Global alignment: Needleman-Wunsch algorithm

Local alignment: Smith-Waterman algorithm

LGBIO2010: Pairwise alignment algorithms

Pierre Dupont

UCL - ICTEAM

P. Dupont (UCL)

P. Dupont (UCL)

LGBIO2010

The alignment problem

Pairwise alignement

The alignment problem

Several alignment variants

Significance assessment

GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL ++ ++++H+ KV + +A ++ +L+ L+++H+ K NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Objective

Outline

Find a best way to align 2 sequences including matches, substitutions (a.k.a. mismatches) and possible gaps (insertions or deletions)

- Both sequences need not have the same length
- Scoring matrices (e.g. Unitary/BLAST or PAM/BLOSUM) define similarity scores between letters (e.g. nucleotides or amino acids)
 - ▶ The higher the score the more similar a given pair of letters

 $S_{match} > S_{mismatch}$

- A gap penalty (negative score) is also defined
- Look for a pairwise alignment with maximal cumulative score (unlike DOT plots restricted to match positions!)

LGBIO2010

Outline

- The alignment problem
- Global alignment: Needleman-Wunsch algorithm
- Local alignment: Smith-Waterman algorithm
- Several alignment variants
- Significance assessment

P. Dupont (UCL)

LGBIO2010

2/36

P. Dupont (UCL)

LGBIO2010

Scoring matrix

BLOSUM50

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

LGBIO2010

The alignment problem

Gap penalties

P. Dupont (UCL)

Linear gap penalty

$$\gamma(g) = -dg$$

- g: number of consecutive gaps
- d: gap penalty (e.g. 8)

Affine gap penalty

$$\gamma(g) = -d - e(g-1)$$

- g: number of consecutive gaps
- d: gap open penalty (e.g. 12)
- e: gap extension penalty (e.g. 2)
- Affine is more relevant from a biological viewpoint but more complex to compute with
- Affine reduces to linear whenever e = d

Global versus local alignement

P. Dupont (UCL) LGBIO2010

The alignment problem

Global Alignment

Input: a sequence x of length n and a sequence y of length m **Input:** an appropriate scoring matrix S and a gap penalty $\gamma(g)$ **Output:** an alignment between x and y with maximal cumulative score

CAAT-G

8/36

Example:

$$s(x_i, y_j) = \left\{ egin{array}{ll} 1 & ext{if } x_i = y_j \ 0 & ext{if } x_i
eq y_j \ \gamma(g) = -8g \end{array}
ight.$$

$$s(x, y) = 0 + 0 - 8 + 0 - 8 + 0 = -16$$

- How many such alignments exist?
- How to compute an optimal alignment?

P. Dupont (UCL) LGBIO2010 6 / 36 P. Dupont (UCL) LGBIO2010

Number of gapped alignments

k diagonal, $0 \le k \le \min(n, m)$

n-k horizontal

m-k vertical

n+m-k total

How many ways to combine k, n - k, and m - k operations?

$$N = \sum_{k=0}^{\min(n,m)} \frac{(n+m-k)!}{k!(n-k)!(m-k)!} \approx \frac{4^n}{\sqrt{\pi n}}$$

Assuming $n \approx m$ (sound for a global alignment): $n = 300 \Rightarrow N \approx 1.10^{179}$

P. Dupont (UCL)

LGBIO2010

9/36

Global alignment: Needleman-Wunsch algorithm

Outline

- 1 The alignment problem
- 2 Global alignment: Needleman-Wunsch algorithm
- 3 Local alignment: Smith-Waterman algorithm
- 4 Several alignment variants
- 5 Significance assessment

Dynamic programming

Key observations

- we look for a maximal cumulative score
 - ightharpoonup a sum of independent individual scores: $s(x_i, y_i)$ or gap penalties
- 2 an optimal global alignment between *x* and *y* is made of optimal alignments between subsequences (*e.g.* prefixes)
 - decomposition into optimal solutions to sub-problems
 - each sub-problem needs to be computed only once

P. Dupont (UCL)

LGBIO2010

11 / 36

Global alignment: Needleman-Wunsch algorithm

Score of a partial alignment

- F(i,j) cumulative score to align $x_1 \dots x_i$ with $y_1 \dots y_i$
- F(0,0) = 0

