PC191 Pneumatic Computing Relays

In different areas of process control there are problems which can easily be solved with special pneumatic limit signal, time or computing relays. For instance: signal monitoring, signal selection, signal adaption, safety control, etc.

Computing relays

- Booster relay
- · Selector relay
- · Reversing relay
- · Adding relay
- Averaging relay
- Subtraction relay
- · Fixed ratio relay
- · Square root extractor
- · Function generator

Time function relays

- Delay relay
- Delay element
- PI-relay
- PD-relay
- · Trend relay

PSS EIO4332 A-(en)

Computing Relays

Version		Function diagram	Application		Model Code PC191
Booster relay	without calibration adjustment	A = E	Increase in airflow rate		-100
	with calibration adjustment				-113
Minselector relay 2 inputs	Input E1, E2	AE E1	Selection of lowest input pressure		-101
Maxselector relay 2 inputs	Input E1, E2	AE A	Selection of highest input pressure and simultaneously increase in airflow rate		-102
Reversing relay	Input E	A = K – E	Reversal of input pressure signal in 1:1 ratio and simultaneously increase in airflow rate		-110
Adding relay	Input E1, E2	A = E1 + E2 – K	Addition of two input pressures, minus an adjustable bias value K and simultaneously increase in airflow rate		-121
Averaging relay	Input E1, E2	$A = \frac{E1 + E2}{2}$	Averaging and simultaneously increase in airflow rate		-130
Subtraction relay	Input E1, E2	A = E1 – E2 + K	Substraction of two input pressure, plus an adjustable bias value K and simul- taneously increase in airflow rate		-140
Fixed ratio relay	Input E	A = 0.5 E - K	Multiplicaton of an input signal by a		-221
		A = 0.5 E + K	factor with takes into consideration an adjustable bias value and simul-	-231	
		A = 2 E – K	taneously increase in airflow rate		-261
		A = 3 E – K			-281
Square root extractor	Input E	x = 0.8 (E - 0.2)	For square root extraction of pneumatic signal	0.2 1 bar	-611
				3 15 psi	-612
Function generator	Input E	A = f(x) + 0.2 $x = 0.8 (E - 0.2)$	To perform any required constant function	0.2 1 bar	-621
				3 15 psi	-622

Time function relays

Version	Function diagram	Application	Model Code PC191
Delay relay symmetrical	A, E	Delay of signal increase and decay time	-900
Delay element (without booster)	10 t ₁ t ₂	Passive generation of delay (Restriction and capacity)	-913
Delay relay signal increase	A, E	Delay of signal increase time only	-901
Delay relay signal decrease	A, E	Delay of signal decay time only	-902
PI relay	A, E	Combined effect of proportional and reset action. Within the period of the reset time T _n , the reset change reaches the values of the proportional change.	-905
PD relay	A, E	Combined effect of derivative and proportional action. On change of input pressure a transient overshoot of output takes place, followd by a gradual decay to the new input value.	-910
Trend relay V = 2.5	A, E 22n A 22n E1	With a change of input pressure, a transient rise of output pressure takes place, followed by a gradual return to the working point of, for instance, 0.6 bar.	-920

General Technical Data

Input 1) Output 1)	0.2 to 1 bar / 3 to 15 psi / 20 to 100 kPa max. 6 bar / 90 psi / 600 kPa
Supply air	·
Air consumption 1)	

Local conditions

Location class D1 acc. to IEC 654/1 Ambient temperature range. -25 to +70 °C Storage temperature range . -30 to +70 °C Admissible rel. humidity. . . . ≤ 75 %, no condensation permissible

Protection class. IP 53 acc. to DIN 40 050

Mounting

Type of mounting for wall mounting with mounting angles Mounting orientation vertical Pneumatic connections.... internal thread 1/8-NPT 2) **Materials**

Housing Aluminium, finish Internal components Al, St, Brass, Silicone, Polyamid, Neopren, Perbunan, PTFE

2) For Tube fittings see Product Specifications PSS EOO9001 A-(en)

Technical data obtained from measurements made under standard reference conditions. Supply air 1.4 bar / 20 psi / 140 kPa.

