

EXHIBIT 1

Exhibit 2

Confidential: Subject to Protective Order

**UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF NEW JERSEY**

EXHIBIT

2 XUE 2/3/23 dv

IN RE VALSARTAN, LOSARTAN, AND
IRBESARTAN PRODUCTS LIABILITY
LITIGATION

No. 1:19-md-2875-RBK

Expert Report of Fengtian Xue, Ph.D.

December 22, 2022

TABLE OF CONTENTS

I.	Overview And Summary Of Opinions	2
II.	Qualifications.....	3
III.	Overview Of ZHP's Manufacturing Processes For Valsartan API.....	5
	A. The "Tin Process" – DMF No. 020939.....	6
	B. The "TEA Process" – DMF No. 023491.....	6
	C. The "TEA Process With Quenching" – Amendment-002 To DMF No. 023491	7
	D. The "Zinc Chloride (ZnCl ₂) Process" – Amendment-004 To DMF No. 023491	8
IV.	Overview Of Nitrosamines And Nitrosamine Formation.....	10
	A. Nitrosamine Formation From Secondary Amines (Dimethylamine).....	14
	B. Nitrosamine Formation From Tertiary Amines (TEA)	17
V.	ZHP Performed Adequate Risk Assessments For The Various Routes Of Synthesis It Used To Manufacture Valsartan API Given What Was Reasonably Known At The Time Of Manufacture.....	19
	A. ZHP Performed An Appropriate And Reasonable Risk Assessment For The ZnCl ₂ Process.	20
	1. ZHP Properly Conducted A Multi-Step Risk Analysis For The ZnCl ₂ Process.	21
	2. ZHP Did Not Have Reason To Investigate The Possibility Of NDMA Formation As Part Of Its ZnCl ₂ Process Risk Assessment.....	40
	B. ZHP Performed Reasonable And Appropriate Risk Assessments For The TEA Process With Quenching.....	43
	1. ZHP Properly Conducted A Multi-Step Risk Analysis For The TEA Process With Quenching.	43
	2. ZHP Did Not Have Reason To Investigate The Possibility Of NDEA Formation As Part Of Its Risk Assessment For The TEA Process With Quenching.	48
VI.	ZHP Performed Adequate Testing While Valsartan Was On The Market.	51
VII.	Plaintiffs' Experts Have Not Presented Evidence That ZHP Employees Were Aware Of The Possibility Of NDMA Or NDEA Resulting From ZHP's Manufacturing Processes Prior To 2018.....	54

I. Overview And Summary Of Opinions

I have been retained by counsel for Zhejiang Huahai Pharmaceutical Co. (“ZHP”) to offer expert opinions regarding whether, from an organic-chemistry perspective: (1) ZHP conducted adequate and appropriate risk assessments, prior to making various changes to the manufacturing process for its Valsartan active pharmaceutical ingredient (“API”) over time; (2) ZHP conducted adequate and appropriate testing of its Valsartan API during the time period that the API was available to customers in the United States; (3) ZHP knew, or reasonably should have known, that any of the manufacturing processes it used to create Valsartan API could result in the formation of N-nitrosodimethylamine (“NDMA”) or N-nitrosodiethylamine (“NDEA”); and (4) ZHP acted appropriately in responding to reports of NDMA/NDEA in its Valsartan API.

As part of this assignment, I have been asked to review and comment on opinions that have been offered by various experts retained by the plaintiffs in this litigation, including Stephen Hecht, Ph.D.,¹ Ron Najafi, Ph.D.,² Laura Plunkett, Ph.D.³ and Susan Bain, DRSc,⁴ to the extent those opinions relate to the scope of my work described above.

My opinions are based on my significant knowledge, training, research and experience in the field of Organic Chemistry and Medicinal Chemistry, including with respect to the potential formation of carcinogens as a chemical process. A complete list of the materials that I reviewed and considered in forming my opinions is set forth in **Exhibit A** to this report. I also spoke with three ZHP employees: Min Li, Jucai Ge and Jinsheng Lin.

¹ Expert Report of Stephen S. Hecht, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, July 6, 2021; Expert Report of Stephen S. Hecht, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022 (“2022 Hecht Rep.”).

² Expert Declaration of Ron Najafi, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, November 4, 2021; Expert Report of Ron Najafi, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022 (“2022 Najafi Rep.”).

³ Expert Report of Laura M. Plunkett, Ph.D., DABT, *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022 (“Plunkett Rep.”).

⁴ Expert Report of Susan Bain, DRSc, *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022 (“Bain Rep.”).

Confidential: Subject to Protective Order

As set forth in greater detail below, I intend to offer the following opinions in connection with this case.

- ZHP performed reasonable and appropriate scientific risk assessments regarding the relevant manufacturing processes it used to create its Valsartan API given the information reasonably available in the field of organic chemistry at the time;
- ZHP performed reasonable and appropriate scientific testing of its Valsartan API for potential impurities during the time that its Valsartan API was available on the market; and
- ZHP did not know, and could not have been reasonably expected to know, that the manufacturing processes for its Valsartan API could result in the formation of NDMA or NDEA until it was alerted to the presence of these impurities in its Valsartan API by customer Novartis in 2018.

I hold these opinions and those set forth below to a reasonable degree of scientific certainty.

II. Qualifications

I received my B.S. in Chemistry in 2001 from the University of Science and Technology of China. During the five years of my undergraduate training, I received multiple awards, including the Xu-Xin Fellowship (1997), the Japan Shi-Ye-Tong-Xun-Wang Fellowship (1998), and the USTC First Prize of Excellent Undergraduate Scholarship (1999, 2000, 2001). I was also the recipient of the Outstanding College Student of the Year for Anhui Province (2001).

In April 2007, I obtained my Ph.D. in Chemistry from Brown University. While I was pursuing my doctorate degree, I worked as a Teaching Assistant for five years and supervised more than 100 undergraduate students in General Chemistry and Organic Chemistry Labs from 2001 to 2005. At Brown University, my thesis research focused on small-molecule anti-cancer therapeutics by targeting the serine protease plasmin. During my time at Brown University, I published seven research articles and was the first author for five of those articles. Such publications include the 2005 article entitled: “A Comparison of Cyclohexanone and Tetrahydro-4*H*-thiopyran-4-one 1,1-dioxide as Pharmacophores for the Design of Peptide-Based Inhibitors of the Serine Protease Plasmin” in *The Journal of Organic Chemistry*. The article reported the design, organic synthesis, and in vitro tests of three pairs of novel compounds as potential inhibitors of the

Confidential: Subject to Protective Order

serine protease Plasmin. Some of the target molecules synthesized required more than 10 steps of organic synthesis. In the same year, I published “Selective Inhibitors of the Serine Protease Plasmin: Probing the S3 and S3’ Subsites Using a Combinatorial Library” in the *Journal of Medicinal Chemistry*. In connection with this work, I synthesized and tested a 400-peptide library to identify new drug-like small molecule inhibitors of Plasmin and routinely used the organic solvent Dimethylformamide (“DMF”) in my synthesis. I also published “Structure-Activity Studies of Inhibitors for the Serine Protease Plasmin: Design, Synthesis, and Biological Activity” in *Bioorganic Medicinal Chemistry*, “Macrocyclic Inhibitors of the Serine Protease Plasmin” in *Journal of Enzyme Inhibition and Medicinal Chemistry*, and “Fluorescent Probes to Study Serine/Threonine Phosphatase” in *Organic Letters*. I presented my research results five times at the National Meetings of the American Chemical Society. During my last year at Brown University, I was honored as the recipient of the Graduate Dissertation Fellowship.

From 2007 to 2009, I completed postdoctoral training at Northwestern University in Professor Richard B. Silverman’s laboratory. My postdoctoral research focused on the synthesis and characterization of small molecule inhibitors for neuronal nitric oxide synthase (nNOS). nNOS is an enzyme that produces nitric oxide (NO), which can be converted into nitrosonium ion (NO^+) by losing one electron. Because of the nature of this project, I gained significant expertise regarding the production and reactivity of NO and other reactive nitrogen species (“RNS”) including NO^+ , which is a key reactant for the reactions leading to the formation of nitrosamines (e.g., NDMA and NDEA), as described below. During this two-year period, I successfully collected enough data to publish 15 research articles (eight first authors and seven coauthors). In addition, I was listed as an inventor on six patent applications.

From 2009 to 2011, I served as an Assistant Professor in the Department of Chemistry at the University of Louisiana at Lafayette, teaching Organic Chemistry and Organic Chemistry Lab courses that were required for all chemistry major and pre-med undergraduate students. As a result of this teaching experience, I have substantial expertise regarding the information that was common knowledge in the Organic Chemistry and Medicinal Chemistry fields, and what was included in Organic Chemistry textbooks, during that time period.

In August 2011, I started my independent research lab at the University of Maryland Baltimore, where I currently serve as an Associate Professor in the Department of Pharmaceutical

Confidential: Subject to Protective Order

Sciences. My laboratory has a broad interest in the development of small molecule therapeutics for important human diseases, including cancer (see, e.g., *Cell Report* 2013, *Org. Lett.* 2015, *J. Clin. Invest.* 2016, *J. Org. Chem.* 2017, *Org. Biomol. Chem.* 2017, *J. Med. Chem.* 2018 2019 2021, *ACS Med. Chem. Lett.* 2019, *JCI Insight* 2022, *Bioorg. Med. Chem.* 2022), infections (see, e.g., *Tetrahedron Lett.* 2013 2022, *J. Med. Chem.* 2013 2016, *Bioorg. Med. Chem. Lett.* 2018, *J. Biol. Inorg. Chem.* 2018, *Microb. Pathog.* 2019, *ACS Infect. Dis.* 2020, *Front. Microbiol.* 2021, *Biochemistry* 2021), metabolic disorders (see, e.g., *Mol. Pharm.* 2017, *J. Med. Chem.* 2019), and neurodegenerations (see, e.g., *Hum. Mol. Genet.* 2014, *Tetrahedron Lett.* 2014, *Bioorg. Med. Chem.* 2015, *Bioorg. Med. Chem. Lett.* 2015, *PLoS One* 2015). Our research projects have been supported by government agencies (e.g., National Institutes of Health (“NIH”) and National Science Foundation (“NSF”)), prominent cancer research foundations (e.g., American Association for Cancer Research (“AACR”) and Leukemia Research Foundation), and industry (e.g., Janssen Pharmaceuticals).

I have been a member of the American Chemical Society since 2001. I am also a member of Sigma Xi, the American Association for the Advancement of Science, the American Association of Colleges of Pharmacy, the American Association of Pharmaceutical Scientists, and the AACR. I am an active reviewer for 37 peer-reviewed journals and have served on NIH study sections as an expert for grant review. To date, I have published more than 85 research articles in the fields of Organic Chemistry and Medicinal Chemistry. Also, I am an inventor of more than 20 patents and patent applications on novel discoveries of novel synthetic methodologies and small molecule therapeutics. As an Organic/Medicinal Chemist for more than 20 years, I have broad training in organic synthesis, medicinal chemistry, and drug discovery, with specific training and expertise in designing, synthesizing, and biological characterization of small molecule therapeutics.

A copy of my Curriculum Vitae (CV) with a complete listing of my educational, teaching, scholarship, and service activities, is attached as **Exhibit B**. I am being compensated at the rate of \$300 per hour. My compensation is not contingent upon the outcome of this case or litigation.

III. Overview Of ZHP’s Manufacturing Processes For Valsartan API

From 2007 to 2018, ZHP employed four distinct manufacturing processes to produce the Valsartan API used to produce Valsartan-containing drugs (“VCDs”). This section provides a brief overview of those processes and when they were developed and used.

Confidential: Subject to Protective Order

A. The “Tin Process” – DMF No. 020939

ZHP submitted a Drug Master File⁵ (DMF #020939) regarding the first process it used to produce Valsartan API (“Process I,” or the “Tin Process”) on September 24, 2007.⁶ In the Tin Process, the crude Valsartan (step #4) for the Valsartan API was produced via the following chemical processes (**Figure 1**). First, the CN-starting material was treated with sodium azide (NaN_3) to form the tetrazole compound in the presence of a catalyst tributyltin chloride (Bu_3SnCl), using xylene as a solvent. Then, saponification of the methylester in KOH using xylene yielded the carboxylate crude product. Finally, the crude product was acidified by aqueous HCl and purified by crystallization using ethyl acetate.

Tin Process, crude Valsartan (step #4)

Figure 1. The crude Valsartan (Step #4) of the Tin process at ZHP.

B. The “TEA Process” – DMF No. 023491

On January 22, 2010, ZHP filed its original paper submission with the FDA regarding the second process it used to produce Valsartan API (“Process II” or the “TEA Process”).⁷ On February 16, 2010, the FDA assigned DMF No. 023491 to Process II.⁸ The TEA Process used

⁵ “Drug master files (DMFs) are submissions to FDA used to provide confidential, detailed information about facilities, processes, or articles used in the manufacturing, processing, packaging, and storing of human drug products.” U.S. FDA, Drug Master Files (DMFs) (current as 10/24/2022) (available at <https://www.fda.gov/drugs/forms-submission-requirements/drug-master-files-dmfs>). “FDA reviews the technical contents of DMFs in connection with the review of applications that reference them (e.g., NDAs, ANDAs, INDs, BLAs).” *Id.*

⁶ (ZHP01660190; ZHP02642306; ZHP01660191; ZHP01661566; ZHP01660621; ZHP01661804; ZHP01661581; ZHP01660223; ZHP01660321; ZHP01661736; ZHP01660345; ZHP01660532; ZHP01660583; ZHP01661835; ZHP01661845; ZHP01660092; ZHP01661847; ZHP01661882; ZHP01662029; ZHP01662062; ZHP01662097.)

⁷ (PRINSTON00000008; ZHP01458188.)

⁸ (SOLCO00032578.)

Confidential: Subject to Protective Order

triethylamine (“TEA”) hydrochloride salt (TEA•HCl) as the catalyst for tetrazole formation in the crude Valsartan (step #4) of the Valsartan manufacturing process (**Figure 2**, top), instead of Bu₃SnCl.⁹ It also replaced xylene with toluene as a solvent.¹⁰ In the TEA process, the TEA•HCl is used as the catalyst to avoid the usage of metal-based catalyst Bu₃SnCl. This eliminates the concern of removing the residual amount of metal tin during the production of Valsartan. Also, the new catalyst TEA•HCl is more cost-efficient than Bu₃SnCl.¹¹

C. The “TEA Process With Quenching” – Amendment-002 To DMF No. 023491

On April 16, 2012, ZHP submitted Amendment-002 to DMF No. 023491 (“Amendment-002”).¹² Amendment-002 added a quenching procedure after the tetrazole formation reaction in the crude Valsartan (step #4) of the Valsartan manufacturing process (**Figure 2**, middle) using sodium nitrite (NaNO₂)/HCl solution.¹³ The molar ratio for the sodium azide (NaN₃) used in the reaction was decreased from 2 to 1.5, although still excess.¹⁴ Amendment-002 also involved the replacement of potassium hydroxide (KOH) with sodium hydroxide (NaOH) in the saponification process.¹⁵

The quenching process using a NaNO₂/HCl solution was added to destroy the excess NaN₃ used in the tetrazole formation reaction and minimize the risk of Environment, Health & Safety (EHS) concerns during manufacturing with respect to the possibility of residual azide in the final drug substance.¹⁶ In addition, the change of molar ratio of raw starting material to NaN₃ (from 2:1 to 1.5:1) was made to decrease the formation of the impurity D-Valsartan.¹⁷ Finally, the change

⁹ (ZHP01710671.)

¹⁰ ZHP received a deficiency letter from the FDA regarding DMF No 023491 on October 27, 2010 (the “October 2010 Deficiency Letter”). (PRINSTON00070492-00070494.) On February 4, 2011, ZHP provided response to the October 2010 Deficiency Letter, which included Amendment-001 to DMF No. 023491 (“Amendment-001”). (PRINSTON00070492-00070569.) Amendment-001 responded to the October 2010 Deficiency Letter’s concerns.

¹¹ (ZHP01710671.)

¹² (PRINSTON00079747-PRINSTON00079755.)

¹³ (PRINSTON00079751.)

¹⁴ (PRINSTON00079752.)

¹⁵ (*Id.*)

¹⁶ (PRINSTON00079752.)

¹⁷ This belongs to a type of organic reaction named racemization (**Figure S1**), in which the orientations of two chemical bonds (highlighted in red) are inverted. Racemization results in formation of the impurity D-Valsartan.

Confidential: Subject to Protective Order

of KOH to NaOH in the saponification process was a non-functional replacement intended to address the cost of the manufacturing process.¹⁸

Figure S1. Formation of the impurity D-Valsartan through the racemization reaction of Valsartan. The reaction center is labeled by “*”. The chemical bonds that are inverted during the reaction are shown in red.

Following the implementation of the changes set forth in Amendment-002, ZHP distinguished the TEA Process into two subcategories—“without quenching” (original “Process II” prior to Amendment-002) and “with quenching,” which referred to product made using the process identified in Amendment-002.¹⁹

D. The “Zinc Chloride (ZnCl₂) Process” – Amendment-004 To DMF No. 023491

On December 10, 2013, ZHP submitted Amendment-004 to DMF No. 023491 (“Amendment-004”).²⁰ Amendment-004 changed the catalyst reagent amine salt TEA•HCl to ZnCl₂ for the tetrazole formation in the crude Valsartan (step #4) and changed the solvent toluene to dimethylformamide (DMF) for the tetrazole formation reaction (Figure 2, bottom).²¹ Amendment-004 also changed the crude Valsartan (step #4) of the manufacturing process such that, after the tetrazole reaction, quenching occurred in the presence of a newly-added solvent methyl tertiary butyl ether (“MTBE”), providing better solubility for the in-situ intermediate to

¹⁸ (Id.)

¹⁹ (PRINSTON00079751.) On March 1, 2013, ZHP submitted its Annual Report to the SEC as well as Amendment 003 to DMF No. 023491 (“Amendment 003”). (PRINSTON00000009; PRINSTON00072212 and PRINSTON00072213-PRINSTON00072225.) The change summary in the Annual Report noted that while Amendment 003 proposed several changes to the equipment used in the manufacturing process, and a non-substantive format change to the product’s label, “the manufacturing process ha[d] not changed.” (PRINSTON00072212.)

²⁰ (PRINSTON00000009; PRINSTON00073120; PRINSTON00073102-PRINSTON00073119.)

²¹ (PRINSTON00073104-PRINSTON0073108.)

Confidential: Subject to Protective Order

avoid emulsification disturbing the liquid delamination and separation processes.²² Following Amendment-004, ZHP's manufacturing process for Valsartan API was as follows (**Figure 2**, below):

TEA Process without quenching, crude Valsartan (step #4)

TEA Process with quenching, crude Valsartan (step #4)

ZnCl₂ Process, crude Valsartan (step #4)

Figure 2. Comparison of the TEA process without quenching (top), TEA process with quenching (middle), and ZnCl₂ process (bottom) for the crude Valsartan step (#4).

Per ZHP documents, the usage of ZnCl₂ as a catalyst in the tetrazole formation reaction of the crude Valsartan (step #4) yielded a dramatic improvement in the conversion of the tetrazole formation reaction and significantly increased the crude process output.²³ In addition, optimization of the hydrolysis process in the crude Valsartan (step #4) not only helped to decrease

²² (PRINSTON00000005-PRINSTON00000006.)

²³ (PRINSTON00074781.) [Chinese]

Confidential: Subject to Protective Order

the formation of the impurity D-Valsartan (**Figure S1**),²⁴ but also helped to minimize the remaining of the unhydrolyzed Valsartan methylester in the crude Valsartan (step #4) (**Figure S2**) and, as a result, provided a better overall yield of the reaction.²⁵

Figure S2. Under the NaOH-mediated hydrolysis conditions, some Valsartan methylester cannot be converted into the crude Valsartan and remains in the reaction mixture as unhydrolyzed Valsartan methylster. The ester group in the Valsartan methylester starting material and unhydrolyzed Valsartan methylester are shown in blue. The hydrolyzed product (-COOH) is shown in red.

IV. Overview Of Nitrosamines And Nitrosamine Formation

Nitrosamines (general structure shown in **Figure 3A**) are organic molecules with a nitroso group (**Figure 3A**, orange) connected to a deprotonated amino group (**Figure 3A**, blue) through a single bond (**Figure 3A**, black line between the two N atoms). “A” and “B” are both alkyl groups, referring to organic functional groups that contain only saturated hydrocarbon chains. For example, NDMA (*N*-nitrosodimethylamine, **Figure 3B**) is the *N*-nitrosamine with both alkyl groups “A” and “B” as methyl, while NDEA (*N*-nitrosodiethyl-amine, **Figure 3B**) is the *N*-nitrosamine with both alkyl groups “A” and “B” as ethyl.

(PRINSTON00074782; ZHP02220191; ZHP02220239.) [Chinese]

25 (PRINSTON00074782.) [Chinese]

Figure 3. **A.** General chemical structure of *N*-nitrosamines. **B.** Chemical structures of NDMA and NEDA.

Humans are exposed to nitrosamines such as NDMA and NDEA on a daily basis. These nitrosamines are widely present at low levels in water and food (e.g., dairy products, meat, and vegetables). According to the FDA, “[n]itrosamines are common in water and foods, including cured and grilled meats, dairy products and vegetables,” and “[e]veryone is exposed to some level of nitrosamines.”²⁶

Amines are ammonia (NH_3) derivatives in which one or more H (hydrogen) atoms are substituted by an alkyl group (Figure 4A). Depending on the number of alkyl substituents on the N-atom, amines can be classified into primary (1°), secondary (2°), tertiary (3°), and quaternary (4°) amines. As shown in Figure 4B, ethylamine is an example of a primary amine, dimethylamine (5) is an example of secondary amine, TEA is an example of tertiary amine, and tetraethylammonium chloride is an example of quaternary amine.

Figure 4. **A.** General chemical structure of amines. **A**, **B**, **C**, and **D** represent alkyl groups. **B.** Examples of primary amine propylamine, secondary amine dimethylamine (5), tertiary amine TEA, and quaternary amine tetrabutylammonium chloride.

N-Nitrosamines such as NDMA and NDEA can be produced by an organic reaction between an amine and nitrous acid that is formed from sodium nitrite (NaNO_2) under acidic conditions. As an example, the mechanism for the formation of NDMA is detailed in Figure 5. In an acidic environment such as aqueous HCl , NaNO_2 (1) reacts with HCl to generate nitrous acid

²⁶ U.S. FDA, Information about Nitrosamine Impurities in Medications (current as of 11/18/2021) (available at <https://www.fda.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications>).

(2) along with sodium chloride (NaCl). Further reaction of nitrous acid with HCl will produce the protonated nitrous acid (3), which then loses a molecule of water (H₂O) to yield the nitrosonium ion (4, NO⁺). NO⁺ is a nitrosating agent that reacts with the nitrogen atom in dimethylamine (5) to yield the product NDMA.

Figure 5. Mechanism for the formation of NDMA from NaNO₂ and dimethylamine.

Some nitrosamines can be activated *in vivo* to form a DNA-alkylating agent. Nitrosamines themselves are not causative agents in human cancer. In vivo, nitrosamines must be activated through an α -hydroxylation reaction catalyzed by the cytochrome P450 enzymes (Figure 6). For example, when NDMA binds into the active site of P450 enzyme CYP2E1,²⁷ a hydroxylation reaction takes place at the α -carbon of NDMA (Figure 6), to yield the hydroxy compound 6. Compound 6 eliminates a formaldehyde (HCHO) to produce compound 7. Protonation of compound 7 generates compound 8, which undergoes a dehydration reaction (losing a water molecule) to yield alkyldiazonium ion 9, a DNA alkylating agent. Reaction of methyldiazonium ion 9 with the nucleophilic atoms (such as N atoms on nucleobases of DNA sequences) leads to the formation of a methyl-DNA adduct.

Figure 6. *In vivo* cytochrome P450-mediated activation of NDMA to produce the DNA alkylating methyldiazonium ion (9).

²⁷ Fujita K, Kamataki T. (2001) Role of human cytochrome P450 (CYP) in the metabolic activation of *N*-alkylnitrosamines: application of genetically engineered *Salmonella typhimurium* YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reductase. *Mutat. Res.*, 483(1-2), 35-41.

Confidential: Subject to Protective Order

The P450-mediated hydroxylation activation is not a universal reaction for nitrosamines. As depicted in **Figure 6**, a nitrosamine leads to the generation of a DNA-alkylating alkyldiazonium ion (such as methyldiazonium ion **9** from NDMA) only when the required P450-catalyzed hydroxylation reaction happens on the α -carbon of the nitrosamine. To achieve a successful hydroxylation reaction at the α -carbon, the nitrosamine (#1, **Figure 7A**) must: (1) have a scaffold that can fit into the active site of the P450 enzyme; and (2) effectively expose its α -carbon (labeled in green, **Figure 7**) to the activated hydroxy group in the active site of the P450 enzyme. On the other hand, a nitrosamine (#2) that cannot fit into the active site of the P450 enzyme (**Figure 7B**) or a nitrosamine (#3) that cannot expose its α -carbon to the enzyme-activated hydroxy group after binding (**Figure 7C**) will not receive a hydroxy group at its α -carbon. As a result, the corresponding DNA-alkylating agent alkyldiazonium ion will not be formed. Overall, it is not reasonable to assume all nitrosamines can lead to a DNA-alkylating agent. As an example, it has been reported that *N*-nitrosoproline (**Figure 7D**) is not metabolized *in vivo*²⁸ and is non-mutagenic and non-carcinogenic.²⁹

²⁸ Chu C, and Magee PN (1981) Metabolic fate of nitrosoproline in the rat. *Cancer Res.*, 41, 3653-3657.

²⁹ IARC (1978) IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 17, Some Nitroso Compounds. IARC Scientific Publications, Lyon.

Figure 7. A. Binding model of nitrosamine #1 for successful P450 hydroxylation-mediated activation. B. Nitrosamine #2 cannot fit into the active site of P450. C. Nitrosamine #3, although it can fit into the active site of P450 enzyme, cannot expose its α -carbon in a close proximity to the activated hydroxy (OH) group in the active site of P450. D. The chemical structure of N-nitrosoproline.

A. Nitrosamine Formation From Secondary Amines (Dimethylamine)

N-Nitrosamines such as NDMA and NDEA can be produced by an organic reaction between an amine and nitrous acid that is formed from sodium nitrite (NaNO_2) under acidic conditions. As an example, the mechanism for the formation of NDMA is detailed in **Figure 5**, above. Although the method of nitrosamine formation from a secondary amine and nitrous acid

Confidential: Subject to Protective Order

(sodium nitrite + inorganic acid) generally has been documented in the literature,³⁰ in the past several decades, little progress has been made and only a few alternative nitrosating agents have been reported for different reaction environments.

For instance, under acidic conditions (pH <=3), the nitrosating agent can mainly be dinitrogen trioxide (N₂O₃) or nitrosyl halide besides NO⁺,³¹ while under basic or neutral conditions, effective nitrosating agents include nitroprusside (e.g., sodium nitroprusside)³² or alkyl nitrites (RO-N=O).³³ Other nitrosating agents, such as nitrogen tetroxide,³⁴ oxyhyponitrite,³⁵ Fermy's salt,³⁶ N-haloamides,³⁷ and oxalic acid³⁸ have also been reported. Moreover, a small number of heterogeneous systems employing acidic reagents (e.g., Nafion-H,³⁹ trichloroisocyanuric acid,⁴⁰ and tungstate sulfuric acid (TSA)⁴¹) in combination with NaNO₂ have also been used.

I learned of the possibility of a nitrosamine formation reaction from nitrosomium ion (NO⁺) and a secondary amine because of the nNOS inhibitor project that I worked on as a postdoc at Northwestern University. Since then, however, I have not encountered any opportunity to teach this reaction in either my undergraduate courses (e.g., Organic Chemistry I and Organic Chemistry II) and or my graduate-level courses (e.g., Organic Synthesis in Drug Design and Medicinal

³⁰ Datin RC, Elliott GA. (1964) Synthesis of nitrosodimethylamine. US PCT #US3136821A.

³¹ Williams, D. L. H. Nitrosation Reactions and the Chemistry of Nitric Oxide, 1st ed.; Elsevier Science: Amsterdam, Oxford, 2004.

³² Touster, O. Determination of keto–enol equilibrium constants and the kinetic study of the nitrosation reaction of b-dicarbonyl compounds. In Organic Reactions; Wiley: New York, 1953; vol. 7, chapter 6.

³³ Garcia Rio, L.; Leis, J. R.; Iglesias, E. Nitrosation of amines in nonaqueous solvents, 1: Evidence of a stepwise mechanism. *J. Org. Chem.* 1997, 62, 4701.

³⁴ Makhova, N. N.; Karpov, G. A.; Mikhailyuk, A. N.; Bova, A. E.; Khamel_nitskii, I.; Novikov, S. S. (1978) *Izv. Akad. Nauk. SSSR, Ser. Khim.*, 1, 226.

³⁵ Chang, S. K.; Harrington, G. W.; Rothstein, M.; Shergalis, W. A.; Swern, D.; Vohra, S. K. (1979) *Cancer Res.* 39, 3871.

³⁶ Castedo, L.; Riguera, R.; Vezquez, M. P. (1983) *J. Chem. Soc., Chem. Commun.*, 301.

³⁷ Nakajima, M.; Warner, J. C.; Anselme, J. P. (1984) *Tetrahedron Lett.*, 25, 2619.

³⁸ Zolfigol, M. A. (1999) *Synth. Commun.*, 29, 905.

³⁹ Zolfigol, M. A.; Habibi, D.; Mirjalili, B. F.; Bamoniri, A. (2003) *Tetrahedron Lett.*, 44, 3345.

⁴⁰ Zolfigol, M. A.; Ghorbani-Choghamarani, A.; Hazarkhani, H. (2002) *Synlett*, 1002.

⁴¹ Bahador Karami, Morteza Montazerozohori, and Mohammad Hossein Habibi (2005) Tungstate Sulfuric Acid (TSA) / NaNO₂ as a Novel Heterogeneous System for the N-Nitrosation of Secondary Amines under Mild Conditions. *Bull. Korean Chem. Soc.*, 26(7), 1125.

Confidential: Subject to Protective Order

Chemistry). During the past 11 years in my own research lab, I have never used this reaction in any of my projects. In my opinion, nitrosamine formation from nitrous acid and secondary amine is a documented but rather uncommon reaction.

While I recognize that nitrosamines can be formed when treating secondary amine with nitrous acid, I was not aware, prior to my involvement in this case, that a reaction mixture containing nitrile starting material + sodium azide (NaN_3) + zinc chloride (ZnCl_2) + DMF would generate a secondary amine. According to plaintiffs' experts, DMF, a commonly-used solvent, can degrade into dimethylamine, which is a secondary amine, and dimethylamine can react with any NO^+ that might be available in the reaction mixture and lead to the formation of NDMA (Figures 5 & 8).

Figure 8. Decomposition of DMF to generate dimethylamine that undergoes nitrosation with NO^+ (4) to produce NDMA.

Plaintiffs' experts rely on a textbook for the proposition that it is commonly known that DMF can degrade into dimethylamine.⁴² This text merely states that "DMF decomposes slightly at its normal bp [boiling point] (153C) to give small amounts of dimethylamine and CO." In ZHP's ZnCl_2 process, however, DMF was used as the solvent in the crude Valsartan (step #4) (See Figure 2, bottom). For this step, the reaction was done by mixing the starting material with NaN_3 in the presence of ZnCl_2 at 135 ± 2 °C for 20 ± 1 hours.⁴³ Note that the reaction temperature for the ZnCl_2 process was significantly lower than the boiling point of DMF (153 °C). The reaction was then cooled to [REDACTED] °C, and was added to another solvent, MTBE, followed by water. After cooling the mixture to [REDACTED] °C, NaNO_2 was added and the pH value of the mixture was adjusted to pH <=3 using HCl (6N), while maintaining the temperature [REDACTED] °C.⁴⁴

⁴² See *Purification of Laboratory Chemicals*, Armarego, WLF (1996 (Edition 4th), 2009 (Edition 6th)) (cited in 2022 Najafi Rep. at 26; 2022 Hecht Rep. at 5; Bain Rep. at 10).

⁴³ (ZHP025789969.)

