

BITNG LAB UPDATE

Carl Demolder
Date 1/19/2021

Outline

- Progress to date
- Path forward

PROGRESS TO DATE

Progress from last week

- Shriner's project
 - Literature review

SHRINER'S PROJECT

Literature review

- Tables:
 - Existing Technology Overview
 - Pressure sensors (wearable sensor glove)
 - Temperature sensors (wearable sensor glove)
 - Strain sensors (wearable sensor glove)
 - Glove Applications
- Figures:
 - Pie chart showing all three sensor nodes
 - Examples of wearable sensor gloves
 - Academic
 - Commercial
 - DIY

Sensor	Sensor properties			Glove application	Reference
	Material	Mechanical	Electrical		
Temperature	Si, Au Nanoribbon in Polyimide	$\begin{aligned} GF &= 200; \text{Fracture toughness} \\ &= 1 \text{ MPa m}^{1/2}; \\ t &= 110 \text{ nm} \end{aligned}$	10 mV/C	Artificial skin containing staggered arrangement of sensors	Kim et al. [7] (2014)
	OTS Texas Instruments Contact Temperature Sensor	$2.80~\mathrm{mm} \times 2.95~\mathrm{mm}$	0.0625 C/Bit using TC77 IC	Prosthetic and robotic hand sensory enhancement	Polishchuk et al. [16] (2016)
	Carbon nanotubes and ionic liquid embedded in silkworm fiber yarn surrounded by EcoFlex	0.76 mL of multiwalled CNT; 0.5 mL of ionic liquid	1.23% C ⁻¹	Electronic Textile Sensor for High Space Precision	Wu et al. [57] (2019)
	OTS Texas Instruments Contact Temperature Sensor	$5.00~\mathrm{m} \times 4.8~\mathrm{mm}$	$\pm 0.5^{\circ}\mathrm{C}$ Accuracy; 10 mV/ C	Temperature detection for wearable sensor glove	Hughes et al. [5] (2020)
Pressure	OTS Interlink Electronics FSR	Piezoelectric sensor; 0.2" Diameter	22 N/MΩ	Prosthetic and robotic hand sensory enhancement	Polishchuk et al. [16] (2016)
	Silicone tubing filled with water	2 mm diameter soft tubing	Pressure Delta = 3 – 100 Pa; transducer sensitivity = 38.26 mV/kPa	fluidic pressure sensors glove	Hughes et al. [5] (2020)
	Si, Au Nanoribbon in Polyimide	$\begin{aligned} GF &= 200; \ Fracture \ toughness \\ &= 1 \ MPa \ m^{1/2}; \\ t &= 110 \ nm \end{aligned}$	Delta R/R0 %/Pressure kPa \sim 0.40	Artificial skin containing staggered arrangement of sensors	Kim et al. [7] (2014)
	Silicone based sensor with conductive liquid	5.3% Hysteresis @ 1 Hz	100% Resistance increase at 5 N;	Soft fluidic sensors for wearable sensor glove	Xu et al. [6] (2019)
	Galinstan liquid metal in EcoFlex silicone rubber	H = 500 um, W = 300 um, L = 157.4 mm	Pressure sensitivity = 125 kPa $^{\prime}$ V	Elastomer film to integrate sensors onto hand	Hammond et al. [17] (2014)
	Silver nanowires embedded in silkworm fiber yarn surrounded by EcoFlex	Ag NW L=25 um; D=50 nm	0.136 kPa · ⁴	Electronic Textile Sensor for High Space Precision	Wu et al. [57] (2019)
Strain	EPR, Scotch Electrical Semi- Conducting Tape 13	Elongation =<800%; 5 mm x 20 mm	Resistance change = 30.6%	Fabric sensor glove using silver plated nylon thread	Shen et al. [3] (2016)
	Si, Au Nanoribbon in Polyimide	$\begin{aligned} GF &= 200; \ Fracture \ toughness \\ &= 1 \ MPn \ m^{1/2}; \\ t &= 110 \ nm \end{aligned}$	Delta R/R0 %/Strain % = 0.833	Artificial skin containing staggered arrangement of sensors	Kim et al. [7] (2014)
	Knitted piezoresistive fabric	75% electroconductive yarn and 25% Lycra	< 5 Degree error	Wearable goniometer technology for motion sensing gloves	Carbonaro et al. [15] (2014)
	Millimeter-long multiwalled Carbon Nanotubes	Elongation < 200%; fracture elongation ~ 500%; Elasticity Modulus = 2-5 MPa	Sensing delay $<$ 15 ms; GF = 10.5; 300 Ω %	Wearable glove for real time motion detection	Suzuki et al. [54] (2016)
	OTS Flexion sensors	$H = 0.43 \ mm; \ L = 112 \ mm; \\ W = 6.35 \ mm$	> 1 million cycles; Flat resistance = 10 k Ω	Mirror therapy and task- oriented therapy	Chen et al. [10] (2019)
	Galinstan liquid metal in EcoFlex silicone rubber	$\begin{array}{l} H = 500 \text{ um, W} = 300 \text{ um, L} \\ = 97 \text{ mm} \end{array}$	1.58 N / V	Elastomer film to integrate sensors onto hand	Hammond et al. [17] (2014)
	Conductive woven glove	Conductive knitted glove with insulated wire	120 unique sensor readouts	Resistive knitting for strain detection in glove	Hughes et al. [5] (2020)
	OTS Omega KFH-20-120- C1-11L1M2R Strain Gauge	Temperature Tolerance = 1/K; Elongation < 20,000 um/m	$R=120~\Omega;~GF=2;$	Hand pose tracking using limited strain sensing	Zhang et al. [55] (2019)
	Silicone based sensor with conductive liquid	Silicone Eco-Flex; E = 70 kPa; Failure Strain = 900%	GF = 2.2 @ 1 Hz	Soft fluidic sensors for wearable sensor gloves	Xu et al. [6] (2019)

