6.2 Un tirador tiene probabilidad p de dar en el blanco. Se le ofrecen dos alternativas para ganar un premio: a) hacer 3 disparos con la condición de dar por lo menos 2 veces en el blanco; b) hacer 5 disparos con la condición de dar por lo menos 3 veces en el blanco. ¿Para qué valores de p es más favorable la primera alternativa?

$$|P|^{11} \frac{dser}{dser} = P$$

$$|P|^{11} \frac{dse$$

- 6.3 Se arroja una moneda equilibrada 18 veces.
- (a) Calcular la probabilidad de obtener exactamente 13 caras.
- (b) Hallar el número más probable de caras y calcular la probabilidad de que se obtenga ese número.

6.4 La probabilidad de que un pasajero que reserva un asiento no se presente al vuelo es 0.04, de manera independiente unos de otros. En consecuencia, la política de una empresa es vender 100 reservas en un avión que tiene solo 98 asientos. Estimar la probabilidad de que todas las personas que se presentan para un vuelo en particular encuentren asientos disponibles.

$$X \sim B(100, 0,96) \longrightarrow 1P(X = 98) = (100) 0,96 0,04 = 9,14$$

- 6.6 Se lanza un dado equilibrado sucesivas veces.
- (a) Calcular la probabilidad de que el primer 2 ocurra después del tercer lanzamiento.
- (\mathbf{b}) Calcular la probabilidad de que el primer 2 ocurra después del sexto lanzamiento, dado que no ocurrió en los primeros 3 lanzamientos.

$$|P(X_1)| = \frac{1}{6} \qquad |P(N_2)| = 1 - |P(N_2)| = 1$$

to, dado que no ocurrió en los primeros 3 lanzamientos.

$$|P(N = 6 | 1 = \frac{1}{6} (\frac{5}{6})^3 = \frac{3125}{46456} = \frac{1}{1296} (\frac{5}{6})^3 = \frac{1}{1296} (\frac{5$$

Cano N time a grap de Falla de mendra
$$|R(N) \cap K(N)| = |R(N) \setminus K(N)|$$

$$|R(N) \cap K(N) \cap K(N)| = |R(N) \setminus K(N)|$$

$$|R(N) \cap K(N)| =$$

qu	e se apag	gue la		_ /	Hall												
	Y	tienos	e a h	E(X		/1. O to		on en	1.1.								
	\$\frac{1}{5}e	له م	- U1 e	44	c/2	o Se	' J										
			3 -		1	Y= 1.	"cort uB	طو (م,	3's (en n	expe	(IN	ntos				
			del	t.em													
														4,11	31	7 3	4
		Sı	paso		153 -			oo <i>S</i>		2	=> *	2n (60.	5 +.e	po	20 4	
		VA									360	0	×	. + 1		redo	Jeo .tc
n ENN edonded			= 36	00 X	-+1	art	de	/c	ent d	e		.0				Para	A 110
				20	7	= n	Xhora	\$	ex per	imen	705						
	4~ B	(n(x)	1 1		191	45	۷).	= ((x)	/ <u></u> /	ع _ا ج	n (K)-y				
					(,)	•	0 /	\	7/	(6)	(6	<i></i>					
	=>teng	O Ver	abk ee	and a ma	du d	اعدا	or Le	X									
		7 _{×=}	:7		יחליינא	1/6											
	Y .	, ~	- B(n	, (6)		E(Υ,)= E	E(Y	n(x	()=(·) =	: n(x	JE	(A) =	: ה(ז
	' n(x	()=n	/	6)	-5.	ה	1 'n()	<)=n :Tv1	/ -/J]	\	, Γ _α μ	۲،٦		12			
					E	λ7=		·L/1	יינאט)= C	Link	75)		(x) ²			

 ${\bf 6.8}~[ver~{\bf Ejercicio}~{\bf 4.7}]$ Una lámpara se mantendrá encendida durante un tiempo

