A simple method on comparison between spectral radii of two directed graphs

Mathematic department, NCTU

2021.01.25

References

- Yen-Jen Cheng, A matrix realization of spectral bounds of the spectral radius of a nonnegative matrix, Ph.D. Thesis, NCTU, 2018.
- A. E. Brouwer, W. H. Haemers, *Spectra of graphs*, Springer, 2012
- R. A. Horn, C. R. Johnson, *Matrix analysis*, Cambrigde University Press, 1985.
- [Sage] SageMath, the Sage Mathematics Software System (Version 9.2), The Sage Developers, 2020, https://www.sagemath.org.
- [github] K. H. Chen, C. W. Weng, source files to the essay, A simple method on comparison between spectral radii of two directed graphs. 2021. https://reurl.cc/6vv327

Introduction

Let $\mathbb R$ and $\mathbb C$ denote the field of real numbers and complex numbers, respectively. Let C be an $n \times n$ real square matrix. If there is a nonzero column vector $u \in \mathbb C^n$ such that $Cu = \lambda u$ for some scalar $\lambda \in \mathbb C$, then the scalar λ is called the eigenvalue of C with corresponding eigenvector u. And the spectral radius of a matrix C is the largest magnitude (or complex modulus) of its eigenvalues, denoted by $\rho(C)$. We are interested in the spectral radius of the following matrix associated with a simple directed graph.

Definition

Given a directed graph G, the adjacency matrix of G is the square matrix $A = (a_{ij})$ indexed by vertices of G, and

$$a_{ij} = \begin{cases} 1, & \text{if } ji \text{ is an arc in } G, \\ 0, & \text{otherwise.} \end{cases}$$

Given a directed graph G, the spectral radius of G is the spectral radius of the adjacency matrix of G, denoted by $\rho(G)$. Note that the spectral radius $\rho(G)$ is independent of the ordering of the vertex set of G.

In [1], Cheng and Weng give many bounds of the spectral radius of a nonnegative square matrix. And based on their theory and Perron-Frobenius theorem, we give another approach to obtain an upper bound of the spectral radius and apply it on the adjacency matrix of a directed graph.

All theorems come from continuous discussions between C.W. Weng and K.H. Chen. These were all documented.[5]

Preliminaries

The following is Perron–Frobenius theorem, which provides a feature of nonnegative eigenvectors to nonnegative matrices.

Theorem

[3] If C is a nonnegative square matrix, then the spectral radius $\rho(C)$ is an eigenvalue of C with a corresponding nonnegative right eigenvector and a corresponding nonnegative left eigenvector. Moreover if C is irreducible the above eigenvectors can be chosen to be positive.

A well-known application of Theorem 6 show that if matrix C' majors C (in notation $C \leq C'$), i.e. $c_{ij} \leq c'_{ij}$ for all ij, j, then $\rho(C) \leq \rho(C')$. Our main result shows that the assumption $C \leq C'$ can be a little loosen. Our theory is based on the following theorem, which is from [1].

Theorem

Let $C = (c_{ij})$, $C' = (c'_{ij})$ be $n \times n$ real matrices with real eigenvalues λ , λ' respectively such that there exist $n \times n$ matrices P and Q satisfying the following (i)-(iv).

- (i) $PCQ \leq PC'Q$;
- (ii) an eigenvector Qu of C' associated with eigenvalue λ' exists for some nonnegative column vector $u = (u_1, u_2, \dots, u_n)^T$.
- **(iii)** a left eigenvector $v^T P$ of C' associated with eigenvalue λ exists for some nonnegative row vector $v^T = (v_1, v_2, \dots, v_n)$; and
- $v^T PQu > 0.$

Then $\lambda \leq \lambda'$. Moreover, $\lambda = \lambda'$ if and only if

$$(PC'Q)_{ij} = (PCQ)_{ij}$$
 for $1 \le i, j \le n$ with $v_i \ne 0$ and $u_j \ne 0$.