PC191 PSS EIO4332 A-(en)

Model Codes

Pneumatic Computing Relay PC19	1
Function and Formula	
Booster relay A = E	100
Booster relay A = E with calibration adjustment	
Minselector relay 2 inputs	101
Maxselector relay 2 inputs	102
Reversing relay $A = K - E$	110
Adding relay A = E1 + E2 - K	
Averaging relay A = (E1 + E2) / 2	
Subtraction relay A = E1 - E2 + K	140
Fixed ratio relay A = 0.5 E - K	221
Fixed ratio relay A = 0.5 E + K	231
Fixed ratio relay A = 2 E - K	
Fixed ratio relay A = 3 E - K	281
Square root extractor $A = A = \sqrt{E}$, 0.2 - 1.0 bar	611
Square root extractor $A = A = \sqrt{E}$, 3 - 15 psi	612
Function generator A = F (E) 0.2 - 1.0 bar	
Function generator A = F (E) 3 - 15 psi	622
Delay relay symmetrical	900
Delay relay signal increase	
Delay relay signal decrease	
Delay element (without booster)	
PI-relay	
PD-relay	
Trend relay V = 2.5	
Options	
working on cams with given function (only for -621 / -622)	A
Example: PC1	91 -100

For Tube fittings see Product Specifications PSS EOO9001 A-(en)

PC191-100 Booster relay without calibration adjustment

Technical data

Non-linearity < 1 % Weight 0.3 kg

PC191-113 Booster relay with calibration adjustment

Technical data

Non-linearity < 0.25 % Weight 0.3 kg

Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1.
 These are not supplied with the relays, the tube fittings should be ordered separately.

Weight 0.5 kg

6 PC191

PC191-101 Min.-selector relay 2 inputs

Technical data

Min. pressure difference Weight 0.3 kg between E1 and E2 ±4 mbar

Functional schematic

Dimensions 1)

Dimensions in mm

Output A

Input E1

A

Input E2

PC191-102 Max.-selector relay 2 inputs

Technical data

Non-linearity < 0.25 %

Min. pressure difference

between E1 and E2 ±4 mbar

Input E1
Input E2
Output A
Supply air

Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1.
 These are not supplied with the relays, the tube fittings should be ordered separately.

PC191-110 Reversing relay A = K - E

Technical data

Bias value K mech. continously variable

equivalent to 0 to 1.4 bar / 0 to 15 psi / 0 to 100 kPa

Weight 0.4 kg

Weight 0.6 kg

PC191-121 Adding relay A = E1 + E2 - K

Technical data

Bias value K mech. continously variable equivalent to 0 to 1.4 bar

equivalent to 0 to 1.4 bar / 0 to 15 psi / 0 to 100 kPa

Functional schematic

Dimensions 1)

Dimensions in mm

Input E2

Output A

Supply air

Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1.
 These are not supplied with the relays, the tube fittings should be ordered separately.

PC191 PSS EIO4332 A-(en)

PC191-130 Averaging relay A = (E1 + E2)/2

Technical data

Non-linearity < 1 % Weight 0.5 kg

PC191-140 Subtraction relay A = E1 - E2 + K

Technical data

Non-linearity < 1 %

Bias value \dot{K} mech. continously variable

equivalent to 0 to 1.4 bar / 0 to 15 psi / 0 to 100 kPa Weight 0.4 kg

Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1.
 These are not supplied with the relays, the tube fittings should be ordered separately.

PC191-221 Fixed ratio relay $A = 0.5 E - K^{(1)}$

PC191-231 Fixed ratio relay A = 0.5 E + K (K = 0.1 bar) ²⁾

PC191-261 Fixed ratio relay A = 2 E - K $(K = 0.2 \text{ bar})^{2}$ PC191-281 Fixed ratio relay A = 3 E - K $(K = 0.4 \text{ bar})^{2}$

Technical data

Output A V · E - K

Bias value K \dots mech. continously variable

equivalent to 0 to 1.4 bar / 0 to 15 psi / 0 to 100 kPa

Dimensions 3) **Functional schematic** Dimensions in mm PC191-221 A = 0.5 E - KInput E 49[±]0,2 Output A - Supply air PC191-231 K ≙ 0.1 bar A = 0.5 E + KInput E Supply air Output A PC191-261 K ≙ 0.2 bar A = 2E - KЕ Input E Supply Output A Supply air PC191-281 K ≙ 0.4 bar A = 3E - KInput E Output A Supply air

Weight 0.4 kg

Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1.
 These are not supplied with the relays, the tube fittings should be ordered separately.

¹⁾ Relay not usable over full standard signal range

²⁾ Basic adjustment

10 PC191 PSS EIO4332 A-(en)

PC191-611 ... 622 see page 15

PC191-900 Delay relay symmetrical

Input E

Technical data

Amplification of air output

Functional schematic

Non-linearity < 1 %

Time setting

continously variable 0 to 50 min. Weight 0.5 kg

Dimensions 1)

Dimensions in mm

Supply air

Function diagram

Output A

Supply air

A 105

A_0 = initial value

PC191-901 Delay relay signal increase

Technical data

Amplification of air output Non-linearity < 1 %

Time setting

continously variable 0 to 50 min. Weight 0.5 kg

Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1.
 These are not supplied with the relays, the tube fittings should be ordered separately.

PC191 **1**

PC191-902 Delay relay signal decrease

Technical data

Amplification of air output

Non-linearity < 1 %

Time setting

continuously variable 0 to 50 min.