⁴⁴ (*Id.*)

Confidential: Subject to Protective Order

It is also reported in Armarego (1996 (Edition 4th) 2009 (Edition 6th)) that “DMF decomposition is catalyzed by acidic and basic materials, so that even at room temperature, DMF is appreciably decomposed if allowed to stand for several hours with solid KOH, NaOH, CaH₂.⁴⁵ However, solid KOH, NaOH, CaH₂ represent strong bases, which create an unusually strong basic environment around the solid base themselves. In my opinion, the reaction condition of the crude Valsartan (step #4) in the ZnCl₂ process was neutral and is dramatically different from the strong basic conditions in the presence of solid bases KOH, NaOH, CaH₂. I have not seen evidence that acidic condition would catalyze the decomposition of DMF. During the quenching process of the ZnCl₂ process, the pH value was adjusted to <=3.⁴⁶ The solvent DMF is generally known to be stable under this weakly acidic condition.

B. Nitrosamine Formation From Tertiary Amines (TEA)

Distinct from secondary amines, reaction of tertiary amine with nitrosonium ion (NO⁺) involves a much more complicated mechanism and the overall reaction, therefore, is dramatically slower.^{47,48} As an example, formation of NDEA from TEA is detailed in **Figure 9**. TEA must first react with NO⁺ (**4**, see **Figure 5**, above) to generate a nitroso-compound (**10**). The nitroso-compound (**10**) slowly eliminates a nitroxyl (HNO) molecule,^{6,7} to generate the iminium chloride compound (**11**). Addition of a water molecule to the iminium ion (**11**) gives the hydroxylated intermediate (**12**), which then eliminates an acetaldehyde (**13**) to yield diethylamine (**5a**), a secondary amine that is analogous to dimethylamine (**5**, see **Figure 5**, above). Similar to dimethylamine **5**, diethylamine **5a** can be nitrosated by NO⁺ (**4**) to finally produce the nitrosamine NDEA. Overall, the mechanism of NDEA formation from TEA takes four more steps than that of NDMA formation from dimethylamine.

⁴⁵ (Armarego (1996 (Edition 4th)), Page 206.

⁴⁶ (ZHP02579969.)

⁴⁷ Smith PAS, Loepky RN. (1967). Nitrosative cleavage of tertiary amines. *J. Am. Chem. Soc.* 89, 1147-1157.

⁴⁸ Smith PAS, Pars HG. (1959). Nitrosative cleavage of N',N'-dialkylhydrazides and tertiary amines. *J. Org. Chem.* 24, 1325-1332.

Figure 9. Mechanism for the formation of NDEA from nitrosonium ion (4, NO^+) and TEA.

The nitrosation reactions of tertiary amines (e.g., TEA) were far less known than those of secondary amines (e.g., dimethylamine and diethylamine). Historically, there has been argument as to whether tertiary amines react with nitrous acid.⁴⁹ A literature search related to the synthetic method to the production of NDEA from TEA on SciFinder⁵⁰ only generated 10 known publications. Common reactions are typically reported in tens of thousands of publications. Moreover, none of these journal articles addresses the use of nitrous acid (or sodium nitrite + inorganic acid) and TEA to produce NDEA. Instead, all the published methods included a special nitrosating reagent such as the Fremy's salt,⁵¹ nitric acid/acetic anhydride,⁵² N_2O_3 ,⁵³ and N_2O_4 ⁵⁴ to facilitate the formation of NDEA. It is worth noting that, at low pH, a tertiary amine (e.g., TEA)

⁴⁹ Hein GE. (1963) the reaction of tertiary amines with nitrous acid. *J. Chem. Educ.* 40(4):181.

⁵⁰ SciFinder is produced by Chemical Abstracts Service (CAS). It is the most comprehensive database for the chemical literature. SciFinder can search by topic, author, substances (by name or CAS Registry Number). In addition, one can also use the editor feature to draw chemical structures, substructures, or reactions. SciFinder is a core research tool for chemistry, chemical engineering, materials science, and other science and engineering disciplines.

⁵¹ Castedo, Luis; et al, (1983) Fremy's salt (potassium nitrosodisulfonate): a nitrosating reagent for amines. 6, 301-302.

⁵² Boyer JH, Pillai TP, Ramakrishnan VT. (1985) Nitrosamines and nitramines from tertiary amines. *Synthesis*, 677-679.

⁵³ Rosadiuk, Kristopher A.; et al, (2018) Isolable Adducts of Tertiary Amines and Dinitrogen Trioxide. *European Journal of Inorganic Chemistry*, 41, 4543-4549.

⁵⁴ Boyer, Joseph H.; et al, (1985) Nitrosamines from tertiary amines and dinitrogen tetraoxide. *Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999)*, (8), 1661-4; Iranpoor, Nasser; Firouzabadi, Habib; Pourali, Ali. (2005), Dinitrogen tetroxide-impregnated charcoal ($\text{N}_2\text{O}_4/\text{Charcoal}$). Selective nitrosation of amines, amides, ureas, and thiols. *Synthetic Communication*, 35(11), 1517-1526.

forms an unreactive ammonium salt due to the protonation of the amino nitrogen atom. As a result, usually no reaction can be detected in cold diluted reaction mixture.

V. ZHP Performed Adequate Risk Assessments For The Various Routes Of Synthesis It Used To Manufacture Valsartan API Given What Was Reasonably Known At The Time Of Manufacture.

As set forth above, ZHP utilized several different processes to manufacture its Valsartan API from 2007 to 2018.⁵⁵ ZHP filed Drug Master File amendments with the FDA documenting each of those manufacturing processes that included assessments of the risks of the process and results of chromatography testing documenting impurities resulting from the process.⁵⁶ Based on my review of plaintiffs' experts' reports, none of plaintiffs' experts has identified any concerns raised by the FDA in response to these Drug Master File amendments or any subsequent filings with the FDA regarding Valsartan medications that incorporate the Drug Master File.

Plaintiffs' experts, including, but not limited to, Drs. Hecht and Najafi, assert that ZHP's risk assessments for the TEA process with quenching⁵⁷ and ZnCl₂ process⁵⁸ were inadequate because ZHP failed to specifically investigate whether either of these processes was capable of resulting in the formation of nitrosamines.⁵⁹ But the experts' opinions are based on present-day scientific knowledge regarding complex chemistry processes that can result in nitrosamine formation – not what was reasonable or expected a decade ago. Chemistry is an evolving science that is constantly changing as new technologies and testing develop over time. As an example, the Huisgen cycloaddition reaction was first introduced by Rolf Huisgen in 1960.⁶⁰ However, in the

⁵⁵ (PRINSTON0000008-PRINSTON0000009.)

⁵⁶ (See PRINSTON0000027 (noting the submission of Process I (DMF No. 020939) to the FDA); PRINSTON0000008; ZHP01458188 (submission of Process II (DMF No. 023491) to the FDA); PRINSTON00079747-PRINSTON00079755 (submission of Amendment-002 to DMF No. 023491, which added quenching to the TEA Process); PRINSTON00000009; PRINSTON00073120; PRINSTON00073102-PRINSTON00073119 (submission of Amendment-004 to DMF No. 023491, which replaced TEA with ZnCl₂)).

⁵⁷ (PRINSTON00079747.)

⁵⁸ (PRINSTON00073102.)

⁵⁹ (See 2022 Hecht Rep. at 2 ("ZHP was not looking for NDMA or NDEA because they failed to perform a straightforward assessment of the chemistry."); 2022 Najafi Rep. at 26 ("HNO₂ is plentiful in [ZnCl₂ Process Step 4] reaction and the manufacturer did not heed the obvious risk of nitrosamine formation.").)

⁶⁰ Breugst M, Reissig H-U. (2020). The Huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. *Angew. Chem. Int. Ed.* 59, 12293.

Confidential: Subject to Protective Order

next 40 years after its discovery, this reaction was not known among life scientists until Barry Sharpless described the potential application of this old reaction in modification and labeling of specific biomolecules in 2001. Since then, tremendous success has been achieved around this reaction, which has been highlighted by the Award of the 2022 Nobel Prize in Chemistry. It is not possible for any chemist to detect all possible impurities that may ever be found to result from a chemical process at some point in the future. Instead, chemistry researchers assess chemical processes for potential impurities that are reasonably expected or suspected to occur based on the scientific knowledge available at the time of inquiry. Similarly, organic process chemists in the pharmaceutical industry responsible for developing drugs and drug manufacturing processes must assess the route of synthesis for the potential formation of impurities that can be reasonably expected or suspected based on the scientific literature and knowledge reasonably available at the time.

At the time ZHP was developing and using the ZnCl₂ process and the TEA process with quenching, it was not common knowledge among general chemists or the chemistry community that either of these processes could result in the formation of nitrosamines such as NDMA or NDEA during either the reaction or the quenching procedure. As a result, ZHP conducted a proper evaluation of the ZnCl₂ process and the TEA process with quenching based on the scientific knowledge available.

A. ZHP Performed An Appropriate And Reasonable Risk Assessment For The ZnCl₂ Process.

A review of company documents and regulatory filings makes clear that ZHP properly conducted a lengthy, multi-phase investigation of the risks of the ZnCl₂ process before it was used to manufacture Valsartan API. Plaintiffs' experts are incorrect that this entire investigation was deficient because ZHP did not specifically investigate the possibility of NDMA formation. As set forth below, the formation of NDMA is the result of a multi-step chemical process. With respect to the ZnCl₂ manufacturing process, the NDMA formation first requires the degradation of the DMF solvent used in the ZnCl₂ process into dimethylamine (**5**, *see Figure 5*, above), which then reacts with NO⁺ (**4**, *see Figure 5*, above) generated from nitrous acid (*see Figure 5*, above). But plaintiffs' experts have presented no evidence that such DMF degradation – which plaintiffs' experts assert had been documented at the boiling point of DMF – was expected or even possible at the lower temperatures (135 °C) used for the ZnCl₂ process.

1. ZHP Properly Conducted A Multi-Step Risk Analysis For The ZnCl₂ Process.

Beginning on November 27, 2011, ZHP conducted a self-evaluation and assessment by the ZHP Change Initiate Department.⁶¹ First, the technical department requested the process change for the Valsartan ZnCl₂ process (change control # PCRC-11025).⁶² The assessment included: (1) process changes content evaluation; (2) suitability of specifications and analytical methods of intermediates and final substance evaluation; (3) manufacturing equipment evaluation; (4) assessment via lab-scale process research and development studies; and (5) quality risk assessment.⁶³ Specifically, the assessment compared use and quantity change of raw materials, synthetic routes, process description and critical process parameters between the processes.⁶⁴

i. **Raw Material Evaluation Before And After Change.** During the process change, changes were only made in the materials used for acylation and crude product steps (**Table 1a-1** below from ZHP).⁶⁵ Specifically, in the acylation step, the acid binding agent was changed from potassium carbonate (K₂CO₃) to the mixture of sodium carbonate (Na₂CO₃) and sodium hydroxide (NaOH).⁶⁶ In the tetrazole forming reaction, DMF was used as the solvent to replace toluene and ZnCl₂ was used as the catalyst to replace TEA•HCl. In the quenching process, MTBE was added as a solvent.⁶⁷

⁶¹ (ZHP02579962.)

⁶² (*Id.*)

⁶³ (*Id.*)

⁶⁴ (ZHP02579962-ZHP02579965.)

⁶⁵ (ZHP02579963.)

⁶⁶ (ZHP02579965.)

⁶⁷ (ZHP02579967.)

Confidential: Subject to Protective Order

Table 1a-1. Raw Materials Comparison before and after Change

Step	Materials before Changes	Materials after Changes	Changes Description
Acylation	Condensation compound hydrochloride	Condensation compound hydrochloride	No change in materials
	Valeryl chloride	Valeryl chloride	
	Process water	Process water	
	Toluene	Toluene	
	Saturated NaCl solution	Saturated NaCl solution	
	Sodium bicarbonate	Sodium bicarbonate	
	Potassium carbonate	Sodium carbonate	Acylation reaction alkali system: replace potassium carbonate with sodium carbonate and sodium hydroxide
		Sodium hydroxide	
Crude product	—	DMF	
	Pentacylated compound toluene solution	Pentacylated compound DMF solution	Tetrazole formation system: ZnCl ₂ , sodium azide and DMF are used instead of triethylamine hydrochloride, sodium azide and toluene. ZnCl ₂ and DMF are the new materials.
	Triethylamine Hydrochloride	Zinc chloride (ZnCl ₂)	
	Sodium azide	Sodium azide	
	Toluene	DMF	
	—	MTBE	New solvent used for extraction in quenching and saponification
	—	Toluene	
	Sodium hydroxide	Sodium hydroxide	
	HCl solution	HCl solution	Rinsing solvent
	Process water	Process water	
	Ethyl acetate	Ethyl acetate	
	Saturated NaCl solution	Saturated NaCl solution	
	Sodium nitrite	Sodium nitrite	
	Anhydrous magnesium sulfate	Anhydrous magnesium sulfate	

ii. **Main Material Charging Evaluation Before And After Change.** No change was made in the quantities of main materials (Table 1a-2 below from ZHP).⁶⁸

⁶⁸

(ZHP02579964-ZHP02579965.)

Confidential: Subject to Protective Order

Table 1a-2. Main Materials Charging and Production Capacity Comparison

Step	Before Changes		After Changes		Changes Description
	Materials Name	Quantity Charged	Materials Name	Quantity Charged	
Esterification	L-Valine	360 kg			
	SOCl ₂	455 kg			
	Methanol	2150 L			
Condensation	Br-OTBN	320 kg			
	L-Valine methyl ester hydrochloride solution	600-700L			
	Sodium carbonate	300 kg			
	Ethyl acetate	3200 L			
	Saturated NaCl solution	200 L			
Acylation	Condensation compound hydrochloride	435 kg			
	Valeryl chloride	195 kg			
	Toluene	3000 L			
	Potassium carbonate	600 kg			
	—	—			
	—	—			
Crude product	Pentacylated compound toluene solution	1000-1200 L			

Step	Before Changes		After Changes		Changes Description
	Materials Name	Quantity Charged	Materials Name	Quantity Charged	
Purification	Triethylamine Hydrochloride	300 kg			
	Sodium azide	112.5 kg			
	—	—			
	8% Sodium hydroxide	2100 L			
	Sodium nitrite	100 kg			
	HCl solution	600 L			
	Ethyl acetate	4150 L			
Purification	Crude Valsartan	425 kg			
	Ethyl acetate	3150 L			

Confidential: Subject to Protective Order

iii. **Synthetic Route And Process Comparison Before And After Change.**

In the tetrazole forming reaction, DMF was used as the solvent to replace toluene, and ZnCl₂ was used as the catalyst to replace TEA• HCl, as shown in **Figure 1a-2**, **Figure 1a-3**, and **Table 1a-3** below from ZHP.⁶⁹

Note: The process framed above is the changed content.

Figure 1a-2. Synthetic Route of Original Process (Triethylamine Process)

⁶⁹

(ZHP02579966-ZHP02579969.)

Confidential: Subject to Protective Order

Note: The process framed above is the changed content.

Figure 1a-3. Synthetic Route of Changed Process (ZnCl₂ Process)

Confidential: Subject to Protective Order

Table 1a-3. Description of Main Manufacturing Process Changes

Step	Original Process	Proposed Process	Note on Changes
Valine methyl ester	When reaction is finished under refluxing, cool the batch to 40 – 45°C, then control temperature at 30 - 75°C and vacuum at less than -0.06MPa, distill methanol to dry.		
Condensation compound hydrochloride	When condensation reaction is finished, cool the batch to 30±10°C, settled for 30±5 minutes to obtain separation from the aqueous phase, organic phase is washed with <u>320±20L of water</u> , <u>200±20L of unsaturated salt solution (prepared by saturated salt solution)</u> and <u>320±20L of process water</u> successively.		
Pentanoyl compound	Pump into 1200±50L of process water, charge <u>600±5kg of potassium carbonate</u> , and stir to dissolve completely, the charge 435kg of condensation compound hydrochloride and <u>2400±100L of toluene</u> . Control the temperature at 25±5°C, add the Valeryl chloride and toluene mixture solution gradually, <u>in 3±1 hours</u> , then the batch is stirred for 2±0.5 hours additionally at this temperature.		
	When acylation is finished, settled for 30±5minutes to delamination. Organic phase is washed with <u>400±50L of sodium bicarbonate solution (prepared by 400±50L of process water and 32±2kg of sodium bicarbonate)</u> and <u>1800±100L of process water</u> successively, stir for <u>30±5 minutes</u> and settled		

Confidential: Subject to Protective Order

Step	Original Process	Proposed Process	Note on Changes
	for 30±5minutes to delamination. Then washed with 600±50L of saturated salt solution, stir for 30±5 minutes and settled for 30±5minutes to delamination.		
Crude Valsartan	<p>Tetrazole Reaction: After part of toluene is distilled off, the residual 100 – 2000L of Pentanoyl compound toluene solution is pumped into tetrazole reactor, then add <u>112.5kg of sodium azide</u>, <u>and 300kg of triethylamine hydrochloride</u>, heat to <u>93-95°C</u> to react for 20±1hours.</p> <p>Quenching operation: Cool the batch to 35±10°C. Pump 300±30L of toluene into tetrazole reactor, stir for 30 minutes. Add 600±40L of process water, stir for 30 minutes, transfer the batch to saponification reactor, wash tetrazole reactor with 100±10L of process water. Add <u>100±5kg of sodium nitrite</u>, stir for dissolve completely, and adjust pH ≤3 with 500±40L of 6N hydrochloric acid below 10°C.</p> <p>Saponification operation: Add <u>2100±50L of pre-prepared 8% Sodium hydroxide solution into toluene organic phase</u>, <u>control temperature at 35±2°C</u>, stir and react for 5±0.5 hours. Settled to delamination, pump aqueous layer to acidification reactor.</p>		
Recrystallization	Final crystallization temperature is <u>-5±5°C</u> , and crystallization time is <u>2±0.5hours</u>		

Confidential: Subject to Protective Order

iv. **Critical Process Parameters Comparison Evaluation.** To reduce the racemization of the product in the saponification reaction, the temperature for this step was changed from 35 ± 2 °C to [REDACTED] °C. Also, in order to maintain stable production, the critical process parameters were redefined and confirmed as shown in the following **Table 1a-4** from ZHP.⁷⁰

Table 1a-4. Change on Critical Process Parameters

Critical Process Parameters	Original Process	Changed Process	Note on Changes
Reaction time of esterification	5 ± 0.5 hours		
Reaction time of condensation	5 ± 1.0 hours		
Reaction time of acylation	25 ± 5 °C		
Reaction time of saponification		35 ± 2 °C	
pH for acidification	pH=1.0-2.0		

v. **Evaluation On Suitability Of Specifications And Analytical Procedures Of Intermediates And Final Substance.** The specification of intermediates did not change. Except for the addition of tests related to the new solvents used in the manufacturing process, DMF and MTBE, no change was made to the testing done prior to releasing specification of the final substance. The chemical structures of intermediates were not changed, and the impurity profile of the intermediates remained the same.⁷¹ The specification of the final drug substance for US DMF and EU DMF was changed, and the new tests of DMF and MTBE were added in the releasing test, as detailed in following **Table 1a-5**, **Table 1a-6**, and **Table 1a-7** from ZHP.⁷²

⁷⁰ (ZHP02579970.)

⁷¹ (ZHP02579971-ZHP02579972.)

⁷² (ZHP02579971-ZHP02579972.)

Confidential: Subject to Protective Order

Table 1a-5. Comparison on Specification of Condensation Compound Hydrochloride (Intermediate 2)

Test Item	Original Specification	
Appearance	White or off-white solid	
Identification (IR)	The IR spectrum corresponds to that of RS.	
Specific optical rotation	+17.0-+21.5°	
Loss on drying	≤3.0%	
Related substance		
OTBN	≤1.5%	
Ethyl-condensation	≤1.0%	
Any other single impurity	≤0.5%	
Total impurities	≤2.0%	
Purity	≥98.0%	

Table 1a-6. Comparison on Specification of Crude Valsartan (Intermediate 4)

Test Items	Original Specification	
Appearance	White to light yellow powder	
Assay	For information	
D-Valsartan	≤5.0%	
Related substances (HPLC)		
Impurity B	≤0.25%	
Impurity C	≤0.5%	
RRT 1.7 impurity	≤1.0%	
Any other single impurity	≤0.5%	
Total impurities	≤2.0%	
Purity (HPLC)	≥98.0%	

Table 1a-7. Comparison on Specification of Valsartan (US Specification)

Test Items (US)	Original Specification	Proposed Specification	Note
Appearance	White or off-white powder. Odorless, slightly hygroscopic.	White or off-white powder. Odorless, slightly hygroscopic.	No change
Solubility	Freely soluble in methanol, particularly insoluble in water.	Freely soluble in methanol, particularly insoluble in water.	No change
Identification A	Infrared absorption spectrum corresponds to the spectrum obtained with the RS.	Infrared absorption spectrum corresponds to the spectrum obtained with the RS.	No change
Identification B	The retention time of the major peak in the chromatogram of the assay preparation corresponds to that in the chromatogram of the standard preparation, as obtained in the Assay.	The retention time of the major peak in the chromatogram of the assay preparation corresponds to that in the chromatogram of the standard preparation, as obtained in the Assay.	No change
Absorbance	≤0.02	≤0.02	No change
Water	≤2.0%	≤2.0%	No change
Residue on ignition	≤0.1%	≤0.1%	No change
Heavy metals	≤0.001%	≤0.001%	No change
D-Valsartan	≤1.0%	≤1.0%	No change
Related substances			
Impurity B	≤0.2%	≤0.2%	
Impurity C	≤0.10%	≤0.10%	
Any other single impurity	≤0.10%	≤0.10%	
Total impurities	≤0.30%	≤0.30%	
Assay (HPLC)	98.0-102.0%	98.0-102.0%	No change
Residual solvents 1 (GC)			
Ethanol	≤5000 ppm	≤5000 ppm	
Ethyl acetate	≤5000 ppm	≤5000 ppm	
Toluene	≤890 ppm	≤890 ppm	
Residual solvents 2 (GC)			
DMF	—	≤880 ppm	
MTBE	—	≤5000 ppm	

Confidential: Subject to Protective Order

vi. **Manufacturing Facility And Equipment Evaluation.** Because the quantities of main materials and the batch size were not changed, the previous equipment was used for production, as detailed in the following table from **Table 1a-8** from ZHP.⁷³

Table 1a-8. Comparison on Main Equipments

Process	Step	Original process equipment			Changed process equipment			Note
		No.	Size	Material	No.	Size	Material	
Step 1	Esterification	Reactor II-101	3000 L	Glass -lined	Reactor II-101	3000 L	Glass -lined	No change
	Concentration	Reactor II-105	3000 L	Glass -lined	Reactor II-105	3000 L	Glass -lined	No change
Step 2	Concentration	Reactor II-201	6000 L	Glass -lined	Reactor II-201	6000 L	Glass -lined	No change
		Reactor II-211	6000 L	Glass -lined	Reactor II-211	6000 L	Glass -lined	No change
Step 2	Filteration	Centrifuge II-203	1250	Plastic -lined	Centrifuge II-203	1250	Plastic -lined	No change
		Drying	3000 L	Glass -lined	Dryer II-704	3000 L	Glass -lined	No change
Step 3	Acylation	Dryer II-704	3000 L	Glass -lined	Dryer II-705	3000 L	Glass -lined	No change
		Dryer II-705	3000 L	Glass -lined	Dryer II-705	3000 L	Glass -lined	No change
Step 3	Acylation	Reactor II-218	5000 L	Stainless steel	Reactor II-218	5000 L	Stainless steel	No change
		Reactor II-218	5000 L	Stainless steel	Reactor II-218	5000 L	Stainless steel	No change
Step 4	Tetrazole Reaction	Reactor II-231	3000 L	Glass -lined	Reactor II-231	3000 L	Glass -lined	No change
		Reactor II-239	3000 L	Glass -lined	Reactor II-239	3000 L	Glass -lined	No change
Step 4	Quenching/ Saponification	Reactor II-241	5000 L	Glass -lined	Reactor II-241	5000 L	Glass -lined	No change
		Reactor II-247	5000 L	Glass -lined	Reactor II-247	5000 L	Glass -lined	No change
Step 4	Acidification	Reactor II-250	6000 L	Glass -lined	Reactor II-250	6000 L	Glass -lined	No change
		Reactor II-255	6000 L	Glass -lined	Reactor II-255	6000 L	Glass -lined	No change
Step 4	Condensation/ Crystallization	Reactor II-262	5000 L	Glass -lined	Reactor II-262	5000 L	Glass -lined	No change
		Reactor II-267	5000 L	Glass -lined	Reactor II-267	5000 L	Glass -lined	No change
Step 4	Centrifugation	Centrifuge II-275	SS1250	Stainless steel	Centrifuge II-275	SS1250	Stainless steel	No change

⁷³

(ZHP02579973-ZHP02579974.)

Confidential: Subject to Protective Order

Process	Step	Original process equipment			Changed process equipment			Note
		No.	Size	Material	No.	Size	Material	
Step 5	Centrifuge II-276	SS1250	Stainless steel	Centrifuge II-276	SS1250	Stainless steel	No change	
	Dissolving	Reactor II-401	5000 L	Stainless steel	Reactor II-401	5000 L	Stainless steel	No change
	Filtration	Filter II-402	Φ800x 600	Stainless steel	Filter II-402	Φ800x 600	Stainless steel	No change
	Crystallization	Reactor J08-101	4000 L	Stainless steel	Reactor J08-101	4000 L	Stainless steel	No change
	Transfer	Reactor J08-103	4500 L	Stainless steel	Reactor J08-103	4500 L	Stainless steel	No change
	Centrifugation	Centrifuge J08-102	SS1250	Stainless steel	Centrifuge J08-102	SS1250	Stainless steel	No change
		Centrifuge J08-104	SS1250	Stainless steel	Centrifuge J08-104	SS1250	Stainless steel	No change
	Drying	Dryer J08-107	3000 L	Stainless steel	Dryer J08-107	3000 L	Stainless steel	No change
		Dryer J08-108	3000 L	Stainless steel	Dryer J08-108	3000 L	Stainless steel	No change
	Milling	Pulverizer J08-109	FZ-450	Stainless steel	Pulverizer J08-109	FZ-450	Stainless steel	No change
	Mixing	Mixer J08-110	2000 L	Stainless steel	Mixer J08-110	2000 L	Stainless steel	No change

vii. **Assessment In Lab-Scale Research And Development Study.** The lab-scale process research and development for the changes in crude Valsartan (step #4), including solvent selection and catalyst selection for the tetrazole forming reaction, and the experiment design for saponification temperature were evaluated, as detailed in the following **Figures 1a-4 to 1a-6** from ZHP.⁷⁴

⁷⁴

(ZHP02579977-ZHP02579978.)

Confidential: Subject to Protective Order

English Translation for Figure 1a-4 to Figure 1a-6

5.4. Crude Valsartan Step

5.4.1 Existing Problem in Original Process

Based on the current analysis results and the triethylamine process production actual situation, the main problems existed in the original process are as following:

- 1) The conversion rate of tetrazole formation to crude product is relatively low at about 55-70% and around 30% of pentacylated compound (intermediate) cannot be totally reacted with not high yield. It results in comparably high material consumption and cost, so as to further aggravate the post-processing of waste.
- 2) The quenching procedure for the residual azide uses toluene as solvent, it appears slight emulsification during the quenching and separation operation, the layers interface is too blurred to separate easily.
- 3) In saponification of this step it easily shows racemization which would cause the relatively high level of D-Valsartan (enantiomer) and impact the product quality.

5.4.2 Development of Proposed Process and Improvement¹

(1) It develops the new system for tetrazole formation, which applies zinc chloride ($ZnCl_2$), sodium azide, dimethylformamide (DMF) to alternatively replace the original triethylamine hydrochloride (TEA), sodium azide, and toluene. The conversion rate is elevated to over 90% and reduces the residual intermediate pentacylated compound. The detailed study results are in the table below:

Table 5-1 Optimization Experiments Result for Tetrazole Formation

R&D Batch No.	Process Conditions	Conversion of Intermediate 3	Note
SC-1141-A-415-032	Pentacylated compound : Sodium azide : TEA = 1 : 1.9 : 2.2; Toluene as solvent, 90-95°C, 20 hours.	58.3%	Original process
SC-1141-GY-011-028	Pentacylated compound : Sodium azide : $ZnCl_2$ = 1 : 1.9 : 2.2; DMF as solvent, 130-135°C, 20 hours.	94.9%	After change

From the above results, the new process greatly increases the raw materials conversion, the reaction effect is quite good.

In the scaling up process for the lab research, the residual toluene from intermediate pentacylated compound may widely impact the subsequent tetrazole formation. It will result in reaction speed decline, and raw materials conversion reduction. Considering the tetrazole formation use DMF as solvent with high boiling point, it can apply drag

¹ (a) Gallante, R. J. U.S. Patent 5,502,191, 1995. (b) Tokuhara, G.; Yamaguchi, T.; Iwasaki, T. WO Patent 1996-37481, 1996.

Confidential: Subject to Protective Order

distillation with DMF to remove toluene in pentacylated compound completely [REDACTED] in lab research can readily resolve the residual toluene issue and ensure the subsequent tetrazole formation in normal reaction. Detailed results are showed in the table below:

Table 5-2 Experiments Result for Drag Effect to Tetrazole Formation

R&D Batch No.	Process Conditions	Conversion of Intermediate 3	Note
SC-1141-406-065	Raw material condensation compound is charged from 2.5 g scaled-up to 50 g, no drag by DMF after acylation.	① 83.74% for 20 hours ② 94.02% for 40 hours	Original process
SC-1141-406-066		99.02% for 20 hours	After change

viii. **Quality Risk Evaluation On Impurities.** The evaluations were performed on the condensation product hydrochloride (Table 1a-9, below),⁷⁵ crude Valsartan (Table 1a-10, below),⁷⁶ and final drug API (Figure 1a-7, below).⁷⁷

⁷⁵ (ZHP02579979-ZHP02579980.)

⁷⁶ (ZHP02579981-ZHP02579983.)

⁷⁷ (ZHP02579985.)

Confidential: Subject to Protective Order

Table 1a-9. Impurity Evaluation of Condensation Compound Hydrochloride

Confidential: Subject to Protective Order

Table 1a-10. Impurity Evaluation of Crude Valsartan

Confidential: Subject to Protective Order

English Translation for Figure 1a-7

(3) Evaluation of drug substance

Change in drug substance process: slightly increase the final temperature of crystallization. This change has no influence on quantity of impurity, while improve the quality of drug substance.

7.2.1.3 Measures should to be taken

Process changes have influence on quantity of impurity including the newly introduced materials sodium carbonate, zinc chloride, DMF and methyl tert butyl ether. They should be evaluated the residual quantity in drug substance. It should pay attention to ignition residue, zinc residue and organic solvents residue. Newly introduced impurity has mature detection methods which has small quality risk.

Process changes may have an impact on produced quantity of some impurities, It is necessary to compare the levels of impurities after change.

7.2.2 Assessment of Polymorphism

7.2.2.1 Description of Polymorphism

Sixteen polymorphic forms for Valsartan drug substance have been reported. The polymorphism of Huahai's Valsartan is amorphous form. No other polymorphic forms were found in the current crystallization process.

7.2.2.2 Risk Assessment of Polymorphism

In the recrystallization step of Valsartan, the change was only made in the final crystallization temperature. Generally, this change won't have effect on the polymorphism of the final drug substance. Therefore, the risk of the change is low.

7.2.3 Assessment of Other Quality Attributes

The changes are mainly made in the crude Valsartan step. There are still three steps away from the final substance, including the hydrolysis reaction, the purification step and the packaging step. Therefore, there is low impact of the changes to the quality attributes, and only the comparison of the quality for the product needs to do during the new process validation.

In addition, ZHP conducted a change committee assessment and QA final approval.⁷⁸ The process change for Valsartan ZnCl₂ process (PCRC-11025) was proposed by the technical department and evaluated.⁷⁹ The process change was then submitted to a change control committee (consisting of a technical department, production department, QC department, EHS department, engineering department, regulatory affairs department and QA department) to conduct the change risk review. The change control committee supplemented a risk assessment of the Valsartan process change request (PCRC-11025) as detailed in the following **Table 1a-11** from ZHP.⁸⁰

⁷⁸ (ZHP02579986.)

⁷⁹ (ZHP02579986.)

⁸⁰ (ZHP02579986.)

