T3.2 Regresión logística

Índice

- 1 Introducción
- 2 Regresión logística binaria
 - 2.1 Modelo
 - 2.2 Clasificadores lineales
 - 2.3 Clasificadores no lineales
 - 2.4 Estimación máximo-verosímil
 - 2.5 Perceptrón
 - 2.6 Estimación MAP
- 3 Regresión logística multiclase
 - 3.1 Modelo
 - 3.2 Clasificadores lineales y no lineales
 - 3.3 Estimación máximo-verosímil

1 Introducción

Regresión logística: clasificador discriminativo para ${\cal C}$ clases

Regresión logística binaria: C=2

Regresión logística multinomial o multiclase: $\,C>2\,$

2 Regresión logística binaria

2.1 Modelo

Regresión logística binaria: Bernoulli condicional para clasificación binaria, $y \in \{0,1\}$,

$$p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) = \text{Ber}(y \mid \sigma(a)),$$

de log-odds lineal con la entrada,

$$a=f(oldsymbol{x};oldsymbol{ heta})=oldsymbol{w}^toldsymbol{x}+b,$$

por lo que

$$egin{aligned} p(y=1\mid oldsymbol{x};oldsymbol{ heta}) &= \sigma(a) = rac{1}{1+e^{-a}} \ p(y=0\mid oldsymbol{x};oldsymbol{ heta}) &= 1-\sigma(a) = \sigma(-a) = rac{1}{1+e^a} \end{aligned}$$

Con etiquetas $\tilde{y} \in \{-1,1\}$,

$$p(ilde{y} \mid oldsymbol{x}; oldsymbol{ heta}) = \sigma(ilde{y}a)$$

Ejemplo: $p(y=1 \mid x_1, x_2; oldsymbol{w}) = \sigma(w_1x_1 + w_2x_2)$ para varios $oldsymbol{w}$

```
import numpy as np
import matplotlib.pyplot as plt
x, y = np.meshgrid(np.linspace(-10, 10, 20), np.linspace(-10, 10, 20))
w = np.array([[-3, 3], [0, 3], [3, 3], [-3, 0], [0, 0.5], [3, 0], [-3, -3], [0, -3], [3, -3]])
nrows = ncols = int(np.ceil(np.sqrt(len(w))))
fig, axes = plt.subplots(nrows, ncols, figsize=(20/4*ncols, 20/4*nrows), constrained_layout=True)
for i in np.arange(len(w)):
    ax = axes.flat[i]; ax.axis('off')
    ax = fig.add_subplot(nrows, ncols, i + 1, projection='3d')
    z = 1.0 / (1.0 + np.exp(-(w[i, 0] * x + w[i, 1] * y)))
    ax.plot_surface(x, y, z, cmap='jet', vmin=0, vmax=3, rstride=1, cstride=1, linewidth=0)
    ax.set_title('w={0!s:.21s}'.format(w[i]), fontsize = 16, y=1)
```


2.2 Clasificadores lineales

La regla de decisión MAP para regresión logística binaria puede expresarse en función de la logodds como sigue:

$$egin{aligned} f(oldsymbol{x}) &= \mathbb{I}(p(y=1 \mid oldsymbol{x}) > p(y=0 \mid oldsymbol{x})) \ &= \mathbb{I}\left(\log rac{p(y=1 \mid oldsymbol{x})}{p(y=0 \mid oldsymbol{x})} > 0
ight) \ &= \mathbb{I}(a>0) \quad ext{con} \quad a = oldsymbol{w}^t oldsymbol{x} + b \end{aligned}$$

Por tanto, esta regla viene a ser una función predictora lineal,

$$f(oldsymbol{x};oldsymbol{ heta}) = b + oldsymbol{w}^toldsymbol{x} = b + \sum_{d=1}^D w_d x_d$$

que separa el espacio de entrada en dos partes mediante una frontera hiperplanar,

$$\mathbf{w}^t \mathbf{x} + b = 0$$

Ejemplo: $w = (2,1,2)^t$ y b = 0; frontera $2x_1 + x_2 + 2x_3 + 0 = 0$

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
w1, w2, w3, b = 2.0, 1.0, 2.0, 0.0
x1, x2 = np.meshgrid(np.linspace(-10, 10, 11), np.linspace(-10, 10, 11))
x3 = lambda x1, x2: (-w1 * x1 - w2 * x2 - b) / w3
fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(x1, x2, x3(x1, x2), rstride=1, cstride=1, linewidth=1)
```

