Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 12

Tutoriumsaufgabe 12.1

Das Makespan-Scheduling-Problem ist das folgende Optimierungsproblem:

Makespan-Scheduling

Eingabe: m Maschinen, n Jobs mit Laufzeiten p_1, \ldots, p_n .

zulässige Lösungen: Jede Zuteilung $s \colon \{1, \dots, n\} \to \{1, \dots, m\}$ der Jobs auf die Maschinen.

Zielfunktion: Minimiere den Makespan, d.h. minimiere $\max_{1 \le i \le m} \sum_{j: s(j) = i} p_j$.

- (a) Definieren Sie die Entscheidungsvariante des Makespan-Scheduling-Problems.
- (b) Beschreiben Sie eine polynomielle Reduktion von Subset-Sum auf die Entscheidungsvariante von Makespan-Scheduling und beweisen Sie ihre Korrektheit.

Tutoriumsaufgabe 12.2

Zeigen Sie, dass BINPACKING stark NP-schwer ist.

Tutoriumsaufgabe 12.3

Wir betrachten sogenannte primitive Programme, die durch die Hintereinanderausführung von Zuweisungen " $x_i := x_j + c$ " und If-Befehlen "IF $(x_i = c')$ THEN $x_j := x_k + c''$ ENDIF" (mit Konstanten $c, c', c'' \in \mathbb{N}$) entstehen. If-Befehle können nicht ineinander verschachtelt werden, und es gibt keine ELSE-Klauseln. Die Eingabe des Programms steht in den Variablen x_1, \ldots, x_k , und die Ausgabe des Programms steht am Ende in der Variable x_0 . Die Variable x_0 enthält keinen Eingabewert und wird mit 0 initialisiert. Beweisen Sie, dass das folgende Problem coNP-schwer ist:

PRIMITIVEEQ

Eingabe: Zwei primitive Programme P_1 und P_2 mit Variablen x_0, \ldots, x_k .

Frage: Berechnen diese beiden Programme dieselbe Funktion $f: \mathbb{N}^k \to \mathbb{N}$?

Hausaufgabe 12.1

(4 Punkte + 3 Bonuspunkte)

PARTITION-INTO-THREE-SETS ist das folgende Entscheidungsproblem:

PARTITION-INTO-THREE-SETS

Eingabe: Positive ganze Zahlen a_1, \ldots, a_n .

Frage: Gibt es paarweise disjunkte Mengen $I, J, K \subseteq \{1, ..., n\}$ mit $I \cup J \cup K = \{1, ..., n\}$, so dass

$$\sum_{i \in I} a_i = \sum_{j \in J} a_j = \sum_{k \in K} a_k ?$$

Zeigen Sie, dass Partition-Into-Three-Sets NP-vollständig ist. Um die Bonuspunkte zu erhalten, müssen Sie zudem zeigen, dass Partition-Into-Three-Sets in pseudopolynomieller Zeit gelöst werden kann.

Hausaufgabe 12.2 (5 Punkte)

Zeigen Sie, dass das folgende Problem stark NP-schwer ist:

TRIPLE-PARTITION

Eingabe: Positive ganze Zahlen d_1, \ldots, d_{3n} mit $\sum_{i=1}^{3n} d_i = nD$.

Frage: Können diese Zahlen in n Tripel partitioniert werden, sodass sich in jedem Tripel die Elemente zur Summe D aufaddieren?

Hinweis: Konstruieren Sie eine Reduktion von Three-Partition. Ersetzen Sie dabei die Zahlen a_i durch $a_i + X$, die Zahlen b_i durch $b_i + Y$ und die Zahlen c_i durch $c_i + Z$, wobei die Zahlen X, Y, Z geeignet von S abhängen.

Hausaufgabe 12.3 (4 Punkte)

Beweisen Sie, dass das folgende Problem coNP-vollständig ist:

AT-MOST-THREE-SAT

Eingabe: Boole'sche Formel φ in CNF über den Variablen x_1, \ldots, x_n .

Frage: Besitzt φ höchstens drei verschiedene erfüllende Variablenbelegungen?