Fall 2022 Data C100/C200 Midterm Reference Sheet

Pandas

Suppose df is a DataFrame; s is a Series. pd is the Pandas package.

Function	Description	
df[col]	Returns the column labeled col from df as a Series.	
df[[col1, col2]]	Returns a DataFrame containing the columns labeled col1 and col2.	
s.loc[rows] / df.loc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their index values.	
s.iloc[rows] / df.iloc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their positions.	
s.isnull() / df.isnull()	Returns boolean Series/DataFrame identifying missing values	
s.fillna(value) / df.fillna(value)	Returns a Series/DataFrame where missing values are replaced by value	
df.drop(labels, axis)	Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)	
df.rename(index=None, columns=None)	Returns a DataFrame with renamed columns from a dictionary index and/or columns	
df.sort_values(by, ascending=True)	Returns a DataFrame where rows are sorted by the values in columns by	
s.sort_values(ascending=True)	Returns a sorted Series.	
s.unique()	Returns a NumPy array of the unique values	
s.value_counts()	Returns the number of times each unique value appears in a Series	
<pre>pd.merge(left, right, how='inner', on='a')</pre>	Returns a DataFrame joining DataFrames left and right on the column labeled a; the join is of type inner	
<pre>left.merge(right, left_on=col1, right_on=col2)</pre>	Returns a DataFrame joining DataFrames left and right on columns labeled col1 and col2.	
<pre>df.pivot_table(index, columns, values=None, aggfunc='mean')</pre>	Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is not provided, cells are collected for each remaining column with multi-level column indexing.	
df.set_index(col)	Returns a DataFrame that uses the values in the column labeled col as the row index.	
df.reset_index()	Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column.	

Function	Description		
grouped.count()	Return a DataFrame containing the size of each group, excluding missing values		
<pre>grouped.size()</pre>	Return a Series containing size of each group, including missing values		
<pre>grouped.mean()/grouped.min()/grouped.</pre>	max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values		
<pre>grouped.filter(f) grouped.agg(f)</pre>	Filters or aggregates using the given function f		
Function	Description		
s.str.len()	Returns a Series containing length of each string		
<pre>s.str.lower()/s.str.upper()</pre>	Returns a Series containing lowercase/uppercase version of each string		
s.str.replace(pat, repl)	Returns a Series after replacing occurences of substrings matching regular expression pat with string repl		

contains one group, then only the substring matching the group is extracted

Returns a boolean Series indicating whether a substring matching the regular expression pat is contained

Returns a Series of the first subsequence of each string that matches the regular expression pat. If pat

Visualization

s.str.contains(pat)

s.str.extract(pat)

Matplotlib: x and y are sequences of values.

Function	Description	
plt.plot(x, y)	Creates a line plot of x against y	
<pre>plt.scatter(x, y)</pre>	Creates a scatter plot of x against y	
<pre>plt.hist(x, bins=None)</pre>	Creates a histogram of x; bins can be an integer or a sequence	
plt.bar(x, height)	Creates a bar plot of categories x and corresponding heights height	

in each string

Seaborn: x and y are column names in a DataFrame data.

Function	Description Create a barplot of value counts of variable x from data	
<pre>sns.countplot(data, x)</pre>		
<pre>sns.histplot(data, x, kde=False) sns.displot(x, data, rug = True, kde = True)</pre>	Creates a histogram of x from data; optionally overlay a kernel density estimator. displot is similar but can optionally overlay a rug plot.	
<pre>sns.boxplot(data, x=None, y) sns.violinplot(data, x=None, y)</pre>	Create a boxplot of y, optionally factoring by categorical x, from data. violinplot is similar but also draws a kernel density estimator of y.	
<pre>sns.scatterplot(data, x, y)</pre>	Create a scatterplot of x versus y from data	
<pre>sns.lmplot(x, y, data, fit_reg=True)</pre>	Create a scatterplot of $\mathbf x$ versus $\mathbf y$ from data, and by default overlay a least-square regression line	
<pre>sns.jointplot(x, y, data, kind)</pre>	Combine a bivariate scatterplot of x versus y from data, with univariate density plots of each variable overlaid on the axes; kind determines the visualization type for the distribution plot, can be scatter, kde or hist	

