

Integrationsleitfaden iJaw

Integration von 8 iJaw Spannbacken über einen TigoMaster 2TH in eine Siemens Steuerung mit TIA Portal V18

Version: 1.1

Stand: 05.07.2023 Autor: Lukasz Moisa

Prüfer: Sebastian Gottschalk

Projektnummer: 2706

Änderungshistorie

Version	Änderung	Geändert durch	Datum
1.0	Erstausgabe	Moisa	23.06.2023
1.1	Relevanten Datentypen und Programmbausteine Baustein Aufruf (FB SendRcv_iJaw) Schnittstellebeschreibung der Eingänge Schnittstellebeschreibung UDT_iJawDataSendUser Schnittstellebeschreibung der Ausgänge Schnittstellebeschreibung UDT_iJawDataRcvUser Schnittstellebeschreibung UDT_iJawDataRcvUser Schnittstellebeschreibung UDT_iJawDataRcvUser Anforderung zu der Ausführung der Beispiel Funktion GAIN Schreiben des empfangenen GAIN Funktion im lokalen Speicher Bibliothekbaustein Aktualisieren SendRcv_iJaw (Kopiervorlage)	Moisa	05.07.2023
	Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle		

Inhaltsverzeichnis

1	HAR	DWAREAUFBAU	3
2	INICT	TALLATION DER GSD-DATEI IM TIA PORTAL V18	1
_			
	2.1	GSD-Datei installieren	4
3	INTE	EGRATION IN DIE HARDWAREKONFIGURATION (SPS)	5
	3.1	HARDWARE / PROJEKT VORAUSSETZUNGEN	
	3.2	EINBINDEN DER GSD-DATEI IN DIE OFFLINE HARDWAREKONFIGURATION	
	3.3	PROFINET-SCHNITTSTELLE GERÄTEANPASSUNG	
	3.4	Submodul Geräteanpassung	
	3.5	E/A-Adressen Geräteanpassung	
	3.6	GERÄTENAMEN ZUWEISEN	
4	INTE	EGRATION IN DIE SOFTWARE (SPS)	11
	4.1	GLOBALE BIBLIOTHEK ÖFFNEN	11
	4.2	EINFÜGEN / AKTUALISIEREN DER RELEVANTEN BAUSTEINE UND DATENTYPEN	13
	4.2.	1 Erstmaliges einfügen der relevanten Datentypen und Programmbausteine ins TIA-Projekt	13
	4.2.	2 Aktualisieren der Bibliotheksbaustein im Projekt	15
	4.2.	3 Beispiel Aufruf FB SendRcv_iJaw / Kopiervorlage	17
	4.3	AUFRUF DES FB SENDRCV_IJAW	18
	4.3.		
	4.3		
	4.3.		
	4.3.		
	4.3.		
	4.3.	3 =	
	4.4	BEISPIEL ZUR NUTZUNG DER FREIEN ISDU-SCHNITTSTELLE	
	4.4.		
	4.5	VERHALTEN AM PROFINET	
	4.6	ERLÄUTERUNG PROZESSWERTE	26

HEITEC engineering solutions

1 Hardwareaufbau

Lieferumfang:

- TigoMaster 2TH

Die Verdrahtung der Geräte erfolgt wie in Abbildung 1-1: Hardwareaufbau gezeigt.

Abbildung 1-1: Hardwareaufbau

2 Installation der GSD-Datei im TIA Portal V18

Um die Feldgeräte (ProfiNet) eines Herstellers in der Gerätekonfiguration von STEP 7 (TIA Portal V18) zu projektieren, müssen Sie zuvor die GSD-Datei installieren.

GSD-Dateien verwenden Sie üblicherweise, um normkonforme Feldgeräte von "Fremdherstellern" in STEP 7 (TIA Portal) zu integrieren. In diesen Textdateien sind die spezifischen Eigenschaften des Feldgeräts enthalten.

