Technische Universität Berlin

Fakultät II – Institut für Mathematik Gündel vom Hofe, Lutz WS 02/03 17.2.03

Februar – Klausur	$({\bf Verst\"{a}ndnisteil})$
Analysis II für	Ingenieure

$\ddot{\mathrm{U}}$ bitte ankreuzen P
Name:
Neben einem handbeschriebenen A4 Blatt mit Notizen sind keine Hilfsmitte zugelassen.
Es sind keine Taschenrechner und Handys zugelassen.
Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistifgeschriebene Klausuren können nicht gewertet werden.
Dieser Teil der Klausur umfasst die Verständnisaufgaben, sie sollten ohne großer Rechenaufwand mit den Kenntnissen aus der Vorlesung lösbar sein. Geben Sie wenn nichts anderes gesagt ist, immer eine kurze Begründung an.
Die Bearbeitungszeit beträgt eine Stunde .
Die Gesamtklausur ist mit 32 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 40 Punkten erreicht werden.

1	2	3	4	5	6	7	$\Sigma_{ m V}$

1. Aufgabe

5 Punkte

Geben Sie die 2π -Fourierkoeffizienten der folgenden Funktion an (Begründung nicht vergessen!):

$$f(x) = 17\left(\frac{5}{2} + 2\sin 2x - \frac{3}{34}\cos 7x\right).$$

2. Aufgabe

6 Punkte

Gegeben ist die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ durch

$$g(x,y) = \begin{cases} 1 & \text{falls } y = x^2, \\ \frac{1}{2} & \text{falls } y \neq x^2. \end{cases}$$

Für welche Punkte $(x, y) \in \mathbb{R}^2$ ist g stetig bzw. unstetig? Für welche Punkte $(x, y) \in \mathbb{R}^2$ ist g differenzierbar bzw. nicht differenzierbar?

3. Aufgabe

5 Punkte

Parametrisieren Sie den Graphen der Funktion $f:[1,2] \to \mathbb{R}, \quad f(x)=e^{2x}$, als Kurve \vec{k} mit Anfangspunkt $B=(2,e^4)$ und Endpunkt $A=(1,e^2)$ (d. h. "rückwärts" durchlaufen).

4. Aufgabe

6 Punkte

Berechnen Sie das Kurvenintegral $\int_{\vec{r}} \vec{v} \ d\vec{s}$ mit

$$\vec{v}(x,y,z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}, \qquad \vec{x}(t) = \begin{pmatrix} t\cos^2(\pi - t) \\ t^2\sin^3 t \\ \sqrt{t(\pi - t)} \end{pmatrix} \quad \text{mit } 0 \le t \le \pi.$$

5. Aufgabe

4 Punkte

Geben Sie rot grad f an, wobei die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ durch

$$f(x,y,z) = \frac{\arctan(x^7y + 6x^6z^3)}{\cos(\sin z) \cdot \ln(1 + y^4 + e^{xyz})}$$
 gegeben ist.

6. Aufgabe

9 Punkte

Die Fläche F ist gegeben durch die Parametrisierung

$$\vec{x}(r,\phi) = \begin{pmatrix} r\cos\phi\\ r\sin\phi\\ r^3 \end{pmatrix}$$
 mit $0 \le r \le 5$ und $0 \le \phi \le 2\pi$. Steht der Vektor $\begin{pmatrix} 12\\ 12\\ -\sqrt{2} \end{pmatrix}$

senkrecht auf F im Punkt $\vec{x}(2, \frac{\pi}{4})$?

7. Aufgabe

5 Punkte

Skizzieren Sie den Bereich

$$B=\{(x,y)\in\mathbb{R}^2\ :\ -3\leq y\leq 3,\ -\sqrt{9-y^2}\leq x\leq \sqrt{9-y^2}\}$$
 und bestimmen Sie anhand der Skizze den Wert von $\iint_B 1\ dxdy$.