2022 Vill. Mat A1 - 5. gyakorlat

Komplex számok

1. Legyen $C \subseteq A \cap B$. a) $(A \cup B) \cap (A \cup C) = ?$, b) $(A \cap B) \cup (A \cap C) = ?$

gy. Igazoljuk, hogy minden A, B, C halmazra, ha $B \subseteq A \subseteq C$, akkor

$$(A \cup B) \cap (A \cup C) = A$$

- **hf.** Igazoljuk, hogy minden A, B, C halmazra, ha $(A \cup B) \cap (A \cup C) = A$, akkor $B \cap C \subseteq A$.
- 2. Igazolja vektoralgebrai eszközökkel a Pithagorasz-tételt!
 - gy. a) Mennyi a λ szám értéke, hogy minden \mathbf{a}, \mathbf{b} térvektorra $\mathbf{a} + \lambda \mathbf{b} \parallel \mathbf{a} 2\mathbf{b}$ legyen;
- b) Adott \mathbf{a}, \mathbf{b} térvektorra milyen lehet a λ szám értéke, hogy $\mathbf{a} + \lambda \mathbf{b} \parallel \mathbf{a} 2\mathbf{b}$ legyen?
- 3. Határozza meg annak a síknak az egyenletét, amely tartalmazza az e: x = 1 2t, y = 2 + t, z = -1 t egyenletrendszerű egyenest és a P = (0, 1, -2) pontot!
- gy. Határozza meg a 3x + 2y z = 3 és x y + 3z = 1 egyenletű síkok metszésvonalával párhuzamos, a P = (1, 2, 3) ponton áthaladó egyenes egyenletét!
- 4. Oldjuk meg a |z| + z = 8 + 4i, Im z = 4 egyenletrendszert! gy.

$$\frac{1}{2^{10}} \left(\frac{1}{i^5} + i^{2008} \right)^{20} = ?$$