(CS-504/CSE&IT/V/2014)

Theory of Computation

Mid-Semester Examination School of Computer Engineering KIIT University, Bhubaneswar.

Time: 2 hours

Full Marks: 50

(Answer any five questions including question number 1)

1. Write true or false, and justify your answer briefly.

[10]

- Let D be a DFA that accepts a string of length 3, then D has at least 4 states.
- (ii) Let L and M be languages such that both L and LM are regular. Then M is also regular.
- (iii) The regular expressions $(0+1+00)^*$ and $(1^*0^*+11)^*$ are equivalent.
- (iv) There exists an infinite regular language L such that $L^* = L^+$.
- (v) If both L and M are non-regular languages, then $L\cup M$ is also non-regular.
- 2. (a) Let $L = \{u \mid w : u, \ w \in \{0,1\}^*, \ |u| \ge 2 \text{ and } |w| \le 2\}$

[5]

- (i) Write a regular expression for the language L
- (ii) Design an NFA that accepts L
- (iii) Design a DFA that accepts L.
- (b) Convert the following NFA to a DFA.

[5]

[5]

δ	λ	а	ь
$\rightarrow q_0$	q_1	Φ	92
q_1	$\{q_2,q_3\}$	$\{q_0, q_4\}$	Đ,
q_2	Φ	ē	q_4
q_3	Φ	94	Ф
* q4	93	Φ	ō

- 3. (a) Write regular expressions for the following languages over the alphabet $\{a,b\}$.
 - (i) The set of all strings starting with aa and ending with aa
 - (ii) The set of all strings not containing the substring ab
 - (iii) The set of all strings containing even number of b's
 - (iv) $\{a^mb^n: m+n \text{ is odd }\}$
 - (v) The set of all strings of length at least 50 and at most 90.

	(b)	Let $\Sigma = \{$	$\{a,b\}$, and L	be the langu	age of a	all sta	rings that	contain	.[5]	
(b) Let Σ = {a, b}, and L be the language of all strings that contain neither aa nor bb as a substring.										
	(i) Design an NFA that accepts L.									
		(ii) Design	a DFA the	at accepts L.						
		(iii) Write	a regular ex	epression for	the lang	uage	L.	data dien er ha		
4.	4. (a) State the pumping lemma for regular languages.									
Prove that the language $L = \{a^n : n \text{ is a prime number}\}$ is not regula									[5]	
	(b)	(i) Design	in ATDA -		. is a p	rime	number} i	s not regular.	Paul.	
(b) (i) Design an NFA with four states that accepts the language of the										
(01 + 011 + 0111)*.										
N.F.	(ii) What languages do the regular expressions Φ^* and $a\Phi$ denote?									
5.										
	over the alphabet $\{a, b, c\}$. Convert your DFA to a regular expression using								[5]	
	the state-elimination method.									
	(b) Convert the following regular expressions to NFA .									
	(i) $(a+b)^*ba$								[5]	
		(ii) $bb(a+b)$		*						
			Contract to							
6.	(a) (Consider the	following I	DFA:					10	
					δ	a	1 6		[5]	
					$\rightarrow p_0$	<i>p</i> ₁	P ₅			
					p_1	Po	p_2			
					* p2	p_1	<i>p</i> ₃		1	
					<i>p</i> ₃	p_3	p_1			
					p_4	p_3	24			
					* 25	p_4	p_3			

- (i) Compute the blocks of indistinguishable states.
- (ii) Construct the equivalent minimal DFA.
- (b) (i) What do you mean by indistinguishable pair of states in a DFA.

 Illustrate with an example.
 - (ii) Is the distinguishability relation of states of a DFA transitive?.