Signature and Name of Invigilator

	(2)	9		OMR Sh	eet N	0.:						
1.	(Signature)		•	01/11/01/							ndida	
	(Name)			Roll No.								
2.	(Signature)				(In fig	ures a	as per	adm	ission	card)
	(Name)		PAPER - III	Roll No.								

J 8 7 1 5

Time : $2^{1/2}$ hours

COMPUTER SCIENCE AND APPLICATIONS

NS [Maximum Marks : 150]

(In words)

Number of Pages in this Booklet: 16

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- This paper consists of seventy five multiple choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: (1) (2) (4) where (3) is the correct response.

- 5. Your responses to the items are to be indicated in the **OMR Sheet given inside the Booklet only.** If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

Number of Questions in this Booklet : 75 परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- इस प्रश्न पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - (i) प्रश्न पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर सील की पुस्तिका स्वीकार न करें।
 - ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें िक ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात िकसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न पुस्तिका पर अंकित कर दें।
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण: (1) (2) ■ (4) जबिक (3) सही उत्तर है।

- 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते हैं, तो उसका मृल्यांकन नहीं होगा।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 3. यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- 9. आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

COMPUTER SCIENCE AND APPLICATIONS PAPER - III

This paper contains seventy five (75) objective type questions of two (2) marks each. Note: All questions are compulsory.

1.	For the 8 - bit word 00111001, the check bits stored with it would be 0111. Suppose when the word is read from memory, the check bits are calculated to be 1101. What is the data word that was read from memory?									
	(1)	10011001	(2)	00011001	(3)	00111000	(4)	110001	10	
2.	inpu equa micro (1) (3)	t clock. Assume als four input coprocessor? 8×10^6 bytes/se 16×10^6 bytes/s	that clock c c	this microproces cycles. What is (2) (4)	sor has the 4×1 4×1	external data bus a bus cycle who maximum data Object Object	ose n	ninimum	duration	
3.				85 microprocesso		V A	(4)	CALL	2026 11	
	(1)	CALL 0010 H	(2)	CALL 0034 H	(3)	CALL 0038 H	(4)	CALL (003C H	
4.	The	equivalent hexad	ecima	l notation for oct	al nur	mber 2550276 is :				
	(1)	FADED	(2)	AEOBE	(3)	ADOBE	(4)	ACABI	Ξ	
5.	exect write of th exect	ating an instruction of the comploys one made of the complex control of the control o	on. The chine oblock and p	he fifty percent o cycle. For execution data transfer, an	f the con of the IO decorate.	needs 4 machine ycles use memory ne programs, the sevice is attached to What is the massed?	y bus. ystem o the	A mem utilizes system v	ory read/ 90 percent vhile CPU	
((1)	500 Kbytes/sec	(2)	2.2 Mbytes/sec	(3)	125 Kbytes/sec	(4)	250 Kb	ytes/sec	
6.	The 1	number of flip-flo	ps re	quired to design a	n mod	ulo - 272 counter	is:			
	(1)	8	(2)	9	(3)	27	(4)	11		
7.	are t R ₁ ar	wo relationships nd R ₂ donot have	betwee	een E_1 and E_2 wl	nere R wn. F	simple single valu 1 ₁ is one - many a How many minim al Model ?	and R	₂ is man	y - many.	
	(1)	4	(2)	3	(3)	2	(4)	1		
J-871	5			2					Paper-III	

- 8. The STUDENT information in a university stored in the relation STUDENT (Name, SEX, Marks, DEPT Name)
 - Consider the following SQL Query SELECT DEPT Name from STUDENT where SEX='M' group by DEPT Name having avg (Marks)>SELECT avg (Marks) from STUDENT. It Returns the Name of the Department for which :
 - (1) The Average marks of Male students is more than the average marks of students in the same Department
 - (2) The average marks of male students is more than the average marks of students in the University
 - (3) The average marks of male students is more than the average marks of male students in the University
 - (4) The average marks of students is more than the average marks of male students in the University
- 9. Select the 'False' statement from the following statements about Normal Forms :
 - (1) Lossless preserving decomposition into 3NF is always possible
 - (2) Lossless preserving decomposition into BCNF is always possible
 - (3) Any Relation with two attributes is in BCNF
 - (4) BCNF is stronger than 3NF
- **10.** The Relation

