Integrating Clustering and Semantic Memory in Soar

Yongjia Wang John E. Laird

Research Goals

- To improve general functionality of Soar by semantic memory
 - Explore new cognitive capabilities
 - Category learning
- To understand semantic memory in the context of a general cognitive architecture
 - How to use semantic memory in specific tasks?
 - Hierarchical structure

Overview of Experiment

Purpose:

- Test in external environment
- Need more challenging task with stochastic environment

Implementation:

- Integrated statistical learning component
- Semantic memory provides confidence of retrieval

Task: Eater's domain

- Interactive simulated environment
- The environment is readily available
- Enrich the domain: inject noise, hierarchical structure

The Eater's Domain

Overview of Task and Implementation

Syntactic Learning Semantic Learning Noisy feature vector of food Eat food **Training** poisonous Recognition edibility Hierarchical Clustering poisonous **Associating Encoding** Symbolic Feature Semantic Memory

Why use Hierarchical Clustering?

- Semantic learning is based on saving and retrieving instances
 - 1. Save original instances without clustering
 - Number of unique instances increases linearly
 - Exact match based memory retrieval will not find matches
 - Partial match based memory retrieval is computational expensive
 - 2. Save instances with reduced features after clustering
 - Instances are collapsed into small set of categories
 - Representation has reduced dimension
 - Underlying structure is still preserved

The Hierarchical Clustering Algorithm used in our Implementation

- Online learning algorithm
 - Neural network based
- Unsupervised learning
- Hierarchically refined classification

Food Prototypes

Food Instances with Noise

Hierarchical Clustering

Noise Tolerance of the Hierarchical Clustering Algorithm

Clustering Reduces the Number of Unique Instances

The Complete Task

The Complete Task

Compare Different Strategies

The Situation with More Noise

Retrieval Confidence Helps Decision Making

Summary

Nuggets

- Tested semantic memory in stochastic external environment
- Integrated hierarchical clustering
- New capability of learning abstract categories from instances (distinctive capability from episodic memory)
- Semantic memory provides retrieval confidence useful for decision making

Coals

- The input in the task is arbitrarily constructed
- Eater's domain is simple: simple reasoning, simple decision making and limited actions
- Learning strategies in the experiment are simple
- Haven't fully explored the benefit of hierarchical structure
- Integration of hierarchical clustering algorithm is preliminary

Thank You