```
In [2]: import pandas as pd
        import yfinance as yf
        from datetime import datetime
        import plotly.express as px
In [3]: data=pd.read csv('C:/Users/VIP/Downloads/stocks.csv')
Out[3]:
             Ticker
                                Open
                                          High
                                                    Low
                                                            Close
                                                                   Adj Close
                                                                             Volume
                                                                  154.414230
                                                                           83322600
          0
             AAPL
                   2023-02-07
                            150.639999
                                      155.229996
                                               150.639999
                                                        154.649994
             AAPL
                   2023-02-08 153.880005
                                      154.580002 151.169998
                                                        151.919998
                                                                  151.688400
                                                                           64120100
             AAPL 2023-02-09 153.779999 154.330002 150.419998
                                                        150.869995
                                                                  150.639999
                                                                           56007100
             AAPI
                   2023-02-10 149.460007 151.339996 149.220001
                                                        151.009995
                                                                  151.009995
                                                                           57450700
             AAPL 2023-02-13 150.949997 154.259995 150.919998
                                                        153.850006
                                                                  153.850006 62199000
                                                                           20926300
         243 GOOG 2023-05-01 107.720001
                                      108.680000 107.500000
                                                        107.709999
                                                                  107.709999
         244 GOOG 2023-05-02 107.660004 107.730003 104.500000
                                                        105.980003
                                                                  105.980003 20343100
         245 GOOG 2023-05-03 106 220001 108 129997 105 620003 106 120003
                                                                 106 120003
                                                                           17116300
         246 GOOG 2023-05-04 106.160004
                                      106.300003 104.699997
                                                        105.209999
                                                                  105.209999
                                                                           19780600
         247 GOOG 2023-05-05 105.320000 106.440002 104.738998 106.214996 106.214996 20705300
        248 rows × 8 columns
In [4]: | start_date = datetime.now() - pd.DateOffset(months=3)
        end date = datetime.now()
In [6]: data['Ticker'].value_counts()
Out[6]: Ticker
        AAPL
               62
        MSFT
               62
        NFLX
               62
        GOOG
               62
        Name: count, dtype: int64
In [7]: tickers = ['AAPL', 'MSFT', 'NFLX', 'GOOG']
        df_list = []
        for ticker in tickers:
            data = yf.download(ticker, start=start_date, end=end_date)
            df_list.append(data)
        [********* 100%********* 1 of 1 completed
        1 of 1 completed
        [********** 100%********** 1 of 1 completed
In [8]: | df = pd.concat(df_list, keys=tickers, names=['Ticker', 'Date'])
        print(df.head())
                                                                          Adj Close \
                                            High
                                                        Low
                                                                  Close
                                Open
        Ticker Date
              2023-08-07 182.130005
                                      183.130005 177.350006 178.850006 178.608810
               2023-08-08 179.690002
                                      180.270004
                                                 177.580002
                                                             179.800003
                                                                        179.557526
               2023-08-09 180.869995 180.929993 177.009995 178.190002 177.949707
               2023-08-10 179.479996 180.750000 177.600006 177.970001 177.729996
               2023-08-11 177.320007 178.619995 176.550003 177.789993 177.789993
                            Volume
        Ticker Date
        AAPL
               2023-08-07 97576100
               2023-08-08
                          67823000
               2023-08-09 60378500
               2023-08-10 54686900
               2023-08-11 51988100
```

```
In [9]: df = df.reset_index()
        print(df.head())
                      Date
                                  Open
                                              High
                                                                    Close \
          Ticker
                                                          Low
            AAPL 2023-08-07
                           182.130005
                                        183.130005
                                                   177.350006
                                                               178.850006
            AAPL 2023-08-08 179.690002
                                        180.270004
                                                   177.580002
                                                               179.800003
        1
           AAPL 2023-08-09 180.869995
                                        180.929993
                                                               178.190002
                                                   177.009995
                                       180.750000
                                                   177.600006
            AAPL 2023-08-10 179.479996
                                                              177.970001
        3
            AAPL 2023-08-11 177.320007
                                       178.619995
                                                   176.550003
                                                               177.789993
            Adj Close
                        Volume
          178.608810 97576100
           179.557526
                      67823000
          177.949707
                      60378500
          177.729996 54686900
        4 177.789993 51988100
```

Now let's have a look at the performance in the stock market of all the companies:

Stock Market Performance for the Last 3 Months

Stock Prices for Apple, Microsoft, Netflix, and Google

analyze moving averages, which provide a useful way to identify trends and patterns in each company's stock price movements over a period of time:

to calculate the 10-day moving average of a time series, you can use rolling(window=10)

```
In [12]: | df['MA10'] = df.groupby('Ticker')['Close'].rolling(window=10).mean().reset_index(0, drop=True)
         for ticker, group in df.groupby('Ticker'):
             print(f'Moving Averages for {ticker}')
             print(group[['MA10']])
         Moving Averages for AAPL
                   MA10
         0
                    NaN
         1
                    NaN
         2
                    NaN
         3
                    NaN
                    NaN
         4
         59 172.427000
         60 171.789001
         61 171.602002
         62 171.813002
         63 172.190001
         [64 rows x 1 columns]
         Moving Averages for GOOG
                    MA10
         192
                     NaN
         193
                     NaN
         194
                     NaN
         195
                     NaN
         196
                     NaN
         251 133.327000
         252 131.757999
         253 130.587000
         254 129.547000
         255 128.909999
         [64 rows x 1 columns]
         Moving Averages for MSFT
                    MA10
         64
                     NaN
         65
                     NaN
                     NaN
         66
         67
                     NaN
         68
                     NaN
         123 331.569003
         124
              332.174002
         125 333.770004
         126 335.470004
         127 338.083002
         [64 rows x 1 columns]
         Moving Averages for \widetilde{\text{NFLX}}
                    MA10
         128
                     NaN
         129
                     NaN
         130
                     NaN
                     NaN
         131
         132
                     NaN
         187 394.794998
         188 400.391998
         189 407.791998
         190 410.085999
         191 413.225998
         [64 rows x 1 columns]
```

AAPL Moving Averages

There is a strong linear relationship between the stock prices of Apple and Microsoft, which means that when the stock price of Apple increases, the stock price of Microsoft also increase

Correlation between Apple and Microsoft

In []: