The Illinois GRACE Project: Global Resource Adaptation through CoopEration

Faculty: Sarita V. Adve, Douglas L. Jones, Robin H. Kravets, Klara Nahrstedt

Students: Albert F. Harris, Christopher J. Hughes, Daniel Grobe Sachs,

Ruchira Sasanka, Jayanth Srinivasan, Wanghong Yuan

Computer Science and Electrical & Computer Engineering
University of Illinois at Urbana-Champaign
grace@cs.uiuc.edu

Motivation

Target system

Mobile devices w/ multimedia apps, wireless communication

New challenges

Stringent, dynamic, multidimensional resource constraints

New opportunities

Real-time and dynamic ⇒ Slow processing to save energy
Soft correctness ⇒ Trade output quality for resource use

Key Observations

Dynamic resource constraints + Flexible output quality ⇒

Use adaptation to respond to changes

Adapt all system layers

Hardware, network, operating system, application, ...

All layers must adapt cooperatively
to maximize user experience - system utility
while meeting current resource constraints

⇒ GRACE – Global Resource Adaptation through CoopEration

Consider real-time video delivery over wireless & wired network

- all resources time, energy, bandwidth
- other layers

Consider real-time video delivery over wireless & wired network

Application
Which video compression technique?
How much compression?

Network Protocols

Operating System

Architecture and Hardware

- all resources time, energy, bandwidth
- other layers

Consider real-time video delivery over wireless & wired network

Application

Which video compression technique?
How much compression?

Network Protocols

How much error correction for wireless channel? Which congestion control protocols for wired network?

Operating System

Architecture and Hardware

- all resources time, energy, bandwidth
- other layers

Consider real-time video delivery over wireless & wired network

Application

Which video compression technique?
How much compression?

Network Protocols

How much error correction for wireless channel? Which congestion control protocols for wired network?

Operating System

How to allocate resources to multiple applications? How to allocate among components of the same application?

Architecture and Hardware

- all resources time, energy, bandwidth
- other layers

Consider real-time video delivery over wireless & wired network

Application

Which video compression technique?
How much compression?

Network Protocols

How much error correction for wireless channel? Which congestion control protocols for wired network?

Operating System

How to allocate resources to multiple applications? How to allocate among components of the same application?

Architecture and Hardware

Which processor, cache, memory configuration? Which frequency, voltage?

- all resources time, energy, bandwidth
- other layers

State-of-the-Art

Most current work adapts single layer at a time

Some jointly adapt 2 layers, BUT one layer drives adaptation E.g., app controls video coding and n/w error correction

- Exposes internals of one layer to another
- Sub-optimal use of system flexibility
- Difficult to scale to more than two adaptive layers

Need new solutions that will

- + Retain software engineering advantages of layers
- + Exploit full system flexibility for globally optimal solution
- + Scale to multiple adaptive layers

Current Systems vs. GRACE

Current approaches

Application

Network Protocols

Operating System

Architecture, Hardware

- System divided into layers
- Adapt 0, 1, or 2 layers

Current Systems vs. GRACE

Current approaches

Application

Network Protocols

Operating System

Architecture, Hardware

- System divided into layers
- Adapt 0, 1, or 2 layers

GRACE

- Global community
- All adapt cooperatively via coordinator
- Retain advantages of layering with clean, minimal interfaces

GRACE Framework - Overview

Two major adaptation modes

<u>Global</u> <u>Local</u>

GRACE Framework - Overview

Two major adaptation modes

Global

- Via resource manager RM
- Expensive
- Triggers: rare, coarse-grain
 - Application arrives, leaves
 - Large resource change
 - Large usage change
- RM reallocates resources to apps to maximize system utility

Local

GRACE Framework - Overview

Two major adaptation modes

Global

- Via resource manager RM
- Expensive
- Triggers: rare, coarse-grain
 - Application arrives, leaves
 - Large resource change
 - Large usage change
- RM reallocates resources to apps to maximize system utility

Local

- Individual layers adapt locally
- Cheap
- Triggers: frequent, fine-grain
 - Small change in resource use

