$ exists in \mathbb{R} and $\inf(S) = a_o$

Theorem 13 (Archimedean Property)

"Given an element in \mathbb{R} , there exists an element in \mathbb{N} that is greater."

- (i) If $x, y \in \mathbb{R}$ and x > 0, then $\exists n = n_{x,y} \in \mathbb{N}$ such that
 - nx > y
- (ii) $\forall t \in \mathbb{R}, \exists m_t \in \mathbb{N} \text{ such that}$
 - $m_t > t$

(ii) says that $\forall t \in \mathbb{R}$, t cannot be an upper bound of \mathbb{N} , which means that \mathbb{N} has no upper bounds in \mathbb{R} (i.e. \mathbb{N} is not bounded above).

We note that $\emptyset \neq \mathbb{N} \subset \mathbb{R}$

(Corollary) If $\delta \in \mathbb{R}$ and $\delta > 0$, then $\exists n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \delta$

Theorem 14 (Existence of Irrational Numbers)

- (i) $\forall r \in \mathbb{Q}, r^2 \neq 2$
- (ii) \exists a unique $u \in \mathbb{R}$ such that u > 0 and $u^2 = 2$

The set of Irrational Numbers is denoted as $\mathbb{R} \setminus \mathbb{Q}$

Theorem 15 (Unique Bases and Exponents)

Let $b \in \mathbb{R}^+$ and $m \in \mathbb{N}$. Then \exists a unique $d \in \mathbb{R}$ such that d > 0 and $d^m = b$. This d will be denoted as $b^{\frac{1}{m}}$ or $\sqrt[m]{b}$

Theorem 16 (Density of Rational Numbers)

 $\forall \ x, \, y \in \mathbb{R}, \, \text{if} \, \, x < y, \, \text{then} \, \, \exists \, \, r \in \mathbb{Q} \, \, \text{such that} \\ x < r < y$

Theorem 17 (Properties of Rational and Irrational Numbers)

Let $r_1, r_2, r \in \mathbb{Q}$ and $z \in \mathbb{R} \setminus \mathbb{Q}$. Then

- (i) $r_1 + r_2, r_1 r_2, (r_1)(r_2) \in \mathbb{Q}$
- (ii) If $r_2 \neq 0$, then $\frac{r_1}{r_2} \in \mathbb{Q}$
- (iii) r + z, r z, $z r \in \mathbb{R} \setminus \mathbb{Q}$
- (iv) If $r \neq 0$, then (r)(z), $\frac{r}{z}$, $\frac{z}{r} \in \mathbb{R} \setminus \mathbb{Q}$

Note that (z)(z) is not shown since anything can happen in this case

Theorem 18 (Density of Irrational Numbers)

$$\forall \ x, \, y \in \mathbb{R}, \, \text{if} \, \, x < y, \, \text{then} \, \, \exists \, \, z \in \mathbb{R} \setminus \mathbb{Q} \, \, \text{such that} \\ x < z < y$$

Theorem 19 (Properties of Absolute Values)

Let $x, y, z \in \mathbb{R}$. Then

- (i) $|x| \ge 0$, with "=" occurring if and only if x = 0
- (ii) |-x| = |x|
- (iii) |xy| = |x||y|
- (iv) $x^2 = |x^2| = |x|^2$
- (v) If $z \ge 0$, then $|x| \le z \iff -z \le x \le z$
- (v*) If z > 0, then $|x| < z \iff -z < x < z$
- (vi) $-|x| \le x \le |x|$

Theorem 20 (Triangle Inequality)

 $\forall x, y \in \mathbb{R},$

- (i) $|x + y| \le |x| + |y|$
- (ii) $|x y| \ge ||x| |y||$

Part (i) is commonly referred to as the Triangle Inequality. For the " \leq " in (i), "=" occurs if xy > 0, while "<" occurs if xy < 0

Theorem 21 (Nested Interval Theorem)

For each $n \in \mathbb{N}$, let $a_n, b_n \in \mathbb{R}$ such that $a_n \leq b_n$, and $I_n = [a_n, b_n]$ (Closed and Bounded).

