Engineering Maths IV

Nov-Dec 2022

(COITAI)

Time (3 hours) Max Marks: 80

Note: (1) Question No. 1 is Compulsory

- (2) Answer any three questions from Q.2 to Q.6
- (3) Figures to the right indicate full marks

1. (a) If
$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$
 then find the eigen values of $6A^{-1} + A^3 + 2I$ (5)

Solution:

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

The characteristic equation,

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 2 - \lambda & 4 \\ 0 & 3 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)(3 - \lambda) - 0 = 0$$

$$\lambda = 2.3$$

The eigen values of A is 2,3

The eigen values of A^{-1} is 2^{-1} , 3^{-1} i.e. $\frac{1}{2}$, $\frac{1}{3}$

The eigen values of $6A^{-1}$ is $6\left(\frac{1}{2}\right)$, $6\left(\frac{1}{3}\right)$ i.e. 3,2

The eigen values of A^3 is 2^3 , 3^3 i.e. 8,27

The eigen values of I is 1,1

The eigen values of 2I is 2,2

Thus, the eigen values of $6A^{-1} + A^3 + 2I$ is

$$3 + 8 + 2$$
; $2 + 27 + 2$

i.e. 13; 31

1. (b) Evaluate
$$\int_0^{1+i} (x^2 + iy) dz$$
 along the path(i) $y = x$ (ii) $y = x^2$ (5) Solution:

Let
$$I = \int_0^{1+i} (x^2 + iy)(dx + idy)$$

(i) Along the path y = x

$$y = x$$
$$dy = dx$$

The integral becomes,

$$I = \int_0^1 (x^2 + ix)(dx + idx)$$

$$I = (1+i) \int_0^1 (x^2 + ix)dx$$

$$I = (1+i) \left[\frac{x^3}{3} + i \frac{x^2}{2} \right]_0^1$$

$$I = (1+i) \left(\frac{1}{3} + \frac{i}{2} \right)$$

$$I = \frac{-1+5i}{3}$$

(ii) Along the path
$$y = x^2$$

$$y = x^2$$

$$dy = 2x dx$$

The integral becomes,

$$I = \int_0^1 (x^2 + ix^2)(dx + i2xdx)$$

$$I = \int_0^1 (1+i)x^2(1+2xi)dx$$

$$I = (1+i)\int_0^1 (x^2 + 2ix^3)dx$$

$$I = (1+i)\left[\frac{x^3}{3} + 2i\frac{x^4}{4}\right]_0^1$$

$$I = (1+i)\left(\frac{1}{3} + \frac{i}{2}\right)$$

$$I = \frac{-1+5i}{6}$$

(5)

(c) Write the dual of the following problem 1.

Maximise
$$z = 3x_1 + 10x_2 + 2x_3$$

subject to $2x_1 + 3x_2 + 2x_3 \le 8$
 $3x_1 - 2x_2 + 4x_3 = 4$
 $x_1, x_2, x_3 \ge 0$

Solution:

Primal,

Maximise
$$z = 3x_1 + 10x_2 + 2x_3$$

Subject to $2x_1 + 3x_2 + 2x_3 \le 8$
 $3x_1 - 2x_2 + 4x_3 \le 4$
 $3x_1 - 2x_2 + 4x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

Primal,

Maximise
$$z = 3x_1 + 10x_2 + 2x_3$$

Subject to $2x_1 + 3x_2 + 2x_3 \le 8$
 $3x_1 - 2x_2 + 4x_3 \le 4$
 $-3x_1 + 2x_2 - 4x_3 \le -4$
 $x_1, x_2, x_3 \ge 0$

Its dual,

Minimise
$$w = 8y_1 + 4y_2' - 4y_2''$$
 Subject to
$$2y_1 + 3y_2' - 3y_2'' \ge 3$$

$$3y_1 - 2y_2' + 2y_2'' \ge 10$$

$$2y_1 + 4y_2' - 4y_2'' \ge 2$$

$$y_1, y_2', y_2'' \ge 0$$

Its dual,

Minimise
$$w = 8y_1 + 4y_2$$

Subject to $2y_1 + 3y_2 \ge 3$
 $3y_1 - 2y_2 \ge 10$
 $2y_1 + 4y_2 \ge 2$

 $y_1 \ge 0$ and y_2 is unrestricted

(d) A certain drug administered to 12 patients resulted in the following changes of blood 1. pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4

Can we conclude that drug increases the blood pressure?

Solution:

00.00	
x	χ^2
5	25
2	4
8	64
-1	1
3	9
0	0
6	36
-2	4
1	1
5	25
0	0
4	16
Total = 31	Total = 185

$$n = 12$$

$$\overline{x} = \frac{\sum x}{n} = \frac{31}{12} = 2.5833$$

$$\sigma = \sqrt{\frac{\sum x^2}{n} - (\overline{x})^2} = \sqrt{\frac{185}{12} - (2.5833)^2} = 2.9569$$

(i) Null Hypothesis: $\mu = 0$ (no change)

Alternative Hypothesis: $\mu \neq 0$

(ii) Test statistic:

lest statistic:
$$t = \left| \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n-1}}} \right| = \left| \frac{2.5833 - 0}{\frac{2.9569}{\sqrt{12-1}}} \right| = 2.897$$

- (iii) L.O.S.: $\alpha = 0.05$ (assumed)
- (iv) Degree of freedom: $\emptyset = n 1 = 12 1 = 11$
- (v) Critical value: $t_{\alpha} = 2.201$
- (vi) Decision: Since, the calculated value of t is more than the critical value, null hypothesis is rejected. Thus, there is rise in BP.

