

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-332914

(43)Date of publication of application: 21.11.2003

(51)Int.Cl.

HO3M 7/30

G10L 19/00

HO4N 7/24

(21)Application number: 2002-244408

(71)Applicant: NIPPON TELEGR & TELEPH CORP <NTT>

(22)Date of filing:

23.08.2002

(72)Inventor:

MORIYA TAKEHIRO

JIN AKIO **IKEDA KAZUNAGA**

MORI TAKESHI

(30)Priority

Priority number: 2001252475 ????Priority date: 23.08.2001 ????Priority country: JP

30.11.2001 2001366734 JP 30.11.2001 2001366806 03.12.2001 2001368759 JP 28.02.2002 2002052905 05.03.2002 2002058448 JP 05.03.2002 2002058521 08.03.2002 2002064037

JP

JP

JP

JP

(54) ENCODING METHOD FOR DIGITAL SIGNAL, DECODING METHOD THEREFOR, APPARATUS FOR THE METHODS AND PROGRAM THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an encoding method capable of correcting missing bits.

SOLUTION: In the method, coordinate bit strings are created by combining bits over a frame by corresponding bits of a series of samples by frames of an input digital signal, and the coordinate bit strings are output as packets. On a decoding side, sample strings are reconstructed by arranging input coordinate bit strings in a reverse order on an encoding side. If there is a missing packet, reconstructed sample strings are corrected by a missing correcting part 430 so as to reduce deviation of a spectrum envelope of the reconstructed sample strings from a known spectrum envelope.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

16.07.2004

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-332914 (P2003-332914A)

(43)公開日 平成15年11月21日(2003.11.21)

(51) Int.Cl. ⁷ H 0 3 M 7/30 G 1 0 L 19/00 H 0 4 N 7/24	酸別記号	FI H03M 7/30 C10L 9/18	ァーマコート(参考) と 5 C O 5 9 A 5 D O 4 ら M 5 J O 6 4
		H04N 7/13 審査請求 未請求	A 2 請求項の数19 OL (全 52 頁)
(21)出願番号	特顧2002-244408(P2002-244408)		226 信電話株式会社 千代田区大手町二丁目3番1号
(31)優先権主張番号 (32)優先日	平成14年8月23日(2002.8.23) 特願2001-252475(P2001-252475) 平成13年8月23日(2001.8.23)	(72)発明者 守谷 東京都 本電信	健弘 千代田区大手町二丁目3番1号 i3 電話株式会社内
(33)優先権主張国 (31)優先権主張番号 (32)優先日 (33)優先権主張国	日本 (JP) 特願2001-366734(P2001-366734) 平成13年11月30日(2001.11.30) 日本 (JP)	本電信 (74)代理人 100068	千代田区大手町二丁目3番1号 i 電話株式会社内 5153
(31)優先権主張番号 (32)優先日 (33)優先権主張国	特願2001-366806(P2001-366806) 平成13年11月30日(2001.11.30) 日本(JP)	开 埋工	: 草野 卓 (外1名) 最終頁に続く

(54) 【発明の名称】 ディジタル信号符号化方法、復号化方法、これらの装置及びプログラム

(57)【要約】

【課題】 欠落ビットの補正が可能な符号化。

【解決手段】 入力ディジタル信号のフレームごとの一連のサンプルの対応ビットごとにフレームにわたってビットを連結して等位ビット列を生成し、これら等位ビット列をパケットとして出力する。復号側では、入力等位ビット列を符号化側と逆に配列してサンプル列を再構成し、パケット欠落があると、欠落補正部430で、再生サンプル列のスペクトル包絡の既知のスペクトル包絡からのずれが減少するように再生サンプル列を補正する。

【特許請求の範囲】

【請求項1】複数のサンプルを含む各フレームごとにディジタル信号を符号化する符号化方法であり、

- (a) フレームごとのディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する 誤差信号の可逆データの組を生成するステップと、
- (b) 上記データの組を符号で出力するステップ、 とを含むことを特徴とする符号化方法。

【請求項2】請求項1記載の符号化方法において、上記ステップ(b)は上記ビット列に極性符号および絶対値に降順に高い優先度をつけるステップを含むことを特徴とする符号化方法。

【請求項3】請求項1記載の符号化方法において、上記 ステップ(a) は、

- (a-1) 原信号を非可逆符号化して非可逆圧縮情報と局部 復号信号を生成するステップと、
- (a-2) 上記局部復号信号と上記原信号との誤差信号を上記ディジタル信号として非可逆符号化するステップ、とを含み、上記ステップ(b)は、上記可逆符号と共に上記非可逆圧縮情報を出力することを特徴とする符号化方法。

【請求項4】請求項1記載の符号化方法において、上記ディジタル信号のスペクトル包絡を表現するパラメータを求め、そのパラメータを符号化して生成した符号を補助情報として上記可逆符号と共に出力するステップを含むことを特徴とする符号化方法。

【請求項5】請求項1記載の符号化方法において、上記 ステップ(a) は、

- (a-1) 各フレーム内のディジタル信号の振幅の絶対値の 最大値を表現する桁数を有効桁数として決定するステップと、
- (a-2) フレームごとにその有効桁数以内の部分について それぞれのサンプルの上記対応する少なくとも1桁のビットをそのフレームにわたって時間方向に並んだ少なく ともひとつの上記ビット列を上記可逆符号の一部の伝送 記録単位データとして生成するステップ、とを含み、

上記ステップ(b) は、フレームごとに上記有効桁数を上記可逆符号と共に出力するステップを含むことを特徴とする符号化方法。

【請求項6】請求項4記載の符号化方法において、上記 ステップ(a) 、

- (a-1)上記パラメータとして線形予測係数と現在の予測値を過去のディジタル信号から求めるステップと、
- (a-2) その予測値を現在のサンプルから差し引いて予測 誤差を求めるステップ、とを含み、

上記ステップ(b) は、上記線形予測係数を符号化して補助情報として上記可逆符号と共に出力することを特徴とする符号化方法。

【請求項7】請求項1記載の符号化方法は更に、

- (0-1) 入力信号をフレーム毎に聴覚特性を考慮した非可 逆符号化して非可逆符号を生成し局部復号信号を生成す るステップと、
- (0-2) その局部復号信号を、上記入力信号との誤差が小さくなるように変形して変形局部復号信号を生成するステップと
- (0-3) 上記入力信号と上記変形局部復号信号との誤差信号を上記ディジタル信号として生成するステップとを含むことを特徴とする符号化方法。

【請求項8】請求項1記載の符号化方法は更に、

- (0-1) 入力信号をフレーム毎に量子化誤差が最小となるように圧縮符号化して誤差最小化符号を生成し、その誤差最小化符号に対する第1局部信号を生成するステップと、
- (0-2) その第1局部信号の上記入力信号に対する誤差信号を上記ディジタル信号として生成するステップと、
- (0-3) 上記誤差信号を聴覚特性を考慮した非可逆圧縮符号化して可逆符号を生成するステップとを含むことを特徴とする符号化方法。

【請求項9】請求項1記載の符号化方法は更に、

- (0-1) Mチャネルの入力信号をNチャネルの信号に混合するステップと、Mは2以上の整数であり、NはMより小さい1以上の整数であり、その主符号に対するNチャネルの局部復号信号を生成するステップと、
- (0-2) このNチャネルの混合信号を符号化して主符号を 生成1
- (0-3) このNチャネル局部復号信号をMチャネルの局部 復号信号にチャネル拡大するステップと、
- (0-4) 各上記Mチャネル局部復号信号とそれに対応する 上記Mチャネル入力信号との誤差信号を上記ディジタル 信号として求めるステップ、とを含み、

上記ステップ(b) は、上記主符号を上記可逆符号と共に 出力するステップを含むことを特徴とする符号化方法。 【請求項10】フレームごとにディジタル信号のサンプ

【請求項10】プレームことにティングル16号のサンプルを再生する復号化方法であり、

- (a) 入力符号を復号してディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成するステップと、
- (b) 上記複数の組のデータに基づいてディジタル信号を 再生するステップ、とを含むことを特徴とする復号化方 法。

【請求項11】複数のサンプルからなる各フレームごと にディジタル信号を符号化する符号化器であり、

フレーム毎に上記ディジタル信号のサンプルを、それら の各ビット位置で跨いだビット列の可逆データの複数の 組、又は非可逆データとその非可逆データに由来する誤 差信号の可逆データの組を生成する手段と、

上記データの組を符号で出力する出力手段、とを含むことを特徴とする符号器。

【請求項12】請求項11記載の符号器において、上記結合部は上記ビット列に対し、極性、絶対値の大きさ順にパケットの優先順位を付けることを特徴とする符号器。

【請求項13】請求項11記載の符号器において、原信号を非可逆符号化して、上記非可逆符号化情報と局部復号信号を出力する非可逆符号器と、上記局部復号信号と上記原信号との誤差信号を上記ディジタル信号として求めて出力する差分器とを含むことを特徴とする符号器。

【請求項14】請求項11記載の符号器において、上記ディジタル信号のスペクトル包絡を表現するパラメータを符号化して補助情報として上記パケットと共に出力する補助情報生成部を有していることを特徴とする符号 哭

【請求項15】請求項11記載の符号器は、更に上記分割されたフレームごとに、そのディジタル信号の絶対値の最大値を表現する桁数を有効桁数として求めて出力する補助情報生成部を有し、上記並び替え部は、上記フレームごとに、上記有効桁数以内のみについて、上記等位ビット列を生成することを特徴とする符号器。

【請求項16】請求項11記載の符号器は更に、 各フレームごとに入力ディジタル信号のスペクトル包絡 を表わす線形予測係数を求めるスペクトル包絡算出部 レ

上記線形予測係数を符号化して補助情報とする補助情報 生成部と、

フレームごとに過去のディジタル信号と線形予測係数から現在の入力信号の整数化された予測値を求める予測部と、

上記予測値を現在の入力ディジタル信号から差し引いて 予測誤差信号を求める予測誤差生成部、とを含むことを 特徴とする符号器。

【請求項17】請求項11記載の符号器は更に、

入力ディジタル信号をフレーム毎に聴覚特性を考慮した 非可逆符号化して非可逆符号を生成し局部復号信号を生 成する非可逆符号化部と、

上記局部復号信号が入力され、局部復号信号を、上記入力信号との誤差が小さくなるように変形して変形局部復号信号を生成する変形部と、

上記入力信号と上記変形局部信号が入力され、これら間 の誤差信号を上記ディジタル信号として生成する誤差算 出部、

とを含むことを特徴とする符号器。

【請求項18】請求項11記載の符号器において、上記 ディジタル信号はMチャネルのディジタル信号であり、 Mは2以上の整数であり、上記符号器は更に、

フレームごとにMチャネルのディジタル信号が入力され、これらMチャネルのディジタル信号を混合してNチャネルの混合信号を出力するチャネル混合部と、Mは2以上の整数であり、NはMより小さい1以上の整数であ

り、

上記Nチャネルの混合信号が入力され、これらを符号化して主符号とその主符号に対するNチャネル局部信号を 生成する符号化部と、

上記Nチャネル局部復号信号が入力され、これらをチャネル拡大してMチャネルの局部復号信号を出力するチャネル拡大部と、

上記Mチャネル局部復号信号と、上記Mチャネルディジタル信号との間の誤差信号を上記ディジタル信号として計算する誤差算出部、とを含み、上記出力手段は上記主符号を上記可逆符号と共に出力することを特徴とする符号器。

【請求項19】複数のサンプルから成る各フレーム毎にディジタル信号のサンプルを再生する復号器であり、 入力符号を復号してディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの復数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成するデータ生成手段と、上記データの組からディジタル信号を再生する手段、とを含むことを特徴とする復号器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は音声、音楽などの音響信号や画像信号などの各種ディジタル信号を表現するビット数を削減する方法、特に許容歪を制御可能な符号化方法、その復号化方法、それらの装置及びプログラムに関する。

[0002]

【従来の技術】音声、画像などの情報を圧縮する方法として歪を許す非可逆な符号化と、歪を許さない可逆な符号化がある。非可逆な圧縮としてはITU-T(International Telecommunications Union-Telecom Standardization)やISO/IEC MPEG (International Organization for Standardization/International Electrotechnical Commission Moving Picture Experts Group)の標準として種々の方法が知られている。これらの非可逆圧縮方法を使うとわずかの歪に押さえつつ、もとのディジタル信号を1/10以下までに圧縮することが可能である。しかし、その歪は符号化条件や入力信号に依存し、用途によっては再生信号の劣化が問題となる場合がある。

【0003】一方、もとの信号を完全に再現できる可逆な圧縮方法として、コンピュータのファイルやテキストの圧縮によく使われているユニバーサルな圧縮符号化が知られている。これは入力系列の統計を学習しながら、どのような信号に対しても圧縮が可能で、テキストなどには1/2程度まで圧縮できるが、音声や画像のデータに直接適用しても圧縮効果は2割程度にとどまる。圧縮率の高い非可逆の符号化を行い、その再生信号と原信号の誤差を可逆に圧縮することを組み合わせることで圧縮率の高い非可逆符号化と可逆の圧縮との両方を柔軟に使い

分けることが可能となる。

【0004】この組み合わせ圧縮方法を特開2001-44847公報「符号化方法、可逆復号化方法、これらの装置及びその各プログラム記録媒体」で本発明者は提案した。この方法は前記公報に詳細に示されているが、以下図1を参照して簡単に説明する。符号器では、ディジタル入力信号(以下、入力信号サンプル系列とも呼ぶ)が、入力端子100から入力され、フレーム分割部110で、その入力信号サンプル系列が、例えば1024個の入力信号サンプルからなるフレーム単位に、順次分割される。

【〇〇〇5】非可逆量子化部120で、フレーム分割部110の出力が非可逆圧縮符号化される。この符号化は、復号化時に元のディジタル入力信号をある程度再現できる方式であれば、入力信号に適した如何なる方式でもよい。例えば、上記入力信号が音声信号であればITU-Tの音声符号化などが利用でき、音楽であればMPEGまたはTwin VQ(Transform-Domain Weighted Interleaved Vector Quantization)などが利用でき、映像であればMPEGなどが利用できる。その他、前記公報で示す各種非可逆量子化法を用いることもできる。なお、非可逆量子化部120からの出力を「非可逆圧縮符号I(n)」と称する。

【0006】非可逆量子化部120に対応する復号部(即 ち、逆量子化部230)と同様構成の逆量子化部130で、非 可逆圧縮符号I(n)から局部再生信号が生成される。局部 再生信号と元のディジタル入力信号との誤差信号が減算 部140で求められる。通常、この誤差信号の振幅は、元 のディジタル入力信号の振幅よりもかなり小さい。よっ て、ディジタル入力信号をそのまま可逆圧縮符号化する よりも、誤差信号を可逆圧縮符号化する方が情報量を小 さくできる。この可逆圧縮符号化の効率を上げるため に、並び替え部160が、誤差信号(即ち、ビット列)の ビットを並び替える。並び替え部160による処理の詳細 を図2を参照して以下に説明する。ディジタル入力信号 (図2A)では、2の補数表現で、各サンプル値(振 幅) の正負の整数が表現される。 ディジタル入力信号と そのディジタル入力信号に対応する局部再生信号との誤 差信号サンプルを図2日に示す。並び替え部160は、こ の誤差信号(即ち、ビット列)を、2の補数表現による ビット列から、符号絶対値表現(極性と絶対値の2進 数)によるビット列へ変換する(図2C)。変換後の誤 差信号では、MSB (Most Significant Bit:最上位ビ ット) ~第2LSB (Least Significant Bit:最下位 ビット) が振幅の絶対値を示し、LSBが振幅の極性符 号を示す。

【0007】次に、並び替え部160は、符号絶対値表現に変換後の誤差信号サンプルを、それぞれの対応ビット位置(MSB、第2MSB、…、LSB)毎に、即ち、図2の時間軸方向に連結する(図2D)。この各ビット列(即ち、同じビット位置の1024個のビットからなるビット列)を以下「等位ビット列」と称する。以上の並び

替えでは、各誤差信号の値はまったく変らない。ところが、誤差信号は振幅が小さいので、並び替え部160の出力では、上位のビットは全て"O"となることが多い。その結果、"O"が連続することによって、誤差信号の可逆圧縮符号化効率が上がる。

【0008】次に、可逆符号化部150で、並び替え部160の出力が可逆圧縮符号化される。可逆符号化部150は、例えば、連続する系列がある場合や頻繁に出現する系列がある場合を利用した、ハフマン符号化や算術符号化などのエントロピィ符号化などにより等位ビット列を可逆圧縮符号化し、復号器20に送る。並び替え部160の出力に、テキスト等を可逆に圧縮するユニバーサル符号化を適用することでも圧縮効率が改善される。以上の処理によって、符号器は、非可逆量子化部120からの非可逆圧縮符号I(n)と可逆符号化部150からの可逆圧縮符号I(e)とを出力する。

【0009】復号器20では、可逆復号化部210が、可逆圧縮符号I(e)を復号化する。そして、並び替え部220が、並び替え部160と逆の処理を行うことによって、誤差信号をフレーム単位で順次出力する。また、逆量子化部230が、非可逆圧縮符号I(n)を復号化する。加算部240が、逆量子化部230の出力と並び替え部160の出力とを加算する。最後に、フレーム合成部250が、加算部240の出力を順次連結することによって、元の入力信号サンプル系列を再生する。以上の処理によって、該入力信号サンプル系列が、出力端子260から出力される。

[0010]

【発明が解決しようとする課題】この従来の符号化方法 は、伝送路上においてビット欠落が生じると復号器20 の並び替え部により再構築する各サンプルに他のサンプ ルのビットが混入し、復号信号に大きな品質劣化が生じ るもんだいがある。また、実現可能な圧縮率は約1/2程 度であり、品質をほとんど損なわずに1/3とか1/4の圧縮 や精度を保障した圧縮は実現できない。また原信号の振 幅を表現するディジタル値のビット数を1ビット削減し ても削減しない場合と同じ精度を保障した波形再生が可 能であるが、一般に4ビット以上削減すると聴感上、大 きな量子化雑音が聞こえてしまうという問題があった。 【0011】この発明の第1の目的は、伝送路でビット 欠落が生じても、復号信号にそれほど大きな品質劣化が 生じない符号化方法と復号方法及びそれらの装置を提供 することである。この発明の第2の目的は、ディジタル 信号を制御された歪内で、その情報を圧縮することと広 い範囲のビットレートで精度を保障しながら圧縮効率を 高める符号化方法、その復号化方法、これらの装置を提 供することにある。

[0012]

【課題を解決するための手段】この発明によれば、複数 のサンプルを含む各フレームごとにディジタル信号を符 号化する符号化方法は、以下のステップを含む。 (a) フレームごとのディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成し、(b) 上記データの組を符号で出力する。

【0013】この発明によれば、フレームごとにディジタル信号のサンプルを再生する復号化方法であり、(a) 入力符号を復号してディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成するステップと、(b) 上記複数の組のデータに基づいてディジタル信号を再生するステップ、とを含む。

【0014】この発明によれば、複数のサンプルからなる各フレームごとにディジタル信号を符号化する符号化器であり、フレーム毎に上記ディジタル信号のサンプルを、それらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データの組を生成する手段と、上記データの組を符号瀬出力する出力手段、とを含む。【0015】この発明によれば、複数のサンプルかららる各フレーム毎にディジタル信号のサンプルを再生するの名であり、入力符号を復号してディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの復数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成するデータ生成手段と、上記データの組からディジタル信号を再生する手段、とを含む。

作用

この発明による上記符号化方法、符号器及び復号方法、復号器によれば伝送記録単位データごとにパケット化するため、符号化処理において伝送容量、記憶容量などに応じてパケットを故意に欠落させて情報量を減少させても、この発明の復号化方法によれば、パケットの欠落に対し伝送記録単位データを補正することができる。

【0016】この発明の可逆符号化方法によれば伝送記録単位データごとにパケット化するため、伝送容量、記憶容量などに応じてパケットを故意に欠落させて情報量を減少させ、つまり1/3とか1/4の圧縮としても、この発明の可逆復号化方法によれば、パケットの欠落に対し伝送記録単位データを補正することができる。なおこの明細書においては情報量を調整するために意図的に1フレーム中のパケットを除去したために、復号器において1フレーム中のパケットが全て入力されない場合、あるいは通信網のトラフィック輻輳による交換局などで一部パケットを送出しないために基づく、又は伝送路下、記録再生装置の異常などに基くパケット欠落の場合、更に入力されたパケット中に誤りがあり、その伝送記録単位データを解読できず、使用することができない場合などを総称でパケット欠落と記す。

[0017]

【発明の実施の形態】以下この発明の実施形態を実施例により図面を参照して説明する。各図において既に説明した図と対応する部分には同一番号を付けて説明する。 第1実施例

図3にこの発明による符号器10及び復号器20の各実 施例を示す。この実施例が図1の従来技術と異なる点 は、ヘッダ付加部320を設け、パケットで信号を送出す ることにより、伝送路でのビット欠落による復号信号へ の品質劣化の影響を軽減するよう構成したことである。 【0018】符号器10において、入力端子からの入力 信号サンプル系列はフレーム分割部110で例えば1024個 の入力信号サンプル(即ち、n=1024点のサンプル)から なるフレーム単位に順次分割され、この分割された各フ レームごとに、入力信号サンプル系列は並び替え部160 によりそれぞれのサンプルの振幅ビット列における対応 ビット位置のビットがそのフレームにわたって時間方向 に連結される。この際入力信号サンプルは正または負の 整数の振幅が2の補数表現されているが、その2の補数 表現された各サンプルを、従来技術の説明と同様に、こ の2の補数表現によるビット列を極性絶対値変換部161 で、極性符号と絶対値から成るmビット2進数表現に変 換し、その後、1フレームn個のmビットサンプルに対 し、ビット配列変換部162で、それぞれのmビットサン プルの各対応ビット位置のビットをフレームにわたって 時間方向に連結したビット配列(即ち、等位ビット列) に並び替えることが好ましい。しかし図中破線で示すよ うに、極性絶対値変換部161を介することなく、ビット 配列変換部162で変換、つまり2の補数表現のまま、各 対応ビット位置のビットをフレームにわたって時間方向 に連結した等位ビット列に並び替えてもよい。

【0019】この発明では並び替え部160からの等位ビット列は伝送記録単位分割部310で伝送単位あるいは記録単位のデータに分割される。この単位を以下ブロックと呼ぶが、伝送単位で一般に使用されるパケットとも呼ぶ。これら各分割された伝送記録単位データは必要に応じて、可逆符号化部150により可逆圧縮符号化され、ヘッダ付加部320により、復号時に、互いに分離された伝送記録単位データを1つのフレームとして再構成可能なように例えば連続番号を含むヘッダが取付けられ、パケットとして出力端子170に出力される。なお可逆符号化部150は従来技術の可逆符号化部150と同様なものである

【0020】通常の入力信号サンプルは2の補数で正負の整数を表現するが、この例では、ディジタル入力信号を極性符号と振幅の絶対値の2進数に変換したあとのフレーム毎の数値列のビット配列組替え、つまり等位ビット列への変換と、伝送記録単位データへの分割の例を図4Aに示す。極性符号と絶対値表現された各mビットサンプル(振幅ビット列)は図4A中の左側に示すように

1フレーム分が時間方向に配列されている。n番目のサ ンプルの振幅ビット列の様子を理解し易いように、太線 で囲んだ振幅ビット列DV(n)として示す。nはフレーム 内の時間軸方向のサンプル番号を表わし、例えばn=1, 2, …, 1024である。後述のように、例えば入力データ が音声信号であれば、伝送路でのパケットの欠落による ビットの欠落が生じる場合、各振幅ビット列DV(n)の上 位ビット程大きな歪を再生音声品質に与え、極性符号は 最も大きな歪を与えることになるので、この例では各振 幅ビット列DV(n)の極性符号を絶対値のMSBと隣接さ せ、図ではMSBの直上に極性符号を位置させている。 【0021】このようなサンプル列を、図4Aの右側に 示すようにこの例ではまず各サンプルの振幅値の極性ビ ット (符号) のみを時間軸方向に連結して、フレーム内 で等位ビット列を作る。次にmビット振幅値のMSBの みをフレーム内で連結して等位ビット列を作り、以下同 様にして、順次、各対応ビット位置ごとにフレームにわ たってビットを時間方向に連結して等位ビット列を作 り、最後にLSBのみをフレーム内で連結して等位ビッ ト列を作る。それらの等位ビット列の1つの例を図4A 中右側のビット配列中に太枠でDH(i)として示す。iは 振幅ビット列DV(n)における各ビット位置を示し、例え ばMSB側からi=1, 2, …, 17である。以上の並び替え ではフレーム中に含まれるデータの中身は全く変らな 61.

