CS1231 Discrete Structures

- 1. Let D be the set that contains precisely 1, 3, 5, 7, 9. Which of the following propositions are true? Which are false? Briefly explain your answers.
 - (a) $\forall x \in D \ (x+1 \in D \to x < 0)$.

[2 marks]

Solution. True, because given any $x \in D$, we know $x + 1 \notin D$, and thus the conditional is vacuously

(b) $\exists x, y \in D \ x + y = 18$.

[2 marks]

Solution. True: take x = 9 and y = 9.

(c) $\forall x \in D \ \exists y \in \mathbb{Z} \ (y = 2x \lor x \geqslant 0).$

[2 marks]

Solution. True, because given any $x \in D$, we see that $2x \in \mathbb{Z}$ and/or $x \ge 0$.

(d) $\exists x \in \mathbb{Z} \ \forall y \in D \ y = 2x + 1$.

[3 marks]

Solution. False, as explained below.

- If x = 0, then choose y = 3, so that $y = 3 \neq 1 = 2x + 1$.
- If $x \neq 0$ then choose y = 1, so that $y = 1 = 2 \times 0 + 1 \neq 2x + 1$.

Alternative solution. Suppose the proposition is true. Fix $x \in \mathbb{Z}$ such that $\forall y \in D$ y = 2x + 1. As $1,3 \in D$, this implies 1=2x+1=3. However, we know $1 \neq 3$. This is a contradiction. So the proposition must be false.

Comments. Many did not give specific ways to substitute values into y to make the proposition false. Without these, it is not clear why such substitutions exist.

(e) $\forall x \in D \ ((\exists y \in \mathbb{N} \ x + 2y = 3) \to x = 1).$

[3 marks]

Solution. False, because if x=3, then $x\in D$ and $\exists y\in \mathbb{N}\ x+2y=3$ is true with witness 0, but x = 1 is false.

- 2. Rewrite the following propositions symbolically. In your answers, you can use Even(n) and Odd(n) to stand for $\exists x \in \mathbb{Z} \ n = 2x$ and $\exists x \in \mathbb{Z} \ n = 2x + 1$ respectively.
 - (a) For two integers to have the same square, it is necessary that either both are even or both are odd. [2 marks]

Solution. $\forall x, y \in \mathbb{Z} \ (x^2 = y^2 \to (\text{Even}(x) \land \text{Even}(y)) \lor (\text{Odd}(x) \land \text{Odd}(y))).$

Two acceptable but less preferable answers are $\forall x,y \in \mathbb{Z} \ (x^2 = y^2 \to (\text{Even}(x) \leftrightarrow \text{Even}(y)))$ and $\forall x, y \in \mathbb{Z} \ (x^2 = y^2 \to (\mathrm{Odd}(x) \leftrightarrow \mathrm{Odd}(y)))$

Comments. • Some has the \rightarrow pointing in the wrong direction. See Terminology 1.3.3 and Tutorial Exercise 1.2(b) for the meaning of the word "necessary" in mathematics.

- Many wrote $\exists x,y \in \mathbb{Z}$ instead of $\forall x,y \in \mathbb{Z}$. The proposition given means "for x, y to have the same square, it is necessary ..." is true for all integers x, y. So the correct quantifier here is \forall .
- According to Convention 1.4.3 and Convention 2.2.8(3), all brackets given in the answers above are necessary. Many omitted at least one pair of them.
- (b) An integer is non-negative if and only if it is the sum of the squares of four integers. [2 marks]

Solution. $\forall n \in \mathbb{Z} \ (n \geqslant 0 \leftrightarrow \exists x, y, z, w \in \mathbb{Z} \ n = x^2 + y^2 + z^2 + w^2).$ It is also acceptable to split \leftrightarrow into \rightarrow and \leftarrow .

• Some wrote $\forall n \in \mathbb{Z} \ \exists x, y, z, w \in \mathbb{Z} \ (n \geqslant 0 \leftrightarrow n = x^2 + y^2 + z^2 + w^2)$, which is Comments. not what the given proposition expresses. In general, one can find predicates P(n) and Q(n,z)on \mathbb{Z} such that $\forall n \in \mathbb{Z}$ $(P(n) \leftrightarrow \exists x \in \mathbb{Z} \ Q(n,x))$ and $\forall n \in \mathbb{Z} \ \exists x \in \mathbb{Z} \ (P(n) \leftrightarrow Q(n,x))$ are not equivalent: for example, one can take P(n) and Q(n,x) to be $n \neq n$ and n = x respectively,

in which case the former proposition is false, say, with counterexample n=0, while the latter proposition is true by picking x = n + 1 no matter which $n \in \mathbb{Z}$ is given.

