Course information

Vladislav Goncharenko Radoslav Neychev

Outline

- 1. Team
- 2. How to learn?
- 3. Prerequisites
- 4. Communication
- 5. Course structure
- 6. Grading

Team

Vladislav Goncharenko

- Founder of girafe-ai
- Author of machine learning courses and Masters program at MIPT
- ML researcher (MIPT)
- Team lead of video ranking team at Dzen (yandex.ru)
- Ex-team lead of perception team at self-driving trucks (Evocargo)
- Open source fan

Radoslav Neychev

- Founder of girafe-ai
- Author of machine learning courses at MIPT, MSU, and YSDA
- author of the Master's program "Modern Methods of Artificial Intelligence"
- Participated in the implementation of AI in experiments at the Large Hadron Collider.
- Areas of scientific interest: Artificial Intelligence: Large Language Models, Reinforcement Learning, Human Activity Recognition

Vladislav Naumov

- ML engineer at Dzen
- PhD student at MIPT

Rest of the team

- Seminarians
 - o give practical sessions
- Assistants
 - o grade homeworks
- Administrators
 - o schedule, paperwork

How to learn?

Science based learning techniques

A)

- https://www.youtube.com/watch?v=ddq8JIMhz7c
- https://www.coursera.org/learn/learning-how-to-learn

Science based learning techniques

Short outcomes:

- Reserve fixed time to study
- First study alone
- Then try to explain to your classmates
- Answer to questions about the material by yourself

How to work with materials?

It is expected that you need to study yourself and no one will do it for you.

Machine Learning sphere is growing explosively and we try to give you the most during this course, so it is full of materials.

It is expected that you will need to **revisit each lecture and practical seminar** by your own. As well as look for some answers in different sources (internet, books, etc...)

Prerequisites

Math requirements

Basic topics we expect you to know:

- Linear algebra
 - Matrices
 - Linear functions, transforms
 - Matrix decompositions
- Calculus
 - Matrix differentiation
- Statistics
 - Distributions
 - o MLE
- Basics of optimization
 - Extremum
 - Convexity

Materials to refresh necessary math:

- https://github.com/girafe-ai/math-basics-for-ai/
- https://mml-book.github.io/book/mml-book.pdf

Programming requirements

Tools:

- Python
- Numpy, Scipy
- Jupyter notebooks
- VS Code
- UNIX terminal
- git

Good places to study Python: https://snakify.org/en/ or https://pythontutor.ru/

And for UNIX suite: https://missing.csail.mit.edu/

Communication

Communication structure

F

Main communication is carried out by Telegram messenger.

- 1. Course channel
- 2. Course chat
- 3. Support account @girafeai_support telegram account

Probably **teacher will not answer to direct messages** due to large number of students!

Materials

Are published mainly in course repository on github:

https://github.com/girafe-ai/ml-course/tree/25s_econom

Also some materials can be send to Telegram chat

We also have English recordings. If you need them, contact support account.

Course structure

Course structure

- 1. Intro
- 2. Linear models
- 3. Trees and ensembles
 - a. bagging
 - b. boosting
- 4. Neural networks
 - a. CNN
 - b. RNN
 - c. Attention
- 5. Working with data types
 - a. Images
 - b. Text
 - c. Timeseries
- 6. Other topics
 - a. Geometrical ML
 - b. Auto ML

Grading

Course structure

на размышление даётся 30 секунд

Course structure

Оценка выставляется на экзамене по итогу устного ответа (если это не так, то мы отдельно проговорим это для вас).

Баллы за семестр ограничивают оценку сверху. "Автоматов" и перезачётов у нас нет.

Из чего состоят баллы:

- 60% лабораторные работы (3 шт за курс)
- 40% тесты на занятиях

Границы оценок:

- 90% отлично
- 75% хорошо
- 60% удовлетворительно

Экзамен

Устный экзамен по программе.

Программа будет опубликована ближе к концу курса.

На экзамене вам выдадут 3 вопроса из разных разделов программы, на подготовку будет 30 минут, пользоваться можно только своими знаниями.

Далее ответ экзаменатору по подготовленным вопросам, после этого допвопросы (если потребуются).

По итогу экзаменатор выставляет финальную оценку исходя из вашего ответа и баллов за семестр.

Оценка ограничена сверху набранными баллами, баллы сами по себе не могут гарантировать высокую оценку, хотя показывают экзаменатору ваши успехи.

Дипломы с нами

Разные преподаватели имеют разные сферы научных интересов.

Если вы хотите делать проекты (в том числе дипломы) с кем-то - достаточно спросить этого человека.

Также если у вас уже есть тема то мы *возможно* сможем посоветовать кого-то в качестве потенциального научного руководителя.

Thanks for attention!

Questions?

girafe ai

