Chapter 5, Solution 32.

Calculate i_x and v_o in the circuit of Fig. 5.70. Find the power dissipated by the 60-k Ω resistor.

Figure 5.70 For Prob. 5.32.

Solution

Let v_x = the voltage at the output of the op amp. The given circuit is a non-inverting amplifier.

$$v_x = \left(1 + \frac{50}{10}\right)_{(4 \text{ mV})} = 24 \text{ mV}$$

 $60||30 = 20\text{k}\Omega|$

By voltage division,

$$v_{o} = \frac{20}{20 + 20} v_{x} = \frac{v_{x}}{2} = 12 \text{mV}$$

$$i_{x} = \frac{v_{x}}{(20 + 20)k} = \frac{24 \text{mV}}{40k} = 600 \text{ nA}$$

$$p = \frac{v_o^2}{R} = \frac{144x10^{-6}}{60x10^3} = \frac{204 \text{ nW}}{100}.$$