Global alignment: Needleman-Wunsch algorithm

Running example

Substitution scores with BLOSUM50 matrix

	H	E	A	G	A	W	G	H	E	E
Р	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3
Η	10	0	-2	-2	-2	-3	-2	10	0	0
E	0	6	-1	-3	-1	-3	-3	0	6	6
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
E	0	6	-1	-3	-1	-3	-3	0	6	6

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

P. Dupont (UCL)

LGBIO2010

13/36

Global alignment: Needleman-Wunsch algorithm

Alignment initialization

3 ways to extend a partial alignment

$$egin{array}{llll} egin{array}{llll} egin{array$$

- $\mathbf{0}$ \mathbf{x}_i aligned to \mathbf{y}_i
- 2 x_i aligned to a gap

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

$$F(i-1,j-1) + s(x_i, y_j) + c(x_i, y_j) +$$

A backpointer stores which of the 3 possibilities is optimal (= the max)

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

P. Dupont (UCL) LGBIO2010

Global alignment: Needleman-Wunsch algorithm

HEAGAWGHE-E --P-AW-HEAE

- The table is filled from top to bottom and left to right (prefixes!)
- F(n, m) = the final alignment score
- The actual alignment is found following backpointers
- Computational complexity (with $n \approx m$) in $\mathcal{O}(n^2)$ instead of $\mathcal{O}(\frac{4^n}{\sqrt{n}})$

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

P. Dupont (UCL) LGBIO2010 14/36 P. Dupont (UCL)

LGBIO2010

Outline

- 1 The alignment problem
- Global alignment: Needleman-Wunsch algorithm
- 3 Local alignment: Smith-Waterman algorithm
- Several alignment variants
- 5 Significance assessment

P. Dupont (UCL) LGBIO2010

17 / 36

Local alignment: Smith-Waterman algorithm

Global versus local alignment

Global

--T--CC-C-AGT--TATGT-CAGGGGACACG-A-GCATGCAGA-GAC

Local

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Look for conserved segments only

Naïve algorithm

Look for a global alignement between subsequences

- Apply NW from any starting point
- For each starting point, look for the maximal ending score
- Sook for the maximum score overall

P. Dupont (UCL)

LGBIO2010

19 / 36

Local alignment: Smith-Waterman algorithm

Computational complexity

- Apply NW from any starting point
- For each starting point, look for the maximal ending score
- Sook for the maximum score overall
- $\mathcal{O}(n^2)$ starting points (with $n \approx m$)
- Each NW takes O(n²)
- Globally $\mathcal{O}(n^4)$

P. Dupont (UCL) LGBIO2010 18 / 36 P. Dupont (UCL) LGBIO2010 20 / 36

Local alignment: Smith-Waterman algorithm

Smith-Waterman

		Н	E	A	G	A	W	G	Н	E	E
	0										
Р	0		0								
A							0				
W					0						
Н											
Ε									0		
A		0									
E											

Key idea

- reset to initial score = 0 from anywhere
- choose best between reset or pursuing current alignment

P. Dupont (UCL)

LGBIO2010

Local alignment: Smith-Waterman algorithm

4 ways to extend a partial alignment

$$I G A x_i$$

 $L G V y_i$

$$AIGAx_i$$

$$egin{array}{lll} egin{array}{lll} egin{arra$$

- \bigcirc x_i aligned to y_i
- y_i aligned to a gap

$$F(i,j) = \max \begin{cases} \mathbf{0} \\ F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

A backpointer stores which of the 3 last possibilities is optimal, otherwise 0

Smith-Waterman algorithm

- End of the local alignment: position (i, j) such that F(i, j) is maximal
- Start of the local alignment: follow backpointers till 0

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

P. Dupont (UCL)

LGBIO2010

Local alignment: Smith-Waterman algorithm

Smith-Waterman algorithm

Requirements

P. Dupont (UCL)

- scores s(...) for strong mismatches (dissimilar residues) need to be < 0(= worse than reset) otherwise long stretches of unrelated subsequences could be aligned
- score s(.,.) for matching similar residues need to be > 0, otherwise 0 everywhere

LGBIO2010

Computational complexity (with $n \approx m$) in $\mathcal{O}(n^2)$

(same as Needleman-Wunsch, 11 years later!)

