A Compositional Semantics for Modelica-style Variable-structure Systems

Peter Pepper Alexandra Mehlhase Christoph Höger Lena Scholz

Technische Universität Berlin

Goals

- Compositional semantics
 - readability and simplicity
 - separate compilation
 - variable-structure systems (structure dynamics)
- Separation of concerns
 - "ideal semantics"
 - "solver semantics"

By contrast, Modelica has a monolithic, flattening-based semantics with a mixture of conceptual and numerics-oriented aspects.

1 Compositional Semantics

Ideal Semantics

Ideal semantics ...

- lives in the realm of pure mathematics
- focuses on modeling concepts
- ignores numerical problems

Two levels of modeling concepts:

- fixed-structure systems (classical Modelica)
 → simplify semantic presentation
- variable-structure systems (extended Modelica)
 prepare extended concepts (dynamic systems, separate compilation)

Base Case: Atomic Fixed-Structure Component

PARAM Length L PARAM Mass m CONST Acceleration g

Length x Length y

Force f

$$m \cdot \ddot{x} = -\frac{x}{L} \cdot f$$

$$m \cdot \ddot{y} = -m \cdot g - \frac{y}{L} \cdot f$$

$$x^{2} + y^{2} = L^{2}$$

parameters

variables V

equations E

Syntax:

Class $C = (V_e, V_l, E)$

V_e: external variablesV_I: local variables

E: hybrid DAEs

Semantics:

Model
$$M = (F_e, F_I)$$

 F_e set of functions $(\hat{=}V_e)$
 F_i set of functions $(\hat{=}V_i)$
 $M \models E$

Composition

Composition is essentially a "pushout":

$$\begin{array}{lll} \mathit{Mod}(S) & = & (\mathit{Mod}(C_1) {\otimes} \mathit{Mod}(C_2)) \mid E_{\mathit{conn}} \\ & \stackrel{\mathit{def}}{=} & \{ \, M_1 \cup M_2 \mid & M_1 \in \mathit{Mod}(C_1), \\ & & M_2 \in \mathit{Mod}(C_2), \\ & & M_1 \mid_{V_e} = M_2 \mid_{V_e}, \\ & & M_1 \cup M_2 \mid= E_{\mathit{conn}} \, \} \end{array}$$

Note: Name clashes avoided by scoping rules (compiler)

Subsystems

$$Mod(S) = (Mod(C_1) \otimes \cdots \otimes Mod(C_n)) \mid (E_S \cup E_{conn_1} \cup \cdots \cup E_{conn_k})$$

Modelica Semantics 7 / 15

Variable-structure systems

Base case: components with modes

Variable-Structure Systems

Changing Topology

Modes can have different components

The Full Picture of Dynamism

Variable-Structure Systems

Modes

Consider component K of class C = (V, E, S, D):

- Component lifetime $T_K = [t^{\alpha}, t^{\omega})$ with $t^{\alpha} < t^{\omega}$
- ullet Mode lifetime $T_{M_i}=[t_{M_i}^lpha,t_{M_i}^\omega)$ (see next slide)
- Semantics during mode M_i : $C_{fix} \otimes S_{M_i} \mid E_{conn}$

Issue: global variables may exhibit different behaviors in different modes

Example:
$$M_1: x_1 = 1$$
 $M_2: x_2 = 2$
 $x = x_1$ $x = x_2$

Variable-Structure Systems

Transitions

Transition point t^* is defined by

$$t^*=$$
 smallest $t,\ t_1^{lpha} < t$ such that
$$\begin{aligned} & \textit{guard}(t) = \textit{true} \\ & \forall \tau, t_1^{lpha} < \tau < t.\ \textit{guard}(au) = \textit{false} \end{aligned}$$

Constraint: $t_1^{lpha} < t^* < t_2^{\omega}$ (modes shall not degenerate to zero length)

Problematic issues to be considered in language design:

- self loops
- conflicting guards (nondeterminism vs. error)

12 / 15

2 Simulation Semantics

Numerical solver issues:

Discretization

ideal functions over R

$$f: \mathbb{R} \to \dots$$

are replaced by discrete sampling times

$$\hat{f}: \mathbb{T} \to \dots$$

where $\mathbb{T} = \{t_i\}$ with $t_{i+1} = t_i + h_i$ for step sizes h_i .

Precision

- rounding errors (limited number size)
- discretization errors $(\tilde{x}_{solver} \approx x(t))$
- approximation errors (e.g. Newton algorithm)
- modeling errors (parameters, input values)
- event detection (e.g. zero crossing)

Solver Semantics

Uncertainty (work in progress)

- Simplest approach is interval-based: $x \rightsquigarrow \tilde{x} = x \pm \omega$
- Semantics is defined relative to notion of "validity"; hence
 - new concept for validity: $(\tilde{A} \models E)$
 - new concept for models: $\widetilde{Mod}(S) = \{ \widetilde{A} \mid \widetilde{A} \models S \}$
 - most other constructs (composition etc.) remain unchanged, since (···⊗...|...) is defined relative to validity
- Critical issue: guards

 - \rightsquigarrow interval $\tilde{T}_1 = [\tilde{t}_1^{\alpha}, \tilde{t}^*)$ is blurred
 - → computation traces can be changed (w.r.t. ideal semantics)
 - → analysis techniques are field for intensive research in Numerics

Solver Semantics

Conclusion

Goal: Compositionality of semantics

- supports variable-structure systems
- supports separate compilation

Goal: Modelica targeted to engineers → semantics as well

- semantics streamlined for Modelica
 - → no embedded DSL (such as Hydra/Haskell)
- as simple and understandable as possible
 - → no large mathematical framework (such as in CIF or Ptolemy)

Goal: Separation of concerns → ideal vs. solver semantics

- clear description of modeling principles
- clear description of solver-based constraints
- adaptability to various solvers and solver technologies