Suppose that $I_1 \supset I_2 \supset I_3 \supset \ldots \supset I_n \supset I_{n+1} \supset \ldots$ Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$

 $\stackrel{n=1}{\text{Note:}}$ The Nested Interval Theorem only applies to a Closed and Bounded Interval

One can show that $[sup(A), inf(B)] = \bigcap_{n=1}^{\infty} I_n$

Note: It is possible for the Intersection of Nested Open Intervals to be Empty

Theorem 22 (\mathbb{R} is Uncountable)

The interval [0,1] is an Uncountable set. Thus, since $[0,1] \subset \mathbb{R}$, \mathbb{R} is also Uncountable

Infinite Sequence Remark (Symmetric Bounds)

If
$$v \leq \alpha_n \leq u$$
, one can show that $|\alpha_n| \leq C$
i.e., $-C \leq \alpha_n \leq C$, where $C = |u| + |v|$. Thus, $\left(\{\alpha_n\}_{n=1}^{\infty} \text{ is Bounded}\right) \iff \exists \ C \in \mathbb{R} \text{ such that } |\alpha_n| \leq C \ \forall \ n \in \mathbb{N}$

Theorem 23 (Repeating Sequences Are Convergent)

Let
$$C_o \in \mathbb{R}$$
. Define $\{a_n\}_{n=1}^{\infty}$ by $a_n = C_o \ \forall \ n \in \mathbb{N}$
Then $\{a_n\}_{n=1}^{\infty}$ converges to C_o , i.e., $\lim_{x \to \infty} a_n = C_o$
Since $a_n = C_o \ \forall \ n \in \mathbb{N}$, $\lim_{x \to \infty} a_n = C_o$ can be written as $\lim_{x \to \infty} C_o = C_o$

Theorem 24 (Convergent Sequences)

If a sequence $\{a_n\}_{n=1}^{\infty}$ is Convergent, then it must be Bounded Note: If a sequence is Bounded, that does NOT mean it is Convergent

 $Convergent \Rightarrow Bounded$

Not Bounded \Rightarrow Divergent

Theorem 25 (Convergent Sequence Bounded by Convergent Sequence)

Let $n_o \in \mathbb{N}$, $c_o \in \mathbb{R}$, and $L \in \mathbb{R}$. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{a_n\}_{n=1}^{\infty}$ satisfy

- (i) $|x_n L| \le c_o a_n \ \forall \ n \ge n_o$
- (ii) $\lim_{n\to\infty} a_n = 0$

Then $\{x_n\}_{n=1}^{\infty}$ converges to L, i.e., $\lim_{n\to\infty} x_n = L$

Theorem 26 (Convergent Subsequences)

A sequence $\{x_n\}_{n=1}^{\infty}$ is convergent if and only if all subsequences of $\{x_n\}_{n=1}^{\infty}$ converge to the same limit.

- (i) It follows then that, if $\lim_{n\to\infty} x_n$ exists, then $\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n$ holds for every subsequence $\{x_{n_k}\}_{n=1}^{\infty}$
- (ii) A sequence $\{x_n\}_{n=1}^{\infty}$ is convergent if and only if if a tail of $\{x_n\}_{n=1}^{\infty}$ is convergent. Moreover, $\forall p \in \mathbb{N}$, $\lim_{n \to \infty} x_n = 1$ $\lim_{n\to\infty} x_{n+p}$ if the limit exists. Note: ONLY NEED TO SHOW A SINGLE TAIL IS CONVERGENT.

(Remark 1): If $\{x_n\}_{n=1}^{\infty}$ has a divergent subsequence, then $\{x_n\}_{n=1}^{\infty}$ is divergent itself

(Remark 2): If $\{x_n\}_{n=1}^{\infty}$ has two subsequences which converge to different limits, then $\{x_n\}_{n=1}^{\infty}$ must be a divergent sequence

Theorem 27 (Properties of Limits)

Note: You must show $\{x_n\}$ and $\{y_n\}$ to already be convergent.

Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two convergent sequences. Let $c \in \mathbb{R}$. Then

- (i) $\{x_n + y_n\}_{n=1}^{\infty}$ and $\{x_n y_n\}_{n=1}^{\infty}$ are both convergent and $\lim_{n \to \infty} (x_n \pm y_n) = \lim_{n \to \infty} (x_n) \pm \lim_{n \to \infty} (y_n)$ (ii) $\{x_n y_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n \to \infty} (x_n y_n) = (\lim_{n \to \infty} x_n)(\lim_{n \to \infty} y_n)$ (iii) $\{cy_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n \to \infty} (cy_n) = c(\lim_{n \to \infty} y_n)$