2.1 GSD-Datei installieren

Die GSD-Datei können Sie mit einem geöffneten Projekt oder ohne ein geöffnetes Projekt in STEP 7 (TIA Portal V18) installieren

- 1. Extrahieren Sie die ZIP-Datei des Geräte-Herstellers in ein separates Verzeichnis auf Ihrer Festplatte.
- 2. Öffnen Sie mit STEP 7 (TIA Portal V18) Ihr Projekt, in welches die GSD-Datei installiert werden soll
- 3. Öffnen Sie STEP 7 (TIA Portal) in der Projektansicht und wählen Sie in der Menüleiste den Menübefehl "Extras > Gerätebeschreibungsdateien (GSD) verwalten".
- 4. Wählen Sie in der Menüleiste den Menübefehl "Extras > Gerätebeschreibungsdateien (GSD) verwalten".
- 5. Im Dialog "Gerätebeschreibungsdateien (GSD) verwalten "ist der Quellpfad voreingestellt, aus dem die letzte GSD-Datei installiert wurde.

 Über die Schaltfläche "[Durchsuchen...]" (rechts neben dem Quellpfad) navigieren Sie zum Verzeichnis, in das Sie die ZIP-Datei extrahiert haben.
- 6. Für den gewählten Quellpfad erscheint die GSD-Datei in der Tabelle unterhalb. Wählen Sie die GSD-Datei, die Sie installieren möchten, aus.
- 7. Klicken Sie auf die Schaltfläche "Installieren". Der Installationsfortschritt erscheint in einem eigenen Fenster.

Abbildung 2-1: Installation GSD-Datei

3 Integration in die Hardwarekonfiguration (SPS)

Um die im vorherigen Abschnitt installierte GSD-Datei in Ihr bestehendes Projekt einbinden zu können, müssen Sie ihr Projekt im TIA Portal V18 öffnen und anschließend die Hardwarekonfiguration der betreffenden CPU starten.

3.1 Hardware / Projekt Voraussetzungen

- Bestehendes TIA-Projekt
- Im TIA Portal V18 projektierte Steuerung (S7-1500 / Sinumerik One) mit ProfiNet-Schnittstelle
- Projektiertes ProfiNet

3.2 Einbinden der GSD-Datei in die offline Hardwarekonfiguration

- 1. Öffnen Sie ihr bestehendes Projekt in STEP 7 (TIA Portal V18)
- 2. Wählen Sie, falls mehrere Steuerungen im Projekt vorhanden sind, die entsprechende aus, in der des TigoMasters eingebunden werden soll.
- 3. Öffnen Sie die Gerätekonfiguration der vorher ausgewählten Steuerung.
- 4. Suchen Sie nun im Hardware-Katalog den TigoMaster2TH und ziehen Sie diese in Ihr bestehendes ProfiNet-System hinein.
- Pfad der GSD-Datei: "Weitere FELDGERÄTE > PROFINET I/O > I/O > CoreTigo Ltd > TigoMaster 2TH > Kopfmodul > TigoMaster 2TH-PNT

Abbildung 3-1: Integration GSD-Datei in das Projekt

3.3 ProfiNet-Schnittstelle Geräteanpassung

Über den Punkt "Geräte & Netze" unter Eigenschaften kann man den Gerätenamen, die Gerätenummer und die IP-Adresse des TigoMasters festlegen.

Abbildung 3-2: Anpassen allg. Geräteeigenschaften des TigoMasters

Abbildung 3-3: Anpassen der Profinet-Eigenschaften des TigoMasters

3.4 Submodul Geräteanpassung

Nach Festlegen der allgemeinen Geräteeigenschaften können nun die Submodule hinzugefügt werden. Pro verwendeter iJaw Backe wird ein Submodul "IO-Link Wireless Device with 32 I/ 32 O + PQI" benötigt. Maximal können 8 Backen an einem TigoMaster verwendet werden.

Abbildung 3-4: Hinzufügen Submodule

2023-07-05 Integrationsleitfaden iJaw in SINUMERIK TIA Portal V18 2TH v1.1 V1.0

3.5 E/A-Adressen Geräteanpassung

Wenn alle benötigten Submodule hinzugefügt wurden, können die E/A-Adressen vergeben werden. Ein Submodul belegt 32 + 1 (PQI) Byte Eingangsdaten und 32 Byte Ausgangsdaten. Hinzu kommen noch 2 Byte Eingangsdaten und 2 Byte Ausgangsdaten für den IO-Link Wireless Master.

