

Practical Considerations for Real-Time Business Intelligence

Donovan Schneider

YAHOO! Strategic Data Solutions

September 11, 2006

- Business Intelligence (BI) Background
- Real-Time Business Intelligence Examples
- Two Requirements of Real-Time BI
- Architecture Alternatives
- Conclusions and Open Research Challenges

Business Intelligence Market

"business analytics software market comprises tools and applications for tracking, storing, analyzing, modeling, and presenting data in support of automating decision- making and reporting processes", IDC

Progression of BI

- Transactional reporting
 - "give me my reports"
- Data warehousing/OLAP
 - "explore data to find interesting patterns/details"
- Business Performance Management (BPM)
 - "how am I tracking to business goals?"
- Guided Analytics/Business Activity Monitoring
 - "where should I look next?"
- Tactical decisions
 - "what do I do right now?"

Selected Business Intelligence Vendors

Examples of Real-Time Business Intelligence

Real-Time Enterprise BI Applications

- Recommendations ★★★★☆
 - Collaborative filtering, e.g., people who like X also like Y
 - Timeliness (freshness of data): hours
- Fraud Detection
 - Detect anomalies in credit card usage
 - Timeliness: minutes
- Call Center
 - Provide next best offer or action (cross-sell, up-sell)
 - Timeliness: minutes
- Close of books
 - Track deals at quarter close to grant/refuse contract concessions
 - Timeliness: minutes
- Defect/Incident Tracking
 - Track open/closed incidents
 - Timeliness: minutes

Real-Time Web Analytics Examples

Web Page Usage

- Analyze web page usage (page views, ad views, link views, clicks) by property, geography, user demographics, referrer, etc.
- Timeliness: hours/next day
- Ad Campaign Effectiveness
 - Bid for search terms on Yahoo!, Google, MSN.
 Analyze click-thru and conversion rates
 - Timeliness: minutes

Real-Time Web Analytics Examples

- Targeting
 - Display an ad or content based on demographic profile, geographic location or behavior
 - Timeliness: minutes
- Experimentation
 - Run A/B or multivariate test on page content/layout. Analyze user engagement, clickthru rate, etc.
 - Timeliness: hours
- Search Term Analytics
 - Find most popular search terms by geography, gender, age range, etc.
 - Timeliness: hours

Business Activity Monitoring and Operational Performance Management

- Measure and monitor real-time business events within the enterprise to improve business performance
 - More than real-time alerts
 - Integrate, aggregate, correlate to improve business processes
- Examples
 - Real-time inventory analysis
 - Timeliness: minutes

Requirements for Real-Time Business Intelligence

Requirement #1: Time is Money

- Nothing is free; it costs money to reduce data latency
 - Specialized hardware (clusters, large memories, high bandwidth networks, fault tolerant)
 - Specialized software
 - highly-available, fault-tolerant, high performance
 - Integrated systems
- The business decisions to be made with reduced latency must justify the investment

Requirement #2: Actionable Data

Context

- Must provide contextual information to aid decision making
- Typically requires access to detailed data
- Typically requires access to trending/historical data
- All silo'd solutions will ultimately fail this

Audience

 Provide role-specific views of data (e.g., sales rep, sales manager, district manager, executive), task-specific views, etc.

Data

Data must be "clean" (normalized, conformed)

Time

Timely presentation of data to decision maker

Challenges in real-time BI

- Data Scale
- Performance, Performance
 - Low latency data delivery
 - Consistent response times
 - Caching often used
- Cost
 - Performance/low-latency costs money
- High Availability
 - Servers, network, databases, middleware, applications
- Integration

Architecture Alternatives

Architecture Alternatives

- Custom Solutions
- Enterprise Data Warehouse (EDW)
- Federated system (virtual EDW)
- Streaming

Custom Solutions

- Build specialized systems to meet latency needs
- Pros
 - Optimize for specific needs
 - Initial development cost is low for data marts
 - Cheap enough that department VP can purchase
 - Can adapt quickly to meet changing business needs

Cons

- Lack of integration with contextual data
- Lack of integration with detailed data
- Multiple, competing sources of truth
- Scalability (#of users, amount of data)
- Lack of shared services
 - ETL processes, security, reporting, DBAs
- Tend to proliferate across an enterprise; overall cost to company is high

Enterprise data warehouse (EDW)

- Consolidate data marts into a central data warehouse
- Pros
 - All non-production OLTP data sources in a single system
 - No multi-database joins
 - One system to administer and operate
 - Single source of truth
- Cons
 - Many EDWs fail for technical and organizational reasons
 - · Departments lose control of their data
 - Departments lose agility
 - Difficult to deliver incrementally due to conforming dimensions
 - Difficult to support high volume, low latency ETL along with complex, ad-hoc decision support
 - Not real-time
 - Costs up to \$50 million for a large organization
- Examples
 - Oracle/Teradata/DB2 EDW, SAP/BW

- Provide federated/virtual view(s) of enterprise data
- Pros
 - Each source system is optimized for a specific need or workload
 - · Cubes, data warehousing, OLTP
 - Departments retain some control over their systems/data
 - Incremental build out (unlike an EDW), modulo conforming dimensions

Cons

- Requires conformed dimensions across systems
- Some source systems restrict query access (e.g., OLTP systems will not allow large queries)
- Security unification across disparate systems
- Updates must be coordinated (between OLTP, DW, caches, etc.)
- Sophistical SQL generation to optimally access data sources
- Sophistical execution engine to compensate for data source limitations
- High availability and problem diagnosis hampered by multiple systems

Examples

- Oracle Business Intelligence EE (formerly known as Siebel Analytics)
- SAP/BW

Streaming, Business Activity Monitoring, Operational BI

- Make rapid decisions based on large volumes of data
- Pros
 - Optimized for low latency (few disk accesses)
- Cons
 - Data inconsistency (late, missing data)
 - Requires very high availability
 - Extend SQL for streaming operations
 - Integration with other sources can be a challenge
- Examples
 - Hedge funds processing ticker feeds for arbitrage
 - Fraud detection
 - Revenue alerting

Conclusions and Open Problems

Conclusions

- Some applications are demanding, and willing to pay for, very low latency access
- Most applications do not require latency in the seconds granularity
 - Delivery may be real-time (seconds), e.g., targeting, alerting, recommendations but underlying data can be less "fresh"
- Common evolution strategy is to increase frequency of ETL operations
 - Mini-batch ETL, e.g., load every 10 minutes
 - Requires fast, scalable, and high availability
 - load, clean, transform and aggregate

Research Challenges in real-time Bl

- Data scalability
- User scalability
 - Decision making is reaching deeper in organizations
- Breadth of data access
 - Providing context for decision making requires accessing diverse set of data sources
- Query Language
- Cost
- Performance
 - Efficient, incremental algorithms
 - Very large dimensions (millions to hundreds of millions members)
- Ad-hoc vs. Production
 - How to support dynamic, mixed workloads
- High Availability/Fault Tolerance
 - Production decision making systems cannot fail
- Backup/Recovery