【0022】伝送記録単位分割部310で、各等位ビット列DH(i)ごとに又は隣接する複数の等位ビット列DH(i)ごとに伝送記録単位データに分割する。この場合、1フレーム中において、伝送記録単位データとして1つの等位ビット列で構成されるものと複数の等位ビット列で構成されるものとが混在してもよい。このように分割された各伝送記録単位データはヘッダ付加部320で、例えば図4Bに示すようにヘッダ31がその伝送記録単位データ(ペイロード)32に付けられる。ヘッダ31には例えばフレーム番号とフレーム内の伝送記録単位データの番号よりなるパケット番号33と、必要に応じてそのパケットの優先度34及びデータ長35が設けられ、復号側でそれらに基づいて各フレームごとにディジタル信号列を再構成できるようにしている。

【0023】データ長35は伝送記録単位データ32のデータ長が固定であれば必要ないが、可逆符号化部150で圧縮符号化された場合などはデータ長がパケットにより異なることがある。更に一般にはパケット全体に誤りが生じているか否かを検出するためのCRC符号などの誤り検出符号36が最後に付加されて1つのパケット30が構成され、このパケット30が出力端子170から出力される。パケット30に優先順位がつけられる場合は、振幅ビット列の、より上位のビット位置に対応する伝送記録単位データを含むパケットに、より高い優先度を示す符号を与える。つまり、各等位ビット列DH(i)ご

とに伝送記録単位データに分割する場合はDH(i)のiが小さいデータを含むパケット程、高い優先度を与える。従って、図4Aの例では、i=1に対応する極性等位ビット列を含むDH(1)に最も高い優先度が与えられる。優先度は振幅ビット列のLSB〜MSBに対し必ずしも全て単調増加の異なる優先度を与える必要はなく、例えば上位複数ビットにはそれぞれ異なる優先度を与え、下位複数ビットに対しては同じ優先度と与えてもよい。即ち、予め決めた優先度の数は振幅ビット列のビット数と等しいか、それより小さくしてもよい。なお後述するが従来技術で説明したように高圧縮の非可逆量子化を併用する場合は、その高圧縮符号化符号を表わすビット列に最も高い優先度を与えてもよい。

【0024】復号器20においては入力端子200から のパケット30はその伝送記録単位データが可逆圧縮さ れている場合は可逆復号化部210(従来技術の可逆復号 化部210と同一) で可逆復号され、各伝送記録単位デー タは伝送記録単位統合部410でそのパケット番号に基づ き、複数のパケットより1フレーム分を統合し、例えば 図4Aの右側の等位ビット列DH(i)に示すように統合さ れる。この統合された等位ビット列は並び替え部220で 振幅ビット列DV(n)、つまりサンプル列(波形サンプル 列) に変換される。この際、各サンプルが極性符号と絶 対値で表現したものから伝送記録単位データが作られた ものである場合はビット配列逆変換部221で、図4Aで 説明した並び替えと逆に等位ビット列を振幅ビット列に 並び替えた後、2の補数変換部222で各振幅ビット列 を、2の補数表現に変換する。なお、伝送記録単位デー タが、2の補数表現された振幅ビット列から等位ビット 列に直接並び替えたものに基づくものである場合は、図 3中に破線で示すようにビット配列逆変換部221からの 振幅ビット列はそのまま復号サンプルとしてフレーム合 成部250へ供給される。

【0025】この発明では入力されたパケットの一連の パケット番号に欠落が生じていることを欠落検出部420 が検出すると、そのパケット番号のパケットが欠落して いると判定し、並び替え部220からの振幅ビット列はフ レーム合成部250へ直接供給されることなく、欠落補正 部430へ供給され、欠落情報に対する補正が振幅ビット 列(サンプル)に対して行われ、フレーム合成部250へ 供給される。欠落補正部430における補正は既知の情報 から欠落した情報を推定して行う。一部のパケット、通 常優先度の低いLSB側のビットが収容されたパケット が欠落した場合、その欠落部分に対応するビットの値が 確定できないので小さい数値、例えば〇か、その欠落部 分のとりうる値の中間値を使って波形を再生せざるを得 ない。この場合MSB側の確定したビット数の精度は保 てるが、ビット欠落による聴覚的ひずみは大きい。この 理由は図5に示す模式図のように原音のスペクトルは実 線に示すように低域にエネルギーが偏る場合が多く、こ

れに対してビットの欠落によるひずみ成分は破線に示すように平坦に近いスペクトル形状となるのでその高域成分が原音より大きく、雑音として聞こえてしまう。そこで不確定の成分のスペクトルが平均的なスペクトルまたはフレーム毎に確定したスペクトルに近いように不確定な波形の値を補正する。これにより、補正後の歪み成分のスペクトルは図5中の1点鎖線のように高域成分が小さくなり、ひずみが原音にマスクされて品質が改善される。

【0026】つまり、過去の数フレームの平均的スペクトル、又は後で述べるように別に得られたそのフレームにおける確定したスペクトルが例えば図5中の実線に近いような場合、当該フレームの欠落情報以外の情報から得られるスペクトルが、図5中の実線に近づくように、欠落情報に対する補正を行う。この補正の好ましい手法は後の実施例で述べる。簡単な手法としては、欠落補正部430でその入力再生サンプル列を低域通過フィルタに通して平滑化して高域の雑音成分を除去すればよい。その低域通過フィルタの遮断特性は、原信号のスペクトル形状(包絡)が予め知られていれば、その特性に応じて高域成分を減衰させるように選定する。あるいは、前述のように平均的なスペクトルを求め又はフレームごとの確定したスペクトルの形状に合せて遮断特性を適応的に変更してもよい。

【0027】このように復号器20でパケット欠落にもとづく情報欠落を補正できるため、必要に応じてLSB側パケットを意図的に送らず、符号化圧縮効率を大としても、復号器20で復号が可能となる、あるいは聴感上問題にならない再生を行うことができる。

第2実施例

図6にこの発明の第2実施例を示す。この第2実施例では符号器10においてフレーム分割部110でフレームごとに分割された入力信号サンプル系列は補助情報生成部350に与えられる。補助情報生成部350はスペクトル包絡算出部351とパワー算出部354と、補助情報符号化部352とから構成されている。フレーム分割部110でフレームごとに分割された入力信号サンプル列はスペクトル包絡算出部351でスペクトル包絡を表現するパラメータが、例えば線形予測分析により線形予測係数LPCとして求められ、またパワー算出部354でフレームごとの入力信号サンプル列の平均パワーPaが求められる。

【0028】あるいは求めた線形予測係数LPCに基づき構成された逆フィルタ355に入力信号サンプル列を入力してスペクトル包絡を平坦化処理して、その平坦化された信号の平均パワーが平坦化パワー算出部356で求められる。線形予測係数LPC及び平均パワーPaは補助情報符号化部352により、例えば30~50ビット程度の低ビットで符号化されて補助情報とされる。この補助情報はヘッダ付加部320へ供給され、各フレームの代表パケット、例えば極性符号を含む伝送記録単位データを含むパ

ケット内に付加され、あるいは独立したパケットとして 出力される。

【0029】なお、スペクトル包絡算出部351により求 められるスペクトル包絡係数はフレーム長を長くしても それ程大きな変化はなく、また、補助情報符号化部340 により符号化されたスペクトル包絡係数の情報量もそれ 程変化しないので、図中に破線で示すように並び替え部 160に与えるディジタル入力信号のフレーム長より長い フレーム長でフレーム分割部110'により分割して補助情 報生成部350に与え、可逆圧縮の効率を高めるようにし てもよい。復号器20においては入力端子200に入力さ れたパケットは分離部440において伝送記録単位データ と、補助情報とに分離され、伝送記録単位データは可逆 復号化部210へ供給され、補助情報は補助情報復号部450 へ供給され、補助情報復号部450は当該フレームのスペ クトル包絡を表すパラメータ、ここでは線形予測係数LP Cと平均パワーPaを復号し、このスペクトル包絡係数LPC と平均パワーPaを欠落補正部430へ供給する。欠落補正 部430はこのスペクトル包絡係数LPCと平均パワーPaを、 欠落情報の補正に用い、例えば実施例1で述べたように 欠落情報に対する補正を行う。

【0030】あるいは欠落情報(ビット)のとり得る値の各組み合せを、各サンプル値に加算し、補正サンプル列(波形)の候補を作り、これら候補のスペクトル包絡を求め、そのスペクトル包絡が補助情報の復号スペクトル包絡と最も近いものと対応する補正サンプル列(波形)候補を、補正サンプル列としてフレーム合成部250へ出力する。なお図6において可逆符号化部150、可逆復号化部210を省略してもよい。

補助情報による補正」

欠落情報の取り得る値の各組み合わせを用いて補正サンプル列の候補を作る場合、欠落情報(ビット)が多くなると、補正サンプル列(波形)候補が著しく多くなり、処理量が非現実的になるおそれがある。このような問題がないようにする欠落補正部430の処理、及びその機能構成について以下に説明する。

【0031】図7にその処理手順の一例を、図8に欠落補正部430の機能構成の一例をそれぞれ示す。まず暫定 波形生成部431に並び替え部220から入力された確定しているビットのみを使ってフレーム内の暫定波形(暫定的なサンプル列)を再生する(S1)。この暫定波形の再生は欠落しているビットは例えば0に固定するか、欠落ビットが取り得る値の中間値とする。例えば下位4ビットが欠落しているとすると、欠落4ビットの値は0~15までの値のどれかであるが、仮に8または7に設定する。

【0032】次にこの暫定波形のスペクトル包絡係数をスペクトル包絡算出部432で計算する(S2)。例えば音声分析で使われている全極型の線形予測分析を暫定波形に対し行えばスペクトル包絡係数を推定できる。一

方、誤差計算部433で、受信された補助情報Axが補助情報復号部450で復号されて原音のスペクトル包絡係数が得られ、その原音スペクトル包絡を暫定波形のスペクトル包絡係数と比較して、誤差が許容範囲内であれば暫定波形を補正された出力波形信号としてスイッチSW1を介してフレーム合成部250へ出力する(S3)。

【0033】ステップS3において、推定スペクトル包 絡係数と復号スペクトル包絡係数との誤差が許容範囲内 でない場合には、まず推定した暫定波形のスペクトル包 絡係数の逆特性を暫定波形に与える(S4)。具体的に はステップS2で求めた暫定波形のスペクトル包絡係数 を表す線形予測計数を用いて例えば全極型の線形予測係 数の逆フィルタ(全零型)434にスイッチSW2を介し て与えられた暫定波形を通過させることで暫定波形のス ペクトルを平坦化する。次にこのスペクトルが平坦化さ れた波形信号の平均パワーをパワー計算部438で計算 し、その平均パワーと、補助情報復号部450からの復号 された平均パワーとから補正量を補正量計算部439で計 算し、例えば両者の比又は差をとり、その補正量により パワー補正部501で平坦化信号に対し振幅補正を行う。 つまり、逆フィルタ434の出力に対し補正量を乗算又は 加算して復号パワーに合わせる(S5)。次に振幅補正さ れた平均化信号に対して補助情報のスペクトル包絡係数 を乗算してスペクトル包絡係数が補正された暫定波形を 生成する(S6)。即ち補助情報のスペクトル包絡を表 わすパラメータLPCを用いた全極型の合成フィルタ435に パワー補正部501の出力を通してスペクトル補正波形を 作る。この結果の波形のスペクトル包絡は原音に近いも

【0035】この修正波形をステップS1の暫定波形としてスイッチSW3を介して暫定波形生成部431に戻してステップS2以後の処理を繰り返すことができる。なお波形(サンプル値)は整数値が前提であるが、フィルタ計算では実数扱いとなり、フィルタの出力値の整数化が必要になる。合成フィルタの場合にはサンプルごとに整数化するか、フレーム毎にあとで一括して整数化するかで結果は異なるが、どちらも可能である。図7及び図

8中に破線で示すように、ステップS4で暫定波形を平坦化した後、まずこの平坦化された暫定波形(平坦化信号)を合成フィルタ435へ通して、スペクトル包絡補正した再構成サンプル系列(波形)を得(S5′)、そのスペクトル包絡補正された波形に対しパワー補正部501で振幅補正をして(S6′)、ステップS7に移るようにしてもよい。この場合は、合成フィルタ435からのスペクトル包絡補正された波形の平均パワーがパワー計算部438'で計算され、この平均パワーと、補助情報の復号パワー(符号器10中のパワー算出部356の出力)とにより補正量計算部439'で補正量が求められ、その補正量により合成フィルタ435の出力に対してパワー補正部501で振幅補正が行われる。

【0036】次に補助情報を用いた欠落情報補正処理の他の例を図9を参照して説明する。ステップS1~S3、S6は図7に示した処理中のステップS1~S3、S7とそれぞれ同一処理である。この例では図9のステップS4において、ステップS2で推定したスペクトル包絡に対する逆特性の逆フィルタ434と補助情報中のスペクトル包絡を表す線形予測係数LPCを用いた合成フィルタ435とを合体した1つの合成フィルタ部435、のフィルタ係数を計算し(S4)、ステップS5でこの合成フィルタに暫定波形を通して補正波形を合成する。その補正されたスペクトル包絡波形に対し振幅補正を行う(S6)。この振幅補正は図8中に破線で示すパワー計算部438、補正量計算部439、パワー補正部501、により行う。

【0037】図9に示した処理の機能構成は、図8中に破線で示すように、スペクトル包絡算出部432からの推定スペクトル包絡係数と補助情報復号部450からの復号スペクトル包絡係数とから、逆フィルタ434と合成フィルタ435を組み合せたひとつの合成フィルタ部435'のフィルタ係数が合成スペクトル包絡計算部437で計算され、そのフィルタ係数が合成フィルタ部435'に設定され、この合成フィルタ部435'に暫定波形が通される。その合成フィルタ438の出力に対し、パワー補正部501'で振幅補正が行われる。

【0038】この合成フィルタ部435'のフィルタ係数の計算は例えば図10に示すように、暫定波形スペクトル包絡係数として得た線形予測係数を係数変換部437aで線形予測ケプストラム係数Caに変換し、また補助情報復号スペクトル包絡係数として得た線形予測係数を係数変換部437bで線形予測ケプストラム係数Cbに変換し、これら係数Ca、Cbを減算部437cで減算してCb-Caを求め、このCb-Caを逆変換部437dで線形予測係数に逆変換し、この線形予測係数を合成フィルタ438のフィルタ係数に用いればよい。この予測係数への変換は例えば特開平8-248996号「ディジタルフィルタのフィルタ係数決定方法」に記述されている方法を使えばよい。

【0039】この図9に示した処理では、合成スペクト

ル包絡計算部437による計算が必要であるが、暫定波形 に対するフィルタ処理演算は1回ですむ。図7及び図9 に示した補正処理を周波数領域に変換して行ってもよ い。図7及び図9に示した各フローチャートのループ中 でステップS6(又はS5')、S5における補助情報か ら復号されたLPCに基づくスペクトル補正は原音と再生 信号のスペクトル歪を小さくするもので、ステップS7 の補正は原音と再生信号の波形歪を小さくするものであ り、補正量を小さくして補正波形の発散を防ぐことがで きる。その方法として、図7、図9に示した例では逆フ ィルタ434の線形予測係数α_k及び合成フィルタ435,438 の線形予測係数 β_k , β_k 'の両方ともに1未満の定数 γ のk乗(γk)をかける方法がある(kはパラメータの次 数)。図10に示した例では線形予測ケプストラム係数 Ca, Cbすべてに1未満の定数をかければよい。また図7 及び図9における繰り返し処理の場合でも、繰り返しの 最初は γ を1に近い値に設定し、収束するにつれて、 γ の値を小さくして推定誤差を小さくすることも可能であ

【0040】なお前記 α_k , β_k , β_k , α_k を乗算すること、線形予測ケプストラム係数に1未満の定数を乗算することは、スペクトル包絡特性の帯域を拡大した予測計数を乗算することになり、暫定波形(サンプル列)のスペクトル包絡、補助情報の復号スペクトル包絡をそれぞれなまらせることになる。図7及び図9において、ステップS3を省略し、ステップS1, S2, S4, S5(S5')、S6(S6')、S7を1回だけ、あるいは決められた回数だけ繰り返して、修正波形(サンプル列)を出力してもよい。また図中に示すように、ステップS3において繰り返しが規定回数以上になると、その最終に得られた修正波形を出力してもよい。

第3実施例

従来技術の図1を参照して説明した、圧縮率の高い非可逆符号化と、その再生信号と原信号の誤差信号の可逆圧縮とを組み合せる符号化方法にこの発明を適用した第3実施例を図11に示す。図1で説明したと同様に符号器10では入力端子100からのディジタル入力信号列は圧縮率の高い非可逆量子化部120により、非可逆量子化され、その量子化情報は逆量子化部130で逆量子化(即ち復号)され、この逆量子化された信号(再生信号)と入力端子100からの原ディジタル入力信号列との差が減算部140でとられ、この差分信号である誤差信号がフレーム分割部110へ供給される。つまりこのフレームごとの誤差信号に対し、前述したようにビット配列の並び替え、伝送記録単位データへ分割、伝送記録単位データの可逆圧縮が行われ、ヘッダ付加部320でヘッダ31が付けられてパケット化される。

【0041】非可逆量子化部120からの量子化符号I(n) もヘッダ付加部320へ供給されて、ヘッダ31が付けられてパケットを構成する。この際、優先度を付ける場合 にこの量子化符号のビット列に対して最も高い優先度を示す符号を与える。また、図4には線で示したように、誤差信号又サンプル列は原入力信号サンプル列のスペクトル包絡を表現するパラメータと平均パワーとが補助情報として補助情報生成部350で生成され、独立したパケットとして、又は優先度の高いパケット内に格納されて送出される。

【0042】復号器20は原音合成後、即ち、逆量子化 により再生した原音信号波形の概形と誤差波形を加算器 240で加算して原音信号波形を再生した後に補正を行う 例であって、入力端子200に入力されたパケットから非 可逆量子化符号I (n)と、補助情報と、伝送記録単位デー タとが分離部440で分離され、非可逆量子化符号I(n)は 逆量子化部230で逆量子化され、補助情報は補助情報復 号部450で復号され、復号されたスペクトル包絡を表す パラメータ及び平均パワーが欠落補正部430へ供給され る。一方、伝送記録単位データは前述したように可逆伸 張、伝送記録単位統合、並び替えが順次行われ、振幅ビ ット列、つまり誤差信号サンプル列が再生され、この再 生誤差信号と逆量子化部230からの逆量子化信号とが加 算部240で加算される。この加算信号は、欠落検出部420 よりパケット欠落が検出された場合は欠落補正部430へ 供給される。

【0043】欠落補正部430における補正方法は上述した各種の手法の何れを用いてもよい。補助情報復号スペクトル包絡を表わすパラメータを利用する場合に、逆量子化部230で対応スペクトル包絡を表わすパラメータを得ることができる場合は、これを利用してもよい。あるいは図中に破線で示すように符号器10ではフレーム分割部110の出力誤差信号、又はフレーム分割部110によりフレームに分割された入力端子100からの入力信号から補助情報生成部350で補助情報を生成し、この補助情報を何れかのパケット内に加えるか、独立したパケットにより出力する。復号器20では分離部440で補助情報を分離し、その補助情報を補助情報復号部450で復号して欠落補正部430へ供給すればよい。

【0044】このように非可逆量子化符号と誤差信号を用いる場合は、復号器20において原音合成前の誤差信号に対し、欠落情報補正を行ってもよい。即ち、例えば図12に示すように並び替え部220からの並び替え出力をパケット欠落の場合は欠落補正部430へ供給して欠落情報を補正して、フレーム合成部250へ供給する。この欠落補正部430での補正は前述した各種の手法を用いることができ、補助情報復号スペクトル包絡を用いる場合は、補助情報復号部450の復号化出力を用い、あるいは逆量子化部230で対応するスペクトル包絡を表わすパラメータが得られる場合はこれを利用してもよい。フレーム合成部250から再生誤差信号と逆量子化部230からの逆量子化信号とを加算部240で加算して原音信号を再生する。

【0045】図11及び12で示した実施例においても、補助情報として平均パワーを使用しないでもよい。図11に示したように符号器10において、誤差信号に対してフレーム分割部110でフレーム分割する場合は、非可逆量子化部120における量子化処理のフレーム(例えば1024サンプル)に対し、フレーム分割部110の分割フレームを長く、例えば16倍程度にすることにより、可逆符号化部150における圧縮効率を高くすることができる。しかしフレーム分割部110での分割フレーム長を余り長くすると復号の際にそれだけ遅れが長くなる。

【0046】図6、図11に示した各実施例において、 並び替え部160は必ずしも極性絶対値変換部161を設けな くてもよい。つまり2の補数表現のままビット配列並び 替えを行ってもよい。この場合は可逆符号化の効率が下 がるが、圧縮率より振幅分解能の選択(振幅精度のスケ ーラビリティ)のみが問題となる用途に有効である。図 11、図12に示した例においては、再生信号の忠実性 の要求に応じて端子260からの信号のみならず、逆量子 化部230からの出力を再生信号としてもよい。上述した 各実施例において符号器10、復号器20はそれぞれコ ンピュータにより可逆符号化プログラム、可逆復号化プ ログラムを実行させて機能させることもできる。これら の場合は、そのコンピュータのプログラムメモリに、可 逆符号化プログラム、可逆復号化プログラムを、CD-RO M、可撓性磁気ディスクなどから、又は通信回線を通じ てダウンロードして利用することになる。