Im Beispiel wurden ein Bereich für die Ein- u. Ausgangsbytes von 500 bis 765 verwendet.

Abbildung 3-5: Anpassung Ein-/Ausgangsadressen

3.6 Gerätenamen zuweisen

Zum Schluss muss dem Gerät noch der ProfiNet-Gerätename zugewiesen werden, welcher in der Offline-Konfiguration festgelegt wurde. (Punkt 3.3 "ProfiNet-Schnittstelle Geräteanpassung) Zum Vergeben des ProfiNet-Namens ist eine Online-Verbindung zur PLC zwingend notwendig.

Über den Punkt "Online & Diagnose> Funktionen > PROFINET-Gerätename vergeben " können Sie dem TigoMaster den entsprechenden PROFINET-Gerätname zuweisen.

Abbildung 3-6: Aufruf Gerätename zuweisen

4 Integration in die Software (SPS)

4.1 Globale Bibliothek öffnen

Um eine globale Bibliothek im TIA Portal V18 zu öffnen, gehen Sie wie folgt vor:

- 1. Extrahieren Sie die ZIP-Datei der Bibliothek in ein separates Verzeichnis auf Ihrer Festplatte.
- 2. Klicken Sie auf "Globale Bibliotheken", um die Palette zu öffnen.
- 3. Klicken Sie in der Funktionsleiste auf das Symbol "Globale Bibliothek öffnen".
- 4. Wählen Sie in Ihrem Verzeichnis die globale Bibliothek, die Sie öffnen möchten und markieren Sie die Datei mit der Datei-Endung "al".

Abbildung 4-1: Globale Bibliothek öffnen

- 1. Navigieren Sie im Verzeichnisbaum auf die extrahierte ZIP-Datei der Bibliothek
- 2. Wählen Sie im linken Feld die Bibliothek aus und bestätigen Sie mit "Öffnen"

Abbildung 4-2: Auswahl und öffnen der globalen iJaw Bibliothek

4.2 Einfügen / aktualisieren der relevanten Bausteine und Datentypen

4.2.1 Erstmaliges einfügen der relevanten Datentypen und Programmbausteine ins TIA-Projekt

Kopieren Sie die Datentypen und Programmbausteine aus der Globale Bibliothek in ihr Projekt.

Abbildung 4-3: Kopieren der Datentypen und Programmbausteine

Hinweis:

Bei allen Bausteinen ist das Attribut "Optimierter Bausteinzugriff" und die automatische Nummerierung aktiv.

Abbildung 4-4: Menu Baustein Eigenschaften

Abbildung 4-5: Optimierter Bausteinzugriff

Abbildung 4-6: Automatische Nummerierung

4.2.2 Aktualisieren der Bibliotheksbaustein im Projekt

Sollten der Tigomaster und die Bibliotheksbaustein schon in Projekt vorhanden sein, können die Bausteine und Datentypen durch eine neuere Version aktualisiert werden.

- 1. In Fenster "Globale Bibliotheken" klicken Sie auf "Öffnen".
- 2. Wählen Sie in Ihrem Verzeichnis die globale Bibliothek, die Sie öffnen möchten und markieren Sie die Datei mit der Datei-Endung "al" and drücken Sie "Öffnen"
- 3. Gewählte Bibliothek > Rechte Maus Taste > Typen aktualisieren > Bibliothek
- 4. Wählen Sie "Projektbibliothek aktualisieren" und bestätigen Sie mit "OK"

Abbildung 4-7: Aktualisierung der Bibliothekbaustein

Abbildung 4-8: Aktualisierung der Projektbibliothek

Hinweis:

Bei Aktualisierung und Änderungen von Bibliotheken wichtig ist den Ordner "Programmbausteine" zu Übersetzen.

Abbildung 4-9: Übersetzung von Software

4.2.3 Beispiel Aufruf FB SendRcv_iJaw / Kopiervorlage

Die Bibliothek enthält unter Kopiervorlagen einen Beispielaufruf des Bausteins SendRcv iJaw.

- 1. Die Globale Bibliothek öffnen
- 2. Die Bausteine, welche unter Kopiervorlagen liegen in das Projekt kopieren.