Vendor Order (V no, V ord no, V name, Qty sup, unit price)

is in 2NF because:

- (1) Non key attribute V name is dependent on V no which is part of composite key
- (2) Non key attribute V name is dependent on Qty sup
- (3) Key attribute Qty sup is dependent on primary key unit price
- (4) Key attribute V ord no is dependent on primary key unit price
- 11. The relation schemas R_1 and R_2 form a Lossless join decomposition of R if and only if:
 - (a) $R_1 \cap R_2 \longrightarrow (R_1 R_2)$
 - (b) $R_1 \rightarrow R_2$
 - (c) $R_1 \cap R_2 \longrightarrow (R_2 R_1)$
 - (d) $R_2 \rightarrow R_1 \cap R_2$

Codes:

- (1) (a) and (b) happens
- (2) (a) and (d) happens
- (3) (a) and (c) happens
- (4) (b) and (c) happens
- 12. In the indexed scheme of blocks to a file, the maximum possible size of the file depends on :

3

- (1) The number of blocks used for index and the size of index
- (2) Size of Blocks and size of Address
- (3) Size of index
- (4) Size of Block

J-8715

- **13.** Give the number of principal vanishing point(s) along with their direction for the standard perspective transformation :
 - (1) Only one in the direction K (2) Two in the directions I and J
 - (3) Three in the directions I, J and K (4) Only two in the directions J and K
- **14.** Consider a triangle A(0,0), B(1,1) and C(5,2). The triangle has to be rotated by an angle of 45° about the point P(-1, -1). What shall be the coordinates of the new triangle?

(1)
$$A' = (1, \sqrt{2} - 1), B' = (-1, 2\sqrt{2} - 1) \text{ and } C' = (3\sqrt{2} - 1, \frac{9}{2}\sqrt{2} - 1)$$

(2)
$$A' = (1, \sqrt{2} - 1), B' = (2\sqrt{2} - 1, -1) \text{ and } C' = (3\sqrt{2} - 1, \frac{9}{2}\sqrt{2} - 1)$$

(3)
$$A' = (-1, \sqrt{2} - 1), B' = (-1, 2\sqrt{2} - 1) \text{ and } C' = (3\sqrt{2} - 1, \frac{9}{2}\sqrt{2} - 1)$$

(4)
$$A' = (\sqrt{2} - 1, -1), B' = (-1, 2\sqrt{2} - 1) \text{ and } C' = (3\sqrt{2} - 1, \frac{9}{2}\sqrt{2} - 1)$$

- **15.** The process of dividing an analog signal into a string of discrete outputs, each of constant amplitude, is called :
 - (1) Strobing
- (2) Amplification
- (3) Conditioning
- (4) Quantization
- 16. Which of the following is not a basic primitive of the Graphics Kernel System (GKS)?
 - (1) POLYLINE
- (2) POLYDRAW
- (3) FILL AREA
- (4) POLYMARKER
- 17. Which of the following statement(s) is/are incorrect?
 - (a) Mapping the co-ordinates of the points and lines that form the picture into the appropriate co-ordinates on the device or workstation is known as viewing transformation.
 - (b) The right-handed cartesian co-ordinates system in whose co-ordinates we describe the picture is known as world co-ordinate system.
 - (c) The co-ordinate system that corresponds to the device or workstation where the image is to be displayed is known as physical device co-ordinate system.
 - (d) Left handed co-ordinate system in which the display area of the virtual display device corresponds to the unit (|x|) square whose lower left-hand corner is at the origin of the co-ordinate system, is known as normalized device co-ordinate system.

