Ex. regulated
$$\sim N(200, 15^2)$$
 $N = 9$, $\propto \text{fallsin}(191, 209)$

otherwise, we conclude $M \neq 200$. adjust

 $M = 200$ $M_1: M \neq 200$.

① When $M = 200$, find type T error error.

(I the significance level)

 $M = 200$, $M = 200$

$$= P\left(\frac{191-215}{15/3} < 2 < \frac{205-215}{15/3}\right)$$

$$= P\left(-4.8 < 2 < -1.2\right)$$

$$= 0.115$$

 E_{x} . --- $\sim N(\mu, 15^2)$ H_0 : $\mu = 200$ H_1 : $\mu < 200$

<=0.05

C.
$$\frac{\text{for } x = 0.05}{\text{V} C = \{ \frac{\text{X} - 200}{\text{I5}/\text{In}} = -1.645 \}}$$
 $= \{ \frac{\text{X} < 200 - 1.645 }{\text{I5}/\text{In}} \}$

when $\mu = 190$.

 $0.1 = 13 = P(\frac{\text{X}}{2} \ge 200 - 1.645 \cdot \frac{15}{\text{In}})$
 $= P(\frac{\text{X}}{2} \ge 200 - 1.645 \cdot \frac{15}{\text{In}} - 190)$
 $= P(\frac{\text{X}}{2} \ge 200 - 1.645 \cdot \frac{15}{\text{In}} - 190)$
 $= P(\frac{\text{X}}{2} \ge 105 \cdot \frac{15}{\text{In}} - 1.645)$
 $= P(\frac{\text{X}}{2} \ge 1.645)^{2} \times 15^{2}$
 $= \frac{1.282 + 1.645}{10^{2}} \times 15^{2}$
 $= \frac{1.282 + 1.645}{10^{2}} \times 20$

In the case of a [-sided test, to achieve a specific M, in H, is the mean, $n \approx \frac{(3\alpha + 3\beta)^2 \sigma^2}{3^2}$ where $\sigma = [\mu_1 - \mu_0]$ If it's a 2-sided test. $N = (3a + 3b)^2 + 3b^2 +$ \$ 108. One sample, test on a single projection Ho: P=Po Survey n people.
H1: P<Po under Ho, test stat. PMPg Pobo 1 - Po ~ Z. JP680/n

claims: p=70% Would you agree if a survey of 15 houses showed only & had heat pumps Ex: Claims: p=70/0 N=0.10. Ho: p=0.7 Y= # of houses with H1: $p \neq 0.7$ heat Jamp. under Ho, Y~Bin(15,0-7) p-value=2xp(Y≤8) =2xo.11... >0x | 1011 ⇒ we cannot reject Ho. $Y \sim B(n, Po) \approx N(nPo, nPo go)$ p= 1 2 N(po, 1080) If use normal to find p-value,

p-value=2*P(Y < 8)

N(10.5, 3.15) $=2P(3 \leq \frac{8.5 - 10.5}{3.15}) = P(3 < -1.13)$

= 0.1292

Ho:
$$P_1 = P_2 = P_0$$
 N_1 Y_1 P_1

Hi: $P_1 \neq P_2$ N_2 Y_2 P_2

When Ho:

$$P_1 - P_2 \sim N(0, \frac{P_0 + P_0}{n_1} + \frac{P_0}{n_2})$$

$$P_0 = \frac{Y_1 + Y_2}{N_1 + n_2}$$

$$P_1 - P_2 \sim N(0, \frac{P_0 + P_0}{n_1} + \frac{P_0}{n_2})$$

Ex. Town voters: 120 of 200 support consulty voters: 240 of 500 support $P_1 = 0.60$. $P_2 = 48$.

Ho: $P_1 = P_2$ $Y_1 = 0.60$ $P_2 = 48$.

Ho: $P_1 = P_2$ $Y_2 = 0.05$

H1: $P_1 > P_2$ $P_0 = \frac{260}{700} = 0.514$

under Ho, $P_1 - P_2 \sim N(0, \frac{P_0 + P_0}{P_0} + \frac{P_0}{N_0})$

§10.9. 2 sample P, &P2

a) a C={x2>16.919} x=16.919. $\frac{\chi^2}{\gamma_{\text{obs}}^2} = \frac{9 \times 1.2^2}{0.92} = 16 + C$ = can not 2 eject to $b = \left(\frac{(n-1)s^2}{s^2} = \frac{9s^2}{0.9^2} > 16.919\right)$

Sobs=1-2, & C.
Can not rej Ho.