```
scaw = 2.0; ax.quiver(0, 0, x3(0, 0), scaw * w1, scaw * w2, scaw * w3, linewidth=3, colors='black')
ax.text(scaw * w1, scaw * w2, scaw * w3, f"w=[{w1},{w2},{w3}]", fontsize=16, ha='center')
x_min, x_max = ax.get_xlim(); ax.set_xticks(np.linspace(x_min, x_max, 5))
y_min, y_max = ax.get_ylim(); ax.set_yticks(np.linspace(y_min, y_max, 5))
z_min, z_max = ax.get_zlim(); ax.set_zticks(np.linspace(z_min, z_max, 5));
```


Separabilidad lineal: decimos que las muestras (de entrenamiento) son **linealmente separables** si pueden separarse mediante un hiperplano

Ejemplo: virgínica y no-virgínica no son separables con longitud y amplitud de pétalos

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
iris = load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
```

```
y = np.array(iris["target"] == 2).astype(int) # 1 if Iris-Virginica, else 0
log_reg = LogisticRegression(solver="lbfgs").fit(X, y)
plt.figure(figsize=(10, 4))
plt.plot(X[y == 0, 0], X[y == 0, 1], "bs")
plt.plot(X[y == 1, 0], X[y == 1, 1], "g^")
left_right = np.array([2.9, 7])
boundary = -(log_reg.coef_[0][0] * left_right + log_reg.intercept_[0]) / log_reg.coef_[0][1]
plt.plot(left_right, boundary, "k--", linewidth=3)
plt.text(3.5, 1.5, "Not Iris-Virginica", fontsize=14, color="b", ha="center")
plt.text(6.5, 2.3, "Iris-Virginica", fontsize=14, color="g", ha="center")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.axis([2.9, 7, 0.8, 2.7]);
```


2.3 Clasificadores no lineales

No-linealidad usual: de los problemas de clasificación; esto es, con datos de entrenamiento no linealmente separables

Linearización: estrategia usual para atacar un problema no lineal: linearizar los datos en preproceso

Ejemplo:
$$f(\boldsymbol{x}) = x_1^2 + x_2^2 - R^2 = \boldsymbol{w}^t \phi(\boldsymbol{x}) + b$$
 con preproceso $\phi(x_1, x_2) = (x_1^2, x_2^2), \ \boldsymbol{w} = (1, 1)$ y $b = -R^2$

```
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        x1, x2 = np.meshgrid(np.linspace(-2, 2, num=128), np.linspace(-2, 2, num=128))
        X = np.c [np.ravel(x1), np.ravel(x2)]
        z = lambda x: x[0]**2 + x[1]**2 - R**2
        Z = np.apply along axis(z, 1, X)
        fig, axes = plt.subplots(1, 2, figsize=(12, 6))
        axes[0].set(aspect='equal')
        axes[0].set xlabel('$x 1$', fontsize=16); axes[0].set ylabel('$x 2$', fontsize=16)
        axes[0].contour(x1, x2, (Z > 0).reshape(x1.shape), 4, colors='orange', linestyles='solid')
        cp = axes[0].contourf(x1, x2, Z.reshape(x1.shape), 4, cmap='Greys')
        plt.colorbar(cp, ax=axes[0], shrink=0.7);
        xx1, xx2 = np.meshgrid(np.linspace(0, 4, num=128), np.linspace(0, 4, num=128))
        XX = np.c [np.ravel(xx1), np.ravel(xx2)]
        zz = lambda xx: xx[0] + xx[1] - R**2
        ZZ = np.apply along axis(zz, 1, XX)
        axes[1].set(aspect='equal')
        axes[1].set xlabel('x 1^2\', fontsize=16); axes[1].set ylabel('x 2^2\', fontsize=16)
        axes[1].contour(xx1, xx2, (ZZ > 0).reshape(xx1.shape), 4, colors='orange', linestyles='solid')
        cp = axes[1].contourf(xx1, xx2, ZZ.reshape(xx1.shape), 4, cmap='Greys')
        plt.colorbar(cp, ax=axes[1], shrink=0.7);
```


2.4 Estimación máximo-verosímil

Sea un modelo de regresión logística binaria $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) = \mathrm{Ber}(y \mid \mu)$, $y \in \{0, 1\}$, con $\mu = \sigma(a)$ y $a = \boldsymbol{w}^t \boldsymbol{x}$, en el que asumimos que \boldsymbol{w} absorbe el sesgo b. La neg-log-verosimilitud de \boldsymbol{w} respecto a N datos $\mathcal{D} = \{(\boldsymbol{x}_n, y_n)\}$ (normalizada por N) es:

$$\begin{aligned} \operatorname{NLL}(\boldsymbol{w}) &= -\frac{1}{N} \log p(\mathcal{D} \mid \boldsymbol{w}) \\ &= -\frac{1}{N} \log \prod_{n=1}^{N} \operatorname{Ber}(y_n \mid \mu_n) & (\mu_n = \sigma(a_n) \text{ con log-odds } a_n = \boldsymbol{w}^t \boldsymbol{x}_n) \\ &= -\frac{1}{N} \sum_{n=1}^{N} \log(\mu_n^{y_n} (1 - \mu_n)^{(1 - y_n)}) \\ &= -\frac{1}{N} \sum_{n=1}^{N} y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n) \\ &= \frac{1}{N} \sum_{n=1}^{N} \mathbb{H}(y_n, \mu_n) & (\mathbb{H} \text{ entropía cruzada}) \end{aligned}$$

