ECOLES PRIVEES ERRAJA

مدارس الرجاء الحرة

Devoir de Mathéma	tiqu	es

Classes :7D Durée : 4H 13/02/2015

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie du candidat.

Exercice 1 (3 points)

Dans cet exercice, six affirmations sont proposées. Pour chacune d'elles, répondre par VRAI ou FAUX. Justifier.

Pour toute fonction f continue sur [0; 1], à valeurs dans \mathbb{R} , on a:

- 1. Si f(0) = 2 et f(1) = -5 alors l'équation f(x) = 0 admet une unique solution $x_0 \in [0,1]$.
- 2. Si $x_0 \in [0,1]$, alors f est dérivable en x_0 .
- 3. Si f est dérivable sur [0; 1], avec f'(x) > 0, alors f réalise une bijection de [0, 1] sur son image.
- 4. Si f(0) = 2 et f(1) = 1 alors l'équation f(x) = 0 n'admet pas de solution dans [0, 1].
- 5. Si f(0) = -1 et f(1) = 2 alors il existe $\alpha \in [0; 1]$ tel que $f(\alpha) = \alpha$.
- 6. Si f est strictement décroissante sur [0;1], alors f réalise une bijection de [0,1] sur son image.

Exercice 2 (5 points)

- 1. On pose $P(z) = z^3 5z^2 + 8z 6$ où z est un nombre complexe.
 - a) Calculer P(3).
 - b) Déterminer a et b tels que pour tout z de \mathbb{C} on a; $P(z) = (z-3)(z^2+az+b)$.
 - c) Résoudre dans \mathbb{C} , l'équation : P(z) = 0.
- 2. On considère le plan complexe rapporté à un repère orthonormal $(0; \vec{u}, \vec{v})$.

Soient les points A, B et C d'affixes respectives : $z_1 = 3$, $z_2 = 1 + i$ et $z_3 = 1 - i$.

- a) Calculer le module et un argument de chacun des nombres z_1 , z_2 et z_3 .
- b) Placer les points A, B et C dans le repère $(0; \vec{u}, \vec{v})$.
- c) Ecrire le nombre $\frac{z_2}{z_3}$ sous forme algébrique. En déduire la nature du triangle OBC.
- 3. On pose pour tout $z \neq 1+i$, $f(z) = \frac{iz}{z-1-i}$. Déterminer et représenter dans le même repère les ensembles Γ_k des points M du plan d'affixe z dans chacun des cas suivants :
 - a) Γ_1 tel que |f(z)| = 1.
 - b) Γ, tel que f(z) soit imaginaire pur.
 - c) Γ₃ tel que f(z) soit réel.
 - d) Γ_4 tel que f(z)-i=1
- 4) Soit M_1 ; M_n les points d'affixes respectives z_3 et $Z_n = z_3^n$; $n \in \mathbb{N}^*$.
- a) Ecrire Z_n sous forme trigonométrique.
- b) Déterminer et représenter dans le plan les points M_1 ; M_2 ; M_3 .
- c) Montrer que le triangle OM_1M_2 est rectangle isocèle en M_1 .
- 5.a) Pour quelles valeurs de n; le point M_n est situé sur l'axe Oy?
- b) Montrer que les points O ; M_6 ; M_{2014} sont alignés.

Exercice 3 (5 points)

On considère la suite numérique (U_n) définie pour tout (n>0) par

$$U_1 = 2;$$
 $U_{n+1} = \underbrace{\begin{array}{c} n \\ 3(n+1) \end{array}}_{n} \underbrace{\begin{array}{c} 10n+15 \\ 3(n+1) \end{array}}_{n};$

- 1) Calculer U_2 , U_3 .
- 2) Montrer par récurrence que la suite (U_n) est majorée par 5.
- 3) Déterminer le sens de variation de (U_n) ; démontrer qu'elle converge puis déterminer sa limite.
- 4) Pour tout n > 0 on pose $V_n = (5 U_n)n$.
- a) Montrer que (V_n) est une suite géométrique ; écrire V_n en fonction de n.
- b) Retrouver $\lim_{n\to+\infty} U_n$ et calculer $S_n = V_1 + V_2 + \cdots + V_n$
- c) Calculer $S'_n = U_1 + 2U_2 + 3U_3 + \cdots + nU_{n-2}$

Exercice 4 (7 points)

Soit f la fonction de variable réelle définie par : $f(x) = \frac{x^2 + 4x + 3}{x + 2}$

On désigne par C sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1) Déterminer les réels a ; b et c tel que $f(x) = ax + b + \frac{c}{x+2}$ pour tout $x \in D_f$.
- 2) Dresser le tableau de variations de f. Justifier que la courbe C n'admet pas de tangentes horizontales.
- 3) Montrer que C admet deux asymptotes et que leur point d'intersection est un centre de symétrie de C.
- 4) Etudier les positions relatives de C et son asymptote oblique.
- 5) Préciser les points d'intersections de C avec les axes.
- 6) On considere la droite D d'équation 5x-4y-1=0.

Existe-t-il des points de C où la tangente est parallèle à D ? Si oui, donner des équations de ces tangentes.

- 7) Tracer la courbe C.
- 8) En déduire la construction, dans des nouveaux repères, des courbes C' et C'' représentatives des fonctions g et h telles que : g(x) = -f(x); h(x) = f(x). Expliquer la méthode de construction.
- 9) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $x^2 + (4-m)x + 3 2m = 0$. Retrouver ces résultats algébriquement.

Fin.