COMP7105 Advanced topics in data science

Introduction

Nikos Mamoulis

nikos@cs.hku.hk

Who am I?

- Visiting professor at HKU@CS
- Professor at University of Ioannina, CSE department

Course Information

- Course website
 - At <u>HKU Moodle</u>
- Instructor
 - Prof. Nikos Mamoulis (nikos@cs.hku.hk)
 - Room: TBA
- Teaching assistant(s)
 - Yuan Mingruo (<u>u3008435@connect.hku.hk</u>)
- Lectures
 - Every Friday 7-10pm at room KK-201 (first four lectures via zoom)

Course Material

- Slides
- Written notes by the instructor
- Chapters from textbooks
 - Database System Concepts, https://www.db-book.com
 - Introduction to Data Mining, https://wwwusers.cse.umn.edu/~kumar001/dmbook/index.php
 - Mining of Massive Datasets, http://www.mmds.org
 - Spatial Data Management, https://doi.org/10.2200/S00394ED1V01Y201111DTM021
- Scientific papers (how to read a paper)

Course Assessment

- 4 programming assignments
 - Roughly one assignment every 3-4 weeks
 - Querying and analytics on real data collections
 - In your preferred programming language
- Final examination

About the Course Content

- Advanced computational methods applicable to data analysis problems
 - Managing, searching, analyzing multidimensional data
 - Recommender systems
 - Temporal and time-series analytics
 - Streaming data analytics
 - Adaptive and learned indexing
 - Provenance and explainability of outputs

Course Learning Outcomes

- Understand the nature of multidimensional data and temporal historical data, and the fundamental management and search methods for such data
- Learn fundamental on-line data analytics approaches for data streams as well as learned indexes that adapt to the data distribution and query workload
- Understand the value of explaining query results and learn methods for data provenance

Necessary Background

- Database management systems
 - The relational model, relational queries, data storage in memory and on disk
- Linear Algebra
 - Basic concepts and operations
- Programming
 - Excellent knowledge of at least one programming language (e.g., C/C++, Java, Python)

Multidimensional data analysis

- Simple data types (numbers, characters, bits)
- Multidimensional objects and indexing
 - spatial objects
 - feature vectors
 - sequences (strings, bitstrings, time-series)
 - sparse vectors
 - facts in historical transactional data
 - temporal data
- Queries and analysis tasks in multidimensional spaces
 - multidimensional range selection queries
 - distance-based search and similarity search
 - recommendations
 - cluster analysis
 - top-k and skyline search
 - on-line analytical processing
 - time-travel search

ssn	name	lot		
13-324	Jones	22		
13-322	Smith	45		
12-824	Parker	125		
21-397	Smith	12		

Data Types and Similarity

- Objects characterized by multiple features
 - Employee characterized by name, gender, age, salary, etc.
- Problem: how do we define the degree of difference between different values
 - Is 1 very different to 5 and why?
- Problem: how do we define the similarity between objects
 - Is (John, M, 45, 20K) similar to (Mary, F, 25, 15K)?
- Why is measuring similarity important?

Spatial Data

Numerous applications

 Mobile services, geosciences, CAD, astronomy, military, routing

Lines like roads

Points like hotel locations

Polygons like lakes

Spatial Data

- Just two (or maybe three) dimensions
- Point data
 - One value per dimension
- Non-point data
 - More complex geometric representation
- Spatial Queries
 - Range selection: find all mobile users in HKU campus
 - Nearest neighbor: find the nearest ATM to my location
 - Spatial join: find pairs of hotels and restaurants near each other
- We will learn: models, indexing, query evaluation
- Concepts & index/search methods for spatial points generalize for multidimensional objects

Dense Multidimensional Data

For each object, all features (dimensions) have a value and all are equally important

Dense Multidimensional Data

- Important queries
 - Range similarity search: find image feature vectors with distance a most ε to a query vector
 q
 - NN similarity search: find the k image feature vectors with the smallest distance to a query vector q
- Problem: curse of dimensionality
- We will learn: indexing methods for multidimensional points

Sparse Multidimensional Data

- For each object, few features (different for different objects) are important
 - supermarket transactions, text documents, movie ratings by users, etc.
- We will learn:
 - similarity (ranking) measures and indexes
 - recommendation techniques

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Advanced Multidimensional Tasks

- Top-k queries
 - Rank laptops based on price, size, and battery life
- Skyline queries
 - Find the set of laptops that are not dominated by others in all criteria
- p_1 p_2 p_3 p_4 p_8 p_5 p_6 p_7

- Online analytical processing
 - Compute total sales for each (region, item) pair
- Time travel search
 - Find all clerks employed from 05/94 to 06/96
- Cluster analysis
 - Automatically divide images into groups such that images in the same group are similar to each other

Streaming data analytics

- Data arrive fast in one or more streams
 - If not processed immediately (or stored), data are lost forever
- We will learn:
 - Maintain a stream sample
 - Lookup set-membership
 - Bloom filter
 - Count distinct elements seen so far
 - FM-sketch
 - Count moments
 - AMS-sketch
 - Sliding window queries
 - Answer queries on the last k elements of the stream

Adaptive Indexes

- Building an entire index on a dataset before querying it may not pay off
 - Index construction may take time/resources
 - We may not query all data
 - Data may be ephemeral
- Adaptive indexing: index construction adapts to query workload during query evaluation
- We will learn:
 - Database cracking
 - Adaptive merging
 - Multidimensional cracking

Adaptive index: index is built progressively at query time

Learned Indexes

- Idea: replace parts of a traditional index by prediction models
- Potential benefits:
 - Models occupy less space than index structures
 - Models can be faster to use than index search algorithms
- Challenges:
 - Find models that accurately capture the data distribution
 - Maintain index during updates
 - Handle different data types and queries
- We will learn:
 - Recursive model indexing for static data
 - Learned indexing for dynamic data
 - Multidimensional learned indexes

Learned index: index nodes are replaced by ML models

Data Provenance

- How do input data in a process contribute to specific outputs?
- Applications: trust, explanation, debugging, reproducibility
- We will learn:
 - Data provenance concepts
 - Data provenance techniques
 - Metadata propagation
 - Operator inversion
 - Backward tracing

Tentative Schedule

- Week 1: Introduction, data types
- Week 2: Spatial data and spatial queries
- Week 3: Dense multidimensional data
- Week 4: Sparse multidimensional data
- Week 5: Multidimensional queries (part 1)
- Week 6: Multidimensional queries (part 2)
- Week 7: Data streams
- Week 8: Adaptive and learned indexes
- Week 9: Data Provenance (part 1)
- Week 10: Data Provenance (part 2)

Tentative Assignment Deadlines

- Assignment 1, due Feb 25
- Assignment 2, due March 11
- Assignment 3, due March 25
- Assignment 4, due April 15

Implement programs that solve practical problems based on course material

Remember

- The main objective (for me and you) is to learn from this course
- Ask questions
- Speak up if you don't understand

Let's start!