141.30

THOMAS BREYDO

Problem. Suppose $T \in \mathcal{L}(\mathbf{R}^3)$ and -4, 5, and $\sqrt{7}$ are eigenvalues of T. Prove that there exists $x \in \mathbf{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$.

Claim. 9 is not an eigenvalue of T.

Proof. T can have at most dim $\mathbf{R}^3=3$ eigenvalues by 5.13, and we already have three distinct eigenvalues: -4,5, and $\sqrt{7}$.

Claim. T - 9I is invertible.

Proof. Otherwise, 9 would be an eigenvalue of T by 5.6.

Claim. $x = (T - 9I)^{-1}((-4, 5, \sqrt{7}))$ works.

Proof. Note that

$$Tx - 9x = (T - 9I)x$$
$$= (-4, 5, \sqrt{7})$$

as desired.

Note. You can view the source code for this solution here.

Date: December 7, 2021.