

Neural Networks for Network-like structures

2018-08-09, Oxford

Andrey Ustyuzhanin

NRU HSE

YSDA

ICL

Common examples so far

Plain features (tables)
Image
Text
Time series

Doubt thou the stars are fire, Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love...

Audio signals

Images

Andrey Ustyuzhanin

What about those?

Geometry Manifolds Graphs

Non-euclidean distance, twisted connectivity

Social networks

Regulatory networks

Functional networks

3D shapes

Formalization

- Graph (structure):
 - > G(V, E), A adjacency matrix
- Features (data):
 - > Vertex (node) features
 - > Edge features

Domain structure

Data on a domain

From hits to graph

- K-nearest neighbors, euclidean distance
 - > Iterate by hits
 - 1. Find K closest hits for each hit
 - 2. Connect with edges Radius graph, euclidean distance
 - > Iterate by hits
 - 1. Find nodes within given radius and connect with an edge

After graph-ication

Neighbors = 5

Neighbors = 20

Andrey Ustyuzhanin

Neural Networks over graph

- We want to learn some structural patterns in nodes adjacency (connectivity), that correlate with labels we want to predict for every node.
- Connectivity patterns correspond to some structure in adjacency matrix. How can we reveal it using neural network?
- Let's assume that labels we want to predict correlate with certain computable function over incoming/outgoing edges of each node

Message Passing Neural Networks

We want to predict label for each node Let's assume the following:

- Each node has a state (node features) at time t
- Each *edge has a state* (edge features) at time t
- > Message is a **function** of source node state, destination node state and edge state at *t-1*
- \rightarrow Node state is a **function** of incoming messages at t-1
- Node *label* is a **function** of its state at *t* (*readout*)

Trivial Example

Step 0: pick random node states h_i^0 Step 1. Messages pass node state:

$$m_{13} = h_1^0, m_{43} = h_4^0$$

Step 2. Messages are aggregated:

$$M_3 = (m_{13} + m_{43})/2$$

Step 3. Node updates its state:

$$h_3^1 = (h_3^0 + M_3)/2$$

Step 4. Estimate prediction (readout):

$$R_3 = ||h_3^1||$$

Starter Kit MPNN baseline

Ideas for improvement

Clustering algorithm type, parameters
Depth of messages (number of steps)
State updater and message passer can have longer memory GRU/LSTM
Use batches of events
Different optimizers / learning rates
Data augmentation

References

Plot event as a graph:

https://gist.github.com/SchattenGenie/28204a1135c3b7bca06162b7b2adf073

Neural Message Passing for Quantum Chemistry, arXiv:1704.01212,

Neural Message Passing for Jet Physics,

https://orbi.uliege.be/bitstream/2268/226446/1/nips_dlps_2017_29.pdf

http://geometricdeeplearning.com

Andrey Ustyuzhanin

Backup