【0047】この発明の効果を計算機シミュレーションを、第3実施例(符号化は図11、復号化は図12)について行った。誤差信号のサンプル値の桁数(極性信号を含める)を16とし、第6~10ビットが欠落し、欠落補正部430で誤差信号を低域通過フィルタにより平滑化して補正し、復号信号(出力端子260)の聴感補正したSNR(Weighted SNR)と、復号信号の原音信号に対するケプストラム距離(スペクトル包絡の歪)とを求めた。その結果を図13A、13Bに示す。参考のために欠落情報の補正を行わない場合のSNRとケプストラム距離も示した。これらより、第6ビットが欠落した場合、この発明による欠落の情報補正(欠落補正)をした場合は、欠落補正しない場合より可成り改善されることが理解される。

第4実施例

図14にこの発明による符号器10及び復号器20の他の実施例を示す。この実施例は図6の実施例における補助情報生成部350を変形したものである。前述のように、符号器10において、入力端子100からの入力信号サンプル系列はフレーム分割部110で例えば1024個のサンプルからなるフレーム単位に順次分割される。この実施例では、補助情報生成部350内の有効桁数検出部353でフレームごとの入力ディジタル信号の絶対値の最大値を表現する桁数が有効桁数Feとして検出される。

【0048】フレーム分割部110で分割された各フレームごとに、入力信号サンプル系列はその有効桁数以内の部分のみが並び替え部160により各サンプル(振幅ビット列)における対応ビットが時間方向に配列される。この際、各入力信号サンプルは正または負の整数の振幅が2の補数表現されているが、その2の補数表現された各サンプルを、従来技術の説明と同様に、極性絶対値変換部161で、極性符号と絶対値の2進数表現に変換し、その後、ビット配列変換部162で、それぞれのサンプル(振幅ビット列)の対応ビット(桁)を時間方向に連結したビット配列(等位ビット列)にならびかえることが好ましい。しかし図中破線で示すように、極性絶対値変換部161を介することなく、つまり2の補数表現のまま、ビット配列変換部162で各対応ビットを時間方向にビット結合した等位ビット列にならびかえてもよい

【0049】つまり、通常の入力信号サンプルは2の補数で正負の整数を表現するが、この例では、入力信号サンプルを極性符号と振幅の絶対値の2進数に変換したあとの数値に組替えた後、等位ビット列への変換を行い、更に、伝送記録単位分割部310で伝送記録単位データへの分割を行っている。その例を図15Aに示す。極性符号と絶対値表現された各サンプルは図15A中の左側の振幅ビット列に示すように1フレーム分が時間方向に順次配列されている。1つの振幅ビット列の様子を理解し易いように、太線で囲んだ振幅ビット列の様子を理解し易いように、太線で囲んだ振幅ビット列DV(n)として示す、nはフレーム内の時刻を表わし、例えばn=1,2,…,1024である。この例では各振幅ビット列DV(n)の極性符号を絶対値のMSBと隣接させ、図ではMSBの直上に極性符号を位置させている。

【0050】このような1フレーム分のそれぞれのサン プルの振幅ビット列の内で最もMSBに近い桁に"1"が あるビット位置を検出、LSBからその桁までの桁数が 有効桁数Feとして求まる。この1フレームのディジタル 信号中のこの有効桁数以内の範囲361のみと極性符号と をビット列に変換する。つまり有効桁数より上位の桁か らMSBまでの範囲362は等位ビット列に変換しない。 このような振幅ビット列データを、図15Aの右側に示 すようにこの例ではまず各サンプルの振幅の数値の極性 ビット (符号) のみを時間方向に連結して、フレーム内 で系列(等位ビット列)を作る。次に有効桁数Fe以内 の最も大きな数値に対応する桁のみをフレーム内で連結 して系列 (等位ビット列)を作り、同様にして、順次、 各桁(対応ビット)ごとに時間方向に連結して等位ビッ ト列を作り、最後にLSBのみをフレーム内でつなげた ビット列(等位ビット列)を作る。これら等位ビット列。 の1つの例を図15A中右側のビット配列太枠でDH(i) として示す。 i は等位ビット列の作成順を示す。以上の 並び替えではフレーム内のデータの中身は全く変らな 11

【0051】なおディジタル信号が2の補数で正負の整数を表現している場合は例えば図15Bに1フレーム分の振幅ビット列を示すように、絶対値の最大値を表現する桁より、絶対値が大きい部分は、図15B中の範囲363に示すように、振幅ビット列が正の値であれば、全て"0"となり、負の値であれば全て"1"となる。このような部分以外の範囲364の桁数が有効桁数として検出される。この範囲364とこれと隣接したビット(桁)、つまり極性符号についてのみ、図15Bの右側に示すように、等位ビット列への変換を行えばよい。

【0052】並び替え部160からの出力は伝送記録単位分割部310で、各等位ビット列DH(i)ごとに又は隣接する複数の等位ビット列DH(i)ごとに伝送記録単位データに分割する。この場合、1フレーム中において、伝送記録単位データとして1つの等位ビット列で構成されるものと複数の等位ビット列で構成されるものとが混在してもよい。このように分割された各伝送記録単位データはヘッダ付与部320で、例えば図4Cに示したと同様にヘッダ31がその伝送記録単位データ(ペイロード)32に付けられる。

【0053】この第4実施例では補助情報生成部350は スペクトル包絡算出部351、補助情報符号化部352、有効 桁数検出部353、パワー算出部354を有しており、フレー ム分割部110からの入力信号サンプル列から有効桁数検 出部353で検出した有効桁数Feが補助情報符号化部352で 符号化されて送出される。あるいは、各サンプルがmビ ット構成とすると、う浮こう桁数Feの代りにm-Feを符号 化して送ってもよいことは明らかである。この例では更 に、フレーム分割部110でフレームごとに分割された入 力信号サンプル列はスペクトル包絡算出部351において 例えば線形予測分析により線形予測係数LPCがスペクト ル包絡を表現するパラメータとして求められ、またパワ ー算出部354でフレームごとの分割されたサンプル列の 平均パワーPaが算出される。あるいはスペクトル包絡算 出部351で求めた線形予測係数LPCに基づき構成した逆フ ィルタ355に入力信号サンプル列を入力してそのスペク トル包絡を平坦化処理し、その平坦化された信号の平均 パワーPaがパワー算出部356で求められる。

【0054】これら線形予測係数LPC及び平均パワーPaも補助情報符号化部340により、例えば30~50ビット程度の低ビットで符号化されて補助情報とされる。この有効桁数Fe、スペクトル包絡のパラメータLPC、平均パワーPaを符号化した補助情報はヘッダ付加部320~供給され、各フレームの代表パケット、例えば極性符号を含む伝送記録単位データが格納されたパケット内に付加され、あるいは独立したパケットとして出力される。なお図中に破線で示すように、図6の実施例と同様にスペクトル包絡のパラメータLPC、平均パワーPa等の補助情報をフレーム分割部110でよる分割長より長いフレーム長で分割された入力信号

フレームに対して取得することにより、可逆圧縮の効率 を高めるようにしてもよい。

【0055】復号器20においては入力端子200に入力されたパケット30は分離部440において伝送記録単位データと、補助情報とに分離され、伝送記録単位データは可逆復号化部210(図1の復号化部210と同一)へ供給され、補助情報は補助情報復号部450へ供給され、補助情報復号部450は当該フレームの有効桁数Fe、スペクトル包絡を表すパラメータLPC及び平均パワーPaを復号し、有効桁数Feを桁合せ部460へ供給し、スペクトル包絡パラメータLPC及び平均パワーPaを欠落補正部430へ供給する。欠落補正部430、補助情報復号部450、桁合せ部460は情報補正部480を構成している。

【0056】伝送記録単位データはそれが可逆圧縮されている場合は可逆復号化部210で可逆復号され、各伝送記録単位データは伝送記録単位統合部410でそのパケット番号に基づき、複数のパケットより1フレーム分を統合し、例えば図15Aの右側の等位ビット配列に示すように統合される。この統合されたデータは並び替え部220で等位ビット列から振幅ビット列、つまり元のサンプル列(波形)に変換される。この際、各サンプルが極性符号と振幅の絶対値で表現されている場合はビット配列逆変換部221で、図15Aで説明した並び替えと逆に等位ビット列を図15Bの右側に示すように振幅ビット列に並び替えた後、2の補数変換部222で、ビット配列逆変換部221からの各振幅ビット列を、2の補数表現に変換し、つまり極性符号が負の振幅ビット列はその"1"と"0"とを入れかえる。

【0057】なお、伝送記録単位データが、2の補数表現された振幅ビット列から等位ビット列に直接並び替えたものに基づくものである場合は、図14中に破線で示すようにビット配列逆変換部221からの振幅ビット列はそのまま桁合せ部460へ供給される。桁合せ部460では各振幅ビット列に対し、復号有効桁数Feに応じた桁合せをする。つまり本来の振幅ビット列のビット数(桁数)mになるように、その振幅ビット列の上位に、極性符号が正であれば0を、負であれば1を付け加え、つまり例えば図15Bにおける範囲363のビットを付け加える。この桁合せされた振幅ビット列は、復号サンプルとしてフレーム合成部250へ供給される。

【0058】パケット欠落が生じている場合は、そのパケットのパケット番号が欠落検出部420により検出され、並び替え部220からの振幅ビット列は桁合せ部460へ直接供給されることなく、欠落補正部430へ供給され、欠落情報に対する補正が振幅ビット列(サンプル)に対し行われて、桁合せ部460へ供給される。欠落補正部430における補正は既知の情報から欠落した情報を推定して行う。欠落補正部430は前述の各実施例と同様に、過去の数フレームの平均的スペクトル、又は後で述べるように補助情報の復号結果として得られたそのフレームにお

ける確定したスペクトルに、当該フレームの欠落情報以外の情報から得られるスペクトルが近づくように、欠落情報に対する補正を行う。簡単な補正法としては、欠落補正部430でその入力再生サンプル列を低域通過フィルタに通して平滑化して高域の雑音成分を除去すればよい。その低域通過フィルタの遮断特性は、原信号のスペクトル形状(包絡)が予め知られていれば、その特性に応じて高域成分を減衰させるように選定する。あるいは、前述のように平均的なスペクトルを求め、又はフレームごとの確定したスペクトルの形状に合せて遮断特性を適応的に変更してもよい。

【0059】このように復号器20でパケット欠落にもとづく情報欠落を補正できることを利用し、情報量削減のため必要に応じてLSB側パケットを意図的に送らず、ビットレートを低くしても、復号器20で可逆復号が可能となる。あるいは短惑上問題にならない再生を行うことができる。あるいは欠落情報(ビット)のとり得る値の総ての組み合せを、各サンプル値に加算し、補正サンプル列(波形)の候補を作り、これら候補のスペクトル包絡を求め、そのスペクトル包絡が補助情報の復号スペクトル包絡と最も近いものと対応する補正サンプル列(波形)候補を、補正サンプル列として桁合せ部460へ出力する。なお図14において可逆符号化部150、可逆復号化部210を省略してもよい。

補助情報による補正

欠落情報のとり得る値の総ての組み合せを用いて補正サンプル列の候補を生成する場合、欠落情報(ビット)が多くなるにつれて、補正サンプル列(波形)候補が著しく多くなり、処理量が非現実的に増加するおそれがある。このような問題を回避する欠落補正部430の処理、及びその機能構成について以下に説明する。

【0060】図16にその欠落情報補正処理手順の一例を、図17に欠落補正部430の機能構成の一例をそれぞれ示す。ステップS1~S6の処理は図7のステップS1~S4、S6、S7と同様であり、まず暫定波形生成部431に並び替え部220から入力された確定しているビットのみを使ってフレーム内の暫定波形(暫定的なサンプル列)を再生する(S1)。この暫定波形の再生は欠落しているビットは例えば0に固定するか、欠落ビットが取り得る値の中間値とする。例えば下位4ビットが欠落しているとすると、欠落4ビットの値は0~15の値のうちどれかであるが、仮に8または7に設定する。

【0061】次にこの暫定波形のスペクトル包絡をスペクトル包絡算出部432で計算する(S2)。例えば音声分析で使われている全極型の線形予測分析を暫定波形に対し行えばスペクトル包絡係数を分析できる。一方、誤差計算部433で、受信された補助情報Axが補助情報復号部450で復号されて原音のスペクトル包絡係数が得られ、その原音スペクトル包絡係数を暫定波形のスペクトル包絡係数と比較して誤差が予め決めた値△dより小

であれば暫定波形を補正された出力波形としてフレーム 合成部250へ出力する(S3)。

【0062】ステップS3において、推定スペクトル包 絡係数と復号スペクトル包絡係数の誤差が予め決めた値 △dより小でない場合には、まず推定した暫定波形のス ペクトル包絡係数の逆特性を暫定波形に与える(S 4)。具体的にはステップS2で求めた暫定波形スペク トル包絡を表すパラメータを例えば全極型(全零型)の 線形予測逆フィルタ434に設定し、暫定波形を逆フィル タ434に通過させることで暫定波形のスペクトルを平坦 化して平坦化信号とする。この平坦化信号の平均パワー をパワー計算部438で計算し、この平均パワーと、補助 情報復号部450からの復号された平均パワー(符号器1 0の平坦化パワー算出部331の出力)とから補正量を補 正量計算部439で計算し、例えば両者の比又は差として 計算し、その補正量により、パワー補正部501で逆フィ ルタ434の出力に対し振幅補正を行う、つまり、逆フィ ルタ434の出力に対し補正量を乗算又は加算して、暫定 波形のパワーを復号パワーに合せる(S5)。

【0063】次にこの振幅補正された平坦化信号に対して補助情報のスペクトル包絡の特性を与えてスペクトル包絡を補正する(S6)。すなわち補助情報の復号スペクトル包絡を表わすパラメータLPCを用いた全極型の合成フィルタ435にパワー補正部501の出力を通してスペクトル補正波形を作る。この結果の波形のスペクトル包絡は原音に近いものになる。ただしこのスペクトル補正波形は振幅ビット列中のすでに確定しているビットと矛盾する場合があるので、前述と同様に正しい値に修正部436で修正する(S7)。

【0064】この修正波形をステップS1の暫定波形と してステップS2以後の処理を繰り返すことができる。 なお復号有効桁数Feがフレーム毎に異なる場合で、スペ クトル包絡算出部432の線形予測分析(ステップS 2)、逆フィルタ434(ステップS4)、合成フィルタ4 35 (ステップS6) の各処理の対象となるサンプルが現 在のフレームと過去のフレームにまたがる場合がある。 この場合には処理の対象は現在のフレームであっても、 一つ過去のフレームの有効桁数Feを現在のフレームの有 効桁数Feと一致させたうえで分析やフィルタ処理を行う 必要がある。一つ過去のフレームの有効桁数Feが現在の フレームの有効桁数よりN桁大きい場合には、一つ過去 のフレームのサンプルを例えばN桁下位にシフトさせて 振幅値を縮小させてその有効桁数を現在のフレームの有 効桁数に合わせる。逆に一つ過去のフレームの有効桁数 が現在のフレームの有効桁数よりM桁大きい場合には、 過去のフレームのサンプルを例えば浮動小数点表示など で一時的にM桁上位にシフトして振幅値を拡大させてそ の有効桁数を現在のフレームの有効桁数に合わせる。こ の場合、上位シフトによりレジスタから溢れ出て情報の 欠落が大きいときにはその過去のフレームのサンプルの

振幅値の精度が落ちているので、過去のフレームのサンプルを使わない、あるいは現在のフレームのサンプルに 対する補正処理を省略してもよい。

【0065】このような有効桁数の補正は図16中に破線で示すように、ステップS2の分析処理に必要な場合は、その前に、前述した有効桁数補正を行い(S2')、ステップS4の逆フィルタ処理に必要な場合は、その前に有効桁数補正を行い(S4')、ステップS6の合成フィルタ処理に必要な場合は、その前に有効桁数補正を行う(S6')。また図17において、スペクトル包絡算出部432、逆フィルタ434、合成フィルタ435中の過去のフレームのサンプルを必要とするものに対しては破線で示すように補助情報復号部450から復号された有効桁数Feも供給され、これらスペクトル包絡算出部432、逆フィルタ434、合成フィルタ435において、過去のフレームのサンプルに対する有効桁数を現在フレームの有効桁数に合せる処理を行った後、その本来の処理を行うようにされる。

【0066】図16及び図17中に破線で示すように、 ステップS4で暫定波形を平坦化した後、まずこの平坦 化された暫定波形(平坦化信号)を合成フィルタ435へ 通して、スペクトル包絡補正した再構成サンプル系列 (波形)を得(S5['])、そのスペクトル包絡補正され た波形に対しパワー補正部501'で振幅補正をして(S 6") ステップS7に移るようにしてもよい。この場合 は、合成フィルタ435からのスペクトル包絡補正された 波形の平均パワーがパワー計算部438'で計算され、この 平均パワーと、補助情報の復号パワー(符号器10中の パワー計算部331の出力)とにより補正量計算部439'で 補正量が求められ、その補正量により合成フィルタ435 の出力に対してパワー補正部501'で振幅補正が行われ る。ステップS5'の合成フィルタ435による処理が1 つ前のフレームとまたがって行われる場合は、ステップ S5"で示すように予め有効桁数の補正を行う。

【0067】補正情報を用いた欠落情報補正処理の更に 他の例を図18を参照して説明する。この欠落情報補正 処理は、図8における合成スペクトル包絡計算部437と 合成フィルタ部435'を使用した補正処理と同様の原理 を使用する。ステップS1~S3、S6は図16に示し た処理中のステップS1~S3、S7とそれぞれ同一処 理である。この例ではステップS3の後、ステップS2 において推定したスペクトル包絡の逆フィルタ434と補 助情報の復号スペクトル包絡の合成フィルタ435を合わ せたひとつの合成フィルタ部435'のフィルタ係数を合成 スペクトル包絡計算部437で計算し(S4)、ステップ S5でこの合成フィルタ部435'に暫定波形を通してスペ クトル包絡を補正した波形を合成し、そのスペクトル包 絡が補正された波形に対しパワー補正部501 で振幅補正 を行う(S6)。この振幅補正は図17中に破線で示す パワー計算部438'、補正量計算部439'、パワー補正部50 1'により行う。この合成フィルタ501'のフィルタ係数の計算は例えば図10で説明した計算により実施する。

【0068】この図18に示した処理では、合成スペクトル包絡計算部437による合成フィルタ部435'のフィルタ係数の計算が必要であるが、暫定波形に対するフィルタ演算は1回ですむ。図16及び図18に示した補正処理を周波数領域に変換して行ってもよい。図18中でステップS2のスペクトル包絡算出やステップS5でスペクトル包絡補正で、過去のサンプルを必要とする場合は、破線で示すようにそのステップS2やS5の前に前述した有効桁数補正を行う(S2、又はS5、)。

【0069】図16に示したフローチャートのループ中でステップS6(又はS5′)、及び図18に示したフローチャートのループ中のS5における補助情報から復号したLPCに基づくスペクトル包絡補正は原音と再生信号のスペクトル歪を小さくするもので、両フローチャート中のステップS7の補正は原音と再生信号の波形ひずみを小さくするものであるので、ループによるこの操作の繰り返しで収束する保障はないが、図7B及び9について説明したと同様に、逆フィルタ434の線形予測係数 α_k 、合成フィルタ435,438の線形予測係数 β_k , β_k "のそれぞれに対し定数 γ^k を乗算することにより発散を防ぐことができる。ただし、 γ は $0<\gamma<1$ であり、kは パラメータの次数である。

【0070】図10の構成を使用する場合には、線形予測ケプストラム係数Ca, Cbのすべてに1未満の定数をかければよい。また図16及び図18において繰り返し処理の場合でも、繰り返しの最初は γ を1に近い値に設定し、収束するにつれて、 γ の値を小さくして推定誤差を小さくすることも可能である。図16及び図18において、ステップS3を省略し、ステップS1, S2, S4, S5(S5'), S6(S6'), S7を1回だけ、あるいは決められた回数だけ繰り返して、修正波形(サンプル列)を出力してもよい。また図中に示すように、ステップS3において繰り返しが規定回数以上になると、その時最終に得られた修正波形欠落補正部430の出力してもよい。

【0071】桁合せ部460は図14中に破線で示すように、並び替え部220の直後に挿入してもよい。この場合は、欠落補正部430における前述した有効桁数を合わせる処理は不要となる。また図16及び図18に示した欠落情報の補正処理において、ステップS5,S6′及びS6の振幅補正は省略してもよい。この場合は図17においても対応する部分438′,439′,501′が省略される。場合によっては復号スペクトル包絡を用いる欠落情報の補正は省略し前述した低域通過フィルタを使用する方法や過去のフレームのスペクトル包絡係数に一致するよう補正する方法などの他の補正を用いてもよい。この場合は、符号器10で、スペクトル包絡又はこれと平均パワーの補助情報の生成は省略され、また復号器20の欠落

補正部430は図17に示した構成とは異なるものとなる。

第5実施例

図14で説明した各フレーム中のサンプルの有効桁に対 し並び替えを行う符号化方法を図1で説明した圧縮率の 高い非可逆符号化と、その再生信号と原信号の誤差信号 の可逆圧縮とを組み合せた符号化方法に適用した第5実 施例を図19に示す。この実施例の符号器10において は、ビット配列変換部162において、図15Aあるいは 図15Bで説明した有効桁に対する並び替えをう。補助 情報生成部350は図14の実施例における補助情報生成 部350と同様に構成されている。それ以外は図11にお ける符号器10と同様の構成とされている。また、復号 器20は図11の実施例における復号器20において、 桁合わせ部460を並び替え部220の出力側に設け、欠落補 正部430として図14の欠落補正部430、即ち図17の欠 落補正部430を使用したものであり、それ以外は図11 における復号器20と同様の構成とされている。従って 詳細な説明は繰り返さない。

【0072】このように非可逆量子化符号と誤差信号を 用いる場合は、復号器20において原音合成前の誤差信 号に対し、欠落情報補正を行ってもよい。即ち、例えば 図20に示すように並び替え部220からのならびかえ出 力をパケット欠落の場合は欠落補正部430へ供給して欠 落情報を補正して、桁合せ部460へ供給し、欠落情報を 含まない場合は並び替え部220の出力を直接桁合せ部460 へ供給し、桁合せ部460で桁合せされたサンプル列をフ レーム合成部250へ供給する。欠落補正部430での補正は 前述した各種の手法を用いることができ、補助情報復号 スペクトル包絡又はこれと復号平均パワーを用いる場合 は、補助情報復号部450の復号化出力を用い、あるいは 逆量子化部230で対応するスペクトル包絡を表わすパラ メータLPCが得られる場合はこれを利用してもよい。フ レーム合成部250からの再生誤差信号と逆量子化部230か らの逆量子化信号とを加算部240で加算する。図20中 に破線で示すように、桁合せ部460を並び替え部220の直 後に設けてもよい。