- (iv) If $\lim_{n\to\infty} y_n \neq 0$ and $y_n \neq 0$, then $\left\{\frac{x_n}{y_n}\right\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$
- (v) $\{|x_n|\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} |x_n| = \lim_{n\to\infty} |x_n|$
- (vi) If $x_n \geq 0 \ \forall \ n \in \mathbb{N}$, then $\{\sqrt{x_n}\}_{n=1}^{\infty}$ is convergent and $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{\lim_{n \to \infty} x_n}$

Theorem 28 (If Sequence Less Than, Then Limit Less Than)

If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are both convergent and $a_n \leq b_n \ \forall \ n \in \mathbb{N}$, then

Note: This does NOT hold for strict inequality

Theorem 29 (Squeeze Theorem)

Let $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$, and $\{z_n\}_{n=1}^{\infty}$ be three sequences satisfying $x_n \leq y_n \leq z_n \ \forall \ n \in \mathbb{N}$. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ are both convergent and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = L$. Then $\{y_n\}_{n=1}^{\infty}$ is also convergent and $\lim_{n\to\infty} y_n = L$

Note: "≤" is preserved under the limit.

Note: "<" is NOT preserved under the limit.

Note: STRICT INEQUALITY IS NOT PRESERVED UNDER THE LIMIT

Theorem 30 (Geometric Sequence Theorem)

- (i) if $r \in \mathbb{R}$ and |r| < 1, then $\lim_{n \to \infty} r^n = 0$
- (ii) if $\beta \in \mathbb{R}$ and $\beta > 0$, then $\lim_{n \to \infty} \beta^{\frac{1}{n}} = 1$

Bernoulli Inequality

Let
$$\alpha \in \mathbb{R}$$
 and $\alpha > -1$. Then $(1 + \alpha)^n \ge 1 + n\alpha$

Theorem 31 (Ratio Test for Sequences)

Suppose that $x_n \neq 0 \ \forall \ n \in \mathbb{N}$ and $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exists

- (i) If $\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| < 1$, then $\lim_{n\to\infty} x_n = 0$
- (ii) If $\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| > 1$, then $\{x_n\}_{n=1}^{\infty}$ is a divergent sequence (ii) If $\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| = 1$, then no conclusion can be made

Theorem 32 (Monotone Convergence Theorem)

- (i) If $\{x_n\}_{n=1}^{\infty}$ is increasing and bounded above, then $\{x_n\}_{n=1}^{\infty}$ is convergent Note: x_1 is a lower bound by default
- (ii) If $\{x_n\}_{n=1}^{\infty}$ is decreasing and bounded below, then $\{x_n\}_{n=1}^{\infty}$ is convergent Note: x_1 is an upper bound by default

Thus, every bounded monotone sequence must be convergent

Theorem 33 (Bolzano-Weierstrass)

Every bounded sequence must have at least one convergent subsequence

Theorem 34 (Cauchy Criterion for Convergent Sequences)

A sequence is convergent if and only if it is a Cauchy Sequence $(Convergent) \iff (Cauchy)$

Theorem 35 (Contractive Sequences Converge)

If $\{x_n\}_{n=1}^{\infty}$ is a contractive sequence, then it is a convergent sequence

Theorem 36 (Bounded Sequences and LimSup, LimInf)

A bounded sequence $\{x_n\}_{n=1}^{\infty}$ is convergent if and only if $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$

Theorem 37 (Geometric Series Test)

Let $a, r \in \mathbb{R}$ and $a \neq 0$

- (i) If |r| < 1, then the series $\sum_{n=1}^{\infty} ar^n$ is a convergent series whose sum is $\frac{ar}{1-r}$
- (i*) If |r| < 1, then the series $\sum_{n=0}^{\infty} ar^n$ is a convergent series whose sum is $\frac{a}{1-r}$
- (i**) If |r| < 1, then the series $\sum_{n=0}^{\infty} ar^n$ is a convergent series whose sum is $\frac{leading term}{1-r}$
- (ii) If $|r| \geq 1$, then the series $\sum_{n=1}^{\infty} ar^n$ is a divergent series

Theorem 38 (Divergent Series Test or N-th Term Test)

- (i) If $\sum_{n=0}^{\infty} x_n$ is a convergent series, then $\lim_{n\to\infty} x_n = 0$
- (ii) If $\lim_{n\to\infty} x_n$ does not exist or it exists but is nonzero, then $\sum_{n=1}^{\infty} x_n$ is a divergent series

Note: $\lim_{n\to\infty} x_n = 0$ DOES NOT IMPLY $\sum_{n=0}^{\infty} x_n$ is a convergent series or a divergent series; thus, we cannot conclude anything in this case