(a) Using Cauchy's residue theorem evaluate $\int_C \frac{1-2z}{z(z-1)(z-2)} dz$ where C is |z|=1.5 (6) 2.

Solution:

We have,
$$f(z) = \frac{1-2z}{z(z-1)(z-2)}$$

For singularity,

$$z(z-1)(z-2)=0$$

$$z = 0, z = 1, z = 2$$

We see that z=0 and z=1 both lies inside C:|z|=1.5 and hence are simple poles.

Residue of
$$f(z)$$
 at $(z = 0) = \lim_{z \to 0} (z - 0) f(z)$

$$= \lim_{z \to 0} (z - 0) \frac{1 - 2z}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 0} \frac{1 - 2z}{(z - 1)(z - 2)}$$

$$= \frac{1 - 0}{(0 - 1)(0 - 2)}$$

$$= \frac{1}{2}$$

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{1 - 2z}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{1 - 2z}{z(z - 2)}$$

$$= \frac{1 - 2(1)}{1(1 - 2)}$$

$$= \frac{-1}{z - 1} = 1$$

By Cauchy's Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c}^{c} \frac{1-2z}{z(z-1)(z-2)} dz = 2\pi i \left[\frac{1}{2} + 1 \right]$$

$$\int_{c}^{c} \frac{1-2z}{z(z-1)(z-2)} dz = 2\pi i \left[\frac{3}{2} \right]$$

$$\int_{C} \frac{1 - 2z}{z(z - 1)(z - 2)} dz = 3\pi i$$

(b) Verify Cayley-Hamilton theorem and find A^{-1} for $A = \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix}$. Hence find 2. $2A^3 - A^2 - 35A - 44I$ (6)

Solution:

$$A = \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix}$$

The characteristic equation, $|A - \lambda I| = 0$

$$\begin{vmatrix} 1 - \lambda & 8 \\ 2 & 1 - \lambda \end{vmatrix} = 0$$
$$(1 - \lambda)(1 - \lambda) - 16 = 0$$
$$\lambda^2 - 2\lambda - 15 = 0$$

By C-H theorem, $A^2 - 2A - 15I = 0$

L.H.S.
$$= A^2 - 2A - 15I$$

 $= \begin{bmatrix} 17 & 16 \\ 4 & 17 \end{bmatrix} - 2 \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix} - 15 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \text{R.H.S}$

Thus, Cayley Hamilton theorem is verified

Now,

$$A^2 - 2A - 15I = 0$$

Pre-multiplying by A^{-1} , we get

$$A - 2I - 15A^{-1} = 0$$

$$15A^{-1} = A - 2I$$

$$15A^{-1} = \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$15A^{-1} = \begin{bmatrix} -1 & 8 \\ 2 & -1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{15} \begin{bmatrix} -1 & 8\\ 2 & -1 \end{bmatrix}$$

 $15A^{-1} = \begin{bmatrix} -1 & 8 \\ 2 & -1 \end{bmatrix}$ $A^{-1} = \frac{1}{15} \begin{bmatrix} -1 & 8 \\ 2 & -1 \end{bmatrix}$ Dividing $2\lambda^3 - \lambda^2 - 35\lambda - 44$ by $\lambda^2 - 2\lambda - 15$

Thus.

$$2A^{3} - A^{2} - 35A - 44I = (2A + 3I)(A^{2} - 2A - 15I) + A + I$$

$$2A^{3} - A^{2} - 35A - 44I = (2A + 3I)(0) + A + I$$

$$2A^{3} - A^{2} - 35A - 44I = A + I$$

(8)

$$2A^{3} - A^{2} - 35A - 44I = \begin{bmatrix} 1 & 8 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$2A^{3} - A^{2} - 35A - 44I = \begin{bmatrix} 2 & 8 \\ 2 & 2 \end{bmatrix}$$

2. (c) Solve by Simplex method

 $z = 4x_1 + 10x_2$ Maximise $2x_1 + x_2 \le 50$ subject to $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0$

Solution:

Max
$$z - 4x_1 - 10x_2 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t. $2x_1 + x_2 + s_1 + 0s_2 + 0s_3 = 50$
 $2x_1 + 5x_2 + 0s_1 + s_2 + 0s_3 = 100$
 $2x_1 + 3x_2 + 0s_1 + 0s_2 + s_3 = 90$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Simplex table,

Iteration No.	Basic	Coefficient of			RHS	Ratio	Formula		
iteration No.	Var	x_1	x_2	s_1	S_2	S_3	כווא	Natio	FUITIUIA
0	Z	-4	-10	0	0	0	0	-	X + 2Y
	s_1	2	1	1	0	0	50	$\frac{50}{1} = 50$	$X-\frac{1}{5}Y$
s_2 leaves x_2 enters	s_2	2	5	0	1	0	100	$\frac{100}{5} = 20$	<u>Y</u> 5
λ2 επετ3	s_3	2	3	0	0	1	90	$\frac{90}{3} = 30$	$X-\frac{3}{5}Y$
1	Z	0	0	0	2	0	200		
-01	s_1	8 5	0	1	$-\frac{1}{5}$	0	30		
	x_2	2 5	1	0	1 5	0	20		
	s_3	4 5	0	0	$-\frac{3}{5}$	1	30		
the solution is									

Thus, the solution is

$$x_1 = 0, x_2 = 20, z_{max} = 200$$

(a) Based on the following determine if there is a relation between literacy and smoking: 3.

