Math 449: Numerical Applied Mathematics Lecture 20

10/20/2017 Wenzhen

Today's topic: Iterative Methods in Numerical Linear Algebra

10/20/2017

Today: Iterative methods in numerical linear algebra

Linear Systems $A\vec{z} = \vec{b}$

direct methods
 terminate v/ exort answer after finitely many steps

• iterative methods

start ω / guess $\mathbf{x}^{(0)}$ iterate $\mathbf{x}^{(0)}$, $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ..., get answer in limit.

Why not newton's method?

$$f(\vec{z}) = A\vec{z} - b$$

$$J_f(x) = A$$

$$x^{(k+1)} = x^{(k)} A^{-1} (A x^{(k)} - b) = A^{-1} b$$

Requires solving the oringinal linear system

Recall geometric series

$$f |r| < 1$$

$$\frac{1}{1-r} = 1 + r + r^2 + r^3 + r^4 + \cdots$$

$$\approx 1 + r + r^2 + \cdots + r^k$$

Note:

$$(1-r)(1+r+r^{2}+\cdots+r^{k}) = 1-r+r-r^{k}+r^{2}+\cdots-r^{k}+r^{k}-r^{k+1}=1-r^{k+1}$$

$$\to 1 \text{ as } k\to \infty$$

$$1+r+\cdots+r^{k}=\frac{1}{1-r}-\frac{r^{k+1}}{1-r}\to \frac{1}{1-r} \text{ as } k\to \infty$$

Generalization to matrices

$$(I-M)^{-1} \approx I + M + M^2 + \dots + M^k$$

 $(I-M)(I+M+M^2+\dots+M^k) = I-M^{k+1}$ when does this $cvg \rightarrow I$
" $M^k \rightarrow 0$ as $k \rightarrow \infty$.

Claim: If
$$\rho(M) < 1$$
, then $M^k \to 0$ as $k \to \infty$.
i.e. $||M^k - 0|| \to 0$ so $M^k \to 0$ in $||\cdot||$
(and in every other norm,

Equivalently. Contraction map
$$cvg \rightarrow fixed pt$$
. at 0)

Just proved

Prop:
$$2f \ \rho(M) < I$$
, then $1-M$ is invertible and
$$(I-M)^{-1} = I + M + M^2 + \cdots$$
To solve,
$$(I-M) \propto = b$$

$$\times = (1-M)^{-1} \cdot b$$

$$= (I+M+M^2+M^3+\cdots)b$$

Approx by
$$\alpha^{(k)} = (1 + M + M^2 + \dots + M^k) b \rightarrow x \quad \text{as } k \rightarrow \infty$$

Observe:

$$x^{(k+1)} = (1 + M + M^{2} + \dots + M^{k} + M^{k+1}) b$$

$$= b + (M + M^{2} + \dots + M^{k+1}) b$$

$$= b + M(1 + M + \dots + M^{k}) b$$

$$= b + Mx^{(k)}$$

So take iteration:

$$\begin{cases} \chi^{(0)} = b \\ \chi^{(k+1)} = b + M \chi^{(k)} \end{cases} \quad \text{only uses matrix-vector multiplication} \quad O(n^2)$$

If we can get a good approx with $\ll n$ steps,

this does better than $O(n^2)$

Especially true for "sparse" matrices, where most entries = 0.

i.e., $O(n^2)$ nonzero entries

Ex. diagonal matrices ()

Prop Fixed pt 3 is a solution to (1-M) 3=b

Proof.
$$\xi = b + M\xi$$

$$\xi - M\xi = b$$

$$(1-M)\zeta = b$$

so if p(M) < 1, then $x^{(k)} \rightarrow g$ as $k \rightarrow \infty$.

To solve $A\overrightarrow{x} = \overrightarrow{b}$ split A = I - M \iff M = I - A and if $\rho(M) < I$, apply prev method.

What if we can't do this. i.e. what if PlI-A) >1

perturbation

easy to solve

iteration: $N_X^{(k+1)} = b + P_X^{(k)}$

Thm: If $\rho(N^{-1}P) < 1$, then $\chi^{(k)} \rightarrow \chi$ as $k \rightarrow \infty$

$$\Leftrightarrow \chi^{(k+1)} = N^{-1}b + N^{-1}P\chi^{(k)}$$

$$(N-P)\vec{z} = \vec{b} \Leftrightarrow (I-N^{-1}P)\vec{z} = N^{-1}b$$