BestPracticesSTBiocBook

Table of contents

Welcome										
D	Docker image									
RS	Studio Server									
Session info										
1	Intr	oduction	10							
	1.1	Overview	10							
	1.2	Contents	10							
	1.3	Scope and who this book is for	10							
	1.4	Bioconductor	11							
	1.5	Additional resources	11							
	1.6	Contributions	12							
	Refe	erences	12							
2	Spa	tial transcriptomics	13							
	2.1	Overview	13							
	2.2	Sequencing-based platforms	13							
		2.2.1 10x Genomics Visium	14							
		2.2.2 10x Genomics Visium HD	15							
		2.2.3 Curio Seeker	15							
	2.3	Molecule-based platforms	15							
		2.3.1 10x Genomics Xenium	15							
		2.3.2 Vizgen MERSCOPE	16							
		2.3.3 NanoString CosMx	16							
	Refe	erences	16							
3	Bio	conductor data classes	17							
	3.1	Overview	17							
	3.2	SpatialExperiment class	17							
	3.3	Molecule-based data	18							
		3.3.1 MoleculeExperiment	18							
		3.3.2 SpatialFeatureExperiment	18							
	Refe	prences	10							

4	Ana	alysis steps	20
	4.1	Save data objects for re-use in later chapters	20
		4.1.1 Human DLPFC dataset	20

Welcome

Package: BestPracticesSTBiocBook Authors: First Last [aut, cre] Compiled: 2024-09-25 Package version: 0.98.0 R version: R version 4.4.1 (2024-06-14) BioC version: 3.20

License: MIT + file LICENSE

This is the website for the online book 'Best Practices for Spatial Transcriptomics Analysis with Bioconductor'.

This book provides discussion and interactive examples on best practices for computational analysis workflows for spatial transcriptomics data, using the Bioconductor framework within R. The chapters contain details on individual analysis steps as well as complete example workflows, with interactive example datasets and R code.

The book is organized into several parts, including introductory materials, analysis steps, and example workflows.

Additional details on analysis workflows for non-spatial single-cell data as well as further introductory materials on R and Bioconductor can be found in the related book Orchestrating Single-Cell Analysis with Bioconductor (OSCA).

Docker image

A Docker image built from this repository is available here:

ghcr.io/lmweber/bestpracticesstbiocbook

? Get started now

You can get access to all the packages used in this book in < 1 minute, using this command in a terminal:

Listing 0.1 bash

docker run -it ghcr.io/lmweber/bestpracticesstbiocbook:devel R

RStudio Server

An RStudio Server instance can be initiated from the Docker image as follows:

Listing 0.2 bash

```
docker run \
    --volume <local_folder>:<destination_folder> \
    -e PASSWORD=OHCA \
    -p 8787:8787 \
    ghcr.io/lmweber/bestpracticesstbiocbook:devel
```

The initiated RStudio Server instance will be available at https://localhost:8787.

Session info

i Click to expand

1 Introduction

1.1 Overview

Bioconductor

1.2 Contents

•

•

•

•

1.3 Scope and who this book is for

Visium Data

Preprocessing

1.4	Bio	cond	uctor
	$-$. \circ		

Bioconductor

1.5 Additional resources

- Orchestrating Single-Cell Analysis with Bioconductor (OSCA)
- R for Data Science
- Data Carpentry Software Carpentry

detailed guide
YouTube videos

• Visium Data Preprocessing

1.6 Contributions

GitHub issues

References

2 Spatial transcriptomics

2.1 Overview

Method

of the Year 2020

2.2 Sequencing-based platforms

2.2.1 10x Genomics Visium

10x Genomics Visium

Figure 2.1: Schematic illustrating the 10x Genomics Visium platform. Source: 10x Genomics Visium

2.2.2	10x Genomics Visium HD
1	0x Genomics Visium HD
2.2.3	Curio Seeker
C	Curio Seeker
2.3	Molecule-based platforms
	piane salea piane sine

2.3.1 10x Genomics Xenium

10x Genomics

2.3.2 Vizgen MERSCOPE

Vizgen

2.3.3 NanoString CosMx

NanoString

References

3 Bioconductor data classes

3.1 Overview

3.2 SpatialExperiment class

 ${\bf Spatial Experiment}$

SingleCellExperiment

Bioconductor vignette

Figure 3.1: Overview of the SpatialExperiment data class for storing and manipulating spatial transcriptomics datasets within the Bioconductor framework.

