F21T2A3

Auf $]0, \infty[\subseteq \mathbb{R}$ betrachten wir die Differentialgleichung $x' = (x-2)(x+2)\ln(x)$.

- a) Zeigen Sie, dass zu jedem $x_0 > 0$ eine eindeutige maximale Lösung $x : I \to \mathbb{R}$ der Differentialgleichung zu dem Anfangswert $x(0) = x_0$ existiert. Hierbei ist $I \subseteq \mathbb{R}$ ein offenes Intervall mit $0 \in I$.
- b) Bestimmen Sie alle Anfangswerte, für die die maximale Lösung konstant ist.
- c) Bestimmen Sie alle Anfangswerte, für die die maximale Lösung streng monoton wächst und alle Anfangswerte, für die die maximale Lösung streng monoton fällt.
- d) Sei $x_0 := \frac{1}{2}$ und $x :]a, b[\to \mathbb{R}$ die maximale Lösung zu dem Anfangswert x_0 . Bestimmen Sie a, b und die Grenzwerte $\lim_{t \to a} x(t)$ und $\lim_{t \to b} x(t)$. Für a ist eine Darstellung als Integral ausreichend.

Zu a)

Da $f:]0; \infty[\to \mathbb{R} ; x \to (x-2)(x+2) \ln(x)$ stetig differenzierbar ist, gibt es nach dem globalen Existenz- und Eindeutigkeitssatz für alle $x_0 \in]0; \infty[$ eine eindeutige maximale Lösung $\lambda_{x_0}: I \to \mathbb{R}$ von $x' = f(x), x(0) = x_0$, wobei $I \subseteq \mathbb{R}$ ein offenes Intervall mit $0 \in I$ ist.

Zub)

Die Funktion f hat auf $]0;\infty[$ nur die Nullstellen 1 und 2, deshalb sind dies die einzigen konstanten Lösungen zu x' = f(x).

Zu c)

Da $\lambda_1: \mathbb{R} \to \mathbb{R}$; $t \to 1$ und $\lambda_2: \mathbb{R} \to \mathbb{R}$; $t \to 2$ die maximalen Lösungen zu x' = f(x), x(0) = 1 bzw. x(0) = 2 sind und da sich die Graphen maximaler Lösungen nicht schneiden, gilt nach Zwischenwertsatz:

- i) Für $x_0 \in]0; 1[$ ist $\lambda_{x_0}(t) \in]0; 1[$ für alle $t \in I$, also
- ii) $\lambda'_{x_0}(t) = (\lambda_{x_0} 2)(\lambda_{x_0} + 2)\ln(\lambda_{x_0}) > 0$ für alle $t \in I$, also λ_{x_0} streng monoton steigend.
- iii) Für $x_0 \in]1; 2[$ ist $\lambda_{x_0}(t) \in]1; 2[$ für alle $t \in I$, also $\lambda'_{x_0}(t) = (\lambda_{x_0} 2)(\lambda_{x_0} + 2)\ln(\lambda_{x_0}) < 0$ für alle $t \in I$, also λ_{x_0} streng monoton fallend.
- iv) Für $x_0 > 2$ ist $\lambda_{x_0}(t) > 2$ für alle $t \in I$, also $\lambda'_{x_0}(t) = (\lambda_{x_0} 2)(\lambda_{x_0} + 2)\ln(\lambda_{x_0}) > 0$ für alle $t \in I$, also λ_{x_0} streng monoton steigend.

Zu d)

Sei $\lambda:]a; b[\to \mathbb{R}$ die maximale Lösung des Anfangswertproblems $x' = f(x), x(0) = \frac{1}{2}$.

Da λ streng monoton steigend und wegen $\lambda(t) \in]0;1[$ für alle $t \in]a;$ b[beschränkt ist, existieren die Grenzwerte $c_1 \coloneqq \lim_{t \nearrow b} x(t) = \sup\{\lambda(t): t \in]a;$ b[$\} \in \left[\frac{1}{2};1\right]$ und $C_2 \coloneqq \lim_{t \searrow a} \lambda(t) = \inf\{\lambda(t): t \in]a;$ b[$\} \in \left[0;\frac{1}{2}\right]$.

Da λ monoton steigend ist, ist $\overline{\Gamma_+(\lambda)} = \overline{\{(t,\lambda(t)): t \in [0;b[\} \subseteq [0;b[\times [\frac{1}{2};1] = [0;b] \times [\frac{1}{2};1] \}}$. Nach der Charakterisierung der maximalen Lösung durch ihr Randverhalten ist $\Gamma_+(\lambda)$ nicht relativ kompakt in $\mathbb{R} \times]0$; $\infty[$, also ist $b = \infty$, denn sonst wäre $\overline{\Gamma_+(\lambda)}$ eine kompakte Teilmenge von $\mathbb{R} \times]0$; $\infty[$.

Angenommen $c_1 < 1$, dann gibt es für $\eta < c_1$ ein T > 0 mit $\lambda(t) \in [\eta; c_1]$ für alle $t \ge T$. Also gilt $\lambda(t) = \lambda(0) + \int_0^t \lambda'(s) ds = \frac{1}{2} + \int_0^t (\lambda(s) - 2)(\lambda(s) + 2) \ln(\lambda(s)) ds = \lambda(T) + \int_T^t (\lambda(s) - 2)(\lambda(s) + 2) \ln(\lambda(s)) ds \ge \lambda(T) + \int_T^t (\eta - 2)(\eta + 2) \ln(\eta) ds = \lambda(T) + (t - T)(\eta - 2)(\eta + 2) \ln(\eta) \xrightarrow[t/b=\infty]{} \infty$; dies steht im Widerspruch zu $\lambda(t) \in]0; 1[$ für alle $t \in]a; b[$. Daher ist $c_1 = 1$.

Angenommen $c_2 > 0$, dann ist $\lambda'(s) = (\lambda(s) - 2)(\lambda(s) + 2) \ln(\lambda(s)) \ge (c_2 - 2)(c_2 + 2) \ln(c_2) > 0$ und daher $\lambda(t) = \frac{1}{2} + \int_0^t \lambda'(s) ds = \frac{1}{2} - \int_t^0 \lambda'(s) ds \le \frac{1}{2} - (c_2 - 2)(c_2 + 2) \ln(c_2) |t|$ für $t \in]0$; b[; also ist $\Gamma_-(\lambda) = \{(t, \lambda(t)) : t \in]a; 0]\} \subseteq (]a; 0] \times [c_2; \frac{1}{2}]) \cap \{(t, x) \in]a; 0] \times [c_2; \frac{1}{2}] : x \le \frac{1}{2} - (c_2 - 2)(c_2 + 2) \ln(c_2) |t| \}$ relativ kompakt in $\mathbb{R} \times]0$; ∞ [im Widerspruch zur Charakterisierung der maximalen Lösung über ihr Randverhalten. Daher ist $c_2 = 0$ und deshalb gilt $\int_a^0 \lambda'(s) ds = \frac{1}{2}$.