Abbildung 4-10: Globale Bibliothek Kopiervorlage

Abbildung 4-11: Kopieren der Kopiervorlage des Bausteins SendRcv_iJaw in das SPS-Projekt

4.3 Aufruf des FB SendRcv_iJaw

4.3.1 Bausteinaufruf

Der Funktionsbaustein FB "SendRcv_iJaw" muss im Programm aufgerufen werden. Die Schnittstelle wird in Tabelle 1 und Tabelle 2 beschrieben.

		#instSendReciJaw	
		"SendRcv_iJaw"	
	EN	ENO	
"TigoMaster2TH~IODevice" —	iLADDR_TigoMaster	oError	→ "allg DataTestSend RovlJaw".xError
" allg DataTestSend RovlJaw" .xDe AtkPnio Teilnehmer	iPN_Act	oPnTe ilAkt	"allg DataTes tS end RovlJaw".xS tatus Pnio Teilnehmer
"allg DataTestS end RovlJaw" .xCp uStart			■" allg DataTestSend RcvlJaw" .xloLinkRdy
"allg DataTestSend RcvlJaw".xAck 🕳	iAck Fehler loLinkKom	oloLinkBusy	■ "allg DataTestSend RovlJaw".xloLinkBusy
"allg DataTestSendRcvlJaw".xResetloLink 🕳	iResetloLinkKom	oloLinkError	■ "allg DataTestSend RovlJaw".xloLinkError
"allg DataTestSend RovlJaw".tZeitPnio Rdy	iTime PnloRyd		"allg DataTes tSend RovlJaw".xFree is du Cmd
"allg DataTestSendRovlJaw".ilJawAktiv_iJaw1	ilJawAktiv iJaw1	oFreeIsduCmdFertia	_Fertig
"allg DataTestSend RcvlJaw".ilJawAktiv_iJaw2 —	ilJawAktiv iJaw2	_	"allg DataTestSend RovlJaw".xFreeIsd u Cmd
"allg DataTestSendRcvlJaw".ilJawAktiv_iJaw3 —	ilJawAktiv_iJaw3	oFreeIsduCmdDataBereit	DataBereit
"allg DataTestSendRovlJaw".ilJawAktiv_iJaw4 —	ilJawAktiv iJaw4		"allg DataTestSend RovlJaw".arbFreelsduRov
"allg DataTestSendRcvlJaw".ilJawAktiv_iJaw5 —	ilJawAktiv iJaw5	o Free is du Rov Data	_ Data
"allg DataTestSendRcvlJaw".ilJawAktiv_iJaw6	ilJawAktiv iJaw6		"allg DataTestSend RovlJaw".iJawUserDaten
"allg DataTestSend RcvlJaw".ilJawAktiv_iJaw7 🗕	ilJawAktiv iJaw7	oUserDaten_iJaw1	_Rov[#IDX_IJAW_1]
"allg DataTestSend RcvlJaw".ilJawAktiv_iJaw8 🕳	ilJawAktiv iJaw8		"allg DataTestSend RovlJaw" .iJawUserDaten
"allg DataTestSendRovlJaw".udtFreelsduCmd	iFreelsduCmd	oUserDaten iJaw2	_Rov[#IDX_IJAW_2]
"allg DataTestSendRcvlJaw".arbFreelsduSend Data	iFreelsduSendData	oUserDaten_iJaw3 -	"allgDataTestSendRovlJaw".iJawUserDaten _Rov[#IDX_IJAW_3]
"allg DataTestSendRovlJaw".iJawUserDaten Send [#IDX_IJAW_1]	iUserDaten_iJaw1	oUserDaten_iJaw4 -	"allg DataTes tS end RovlJaw".iJawUs erDaten Rov[#IDX_IJAW_4]
"allg DataTes tS end RcvlJaw".iJaw UserDaten S end [#IDX_IJAW_2]	iUserDaten_iJaw2	oUserDaten_iJaw5	"allgDataTestSendRovlJaw".iJawUserDaten Rov[#IDX_IJAW_5]
"allg DataTestS end RovlJaw".iJaw UserDaten S end [#IDX_IJAW_3]	iUserDaten_iJaw3	oUserDaten_iJaw6	"allgDataTestSendRovlJaw".iJawUserDaten Rov[#IDX_IJAW_6]
"allg DataTestS end RovlJaw".iJawUs erDaten S end [#IDX_IJAW_4]	iUserDaten_iJaw4	oUserDaten_iJaw7	"allgDataTestSendRovlJaw".iJawUserDaten Rov[#IDX_IJAW_7]
"allg DataTestS end RovlJaw".iJaw UserDaten Send [#IDX_IJAW_5]	iUserDaten_iJaw5	oUserDaten_iJaw8	"allgDataTestSendRovlJaw".iJawUserDaten _Rov[#IDX_IJAW_8]
"allgDataTestSendRovIJaw".iJawUserDaten Send[#IDX_IJAW_6]	iUserDaten_iJaw6		
"alig DataTestSendRcvlJaw".iJawUserDaten Send[#IDX_IJAW_7]	iUserDaten_iJaw7		
"alig DataTestSendRovlJaw".iJawUserDaten Send[#IDX_IJAW_8]	iUserDaten_iJaw8		