Confidential: Subject to Protective Order

Table 1a-11. Risk Assessment from Change Control Committee

Dept.	Evaluation Results	Responsible Department	Date
Technical department	Agree with the proposed change, need to perform the process validation, revise the process procedure and batch record, and perform stability study.	Yang K.	2011.11.27
Production department	Agree with the proposed change, revise the station operation SOP.	Wang X. J.	2011.11.27
QC	Need to additional test residue of $ZnCl_2$, and residual solvents used the manufacturing process, and complete the method validation.	Li Q. M.	2011.11.27
EHS	The wastewater has undergone desalination pretreatment and has no effect on wastewater treatment, agree with the proposed change.	Sheng G. S.	2011.11.27
Engineering department	Existing equipment can meet the requirements of changed process without equipment qualification.	Lu Y. L.	2011.11.27
RA	Provides a comparison with Process II (CEP process), and notifies the customers and Authority based on the comparison result. The proposed change is classified as a critical change, thus a CEP major change will be applied, and the proposed changes will only be implemented after approved by Authority.	Liu Y. F.	2011.11.29
QA	Agree with the proposed change. 1. Technical department prepare process validation protocol, and organize process validation. 2. Technical department prepare process procedure, operation SOPs, batch records, and train on personnel. 3. QC conducts method validation for additional testing, prepare analytical procedures and train on personnel. 4. QC conducts stability study on the process validation batches, and prepares stability protocol. QC prepares additional specification limits and analytical procedures for the testing of residue Zinc and residual solvents. 5. RA updates DMF and notifies customers and authorities. 6. QA follow-up.	Hu Y. L.	2011.11.29

After the change control committee passed the evaluation of the Valsartan process change request (PCRC-11025), it was approved by QA, and five action items were established, as shown in the following **Table 1a-13** from ZHP.⁸¹

⁸¹

(ZHP02579987.)

Confidential: Subject to Protective Order

Table 1a-13. Action Items established for the ZnCl₂ Process Change Control

No.	Action Description	Responsible Department	Responsible Person	Planned Schedule
1	Confirm that all equipments in the workshop have been validated.	Engineering department	Lu Y. L.	2011.12
2	The technician drafts the protocol for process validation, and completes the training of relevant staff, collects the process control data, completes the process validation report, compiles the process procedure, the station operation procedure and the batch record, and completes the training of the staff.	Technical department	Zhou X. H.	2012.4
3	QC completes the validation of the analytical method, performs the testing work in the validation process, formulates the protocol of stability study, conduct the stability test for the validation batches.	QC	Li Q. M.	2012.4
4	Organize Staffs from workshop 2 to manufacture according to the process validation protocol.	Workshop 2	Wang X. J.	2012.4
5	RA updates the DMFs and informs the authorities and clients.	RA	Zhou T.	2013.12

Overall, ZHP conducted a comprehensive and complete risk assessment for Change Request PCRC-11025 to study the potential impact of proposed changes on the quality of the intermediates or the final API for this process change.

It is clear from the records documenting ZHP's multi-step assessment of the ZnCl₂ process that the goal of this change was to improve the manufacturing process for Valsartan API. Specifically, ZHP sought to improve the conversion of the tetrazole formation in the crude Valsartan (step #4). According to ZHP records ("Table 5-6. Optimization Experiments Result for Tetrazole Formation"), the conversion of intermediate 3 (the CN-starting material of the tetrazole formation reaction) was improved from 58.3% in the TEA process to 94.9% in the ZnCl₂ process.⁸² ZHP performed quality risk evaluation on impurities for all the steps before and after the change from the TEA process to the ZnCl₂ process.⁸³ For each of the steps, the evaluation was conducted with regard to organic/inorganic impurities (including intermediates, by-products, and starting raw material) and solvents (including toluene, DMF, MTBE, and ethyl acetate). In particular, the residual quantity of new material ZnCl₂, new solvent DMF, and MTBE were carefully followed during the reaction.

⁸² (ZHP00245062.)

⁸³ (ZHP00245064.)

Confidential: Subject to Protective Order

ZHP's risk assessment procedure for the ZnCl₂ process change was conducted in a formal and comprehensive way that sufficiently evaluated the potential impact of the proposed changes on the quality of the API Valsartan.

2. ZHP Did Not Have Reason To Investigate The Possibility Of NDMA Formation As Part Of Its ZnCl₂ Process Risk Assessment.

Plaintiffs' experts opine that ZHP should have known that NDMA formation was a possible result of the ZnCl₂ manufacturing process, and therefore a proper risk assessment would have specifically investigated whether any of the trace-level impurities in Valsartan API, which FDA regulations did not require it to identify, were NDMA.⁸⁴

According to plaintiffs' experts, ZHP should have known that the use of DMF as a solvent in the ZnCl₂ process created a risk of nitrosamine formation because DMF can degrade into dimethylamine, which can react with nitrous acid to create N-nitroso compounds.⁸⁵ But neither of these steps was reasonably foreseeable at the time the ZnCl₂ process was assessed and used.

First, as set forth in detail above, NDMA formation requires the presence of a secondary amine along with NO⁺ (4) generated from nitrous acid (or sodium nitrite + inorganic acid). (See Figure 5, above.) DMF is one of the common organic solvents that have been used in organic synthesis.⁸⁶ DMF is not a secondary amine and cannot react with nitrous acid to result in an *N*-nitroso compound. Instead, DMF is a solvent that was used in the crude Valsartan (step #4) of the reaction. For this step, the reaction was done by mixing the starting material with NaN₃ in the presence of ZnCl₂ at 135±2 °C for 20±1 hours.⁸⁷ The reaction was then cooled to [REDACTED] °C, another, another solvent (MTBE) was added, followed by water. After cooling the mixture to [REDACTED] °C,

⁸⁴ (See, e.g., 2022 Najafi Rep. at 28 ("ZHP's risk assessment should have led them to monitor formation of multiple potential nitrosamines including NDMA and NDEA."); 2022 Hecht Rep. at 1 ("ZHP . . . could have and should have identified the risk of formation of nitrosamines including NDMA and NDEA, and utilized that information to test for and identify, and then prevent the nitrosamine impurities in the valsartan API and finished dose sold by ZHP."); Bain Rep. at 8 (claiming there was "inadequate testing of the drug products due to the failure to test for the foreseeable [sic] presence of NDMA and NDEA").)

⁸⁵ (See, e.g., 2022 Najafi Rep. at 26 ("DMF solvent often contains dimethylamine. Presence of sodium nitrite and dimethylamine from solvents like DMF can contribute to NDMA formation. HNO₂ is plentiful in this reaction and the manufacturer did not heed the obvious risk of nitrosamine formation.").)

⁸⁶ Sheldon RA. (2019) The greening of solvents: Towards sustainable organic synthesis. Current Opinion in Green and Sustainable Chemistry, 18, 13-19.

⁸⁷ (ZHP02579969.)

Confidential: Subject to Protective Order

NaNO₂ was added, and the pH value of the mixture was adjusted to pH <=3 using HCl (6N) while maintaining the temperature █ °C.⁸⁸

At the time the ZnCl₂ process was developed, little was known about the decomposition of DMF solvent to generate a secondary amine dimethylamine. Plaintiffs' experts Najafi, Bain and Hecht cite to *Purification of Laboratory Chemicals*, Armarego, WLF (1996 (Edition 4th), 2009 (Edition 6th),⁸⁹ which states that "DMF decomposes slightly at its normal bp [boiling point] (153C) to give small amounts of dimethylamine and CO." Based on my own review of the literature, other isolated references note that "DMF decomposes to generate dimethylamine at >350 C," a significantly higher temperature.⁹⁰ Even if these limited references were sufficient to demonstrate that it was well-known in the chemistry world that DMF can degrade, which they are not, they merely describe "slight" degradation at high temperatures. As set forth above, the ZnCl₂ process was run at a high of 135 °C, or 18 °C lower than the boiling point of DMF, and then cooled. ZHP had no scientific reason to expect the degradation of DMF, a common solvent, under the reaction condition of 135 °C in light of the limitation in knowledge regarding this chemistry. Indeed, the fact that ZHP did not conduct an extraction to separate the crude Valsartan before adding NaNO₂ to quench the excess azide is, in my opinion, direct evidence indicating that ZHP, at the relevant time, had no knowledge about dimethylamine formation from the degradation of DMF solvent.

As noted above, the textbook cited by plaintiffs' experts also states that "DMF decomposition is catalyzed by acidic and basic materials, so that even at room temperature, DMF is appreciably decomposed if allowed to stand for several hours with solid KOH, NaOH, CaH₂".⁹¹ Solid KOH, NaOH, CaH₂ represent strong bases, which create unusually strong basic environments around themselves in solid form. But in the crude Valsartan (step #4) of the ZnCl₂ process, where DMF was used, reaction conditions were neutral.

⁸⁸ (ZHP02579969.)

⁸⁹ (See 2022 Najafi Rep. at 26; 2022 Hecht Rep. at 5; Bain Rep. at 41.)

⁹⁰ Farhi M, Morel M, Cavigneaux A (1968) Dimethylformamide HCON(CH₃)₂. Cahier de notes documentaires, 50:91-93.

⁹¹ *Purification of Laboratory Chemicals*, Armarego, WLF (1996 (Edition 4th)), Page 206.

Plaintiffs' expert Najafi opines that ZHP should have determined the risks because "Knowledge of basic organic chemistry suggests that changes to the chemical reagents of a reaction would alter the degradant/by-product profiles requiring such risks to be critically evaluated. ZHP failed to conduct a thorough risk-based evaluation of the possible formation of nitrosamines resulting from their proposed process changes."⁹² When the reaction condition is modified, the by-product profile change is possible. However, in ZHP's ZnCl₂ process, the tetrazole formation reaction using ZnCl₂ as a catalyst is well-documented in the literature. In fact, a literature search related to the synthetic method to the production of tetrazoles using ZnCl₂ as a catalyst on SciFinder generated at least 28 reports, nine of which used DMF as the solvent for the tetrazole formation reaction. Importantly, none of these nine examples mentioned any side reaction caused by the decomposition of the DMF solvent.

In short, plaintiffs' experts have not identified any evidence that, at the time when ZnCl₂ process was developed and used, it was reported in the literature that DMF could degrade into dimethylamine in the reaction conditions present in the ZnCl₂ process. And plaintiffs' experts certainly have not made a showing that, as of 2011 when ZHP began assessing the ZnCl₂ process,⁹³ it was widely known or expected throughout the field of chemistry that DMF degrades in the conditions used to manufacture Valsartan API. As a result, there is no scientific support for plaintiffs' experts' assertions that ZHP should have expected that a secondary amine such as dimethylamine would result from the use of DMF solvent in the reaction process. And without a secondary amine, NDMA and other nitrosamines cannot form. In other words, without knowing the possible formation of dimethylamine in the ZnCl₂ process via the decomposition of DMF solvent, there was no means to have a secondary amine generated in the reaction. Therefore, in my opinion, ZHP would not have reasonably foreseen the formation of a nitrosamine impurity.

Second, even if a secondary amine were an expected part of the ZnCl₂ process, nitrosamine formation from nitrous acid and secondary amine is a documented but rather uncommon reaction that even experienced chemists may not have learned – and was not generally known in the field of chemistry a decade ago. While this reaction was brought to my personal attention as a result of my significant work on an nNOS inhibitor project at Northwestern University, this is an area of

⁹² (2022 Najafi Rep. at 27; *see also id.* at 24.)

⁹³ (*See, e.g.*, ZHP01843066-ZHP01843067.)

Confidential: Subject to Protective Order

particularized research that is not, as plaintiffs' experts suggest, basic chemistry.⁹⁴ I have been a professor of Chemistry for 13 years and have never once in that time taught this reaction in either my undergraduate (e.g., Organic Chemistry I and Organic Chemistry II) or graduate courses (e.g., Organic Synthesis in Drug Design and Medicinal Chemistry). In addition, in the past 11 years working in my own research lab and studying potential carcinogens, I have never used this reaction in any of my projects.

In light of the above, it is reasonable and appropriate that ZHP would not have known, even after its complete and appropriate risk assessment, about the possibility of the formation of the secondary amine dimethylamine that could potentially react with nitrous acid to form nitrosamine NDMA. As a result, the fact that ZHP did not specifically investigate the potential for NDMA formation does not render the company's risk assessment for the ZnCl₂ process inadequate.

B. ZHP Performed Reasonable And Appropriate Risk Assessments For The TEA Process With Quenching.

A review of company documents and regulatory filings makes clear that ZHP properly conducted a multi-phase investigation of the risks of the TEA process with quenching before the process was used to manufacture Valsartan API. Plaintiffs' experts lack scientific support for the notion that it was well documented that the reaction of a tertiary amine TEA and nitrous acid (NaNO₂ + HCl solution) would produce NDEA (see **Figure 9**, above) at the time when the TEA process with quenching was analyzed. Even today, a review of the relevant literature makes clear that such a reaction is complex and was not easily foreseeable.

1. ZHP Properly Conducted A Multi-Step Risk Analysis For The TEA Process With Quenching.

The synthetic route of the TEA process with quenching is shown in **Figure 10** below. Compared to the previous TEA process without quenching, several changes were made.

⁹⁴ (See, e.g., 2022 Najafi Rep. at 7 ("Basic chemistry principles instruct us that secondary amine in the presence of nitrite and acid predictably and readily react to produce genotoxic nitrosamines such as NDMA and NDEA."); 2022 Hecht Rep. at 7 ("ZHP simply ignored or didn't understand this basic chemistry.").)

Figure 10. The synthetic route of the TEA process with quenching.

1. Both Steps 1 and 2 (Figure 10, above) were optimized to lower the cost and improve the production environment, while no change was made to the synthetic route.

In the previous process, intermediate 1 (Figure 10, above) was formed and suspended in ethyl acetate before centrifugation and drying. Ethyl acetate was used to enhance the liquidity of the produced intermediate 1 in a format of slurry to improve the transfer from reactors. However, intermediate 1 does not dissolve and crystallize well in ethyl acetate. Importantly, ethyl acetate also has the potential to introduce an impurity (an ethyl-condensation product via an ester exchanging) to the reaction. Therefore, the slurry operation to intermediate 1 using ethyl acetate

Confidential: Subject to Protective Order

was deleted in the TEA process with quenching. This change had no negative impact on quality attributes.

Given the simplicity of the reaction that produces intermediate 1 (Step 1), as well as the fact that this reaction takes place early in TEA process, the centrifugation and drying operations for intermediate 1 were canceled to avoid the EHS concern that hydrochloric gas (HCl_g) could form during the centrifugation and subsequent drying operations. At the same time, the non-significant specification for intermediate 1 was also canceled and the significant quality control for intermediate 2 remained the same.

The use of potassium carbonate (K₂CO₃) in Step 2 (**Figure 10**, above) of the synthetic route was replaced by sodium carbonate (Na₂CO₃). This was a non-functional replacement of reagent to reduce the cost of the reaction, while the synthetic route for manufacturing did not change.

Comparing the previous processes, the modified process produced similar yields of intermediate 2 and reduced impurity levels, as shown in **Table-1** below.⁹⁵

Table-[AUTONUM * Arabic] Batch Analysis Data of Consecutive 3 Batches
Intermediate 2 (pilot scale)

Batch No.	Yield	Ethyl-condensation	Any other impurity (max.)	Total impurities
Currently adopted process (pilot scale)				
C20204-11-031	85.29%	0.05%	0.08%	0.13%
C20204-11-032	86.81%	0.01%	N.D	0.01%
C20204-11-033	85.76%	0.01%	0.01%	0.03%
Original process				
C20207-10-001	85.8%	0.45%	0.02%	0.5%
C20207-10-002	82.0%	0.30%	0.03%	0.3%
C20207-10-003	89.0%	0.25%	0.05%	0.3%

2. After the acylation reaction (Step 3, **Figure 10**, above), a washing procedure was added during the post-processing operation.

Before the washing procedure using water and saturated sodium chloride (NaCl) solution, an additional washing procedure was added (after the reaction was complete) using sodium hydrogen carbonate (NaHCO₃) solution to the reaction mixture. This additional NaHCO₃ washing increased the pH value and decreased the risk of acidic substance from this step (Step 3) in later synthetic steps of the process. There was no adverse change in qualitative and quantitative profiles.

⁹⁵ (PRINSTON00079751.)

Confidential: Subject to Protective Order

3. While the synthetic route remained the same, changes were made to Step 4 (Figure 10, above) to reduce the racemization (see, Figure S1, above) and lower the cost.

The specific changes included: 1) decreasing the molar ratio of azide used for the reaction from 2 to 1.5; 2) adding a quenching procedure after the tetrazole formation reaction with a mixture of sodium nitrite (NaNO_2) and HCl solution; 3) replacing potassium hydroxide (KOH) with sodium hydroxide (NaOH) in the hydrolysis procedure; and 4) canceling the drying of intermediate 4 (crude Valsartan) and consequently canceling the assay limit for intermediate 4 (crude Valsartan) due to wet substance.⁹⁶

The original molar ratio of raw material and azide was 1:2. Although the large excess of azide could increase the yield of the reaction, the excess azide could also increase the racemization to form D-Valsartan (see, Figure S1, above). Thus, the molar ratio of raw material and azide was changed to 1:1.5. In light of the possibility that excess azide left over after the tetrazole formation reaction could introduce acidic azide, a highly toxic gas that can raise EHS concern during manufacturing, a quenching procedure was added after the tetrazole formation reaction using NaNO_2 and HCl solution. This quenching procedure was added to ensure the excess azide in the reaction mixture was destroyed completely. It minimized the risk of residual azide carry-over into the final Valsartan API and the environment. As shown in **Table-2** below, the batch results indicated that no residual azide or nitrite was detected in the finished drug substance.⁹⁷

Table-[AUTONUM * Arabic] Batch Analysis Data of Residual Azide and Nitrite in Finished Drug Substance

Batch No.	Quality	Manufacturing Date	Residual nitrite	Residual azide
LOQ	—	—	3ppm	0.5ppm
Currently adopted process (single batch, workshop1)				
C5354-11-011	300.8 kg	2011.07.02	N.D	N.D
C5354-11-012	300.4 kg	2011.07.03	N.D	<LOQ
C5354-11-013	300.6 kg	2011.07.04	N.D	<LOQ
Currently adopted process (single batch, workshop2)				
C2210-11-145	152.34 kg	2011.08.28	N.D	N.D
C2210-11-146	151.86 kg	2011.08.29	N.D	N.D
C2210-11-147	151.74 kg	2011.08.31	N.D	N.D

In addition, to reduce the overall cost, potassium hydroxide (KOH) previously used in Step 4 (Figure 10, above) was replaced with sodium hydroxide (NaOH). This is a non-functional

⁹⁶ (PRINSTON00079751-PRINSTON00079752.)

⁹⁷ (PRINSTON00079753.)

Confidential: Subject to Protective Order

replacement of the strong hydroxide base used in the hydrolysis procedure (see, **Figure S1**, above). The synthetic route for manufacturing did not change. After the change from KOH to NaOH, the reaction condition was developed by varying the reaction temperature and time (**Table-3** below). The optimized condition was 35-40 °C for 3.5-5 hours (**Table-3** below).⁹⁸

Table-[AUTONUM] * Arabic] Reaction Temperature and Time for Saponification in Step 4 (Proposed process)

Time	30 min		70 min		140 min		210 min		320 min	
	Enantiomer	Valsartan								
50°C	2.72%	50.56%	6.56%	91.89%	—	—	—	—	—	—
45°C	2.065%	45.05%	4.67%	88.45%	6.5%	92.20%	—	—	—	—
40°C	1.91%	47.59%	3.21%	68.65%	5.47%	91.52%	5.61%	92.88%	—	—
35°C	1.44%	31.31%	2.5%	58.17%	3.91%	76.30%	5.90%	92.37%	6.51%	92.58%
30°C	—	—	1.34%	38.51%	2.34%	57.90%	4.28%	79.65%	5.0%	92.00%

Conclusion: To obtain the percent conversion (%Valsartan) basically at 92-93% from saponification in step 4, the reaction temperature and reaction time should be controlled at 35-40°C and 3.5-5 hours

via experiments matrix. The controlled process parameters could meantime hold up the increasing of enantiomer compared to 7-8% existed in reaction solution according to currently original process.

Racemization could happen in Valsartan synthesis at the chiral carbon center (see, **Figure S1** blue star labeling, above) during the manufacturing process, especially in Step 4 (**Figure 10**, above). The racemization of the compound can be enhanced during a drying procedure. Thus, cancellation of the drying could reduce the risk of racemization. Other than the cancellation of the drying, intermediate 4 (crude Valsartan) isolation by centrifugation did not change. The in-process material control for intermediate 4 (crude Valsartan) also did not change. Moreover, the same solvent (ethyl acetate) was used for recrystallization. Therefore, the cancellation of the drying procedure for intermediate 4 (crude Valsartan) was considered to have minimal impact on the quality of the product. Because, after the change, the intermediate is a wet substance, the original assay limit (>= 80%) was consequently removed (**Table-4**, below). The test procedure for the assay was retained. The results from the tests were used to determine material charging as “dried basis” in the later crystallization step.⁹⁹

⁹⁸ (PRINSTON00079753.)

⁹⁹ (PRINSTON00079754.)

Table-[AUTONUM * Arabic]
(change in **green**)

Specification of Crude Valsartan from Current Process

Crude Valsartan	Original Process	Currently adopted Process
Test item	Acceptance Criteria	Acceptance Criteria
Appearance	White to yellowish powder	White to yellowish solid
Impurity A (HPLC)	≤ 5.0%	≤ 5.0%
Related substances (HPLC)		
Impurity B	≤ 0.25%	≤ 0.25%
Impurity C	≤ 0.5%	≤ 0.5%
RRT 1.7 impurity	≤ 1.0%	≤ 1.0%
Any other single impurity	≤ 0.5%	≤ 0.5%
Total impurities apart from impurity A	≤ 2.0%	≤ 2.0%
Purity (HPLC)	—	≥ 98.0%
Assay (Titration)	≥ 80.0%	For information

4. In Step 5 (Figure 10, above), the yield was adjusted to 70.5-82.5%.

The changes include: 1) using the crude Valsartan with dried basis (weight of wet substance multiplied by its assay) as the integrated quantity of wet substance for charging; and 2) adjusting the yield of Step 5 (Figure 10, above) from 60.0-70.0% to 70.5-82.5% using the quantity of intermediate 4 (crude Valsartan) with dried basis. Note: this change only reflected the calculation pattern reforming, but did not cause change in the actual yields.¹⁰⁰

In sum, testing of the TEA process with quenching demonstrated that the specification of final substance Valsartan did not change as a result of this process change. There was no adverse change in its qualitative and quantitative impurity profile. The route for the synthesis did not change. All intermediates remained the same. There were no new functional reagents, catalysts, or solvents added into the process.

2. ZHP Did Not Have Reason To Investigate The Possibility Of NDEA Formation As Part Of Its Risk Assessment For The TEA Process With Quenching.

Plaintiffs' experts opine that ZHP should have known that NDEA formation was a possible result of the TEA process with quenching, and therefore a proper risk assessment would have

¹⁰⁰

(Id.)

Confidential: Subject to Protective Order

specifically investigated whether any of the trace-level impurities in Valsartan API, which FDA regulations did not require it to identify, were NDEA.¹⁰¹

According to plaintiffs' experts, ZHP should have known that the use of triethylamine hydrochloride salt (TEA•HCl) as a catalyst in the TEA process with quenching created a risk of nitrosamine NDEA formation because TEA can react with nitrous acid (NaNO₂ + HCl solution) to create NDEA. However, the reaction of TEA and nitrous acid (NaNO₂ + HCl solution) to form NDEA was not reasonably foreseeable at the time the TEA process with quenching was assessed.

As set forth in detail above, NDEA formation requires the presence of a secondary amine diethylamine (**5a**, *see, Figure 9*, above) along with NO⁺ (**4**) generated from nitrous acid (or sodium nitrite + inorganic acid). (*See, Figure 5*, above.) TEA, a tertiary amine, is one of the common non-nucleophilic bases that have been used in organic synthesis. TEA is not a secondary amine. It cannot react with nitrous acid via a similar mechanism as that for a secondary amine (*see, Figure 5*, above) to produce the nitrosamine NDEA. Instead, TEA must first be converted into the secondary amine diethylamine (**5a**) via a multi-step mechanism before it can react with NO⁺ (**4**) to form NDEA in the crude Valsartan (step #4) of the TEA process with quenching (*see, Figure 9*, above). This reaction is known to be very slow.^{102,103} In the TEA process with quenching, the tetrazole formation reaction was done by mixing the starting material with NaN₃ in the presence of TEA•HCl at 93-95 °C for 20 hours.¹⁰⁴ After cooling the mixture to 35 °C, NaNO₂ was added and then the pH value of the mixture was adjusted to pH <=3 using HCl (6N) while maintaining the temperature <10 °C.¹⁰⁵

At the time when the TEA process with quenching was developed, little was known about the possibility that a reaction between TEA and nitrous acid (or sodium nitrite + inorganic acid)

¹⁰¹ (See, e.g., 2022 Najafi Rep. at 28 ("ZHP's risk assessment should have led them to monitor formation of multiple potential nitrosamines including NDMA and NDEA."); 2022 Hecht Rep. at 1 ("ZHP . . . could have and should have identified the risk of formation of nitrosamines including NDMA and NDEA, and utilized that information to test for and identify, and then prevent the nitrosamine impurities in the valsartan API and finished dose sold by ZHP."); Bain Rep. at 8 (claiming there was "inadequate testing of the drug products due to the failure to test for the foreseeable [sic] presence of NDMA and NDEA."))

¹⁰² Smith PAS, Loeppky RN. (1967). Nitrosative cleavage of tertiary amines. *J. Am. Chem. Soc.* 89, 1147-1157.

¹⁰³ Smith PAS, Pars HG. (1959). Nitrosative cleavage of N',N'-dialkylhydrazides and tertiary amines. *J. Org. Chem.* 24, 1325-1332.

¹⁰⁴ (ZHP02579969.)

¹⁰⁵ (ZHP02579969.)

Confidential: Subject to Protective Order

could generate the nitrosamine NDEA. The reaction of TEA with nitrous acid (or sodium nitrite + inorganic acid) is not generally known among all chemists. During my 13-year career as a professor of Chemistry, I have never taught this reaction in either my undergraduate (e.g., Organic Chemistry I and Organic Chemistry II) or graduate courses (e.g., Organic Synthesis in Drug Design and Medicinal Chemistry). In addition, in the past 11 years working in my own research lab and studying potential carcinogens, I have never used this reaction in any of my projects. In fact, despite my substantial experience in the field of chemistry, I was not aware of the possibility of this reaction prior to my involvement in this case.

Plaintiffs' experts fail to cite references regarding the reaction of TEA with nitrous acid (or sodium nitrite + inorganic acid). Based on my own review of the literature regarding the synthetic method to the production of NDEA from TEA on SciFinder,¹⁰⁶ only 10 publications were found. Note that common reactions are typically reported in tens of thousands of publications. Moreover, none of these 10 journal articles addresses the use of nitrous acid (or sodium nitrite + inorganic acid) and TEA to produce NDEA. Instead, all the published methods included a special nitrosating reagent such as the Fremy's salt,¹⁰⁷ nitric acid/acetic anhydride,¹⁰⁸ N₂O₃,¹⁰⁹ and N₂O₄¹¹⁰ to facilitate the formation of NDEA. Therefore, plaintiffs' experts have not identified any evidence that, at the time of the development of the TEA process with quenching, it was reported in the literature that TEA could react with nitrous acid (or sodium nitrite + inorganic acid) to form NDEA under the conditions present in the TEA process with quenching. And plaintiffs' experts certainly have not made a showing that, as of 2012, when ZHP updated its regulatory filings to include TEA process with quenching as a manufacturing process, it was commonly known or

¹⁰⁶ SciFinder is produced by Chemical Abstracts Service (CAS). It is the most comprehensive database for the chemical literature. SciFinder can search by topic, author, substances (by name or CAS Registry Number). In addition, one can also use the editor feature to draw chemical structures, substructures, or reactions. SciFinder is a core research tool for chemistry, chemical engineering, materials science, and other science and engineering disciplines.

¹⁰⁷ Castedo, Luis; et al, (1983) Fremy's salt (potassium nitrosodisulfonate): a nitrosating reagent for amines. 6, 301-302.

¹⁰⁸ Boyer JH, Pillai TP, Ramakrishnan VT. (1985) Nitrosamines and nitramines from tertiary amines. *Synthesis*, 677-679.

¹⁰⁹ Rosadiuk, Kristopher A.; et al, (2018) Isolable Adducts of Tertiary Amines and Dinitrogen Trioxide. *European Journal of Inorganic Chemistry*, 41, 4543-4549.

¹¹⁰ Boyer, Joseph H.; et al, (1985) Nitrosamines from tertiary amines and dinitrogen tetraoxide. *Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry* (1972-1999), (8), 1661-4.

expected in the field of chemistry that TEA reacts with nitrous acid (or sodium nitrite + inorganic acid) under the conditions used at ZHP to manufacture Valsartan API. As a result, there is no scientific support for plaintiffs' experts' assertions that ZHP should have expected that the catalyst TEA•HCl in the reaction process would react with the quenching agent (sodium nitrite + inorganic acid) to result in the formation of nitrosamine NDEA. For these reasons, ZHP would not have reasonably foreseen the formation of a nitrosamine impurity.

In sum, it is reasonable and appropriate that ZHP would not have known, even after its appropriate risk assessment for the TEA process with quenching, about the possibility of a reaction between the catalyst TEA•HCl and the quenching agent (sodium nitrite + inorganic acid) in the reaction procedure that could lead to the formation of the nitrosamine NDEA. As a result, the fact that ZHP did not specifically investigate the potential for NDEA formation does not render the company's risk assessment for the TEA process with quenching inadequate.

VI. ZHP Performed Adequate Testing While Valsartan Was On The Market.

Gas chromatography (GC) is a type of chromatography that is widely used in analytical chemistry for separating and analyzing organic compounds that can be vaporized without decomposition.¹¹¹ It is routinely used in testing the purity of a substance.¹¹² GC achieves the separation of different compounds in a mixture by injecting a sample (either gaseous or liquid) into a mobile phase (called the carrier gas, usually an inert gas such as helium, argon, or nitrogen) and passing through a stationary phase (called the column, which is made of glass or metal tubing containing a microscopic layer of viscous liquid on a surface of inert solid-supported particles). The column is located in an oven so that its temperature can be controlled. The eluent coming off the column is usually followed by a coupled detector such as flame ionization detector (FID) and mass spectrometry (MS).

FID is an analytical instrument that measures analytes in a gas stream. It functions by detecting ions that are formed during combustion of organic compounds in a hydrogen flame. The generation of the ions in the testing sample is proportional to the concentration of each organic

¹¹¹ Harvey, David (2000). Modern Analytical Chemistry. Boston: McGraw-Hill.

¹¹² Pavia, L., Gary M. Lampman, George S. Kritz, Randall G. Engel (2006). Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole. pp. 797–817.

Confidential: Subject to Protective Order

component in the gas stream.¹¹³ To complete the detection, a potential difference is generated by two electrodes. The positive electrode generates the flame, while the negative electrode, commonly called the collector plate, locates above the flame. The ions generated from the positive electrode are attracted to and eventually hit the collector plate, to induce a current that can be measured and recorded as peaks on a plot of total ion (y-axis) against time (x-axis). The detected current correlates with the proportion of the reduced carbon atoms in the flame. The measurement of ion per time unit makes FID a mass-sensitive instrument.¹¹⁴

FID is the most widely and successfully used GC detector for volatile hydrocarbon organic compounds.¹¹⁵ Gas chromatography coupled with flame ionization detection (GC-FID) is commonly used in separating and analyzing organic compounds that can be vaporized without decomposition. It is powerful since it can detect almost all carbon-containing organic molecules. As an alternative method to GC-FID, GC-MS is an analytical method that combines GC and MS to identify different organic components within a testing sample.¹¹⁶

As a professor, I have done significant work in testing samples (either as a single organic compound or as a mixture of different organic compounds) that were generated from various reaction types. Because FID is the most widely and successfully used GC detector, it is my opinion that it was appropriate for ZHP to use GC-FID to test for impurities in a chemical substance such as Valsartan API.

According to plaintiffs' experts, ZHP should have tested for the presence of NDMA and NDEA as part of the manufacturing process.¹¹⁷ As explained above, the presence of either NDMA or NDEA was not reasonably foreseeable at the time the ZnCl₂ process and the TEA process with quenching were assessed. NDMA formation requires the presence of a secondary amine along with NO⁺ (4) generated from nitrous acid (or sodium nitrite + inorganic acid). (See, **Figure 5**,

¹¹³ Skoog DA, Holler FJ, Crouch ST. *Principles of Instrumental Analysis*.

