การวิเคราะห์และประเมินผล โมเดล Classification

นาวาโท ดร.บัญชา ช่วยสี

หัวหน้าฝึกและจำลองยุทธ์ไซเบอร์ ศูนย์ไซเบอร์ กรมการสื่อสารและเทคโนโลยีสารสนเทศทหารเรือ

ประสบการณ์ที่เกี่ยวข้อง

- กองปฏิบัติการไซเบอร์ ศูนย์ไซเบอร์
 กรมการสื่อสารและเทคโนโลยีสารสนเทศทหารเรือ (สสท.ทร.)
- PhD การจัดการเทคโนโลยีสารสนเทศ คณะวิศวกรรมศาสตร์ มหิดล
- นักวิจัยสมาคมอุตสาหกรรมดิจิทัลไทย มหิดล
- วิทยากรหลักสูตรนักวิทยาศาสตร์ข้อมูล มหิดล

Data Analytics

วิทยากรร่วม : มหิดล

Data Engineering

วิทยากรร่วม : มหิดล

Machine Learning

ที่ปรึกษางานวิจัยด้าน ML

การสร้างโมเดลประกอบไปด้วยพารามิเตอร์ที่แตกต่างกัน 2 ชนิด ได้แก่

1.Model Parameters คือ พารามิเตอร์ที่ได้มาระหว่างขั้นตอนการเรียนรู้ข้อมูลของโมเดล (Model Training) เช่น ค่า Weights ที่ใช้ใน Neural Network หรือค่า Coefficients ที่ได้จากการทำ Linear Regression เป็นต้น
2.Hyperparameters คือ พารามิเตอร์ต่าง ๆ ที่ผู้ใช้สามารถกำหนดเองได้ก่อนที่โมเดลจะทำการเรียนรู้ เช่น ค่า Learning Rate ที่ใช้ในการควบคุมว่าใน 1 Step ของการเรียนรู้จะปรับค่า Weights ของ Neural Network อย่างไร หรือค่า n estimators ซึ่งกำหนดจำนวนต้นไม้สำหรับการสร้างโมเดล Random Forest เป็นต้น

Hyperparameter สำคัญอย่างไร?

ควบคุมวิธีที่โมเดลเรียนรู้

ปรับให้โมเดลทำงานได้ดีที่สุด

ป้องกันปัญหา Overfitting / Underfitting

ช่วยให้โมเดลเรียนรู้ได้เร็วขึ้น

Hyperparameter Tuning (การปรับค่าที่เหมาะสม)

Hyperparameter ไม่สามารถเรียนรู้เองได้ ต้องปรับให้เหมาะสมโดยใช้วิธีการต่อไปนี้

1. Grid Search

ทดลองค่าต่าง ๆ ทุกค่าที่เป็นไปได้

🗙 ใช้เวลานานมากถ้าค่าที่เป็นไปได้มีเยอะ

2. Random Search

สุ่มค่ามาลอง แทนที่จะไล่ค่าทั้งหมด

เร็วกว่า Grid Search

🗙 อาจไม่ได้ค่าที่ดีที่สุด

Cross-Validation Accuracy 0.935 0.93

ตัวอย่าง Hyperparameter ในโมเดลต่าง ๆ

1. Decision Tree

- •Max Depth → กำหนดความลึกสูงสุดของต้นไม้
- •Min Samples Split → จำนวนตัวอย่างขั้นต่ำที่ต้องมีเพื่อแยกโหนด
- •Criterion \rightarrow วิธีการคำนวณค่า Gini หรือ Entropy

2. Random Forest

- •Number of Trees (n_estimators) → จำนวนต้นไม้ในป่า
- •Max Features → จำนวนคุณสมบัติที่ใช้แยกแต่ละโหนด

3. Neural Networks (Deep Learning)

- Learning Rate → ควบคุมอัตราการปรับค่าของน้ำหนัก
- •Batch Size → จำนวนตัวอย่างข้อมูลที่ใช้ในการอัปเดตพารามิเตอร์แต่ละครั้ง
- •Number of Layers & Neurons → กำหนดโครงสร้างของโครงข่าย