Abbildung 4-12: Aufruf FB "SendRcv_iJaw"

4.3.2 Schnittstellenbeschreibung der Eingänge

Eingang	Datentyp	Beschreibung
		System-/Hardwarekonstante des
		Submoduls IO-Link Wireless Master
iLADDR_TigoMaster	HW_Device	laut Hardwarekonfiguration
		De-/Aktivierung des TigoMAster
		2TH als ProfiNetteilnehmer True - Teilenehmer aktivieren
iDNL Act	BOOL	False - Teilnehmer deaktivieren
iPN_Act	BOOL	Restartmerker der SPS
		Wenn keiner vorhanden dann mit
i_CpuRestart	BOOL	False besetzten.
_ '		Quitterung des
		Kommunikationsfehlers.
		(Sende-/ Lese Aufträge werden
iAck_Fehler_IoLinkKom	BOOL	danach erneut gestartet)
		Reset der LIO-Link kommunikation
:December in laborate	ROOL	(Alle Sende-/ Lese Aufträge werden
iResetIoLinkKom	BOOL	gelöscht) Zeit zum Hochlauf des Bussystems /
		des TigoMasters
iTime_PnloRyd	TIME	(Vermeidung von Lesefehlern)
ilJawAktiv iJaw1	BOOL	iJaw 1 ist aktiv & vorhanden
ilJawAktiv_iJaw2	BOOL	iJaw 2 ist aktiv & vorhanden
ilJawAktiv_iJaw3	BOOL	iJaw 3 ist aktiv & vorhanden
ilJawAktiv_iJaw4	BOOL	iJaw 4 ist aktiv & vorhanden
ilJawAktiv_iJaw5	BOOL	iJaw 5 ist aktiv & vorhanden
ilJawAktiv_iJaw6	BOOL	iJaw 6 ist aktiv & vorhanden
ilJawAktiv_iJaw7	BOOL	iJaw 7 ist aktiv & vorhanden
ilJawAktiv_iJaw8	BOOL	iJaw 8 ist aktiv & vorhanden
iFreeIsduCmd	"UDT_iJawISDUCmdData"	Freier ISDU-Auftrag
		Datenbereich zum Schreiben für
iFreeIsduSendData	Array[0231] of Byte	den freien ISDU-Auftrag
iUserDaten_iJaw1	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 01
iUserDaten_iJaw2	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 02
iUserDaten_iJaw3	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 03
iUserDaten_iJaw4	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 04
iUserDaten_iJaw5	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 05
iUserDaten_iJaw6	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 06
iUserDaten_iJaw7	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 07
iUserDaten_iJaw8	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 08

