Report 1

- 1 Key Indian E-Commerce Players & Business Models
 - Flipkart Walmart-backed giant operating a B2C marketplace, includes Myntra (fashion), Cleartrip, Ekart logistics; ~48% share of Indian online retail.
 - Amazon India B2C marketplace, logistics-driven; neck-and-neck with Flipkart in categories like electronics.
 - Meesho Social commerce platform empowering resellers via WhatsApp/social;
 zero-commission; GMV ~ \$6.2B, ~120 M MAUs.
 - Nykaa B2C/D2C beauty and cosmetics with omni-channel model (app + ~100 stores); FY-Q4 revenue up ~28%.
 - Myntra, Ajio Fashion-focused marketplaces, Myntra owned by Flipkart.
 - Quick commerce: Blinkit (~46% share), Swiggy Instamart (~26%), Zepto (~21–30%)
 BigBasket also pivoting here, driven by Tata, targeting IPO.

Data-Driven Strategies in Use

- Personalized marketing Al-driven product recommendations, behavioral segmentation (e.g., coupon targeting) enhance CX, conversions.
- Dynamic pricing ML models help predict demand, optimize price elasticity;
 studies show ~1% revenue and ~0.8% margin uplift.
- Predictive logistics & inventory Quick-commerce investments in dark stores/hyperlocal supply; analytics forecast demand by slot/region.
- Customer retention Tracking CLV, churn; predictive models flag attrition risk early, driving growth and profitability.
- Fraud detection Platforms like Meesho use AI to flag suspicious transactions (~22M prevented).

3 Key Metrics in E-Commerce Analytics

- Sales/Revenue: GMV, revenue growth, Average Order Value (AOV), repeat purchase ratio.
- Customer: Retention/churn rates, CLV, CAC.
- Marketing: CTR, Conversion Rate, CPC.

- Operational: Fulfillment time, return rates, inventory turnover, delivery SLA (especially 20–30 min for quick commerce).
- Financial: Profitability vs. discount/investment burn (notably in quick commerce).

Seasonal Sales Impact (Festive & Mega Sales)

- Flipkart's Big Billion Days (BBD) & Amazon's Great Indian Festival: Multi-day sales tied to Diwali, Durga Puja—core revenue drivers. BBD 2014 aimed ₹600 cr vs ₹30 cr daily average.
 - o Tactics: dynamic discounting (up to 6000 Rs off, bank offers, EMI, flash sales).
 - Backed by heavy marketing spend, keyword bidding, logistics prep.
- Sales spikes impact inventory allocation, pricing elasticity models, and targeted promotions.
- According to Bain, e-retail is projected to rebound strongly during festive 2025, with GMV growth recovering post-COVID.
- Quick commerce market (~\$7.1B in 2025, projected \$40B by 2030) sees seasonal jumps and related logistics scale-up.

Summary Report: Key Insights

Report Overview

Indian e-commerce is at an inflection point, with GMV nearing \$147B–160B in 2024–2025 and expected 20%+ CAGR to 2030.

Business Structures

Key players include B2C giants (Flipkart, Amazon), social commerce (Meesho), D2C beauty (Nykaa), fashion marketplaces (Myntra/Ajio), and quick commerce (Blinkit, Zepto, Instamart). Meesho and Nykaa diversify models—zero-commission, offline stores.

Role of Data

ML/AI analytics power personalization, churn management, pricing, logistics efficiency, and fraud protection. Quick commerce uses hyperlocal demand prediction to ensure rapid fulfilment.

Crucial Metrics

GMV, AOV, CLV, CAC, CTR, conversion rate, return rates, inventory turnover, fulfillment time, and quick delivery adherence.

Festivals and Sales Impact

Seasonal mega sales are cornerstones—requiring surge in discounts, backend capacity, and data-supported strategies. Flipkart's BBD exemplifies extreme scale and careful orchestration.

Operational & Financial Implications

Intense investments in quick commerce infrastructure drive significant losses ($^{\sim}$ doubling for Swiggy Instamart) yet these contribute $^{\sim}20\%$ of overall e-commerce and capture investor attention .

Subtask 2: Download and Explore Dataset

```
CODE
# Step 1: Import necessary libraries
import pandas as pd
# Step 2: Load the dataset
file path = 'purchase data exe.csv' # Update if your filename is different
df = pd.read csv(file path)
# < Step 3: Preview the dataset
print(" • First 5 Rows:")
print(df.head())
# II Step 4: Basic information
print("\n • Dataset Shape:", df.shape)
print(" • Column Names:", df.columns.tolist())
print("\n • Data Types:")
print(df.dtypes)
# > Step 5: Missing Values Check
print("\n ◆ Missing Values in Each Column:")
print(df.isnull().sum())
#  Step 6: Check for duplicates
duplicates = df.duplicated().sum()
print(f"\n ◆ Number of duplicate rows: {duplicates}")
```

```
#  Step 7: Drop duplicates (optional, create a cleaned version)
df cleaned = df.drop duplicates()
# 🗓 Step 8: Convert date/time column (if applicable)
date columns = ['order date', 'event time', 'timestamp']
for col in date columns:
  if col in df_cleaned.columns:
    try:
      df_cleaned[col] = pd.to_datetime(df_cleaned[col])
      print(f" Converted '{col}' to datetime.")
    except:
      print(f" \( \bar{\}\) Couldn't convert '{col}' to datetime.")
# 6 Step 9: Identify important columns for analysis
important_fields = ['order_id', 'user_id', 'product_id', 'price', 'quantity', 'city', 'category']
print("\n ◆ Important Columns Present:")
for col in important fields:
  if col in df_cleaned.columns:
    print(f"√ {col}")
  else:
    print(f" X {col} (not found)")
# Step 10: Geographical information (if any)
region_columns = ['city', 'state', 'country']
print("\n ◆ Regional Columns Found:")
for col in region columns:
  if col in df cleaned.columns:
    print(f"√ {col}")
```

