

Big O and Complexity

Dilipkumar S.

Content

- Asymptotic notation
- Order of Growth
- Calculation of time complexity
 - Non-recursive function
 - Recursive function
- Complexity for sorting and searching algorithms

Analysis framework

Order of Growth

Value	logn	n	nlogn	n^2	n^3	2^n	n!
1	0	1	0	1	1	2	1
2	1	2	2	4	8	4	2
4	2	4	8	16	64	16	24
8	3	8	24	64	512	256	40320
16	4	16	64	256	4096	65536	2.6*10^48
10	3.2	10	3.3*10	10^2	10^3	10^3	3.6*10^6
10^2	6.6	10^2	6.6*10^2	10^4	10^6	1.3*10^30	9.3*10^157
10^3	10	10^3	1.0*10^4	10^6	10^9	high	high
	GLOBAL <u>=</u> DG=						

Asymptotic Notation

What is Asymptotic Notation?

- Asymptotic Notations of a function is the study of how the value of the function varies for large values of n, where n is the size of input.
- Using Asymptotic notation we could easily find the efficiency of the algorithm.

Types of Asymptotic notation

Three different type of asymptotic notation

- O (Big Oh)
- Ω (Big Omega)
- Θ (Big Theta)

O (Big Oh)

- Upper bound of algorithm's running time.
- Worst case running time for an algorithm
- Longest amount of time the algorithm takes to compute.

$$f(n) \le c*g(n) \text{ for all } n \ge n0.$$

or
 $f(n) \in O(g(n))$

Examples for Big- O

1.
$$fn() = 100n + 5$$

Let $c * g(n) = 100n + n$ (replacing constant 5 with n)
ie $c * g(n) = 101n$
since $f(n) <= c * g(n)$
 $100n + 5 <= 101n$ for all $n >= 5$
so $c = 101$ $g(n) = n$ $n0 = 5$
Hence $f(n) \le c * g(n)$ for all $n \ge n0$
 $f(n) \in O(g(n))$

Cont....

1.
$$f(n) = 3n + 2$$

Ans:
$$3n + 2 \le 4n$$

2.
$$f(n) = 10n^3 + 8$$

3.
$$f(n) = 10n^2 + 4n + 2$$

Ans:
$$10n^2 + 4n + 2 \le 11n^2$$

Ω (Big Omega)

- Lower bound of algorithm's running time.
- Best case running time for an algorithm.
- Gives minimum amount of time the algorithm takes to compute.

$$f(n) > = c * g(n) \text{ for all } n >= n0$$

 $f(n) \Omega (g(n))$

Examples for Big- Ω

1.
$$fn() = 100n + 5$$

```
Let c * g(n) = 100n (Discarding constant 5)
ie c * g(n) = 100n
since f(n) >= c * q(n)
100n + 5 >= 100n for all n >= 0
so c = 100 g(n) = n n0 = 0
Hence f(n) >= c * g(n) for all n \ge n0
               f(n) \in \Omega(g(n))
```

Cont....

1.
$$f(n) = 50n + 6$$

Ans: 50n

2.
$$f(n) = 17n^3 + 5$$

Ans: $17n^3$

Θ (Big Theta)

Gives average amount of time the algorithm takes to compute.

$$c1 * g(n) \le f(n) \le c2 * g(n)$$

for all $n >= n0$

 $f(n) \Theta (g(n))$

Examples for Big- Θ

```
1. fn() = 10n^3 + 5
  Let c2 * g(n) = 10n^3 + n (replacing constant 5 with n)
  ie c2 * g(n) = 11n^3
  Let c1 * g(n) = 10n^3
  since c1 * g(n) <= f(n) <= c2 * g(n)
  10n^3 \le 10n^3 + 5 \le 11n^3
• so c1 = 10n^3, c2 = 11n^3, g(n) = n^3, n0 = 2
                f(n) \in \Theta(g(n))
```

General plan for Analyzing the Time Efficiency of Non-recursive Algorithm

- 1. Based on input determine the number of parameters to be considered.
- 2. Identify the algorithms **basic operation**.
- 3. Check the basic operation depends only on the size of the input.
- 4. Obtain the total number times to basic operation is executed.
- 5. An useful formula to compute is $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$

Matrix multiplication

for
$$i \leftarrow 0$$
 to $n-1$ do

for $j \leftarrow 0$ to $n-1$ do

 $c[j] \leftarrow 0$

for $k \leftarrow 0$ to $n-1$ do

 $c[i,j] \leftarrow c[i,j] + A[i,k] * B[k,j]$

$$T(n) = \Theta(n^3)$$

General plan for Analyzing the Time Efficiency of recursive Algorithm

- 1. Based on input determine the number of parameters to be considered.
- 2. Identify the algorithms **basic operation**.
- 3. Check the basic operation depends only on the size of the input.
- 4. Set up a <u>recurrence relation</u> with an appropriate <u>initial</u> <u>condition</u>, for number of times the basic operation is executed.

Recursive algorithm to find factorial of a number

```
Factorial(int n){
    if (n == 0)
        return 1;
    return (Factorial(n - 1) * n);
}
```

Tower of Hanoi

Algorithm

```
Tower_honai(n, source, temp, dest)
```

```
Step 1: If( n == 1)

move(n'st, source, dest)

return
```

Step 2: Tower_honai(n - 1, source, dest, temp)

Step 3: move(nth, source, dest)

Step 3: Tower_honai(n - 1, temp, dest, source)

The Algorithm - details

```
BubbleSort(A[0..n-1])

for i <- 0 to n-2 do

for j <- 0 to n-2-i do

if A[j+1] < A[j]

swap A[j] and A[j+1]
```

The Algorithm - details

```
SelectionSort(A[0..n-1])
for i < 0 to n-2 do
     min <- i
    for i < -i+1 to n-1 do
       if A[i] > A[min] min <- i
       swap A[i] and A[min]
```

The Algorithm - details

```
InsertionSort(A[0..n-1])
for i < 0 to n-2 do {
   v < -a[i];
    j<- i - 1;
   while (j \ge 0 \text{ and } A[j] > v) \text{ do}
       A[j+1] <- A[j];
       j<- j - 1;
   A[j+1] <- v;
```

Merge sort

```
mergesort (A, p, r) - T(n)
                                       Efficiency
     if(p > r) return
                                 T(n) = T(n/2) + T(n/2) + (n)
    q = (p+r)/2
                                 T(n) = 2T(n/2) + (n)
    mergesort(B, p, q) - T(n/2) T(n) = (n Log (n))
    mergesort(C, q+1, r) – T(n/2)
    merge(A, B, C)
                   - (n)
```

Comparison between various sorting algorithms

Sorting Algorithm	KACT		worst	
Bubble sort	Ω(n^2)	θ(n^2)	O(n^2)	
Insertion sort	$\Omega(n)$	θ(n^2)	O(n^2)	
Selection sort	Ω(n^2)	θ(n^2)	O(n^2)	
Heap sort	$\Omega(n^*log(n))$	$\theta(n*log(n))$	O(n*log(n))	
Merge sort	$\Omega(n^*log(n))$	$\theta(n*log(n))$	O(n*log(n))	
Quick sort	$\Omega(n^*log(n))$	θ(n*log(n))	O(n^2)	

References

The Design and Analysis of Algorithms by <u>Anany Levitin</u>

Large enough to Deliver, Small enough to Care

Global Village IT SEZ Bangalore

South Main Street Milpitas California

Raheja Mindspace IT Park Hyderabad

Thank you

Fairness

Learning

Responsibility

Innovation

Respect