Respect global allocation of resources, utility

Key Interfaces – Cost and Utility

All layers adapt locally

- No knowledge of internals of other layers
- Exposed information: cost and utility (of app configuration)

Cost (of an application configuration)

- Computation time, energy, bandwidth/reliability
- From hardware, other software components (e.g., network)
- Multiple operating points (costs) for each resource
- Get from dynamic profiling, programmer, compiler

Utility (of an application configuration)

Depends on QoS level, importance of application

Cost: App queries hardware, network for cost of each configuration

Cost: App queries hardware, network for cost of each configuration

Reserve: App requests reservation with (cost, utility) options

Cost: App queries hardware, network for cost of each configuration

Reserve: App requests reservation with (cost, utility) options

Monitor: App, RM monitor resource use (cost) for local adaptation

Cost: App queries hardware, network for cost of each configuration

Reserve: App requests reservation with (cost, utility) options

Monitor: App, RM monitor resource use (cost) for local adaptation

Update: RM triggers reconfiguration at global change

Example: New application enters system

Example: New application enters system

Determine cost of new app for highest utility

Example: New application enters system

Determine cost of new app for highest utility

Current hardware configuration sufficient?

Example: New application enters system

Example: New application enters system

Example: New application enters system

Explore software reconfiguration for current apps

- Each app explores reconfiguration and returns (cost, utility) options
- RM chooses configurations that maximize utility w/ current resources

Local Adaptation

Each layer free to adapt locally after global resource allocation

- Must respect global allocation, utility
- Adaptation process specific to the layer, oblivious to others

If local adaptations consistently produce lower resources
Resource manager triggers new global adaptation

Experience and Initial Results

Local hardware adaptation

Local application adaptation

Resource Manager + Hardware + Application adaptations

Local Hardware Adaptation

Multiple levels of adaptation [Hughes et al. Micro'01, Sasanka et al. Asplos'02]

- Dynamic voltage (and frequency) scaling (DVS)
- Architecture adaptation
 - E.g., # active functional units, instruction window size
 - Coarse-grain inter-frame, fine-grain intra-frame
 - Inter picks max config for frame, intra adapts within max

Significant energy savings for apps/systems studied 82% vs. no adaptation, 28% vs. only DVS, 66% vs. only arch

Local Application Adaptation

Initial adaptation for video encoder

- Dynamic adjustment of escape threshold for motion search
- Affects CPU & transmission energy, but not output quality
- 6% energy benefit in one case, on adaptive hardware

Experience with Resource Manager

- With only adaptive hardware through DVS simulation
 [Yuan & Nahrstedt, NOSSDAV'02]
- With DVS and adaptive applications real implementation
 [Yuan et al., submitted for publication]

Resource Manager + DVS + Adaptive App

System with DVS and adaptive applications

- Global adaptation
 - Cost based on average computation time of a frame
 - Maximize utility given battery energy and needed lifetime
 - Triggers hardware and/or application adaptation
 - No network consideration yet
- Local adaptation
 - Only frequency adjustment to handle overrun, underrun
 - Application adaptation too expensive in system studied

Experimental Methodology

Implemented in Linux kernel on HP laptop with Athlon processor

Applications

Multiple MPEG decoders - 3 options for frame rate, dithering
Utility = monotonic function of processor utilization
(more work ⇒ higher utility)

Hardware: 6 frequency/voltage configurations on Athlon CPU

Metrics: Achieved battery lifetime, utility

Compared with No adapt, CPU-only, App-only, App-OS, uncoordinated App-OS-CPU

Results assume available energy = 1/3 needed at peak config

Initial Results

Achieved battery lifetime (normalized) with different adaptations

In all cases, utility for GRACE-1 was highest

Benefits reduce with more energy availability

Summary

Mobile systems with multimedia apps

GRACE – Global Resource Adaptation with CoopEration

All system layers adapt cooperatively

to maximize system utility within available resources

- Mediated by resource manager says what, not how
- Clean, minimal interfaces
- Retains advantages of layers, exploits full flexibility, scalable

Much remaining work to realize GRACE goals