4. Support Vector Machine (SVM)

- •Kernel Type → เลือกรูปแบบของ Kernel เช่น Linear, RBF
- •C (Regularization Parameter) → ควบคุมความซับซ้อนของโมเดล
- ulletGamma ullet ควบคุมอิทธิพลของตัวอย่างข้อมูลแต่ละตัว

EXGridSearchCV and RandomizedSearchCV.ipynb

การวิเคราะห์ผลการพยากรณ์

■ ไม่ถูกหวย (ถูก / ไม่ถูก) : Classification

นียด (เฉียดกี่แต้ม) : Regression

การวิเคราะห์ผลการพยากรณ์ Classification

งานวิจัย / การวินิจฉัย มีข้อผิดพลาดอยู่ 2 ประเภท

- ข้อผิดพลาดประเภทที่ 1 (Type I Error)
 เมื่อเราปฏิเสธสมมติฐาน ทั้งที่เป็นจริง
 พบหลักฐานของผลกระทบ ที่ไม่มีอยู่จริง
 (สงสัยว่าเป็นของโจร เลยไม่ซื้อ -- อดได้ของถูก)
- ข้อผิดพลาดประเภทที่ 2 (Type II Error) เมื่อเราไม่ปฏิเสธสมมติฐานทั้งที่ เป็นเท็จ พลาดผลกระทบที่มีอยู่จริง (ไม่สงสัยว่าเป็นของโจร เลยซื้อ -- จำคุก)

Type 1 และ Type 2 Error

ประเภท		คำอธิบาย	ตัวอย่าง	ผลกระทบ
Type 1 Positive	Error (False	แจ้งเตือนผิดพลาด	ทำนายว่าผู้ป่วย"ท้อง" แต่จริง ๆ ไม่ท้อง	ค่าใช้จ่ายเกินจำเป็น, แจ้งเตือนผิด
Type 2 Negative	Error (False e)	พลาดการตรวจจับ	ทำนายว่าผู้ป่วยไม่ท้อง แต่จริง ๆ ท้อง	อันตรายร้ายแรง, ความเสียหายที่ตามมา

Confusion Matrix

Confusion Matrix

เป็นตารางที่ช่วยให้เราเห็น**ภาพรวม**ของผลลัพธ์

ที่โมเดลทำนาย (Predict) เทียบกับค่าจริง

(Actual) (ให้สังเกตตำแหน่งคำ)

ซึ่งใช้ประเมินประสิทธิภาพของโมเดล

Classification

Confusion Matrix เป็นตารางที่ช่วยให้เราเห็น**ภาพรวม**ของผลลัพธ์

ที่โมเดลทำนาย (Predict) เทียบกับค่าจริง (Actual) (ให้สังเกตตำแหน่งคำ)

ซึ่งใช้ประเมินประสิทธิภาพของโมเดล Classification โดยแบ่งผลลัพธ์การพยากรณ์ออกเป็น 4 ประเภท :

Confusion Matrix เป็นตารางที่ช่วยให้เราเห็น**ภาพรวม**ของผลลัพธ<mark>์ที่โมเดลทำนาย เทียบกับค่าจริง</mark>

ความเป็นจริง	ทำนาย (Predict)		
(Actual)	ถูก Positive (ผลดี)	ผิด Negative (ผลเสีย)	
เป็นจริง	✓ ถูก เป็นผลดี	🗙 ผิด เป็น <mark>ผลเสีย</mark>	
Positive	ลา ยูก เบน <mark>ผสพ</mark>	- เบน <mark>ผสเสย</mark>	
ไม่จริง	🗙 ผิด เป็น <mark>ผลดี</mark>	✓ ถูก เป็นผลเสีย	
Negative	เบน <mark>พสพ</mark>	์ ยูก เบน <mark>ผสเสย</mark>	