P. Dupont (UCL) LGBIO2010 22/36

Outline

- The alignment problem
- Global alignment: Needleman-Wunsch algorithm
- Local alignment: Smith-Waterman algorithm
- Several alignment variants
- Significance assessment

P. Dupont (UCL)

LGBIO2010

25/36

26/36

Several alignment variants

Semi-global alignment

Do not penalize gaps at the beginning of either sequences

- Initialize F(i,0) = F(0,j) = 0; $0 \le i \le n$; $0 \le j \le m$
- Compute the global recurrence

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

LGBIO2010

Several alignment variants

Local alignment with repeats

Look for several local matches of y into x

$$F(0,0) = 0$$

$$F(i,0) = \max \begin{cases} F(i-1,0) & F(i,j) = \max \\ F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

- Find local matches scoring higher than T (here T = 20)
- F(n+1,0): total score of k matches -kT

$$9 = 49 - 40 = 21 + 28 - 2 * 20$$

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

P. Dupont (UCL)

LGBIO2010

Several alignment variants

Gap penalties

So far: a linear gap penalty $\gamma(g) = -dg$

$$\exists A x_i - -$$

$$L G V y_j$$

$$x_i$$
 aligned to y_i

$$F(i,j) = \max \left\{ \begin{array}{l} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{array} \right.$$

- an affine gap penalty $\gamma(g) = -d e(g-1)$ is more relevant
- we need to distinguish whether we consider the first gap or subsequent gaps, either in x or y

P. Dupont (UCL)

P. Dupont (UCL)

LGBIO2010

Affine gap penalty

Instead of a single state F(i, j), one distinguishes 3 states

 $IGAx_i$ AIGA x_i

 $G A x_i - -$

 $L G V y_i$ $G V y_i - S L G V y_i$

 $M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ l_x(i-1,j-1) + s(x_i, y_j) \\ l_y(i-1,j-1) + s(x_i, y_j) \end{cases}$

 $I_x(i,j) = \max \left\{ \begin{array}{l} M(i-1,j) - d \\ I_x(i-1,j) - e \end{array} \right.$

M state: x_i aligned to y_i I_x state : x_i aligned to a gap I_{V} state : V_{i} aligned to a gap $I_{y}(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_{y}(i,j-1) - e \end{cases}$

Illustration from Biological Sequence Analysis (© Cambridge University Press 1998)

P. Dupont (UCL)

LGBIO2010

29/36

Significance assessment

Outline

- The alignment problem
- Global alignment: Needleman-Wunsch algorithm
- Local alignment: Smith-Waterman algorithm
- Several alignment variants
- Significance assessment

Statistical significance of the alignment score

Procedure

- Compute pairwise random alignment scores
 - between x and random sequences (e.g. 500 permutations of y)
 - between y and random sequences (e.g. 500 permutations of x)
- Compute histogram of random alignment scores (normalized by length)
- between x and y

P. Dupont (UCL)

LGBIO2010

31/36

Significance assessment

Computational complexity

- Sound procedure but requires to compute many (e.g. 1,000) alignments
- Computational complexity of a single alignment: $\mathcal{O}(nm) \approx \mathcal{O}(n^2)$
- Actual distribution of alignment scores is known to follow an Extreme Value Distribution

Conclusion

Extreme Value Distribution

• Probability of a score larger than S

$$P(x > S) = 1 - e^{\left(-Kmn \ e^{-\lambda S}\right)}$$

for some constants K and λ

- Alignment softwares include fitted values of K and λ for a wide range of substitution scoring matrices
- The lack of normality is due to non-independence between possible starting points of matches

P. Dupont (UCL)

LGBIO2010

33 / 36

Conclusion

Concluding remarks

- All the above algorithms maximizing a score can be easily adapted when minimizing an edit distance or cost
- $\mathcal{O}(nm) \approx \mathcal{O}(n^2)$ is too much when aligning a query sequence to a large database of possibly homologous sequences
 - ► BLAST and FASTA are heuristic algorithms to speed-up such computation

Concluding remarks (ctd.)

• Generalization to find a multiple alignment between k sequences

- ▶ Dynamic programming scales as $\mathcal{O}(n^k)$ to find an optimal solution
- ► CLUSTALW is an heuristic algorithm to speed-up such computation
- A further extension
 - summarize a multiple alignment into a probabilistic model (HMM)
 - ► compute an alignment between a new sequence and this model

P. Dupont (UCL) LGBIO2010 35 / 36

Conclusion

Further Reading

Chapter 2: Pairwise alignment

P. Dupont (UCL) LGBIO2010 34/36 P. Dupont (UCL) LGBIO2010 36/30