Codes:

- (1) (a) only
- (2) (a) and (b)
- (3) (c) only
- (4) (d) only

J-8715

18. Match the following:

List - I

List - II

- Flood Gun (a)
- An electron gun designed to flood the entire screen with (i)
- (b) Collector
- (ii) Partly energised by flooding gun, stores the charge generated by the writing gun.
- Ground (c)
- Used to discharge the collector. (iii)
- (d) Phosphorus grains
- (iv) Used in memory - tube display and similar to those used in standard CRT.
- (e) Writing Gun System

(i)

(v)

Used in memory - tube display and basically the same as (v) the electron gun used in a conventional CRT.

Codes:

- (a)
- (b) (c)
- (d)

(e)

- (1)(i)
- (ii) (iii) (iv)
- (2)(ii)
- (v) (iii)
- (i) (iv) (v)
- (3) (iii)
- (ii)
 - (iv) (v)
- (4)(iv)
- (i)
- (ii) (iii)
- Minimal deterministic finite automaton for the language $L = \{0^n \mid n \ge 0, n \ne 4\}$ will have : 19.
 - 1 final state among 5 states
- 4 final states among 5 states
- 1 final state among 6 states (3)
- 5 final states among 6 states
- 20. The regular expression corresponding to the language L where

L = $\{x \in \{0, 1\}^* \mid x \text{ ends with } 1 \text{ and does not contain substring } 00 \}$ is:

- $(1) \quad (1+01)^* \ (10+01)$
- $(2) (1+01)^* 01$

 $(3) \quad (1+01)^* \ (1+01)$

- $(4) \quad (10+01)^* \ 01$
- The transition function for the language $L = \{w | n_a(w) \text{ and } n_b(w) \text{ are both odd} \}$ is given by :
 - $\delta (q_0, a) = q_1$
- $\delta (q_0, b) = q_2$
- $\delta (q_1, a) = q_0$
- $\delta (q_1, b) = q_3$
- $\delta (q_2, a) = q_3$
- $\delta (q_2, b) = q_0$
- $\delta (q_3, a) = q_2$
- $\delta (q_3, b) = q_1$

The initial and final states of the automata are:

- q_0 and q_0 respectively
- (2) q_0 and q_1 respectively
- q₀ and q₂ respectively
- (4) q_0 and q_3 respectively

J-871	5			6					I	Paper-III
	(1)	32 kbps	(2) 64 kbps		(3)	128 kbps	((4)	256 kbps	3
			t rate required, if			ed that eacl				
29.			voice channel is to sample the sign							
20	6.	ooo o disirisals	voice charred :-		h., J:	aitinin a 0 1	Lug ba		dih1	ا ما الما الما
	(3)	OEWPNRCTTU	EKMRO	(4)	UEK	PNRMRO	DEWCT	T		
	4	CTTOEWMROF		(2)		DUEKCTTI				
- 9	ciphe	r with a key "LA	YER". The encr		messa	age is:	, 0			_
28.	A me	ssage "COMPUT	ERNETWORK" e	ncrypt	ed (ig	nore quote	s) using o	colur	nnar tran	sposition
1	(0)	certificate and	idinici	(=)	1 165	imica and	Tarispoi			
4	(1) (3)	Transport and c Certificate and t	75,77	(2) (4)		sport and hared and		rt		
27.		A control of	odes of IP security		Тиот	coort and	tunnol			
0.7	TA71 ·	- 4	l (cm	2						
	(1)	FIN	(2) RST	5 F)	(3)	SYN	((4)	PSH	
-		ore data to trans					1	•		
26.	Whic	h of the following	g control fields in	TCP h	eade	r is used to	specify v	whet	her the se	ender has
	(3)	Packet switching	5	(4)	CIFC	uit switchir	ıg			
	(1)	Broadcasting Packet switching		(2)		casting	200			
			which they were s	100		A COUNTY OF THE PARTY OF THE PA	0			
25.			echnique guarant				vill be re	eceiv	ed by the	receiver
		1	U	- 1		1/				
	(4)	positive literal of	negated goal G r null goal	agains	ot d fa	ict or rule	A to ge	i cia	use C the	en C nas
	(4)	positive literal of	•	a a a i - a -	1		Λ 10 2	ءاء ا	1100 C LI	on C 1
	(3)		negated goal G	agains	st a fa	act or rule	A to ge	t cla	use C the	en C has
	(2)		two Horn clause				617			
	(1)		two Horn clause	s is no	t a H	orn clause	-46	Э	30	
24.	Whic	h one of the follo	owing is true?					_1	1.	
	(4)	The scope of a v	ariable in PROLC	JG IS a	sing	ie query		5	10 0	12
	(3)	*	ariable in PROLO		_		rule		0-	ント
	(2)		rongly typed lang				1		6	20
	(1)		iable can only be	U	ed to	a value on	ce		4	
					_	_				