	Smokers	Non-smokers
Literates	83	57
Illiterates	45	68

(Given that Critical value of chi-square 1 d.f. and 5% L.O.S. is 3.841)

(6)

Solution:

The observed frequency table as given:

	Smokers	Non-smokers	Total
Literates	83	57	140
Illiterates	45	68	113
Total	128	125	253

(i) Null Hypothesis: There is no relation between literacy and smoking Alternative Hypothesis: There is a relation between literacy and smoking

(ii) Test Statistic:

0	Е	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
83	$\frac{140 \times 128}{253} = 71$	12	144	144/71
57	$\frac{125\times140}{253} = 69$	-12	144	144/69
45	$\frac{128\times113}{253} = 57$	-12	144	144/57
68	$\frac{125 \times 113}{253} = 56$	12	144	144/56
	9.213			

(iii) Degree of freedom:
$$\emptyset = (r-1)(c-1) = (2-1)(2-1) = 1$$

(iv) L.O.S: $\alpha = 0.05$

(v) Critical value: $\chi_{\alpha}^2 = 3.841$

(vi) Decision: since, the calculated value is more than the critical value, null hypothesis is rejected. Thus, there is a relation between literacy and smoking

(b) Obtain Laurent's series expansion of $f(z) = \frac{1}{z^2 + 4z + 3}$ when 3.

(i)
$$|z| < 1$$
 (ii) $1 < |z| < 3$ (iii) $|z| > 3$ (6)

Solution:

We have,
$$f(z) = \frac{1}{z^2 + 4z + 3} = \frac{1}{(z+1)(z+3)}$$

Let $\frac{1}{(z+1)(z+3)} = \frac{A}{z+1} + \frac{B}{z+3}$
 $1 = A(z+3) + B(z+1)$

Comparing the coefficients, we get

$$A + B = 0$$

$$3A + B = 1$$

On solving, we get

$$A = \frac{1}{2}, B = -\frac{1}{2}$$

$$f(z) = \frac{\frac{1}{2}}{z+1} - \frac{\frac{1}{2}}{z+3}$$

$$f(z) = \frac{\frac{1}{2}}{z+1} - \frac{\frac{1}{2}}{z+3}$$

(i)
$$|z| < 1$$

$$f(z) = \frac{\frac{1}{2}}{1+z} - \frac{\frac{1}{2}}{3+z}$$

$$f(z) = \frac{1}{2} [1+z]^{-1} - \frac{\frac{1}{2}}{3[1+\frac{z}{3}]}$$

$$f(z) = \frac{1}{2} [1+z]^{-1} - \frac{1}{6} \left[1 + \frac{z}{3} \right]^{-1}$$

$$f(z) = \frac{1}{2} \left[1 - z + z^2 - z^3 + \dots \right] - \frac{1}{6} \left[1 - \frac{z}{3} + \frac{z^2}{3^2} - \frac{z^3}{3^3} + \dots \right]$$

(ii)
$$1 < |z| < 3$$

$$f(z) = \frac{\frac{1}{2}}{z+1} - \frac{\frac{1}{2}}{3+z}$$

$$f(z) = \frac{\frac{1}{2}}{z+1} - \frac{\frac{1}{2}}{3+z}$$
$$f(z) = \frac{\frac{1}{2}}{z\left[1+\frac{1}{z}\right]} - \frac{\frac{1}{2}}{3\left[1+\frac{z}{3}\right]}$$

$$f(z) = \frac{1}{2z} \left[1 + \frac{1}{z} \right]^{-1} - \frac{1}{6} \left[1 + \frac{z}{3} \right]^{-1}$$

$$f(z) = \frac{1}{2z} \left[1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots \right] - \frac{1}{6} \left[1 - \frac{z}{3} + \frac{z^2}{3^2} - \frac{z^3}{3^3} + \dots \right]$$

(iii)
$$|z| > 3$$

$$f(z) = \frac{\frac{1}{2}}{z+1} - \frac{\frac{1}{2}}{z+3}$$

$$f(z) = \frac{\frac{1}{2}}{z[1+\frac{1}{z}]} - \frac{\frac{1}{2}}{z[1+\frac{3}{z}]}$$

$$f(z) = \frac{1}{2z} \left[1 + \frac{1}{z} \right]^{-1} - \frac{1}{2z} \left[1 + \frac{3}{z} \right]^{-1}$$

$$f(z) = \frac{1}{2z} \left[1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots \right] - \frac{1}{2z} \left[1 - \frac{3}{z} + \frac{3^2}{z^2} - \frac{3^3}{z^3} + \dots \right]$$

(8)

3. (c) Using the method of Lagrangian multipliers solve the following N.L.P.P.