Confusion Matrix เป็นตารางที่ช่วยให้เราเห็น**ภาพรวม**ของผลลัพธ<mark>์ที่โมเดลทำนาย เทียบกับค่าจริง</mark>

กรณี ทำนาย "ถูก" 🗸

ความเป็นจริง	ทำนาย (Predict)		
(Actual)	ถูก Positive (ผลดี)	ผิด Negative (ผลเสีย)	
เป็นจริง Positive	✓ ถูก – เป็นผลดี True Positive (TP)	×	
ไม่จริง Negative	×	✓ ถูก – เป็นผลเสีย True Negative (TN)	

Confusion Matrix เป็นตารางที่ช่วยให้เราเห็น**ภาพรวม**ของผลลัพธ<mark>์ที่โมเดลทำนาย เทียบกับค่าจริง</mark>

<mark>กรณี ทำนาย "ผิด"</mark> 🗙

ความเป็นจริง	ทำนาย (Predict)			
(Actual)	ถูก Positive (ผลดี)	ผิด Negative (ผลเสีย)		
เป็นจริง	🗸 ถูก – เป็น <mark>ผลดี</mark>	🗙 ผิด – เป็น <mark>ผลเสีย</mark>		
Positive	True Positive (TP)	False Negative (FN)		
ไม่จริง	🗙 ผิด – เป็น <mark>ผลดี</mark>	✓ ถูก – เป็นผลเสีย		
Negative	False Positive (FP)	True Negative (TN)		

เมตริก	ถ้าค่า <mark>สูง</mark>	ถ้าค่า <mark>ต่ำ</mark>	ควรให้ความสำคัญ <mark>เมื่อ</mark>
TP	โมเดลทำนายถูกเยอะขึ้น	โมเดลจับ Positive ได้ไม่ดี	เมื่อเราต้องการให้โมเดลทำนาย Positive ได้ถูกต้อง
FP	แจ้งเตือนผิดเยอะขึ้น	โมเดลแม่นยำขึ้น	เมื่อ False Positive มีผลกระทบ มาก เช่น ทดสอบโรคร้ายแรง
	พลาดการตรวจจับเยอะขึ้น	โมเดลจับ Positive ได้ดีขึ้น	เมื่อ False Negative อันตราย เช่น การตรวจจับโรคร้าย
TN	โมเดลกรอง Negative ได้แม่นยำ	โมเดลพลาดจำแนก Negative	เมื่อเราต้องการลดการแจ้งเตือน ผิดพลาด

<mark>กรณีตัวอย่าง</mark>

ระบบตรวจโรคมะเร็ง

- •True Positive (TP) \longrightarrow ตรวจพบว่าผู้ป่วยเป็นโรค และเขาเป็นจริง
- •False Positive (FP) \longrightarrow ตรวจพบว่าผู้ป่วยเป็นโรค แต่เขาไม่เป็น $extbf{X} \longrightarrow$ อาจทำให้ผู้ป่วยเครียดโดยไม่จำเป็น
- •False Negative (FN) \rightarrow บอกว่าผู้ป่วยไม่เป็นโรค แต่เขาเป็นจริง imes \rightarrow อันตราย เพราะอาจไม่ได้รับการรักษา
- •True Negative (TN) บอกว่าผู้ป่วยไม่เป็นโรค และเขาไม่เป็นจริง

ผลตรวจจริง	ทำนายว่า เป็นมะเร็ง	ทำนายว่า ไม่เป็นมะเร็ง
เป็นมะเร็งจริง	TP (ตรวจพบโรค ถูกต้อง)	🗙 FN (<mark>พลาด ไม่เตือน</mark>)
ไม่เป็นมะเร็ง	🗶 FP (<mark>แจ้งเตือน ผิดพลาด</mark>)	TN (ปกติ ถูกต้อง)

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ใหน โดยที่นิยมใช้ คือ Accuracy, Precision, Recall, และ F1-score

