Rotate a Matrix by 90 Degrees

Question

Question Statement:

Given a 2D matrix of size N x N, rotate the matrix 90 degrees clockwise in-place (i.e., without using any extra space for another matrix).

```
Example:
Input:
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
```

Output:

]

[[7, 4, 1], [8, 5, 2], [9, 6, 3]

]

Approach 1: Transpose + Reverse Rows

Approach 1: Transpose + Reverse Rows (Optimal In-Place)

Rotate a Matrix by 90 Degrees

Steps:

- 1. Transpose the matrix Swap elements across the diagonal.
- 2. Reverse each row Reverse all rows to get the final rotated matrix.

```
Code (C++ Style):
void rotate(vector<vector<int>>& matrix) {
  int n = matrix.size();
  // Step 1: Transpose
  for(int i = 0; i < n; i++) {
     for(int j = i+1; j < n; j++) {
        swap(matrix[i][j], matrix[j][i]);
     }
  }
  // Step 2: Reverse each row
  for(int i = 0; i < n; i++) {
     reverse(matrix[i].begin(), matrix[i].end());
  }
}
```

Approach 2: Layer by Layer Rotation

Approach 2: Rotate Layer by Layer (In-Place)

Rotate a Matrix by 90 Degrees

Steps:
- Move four cells at a time in groups, layer by layer.
- Use a temp variable to perform cyclic swaps between top, right, bottom, and left cells.
Note: This method is slightly more complex and error-prone compared to the transpose + reverse method.
Edge Cases
Edge Cases to Consider:
1. 1x1 Matrix:
Input: [[1]] -> Output: [[1]]
2. Empty Matrix:
Should handle gracefully (no operation or return same).
3. Non-square Matrix:
Not applicable here unless explicitly asked to rotate MxN matrix. This code works only for square matrices.
4. Matrix with Negative or Zero Elements:
Rotation should preserve all values regardless of sign.