【0073】上述において、符号器10でパケット化することなく、少くともフレームごとに有効桁数と伝送記録単位データとを送出し、復号器20でこれらを用いて復号するようにしてもよい。

第6実施例

図21にこの発明による符号器10及び復号器20の各実施例を示す。この実施例では、図6の実施例においてフレーム分割された入力信号サンプル列を等位ビット列に変換して送出する代わりに、入力信号サンプル列の予測誤差を等位ビット列に変換して送出するものである。【0074】符号器10は図6における符号器10に対し、サンプルレジスタ371と、線形予測部372と、整数化部373と、差回路374とからなる予測誤差生成部370が追

加された構成とされている。また、復号器2は図6における復号器20に対し、サンプルレジスタ471と、線形予測部472と、整数化部473と、加算部474とからなる合成フィルタ470が追加された構成とされている。フレーム分割部110から入力信号サンプル列が各フレームごとに、補助情報生成部350のスペクトル包絡算出部351と予測誤差生成部370の差回路374に与えられる。入力信号サンプル列はフレームごとにスペクトル包絡算出部351で、例えば線形予測分析され、そのスペクトル包絡を表わすパラメータとして線形予測係数LPCが求められる。このスペクトル包絡のパラメータLPCは補助情報符号化部352で符号化される。

【0075】例えばフレーム分割部110からの直前のフ レームの予め決めた数の複数サンプルがレジスタ371か ら線形予測部372へ供給され、これらサンプル列に対 し、スペクトル包絡算出部351からのスペクトル包絡パ ラメータLPCに基づく線形予測係数が乗算、加算され て、入力サンプル毎に線形予測値が求められる。この線 形予測値は整数化部373で整数値とされ、整数の予測値 とフレーム分割部110からの現サンプルとの差が差回路3 74で予測誤差信号サンプルSpeとして求められる。この 入力サンプル毎に得られる予測誤差信号Speは並び替え 部160に入力され、並び替え部160において各フレームご とにそれぞれの入力サンプルに対する予測誤差信号サン プルSpe (振幅ビット列) の対応ビット (桁) が図4A で説明したように時間方向に配列される。並び替え部16 0からの等位ビット列は伝送記録単位分割部310で伝送単 位あるいは記録単位のデータ毎に必要に応じて、可逆符 号化部150により可逆圧縮符号化され、ヘッダ付与部320 により、復号時に分割された伝送記録単位データを1つ のフレームとして再構成可能なようにヘッダが取付けら れ、パケットとして出力端子170に出力される。

【0076】補助情報符号化部350からのスペクトル包絡のパラメータLPCの符号化情報(補助情報)はヘッダ付与部320から1つのパケットとして、又は最も優先度のパケット内に格納されて出力される。復号器20においては入力端子200からのパケット30は分離部440において、補助情報と、伝送記録単位データ(極性符号列を含む)とに分離され、補助情報は補助情報復号部450へ供給される。伝送記録単位データはそれが可逆圧縮されている場合は可逆復号化部210へ供給され、ここで可逆復号された後、各伝送記録単位データは伝送記録単位統合部440ではパケット番号に基づき、複数のパケットより1フレーム分の伝送記録単位データを統合する。この統合されたデータは並び替え部220で等位ビット列を振幅ビット列の1フレーム分、つまり予測誤差波形に変換される。

【0077】なお、伝送記録単位データが、2の補数表現された振幅ビット列から等位ビット列に直接並び替えたものに基づくものである場合は、図21中に破線で示

すようにビット配列逆変換部221からの振幅ビット列は そのまま復号サンプルとして欠落補正部430を迂回して 合成フィルタ470へ供給される。パケット欠落が生じて いなければ、並び替え部220から、符号器10の並び替 え部160に入力された予測誤差信号サンプルSpeと完全に 同一の予測誤差信号Speが得られる。合成フィルタ470で は、符号器10における予測誤差生成部370の処理と逆 の処理が行われる。つまりレジスタ471から予め決めら れた一定数の直前の復号サンプルが線形予測部472に入 力され、線形予測部472に各サンプルに対して、補助情 報復号部450で復号された線形予測係数PLCがそれぞれ乗 算され、その乗算結果の和が現在の復号サンプルの予測 値として求められる。この予測値は整数化部463で整数 値とされ、この整数化された予測値と並び替え部220か らの現在の予測誤差信号との和が加算部474でとられ て、合成フィルタ470のフィルタ出力とされ、フレーム 合成部250へ供給されると共にレジスタ471へ供給され る。よって、合成フィルタ470でディジタル信号が合成 され、これがフレーム合成部250で互いにつなぎ合わさ れて、符号器10の入力端子100に入力された信号が再 生されて出力端子260に出力される。

【0078】入力されたパケットのパケット番号からパケット欠落が生じている場合は、欠落検出部420でこれが検出され、並び替え部220からの振幅ビット列は合成フィルタ470へ直接供給されることなく、欠落補正部430へ供給され、欠落情報に対する補正が振幅ビット列(予測誤差信号)に対し行われて、合成フィルタ470へ供給される。

欠落情報補正

欠落補正部430における欠落した情報を補正した予測誤 差波形を得る処理手順と構成を図22及び図23を参照 して以下に説明する。

【0079】欠落予測誤差波形(並び替え部220からの 1フレーム分のサンプル列出力)が暫定波形生成部431 に入力され、まず確定しているビットのみを使ってフレ ーム内の暫定予測誤差波形を生成する(S1)。この際 欠落しているビットは例えば○に固定するか、欠落情報 のとり得る範囲の中間値とする。次にこの暫定予測誤差 波形のスペクトル包絡をスペクトル包絡算出部432で計 算する(S2)。例えば音声分析で使われている全極型 の線形予測分析を暫定予測誤差波形に対して行えばスペ クトル包絡を推定できる。符号器10の予測誤差生成部 370で生成される予測誤差波形のスペクトル包絡はほぼ 平坦となるので、この推定したスペクトル包絡は、暫定 予測誤差波形が符号器10の予測誤差生成部370で得ら れた原予測誤差信号波形と同一であれば平坦であること が、期待される。しかしこの暫定予測誤差波形が原予測 誤差信号波形と異なればスペクトル包絡は平坦なものに ならない。この平坦度が許容範囲内であるか否かの判定 を平坦度判定部433Fで行う(S3)。この平坦度が許容

範囲であればその暫定予測誤差波形をそのまま合成フィルタ470へ出力する。

【0080】この平坦度の判定は例えば、スペクトル包 絡算出部432でスペクトル包絡のパラメータとして求め た線形予測係数c₁, c₂, …, c_M の相加平均を相乗平均 で割算した値が0dBであれば、完全な平坦であり、例え ば3dB以下であればほぼ平坦な状態であると判定する。 あるいは、前記スペクトル包絡のパラメータとしてLPC ケプストラム係数を求め、この係数の自乗和が一定値以 下であれば、ほぼ平坦な状態と判定する。スペクトル包 絡形状が平坦な状態から大きく異なると判定されると、 まず推定したスペクトル包絡の逆特性を暫定予測誤差波 形に与える(S4)。具体的には例えば全極型の線形予 測の逆フィルタ(全零型)434に暫定予測誤差波形を通 過させることで、そのスペクトルを平坦化する。このと き、完全に平坦化するのではなく、スペクトル包絡特性 のバンド幅を拡大した、つまりスペクトル包絡をなまら せた予測係数で平坦化してもよい。

【0081】ただしこの平坦化された補正波形は正常に 受信されたパケットから得られた確定している振幅のビ ットと矛盾する可能性があるので、正しい値に修正部43 6で修正する(S5)。例えば16ビット精度の振幅の 値のうち、下位4ビットが不明である場合、各振幅ビッ ト列 (予測誤差信号) のとり得る値には16の範囲の不 確定があるが、スペクトル補正波形中にこの範囲と外れ た振幅ビット列があれば、最も近い値、つまりこの例で 下位4ビットが最大値の15の振幅ビット列に修正す る。この修正で振幅値の確定しているビットはすべて一 致して同時にスペクトル包絡も原予測誤差信号に近い波 形が再生される。必要に応じてこの修正波形を暫定予測 誤差波形としてステップS1に戻って補正を繰り返す。 【0082】なお補正予測誤差(暫定予測誤差)波形は 整数値が前提であるが、フィルタ計算では実数扱いとな り、フィルタの出力値の整数化が必要になる。合成フィ ルタ470の場合には振幅ビット列ごと(サンプルごと)に 整数化するか、フレーム毎にあとで一括して整数化する かで結果は異なるが、どちらも可能である。前述したよ うに欠落ビットのとり得る値の総ての組み合せを用いて 補正サンプル列の候補を作る場合は、欠落ビットが多く なると、補正振幅ビット列(波形)候補が著しく多くな り、処理量が非現実的になるおそれがある。このような 問題がないようにする欠落補正部430の処理、及びその 機能構成について以下に説明する。

【0083】図24にその処理手順の一例を、図25に機能構成の一例をそれぞれ示す。まず暫定波形生成部431に並び替え部220から入力された確定しているビットのみを使ってフレーム内の暫定予測誤差波形(暫定的な振幅ビット列)を再生する(S1)。この暫定予測誤差波形の再生は欠落しているビットは例えば0に固定するか、欠落ビットが取り得る値の中間値とする。例えば下

位4ビットが欠落しているとすると、 $0\sim15$ までのレベルのどれかが正しい値であるが、仮に8または7に設定する。

【0084】次に、受信した補助情報から復号したスペクトル包絡の予測係数LPCを合成フィルタ435に設定し、この暫定予測誤差波形を合成フィルタ435に通して符号器10への原入力信号波形を線形予測合成する(S2)。この合成波形のスペクトル包絡をスペクトル包絡算出部432で計算する(S3)。誤差計算部437で、この計算したスペクトル包絡と、補助情報として受信された原音(原入力信号)のスペクトル包絡、つまり補助情報復号部450で復号されたスペクトル包絡とを、比較して誤差が許容範囲内であれば暫定予測誤差波形を補正された予測誤差波形(補正振幅ビット列)として合成フィルタ470へ出力する(S4)。

【0085】ステップS4において、暫定予測誤差波形のスペクトル包絡と補助情報から復号したスペクトル包絡形状が大きく異なるとき、つまり暫定予測誤差が不完全な場合はまず計算したスペクトル包絡の逆特性を暫定予測誤差波形に与える(S5)。具体的にはステップS3で求めたスペクトル包絡を表すパラメータを設定した全極型の線形予測の逆フィルタ(全零型)434に暫定予測誤差波形を通過させることでスペクトルを平坦化する。この場合も完全に平坦化するのではなく、スペクトル包絡特性の帯域幅を拡大した、つまりなまらせた予測係数を用いてもよい。

【0086】次にこの平坦化信号に対して復号スペクトル包絡の特性を与える(S6)。即ち、補助情報から復号したスペクトル包絡を表わすバラメータLPCを設定した全極型の合成フィルタ435に逆フィルタ434の出力を通して暫定予測誤差波形の補正予測誤差波形を作る。この結果の補正予測誤差波形は原予測誤差波形(信号)に近いものになる。図22に示した場合と同様にこの補正予測誤差波形はすでにわかっている振幅のビットと矛盾する可能性があるので、正しい値に修正部436で修正する(S7)。

【0087】この修正予測誤差波形をステップS1の暫定予測誤差波形としてステップS2以後の処理を繰り返す。図24、図25中に破線で示すように、ステップS4の次に暫定予測誤差波形を復号スペクトル包絡パラメータを用いて波形合成し(合成フィルタ435"を通し)(S5′)、その合成波形に対し、計算したスペクトル包絡の逆特性を与え(逆フィルタ434′を通し)(S6′)でもよい。なおバンド幅を拡大した係数を使わない場合は予測係数を求めるために合成した波形、つまり合成フィルタ502の出力波形を逆フィルタ434に供給してもよい。

【0088】次に復号スペクトル包絡を用いた欠落情報補正処理の他の例を図26を参照して説明する。ステップS1~S4、S7は図24に示した処理中のステップ

S1~S4、S7とそれぞれ同一処理である。この例ではステップS4の後、ステップS3において計算したスペクトル包絡の逆フィルタ434と復号スペクトル包絡の合成フィルタ435とを合わせたひとつの合成フィルタ部435'のフィルタ係数を計算し(S5)、ステップS6でこの合成フィルタ部435'に暫定予測誤差波形を通して補正予測誤差波形を合成する。

【0089】図26に示した処理の機能構成は、図25 中に破線で示すように、補助情報復号部450からの復号 スペクトル包絡パラメータLPCとスペクトル包絡算出部4 32からの推定スペクトル包絡パラメータαとから、逆フ ィルタ434と合成フィルタ438を組み合せたひとつの合成 フィルタ部435'のフィルタ特性が合成スペクトル包絡計 算部437で計算され、そのフィルタ係数が合成フィルタ4 38に設定され、この合成フィルタ部435'に暫定予測誤差 波形が通される。この合成フィルタ438のフィルタ係数 の計算は例えば図10で説明したように、暫定予測誤差 波形の線形予測係数を係数変換部437aで線形予測ケプス トラム係数Caに変換し、また復号スペクトル包絡の線形 予測係数を係数変換部437bで線形予測ケプストラム係数 Cbに変換し、これら係数Ca, Cbを減算部437cで減算して Cb-Caを求め、このCb-Caを逆変換部437dで線形予測係数 に逆変換し、この線形予測係数を合成フィルタ部435'の フィルタ係数に用いればよい。

【0090】図22に示したフローチャート中の繰り返し処理で予測誤差波形が発散しないようにするため、図22、図24、図26に示した例では逆フィルタ434の線形予測係数 α_k と図24、図26に示した例では合成フィルタ435、438の線形予測係数 β_k 、 β_k 'ともに1未満の定数 γ のk乗をかける方法がある(kはパラメータの次数)。図10に示した場合には線形予測ケプストラム係数のすべてに1未満の定数をかければよい。また図22、図24及び図26において繰り返し処理の場合でも、繰り返しの最初は γ を1に近い値に設定し、収束するにつれて、 γ の値を小さくして推定誤差を小さくすることも可能である。

【0091】図22でステップS3、図24及び図26において、ステップS4を省略し、図22ではステップS1、S2、S4、S5を1回だけ、図24及び図26ではステップS1、S2、S3、S5、S6、S7を1回だけ、あるいは決められた回数だけ繰り返して、修正予測誤差波形(振幅ビット列)を出力してもよい。また図中に示すように、図22のステップS3、図24及び図26のステップS4において繰り返しが規定回数以上になると、その最終に得られた修正予測誤差波形を出力してもよい。図22、図24、図26に示した処理は周波数領域に変換して行ってもよい。この場合は例えば逆フィルタ処理は、正規化処理となる。

【0092】予測誤差信号Speは振幅が小さくなっている場合が多い。このため予測誤差信号Speを極性と絶対

値の2進数で表現すると、例えば図15A及び図15Bで説明したと同様に、各予測誤差信号Spe(振幅ビット列)の上位の桁はフレームの全体で全て"0"となる場合が多い。従って1フレーム内において絶対値の最大値を表現する桁数を有効桁数として求め、つまり"1"を含む最大の桁数を有効桁数Feを、図21中の符号器10内の有効桁数検出部163で検出し、この有効桁数Feも補助情報符号化部352で符号化してスペクトル包絡のパラメータLPCと共に出力し、並び替え部160で有効桁数Feの範囲41内のビットと極性符号のみを等位ビット列に変換して伝送記録単位分割部310へ出力する。

【0093】復号器20においては入力されたパケットより、並び替え部220からの振幅ビット列又は欠落補正部430からの補正(修正)振幅ビット列よりなる再生予測誤差波形に対し、補助情報復号部450で復号した有効桁数Feによる桁合せを桁合せ部460で行う。桁合せ部460に入力される再生予測誤差波形(振幅ビット列)が例えば図15Bの右側における桁数Feの振幅ビット列のようになった場合に、その各振幅ビット列(2の補数表現)に対し、図15Bの左側に示すように極性符号が正("0")のものには、本来の振幅ビット列のビット幅(符号器10の並び替え部160の入力予測誤差サンプルSpeのビット幅)mから有効桁数Feを引いた数だけ、"0"を上位に付け加え、極性符号が負("1")のものには"1"を同じ数m-Feだけ、上位に付け加える。

【0094】このように桁合せされた再生予測誤差波形が合成フィルタ470へ供給される。このように有効桁数を補助情報に加えることにより、符号化効率を向上させることができる。なお符号器 10の並び替え部160で、予測誤差信号を(振幅ビット列)を極性符号と絶対値の2進数値とに変換することなく2の補数表現の振幅ビット列に対しても、有効桁数Feを補助情報として出力するようにしてもよい。この場合も、図15Bの左側に示したようにフレーム内において何れの振幅ビット列においても同一上位桁数では"0"のみ又は"1"のみとなる範囲より下位桁の数が有効桁数Feであり、その有効桁数Feの最下位ビットを極性符号として用いればよい。

【0095】有効桁数Feを利用する場合において、復号器20の欠落補正部430(図25)内のスペクトル包絡算出部432、逆フィルタ434、合成フィルタ435、合成フィルタ502、合成フィルタ435 において、その分析処理やフィルタ処理のために一つ前のフレームの再生予測誤差信号を必要とする場合は、一つ前のフレームの有効桁数Feと現在のフレームの有効桁数とを合せて処理する必要がある。例えば現在のフレームの有効桁数が一つ前のフレームの有効桁数よりMビット(桁)大きい時は、例えば一つ前のフレームの振幅ビット列を下位にMビットシフトして過去のフレームの振幅ビット列の振幅値を縮小して、一つ前の過去のフレームの有効桁数を現在のフレームの有効桁数にそろえたうえで補正処理を行う。現

在のフレームの有効桁数が一つ前のフレームの有効桁数 よりNビット (桁) 小さい時は、例えば一つ前のフレー ムの振幅ビット列を例えば浮動小数点としてNビット上 位にシフトして一つ前のフレームの振幅ビット列の振幅 値を拡大して、一つ前のフレームの有効桁数と現在の有 効桁数をそろえたうえで上記各フィルタによる処理を行 う、あるいは一つ前のフレームを無視して処理を行う。 【0096】このような有効桁数をそろえる場合は、図 22におけるステップS2, S4の各直前、図24にお けるステップS2、S3、S5、S6の各直前、図26 におけるステップS2、S3、S6の各直前に破線で示 すように、必要とする一つ前のフレームの振幅ビット列 に対し、有効桁数をそろえる有効桁数補正を行えばよ い。図23及び図25の欠落補正部430において、有効 桁数をそろえることが必要な各部において、一つ前のフ レームの振幅ビット列に対して有効桁数をそろえる処理 を行えばよい。なお図21中の復号器20内に示すよう に、並び替え部220より振幅ビット列に対し、桁合せ部4 60により桁合せを行ってもよく、この場合は、前述した 有効桁数補正の必要はなくなる。

第7実施例

ところで、従来、音響信号の高圧縮符号化は、圧縮効率を高める点から聴覚特性を考慮し、聴感歪を最小化するようにするのが一般的である。これは聴覚最適化を利用した符号化であって、与えられたビット数のもとに周波数マスキングを用いて、聴覚的な量子化歪を最小化するものである。波形歪最小という規範では、聴覚とは無関係に量子化歪のエネルギーを最小化するために、原音のスペクトルの大きさに無関係に量子化歪を配分するものである。

【0097】聴覚最適化では、原音の大きなスペクトル成分の周辺の量子化歪は原音の成分にマスクされて聞こえないので、原音のスペクトル成分の大きいところに大きな歪を許容し、反対に原音のスペクトル成分の小さいところには量子化歪を小さくする。例えば、前述した図11の実施例のように高圧縮率の非可逆符号化と、可逆符号化との組合せにおいて、非可逆符号化に聴覚特性が考慮されていると、その局部復号信号(図11では逆量子化部130の出力)の波形は、特に比較的大きなスペクトル成分の部分で歪みが大きい。このためこの局部復号信号と原音の入力音響信号との誤差信号はその振幅の変動が比較的大きく、そのため、前述した並び替えを行って可逆圧縮符号化を行ってもその符号化効率を十分大きくすることができない。この点を改善した実施例を、図27を参照して以下に説明する。

【0098】符号化装置10において、入力端子100に入力された音響信号のサンプル系列はフレーム分割部110で例えば1024個のサンプルごとのフレーム単位に分割され、これら各フレーム単位の音響信号は聴覚特性を考慮した非可逆圧縮符号化が、聴感最適化符号化部13で

行われる。この聴感最適化符号化は聴感歪が最小化するように圧縮符号化するもので例えばMPEG符号化を利用できる。この聴感最適化符号化部13からは非可逆符号である聴感最適化符号Inaが出力される。この聴感最適化符号Inaは局部復号部14で局部復号信号は聴感最適化符号化部13において分析合成符号化法により生成することができる。この局部復号信号は変形部15において、フレーム分割部110の出力音響信号との誤差が小さくなるように変形される。つまり変形部15で変形された局部復号信号(変形局部信号)とフレーム分割部110の出力である音響信号との誤差が誤差算出部16で算出され、その誤差信号のエネルギーが望ましくは最小になるように、局部復号信号は変形部15で変形される。

【0099】この変形は、変形パラメータ生成部17で生成された変形パラメータを局部復号信号に乗算し、または局部復号信号に対する複数サンプルの重み付き加算により行われる。変形パラメータの生成は例えば次のように行われる。p次の変形パラメータ $A(1 \times p)$ 、n個のサンプルから成る入力音響信号 $X(1 \times n)$ 、局部復号信号行列 $Y(p \times n)$ を以下のようにおく。

$$A = (a_0, a_1, \dots, a_{(p-1)})^{T}$$

 $X = (x_0, x_1, \dots, x_{(n-1)})^{T}$
【数1】

$$A=(a_0, a_1, ..., a_{(p-1)}^T)$$

$$X=(x_0, x_1, ..., x_{(n-1)}^T)$$

$$\mathbf{Y} = \begin{pmatrix} y_0 & y_1 & \cdots & y_{p-1} \\ y_1 & y_2 & \cdots & y_p \\ \vdots & \vdots & \ddots & \vdots \\ y_{n-1} & 0 & \cdots & 0 \end{pmatrix}$$
 (1)

() I は行列の転置を表わす。誤差信号のエネルギーd は下記となる。

$$d = (X - Y A)^{T} (X - Y A)$$
 (2)

dを最小とする変形パラメータAは下記となる。

[0100]

$$A = (Y^T Y)^{-1} Y^T X \tag{3}$$

 (Y^TY) は自己相関行列、 Y^TX は相互相関ベクトルと近似でき、p=1の時の変形パラメータ a_0 はXとYの相互相関係数をYのエネルギーで正規化したものとなる。またU (=X-Y)とYとの相関係数bを求めて、Z=X-Y-bY (4)のZを誤差信号としてもよい。つまりZ=X-(1+b) $Y=X-a_0$ Yと置ける。

