Homework 13

The due date for this homework is Tue 7 May 2013 12:00 AM EDT.

Question 1

A group of scientists computes the position, velocity and acceleration of a particle at time t=0. The position is p(0)=2, the velocity v(0)=4, and the acceleration a(0)=3. Using this information, which Taylor series should they use to approximate p(t), and what is the estimated value of p(4) using this approximation?

$$p(t) = 2 + 4t + rac{3}{2} t^2 + O(t^3), p(4) \simeq 42.$$

$$p(t) = 2 + 4t + 3t^2 + O(t^3), p(4) \simeq 66.$$

$$p(t) = 2 + 2t + rac{3}{2}\,t^2 + O(t^3)$$
 , $p(4) \simeq 34$.

$$p(t) = 2 + 2t + 6t^2 + O(t^3), p(4) \simeq 106.$$

$$p(t)=2+2t+3t^2+O(t^3)$$
, $p(4)\simeq 58$.

$$p(t) = 2 + 4t + 6t^2 + O(t^3), p(4) \simeq 114.$$

Question 2

If a particle moves according to the position function $s(t)=t^3-6t$, what are its position, velocity and acceleration at t=3 ?

$$s(3) = 9, v(3) = 21, a(3) = 18$$

$$s(3) = 9, v(3) = 21, a(3) = 9$$

$$s(3) = 9, v(3) = 21, a(3) = 36$$

$$s(3) = 21, v(3) = 18, a(3) = 6$$

$$s(3) = 21, v(3) = 18, a(3) = 18$$

$$s(3) = 9, v(3) = 18, a(3) = 18$$

Question 3

If the position of a car at time t is given by the formula $p(t)=t^4-24t^2$, for which times t is its velocity decreasing?

$$-\sqrt{24} < t < \sqrt{24}$$

- -2 < t < 2
- Never: the velocity always increases.
- t > 2
- t<-2
- $-\sqrt[3]{12} < t < \sqrt[3]{12}$

Question 4

What is a formula for the second derivative of $f(t)=t^2\sin 2t$? Use this formula to compute $f''(\pi/2)$.

$$\int f''(t) = -4t^2 \sin 2t$$
, and $f''(\pi/2) = 0$

$$\int f''(t)=4t\cos 2t+(2-4t^2)\sin 2t$$
 , and $f''(\pi/2)=-2\pi$

$$\int f''(t) = -8\sin 2t$$
, and $f''(\pi/2) = 0$

$$f''(t)=8t\cos 2t-4t^2\sin 2t$$
, and $f''(\pi/2)=-4\pi$

$$\int f''(t)=8t\cos 2t+(2-4t^2)\sin 2t$$
 , and $\int f''(\pi/2)=-4\pi$

$$f''(t)=4t\cos 2t$$
, and $f''(\pi/2)=-2\pi$

Question 5

Use a Taylor series expansion to compute $f^{(3)}(0)$ for $f(x)=\sin^3(\ln(1+x))$.

- _ 3
- $-\epsilon$
- \bigcirc 12
- \bigcirc -3
- 0
- 6

Question 6

Compute the first few derivatives $\frac{df}{dx}$, $\frac{d^2f}{dx^2}$ and $\frac{d^3f}{dx^3}$ of the function $f(x)=xe^x$ with respect to x. Based on your calculations, what is likely to be the general formula for the n^{th} derivative $\frac{d^nf}{dx^n}$?

$$\bigcirc \frac{d^n f}{dx^n} = x^{n+1} e^x$$

$$\bigcirc \ \, rac{d^n f}{dx^n} = e^x$$

$$d^n f \over dx^n = (x+1)^n e^x$$

$$d^n f \over dx^n = (x+n)e^x$$

Question 7

What is the curvature of the graph of the function $f(x)=-2\sin(x^2)$ at the point (0,0)?

	Torrowork Caroards. Origin Variable
₀ 1	
2	
$_{\odot}$ -4	
\bigcirc $\frac{1}{2}$	
0	
4	

In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers