

A uniform rod AB of length 4a and weight W rests with the end A in contact with a rough vertical wall. A light inextensible string of length $\frac{5}{2}a$ has one end attached to the point C on the rod, where $AC = \frac{5}{2}a$. The other end of the string is attached to a point D on the wall, vertically above A. The vertical plane containing the rod AB is perpendicular to the wall. The angle between the rod and the wall is θ , where $\tan \theta = 2$ (see diagram). The end A of the rod is on the point of slipping down the wall and the coefficient of friction between the rod and the wall is μ .

Find, in either order, the tension in the string and the value of μ .

[10]