(1)

Multiplying the nonnegative vector u in assumption i to the right of both terms of i,

$$PCQu \le PC'Qu = \lambda'PQu,$$
 (2)

where the above equality follows by Qu being eigenvector of C' for λ' .

Multiplying the nonnegative vector v^T of C in assumption iii to the left of all terms in (2), we have

$$\lambda v^T P Q u = v^T P C Q u \le v^T P C' Q u = \lambda' v^T P Q u, \tag{3}$$

where the above first equality follows by v^TP being left eigenvector of C for λ . Now delete the positive term v^TPQu by assumption iv to obtain $\lambda \leq \lambda'$ and finish the proof of the first part.

Assume that $\lambda = \lambda'$, so the inequality in (3) is an equality. Especially $(PCQu)_i = (PC'Qu)_i$ for any i with $v_i \neq 0$. Hence, $(PCQ)_{ij} = (PC'Q)_{ij}$ for any i with $v_i \neq 0$ and any j with $u_j \neq 0$. Conversely, (1) implies

$$\lambda v^{T} P C Q u = v^{T} P C Q u = \sum_{i,j} v_{i} (P C Q)_{ij} u_{j}$$
$$= \sum_{i,j} v_{i} (P C' Q)_{ij} u_{j} = v^{T} P C' Q u = \lambda' v^{T} P C' Q u,$$

so
$$\lambda = \lambda'$$
 by (3).

Our Method

We will apply Theorem 3 by using two particular square matrices P and Q to obtain our main result. We use [n-1] as notation of the set of integers from 1 to n-1, which is $\{1,2,\cdots,n-1\}$. Throughout this thesis we fix $k \in [n-1]$, let E_{kn} denote the $n \times n$

binary matrix with a unique 1 appearing in the position k, n of E_{kn} .

Now we apply the previous Theorem 3 with P = I and

$$Q = I + E_{kn} = \begin{pmatrix} 1 & & & & & 0 \\ & 1 & & & & & \\ & & \ddots & & & & \\ & & & 1 & & & 1 \\ & & & & \ddots & & \\ & & & & 1 & 0 \\ 0 & & & & 0 & 1 \end{pmatrix}, \tag{4}$$

so the matrix PC'Q in assumption i of Theorem 3 is

$$PC'Q = \begin{pmatrix} c'_{11} & c'_{12} & \cdots & c'_{1k} + c'_{1n} \\ c'_{21} & c'_{22} & \cdots & c'_{2k} + c'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c'_{n1} & c'_{n2} & \cdots & c'_{nk} + c'_{nn} \end{pmatrix}, \tag{5}$$

where c'_{ij} denotes the (i, j)-entry of C'.

Definition

A column vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)^T$ is called *k-rooted* if $\mathbf{v}_j \geq 0$ for $1 \leq j \leq n$ and $\mathbf{v}_k \geq \mathbf{v}_n$.

The following Lemma is immediate from the above definition.

Lemma

If
$$u = (u_1, u_2, ..., u_n)^T$$
, then

- (i) Qu is k-rooted if and only if u is nonnegative;
- $u_k > 0$ if and only if $(Qu)_k > (Qu)_n$.

Proof.

(i), (ii) follow immediate from the definition of k-rooted and $Qu = (u_1, \ldots, u_{k-1}, u_k + u_n, u_{k+1}, \ldots, u_n)^T$.

Below is our first result, in which the first condition implies the first n-1 columns of C' major the same columns of C, and the sum of k-th and n-th columns of C' also majors that of C. The second and the third condition suggest that C and C' have nonnegative k-rooted eigenvectors. And the forth condition is simpler but with the same meaning in Theorem 3

We need a notation of submatrix, which is taken from some columns and some rows of a matrix.

Definition

For a matrix $C=(c_{ij})$ and subsets α , β of row indices and column indices of C, respectively, we use $C[\alpha|\beta]$ to denote the submatrix of C with size $|\alpha| \times |\beta|$ that has entries c_{ij} for $i \in \alpha$ and $j \in \beta$. We use the notation C[i|j] for short of C[[i]|[j]].

