# LC01 - Chimie et couleur

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

## I. Extraction et synthèse d'espèces colorées

#### 3. Synthèse d'espèces colorées

1. Transformation : mise en présence des réactifs. L'équation bilan de la synthèse de l'indigo est :

| $2 C_7 H_5 NO_{3(s)}$                       | + | $2 C_3 H_6 O_{(l)}$                       | + | $2HO_{(aq)}^{-}$   | $\rightarrow$ | $C_{16}H_{10}N_2O_{2(s)}$ | + | $2 CH_3CO_{2(aq)}^-$ | $+ 4 H_2 O_{(l)}$ |
|---------------------------------------------|---|-------------------------------------------|---|--------------------|---------------|---------------------------|---|----------------------|-------------------|
| 2-nitrobenzaldéhyde                         |   | Acétone                                   |   | lons<br>hydroxydes |               | Indigo                    |   | lons<br>éthanoates   | Eau               |
| $0.5 \text{ g} = 3.3 \ 10^{-3} \text{ mol}$ |   | $5 \text{ mL} = 68 \ 10^{-3} \text{ mol}$ |   | 0 mol              |               | 0 mol                     |   | 0 mol                | Excès             |

### I. Extraction et synthèse d'espèces colorées

#### 3. Synthèse d'espèces colorées

1. Transformation : mise en présence des réactifs. L'équation bilan de la synthèse de l'indigo est :

$$2 C_7 H_5 N O_{3(s)} + 2 C_3 H_6 O_{(l)} + 2 H O_{(aq)}^- \rightarrow C_{16} H_{10} N_2 O_{2(s)} + 2 C H_3 C O_{2(aq)}^- + 4 H_2 O_{(l)}$$

2. Traitement : Essorage sur verre fritté



## I. Extraction et synthèse d'espèces colorées

#### 3. Synthèse d'espèces colorées

1. Transformation : mise en présence des réactifs. L'équation bilan de la synthèse de l'indigo est :

$$2 C_7 H_5 N O_{3(s)} + 2 C_3 H_6 O_{(l)} + 2 H O_{(aq)}^- \rightarrow C_{16} H_{10} N_2 O_{2(s)} + 2 C H_3 C O_{2(aq)}^- + 4 H_2 O_{(l)}$$

- 2. Traitement : Essorage sur verre fritté
- 3. Identification : La couleur semble être la bonne. Peut-elle suffire à caractériser la molécule ?

### II. Caractérisation des solutions colorées

#### 1. Notion d'absorbance



### II. Caractérisation des solutions colorées

2. Spectre d'absorption - Caractérisation d'une espèce



### II. Caractérisation des solutions colorées

3. Loi de Beer-Lambert – Caractérisation de la concentration

| Solution n°   | 1 | 2 | 3 | 4 | 5 |
|---------------|---|---|---|---|---|
| Concentration |   |   |   |   |   |
| Absorbance    |   |   |   |   |   |







Anthraquinone Jaune clair

Alizarine Rouge