Es fácil comprobar que el gradiente del objetivo es:

$$abla_{oldsymbol{w}} \operatorname{NLL}(oldsymbol{w}) = rac{1}{N} \sum_{n=1}^N (\mu_n - y_n) oldsymbol{x}_n$$

Una manera sencilla de minimizar el objetivo consiste en aplicar descenso por gradiente estocástico con minibatch de talla uno:

$$oldsymbol{w}_{t+1} = oldsymbol{w}_t - \eta_t (\mu_n - y_n) oldsymbol{x}_n$$

Ejemplo: datos sintéticos 2d y modelo de sesgo nulo (b=0)

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.datasets import make classification
        N, n clusters per class, class sep = 20, 2, 1.0
        X, y = make classification(n samples=N, n features=2, n redundant=0, n classes=2,
            n clusters per class=n clusters per class, class sep=class sep) #, random state=1)
        print(np.c [X, y])
       [[ 1.735221 -1.12112183 0.
        [-0.11594029 -1.26769196 1.
        [ 0.88381226  2.01952423  1.
        [ 0.92291618 -1.09847542 1.
        [ 0.98006072 -0.19121314 0.
        [-1.95367795 -1.30843893 0.
        [-0.23871912 0.07069383 0.
        [ 0.36346196  1.21438005  0.
        [-0.46122945 -0.45937469 0.
        [-0.06719974 0.15370342 0.
        [-0.22177128 -1.78498188 1.
        [ 1.23556323 -1.20291205 1.
        [ 0.84719434 1.42690919 0.
        [ 1.0448741 -0.0593187 1.
        [-1.61288152 -1.74205102 0.
        [ 1.02868227  1.83257538  1.
        [ 0.26196032  0.54697936  0.
        [ 1.21097653  0.35805219  1.
        [-0.08226719 1.16827966 0.
        [ 1.03206805  0.20762139  1.
                                            ]]
In [2]: fig, ax = plt.subplots(figsize=(6, 6)); ax.grid(); ax.scatter(*X.T, c=y, s=32)
        x min, x max = ax.get xlim(); y min, y max = ax.get ylim()
        xx, yy = np.meshgrid(np.linspace(x min, x max, 50), np.linspace(y min, y max, 50))
        XX = np.c [np.ravel(xx), np.ravel(yy)]
```



```
In [3]: w, eta = np.zeros((N + 1, 2)), 0.3
for n in np.arange(N):
    mun = 1.0 / (1.0 + np.exp(- w[n, :] @ X[n, :]))
    grad = mun - y[n]
    w[n+1, :] = w[n, :] - eta * (mun - y[n]) * X[n, :]
    print(n+1, w[n+1])
```