	[[4 1 1] [6 2 2] [3 0 6]]				
		precision	recall	f1-score	support
	Cat	0.308	0.667	0.421	6
	Fish	0.667	0.200	0.308	10
	Hen	0.667	0.667	0.667	9
	accuracy			0.480	25
	macro avg	0.547	0.511	0.465	25
. [weighted avg	0.581	0.480	0.464	25

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ

Accuracy, Precision, Recall, และ F1-score

Accuracy (ความแม่นยำรวม)

เป็นตัวชี้วัดพื้นฐานที่ใช้ประเมินประสิทธิภาพของโมเดล

Classification โดยบอกว่าโมเดลทำนายถูกต้องเป็นกี่เปอร์เซ็นต์ ของข้อมูลทั้งหมด

✓ ใช้ได้ดีถ้า dataset มีการกระจายของคลาสสมดุล

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ

Accuracy, Precision, Recall, และ F1-score

Precision (ความแม่นย้าของการทำนาย Positive)

เป็นตัวชี้วัดที่ใช้วัดว่า ในบรรดาตัวอย่างที่โมเดลทำนายว่าเป็น

Positive มีสัดส่วนที่ถูกต้องจริงกี่เปอร์เซ็นต์

✓ ใช้ในกรณีที่ต้องการลด False Positive เช่น การตรวจจับโรค

		Real Class	
		Positive	Negative
Predicted Class	Positive TP		FP
Predicted Class	Negative	FN	TN

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ

Accuracy, Precision, Recall, และ F1-score

Accuracy (ความแม่นยำรวม)

เป็นตัวชี้วัดพื้นฐานที่ใช้ประเมินประสิทธิภาพของโมเดล Classification โดยบอกว่า โมเดลทำนายถูกต้องเป็นกี่เปอร์เซ็นต์ของข้อมูลทั้งหมด

✓ ใช้ได้ดีถ้า dataset มีการกระจายของคลาสสมดุล

Precision (ความแม่นยำของการทำนาย Positive)

เป็นตัวชี้วัดที่ใช้วัดว่า ในบรรดาตัวอย่างที่โมเดลทำนายว่าเป็น Positive มีสัดส่วนที่ ถูกต้องจริงกี่เปอร์เซ็นต์

✓ ใช้ในกรณีที่ต้องการลด False Positive เช่น การตรวจจับโรค

ACCURACY VS. PRECISION Low Accuracy & **Low Precision High Accuracy & Low Precision** Low Accuracy & **High Precision** High Accuracy &

High Precision

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ Accuracy, Precision, Recall, และ F1-score

Recall (Sensitivity) (ความสามารถในการจับ Positive ได้ถูกต้อง)

หรือ True Positive Rate เป็นตัวชี้วัดที่ใช้วัดว่า ในบรรดาตัวอย่างที่เป็น

Positive จริงๆ โมเดลสามารถจับได้ถูกต้องกี่เปอร์เซ็นต์

🗸 สำคัญเมื่อ False Negative เป็นปัญหา เช่น การตรวจมะเร็ง

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ

Accuracy, Precision, Recall, และ F1-score

Recall (Sensitivity) (ความสามารถในการจับ Positive ได้ถูกต้อง)

หรือ True Positive Rate เป็นตัวชี้วัดที่ใช้วัดว่า ในบรรดาตัวอย่างที่ เป็น **Positive** จริงๆ โมเดลสามารถจับได้ถูกต้องกี่เปอร์เซ็นต์

✓ สำคัญเมื่อ False Negative เป็นปัญหา เช่น การตรวจมะเร็ง

Precision (ความแม่นยำของการทำนาย Positive)

เป็นตัวชี้วัดที่ใช้วัดว่า ในบรรดาตัวอย่างที่โมเดล<mark>ทำนายว่าเป็น Positive</mark> มีสัดส่วน ที่ถูกต้องจริงกี่เปอร์เซ็นต์

✓ ใช้ในกรณีที่ต้องการลด False Positive เช่น การตรวจจับโรค

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ Accuracy, Precision, Recall, และ F1-score

F1-score (ค่าเฉลี่ยของ Precision และ Recall)

