# Homework #1

Due on October 26, 2019 at 11:55pm

 $Professor\ Hoda\ Mohammadzade$ 



Amirhossein Yousefi 97206984

# Problem 6

## Section a:

In this part we use linear regression in order to predict ozone layer density. Implementation of linear regression is done by sklearn library and also we used pandas so that better understanding of data characetristics. Lets fist visualizing data for better illustration (figure 1).



Figure 1: Ozone dataset

For better understanding relation between feature we also build correlation matrix which is in figure 2.



Figure 2: Correlation matrix

At the end results for linear regression are in figure 3.

| 1 |   | coefficents | corresponding feature |
|---|---|-------------|-----------------------|
|   | 0 | -0.087129   | vh                    |
|   | 1 | -0.025921   | wind                  |
|   | 2 | 0.179676    | humidity              |
|   | 3 | 0.499631    | temp                  |
|   | 4 | -0.147053   | ibh                   |
|   | 5 | 0.005531    | dpg                   |
|   | 6 | 0.225382    | ibt                   |
|   | 7 | -0.068683   | vis                   |
|   | 8 | -0.118577   | doy                   |
|   | 0 | -0.008743   | intercept             |
|   |   |             |                       |

(a) coefficients for linear regression

```
mean square error for train 0.28785063984112624
mean square error for test 0.33679679927074624
[-0.08712919 -0.02592093 0.17967609 0.49963127 -0.14705347 0.00553081
0.22538202 -0.06868307 -0.11857731]
intercept is -0.008742541724202272
```

(b) error and model evaluation metrics

Figure 3: Results

#### Section c:

PCA is a dimension reduction method that extracts vital features corresponding to their eigen value of covriance matrix of data. For more detail figure 4 is presented.

mean square error for train 0.39542961228180457 mean square error for test 0.4204837795736287 beta1 is [-0.39870005] intercept is -0.016869195522502052



Figure 4: Ozone dataset

### Section d:

At fist we have to split data as part d mentioned. Then two linear regression is done as figure 5.



Figure 5: Results

As results shows mean squared error in (b) for half of the data is better than or less than original dataset. For all of them test error is more than train error.

## Problem 7

**Section a:** At first data visualization is done in figure 6. Then covariance matrix and correlation matrix in different types are shown in figure 7.



Figure 6: Data visualization



Figure 7: covariance and correlation matrix

#### Section b:

At the end coefficients and results are shown.

|    | coefficents | corresponding feature |
|----|-------------|-----------------------|
| 0  | -0.113455   | CRIM                  |
| 1  | 0.112760    | ZN                    |
| 2  | 0.008460    | INDUS                 |
| 3  | 0.069352    | CHAS                  |
| 4  | -0.204503   | NOX                   |
| 5  | 0.294815    | RM                    |
| 6  | -0.030561   | AGE                   |
| 7  | -0.343492   | DIS                   |
| 8  | 0.229247    | RAD                   |
| 9  | -0.202888   | TAX                   |
| 10 | -0.239573   | PTRATIO               |
| 11 | 0.067644    | В                     |
| 12 | -0.377926   | LSTAT                 |
| 0  | -0.008317   | intercept             |
|    |             |                       |

(a) coefficients

```
('regression score is', 0.7645451026942549)
('mean square error for train', 0.23594979171921113)
('mean square error for test', 0.3215157723496526)
('coefficients for linear regresion are', array([-0.11345494, 0.11276007, 0.00846006, 0.06935244, -0.20450349, 0.29481534, -0.03056082, -0.34349212, 0.22924672, -0.20288752, -0.23957313, 0.06764365, -0.37792619]))
('intercept is', -0.008317428965594752)
```

(b) error and model evaluation metrics

Figure 8: Results

For more information about features, figure 9 is shown which contains measure about importance of features which is p-value. which is p-value

| Dep. \           | /ariable: | MEDV          |           | R-squared:      |           |          | 0.765  |
|------------------|-----------|---------------|-----------|-----------------|-----------|----------|--------|
|                  | Model:    | OLS           |           | Adj. R-squared: |           |          | 0.756  |
|                  | Method:   | Least Squares |           | F-statistic:    |           |          | 84.92  |
|                  | Date:     | Sun, 20       | Oct 2019  | Prob (          | (F-statis | tic): 2. | 76e-98 |
| Time:            |           | 22:53:18      |           | Log-Likelihood: |           |          | 246.69 |
| No. Obser        | vations:  |               | 354       |                 |           | AIC:     | 521.4  |
| Df Re            | esiduals: |               | 340       |                 | ı         | BIC:     | 575.6  |
| Df Model:        |           | 13            |           |                 |           |          |        |
| Covariance Type: |           | nonrobust     |           |                 |           |          |        |
|                  | coef      | std err       | t         | P> t            | [0.025    | 0.975]   |        |
| const            | -0.0083   | 0.027         | -0.313    | 0.754           | -0.061    | 0.044    |        |
| CRIM             | -0.1135   | 0.036         | -3.185    | 0.002           | -0.184    | -0.043   |        |
| ZN               | 0.1128    | 0.040         | 2.834     | 0.005           | 0.035     | 0.191    |        |
| INDUS            | 0.0085    | 0.051         | 0.166     | 0.868           | -0.092    | 0.109    |        |
| CHAS             | 0.0694    | 0.028         | 2.483     | 0.014           | 0.014     | 0.124    |        |
| NOX              | -0.2045   | 0.057         | -3.618    | 0.000           | -0.316    | -0.093   |        |
| RM               | 0.2948    | 0.037         | 7.867     | 0.000           | 0.221     | 0.369    |        |
| AGE              | -0.0306   | 0.048         | -0.634    | 0.527           | -0.125    | 0.064    |        |
| DIS              | -0.3435   | 0.054         | -6.402    | 0.000           | -0.449    | -0.238   |        |
| RAD              | 0.2292    | 0.073         | 3.152     | 0.002           | 0.086     | 0.372    |        |
| TAX              | -0.2029   | 0.078         | -2.586    | 0.010           | -0.357    | -0.049   |        |
| PTRATIO          | -0.2396   | 0.035         | -6.803    | 0.000           | -0.309    | -0.170   |        |
| В                | 0.0676    | 0.032         | 2.099     | 0.037           | 0.004     | 0.131    |        |
| LSTAT            | -0.3779   | 0.047         | -8.068    | 0.000           | -0.470    | -0.286   |        |
| Om               | nibus: 1  | 33.612        | Durbin-   | Watsor          | n: 2      | 2.019    |        |
| Prob(Omnibus):   |           | 0.000         | Jarque-Be | era (JB)        | ): 634    | .086     |        |
|                  | Skew:     | 1.547         | P         | rob(JB)         | : 2.04e   | -138     |        |
| Ku               | rtosis:   | 8.781         | С         | ond. No         | ).        | 9.72     |        |
|                  |           |               |           |                 |           |          |        |

Figure 9: Data visualization