```
1 [-0.26028315 0.16816827]
       2 [-0.27926112 -0.03933698]
       3 [-0.12525289 0.31257414]
       4 [0.04440654 0.1106417 ]
       5 [-0.10424642 0.1396444 ]
       6 [0.19187455 0.33796583]
       7 [0.22729012 0.32747793]
       8 [0.1599242 0.10239843]
       9 [0.22493491 0.16714772]
       10 [0.23506817 0.14397029]
       11 [ 0.19670156 -0.16483304]
       12 [ 0.34179149 -0.3060888 ]
       13 [ 0.22404833 -0.50440079]
       14 [ 0.36020852 -0.51213076]
       15 [ 0.63948264 -0.21049064]
       16 [0.7729219 0.02722852]
       17 [ 0.72937394 -0.06370063]
       18 [ 0.83736134 -0.03177175]
       19 [ 0.84904797 -0.19773407]
       20 [ 0.9427212 -0.17888981]
In [4]: nrows = ncols = int(min(3, np.ceil(np.sqrt(N))));
        fig, axes = plt.subplots(nrows, ncols, figsize=(12, 12), constrained layout=True)
        for n in np.arange(min(N, nrows * ncols)):
            ax = axes.flat[n]; ax.axis('off'); ax = fig.add subplot(nrows, ncols, n + 1); ax.grid()
            z = lambda x: w[n + 1, :] @ x
            zz = np.heaviside(np.apply along axis(z, 1, XX), 0.0)
            ax.contour(xx, yy, zz.reshape(xx.shape), 1, colors='orange', linestyles='solid')
            cp = ax.contourf(xx, yy, zz.reshape(xx.shape), 1, cmap='Blues')
            plt.colorbar(cp, ax=ax, shrink=0.5)
            ax.arrow(0, 0, w[n+1, 0], w[n+1, 1], width=.03, facecolor='red', edgecolor='red')
            ax.scatter(*X.T, c=y, s=32); ax.scatter(X[n, 0], X[n, 1], facecolors='none', edgecolors='red', s=150)
```


2.5 Perceptrón

Regresión logística binaria es un modelo probabilístico para clasificación en dos clases, $y \in \{0,1\}$,

$$p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) = \mathrm{Ber}(y \mid \mu) \quad \mathrm{con} \quad \mu = \sigma(a) \quad \mathrm{y} \quad a = \boldsymbol{w}^t \boldsymbol{x} \quad (b \text{ absorbido en } \boldsymbol{w})$$

Perceptrón puede verse como una variante con escalón Heaviside, $H(a)=\mathbb{I}(a>0)$, en lugar de sigmoide:

$$p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) = \operatorname{Ber}(y \mid \mu) \quad \text{con} \quad \mu = H(a) \quad \text{y} \quad a = \boldsymbol{w}^t \boldsymbol{x} \quad (b \text{ absorbido en } \boldsymbol{w})$$

En el caso de regresión logística, el MLE de $m{w}$ puede obtenerse mediante descenso por gradiente estocástico (con minibatch de talla uno):

$$oldsymbol{w}_{t+1} = oldsymbol{w}_t - \eta_t (\mu_n - y_n) oldsymbol{x}_n$$

En el caso de Perceptrón, el MLE de w no puede obtenerse del mismo modo ya que la log-verosimilitud no es diferenciable. No obstante, w puede aprenderse mediante el **algoritmo Perceptrón**, iterando sobre los datos con:

$$oldsymbol{w}_{t+1} = oldsymbol{w}_t - \eta_t (\hat{y}_n - y_n) oldsymbol{x}_n$$

Nótese que el algoritmo Perceptrón es prácticamente idéntico a SGD aplicado a regresión logística binaria.

Ejemplo: datos sintéticos 2d y modelo de sesgo nulo (b=0)

```
N, n clusters per class, class sep = 20, 2, 1.0
        X, y = make classification(n samples=N, n features=2, n redundant=0, n classes=2,
            n clusters per class=n clusters per class, class sep=class sep) #, random state=1)
        print(np.c [X, y])
       [[ 1.42921352    1.40216373    1.
        [-0.53343274 -1.20720614 0.
        [-1.28955298 -1.68987396 0.
        [-0.81129651 0.15449015 0.
        [-2.08864582 0.37869555 1.
        [ 1.28899648 -1.45092469 0.
        [-1.23343394 0.81249019 1.
        [ 0.71065664 2.10285935 1.
        [ 1.05265208 -1.00439831 0.
        [ 1.15656228 -1.11089165 0.
        [-1.03817785 -1.87913803 0.
        [-0.95023001 0.90895826 1.
        [ 2.8537504  0.47453234  1.
        [-1.32010482 0.85871803 1.
        [ 0.09268322 -0.04590865 0.
        [ 0.39125814 1.22104917 1.
        [ 0.49027352 -0.38395735 0.
        [ 1.1495338  0.88425079  1.
        [-0.6651082 -0.45171466 0.
        [-0.40759602 0.79371629 1.
                                           ]]
In [2]: fig, ax = plt.subplots(figsize=(6, 6)); ax.grid(); ax.scatter(*X.T, c=y, s=32)
        x min, x max = ax.get xlim(); y min, y max = ax.get ylim()
        xx, yy = np.meshgrid(np.linspace(x min, x max, 50), np.linspace(y min, y max, 50))
        XX = np.c [np.ravel(xx), np.ravel(yy)]
```



```
In [3]: w, eta = np.zeros((N + 1, 2)), 0.3
for n in np.arange(N):
    # mun = 1.0 / (1.0 + np.exp(- w[n, :] @ X[n, :]))
    mun = np.heaviside(w[n, :] @ X[n, :], 0.0)
    grad = mun - y[n]
    w[n+1, :] = w[n, :] - eta * (mun - y[n]) * X[n, :]
    print(n+1, mun, w[n+1])
```

