Produit scalaire de deux vecteurs

I. Rappels sur les vecteurs

1. Notions de direction, de sens

Une direction du plan (ou de l'espace) est représentée par une droite d.

Deux droites parallèles ont la même direction.

La direction de d peut être représentée par n'importe quelle autre droite parallèle à d.

Soit A et B deux points distincts d'une droite d.

Il y a deux sens de déplacement sur la droite d:

- le sens de A vers B;
- le sens de B vers A.

2. Notion de vecteur

Un *vecteur non nul* \vec{u} est défini par :

- sa direction ;
- sa **norme**, notée $\|\vec{u}\|$;
- son sens.

Cette définition permet de représenter un vecteur \vec{u} non nul par un « segment fléché ».

 $\overrightarrow{AB} = \overrightarrow{u}$

- Choisir une droite d qui représente la direction du vecteur \vec{u} ;
- fixer un point « origine » A sur la droite d, puis placer le point « extrémité » B sur la droite d tel que :
 - la distance AB est égale à la norme du vecteur \vec{u} ;
 - le sens de A vers B est celui du vecteur \vec{u} .

On écrit alors $\overrightarrow{AB} = \vec{u}$ et on dit que \overrightarrow{AB} est un représentant du vecteur \vec{u} :

- la direction du vecteur $\vec{u} = \overrightarrow{AB}$ est celle de la droite (AB) ;
- la norme du vecteur $\vec{u} = AB$ est $||\vec{u}|| = AB$;
- le sens du vecteur $\vec{u} = A\vec{B}$ est celui de A vers B.

Il existe une infinité de représentants d'un vecteur \vec{u} , mais un seul d'origine fixée.

 $\overrightarrow{AB} = \overrightarrow{CD} \iff ABDC$ est un parallélogramme \iff les segments [AD] et [BC] ont même milieu.

Le *vecteur nul* n'a <u>ni direction</u>, <u>ni sens</u>, mais sa <u>norme</u> est égale à zéro ; on le note $\vec{0}$. Le vecteur nul est représenté par un « point » : $\vec{0} = \overrightarrow{AA} = \overrightarrow{BB} = \cdots = \overrightarrow{MM} = \cdots$

3. Coordonnées

Dans le plan muni d'un repère $(0; \vec{i}, \vec{j})$, on considère deux points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Quelle que soit la nature du repère $(O; \vec{i}, \vec{j})$, les coordonnées du vecteur $\vec{u} = \overrightarrow{AB}$ sont $\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ et ne dépendent pas du représentant choisi.

Deux vecteurs sont égaux si, et seulement si, leurs coordonnées sont égales.

$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix} = \vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix} \iff x = x' \text{ et } y = y'.$$

Dans un repère **orthonormé** $(O; \vec{i}, \vec{j})$,

$$\overrightarrow{AB}$$
 $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ et $\|\overrightarrow{AB}\| = AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

II. Définition et expressions du produit scalaire de deux vecteurs

Soient \vec{u} et \vec{v} deux vecteurs. Soient A, B et C trois points tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. En rapport avec l'activité B page 231 du manuel (cliquer ici), la définition choisie pour le produit scalaire de deux vecteurs est la suivante :

1. Définition

Le produit scalaire des vecteurs \vec{u} et \vec{v} , noté $\vec{u} \cdot \vec{v}$ ou $\overrightarrow{AB} \cdot \overrightarrow{AC}$, est égal à :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (AB^2 + AC^2 - BC^2) = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{v} - \vec{u}\|^2).$$

2. Autres expressions du produit scalaire

 \square avec le projeté orthogonal : soit H le projeté orthogonal du point C sur la droite (AB), $A \neq B$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{cases} AB \times AH , \text{ si } H \in [AB) \\ -AB \times AH , \text{ si } H \not\in [AB) \end{cases}$$

 \Box formule trigonométrique : pour $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$, c'est-à-dire $A \neq B$ et $A \neq C$,

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$$
, c'est-à-dire : $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \times \cos(\widehat{BAC})$.

 \Box dans un repère orthonormé : soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$,

$$\vec{u} \cdot \vec{v} = xx' + yy'$$
 et $\|\vec{u}\| = \sqrt{x^2 + y^2} = \sqrt{\vec{u} \cdot \vec{u}}$.

Si $A(x_A; y_A)$ et $B(x_B; y_B)$, on retrouve :

$$\overrightarrow{AB} \cdot \overrightarrow{AB} = (x_B - x_A)^2 + (y_B - y_A)^2 = AB^2.$$

III. Propriétés du produit scalaire de deux vecteurs

1. Bilinéarité et symétrie

Propriétés

 \vec{u} , \vec{v} et \vec{w} sont trois vecteurs ; a et b sont deux nombres réels.

- $\square \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (symétrie);
- $\square \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ (compatible avec l'addition des vecteurs);
- $\Box (a\vec{u}) \cdot (b\vec{v}) = (ab) \times (\vec{u} \cdot \vec{v})$ (compatible avec le produit d'un vecteur par un réel);
- $\Box (\vec{u} + \vec{v})^2 = ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u} \cdot \vec{v}.$

2. Orthogonalité

Définition

Deux vecteurs <u>non nuls</u> $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ sont *orthogonaux* si, et seulement si, les droites (AB) et (CD) sont perpendiculaires.

Propriété

Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si, et seulement si, $\vec{u} \cdot \vec{v} = 0$.

3. Vecteur normal — Équations cartésiennes de droites

Définition

Soit d une droite de vecteur directeur \vec{u} .

Tout vecteur \vec{n} non nul et orthogonal au vecteur \vec{u} est appelé *vecteur normal* à la droite d.

Équation d'une droite dont on connaît un point et un vecteur normal

Soit *d* la droite passant par $A(x_A; y_A)$ et de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$.

$$\mathbf{M}(x;y) \in d \iff \text{les vecteurs } \overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix} \text{ et } \overrightarrow{\mathrm{AM}} \begin{pmatrix} x - x_{\mathrm{A}} \\ y - y_{\mathrm{A}} \end{pmatrix} \text{ sont orthogonaux } \iff a(x - x_{\mathrm{A}}) + b(y - y_{\mathrm{A}}) = 0$$

$$M(x; y) \in d \iff ax + by + c = 0 \text{ (avec } c = -ax_A - by_A).$$

Si
$$(a,b) \neq (0,0)$$
, l'équation $ax + by + c = 0$ est celle d'une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ —

et de vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$.