Basic Probability Definitions: Probability Definitions and Notation

Video companion

1 Introduction

Definition

probability—the degree of belief in the truth or falsity of a statement

Range of uncertainty from 0 to 1

Certain statement is true: probability 1 Certain statement is false: probability 0

Example Statement x: "It is raining."

2 Notation

P(x) probability of x $\sim x$ negation of statement x

Law of excluded middle

$$P(x) + P(\sim x) = 1$$
 Binary Probability distribution

Probability of a statement and the probability of the negation of a statement must sum to

If
$$P(x) = 1$$
, then $P(\sim x) = 0$, and vice versa. \longrightarrow "Law of excluded middle"

In general, all outcomes of a probability distribution must sum to 1.

Definitions

probability distribution—collection of statements that are exclusive and exhaustive exclusive—given complete information, no more than one of the statements can be true

exhaustive—given complete information, at least one of the statements must be true

A distribution X consisting of n statements would be denoted

$$X = \{x_1, x_2, x_3, ..., x_n\}.$$

The probability of each statement must sum to 1, which is denoted.

$$P(x_1) + P(x_2) + P(x_3) + \dots + P(x_n) = 1.$$

3 Principle of indifference = no bias

For the *i*-th outcome x_i in a distribution with n possible outcomes,

$$P(x_i) = \frac{1}{n}.$$

Example: Drawing an ace of spades from a well-shuffled deck of 52 cards. The probability of drawing the ace of spades is $\frac{1}{52}$.

General statement

When there is no basis to choose some outcomes as more likely than others,

$$P(\text{event}) = \frac{\text{number of outcomes as defined in event}}{\text{total number of possible outcomes in universe}}.$$

Example: Event is drawing a queen, which has four outcomes in the event. The total number of outcomes is 52, so the probability of drawing a queen is $\frac{4}{52} = \frac{1}{13}$.

Example: Event is rolling an even number on a six-sided die, which has three outcomes in the event. The total number of outcomes is 6, so the probability of rolling an even is $\frac{3}{6} = \frac{1}{2}$.