Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

Bon courage!

* * * * * * * * * * * * * * * * * *

41. On considère l'application $f:[-1.5,1.5] \to \mathbb{R}$ dont la représentation graphique est donnée ci-dessous.

- L'image de 1 par f est égale à -1

 (2) \square Si 0 < y < 1.5, alors y possède trois antécédents

 (3) \square f est injective

 (4) \square f est surjective

 (5) \square aucune des réponses précédentes n'est correcte
- 42. On considère $\binom{n}{4}$ avec $n \in \mathbb{N}$. Peut-on l'écrire :

$$(4)^{\square} \quad \frac{n!}{24(n-4)!} \quad (2)^{\square} \quad \frac{4!}{(n-4)!} \quad (3)^{\square} \quad \frac{4!}{(4n)!} \\ (3)^{\square} \quad \frac{n(n-1)(n-2)(n-3)}{24} \quad (5)^{\square} \quad \frac{n(n-1)(n-2)(n-3)(n-4)}{24}$$

43. On considère deux fonctions :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{2x+1} \end{cases}$$
 $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$

Cochez les affirmations correctes.

44. J'utilise un cadenas à 4 chiffres numériques pour fermer mon casier. Combien ai-je de possibilités de choix pour mon code si je veux quatre chiffres différents?

$$_{(1)}\square$$
 40 $_{(2)}\square$ A_{10}^4 $_{(3)}\square$ 10^4 $_{(4)}\square$ $10\times9\times8\times7$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

45. Soit $z_1=1+i$ et $z_2=2\sqrt{3}+2i$. Cocher les écritures trigonométrique et exponentielle de $\overline{z_2}$, si présentes

46. Le produit z_1z_2 (pour z_1 et z_2 définis à la question précédente) a pour écriture algébrique :

- 47. Soit $f:]-1, +\infty[\to \mathbb{R}$ telle que $f(x) = \ln(1+x)$
 - $_{(1)}\square$ f est une surjection $_{(2)}\square$ f est une injection $_{(3)}\square$ f^{-1} n'existe pas $_{(4)}\square$ $f^{-1}(y)=e^{y-1}$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 48. Simplifier la somme suivante : $\sum_{k=0}^{n} {n \choose k} 3^k$

$$(1)^{\square}$$
 3^n $(2)^{\square}$ 4^n $(3)^{\square}$ 3^n-1 $(4)^{\square}$ 4^n-3 $(5)^{\square}$ aucune des réponses précédentes n'est correcte.

49. Soit $z = \frac{1}{(1+2\mathrm{i})(3-\mathrm{i})}$. Cocher la forme algébrique de ce complexe si présente.

$$z = \frac{1}{10} - \mathrm{i} \frac{1}{10} \qquad {}_{(2)}\square \quad z = -\frac{1}{10} - \mathrm{i} \frac{1}{10} \qquad {}_{(3)}\square \quad z = \frac{1}{10} + \mathrm{i} \frac{1}{10} \qquad {}_{(4)}\square \quad z = -\frac{1}{10} + \mathrm{i} \frac{1}{10}$$
 aucune des réponses précédentes n'est correcte.

50. D'après Euler, $\sin \theta$ est égal à

51. Soit $S = \sum_{k=0}^{n+1} 3$ et $T = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + \ldots + n^2$.

Combien S et T valent?

$$(1)$$
 $S=3$ (2) \square $S=3n+1$ (3) \square $T=\frac{n(2n+1)}{2}$ (4) \square $T=\frac{n(n+1)(2n+1)}{6}$ (5) \square aucune des réponses précédentes n'est correcte.

52. Soient $\vec{u} = (-3, 2)$ et $\vec{v} = (-4, -5)$ deux vecteurs et θ l'angle compris entre ces deux vecteurs. Cochez les affirmations correctes.

 $\vec{u}\cdot\vec{v}=0$ $\vec{u}\cdot\vec{v}=0$ $\cos(\theta)=\frac{\pi}{3}$ $\sin(\theta)=\frac{\pi}{3}$ $\sin(\theta)=\frac$

53. On choisit $a \in \mathbb{R}$, tel que $a \neq 1$. Simplifier la somme suivante : $\sum_{k=0}^{n} a^k$

54. En se basant sur le repère suivant d'origine O, cocher les affirmations correctes :

- (1) $\overrightarrow{AB} = 3 + \frac{7}{2}i$
- $|\overrightarrow{OA}|| = 5$
- (3) L'affixe de E est réelle
- (4) La partie imaginaire des affixes de A et C est négative
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 55. On considère $\sum_{k=11}^{2020} n!$ Combien de termes comporte cette somme?

 $_{(1)}\square$ 2010 $_{(2)}\square$ 2011 $_{(3)}\square$ 2020 $_{(4)}\square$ 2011! $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

56. Soient $\vec{u}=(1,1,0)$ et $\vec{v}=(1,-1,0)$ deux vecteurs. Cochez les affirmations correctes.

57.	Pour les 4 questions qui suivent, on considère $z_1 = 1 + 2i$ et $z_2 = \sqrt{3} + i$.
	Le module de z_1 vaut :

$$_{(1)}\square$$
 5 $_{(2)}\square$ $\sqrt{3}$ $_{(3)}\square$ $(1+2\mathrm{i})^2$ $_{(4)}\square$ $\sqrt{1+(2i)^2}$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

58. Le module de z_2 vaut :

$$_{(1)}\square$$
 $\sqrt{2}$ $_{(2)}\square$ 4 $_{(3)}\square$ 2 $_{(4)}\square$ $\sqrt{3+i^2}$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

59. Le produit z_1z_2 a pour module :

$$(1)$$
 \square $|z_1||z_2|$ (2) \square $2\sqrt{3}$ (3) \square 10 (4) \square $\sqrt{6}$
 (5) \square aucune des réponses précédentes n'est correcte.

60. La somme $z_1 + z_2$ a pour module :