ค่าชี้วัดที่เป็น<mark>ค่าเฉลี่ย</mark>เชิงฮาร์มอนิก (Harmonic Mean) ของ Precision และ Recall ซึ่งช่วยให้เราตัดสินใจได้ดีขึ้นในกรณีที่ต้องการสมดุลระหว่าง

Precision และ Recall

เหมาะกับปัญหาที่มีคลาสไม่สมดุล

Support คือจำนวนตัวอย่าง (Samples) ของแต่ละคลาสที่ใช้ในการคำนวณค่าต่างๆ เช่น Precision, Recall, และ F1-score ในโมเดล Classification

		precision	recall	f1-score	support	
	0	0.80	0.82	0.81	1000	
	1	0.95	0.98	0.96	1000	
	2	0.77	0.76	0.77	1000	
	3	0.88	0.87	0.87	1000	
	4	0.75	0.82	0.79	1000	Individual
	5	0.95	0.88	0.91	1000	
	6	0.68	0.58	0.63	1000	Sample Size
	7	0.90	0.93	0.92	1000	
	8	0.93	0.95	0.94	1000	
	9	0.92	0.95	0.93	1000	
accur	racy			0.85	10000	Total
macro	avg	0.85	0.85	0.85	10000	
weighted	avg	0.85	0.85	0.85	10000	Sample Size

การประเมินผลโมเดล Classification มีหลายตัวชี้วัดที่ช่วยบอกว่าโมเดลมีประสิทธิภาพดีแค่ไหน โดยที่นิยมใช้ คือ Accuracy, Precision, Recall, และ F1-score

เมตริก	คำนิยาม	สูตรคำนวณ	ใช้ในกรณีไหน?
Accuracy (ความ	เปอร์เซ็นต์ของจำนวนตัวอย่างทั้งหมดที่	$egin{array}{l} Accuracy = \ rac{TP+TN}{TP+TN+FP+FN} \end{array}$	ใช้เมื่อข้อมูลมีการกระจาย
ถูกต้อง)	โมเดลทำนายถูกต้อง		คลาสที่สมดุลกัน
Precision (ความ	เปอร์เซ็นต์ของผลลัพธ์ที่โมเดลทำนาย	$Precision = rac{TP}{TP+FP}$	ใช้เมื่อ False Positive มีผล
แม่นยา)	เป็น Positive แล้วถูกต้องจริง		เสียมาก
Recall (การ	เปอร์เซ็นต์ของข้อมูล Positive จริง ที่	$Recall = rac{TP}{TP+FN}$	ใช้เมื่อ False Negative มีผล
ครอบคลุม)	โมเดลสามารถจำแนกออกมาได้		เสียมาก
F1-score	ค่าเฉลี่ยถ่วงน้ำหนักระหว่าง Precision และ Recall	$F1 = 2 imes rac{Precision imes Recall}{Precision + Recall}$	ใช้เมื่อต้องการสมดุลระหว่าง Precision และ Recall

- 1) Accuracy ความถูกต้อง แม่นยำรวม
- 2) Precision หรือ Positive Predictive Value ความแม่นย้าของการทำนาย Positive
- 3) Sensitivity หรือ Recall ความไว ในการจับ Positive

Predicted Class

- 4) Specificity ความจำเพาะ
- 5) F1-Score เฉลี่ย precision และ recall

Actual Class

	Positive	Negative	
Positive	True Positive (TP)	False Negative (FX) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
	Precision $\frac{TP}{(TP + FP)}$	Negative Predicave V_{P} ae $\frac{TN}{(TN + FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

กรณี Confusion matrix ที่เป็น multi-class classification.