【0101】つまり変形パラメータ生成部17では例えば図28Aに示すように、入力音響信号Xと局部復号信号Yの転置行列との相互相関ベクトルが乗算部171で計算され、また乗算部172で自己相関行列Y「Yが計算され、割算部173で乗算部172の計算結果で乗算部171の計

算結果が割算されて変形パラメータAが生成される。あるいは乗算部171でXとYの相互相関係数を計算し、乗算部172でYのエネルギーを計算し、得られた相互相関係数をYのエネルギーで割算することを割算部173で行って変形パラメータa₀を求めてもよい。

【0102】あるいは図28Bに示すようにX-Y=Uを引算部174で計算し、UとYの相互相関係数bを乗算部175で計算し、加算部176でbに1を加算して変形パラメータa。としてもよい。変形パラメータA、a。又はbは符号化されて変形パラメータ符号Inmとして変形パラメータ生成部17から出力される。このように変形パラメータは音響信号Xと局部復号信号Yとの相互相関成分を含むものであり、変形部15では変形パラメータを局部復号信号Yに対し乗算し又は局部復号信号Yを変形パラメータAで重み付き加算、乃至、畳み込み演算を行う

【0103】なお音響信号と局部復号信号との誤差信号のエネルギーが最小化されていれば、誤差信号と音響信号や局部復号信号とは無相関であるが、誤差信号のエネルギーが最小化されていなければ誤差信号と音響信号や局部復号信号と相関が生じる。この相関成分を求めて、その相関成分に応じて式(3)により局部復号信号Yを変形して、誤差信号のエネルギーを最小化するように式(2)変形パラメータAが決められる。変形パラメータAの生成は、最初は適当な値を与え誤差信号Uの振幅又はエネルギーが小さくなるように、フレームごとに逐次修正するようにしてもよい。この場合は変形パラメータ符号Inmを出力する必要はない。

【0104】誤差算出部16からの誤差信号は可逆符号化部18で可逆符号化され、可逆符号Pneとして出力される。可逆符号化は例えば図1及び図2で説明した特開2001-44847公報に示されているようにビット並び替えと、ハフマン符号化、算術符号化などのエントロピー符号化との組み合わせで実施できる。変形部15で局部復号信号が、音響信号との誤差が小さくなるように変形されるため、変形を行なわない局部復号信号と音響信号との誤差信号と比較して、誤差信号中の"0"ビットの数が多く、それだけ高効率的に可逆符号化することができる。

【0105】聴感最適化符号Ina、可逆符号Ine、必要に応じて変形パラメータ符号Inmが結合部315で結合されて出力される。なお、図28Bに示すように変形部15で局部復号信号Yと変形パラメータY0を乗算して変更局部復号信号Y2を計算し、その変形局部復号信号Y2と、Y2の誤差Y3と誤差算出部Y3と、Y4との誤差Y5と誤差算出部Y6で計算して誤差信号を求めこれを可逆符号化してもよい。この誤差信号は誤差信号Y6と変形局部信号との誤差信号を求めるということは、この両者の手法及びこれと等価な手法を意味する。変形パラメータ符号Inm1にY5とが

もよいことは明らかである。

【0106】復号器20においては、入力端子200に入 力されたフレームごとの符号の組は分離部440で聴感最 適化符号Inaと可逆符号Ineとに、必要に応じて変形パラ メータ符号Inmとに分離される。聴感最適化符号Inaは聴 感最適化符号復号部23で非可逆復号化されて復号信号 が生成される。この復号化の手法は符号器10中の局部 復号部14と同一とする。この復号信号は変形部24で 定数倍又は複数サンプルの重み付き加算などにより変形 される。この変形も符号器10中の変形部15と同一処 理とする。変形パラメータ生成部25は変形パラメータ 符号Inmが入力される場合はこの符号Inmを復号して変形 パラメータA又はao 又はbを生成する。変形パラメー 夕符号Inmが入力されない場合は、復号信号Yと再生音 響信号Xとを用いて符号化装置10中の変形パラメータ 生成部14と同一手法により変形パラメータAを逐次修 正により求める。

【0107】可逆符号Ineは可逆復号部21により可逆 復号され、誤差信号△が再生される。この誤差信号△と 変形された復号信号aYとが加算部27で加算されて音 響信号が再生される。この再生音響信号が切換部28を 通じてフレーム合成部250へ供給され、フレームごとの 再生音響信号が順次連結されて出力される。欠落検出部 420により補正可能な程度のパケットの欠落が検出さ れた場合、情報補正部480により例えば図23で前述 したような補正が行われる。可逆符号Ineが入力されな かった場合や、一部の欠落によりある程度以上の品質の 誤差信号△を得ることができない場合はこれが欠落検出 部420で検出され、この検出出力により切換部28が制 御されて、聴感最適化符号復号部23から復号信号が再 生音響信号としてフレーム合成部250へ供給される。最 終的な可逆符号化のためには量子化誤差エネルギーが小 さいほうが圧縮効率が高いが、聴感最適化符号Inaのみ の情報しか得られない場合は聴感歪を最小化する量子化 結果を用いるほうが1ビットレートの割りに品質が高く なる。可逆復号部26などを備えない復号化装置におい ても聴感最適化符号Inaを復号して再生ディジタル信号 とすることができる。

第8実施例

図29にこの発明の第8実施例を示し、図27と対応する部分に同一参照番号を付けてある。符号器10において図27の実施例と異なる点は変形部15である。即ちこの第2実施例では局部復号部14からの局部復号信号Yと音響信号Xとの誤差信号が誤差算出部15Aで算出され、その誤差信号が誤差最小化符号化部15Bで量子化誤差エネルギーが最小となるように非可逆圧縮符号化し、非可逆符号として誤差最小化符号Inpが出力される。

【0108】この誤差最小化符号Inpは局部復号部15 Cで局部復号され、その局部復号信号と局部復号部14 からの局部復号信号とが加算部15Dで加算され、この加算局部復号と音響信号との誤差が誤差算出部16で算出され、誤差信号として可逆符号化部18へ供給される。このように聴感最適化符号部13と誤差最小化符号部15Bとの2段階により音響信号が符号化されるため、その局部復号信号、つまり加算部15Dからの加算局部復号信号はそれだけ音響信号に近いものとなり、誤差算出部16からの誤差信号における"0"ビットの数が多くなる。結合部315では聴感最適化符号Inaと誤差最小化符号Inpと可逆符号Ineが結合されて出力される。

【0109】復号器20においては誤差最小化符号Inpが誤差最小化符号復号部24Aで非可逆復号され、その復号信号と、聴感最適化符号復号部23からの復号信号とが加算部24Bで加算され、この加算された復号信号が切換部28を通じて加算部27へ供給され、可逆復号部26からの再生誤差信号と加算される。可逆符号Ineが入力されない場合や誤差信号を再生するための十分な情報が得られない場合は切換部28は加算部24Bからの加算復号信号にかえて、聴感最適化符号Inaの復号信号が再生音響信号としてフレーム合成部250へ供給する。誤差最小化符号復号部45及び加算部24Bは変形部24を構成している。

第9実施例

図30にこの発明の第9実施例を示す。第9実施例は図27の第7実施例とは符号化装置10における変形部15の構成が異なり、また誤差最小化符号化部19を設けた点が異なり、これに伴って復号器20においても変更されている。

【0110】符号器10においてフレームごとの音響信号は誤差最小化符号化部19により量子化誤差エネルギーを最小化するように非可逆圧縮符号化され、その非可逆符号として誤差最小化符号Inpが出力される。この誤差最小化符号Inpは局部復号部15Eで局部復号され、その局部復号信号と局部復号部14からの局部復号信号とが荷重平均部15Fで前者を重視して荷重平均される。この荷重平均局部復号信号と音響信号との誤差が誤差算出部16で算出され、その誤差信号が可逆符号化部18へ供給される。

【0111】荷重平均部15Fでの重みは誤差算出部16からの誤差が小さくなるような統計的に予め求めた固定値であり、例えば誤差最小化符号Inpの局部復号信号に対しては0.8~0.9程度、聴感最適化符号の局部復号信号に対しては0.1~0.2程度の値とする。あるいは変形パラメータ生成部17において、両局部復号信号と、音響信号とを入力して、誤差算出部16からの誤差信号が最小になるように連立方程式を解いて両重みを決定してもよい。この場合はその両重みを符号化し重み符号Inwを出力する。局部復号部15E、荷重平均部15Fは変形部15を構成している。

【 O 1 1 2 】結合部315は聴感最適化符号Inaと、誤差最

小化符号Inpと可逆符号Ineとを結合して出力し、変形パ ラメータ生成部17を用いる場合は重み符号Inwも結合 する。聴感最適符号化部13と誤差最小化符号化部19 とはスペクトル包絡やパワーなどのパラメータを共に用 いる場合がある。このような場合は破線で示すように両 者に共通のパラメータを符号化する共通符号化部13A を一方の符号化部、図30では聴感最適化符号化部13 内に設けてその共通符号Incとして出力すると共に抽出 した共通に用いるパラメータを必要に応じて他方の符号 化部、この例では誤差最小化符号化部19へ供給する。 更に、聴感最適化符号化部13内の符号化部13Bで入 力音響信号の波形情報などを聴覚特性を考慮したベクト ル量子化するなどして符号化し、符号Inarを出力し、誤 差最小化符号化部19内の符号化部19Aで同様に音響 信号の波形情報などを量子化誤差エネルギーを最小化す るようにベクトル量子化するなどによって符号化して符 号Inprを出力するようにしてもよい。

【0113】復号器20においては分離部440で分離された誤差最小化符号Inpは誤差最小化符号復号部24Aで非可逆復号され、その復号信号は荷重平均部24Cで聴感最適化符号復号部23からの復号信号と、前者に偏った荷重加算が行われ、その荷重加算復号信号が加算部27で可逆復号部21からの再生誤差信号と加算されて切換部28を通してフレーム合成部250へ供給される。荷重平均部24Cにおける荷重は、符号化装置10の荷重平均部15Fにおける荷重と同一とされる。符号化装置10で変形パラメータ生成部17により重み(荷重)が決定される場合は、分離部440で分離されたその重み符号Inwが重み復号部29で復号され、その復号された重みが荷重平均部24Cへ供給される。

【0114】聴感最適化符号Inaの復号信号と、誤差最 小化符号Inpの復号信号はもう1つの荷重平均部26に も供給され、ここで前者 (Ina復号信号) に偏った荷重 平均が行われる。この荷重平均における重みは例えば、 符号Inaの復号信号に対し0.8~0.9程度が符号Inpの復号 信号に対し0.2~0.9程度が固定的に与えられる。あるい は重み復号部29で復号された重みを、荷重平均部24 Cによる重み付けとは逆の関係で荷重平均部26に対し 与えてもよい。可逆符号Ineが入力されない場合や可逆 復号部21で誤差信号を再生するための十分な情報が得 られない場合は荷重平均部26からの平均化復号信号が 切換部28を通じて再生音響信号としてフレーム合成部 250へ供給される。分離部440で共通符号Inwが分離され る場合は、共通符号Inwは共通復号部22で復号され、 これら共通復号信号は聴感最適化符号復号部23及び誤 差最小化符号復号部24Aへ供給される。これら復号部 23,24Aにはそれぞれ符号Inar, Inprが供給され、 それぞれ所望の復号信号が得られるようにされる。誤差 最小化符号復号部24A及び荷重平均部24Cは変形部 24を構成している。

第10実施例_

図31に第10実施例を図30と対応する部分に同一参照番号を付けて示す。この第10実施例では符号器10において誤差最小化符号Inpの局部復号信号が局部復号部15Eから誤差算出部16へ直接供給される。従って、聴感最適化符号Inaに対しては局部復号は行わず、誤差最小化符号Inpに対する局部復号結果が誤差算出部16での誤差算出に利用される。この第10実施例においても第9実施例と同様に聴感最適化符号化部13と誤差最小化符号化部19とで共通のパラメータを一方で抽出して両者の符号化に利用すると共に共通符号Inwと、それぞれの部分符号Inar、Inprを出力するようにしてもよい

【0115】復号器20においては誤差最小化符号復号部24Aからの復号信号が加算部27へ直接供給されて、可逆復号部21からの再生誤差信号と加算される。切換部28は聴感最適化符号復号部23の復号信号と、加算部27の加算信号とが切換えられて再生音響信号としてフレーム合成部250へ供給される。また共通符号Incが分離部440で分離される場合の動作は図30で説明した場合と同様である。

第11実施例

図32にこの発明の第11実施例を図30と対応する部分に同一参照番号を付けて示す。この第11実施例の符号器10においては図30の第3実施例における聴感最適化符号化部13が誤差算出部16の出力側に接続され、局部復号部15Eからの、誤差最小化符号Inpに対する局部復号信号と音響信号との誤差が誤差算出部16で算出され、その誤差信号が聴感最適化符号化部13で聴感歪を最小化するように非可逆圧縮符号化され、この非可逆符号が聴感最適化符号Inaとして出力される。結合部315では誤差最小化符号Inpと聴感最適化符号Inaと可逆符号Ineが結合されて出力される。

【0116】復号器20では分離された聴感最適化符号 Inaは聴感最適化符号復号部23で非可逆復号化され、その復号信号と、誤差最小化符号復号部24Aによる誤差最小化符号Inpの復号信号とが加算部24Bで加算される。誤差最小化符号Inpの復号信号と可逆符号Ineの可逆復号信号、つまり再生誤差信号とが加算部27で加算されて再生音響信号として切換部28を通じてフレーム合成部250个供給される。可逆復号部21により誤差信号が切換部28を通じてフレーム合成部250个再生音響信号として供給される。

【 O 1 1 7 】 この場合も可逆符号化部 1 8 による可逆圧 縮符号化に量子化誤差エネルギーを最小化する量子化系 列を使い、非可逆圧縮符号化のみの情報しか得られない 場合には聴感歪を最小化する量子化結果を用いる点は第 8~第 1 0 実施例と同様である。しかし、この場合は誤 差最小化符号化部 1 9 により誤差最小化符号化した後 に、その局部復号信号に対し更に聴感最適化符号化部13により聴感歪最小化の量子化を行っており、つまり多段に量子化しているため、全体としての符号化ビット数は多くなるが、それだけ聴感的改善がなされ、歪エネルギーの最適化でも、第1段階の局部復号信号、つまり局部復号部15Eからの誤差最小化符号Inpの局部復号信号よりも効率がよいことがある。つまり歪エネルギーの最適化には効率のよい方を用いるとよい。

【0118】この場合の手法を、図32中に示す破線の構成により説明する。聴感最適化符号化部13からの符号Inaは局部復号部14で局部復号され、その局部復号信号は加算部31で局部復号部15Eからの符号Inpの局部復号信号と加算され、この加算局部復号信号と音響信号との誤差が誤差算出部32で算出され、この誤差信号と、誤差算出部16からの誤差信号との大小が大小比較部33で比較され、小さい方が選択部34で選択されて可逆符号化部18へ供給される。この際、いずれの誤差信号を選択したかを示す選択符号Insが出力される。

【0119】復号器20では分離部440で分離された選 択符号Insにより選択部41が制御され、符号化装置1 Oで誤差算出部16からの誤差信号が選択された場合は 誤差最小化符号復号部24Aからの復号信号が選択され て加算部27へ供給され、符号器10において誤差算出 部32からの誤差信号が選択された場合は、加算部24 Bからの加算復号信号が選択されて加算部27へ供給さ れる。図27~32中の可逆符号化部18の具体例を図 33に示す。この構成は図14における並び替え部16 0、伝送記録单位分割部310、可逆符号化部150、補助情 報生成部350による構成とほとんど同じである。誤差信 号16からの誤差信号は並び替え部160と補助情報生成 部350とに供給される。補助情報生成部350内の有効桁数 検出部353でフレームごとに誤差信号の絶対値の最大値 を表現する桁数が有効桁数Feとして検出される。また誤 差信号はその有効桁数以内の部分のみが図15A,15 Bを参照して説明したように並び替え部160により各サ ンプル(振幅ビット列)における同一ビット位置のビッ トが、フレームにわたって配列され、等位ビット列とさ れる。

【0120】並び替え部160からの等位ビット列は伝送記録単位分割部310で伝送単位あるいは記録単位のデータに分割される。これら各分割された伝送記録単位データは必要に応じて、可逆符号化部150により可逆圧縮符号化され、誤差符号Ineとして出力される。一方、有効桁数検出部353で検出した有効桁数Feが補助情報符号化部352に与えられる。この例では更に、フレームごとに誤差信号サンプル列はスペクトル包絡算出部351で例えば線形予測分析され、スペクトル包絡を表現するパラメータLPCが線形予測係数として求められる。またパワー算出部354でフレームごとの誤差信号の平均パワーが算出される。あるいはスペクトル包絡算出部351で求めた

線形予測係数に基づき構成した逆フィルタ355に誤差信号を入力してスペクトル包絡を平坦化処理し、その平坦化された信号の平均パワーがパワー算出部356で求められる。これら有効桁数Fe、線形予測係数LPC及び平均パワーが補助情報符号化部352により、例えば $30\sim50$ ビット程度の低ビットで符号化されて補助情報Inxとされる。この有効桁数、スペクトル包絡のパラメータ、平均パワーを符号化した補助情報Inxは結合部315(図27、 $29\sim32$)へ供給され、各フレームの代表パケット、例えば極性符号を含む伝送記録単位データが格納されたパケット内に付加され、あるいは独立したパケットとして出力される。

【0121】図27~32における復号器20の可逆復号部21の具体例を情報補正部480と共に図34に示す。入力されたパケットPeから分離部440において補助情報Inxと誤差符号Ineは可逆復号化部210个供給され、補助情報Inxは補助情報復号部450へ供給される。補助情報復号部450は当該フレームの有効桁数Fe、スペクトル包絡を表すパラメータLPC及び平均パワーを復号し、有効桁数Feを桁合せ部460へ供給し、スペクトル包絡パラメータ及び平均パワーを欠落補正部430へ供給する。これらの各部の動作については図14の実施例で既に詳細に説明したのでここでは説明を省略する。

【0122】図27~32の各実施例における符号器1 0の可逆符号化部18は、誤差信号に対し更に予測処理 を行うように構成してもよい。その構成例を図35Aに 示す。誤差信号はスペクトル包絡算出部351に与えられ てそのスペクトル包絡を表す線形予測係数LPCが求めら れる。一方、誤差信号は予測誤差生成部370に与えられ 予測誤差信号Speが生成される。例えば誤差算出部16 からの直前の複数の誤差信号サンプルがレジスタ371か ら線形予測部372へ供給され、これらサンプルに対し、 スペクトル包絡算出部371からのスペクトル包絡を表わ す線形予測係数LPCが乗算され、それら乗算結果が加算 されて線形予測値が求められる。この線形予測値は整数 化部373で整数値とされ、整数の予測値と誤差算出部1 6からの誤差信号の現サンプルとの差が差回路374で求 められて、予測誤差信号Speが得られる。この予測誤差 信号Speは並び替え部160に入力される。

【0123】符号器10の可逆符号化部18に図35Aの構成を適用した場合の復号器20における可逆復号部21の構成例を図35Bに示す。この構成は図21における復号器20の並び替え部220、欠落補正部430、補助情報復号部450、合成フィルタ470による構成と同じである。情報補正部480からの再生された予測誤差信号Speは合成フィルタ470で図35Aにおける可逆符号化部18の予測誤差生成部370の処理と逆の処理が行われる。つまりレジスタ471から予め決められた一定数の直前の復号サンプルが線形予測部472に入力され、それらのサン

プルに対して、補助情報復号部450で復号された線形予測係数LPCに基づく重みがそれぞれ乗算され、その乗算結果の和が現在の復号サンプルの予測値として求められる。この予測値は整数化部473で整数値とされ、この整数化された予測値と情報補正部480からの現在の予測誤差信号との和が加算部474でとられて、合成フィルタ470のフィルタ出力、つまり再生誤差信号とされる。第12実施例

ところで上述した各実施例は、1つのチャネルの入力ディジタル信号に対する符号器及び復号器の場合であったが、それらの実施例をマルチチャネル信号に適用した実施例を以下に示す。マルチチャネル信号を対象とした圧縮符号化はAC-3(Dolby社のAudio Coding)やAAC(Dolby社のAdvanced Audio Coding)などいくつか開発されており、聴感的には劣化がわずかとすることができるが、波形は原音とかなり異なってしまう。マルチチャネルの信号をそのままPCM(Pulse Code Modulation)として伝送すると、完全に原音が再現されるが、多くの情報量を必要とする。またその符号化列の一部だけから音を再生することはできないし、このためPCMとした信号をパケット伝送を行った場合はパケット消失は大きな影響を受ける。

【0124】マルチチャネル信号を混合してチャネル数が減少して符号化することにより符号化効率を上げることが考えられる。しかしこの場合、原マルチチャネル信号を正しく再生することはできない。この第12実施例では、複数のディジタル信号を混合して、これより少ない数のディジタル信号として符号化し、符号化効率を向上させ、かつ必要に応じて、原複数のディジタル信号を忠実に再生することも可能とし、広い範囲のビットレートの選択、広い範囲のチャネル数の選択を可能とする多チャネル信号符号化方法、復号化方法、符号化器、復号化器を提供する。

【0125】図36はこの発明による符号器と復号器の 第12実施例を示す。符号器10においてはMを2以上 の整数とすると、Mチャネルのディジタル信号が端子10 $0_1 \sim 100_m$ よりフレーム分割部110に入力され、それぞれ フレーム単位例えば1024サンプルごとに分割される。各 分割されたディジタル信号はチャネル混合部30でMよ り少ないNチャネルのディジタル信号に混合される。N は1以上の整数であり、N<Mである。この混合された Nチャネルの信号は符号化部120で非可逆又は可逆圧縮 符号化され、主符号Imとして出力される。この符号化は 高圧縮符号化とすることが望ましい。主符号Imは局部符 号化部130で復号され局部復号信号が作られる。この 局部復号信号はチャネル拡大部40で元のMチャネルの 局部復号信号にチャネル数が増加される。符号Imの局部 復号信号は、符号化部120において分析合成符号化法に より生成することができる。

【0126】なおチャネル混合は例えば8チャネルの信

号のうち最初の4チャネルの平均を左チャネル信号とし 後の4チャネルの平均を右チャネル信号としてもよい。 あるいは2チャネルステレオ信号の平均を1チャネルモ ノラル信号としてもよい。チャネル拡大は前記チャネル 混合と逆に対応する数のチャネル数の信号にする。ここ でチャネル数が拡大された局部符号信号は前記チャネル 混合によるチャネル数の減少によって入力ディジタル信 号に対して情報が失われている。その失われた信号を誤 差信号として、フレーム分割部110から分岐したMチャ ネルディジタル信号とMチャネル局部復号信号とが誤差 算出部140に入力されて算出される。この誤差信号は配 列変換部50に供給されて、ビット列の並び替えと圧縮 符号化がそれぞれ行われ、誤差符号Ineとして補助情報 符号Inxと共に出力される。配列変化部50の具体的構 成及び処理については後で述べるが、図4A及び図15 A, 15Bで述べた等位ビット列への変換を行う並び替 え部160を少なくとも備えている。配列変換部50より の誤差符号Ine、補助情報Inx、及び符号化部120からの 主符号Imは、結合部315で結合されて出力され、パケッ トPeで送出する場合は図4Bで説明したヘッダ31をつ けて送出される。