- Many wrote $\exists n \in \mathbb{Z}$ instead of $\forall n \in \mathbb{Z}$. The proposition given means "n is non-negative if and only if ..." is true for all integers n. So the correct quantifier here is \forall .
- According to Convention 2.2.8(3), the pair of brackets given in the answer above is necessary. Many omitted them.

- 3. Let p, q, r be propositional variables. Which of the following pairs of compound expressions are equivalent? Which are not? Prove that your answer is correct.
 - (a) $p \wedge q \to r$ and $p \to (q \to r)$. [3 marks]

Solution. Yes, as shown below.

$$\begin{array}{ll} p \wedge q \rightarrow r \equiv \neg (p \wedge q) \vee r & \text{by the logical identity on implication;} \\ & \equiv \neg p \vee \neg q \vee r & \text{by De Morgan's Laws;} \\ & \equiv \neg p \vee (q \rightarrow r) & \text{by the logical identity on implication;} \\ & \equiv p \rightarrow (q \rightarrow r) & \text{by the logical identity on implication.} \end{array}$$

Alternatively, one can draw a truth table to show the equivalence.

p	q	r	$p \wedge q$	$p \wedge q \to r$	$q \rightarrow r$	$p \to (q \to r)$
T	Τ	Τ	T	(T)	Т	$\overline{\mathrm{T}}$
${ m T}$	\mathbf{T}	\mathbf{F}	T	\mathbf{F}	F	F
${ m T}$	\mathbf{F}	${ m T}$	F	$ \mathbf{T} $	Т	$ { m T} $
${ m T}$	\mathbf{F}	F	F	$ \mathbf{T} $	Т	$ \mathbf{T} $
\mathbf{F}	${\rm T}$	\mathbf{T}	F	$ \mathbf{T} $	Т	$ \mathrm{T} $
\mathbf{F}	${\rm T}$	\mathbf{F}	F	$ \mathbf{T} $	F	$ \mathrm{T} $
F	F	${\rm T}$	F	$ \mathbf{T} $	Т	$ \mathrm{T} $
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	$\langle \mathrm{T} \rangle$	Т	$\langle \mathrm{T} \rangle$

(b) $p \wedge q \leftrightarrow p$ and $p \wedge q$.

[3 marks]

Solution. No, because if we substitute false propositions into p and q, then $p \land q \leftrightarrow p$ evaluates to T while $p \land q$ evaluates to F.

Comments. Some proved using the logical identities that $p \wedge q \leftrightarrow p$ is equivalent to $p \to q$, and then deduce directly that it is not equivalent to $p \wedge q$. Simply noticing $p \to q$ and $p \wedge q$ are different does not logically imply that they are not equivalent; see Note 1.4.24.

- 4. Consider the proposition "a rational number x satisfies $x^2 + 2 = 3x$ if and only if x = 1 or x = 2".
 - (i) Someone tries to prove this proposition as follows.

Let x be a rational number such that $x^2 + 2 = 3x$. Then

$$x^{2} - 3x + 2 = 0.$$

$$(x - 1)(x - 2) = 0.$$

$$x = 1 \text{ or } x = 2.$$

What is wrong with this attempt?

[1 mark]

Solution. This attempt shows only $\forall x \in \mathbb{R} \ (x^2 + 2 = 3x \to x = 1 \lor x = 2)$. It does not explain why $\forall x \in \mathbb{R} \ (x = 1 \lor x = 2 \to x^2 + 2 = 3x)$.

Comments. Some wrote that the author proved the "if" part, while s/he actually proved the "only if" part; see Terminology 1.3.3.

(ii) Give a correct proof of this proposition.

[2 marks]

Solution. Let x be a rational number. Then

$$x^{2} + 2 = 3x$$

$$\Rightarrow \qquad x^{2} - 3x + 2 = 0$$

$$\Leftrightarrow \qquad (x - 1)(x - 2) = 0$$

$$\Leftrightarrow \qquad x = 1 \quad \text{or} \quad x = 2.$$

Comments. One can split the proof into $a \Rightarrow part$ and $a \Leftarrow part$, but including only one of these is not enough.