3.3 Molecule-based data

3.3.1 MoleculeExperiment

Bioconductor package

3.3.2 SpatialFeatureExperiment

Bioconductor package

References

4 Analysis steps

3

4.1 Save data objects for re-use in later chapters

4.1.1 Human DLPFC dataset

```
# LOAD DATA

library(SpatialExperiment)
library(STexampleData)
spe <- Visium_humanDLPFC()

# save object
library(here)
# if (!dir.exists(here("outputs"))) dir.create(here("outputs"))
# saveRDS(spe, file = here("outputs/spe_load.rds"))
saveRDS(spe, file = here("spe_load.rds"))</pre>
```

```
# QUALITY CONTROL (QC)
library(scater)
# subset to keep only spots over tissue
spe <- spe[, colData(spe)$in tissue == 1]</pre>
# identify mitochondrial genes
is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)</pre>
# calculate per-spot QC metrics
spe <- addPerCellQC(spe, subsets = list(mito = is_mito))</pre>
# select QC thresholds
qc_lib_size <- colData(spe)$sum < 600
qc_detected <- colData(spe)$detected < 400
qc_mito <- colData(spe)$subsets_mito_percent > 28
qc_cell_count <- colData(spe)$cell_count > 10
# combined set of discarded spots
discard <- qc_lib_size | qc_detected | qc_mito | qc_cell_count
colData(spe)$discard <- discard</pre>
# filter low-quality spots
spe <- spe[, !colData(spe)$discard]</pre>
# save object
# saveRDS(spe, file = here("outputs/spe_qc.rds"))
saveRDS(spe, file = here("spe_qc.rds"))
# NORMALIZATION
library(scran)
# calculate logcounts using library size factors
spe <- logNormCounts(spe)</pre>
# save object
# saveRDS(spe, file = here("outputs/spe_logcounts.rds"))
saveRDS(spe, file = here("spe_logcounts.rds"))
# FEATURE SELECTION
# remove mitochondrial genes
spe <- spe[!is_mito, ]</pre>
# fit mean-variance relationship
dec <- modelGeneVar(spe)</pre>
# select top HVGs
top_hvgs <- getTopHVGs(dec, prop = 0.1)</pre>
```

```
# save object
# saveRDS(spe, file = here("outputs/spe_hvgs.rds"))
# saveRDS(top_hvgs, file = here("outputs/top_hvgs.rds"))
saveRDS(spe, file = here("spe_hvgs.rds"))
saveRDS(top_hvgs, file = here("top_hvgs.rds"))
```

```
# DIMENSIONALITY REDUCTION

# compute PCA
set.seed(123)
spe <- runPCA(spe, subset_row = top_hvgs)
# compute UMAP on top 50 PCs
set.seed(123)
spe <- runUMAP(spe, dimred = "PCA")
# update column names
colnames(reducedDim(spe, "UMAP")) <- paste0("UMAP", 1:2)

# save object
# saveRDS(spe, file = here("outputs/spe_reduceddims.rds"))
saveRDS(spe, file = here("spe_reduceddims.rds"))</pre>
```

```
# CLUSTERING

# graph-based clustering
set.seed(123)
k <- 10
g <- buildSNNGraph(spe, k = k, use.dimred = "PCA")
g_walk <- igraph::cluster_walktrap(g)
clus <- g_walk$membership
colLabels(spe) <- factor(clus)

# save object
# saveRDS(spe, file = here("outputs/spe_cluster.rds"))
saveRDS(spe, file = here("spe_cluster.rds"))</pre>
```