OUTPUT

First 5 Rows:

date customer_id product_category payment_method value [USD] \

0 20/11/2018	37077	505	credit	49.53	
1 20/11/2018	59173	509	paypal	50.61	
2 20/11/2018	41066	507	credit	85.99	
3 20/11/2018	50741	506	credit	34.60	
4 20/11/2018	53639	515	paypal	266.27	

time_on_site [Minutes] clicks_in_site Unnamed: 7

0	12.0	8	NaN
1	25.9	8	NaN
2	34.9	11	NaN
3	16.5	9	NaN
4	43.1	30	NaN

- Dataset Shape: (24999, 8)
- Column Names: ['date', 'customer_id', 'product_category', 'payment_method', 'value [USD]', 'time_on_site [Minutes]', 'clicks_in_site', 'Unnamed: 7']

Data Types:

date object

customer_id int64

product_category int64

payment_method object

value [USD] float64

time_on_site [Minutes] float64

clicks_in_site int64

- Regional Columns Found:
- Final Summary of Dataset:

- Total Rows: 24999

- Total Columns: 8

- Duplicate rows removed: 0

- Missing value count by column:

Unnamed: 7 24999

dtype: int64

Cleaned dataset saved as 'ecommerce_data_cleaned.csv'

Subtask 3: Data Cleaning and Preprocessing

import pandas as pd

2 Remove Duplicate Records

```
import numpy as np
# Load dataset
df = pd.read csv("purchase data exe.csv") # or "ecommerce data cleaned.csv" if you
cleaned it earlier
print(" • Initial shape:", df.shape)
# -----
# 1 Handle Missing Values
print("\n \ Checking missing values:")
print(df.isnull().sum())
# Drop rows with missing Order ID or Customer/User ID
if 'order id' in df.columns:
  df = df[df['order id'].notnull()]
if 'user_id' in df.columns:
  df = df[df['user_id'].notnull()]
# Fill missing price or quantity with median (if any)
for col in ['price', 'quantity']:
  if col in df.columns and df[col].isnull().sum() > 0:
    df[col] = df[col].fillna(df[col].median())
```

```
before = df.shape[0]
df.drop_duplicates(inplace=True)
after = df.shape[0]
print(f"\n / Duplicates removed: {before - after}")
# 3 Correct Data Types
# -----
# Convert date fields to datetime
for col in ['order_date', 'event_time', 'timestamp']:
  if col in df.columns:
    df[col] = pd.to datetime(df[col], errors='coerce')
    print(f" \boxed{m} Converted {col} to datetime.")
# Convert numerical fields
for col in ['price', 'quantity']:
  if col in df.columns:
    df[col] = pd.to_numeric(df[col], errors='coerce')
# -----
# 4 Fix Data Inconsistencies
# -----
# Standardize category column
if 'category' in df.columns:
  df['category'] = df['category'].str.lower().str.strip()
# Remove rows with negative price or quantity
for col in ['price', 'quantity']:
```

```
if col in df.columns:
    df = df[df[col] >= 0]
# 5 Handle Outliers (Z-score method or quantile method)
for col in ['price', 'quantity']:
  if col in df.columns:
    q1 = df[col].quantile(0.25)
    q3 = df[col].quantile(0.75)
    iqr = q3 - q1
    lower bound = q1 - 1.5 * iqr
    upper bound = q3 + 1.5 * igr
    outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
    print(f" / {col} outliers detected: {outliers.shape[0]}")
    # Remove outliers (optional)
    df = df[(df[col] >= lower bound) & (df[col] <= upper bound)]</pre>
# -----
# 6 Create New Columns
# -----
# Create Total Revenue
if 'price' in df.columns and 'quantity' in df.columns:
  df['total_revenue'] = df['price'] * df['quantity']
# Extract date features
date_col = None
for col in ['order date', 'event time', 'timestamp']:
  if col in df.columns:
    date_col = col
```

break

Initial shape: (24999, 8)

Checking missing values:

date 0

customer_id 0

product_category 0

payment_method 0

value [USD] 0

time_on_site [Minutes] 0

clicks_in_site 0

Unnamed: 7 24999

dtype: int64

✓ Duplicates removed: 0

- Cleaned dataset saved as 'ecommerce_data_final_cleaned.csv'
- Final shape: (24999, 8)