```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv('housing.csv')
df
```

_		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	(
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	
	4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	
2	20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	78100.0	
2	20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	77100.0	
2	20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	92300.0	
2	20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	84700.0	
2	20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	89400.0	
20	0640 rd	ows × 10 colu	mns								•

df.shape

→ (20640, 10)

df.isnull().sum()

$\overline{\Rightarrow}$	longitude	0
	latitude	0
	housing_median_age	0
	total_rooms	0
	total_bedrooms	207
	population	0
	households	0
	median_income	0
	<pre>median_house_value</pre>	0
	ocean_proximity	0
	dtype: int64	

df=df.dropna()

df.isnull().sum()

₹	longitude	0
	latitude	0
	housing_median_age	0
	total_rooms	0
	total_bedrooms	0
	population	0
	households	0
	median_income	0
	median_house_value	0
	ocean_proximity	0
	dtype: int64	

df.isna().sum()

∑	longitude	0
	latitude	0
	housing_median_age	0
	total_rooms	0

7/20/24, 9:45 PM

total_bedrooms 0
population 0
households 0
median_income 0
median_house_value 0
ocean_proximity 0
dtype: int64

df.dtypes

float64 float64 → longitude latitude housing_median_age float64 total_rooms float64 total_bedrooms float64 population float64 households median_income float64 float64 median_house_value float64 ocean_proximity
dtype: object object

plot=sns.pairplot(df)

import math

```
x_plot=df['housing_median_age']
y_plot=df['median_house_value']
x = pow(x_plot,1)
y = pow(y_plot,-1/3)
plot=plt.scatter((x),(y),color='red')
```


df1=df.drop(columns=['ocean_proximity','longitude','latitude'])

correlation_matrix=df1.corr()
sns.heatmap(correlation_matrix, cmap='coolwarm',annot=True)


```
x=df['median_house_value']
y=df['ocean_proximity']
fig = plt.figure(figsize=(10, 5))
plt.bar(y, x, color ='red', width = 0.3)
plt.xlabel('Median House Value')
plt.ylabel('Ocean Proximity')
plt.title('Median House Value by Ocean Proximity')
plt.show()
```


df2=pd.DataFrame(df, columns=['ocean_proximity','median_house_value'])
df2["rank"] = df2.groupby(['ocean_proximity'])["median_house_value"].rank("dense", ascending=False)

df2[df2["rank"]==1][['ocean_proximity','median_house_value']]

→ ▼		ocean_proximity	median_house_value
	89	NEAR BAY	500001.0
	459	NEAR BAY	500001.0
	493	NEAR BAY	500001.0
	494	NEAR BAY	500001.0
	509	NEAR BAY	500001.0
	20422	<1H OCEAN	500001.0
	20426	<1H OCEAN	500001.0
	20427	<1H OCEAN	500001.0
	20436	<1H OCEAN	500001.0
	20443	<1H OCEAN	500001.0

df2.groupby(['ocean_proximity'])["median_house_value"].max()

```
ocean_proximity
<1H OCEAN 500001.0
INLAND 500001.0
ISLAND 450000.0
NEAR BAY 500001.0
NEAR OCEAN 500001.0
Name: median_house_value, dtype: float64
```

960 rows × 2 columns

```
x = df1.drop('median_house_value',axis= 1)
y = df1['median_house_value']
print(x)
print(y)
₹
            housing_median_age total_rooms total_bedrooms population \
     0
                          41.0
                                      880.0
                                                      129.0
                                                                   322.0
                          21.0
                                      7099.0
                                                      1106.0
                                                                  2401.0
                                     1467.0
                                                       190.0
                                                                   496.0
     2
                          52.0
                                     1274.0
                                                                   558.0
     3
                          52.0
                                                       235.0
     4
                          52.0
                                     1627.0
                                                       280.0
                                                                   565.0
                                     1665.0
                                                       374.0
                                                                   845.0
     20635
                          25.0
                                                                   356.0
     20636
                          18.0
                                      697.0
                                                       150.0
     20637
                          17.0
                                      2254.0
                                                       485.0
                                                                  1007.0
     20638
                          18.0
                                     1860.0
                                                       409.0
                                                                   741.0
     20639
                                     2785.0
                                                       616.0
                                                                  1387.0
                          16.0
            households median_income
     0
                 126.0
                               8.3252
     1
                1138.0
                               8.3014
     2
                 177.0
                               7.2574
     3
                 219.0
                               5.6431
     4
                 259.0
                               3.8462
     20635
                 330.0
                               1.5603
     20636
                 114.0
                               2.5568
     20637
                 433.0
                               1.7000
     20638
                 349.0
                               1.8672
                 530.0
                               2.3886
     20639
     [20433 rows x 6 columns]
     0
              452600.0
              358500.0
     1
     2
              352100.0
     3
              341300.0
     4
              342200.0
     20635
               78100.0
     20636
               77100.0
               92300.0
     20637
     20638
               84700.0
     Name: median_house_value, Length: 20433, dtype: float64
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
₹
     ▼ LinearRegression
     LinearRegression()
predictions = model.predict(X test)
predictions
🚁 array([165480.22752968, 161093.72645382, 196854.06878554, ...,
            119439.91093011, 178676.94621081, 142692.55421869])
print('Mean Squared Error:', mean_squared_error(y_test, predictions))
print('R-squared:', r2 score(y test, predictions))
print('Mean Absolute Error:', mean_absolute_error(y_test, predictions))
    Mean Squared Error: 5865619646.959267
     R-squared: 0.5710755317440979
     Mean Absolute Error: 56642.49929908636
```

```
plt.scatter(range(len(y_test)), y_test, color='blue', label='Actual')
plt.scatter(range(len(y_test)), predictions, color='red', label='Predicted')
plt.legend()
plt.show()
```



```
X1 = x.sample(500, random_state=1)
y1 = y.sample(500, random_state=1)
plt.figure(figsize=(10,6))
sns.regplot(x=X1['median_income'],y=y1, data=df1)
plt.show()
```



```
train_score = model.score(X_train, y_train)
test_score = model.score(X_test, y_test)

print('Linear regression score: \n')
print("Training Score:",round(train_score*100),'%')
print("Testing Score:",round(test_score*100),'%')

Linear regression score:

Training Score: 57 %
Testing Score: 57 %
```