NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA1101R Linear Algebra I

2018-2019 (Semester 1)

Tutorial 9

- 1. (a) In \mathbb{R}^2 , find the distance from the point (1,5) to the line x-y=0.
 - (b) In \mathbb{R}^3 , find the distance from the point (1,0,-2) to the plane 2x+y-2z=0.
 - (c) In \mathbb{R}^3 , find the distance from the point (1,0,-2) to the line

$$L = \{(t, 2t, 2t) \mid t \in \mathbb{R}\}.$$

- 2. Let $V = \text{span}\{\boldsymbol{v_1} = (1,0,1), \boldsymbol{v_2} = (0,1,-2)\}.$
 - (a) Is $\{v_1, v_2\}$ a basis for V? Justify your answer.
 - (b) Use Gram-Schmidt Process to find an orthonormal basis for V.
 - (c) Compute the projection of $\mathbf{w} = (1, 1, 1)$ onto V using
 - (i) Theorem 5.2.15 (Orthogonal projection); and
 - (ii) Theorem 5.3.8 together with Theorem 5.3.10 (Least Squares solution).
- 3. A series of experiments were performed to investigate the relationship between two physical quantities x and y. The results of the experiments are shown in the table below.

x	0	1	2	3
y	3	2	4	4

- (a) Find a least squares solution $\mathbf{x} = (\hat{a}, \hat{b})$ if it is believed that x and y are related linearly, that is, y = ax + b.
- (b) Find a least squares solution $\mathbf{x} = (\hat{a}, \hat{b}, \hat{c})$ if it is believed that x and y are related by the quadratic polynomial $y = ax^2 + bx + c$.
- 4. (All vectors in this question are written as column vectors.) Let \mathbf{A} be an orthogonal matrix of order n and $S = \{\mathbf{u_1}, \mathbf{u_2}, \cdots, \mathbf{u_n}\}$ be a basis for \mathbb{R}^n .
 - (a) For any vector $\mathbf{x} \in \mathbb{R}^n$, show that $||\mathbf{x}|| = ||\mathbf{A}\mathbf{x}||$.
 - (b) For any two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, show that $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{A}\boldsymbol{x}, \boldsymbol{A}\boldsymbol{y})$.
 - (c) For any two vectors $x, y \in \mathbb{R}^n$, show that the angle between x and y is the same as the angle between Ax and Ay.
 - (d) Show that $T = \{Au_1, Au_2, \cdots, Au_n\}$ is also a basis for \mathbb{R}^n .
 - (e) If S is an orthogonal basis, show that T is also an orthogonal basis.
 - (f) If S is orthonormal, is T orthonormal?
- 5. Let

$$v_1 = (1, 1, 1, -1), \quad v_2 = (1, 1, 3, 5).$$

It is easy to see that $S = \{v_1, v_2\}$ is an orthogonal set. Extend this set to an orthogonal basis for \mathbb{R}^4 .