¹¹⁴ *Id.*

¹¹⁵ Zhu X, Sun J, Ning Z, Zhang Y, Liu J. (2016) High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column. *Review of Scientific Instruments* 87, 044102.

¹¹⁶ Sparkman DO, Penton Z, Kitson FG (2011). *Gas Chromatography and Mass Spectrometry: A Practical Guide*. Academic Press.

¹¹⁷ (2022 Najafi Rep. at 26 ("The QC department should have been alerted by the chief process chemist to monitor for nitrosamine impurities as part of the manufacturing process").)

Confidential: Subject to Protective Order

above.) DMF is one of the common organic solvents that have been used in organic synthesis.¹¹⁸ It is not a secondary amine and cannot react with nitrous acid to result in NDMA. Instead, DMF is a solvent that was used in the crude Valsartan (step #4) of the ZnCl₂ process. On the other hand, NDEA formation requires the presence of a secondary amine such as diethylamine (**5a**, *see, Figure 9*, above) along with NO⁺ (**4**) generated from nitrous acid (or sodium nitrite + inorganic acid). (*See, Figure 5*, above.) TEA is a tertiary amine used in the tetrazole formation reaction in the TEA process with quenching as a catalyst. TEA cannot react with nitrous acid via a similar mechanism as that for a secondary amine (*see, Figure 5*, above) to produce the nitrosamine NDEA. Instead, TEA must first be converted into the secondary amine diethylamine (**5a**) via a multi-step mechanism before it can react with NO⁺ (**4**) to form NDEA in the crude Valsartan (step #4) of the TEA process with quenching (*see, Figure 9*, above).

At the time when the ZnCl₂ process was developed and used, little was known about the decomposition of the DMF solvent to generate a secondary amine dimethylamine, which could further react with nitrous acid (or sodium nitrite + inorganic acid) to generate a nitrosamine NDMA. Similarly, at the time when the TEA process with quenching was developed, little was known about the reaction of TEA with nitrous acid (or sodium nitrite + inorganic acid) to generate a nitrosamine NDEA. Because it was not established that there was an inherent risk of nitrosamine formation, in my opinion, it is reasonable that ZHP did not specifically test for these as part of its manufacturing processes.

Plaintiffs' experts also state that five testing methods for nitrosamines were available, and any reasonable organic chemists would have used one of them to test Valsartan API for nitrosamines.¹¹⁹ The five methods identified by plaintiffs' experts include the combined

¹¹⁸ Sheldon RA. (2019) The greening of solvents: Towards sustainable organic synthesis. Current Opinion in Green and Sustainable Chemistry, 18, 13-19.

¹¹⁹ (2022) Najafi Rep. at 9-10 ("In response to the detection of nitrosamines found in valsartan containing medications, the FDA published testing methods with several options for industry, as well as regulators, to test for nitrosamines, including NDMA and NDEA. These FDA methods included the following: (a) Combined headspace method: a GC-MS method that allows determination of both N-Nitrosodimethylamine (NDMA) and n-nitrosodiethylamine (NDEA) simultaneously; (b) Combined direct injection method: a GC-MS/MS method that allows for determination of both NDMA and NDEA simultaneously; (c) Direct injection GC-MS method: a method that can detect NDMA, NDEA, N-Nitrosodiisopropylamine (NDIPA), N-Nitrosoethylisopropylamine (NEIPA), and n-nitrosodibutylamine (NDBA); (d) Headspace GC-MS method: a method that can detect NDMA, NDEA, ndipa, and neipa; and (e) lc-hrms method: a method that can detect NDMA, NDEA, NEIPA, NDIPA, NDBA, and N-Nitroso-N-methyl-4-aminobutyric acid (NMBA)"); *id.* at 10 ("All these testing methods have existed for decades, long before the

Confidential: Subject to Protective Order

headspace method (GC-MS method), combined direct injection method (GC-MS/MS method), direct injection (GC-MS method), headspace (GC-MS method), and LC-HRMS method. All of these methods use MS as the detector. Although these MS-based methods are sensitive towards the nitrosamines NDMA and NDEA, I have not seen any evidence that they were the standard in the industry at the time when the ZnCl₂ process and the TEA process with quenching were being utilized for the production of Valsartan API and, as I have explained above, ZHP did not have a scientific reason to be looking for NDMA or NDEA in Valsartan API at that time. Furthermore, I understand that GC-FID had been the standard in the industry (including by Novartis, which ultimately identified NDMA in Valsartan API in 2018). Therefore, it was reasonable that ZHP used GC-FID as its testing method for Valsartan API.

VII. Plaintiffs' Experts Have Not Presented Evidence That ZHP Employees Were Aware Of The Possibility Of NDMA Or NDEA Resulting From Its Manufacturing Processes Prior To 2018.

Plaintiffs' experts assert that, in an email dated July 27, 2017, ZHP employee Jinsheng Lin "acknowledged the impurity he was investigating [in crude irbesartan] was very likely an 'N-NO compound' which 'is similar to the N-nitrosodimethylamine that occurs in valsartan when quenched with sodium nitrite.'"¹²⁰ They opine that this email rebuts "ZHP's argument that it did not have that information [about the possible nitrosamine contamination of Valsartan API] until June 2018."¹²¹ In fact, Mr. Lin's email demonstrates that ZHP did not have reason to know about the potential for NDMA or NDEA resulting from the ZnCl₂ process or TEA process with quenching.

ZHP manufacturing processes using sodium nitrite were developed or used for the commercial production"); Bain Rep. at 74 ("In addition, the technology to test for nitrosamine impurities existed, was well known, and should have been applied to determine whether nitrosamines were forming. If those steps had been taken as required, the process validation specifications would have included testing for NDEA and NDMA, and the NDEA and NDMA formed during the manufacturing process, as well as that resulting from cross-contamination due to inadequate cleaning of shared production lines would have been identified"); 2022 Najafi Rep. at 28 ("In my opinion, the only reason one would choose to use a GC-FID instead of GC-MS would be a lack of understanding of chemical processes and reactions, and/or to reduce chances of detection of finding impurities").)

¹²⁰ (2022 Najafi Rep. at 30-31 (citing 4/20/2021 Min Li Dep. Ex. ZHP-296; ZHP00190573-ZHP00190574).)

¹²¹ (See Bain Rep. at 1 ("ZHP apparently had knowledge as of July 27, 2017 or earlier of the NDMA impurities and that the root cause of nitrosamine contamination in sartans was the quenching with sodium nitrite."); Plunkett Rep. at 32 (claiming that the July 27, 2017 email "shows that ZHP understood at least by 2017 that nitrosamines were created in the production generally of ZHP's sartan APIs.").)

Confidential: Subject to Protective Order

Mr. Lin's email relates to the discovery of a hypothetical nitrosated impurity in the lab-scale production of Irbesartan, a different drug molecule than Valsartan API. In the email, Mr. Lin also mentions impurity K, a nitrosated impurity of the deacylated Valsartan, also a different drug molecule from Valsartan API (**Figure 11**), which was described in a 2013 patent. (Zhejiang Second Pharma Co. Ltd.) Mr. Lin's email is written in Chinese, my native language. Based on my understanding of Chinese and my expertise as a chemist, it is obvious to me that Mr. Lin's email reports the potential for a type of nitrosation reaction that happens between a reactive nitrogen atom on a drug product or a drug intermediate (**Figure 11**, green circled) and a nitrosonium ion (NO^+). As demonstrated in **Figure 11**, both Irbesartan and deacylated Valsartan, which are referenced in the email, contain a reactive nitrogen atom on the drug molecule itself, which can react with NO^+ to form nitrosated impurities. However, a similar reaction cannot take place on acylated (step #3) product in the ZnCl_2 process because no reactive nitrogen atom is present in the chemical structure of the starting material. The email makes no reference to possible nitrosamine formation from the TEA process with quenching or the ZnCl_2 process for Valsartan API.

Figure 11. Proposed mechanism for the formation of nitrosated Irbesartan (top) and impurity K (middle) described in Jinsheng Lin's July 17, 2017 email, as compared to the tetrazole formation conditions in the manufacture of Valsartan API (bottom).

In addition, ZHP employees who have testified about the email have made clear that "due to insufficient extent and depth of process research at the early stage, as well as insufficient study

Confidential: Subject to Protective Order

and understanding of potential genotoxic impurities, only side reaction product and degradation products were studied” with respect to Irbesartan, and therefore ZHP “was unaware of the further reaction between degradation products and raw material” related to Irbesartan.¹²² As a result, Mr. Lin’s email discussing Irbesartan could not have been addressing the formation of nitrosamines as a result of the potential degradation of DMF, which is what plaintiffs’ experts assert resulted in the formation of nitrosamines during the ZnCl₂ process for Valsartan API. In fact, the email demonstrates that, when discussing potential nitrosamine formation, Mr. Lin did not have a reason to raise the issue of degradation during manufacturing processes for Valsartan API because ZHP did not know these processes could potentially result in nitrosamines.

Correspondence between ZHP and Novartis in May and June 2018 further demonstrates that ZHP was unaware of the potential for nitrosamine formation in its Valsartan API prior to that time. First, neither ZHP nor Novartis – which contacted ZHP on May 22, 2018 about the peaks that were ultimately identified as NDMA – initially knew what those peaks were.¹²³ And when Novartis asked for additional support for the identification of the peaks, ZHP ran a GC-MS analysis, but did not discover the NDMA at first.¹²⁴ It was not until several weeks after the initial communication that Novartis and ZHP were able to confirm that NDMA was present in the Valsartan API.¹²⁵ Novartis noted “how exceptional [ZHP’s] support [had] been through” the process of identifying the unknown peaks.¹²⁶

The difficulty ZHP and Novartis encountered in identifying NDMA is unsurprising. In the months after ZHP announced the recall of Valsartan API, even the FDA acknowledged that NDMA is difficult to identify and that neither the FDA nor the industry knew to test for it – or how to best test for it. According to the FDA’s public statement about Valsartan on August 30, 2018:

¹²² (4/22/2021 Min Li Dep. Tr. 528:14-531:4.)

¹²³ (See, e.g., ZHP02172439 (initial email from Novartis stating that “[d]uring our analysis of residual solvents by GC (using a combined method) at Novartis we have found a number of solvents that we cannot identify for the following batches”); ZHP00389307-ZHP00389308 (initial response to Novartis from ZHP suggesting that the unknown peaks were “dimethyl sulfide” and the product of a “reaction between Valsartan and DMSO”).)

¹²⁴ (See ZHP00389306 (ZHP providing “the chromatogram of GC-MS & Identification as attached”)).

¹²⁵ (ZHP01875822.)

¹²⁶ (ZHP01875820.)

[T]he FDA maintains the most advanced pharmaceutical laboratory of any regulatory agency in the world. As soon as we were aware of the NDMA impurity in certain valsartan drugs, we began collecting samples of all valsartan API and products marketed in the U.S. *At the same time, our scientists began developing a test to detect and quantify NDMA in valsartan API. NDMA's properties make it difficult to find.*¹²⁷

The FDA statement also noted that, “[t]o determine if valsartan products do contain this impurity, **CDER’s scientists have now developed the gas chromatography-mass spectrometry (GC/MS) headspace testing method.** We posted this method to the web to help manufacturers and regulators detect NDMA in valsartan API and tablets.”¹²⁸ The FDA acknowledged that “[b]ecause it was not anticipated that NDMA would occur at these levels in the manufacturing of the valsartan API, manufacturers would not have been testing for it” and regulatory investigators would not know to look for it.¹²⁹

To summarize: one of the most advanced laboratories in the world initially struggled to develop the correct process to identify NDMA in Valsartan given the difficulty of detecting it, even with advanced methods. The FDA also acknowledged that it was not anticipated that NDMA would occur in the Valsartan manufacturing process, meaning that manufacturers and the FDA would not know to test for it. In addition, FDA scientists only developed a gas chromatography-mass spectrometry (GC/MS) headspace testing method specifically designed to test for nitrosamines after NDMA was identified in May 2018. This is consistent with my opinions above.

It is also worth emphasizing that ZHP voluntarily reported the presence of NDMA to the FDA, and also voluntarily recalled its Valsartan API products. It was only after ZHP’s voluntary disclosure and recall that the FDA started to look for NDMA in Valsartan-containing drugs and eventually came up with a testing method for NDMA.

¹²⁷ See U.S. FDA, FDA Statement on FDA’s ongoing investigation into valsartan impurities and recalls and an update on FDA’s current findings (current as of 8/30/2018) (available at <https://www.fda.gov/news-events/press-announcements/fda-statement-fdas-ongoing-investigation-valsartan-impurities-and-recalls-and-update-fdas-current>).

¹²⁸ *Id.* (emphasis added).

¹²⁹ *Id.*

Confidential: Subject to Protective Order

Signed on the 22nd day of December, 2022.

Fengtian Xue, Ph.D.

Exhibit A

Exhibit A - Materials Reviewed and Considered

1. Third Amended Consumer Economic Loss Class Action Complaint, *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, November 1, 2021
2. Expert Report of Stephen S. Hecht, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, July 6, 2021
3. Expert Report of Stephen S. Hecht, Ph.D, *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022
4. Expert Report of Ron Najafi, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, November 4, 2021
5. Expert Report of Ron Najafi, Ph.D., *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022 and all documents cited therein
6. Expert Report of Laura M. Plunkett, Ph.D., DABT, *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022
7. Expert Report of Susan Bain, DRSc, *In Re: Valsartan, Losartan, and Irbesartan Products Liability Litigation*, No. 1:19-md-2875-RBK, United States District Court, District of New Jersey, October 31, 2022
8. Interview with Li, Min
9. Interview with Ge, Jucai
10. Interview with Lin, Jinsheng
11. Li, Min Deposition Transcript and Exhibits, April 20, 2021
12. Li, Min Amended Deposition Transcript and Exhibits, April 20, 2021
13. Li, Min Deposition Transcript and Exhibits, April 21, 2021
14. Li, Min Deposition Transcript and Exhibits, April 22, 2021
15. U.S. FDA, Drug Master Files (DMFs) (current as 10/24/2022) (available at <https://www.fda.gov/drugs/forms-submission-requirements/drug-master-files-dmfs>)
16. U.S. FDA, Information about Nitrosamine Impurities in Medications (available at <https://www.fda.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications>)
17. Fujita K, Kamataki T. (2001) Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: application of genetically engineered *Salmonella typhimurium* YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reductase. *Mutat. Res.*, 483(1-2), 35-41.
18. Chu C, and Magee PN (1981) Metabolic fate of nitrosoproline in the rat. *Cancer Res.*, 41, 3653-3657.
19. IARC (1978) IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 17, Some Nitroso Compounds. IARC Scientific Publications, Lyon.
20. Datin RC, Elliott GA. (1964) Synthesis of nitrosodimethylamine. US PCT #US3136821A.
21. Williams, D. L. H. Nitrosation Reactions and the Chemistry of Nitric Oxide, 1st ed.; Elsevier Science: Amsterdam, Oxford, 2004.

22. Touster, O. Determination of keto–enol equilibrium constants and the kinetic study of the nitrosation reaction of β -dicarbonyl compounds. In *Organic Reactions*; Wiley: New York, 1953; vol. 7, chapter 6.
23. Garcia Rio, L.; Leis, J. R.; Iglesias, E. Nitrosation of amines in nonaqueous solvents, 1: Evidence of a stepwise mechanism. *J. Org. Chem.* 1997, 62, 4701.
24. Makhova, N. N.; Karpov, G. A.; Mikhailyuk, A. N.; Bova, A. E.; Khamel_nitskii, I.; Novikov, S. S. (1978) *Izv. Akad. Nauk. SSSR, Ser. Khim.*, 1, 226.
25. Chang, S. K.; Harrington, G. W.; Rothstein, M.; Shergalis, W. A.; Swern, D.; Vohra, S. K. (1979) *Cancer Res.* 39, 3871.
26. Nakajima, M.; Warner, J. C.; Anselme, J. P. (1984) *Tetrahedron Lett.*, 25, 2619.
27. Zolfigol, M. A. (1999) *Synth. Commun.*, 29, 905.
28. Zolfigol, M. A.; Habibi, D.; Mirjalili, B. F.; Bamoniri, A. (2003) *Tetrahedron Lett.*, 44, 3345.
29. Zolfigol, M. A.; Ghorbani-Choghamarani, A.; Hazarkhani, H. (2002) *Synlett*, 1002.
30. Bahador Karami, Morteza Montazerzohori, and Mohammad Hossein Habibi (2005) Tungstate Sulfuric Acid (TSA) / NaNO₂ as a Novel Heterogeneous System for the N-Nitrosation of Secondary Amines under Mild Conditions. *Bull. Korean Chem. Soc.*, 26(7), 1125.
31. Purification of Laboratory Chemicals, Armarego, WLF (1996 (Edition 4th), 2009 (Edition 6th))
32. Smith PAS, Loepky RN. (1967). Nitrosative cleavage of tertiary amines. *J. Am. Chem. Soc.* 89, 1147-1157.
33. Smith PAS, Pars HG. (1959). Nitrosative cleavage of N',N'-dialkylhydrazides and tertiary amines. *J. Org. Chem.* 24, 1325-1332.
34. Hein GE. (1963) the reaction of tertiary amines with nitrous acid. *J. Chem. Educ.* 40(4):181.
35. Castedo, Luis; et al, (1983) Fremy's salt (potassium nitrosodisulfonate): a nitrosating reagent for amines. 6, 301-302.
36. Boyer JH, Pillai TP, Ramakrishnan VT. (1985) Nitrosamines and nitramines from tertiary amines. *Synthesis*, 677-679.
37. Rosadiuk, Kristopher A.; et al, (2018) Isolable Adducts of Tertiary Amines and Dinitrogen Trioxide. *European Journal of Inorganic Chemistry*, 41, 4543-4549.
38. Boyer, Joseph H.; et al, (1985) Nitrosamines from tertiary amines and dinitrogen tetraoxide. *Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry* (1972-1999), (8), 1661-4
39. Iranpoor, Nasser; Firouzabadi, Habib; Pourali, Ali. (2005), Dinitrogen tetroxide-impregnated charcoal (N₂O₄/Charcoal). Selective nitrosation of amines, amides, ureas, and thiols. *Synthetic Communication*, 35(11), 1517-1526.
40. Breugst M, Reissig H-U. (2020). The Huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. *Angew. Chem. Int. Ed.* 59, 12293.
41. Sheldon RA. (2019) The greening of solvents: Towards sustainable organic synthesis. *Current Opinion in Green and Sustainable Chemistry*, 18, 13-19.
42. Farhi M, Morel M, Cavigneaux A (1968) Dimethylformamide HCON(CH₃)₂. Cahier de notes documentaires, 50:91–93.
43. Harvey, David (2000). *Modern Analytical Chemistry*. Boston: McGraw-Hill.
44. Pavia, L., Gary M. Lampman, George S. Kritz, Randall G. Engel (2006). *Introduction to Organic Laboratory Techniques* (4th Ed.). Thomson Brooks/Cole. pp. 797–817.
45. Skoog DA, Holler FJ, Crouch ST. *Principles of Instrumental Analysis*.
46. Zhu X, Sun J, Ning Z, Zhang Y, Liu J. (2016) High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column. *Review of Scientific Instruments* 87, 044102.

47. Sparkman DO, Penton Z, Kitson FG (2011). Gas Chromatography and Mass Spectrometry: A Practical Guide. Academic Press.

48. U.S. FDA, FDA Statement on FDA's ongoing investigation into valsartan impurities and recalls and an update on FDA's current findings (available at <https://www.fda.gov/news-events/press-announcements/fda-statement-fdas-ongoing-investigation-valsartan-impurities-and-recalls-and-update-fdas-current>)

PRINSTON00000005	PRINSTON00031823	PRINSTON00037365	PRINSTON00053623
PRINSTON00000008	PRINSTON00031762	PRINSTON00037230	PRINSTON00052916
PRINSTON00000009	PRINSTON00031790	PRINSTON00037242	PRINSTON00053297
PRINSTON00000027	PRINSTON00031868	PRINSTON00037390	PRINSTON00053826
PRINSTON00019164	PRINSTON00032140	PRINSTON00037513	PRINSTON00054621
PRINSTON00019172	PRINSTON00032142	PRINSTON00037519	PRINSTON00054640
PRINSTON00019181	PRINSTON00032143	PRINSTON00037525	PRINSTON00054643
PRINSTON00019188	PRINSTON00032147	PRINSTON00037527	PRINSTON00054657
PRINSTON00019189	PRINSTON00032151	PRINSTON00037537	PRINSTON00054659
PRINSTON00019190	PRINSTON00032156	PRINSTON00037562	PRINSTON00054662
PRINSTON00019203	PRINSTON00032157	PRINSTON00037587	PRINSTON00054672
PRINSTON00019205	PRINSTON00032176	PRINSTON00037591	PRINSTON00054674
PRINSTON00019214	PRINSTON00032179	PRINSTON00037612	PRINSTON00054675
PRINSTON00019215	PRINSTON00032193	PRINSTON00037613	PRINSTON00054677
PRINSTON00019217	PRINSTON00032195	PRINSTON00037661	PRINSTON00054681
PRINSTON00019219	PRINSTON00032198	PRINSTON00037677	PRINSTON00054685
PRINSTON00019223	PRINSTON00032208	PRINSTON00037711	PRINSTON00054689
PRINSTON00019224	PRINSTON00032210	PRINSTON00037712	PRINSTON00054691
PRINSTON00019236	PRINSTON00032211	PRINSTON00037713	PRINSTON00054693
PRINSTON00019241	PRINSTON00032212	PRINSTON00037714	PRINSTON00054695
PRINSTON00019246	PRINSTON00032213	PRINSTON00037715	PRINSTON00054706
PRINSTON00019282	PRINSTON00032215	PRINSTON00037716	PRINSTON00054742
PRINSTON00019300	PRINSTON00032216	PRINSTON00037717	PRINSTON00054801
PRINSTON00019336	PRINSTON00032220	PRINSTON00037718	PRINSTON00054862
PRINSTON00019337	PRINSTON00032224	PRINSTON00037719	PRINSTON00054921
PRINSTON00019338	PRINSTON00032241	PRINSTON00037720	PRINSTON00054980
PRINSTON00019339	PRINSTON00032242	PRINSTON00037721	PRINSTON00055041
PRINSTON00019340	PRINSTON00032261	PRINSTON00037722	PRINSTON00055100
PRINSTON00019341	PRINSTON00032264	PRINSTON00037723	PRINSTON00055161
PRINSTON00019342	PRINSTON00032278	PRINSTON00037724	PRINSTON00055287
PRINSTON00019409	PRINSTON00032280	PRINSTON00037727	PRINSTON00055348
PRINSTON00019420	PRINSTON00032283	PRINSTON00037730	PRINSTON00055466
PRINSTON00019424	PRINSTON00032293	PRINSTON00037816	PRINSTON00055588
PRINSTON00019431	PRINSTON00032295	PRINSTON00037902	PRINSTON00055711
PRINSTON00019432	PRINSTON00032296	PRINSTON00037917	PRINSTON00055833

PRINSTON00019518	PRINSTON00032297	PRINSTON00037932	PRINSTON00055955
PRINSTON00019606	PRINSTON00032298	PRINSTON00037935	PRINSTON00056077
PRINSTON00019634	PRINSTON00032299	PRINSTON00037938	PRINSTON00056199
PRINSTON00019662	PRINSTON00032301	PRINSTON00037941	PRINSTON00056319
PRINSTON00019664	PRINSTON00032303	PRINSTON00037945	PRINSTON00056441
PRINSTON00019666	PRINSTON00032307	PRINSTON00037968	PRINSTON00056502
PRINSTON00019670	PRINSTON00032313	PRINSTON00037990	PRINSTON00056624
PRINSTON00019674	PRINSTON00032327	PRINSTON00038022	PRINSTON00056746
PRINSTON00019698	PRINSTON00032328	PRINSTON00038053	PRINSTON00056868
PRINSTON00019722	PRINSTON00032347	PRINSTON00038063	PRINSTON00056990
PRINSTON00019736	PRINSTON00032350	PRINSTON00038151	PRINSTON00057112
PRINSTON00019811	PRINSTON00032364	PRINSTON00038158	PRINSTON00057263
PRINSTON00019837	PRINSTON00032366	PRINSTON00038180	PRINSTON00057385
PRINSTON00019846	PRINSTON00032369	PRINSTON00038205	PRINSTON00057505
PRINSTON00019870	PRINSTON00032379	PRINSTON00038285	PRINSTON00057627
PRINSTON00020492	PRINSTON00032381	PRINSTON00038365	PRINSTON00057749
PRINSTON00020496	PRINSTON00032382	PRINSTON00038445	PRINSTON00057873
PRINSTON00020500	PRINSTON00032383	PRINSTON00038525	PRINSTON00057995
PRINSTON00020504	PRINSTON00032384	PRINSTON00038585	PRINSTON00058117
PRINSTON00020508	PRINSTON00032386	PRINSTON00038593	PRINSTON00058314
PRINSTON00020511	PRINSTON00032392	PRINSTON00038629	PRINSTON00058438
PRINSTON00020514	PRINSTON00032393	PRINSTON00038666	PRINSTON00058560
PRINSTON00020517	PRINSTON00032394	PRINSTON00038702	PRINSTON00058680
PRINSTON00020520	PRINSTON00032395	PRINSTON00038738	PRINSTON00058810
PRINSTON00020523	PRINSTON00032396	PRINSTON00038775	PRINSTON00058872
PRINSTON00020526	PRINSTON00032397	PRINSTON00038811	PRINSTON00058934
PRINSTON00020530	PRINSTON00032398	PRINSTON00038847	PRINSTON00058995
PRINSTON00020537	PRINSTON00032422	PRINSTON00038884	PRINSTON00059056
PRINSTON00020545	PRINSTON00032427	PRINSTON00038920	PRINSTON00059116
PRINSTON00020555	PRINSTON00032428	PRINSTON00038956	PRINSTON00059180
PRINSTON00020573	PRINSTON00032429	PRINSTON00038993	PRINSTON00059242
PRINSTON00020585	PRINSTON00032431	PRINSTON00039029	PRINSTON00059297
PRINSTON00020604	PRINSTON00032433	PRINSTON00039065	PRINSTON00059345
PRINSTON00020616	PRINSTON00032435	PRINSTON00039102	PRINSTON00059469
PRINSTON00020629	PRINSTON00032437	PRINSTON00039138	PRINSTON00059593
PRINSTON00020644	PRINSTON00032460	PRINSTON00039141	PRINSTON00059722
PRINSTON00020656	PRINSTON00032483	PRINSTON00039150	PRINSTON00059846
PRINSTON00020682	PRINSTON00032506	PRINSTON00039166	PRINSTON00059977
PRINSTON00020689	PRINSTON00032543	PRINSTON00039193	PRINSTON00060101
PRINSTON00020696	PRINSTON00032545	PRINSTON00039210	PRINSTON00060225
PRINSTON00020705	PRINSTON00032602	PRINSTON00039220	PRINSTON00060361

PRINSTON00020708	PRINSTON00032659	PRINSTON00039233	PRINSTON00060485
PRINSTON00020711	PRINSTON00032719	PRINSTON00039246	PRINSTON00060609
PRINSTON00020714	PRINSTON00032776	PRINSTON00039273	PRINSTON00060733
PRINSTON00020717	PRINSTON00032837	PRINSTON00039277	PRINSTON00060857
PRINSTON00020722	PRINSTON00032900	PRINSTON00039283	PRINSTON00060981
PRINSTON00020726	PRINSTON00032964	PRINSTON00039289	PRINSTON00061048
PRINSTON00020730	PRINSTON00033033	PRINSTON00039292	PRINSTON00061172
PRINSTON00020734	PRINSTON00033094	PRINSTON00039298	PRINSTON00061296
PRINSTON00020737	PRINSTON00033157	PRINSTON00039305	PRINSTON00061420
PRINSTON00020740	PRINSTON00033160	PRINSTON00039313	PRINSTON00061482
PRINSTON00020743	PRINSTON00033165	PRINSTON00039321	PRINSTON00061604
PRINSTON00020746	PRINSTON00033173	PRINSTON00039323	PRINSTON00061728
PRINSTON00020749	PRINSTON00033181	PRINSTON00039325	PRINSTON00061850
PRINSTON00020754	PRINSTON00033186	PRINSTON00039327	PRINSTON00061972
PRINSTON00020760	PRINSTON00033190	PRINSTON00039329	PRINSTON00062095
PRINSTON00020805	PRINSTON00033246	PRINSTON00039331	PRINSTON00062219
PRINSTON00021204	PRINSTON00033248	PRINSTON00039333	PRINSTON00062281
PRINSTON00021281	PRINSTON00033253	PRINSTON00039335	PRINSTON00062343
PRINSTON00021286	PRINSTON00033304	PRINSTON00039337	PRINSTON00062469
PRINSTON00021294	PRINSTON00033310	PRINSTON00039341	PRINSTON00062593
PRINSTON00021297	PRINSTON00033329	PRINSTON00039345	PRINSTON00062717
PRINSTON00021315	PRINSTON00033332	PRINSTON00039349	PRINSTON00062841
PRINSTON00021333	PRINSTON00033346	PRINSTON00039354	PRINSTON00062965
PRINSTON00021352	PRINSTON00033348	PRINSTON00039359	PRINSTON00063089
PRINSTON00021371	PRINSTON00033351	PRINSTON00039362	PRINSTON00063168
PRINSTON00021389	PRINSTON00033361	PRINSTON00039364	PRINSTON00063187
PRINSTON00021407	PRINSTON00033362	PRINSTON00039366	PRINSTON00063190
PRINSTON00021429	PRINSTON00033363	PRINSTON00039368	PRINSTON00063204
PRINSTON00021439	PRINSTON00033364	PRINSTON00039370	PRINSTON00063206
PRINSTON00021448	PRINSTON00033365	PRINSTON00039372	PRINSTON00063209
PRINSTON00021454	PRINSTON00033367	PRINSTON00039374	PRINSTON00063219
PRINSTON00021512	PRINSTON00033368	PRINSTON00039376	PRINSTON00063221
PRINSTON00021547	PRINSTON00033372	PRINSTON00039378	PRINSTON00063222
PRINSTON00021583	PRINSTON00033376	PRINSTON00039383	PRINSTON00063223
PRINSTON00021618	PRINSTON00033390	PRINSTON00039439	PRINSTON00063224
PRINSTON00021653	PRINSTON00033391	PRINSTON00039499	PRINSTON00063226
PRINSTON00021688	PRINSTON00033410	PRINSTON00039541	PRINSTON00063227
PRINSTON00021724	PRINSTON00033413	PRINSTON00039560	PRINSTON00063230
PRINSTON00021731	PRINSTON00033427	PRINSTON00039603	PRINSTON00063231
PRINSTON00021733	PRINSTON00033429	PRINSTON00039645	PRINSTON00063235
PRINSTON00021734	PRINSTON00033432	PRINSTON00039663	PRINSTON00063239