Optimize
$$z = x_1^2 + x_2^2 + x_3^2$$

subject to $x_1 + x_2 + 3x_3 = 2$
 $5x_1 + 2x_2 + x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2$$

Let $h_1 = x_1 + x_2 + 3x_3 - 2 \& h_2 = 5x_1 + 2x_2 + x_3 - 5$

$$L = f - \lambda_1 h_1 - \lambda_2 h_2$$

$$L = x_1^2 + x_2^2 + x_3^2 - \lambda_1 (x_1 + x_2 + 3x_3 - 2) - \lambda_2 (5x_1 + 2x_2 + x_3 - 5)$$
Now,

$$L_{x_1} = 0 \Rightarrow 2x_1 - \lambda_1 - 5\lambda_2 = 0 \text{ i.e. } x_1 = \frac{\lambda_1 + 5\lambda_2}{2}$$

$$L_{x_2} = 0 \Rightarrow 2x_2 - \lambda_1 - 2\lambda_2 = 0 \text{ i.e. } x_2 = \frac{\lambda_1 + 2\lambda_2}{2}$$

$$L_{x_3} = 0 \Rightarrow 2x_3 - 3\lambda_1 - \lambda_2 = 0 \text{ i.e. } x_3 = \frac{3\lambda_1 + \lambda_2}{2}$$

$$L_{\lambda_1} = 0 \Rightarrow -(x_1 + x_2 + 3x_3 - 2) = 0 \Rightarrow x_1 + x_2 + 3x_3 = 2 \dots (1)$$

$$L_{\lambda_2} = 0 \Rightarrow -(5x_1 + 2x_2 + x_3 - 5) = 0 \Rightarrow 5x_1 + 2x_2 + x_3 = 5 \dots (2)$$

Putting
$$x_1, x_2, x_3$$
 in eqn (1) we get

$$\left(\frac{\lambda_1 + 5\lambda_2}{2}\right) + \left(\frac{\lambda_1 + 2\lambda_2}{2}\right) + 3\left(\frac{3\lambda_1 + \lambda_2}{2}\right) = 2$$

$$11\lambda_1 + 10\lambda_2 = 4 \dots (3)$$

Putting
$$x_1, x_2, x_3$$
 in eqn (2) we get

$$5\left(\frac{\lambda_1+5\lambda_2}{2}\right) + 2\left(\frac{\lambda_1+2\lambda_2}{2}\right) + \left(\frac{3\lambda_1+\lambda_2}{2}\right) = 5$$

$$10\lambda_1 + 30\lambda_2 = 10 \dots (4)$$

$$\lambda_1 = \frac{2}{23}$$
, $\lambda_2 = \frac{7}{23}$
Thus, $x_1 = \frac{37}{46}$, $x_2 = \frac{8}{23}$, $x_3 = \frac{13}{46}$

$$\begin{split} H^B &= \begin{bmatrix} 0 & P \\ P' & Q \end{bmatrix} \\ \text{where, } P &= \begin{bmatrix} h_{1x_1} & h_{1x_2} & h_{1x_3} \\ h_{2x_1} & h_{2x_2} & h_{2x_3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 1 \end{bmatrix} \\ Q &= \begin{bmatrix} L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \end{split}$$

$$\begin{split} & \therefore H^B = \begin{bmatrix} 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 5 & 2 & 1 \\ 1 & 5 & 2 & 0 & 0 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 0 & 0 & 2 \end{bmatrix} \\ & \text{By } C_4 - C_3, C_5 - 3C_1 \\ & H^B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 5 & -3 & -14 \\ 1 & 5 & 2 & -2 & -6 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 0 & 0 & 2 \end{bmatrix} \\ & \Delta = 1 \begin{vmatrix} 0 & 0 & -3 & -14 \\ 1 & 5 & -2 & -6 \\ 1 & 2 & 2 & 0 \\ 3 & 1 & 0 & 2 \end{vmatrix} = -3 \begin{vmatrix} 1 & 5 & -6 \\ 1 & 2 & 0 \\ 3 & 1 & 2 \end{vmatrix} - (-14) \begin{vmatrix} 1 & 5 & -2 \\ 1 & 2 & 2 \\ 3 & 1 & 0 \end{vmatrix} \\ & \Delta = -3(24) + 14(38) = 460 \\ & \text{Since, } \Delta \text{ is positive, it is a minima} \\ & \therefore z_{min} = \left(\frac{37}{46}\right)^2 + \left(\frac{8}{23}\right)^2 + \left(\frac{13}{46}\right)^2 \\ & \hline z_{min} = \frac{39}{46} \end{split}$$

(6)

(a) Using the method of Lagrange's multipliers, solve the following N.L.P.P. 4.

Optimise
$$z = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$

subject to $x_1 + x_2 + x_3 = 7$
 $x_1, x_2, x_3 \ge 0$

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$

and $h = x_1 + x_2 + x_3 - 7$

Consider the Lagrangian function,

$$L = f - \lambda h$$

$$L = (x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3) - \lambda(x_1 + x_2 + x_3 - 7)$$

$$L_{x_1} = 0 \Rightarrow 2x_1 - 10 - \lambda = 0 \Rightarrow x_1 = \frac{\lambda + 10}{2}$$

$$L_{x_2} = 0 \Rightarrow 2x_2 - 6 - \lambda = 0 \Rightarrow x_2 = \frac{\lambda + 6}{2}$$

$$L_{x_3} = 0 \Rightarrow 2x_3 - 4 - \lambda = 0 \Rightarrow x_3 = \frac{\lambda + 4}{2}$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 + x_3 - 7) = 0$$

$$x_1 + x_2 + x_3 = 7$$

$$\frac{\lambda + 10}{2} + \frac{\lambda + 6}{2} + \frac{\lambda + 4}{2} = 7$$

$$\frac{3\lambda + 20}{2} = 7$$

$$\lambda = -2$$

 $\therefore x_1 = 4, x_2 = 2, x_3 = 1$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} & h_{x_3} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ h_{x_3} & L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} = -4$$

$$\Delta_4 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} = -1 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} + 1 \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix} - 1 \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\Delta_4 = -4 - 4 - 4 - 4 = -12$$