The clausal form of the disjunctive normal form $\neg A \lor \neg B \lor \neg C \lor D$ is :

Which of the following is false for the programming language PROLOG?

(2) $A \lor B \lor C \lor D \Rightarrow true$

(4) $A \wedge B \wedge C \wedge D \Rightarrow false$

 $A \wedge B \wedge C \Rightarrow D$

(3) $A \wedge B \wedge C \wedge D \Rightarrow \text{true}$

(1)

23.

30.	The	maximum payloa	d of a	TCP segn	nent is	:				
	(1)	65,535	(2)	65,515		(3)	65,495	(4)	65,475	
			. •							
31.		ll-pairs shortest-p	-	problem is		•	· ·	11		
	(1)	Dijkstra' algoritl			(2)		nan-Ford algori			
	(3)	Kruskal algorith	ш		(4)	Floy	d-Warshall algo	ritnin	4.6	
32.	The	travelling salesma	n nro	hlam can l	a calv	ad in			6	
<i>32.</i>	(1)	Polynomial time	-						-071	
	(2)	Polynomial time	•				0 0	- 4		
	(3)	•		0			•	m or b	ranch-and-bound	
	` /	algorithm		0)	1	O	0 0	. 7	201	
	(4)	Polynomial time	using	g backtracl	king al	gorith	m 🦠	5		
						5	20 6	10		
33.		ch of the followin	_	• •	lly sma	aller?		M		
	(1)	lg(lg*n)	(2)	lg*(lgn)		(3)	lg(n!)	(4)	lg*(n!)	
2.4	C	.1 1 1 .11	<i>c</i> ·	100	1 .1	/	1 ()	a .	(
34.	34. Consider a hash table of size $m = 100$ and the hash function $h(k) = floor (m(kA mod 1))$ for									
	۸ —	$(\sqrt{5}-1)$	033	Compute	the loc	ation	to which the ke	ω l – 1	23456 is placed in	
	A –	2 - 0.018	033.	Compute	tile loc	ation	to which the Ke	.y K – 1	20400 is placed in	
	hash	table.		- 7			1			
	(1)	77	(2)	82	4	(3)	88	(4)	89	
	т.,			_1()	15			71 • 1	C.1 C.11	
35.	corre		asym	ptotically	non-n	egativ	e functions. W	hich o	f the following is	
		$\theta(f(n)*g(n)) = m$	in (f(r	n), g(n))	(2)	θ (f (n)*g(n)) = max(t)	(n), g(ı	1))	
	(3)	$\theta (f(n) + g(n)) = r$					n) + g(n)) = max			
	` /		2)	(), ()())	()	() (, 8(//	v (· //	
36.	The	number of nodes	of he	ight h in a	ny n -	eleme	ent heap is			
9	-	1.	. "				(n)		(n)	
- ((1)	h 7	(2)	z^h		(3)	$\operatorname{ceil}\left(\frac{n}{z^h}\right)$	(4)	$\operatorname{ceil}\left(\frac{1}{2^{h+1}}\right)$	
1			,				(Z)		(<i>L</i>)	
37.	In Ia	va, when we imp	lemer	nt an interf	ace me	ethod	it must be decla	ared as		
57.	(1)	Private	(2)	Protected		(3)	Public	(4)	Friend	
	(1)	Till and	(-)	110100100	-	(5)	T dolle	(1)	Titella	
38.	The S	Servlet Response i	interfa	ace enables	a serv	let to	formulate a resp	onse fo	r a client using the	
	meth						1		O	
	(1)	void log(Excepti	on e,	String s)	(2)	void	destroy()			
	(3)	int get ServerPo	rt()		(4)	void	set ContextTyp	e(String	g type)	
J-871	5				_					
J-0/1					7				Paper-III	