🔷 การเลือกใช้เมตริก

- ✓ True Positive (TP) → ทำนายว่าเป็น Positive และถูกต้อง
- ✓ False Positive (FP) → ทำนายว่าเป็น Positive แต่ผิดพลาด (แจ้งเตือนเกิน)
- ✓ False Negative (FN) → ทำนายว่าเป็น Negative แต่ผิดพลาด (พลาดการตรวจจับ)
- ✓ True Negative (TN) → ทำนายว่าเป็น Negative และถูกต้อง

- 🄷 ถ้าต้องการความ<u>แม่นยำสูง (</u>ลด FP / Type I Error) → ใช้ <mark>Precision</mark>
- 🏶 ถ้าต้องการ<u>ตรวจจับให้ครบ</u>(ลด FN / Type II Error) ใช้ <mark>Recall</mark>
- <page-header>

การลดข้อผิดพลาด (Trade-off ระหว่าง Type 1 และ Type 2 Error)

- หากต้องการลด Type 1 Error (False Positive):
 - เพิ่ม ความแม่นยำ (Precision)
 - ใช้ ค่า Threshold สูงขึ้น เพื่อลดการแจ้งเตือนผิด
- •หากต้องการลด Type 2 Error (False Negative):
 - เพิ่ม ความไว (Recall) ตรวจจับให้ครบ
 - ใช้ ค่า Threshold ต่ำลง เพื่อตรวจจับให้มากขึ้น

Recall

Precision

- **•การแพทย์** → ลด **Type 2 Error** (False Negative) → ควรให้ความสำคัญกับ <mark>Recall</mark>
- **•การตรวจจับสแปม →** ลด **Type 1 Error** (False Positive) → ควรให้ความสำคัญกับ **Precision**

ROC (Receiver Operating Characteristic) Curve เป็นกราฟที่ใช้วิเคราะห์ประสิทธิภาพของโมเดล Classification โดยเฉพาะ Binary Classification (เช่น ทำนายว่า "เป็นโรค" หรือ "ไม่เป็นโรค")

ช่วยให้เราเข้าใจว่าโมเดลสามารถแยกแยะ Positive และ Negative ได้ดีแค่ไหนเมื่อเปลี่ยน Threshold (ค่ากำหนดในการตัดสินว่า

เป็น Positive หรือ Negative)

- 1 True Positive Rate (TPR) หรือ Recall
- 2 False Positive Rate (FPR)
- 🕝 การอ่านค่า ROC Curve
- •เส้นโค้งอยู่ด้านบน (ใกล้ 100% TPR และ 0% FPR)
- หมายถึง โมเดลดีมาก แยกแยะ Positive และ Negative ได้แม่นยำ
- •เส้นทแยงมุม (Baseline Model, 50%)
- 👉 หมายถึง โมเดลทำนายแบบสุ่ม (ไม่มีความสามารถในการจำแนก)
- •เส้นโค้งอยู่ใกล้เส้นทแยงมุม
- 👉 หมายถึง โมเดลไม่ดี คาดการณ์ได้ใกล้เคียงการสุ่ม

🖒 ค่า AUC (Area Under Curve) — พื้นที่ใต้กราฟ ROC

- •AUC ใกล้ 1 \longrightarrow โมเดลแม่นยำสูง
- •AUC ≈ 0.5 → โมเดลแย่มาก (เดาแบบสุ่ม)
- •AUC $< 0.5 \rightarrow$ โมเดลอาจมีการกลับขั้ว (ต้องแก้ไขโมเดล)

🗘 ความสำคัญของ ROC Curve

- 1 ช่วยเปรียบเทียบโมเดล
- •ถ้ามีหลายโมเดล สามารถใช้ AUC-ROC เปรียบเทียบว่าโมเดลไหนแม่นยำกว่า
- 2 ช่วยเลือก Threshold ที่เหมาะสม
- •หาก Threshold สูง → ลด False Positive แต่เพิ่ม False Negative
- •หาก Threshold ต่ำ → ลด False Negative แต่เพิ่ม False Positive
- 3 เหมาะกับปัญหาที่มี Class ไม่สมดุล (Imbalanced Data)
- •กรณีที่ Positive น้อย (เช่น ตรวจจับ Fraud, ตรวจโรคหายาก) Accuracy อาจใช้ไม่ได้ แต่ ROC-AUC ยังคงใช้ได้

THANK