Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Optimización	Nombre: Adán	21/02/2024

Laboratorio: Optimización sin restricciones

Índice

1.	Introducción	2
	1.1. Metodología	2
2.	Resolución	3
	2.1. Calcular el gradiente	3
	2.2. Calcular al curva óptima para distintos valores de n	4
3.	Anexo	12
	3.1. fun	12
	3.2. fun_alpha	13
4.	Bibilografia	13

Página 1 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
	Nombre: Adán	

1. Introducción

El objetivo para esta entrega consiste en encontrar la curva que une los puntos (0,1) y (1,1) de forma que se minimice el área de la superficie de revolución alrededor del eje x, es decir, hemos de minimizar

$$I(u) = \int_0^1 u(x)\sqrt{1 + u'(x)^2} dx$$

Siendo u(0) = u(1) = 1.

1.1. Metodología

En primer lugar, discretearemos el intervalo [0,1] en en intervalos de la forma $[\frac{j}{n},\frac{j+1}{n}]$. En segundo lugar, recordamos que si consideramos una función f(x), la integración por trapecios nos da la fórmula:

$$\int_0^1 f(x)dx = \sum_{j=0}^{n-1} \frac{f(x_j) + f(x_{j+1})}{2} \frac{1}{n} = \sum_{j=0}^{n-1} T_j(f(x))$$

En nuestro caso, $f(x)=u(x)\sqrt{1+u'(x)^2}$. Seguidamente, definimos $u(x_j)=u_j$, y como estamos aproximando u(x) por una poligonal, podemos tomar las derivadas por la derecha y por la izquierda para tener la casi igualdad

$$u'(x_j) \approx u'(x_{j+1}) \approx \frac{u_{j+1} - u_j}{\frac{1}{n}} = (u_{j+1} - u_j) \cdot n$$

Por tanto, la aproximación de la integral inicial vendrá dada por

$$I(u) \approx T(u) = \sum_{j=0}^{n-1} T_j(u)$$

Con

$$T_j(u) = \frac{(u_{j+1} + u_j)\sqrt{1 + n^2(u_{j+1} - u_j)^2}}{2n}$$

Gracias a esto, hemos conseguido una función F que va de ${\bf R}^{n+1}$ en ${\bf R}$, que podremos optimizar utilizando el método del gradiente.

Página 2 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
	Nombre: Adán	

2. Resolución

2.1. Calcular el gradiente.

Para calcular el gradiente, desarrollaremos T(u) para que nos sea más cómodo.

$$T(u) = \frac{1}{2n} [(u_1 + u_0)\sqrt{1 + n^2(u_1 - u_0)^2} + (u_2 + u_1)\sqrt{1 + n^2(u_2 - u_1)^2} + \dots + (u_{n-1} + u_{n-2})\sqrt{1 + n^2(u_{n-1} - u_0)^{n-2}} + (u_n + u_{n-1})\sqrt{1 + n^2(u_n - u_{n-1})^2}]$$

Si derivamos con respecto a u_0 obtendremos

$$g_0 = \frac{\partial T(u)}{\partial u_0} = \frac{1}{2n} \left(\sqrt{1 + n^2(u_1 - u_0)^2} - (u_1 + u_0) \frac{n^2(u_1 - u_0)}{\sqrt{1 + n^2(u_1 - u_0)^2}} \right)$$

Análogamente para j = n,

$$g_n = \frac{\partial T(u)}{\partial u_n} = \frac{1}{2n} \left(\sqrt{1 + n^2(u_n - u_{n-1})^2} - \frac{n^2(u_n - u_{n-1})(u_n + u_{n-1})}{\sqrt{1 + n^2(u_n - u_{n-1})^2}} \right)$$

A diferencia de j=0 y j=n, el resto de u_i con $j=1,\ldots,n-1$ aparecen en dos términos, por tanto su derivada parcial será diferente:

$$g_{i} = \frac{\partial T(u)}{\partial u_{i}} = \frac{1}{2n} \left(\sqrt{1 + n^{2}(u_{i} - u_{i-1})^{2}} + \frac{n^{2}(u_{i} + u_{i-1})(u_{i} + u_{i-1})}{\sqrt{1 + n^{2}(u_{i} - u_{i-1})^{2}}} + \dots + \frac{1}{\sqrt{1 + n^{2}(u_{i+1} - u_{i})^{2}}} - \frac{n^{2}(u_{i+1} + u_{i})(u_{i+1} + u_{i})}{\sqrt{1 + n^{2}(u_{i+1} - u_{i})^{2}}} \right)$$

Y podemos definir el gradiente como

$$\nabla F = (g_0, g_1, \dots, g_n)$$

.

Página 3 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Оринигасион	Nombre: Adán	21/02/2024

2.2. Calcular al curva óptima para distintos valores de n.

Para resolver este ejercicio, hemos de optimizar nuestros u_j de tal forma que minimicen la función anterior, para ello, planteamos

$$u_{k+1} = u_k - \alpha \cdot \nabla F(u_k)$$

Como punto de inicio, tomaremos $u_0 = [1, 1, \dots, 1]$, que es la línea recta y curva más simple que une los puntos dados. En este caso, obtenemos la gráfica:

Figura 1: Línea recta, caso básico.