Weight 0.6 kg

PC191-913 Delay element (without booster)

Technical data

Restriction and capacity without amplification

Time setting

continously variable 0.3 kg

⁾ Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1. These are not supplied with the relays, the tube fittings should be ordered separately.

PC191-905 PI relay

Technical data

Working point K mechanically adjustable Load effect +3 %

Reset time $T_n \dots 0$ to 50 min. (measured at 0.6 bar) for exhausted flow 400 l/h Proportional band 100 %

-3 %

Initial proport. band < 1 % referred to 0.8 bar for delivered flow 400 l/h

Temperature effect \leq 0,3 %/10 K Max. air output +3 000 l/h

-1.800 l/h $\Delta p = 1 \text{ bar}$ Supply air dependency \leq 0.1 %/0.1 bar

Air consumption 10 l/h Weight 0.9 kg

¹⁾ Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1. These are not supplied with the relays, the tube fittings should be ordered separately.

Dimensions in mm

PC191-910 PD relay

Technical data

Derivative time $T_V \dots 0$ to 20 min. Load effect +3 %

Differential amplification V.. ca. 6-fold for exhausted flow 700 l/h (measured at 0.6 bar) Proportional band 100 %

-3 %

for delivered flow 700 l/h

Error limit \leq 1 % of final value Hysteresis..... \leq 0.3 % Max. air output +3 000 l/h

-1.800 l/h $\Delta p = 1 \text{ bar}$

Weight 0.5 kg

Dimensions 1)

Supply air dependency \leq 0.2 %/0.1 bar Air consumption 100 l/h

Temperature effect \leq 0.3 %/10 K

Functional schematic

Function diagram

$$F = \frac{A}{E} = \frac{1 + T_{V} \cdot p}{1 + \frac{1}{V} \cdot T_{V} \cdot p}$$

A = E (V - 1)
$$e^{-\frac{V \cdot t}{T_V + E}}$$

$$\tau = \frac{I_V}{V}$$

¹⁾ Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1. These are not supplied with the relays, the tube fittings should be ordered separately.

PC191-920 Trend relay V = 2.5

Error limit \leq 1 % of final value

Technical data

Timing restrictor adjustment 0 to 20 min. Load effect +3 %

Amplification V 2.5-fold (measured at 0.6 bar) for exhausted flow 100 l/h

-3 %

for delivered flow 200 l/h $Hysteresis. \dots \dots \le 0.3~\%$ Temperature effect \leq 0.5 %/10 K

Max. air output +3 000 l/h

-1.800 l/h $\Delta p = 1 \text{ bar}$

Supply air dependency \leq 0.2 %/0.1 bar Air consumption 100 l/h Weight 0.0 kg

Functional schematic Pneumatic working point E2 Input E1 -Output A Supply air

Dimensions 1)

Dimensions in mm

Function diagram

$$F = \frac{A}{E} = \frac{T_V \cdot p}{1 + T_V \cdot p} \cdot V$$

$$A = V \cdot E \cdot e^{-\frac{t}{T_V}}$$

 $\tau = T_V$

¹⁾ Dimensional drawing shows tube fittings 1/8-NPT for pipe 6 x 1. These are not supplied with the relays, the tube fittings should be ordered separately.

PC191 15

PC191-611 Square root extractor $A = \sqrt{E}$, 0.2 - 1 bar PC191-612 Square root extractor $A = \sqrt{E}$, 3 - 15 psi PC191-621 Function generator A = f(E), 0.2 - 1 bar PC191-622 Function generator A = f(E), 3 - 15 psi

Technical data

Relative instrument error Load effect + 3 %

terminal based adjustment . \leq 0.5 % above 10 % output (measured at 0.6 bar) for exhausted flow 600 l/h

Hysteresis..... \le 0.3 % above 10 % output -3 % Sensitivity \le 0.4 mbar for delivered flow 600 l/h

(meas. at 50 % output signal) Weight 0.4 kg

Supply air dependency ≤ 0.15 % / 0.1 bar (meas. at 50 % output signal) Am Ausgang ist eine Leitung von mindestens 1,5 m Länge

Air consumption 220 l/h vorzusehen.

Functional schematic

Input E Supply air Output A

Function diagram

Square root extractor

$$A = \sqrt{x} + 0.2$$

 $x = 0.8 (E - 0.2)$

Function generator

$$A = f(x) + 0.2$$

 $x = 0.8 (E - 0.2)$

Dimensions

Dimensions in mm

Subject to alterations - reprinting, copying and translation prohibited. Products and publications are normally quoted here without reference to existing patents, registered utility models or trademarks. The lack of any such reference does not justify the assumption that a product or symbol is free.

FOXBORO ECKARDT GmbH Postfach 50 03 47 D-70333 Stuttgart Tel. # 49(0)711 502-0 Fax # 49(0)711 502-597