Tabelle 1: Schnittstellenbeschreibung der Eingänge

4.3.3 Schnittstellenbeschreibung UDT_iJawDataSendUser

Eingang	Datentyp	Beschreibung
		Trigger Befehl "System Mode" senden
		(vorher Eingang "Mode" mit 0x1 oder
RelCmdSysMode	BOOL	0x2 beschreiben)
RelCmdTara	BOOL	Trigger Befehl "Tara" senden
		Trigger sende Kommando lese iJaw
RelReadType	BOOL	Туре
RelIMA	BOOL	Trigger sende Kommando IMA
		Trigger sende Kommando Force
RelForceTreshold	BOOL	Treshold
RelNoiseLevel	BOOL	Trigger sende Kommando Noise Level
l		Trigger sende Kommando
RelStoreToFlash	BOOL	StoreToFlash
		Höhe der Kraftänderung innerhalb
		der Samplerate 100Hz, die zur
		Bestimmung einer
		Messdatenübertragung neben dem
		Schwellwert herangezogen wird
Noise Level	UInt	(Relevant nur für Mode2)
		Schwellwert der Spannkraftsumme,
		die anliegt, um im Mode 2
Force Treshold	UDInt	kontinuierlich Daten zu übertragen
		Zeitintervall in [s], innerhalb der die
		iJaw spätestens einen neuen
		Messwert an den Empfänger
IMA	USInt	überträgt
		Auswahl System Mode
		-0x1 (continuous mode)
Mode	BYTE	-0x2 (state dependent mode)
nRotSpeedSpindleAct	INT	Aktuelle Spindeldrehzahl
		tatsächlicher Hydraulikdruck in der
		Betätigungszylinderkammer 1 zur
pHydCylChamber1Act	BYTE	äußeren Klemmung
		tatsächlicher Hydraulikdruck in der
		Betätigungszylinderkammer 2 zur
pHydCylChamber2Act	BYTE	äußeren Klemmung
		Hydraulikbereich der Zylinderkammer
AHydCylChamber1Act	BYTE	1 zur äußeren Klemmung
		Hydraulikbereich der Zylinderkammer
AHydCylChamber2Act	BYTE	2 zur äußeren Klemmung

Tabelle 2: Schnittstellenbeschreibung UDT_iJawDataSendUser

4.3.4 Schnittstellenbeschreibung der Ausgänge

Ausgang	Datentyp	Beschreibung
o_Error	BOOL	Fehler bei der Abarbeitung des Bausteines
		Status des TigoMaster 2TH als
		ProfiNetteilnehmer
		- TRUE= Teilnehmer aktiv
o_PnTeilAkt	BOOL	- FALSE= Teilnehmer deaktiviert
		IoLink Kommunikation bereit zum Senden\
oloLinkRdy	BOOL	Empfangen
oloLinkBusy	BOOL	IoLink Kommunikation beschäftigt
oloLinkError	BOOL	IoLink Kommunikation fehlerhaft
		Freier ISDU-Auftrag erfolgreich
oFreeIsduCmdFertig	BOOL	abgeschlossen
oFreeIsduCmdDataBereit	BOOL	Empfange ISDU-Daten liegen bereit
oFreeIsduRcvData	Array[0231] of Byte	Empfange ISDU-Daten
oUserDaten_iJaw1	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 01
oUserDaten_iJaw2	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 02
oUserDaten_iJaw3	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 03
oUserDaten_iJaw4	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 04
oUserDaten_iJaw5	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 05
oUserDaten_iJaw6	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 06
oUserDaten_iJaw7	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 07
oUserDaten_iJaw8	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 08

Tabelle 3: Schnittstellenbeschreibung der Ausgänge

4.3.5 Schnittstellenbeschreibung UDT_iJawDataRcvUser

Ausgang	Datentyp	Beschreibung		
Gauge1	INT	ADC Eingang der Sensorrohdaten (min.: 0 max.: 4096)		
Gauge2	INT	ADC Eingang der Sensorrohdaten (min.: 0 max.: 4096)		
Battery	INT	Rohsignal aktuelle Batteriespannung (min.: 0 max.: 157) [V]		
Temperature	INT	Rohsignal Temperatursensor (min.: -40 max.: 125) [°C]		
GyroXaxis	INT	Rohsignal Beschleunigungssensor X (min.: -128 max.: 127) [g]		
GyroYaxis	INT	Rohsignal Beschleunigungssensor Y (min.: -128 max.: 127) [g]		
GyroZaxis	INT	Rohsignal Beschleunigungssensor Z (min.: -128 max.: 127) [g]		
		Warnungs-Fehlercode		
		Bit0 - Klemmkraft überschritten		
Warning		Bit1 - Klemmkraft unterschritten		
Force1	DINT	Spannkraft Kanal 1 (min.: 0 max.: 65,535) [N]		
Force2	DINT	Spannkraft Kanal 2 (min.: 0 max.: 65,535) [N]		
iJawType	String	Ausgelesene Typ des iJaws		
Reserve2	BOOL	Reserve		