$N = \frac{1}{\sqrt{2}} =$		n eq.11,b	= { R, Q,	•		Imamiento. Tu observat				
$N_{1} = 1 = \frac{1}{6} + \frac{3}{6} + \frac{3}{6}$ $N_{2} = \text{suma de}$ $\text{geometricas} \qquad \text{rost}$ $N_{3} = \text{"} \qquad \text{"}$ $E(N) = E(N_{1} + N_{2} + N_{3}) = E(N_{1}) + E(N_{2}) + E(N_{3})$ $\# E(N_{2}) = E[N_{1} D] = \sum_{d \in D} E[N_{2} D = d] P[D = d] = \underbrace{6}_{5} \frac{1}{6} + \underbrace{3}_{2} \frac{1}{3} + \underbrace{2}_{1} \frac{1}{2} + \underbrace{1}_{10}$ $N_{2} D = R \sim \text{geo}(\frac{5}{6}) \sim E[N_{2} D = R] = \frac{6}{5}$				$N_1 = \frac{V}{2}$ $N_2 = \begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases}$	Primer color	N = 1	U1 + N2	res 4	n 4/Uns	lo pi i cotom
$E(N) = E(N_1 + N_2 + N_3) = E(N_1) + E(N_2) + E(N_3)$ $* E(N_1) = 1$ $* E(N_2) = E[N_1 D_1] = \begin{cases} E[N_2 D_2 - d] P(D_2 - d) = \frac{6}{3} \frac{1}{6} + \frac{3}{2} \frac{1}{3} + \frac{3}{2$				1 = 1						
10210-1709e0(6) ~ E[M2[D=K] - 3	E(N)=E	N3 =	2+12)=	= E(N,) +	E(N2)+E	F(N ₃)			
				E N2	D=3]1P(D=d) = 3	5 1 + 3 5 6 + 3 7 ~ E[1 + 2 3 N2/D=R)	1 6 5	40

$$E(N_3) = E[E[N_1|D_2]] = \sum_{d \in D} E[N_2|D_2 = d] H(D = d)$$

$$D_2 = \begin{cases} 0 & \text{s. s. s. loo } y, 0, \\ x & \text{s. s. s. loo } y, 0, 0, 0 \end{cases} = E[N_1|D_2 = d] H(D = d) + H(M_2|D_2 = d) H(D_2 = d) + E[N_1|D_2 = d) H(D_2 = d) + E[N_1|D_2 = d) + E[N_1|D_2$$

6.10 Chocolatines Jack lanza una colección de muñequitos con las figuras de los personajes de Kung Fu Panda: Panda, Tigre, Mono, Grulla y Mantis. Cada vez que Lucas compra un chocolatín es igualmente probable que obtenga alguno de los personajes. Sea N la cantidad de chocolatines que Lucas debe comprar hasta completar la colección, hallar $\mathbf{E}[N]$ y $\mathbf{var}(N)$. Interpretar los resultados.

N="cont chocolates que debe compron"

N=N,+N2+N3+N4+N

Laplace
$$\frac{1}{3}$$
 $\frac{1}{3}$ $\frac{1}{6}$

N=N,+N2+N3+N4+N

N=E[N]+E[N]+E[N]+E[N]+E[N]

E[N]=E[N_1+N_2+N_3+N_4+N_5]=E[N_1]+E[N]+E[N]+E[N]+E[N]

= 1 + $\frac{5}{4}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{1}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2}$ + $\frac{5}{3}$ + $\frac{5}{2}$ + $\frac{5}{3}$ +

6.9 Lucas y Monk lanzan monedas simultáneamente hasta obtener en un lanzamiento dos resultados iguales. Si los dos obtienen cara gana Lucas; si ambos obtienen ceca gana Monk. La moneda de Lucas es equilibrada, pero la moneda de

Monk tiene probabilidad 1/3 de cara. Calcular la probabilidad de que Monk gane el juego.

O O gana mont	Monk	lucas	- Bonus trans
O gana mort	$P(M=c)=\frac{1}{3}$	$IP(L=c)=\frac{1}{2}$	Primero recordomos el 6.
	1P(M=5)===		Si dibujanna
			Si dibujanus P("6 EE E L E M E E Troncomos o condicione
P("M gare		M~Ber(=)	
		L~Ber(=1)	(en otra forma de ver
see garan	ame Lucus ind	M=" saca cara"	
, 3c Sige	1P(M=cnL=c)=================================	L = " Saca cara"	
se gara M se signe ss gara L	IP(M=SNL=s)===================================		

