МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет» Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Лабораторная работа №2

ИССЛЕДОВАНИЕ МЕТОДОВ ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ ПРОЦЕССАМИ В ОДНОПРОЦЕССОРНЫХ СИСТЕМАХ С ПРИОРИТЕТАМИ

Отчет по лабораторной работе дисциплины «Моделирование»

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил преподаватель	/Старостин П.А./

1 Задание

Провести математическое моделирование и исследовать характеристики дисциплин обслуживания процессов с относительными и абсолютными приоритетами при их обработке в однопроцессорной системе как один ресурс и как трехкомпонентную сеть одноканальных СМО.

В данной лабораторной работе принято, что номер приоритета потока равен номеру этого потока.

2 Модель

В первом случае модель система рассматривается как один ресурс и имеет вид, представленный на рисунке 1.

Набор входных очередей процессов с

Рисунок 1

Во втором случае система рассматривается как трехкомпонентная система и имеет вид, представленный на рисунке 2.

Набор входных очередей процессов с

Рисунок 2

3 Вычисления

Алгоритм решения задачи аналогичен вычислению времени ожидания в очереди без приоритетов.

3.1 Первая часть

Для вычисления среднего времени ожидания заявок на обслуживание в очереди с относительным приоритетом используется формула

$$\omega_k = \sum_{i=1}^k \frac{\theta_i \rho_i (1 + v_i^2)}{2(1 - R_k)(1 - R_{k-1})}$$

Для вычисления среднего времени ожидания заявок на обслуживание в очереди с абсолютным приоритетом используется формула

$$\omega_k = \frac{\theta_i R_{k-1}}{(1-R_k)} + \sum_{i=1}^k \frac{\theta_i \rho_i \big(1+v_i^2\big)}{2(1-R_k)(1-R_{k-1})}$$
 где $R_k = \sum_{i=1}^k \lambda_i \sum_{j=1}^N \theta_{kj}$

3.2 Вторая часть

Для вычисления среднего времени ожидания заявок на обслуживание в очереди с относительным приоритетом используется формула

$$\omega_k = \sum_{i=1}^k \sum_{j=1}^3 \frac{\theta_{ij} \rho_{ij} (1 + v_i^2)}{2(1 - R_k)(1 - R_{k-1})}$$

Для вычисления среднего времени ожидания заявок на обслуживание в очереди с абсолютным приоритетом используется формула

$$\omega_k = \frac{\theta_i R_{k-1}}{(1 - R_k)} + \sum_{i=1}^k \sum_{j=1}^3 \frac{\theta_{ij} \rho_{ij} (1 + \nu_i^2)}{2(1 - R_k)(1 - R_{k-1})}$$

4 Результат

Зависимость времени ожидания от производительности процессора в первой системе с относительными приоритетами:

Зависимость времени ожидания от производительности процессора в первой системе с абсолютными приоритетами:

Зависимость времени ожидания от производительности процессора во второй системе с относительными приоритетами:

Зависимость времени обслуживания от производительности процессора во второй системе с абсолютными приоритетами:

5 Вывод

По результатам лабораторной работы можно заметить, что время ожидания в системе с абсолютными приоритетами для заявок с более высокими приоритетами меньше, чем в системе с относительными приоритетами.

В случае рассматривания трехкомпонентной системы результаты получаются более точные, а время ожидания больше по сравнению с системой, представленной единым ресурсом.

6 Исходные таблицы с данными

Таблица 1 – Интенсивности поступления потоков обслуживаемых процессов.

№ потока	Интенсивность потока
3	0,20
9	0,05
10	0,05
11	0,55
16	0,10

Таблица 2 – Параметры обслуживаемых процессов

	Среднее количество	Cpe	днее ч	исло о	пераці	ий обра	ащени	я к фаі	йлам д	анных	при
	вычислительных	обслуживании процесса (N_{ij})									
№	операций,	Номера файлов, к которым выполняется обращение					e				
процесса	выполняемых при										
	обслуживании	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
	процесса [Мфлоп]										
3	300	-	-	20	-	10	-	-	-	-	4
9	900	20	10	-	18	-	-	-	-	-	3
10	1000	-	30	-	-	-	20	6	-	8	-
11	100	24	-	16	20	-	-	-	4	4	2
16	600	-	30	50	12	8	-	6	-	4	-

Таблица 3 – Характеристики операций обращения к файлам данных.

№ файлов данных	Объем данных, передаваемых при выполнении одной операции обращения к файлу данных V_{FI} [Мбайт]	Средний объем данных, передаваемых при выполнении одной операции ввода/вывода ${\it G}_{FI}$ [Кбайт]
F1	0.5	5
F2	1.0	8
F3	1.0	15
F4	1.5	6
F5	1.5	14
F6	2.0	18
F7	2.5	10
F8	3.0	15
F9	4.0	20
F10	3.5	11

Таблица 4 – Характеристики накопителей внешней памяти

№ файла данных	Среднее время выполнения одной операции ввода/вывода данных $oldsymbol{artheta_{FI}}$ [мкс/оп.]				
данных	Тип накопителя ВЗУ, на котором размещены файлы данных				
	НМД 1	НМД 2			
F 1	1,0	-			
F 2	-	0,10			
F 3	2,0	-			
F 4	-	0,05			
F 5	3,0	-			
F 6	-	0,06			
F 7	2,5	-			
F 8	-	0,13			
F 9	2,5	-			
F 10	-	0,12			