39.	Whi	ch one of the following is correct ?								
	(1)	Java applets can not be written in any programming language								
	(2)	An applet is not a small program								
	(3)	An applet can be run on its own								
	(4) Applets are embedded in another applications									
		10								
40.	In X	ML we can specify the frequency of an element by using the symbols:								
	(1)	+ *! (2) $# *!$ (3) $+ *?$ (4) $- *?$								
41.		ML, DOCTYPE declaration specifies to include a reference to file.								
	(1)	Document type Definition (2) Document type declaration								
	(3)	Document transfer definition (4) Document type language								
42.	Mod	ule design is used to maximize cohesion and minimize coupling. Which of the following								
14.	is the key to implement this rule?									
	(1)	Inheritance (2) Polymorphism (3) Encapsulation (4) Abstraction								
		/ \/								
43.	Veri	fication:								
	(1)	refers to the set of activities that ensure that software correctly implements a specific function								
	(2)	gives answer to the question - Are we building the product right ?								
	(3)	requires execution of software								
	(4)	both (1) and (2)								
	` /									
44.	Whi	ch design matric is used to measure the compactness of the program in terms of lines of								
	code									
	(1)	Consistency (2) Conciseness (3) Efficiency (4) Accuracy								
4	9_/									
45.	-	airements prioritisation and negotiation belongs to:								
,	(1)	Requirements validation (2) Requirements elicitation								
	(3)	Feasibility study (4) Requirements reviews								
46.	Ada	ntivo maintananco is a maintananco which								
40.	(1)	ptive maintenance is a maintenance which correct errors that were not discovered till testing phase.								
	(2)	is carried out to port the existing software to a new environment.								
	(3)	improves the system performance.								
	(4)	both (2) and (3)								
	\									
J-871	L5 	8 Paper-III								
	 									

47.	A Design	concept Refinement is a	a :

- (1) Top-down approach
- (2) Complementary of Abstraction concept
- (3) Process of elaboration
- (4) All of the above

48. A software design is highly modular if :

- (1) cohesion is functional and coupling is data type.
- (2) cohesion is coincidental and coupling is data type.
- (3) cohesion is sequential and coupling is content type.
- (4) cohesion is functional and coupling is stamp type.
- **49.** Match the following for operating system techniques with the most appropriate advantage :

List - I

List - II

(a) Spooling

- (i) Allows several jobs in memory to improve CPU utilization
- (b) Multiprogramming
- (ii) Access to shared resources among geographically dispersed computers in a transparent way
- (c) Time sharing
- (iii) Overlapping I/O and computations
- (d) Distributed computing
- (iv) Allows many users to share a computer simultaneously by switching processor frequently

Codes:

- (a) (b) (c) (d)
- (1) (iii) (i) (ii) (iv)
- (2) (iii) (i) (iv) (ii)
- (3) (iv) (iii) (ii) (i)
- (4) (ii) (iii) (iv) (i)
- **50.** Which of the following statements is not true for Multi Level Feedback Queue processor scheduling algorithm?
 - (1) Queues have different priorities
 - (2) Each queue may have different scheduling algorithm
 - (3) Processes are permanently assigned to a queue
 - (4) This algorithm can be configured to match a specific system under design
- 51. What is the most appropriate function of Memory Management Unit (MMU)?
 - (1) It is an associative memory to store TLB
 - (2) It is a technique of supporting multiprogramming by creating dynamic partitions
 - (3) It is a chip to map virtual address to physical address
 - (4) It is an algorithm to allocate and deallocate main memory to a process