Since both Δs are negative, it is a minima

$$z_{min} = (4)^2 + (2)^2 + (1)^2 - 10(4) - 6(2) - 4(1)$$

$$z_{min} = -35$$

S.E/Paper Solutions 12 By: Kashif Shaikh

(b) Find the inverse Z transform of $\frac{1}{z^2-3z+2}$ if ROC is (i) |z|<1 (ii) |z|>24. (6)

Solution:

We have,

$$F(z) = \frac{1}{z^2 - 3z + 2} = \frac{1}{(z - 1)(z - 2)}$$

$$\text{Let } \frac{1}{(z - 1)(z - 2)} = \frac{A}{z - 1} + \frac{B}{z - 2}$$

$$1 = A(z - 2) + B(z - 1)$$

Comparing the coefficients, we get

$$A + B = 0$$
$$-2A - B = 1$$

On solving, we get A = -1, B = 1

$$F(z) = \frac{-1}{z-1} + \frac{1}{z-2}$$

(i)
$$|z| < 1$$

$$F(z) = \frac{-1}{-1+z} + \frac{1}{-2+z}$$

$$F(z) = \frac{-1}{-1+z} + \frac{1}{-2+z}$$

$$F(z) = \frac{-1}{-[1-z]} + \frac{1}{-2[1-\frac{z}{2}]}$$

$$F(z) = [1-z]^{-1} - \frac{1}{2} \left[1 - \frac{z}{2}\right]^{-1}$$

$$F(z) = [1 + z + z^2 + z^3 + \dots] - \frac{1}{2} \left[1 + \frac{z}{2} + \frac{z^2}{2^2} + \frac{z^3}{2^3} + \dots \right]$$

$$F(z) = [1 + z + z^2 + z^3 + \dots] + \left[-\frac{1}{2} - \frac{z}{2^2} - \frac{z^2}{2^3} - \frac{z^3}{2^4} + \dots \right]$$

$$F(z) = [z^0 + z^1 + z^2 - \dots] + [-2^{-1}z^0 - 2^{-2}z^1 - 2^{-3}z^2 + \dots]$$

$$F(z) = [z^{0} + z^{1} + z^{2} - \dots] + [-2^{-1}z^{0} - 2^{-2}z^{1} - 2^{-3}z^{2} + \dots]$$

From first series,

Coefficient of $z^k = 1, k \ge 0$

Coefficient of
$$z^{-k} = 1, k \le 0$$

From second series,

Coefficient of
$$z^k = -2^{-(k+1)}$$
, $k \ge 0$

Coefficient of
$$z^{-k} = -2^{k-1}$$
, $k \le 0$

$$Z^{-1}\left\{\frac{1}{(z-1)(z-2)}\right\} = 1 - 2^{k-1}, k \le 0$$

(ii)
$$|z| > 2$$

$$F(z) = \frac{-1}{z-1} + \frac{1}{z-2}$$

$$F(z) = \frac{-1}{z-1} + \frac{1}{z-2}$$

$$F(z) = \frac{-1}{z\left[1 - \frac{1}{z}\right]} + \frac{1}{z\left[1 - \frac{2}{z}\right]}$$

$$F(z) = -\frac{1}{z} \left[1 - \frac{1}{z} \right]^{-1} + \frac{1}{z} \left[1 - \frac{2}{z} \right]^{-1}$$

$$F(z) = -\frac{1}{z} \left[1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right] + \frac{1}{z} \left[1 + \frac{2}{z} + \frac{2^2}{z^2} + \frac{2^3}{z^3} + \cdots \right]$$

$$F(z) = \left[-\frac{1}{z} - \frac{1}{z^2} - \frac{1}{z^3} - \frac{1}{z^4} + \dots \dots \right] + \left[\frac{1}{z} + \frac{2}{z^2} + \frac{2^2}{z^3} + \frac{2^3}{z^4} + \dots \dots \right]$$

 $F(z) = [-z^{-1} - z^{-2} - z^{-3} - \dots] + [2^{0}z^{-1} + 2^{1}z^{-2} + 2^{2}z^{-3} + \dots]$

From first series,

Coefficient of $z^{-k} = -1, k > 0$

From second series,

Coefficient of $z^{-k} = 2^{k-1}$, k > 0

Thus,

$$Z^{-1}\left\{\frac{1}{(z-1)(z-2)}\right\} = 2^{k-1} - 1, k > 0$$

(c) Show that the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalizable. Find the transforming 4.

matrix and the diagonal matrix

(8)

Solution:

