Soru-1) Dört bitlik sayıların 2'ye tümleyenini bulan devreyi tasarlayınız.(Sadece çıkış fonksiyonlarını bulunuz devreyi çizmeyiniz)

Cevap-1)

İki tabanındaki sayıların ikiye sayıların ikiye tümleyen, 2ⁿ-N eşitiliği ile bulunur. 0000 sayısı için ikiye tümleyen 2⁴-0000=10000-0000=10000 beş bitlik çıkış olur diğerler için ise dört bitlik bir çıkış olur. Bir başka değişle tüm satırların toplamı 10000(16) olacaktır.

A	В	С	D	F5	F4	F3	F2	F1
0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	1	1	1
0	0	1	0	0	1	1	1	0
0	0	1	1	0	1	1	0	1
0	1	0	0	0	1	1	0	0
0	1	0	1	0	1	0	1	1
0	1	1	0	0	1	0	1	0
0	1	1	1	0	1	0	0	1
1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	1	1	1
1	0	1	0	0	0	1	1	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	1	0	0
1	1	0	1	0	0	0	1	1
1	1	1	0	0	0	0	1	0
1	1	1	1	0	0	0	0	1

F5=A'B'C'D'

CI AB	00	01	11	10
OO AB		1	1	1
01	1	1	1	1
11				
10	1			

F4=A'B+A'D+A'C+AB'C'D'

AB	00	01	11	10
700		1	1	1
01	1			
11	1			
10		1	1	1

F3=BC'D'+B'D+B'C

CI AB	00	01	11	10
700		1		1
01		1		1
11		1		1
10		1		1

 $F2=C'D+CD'=C\oplus D$

Soru-2) 4 bitlik sayıların GRAY kodunu bulan devrenin tasarımı gerçekleştirilecektir.

- a) Doğruluk tablosunu elde ediniz.
- b) Her bir çıkış için en sade ifadeyi bulunuz.
- c) Devreyi VE-VEYA kapıları ile gerçekleştiriniz.
- **d)** Devre VE/VEYA kapıları dışında daha az eleman kullanılarak gerçekleştirilebilirse gerçekleştirip bu devreyi çiziniz.

Cevap-2) a)

A	В	C	D	F1	F2	F3	F4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

- c) Devrenin VE/VEYA lojiği ile gerçekleştirilmesi
- **d)** F2, F3 ve F4 çıkışları bir ÖZELVEYA kapısı ile gerçekleştirilebilir. Dolayısıyla devre toplam 3 kapı ile gerçekleştirilebilir.

Soru-3) 4 bitlik sayıların tek mi çift mi olduğunu bulan bir devre tasarlanacaktır

- a) Devreyi uygun boyutta MUX ile tasarlayınız ve çiziniz.
- **b)** Devreyi daha küçük bir boyutta bir MUX ile mesela 2x1'lik bir MUX ile tasarlayabilirmisiniz? Cevabınız "Evet" ise tasarımı gerçekleştiriniz ve çiziniz

Cevan-3) a)

Ceva	Cevap-3) a)							
A	В	C	D	F				
0	0	0	0	0				
0	0	0	1	1				
0	0	1	0	0				
0	0	1	1	1				
0	1	0	0	0				
0	1	0	1	1				
0	1	1	0	0				
0	1	1	1	1				
1	0	0	0	0				
1	0	0	1	1				
1	0	1	0	0				
1	0	1	1	1				
1	1	0	0	0				
1	1	0	1	1				
1	1	1	0	0				
1	1	1	1	1				

	10	I1	I2	I3	I4	I 5	16	17
A'	0	(1)	2	③ (11)	4	<u>(3)</u>	6	2
Α	8	9	10	(1)	12	(13)	14	(13)
	0	1	0	1	0	1	0	1

b) Bir sayının tek ya da çift olması ilk bitinin 1 ya da 0 olmasına bağlıdır. A, B ve C'nin herhangi bir anlamı yoktur. Sayının tek ya da çift olmasını D

biti belirler. O halde sayı, D 1 ise tek 0 ise çifttir. (10p)

