- 7.6 (a) safe, Available 对加度 dead lock 更不容易發生
 - U) unsafe, Available 流力 伊需要特定数量的 available resource 9能找不到 sete seguence 面 進入 unsafe state
 - (c) unsafe, Max 增加 发发 process "Need"也增加, 可能找不到 safe sequence而强力 unsafe
 - d) safe , 鲍前面软坯传船和页, ded lock 下气繁生
 - (e) sate , 假说 vesource 是东西线达工术进入 whiste state 的 now process 斩筋 ente
 - (f) safe, presses 减分沒有進入 deadlock 的回腹

7-13 Total instance (A, B, C, D) = (12, 12, 8, 10)

	Allocation	Max	Available	Need
	ABCD	ABCD	ABCD	ABCD
O-P0-	2 0 0 1	4212	Q 3 3 2 1	2 1 1 1 1
3 P1	3 1 2 1	5 2 5 2	95322	2 3 13
€ P2	2103	2316	3 6 634	0 2 (3 /4)
Ø ₽3 −	1312	1424	@9155	0 1 12 19
© P4	1432	3665		2233
l .	4) 9969			
	1) 3321			
	17,12,8,10			

- (a) one of safe sequence: PO→P3→P1→P2→P4 ×
- (b) request PI = (1,1,0,0)

	Allocation ABCD	Max ABCD	Available ABCD	Need ABCD
O P0	2001	4 2 1 2	3321	1111 10
P1	3 1 2 1	5 2 5 2	2377 777	2(3)
P2	2 1 0 3	2 3 1 6	(36)	0 1 1 5
P3	1 3 1 2	1 4 2 4		0112
P4	1 4 3 2	3 6 6 5		2 2 3 3

Ans: Yes, gate sequence: PO -> P3-> P1-> P2-> P4

(C) Request P4 = (0,0,2,0)

	Allocation	Max	Available	Need
	ABCD	ABCD	ABCD	ABCD
P0	2001	4212	3321	2 2 1 1
P1	3 1 2 1	5 2 5 2	330	2131
P2	2 1 0 3	2316		0 2 13
P3	1 3 1 2	1 4 2 4		0 1 12
P4	1432 (452	3 6 6 5		2233

who has a seguence

Ans: the request work be granted

- 7.15 semaphore ok_to_cross = 1;

 void enter_bridge() 4

 ok_to_cross.wait();

 void exit_bridge() 4

 ok_to_cross.signal();

 4
- 8.1 Internal tragmentation 發生在 process被 allocate 缓性自己需要的 memory 型間 更大的 memory block 好, 剩餘的 memory 無法被其世 process 所用.
 - O發生在fixed-partition allocation

 External tragmentation则發生在有足夠的總空間讓其它process執行,
 但因空間下連續使其它process不能使用。
 - 9 维生在 variable-size allocation
- 8.9. Paging 需等 paging table 来存每个entry (page 對應到哪个physical address, 因比 存在更多 memory overhead. segmentation 在每一 segment 不需存入了register, 一个标 base of the segment, 另一个 存 extent of the segment
- 8.16 32 bit logia address, 4kB page size $(2)^2$) 12 bit, 512 MB physical memory (2^5) How many entries?
- (a) single-level page table: 231/212=20 entires & (1,048,596 entiries)
- (b) inverted page table: 5/2 MB = 29 × 220 = 24, 229/212 = 2" entries × (131,072 entries)

```
9.8 7.2,3,1,2,5,3,4,6,7,7,1,0,5,4,6,2,3,0,1, 3 frames
a) LRU
             1 1 3 1 5 2 1
             2 4 1 4 3
3 5 6 0 6 0
                            =) (1 = P
             7 1 6 0 6 0

2 5 7 5 2 1

3 4 1 4 3
(b) FIFO
                             つ 17-尺水
(C) optimal replacement
            ク 1
2 5 4 6 2 3 =) 13 次
3 4 6 9 0
  1) # page fault LFU < LRU
    exisituation 1123 451, 4 pages in memmy
     1 (5 ) 當 page 5 異族入menny 03, LFU 包括 1 access 适 2 次而不会被 replace,
               但若是LEU,则回歇久没使用而replace 1. 40 tt, 下一个,就气多一次
               page fault. Let 03, LFU et LELI 63 page fault 17.
 2) # page fault LFU > LRU
    ex : situation 1 2 3 4 5 2, 4 pages in memmy
     1,5 當 page 5 異致入 memory 0多, LRU气 replace 1 的位置, 40 见 5 改是 replace 2 同
             造版着 1 水 page fault。 Ut D3, LRU bt LFU G3 page fault 村。
9.17 (a) 1) init value =0,
         @ counter increase when a new page is associated with that frame.
        3 . decrease when one of the pages associated with that franc is
            no longer required
        & find a frame with the smallest counter. Use FIFO for breaking ties.
```