```
1 0.0 [0.42876406 0.42064912]
       2 0.0 [0.42876406 0.42064912]
       3 0.0 [0.42876406 0.42064912]
       4 0.0 [0.42876406 0.42064912]
       5 0.0 [-0.19782969 0.53425778]
       6 0.0 [-0.19782969 0.53425778]
       7 1.0 [-0.19782969 0.53425778]
       8 1.0 [-0.19782969 0.53425778]
       9 0.0 [-0.19782969 0.53425778]
       10 0.0 [-0.19782969 0.53425778]
       11 0.0 [-0.19782969 0.53425778]
       12 1.0 [-0.19782969 0.53425778]
       13 0.0 [0.65829543 0.67661749]
       14 0.0 [0.26226398 0.9342329 ]
       15 0.0 [0.26226398 0.9342329 ]
       16 1.0 [0.26226398 0.9342329 ]
       17 0.0 [0.26226398 0.9342329 ]
       18 1.0 [0.26226398 0.9342329 ]
       19 0.0 [0.26226398 0.9342329 ]
       20 1.0 [0.26226398 0.9342329 ]
In [4]: nrows = ncols = int(min(3, np.ceil(np.sqrt(N))));
        fig, axes = plt.subplots(nrows, ncols, figsize=(12, 12), constrained layout=True)
        for n in np.arange(min(N, nrows * ncols)):
            ax = axes.flat[n]; ax.axis('off'); ax = fig.add subplot(nrows, ncols, n + 1); ax.grid()
            z = lambda x: w[n + 1, :] @ x
            zz = np.heaviside(np.apply along axis(z, 1, XX), 0.0)
            ax.contour(xx, yy, zz.reshape(xx.shape), 1, colors='orange', linestyles='solid')
            cp = ax.contourf(xx, yy, zz.reshape(xx.shape), 1, cmap='Blues')
            plt.colorbar(cp, ax=ax, shrink=0.5)
            ax.arrow(0, 0, w[n+1, 0], w[n+1, 1], width=.03, facecolor='red', edgecolor='red')
            ax.scatter(*X.T, c=y, s=32); ax.scatter(X[n, 0], X[n, 1], facecolors='none', edgecolors='red', s=150)
```


2.6 Estimación MAP

La regularización ℓ_2 de regresión logística binaria consiste en asumir un prior Gaussiano para ${m w}$,

$$p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w} \mid oldsymbol{0}, \lambda^{-1} oldsymbol{\mathbf{I}})$$

y minimizar la log-verosimilitud negativa penalizada para hallar un estimador MAP de $oldsymbol{w}$,

$$egin{aligned} oldsymbol{w}_{ ext{map}} &= rgmax & p(oldsymbol{w} \mid \mathcal{D}) \ &= rgmax & \log p(\mathcal{D} \mid oldsymbol{w}) + \log p(oldsymbol{w}) \ &= rgmax & \operatorname{LL}(oldsymbol{w}) - \lambda oldsymbol{w}^t oldsymbol{w} \ &= rgmin & \operatorname{PNLL}(oldsymbol{w}) & \operatorname{con} & \operatorname{PNLL}(oldsymbol{w}) = \operatorname{NLL}(oldsymbol{w}) + \lambda oldsymbol{w}^t oldsymbol{w} \end{aligned}$$

Ejemplo: datos sintéticos 2d y modelo polinómico

```
Xtest = X[Ntrain:, :]; ytest = y[Ntrain:]
        print(np.c_[Xtrain[:min(Ntrain, 10), :], ytrain[:min(Ntrain, 10)]])
       [[-6.48928917e-01 1.96408596e-03 0.00000000e+00]
        [-2.69137092e-01 -6.04600245e-01 1.00000000e+00]
        [ 8.06035976e-01 -7.45521952e-01 0.00000000e+00]
        [-8.22767535e-01 1.71948873e-01 0.00000000e+00]
        [-4.75851630e-01 4.79774731e-01 0.00000000e+00]
        [ 9.17638363e-01 1.03699227e+00 1.00000000e+00]
        [ 4.80934984e-01 3.09073076e-01 1.00000000e+00]
        [ 7.12475381e-01 7.10609599e-01 1.00000000e+00]
        [-1.01316079e+00 8.37223758e-04 1.00000000e+00]
        [ 1.70220224e+00  7.64383740e-01  1.00000000e+00]]
In [2]: fig, ax = plt.subplots(figsize=(6, 6)); ax.grid(); ax.scatter(*Xtrain.T, c=ytrain, s=32)
        x min, x max = ax.get xlim(); y min, y max = ax.get ylim()
        xx, yy = np.meshgrid(np.linspace(x min, x max, 200), np.linspace(y min, y max, 200))
        XX = np.c [np.ravel(xx), np.ravel(yy)]
```