Regular Expressions

List of all metacharacters: . $^ $* + ?] [\ \] () { }$

Operator	Description		Operator	Description
	Matches any charact	er except \n	*	Matches preceding character/group zero or more times
\\	Escapes metacharac	ters	?	Matches preceding character/group zero or one times
I	Matches expression on either side of expression; has lowest priority of any operator		+	Matches preceding character/group one or more times
\d, \w, \s	\w, \s Predefined character group of digits (0-9), alphanumerics (a-z, A-Z, 0-9, and underscore), or whitespace, respectively		^, \$	Matches the beginning and end of the line, respectively
\D, \W, \S	Inverse sets of \d, \w, \s, respectively		()	Capturing group used to create a sub-expression
{m}	Matches preceding character/group exactly m times		[]	Character class used to match any of the specified characters or range (e.g. [abcde] is equivalent to [a-e])
{m, n}	Matches preceding character/group at least m times and at most n times if either m or n are omitted, set lower/upper bounds to 0 and ∞ , respectively		[^]	Invert character class; e.g. [^a-c] matches all characters except a, b, c
Function	Function Description			
re.match(pattern, string) Returns a match if zero or		more characte	ers at beginning of string matches pattern, else None	
re.search(pattern, string) Returns a match if zero or r		more characte	ers anywhere in string matches pattern, else None	
re.findal	findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)			ches of pattern in string (if none, returns empty list)
re.sub(pa	re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl			

Modified lecture example for a single capturing group:

```
lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\[\d+\/(\w+)\/\d+:\d+:\d+ .+\]', line) # returns ['Jan']
```

Modeling

Concept	Formula	Concept	Formula
$L_1 \mathrm{loss}$	$L_1(y,\hat{y}) = \mid y - \hat{y} \mid$	$ Correlation \ r $	$r=rac{1}{n}\sum_{i=1}^nrac{x_i-ar{x}}{\sigma_x}rac{y_i-ar{y}}{\sigma_y}$
$L_2 \mathrm{loss}$	$L_2(y,\hat{y}) = (y-\hat{y})^2$	Linear regression prediction of y	$\hat{y} = a + bx$
Empirical risk with loss L	$R(heta) = rac{1}{n} \sum_{i=1}^n L(y_i, \hat{y_i})$	Least squares linear regression, slope \hat{b}	$\hat{b}=r\frac{\sigma_y}{\sigma_x}$

Ordinary Least Squares

Multiple Linear Regression Model: $\hat{\mathbb{Y}} = \mathbb{X}\theta$ with design matrix \mathbb{X} , response vector \mathbb{Y} , and predicted vector $\hat{\mathbb{Y}}$. If there are p features plus a bias/intercept, then the vector of parameters $\theta = [\theta_0, \theta_1, \dots, \theta_p]^T \in \mathbb{R}^{p+1}$. The vector of estimates $\hat{\theta}$ is obtained from fitting the model to the sample (\mathbb{X}, \mathbb{Y}) .

Concept	Formula	Concept	Formula
Mean squared error	$R(heta) = rac{1}{n} \mathbb{Y} - \mathbb{X} heta _2^2$	Normal equation	$\mathbb{X}^T\mathbb{X}\hat{ heta}=\mathbb{X}^T\mathbb{Y}$
Least squares estimate, if $\mathbb X$ is full rank	$\hat{ heta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$	Residual vector, e	$e=\mathbb{Y}-\hat{\mathbb{Y}}$
		Multiple ${\cal R}^2$ (coefficient of determination)	$R^2 = rac{ ext{variance of fitted values}}{ ext{variance of }y}$
Ridge Regression L2 Regularization	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2+lpha heta _2^2$	Squared L2 Norm of $ heta \in \mathbb{R}^d$	$ heta _2^2 = \sum_{j=1}^d heta_j^2$
Ridge regression estimate (closed form)	$\hat{ heta}_{ ext{ridge}} = (\mathbb{X}^T \mathbb{X} + n lpha I)^{-1} \mathbb{X}^T \mathbb{Y}$		
LASSO Regression L1 Regularization	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2+lpha heta _1$	L1 Norm of $ heta \in \mathbb{R}^d$	$ heta _1 = \sum_{j=1}^d heta_j $

Scikit-Learn

Suppose sklearn.model_selection and sklearn.linear_model are both imported packages.

Package	Function(s)	Description
sklearn.linear_model LinearRegression(fit_intercep		Returns an ordinary least squares Linear Regression model.
	<pre>LassoCV(fit_intercept=True), RidgeCV(fit_intercept=True)</pre>	Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model, respectively, and picks the best model by cross validation.
	<pre>model.fit(X, y)</pre>	Fits the scikit-learn model to the provided X and y.
	<pre>model.predict(X)</pre>	Returns predictions for the X passed in according to the fitted model.
	model.coef_	Estimated coefficients for the linear model, not including the intercept term.
	model.intercept_	Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.
sklearn.model_selection	<pre>train_test_split(*arrays, test_size=0.2)</pre>	Returns two random subsets of each array passed in, with 0.8 of the array in the first subset and 0.2 in the second subset.