Theorem 39 (Positive Series Test)

Suppose that $x_n \ge 0 \ \forall \ n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} x_n$ is convergent if and only if its partial sum sequence $\{s_n\}_{n=1}^{\infty}$ is bounded above

Theorem 40 (Comparison Test)

Suppose that $\forall n \in \mathbb{N}, 0 \leq a_n \leq b_n$

- (i) If $\sum_{n=1}^{\infty} b_n$ is a convergent series, then $\sum_{n=1}^{\infty} a_n$ is also a convergent series (ii) If $\sum_{n=1}^{\infty} a_n$ is a divergent series, then $\sum_{n=1}^{\infty} b_n$ is also a divergent series YOU MUST ENSURE THAT $0 \le a_n \le b_n \ \forall \ n \in \mathbb{N}$

Theorem 41 (Linearity of Series)

Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two convergent series and $c \in \mathbb{R}$. Then

(i) $\sum_{n=1}^{\infty} (cx_n)$ is a convergent series and

$$\sum_{n=1}^{\infty} (cx_n) = c \left(\sum_{n=1}^{\infty} x_n\right)$$

(ii) $\sum_{n=1}^{\infty} (x_n + y_n)$ and $\sum_{n=1}^{\infty} (x_n - y_n)$ are both convergent series and

$$\sum_{n=1}^{n=1} (x_n \pm y_n) = \left(\sum_{n=1}^{n=1} x_n\right) \pm \left(\sum_{n=1}^{\infty} y_n\right)$$

Theorem 42 (P-Series Test)

Let $P \in \mathbb{R}$

- (i) If P > 1, then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is a convergent series
- (ii) If $P \le 1$, then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is a divergent series

Theorem 43 (Limit Comparison Test)

Suppose that $a_n > 0$ and $b_n > 0 \,\,\forall\,\, n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists

- (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} \neq 0$, then either the two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both convergent or both divergent (exhibit the same behavior)
 - (ii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is also convergent
 - (iii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, and $\sum_{n=1}^{n-1} a_n$ is divergent, then $\sum_{n=1}^{n-1} b_n$ is also divergent

Theorem 44 (Absolute Convergence)

If $\sum_{n=1}^{\infty} |x_n|$ is a convergent series, then $\sum_{n=1}^{\infty} x_n$ is also a convergent series

Theorem 45 (Ratio Test for Series)

Suppose that $x_n \neq 0 \ \forall \ n \in \mathbb{N}$ and $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exists

- (i) If $\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| < 1$, then $\sum_{n=1}^{\infty} x_n$ is an absolutely convergent series
- (ii) If $\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| > 1$, then $\sum_{n=1}^{\infty} x_n$ is a divergent series
- (iii) If $\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| = 1$, then the test is inconclusive

Theorem 46 (Cauchy Criterion for Series)

A series $\sum_{n=1}^{\infty} x_n$ is convergent if and only the following is true: $\forall \epsilon > 0, \exists K = K(\epsilon) \in \mathbb{N}$ such that

13

$$\Big|\sum\limits_{j=q+1}^{q+l}x_j\Big|<\epsilon\;\forall\;q\geq K \text{ and } l\in\mathbb{N}$$

"If I start at (q+1) and stop anywhere, then that block of consecutive terms is fine."

Note: Absolute Value is not applied to the terms individually

Theorem 47 (Alternating Series Test)

Suppose that $\{a_n\}_{n=1}^{\infty}$ is a decreasing sequence and $\lim_{n\to\infty} a_n = 0$. Then

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$
 is a convergent series

Theorem 48 (Riemann)

(i) If $\sum_{n=1}^{\infty} x_n$ is an absolutely convergent series, then every rearrangement of $\sum_{n=1}^{\infty} x_{\tau(n)}$ is also absolutely convergent. Moreover,

$$\sum_{n=1}^{\infty} x_{\tau(n)} = \sum_{n=1}^{\infty} x_n$$

(ii) If $\sum_{n=1}^{\infty} x_n$ is a conditionally convergent series, then $\forall \ \psi \in \mathbb{R}$, \exists a bijection $\tau : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} x_{\tau(n)}$ is convergent and

$$\sum_{n=1}^{\infty} x_{\tau(n)} = \psi$$

Note: There is also a rearrangement of the series where $\sum_{n=1}^{\infty} x_n$ is divergent

Theorem 49 (Factorials)