```
In [3]: degrees = [1, 2, 3, 4, 5, 6]; nrows, ncols = [2, 3]
        acc train = np.zeros(len(degrees)); acc test = np.zeros(len(degrees))
        C=1e4 # C = 1 / lambda: varianza del prior
        fig, axes = plt.subplots(nrows, ncols, figsize=(15, 10), constrained layout=True)
        for i, degree in enumerate(degrees):
            ax = axes.flat[i]; ax.axis('off'); ax = fig.add subplot(nrows, ncols, i + 1); ax.grid()
            transformer = PolynomialFeatures(degree)
            Xtrain poly = transformer.fit transform(Xtrain)[:, 1:] # skip the first column of 1s
            model = LogisticRegression(C=C, max iter=1000)
            model = model.fit(Xtrain poly, ytrain)
            acc train[i] = accuracy score(ytrain, model.predict(Xtrain poly))
            Xtest poly = transformer.fit transform(Xtest)[:, 1:] # skip the first column of 1s
            acc test[i] = accuracy score(ytest, model.predict(Xtest poly))
            XX poly = transformer.fit transform(XX)[:, 1:] # skip the first column of 1s
            z = lambda x: model.coef [0] @ x
            zz = np.heaviside(np.apply along axis(z, 1, XX poly), 0.0)
            ax.contour(xx, yy, zz.reshape(xx.shape), 1, colors='orange', linestyles='solid')
            cp = ax.contourf(xx, yy, zz.reshape(xx.shape), 1, cmap='Blues')
            plt.colorbar(cp, ax=ax, shrink=0.5)
            ax.scatter(*Xtrain.T, c=ytrain, s=32)
            ax.set title('Degree {}'.format(degree))
```



```
degree = 2; Cs = [1e-4, 1e-2, 1e0, 1e2, 1e4, 1e6]; degree = 2; degree = 2; degree = 2
In [5]:
        acc train = np.zeros(len(Cs)); acc test = np.zeros(len(Cs))
        fig, axes = plt.subplots(nrows, ncols, figsize=(15, 10), constrained layout=True)
        for i, C in enumerate(Cs):
            ax = axes.flat[i]; ax.axis('off'); ax = fig.add subplot(nrows, ncols, i + 1); ax.grid()
            transformer = PolynomialFeatures(degree)
            Xtrain poly = transformer.fit transform(Xtrain)[:, 1:] # skip the first column of 1s
            model = LogisticRegression(C=Cs[i], max iter=1000)
            model = model.fit(Xtrain poly, ytrain)
            acc_train[i] = accuracy_score(ytrain, model.predict(Xtrain poly))
            Xtest poly = transformer.fit transform(Xtest)[:, 1:] # skip the first column of 1s
            acc test[i] = accuracy score(ytest, model.predict(Xtest poly))
            XX poly = transformer.fit transform(XX)[:, 1:] # skip the first column of 1s
            z = lambda x: model.coef [0] @ x
            zz = np.heaviside(np.apply along axis(z, 1, XX poly), 0.0)
            ax.contour(xx, yy, zz.reshape(xx.shape), 1, colors='orange', linestyles='solid')
            cp = ax.contourf(xx, yy, zz.reshape(xx.shape), 1, cmap='Blues')
            plt.colorbar(cp, ax=ax, shrink=0.5)
```

16/4/24 14:59 T3.2 Regresión logística

3 Regresión logística multiclase

3.1 Modelo

Regresión logística multinomial es una categórica condicional para clasificación multiclase, $y \in \{1, \dots, C\}$,

$$p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) = \operatorname{Cat}(y \mid S(\boldsymbol{a})),$$

de logits lineales con la entrada,

$$oldsymbol{a} = f(oldsymbol{x}; oldsymbol{ heta}) = \mathbf{W}^t oldsymbol{x} + oldsymbol{b} \qquad ext{con} \qquad oldsymbol{ heta} = (\mathbf{W}, oldsymbol{b}), \quad \mathbf{W} \in \mathbb{R}^{D imes C}, \quad oldsymbol{b} \in \mathbb{R}^D$$

En notación homogénea, anteponiendo un 1 a $oldsymbol{x}$ y $oldsymbol{b}$ a $oldsymbol{W}$,

$$oldsymbol{a} = f(oldsymbol{x}; oldsymbol{ heta}) = \mathbf{W}^t oldsymbol{x}$$

Clasificación multiclase vs multi-etiqueta:

- Clasificación multiclase: caso estándar en el que solo una etiqueta es correcta
- Clasificación multi-etiqueta: se admite que haya cero, una o más etiquetas correctas; suele modelizarse como una extensión de regresión logística binaria donde la salida es un vector de C bits, $y \in \{0,1\}^C$, para indicar la presencia o ausencia de cada etiqueta

$$p(oldsymbol{y} \mid oldsymbol{x}, oldsymbol{ heta}) = \prod_{c=1}^{C} \mathrm{Ber}(y_c \mid \sigma(oldsymbol{w}_c^t oldsymbol{x})),$$

3.2 Clasificadores lineales y no lineales

Al igual que regresión logística binaria, regresión logística multinomial halla fronteras lineales que, no obstante, pueden emplearse con datos no linealmente separables mediante linearización de los mismos en preproceso.

Ejemplo:
$$C=3$$
, $m{x}=(x_1,x_2)^t$, $\phi(m{x})=(1,x_1,x_2,x_1^2,x_2^2,x_1x_2)^t$

In [1]: import numpy as np
import matplotlib.pyplot as plt