【0127】復号器20においては、入力されたパケッ トPeが分離部440でこの場合主符号Imと、誤差符号Ine と、補助情報Inxとに分離される。主符号Imは復号化部 60で、符号器10における符号化部120の符号化手法 と対応した復号化手法により復号され、復号信号が作ら れる。この復号信号はチャネル拡大部80によりNチャ ネルの復号信号からMチャネルの復号信号にチャネル拡 大される。分離された誤差符号Ineは配列逆変換部70 で処理されてMチャネルの誤差信号が再生される。配列 逆変換部70の具体的構成及び処理については後で述べ るが、少なくとも図4A,15A,15Bで述べた並び 替え部220を備え、振幅ビット列よりなる誤差信号を再 生する。また、補助情報Inxは情報補正部480で復号さ れ、欠落検出部420によりパケットの欠落が検出された 場合に補助情報に基づいて情報補正部480において再生 誤差信号が補正される。

【0128】再生されたMチャネルの誤差信号とチャネル拡大されたMチャネルの復号信号とが対応するチャネルごとに加算部240で加算されてMチャネルの再生ディジタル信号としてフレーム合成部250へ供給され、これより各チャネルごとにフレーム連結されてディジタル信号がそれぞれ出力される。この構成によれば復号器20に主符号Im及び誤差符号Ineと補助情報Inxがそれぞれ再生復号信号及び復号誤差信号を得るに十分な程度に少ない欠落で入力されれば、原Mチャネルディジタル信号を忠実に再生することができる。必要に応じてチャネル混合部30における減少するチャネル数の選択により符号化効率を変更することができる。またパケットが入力されなかったり誤差信号を再生するための十分な情報が得

られなかったりした場合にチャネル拡大部80よりのM チャネル復号信号を再生ディジタル信号としてフレーム 合成部250へ供給することによりかなりの品質を持つ信 号を得ることができる。

【0129】図36の実施例において、チャネル混合を複数段階で行って復号化してもよい。その例を図37を参照して説明する。図37において図36と対応する部分に同一参照符号をつけてある。符号器10においてはこの例ではチャネル混合をチャネル混合部30とチャネル混合部41との2段で行う。例えばM=8チャネルステレオの原ディジタル信号をN=2チャネル又はN=4チャネルのステレオディジタル信号をL=1チャネルのモノラルディジタル信号にチャネル混合する。このチャネル混合部41よりのチャネル混合信号を符号化部120で符号化し、主符号Imを出力する。

【 0 1 3 0 】この主符号Imを局部復号部130で復号し、 その局部復号信号をチャネル拡大部42でチャネル拡大 してLチャネルからNチャネルにする。このNチャネル 局部復号信号とチャネル混合部30よりのNチャネルデ ィジタル信号との誤差信号を誤差算出部43で算出し、 この誤差信号を符号化部44で非可逆又は可逆の好まし くは高圧縮符号化して従符号Ieとして出力する。従符号 Ieを局部復号部45で復号してNチャネルの局部復号信 号を作り、これとチャネル拡大部42よりのNチャネル の局部復号信号とを加算部46で加算し、この加算した Nチャネルの局部復号信号をチャネル拡大部40でチャ ネル拡大してMチャネルの加算局部復号信号とする。こ のMチャネル加算局部復号信号とフレーム分割部110 よりのMチャネルディジタル信号との誤差信号を誤差算 出部140で算出し、この誤差信号を配列変換部50へ供 給する。配列変換部50よりの誤差符号Ine、補助情報I nx、主符号Im及び従符号Ieを結合部315で結合し、パケ ット化して出力する。

【0131】復号器20では分離部440で分離された主符号Imと従符号Ieを復号化部60と61でそれぞれ復号し、誤差符号Ineを配列逆変換部70で並び返して誤差信号を再生する。復号化部60よりのLチャネルの復号信号はチャネル拡大部80でNチャネルの復号信号に拡大されこのNチャネルの復号信号と復号部61よりのNチャネルの復号信号とが加算部62で加算される。このNチャネルの加算復号信号はチャネル拡大部63でMチャネルの復号信号に配列逆変換部70のMチャネルの誤差信号とが加算部240で加算されて再生ディジタル信号としてフレーム合成部250へ供給される。

【0132】この場合例えばビットレートの範囲を8kbi t/sから5Mbit/sまで60倍くらいの範囲が選択できる。 図36及び図37において結合部315でパケットPeを生成する場合は、主符号Imを含むパケットの優先度を最も 高いものとするのが好ましい。また従符号leを含むパケットは、主符号lmを含むパケットの次に高い優先度とする。上述した図36、37の各実施例で用いられる配列変換部50の具体例としては、例えば図33で説明した可逆符号化部18の構成をそのまま使用することができる。その場合、図36、37の各実施例の復号器20で用いられる配列逆変換部70の具体例としては、例えば図34で説明した可逆復号部21の構成をそのまま使用することができる。

【0133】あるいは、図36、37の各実施例に用いられる配列変換部50の他の具体例として、例えば図35Aで説明した可逆符号化部18の構成をそのまま使用してもよい。その場合、図36、37における配列逆変換部70の具体的構成としては、図35Bの可逆復号部21の構成をそのまま使用することができる。

第13実施例

マルチチャネルの信号をそのまま PCMとして伝送すると、完全に原音が再現されるが、多くの情報量を必要とする。またその符号化列の一部だけから音を再生することはできないし、このため PCMとした信号をパケット伝送した場合はパケット消失は大きな影響を受ける。

【0134】この第13実施例では、多チャネルディジタル信号を、情報欠落の影響を受け難い、また情報圧縮の程度を比較的広い範囲で選択可能とする符号化方法、復号化方法、符号器、復号器、を提供する。図38を参照して第13実施例の符号器10と復号器20を説明する。符号器10において、M個(Mは2以上の整数)のディジタル信号が入力端子1001~100mを通じてフレーム分割部110に入力され、例えばそれぞれ1024個のディジタル信号からなるフレーム単位に順次分割される。これら各M個のフレームごとのディジタル信号はチャネル間直交変換部190で、チャネル間直交変換されて直交変換信号が出力される。つまりM個のディジタル信号の同一時刻のサンプルが直交変換される。ここでチャネル間直交変換に整数値を用いる可逆変換を使用すると全体として可逆な符号化を行うことができる。

【0135】この直交変換信号は並び替え部160に入力される。並び替え部160において各フレームごとに直交変換信号の各成分(例えばL+RとL-R)ごとに各サンプル(振幅ビット列)における、振幅を表わす同一ビット位置(桁)がフレームにわたって時間軸方向に配列され、等位ビット列とされる。並び替え部160からの等位ビット列は伝送記録単位分割部310で伝送単位あるいは記録単位のデータに分割される。これら各分割された伝送記録単位データは必要に応じて、可逆符号化部150により可逆符号化され、結合部315により、復号時に分割された伝送記録単位データを1つのフレームとして再構成可能なようにヘッダが取付けられ、パケットPeとして出力端子170に出力される。なお可逆符号化部150の符号化は従来技術の可逆符号化と同様なものである。パケ

ットPeに優先順位をつける場合は、直交変換信号の各成分中のエネルギーの大きなものから順に、例えばL+Rを第1優先とし、その中で極性符号、MSB側に対応伝送記録単位データを含むものに高い優先度を与える。

【0136】復号化器20においては入力端子200からのパケット37は、後で述べるように、補助情報を含む場合は分離部440で補助情報と、伝送記録単位データ

(極性符号列を含む)とに分離される。伝送記録単位データはそれが可逆符号化されている場合は可逆復号化部210へ供給され、ここで可逆復号された後、各伝送記録単位データは伝送記録単位統合部410へ供給される。伝送記録単位統合部410ではパケット番号に基づき、1つ又は複数のパケットより1フレーム分の伝送記録単位データを統合し、直交変換信号の各成分ごとに統合する。この統合されたデータは並び替え部220で等位ビット列を振幅ビット列の1フレーム分、つまり直交変換信号の1成分のサンプル列(波形)に変換される。並び替え部160、220の動作については図4A、15A、15Bを参照して詳しく説明したのでここでは説明しない。パケット欠落が生じていなければ、並び替え部220から、符号器10の並び替え部160に入力された直交変換信号と完全に同一の直交変換信号が得られる。

【0137】チャネル間直交逆変換部290では、その入 力された再生直交変換信号の各成分を、チャネル間直交 変換部190での直交変換と逆の変換を行ってMチャネル ディジタル信号を再生する。このようにフレームごとに 再生されたMチャネルディジタル信号はフレーム合成部 250で各チャネルごとにフレームの順に連結された出力 端子260₁~260мからそれぞれ出力される。このようにし て、Mチャネルディジタル信号をチャネル間直交変換し て伝送や記録を行うことができ、その際、伝送記録単位 でパケット化することにより、エネルギーの大きいもの 程、またそのMSBに近いもの程、優先度を高くするこ とにより、伝送容量や記録容量が小さい場合に、優先度 が高いパケットのみを用いることにより、比較的品質の 高い再生信号を得ることができる。また後で述べるよう に、パケット欠落時に、失なわれた情報を補うことによ り、よりよい品質の多チャネルディジタル信号を再生す ることができる。

【 O 1 3 8】上述において、可逆符号化部150、可逆復 号化部210を省略してもよい。

第14実施例

チャネル間直交変換にDFTやDCTのような実数の変換を用いると、この直交変換信号をチャネル間直交逆変換しても、再生ディジタル信号は原ディジタル信号と一致しない。また直交変換係数の一部だけ、つまりエネルギーの大きい成分だけ、例えばL+Rのみをパケットとして出力することが要求されることがある。これらに対応した発明の実施例が以下に述べる第14実施例である。

【0139】この第14実施例を図39を参照して説明 する。図39において図38と異なる点は、チャネル間 直交変換部190からの直交変換信号の全成分或は一部の 成分、つまりパワーの大きな成分を符号化部120で可逆 符号化し、主符号1mを出力する。符号化部120からの符 号を局部復号部130で復号して局部復号信号を作り、 その局部復号信号をチャネル間直交逆変換部180でチャ ネル間直交変換部190の変換と逆変換を行って複数のチ ャネルのディジタル局部復号信号を生成する。符号Imの 局部復号信号は、符号化部120において分析合成符号化 法により生成することができる。これら各チャネルの局 部復号信号とフレーム分割部110からの各ディジタル信 号の対応するチャネル間における誤差信号を誤差算出部 140で算出する。この算出した各誤差信号を配列変換部 50で図38中の並び替え部160、伝送記録単位分割部3 10、可逆符号化部150の処理を行う。

【0140】符号化部120からの主符号Imが伝送記録単位分割部310で伝送記録単位に分割され、これと配列変換部部50からの誤差符号Ineが結合部315で結合され、必要に応じてパケットPeとして出力される。なお配列変換部50は少なくとも図38中の並び替え部160を備えていればよく、図38中の伝送記録単位分割部310及び可逆符号化部150の処理は行わなくてもよい。この場合は主符号Imも伝送記録単位分割部330の処理を行わない。結合部315で主符号Imと誤差符号Ineをパケットとする場合は主符号Imを含むパケットに最も高い優先度を与える。

【0141】復号器20においては分離部440で主符号Inと誤差符号Ineが分離され、前者は復号化部60で可逆復号化され、その復号信号はチャネル間直交逆変換部290で符号器10のチャネル間直交逆変換部180と同様の処理によりチャネル間直交逆変換される。一方、誤差符号Ineは配列逆変換部70に入力され、図38中の復号器20の可逆復号化部210、伝送記録単位統合部410、並び替え部220、情報補正部480の処理が行われ、誤差信号サンプル列が再生される。ただし、少なくとも並び替え部220における処理が行われればよく、符号器10側に対応して可逆復号化部210、伝送記録単位統合部410の処理は行わないでもよい。

【0142】これら各再生された誤差信号と、チャネル間直交逆変換部30からの逆変換信号と対応するチャネルについて、加算部240でそれぞれ加算され、各チャネルの再生ディジタル信号が得られ、これらがフレーム合成部250へ供給される。直交変換成分の一部を省略し、符号化ビット数を少くし、効率良い符号化としてもこの第14実施例により原ディジタル信号を再生することができる。また誤差信号成分が送られなかったり、再生に必要とする十分な情報が得られなくてもチャネル間直交逆変換部30からの逆変換処理された各信号をディジタル再生信号として用いることによりある程度の品質の再

生信号を得ることができる。符号器10の配列変換部50において、各種の処理を省略できるが、これに応じて配列逆変換部70における処理も省略される。また符号化部120で可逆符号化する場合に限らず、いわゆる非可逆の高圧縮符号化を行ってもよい。その場合はこれに応じて復号化器20の復号部60も非可逆復号化を行う。この高圧縮符号化方法は従来技術の項で述べたものなどを用いることができる。

第15実施例

図40に図39と対応する部分に同一参照符号を付けて この発明の第15実施例を示す。第2実施例と異なる部 分のみを説明する。

【0143】符号器10においては、チャネル間直交変換部190によりMチャネルディジタル信号がチャネル間直交変換された信号は符号化部120で符号化されて主符号Imとして出力されると共に、その主符号Imは局部復号部130で局部復号されて局部信号とされる。符号Imの局部復号信号は、符号化部120において分析合成符号化法により生成することができる。その局部信号に対し、ここではチャネル間直交逆変換は行わず、チャネル間直交変換部190からのチャネル間直交変換信号との対応する成分の各誤差信号が誤差算出部140で算出される。この誤差信号が配列変換部50に供給される。以下第14実施例の符号器と同様に処理される。

【0144】復号化器20においては第14実施例との相異に基づき復号部60で復号された主符号Imの主信号と、配列逆変換部70で再生された誤差信号とが加算部240で各対応する成分について加算され、これら加算された各成分の信号がチャネル間直交逆変換部290で符号器10のチャネル間直交変換部190と対応した逆変換が行われ、各チャネルの再生ディジタル信号としてフレーム合成部250へ供給される。この場合も誤差信号を正しく再生できれば多チャネルディジタル信号を正しく再現できる。また第14実施例と同様、符号化部120ではチャネル間直交変換信号中のパワーの大きい成分だけを選択するか、予め平均的にパワーが大きい成分を決めておき、この成分だけを符号化して符号化効率を向上させることも可能である。符号化部120は非可逆の高圧縮符号化でも可逆の圧縮符号化でもよい。

【0145】図39、図40中の配列変換部50の具体的構成例としては、例えば図33に示す可逆符号化部18の構成をそのまま使用することができる。この配列変換部50と対応する配列逆変換部70の具体的構成例としては、図34に示す可逆復号部21の構成をそのまま使用することができる。あるいは、配列変換部50の具体的構成例として図35Aに示す可逆符号化部18を使用し、それに対応して配列逆変換部70の具体的構成例として図35Bに示す可逆復号部21を使用してもよい。

第16実施例

上述したような、非可逆圧縮符号と、その誤差信号の可逆符号とを用いて、可逆符号化を実現しようとする符号化/復号化方法によっても、非可逆圧縮符号を再生する復号化器や計算機の環境によって、その非可逆圧縮符号の再生信号にはわずかな誤差が含まれることがある。そのような場合、復号化器で、非可逆圧縮符号の復号信号と、可逆符号を復号した誤差信号とを組合わせても、再生ディジタル信号が原ディジタル信号とは完全には一致しない。

【0146】この第16実施例は、非可逆圧縮符号化と その誤差信号の可逆符号化を用い、復号化器や計算機の 環境にかかわらず、理論的には、原ディジタル信号と完 全に一致する再生ディジタル信号を得ることを可能とす る符号化方法、復号化方法、符号器、復号器を提供する ものであり、以下に図41を参照して説明する。図41 において、符号器10においては入力端子100からのデ ィジタル信号はフレーム分割部110でフレーム単位、例 えば1024サンプルごとに分割されそのフレームごとにデ ィジタル信号は非可逆符号化部120で符号化され、主符 号Imとして出力される。その主符号Imは局部復号部14 で復号され局部復号信号が作られ、その局部復号信号は 変動最大桁数検出部55及び切捨部56に供給される。 符号Imの局部復号信号は、非可逆符号化部120において 分析合成符号化法により生成することができる。変動最 大桁数検出部55においてはフレーム又はフレーム内の 1サブフレーム以上において主符号Imが復号器で復号さ れた際の復号信号の保証される確かな桁数、つまり復号 化器の復号精度に基づいて変動し得る桁数の最大を検出 する。

【0147】例えばMPEG-4オーディオ準拠の復号化器では環境によらず、その再生信号の各サンプル値は基準再生信号から±1の範囲内に収まることが保証されている。従って局部復号部14を考慮すると種々の復号器の再生信号の振幅には±2の誤差が含まれる可能性がある。局部復号信号の振幅も値によっては上記±1の誤差により上位の桁数まで2進数表現の値が変わる場合がある。例えば局部復号信号の振幅が、

8192 (2進で00100000000000000)

の場合、基準復号値は

8191 (2進で00011111111111111)

まかは

8193 (2進で0010000000000001)

であることが考えられる。

【0148】従って別の復号化器では

8190(2進で00011111111111110)

から

8194 (2進で0010000000000010)

までとなることが考えられる。この場合、環境が変わっても復号値が保証されるのは上位2桁のみとなる。ここでフレーム又は1以上のサブフレーム内で異なる環境の

復号化器でも指定された桁数までは再生(復号)波形の振幅の2進表現が一致する桁数を、精度の最小値と定義し、変動し得る桁数の最大値と呼ぶ。上記の数8192が含まれるときの最大の桁数は14となる。前記数値例では精度の最小値は上位2桁である。負の数の場合は絶対値に対して同様の処理を行う。また復号振幅が-2,-1,0,1,2のいずれかの場合は極性が反転しないようにすべて0とするものと決めておく。変動最大桁数検出部55ではフレーム又は1以上のサブフレームごとに各局部復号信号の各サンプルについて保証される精度を計算し、つまり復号保証される振幅値を計算し、そのフレーム又は1以上のサブフレームごとに保証される精度の最小値、つまり変動し得る桁数の最大値を図42に示すように求める。

【0149】変動最大桁数検出部55では局部復号信号 の各サンプルについてこのように環境によって変動し得 る桁数を計算し、フレーム又はフレーム内の1サブフレ ーム以上ごとのその変動し得る桁数の最大値を検出して これを桁数符号Igとして出力すると共に、切捨部56に おいて局部復号信号を前記変動の桁数の最大値の桁の数 値以下を切り捨てて保証局部復号信号を生成する。保証 局部復号信号は図42中の斜線の下側の線11となる。 この保証局部復号信号とフレーム分割部110からのディ ジタル信号との誤差信号を誤差算出部16で算出する。 この誤差信号はフレーム分割部110からのディジタル信 号中の図53における保証局部復号信号線11以下の部 分の信号となる。この誤差信号を可逆符号化部18で可 逆符号化して誤差符号Ineとして出力する。主符号Im、 誤差符号Ine、桁数符号Igを結合部315で結合して出力端 子170から出力する。

【0150】復号器20では入力端子200からの入力符号は分離部440でフレームごとに主符号Im、桁数符号Ig、誤差符号Ineに分離される。主符号Imは非可逆復号部60で非可逆復号化されて復号信号が作られる。桁数符号Igは桁数復号部81で復号され、変動の最大桁数が得られる。切捨部82において非可逆復号部60からの復号信号の前記変動の最大桁数以下の部分が切捨てられ保証復号信号として出力される。誤差符号Ineは可逆復号部21で可逆復号され、誤差信号が再生される。この誤差信号と切捨部82からの保証復号信号とが加算部240で加算され再生ディジタル信号としてフレーム合成部250へ供給される。フレーム合成部250へ供給される。フレーム合成部250へ供給される。フレーム合成部250へ出力する。

【0151】このように符号化器10で作られた保証局部信号は局部復号部14及び復号化器20で発生する誤りの最悪の合計値に影響されないものとされてあり、復号化器20で作成される保証復号信号は復号化器の保証局部復号信号と理論的には完全に一致したものとなり、従ってその誤差信号が正しく再生されれば理想的には完全に原ディジタル信号と一致した再生ディジタル信号を

得ることができる。第16実施例において桁数符号Igは 精度の最小値を符号化したものでもよい。 第17実施例

変動最大桁数検出部55で検出される変動の最大桁数は 例えば1サンプルを16ビット表現の場合、3又は4ビット程度となることが多いが、前述した数値例のように、復号保証精度が上位2桁しかないサンプルがあれば、精度の最小値、つまり変動の最大桁数が大きなのとなり、誤差信号の振幅が大きくなり、可逆符号化部18より出力される誤差符号Ineのビット数が多くなり、符号化効率が悪くなる。しかし、このようになるのは前記数値例のように、局部復号信号のサンプル値が上位桁において1か所のみ1で他の桁は全て0となる場合であり、このようなことは少ない。つまりそのような例外のサンプルを除くと、例えば図43Aに示すように精度の最小値は12又は13ビット程度となる。

【0152】この第23実施例ではフレーム又は1以上のサブフレームごとに例外のサンプルを除いた精度の最小値、つまり変動し得る最大の桁数と、その例外サンプルの位置(フレーム又はサブフレーム内の)情報と、その復号保証精度、つまり変動の最大桁数をそれぞれ符号化し、図43Aに示す保証局部復号信号を作る。例えば図44に図41に対応する部分に同一参照番号を付けて示すように、符号器10では、局部復号部14からの局部復号信号は例外検出部57へ供給され、例外的に大きな変動し得る桁数(例外的に小さい保証精度)を検出し、その桁数(又は精度)とサンプル位置情報とを変動最大桁数検出部55と切捨部56へ供給すると共に、その変動し得る桁数(又は精度)とサンプル位置情報を符号化して例外符号Igeとして出力する。

【0153】変動最大桁数検出部55では局部復号信号中から例外サンプルを除去し、その除去された局部復号信号の変動し得る最大の桁数(又は精度最小値)を検出し、これを切捨部56へ供給すると共に符号化して桁数符号Igとして出力する。切捨部56では局部復号信号から、例外サンプルについてはその変動し得る桁数の数値以下を切捨て、その他の部分は変動し得る最大桁数以下を切捨てて保証局部復号信号とする。この保証局部復号信号を誤差算出部16へ供給する。また結合部315では主符号Im、誤差符号Ine、桁数符号Igの他、例外符号Igeも合成して出力する。その他は図41の実施例と同様である。

【0154】例外サンプルとしては、大部分のサンプルに対し予め決めたビット数だけ精度が小さい(変動し得る桁数が大きい)ものの全て、又は予め決めた数までその精度が小さい(変動し得る桁数が大きい)順に選択し、結合部315で、例えば図43Bに示すようにフレーム(又はサブフレーム)ごとに、例外サンプルの数を示す符号、次に例外サンプルの位置情報及びその変動し得る桁数(精度)を表わす例外符号1geを順次配列し、最