J-8715

Paper-III

53.	In							disk b	lock	allocatio	n in a	a file	syst	em,	inseı	tion a	and
	delet	ion of	block	ks in a	file is	easy.											
	(1)	Inde	x		(2)	Link	ed		(3)	Contig	guous		(4)	Bit	Map	4	
- 4		. (1		1 (.1 .										6	47	
54.			•		the ty	pe :		(2)	D:	-1 C:1	_		-	1.0	4	1.)
	(1)	_	ılar fil .ce file					(2)		ctory file		00	1	ŧΫ	. 4	70	
	(3)	Devi	ce me	:				(4)	Any	one of t	me ab	ove	-	1	-)		
55.	Matc	h the	follov	ving :							- 4	41		Z.	2		
		List		0					List	An A	(2	1	-			
	(a)	Intel	ligenc	e		(i)	Con	textual	, taci	t, transfe	er nee	ds l	earnii	ng			
	(b)		wledg			(ii)			- 40	easily tr			A	O			
	(c)	Infor	rmatic	n		(iii)	Judg	gement	al	1 /		1					
	(d)	Data	ı			(iv)	Cod	ifiable,	endo	orsed wi	ith rel	evan	ce an	d pi	ırpos	e	
	Code	es:						7		1./							
		(a)	(b)	(c)	(d)					4	1						
	(1)	(iii)	(ii)	(iv)	(i)		4	A.		(1)	13						
	(2)	(iii)	(i)	(iv)	(ii)	4	1	1		-							
	(3)	(i)	(ii)	(iii)	(iv)	1		30									
	(4)	(i)	(iii)	(iv)	(ii)	-4		11									
56.	Matc	h the	follow	wing l	cnowl	edoe 1	renres	sentatio	on tea	chniques	with	thei	r ann	dicat	ions		
50.	Witte	List		VIIIG		cage I	repres	Cittati	List	_	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	titei	ı upp	iicu	.10113	•	
	(a)	Fram	-	1	10	60	19	(i)		orial re	eprese	nta [.]	tion	of o	biec	ts. th	neir
	(4)	Truit	lan.	1	197	W		(-)		butes an	-			01 (Jojec	,	
4	(b)	Cond	ceptua	ıl dep	enden	cies		(ii)	To d	lescribe 1	real w	orld	stere	otyp	e eve	ents	
((c)	Asso	ciativ	e netv	works			(iii)		ord like ed knov			s for	gro	upin	g clos	sely
1	(d)	Scrip	ots	J				(iv)		ictures ences	and	prii	nitiv	es	to r	epres	ent
	Code	es:							SCIII	erices							
		(a)	(b)	(c)	(d)												
	(1)	(iii)	(iv)	(i)	(ii)												
	(2)	(iii)	(iv)	(ii)	(i)												
	(3)	(iv)	(iii)	(i)	(ii)												
	(4)	(iv)	(iii)	(ii)	(i)												
J-871	5							10							,	D	
, 5.1								10							J	Paper	-111

(2)

(4)

Classical IPC problem

Synchronization primitive

Dining Philosopher's problem is a :

Starvation problem

Producer - consumer problem

52.

(1)(3)

www.examrace.com

57.	In propositional logic	$P \leftrightarrow Q$ is equivalent to (Where \sim denotes NOT):
01.	iii propositional logic	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	villere delibited into i j

- $(1) \sim (P \vee Q) \wedge \sim (Q \vee P) \qquad (2) \quad (\sim P \vee Q) \wedge (\sim Q \vee P)$
- $(3) \quad (P \lor Q) \land (Q \lor P)$
- $(4) \quad \sim (P \vee Q) \rightarrow \sim (Q \vee P)$

Which of the following statements is true for Branch - and - Bound search? 58.

- Underestimates of remaining distance may cause deviation from optimal path.
- Overestimates can't cause right path to be overlooked. (2)
- Dynamic programming principle can be used to discard redundant partial paths. (3)
- All of the above

59. Match the following with respect to heuristic search techniques:

List - I

- Steepest accent Hill Climbing (a)
- (i) Keeps track of all partial paths which can be candidate for further exploration

List - II

- (b) Branch - and - bound
- (ii) Discover problem state(s) that satisfy a set of constraints
- (c) Constraint satisfaction
- Detects difference between current state and (iii) goal state
- (d) Means - end - analysis
- Considers all moves from current state and (iv) selects best move

Codes:

- (b) (d) (a) (c)
- (1)(i) (iv) (iii) (ii)
- (2)(iv) (i) (ii) (iii)
- (3) (i) (iv) (ii) (iii)
- (4)(iv) (ii) (i) (iii)

Match the following for methods of MIS development: 60.

