Set theory 4

■ **null event**: no outcomes Ø or {}

$$C = \{1, 2\}$$

 $D = \{3, 4\}$
 $C \cap D = \emptyset$

 mutually exclusive – events that cannot occur at the same time

if $A \cap B = \emptyset$, then A and B are mutually exclusive or disjoint

Set theory: more than two events 1

 \blacksquare $A \cup B \cup C$: all outcomes in at least one of A, B, & C

$$A = \{1, 2, 3\}$$

 $B = \{5\}$
 $C = \{1, 5, 10\}$
 $A \cup B \cup C = \{1, 2, 3, 5, 10\}$

■ $A \cap B \cap C$: all outcomes in A, B, and C $A \cap B \cap C = \{\}$

Set theory: more than two events 2

 mutually exclusive or pairwise disjoint – no two events have any outcomes in common

• Are the following events mutually exclusive?

```
D = {H, T}
E = {HH, TT, TH, HT}
F = {T, TT}
```

Venn diagrams

Denzel Washington Venn diagram

Denzel Washington Venn diagram

- Sample Space: all Denzel Washington movies
- **Events**: Hat, Glasses, Facial Hair
- Hat ∩ Glasses ∩ Facial Hair = {"Malcolm X"}

Venn diagrams of events

Figure 2.1 Venn diagrams

EXERCISE

Shade:

$$1. (A \cap B) \cup (A' \cap B') \qquad 2. (A \cup B) \cap C \cap (A \cap B)'$$

Basic properties of probability (axioms) (2.2)

P(A) = measure of the chance that A will occur (multiple interpretations)

- 1. For any event A, $P(A) \ge 0$.
- 2. P(S) = 1
- 3. If A_1, A_2, A_3, \ldots is an infinite collection of disjoint events, then $P(A_1 \cup A_2 \cup A_3 \cup \ldots) = \sum_{i=1}^{\infty} P(A_i)$

Propositions

- $P(\emptyset) = 0$
- Axiom 3 is valid for **finite** disjoint events $P(A \cup B) = P(A) + P(B)$

Relative frequency

- probability = relative frequency = $\frac{n(A)}{n}$ = number of times A occurs in n replications
- Experiments that can be repeated
- Example: What is the probability that a baby born in the U.S. is female?

Observation

BabiesBorn Females RelFreq

0 0.000 0.500 2 0.333 3 0.500 4 0.600 5 3 0.600 10 6 50 25 0.500 0.460 100 46 232 0.464 500 1000 482 0.482 2000 0.484 969

Relative Frequency of Female Babies

Objective vs. subjective interpretations of probability

- objective interpretation of probability is based on long-run relative frequency
- subjective interpretation assignment of probability to nonrepeatable events

More probability properties

- For any event A, P(A) + P(A') = 1, from which P(A) = 1 P(A').
- For any event A, $P(A) \le 1$.
- For any two events A and B, $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Counting techniques (2.3)

- Are items being replaced?
- Does order matter?
- Add ("or", alternatives) or multiply ("and")?

Counting techniques

The Product Rule

If one element of a pair can be selected in n_1 ways, and for each of these n_1 ways the other element of the pair can be selected n_2 ways, then the number of pairs is n_1n_2 .

Example

TuTh 8:40 classes To	uTh 10:10 classes
----------------------	-------------------

Music BC1002 Classical Civilization UN3230

French UN2102 Anthropology UN2003

Statistics UN1201 Chemistry S1404

English BC1211 Italian UN1102

Humanities UN1123

Tree diagram

Permutations

order matters

$$P_{k,n} = \frac{n!}{(n-k)!}$$

■ 10 people, 1st, 2nd, 3rd place

$$P_{3,10} = \frac{10!}{(10-3)!} = \frac{10!}{7!} = 10(9)(8) = 720$$

Combinations

order doesn't matter

Handshake problem: 5 people, everyone must shake everyone else's hand, how many handshakes?

•
$$C_{k,n} = \binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$$

■ 10 people, how many distinct groups of 3 can be formed?

$$C_{3,10} = {10 \choose 3} = \frac{10!}{3!(10-3)!} = \frac{10(9)(8)}{3(2)(1)} = 120$$

 Permutations: ABC, ACB, BAC, BCA, CAB, CBA are all different, for combinations, all the same