

CLAIMS:

1. A method of generating a linear transformation matrix A for use in a symmetric-key cipher, the method including:

- generating a binary $[n,k,d]$ error-correcting code, represented by a generator matrix $G \in \mathbf{Z}_2^{k \times n}$ in a standard form $G = (I_k \parallel B)$, with $B \in \mathbf{Z}_2^{k \times (n-k)}$, where $k < n < 2k$, and d is the minimum distance of the binary error-correcting code;
- extending matrix B with $2k-n$ columns such that a resulting matrix C is non-singular, and
- deriving matrix A from matrix C.

10 2. A method as claimed in claim 1, wherein the step of extending matrix B with $2k-n$ columns includes:

in an iterative manner:

- (pseudo-)randomly generating $2k-n$ columns, each with k binary elements;
- forming a test matrix consisting of the $n-k$ columns of B and the $2k-n$ generated columns; and
- checking whether the test matrix is non-singular, until a non-singular test matrix has been found; and using the found test matrix as matrix C.

20 3. A method as claimed in claim 1, wherein the step of deriving matrix A from matrix C includes:

- determining two permutation matrices $P_1, P_2 \in \mathbf{Z}_2^{k \times k}$ such that all codewords in an $[2k,k,d]$ error-correcting code, represented by the generator matrix $(I \parallel P_1 C P_2)$, have a predetermined multi-bit weight; and

25 - using $P_1 C P_2$ as matrix A.

4. A method as claimed in claim 3, wherein the cipher includes a round function with an S-box layer with S-boxes operating on m-bit sub-blocks, and the minimum

predetermined multi-bit weight over all non-zero codewords equals a predetermined m-bit weight.

5. A method as claimed in claim 3, wherein the step of determining the two
5 permutation matrices P_1 and P_2 includes iteratively generating the matrices in a (pseudo-)
random manner.

6. A method as claimed in claim 1, wherein the cipher includes a round function
operating on 32-bit blocks and wherein the step of generating a [n,k,d] error-correcting code
10 includes:

generating a binary extended Bose-Chaudhuri-Hocquenghem (XBCH) [64,

36, 12] code; and

shortening this code to a [60, 32, 12] shortened XBCH code by deleting four
rows.

15. 7. A computer program product, wherein the program product is operative to
cause a processor to perform the method of claim 1.

8. A system for cryptographically converting an input data block into an output
20 data block; the data blocks comprising n data bits; the system including:
- an input for receiving the input data block;
- a storage for storing a linear transformation matrix A , generated according to
the method of claim 1,
- a cryptographic processor performing a linear transformation on the input data
25 block or a derivative of the input data block using the linear transformation matrix A ; and
- an output for outputting the processed input data block..