List - I

- List II
- Joint Application Design (JAD) (a)
- Delivers functionality in rapid iteration measured in weeks and needs frequent communication, development, testing and delivery
- Computer Aided Software Engg (ii)
- Reusable applications generally with one specific function. It is closely linked with idea of web services and service oriented architecture.

- Agile development
- Tools to automate many tasks of SDLC (iii)
- Component based technology
- A group based tool for collecting user (iv) requirements and creating system design. Mostly used in analysis and design stages of **SDLC**

Codes:

- (b) (c) (d) (a) (i) (iii) (ii) (iv)
- (2)(iv) (i) (ii) (iii)
- (iii) (iv) (i) (ii)
- (ii)

11 Paper-III

- A context free grammar for $L = \{ w \mid n_0 (w) > n_1 (w) \}$ is given by :
 - (1) $S \rightarrow 0 \mid 0 \mid S \mid 1 \mid S \mid S$
- (2) $S \rightarrow 0 S | 1 S | 0 S S | 1 S S | 0 | 1$
- 62. Given the following two statements :
 - S_1 : If L_1 and L_2 are recursively enumerable languages over Σ , then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable.
 - S_2 : The set of recursively enumerable languages is countable.

Which of the following is correct?

- S_1 is correct and S_2 is not correct
- (2) S_1 is not correct and S_2 is correct
- (3) Both S_1 and S_2 are not correct
- (4) Both S_1 and S_2 are correct
- Given the following grammars: 63.

$$G_1: S \to AB|aaB$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

$$G_2: S \to A \mid B$$

$$A \rightarrow a A b \mid ab$$

$$B \rightarrow a b B \mid \epsilon$$

Which of the following is correct?

- G₁ is ambiguous and G₂ is unambiguous grammars
- G₁ is unambiguous and G₂ is ambiguous grammars (2)
- both G₁ and G₂ are ambiguous grammars (3)
- both G₁ and G₂ are unambiguous grammars
- Given the symbols A, B, C, D, E, F, G and H with the probabilities $\frac{1}{30}$, $\frac{1}{30}$, $\frac{1}{30}$, $\frac{2}{30}$, $\frac{3}{30}$, $\frac{5}{30}$, and $\frac{12}{30}$ respectively. The average Huffman code size in bits per symbol is :
- (2) $\frac{70}{34}$ (3) $\frac{76}{30}$

- The redundancy in images stems from: 65.
 - (1)pixel decorrelation
- (2) pixel correlation
- pixel quantization
- (4) image size

- In a binary Hamming Code the number of check digits is r then number of message digits is equal to:
 - (1) $2^{r}-1$
- (2) $2^{r}-r-1$ (3) $2^{r}-r+1$ (4) $2^{r}+r-1$
- 67. In the Hungarian method for solving assignment problem, an optimal assignment requires that the maximum number of lines that can be drawn through squares with zero opportunity cost be equal to the number of:
 - (1)rows or columns
- (2) rows + columns
- (3) rows + columns - 1
- (4) rows + columns +1
- 68. Consider the following transportation problem:

	\rightarrow	→ Warehouse							
\downarrow		W_1	W_2	W_3	Supply				
	F_1	16	20	12	200				
Factory	F_2	14	8	18	160				
	F_3	26	24	16	90				
	Demand	180	120	150					

The initial basic feasible solution of the above transportation problem using Vogel's Approximation Method (VAM) is given below:

→ Warehouse

Factory

	W_1	W_2	W_3	Supply
F_1	16 (140)	20	12 (60)	200
F ₂	14 (40)	8 (120)	18	160
F ₃	26	24	16 (90)	90
Demand	180	120	150	

The solution of the above problem:

- (1) is degenerate solution
- (2) is optimum solution
- needs to improve
- (4) is infeasible solution

69. Given the following statements with respect to linear programming problem :

S1: The dual of the dual linear programming problem is again the primal problem

S2: If either the primal or the dual problem has an unbounded objective function value, the other problem has no feasible solution.