		origineering conducti
Reserve3	BOOL	Reserve
Reserve4	BOOL	Reserve
Reserve5	BOOL	Reserve
Reserve6	BOOL	Reserve
Reserve7	BOOL	Reserve
Reserve8	BOOL	Reserve
Reserve9	BOOL	Reserve
Reserve10	BOOL	Reserve
Reserve11	BOOL	Reserve
Reserve12	BOOL	Reserve

Tabelle 4: Schnittstellenbeschreibung UDT_iJawDataRcvUser

4.3.6 Schnittstellenbeschreibung UDT_iJawlSDUCmdData

Ausgang	Datentyp	Beschreibung
execute	BOOL	Anforderung zum Ausführung der Funktion
readWrite	BOOL	FALSE: lesen, TRUE: schreiben
port	INT	Port am IO-Link_Master_Modul (1-8 für iJaw 1-8)
		Adressparameterindex (IO-Link Device); 032767: IOL-D; 65535:
index	INT	Portfunktionen
		Adressparameter Subindex (IO-Link Device); 0: vollständige
subindex	INT	Aufzeichnung; 1-255: Einzelparameter
writeLen	INT	Länge der Schreibdaten (Nettodaten); 1232

Tabelle 5: Schnittstellenbeschreibung UDT_iJawISDUCmdData

4.4 Beispiel zur Nutzung der freien ISDU-Schnittstelle

Mit der Schnittstelle "iFreelsduCmd" können weiter ISD-Kommandos ausgeführt werden. Wie ein ISD-Kommando erstellt und gesendet wird, wird in einem Beispiel am Kommando "Gain" (Read) in der Kopiervorlage gezeigt.

Eine Tabelle möglicher ISDU-Kommandos finden sie im Anhang.

Abbildung 4-13: Anlegen und ausführen des ISDU-Kommandos GAIN

Abbildung 4-14: Lesen und abspeichern der empfangenen Daten von GAIN

4.4.1 Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle

In dem unten abgebildeten Trace soll das Zeitverhalten der Ein und Ausgangssignale der ISDU-Schnittstelle dargestellten werden.

- Alle Daten müssen vor Auftragsausführung in den Eingang "iFreelsduCmd" geschrieben werden (Port, Index, Subindex etc.).
- Mit einer steigenden Flanke am Eingang iFreelsduCmd.Execute wird der ISDU-Auftrag abgesendet.
- Sollten keine falsche Portnummer gewählt worden sein (1-8), wechselt der Ausgang oloLinkRdy auf den Wert FALSE und der Ausgang oloLinkBusy auf den Wert TRUE.
- Sobald der Auftrag erfolgreich abgeschlossen wurde (azyklisch Kommunikation) wird der Ausgang oFreelsduCmdFertig auf den TRUE geschalten.
- Sollten es sich um ein Leseauftrag handeln (iFreelsduCmd.readWrite = TRUE), werden die empfangenen Daten in oFreelsduRcvData abgelegt.
 Sobald der Ausgangs oFreelsduCmdDataBereit den Wert TRUE hat, liegen die Daten bereit und können im Programm verwendet werden.
- Die Daten in oFreelsduRcvData und die Ausgänge oFreelsduCmdDataBereit, oFreelsduCmdFertig stehen so lange bereit, bis der Eingang iFreelsduCmd.execute auf den Wert FALSE wechselt

Abbildung 4-15: Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle

4.5 Verhalten am ProfiNet

Werden beim TigoMaster 2TH neue iJaw angelernt, muss dieser dazu resettet werden. Dabei wird die ProfiNet-Schnittstelle und die des TigoMasters Funktion als ProfiNet-Slave deaktiviert. Dies erzeugt ein ähnliches Verhalten wie bei einem Verbindungsabbruch zwischen SPS und TigoMaster 2TH wie bspw. bei einem Kabelbruch am Netzwerkkabel.