Theorem

Let $C = (c_{ij})$, $C' = (c'_{ij})$ be $n \times n$ real matrices with real eigenvalues λ and λ' respectively. Assume that

- (i) $C[n|n-1] \le C'[n|n-1]$ and $c_{ik} + c_{in} \le c'_{ik} + c'_{in}$ for all $1 \le i \le n$;
- (ii) there exists a k-rooted eigenvector vector $V = (V_1, V_2, \dots, V_n)^T$ of C' for λ' ;
- (iii) there exists a nonnegative eigenvector vector $v^T = (v_1, v_2, \dots, v_n)$ of C for λ ;
- $(v^T v' > 0.$

Then $\lambda \leq \lambda'$. Moreover, $\lambda = \lambda'$ if and only if

- [a $c_{ik} + c_{in} = c'_{ik} + c'_{in}$ for $1 \le i \le n$ with $v_i > 0$ and $v'_n > 0$;
- (b) $c'_{ij} = c_{ij}$ for $1 \le i \le n$, $1 \le j \le n-1$, $j \ne k$ with $v_i \ne 0$

Proof.

The proof is based on Theorem 3 with P=I and $Q=I+E_{kn}$ in (4). The assumption i $PCQ \leq PC'Q$ of Theorem 3 holds by the condition i of this theorem. Let $u=Q^{-1}v'$. Then u is nonnegative and $C'Qu=\lambda'Qu$ by the condition ii and i in Lemma 5. Hence the assumption ii of Theorem 3 holds. The assumptions iii and iv of Theorem 3 clearly hold by conditions iii, iv of this theorem since P=I and v'=Qu. Hence $\lambda \leq \lambda'$ by the necessary condition of Theorem 3. Moreover, $\lambda=\lambda'$ if and only if (1) holds, and this is equivalent to conditions a, b and c of this theorem.

We are interested in the matrices C' that have k-rooted eigenvectors. Motivated by the condition (i) of Theorem 2.3, we provide the following two definitions. The first is the definition of (k, n)-sum.

Definition

For an $n \times n$ matrix $C' = (c'_{ij})$, the (k, n)-sum vector of C' is the vector obtained from the sum of the k-th and n-th columns of C'.

Note that the last column of C'Q is the (k, n)-sum vector of C'. Below is the definition of k-rooted matrix.

Definition

A matrix $C'=(c'_{ij})$ is called k-rooted if for each $i\neq k, n$ the i-th column of C' is k-rooted and the (k,n)-sum vector of C' is k-rooted.

We need a simple lemma for later use.

Lemma

$$Q^{-1} = I - E_{kn}.$$

Proof.

Since

$$Q(I - E_{kn} = (I + E_{kn})(I - E_{kn}) = I - E_{kn} + E_{kn} - E_{kn}E_{kn} = I,$$

we have
$$Q^{-1} = I - E_{kn}$$
.

The matrix Q^{-1} is explicitly written as

$$Q^{-1} = I - E_{kn} = egin{pmatrix} 1 & & & & 0 \ & 1 & & & & \ & & \ddots & & & & \ & & & 1 & & & -1 \ & & & & \ddots & & \ & & & & 1 & & 0 \ 0 & & & & 0 & 1 \end{pmatrix}$$

and if $C' = (c'_{ij})$ then $Q^{-1}C'Q$ has the form

$$\begin{pmatrix} c'_{11} & c'_{12} & \cdots & c'_{1 n-1} & c'_{1k} + c'_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c'_{(k-1)1} & c'_{(k-1)2} & \cdots & c'_{(k-1)(n-1)} & c'_{(k-1)k} + c'_{(k-1)n} \\ c'_{k1} - c'_{n1} & c'_{k2} - c'_{n2} & \cdots & c'_{k(n-1)} - c'_{n(k-1)} & c'_{kk} + c'_{kn} - c'_{nk} - x'_{nn} \\ c'_{(k+1)1} & c'_{(k+1)2} & \cdots & c'_{(k+1)(n-1)} & c'_{(k+1)k} + c'_{(k+1)n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c'_{n1} & c'_{n2} & \cdots & c'_{n(n-1)} & c'_{nk} + c'_{nn} \end{pmatrix}.$$

$$(6)$$

The following lemma shows that a k-rooted matrix has a k-rooted eigenvector.