PRINSTON00021735	PRINSTON00033442	PRINSTON00039715	PRINSTON00063258
PRINSTON00021736	PRINSTON00033444	PRINSTON00039794	PRINSTON00063261
PRINSTON00021737	PRINSTON00033445	PRINSTON00039800	PRINSTON00063275
PRINSTON00021739	PRINSTON00033446	PRINSTON00039858	PRINSTON00063277
PRINSTON00021822	PRINSTON00033447	PRINSTON00039959	PRINSTON00063280
PRINSTON00021904	PRINSTON00033448	PRINSTON00039962	PRINSTON00063290
PRINSTON00021981	PRINSTON00033450	PRINSTON00039969	PRINSTON00063291
PRINSTON00022057	PRINSTON00033455	PRINSTON00039972	PRINSTON00063292
PRINSTON00022092	PRINSTON00033456	PRINSTON00039990	PRINSTON00063293
PRINSTON00022127	PRINSTON00033460	PRINSTON00040006	PRINSTON00063301
PRINSTON00022162	PRINSTON00033464	PRINSTON00040022	PRINSTON00063302
PRINSTON00022197	PRINSTON00033467	PRINSTON00040040	PRINSTON00063305
PRINSTON00022233	PRINSTON00033494	PRINSTON00040057	PRINSTON00063308
PRINSTON00022268	PRINSTON00033513	PRINSTON00040072	PRINSTON00063312
PRINSTON00022273	PRINSTON00033516	PRINSTON00040089	PRINSTON00063316
PRINSTON00022276	PRINSTON00033530	PRINSTON00040099	PRINSTON00063331
PRINSTON00022278	PRINSTON00033532	PRINSTON00040187	PRINSTON00063337
PRINSTON00022291	PRINSTON00033535	PRINSTON00040192	PRINSTON00063343
PRINSTON00022299	PRINSTON00033545	PRINSTON00040202	PRINSTON00063345
PRINSTON00022302	PRINSTON00033546	PRINSTON00040203	PRINSTON00063347
PRINSTON00022312	PRINSTON00033547	PRINSTON00040205	PRINSTON00063377
PRINSTON00022317	PRINSTON00033548	PRINSTON00040217	PRINSTON00063408
PRINSTON00022331	PRINSTON00033549	PRINSTON00040219	PRINSTON00063429
PRINSTON00023045	PRINSTON00033551	PRINSTON00040220	PRINSTON00063434
PRINSTON00023076	PRINSTON00033552	PRINSTON00040221	PRINSTON00063472
PRINSTON00023086	PRINSTON00033556	PRINSTON00040222	PRINSTON00063521
PRINSTON00023145	PRINSTON00033560	PRINSTON00040223	PRINSTON00063555
PRINSTON00023147	PRINSTON00033575	PRINSTON00040224	PRINSTON00063556
PRINSTON00023149	PRINSTON00033576	PRINSTON00040225	PRINSTON00063557
PRINSTON00023154	PRINSTON00033595	PRINSTON00040318	PRINSTON00063558
PRINSTON00023202	PRINSTON00033598	PRINSTON00040411	PRINSTON00063559
PRINSTON00023203	PRINSTON00033612	PRINSTON00040510	PRINSTON00063560
PRINSTON00023204	PRINSTON00033614	PRINSTON00040605	PRINSTON00063561
PRINSTON00023205	PRINSTON00033617	PRINSTON00040705	PRINSTON00063562
PRINSTON00023233	PRINSTON00033627	PRINSTON00040740	PRINSTON00063563
PRINSTON00023265	PRINSTON00033629	PRINSTON00040775	PRINSTON00063564
PRINSTON00023283	PRINSTON00033630	PRINSTON00040810	PRINSTON00063565
PRINSTON00023293	PRINSTON00033631	PRINSTON00040845	PRINSTON00063566
PRINSTON00023294	PRINSTON00033632	PRINSTON00040882	PRINSTON00063585
PRINSTON00023299	PRINSTON00033633	PRINSTON00040918	PRINSTON00063588
PRINSTON00023301	PRINSTON00033634	PRINSTON00040953	PRINSTON00063602

PRINSTON00023328	PRINSTON00033635	PRINSTON00040988	PRINSTON00063604
PRINSTON00023330	PRINSTON00033639	PRINSTON00041023	PRINSTON00063607
PRINSTON00023332	PRINSTON00033654	PRINSTON00041059	PRINSTON00063617
PRINSTON00023334	PRINSTON00033655	PRINSTON00041096	PRINSTON00063618
PRINSTON00023338	PRINSTON00033674	PRINSTON00041133	PRINSTON00063619
PRINSTON00023405	PRINSTON00033677	PRINSTON00041168	PRINSTON00063620
PRINSTON00023417	PRINSTON00033691	PRINSTON00041203	PRINSTON00063622
PRINSTON00023424	PRINSTON00033693	PRINSTON00041238	PRINSTON00063624
PRINSTON00023425	PRINSTON00033696	PRINSTON00041242	PRINSTON00063626
PRINSTON00023426	PRINSTON00033706	PRINSTON00041244	PRINSTON00063627
PRINSTON00023430	PRINSTON00033708	PRINSTON00041246	PRINSTON00063656
PRINSTON00023431	PRINSTON00033709	PRINSTON00041258	PRINSTON00063660
PRINSTON00023433	PRINSTON00033710	PRINSTON00041263	PRINSTON00063664
PRINSTON00023435	PRINSTON00033711	PRINSTON00041265	PRINSTON00063683
PRINSTON00023485	PRINSTON00033712	PRINSTON00041271	PRINSTON00063686
PRINSTON00023537	PRINSTON00033713	PRINSTON00041274	PRINSTON00063700
PRINSTON00023588	PRINSTON00033715	PRINSTON00041370	PRINSTON00063702
PRINSTON00023637	PRINSTON00033719	PRINSTON00041373	PRINSTON00063705
PRINSTON00023686	PRINSTON00033735	PRINSTON00041410	PRINSTON00063715
PRINSTON00023735	PRINSTON00033736	PRINSTON00041418	PRINSTON00063716
PRINSTON00023784	PRINSTON00033755	PRINSTON00041486	PRINSTON00063717
PRINSTON00023834	PRINSTON00033758	PRINSTON00041488	PRINSTON00063719
PRINSTON00023883	PRINSTON00033772	PRINSTON00041490	PRINSTON00063721
PRINSTON00023933	PRINSTON00033774	PRINSTON00041494	PRINSTON00063724
PRINSTON00023982	PRINSTON00033777	PRINSTON00041496	PRINSTON00063725
PRINSTON00024031	PRINSTON00033787	PRINSTON00041498	PRINSTON00063734
PRINSTON00024080	PRINSTON00033789	PRINSTON00041510	PRINSTON00063738
PRINSTON00024129	PRINSTON00033790	PRINSTON00041516	PRINSTON00063742
PRINSTON00024179	PRINSTON00033791	PRINSTON00041519	PRINSTON00063824
PRINSTON00024228	PRINSTON00033792	PRINSTON00041526	PRINSTON00063906
PRINSTON00024277	PRINSTON00033793	PRINSTON00041529	PRINSTON00063988
PRINSTON00024326	PRINSTON00033798	PRINSTON00041736	PRINSTON00064070
PRINSTON00024375	PRINSTON00033799	PRINSTON00041983	PRINSTON00064132
PRINSTON00024424	PRINSTON00033800	PRINSTON00042043	PRINSTON00064144
PRINSTON00024473	PRINSTON00033801	PRINSTON00042049	PRINSTON00064183
PRINSTON00024522	PRINSTON00033802	PRINSTON00042120	PRINSTON00064184
PRINSTON00024571	PRINSTON00033803	PRINSTON00042122	PRINSTON00064185
PRINSTON00024620	PRINSTON00033804	PRINSTON00042124	PRINSTON00064186
PRINSTON00024673	PRINSTON00033821	PRINSTON00042125	PRINSTON00064187
PRINSTON00024722	PRINSTON00033822	PRINSTON00042127	PRINSTON00064188
PRINSTON00024773	PRINSTON00033823	PRINSTON00042130	PRINSTON00064189

PRINSTON00024822	PRINSTON00033825	PRINSTON00042401	PRINSTON00064190
PRINSTON00024873	PRINSTON00033827	PRINSTON00042436	PRINSTON00064191
PRINSTON00024924	PRINSTON00033829	PRINSTON00042461	PRINSTON00064193
PRINSTON00024973	PRINSTON00033831	PRINSTON00042462	PRINSTON00064269
PRINSTON00025024	PRINSTON00033916	PRINSTON00042485	PRINSTON00064272
PRINSTON00025073	PRINSTON00034002	PRINSTON00042630	PRINSTON00064278
PRINSTON00025122	PRINSTON00034082	PRINSTON00042637	PRINSTON00064288
PRINSTON00025171	PRINSTON00034172	PRINSTON00042640	PRINSTON00064352
PRINSTON00025221	PRINSTON00034225	PRINSTON00042667	PRINSTON00064373
PRINSTON00025270	PRINSTON00034298	PRINSTON00042668	PRINSTON00064375
PRINSTON00025319	PRINSTON00034311	PRINSTON00042669	PRINSTON00064378
PRINSTON00025368	PRINSTON00034323	PRINSTON00042674	PRINSTON00064387
PRINSTON00025418	PRINSTON00034353	PRINSTON00042676	PRINSTON00064454
PRINSTON00025467	PRINSTON00034374	PRINSTON00042678	PRINSTON00064472
PRINSTON00025518	PRINSTON00034392	PRINSTON00042679	PRINSTON00064491
PRINSTON00025567	PRINSTON00034407	PRINSTON00042680	PRINSTON00064514
PRINSTON00025616	PRINSTON00034420	PRINSTON00042728	PRINSTON00064537
PRINSTON00025665	PRINSTON00034433	PRINSTON00042774	PRINSTON00064571
PRINSTON00025718	PRINSTON00034448	PRINSTON00042775	PRINSTON00064573
PRINSTON00025769	PRINSTON00034506	PRINSTON00042779	PRINSTON00064609
PRINSTON00025821	PRINSTON00034511	PRINSTON00042780	PRINSTON00064611
PRINSTON00025828	PRINSTON00034530	PRINSTON00042808	PRINSTON00064630
PRINSTON00025964	PRINSTON00034533	PRINSTON00042817	PRINSTON00064633
PRINSTON00025971	PRINSTON00034547	PRINSTON00042858	PRINSTON00064647
PRINSTON00026265	PRINSTON00034549	PRINSTON00042870	PRINSTON00064649
PRINSTON00026317	PRINSTON00034552	PRINSTON00042889	PRINSTON00064652
PRINSTON00026370	PRINSTON00034562	PRINSTON00042901	PRINSTON00064662
PRINSTON00026423	PRINSTON00034563	PRINSTON00043009	PRINSTON00064663
PRINSTON00026473	PRINSTON00034564	PRINSTON00043062	PRINSTON00064664
PRINSTON00026523	PRINSTON00034565	PRINSTON00043114	PRINSTON00064665
PRINSTON00026573	PRINSTON00034566	PRINSTON00043166	PRINSTON00064666
PRINSTON00026623	PRINSTON00034567	PRINSTON00043218	PRINSTON00064667
PRINSTON00026674	PRINSTON00034569	PRINSTON00043272	PRINSTON00064675
PRINSTON00026725	PRINSTON00034573	PRINSTON00043324	PRINSTON00064676
PRINSTON00026776	PRINSTON00034589	PRINSTON00043377	PRINSTON00064678
PRINSTON00026827	PRINSTON00034590	PRINSTON00043430	PRINSTON00064681
PRINSTON00026878	PRINSTON00034609	PRINSTON00043482	PRINSTON00064685
PRINSTON00026929	PRINSTON00034612	PRINSTON00043534	PRINSTON00064689
PRINSTON00026980	PRINSTON00034626	PRINSTON00043586	PRINSTON00064691
PRINSTON00027031	PRINSTON00034628	PRINSTON00043638	PRINSTON00064697
PRINSTON00027082	PRINSTON00034631	PRINSTON00043691	PRINSTON00064703

PRINSTON00027133	PRINSTON00034641	PRINSTON00043743	PRINSTON00064705
PRINSTON00027184	PRINSTON00034643	PRINSTON00043798	PRINSTON00064753
PRINSTON00027234	PRINSTON00034644	PRINSTON00043851	PRINSTON00064802
PRINSTON00027285	PRINSTON00034645	PRINSTON00043903	PRINSTON00064832
PRINSTON00027334	PRINSTON00034646	PRINSTON00043956	PRINSTON00064863
PRINSTON00027384	PRINSTON00034648	PRINSTON00044008	PRINSTON00064884
PRINSTON00027434	PRINSTON00034652	PRINSTON00044060	PRINSTON00064918
PRINSTON00027485	PRINSTON00034666	PRINSTON00044112	PRINSTON00064919
PRINSTON00027535	PRINSTON00034667	PRINSTON00044164	PRINSTON00064920
PRINSTON00027585	PRINSTON00034686	PRINSTON00044216	PRINSTON00064921
PRINSTON00027635	PRINSTON00034689	PRINSTON00044269	PRINSTON00064922
PRINSTON00027685	PRINSTON00034703	PRINSTON00044321	PRINSTON00064923
PRINSTON00027733	PRINSTON00034705	PRINSTON00044374	PRINSTON00064924
PRINSTON00027783	PRINSTON00034708	PRINSTON00044427	PRINSTON00064925
PRINSTON00027833	PRINSTON00034718	PRINSTON00044479	PRINSTON00064926
PRINSTON00027883	PRINSTON00034720	PRINSTON00044532	PRINSTON00064927
PRINSTON00027933	PRINSTON00034721	PRINSTON00044585	PRINSTON00064928
PRINSTON00027983	PRINSTON00034722	PRINSTON00044637	PRINSTON00064929
PRINSTON00028033	PRINSTON00034723	PRINSTON00044689	PRINSTON00064948
PRINSTON00028083	PRINSTON00034724	PRINSTON00044746	PRINSTON00064951
PRINSTON00028133	PRINSTON00034725	PRINSTON00044798	PRINSTON00064965
PRINSTON00028183	PRINSTON00034731	PRINSTON00044849	PRINSTON00064967
PRINSTON00028233	PRINSTON00034735	PRINSTON00044901	PRINSTON00064970
PRINSTON00028283	PRINSTON00034754	PRINSTON00044953	PRINSTON00064980
PRINSTON00028333	PRINSTON00034757	PRINSTON00045005	PRINSTON00064981
PRINSTON00028383	PRINSTON00034771	PRINSTON00045055	PRINSTON00064982
PRINSTON00028433	PRINSTON00034773	PRINSTON00045108	PRINSTON00064983
PRINSTON00028483	PRINSTON00034776	PRINSTON00045160	PRINSTON00064984
PRINSTON00028533	PRINSTON00034786	PRINSTON00045212	PRINSTON00064986
PRINSTON00028583	PRINSTON00034787	PRINSTON00045264	PRINSTON00064987
PRINSTON00028633	PRINSTON00034788	PRINSTON00045316	PRINSTON00064991
PRINSTON00028683	PRINSTON00034789	PRINSTON00045368	PRINSTON00064996
PRINSTON00028690	PRINSTON00034790	PRINSTON00045421	PRINSTON00065001
PRINSTON00028837	PRINSTON00034791	PRINSTON00045473	PRINSTON00065002
PRINSTON00028845	PRINSTON00034792	PRINSTON00045526	PRINSTON00065021
PRINSTON00028857	PRINSTON00034796	PRINSTON00045581	PRINSTON00065024
PRINSTON00028909	PRINSTON00034811	PRINSTON00045635	PRINSTON00065038
PRINSTON00028937	PRINSTON00034812	PRINSTON00045691	PRINSTON00065040
PRINSTON00028970	PRINSTON00034831	PRINSTON00045746	PRINSTON00065043
PRINSTON00028997	PRINSTON00034834	PRINSTON00045800	PRINSTON00065053
PRINSTON00029001	PRINSTON00034848	PRINSTON00045855	PRINSTON00065055

PRINSTON00029002	PRINSTON00034850	PRINSTON00045909	PRINSTON00065056
PRINSTON00029022	PRINSTON00034853	PRINSTON00045963	PRINSTON00065057
PRINSTON00029027	PRINSTON00034863	PRINSTON00046017	PRINSTON00065058
PRINSTON00029069	PRINSTON00034865	PRINSTON00046071	PRINSTON00065059
PRINSTON00029074	PRINSTON00034866	PRINSTON00046123	PRINSTON00065061
PRINSTON00029076	PRINSTON00034867	PRINSTON00046175	PRINSTON00065062
PRINSTON00029139	PRINSTON00034868	PRINSTON00046177	PRINSTON00065066
PRINSTON00029167	PRINSTON00034869	PRINSTON00046444	PRINSTON00065070
PRINSTON00029200	PRINSTON00034870	PRINSTON00046480	PRINSTON00065081
PRINSTON00029233	PRINSTON00034874	PRINSTON00046501	PRINSTON00065082
PRINSTON00029237	PRINSTON00034878	PRINSTON00046502	PRINSTON00065101
PRINSTON00029238	PRINSTON00034879	PRINSTON00046508	PRINSTON00065104
PRINSTON00029260	PRINSTON00034898	PRINSTON00046661	PRINSTON00065118
PRINSTON00029262	PRINSTON00034912	PRINSTON00046667	PRINSTON00065120
PRINSTON00029302	PRINSTON00034914	PRINSTON00046669	PRINSTON00065123
PRINSTON00029307	PRINSTON00034924	PRINSTON00046700	PRINSTON00065133
PRINSTON00029309	PRINSTON00034925	PRINSTON00046701	PRINSTON00065135
PRINSTON00029329	PRINSTON00034926	PRINSTON00046702	PRINSTON00065136
PRINSTON00029331	PRINSTON00034927	PRINSTON00046707	PRINSTON00065137
PRINSTON00029401	PRINSTON00034928	PRINSTON00046710	PRINSTON00065138
PRINSTON00029799	PRINSTON00034929	PRINSTON00046712	PRINSTON00065139
PRINSTON00029810	PRINSTON00034935	PRINSTON00046713	PRINSTON00065141
PRINSTON00029878	PRINSTON00034943	PRINSTON00046714	PRINSTON00065142
PRINSTON00030230	PRINSTON00034971	PRINSTON00046762	PRINSTON00065146
PRINSTON00030241	PRINSTON00034973	PRINSTON00046763	PRINSTON00065150
PRINSTON00030314	PRINSTON00034974	PRINSTON00046768	PRINSTON00065164
PRINSTON00030331	PRINSTON00034978	PRINSTON00046769	PRINSTON00065165
PRINSTON00030565	PRINSTON00035020	PRINSTON00046878	PRINSTON00065206
PRINSTON00030566	PRINSTON00035030	PRINSTON00046887	PRINSTON00065216
PRINSTON00030567	PRINSTON00035031	PRINSTON00046982	PRINSTON00065218
PRINSTON00030570	PRINSTON00035032	PRINSTON00047034	PRINSTON00065219
PRINSTON00030572	PRINSTON00035033	PRINSTON00047086	PRINSTON00065220
PRINSTON00030580	PRINSTON00035034	PRINSTON00047138	PRINSTON00065221
PRINSTON00030584	PRINSTON00035035	PRINSTON00047190	PRINSTON00065222
PRINSTON00030588	PRINSTON00035039	PRINSTON00047242	PRINSTON00065224
PRINSTON00030592	PRINSTON00035040	PRINSTON00047294	PRINSTON00065228
PRINSTON00030594	PRINSTON00035054	PRINSTON00047346	PRINSTON00065234
PRINSTON00030598	PRINSTON00035055	PRINSTON00047398	PRINSTON00065235
PRINSTON00030624	PRINSTON00035074	PRINSTON00047450	PRINSTON00065239
PRINSTON00030681	PRINSTON00035077	PRINSTON00047502	PRINSTON00065243
PRINSTON00030683	PRINSTON00035091	PRINSTON00047554	PRINSTON00065246

PRINSTON00030685	PRINSTON00035093	PRINSTON00047606	PRINSTON00065273
PRINSTON00030686	PRINSTON00035096	PRINSTON00047658	PRINSTON00065292
PRINSTON00030695	PRINSTON00035106	PRINSTON00047710	PRINSTON00065295
PRINSTON00030714	PRINSTON00035108	PRINSTON00047764	PRINSTON00065309
PRINSTON00030717	PRINSTON00035109	PRINSTON00047816	PRINSTON00065311
PRINSTON00030731	PRINSTON00035110	PRINSTON00047868	PRINSTON00065314
PRINSTON00030733	PRINSTON00035111	PRINSTON00047920	PRINSTON00065324
PRINSTON00030736	PRINSTON00035112	PRINSTON00047972	PRINSTON00065325
PRINSTON00030746	PRINSTON00035113	PRINSTON00048024	PRINSTON00065326
PRINSTON00030747	PRINSTON00035119	PRINSTON00048075	PRINSTON00065327
PRINSTON00030748	PRINSTON00035121	PRINSTON00048127	PRINSTON00065328
PRINSTON00030750	PRINSTON00035123	PRINSTON00048179	PRINSTON00065330
PRINSTON00030753	PRINSTON00035124	PRINSTON00048231	PRINSTON00065358
PRINSTON00030757	PRINSTON00035128	PRINSTON00048283	PRINSTON00065359
PRINSTON00030761	PRINSTON00035130	PRINSTON00048335	PRINSTON00065363
PRINSTON00030762	PRINSTON00035149	PRINSTON00048387	PRINSTON00065367
PRINSTON00030777	PRINSTON00035163	PRINSTON00048439	PRINSTON00065372
PRINSTON00030796	PRINSTON00035165	PRINSTON00048491	PRINSTON00065391
PRINSTON00030799	PRINSTON00035175	PRINSTON00048543	PRINSTON00065394
PRINSTON00030813	PRINSTON00035176	PRINSTON00048595	PRINSTON00065408
PRINSTON00030815	PRINSTON00035177	PRINSTON00048648	PRINSTON00065410
PRINSTON00030818	PRINSTON00035178	PRINSTON00048700	PRINSTON00065413
PRINSTON00030828	PRINSTON00035180	PRINSTON00048753	PRINSTON00065423
PRINSTON00030829	PRINSTON00035181	PRINSTON00048805	PRINSTON00065424
PRINSTON00030830	PRINSTON00035182	PRINSTON00048857	PRINSTON00065425
PRINSTON00030832	PRINSTON00035183	PRINSTON00048909	PRINSTON00065426
PRINSTON00030835	PRINSTON00035184	PRINSTON00048961	PRINSTON00065427
PRINSTON00030836	PRINSTON00035185	PRINSTON00049013	PRINSTON00065428
PRINSTON00030840	PRINSTON00035186	PRINSTON00049066	PRINSTON00065429
PRINSTON00030844	PRINSTON00035187	PRINSTON00049118	PRINSTON00065433
PRINSTON00030858	PRINSTON00035212	PRINSTON00049173	PRINSTON00065447
PRINSTON00030877	PRINSTON00035228	PRINSTON00049225	PRINSTON00065448
PRINSTON00030880	PRINSTON00035229	PRINSTON00049278	PRINSTON00065467
PRINSTON00030894	PRINSTON00035246	PRINSTON00049331	PRINSTON00065470
PRINSTON00030896	PRINSTON00035248	PRINSTON00049383	PRINSTON00065484
PRINSTON00030899	PRINSTON00035250	PRINSTON00049435	PRINSTON00065486
PRINSTON00030909	PRINSTON00035252	PRINSTON00049487	PRINSTON00065489
PRINSTON00030911	PRINSTON00035254	PRINSTON00049539	PRINSTON00065499
PRINSTON00030912	PRINSTON00035259	PRINSTON00049591	PRINSTON00065501
PRINSTON00030913	PRINSTON00035314	PRINSTON00049643	PRINSTON00065502
PRINSTON00030915	PRINSTON00035402	PRINSTON00049695	PRINSTON00065503

PRINSTON00030916	PRINSTON00035491	PRINSTON00049747	PRINSTON00065504
PRINSTON00030920	PRINSTON00035607	PRINSTON00049799	PRINSTON00065506
PRINSTON00030921	PRINSTON00035701	PRINSTON00049852	PRINSTON00065513
PRINSTON00030925	PRINSTON00035767	PRINSTON00049905	PRINSTON00065514
PRINSTON00030929	PRINSTON00035838	PRINSTON00049957	PRINSTON00065515
PRINSTON00030948	PRINSTON00035909	PRINSTON00050010	PRINSTON00065516
PRINSTON00030951	PRINSTON00035980	PRINSTON00050062	PRINSTON00065517
PRINSTON00030965	PRINSTON00036051	PRINSTON00050114	PRINSTON00065518
PRINSTON00030967	PRINSTON00036125	PRINSTON00050136	PRINSTON00065519
PRINSTON00030970	PRINSTON00036189	PRINSTON00050137	PRINSTON00065537
PRINSTON00030980	PRINSTON00036260	PRINSTON00050158	PRINSTON00065538
PRINSTON00030981	PRINSTON00036272	PRINSTON00050292	PRINSTON00065539
PRINSTON00030982	PRINSTON00036283	PRINSTON00050297	PRINSTON00065541
PRINSTON00030984	PRINSTON00036299	PRINSTON00050441	PRINSTON00065543
PRINSTON00030992	PRINSTON00036329	PRINSTON00050445	PRINSTON00065545
PRINSTON00031028	PRINSTON00036347	PRINSTON00050457	PRINSTON00065560
PRINSTON00031029	PRINSTON00036365	PRINSTON00050458	PRINSTON00065562
PRINSTON00031031	PRINSTON00036384	PRINSTON00050521	PRINSTON00065568
PRINSTON00031035	PRINSTON00036436	PRINSTON00050641	PRINSTON00065574
PRINSTON00031039	PRINSTON00036446	PRINSTON00050765	PRINSTON00065580
PRINSTON00031043	PRINSTON00036459	PRINSTON00050887	PRINSTON00065582
PRINSTON00031047	PRINSTON00036527	PRINSTON00051009	PRINSTON00065612
PRINSTON00031059	PRINSTON00036538	PRINSTON00051135	PRINSTON00065643
PRINSTON00031061	PRINSTON00036557	PRINSTON00051261	PRINSTON00065674
PRINSTON00031066	PRINSTON00036571	PRINSTON00051408	PRINSTON00065676
PRINSTON00031071	PRINSTON00036573	PRINSTON00051412	PRINSTON00065753
PRINSTON00031073	PRINSTON00036583	PRINSTON00051427	PRINSTON00065830
PRINSTON00031107	PRINSTON00036584	PRINSTON00051428	PRINSTON00065916
PRINSTON00031140	PRINSTON00036585	PRINSTON00051475	PRINSTON00066002
PRINSTON00031163	PRINSTON00036586	PRINSTON00051599	PRINSTON00066079
PRINSTON00031186	PRINSTON00036587	PRINSTON00051666	PRINSTON00066146
PRINSTON00031188	PRINSTON00036588	PRINSTON00051733	PRINSTON00066213
PRINSTON00031208	PRINSTON00036593	PRINSTON00051857	PRINSTON00066278
PRINSTON00031238	PRINSTON00036596	PRINSTON00051982	PRINSTON00066343
PRINSTON00031239	PRINSTON00036600	PRINSTON00052048	PRINSTON00066408
PRINSTON00031240	PRINSTON00036602	PRINSTON00052110	PRINSTON00066413
PRINSTON00031241	PRINSTON00036605	PRINSTON00052232	PRINSTON00066421
PRINSTON00031242	PRINSTON00036625	PRINSTON00052250	PRINSTON00066426
PRINSTON00031243	PRINSTON00036665	PRINSTON00052268	PRINSTON00066430
PRINSTON00031244	PRINSTON00036701	PRINSTON00052280	PRINSTON00066433
PRINSTON00031246	PRINSTON00036716	PRINSTON00052331	PRINSTON00066436

PRINSTON00031248	PRINSTON00036759	PRINSTON00052342	PRINSTON00066438
PRINSTON00031251	PRINSTON00036778	PRINSTON00052352	PRINSTON00066443
PRINSTON00031254	PRINSTON00036792	PRINSTON00052362	PRINSTON00066491
PRINSTON00031257	PRINSTON00036794	PRINSTON00052364	PRINSTON00066496
PRINSTON00031261	PRINSTON00036804	PRINSTON00052372	PRINSTON00066499
PRINSTON00031265	PRINSTON00036805	PRINSTON00052382	PRINSTON00066502
PRINSTON00031269	PRINSTON00036806	PRINSTON00052392	PRINSTON00066521
PRINSTON00031271	PRINSTON00036807	PRINSTON00052394	PRINSTON00066524
PRINSTON00031321	PRINSTON00036809	PRINSTON00052402	PRINSTON00066538
PRINSTON00031324	PRINSTON00036813	PRINSTON00052412	PRINSTON00066540
PRINSTON00031333	PRINSTON00036817	PRINSTON00052422	PRINSTON00066543
PRINSTON00031400	PRINSTON00036819	PRINSTON00052424	PRINSTON00066553
PRINSTON00031418	PRINSTON00036838	PRINSTON00052432	PRINSTON00066554
PRINSTON00031437	PRINSTON00036852	PRINSTON00052442	PRINSTON00066555
PRINSTON00031460	PRINSTON00036854	PRINSTON00052452	PRINSTON00066556
PRINSTON00031483	PRINSTON00036864	PRINSTON00052454	PRINSTON00066557
PRINSTON00031517	PRINSTON00036865	PRINSTON00052515	PRINSTON00066558
PRINSTON00031519	PRINSTON00036866	PRINSTON00052516	PRINSTON00066560
PRINSTON00031555	PRINSTON00036867	PRINSTON00052518	PRINSTON00066564
PRINSTON00031588	PRINSTON00036868	PRINSTON00052520	PRINSTON00066575
PRINSTON00031607	PRINSTON00036872	PRINSTON00052524	PRINSTON00066576
PRINSTON00031610	PRINSTON00036905	PRINSTON00052525	PRINSTON00066595
PRINSTON00031624	PRINSTON00036921	PRINSTON00052529	PRINSTON00066598
PRINSTON00031626	PRINSTON00036923	PRINSTON00052531	PRINSTON00066612
PRINSTON00031629	PRINSTON00036946	PRINSTON00052533	PRINSTON00066614
PRINSTON00031639	PRINSTON00036969	PRINSTON00052535	PRINSTON00066617
PRINSTON00031640	PRINSTON00037002	PRINSTON00052536	PRINSTON00066627
PRINSTON00031641	PRINSTON00037021	PRINSTON00052538	PRINSTON00066629
PRINSTON00031642	PRINSTON00037023	PRINSTON00052540	PRINSTON00066630
PRINSTON00031644	PRINSTON00037027	PRINSTON00052543	PRINSTON00066631
PRINSTON00066632	PRINSTON00068994	PRINSTON00138043	ZHP01458267
PRINSTON00066633	PRINSTON00068996	PRINSTON00151028	ZHP01458339
PRINSTON00066634	PRINSTON00069006	PRINSTON00171598	ZHP01458452
PRINSTON00066635	PRINSTON00069007	PRINSTON00171602	ZHP01458464
PRINSTON00066639	PRINSTON00069008	PRINSTON00171604	ZHP01458470
PRINSTON00066647	PRINSTON00069009	PRINSTON00171609	ZHP01458495
PRINSTON00066648	PRINSTON00069010	PRINSTON00177304	ZHP01458518
PRINSTON00066667	PRINSTON00069011	PRINSTON00177677	ZHP01458527
PRINSTON00066670	PRINSTON00069015	PRINSTON00182468	ZHP01458535
PRINSTON00066684	PRINSTON00069016	PRINSTON00183155	ZHP01458541
PRINSTON00066686	PRINSTON00069033	PRINSTON00191105	ZHP01459244

PRINSTON00066689	PRINSTON00069052	PRINSTON00191122	ZHP01459815
PRINSTON00066699	PRINSTON00069066	PRINSTON00195418	ZHP01459829
PRINSTON00066701	PRINSTON00069068	PRINSTON00198218	ZHP01459834
PRINSTON00066702	PRINSTON00069078	PRINSTON00202890	ZHP01459881
PRINSTON00066703	PRINSTON00069079	PRINSTON00210760	ZHP01632970
PRINSTON00066704	PRINSTON00069080	PRINSTON00211549	ZHP01665968
PRINSTON00066705	PRINSTON00069081	PRINSTON00233204	ZHP01667171
PRINSTON00066706	PRINSTON00069082	PRINSTON00233619	ZHP01667227
PRINSTON00066707	PRINSTON00069083	PRINSTON00233874	ZHP01681999
PRINSTON00066711	PRINSTON00069087	PRINSTON00234451	ZHP01694618
PRINSTON00066722	PRINSTON00069088	PRINSTON00234519	ZHP01713711
PRINSTON00066723	PRINSTON00069121	PRINSTON00235043	ZHP02231254
PRINSTON00066742	PRINSTON00069140	PRINSTON00235045	ZHP02231255
PRINSTON00066745	PRINSTON00069154	PRINSTON00235047	ZHP02231327
PRINSTON00066759	PRINSTON00069156	PRINSTON00235179	ZHP02231379
PRINSTON00066761	PRINSTON00069166	PRINSTON00236002	ZHP02231492
PRINSTON00066764	PRINSTON00069167	PRINSTON00236489	ZHP02231509
PRINSTON00066774	PRINSTON00069168	PRINSTON00236491	ZHP02231526
PRINSTON00066776	PRINSTON00069169	PRINSTON00236529	ZHP02231547
PRINSTON00066777	PRINSTON00069170	PRINSTON00236540	ZHP02231567
PRINSTON00066778	PRINSTON00069171	PRINSTON00236555	ZHP02231581
PRINSTON00066779	PRINSTON00069172	PRINSTON00236561	ZHP02671546
PRINSTON00066780	PRINSTON00069176	PRINSTON00236640	ZHP02671547
PRINSTON00066781	PRINSTON00069177	PRINSTON00236643	ZHP02671548
PRINSTON00066787	PRINSTON00069188	PRINSTON00247247	ZHP02671549
PRINSTON00066791	PRINSTON00069207	PRINSTON00247252	PRINSTON00073421
PRINSTON00066810	PRINSTON00069221	PRINSTON00247422	PRINSTON00074516
PRINSTON00066813	PRINSTON00069223	PRINSTON00247459	PRINSTON00077533
PRINSTON00066827	PRINSTON00069233	PRINSTON00248468	PRINSTON00077616
PRINSTON00066829	PRINSTON00069234	PRINSTON00248492	PRINSTON00081547
PRINSTON00066832	PRINSTON00069235	PRINSTON00248606	PRINSTON00081596
PRINSTON00066842	PRINSTON00069236	PRINSTON00249260	PRINSTON00082675
PRINSTON00066843	PRINSTON00069238	PRINSTON00249303	PRINSTON00082857
PRINSTON00066844	PRINSTON00069239	PRINSTON00249966	PRINSTON00082868
PRINSTON00066845	PRINSTON00069240	PRINSTON00251094	PRINSTON00083580
PRINSTON00066846	PRINSTON00069241	PRINSTON00251097	PRINSTON00084798
PRINSTON00066847	PRINSTON00069242	PRINSTON00251151	PRINSTON00096707
PRINSTON00066848	PRINSTON00069243	PRINSTON00267057	PRINSTON00112003
PRINSTON00066852	PRINSTON00069244	PRINSTON00272652	PRINSTON00112882
PRINSTON00066863	PRINSTON00069245	PRINSTON00274844	PRINSTON00114788
PRINSTON00066864	PRINSTON00069246	PRINSTON00275082	PRINSTON00114803

