import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()

import warnings
warnings.filterwarnings("ignore")

from sklearn.linear_model import LinearRegression

In [5]:

raw_data = pd.read_csv("USA_Housing.csv")
raw_data.head()

Out[5]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386

In [16]:

raw_data.describe()

Out[16]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

```
In [17]:
          raw data.isnull().sum()
                                           0
          Avg. Area Income
Out[17]:
          Avg. Area House Age
                                           0
          Avg. Area Number of Rooms
                                           0
          Avg. Area Number of Bedrooms
                                           0
          Area Population
                                           0
          Price
                                           0
          Address
          dtype: int64
In [20]:
           data = raw_data.drop("Address", axis=1)
          data.describe()
```

Out[20]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

```
In [160...
    target = data.Price
    inputs = data.drop("Price",axis=1)

In [163...

def scatter_distplot(col):
    fig, axes = plt.subplots(1,2,figsize=(15,5))

    scatter_plot = sns.scatterplot(x=inputs[col], y=target, ax=axes[1])
    scatter_plot.set_xlabel(col, fontsize=18)
    scatter_plot.set_ylabel("Price", fontsize=18)

    dist_plot = sns.distplot(inputs[col], ax=axes[0])
    dist_plot.set_xlabel(col, fontsize=18)
```

In [164...

for col in inputs.columns:
 scatter_distplot(col)

from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()
vif["features"] = inputs.columns
vif["VIF"] = [variance_inflation_factor(inputs.values, i) for i in range(inputs.shape[1 vif

Out[166		features	VIF
	0	Avg. Area Income	29.650899
	1	Avg. Area House Age	27.447775
	2	Avg. Area Number of Rooms	45.257291
	3	Avg. Area Number of Bedrooms	14.537873
	4	Area Population	12.825450

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(inputs)
```

Out[167... StandardScaler()

```
in [168... inputs_scaled = scaler.transform(inputs)
```

```
In [174...
           from sklearn.model selection import train test split
           x_train, x_test, y_train, y_test = train_test_split(inputs_scaled, target, test_size=0.
In [175...
           reg = LinearRegression()
           reg.fit(x_train, y_train)
          LinearRegression()
Out[175...
In [176...
           y_hat = reg.predict(x_train)
In [185...
           plt.scatter(y_train, y_hat)
           plt.xlabel("Targets (y_train)", fontsize=18)
           plt.ylabel("Predictions (y_hat)", fontsize=18)
           x = np.linspace(0, 2.5e6)
           y = x
           plt.plot(x,y,c="orange",lw=3)
          [<matplotlib.lines.Line2D at 0x26701a6b310>]
Out[185...
                  1e6
              2.5
          Predictions (y_hat)
              2.0
              1.0
              0.5
              0.0
                   0.0
                            0.5
                                     1.0
                                                        2.0
                                                                 2.5
                                 Targets (y_train)
                                                                  1e6
In [188...
           residuals_train = y_train - y_hat
           sns.distplot(residuals_train)
           residuals_train.describe()
                    4.000000e+03
          count
Out[188...
          mean
                   -5.312904e-11
          std
                    1.015767e+05
                   -3.370071e+05
          min
          25%
                   -6.991187e+04
          50%
                   -1.058613e+02
          75%
                    6.895613e+04
                    3.624884e+05
          max
          Name: Price, dtype: float64
```



```
In [189...
           reg.score(x_train, y_train)
          0.9181859079129733
Out[189...
In [190...
           reg.intercept_
          1232374.526139742
Out[190...
In [191...
           reg.coef_
          array([230342.10551988, 164805.29545772, 120130.82515573,
                                                                          2723.03223192,
Out[191...
                 151552.41007222])
In [195...
           reg_summary = pd.DataFrame(columns=["features"], data=inputs.columns)
           reg_summary["weights"] = reg.coef_
           reg_summary
```

Out[195		features	weights
	0	Avg. Area Income	230342.105520
	1	Avg. Area House Age	164805.295458
	2	Avg. Area Number of Rooms	120130.825156
	3	Avg. Area Number of Bedrooms	2723.032232
	4	Area Population	151552.410072

```
In [196...
y_hat_test = reg.predict(x_test)

In [197...
plt.scatter(y_test, y_hat_test)
plt.xlabel("Targets (y_test)", fontsize=18)
plt.ylabel("Predictions (y_hat_test)", fontsize=18)
```

```
x = np.linspace(0,2.5e6)
y = x
plt.plot(x,y,c="orange",lw=3)
```

Out[197... [<matplotlib.lines.Line2D at 0x2677f0230d0>]

In [198... reg.score(x_test, y_test)

Out[198... 0.9172058023346101