Página 4 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Optimización	Nombre: Adán	21/02/2024

Usaremos ahora el gradiente para optimizar, utilizando el siguiente código:

Podemos ver que tenemos establecido alpha=0.15, pero también podemos buscar el óptimo descomentando la linea de budi. Tenemos el parámetro $numb_points$ que nos sirve para variar el n del problema. Además, se puede ver que forzamos que $u_0=u_n=1$ para cumplir con las restricciones. La función fun contiene f y df definidas, y se encuentra definida en el anexo, junto a fun_alfa Probemos ahora a optimizar para alfa=0.15, n=5:

Página 5 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Optimización	Nombre: Adán	21/02/2024

Figura 2: alfa=0.15, n=5

Si tomamos la norma de f(u), aproximará a la integral, en este caso tenemos

$$||f(u_n)|| = 1,2597$$

Tomando alfa=0.15, n=10:

Página 6 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
	Nombre: Adán	21/02/2024

Figura 3: alfa=0.15, n=10

$$||f(u_n)|| = 0.7281$$

Tomando alfa=0.15, n=15::

Página 7 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Optimización	Nombre: Adán	21/02/2024

Figura 4: alfa=0.15, n=15

$$||f(u_n)|| = 0.6309$$

Podría parecer que incrementar n hace que tengamos una mejor aproximación, pero puede ocurrir que no converja, fijémonos en el caso de tomar $n=30\,$

Página 8 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Оринигасион	Nombre: Adán	21/02/2024

Figura 5: alfa=0.15, n=30

Podemos ver que diverge, además la norma se dispara. En este caso, hemos de ser cuidadosos de tomar un alfa adecuado. De hecho, para un mismo n, cambiando el alfa podemos obtener mejores resultados también (fijado un número máximo de iteraciones, claro está)

Página 9 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Оринигасион	Nombre: Adán	21/02/2024

Figura 6: alfa=0.015, n=15

Con

$$||f(u_n)|| = 0.4754$$

En este caso, sí podríamos aumentar n a 50 sin llegar a diverger.

Página 10 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Optimización	Nombre: Adán	21/02/2024

Figura 7: alfa=0.01, n=50

Con

$$||f(u_n)|| = 0.3597$$

Esto demuestra que no solo el número de subintervalos es importante, si no el tomar un alfa óptimo.

Página 11 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
Оринигасия	Nombre: Adán	21/02/2024

3. Anexo

3.1. fun

```
function [fx, Dfx] = fun(x)
% En nuestro caso, u0=x
   n = length(x);
    \% Como tenemos F definido, podemos calcularlo directamente
   fx_punt = zeros(1,n);
   fx_{punt}(1) = (1/(2*n))*(x(2)+x(1))*sqrt(1+n^2*(x(2)-x(1))^2);
   fx punt(end) = (1/(2*n))*(x(end)+x(end-1))*sqrt(1+n^2*(x(end)-x(end-1))^2);
   for i = 1:n-2
        fx punt(i+1) = (1/(2*n))*(x(i+1)+x(i))*sqrt(1+n^2*(x(i+1)-x(i))^2) + ...
                      (1/(2*n))*(x(i+2)+x(i+1))*sqrt(1+n^2*(x(i+2)-x(i+1))^2);
    end
   fx = fx punt;
    % Calculamos ahora el gradiente
   Dfx_punt = zeros(1,n);
   Dfx_punt(1) = (1/(2*n))*(sqrt(1+(n^2)*(x(2)-x(1))^2)- ...
        (2*n^2*(x(2)-x(1))*(x(2)+x(1)))/sqrt(1+(n^2)*(x(2)-x(1))^2)...
        );
   Dfx_{punt}(end) = (1/(2*n))*(sqrt(1+n^2*(x(end)-x(end-1))^2)+ ...
        (2*n^2*(x(end)-x(end-1))*(x(end)+x(end-1)))/sqrt(1+n^2*(x(end)-x(end-1))^2)...
        );
    for i = 1:n-2
   Dfx_{punt(i+1)} = (1/(2*n))*(sqrt(1+n^2*(x(i+1)-x(i))^2)+ ...
        (2*n^2*(x(i+1)-x(i))*(x(i+1)+x(i)))/sqrt(1+n^2*(x(i+1)-x(i))^2)+...
        sqrt(1+n^2*(x(i+2)-x(i+1))^2)-...
```

Página 12 Optimización

Asignatura	Datos del alumno	Fecha
Optimización	Apellidos: Avilés Cahill	27/02/2024
	Nombre: Adán	

```
 (2*n^2*(x(i+2)-x(i+1))*(x(i+2)+x(i+1)))/sqrt(1+n^2*(x(i+2)-x(i+1))^2)); \\ end  Dfx = Dfx\_punt;
```

end

3.2. fun_alpha

```
function [Fa] = fun_alpha(alpha,x0, Dfx)

y = x0-alpha*Dfx;

[Fa, ~] = fun(y);
end
```

4. Bibilografia

Referencias

[1] Apuntes de la asignatura de Optimización

Página 13 Optimización