Assignment 01

Dep. Al Convergence Engineering

Student ID: 2023214019

Name: Md Habibur Rahman

1. Q1. Algebraically prove that if $A \subseteq B_1$ and $C \subseteq B_2$ then $A \cap C = \varphi$ if $A \cap B_1 \cap B_2 = \varphi$, where $B_1 \cap B_2 \neq \varphi$ and $B_1 \cap B_2 \cap B_2 \cap B_1$.

Answer:

Given,

- 1. $A \subset B_1$
- 2. $C \subset B_2$
- 3. $A \cap B_1 \cap B_2 = \varphi$
- 4. $B_1 \cap B_2 \neq \varphi$
- 5. $B_1 \subseteq B_2$ and
- 6. $B_2 \nsubseteq B_1$

Since $A \subseteq B_1$ and $C \subseteq B_2$ any element in the intersection of A and C must belong to both B_1 and B_2 . If $A \cap C$ is non-empty, then there exists an element x such that $x \in A$ and $x \in C$.

However, from the given condition $A \cap B_1 \cap B_2 = \varphi$, it follows that there can be no element that belongs simultaneously to A, B_1 and B_2 .

Now, let's consider the case where A \cap C is not empty. This implies that there exists an element x such that $x \in A$ and $x \in C$. Since $A \subset B_1$ and $C \subset B_2$, it follows that $x \in B_1$ and $x \in B_2$.

However, this contradicts the given condition $A \cap B_1 \cap B_2 = \emptyset$, as we have found an element x that belongs to all three sets A, B_1 , and B_2 , which is not possible.

Therefore, A \cap C must be empty. Thus, algebraically, it is proven that if A $\cap B_1 \cap B_1 = \varnothing$, where $B_1 \cap B_2 = \varnothing$ and $B_1 \subseteq B_2$ and $B_2 \subseteq B_1$, then A \cap C= \varnothing .

2. Q2. Assume that $P(X_1, X_2)$ is a proposition. Prepare a set S using $P(X_1, X_2)$ such that ϕ =S.

Answer:

A proposition is a statement that can be either true or false, but not both.

To construct the set S such that $\emptyset = S$, we need to find values for X_1 and X_2 such that $P(X_1, X_2)$ is always false, resulting in an empty set.

Lets say,

$$P(X_1, X_2) = X_1 + X_2 < 0$$
 Where X_1 and X_2 are positive number

Then, our set S would be defined as:

$$S = \{(X_1, X_2) \mid P(X_1, X_2) \text{ is true}\}$$

However, since there are no values of X_1 and X_1 that satisfies this condition (because the sum of two real positive numbers cannot be less than 0), the set S will be empty.

3. Q3. Prove that if A and B are two sets such that, propositions $P(x \in A)$ and $Q(x \in B)$ are tautologies whereas $P(x \in B)$ and $Q(x \in A)$ are contradictions, then $A \cap B = \varphi$.

Given:

Proposition $P(x \in A)$ is a tautology.

Proposition $Q(x \in B)$ is a tautology.

Proposition $P(x \in B)$ is a contradiction.

Proposition $Q(x \in A)$ is a contradiction.

To prove: $A \cap B = \emptyset$

Let's proceed with the proof:

Since $P(x \in A)$ is a tautology, any element x that belongs to set A satisfies proposition P(x). Similarly, since $Q(x \in B)$ is a tautology, any element x that belongs to set B satisfies proposition Q(x). However, if $P(x \in B)$ is a contradiction, there cannot exist an element that belongs to both sets A and B. Similarly, if $Q(x \in A)$ is a contradiction, there cannot exist an element that belongs to both sets A and B.

Therefore, there are no elements that simultaneously belong to both sets A and B, implying that the intersection of sets A and B is empty.

Mathematically, $A \cap B = \emptyset$.

Hence, we have proven that \varnothing =A \cap B.