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}, |A| = 0$$

The characteristic equation,

$$|A - \lambda I| = 0$$

$$|8 - \lambda - 6 \quad 4|$$

$$-6 \quad 7 - \lambda \quad -4| = 0$$

$$2 \quad -4 \quad 3 - \lambda|$$

$$\lambda^{3} - [sum \ of \ diagonals]\lambda^{2} + [sum \ of \ minors \ of \ diagonals]\lambda - |A| = 0$$

$$\lambda^{3} - [8+7+3]\lambda^{2} + \begin{bmatrix} 7 & -4 \\ -4 & 3 \end{bmatrix} + \begin{bmatrix} 8 & 2 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 8 & -6 \\ -6 & 7 \end{bmatrix} \lambda - 0 = 0$$

$$\lambda^3 - 18\lambda^2 + 45\lambda = 0$$

$$\lambda(\lambda - 15)(\lambda - 3) = 0$$

$$\lambda = 0,3,15$$

Since the eigen values are distinct, the matrix A is diagonalisable

(i) For
$$\lambda = 0$$
, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$8x_1 - 6x_2 + 2x_3 = 0$$

$$-6x_1 + 7x_2 - 4x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} -6 & 2 \\ 7 & -4 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} 8 & 2 \\ -6 & -4 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} 8 & -6 \\ -6 & 7 \end{vmatrix}}$$

$$\frac{x_1}{10} = -\frac{x_2}{-20} = \frac{x_3}{20}$$

$$\frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{2}$$

Hence, corresponding to $\lambda = 0$ the eigen vector is $X_1 = [1,2,2]'$

(ii) For
$$\lambda = 3$$
, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$5x_1 - 6x_2 + 2x_3 = 0$$

$$2x_1 - 4x_2 + 0x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} -6 & 2 \\ -4 & 0 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} 5 & 2 \\ 2 & 0 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} 5 & -6 \\ 2 & -4 \end{vmatrix}}$$
$$\frac{x_1}{8} = -\frac{x_2}{-4} = \frac{x_3}{-8}$$

$$\frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{-2}$$

Hence, corresponding to $\lambda = 3$ the eigen vector is $X_2 = [2,1,-2]'$

(iii) For
$$\lambda = 15$$
, $[A - \lambda I]X = 0$ gives
$$\begin{bmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$-7x_1 - 6x_2 + 2x_3 = 0$$
$$-6x_1 - 8x_2 - 4x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} -6 & 2 \\ -8 & -4 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} -7 & 2 \\ -6 & -4 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} -7 & -6 \\ -6 & -8 \end{vmatrix}}$$

$$\frac{x_1}{40} = -\frac{x_2}{40} = \frac{x_3}{20}$$

$$\frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

Hence, corresponding to $\lambda = 15$ the eigen vector is $X_3 = [2, -2, 1]'$

Thus, the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalised to $D = \begin{bmatrix} 0 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$ 0 by the

transformation $M^{-1}AM = D$ where $M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

5. (a) Find
$$Z\{f(k) * g(k)\}\ \text{if } f(k) = \left(\frac{1}{2}\right)^k, \ g(k) = \cos \pi k$$
 (6)

Solution:

If
$$Z{f(k)} = F(z)$$
 and $Z{g(k)} = G(z)$

Then by Convolution Theorem,

$$Z\{f(k) * g(k)\} = F(z).G(z)$$

We have,

$$Z\{f(k)\} = \sum_{-\infty}^{\infty} f(k)z^{-k}$$

$$Z\left\{\frac{1}{2^k}\right\} = \sum_{0}^{\infty} \frac{1}{2^k} \cdot z^{-k}$$

$$= \frac{z^0}{2^0} + \frac{z^{-1}}{2^1} + \frac{z^{-2}}{2^2} + \frac{z^{-3}}{2^3} + \cdots \dots$$

$$= 1 + \frac{1}{2z} + \frac{1}{(2z)^2} + \frac{1}{(2z)^3} + \cdots \dots$$

$$= \left[1 - \frac{1}{2z}\right]^{-1}$$

$$= \frac{1}{1 - \frac{1}{2z}}$$

$$Z\left\{\frac{1}{2^k}\right\} = \frac{2z}{2z-1}$$

$$\therefore Z\{f(k)\} = Z\left\{\frac{1}{2^k}\right\}$$

$$\therefore F(z) = \frac{2z}{2z-1}$$

Also,

We know that,

$$Z\{a^k\} = \frac{z}{z-a}$$

Now,

$$Z\{\cos k\pi\} = Z\left\{\frac{e^{\pi ik} + e^{-\pi ik}}{2}\right\}$$

$$= \frac{1}{2} Z\left\{e^{\pi ik} + e^{-\pi k}\right\}$$

$$= \frac{1}{2} \left[\frac{z}{z - e^{\pi i}} + \frac{z}{z - e^{-\pi i}}\right]$$

$$= \frac{1}{2} \left[\frac{z^2 - ze^{-\pi i} + z^2 - ze^{\pi i}}{z^2 - e^{\pi i}z - e^{-\pi i}z + 1}\right]$$

$$= \frac{1}{2} \left[\frac{2z^2 - z(e^{\pi i} - e^{-\pi i})}{z^2 - z(e^{\pi i} + e^{-\pi i}) + 1}\right]$$

$$= \frac{1}{2} \left[\frac{2z^2 - z(2\cos \pi)}{z^2 - z(2\cos \pi) + 1}\right]$$

$$Z\{\cos k\pi\} = \frac{z^2 + z}{z^2 + 2z + 1} = \frac{z(z + 1)}{(z + 1)^2} = \frac{z}{z + 1}$$

$$G(z) = \frac{z}{z + 1}$$

By Convolution Theorem,

$$Z\{f(k) * g(k)\} = F(z).G(z) = \frac{2z}{2z-1}.\frac{z}{z+1} = \frac{2z^2}{(2z-1)(z+1)}$$