PRINSTON00066883	PRINSTON00069275	PRINSTON00275164	PRINSTON00114831
PRINSTON00066886	PRINSTON00069294	PRINSTON00275311	PRINSTON00115430
PRINSTON00066900	PRINSTON00069296	PRINSTON00276496	PRINSTON00115443
PRINSTON00066902	PRINSTON00069299	PRINSTON00276560	PRINSTON00115469
PRINSTON00066905	PRINSTON00069302	PRINSTON00276575	PRINSTON00115473
PRINSTON00066915	PRINSTON00069305	PRINSTON00276579	PRINSTON00115674
PRINSTON00066917	PRINSTON00069308	PRINSTON00279740	PRINSTON00121802
PRINSTON00066918	PRINSTON00069311	PRINSTON00280178	PRINSTON00147028
PRINSTON00066919	PRINSTON00069313	PRINSTON00311974	PRINSTON00155822
PRINSTON00066920	PRINSTON00069315	PRINSTON00341436	PRINSTON00157232
PRINSTON00066922	PRINSTON00069317	PRINSTON00366068	PRINSTON00157243
PRINSTON00066928	PRINSTON00069319	SOLCO00183861	PRINSTON00158423
PRINSTON00066929	PRINSTON00069325	ZHP00002079	PRINSTON00161863
PRINSTON00066930	PRINSTON00069406	ZHP00077529	PRINSTON00162259
PRINSTON00066931	PRINSTON00069487	ZHP00078723	PRINSTON00162342
PRINSTON00066932	PRINSTON00069580	ZHP00078865	PRINSTON00172244
PRINSTON00066933	PRINSTON00069672	ZHP00080376	PRINSTON00232480
PRINSTON00066934	PRINSTON00069753	ZHP00081966	PRINSTON00282150
PRINSTON00066935	PRINSTON00069824	ZHP00086078	PRINSTON00315736
PRINSTON00066952	PRINSTON00069895	ZHP00086114	PRINSTON00367665
PRINSTON00066953	PRINSTON00069967	ZHP00086116	PRINSTON00414085
PRINSTON00066955	PRINSTON00070039	ZHP00086119	PRINSTON00427584
PRINSTON00066957	PRINSTON00070110	ZHP00086691	PRINSTON00427585
PRINSTON00066959	PRINSTON00070120	ZHP00086845	PRINSTON00428208
PRINSTON00066961	PRINSTON00070132	ZHP00086850	PRINSTON00444379
PRINSTON00066964	PRINSTON00070143	ZHP00086936	SOLCO00027103
PRINSTON00066967	PRINSTON00070161	ZHP00086965	SOLCO00033496
PRINSTON00066970	PRINSTON00070216	ZHP00087436	SOLCO00134269
PRINSTON00066973	PRINSTON00070231	ZHP00087440	SOLCO00152622
PRINSTON00066976	PRINSTON00070248	ZHP00087472	SOLCO00153678
PRINSTON00066977	PRINSTON00070261	ZHP00087598	SOLCO00153737
PRINSTON00067057	PRINSTON00070277	ZHP00087654	ZHP00061068
PRINSTON00067137	PRINSTON00070291	ZHP00088339	ZHP00061069
PRINSTON00067229	PRINSTON00070301	ZHP00088460	ZHP00061080
PRINSTON00067320	PRINSTON00070311	ZHP00088829	ZHP00061081
PRINSTON00067400	PRINSTON00070370	ZHP00089055	ZHP00062554
PRINSTON00067471	PRINSTON00070383	ZHP00089494	ZHP00062555
PRINSTON00067541	PRINSTON00070402	ZHP00089584	ZHP00076624
PRINSTON00067612	PRINSTON00070416	ZHP00090787	ZHP00076630
PRINSTON00067682	PRINSTON00070418	ZHP00092262	ZHP00084289
PRINSTON00067752	PRINSTON00070428	ZHP00092266	ZHP00094705

PRINSTON00067823	PRINSTON00070430	ZHP00092301	ZHP00106327
PRINSTON00067893	PRINSTON00070434	ZHP00095233	ZHP00107709
PRINSTON00067963	PRINSTON00070438	ZHP00096580	ZHP00250032
PRINSTON00068034	PRINSTON00070441	ZHP00096675	ZHP00252107
PRINSTON00068104	PRINSTON00070443	ZHP00097521	ZHP00270127
PRINSTON00068175	PRINSTON00070445	ZHP00097836	ZHP00288134
PRINSTON00068245	PRINSTON00070447	ZHP00097843	ZHP00288820
PRINSTON00068257	PRINSTON00070448	ZHP00099424	ZHP00356801
PRINSTON00068258	PRINSTON00070449	ZHP00099804	ZHP00357485
PRINSTON00068287	PRINSTON00070452	ZHP00101837	ZHP00386118
PRINSTON00068288	PRINSTON00070454	ZHP00101882	ZHP00397222
PRINSTON00068308	PRINSTON00070457	ZHP00101913	ZHP00397973
PRINSTON00068309	PRINSTON00070460	ZHP00106651	ZHP00408030
PRINSTON00068325	PRINSTON00070462	ZHP00107730	ZHP00413805
PRINSTON00068326	PRINSTON00070468	ZHP00107734	ZHP00431497
PRINSTON00068327	PRINSTON00070470	ZHP00108612	ZHP00476336
PRINSTON00068328	PRINSTON00070472	ZHP00108614	ZHP00635360
PRINSTON00068342	PRINSTON00070473	ZHP00109360	ZHP00698764
PRINSTON00068355	PRINSTON00070474	ZHP00109361	ZHP00806819
PRINSTON00068357	PRINBURY00058083	ZHP00109728	ZHP00839987
PRINSTON00068413	PRINSTON00031265	ZHP00111012	ZHP01133674
PRINSTON00068426	PRINSTON00031324	ZHP00115237	ZHP01357832
PRINSTON00068427	PRINSTON00031790	ZHP00115241	ZHP01413880
PRINSTON00068429	PRINSTON00038063	ZHP00115372	ZHP01429757
PRINSTON00068448	PRINSTON00038151	ZHP00116205	ZHP01429887_1
PRINSTON00068451	PRINSTON00137623	ZHP00116677	ZHP01435524
PRINSTON00068465	PRINSTON00177447	ZHP00116680	ZHP01442665
PRINSTON00068467	PRINSTON00233602	ZHP00116698	ZHP01446239
PRINSTON00068470	SOLCO00025625	ZHP00117272	ZHP01447094
PRINSTON00068480	ZHP01451842	ZHP00117285	ZHP01469440
PRINSTON00068481	HUAHAI-US00004162	ZHP00117318	ZHP01478778
PRINSTON00068482	PRINBURY00058078	ZHP00117355	ZHP01486505
PRINSTON00068483	PRINSTON00000001	ZHP00380099	ZHP01494185
PRINSTON00068484	PRINSTON00000005	ZHP01458188	ZHP01529217
PRINSTON00068485	PRINSTON00000011	ZHP01458189	ZHP01530164
PRINSTON00068489	PRINSTON00000019	ZHP01491890	ZHP01538233
PRINSTON00068490	PRINSTON00020496	ZHP01632970	ZHP01584923
PRINSTON00068501	PRINSTON00020500	ZHP01637516	ZHP01594873
PRINSTON00068502	PRINSTON00020504	ZHP01637604	ZHP01821455
PRINSTON00068521	PRINSTON00020717	ZHP01875818	ZHP01863911
PRINSTON00068524	PRINSTON00020722	ZHP02392789	ZHP02224966

PRINSTON00068538	PRINSTON00020726	ZHP02671548	ZHP02238671
PRINSTON00068540	PRINSTON00020730	HUAHAI-US00004162	ZHP02290597
PRINSTON00068543	PRINSTON00020754	PRINSTON00010613	ZHP02298856
PRINSTON00068553	PRINSTON00022302	PRINSTON00011177	ZHP02301814
PRINSTON00068555	PRINSTON00022312	PRINSTON00011181	ZHP02305922
PRINSTON00068556	PRINSTON00022317	PRINSTON00012473	ZHP02385560
PRINSTON00068557	PRINSTON00023076	PRINSTON00012480	ZHP02410249
PRINSTON00068558	PRINSTON00032398	PRINSTON00017571	ZHP02560896
PRINSTON00068559	PRINSTON00033450	PRINSTON00017581	ZHP02561504
PRINSTON00068560	PRINSTON00033804	PRINSTON00017896	ZHP02561534
PRINSTON00068564	PRINSTON00037376	PRINSTON00017898	ZHP02561543
PRINSTON00068568	PRINSTON00037385	PRINSTON00071518	ZHP02561551
PRINSTON00068569	PRINSTON00037945	PRINSTON00072213	ZHP02561600
PRINSTON00068588	PRINSTON00038158	PRINSTON00072294	ZHP02561602
PRINSTON00068602	PRINSTON00039341	PRINSTON00072349	ZHP02579954
PRINSTON00068604	PRINSTON00039345	PRINSTON00080011	ZHP02580067
PRINSTON00068614	PRINSTON00039354	PRINSTON00083555	ZHP02580141
PRINSTON00068615	PRINSTON00039359	PRINSTON00089191	ZHP02580241
PRINSTON00068616	PRINSTON00039362	PRINSTON00122940	ZHP02580258
PRINSTON00068617	PRINSTON00039378	PRINSTON00132088	ZHP02580289
PRINSTON00068618	PRINSTON00039383	PRINSTON00132090	ZHP02580371
PRINSTON00068619	PRINSTON00039858	PRINSTON00132258	ZHP02580482
PRINSTON00068625	PRINSTON00054677	PRINSTON00133713	ZHP02580487
PRINSTON00068633	PRINSTON00063721	PRINSTON00137324	ZHP02580777
PRINSTON00068661	PRINSTON00063725	PRINSTON00212078	ZHP02580796
PRINSTON00068663	PRINSTON00064375	PRINSTON00233619	ZHP02736201
PRINSTON00068664	PRINSTON00068560	PRINSTON00236491	ZHP02736202
PRINSTON00068668	PRINSTON00070434	PRINSTON00341436	ZHP02736683_1
PRINSTON00068672	PRINSTON00074177	SOLCO00032527	ZHP02736709
PRINSTON00068675	PRINSTON00074186	SOLCO00032528	ZIQIANGGU025808
PRINSTON00068694	PRINSTON00077339	SOLCO00183861	PRINSTON00079001
PRINSTON00068708	PRINSTON00079310	ZHP00079871	PRINSTON00162335
PRINSTON00068710	PRINSTON00079329	ZHP00087598	PRINSTON00315969
PRINSTON00068720	PRINSTON00089191	ZHP00089556	PRINSTON00435319
PRINSTON00068721	PRINSTON00089837	ZHP00089585	PRINSTON00447843
PRINSTON00068722	PRINSTON00091316	ZHP00089774	ZHP00263916
PRINSTON00068723	PRINSTON00092688	ZHP00092117	ZHP00393513
PRINSTON00068724	PRINSTON00092951	ZHP00092137	ZHP00393908
PRINSTON00068725	PRINSTON00097822	ZHP00096675	ZHP00395850
PRINSTON00068731	PRINSTON00097828	ZHP00097775	ZHP01510611
PRINSTON00068733	PRINSTON00105958	ZHP00100729	ZHP02224962

PRINSTON00068735	PRINSTON00105960	ZHP00101286	ZHP02444024_1
PRINSTON00068736	PRINSTON00126118	ZHP00107730	ZHP02563015
PRINSTON00068740	PRINSTON00126802	ZHP00107734	ZHP02748991
PRINSTON00068742	PRINSTON00126870	ZHP00111012	ZHP00389304
PRINSTON00068761	PRINSTON00126872	ZHP00115372	ZHP01812101
PRINSTON00068775	PRINSTON00131161	ZHP00396670	ZHP00190573
PRINSTON00068777	PRINSTON00132180	ZHP00455957	ZHP00190573 - Translation from Lionbridge
PRINSTON00068787	PRINSTON00132258	ZHP00731709	ZHP02652306
PRINSTON00068788	PRINSTON00133127	ZHP00733766	ZHP00245039
PRINSTON00068789	PRINSTON00133713	ZHP01442556	PRINSTON00079794
PRINSTON00068790	PRINSTON00133781	ZHP01442564	ZHP01710663
PRINSTON00068791	PRINSTON00133837	ZHP01447770	ZHP01617381
PRINSTON00068792	PRINSTON00134669	ZHP01457679	ZHP01617390
PRINSTON00068797	PRINSTON00134697	ZHP01457784	ZHP01843066
PRINSTON00068800	PRINSTON00134732	ZHP01457868	PRINSTON00053085
PRINSTON00068804	PRINSTON00134734	ZHP01457870_1	PRINSTON00053350
PRINSTON00068806	PRINSTON00135370	ZHP01457872	PRINSTON00053403
PRINSTON00068809	PRINSTON00137212	ZHP01457907	PRINSTON00053512
PRINSTON00068831	PRINSTON00137245	ZHP01458085	PRINSTON00053570
PRINSTON00068872	PRINSTON00137324	ZHP01458118	PRINSTON00053456
PRINSTON00068901	PRINSTON00137366	ZHP01458189	PRINSTON00053695
PRINSTON00068903	PRINSTON00137408	ZHP01458196	PRINSTON00053699
PRINSTON00068918	PRINSTON00137436	ZHP01458199	PRINSTON00065184
PRINSTON00068961	PRINSTON00137755	ZHP01458200	PRINSTON00065187
PRINSTON00068980	PRINSTON00137878	ZHP01458210	PRINSTON00065201
PRINSTON00070492	PRINSTON00031779	PRINSTON00037234	PRINSTON00053138
PRINSTON00072212	PRINSTON00031792	PRINSTON00037319	PRINSTON00053191
PRINSTON00072213	PRINSTON00031796	PRINSTON00037338	PRINSTON00053244
PRINSTON00073102	PRINSTON00031816	PRINSTON00037354	PRINSTON00054583
PRINSTON00073104	PRINSTON00031821	PRINSTON00037364	PRINSTON00054593
PRINSTON00073120	PRINSTON00031800	PRINSTON00037352	PRINSTON00065203
PRINSTON00074781	PRINSTON00031825	PRINSTON00037369	PRINSTON00052979
PRINSTON00074782	PRINSTON00031830	PRINSTON00037372	PRINSTON00054573
PRINSTON00079081	PRINSTON00034982	PRINSTON00046797	PRINSTON00054577
PRINSTON00079169	PRINSTON00034985	PRINSTON00046806	PRINSTON00054605
PRINSTON00079197	PRINSTON00035004	PRINSTON00046847	PRINSTON00054599
PRINSTON00079747	PRINSTON00031780	PRINSTON00037235	PRINSTON00052927
PRINSTON00079751	PRINSTON00031781	PRINSTON00037237	PRINSTON00052724
PRINSTON00079752	PRINSTON00031782	PRINSTON00037241	PRINSTON00052582
PRINSTON00079753	PRINSTON00032108	PRINSTON00037484	PRINSTON00052625

PRINSTON00079754	PRINSTON00032122	PRINSTON00037488	PRINSTON00052657
PRINSTON00236649	PRINSTON00035018	PRINSTON00046859	PRINSTON00052659
SOLCO00032578	PRINSTON00031767	PRINSTON00037232	PRINSTON00052663
ZHP00245062	PRINSTON00032086	PRINSTON00037476	PRINSTON00052715
ZHP00245064	PRINSTON00032105	PRINSTON00037483	PRINSTON00052717
ZHP00389306	PRINSTON00032137	PRINSTON00037499	PRINSTON00052629
ZHP00389307	PRINSTON00032127	PRINSTON00037495	PRINSTON00052627
ZHP01458188	PRINSTON00031764	PRINSTON00037231	PRINSTON00052655
ZHP01660092	PRINSTON00031716	PRINSTON00037123	PRINSTON00052661
ZHP01660190	PRINSTON00031645	PRINSTON00037033	PRINSTON00052631
ZHP01660191	PRINSTON00031653	PRINSTON00037065	PRINSTON00052719
ZHP01660223	PRINSTON00031693	PRINSTON00037070	PRINSTON00052722
ZHP01660321	PRINSTON00031696	PRINSTON00037089	PRINSTON00052734
ZHP01660345	PRINSTON00031707	PRINSTON00037105	PRINSTON00052762
ZHP01660532	PRINSTON00031708	PRINSTON00037115	PRINSTON00052801
ZHP01660583	PRINSTON00031709	PRINSTON00037116	PRINSTON00052803
ZHP01660621	PRINSTON00031674	PRINSTON00037067	PRINSTON00052808
ZHP01661566	PRINSTON00031655	PRINSTON00037066	PRINSTON00053032
ZHP01661581	PRINSTON00031691	PRINSTON00037069	PRINSTON00054617
ZHP01661736	PRINSTON00031706	PRINSTON00037103	PRINSTON00054615
ZHP01661804	PRINSTON00031677	PRINSTON00037068	PRINSTON00054595
ZHP01661835	PRINSTON00031711	PRINSTON00037117	PRINSTON00053715
ZHP01661845	PRINSTON00031712	PRINSTON00037119	PRINSTON00053760
ZHP01661847	PRINSTON00031720	PRINSTON00037124	PRINSTON00054052
ZHP01661882	PRINSTON00031725	PRINSTON00037185	PRINSTON00054053
ZHP01662029	PRINSTON00031726	PRINSTON00037204	PRINSTON00054153
ZHP01662062	PRINSTON00031745	PRINSTON00037218	PRINSTON00054068
ZHP01662097	PRINSTON00031748	PRINSTON00037220	PRINSTON00054214
ZHP01710671	PRINSTON00031777	PRINSTON00037233	PRINSTON00054130
ZHP01875820	PRINSTON00032139	PRINSTON00037512	PRINSTON00053805
ZHP01875822	PRINSTON00032138	PRINSTON00037503	PRINSTON00054276
ZHP02172439	PRINSTON00032124	PRINSTON00037490	PRINSTON00054338
ZHP02220191	PRINSTON00031835	PRINSTON00037376	PRINSTON00054393
ZHP02220239	PRINSTON00031840	PRINSTON00037385	PRINSTON00054453
ZHP02579962	PRINSTON00031870	PRINSTON00037391	PRINSTON00054454
ZHP02579963	PRINSTON00031872	PRINSTON00037393	PRINSTON00054473
ZHP02579964	PRINSTON00031961	PRINSTON00037399	PRINSTON00054492
ZHP02579965	PRINSTON00031905	PRINSTON00037395	PRINSTON00054504
ZHP02579966	PRINSTON00031984	PRINSTON00037405	PRINSTON00054562
ZHP02579967	PRINSTON00031938	PRINSTON00037397	PRINSTON00052618
ZHP02579969	PRINSTON00031845	PRINSTON00037389	

ZHP02579970	PRINSTON00032007	PRINSTON00037407	
ZHP02579971	PRINSTON00032030	PRINSTON00037408	
ZHP02579973	PRINSTON00032050	PRINSTON00037409	
ZHP02579977	PRINSTON00032080	PRINSTON00037412	
ZHP02579979	PRINSTON00032081	PRINSTON00037428	
ZHP02579981	PRINSTON00032082	PRINSTON00037441	
ZHP02579985	PRINSTON00032083	PRINSTON00037444	
ZHP02579986	PRINSTON00032084	PRINSTON00037447	
ZHP02579987	PRINSTON00032085	PRINSTON00037461	
ZHP02642306	PRINSTON00031649	PRINSTON00037064	

Exhibit B

December 18, 2022

NAME Fengtian Xue, Ph.D.

TITLE Associate Professor

EDUCATION

B.S. Department of Chemistry, 1996-2001
University of Science and Technology of China (USTC)
Anhui, China,
Thesis: Synthesis and Characterization of Polymer-Based Optical Fibers
Supervisor: Dr. Qijin Zhang

Ph.D. Department of Chemistry, 2001-2007
Brown University
Providence, RI
Thesis: Small Molecule Inhibitors for the Serine Protease Plasmin
Supervisor: Dr. Christopher T. Seto

WORK EXPERIENCE

2007 – 2009 Postdoctoral Fellow
Department of Chemistry
Northwestern University
Evanston, Illinois
Project: nNOS Inhibitors for Neurodegenerative Diseases
Supervisor: Dr. Richard B. Silverman

2009 – 2011 Assistant Professor
Department of Chemistry
University of Louisiana at Lafayette
Lafayette, LA

2011 – 2018 Assistant Professor
Department of Pharmaceutical Sciences
School of Pharmacy
University of Maryland Baltimore
Baltimore, MD

2018 – Associate Professor
Department of Pharmaceutical Sciences
School of Pharmacy
University of Maryland Baltimore
Baltimore, MD

RESEARCH INTERESTS

Pre-clinical development of small molecule therapeutics for bacterial infections, AUD, neurodegenerative diseases, and cancer

AWARDS AND PRIZES

2022	NEXUS Award, JHU-UMB Collaborations for Drug Discovery and Development
2020	NEXUS Award, JHU-UMB Collaborations for Drug Discovery and Development
2017	University of Maryland School of Pharmacy AACP Teacher of the Year
2015	AACR Career Development Award (for Translational Breast Cancer Research)
2010	Summer Research Award, University of Louisiana at Lafayette
2008	Postdoctoral Fellowship, Proximagen, United Kingdom
2006	Graduate Dissertation Fellowship, Brown University
2001	Outstanding College Student of the Year, Anhui, China
2001	Excellent Student Scholarship of USTC, First Prize
2000	Excellent Student Scholarship of USTC, First Prize
1999	Excellent Student Scholarship of USTC, First Prize
1998	Japan Shi-Ye-Tong-Xun-Wang Fellowship
1997	Xu-Xin Fellowship, China

PROFESSIONAL MEMBERSHIPS

Society of Chinese Bioscientists in America (SCBA)
Sigma Xi (full member)
The American Chemical Society (ACS)
American Association of the Advancement of Science (AAAS)
American Association of Colleges of Pharmacy (AACP)
American Association of Pharmaceutical Scientists (AAPS)
American Association for Cancer Research (AACR)

EDITOR AND REVIEWER EXPERIENCE

Editorial Board:

Frontiers in Drug Discovery – Cardiovascular and Hematologic Drugs (2021 –)
Frontiers in Aging Neuroscience (2021 –)
Current Trends in Medicinal Chemistry

Reviewer for Journals:

ACS Applied Polymer Materials
ACS Chemical Biology
ACS Chemical Neuroscience

ACS Medicinal Chemistry Letters
Biochemistry
Bioorganic Chemistry
Bioorganic Medicinal Chemistry
Bioorganic Medicinal Chemistry Letters
Catalysis Communications
ChemComm
ChemMedChem
ChemistrySelect
Chemistry Letters
Expert Opinion on Investigational Drugs
European Journal of Medicinal Chemistry
Future Medicinal Chemistry
Journal of Combinatorial Chemistry
Journal of Enzyme Inhibition and Medicinal Chemistry
Journal of Infection in Developing Countries
Journal of Inorganic Biochemistry
Journal of Medicinal Chemistry
Journal of Natural Products
Letters in Organic Chemistry
MedChemComm
Medicinal Research Reviews Molecules
New Journal in Chemistry
NeuroReport
Organic Biomolecular Chemistry
Organic Chemistry Frontiers
Organic Letters
Organic Process Research & Development
Royal Society Open Science
RSC Advances
SynLett
Targeted Oncology
Tetrahedron Letters
Toxicology and Applied Pharmacology

Grants Review:

NIH/NIAID (January 2023, *scheduled*)
NIH ZRG1 IMST-K SBIR/STTR (May 2022)
NIH AIDC (12) SBIR: Nonviral Anti-infective Therapeutics Special Emphasis Panel (March 2022)
NIH ZRG1 AIDC-S (80) (March 2022)
NIH ZRG1 AIDC-S (80) (November 2021)
Swiss National Science Foundation (2021)
NIH BST-55: High-throughput screening (March 2019)
NIH BST-55: High-throughput screening (October 2018)
Great Lakes Fishery Commission
South Carolina NASA Space Grant
Outstanding Self-Financed International Graduate Student Fellowship (2013 – 2015)

INVITED SPEAKER AT SYMPOSIA; LECTURESHIP

1. Enhancers of CPA- and DOX-based chemotherapy. *Shanghai Institute of Technology, Nov 30, 2022*
2. ALDH2 inhibitors for the treatment of AUDs. *NCATS, Aug 29, 2022*
3. Enhancers of CPA- and DOX-based chemotherapy. *Towson University, Dec 9, 2021*
4. BCL6 BTB Domain Inhibitors for Diffuse Large B-Cell Lymphomas. *SCBA Annual Meeting, December 12, 2020*
5. Anti-Pseudomonal Agents by Targeting the Heme Uptake System. *Towson University, April 2, 2020*
6. Small Molecule Therapeutics for DLBCL. *Loyola University in Chicago, March 19, 2020*
7. Anti-Virulence by Targeting the *Pseudomonas aeruginosa* Heme Acquisition System. *Frontiers in Metals in Medicine Symposium, November 15, 2019*
8. Therapeutics for Diffuse Large B-Cell Lymphomas. *Johns Hopkins University, November 11, 2019*
9. Small Molecule Therapeutics for DLBCL. *Northwestern University, April 18, 2018*
10. CAR Activators as a Sensitizer for Cyclophosphamide-Based Anti-Cancer Therapy. *The University of Tennessee Health Science Center, March 27, 2018*
11. CAR Activators as a Sensitizer for Cyclophosphamide-Based Anti-Cancer Therapy. *Notre Dame of Maryland University, November 2, 2017*
12. Wnt Signaling Inhibitors for the Treatment of Colorectal Cancer. *Nanjing Science and Technology University, July 3, 2017*
13. Allosteric Inhibitors of Bacterial Heme Oxygenase as Novel Antimicrobial Agents. *Shanghai University, June 30, 2017*
14. Wnt Signaling Inhibitors for the Treatment of Colorectal Cancer. *Jiaxing University, June 29, 2017*
15. Wnt Signaling Inhibitors for the Treatment of Non-Alcoholic Fatty Liver Diseases (NAFLD). *Nanjing Normal University, June 19, 2017*

16. Novel Wnt Inhibitors as Novel Treatment of Non-Alcoholic Fatty Liver Diseases (NAFLD). *University of Texas Austin, April 13, 2017*
17. BCL6 BTB domain inhibitors for the treatment of DLBCL. *University of Wisconsin Milwaukee, November 18, 2016*
18. Wnt Signaling Inhibitors for the Treatment of Type 2 Diabetes. *Brown University, October 7, 2016*
19. BCL6 BTB Domain Inhibitors for DLBCL. *Virginia Commonwealth University, September 7, 2016*
20. Small Molecule Inhibitors of the BCL6 BTB Domain as Potential Treatment for DLBCL. *CADD Symposium, Baltimore, MD, May 25, 2016*.
21. Anti-Parasitic Agents by Targeting the Heme Transporters. *Texas Technology University, April 6, 2016.*
22. Small Molecule Inhibitors of the BCL6 BTB Domain for Diffuse Large B-Cell Lymphomas. *University of Utah, March 24, 2016.*
23. BCL6 BTB domain inhibitors for the treatment of DLBCL. *China Pharmaceutical University, June 9, 2015.*
24. BCL6 BTB domain inhibitors for the treatment of DLBCL. *Nanjing University of Science and Technology, China, May 29, 2015.*
25. Small molecule inhibitors of the BCL6 BTB domain for diffuse large B-cell lymphoma. *University of Maryland Baltimore County, MD, September 23, 2014.*
26. Metabotropic Glutamate Receptor 5 Agonists as Drug Candidates for Traumatic Brain Injury. *CADD Symposium, MD, July 9, 2012.*
27. Development of A Fluorometric Assay for Protein Serine/Threonine Phosphatase Calcineurin. *Xavier University of Louisiana, October 27, 2011.*
28. Development of Novel Inhibitors of Neuronal Nitric Oxide Synthase for the Treatment of Neurodegenerative Diseases. *Symposium on Nitric Oxide and Other Gaseous Neurotransmitters, Toronto, Canada, May 27-28, 2010.*

TEACHING ACTIVITIES

Course Taught at UMB

Year	Course #	Course Name	Credits	Role
2022	PHAR533	Med Chem 1	2	Course manager
	PHAR667	Org Synth Drug Design	1	Co-Course manager
	PHAR628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR600	Principles Drug Discov	1-3	Lecturer
	PHAR606	Experimental Success #1	1	Course manager
2021	PHAR608	Pharma Sci MS Lab Skills	1	Course manager
	PHAR533	Med Chem 1	2	Course manager
	PHAR628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR600	Principles Drug Discov	1-3	Lecturer

2020	PHAR608	Pharma Sci MS Lab	1	Course manager
	PHAR533	Med Chem 1	2	Course manager
	PHAR705	PSC Journal Club	1	Co-Course manager
	PHAR667	Org Synth Drug Design	1	Co-Course manager
	PHAR751	Drug Design	2	Lecturer
	PHMY551	Recent Adv Pharmacol	1	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR 600	Principles Drug Discov	1-3	Lecturer
2019	PHAR533	Med Chem 1	2	Course manager
	PHAR705	PSC Journal Club	1	Co-Course manager
	PHMY551	Recent Adv Pharmacol	1	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR 600	Principles Drug Discov	1-3	Lecturer
2018	PHAR533	Med Chem 1	2	Course manager
	PHAR705	PSC Journal Club	1	Co-Course manager
	PHAR667	Org Synth Drug Design	1	Co-Course manager
	PHAR539	Med Chem 2	2	SG proctor
	PHMY551	Recent Adv Pharmacol	1	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR 600	Principles Drug Discov	1-3	Lecturer
2017	PHAR533	Med Chem 1	2	Course manager
	PHAR705	PSC Journal Club	1	Co-Course manager
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHMY551/651	Recent Adv Pharmacol	1	Lecturer
	PHAR 600	Principles Drug Discov	1-3	Lecturer
2016	PHAR533	Med Chem 1	2	Course manager
	PHMY551/651	Recent Adv Pharmacol	1	Lecturer
	PHAR 600	Principles Drug Discov.	1-3	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR751	Drug Design	2	Lecturer
	REGS 614	Regulatory Science	3	Lecturer
2015	PHAR533	Med Chem 1	2	Course manager
	PHMY551/651	Recent Adv Pharmacol	1	Lecturer
	PHAR568	APS Debate		Mediator
	PHAR 600	Principles Drug Discov	1-3	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR667	Org Synth Drug Design	1	Co-Course manager
	REGS 614	Regulatory Science	3	Lecturer
2014	PHAR533	Med Chem 1	2	Course manager
	PHMY551/651	Recent Adv Pharmacol	1	Lecturer

