不等式专题

习题集一

HOJOO LEE 编 (戴文晗 译)

请每位同学在提交作业时至少选择 9 题中的 4 题完成. 注意事项如下.

- (1) 请务必标明你所选择的练习题的题号, 以便助教老师批改.
- (2) 我们鼓励所有同学**尽可能地独立思考每一道习题**, 并**尽可能详细地写下答案**. 在独立思考并遇到障碍之前,请不要和他人讨论或直接向老师索要答案.
- (3) 若有任何思路或疑惑,请尽可能清楚地写在作业纸上一并提交.
- (4) 如有必要,请装订你的作业纸,以防遗失或污损.

来源缩写对照:

- [C] = CRUX with MAYHEM,
- [MM] = Mathematical Magazine,
- [CMJ] = The College Mathematics Journal.

问题 1 (IMO 预选, 2003). 设 (x_1, x_2, \dots, x_n) 和 (y_1, y_2, \dots, y_n) 是两个正实数序列. 设 (z_1, z_2, \dots, z_n) 是另一个正实数序列且满足

$$z_{i+j}^2 \geqslant x_i y_i$$

对所有 $1 \leq i, j \leq n$ 成立. 令 $M = \max\{z_2, \dots, z_{2n}\}$. 求证

$$\left(\frac{M+z_2+\cdots+z_{2n}}{2n}\right)^2 \geqslant \left(\frac{x_1+\cdots+x_n}{n}\right)\left(\frac{y_1+\cdots+y_n}{n}\right).$$

问题 2 (波斯尼亚和黑塞尔维亚, 2002). 设 $a_1, \dots, a_n, b_1, \dots, b_n, c_1, \dots, c_n$ 为正实数. 证明下列不等式:

$$\left(\sum_{i=1}^n a_i^3\right) \left(\sum_{i=1}^n b_i^3\right) \left(\sum_{i=1}^n c_i^3\right) \geqslant \left(\sum_{i=1}^n a_i b_i c_i\right)^3.$$

问题 3 (C2113, Marcin E. Kuczma). 对任意正实数 $a_1, \dots, a_n, b_1, \dots, b_n$, 证明不等式

$$\sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \geqslant \sum_{i=1}^{n} (a_i + b_i) \sum_{i=1}^{n} \frac{a_i b_i}{a_i + b_i}.$$

问题 4 (南斯拉夫, 1998). 设 n > 1 是正整数且 $a_1, \dots, a_n, b_1, \dots, b_n$ 是正实数. 证明下列不等式成立:

$$\left(\sum_{i\neq j} a_i b_j\right)^2 \geqslant \sum_{i\neq j} a_i a_j \sum_{i\neq j} b_i b_j.$$

习题集一

问题 5 (C2176, Sefket Arslanagic). 证明:

$$((a_1+b_1)\cdots(a_n+b_n))^{\frac{1}{n}} \geqslant (a_1\cdots a_n)^{\frac{1}{n}} + (b_1\cdots b_n)^{\frac{1}{n}}$$

其中 $a_1, \dots, a_n, b_1, \dots, b_n > 0$.

问题 6 (韩国, 2001). 设 x_1, \dots, x_n 和 y_1, \dots, y_n 是满足

$$x_1^2 + \dots + x_n^2 = y_1^2 + \dots + y_n^2 = 1$$

的实数. 证明

$$2\left|1 - \sum_{i=1}^{n} x_i y_i\right| \geqslant (x_1 y_2 - x_2 y_1)^2$$

并求出等号成立的充分必要条件.

问题 7 (新加坡, 2001). 设 $a_1, \dots, a_n, b_1, \dots, b_n$ 是介于 1001 和 2002 (含端点) 之间的 实数. 设

$$\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} b_i^2.$$

求证:

$$\sum_{i=1}^{n} \frac{a_i^3}{b_i} \leqslant \frac{17}{10} \sum_{i=1}^{n} a_i^2,$$

并求出等号成立的充分必要条件.

问题 8 (Abel 不等式). 设 $a_1, \dots, a_N, x_1, \dots, x_N$ 是使得 $x_n \ge x_{n+1} > 0$ 对所有 n 成立的实数. 求证

$$|a_1x_1 + \dots + a_Nx_N| \leqslant Ax_1,$$

其中

$$A = \max\{|a_1|, |a_1 + a_2|, \cdots, |a_1 + \cdots + a_N|\}.$$

问题 9 (中国, 1992). 对任意整数 $n \ge 2$, 求最小的满足下列条件的正实数 $\lambda = \lambda(n)$: 如果

$$0 \le a_1, \dots, a_n \le \frac{1}{2}, \quad b_1, \dots, b_n > 0, \quad a_1 + \dots + a_n = b_1 + \dots + b_n = 1,$$

则

$$b_1 \cdots b_n \leqslant \lambda (a_1 b_1 + \cdots + a_n b_n).$$