```
from sklearn.preprocessing import PolynomialFeatures
                         from scipy.stats import multivariate normal as mvn
                         from sklearn.linear model import LogisticRegression
                         import matplotlib.colors as mcol
In [2]: np.random.seed(234) # np.random.RandomState(0)
                         N, S = 100, 0.01 * np.eye(2)
                         Gs = [mvn(mean=[0.5, 0.5], cov=S), mvn(mean=[-0.5, -0.5], cov=S), mvn(mean=[0.5, -0.5], cov=S), mvn(mean=[0.5, 0.5], cov=S), mvn(m
                         X = np.concatenate([G.rvs(size=N) for G in Gs])
                         y = np.concatenate((1 * np.ones(N), 1 * np.ones(N), 2 * np.ones(N), 2 * np.ones(N), 3 * np.ones(N)))
                         print(np.c [X[:min(N, 10), :], y[:min(N, 10)]])
                      [[0.58187916 0.39564494 1.
                         [0.53509007 0.59215783 1.
                         [0.49126181 0.18711154 1.
                         [0.40302673 0.59346658 1.
                         [0.50438663 0.64252155 1.
                         [0.44429373 0.59268244 1.
                          [0.37164463 0.60962569 1.
                         [0.30675275 0.54789592 1.
                         [0.63445896 0.48245793 1.
                         [0.49172956 0.41115453 1.
                                                                                                                           ]]
In [3]: fig, ax = plt.subplots(figsize=(6, 6)); ax.grid(); ax.scatter(*X.T, c=y, s=32)
                         x min, x max = ax.get xlim(); y min, y max = ax.get ylim()
```

xx, yy = np.meshgrid(np.linspace(x min, x max, 200), np.linspace(y min, y max, 200))

XX = np.c [np.ravel(xx), np.ravel(yy)]