(6)

5. (b) Find the eigen values and eigen vectors of the following matrix

$$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}, |A| = 4$$

The characteristic equation,

$$|A - \lambda I| = 0$$

$$\lambda^{3} - [4+3-2]\lambda^{2} + \begin{bmatrix} 3 & 2 \\ -5 & -2 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ -1 & -2 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ 1 & 3 \end{bmatrix} \lambda - 4 = 0$$

$$\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$

$$(\lambda - 1)(\lambda - 2)(\lambda - 2) = 0$$

$$\lambda = 1,2,2$$

(i) For $\lambda=1$, $[A-\lambda I]X=0$ gives

$$\begin{bmatrix} 3 & 6 & 6 \\ 1 & 2 & 2 \\ -1 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 + 2x_2 + 2x_3 = 0$$

$$-x_1 - 5x_2 - 3x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} 2 & 2 \\ -5 & -3 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} 1 & 2 \\ -1 & -3 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} 1 & 2 \\ -1 & -5 \end{vmatrix}}$$

$$\frac{x_1}{4} = -\frac{x_2}{-1} = \frac{x_3}{-3}$$

Hence, corresponding to $\lambda = 1$ the eigen vector is $X_1 = [4,1,-3]'$

(ii) For $\lambda = 2$, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 2 & 6 & 6 \\ 1 & 1 & 2 \\ -1 & -5 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$2x_1 + 6x_2 + 6x_3 = 0$$

$$-x_1 - 5x_2 - 4x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} 6 & 6 \\ -5 & -4 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} 2 & 6 \\ -1 & -4 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} 2 & 6 \\ -1 & -5 \end{vmatrix}}$$

$$\frac{x_1}{6} = -\frac{x_2}{-2} = \frac{x_3}{-4}$$

Hence, corresponding to $\lambda = 2$ the eigen vector is $X_2 = [3,1,-2]'$

(8)

5. (c) Solve by the dual simplex method

Minimize
$$z = x_1 + x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $-x_1 - x_2 \ge 1$
 $x_1, x_2 \ge 0$

Solution:

The standard form,

Min
$$z = x_1 + x_2$$

 $z - x_1 - x_2 + 0s_1 + 0s_2 = 0$
s.t. $-2x_1 - x_2 + s_1 = -2$
 $x_1 + x_2 + s_2 = -1$

Simplex table,

tabic,							
Iteration No.	Basic	Co	oefficient	RHS	Formula		
iteration No.	Var	x_1	x_2	s_1	S_2	KIIS	
0	Z	-1	-1	0	0	0	$X-\frac{1}{2}Y$
s_1 leaves x_1 enters	s_1	-2	-1	1	0	-2	$\frac{Y}{-2}$
	s_2	1	1	0	1	-1	$X + \frac{1}{2}Y$
Ratio		$\frac{-1}{-2} = \frac{1}{2}$	$\frac{-1}{-1} = 1$	5)	ı	1	
1	Z	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	1	
s_2 leaves x_1 enters	x_2	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	
	s_2	0	$\frac{1}{2}$	$\frac{1}{2}$	1	-2	
Ratio		-	-	-	ı	-	

Since, there are no positive ratios obtained, the problem has no solution

6. (a) Find
$$Z[2^k \cos(3k+2)], k \ge 0$$
 (6)

Solution:

$$Z\{\cos(3k+2)\} = Z\{\cos 3k \cos 2 - \sin 3k \sin 2\}$$

$$Z\{\cos(3k+2)\} = \cos 2 \ Z\{\cos 3k\} - \sin 2 \ Z\{\sin 3k\}$$

$$Z\{\cos(3k+2)\} = \cos 2 \ \left[\frac{z(z-\cos 3)}{z^2-2z\cos 3+1}\right] - \sin 2 \ \left[\frac{z\sin 3}{z^2-2z\cos 3+1}\right]$$
By
$$Z\{\cos \alpha k\} = \frac{z(z-\cos \alpha)}{z^2-2z\cos \alpha+1}, Z\{\sin \alpha k\} = \frac{z\sin \alpha}{z^2-2z\cos \alpha+1}$$

$$\therefore Z\{\cos(3k+2)\} = \frac{z^2\cos 2-z\cos 2\cos 3-z\sin 2\sin 3}{z^2-2z\cos 3+1}$$

$$Z\{\cos(3k+2)\} = \frac{z^2\cos 2-z\cos 2\cos 3+\sin 2\sin 3}{z^2-2z\cos 3+1}$$

$$Z\{\cos(3k+2)\} = \frac{z^2\cos 2-z\cos 3}{z^2-2z\cos 3+1}$$

$$Z\{\cos(3k+2)\} = \cos 2\left[\frac{z(z-\cos 3)}{z^2-2z\cos 3+1}\right] - \sin 2\left[\frac{z\sin 3}{z^2-2z\cos 3+1}\right]$$