後に桁数符号Igを付けた一塊として出力する。復号化器20では、分離された例外符号Igeは例外復号部83で復号され、サンプル位置情報と変動し得る桁数が得られる。切捨部82においては、非可逆復号部60からの復号信号中の、例外復号部83からのサンプル位置情報が示すサンプルはその変動最大桁数以下が切り捨てられ、その他のサンプルは、桁数復号部81からの変動し得る最大の桁数以下が切捨てられて、保証局部信号が生成される。その他の処理は図41の実施例と同様である。

【0155】この第17実施例によれば、符号器10に おける誤差信号の情報量が少なくなり、それだけ可逆符 号化部18における符号化効率が向上する。上述の図4 1及び44における可逆符号化部18の具体的構成例と しては、例えば前述と同様に図33で示した可逆符号化 部18の構成をそのまま使用することができる。またそ の場合の復号器20における可逆復号化部21の構成は 図34に示した可逆復号化部21の構成をそのまま使用 できる。あるいは、可逆符号化部18の構成として図3 5Aに示した可逆符号化部18の構成を使用してもよ い。その場合の可逆復号化部21の構成としては図35 Bに示す構成をそのまま使用できる。、前述したこの発 明による各実施例の符号化方法及び復号化方法は、いず れもコンピュータで実施可能なプログラムとして記憶媒 体に記述し、必要に応じてこれを読み出してコンピュー 夕で実行することができる。

[0156]

【発明の効果】以上説明したように、この発明の第1の 観点による符号化方法及び復号方法によれば、フレーム 毎に一連のサンプルの対応するビットを連結して等位ビ ット列を生成し、パケットとして出力するので、伝送路 でのパケットの欠落が生じても復号されたフレームのサ ンプル列の対応するビットの欠落はそれ程大きな品質劣 化をもたらさない。この発明の第2の観点による符号化 方法及び復号方法によれば、復号器が保証する復号信号 の精度に応じて、フレーム又はサブフレーム毎に復号器 の精度に基づき変動する最大の桁数を検出し、局部復号 信号中の変動の最大桁数以下を切り捨てて保証局部信号 とし、これと原ディジタル信号との誤差信号を可逆符号 化しているため、復号において非可逆符号の復号信号か ら復号した変動の最大桁数以下を切り捨てることによ り、符号器の保証局部信号と論理的に一致した保証復号 信号を得ることができる。

【0157】以上説明したように、この発明による符号 化方法、復号化方法、符号器及び復号器は以下の観点の ように表すことができる。

符号化方法

第1の観点による方法:複数のサンプルを含む各フレームごとにディジタル信号を符号化する符号化方法は、以下のステップを含む。

(a) フレームごとのディジタル信号のサンプルをそれ

らの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する 誤差信号の可逆データの組を生成し、(b) 上記データの 組を符号で出力する。

【0158】第2の観点の符号化方法:第1の観点記載の符号化方法において、上記ステップ(a) は可逆符号化する前に予め各サンプルの振幅を極性符号と絶対値の2進表現に変換するステップを含むことを特徴とする符号化方法。

第3の観点の符号化方法:第1の観点記載の符号化方法 において、上記ステップ(b)は上記可逆符号を格納し、 上記ヘッダ情報がつけられたパケットを生成し出力する ステップを含む。

第4の観点の符号化方法:第1の観点記載の符号化方法 において、上記ステップ(b)は上記ビット列に極性符号 および絶対値に降順に高い優先度をつけるステップを含 む。

【0159】第5の観点の符号化方法:第1の観点記載の符号化方法において、上記ステップ(a) は、(a-1) 原信号を非可逆符号化して非可逆圧縮情報と局部復号信号を生成するステップと、(a-2) 上記局部復号信号と上記原信号との誤差信号を上記ディジタル信号として非可逆符号化するステップ、とを含み、上記ステップ(b)は、上記可逆符号と共に上記非可逆圧縮情報を出力する。

【0160】第6の観点の符号化方法:第1の観点記載の符号化方法において、上記ディジタル信号のスペクトル包絡を表現するパラメータを求め、そのパラメータを符号化して生成した符号を補助情報として上記可逆符号と共に出力するステップを含む。

第7の観点の符号化方法:第1の観点記載の符号化方法において、上記ステップ(a) は、(a-1) 各フレーム内のディジタル信号の振幅の絶対値の最大値を表現する桁数を有効桁数として決定するステップと、(a-2) フレームごとにその有効桁数以内の部分についてそれぞれのサンプルの上記対応する少なくとも1桁のビットをそのフレームにわたって時間方向に並んだ少なくともひとつの上記ビット列を上記可逆符号の一部の伝送記録単位データとして生成するステップ、とを含み、上記ステップ(b)は、フレームごとに上記有効桁数を上記可逆符号と共に出力するステップを含む。

【0161】第8の観点の符号化方法:第7の観点記載の符号化方法において、上記ステップ(b) は、上記有効 桁数を補助情報として又はそのフレームの何れかのパケット内に格納して出力するステップを含む。

第9の観点の符号化方法:第6の観点記載の符号化方法において、上記ステップ(a)、(a-1)上記パラメータとして線形予測係数と現在の予測値を過去のディジタル信号から求めるステップと、(a-2)その予測値を現在のサンプルから差し引いて予測誤差を求めるステップ、とを含み、上記ステップ(b)は、上記線形予測係数を符号化

して補助情報として上記可逆符号と共に出力する。

【0162】第10の観点の符号化方法:第1の観点記載の符号化方法は更に、(0-1)入力信号をフレーム毎に聴覚特性を考慮した非可逆符号化して非可逆符号を生成し局部復号信号を生成するステップと、(0-2)その局部復号信号を、上記入力信号との誤差が小さくなるように変形して変形局部復号信号を生成するステップと、(0-3)上記入力信号と上記変形局部復号信号との誤差信号を上記ディジタル信号として生成するステップとを含む。

【0163】第11の観点の符号化方法:第10の観点記載の符号化方法において、上記ステップ(0-2) は、上記ディジタル信号と上記局部復号信号との相互相関成分を含む変形パラメータを計算し、その変形パラメータ符号を出力するステップと、上記変形パラメータを上記局部復号信号に対し、乗算又は畳み込み上記変形局部復号信号を作るステップとを含む。

第12の観点の符号化方法:第10の観点記載の符号化方法において、上記ステップ(0-2)は、(0-2-1)上記局部復号信号に対し変形パラメータを乗算し、又は複数サンプルを変形パラメータで結合して上記変形局部復号信号を作るステップと、(0-2-2)その上記誤差信号のエネルギーが小さくなるように、上記変形パラメータをフレームごとに生成するステップとを含む。

【0164】第13の観点の符号化方法:第10の観点記載の符号化方法において、上記ステップ(0-2)は、(0-2-1)上記局部復号信号の上記ディジタル信号に対する誤差を算出して誤差信号を求めるステップと、(0-2-2)その誤差信号を、量子化誤差が最小になるように符号化して誤差最小化符号を生成し、その誤差最小化符号に対する第2局部復号信号を生成するステップと、(0-2-3)その第2局部復号信号と上記局部復号信号を加算して上記変形局部信号を得るステップとを含む。

【0165】第14の観点の符号化方法:第10の観点記載の符号化方法において、上記ステップ(0-2)は、(0-2-1)上記ディジタル信号を、量子化誤差が最小になるように符号化してその誤差最小化符号を生成し、その誤差最小化符号にたいする第2局部信号を生成するステップと、(0-2-2)その第2局部信号と上記局部信号とを前者を重視した荷重平均をとって、上記変形局部信号を求めるステップとを含む。

第15の観点の符号化方法:第1の観点記載の符号化方法は更に、(0-1)入力信号をフレーム毎に、聴覚特性を考慮した非可逆圧縮符号化して第1非可逆符号を出力するステップと、(0-2)上記ディジタル信号を非可逆圧縮符号化して第2非可逆符号を生成しその第2非可逆符号に対する局部信号を生成するステップと、(0-3)その局部信号と上記ディジタル信号との誤差信号を上記ディジタル信号として求めるステップ、とを含む。

【0166】第16の観点の符号化方法:第1の観点記

載の符号化方法は更に、(0-1) 入力信号をフレーム毎に 量子化誤差が最小となるように圧縮符号化して誤差最小 化符号を生成し、その誤差最小化符号に対する第1局部 信号を生成するステップと、(0-2) その第1局部信号の 上記入力信号に対する誤差信号を上記ディジタル信号と して生成するステップと、(0-3) 上記誤差信号を聴覚特 性を考慮した非可逆圧縮符号化して可逆符号を生成する ステップとを含む。

【0167】第17の観点の符号化方法:第1の観点記載の符号化方法は更に、(0-1) Mチャネルの入力信号をNチャネルの信号に混合するステップと、Mは2以上の整数であり、NはMより小さい1以上の整数であり、その主符号に対するNチャネルの局部復号信号を生成するステップと、(0-2) このNチャネルの混合信号を符号化して主符号を生成し、(0-3) このNチャネル局部復号信号とそれに対応する上記Mチャネル入力信号との誤差信号を上記ディジタル信号として求めるステップ、とを含み、上記ステップ(b) は、上記主符号を上記可逆符号と共に出力するステップを含む。

【0168】第18の観点の符号化方法:第16の観点 記載の符号化方法は更に、(0-1) 上記Nチャネルの混合 信号をNより少ない1以上のLチャネルの混合信号に混 合するステップと、(0-2) そのLチャネルの混合信号を 符号化して主符号を生成しその主符号に対するチャネル 局部信号を生成するステップと、(0-3) そのLチャネル 局部復号信号をNチャネルの局部復号信号にチャネル拡 大するステップと、(0-4) そのNチャネルの局部復号信 号と上記Nチャネルの混合信号との差を第1誤差信号と して生成するステップと、(0-5) 上記第1誤差信号を符 号化して、従符号を生成し、その従符号に対するNチャ ネルの局部誤差信号を生成するステップと、(0-6) その Nチャネルの局部復号信号と上記Nチャネルの局部復号 誤差信号とを加算してNチャネル加算局部信号を生成す るステップと、(0-7) このNチャネル加算局部復号信号 をチャネル拡大して、Mチャネルの加算局部信号を生成 するステップと、(O-8) このMチャネル加算局部信号と 上記Mチャネルディジタル信号との差を第2誤差信号と して生成するステップ、とを含み、上記ステップ(b) は、上記主符号と共に、上記従符号を出力する。

【0169】第19の観点の符号化方法:第1の観点記載の符号化方法は更に、Mチャネルの入力信号をチャネル間直交変換して直交変換信号を上記ディジタル信号として含み、Mは2以上の整数であり、上記Mチャネルのそれぞれに対して上記ステップ(a)、(b)を実行する。第20の観点の符号化方法:第1の観点記載の符号化方法は更に、(0-1) Mチャネルの入力信号をチャネル間直交変換して直交変換信号を生成するステップと、Mは2以上の整数であり、(0-2) その直交変換信号の少なくと

も一部の信号を符号化して、主符号を生成し、その主符号に対する局部復号信号を生成するステップと、(0-3) その局部復号信号をチャネル間直交逆変換して、Mチャネル局部復号信号を生成するステップと、(0-4) 各上記 Mチャネル局部復号信号とそれに対応する上記 Mチャネル入力信号との誤差信号を上記ディジタル信号としてを求めるステップ、とを含み、上記ステップ(b) は、上記 従符号を上記主符号と共に出力する。

【0170】第21の観点の符号化方法:第1の観点記載の符号化方法は更に、(0-1) Mチャネルの入力信号をチャネル間直交変換して直交変換信号を生成するステップと、Mは2以上の整数であり、(0-2) その直交変換信号の少なくとも一部の信号を符号化して、主符号を生成し、その主符号に対する局部復号信号を生成するステップと、(0-3) その各局部復号信号とそれに対応する上記直交変換信号との差を誤差信号として求めるステップ、とを含み、上記ステップ(b) は上記主符号を上記可逆符号と共に出力する。

【0171】第22の観点の符号化方法:第1の観点記載の符号化方法において、更に、(a-1)ディジタル信号を非可逆符号化して、非可逆符号を生成し、その非可逆符号に対する局部復号信号を生成し、(a-2)フレーム又はフレーム内の1以上のサブフレームごとに上記非可逆符号に対する復号信号が変動し得る最大の桁数を上記復号信号から検出し、その変動の最大桁数を示す桁数符号を出力し、(a-3)上記局部復号信号をディジタル表現における上記変動の最大桁数以下のアブ文を切り捨てて精度保証局部復号信号を生成し、(a-4)その精度保証局部復号信号と上記ディジタル信号との誤差信号を作成し、(a-5)その誤差信号を可逆符号化して可逆符号を出力する。

復号化方法

第23の観点の復号化方法:フレームごとにディジタル信号のサンプルを再生する復号化方法であり、(a) 入力符号を復号してディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成するステップと、(b) 上記複数の組のデータに基づいてディジタル信号を再生するステップ、とを含む。

【0172】第24の観点の復号化方法:第23の観点 記載の復号化方法において、上記ステップ(b) は、上記 サンプル列を、極性符号と絶対値の2進表現から2の補 数表現に変換するステップを含む。

第25の観点の復号化方法:第23の観点記載の復号化方法において、上記ステップ(b)は、上記ディジタル信号を平滑化して上記ディジタル信号するステップを含む。

第26の観点の復号化方法:第23の観点の復号化方法 において、上記ステップ(b) は、補助情報を復号してス ペクトル包絡を求め、上記ディジタル信号のスペクトル 包絡が上記復号スペクトル包絡に近づくように、上記ディジタル信号を補正するステップを含む。

【0173】第27の観点の復号化方法:第26の観点の復号化方法において、上記ステップ(b)は、(b-1)上記欠落又は誤りビットに対し暫定サンプルを代入するステップと、(b-2)上記暫定サンプルのスペクトル包絡を計算するステップと、(b-3)上記計算したスペクトル包絡又はその変形スペクトル包絡の特性により上記暫定的なサンプルのスペクトル包絡を平坦化するステップと、(b-4)上記平坦化されたスペクトル包絡に対し、上記復号スペクトル包絡又はその変形スペクトル包絡を使ってサンプルを再構成するステップ、とを含む。

【0174】第28の観点の復号化方法:第26の観点の復号化方法において、上記ステップ(b) は、(b-1) 上記欠落又は誤りビットに対し暫定的なサンプルを代入するステップと、(b-2) 上記暫定サンプルのスペクトル包絡を計算するステップと、(b-3) 上記計算したスペクトル包絡またはその変形スペクトル包絡の逆特性により上記復号スペクトル包絡またはその変形スペクトル包絡を組み合わせたひとつのスペクトル包絡を計算するステップと、(b-4) 上記ひとつのスペクトル包絡を用いて上記暫定的なサンプル列を再構成するステップと、(b-5) 上記再構成されたサンプル列中の誤った補正を修正するステップ、とを含むことを特徴とする復号化方法。

【0175】第29の観点の復号化方法:第27の観点記載の復号化方法において、上記ステップ(b-3) は、計算したスペクトル包絡を線形予測ケプストラム係数Caに変換し、上記復号スペクトル包絡を線形予測ケプストラム係数Cbに変換し、又は上記補助情報に対する復号スペクトル包絡を使って、これら線形予測ケプストラム係数の差Cb-Caを求めて、上記ひとつのスペクトル包絡を得るステップを含む。

第30の観点の復号化方法: 第27、28又は29の 観点記載のいずれかの復号化方法において、更に、(b-5)上記暫定的なサンプルのスペクトル包絡と上記復号 スペクトル包絡との誤差が所定値以内か否かを調べ、所 定値以内であれば、その時の暫定的なサンプルを補正さ れたサンプルとし、所定値以内でなければ、上記ステッ プ(b-2)、(b-3)、(b-4)を繰り返す。

【0176】第31の観点の復号化方法:第23の観点記載の復号化方法において、上記ステップ(a) は、入力された非可逆符号化情報を非可逆復号化し、その非可逆復号化信号に上記ディジタル信号を加算するステップを含む。

第32の観点の復号化方法:第23の観点記載の復号化方法において、上記ステップ(a)は、上記可逆符号の伝送記録単位データを復号し、ヘッダ情報に基づき上記1フレームの少なくとも1つのビット位置の少なくとも1つの復号ビット列を生成するステップを含み、上記ステ

ップ(b) は、上記伝送記録単位データ中の欠落又は誤り ビットを検出し、各フレーム毎に上記サンプル列に対 し、入力された有効桁数に応じた桁合せを行うステップ を含む。

【0177】第33の観点の復号化方法:第32の観点記載の復号化方法において、上記ステップ(b) は、現在のフレームの復号有効桁数が一つ前のフレームのサンプルの振幅値を縮小して、一つ前のフレームの有効桁数を現在のフレームの有効桁数にそろえた後、補正処理を行い、現在のフレームの有効桁数が一つ前のフレームの有効桁数が一つ前のフレームの有効桁数が一つ前のフレームの有効桁を拡大して、一つ前のフレームの有効桁数を現在のフレームの有効桁数にそろえた後、補正処理を行う。

【0178】第34の観点の復号化方法:第23の観点記載の復号化方法において、上記サンプルは予測誤差信号のサンプルであり、更に(c) 欠落又は誤りデータに対し、予測誤差信号のスペクトル包絡に基づき、上記予測誤差信号を補正するステップ、(d) 入力補助情報を復号して線形予測情報を得るステップと、(e) 上記線形予測に基づいて再生原信号を上記予測誤差信号信号と上記再生原信号の過去のサンプルとから合成するステップ、とを含む。

【0179】第35の観点の復号化方法:第34の観点記載の復号化方法において、上記ステップ(c) は、(c-1) 上記欠落又は誤りビットに暫定サンプルを代入するステップと、(c-2) 上記暫定サンプルのスペクトル包絡を形質するステップと、(c-3) 上記スペクトル包絡の平坦度を求め、その平坦度が所定値以内であれば、上記暫定サンプルを上記補正した予測誤差信号とするステップと、(c-4) 上記平坦度が所定値以内でなければ、上記暫定サンプルを、上記スペクトル包絡又はその変形スペクトル包絡により規格化して平坦化信号を得るステップと、(c-5) 上記規格化した信号を上記暫定サンプルとして使用して上記ステップ(c-1) ~(c-4) を繰り返す。

【0180】第36の観点の復号化方法:第34の観点記載の復号化方法において、上記ステップ(c) は、(c-1)上記欠落又は誤りビットに暫定サンプルを代入するステップと、(c-2)上記暫定サンプルに対し、上記復号線形予測係数を用いてフィルタ処理し合成信号を生成するステップと、(c-3)上記合成信号のスペクトル包絡を計算するステップと、(c-4)上記計算したスペクトル包絡又はその変形スペクトル包絡により上記暫定誤差信号を規格化してスペクトルが平坦化された信号を作るステップと、(c-5)上記スペクトルが平坦化された信号に対し、上記復号線形予測係数を用いてフィルタ処理して予測誤差波形を再構成するステップ、とを含む。

【0181】第37の観点の復号化方法:第34の観点 記載の復号化方法において、上記ステップ(c) は、(c-1) 上記欠落又は誤りビットに暫定サンプルを代入する ステップと、(c-2) 上記暫定サンプルに対し、上記復号線形予測係数を用いてフィルタ処理し合成信号を生成するステップと、(c-3) 上記合成信号の線形予測係数を計算するステップと、(c-4) 上記計算した線形予測係数またはその帯域を拡大した線形予測係数の逆特性と、上記復号線形予測係数またはその帯域を拡大した線形予測係数を組み合わせた線形予測係数を計算するステップと、(c-5) 上記組み合わせた線形予測係数を用いて上記暫定サンプルをフィルタ処理して予測誤差信号を生成するステップ、とを含む。

【0182】第38の観点の復号化方法:第36または37の観点記載の復号化方法において、更に上記計算した線形予測係数と上記復号線形予測係数との誤差が所定値以内か否かを調べ、所定値以内であれば、その時の暫定サンプルを補正された予測誤差波形とし、所定値以内でなければ、上記合成信号を上記暫定サンプルとして使用して上記ステップ(c-1)~(c-5)を繰り返す。

第39の観点の復号化方法:第31の観点記載の復号化方法において、更に以下のステップを含む:(c)上記局部復号信号と上記ディジタル信号との誤差が小さくなるように上記局部復号信号を変形して変形信号を生成するステップと、(d)その変形信号と上記誤差信号とを合成して、上記再生信号を更新するステップ、とを含む第40の観点の復号化方法:第39の観点記載の復号化方法において、上記ステップ(c)は、(c-1)変形パラメータ符号を復号して変形パラメータを得るステップと、(c-2)その復号された変形パラメータを上記復号信号に対し乗算又は畳み込みを行って上記変形復号信号を得るステップ、とを含む。

【0183】第41の観点の復号化方法:第39の観点記載の復号化方法において、上記ステップ(c) は、(c-1) 上記局部復号信号に対し、少なくとも1つの変形パラメータで乗算又は畳み込み演算して上記変形信号を生成するステップと、(c-2) その変形信号と上記再生信号との誤差信号のエネルギーが小さくなるように、上記変形パラメータを生成するステップ、とを含む。

【0184】第42の観点の復号化方法:第23の観点記載の復号化方法において、更に、(c) 入力誤差最小化符号を非可逆復号して第1局部復号信号を再生するステップと、(d) 上記ディジタル信号と上記第1局部復号信号を加算して第1ディジタル信号を再生するステップと、(e) 聴覚特性が考慮された第2非可逆符号を非可逆復号して第2局部復号信号を再生するステップと、(f)上記第1ディジタル信号又は上記第2ディジタルを出力するステップ、とを含む。

【0185】第43の観点の復号化方法:第39の観点記載の復号化方法において、上記ステップ(c) は、(c-1) 誤差最小化符号を復号して第2局部復号信号を得るステップと、(c-2)その第2局部復号信号を上記局部復号信号に加算して上記変形信号を生成するステップ、と

を含む。

第44の観点の復号化方法:第39の観点記載の復号化方法において、上記ステップ(c)は、(c-1)誤差最小化符号を復号して第2局部復号信号を作るステップと、(c-2)その第2局部復号信号と上記局部復号信号とを前者に重視して荷重平均を行って上記変形復号信号を作るステップ、とを含む。

【0186】第45の観点の復号化方法:第23の観点記載の復号化方法において、上記サンプルはMチャネルの誤差信号のサンプルであり、Mは2以上の整数であり、上記復号化方法は更に、(c) 入力主符号を復号してNチャネルの復号信号を求めるステップと、NはMより小さい1以上の整数であり、、(d) そのNチャネル復号信号をMチャネルの復号信号にチャネル拡大するステップと、(e) 上記Mチャネル誤差信号と上記Mチャネル復号信号とを加算してMチャネルディジタル信号を再生するステップ、とを含む。

