Introduction to Canonical Forms

Himanshu K. Gajera Department of Computer Science & Engineering Pandit Deendayal Energy University, Gandhinagar

Overview

- ➤ What are Canonical Forms?
- Minterms and Maxterms
- ➤ Index Representation of Minterms and Maxterms
- > Sum-of-Minterm (SOM) Representations
- > Product-of-Maxterm (POM) Representations
- > Representation of Complements of Functions
- > Conversions between Representations

What are Canonical Forms

- ➤ Boolean function expressed as a **sum of minterms** or **product of maxterms** are said to be canonical form.
- ➤ It is useful to specify Boolean functions in a form that:
 - ➤ Allows comparison for equality.
 - ➤ Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - > Sum of Minterms (SOM)
 - Product of Maxterms (POM)

```
Standard form: Sum Of Product (SOP) : AB' + AC' + ABC
Product Of Sum (POS) : (A + B') • (A +C') • (A + B + C)
```

SUM -> OR gate
PRODUCT -> AND gate

- > Minterms are AND terms with every variable present in either true or complemented form.
- Figure 6 Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x), there are 2^n minterms for n variables.
- \triangleright Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

XY (both normal)

XY (X normal, Y complemented)

XY (X complemented, Y normal)

XY (both complemented)

> Thus there are four minterms of two variables.

For three variables function, eight minterms are possible as listed in the following table in Figure

A	В	C	Minterm
0	0	0	A'B'C'
0	0	1	A'B'C
0	1	0	A'BC'
0	1	1	A'BC
1	0	0	AB'C'
1	0	1	AB'C
1	1	0	ABC'
1	1	1	ABC

Steps to obtain SUM OF MINTERMS

- Find out how many variables is there in equation
- ➤ List out all minterms for given variables. i.e m0 to m7 for 3 variables
- \triangleright Check the given equation is in **SOP FORM** or not? If not then convert it into **SOP form**. i.e **ab** + **bc** + **ac**' form
- Find out missing variable in each term & add that variable in that term. i.e for A,B,C: B is missing in AC'. Add B in AC' using AC' = AC'(B+B') = ABC' + AB'C'
- > ADD ALL MISSING VARIABLES IN EACH TERMS OF THE EQUATION
- ➤ ARRANGE ALL **OBTAINED MINTERMS** IN ASCENDING ORDERS. i.e from m0 to m7 for 3 variables

Sum of Minterms

$$F = A + B'C$$

$$F(A,B,C) = \Sigma(1, 4, 5, 6, 7)$$

- > Maxterms are OR terms with every variable in true or complemented form.
- \triangleright Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \sim x), there are 2^n maxterms for n variables.
- \triangleright Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

```
    X + Y (both normal)
    X + Y (x normal, y complemented)
    X + Y (x complemented, y normal)
    X + Y (both complemented)
```

➤ Like minterms, for a three-variable function, eight maxterms are also possible as listed in the following table in Figure

A	В	C	Maxterm
0	0	0	A + B + C
0	0	1	A + B + C'
0	1	0	A + B' + C
0	1	1	A + B' + C'
1	0	0	A' + B + C
1	0	1	A' + B + C'
1	1	0	A' + B' + C
1	1	1	A' + B' + C'

Steps to obtain PRODUCT OF MAXTERMS

- Find out how many variables is there in given equation
- List out all maxterms for given variables. i.e M0 to M7 for 3 variables
- > Check the given equation is in **POS FORM** or not? If not then convert it into **POS form**. i.e (a + b)(b + c)(a + c') form
- Find out missing variable in each term & add that variable in that term. i.e for A,B,C: B is missing in (A + C'). Add B in (A + C') using (A + C') = (A + C')BB' = (A + B + C)(A + B' + C)
- ➤ ADD ALL MISSING VARIABLES IN EACH TERMS OF THE EQUATION
- ➤ ARRANGE ALL **OBTAINED MAXTERMS** IN ASCENDING ORDERS. i.e from M0 to M7 for 3 variables

Product of Maxterms

$$F = xy + x'z$$

$$= (xy + x')(xy + z)$$

$$= (x + x') (y + x') (x + z) (y + z)$$

$$= (x' + y) (x + z) (y + z)$$

$$x' + y = x' + y + zz' = (x' + y + z) (x' + y + z')$$

$$x + z = x + z + yy' = (x + z + y) (x + z + y')$$

$$y + z = y + z + xx' = (y + z + x) (y + z + x')$$

$$F = (x + y + z) (x + y' + z) (x' + y + z) (x' + y + z')$$

$$= M0M2M4M5$$

$$F (x, y, z) = \Pi (0, 2, 4, 5)$$

X	${f y}$	Z	function f1	function f2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	O	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$F1 = x'y'z + xy'z' + xyz = m1 + m4 + m7$$

$$F2 = x'yz + xy'z + xyz' + xyz = m3 + m5 + m6 + m7$$

Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	$\overline{\mathbf{x}}\mathbf{y}$	$x + \overline{y}$
2	х ӯ	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{\mathbf{x}} + \overline{\mathbf{y}}$

The index above is important for describing which variables in the terms are true and which are complemented.

> Purpose of the Index

The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.

For Minterms:

"1" means the variable is "Not Complemented" and

"0" means the variable is "Complemented".

For Maxterms:

"0" means the variable is "Not Complemented" and

"1" means the variable is "Complemented".

Index Example in Three Variables

```
Example: (for three variables)
```

Assume the variables are called X, Y, and Z.

The standard order is X, then Y, then Z.

The $\underline{\text{Index 0}}$ (base 10) = 000 (base 2) for three variables).

All three variables are complemented for <u>minterm 0</u> (\overline{X} , \overline{Y} , \overline{Z}) and no variables are complemented for <u>Maxterm 0</u> (X,Y,Z).

Minterm 0, called m_0 is $\overline{\mathbf{X}} \overline{\mathbf{Y}} \overline{\mathbf{Z}}$.

Maxterm 0, called M_0 is (X + Y + Z).

Minterm 6?

Maxterm 6?

➤ Index Examples – Four Variables

Index	Binary	Minterm	Maxterm
i	Pattern	$\mathbf{m_i}$	$\mathbf{M_i}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\overline{c}+\overline{d}$
5	0101	abcd	$a + \overline{b} + c + \overline{d}$
7	0111	?	$a + \overline{b} + \overline{c} + \overline{d}$
10	1010	abcd	$\bar{a} + b + \bar{c} + d$
13	1101	abēd	?
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$

Conversion Between Canonical Forms

 $F(A, B, C) = \Sigma (1, 4, 5, 6, 7)$ (Sum Of Product) (Sum Of Minterms)

$$F'(A, B, C) = \Sigma (0, 2, 3) = m0 + m2 + m3$$

complement of
$$F' = F = (m0 + m2 + m3)'$$

= $m0' \cdot m2' \cdot m3'$
= $M0.M2.M3$
= Π (0, 2, 3) (Product Of Sum) (Product Of

Maxterms)

$$mj' = Mj$$

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7) = \Pi(0, 2, 3)$$