Figure XX. Various type of wearable sensor gloves for recording physical signals. A)

Application Type	Application Category	Rational	Alternative	Purpose
Classical	Design & Manufacturing	Interact with computer-generated environments in a more natural way	Keyboard; Mouse; 3D Mouse	3D Modeling; Virtual architecture; Virtual prototypes; Virtual training
	Information visualization	Interact with data in a more natural way	Keyboard; Mouse	Scientific visualization; Manipulate scientific data audio- visual presentations; Manipulate data
	Arts & Entertainment	Interact with computer-generated environments in a more natural way	Keyboard; Mouse	Computer-animated characters; Musical performance; Control Acoustic parameters; Video games; Light based artistic shows
	Sign Language Recognition	Automatic translation	Keyboard; Mouse; Specialized video decoding	Communication systems for the deaf
	Computer	Enhance computers' portability	Keyboard; Mouse	Wearable Computers
Recent	Virtual Reality	Interact with computer-generated environments in a more natural way	Keyboard; Mouse; Specialized Controller; Headset	Video games; Virtual control of objects; Virtual communication
	Health Care Diagnostics	Easy and direct measurement between the hand and the environment	Motion analysis system; Goniometer; Keyboard; Mouse; Clinical Observation	Motor rehabilitation; Sensory enhancement; Medical diagnostics;
	Prosthetics	Improve control and adoption of prosthetic	Invasive nerve monitoring; Open loop feedback; Visual feedback	Prosthetic use; Prosthetic enhancement
	Robotics	Control and program robots in a more natural way	Keyboard; Mouse	Mobile robots; Automation robots; Teach skills to robots in a natural way
	Artificial Intelligence	Detect hand movements and gesture recognition	Algorithms; Threshold detection;	

Figure XX. This figure was derived from a previous literature review conducted by <u>Dipietro</u> et al. in an IEEE article in 2008 [18] and this figure was updated to reflect the latest advancements in the past decade.

PATH FORWARD

Path forward (1/18/21 - 1/26/21)

- Shriner's Project:
 - Literature review
 - Introduction
 - Abstract
 - Body paragraphs

APPENDIX