【0187】第46の観点の復号化方法:第23の観点 記載の復号化方法において、上記サンプルはMチャネル の誤差信号のサンプルであり、Mは2以上の整数であ り、上記復号化方法は更に、(c) 入力主符号を復号して Lチャネルの復号信号を得るステップと、Lは1以上の 整数であり、(d) そのLチャネル復号信号をチャネル拡 大してNチャネルの復号主信号を生成するステップと、 NはLより大きくMより小さい整数であり、(e) 従符号 を復号してNチャネル復号従信号を得るステップと、 (f) このNチャネル復号主信号と上記Nチャネル復号従 信号とを加算してNチャネル加算信号を生成するステッ プと、(h) そのNチャネル加算信号をチャネル拡大して Mチャネルの加算信号を生成するステップと、(i) 上記 Mチャネルの誤差信号と上記Mチャネル加算信号とを加 算してMチャネルの再生ディジタル信号を得るステッ プ、とを含む。

【0188】第47の観点の復号化方法:第23の観点記載の復号化方法において、上記サンプルは複数チャネルのサンプルであり、上記復号化方法は更に(c)上記複数チャネルのサンプル列に対しチャネル間直交逆変換を行って複数チャネルのディジタル信号を再生するステップ、を含む。

第48の観点の復号化方法:第23の観点記載の復号化方法において、上記サンプルはMチャネルの誤差信号のサンプルであり、Mは2以上の整数であり、上記復号化方法は更に、(c) 入力主符号を復号化して局部復号信号を得るステップと、(d) 上記Mチャネルの局部復号信号にチャネル間直交逆変換を施してMチャネル復号信号を求めるステップと、(e) このMチャネル復号信号と上記Mチャネル誤差信号とを加算してMチャネルディジタル信号を再生するステップ、とを含む。

【0189】第49の観点の復号化方法:第23の観点 記載の復号化方法において、上記サンプルはMチャネル の誤差信号のサンプルであり、Mは2以上の整数であり、上記復号化方法は更に(c) 入力主符号を復号化して Mチャネルの局部復号信号を求めるステップと、(d) 上記 Mチャネルの局部復号信号と上記 Mチャネルの誤差信号を加算して Mチャネルの加算信号を得るステップと、(e) 上記 Mチャネルの加算信号に対しチャネル間直交逆変換を施して Mチャネルディジタル信号を再生するステップ、とを含む。

【0190】第50の観点の復号化方法:第23の観点記載の復号化方法において、更に以下のステップを含む:(c) 非可逆符号を非可逆復号して局部復号信号を生成し、(d) 最大桁数符号を復号して変動の最大桁数を得、(e) 上記復号信号を、ディジタル表現において上記変動の最大桁数以下を切り捨てて精度保証信号を生成し、(f) 上記ディジタル信号と上記精度保証信号を加算して再生信号を生成する。、

第51の観点の復号化方法:第50の観点記載の復号化方法において、上記ステップ(d)は、例外符号を復号して、その例外値とサンプル位置情報を得て、上記精度保証信号のサンプル位置に上記例外値を割り当てるステップを含む、

符号器

第52の観点の符号器:複数のサンプルからなる各フレームごとにディジタル信号を符号化する符号化器であり、フレーム毎に上記ディジタル信号のサンプルを、それらの各ビット位置で跨いだビット列の可逆データの複数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成する手段と、上記データの組を符号瀬出力する出力手段、とを含む。

【0191】第53の観点の符号器:第52の観点記載の符号器において、各サンプルの振幅を極性と絶対値の 2進表現に変換し、その変換されたサンプルを上記並び 替え部へ供給する極性絶対値変換部を含む。

第54の観点の符号器:第53の観点記載の符号器において、上記結合部は上記ビット列に対し、極性、絶対値の大きさ順にパケットの優先順位を付ける。

第55の観点の符号器:第52又は53の観点記載の符号器において、原信号を非可逆符号化して、上記非可逆符号化情報と局部復号信号を出力する非可逆符号器と、上記局部復号信号と上記原信号との誤差信号を上記ディジタル信号として求めて出力する差分器とを含む。

【0192】第56の観点の符号器:第52、53又は54のいずれかの観点記載の符号器において、上記ディジタル信号のスペクトル包絡を表現するパラメータを符号化して補助情報として上記パケットと共に出力する補助情報生成部を有している。

第57の観点の符号器:第52の観点記載の符号器は、 更に上記分割されたフレームごとに、そのディジタル信 号の絶対値の最大値を表現する桁数を有効桁数として求 めて出力する補助情報生成部を有し、上記並び替え部 は、上記フレームごとに、上記有効桁数以内のみについ て、上記等位ビット列を生成する。

【0193】第58の観点の符号器:第52の観点記載の符号器は更に、各フレームごとに入力ディジタル信号のスペクトル包絡を表わす線形予測係数を求めるスペクトル包絡算出部と、上記線形予測係数を符号化して補助情報とする補助情報生成部と、フレームごとに過去のディジタル信号と線形予測係数から現在の入力信号の整数化された予測値を求める予測部と、上記予測値を現在の入力ディジタル信号から差し引いて予測誤差信号を求める予測誤差生成部、とを含む。

【0194】第59の観点の符号器:第58の観点記載の符号器は更に、各フレームごとに上記振幅ビット列の絶対値の最大値を表現する桁数を有効桁数として求める有効桁数検出部と、上記有効桁数を符号化して上記補助情報に加える手段とを有し、上記並び替え部は上記有効桁数の範囲内でのみ上記サンプル列の振幅ビット列を等位ビット列へ並び替えを行う。

第60の観点の符号器:第52の観点記載の符号器は更に、入力ディジタル信号をフレーム毎に聴覚特性を考慮した非可逆符号化して非可逆符号を生成し局部復号信号を生成する非可逆符号化部と、上記局部復号信号が入力され、局部復号信号を、上記入力信号との誤差が小さくなるように変形して変形局部復号信号を生成する変形部と、上記入力信号と上記変形局部信号が入力され、これら間の誤差信号を上記ディジタル信号として生成する誤差算出部、とを含む。

【0195】第61の観点の符号器:第52の観点記載 の符号器において、上記ディジタル信号はMチャネルの ディジタル信号であり、Mは2以上の整数であり、上記 符号器は更に、フレームごとにMチャネルのディジタル 信号が入力され、これらMチャネルのディジタル信号を 混合してNチャネルの混合信号を出力するチャネル混合 部と、Mは2以上の整数であり、NはMより小さい1以 上の整数であり、上記Nチャネルの混合信号が入力さ れ、これらを符号化して主符号とその主符号に対するN チャネル局部信号を生成する符号化部と、上記Nチャネ ル局部復号信号が入力され、これらをチャネル拡大して Mチャネルの局部復号信号を出力するチャネル拡大部 と、上記Mチャネル局部復号信号と、上記Mチャネルデ ィジタル信号との間の誤差信号を上記ディジタル信号と して計算する誤差算出部、とを含み、上記出力手段は上 記主符号を上記可逆符号と共に出力する。

【0196】第62の観点の符号器:第52の観点記載の符号器は更に、Mチャネルの入力信号に対してチャネル間直交変換を行って直交変換信号を出力するチャネル間直交変換部と、Mは2以上の整数であり、上記直交変換信号の少なくとも一部の信号を符号化して主符号を生成し、その主符号に対する局部復号信号を生成する符号化部と、上記局部復号信号に対しチャネル間直交逆変換

してMチャネル局部復号信号を生成するチャネル間直交 逆変換部と、各上記Mチャネル局部復号信号と、対応する1つの上記Mチャネルディジタル信号との間の誤差信 号を上記ディジタル信号として生成する誤差算出部、と を含み、上記出力手段は上記主符号を上記可逆符号と共 に出力する。

【0197】第63の観点の符号器:第52の観点記載の符号器において、Mは2以上の整数であり、上記符号器は更に、Mチャネルの入力信号に対してチャネル間直交変換を行って直交変換信号を生成するチャネル間直交変換部と、Mは2以上の整数であり、上記直交変換信号の少なくとも一部を符号化して主符号を生成しその主符号に対する局部復号信号を生成する符号化部と、各上記局部復号信号と、それに対応する上記直交変換信号との間の誤差信号を上記ディジタル信号として算出する誤差算出部、とを含み、上記出力手段は上記主符号を上記可逆符号と共に出力する。

【0198】第64の観点の符号器:第52の観点記載の符号器において、更に、入力信号を非可逆符号化して非可逆符号を出力する非可逆符号化部と、上記非可逆符号を復号して局部復号信号を出力する局部復号部と、フレーム又はフレーム内の1以上のサブフレームごとに上記非可逆符号に対する復号信号が環境によって変動し得る最大桁数を上記局部復号信号から検出し、その変動の最大桁数を示す桁数符号を出力する変動最大桁数以下の部分を切り捨てて保証局部復号信号を生成する切捨部と、上記保証局部復号信号と上記ディジタル信号との誤差信号を作成する誤差算出部と、上記誤差信号を可逆符号化して、可逆符号を出力する可逆符号化部、とを含む。復号器

第65の観点の復号器:複数のサンプルから成る各フレーム毎にディジタル信号のサンプルを再生する復号器であり、入力符号を復号してディジタル信号のサンプルをそれらの各ビット位置で跨いだビット列の可逆データの復数の組、又は非可逆データとその非可逆データに由来する誤差信号の可逆データの組を生成するデータ生成手段と、上記データの組からディジタル信号を再生する手段、とを含む。

【0199】第66の観点の復号器:第65の観点の復号器において、各上記サンプルを、極性符号と絶対値の 2進表現から2の補数表現に変換して上記サンプルとす る2の補数変換部を有する。

第67の観点の復号器:第65又は66の観点の復号器において、更に既知の情報から欠落ビット列を推定し、 上記サンプル列を修正する欠落補正部を含む。

第68の観点の復号器:第67の観点の復号器において、上記欠落補正部はその入力を平滑化する低域通過フィルタである。

【0200】第69の観点の復号器:第67の観点の復

号器は更に、入力された補助情報を復号してスペクトル 包絡を求める補助情報復号部を含み、上記欠落補正部は 上記補正されたサンプル列のスペクトル包絡が上記復号 されたスペクトル包絡に近づくように、上記サンプル列 を補正するものである。

第70の観点の復号器:第69の観点の復号器において、上記欠落補正部は、上記欠落又は誤りビットをサンプルにまたがって置き換えた暫定的なサンプル列を生成する暫定サンプル生成部と、上記暫定的なサンプル列のスペクトル包絡を計算するスペクトル包絡算出部と、上記復号したスペクトル包絡又はその変形スペクトル包絡で上記暫定的なサンプル列のスペクトル包絡を規格化する逆フィルタと、上記平坦化されたスペクトル包絡に対し、上記復号スペクトル包絡又はその変形スペクトル包絡及び上記平坦化スペクトル包絡を使って補正サンプル列を再構成する合成フィルタ、とを含む。

【0201】第71の観点の復号器:第69の観点の復号器において、上記欠落補正部は、上記欠落又は誤りビットに対し適当な値を代入した暫定的なサンプル列を再生する暫定波形生成部と、上記暫定的なサンプルのスペクトル包絡を計算するスペクトル包絡算出部と、上記計算したスペクトル包絡またはその変形スペクトル包絡の逆特性と、上記復号スペクトル包絡またはその変形スペクトル包絡を合成した1つのスペクトル包絡線形予測係数を計算する合成スペクトル包絡を用いて、上記暫定的なサンプル列を再構成する合成フィルタ、とを含む。

【0202】第72の観点の復号器:第71の観点の復号器において、上記合成スペクトル包絡計算部は、上記計算したスペクトル包絡を線形予測ケプストラム係数Caに変換する第1係数変換部と、上記復号スペクトル包絡を線形予測ケプストラム係数Cbに変換する第2係数変換部と、上記線形予測ケプストラム係数の差Cb-Caを求める減算部と、上記差Cb-Caを線形予測係数に逆変換して、上記合成スペクトル包絡の線形予測係数を得る逆変換部とを含む。

第73の観点の復号器:第70又は71の観点の復号器において、また上記暫定的なサンプル列又は上記修正されたサンプル列のスペクトル包絡と上記復号スペクトル包絡との誤差を求め、その誤差が所定値以内であれば、その時の暫定的な又は修正されたサンプル列を補正されたサンプル列とし、所定値以内でなければ、上記暫定的な又は上記修正されたサンプル列を上記逆フィルタあるいは上記合成フィルタへ供給する誤差計算部を含む。

【0203】第74の観点の復号器:第73の観点の復号器において、入力された非可逆符号化を非可逆復号化して局部復号信号を生成する非可逆復号部と、上記局部復号信号に上記ディジタル信号を加算し、その加算されたサンプル列を、上記欠落補正部へ供給する加算部とを含む。

第75の観点の復号器:第65の観点の復号器は更に、 入力された補助情報を復号してそのフレームの有効桁数 を得る補助情報復号部と、上記フレームのサンプル又は 上記補正されたサンプルに対し、上記復号有効桁数に応 じた桁合せを行う桁合せ部、とを含む。

【0204】第76の観点の復号器:第75の観点の復号器において、上記補助情報復号部は平均パワーも復号するものであり、上記欠落補正部は、上記復号平均パワーを用いて上記サンプルの振幅も補正するものである。第77の観点の復号器:第65の観点の復号器において、上記サンプルの線形予測係数は予測誤差信号の線形予測係数であり、上記復号器は更に、入力された補助情報を復号して線形予測係数を得る補助情報復号部と、上記線形予測係数を使って上記予測誤差信号と、復号原信号の過去のサンプルとから復号原信号を合成し、予測誤差信号のスペクトル包絡に基づき、予測誤差信号の誤り又は欠落データを補正する欠落補正部、とを含む。

【0205】第78の観点の復号器:第77の観点の復号器において、上記欠落補正部は、上記欠落または誤りビットと置き換える暫定サンプルを再生する暫定波形生成部と、上記暫定サンプルのスペクトル包絡を求めるスペクトル包絡算出部と、上記スペクトル包絡の平坦度を求め、その平坦度が所定値以内か否かを判定し、所定値以内であれば上記暫定サンプルを上記予測誤差信号とする平坦度判定部と、上記平坦度が所定値以内でなければ、上記暫定サンプルに対し、上記スペクトル包絡又はその変形スペクトル包絡により規格化して規格化信号を得る逆フィルタ、とを含む。

【0206】第79の観点の復号器:第77の観点の復号器において、上記欠落補正部は、上記欠落または誤りビットに暫定サンプルを代入する暫定波形生成部と、上記復号線形予測係数を用いて上記暫定サンプルをフィルタ処理し、合成信号を生成する第1合成フィルタと、上記合成信号のスペクトル包絡を計算するスペクトル包絡算出部と、上記計算した線形予測係数またはその帯域を拡大した線形予測係数の逆特性と、上記復号線形予測係数またはその帯域を拡大した線形予測係数を組み合わせたりとつの線形予測係数を計算する合成スペクトル包絡計算部と、上記組み合わせた線形予測係数を用いて、上記暫定サンプルをフィルタ処理して予測誤差信号を生成する合成第2フィルタ、とを含む。

【0207】第80の観点の復号器:第65の観点の復号器において、更に、上記局部復号信号が入力され、上記局部復号信号と上記ディジタル信号との誤差が小さくなるように、その局部復号信号を変形して変形信号を生成する変形部と、上記変形信号と上記誤差信号を合成して上記再生信号を更新する加算部、とを含む。

第81の観点の復号器:第65の観点の復号器において、更に、主符号を復号してNチャネルの復号信号を出力する復号部と、Mは2以上の整数であり、NはMより

小さい1以上の整数であり、上記Nチャネルの復号信号をMチャネル復号信号にチャネル拡大するチャネル拡大部と、欠落ビットを検出し、欠落信号を出力する欠落検出部と、上記情報補正部は、上記欠落検出部により検出された欠落ビットに対応する上記誤差信号に欠落情報を付加する欠落情報補正部を有しており、上記Mチャネル誤差信号又は補正誤差信号と上記Mチャネル復号信号を加算してMチャネルディジタル信号を出力する加算部、とを含む。

【0208】第82の観点の復号器:第65の観点の復号器において、上記並び替え部はM個設けられ、Mチャネルの誤差信号を出力し、Mは2以上の整数であり、上記復号器は更に、主符号を復号して局部復号主信号を出力する復号部と、上記局部復号主信号に対しチャネル間直交逆変換を行ってMチャネル復号信号を生成するチャネル間直交逆変換部と、上記Mチャネル復号信号と上記Mチャネル誤差信号を加算して再生Mチャネルディジタル信号を出力する加算部、とを含む。

【0209】第83の観点の復号器:第65の観点の復号器において、更に、入力主信号を復号して復号主信号を出力する復号部と、上記復号主信号と上記Mチャネル誤差信号を加算してMチャネル加算信号を出力する加算器と、上記Mチャネル加算信号が入力され、それらのチャネル間直行逆変換を行いMチャネル復号信号を出力するチャネル間直行逆変換部、とを含む。

【0210】第84の観点の復号器:第65の観点の復号器において、更に、非可逆符号を非可逆復号して局部復号信号を生成する非可逆復号部と、最大桁数符号を復号して変動の最大桁数を出力する桁数復号部と、上記局部復号信号の上記変動の最大桁数以下の部分を切り捨てて精度保証信号を出力する切捨て部と、入力可逆符号を可逆復号して誤差信号を再生する可逆復号部と、上記ディジタル信号と上記精度保証信号とを加算して再生ディジタル信号を出力する加算部、とを含む。

【0211】第85の観点の符号化プログラム:第1乃 至第22の観点の符号化方法をコンピュータで実行する ための符号化プログラム。第86の観点の復号化プログ ラム:第23乃至第51の観点の復号化方法をコンピュ ータで実行するための復号化プログラム。

【図面の簡単な説明】

【図1】従来の非可逆量子化を組み合わせた符号器及び 復号器の機能構成を示す図。

【図2】図1中の並び替え部160の処理を説明するための図

【図3】この発明の符号器及び復号器の各実施例1の機能構成を示す図。

【図4】Aは並び替え部160の処理例を示す図、Bはパケットのフォーマットの例を示す図。

【図5】欠落補正部430の処理と関連して、原音と歪み成分のスペクトル包絡の比較例を示す図。

【図6】この発明の符号器及び復号器の各第2実施例の機能構成を示す図。

【図7】欠落補正部430における補助情報を用いる処理 手順の例を示す流れ図。

【図8】欠落補正部430の図5と対応した機能構成例を示す図。

【図9】欠落補正部430における補助情報を用いる処理 手順の他の例を示す流れ図。

【図10】合成スペクトル包絡計算部437の具体例の機能構成を示す図。

【図11】この発明による原音分析合成後補正の符号器 及び復号器の各第3実施例の機能構成を示す図。

【図12】この発明による誤差分析、合成前補正の復号器の第3実施例の変形の機能構成を示す図。

【図13】この発明の効果を説明するための計算機シミュレーションの結果を示す図。

【図14】この発明の符号器及び復号器の各第4実施例の機能構成を示す図。

【図15】Aは並び替え部160の処理例を示す図、Bは2の補数値に対する並び替え部160の処理例を示す図。

【図16】欠落補正部430における補助情報を用いる処理手順の例を示す流れ図。

【図17】欠落補正部430の図16と対応した機能構成例を示す図。

【図18】欠落補正部430における補助情報を用いる処理手順の他の例を示す流れ図。

【図19】この発明による原音分析合成後補正の符号器 及び復号器の各第5実施例の機能構成を示す図。

【図20】この発明による誤差分析、合成前補正の復号器の第5実施例の変形の機能構成を示す図。

【図21】この発明の符号器及び復号器の各第6実施例の機能構成を示す図。

【図22】欠落補正部430における補助情報を用いない 処理手順の例を示す流れ図。

【図23】欠落補正部430の図22と対応した機能構成例を示す図。

【図24】欠落補正部430における補助情報を用いる処理手順の例を示す流れ図。

【図25】欠落補正部430の図24と対応した機能構成例を示す図。

【図26】欠落補正部430における補助情報を用いる処理手順の他の例を示す流れ図。

【図27】この発明の第1実施例の機能構成例を示す図。

【図28】Aは図27中の変形パラメータ生成部17の 具体例を示す図、Bは図27中の変形パラメータ生成部 17の他の具体例を示す図。

【図29】この発明の第2実施例の機能構成例を示す

【図30】この発明の第3実施例の機能構成例を示す

図。

【図31】この発明の第4実施例の機能構成例を示す図。

【図32】この発明の第5実施例の機能構成例を示す図。

【図33】可逆符号化部18の機能構成例を示す図。

【図34】可逆復号部21の機能構成例を示す図。

【図35】Aは予測誤差生成部の機能構成例を示す図、 Bは予測合成フィルタの機能構成例を示す図である。

【図36】この発明の第12実施例の機能構成例を示す 図

【図37】この発明の第12実施例の変形例の機能構成例を示す図。

【図38】この発明の第13実施例の機能構成例を示す

図。

【図39】この発明の第14実施例の機能構成例を示す図。

【図40】この発明の第15実施例の機能構成例を示す図.

【図41】この発明の第16実施例の機能構成例を示す図。

【図42】保証局部復号信号11の例を示す図。

【図43】Aは保証局部復号信号11の他の例を示す図、Bは例外符号Ige、桁数符号Igの符号群の例を示す図である。

【図44】この発明の第17実施例の機能構成例を示す図。

【図1】

【図5】

【図3】

【図6】

【図8】

图7

図9

【図10】

【図11】

【図12】

【図13】

図13

【図14】

SW3

501' 436

【図17】

50Í

435 合成フィルタ部

【図19】

【図20】

【図21】

【図23】

【図25】

【図27】

【図42】

図42

【図30】

【図31】

【図32】

【図33】

【図34】

【図35】

【図36】

【図37】

【図38】

【図39】

【図40】

【図41】

【図44】

フロントページの続き

(31)優先権主張番号 特願2001-368759(P2001-368759)

(32)優先日 平成13年12月3日(2001.12.3)

(33)優先権主張国 日本(JP)

(31)優先権主張番号 特願2002-52905(P2002-52905)

(32)優先日 平成14年2月28日(2002.2.28)

(33)優先権主張国 日本(JP)

(31)優先権主張番号 特願2002-58448 (P2002-58448)

(32)優先日 平成14年3月5日(2002.3.5)

(33)優先権主張国 日本(JP)

(31)優先権主張番号 特願2002-58521 (P2002-58521)

(32)優先日 平成14年3月5日(2002.3.5)

(33)優先権主張国 日本(JP)

(31)優先権主張番号 特願2002-64037 (P2002-64037)

(32) 優先日 平成14年3月8日(2002.3.8)

(33)優先権主張国 日本(JP)

(72)発明者 池田 和永

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

(72) 発明者 森 岳至

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

Fターム(参考) 5C059 MA45 MA47 MC11 MC38 ME02

ME11 RC32 RF04 SS06 SS30

UA02 UA05

5D045 DA08 DA11 DA20

5J064 AA00 AA02 BA00 BB03 BC00

BC02 BC04 BC08 BC09 BC11

BC16 BC29 BD02 BD04