Doubly-Robust Estimation

lan Lundberg Soc 212b ilundberg.github.io/soc212b

Winter 2025

Learning goals for today

At the end of class, you will be able to estimate average causal effects by modeling treatment assignment probabilities.

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Child:

How much more awesome would my day have been if I had surfed on the days when my parents didn't let me?

$$ATC = \frac{1}{n_0} \sum_{i:A:=0} (Y_i^1 - Y_i^0)$$

ATC: On average, awesomness would increase by 2.94 if I had surfed on the days I wasn't allowed.

To discuss:

- ▶ In what sense is this line best-fit to the wrong goal?
- ► How important is the error at each x-value?

Weighted average error: 1.34.

Weighted average error: 1.34.

Doubly-robust estimation: Summary

For the ATC:

- ▶ Predict \hat{Y}^1
- ► Among treated cases,
 - ► Weight by $\frac{\hat{P}(A=1)}{\hat{P}(A=0)}$
 - ► Take weighted average error: $\hat{Y}^1 Y$
 - ► This is a bias correction: model was fit at x-values of treated cases, target to predict is x-values of untreated cases
- ightharpoonup Among untreated cases, take average \hat{Y}^1
- ► Then subtract the bias correction

Learning goals for today

At the end of class, you will be able to estimate average causal effects by modeling treatment assignment probabilities.

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1