Aproksymacja funkcji okresowych

Tomasz Chwiej

25 listopada 2014

Definiujemy trzy funkcje:

$$f_1(x) = 2\sin(x) + \sin(2x) + 2\sin(3x) + \alpha \tag{1}$$

$$f_2(x) = 2\sin(x) + \sin(2x) + 2\cos(x) + \cos(2x)$$
 (2)

$$f_3(x) = 2sin(1.1x) + sin(2.1x) + 2sin(3.1x)$$
 (3)

gdzie:

$$\alpha = \frac{rand()}{RAND_MAX + 1.0} - 0.5 \tag{4}$$

jest liczbą pseudolosową $\alpha \in [-0.5, 0.5]$.

Naszym zadaniem będzie aproksymacja funkcji f_1, f_2, f_3 przy pomocy funkcji

$$F(x) = \sum_{k=0}^{M_s} a_k \sin(kx) + \sum_{j=0}^{M_c} b_j \cos(jx)$$
 (5)

Aby przeprowadzić aproksymację funkcji okresowych tj. wyznaczyć współczynniki kombinacji liniowej, należy skorzystać z wzorów pokazanych na wykładzie. Przyjąć przedział aproksymacji $x \in [0, 2\pi)$. Liczba węzłów n = 100.

Zadania do wykonania:

- 1. Aproksymujemy funkcję f_1 . Przyjąć $\alpha = 0$, $(M_s, M_c) = \{(5,5)\}$. Wyznaczyć współczynniki a_k oraz b_j . Wykonać wykres funkcji $f_1(x)$ i $F_1(x)$ na jednym rysunku.
- 2. Aproksymujemy funkcję f_2 . Przyjąć $(M_s, M_c) = \{(5,5)\}$. Wyznaczyć współczynniki a_k oraz b_j . Wykonać wykres funkcji $f_2(x)$ i $F_2(x)$ na jednym rysunku.
- 3. Aproksymujemy funkcję f_3 . Przyjąć $(M_s, M_c) = \{(5,0), (5,5), (10,10)\}$. Wyznaczyć współczynniki a_k oraz b_j . Wykonać wykres funkcji $f_3(x)$ i $F_3(x)$ na jednym rysunku dla każdej z trzech baz
- 4. Aproksymujemy ponownie funkcję f_1 ale tym razem dla każdego węzła obliczamy α zgodnie z wzorem (4). Aproksymację należy wykonać dla $(M_s, M_c) = \{(5, 5), (30, 30)\}$. Wyznaczyć współczynniki a_k oraz b_j . Wykonać wykres funkcji $f_1(x)$ i $F_1(x)$ na jednym rysunku dla każdej z baz. Wykonać wykres wartości współczynników a_k oraz b_j w funkcji ich indeksów dla obu zestawów wartości (M_c, M_s) .