- (i) $\sum_{n=1}^{\infty} \frac{1}{n!}$ is a convergent series
- (ii) Let $e = \sum_{n=1}^{\infty} \frac{1}{n!}$. Then 2.5 < e < 2.723 (iii) The sequence $\{(1 + \frac{1}{n})^n\}_{n=1}^{\infty} = e$

Theorem 50 (Irrationality of e)

$$e \in \mathbb{R} \setminus \mathbb{Q}$$

Useful Facts

Stringed Inequalities

If
$$a \le b$$
 and $c \le d$ then $a + c \le b + d$

Subsets of \mathbb{R}

 $\mathbb{N} \subset \mathbb{R}$

 $\mathbb{Z} \subset \mathbb{R}$

 $\mathbb{Q}\subset\mathbb{R}$

 $\mathbb{R}\setminus\mathbb{Q}\subset\mathbb{R}$

Remarks from the Triangle Inequality

- (i) Equivalent Statements: |x y| = |-(y x)| = |y x|
- (ii) Triangle Inequality on Subtraction: $|x y| \le |x| + |y|$
- (iii) Triangle Inequality on Three Elements: $|x+y+z| \le |x|+|y|+|z|$ It follows by PMI that $\forall~n\in\mathbb{N}$

$$|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$$

Remarks of Uncountability (Theorem 22)

- (i) The Union of two Countable sets is still Countable
- (ii) If A is Uncountable and B is Countable, then $A \setminus B$ is Uncountable
- (iii) Q is Countable
- (iv) $\mathbb{R} \setminus \mathbb{Q}$ is Uncountable

Subsequences

 $\{x_n\}_{n=1}^{\infty}$ is a subsequence of itself

Tails: the ending subsequences of a sequence

Since the subscripts of n_k of any subsequence must satisfy

$$1 \le n_1 < n_2 < \dots < n_k < n_{k+1} < \dots,$$
 one can use PMI to show that $n_k \ge k \ \forall \ k \in \mathbb{N}$

Axioms of \mathbb{R}

 $\forall a, b, c \in \mathbb{R}$

Note: We may write $a \cdot b$ as ab, and x^{-1} as $\frac{1}{x}$

A1 (Closure Under Addition)

$$a+b \in \mathbb{R}$$

A2 (Commutativity of Addition)

$$a+b=b+a$$

A3 (Associativity of Addition)

$$(a+b) + c = a + (b+c)$$

A4 (Existence of an Additive Identity)

$$\exists \ 0 \in \mathbb{R} \text{ such that } \forall \ x \in \mathbb{R}$$
$$x + 0 = x = 0 + x$$

A5 (Existence of Additive Inverses)

$$\forall x \in \mathbb{R}, \exists -x \in \mathbb{R} \text{ such that}$$

 $x + (-x) = 0 = (-x) + x$

M1 (Closure Under Multiplication)

$$a \cdot b \in \mathbb{R}$$

M2 (Commutativity of Multiplication)

$$a \cdot b = b \cdot a$$

M3 (Associativity of Multiplication)

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

M4 (Existence of a Multiplicative Identity)

$$\exists \ 1 \in \mathbb{R} \setminus \{0\} \text{ such that } \forall \ x \in \mathbb{R}$$
$$x \cdot 1 = x = 1 \cdot x$$

M5 (Existence of a Multiplicative Inverses)

$$\forall x \in \mathbb{R} \setminus \{0\}, \exists x^{-1} \in \mathbb{R} \text{ such that } x \cdot (x^{-1}) = 1 = (x^{-1}) \cdot x$$

D (Distributive Law)

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$(b+c) \cdot a = (b \cdot a) + (c \cdot a)$$

O1 (Trichotomy)

 \mathbb{R} is an ordered set under a relation <, i.e.,

(i) $\forall \ a, \ b \in \mathbb{R}$. exactly one of the following holds:

$$a < b, a = b, b < a$$

(ii) $\forall a, b, c \in S$, if a < b and b < c, then a < c

O2 (Less Than)

If
$$a, b, c \in \mathbb{R}$$
 and $a < b$, then $a + c < b + c$

O3 (Mult)

If
$$a, b, c \in \mathbb{R}$$
, $a > 0$ and $b > 0$, then $a \cdot b > 0$

C (Completeness)

If a nonempty subset of E of $\mathbb R$ is bounded above, then sup(E) exists in $\mathbb R$ If a nonempty subset of E of $\mathbb R$ is bounded below, then inf(E) exists in $\mathbb R$