By
$$Z\{\cos \alpha k\} = \frac{z(z-\cos \alpha)}{z^2-2z\cos \alpha+1}$$
, $Z\{\sin \alpha k\} = \frac{z\sin \alpha}{z^2-2z\cos \alpha+1}$

$$\therefore Z\{\cos(3k+2)\} = \frac{z^2\cos 2 - z\cos 2\cos 3 - z\sin 2\sin 3}{z^2 - 2z\cos 3 + 1}$$

$$Z\{\cos(3k+2)\} = \frac{z^2\cos 2 - z(\cos 2\cos 3 + \sin 2\sin 3)}{z^2 - 2z\cos 3 + 1}$$

$$Z\{\cos(3k+2)\} = \frac{z^2\cos 2 - z\cos 1}{z^2 - 2z\cos 3 + 1}$$

Now, by Change of scale property $Z\{a^k f(k)\} = F\left(\frac{z}{a}\right)$

$$Z\{2^k \cos(3k+2)\} = \frac{\left(\frac{z}{2}\right)^2 \cos 2 - \left(\frac{z}{2}\right) \cos 1}{\left(\frac{z}{2}\right)^2 - 2\left(\frac{z}{2}\right) \cos 3 + 1}$$
$$Z\{2^k \cos(3k+2)\} = \frac{z^2 \cos 2 - 2z \cos 1}{z^2 - 4z \cos 3 + 4}$$

$$Z\{2^k\cos(3k+2)\} = \frac{z^2\cos 2 - 2z\cos 1}{z^2 - 4z\cos 3 + 4}$$

(b) If the heights of 500 students is normally distributed with mean 68 inches and 6. standard deviation 4 inches, estimate the number of students having heights: (i) greater than 72 inches (ii) less than 62 inches (iii) between 65 and 71 inches. (6)

Solution:

$$N = 500$$

$$\mu = 68$$

$$\sigma = 4$$

$$z = \frac{x - \mu}{\sigma} = \frac{x - 68}{4}$$

(i)
$$P(greater\ than\ 72) = P(X > 72)$$

 $= P\left(z > \frac{72 - 68}{4}\right)$
 $= P(z > 1)$
 $= P(1 < z < \infty)$
 $= A(\infty) - A(1)$
 $= 0.5 - 0.3413$
 $= 0.1587$

Expected number of students = $N \times P = 500 \times 0.1587 = 79.35 \approx 79$

(ii)
$$P(less\ than\ 62) = P(X < 62)$$

 $= P\left(z < \frac{62 - 68}{4}\right)$
 $= P(z < -1.5)$
 $= A(-1.5) - A(-\infty)$
 $= -A(1.5) + A(\infty)$
 $= A(\infty) - A(1.5)$
 $= 0.5 - 0.4332$
 $= 0.0668$

Expected number of students = $N \times P = 500 \times 0.0668 = 33.4 \approx 33$

(iii)
$$P(between 65 \ and 71) = P(65 < X < 71)$$

$$= P\left(\frac{65-68}{4} < z < \frac{71-68}{4}\right)$$

$$= P(-0.75 < z < 0.75)$$

$$= A(0.75) - A(-0.75)$$

$$= A(0.75) + A(0.75)$$

$$= 2 \times 0.2734$$

$$= 0.5468$$

Expected number of students = $N \times P = 500 \times 0.5468 = 273.4 \approx 273$

(8)

(c) Using Kuhn-Tucker conditions, solve the following N.L.P.P. 6.

Maximise
$$z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

subject to $2x_1 + 5x_2 \le 98$

$$x_1, x_2 \ge 0$$

Solution:

Let
$$f = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

Let
$$h = 2x_1 + 5x_2 - 98$$

Consider,
$$L = f - \lambda h$$

$$L = 2x_1^2 - 7x_2^2 + 12x_1x_2 - \lambda(2x_1 + 5x_2 - 98)$$

According to Kuhn Tucker conditions,

$$L_{x_1} = 0 \Rightarrow 4x_1 + 12x_2 - 2\lambda = 0$$
(1)

$$L_{x_2} = 0 \Rightarrow -14x_2 + 12x_1 - 5\lambda = 0$$
(2)

$$\lambda h = 0 \Rightarrow \lambda (2x_1 + 5x_2 - 98) = 0$$
(3)

$$h \le 0 \Rightarrow 2x_1 + 5x_2 - 98 \le 0$$
(4)

$$x_1, x_2, \lambda \ge 0$$
(5)

Case I: If
$$\lambda = 0$$

From (1),
$$4x_1 + 12x_2 = 0$$

From (2),
$$12x_1 - 14x_2 = 0$$

$$x_1 = 0, x_2 = 0$$

$$z_{max} = 2(0)^2 - 7(0)^2 + 12(0)(0) = 0$$

Case II: If $\lambda \neq 0$

From (1),
$$4x_1 + 12x_2 - 2\lambda = 0$$

From (2),
$$12x_1 - 14x_2 - 5\lambda = 0$$

From (3),
$$2x_1 + 5x_2 + 0\lambda = 98$$

On solving,

$$x_1 = 44, x_2 = 2, \lambda = 100$$

$$z_{max} = 2(44)^2 - 7(2)^2 + 12(44)(2) = 4900$$

Thus, the optimal solution is

$$z_{max} = 4900$$
 at $x_1 = 44, x_2 = 2$