```
In [4]: degrees = [1, 2, 3]; nrows, ncols = 1, 3
    C=le4 # C = 1 / lambda: varianza del prior
    fig, axes = plt.subplots(nrows, ncols, figsize=(15, 5), constrained_layout=True)
    for i, degree in enumerate(degrees):
        ax = axes.flat[i]; ax.axis('off'); ax = fig.add_subplot(nrows, ncols, i + 1); ax.grid()
        transformer = PolynomialFeatures(degree)
        X_poly = transformer.fit_transform(X)[:, 1:] # skip the first column of 1s
        model = LogisticRegression(C=C, max_iter=1000).fit(X_poly, y)
        XX_poly = transformer.fit_transform(XX)[:, 1:] # skip the first column of 1s
        zz = model.predict(XX_poly)
        ax.contour(xx, yy, zz.reshape(xx.shape), 1, colors='orange', linestyles='solid')
        cp = ax.contourf(xx, yy, zz.reshape(xx.shape), 2, cmap='Blues')
        plt.colorbar(cp, ax=ax, shrink=0.5)
        ax.scatter(*X.T, c=y, s=32)
        ax.set_title(f'Degree {degree}')
```


3.3 Estimación máximo-verosímil

Sea un modelo de regresión logística multinomial para C clases, $y \in \{1, \dots, C\}$,

$$p(y \mid oldsymbol{x}, oldsymbol{ heta}) = \operatorname{Cat}(y \mid oldsymbol{\mu}) \qquad \operatorname{con} \qquad oldsymbol{\mu} = S(oldsymbol{a}) \quad \operatorname{y} \quad oldsymbol{a} = \mathbf{W}^t oldsymbol{x}$$

donde asumimos que $\mathbf{W} \in \mathbb{R}^{D \times C}$ absorbe el sesgo \boldsymbol{b} . La neg-log-verosimilitud de \mathbf{W} respecto a un conjunto de N datos $\mathcal{D} = \{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}$ (normalizada por N y con etiquetas one-hot) es:

$$egin{aligned} ext{NLL}(\mathbf{W}) &= -rac{1}{N} \log p(\mathcal{D} \mid \mathbf{W}) \ &= -rac{1}{N} \log \prod_{n=1}^{N} \operatorname{Cat}(oldsymbol{y}_n \mid oldsymbol{\mu}_n) & (oldsymbol{\mu}_n = S(oldsymbol{a}_n) ext{ con logits } oldsymbol{a}_n = \mathbf{W}^t oldsymbol{x}_n) \ &= -rac{1}{N} \sum_{n=1}^{N} \log \prod_{c=1}^{C} \mu_{nc}^{y_{nc}} \ &= -rac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} y_{nc} \log \mu_{nc} \ &= rac{1}{N} \sum_{n=1}^{N} \mathbb{H}(oldsymbol{y}_n, oldsymbol{\mu}_n) & (\mathbb{H} ext{ entropía cruzada}) \end{aligned}$$

Se puede comprobar que el gradiente del objetivo es:

$$abla_{ ext{vec}(\mathbf{W})} \operatorname{NLL}(\mathbf{W}) = rac{1}{N} \sum_{n=1}^N oldsymbol{x}_n (oldsymbol{\mu}_n - oldsymbol{y}_n)^t$$

Por comodidad, el gradiente recibe el formato de \mathbf{W} , esto es, $\mathbb{R}^{D \times C}$. Si el modelo se define con \mathbf{W} transpuesta, $\mathbf{W} \in \mathbb{R}^{C \times D}$, el formato del gradiente también se transpone.

Una manera sencilla de minimizar el objetivo consiste en aplicar descenso por gradiente estocástico con minibatch de talla uno:

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \, oldsymbol{x}_n (oldsymbol{\mu}_n - oldsymbol{y}_n)^t$$

Ejemplo: datos sintéticos 2d y modelo de sesgo nulo (b=0)

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from scipy.special import logsumexp
N, n_clusters_per_class, class_sep = 30, 1, 1.0
X, y = make classification(n samples=N, n features=2, n redundant=0, n classes=3,
```

```
n clusters per class=n clusters per class, class sep=class sep, random state=43)
        print(np.c [X[:min(N, 10), :], y[:min(N, 10)]])
       [[ 2.1636225  0.32544657  2.
        [-0.98598415 0.24480874 1.
        [ 2.43571903  0.48704515  0.
        [ 0.9342787   1.0535726
        [ 2.25037364  0.3984734
        [-1.39089919 0.97415801 1.
        [ 0.3971162  1.5679538
        [ 0.6309278 -1.15749872 0.
        [ 0.78697279 1.11748862 2.
        [-1.58095132 1.8521708
                                           ]]
In [2]: fig, ax = plt.subplots(figsize=(6, 6)); ax.grid(); ax.scatter(*X.T, c=y, s=32)
        x min, x max = ax.get xlim(); y min, y max = ax.get ylim()
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 200), np.linspace(y_min, y_max, 200))
        XX = np.c [np.ravel(xx), np.ravel(yy)]
```



```
In [3]: W, eta = np.zeros((N + 1, 3, 2)), 0.3
        for n in np.arange(N):
            an = W[n, :, :] @ X[n, :]
            mun = np.exp(an - logsumexp(an))
            mun[y[n]] = 1.0
            W[n+1, :, :] = W[n, :, :] - eta * np.outer(mun, X[n, :])
            if n < 3: print(n+1, W[n+1, :, :])
       1 [[-0.21636225 -0.03254466]
        [-0.21636225 -0.03254466]
        [ 0.4327245  0.06508931]]
       2 [[-0.09990987 -0.06145847]
        [-0.39570511 0.01198415]
        [ 0.49561498  0.04947432]]
       3 [[ 5.09149935e-01 6.03288219e-02]
        [-4.57048808e-01 -2.82101608e-04]
        [-5.21011274e-02 -6.00467203e-02]]
In [4]: | nrows = ncols = int(min(3, np.ceil(np.sqrt(N))));
        fig, axes = plt.subplots(nrows, ncols, figsize=(12, 12), constrained layout=True)
        for n in np.arange(min(N, nrows * ncols)):
            ax = axes.flat[n]; ax.axis('off'); ax = fig.add subplot(nrows, ncols, n + 1); ax.grid()
            z = lambda x: np.argmax(W[n+1, :, :] @ x)
            zz = np.apply along axis(z, 1, XX)
            ax.contour(xx, yy, zz.reshape(xx.shape), 1, colors='orange', linestyles='solid')
            cp = ax.contourf(xx, yy, zz.reshape(xx.shape), 2, cmap='Blues')
            plt.colorbar(cp, ax=ax, shrink=0.5)
            ax.arrow(0, 0, W[n+1, y[n], 0], W[n+1, y[n], 1], width=.03, facecolor='red', edgecolor='red')
            ax.scatter(*X.T, c=y, s=32); ax.scatter(X[n, 0], X[n, 1], facecolors='none', edgecolors='red', s=150)
```