Lemma

Let $C' = (c'_{ij})$ be an $n \times n$ nonnegative matrix. Then the following (i)-(ii) hold.

- (i) C' is a k-rooted matrix if and only if $Q^{-1}(C'+dI)Q$ is nonnegative for some $d \ge 0$, where I is the $n \times n$ identity matrix.
- (ii) If C' is k-rooted then there exists a k-rooted eigenvector V of C' for $\rho(C')$.

Proof.(i).

The matrix $Q^{-1}C'Q$ has ij entry

$$(Q^{-1}C'Q)_{ij} = \begin{cases} c'_{ij}, & \text{if } i \neq k \text{ and } j \neq n; \\ c'_{kj} - c'_{nj}, & \text{if } i = k \text{ and } j \neq n; \\ c'_{ik} + c'_{in}, & \text{if } i \neq k \text{ and } j = n; \\ c'_{kk} + c'_{kn} - c'_{nk} - c'_{nn}, & \text{if } i = k \text{ and } j = n, \end{cases}$$

as shown in (6). Hence $Q^{-1}(C'+dI)Q$ is nonnegative if and only if C' is k-rooted by the definition of nonnegative matrix and k-rooted matrix.

Proof.(ii).

Suppose C' is k-rooted. Choose $d \geq 0$ such that $Q^{-1}(C'+dI)Q$ is nonnegative. Let u be a nonnegative eigenvector of $Q^{-1}(C'+dI)Q = Q^{-1}C'Q+I$ for $\rho(C'+dI) = \rho(C')+d$. Note that $Q^{-1}C'Qu = \rho(C')u$, and Qu is k-rooted by Lemma 5. Hence v' = Qu is what we want.

Note that Theorem 7 depends on eigenvectors. The following is an eigenvector-free Theorem.

Theorem

Let C be an $n \times n$ nonnegative irreducible matrix and C' be an $n \times n$ k-rooted matrix such that C'Q majorizes CQ. Then $\rho(C) \leq \rho(C')$.

Proof.

Referring to (5), the assumption i in Theorem 7 holds. By Lemma 11 ii, there exists a k-rooted eigenvector v' of C' for $\rho(C')$. Since C is irreducible and nonnegative, there exists a positive eigenvector v^T of C for $\rho(C)$. Thus $v^Tv' > 0$. Hence Theorem 7 i-iv hold. Hence $\rho(C) < \rho(C')$ by Theorem 7.

Examples

Let *G* be the digraph depicted below.

The following 4×4 matrix is the adjacency matrix of G.

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

We choose another matrix

$$A' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$

which is the adjacency matrix of G' depicted below.

Note that both G and G' have the same number of edges, neither A majories A' nor A' majories A. Our main result still can do comparison between $\rho(A)$ and $\rho(A')$. We first observe that A is irreducible and A' is k-rooted for k=3. Moreover

$$A'Q = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \ge \begin{pmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = AQ. \text{ Hence Hence}$$

 $\rho(A) \leq \rho(A')$ by Theorem 12 with C = A and C' = A'. Both of the values of $\rho(C)$ and $\rho(C')$ are close to 2.511547 by calculating on computer. [4, sage]

To finish the thesis, we provide an example to show that the 'k-rooted' assumption of C' is necessary in Theorem 12.

Consider the following two 4×4 matrices

$$C = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad C' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

With n = 4 and k = 3, we have

$$CQ = egin{pmatrix} 0 & 0 & 1 & 2 \ 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 1 \end{pmatrix} \leq egin{pmatrix} 0 & 0 & 1 & 2 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 1 \end{pmatrix} = C'Q.$$

Using computer, [4, sage]

$$\rho(C) \approx 2.234 \nleq 2.148 \approx \rho(C')$$
.

This is because C' is not k-rooted as $c'_{22} + c'_{24} = 0 > 1 = c'_{42} + c'_{43}$.