S3: If either the primal or dual problem has a finite optimal solution, the other one also possesses the same, and the optimal value of the objective functions of the two problems are equal.

Which of the following is true?

(1) S1 and S2

(2) S1 and S3

(3) S2 and S3

- (4) S1, S2 and S3
- 70. Consider the two class classification task that consists of the following points

Class $C_1 : [1 \ 1.5]$

$$[1 -1.5]$$

Class C_2 : [-2 2.5]

$$[-2 -2.5]$$

The decision boundary between the two classes using single perceptron is given by:

 $(1) \quad x_1 + x_2 + 1.5 = 0$

 $(2) \quad x_1 + x_2 - 1.5 = 0$

(3) $x_1 + 1.5 = 0$

- $(4) \quad x_1 1.5 = 0$
- **71.** Let A and B be two fuzzy integers defined as:

 $A = \{(1, 0.3), (2, 0.6), (3, 1), (4, 0.7), (5, 0.2)\}\$

$$B = \{(10, 0.5), (11, 1), (12, 0.5)\}\$$

Using fuzzy arithmetic operation given by

$$\mu_{A+B}(z) = \bigoplus_{x+y=z} (\mu_A(x) \otimes \mu_B(y))$$

$$f(A+B)$$
 is ______. Note: $\bigoplus_{\otimes \equiv \min} \max_{A+B} f(A+B)$

- (1) {(11, 0.8), (13, 1), (15,1)}
- $(2) \quad \{(11, 0.3), (12, 0.5), (13, 1), (14, 1), (15, 1), (16, 0.5), (17, 0.2)\}$
- $(3) \quad \{(11, 0.3), (12, 0.5), (13, 0.6), (14, 1), (15, 1), (16, 0.5), (17, 0.2)\}$
- $(4) \quad \{(11,\ 0.3),\ (12,\ 0.5),\ (13,\ 0.6),\ (14,\ 1),\ (15,\ 0.7),\ (16,\ 0.5),\ (17,\ 0.2)\}$
- **72.** Suppose the function y and a fuzzy integer number around -4 for x are given as $y = (x-3)^2 + 2$.

Around $-4 = \{(2, 0.3), (3, 0.6), (4, 1), (5, 0.6), (6, 0.3)\}$ respectively. Then f (Around -4) is given by :

- (1) {(2, 0.6), (3, 0.3), (6, 1), (11, 0.3)}
- $(2) \quad \{(2, 0.6), (3, 1), (6, 1), (11, 0.3)\}$
- $(3) \quad \{(2, 0.6), (3, 1), (6, 0.6), (11, 0.3)\}$
- $(4) \quad \{(2, \ 0.6), \ (3, \ 0.3), \ (6, \ 0.6), \ (11, \ 0.3)\}$

- 73. Match the following for unix system calls:
 - List I

List - II

- (a) exec
- (i) Creates a new process
- (b) brk
- (ii) Invokes another program overlaying memory space with a copy of an executable file
- (c) wait
- To increase or decrease the size of data region (iii)
- (d) fork
- A process synchronizes with termination of child proces (iv)

Codes:

- (a)
- (b)
- (c) (d)

(i)

(i)

- (1)(ii)
- (iii)
- (iv) (i)
- (2) (iii)
- (ii) (iv)
- (iii)
 - (ii)
- (iv) (iv)
 - (iii)
 - (i) (ii)

74. WOW32 is a:

(3)

(4)

- (1) Win 32 API library for creating processes and threads.
- Special kind of file system to the NT name space. (2)
- (3) Kernel - mode objects accessible through Win 32 API
- Special execution environment used to run 16 bit Windows applications on 32 bit (4) machines.
- 75. The unix command:

\$ vi file1 file2

- Edits file1 and stores the contents of file1 in file2 (1)
- (2)Both files i.e. file1 and file2 can be edited using 'ex' command to travel between the files
- Both files can be edited using 'mv' command to move between the files (3)
- Edits file1 first, saves it and then edits file2

- o 0 o -

15

J-8715

Paper-III

Space For Rough Work

-8715 Paper-III