Daher sollte der TigoMaster 2TH vor einem Reset in der SPS als ProfiNet-Slave deaktiviert werden. Dies kann durch Setzen des Eingangs "i_PN_Act" am Baustein "SendRcv_iJaw" mit dem Wert "false" abgearbeitet werden. Der Ausgang "o_PnTeilAkt" meldet bei deaktiviertem TigoMaster 2TH ebenfalls das Signal "false".

Alternativ kann bspw. der OB86 (Baugruppenträgerausfall) geladen werden, um einen Stopp der CPU bei Ausfall des TigoMaster 2TH zu verhindern.

4.6 Erläuterung Prozesswerte

			min.	max.	
Kanal	Bedeutung	Einheit	Werte	Werte	Auflösung
	ADC Eingang				
Gauge 1	der				
Gauge 2	Sensorrohdaten	LSB	0	4096	0.8mV
	Rohsignal				
	aktuelle				
	Batteriespannu	[0.023]			
Battery	ng	V	0	157	23.56mV
	Rohsignal				
	Temperatursen				
Temperature	sor	°C	-40	125	1°
	Rohsignal				
Gyro X	Beschleunigung				
Gyro Y	ssensor	[1/8]g			
Gyro Z			-128	127	0.125g
	Umrechnung				
	gemäß				
	Kennlinie der				
	Kanäle Gauge 1				
	u. 2 in eine				
	physikalische				
Force 1	Kraft mit der				
Force 2	Einheit N	[1/2]N	0	65,535	N
					Bit 0 –
					Klemmkraft überschritten
					Bit 1 –
					Klemmkraft unterschritten
					Bit 2 —
					Kritische Temperatur erreicht
	Warnungs-				Bit 3 —
Warning	/Fehlercode		0	255	Akkumulatorspannung zu niedrig

Tabelle 6: Erläuterung Prozesswerte

Abbildungsverzeichnis

Abbildung 1-1: Hardwareaufbau	3
Abbildung 2-1: Installation GSD-Datei	4
Abbildung 3-1: Integration GSD-Datei in das Projekt	5
Abbildung 3-2: Anpassen allg. Geräteeigenschaften des TigoMasters	6
Abbildung 3-4: Anpassen der Profinet-Eigenschaften des TigoMasters	7
Abbildung 3-5: Hinzufügen Submodule	8
Abbildung 3-6: Anpassung Ein-/Ausgangsadressen	9
Abbildung 3-7: Aufruf Gerätename zuweisen	10
Abbildung 4-1: Globale Bibliothek öffnen	11
Abbildung 4-2: Auswahl und öffnen der globalen iJaw Bibliothek	12
Abbildung 4-3: Kopieren der Datentypen und Programmbausteine	13
Abbildung 4-4: Menu Baustein Eigenschaften	14
Abbildung 4-5: Optimierter Bausteinzugriff	14
Abbildung 4-6: Automatische Nummerierung	14
Abbildung 4-7: Aktualisierung der Bibliothekbaustein	15
Abbildung 4-8: Aktualisierung der Projektbibliothek	16
Abbildung 4-9: Übersetzung von Software	16
Abbildung 4-10: Globale Bibliothek Kopiervorlage	
Abbildung 4-11: Kopieren der Kopiervorlage des Bausteins SendRcv_iJaw in das SPS-Projekt	17
Abbildung 4-12: Aufruf FB "SendRcv_iJaw"	18
Abbildung 4-13: Anlegen und ausführen des ISDU-Kommandos GAIN	23
Abbildung 4-14: Lesen und abspeichern der empfangenen Daten von GAIN	23
Abbildung 4-15: Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle	24
Tabellenverzeichnis	
Tabelle 1: Schnittstellenbeschreibung der Eingänge	19
Tabelle 2: Schnittstellenbeschreibung UDT_iJawDataSendUser	
Tabelle 3: Schnittstellenbeschreibung der Ausgänge	21
Tabelle 4: Schnittstellenbeschreibung UDT_iJawDataRcvUser	22
Tabelle 5: Schnittstellenbeschreibung UDT_iJawISDUCmdData	22
Tabelle 6: Erläuterung Prozesswerte	26