	PHAR600	Principles Drug Discov	1-3	Lecturer
	PHAR628	Bioanal Pharmacol Methods	1-3	Lecturer
	PHAR751	Drug Design	2	Lecturer
2013	PHAR533	Med Chem 1	2	Course manager
	PHMY551/651	Recent Adv Pharmacol	1	Lecturer
	PHAR 600	Principles Drug Discov.	1-3	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
2012	PHAR533	Med Chem 1	2	Course manager
	PHAR 600	Principles Drug Discov	1-3	Lecturer
	PHAR 628	Bioanal Pharmacol Methods	1-3	Lecturer
2011	PHAR534	Med Chem 2	2	Lecturer
	PHMY551/651	Recent Adv Pharmacol	1-3	Lecturer

Course Taught in Previous Institutes

Year	Course Name	Credits	Role
------	-------------	---------	------

University of Louisiana at Lafayette:

2011	Organic Chemistry 1	3	Course manager
	Organic Chemistry Lab	1	Course manager
2010	Organic Chemistry 1	3	Course manager
	Organic Chemistry 2	3	Course manager
	Organic Chemistry Lab	1	Course manager
2009	Organic Chemistry 1	3	Course manager
	Organic Chemistry Lab	1	Course manager

Brown University:

2005	Organic Chemistry Lab	1	Teaching Assistant
2004	Organic Chemistry Lab	1	Teaching Assistant
2003	Organic Chemistry Lab	1	Teaching Assistant
2002	Organic Chemistry Lab	1	Teaching Assistant
2001	General Chemistry Lab	1	Teaching Assistant

Fellows and Students Supervised

Postdoctoral Scholars

Yong Ai (2016 –)
Dongdong Liang (2015 – 2019)
Huimin Cheng (2015 – 2017)
Wei Yang (2014 – 2016)
Xinhua He (2012 – 2014)

Shilei Zhu (2013)

Hannah Mbatia (2011 – 2012)

Chuangyu Qi (2011 – 2012)

Graduate Students

Zijin Xu (2022 –)

Shuaiqian (Helen) Men (Rotation, Spring 2022)

Lena Grogan (Rotation, 2021 – 2022)

Aziza Frank (2021 – joint with the Wilks Lab, CBI trainee)

Nathaniel McClean (Rotation, Spring 2021)

Aziza Frank (Rotation, Fall 2020)

Christopher Goodis (Rotation, Spring 2020)

Matthew Hursey (Rotation, Fall 2018)

Benjamin Diethelm-Varela (2018 – 2021, CBI trainee, Master)

Asmita Adhikari (Rotation, Fall 2017)

Garrick Centola (2017 – 2022, Xue and Wilks Labs, CBI trainee)

Elizabeth Robinson (2016 – 2021, Xue and Wilks Labs, CBI trainee)

Geoffrey Heinzl (2011 – 2016, Xue and Wilks Labs, CBI trainee)

Kiwon Ok (Rotation, Spring 2016)

Chad Johnson (Rotation, Fall 2015)

Rachita Rai (2013 – 2015, graduated with a Master’s degree)

Tao Liang (Rotation, Fall 2013)

PSC Master Students

Ayush Sinha (PSC Master Internship, 2022)

Mayur Umesh Shete (PSC Master Internship, 2022)

Ruchaa Charuhas Sapre (PSC Master Internship, 2022)

Gabriela Flores (2021)

Manali Kadam (2021)

Manali Nagarhalli (2020)

PharmD Research Students *Chiamaka Okereafor (2022)*

Negar Hamidi (2021 – 2022)

Heng Ung (2020)

Aanye Gafrey (2020)

Lucia Hwang (2020 – 2022)

Ferideh Sistani-Khanaman (2018 – 2020)

Phuc Quang Tran (2017 – 2019)

Chun Yin Li (2017)

Nathan Shen (2017)

Ana Continho (2014 – 2018)

Nam Nguyen (2014 – 2019)

Tommy Lee (2015 – 2016)

Willy Lee (2015)

Sidick Jibril (2014 – 2015)

Priya Brunsdon (2015)

Kelly Murphy (2014)

Jung-Min Lee (2013 – 2014)

Undergraduate Students

UMB:

Faith (Malaika) Nyuawara (UMCP, Summer 2022)

Assefa Akinwole (UMBC, Summer 2019)

Keri McClelland (the Bryn Mawr School, Summer 2018)

Meredith Kuser (PSC Summer Intern Program 2018)

Alexandra Morris (PSC Summer Intern Program 2017)

Yue Yin (Binghamton University, Summer 2017)

Deanna Sersen (PSC Summer Intern Program 2016)

Nayara Cauneto (Federal University, Brazil, Summer 2015)

Wende Kyle (PSC Summer Intern Program 2014)

Tharcilla Aglio (Federal University, Brazil, Summer 2014)

Emily Sartain (PSC Summer Intern Program 2013)

ULL:

Charlie Roy (Summer 2010)

Venkatesh Thirumal (2009 – 2010)

Tom Nguyen (2009 – 2010)

Brad Landreneau (Spring 2010)

Northwestern:

George Michael (Spring 2009)

Julia Widom (Fall 2008)

William Lewis (Summer 2008)

Brown University: *Samuel Kim (Spring 2006)*
Clara Orber (Fall 2004)

Visiting Scholars *Dr. Wan Pang (2019 – 2020)*
Dr. Yu Li (2018 – 2019)
Dr. Jingming Zhao (2018)
Dr. Qianshou Zong (2016)
Dr. Chao Jiang (2014)
Dr. Shaymma Kassab (2014)
Dr. Xianyu Sun (2013)

PSC Ph.D. Comprehensive Exam and Thesis Committees Member

Samuel Krug (Thesis committee member)
Nathaniel McClean (Thesis committee member 2022)
Kyle Kihn (Thesis committee member)
Ritika Kurian (Thesis committee member)
Raquel Shortt (Thesis committee member)
Payal Chatterjee (Thesis committee member)
Sydney Stern (Thesis defense on 4-4-2022)
Brandon Drennen (Thesis defense on 10-31-2019, CBI trainee)
Obinna Obianom (Thesis defense on 5-18-2018)
Yewon Pak (Thesis defense on 5-22-2017, CBI trainee)
Joseph Thomas (Thesis defense on 11-15-2016)
Lijia Lee (Thesis defense on 10-2-2016)
Jeremy Yep (Thesis defense on 5-15-2014)
Diana Vivian (Thesis defense on 4-8-2014)

External Thesis Committee *Nopondo Ndoh Esemoto (UMBC, Thesis defense on 11-18-2022)*

Advisors for PSC Master Students *Gabriela Flores (2021)*
Manali Nagarhalli (2020)

Advisors for PharmD Students *7 Baltimore Students Class of 2026 (2022 –)*
20 Shady Grove Students Class of 2021 (2017 – 2021)
12 Shady Grove Students Class of 2017 (2014 – 2018)
10 Baltimore Students Class of 2019 (2013 – 2017)

Awards to Mentees

Garrick Centola: PSC Dean's Teaching Fellowship (Fall 2021)

Ferideh Sistani-Khanaman: Conrad L. Wich Prize: exceptional work in medicinal chemistry and pharmacology (2021)

Garrick Centola: PSC Science Fellowship Award (2020)

Garrick Centola: PSC Merit Award (2019)

Elizabeth Robinson: CBI Fellowship (2018 – 2020)

Priya Brunsdon: Medicinal Chemistry and Bioanalytical Chemistry Award, 2018

Ana Continho: Excellent Performance in Medicinal Chemistry, 2018

Jung-Min Lee: Conrad L. Wich Prize, 2016

Geoffrey Heinzl: AFPE Fellowship. 7/1/13 – 6/30/15

Geoffrey Heinzl: ACS Med Chem Fellowship. 7/1/14 – 6/30/15

SERVICE ACTIVITIES

National Organization

SCBA: DC-Baltimore Chapter, Treasurer (2020 – 2021)

AAPS: Drug Discovery and Development Interface (DDDI) Section Abstract Screening Committee (2015 – 2018)

UMB

UMB Faculty Senator (2017 – 2020)

UMB-SOP Committees

Faculty Affairs Committee (2020 – 2022)

Discipline and Grievance Committee (Ad Hoc, 21x) (2017 – 2022)

Student Affairs Committee (2015 – 2018, 2019 – 2021)

Curriculum Committee (2014 – 2015, 2022 –)

Curriculum Refinement Committee, Chemistry courses (2014)

Department of Pharmaceutical Service

PSC Instructor Searching Committee (2021)

PSC Graduate Steering Committee (2016 – 2020)

PSC Departmental Seminar Coordinator (2013 – 2020)

Director of PSC High Throughput Screening Core Facility (2016 –)

Other Service

Glorystar Children's Chorus, PSA President (2021 –)

Career Day Speaker, Beverly Farms ES, Potomac MD (2018)

Participation in the UMB-SOP PharmD Graduation Hooding Ceremony (2017)

UMB-SOP Rho Chi Research Round-Table (2016)
Participation in the UMB-SOP White Coat Ceremony (2015)
Career Day Speaker, the Beverly Farms ES, Potomac (2015)
UMB-SOP PharmD Research Round-Table, Baltimore (2014)
UMB-SOP PharmD Research Round-Table, Shady Grove (2014)
PSC PhD Recruitment Trip, Temple University (2013)
PSC PhD Recruitment Trip, UMBC (2013)
PSC PhD Program Recruitment Trip, Xavier University (2012)
UMB Graduate Research Day Poster Judge (2012)
PharmD Interview (2011 – 2018, eight times)

SCHOLARLY ACTIVITIES

Publications in Refereed Journals (* = Corresponding Author)

1. Ruan J, Liang D, Yan W, Zhong Y, Talley DC, Rai G, Tao D, LeClair CA, Simeonov A, Zhang Y, Chen F, Quinney NL, Boyles SE, Cholom DM, Gentzsch M, Henderson MJ, Xue F, Fang S. 2022 A small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase. *Mol. Biol. Cell* 33(3):ar120. [PMID: 36074076](#)
2. Zhang J, Li Q, Kawashima SA, Nasr M, Xue F, Zhao R. 2022. Improving drug sensitivity of HIV-1 protease inhibitors by restriction of cellular efflux system in a fission yeast model. *Pathogen* 11(7):804. [PMID: 35890048](#)
3. Stern S, Liang D, Li L, Kurian R, Lynch C, Srilatha S, Heyward S, Zhang J, Karen KA, Chun Y W, Huang R, Xia M, Charles C, Xue F, Wang H. 2022. Targeting CAR-Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. *JCI Insight* 7(12):e153868. [PMID: 35579950](#)
4. Ai Y, Sakamuru S, Imler G, Xia M, Xue F. 2022. Wnt/β-catenin signaling inhibitors with improved aqueous solubility and anti-leukemia activity by disrupting molecular planarity. *Bioorg. Med. Chem.* 69:116890. [PMID: 35777269](#)
5. Frank A, Hamidi N, Xue F. 2022. Regioselective alkylation of 2,4-dihydroxybenzaldehyde and 2,4-dihydroxyacetophenones. *Tetrahedron Lett.* 95:153755. [PMID: 35495552](#)
6. Robinson E, Frankenberg-Dinkel N, Xue F, Wilks A. 2021. Recombinant production of biliverdin IXb and d isomers in the T7 promoter compatible Escherichia coli Nissle (EcN(T7)). *Front. Microbiol.* 12:787609. [PMID: 34956154](#)
7. Cai Y, Poli ANR, Vadrevu S, Gyampoh K, Hart C, Ross B, Fair M, Xue F, Salvino JM, Montaner LJ. 2021. BCL6 BTB-specific inhibitor reversely represses T-cell activation, Tfh cells differentiation, and germinal center reaction in vivo. *Eur. J. Immunol.* 51(10):2441-2451. [PMID: 34287839](#)
8. Robinson E, Wilks A, Xue F. 2021. Repurposing acitretin as an antipseudomonal agent targeting the *Pseudomonas aeruginosa* iron-regulated heme oxygenase. *Biochemistry* 60(9):689-698. [PMID: 33621054](#)

9. Ai Y, Hwang L, MacKerell Jr. AD, Melnick A, Xue F. **2021**. Progress towards B-cell lymphoma 6 BTB domain inhibitors for the treatment of diffuse large B-cell lymphoma and beyond. *J. Med. Chem.* 64(8):4333-4358. [PMID: 33844535](#)
10. Ruan J, Liang D, Zhong Y, Talley DC, Yan W, Gentzsch M, Rai G, Tao D, Zhang Y, Chen F, Henderson MJ, Xue F, Fang S. **2021**. A small molecule hijacks ERAD pathway to degrade RNF5 and improves ΔF508CFTR stability and trafficking. *J. Biol. Chem.* submitted
11. Diethelm-Varela B, Kumar A, Lynch C, Imler G, Deschamps J, Li Y, Xia M, MacKerell Jr., AD, Xue F. **2021**. Stereoisomerization of 6-(4-chlorophenyl)imidazo[2,1-*b*][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO). *Tetrahedron* 79:131886. (Cover Article)
12. Li S, Zhao J, Huang R, Travers J, Klumpp-Thomas C, Yu W, MacKerell A, Xue F, Sipes NS, Hsieh J, Ryan K, Simeonov A, Santillo MF, Xia M, **2021**. Profiling the Tox21 chemical collection for acetylcholinesterase inhibition. *Environ. Health Perspect.* 129(4):047008. [PMID: 33844597](#)
13. Centola G, Xue F, Wilks A. **2020**. Metallotherapeutics Development in the Age of Iron-Clad Bacteria. *Metalomics* 12:1863-1877. [PMID: 33242314](#)
14. Centola G, Deredge DJ, Hom K, Dent AT, Xue F,* Wilks A. **2020**. Gallium (III) salophen as a dual inhibitor of *Pseudomonas aeruginosa* heme sensing and iron acquisition. *ACS Infect. Dis.* 6(8): 2073-2085. [PMID: 32551497](#)
15. Thomas JM, Wang X, Gong G, Li T, Dai B, Sun X, Nucifora LG, Nucifora Jr. FC, Liu Z, Xue F, Liu C, Ross CA, Smith W. **2020**. GTP-binding inhibitors increase LRRK2-linked ubiquitination and inclusions. *J. Cell. Physiol.* 235(10): 7309-7320. [PMID: 32180220](#)
16. Cai Y, Watkins MA, Xue F, Ai Y, Cheng HM, Midkiff CC, Wang X, Alvarez X, Salvino JM, Veazey RS, Montaner L. **2020**. BCL6 BTB-specific inhibition via FX1 treatment reduces Tfh cells & reverses lymphoid follicle hyperplasia in indian rhesus macaque (macaca mulatta). *J. Med. Primatol.* 49(1): 26-33. [PMID: 31571234](#)
17. Yang W, Li Y, Ai Y, Obianom ON, Guo D, Yang H, Sakamuru S, Xia M, Shu Y, Xue F.* **2019**. “Pyrazole-4-carboxamide (YW2065): A therapeutic candidate for colorectal cancer via dual activities of Wnt/β-catenin signaling inhibition and AMP-activated protein kinase (AMPK) activation” *J. Med. Chem.* 62(24):11151-11164. [PMID: 31769984](#)
18. Liang D, Li L, Lynch C, Mackowiak B, Hedrich WD, Ai Y, Yin Y, Heyward S, Xia M, Wang H, Xue F.* **2019**. Human constitutive androstane receptor agonist DL5016: a novel sensitizer for cyclophosphamide-based chemotherapies. *Eur. J. Med. Chem.* 179:84-99. [PMID: 31247375](#)
19. Liang D, Li L, Lynch C, Xia M, Wang H, Xue F.* **2019**. DL5050: a selective agonist for the human constitutive androstane receptor. *ACS Med. Chem. Lett.* 10(7):1039-1044. [PMID: 31312405](#).
20. Diethelm-Varela B, Ai Y, Liang D, Xue F.* **2019**. Nitrogen mustards as anticancer chemotherapies: historic perspective, current developments, and future trends. *Curr. Topics Med. Chem.* 19(9): 691-712.
21. Zhao J, Liang D, Robinson E, Xue F.* **2019**. The effects of novel heme oxygenase inhibitors on the growth of *Pseudomonas aeruginosa*. *Microbial Pathogenesis* 129:64-67.
22. Ai Y, Obianom ON, Kuser M, Li Y, Shu Y, Xue F.* **2019**. Enhanced tumor-selectivity of 5-fluorouracil using a reactive oxygen species-activated prodrug approach. *ACS Med. Chem. Lett.* 10:127-131. [PMID: 30655959](#)
23. Cai Y, Abdel-Mohsen M, Tomescu C, Xue F, Wu G, Howell BJ, Ai Y, Sun J, Azzoni L, Coz CL, Romberg N, Montaner LJ. **2019**. BCL6 inhibitor-mediated downregulation of pSAMHD1 and T cell

activation are negatively associated with HIV infection and reactivation. *J. Virol.* 93(2):e01073/1-15.

24. Obianom ON, Ai Y, Li Y, Yang W, Guo D, Yang H, Sakamuru S, Xia M, Xue F,* Shu Y. **2019.** Triazole-based inhibitors of the Wnt/β-catenin signaling pathway improves glucose and lipid metabolism in diet-induced obese mice. *J. Med. Chem.* 62(2):724-741. PMID: 30605343

25. Heinzl GA, Huang W, **Xue F**, Moenne-Loccoz P, Wilks A. “The Asp99-Arg188 Salt Bridge of the *Pseudomonas aeruginosa* HemO is Critical in Allowing Conformational Flexibility During” *J. Biol. Inorg. Chem.* **2018**, 23, 1057-1070.

26. Metry, M.; Felton, J.; Cheng, K.; Xu, S.; Ai, Y.; Xue, F.; Raufman, J.; Polli, J. “Attenuated Accumulation of Novel Fluorine (19F)-Labeled Bile Acid Analogues in Gallbladders of Fibroblast Growth Factor-15 (FGF15)-Deficient Mice” *Mol. Pharm.* **2018**, 15, 4827-4834.

27. Zhao, S.; Yasir, M.; Zeng, W.; Cheng, L.; Zhou, X.; **Xue, F.*** Jiang, C. “Palladium-Catalyzed C2-Selective Alkynylation of Indoles with Bromoalkynes” *Tetrahedron Lett.*, Submitted

28. Cheng, H.; Linhares, B. M.; Yu, W.; Cardenas, M. G.; Ai, Y.; Jiang, W.; Melnick, A.; MacKerell, A.; Cierpicki, T.; **Xue, F.*** “Thiourea-Based Inhibitors of the BCL6 BTB Domain via NMR-Based Fragment Screening and Computer-Aided Drug Design” *J. Med. Chem.* **2018**, 61, 7573-7588.

29. Liang, D.; Robinson, E.; Hom, K.; Yu, W.; Nguyen, N.; Li, Y.; Zong, Q.; Wilks, A. **Xue, F.*** “Structure-based design and biological evaluation of inhibitors of the *Pseudomonas aeruginosa* heme oxygenase (pa-HemO)” *Bioorg. Med. Chem. Lett.* **2018**, 28, 1024-1029.

30. Gao, Y.; Zhu, W.; Yin, L.; Dong, B.; Fu, J.; Ye, Z.; **Xue, F.***; Jiang, C. “Palladium-Catalyzed Direct C2-Arylation of Free (N-H) Indoles via Norbornene-Mediated Regioselective C-H Activation” *Tetrahedron Lett.* **2017**, 58, 2213-2216.

31. Liang, D.; Sersen, D.; Deschamps, J. R.; Imler, G. H.; Jiang, C.; **Xue, F.*** “One-Pot Sequential Reaction to 11-Substituted-Phenanthridinones from N-Methoxybenzamides” *Org. Biomol. Chem.* **2017**, 15, 4390-4398.

32. Deb, D.; Rajaram, S.; Larsen, J. E.; Dospy, P. P.; Marullo, R.; Li, L. S.; Avila, K.; **Xue, F.**; Cerchietti, L.; Minna, J. D.; Altschuler, S. J.; Wu, L. F. “A Novel Combination Therapy Targeting BCL6 and Phospho-STAT3 Defeats Intra-tumor Heterogeneity in a Subset of Non-Small Cell Lung Cancer” *Cancer Res.* **2017**, 77, 3070-3081.

33. Madapura, H. S.; Nagy, N.; Njvari, D.; Kallas, T.; Krohnke, M.; Amu, S.; Bjorkholm, M.; Stenke, L.; Mandal, P. K.; McMurray, J. S.; Keszei, M.; Westerberg, L. S.; Cheng, H.; **Xue, F.**; Klein, G.; Klein, E.; Salamon, D. “Interferon γ is a STAT1-Dependent Direct Inducer of BCL6 Expression in Imatinib Treated Chronic Myeloid Leukemia Cells” *Oncogene*, **2017**, 36, 4619-4628.

34. Liang, D.; Yu, W.; Nguyen, N.; Deschamps, J. R.; Imler, G. H.; Li, Y.; MacKerell, Jr., A. D.; **Xue, F.*** “Iodobenzene-Catalyzed Synthesis of Phenanthridiones via Oxidative C-H Amidation” *J. Org. Chem.* **2017**, 82, 3589-3596.

35. Obianom, O. N.; Coutinho, A. L.; Yang, W.; Yang, H.; **Xue, F.***; Shu, Y. “Incorporation of a Biguanide Scaffold Enhances Drug Uptake by Organic Cation Transporter 1 and 2” *Mol. Pharm.* **2017**, 14, 2726-2739.

36. Thomas, J. M.; Li, T.; Yang, W.; **Xue, F.**; Fishman, P. S.; Smith, W. “68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment” *Front. Aging Neurosci.*, **2017**, 8, Article 337(1-11).

37. Cardenas M. G.; Yu, **Xue, F.***; MacKerell, A. D.; Melnick, M. M. “Therapeutic Targeting of GCB- and ABC-DLBCLs by Rationally Designed BCL6 Inhibitors” *Clin. Cancer Res.* **2017**, 23, 885-893.

38. Yang, C.; Cheng, G.; Huang, B.; **Xue, F.***; Jiang, C. "Metal-free Regioselective Construction of Indolin-3-ones via Hypervalent Iodine Oxidation of *N*-Substituted Indoles" *RSC Adv.* **2016**, *6*, 87134-87141.

39. Heinzl, G. A.; Huang, W.; Yu, W.; Giardina, B. J.; Zhou, Y.; MacKerell, A. D.; Wilks, A.; **Xue, F.*** "Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of *Pseudomonas aeruginosa*" *J. Med. Chem.* **2016**, *59*, 6929-6942.

40. Cardenas M. G.; Yu, Wendy Beguelin, W.; Teater, M. R.; Geng, H.; Goldstein, R. L.; Oswald, E.; Katerina Hatzi1, K.; Yang, S.; Cohen, J.; Shaknovich, R.; Vanommeslaeghe, K.; Cheng, H.; Liang, D.; Cho, H. J.; Abbott, J.; Tam, W.; Leonard, J. P.; Cerchietti, L.; Cierpicki, T.; **Xue, F.***; MacKerell, A. D.; Melnick, M. M. "Therapeutic Targeting of GCB- and ABC-DLBCLs by Rationally Designed BCL6 Inhibitors" *J. Clin. Invest.* **2016**, *126*, 3351-3362. (cover article)

41. Cheng, X.; Chen, Z.; Gao, Y.; **Xue, F.***; Jiang, C. "Aminoquinoline-Assisted Vinylic C-H Arylation of Unsubstituted Acrylamide for the Selective Synthesis of Z Olefins" *Org. Biomol. Chem.* **2016**, *14*, 3298-3306. (Highlighted by Synfacts, issue 05/2016)

42. Yang, W.; Coutinho, A.; L.; Abdel-Hafez, A. A.; Jiang, C.; **Xue, F.*** "Ligand-Free Copper-Mediated *N*-Arylation of Spirocyclic Keto-Lactams" *Tetrahedron Lett.* **2015**, *56*, 5599-5603.

43. Zhao, J.; Chen, X.; Le, J.; Yang, W.; **Xue, F.***; Zhang, X.; Jiang, C. "Cu-Mediated Direct Regioselective C-2 Chlorination of Indoles" *Org. Biomol. Chem.* **2015**, *13*(34), 9000-9004.

44. Holden, J. K.; Dejam, D.; Lewis M. C.; Huang, H.; Kang, S.; Jing, Q.; **Xue, F.**; Silverman, R. B.; Poulos, T. L. "Inhibitor Bound Crystal Structures of Bacterial Nitric Oxide Synthase" *Biochemistry* **2015**, *49*, 4075-4082.

45. Yang, W.; Sun, X.; Yu, W.; Rai, R.; Deschamps, J. R.; Mitchell, L. A.; Jiang, C.; MacKerell, Jr., A. D.; **Xue, F.*** "Facile Synthesis of Spirocyclic Lactams from β -Keto Carboxylic Acids" *Org. Lett.* **2015**, *17*, 3070-3073.

46. Lakkaraju, S. K.; Mbatia, H.; Hanscom, M.; Zhao, Z.; Wu, J.; Stoica, B.; MacKerell, Jr., A. D.; Faden, A. I.; **Xue, F.*** "Cyclopropyl-Containing Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5" *Bioorg. Med. Chem. Lett.* **2015**, *25*, 2275-2279.

47. He, X.; Lakkaraju, S. K.; Hanscom, M.; Zhao, Z.; Wu, J.; Stoica, B.; MacKerell, Jr., A. D.; Faden, A. I.; **Xue, F.*** "Acyl-2-Aminobenzimidazoles: A Novel Class of Neuroprotective Agents Targeting mGluR5" *Bioorg. Med. Chem.* **2015**, *23*, 2211-2220.

48. Li, T.; He, X.; Thomas, J. M.; Yang, D.; Zhong, S.; **Xue, F.***; Smith, W. "A Novel GTP-Binding Inhibitor, FX2149, Attenuates LRRK2 Toxicity in Parkinson's Disease Models" *PLOS One* **2015**, *10*: e0122461.

49. He, X.; Aglio, T.; Deschamps, J. R.; Rai, R.; **Xue, F.*** "Synthesis of 1,2-Dihydro-2-Oxo-4-Quinolinyl Phosphates from 2-Acyl-Benzoic Acids" *Tetrahedron Lett.* **2015**, *56*, 1441-1444.

50. He, X.; Kassab, S. E.; Heinzl, G.; **Xue, F.*** "Base-Catalyzed One-Step Synthesis of 5,7-Disubstituted-1,2,4-Triazolo[1,5-*a*]pyrimidines" *Tetrahedron Lett.* **2015**, *56*, 1034-1037.

51. Holden, J.; Kang, S.; Hollingsworth, S.; Li, H.; Lim, N.; Chen, S.; Huang, H.; **Xue, F.**; Tang, W.; Silverman, R.; Poulos, T. "Structure-Based Design of Bacterial Nitric Oxide Synthase Inhibitors" *J. Med. Chem.* **2015**, *58*, 994-1004.

52. Loane, D. J.; Stoica, B. A.; Tchantchou, F.; Kumar, A.; Barrett, J. P.; Akintola, T.; **Xue, F.**; Conn, P. J.; Faden, A. I. "Novel mGluR5 Positive Allosteric Modulator Improves Functional Recovery, Attenuates Neurodegeneration, and Alters Microglial Polarization after Experimental Traumatic Brain

Injury" *Neurotherapeutics*, **2014**, *11*, 857-869.

53. Li, T.; Yang, D.; Zhong, S.; Thomas, J. M.; **Xue, F.**; Liu, J.; Kong, L.; Voulalas, P.; Hassan, H. E.; Park, J. S.; MacKerell, A. D.; Smith, W. W. "Novel LRRK2 GTP-binding Inhibitors Reduced Degeneration in Parkinson's Disease Cell and Mouse Models" *Hum. Mol. Genet.* **2014**, *23*, 6212-6222.

54. **Xue, F.***; Stoica, B. A.; Hanscom, M.; Kabadi, S. V.; Faden, A. I. "Positive Allosteric Modulators (PAMs) of Metabotropic Glutamate Receptor 5 (mGluR5) Attenuate Microglial Activation" *CNS & Neurol. Disord. Drug Targets* **2014**, *13*, 558-566.

55. Kao, J. P. Y.; Muralidharan, S.; Zavalij, P. Y.; Fletcher, S.; **Xue, F.**; Rosen, G. M. "Baeyer-Villiger Rearrangement of a Substituted Pyrrole by Oxone" *Tetrahedron Lett.* **2014**, *55*, 3111-3113.

56. He, X.; **Xue, F.*** "Transition-Metal-Free Synthesis of (Z)-3-Ylideneephthalides from 2-Acyl-Benzoic Acids" *Tetrahedron Lett.* **2014**, *55*, 1956-1958.

57. Sun, X.; Rai, R.; MacKerell, Jr., A. D.; Faden, A. I.; **Xue, F.*** "Facile One-Step Synthesis of 2,5-Diketopiperazines" *Tetrahedron Lett.* **2014**, *55*, 1905-1908.

58. Sun, X.; Rai, R.; Deschamps, J. R.; MacKerell, Jr., A. D.; Faden, A. I.; **Xue, F.*** "Boc-Protected 1-(3-Oxocycloalkyl)ureas via a One-Step Curtius Rearrangement: Mechanism and Scope" *Tetrahedron Lett.* **2014**, *55*, 842-844.

59. Zhu, D.; Chen, M.; Li, M.; Luo, B.; Zhao, Y.; Huang, P.; **Xue, F.**; Simona, R.; Pi, R.; Wen, S. "Discovery of Novel *N*-Substituted Carbazoles as Neuroprotective Agents with Potent Anti-Oxidative Activity" *Eur. J. Med. Chem.* **2013**, *68*, 81-88.

60. Hatzi, K.; Jiang, Y.; Huang, C.; Garrett-Bakelman, F.; Gearhart, M. D.; Giannopoulou, E. G.; Zumbo, P.; Kirouac, K.; Bhaskara, S.; Polo, J. M.; Kormaksson, M.; MacKerell, Jr., A. D.; **Xue, F.**; Mason, C. E.; Hiebert, S. W.; Prive, G. G.; Cerchietti, L.; Bardwell, V. J.; Elemento, O.; Melnick, A. "A Hybrid Mechanism of Action for BCL6 in B Cells Defined by Formation of Functionally Distinct Complexes at Enhancers and Promoter" *Cell Reports*, **2013**, *4*, 573-588.

61. Lakkaraju, S. K.; **Xue, F.**; Faden, A. I.; MacKerell, Jr., A. D. "Estimation of Ligand Efficacies of Metabotropic Glutamate Receptors from Conformational Forces Obtained from Molecular Dynamics Simulations" *J. Chem. Info. Model.* **2013**, *53*, 1337-1349.

62. Hom, K.; Heinzl, G. A.; Suntara, E.; Pedro, L.; **Xue, F.**; MacKerell, Jr., A. D.; Wilks, A. "Small Molecule Antivirulents Targeting the Iron-Regulated Heme Oxygenase (HemO) of *P. Aeruginosa*" *J. Med. Chem.* **2013**, *54*, 1700-1703.

63. Nagagarajan, S.; **Xue, F.**; MacKerell, Jr., A. D. "Impact of Substrate Protonation and Tautomerization States on Interactions with the Active Site of Arginase I" *J. Chem. Info. Model.* **2013**, *53*, 452-460. (Cover Article)

64. **Xue, F.***; MacKerell, Jr., A. D.; Heinzl, G.; Hom, K. "Room Temperature Catalyst-Free Knoevenagel Condensation: Facile Access to Isatinylidenerhodanines" *Tetrahedron Lett.* **2013**, *54*, 1700-1703.

65. Li, H.; **Xue, F.**; Kraus, J. M.; Ji, H.; Labby, K. J.; Mataka, J.; Delker, S. L.; Martasek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. "Cyclopropyl- and Methyl-Containing Inhibitors of Neuronal Nitric Oxide Synthase" *Bioorg. Med. Chem.* **2013**, *21*, 1333-1343.

66. Labby, K. J.; **Xue, F.**; Kraus, J. M.; Ji, H.; Mataka, J.; Li, H.; Martasek, P.; Roman, L.; Poulos, T. L.; Silverman, R. B. "Intramolecular Hydrogen Bonding: A Potential Strategy for More Bioavailable Inhibitors of Neuronal Nitric Oxide Synthase" *Bioorg. Med. Chem.* **2012**, *20*, 2435-2443.

67. **Xue, F.**; Fraus, J.; Labby, K. J.; Li, H.; Ji, H.; Mataka, J.; Poulos, T. L.; Silverman, R. B. "Improved

Synthesis of Chiral Pyrrolidine Inhibitors and Their Binding Properties to Neuronal Nitric Oxide Synthase.” *J. Med. Chem.* **2011**, *54*, 6399-6403.

