Adrian Fabisiewicz
328935
Projekt nr 3
Analiza dokładności wyników pozycjonowania względnego GNSS
Systemy nawigacji satelitarnej
Geoinformatyka, semestr IV

Celem ćwiczenia było wyznaczenie współrzędnych punktu WUTR, z wykorzystaniem techniki względnego fazowego pozycjonowania GNSS oraz analiza dokładności otrzymanych wyników.

Obliczenia współrzędnych punktu WUTR zostały wykonane w oprogramowaniu RTKPOST, w nawiązaniu do wybranych sąsiednich stacji referencyjnych sieci ASG-EUPOS, różniących się dystansem od stacji WUTR.

Wybrane stacje:

- CBKA krótki wektor
- WAT1 średni wektor
- MIMA bardzo długi wektor

Wyznaczone współrzędne należało porównać z referencyjnymi współrzędnymi stacji WUTR oraz przeprowadzić analizę wyników dla różnych wektorów.

Analizę przeprowadziłem po obliczeniu różnic współrzędnych obliczonych i referencyjnych w układzie geocentrycznym ΔX , ΔY , ΔZ , a następnie przeliczeniu ich do układu lokalnego NEU: Δn , Δe , Δu .

Współrzędne referencyjne stacji WUTR, odniesione do punktu ARP anteny:

X[m]	Y[m]	Z[m]
3655333.847	1403901.067	5018038.047

Obliczenia w nawiązaniu do stacji CBKA – wektor krótki

Błędy poszczególnych współrzędnych:

Największa wartość błędu dla współrzędnej **N (north)** wyniosła mniej niż 4 cm. Odchylenie standardowe wyniosło mniej niż 1 cm, a średni błąd kwadratowy – ok. 1 cm.

Największy błąd dla współrzędnej **E (east)** wyniósł ok. 10 cm. Odchylenie standardowe oraz średni błąd kwadratowy przyjęły wartość ok. 1cm.

Największy błąd dla współrzędnej **U (up)** wyniósł ok. 8 cm. Odchylenie standardowe wyniosło niewiele ponad 1 cm, a średni błąd kwadratowy – ok. 2 cm.

Wykres wartości testu ratio:

Wyraża stosunek współczynnika wariancji rozwiązania drugiego do wybranego za najlepsze. Im wyższa wartość współczynnika "ratio" tym większe prawdopodobieństwo poprawności rozwiązania.

Wartości ratio dla przypadku CBKA są wysokie, z maksymalną wartością około 900, co oznacza, że dane cechują się wysoką jakością.

Wykres rozwiązań:

"Fixed solution" to takie rozwiązanie, kiedy algorytm potrafi znaleźć całkowitą wartość nieoznaczoności N.

"Float solution" to takie rozwiązanie, kiedy algorytm nie znalazł całkowitej wartości N i nieoznaczoność obliczona jest jako liczba rzeczywista. Dokładność takiego rozwiązania jest niższa i kształtuje się zwykle na poziomie od 1cm do 0.5 m.

Przy obliczaniu współrzędnych w nawiązaniu do stacji CBKA, powstało 2597 rozwiązań fixed i 283 rozwiązań float.

Obliczenia w nawiązaniu do stacji WAT1 – wektor średni

Błędy poszczególnych współrzędnych:

Największa wartość błędu dla naszej próbki dla współrzędnej **N (north)** wyniosła ok. 13 cm. Odchylenie standardowe oraz średni błąd kwadratowy wyniosły ok. 1 cm.

Największy błąd dla współrzędnej **E (east)** wyniósł ok. 11 cm. Odchylenie standardowe oraz średni błąd kwadratowy przyjęły wartość ok. 1 cm.

Największy błąd dla współrzędnej **U (up)** wyniósł ok. 11 cm. Odchylenie standardowe oraz średni błąd kwadratowy wyniosły ok. 2 cm.

Wykres wartości testu ratio:

Na wykresie widać, że współczynnik przyjmuje średnio niższe wartości. Maksymalna wynosi niewiele ponad 200, gdzie w przypadku CBKA było to ok. 900. Ogólnie można stwierdzić, że współrzędne obliczone w nawiązaniu do stacji WAT1 są gorszej jakości.

Wykres rozwiązań:

Liczba rozwiązań fixed nadal zdecydowanie przeważa wobec liczby rozwiązań float, chociaż przewaga jest mniejsza.

Obliczenia w nawiązaniu do stacji MIMA – wektor bardzo długi

Błędy poszczególnych współrzędnych:

Największa wartość błędu dla współrzędnej **N (north)** wyniosła niecałe 60 cm. Odchylenie standardowe wyniosło 4 cm, podobnie błąd średni kwadratowy.

Największy błąd dla współrzędnej **E (east)** wyniósł 36 cm. Odchylenie standardowe wyniosło 4 cm, a średni błąd kwadratowy – 7 cm.

Największy błąd dla współrzędnej **U (up)** wyniósł ok. 46 cm. Odchylenie standardowe wyniosło 7 cm, a średni błąd kwadratowy – 10 cm.

Błędy osiągają tu już duże większe wartości, wartości są znacznie bardziej chwiejne.

Wykres wartości testu ratio:

Wartości współczynnika ratio są niskie, maksymalna wartość wynosi niewiele ponad 30. Jakość współrzędnych obliczonych w nawiązaniu do MIMA jest najniższa.

Wykres rozwiązań:

W nawiązaniu do MIMA było już więcej niedokładnych rozwiązań float niż fixed.

Podsumowanie

Zestawienie wartości:

stacja	СВКА	WAT1	MIMA
odległość od	4	12	50
WUTR[km]			
największy błąd N	4	13	60
[cm]			
największy błąd E	10	11	36
[cm]			
największy błąd U	8	11	46
[cm]			
liczba rozwiązań	2597	2334	1327
fixed			
liczba rozwiązań	283	546	1553
float			
odchylenie	1	1	4
standardowe N [cm]			
odchylenie	1	1	4
standardowe E [cm]			
odchylenie	1	2	7
standardowe U [cm]			
RMS N [cm]	1	1	4
RMS E [cm]	1	1	7
RMS u [cm]	2	2	10