Comparative Analysis of Price-based Control Strategies for a High Temperature Thermal Energy Storage System

Presenter:

Tao Yang
Center for Energy Informatics
University of Southern Denmark

Authors:

Tao Yang¹, Isabela Zuluaga¹, Konstantin Filonenko², Christian Veje³
¹Center for Energy Informatics, University of Southern Denmark
²DTU Compute, Technical University of Denmark
³Department of Mechanical and Electrical Engineering, University of Southern Denmark

America Modelica Conference 2022, October 26-28, 2022

Agenda

- Background and motivation
- Models
- Simulation setup
- Preliminary results
- Conclusions and future works

Background and motivation

- The common use energy storage systems to deal with mismatch between energy demand and supply
- The use of advanced control strategies (eg. MPC) to enhance energy efficiency
- A lot of works focus on MPC for water-based thermal storage
- In this work, an MPC for high temperature thermal storage (HTTES) systems is developed

Models

Schematic diagram of the HTTES

Rankine cycle

Charging

$$\dot{Q}_{ch} = \dot{Q}_{ch,in} - \dot{Q}_{ch,out} = \dot{m}_{ch} \cdot c_{air} \cdot (T_c - T_s)$$

$$P_{el} = \dot{m}_{ch} \cdot c_{air} \cdot (T_c - T_s)$$

Discharging

$$\dot{Q}_d = \dot{Q}_{d,out} - \dot{Q}_{d,in} = \dot{m}_d \cdot c_{air} \cdot (T_s - T_{sr})$$

Heat loss

$$\dot{Q}_{loss} = U \cdot A_s \cdot (T_s - T_{amb})$$

Models

Specification of relevant physical properties

- The rock is Swedish diabase
- The volume of the rocks is 1.5 m³, and the mass of the rocks is 2495 kg. The storage measures 1 m by 1 m by 1.5 m

Property	\mathbf{Unit}	Symbol	Value
Heat capacity of air	$[\mathrm{J/kg}\cdot\mathrm{K}]$	cp_{air}	1000
Density of Swedish Diabase (solid)	$[{ m kg/m^3}]$	$ ho_{r,s}$	3007
Volumetric heat capacity of	5- / 9		
Swedish Diabase (solid)	$[\mathrm{J/m^3 \cdot K}]$	$cp_r \cdot \rho_{r,s}$	3,824,900
Specific heat capacity of Swedish Diabase (solid)	$[\mathrm{J/kg}\cdot\mathrm{K}]$	cp_r	1272
Density of	- 0		
Swedish Diabase (packed bed)	$[{ m kg/m^3}]$	$ ho_{r,p}$	1663.33

Model predictive controller

Overview of the simulation setup

Implementation of model predictive controller

Model predictive controller

- Control model: nonlinear state space model
- Economic MPC

$$J_{rev} = -\sum_{i=k}^{P} \left(\frac{P_{g,i}}{3.6 \cdot 10^9} \cdot spot_{e,i} + \frac{\dot{Q}_{c,i}}{3.6 \cdot 10^9} \cdot price_{DH,i} - \frac{P_{el,i}}{3.6 \cdot 10^9} \cdot spot_{e,i} \right)$$

Subject to:

System dynamics

100 °C < Ts < 600 °C

-3 < u < 3

- Prediction horizon: 24 h
- Control horizon: 15 minutes

Rule-based controller

Control logic of RBC 2

Rule-based controller

- Pricemin = 258 DKK/MWh
- Pricemax = 358 DKK/MWh

KPI for simulating 7 days

КРІ	RBC 1	RBC 2	RBC 3
Total net revenues [DKK]	86	105	171

Control logic of RBC 3

Preliminary results

KPI	RBC 3	MPC
Total net revenues [DKK]	171	469.7

MPC vs. RBC 3

Conclusions and future works

- The preliminary results show that MPC outperforms RBC. However, the current RBC performance highly relies on the choice of electricity price threshold.
- The continuation of the work involves development of a more detailed emulation model.
- The continuation of the work involves tuning the Modelica-based RBC settings based on price margin including customizing different RBCs under different price scenarios.

THANK YOU FOR YOUR ATTENTION

Presenter:

Tao Yang

Email: taoy@mmmi.sdu.dk Center for Energy Informatics University of Southern Denmark

