Universidade Federal de Pelotas

Curso: Ciência da Computação

Disciplina: Processamento Digital de Imagens

Professor: Bruno Zatt

Relatório 9: Quantização de Imagens e Conversão de Espaços de Cores

Aluno: Yago Martins Pintos

Data: 19/10/2024

1. Introdução

Este relatório descreve a implementação de três funções principais: quantiza, que realiza a quantização de uma imagem RGB, rgbtohsi, que converte uma imagem do espaço de cores RGB para HSI (Hue, Saturation, Intensity), e decompoem, que extrai os componentes de cor vermelho, verde e azul de uma imagem.

2. Função Quantiza

2.1 Descrição da Função

A função quantiza realiza a quantização dos canais de cor de uma imagem RGB com base no número de bits especificado para cada canal (R, G e B). O processo inclui:

- 1. Ler a imagem de entrada.
- 2. Verificar se a imagem é colorida (RGB).
- 3. Separar os canais R, G e B.
- 4. Realizar a quantização para cada canal.
- 5. Combinar os canais quantizados em uma nova imagem RGB.
- 6. Salvar e exibir a imagem quantizada.

Implementação da Função Quantiza

```
matlab
function img_quantizada = quantiza(entrada, bitsR, bitsG,
bitsB)
  img_rgb = imread(entrada);

if size(img_rgb, 3) ~= 3
  error('A imagem deve ser uma imagem colorida (RGB).');
end
```

```
R = img_rgb(:, :, 1);
    G = img_rgb(:, :, 2);
    B = img_rgb(:, :, 3);
    Q_R = 256 / (2^bitsR);
    Q_G = 256 / (2^bitsG);
    Q_B = 256 / (2^bitsB);
    R_{quantizado} = floor(R / Q_R) * Q_R + Q_R / 2;
    G_{quantizado} = floor(G / Q_G) * Q_G + Q_G / 2;
    B_{quantizado} = floor(B / Q_B) * Q_B + Q_B / 2;
    img_quantizada = uint8(cat(3, R_quantizado, G_quantizado,
B_quantizado));
    figure;
    imshow(img_quantizada);
    title('Imagem Quantizada');
    nome_arquivo_saida = 'imagem_quantizada.png';
    imwrite(img_quantizada, nome_arquivo_saida);
    disp(['Imagem quantizada salva como: ',
nome_arquivo_saida]);
end
```

3. Função rgbtohsi

3.1 Descrição da Função

A função rgbtohsi converte uma imagem do espaço de cores RGB para o espaço de cores HSI. O espaço HSI é útil para várias aplicações em processamento de imagens, pois separa a informação de cor (matiz) da intensidade e saturação.

Implementação da Função rgbtohsi

matlab

```
function Saida = rgbtohsi(entrada)
    imagem = imread(entrada);
    imagemrgb = im2double(imagem);
   R = imagemrgb(:,:,1);
   G = imagemrgb(:,:,2);
    B = imagemrgb(:,:,3);
    soma = R + G + B + eps;
    g = G ./ soma;
    r = R . / soma;
    b = B ./ soma;
   min_RGB = min(min(R, G), B);
    s = 1 - 3 .* (min_RGB ./ soma);
    num = 0.5 * ((R - G) + (R - B));
    div = sqrt((R - G).^2 + (R - B).*(G - B));
   h = acos(num ./ (div + eps));
   h(B > G) = 2 * pi - h(B > G);
   h = h / (2 * pi);
    i1 = (R + G + B) / 3;
    figure;
    subplot(2, 2, 1), imshow(imagemrgb), title('Imagem RGB
Original');
    subplot(2, 2, 2), imshow(h), title('Matiz (h)');
    subplot(2, 2, 3), imshow(s), title('Saturação (s)');
    subplot(2, 2, 4), imshow(i1), title('Intensidade (i)');
    Saida.h = h;
    Saida.s = s;
    Saida.i1 = i1;
end
```

4. Função Decompoem

4.1 Descrição da Função

A função decompoem separa os componentes vermelho, verde e azul de uma imagem RGB em imagens distintas.

Implementação da Função Decompoem

```
matlab
function [verde, azul, vermelho] = decompoem(imagem)
   imagemrqb = imread(imagem);
   img_rgb = im2double(imagemrgb);
   vermelho = zeros(size(img_rgb));
   verde = zeros(size(img_rgb));
   azul = zeros(size(img_rgb));
   vermelho(:, :, 1) = img_rgb(:, :, 1);
   vermelho(:, :, 2:3) = 0;
   verde(:, :, 2) = img_rgb(:, :, 2);
   verde(:, :, [1, 3]) = 0;
   azul(:, :, 3) = img_rgb(:, :, 3);
   azul(:, :, 1:2) = 0;
   figure;
   subplot(1, 3, 1), imshow(vermelho), title('Tons de
Vermelho'):
   subplot(1, 3, 2), imshow(verde), title('Tons de Verde');
   subplot(1, 3, 3), imshow(azul), title('Tons de Azul');
end
```

5. Resultados

5.1 Resultados da Quantização

Após executar a função quantiza, a imagem quantizada foi exibida e salva como "imagem_quantizada.png".

5.2 Resultados da Conversão para HSI

A função rgbtohsi converteu a imagem RGB para o espaço HSI e exibiu as componentes individuais: matiz, saturação e intensidade.

5.3 Resultados da Decomposição das Cores

A função decompoem separou os componentes vermelho, verde e azul da imagem original em três imagens distintas que foram exibidas lado a lado.

6. Conclusões

As funções implementadas demonstraram ser eficazes na manipulação e análise das cores em imagens:

- Quantização: A função quantiza permitiu reduzir o número de níveis de cor em cada canal RGB da imagem original.
- Conversão para HSI: A função rgbtohsi facilitou a análise das características cromáticas da imagem.
- Decomposição das Cores: A função decompoem ajudou na visualização das contribuições individuais das cores primárias na composição total da imagem.

Imagem RGB Original

quantiza 8,2,2

Matiz (h)

Intensidade (i)

ımagem Quanτızaga

Imagem Quantizada

Imagem Quantizada