68. **Xue, F.**; Delker, S. L.; Li, H.; Fang, J.; Jamal, J.; Silverman, R. B.; Poulos, T. L. “Symmetric Double-Headed Aminopyridines, A Novel Strategy for Potent and Membrane-Permeable Inhibitors of Neuronal Nitric Oxide Synthase.” *J. Med. Chem.* **2011**, *54*, 2039-2048.
69. Atia, A.; Fernand, G.-P.; Hébuterne, X.; Spies, W.; Guardiola, A.; Ahn, C.; Fryer, J.; **Xue, F.**; Englyst, K.; Buchman, A. L. “Pectin Supplementation Increases Colonic Short Chain Fatty Acid (SCFA) Production in Patients with Short Bowel Syndrome (SBS).” *JPEN*, **2011**, *35*, 229-240.
70. **Xue, F.***; Seto, C. T. “Kinetic Delay of Cyclization/Elimination-Coupled Enzyme Assays: Analysis and Solution.” *Bioorg. Med. Chem. Lett.*, **2011**, *21*, 1069-1071.
70. Delker, S. L.; **Xue, F.**; Li, H.; Jamal, J.; Silverman, R. B.; Poulos, T. L. “The Role of Zinc in Isoform-Selective Inhibitors for Nitric Oxide Synthase.” *Biochemistry*, **2010**, *49*, 10803-10810 (highlighted on the homepage of Biochemistry).
71. **Xue, F.**; Li, H.; Fang, J.; Poulos, T. L.; Silverman, R. B. “Potent, Highly Selective, and Orally Bioavailable *Gem*-Difluorinated Monocationic Inhibitors of Neuronal Nitric Oxide Synthase.” *J. Am. Chem. Soc.* **2010**, *132*, 14229-14238.
72. **Xue, F.**; Li, H.; Fang, J.; Poulos, T. L.; Silverman, R. B. “Peripheral but Crucial: the Hydrophobic Pocket (Tyr⁷⁰⁶, Leu³³⁷, and Met³³⁶) for Potent and Selective Inhibition of Neuronal Nitric Oxide Synthase.” *Bioorg. Med. Chem. Lett.* **2010**, *20*, 6258-6261.
73. **Xue, F.**; Huang, J.; Li, H.; Ji, H.; Fang, J.; Poulos T, L.; Silverman, R. B. “Structure-Based Design, Synthesis, and Biological Evaluation of Lipophilic-Tailed Monocationic Inhibitors of Neuronal Nitric Oxide Synthase.” *Bioorg. Med. Chem.* **2010**, *18*, 6526-6537.
74. **Xue, F.**; Seto, C. T. “Fluorescent Probes to Study Serine/Threonine Phosphatase.” *Org. Lett.* **2010**, *12*, 1936-1939.
75. Delker, S. L.; Ji, H.; Li, H.; Jamal, J.; Fang, J.; **Xue, F.**; Silverman, R. B.; Poulos, T. L. “Unexpected Binding Modes of Nitric Oxide Synthase Inhibitors Effective in the Prevention of Cerebral Palsy.” *J. Am. Chem. Soc.* **2010**, *132*, 5437-5442.
76. **Xue, F.**; Silverman, R. B. “An Alkoxide Anion-triggered *tert*-Butyloxycarbonyl Group Migration. Mechanism and Application.” *Tetrahedron Lett.* **2010**, *51*, 2536-2538.
77. **Xue, F.**; Fang, J.; Lewis, W. W.; Martasek, P.; Roman, L. J.; Silverman, R. B. “Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors with Improved Cellular Permeability.” *Bioorg. Med. Chem. Lett.* **2010**, *20*, 554-557.
78. **Xue, F.**; Gu, W.; Silverman, R. B. “A Concise Route to the Chiral Pyrrolidine Core of Selective Inhibitors of Neuronal Nitric Oxide Synthase.” *Org. Lett.* **2009**, *11*, 5194-5197.
79. Fang, J.; Ji, H.; Lawton, G.; **Xue, F.**; Roman, L.; Silverman, R. B. “L337H Mutant of Rat Neuronal Nitric Oxide Synthase Resembles Human Neuronal Nitric Oxide Synthase Toward Inhibitors.” *J. Med. Chem.* **2009**, *52*, 4533-4537.
80. **Xue, F.**; Seto, C. T. “Macrocyclic Inhibitors of the Serine Protease Plasmin.” *J. Enzyme Inhib. Med. Chem.* **2009**, *24*, 779-794.
81. Lawton, G. R.; Ranaivo, H. R.; Wing, L. K.; Ji, H.; **Xue, F.**; Martasek, P.; Roman, L. J.; Watterson, D. M.; Silverman, R. B. “Analogues of 2-Aminopyridine-Based Selective Inhibitors of Neuronal Nitric Oxide Synthase with Increased Bioavailability.” *Bioorg. Med. Chem.* **2009**, *17*, 2371-2380.

82. Ji, H.; Erdal, E. P.; Litzinger, E. A.; Seo, J.; Zhu, Y.; **Xue, F.**; Fang, J.; Huang, J.; Silverman, R. B. “Selective Neuronal Nitric Oxide Synthase Inhibitors.” *Frontiers in Medicinal Chemistry*, Reitz, A. B.; Choudhary, M. I.; Atta-ur-Rahman, Editors; Bentham Science Publishers, Volume 4, **2009**, 842-882.
83. Hassanein, M.; **Xue, F.**; Seto, C. T.; Mason, R. W. “Development of a Specific Inhibitor for the Placental Protease, Cathepsin P.” *Arch. Biochem. Biophys.* **2007**, 464, 288-294.
84. **Xue, F.**; Seto, C. T. “Structure-Activity Studies of Inhibitors for the Serine Protease Plasmin: Design, Synthesis, and Biological Activity.” *Bioorg. Med. Chem.* **2006**, 14, 8467-8487.
85. Fei, J.; Basu, A.; **Xue, F.**; Palmore, G. T. R. “Two Polymerizable Derivatives of 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid).” *Org. Lett.* **2006**, 8, 3-6.
86. **Xue, F.**; Seto, C. T. “A Comparison of Cyclohexanone and Tetrahydro-4H-thiopyran-4-one 1,1-dioxide as Pharmacophores for the Design of Peptide-Based Inhibitors of the Serine Protease Plasmin.” *J. Org. Chem.* **2005**, 70, 8309-8321.
87. **Xue, F.**; Seto, C. T. “Selective Inhibitors of the Serine Protease Plasmin: Probing the S3 and S3’ Subsites Using a Combinatorial Library.” *J. Med. Chem.* **2005**, 48, 6908-6817.

Patents

1. **Xue F. 2022** “Pyrazinamide-mimicking small molecules as treatment for tuberculosis” Provisional Filed on Dec 1.
2. **Xue F, Wilks A. 2022** “Gallium-Salophen Antimicrobial Compounds and Methods of Use Thereof” Provisional Filed on Dec 1.
3. Wang J, **Xue F. 2022** “Composition and methods for treating proteotoxicity-associated diseases” Patent application (PCT/US22/075352), filed on Aug 23.
4. Zhou Q, **Xue F. 2022** “Discovery of a novel endothelial lipase inhibitor FX5153” Provisional Filed on May 11.
5. Wang H, **Xue F, Li L. 2021** “Car and Nrf2 dual activator agents for cyclophosphamide-based and doxorubicin-based treatments of cancer” Invention Disclosure Filed on March 3.
6. **Xue F, Ai Y, Shu Y. 2021** “Dual WNT signaling pathway inhibitors and AMPK activators for treatments of diseases” Invention Disclosure Filed on June 1.
7. **Xue F, Wilks A. 2021** “Gallium-Salophen Antimicrobial Compounds and Methods of Use Thereof” Patent Application (WO2021247992 A1 20211209), Filed on June 1.
8. **Xue F, Shu Y, Ai Y. 2019** “5-Fluorouracil Prodrugs and Methods of Making and Use Thereof” PCT Int. Appl., WO 2018236856 A1 20181227.
9. Wang H, **Xue F. 2018** “CAR activators as a co-treatment agent for cyclophosphamide-based treatment of hematopoietic malignancies” PCT Int. Appl., WO 2018236856 A1 20181227.
10. **Xue F, Shu Y. 2017** “Preparation of azoles and quinolones as Wnt signaling pathway inhibitors for treatment of diseases” Pat. Appl. WO 2017151786 A1 20170908.
11. Smith W, MacKerell AD, **Xue F. 2017** “LRRK2 GTP Binding Inhibitors for the Treatment of Parkinson’s Disease and Neuroinflammatory Disorders” U.S. Pat. # 9,701,627, issued July 11.

12. **Xue F**, Hamza I. **2016** “Compounds for Treating Parasitic Infections” Patent Appl. # WO 2016/179505 A1, Nov 10.
13. Silverman RB, Ji H, **Xue F**, Frank LM, Yang S, Poulos TL. **2015** “Inhibitors of Neuronal Nitric Oxide Synthase for Treatment of Melanoma.” Pat. # US 8,642,282 B2, issued date: US 9,090,589, *July 28*.
14. Melnick A, Cerchietti LCA, Cardenas MG, **Xue F**, MacKerell AD. **2018** “Bcl6 Inhibitors as Anticancer Agents” Pat. # US 9,943,506, issued date, April 17.
15. Silverman RB, **Xue F**. **2014** “Chiral Pyrrolidine Core Compounds en route to Inhibitors of Nitric Oxide Synthase Inhibitors.” Pat. Appl. # US 8,389,731 B2, issued date: *April 15*.
16. Yang S, Meyskens FL, Silverman RB, **Xue F**, Poulos TL, **2014** “Preparation of pyrrolidinyl compounds as nNOS inhibitors for the therapy and prevention of human melanoma.” Pat. Appl. # US 8,642,282, issued date: *Feb 4*.
17. Seto CT, **Xue F**. **2009** “Fluorogenic Substrates for Protein Phosphatases and Assay Incorporating the Substrates.” Pat. Appl. WO2009064359.
18. Silverman RB, **Xue F**. **2010** “Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors with Improved Membrane Permeability.” Pat. # US 12,693,196, issued date: *Jan 25*.
19. Silverman RB, **Xue F**. **2015** “Aminopyridine Dimer Compounds, Compositions and Related Methods for Neuronal Nitric Oxide Synthase Inhibition.” Pat. # US 8,932,842 B2, issued date: *Jan 13*.
20. Silverman RB, **Xue F**. **2015** “Intramolecular Hydrogen Bonding: A Strategy for Designing Bioavailable Inhibitors for Neuronal Nitric Oxide Synthase.” Pat. # US 8,927,730 B2, issued date: *Jan 6*.

Conference Presentations/Abstracts

1. Xue, F. **2022** “*Pseudomonas aeruginosa* heme sensing and utilization inhibitors targeting HasAp and HemO”. Gordon Research Conferences: *Tetrapyrroles*, Newport RI, *July 17-22*.
2. Ai, Y, Xue F. **2020** “YW2065 with dual activities of Wnt/β-catenin inhibition and AMPK activation for colorectal cancer” *ACS National Meeting, San Francisco (virtual meeting)*, CA, *Aug. 17-20*.
3. Xue F. **2020** “Developing DL5055 as an enhancer for cyclophosphamide-based therapeutics” *ACS National Meeting, San Francisco (virtual meeting)*, CA, *Aug. 17-20*.
4. Diethelm-Varela B, Xue F. **2020** “Stereoisomerization of the human CAR activator CITCO complicates its use as a reference ligand” *ACS National Meeting, San Francisco (virtual meeting)*, CA, *Aug. 17-20*.
5. Robinson E, Wilks A, Xue F. **2020** “Discovery and characterization of retinoic acid derivatives as inhibitors against *Pseudomonas aeruginosa* heme oxygenase” *ACS National Meeting, San Francisco (virtual meeting)*, CA, *Aug. 17-20*.
6. Centola G, Deredge DJ, Hom K, Dent AT, Ai Y, Wilks A, Xue F. **2020** “Development of metallotherapeutics targeting *Pseudomonas aeruginosa* heme sensing and iron acquisition pathways” *ACS National Meeting, San Francisco (virtual meeting)*, CA, *Aug. 17-20*.
7. Wang Y, Ai Y, Xue F, Hummon A. **2020** “MALD-MSI Evaluation of Penetration of Different Pyrazole-based Compounds into Multicellular Tumor Spheroids” ASMS.

8. Sistani-Khanaman F, Ai Y, Shapiro P, Xue F. **2020** “Enhancing tumor selectivity of 6-mercaptopurine using a reactive oxygen species-activated prodrug approach” APhA2020.
9. Vetrici D, Bugler J, Liu W, Michell R, Kinstrie R, Xue F, Melnick A, Copland M, Scott M. **2020** “Dual EZH2 and BCL6 inhibition targets CML stem cells via a gene network co-regulated with c-Myc” EHA-3000.
10. Robinson, E., Wilks, A.; Xue, F. “Identification and characterization of inhibitors of the *Pseudomonas aeruginosa* heme oxygenase”. Gordon Research Conferences: Tetrapyrroles, Spain, **2019**.
11. Centola, G.; Xue, F. Wilks A. “Heme Sensing Inhibitors in *Pseudomonas aeruginosa* with Metallosalophen Complexes”. Gordon Research Conferences: Tetrapyrroles, Spain, **2019**.
12. Ai, Y.; Obianom, O.; Shu, Y.; **Xue, F.**; “Reactive Oxygen Species (ROS) Triggered 5-Fluorouracil Prodrugs” *255th ACS National Meeting, New Orleans, LA, Mar. 18-22, 2018*.
13. Liang, D.; Li, L.; Wang, H.; **Xue, F.** “Human CAR Activators as Sensitizers of Cyclophosphamide-Based Treatment for Lymphomas” *255th ACS National Meeting, New Orleans, LA, Mar. 18-22, 2018*.
14. Centola, G.; Jiang, W.; Hom, K.; Wilks, A.; **Xue, F.** “Identification of Inhibitors of the *Pseudomonas aeruginosa* HasAp/HasR Protein-Protein Interaction” *255th ACS National Meeting, New Orleans, LA, Mar. 18-22, 2018*.
15. Robinson, E.; Liang, D.; Mourino, S.; **Xue, F.**; Wilks, A. “High Throughput *in vivo* Screening Assay for Novel Inhibitors of Extracellular Heme Sensing and Utilization in *Pseudomonas aeruginosa*” *255th ACS National Meeting, New Orleans, LA, Mar. 18-22, 2018*.
16. Cai, Y.; Abdel-Mohsen, M.; Tomescu, C.; Fair, M.; Azzoni, L.; Papasawas, E.; **Xue, F.**; Sun, J.; Romberg, N. D.; Coz, C. L.; Montaner, L. J. “Bcl6 inhibition represses THF/non-THF HIV infection and T-cell/myeloid activation” *Conference on Retroviruses and Opportunistic Infections, Boston, Massachusetts, Mar. 4-7, 2018*.
17. Gresely, B. P.; **Xue, F.**; Ai, Y.; Barasoain, I.; Perez, F.; Cerchetti, L. “Development of a Novel Class of Microtubule Destabilizing Agents with Selectivity Against Diffuse Large B-Cell Lymphoma (DLBCL) with B-Cell Receptor (BCR) Activation” *The 59th ASH Annual Meeting and Exposition, Atlanta, Georgia, Dec. 9-12, 2017*.
18. Cai, Y.; Tomescu, C.; Abdel-Mohsen, M.; Fair, M.; Azzoni, L.; Papasavvas, E.; **Xue, F.**; Sun, J.; Romberg, N. D.; Coz, C. L.; Montaner, L. J. “Bcl6 inhibition represses HIV infection *ex vivo* by suppression of immune activation: Implication for viral clearance in the secondary lymphoid tissue of HIV-infected patients undergoing ART treatment” *The 50th SLB Annual Meeting, Vancouver, Canada, Oct 4-7, 2017*.
19. Robinson, E.; Heinzl, G.; Liang, D.; Hom, K.; Wilks, A.; **Xue, F.** “Inhibition of the *Pseudomonas aeruginosa* heme oxygenase” *254th ACS National Meeting, Washington, DC, Aug. 20-24, 2017*.
20. Nguyen, N.; Liang, D.; Yu, W.; Deschamps, J. R.; Imler, G. H.; Li, Y.; MacKerell, Jr., A. D.; **Xue, F.** “Iodobenzene-Catalyzed Synthesis of Phenanthridiones via Oxidative C-H Amidation” *254th ACS National Meeting, Washington, DC, Aug. 20-24, 2017*.
21. Coutinho, A. L.; Obianom, O. N.; Yang, W.; Shu, Y.; **Xue, F.** “Biguanides Enhance Drug Uptake by Organic Cation Transporters” *254th ACS National Meeting, Washington, DC, Aug. 20-24, 2017*.

22. Ai, Y.; Yang, W.; Li, Y.; Shu, Y.; **Xue, F.** "Wnt/β-catenin Inhibitors for the Treatment of Colorectal Cancer" *254th ACS National Meeting, Washington, DC, Aug. 20-24, 2017.*
23. Jiang, C.; Yang, C.; Cheng, G.; Huang, B.; **Xue, F.** "Metal-Free Regioselective Construction of Indolin-3-ones via Hypervalent Iodine Oxidation of N-Substituted Indoles" *254th ACS National Meeting, Washington, DC, Aug. 20-24, 2017.*
24. **Xue, F.** "Anti-Parasitics by Targeting the Heme Transporters LHR1" *Gordon Research Conferences: Tetrapyrroles, Newport RI, July 17-21, 2016.*
25. **Xue, F.** "Benzimidoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of *Pseudomonas aeruginosa*" *Gordon Research Conferences: Tetrapyrroles, Andover NH, June 26 – July 1, 2016.*
26. Johnson, C.; Liang, D.; Yuan, X.; Hamza, I.; **Xue, F.** "Antiparasitic agents targeting LHR1" *252nd ACS National Meeting, Philadelphia, PA, Aug. 21-25, 2016.*
27. Cheng, H.; **Xue, F.** "BCL6 BTB Domain Inhibitors for DLBCLs" *252nd ACS National Meeting, Philadelphia, PA, Aug. 21-25, 2016.*
28. Heinzl, G.; Wilks, A.; **Xue, F.**; "HemO inhibitors as antivirulence" *Gordon Research Conferences, August 1-5, 2015.*
29. Kassab, S. E.; Yu, W.; MacKerell, A.; **Xue, F.** "Small Molecule Inhibitors of the BCL6 BTB Domain for DLBCLs" *248th ACS National Meeting, San Francisco, CA, August. 10-14, 2014.*
30. Rai, R.; **Xue, F.**; MacKerell, A.; Lakkaraju, S. K. "Synthesis and Evaluation of Protein Tyrosine Phosphatase Inhibitors by Targeting a Novel Allosteric Site" *248th ACS National Meeting, San Francisco, CA, August. 10-14, 2014.*
31. Cardenas, M.; Yu, W.; Zhu, S.; Cerchietti, L.; Melnick, A.; MacKerell, A. D.; **Xue, F.** "Targeting B-Cell Lymphoma 6 (BCL6) for the Treatment of Diffuse Large B-Cell Lymphomas (DLBCLs)" *246th ACS National Meeting, Indianapolis, IN, Sept. 8-12, 2013.*
32. He, X.; Hanscom, M.; Stoica, B.; MacKerell, A. D.; Faden, A. I.; **Xue, F.** "Centrally Active Positive Allosteric Modulators (PAMs) of Metabotropic Glutamate Receptor 5 (mGluR5) for Traumatic Brain Injury (TBI)" *246th ACS National Meeting, Indianapolis, IN, Sept. 8-12, 2013.*
33. Heinzl, G.; Hom, K.; Lopez, P.; MacKerell, A. D.; Wilks, A.; **Xue, F.** "Inhibitors of Iron-regulated heme oxygenase (HemO) of *Pseudomonas aeruginosa* as Novel Antivirulent Agents" *245th ACS National Meeting, New Orleans, LA, April. 7-11, 2013.*
34. **Xue, F.**; Mbatia, H.; MacKerell, A. D., Jr.; "Highly-Efficient Method to Isatinylidenerhodanine Formation: Synthesis and Mechanistic Studies" *244th ACS National Meeting, Philadelphia, PA, Aug. 19-23, 2012.*
35. Nagarajan, S.; **Xue, F.**; MacKerell, A. D., Jr.; "Charge Dependent Behavior of Substrate Arginine in the Arginase I Environment" *244th ACS National Meeting, Philadelphia, PA, Aug. 19-23, 2012.*
36. **Xue, F.**; "Positive Allosteric Modulators of the Metabotropic Glutamic Receptor 5 for Traumatic Brain Injury" *NIH GM Workshop, Dallas, May 6-9, 2012.*
37. **Xue, F.**; "Development of Novel Inhibitors of Neuronal Nitric Oxide Synthase for the Treatment of Neurodegenerative Diseases." *Symposium on Nitric Oxide and Other Gaseous Neurotransmitters, Toronto, Canada, May 27-28, 2010* (invited talk).

38. **Xue, F.**; "Neuronal Nitric Oxide Synthase Inhibitors as Drug Candidates for Neurodegenerative Diseases." *Southern Louisiana Symposium of Chemistry, Lake Charles, LA, Sept 25, 2009.*
39. **Xue, F.**; Seto, C. T. "Development of Fluorogenic Substrate for Serine/Threonine Phosphatases." *Gordon Research Conferences, 2007.*
40. **Xue, F.**; Seto, C. T. "Fluorescent Probes to Study Serine/Threonine Phosphatases." *232th ACS National Meeting, San Francisco, CA, Sept. 10-14, 2006.*
41. **Xue, F.**; Seto, C. T. "Macrocyclic Inhibitors of the Serine Protease Plasmin: Development and Biological Activity." *231th ACS National Meeting, Atlanta, GA, Mar. 25-30, 2006.*
42. **Xue, F.** Seto, C. T. "Combinatorial Library of Inhibitors for Serine Protease Plasmin: Binding Specificity at S3 and S3' Subsites." *230th ACS National Meeting, Washington, DC, Aug. 28-Sept. 1, 2005.*
43. **Xue, F.**; Seto, C. T. "4-Heterocyclohexanone-Based Inhibitors of Serine Protease Plasmin." *229th ACS National Meeting, San Diego, CA, March 13-17, 2005.*

GRANTS

Grants to PSC HTS Lab

1. ICTR Sub Xue (PI) 05/01/2020 – 04/30/2021
The University of Maryland Baltimore County \$15,000
High-throughput screen to identify novel selective regulators of mutant p53 in ovarian cancer cells
The goal of our research is to identify small molecule hits as selective regulators of mutant p53.

Active Grants to Xue Lab

1. NEXUS Sub Xue (PI) 12/1/2022 – 08/31/2023
Johns Hopkins University \$30,000
Novel Wnt Signaling Pathway Inhibitors for the Treatment of Colorectal Cancer.
The goal of our research is to synthesize and test Wnt signaling inhibitor YA6060 as potential therapeutic candidates for the treatment of colorectal cancer.
2. VA Merit Award (BX004264) Contract 1/1/2022 – 9/30/2022
Project Title: "Improving the membrane permeability of LIPG inhibitors"
\$50,000 direct cost to the Xue Lab
This research project focuses on cell-permeable prodrugs of the LIPG inhibitor XEN445.
3. MII Xue (co-PI) 11/10/2021 – 10/10/2022
Maryland Innovation Initiative grant
Project Title: "Novel anti-proteotoxicity therapeutic agents targeting protein methylation: Applications for Neurodegenerative Diseases"
\$115,000 direct cost to the Xue Lab
This research focuses on the synthesis and biological evaluation of novel L3MBTL1 inhibitors.
4. MII Xue (co-PI) 9/10/2021 – 7/10/2022
Maryland Innovation Initiative grant
Project Title: "Novel Axin Stabilizer YA6060 is a Promising Therapy for NASH"

This research focuses on the synthesis and biological evaluation of novel Wnt signaling inhibitor YA6060 for the treatemt of NASH.

5. NEXUS Sub Xue (PI) 10/1/2020 – 06/30/2021
Johns Hopkins University \$45,000
Developing Novel Drugs for Therapeutic Targets in Neurodegeneration
The goal of our research is to synthesize and test a series of UNC669 analogs as potential therapeutic candidates for neurodegenerative diseases.

6. NIH R21 Xue (PI) 1/1/2021 – 12/31/2023
1.0 calendar
University of Maryland Baltimore \$424,875
Pseudomonas aeruginosa heme sensing inhibitors targeting HasAp
The goal of our research is to synthesize and test a series of GaSal analogs using established assays, to identify, validate, and characterize potent inhibitors of heme signaling and iron homeostasis.

7. MII Xue (PI) 12/10/2020 – 11/10/2021
Maryland Innovation Initiative grant
Project Title: “Antipseudomonal Agent GalSal: A Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron Uptake”
\$115,000 direct cost to the Xue Lab
This research focuses on the synthesis and biological evaluation of novel HasAp inhibitor GalSal as a therapeutic agent for Pseudomonas infections.
Role: PI

8. NSF Sub Xue (PI) 06/01/2019-05/31/2023
0.6 calendar
The University of Texas at Austin \$203,385
Developing switchable electrophiles as specific covalent protein modifiers
The goal of our research is to develop novel selective probes that covalently modify proteins DDAH or BCL6 using the switchable electrophiles such as halopyridines. The availability of these probes will help understand the associated biochemical mechanisms and to better develop new therapeutics.

9. MII Xue (PI) 10/01/2018 – 7/31/2019
Maryland Innovation Initiative grant
Project Title: “YW2065 with Dual Activities of Wnt/β-catenin Inhibition and AMPK Activation for Colorectal Cancer (CRC)”
\$115,000 direct cost to the Xue and Shu Labs
This research focuses on the synthesis and biological evaluation of novel Axin stabilizers as a therapeutic agent for CRC.
Role: Co-PI

10. MII Xue (Co-PI) 07/01/2018 – 04/30/2019
Maryland Innovation Initiative grant
Project Title: “Developing DL5016 as an enhancer for cyclophosphamide-based chemotherapeutics”
\$115,000 direct cost to the Xue and Wang Labs
This research focuses on the synthesis and biological evaluation of novel hCAR activators as a combination agent for cyclophosphamide
Role: Co-PI

11. Waxman MacKerell (PI) 08/01/2014 – 06/30/2024
The Samuel Waxman Cancer Research Foundation
Project Title: “Small molecule BCL6 BTB domain inhibitors for DLBCL”

\$65,118 direct cost the Xue Lab

This research centers upon the development of small molecule inhibitors of the BCL6 BTB domain as treatment for DLBCL

Role: Co-I

Other Completed Grants:

1. Center for AIDS Research Xue (Co-PI) 08/01/2017 – 09/30/2018
2017 NHP Pilot Grant Program
Project Title: “Pilot study to establish anti-Bcl-6 FX1 as an anti-HIV/SIV strategy by limiting SIV retention in germinal centers and replication in T follicular helper cells following ART-suppression”
\$10,000 direct cost to the Xue Lab
This research centers upon the development of combination anti-HIV therapy using BCL6 BTB domain inhibitor FX1 and ART.
Role: Co-PI
2. LLS Melnick (PI) 12/01/2015 – 11/30/2018
Leukemia & Lymphoma Society
Project Title: “Therapeutic targeting of the BCL6 oncoprotein”
\$410,463 direct cost to the Xue Lab
This research centers upon the development of small molecule inhibitors of the BCL6 BTB domain as treatment for DLBCL
Role: Co-I
3. 1R41AI113998-01A1 Xue (PI, subcontract) 04/01/2015 – 03/31/2019
NIH
Project Title: “Selective inhibitors of heme transporters as antiparasitic agents”
\$137,256 direct cost to the Xue Lab
This research centers upon the development of small molecule antagonists of the heme transporters as treatment for parasitic diseases
Role: Sub-award PI
4. AACR Career Development Awards 00167155 Xue (PI) 12/01/2015 – 11/30/2017
American Association for Cancer Research
Project Title: “BCL6 BTB domain inhibitors for triple-negative breast cancer”
\$138,000 direct cost to the Xue Lab
This research centers upon the development of small molecule inhibitors of the BCL6 BTB domain as treatment for breast cancer
Role: PI
5. UM Ventures Xue (PI) 05/16/2016 – 05/15/2017
UM Venture Seed Grant Program
Project Title: “WNT signaling pathway inhibitors for treatment of diseases”
\$15,000 direct cost to the Xue Lab
This research centers upon the development of small molecule WNT inhibitors domain with improved aqueous solubility
Role: PI
6. ENABLE Wilks (PI) 08/01/2014 – 07/31/2015
European Gram-negative Antibacterial Engine Program

Project Title: "Heme utilization by gram negative pathogens"

This research centers upon the development of small molecule inhibitors of the bacterial HemO as treatment for bacterial infections

Role: Co-I

7. Janssen Research Grant Melnick (PI) 09/01/2014 – 08/31/2015
Janssen Pharmaceutics
Project Title: "Small molecule BCL6 BTB domain inhibitors"
\$41,608 direct cost the Xue Lab
This research centers upon the development of small molecule inhibitors of the BCL6 BTB domain as treatment for DLBCL
Role: Co-I

8. LRF Research Grant Xue (PI) 07/01/2014 – 06/30/2015
Leukemia Research Foundation Research Grant
Project Title: "Small molecule BCL6 inhibitors for diffuse large B-cell lymphoma (DLBCL)"
\$100,000 direct cost the Xue Lab
This research centers upon the development of small molecule inhibitors of the BCL6 BTB domain as treatment for DLBCL
Role: PI

9. IDR_224-13 2013 Xue (PI) 07/01/2013 – 06/30/2015
University of Maryland Pilot and Exploratory Interdisciplinary Research (IDR) Award
Project Title: "Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) for traumatic brain injury (TBI)"
\$75,000 direct cost the Xue Lab
This research centers upon the development of small molecule PAMs of mGluR5 as delayed treatment of TBI
Role: PI

10. ACS-IRG 10009632 Xue (PI) 03/01/2012 – 02/28/2013
American Cancer Society Institutional Research Grant (ACS-IRG)
Project Title: "Development of novel Kaiso inhibitors as drug candidates for human colon cancer"
\$30,000 direct cost the Xue Lab
This research focuses on the development of small molecule inhibitors of Kaiso as a novel strategy to treat human colon cancer
Role: PI

11. mGluR5 Faden (PI) 09/01/2011 – 08/31/2013
University of Maryland School of Medicine
Project Title: "Development of mGluR5 activators as drug candidates for traumatic brain injury"
\$150,000 direct cost the Xue Lab
This research focuses on the development of small molecule activators of the metabotropic glutamate receptor 5 (mGluR5) as potential treatment of traumatic brain injury (TBI)
Role: Co-I

Grants/Fellowships to Graduate Students:

1. Garrick Centola: PSC Fellowship Award. 9/1/20 – 8/31/21
2. Elizabeth Robinson: CBI Fellowship. 7/1/19 – 6/30/21

3. Geoffrey Heinzl: AFPE Fellowship. 7/1/13 – 6/30/15
4. Geoffrey Heinzl: ACS MedChem Fellowship. American Chemical Society. 07/1/14 – 6/30/15

CURRENT COLLABORATORS

UMB Collaborators

1. Alexander MacKerell: *BCL6 inhibitors, HemO inhibitors, HasAp inhibitors, hCAR activators*
2. Angela Wilks: *HemO inhibitors, HasAp inhibitors*
3. Yan Shu: *Axin stabilizers, 5FU prodrugs*
4. Hongbing Wang: *hCAR activators, Nrf2 activators*
5. James Polli: *Bile acid drug-delivery systems*
6. Iqbal Hamza (UMB-SOM): *heme transporter inhibitors*
7. Richard Zhao (UMB-SOM): *HTS in drug development*

External Collaborators

1. Ari Melnick (Cornell): *BCL6 inhibitors*
2. Menghang Xia (NCATS): *Wnt inhibitors, hCAR activators, AChE inhibitors*
3. Walt Fast (UT Austin): *p-halopyridines*
4. Dali Li (Loyola University at Chicago): *covalent BCL6 inhibitors*
5. Bill Lanzilotta (Georgia): *Aza-Sam derivatives*
6. Leandro Cerchiette (Cornell): *Tubulin inhibitors, BCL6 inhibitors for lung cancer*
7. Jiou Wang (JHU): *Small molecule therapeutics for neurodegenerative diseases*
8. Fengyi Wan (JHU): *Wnt inhibitors*
9. Qun Zhou (VA): *LIPS inhibitors*
10. Bin Gao (NIAAA): *Hepatoselective ALDH2 inhibitors*